UNIVERSIDAD DEL VALLE DE GUATEMALA

MM2034 - 1 SEMESTRE - 2021

LICENCIATURA EN MATEMÁTICA APLICADA

ANÁLISIS DE VARIABLE REAL 1

Catedrático: Dorval Carías

Estudiante: Rudik Roberto Rompich Cotzojay

Carné: 19857

Correo: rom19857@uvg.edu.gt

30 de junio de 2021

Índice

1	Pro	${f piedades\ de\ }\mathbb{R}$	1
	1.1	Supremo e Ínfimo	4
	1.2	Espacios métricos	7
	1.3	HT1	10
2	Тор	ología básica en $\mathbb R$	15
	2.1	Axiomas de Kuratowski	25
	2.2	Conjuntos conexos	25
		2.2.1 Resumen	26
	2.3	Compactos	29
	2.4	Hoia de repaso v parcial	32

1. Propiedades de \mathbb{R}

 $(\mathbb{R}, +, \cdot)$ es un campo.

Definición 1. Un conjunto no vacío P de elementos de un campo \mathbb{F} es una clase positiva si cumple:

- 1. $Si\ a, b \in P \implies a + b \in P$.
- 2. $Si\ a, b \in P \implies a \cdot b \in P$.
- 3. Si $a \in \mathbb{F}$, entonces:
 - a) $a \in P$ o a = 0 o $-a \in P$. (Ley de tricotomía)

NOTA. Sea $N = \{-a : a \in P\}$ la clase negativa relativa a $P : \Longrightarrow \mathbb{F} = P \cup \{0\} \cup \mathbb{N}$.

Ejemplo 1. 1. $(\mathbb{Q}, +, \cdot)$ es un campo. Sea $P\{a/b \in \mathbb{Q} \ni a, b \in \mathbb{Z}^+\} \implies P$ es una clase positiva de \mathbb{Q} .

2. Sea $\mathbb{Z}_2 = \{0, 1\}$, en las operaciones:

- $\implies (\mathbb{Z}_2, +, \cdot)$ es un campo.
- a) Sea $P = \{0\}$. Cumple las propiedades: 1, 2. No cumple 3. $\Longrightarrow P$ no es una clase positiva de \mathbb{Z}_2 .
- b) Sea $P' = \{1\}$. No cumple el 1. $\implies P'$ no es clase positiva de \mathbb{Z}_2 .

Definición 2. Sea P la clase positiva del campo \mathbb{F} , entonces se dice que \mathbb{F} está ordenada por P (o que \mathbb{F} es un campo ordenado).

- 1. Si $a \in P$, se dice que a es positivo. Notación a > 0.
- 2. Si $a \in P$ o a = 0, se dice que a es no negativo. Notación $a \ge 0$.
- 3. Si $a, b \in \mathbb{F}$ y $a b \in P$, se escribe a > b.
- 4. Si $a, b \in \mathbb{F}$ y $a b \in P$ o a b = 0, se escribe $a \ge b$.

Proposición 1. Otras propiedades:

- 1. $Si \ a > b \ y \ b > c \implies a > c$.
- 2. Si $a, b \in \mathbb{F}$, entonces
 - a) a > b o a = b o b > a.
- 3. $Si \ a \ge b \ y \ b \ge a \implies a = b$.

Proposición 2. Sea \mathbb{F} un campo ordenado:

- 1. Si $a \neq 0 \implies a^2 > 0$.
- *2.* 1>0.
- 3. Si $n \in \mathbb{Z}^+ \implies n > 0$.

Teorema 1. Sean $a, b, c \in \mathbb{F}$.

1.
$$Si \ a > b \implies a + c > b + c$$
.

2.
$$Si \ a > b \ y \ c > d \implies a + c > b + d$$
.

3.
$$Si \ a > b \ y \ c > 0 \implies ac > bc$$
.

4.
$$Si \ a > b \ y \ c < 0 \implies ac < bc$$
.

5.
$$Si \ a > 0 \implies a^{-1} > 0$$
.

6. Si
$$a < 0 \implies a^{-1} < 0$$
.

Corolario 1.1. $Si \ a > b \implies a > \frac{a+b}{2} > b.$

NOTA. Hagamos b = 0. Entonces, si $a > 0 \implies a > \frac{a}{2} > 0$. Entonces, en un campo ordenado no existe un número positivo menor.

Teorema 2. Si ab > 0, entonces, a > 0 y b > 0 o a < 0 y b < 0.

Definición 3. Sea \mathbb{F} un campo una clase positiva P. Se define la función valor absoluto:

$$|\cdot|: \mathbb{F} \to P \cup \{0\} \ni$$

$$|a| = \begin{cases} a, & a \ge 0. \\ -a, & a < 0. \end{cases}$$

Teorema 3. 1. $|a| = 0 \iff a = 0$.

- 2. |-a| = |a|.
- 3. $|ab| = |a| \cdot |b|$.

4. Si
$$c \ge 0 \implies |a| \le c \iff -c \le a \le c$$
.

NOTA. Como $|a| \ge 0 \implies |a| \le |a| \implies -|a| \le a \le |a|, \forall a$.

Teorema 4 (Designaldad triangular). Sean a y b elementos de un campo ordenado \mathbb{F} . Entonces,

$$|a+b| \le |a| + |b|.$$

NOTA (Designaldad triangular). Si a, b son elementos del campo ordenado \mathbb{F} , entonces:

$$||a| - |b|| \le |a \pm b| \le |a| + |b|.$$

Definición 4. Un campo ordenado \mathbb{F} es arquimediano si $\forall x \in \mathbb{F} \ \exists n \in \mathbb{Z}^+ \ni x < n$.

NOTA. La clase positiva P de \mathbb{F} es arquimediana si $\forall x \in \mathbb{F} \exists n \in \mathbb{Z}^+ \ni n - x \in P$.

Teorema 5. Si \mathbb{F} es un campo arquimediano, entonces:

- 1. $Si \ y > 0 \ y \ z > 0 \implies \exists n \in \mathbb{Z}^+ \ni ny > z$.
- 2. Si $z > 0 \implies \exists n \in \mathbb{Z}^+ \ni 0 < 1/n < z$.
- 3. $Si \ y > 0 \implies \exists n \in \mathbb{Z}^+ \ni n-1 \le y < n$.

1.1. Supremo e Ínfimo

NOTA (Cota superior más pequeño). Sea $B \subseteq \mathbb{Q}$, $B \neq \mathbb{Q}$. Entonces, B es acotado superiormente si $k \in \mathbb{Q} \ni k \geq b$, $\forall b \in B$. En este caso k es cota superior de B.

Ejemplo 2. Considérese

- 1. Sea $\{a \in \mathbb{Q} \ni a < 4\}$. Este conjunto está acotado superiormente por 4 (pero también 5, 6,... son cotas superiores). Por otro lado, $\mathbb{N} \subseteq \mathbb{Q}$ no es acotado.
- 2. Si $B \subseteq \mathbb{Q}$, $B \neq \mathbb{Q}$ y B es acotado superiormente, entonces la cota superior más pequeña de B es un número $k \in \mathbb{B}$ es un número $k \in \mathbb{Q}$ \ni
 - a) K es cota superior.
 - b) Si c es cota superior de B, entonces $c \geq k$.
- 3. Si existe la cota superior más pequeña de B, esta es única. Suponga que k₁ y k₂ son cotas superiores más pequeñas. Entonces:
 - a) Como k_1 es cota superior más pequeña y k_2 es cota superior $\implies k_2 \ge k_1$.
 - b) Como k_2 es cota superior más pequeña y k_1 es cota superior. \Longrightarrow $k_1 \ge k_2 \implies k_1 = k_2$.
- 4. Considérese el conjunto

$$C = \{ a \in \mathbb{Q} : a \ge 0 \ y \ a^2 < 2 \}.$$

Nótese que C está acotado superiormente. En efecto, si $a \in C \implies a^2 < 4 \implies a < 2 \implies 2$ es cota superior de C.

Ejemplo 3. Ejemplos

a) ¿Es 2 la menor cota superior de C? No, considere $a^2 < 9/4 \implies a < 3/2 = 1,5$.

- b) Los números racionales: 2, 1.5, 1.42, 1.415, 1.4143, 1.41422, 1.41214,... son cotas superiores de C.
- c) C no tiene en $\mathbb Q$ una cota superior más pequeña. Nótese que $\sqrt{2} \notin \mathbb Q$, debería ser la cota superior más pequeña de C.

Definición 5. El conjunto de números reales \mathbb{R} es un campo ordenado que satisface:

$$P1 \ \forall x > 0 \ en \ \mathbb{R} \ \exists n \in \mathbb{Z}^+ \ni x < n > y.$$

P2 Cada subconjunto no vacío de $\mathbb R$ que es acotado superiormente tiene una cota superior más pequeña en $\mathbb R$.

NOTA. Cada subconjunto no vacío de \mathbb{R} que es acotado inferiormente tiene una cota inferior más grande (**ínfimo**). En efecto si A es un subconjunto no vacío de \mathbb{R} acotado inferiormente, considere -A y aplique el axioma del supremo.

- 1. $Supremo de A: \sup A$.
- 2. Ínfimo de A: ínf A.

Ejemplo 4.

Considere $(\frac{1}{n})$.

$$\implies \inf\left(\frac{1}{n}\right) = 0.$$

Ejemplo 5.

$$\sup[a, b] = b; \inf[a, b] = a.$$

$$\sup(a, b) = b; \inf(a, b) = a.$$

NOTA. 1. Si el sup $A \in A \implies \sup A$ es el máximo de A.

2. Si el ínf $A \in A \implies$ ínf A es el mínimo de A.

Convenciones:

1. Si A no está acotada superiormente, entonces escribimos

$$\sup A = \infty$$

2. Si ${\cal A}$ no está acotado inferiormente, entonces escribimos

$$\inf A = -\infty$$

3. Si $A = \emptyset$ (Recordemos que cada número real es cota superior e inferior de \emptyset), se escribe:

$$\sup\emptyset = -\infty \text{ e inf }\emptyset = \infty$$

NOTA. En todo caso, se dice que el sup A e inf A existen si son un número finito.

1.2. Espacios métricos

Definición 6. Sea X un conjunto y

$$d: X \times X \to \mathbb{R} \ni$$

 $\forall a, b, c \in X \text{ satisface:}$

- 1. Positividad. $d(a,b) \ge 0$; $d(a,b) = 0 \iff a = b$.
- 2. Simetría. d(a,b) = d(b,a).
- 3. Designaldad triangular. $d(a,b) \leq d(a,c) + d(c,d)$, entonces (X,d) es un espacio métrico y d es una métrica sobre X o una distancia sobre X.

Proposición 3 (Reordenamiento de la desigualdad triangular). Si(X, d) es un espacio métrico y si $a, b, c \in X$, entonces:

$$|d(a,b) - d(b,c)| \le d(a,c).$$

Ejemplo 6. 1. Sea $X = \mathbb{R}$ y $d_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \ni d_1(a,b) = |a-b|$. \Longrightarrow (\mathbb{R}, d_1) es un espacio métrico. En efecto, sean $a, b, c \in \mathbb{R}$. Entonces:

- a) Por definición, $d_1(a,b) = |a-b| \ge 0$.
 - 1) $Si\ d(a,b) = |a-b| = 0 \implies a-b = 0 \implies a = b$.
 - 2) $Si \ a = b \implies d(a, b) = |a a| = |0| = 0.$
- b) d(a,b) = |a-b| = |-(a-b)| = |b-a| = d(b,a).
- c) $d(a,b) = |a-b| = |(a-c)+(c-d)| \le |a-c|+|c-b| = d(a,c)+d(c,b)$.

2. Cada conjunto admite una métrica. Sea $X \neq \emptyset$, entonces se define la métrica discreta así: $d: X \times X \to \mathbb{R} \ni$

$$d(a,b) = \begin{cases} 1, & a \neq b \\ 0, & a = b \end{cases}$$

 $\implies (X, d)$ es espacio métrico.

Ejemplo 7 (Métrica Euclidiana en \mathbb{R}^n). Sea $X = \mathbb{R}^n$ y sean: $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$. Definamos: $d_2 : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \ni$

$$d_2(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

 $\implies (\mathbb{R}^n, d_2)$ es métrica.

Lema 6. Sean $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$, números reales cualquiera. Entonces, se cumplen:

1. Desigualdad de Cauchy-Schwarz

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$
$$(\overline{a} \cdot \overline{b}) \le \|\overline{a}\| \cdot \|\overline{b}\|$$

2. Desigualdad de Minkowski

$$\left[\sum_{i=1}^{n} (a_i + b_i)^2\right]^{1/2} \le \left[\sum_{i=1}^{n} a_i^2\right] + \left[\sum_{i=1}^{n} b_i^2\right]^{1/2}$$

Ejemplo 8. Considere $d_{\infty}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \ni$

$$d_{\infty}(x,y) = \max\{|x_i - y_i| : i = 1, \dots, n\}.$$

 $\implies d_{\infty}$ es una métrica en \mathbb{R}^n .

Ejemplo 9. x = (2, 3, 4) y y = (-1, 2, 0).

$$\implies d_{\infty}(x,y) = \max\{|2 - (-1)|, |3 - 2|, |4 - 0|\} = \max\{3, 1, 4\} = 4.$$

Ejemplo 10. Sea B([a,b]) el conjunto de funciones acotadas definidas en [a,b] y de valores reales. También se denota:

$$l^{\infty}([a,b]) = \{f : [a,b] \to \mathbb{R} \ni |f(x)| \le M, M > 0\}$$

 $\implies Dadas \ f, g \in l^{\infty}[a, b].$

 $\implies d_{\infty}(f,g) = \sup\{|f(x) - g(x)|\}, \ la \ cual \ es \ una \ métrica \ en \ l^{\infty}[a,b] \ y \ se \ llama$ métrica o distancia del supremo.

Ejemplo 11. Sea C[a,b] el conjunto de funciones continuas sobre [a,b] con valores reales. Entonces, si $f,g \in C[a,b]$, se tiene la métrica:

$$d(f,g) = \int_{a}^{b} |f(x) - g(x)| dx$$

sobre C[a,b].

Definición 7. Suponga que V es un espacio vectorial sobre el campo \mathbb{F} (\mathbb{R} o \mathbb{C}) y que:

$$\|\cdot\|:V\to\mathbb{R}\ni$$

 $\forall x, y \in V \ y \ \alpha \in \mathbb{F} \ se \ cumplen:$

1.
$$||x|| \ge 0, ||x|| = 0 \iff x = 0.$$

2.
$$\|\alpha x\| = |\alpha| \cdot \|x\|$$
.

$$3. ||x + y|| \le ||x|| + ||y||.$$

Entonces, $\|\cdot\|$ es una norma sobre V y decimos que $(V, \|\cdot\|)$ es un espacio normado.

NOTA. Sea V un espacio vectorial normado. Entonces, considere:

$$d: V \times V \to \mathbb{R} \ni$$

$$d(x,y) = ||x - y||.$$

Nótese que:

1.
$$d(x,y) = ||x - y|| \ge 0$$
;

a)
$$Si \ x = y \implies d(x, y) = ||x - y|| = 0.$$

b)
$$Si \ d(x,y) = ||x - y|| = 0 \implies x - y = 0 \implies x = y$$
.

2.
$$d(x,y) = ||x-y|| = ||-(y-x)|| = |-1| \cdot ||y-x|| = ||y-x|| = d(y,x)$$
.

3.
$$d(x,y) = \|x-y\| = \|(x-z)+(z-y)\| \le \|x-z\| + \|z-y\| = d(x,z)+d(z,y)$$
. $\implies d(x,y) = \|x-y\|$ es una métrica sobre V . Esta es la métrica inducida por la norma.

1.3. HT1

Universidad del Valle de Guatemala Departamento de Matemática Licenciatura en Matemática Aplicada 14 de febrero de 2021 Rudik Roberto Rompich - Carné: 19857

Análisis de Variable Real 1 - Dorval Carías

HT 1 - Revisión

1. Muestre que el campo Q de los racionales es arquimediano.

Demostración. Por definición, un campo ordenado \mathbb{F} tiene la propiedad arquimediana si $\forall x \in \mathbb{F} \exists n \in \mathbb{Z}^+ \ni x < n$. Entonces, sea \mathbb{Q} el campo de los racionales, es decir \exists unos elementos m y $n \ni \frac{n}{m} \in \mathbb{Q}$ en donde $m \neq 0$ y $m, n \in \mathbb{Z}$. Entonces, se deben cumplir, según el Teorema 1.4.2 de Abbott (2012):

$$x \in \mathbb{Q}, \exists n \in \mathbb{N}$$
 que satisfaga la desigualdad $n > x$ (1)

Dado cualquier número racional $y > 0, \exists n \in \mathbb{N}$ que satisfaga $\frac{1}{n} < y$ o 1 < ny (2)

Para (1), supóngase $x = \frac{n}{m}$, entonces existen dos casos:

- 1. (x < 0), se cumple la propiedad (1) en todos los casos por definición.
- 2. $(x \ge 0)$ Como sabemos $x = \frac{n}{m}$ y $m \ne 0$. Entonces, por definición de números racionales, se debe cumplir $m \ge 1$ en cualquier caso.

Para (2), si tomamos $y=\frac{n}{m} \implies m\cdot y=n \implies$ i.e. $n=my\geq y$ (como $m\geq 1) \implies n+1>y$, cumpliendo la propiedad (2).

∴ el campo Q es arquimediano.

1. ¿Depende este resultado del orden definido en Q?

En la argumentación de la prueba se asumió que $\mathbb Q$ era un campo ordenado. Por lo cual, se determinó que $\mathbb Q$ es un campo arquimediano. Sin embargo, no depende del orden definido, ya que solamente existe una relación que ordena a $\mathbb Q$ y que únicamente en esa relación puede ser ordenada; como se observa en la demostración anterior.

2. Presente un ejemplo de un campo ordenado no arquimediano.

Algunos ejemplos de campos no arquimedianos pero sí ordenados son: campo de Levi-Civita, los números hiperreales, números surreales, el campo de Dehn, y el campo de las funciones racionales. De los cuales, se consideró el campo de las *funciones racionales*. HT 1-Revisión Rompich

Funciones racionales

Por definición de un campo ordenado, supóngase dos funciones $f(x), g(x) \in \mathbb{Q}(x)$ y asumimos que $f < g \leftrightarrow f \neq g$ y que al substraer g - f el resultado es un coeficiente positivo. Entonces, por las propiedades del orden, se deben cumplir:

- 1. Según la tricotomía, por cada $f \in \mathbb{Q}(x)$, se tiene que mantener f > 0, f = 0 o 0 > f
- 2. Si hay tres elementos $f, g, h \in \mathbb{Q}(x)$ y f < g, entonces f + h < g + h
- 3. Si hay tres elementos $f, g, h \in \mathbb{Q}(x), f < g \neq 0 < h$, entonces fh < gh.

Demostración. Para mostrar que las funciones racionales son ordenadas, asúmase que $0 < f \leftrightarrow -f < 0$, entonces cualquier elemento de $\mathbb{Q}(x)$ puede escribir como $\frac{f(x)}{g(x)}$ donde g > 0. Por otra parte, si definimos $\frac{f_1(x)}{g_1(x)}, \frac{f_2(x)}{g_2(x)} \in \mathbb{Q}(x)$, en donde por definición $g_1 > 0$ y $g_2 > 0$, eso quiere decir que:

$$\implies \frac{f_1(x)}{g_1(x)} < \frac{f_2(x)}{g_2(x)} \implies f_1(x)g_2(x) < f_2(x)g_1(x)$$

probando que las funciones racionales son ordenadas.

Por otra parte queremos determinar que las funciones racionales no son arquimedeanas:

Demostración. Considérese un contraejemplo, tomando en cuenta las funciones racionales f(x) = x y g(x) = 1. Se observa que si se toma un elemento $n \in \mathbb{N}$, siempre habrá una función $f(x) > n \cdot g(x)$, debido a que $(f - n \cdot g)(x) = x - n$ y afirmando que el coeficiente de $(f - n \cdot g)$ es 1, el cual debe ser positivo; incumpliendo la propiedad arquimediana. \square

3. Si a y b son elementos de un campo arquimediano F con a < b, demuestre que existe un racional $c \in F \ni a < c < b$.

Demostración. Basándose en la deducción de Bartle and Sherbert (2000). Supóngase que c=0, por lo que se puede considerar a>0. En donde b-a>0. Siguiendo el corolario que dice si t>0, entonces existe $n_t\in\mathbb{N}$ tal que $0<1/n_t< t$. Se puede asumir que $n\in\mathbb{N}$ tal que 1/n< b-a. Por lo tanto, si se tiene na+1< nb., aplicando nuevamente otro corolario que afirma: Si b>0, entonces existe $n_b\in\mathbb{N}$ tal que $n_b-1\leq y\leq n$. Por lo que se tiene que: na>0, entonces $m\in\mathbb{N}$ con $m-1\leq na< m$. Por lo tanto, $m\leq na+1< nb$, Mientras que na< m< nb. Entonces el número racional r:=m/n satisface a< c< b

4.

■ Defina operaciones en $\mathbb{Q}(\sqrt{2}) = \{x + (\sqrt{2})y : x, y \in \mathbb{Q}\}$ de tal forma que sea un campo.

Demostración. Por definición, asúmase que $\mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$, por lo que las propiedades de asociatividad, conmutatividad y distributividad de la multiplicación sobre la suma son implícitas por ser un subcampo de \mathbb{R} . Entonces:

HT 1-Revisión Rompich

1. Cerradura bajo la adición. Dados $a_1, a_2 \in \mathbb{Q}(\sqrt{2})$, entonces $a_1 + a_2 \in \mathbb{Q}(\sqrt{2})$.

Sea
$$a_1 = x_1 + (\sqrt{2})y_1$$
 y $a_2 = x_2 + (\sqrt{2})y_2 \in \mathbb{Q}(\sqrt{2}) \Longrightarrow a_1 + a_2 = x_1 + x_2 + (\sqrt{2})y_1 + (\sqrt{2})y_2 = x_1 + x_2 + (\sqrt{2})[y_1 + y_2] \in \mathbb{Q}(\sqrt{2}).$

2. Cerradura bajo la multiplicación. Dados $a_1, a_2 \in \mathbb{Q}(\sqrt{2})$, entonces $a_1 \cdot a_2 \in \mathbb{Q}(\sqrt{2})$.

Sea
$$a_1 = x_1 + (\sqrt{2})y_1$$
 y $a_2 = x_2 + (\sqrt{2})y_2 \in \mathbb{Q}(\sqrt{2}) \implies a_1 \cdot a_2 = (x_1 + (\sqrt{2})y_1)(x_2 + (\sqrt{2})y_2) = x_1 \cdot x_2 + (\sqrt{2})y_2x_1 + (\sqrt{2})y_1x_2 + (\sqrt{2}y_1) \cdot (\sqrt{2}y_2) = x_1 \cdot x_2 + (\sqrt{2})[y_2x_1 + y_1x_2] + 2(y_1y_2) \in \mathbb{Q}(\sqrt{2})$

3. Inverso. Sea $a \in \mathbb{Q}(\sqrt{2}) \implies \frac{1}{a} \in \mathbb{Q}(\sqrt{2})$

$$(x+y\sqrt{2})^{-1} = \frac{1}{x+y\sqrt{2}}$$
$$= \frac{x}{x^2 - 2y^2} - \frac{y}{x^2 - 2y^2}\sqrt{2} \in \mathbb{Q}(\sqrt{2})$$

en donde $x^2-2y^2\neq 0$ porque $\sqrt{2}$ es irracional. $\implies \frac{1}{a}\in \mathbb{Q}(\sqrt{2})$

$$\therefore \mathbb{Q}(\sqrt{2}) = \{x + (\sqrt{2})y : x, y \in \mathbb{Q}\} \text{ es un campo.}$$

• ¿Es un campo ordenado?

Demostración. Dadas las propiedades de un campo ordenado (Sea P la clase positiva del campo \mathbb{F} , entonces se dice que \mathbb{F} está ordenada por P (O que \mathbb{F} es un campo ordenado):

- 1. Si $a \in P$, se dice que a es positivo. Notación a > 0.
- 2. Si $a \in P$ o a = 0, se dice que a es no negativo. Notación a > 0
- 3. Si $a, b \in \mathbb{F}$ y $a b \in P$, se escribe a > b
- 4. Si $a, b \in \mathbb{F}$ y $a b \in P$ o a b = 0, se escribe $a \ge b$

Se propone un $a = x + (\sqrt{2}y)$. Debido a la relación $\mathbb{Q}(\sqrt{2}) \subset R \implies a > 0$ o $a \ge 0$, demostrando las propiedades (1) y (2). Por otra parte, se proponen dos elementos $x_1 + (\sqrt{2})x_2$ y $y_1 + (\sqrt{2})y_2$, tal que:

$$x_1 + (\sqrt{2})x_2 \le y_1 + (\sqrt{2})y_2 \iff y_1 - x_1 + (x_2 - y_2)(\sqrt{2}) \ge 0$$

Demostrando las propiedades (3) y (4). : $\mathbb{Q}(\sqrt{2}) = \{x + (\sqrt{2})y : x, y \in \mathbb{Q}\}$ es un campo ordenado.

• ¿Es ordenado el campo de los complejos?

Demostración. Asúmase un contraejemplo. Dígase un elemento $-i \in \mathbb{C}$. Entonces, se tienen dos casos: (i) Si -i > 0, es decir que si se eleva al cuadrado $(-i)^2 > 0 \implies -1 > 0$. Entonces se tiene que -i < 0. (ii) Si se eleva a una potencia $4 \implies (-i)^4 > 0 \implies (-i)^2(-i)^2 = (-1)(-1) = 1 > 0$. Afirmando al mismo tiempo

HT 1-Revisión Rompich

que -1 > 0 y 1 > 0 ($\rightarrow \leftarrow$). Es decir, una contradicción en una de las propiedades de un campo ordenado (Si 0 < a < b y 0 < c < d, entonces ac < bd). Por lo tanto, el campo de los complejos no es ordenado.

Referencias

Abbott, S. (2012). $Understanding\ analysis$. Springer Science & Business Media.

Bartle, R. G. and Sherbert, D. R. (2000). *Introduction to real analysis*, volume 2. Wiley New York.

2. Topología básica en \mathbb{R}

Definición 8. Sea X un conjunto no vacío. Una familia de subconjuntos τ de X es una topología sobre X si:

- 1. $\Phi, X, \in \tau$.
- 2. Cualquier familia $\{A_i\}$ de elementos de τ es tal que $\cup_i A_i \in \tau$.
- 3. Si $A_1, A_2 \in \tau \implies A_1 \cap A_2 \in \tau$.

NOTA. A los elementos de τ se les llama abiertos de X.

Definición 9. La familia θ de todos los subconjuntos abiertos de M es la topología de M y el par (M, θ) es el espacio topológico asociado al métrico M.

NOTA. En el caso de \mathbb{R}^n se dice que se tiene el espacio topológico Euclidiano \mathbb{R}^n .

Ejemplo 12. 1. \mathbb{R}^n es abierto. En efecto, $B_1(x) \subset \mathbb{R}^n, \forall x \in \mathbb{R}^n$.

2. $G = \{x \in \mathbb{R} : 0 < x < 1\}$ es abierto, pero $F = \{x \in \mathbb{R} : 0 \le x < 1\}$ no lo es.

Ejemplo 13. 1. $G = \{(x, y) \in \mathbb{R}^2 \ni x^2 + y^2 < 1\}$ es abierto.

2. $F = \{(x,y) \in \mathbb{R}^2 \ni x^2 + y^2 \le 1\}$ no es abierto.

Ejemplo 14. 1. $G = \{(x, y) \in \mathbb{R}^2 \ni 0 < x < 1, y = 0\}$ no es abierto de \mathbb{R}^2 .

2. $F = \{(x, y) \in \mathbb{R}^2 \ni 0 < x < 1\}$ es abierto de \mathbb{R}^2 .

Ejemplo 15. Φ es abierto.

Proposición 4. Una bola abierta es abierto.

Demostración. Sea $x \in B_r(a)$ y considere la bola centrada en x y de radio r - d(a, x). A probar: $B_{r-d(a,x)}(x) \subset B_r(a)$. Sea $y \in B_{r-d(a,x)}(x)$. Entonces,

$$d(a,y) \le d(a,x) + d(x,y)$$

$$< d(a,x) + [r - d(a,x)]$$

$$= r$$

 $\implies y \in B_r(a).$

Teorema 7. Considere (\mathbb{R}^n, d) :

1. Φ y \mathbb{R}^n son abiertos.

16

2. La intersección de dos abiertos de \mathbb{R}^n es abierto de \mathbb{R}^n .

Por inducción, se deduce que la intersección finita de abiertos es abierto.

3. La unión de cualquier colección de abiertos es un abierto de \mathbb{R}^n .

Demostración. 1. OK.

- 2. Sea A y B abiertos de \mathbb{R}^n . A probar: $A \cap B$ es abierto. Sea $x \in A \cap B$, entonces:
 - $a) \ x \in A, \, \text{abierto}, \implies \exists r > 0 \ni d(x,z) < r, \, \text{para} \, z \in A.$
 - b) $x \in B$, abierto, $\implies \exists r' > 0 \ni d(x, w) < r$, para $w \in B$.

 \implies Hagamos $r = \min\{r, r'\}$ \implies si $y \in \mathbb{R} \ni d(x, y) < r \implies y \in A$ y $y \in B \implies y \in A \cap B \implies A \cap B$ es abierto en \mathbb{R}^n .

3. Sea $\{G_{\alpha}\}$ una colección cualquiera de abierto de \mathbb{R}^n , y sea $G = \bigcup_{\alpha} G_{\alpha}$. Si $x \in G \implies x \in G_{\lambda}$, para algún λ . Como G_{λ} es abierto $\implies \exists r > 0 \ni B_r(x) \subset G_{\lambda} \subset \bigcup_{\alpha} G_{\alpha} = G$.

NOTA. La intersección de una colección infinita de abierto no necesariamente es abierto. En efecto considere:

$$A_n = \{x \in \mathbb{R} \ni -\frac{1}{n} < x < 1 + \frac{1}{n}\}, \quad n \in \mathbb{Z}^+$$

$$A_1 = (-1, 2)$$

$$A_2 = \left(-\frac{1}{2}, \frac{3}{2}\right)$$

$$\vdots$$

$$\Rightarrow A = \bigcap_{n=1}^{\infty} A_n$$

$$= [0, 1] \quad \text{∂ Por qu\'e cerrado?}$$

Los A_n son abiertos (por se bolas abiertas de \mathbb{R})

Definición 10. Un subconjunto \mathbb{F} en el métrico (M,d) es cerrado si \mathbb{F}^c es abierto.

1. Abierto: bola abierta contenida en A es cada punto.

- 2. Topología (colección de todos los abiertos) en el métrico.
- 3. F es cerrado si F^c es abierto.
- 4. Abierto y cerrado no son negación uno del otro.
 - a) Φ , \mathbb{R}^n son abiertos y cerrados.
 - b) [0, 1) no es abierto ni cerrado.

Definición 11. Sea $x \in M$ (espacio métrico), entonces cualquier conjunto que contiene un abierto $A \ni x \in A$ es una vecindad de x.

Ejemplo 16. Sea

- 1. [0,4) es na vecindad de e.
- 2. (1,3) es vecindad abierta de e.
- 3. \mathbb{R} es vecindad de e.
- 4. $(e \varepsilon, e + \varepsilon)$ es vecindad de $e, \forall \varepsilon > 0$.

Definición 12. Un punto $x \in M$ es punto interior de un conjunto $A \subseteq M$, si A es una vecindad de M.

- 1. [0,1], x = 0 y x = 1; no son puntos interiores. El resto de punto (0,1) son puntos interiores de [0,1].
- 2. En I = (0,1), todos son puntos interiores.
- 3. $\mathbb{R} \cap \mathbb{Z} \subseteq \mathbb{R}$.

 $\implies \mathbb{R} \cap \mathbb{Z}$ no tiene puntos interiores.

Definición 13. Un punto x es un punto de acumulación (o punto límite) de un conjunto $A \subseteq M$, si cada vecindad de x contiene al menos un punto de A diferente de x. Es decir, si

$$(B_r(x) - \{x\}) \cap A \neq \emptyset, \quad \forall r > 0.$$

Ejemplo 17. $A = \{1, 1/2, 1/3, \dots, 1/n, \dots\} \subseteq \mathbb{R} \implies x = 0$ es un punto de acumulación de A.

Definición 14. El conjunto de todos los puntos interiores de A se llama interior de A (Notación: A° o int(A)).

 $Es\ decir:$

$$int(A) = \bigcup_{U \subset A, \ U \ es \ abierto.} U$$

i.e int(A) en el abierto más grande contenido.

Ejemplo 18. 1. int[0,1] = (0,1).

- 2. $int\mathbb{R} \cap \mathbb{Z} = \emptyset$.
- 3. $int\mathbb{R}^n = \mathbb{R}^n$.
- 4. A es abierto \iff A = int(A).

Ejemplo 19. La cerradura de A es el conjunto:

$$\overline{A}:=\bigcap_{A\subset F,\ F\ cerrado}F$$

NOTA. 1. \overline{A} es cerrado.

- 2. \overline{A} es el cerrado más pequeño que contiene a A.
- 3. A es cerrado \iff $A = \overline{A}$.
- 4. Si F es un cerrado que contiene a $A \implies A \subset \overline{A} \subset F$.

Definición 15. La frontera de A (denotada bd(A) o ∂A), se define

$$\partial A := \overline{A} - int(A).$$

Ejemplo 20. Sea $I = [0,1] \implies \overline{I} = [0,1] \implies int(I) = (0,1) \implies \partial A = \overline{I} - int(A) = \{0,1\}.$

Definición 16. El conjunto de todos los puntos de acumulación de un conjunto A se llama conjunto derivada de A. Notación: A'.

Proposición 5. $Si A \subset B \implies A' \subset B'$.

Demostración. Sea $x \in A'$ (i.e x es un punto de acumulación de A) \Longrightarrow \forall abierto $G \ni x \in G$, se tiene que

$$(G - \{x\}) \cap A \neq \emptyset.$$

Como
$$A \subset B \implies (G - \{x\}) \cap A \subset (G - \{x\}) \cap B \implies \emptyset \neq (G - \{x\}) \cap A \subset A \subset (G - \{x\}) \cap B \implies (G - \{x\}) \cap B \neq \emptyset, \forall G \ni x \in G \implies x \in B'.$$

Proposición 6. $(A \cup B)' = A' \cup B'$

Demostración. Tenemos:

(⊇) Sabemos que

$$a) \ A \subset A \cup B \implies A' \subset (A \cup B)'.$$

b)
$$B \subset A \cup B \implies B' \subset (A \cup B)'$$
.

$$\implies A' \cup B' \subset (A \cup B)'.$$

 (\subseteq) A probar: $A' \cup B' \subset (A \cup B)'$.

$$a) \iff \operatorname{Si} x \in (A \cup B)' \implies x \in A' \cup B'.$$

$$b) \iff \operatorname{Si} x \notin A' \cup B' \implies x \notin (A \cup B)'.$$

Sea $x \notin A' \cup B' \implies x \notin A'$ y $x \notin B'$. \implies Como $x \notin A' \implies \exists G, \underbrace{abierto}_{x \in G},$ tal que $G \cap A \subset \{x\}^1$.

Como $x \notin B' \implies \exists H, \underbrace{abierto}_{x \in H}$, tal que $H \cap A \subset \{x\}$. Nótese que $G \cap H$ es abierto. Entonces, $x \in G \cap H$, y

$$(G \cap H) \cap (A \cup B) = (G \cap H \cap B) \subset \{x\} \cup \{x\} = \{x\}$$

$$\implies x \not\in (A \cup B)' \implies \text{Si } x \not\in A' \cup B' \implies x \in (A \cup B') \implies (A \cup B)' \subset A' \cup B' \implies (A \cup B)' = A' \cup B'.$$

Proposición 7. A es cerrado $\iff A' \subset A$.

Un conjunto es cerrado \iff contiene a sus puntos de acumulación.

Demostración. Se tiene:

¹
$$G \cap A = \emptyset$$
 o $G \cap A = \{x\}$

22

- (\Longrightarrow) ² Sea A cerrado y sea $p \notin A \Longrightarrow p \in A^c$, pero A^c es un abierto $\ni p \in A^c$ y $A \cap A^c = \emptyset \Longrightarrow p \notin A' \Longrightarrow A' \subset A$.
- (\iff) A probar: $A' \subset A \implies A$ es $\underbrace{cerrado}_{A^c \text{ es abierto}}$. Suponga que $A' \subset A$ y sea $p \in A^c$. $\implies p \not\in A' \implies \exists G$, abierto, tal que: $p \in G$ y

$$(G - \{p\}) \cap A = \emptyset.$$

Como $p \notin A \implies G \cap A = \emptyset \implies G \subset A^c$. Entonces, si $p \in A^c \exists$ abierto $G \ni p \in G \subset A^c \implies A^c$ es abierto. $\implies A$ es cerrado.

Proposición 8. Si F es un superconjunto cerrdo de cualquier conjunto A, entonces $A' \subset F$.

Demostración. Sabemos que F es cerrado y $A \subset F$. Como $A \subset F \implies A' \subset F \implies A' \subset F'$. Como F es cerrado, entonces $F' \subset F \implies A' \subset F$.

Proposición 9. $A \cup A'$ es cerrado.

Proposición 10. $\overline{A} = A \cup A'$.

Demostración. (\supseteq) Sabemos que $A \subset \overline{A}$. Por otra parte, $\Longrightarrow A' \subset (\underbrace{\overline{A}}_{cerrado})' \subset \overline{A} \Longrightarrow A' \subset \overline{A} \Longrightarrow A \cup A' \subset \overline{A}$.

 $(\subseteq) \ \ \text{A probar:} \ \overline{A} \subset A \cup A'. \ \text{Entonces}, \ A \subset \underbrace{A \cup A'}_{cerrado} \implies \ A \subset \overline{A} \subset A \cup A'.$

$$\overline{A} = \bigcap u$$
 $u \text{ cerrado } \ni u \supset A$

² A probar:

 $a) \ A' \subset A \iff \operatorname{si} x \in A' \implies x \in A$

b) $A' \subset A \iff \operatorname{si} x \notin A \implies x \notin A'$.

Proposición 11. $Si A \subset B \implies \overline{A} \subset \overline{B}$.

Demostración. Si $A \subset B \implies A' \subset B' \implies A \cup A' \subset B \cup B' \implies \overline{A} \subset \overline{B}$.

Proposición 12. $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Demostración. Tenemos:

 (\subseteq) A probar: $\overline{A \cup B} \subset \overline{A} \cup \overline{B}.$ Sabemos:

$$\begin{cases} A \subset \overline{A} \\ B \subset \overline{B} \end{cases} \implies A \cup B \subset \underbrace{\overline{A} \cup \overline{B}}_{cerrado}.$$

 $\implies A \cup B \subset \overline{A \cup B} \subset \overline{A} \cup \overline{B}.$

$$\begin{cases}
A \subset A \cup B & \implies \overline{A} \subset \overline{A \cup B} \\
B \subset A \cup B & \implies \overline{B} \subset \overline{A \cup B}
\end{cases} \implies \overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$$

$$\implies \overline{A \cup B} = \overline{A} \cup \overline{B}.$$

2.1. Axiomas de Kuratowski

Se propone construir una topología de cerrados a partir de K_1-K_4 .

$$K_1 \ ; \overline{\emptyset} = \emptyset$$

$$K_2 ; A \subset \overline{A}.$$

$$K_3 \ ; \overline{\overline{A}} = \overline{A}.$$

$$K_4 \ ; \overline{A \cup B} = \overline{A} \cup \overline{B}$$

2.2. Conjuntos conexos

Definición 17. Un subconjunto H del espacio métrico M es disconexo, si existen abiertos A y $B \ni A \cap H \neq \emptyset$, $B \cap H \neq \emptyset$, $(A \cap H) \cap (B \cap H) = \emptyset$ y $(A \cap H) \cup (B \cap H) = H$.

2.2.1. Resumen

Ejemplo 21. \mathbb{Z} es disconexo en \mathbb{R} . En efecto, considere: $G = (-\infty, 1/2)$ y $H = (1/2, \infty)$. $\Longrightarrow G$ y H son una disconexión de $\mathbb{Z} \subseteq \mathbb{R}$.

Ejemplo 22. \mathbb{Q} es disconexo en \mathbb{R} . En efecto, sea la disconexión: $G = (-\infty, \pi)$ $y H = (\pi, \infty)$.

Teorema 8. I = [0, 1] es conexo en \mathbb{R} .

Demostración. Supóngase por el absurdo que A y B son una disconexión de I; i.e, $A \cap I$ y $B \cap I$ son no vacíos, disjuntos y su unión es I.

1. Suponga que $1 \in B$.

Como I es acotado. $\Longrightarrow A \cap I$ y $B \cap I$ también son acotados. Entonces, por el principio del supremo, $\exists c = \sup(A \cap I) > 0$ y $c \in A \cup B$.

2. Si $c \in A$. $\Longrightarrow c < 1$.

 \implies Como A es abierto $\implies \exists B_r(c) \subset A \implies \exists \alpha \in A \ni c < \alpha.$ $(\rightarrow \leftarrow) \implies c \notin A.$

3. Si $c \in B$.

 \implies Como B es abierto $\implies \exists c_1 \in B \ni c_1 < c \text{ y es tal que } [c_1, c] \cap (A \cap I) = \emptyset$ (i.e c_1 es una cota superior de $A \cap I$ y es menor que c)($\rightarrow \leftarrow$). Entonces, que $c \in B$ ($\rightarrow \leftarrow$). \implies [0, 1] es conexo.

Corolario 8.1. (0,1) es $conexo^3$.

Teorema 9. \mathbb{R}^n es conexo.

Demostración. Supóngase, por el absurdo, que A y B son una disconexión de \mathbb{R}^n .

³ Si x es un intervalo. $\implies x$ es conexo.

Sean $x \in A$ y $y \in B$, y considere el segmento de recta que une x con y:

$$S = \{(1-t)x + ty : t \in [0,1]\}$$

Sean:

$$A_1 = \{ t \in \mathbb{R} \ni (1 - t)x + ty \in A \}$$

$$B_1 = \{ t \in \mathbb{R} \ni (1-t)x + ty \in B \}$$

 $\implies A_1 \cap B_1 = \emptyset(\rightarrow \leftarrow)$, ya que A_1, B_1 serían una disconexión de [0,1]. Entonces, \mathbb{R}^n es conexo.

Teorema 10. Los únicos conjuntos abiertos y cerrados de \mathbb{R}^n son \emptyset y \mathbb{R}^n .

Demostración. Supóngase, por el absurdo, que $A \subset \mathbb{R}^n$, $A \neq \emptyset$ y $A \neq \mathbb{R}^n$, es abierto y cerrado de \mathbb{R}^n . Como A es cerrado $\Longrightarrow A^c = B$ es abierto. $\Longrightarrow A \neq \emptyset$, $A \cap B = \emptyset$ y $A \cup B = \mathbb{R}^n$. $\Longrightarrow A$ y B forman una disconexión de \mathbf{R}^n ($\to \leftarrow$). \Longrightarrow Los únicos abiertos y cerrados de \mathbf{R}^n son \emptyset y \mathbb{R}^n .

Teorema 11. Un subconjunto de \mathbb{R} es conexo \iff es un intervalo.

Demostración. Tenemos

- (\Leftarrow) A probar: cada intervalo de \mathbb{R} es un conexo. (Ver prueba de: [0,1] es conexo).
- (\Longrightarrow) Sea $C \subseteq \mathbb{R}$ conexo. A probar: C es un intervalo. Sean $a,b \in C \ni a < b$ y sea $x \in \mathbb{R} \ni a < x < b$. A probar: $x \in C$. Si $x \notin C \Longrightarrow (-\infty,x)$ y (x,∞) forman una disconexión de c. $(\to \leftarrow)$. $\Longrightarrow x \in C \Longrightarrow C$ es intervalo.

28

2.3. Compactos

Sea A un subconjunto del espacio métrico M. Decimos que la familia de abierto $\{G_i\}_{i\in I}$ de M es una cubierta abierta de A, si

$$A \subseteq \bigcup_{i \in I} G_i$$

NOTA. En el caso de M, la cubierta abierta debe cumplir:

$$M = \bigcup_{i \in I} G_i$$

Definición 18. Un subconjunto A del espacio métrico M es compacto si cada abierta de A tiene subcubierta finita⁴.

Ejemplo 23. Sea $k = \{x_1, \dots, x_n\}$ un subconjunto finito de \mathbb{R}^n y sea $G = \{G_i\}_{i \in I}$ una cubierta abierta de k (i.e $\bigcup_{i \in I} G_i \supseteq k$). Dado que k es finito, basta un número finito de los G_i para cubrir a k. \Longrightarrow es compacto.

Ejemplo 24. Sea $H = [0, \infty) \subseteq \mathbb{R}$ no es compacto. En efecto, sea $G_n = (-1, n), n \in \mathbb{Z}^+$.

 $^{^4\,}$ Sigue cubriendo al conjunto $A\,$

 $\Longrightarrow G = \{G_n\}$ es una cubierta abierta de H. Suponga que $\{G_{n_1}, G_{n_2}, \cdots, G_{n_k}\}$ es una subcolección de G. Sea $M = \max\{n_1, n_2, \cdots, n_k\}$. $\Longrightarrow G_{n_i} \subseteq G_M$, $i = 1, \cdots, k \implies G_M = \bigcup_{i=1}^k G_{n_i}$, pero, en particupar, $M \notin \bigcup_{i=1}^k G_{n_i} \implies \{G_{n_1}, \cdots, G_{n_k}\}$ no cubre a H. Entonces, G no tiene subcubierta finita para H. \Longrightarrow H no es compacto.

Ejemplo 25. Sea $H = (0,1) \subseteq \mathbb{R}$ y considere:

$$G_n = \left(\frac{1}{n}, 1 - \frac{1}{n}\right), \quad n > 2.$$

 $\implies G = \{G_n\}$ es una cubierta abierta de H, pero G no tiene subcubierta finita para H. $\implies H$ no es compacto.

Proposición 13. Sea F un cubconjunto cerrado de un espacio métrico M. Entonces, F es compacto.

Demostración. Sea $G = \{G_i\}$ una cubiera abierta de F. Como F^c es abierto $\Longrightarrow (\bigcup_{i \in I} G_i) \cup F^c$ es cubierta abierta de M, i.e. $(\bigcup_{i \in I} G_i) \cup F^c = M$. \cdots es compacto, existe una subcubierta finita M, $\{G_{i_1}, G_{i_2}, \cdots, G_{i_n}, F^c\}$, tal que:

$$G_{i_1} \cup G_{i_2} \cup \cdots \cup G_{i_n} \cup F^c = M$$

 $\implies \{G_{i_1}, \cdots, G_{i_n}\}$ es una subcubierta finita para $F. \implies$ es compacto.

Teorema 12 (Heine-Borel). Un subconjunto S de \mathbb{R}^n es compacto \iff es cerrado y acotado.

Ejemplo 26. Ejemplos.

- 1. (0,1) no es compacto, ya que no es cerrado.
- 2. [0,1] es compacto, por Heine-Borel.
 - 1. Si $S \subseteq \mathbb{R}$, compacto, $\Longrightarrow S$ es cerrado y acotado.
 - 2. Si $S \subseteq \mathbb{R}$ es cerrado y acotado. $\Longrightarrow S$ es secuencialmente compacto $\Longrightarrow S$ es compacto.
 - Producto de una colección de conjuntos compacto. (Teorema de Tíkonov -Tychonoff-)

NOTA. Un espacio métrico M es de Lindelof si cada cubierta abierta de M tiene una subcubierta contable.

Teorema 13. Si $S \subseteq \mathbb{R}$ es compacto, entonces S es cerrado y acotado.

Demostración. A probar: S es acotado. Considere, para $m \in \mathbb{Z}^+$, $H_m = (-m, m)$. Como cada H_m es abierto y $S \subseteq \bigcup_{i=1}^{\infty} H_m = \mathbb{R} \implies \{H_m : m \in \mathbb{Z}^+\}$ es cubierta abierta de S. Como S es compacto \implies Hay una subcubierta finita $\{H_{m_1}, \dots, H_{m_n}\}$ para S, i.e. $S \subseteq \bigcup_{i=1}^n H_{m_n} = H_m = (-M, M) \implies M$ es acotado.

A probar: S es cerrado. \iff S^c es abierto. Sea $u \in S^c$ y considere:

$$G_n = \{ y \in \mathbb{R} : |y - u| > 1/n \quad n \in \mathbb{R} \}$$

Note que los G_n son abiertos y $\bigcup_{n=1}^{\infty} = \mathbb{R} - \{u\}$. Como $u \notin S \implies S \subseteq \bigcup_{n=1}^{\infty} G_n \implies \{G_n\}$ es una cubierta abierta de S. Como S es compacto. $\Longrightarrow \exists m \in \mathbb{Z}^+ \ni S \subseteq \bigcup_{n=1}^m G_n = G_m = \left[u - \frac{1}{m}, u + \frac{1}{m}\right]^c \implies S \cap \left(u - \frac{1}{m}, u + \frac{1}{m}\right) = \emptyset \implies \left(u - \frac{1}{m}, u + \frac{1}{m} \subset S^c\right) \implies S^c$ es abierto. $\Longrightarrow S$ es cerrado.

Verificar. ¿Por qué Heine-Borel no aplica en un espacio métrico cualquiera? ¿Se cumple alguna de las implicaciones?

Teorema 14 (Heine-Borel). El jefe mayor

- 1. Si $A \subseteq \mathbb{R}$ es compacto \implies A es cerrado y acotado.
- 2. Si $A \subseteq \mathbb{R}$ es cerrado y acotado \implies A es compacto.
- 3. Teorema de Tikonov. Producto cualquiera de compactos es compacto.

2.4. Hoja de repaso y parcial

Reales y topología.

Universidad del Valle de Guatemala Análisis de Variable Real 1

4 de febrero de 2021

Ejercicios Complementarios de Preparación para el Parcial 1

- 1. Revisión de pruebas de teoremas seleccionados:
 - a) **Teorema de intervalos encajados**: Si (I_n) es cualquier sucesión de intervalos cerrados en \mathbb{R} , no vacíos y encajados, entonces existe un punto x que pertenece a cada intervalo.

Nota: Estudiar el caso que los intervalos no son cerrados.

- b) **Teorema de Bolzano-Weierstrass**: Cada subconjunto infinito y acotado de \mathbb{R}^n tiene un punto de acumulación.
- 2. Sea X un espacio métrico. Demuestre que cualesquiera dos puntos de X pueden separarse mediante conjuntos abiertos disjuntos de X (Es decir, X es un Espacio de Hausdorff).
- 3. Sean X un conjunto no vacío y la función $d: X \times X \to \mathbb{R}$, que satisface las condiciones siguientes:
 - a. $d(x, y) = 0 \Leftrightarrow x = y$
 - b. $d(x,y) \le d(x,z) + d(y,z)$

Pruebe que d es una métrica sobre X.

4. Sea (X, d) un espacio métrico y sea $d_1: X \times X \to \mathbb{R}$, definida por:

$$d_1(x,y) = \ln(1 + d(x,y)), \ \forall x, y \in X.$$

Demuestre que d_1 es una nueva métrica sobre X.

- 5. Sean A y B subconjuntos de un espacio métrico X, y pruebe las propiedades siguientes:
 - a) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$ (¿Se cumple la otra contención?)
 - b) $int(A) \cup int(B) \subseteq int(A \cup B)$
 - c) $int(A) \cap int(B) = int(A \cap B)$
 - d) Presente un ejemplo de dos subconjuntos A y B de la recta real, tales que

$$int(A) \cup int(B) \neq int(A \cup B)$$

- e) $(\bar{A})^c = int(A^c)$
- f) $\bar{A} = \{x: d(x, A) = 0\}$
- 6. Describa el interior del conjunto de Cantor.

- 7. Sea X un espacio métrico y A un subconjunto de X. Se dice que A es \underline{denso} (o $\underline{siempre}$ \underline{denso}) si $\bar{A} = X$. Demuestre que los enunciados siguientes son equivalentes.
 - a) A es denso.
 - b) El único superconjunto cerrado de A es X.
 - c) El único conjunto abierto disjunto de A es \emptyset .
 - d) A intersecta a cada conjunto abierto no-vacío.
 - e) A intersecta cada bola abierta.

Universidad del Valle de Guatemala Departamento de Matemática Licenciatura en Matemática Aplicada Fecha de entrega: 13 de febrero de 2021 Rudik R. Rompich - Carné: 19857

Análisis de Variable Real 1 - Dorval Carías

Parcial 1

1. (10p) Se dice que $E \subset \mathbb{R}^n$ es convexo si cuando $x, y \in E \Rightarrow (1 - \lambda)x + \lambda y \in E$, para cada $0 \le \lambda \le 1$. Pruebe que las bolas en \mathbb{R}^n son conjuntos convexos.

Demostración. Por definición de una bola abierta/cerrada en \mathbb{R}^n se tiene que su centro x y su radio r tal que se cumpla:

$$|y - r| < r$$

Entonces, tenemos que $x,y\in E$, asumamos que y=(z-x) y x=(y-x), entonces hacemos la substitución:

$$|(1-\lambda)x + \lambda y| = |(1-\lambda)(y-x) + \lambda(z-x)| \tag{1}$$

Por la desigualdad triangular:

$$\leq (1 - \lambda)|(y - x)| + \lambda|(z - x)| \tag{2}$$

$$= (1 - \lambda)r + \lambda r \tag{3}$$

$$=r$$
 (4)

 \therefore las bolas en \mathbb{R}^n son conjuntos convexos.

2. (15 p) Sean $x, y, a, b \in \mathbb{R}^+ y$ suponga que $\frac{x}{y} < \frac{a}{b}$. Demuestre que $\frac{x}{y} < \frac{x+a}{y+b} < \frac{a}{b}$.

Demostración.

Caso I

$$= \frac{x}{y} < \frac{x+a}{y+b} \implies x(y+b) < (x+a)y \Rightarrow \tag{1}$$

$$\Rightarrow xy + xb < xy + ay \Rightarrow xb < ay \Rightarrow \frac{x}{y} < \frac{a}{b}$$
 (2)

Parcial 1 Rompich

Caso 2

$$\frac{x+a}{x+b} < \frac{a}{b} \Rightarrow (x+a)b < a(x+b) \tag{3}$$

$$\Rightarrow xb + ab < ay + ab => xb < ay \implies$$
 (4)

$$\Rightarrow \frac{x}{y} < \frac{a}{b} \tag{5}$$

$$\therefore \frac{x}{y} < \frac{x+a}{x+b} < \frac{a}{b} \tag{6}$$

3. (15 p) Sea E un subconjunto no vacío del conjunto de números reales que está acotado superiormente. Si $y = \sup(E)$, pruebe que $y \in \bar{E}$

Demostración. Si $y = \sup(E)$, a probar: $y \in \overline{E}$ ($\overline{E} = E$ cerrado). Consideremos por el absurdo $y \notin \overline{E}$. Sabemos que $\forall \xi > 0 \exists x \in E \ni y - \xi < x < y$, eso implicaría que $y - \xi$ es una cota superior ($\rightarrow \leftarrow$). Entonces, y es un punto de acumulación de E. $\therefore y \in \overline{E}$

4. (20 p) Sean $A, B \subset \mathbb{R}$, acotados y no vacíos. Demuestre que:

$$\sup(A+B) = \sup(A) + \sup(B)$$

Demostración. Supóngase las siguientes variables: $p = \sup A, q = \sup B, r = \sup (A + B)$. Ahora, asumamos que existe un $a \in A$ y un $b \in B$. Entonces, sabemos por la definición de supremo que $a \le p$ y que $b \le q$, entonces aplicando una sumatoria a ambas variables: $a + b \le p + q$, tal que $r \le p + q$ se cumple.

Por otra parte, sabemos que $b \in B$ lo que quiere decir que $a \le r - b \quad \forall a \in A$; que afirma que r - b es una cota superior para A tal que $p \le r - b$. Entonces, $y \le r - p$ $\forall b \in B$, entonces $q \le r - p$ y por lo tanto $p + q \le q$. Al combinar estas dos desigualdades, finalmente tenemos que w = p + q, es decir:

$$\sup(A+B) = \sup A + \sup B$$

5. (20p) Sean A y B subconjuntos de un espacio métrico X.

1. 5.1. Pruebe que $(int(A))^c = \overline{(A^c)}$

Demostración.

Se procede por medio de la doble contención:

De ida \subseteq

$$x \in (int(A))^c \implies x \notin int(A) \implies x \in \overline{(A^c)} \implies (int(A))^c \subseteq \overline{(A^c)}$$
 (1)

De regreso \supset

 $x \in \overline{(A^c)} \implies x \notin int(A) \implies x \in (int(A))^c$ (2)

Parcial 1 Rompich

2. 5.2. ¿Es cierto que $\operatorname{int}(A \cap B) = \bar{A} \cap \bar{B}$?

Demostración. Supóngase un contraejemplo en donde A = [0, 5] y B = [4, 5], tal que:

$$A = [0, 5] B = [4, 5] (1)$$

$$A = [0, 5]$$
 $B = [4, 5]$ (1)
 $\overline{A} = [0, 5]$ $\overline{B} = [4, 5]$ (2)

Es decir:

$$A \cap B = [4, 5] \qquad \overline{A} \cap \overline{B} = [4, 5] \tag{3}$$

$$int(A \cap B) = (4,5) \tag{4}$$

Esto implica que:

$$int(A \cap B) \neq \overline{A} \cap \overline{B} \tag{5}$$

Lo que implica que no es cierta la igualdad.

- 6. (20p) Sea (X, d) un espacio métrico. Se define $D(x, y) = \min(1, d(x, y))$.
 - 1. 6.1. Pruebe que D es una métrica sobre X.

Demostración. Por definición de espacio métrico tenemos, asumiendo d(x,y) =D(x,y):

- a) $d(x,y) \ge 0$ o $d(x,y) = 0 \leftrightarrow x = y$. Entonces, tenemos 2 casos para min(1,d(x,y)):
 - 1) (i) donde $min(1, d(x, y)) \ge 0$, se cumple.
 - 2) (ii) min(1, d(x, y)) = 0, se cumple.

Por lo que se cumple la propiedad.

- b) d(x,y) = d(y,x). Por lo que se tiene que min(1,d(x,y)) = min(1,d(y,x)), cumpliendo la propiedad.
- c) $d(x,y) \le d(x,z) + d(z,y)$

Entonces, tenemos:

$$min(1, d(x, y)) \le min(1, d(x, z)) + min(1, d(z, y))$$
 (1)

$$= min(2, 1 + d(x, z), 1 + d(z, y), d(x, z) + d(z, y))$$
 (2)

$$= min(1, d(x, y)) \tag{3}$$

Cumpliendo la propiedad.

- \therefore D es una métrica sobre X.
- 2. Si (X,d) es \mathbb{R}^2 con su métrica usual, describa las bolas abiertas $B_r(0)$ en (\mathbb{R}^2,D) .

Demostración. Considerando $\mathbb{R}^2 = (X, d)$ con su métrica usual y por otra parte las bolas abiertas $B_r(0)$ en (\mathbb{R}^2, D) :

Parcial 1 Rompich

Las bolas se podrían describir como $B_r(0)=\{x\in\mathbb{R}^2:D(X,0)< r\}=\{x\in\mathbb{R}^2:min(1,d(x,0)< r\}.$