CS 4530 Software Engineering

Module 13: Principles and Patterns of Cloud Infrastructure

Adeel Bhutta and Mitch Wand Khoury College of Computer Sciences

Khoury College of Computer Sciences © 2023 released under CC BY-SA

Learning objectives for this lesson

- By the end of this lesson, you should be able to...
 - Explain what "cloud" computing is and why it is important
 - Describe the difference between virtual machines and containers
 - Explain why virtual machines and containers are important in cloud computing

How to deploy web apps?

- What we need:
 - A server that can run our application
 - A network that is configured to route requests from an address to that server
- Questions to think about:
 - What software do we need to run besides our application code?
 - Where does this server come from?
 - Who else gets to use this server?
 - Who maintains the server and software?

Class Server, in CS Department

Data Center

Many apps rely on common infrastructure

- Content delivery network: caches static content "at the edge" (e.g. cloudflare, Akamai)
- Web servers: Speak HTTP, serve static content, load balance between app servers (e.g. haproxy, traefik)
- App servers: Runs our application
- Misc services: Logging, monitoring, firewall
- Database servers: Persistent data

Many apps typically share the same

What is the infrastructure that needs to be

shared?

• Our apps run on a "tall stack" of dependencies

- Traditionally this full stack is selfmanaged
- Cloud providers offer products that manage parts of that stack for us:
 - "Infrastructure as a service"
 - "Platform as a service"
 - "Software as a Service"

Application Application Middleware Middleware Operating System Operating System Virtualization Virtualization Physical Server Physical Server Storage Storage Network Network Physical data center Physical data center Traditional, on-

premises computing

Self-managed

Platform-as-a-Service

Vendor-managed

Cloud infrastructure creates economies of

scale

Application

- At the physical level:
 - Multiple customers' physical machines in the same data center
 - Save on physical costs (centralize power, cooling, security, maintenance)
- At the physical server level:
 - Multiple customers' virtual machines in the same physical machine
 - Save on resource costs (utilize marginal computing capacity)
- At the application level:
 - Multiple customer's applications hosted in same virtual machine
 - Save on resource overhead (eliminate redundant infrastructure like OS)

Middleware

Operating System

Virtualization

Physical Server

Storage

Network

Physical data center

Multiple customers could share each of these tiers

Cloud infrastructure scales elastically

- "Traditional" computing infrastructure requires capital investment
 - "Scaling up" means buying more hardware, or maintaining excess capacity for when scale is needed
 - "Scaling down" means selling hardware, or powering it off
- Cloud computing scales elastically:
 - "Scaling up" means allocating more shared resources
 - "Scaling down" means releasing resources into a pool
 - Billed on consumption (usually per-second, per-minute or per-hour)

Cloud infrastructure gives on-demand access to resources

- Vendor provides a service catalog of "X as a service" abstractions
- API allows us to provision resources on-demand

Please give me...
A virtual machine
A database server
A video chat room

Infrastructure as a Service: Virtual Machines

- Virtual machines:
 - Virtualize a single large server into many smaller machines
 - OS limits resource usage and guarantees quality per-VM
 - Each VM in its own OS
 - Examples: Amazon EC2, Google Compute Engine, Azure

Application

Middleware

Operating System

Virtualization

Physical Server

Storage

Network

Physical data center

laaS

Self-managed

VM4 VM5 VM6

VM3

VM1 VM2

A single server in the cloud

Vendor-managed

Let's look more closely at this software stack

- The "instruction set" is an abstraction of the underlying hardware
- The operating system presents the same abstraction + OS calls.

The operating system allows several apps to share the underlying hardware

A virtual machine layer allows several different operating systems to share the same hardware

Virtual Machines facilitate multi-tenancy

- Multi-Tenancy
 - Multiple customers sharing same physical machine, oblivious to each other
- Decouples application from hardware
 - virtualization service can provide "live migration"
- Faster to provision and release
 - VM v. physical machines == ~mins v. ~hours

Virtual Machines to Containers

- Each VM contains a full operating system
- What if each application could run in the same (overall) operating system? Why have multiple copies?
- Advantages to smaller apps:
 - Faster to copy (and hence provision)
 - Consume less storage at rest

Infrastructure as a Service: Containers

- Each application is encapsulated in a "lightweight container," includes:
 - System libraries (e.g. glibc)
 - External dependencies (e.g. nodejs)
- "Lightweight" in that container images are smaller than VM images - multi tenant containers run in the OS
- Cloud providers offer "containers as a service" (Amazon ECS Fargate, Azure Kubernetes, Google Kubernetes)

A container contains your apps and all their dependencies

- You might put several apps in a single container, together with their dependencies
- Might have only one copy of shared dependencies

Infrastructure as a Service: with containers

- Vendor supplies an ondemand instance of an operating system
 - Eg: Linux version NN
- Vendor is free to implement that instance in a way that optimizes costs across many clients.

Infrastructure as a Service: Docker

- Docker provides a standardized interface for your container to use
- Many vendors will host your Docker container

Platform-as-a-Service: vendor supplies OS + middeware

- Middleware is the stuff between our app and a user's requests:
 - Load balancer: route client requests to one of our app containers
 - Application server: run our handler functions in response to requests from load balancer
 - Monitoring/telemetry: log requests, response times and errors
- Cloud vendors provide managed middleware platforms too: "Platform as a Service"

Application Application Middleware Middleware **Operating System Operating System** Virtualization Virtualization **Physical Server Physical Server** Storage Storage Network Network Physical data center Physical data center laaS: Containers PaaS

Self-managed

Vendor-managed

PaaS is often the simplest choice for app deployment

- Platform-as-a-Service provides components most apps need, fully managed by the vendor: load balancer, monitoring, application server
 - Heroku, AWS Elastic Beanstalk, Google App Engine
- Some PaaSs deploy apps as single functions invoked only when a web request is made
 - AWS Lambda, Google Cloud Functions, Azure Functions
- Some PaaSs provide databases and authentication
 - Google Firebase, Back4App

Application

Middleware

Operating System

Virtualization

Physical Server

Storage

Network

Physical data center

Heroku's PaaS

- Takes a web app as input
 - No container, only need entry point to code, e.g. "npm start"
- Hosts web app at chosen URL, can scale resources up/down on-demand
 - Load balancer fully managed by Heroku, scaling transparent
 - Auto-scale down to use no resources, spins up container on reception of a request
 - Dashboard for monitoring/reporting

Software as a Service adds more vendormanaged apps

- Providers may also develop custom software offered only as a service
- Examples:
 - PostgreSQL (open source)
 - Twilio Programmable Video (proprietary chat)

Application Application Middleware Middleware **Operating System Operating System** Virtualization Virtualization **Physical Server Physical Server** Storage Storage Network **Network** Physical data center Physical data center

Self-managed

laaS

Vendor-managed

SaaS

Self-managed vs Vendor-managed Infrastructure

- Benefits to vendor-managed options:
 - More ways to reduce resource consumption, improve resource utilization
 - Less management burden
 - Less capital investment, greater operating expenses
- Benefits to self-managed options:
 - Greater flexibility and avoid vendor lock-in
 - More capital investment, less operating expenses

Application	Application	Application
Middleware	Middleware	Middleware
Operating System	Operating System	Operating System
Virtualization	Virtualization	Virtualization
Physical Server	Physical Server	Physical Server
Storage	Storage	Storage
Network	Network	Network
Physical data center	Physical data center	Physical data center
Traditional, on- premises computing	laaS	SaaS

Cloud Infrastructure is best for variable workloads

- Consider:
 - Does your workload benefit from ability to scale up or down?
- Example:
 - need to run 300 VMs, each 4 vCPUs, 16GB RAM
- Private cloud:
 - Dell PowerEdge Pricing (AMD EPYC 64 core CPUs)
 - 7 servers, each 128 cores, 512GB RAM, 3 TB storage = \$162,104
- Public cloud:
 - Amazon EC2 Pricing (M5.xlarge instances, \$0.121/VM-hour)
 - 10 VMs for 1 year + 290 VMs for 1 month: \$36,215.30
 - 300 VMs for 1 year: \$317,988

Public clouds are not the only option

- "Public" clouds are connected to the internet and available for anyone to use
 - Examples: Amazon, Azure, Google Cloud, DigitalOcean
- "Private" clouds use cloud technologies with on-premises, self-managed hardware
 - Cost-effective when a large scale of baseline resources are needed
 - Example management software: OpenStack, VMWare, Proxmox, Kubernetes
- "Hybrid" clouds integrate private and public (or multiple public) clouds
 - Effective approach to "burst" capacity from private cloud to public cloud

Review

- You should now be able to...
 - Explain what "cloud" computing is and why it is important
 - Describe the difference between virtual machines and containers
 - Explain why virtual machines and containers are important in cloud computing