Unidad 5 - Aproximación Polinomial Parte II Integración y derivación

Cecilia Rapelli Marcos Prunello

Año 2019

• Dada la función y=f(x) definida en forma tabular con a través de n+1 valores de x equiespaciados $x_0, x_1=x_0+h, \cdots, x_n=x_0+nh$, se desea hallar una aproximación de la integral definida:

$$\int_{x_0}^{x_n} f(x) dx \tag{1}$$

• Para esto, aproximaremos a f(x) con el polinomio de Newton:

$$f(x) \cong y_0 + k\Delta y_0 + \frac{k(k-1)}{2!}\Delta^2 y_0 + \frac{k(k-1)(k-2)}{3!}\Delta^3 y_0 + \cdots$$
 (2)

$$k = \frac{x - x_0}{h}$$

• En (1) la variable es x, mientras que en (2) la variable está expresada como $k = (x - x_0)/h$, por lo tanto para poder reemplazar (2) en (1) se debe realizar un cambio de variables:

$$k = \frac{x - x_0}{h} \implies \begin{cases} x = x_0 + hk \\ dx = hdk \\ x = x_0 \implies k = \frac{x_0 - x_0}{h} = 0 \\ x = x_n \implies k = \frac{x_n - x_0}{h} = \frac{x_0 + nh - x_0}{h} = n \end{cases}$$

• Luego:

$$\int_{x_0}^{x_n} f(x) dx$$

$$\cong \int_0^n \left(y_0 + k \Delta y_0 + \frac{k(k-1)}{2!} \Delta^2 y_0 + \frac{k(k-1)(k-2)}{3!} \Delta^3 y_0 + \cdots \right) h dk$$

$$= h \int_0^n \left[y_0 + k \Delta y_0 + \left(\frac{k^2}{2} - \frac{k}{2} \right) \Delta^2 y_0 + \left(\frac{k^3}{6} - \frac{k^2}{2} + \frac{k}{3} \right) \Delta^3 y_0 + \cdots \right] dk$$

$$= h \left[y_0 k + \frac{k^2}{2} \Delta y_0 + \left(\frac{k^3}{6} - \frac{k^2}{4} \right) \Delta^2 y_0 + \left(\frac{k^4}{24} - \frac{k^3}{6} + \frac{k^2}{6} \right) \Delta^3 y_0 + \cdots \right] \Big|_0^n$$

$$= h \left[y_0 n + \frac{n^2}{2} \Delta y_0 + \left(\frac{n^3}{6} - \frac{n^2}{4} \right) \Delta^2 y_0 + \left(\frac{n^4}{24} - \frac{n^3}{6} + \frac{n^2}{6} \right) \Delta^3 y_0 + \cdots \right]$$

Ejemplo. Se tienen los siguientes valores tabulados de f(x) y se desea hallar su integral entre 0 y 6.

	<u> </u>
X	y = f(x)
0.0	2.00
0.5	3.13
1.0	2.14
1.5	1.14
2.0	1.78
2.5	2.64
3.0	2.25
3.5	1.53
4.0	1.75
4.5	2.34
5.0	2.24
5.5	1.77
6.0	1.78

La curva roja es la verdadera función f(x) que originó la tabla, la cual suponemos desconocida o difícil de integrar.

• Si la interpolación se limita al primer orden y la integral sólo se calcula entre los dos primeros valores de x, se obtiene:

$$\int_{x_0}^{x_1} f(x) dx \cong \int_0^1 \left(y_0 + k \Delta y_0 \right) h dk = h \left(y_0 k + \frac{k^2}{2} \Delta y_0 \right) \Big|_0^1$$
$$= h \left(y_0 + \frac{\Delta y_0}{2} \right) = h \left(y_0 + \frac{y_1 - y_0}{2} \right) = \frac{h}{2} (y_0 + y_1)$$

• En el ejemplo:

$$\int_0^{0.5} f(x)dx \cong \frac{0.5}{2}(3.13+2) = 1.2825$$

• Geométricamente, esto equivale al área A_1 del trapecio formado por la recta de interpolación y el eje de las abscisas, entre x_0 y x_1 :

 De manera semejante, se puede emplear la interpolación lineal de Newton para obtener una aproximación de la integral entre x₁ y x₂:

Y sucesivamente para todos los intervalos:

$$\int_{x_{i-1}}^{x_i} f(x)dx \cong A_i = \frac{h}{2}(y_{i-1} + y_i) \quad i = 1, \cdots, n$$

• De modo que la suma de las áreas de los trapecios A_i resulta ser la aproximación para la integral entre x_0 y x_n :

$$\int_{x_0}^{x_n} f(x) dx \cong \sum_{i=1}^n A_i = \sum_{i=1}^n \frac{h}{2} (y_{i-1} + y_i) = \frac{h}{2} (y_0 + y_n + 2 \sum_{i=1}^{n-1} y_i)$$

 La fórmula hallada se conoce como fórmula trapecial y se la simboliza con:

$$A_{1/2} = \frac{h}{2} \left(y_0 + y_n + 2 \sum_{i=1}^{n-1} y_i \right)$$

• Cuanto menor sea el ancho de los intervalos h y más se acerque f(x) a una recta, mejor será la aproximación así obtenida.

Gráficamente:

- En el ejemplo: $A_{1/2} = 12,3000$.
- El valor exacto es: $\int_0^6 f(x)dx = 12,2935$, con lo cual el error relativo de la aproximación con la fórmula trapecial fue: 0,05 %.

 Si la interpolación es de segundo orden y la integral sólo se calcula entre los tres primeros valores de x, se obtiene:

$$\int_{x_0}^{x_2} f(x) dx \cong \int_0^2 \left[y_0 + k \Delta y_0 + \left(\frac{k^2}{2} - \frac{k}{2} \right) \Delta^2 y_0 \right] h dk$$

$$= h \left[y_0 k + \frac{k^2}{2} \Delta y_0 + \left(\frac{k^3}{6} - \frac{k^2}{4} \right) \Delta^2 y_0 \right]_0^2$$

$$= h \left[2y_0 + 2\Delta y_0 + \frac{1}{3} \Delta^2 y_0 \right]$$

• Dado que $\Delta y_0 = y_1 - y_0$ y $\Delta^2 y_0 = \Delta y_1 - \Delta y_0 = y_2 - 2y_1 + y_0$, nos queda:

$$\int_{x_0}^{x_2} f(x) dx \cong h \Big[2y_0 + 2(y_1 - y_0) + \frac{1}{3} (y_2 - 2y_1 + y_0) \Big]$$
$$= \frac{h}{3} (y_0 + 4y_1 + y_2)$$

• Geométricamente, esto equivale al área A_1 encerrada entre el eje de las abscisas, x_0 y x_2 y el polinomio integrador que pasa por (x_0, y_0) , (x_1, y_1) y (x_2, y_2) : $A_1 = 2,7766$

• De manera semejante, se puede emplear la interpolación cuadrática de Newton para obtener una aproximación de la integral entre x_2 y x_4 :

• Y sucesivamente para todos los intervalos:

$$\int_{x_{i-1}}^{x_{i+1}} f(x) dx \cong \frac{h}{3} (y_{i-1} + 4y_i + y_{i+1}) \quad i = 1, 3, 5, \cdots, n-1$$

• De modo que la suma de estas áreas resulta ser la aproximación para la integral entre x_0 y x_n :

$$\int_{x_0}^{x_n} f(x) dx \cong \sum_{\substack{i=1 \ i \ impar}}^{n-1} \frac{h}{3} (y_{i-1} + 4y_i + y_{i+1}) = \frac{h}{3} \left(y_0 + y_n + 2 \sum_{\substack{i=2 \ i \ par}}^{n-2} y_i + 4 \sum_{\substack{i=1 \ i \ impar}}^{n-1} y_i \right)$$

 La fórmula hallada se conoce como fórmula de Simpson de 1/3 y se la simboliza con:

$$A_{1/3} = \frac{h}{3} \left(y_0 + y_n + 2 \sum_{\substack{i=2\\i \ par}}^{n-2} y_i + 4 \sum_{\substack{i=1\\i \ impar}}^{n-1} y_i \right)$$

 Para poder aplicarla, es necesario que la cantidad de puntos tabulados sea impar, es decir que la tabla tenga una cantidad par de intervalos.

Gráficamente:

- En el ejemplo: $A_{1/3} = 12,3833$.
- El valor exacto es: $\int_0^6 f(x)dx = 12,2935$, con lo cual el error relativo de la aproximación con la fórmula trapecial fue: 7,3 %.

• Si la interpolación es de tercer orden y la integral sólo se calcula entre los 4 primeros valores de x, se obtiene:

$$\int_{x_0}^{x_3} f(x) dx \cong \int_0^3 \left[y_0 + k \Delta y_0 + \left(\frac{k^2}{2} - \frac{k}{2} \right) \Delta^2 y_0 + \left(\frac{k^3}{6} - \frac{k^2}{2} + \frac{k}{3} \right) \Delta^3 y_0 \right] h dk$$

$$= h \left[y_0 k + \frac{k^2}{2} \Delta y_0 + \left(\frac{k^3}{6} - \frac{k^2}{4} \right) \Delta^2 y_0 + \left(\frac{k^4}{24} - \frac{k^3}{6} + \frac{k^2}{6} \right) \Delta^3 y_0 \right]_0^3$$

$$= h \left[3y_0 + \frac{9}{2} \Delta y_0 + \frac{9}{4} \Delta^2 y_0 + \frac{3}{8} \Delta^3 y_0 \right]$$

• Dado que $\Delta y_0 = y_1 - y_0$, $\Delta^2 y_0 = \Delta y_1 - \Delta y_0 = y_2 - 2y_1 + y_0$, y $\Delta^3 y_0 = \Delta^2 y_1 - \Delta^2 y_0 = y_3 - 3y_2 - 3y_1 + y_0$ nos queda:

$$\int_{x_0}^{x_3} f(x) dx \cong \frac{3}{8} h(y_0 + 3y_1 + 3y_2 + y_3)$$

• Geométricamente, esto equivale al área A_1 encerrada entre el eje de las abscisas, x_0 y x_3 y el polinomio integrador que pasa por (x_0, y_0) , (x_1, y_1) , (x_2, y_2) y (x_3, y_3) :

 De manera semejante, se puede emplear la interpolación cúbica de Newton para obtener una aproximación de la integral entre x₃ y x₆:

$$\int_{x_3}^{x_6} f(x)dx \cong A_2 = \frac{3}{8}h(y_3 + 3y_4 + 3y_5 + y_6)$$

$$A_1 = 3,1219$$

$$A_2$$

$$0.00.51.01.52.02.53.03.54.04.55.05.56.0$$

The polynomia definite polynomia de interpolación Puntos tabulados

Y sucesivamente para todos los intervalos:

$$\int_{x_i}^{x_{i+3}} f(x)dx \cong \frac{3}{8}h(y_i + 3y_{i+1} + 3y_{i+2} + y_{i+3}) \quad i = 0, 3, 6, \dots, n-3$$

• De modo que la suma de estas áreas resulta ser la aproximación para la integral entre x_0 y x_n :

$$\int_{x_0}^{x_n} f(x) dx \cong \sum_{\substack{i=0 \ 6 \ i \ m\'ultiplo \ de \ 3}}^{n-3} \frac{3}{8} h(y_i + 3y_{i+1} + 3y_{i+2} + y_{i+3})$$

$$= \frac{3}{8} h(y_0 + y_n + 2 \sum_{\substack{i=3 \ i \ m\'ultiplo \ de \ 3}}^{n-3} y_i + 3 \sum_{\substack{i=1 \ i \ no \ m\'ultiplo \ de \ 3}}^{n-1} y_i)$$

 La fórmula hallada se conoce como fórmula de Simpson de 3/8 y se la simboliza con:

$$A_{3/8} = \frac{3}{8} h \Big(y_0 + y_n + 2 \sum_{\substack{i=3 \\ i \text{ m\'ultiplo de 3}}}^{n-3} y_i + 3 \sum_{\substack{i=1 \\ i \text{ no m\'ultiplo de 3}}}^{n-1} y_i \Big)$$

• Para poder aplicarla, es necesario que la cantidad de intervalos en la tabla sea múltiplo de 3.

Gráficamente:

- En el ejemplo: $A_{3/8} = 12,4088$.
- El valor exacto es: $\int_0^6 f(x)dx = 12,2935$, con lo cual el error relativo de la aproximación con la fórmula trapecial fue: 9,4 %.

Derivación numérica

 Para aproximar la derivada de una función en un punto, nuevamente haremos uso del polinomio interpolador de Newton:

$$f(x) \cong y_0 + k\Delta y_0 + \frac{k(k-1)}{2!}\Delta^2 y_0 + \frac{k(k-1)(k-2)}{3!}\Delta^3 y_0 + \cdots$$
$$= y_0 + k\Delta y_0 + \left(\frac{k^2}{2} - \frac{k}{2}\right)\Delta^2 y_0 + \left(\frac{k^3}{6} - \frac{k^2}{2} + \frac{k}{3}\right)\Delta^3 y_0 + \cdots$$

- Se debe derivar con respecto a x el miembro derecho de la expresión anterior, aplicando la Regla de la Cadena ya que $k = (x x_0)/h$.
- Por simplicidad, lo mostraremos sólo con el polinomio interpolador cuadrático.

Derivación numérica

 Aproximación de la derivada con el polinomio interpolador cuadrático de Newton:

$$f(x) \cong y_0 + k\Delta y_0 + \frac{k^2}{2}\Delta^2 y_0 - \frac{k}{2}\Delta^2 y_0$$
$$k = \frac{x - x_0}{h} \implies \frac{\partial k}{\partial x} = \frac{1}{h}$$

$$f'(x) \cong \Delta y_0 \frac{1}{h} + \Delta^2 y_0 \ k \frac{1}{h} - \frac{\Delta^2 y_0}{2} \frac{1}{h}$$
$$= \frac{1}{h} \left[\Delta y_0 + \left(k - \frac{1}{2} \right) \Delta^2 y_0 \right]$$

Derivación numérica

Retomando el Ejemplo 1 de la Parte 1 de la Unidad 4: vamos a aproximar el valor de f'(3,4).

x_k	y_k	Δy_k	$\Delta^2 y_k$	$\Delta^3 y_k$	$\Delta^4 y_k$	$\Delta^5 y_k$
2	0,3010	0,1761	-0,0511	0,0230	-0,0127	0,0081
3	0,4771	0,1250	-0,0281	0,0103	-0,0046	_
4	0,6021	0,0969	-0,0178	0,0057	-	-
5	0,6990	0.0791	-0.0121	-	-	-
6	0,7781	0,0670	-	-	-	-
7	0,8451	=	-	-	-	-

$$x = 3, 4$$

•
$$x_0 = 3$$

$$\bullet k = \frac{x - x_0}{h} = \frac{3,4-3}{1} = 0,4$$

$$\Delta y_0 = 0.1250; \Delta^2 y_0 = -0.0281$$

$$f'(x) \cong \frac{1}{h} \left[\Delta y_0 + \left(k - \frac{1}{2} \right) \Delta^2 y_0 \right] = 0.1250 + (-0.1)(-0.0281) = 0.12781$$

Nota: esta fórmula se conoce como aproximación por diferencias hacia adelante, pero se pueden lograr aproximaciones más precisas de otras formas, por ejemplo, haciendo que el punto de interés x esté en el centro del rango del polinomio interpolador (aproximación por diferencias centrales).