Explanatory Notes for 6.390

Shaunticlair Ruiz (Current TA)

Fall 2022

Distance from the Origin to the Plane

Notice that the **shortest** path from the origin to the line is **parallel** to θ !

So, we can think of our **line** as having been **pushed** in the θ direction. This **matches** what we did for 1-D separators: $x_1 > 3$ was moved in the x_1 direction.

So, we'll take the closest point on the line, \vec{d} . The **magnitude** d will give us the **distance** that the separator has been **shifted**.

Since \vec{d} is in the direction of θ , the direction can be captured by the unit vector $\hat{\theta}$. Let's take a look at that:

 $\theta = \|\theta\| \hat{\boldsymbol{\theta}} \tag{1}$

Remember, a vector is direction (unit vector) times magnitude (scalar).

 $\vec{d} = d\hat{\theta}$

 \vec{d} is on the **line**, so it satisfies:

$$\theta^{\mathsf{T}} \vec{\mathbf{d}} + \theta_0 = 0 \tag{2}$$

Since θ and \vec{d} are in the same direction, we can use that fact:

$$\|\theta\|\hat{\theta} \cdot d\hat{\theta} + \theta_0 = \|\theta\| \left(\hat{\theta} \cdot \hat{\theta}\right) d + \theta_0 \tag{3}$$

We know that $\hat{\mathbf{u}} \cdot \hat{\mathbf{u}} = 1$:

$$\|\theta\|d + \theta_0 = 0 \tag{4}$$

And now, we just solve for d:

Concept 1

The distance d from the origin to our linear separator is

$$d = \frac{-\theta_0}{\|\theta\|} \tag{5}$$

A "negative" distance means \vec{d} (the vector from the origin to the line) is pointed in the opposite direction of θ .

Notice, again, that this agrees with our **earlier** thought: the sign of θ_0 is the opposite (-1) of the θ direction we move in.