R CHEAT SHEET

COMPUTATIONAL STATISTICAL
PHYSICS
SUMMER 2017

1. PRELIMINARY

IN R, ALL CONNENTARIES ARE STARTED WITH #.

HENCE, IN THESE NOTES, ALL SENTENCES STARTED WITH

WILL BE COMMENTARIES / ANOTATIONS.

IF A SENTENCE IS STARTED WITH >, IT CORRESPONDS TO

AN INSTRUCTION YOU CAN USE IN R.

I WILL BE WRITING IN CAPS LOCK FOR BETTER UNDERSTANDING.

HOWEVER, R IS CASE SENSITIVE. TYPICALLY, ALL FUNCTIONS

SHOULD BE TYPED IN LOWER CASING. IF I UNDERLINE A LETTER,

IT MEANS IT SHOULD BE UPPER CASED

2. To START

ON LINE HELP

> HELP. START ()

LIBRARIES OF FUNCTIONS

- > SEARCH() # SEE CURRENTLY LOADED PACKAGES
- > LIBRARY() # SEE ALL PACKAGES INSTALLED
-) . LIB PATHS() # GET LIBRARY LOCATION
- > LIBRARY (PACKAGE) # LOAD LIBRARY "PACKAGE" (IF INSTALLED)

TO INSTALL A PACKAGE, JUST USE THE PACKAGE INSTALLER
FUNCTIONALITY PROVIDED WITH THE SOFTWARE.

CLEARING CONSOLE

OPTION + COMMAND + L (MAC OS)

3. DATA ASSIGNMENT AND TYPES

TO ASSIGN A VALUE, STRING OR LOGICAL DATA TO A VARIABLE:

$$> \times \leftarrow 4 \# (oR \times = 4)$$

CHECKING CLASS OF VARIABLE

- > CLASS (x)
- > TYPE OF X (X)
- > Is, DOUBLE (VARIABLE) # RETURNS TRUE OR FAISE
-) IS. INTEGER (VARIABLE) # SAME AS BEFORE

TO ENFORCE TYPE OF VARIABLE

- > X ← AS . DOUBLE (3.5)
- > y < AS. INTEGER (4)

COMPLEX. VARIABLES

> 7 - AS. COMPLEX (-25+5i)

BY DEFAULT, COMPUTATIONS ARE DONE ON REAL NUMBERS.

> SART (-1) # WILL RETURN NOT A NUMBER (NA)

> SORT (AS. COMPLEX (-1)) # SHOULD RESULT IN +:

LOGICAL OPERATORS

4 SMALLER THAN

< = # SMALLER THANOR EQUAL TO

> # LARGER THAN

> = # LARGER THAN OR EQUAL TO

== # Is EQUAL TO

! = # Is DIFFERENT FROM

4. VECTORS

> $X \leftarrow C(10,5,3,6)$ # FUNCTION $C(X_1,X_2,X_3)$ ACTS AS A "CONCATENATOR" OF ELEMENTS, INCLUSING STRINGS

MOST OPERATIONS ON VECTORS ARE USUALLY PERFORMED ON EACH # ELEMENT. SEE WHAT HAPPENS WHEN YOU TYPE IN

$$\rangle x + 2$$

GENERATING VECTORS

> INDEX (1:20 # SEE WHAT THIS DOES

> M
SEQ (FROM = -3, TO = 3, By = 0.5) # TRY DIFFERENT VALUES HERE.

> M - SEQ (-3, 3, LENGTH = 13)

ZYEREP (1:4,4) # REPEATS INTEGERS 1 TO 4, 4 TIMES

> Y - REP (1:4, C(2,2,3,4)) # REPEATS INTEGERS 1 to 4,
WITH EACH INTEGER BEING
REPEATED THE AMOUNT OF TIMES
ENCODED IN THE VECTOR C(...)

> X

RUNIF (m, X1, X2) # GENERATES 10 NUMBERS FROM

THE UNIFORM DISTRIBUTION

BETWEEN X1 AND X2 (EXCLUDING

THESE)

> Y - SAMPLE (X1: X2, M, REPLACE = T)

SAMPLE GENERATES M INTECERS BETWEEN X, AND X2. IF # REPLACE = I, REPETITIONS CAN OCCUR, OTHERWISE SET TO F

BIF HISBORN MONOR

> 7 \leftarrow RNORM (m, MEAN = X_1 , $SO = X_2$) # GENERATES m # NUMBERS FROM THE NORMAL # (GLAUSSIAN) DISTRIBUTION, # WITH MEAN = X_1 AND # STANDARD DEVIATION $SO = X_2$.

> REAMMA (M, SHAPE, RATE) # GENERATES M NUMBERS

FROM GAMMA DISTRIBUTION.

MUST SPECIFY SHAPE AND

SCALE (ROTH POSITIVE)

ADDITIONAL VECTORS COMMANDS

- > LENGTH(X) # SELF EXPLANATORY
- > X[1] # FIRST ELEMENT OF X
- > x [LENGTH(x)] # FINAL ELEMENT OF X
- > X[-5] # REMOVES 5-TH ELEMENT OF X
- > x [x)9] # RETURNS ELEMENTS OF X OBEYING CONDITION
- > UNIQUE(X) # RETURNS ARRAY WITH NON-REPEATED ELEMENTS
 # OF X
- > SUM (X) # SUMS ELEMENTS OF X
- > PROD (X) # MULTIPLIES ALL ELEMENTS OF X
- # AND MANY MORE. RANGERY GOOGLE CAN BE YOUR # BEST FRIEND IN/WHILE PROGRAMMING.

5. MATRICES

>x <- 1:8

> DIM(x) <= C(2,4) # FILL A MATRIX (By ITS COLUMNS) # WITH 2 ROWS AND 4 COLUMNS

> X
MATRIX (1:8, 2, 4, BYROW = F) # SHOULD PRODUCE

SAME RESULT AS BEFORE.

TRY SETTING BYROW = T

> CBIND (X1, X2) # BINDS TWO (OR MORE) VECTORS AS
COLUMN VECTORS

> RBIND (X1, X2) # BINDS TWO (OR MORE) VECTORS AS
ROW VECTORS

OPERATIONS ON MATRICES

> X < MATRIX (1:16, 4, 4) # PRODUCES SQUARE MATRIX 4x4

> y = 7:10

> x * y # WHAT DOES THIS DO?

> x * x # AND THIS ?

> X % * % Y # THIS IS PROPER MATRIX MULTIPLICATION.

DIMENSIONS OF X AND Y MUST BE COMPATIBLE!

> X % * % + (x) # MULTIPLYING X BY ITS TRANSPOSE

(R8)

6. ARRAYS

ARRAYS ARE JUST A GENERALIZATION OF VECTORS AND MATRICES.

ALL BASIC ARITHMETIC OPERATIONS MINH APPLY TO MATRICES/VECTORS

ALSO APPLY TO ARRAYS

X = MANAGERRAY (C (1:8, 3: 10, 10:20), Dim = C (2,4,3))

MANAGERRAY (C (1:8, 3: 10, 10:20), Dim = C (2,4,3))

7. DATA FRAMES

DATA FRAMES CAN ALSO BE REGARDED AS AN EXTENSION TO MATRICES.

THESE CAN HAVE COLUMNS OF DIFFERENT DATA TYPES AND ARE

SEEN AS THE MOST CONVENIENT STRUCTURE FOR DATA IN R.

- > MT CARS # WARDS BUILT-IN DATA FRAME
- > ROWNAMES (MTCARS)
- > NAMES (MTCARS)
- > MTCARS[1,]
- > MTCARS[,2]

WHAT DO THESE DO?

CREATING DATA FRAMES (TO TRY AT HONE /LATER)

WITH THIS SIMPLE EXAMPLE, YOU WILL CREATE YOUR OWN RANDOMLY

GENERATED DATA FRAME AND SEE IF YOUR TUTOR IS CAPABLE OF

TEACHING R OR NOT!

> X
DATA FRAME (X) # THIS AUTOMATICALLY CREATES A

DATA FRAME STRUCTURE FOR YOUR MATRIX

- > NAMES (X) <- c ("PYTHON", "C", "R") # DEFINE COLUMN NAMES # OF DATA FRAME
- > ROW. NAMES (X) (C ("NELSON", "PETER", "JENNIFER", "LUCA", "MARIA")
- > X # PRINT X

WHAT WAS THE RESULT? SHOULD I BE YOUR TUTOR FOR COMP.

STATISTICAL PAYSICS?

```
8. IF/ELSE IN R
```

```
IF (TEST-EXPRESSION) {

STATEMENTS

BLSE {

OTHER STATEMENTS
```

EXAMPLE

```
> X ( SAMPLE (1:10, 1)

> IF (x>5) {

+ PRINT (" x IS LARGER THAN 5") } ELSE {

+ PRINT (" X IS SMALLER OR EQUAL TO 5") }
```

9. FOR CYCLE

FOR (i IN VECTOR) {

STATEMENTS
}

EXAMPLE