

Personalized News Recommendation with Knowledge-aware Interactive Matching

Tao Qi^{1*}, Fangzhao Wu², Chuhan Wu¹, Yongfeng Huang¹

¹Department of Electronic Engineering & BNRist, Tsinghua University, Beijing 100084, China ²Microsoft Research Asia, Beijing 100080, China

*taoqi.qt@gmail.com

Personalized News Recommendation

- Important for improving user experience on online news platforms
- Accurate matching of user interest and candidate news is critical for personalized news recommendation

Motivation

- User interests are usually diverse
- Candidate news may cover multiple entities and aspects
- Independent modeling of them is sub-optimal for interest matching

Motivation

 Matching between clicked news and candidate news in both knowledge and semantic level is useful for interest matching

Related Work

- Personalized news recommendation
 - Model candidate news and user interests in an independent way
 - E.g., NAML^[1], NRMS^[2], LSTUR^[3], KRED^[4]

- Challenges:
 - Independent modeling of user interests and candidate news is sub-optimal for interest matching

Knowledge-aware Interactive Matching

News recommendation with knowledge-aware interactive matching (KIM)

Mainstream Matching Framework

Our Work: Interactive Interest Matching

- Framework Overview
 - Knowledge-aware news co-encoder
 - User-news co-encoder
 - Relevance modeling

- Knowledge-aware news co-encoder
 - Knowledge co-encoder
 - Semantic co-Encoder
 - Aggregation

- Knowledge co-encoder
 - Stacked graph attention network (GAT)
 - Stacked graph co-attention network (GCAT)
 - Entity co-attention network

KIM

- Semantic co-encoder
 - Word embedding layer
 - Contexts modeling
 - Semantic co-attention network

KIM

- User-news co-encoder
 - Model candidate news-aware user interest
 - Model user-aware candidate news
 - News co-attention network

KIM

- Interest matching
 - Measuring user interest in candidate news
 - $z = u \cdot c$
- Model Training
 - NCE loss
 - $\mathcal{L} = -\frac{1}{|S|} \sum_{i=0}^{|S|} \log(\frac{\exp(z_+^i)}{\exp(z_+^i) + \sum_{j=1}^K \exp(z_j^i)})$

Datasets

• MIND:

- Based on user logs on Microsoft news
- Collect user logs from 10.19 to 11.15, 2019
- Using user logs in the last week for evaluation
- Entities in news are extracted and linked to WikiData

• Feeds:

- Based on user logs on a commercial news feeds in Microsoft
- Collect user logs from 1.23 to 4.23, 2020
- Using user logs in the last three weeks for evaluation
- Entities in news are extracted and linked to WikiData

Performance Evaluation

	MIND				Feeds			
	AUC	MRR	nDCG@5	nDCG@10	AUC	MRR	nDCG@5	nDCG@10
EBNR	61.28±0.27	27.77±0.21	30.10±0.28	36.75±0.24	63.44±0.39	27.97±0.25	32.01±0.32	37.57±0.35
DKN	64.08±0.12	29.06 ± 0.16	31.82 ± 0.11	38.52 ± 0.14	62.91±0.26	28.08 ± 0.20	32.20 ± 0.24	37.75 ± 0.22
DAN	65.14±0.16	30.04 ± 0.20	32.98 ± 0.22	39.52 ± 0.19	62.65±0.49	27.79 ± 0.32	31.79 ± 0.40	37.37 ± 0.39
NAML	64.21±0.20	29.71 ± 0.13	32.51 ± 0.20	39.00 ± 0.12	64.24±0.38	28.81 ± 0.21	33.06 ± 0.28	38.52 ± 0.29
NPA	63.71±0.27	29.84 ± 0.12	32.40 ± 0.19	39.02 ± 0.20	63.69±0.75	28.51 ± 0.47	32.74 ± 0.64	38.27 ± 0.62
LSTUR	65.51±0.29	30.22 ± 0.31	33.26 ± 0.38	39.76 ± 0.34	64.66±0.33	29.04 ± 0.26	33.44 ± 0.32	38.82 ± 0.30
NRMS	65.36±0.21	30.02 ± 0.11	33.11 ± 0.15	39.61 ± 0.14	65.15±0.13	29.29 ± 0.12	33.78 ± 0.13	39.24 ± 0.13
FIM	64.46±0.22	29.52 ± 0.26	32.26 ± 0.24	39.08 ± 0.27	65.67±0.20	29.83 ± 0.24	34.51 ± 0.31	39.97 ± 0.25
KRED	65.61±0.35	30.63 ± 0.27	33.80 ± 0.24	40.23 ± 0.27	65.47±0.07	29.59 ± 0.04	34.15 ± 0.05	39.69 ± 0.05
KIM	67.13 ±0.29	32.08 ±0.24	35.49 ±0.34	41.79 ±0.28	66.45 ±0.13	30.27 ±0.09	35.04 ±0.09	40.43 ±0.12

KIM significantly outperforms other baseline methods

Ablation Study

Both knowledge and semantic matching are useful for the interest matching

Different modules are important in our method

Knowledge Modeling

Knowledge co-encoder of KIM achieves best performance

Hyper-parameter Influence

Conclusion

 Propose a knowledge-aware interactive matching framework for personalized news recommendation

 Propose a knowledge co-encoder to learn knowledge-based representations of clicked news and candidate news from their knowledge relatedness

 Propose a semantic co-encoder to learn semantic-based representations of clicked news and candidate news from their semantic relatedness

 Propose a user-news co-encoder to learn candidate news-aware user interest representation and user-aware candidate news representation

Reference

- [1] Wu et al. Neural News Recommendation with Attentive Multi-View Learning. IJCAI2019
- [2] Wu et al. Neural News Recommendation with Multi-Head Self-Attention Network. EMNLP2019
- [3] An et al. Neural News Recommendation with Long- and Short-term User Representations. ACL 2019
- [4] Liu et al. KRED: Knowledge-Aware Document Representation for News Recommendations. RecSys. 2020

Tao Qi taoqi.qt@gmail.com