pybats-detection: A python package for outlier and structural changes detection in time series analysis

André Menezes and Eduardo Gabriel

11 fevereiro, 2022

Contents

noothing	1
smoothed predictive	3
smoothed posterior	
Aplication: AirPassangers dataset	4
anual Intervention	7
CP6	7
tomatic Monitoring	16
Simulated examples	16
Real data applications	

Smoothing

A brief introduction of the Smoothing class in a simulated example. A time series $\mathbf{Y} = (y_1, \dots, y_T)$ was generated using the RandomDLM class which has the arguments (n, V, W): the number of observations, observational variance and state vector variance. This class has three methods that simulate data using different mechanisms:

- .level: dynamic level model;
- .growth: dynamic growth model;
- .level_with_covariates: dynamic level model where Y is simulated given X, a matrix of fixed covariates.

For now, we stick with .level, simulating n = 100 observations with both observational and state vector variance equals to one 1, the starting level is set to 100. The simulated data is plotted below.

```
>>> # Generating level data model
>>> np.random.seed(66)
>>> rdlm = RandomDLM(n=100, V=1, W=1)
>>> df_simulated = rdlm.level(
>>> start_level=100,
>>> dict_shift={})
>>> y = df_simulated["y"]
```

The Smoothing class allows you to perform a retrospective analysis for \mathbf{Y} , obtaining the distribution of $(\boldsymbol{\theta}_{T-k}|D_T)$, for $k \geq 1$, the k-step smoothed distribution for the state vector at time T, which is analogous to the k-step ahead forecast distribution $(\boldsymbol{\theta}_{t+k}|D_t)$.

To use Smoothing, first it is necessary to define the model components with prior values, which is done with

Figure 1: Simulated data

the dlm class available in the pybats package. In this case, it was considered a DLM with level and growth. The prior vector and covariances are defined by **a** and **R**. Lastly, the discount factor denoted by deltrend is a constant in the interval [0, 1], which is used to coordinate the adaptive capacity of predictions with increasing variance of model components.

```
>>> # Define model components
>>> a = np.array([100, 0])
>>> R = np.eye(2)
>>> np.fill_diagonal(R, val=1)
>>> mod = dlm(a, R, ntrend=2, deltrend=.95)
```

Given this, the method .fit will initialize the model and the loop forecast, observe and update begin. The prior and posterior moments $(\mathbf{a}_t, \mathbf{m}_t, \mathbf{C}_t, \mathbf{R}_t)$ will be computed for all t and saved. Subsequently, these moments will be used to obtain the moments for $(\boldsymbol{\theta}_{T-k}|D_T)$, recursively with $k \geq 1$, and denoted by $(\mathbf{a}_T(-k), \mathbf{m}_T(-k), \mathbf{C}_T(-k), \mathbf{R}_T(-k))$.

```
>>> # Fit with monitoring
>>> smooth = Smoothing(mod=mod)
>>> smooth_fit = smooth.fit(y=y)
```

This will return a dictionary with moments for: smoothed and filtered predictive distributions and for the posterior distributions of the model components. Each one can be obtained using the respective key

```
>>> smooth_fit.get('smooth').get('predictive')
>>> smooth_fit.get('smooth').get('posterior')
>>> smooth_fit.get('filter').get('predictive')
>>> smooth_fit.get('filter').get('posterior')
```

Below the results for the predictive and posterior smoothed distributions

smoothed predictive

The results for the smoothed predictive distribution consists of: $f_T(-k), q_T(-k)$ and the bounds for the credibility interval (ci_lower, ci_upper). Given by

$$f_T(-k) = \mathbf{F}' \mathbf{a}_T(-k), \qquad q_T(-k) = \mathbf{F}' \mathbf{R}_T(-k) \mathbf{F}$$

The credibility interval is is obtained from the corresponding smoothed distributions for the mean response of the series. Since V is considered unknown, then

$$(\mu_T(-k)|D_T) \sim T_{n_T}[f_T(-k), q_T(-k)]$$

For this simulated example, the results for the smoothed predictive distribution for the mean response are

Table 1: Smothed predictive distribution results

qk	t	fk	df	ci_lower	ci_upper
0.31	1	99.96	1	98.85	101.1
0.27	2	100.07	2	99.04	101.1
0.24	3	100.12	3	99.14	101.1
0.23	4	100.20	4	99.24	101.2
0.22	5	100.39	5	99.47	101.3

as for the filtered distribution

Table 2: Filtered predictive distribution results

parameter	mean	variance	\mathbf{t}	ci_lower	ci_upper
theta_1	99.96	0.31	1	98.85	101.1
$theta_1$	100.07	0.27	2	99.04	101.1
$theta_1$	100.12	0.24	3	99.14	101.1
$theta_1$	100.20	0.23	4	99.24	101.2
$theta_1$	100.39	0.22	5	99.47	101.3

Plotting the filtered vs smoothed predictive distributions results is possible to see difference, primarily in the length of the credibility interval.

smoothed posterior

The results for the posterior distributions are analogous, where

- parameter: Indicator for the respective state space parameter in θ ;
- mean: The smoothed posterior distribution mean for time t = T k $(\mathbf{m}(-k))$;
- variance: The smoothed posterior distribution variance for time t ($\mathbf{C}(-k)$).
- credibility interval (ci_lower, ci_upper): The credibility interval obtained from the corresponding smoothed posterior distributions. Since V is considered unknown, then

$$(\boldsymbol{\theta}_{T-k}|D_T) \sim T_{n_T}[\mathbf{a}_T(-k), \mathbf{R}_T(-k)].$$

Figure 2: Mean response for Filtered and Smoothed predictive distributions with 95% credibility intervals.

>>> smooth_fit.get('smooth').get('posterior').round(2).head()

Table 3: Smothed posterior distribution results

parameter	mean	variance	t	ci_lower	ci_upper
theta_1	99.96	0.31	1	98.85	101.1
$theta_1$	100.07	0.27	2	99.04	101.1
$theta_1$	100.12	0.24	3	99.14	101.1
$theta_1$	100.20	0.23	4	99.24	101.2
$theta_1$	100.39	0.22	5	99.47	101.3

As before we plot the results for filtered and smoothed distributions, in this case for each state space parameter. As expected, the smoothed posterior distributions show a less erratic behavior with shorter credibility intervals.

Figure 4: Monthly totals of international airline passengers, 1949 to 1960.

Here it was specified a yearly seasonal effect with period p = 12 and the first two harmonics. The discount factor for the level and growth components is set to 0.95, and 0.98 for the seasonal components. The results are plotted below.

```
>>> a = np.array([112, 0, 0, 0, 0])
>>> R = np.eye(6)
>>> np.fill_diagonal(R, val=100)
>>> mod = dlm(a, R, ntrend=2, deltrend=.95, delseas=.98,
>>> seasPeriods=[12], seasHarmComponents=[[1, 2]])
```

Since the seasonality was modeled using harmonic components, the model has a total of six parameters: level, growth and four for seasonality (a_1, b_1, a_2, b_2) . For simplicity, the results for de posterior distributions considered the sum of the harmonic components, whose moments are given by

$$\mu_{seas} = \mathbf{F}_{seas}' \mathbf{a}_T(-k), \qquad \sigma_{seas}^2 = \mathbf{F}_{seas}' \mathbf{R}_T(-k) \mathbf{F}_{seas}$$

where $\mathbf{F}'_{seas} = [0, 0, 1, 0, 1, 0]$. The results are illustrated below.

Figure 5: Mean response for Filtered and Smoothed predictive distributions with 95% credibility intervals.

Figure 6: Mean response for Filtered and Smoothed posterior distributions for each model component with 95% credibility intervals.

Manual Intervention

CP6

• Performing the fit (filter and smoothing) without interventions.

```
>>> # Define the growth model
>>> a = np.array([600, 1])
>>> R = np.array([[100, 0], [0, 25]])
>>> mod = dlm(a, R, ntrend=2, deltrend=[0.90, 0.98])
>>>
>>> # Filter and Smooth without intervention
>>> smooth = Smoothing(mod=mod)
>>> out_no_int = smooth.fit(y=cp6["sales"])
>>> dict_filter_no_int = out_no_int.get("filter")
>>> dict_smooth_no_int = out_no_int.get("smooth")
```

• Performing the fit (filter and smoothing) with interventions

```
>>> list_interventions = [
>>> {"time_index": 12, "which": ["variance", "noise"],
>>> "parameters": [{"v_shift": "ignore"},
>>> {"h_shift": np.array([0, 0]),
```

```
>>>
                         "H_shift": np.array([[1000, 25], [25, 25]])}]
        },
>>>
        {"time_index": 25, "which": ["noise", "variance"],
>>>
>>>
         "parameters": [{"h_shift": np.array([80, 0]),
>>>
                         "H_shift": np.array([[100, 0], [0, 0]])},
>>>
                        {"v_shift": "ignore"}]},
        {"time_index": 37, "which": ["subjective"],
>>>
         "parameters": [{"a star": np.array([970, 0]),
>>>
>>>
                         "R_star": np.array([[50, 0], [0, 5]])}]}
>>> ]
>>> manual_interventions = ManualIntervention(mod=mod)
>>> out_int = manual_interventions.fit(
        y=cp6["sales"], interventions=list_interventions)
>>> dict_filter_int = out_int.get("filter")
>>> dict_smooth_int = out_int.get("smooth")
```

• Organizing the data into two data.frame: data_predictive and data_posterior.

```
>>> data_predictive_filter_int = dict_filter_int.get("predictive").copy()
>>> data_predictive_filter_no_int = dict_filter_no_int.get("predictive").copy()
>>> data_predictive_filter_no_int["intervention_type"] = "nothing"
>>> data_predictive_filter_int["intervention_fit"] = True
>>> data predictive filter no int["intervention fit"] = False
>>> cols = data_predictive_filter_int.columns
>>> data predictive filter = pd.concat(
>>>
      [data_predictive_filter_int, data_predictive_filter_no_int[cols]]
>>> )
>>> # Smooth
>>> data_predictive_smooth_int = dict_smooth_int.get("predictive").copy()
>>> data_predictive_smooth_no_int = dict_smooth_no_int.get("predictive").copy()
>>> data_predictive_smooth_no_int["intervention_type"] = "nothing"
>>> data_predictive_smooth_int["intervention_fit"] = True
>>> data_predictive_smooth_no_int["intervention_fit"] = False
>>> cols = data_predictive_smooth_int.columns
>>> data_predictive_smooth = pd.concat(
      [data_predictive_smooth_int, data_predictive_smooth_no_int[cols]]
>>>
>>> )
>>> # Append data
>>> data_predictive_smooth["type"] = "smooth"
>>> data predictive filter["type"] = "filter"
>>> data_predictive_smooth.rename(columns={"fk": "f", "qk": "q"}, inplace=True)
>>> cols_ord = ["t", "intervention_fit", "type", "f", "q", 'ci_lower', 'ci_upper']
>>> data_predictive = pd.concat(
        [data_predictive_filter[cols_ord], data_predictive_smooth[cols_ord]])
>>> data_predictive = data_predictive.join(cp6)
>>> # Filter
>>> data_posterior_filter_int = dict_filter_int.get("posterior").copy()
>>> data_posterior_filter_no_int = dict_filter_no_int.get("posterior").copy()
>>> data_posterior_filter_no_int["intervention_type"] = "nothing"
>>> data_posterior_filter_int["intervention_fit"] = True
>>> data_posterior_filter_no_int["intervention_fit"] = False
>>> cols = data_posterior_filter_int.columns
```

```
>>> data_posterior_filter = pd.concat(
>>> [data_posterior_filter_int, data_posterior_filter_no_int[cols]]
>>> )
>>> # Smooth
>>> data_posterior_smooth_int = dict_smooth_int.get("posterior").copy()
>>> data_posterior_smooth_no_int = dict_smooth_no_int.get("posterior").copy()
>>> data_posterior_smooth_no_int["intervention_type"] = "nothing"
>>> data posterior smooth int["intervention fit"] = True
>>> data_posterior_smooth_no_int["intervention_fit"] = False
>>> cols = data_posterior_smooth_int.columns
>>> data_posterior_smooth = pd.concat(
      [data_posterior_smooth_int, data_posterior_smooth_no_int[cols]]
>>> )
>>> # Append data
>>> data_posterior_smooth["type"] = "smooth"
>>> data_posterior_filter["type"] = "filter"
>>> data_posterior_filter.set_index(data_posterior_filter["t"].values-1, inplace=True)
>>> data_posterior_smooth.set_index(data_posterior_smooth["t"].values-1, inplace=True)
>>> cols_ord = ["t", "intervention_fit", "type", "parameter", "mean", "variance",
                'ci_lower', 'ci_upper']
>>> data_posterior = pd.concat(
        [data_posterior_filter[cols_ord], data_posterior_smooth[cols_ord]])
>>> data_posterior = data_posterior.join(cp6)
```

• Plotting some results

Smooth predictive with and without intervention

Smooth level with and without intervention

Smooth growth with and without intervention

Filter growth with and without intervention

Automatic Monitoring

Simulated examples

Level Change

```
>>> np.random.seed(66)
>>> rdlm = RandomDLM(n=50, V=0.1, W=0.005)
>>> df_simulated = rdlm.level(
>>> start_level=100,
>>> dict_shift={"t": [40],
>>> "level_mean_shift": [1],
>>> "level_var_shift": [1]})
>>> df_simulated.loc[40:50, "y"] = 101 + np.random.normal(0, 0.2, 10)
```



```
>>> a = np.array([100])
>>> R = np.eye(1)
>>> R[[0]] = 100
>>> mod = dlm(a, R, ntrend=1, deltrend=0.9)
>>>
>>> # Fit without monitoring
>>> fit_without_monitor = Smoothing(mod=mod).fit(y=df_simulated["y"])
>>> df_res = fit_without_monitor.get("filter").get("predictive")
>>> df_res["monitor"] = False
>>>
>>> # Fit with monitoring
>>> monitor = AutomaticMonitoring(mod=mod, bilateral=False)
>>> fit_monitor = monitor.fit(y=df_simulated["y"], h=3, tau=0.135, change_var=[100])
```

Parametric change detected at time 43 with H=12.0902, L=3.7693 and l=3

```
>>> df_tmp = fit_monitor.get("filter").get("predictive")
>>> df_tmp["monitor"] = True
>>> cols_ord = ["t", "y", "f", "q", "ci_lower", "ci_upper", "monitor", "e",
>>> "H", "L", "l"]
>>> df_res = pd.concat([df_res, df_tmp[cols_ord]]).reset_index(drop=True)
```



```
## 22 22 101.05 100.43
                       0.1726 1.474577 1.079e+00 1.079e+00 1
## 23 23 99.77 100.50
                       0.1812 -1.729299 1.612e+04 1.612e+04 1
## 24 24 100.42 100.42
                       0.1959 0.009252 8.755e+01 8.755e+01 1
## 25 25 100.10 100.42
                       0.1879 -0.731956 8.091e+02 8.091e+02 1
## 26 26 100.12 100.39
                      0.1844 -0.626588 5.898e+02 5.898e+02 1
## 27 27 100.00 100.36
                      0.1801 -0.845808 1.138e+03 1.138e+03 1
## 28 28 100.93 100.32
                       0.1781 1.455528 1.143e+00 1.143e+00 1
## 29 29 100.18 100.38
                       0.1849 -0.482666 3.830e+02 3.830e+02 1
## 30 30 100.59 100.36
                       0.1801 0.535852 1.804e+01 1.804e+01 1
## 31 31 100.45 100.39
                       0.1758   0.154334   5.666e+01   5.666e+01   1
## 32 32 100.31 100.39
                       0.1704 -0.202337 1.652e+02 1.652e+02 1
## 33 33 100.28 100.38
                       0.1654 -0.262065 1.976e+02 1.976e+02 1
## 34 34 99.69 100.37
                       0.1608 -1.705145 1.499e+04 1.499e+04 1
## 35 35 100.39 100.30
                       0.1695  0.207462  4.831e+01  4.831e+01  1
## 36 36 100.32 100.31
                       ## 37 37 99.80 100.31
                       0.1604 -1.282407 4.218e+03 4.218e+03 1
## 38 38 100.46 100.26
                       0.1631   0.491867   2.058e+01   2.058e+01   1
## 39 39 99.81 100.28
                       0.1599 -1.164556 2.962e+03 2.962e+03 1
## 40 40 100.28 100.23
                       ## 41 41 100.98 100.24
                       1.7367 1.872524 3.271e-01 3.271e-01 1
## 42 42 100.93 100.92
                      0.2812 1.515974 9.532e-01 3.118e-01 2
## 43 43 100.65 100.93
                       0.2122   0.669203   1.209e+01   1.000e+00   0
## 44 44 100.96 100.83
                       0.1874   0.297470   3.688e+01   3.688e+01   1
## 45 45 101.02 100.87
                       0.1728 0.372924 2.941e+01 2.941e+01 1
## 46 46 101.21 100.90
                       ## 47 47 100.95 100.97
                       0.1575 -0.042189 1.022e+02 1.022e+02 1
## 48 48 100.98 100.96
                       ## 49 49 101.16 100.97
                       0.1460 0.517697 1.905e+01 1.905e+01 1
## 50 50 100.98 101.00
                     0.1423 -0.051842 1.052e+02 1.052e+02 1
```

Outliers

```
>>> np.random.seed(66)
>>> rdlm = RandomDLM(n=50, V=0.1, W=0.01)
>>> df_simulated = rdlm.level(
>>> start_level=100,
>>> dict_shift={"t": [10, 11, 20, 21, 30, 31, 40, 41],
>>> "level_mean_shift": [2, -2, 3, -3, 3.4, -3.4, 3, -3],
>>> "level_var_shift": [1, 1, 1, 1, 1, 1, 1]})
```


>>> df_tmp["monitor"] = True

>>>

>>> # Append

```
>>> cols_ord = ["t", "monitor", "y", "f", "q", "ci_lower", "ci_upper"]
>>> df_res = pd.concat([df_res[cols_ord], df_tmp[cols_ord]]).reset_index(drop=True)
```



```
## 18 18 100.45 100.76
                       0.1991 -0.68855 4.683e+04 4.683e+04 1
## 19 19 100.42 100.70
                       0.1896 -0.64679 3.962e+04 3.962e+04 1
## 20 20 100.34 100.65
                       0.1811 -0.72604 5.440e+04 5.440e+04 1
                       0.1748 8.27597 1.252e-11 1.000e+00 0
## 21 21 104.06 100.60
## 22 22 100.20 100.60
                       2.8231 -0.23975 7.778e+03 7.778e+03 1
## 23 23 100.50 100.22
                       0.2904  0.51567  3.789e+02  3.789e+02  1
## 24 24 100.54 100.36
                       0.2146 0.38011 6.517e+02 6.517e+02 1
## 25 25 100.52 100.43
                       ## 26 26 100.41 100.45
                       0.1668 -0.11343 4.692e+03 4.692e+03 1
## 27 27 99.88 100.44
                       0.1541 -1.43700 9.347e+05 9.347e+05 1
## 28 28 100.41 100.32
                       ## 29 29 100.54 100.34
                       ## 30 30 99.84 100.37
                       0.1419 -1.41664 8.616e+05 8.616e+05 1
## 31 31 103.79 100.29
                       0.1452 9.18538 3.294e-13 1.000e+00 0
## 32 32 99.92 100.29
                       2.3444 -0.24081 7.811e+03 7.811e+03 1
## 33 33 100.43 99.94
                       0.2445   0.98890   5.708e+01   5.708e+01   1
## 34 34 100.85 100.19
                       0.1868 1.52652 6.645e+00 6.645e+00 1
## 35 35 100.99 100.43
                       0.1739 1.35290 1.331e+01 1.331e+01 1
## 36 36 100.19 100.59
                       0.1676 -0.97163 1.453e+05 1.453e+05 1
## 37 37 99.90 100.49
                       0.1610 -1.49086 1.159e+06 1.159e+06 1
## 38 38 99.69 100.37
                       0.1622 -1.67843 2.455e+06 2.455e+06 1
## 39 39 100.65 100.24
                       0.1671 1.01996 5.041e+01 5.041e+01 1
## 40 40 100.19 100.31
                       0.1649 -0.29059 9.532e+03 9.532e+03 1
## 41 41 102.72 100.29
                       0.1591 6.07876 8.212e-08 1.000e+00 0
## 42 42 100.66 100.29
                       2.5693 0.22844 1.195e+03 1.195e+03 1
## 43 43 100.51 100.64
                       0.2699 -0.25147 8.151e+03 8.151e+03 1
## 44 44 100.55 100.57
                       0.2016 -0.05057 3.649e+03 3.649e+03 1
## 45 45 100.45 100.56
                       0.1758 -0.26400 8.570e+03 8.570e+03 1
## 46 46 100.03 100.53
                       0.1616 -1.24712 4.373e+05 4.373e+05 1
## 47 47 100.46 100.41
                       0.1574  0.12725  1.792e+03  1.792e+03  1
## 48 48 100.68 100.42
                       0.1499 0.65818 2.143e+02 2.143e+02 1
## 49 49 100.86 100.47
                       0.1451 1.03864 4.678e+01 4.678e+01 1
## 50 50 100.42 100.54
                       0.1433 -0.32205 1.081e+04 1.081e+04 1
```

Outlier and Level Change

```
>>> np.random.seed(66)
>>> rdlm = RandomDLM(n=50, V=0.1, W=0.01)
>>> df_simulated = rdlm.level(
>>> start_level=100,
>>> dict_shift={"t": [20, 21, 40],
>>> "level_mean_shift": [3, -3, 10],
>>> "level_var_shift": [1, 1, 1]})
```


- ## Potential outlier detected at time 21 with H=0.0, L=0.0 and l=1 $\,$
- ## Potential outlier detected at time 41 with H=0.0, L=0.0 and l=1 $\,$
- ## Potential outlier detected at time 42 with H=0.0, L=0.0 and l=1 $\,$


```
## 22 22 100.54 100.61
                        3.0569 -0.039535 3.492e+03 3.492e+03 1
## 23 23 100.20 100.54
                        0.4340 -0.521028 2.396e+04 2.396e+04 1
## 24 24 100.21 100.37
                        0.3238 -0.284362 9.297e+03 9.297e+03 1
## 25 25 100.06 100.31
                        0.2789 -0.476265 2.003e+04 2.003e+04 1
## 26 26 101.04 100.24
                        0.2543 1.591679 5.121e+00 5.121e+00 1
## 27 27 100.29 100.43
                       0.2591 -0.270771 8.805e+03 8.805e+03 1
## 28 28 100.71 100.40
                        0.2437  0.628259  2.415e+02  2.415e+02  1
## 29 29 100.56 100.46
                        0.2339  0.215907  1.257e+03  1.257e+03  1
## 30 30 100.39 100.48
                        0.2229 -0.192873 6.448e+03 6.448e+03 1
## 31 31 100.40 100.46
                        0.2133 -0.144727 5.318e+03 5.318e+03 1
## 32 32 99.77 100.45
                        0.2047 -1.503593 1.220e+06 1.220e+06 1
## 33 33 100.49 100.36
                        0.2113  0.298013  9.050e+02  9.050e+02  1
## 34 34 100.39 100.37
                        0.2042 0.039400 2.546e+03 2.546e+03 1
## 35 35 99.90 100.38
                        0.1972 -1.072491 2.175e+05 2.175e+05 1
## 36 36 100.59 100.31
                        0.1972  0.629152  2.407e+02  2.407e+02  1
## 37 37 99.96 100.35
                        0.1932 -0.879131 1.004e+05 1.004e+05 1
## 38 38 100.44 100.30
                        ## 39 39 100.80 100.32
                        0.1864 1.111950 3.489e+01 3.489e+01 1
## 40 40 101.00 100.37
                        0.1871 1.455834 8.817e+00 8.817e+00 1
## 41 41 109.79 100.45
                        0.1919 21.329571 2.637e-34 1.000e+00 0
## 42 42 109.70 100.45
                        2.3525 6.033368 9.847e-08 1.000e+00 0
## 43 43 109.67 100.45 218.4051 0.623938 2.457e+02 2.457e+02 1
## 44 44 110.68 109.66
                        0.3536 1.705067 3.253e+00 3.253e+00 1
## 45 45 110.26 110.19
                        0.2776  0.124457  1.812e+03  1.812e+03  1
## 46 46 109.85 110.22
                        0.2413 -0.758511 6.195e+04 6.195e+04 1
## 47 47 110.66 110.11
                        0.2243 1.154759 2.940e+01 2.940e+01 1
## 48 48 110.51 110.24
                        0.2171  0.565532  3.104e+02  3.104e+02  1
                        0.2082 0.544045 3.383e+02 3.383e+02 1
## 49 49 110.55 110.30
## 50 50 110.45 110.35
                        0.2010 0.232877 1.174e+03 1.174e+03 1
```

Outlier and Two Level Change

```
>>> np.random.seed(66)
>>> rdlm = RandomDLM(n=70, V=1, W=0.01)
>>> df_simulated = rdlm.level(
>>> start_level=100,
>>> dict_shift={"t": [20, 21, 40, 60],
>>> "level_mean_shift": [5, -5, 10, 10],
>>> "level_var_shift": [1, 1, 1, 1]})
```


- ## Potential outlier detected at time 21 with H=0.001, L=0.001 and l=1 $\,$
- ## Potential outlier detected at time 41 with H=0.0, L=0.0 and l=1 $\,$
- ## Potential outlier detected at time 42 with H=0.0154, L=0.0154 and l=1 $\,$
- ## Potential outlier detected at time 61 with H=0.0, L=0.0 and l=1 $\,$
- ## Potential outlier detected at time 62 with H=0.0551, L=0.0551 and l=1


```
## 22 22 99.14 100.41
                         12.9975 -0.351295 1.215e+04 1.215e+04 1
## 23 23 102.12 99.24
                          1.8561 2.118274 6.231e-01 6.231e-01 1
## 24 24 100.72 100.70
                          1.6467 0.014348 2.815e+03 1.754e+03 2
                          1.4135 -1.522634 1.317e+06 1.317e+06 1
## 25 25
        98.90 100.71
## 26 26 101.20 100.19
                          1.4001
                                 0.851742 9.879e+01 9.879e+01 1
## 27 27 100.45 100.43
                          1.3329 0.014637 2.811e+03 2.811e+03 1
## 28 28 100.32 100.44
                          1.2500 -0.103953 4.518e+03 4.518e+03 1
## 29 29 100.05 100.41
                          1.1829 -0.334215 1.135e+04 1.135e+04 1
## 30 30 98.53 100.35
                          1.1301 -1.709695 2.782e+06 2.782e+06 1
## 31 31 100.19 100.06
                          1.1890 0.125275 1.806e+03 1.806e+03 1
## 32 32 100.39 100.08
                          1.1409
                                 0.289497 9.364e+02 9.364e+02 1
## 33 33 101.38 100.12
                          1.1002 1.200294 2.450e+01 2.450e+01 1
## 34 34 100.00 100.30
                          1.1082 -0.278882 9.095e+03 9.095e+03
## 35 35 100.23 100.26
                          1.0728 -0.028141 3.336e+03 3.336e+03 1
## 36 36 101.28 100.25
                                 1.007153 5.306e+01 5.306e+01 1
                          1.0377
## 37 37 100.40 100.38
                          1.0344
                                 0.015935 2.797e+03 2.797e+03 1
## 38 38 100.41 100.38
                          1.0034
                                 0.024566 2.702e+03 2.702e+03 1
## 39 39 100.04 100.39
                          0.9744 -0.347833 1.198e+04 1.198e+04 1
## 40 40 101.28 100.35
                                 0.957780 6.464e+01 6.464e+01 1
                          0.9503
## 41 41 109.47 100.46
                          0.9465
                                 9.264824 2.397e-13 1.000e+00 0
## 42 42 110.82 100.46
                         11.6002
                                 3.043024 1.542e-02 1.000e+00 0
## 43 43 110.89 100.46 1076.9772 0.318020 8.354e+02 8.354e+02 1
## 44 44 108.77 110.88
                          1.7314 -1.608805 1.858e+06 1.858e+06 1
## 45 45 110.77 109.77
                          1.3492 0.861384 9.506e+01 9.506e+01 1
## 46 46 110.15 110.14
                          1.1933 0.007497 2.893e+03 2.893e+03 1
## 47 47 109.80 110.14
                          1.0943 -0.323459 1.087e+04 1.087e+04 1
## 48 48 111.30 110.06
                          1.0306
                                 1.227059 2.202e+01 2.202e+01 1
## 49 49 110.84 110.32
                          1.0139
                                 0.509124 3.890e+02 3.890e+02
## 50 50 112.35 110.42
                          0.9785
                                 1.944294 1.250e+00 1.250e+00 1
## 51 51 111.18 110.76
                          1.0199 0.413232 5.708e+02 5.708e+02 1
## 52 52 110.73 110.83
                          0.9911 -0.099277 4.434e+03 4.434e+03 1
## 53 53 111.38 110.81
                          0.9626  0.579885  2.931e+02  2.931e+02  1
## 54 54 110.07 110.90
                          0.9431 -0.856058 9.151e+04 9.151e+04 1
## 55 55 110.46 110.78
                          0.9325 -0.335897 1.143e+04 1.143e+04 1
## 56 56 110.32 110.74
                          0.9122 -0.431681 1.676e+04 1.676e+04 1
## 57 57 112.71 110.68
                          0.8946 2.137120 5.778e-01 5.778e-01 1
## 58 58 111.79 110.94
                          0.9492  0.877814  8.901e+01  5.143e+01  2
## 59 59 109.71 111.04
                          0.9424 -1.371258 7.186e+05 7.186e+05 1
## 60 60 112.53 110.88
                          0.9544 1.690431 3.450e+00 3.450e+00 1
## 61 61 121.22 111.08
                          0.9827 10.232314 5.000e-15 1.000e+00 0
## 62 62 120.61 111.08
                                 2.724598 5.511e-02 1.000e+00 0
                         12.2306
                                 0.277123 9.839e+02 9.839e+02 1
## 63 63 120.42 111.08 1137.0190
## 64 64 121.23 120.42
                          1.8053 0.609810 2.600e+02 2.600e+02 1
## 65 65 120.71 120.85
                          1.3414 -0.119504 4.808e+03 4.808e+03 1
## 66 66 121.99 120.80
                          1.1742
                                 1.103500 3.609e+01 3.609e+01 1
## 67 67 122.97 121.14
                                 1.733631 2.902e+00 2.902e+00 1
                          1.1057
## 68 68 120.65 121.59
                          1.0963 -0.893458 1.063e+05 1.063e+05 1
## 69 69 119.38 121.39
                          1.0635 -1.942896 7.072e+06 7.072e+06 1
## 70 70 119.66 121.00
                          1.0872 -1.291934 5.232e+05 5.232e+05 1
```

Bilateral Level Change

```
>>> np.random.seed(66)
>>> y1 = np.random.normal(loc=100, scale=0.8, size=40)
```

```
>>> y2 = np.random.normal(loc=104, scale=0.5, size=20)
>>> y3 = np.random.normal(loc=98, scale=0.5, size=20)
>>> y = np.concatenate([y1, y2, y3])
>>> t = np.arange(0, len(y)) + 1
>>> df_simulated = pd.DataFrame({"t": t, "y": y})
```



```
## Upper potential outlier detected at time 41 with H=0.0001, L=0.0001 and l=1 ## Lower potential outlier detected at time 61 with H=0.0, L=0.0 and l=1
```

```
>>> ggplot(py$df_res, aes(x = t, y = y)) + geom_point(size = 2) + geom_line(linetype = "dashed") +
>>> geom_point(aes(y = f, col = monitor), size = 2) + geom_line(aes(y = f,
>>> col = monitor), linetype = "dashed") + scale_x_continuous(breaks = scales::pretty_breaks(10)) +
>>> scale_y_continuous(breaks = scales::pretty_breaks(10))
```

```
monitor • FALSE • TRUE
  105 -
 104
 103
 102
> ^{101}
  100
  99
  98
  97
                 10
                           20
                                     30
                                               40
                                                         50
                                                                   60
                                                                             70
                                                                                       80
>>> py$df_tmp %>%
        select(t, y, f, q, e, H_lower, L_lower, l_lower, H_upper, L_upper,
>>>
            1_upper)
##
                                            H_{lower}
                                                    L_lower l_lower
                     f
                                        е
                              q
       1 101.13 100.00 101.0000 0.11269 1.000e+00 1.000e+00
## 1
## 2
                         1.1330 -1.86908 1.000e+00 1.000e+00
       2 99.13 101.12
                                                                     1
          99.51 100.02
                         1.5682 -0.41039 1.000e+00 1.000e+00
                                                                     1
## 3
## 4
       4 99.39 99.81
                         1.1097 -0.39523 1.000e+00 1.000e+00
                                                                    1
## 5
       5 100.28 99.67
                         0.8686 0.65198 1.000e+00 1.000e+00
       6 101.25 99.85
                         0.7570 1.60292 1.000e+00 1.000e+00
## 6
                                                                    1
       7 97.63 100.23
                         0.9045 -2.72678 1.000e+00 1.000e+00
## 7
                                                                     1
## 8
       8 101.09 99.57
                         1.6048 1.19583 1.000e+00 1.000e+00
                                                                    1
                         1.6612 0.45189 1.000e+00 1.000e+00
       9 100.52 99.94
## 10 10 100.23 100.07
                         1.5154 0.12842 1.000e+00 1.000e+00
                                                                    1
## 11 11 102.37 100.11
                         1.3706 1.92990 6.713e+06 6.713e+06
                                                                    1
## 12 12 100.87 100.60
                         1.6732 0.21167 6.951e+03 6.951e+03
                                                                    1
## 13 13 100.94 100.66
                         1.5441 0.22333 7.283e+03 7.283e+03
                                                                    1
## 14 14 101.15 100.72
                         1.4349 0.35921 1.254e+04 1.254e+04
                                                                    1
## 15 15 99.86 100.81
                         1.3483 -0.82044 1.120e+02 1.120e+02
                                                                    1
## 16 16 99.96 100.61
                         1.3183 -0.57070 3.041e+02 3.041e+02
                                                                    1
## 17 17 99.85 100.48
                        1.2641 -0.55467 3.242e+02 3.242e+02
                                                                    1
```

```
## 18 18 99.51 100.35
                         1.2141 -0.75940 1.429e+02 1.429e+02
                                                                   1
                         1.1859 -0.19892 1.345e+03 1.345e+03
## 19 19
         99.96 100.18
          99.49 100.13
## 20 20
                         1.1281 -0.60229 2.680e+02 2.680e+02
## 21 21
         99.77 100.00
                         1.0933 -0.22518 1.211e+03 1.211e+03
                                                                   1
## 22 22
          99.93
                99.96
                         1.0456 -0.02454 2.702e+03 2.702e+03
                                                                   1
                99.95
                         0.9998 -0.70097 1.806e+02 1.806e+02
## 23 23
         99.25
                                                                   1
                         0.9783 -0.28471 9.545e+02 9.545e+02
## 24 24
         99.53
                99.81
                                                                   1
                         0.9421 0.06360 3.845e+03 3.845e+03
## 25 25
         99.82
                99.75
                                                                   1
## 26 26
         99.20
                 99.77
                         0.9059 -0.59823 2.723e+02 2.723e+02
                                                                   1
## 27 27 101.29
                99.65
                         0.8842 1.73763 3.111e+06 3.111e+06
                                                                   1
## 28 28 100.28 99.98
                         0.9478  0.30431  1.007e+04  1.007e+04
                                                                   1
                         0.9181 0.12169 4.850e+03 4.850e+03
## 29 29 100.16 100.04
                                                                   1
## 30 30
         99.79 100.06
                         0.8879 -0.29325 9.224e+02 9.224e+02
                                                                   1
## 31 31
         99.02 100.01
                         0.8616 -1.05991 4.296e+01 4.296e+01
## 32 32 101.12 99.81
                         0.8649 1.41205 8.459e+05 8.459e+05
                                                                   1
## 33 33
         99.03 100.07
                         0.8909 -1.10743 3.553e+01 3.553e+01
                                                                   1
                         0.8968 0.71473 5.200e+04 5.200e+04
## 34 34 100.54 99.86
                                                                   1
## 35 35 99.21 100.00
                         0.8843 -0.83581 1.053e+02 1.053e+02
                                                                   1
                         0.8769 0.94767 1.320e+05 1.320e+05
## 36 36 100.73 99.84
                                                                   1
## 37 37 100.93 100.02
                         0.8744 0.97843 1.493e+05 1.493e+05
                                                                   1
## 38 38 100.37 100.20
                         0.8734 0.17387 5.976e+03 5.976e+03
                                                                   1
## 39 39 100.08 100.24
                         0.8517 -0.17034 1.508e+03 1.508e+03
                                                                   1
                         0.8310 -0.65477 2.172e+02 2.172e+02
## 40 40 99.61 100.20
                                                                   1
                         0.8194 4.39709 1.297e+11 1.297e+11
## 41 41 104.06 100.08
                                                                   1
## 42 42 102.99 100.08
                       17.0461 0.70342 4.970e+04 4.970e+04
                                                                   1
## 43 43 103.01 102.88
                         1.4261
                                0.11467 4.716e+03 4.716e+03
                                                                   1
## 44 44 104.02 102.95
                         1.0645
                                1.03340 1.860e+05 1.860e+05
                                                                   1
## 45 45 103.87 103.38
                         0.9551
                                0.49947 2.198e+04 2.198e+04
                                                                   1
                         0.8853 0.72574 5.434e+04 5.434e+04
## 46 46 104.23 103.55
                                                                   1
## 47 47 104.11 103.75
                         0.8450 0.38908 1.413e+04 1.413e+04
                                                                   1
## 48 48 104.65 103.85
                         0.8101
                                 0.89455 1.067e+05 1.067e+05
                                                                   1
## 49 49 104.67 104.05
                         0.7934
                                0.69911 4.885e+04 4.885e+04
                                                                   1
## 50 50 104.49 104.20
                         0.7758
                                0.32738 1.104e+04 1.104e+04
                                                                   1
## 51 51 104.44 104.27
                         0.7552  0.20053  6.648e+03  6.648e+03
                                                                   1
## 52 52 103.90 104.31
                         0.7360 -0.46916 4.564e+02 4.564e+02
                                                                   1
                         0.7213 -0.14506 1.669e+03 1.669e+03
## 53 53 104.09 104.22
                                                                   1
## 54 54 103.75 104.19
                         0.7052 -0.52314 3.678e+02 3.678e+02
                                                                   1
## 55 55 104.58 104.10
                         0.6936  0.57543  2.978e+04  2.978e+04
                                                                   1
## 56 56 103.48 104.20
                         0.6835 -0.86654 9.312e+01 9.312e+01
                                                                   1
## 57 57 103.78 104.05
                         0.6792 -0.32603 8.091e+02 8.091e+02
                                                                   1
                         0.6676  0.89203  1.057e+05  1.057e+05
## 58 58 104.72 103.99
                                                                   1
## 59 59 103.92 104.14
                         0.6645 -0.27237 1.003e+03 1.003e+03
                                                                   1
## 60 60 103.88 104.10
                         0.6534 -0.27149 1.006e+03 1.006e+03
                                                                   1
         97.91 104.05
                         0.6429 -7.66839 1.422e-10 1.000e+00
                                                                   0
## 61 61
                        13.5188 -1.42887 9.821e+00 9.821e+00
## 62 62
         98.80 104.05
                                                                   1
         98.32 99.00
                         1.1488 -0.63253 2.374e+02 2.374e+02
## 63 63
                                                                   1
## 64 64
         97.51
                98.63
                         0.8691 -1.19660 2.487e+01 2.487e+01
                                                                   1
## 65 65
         97.76
                98.18
                         0.7838 -0.46765 4.592e+02 4.592e+02
                98.04
## 66 66
         98.66
                         0.7298 0.72567 5.432e+04 5.432e+04
                                                                   1
## 67 67
          98.14
                 98.22
                         0.6987 -0.10050 1.994e+03 1.994e+03
                                                                   1
                         0.6719 0.55019 2.692e+04 2.692e+04
## 68 68
         98.65
                98.20
                                                                   1
## 69 69
         98.80
                98.31
                         1
## 70 70
         97.59
                98.43
                         0.6401 -1.04345 4.589e+01 4.589e+01
                                                                   1
## 71 71 98.62 98.24
                         0.6353 0.48382 2.065e+04 2.065e+04
```

```
## 72 72 99.11
                 98.32
                          0.6242 0.99725 1.610e+05 1.610e+05
## 73 73 97.10
                 98.50
                          0.6209 -1.77631 2.447e+00 2.447e+00
                                                                      1
## 74 74
          98.24
                 98.20
                          0.6370  0.06006  3.790e+03  3.790e+03
                                                                      1
## 75 75
          97.80
                 98.21
                          0.6264 -0.51024 3.872e+02 3.872e+02
                                                                      1
## 76 76
          97.85
                 98.12
                          0.6187 -0.34507 7.497e+02 7.497e+02
                                                                      1
                 98.06
                          0.6103 -0.37192 6.734e+02 6.734e+02
## 77 77
          97.77
                                                                      1
          99.07
                          0.6025 1.37608 7.326e+05 7.326e+05
## 78 78
                 98.00
                                                                      1
          97.84
                          0.6087 -0.49467 4.121e+02 4.121e+02
## 79 79
                 98.22
                                                                      1
## 80 80
          98.47
                 98.14
                          0.6023  0.41762  1.584e+04  1.584e+04
                                                                      1
##
        H_upper
                  L_upper l_upper
## 1
      1.000e+00 1.000e+00
                                 1
## 2
     1.000e+00 1.000e+00
                                 1
## 3
     1.000e+00 1.000e+00
                                 1
## 4
     1.000e+00 1.000e+00
                                 1
## 5
     1.000e+00 1.000e+00
                                 1
## 6
      1.000e+00 1.000e+00
                                 1
## 7
      1.000e+00 1.000e+00
                                 1
## 8
     1.000e+00 1.000e+00
                                 1
## 9
     1.000e+00 1.000e+00
                                 1
## 10 1.000e+00 1.000e+00
                                 1
## 11 1.324e+00 1.324e+00
                                 1
## 12 1.278e+03 1.278e+03
                                 1
## 13 1.220e+03 1.220e+03
                                 1
## 14 7.085e+02 7.085e+02
                                 1
## 15 7.936e+04 7.936e+04
                                 1
## 16 2.923e+04 2.923e+04
                                 1
## 17 2.741e+04 2.741e+04
                                 1
## 18 6.217e+04 6.217e+04
                                 1
## 19 6.606e+03 6.606e+03
                                 1
## 20 3.316e+04 3.316e+04
                                 1
## 21 7.337e+03 7.337e+03
                                 1
## 22 3.288e+03 3.288e+03
                                 1
## 23 4.921e+04 4.921e+04
                                 1
## 24 9.310e+03 9.310e+03
                                 1
## 25 2.311e+03 2.311e+03
                                 1
## 26 3.263e+04 3.263e+04
                                 1
## 27 2.856e+00 2.856e+00
                                 1
## 28 8.825e+02 8.825e+02
                                 1
## 29 1.832e+03 1.832e+03
                                 1
## 30 9.633e+03 9.633e+03
                                 1
## 31 2.068e+05 2.068e+05
                                 1
## 32 1.050e+01 1.050e+01
                                 1
## 33 2.501e+05 2.501e+05
                                 1
## 34 1.709e+02 1.709e+02
                                 1
## 35 8.439e+04 8.439e+04
                                 1
## 36 6.731e+01 6.731e+01
                                 1
## 37 5.952e+01 5.952e+01
                                 1
## 38 1.487e+03 1.487e+03
                                 1
## 39 5.892e+03 5.892e+03
                                 1
## 40 4.091e+04 4.091e+04
                                 1
## 41 6.852e-05 1.000e+00
                                 0
## 42 1.788e+02 1.788e+02
                                 1
## 43 1.884e+03 1.884e+03
                                 1
## 44 4.777e+01 4.777e+01
                                 1
```

```
## 45 4.043e+02 4.043e+02
## 46 1.635e+02 1.635e+02
## 47 6.287e+02 6.287e+02
## 48 8.325e+01 8.325e+01
                                1
## 49 1.819e+02 1.819e+02
                                1
## 50 8.047e+02 8.047e+02
                                1
## 51 1.337e+03 1.337e+03
                                1
## 52 1.947e+04 1.947e+04
                                1
## 53 5.325e+03 5.325e+03
                                1
## 54 2.416e+04 2.416e+04
                                1
## 55 2.984e+02 2.984e+02
                                1
## 56 9.543e+04 9.543e+04
                                1
## 57 1.098e+04 1.098e+04
                                1
## 58 8.409e+01 8.409e+01
                                1
## 59 8.861e+03 8.861e+03
                                1
## 60 8.830e+03 8.830e+03
                                1
## 61 6.248e+16 6.248e+16
                                1
## 62 9.048e+05 9.048e+05
## 63 3.743e+04 3.743e+04
                                1
## 64 3.573e+05 3.573e+05
## 65 1.935e+04 1.935e+04
                                1
## 66 1.636e+02 1.636e+02
## 67 4.456e+03 4.456e+03
                                1
## 68 3.300e+02 3.300e+02
                                1
## 69 2.633e+02 2.633e+02
                                1
## 70 1.936e+05 1.936e+05
                                1
## 71 4.304e+02 4.304e+02
                                1
## 72 5.520e+01 5.520e+01
                                1
## 73 3.632e+06 3.632e+06
                                1
## 74 2.344e+03 2.344e+03
                                1
## 75 2.295e+04 2.295e+04
                                1
## 76 1.185e+04 1.185e+04
                                1
## 77 1.320e+04 1.320e+04
                                1
## 78 1.213e+01 1.213e+01
                                1
## 79 2.156e+04 2.156e+04
                                1
## 80 5.609e+02 5.609e+02
```

Real data applications

Telephone Calls


```
## Upper potential outlier detected at time 24 with H=0.0062, L=0.0062 and 1=1
## Upper potential outlier detected at time 36 with H=0.047, L=0.047 and l=1
## Upper potential outlier detected at time 48 with H=0.0107, L=0.0107 and l=1
## Upper parametric change detected at time 61 with H=371.5075, L=0.8666 and 1=3
## Lower parametric change detected at time 69 with H=73.4896, L=21.1134 and 1=3
## Upper parametric change detected at time 73 with H=1017.8894, L=5.1031 and 1=3
## Lower potential outlier detected at time 77 with H=0.0005, L=0.0005 and 1=1
## Lower potential outlier detected at time 79 with H=0.0001, L=0.0001 and l=1
## Upper potential outlier detected at time 84 with H=0.0588, L=0.0588 and 1=1
## Upper potential outlier detected at time 95 with H=0.0689, L=0.0689 and l=1
## Upper potential outlier detected at time 108 with H=0.0727, L=0.0727 and l=1
## Lower potential outlier detected at time 115 with H=0.0001, L=0.0001 and l=1
## Lower parametric change detected at time 121 with H=9.8175, L=9.8175 and 1=3
## Upper potential outlier detected at time 132 with H=0.0287, L=0.0287 and 1=1
## Upper parametric change detected at time 137 with H=1.3781, L=0.0149 and 1=3
## Lower potential outlier detected at time 138 with H=0.0095, L=0.0095 and 1=1
## Lower potential outlier detected at time 140 with H=0.0283, L=0.0283 and l=1
## Lower potential outlier detected at time 141 with H=0.0016, L=0.0016 and l=1
## Upper potential outlier detected at time 144 with H=0.1144, L=0.1144 and 1=1
## Lower potential outlier detected at time 146 with H=0.0, L=0.0 and 1=1
## Lower potential outlier detected at time 147 with H=0.0, L=0.0 and 1=1
```



```
##
                                                       H lower
                     time
                            У
                                  f
                                           q
                                                    е
     1961-12-31 21:00:00 350 350.0 101.000 0.00000 1.000e+00
## 1
     1962-01-31 21:00:00 339 350.0
                                     53.653 -1.50175 1.000e+00
     1962-02-28 21:00:00 351 328.3
                                      4.409 10.80510 1.000e+00
     1962-03-31 21:00:00 364 348.0
                                     74.226
                                              1.85430 1.000e+00
     1962-04-30 21:00:00 369 365.0
                                      83.023 0.43429 1.000e+00
## 5
     1962-05-31 21:00:00 331 373.9
                                      60.367 -5.52633 1.000e+00
## 7
     1962-06-30 21:00:00 331 350.3
                                     280.258 -1.15428 1.000e+00
## 8
     1962-07-31 21:00:00 340 338.5
                                     268.177
                                             0.09294 1.000e+00
## 9 1962-08-31 21:00:00 346 336.9
                                     223.792 0.60535 1.000e+00
## 10 1962-09-30 21:00:00 341 339.1
                                    199.316
                                             0.13333 1.000e+00
## 11 1962-10-31 21:00:00 357 338.4
                                    174.300
                                             1.40781 1.000e+00
## 12 1962-11-30 21:00:00 398 344.5
                                    182.370
                                             3.95840 1.000e+00
## 13 1962-12-31 21:00:00 381 364.2
                                    377.451 0.86221 1.000e+00
## 14 1963-01-31 21:00:00 367 372.1
                                    361.838 -0.27018 1.000e+00
                                     332.615 0.54294 1.000e+00
## 15 1963-02-28 21:00:00 383 373.1
## 16 1963-03-31 21:00:00 375 378.7
                                    312.363 -0.20765 1.000e+00
## 17 1963-04-30 21:00:00 353 380.4
                                    290.231 -1.60653 1.000e+00
## 18 1963-05-31 21:00:00 361 375.3
                                    311.412 -0.81209 1.000e+00
## 19 1963-06-30 21:00:00 375 373.5
                                    302.112 0.08850 1.000e+00
## 20 1963-07-31 21:00:00 371 375.5
                                    283.996 -0.26852 1.000e+00
## 21 1963-08-31 21:00:00 373 376.1 268.783 -0.18907 1.399e+03
```

```
## 22 1963-09-30 21:00:00 366 377.0 254.718 -0.68730 1.907e+02
## 23 1963-10-31 22:00:00 382 376.0 246.863 0.38242 1.376e+04
## 24 1963-11-30 22:00:00 429 378.7
                                    236.325 3.27150 1.437e+09
## 25 1963-12-31 22:00:00 406 380.2 737.882 0.95073 1.336e+05
## 26 1964-01-31 22:00:00 403 401.1
                                    339.721
                                             0.10145 4.473e+03
## 27 1964-02-29 22:00:00 429 403.7
                                    269.347
                                             1.54092 1.416e+06
## 28 1964-03-31 21:00:00 425 414.0
                                    259.528 0.68410 4.600e+04
## 29 1964-04-30 21:00:00 427 419.0
                                    243.010 0.51466 2.336e+04
## 30 1964-05-31 21:00:00 409 423.0
                                    230.631 -0.91990 7.522e+01
## 31 1964-06-30 21:00:00 402 422.0
                                    226.004 -1.32784 1.471e+01
## 32 1964-07-31 21:00:00 409 419.7
                                    229.720 -0.70405 1.784e+02
## 33 1964-08-31 21:00:00 419 419.2
                                    225.306 -0.01128 2.849e+03
## 34 1964-09-30 21:00:00 404 420.7
                                    218.311 -1.13070 3.237e+01
## 35 1964-10-31 21:00:00 429 418.8
                                    220.263 0.68522 4.621e+04
## 36 1964-11-30 21:00:00 463 422.3
                                    217.224 2.76467 1.893e+08
## 37 1964-12-31 21:00:00 428 423.7
                                     670.553 0.16498 5.767e+03
## 38 1965-01-31 22:00:00 449 428.4
                                    308.846 1.17159 3.233e+05
## 39 1965-02-28 22:00:00 444 439.4
                                    258.623 0.28767 9.421e+03
## 40 1965-03-31 21:00:00 467 442.7
                                    232.660 1.59164 1.735e+06
## 41 1965-04-30 21:00:00 474 451.6
                                    232.174 1.47039 1.068e+06
## 42 1965-05-31 21:00:00 463 459.6
                                    234.091 0.21942 7.170e+03
## 43 1965-06-30 21:00:00 432 463.0
                                    226.561 -2.05920 7.892e-01
## 44 1965-07-31 21:00:00 453 458.0
                                    243.320 -0.31957 8.302e+02
## 45 1965-08-31 21:00:00 462 458.7
                                    238.287 0.21283 6.984e+03
## 46 1965-09-30 21:00:00 456 461.4
                                    233.433 -0.35057 7.334e+02
## 47 1965-10-31 21:00:00 474 461.9
                                    229.171 0.79614 7.201e+04
## 48 1965-11-30 21:00:00 514 466.7
                                    227.455 3.13515 8.330e+08
                                    799.744 0.71489 5.203e+04
## 49 1965-12-31 22:00:00 489 468.8
## 50 1966-01-31 22:00:00 475 486.9
                                    324.948 -0.66095 2.119e+02
## 51 1966-02-28 22:00:00 492 483.6
                                    263.148 0.51729 2.360e+04
## 52 1966-03-31 21:00:00 525 488.8
                                     238.810 2.33980 3.459e+07
## 53 1966-04-30 21:00:00 527 502.3
                                     250.430 1.56111 1.536e+06
## 54 1966-05-31 21:00:00 533 512.3
                                    253.125 1.30124 5.431e+05
## 55 1966-06-30 21:00:00 527 521.5
                                    254.930 0.34462 1.183e+04
## 56 1966-07-31 21:00:00 522 527.0
                                    250.481 -0.31884 8.327e+02
## 57 1966-08-31 21:00:00 526 529.9
                                    246.572 -0.24769 1.107e+03
## 58 1966-09-30 21:00:00 513 532.9
                                    242.591 -1.27771 1.798e+01
## 59 1966-10-31 21:00:00 564 531.4
                                    784.462 2.07913 1.220e+07
## 60 1966-11-30 22:00:00 599 560.3
                                    345.623 3.43606 2.776e+09
## 61 1966-12-31 22:00:00 572 582.7
                                    302.384 0.52061 2.392e+04
## 62 1967-01-31 22:00:00 587 583.4
                                    277.399 0.21762 7.119e+03
## 63 1967-02-28 22:00:00 599 588.9
                                    264.224 0.61950 3.552e+04
## 64 1967-03-31 21:00:00 601 596.4
                                    258.300 0.28376 9.275e+03
## 65 1967-04-30 21:00:00 611 602.5
                                    253.691 0.53094 2.493e+04
## 66 1967-05-31 21:00:00 620 609.9
                                    250.921 0.63560 3.789e+04
## 67 1967-06-30 21:00:00 579 618.1
                                    836.410 -2.47785 1.479e-01
## 68 1967-07-31 21:00:00 582 592.3
                                    349.730 -1.83396 1.943e+00
## 69 1967-08-31 21:00:00 592 592.0
                                    286.227 -0.92571 7.349e+01
## 70 1967-09-30 21:00:00 581 596.5
                                    262.822 -0.95757 6.470e+01
## 71 1967-10-31 21:00:00 630 595.7
                                    928.883 2.14392 1.580e+07
## 72 1967-11-30 22:00:00 663 628.0
                                    349.863 3.17999 9.967e+08
## 73 1967-12-31 22:00:00 638 650.6 301.960 0.26863 8.730e+03
## 74 1968-01-31 22:00:00 631 651.1 284.202 -1.19203 2.533e+01
## 75 1968-02-29 22:00:00 645 648.4 282.576 -0.20144 1.332e+03
```

```
## 76 1968-03-31 21:00:00 682 651.2 279.036 1.84191 4.722e+06
## 77 1968-04-30 21:00:00 601 667.4 288.028 -3.91180 4.774e-04
## 78 1968-05-31 21:00:00 595 673.2 1542.864 -1.99143 1.035e+00
## 79 1968-06-30 21:00:00 521 608.3 403.266 -4.34945 8.291e-05
## 80 1968-07-31 21:00:00 521 612.0 2631.603 -1.77356 2.474e+00
## 81 1968-08-31 21:00:00 516 529.9
                                     430.229 -0.66807 2.060e+02
## 82 1968-09-30 21:00:00 496 523.8
                                      356.039 -1.47538 8.154e+00
## 83 1968-10-31 21:00:00 538 510.8
                                      352.342 1.44789 9.763e+05
## 84 1968-11-30 21:00:00 575 523.7
                                      358.331
                                              2.70845 1.512e+08
## 85 1968-12-31 21:00:00 537 525.4 2569.300 0.22956 7.467e+03
## 86 1969-01-31 21:00:00 534 538.1
                                      449.195 -0.19559 1.363e+03
## 87 1969-02-28 21:00:00 542 537.7
                                      377.060 0.22238 7.255e+03
  88 1969-03-31 21:00:00 538 541.9
                                      365.266 -0.20414 1.317e+03
## 89 1969-04-30 21:00:00 547 541.9
                                      359.179 0.26744 8.689e+03
## 90 1969-05-31 21:00:00 540 546.5
                                     348.637 -0.35022 7.344e+02
##
        L_lower l_lower
                          H_upper
                                     L_upper l_upper
## 1
     1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 2
     1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
     1.000e+00
                      1 1.000e+00 1.000e+00
## 3
                                                   1
## 4
     1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 5
     1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 6
                      1 1.000e+00 1.000e+00
     1.000e+00
## 7
     1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 8
      1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 9 1.000e+00
                      1 1.000e+00 1.000e+00
## 10 1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 11 1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 12 1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 13 1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 14 1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 15 1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 16 1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 17 1.000e+00
                      1 1.000e+00 1.000e+00
## 18 1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 19 1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 20 1.000e+00
                      1 1.000e+00 1.000e+00
                                                   1
## 21 1.399e+03
                      1 6.351e+03 6.351e+03
## 22 1.907e+02
                      1 4.659e+04 4.659e+04
                                                   1
## 23 1.376e+04
                      1 6.457e+02 6.457e+02
                                                   1
                                                   Λ
## 24 1.437e+09
                      1 6.183e-03 1.000e+00
## 25 1.336e+05
                      1 6.649e+01 6.649e+01
                                                   1
## 26 4.473e+03
                      1 1.987e+03 1.987e+03
                                                   1
## 27 1.416e+06
                      1 6.273e+00 6.273e+00
                                                   1
## 28 4.600e+04
                      1 1.932e+02 1.932e+02
                                                   1
## 29 2.336e+04
                      1 3.805e+02 3.805e+02
                                                   1
## 30 7.522e+01
                      1 1.181e+05 1.181e+05
                                                   1
## 31 1.471e+01
                      1 6.040e+05 6.040e+05
                                                   1
## 32 1.784e+02
                      1 4.982e+04 4.982e+04
                                                   1
## 33 2.849e+03
                      1 3.119e+03 3.119e+03
                                                   1
## 34 3.237e+01
                      1 2.745e+05 2.745e+05
                                                   1
## 35 4.621e+04
                      1 1.923e+02 1.923e+02
                                                   1
## 36 1.893e+08
                      1 4.695e-02 1.000e+00
                                                   0
## 37 5.767e+03
                      1 1.541e+03 1.541e+03
                                                   1
## 38 3.233e+05
                      1 2.748e+01 2.748e+01
```

```
## 39 9.421e+03
                      1 9.432e+02 9.432e+02
## 40 1.735e+06
                      1 5.122e+00 5.122e+00
## 41 1.068e+06
                      1 8.318e+00 8.318e+00
## 42 7.170e+03
                      1 1.239e+03 1.239e+03
                                                   1
## 43 7.892e-01
                      1 1.126e+07 1.126e+07
                                                   1
## 44 6.552e+02
                      2 1.070e+04 1.070e+04
                                                   1
## 45 6.984e+03
                      1 1.272e+03 1.272e+03
## 46 7.334e+02
                      1 1.212e+04 1.212e+04
                                                   1
## 47 7.201e+04
                      1 1.234e+02 1.234e+02
## 48 8.330e+08
                      1 1.067e-02 1.000e+00
## 49 5.203e+04
                      1 1.708e+02 1.708e+02
                                                   1
## 50 2.119e+02
                      1 4.193e+04 4.193e+04
                                                   1
## 51 2.360e+04
                      1 3.765e+02 3.765e+02
                                                   1
## 52 3.459e+07
                      1 2.569e-01 2.569e-01
                                                   1
## 53 1.536e+06
                      1 5.787e+00 1.486e+00
## 54 5.431e+05
                      1 1.636e+01 1.636e+01
## 55 1.183e+04
                      1 7.511e+02 7.511e+02
## 56 8.327e+02
                      1 1.067e+04 1.067e+04
## 57 1.107e+03
                      1 8.029e+03 8.029e+03
                                                   1
## 58 1.798e+01
                      1 4.943e+05 4.943e+05
## 59 1.220e+07
                      1 7.287e-01 7.287e-01
                                                   1
## 60 2.776e+09
                      1 3.201e-03 2.333e-03
## 61 2.392e+04
                      1 3.715e+02 1.000e+00
                                                   0
## 62 7.119e+03
                      1 1.248e+03 1.248e+03
## 63 3.552e+04
                      1 2.501e+02 2.501e+02
## 64 9.275e+03
                      1 9.581e+02 9.581e+02
## 65 2.493e+04
                      1 3.565e+02 3.565e+02
                                                   1
## 66 3.789e+04
                      1 2.345e+02 2.345e+02
                                                   1
## 67 1.479e-01
                      1 6.009e+07 6.009e+07
## 68 2.873e-01
                      2 4.574e+06 4.574e+06
                                                   1
## 69 1.000e+00
                      0 1.209e+05 1.209e+05
                                                   1
## 70 6.470e+01
                      1 1.373e+05 1.373e+05
## 71 1.580e+07
                      1 5.623e-01 5.623e-01
## 72 9.967e+08
                      1 8.915e-03 5.013e-03
                                                   2
## 73 8.730e+03
                      1 1.018e+03 1.000e+00
                                                   0
## 74 2.533e+01
                      1 3.509e+05 3.509e+05
                                                   1
## 75 1.332e+03
                      1 6.673e+03 6.673e+03
## 76 4.722e+06
                      1 1.882e+00 1.882e+00
## 77 1.000e+00
                      0 1.861e+10 1.861e+10
## 78 1.035e+00
                      1 8.587e+06 8.587e+06
## 79 1.000e+00
                      0 1.072e+11 1.072e+11
## 80 2.474e+00
                      1 3.592e+06 3.592e+06
                                                   1
## 81 2.060e+02
                      1 4.314e+04 4.314e+04
                                                   1
## 82 8.154e+00
                      1 1.090e+06 1.090e+06
                                                   1
## 83 9.763e+05
                      1 9.101e+00 9.101e+00
                                                   1
## 84 1.512e+08
                      1 5.879e-02 1.000e+00
                                                   0
## 85 7.467e+03
                      1 1.190e+03 1.190e+03
## 86 1.363e+03
                      1 6.518e+03 6.518e+03
## 87 7.255e+03
                      1 1.225e+03 1.225e+03
                                                   1
## 88 1.317e+03
                      1 6.745e+03 6.745e+03
                                                   1
## 89 8.689e+03
                                                   1
                      1 1.023e+03 1.023e+03
## 90 7.344e+02
                      1 1.210e+04 1.210e+04
                                                   1
## [ reached 'max' / getOption("max.print") -- omitted 90 rows ]
```