

Rust (1987): renewal actions

Rust (1987): renewal actions

What if no such actions exist?

• CCPs still work, but need additional terms beyond $\log p_{kt+1}$

Rust (1987): renewal actions

What if no such actions exist?

Rust (1987): renewal actions

What if no such actions exist?

- ullet CCPs still work, but need additional terms beyond $\log p_{kt+1}$
- Also likely need additional assumptions about how states evolve

Rust (1987): renewal actions

What if no such actions exist?

- ullet CCPs still work, but need additional terms beyond $\log p_{kt+1}$
- Also likely need additional assumptions about how states evolve

Finite dependence: when $V_{t+ au}$ terms cancel after au (finite number) periods ahead

Rust (1987): renewal actions

What if no such actions exist?

- ullet CCPs still work, but need additional terms beyond $\log p_{kt+1}$
- Also likely need additional assumptions about how states evolve

Finite dependence: when $V_{t+\tau}$ terms cancel after τ (finite number) periods ahead

ullet Typically can get models where au=3, meaning only need 2-period-ahead CCPs

Terminal and Renewal are disjoint special cases

State cancellation for Rust bus engine model:

	t	t+1	V_{t+2}
$v_{0t}(X_t)$:	(maintain)	(replace)	0

State cancellation for Rust bus engine model:

	t	t+1	V_{t+2}
$v_{0t}(X_t)$:	X_t	$ (replace) \\ X_{t+1}$	0
$v_{1t}(X_t)$: (replace)	(replace) 0	0

State cancellation for Rust bus engine model:

$$t$$
 $t+1$ V_{t+2} $V_{0t}(X_t)$: (maintain) (replace) X_t X_{t+1} $X_$

When taking
$$v_{1t}(X_t) - v_{0t}(X_t)$$
, both paths lead to state $X_{t+2} = 0$

 V_{t+2} 's cancel, so only need $u_j(X_{t+1})$ and $\log(p_j(X_{t+1}))$ terms—no backward recursion

What	if there	is no	renewal?

Consider a simple model of labor supply:

• $\mathcal{J} = \{ work, home \}$

- $\mathcal{J} = \{ work, home \}$
- $X_t = \{exper_t, d_{t-1}\}$; no depreciation of $exper_t$ over time

- $\mathcal{J} = \{ \text{work}, \text{home} \}$
- $X_t = \{\text{exper}_t, d_{t-1}\}$; no depreciation of exper_t over time
- $u_j(X_t) = X_t \alpha_j$

- $\mathcal{J} = \{ work, home \}$
- $X_t = \{\text{exper}_t, d_{t-1}\}$; no depreciation of exper_t over time
- $u_j(X_t) = X_t \alpha_j$
- $\bullet \ \epsilon \stackrel{\it iid}{\sim} {\rm T1EV}$

Consider a simple model of labor supply:

- $\mathcal{J} = \{ \text{work}, \text{home} \}$
- $X_t = \{ \exp_t, d_{t-1} \}$; no depreciation of exper, over time
- $u_j(X_t) = X_t \alpha_j$
- ullet $\epsilon \stackrel{\it iid}{\sim}$ T1EV

Can we get this model to satisfy finite dependence?

State cancellation:

	t	t+1	t+2	V_{t+3}
$v_{ht}(X_t)$:	(home) exper _t	(work) exper _t	$\begin{array}{c} \text{(home)} \\ \text{exper}_t + 1 \end{array}$	
	d_{t-1}	$d_t = h$	$d_{t+1}=w$	$d_{t+2}=h$

State cancellation:

	t	t+1	t+2	V_{t+3}
$v_{ht}(X_t)$:	$\begin{array}{c} \text{(home)} \\ \text{exper}_t \\ d_{t-1} \end{array}$	$egin{aligned} ext{(work)} \ ext{exper}_t \ d_t = h \end{aligned}$	$\begin{array}{l} \text{(home)} \\ \text{exper}_t + 1 \\ d_{t+1} = w \end{array}$	$exper_t + 1 \ d_{t+2} = h$
$v_{wt}(X_t)$:	$\begin{pmatrix} work \end{pmatrix} \\ exper_t \\ d_{t-1} \end{pmatrix}$	$egin{aligned} ext{(home)} \ ext{exper}_t + 1 \ d_t = w \end{aligned}$	$egin{aligned} ext{(home)} \ ext{exper}_t + 1 \ d_{t+1} = h \end{aligned}$	$exper_t + 1$ $d_{t+2} = h$

State cancellation:

$$V_{t+3}$$
's cancel, so only need $u_j(X_{t+1}), \ u_j(X_{t+2}), \ \log(p_j(X_{t+1}))$ and $\log(p_j(X_{t+2}))$

When taking $v_{wt}(X_t) - v_{ht}(X_t)$, both paths lead to same X_{t+3} 's

Earlier, I said,	"Also likely need	additional	assumptions	about how sta	ates evolve"

Earlier, I said, "Also likely need additional assumptions about how states evolve"
Key assumption for this model was no depreciation of labor market experience

• Arcidiacono, Aucejo, Maurel and Ransom (2025, JPE)

- Arcidiacono, Aucejo, Maurel and Ransom (2025, JPE)
 - White collar job offers, probabilistic graduation

- Arcidiacono, Aucejo, Maurel and Ransom (2025, JPE)
 - White collar job offers, probabilistic graduation
- Ransom (2022, JHR)

- Arcidiacono, Aucejo, Maurel and Ransom (2025, JPE)
 - White collar job offers, probabilistic graduation
- Ransom (2022, JHR)
 - Employment lottery upon moving to a new city

- Arcidiacono, Aucejo, Maurel and Ransom (2025, JPE)
 - White collar job offers, probabilistic graduation
- Ransom (2022, JHR)
 - Employment lottery upon moving to a new city
- Both weight different choice paths such that weights sum to 1

- Arcidiacono, Aucejo, Maurel and Ransom (2025, JPE)
 - White collar job offers, probabilistic graduation
- Ransom (2022, JHR)
 - Employment lottery upon moving to a new city
- Both weight different choice paths such that weights sum to 1
 - Weights need not be in unit interval