EA614 Análise de Sinais

Programa da Disciplina

Informações Gerais

Docente Responsável: Leonardo Abdala Elias | E-mail: leoelias@unicamp.br

Semestre Letivo/Ano: 2/2022 | Turma: B | Carga Horária: 60h Aulas: Quartas e Sextas (8h – 10h) | Sala: PE-12 FEEC

Calendário

Aula	Data	Tema da Aula
1	17/08/2022	Introdução à disciplina e motivação.
2	19/08/2022	Definição e classificação de sinais e operações básicas.
3	24/08/2022	Funções degrau e impulso unitário.
4	26/08/2022	Exponenciais complexas e sinais senoidais; simetria.
5	31/08/2022	Definição e classificação de sistemas.
6	02/09/2022	Resposta ao impulso e a soma de convolução em SLIT discretos.
7	09/09/2022	Resposta ao impulso e a integral de convolução em SLIT contínuos.
8	14/09/2022	Propriedades de sistemas lineares e invariantes no tempo (SLIT).
9	16/09/2022	Exercícios de revisão para a primeira prova.
10	21/09/2022	Prova 1
11	23/09/2022	Representação de Fourier para sinais contínuos periódicos.
12	28/09/2022	Convergência e propriedades da série de Fourier de tempo contínuo.
13	30/09/2022	Transformada de Fourier para sinais de tempo contínuo (Pt. 1)
14	05/10/2022	Transformada de Fourier para sinais de tempo contínuo (Pt. 2).
15	07/10/2022	Propriedades da transformada de Fourier de tempo contínuo.
16	14/10/2022	Resposta em frequência de SLIT e Filtragem analógica.
17	19/10/2022	Generalização da transformada de Fourier em tempo contínuo: a transformada de Laplace.
18	21/10/2022	Propriedades da transformada de Laplace; Funções de transferência de SLIT contínuos.
19	26/10/2022	Exercícios de revisão para a segunda prova.
20	04/11/2022	Prova 2
21	09/11/2022	Amostragem.
22	11/11/2022	Representação de Fourier para sinais discretos e periódicos.
23	16/11/2022	Transformada de Fourier para sinais de tempo discreto.
24	18/11/2022	Transformada de Fourier para sinais amostrados e Filtros digitais.
25	23/11/2022	A transformada discreta de Fourier e a FFT.
26	25/11/2022	Transformada Z e suas propriedades.
27	30/11/2022	Função de transferência de SLIT discretos.
28	02/12/2022	Exercícios de revisão para a terceira prova.
29	07/12/2022	Prova 3

Datas Importantes

• **Provas:** 21/09/2022 (P1); 04/11/2022 (P2); 07/12/2022 (P3)

• Exame Final: 16/12/2022

Critérios de Avaliação

A avaliação do conteúdo do curso será feita por meio de duas abordagens: três provas e exercícios domiciliares.

As provas serão discursivas, sem consulta, e versarão sobre os conceitos vistos em sala de aula de forma cumulativa.

Os exercícios domiciliares são individuais e deverão ser entregues pela plataforma Google Classroom em arquivo no formato PDF (pode ser foto das soluções manuscritas – desde que legíveis – ou solução em texto digital). Não serão aceitos exercícios entregues por e-mail ou diretamente ao Professor. Serão apresentadas listas de exercícios a cada fim de semana e o aluno terá até o fim da semana seguinte para entregar parte da lista resolvida, conforme as instruções fornecidas na descrição da atividade. As soluções dos exercícios serão fornecidas a cada quinzena. A correção será binária, ou seja, ou o exercício está correto ou errado. Encoraja-se a discussão entre os estudantes, mas como se trata de uma atividade avaliativa individual, espera-se que o esforço seja de cada estudante na tentativa de solucionar os problemas apresentados. Por questões pedagógicas, se forem detectadas cópias, as notas dos estudantes envolvidos serão zeradas.

Esta disciplina prevê exame final (*EF*) e é exigida uma presença mínima de 75% (ou seja, são permitidas até 7 faltas). O *EF* poderá ser utilizado no caso de perda justificada de alguma prova. O *EF* não poderá ser utilizado para aumentar a média (substituição de menor nota). As faltas abonadas são apenas aquelas previstas no Regimento da Unicamp. Em função da COVID-19, se algum estudante for infectado e tiver que faltar a aula por este motivo, será solicitado ao estudante que realize uma lista extra de exercícios que abordará os temas das aulas perdidas, e esta deverá ser entregue ao professor de forma manuscrita (juntamente com o comprovante oficial de afastamento – emitido pelo CECOM/UNICAMP) para que a falta seja abonada.

A Média (*M*) será calculada pela seguinte equação:

$$M = 0.15 \times P1 + 0.3 \times P2 + 0.4 \times P3 + 0.15 \times \bar{E}$$

em que, Pi é a nota da i-ésima prova (i = 1, 2, 3); \bar{E} é a média aritmética dos exercícios domiciliares entregues em cada quinzena.

A Nota Final (NF) será calculada da seguinte forma:

$$\begin{cases} NF = M, & se \ M \ge 5.0 \ ou \ M < 3.0 \\ NF = \frac{M + EF}{2}, & se \ 3.0 \le M < 5.0 \end{cases}$$

Livro-texto

Oppenheim A. V., Willsky A. S., Nawab S. H. Sinais e sistemas, 2ª ed. São Paulo: Pearson, 2010.

Bibliografia Complementar

- [1] Lathi B. P. Sinais e sistemas, 2ª ed. Porto Alegre: Bookman, 2007.
- [2] Haykin S., Van Veen B. Sinais e sistemas. Porto Alegre: Bookman, 2011.
- [3] Geromel J. C., Deaecto G. S. Análise linear de sinais: teoria, ensaios práticos e exercícios. São Paulo: Blucher, 2019.
- [4] Hsu H. *Sinais e sistemas*, 2^a ed. Porto Alegre: Bookman, 2012.
- [5] Chen C. T. Signals and systems, 3rd ed. New York: Oxford University Press, 2004.
- [6] Papoulis A. Signal analysis. New York: McGraw-Hill, 1977.