Differentiation and Division

Rohan Hitchcock

8 September 2022

Let k be a commutative ring and R a k-algebra (soon we will assume k is a field of characteristic zero and R is a polynomial ring). Let $t = (t_1, \dots, t_n)$ be a sequence of elements in R

Last talk we constructed a strong deformation retract involving the Koszul complex of t. This relied on the existence of certain k-linear maps $\partial_{t_1}, \ldots, \partial_{t_n} : R \to R$, which together we referred to as a system of t-derivatives. In this talk we will show that such maps exist under certain assumptions on t, and that they can be computed algorithmically. Recall that a system of t-derivatives is defined as follows. Let k[t] denote the k-algebra generated by $1, t_1, \ldots, t_n$.

Definition 1. Given $t = (t_1, \ldots, t_n)$, system of t-derivatives are k-linear maps $\partial_{t_i} : R \to R$, $i = 1, \ldots, n$ which satisfy the following properties:

(1) Every $f \in R$ can be written uniquely in the form

$$f = \sum_{u \in \mathbb{N}^n} r_u t^u$$

where each $r_u \in \bigcap_i \ker(\partial_{t_i})$ and finitely many $r_u \neq 0$.

- (2) $\partial_{t_i}(t^v) = v_i t^{v-e_i}$ for all $v \in \mathbb{N}^n$ (where we understand that $0t_i^{-1} = 0$).
- (3) For $f \in k[t]$ and $r \in \bigcap_i \ker(\partial_{t_i})$ we have $\partial_{t_i}(rf) = r\partial_{t_i}(f)$.

Now suppose that $R = k[x] = k[x_1, \ldots, x_m]$. When n = m and $t = x = (x_1, \ldots, x_n)$ our construction will recover the usual partial derivative maps $\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}$. In other words our goal is the generalise the notion of taking partial derivatives with respect to the sequence $x = (x_1, \ldots, x_n)$ to taking partial derivatives with respect to other sequences in k[x].

This generalisation is motivated by the observation that taking derivatives of polynomials is related to polynomial division. Consider the one variable case $k[x] = k[x_1]$ and let $f \in k[x]$. For another formal variable y one can show that in the polynomial ring k[x, y] we have

$$f(x) = \sum_{p=1}^{\infty} \frac{1}{p!} f^{(p)}(y) (x - y)^p$$

analogously to the analytic Taylor's Theorem, where $f^{(p)} = \frac{d^p}{dx^p}(f)$ is the p^{th} partial derivative of f. Notice that the right-hand-side is a polynomial since eventually $f^{(m)} = 0$. Rearranging this we have

$$f(x) - f(y) = f'(y)(x - y) + (x - y)^{2} \sum_{p=2}^{\infty} \frac{1}{p!} f^{(p)}(y)(x - y)^{p-2}$$

or in other words, f'(y) is the remainder of f(x) - f(y) divided by $(x - y)^2$. A similar result can be shown in the multivariate case.

1 Iterated Euclidean division

Our first task is to prove a corollary of the division algorithm in k[x]. Let k be a field. We begin by recalling some concepts related to polynomial division in the multivariate polynomial ring k[x] following the conventions of [CLO15, Chapter 2]. A monomial in k[x] is any polynomial in the set $\{x^u\}_{u\in\mathbb{N}^n}$. A monomial ordering on k[x] is a well-founded, total order relation < on \mathbb{N}^n with the property that $u < v \implies u + w < v + w$. A typical example of a monomial ordering is the lexicographic ordering on \mathbb{N}^n , and others are given in [CLO15, Section 2.2].

Let $f = \sum_{u \in \mathbb{N}^n} c_u x^u \in k[x]$ where $c_u \in k$ and finitely many $c_u \neq 0$. Any $c_u x^u$ for which $c_u \neq 0$ is called a *term* of f. Given a monomial ordering on k[x], if $f \neq 0$ we define the *multi-degree* of f as

$$\operatorname{multideg}(f) = \max\{u \in \mathbb{N}^n \mid c_u \neq 0\}$$

where the maximum is taken with respect to the monomial ordering. Setting $u^* = \text{multideg}(f)$ we define the *leading term* of f with respect to the given monomial ordering to be $\text{LT}(f) = c_{u^*}x^{u^*}$. The coefficient c_{u^*} is called the *leading coefficient* and is denoted LC(f). Consider the division algorithm on k[x] given in [CLO15, Theorem 2.3.3]. We recall its properties:

Theorem 2 (Division Algorithm). Let $f, g_1, \ldots, g_m \in k[x]$ and suppose we have a monomial ordering on k[x] for which $LC(g_1), \ldots, LC(g_m)$ are invertible in k. Given such a monomial ordering the division algorithm produces $r, q_1, \ldots, q_m \in k[x]$ which satisfy

$$(1)$$

$$f = r + \sum_{i=1}^{m} q_i g_i$$

- (2) None of the terms of r are divisible by any of the $LT(g_i)$, i = 1, ..., m.
- (3) For all i = 1, ..., m with $q_i \neq 0$ we have $\operatorname{multideg}(f) \geq \operatorname{multideg}(q_i g_i)$.

In [CLO15] the division algorithm theorem is stated under the assumption that k is a field, but by inspecting the algorithm and proof given in [CLO15] one can observe that this hypothesis is only needed so the $LC(g_i)$ can be inverted.

We show that the division algorithm can be iterated to "completely divide" the coefficients of the divisors g_1, \ldots, g_m of Theorem 2. The properties of this iterated division algorithm are stated and proved in Theorem 3 and the algorithm itself is given in Algorithm 1.0.4.

Theorem 3. Let $f \in k[x]$ be a polynomial and $g_1, \ldots, g_m \in k[x]$ be non-constant polynomials. Suppose we have a monomial ordering on k[x] such that $LC(g_1), \ldots, LC(g_m)$ are invertible in k. Given this monomial ordering, ITERATEDDIVISION (f, g_1, \ldots, g_m) in Algorithm 1.0.4 computes an expression of the form

$$f = \sum_{u \in \mathbb{N}^n} r_u g^u$$

where $g^u = g_1^{u_1} \cdots g_m^{u_m}$, all but finitely many of the $r_u = 0$ and for each $r_u \neq 0$, all terms of r_u are not divisible by any of the $LT(g_i)$, i = 1, ..., m.

Proof. Let R_N and Q_N be the values of R and Q respectively in Algorithm 1.0.4 at the end of the N^{th} repetition of the loop on line 4, where we start counting from N=0. Let $i(Q_N)$ and $i(R_N)$ be the indices arising in Q_N and R_N respectively, so $u \in i(Q_N)$ if and only if $(u,q) \in Q_N$ for some $q \in k[x]$ and likewise for $i(R_N)$.

We begin by showing that if the algorithm terminates then we obtain an expression of the stated form. First note that every index $u \in \mathbb{N}^n$ appears in Q_N and R_N at most once. That is, $|i(Q_N)| = |Q_N|$ and $|i(R_N)| = |R_N|$. Hence we can define

$$r_{u,N} = \begin{cases} 0 & u \notin i(R_N) \\ r & \text{where } (u,r) \in R_N \end{cases} \quad \text{and} \quad q_{u,N} = \begin{cases} 0 & u \notin i(Q_N) \\ q & \text{where } (u,q) \in Q_N \end{cases}$$

We aim to show that for all N we have

$$f = \sum_{u \in \mathbb{N}^m} r_{u,N} g^u + \sum_{u \in \mathbb{N}^m} q_{u,N} g^u$$

where $g^u = g_1^{u_1} \cdots g_m^{u_m}$. We proceed by induction on N. The base case is clear if we define R_{-1} and Q_{-1} to be the initial values of R and Q defined prior to line 4. Now consider the inductive case. For $u \in \mathbb{N}^m$ let $|u| = \sum_{i=1}^m u_i$. Note that if $r_{u,N-1} \neq 0$ then $|u| \leq N - 1$ and if $q_{u,N-1} \neq 0$ then $|u| \geq N$. We also have that if $r_{u,N-1} \neq 0$ then $r_{u,N} = r_{u,N-1}$ since we do not remove elements from R. Then we have

$$f = \sum_{u:|u| < N} r_{u,N-1} g^u + \sum_{u:|u| \ge N} q_{u,N-1} g^u$$

$$= \sum_{u:|u| < N} r_{u,N} g^u + \sum_{u:|u| \ge N} \left(r_{u,N} + \sum_{i=1}^m p_{u,i} g_i \right) g^u$$

$$= \sum_{u} r_{u,N} g^u + \sum_{u} \sum_{i=1}^n p_{u,i} g^{u+e_i}$$

$$= \sum_{u} r_{u,N} g^u + \sum_{u} q_{u,N} g^u$$

where $p_{u,1}, \ldots, p_{u,m}$ are obtained by applying the division algorithm to $q_{u,N-1}$ as on line 7. Since the algorithm terminates when $Q = \emptyset$ and all $r_u \neq 0$ satisfy the required property this proves we have an expression of the desired form on termination.

It remains to prove that the algorithm terminates. We abuse notation and write $q \in Q_N$ to mean $(u, q) \in Q_N$ for some $u \in \mathbb{N}^m$. Now define

$$b_N = \max\{\text{multideg}(q) \mid q \in Q_N\}$$

where the maximum is taken with respect to the chosen monomial ordering. Consider $q \in Q_{N-1}$ and let p_1, \ldots, p_m be the polynomials computed from q on line 7. By Theorem 2 we have that $\operatorname{multideg}(q) \geq \operatorname{multideg}(p_i g_i)$. By hypothesis g_i is not a constant polynomial so this implies $\operatorname{multideg}(q) > \operatorname{multideg}(p_i)$ and in particular $b_{N-1} > \operatorname{multideg}(p_i)$. Now, the elements of Q_N consist of sums of the various p_1, \ldots, p_m generated on line 7. Since for any $s + t \neq 0$ we have $\operatorname{multideg}(s + t) \leq \operatorname{max}\{\operatorname{multideg}(s), \operatorname{multideg}(t)\}$ [CLO15, Lemma 2.2.8] it follows that for any $q' \in Q_N$ that $\operatorname{multideg}(q') < b_{N-1}$. Therefore $b_N < b_{N-1}$ and since monomial orderings are well-founded the algorithm terminates.

Algorithm 1.0.4 Iterated Division Algorithm

Require: A polynomial $f \in k[x]$, non-constant polynomials $g_1, \ldots, g_m \in k[x]$, and a monomial ordering on k[x] such that $LC(g_1), \ldots, LC(g_m)$ are invertible in k.

```
1: procedure ITERATEDDIVISION(f, g_1, \ldots, g_m)

2: Q \leftarrow \{(\vec{0}, f)\} \Rightarrow \vec{0} = (0, \ldots, 0) \in \mathbb{N}^m

3: R \leftarrow \emptyset

4: while Q \neq \emptyset do

5: Q_{\text{new}} \leftarrow \emptyset

6: for all (u, q) \in Q do

7: Apply the division algorithm to obtain r, p_1, \ldots, p_m \in k[x] satisfying
```

$$q = r + \sum_{i=1}^{m} p_i g_i$$

along with the other conditions in Theorem 2.

```
Q_{\text{new}} \leftarrow Q_{\text{new}} \cup \{(u + e_i, p_i) \mid i = 1, \dots, m \text{ where } p_i \neq 0\}
 8:
                     R \leftarrow \{(u,r)\} \cup R
 9:
                Q \leftarrow \text{COLLECTTERMS}(Q_{\text{new}})
10:
           return R
11:
     function COLLECTTERMS(Q)
12:
           Q_{\text{collected}} \leftarrow \emptyset
13:
           for all u where (u, p) \in Q for some p do
14:
                Let p_1, \ldots, p_s be all the polynomials such that (u, p_i) \in Q
15:
                if \sum_{i=1}^{s} p_i \neq 0 then
16:
                     Q_{\text{collected}} \leftarrow \{(u, \sum_{i=1}^{s} p_i)\} \cup Q_{\text{collected}}
17:
18:
           return Q_{\text{collected}}
```

2 Differentiating with respect to a sequence of polynomials

Fix a monomial ordering $>_x$ on k[x]. We extend this to a monomial ordering on $k[x,y] = k[x_1,\ldots,x_m,y_1,\ldots,y_m]$ as follows. Let $(a,b),(a',b') \in \mathbb{N}^m \times \mathbb{N}^m$ where $a=(a_1,\ldots,a_m) \in \mathbb{N}^m$ and likewise for b,a' and b'. We define

$$(a,b) >_{x,y} (a',b') \equiv a >_x a' \text{ or } (a = a' \text{ and } b >_x b')$$

That is $>_{x,y}$ is the lexicographic ordering on $\mathbb{N}^m \times \mathbb{N}^m$ given by considering $>_x$ on each factor. This is clearly a monomial ordering on k[x,y] which agrees with the monomial order on k[x] when restricted to monomials involving only x-variables, and for which $x_i > y_j$ for all $i, j = 1, \ldots, m$. In particular $\mathrm{LT}_x(f(x)) = \mathrm{LT}_{x,y}(f(x) + f(y))$ for all $f \in k[x]$. From now on we dispense with distinguishing between $>_x$ and $>_{x,y}$ and simply use > and LT to refer to both monomial orderings.

Consider a sequence $t = (t_1, \ldots, t_n)$ in k[x] and suppose it is both quasi-regular and a Gröbner basis for its ideal (see Section 3). We define $T_i = t_i(x) - t_i(y)$ and consider the sequence $T = (T_1, \ldots, T_n)$ in k[x, y]. One can show that T is quasi-regular, and assume that T is also a Gróbner basis for its ideal (is this also automatic?).

The reason for these assumptions is that the sequences t and T have the following property.

Lemma 5. Let $f \in k[x]$. Suppose we have an expression for f of the form

$$f = \sum_{u \in \mathbb{N}^n} r_u t^u$$

where finitely many $r_u \neq 0$ and for all r_u , all terms of r_u are not divisible by any of the $LT(t_i)$. Then all the coefficients r_u are uniquely determined by f. Likewise for $F \in k[x, y]$, in any expression for F of the form

$$F = \sum_{u \in \mathbb{N}^n} R_u T^u$$

where finitely many $R_u \neq 0$ and no term of R_u is divisible by any of the $LT(T_i) = LT(t_i)$, the coefficients R_u are uniquely determined by F.

Proof. See Section 3.
$$\Box$$

Note that the expressions in the above lemma are exactly the expressions computed by the iterated division algorithm.

Given $f \in k[x]$ write

$$f(x) - f(y) = \sum_{u \in \mathbb{N}^n} r_u T^u$$

where the $r_u \in k[x, y]$ are the unique polynomials satisfying the conditions in Lemma 5. For each $u \in \mathbb{N}^n$ define a map $\rho_u : k[x] \to k[x, y]$ by setting $\rho_u(f) = r_u$. We now prove some facts about these maps. For $u, v \in \mathbb{N}^n$ define $u! = u_1!u_2! \cdots u_n!$ and

$$\begin{pmatrix} v \\ u \end{pmatrix} = \begin{cases} 0 & \text{if any } v_i - u_i < 0 \\ \frac{v!}{u!(v-u)!} & \text{otherwise} \end{cases}$$

Lemma 6. ρ_u is k-linear.

Proof. Let $f, g \in k[x]$. Then we can write

$$(f+g)(x) - (f+g)(y) = \sum_{u \in \mathbb{N}^n} (\rho_u(f) + \rho_u(g)) T^u$$

Now, if $\rho_u(f) + \rho_u(g) \neq 0$ then no term of $\rho_u(f) + \rho_u(g)$ is divisible by any of the LT(T_i). Hence the right-hand-side satisfies the conditions in Lemma 5 and so by uniqueness $\rho_u(f) + \rho_u(g) = \rho_u(f) + \rho_u(g)$. Likewise $\rho_u(cf) = c\rho_u(f)$ for $c \in k$.

Lemma 7. $\rho_u(t^v) = \binom{v}{u} t^{v-u}(y)$ for all $v \in \mathbb{N}^n$ and $u \neq 0$.

Proof. It suffices to prove that

$$t^{v}(x) = \sum_{u} {v \choose u} t^{v-u}(y) T^{u}$$

$$(2.1)$$

Indeed, having shown (2.1) holds we have

$$t^{v}(x) - t^{v}(y) = \sum_{u \neq 0} {v \choose u} t^{v-u}(y) T^{u}$$

where we note that no term of $t^{v-u}(y)$ is divisible by any of the $LT(T_i) = LT(t_i(x))$.

We proceed by induction on $|v| = \sum_i v_i$. If v = 0 then both sides of (2.1) are equal to 1. Now suppose that $|v| \ge 1$. Let i be such that $v_i > 0$. Then, using the induction hypothesis, we have

$$\begin{split} t^v(x) &= t_i(x) t^{v-e_i}(x) \\ &= t_i(x) \sum_u \binom{v-e_i}{u} t^{v-e_i-u}(y) T^u \\ &= (t_i(y) + T_i) \sum_u \binom{v-e_i}{u} t^{v-e_i-u}(y) T^u \\ &= \sum_u \binom{v-e_i}{u} t^{v-u}(y) T^u + \sum_u \binom{v-e_i}{u} t^{v-e_i-u}(y) T^{u+e_i} \\ &= \sum_u \binom{v-e_i}{u} t^{v-u}(y) T^u + \sum_{u \neq 0} \binom{v-e_i}{u} t^{v-u}(y) T^u \\ &= t^v(y) + \sum_{u \neq 0} \binom{v-e_i}{u} + \binom{v-e_i}{u-e_i} t^{v-u}(y) T^u \\ &= t^v(y) + \sum_{u \neq 0} \binom{v}{u} t^{v-u}(y) T^u \\ &= \sum_u \binom{v}{u} t^{v-u}(y) T^u \end{split}$$

which proves the claim.

Lemma 8. Let $f \in k[t]$ and $r \in k[x]$ be such that no term of r is divisible by any of the $LT(t_i)$. Then for $u \neq 0$ we have $\rho_u(rf) = r(x)\rho_u(f)$.

Proof. It suffices to prove this for $f = t^v$ for $v \in \mathbb{N}^n$. Using Lemma 7 we have

$$r(x)t^{v}(x) - r(y)t^{v}(y) = r(x)t^{v}(x) - r(x)t^{v}(y) + r(x)t^{v}(y) - r(y)t^{v}(y)$$

$$= r(x)(t^{v}(x) - t^{v}(y)) + (r(x) - r(y))t^{v}(y)$$

$$= r(x)\sum_{u\neq 0} \binom{v}{u}t^{v-u}(y)T^{u} + (r(x) - r(y))t^{v}(y)$$

$$= (r(x) - r(y))t^{v}(y) + \sum_{u\neq 0} \binom{v}{u}r(x)t^{v-u}(y)T^{u}$$

Notice that $LT(t_j) = LT(T_j)$ does not divide any term of $(r(x) - r(y))t^v(y)$ or $\binom{v}{u}r(x)t^{v-u}(y)$ for all j = 1, ..., n and $u \in \mathbb{N}^n$. Hence by Lemma 5 this proves the claim.

Now let $e_i \in \mathbb{N}^n$ have a 1 in the i^{th} coordinate and 0 elsewhere and let $\varphi : k[x, y] \to k[x]$ be the k-algebra morphism identifying x and y. For each t_i we define a map $\partial_{t_i} : k[x] \to k[x]$ by setting $\partial_{t_i}(f) = \varphi \rho_{e_i}(f)$.

Proposition 9. The maps $\partial_{t_i}, \ldots, \partial_{t_i} : k[x] \to k[x]$ form a system of t-derivatives as defined in Definition 1.

Proof. We need to show that $\partial_{t_1}, \ldots, \partial_{t_n}$ are k-linear and satisfy

(1) Every $f \in k[x]$ can be written uniquely in the form

$$f = \sum_{u \in \mathbb{N}^n} r_u t^u$$

where $r_u \in \bigcap_i \ker(\partial_{t_i})$.

- (2) $\partial_{t_i}(t^v) = v_i t^{v-e_i}$ for all $v \in \mathbb{N}^n$ (where we understand that $0t_i^{-1} = 0$).
- (3) For $f \in k[t]$ and $r \in \bigcap_i \ker(\partial_{t_i})$ we have $\partial_{t_i}(rf) = r\partial_{t_i}(f)$.

That $\partial_{t_1}, \ldots, \partial_{t_n}$ are k-linear, and properties (2) and (3) follow directly from Lemma 6, Lemma 7 and Lemma 8 respectively. For (1) note that we can write any $f \in k[x]$ in the form

$$f(x) = \sum_{u} r_u(x)t^u(x)$$

where if $r_u \neq 0$ then no term of r_u is divisible by any of the LT (t_i) . This expression exists by Theorem 3 and is unique by the assumption on t, and note that $\rho_{e_i}(r_u) = 0$ for all u by Lemma 5.

Proposition 9 is the main result of this section, but before continuing we note some other properties of the maps $\partial_{t_1}, \ldots, \partial_{t_n}$ defined in Proposition 9. As noted previously, since $\partial_{t_1}, \ldots, \partial_{t_n}$ is a system of t-derivatives we have $\partial_{t_i}\partial_{t_j} = \partial_{t_j}\partial_{t_i}$ for all i, j. Hence for $a \in \mathbb{N}^n$ we define $\partial_t^a = \partial_{t_1}^{a_1} \cdots \partial_{t_n}^{a_n}$. The next result is analogous to Taylor's Theorem.

Proposition 10. $\partial_t^a = a! \varphi \rho_a$ for all $a \neq 0$.

Proof. Let $f \in k[x]$ and write

$$f(x) = \sum_{u} r_u(x)t^u(x)$$

where finitely many $r_u \neq 0$ and if $r_u \neq 0$ then no term of r_u is divisible by any of the $LT(t_i)$. By Lemma 7 we have $\rho_a(t^u) = \binom{u}{a} t^{u-a}(y)$ and so

$$\partial_t^a(f) = \sum_u a! \binom{u}{a} r_u(x) t^{u-a}(x)$$

$$= a! \sum_u r_u(x) \varphi \rho_a(t^u)$$

$$= a! \sum_u \varphi \rho_a(r_u t^u)$$

$$= a! \varphi \rho_a(f)$$

where we have that $r_u(x)\rho_a(t^u) = \rho_a(r_ut^u)$ by Lemma 8.

Let $f \in k[x]$. Clearly one way to compute $\partial_{t_i}(f)$ is to use Algorithm 1.0.4 to compute an expression for f of the form

$$f(x) = \sum_{u} r_u(x)t^u(x)$$

where finitely many $r_u \neq 0$ and if $r_u \neq 0$ then no term of r_u is divisible by any of the $LT(t_i)$. We then have

$$\partial_{t_i}(f) = \sum_{u} r_u(x) u_i t^{u - e_i}(x)$$

This approach needs many calls to the division algorithm as the whole expansion of f(x) in terms of $t_1(x), \ldots, t_n(x)$ must be computed. A more efficient approach which only calls the division algorithm twice is given in Algorithm 2.0.11, in which $\partial_{t_j}(f) = \text{DIFFERENTIATE}(f, j, t_1, \ldots, t_n)$.

Algorithm 2.0.11 Computing ∂_{t_j}

- 1: **procedure** DIFFERENTIATE (f, j, t_1, \dots, t_n)
- 2: Use the division algorithm in k[x,y] to obtain $r(x,y), q_1(x,y), \ldots, q_n(x,y)$ satisfying

$$f(x) - f(y) = r(x, y) + \sum_{i=1}^{n} q_i(x, y)(t_i(x) - t_i(y))$$

along with the other conditions in Theorem 2.

3: Use the division algorithm in k[x,y] to obtain $r'(x,y), p_1(x,y), \ldots, p_n(x,y)$ satisfying

$$q_j(x,y) = r'(x,y) + \sum_{i=1}^n p_i(x,y)(t_i(x) - t_i(y))$$

4: **return** $\varphi(r'(x,y))$

3 Appendix regarding the conditions on t

We first recall the concept of a Gröbner basis.

Definition 12. Fix a monomial ordering on k[x] and let $I = (g_1, \ldots, g_n)$ be an ideal. Consider the set of leading terms of elements of I:

$$LT(I) = \{LT(f) \mid f \in I \setminus \{0\}\}\$$

We say that t_1, \ldots, t_n is a *Gröbner basis for I* if the ideal generated by LT(I) is equal to $(LT(t_1), \ldots, LT(t_n))$. Given a sequence $t = (t_1, \ldots, t_n)$ we say that t is a *Gröbner basis* to mean that t is a Gröbner basis for the ideal its elements generate.

Lemma 13 ([CLO15, Corollary 2.6.2]). Let $f \in k[x]$. If t is a Gröbner basis then when we apply the division algorithm to divide f by t, the remainder term is zero if and only if $f \in I$.

Note that the property of being a Gröbner basis is depends on the monomial ordering on k[x]. One can show that given a monomial ordering on k[x] and an ideal I there always exists a Gröbner basis for that ideal [CLO15, Corollary 2.5.6], and moreover a Gröbner basis can be computed from a finite generating set for I via an algorithm called Buchberger's Algorithm [CLO15, Theorem 2.7.2]. For more on Gröbner basis see [CLO15, Chapter 2].

Next we discuss quasi-regular sequences. Let R be a commutative ring and $t = (t_1, \ldots, t_n)$ a sequence of elements in R. We denote by $I = (t_1, \cdots, t_n)$ the ideal generated by the elements of t. Consider the polynomial ring $(R/I)[x] = (R/I)[x_1, \cdots, x_n]$ with coefficients in R/I. We define a map

$$\alpha: (R/I)[x] \longrightarrow \bigoplus_{m \ge 0} I^m / I^{m+1}$$
 (3.1)

by setting $\alpha(x_i) = t_i + I^2$, where we denote $I^0 = R$ by mild abuse of notation. This map is always surjective. Indeed, consider $t^u + I^{m+1} \in I^m/I^{m+1}$ where $u \in \mathbb{N}^n$ is such that $\sum_{i=1}^n u_i = m$. It is straightforward to show that $\alpha(x^u) = t^u + I^{m+1}$. Noting that any element of I^m/I^{m+1} can be written as a sum of elements of the form $at^u + I^{m+1}$ where $a \in R$ is not divisible by any of the t_i and applying linearity proves that α is surjective.

The definition of quasi-regular should be seen in the context of the other regularity conditions on sequences. Recall that part of the definition of a potential was that its sequence of partial derivatives is Koszul-regular.

Definition 14. We say the sequence t is:

- (1) regular if each t_i is not a zero-divisor on $R/(t_1, \ldots, t_{i-1})$, and if the ring R/I is non-zero.
- (2) Koszul-regular if the Koszul complex of t is exact except in degree zero.
- (3) quasi-regular if the map α at (3.1) is an isomorphism.

The definition of Koszul-regular was first given in [Kab71, Definition 1] and the definition of quasi-regular was first given in [EGA, Volume IV Chapitre 0 15.1.7]. These regularity conditions and their relationships are also discussed in [Stacks, Sections 10.68, 10.69, 15.30]. In particular we have the following relationships, which are the main result of [Kab71].

Lemma 15. For the sequence t we have:

- (1) If t is regular then t is Koszul-regular.
- (2) If t is Koszul-regular then t is quasi-regular.

This is proved in [Kab71, Theorem 1.1] and also in [Stacks, Section 15.30]. Although it is not relevant for our purposes, it is worth pointing out that if R is a Noetherian local ring any quasi-regular sequence of non-units is necessarily a regular sequence [Stacks, Lemma 10.69.6] and so by Lemma 15 the regularity conditions of Definition 14 are equivalent for such sequences in Noetherian local rings. Examples presented in [Kab71] show that the implications in Lemma 15 cannot be reversed in general, or even under some generous assumptions on the ring R.

Now let k be a commutative ring and suppose R is a k-algebra. The next two results prove Lemma 5.

Lemma 16. Suppose t is quasi-regular and suppose we have a k-linear map $\sigma: R/I \to R$ such that $\pi \sigma = 1$. Then if we have $\sum_{u \in \mathbb{N}^n} \sigma(r_u) t^u = 0$ for some $r_u \in R/I$, with finitely many $\sigma(r_u) = 0$. Then we necessarily have $\sigma(r_u) = 0$ for all $u \in \mathbb{N}^n$.

Proof. Suppose for a contradiction that not all $r_u = 0$. Given $u \in \mathbb{N}^n$ let $|u| = \sum_{i=1}^n u_i$. We define

$$m = \min\{|u| \mid r_u \neq 0\}$$

Rearranging $\sum_{u \in \mathbb{N}^n} \sigma(r_u) t^u = 0$ we have

$$\sum_{|u|=m} \sigma(r_u)t^u = -\sum_{m<|u|} \sigma(r_u)t^u$$

which implies $\sum_{|u|=m} \sigma(r_u)t^u \in I^{m+1}$. Hence in I^m/I^{m+1} we have

$$\sum_{|u|=m} \sigma(r_u)t^u = 0$$

Since t is quasi-regular we have $\sigma(r_u) \in I$: if this were not the case then this would give us a non-zero element of (R/I)[x] which is sent to zero by the map α of (3.1). Applying π gives $r_u = 0$ and hence $\sigma(r_u) = 0$, proving the claim.

Similar results to the lemma above are also discussed in [Lip87, Chapter 3]. The next result provides a particularly useful section of the quotient map using a Gröbner basis.

Lemma 17. Fix a monomial ordering on k[x] and suppose t is a Gröbner basis with respect to this monomial order. Let

$$V = \{r \in k[x] \mid \text{no term of } r \text{ is divisible by any of the } LT(t_i)\}$$

Then the quotient map $\pi: k[x] \to k[x]/I$ restricts to an isomorphism $V \to k[x]/I$.

Proof. For injectivity suppose $r \in V$ is such that $\pi(r) = 0$. Applying the division algorithm to divide r by t yields the remainder term r, since none of the terms in r are divisible by any of the $LT(t_i)$. Since $r \in I$, by Lemma 13 we have r = 0.

For surjectivity, consider $f \in k[x]$. Via the division algorithm we obtain an expression for f of the form

$$f = r + \sum_{i=1}^{n} q_i t_i$$

where $r \in V$. Then we have $\pi(f) = \pi(r)$, and noting that $\pi : k[x] \to k[x]/I$ proves the claim.

References

- [CLO15] David A. Cox, John Little and Donal O'Shea. *Ideals, Varieties, and Algorithms:*An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Cham: Springer International Publishing, 2015.
- [EGA] Alexander Grothendieck and Jean Dieudonné. Éléments de géométrie algébrique. Institut des Hautes Études Scientifiques, 1961–1967.
- [Kab71] Thomas Kabele. 'Regularity conditions in nonnoetherian rings'. In: *Transactions of the American Mathematical Society* 155.2 (1 Feb. 1971), pp. 363–374.
- [Lip87] Joseph Lipman. Residues and Traces of Differential Forms via Hochschild Homology. Vol. 61. Contemporary Mathematics. Providence, R.I: American Mathematical Society, 1987. 95 pp.
- [Stacks] The Stacks Project. URL: https://stacks.math.columbia.edu/ (visited on 06/12/2021).