C - Bridge Editorial

Time Limit: 2 sec / Memory Limit: 256 MB

Score: 300 points

Problem Statement

You are given an undirected connected graph with N vertices and M edges that does not contain self-loops and double edges.

The *i*-th edge $(1 \le i \le M)$ connects Vertex a_i and Vertex b_i .

An edge whose removal disconnects the graph is called a bridge.

Find the number of the edges that are bridges among the M edges.

Notes

- A *self-loop* is an edge i such that $a_i = b_i$ $(1 \le i \le M)$.
- Double edges are a pair of edges i, j such that $a_i = a_i$ and $b_i = b_i$ $(1 \le i \le j \le M)$.
- An undirected graph is said to be connected when there exists a path between every pair of vertices.

Constraints

- $2 \le N \le 50$
- $N-1 \le M \le min(N(N-1)^2, 50)$
- $1 \le a_i < b_i \le N$
- The given graph does not contain self-loops and double edges.
- The given graph is connected.

Input

Input is given from Standard Input in the following format:

Output

Print the number of the edges that are bridges among the M edges.

Sample Input 1 Copy

7 7
1 3
2 7
3 4
4 5
4 6
5 6
6 7

Sample Output 1

The figure below shows the given graph:

The edges shown in red are bridges. There are four of them.

Sample Input 2 Copy

Copy
1 2
1 3
2 3

It is possible that every edge is a bridge.