

Análisis IV – Guía de problemas N°2 **Integrales Complejas**

- Realizar un programa en Python que calcule la integral entre dos números complejos, 1) para funciones analíticas, usando la biblioteca sympy.
- Calcular las siguientes integrales parametrizando el camino de integración. 2)
 - $\int_C e^z dz$ con C el camino más corto entre π i y 2π i
 - $\int_{\mathcal{C}}^{z} \cos(2z) dz$ C: semicircunferencia de $|z| = \pi$, Re $(z) \ge 0$ y $-\pi i \le \text{Im}(z) \le \pi i$ b)
 - $\int_C ze^{z^2} dz$ con C desde 1 hasta i a lo largo de los ejes real e imaginario
 - $\int_C Re(z^2)dz \quad \text{con C: } z(t) = t + i \text{ a sen}(t) \text{ con } 0 \le t \le \pi \text{ y a } \in \Re \text{ un parametro.}$ Grafique la curva C para diferentes valores del parámetro a.
 - $\int_C Re(z^2)dz \quad \text{con C: } z(t) = a \cos(t) + i \sin(t) \cos(-\pi/2) \le t \le \pi/2 \text{ y } a \in \Re \text{ un}$ parámetro. Grafique la curva C para diferentes valores del parámetro a.
 - Resuelva sobre los caminos de los puntos d) y e) pero para $f(z) = z^3$
- Calcular $\oint_C \frac{(2z-1)}{(z^2-z)} dz$, (por 2 métodos, fracciones simples o 3) sobre dos caminos con $C = C_1 + C_2$) con C la elipse de focos en 0 y 2, recorrida en sentido antihorario.

- Calcular $\oint_C Ln(1-z)dz$, con C el paralelogramo con vértices \pm i y \pm (1+i) recorrido en sentido horario.
- Calcular $\oint_C \frac{1}{(z^2-1)} dz$, con C: 5)

- Calcular $\oint_C \frac{\tan(z/2)}{(z^4-16)} dz$, con C el cuadrado con vértices \pm i y \pm 1 en sentido horario. 6)
- Calcular $\oint_C \frac{2z^3+z^2+4}{(z^4+4z^2)} dz$, con C: |z-2|=4 en sentido horario. 7)
- Calcular $\oint_C \frac{sen(z)}{(4z^2-8iz)} dz$, con C el cuadrado con vértices \pm i y \pm 1 en sentido horario y el cuadrado con vértices \pm 3i y \pm 3 en sentido antihorario.
- Calcular $\oint_C \frac{Ln(z)}{(z-2i)^2} dz$, con C: $|z-1| = \frac{1}{2}$ en sentido antihorario.
- Usando sympy realizar integración a lo largo de un camino, parametrizando el mismo 10) y convirtiendo la integral compleja en integrales reales. Aplicar a alguna integral ya resuelta (por ej. 2d) y comparar con el resultado obtenido.