Exercice 1:

Soit (u_n) la suite définie par $u_0=u_1=1$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + u_n$$

- 1) Montrer que $\forall n \in \mathbb{N}, n \leqslant u_n \leqslant \left(\frac{7}{4}\right)^n$.
- 2) En déduire la limite de u_n quand n tend vers $+\infty$ et un encadrement de $\sum_{k=0}^{n} u_k$.

Exercice 2:

Calculer

$$\sum_{k=2}^{n} \ln\left(1 - \frac{1}{k^2}\right), \ \prod_{k=2}^{n} \left(k - \frac{1}{k}\right) \ \text{et} \ \sum_{1 \le i \le j \le n} \frac{i}{j+1}.$$

Exercice 2:

Les deux parties ci-dessous sont indépendantes.

Partie 1:

Soit $x \in [-2, +\infty[$. Démontrer l'implication $\sqrt{x+2} + x^2 > 6 \Rightarrow x > 2$.

Partie 2:

On propose ici une méthode de calcul de $S = \sum_{k=0}^{n} k^3$ connaissant les valeurs de $\sum_{k=0}^{n} k$ et de $\sum_{k=0}^{n} k^2$.

- 1. Rappeler les valeurs de $\sum_{k=0}^{n} k$ et $\sum_{k=0}^{n} k^2$.
- 2. On pose $S = \sum_{k=0}^{n} k^3$. Appliquer un changement d'indice par symétrie à la somme S.
- 3. En déduire $S = \sum_{k=0}^{n} (n^3 3n^2k + 3nk^2) S$.
- 4. En déduire la valeur de S.