Note that I am operating under the convention that N, n, m, i, j are natural numbers unless otherwise specified.

Exercise: 2.2.6

The limit of a sequence, if it exists is unique

Proof. Suppose to the contrary that there exists a sequence $\{a_x\}_{x=1}^{\infty}$ that converges to two values, a and b where $a \neq b$. Without loss of generality assume a > b. Define $2\epsilon = a - b > 0$ and note that $\epsilon > 0$. By the definition of limit of a sequence we know that there exists a N_a such that for all $n \geq N_a$, $|a_n - a| < \epsilon$. Also note that by the definition of limit of a sequence we know that there exists a N_b such that for all $n \geq N_b$, $|a_n - b| < \epsilon$. Take $N = \max(N_a, N_b)$ note that for all $n \geq N$, $|a_n - a| < \epsilon$ and $|a_n - b| < \epsilon$. Now we see that $|a_N - a| < \epsilon$ and $|a_N - b| < \epsilon$ so $|a_N - a| + |a_N - b| < 2\epsilon$ or $|a - a_N + a_N - b| \leq |a - a_N| + |a_N - b| < 2\epsilon$ via the tryangle inequality. Thus $|a - b| < 2\epsilon$, and noting that a - b > 0 we get $a - b < 2\epsilon = a - b$, a contradiction. We are forced to conclude the negation of our supposition, that there is no sequence with two limits, or that a limit to a sequence, if it exists is unique.

Exercise: 2.3.1(a)

Let $x_n \ge 0$ for all $n \in \mathbb{N}$. If $x_n \to 0$ show $\sqrt{x_n} \to 0$.

Proof. Chuse a $\epsilon > 0$. Define $\omega = \epsilon^2$. Note that $x_n \to 0$ implies that there exists a N such that for all $n \ge N$, $|x_n| < \omega$. Note that $|x_n| < \omega = \epsilon^2$ implies $\sqrt{|x_n|} < \epsilon$ wich means $|\sqrt{x_n} - 0| < \epsilon$ for all $n \ge N$. Thus by definition $\sqrt{x_n} \to 0$.

Exercise: 2.3.1(b)

Let $x_n \ge 0$ for all $n \in \mathbb{N}$. If $x_n \to x$ show $\sqrt{x_n} \to \sqrt{x}$.

Proof. Assume $x \neq 0$ since we have already proven the statement true in that case, furthur note that since the sequence is bounded below by $0, x \geq 0$

Chuse a $\epsilon > 0$. Define $\omega = \epsilon \sqrt{x} > 0$. Note that $x_n \to x$ implies that there exists a N such that for all $n \ge N$, $|x_n - x| < \omega$. Note that $|x_n - x| < \omega = \epsilon \sqrt{x}$ implies $|x - x_n| < \epsilon \sqrt{x}$, $|\sqrt{x} + \sqrt{x_n}||\sqrt{x} - \sqrt{x_n}| < \epsilon \sqrt{x}$. Noting that $|\sqrt{x} + \sqrt{x_n}| = \sqrt{x} + \sqrt{x_n} \ge \sqrt{x}$ implies $\sqrt{x}|\sqrt{x} - \sqrt{x_n}| \le |\sqrt{x} + \sqrt{x_n}||\sqrt{x} - \sqrt{x_n}| < \epsilon \sqrt{x}$. Thus $|\sqrt{x} - \sqrt{x_n}| < \epsilon$ for all $n \ge N$. By definition $\sqrt{x_n} \to \sqrt{x}$.

Exercise: 2.3.3

Show that if $x_n \le y_n \le z_n$ for all $n \in \mathbb{N}$, and $\lim x_n = \lim z_n = l$, then $\lim y_n = l$.

For this proof I need the therum that $|a| < b \Leftrightarrow -b < a < b$ where b > 0.

Proof. There are two cases $a \ge 0$ or a < 0.

Case $a \ge 0$. In this case |a| = a and our statement becomes $0 \le a < b \Leftrightarrow -b < a < b$ wich is clearly true.

Case a < 0. In this case |a| = -a and our statement becomes $0 \le -a < b \Leftrightarrow -b < a < b$ wich, noting that $0 \le -a < b$ is equivelent to $0 \ge a > -b$, is clearly true.

Math 401: Homework 4

Proof. Suppose $x_n \le y_n \le z_n$ for all $n \in \mathbb{N}$, and $\lim x_n = \lim z_n = l$.

Chuse $\epsilon > 0$. By the definition of limit of a sequence we know that there exists a N_1 such that for all $n \ge N_1$, $|x_n - l| < \epsilon$. By the definition of limit of a sequence we know that there exists a N_2 such that for all $n \ge N_2$, $|z_n - l| < \epsilon$. Define $N = \max(N_1, N_2)$. Note that for all $n \ge N$, $|x_n - l| < \epsilon$ and $|z_n - l| < \epsilon$ or by the above therum $-\epsilon < x_n - l < \epsilon$ and $-\epsilon < z_n - l < \epsilon$. Note that $-\epsilon < x_n - l \le y_n - l \le z_n - l < \epsilon$ thus $-\epsilon < y_n - l < \epsilon$ and so $|y_n - l| < \epsilon$ for all n > N. Thus by the definition of the limit of a sequence $\lim y_n = l$.

Exercise: 2.3.6

Find what $b_n = n - \sqrt{n^2 + 2n}$ converges to.

Proof. Note that $b_n = \frac{(n - \sqrt{n^2 + 2n})(n + \sqrt{n^2 + 2n})}{n + \sqrt{n^2 + 2n}} = \frac{-2n}{n + \sqrt{n^2 + 2n}} = \frac{-2}{1 + \sqrt{1 + 2/n}} = \frac{a_n}{c_n}$, where $a_n = -2$ and $c_n = 1 + \sqrt{1 + 2/n} = d_n + e_n$, where $d_n = 1$ and $e_n = \sqrt{1 + 2/n} = \sqrt{f_n}$, where $f_n = 1 + 2/n$. Noting that $1/n \to 0$ we see that $f_n \to 1$. Using 2.3.1 we see that $e_n \to \sqrt{1} = 1$. By inspection $d_n \to 1$ and so by the algebreic limit therum $c_n \to 2$. Noting that $a_n \to -2$ and that $c_n \to 0$ we see by the algebreic limit therum $b_n \to \frac{-2}{2} = -1$.

Exercise: 2.3.9(a)

Let (a_n) be a bounded sequence, and assume $\lim b_n = 0$. Show that $\lim (a_n b_n) = 0$. Why are we not allowed to use the algebraic limit therum to do this?

Firstly this is outside of the algebreic limit therum entiarly since we are not garenteed that a_n has a limit.

Proof. Suppose (a_n) to be a bounded sequence, and $\lim b_n = 0$.

Chuse $\epsilon > 0$. Since (a_n) is bounded there exists a M > 0 such that $|a_n| \le M$ for all n. By the definition of limit there exists a N such that for all $n \ge N$, $|b_n| < \epsilon/M$, since $\epsilon/M > 0$. Note that $|a_nb_n - 0| = |a_nb_n| = |a_n||b_n| \le M|b_n| < \epsilon$ for all $n \ge N$, thus by the definition of limit $\lim_{n \to \infty} (a_nb_n) = 0$.

Exercise: 2.3.10(a)

If $\lim (a_n - b_n) = 0$ then $\lim a_n = \lim b_n$.

Couterexample, consider the case $a_n = b_n = n$. In this case $\lim(a_n - b_n) = \lim(0) = 0$. However $\lim a_n = \lim n$ wich does not exist and so the statement $\lim a_n = \lim b_n$ cannot be true.

Exercise: 2.3.10(b)

If $\lim b_n = b$ then $\lim |b_n| = |b|$.

Proof. Chuse $\epsilon > 0$. By the definition of limit there exists a N such that for all $n \geq N$, $|b_n - b| < \epsilon$. Recall that we proved on the first homework that $||a| - |b|| \leq |a - b|$, thus $||b_n| - |b|| \leq |b_n - b| < \epsilon$ for all $n \geq N$. By the definition of limit $\lim |b_n| = |b|$.

Math 401: Homework 4

Exercise: 2.3.10(c)

If $\lim a_n = a$ and $\lim (b_n - a_n) = 0$ then $\lim b_n = a$.

Proof. Define $s_n = b_n - a_n$. Note that $s_n \to 0$ and $a_n \to a$. By the algebraic limit therum $b_n = (s_n + a_n) \to a + 0 = a$ thus $b_n \to a$.

Exercise: 2.3.10(d)

If $a_n \to 0$ and $|b_n - b| \le a_n$ for all n then $b_n \to b$.

Proof. Suppose $a_n \to 0$ and $|b_n - b| \le a_n$ for all n. Note that $0 \le |b_n - b| \le a_n$ thus $|a_n| = a_n$. Choose $\epsilon > 0$. By the definition of limit there exists a N such that for all $n \ge N$, $|a_n| < \epsilon$. Note that $|b_n - b| \le a_n = |a_n| < \epsilon$ for all $n \ge N$. Thus by the definition of limit $b_n \to b$. \square

Exercise: 2.4.1(a)

Prove that the sequence $x_1 = 3$ and

$$x_{n+1} = \frac{1}{4 - x_n}$$

converges.

Proof. I will use the monotone convergence therum. So what I need to show is that our sequence is bounded and that our sequence is monotonic.

Suppose $0 \le x_n \le 3$. Note that $-0 \ge -x_n \ge -3$, $4 \ge 4 - x_n \ge 1$, and since $4 - x_n \ge 1 > 0$ we see $0 \le 1/4 \le 1/(4 - x_n) \le 1 \le 3$. Thus $0 \le x_{n+1} \le 3$. Noting that $0 \le x_1 = 3 \le 3$, we conclude by induction that all x_n are in $0 \le x_n \le 3$. Thus $|x_n| \le 3$ for all n and so the sequence is bounded.

I will prove the sequence is monotonic decreasing by induction.

In the base case is $x_n \ge x_{n+1}$? Well that would be, for n = 1, $3 \ge \frac{1}{4-3} = 1$. So it is monotonic decreasing in the base case.

Suppose $x_n \ge x_{n+1}$. Note that $x_n \ge x_{n+1}$, $-x_n \le -x_{n+1}$, $4 - x_n \le 4 - x_{n+1}$, and noting that $4 - x_n \ge 1 > 0$ since the sequence is bounded by 3, $\frac{1}{4-x_n} = x_{n+1} \ge \frac{1}{4-x_{n+1}} = x_{n+2}$. So I have shown that if $x_n \ge x_{n+1}$ we can conclude that $x_{n+1} \ge x_{n+2}$, and so by induction I conclude that $x_n \ge x_{n+1}$ for all n and thus the sequence is monotonic decreasing.

By the monotone convergence therum we can conclude that the sequence converges. \Box

Exercise: 2.4.1(b)

Given the sequence $x_n \to l$. Prove that the sequence $s_n = x_{n+1} \to l$

Proof. Choose $\epsilon > 0$. By the definition of limit there exists a N such that for all $m \ge N$, $|x_m - l| < \epsilon$. Choose $n \ge N$ let $m = n + 1 \ge N$. Note that $|x_m - l| < \epsilon$, $|x_{n+1} - l| < \epsilon$, $|s_n - l| < \epsilon$. Thus by the definition of limit $s_n \to l$.

Exercise: 2.4.1(c)

Given the sequence $x_n \to l$ and $s_n = x_{n+1} \to l$, where $x_1 = 3$ and

$$x_{n+1} = \frac{1}{4 - x_n}$$

find l.

Note that I am operating under the convention that N, n, m, i, j are natural numbers unless otherwise specified.

Exercise: 2.3.5 (W) (Hand this one in to David.)

Let (x_n) and (y_n) be given, and define (z_n) to be the sequence $(x_1, y_1, x_2...)$. Prove that (z_n) is convergent if and only if $\lim x_n = \lim y_n$.

Proof. Note that we can formalize this definition as

$$z_n = \begin{cases} x_{(n+1)/2} & n \in \text{odds} \\ y_{n/2} & \text{otherwise} \end{cases}$$

We are asked in this proof to prove a "if and only if" statement, basically prove a double implication. I will break this up into proving two implications, first $\lim x_n = \lim y_n$ implies (z_n) is convergent, and second (z_n) is convergent implies $\lim x_n = \lim y_n$.

Suppose $\lim x_n = \lim y_n = l$.

Chuse $\epsilon > 0$. By the definition of limit of a sequence we know that there exists a N_1 such that for all $n \ge N_1$, $|x_n - l| < \epsilon$. By the definition of limit of a sequence we know that there exists a N_2 such that for all $n \ge N_2$, $|y_n - l| < \epsilon$. Define $N = 2 * (\max(N_1, N_2))$. Chuse $n \ge N$. There are two possibilities, eather $n \in \text{odd}$ or $n \notin \text{odd}$.

Case $n \in \text{odd}$. In this case $z_n = x_{(n+1)/2}$. Note that $(n+1)/2 > n/2 \ge N/2 \ge N_1$ and so $|z_n - l| = |x_{(n+1)/2} - l| < \epsilon$.

Case $n \notin \text{odd}$. In this case $z_n = y_{n/2}$. Note that $n/2 \ge N/2 \ge N_2$ and so $|z_n - l| = |y_{n/2} - l| < \epsilon$. So $|z_n - l| < \epsilon$ for all $n \ge N$ and thus z_n will converge.

Suppose (z_n) is convergent.

let $l = \lim z_n$.

Chuse $\epsilon > 0$. By the definition of limit of a sequence we know that there exists a N such that for all $m \ge N$, $|z_m - l| < \epsilon$. Chuse a $n \ge N$. let m = 2n - 1. Note that $m \ge n \ge N$ and that $m \in \text{odds}$, so $z_m = x_{(m+1)/2} = x_n$. Since $m \ge N$, $|x_n - l| = |z_m - l| < \epsilon$. Thus x_n converges to l.

Chuse $\epsilon > 0$. By the definition of limit of a sequence we know that there exists a N such that for all $m \ge N$, $|z_m - l| < \epsilon$. Chuse a $n \ge N$. let m = 2n. Note that $m > n \ge N$ and that $m \notin \text{odds}$, so $z_m = y_{m/2} = y_n$. Since $m \ge N$, $|y_n - l| = |z_m - l| < \epsilon$. Thus y_n converges to l. We conclude that $\lim x_n = \lim y_n$.

We can now conclude (z_n) is convergent if and only if $\lim x_n = \lim y_n$.