Foundations of Robotics

Homework 7

1. (Exercise 9.2) Please solve the exercise introduced as follows.

Exercise 9.2 A cylindrical path in X=(x,y,z) is given by $x=\cos 2\pi s$, $y=\sin 2\pi s$, z=2s, $s\in [0,1]$, and its time scaling is $s(t)=\frac{1}{4}t+\frac{1}{8}t^2$, $t\in [0,2]$. Write down \dot{X} and \ddot{X} .

2. (Exercise 9.5) Please solve the exercise introduced as follows.

Exercise 9.5 Find the fifth-order polynomial time scaling that satisfies s(T) = 1 and $s(0) = \dot{s}(0) = \ddot{s}(0) = \dot{s}(T) = \ddot{s}(T) = 0$.

3. (Exercise 9.7) Please solve the exercise introduced as follows.

Exercise 9.7 If you want to use a polynomial time scaling for point-to-point motion with zero initial and final velocities, accelerations, and jerks, what would be the minimum order of the polynomial?