beomaster 900 k, m und rg

typen 2233-2234 und 2250

SERVICEANLEITUNG

BEOMASTER 900 K

BEOMASTER 900 M

Inhaltsverzeichnis

	Seite
Technische Daten	1
ZF-Transformatoren	2
Schaltbild	3
Schaltplatten-Einheiten	4-6
Stückliste	7-16
Beschreibung	17-19
Skalatrieb	20
Stereo-Decoder	21 - 23
Frimmung	24 - 25
Ohmmessungen	26

1

TECHNISCHE DATEN, BEOMASTER 900

Abstimmungsindikator: Zeigerinstrument.

Antenne, AM: Ferritantenne für LW, MW, sowie Druckknopfumschaltung auf Außenantenne

Antenne, UKW: Eingebaute UKW-Antenne.

BEOCORD-Anschluß: 5 polige Normbuchse für Mono- und Stereo-Tonbandgerät. Wiedergabe durch getrennten Druckknopf.

Diodenabzweigung 100 mV bei 1000 Hz Wiedergabe 450 mV bei 1000 Hz

Wellenbereiche:

LW 2040-857 m 147-350 kHz MW 578-188 m 520-1600 kHz 49 m 51-38,5 m 5,9-7,8 kHz UKW 3,4-2,8 m 87,5-108 MHz

Außenlautsprecher: 3-5 Ω , Umschaltung in den Buchsen. Normbuchsen für 2 Seitenlautsprecher und 1 zusätzlichen Lautsprecher am linken Kanal.

FM: Tuner mit Fangvorrichtung (AFN)

Verbrauch: 10 Watt bei 100 mW Ausgangsleistung; bei maximaler Ausgangsleistung etwa 65 Watt.

Frequenzbereich: 30 bis 15000 Hz ± 3 dB (Tiefen und Höhen in mittl. Stellung).

Phonoanschluß: B&O Stereo-Laufwerk BEOGRAM 1000 VF oder Kristall-Tonabneh-

Empfindlichkeit: 180 mV bei max. Ausgangsleistung.

Kanaltrennung: Besser als 26 dB.

Abmessungen: BEOMASTER 900 K: 744 mm breit, 143 mm hoch, 237 mm tief BEOMASTER 900 M: 404 mm breit, 143 mm hoch, 237 mm tief

Herabgeregelte Brummspannung: 4µW

Netzspannung: 220 V ~ (umstellbare auf 240-130-110 V).

Oszillatorabstrahlung: Gemäß geltenden Normen gedämpft.

Stereo-Indikator: Grünes Licht bei Stereo-Phono, Stereo-Wiedergabe von Tonband sowie mit eingebautem Stereo-Decoder.

Ausgangsleistung: 2×6 Watt Dauerleistung, 2×8 Watt Spitzenleistung.

Gewicht: BEOMASTER 900 K: 7,5 kg BEOMASTER 900 M: 5,5 kg

2

MONTIERUNGSSCHALTBILD FÜR ZF-TRANSFORMATOREN

Coloui	r of wires	- 1	Kabelfarbei
	blue	_	blau
_	brown	_	braun
	yellow		gelb
-	green	_	grün
_	grey	· <u>-</u>	grau
_	white	_	weiss
	orange		orange
	red		rot
_	black		schwarz
	violet	_	violett
		 blue brown yellow green grey white orange red black 	brown yellow green grey white orange red black

BESTÜCKUNGSZEICHUNG FÜR SCHALTPLATTE 8002010

BESTÜCKUNGSEICHUNG FÜR SCHALTPLATTE 8002030

Ledningsfarver -	Colour	of wires		Kahelfarbei
bl: blå	_	blue		blau
br: brun		brown		braun
g: gul		yellow	_	gelb
gr: grøn		green		grün
grå: grå		grey	-	grau
hv: hvid	-	white	_	weiss
or: orange	_	orange	_	orange
r: rød		ıed		rot
s: sort		black		schwarz
v: violet		violet		violett

UKW TUNER 8050010

NOTIZEN

			V			
,	•					
						
	•					
		777				
		·				

					4	*******
•			•			
				-		······································
						17.81
•						
						•

	•					

	STÜCKLISTE für BEOMASTER 900 K, Typ 2232	
1	Lautsprechergitter, komplett	0536138
2	Lautsprechergitter, komplett	
	Klebeband für Lautsprechergitter	
3	Lautsprecher	
4	Federn	
5	Lautsprecher	8480024
6	Schrauben, B 3,5×9,5 DIN 7982	2015000
7	Schrauben, B 3,5×9,5 DIN 7982	2015000
8	Deckel, STEREO	0521215
9	Skalazeiger, AM	0760461
10	Skalazeiger, UKW	0760462
11	Skalaabdeckung	0566194
12	Schrauben, BZ 2,9×16 DIN 7981	2013206
13	Spannstück	0295038
14	Bügel	2510039
15	Spannstück	0295038
16	Schrauben, BZ 2,9×16 DIN 7981	2013206
17	Frontrahmen, komplett für typ K.	0537327
	Frontrahmen, komplett für typ M	0537327
	Keil für Frontrahmen	2500001
18	Bügel	2510039
19	Bügel	2510039
20	Skala	3191006
21	Knopf, Lautstärke	2770051
22	Knopf, Tiefen	2770051
23	Knopf, Höhen	2770051
24	Knöpfe für Druckknopfumschalter	0322346
	Feder för Knopf	2818002
25	Knopf, Abstimmung	0928171
	Knopf, Aluminium, Lautstärke	2770042
	Knopf, Aluminium, Tiefen	2770051
	Knopt, Aluminium, Höhen	2770051
	Knopf, Aluminium, Abstimmung	2770043
	Knopf, Aluminium, für Druckknopfumschalter	2770041
	Gehäuse für typ K	0542450
	Gehäuse für typ M.	0542510
2.5	siehe Foto Seite 11 (12)	
35		2724001
36	Winkel	0249240
37	Buchse, 5polig	7212007
38	Winkel	0238048
39	Nachentzerrungspfropfen	0994027
40	Winkel Fassung, Noval	0245589
41	rassung, Noval	7203005

42	Schrauben, BZ 2,9×16 DIN 7981	2012206
43	Büchsen	
44	Skalalampenhalter	7201000
45	Skalalampe, 19 V - 0,097 A	7201000
46	Deckel	
47	Büchsen	
48		
49	Gummidurchführungen	0411030
50	Schnurrolle	
51		0321084 8050010
52	Tuner, FM	
53	Bandfilter Shalasahana	
	Skalaschnur	
54	Schrunds P7 2 0 V 12 DIN 7001	
55	Schraube, BZ 2,9×13 DIN 7981	
56	Schrauben, ART. 4271 - 2,84×6,35	2013201
57	Büchse	0410319
58	Winkel	0245520
59	Abstimmungsanzeiger	8450005
60	Büchse	0410319
61	Schnurrolle	
62	Schraube, BZ 2,9×13 DIN 7981	
63	Büchse	0410273
64	Gummidurchführung	0411036
65	Drehkondensator, AM	0840434
66	Gummidurchführung	0411036
67	Winkel	0238070
68	Büchse	
69	Schnurrolle	
70	Feder	
71	Gummidurchführung	
72	Büchse	
73	Winkel	
74	Lager	
75	Stellring	0376381
76	Skalalampenfassung	7201001
77	Kupplung	0379032
78	Skalalampe, 6,3 V - 0,3 A	8230001
79	Feder	
80	Nabe	0760483
81	Stellring	0376380
82	Schraube, BZ 2,9×13 DIN 7981	2013204
83	Schnurrolle	
84	Schrauben, Art. 4271 - 2,84 × 6,35	2013201
85	Winkel	
86	Scheibe	
87	Schraube	
88	Feder	
89	Federscheibe	0286200
90	Federn	
91	Winkel	
92	Arm	
93	Scheibe	
//	~~~~	0577070

94	Schwungrad mit Welle Lager	0372053	
95	Lager	0400039	
96	Büchse	0410319	
97	Winkel		
98	Skalahintergrund	3302029	
99	Schnurrolle	2724001	
100	Büchse	0410319	
101	Schraube, Art. 4271 - 2,84×9,52	2013202	
111	Schaltplatte, komplett	8002027	
111	AntSpule, LW	8020059	
	AntSpule MW	8020062	
	AntSpule, 49 m	8020061	
	Dioden, AA 119	8300001	2 Stck.
	Dioden, AA 119	8200000 -	z occa.
	Dioden, OA 90	9300009	3 Stck.
	Dioden, OA 79	8200022 -	J SICK.
	Dioden, ZF 9,1	8500028	
	Fassung für Elko	0)06101	
	OszSpule, LW	8020000	
	OszSpule, MW	8020001	
	OszSpule, 49 m	0996475	
	Spule, 468 Serien-Resonanzkreis ferrit		
	Spule, 468 filter		
	Spule, 468 Serien-Resonanzkreis	8020056	
	Spule, 10,7 MHz Kopplung	8020003	
	Schaltplatte Impedanztransformator	8002030	
	Transistor BC 154	8320069	
	Transistor, AC 151	8320007	
	Transistor, AC 153	8320059	
	Transistoren, AC 127/AC 132	8320003	
	Transistoren, AF 116	8320017 -	2 Stck.
	Transistor, AF 121	8320020	
	Transistor, OC 71	8320035	
112	1. ZF-Transformator	8010000	
113	Potentiometer, 500 Ohm	5370002	
114	2. ZF-Transformator	0971207	
115	AM Detektor	0971209	
116	FM Detektor	0971225	
117	Potentiometer, 2,2 K Ω	5370009	
118	Sicherung, 1 A, flink	6604023	
119	Kühlplatte	0760417	
-	Potentiometer, $2K\Omega$	5370006	
120	Druckknopf-Umschalter		
121	Netzschalter	7452000	
122 123	Potentiometer		
124	Potentiometer		
125	Isolierbuchse		
126	Schaltplatte, NF, komplett		
	NTC-Widerstand, 50Ω		
	Widerstand, 0.4Ω , 0.5 W	02/0855	
127	Winkel	0440077	
128	Isolierbuchse	0721000	
129	Ferritantenne, komplett m. Spulen	0/20063	
	Spulen für Ferritantenne, LW	8020002	
	Spulen für Ferritantenne, MW	8020064	
	Ferritstab	0/004/8	
130	Winkel	0/004)8	

1 / 1	A was a surface of the ADM TOM	7010010
141	Antennenbuchse, AM-FM	
142	Muttern, M3 DIN 934	
143	Lötfahne	
144	Isolierbuchsen	
145	Glimmerplatte	
146	Transistor, AD 139	
147	Deckel	
148	Schrauben, AM 3×10 DIN 87	
149	Muttern, M3 DIN 934	
150	Lötfahne	
151	Isolierbuchsen	2938009
152	Fiberscheiben	2622025
153	Glimmerplatte	3170002
154	Transistor, 2 N 555	8320074
155	Deckel	
156	Schrauben, AM 3×10 DIN 87	2038912
157	Montierungsplatte (Rückplatte)	
158	Gleichrichterventil, B 30 C 1600	
159	Steckbuchse, Lautsprecher	
160	Steckbuchse, Lautsprecher	
161	Steckbuchsen, Phono	
161	Steckbuchsen, Tonbandgerät	
162	Potentiometer, Balance	
163	Steckdose, Lautsprecher	
164	Durchführungsbuchse	
165	Muttern, M3 DIN 934	
166	Spannstücke	0287155
167	Schrauben, AM 3×12 DIN 84	2038220
168	Bügel	
169	Elko, 800 µF/25 V - KPI 332	4200054
170	Abschirmung	053/10/
171	Spannungsumschalter, komplett mit Leitung	
172	Spannstück für Spannungsumschalter	(20005/
173	Elko, 800 μF/25 V - KPI 332	
174	Filzscheibe	
175	Schrauben, BZ 2,9×13 DIN 7981	
176	Endstück, (Chassis)	
177	Schraube, AM 4×35 DIN 84	
178	Abschirmung	0535478
179	Netztransformator, ST 3997/2, JS 11605, SE 10018/1.	
180	Spannstück	0285072
181	Abschirmung	
182	Schraube, AM 4×35 DIN 84	
183	Mutter, M4 DIN 934	
184	Mutter, M4 DIN 934	
185	Montierungsplatte	
186	Sicherung, 250 mA, träge	6600000
187	Sicherungshalter	0593045

188 189 190 191 192 193 194 195 196	Sicherung, 250 mA, träge Abstandrohr Schrauben, BZ 2,9×13 DIN 7981 Elko, 1000 µF/50 V - KB 108 AT Bügel Winkel Skalalampenhalter Skalalampe, 6,3 V - 0,3 A Potentiometer, Lautstärke	0410273 2013204 4201031 0240326 0238071 7201001 8230001
Dipola Stecke Stecke Stecke	liches Zubehör: untenne r, AM-Antenne r, FM-Antenne r, Tonbandgerät r, Lautsprecher r, Phono	7221022 7221019 7222004 7221020

	NOTIZEN:	
	·	
	•	
•		
		,
to the state of th		
		·
	·	

BESCHREIBUNG.

BEOMASTER 900 ist als ein volltransistorisierter Wechselstromempfänger ausgeführt, der mit FM-Tuner und 2 Schaltplatten aufgebaut ist.

Die Einheit 8050010 umfaßt FM-HF und Oszillator sowie Drehkondensator für FM. Die Schaltplatte 8002014 umfaßt Netzteil, AM-HF und ZF-Teil sowie FM-ZF. Die Schaltplatte 8002010 funktioniert als NF-Verstärker.

FM

Das Antennensignal geht über das Bandfilter 8039007 und die Spulen 8020011 und 6850011 zum Emitter von BF 115, der als HF-Verstärker arbeitet. Das verstärkte Signal wird auf den Emitter von BF 115, hineingeführt, der als selbstschwingende Mischstufe arbeitet.

Eine AFN-Diode BA 101 geht in den Oszillatorkreis ein und wird direkt vom FM-Detektor gesteuert. Das ZF-Signal wird mit Hilfe eines Umschalter auf die Basis von AF 1161 (AF 1261) eingekoppelt, der als FM-ZF-Verstärker arbeitet. AF 1162 (AF 1262) und 2 N 2654 (AF 121) funktionieren als ZF-Verstärker, und als Signalgleichrichter werden 2 Stck. AA 119 eingesetzt, dessen einer Reihenwiderstand variabel gestaltet worden ist, damit eine vollständig symmetrische Kurvenform erzielt werden kann. Von OA 90 (Pos. 92), 18 K Ω (Pos. 81a) geht die ALR-Spannung durch 680 Ω zur Basis von BF 1151.

AM

Der Empfänger ist mit einer Ferritantenne für LW, MW versehen, die mit dem Antennendruckknopf ausgeschaltet werden, während man gleichzeitig Antennenspulen für eine Außenantenne einkoppelt. Das Signal wird an AF 116_1 (AF 126_1) geleitet, der als selbstschwingende Mischstufe arbeitet, und weiter an AF 116_2 (AF 126_2) und 2 N 2654 (AF 121), die als ZF-Verstärker arbeiten. Als Signalgleichrichter wird eine Diode OA 79 benutzt, und vom AM-Detektor wird eine ALR-Spannung genommen. Die AM-Detektorschaltung ist — 1,4 Volt über das Massepotential angehoben, und die ALR-Spannung bewegt sich in positiver Richtung, d.h. dem Massepotential zu. Diese Spannung wird über 33 K Ω zum Sekundärkreis des 1. ZF-Transformators (8010000) geleitet. Eine weitere ALR-Wirkung (bei kräftigen Signalen) wird mit Hilfe der Diode OA 79 (Pos. 71) erzeugt, indem diese wegen der Stromänderung im AF 116_2 (AF 126_2) leitend wird und den Primärkreis im 1. ZF-Transformator (8010000) dämpft.

NF

Das Signal wird zum FM-Umschalter, zu den Mono-, Phono- und Tonbandgerätumschaltern geleitet, die zu getrennten Normbuchsen geführt sind. Wenn der Knopf MONO sich in der Außenstellung befindet, wird der Stereo-Indikator in den Funktionen Phono, Tonbandabspielen und FM bei montierem Stereo-Decoder leuchten.

Die beiden NF-Verstärker sind mit Gleichspannungskopplung in der Treiber- und Endstufe ausgeführt.

FM Stereo

Der Empfänger ist für Sendungen nach dem FCC-Multiplexsystem vorbereitet, und ein Stereo-Decoder kann durch einen Novalstecker nach dem Herausnehmen des Nachentzerrungsgliedes 0994027 angeschlossen werden.

Die Indikatorlampe wird aufleuchten, wenn die Pilotfrequenz von 19 kHz empfangen wird.

Stabilisierter Netzteil

Wegen der schwankenden Stromaufnahme der Endstufe (0,1 bis 1,6 A) muß der Netzteil mit einer Spannungsstabilisierung versehen sein. Ein Leistungstransistor 2 N 555 wird von einer Zenerdiode und zwei Treibertransistoren gesteuert, und außer einer Stabilisierung wird eine wirksame Filtrierung der Brummfrequenz erreicht.

Die vier Endtransistoren und der Netztransistor sind mit Hilfe von Glimmerscheiben und Hülsen von der Montierungsplatte isoliert. Falls diese Isolierung mangelhaft ist, werden ein oder mehrere Transistoren und Widerstände zerstört.

Die Lautsprecher, Modell 900 K

befinden sich in einem Kompressionsgehäuse, worin auch der mittlere Raum eingeht. Es muß deshalb davon abgeraten werden, den Lautsprechern eine zu hohe Leistung bei demontiertem Chassis zuzuführen, da die Luftdämpfung zur Begrenzung des Membranenhubes notwendig ist.

Es sind Steckbuchsen für 1 Satz Außenlautsprecher vorhanden, und beim Einführen der Stecker der Außenlautsprecher können diese so gedreht werden, daß die eingebauten Lautsprecher ausgeschaltet werden.

Abstimmanzeiger (Radicator)

Die Justierung erfolgt mit dem Potentiometer, Pos. Nr. 89. Der Empfänger wird so eingestellt, daß kein Signal empfangen wird, und es wird auf die Zahl 0 einjustiert.

Balance-Justierung

Diese kann beispielsweise mit einer Frequenzplatte mit 1000 Hz und einem Outputmeter durchgeführt werden. Der Lautstärkeregler wird auf 50 mW eingestellt, und die Balance wird eingeregelt. Danach wird auf 6 W aufgedreht; der Unterschied darf jetzt 3 dB nicht übersteigen.

Netzteil

Die Justierung der Gleichspannung 24 Volt erfolgt mit dem Potentiometer 2,2 k Ω , Pos. Nr. 904, in Stellung FM bei herabgeregelter Lautstärke. Ein Röhrenvoltmeter wird dem Punkt H angeschlossen.

Zur Befestigung des Lautsprechergitters dienen zwei Stück selbstklebende, doppelseitige Klebefolie, und beim Demontieren des Gitters ist es notwendig, das Klebeband mit einem Rasiermesser durchzuschneiden; es wird in Richtung des Pfeiles geschnitten (siehe Zeichnung).

Beim Wiedereinbau wird das alte Klebeband entfernt, und neue Stücke werden dem Gitter angeklebt, wonach dieses auf seinen Platz gepreßt wird.

Klebeband kann unter Nr. 3947432 nachbezogen werden.

NOTIZEN

		•	 		
			٠,		

	 •			 	
/ ************************************	 		 	 194.00.00.00	
	 	•	 	 	

Montierung von Stereo-Decoder, Typ 0001

Die beiden Schrauben, die die NF-Schaltplatte 8002002 festhalten, werden herausgeschraubt. Der Nachentzerrungspfropfen 0994027, der in der Stereo-Decoder-Fassung (neben der Stereo-Indikatorlampe) sitzt, wird herausgenommen.

Das Leitungsbündel mit dem Stecker von dem Stereo-Decoder 0001 wird vom Platz des Decoders unter die Schiene hinunter (für die Befestigung von Schaltplatten) und weiter zur Steckdose hin gezogen, wo der Stecker hineingesteckt wird.

Der Indikatortransistor AC 153, der mit einem Kühlblech versehen ist, wird gleichzeitig damit, daß der Decoder auf seinen Platz gebracht wird, nach unten und außen durch das Chassis gezogen (über innere Lautsprecher-Steckdose) und wird außem am Chassis mit einer Blechschraube (BZ 2,84×6,35) Nr. 2013000 im freien Loch an der oberen Kante des Chassis festgeschraubt. Eine Spannscheibe 0286135 gehört zwischen Schraube und Kühlblech.

Die Stereo-Decoder-Schaltplatte wird an den beiden Zapfen des Winkels (wie die NF-Schaltplatte) festgelötet und mit einer Schraube (AM 3×6) Nr. 2038209 und einer Fiberscheibe 0376369 an der Schiene festgeschraubt.

Bei der Montierung im BEOMASTER 900 entfällt: 1 Winkel (0760472), 1 Schraube (AM 3×6) Nr. 2038006.

Abgleich des Stereo-Decoders 0001

Mit Hilfe der Testsendung von einer FM-Stereo-Station und eines Oszilloskops kann man den Decoder abgleichen, und dies geschieht wie folgt:

Der Empfänger wird auf den Sender eingestellt, die Frequenznachstimmung wird eingekoppelt und das Oszilloskop wird dem Kollektor von AF 1262 angeschlossen; die Kerne 1, 2 und 3 werden auf Maximum justiert (die Kerne lassen sich mit Hilfe von ein paar Tropfen Verdünner lösen).

Viewed from component side Von der Bauteilseite aus gesehen

Das Oszilloskop wird nun dem NF-Aufgang des Kanals, der kein Signal empfängt, angeschlossen, und die Kanaltrennung wird nun dadurch justiert, daß Kern 1 gedreht wird, bis eine minimale Kurvenhöhe erreicht wird.

Bei der Justierung der Indikatorschaltung muß das Oszilloskop dem Kollektor von AC 153, angeschlossen sein, und Kern 4 wird auf Maximum justiert.

Das Potentiometer $250\,\Omega$ wird so eingestellt, daß die Indikatorlampe beim Rauschen außserhalb der Stationen nicht zu leuchten beginnt.

24 EMPFINDLICHKEITSMESSUNGEN UND TRIMMVORSCHRIFT

BEREICH	SKALAEINSTELLUNG	HF - ANSCHLUSS	OSZILLOSKOPANSCHLUSS	FREQUENZ	BEMERKUNG	EMPFIND- LICHKEIT	AUSGANGS- LEISTUNG	ZU JUSTIEREN
AM-ZF-KREI	SE							
		r						Spule 6-31-23 verstimmen
MW	Hineingedrehter Kondens.	Punkt A, durch 0,1 μF	Punkt NF-AM siehe Be- stückungszeichnung	468 kHz		1 μV	50 mW	Spulen 5-4-3-2-1 auf max. u. symm. Kuive Bandbreite
MW	"	Punkt B, "	,	468 kHz		7 μV	50 mW	5 kHz ± 0,5 kHz bei 6 dB
MW	»	Punkt C, "	, , ,	468 kHz		230 μV	50 mW	
MW	n	Antennenbuchse	n	468 kHz			,	Spule 6 auf Minimum (1)
MW	aus gedrehter Kondens.	n	79	468 kHz		Zahlen folg	e Trimmen	Spule 31 auf Minimum und symmetrisch (2)
MW	,,	Rahmenantenne	"	468 kHz				Spule 23 auf Minimum (3)
AM-HF-KREI	SE							
	155 kHz	Antennenbuchse		155 kHz				Spule 17
LW Osz.	285 kHz	Antennenoucise		285 kHz				Trimmer 14
LW Osz.	285 KHZ 575 kHz	"		575 kHz				Spule 18
MW Osz.	1495 kHz	"		1495 kHz				Trimmer 15
MW Osz.		, ,	*	5,95 MHz		,		Spule 19
9 m Osz.	5,95 MHz	,,,		7,45 MHz				Trimmer 16
19 m Osz. LW Ferrit	7,45 MHz 155 kHz	In abgeschirmtem Raum mit Rahmeantenne gemessen		155 kHz	Max. Höhen und Tiefen sowie Lautstärke	630 μV/m	500 mW	Spule 30
	285 kHz	"		285 kHz	"	750 μV/m	500 mW	Trimmer 24
W Ferrit	575 kHz	. , ,		575 kHz	"	260 μV/m	500 mW	Spule 29
AW Ferrit	1495 kHz	**		1495 kHz	27	195 μV/m	500 mW	Trimmer 28
MW Ferrit LW Aussenant.	1495 kHz	Antennenbuchse durch künstl. Ant.		155 kHz	. 29	45 μV/m	500 mW	Spule 20
LW Aussenant.	285 kHz	"		285 kHz	39	36 μV/m	500 mW	Trimmer 25
MW Aussenant.	575 kHz	"		575 kHz	33	6 μV m	500 mW	Spule 21
MW Aussenant.	1495 kHz	"		1495 kHz	39	112 μV/m	500 mW	Trimmer 26
	5,95 MHz	*		5,95 MHz	"	35 μV/m	500 mW	Spule 22
49 m Aussenant.	7,45 MHz	"		7,45 MHz	»	50 μV/m	500 mW	Trimmer 27
49 m Aussenant. FM-ZF-KREI							-	
FM	97 MHz	Antennenbuchse	Punkt MF-FM (siehe Be- stückungszeichnung)	10,7 MHz	Durch Diodensonde. AFN ausser Funktion setzen			Spulen 12-13 verstimmen Spulen 35-7-8-9-10-11 auf max. v. symmetr. Kurve Bandbreite 250 kHz ± 30 kHz bei 6 dB
FM	97 MHz	"	Punkt NF-FM (siehe Be- stückungszeichnung)	10,7 MHz	Ohne Diodensonde			Spulen 13-14 auf max. u. symmentr. S-Kurve
FM	97 MHz	"	n n	10,7 MHz	n			Pot. Pos. Nr 110 auf beste Störunterdrückung
	97 MHz	Punkt A, durch 0,1 µF		10,7 MHz		25 µV	50 mW	
FM	97 MHz	Punkt B, "		10,7 MHz		250 µV	50 mW	
FM	97 MHz	Punkt C, "		10,7 MHz		3,5 µV	50 mW	
FM FM-HF-KREI		Tunkt Ci, "						
	89 MHz	Antennenbuchse		89 MHz	I .			Spule 31
FM Osz. FM Osz.	106 MHz	Amemiendunse		106 MHz				Trimmer 33
FM Osz. FM Ant.	89 MHz	77		89 MHz	Outputmet.			Spule 31
	106 MHz			106 MHz	27			Trimmer 34-37
FM Ant. FM	92 MHz	77		92 MHz	Max. Tiefen, Höhen sowie Lautstärke	3,5 μV	500 mW	
	92 MHz	. "		92`MHz	Max. Tiefen und Höhen	5 uV	18 dB si./st.	

AM-ZF-Trimmen: Hubgenerator: Frequenzhub etwa 20 kHz AM-Empfindlichkeitsmessungen: Messsender: 400 Hz, 30% Modulation FM-ZF-Trimmen: Hubgenerator: Frequenzhub etwa 1 MHz FM-Empfindlichkeitsmessungen: Messsender: Frequenzhub 22,5 kHz - 400 Hz

Von der Lötseite aus betrachtet

Messung mit Ohmmeter (Netzspannung unterbrochen)

Bei Fehlerortungen in Endstufen und Netzteil kann es ein Vorteil sein, ein Ohmmeter ohne vorheriges Ablöten der Transistoren zu benutzen. In der nachstehenden Tabelle sind Messungen mit einem Vielfachinstrument, 40 k Ω /Volt, angeführt, und der Bereich $\Omega \times 1$ wurde bevorzugt. Bei der Anwendung von anderen Instrumenttypen darf die Tabelle nur als richtungsweisend betrachtet werden, da der Meßstrom das Meßergebnis beachtlich beeinflußt.

Das Instrument ist so zu polen, daß der Minuspol der Batteriespannung an das Chassis des Gerätes gelegt wird. Bei einzelnen Instrumenttypen ist diese Polarisierung umgelechet im Monthälte im Monthälte

kehrt im Verhältnis zur Spannungsmessung.

Transistor	Stift	Ohm	Transistor	Stift	Ohm
AD 139 ₂ + 4	K E B	28Ω 11Ω 30Ω	AC 153	K E B	80Ω 82Ω 2.2KΩ
AD 139 ₁ + ₃	K E B	10Ω 0.5Ω 95Ω	SP 1446 Netzteil	K E B	22 Ω 11 Ω 30 Ω
AC 132	K E B	28 Ω 30 Ω 120 Ω	AC 153 Netzteil	K E B	22 Ω 26 Ω 150 Ω
AC 127	K E B	95Ω 10Ω 80Ω	AC 151 Netzteil	K E B	15Ω 22Ω 1.8 ΚΩ