Theorem I (Tunckonsthat Type at all but
One point
Let c be a real number and (Bc) = 960
Jau setc In an open Interval containing
Containing C. Withe (smet of 900) except
as x > c, then the timest of flood also
exist and
18m - fGc) = 18m g Cx) x>c x>c
$x \rightarrow c$ $x \rightarrow c$
PROOF. Assume that the limit of 900 as
2 > C 15 L. Then by definition for each E20
there exist a d so such und 1960-L/XE
Whenever Oxla-clxd
However, Stace fox) = 9 (a) for aux brelle
open Interval Other-than DC=C, Hetrumas
that 1-60-LIKE whenever OX/2-c/xd
Thus we conclude that limit of foc) assc->0
13 a150 h,
Example > show that the function of be)
$= x^2 - and q Gc)$
∞
x2+x+1 have the same values for
all 20 Other than sc-)

, we can cance obtain 22+241) THEORIA 2. Same Base Units b and c are real number and n's that KE Whenever OX/DC-C right-handed Inequality 15 er Version of the choose

Example applies to theorem 2
Example Find for (422+3)
2->2
Solahon
THEOREM 3: Emit of a Polynom Ral
Function
If p 1s a Polynomial Function and
C 15 a real number—then
lon pod=PCd
x->c
PROOF: betthe polynomial Function P be
given by
PGO -angc+ + qx+ 90
By repeated application of the Sum and
Scalar Multiple
lim P(x) z an L lim x" [+ a] linx
5C-5C
$+ lm a_0$
2(-> 0
Mow, Using 1,213 of theorn of theorn 2
We have
(in Ploc) = an Cht a, ct qo = plc)
2-20

Gramply: Find-the (fmit of (fx2+3) lom 2022
PG)=4x2+3 to Simplyty the Value of Par
20=2
$(m P(\alpha) - p(\alpha)) = 4(\alpha^2) + 3$
$\frac{(m P(x) = p(x) = 4(x^2) + 3}{2x^2} = 19$
THEOREM 4: CEMINT ON a Rahonal Function
THEOREM 4: (I'mit of a Rational Function If r 159 rational Function given by rac)
= PGC)
$\frac{1}{9}$
and C is a real number such that good to
then I'm r(sr) =r(r) - D(r)
then lom rGd = P(c) = P(c)
PROOF! By Theorm 3 We know that the
Dal. By theorm of we know that The
polynomial Function Panda we have
Lom P(x) = P(E) and lim (G) = 2 (x)
DC->(
Now, Since 9 (c) to we can apply limit law
(c) (quotient) to conducte that
(im rG) = (im PG) = (im (PD) = PC) = rG)
2->c 200 200 200 200
mary
DE-DC

Note that the polynomial prational and
radical Functions are three types of
algebraic Function.
-c1
Final the If limit
lim 202+20+2
231 241
5061
Since the denominator is not zero when x=
we can apply theorn to obtain
$\frac{\lim_{2 \to 1} \frac{2^2 + 2 + 2}{2 + 1}}{2 + 1} = \frac{1^2 + 1 + 2}{1 + 1} = \frac{2^4 - 2}{2}$
131 set 1 (+) 3
THEORIN 5: 4 mid lovolving Radicals
4 Clsa real number nandmare
positive Integers and if is a function whose Irmit exist at Other the following properties
and with the following properties
Ore frue
20-20 (m) for = (m) for = (m) for
230
(ii) lm 2 mln cm/n (v)/m (ce) 7/2
2C-> C 2C - C - C - C - C - C - C - C - C -
(lim flo)
121-16

of a radial Function Frethe function of the trust Solu THEORM 6: (I mit of a Trigonometic Function C 150 real number 1) tim Singe Sonc Olim Cosoc=Cosc 2C7C tanc @lim (of 2 = cotc 1 Com Secx Secc (D lim Cossiziosc こくっと Example Sin x = Sin 0 =0

DBy-theorm 6 and unit law 6, we have

lim (xcosx)= [lmx] [lm Cox]

20>11 [20> To] [xox]

= Theorem 6

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have

= Theorem 6 and unit law 6, we have 6 and 10 and