

진짜 문제를 해결해보자 (1) 상점 신용카드 매출 예측

문제 소개

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I

l 대회 소개

- 출처: 상점 신용카드 매출 예측 경진대회
 - ▶ 문제 제공자: FUNDA (데이콘)
 - ▶ 소상공인 가맹점 신용카드 빅데이터와 AI로 매출 예측 분석
 - https://dacon.io/competitions/official/140472/overview/
- 문제 개요: 2019년 2월 28일까지의 카드 거래 데이터를 이용하여 2019년 3월 1일 ~ 5월 31일까지의 상점별 3개월 총 매출 예측

FAST CAMPUS ONLINE 안길승 강사.

1사용 데이터

- funda_train.csv: 모델 학습용 데이터
 - ➤ store_id: 상점의 고유 id
 - card_id: 사용한 카드의 고유 아이디 // card_company: 비식별화된 카드 회사
 - transcated_date: 거래 날짜 // transacted_time: 거래 시간
 - installment_term: 할부 개월 수
 - region: 상점 지역 // type_of_business: 상점 업종
 - amount: 거래액
- submission.csv: 모델 적용 데이터
 - store_id: 상점의 고유 id

1문제의 핵심: 특징 및 라벨 추출을 위한 데이터 요약

제공된 데이터의 레코드의 단위는 거래이며, 예측하고자 하는 레코드의 단위는 3개월 간의 상점 매출임

	store_id	card_id	card_company	transacted_date	transacted_time	installment_term	region	type_of_business	amount
0	0	0	b	2016-06-01	13:13	0	NaN	기타 미용업	1857.142857
1	0	1	h	2016-06-01	18:12	0	NaN	기타 미용업	857.142857
2	0	2	С	2016-06-01	18:52	0	NaN	기타 미용업	2000.000000
3	0	3	а	2016-06-01	20:22	0	NaN	기타 미용업	7857.142857
4	0	4	С	2016-06-02	11:06	0	NaN	기타 미용업	2000.000000

Y: store_id별 2019년 3월 1일 ~ 5월 31일의 매출 합계

FAST CAMPUS ONLINE 안길승 강사.

진짜 문제를 해결해보자 (1) 상점 신용카드 매출 예측

학습 데이터 구축

FAST CAMPUS ONLINE 데이터 탐색과 전처리 l

1기본 데이터 구조 설계

• 레코드가 수집된 시간 기준으로 3개월 이후의 총 매출을 예측하도록 구조를 설계해야 함

상점 ID	시점	특징	라벨
1	4	시점 1 ~ 3까지의 상점 1의 특징	시점 5 ~ 7까지의 상점 1의 매출 합계
1	5	시점 2 ~ 4까지의 상점 1의 특징	시점 6 ~ 8까지의 상점 1의 매출 합계
1	6	시점 3 ~ 5까지의 상점 1의 특징	시점 7 ~ 9까지의 상점 1의 매출 합계
:	:	:	:
2136	38	시점 35 ~ 37까지의 상점 1의 특징	시점 38 ~ 40까지의 상점 1의 매출 합계

• 시점의 정의 = ((년 – 2016) * 12 + 월)

1시점 변수 생성

- 1. 기 존 시 간 변 수 (transacted_date) 에 서 연 도 (transacted_year) 와 월(transacted_month)을 추출
- 2. 시점 변수 생성: 시점 (t) = (연도 2016) * 12 + 월
- 3. 불필요한 변수 제거
 - transacted_year
 - transacted_month
 - transacted_date
 - transacted_time

l 범주 변수 탐색

- 1. card_id, card_company는 특징으로 사용하기에는 도메인 지식 하에서 부적절하다고 판단하여 삭제
- 2. 업종 (type_of_business), 지역 (region), 할부 거래(installment_term)에 대한 value_counts 수행
 - ▶ 상태 공간이 매우 큰 범주 변수임을 확인하여, 더미화하기에는 부적절하다고 판단
 - ▶ 업종 및 지역에 따른 상점 매출 합계의 평균을 사용하기로 결정
 - 할부 값은 할부 거래인지 여부만 나타내도록 이진화
 - 이 과정에서 결측은 제거하지 않고 없음이라고 변환

1학습 데이터 구조 작성

- 기존에 정리되지 않은 데이터를 바탕으로 학습 데이터를 생성해야 하는 경우에는 레코드의 단위를 고려하여 학습 데이터의 구조를 먼저 작성하는 것이 바람직함
- funda_train.csv (이하 train_df)에서 store_id, region, type_of_business, t를 기준으로 중복을 제거한 뒤, 해당 컬럼만 갖는 데이터프레임으로 학습 데이터(train_df)를 초기화함

l 평균 할부율 부착

- 1. installment_term_per_store 생성
 - ➤ store_id에 따른 installment_term의 평균을 groupby를 이용하여 생성: installment_term_per_store
- 2. installment_term_per_store를 사전화: installment_term_per_store.to_dict()
- 3. train_df의 store_id를 replace하는 방식으로 평균 할부율 변수 생성

Fast campus

1기존 데이터 부착 테크닉

• 한 데이터에서는 시점 t를, 다른 데이터에서는 시점 t - 1을 붙여야 하는 경우

t	Value1		t	Value2				
1	-		-	Δ.		t	Value1	Value2
l	ı		l	A		2	2	Α
2	2		2	В				
						3	3	В
3	3		3	С			df	
df1		•	d	f2	-		ui .	

- Case 1. t가 유니크한 경우, 각 데이터를 정렬 후, 한 데이터에 대해 shift를 사용
- Case 2. t가 유니크하지 않은 경우, t_1 변수를 생성

□기존 데이터 부착 테크닉: Case 1

• Case 1. t가 유니크한 경우, 각 데이터를 정렬 후, 한 데이터에 대해 shift를 사용한 뒤 concat 수행

t	Value1
1	1
2	2
3	3
	-

df1

t	Value2		
NaN	NaN		
1	Α		
2	В		
df2.shift(1)			

t	Value1	Value2	
2	2	Α	
3	3	В	

df

1기존 데이터 부착 테크닉: Case 2

• Case 2. t가 유니크하지 않은 경우, t+1 변수를 생성하여 merge를 수행

t	Value1
1	1
2	2
3	3

df1

t+1	Value2			
2	Α			
3	В			
4	С			
df2				

merge(df1, df2, left_on = 't1', right_on = 't+1')

	t	Value1	Value2
)	2	2	Α
	3	3	В
		df	

FAST CAMPUS ONLINE 안길승 강사.

Ⅰ기존 매출 합계 부착

- 1. store_id와 t에 따른 amount의 합계 계산: amount_sum_per_t_and_sid
- 2. 다음 과정을 k = 1, 2, 3에 대해 반복
 - 1) amount_sum_per_t_and_sid에 t_k 변수 생성 (t_k = t + k)
 - 2) train_df와 amount_sum_per_t_and_sid 병합 (단, amount_sum_per_t_and_sid에는 t 컬럼 삭제)
 - 3) 병합 후 train_df의 amount 변수명을 k_before_amount로 변경
 - 4) 불필요한 변수가 추가되는 것을 막기 위해, amount_sum_per_t_and_sid와 train_df에 t_k 변수 삭제

1기존 지역별 매출 합계 부착

- 1. store_id를 키로 하고, region을 value로 하는 사전 생성
- 2. amount_sum_per_t_and_sid에서 region 변수 생성 및 region과 t에 따른 amount 평균 계산: amount_mean_per_t_and_region
- 3. 다음 과정을 k = 1, 2, 3에 대해 반복
 - 1) amount_mean_per_t_and_region에 t_k 변수 생성 (t_k = t + k)
 - 2) train_df와 amount_mean_per_t_and_region 병합 (단, amount_mean_per_t_and_region에는 t 컬럼 삭제)
 - 3) 병합 후 train_df의 amount 변수명을 k_before_amount_of_region로 변경
 - 4) 불필요한 변수가 추가되는 것을 막기 위해, amount_sum_per_t_and_sid와 train_df에 t_k 변수 삭제

Ⅰ기존 업종별 매출 합계 부착

- 1. store_id를 키로 하고, type_of_business를 value로 하는 사전 생성
- 2. amount_sum_per_t_and_sid에서 type_of_business 변수 생성 및 type_of_business와 t에 따른 amount 평균 계산: amount_mean_per_t_and_type_of_business
- 3. 다음 과정을 k = 1, 2, 3에 대해 반복
 - 1) amount_mean_per_t_and_ type_of_business에 t_k 변수 생성 (t_k = t + k)
 - 2) train_df와 amount_mean_per_t_and_ type_of_business 병합 (단, type_of_business에는 t 컬럼 삭제)
 - 1) 병합 후 train_df의 amount 변수명을 k_before_amount_of_region로 변경
 - 2) 불필요한 변수가 추가되는 것을 막기 위해, type_of_business와 train_df에 t_k 변수 삭제

l 라벨 부착하기

- 1. 다음 과정을 k = 1, 2, 3에 대해 반복
 - 1) amount_sum_per_t_and_sid에 t_k (t_k = t k)변수 생성
 - 2) train_df와 amount_sum_per_t_and_sid를 병합
 - 3) 병합 후, train_df의 amount 변수명을 Y_k로 변경
- 2. 라벨 생성: Y = Y_1 + Y_2 + Y_3

진짜 문제를 해결해보자 (1) 상점 신용카드 매출 예측

학습 데이터 탄색 및 전처리

FAST CAMPUS ONLINE 데이터 탐색과 전처리 l

I 학습 데이터 기초 탐색 및 전처리

- 1. 특징과 라벨 분리
- 2. 학습 데이터와 평가 데이터로 데이터 분할
- 3. 학습 데이터 구조 및 기초 통계 분석
- 4. 이상치 제거
- 5. 치우침 제거
- 6. 스케일링 수행

진짜 문제를 해결해보자 (1) 상점 신용카드 매출 예측

모델 학습

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I

l모델 선택

- 샘플 대비 특징이 적고, 특징의 타입이 전부 연속형으로 같음
- 따라서 아래 세 개의 모델 및 특징 선택 기준을 고려
 - ➤ 모델 1. kNN
 - 모델 2. RandomForestRegressor
 - ➤ 모델 3. LightGBM
 - ▶ 특징 선택: 3 ~ 10개 (기준: f_regression)

FAST CAMPUS ONLINE 안길승 강사.

I 파라미터 범위 선정 및 튜닝 수행

k-NN

- n_neighbors: [1, 3, 5, 7]
- metric: ['Euclidean', 'cosine']

Random Forest

- max_depth: [1, 2, 3, 4]
- n_estimators: [100, 200]
- max_samples: [0.5, 0.6, 0.7, None]

Light GBM

- max_depth: [1, 2, 3, 4]
- n_estimators: [100, 200]
- learning_rate: [0.05, 0.1, 0.15]

FAST CAMPUS ONLINE 안길승 강사.

l 최종 모델 학습

• 파라미터 튜닝을 통해 찾은 최적의 파라미터로 전체 데이터에 대해 재학습 수행

• 이때, 새로 들어온 데이터에 대해서도 동일한 전처리를 하기 위해, pipeline을 함수화함

진짜 문제를 해결해보자 (1) 상점 신용카드 매출 예측

모델 적용

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I

l모델 적용

FAST CAMPUS

- 새로 들어온 데이터인 submission_df에 대해서도 모델의 입력으로 들어갈 수 있도록 전처리 수행
- 전처리된 데이터를 모델에 투입하여 출력값을 얻고, 이를 데이터프레임화하여 정리

진짜 문제를 해결해보자 (1) 상점 신용카드 매출 예측

감사합니다

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I