

General information

Overview

Sisal fiber is derived from an agave, Agave sisalana. Sisal is valued for cordage use because of its strength, durability, ability to stretch, affinity for certain dyestuffs, and resistance to deterioration in saltwater.

Designation

Sisal

Typical uses

Sisal is used by industry in three grades, according to www.sisal.ws. The lower grade fiber is processed by the paper industry because of its high content of cellulose and hemicelluloses. The medium grade fiber is used in the cordage industry for making: ropes, baler and binders twine. Ropes and twines are widely employed for marine, agricultural, and general industrial use. The higher-grade fiber after treatment is converted into yarns and used by the carpet industry. Sisall is now used as a reinforcement in polymer-matrix composites.

Composition overview

Compositional summary

Cellulose 70 wt% and lignin 12 wt %.

Form Material family Base material Renewable content	Fiber Natural Cellulose 100)		%					
Composition detail (polymers and natural materials) Natural material 100 %									
Price	* 0.070		0.040	1100///-					
Price	* 0.272	-	0.318	USD/lb					
Physical properties									
Density	0.0522	-	0.0542	lb/in^3					
Machaniael proporties									
Mechanical properties Young's modulus	1.36	_	3.19	10^6 psi					
Yield strength (elastic limit)	* 66.7	-		ksi					
Tensile strength	74.1	_	92.8	ksi					
Elongation	2	_	7	% strain					
Flexural modulus	* 1.36	_		10^6 psi					
Shear modulus	* 0.532	_	1.33	10^6 psi					
Poisson's ratio	* 0.359	-	0.374	. о о ро.					
Fatigue strength at 10^7 cycles	* 31.9	-	45.8	ksi					
Mechanical loss coefficient (tan delta)	* 0.00407	-	0.00753						
Impact & fracture properties									
Fracture toughness	17.8	-	92	ksi.in^0.5					
Thermal properties									
Glass temperature	* 716	_	734	°F					
Maximum service temperature	* 752	_	788	°F					
Thermal conductivity	* 0.144	-		BTU.ft/hr.ft^2.°F					
Specific heat capacity	0.287	-		BTU/lb.°F					
Thermal expansion coefficient	* 8.33	-	16.7	µstrain/°F					

Magnetic properties

Magnetic type	Non-mag	gnet	ic				
Bio-data							
RoHS (EU) compliant grades?	1						
Absorption & permeability							
Water absorption @ 24 hrs	* 2	-	2.4	%			
Water absorption @ sat	10	-	12	%			
Humidity absorption @ sat	* 3.33	-	4	%			
Durability							
Water (fresh)	Excellen						
Water (salt)	Excellent						
Weak acids	Acceptable						
Strong acids Weak alkalis	Unacceptable Acceptable						
Strong alkalis	Unaccepta		ما				
Organic solvents	Accepta		IE				
Oxidation at 500C	Unaccer		le				
UV radiation (sunlight)	Good		. •				
Flammability	Highly fla	Highly flammable					
Primary production energy, CO2 and water							
Embodied energy, primary production	* 4.09e3	-	4.51e3	BTU/lb			
CO2 footprint, primary production	* 1.52	-	1.68	lb/lb			
NOx creation	0.00257	-	0.00284	lb/lb			
SOx creation	0.00656	-	0.00725	lb/lb			
Water usage	* 2.18e5	-	2.41e5	in^3/lb			
Processing energy, CO2 footprint & water							
Fabric production energy	* 1.07e3	-	1.17e3	BTU/lb			
Fabric production CO2	* 0.198	-	0.218	lb/lb			
Fabric production water	* 28.5	-	42.9	in^3/lb			
Recycling and end of life							
Recycle	×						
Recycle fraction in current supply	8.55	-	9.45	%			
Downcycle	✓.						
Combust for energy recovery	✓						
Heat of combustion (net)	* 8.28e3	-		BTU/lb			
Combustion CO2	* 1.5	-	1.58	lb/lb			
Landfill	✓,						
Biodegrade	~						
Geo-economic data for principal component							
Principal component	Sisal						
Annual world production	3.57e5	-	3.94e5	ton/yr			
Main mining areas (metric tonnes per year) Brazil, China, Haiti, Kenya, Madagascar, Mexico, Morocco	United Pan	الطيا	c of Tanza	nia Vanazuala			
Diazii, Oliilia, Flaitti, Neliya, Madagastal, Mexico, Molocco	, оппес кер	uDII	o or ranza	iia, venezuela			
Eco-indicators for principal component							
Eco-indicator 95	2.99			millipoints/lb			
EPS value	62.7	-	69.3				

CES 2015 Sisal Page 3 of 3

CES 2015 EDUPACK

Links

ProcessUniverse

Reference

Shape