

Fundamentos de Programación PEC1 - 20181

Fecha límite de entrega: 01/10/2018

Estudiante

Apellidos: de Lima Barbeiro Campus

Nombre: Lidiane Aparecida

Objetivos

- Saber identificar las variables de tipos básicos necesarias para resolver un problema
- Saber leer y escribir variables de tipos básicos

Formato y fecha de entrega

La PEC se debe entregar antes del día 01 de octubre de 2018 a les 23:59.

Se debe entregar un fichero en formato ZIP, que contenga:

- Este mismo documento con la respuesta del ejercicio 1 y el último apartado del ejercicio 2
- Un proyecto Codelite que contenga el fichero .c solicitados en el primer apartado del ejercicio 2

La entrega se debe hacer en el apartado de entregas de la AC del aula de teoría.

Enunciado

Este semestre la compañía UOCRailway nos ha pedido crear una aplicación para gestionar una compañía de transporte ferroviario. En concreto, los trenes, las mercancías y los pedidos.

Para dar respuesta a esta petición, mediante las PEC, iremos creando una pequeña parte de la aplicación. Esta gestionará los trenes. El resto lo completaremos en las prácticas.

Para empezar nos piden lo siguiente:

Ejercicio 1: Declaración de variables [50 %]

Diseñar en lenguaje algorítmico un algoritmo que haga los siguiente:

Apartado a [40%].

Declare las variables y tipos enumerados necesarios para gestionar los datos de un tren. Para cada tren, de momento, es necesita guardar la siguiente información:

- Un identificador de tipo entero, que es el número que identifica el tren.
- Un entero que indique el año de fabricación del tren.
- Un enumerado que indique el tipo de propulsión. Éste puede ser ELECTRICAL, CARBON, SOLAR, GASOLINE, DIESEL, MAGNETIC.
- Un entero que indique el número de vagones del tren.
- Un real que indique el volumen en metros cúbicos de un vagón, teniendo en cuenta que todos los vagones son iguales.
- Un carácter que indique el modelo del tren.
- Un booleano que indique si el tren tiene o no locomotora.

<u>Apartado b [30%].</u> Lea por el canal estándar de entrada los valores de las variables de tipo entero, real y carácter.

Para la lectura se debe indicar en el canal estándar de salida que información se espera que el usuario introduzca. Por ejemplo, para leer una variable *age* correspondiente a la edad de una persona, se debería escribir:

```
writeString("Enter the current age: ");
age:=readInteger();
```

<u>Apartado c [30%].</u> Muestre en el canal estándar de salida el valor de las variables leídas, indicando a qué corresponde cada información:

Ejercicio 2: programación en C [50%]

Apartado a [70%] Codificación

Codificar en C el algoritmo del ejercicio 1. En la programación los reales se deben escribir con dos decimales.

Apartado b [30%] Pruebas / Ejecución del algorítmo

Los algorítmos codificados deben siempre probarse. Es decir, se deben ejecutar los programas dando diferentes valores a las variables de entrada y comprobando que la salida corresponde a los valores esperados. A este proceso se le llama realizar *Juegos de pruebas*.

En este apartado se solicita que adjuntéis copias de pantalla de dos ejecuciones del algorítmo. En ellas se deben ver claramente los valores de entrada y salida.

Criterios de corrección:

En el ejercicio 1:

- Que se siga la notación algorítmica utilizada en la asignatura. Ved el documento Nomenclator en la xWiki.
- Que se sigan las instrucciones dadas y el algoritmo responda al problema planteado.

En el ejercicio 2:

- Que el programa se adecue a las instrucciones dadas.
- Que el programa compile y que funcione según lo solicitado.
- Que se declaren los tipos adecuados según el tipo de datos que representa.
- Que se respeten los criterios de estilo de programación C. Ved la Guía de estilo de programación en C que tenéis a la Wiki.

```
Respuestas
1-)
algorithm
const
volumen: real = 3.00;
end const
type
   propulsion = {ELECTRICAL, CARBON, SOLAR, GASOLINE, DIESEL,
   MAGNETIC}
end type
var
identificador: integer;
anyoFabric: integer;
cantidVagones: integer;
modelo: char;
hayLocomotora: boolean;
propulsion: propulsion;
end var
writeString("Introduzca el número identificador del tren:");
identificador = readInteger();
writeString("Introduzca el número el año de fabricación:");
anyoFabric = readInteger();
writeString("Introduzca el la cantidad de vagones:");
Vagones = readInteger();
writeString("Introduzca el modelo del tren:");
modelo = readChar();
   writeString("Datos del Tren");
   writeString("Identificador: ", identificador);
   writeString("Año de fabricación: ", anyoFabric);
   writeString("Cantidad de vagones: ", cantidVagones);
   writeString("Volumen
                          total
                                 en
                                       metros
                                                cubicos
                                                           de
                                                                     vagones:
                                                                los
   volumen*cantidVagones);
   writeString("Modelo: ", modelo);
```

2-)

```
// JUCCRailway

File Edit Tabs Help

Introduzca el número identificador del tren:2387

Introduzca el número el año de fabricación:2916

Introduzca el la cantidad de vagones:16

Introduzca el modelo del tren:8

Datos del Tren: identificador: 2387

Anyo de Fabricacion: 2016

Cantidad de Vagones: 6

Volumen total de los vagones en metros cubicos: 18.000000

Modelo del Tren: B

Press ENTER to continue...
```

