Procesamiento Digital de Imágenes

Procesamiento Básico de Imágenes Digitales

prb

Vecindad

- Píxel p con coordenadas (x,y)
 - Vecindad-4
 - $V_4(p) = \{ (x+1,y), (x-1,y), (x,y+1), (x,y-1) \}$
 - $V_D(p) = \{ (x+1,y+1), (x-1,y-1), (x-1,y+1), (x+1,y-1) \}$
 - Vecindad-8

prb

• $V_8(p) = \{ V_4(p) \cup V_D(p) \}$

Ej. Vecindad

 Código para calcular el promedio del punto (ff,cc) y su Vecindad-8:

```
sum=0;
for f=ff-1:ff+1
  for c=cc-1:cc+1
    sum=sum+IM(f,c);
  end;
end;
prom=sum/9
```


¿Qué ocurre si el punto (ff,cc) pertenece al borde de la imagen? Proponga un código "robusto" para calcular el promedio de una vecindad 8 para cualquier punto de la imagen.

pr

i

Conectividad

- Sea *G* el conjunto de niveles de gris utilizados para determinar la conectividad de dos píxeles.
 - Ej. imagen binaria → G = {1}
- Conectividad-4
 - $C_4(p,q)$ =Verdadero, si p y q pertenecen a G y q pertenece a $V_4(p)$
- Conectividad-8
 - C₈(p,q) =Verdadero, si p y q pertenecen a G y q pertenece a V₈(p)

prb

Resolución en Amplitud

4bpp

Cada Pixel: $G = \{0..15\}$ (Lenguaje C) for (i=0; i<256; i++) for (j=0; j<256; j=j+2) $\{$ P=M(i,j)<<4; P=P & M(i,j+1); write (P) 1

prb 13

Operadores básicos

14

Operaciones Individuales

q(x,y) = f(p(x,y))

prb

Operadores básicos

Operaciones Individuales

a) Operador Identidad

$$q(x,y) = p(x,y)$$

b) Operador Inverso o negativo

prt

Operadores básicos

Operaciones Individuales

c) Operador Umbral

$$q(x,y) = 0$$
 para $p(x,y) < u$
 $q(x,y) = 255$ para $p(x,y) > u$

d) Operador Umbral Inverso

Operadores básicos

Operaciones Individuales

e) Operador Intervalo de Umbral binario

$$q(x,y) = 0 \ para \ p(x,y) < u1 \ ó \ p(x,y) > u2$$

 $q(x,y) = 255 \ para \ u1 > p(x,y) < u2$

f) Operador Intervalo de Umbral binario inverso

Operadores básicos Operaciones Individuales h) Operador Intervalo de Umbral en Gris $q(x,y) = 255 \ para \quad p(x,y) < u1 \ \acute{o} \ p(x,y) > u2$ $q(x,y) = p(x,y) \ para \quad u1 > p(x,y) < u2$ i) Operador Intervalo de Umbral en Gris inverso

Operadores básicos

Operaciones Individuales

j) Operador de extensión

$$q(x,y) = 255 \ para \quad p(x,y) < u1 \ \'o \ p(x,y) > u2$$

 $q(x,y) = 255*(p(x,y)-u1)/(u2-u1) \ para \ u1 > p(x,y) < u2$

prb

19

Operadores básicos

Operaciones Individuales

k) Operador reducción niveles de gris

$$q(x,y) = 0$$
 para $p(x,y) < u1$
 $q(x,y) = q1$ para $u1 > p(x,y) < u2$

$$q(x,y) = qn \quad para \quad u_{n-1} > p(x,y) < 255$$

prb

Práctica:

Sistema básico de seguridad, que permite determinar los objetos ausentes o desplazados en un recinto.

prb