МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ Кафедра програмних систем і технологій

Дисципліна «Ймовірнісні основи програмної інженерії»

Лабораторна робота № 4

Виконав:	Коваленко Владислав Олександрович	Перевірила:	Марцафей А. С.
Група	ІПЗ-22(2)	Дата перевірки	
Форма навчання	денна	Оцінка	
Спеціальність	121		
2022			

Назва роботи: Класичний та статистичний методи визначення ймовірності та обчислення

Мета: Навчитись використовувати на практиці набуті знання про центральні тенденції та міри.

Завлання №1:

Постановка задачі:

В магазин надійшла партія взуття одного фасону і розміру, але різного кольору. Партія містить 40 пар чорного кольору, 26 — коричневого, 22 — червоного і 12 пар синього. Коробки із взуттям виявились невідсортовані за кольором. Яка ймовірність того, що навмання взята коробка виявиться із взуттям червоного або синього кольору?

Побудова математичної моделі:

Для розв'язання даного завдання потрібно поділити суму кількостей червоних і синіх пар на загальну кількість пар взуття

Псевдокод алгориму:

Випробування алгоритму:

Task №1: 34.0%

Завдання 2:

Постановка задачі:

У банку працює 10 співробітників, 8 з яких є консультантами. Знайти ймовірність того, що серед навмання вибраних двох співробітників, хоча б один буде консультантом.

Побудова математичної моделі:

Для розв'язання даного завдання потрібно знайти імовірність того,що серед навмання вибраних двох співробітників, ні один не буде консультантом,для цього поділимо кількість консльтантів на кількість поєднань $C_{10}{}^8$.І відняти цю імовірність від 1

Псевдокод алгориму:

```
    def Task2():
        menegers = 10
        cons = 8
        Probability = round((1-8/ C(menegers,8)),2)
        print("Task №2: "+str(Probability*100)+"%")
```

Випробування алгоритму:

Task №2: 82.0%

Завдання 3:

Постановка залачі:

В компанії працює 10 менеджерів, серед яких двоє — родичі. Жеребкуванням вибирають трьох. Знайдіть ймовірність того, що серед вибраних фахівців буде принаймні один із родичів.

Побудова математичної моделі:

Ця задача має схожий розв'язок з попереднім завдання в цьому варіанті ми також рахуємо,що з трьох не буде ні одного родича і віднімаємо від 1

Псевдокод алгоритму:

```
    def Task3():
        menegers = 10
        relatives = 2
        Probability = round(1-(C(8,3)/ C(menegers,3)),2)
        print("Task №3: "+str(Probability*100)+"%")
```

Випробування алгоритму:

Task №3: 53.0%

Завлання 4:

Постановка задачі:

До мінімаркету з п'ятьма відділами прибував товар до одного з них. Ймовірність призначення товару для першого відділу p1=0,15, для другого p2=0,25, для третього p3=0,2, а для четвертого p4=0,1. Знайти ймовірність p5 того, що цей товар призначений для п'ятого відділу.

Побудова математичної моделі:

Оскільки сума всіх ймовірностей рівна 1,то для розв'язання даної задачі потрібно від 1 відняти всі інші чотири ймовірності,тому що ймовірностей всього 5

Псевдокод алгоритму:

```
□def Task4():
    p1 = 0.15
    p2 = 0.25
    p3 = 0.2
    p4 = 0.1
    p5 = round(1-p1 - p2- p3 -p4,2)
    print("Task №4: "+str(p5))
```

Випробування алгоритму:

Task №4: 0.3

Завдання 5:

Постановка задачі:

У графіку руху потягів на дільниці ϵ 120 колій для вантажних потягів. З цієї дільниці на станцію прибувають за розбіркою 80 потягів. Знайти ймовірність прибуття двох розбіркових потягів по двох сусідніх коліях.

Побудова математичної моделі:

Для розв'язання даного завдання потрібно кількість поєднань з кількості потягів на 2 поділити на кількість поєднань з кількості колій по 2.

Псевдокод алгоритму:

```
□def Task5():

railways = 120

trains = 80

Probability = round(C(trains,2)/C(railways,2),2)

print("Task №5: "+str(Probability*100)+"%")
```

Випробування алгоритму:

Task №5: 44.0%

Завдання 6:

Постановка задачі:

Ймовірність виготовлення стандартного виробу даним станком дорівнює 0,9.

Ймовірність появи виробу першого гатунку серед стандартних виробів становить 0,8. Визначити ймовірність виготовлення виробу першого гатунку даним станком.

Побудова математичної моделі:

Для розв'язання даного завдання потрібно перемножити ймовірності

Псевдокод алгоритму:

```
    def Task6():
        P1 = 0.9
        P2 = 0.8
        Probability = round(P1*P2,2)
        print("Task №6: "+str(Probability*100)+"%")
```

Випробування алгоритму:

Task №6: 72.0%

Завдання 7:

Постановка задачі:

В групі з 10 студентів, які прийшли на екзамен, 3 підготовлені відмінно, 4 — добре, 2 — посередньо і 1 — погано. В екзаменаційних білетах є 20 питань. Студент, який підготовлений відмінно може відповісти на всі 20 питань, який підготовлений добре — на 16, посередньо — на 10, погано — на 5. Визваний навмання студент відповів на три довільно заданих питання. Знайти ймовірність того, що цей студент підготовлений: а)відмінно; б) погано.

Побудова математичної моделі:

Для розв'язання даного завдання потрібно знайти ймовірності всі категорій підготовленості студентів і потім додати їх. А для того,щоб знайти ймовірність,що студент підготовлений відмінно,потрібно ймовіність відмінно підготованих студентів поділити на загальну ймовірність і ідентично з погано підготованим студентом

Псевдокод алгоритму:

```
def Task7():
            Students = 10
            Perfectly = 3
            Good = 4
           Middling = 2
           Bad = 1
           PerfectlyQ = 20
            GoodQ = 16
           MiddlingQ = 10
           BadQ = 5
           Ouestions = 20
            Perfectly Probability = (Perfectly/Students)*(PerfectlyQ/Questions)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-2/Questions-2)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(PerfectlyQ-1/Questions-1)*(Perf
            GoodProbability = (Good/Students)*(GoodQ/Questions)*(GoodQ-1/Questions-1)*(GoodQ-2/Questions-2)
          MiddlingProbability = (Middling/Students) * (MiddlingQ/Questions)* (MiddlingQ-1/Questions-1)* (MiddlingQ-2/Questions-2)
           BadProbability = (Bad/Students)*(BadQ/Questions)*(BadQ-1/Questions-1)*(BadQ-2/Questions-2) \\
            TotalProbability = PerfectlyProbability + GoodProbability + MiddlingProbability + BadProbability
            a = round(PerfectlyProbability/TotalProbability,2)
           b = round(BadProbability/TotalProbability,3)
            print("b)"+str(b*100)+"%")
```

Випробування алгоритму:

```
Task №7:
a)57.99999999999999%
b)0.2%
```

Завдання 8:

Постановка задачі:

На трьох автоматизованих лініях виготовляють однакові деталі, причому 40% - на першій лінії, 30% - на другій та 30% - на третій. Ймовірність виготовлення стандартної деталі для цих ліній становить відповідно 0,9, 0,95 та 0,95. Виготовлені деталі надходять на склад. Яка ймовірність того, що навмання взята деталь стандартна?

Побудова математичної моделі:

Для розв'язання даного завдання потрібно знайти суму добутків ймовірностей виготовлення деталей на кожній з ліній на відповідну кожній лінії ймовірніть виготовлення стандартної деталі

Псевдокод алгоритму:

```
Pdef Task8():
    P1 = 0.4
    P2 = 0.3
    P3 = 0.3
    P11 = 0.9
    P12 = 0.95
    P13 = 0.95
    Probability = round(P1*P11 + P2*P12 + P3*P13,2)
    print("Task №8: "+str(Probability*100)+"%")
```

Випробування алгоритму:

Task №8: 93.0%

Завдання 9:

Постановка задачі:

У лікарню поступають (в середньому) 40% хворих на пневмонію, 30% -на перитоніт та 30% хворих на ангіну. Ймовірність повного одужання від пневмонії — 0,8; від перитоніту — 0,7 та ангіни — 0,85. Виписано хворого, який повністю одужав. Яка ймовірність того, що він був хворий на перитоніт? **Побудова математичної моделі:**

Для розв'язання даного завдання потрібно знайти загальну ймовірніть для цього потрібно виконати дію подібну попередньому завданню. І потім подітили добуток ймовірності хворих на перитоніт і ймовірності повного одужання на загальну ймовірність

Псевдокод алгоритму:

Випробування алгоритму:

Task №9: 26.75%

Завдання 10:

Постановка задачі:

30% приладів збирає фахівець високої кваліфікації і 70% середньої. Надійність роботи приладу, зібраного фахівцем високої кваліфікації 0,9, надійність приладу, зібраного фахівцем середньої кваліфікації 0,8. Взятий прилад виявився надійним. Визначити ймовірність того, що він зібраний фахівцем високої кваліфікації.

Побудова математичної моделі:

Для розв'язання даного завдання потрібно виконати дію ідентичну з попереднім завданням

Псевдокод алгоритму:

```
⊡def Task10():
     P1 = 0.3
     P2 = 0.7
     P11 = 0.9
     P12 = 0.8
     all = P1*P11 + P2*P12
     Probability = round(P1*P11/all,3)
     print("Task №10: "+str(Probability*100)+"%")
```

Випробування алгоритму: Task №10: 32.5%

Висновок:

Виконавши цю лабораторну роботу, я навчився використовувати на практиці набуті зання про центральні тенденції та міри