VERTICAL TAIL PARAMETERS INITIALIZATION

Hidden Area --> Import of Excel INPUT V-Tail Data

Hidden Area --> Preliminary Mapping of imported Data

Hidden Area --> Import and preliminary mapping of OTHER Excel Data

INPUT V-TAIL PARAMETERS LIST

Input parameters

$b_V = 10.68 \ m$	$\Lambda_{V_LE} = 44.5 \; oldsymbol{deg}$	$\Gamma_{V} = 0$ deg

$$\xi_{tmax_V} \! = \! 0.35$$
 $arepsilon_{V} \! = \! 0$ deg $\eta_{V} \! = \! 1$

$$c_{V__r} \! = \! 8.1 \; \textit{m} \qquad \qquad t_over_c_{V__r} \! = \! 0.12 \qquad \qquad C_{l\alpha_V_r} \! = \! 0.12 \; \frac{1}{\textit{deg}}$$

$$\xi_{ac_V_r} = 0.25$$
 $C_{m_ac_V_r} = 0$ $M_{cr_V_2D_r} = 0.7$

$$c_{V_{_t}} = 2.51 \; \textit{m} \qquad \qquad t_over_c_{V_{_t}} = 0.09 \qquad \qquad C_{l\alpha_V_t} = 0.12 \; \frac{1}{\textit{deg}}$$

$$\xi_{ac_V_t} = 0.25 \hspace{1cm} M_{cr_V_2D_t} = 0.7 \hspace{1cm} M_{cr_V_2D_t} = 0.7 \hspace{1cm} \eta_{rd_in} = 0 \hspace{1cm} \eta_{rd_out} = 0.95 \hspace{1cm} c_{rd} = 1.83 \hspace{1cm} m$$

Imported parameters

$$\Delta X_W_{LE}_Nose = 25.05 \ m \qquad \qquad \Delta Z_W_{LE}_Nose = -0.75 \ m$$

$$\Delta Z_HT_{ac}_W_{ac} = 1.65 \text{ m}$$

$$M_1\!=\!0.65$$
 $c_{W\ r}\!=\!15.57\ m$ $i_W\!=\!2\ deg$

$$S_W = 468.83 \ m^2$$
 $MAC_W = 9.505 \ m$ $\Lambda_{W_c4_eqv} = 2 \ deg$

$$AR_W = 7.916$$
 $r_1 = 3.9 \ m$ $h_1 = 6.33 \ m$

$$b_H = 21.96 \; m$$
 $S_H = 105.41 \; m^2$ $MAC_H = 5.2 \; m$

$$X_{MAC\ LE\ H} = 3.705\ m$$
 $X_{ac\ WB} = 8.057\ m$

VTAIL PARAMETERS CALCULATIONS

V-Tail basic parameters

 $b_{2V} = 2 \cdot b_V = 21.36 \ m$

· Considering Vertical Tail like other wings

$$b_{2V} = 21.36 \ m$$

$$\lambda_{V} \coloneqq \frac{c_{V_t}}{c_{V_r}} = 0.31$$

$$S_V \coloneqq \frac{b_V}{2} \cdot c_{V_r} \cdot (1 + \lambda_V) = 56.657 \ \boldsymbol{m}^2$$

$$S_{2V} \coloneqq \frac{b_{2V}}{2} \boldsymbol{\cdot} c_{V_r} \boldsymbol{\cdot} \left(1 + \lambda_V \right) = 113.315 \ \boldsymbol{m}^2$$

$$AR_{2V} \coloneqq \frac{{b_{2V}}^2}{S_{2V}} = 4.026$$

$$AR_V := AR_{2V}$$

$$MAC_{V} := \frac{2}{3} \cdot c_{V_{-r}} \cdot \left(\frac{1 + \lambda_{V}^{2} + \lambda_{V}}{1 + \lambda_{V}} \right) = 5.796 \ m$$

$$X_{MAC_LE_V} \coloneqq \frac{b_{2V}}{6} \cdot \frac{\left(1 + 2 \cdot \lambda_V\right)}{\left(1 + \lambda_V\right)} \cdot \tan\left(\Lambda_{V_LE}\right) = 4.326 \ m$$

$$Y_{MAC_V} := \frac{b_{2V}}{6} \cdot \frac{1 + 2 \cdot \lambda_V}{1 + \lambda_V} = 4.402 \ m$$

$$Z_{MAC_V} := Y_{MAC_V} \cdot \tan(\Gamma_V) = 0 \ m$$

$$\lambda_V = 0.31$$

$$S_V = 56.657 \ m^2$$

$$S_{2V} = 113.315 \ m^2$$

$$AR_{2V} = 4.026$$

$$AR_V = 4.026$$

$$MAC_V = 5.796 \ m$$

$$X_{MAC_LE_V} = 4.326 \ m$$

$$Y_{MAC\ V} = 4.402\ m$$

$$Z_{MAC\ V} = 0\ m$$

V-Tail, sweep angles

$$_{\mathrm{f}}\Lambda\left(x\,,\Lambda_{le}\,,AR\,,\lambda\right)\coloneqq\mathrm{if}\left(AR=0\,,\Lambda_{le}\,,\mathrm{atan}\left(\mathrm{tan}\left(\Lambda_{le}\right)-rac{4\cdot x\cdot\left(1-\lambda
ight)}{AR\cdot\left(1+\lambda
ight)}
ight)
ight)$$

$$\Lambda_{V_LE} \coloneqq {}_{\mathrm{f}}\Lambda\left(0\,,\Lambda_{V_LE}\,,AR_V\,,\lambda_V\right) = 0.777$$

$$\Lambda_{V_TE} := {}_{f}\Lambda \left(1, \Lambda_{V_LE}, AR_V, \lambda_V\right) = 0.431$$

$$\Lambda_{V_c4} \coloneqq {}_{\mathrm{f}}\Lambda\left(0.25, \Lambda_{V_LE}, AR_V, \lambda_V\right) = 0.706$$

$$\Lambda_{V\ c2} \coloneqq {}_{\mathrm{f}}\Lambda\left(0.5, \Lambda_{V\ LE}, AR_{V}, \lambda_{V}\right) = 0.625$$

$$\Lambda_{V_tmax} \coloneqq {}_{\mathrm{f}} \Lambda \left(\xi_{tmax_V}, \Lambda_{V_LE}, AR_V, \lambda_V \right) = 0.674$$

$$\Lambda_{V\ LE} = 44.5\ deg$$

$$\Lambda_{V\ TE} = 24.669\ deg$$

$$\Lambda_{V_c4} = 40.426 \ deg$$

$$\Lambda_{V\ c2} = 35.791\ deg$$

$$\Lambda_{V_tmax} = 38.642 \ deg$$

Hidden Area --> V-Tail, linear laws coefficients

V-Tail, linear laws defined over the whole semi-span

$$_{\mathbf{f}}\mathbf{c}_{\mathbf{V}}(y) \coloneqq A_{c\ V} \cdot y + B_{c\ V}$$

$$_{f}C_{l\alpha \ V}(y) := A_{Cl\alpha \ V} \cdot y + B_{Cl\alpha \ V}$$

$$_{\mathrm{f}}\varepsilon_{\mathrm{g}_\mathrm{V}}(y) \coloneqq A_{\varepsilon_V} \cdot y + B_{\varepsilon_V}$$

$$_{\mathrm{f}}\mathbf{M}_{\mathrm{cr_V_2D}}(y) \coloneqq A_{Mcr_V} \cdot y + B_{Mcr_V}$$

$$_{\mathrm{f}}$$
t_over_ $_{\mathrm{c}_{\mathrm{V}}}(y) \coloneqq A_{tc_{-V}} \cdot y + B_{tc_{-V}}$

$$_{\text{f}}C_{\text{m ac 2D V}}(y) := A_{Cm0\ V} \cdot y + B_{Cm0\ V}$$

$$_{\mathrm{f}}\xi_{\mathrm{ac}_\mathrm{2D}_\mathrm{V}}(y) \coloneqq A_{\xi ac}_V \cdot y + B_{\xi ac}_V$$

V-Tail, 2D mean quantities

$$t_over_c_{V_mean} \coloneqq \frac{1}{S_V} \cdot \int_0^{b_V} {}_{\mathrm{f}} \mathrm{c_V}(y) \cdot {}_{\mathrm{f}} \mathrm{t_over_c_V}(y) \, \mathrm{d}y = 0.053$$

$$C_{m_ac_V_mean} \coloneqq rac{1}{S_V \cdot MAC_V} \cdot \int\limits_0^{b_V} {}_{ ext{f}} \mathrm{c_V} \left(y
ight)^2 \cdot {}_{ ext{f}} \mathrm{C_{m_ac_2D_V}} \left(y
ight) \mathrm{d}y = 0$$

$$C_{l\alpha_V_mean} \coloneqq \frac{1}{S_V} \cdot \int\limits_{s}^{b_V} {}_{\rm f} {\rm c_V} \! \left(y \right) \cdot {}_{\rm f} {\rm C_{l\alpha_V}} \! \left(y \right) {\rm d}y = 3.253$$

$$t_over_c_{V_mean} = 0.053$$

$$C_{m_ac_V_mean}\!=\!0$$

$$C_{l\alpha\ V\ mean} = 0.057\ deg^{-1}$$

MISCELLANEOUS DATA CALCULATIONS

$$\Delta X_VT_{LE}_W_{LE} \coloneqq \Delta X_VT_{LE}_Nose - \Delta X_W_{LE}_Nose = 36.91~\textit{m}$$

$$\Delta X_VT_{c4_r}_W_{c4_r} \coloneqq \Delta X_VT_{LE}_W_{LE} + \frac{c_{V_r}}{4} - \frac{c_{W_r}}{4} \equiv 35.043 \ \textit{m}$$

$$\Delta Z_W_{c4_r}_B_{CL} \coloneqq \Delta Z_W_{LE}_Nose + \sin\left(i_W\right) \cdot \frac{c_{W_r}}{4} = -0.614~m$$

$$\Delta Z_HT_{c4} \ _r_B_{CL} \coloneqq \Delta Z_W_{c4} \ _r_B_{CL} - \Delta Z_HT_{ac}_W_{ac} = -2.264 \ m$$

$$x_{AC\ HV} := X_{MAC\ LE\ H} + 0.25 \cdot MAC_H = 5.005\ m$$

Rudder inner and outer stations and area

$$y_{rd_in} \coloneqq \eta_{rd_in} \cdot b_V = 0 \, \, \boldsymbol{m}$$

$$y_{rd_out} \coloneqq \eta_{rd_out} \cdot b_V = 10.146 \ m$$

$$c_{V_mean_@rd} \coloneqq {}_{\text{f}} c_{\text{V}} \left(\frac{y_{rd_in} + y_{rd_out}}{2} \right) = 2.79 \ \textit{m}$$

$$S_{rd} := 2 \cdot c_{rd} \cdot (y_{rd_out} - y_{rd_in}) = 37.134 \ m^2$$

$$y_{rd_in} = 0$$
 m

$$y_{rd\ out} = 10.146\ m$$

$$c_{V_mean_@rd} = 2.79 \ m$$

$$S_{rd} = 37.134 \ m^2$$

@Aerodynamic Database ---> (control surface) tau e vs c control surface over c horizontal tai

 $\tau_{rd}\!=\!0.793$

Induced drag factors, only due to geometric effects

$$e_{V_{alt}} \coloneqq \frac{2}{2 - AR_{V} + \sqrt{4 + AR_{V}^{\ 2} \left(1 + \tan\left(\Lambda_{V_{tmax}}\right)^{2}\right)}} = 0.571$$

$$e_{V_alt}\!=\!0.571$$

 $e_{V \ alt \ A0} := 1.78 \cdot \left(1 - 0.045 \cdot AR_V^{0.68}\right) - 0.64 = 0.933$

 Alternative formula: valid for unswept wings

 $e_{V_alt_A} \coloneqq 4.61 \cdot \left(1 - 0.045 \cdot AR_V^{~0.68}\right) \cdot \cos\left(\varLambda_{V_LE}\right)^{0.15} - 3.1 = 0.774$

 Alternative formula: valid for swept wings

3d critical Mach number at mean aerodynamic chord

$$M_{cr_V_3D_@MAC_V} \coloneqq \frac{{}^{}_{\rm f} \! M_{\rm cr_V_2D} \left(\! Y_{MAC_V} \! \right)}{\cos \left(\! \varLambda_{V_LE} \! \right)} \! = \! 0.981$$

$$M_{cr_V_3D_@MAC_V}\!=\!0.981$$

VERTICAL TAIL EFFECTIVE ASPETC RATIO

@Aerodynamic Database ---> (control_surface)_tau_e_vs_c_control_surface_over_c_horizontal_tail

 $c_1 = 1.607$

@Aerodynamic Database ---> (AR_v_eff)_c2_vs_Z_h_over_b_v_(x_ac_h--v_over_c_bar_v)

 $c_2 = 1.105$

@Aerodynamic Database ---> (AR_v_eff)_k_h_v_vs_S_h_over_S_v

 $K_{HV} = 1.118$

 $AR_{V_eff} \coloneqq c_1 \cdot AR_V \cdot \left(1 + K_{HV} \cdot \left(c_2 - 1\right)\right) = 7.225$

 $AR_{V_eff}\!=\!7.225$

VERTICAL TAIL LIFT-CURVE SLOPE

V-Tail Lift Curve Slope, function definitions

$$\begin{array}{c|c} {}_{\rm fk_{\rm Polhamus}} \left(M\,, M_{cr_3D}, \Lambda_{LE}\,, \lambda\,, AR \right) \coloneqq \left\| \begin{array}{c} {\rm if} \; \left(M \!<\! M_{cr_3D} \right) \! \wedge \! \left(\Lambda_{LE} \!<\! 32\; {\rm \textit{deg}} \right) \! \wedge \! \left(\lambda \!>\! 0.4 \right) \! \wedge \! \left(\lambda \!<\! 1 \right) \! \wedge \! \left(AR \!>\! 3 \right) \! \wedge \! \left(AR \!<\! 8 \right) \\ & \left\| \begin{array}{c} {\rm if} \; AR \!<\! 4 \\ \\ {\rm return} \; 1 \! +\! \frac{AR \cdot \left(1.87 - 0.000233 \cdot \Lambda_{LE} \right)}{100} \\ \\ {\rm else} \\ & \left\| \begin{array}{c} {\rm else} \\ \\ {\rm return} \; 1 \! +\! \frac{\left(\left(8.2 - 2.3 \cdot \Lambda_{LE} \right) - AR \cdot \left(0.22 - 0.153 \cdot \Lambda_{LE} \right) \right)}{100} \\ \\ {\rm else} \\ & \left\| \begin{array}{c} {\rm else} \\ \\ {\rm return} \; 100 \\ \\ \end{array} \right\| \end{array}$$

 $_{\mathrm{f}}\mathrm{C}_{\mathrm{L}\alpha_{-}\mathrm{V}}\left(M\,,k_{P}\,,AR\,,\Lambda_{c2}\,,C_{l\alpha@MAC}\,,\Lambda_{LE}
ight)\coloneqq\mathrm{if}_{\parallel}\,k_{P}\neq100$ (---> use Polhamus Formula)

 General Formula for Lift Curve Slope

$$\begin{array}{c} 2 \cdot \pi \cdot AR \\ \hline 2 + \sqrt{\left(\left(\frac{AR^2 \cdot (1 - M^2)}{k_P^2} \left(1 + \frac{\tan\left(\Lambda_{c2}\right)^2}{(1 - M^2)}\right)\right) + 4\right)} \end{array} \\ \text{else} \\ \left(\begin{array}{c} \cdots > \text{ use alternative formula} \end{array} \right) \\ \hline a_0 \leftarrow \frac{C_{l\alpha \oplus MAC}}{\sqrt{1 - M^2 \cdot \cos\left(\Lambda_{LE}\right)^2}} \\ \hline \text{return} \\ \hline \sqrt{1 - \left(M \cdot \cos\left(\Lambda_{LE}\right)\right)^2 + \left(\frac{a_0 \cdot \cos\left(\Lambda_{LE}\right)}{\pi \cdot AR}\right)^2 + \frac{a_0 \cdot \cos\left(\Lambda_{LE}\right)}{\pi \cdot AR}} \end{array}$$

V-Tail Lift Curve Slope, general formula for inner/outer panel and whole wing

$$k_{Polhamus_V} \coloneqq {}_{\mathrm{f}} \mathsf{k}_{\mathrm{Polhamus}} \left(M_1 \,, M_{cr_V_3D_@MAC_V} \,, \Lambda_{V_LE} \,, \lambda_V \,, AR_V \right) = 100$$

$$k_{Polhamus_V}\!=\!100$$

$$C_{l\alpha\ V} \otimes_{MAC\ V} := {}_{f}C_{l\alpha\ V} (Y_{MAC\ V}) = 6.875$$

$$C_{l\alpha\ V\ @MAC\ V} = 0.12\ deg^{-1}$$

$$C_{L\alpha\ V\ @M0} \coloneqq {}_{\mathbf{f}}C_{\mathbf{L}\alpha\ V}\left(0\ , k_{Polhamus\ V}, AR_{V}\ , \Lambda_{V\ c2}\ , C_{l\alpha\ V\ @MAC\ V}\ , \Lambda_{V\ LE}\right)$$

$$C_{L_0,V,@M_0} = 3.358 \ rad^{-1}$$

$$C_{L_{O}\ V\ @M0} = 0.059\ deg^{-1}$$

$$C_{L\alpha\ V} \coloneqq {}_{\mathbf{f}}\mathbf{C}_{\mathbf{L}\alpha\ V} \left(M_{1}, k_{Polhamus\ V}, AR_{V\ eff}, \Lambda_{V\ c2}, C_{l\alpha\ V} \right) = \mathbf{0}$$

$$C_{L\alpha V} = 4.76 \ rad^{-1}$$

$$C_{L\alpha V} = 0.083 \ deg^{-1}$$

Induced drag factor, due to both geometric and aerodynamic effects

$$\operatorname{fe}\left(C_{L\alpha},AR,\lambda,\Lambda_{LE}\right)\coloneqq \begin{vmatrix} \lambda_{e} \leftarrow \frac{AR \cdot \lambda}{\cos\left(\Lambda_{LE}\right)} \\ R \leftarrow 0.0004 \cdot \lambda_{e}^{-3} - 0.008 \cdot \lambda_{e}^{-2} + 0.0501 \cdot \lambda_{e} + 0.8642 \\ \operatorname{return} \ \operatorname{if}\left(AR = 0\,,0\,,\frac{1.1 \cdot C_{L\alpha}}{R \cdot C_{L\alpha} + \left(1 - R\right)\,\pi \cdot AR}\right) \end{vmatrix}$$

 Function for calculating wing induced drag factor, icluding aerodynamic and geometric effects

$$e_V := {}_{\mathbf{f}} \mathbf{e} \left(C_{L\alpha \ V}, AR_{V \ eff}, \lambda_V, \Lambda_{V \ LE} \right) = 0.941$$

$$e_V = 0.941$$

V-Tail Lift Curve Slope, classic formula

$$C_{L\alpha_V_classic} \coloneqq \frac{C_{l\alpha_V_mean}}{\sqrt[2]{1 - {M_1}^2} + \frac{C_{l\alpha_V_mean}}{\pi \cdot AR_V \cdot e_V}} = 3.148$$

$$C_{L\alpha_V_classic}\!=\!3.148$$

@Aerodynamic Database ---> (x_bar_ac_w)_x'_ac_over_root_chord_vs_tan_(L_LE)_over_beta_(AR_times_tan_(L_LE))_

 $X_{ac\ V} = 6.137\ m$

 $x_{ac_V} = 1.811 \ m$

@Aerodynamic Database ---> (x_bar_ac_w)_k2_vs_L_LE_(AR)_(lambda)

 $\xi_{ac_V} \coloneqq K1_{ac_V_Datcom} \cdot \left(X_{ac_over_c_{r_V_Datcom}} - K2_{ac_V_Datcom} \right) = 0.312$

 $K2_{ac_V_Datcom}\!=\!0.537$

 $X_{ac}_over_c_{r_V_Datcom}\!=\!0.762$

Aerodynamic center positions

 $X_{ac_V} \coloneqq \xi_{ac_V} \cdot MAC_V + X_{MAC_LE_V} = 6.137 \ m$

 $x_{ac_V} \coloneqq X_{ac_V} - X_{MAC_LE_V} = 1.811 \ m$

(lambda)

V-Tail Volume Ratio based on aerodynamic centers distance

$$\Delta X_VT_{ac}_W_{TE} \coloneqq \Delta X_VT_{LE}_Nose - \Delta X_W_{LE}_Nose - c_{W\ r} + X_{ac\ V} = 27.477\ m$$

$$\Delta X_VT_{ac}_W_{ac} \coloneqq \Delta X_VT_{LE}_Nose - \Delta X_W_{LE}_Nose - X_{ac}_WB + X_{ac}_V = 34.99 \ \textit{m}$$

$$VolumeRatio_{V_ac} \coloneqq \frac{S_{V}}{S_{W}} \cdot \frac{\Delta X_VT_{ac}_W_{ac}}{MAC_{W}} = 0.445$$

3D PITCHING MOMENT COEFFICIENT ABOUT V-TAIL AERODYNAMIC CENTER

Approximated formulation (Roskam)

$$C_{Mac_V} \coloneqq \frac{2}{S_V \cdot MAC_V} \cdot \int_{0}^{b_V} {}_{f}C_{\text{m_ac_2D_V}}(y) \cdot {}_{f}c_{\text{V}}(y)^2 dy = 0$$

$$C_{Mac\ V} = 0$$

SIDEWASH EFFECT

$$\eta_{V_times_1_plus_d\sigma_over_d\beta} \coloneqq 0.724 + 3.06 \cdot \frac{\frac{S_{V}}{S_{W}}}{1 + \cos\left(\Lambda_{W_c4_eqv}\right)} + 0.4 \cdot \frac{\Delta Z_W_{c4_r_B_{CL}}}{h_1} + 0.009 \cdot AR_{W} = 0.941$$

MAPPING AND OUTPUT CREATION

Includi << ..\Default_Map_VTail.mcdx

Excel Writing

$$First_Row_{V_1} := 4$$

$$Block_{V} := {}_{f}map_matrix_transform ({}_{m}VTail_Data_Map_{imported})$$

$$Excel_Output_{V_1} := {}_{\mathsf{f}} write_full_output \left({}_{s}Output_Excel_File \,, Block_{V_1} \,, n_{sheet} \,, First_Row_{V_1} \right)$$

$$First_Row_{V_1} := First_Row_{V_1} + rows \left(Block_{V_1}\right) + 2 = 40$$

$$Block_{V_2} := {}_{f}map_matrix_transform ({}_{m}VTail_Data_Map_{input})$$

$$Excel_Output_{V} \cong_{f} write_full_output (sOutput_Excel_File, Block_{V}, n_{sheet}, First_Row_{V})$$

$$First_Row_{V_3} := First_Row_{V_2} + rows (Block_{V_2}) + 2 = 72$$

$$Block_{V_3} := {}_{\mathbf{f}} \mathbf{map_matrix_transform} \left({}_{m}VTail_Data_Map \right)$$

$$Excel_Output_{V_3} := {}_{\mathsf{f}} write_full_output ({}_{s}Output_Excel_File\,, Block_{V_3}\,, n_{sheet}\,, First_Row_{V_3})$$

```
First\_Row_{V\_4} \coloneqq First\_Row_{V\_3} + rows \left(Block_{V\_3}\right) + 2 = 142 Block_{V\_4} \coloneqq_{\mathrm{f}} \mathrm{map\_matrix\_transform} \left({}_{m}VTail\_Data\_Map_{LLCoeffs}\right) Excel\_Output_{V\_4} \coloneqq_{\mathrm{f}} \mathrm{write\_full\_output} \left({}_{s}Output\_Excel\_File\,, Block_{V\_4}\,, n_{sheet}\,, First\_Row_{V\_4}\right) First\_Row_{V\_5} \coloneqq_{\mathrm{f}} First\_Row_{V\_4} + rows \left(Block_{V\_4}\right) + 2 = 171 Block_{V\_5} \coloneqq_{\mathrm{f}} \mathrm{map\_matrix\_transform} \left({}_{m}VTail\_Data\_Map_{Misc}\right) Excel\_Output_{V\_5} \coloneqq_{\mathrm{f}} \mathrm{write\_full\_output} \left({}_{s}Output\_Excel\_File\,, Block_{V\_5}\,, n_{sheet}\,, First\_Row_{V\_5}\right)
```

TeX Macro writing on .tex

```
\label{eq:complete_macros} \begin{split} &_{v}complete\_macros_{V} \coloneqq \operatorname{stack}\left(Block_{V\_1}^{(2)}, Block_{V\_2}^{(2)}, Block_{V\_3}^{(2)}, Block_{V\_4}^{(2)}, Block_{V\_5}^{(2)}\right) \\ &_{v}tex_{V} \coloneqq {}_{\mathbf{f}} \text{write\_matrix}\left(\text{``.} \setminus \operatorname{Output} \setminus \operatorname{VTAIL\_TeX\_Macros.tex''}, {}_{v}complete\_macros_{V}, \text{``'}\right) \end{split}
```