

Dr. Jan-Willem Liebezeit Lukas Fuchs Niklas Eiermann SoSe 2024

12 Übungspunkte

Übungen zu: Mathematik für Informatik II Lösung

Blatt 05

1. (NA) Minifragen

Zeigen oder widerlegen sie:

- 1. Wenn eine Matrix nur positive Einträge hat, sind alle ihre Eigenwerte positiv. **Lösung:** Falsch, z.B. gilt für $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \in M(2 \times 2, \mathbb{R})$, dass $\det(A - \lambda I_2) =$ $(\lambda + 1)(\lambda - 3)$. Somit besitzt A mit -1 einen negativen Eigenwert.
- 2. Falls A und -A dieselben Eigenwerte besitzen, dann ist A nicht invertierbar. **Lösung:** Falsch, betrachten Sie beispielsweise $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in M(n \times n, \mathbb{R})$ mit $A^{-1} = A$ als Gegenbeispiel.
- 3. Bei einer Dreiecksmatrix stehen die Eigenwerte auf der Diagonalen.

Lösung: Sei
$$A = \begin{pmatrix} a_{11} & * \\ & \ddots & \\ 0 & a_{nn} \end{pmatrix} \in M(n \times n, \mathbb{K})$$
 eine obere Dreiecksmatrix.

Dann gilt $\det(A - \lambda I_n) = \begin{pmatrix} a_{11} - \lambda & * \\ & \ddots & \\ 0 & a_{nn} - \lambda \end{pmatrix} = (a_{11} - \lambda) \cdot \ldots \cdot (a_{nn} - \lambda)$

nach Skript. Somit stehen alle Eigenwerte von A auf ihrer Diagonalen. Für eine untere Dreiecksmatrix kann dies analog gezeigt werden.

2. (A) Diagonalisieren von Matrizen

Es sei
$$A \in M(3 \times 3, \mathbb{K}), A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}.$$

1. Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von A.

(2)

Lösung:

$$p_{A}(\lambda) = \det(A - \lambda I_{3})$$

$$= ((-6) \cdot 2 \cdot 3) + (5 - \lambda)(4 - \lambda)(-4 - \lambda) + ((-1) \cdot (-6) \cdot (-6))$$

$$- ((-1) \cdot (-6) \cdot (-4 - \lambda)) - (3 \cdot (4 - \lambda) \cdot (-6)) - ((-6) \cdot 2 \cdot (5 - \lambda))$$

$$= -\lambda^{3} + 5\lambda^{2} - 8\lambda + 4$$

$$= -(\lambda - 1)(\lambda^{2} - 4\lambda + 4)$$

$$= -(\lambda - 1)(\lambda - 2)^{2}$$

$$\stackrel{!}{=} 0$$

 \Rightarrow EWe von A sind gegeben durch $\lambda_1=1$ mit alg. Vielfachheit 1 und $\lambda_2=2$ mit alg. Vielfachheit 2.

$$\begin{split} N_{\lambda_1} &= \operatorname{Ker}(A - \lambda_1 I_3) = \operatorname{Ker} \begin{pmatrix} 4 & -6 & -6 \\ -1 & 3 & 2 \\ 3 & -6 & -5 \end{pmatrix} \overset{4Z_2 + Z_1}{=} \operatorname{Ker} \begin{pmatrix} 4 & -6 & -6 \\ 0 & 6 & 2 \\ 0 & -6 & -2 \end{pmatrix} \\ \frac{Z_3 + Z_2}{=\frac{1}{6} Z_2} \operatorname{Ker} \begin{pmatrix} 4 & -6 & -6 \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 \end{pmatrix} \overset{\frac{1}{4} Z_1 + \frac{3}{2} Z_2}{=} \operatorname{Ker} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 \end{pmatrix} = \langle \begin{pmatrix} 1 \\ -\frac{1}{3} \\ 1 \end{pmatrix} \rangle. \\ N_{\lambda_2} &= \operatorname{Ker}(A - \lambda_2 I_3) = \operatorname{Ker} \begin{pmatrix} 3 & -6 & -6 \\ -1 & 2 & 2 \\ 3 & -6 & -6 \end{pmatrix} \overset{3Z_2 + Z_1}{=} \operatorname{Ker} \begin{pmatrix} 3 & -6 & -6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \frac{1}{3} Z_1 &= \operatorname{Ker} \begin{pmatrix} 1 & -2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \langle \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \rangle. \text{ Somit sind die geometrischen Vielfach-Vielf$$

heiten der Eigenwerte λ_1, λ_2 jeweils gleich ihrer algebraischen Vielfachheit.

2. Bestimmen Sie eine invertierbare Matrix S, so dass $S^{-1}AS$ eine Diagonalmatrix ist. (1)

Lösung: Wir wählen
$$S = \begin{pmatrix} 1 & 2 & 2 \\ -\frac{1}{3} & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
. Dann gilt

$$\begin{pmatrix} S \mid I_{3} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ -\frac{1}{3} & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \overset{3Z_{2}+Z_{1}}{=} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 5 & 2 & 1 & 3 & 0 \\ 0 & -2 & -1 & -1 & 0 & 1 \end{pmatrix}$$

$$\overset{5Z_{3}+2Z_{2}}{=} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & \frac{2}{5} & \frac{1}{5} & \frac{3}{5} & 0 \\ 0 & 0 & -1 & -3 & 6 & 5 \end{pmatrix} \overset{Z_{2}+\frac{2}{5}Z_{3}}{=Z_{3}} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 3 & 2 \\ 0 & 0 & 1 & 3 & -6 & -5 \end{pmatrix}$$

$$\overset{Z_{1}-2Z_{2}-2Z_{3}}{=} \begin{pmatrix} 1 & 0 & 0 & -3 & 6 & 6 \\ 0 & 1 & 0 & -1 & 3 & 2 \\ 0 & 0 & 1 & 3 & -6 & -5 \end{pmatrix} \Rightarrow S^{-1} = \begin{pmatrix} -3 & 6 & 6 \\ -1 & 3 & 2 \\ 3 & -6 & -5 \end{pmatrix} .$$

Dann erhalten wir $S^{-1}AS = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} := D.$

3. Berechnen Sie
$$A^n$$
 für $n \in \mathbb{N}$.

(1)

Lösung:

$$A^{n} = (SDS^{-1})^{n}$$

$$= \underbrace{SDS^{-1} \cdot \dots \cdot SDS^{-1}}_{n\text{-mal}}$$

$$= SD^{n}S^{-1}$$

$$= \begin{pmatrix} 4 \cdot 2^{n} - 3 & -6 \cdot 2^{n} + 6 & -6 \cdot 2^{n} + 6 \\ -2^{n} + 1 & 3 \cdot 2^{n} - 2 & 2 \cdot 2^{n} - 2 \\ 3 \cdot 2^{n} - 3 & -6 \cdot 2^{n} + 6 & -5 \cdot 2^{n} + 6 \end{pmatrix}$$

Führen Sie die obigen Schritte 1 und 2 auch für die Matrix B statt A durch, falls möglich:

$$B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}. \tag{2}$$

Lösung: $p_B(\lambda) = \det(B - \lambda I_3) = -\lambda^3 + 6\lambda^2 - 12\lambda + 8 = -(\lambda - 2)^3 \stackrel{!}{=} 0 \Rightarrow \text{EWe}$

von
$$B$$
 sind gegeben durch $\lambda_1 = 2$ mit alg. Vielfachheit 3.

$$N_{\lambda_1} = \operatorname{Ker}(B - \lambda_1 I_3) = \operatorname{Ker}\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \rangle.$$
 Somit besitzt der Eigenwert λ_1 eigenwert λ_1 eigenwert λ_2 eigenwert λ_3 eigenwert λ_3 eigenwert λ_4 eigenwert λ_3 eigenwert λ_4 eigenwert eigenwert eigenwert eigenwert λ_4 eigenwert eig

ne geometrische Vielfachheit von 1, d.h. die geometrische Vielfachheit ist in diesem Fall kleiner als die algebraische Vielfachheit. Daher ist B nicht diagonalisierbar.

3. (A) Die Fibonacci-Folge

Wir betrachten die Fibonacci-Folge mit $x_0 = 0$, $x_1 = 1$ und $x_n = x_{n-1} + x_{n-2}$ für

1. Bestimmen Sie eine Matrix
$$A \in M(2 \times 2, \mathbb{R})$$
 mit $A \begin{pmatrix} x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} x_n \\ x_{n+1} \end{pmatrix}$. (2) **Lösung:** Wähle $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, denn $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} x_n \\ x_{n-1} + x_n \end{pmatrix} = \begin{pmatrix} x_n \\ x_{n+1} \end{pmatrix}$.

2. Zeigen Sie, dass A diagonalisierbar ist und bestimmen Sie eine Basis des \mathbb{R}^2 aus Eigenvektoren von A. (2)

Lösung: $P_A(\lambda) = \det(A - \lambda I_2) = \lambda^2 - \lambda - 1 = (\lambda - \frac{1 + \sqrt{5}}{2})(\lambda - \frac{1 - \sqrt{5}}{2}) \Rightarrow A \text{ besitzt}$ die Eigenwerte $\lambda_1 = \frac{1+\sqrt{5}}{2}$ und $\lambda_2 = \frac{1-\sqrt{5}}{2}$. Für die folgenden Rechnungen sind folgende Identitäten hilfreich:

- i) $\lambda_1 \lambda_2 = -1$
- ii) $\lambda_1 + \lambda_2 = 1$

Da $P_A(\lambda)$ in paarweise verschiedene Linearfaktoren zerfällt, ist A diagonalisierbar.

$$\begin{split} N_{\lambda_1} &= \operatorname{Ker}(A - \lambda_1 I_2) = \operatorname{Ker} \left(\begin{array}{cc} -\frac{1+\sqrt{5}}{2} & 1 \\ 1 & 1 - \frac{1+\sqrt{5}}{2} \end{array} \right) \stackrel{Z_1 \leftrightarrow Z_2}{=} \operatorname{Ker} \left(\begin{array}{cc} 1 & 1 - \frac{1+\sqrt{5}}{2} \\ -\frac{1+\sqrt{5}}{2} & 1 \end{array} \right) \\ \stackrel{Z_2 + \lambda_1 Z_1}{=} \operatorname{Ker} \left(\begin{array}{cc} 1 & 1 - \frac{1+\sqrt{5}}{2} \\ 0 & 0 \end{array} \right) = \langle \left(\begin{array}{cc} \frac{1+\sqrt{5}}{2} - 1 \\ 1 \end{array} \right) \rangle = \langle \left(\begin{array}{cc} -\lambda_2 \\ 1 \end{array} \right) \rangle \end{split}$$

$$\begin{split} N_{\lambda_2} &= \operatorname{Ker}(A - \lambda_2 I_2) = \operatorname{Ker} \left(\frac{-\frac{1 - \sqrt{5}}{2}}{1} \quad 1 - \frac{1 - \sqrt{5}}{2} \right) \stackrel{Z_1 \leftrightarrow Z_2}{=} \operatorname{Ker} \left(\frac{1}{-\frac{1 - \sqrt{5}}{2}} \quad 1 - \frac{1 - \sqrt{5}}{2} \right) \\ \stackrel{Z_2 + \lambda_2 Z_1}{=} \operatorname{Ker} \left(\frac{1}{0} \quad 1 - \frac{1 - \sqrt{5}}{2} \right) = \langle \left(\frac{1 - \sqrt{5}}{2} - 1 \right) \rangle = \langle \left(-\lambda_1 \atop 1 \right) \rangle \end{split}$$

3. Bestimmen Sie A^n für beliebiges $n \in \mathbb{N}$. (1) **Lösung:** Wir invertieren $S = \begin{pmatrix} -\lambda_2 & -\lambda_1 \\ 1 & 1 \end{pmatrix}$ und erhalten $S^{-1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & \lambda_1 \\ -1 & -\lambda_2 \end{pmatrix}$. Sei nun entsprechend $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, dann gilt

$$\begin{split} A^n &= (SDS^{-1})^n = SD^nS^{-1} \\ &= \begin{pmatrix} -\lambda_2 & -\lambda_1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & \lambda_1 \\ -1 & -\lambda_2 \end{pmatrix} \\ &= \frac{1}{\sqrt{5}} \begin{pmatrix} \lambda_1^{n-1} - \lambda_2^{n-1} & \lambda_1^n - \lambda_2^n \\ \lambda_1^n - \lambda_2^n & \lambda_1^{n+1} - \lambda_2^{n+1} \end{pmatrix}. \end{split}$$

4. Folgern Sie aus dem letzten Schritt, dass das n-te Glied der Fibonacci-Folge die Darstellung

$$x_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

besitzt. (1)

Lösung: Es gilt

$$A \begin{pmatrix} x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} x_n \\ x_{n+1} \end{pmatrix} \Rightarrow A^n \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \begin{pmatrix} x_n \\ x_{n+1} \end{pmatrix}$$

$$\Leftrightarrow \frac{1}{\sqrt{5}} \begin{pmatrix} \lambda_1^{n-1} - \lambda_2^{n-1} & \lambda_1^n - \lambda_2^n \\ \lambda_1^n - \lambda_2^n & \lambda_1^{n+1} - \lambda_2^{n+1} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x_n \\ x_{n+1} \end{pmatrix}$$

$$\Rightarrow x_n = \frac{1}{\sqrt{5}} (\lambda_1^n - \lambda_2^n) = \frac{1}{\sqrt{5}} ((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n).$$

4. (A) Eigenschaften von Eigenwerten

Zeigen Sie

(a) Ist $A \in M(2 \times 2, \mathbb{R})$ symmetrisch, so sind alle Eigenwerte von A reell . **Lösung:** Seien $a, b, d \in \mathbb{R}$ und $A = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$ symmetrisch. Dann gilt

$$\det(A - \lambda I_2) = \lambda^2 - (a+d)\lambda + ad - b^2$$

$$= (\lambda - \frac{a+d}{2})^2 - (\frac{a+d}{2})^2 + ad - b^2$$

$$\stackrel{!}{=} 0$$

$$\begin{split} &\Leftrightarrow \lambda - \frac{a+d}{2} = \sqrt{(\frac{a+d}{2})^2 - ad + b^2} \\ &\Leftrightarrow \lambda = \frac{a+d}{2} + \sqrt{(\frac{a+d}{2})^2 - ad + b^2} \\ &\Leftrightarrow \lambda = \frac{a+d}{2} + \frac{1}{2}\sqrt{(a+d)^2 - 4ad + 4b^2} \\ &\Leftrightarrow \lambda = \frac{a+d}{2} + \frac{1}{2}\sqrt{(a-d)^2 + 4b^2} \in \mathbb{R}. \end{split}$$

- (b) Wenn λ ein Eigenwert von A ist, dann ist $-\lambda$ ein Eigenwert von -A. (1) Lösung: $-Av = -(Av) = -(\lambda v) = -\lambda v$
- (c) $A \in M(n \times n, \mathbb{K})$ ist genau dann nicht invertierbar, wenn 0 ein Eigenwert von A ist . (1)

Lösung:

A nicht invertierbar $\Leftrightarrow \det A = 0 \Leftrightarrow 0 = \det(A - 0I_n) = P_A(0) \Leftrightarrow 0 \text{ EW von } A$

(d) Ist $A \in M(n \times n, \mathbb{K})$ invertierbar und $\lambda \in \mathbb{K}$ ein Eigenwert von A, dann ist $\lambda \neq 0$ und $\frac{1}{\lambda}$ ein Eigenwert von A^{-1} . (1)

Lösung: A invertierbar $\stackrel{c)}{\Rightarrow} 0$ kein EW von $A \Rightarrow \lambda \neq 0$ und es exisitert ein $x \in \mathbb{R}^n$ mit $x \neq 0$, für das $Ax = \lambda x$ gilt.

$$\Leftrightarrow A^{-1}Ax = A^{-1}\lambda x = \lambda A^{-1}x$$
$$\Leftrightarrow \lambda^{-1}x = A^{-1}x$$
$$\Rightarrow \lambda^{-1} \text{ EW von } A^{-1}.$$

(e) Ist $A \in M(n \times n, \mathbb{K})$ und $\lambda \in \mathbb{K}$ ein Eigenwert von A, dann ist für $m \in \mathbb{N}$ auch λ^m ein Eigenwert von A^m . (1)

Lösung: Es existiert ein $x \neq 0$, für das gilt, dass

$$Ax = \lambda x$$

$$\Rightarrow A^m x = A^{m-1} \lambda x = \lambda A^{m-1} x = \lambda A^{m-2} \lambda x = \lambda^2 A^{m-2} x = \dots = \lambda^m x.$$

(f) Ist $A \in M(n \times n, \mathbb{K})$, dann haben A und A^{\top} das gleiche charakteristische Polynom und die gleichen Eigenwerte . (1) Lösung:

$$P_{A^{\top}}(\lambda) = \det(A^{\top} - \lambda I_n)$$

$$= \det(A^{\top} - (\lambda I_n)^{\top})$$

$$= \det((A - \lambda I_n)^{\top})$$

$$= \det(A - \lambda I_n)$$

$$= P_A(\lambda)$$

5. (A) Diagonalisierbarkeit von Matrizen

a) Eine Matrix $A \in M(n \times n, \mathbb{R})$ heißt nilpotent, falls es ein $m \in \mathbb{N}$ gibt, für dass $A^m = 0$ gilt. Zeigen Sie:

- i) Falls $A \in M(n \times n, \mathbb{R})$ nilpotent ist, dann hat A nur den Eigenwert 0. (2) Lösung: λ EW von $A \stackrel{4. \text{ (e)}}{\Rightarrow} \lambda^m$ EW von $A^m = 0 \Rightarrow \lambda^m = 0 \Rightarrow \lambda = 0$.
- ii) Falls $0 \neq A \in M(n \times n, \mathbb{R})$ nilpotent ist, ist A nicht diagonalisierbar. (1) **Lösung:** Nach i) gilt $P_A(\lambda) = \lambda^n$. A ist also genau dann diagonalisierbar, wenn die geometrische Vielfachheit vom Eigenwert 0 gleich n ist. Aber dann muss $\{x \colon Ax = 0\} = \mathbb{R}^n$ sein, was nur für A = 0 gelten kann. Widerspruch.
- b) Zeigen Sie: Ist $A \in M(n \times n, \mathbb{R})$ symmetrisch, so sind die Eigenvektoren zu verschiedenen Eigenwerten orthogonal (bzgl. des Standardskalarprodukts). (3) **Lösung:** Seien λ, μ versch. EWe von A mit EVen X, y, sodass $Ax = \lambda x$ und $Ay = \mu y$. Dann folgt

$$\begin{split} \lambda \langle x,y \rangle &= \langle \lambda x,y \rangle = (Ax)^\top y = x^\top A^\top y \stackrel{\text{A symm.}}{=} x^\top Ay \\ &= \langle x,Ay \rangle = \langle x,\mu y \rangle = \mu \langle x,y \rangle \\ \Leftrightarrow \underbrace{(\lambda - \mu)}_{\neq 0} \langle x,y \rangle &= 0 \Rightarrow \langle x,y \rangle = 0 \Rightarrow x,y \text{ sind orthogonal zueinander.} \end{split}$$

6. (T),(NA) Es sei
$$A \in M(3 \times 3, \mathbb{K}), A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
.

- 1. Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von A.
- 2. Bestimmen Sie eine invertierbare Matrix S, so dass $S^{-1}AS$ eine Diagonalmatrix ist.
- 3. Berechnen Sie A^n für $n \in \mathbb{N}$.

Führen Sie die obigen Schritte auch für die folgende Matrix durch, falls möglich:

$$B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

7. (T), (NA)

(a) Es sei $G = (g_{ij}) \in M(n \times n, \mathbb{R})$ eine Matrix, deren Spaltensummen alle 1 sind, d.h.

$$\forall j \in \{1,\ldots,n\} : \left(\sum_{i=1}^n g_{ij} = 1\right).$$

Zeigen Sie, dass 1 ein Eigenwert von G ist.

- (b) Zeigen Sie die folgenden Aussagen über orthogonale Matrizen $A \in \mathbb{R}^{n \times n}$:
 - (a) $\langle Ax,Ay\rangle=\langle x,y\rangle,$ wobei $\langle\cdot,\cdot\rangle$ das kanonische Skalarprodukt bezeichnet.
 - (b) $\det A \in \{1, -1\}.$
 - (c) Zeigen Sie, dass die orthogonalen Matrizen A mit det A = 1 eine Untergruppe von O(n) bilden. Diese wird mit SO(n) bezeichnet.

Erläuterungen zur Bearbeitung und Abgabe:

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.