Transmisión asimétrica de precios en el sector de la palta en Chile: Evidencia desde un modelo TVECM

Borrador de Resultados

Héctor Garrido Henríquez

28 de septiembre de 2017

Antecedentes

- Los datos provienen de http://www.odepa.cl
- ▶ Para hacer el análisis lo más homegeneo posible, se utiliza un solo producto, palta Hass de primera calidad.
- ► El período que aborda la investigación comienza en marzo de 2008 hasta agosto de 2017 con un total de 494 semanas.
- ▶ Los datos para mayoristas corresponden a un precio promedio ponderado de la feria Lo Valledor en la ciudad de Santiago.
- Los datos para supermercado corresponde a un promedio simple de los precios recogidos por ODP en los supermercados de la ciudad de Santiago.
- ► Se utilizaron precios nominales

Los datos

Figure 1: Evolución de Precios semanales para la palta de larga vida de primera calidad

Imputación de datos perdidos

Figure 2: Imputación de datos perdidos mediante el filtro de Kalman

Estacionariedad de las series

Contrastes de raíz unitaria - Dickey-Fuller Aumentado

	Estadístico		Valores críticos		
\mathcal{H}_0	$Mayorista^a$	${\bf Supermercado}^b$	90%	95%	99%
τ_2 ϕ_1	-2.5725 3.4095	-1.6393 1.6354	-2.57 3.79	-2.87 4.61	

a: con drift y un rezago de acuerdo a criterio BIC

	Estadístico			Valores críticos			
\mathcal{H}_0	${\bf Mayorista}^a$	${\bf Supermercado}^b$	90 %	95%	99 %		
τ_3	-3.4073	-2.1143	-3.13	-3.42	-3.98		
ϕ_2	3.9655	1.6848	4.05	4.71	6.15		
ϕ_3	5.84	2.2351	5.36	6.30	8.34		

b: con drift, tendencia determinista y un rezago de acuerdo a criterio BIC

Contrastes de raíz unitaria - Phillips-Perron

	$Z(t_{\hat{\alpha}})$	$Z(t_{\hat{\mu}})$
Mayorista	-13.3185	2.5034
Supermercado	-6.8785	1.846

a: con drift

	$Z(t_{\hat{\alpha}})$	$Z(t_{\hat{\mu}})$	$Z(t_{\hat{eta}})$
Mayorista	-22.1367	1.5224	2.2482
Supermercado	-11.958	1.0702	1.6795

b: con drift y tendencia determinista

con cinco rezagos de acuerdo a la regla ${\bf lags}=\sqrt[4]{4\times(n/100)}$

Contrastes de raíz unitaria - Elliot, Rothenberg & Stock

▶ Se aplicó el test de punto óptimo factible

Est	Estadístico			Valores críticos		
${\bf Mayorista}^a$	${\bf Supermercado}^b$	90%	95%	99%		
4.1594	10.1445	6.89	5.62	3.96		

a: con drift y un rezago de acuerdo a criterio BIC

Est	Valores críticos			
$Mayorista^a$	${\bf Supermercado}^b$	90 %	95%	99 %
3.5853	11.7915	4.48	3.26	1.99

b: con drift, tendencia determinista y un rezago de acuerdo a criterio BIC

Contrastes de raíz unitaria/estacionariedad - Kiatkowsky, Phillips, Schimdt & Shin (KPSS)

	Estadístico		Valores críticos		
\mathcal{H}_0	${\bf Mayorista}^a$	${\bf Supermercado}^b$	90%	95%	99 %
$\overline{\tau_3}$	3.4145	3.7542	0.347	0.463	0.739

a: con drift

	Estadístico		Valores críticos		
\mathcal{H}_0	$Mayorista^a$	${\bf Supermercado}^b$	90 %	95%	99 %
τ_3	0.2396	0.3236	0.119	0.146	0.216

b: con drift y tendencia determinista

con cinco rezagos de acuerdo a la regla ${\bf lags}=\sqrt[4]{4\times(n/100)}$

Selección del orden del modelo VAR subyacente

Se realizó una rutina para escoger el número de rezagos del VAR de manera de eliminar problemas de autocorrelación

Contraste de Cointegración de Johansen

Rango	Traza Estadístico Valores críticos		Máx Estadístico	imo Eige Val	envalue ores crít	icos		
		10%	5%	1%		10%	5%	1 %
r = 1 $r = 0$	5.96 33.45	7.52 17.85	9.24 19.96	12.97 24.60	5.96 27.49	7.52 13.75	9.24 15.67	12.97 20.20

Relación de cointegración

$$\boldsymbol{\alpha\beta'\mathbf{P}_{t-1}} = \left[\begin{array}{c} -0.137 \\ 0.006 \\ 0.00 \end{array} \right] \left[\begin{array}{c} 1 & -1.090485 & 1.185426 \end{array} \right] \left[\begin{array}{c} \mathsf{Mayorista}_{t-1} \\ \mathsf{Supermercado}_{t-1} \\ 1 \end{array} \right] \tag{1}$$

Hipótesis	Estadístico	$\mathbb{P}(\chi^2 > \text{Estadístico})$
$\beta' = (1, -1, 1.18)$	26.45	0.00

Figure 3: Contraste de razón de Verosimilitud

Modelo VAR Cointegrado

Variables	Ecuación 4	ΔMayorista	Ecuación Δ Supermercado		
	Coeficiente	E. estándar	Coeficiente	E. estándar	
TCE	-0.1371	(0.0297)***	0.0241	(0.0158)	
Δ Mayorista _{t-1}	0.2053	(0.0495)***	0.0734	(0.0263)**	
Δ Supermercado _{t-1}	0.2011	(0.0890)*	-0.0728	(0.0473)	
Δ Mayorista _{t-2}	0.0628	(0.0503)	0.0873	(0.0267)**	
Δ Supermercado _{t-2}	0.1627	(0.0886).	-0.0183	(0.0471)	
Δ Mayorista _{t-3}	0.0333	(0.0500)	0.0405	(0.0266)	
Δ Supermercado _{t-3}	0.0460	(0.0888)	0.0356	(0.0472)	
Δ Mayorista _{t-4}	-0.0487	(0.0493)	0.0227	(0.0262)	
Δ Supermercado _{t-4}	0.0771	(0.0872)	0.0823	(0.0463).	
Δ Mayorista _{t-5}	-0.0381	(0.0490)	-0.0309	(0.0260)	
Δ Supermercado _{t-5}	0.0163	(0.0866)	-0.0314	(0.0460)	
Δ Mayorista _{t-6}	0.0742	(0.0487)	0.0445	(0.0259).	
Δ Supermercado _{t-6}	0.0195	(0.0844)	0.0131	(0.0448)	
Δ Mayorista _{t-7}	0.0337	(0.0488)	0.0743	(0.0259)**	
Δ Supermercado _{t-7}	0.1745	(0.0828)*	-0.0192	(0.0440)	
	Tamaño mu	estral: 494	Muestra efec	ctiva: 486	
	AIC: -5399.275		BIC: -5269.503		

Nota: *** $0.1\,\%$ ** $1\,\%$ * $5\,\%$. $10\,\%$

Función de Impulso respuesta (1)

Supongamos un shock de una desviación estándar desde **mayorista** ($\approx 42.55\%$)

Función de Impulso respuesta (2)

Supongamos un shock de una desviación estándar desde supermercado ($\approx 33.3\%$)

Diagnóstico de los residuos del modelo

rezago	Estadístico	G. de libertad	$\mathbb{P}(\chi^2 > \text{Estadístico})$
	237.7642	4	2.8114×10^{-50}
	112.54	45	1.043×10^{-7}
8	2.8623	2	0.239
12	26.736	18	0.08407
16	46.176	34	0.07947
20	62.399	50	0.1121
	8 12 16	237.7642 112.54 8 2.8623 12 26.736 16 46.176	237.7642 4 112.54 45 8 2.8623 2 12 26.736 18 16 46.176 34

Resultados y Discusión

- Se observa la predominancia de los supermercados sobre los mayoristas. Esto se explica en la medida en que un eslabón de la cadena se encuentra altamente atomizado en relación al otro.
- Puede extenderse el análisis para modelar el patrón de Heteroscedastidad Condicional (Hassouneh, Serra, Bojnec & Gil, 2017)
- ▶ Pueden utilizarse modelos no lineales para capturar comportamientos asimétricos en la transmisión de precios (TVECM) (Véase Greb, F., von Cramon-Taubadel, S., Krivobokova, T., & Munk, A. (2013). The estimation of threshold models in price transmission analysis. American Journal of Agricultural Economics, 95(4), 900-916.)