Lecture 6: Self-attention & Transformer overview

MADE, Moscow 29.04.2020

Radoslav Neychev

Outline

- recap: Attention in seq2seq
- 2. Transformer architecture
- 3. Self-Attention
- 4. Positional encoding
- 5. Layer normalization
- 6. Q & A

recap: Attention in seq2seq

recap: Attention in seq2seq

recap: Attention in seq2seq

We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$

On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$

We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^T oldsymbol{h}_1, \dots, oldsymbol{s}_t^T oldsymbol{h}_N] \in \mathbb{R}^N$$

We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

We use $lpha^t$ to take a weighted sum of the encoder hidden states to get the attention output $m{a}_t$

$$oldsymbol{a}_t = \sum_{i=1}^N lpha_i^t oldsymbol{h}_i \in \mathbb{R}^h$$

Finally we concatenate the attention output a_t with the decoder hidden state s_t and proceed as in the non-attention seq2seq model

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

Attention variants

- ullet Basic dot-product (the one discussed before): $oldsymbol{e}_i = oldsymbol{s}^T oldsymbol{h}_i \in \mathbb{R}$
- ullet Multiplicative attention: $oldsymbol{e}_i = oldsymbol{s}^T oldsymbol{W} oldsymbol{h}_i \in \mathbb{R}$
 - $\mathbf{W} \in \mathbb{R}^{d_2 \times d_1}$ weight matrix
- Additive attention: $e_i = v^T \tanh(W_1 h_i + W_2 s) \in \mathbb{R}$
 - $\mathbf{W}_1 \in \mathbb{R}^{d_3 imes d_1}, \mathbf{W}_2 \in \mathbb{R}^{d_3 imes d_2}$ weight matrices
 - \circ $v \in \mathbb{R}^{d_3}$ weight vector

Attention advantages

- "Free" word alignment
- Better results on long sequences

the word in each position flows through its own path in the encoder

the word in each position flows through its own path in the encoder

the word in each position flows through its own path in the encoder

The Transformer: quick overview

- Proposed in the paper "Attention is All You Need" (Ashish Vaswani et al.)
- No recurrent or convolutional neural networks -> just attention
- Beats seq2seq in machine translation task
 - O 28.4 BLEU on the WMT 2014 English-to-German translation task
- Much faster
- Uses <u>self-attention</u> concept

Self-Attention

"The animal didn't cross the street because it was too tired"

What does "it" in this sentence refer to?

"The animal didn't cross the street because it was too tired"

- What does "it" in this sentence refer to?
- We want self-attention to associate "it" with "animal"

"The animal didn't cross the street because it was too tired"

- What does "it" in this sentence refer to?
- We want self-attention to associate "it" with "animal"

 Self-attention is the method the Transformer uses to bake the "understanding" of other relevant words into the one we're currently processing

What are the "query", "key", and "value" vectors?

What are the "query", "key", and "value" vectors?

They're abstractions that are useful for calculating and thinking about attention.

STEP 2:

calculate a score

(score each word of the input sentence against the current word) Input

Embedding

Queries

Keys

Values

Score

STEP 5:

multiply each value vector by the softmax score

STEP 6:

sum up the weighted value vectors

Self-Attention

STEP 1: create Query, Key, Value

STEP 2: calculate scores

STEP 3: divide by $\sqrt{d_k}$

STEP 4: softmax

STEP 5: multiply each value vector by the softmax score

STEP 6: sum up the weighted value vectors

Self-Attention: Matrix Calculation

WQ

X

Pack embeddings into matrix **X**

Multiply X by weight matrices we've trained (Wk, Wq, Wv)

Self-Attention: Matrix Calculation

ATTENTION

HEAD #0

 Z_0

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Why Multi-Head Attention?

Why Multi-Head Attention?

Attention head: Who

Attention head: Did What?

Attention head: To Whom?

Attention vs. Multi-Head Attention

Attention: a weighted average

Multi-Head Attention:

parallel attention layers with different linear transformations on input and output.

Performance: WMT 2014 BLEU

	EN-DE	EN-FR
GNMT (orig)	24.6	39.9
ConvSeq2Seq	25.2	40.5
Transformer*	28.4	41.8

^{*}Transformer models trained >3x faster than the others.

Research Challenges

- Constant 'path length' between any two positions.
- Unbounded memory.
- Trivial to parallelize (per layer).
- Models Self-Similarity.
- Relative attention provides expressive timing, equivariance, and extends naturally to graphs.

$$PE_{(pos, 2i)} = sin(pos / 10000^{2i / d_{\text{model}}})$$

$$PE_{(pos, 2i+1)} = cos(pos/10000^{2i/d_{model}})$$

- pos is the position
- *i* is the dimension.

Each dimension of the positional encoding corresponds to a sinusoid.

The wavelengths form a geometric progression from 2pi to 2pi * 10 000

Output The Transformer: recap Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention $N \times$ Forward Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Input Output Embedding Embedding 50 Inputs Outputs (shifted right)

The Decoder

Decoding time step: 1 2 3 4 5 6 OUTPUT

Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax **DECODER ENCODER ENCODER DECODER EMBEDDING** WITH TIME **SIGNAL** Here comes the mask **EMBEDDINGS** étudiant suis Je INPUT

Decoding time step: 1 2 3 4 5 6 OUTPUT

The masked decoder input

Decoding time step: 1 2 3 4 5 6 OUTPUT

Final Linear and Softmax Layer

The Transformer

Outro and Q&A

- Transformer is novel and very powerful architecture
- It is worth it to understand how Self-Attention works
- Physical analogues can help you

Further readings are available in the repo