

*	$\Delta x \cdot \Delta b \geq b$
	$M \cdot M = M$
	$\Delta E \cdot \Delta t \ge \frac{b}{4\pi}$
*	m = mo mo = rest mass of body
	$\frac{1-v^2}{c^2}$
*	
\	$\omega = \vartheta \pi \vartheta \qquad v = \vartheta \lambda$
*	$F = h^2 + V$
	$E = b^2 + V$
4	$\frac{d^{2} \cancel{y}}{dx^{2}} + 8 \overrightarrow{n} \stackrel{\text{in}}{m} (E-V) \cancel{y} = 0 \rightarrow \text{ one dimensional}$ $\frac{d^{2} \cancel{y}}{dx^{2}} + 8 \overrightarrow{n} \stackrel{\text{in}}{m} (E-V) \cancel{y} = 0 \rightarrow \text{ one dimensional}$ $\frac{d^{2} \cancel{y}}{dx^{2}} + 8 \overrightarrow{n} \stackrel{\text{in}}{m} (E-V) \cancel{y} = 0 \rightarrow \text{ one dimensional}$ $\frac{d^{2} \cancel{y}}{dx^{2}} + 8 \overrightarrow{n} \stackrel{\text{in}}{m} (E-V) \cancel{y} = 0 \rightarrow \text{ one dimensional}$
	dr² h² Schröndinger wave egg
★	Energy eigen value -
	$E=n^2h^2$
	8ma²
	Normalised wave fox - In = [2 sin (nti)x
*	b = Jame
	Modelle 2
	Vavg = Vavg e - +/cr -> decay process eggs
*	Varg = Varg e decay process egg.
	Cy = relaxation time
*	drift relocity (Vd): Vd = eEC
*	fr= my f=-eE
	To fr= resistive force Fa= driving force
ı	

	<u>Chandra's</u>
-*	Mean collision time (2)
	C = 1
	V = V _{th} + V _d V ≈ V _{th}
*	E = electric field = V
*	I = nevzA
	$T = 1 \times 1$ R A $T = \text{conductivity}$
	$\rho = \frac{RA}{2}$ $\rho = \frac{RA}{2}$ $\rho = \frac{RA}{2}$
	J = I = current density A
	7 2
*	$\overline{E} = \overline{M}$
*	Mobility $(u) = \frac{v}{E} = \frac{ec}{m}$
*	$T_F = E_F$ $T_F = f_{esimi}$ temp. $K_B = E_F = f_{esimi}$ energy $K_B = B_{oltzmann}$ Const. = $l \cdot 38 \times 10^{-28}$
	kg = Boltzmann Const. = 1.38×10-28
*	Fermi factor $f(E) = 1$
	$f(E) = \frac{1}{1 + e^{(E-E_F)/k_BT}}$
	f(E)= probability of & an ex occupying state of E.
*	$\sigma = ne^2 \Lambda_F = ne^2 C_F$
	$\sigma = ne^2 \Lambda_F = ne^2 C_F$ $m^{4} P_F = m^{4}$

dE = density of star 3/2

S(E) dE = ATT (2m*) VE dE

h3

for E = energy

diff: g(E) dE = density of states J = neme + peme For intrinsic SC (Servi cond) J=n; E (eue+pun) cone of e in into sc m=Nce - (Ec-EF)/keT where, Nc = 2 (DIT ME KET conc. of ht in inf ec p=Nve-(EF-EV)/keT where Nv=20mm* keT] Law of mase action -> np = Nue -(Er-EV)/kgt Nce - (Ec-EF)/kgT for inty SC n=p=ne $np=ne^2$ $\frac{\mathsf{E}_{\mathsf{F}} = \mathsf{E}_{\mathsf{C}} + \mathsf{E}_{\mathsf{V}} = \mathsf{E}_{\mathsf{q}}}{2} := \mathsf{E}_{\mathsf{q}} = \mathsf{E}_{\mathsf{C}} + \mathsf{E}_{\mathsf{V}}}$ Hall coself. → RH = EH = 1 = JB be n

	chancra's
4	Hall voltage (VH)
	UH = RHIBW = RHIB =
	t = thickness of SC = I/A.
	Module 3
N.	LASER =) Tight Amplification by Stimulated Emission of Radiation.
*	Requisites of a losest system -> i) Sownie of pumping energy ii) Active medium iii) An optical cavity or resonator. I losest cavity
*	Basic principles i) Induced absorption ii) Spontaneous Emission iii) Stimulated Emission
*	(enditions for laser action i) Population inversion ii) Metastable state
*	$\frac{N_2}{N_1} = e^{-(E_2 - E_1)/k_BT}$
*	Energy density at equilibrium
	$U_{A} = A \qquad \qquad \bigcup_{e \mapsto lk_{B}T_{-1}}$
	l

	where $A = 8\pi h A^3$
	where, $\frac{A}{B} = \frac{8\pi h h^3}{c^3}$
*	NXDE = P
	no. of photons emitted × energy diff. = power ofp.
*	$\frac{m_2}{h_1} = 8 \sin \theta_c$
	n, & n = RI g med. 1 & med. 2
	de = critical angle
*	$\sin \theta = \sqrt{n_1^2 - n_2^2} = 0 = \text{acceptance angle}$
	$\sqrt{n_1^2-n_2^2}$ = numeri cal aperture (NA)
*	Δ= tractional index change
	$\Delta = (n_1 - n_2)$
	η,
	n= RI g core n2 = RI of cladding
	NA = n, V 20
	MH-IIIV QZ
**	are net attenuation
	$ \alpha = -10 \log_{10} \left(\frac{Pout}{P_{in}} \right) dB Km $
	a = cutenuation coeff
	L= length of fiber Pout = olp power
	L= length of fiber Pout = olp power Pin = 91p power
*	Mode of propagation
-#	$V = Td \sqrt{n_1^2 - n_2^2} = Tid(NA)$
	λ λ
	d = core diameter

	<u>Cnandra's</u> Dt: Pg:
	1= wavelength of propagating light for v>>1 no. of modes = v2
	Module 4
*	Electronic polarizability $\alpha_e = \frac{\mathcal{E}_r(\mathcal{E}_{r-1})}{N}$
24	Electronic polasization. Pe = Nue N = no. of atoms per m³
*	orientation polarizability to = 12/3kgT
	" polarization Po = Nu2 E/3kgT
-4-	Total P (x)= xe+xi+xo
*	one dimonsional internal field expression,
	E: E = E + 1 o Dre E:
	$\frac{E_{i}-E}{t-12\alpha e} \qquad E_{i}=E+10\alpha e E_{i}$ $\frac{1-12\alpha e}{\pi e d^{3}}$
	TT EO Car
	in 3D -> E: = E + (1/2) P
	N = proportionality const. N = 1/3 for cube
-+	Clausius - Mossotti Aelation
	$\frac{e_{r}-1}{e_{r}+2} = N\alpha_{e}$
-4	General form of Miller index (hikil)

*	interplanas distance (d)
	$d = q \qquad for q = b = c$ $\sqrt{h^2 + k^2 + \lambda^2}$
	if a + b + c -then,
	$d = \int \frac{b^2 + k^2 + l^2}{\sqrt{a^2 b^2 c^2}}$
*	Atomic packing factor: (M)
	$\eta = \frac{n \times V_0}{V_0}$
	Vu= vol. of unit cell n= no. of atoms Va= vol. of citom
*	For Simple cubic CN = 6
	a=dR
	For body centered cubic (BCC) CN=8
	N = 0.68
	a= 4R / 13
	For face centered Cubic (FCC) CN = 12 N=4
	$N = 4$ $N = 4R/\sqrt{2}$ $N = 4R/\sqrt{2}$

#	Consity = mass
	Density = mass vol.
	e = M = NA
	MA = avagados's mo. = 6.022×10
*	Lattice + Basis = crystal structure
4	To find miller indices
	i) & Intercepts due to be found
	ii) Take reciprocal of intercepts
	iii) Reduce to the smallest integers
	iv) Exprese in terms of (hekel)
*	Bragg's law -> on 1 = 2d sin 0 -> Bragg's egg!