Deep Learning Made Easy

The Basics

Schedule

week	Date	Topic
1	02.11	Introduction
2	02.18	The basics: python, math, and AI development
3	02.25	Al history & Perceptron
4	03.04	Training: forward propagation & backpropagation
5	03.11	CNN
6	03.18	Metrics
7	03.25	Word embedding
8	04.01	RNN
9	04.08	Autoencoder & GAN
10	04.15	Project presentation

Today's Agenda

- Demo:
 - Teachable Machine
 - Peltarion
- Perceptron:
 - Y = WX + b
 - Two inputs: x1, x2
 - One output: y
 - Linear regression
- XOR problem
 - Linear regression can't solve the X
- Multi-layer neural network
 - Feedforward
 - Backpropagation
- Assignment

A Brief History of Machine Intelligence

Neural Network

Perceptron

Developed by Frank Rosenblatt at the Cornell Aeronautical Laboratory in 1958 (https://en.wikipedia.org/wiki/Perceptron)

Perceptron for classification problems

$$f(\mathbf{x}) = egin{cases} 1 & ext{if } \mathbf{w} \cdot \mathbf{x} + b > 0, \ 0 & ext{otherwise} \end{cases}$$

XOR Problem

Input1	input2	Output
0	0	0
1	0	1
0	1	1
1	1	0

- Minksy and Papert (1969)
- Solution: Multilayer NN + Backpropagation

What

- Dataset: data for training and testing
 - Requires preprocessing
- Model: What the network learns
 - Training, validation, and testing
- Inference: Model in action
 - Predicting based on the learned model

Rank, dimension, axes, and shape

- Rank: number of dimensions
- Dimension: 2D, 3D, etc.
- Axes: indices of a dimension
- Shape: number of elements in each dimension
 - a scalar has a rank 0 and an empty shape ()
 - a vector has rank 1 and a shape of (D0)
 - a matrix has rank 2 and a shape of (D0, D1) and so on

How to train a model

- Define input and output
- Decide on the input features
- Build layers of the network: hyperparameters
 - Number of layers
 - Learning rate
 - Number of epochs
 - Etc.
- Train the model: parameters
 - Weights and biases
 - Variables in TensorFlow
- Verify the model:
 - Using verification data

Models and Functions

• Hypothesis:

$$H(x_1, x_2, x_3) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

- Activation:
 - Sigmoid, ReLU, LeakyReLU, etc.

• Cost:
$$cost(W, b) = \frac{1}{m} \sum_{I=1}^{m} (H(x_1^{(i)}, x_2^{(i)}, x_3^{(i)}) - y^{(i)})^2$$

Matrix multiplication

The "Dot Product" is where we **multiply matching members**, then sum up:

$$(1, 2, 3) \bullet (7, 9, 11) = 1 \times 7 + 2 \times 9 + 3 \times 11$$

= 58

https://www.mathsisfun.com/algebra/matrix-multiplying.html

Functions using matrix

Hypothesis

$$\begin{pmatrix} \mathbf{y} = \mathbf{W}\mathbf{X} + \mathbf{b} \\ (x_1 \quad x_2 \quad x_3) \\ w_3 \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = (x_1w_1 + x_2w_2 + x_3w_3)$$

- Activation function
- Cost function

$$cost(W,b) = \frac{1}{m} \sum_{I=1}^{m} (H(x_1^{(i)}, x_2^{(i)}, x_3^{(i)}) - y^{(i)})^2$$

Activation functions

- Introduces non-linearity
- Normalizes the output: activation functions are also called Normalization functions
- Different kinds
 - Step function: $f(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0, \\ 0 & \text{otherwise} \end{cases}$
 - Sigmoid:

$$S(x)=rac{1}{1+e^{-x}}$$

$$S(x)$$
 = sigmoid function
 e = Euler's number

Activation function: Sigmoid

• Sigmoid:

$$S(x)=rac{1}{1+e^{-x}}$$

S(x) = sigmoid function

e = Euler's number

Activation functions: Sigmoid and Tanh

https://www.neuronactivator.com/blog/what-even-is-activation-function

Activation Functions: ReLU and Leaky ReLU

Fig: ReLU v/s Leaky ReLU

https://www.neuronactivator.com/blog/what-even-is-activation-function

Activation Function: Softmax

- The softmax function is often used in the final layer of a neural network-based classifier.
- All probabilities sum to one
- Often used with a <u>log loss</u> (or <u>cross-entropy</u>) cost function
- To solve a non-linear variant of multinomial logistic regression.

Activation Function: Softmax

https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d

Loss Function: Cross Entropy

https://medium.com/data-science-bootcamp/understand-cross-entropy-loss-in-minutes-9fb263caee9a

Loss Function: Mean Squared Error

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

predicted)))

Training is minimizing the cost

- Training a neural network is basically the problem of minimizing the cost function.
- Gradient descent is the most popular approach.
- For a given cost function, minimize cost(W, b)

Backpropagation

- 1. Use Calculus: the study of change
- 2. Batches, mini-batches, and stochastic batches

Steps:

- 1. Take the derivative: the slope of a tangent line at a specific point in time
- 2. Partial derivative
- 3. The chain rule: composite functions

• Backpropagation of errors: Updating weights using gradient descent

Backpropagation using gradient descent

Gradient descent

Problems with training

- Initial weights: random means you can't predict
- Vanishing/exploding gradients
- Local minima
- Overfitting & underfitting
- Hyperparameters: learning rate, number of layers, etc. require human intelligence!

Learning rate

Learning rate: NaN!

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.

Local minima

Training Neural Networks is Difficult

"Visualizing the loss landscape of neural nets". Dec 2017.

Assignment

- Train & demo an AI model using either Teachable Machine or Peltarion
 - You are welcome to use the "flag classification" problem outlined in: https://github.com/changsin/DeepLearningMadeEasy/blob/main/flag_classification
 Cation/Problem-Definition.ipynb or you can choose a different topic
 - This is an individual assignment, but you are welcome to discuss in the forum and among your classmates.
 - Record a video clip for your demo

Lab time

- To clone: from your terminal
 - >git clone https://github.com/changsin/DeepLearningMadeEasy.git
- Or use google colab to open the git hub repository
- Git is an open source version control system
 - Github is a host service using git.