Diffusion Models for Medical Imaging RISE-MICCAL Summer School

Jorge Cardoso

King's College London

July 15, 2025

Diffusion Models for Medical Imaging

Jorge Cardoso

Part 1: Denoising Diffusion Probabilistic Models (DDPM)

Introduction
Key Components

Key Concepts

Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencoder

Stage 2: Diffusion in Latent

Implementation Details

Comparison and Results

Jorge Cardoso

Part 1: Denoising Diffusion Probabilistic Models (DDPM)

Key Components Key Concepts Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM
Stage 1: Autoencoder

Stage 2: Diffusion in Latent Space

Implementation Details Comparison and Results

Practical Considerations

What We Will Achieve Today

Part 1: DDPM

- Build a Denoising Diffusion Model
- ► Generate synthetic hand X-rays
- Understand the noise prediction process
- Visualize the denoising chain

Part 2: LDM

- ► Implement Latent Diffusion Models
- Train an autoencoder for compression
- ► Work in compressed latent space
- Generate higher quality images efficiently

Goal: Master diffusion models for medical image generation using MONAI

Key Components Key Concepts

Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencoder

Stage 2: Diffusion in Latent

Implementation Details

Comparison and Results

Practical

Considerations

Part 1: Denoising Diffusion Probabilistic Models (DDPM)

Introduction

Key Components

Key Concepts

Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencoder

Stage 2: Diffusion in Latent Space

Implementation Details

Comparison and Results

 Generative models that learn to create data by reversing a gradual noising process

- ▶ Based on the paper: "Denoising Diffusion Probabilistic Models" by Ho et al. (2020)
- Key idea:
 - ► Forward process: Gradually add noise to data
 - Reverse process: Learn to denoise step by step
- ► Applications: Image synthesis, super-resolution, inpainting

Part 1: Denoising Diffusion Probabilistic Models (DDPM)

Key Components

Key Concepts

Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencoder

Stage 2: Diffusion in Latent

Implementation Details

Companson and Resu

- ► **Goal**: Train a DDPM to generate synthetic 2D medical images
- ▶ Dataset: MedNIST "Hand" X-ray images
 - ▶ 7,999 training images
 - ► 64×64 pixel resolution
 - ► Grayscale medical images
- ► Framework: MONAI's generative module
- ► **Training time**: 50 minutes for 75 epochs
- Key components:
 - ► U-Net architecture with attention mechanisms
 - ► DDPM scheduler (1000 timesteps)
 - ▶ Diffusion inferer for training and sampling

1. DiffusionModelUNet

- ▶ 2D U-Net backbone
- ► Channel progression: $128 \rightarrow 256$ \rightarrow 256
- ► Attention at levels 2 and 3
- 256 attention head channels

2. DDPMScheduler

- ► 1000 timesteps
- Linear noise schedule
- \blacktriangleright Handles β_t scheduling

3. DiffusionInferer

- Manages forward diffusion
- Handles reverse sampling
- Integrates model and scheduler

4. Training Setup

- ► Adam optimizer (lr=2.5e-5)
- Mixed precision training
- ► MSE loss on noise prediction

6

8

Jorge Cardoso

Part 1: Denoising Diffusion Probabilistic Models (DDPM)

Introduction Key Components

Key Concepts

Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencoder

Stage 2: Diffusion in Latent

Space Implementation Details

Comparison and Results

Practical Considerations

Data Transformations:

```
train transforms = transforms.Compose([
    transforms.LoadImaged(kevs=["image"]).
    transforms. EnsureChannelFirstd(keys=["image"]).
    transforms.ScaleIntensityRanged(
        kevs=["image"],
        a min=0.0, a_max=255.0, # Input range
        b_min=0.0, b_max=1.0, # Output range
        clip=True
    ).
    transforms. RandAffined(
        kevs=["image"].
        rotate range=[(-pi/36, pi/36), (-pi/36, pi/36)].
        translate_range=[(-1, 1), (-1, 1)],
        scale range=[(-0.05, 0.05), (-0.05, 0.05)].
        spatial size=[64, 64].
        padding_mode="zeros".
        prob=0.5
])
```

Forward Diffusion Process:

- 1. Sample random timesteps t
- 2. Generate random noise ϵ
- 3. Create noisy images: $x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 \bar{\alpha}_t} \epsilon$
- 4. Model predicts the noise $\epsilon_{\theta}(x_t, t)$
- 5. Loss: $\mathcal{L} = ||\epsilon \epsilon_{\theta}(x_t, t)||^2$

Key Insight:

- We're training the model to predict noise, not images!
- ► The model learns the noise distribution at each timestep
- During inference, we iteratively remove predicted noise

```
# Training: Forward diffusion + noise prediction
with autocast(enabled=True):
    noise = torch.randn_like(images)
    timesteps = torch.randint(0, 1000, (batch_size,))

# This handles the forward diffusion internally!
noise_pred = inferer(
    inputs=images,
    diffusion_model=model,
    noise=noise,
    timesteps=timesteps
)

loss = F.mse_loss(noise_pred, noise)
```

What happens inside the inferer:

- Applies forward diffusion to create x_t
- ightharpoonup Passes x_t and t to the U-Net
- ► Returns predicted noise

Part 1: Denoising Diffusion Probabilistic Models (DDPM)

Introduction
Key Components

Key Concepts Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencoder
Stage 2: Diffusion in Latent

Space Implementation Details

Comparison and Results

Reverse Diffusion (Sampling):

```
# Start from pure noise
noise = torch.randn((1. 1. 64. 64))
scheduler.set_timesteps(num_inference_steps=1000)
# Iteratively denoise
image = inferer.sample(
    input noise=noise.
    diffusion model=model.
    scheduler=scheduler
```

What happens during sampling:

- ightharpoonup Start with $x_T \sim \mathcal{N}(0, I)$
- For t = T, T 1, ..., 1:
 - Predict noise: $\epsilon_{\theta}(x_t, t)$
 - Apply denoising step: $x_{t-1} = \frac{1}{\sqrt{\alpha_t}} (x_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_{\theta})$
 - ightharpoonup Add controlled noise (except at t=0)
- \triangleright Result: Generated image x_0

Key Concept 4: Memory and Computation

Diffusion Models for Medica Imaging

Jorge Cardoso

Part 1: Denoising Diffusion Probabilistic Models (DDPM)

Introduction Key Components

Key Concepts

Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencoder

Stage 2: Diffusion in Latent

Implementation Details Comparison and Results

Practical

Considerations

Challenges:

- ► Each training step requires:
 - Random timestep sampling
 - Noise generation
 - ► U-Net forward pass
- Memory considerations:
 - ► Batch size = 128 (adjust based on GPU)
 - Mixed precision training (GradScaler)
 - Persistent workers for data loading

Optimization strategies used:

- autocast for automatic mixed precision
- CacheDataset to avoid repeated transforms
- persistent_workers=True in DataLoader
- optimizer.zero_grad(set_to_none=True)

Comparison and Results

Practical Considerations

Training Progress:

- ▶ 75 epochs total
- ► Validation every 5 epochs
- Progressive quality improvement
- ► MSE loss on noise prediction

Sampling Visualization:

- Shows denoising process
- ▶ 1000 steps from noise to image
- ► Intermediate steps saved every 100 timesteps

Expected Outcomes:

- Generated hand X-rays
- ► Similar style to training data
- Novel, unique samples
- Quality improves with training

Visualization includes:

- ► Learning curves (train/val loss)
- Sample generations during training
- ► Full denoising chain visualization

Motivation:

- ► DDPMs work in pixel space → computationally expensive
- Medical images often high-resolution
- Solution: Work in compressed latent space

Key Innovation:

- ► Train autoencoder to compress images
- Run diffusion in latent space
- Decode back to image space
- Much more efficient!

Jorge Cardoso

Part 1: Denoising Diffusion Probabilistic Models (DDPM) Introduction

Key Components

Key Concepts

Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencoder

Stage 2: Diffusion in Latent

Implementation Details

Comparison and Results

Practical

Considerations

Two-Stage Training Process:

1. Stage 1: Autoencoder Training

- AutoencoderKL with KL-regularization
- ightharpoonup Compression: $64 \times 64 \times 1 \rightarrow 16 \times 16 \times 3$ (latent)
- ► Losses: Reconstruction + Perceptual + Adversarial + KL
- ► Training time: 55 minutes

2. Stage 2: Diffusion Model Training

- ► U-Net operates on latent representations
- ightharpoonup Smaller spatial dimensions \rightarrow faster training
- Same DDPM principles apply
- ► Training time: 80 minutes

```
autoencoderkl = AutoencoderKL(
    spatial_dims=2,
    in_channels=1,
    out_channels=1,
    num_channels=(128, 128, 256),
    latent_channels=3,
    num_res_blocks=2,
    attention_levels=(False, False),
    with_encoder_nonlocal_attn=False,
    vith_decoder_nonlocal_attn=False,
    vith_de
```

Key Features:

- Variational autoencoder with KL regularization
- ▶ $4 \times$ spatial compression ($64 \times 64 \rightarrow 16 \times 16$)
- ▶ 3 latent channels for richer representation
- ► No attention layers (faster training)

Part 1: Denoising Diffusion Probabilistic Models (DDPM)

Introduction
Key Components

Key Concepts

Part 2: Latent Diffusion Models

Diffusion Models (LDM)

Introduction to LDM Stage 1: Autoencoder

Stage 1: Autoencoder Stage 2: Diffusion in Latent

Space Implementation Details

Comparison and Results

Combined Loss Function:

$$\mathcal{L}_{\textit{AE}} = \mathcal{L}_{\textit{recon}} + \lambda_{\textit{KL}} \mathcal{L}_{\textit{KL}} + \lambda_{\textit{perc}} \mathcal{L}_{\textit{perc}} + \lambda_{\textit{adv}} \mathcal{L}_{\textit{adv}}$$

- **Reconstruction Loss** (\mathcal{L}_{recon}): L1 distance between input and output
- **KL** Loss (\mathcal{L}_{KL}): Regularizes latent distribution

$$\mathcal{L}_{\mathit{KL}} = rac{1}{2} \sum [\mu^2 + \sigma^2 - \log(\sigma^2) - 1]$$

- **Perceptual Loss** (\mathcal{L}_{perc}): Uses AlexNet features (weight: 0.001)
- ▶ Adversarial Loss (\mathcal{L}_{adv}): PatchGAN discriminator (weight: 0.01)

Note: Adversarial loss starts after 10 epochs warm-up

Part 1: Denoising Diffusion Probabilistic Models (DDPM)

Introduction
Key Components

Key Concepts

Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencode

Stage 2: Diffusion in Latent Space

Implementation Details Comparison and Results

Part 1: Denoising Diffusion Probabilistic Models (DDPM) Introduction

Key Components

Key Concepts

Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencoder

Stage 2: Diffusion in Latent

Implementation Details

Comparison and Results

Practical Considerations

Diffusion U-Net for Latent Space:

- Input/Output: 3-channel latent representations
- Architecture: Similar to DDPM but smaller spatial size
- Channel progression: $128 \rightarrow 256 \rightarrow 512$
- Attention at levels 2 and 3 (256, 512 head channels)

Key Difference from DDPM:

- \triangleright Works on $16 \times 16 \times 3$ latents instead of $64 \times 64 \times 1$ images
- ► 16× reduction in spatial dimensions
- Significantly faster training and sampling

Why Scaling Factor Matters:

- Latent space may not have unit variance
- Diffusion assumes Gaussian with unit variance
- Mismatch can hurt performance

```
# Calculate scaling factor
with torch.no_grad():
    z = autoencoderkl.encode stage 2 inputs(images)
scale factor = 1 / torch.std(z)
print(f"Scaling factor: {scale factor}")
# Use in inferer
inferer = LatentDiffusionInferer(
    scheduler.
    scale_factor=scale_factor
```

Note: This normalizes the latent space to match diffusion assumptions

8

9

0.

Jorge Cardoso

```
Part 1: Denoising
Diffusion
Probabilistic
Models (DDPM)
```

Key Components

Key Concepts

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencoder

Stage 2: Diffusion in Latent

Implementation Details

Comparison and Results

```
# Encode images to latent space
z_mu, z_sigma = autoencoderkl.encode(images)
z = autoencoderkl.sampling(z_mu, z_sigma)

# Standard diffusion training in latent space
noise = torch.randn_like(z)
timesteps = torch.randint(0, 1000, (batch_size,))

# Inferer handles scaling automatically
noise_pred = inferer(
    inputs=images,
    diffusion_model=unet,
    noise=noise,
    timesteps=timesteps,
    autoencoder_model=autoencoderkl
)
loss = F.mse_loss(noise_pred, noise)
```

```
Part 1: Denoising
Diffusion
Probabilistic
Models (DDPM)
Introduction
```

Key Components

Key Concepts

Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencoder

Stage 2: Diffusion in Latent Space

Implementation Details

Comparison and Results

Practical Considerations

```
# Start with noise in LATENT space
   z = torch.randn((1, 3, 16, 16))
4
   # Sample using both models
   scheduler.set_timesteps(num_inference_steps=1000)
   decoded = inferer.sample(
       input noise=z.
       diffusion model=unet.
       scheduler=scheduler.
       autoencoder model=autoencoderkl
```

Sampling Process:

- 1. Generate random latent noise $(16 \times 16 \times 3)$
- 2. Run reverse diffusion in latent space
- 3. Decode final latent to image space
- 4. Result: $64 \times 64 \times 1$ generated image

DDPM vs LDM Comparison

Diffusion Models for Medical Imaging

Jorge Cardoso

Part 1: Denoising Diffusion Probabilistic Models (DDPM)

Key Components Key Concepts

Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencoder

Stage 2: Diffusion in Latent

Implementation Details

Comparison and Results

Aspect	DDPM	LDM
Working Space	Pixel $(64 \times 64 \times 1)$	Latent $(16 \times 16 \times 3)$
Model Parameters	Smaller U-Net	$Larger\ U ext{-}Net\ +\ Autoencoder$
Training Time	50 min	135 min total
Sampling Speed	Slower	16 imes faster
Memory Usage	Higher	Lower (per diffusion step)
Image Quality	Good	Better (perceptual loss)
Scalability	Limited by resolution	Excellent

Autoencoder (Stage 1):

- Reconstruction quality improves over epochs
- Latent space becomes well-regularized
- Adversarial loss stabilizes after warm-up

Diffusion Model (Stage 2):

- Similar loss curves to DDPM
- ► Faster convergence due to smaller space
- Generated samples show:
 - Sharp details from perceptual loss
 - Consistent anatomy
 - Diverse poses and orientations

Visualization: Complete denoising chain from latent noise to final image

Tips for Both Models

Diffusion Models for Medical Imaging

Jorge Cardoso

Part 1: Denoising Diffusion Probabilistic Models (DDPM)

Introduction
Key Components

Key Concepts

Results

Part 2: Latent Diffusion Models (LDM)

Introduction to LDM

Stage 1: Autoencode

Stage 2: Diffusion in Latent

Implementation Details

Comparison and Results

Practical Considerations

General Best Practices:

- Start with provided hyperparameters
- Monitor GPU memory usage
- Use mixed precision training
- Save checkpoints regularly

DDPM Specific:

- Batch size affects training stability
- Consider DDIM for faster sampling
- Experiment with noise schedules

LDM Specific:

- ► Train autoencoder to convergence first
- ► Check reconstruction quality before Stage 2
- Scaling factor is crucial for performance
- ► Balance autoencoder losses carefully

Stage 2: Diffusion in Latent

Implementation Details

Comparison and Results

Practical Considerations

Memory Issues:

- Reduce batch size
- Use gradient accumulation
- Enable AMP (automatic mixed precision)

Poor Generation Quality:

- Train longer
- Check data preprocessing
- Verify scaling factor (LDM)
- Adjust learning rates

Training Instability:

- Lower learning rate
- Gradient clipping
- Check for NaN Josses
- Ensure proper data normalization

Resources:

- ▶ DDPM paper: arxiv.org/abs/2006.11239
- ► LDM paper: arxiv.org/abs/2112.10752
- MONAl Generative: github.com/Project-MONAl/GenerativeModels
- ► Tutorial notebooks: Available in MONAl tutorials repository

Further Reading:

- Medical diffusion review: Pinaya et al. (2022)
- DDIM for faster sampling
- Classifier-free guidance
- 3D medical image generation

Questions?

