Superconducting single-electron transistor and the ϕ -modulation of supercurrent

M. Aunola

Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FIN-40351 Jyväskylä, FINLAND (Dated: February 1, 2008)

An analytical expression for the supercurrent of a superconducting single-electron transistor (SSET) is derived. The derivation is based on analogy between the model Hamiltonian for $E_{\rm J} > E_{\rm C}$ and a discrete, one-dimensional harmonic oscillator (1DDHO). The resulting supercurrent is nearly identical to the supercurrent obtained from a continuous harmonic oscillator Hamiltonian.

The superconducting single-electron transistor consists of two consequent Josephson junctions and an intervening island on which the amount of charge can be controlled by a gate voltage. The relevant energy scales of the system are given by the Josephson energy $E_{\rm J}$ and the charging energy $E_{\rm C} := (-2e)^2/[2(C_1 + C_2 + C_{\rm g})]$ where C_1 , C_2 and $C_{\rm g}$ are the capacitances of the two junctions and the gate capacitance, respectively. For independent junctions the Hamiltonian of the system is given by

$$H = H_{\rm C} - \sum_{j=1}^{2} E_{\rm J,j} \cos(\phi_j),$$
 (1)

where $H_{\rm C}$ gives the charging energy of the island and ϕ_j is the phase difference across the $j^{\rm th}$ junction.

The proper variables for description of the system are the phase difference across the array $\phi = \phi_1 + \phi_2$, and the number of Cooper pairs on the island $N.^1$ The phase difference ϕ is a constant of motion if the voltage across the SSET is ideally biased to zero. The Hamiltonian is fixed using the arguments given in Ref. 2, i.e. by taking $C_j = c_j C$ and $E_{\mathrm{J},j} = c_j E_{\mathrm{J}}$, where $c_1^{-1} + c_2^{-1} = 2$. The normalised gate charge $q = V_{\mathrm{g}} C_{\mathrm{g}}/(-2e)$ sets the amount of free charge on the island to (-2e)(N-q). In the charge state representation the Hamiltonian reads^{3,4}

$$H_{\rm C} = E_{\rm C} \sum_{N} (N - q)^2 |N, \phi\rangle\langle N, \phi|, \qquad (2)$$

$$H_{\rm J} = -(E_{\rm J}/2)(c_1^2 + c_2^2 + 2c_1c_2\cos(\phi))^{1/2} \times \sum_{N} \left(e^{i\theta(\phi)}|N+1,\phi\rangle\langle N,\phi| + \text{h.c.}\right), \quad (3)$$

where $\tan(\theta) = (c_1 - c_2) \tan(\phi/2)/(c_1 + c_2)$. In the limit of vanishing charging energy when $H_C \to 0$, the ground state energy and supercurrent are given by⁴

$$E(\phi) = -E_{\rm J}(c_1^2 + c_2^2 + 2c_1c_2\cos(\phi))^{1/2},\tag{4}$$

$$I_{\rm S}^{(0)} = \frac{E_{\rm J}(c_1 + c_2 + 2c_1c_2\cos(\phi))}{\hbar}, \qquad (1)$$

$$I_{\rm S}^{(0)} = \frac{-2e}{\hbar} \frac{\partial E(\phi)}{\partial \phi} = \frac{(-2e/\hbar)E_{\rm J}c_1c_2\sin(\phi)}{(c_1^2 + c_2^2 + 2c_1c_2\cos(\phi))^{1/2}}. \qquad (5)$$

If the charging effects are not negligible the Hamiltonian $H_{\rm C}+H_{\rm J}$ expressed in unit of $E_{\rm C}$ is identical to that of a 1DDHO with coupling constant $\varepsilon_\phi:=E(\phi)/E_{\rm C}$. The eigenenergies are independent of the phase factor $e^{i\theta(\phi)}$ which simply fixes the relative phase between consequtive charge states $|N\rangle$ and $|N+1\rangle$.

For a continuous HO with the same ε_{ϕ} the eigenenergies are given by $E_{j}=-\varepsilon_{\phi}+\sqrt{2\varepsilon_{\phi}}(j+\frac{1}{2})$. In case of a 1DDHO with large ε_{ϕ} the bottom of the well is lifted by approximately $\frac{1}{8}$ and oscillator frequency $\sqrt{2a}$ is replaced by $\sqrt{2a}-\frac{1}{8}$. With these modifications numerically obtained eigenstates satisfy the virial theorem $\langle H_{\rm J} \rangle = \langle H_{\rm C} \rangle$ quite well. The agreement is best for the ground state for which the expression

$$E_0(\varepsilon_\phi) = -\varepsilon_\phi + \sqrt{\varepsilon_\phi/2} + 1/16 \tag{6}$$

very accurate for $\varepsilon_{\phi} > 10$ and even at $\varepsilon_{\phi} \approx 2$ the error is smaller than 0.01 for any q. Because of the constant correction the derivative $\partial E_0/\partial \varepsilon_{\phi}$ is the same as in the continuous case. For weaker couplings with $\varepsilon_{\phi} \lesssim 2$ the minimum position q of the potential energy becomes important, but direct diagonalisation of the Hamiltonian is simple. When Eq. (6) is valid we obtain the final result

$$I_{\rm S}^{\rm SSET}(\phi) = I_{\rm S}^{(0)}[1 - (8\varepsilon_{\phi})^{-1/2}],$$
 (7)

where $I_{\rm S}^{(0)}$ is the supercurrent in the absence of charging effects. The magnitude of the correction $(8\varepsilon_{\phi})^{-1/2}$ is of the order of 10 % when $\varepsilon_{\phi} \sim 10$. The correction slightly decreases the maximal obtainable supercurrent and it is important for nearly homogeneous arrays $(c_1 \approx 1)$ as the coupling strength E_{ϕ} becomes small near $\phi = (2k+1)\pi$, where k is an integer.

This work has been supported by the Academy of Finland under the Finnish Centre of Excellence Programme 2000-2005 (Project No. 44875, Nuclear and Condensed Matter Programme at JYFL). The author thanks Dr. S. Paraoanu for insightful comments.

D. V. Averin and K. K. Likharev, in *Mesoscopic phenomena in solids*, edited by B. L. Althschuler, P. A. Lee, and R. A. Webb (North-Holland, Amsterdam, 1991), p. 213.

² M. Aunola, J. J. Toppari, and J. P. Pekola, Phys. Rev. B (62), 1296 (2000).

³ T. M. Eiles and J. M. Martinis, Phys. Rev. B (64), R627 (1994).

⁴ M. Tinkham, Introduction to superconductivity, 2nd ed. (McGraw-Hill, New York, 1996), pp. 274—277.