Homework #1

Due 23:59, Oct. 27, 2022

2.10 Consider the three waveforms $f_n(t)$ shown in Figure P2.10.

FIGURE P2.10

- a. Show that these waveforms are orthonormal.
- b. Express the waveform x(t) as a linear combination of $f_n(t)$, n = 1, 2, 3, if

$$x(t) = \begin{cases} -1 & 0 \le t < 1 \\ 1 & 1 \le t < 3 \\ -1 & 3 \le t < 4 \end{cases}$$

and determine the weighting coefficients.

2.12 Determine a set of orthonormal functions for the four signals shown in Figure P2.12.

- **2.15** The random variables X_i , i = 1, 2, ..., n, have joint PDF $p(x_1, x_2, ..., x_n)$. Prove that $p(x_1, x_2, x_3, ..., x_n) = p(x_n | x_{n-1}, ..., x_1) p(x_{n-1} | x_{n-2}, ..., x_1) \cdots p(x_3 | x_2, x_1) p(x_2 | x_1) p(x_1)$
- **2.17** The PDF of a random variable X is p(x). A random variable Y is defined as

$$Y = aX + b$$

where a < 0. Determine the PDF of Y in terms of the PDF of X.

- **2.20** *X* is a $\mathcal{N}(0, \sigma^2)$ random variable. This random variable is passed through a system whose input-output relation is given by y = g(x). Find the PDF or the PMF of the output random variable *Y* in each of the following cases.
 - 1. Square-law device, $g(x) = ax^2$.
 - 2. Limiter,

$$g(x) = \begin{cases} -b & x \le -b \\ b & x \ge b \\ x & |x| < b \end{cases}$$

3. Hard limiter,

$$g(x) = \begin{cases} a & x > 0 \\ 0 & x = 0 \\ b & x < 0 \end{cases}$$

- 4. Quantizer, $g(x) = x_n$ for $a_n \le x < a_{n+1}$, $1 \le n \le N$, where x_n lies in the interval $[a_n, a_{n+1}]$ and the sequence $\{a_1, a_2, \ldots, a_{N+1}\}$ satisfies the conditions $a_1 = -\infty$, $a_{N+1} = \infty$ and for i > j we have $a_i > a_j$.
- **2.39** A lowpass Gaussian stochastic process X(t) has a power spectral density

$$S(f) = \begin{cases} N_0 & |f| < B \\ 0 & \text{otherwise} \end{cases}$$

Determine the power spectral density and the autocorrelation function of $Y(t) = X^2(t)$.

- **2.42** For the Nakagami PDF, given by Equation 2.3–67, define the normalized random variable $X = R/\sqrt{\Omega}$. Determine the PDF of X.
- **2.46** Determine the mean, the autocorrelation sequence, and the power density spectrum of the output of a system with unit sample response

$$h(n) = \begin{cases} 1 & n = 0 \\ -2 & n = 1 \\ 1 & n = 2 \\ 0 & \text{otherwise} \end{cases}$$

when the input x(n) is a white noise process with variance σ_x^2 .

2.54 Determine the autocorrelation function of the stochastic process

$$X(t) = A\sin(2\pi f_c t + \Theta)$$

where f_c is a constant and Θ is a uniformly distributed phase, i.e.,

$$p(\theta) = \frac{1}{2\pi}, \qquad 0 \le \theta \le 2\pi$$