SGQuant: Squeezing the Last Bit on Graph Neural Networks with Specialized Quantization

Abstract

文章针对【减少现有GNN模型的内存占用】,提出了【一种针对GNN的量化方法。具体来说,第一,文章针对GNN的不同组合部分提出了三种量化方式。这三种方式分别正对GNN中的不同数据成分、不同拓扑结构和不同层的特征进行不同的量化。第二,文章提出了一种自动选择量化比特的算法,为不同的量化部分选择不同的量化比特数】,取得了【将现有GNN的内存占用最多压缩到31.9倍的成果,且模型准确率平均只下降0.4%】。

Motivation

- 1) what types of data (weight or features) should be quantized?
- 2) what is the efficient quantization scheme suitable for GNNs?
- 3) How to determine the quantization bits?

Observation: features take up to 99.89% of the overall memory size

Fig. 1: GAT Feature/Weight Memory Size Ratio.

SGQuant only quantizes the GNN features

Details

Quantization Method

文章采用了简单的线性量化的方式:

$$\alpha^{k,(q)} = \left| \frac{\alpha^k - \alpha_{min}}{scale} \right|.$$

Unmatching Problem

当不同量化比特的数据相乘的时候会出现不匹配的问题:将数据恢复成32bit的数据再相乘

$$lpha_{u,v}^{k,(q)'} = scale \cdot lpha_{u,v}^{k,(q)} + lpha_{min}$$

例如将attention和feature的数值都变为32bit的时候相乘:

$$h_v^{k+1} = \mathcal{W}_{com}^{k+1} \cdot \sum_{u \in \mathcal{N}(v)} \alpha_{u,v}^{k,(q)'} h_u^{k,(p)'}$$

作者提到:这种rematching的方式不会带来过多内存开销,因为计算一个node的feature时只恢复了部分数值(存疑)

Fintuning Method

量化结束后进行网络的微调

Backpropagation Follows:

$$\begin{split} \frac{\partial L}{\partial \alpha_{u,v}^{k,(q)'}} &= \mathcal{W}_{com}^{k+1} \cdot (\frac{\partial L}{\partial h_{v}^{k+1}} \cdot h_{u}^{k,(p)'} + \frac{\partial L}{\partial h_{u}^{k+1}} \cdot h_{v}^{k,(p)'}) \\ \frac{\partial L}{\partial \alpha_{u,v}^{k}} &= \frac{\partial L}{\partial \alpha_{u,v}^{k,(q)'}} \cdot scale \cdot \frac{\partial \alpha_{u,v}^{k,(q)}}{\partial \alpha_{u,v}^{k}} \end{split}$$

其中attention数值的反传为:

$$\begin{split} \frac{\partial L}{\partial \alpha_{u,v}^{k}} &= \frac{\partial L}{\partial \alpha_{u,v}^{k,(q)'}} \cdot scale \cdot \frac{\partial \alpha_{u,v}^{k,(q)}}{\partial \alpha_{u,v}^{k}} \\ &= \frac{\partial L}{\partial \alpha_{u,v}^{k,(q)'}} \end{split}$$

量化数值对于原数值的偏导数近似为1/scale

Multi-Granularity Quantization

Fig. 4: Multi-Granularity Quantization: (a) Component-wise, (b) Topology-aware, (c) Layer-wise, and (d) Uniform Quantization. NOTE: the same color represents the same quantization bit.

Component-Wise Quantization (CWQ)

Quantize attention matrix and embedding matrix differenly

• Attention values are quantized to lower bits

Topology-Aware Quantization (TAQ)

Quantize node feature of different degrees differenly

• Higher degree node can be quantized to lower bits

Fig. 5: Topology-aware Quantization.

• also use the "rematching" technique on node embeddings and compute the combination component

Layer-Wise Quantization (LWQ)

Quantize values of different layers differenly

- leading layers need more quantization bits
- Succeeding layers are quantied to lower bits

Auto-Bit Selection

How can we assign quantization bits for different granularities to achieve the sweet point between accuracy and memory saving?

Formulate quantization problem as combinatorial optimization

$$\min_{\substack{q_{k,att},\ q_{k,com,D_j}}} Loss(lpha_{u,v}^{k,(q_{k,att})}, h_u^{k,(q_{k,com,D_j})}, W_{com}^k, W_{att}^k)$$

- large design space
- large diversity exists in the GNN model
- graph topology varies

Use a learning cost model to predict the accuracy of the quantized GNN (Like autoML) iteratively

- **Step 1** Randomly select a small number *N_mea* of configurations, extract features, and measure their accuracies.
- Step 2 Train the ML cost model based on the collected features and labels.
- **Step 3** Sample a large number *N_sample* of configurations, use the ML cost model to predict their accuracy, and find the ones with the top-*N_mea* accuracy.
- **Step 4** Extract features of the selected configurations and measure their accuracies.
- **Step 5** Repeat Step2 Step4 until reaching *N_iter* iterations.

negligible latency (< 0.1 seconds) at each iteration

Results

Configuration

TABLE I: GNN Architectures.

Arch	Specification			
GCN	hidden=32, #layers=2			
AGNN	hidden=16, #layers=4			
GAT	hidden=256, #layers=2			

TABLE II: Datasets for Evaluation.

Dataset	#Vertex	#Edge	#Dim	#Class
Citeseer	3,327	9,464	3,703	6
Cora	2,708	10,858	1,433	7
Pubmed	19,717	88,676	500	3
Amazon-computer	13,381	245,778	767	10
Reddit	232,965	114,615,892	602	41

Quantitative Results

TABLE III: Overall Quantization Performance.

Dataset	Network	Accuracy (%)	Average Bits	Memory Size (MB)	Saving
Cora	GCN (Full-Precision)	82.2	32	15.42	-
	GCN (Reduced-Precision)	81.72	1.22	0.59	26.1×
	AGNN (Full-Precision)	83.16	32	15.94	-
	AGNN (Reduced-Precision)	82.75	2.15	1.07	14.90×
	GAT (Full-Precision)	82.50	32	16.21	-
	GAT (Reduced-Precision)	82.10	2.58	1.31	$12.37 \times$
Citeseer	GCN (Full-Precision)	71.82	32	51.06	-
	GCN (Reduced-Precision)	71.54	1.01	1.6	31.9×
	AGNN (Full-Precision)	71.58	32	50.01	-
	AGNN (Reduced-Precision)	71.18	1.08	1.69	$29.59 \times$
	GAT (Full-Precision)	71.10	32	59.49	-
	GAT (Reduced-Precision)	70.70	2.42	3.82	13.2×
	GCN (Full-Precision)	80.36	32	43.71	-
	GCN (Reduced-Precision)	80.28	2.9	4.01	10.9×
Pubmed	AGNN (Full-Precision)	80.44	32	43.46	-
rubilled	AGNN (Reduced-Precision)	80.31	3.07	4.17	10.42×
	GAT (Full-Precision)	78.00	32	44.48	-
	GAT (Reduced-Precision)	77.30	3.77	5.26	8.47×
Reddit	GCN (Full-Precision)	81.07	32	328.70	-
	GCN (Reduced-Precision)	80.36	3.72	38.25	8.59×
	AGNN (Full-Precision)	74.63	32	643.92	-
	AGNN (Reduced-Precision)	74.40	4	113.92	5.65x
	GAT (Full-Precision)	92.66	32	311.85	-
	GAT (Reduced-Precision)	92.23	4.07	39.70	7.86×
Amazon-Computer	GCN (Full-Precision)	89.57	32	44.58	-
	GCN (Reduced-Precision)	89.39	3.29	4.59	$9.72 \times$
	AGNN (Full-Precision)	77.69	32	44.16	-
	AGNN (Reduced-Precision)	77.33	4	5.99	$7.37 \times$
	GAT (Full-Precision)	93.10	32	45.71	-
	GAT (Reduced-Precision)	92.60	7.53	10.75	$4.25 \times$

- Lower average bits on smaller datasets
- SGQuant would select higher average bits for more complex model
 - involve more intricate computations

Breakdown Analysis of Multi-granularity Quantization

Fig. 7: Breakdown Analysis of Multi-granularity Quantization.

fine-grained granularities generally lead to lower error rate at a given memory size.

Effectiveness of Auto-Bit Selection

Fig. 8: Benefit of ML Cost Model.

ML cost model can pinpoint a more "optimal" value for bits that offers higher memory saving (25×) compared with random search (20×)

Comments

文章对GNN模型提出了针对不同部分的多bit的量化方式,并且提出了一个启发式的搜寻最佳量化bit的方法。方法比较简单但效果任然显著。但文章在rematching操作上对内存占用的影响讨论较少,存在占用过多内存的疑问。