Central dogma: transcription and translation

โมเลกุลของดีเอ็นเอไม่ได้เป็นเพียงสายนิวคลีโอไทด์ที่ยาวและน่าเบื่อ แต่จะแบ่งออกเป็นหน่วยการทำงานที่เรียกว่ายืน ใน หลาย ๆ กรณีผลิตภัณฑ์ที่ใช้งานได้ของยืนคือโปรตีน เช่นยืนสีดอกไม้ของเมนเดลให้ข้อมูลเป็นโปรตีนที่ช่วยสร้างเม็ดสีใน กลีบดอกไม้

ผลิตภัณฑ์ที่ใช้งานได้ของยีนที่รู้จักกันมากที่สุดคือโปรตีนหรือโพลิเปปไทด์ (polypeptides) โพลีเปปไทด์ประกอบด้วย กรดอะมิโน แม้ว่าโปรตีนหลายชนิดประกอบด้วยโพลีเปปไทด์เดียว แต่บางชนิดก็ประกอบด้วยโพลีเปปไทด์หลายตัว ยีนที่ ให้ผลิตภัณฑ์เป็นโพลีเปปไทด์เรียกว่ายีนที่สังเคราะห์โปรตีน (protein-coding genes)

ไม่ใช่ยืนทั้งหมดที่ให้โพลีเปปไทด์ แต่ยืนบางตัวช่วยให้เกิดการสังเคราะห์โมเลกุล RNA เช่น transfer RNAs และ ribosomal RNA

เราได้พิจารณายืนเป็น

- หน่วยพันธุกรรม
- บริเวณของลำดับนิวคลีโอไทด์หนึ่งๆในโครโมโซม
- ลำดับดีเอ็นเอที่ให้ผลิตภัณฑ์เป็นโพลีเปปไทด์

ยีนสามารถเป็นบริเวณหนึ่งๆของดีเอ็นเอที่ให้ผลิตภัณฑ์ที่ใช้งานได้ขั้นสุดท้ายปืนโมเลกุลของโพลีเปปไทด์หรืออาร์เอ็นเอ

DNA -> RNA; RNA -> protein

ข้อมูลทางพันธุกรรมในเซลล์จากดีเอ็นเอ, mRNA, โปรตีน

ยีนระบุลำดับของ mRNAs, ซึ่งจะระบุลำดับของโปรตีน

พื้นฐานหลักการของ transcription และ translation

- RNAเป็นสะพานเชื่อมระหว่างยืนและโปรตีน
- transcriptionเป็นสังเคราะห์ RNA โดยใช้ข้อมูลใน DNA
- transcription ผลิต RNA (mRNA)
- translationเป็นสังเคราะห์เพปไทด์ที่ใช้ข้อมูลใน mRNA
- ไรโบโซมเป็นที่ที่เกิดของtranslation
- Translationของ mRNA ในโปรคาริโอต สามารถเริ่มได้ก่อนที่transcriptionจะเสร็จสิ้น
- Nuclear envelope ในเซลล์ยูคาริโอตจะแยกtranscriptionออกจากtranslation

• RNA ที่ได้จากtranscription ในเซลล์ของeukaryotesมีการแก้ไขที่เรียกว่าRNA processingเพื่อให้ได้mRNA ที่สมบูรณ์

รูปที่ 1 ภาพรวมของ transcription และ translation

Codons

หนึ่งในสองเส้นดีเอ็นเอจะเป็นตัวแบบ (template) สำหรับtranscription เพื่อให้ได้อาร์เอ็นเอ เส้นแม่แบบเป็นเส้น เดียวกันสำหรับยืนนั้นเสมอ

codons จะอ่านจาก 5 '→ 3'ในระหว่างtranslation

ดีเอนเอสายที่ไม่ใช่ตัวแบบ (non-template strand) ถูกเรียกว่า coding strand เพราะว่าลำดับเบสบนสายดีเอ็นเอสาย นี้จะเหมือนกับสายmRNAที่ถูกสร้างขึ้นมา ยกเว้นมีเบสUมาแทนที่เบสT แต่ละโคดอนจะเป็นรหัสของกรดอะมิโน 61 โคดอนให้รหัสสำหรับกรดอะมิใน อีก 3 โคดอนจะให้"หยุด" เพื่อให้ยุติtranslation รหัสพันธุกรรมซ้ำซ้อน (โคดอน มากกว่าหนึ่งตัวอาจระบุกรดอะมิในชนิดเดียวกัน)

รหัสพันธุกรรมมีความเกือบเป็นสากลร่วมกันจากแบคทีเรียไปจนถึงสัตว์ที่ซับซ้อน ยีนจึงสามารถคัดลอกและแปลหลังจาก ที่ถูกปลูกถ่ายจากชนิดหนึ่งไปยังอีกชนิดหนึ่งได้

Second mRNA base							
		U	С	A	G		
(2, end of codon)	U	UUU │ _{Phe}	ucu 🗌	UAU 7 _{Tyr}	ugu ⊺ _{Cys}	U	
		uuc ∫ (F)	ucc ser	UAC (Y)	ugc] (C)	С	
		UUA Leu	UCA (S)	UAA Stop	UGA Stop	Α	
		υυG ∫(L)	ucg _	UAG Stop	UGG Trp (W)	G (uo	
	С	CUU	сси	CAU THis	CGU	Codon	
		CUC Leu	CCC Pro	CAC (H)	CGC Arg	C &	
		CUA (L)	CCA (P)	CAA GIn	CGA (R)	end A	
		cug	ссв	CAG (Q)	cgg	G %	
First mRNA base	A	AUU	ACU 7	AAU 7	AGU [¬] Ser	ase	
		AUC Ile	ACC Thr	AAC (N)	AGC (S)	C	
		AUA J	ACA (T)	AAA \ Lys	AGA Arg	A S	
		AUG Met (M) or start	ACG _	AAG (K)	AGG (R)	C O D C	
	G	GUU	GCU	GAU Asp	GGU	u	
		GUC Val	GCC Ala	GAC (D)	GGC Gly	C	
		GUA (V)	GCA (A)	GAA Glu	GGA (G)	Α	
		GUG	GCG _	GAG (E)	GGG _	G	

รูปที่ 3 ตาราง Codon

Transcription เป็นขั้นตอนแรกของการแสดงออกของยืน

การสังเคราะห์ RNA ใช้เอนไซม์ RNA polymerase ซึ่งจะแยกสายดีเอ็นเอออกจากกันและใช้ต่อโมเลกุลของRNA nucleotides โมเลกุลของRNAที่สังเคราะห์นี้จะเข้ากันได้กับสายดีเอ็นเอที่เป็นต้นแบบ (ยกเว้นไม่มี Thymine แต่มี Uracil แทน) เอนไซม์RNA polymeraseนี้ไม่ต้องใช้primers

รูปที่ 4 ภาพรวมของ transcription

บริเวณของดีเอ็นเอที่RNA polymeraseมาจับเรียกว่าpromoter ลำดับเบสที่ส่งสัญญาณให้หยุดการtranscriptในแบคทีเรียเรียกว่าterminator บริเวณของดีเอ็นเอที่ถูกถอดรหัสเรียกว่าtranscription unit

Transcription มีสามระยะ ได้แก่ initiation เริ่ม, elongation ต่อ, termination หยุด

โปรโมเตอร์ที่จุดเริ่มต้นของกระบวนการทั้งหมดนี้จะอยู่ด้านหน้าบริเวณที่จะถูกถอดรหัสไปประมาณหนึ่ง มีtranscription factorsช่วยจับRNA polymerase II และ transcription factorsนี้เมื่อจับกันรวมเรียกว่า transcription initiation complex

โปรโมเตอร์ที่เรียกว่า TATA boxเป็นบริเวณที่สำคัญในการจับกันและทำให้เกิดtranscription initiation complex ใน eukaryotes

ฐปที่ 5 Transcription initiation ใน eukaryotes

RNA polymeraseจะทำหน้าที่คลายเกลียวของดีเอ็นเอพร้อมกับเคลื่อนที่ไปบนดีเอ็นเอ ยีนหนึ่งๆสามารถถูกถอดรหัสได้ พร้อมๆกันด้วยRNA polymeraseหลายๆโมเลกุล นิวคลีโอไทด์จะถูกเพิ่มไปทางด้าน3'ของRNAที่กำลังถูกสังเคราะห์

ฐปที่ 6 Elongation

แบคทีเรียและeukaryotesมีกระบวนการหยุด (termination) การสังเคราะห์RNAที่แตกต่างกัน ในแบคทีเรียRNA polymeraseหยุดการถอดรหัสที่บริเวณที่มีสัญญาณให้หยุด (terminator) และmRNAที่ได้จะนำไปแปลรหัส (translate)ทันทีโดยไม่ต้องเปลี่ยนแปลงใดๆ

แต่ในeukaryotes, การหยุดการสังเคราะห์mRNA เกิดเมื่อRNA polymerase II ถอดรหัสเบสที่มีแต่A (polyadenylation signal)

RNA processing

RNAของeukaryotesที่สังเคราะห์ได้จะถูกตกแต่งจากpre-mRNAให้กลายเป็นmRNAที่พร้อมใช้งานโดยกระบวนการ
RNA processingที่เกิดในนิวเคลียส ในกระบวนการRNA processingนี้ pre-mRNA จะถูกตกแต่ง ส่วนมากด้วยการตัด
และต่อ

ส่วนปลายของpre-mRNAมีการตกแต่งโดยที่ปลาย5'จะมีการเติมนิวคลีโอไทด์ที่เรียกว่าcap ขณะที่ปลาย3'มีการเติม poly-A tail การเติมนี้ช่วยนำทางให้mRNAออกสู่cytoplasm ช่วยให้mRNAไม่ถูกทำลาย และช่วยให้ไรโบโซมเกาะที่ ปลาย5'

รูปที่ 7 RNA processing, 5' cap และ 3' poly-A tail

ในบางกรณีส่วนประกอบที่เรียกว่า spliceosome ซึ่งประกอบด้วยโปรตีนและsmall RNAจะเข้ามาช่วยตัดและต่อสาย pre-mRNA

ribozymes เป็นโมเลกุล RNA ทำหน้าที่เป็นเอนไซม์เร่งปฏิกิริยาและสามารถตัดอาร์เอ็นเอ

introns บางชนิดมีลำดับเบสที่อาจควบคุมการแสดงออกของยีน ยีนบางชนิดสามารถถอดรหัสpolypeptideได้มากกว่า หนึ่งชนิด ขึ้นอยู่กับว่าจะเอาส่วนใดของpre-mRNAเป็นexons การเลือกนี้เรียกว่า alternative RNA splicing ดังนั้น จำนวนโปรตีนที่สิ่งมีชีวิตสามารถผลิตได้จึงมากกว่าจำนวนยีนมาก

โปรตีนมักจะมีส่วนที่มีคุณสมบัติแตกต่างกันเรียกว่าโดเมน exonต่างกันมักจะให้โดเมนที่ต่างกันด้วย exonที่เปลี่ยนแปลง ไปจึงอาจทำให้เกิดโปรตีนใหม่ๆ

รูปที่ 9 Exons และโดเมนของโปรตีน

Translation: mRNA -> โปรตีน

รูปที่ 10 Translation

Transfer RNA (tRNA) นำกรดอะมิโนมาสู่สายpolypeptideที่อยู่บนไรโบโซม tRNAแต่ละโมเลกุลมีหน้าที่นำกรดอะมิ โนเฉพาะตัวของมันเพราะส่วนของanticodonจะต้องสัมพันธ์กับส่วนของcodonที่อยุ่บนสายmRNA

รูปที่ 11 โครงสร้างของ tRNA

Translationจำเป็นต้องใช้ความจำเพาะของสองอย่างคือ ความจำเพาะระหว่างtRNAและกรดอะมิโน และระหว่าง anticodonของtRNAกับcodonของmRNA

รูปที่ 12 เอนไซม์ aminoacyl-tRNA synthetases ทำหน้าที่เชื่อมกรดอะมิโนกับtRNA

หน่วยย่อยของไรโบโซม (เล็กและใหญ่) ประกอบด้วยโปรตีนและribosomal RNA (rRNA) ไรโบโซมมีสามบริเวณที่ใช้จับ กับtRNA

- P จับtRNAที่มี่สายpolypeptideที่กำลังต่อ
- A จับtRNAที่มีกรดอะมิโน (amino acid) ที่จะเข้ามาต่อเป็นลำดับถัดไป
- E ทางออก (exit) ของtRNAที่ใช้แล้ว

รูปที่ 13 บริเวณที่ทำหน้าที่ของไรโบโซม

Translationมีสามขั้นตอน คือ initiation เริ่ม, elongation ต่อ, termination หยุด ทั้งสามขั้นตอนจำเป็นต้องใช้ โปรตีนเพื่อช่วยในกระบวนการ รวมถึงต้องใช้พลังงานด้วย

AUG เป็นโคดอนที่เริ่มกระบวนการtranslation

หน่วยย่อยเล็กของไรโบโซมเข้าจับกับmRNA และtRNA

หน่วยย่อยเล็กของไรโบโซมเคลื่อนที่ไปบนmRNAจนถึงstart codon

โปรตีนที่ที่เป็นinitiation factorน้ำหน่วยย่อยใหญ่ของไรโบโซมเข้ามา ทำให้translation initiation complexสมบูรณ์

รูปที่ 14 การเริ่มกระบวนการ translation

ในระหว่างช่วงelongation กรดอะมิโนจะถูกเพิ่มเข้าไปครั้งละหนึ่งโมเลกุลที่ปลายC-terminusของสายpolypeptide โปรตีนที่เรียกว่าelongation factorsมีส่วนช่วยในการเพิ่มโมเลกุลกรดอะมิโนเข้าไปในสาย ช่วงelongationนี้แบ่งได้เป็น สามระยะย่อย ได้แก่การจดจำของโคดอน การเกิดพันธะเปปไทด์ และการเคลื่อนย้ายของกรดอะมิโน มีการใช้พลังงานใน ระยะย่อยที่หนึ่งและสาม

กระบวนการแปลรหัสtranslationนี้ดำเนินไปจาก5'ไป3'ของสายmRNA

ฐปที่ 15 Elongation

เมื่อถึงStop codonที่บริเวณAของไรโบโซม โปรตีนที่เรียกว่าrelease factorจะเข้ามา โปรตีนนี้นำน้ำเข้ามาต่อกับสาย polypeptideทำให้สายpolypeptideหลุดออก รวมถึงส่วนประกอบทั้งหมด

ន្លុปที่ 16 Termination

โปรตีนที่ได้จากกระบวนการtranslationนี้มักจะยังทำงานไม่ได้ สายpolypeptideนี้จะต้องถูกตกแต่งก่อนหรือถูกส่งไป ยังบริเวณจำเพาะต่างๆภายในเซลล์ สายpolypeptideจะเริ่มพับและบิดทำให้เกิดรูปร่างต่างๆเช่นโครงร่างทุติยภูมิและ ตติยภูมิ โครงสร้างเหล่านี้ถูกกำหนดโดยยืน กระบวนการที่เรียกว่าpost-translational modificationsมีความสำคัญ ก่อนที่โปรตีนจะสามารถทำงานได้

สายmRNAสายหนึ่งสามารถมีไรโบโซมหลายอันมาแปลรหัสพร้อมๆกันได้ เรียกว่าpolyribosome หรือ polysome การ มีpolyribosomeทำให้เซลล์ได้polypeptideได้จำนวนมากในเวลาสั้น

รูปที่ 17 polyribosome

เซลล์แบคทีเรียสามารถเกิดtranscription และ translation ไปพร้อมๆกันได้ โปรตีนที่ได้จึงสามารถไปทำหน้าที่ของมัน ได้รวดเร็ว

ในeukaryotesมีเยื่อหุ้มนิวเคลียสที่แบ่งกระบวนการทั้งสองออกจากกัน และRNAที่ได้ยังต้องผ่านกระบวนการต่างๆจึง ออกจากนิวเคลียส

รูปที่ 18 Transcription และ translation ในแบคทีเรีย

รูปที่ 19 สรุปกระบวนการ transcription และ translation ในeukaryotes

Mutations

การเปลี่ยนแปลงเบสหนึ่งหรือหลายๆเบสสามารถเปลี่ยนแปลงโครงสร้างและหน้าที่ของโปรตีนได้ point mutationเป็น การเปลี่ยนแปลงเพียงหนึ่งนิวคลีโอไทด์ การเปลี่ยนแปลงนี้สามารถเปลี่ยนแปลงการสร้างและทำให้ได้โปรตีนที่ผิดแปลกไป โรคsickle-cell เกิดจากการเปลี่ยนแปลงแบบนี้

ฐปที่ 20 Sickle-cell disease

Point mutationรภายในยืนแบ่งได้เป็น substitution และ insertion/deletion

• Substitution:

เบสหนึ่งไปแทนที่เบสหนึ่ง ทำให้เบสที่เข้าคู่กันเปลี่ยนแปลงไปด้วย

Silent mutations กรดอะมิโนที่ได้ไม่เปลี่ยนแปลงจากของเดิมเนื่องจากหนึ่งกรดอะมิโนมีได้หลายโคดอน Missense mutations กรดอะมิโนที่ได้เปลี่ยนแปลงไปจากเดิม

Nonsense mutations เปลี่ยนโคดอนเดิมให้เป็นstop codon ส่วนมากโปรตีนที่ได้ไม่สามารถทำงานได้

ฐปที่ 21 Silent mutation

Insertion/deletion
 นิวคลีโอไทด์เพิ่มขึ้นมาหรือหายไป การเปลี่ยนแปลงแบบนี้ทำให้มีผลกระทบต่อโปรตีนมากกว่าsubstitutions
 เพราะการเปลี่ยนแปลงแบบนี้ส่งผลต่อลำดับการอ่านreading frame ซึ่งทำให้เกิด frameshift mutation

ฐปที่ 22 Mutations

สารเคมีหรือการเปลี่ยนแปลงทางกายภาพก็มีส่วนให้เกิดmutations carcinogensส่วนมากเป็นmutagens และ mutagensส่วนมากเป็นcarcinogens

แบบฝึกหัด

Type of RNA	Functions
Messenger RNA (mRNA)	
Transfer RNA (tRNA)	
	Plays catalytic (ribozyme) roles and structural roles in ribosomes
Primary Transcript	
Small RNAs in the spliceosome	

ลำดับเบสของ RNA เป็น 5' ACG AAA GAU 3' จงหาลำดับกรดอะมิโน

- A. Thr Lys Asp
- B. Cys Phe Leu
- C. Thr Asn Glu
- D. Cys Lys Glu

ลำดับเบสของ RNA เป็น 5' AAA AUG AGU AAG 3' จงบอกลำดับเบสบนสายtemplateดีเอ็นเอ

- A. 3' AAA ATG AGT AAG 5'
- B. 3' TTT TAC TCA TTC 5'
- C. 3' TTT ATG TGC TTC 5'
- D. 3' UUU TAC UCA UUC 5'