一阶逻辑

第一章 - 命题逻辑

姚宁远

复旦大学哲学学院

September 27, 2021

目录

- 1 引言
- 2 命题逻辑的语言
- 3 命题逻辑的语义:真值指派
- 4 唯一可读性
- 5 其他联词
- 6 命题逻辑的一个推演系统
- 7 命题逻辑的可靠性和完全性定理
- 8 紧致性定理
- 9 布尔代数
- 10 模态逻辑简介
 - 克里普克的可能世界语义学
 - 模态逻辑的一个推理系统 *K*
 - 系统 K 的可靠性与完全性

什么是命题?

- 命题是有真假值得语句;
- 命题逻辑研究原子命题与复合命题的关系;
- 命题逻辑研究命题演算系统;
- 命题演算系统一般称作布尔代数;

元逻辑与对象逻辑

- 元逻辑是人脑的逻辑(经验性);
- 对象逻辑是机器的逻辑(形式化);
- 自然语言 程序设计语言;
- 元逻辑可以用于分析对象逻辑;
- 用数学归纳法证明对象逻辑系统的性质;

数理逻辑中心问题

是否真的命题都是(形式)可证的?

- 真属于语义的范畴;
- 可证属于语法的范畴;
- 逻辑系统的语法与语义的统一性问题称作它的完全性。

目录

- 1 引言
- 2 命题逻辑的语言
- 3 命题逻辑的语义:真值指派
- 4 唯一可读性
- 5 其他联词
- 6 命题逻辑的一个推演系统
- 7 命题逻辑的可靠性和完全性定理
- 8 紧致性定理
- 9 布尔代数
- 10 模态逻辑简介
 - 克里普克的可能世界语义学
 - 模态逻辑的一个推理系统 K
 - 系统 K 的可靠性与完全性

命题逻辑的符号系统(字母表)

命题逻辑的符号表包含以下字符

- 可数多个命题符号: A₀, A₁, A₂,..., A, B, C,...;
- 逻辑联结词: 否定 ¬, 析取 ∧, 合取 ∨, 蕴涵 →, 双蕴涵 ↔;
- 左、右括号: (,)。

合式公式(单词表)I

合式公式的定义

- (1) 每个命题符号 A; 都是合式公式;
- (2) 如果 α 和 β 是合式公式,则 $(\neg \alpha)$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$ 和 $(\alpha \leftrightarrow \beta)$ 都是合式公式;
- (3) 别无其他。

合式公式(单词表) II

几点说明

- 定义中的中文即是元语言;
- A, B, C, ... 均可用来表示命题符号;
- "别无其他"有两种等价的解释:
 - 所有的公式是<mark>有限</mark>次使用规则 (1) 和 (2) 形成的符号串。因此一个基本的推论是所有的公式都是<mark>有限</mark>长的符号串;
 - 所有公式所形成的集合是对条件 (1) 和 (2)<mark>封闭的最小</mark>的(符号串)的集合。

练习

合式公式(单词表) III

任何一个合式公式 α 都对应(至少)一个构造序列

$$\{\varphi_0,...,\varphi_n\}$$

满足:

- 每个 \(\varphi_i\) 都是一个合式公式;
- 对每个 $0 \le k \le n$, φ_k 或者是命题符号,或者存在 $i \le k$ 使得 φ_k 是 $(\neg \varphi_i)$,或者存在 i, j < k 使得 φ_k 是 $(\varphi_i \star \varphi_j)$;
- $\blacksquare \varphi_n$ 是 α

归纳原理I

定理(归纳原理)

令 $P(\alpha)$ 是一个关于合式公式的性质。满足:

- 对每个命题符号 *A_i*, *P*(*A_i*) 都成立;
- 对每个合式公式 α, β , 如果 $P(\alpha)$ 和 $P(\beta)$ 都成立,则 $P((\neg \alpha))$ 和 $P((\alpha \star \beta))$ 也都成立;

那么 $P(\alpha)$ 对一切合式公式都成立。

引理

归纳原理Ⅱ

- 每个合式公式中的左右括号数相同;
- 每个合式公式的非空真前段中的左括号数多于右括号数;
- 合式公式的真前段不是合式公式。

证明

■ 令 $P(\alpha)$ 表示合式公式 α 中的左右括号数相同。显然 $P(A_i)$ 总是成立。如果 $P(\alpha)$ 和 $P(\beta)$ 都成立,则 $P((\neg \alpha))$ 和 $P((\alpha \star \beta))$ 也都成立;

归纳原理 Ⅲ

- 令 $Q(\alpha)$ 表示合式公式 α 的真前段中的左括号数多于右括号数。显然 $Q(A_i)$ 总是成立。如果 $Q(\alpha)$ 和 $Q(\beta)$ 都成立,则
 - $(\neg \alpha)$ 的非空真前段是

$$s = (+\neg + \alpha_0,$$

其中 α_0 是 α 的的前段。因此 α_0 中的左括号数 \geq 右括号,故 s 中的左括号数多于右括号数。

■ (α * β) 的非空真前段是

$$t = (+\alpha_0 + \star + \beta_0,$$

其中 α_0 是 α 的的前段, β_0 是 β 的的前段,因此 α_0 和 β_0 中的左括号数 \geq 右括号,故 t 中的左括号数多于右括号数。

故 $Q((\neg \alpha))$ 和 $Q((\alpha \star \beta))$ 也都成立;

■ 显然。

目录

- 1 引言
- 2 命题逻辑的语言
- 3 命题逻辑的语义:真值指派
- 4 唯一可读性
- 5 其他联词
- 6 命题逻辑的一个推演系统
- 7 命题逻辑的可靠性和完全性定理
- 8 紧致性定理
- 9 布尔代数
- 10 模态逻辑简介
 - 克里普克的可能世界语义学
 - 模态逻辑的一个推理系统 K
 - 系统 K 的可靠性与完全性

真值指派

- 真假值的集合为 {T,F};
- *T* 表示真, *F* 表示假;

真值指派

设 S 是一个命题符号的集合。S 上的一个真值指派 V 是从 S 到 真假值的一个映射

$$v: \mathcal{S} \longrightarrow \{T, F\}$$

真值指派的自然扩张丨

S生成的公式集

S 是由以下表达式构成的 (最小的) 集合:

- (1) $S \subseteq \bar{S}$;
- (2) 如果 α 和 β 属于 \bar{S} , 则 $(\neg \alpha)$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$ 和 $(\alpha \leftrightarrow \beta)$ 都属于 \bar{S} ;
- (3) 别无其他。

指派扩张

真值指派的自然扩张 ||

设 $v: S \longrightarrow \{T, F\}$ 是一个指派,则 v 可以按照以下的规定扩张 为 \bar{S} 上的函数

$$\bar{\mathbf{v}}:\bar{\mathbf{S}}\longrightarrow\{T,F\}$$

- (1) 对每个 $A \in S$, 有 $\bar{v}(A) = v(A)$
- (2) 如果 α 属于 \bar{S} ,则

$$\bar{\mathbf{v}}((\neg \alpha)) == \begin{cases} T, \mathbf{如果}\bar{\mathbf{v}}(\alpha) = F \\ F, \mathbf{其他} \end{cases}$$

真值指派的自然扩张 III

(3) 如果 α 和 β 属于 \bar{S} , 则

$$ar{m{v}}((lphaeeeta)) == egin{cases} T,$$
如果 $ar{m{v}}(lpha) = T$ 或者 $ar{m{v}}(eta) = T$

(4) 如果 α 和 β 属于 \bar{S} , 则

$$ar{\mathbf{v}}((\alpha \wedge \beta)) == egin{cases} T, 如果ar{\mathbf{v}}(lpha) = T + \mathbf{L}ar{\mathbf{v}}(eta) = T \\ F, 其他 \end{cases}$$

(5) 如果 α 和 β 属于 \bar{S} , 则

$$\bar{\mathbf{v}}((\alpha \to \beta)) == \begin{cases} F, \text{如果} \bar{\mathbf{v}}(\alpha) = T \text{并且} \bar{\mathbf{v}}(\beta) = F \\ T, \text{其他} \end{cases}$$

真值指派的自然扩张 IV

(6) 如果 α 和 β 属于 \bar{S} , 则

$$\bar{\mathbf{v}}((\alpha \leftrightarrow \beta)) == egin{cases} \mathbf{T}, \mathbf{如果} \bar{\mathbf{v}}(\alpha) = \bar{\mathbf{v}}(\beta) \\ \mathbf{F}, \mathbf{其他} \end{cases}$$

也可以用真值表来表示 \bar{v} 。

注

- 在引入真值指派之前,公式是无意义的符号串;
- 由真值指派 v 到扩张 v 本质上赋予逻辑联结词语义;
- 逻辑学不关心"原子事实"的真假,也就是说我们不关心一个具体的真值指派;
- 逻辑学关心 "原子事实"的真假与"复合事实"的真假之间的关系,即 v 与 \bar{v} 之间的关系。

逻辑蕴涵的真值表

α	β	$(\alpha \to \beta)$
Т	Т	Т
T	F	F
F	Т	Х
F	F	Y

- 1 X = Y = F,蕴涵真值表和合取真值表相同;
- 2X = F, Y = T 蕴涵真值表和双蕴涵真值表相同;
- 3 X = T, Y = F, $(\alpha \rightarrow \beta)$ 的真值与 β 相同;
- 4 $X = Y = T_{\circ}$

例

$\phi \alpha$ 为下列合式公式:

$$(((\textit{\textbf{B}} \rightarrow (\textit{\textbf{A}} \rightarrow \textit{\textbf{C}})) \leftrightarrow ((\textit{\textbf{B}} \land \textit{\textbf{A}}) \rightarrow \textit{\textbf{C}}))).$$

令
$$v(A) = v(B) = T 且 v(C) = F$$
。 计算 $\bar{v}(\alpha)$ 的值。

指派扩张的唯一性

定理

对任意 S 上的真值指派 V 都存在唯一的一个扩张 $\bar{V}: \bar{S} \longrightarrow \{T, F\}$ 满足16条件(1)-(6)。

证明

- 存在性;
- 唯一性:对 \bar{S} 中的公式运用归纳原理,证明:对任意的 $\alpha \in \bar{S}$,对满足条件的两个扩张 \bar{v}_1, \bar{v}_2 ,总有 $\bar{v}_1(\alpha) = \bar{v}_2(\alpha)$ 。

指派扩张的唯一性

我们称真值指派 v满足一个公式 φ 如果 $\bar{v}(\varphi) = T$ 。

定义

我们称公式集 Σ 重言蕴涵公式 τ ,记作 $\Sigma \models \tau$,如果每个满足 Σ 中所有公式的真值指派都满足 τ 。

例

- **1** 验证: $\{(\alpha \land \beta)\} \models \alpha$;
- 2 公式集 {A, (¬A)} 重言蕴涵 B 吗?

重言式

- **1** 称公式 τ 为重言式, 如果 $\emptyset \models \tau$, 记作 $\models \tau$;
- 2 $\{\sigma\} \models \tau$ 记作 $\sigma \models \tau$;
- 3 称公式 σ 与 τ 重言等价,如果 $\sigma \models \tau$ 且 $\tau \models \sigma$ 。

重言式举例 |

结合律

- $((A \land (B \land C)) \leftrightarrow ((A \land B) \land C))_{\circ}$

交换律

- $((A \wedge B) \leftrightarrow (B \wedge A))_{\circ}$

分配律

重言式举例 ||

- $((A \lor (B \land C)) \leftrightarrow ((A \lor B) \land (A \lor C)))_{\circ}$

双重否定

$$((\neg(\neg A)) \leftrightarrow A)$$

重言式举例 III

德摩根律

其他

- 排中律: (A ∨ (¬A));
- ② 矛盾律: (¬(A∧(¬A)));
- ③ 逆否命题: $((A \rightarrow B) \leftrightarrow ((\neg B) \rightarrow (\neg A)))$ 。

目录

- 11 引言
- 2 命题逻辑的语言
- 3 命题逻辑的语义: 真值指派
- 4 唯一可读性
- 5 其他联话
- 6 命题逻辑的一个推演系统
- 7 命题逻辑的可靠性和完全性定理
- 8 紧致性定理
- 9 布尔代数
- 10 模态逻辑简介
 - 克里普克的可能世界语义学
 - 模态逻辑的一个推理系统 K
 - 系统 K 的可靠性与完全性

唯一可读性上

定理

对任意的公式 α ,下列陈述有且仅有一条成立:

- 1 α 是一个命题符号;
- 2 α 形如 $(\neg \beta)$, 其中 β 是一个公式;
- ③ α 形如 $(\alpha_1 \star \alpha_2)$, 其中 α_1 和 α_2 是合式公式。

不仅如此,在情形 2 和 3 中, β , α_1 和 α_2 以及联结词 \star 都是唯一的。

证明

唯一可读性 ||

- 令 $P(\alpha)$ 表示以上 α 满足以上三条性质中的一条。
 - 1 由归纳原理,度任意的公式 α , $P(\alpha)$ 成立;
 - 2 情形 1 与情形 2、3 不可能重合;
 - ③ 下面证明情形 2 和情形 3 不可能重合: 反设 $(\neg \beta)$ 与 $(\alpha_1 \star \alpha_2)$ 相同。则 α_1 的第一个符号是 \neg ,故 $P(\alpha_1)$ 不成立,矛盾。
 - 4 最后检查唯一性。只需检查情形 3 的唯一性。反设 $(\beta_1 \star \beta_2)$ 与 $(\alpha_1 \star \alpha_2)$ 相同。如果 $\beta_1 = \alpha_1$,显然 $\beta_2 = \alpha_2$ 。故 $\beta_1 \neq \alpha_1$,从而 β_1 是 α_1 的真前段(或者相反),而公式的真前段不可能是公式。矛盾。

公式的简化 1

- 最外层的括号总是省略;
- 2 否定词的"管辖范围"尽可能短。例如 ¬A∨B表示 (¬A)∨B;
- 3 同一个联词反复出现时,以右边为先。例如 $A \rightarrow B \rightarrow C$ 表示 $A \rightarrow (B \rightarrow C)$ 。

目录

- 11 引言
- 2 命题逻辑的语言
- 3 命题逻辑的语义:真值指派
- 4 唯一可读性
- 5 其他联词
- 6 命题逻辑的一个推演系统
- 7 命题逻辑的可靠性和完全性定理
- 8 紧致性定理
- 9 布尔代数
- 10 模态逻辑简介
 - 克里普克的可能世界语义学
 - 模态逻辑的一个推理系统 K
 - 系统 K 的可靠性与完全性

合式公式的函数特性

- 在算术系统中: + 和 × 将简单的表达式复合为复杂的表达式;
- 2 逻辑联结词将简单的合式公式复合为复杂的合式公式;
- 3 算术表达式 = 实值函数;
- 4 合式公式 = 取值为 $\{T, F\}$ 的函数;
- 5 简单表达式 = 简单函数;
- 6 复杂表达式 = 复合函数;
- **7** 复杂的合式公式 = 复合的 $\{T, F\}$ -值函数。

布尔函数I

- ¬A 只含有一个命题符号,是一个一元 2-值函数;
- 2 A ★ B 含有两个命题符号,是一个二-元 2-值函数;
- 3 一般地,一个含有 *n* 个命题符号的合式公式是一个 *n*-元 2-值函数。

布尔函数

我们称一个从 $\{T,F\}^k$ 到 $\{T,F\}$ 的函数f为一个k-元布尔函数。

布尔函数 ||

- 规定两个 0-元联结词: ⊥, ⊤, 分别代表恒真, 恒假;
- 任何一个命题符号都是等同函数;
- 一个含有 n 个命题符号的合式公式是一个 n-元布尔函数;

合式公式定义的布尔函数

令 α 是含有 n 个命题符号 $A_1,...,A_n$ 的合式公式。则 α 定义了一个 n-元布尔函数 B^n_α : 设 $X_1,...,X_n \in \{T,F\}$,则

$$B^n_{\alpha}(X_1,...,X_n) =$$
 每个 A_i 分别被赋予值 X_i 时合式公式 α 的值.

思考

一个有多少个 n-元布尔函数?

布尔函数与合式公式的等价性上

- 任何合式公式自然地定义了一个布尔函数;
- ② 任意一个 *n*-元布尔函数是否可以被某个合式公式表达(定义)?

例

定义 M(A, B, C) 为的值为 A, B, C 中的多数,例如 M(T, F, T) = T, M(T, F, F) = F。找出表达 M 的公式。

$$(A \land B \land C) \lor (\neg A \land B \land C) \lor (A \land \neg B \land C) \lor (A \land B \land \neg C)$$

布尔函数与合式公式的等价性Ⅱ

定理

任意一个 n-元布尔函数 G 可以被某个合式公式 α 表达。即 $G = B_{\alpha}^{n}$ 。

证明

1 如果 G 的值恒为 F,则令 α 为

$$(A_1 \wedge \neg A_1) \wedge ... \wedge (A_n \wedge \neg A_n)$$

2 否则,令 $\bar{X} = \{\bar{X}_1, ..., \bar{X}_k\}$ 为所有使得 G 取值为 T 的 n-元组,即 $\bar{X} = G^{-1}[\{T\}]$ 。假设每个 $\bar{X}_i = (X_{i_1}, ..., X_{i_n})$ 。今

$$eta_{ij} = egin{cases} A_j, 如果X_{ij} = T \
eg A_j, 其他 \end{cases}$$

$$\gamma_i = \beta_{i1} \wedge ... \wedge \beta_{in}$$
$$\alpha = \gamma_1 \vee ... \vee \gamma_n$$

则
$$G = B_{\alpha}^n$$
。

析取范式

析取范式

称一个公式 α 为析取范式,如果 $\alpha = \gamma_1 \vee ... \vee \gamma_n$,其中 $\gamma_i = \beta_{i1} \wedge ... \wedge \beta_{in}$ 并且每个 β_{ij} 或者是命题符号,或者是命题符号的否定。

推论

每个合式公式 ϕ 都重言等价于某个析取范式。

注

重言等价是合式公式集合上的等价关系,其商集与布尔函数集合——对应;

全功能联词

定义

我们称一个联词的集合 C 是<mark>功能完全</mark>的,如果任何一个布尔函数都可以用仅仅涉及 C 中联词的公式来表达。 $\{\neg, \lor, \land\}$ 是功能完全的。

由德摩根律,显然有:

推论

联词的集合 $\{\neg, \land\}$ 和 $\{\neg, \lor, \}$ 是功能完全的。

例

例

 $\{\land, \rightarrow\}$ 不是功能完全的。

推论

归纳证明: 如果公式 α 中只含有 A, 则 $A \models \alpha$ 。因此 $\neg A$ 无法被表达。

目录

- 1 引言
- 2 命题逻辑的语言
- 3 命题逻辑的语义: 真值指派
- 4 唯一可读性
- 5 其他联词
- 6 命题逻辑的一个推演系统
- 7 命题逻辑的可靠性和完全性定理
- 8 紧致性定理
- 9 布尔代数
- 10 模态逻辑简介
 - 克里普克的可能世界语义学
 - 模态逻辑的一个推理系统 K
 - 系统 K 的可靠性与完全性

证明的形式化上

证明的特点

- 1 证明是严格化的推理;
- 2 证明是从假设到结论的一根逻辑链条;
- 3 证明是有限长的;
- 4 证明需要有一个 Δ 理集 Λ ;
- 5 证明需要有一个假设集 Γ ;
- 6 证明需要有推理规则;
- 7 推理规则是简单的、机械的;

证明的形式化Ⅱ

内定理与定理

- **I** Γ 所能推出的结论是 Γ 的定理集;
- **2** 如果 ϕ 是 Γ 的定理,则记录整个推演过程的公式序列就被称为从 Γ 到 ϕ 的一个证明;
- 3 对象语言(如命题逻辑的语言)-内定理;
- 4 元语言-定理。

推演系统 L

推演系统 L 的语言

推演系统 L 的逻辑联词仅有 \neg 和 \rightarrow ,其他逻辑连词可以看作是 缩写。

推演系统 L 的公理集

推演系统 L 的公理集 Λ 为

(A1)
$$\alpha \to (\beta \to \alpha)$$
;

(A2)
$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma));$$

(A3)
$$(\neg \beta \rightarrow \neg \alpha) \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \beta)$$
,

推演系统 L 的推理规则

系统 L 的推理规则只有一条,称为<mark>分离规则</mark>: 从 α 和 $\alpha \rightarrow \beta$ 可 _{47/115}以推出 β。

推演丨

定义

从公式集 Γ 到公式 ϕ 的一个<mark>推演</mark>(或者一个证明)是一个有限的公式序列

$$(\alpha_0,...,\alpha_n)$$

满足 $\alpha_n = \phi$ 并且对任意的 $i \leq n$,或者

- 1 $\alpha_i \in \Gamma \cup \Lambda$; 或者
- ② 存在 j, k < i, α_i 是从 α_j 和 α_k 由分离规则而得到的,即 $\alpha_k = \alpha_j \rightarrow \alpha_i$ 。

推演Ⅱ

定义

注

- **1** 如果 $\Gamma \subseteq \Delta$ 且 $\Gamma \vdash \alpha$,则 $\Delta \vdash \alpha$;
- **2** $\Gamma \vdash \alpha$ 当且仅当存在 Γ 的一个有穷子集 Γ_0 使得 $\Gamma_0 \vdash \alpha$ 。

推演 III

引理

对任意的合式公式 α , 有 $\vdash \alpha \rightarrow \alpha$.

证明

$$\alpha \to ((\alpha \to \alpha) \to \alpha);$$

$$(\alpha \to (\alpha \to \alpha)) \to (\alpha \to \alpha);$$

4
$$\alpha \to (\alpha \to \alpha)$$
;

$$\delta$$
 $\alpha \rightarrow \alpha$.

推演IV

演绎定理

设 Γ 是一个公式集, α 和 β 是两个公式。则 $\Gamma \cup \{\alpha\} \vdash \beta$ 当且仅当 $\Gamma \vdash \alpha \to \beta$ 。特别地, $\{\alpha\} \vdash \beta$ 当且仅当 $\vdash \alpha \to \beta$ 。

证明:

- (⇒) 设 $(\beta_1,...,\beta_n)$ 是 $\Gamma \cup \{\alpha\}$ 到 β 的推演序列,其中 $\beta_n = \beta$ 。 对 $i \leq n$ 归纳证明 $\Gamma \vdash (\alpha \to \beta_i)$ 。
 - **1** i=1 时, $\beta_1 \in \Gamma \cup \Lambda$,或者 $\beta_1 = \alpha$ 。
 - **1** 在前一种情形中用公理 $\vdash \beta_1 \to (\alpha \to \beta_1)$ 和分离规则即可得 到 $\alpha \to \beta_1$ 。
 - **2** 后一直情形用 $\vdash \alpha \rightarrow \alpha$ 即可。
 - ② 假设对一切的 k < i,均有 $\Gamma \vdash \alpha \rightarrow \beta_k$ 。

推演V

- 1 若 $\beta_i \in \Gamma \cup \Lambda \cup \{\alpha\}$,则以上论证对 β_i 也成立;
- 2 若 β_i 是由 β_j 和 β_k 通过分离规则而得到的,则根据归纳假设有 $\Gamma \vdash \alpha \rightarrow \beta_j$, $\Gamma \vdash \alpha \rightarrow (\beta_j \rightarrow \beta_i)$ ($\beta_k = \beta_j \rightarrow \beta_i$)。由于

$$(\alpha \to (\beta_j \to \beta_i)) \to ((\alpha \to \beta_j) \to (\alpha \to \beta_i))$$

是公理。两次运用分离规则可得到 $\Gamma \vdash \alpha \rightarrow \beta_i$ 。

(⇒)直接由分离规则可得到。

推演 VI

推论

目录

- 1 引言
- 2 命题逻辑的语言
- 3 命题逻辑的语义:真值指派
- 4 唯一可读性
- 5 其他联词
- 6 命题逻辑的一个推演系统
- 7 命题逻辑的可靠性和完全性定理
- 8 紧致性定理
- 9 布尔代数
- 10 模态逻辑简介
 - 克里普克的可能世界语义学
 - 模态逻辑的一个推理系统 K
 - 系统 K 的可靠性与完全性

可靠性定理 |

可靠性定理

令 Σ 是一个公式集合,并且 τ 是一个公式。如果 $\Sigma \vdash \tau$ 则 $\Sigma \models \tau$ 。特别地,如果 $\vdash \tau$ 则 $\models \tau$,换言之,L 的每个内定理都是重言式。

证明

首先,(A1),(A2) 和 (A3) 中的公理都是重言式。 设 $\Sigma \vdash \tau$,且 $(\tau_1, ..., \tau_n)$ 是其推演序列。设 v 是满足 Σ 的一个真值指派。对 i 实施强归纳来证明:对任意的 $1 \le i \le n$,都有 v 满足 τ_i 。

假设 V 满足所有的 τ_k (k < i),我们来证明 V 满足 τ_i

可靠性定理 ||

- 1 若 $\tau_i \in \Sigma \cup \Lambda$,则 ν 满足 τ_i ;
- ② 若 τ_i 由 $\tau_j, \tau_k = \tau_j \rightarrow \tau_i$ 通过分离规则而得到的,则根据归纳假设,由 $\mathbf{v}(\tau_j) = \mathbf{v}(\tau_j \rightarrow \tau_i) = \mathbf{T}$,故 $\mathbf{v}(\tau_i) = \mathbf{T}$ 。

根据归纳法, v 满足 τ_n , 即 $v(\tau) = T$ 。

完全性定理

完全性定理

如果 $\Sigma \models \tau$ 则 $\Sigma \vdash \tau$ 。

- 11 我们引入一致性与可满足性;
- 2 证明完全性定理的一个等价形式;
- **3** 相同的思路可以用来证明一阶逻辑的完全性。

一致性上

定义

我们称公式集 Σ 是<mark>不一致</mark>的(或<mark>矛盾</mark>的)如果存在某个公式 α 使得 $\Sigma \vdash \alpha$ 并且 $\Sigma \vdash \neg \alpha$ 。称 Σ 是一致的,如果它不是不一致的。

注

公式集 Σ 是一致的当且仅当它的每个有限子集都是一致的。

引理

公式集 Σ 是不一致的当且仅当对所有的公式 β , 有 $\Sigma \vdash \beta$ 。

证明

习题。

一致性川

引理

 $\Sigma \vdash \tau$ 当且仅当 $\Sigma \cup \{\neg \tau\}$ 不一致。

证明

- \Rightarrow 如果 $\Sigma \vdash \tau$, 则 $\Sigma \cup \{\neg \tau\} \vdash \tau$ 且 $\Sigma \cup \{\neg \tau\} \vdash \neg \tau$.
 - 故 $\Sigma \cup \{\neg \tau\}$ 不一致。
- \leftarrow 假设 $\Sigma \cup \{\neg \tau\}$ 不一致。则 $\Sigma \cup \{\neg \tau\} \vdash \tau$,从而 $\Sigma \vdash \neg \tau \rightarrow \tau$ 。根据公理 (A3),有

$$\vdash (\neg \tau \to \neg \tau) \to ((\neg \tau \to \tau) \to \tau)$$

连续运用分离规则,可得到 $\Sigma \vdash \tau$ 。

可满足性上

定义

我们称公式集 Σ 是<mark>可满足</mark>的,如果存在某个真值指派 V 满足 Σ 中所有的公式。称 Σ 是<mark>不可满足</mark>的,如果它不是可满足的。

引理

下列命题等价:

- 1 如果 Σ 一致,则 Σ 可满足;
- 2 如果 $\Sigma \models \tau$,则 $\Sigma \vdash \tau$ 。

可满足性Ⅱ

证明

- **1**⇒**2** 假设 **1** 成立且 $\Sigma \models \tau$ 。反设 $\Sigma \nvdash \tau$ 。则 $\Sigma \cup \{\neg \tau\}$ 是 一致的,从而可满足。故而存在真值指派 ν 满足 Σ 且不满足 τ 。矛盾
- **2**←1 假设 2 成立且 Σ 一致。反设 Σ 不可满足,则对每个 τ 都有 $\Sigma \models \tau$,从而 $\Sigma \vdash \tau$ 。故 Σ 不一致。矛盾。

极大一致性I

定义

我们称公式集 Δ 是极大一致的如果 Δ 一致,并且对任意的不在 Δ 中的公式 α ,都有 $\Delta \cup \{\alpha\}$ 不一致。

极大一致性 ||

引理 (林登鲍姆)

每个一致的公式集 Σ 都可以扩张为一个极大一致的公式集 Δ

证明

设 $\alpha_0,\alpha_1,\alpha_2,...$ 是全体公式的一个枚举。递归的定义公式集的序列 $\{\Delta_n\}_{n\in\mathbb{N}}$ 如下:

$$1 \Delta_0 = \Sigma;$$

对 n 归纳可以证明每个 Δ_n 都是一致的。令 Δ 是 $\bigcup_{n\in\mathbb{N}} \Delta_n$ 。则 Δ 包含 Σ 并且 Δ 是一致的。显然 Δ 也是极大一致的。

极大一致性 |||

引理

每个极大一致的公式集 Δ 都是可满足的。事实上定义一个真值 指派 v 使得 $v(A_i) = T$ 当且仅当 $A_i \in \Delta$,则 v 满足 Δ 。

证明

练习。

推论

每个一致的公式集 Σ 都是可满足的。

一阶逻辑 ^{__} _{命题逻辑的可靠性和完全性定理}

紧致性定理

紧致性定理

公式集 Σ 是可满足的当且仅当 Σ 的每个有限子集都是可满足的。

证明

可满足当且仅当一致。

例

例

证明任何一个集合都可以被线序化。

证明

设 M 是一个集合。命题符号集合 S 为 $\{P_{ab}|\ a,b\in M\}$ 。 S 上的 公式集 Γ 为

$$\Gamma = \{ \neg P_{aa}: a \in M \} \cup \{ P_{ab} \rightarrow (P_{bc} \rightarrow P_{ac}): a, b, c \in M \}$$
$$\cup \{ P_{ab} \lor P_{ba} | a, b \in M, a \neq b \}$$

则 Γ 的任何有限子集都是可满足的。根据紧致性定理, Γ 也是可满足的。任何满足 Γ 的真值指派都给出 M 上的一个线序。

注

- 可靠性定理表明系统 L 所能证明的都是重言式,即系统 L 是一致的;
- 判定一个公式 α 是否是内定理或者是否可满足,在时间效率上极低。(P = NP?)

目录

- 1 引言
- 2 命题逻辑的语言
- 3 命题逻辑的语义: 真值指派
- 4 唯一可读性
- 5 其他联词
- 6 命题逻辑的一个推演系统
- 7 命题逻辑的可靠性和完全性定理
- 8 紧致性定理
- 9 布尔代数
- 10 模态逻辑简介
 - 克里普克的可能世界语义学
 - 模态逻辑的一个推理系统 K
 - 系统 K 的可靠性与完全性

拓扑空间上

拓扑空间

设 X 是一个集合, $\tau \subseteq \mathcal{P}(X)$ 。如果:

- $\blacksquare \in \tau, X \in \tau;$
- 若 $A, B \in \tau$, 则 $A \cap B \in \tau$;
- 若 $\{A_i | i \in I\} \subseteq \tau$,则 $\bigcup_{i \in I} A_i \in \tau$.

则称结构 (X,τ) 是一个拓扑空间,称 τ 中的元素为开集,称开集的补集为闭集。等价地(对偶地),可以通过规定闭集来定义拓扑空间。

注

拓扑空间Ⅱ

设 $\tau_0 \subseteq \mathcal{P}(X)$ 是 X 的一族子集,则 τ_0 可以生成一个拓扑 τ :

- $\blacksquare \ \tau_1 = \tau_0 \cup \{\emptyset, X\};$
- $\tau_2 = \{B \mid$ 存在有限个 $A_1, ..., A_k \in \tau_1$ 使得 $B = \bigcap_{i=1}^k A_i \}$
- $\tau = \{B \mid$ 存在一族 $\{A_i \mid i \in I\} \subseteq \tau_1$ 使得 $B = \bigcup_{i \in I} A_i\}$

例

- 实数集 \mathbb{R} 上的开区间族 $\{(a,b)|\ a < b \in \mathbb{R}\}$ 生成了一个拓 $h \tau$ 。
- 若 (X,τ) 是一个拓扑空间, $Y \subseteq X$,则 $(Y, \{A \cap Y | A \in \tau\})$ 是一个拓扑空间,称为 (X,τ) 的子空间。

紧致空间上

紧致空间

设 (X,τ) 是一个拓扑空间, $\{U_i|\ i\in I\}\in\tau$ 。如果 $X=\bigcup_{i\in I}U_i$,则称 $\{U_i|\ i\in I\}$ 是 X 的一个开覆盖。如果对每个开覆盖 $\{U_i|\ i\in I\}$,都存在有限子集 $I_0\subseteq I$ 使得 $\{U_i|\ i\in I_0\}$ 也是 X 的覆盖(称作 $\{U_i|\ i\in I\}$ 的有限子覆盖),则称 (X,τ) 是一个紧致空间(简称紧空间)。

沣

设 (X,τ) 是一个拓扑空间。如果一族闭集 $\{V_i|i\in I\}$ 满足:对任意有限子集 $I_0\subseteq I$,有 $\bigcap_{i\in I_0}V_i\neq\emptyset$,则称 $\{V_i|i\in I\}$ 有有限交性质。

紧致空间 ||

引理

设 (X,τ) 是一个拓扑空间。如果对任意一个满足有限交性质的闭集族 $\{V_i|\ i\in I\}$,都有 $\bigcap_{i\in I}V_i\neq\emptyset$,则 X 是紧致的。

斯通空间

豪斯多夫空间

设 (X,τ) 是一个拓扑空间。如果对任意的 $x,y\in X$, 存在 $U,V\in\tau$ 使得 $x\in U,\ y\in V,\ U\cap V=\emptyset$, 则称 X 是一个豪斯 多夫空间。

完全不连通空间

设 (X,τ) 是一个拓扑空间。如果对任意的 $x,y\in X$, 存在 $U\in \tau$ 使得 $X\setminus U\in \tau$, (此时称 U 为开闭集) $x\in U$, $y\in X\setminus U$, 则称 X 是一个完全不连通的。

斯通空间

如果 (X, τ) 是一个紧致的,完全不连通的空间,则称其为斯通空间。

斯通空间-极大一致集的空间

极大一致集的空间

设 $\{A_i|i\in\mathbb{N}\}$ 是一组命题符号, \mathfrak{B} 是其生成的公式集,

$$\mathfrak{X} = \{ p | p \in \mathfrak{B} \text{ 上的极大一致集}_{\circ} \}$$

对每个公式 $\phi \in \mathfrak{B}$,令 $< \phi >= \{ p \in \mathfrak{X} | \phi \in p \}$ 。令 τ 是由 $\{ < \phi > | \phi \in \mathfrak{B} \}$ 生成的拓扑。

定理

X 是一个斯通空间。

证明

- $1 < \phi > \cap < \psi > = < \phi \land \psi >, < \phi > \cup < \psi > = < \phi \lor \psi >;$
- **2** {< φ >, φ ∈ 𝘗} 关于有限交封闭;
- $U \subseteq \mathfrak{X}$ 是开集当且仅当 $U = \bigcup_{i \in I} < \phi_i >$
- 4 $V \subseteq \mathfrak{X}$ 是闭集当且仅当 $V = \bigcap_{i \in I} \langle \phi_i \rangle$;
- $0 = \langle \phi \land \neg \phi \rangle, \mathfrak{X} = \langle \phi \lor \neg \phi \rangle;$
- 6 $\mathfrak{X}\setminus <\phi>=<\neg\phi>$,故 $<\phi>$ 是开闭集;
- 7 设 $p \neq q \in \mathfrak{X}$,则存在 $\phi \in \mathfrak{B}$ 使得 $\phi \in p$, $\phi \notin q$,即 $p \in \langle \phi \rangle$ 且 $q \notin \langle \phi \rangle$,故 \mathfrak{X} 完全不连通;
- 8 设 $V_{i \in I}$ 是一族具有有限交性质的闭集;
- 9 设每个 $V_i = \cap_{j \in J} < \phi_i^j >$,则公式集 $\{\phi_i^j | i \in I, j \in J\}$ 是有限一致的;
- 10 $\{\phi_i'|\ i\in I, j\in J\}$ 可以扩张为一个极大一致集合 ρ ,故 $\rho\in\bigcap_{i\in I}V_i;$
- $oldsymbol{1}$ 故 $\mathfrak X$ 是紧致的。(该证明无需"紧致性定理")

斯通空间-真值指派的空间

真值指派的空间

设 $\{A_i|i\in\mathbb{N}\}$ 是一组命题符号, $\mathfrak B$ 是其生成的公式集,

$$\mathfrak{X}^* = \{ v | v \in A_i | i \in \mathbb{N} \text{ 上的真值指派}_{\circ} \}$$

对每个公式 $\phi \in \mathfrak{B}$,令 $[\phi] = \{ v \in \mathfrak{X}^* | \bar{v}(\phi) = T \}$ 。令 τ 是由 $\{ [\phi] | \phi \in \mathfrak{B} \}$ 生成的拓扑。

定理

X* 是一个斯通空间。

证明Ⅰ

- 2 { $[\phi], \phi \in \mathfrak{B}$ } 关于有限交封闭;
- ③ $U \subseteq \mathfrak{X}^*$ 是开集当且仅当 $U = \bigcup_{i \in I} [\phi_i]$;
- 4 $V \subseteq \mathfrak{X}^*$ 是闭集当且仅当 $V = \bigcap_{i \in I} [\phi_i]$;
- 6 $\mathfrak{X}\setminus[\phi]=[\neg\phi]$,故 $[\phi]$ 是开闭集;
- ② 设 $u \neq v \in \mathfrak{X}^*$,则存在 A_i 使得 $\bar{v}(A_i) = T$, $\bar{u}(A_i) = F$,即 $v \in [A_i]$ 且 $u \notin [A_i]$,故 \mathfrak{X}^* 完全不连通;
- **8** 设 $V_{i \in I}$ 是一族具有有限交性质的闭集;
- ⑨ 设每个 $V_i = \bigcap_{j \in J} [\phi_i^j]$,则公式集 $\{\phi_i^j | i \in I, j \in J\}$ 是<mark>有限可满足的</mark>,显然 $\bigcap_{i \in I} V_i \neq \emptyset$ 当且仅当 $\{\phi_i^j | i \in I, j \in J\}$ 可满足;

证明Ⅱ

- 10 重新将 $\{\phi_i^j|i\in I,j\in J\}$ 枚举为 $\{\psi_n|n\in\mathbb{N}\}$,同时假设 ψ_n 是一个合取范式;
- II 则 $\{[\psi_n] | n \in \mathbb{N}\}$ 具有有限交性质;
- **12** 令 θ_m 为所有的仅含命题符号 $\{A_0, ..., A_m\}$ 的那些 ψ_n 的公式的合取(在重言等价的意义下);
- 13 显然 $\{\psi_n | n \in \mathbb{N}\}$ 可满足当且仅当 $\{\theta_m | m \in \mathbb{N}\}$ 可满足;
- **II** 断言: 存在真值指派序列 $\{v_m: \{A_0, ..., A_m\} \rightarrow \{T, F\} | m \in \mathbb{N} \}$ 使得:
 - $\bar{\mathbf{v}}_{m}(\theta_{m}) = T;$
 - $v_m \subseteq v_{m+1};$
 - 3 对任意的 k > m,存在 $v : \{A_0, ..., A_k\} \rightarrow \{T, F\}$ 且 $v(\theta_k) = T$ 且 $v_m \subseteq v$;
- **15** 证明断言: 对 $m \in \mathbb{N}$ 归纳证明。假设满足条件 1 和 3 的 v_m 已经找到,而满足条件的 v_{m+1} 不存在;

证明Ⅲ

- 16 则对每个 v_m 的扩张 $u: \{A_0,...,A_m,A_{m+1}\} \to \{T,F\}$,如果 u 满足 θ_{m+1} ,则存在 $k_u \in \mathbb{N}$, $k_u > m+1$,使得任意 $u': \{A_0,...,A_{k_v}\} \to \{T,F\}$ 都不是 u 的扩张;
- **17** $A_0, ..., A_m, A_{m+1}$ 上的真值指派只有有限多个。设 $u_0, ..., u_j$ 是所有的满足 θ_{m+1} 的 V_m 的扩张;
- 18 令 $k = \max\{k_{u_0,...,u_j}\}$,则根据归纳假设存在 $v: \{A_0,...,A_k\} \to \{T,F\}$ 使得 $v(\theta_k) = T$ 且 $v_m \subseteq v$;
- 19 显然,对任意的 i < k, $\bar{v}(\theta_i) = T$;
- 20 令 $u = v|_{A_1,...,a_{m+1}}$,则 $' = v|_{A_1,...,a_{k_u}}$ 是 u 的扩张,与 16 矛盾。断言证毕。
- 21 令 $v_{\omega} = \bigcup v_n$,则 $v_{\omega} : \{A_n | n \in \mathbb{N}\} \to \{T, F\}$ 满足所有的 θ_m 。
- 22 故 災 是一个紧空间。

注

- 以论述明显然也给出了紧致性定理得一个证明方法;
- **2** 显然,紧致性定理可以直接推出 \mathfrak{X}^* 是一个紧空间,反之亦 然。
- **3** 完备性定理事实上可以表述为: \mathfrak{X}^* 与 \mathfrak{X} 是同胚的:

$$\mathbf{v} \mapsto \mathbf{p}_{\mathbf{v}} = \{ \phi \in \mathfrak{B} | \ \bar{\mathbf{v}}(\phi) = \mathbf{T} \}.$$

练习I

乘积拓扑

设 $\{X_n|\ n\in\mathbb{N}\}$ 是一族拓扑空间,则 $X=\prod_{n\in\mathbb{N}}X_n=\{(x_n)_{n\in\mathbb{N}|\ x_n\in X_n}\}$ 。 如果 $U_0\subseteq X_0,...,U_n\subseteq X_n$,则称 $U_0\times...\times U_n\times\prod_{m\in\mathbb{N}}X_{n+m+1}$ 为一个基础开集。定义 X 上的拓扑为: U 是开集当且仅当 U 是基础开集之并。则称 X 是 $\{X_n|\ n\in\mathbb{N}\}$ 的积空间。

练习1

集合 $\{0,1\}$ 是一个拓扑空间,其每个子集都是开集。令 $\{0,1\}^{\mathbb{N}}=\{0,1\}\times\{0,1\}\times\{0,1\}\times...$ 。证明: $\{0,1\}^{\mathbb{N}}$ 同胚于 \mathfrak{X}^* ;

练习Ⅱ

练习2

考虑实闭区间 $Y_0 = [0,1]$,将 [0,1] 的子区间 (1/3,2/3) 挖掉,得到 $Y_1 = [0,1/3] \cup [2/3,3/3]$,再将 Y_1 的每个区间段的中间三分之一挖掉,得到集合 $Y_2 = [0,1/9] \cup [2/9,3/9] \cup [6/9,7/9] \cup [8/9,9/9]$,…,将此过程重复,得到集合序列

$$Y_0 \supset Y_1 \supset Y_2 ... \supset Y_n \supset ...$$

令 $Y = \bigcap_{n \in \mathbb{N}} Y_n$,称之为康托集。证明: Y 同胚于 $\{0,1\}^{\mathbb{N}}$ 。

目录

- 11 引言
- 2 命题逻辑的语言
- 3 命题逻辑的语义: 真值指派
- 4 唯一可读性
- 5 其他联词
- 6 命题逻辑的一个推演系统
- 7 命题逻辑的可靠性和完全性定理
- 8 紧致性定理
- 9 布尔代数
- 10 模态逻辑简介
 - 克里普克的可能世界语义学
 - 模态逻辑的一个推理系统 K
 - 系统 K 的可靠性与完全性

布尔代数I

布尔代数

设 \mathfrak{B} 是一个集合,其中有两个特殊元素 $\{0,1\}$ 。如果映射 $\neg:\mathfrak{B}\to\mathfrak{B}, \wedge:\mathfrak{B}\times\mathfrak{B}\to\mathfrak{B}$,以及 $\vee:\mathfrak{B}\times\mathfrak{B}\to\mathfrak{B}$ 満足以下条件,则称 $(\mathfrak{B},\neg,\vee,\wedge,0,1)$ 是一个布尔代数。

- **1** 德摩根律: $\neg(\neg x) = x$, $\neg(x \land y) = \neg x \lor \neg y$, $\neg(x \lor y) = \neg x \land \neg y$;
- 2 \wedge 结合性: $(x \wedge y) \wedge z = x \wedge (y \wedge z)$;
- 3 ∨ 结合性: $(x \lor y) \lor z = x \lor (y \lor z)$;
- 4 \wedge 对 \vee 的分配律: $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$;
- 5 \vee 对 \wedge 的分配律: $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$;
- **6** 交换律: *x* ∧ *y* = *y* ∧ *x*, *x* ∨ *y* = *y* ∨ *x*;

布尔代数Ⅱ

- 7 $X \wedge \neg X = 0$, $X \vee \neg X = 1$;
- 8 $X \wedge 0 = 0$, $X \vee 0 = X$, $X \wedge 1 = X$, $X \wedge 1 = 1$;
- 9 $0 \neq 1$, $\neg 0 = 1$, $\neg 1 = 0$.

3 上的偏序

定义 \mathfrak{B} 上的偏序 \leq 为: $x \leq y \iff x \vee y = y$ 。根据对偶性, $x \leq y \iff x \wedge y = x$ 。

引理

 $x \le y$ 当且仅当 $\neg y \le \neg x$;

例子I

- 设 X 是一个集合,则 $(\mathcal{P}(X), \neg, \cup, \cap, \emptyset, X)$ 是一个布尔代数, 其上的偏序为 \subseteq 。
- 若 $E \subseteq (\mathcal{P}(X)$ 关于交并补封闭,则 E 也是一个布尔代数。
- 设 \mathcal{F}_X 是所有形如 $f: X \to \{0,1\}$ 的函数的集合,记作 $\mathcal{F} = 2^X$ 。对任意 $f, g \in \mathcal{F}_X, x \in X$,定义:
 - 1 $(\neg f)(x) = 1 \iff f(x) = 0$;
 - 2 $(f \land g)(x) = 1 \iff f(x) = g(x) = 1$;
 - $(f \wedge g)(x) = 0 \iff f(x) = g(x) = 0.$

则 \mathcal{F}_X 是一个布尔代数;

- F_X 与 P(X) 同构;
- 设 X 是一个命题符号集, B_X 是 X 上的命题公式, \mathfrak{D}_X 是 B_X 在重言等价关系下的等价类,则 \mathfrak{D}_X 是一个布尔代数。
- \mathcal{F}_X 中有极小元, \mathfrak{B}_X 中无极小元(无原子)。

斯通定理I

滤子

设 \mathfrak{B} 是一个布尔代数, 如果 $F \subseteq \mathfrak{B}$ 满足:

- 1 $0 \notin F, 1 \in F$;
- **2** $x \in F$ 且 $x \le y$ 则 $y \in F$;
- **3** $x \in F$ 且 $y \in F$ 则 $x \land y \in F$.

则称 F 是一个滤子。如果进一步地,对每个 $x \in \mathfrak{D}$,有 $x \in F$ 或 $\neg x \in F$,则称 F 是 \mathfrak{D} 上的一个极大(超)滤子。

例子:

- 对每个 $x(\neq 0) \in \mathfrak{B}$, $(x) = \{y \in \mathfrak{B} | x \leq y\}$ 是一个滤子,称作 x 生成的滤子;
- 如果 x 还是极小元,则(x)是一个超滤;

斯通定理Ⅱ

- 如果 A ⊆ B 具有有限交性质,则 A 生成一个滤子,记作 (A);
- 考虑布尔代数 $\mathcal{P}(\mathbb{N})$ 。令 $D_k = \{kn | n \in \mathbb{N} \mid n \neq 0\}$,则 $D = \{D_k | k = 2, 3, 4, ...\}$ 生成一个滤子。
- 任何一个滤子都就可以扩张为超滤子;
- $F \subseteq \mathfrak{B}_X$ 是 (极大) 滤子当且仅当它是(极大)一致的;
- 由完全性定理, \mathcal{F}_X 是 \mathfrak{B}_X 的超滤空间;

斯通定理 Ⅲ

斯通表示定理

设 $\mathfrak B$ 是一个布尔代数,则存在一个斯通空间 $\mathfrak X$,使得 $\mathfrak B$ 同构于由 $\mathfrak X$ 的开闭集构成的布尔代数,且 $\mathfrak X$ 在同构意义下唯一。

证明:

目录

- 11 引言
- 2 命题逻辑的语言
- 3 命题逻辑的语义:真值指派
- 4 唯一可读性
- 5 其他联词
- 6 命题逻辑的一个推演系统
- 7 命题逻辑的可靠性和完全性定理
- 8 紧致性定理
- 9 布尔代数
- 10 模态逻辑简介
 - 克里普克的可能世界语义学
 - 模态逻辑的一个推理系统 K
 - \blacksquare 系统 K 的可靠性与完全性

模态逻辑I

- 必然,可能,应该,从前,将来,
- 模态逻辑/时态逻辑
- 哲学逻辑/知识表达/人工智能......

模态逻辑 ||

模态逻辑的符号系统只命题逻辑多一个符号 □,被称为<mark>模态算</mark> 子,是一元逻辑联结词。

- 如果 α 是合式公式,则 $(\Box \alpha)$ 也是合式公式;
- $\Diamond \alpha$ 表示 $\neg \Box \neg \alpha$;
- □和 ◇分别被解释为"必然"和"可能"。
- □和 ◇ 也可以分别被解释为"已经知道"和"不与目前所知矛盾";
- □ 和 ◇ 也可以分别被解释为"应该"和"有序";
- 对模态算子 □ 的不同解释导致不同的模态语义与推理系统。

- 克里普克的可能世界语义学

 - 4 唯一可读性
 - 5 其他联词

- 模态逻辑简介

└ 克里普克的可能世界语义学

克里普克模型丨

定义

- 1 称一个二元组 F = (W, R) 是一个框架,如果 W 是非空集合,R 是 W 上的二元关系;
- **2** 称命题符号集合到 $\mathcal{P}(W)$ 的映射 V 为一个赋值;
- ③ 称一个框架和赋值形成的二元组 M = (F, V) 为一个(克里普克)模型。模型 M 也被记作 M = (W, R, V)。

- 一阶逻辑
- 一模态逻辑简
 - ^{[__} 克里普克的可能世界语义学

克里普克模型Ⅱ

注

- W 中的元素被称为一个可能世界或世界;
- 2 称 xRy 为从 x 可以通达 y或者y 是 x 的一个将来世界;
- ③ 赋值 V 指派给命题符号 A 的集合 $V(A) \subseteq W$ 是使得 A 在其中成立的可能世界。

─模态逻辑简介 ───克里普克的可能世界语义学

克里普克语义I

定义

- **1** 称一个二元组 F = (W, R) 是一个框架,如果 W 是非空集合,R 是 W 上的二元关系;
- 2 称命题符号集合到 $\mathcal{P}(W)$ 的映射 V 为一个赋值;
- ③ 称一个框架和赋值形成的二元组 M = (F, V) 为一个 (克里普克) 模型。模型 M 也被记作 M = (W, R, V)。

定义

- 模态逻辑简介 -

└ 克里普克的可能世界语义学

克里普克语义Ⅱ

我们归纳地定义一个模态公式 α 在模型 M 中的世界 w 中为真,记作 $(M, w) \models \alpha$,如下:

- **11** 对每个命题符号 A_i , $(M, w) \models A_i$ 当且仅当 $w \in V(A_i)$;
- 2 $(M, w) \models \neg \beta$ 当且仅当 $(M, w) \not\models \beta$;
- 3 $(M, w) \models \beta \rightarrow \gamma$ 当且仅当 $(M, w) \not\models \beta$ 或者 $(M, w) \models \gamma$;
- 4 $(M, w) \models \Box \beta$ 当且仅当对任意的 $w' \in W$,如果 R(w, w'),则 $(M, w') \models \beta$ 。
- 若 $(M, w) \models \neg \alpha$,则称 α 在模型 M 中的世界 w 中为假。

定义

__ 克里普克的可能世界语义学

克里普克语义 III

一个模态公式 α 在模型 M = (W, R, V) 中为真,记作 $M \models \alpha$,如果对所有的 $w \in W$ 都有 $(M, w) \models \alpha$ 。

例

框架
$$F=(W,R)$$
, 其中 $W=\{u,v,w\}$, $R=\{(u,v),(u,w)\}$, 定义赋值 $V:\{A,B\}\to (W)$ 为: $V(A)=\{u,v\}$ 且 $V(B)=\{v\}$ 。则

$$(M, u) \models \Box(A \rightarrow B)$$
 但是 $(M, u) \not\models A \rightarrow \Box B$.

一阶逻辑

一模态逻辑简介

└ 克里普克的可能世界语义学

克里普克语义 IV

定义

一个模态公式 α 是<mark>普遍有效</mark>的,记作 $\models \alpha$,如果对所有的模型 M 都有 $M \models \alpha$ 。

例

证明: $\models \Box(\alpha \to \beta) \to (\Box\alpha \to \Box\beta)$ 。

- 1 引言
- 2 命题逻辑的语言
- 3 命题逻辑的语义: 真值指派
- 4 唯一可读性
- 5 其他联词
 - 6 命题逻辑的一个推演系统
- 7 命题逻辑的可靠性和完全性定理

└─模态逻辑的一个推理系统 *K*

推理系统 KI

公理

- **1** (A1), (A2), (A2);

推理股则

- 1 分离规则 MP;
- ② 必然化规则 RN: 从 α 可以得到 □ α 。

模态逻辑简介 └ 模态逻辑的一个推理系统 K

推理系统 K II

内定理

1 $\Gamma \vdash_{\kappa} \alpha$;

 $2 \vdash_{\kappa} \alpha_{\circ}$

例

证明: $(\alpha \to \beta) \vdash_{\kappa} (\Box \alpha \to \Box \beta)$ 。

证明

- 1 $\alpha \rightarrow \beta$;
- $\square(\alpha \to \beta);$

4 $\Box \alpha \rightarrow \Box \beta$.

- $\Box(\alpha \to \beta) \to (\Box \alpha \to \Box \beta);$

- 附逻辑 - 模态逻辑简介 - 模态逻辑的一个推理系统 *K*

模态重言式 |

模态重言式

- 将每个<mark>命题符号</mark>和形如($\square \alpha$)的模态公式全部列出,记作 $\beta_1, \beta_2, ...$;
- 引入新的命题符号,记作 *B*₁, *B*₂,...;

设 α 是一个模态公式,按照如下方式递归定义 $\hat{\alpha}$

- **1** 若 α 是 β_i ,则 $\hat{\alpha}$ 是 B_i ;
- 2 若 α 是 $\neg \psi$, 则 $\hat{\alpha}$ 是 $\neg \hat{\psi}$;
- 3 若 α 是 $\psi_1 \star \psi_2$,则 $\hat{\alpha}$ 是 $\hat{\psi}_1 \star \hat{\psi}_2$;

如果 $\hat{\alpha}$ 是一个命题重言式,则称 α 是是一个模态重言式。

-**阶逻辑** −模态逻辑简介 - [|]_- 模态逻辑的一个推理系统 *K*

模态重言式 ||

引理

如果 α 是模态重言式,则 $\vdash_K \alpha$ 。

证明

设模态公式的命题符号来自 $\mathcal{A}=\{A_n|\ n=1,2,3,...\}$,设 $\mathfrak{B}=\{B_i|\ i=1,2,...\}$ 如上。

- 证明对每个 \mathfrak{B} 上的命题公式 θ 存在 A 上唯一的模态公式 α 使得 $\theta = \hat{\alpha}$ 。
 - \blacksquare 对 $|\theta|$ 的长度归纳证明;
 - $|\theta| = 1$,则 $\theta = B_i$,即或者 $\theta = A_n$ 或者 $\theta = \Box \alpha$;
 - **3** 如果 $|\theta| > 1$,则 θ 为 $(\neg \theta_1)$ 或 $(\theta_1 \star \theta_2)$;
 - 4 由归纳假设 $\theta_1 = \hat{\alpha}_1$, $\theta_2 = \hat{\alpha}_2$;
 - **5** 显然 θ 为 $(\neg \alpha_1)$ 或 $(\alpha_1 \star \alpha_2)$;
 - **6** 归纳原理,可得 $\alpha \mapsto \hat{\alpha}$ 是双射。

模态重言式 Ⅲ

- 对证明长度归纳证明: 如果 $\vdash \hat{\alpha}$, 则 $\vdash_K \alpha$ 。
- 事实上可以证明:如果 $\hat{\alpha}_1,...,\hat{\alpha}_n$ 是命题逻辑中的一个证明,则 $\alpha_1,...,\alpha_n$ 是对应的模态逻辑的一个证明。

一则这辑 -- 模态逻辑简介 -- 模态逻辑的一个推理系统 K

K-极大一致集Ⅰ

引理

证明

对证明长度归纳证明。

- 设 $(\beta_1,...,\beta_n)$ 为 $\{\alpha | \Box \alpha \in \Gamma\}$ 的一个证明序列。
- 则 $\beta_1 \in \{\alpha | \Box \alpha \in \Gamma\} \cup \Lambda$,从而 $\vdash_{\kappa} \Box \beta_1$ 或 $\Box \beta_1 \in \Gamma$,故 $\Gamma \vdash \Box \beta_1$;
- $\mathcal{C}\Gamma \vdash_{\mathcal{K}} \Box \beta_1, ..., \Box \beta_{i-1};$
- 如果 $\beta_i \in \{\alpha | \Box \alpha \in \Gamma\} \cup \Lambda$,则显然 $\Gamma \vdash_{\kappa} \Box \beta$;
- 如果 β_i 由分离规则得到,则存在 j,k < i 使得 $\beta_k = \beta_j \rightarrow \beta_i$;
- 由于 { $\Box(\beta_j \to \beta_i)$, $\Box\beta_j$ } $\vdash_K \Box\beta_i$;

- 阶逻辑 - 模态逻辑简介 - 一模态逻辑的一个推理系统 *K*

K-极大一致集Ⅱ

- 故 $\Gamma \vdash_{\kappa} \Box \beta_{i}$ 。
- 如果 β_i 由必然化规则得到,则存在 j < i 使得 $\beta_i = \Box \beta_j$;
- 则 $\Gamma \vdash_K \beta_i$,再从使用必然化规则,有 $\Gamma \vdash_K \Box \beta_i$.

定义(K-极大一致集)

称模态公式集 Γ 是一个K-极大一致集,如果 Γ 是 K-一致的,且对任意的模态公式 α ,或者 $\alpha \in \Gamma$ 或者 $\neg \alpha \in \Gamma$ 。

一模态逻辑的一个推理系统 *K*

定理

设 Γ 是一个 K-极大一致集。则 $\square \beta \in \Gamma$ 当且仅当对每个满足 $\{\alpha \mid \square \alpha \in \Gamma\} \subseteq \Delta$ 的 K-极大一致集 Δ , β 都属于 Δ 。

证明

- \Rightarrow 若 $\Box \beta \in \Gamma$, 则(由定义) $\beta \in \Delta$ 。
- \leftarrow 只需证明 $\{\alpha \mid \Box \alpha \in \Gamma\} \vdash_K \beta$ 。否则,

$$\{\alpha \mid \Box \alpha \in \Gamma\} \cup \{\neg \beta\}$$

是一致的,从而可以扩张为一个极大一致的集合。

- 1 引言
- 2 命题逻辑的语言
- 3 命题逻辑的语义: 真值指派
- 4 唯一可读性
- 5 其他联词
- 6 命题逻辑的一个推演系统
- 7 命题逻辑的可靠性和完全性定理

__ 模态逻辑简介

── 系统 K 的可靠性与完全性

系统 K 的可靠性与完全性

模态逻辑 K 的可靠性定理

如果 $\vdash_K \alpha$,则 α 是普遍有效的。

证明

对证明长度归纳证明。

模态逻辑 K 的完全性定理

如果 $\models \alpha$,则 $\vdash_K \alpha$ 。

证明

只需证明: 如果 $\forall_k \alpha$, 则存在 (M, w) 使得 $(M, w) \not\models \alpha$ 。

典范模型丨

定义

我们定义模态逻辑 K 的典范模型 M = (W, R, V) 为:

$$W = \{\Gamma | \Gamma$$
是一个 K 极大一致集}
$$(\Gamma, \Gamma') \in R \iff \{\alpha | \Box \alpha \in \Gamma\} \subseteq \Gamma',$$
 $V(A_i) = \{\Gamma \in W | A_i \in \Gamma\}.$

111/115

−阶逻辑 一模态逻辑简介

── 系统 *K* 的可靠性与完全性

典范模型Ⅱ

引理

设 M=(W,R,V) 是典范模型。则对任意的模态公式 α ,对任意的 $\Gamma \in W$,我们有 $(M,\Gamma) \models \alpha$ 当且仅当 $\alpha \in \Gamma$ 。

证明

对 α 的长度归纳证明。

- 1 A; (定义);
- 2 ¬β (极大一致性);
- $\beta \rightarrow \gamma$;
- 4 □β 定理108。

一所逻辑 └_{模态逻辑简介} └系統 K 的可靠性与完全性 完全性定理的证明

完全性定理的证明

如果 $\forall_k \alpha$, 则 $\{\neg \alpha\}$ 是一致的,从而可以扩张为极大一致的 Γ 。 $(M,\Gamma) \not\models \alpha$ 。

113/115

一阶逻辑

└ 模态逻辑简介

└ 系统 K 的可靠性与完全性

【乍业】

 $P.\ 61;\ 2.9.1,\ 2.9.3,\ 2.9.4,\ 2.9.5,\ 2.9.6,\ 2.9.7$

│ │ │ │ │ │ │ ○ 系统 *K* 的可靠性与完全性

Thanks!