Assignment #2:

To come up with the highest accuracy, I tried several method and several combination of methods.

1- Auto Canny edge detection:

I developed a function to automatically calculate the upper and the lower limits and removes them using the previously developed Canny function.

```
def auto_canny(image, sigma=0.33):
v = np.median(image)
lower = int(max(0, (1.0 - sigma) * v))
upper = int(min(255, (1.0 + sigma) * v))
edged = cv.Canny(image, lower, upper)
return edged
```

I used it on the image "H04.bmp" and the result was:

the original image

the edges of the image

Then I did closing operation on the edges detected and the output was:

Then I inverted the image and the output was:

2- Otsu's Method:

Otsu's method looks at the histogram and tries to minimize the within-class variance. In other words, it tries to find a threshold such that the variance of the resulting both classes in the Gaussian distributions is as small as possible.

I used a denoising function on "H02.bmp" image.

The original image

Otsu's method output

3- Niblack's method:

It is another method used to document segmentation, however Otsu's results proved more efficient.

I tried Niblack on "H01.bmp" image

Original image

4- Sauvola's method:

It is an adaptive document binarzation technisue and it proved to be the best among all the other techniques

Sauvola's method output

Original image

Results:

image	Method	FM
H01	Auto Canny edge detection	79.05660521 %
	Otsu's Method	81.0672411 %
	Niblack's method	44.99012082 %
	Sauvola's method	80.18073909 %
H02	Auto Canny edge detection	55.66529377 %
	Otsu's Method	90.41945373 %
	Niblack's method	18.61916769 %
	Sauvola's method	64.86806558 %
H03	Auto Canny edge detection	80.14808915 %
	Otsu's Method	83.16374306 %
	Niblack's method	56.34987844 %
	Sauvola's method	88.51688586 %
H04	Auto Canny edge detection	77.6699806 %
	Otsu's Method	39.9647455 %
	Niblack's method	47.98723714 %
	Sauvola's method	86.75932258 %
H05	Auto Canny edge detection	52.75359278 %
	Otsu's Method	27.22674045 %
	Niblack's method	29.16763625 %
	Sauvola's method	83.54614001 %