Introduction to Unix Operating Systems

Cedric Arisdakessian

2022-08-15

Introduction to Unix Operating Systems

Part 1: The linux file system

Part 1: The linux file system

Recommendations

- Practice! For simple tasks, try not to use your GUI on your personal laptop:
 - Moving a file/folder
 - Creating/removing a file/folder
 - Searching for files (find, locate)
- If you have the chance, you should check out the class ICS-332 (Operating Systems) by Henri Casanova. You will learn a lot about what's happening under the hood.
- Don't be afraid. The worst you can do is delete personal files (but since you have a backup, no problems). By default, the OS won't let you do anything to:
 - Files that are crucial for the system to run
 - Files that you don't own
 - Unless your command starts with sudo
- If anything goes wrong, you can stop a command with ctrl+c

Terminology

- Terminal = Console = Application that let you interact and communicate with your computer
- Shell = Language used for communicating with the computer (bash, zsh, csh, etc.)

We use bash for the rest of this tutorial, but most commands would also work with zsh

Absolute vs Relative paths

- Absolute path: start from the root ex: /Users/cedric/ikewai/data/my_file.csv
- Relative path: start from our current location ex:
 ../data/my_file.csv (if my current folder is src/)

- Specific symbols
 - refers to the current folder
 - .. refers to the **parent** folder (therefore ../.. is the parent of the parent)
 - ~ refers to the home folder
- See https://github.com/labhuiofrank/tutorials/blob/main/pdf/ project_guidelines.pdf

The file system

- Different file categories organized in different folders. for example:
 - Your personal folder, located in /Users/{username} for macOS and /home/{username} for linux. It's a safe zone, if you delete or change anything there, you can't break much.
 - System library (.so, .dylib): /Library (macOS), /lib (linux)
 - Binaries (no extension): /bin, /sbin, /usr/bin
 - Configuration files: /etc
 -
- Note: Hidden files start with "."

Part 2: Bash syntax

Variables

- **Dollar notation** (with/without braces), **no spaces** around =
- BONUS: Capture the output of a command in a variable with \$() or backticks
- BONUS: String substitution

```
x = 1 # wrong
x=1 # correct
echo $x ${x} # outputs "1 1"
echo $y # Return nothing (no errors)

output=$(ls .) # preferred
output=`ls .` # works too

name=Cedrik
echo ${name/k/c} # substitute k with c
```

Comparison operators

- **Square brackets** around comparison [expression]
- **String** comparisons: ==/=, !=
- Numeric comparisons: -eq, -ne, -le, -lt, -ge, -gt

Conditions

```
Syntax:
```

```
...; fi
  ■ compact: && and || notations
name=Cedric
if [ "$name" == Cedric ]; then
  echo "Hi ${name}"
else
  echo "Hi stranger"
fi
[ "$name" == cedric ] \
  && echo "Hi ${name}" \
  || echo "Hi stranger"
```

■ classic: if [...]; then ...; elif [...] do ...; else

Loops

```
Syntax: for ...; do ...; done

for file in $(ls my_dir); do
    mv $file ${file/.tsv/.csv}
done
```

■ pipe: |

redirection: >, >>
input stream: < (and '-')</pre>

Streams

```
# 1) print rows where 2nd column > 2
# 2) count
awk -F, '$2 > 1' metadata.csv | wc -1
# 1) get the 5th column of csv file
# 2) sort the values
# 3) Compute the frequencies of consecutive values
# 4) Redirect stdout to file
cut -d, -f5 data.csv | sort | uniq -c > freqs.txt
```

Part 3: Useful linux commands

Basic commands

- ls
- cd (meaning of \sim , ., .., ../..) + cd with no argument
- pwd
- mv (careful)
- mkdir (-p) / touch
- rm (+ rmdir)
- echo
- open for GUI
- sudo (danger zone)

Explore unknown commands:

- man + / notation for searching
- -h, --help, or no args

Manipulate files

- head/tail
- less/more
- cat
- column, bonus: visidata
- grep
- cut
- uniq
- WC

Find files in computer

find <folder> -name <pattern> -exec <cmd> \;

```
find . -name "*.csv" \;
find Desktop -name "*.txt" -exec wc -l {} \;
```

locate <filename> (if initialized)

Remote machines

- hostname
- ping
- ssh

```
# ssh <username>@<ip or domain>
ssh cedric@142.250.69.196
ssh cedric@kewalo
```

■ scp + rsync

```
# upload file to remote location
# scp <file> <username>@<ip or domain>:<path>
scp test.txt cedric@kewalo:~
# download file to my computer
scp cedric@kewalo:~/Documents/data.csv .
```

■ The X/X11 (+ XQuartz) window system

Checking if file is not corrupted (interrupted transfer)

On remote machine

```
md5sum sample1.fastq > md5sum.txt
cat md5sum.txt
# 46c5daef3cac500540c55a51f0809b14 sample1.fastq
```

On local machine (upload md5sum.txt to machine where the file is)

```
md5sum -c md5sum.txt
# returns: "sample1.fastq: OK"
```

Checking many files

md5sum *.fastq > md5sum.txt

On local machine (upload md5sum.txt to machine where the file is)

md5sum -c md5sum.txt

Install new programs

Packaged tools

Requires admin rights (sudo) to install system-wide

- macOS: brew install <package> (homebrew in Xcode), port install <package>
- Linux (Debian, Ubuntu, ...): apt-get install <package>
- Other linux distributions: yum, pacman, ...

Compile from source

Compiling = convert the code into a binary, executable file Usually necessary if:

- The tool is not very popular and the developers didn't package it yet
- You don't want to wait for the official release

Compile from source (continued)

The github repository should have instruction (usually in the INSTALL or README file. The main steps are usually:

- Clone the repository (git clone <repo>) and cd in it
- Sometimes you will need to use cmake: mkdir build && cd build && cmake ...
- Usually you need to run the configuration script ./configure. You can usually set it up to change the installation path (e.g. for a local installation)
- Build the package with make
- Move the binary to the proper folder with make install (sudo required if system-wide)

Introduction to Unix Operating Systems

Part 3: Useful linux commands

Virtual environments and containers

(dedicated lecture)

More tools:

- tmux
- enhancd
- autocompletion
- grep, egrep
- sed
- awk

Introduction to Unix Operating Systems

Part 4: Customization and history search

Part 4: Customization and history search

Customize your environment

- Command aliases
- .bashrc, .bash_profile (.zshrc, .zsh_profile, ...)
- PATH and LDPATH environment variables
- And more (e.g. .ssh/config)

History search

- CTRL+R
- history | grep
- ! symbol

Terminal editors

- nano, pico
- emacs
- vi/vim