Grade received 100% To pass 80% or higher

1.	Assume that there are 2 happy people and 2 unhappy people in a room. Concretely, persons A and B are happy and persons C and D are unhappy. If you were to randomly pick a person from the room, what is the probability that the person is happy. 1/2 1/4 3/4 0 0	1 / 1 poin
	⊘ Correct	
2.	Assume that there are 2 happy people and 2 unhappy people in a room. Concretely, persons A and B are happy and persons C and D are unhappy. If a friend showed you the part of the room where the two happy people are, what is the probability that you choose person B?	1 / 1 poin
	○ 1/4 ○ 3/4	
	O 1	
	⊘ Correct	
3	From the equations presented below, express the probability of a tweet being positive given that it contains the	4 / 4 main
٥.	word happy in terms of the probability of a tweet containing the word happy given that it is positive	1/1 poin
	$P(\text{Positive} \mid \text{"happy"}) = \frac{P(\text{Positive} \cap \text{"happy"})}{P(\text{"happy"})}$	
	$P(\text{"happy" Positive}) = \frac{P(\text{"happy"} \cap Positive}){P(\text{Positive})}$	
	$ \bullet \ P(\ \text{Positive} \ \ \ \text{happy} \) = P(\ \text{happy} \ \ \ \text{Positive} \) \times \frac{P(\ \text{Positive} \)}{P(\ \text{happy})} $	
	$ \bigcirc \ P(\ \text{Positive} \ \ \ \text{happy} \) = P(\ \text{"happy"} \ \ \ \text{Positive} \) \times \frac{P(\ \text{happy} \)}{P(\ \text{Positive} \)} $	
	$\bigcirc \ P(\ \text{Positive}\ \bigcap\ \text{happy}\) = P(\ \text{happy}\ \ \text{Positive}\) \times \frac{P(\ \text{Positive}\)}{P(\ \text{happy})}$	
	$\bigcirc \ P(\ \text{Positive}\ \bigcap\ \text{happy}\) = P(\ \text{"happy"}\ \ \text{Positive}\) \times \frac{P(\ \text{happy}\)}{P(\ \text{Positive}\)}$	
	⊘ Correct Yes, that is the correct answer.	
4.	Bayes rule is defined as	1 / 1 poin
	$\bigcirc P(X \mid Y) = P(Y \mid X) \times \frac{P(Y)}{P(X)}$	
	$\bigcirc P(X \mid Y) = P(X \mid Y) \times \frac{P(X)}{P(Y)}$	
	$\bigcirc P(X \mid Y) = P(Y \mid X) \times \frac{P(X)}{P(Y \mid X)}$	

5. Suppose that in your dataset, 25% of the positive tweets contain the word 'happy'. You also know that a total of 13% of the tweets in your dataset contain the word 'happy', and that 40% of the total number of tweets are positive. You observe the tweet: "happy to learn NLP". What is the probability that this tweet is positive?

1/1 point

0.77

✓ Correct

**** That's right. You just applied Bayes' rule.

6.		og likelihood for a certain word w_i is defined as: $\frac{P(w_i pos)}{P(w_i neg)}).$	1/1 point
	✓ F	Positive numbers imply that the word is positive.	
	\odot	Correct	
	☐ F		
	✓ N	Negative numbers imply that the word is negative.	
	\odot	Correct	
		Negative numbers imply that the word is positive.	
7.	betw		1/1 point
	_	1 and 1 $-\infty$ and ∞	
		on and ∞	
	0) and 1	
	\odot	Correct Yes!	
8.	When	n implementing naive Bayes, in which order should the following steps be implemented.	1/1 point
	•	Get or annotate a dataset with positive and negative tweets	2,2,5
		2. Preprocess the tweets: process_tweet(tweet) →	
		3. Compute freq(w, class)	
		4. Get P(w pos), P(w neg)	
		5. Get $\lambda(w)$	
		6. Compute logprior = log(P(pos) / P(neg))	
	0	1. Get or annotate a dataset with positive and negative tweets	
		2. Preprocess the tweets: process_tweet(tweet) →	
		3. Compute freq(w, class)	
		4. Get $\lambda(w)$	
		5. Get P(w pos), P(w neg)	
		6. Compute logprior = log(P(pos) / P(neg))	
	0	Get or annotate a dataset with positive and negative tweets	
		2. Compute freq(w, class)	
		3. Preprocess the tweets: process_tweet(tweet) →	
		4. Get P(w pos), P(w neg)	
		5. Get λ(w)	
		6. Compute logprior = log(P(pos) / P(neg))	
	0	1. Get or annotate a dataset with positive and negative tweets	
		2. Compute freq(w, class)	
		3. Preprocess the tweets: process_tweet(tweet) →	
		4. Compute logprior = log(P(pos) / P(neg)	

5. Get P(w | pos), P(w | neg)

⊘ Correct Yes, that is correct. 9. To test naive bayes model, which of the following are required? 1/1 point \bigcirc $X_{val}, Y_{val}, \lambda, logprior$ $\bigcirc X_{val}, Y_{val}, logprior$ $\bigcirc X_{val}, \lambda, logprior$ $\bigcirc \ Y_{val}, \lambda, logprior$ **⊘** Correct This is correct. 10. Which of the following is NOT an application of naive Bayes? 1/1 point O Sentiment Analysis O Author identification O Information retrieval O Word disambiguation Numerical predictions **⊘** Correct This is correct.

6. Get λ(w)