```
Download from finelybook www.finelybook.com
import numpy as np
shuffle index = np.random.permutation(60000)
X train, y train = X train[shuffle index], y train[shuffle index]
```

Training a Binary Classifier

Let's simplify the problem for now and only try to identify one digit—for example, the number 5. This "5-detector" will be an example of a binary classifier, capable of distinguishing between just two classes, 5 and not-5. Let's create the target vectors for this classification task:

```
y train 5 = (y train == 5) # True for all 5s, False for all other digits.
y_test_5 = (y_test == 5)
```

Okay, now let's pick a classifier and train it. A good place to start is with a Stochastic Gradient Descent (SGD) classifier, using Scikit-Learn's SGDClassifier class. This classifier has the advantage of being capable of handling very large datasets efficiently. This is in part because SGD deals with training instances independently, one at a time (which also makes SGD well suited for online learning), as we will see later. Let's create an SGDClassifier and train it on the whole training set:

```
from sklearn.linear_model import SGDClassifier
sgd clf = SGDClassifier(random state=42)
sgd_clf.fit(X_train, y_train_5)
```


The SGDClassifier relies on randomness during training (hence the name "stochastic"). If you want reproducible results, you should set the random state parameter.

Now you can use it to detect images of the number 5:

```
>>> sqd clf.predict([some digit])
array([ True], dtype=bool)
```

The classifier guesses that this image represents a 5 (True). Looks like it guessed right in this particular case! Now, let's evaluate this model's performance.

Performance Measures

Evaluating a classifier is often significantly trickier than evaluating a regressor, so we will spend a large part of this chapter on this topic. There are many performance measures available, so grab another coffee and get ready to learn many new concepts and acronyms!

Download from finelybook www.finelybook.com

Measuring Accuracy Using Cross-Validation

A good way to evaluate a model is to use cross-validation, just as you did in Chapter 2.

Implementing Cross-Validation

Occasionally you will need more control over the cross-validation process than what cross val score() and similar functions provide. In these cases, you can implement cross-validation yourself; it is actually fairly straightforward. The following code does roughly the same thing as the preceding cross_val_score() code, and prints the same result:

```
from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone
skfolds = StratifiedKFold(n splits=3, random state=42)
for train_index, test_index in skfolds.split(X_train, y_train_5):
    clone clf = clone(sgd clf)
    X_train_folds = X_train[train_index]
    y train folds = (y train 5[train index])
    X_test_fold = X_train[test_index]
    y_test_fold = (y_train_5[test_index])
    clone_clf.fit(X_train_folds, y_train_folds)
    y_pred = clone_clf.predict(X_test_fold)
    n_correct = sum(y_pred == y_test_fold)
    print(n_correct / len(y_pred)) # prints 0.9502, 0.96565 and 0.96495
```

The StratifiedKFold class performs stratified sampling (as explained in Chapter 2) to produce folds that contain a representative ratio of each class. At each iteration the code creates a clone of the classifier, trains that clone on the training folds, and makes predictions on the test fold. Then it counts the number of correct predictions and outputs the ratio of correct predictions.

Let's use the cross val score() function to evaluate your SGDClassifier model using K-fold cross-validation, with three folds. Remember that K-fold crossvalidation means splitting the training set into K-folds (in this case, three), then making predictions and evaluating them on each fold using a model trained on the remaining folds (see Chapter 2):

```
>>> from sklearn.model_selection import cross val score
>>> cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([ 0.9502 , 0.96565, 0.96495])
```