

Figure 1.1 Diagrams showing the variations of electron energy with wave number (momentum) in (a) Ge, (b) Si, and (c) GaAs along the [100] and [111] directions in k space. Electrons are located near the minimum of the conduction band, whereas holes are located near the maximum of the valence band. The band structures of Ge and Si are examples of indirect-gap semiconductors, whereas that of GaAs represents a direct bandgap semiconductor. Δ is the spin-orbit splitting (from S. Wang, Fundamentals of Semiconductor Theory and Device Physics, Prentice Hall, Englewood Cliffs, NJ, 1989).

Figure 1.2 Energy bandgap versus lattice constant for common elemental and compound semiconductors. The tie lines joining the binaries represent ternary compositions. The dashed lines represent indirect bandgap material. The vertical dashed line passing through the point representing InP contains the bandgaps for the lattice-matched InGaAlAs and InGaAsP quaternary systems.

TABLE 1.2 LATTICE CONSTANTS, NEAREST-NEIGHBOR DISTANCES AND COVALENT RADII OF ELEMENTAL AND COMPOUND SEMICONDUCTORS (adapted from M. Shur, *Physics of Semiconductor Devices*, Prentice Hall, Englewood Cliffs, NJ, 1990).

Material	Lattice constant, a (Å) at 25°C	Distance between nearest neighbors, $a\sqrt{3/4}$ (Å)	Sum of covalen radii (Å)
Si	5.4309	2.353	2.34
Ge	5.6461	2.450	2.44
$A_{III}B$	V		11 July 11
ÁlAs	5.6611	2.430	2.44
AIP	5.451	2,360	2.36
AlSb	5.136	2.724	2.62
BAs	4.776	2.068	2.06
BN	3.615	1,565	i.58
BP	4.538	1.965	1.98
BSb	5.170	2.239	2.24
Ga/As	5.6532	2.448	2.44
GaP	5.4495	2,360	2.36
GaSb	6.095	2.639	2.62
InAs	6.0584	2.623	2.62
InP	5.8687	2.540	2.54
InSb	6.479	2.805	2.80
$C_{II}D_{VI}$	l		20,4947
Cate	6.482	2.807	2.95
HgS	5.841		±.
HgSe	6.084		
HgTe	6.462	2.798	2,95
ZoS	5.415		eas II st
ZnSe	5.653		
ZnTe	6.101	2.642	2.78

Figure 1.15 Accommodation of lattice of epitaxial layer with that of substrate for different cases: (a) lattice-matched growth $(a = a_0)$. (b) biaxial compressive strain $(a > a_0)$, and (c) biaxial tensile strain $(a < a_0)$.

TABLE 1.5 COMPOSITIONAL DEPENDENCE OF THE ENERGY GAP OF TERNARY III-V SEMICONDUCTORS AT 300°K" (from H. C. Casey and M. B. Panish, *Heterostructure Lasers*, Academic Press, New York, 1978).

	Direct energy gap	Indirect energy gap, \mathcal{E}_g (eV)			
Compound	\mathcal{E}_g (cV)	X minima	L minima		
$Al_s lo_{1s} P$	1.351 + 2.23x	maganaga ngapi (Igr) kanawa kilanda (Igr) inganaga ngapinanga ngapinanga ngapinanga ngapinanga ngapinanga ngap Marana	Mark part II Nettly were recommended to the property of the part of the p		
$Al_xGa_{1-x}As$	1.425 + 1.247 v + 1.147 × $(x - 0.45)^2$	$1.900 \pm 0.125x \pm 0.143x^2$	$1.708 \pm 0.642x$		
$Al_{\varepsilon}In_{f-s}As$	$0.360 + 2.012x + 0.698x^2$		el accord :		
$Al_{\pi}Ga_{1-x}Sb$	$0.726 + 1.129 \mathrm{c} + 0.368 x^2$	$1.020 \pm 0.492x \pm 0.077^2$	$0.799 \pm 0.746x \pm 0.334x^2$		
$Al_{\mathfrak{s}}In_{I=\mathfrak{s}}Sb$	$0.172 + 1.621x + 0.43x^2$				
$Ga_xIn_{1-x}P$	$1.351 + 0.643x + 0.786x^2$	*	*******		
$Ga_xIn_{1\sim x}As$	0.36 + 1.064x				
$Ga_xIn_{1-x}Sb$	$0.172 \pm 0.139x \pm 0.415x^2$	stantum :	*****		
GaP _a , As _{1r}	$1.424 + 1.150x + 0.176x^2$	6. au			
GaAs _x Sb _{1x}	$0.726 - 0.502x + 1.2x^2$	z may			
$InP_{s}As_{t-s}$	$0.360 + 0.891x + 0.101x^2$	grant or	is parago		
InAs _a Sb ₁₋₃	$0.18 - 0.41x + 0.58x^2$	20000	that;		

Figure 1.20 Compositional dependence of the direct-energy gap Γ and indirect-energy gap X for GaP_xAs_{1-x} (from M. R. Lorenz and A. Onton, *Proc. Int. Conf. Phys. Semiconduct.*, 10th, Cambridge, MA (S. P. Keller, J. C. Hensel, and F. Stern, eds.), 444, U.S. Atomic Energy Comm., Washington, D.C., 1970).

TABLE 2.1 ENERGY GAPS AND TRANSVERSE AND LONGITUDINAL ELECTRON EFFECTIVE MASSES FOR SOME IMPORTANT III-V BINARY COMPOUNDS.

	Er (eV)	\mathcal{E}_{Γ} \mathcal{E} (eV)	£x (eV)	$m_e^{\Gamma*}(m_o)^a$	$m_e^{L*}(m_o)^a$	$m_e^{X*}(m_o)^a$	$m_{hh}^*(m_o)^b$	$m_{lh}^{st}(m_o)^b$	$m_{sh}^*(m_o)^c$
GaP	2.24	2.75	2.38	0.126	1.493(1)	1.993(1)	0.79	0.14	0.24
GaAs	1.42	1.71	1.91	0.063	0.142(t) 1.538(l) 0.127(e)	0.250(t) 1.987(l)	0.48	0.09	0.15
AlAs InAs	2.95	2.67	2.20 2.14	0.149	0.127(t) 1.386(l) 1.565(l)	0.813(l) 3.619(l)	0.76	0.15	680 0
InP	1.35	2.0	2.3	0.082	0.124(t) 1.878(t)	0.271(t) 1.321(l)	0.85	0.09	0.17
The state of the s					0.153(t)	0.273(t)			

^aM. V. Fischetti, IEEE Trans. Electron Devices, 38 (3), 634-649, 1991.

^bM. Shur, Physics of Semiconductor Devices, Prentice Hall, Englewood Cliffs, NJ, 1990.

^cSplit-off hole mass, from G. P. Agrawal and N. K. Dutta, Long Wavelength Semiconductor Lasers, Van Nostrand Reinhold, New York,

(1) and (t) denote longitudinal and transverse effective masses, respectively.

TABLE 1.3 ELECTRON EFFECTIVE MASSES IN $\ln_x \text{Ga}_{1-x} \text{As}$ GROWN PSEUDOMORPHICALLY ON GaAs AND $\ln_{0.53+x} \text{Ga}_{0.47-x} \text{AS}$ GROWN PSEUDOMORPHICALLY ON $\ln P$ (from M. Jaffe and J. Singh, Journal of Applied Physics, 65(1), 329, 1989).

	$\operatorname{In}_x \operatorname{Ga}_{1 - x} \operatorname{As}$			$In_{0.53+x}Ga_{0.47-x}As$			
X	m*anstrained	$\mathbf{m}^*_{\parallel strained}$	m [*] _strained	$\mathbf{m}^*_{unstrained}$	m* strained*	m* Lstrained	
0.00	0.066	0.066	0.066	0.045	The Column Columnia of America Appears of Establishment (Appears of the Appear). We become below to 1	manager in a fighter of the state of the sta	
0.05	0.064	0.065	0.064		0.045	0.045	
0.10	0.062	0.064	0.063	0.044	0.044	0.045	
0.15	0.060	0.063		0.042	0.043	0.045	
0.20	0.058		0.063	0.040	(),()4]	0.044	
0.25		0.062	0.062	0.037	0.039	0.044	
2	0.056	160.0	0.061	0.035	0.037	0.044	
0.30	0.054	0.060	0.061	0.033	0.035		
0.35	0.052	0.058	0.060	0.031		0.043	
0.40	0.050	0.057			0.033	0.043	
	of anteresonal parameters by the second of the papers was to be second or a second of the second of	unaber age	0.060	0.028	0.030	0.043	

Figure 1.14 Compositional dependence of the direct (Γ) and indirect (X and L) conduction band minima in the Al_cGa₁₋₁ As mixed crystals.

Figure 1.35 Energy levels of impurities in GaAs (from S. M. Sze. *Physics of Semiconductor Devices*, 2nd ed., Copyright § 1981. Reprinted by permission of Wiley, New York).