RISK ANALYSIS AND MANAGEMENT

LESSON 5 - CCS 6
NOTES PREPARED BY ASST. PROF. MELODY ANGELIQUE C. RIVERA
FACULTY, COLLEGE OF COMPUTER STUDIES, SILLIMAN UNIVERSITY

No man is worth his salt who is not ready at all times to risk his well-being, to risk his body, to risk his life, in a great cause.

~ Theodore Roosevelt

RISK

- The chance of a negative event
- A chance that something unexpected will happen
- It is the combination of threats and vulnerabilities:

Risk = Threats x Vulnerabilities

effect of uncertainty on objectives

- ~ Definition of Risk, ISO 31000
 - This definition leaves the possibility open that risks can produce positive outcomes.
 This is no doubt based on the philosophy that problems represent opportunities

THREAT

- Something bad that might happen
- From a security perspective the first threat that pops to mind is a security attack
- A threat can range from innocent mistakes made by employees to natural disasters

THREAT (CONT.)

Categories of Threats

- Acts of human error or failure
 - accidents, employee mistakes
- Compromises to intellectual property
 - Piracy, copyright infringement
- Deliberate acts of espionage or trespass
 - Unauthorized access and/or data collection
- Deliberate acts of information extortion
 - Blackmail of information disclosure
- Deliberate acts of sabotage or vandalism
 - Destruction of systems or information
- Deliberate acts of theft
 - Illegal confiscation of equipment or information

VULNERABILITY

Vulnerability is the birthplace of innovation, creativity and change ~ Brene Brown

Common definition:

"weakness" or an "inability to cope"

 these definitions are completely wrong from a security and risk management perspective

Better definition:

"exposure"

VULNERABILITY (CONT.)

For example:

Connecting a system to the Internet can represent a vulnerability

- It exposes a system to a DDoS (Distributed Denial of Service) attack
- But connecting a system to customers via the Internet isn't likely to be considered a weakness from a business perspective

IS RISK GOOD OR BAD?

- IT security professionals tend to think of risk as bad
 - They might define it as the chance a threat will exploit vulnerabilities or the "chance that something bad will happen"
- Risk management professionals treat risks as potentially positive
 - From a business perspective risk can be considered a good thing

RISK MANAGEMENT

- the process of identifying, analyzing and responding to risk factors throughout the life of a project and in the best interests of its objectives
 - It is the process of identifying and controlling potential losses
 - It is a standard business practice that is applied to investments, programs, projects, operations and commercial agreements
- Proper risk management implies control of possible future events
- It is proactive rather than reactive
- It will reduce not only the likelihood of an event occurring, but also the magnitude of its impact

Reactive Risk Management

- Project team reacts to risks when they occur
- Mitigation plan for additional resources in anticipation of fire fighting
- Fix on failure resources are found and applied when the risk strikes
- Crisis management failure does not respond to applied resources and project is in jeopardy

Proactive Risk Management

- Formal risk analysis is performed
- Organization corrects the root causes of the risk
 - Examining risk sources that lie beyond the bounds of the software
 - Developing the skill to manage change

Seven (7) steps of Risk Management

1. Identification

- Giving all stakeholders an opportunity to identify risks
- This can increase acceptance of a program or project as everyone is given a chance to document all the things that might go wrong
- The diverse perspectives of stakeholders helps to develop a comprehensive list of risks
- It is also possible to use databases of issues with that occurred with similar business processes, programs or projects in your industry
- Knowledge sources such as lessons-learned and the risk registers of historical projects can also be used

2. Analysis

Developing context information for each risk such as moment of risk.

3. Probability & Impact

- Assessing the probability and impact of each risk
- These can be single estimates such as high, medium and low
- Alternatively, they can be a probability distribution that model multiple costs and associated probabilities for each risk

4. Risk Treatment

- Planning a treatment for each risk such as acceptance, mitigation, transfer, sharing or avoidance
- Risks that are both low impact and low probability typically aren't treated

5. Residual Risk

 Assess residual risk including secondary risks that result from risk mitigation, transfer or sharing

6. Risk Control

Implement identified controls for risk mitigation, sharing, avoidance and transfer

7. Monitor & Review

 Continuously identify new risks as things progress, monitor implementation of controls and communicate risk to stakeholders

NEGATIVE RISK RESPONSE STRATEGIES

(PROJECT CONTROLS EXPO, 2011)

Response	Strategy	Examples
Avoid	Risk avoidance is a strategy where the project team takes action to remove the threat of the risk or protect from the impact	Extending the scheduleReducing/removing the scopeChanging the execution strategy
Transfer	Risk transference involves shifting or transferring the risk threat and impact to a 3 rd party. This does not eliminate the risk, rather transfers the responsibility and ownership.	 Purchasing insurance Performance bonds Warranties Contract issuance (lump sum)
Mitigate	Risk mitigation is the strategy whereby the project team takes action to reduce the probability of the risk occurring. This does not remove the risk or the potential impact, but rather reduces the likelihood of it becoming real.	 Increasing testing Changing suppliers to a more stable one Reducing process complexity
Accept	Risk acceptance means the team acknowledges the risk and its potential impact, but decides not to take any preemptive action to prevent it. It is dealt with only if it occurs.	Contingency reserve budgetsManagement schedule floatEvent contingency

POSITIVE RISK RESPONSE STRATEGIES

(PROJECT CONTROLS EXPO, 2014)

Response	Strategy	Examples
Exploit	Risk exploitation is used when the team wants to ensure that the risk opportunity is realized and any uncertainty is removed	 Developing a project team with the most talented resources Upgrading technology to reduce cost and project duration
Enhance	Risk enhancement is used to increase the probability or impact of a positive risk occurring. The strategy requires identifying and maximizing the key drivers.	 Fast tracking an activity or overall schedule by adding additional resources or shifts to achieve an incentive
Share	Sharing a positive risk involves allocating some or all of the ownership of the risk and opportunity to a 3 rd party who has the best chance of meeting the objective.	 Risk sharing partnerships Subcontracting a firm with technical expertise and adding incentive targets
Accept	Accepting a positive risk means you intend to take advantage of the opportunity if it becomes available, but not actively pursuing it.	 Meeting incentive dates naturally Discounted equipment or material costs

SIMPLY EXPLAINED Good point! Put it in Risks.xlsx RISK MANAGEMENT

22 TYPES OF PROJECT RISK

PROJECT RISK MANAGEMENT

- A project management activity that involves identifying, assessing, measuring, documenting, communicating, avoiding, mitigating, transferring, accepting, controlling and managing risk
- The process of identifying risks is intuitive for experienced project managers

TYPES OF RISK (RISK CATEGORIES)

Executive Support

- Wavering, inconsistent or weak executive commitment is often a project's biggest risk
- This can be difficult (but not impossible) to document
- Ask for specific commitments
- Where you are denied you can document it as a risk
- Executives fail to support project
 Executives become disengaged with project
 Conflict between executive stakeholders disrupts project
 Executive turnover disrupts project

Scope

- The quality of your estimates, dependencies and scope management. If an estimate is just a guess, that's a risk. Be sensitive to the comfort level of estimates. If your team is unsure about a particular estimate, you can document this as a risk
- Scope is ill defined
 Scope creep inflates scope (Uncontrolled changes and continuous growth of scope)

Gold plating inflates scope (The project team add their own product features that aren't in requirements or change requests)

Estimates are inaccurate
Dependencies are inaccurate
Activities are missing from scope

Cost Management

- Inaccurate cost estimates and forecasts or when costs are incurred in foreign currencies exchange rates can have a dramatic impact
- Cost forecasts are inaccurate Exchange rate variability

•

Change Management

- A continuous flow of complex change requests can escalate the complexity of your project and throw it off course
- Change requests may lead to a perception that a project has failed because they
 continually add budget and time to the project
- If requirements are missing items that are expected to come later, that is a risk
- Change management overload
 Stakeholder conflict over proposed changes
 Perceptions that a project failed because of changes
 Lack of a change management system
 Lack of a change management process
 Lack of a change control board
 Inaccurate change priorities
 Low quality of change requests
 Change request conflicts with requirements

Stakeholders

- Stakeholders with a negative attitude towards a project may intentionally throw up roadblocks every step of the way
- If you anticipate conflict or a lack of cooperation between stakeholders, document it as a risk
- Stakeholders become disengaged
 Stakeholders have inaccurate expectations
 Stakeholder turnover
 Stakeholders fail to support project
 Stakeholder conflict
 Process inputs are low quality

Resources and Team

- Resource issues such as turnover and learning curves are common project risks
- For example: your key experts will leave, if your team are inexperienced or need to acquire new skills
- Resource shortfalls
 Learning curves lead to delays and cost overrun
 Training isn't available
 Training is inadequate
 Resources are inexperienced
 Resource performance issues
 Team members with negative attitudes towards the project
 Resource turnover
 Low team motivation
 Lack of commitment from functional managers

Architecture

- Architectural issues such as inflexibility to support change requests or is impossible to implement
- Architecture fails to pass governance processes
 Architecture lacks flexibility
 Architecture is not fit for purpose
 Architecture is infeasible

Design

- The feasibility and flexibility of architecture and design are key to your project's success
- Low quality design is a risk
- You might want to highlight the design of complex or experimental components as separate risks
- Design is infeasible
 Design lacks flexibility
 Design is not fit for purpose
 Design fails peer review

Technical

- The risk that components of your technology stack will be low quality
- There are dozens of quality factors for technical components (e.g. stability, availability, scalability, usability, security, extensibility)
- It is a good idea to identify specific risks in components
- For example: the risk that a component will have a security flaw
- Technology components aren't fit for purpose
 Technology components aren't scalable
 Technology components aren't interoperable
 Technology components aren't compliant with standards and best practices

Technology components have security vulnerabilities Technology components are over-engineered Technology components lack stability Technology components aren't extensible Technology components aren't reliable Information security incidents System outages Legacy components lack documentation Legacy components are out of support Components or products aren't maintainable Components or products can't be operationalized Project management tool problems & issues

Integration

- Whatever you are delivering needs to integrate with the processes, systems, organizations, culture and knowledge of the environment
- Integration risks are common
- If you need to integrate your project into a business process there is a risk that the process will be disrupted
- Delays to required infrastructure
 Failure to integrate with business processes
 Failure to integrate with systems
 Integration testing environments aren't available
 Failure to integration with the organization
 Failure to integrate components
 Project disrupts operations
 Project disrupts sales
 Project disrupts compliance

Communication

- Invalid stakeholder expectations are a fundamental project risk. If the stakeholders
 think you're building an orange but you're building an apple your project will fail
- For example: if stakeholders become disengaged (e.g. ignore project communications)
- Project team misunderstand requirements
 Communication overhead
 Under communication
 Users have inaccurate expectations
 Impacted individuals aren't kept informed

Requirements

- Garbage in, garbage out. If requirements aren't feasible or are detached from business realities, your project may fail
- Look at the feasibility, quality and completeness of requirements to identify risk
- Look at whether requirements are possible to integrate with organizations, processes and systems
- Requirements fail to align with strategy
 Requirements fail to align with business processes
 Requirements fail to align with systems
 Requirements have compliance issues
 Requirements are ambiguous
 Requirements are low quality
 Requirements are incomplete

- Decision Quality and Issue Resolution
 - Slow, low quality or ambiguous decisions are common risks
 - Decision delays impact project Decisions are ambiguous Decisions are low quality Decisions are incomplete

Feasibility

- Risk identification is a critical time to consider the feasibility of the project
- Ask the key members of your team to do their own sanity checks
- List any doubts about feasibility as risks

Procurement

- The procurement process is ripe with risks
- For example: there is a risk that you will not find an acceptable proposal to a Request for Proposal (RFP)
- There is also a risk that your vendors will not deliver to the terms of their contracts
- No response to RFP
 Low quality responses to RFP
 Failure to negotiation a reasonable price for contracts
 Unacceptable contract terms
 Conflict with vendor leads to project issues
 Conflict between vendors leads to project issues
 Vendors start late
 Vendor components fail to meet requirements
 Vendor components are low quality
 Infrastructure is low quality
 Service quality is low
 Vendor components introduce third party liability
 Loss of intellectual property

Quality

- Quality and risk management are intertwined
- Expect to have defects in your project
- There is a risk that quality will not meet basic levels
- Significant rework may trigger project failure
- Identify quality related risks for process inputs and outputs
- Identify quality risks for infrastructure, work packages, components and products

Authority

- Project teams often lack authority to complete project work
- In many cases, teams are expected to influence to achieve project objectives
- This reflects business realities
- For example, your project may cross organizational boundaries
- Project team lack authority to complete work Authority is unclear

Approvals & Red Tape

- If you anticipate that red tape (e.g. financial approvals) will slow down your project — add this as a risk
- Delays to stakeholder approvals impact the project Delays to financial approvals impact the project Delays to procurement processes impact the project Delays to recruiting processes impact the project Delays to training impact the project

Organizational

- Organizational change (e.g. restructuring, mergers, acquisitions) will throw your project off track
- Think about the minimum stability that your products require to launch
- List potential organizational changes as risks
- The project fails to match the organization's culture
 An organizational restructuring throws the project into chaos
 A merger or acquisition disrupts the project

External

- External forces such as laws, regulations and markets
- If your project touches compliance-sensitive processes, regulatory change is a risk
- Legal & regulatory change impacts project
 Force Majeure (e.g. act of nature) impacts project
 Market forces impact project
 Technical change impacts project
 Business change impacts project

Project Management

- If your organization asks you to streamline your project management methodology (drop processes and documentation) you can document this as a risk
- Failure to follow methodology
 Lack of management or control
 Errors in key project management processes

Secondary Risks

- Secondary risks are often overlooked aspect of risk
- They are the result of risk mitigation and transfers
- For example, you transfer a risk to a vendor with a fixed price contract
- Counterparty risk

User Acceptance

- There is always a chance that users will reject your product
- You can build a product that matches requirements (on time and to budget)
- If users reject the product, the project will be considered a failure.
- Users reject the prototype
 User interface doesn't allow users to complete tasks
 User interface is low quality
 User interface isn't accessible
 Project reduces business productivity
 Project reduces innovation
 Product disrupts business metrics (measurements of objectives)
 Users reject the product

Commercial

- If you're building a commercial product for market (new product development),
 there's always a chance the product will be a commercial failure
- This should be documented as a project risk
- Product doesn't sell
 Product incurs legal liability
 Product negatively affects brand
 Product negatively affects reputation

RISK MANAGEMENT PLAN FORMAT

- Risk identification (based on discussions with key stakeholders)
- Risk categorization
- Risk probability and impact assessment
- Risk prioritization
- Risk response planning
- Risk management strategy
- Risk monitoring
- Risk control
- Assumptions with significant impact on project risk
- Roles and responsibilities unique to the risk function

END OF PRESENTATION