CLUSTER DYNAMICS WITH HETDEX AT Z < 0.5

A Dissertation

by

STEVEN ALVARO BOADA

Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Casey J. Papovich Committee Members, Wolfgang Bangerth

Louis Strigari

Nicholas Suntzeff

Head of Department, George Welch

August 2016

Major Subject: Physics and Astronomy

Copyright 2016 Steven Alvaro Boada

ABSTRACT

The distribution of massive clusters of galaxies depends strongly on the total cosmic mass density, the mass variance, and the dark energy equation of state. As such, measures of galaxy clusters can provide constraints on these parameters and even test models of gravity, but only if observations of clusters can lead to accurate estimates of their total masses. Here, we carry out a study to investigate the ability of a blind spectroscopic survey to recover accurate galaxy cluster masses through their velocity dispersion using probability based and machine learning methods. We focus on the Hobby Eberly Telescope Dark Energy Experiment (HETDEX), which will employ new Visible Integral-Field Replicable Unit Spectrographs (VIRUS), over $420~{\rm degree^2}$ on the sky with a $1/4.5~{\rm fill}$ factor. VIRUS covers the blue/optical portion of the spectrum (3500 - 5500 Å), allowing surveys to measure redshifts for a large sample of galaxies out to z < 0.5 based on their absorption features or [OII] $\lambda 3727$ emission (and Lyman- α over 1.9 < z < 3.5). We use a detailed mock galaxy catalog from a semi-analytic model to simulate surveys observed with VIRUS, including: (1) a blind, HETDEX-like survey with an incomplete but uniform spectroscopic selection function; and (2) IFU surveys that target clusters directly, obtaining spectra of all galaxies in a VIRUS-sized field. For both surveys, we include realistic uncertainties from galaxy magnitude and line-flux limits. We benchmark both surveys against spectroscopic observations with "perfect" knowledge of galaxy line-of-sight velocities. With HETDEX, we can recover cluster masses to ~ 0.1 dex which can be further improved to < 0.1 dex with targeted follow-up observations. This level of cluster mass recovery enables constraints on σ_8 to < 20%, and the unique properties of the observations will provide important calibrations for the optical richness-cluster mass

relation.

We present observations of ten galaxy clusters optically selected from the Sloan Digital Sky Survey's DR8 at z=0.2-0.3. We use integral field spectroscopy with the Mitchell Spectrograph to measure spectroscopic redshifts and line-of-sight velocities of the galaxies in and around each cluster, determine cluster membership and derive a line-of-sight velocity dispersion. We use a traditional power law and a machine learning based approach to infer a dynamical mass for each cluster. The total inferred masses range from $(0.52-17.37)\times 10^{14}~\rm M_{\odot}~(M_{200c})$. After comparing to the literature we use these independent cluster mass estimations to estimate the absolute cluster mass scale, and overall scatter in the optical richness-mass relationship. We find good agreement with recent studies for both the scale and scatter in the relationship. This demonstrates the power of blind spectroscopic surveys such as the forthcoming Hobby Eberly Dark Energy Experiment to provide robust mass estimates which can aid in the the determination of cosmological parameters and help to calibrate the observable-mass relation for future photometric large area-sky surveys.

ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude to my advisor, Dr. Casey Papovich, for the continual support of my research pursuits, his unwavering patience, the stern and kind words, his encouragement, and vast knowledge. His support and guidance have helped me throughout all stages of researching and writing this thesis. I can confidently say that I would not have arrived alone, and I cannot imagine a better advisor for my study.

To my thesis committee: Dr. Wolfgang Bangerth, Dr. Louis Strigari, and Dr. Nicholas Suntzeff who were always at the ready with invaluable comments and encouragement, and for never shying away from asking the hard questions which pushed me to new heights. Thank you.

I thank my fellow graduate students with whom I spent so much of my life. Thank you for all the stimulating discussions, homework and research help, encouragement, and the fun over the previous six years. I wish you all nothing but the best.

Finally, I could not have accomplished this with out the love and support of my family and friends. I am so very fortunate that there are too many to name, but thank you for always believing in me, and never letting my sometimes pessimistic feelings tarnish your optimism. I can never repay you.

Thank you.

NOMENCLATURE

B/CS Bryan/College Station

HSUS Humane Society of the United States

P Pressure

T Time

TVA Tennessee Valley Authority

TxDOT Texas Department of Transportation

This page is optional.

TABLE OF CONTENTS

				Page
AI	BSTR	ACT		. ii
A(CKNC	WLED	OGEMENTS	. iv
N(OME	NCLAT	URE	. v
TA	BLE	OF CO	ONTENTS	. vi
LI	ST O	F FIGU	JRES	. viii
LI	ST O	F TAB	LES	. xii
1.	INT	RODU	CTION	. 1
	1.1 1.2 1.3	State	r Cosmology	. 4 . 5
2.			ED PERFORMANCE, MASS RECOVERY, AND LIMITS TO GY	. 9
	2.1 2.2		uction	. 14 . 15 . 16 . 17
	2.3	Recove 2.3.1 2.3.2 2.3.3	ery of Parameters	. 20 . 20 . 21
	2.4	Result 2.4.1 2.4.2 2.4.3	Recovery of Cluster Members Mass estimates Impact of Training Sample Cosmology	. 28 . 30
	2.5	HETD	ρ EX as a Galaxy Cluster Survey at $z < 0.5$	44

		2.5.1 $2.5.2$	Constraints on Cosmological Parameters				
	2.6	Summ	nary 51				
3.	TAF	TARGETED OBSERVATIONS WITH THE VIRUS PROTOTYPE IN-					
	STR	RUMEN	TT 54				
	3.1	Introd	luction				
	3.2	Design	n				
		3.2.1	Target Selection				
		3.2.2	The Mitchell Spectrograph				
		3.2.3	Observations				
	3.3	Data 1	Reduction				
	3.4		sis				
		3.4.1	Redshift Catalog				
		3.4.2	Cluster Membership				
		3.4.3	Line-of-Sight Velocity Dispersion				
		3.4.4	Power Law Estimates of Cluster Mass				
	3.5	Machi	ne Learning Methods				
	0.0	3.5.1	Supervised Machine Learning				
		3.5.2	ML Based Observations				
		3.5.3	ML Based Cluster Masses				
		3.5.4	The Importance of Training Features				
	3.6		ts and Discussion				
	3.0	3.6.1	Cluster Masses				
		3.6.2	Cluster Mass Accuracy				
		3.6.3	Optical Richness-Mass				
		3.6.4	Calibration of the Richness-Mass Relation				
	3.7		pary				
4.	רוום	י יוסדי	WORK				
4.	rol						
	4.1	Introd	luction				
RI	EFER	ENCE	S				
ΛТ	ODEN	IDIV A	. MS OBSERVATIONS				
$\Delta \mathbf{I}$	المناسا	$\omega_{1}\Lambda A$					

LIST OF FIGURES

FIGURE		
2.1	Left: CMD of 503,113 $z < 0.2$ galaxies take from the SDSS DR12 where the shading scales with the density of points. The two colored boxes show regions containing potential catalog galaxies. Right: Probability histograms of the Log [OII] luminosity for the SDSS galaxies located in the two highlighted regions on the right. The [OII] luminosities are assigned to catalog galaxies from slice sampling the probability histogram and converted to fluxes using the redshift of each galaxy	. 13
2.2	Representative observation tiling scheme for the HETDEX $16' \times 16'$ pointings. Each turquoise square represents the position of a single VIRUS IFU, and the dashed octagons approximate the size of a single observation. Inside each IFU HETDEX will achieve near complete coverage through three dithers. See the text for more details	. 18
2.3	Illustration of the probability based cluster mass prediction method. $Left$: The two dimensional posterior probability distribution of LOSVD and redshift used to determine the correct cluster mass. The pink and green rectangles show the locations of two example galaxies used to create the conditional probability distribution of the mass, $P(M_{200c} \vec{x})$. $Right$: The conditional probability distribution of the cluster mass for the two example galaxies. See text for a complete description	
2.4	Recovery fractions (N_{obs}/N_{True}) of cluster member galaxies as a function of redshift and true cluster mass for the Targeted and Survey observing strategies. We have applied HETDEX-like observational limits on the cluster galaxy detection, and require at least five galaxies to be detected for a cluster to be recovered. The shading indicates the mean recovery fraction for clusters within each small bin of redshift and cluster mass. We find a significant decrease in the recovery of galaxies with increasing redshift. This leads to lower recovery fractions of high mass clusters as many only exist at larger redshifts. The significant decline in the number of galaxies observed with the Survey strategy is due to gaps in the VIRUS IFU, where the galaxies are missed	d. 28

2.5	Mass predictions for the power law scaling relation (Equation 2.6) and the probability based technique with different input features as a function of true cluster mass. The bottom row of panels shows the fractional error (Equation 2.12) also as a function of true cluster mass. The solid black line shows the 1:1 relation, in both panels, between M_{200c} and M_{pred} . The orange, dash-dotted line is the median predicted mass for perfect observations. The solid, purple line is the median predicted mass for the Targeted observing, and the green, dashed line is the median recovered mass for the HETDEX-like observations. The shaded regions represent the 68% scatter around the median values.	31
2.6	Mass predictions for the power law scaling relation (Equation 2.6) and the ML based technique with different input features as a function of true cluster mass. The bottom row of panels shows the fractional error (Equation 2.12) also as a function of true cluster mass. The solid black line shows the 1:1 relation. The orange, dash-dotted line is the median predicted mass for perfect observations. The solid, purple line is the median predicted mass for the Targeted observing, and the green, dashed line is the median recovered mass for the HETDEX-like observations. The shaded regions represent the 68% scatter around the median values.	33
2.7	Top: ML based cluster mass predictions for the Millennium simulation clusters where the ML method has been trained with either a subset of the Millennium clusters (solid line) or the Buzzard catalog (dashed line). The shaded areas show the 68% scatter around the median. The solid black line shows the 1:1 relation. Bottom: The fractional error (Equation 2.12) also as a function of true cluster mass. The similarity of the predictions with the different training sets demonstrates how the ML method is not sensitive to the underlying cosmological assumptions.	42
2.8	Top : The optical richness, λ , versus the corrected predicted cluster mass. The solid, purple line is the median predicted mass for the Targeted observing, and the turquoise, dashed line is the median recovered mass for the HETDEX-like observations. The shaded regions represent the 68% scatter around the median values. $Bottom$: The scatter in the relation at fixed richness. The solid black line shows the intrinsic scatter of $\sigma_{true} = 0.25$ dex. Color coding is the same as the top panel. $Inset$: The evolution of the intrinsic scatter versus the	
	average recovered scatter, σ_{rec}	50

3.1	SDSS r-band image of an optically selected galaxy cluster selected from the SDSS DR8 data. The field is centered on the BCG, which has a measured spectroscopic redshift from SDSS of $z=0.277$. The large black circle shows the region $R<0.5~{\rm Mpc}~(r<2'\!.3)$. Nearly all galaxies within this region are associated with the cluster. The four MS fields (and fiber positions for the first dither position) are overdrawn on the field, illustrating how we survey each cluster	60
3.2	SDSS r image of cluster c203p83+41p0. The symbols show the position of observed galaxies. Blue circles indicate galaxies with $Q=0$ or $Q=1$ spectroscopic redshifts, red squares indicate galaxies where a redshift could not be reliably determined, and the orange diamond corresponds to galaxies with pre-existing redshifts from the SDSS. $Right$: Example spectra, with major features identified, showing the three quality flags. $Q=0$ represents the best quality spectra and $Q=2$ the poorest quality. $Q=0$, and $Q=1$ are sufficient to measure galaxy redshifts	64
3.3	Redshift recovery fractions across all clusters. The bar heights represent the fraction of the total redshifts with the respective Q value at a particular magnitude. For example, $\sim 40\%$ of the $Q=2$ redshifts have $m_r=20.5-21$. We find a general decrease in redshift quality with increasing m_r .	66
3.4	Quality flag (Q) assignments for the 2.7 million Buzzard catalog galaxies with $g < 22$ mag. The bar heights represent the fraction of the total redshifts with the respective Q value at a particular magnitude. The distributions resemble the actual observations in Figure 3.3. See the text for a detailed explanation of the classification process	79
3.5	Corner plot of the <i>training</i> data with features σ and z . The corner plots shows all of the one and two dimensional posterior probability distributions used to determine the correct cluster mass. The colored circles show the position in the Log σ -redshift plane of the ten clusters in this sample	81

- 3.6 Mass predictions for the power law scaling relation (Equation 3.6) and the ML based technique with different input features as a function of true cluster mass. The bottom row of panels shows the fractional error (Equation 3.7) also as a function of true cluster mass. The solid black line shows the 1:1 relation. The solid, colored line is the median predicted mass for the targeted observing, and the colored, dashed line is the median recovered mass for the HETDEX-like observations. The shaded regions represent the 68% scatter around the median values. 84
- 3.7 Richness, λ, versus total cluster mass for the clusters in our sample. The solid black like shows our best-fitting relation (Equation 3.14), the dashed line shows the relation from Farahi et al. (2016), and the dotted line shows the relation from Rykoff et al. (2012). The gray shaded region corresponds to the 68% confidence area on our best-fit. We also include stacked WL masses from Rozo et al. (2010) and the high-mass cluster mass estimates of Sifón et al. (2015a) for comparison. 91

LIST OF TABLES

TABLE		Page
2.1	Mean bias (Eqn. 2.10) for different bins of predicted cluster mass. This table shows the bias in the predicted cluster mass for the perfect (top section), Targeted (middle section), and Survey (bottom section) observations in different predicted mass bins. The different mass recovery strategies are given in the leftmost column. It can be used to understand how the predicted cluster mass differs from the true cluster masses. Positive numbers indicate the predicted cluster mass over estimates when compared to the true cluster mass	. 35
2.1	Continued	. 36
2.2	Scatter (Eqn. 2.11) in cluster mass after bias correction for different bins of predicted cluster mass. This table shows the scatter in the predicted cluster mass for the perfect (top section), Targeted (middle section), and Survey (bottom section) observations in different predicted mass bins. The different mass recovery strategies are given in the leftmost column. It can be used to understand how the predicted cluster mass differs from the true cluster masses	
2.2	Continued	. 39
3.1	Basic properties of the ten galaxy clusters targeted with the MS: Column 1: Our internal cluster name; Column 2: An alternative cluster name; Column 3: The right ascension of the cluster; Column 4: The declination of the cluster; Column 5: the nominal (often photometric) cluster redshift; Column 6: The date of our observations	

3.2	Spectroscopic redshifts for galaxies in c203p8+41p0 measured with the MS: Column 1: The telescope pointing; Column 2: The dither position; Column 3: The fiber number; Column 4: The right ascension of the galaxy; Column 5: The declination of the galaxy; Column 6: The the observed SDSS r magnitude; Column 7: The galaxy redshift; Column 8: The redshift Q flag; Column 9: The galaxy membership information; Column 10: The clustercentric radial distance; Column 11: The LOSV of the galaxy with respect to the cluster. See the appendix for similar tables for the remaining nine clusters	68
3.3	Summary of derived cluster parameters: Column 1: The cluster name; Column 2: The number of SDSS sources observed; Column 3: The number of $Q=0(1)$ sources; Column 4: The number of member galaxies; Column 5: The redshift of the cluster; Columns 6: The LOSVD; Column 7: The power law predicted cluster mass; Column 8: The ML predicted cluster mass	86
A.1	Spectroscopic redshifts for galaxies in c16p23+0p06 measured with the MS: Columns as in Table 3.2	108
A.2	Spectroscopic redshifts for galaxies in c234p2+24p4 measured with the MS: Columns as in Table 3.2	109
A.3	Spectroscopic redshifts for galaxies in c250p08+46p7 measured with the MS: Columns as in Table 3.2	111
A.4	Spectroscopic redshifts for galaxies in c210p27+2p87 measured with the MS: Columns as in Table 3.2	113
A.5	Spectroscopic redshifts for galaxies in c260p61+32p13 measured with the MS: Columns as in Table 3.2	115
A.6	Spectroscopic redshifts for galaxies in c319p70+0p56 measured with the MS: Columns as in Table 3.2	117
A.7	Spectroscopic redshifts for galaxies in c328p33+0p19 measured with the MS: Columns as in Table 3.2	119
A.8	Spectroscopic redshifts for galaxies in XMMXCSJ124425.9+164758.0 measured with the MS: Columns as in Table 3.2	120
A.9	Spectroscopic redshifts for galaxies in XMMXCSJ125650+254803.2 measured with the MS: Columns as in Table 3.2	121

1. INTRODUCTION

Clusters of galaxies form the largest bound objects in the universe, and as such their study is a cornerstone in modern day astronomy. First recognized by 19th century astronomers, their place in astronomical canon was solidified when Edwin Hubble proofed their constituent nebulae where not bound to the Milky Way (Hubble, 1926) but collections of stars similar to the Milky Way. Work to understand their nature and origin began in ernest when Hubble & Humason (1931) used the virial theorem and the galaxy velocities in the centers of the Virgo (Smith, 1936) and Coma (Zwicky, 1933) clusters to derive their masses. The immense mass derived exceeded the total stellar mass contributed by all galaxies many times over. This lead Zwicky to theorize the existence of large amounts of non-luminous matter, and coining the term "dark matter" (DM), which we still use today.

Modern astronomy gives the composition of galaxy clusters in three many parts. The galaxies themselves comprise the most obvious feature, and contain a large portion (but not the entirety) of the luminous matter (stars) in the cluster. The intracluster medium (ICM) is the space between the cluster galaxies and is composed many of ordinary matter (baryons) which are super heated to tens of thousands of kelvin. The ICM contains the bulk of the cluster's baryonic matter, and while it is very hot, it is not very dense, with a typical value of 10^{-3} particles per cubic centimeter. The majority of the cluster's mass is located in the DM halo which surrounds the cluster.

Thought to form out of the primordial density fluctuations in the very early universe, the investigation of their formation and growth began in the 1960s. Soon thereafter, the hierarchical model of structure formation (Press & Schechter, 1974;

Gott & Rees, 1975; White & Rees, 1978) was introduced. It suggests the first stars and stellar clumps grew first then subsequently merged together with dark matter and other gas clumps to form the first galaxies which then continued to merge and grow into the clusters and large scale structures we see today. This accretion of smaller systems is thought to be driven by the gravity of the DM associated with the cluster. Of course, many complicated astrophysical processes are at work during cluster growth and similarly complicated theoretical models seek to explain these processes. For a detailed review of cluster formation see Kravtsov & Borgani (2012).

The number and distribution of galaxy clusters across the sky is the finger print of the cosmology imprinted on the universe at its birth. To uncover the underlying cosmology a detailed understanding of the astrophysical processes that describe the motion of constituent galaxies and their impact on the ICM is required. So, galaxy clusters stand at the intersection of cosmology and astrophysics.

1.1 Cluster Cosmology

The current concordance cosmology is a parametrization of the Big Bang cosmological model where the universe contains a cosmological constant (Λ ; often referred to as dark energy) and cold dark matter (CDM). It is often characterized by six parameters; the Hubble Constant (H_0), the baryonic matter density (Ω_b), the dark matter density (Ω_c), the dark energy density (Ω_{Λ}); the normalization of the power spectrum (σ_s); the spectral index of the power spectrum (σ_s). Galaxy clusters are sensitive probes of Ω_m , the total mass ($\Omega_b + \Omega_c$) density in the universe, through tracing the peaks in the universal matter density often referred to as the power spectrum of matter density fluctuations or the matter power spectrum and σ_s by the comparison of the number density of observed halos to that predicted in cosmological models.

The determination of cosmological parameters is done by comparing the number of galaxy clusters per unit mass per unit comoving volume (n(M, z)) to models. See Allen et al. (2011) for a comprehensive review or Murray et al. (2013) for a more practical approach. n(M, z), referred to as the halo mass function (HMF) captures the number evolution through a function which defines the particular model used. Early work by Press & Schechter (1974) and Bond et al. (1991) which assumed spherical halos, have largely been replaced by more modern fitting functions which, at the expense of an analytical solution, provide more accurate results when fit to simulation data. See Murray et al. (2013) for a review of the most common fitting functions used. Through this approach, the two parameters which clusters are most sensitive to, Ω_m and σ_8 are in reality measured as $\sigma_8\Omega_m^{\alpha}$, where the value of α depends on the masses of the halos considered. The degeneracy is broken through the evolution of the HMF as a function of redshift.

The Λ CDM model of cosmology makes explicit predictions about the number and masses of galaxy clusters throughout the universe. Connecting these predictions to a set of, sufficiently large in size, observed clusters remains a principal problem. Specifically, the largest threat to modern, precision, cluster cosmology is not the identification of large numbers of clusters (the total number of clusters known is only going up) but the accurate recovery of galaxy cluster mass. This problem extends to both the very rich clusters (those with high mass) and, importantly, the poor clusters (those with low mass) as the relationship between galaxy cluster mass and many of the observables which trace mass is not well understood for such low mass clusters.

1.2 State of Play

As mass is not a direct observable, a lot of work is underway to characterize galaxy cluster masses with an observable feature of galaxy clusters. In this section, we will briefly touch on a few of the ways cluster mass is determined, and address any short comings the method may have. Generally, the methods fall into two distinct camps, simulation based and direct or statistical calibration. The goal is to constrain, as best possible, P(X|M,z) or the probability (P) that a galaxy cluster of given mass (M) located at redshift (z) using observable parameter (X).

One could use various simulations to attempt to calibrate this observable—mass relation (e.g., Vanderlinde et al. 2010; Sehgal et al. 2011). However, the primary challenge to this method is the incomplete understanding of the baryonic physics which take place in galaxy cluster environments. While there have been (and continue to be) many improvements in the accuracy and power of simulations it is doubtful that in the coming years they will reach the accuracy level required to the point where the observable—mass relation is dominated only by statistics (Weinberg et al., 2013).

The second broad camp is the direct calibration of cluster masses. This recipe has two distinct but not always independent tracks. The "direct" method uses the direct observations of a small set of clusters and then uses known mass estimators, X-ray hydrostatic or weak lensing (WL) as examples, which provide a "true" mass. This directly calibrates the observable—mass relation which is then applied to a much larger sample. The complications lie in that the "true" masses are in fact estimations, and the methods used to recover these masses are subject to their own limitations. X-ray hydrostatic estimations assume hydrostatic equilibrium (e.g., Mantz et al. 2015) which may only be valid for a very small number and range

of cluster masses. The Sunyaev–Zeldovich (SZ; Sunyaev & Zeldovich 1972) effect, which uses the up–scattering of cosmic microwave background (CMB) photons to estimate cluster masses, provides accurate estimations of mass, but the ability to detect low mass galaxy clusters is currently limited by technology (e.g., Carlstrom et al. 2002). WL estimates are, in principle, correct in the mean, but they suffer from signal-to-noise requirements, limiting their usefulness in low mass clusters, and potentially suffer from line-of-sight effects as the effect is sensitive to all mass along the line of sight. Virial mass estimators which determine the cluster mass based on the motions of the member galaxies is promising in that it is a direct measurement of the depth of clusters potential well, but suffers from systematics due to cluster formation physics which disrupts the velocity field.

The statistical method of determining galaxy cluster mass relies not on direct measurements of individual clusters but the calibration of observables for the entire sample which correlate with cluster mass. One example is the spatial clustering of the galaxy clusters themselves. See Weinberg et al. (2013) for a comprehensive review. In practice, it will be a combination of the three methods touched on that will provide the most reliable determination of cluster masses.

Virial mass estimators, specifically, can be applied in both a direct and statistical fashion. Currently, the accuracy of such a method, especially to the level required for today's precision cosmology, is not well constrained. In the coming years large spectroscopic surveys will provide enough coverage, and so these methods warrant further investigation (e.g., Saro et al. 2013).

1.3 Cluster Surveys in the near-future

In the coming years, many large surveys will add further statistical advantages to the determination of cosmological parameters using galaxy clusters. At their completion, the South Pole Telescope (SPT; Carlstrom et al. 2011) and the Atacama Cosmology Telescope (ACT; Swetz et al. 2011) are expected to find approximately one thousand clusters using observations in the millimeter combined with the SZ effect. Attempts are already underway to calibrate these observations using subsamples of clusters (approximately 100 cluster candidates and 60 clusters respectively) and other observables such as virial estimates or X-ray temperature measurements (e.g., Sifón et al. 2013; Bocquet et al. 2015).

X-ray identified clusters, up until today, have mostly been observed fortuitously through targeted *Chandra* or *XMM-Newton* observations. That is soon to change with the *eROSITA* telescope onboard the Spektrum-Roentgen-Gamma Mission, which will perform an all–sky survey during its four year mission and detect an estimated 50,000 or more clusters.

Large optical surveys such as the Dark Energy Survey (DES; The Dark Energy Survey Collaboration 2005) and the Large Synoptic Survey Telescope (LSST) will survey enormous portions of the sky extremely deeply and will identify vast numbers of clusters using optical selection methods (e.g., Rykoff et al. 2014; Rozo & Rykoff 2014). However, the majority of these surveys will be photometric, and any spectral information will be obtained from preexisting datasets. And while it is possible to estimate cluster masses using photometric redshifts, primarily through the richness–mass relation, (e.g., Rykoff et al. 2012, 2014), spectroscopic followup is required to both better calibrate the relation and to obtain the level of precision needed to compete with other mass estimators.

1.3.1 Impact of This Work

As the sample of known clusters grows to many tens of thousands, spectroscopic followup becomes unfeasible. Large spectroscopic surveys will be required to reduce

systematics to a level that will allow accurate mass estimations using virial methods. The Hobby Eberly Dark Energy Experiment (HETDEX; Hill et al. 2008b) is a forthcoming blind spectroscopic survey that could potentially be used to accurately calibrate the observable—mass relation for a significant number of galaxy clusters at both extremes of the mass scale. HETDEX is designed to measure the dark energy equation of state at $z \sim 2$, and so the applicability to galaxy cluster science has not yet been investigated.

Given how much progress could be made with HETDEX, this work seeks to address this issue in two ways. First, using a set of state-of-the-art simulations we will simulate the observing strategy of HETDEX to determine the number and nature of clusters that might be observed. See Section ??. This is done in four distinct ways and in each part we will measure the dynamical properties, such as redshift, LOSVD, and mass of the clusters. First we will use targeted observations and perfect knowledge of the observed galaxy clusters, which includes center, membership, and number to recover the desired properties. Secondly, we will assume that we know the location but not the center, membership, or number of constituent galaxies. Then we will employ the HETDEX observing strategy, including realistic pointing pattern, observational magnitude constraints, and spectral sensitivity limits to generate a set of realistic observations which are then used with perfect and less than perfect knowledge scenarios to determine the cluster properties.

In all cases, we will attempt to characterize the observable—mass relation (or relations) to better understand the dominate sources of uncertainty when using HET-DEX like observations. This will enable us to more fully understand and constrain the HMF which, in turns, allows us to make more accurate measurements of the cosmological parameters traced by galaxy clusters.

The second effort of this work, outlined in Section ??, will use targeted spectro-

scopic observations of ten nearby clusters with the Mitchell Spectrograph (formerly known as VIRUS-P; Hill et al. 2008a), an integral field unit (IFU) in a square array of 246 4.24" diameter optical fibers, to test some of the methods used in the first method. This will provide insight in how the observable—mass relation may be improved through followup observations of targeted clusters.

2. SIMULATED PERFORMANCE, MASS RECOVERY, AND LIMITS TO COSMOLOGY

*

2.1 Introduction

Our ability to perform precision cosmology with clusters of galaxies has reached a critical point. The widely accepted ΛCDM model of cosmology makes explicit predictions about the mass function of galaxy clusters in the universe. Measuring this mass function across many redshifts, in turn, provides constraints on the cosmology. Today, large-area sky surveys are providing observations of large numbers of clusters, but systematics in deriving cluster masses dominate the error budget (e.g., Sehgal et al. 2011; Planck Collaboration 2013; Bocquet et al. 2015). To place further constraints on the ΛCDM model of cosmology, we must decrease these systematics.

As mass is not a direct observable, a lot of work is underway to characterize galaxy cluster masses with an observable feature of galaxy clusters. The goal is to constrain $P(M|z,\vec{x})$ the probability density (P) that a galaxy cluster of given mass (M), located at redshift (z) determined using an observable parameter or parameters (\vec{x}) . Generally, cluster mass calibrations are done in one of two ways, through simulations or direct or statistical calibration.

One could use various simulations to attempt to calibrate this observable-mass relation (e.g., Vanderlinde et al. 2010; Sehgal et al. 2011). However, the primary challenge to this method is the incomplete understanding of the baryonic physics which take place in galaxy cluster environments. While there have been (and con-

^{*}Reprinted with permission from "Introduction: The Importance of Research" by AUTHOR et al., 2015. The Astrophysical Journal, Volume XYZ, Issue X, article id. XY, XY pp., Copyright 20XX by the American Astronomical Society.

tinue to be) many improvements in the accuracy and power of simulations it is doubtful that in the coming years they will reach the accuracy level required where the observable—mass relation is dominated only by statistics (Weinberg et al., 2013).

The second broad method is the direct calibration of cluster masses. This recipe has two distinct but not always independent tracks. The "direct" method uses observations of a relatively small set of clusters and then uses known mass estimators, including X-ray temperatures and luminosities (e.g., Mantz et al. 2010; Rykoff et al. 2014), microwave observations (e.g., Vanderlinde et al. 2010; Sehgal et al. 2011), optical richness (e.g., Abell 1958; Rykoff et al. 2012) or weak lensing (WL; e.g. Rozo et al. 2010) as examples, which provide a "true" mass. This directly calibrates the observable-mass relation which is then applied to a much larger sample. The complications lie in that the "true" masses are, in fact, estimations, and the methods used to recover these cluster masses are subject to their own limitations. X-ray based cluster masses assume hydrostatic equilibrium (e.g., Mantz et al. 2015) which may only be valid for a very small number and range of cluster masses. The Sunyaev-Zel'dovich Effect (SZE; Sunyaev & Zeldovich 1972), which uses the up-scattering of cosmic microwave background (CMB) photons to estimate cluster masses, provides accurate estimations of mass, but the ability to detect low mass galaxy clusters is currently limited by technology (e.g., Carlstrom et al. 2002) and can also be effected by the properties of the intracluster medium (e.g., Pipino & Pierpaoli 2010). WL estimates are, in principle, correct in the mean, but they suffer from signal-to-noise requirements, limiting their usefulness in low mass clusters (where the lensing signal is particularly weak), and potentially suffer from line-of-sight effects as WL is sensitive to all mass along the line-of-sight. Virial mass estimators which determine the cluster mass based on the motions of the member galaxies (e.g., Ruel et al. 2014; Sifón et al. 2015a) are promising in that it is a direct measurement of the depth of clusters potential well, but suffer from systematics due to cluster formation physics which disrupts the velocity field.

The statistical method of determining galaxy cluster mass relies not on direct measurements of individual clusters but the calibration of observables for the entire sample which correlate with cluster mass. One example is the spatial clustering of the galaxy clusters themselves (e.g., Baxter et al. 2016). See Weinberg et al. (2013) for a comprehensive review. In practice, it will be a combination of the three methods touched on that will provide the most reliable determination of cluster masses.

Large-area sky surveys, both on going and planned, are revolutionizing cluster cosmology using a large range of wavelengths. The South Pole Telescope (SPT; Carlstrom et al. 2011) and the Atacama Cosmology Telescope (ACT; Swetz et al. 2011) are discovering many clusters through the SZE. Optically, the on going Dark Energy Survey (DES; The Dark Energy Survey Collaboration 2005) and planned Large Synoptic Survey Telescope (LSST; LSST Dark Energy Science Collaboration 2012) will identify many thousands of clusters to much lower masses than is possible with SZE measurements. However, regardless of the discovery method used, spectroscopic follow-up is needed to further constrain P(M|z,X). This follow-up becomes increasing important to help constrain the scatter in the mass estimates of other methods, and provides an additional, independent check of the observable-mass relationship used. But as the cluster dataset grows to many tens of thousands of clusters individual follow-up becomes increasingly impractical. Therefore, large spectroscopic surveys are needed to more fully understand the observable-mass relation of clusters.

The Hobby Eberly Telescope Dark Energy eXperiment (HETDEX; Hill et al. 2008b) is a trailblazing effort to observe high-redshift large scale structures using cutting edge wide-field integral field unit (IFU) spectrographs. Designed to probe the evolution of the dark energy equation of state etched onto high redshift (z > 2)

galaxies by the Baryon Acoustic Oscillations (BAO) (Eisenstein et al., 2005) in the first moments of the universe, the survey will observe two fields for a total of 420 degree² (300 degree², Spring field and 120 degree², Fall field). Tuned to find Ly α emitting (LAE) galaxies at 1.9 < z < 3.5, HETDEX expects to find 800,000 LAEs, and more than one million [OII] emitting galaxies at z < 0.5 masquerading as high-redshift galaxies (Acquaviva et al., 2014).

While a large portion of the $\sim 10^6$ interloping lower redshift galaxies will be field (not associated with a bound structure) galaxies, the large area covered by HETDEX is expected to contain as many as 50 Virgo-sized (halo mass $> 10^{15} \ \mathrm{M}_{\odot}$) clusters at z < 0.5. The near-complete spectroscopic coverage allows an unprecedentedly detailed look at a very large number of clusters ranging from group scales to the very massive. In addition to the recovery of accurate dynamical masses, detailed investigations of the of dynamical state of the clusters is possible.

It is unclear how a blind spectroscopic survey with an IFU will effect the recovery of galaxy cluster dynamical properties. Unlike many previous large cluster surveys (e.g., Milvang-Jensen et al. 2008; Robotham et al. 2011; Sifón et al. 2015a) which use multi-object spectrographs, the Visible Integral-Field Replicable Unit Spectrograph (VIRUS; Hill et al. 2012) used by HETDEX samples the sky in a uniform but sparse way which could excluded member galaxies which would otherwise be included. Secondly, it is not straightforward to use spectroscopic redshifts predominately from emission-line galaxies to interpret the kinematic and dynamical states of the clusters.

This work plans to address these concerns in the following ways. We create and evaluate a HETDEX like selection "function" of galaxies over a similarly large portion of the sky and use well adopted techniques to recover the dynamical properties, such as velocity dispersion and cluster mass. In addition to standard techniques

Figure 2.1: Left: CMD of 503,113 z<0.2 galaxies take from the SDSS DR12 where the shading scales with the density of points. The two colored boxes show regions containing potential catalog galaxies. Right: Probability histograms of the Log [OII] luminosity for the SDSS galaxies located in the two highlighted regions on the right. The [OII] luminosities are assigned to catalog galaxies from slice sampling the probability histogram and converted to fluxes using the redshift of each galaxy.

of cluster mass estimation, we investigate probability based and machine learning based approaches of cluster mass prediction. We compare these results to a series of targeted galaxy cluster observations, where each member galaxy is assumed to be observed. Each of these observations use realistic uncertainties from galaxy magnitude and line-flux limits. These strategies will better allow future work to predict the number and types of galaxy clusters which should be observed with VIRUS during both the HETDEX survey portion and through targeted follow up observations.

We begin in Section 2.2 by giving an overview of what data is used, how it is created, and how we make our "observations." Details about the determination of cluster parameters, velocity dispersion, total mass, etc., are discussed in Section 2.3. Next, we present the results of our study in Section 2.4 and discuss their implications in Section 2.5. Finally we summarize our findings in Section 2.6. A follow-up to this work (Boada et al., 2016b) will investigate how the techniques developed here will work in practice.

Throughout this paper, we adopt the following cosmological model: $\Omega_{\Lambda} = 0.714$, $\Omega_{M} = 0.286$, $\sigma_{8} = 0.82$ and $H_{0} = 70$ km s⁻¹Mpc⁻¹(taken from the Buzzard catalogs; see below), assume a Chabrier initial mass function (IMF; Chabrier 2003), and use AB magnitudes (Oke, 1974).

2.2 Data and Mock Observations

In this section, we describe the data products and the techniques used to replicate the HETDEX survey. We use the information from a large mock galaxy catalog enhanced by the emission line properties of galaxies in the SDSS to create a realistic "sky" and "observe" it with a HETDEX-like observing strategy.

2.2.1 The Buzzard Mock Catalogs

The Buzzard mock galaxy catalogs cover 398.49 degree² between $4^h < RA < 6^h$ and $-61^\circ < DEC < -41^\circ$ and are derived from a combination of Sub-halo Abundance Matching (ShAM) and ADDSEDs (Adding Density Dependent Spectral Energy Distributions) tied to an in house n-body cosmological simulation. A brief description of the catalog creation is described as follows. The initial conditions are generated with a second-order Lagrangian perturbation theory using 2LPTIC (Crocce et al., 2006). Dark matter (DM) n-body simulations are run using LGADGET-2 (a version of GADGET-2; Springel 2005). The Buzzard catalogs adopt the following cosmological parameters: $\Omega_m = 0.286$, $\Omega_{\Lambda} = 0.714$, $H_0 = 70$ km s⁻¹Mpc⁻¹, $\sigma_8 = 0.82$, and $n_s = 0.96$. The DM halos are identified using the ROCKSTAR halo finder (Behroozi et al., 2013) which also calculates halo masses.

Galaxy M_r luminosities are added to the velocity peaks using ShAM (Reddick et al., 2013), and ADDSEDs assign luminosities in the other bands. A M_r -density-SED relation is created using a SDSS training set, and for each mock galaxy the SED of a randomly selected training set galaxy which has a similar M_r and density is assigned. The result is a mock catalog containing 238 million galaxies with r < 29 mag and $z \le 8.7$.

The catalog information, used in this study, is broken into two large portions. The "truth" files contain the characteristics of each individual galaxy, such as right ascension (RA), declination (DEC), redshift (z), observed and rest-frame magnitudes, and many others. The "halo" files contain information for individual halos, to which many individual galaxies may belong. This includes five estimations of dynamical mass, RA, DEC, z, three dimensional velocity dispersion, and many others. However, the catalogs do not include information for emission lines. We supplement

the catalogs by generating this information; the process is described in Section 2.2.2.

We investigate the accuracy of the halo mass distribution by comparing the cumulative number density of halos above a mass (M_{200c}) threshold to the halo mass function (HMF) of Tinker et al. (2008). We calculate the HMF at central redshifts of 0.1, 0.2, and 0.4 using HMFCALC (Murray et al., 2013) and compare it galaxies in a redshift window of $\Delta z \pm 0.01$. We find a very good agreement between the predicted HMF and the observed distribution of clusters.

2.2.2 Conditional [OII] Flux Probability Distribution Functions

We use the SDSS DR12 (Alam et al., 2015) catalogs to assign [O II] emission line strengths to the galaxies in the Buzzard catalog. We use 503,113 objects classified as galaxies selected over z=0.02-0.2 with zwarning = 0 and a measured [O II] line flux signal-to-noise of five. Figure 2.1 shows the color-magnitude diagram (CMD) of M_r and g-r for these galaxies.

To assign an [OII] luminosity to each galaxy in our catalog, we place the catalog galaxies on the same CMD and select all SDSS galaxies in a small 2D $(M_r, g-r)$ bin around the galaxy. We extract all of the SDSS galaxies inside that bin and create a histogram of their [OII] luminosities, the right panel of Figure 2.1. Using a slice sampling technique (Neal, 1997) we assign the catalog galaxy an [OII] luminosity based on the distribution of SDSS galaxies in that bin. In very few cases (1.3% of galaxies) do the g-r and M_r magnitudes of the galaxies in the Buzzard catalog not overlap with the distributions in SDSS. For these objects, we assign them zero [OII] flux, but this has no impact on our analysis. For catalog galaxies with have very few $(1 \le N < 10)$ SDSS galaxies in their respective bin, we assign it the mean [OII] flux.

Figure 2.1 illustrates this process. The numbered boxes in the left panel show

the bins corresponding to two example Buzzard galaxies $(M_r, g - r = -17.7, 0.49)$ and $M_r, g - r = -21.4, 1.24)$. The right panel shows the Log [OII] luminosity distribution functions, $P([OII]|M_r, g-r)$, which we use to assign [OII] luminosity to each object. The luminosity is then converted into an [OII] flux through

$$F = \frac{L}{4\pi D_L} \tag{2.1}$$

where D_L is the luminosity distance (e.g., Hogg 1999).

2.2.3 HETDEX

We designed the results of this study to be used in conjunction with HETDEX, a large, blind, spectroscopic survey. HETDEX will measure the redshifts of 8×10^5 LAE galaxies between 1.9 < z < 3.5 using a collection of 78 wide-field IFU spectrographs covering the wavelength region 3500-5500 Å at R ~ 750 (Hill et al., 2008b). The primary science goal of these observations is to provide < 1% accuracy measurements of the Hubble expansion parameter and the angular diameter distance at $z \sim 2$. This result will provide significant constraints on the evolution of the dark energy equation of state which is both competitive with, and independent of, constraints derived from observations of the Ly α forest.

The entire HETDEX survey will cover 420 degree² with a 1/4.5 filling factor over two fields: a ~ 300 degree² northern field, and a ~ 140 degree² equatorial region. The spectral coverage allows for the detection of [OII] ($\lambda\lambda3727,3729$) emitters to $z \sim 0.5$ and Ca H ($\lambda3968.5$) and K ($\lambda3933.7$) absorption features to $z \sim 0.4$. The 10σ detection threshold for spectral features will be 3.5×10^{-17} erg s⁻¹ cm⁻² at 5000 Å, or equivalently, g = 21.9 mag for continuum objects.

The HETDEX IFU pattern is illustrated in Figure 2.2 by the turquoise squares. Each of the 78 IFUs, are comprised of 448 optical fibers subtending a $50'' \times 50''$ region

Figure 2.2: Representative observation tiling scheme for the HETDEX $16' \times 16'$ pointings. Each turquoise square represents the position of a single VIRUS IFU, and the dashed octagons approximate the size of a single observation. Inside each IFU HETDEX will achieve near complete coverage through three dithers. See the text for more details.

on the sky (Kelz et al., 2014). The inter-IFU spacing is also 50'', spanning a total area of $16' \times 16'$ on the sky. The individual IFUs have a fill-factor of 1/3, which will be completely filled with three dithers of the telescope at each pointing.

2.2.4 Mock Observations

When selecting galaxies from the Buzzard catalog we assume an observation for all galaxies laying within a turquoise, IFU square in Figure 2.2. In practice, this is achieved by three dither positions at each pointing. Galaxies which lie between the IFUs are missed, as well as the galaxies which lie between the pointings, as there is no overlap between one pointing and the next. To cover the 398.49 degree² field of the Buzzard catalog we require 5370 pointings where 0.015 degree² of each pointing is covered by an IFU. The total area of the sky covered by an IFU is 80.80 degree² which gives a filling factor of 1/4.65, slightly decreased from the expected filling factor of 1/4.5.

In this work we consider two separate observing strategies, Targeted and Survey. The Targeted observations use "direct" observations where each cluster is targeted individually, and every cluster member galaxy is assumed to be observed. The Survey observations mimic the HETDEX observation pattern across the sky, where no cluster is directly targeted and not all cluster member galaxies are observed. Both of these observations have HETDEX-like galaxy detection thresholds (described in the previous subsection), so while a galaxy may be observed, a redshift will only be measured if the galaxy satisfies the continuum brightness or emission line flux limits for the HETDEX survey. For comparison we also include a set of Targeted observations with "perfect" knowledge which assume no detection threshold, if a cluster member galaxy is observed, it is also detected. This provides an important best-case scenario, and differs from the true cluster properties between we are still calculating

the cluster mass from the observed member galaxy velocity dispersions, and represent the best possible mass estimates using velocity dispersion as the observable. These observations provide three levels of quality with "Perfect knowledge" being the highest and Survey being the lowest.

2.3 Recovery of Parameters

In the following subsections, we outline the methods we use to derive the dynamical properties of the galaxy clusters in our sample. The following is, in many cases, a subset of the available methods to derive any single parameter. The specific choice of method may improve or diminish the accuracy of the recovered parameter, but the methods chosen were to facilitate comparison with other observational studies (e.g., Kirk et al. 2015; Boada et al. 2016b).

2.3.1 Cluster Redshift

The accurate determination of the cluster redshift (z_c) is crucial to the reliability of all following measurements. An incorrect cluster redshift introduces error into the measured line-of-sight velocity (LOSV) and corresponding dispersion, which, in turn, contributes to errors associated with dynamical mass and radius.

In simple terms, the cluster redshift is the mean of the redshifts of all galaxies associated with the cluster, where the mean is the first moment of the velocity (redshift) distribution function P(z). In practice, the first moment is strongly subject to outliers, so we rely instead on the biweight location estimator (Beers et al., 1990) through¹:

$$C_{BI} = M + \frac{\sum_{|u_i|<1} (z_i - M)(1 - u_i^2)^2}{\sum_{|u_i|<1} (1 - u_i^2)^2}$$
 (2.2)

¹Implemented as part of the ASTLIB Python library. See http://astlib.sourceforge.net

where z_i are the individual redshifts, M is the median redshift and u_i is given by:

$$u_i = \frac{(z_i - M)}{C \,\text{MAD}}.\tag{2.3}$$

MAD is the median absolute deviation, also defined in Beers et al. (1990), and C is the a tuning constant. We choose C = 6 (the suggested value) which balances computational speed and location accuracy.

Although this work assumes that we know each galaxy's redshift to infinite precision, in practice, we find a simple weighted mean provides a reliable estimate of z_c when there are uncertainties on the individual galaxy redshifts.

We calculate the LOSV to each galaxy, where

$$LOSV = c \frac{z - z_c}{1 + z_c} \tag{2.4}$$

and c is the speed of light, z is the redshift of the individual galaxy, and z_c is the overall cluster redshift described in the previous subsection.

We follow the maximum likelihood method of Walker et al. (2006) to estimate the line-of-sight velocity dispersion (LOSVD). We maximize the probability function

$$P(\{v_1, ..., v_N\}) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi(\sigma_i^2 + \sigma_{1D}^2)}} \exp\left[-\frac{1}{2} \frac{(v_i - \langle u \rangle)^2}{(\sigma_i^2 + \sigma_{1D}^2)}\right]$$
(2.5)

where σ_{1D} , $\langle \mu \rangle$, and σ_i is the LOSVD, the average radial velocity and the error on the individual LOSVs (which we have assumed to be normally distributed) respectively, using a Monte Carlo Markov Chain (MCMC) sampler (EMCEE²; Foreman-Mackey

²http://dan.iel.fm/emcee/current/

et al. 2013) which is based on affine-invariant ensemble sampler (see Goodman & Weare 2010 for details on affine-invariant samplers). We draw twenty thousand samples from the posterior probability distribution using simple priors, $\langle \mu \rangle$ lies between the maximum and minimum LOSV and $0 < \sigma_{1D} < 1400$ km s⁻¹. We set the upper limit on the LOSVD as the LOSVD corresponding to a 10^{16} M_{\odot} cluster at $z \sim 0.0$, higher mass than any expected cluster in Buzzard. When the full distribution of LOSVDs is not used, the final LOSVD is quoted as the median value of the posterior probability distribution with 68% error bars defined as the square root of second moment of the same distribution, the standard deviation.

In principle, a single statistic such as the biweight scale estimator or the gapper estimator (both from Beers et al. 1990) with many bootstrap resamplings could be used to construct a distribution of σ_{1D} . In simple tests where the values of both σ_{1D} and $\langle \mu \rangle$ are known, the 68% error bars derived from the MCMC method give slightly better results with the true LOSVD value bracketed by the error bars in $\sim 68\%$ of the cases versus $\sim 57\%$ with bootstrapping and a single statistic. In addition, we prefer the maximum likelihood method for its straight forward treatment of the errors in the LOSV measurements, which will become important in the practical application to real data (e.g., Boada et al. 2016b).

2.3.3.1 Power Law Based Method

The relationship between the LOSVD and cluster dynamical mass has been the focus of several many (e.g., Evrard et al. 2008; Saro et al. 2013; Sifón et al. 2013; van der Burg et al. 2014), where the relationship for the mass enclosed by r_{200c} takes the form

$$M_{200c} = \frac{10^{15}}{h(z)} \left(\frac{\sigma_{1D}}{A_{1D}}\right)^{1/\alpha} M_{\odot}$$
 (2.6)

with $A_{1D}=1177\pm4.2$ km s⁻¹ (Munari et al. 2013; referred to as σ_{15} in Evrard et al. 2008 and other works), $\alpha=1/3$, h(z)=H(z)/100, and σ_{1D} is the LOSVD of the velocity tracers (dark matter particles, subhalos or galaxies). $H(z)=H_0E(z)$ and $E(z)=\sqrt{\Omega_m(1+z^3)+\Omega_\Lambda}$.

A growing body of work suggests that there is a significant difference in the observed LOSVD depending on the velocity tracers used. Specifically, while there is little difference between using galaxies and their host DM subhalos, there is a significant over estimation of the LOSVD when using galaxies/subhalos compared to DM particles (Munari et al., 2013). We follow other works (e.g., Kirk et al. 2015; Sifón et al. 2015b) using the scaling relation, given in Equation 2.6 to facilitate comparisons with other observational studies, which rely on galaxies as tracers.

2.3.3.2 Other Estimates of Dynamical Mass – Introduction

In the following subsections we use two methods to predict the mass of a cluster based on other observables. Often the cluster mass is estimated based on a single observable, X-ray temperature, LOSVD, richness and others (see Section 2.1 for referenced examples). Here we combine many observables to attempt to correct the mass inferred solely from the velocity dispersion. The first method is traditional "probability based" where we marginalize over a series of observables to find the most probable cluster mass. The second is based on a machine learning (ML) algorithm which attempts to infer the relationship between the observables and the desired output, the cluster mass. Both of these methods are examples of supervised learning algorithms where the relationship between the observable parameters and the target parameter (the cluster mass) are both known.

As with any predictive analysis it is important to test the model on data that the model has not seen before. This prevents over-fitting. In the following subsections

we take all of the observed clusters, our full sample, split them, and generate a training and testing set (e.g., Ripley 2007; Xu et al. 2013; Ntampaka et al. 2015a,b; Acquaviva 2016). Traditionally, the training set is a set of data used to infer possibly predictive relationships. The test set of data is then used to assess the correctness of the predictive relationship. Our data is randomly split into 70% training and 30% testing. We follow the ML convention and refer to the individual clusters in each set as a "sample", and the parameters associated with the cluster (z, LOSVD, mass, etc.) as "features".

2.3.3.3 Probability Based

For internal consistency between this and the ML based method we use 70% of the clusters to establish a conditional probability density of $P(M_{200c}|\vec{x})$ which we then use as the cluster mass probability density for the remaining clusters with similar features. In this way we, "train" the probability density using the existing simulated data, and apply it to the "test" sample (the remaining 30% of the data not used as the training set).

In this method, the cluster masses are predicted using the method illustrated in Figure 2.3. The left panel shows the two dimensional (joint probability) projections of the posterior probability distributions of the feature training data. The conditional probability of the cluster mass $P(M_{200c}|\vec{x}=\{x_1,x_2,...\})$ (shown in the right panel) is determined by selecting a region in the joint probability distribution. For example, using the LOSVD and redshift features we create $P(M_{200c}|\vec{x})$ for two test galaxies, shown by the green and pink boxes in the left panel of Figure 2.3. These example galaxies have features $\vec{x}=\{\sigma=200\,\mathrm{km\ s^{-1}},z=0.16\}$ and $\vec{x}=\{\sigma=400\,\mathrm{km\ s^{-1}},z=0.36\}$. We select all galaxies in our training sample with similar features and create the conditional probability distributions shown in the right panel.

Figure 2.3: Illustration of the probability based cluster mass prediction method. Left: The two dimensional posterior probability distribution of LOSVD and redshift used to determine the correct cluster mass. The pink and green rectangles show the locations of two example galaxies used to create the conditional probability distribution of the mass, $P(M_{200c}|\vec{x})$. Right: The conditional probability distribution of the cluster mass for the two example galaxies. See text for a complete description.

For the clusters making up the *test* sample the mass is unknown (it is what we are trying to predict) but the other features are known. To determine the mass probability distribution of a test cluster, $P(M_{200c})$, we combine the conditional probability distribution, $P(M_{200c}|\vec{x})$, created previously with the probability distribution of σ , the LOSVD, through Equation 2.7.

$$P(M_{200c}) = \int P(M_{200c}|\vec{x}) \ P(\sigma) \ d\sigma \ P(z) \ dz$$
 (2.7)

The expected mass is determined by calculating the first moment of the probability density. This becomes our "predicted" cluster mass, M_{pred} .

$$M_{pred} = \int M_{200c} P(M_{200c}) dM_{200c}$$
 (2.8)

The confidence interval associated with this prediction can be estimated two ways. First, by calculating the second moment of the probability density through

$$Var = \int (M_{200c} - M_{pred})^2 P(M_{200c}) dM_{200c}$$
 (2.9)

or by drawing many samples from $P(M_{200c})$ and calculating the values at the 16th and 84th percentile. In practice we find that both methods produce similar results for a large number of trials. Therefore, we quote predicted masses as the most probable mass given by Equation 2.8 and associated 68% error estimated through the square root of Equation 2.9.

2.3.3.4 Machine Learning Based

The cluster mass estimation in this section relies on a ML technique known as an ensemble method, where many estimators are created by a single learning method with the goal of improved generalization and robustness compared to a single estimation. Ensemble methods (e.g., Caruana & Niculescu-Mizil 2006) come in two general flavors. Averaging methods average (hence the name) the estimators to produce a single prediction. Boosting estimators build estimates sequentially by attempting to address poor performing estimators in each previous step, hence "boosting" the predictive power.

Here we use an averaging ensemble learning method known as a forest of randomized decision trees, often shorten to just random forest (RF; Tin Kam Ho 1995, 1998). Decision trees can be visualized a flow chart where forks are the branches of the tree. The path along the tree is decided by the values of the feature(s) at each branch. RF estimators use a random subset of the training set at each fork to decide which path should be followed. The final prediction is then the mean of all the final predictions from the trees. We use RF regression methods as implemented

in Scikit-Learn (Pedregosa et al., 2012).

The ML method generates "prediction intervals" between observed and derived quantities (rather than "confidence intervals"). A prediction interval is an estimate of the interval encompassing future observations, with a certain probability. And, unlike confidence intervals, which describe uncertainties on the different moments of a population, a prediction interval is unique to each prediction. In many regresson analyses, such as linear fitting, the prediction intervals are based on underlying assumptions of normally distributed residuals. However, RF estimators do not have any such assumptions and require special treatment.

The prediction intervals here are based on the general method of quantile regression forests (Meinshausen, 2006). The general idea is that all response variables are recorded, not just the mean. Then the prediction can be returned as the full conditional probability distribution of all responses, which allows us to generate the prediction intervals. We report the 68% prediction interval as the square root of the second moment of the full conditional probability distribution.

2.4 Results

Here we explore the cluster member recovery rate and mass estimates for the two observing strategies, Targeted, and Survey. Targeted observations are direct observations of a cluster where each cluster member galaxy, above the detection thresholds (see Section 2.2.4), is observed. Survey observations mimic the HETDEX observation strategy such that no cluster is directly observed, and only the cluster member galaxies above the detection threshold and within an IFU (see Figure 2.2) are observed. We discuss the accuracy of cluster dynamical mass derived from both the power law scaling relation (see Equation 2.6) and through the probability and ML methods. We also compare the results from the Targeted and Survey observing

Figure 2.4: Recovery fractions (N_{obs}/N_{True}) of cluster member galaxies as a function of redshift and true cluster mass for the Targeted and Survey observing strategies. We have applied HETDEX-like observational limits on the cluster galaxy detection, and require at least five galaxies to be detected for a cluster to be recovered. The shading indicates the mean recovery fraction for clusters within each small bin of redshift and cluster mass. We find a significant decrease in the recovery of galaxies with increasing redshift. This leads to lower recovery fractions of high mass clusters as many only exist at larger redshifts. The significant decline in the number of galaxies observed with the Survey strategy is due to gaps in the VIRUS IFU, where the galaxies are missed.

strategies to the results of a "Perfect" survey, where the redshift of each galaxy, regardless of observational limits, in the cluster is known perfectly.

2.4.1 Recovery of Cluster Members

As discussed in Section 2.2.4, the observational constraints place limits on the total number of clusters member galaxies expected to be recovered. Knowing these limits will provide important information for potential future follow up or Targeted observations. We recover 14,189 clusters with Targeted observations and 1,760 clusters with Survey observations, where we require a detection of $N_{obs} >= 5$ galaxies

for a cluster to be detected. Figure 2.4 shows the recovery fraction of member galaxies, the number of observed galaxies divided by the number of actual galaxies (N_{obs}/N_{True}) , as a function of both redshift and cluster mass. As expected, the Targeted observing strategy where the individual clusters are targeted through several dithers to ensure near complete coverage, performs significantly better than the Survey observing strategy across all redshifts and cluster masses. With Perfect knowledge, recovery fraction would be unity across all redshifts and cluster masses where clusters exist.

For the Targeted observations, shown in the left panel of Figure 2.4, the pattern of decreasing recovery fraction as a function of redshift (y-direction) is due to the observational limits imposed. Because HETDEX is limited in apparent magnitude, we expect to recover fewer galaxies at higher redshift, where the galaxies are often below our 5σ detection threshold. For example, we tested this by constructing an artificial HETDEX-like survey, limited by volume for all galaxies with $M_g < -11$. In this case, our recovery fraction increases to > 70%, which shows that the flux limit is dominating the (lower) recovery of our flux-limited survey.

For the recovery fraction as a function of true cluster mass (x-direction), we find a general decrease in the recovery fraction of member galaxies with increasing cluster mass. This is entirely a result of the flux limited survey (see previous paragraph). Because there are few high mass $(M_{200c} > 5 \times 10^{14} \text{ M}_{\odot})$ clusters, many of which are at moderately high redshift, the higher redshift cluster members suffer from the limiting apparent magnitude and suppress the recovery fraction at fixed mass. If we were to limit the Survey to z < 0.2 we find the recovery fraction of clusters, across all masses, increases substantially, and we find a much more consistent detection fraction across all masses.

For the Survey observations, the right panel of Figure 2.4, all of the same effects

are at work. In addition we find that the fill factor, due to the gaps between the VIRUS IFUs, further reduces the number of cluster members detected. The median recovery fraction in Survey observations is almost exactly 4.5 times less than the Targeted median recovery fraction. As the total filling factor of the Survey observations increases the two lines will converge.

The recovery fractions in Figure 2.4 are an outcome of the magnitude limit and [OII] line-flux limit of the survey. For Perfect observations, we would detect all members across all cluster masses and redshifts. Recovery fractions of clusters located a the low end of the redshift distribution will improve the most by follow-up targeted observations. But generally, the number of members observed (and subsequently more accurate cluster mass estimates) will benefit from follow-up observations regardless of the redshift. So follow-up observations should be tailored to the specific science goal.

2.4.2 Mass estimates

In this section we discuss the accuracy of the recovered masses compared to the true cluster mass from a set of observations. We report on three methods, the power law based approach (Eq. 2.6), the probability based approach (Section 2.3.3.3) and the ML based method (Section 2.3.3.4). For each method we consider observations with Perfect knowledge, Targeted observations and Survey observations. The cluster masses presented here are recovered using the best possible conditions, where we have perfect knowledge of the cluster membership. In reality, the mass recovery levels presented in this section represent an upper bound (the best) on the accuracy achievable through this method.

Because it represents the best possible scenario, the Perfect knowledge observations should serve as a baseline to compare the power law based, probability based

Figure 2.5: Mass predictions for the power law scaling relation (Equation 2.6) and the probability based technique with different input features as a function of true cluster mass. The bottom row of panels shows the fractional error (Equation 2.12) also as a function of true cluster mass. The solid black line shows the 1:1 relation, in both panels, between M_{200c} and M_{pred} . The orange, dash-dotted line is the median predicted mass for perfect observations. The solid, purple line is the median predicted mass for the Targeted observing, and the green, dashed line is the median recovered mass for the HETDEX-like observations. The shaded regions represent the 68% scatter around the median values.

and ML cluster mass recovery methods. And, while there are many possible metrics to evaluate performance, we compute two: the average bias (given in Table 2.2)

$$\mu_{\text{bias}}(y, y_{pred}) = \frac{1}{N} \sum_{i=1}^{N} (y_{pred,i} - y_i).$$
(2.10)

where y are the true values and y_{pred} are the predicted values, and the scatter about the bias (given in Table 2.2)

$$\sigma_{bias}(y, y_{pred}, \mu_{bias}) = \left[\frac{1}{N-1} \sum_{i=1}^{N} (y_{pred,i} - y_i - \mu_{bias})^2\right]^{1/2}$$
(2.11)

with N clusters in a given bin. Both metrics evaluate how closely the ensemble of predicted cluster masses are to the true cluster masses.

We begin with the Perfect knowledge observations. These observations are of the same clusters as the Targeted observations but without any observational limits. The cluster masses predicted by Equation 2.6 gives the following results. For clusters with masses between Log M/M $_{\odot}$ = 13 – 15.5, we find μ_{bias} = 0.148 \pm 0.008 dex and σ_{bias} = 0.193 \pm 0.001. The scatter in recovered masses can be attributed to both physical and numerical effects. The presence of any in-falling matter onto lower mass clusters can introduce a significant amount of substructure, leading to artificial biasing of the measured LOSVD to higher values, increasing the predicted mass (e.g., Ntampaka et al. 2015a). Also, as the number of cluster galaxies decreases the LOSVD PDF is poorly sampled leading to poorly recovered cluster masses due to numerical effects.

For the Targeted and Survey observations the power law predicted cluster masses give $\mu_{bias} = 0.135 \pm 0.003$ dex, $\sigma_{bias} = 0.370 \pm 0.002$ and $\mu_{bias} = 0.148 \pm 0.008$ dex, $\sigma_{bias} = 0.324 \pm 0.006$, respectively. So for the clusters that we detect with Survey

Figure 2.6: Mass predictions for the power law scaling relation (Equation 2.6) and the ML based technique with different input features as a function of true cluster mass. The bottom row of panels shows the fractional error (Equation 2.12) also as a function of true cluster mass. The solid black line shows the 1:1 relation. The orange, dash-dotted line is the median predicted mass for perfect observations. The solid, purple line is the median predicted mass for the Targeted observing, and the green, dashed line is the median recovered mass for the HETDEX-like observations. The shaded regions represent the 68% scatter around the median values.

observations, we obtain similar levels of accuracy as to the Targeted observations, on the average. This does not mean that the Survey observations cannot be improved by Targeted observations. In fact, when comparing only the galaxies which overlap between the two samples the bias and scatter of the Targeted observations is significantly decreased as more cluster member galaxies are detected, better sampling the LOSVD PDF. The Targeted observations performs similarly on the average because many lower mass clusters are included in the sample, increasing the bias of the overall sample.

In both Figures 2.5 and 2.6, we show the predicted (M_{pred}) versus true (M_{200c})

cluster masses for each of the two observing strategries. The lower panels show the fractional cluster mass error defined as:

$$\epsilon = (M_{pred} - M_{200c})/M_{200c} \tag{2.12}$$

where M_{pred} is the predicted cluster mass and M_{200c} is the true cluster mass. Higher values of ϵ indicate the predicted cluster mass exceeds the true cluster mass.

Qualitatively, the top panels of Figures 2.5 and 2.6 show that both the probability based and ML based methods out perform (closer to the black 1:1 relation) the power law method when taking advantage of other cluster observables (z, N_{gal} , etc.). Generally, we find that the single parameter probability and ML methods perform significantly poorer than the power law method, especially at low cluster masses. When combined with the cluster redshift, the predicted cluster masses are improved, because the range of cluster masses decrease with increasing redshift (see Figure 2.4). The final addition of the number of observed galaxies, N_{gal} acts as a type of richness estimate, and significantly improves both the bias and the amount of scatter in the predicted masses.

	$\mathrm{Bins}-\mathrm{Log}\ M_{pred}$								
Method		12.5 - 13	13 - 13.5	13.5 - 14	14 - 14.5	14.5 - 15	15 - 15.5		
		Perfect Observations							
Power Law		0.23 ± 0.007	0.16 ± 0.003	0.11 ± 0.002	0.07 ± 0.004	0.02 ± 0.011	-0.07 ± 0.045		
	σ	0.32 ± 0.005	0.16 ± 0.003	0.10 ± 0.002	0.07 ± 0.004	0.05 ± 0.012	-0.18 ± 0.078		
Prob	σ, z	0.17 ± 0.005	0.01 ± 0.003	-0.06 ± 0.002	-0.11 ± 0.015	-0.14 ± 0.012	-0.38 ± 0.159		
Д	σ, z, N_{gal}	0.04 ± 0.009	-0.02 ± 0.002	-0.02 ± 0.002	-0.05 ± 0.014	-0.22 ± 0.126	•••		
	σ	0.14 ± 0.006	-0.01 ± 0.003	-0.07 ± 0.003	-0.09 ± 0.005	-0.11 ± 0.014	-0.17 ± 0.090		
П	σ, z	0.12 ± 0.005	-0.01 ± 0.003	-0.06 ± 0.003	-0.08 ± 0.004	-0.11 ± 0.012	-0.24 ± 0.076		
ML	σ, N_{gal}	0.04 ± 0.004	-0.02 ± 0.002	-0.02 ± 0.002	-0.02 ± 0.002	-0.02 ± 0.006	-0.08 ± 0.041		
	σ, z, N_{gal}	0.04 ± 0.003	-0.02 ± 0.002	-0.02 ± 0.001	-0.02 ± 0.002	-0.02 ± 0.005	-0.08 ± 0.043		
Tar				Targeted (Observations				
Power Law		0.20 ± 0.008	0.13 ± 0.005	0.10 ± 0.005	0.09 ± 0.007	0.02 ± 0.014	-0.08 ± 0.043		
Prob	σ	0.40 ± 0.005	0.17 ± 0.003	0.02 ± 0.004	-0.08 ± 0.006	-0.19 ± 0.015	-0.35 ± 0.122		
	σ, z	0.25 ± 0.005	0.08 ± 0.003	-0.06 ± 0.003	-0.21 ± 0.015	-0.35 ± 0.016	-0.59 ± 0.145		
Д	σ, z, N_{gal}	0.13 ± 0.004	0.01 ± 0.003	-0.05 ± 0.003	-0.12 ± 0.018	-0.44 ± 0.177	•••		
ML	σ	0.26 ± 0.006	0.02 ± 0.004	-0.13 ± 0.005	-0.24 ± 0.008	-0.35 ± 0.022	-0.39 ± 0.054		
	σ, z	0.18 ± 0.005	0.03 ± 0.003	-0.10 ± 0.004	-0.21 ± 0.006	-0.31 ± 0.021	-0.33 ± 0.063		
	σ, N_{gal}	0.22 ± 0.005	0.00 ± 0.004	-0.13 ± 0.004	-0.16 ± 0.007	-0.13 ± 0.014	-0.19 ± 0.059		
	σ, z, N_{gal}	0.09 ± 0.004	-0.01 ± 0.002	-0.05 ± 0.002	-0.08 ± 0.004	-0.08 ± 0.010	-0.19 ± 0.060		

36

Table 2.1: Continued

		$\mathrm{Bins}-\mathrm{Log}\ M_{pred}$						
	Method	12.5 - 13	13 - 13.5	13.5 - 14	14 - 14.5	14.5 - 15	15 - 15.5	
				Survey (Observations			
Power Law		0.17 ± 0.068	0.17 ± 0.023	0.13 ± 0.014	0.07 ± 0.014	0.01 ± 0.022	-0.09 ± 0.062	
Prob	σ	0.77 ± 0.030	0.42 ± 0.011	0.18 ± 0.008	-0.03 ± 0.009	-0.18 ± 0.017	-0.39 ± 0.102	
	σ, z	0.61 ± 0.036	0.29 ± 0.012	0.08 ± 0.008	-0.11 ± 0.009	-0.38 ± 0.118	-0.48 ± 0.127	
	σ, z, N_{gal}	0.48 ± 0.038	0.18 ± 0.011	0.02 ± 0.007	-0.08 ± 0.008	-0.50 ± 0.203		
ML	σ	0.57 ± 0.046	0.24 ± 0.015	0.02 ± 0.012	-0.17 ± 0.013	-0.28 ± 0.027	-0.27 ± 0.117	
	σ, z	0.48 ± 0.034	0.20 ± 0.013	0.03 ± 0.009	-0.13 ± 0.011	-0.26 ± 0.021	-0.31 ± 0.110	
	σ, N_{gal}	0.55 ± 0.043	0.22 ± 0.013	0.00 ± 0.010	-0.14 ± 0.011	-0.22 ± 0.025	-0.19 ± 0.079	
	σ, z, N_{gal}	0.42 ± 0.029	0.13 ± 0.011	-0.00 ± 0.007	-0.08 ± 0.008	-0.14 ± 0.016	-0.19 ± 0.079	

We quantify the bias and scatter for all of the different cluster mass recovery strategies and observing methods in Table 2.2 and Table 2.2. It serves as a type of look up table for future cluster observations with HETDEX. The columns represent bins of predicted galaxy cluster mass and the individual values show the bias and scatter of the true cluster mass. The three horizontal sections represent Perfect, Targeted and Survey observations respectively. So, for example, if a cluster mass is predicted using the $ML_{\sigma,z}$ method and Targeted observations to be Log M/M_{\odot} = 13-13.5, it is biased upward by 0.03 ± 0.003 dex and has a scatter of 0.24 ± 0.009 dex.

Table 2.2: Scatter (Eqn. 2.11) in cluster mass after bias correction for different bins of predicted cluster mass. This table shows the scatter in the predicted cluster mass for the perfect (top section), Targeted (middle section), and Survey (bottom section) observations in different predicted mass bins. The different mass recovery strategies are given in the leftmost column. It can be used to understand how the predicted cluster mass differs from the true cluster masses.

				$\operatorname{Bins} - \operatorname{L}$	og M_{pred}			
Method		12.5 - 13	13 - 13.5	13.5 - 14	14 - 14.5	14.5 - 15	15 - 15.5	
		Perfect Observations						
Power Law		0.34 ± 0.005	0.22 ± 0.002	0.16 ± 0.002	0.14 ± 0.003	0.14 ± 0.008	0.11 ± 0.040	
	σ	0.26 ± 0.004	0.20 ± 0.002	0.16 ± 0.002	0.14 ± 0.003	0.16 ± 0.009	0.19 ± 0.071	
Prob	σ, z	0.23 ± 0.003	0.19 ± 0.002	0.16 ± 0.002	0.55 ± 0.010	0.16 ± 0.009	0.39 ± 0.143	
Щ	σ, z, N_{gal}	0.47 ± 0.007	0.14 ± 0.001	0.10 ± 0.001	0.54 ± 0.010	•••	•••	
	σ	0.29 ± 0.004	0.24 ± 0.002	0.21 ± 0.002	0.19 ± 0.004	0.18 ± 0.010	0.22 ± 0.081	
П	σ, z	0.24 ± 0.003	0.20 ± 0.002	0.18 ± 0.002	0.16 ± 0.003	0.16 ± 0.009	0.19 ± 0.068	
ML	σ, N_{gal}	0.19 ± 0.003	0.14 ± 0.001	0.10 ± 0.001	0.08 ± 0.002	0.07 ± 0.004	0.10 ± 0.037	
	σ, z, N_{gal}	0.17 ± 0.002	0.13 ± 0.001	0.10 ± 0.001	0.07 ± 0.001	0.07 ± 0.004	0.11 ± 0.039	
				Targeted O	bservations			
Power Law		0.43 ± 0.006	0.39 ± 0.004	0.33 ± 0.004	0.27 ± 0.005	0.18 ± 0.010	0.11 ± 0.039	
	σ	0.24 ± 0.003	0.25 ± 0.002	0.25 ± 0.003	0.22 ± 0.004	0.19 ± 0.011	0.30 ± 0.110	
Prob	σ, z	0.24 ± 0.003	0.24 ± 0.002	0.23 ± 0.002	0.56 ± 0.011	0.21 ± 0.012	0.36 ± 0.131	
Щ	σ, z, N_{gal}	0.20 ± 0.003	0.19 ± 0.002	0.17 ± 0.002	0.67 ± 0.013	•••	•••	
	σ	0.30 ± 0.004	0.32 ± 0.003	0.32 ± 0.003	0.30 ± 0.006	0.29 ± 0.016	0.13 ± 0.049	
П	σ, z	0.26 ± 0.004	0.25 ± 0.002	0.24 ± 0.003	0.23 ± 0.004	0.27 ± 0.015	0.16 ± 0.057	
ML	σ, N_{gal}	0.27 ± 0.004	0.27 ± 0.003	0.27 ± 0.003	0.25 ± 0.005	0.18 ± 0.010	0.15 ± 0.053	
	σ, z, N_{gal}	0.21 ± 0.003	0.18 ± 0.002	0.16 ± 0.002	0.14 ± 0.003	0.12 ± 0.007	0.15 ± 0.054	

39

Table 2.2: Continued

		$\mathrm{Bins}-\mathrm{Log}\ M_{pred}$					
	Method	12.5 - 13	13 - 13.5	13.5 - 14	14 - 14.5	14.5 - 15	15 - 15.5
				Survey Ob	servations		
Power Law		0.40 ± 0.050	0.41 ± 0.016	0.38 ± 0.010	0.32 ± 0.010	0.25 ± 0.016	0.15 ± 0.056
	σ	0.11 ± 0.024	0.18 ± 0.008	0.22 ± 0.006	0.22 ± 0.007	0.19 ± 0.012	0.25 ± 0.092
Prob	σ, z	0.13 ± 0.028	0.19 ± 0.008	0.22 ± 0.006	0.21 ± 0.007	1.31 ± 0.084	0.32 ± 0.115
Д	σ, z, N_{gal}	0.14 ± 0.030	0.18 ± 0.008	0.19 ± 0.005	0.19 ± 0.006		
ML	σ	0.27 ± 0.034	0.27 ± 0.011	0.31 ± 0.008	0.30 ± 0.009	0.30 ± 0.019	0.29 ± 0.106
	σ, z	0.20 ± 0.025	0.24 ± 0.009	0.24 ± 0.006	0.25 ± 0.008	0.24 ± 0.015	0.27 ± 0.100
	σ, N_{gal}	0.25 ± 0.032	0.23 ± 0.009	0.27 ± 0.007	0.26 ± 0.008	0.27 ± 0.018	0.20 ± 0.072
	σ, z, N_{gal}	0.17 ± 0.021	0.21 ± 0.008	0.20 ± 0.005	0.19 ± 0.006	0.17 ± 0.011	0.20 ± 0.071

A few caveats apply to the numbers given in Table 2.2 and Table 2.2. While we provide corrections for cluster masses above $10^{15} {\rm M}_{\odot}$, they are estimated from only a handful of objects, and do not constitute a representative sample of clusters. This becomes particularly apparent for the probability methods with many features. As the number of observed features increases, the number of training clusters in any particular bin decreases. This leads to highly skewed biases and scatters for the high mass clusters and probability methods. We do not report any bin where such small number statistics dominate in Tables 2.2 and 2.2. On the opposite end of the cluster mass spectrum, there are very few, if any, clusters detected with Targeted or Survey observations below $5 \times 10^{12} {\rm M}_{\odot}$. Therefore, while we show these points in Figures 2.5 and 2.6, we exclude their biases and scatters from Tables 2.2 and 2.2 for the same reasons.

The method which produce the lowest scatter and bias depends on the mass of the cluster in question and the type of observations used. For the Targeted observations, the power law method outperforms all other methods, in terms of bias and scatter, for the highest mass clusters. But outside of the two highest mass bins, the $ML_{\sigma,z,N_{gal}}$ method shows the smallest amount of scatter and bias most consistently. With Survey observations, the power law again provides the lowest bias in the highest cluster mass bins, but is outperformed in terms of scatter by the other two methods. The $ML_{\sigma,z,N_{gal}}$ method shows the smallest amount of scatter and bias most consistently across the cluster mass range in question.

2.4.3 Impact of Training Sample Cosmology

All simulations (including that used for Buzzard) use specific values for cosmological parameters. When using simulation data to train ML methods, we incorporate all of those assumptions into the learned feature associations. One could imagine that

the specific values of the cosmological parameters in the training sample could bias the ML results when applied to data (real or simulated) created from an unknown true set of cosmological parameters.

To test for this, we used the Millennium simulation as an alternative data set. The Millennium simulation uses a set of cosmological parameters that are substantially different from Buzzard. The Millennium simulation adopts a flat cosmological model based of the values derived from the Two-degree Field Galaxy Redshift Survey (Colless et al., 2001) and the first year data of the Wilkinson Microwave Anisotropy Probe (WMAP; Spergel et al. 2003): $\Omega_{\Lambda} = 0.75$, $\Omega_{M} = 0.25$, $\sigma_{8} = 0.9$, $n_{s} = 1$ and $H_{0} = 73$ km s⁻¹Mpc⁻¹. The clusters in Millennium provide a testing sample to understand how a training sample derived from Buzzard will impact the mass recovery on a wholly new dataset.

We repeat our analysis using cluster halo and galaxy catalogs from the Millennium simulation (Springel et al., 2005) obtained via querying the Millennium online database³ (Lemson & The Virgo Consortium, 2006). The Millennium simulation tracks 2160^3 dark matter particles of 8.6×10^8 h^{-1} M_{\odot} inside a comoving 500 $(h^{-1}{\rm Mpc})^3$ box from z=127 to 0.

We select 4,806 clusters, comprised of 623,663 galaxies, at 0.02 < z < 0.5 and $M > 10^{13} \,\mathrm{M}_{\odot}$, and apply the same data processing as with the Buzzard galaxies. We begin by assigning each galaxy an [O II] flux value (see Section 2.2.2), and "observe" each galaxy using realistic (see Section 2.2.4) observational limits. After recovering 3750 clusters which have at least five galaxies observed, we calculate the LOSVD of each cluster as in Section 2.3.2.

We conduct our test in two ways. Both use the ML methods (see Section 2.3.3.4) to predict the cluster masses of the Millennium clusters, but each test uses a different

³http://gavo.mpa-garching.mpg.de/Millennium/

Figure 2.7: Top: ML based cluster mass predictions for the Millennium simulation clusters where the ML method has been trained with either a subset of the Millennium clusters (solid line) or the Buzzard catalog (dashed line). The shaded areas show the 68% scatter around the median. The solid black line shows the 1:1 relation. Bottom: The fractional error (Equation 2.12) also as a function of true cluster mass. The similarity of the predictions with the different training sets demonstrates how the ML method is not sensitive to the underlying cosmological assumptions.

training set. First, we use the full set of clusters detected in the Buzzard catalogs (14,000 clusters with $M > 10^{11} \,\mathrm{M}_{\odot}$) to train the ML. Second, the Millennium clusters are split into training-testing samples. This provides a test case where we have different cosmological choices between the training and testing samples, and the same cosmological assumptions in both samples.

The top panel of Figure 2.7 shows the ML predicted cluster masses for the \sim 4000 Millennium clusters as a function of true cluster mass. The orange (Millennium) and green (Buzzard) colors indicate the two different training samples. The median (solid and dashed lines) predicted cluster masses show similar trends regardless of the training data set used. The bottom panel of Figure 2.7 shows the fraction error (Equation 2.12) also as a function of true cluster mass. The large amount of scatter (the shaded area) in the fractional error for the Buzzard-trained predictions is due to the training set including clusters with masses below the $M=10^{13}~\rm M_{\odot}$ threshold for the Millennium clusters. This allows the ML method to predict masses which can be significantly different, whereas the Millennium training set does not include $M<10^{13}~\rm M_{\odot}$ clusters, which reduces the scatter of the predicted masses.

Based on these tests, we do not find a significant cause for concern with using trained ML methods to predict our galaxy cluster masses when the underlying cosmological choices are different. This highlights the versatility of our chosen ML method. The ML method could be further diversified by including cluster measurements from a wide range of cosmological simulations (or observations) which, in affect, marginalizes over all the cosmological assumptions further reducing the dependence.

2.5 HETDEX as a Galaxy Cluster Survey at z < 0.5

2.5.1 Constraints on Cosmological Parameters

Galaxy clusters trace the peaks in the universal matter density, often referred to as the power spectrum of matter density fluctuations or the matter power spectrum. This enables them to be sensitive probes of Ω_m , the total mass $(\Omega_b + \Omega_c)$ density, and $\sigma_8 h^{-1}$, the normalization of the power spectrum. We constrain these parameters by the comparison of the number density of observed clusters to that predicted in cosmological models. Although, in reality, one measures $\sigma_8 h^{-1} \Omega_m^q$, where the value of q depends on the masses and redshifts of the halos considered.

To get a sense of how well HETDEX will be able to constrain cosmological parameters we follow the discussion of Weinberg et al. (2013) (hereafter W13), and begin with a few simplifying assumptions. While sensitive to Ω_m , the number density of clusters does not necessarily provide the strongest contraint, but combined with other data sets (e.g., CMB, BAO, supernovae, WL, etc.) it will constrain Ω_m to higher precision.

To estimate the error associated with a measurement of $\sigma_8 h^{-1}$ (which W13 refer to as $\sigma_{11,abs}$), W13 consider two sources of uncertainty, the systematic uncertainties in cluster mass calibration and the statistical uncertainty in the observed number density of clusters. The authors combine these two uncertainties though (their Eq. 141):

$$\Delta \ln \sigma_8 h^{-1}(z) \approx q(z) \times \max \left[\Delta \ln M, \alpha(z)^{-1} \Delta \ln N \right].$$
 (2.13)

where q is the degeneracy exponent between $\sigma_8 h^{-1}$ and Ω_m , $\Delta \ln M$ is the mass scale uncertainty, $\Delta \ln N$ is the cluster statistical uncertainty, and α is slope of the cumulative HMF. Using the Tinker et al. (2008) HMF at $z \sim 0.2$ and a limiting cluster mass of $10^{14} \text{ M}_{\odot}$, W13 estimate $q \sim 0.4$, $\alpha \sim 3$, and find that any cluster

survey with more than 10-20 clusters is dominated by the uncertainty in the overall mass scale.

For a survey such as HETDEX, we can estimate the constraints on $\sigma_8 h^{-1}$ using Equation 2.13. If we consider clusters with masses above 10^{14} M_{\odot} and with Perfect knowledge observations, the lowest mass scale uncertainty (given in Table 2.2) is $\Delta_{log_{10}} M \sim 0.075$ dex or about 20%. This gives a uncertainty on $\sigma_8 h^{-1}$ of 7%. For clusters above 10^{14} M_{\odot}, Survey observations constrain the masses to about 51% which, in turn, constrains $\sigma_8 h^{-1}$ to 20%.

Because of the simplifying assumptions, and the superior quality of the data (no contamination, signal-to-noise issues, etc.), realistic expectations for HETDEX is to directly constrain $\sigma_8 h^{-1}$ is not yet competitive with other methods (e.g., CMB, WL, X-ray). For example, de Haan et al. (2016) constrain $\sigma_8 h^{-1}$ to $\sim 5\%$ using a sample of 337 SZE detected clusters from the SPT-SZE survey. For the ~ 1500 clusters detected with Survey observations to constrain $\sigma_8 h^{-1}$ and to be dominated by cluster statistics alone ($\Delta \ln N \sim N^{-1/2}$), the absolute cluster calibration would need to be better than 2.5%. For a fully Targeted survey, about 14,000 clusters, this cluster mass calibration uncertainty reduces to > 1%. So while, the contraints produced by HETDEX will be larger than some other studies, the type of data provided by HETDEX will enable an independent calibration from other cluster mass measurements. This will provide important systematics checks on other studies and will ultimately improve the measurements of $\sigma_8 h^{-1}$.

2.5.2 Scale and Scatter of the Richness-Cluster Mass Relation

Large-scale optical surveys (e.g., DES and LSST) expect to detect hundreds of thousands of galaxy clusters at z < 1. Because they produce photometry only, a major challenge for these surveys is relating a cluster observable to the total DM

mass. One promising cluster mass estimator is the optical richness (e.g., Abell 1958). Specifically, here, we use λ , the weighted number of galaxies within a scale aperture (e.g., Rozo et al. 2011) as calculated by the redMapper algorithm (Rykoff et al., 2012). Previous works (e.g., Rozo et al. 2010) show that the richness correlates strongly with cluster mass on the average, but the absolute mass scale of the optical richness mass estimator and the scatter in cluster mass at fixed optical richness are imprecisely known (Rykoff et al., 2012). These systematics remain the major source of uncertainty in deriving cosmological constraints from cluster abundances and must be measured using independent methods to realize the full potential of these types of surveys.

One of the main goals of this study is to understand how well HETDEX will be able to measure the scatter in the richness-mass relationship. To this end, we choose to impose a richness-mass relation onto the clusters in the Buzzard catalogs. The true richness-mass relation could depend strongly on the number and types of environmental effects, because such effects have a strong impact on the number and types of galaxies observed in clusters (e.g., Gunn & Gott, J. Richard 1972; Balogh et al. 2000; White et al. 2010). Any environmental effects included in Buzzard could potentially impact our observed richness. The imposition of an empirical richness-mass relation ensures the richness values correspond correctly to the clusters in our sample, could provide direct observational tests in the future.

We generate richnesses based on the true cluster masses, and for testing, we assume two versions of the richness-mass relationship. Farahi et al. (2016) base the relation on stacked velocity dispersions, and Simet et al. (2016) use weak lensing measurements to construct their relation. Because we are investigating HETDEX's ability to recover the overall cluster mass scale and underlying scatter in the mass-richness relationship, we use the true cluster masses perturbed by a known amount

to estimate the observed richness.

To confirm that measuring the underlying scatter is possible, after generating richness values we calculate the scatter of the cluster masses at fixed λ , $\sigma_{M|\lambda}$, by comparing the true, unperturbed cluster masses against the richness. We do recover the expected scatter, often, to well within 0.01 dex. We repeat the process with both assumed richness-mass relationships and recover the expected scatter in both instances.

We use the lambda values generated above in combination with the $M_{\sigma,z,N_{gal}}$ predicted cluster mass which have been bias corrected using the values in Table 2.2 and denoted $M_{pred,corr}$. The use of biased cluster mass predictions inhibits our ability to accurately recover any scatter in richness-mass relationship, and is discussed further below.

Primarily, we are interested in the intrinsic scatter of the richness-mass relationship. This is because HETDEX is uniquely situated to estimate the scatter, whereas studies relying on stacked data (e.g., Farahi et al. 2016; Simet et al. 2016) lose that information. We begin by attempting to constrain the absolute mass scale, and as part of our fitting process, we estimate the overall scatter in the relationship. In order to understand how HETDEX will constrain the absolute mass scale, we find the best fitting relation to our richness-mass data. To generate the best fitting lines, we follow the general procedure of Hogg et al. (2010), by defining an objective function and then minimizing the loss. Our objective function is

$$P(y_i|x_i, \sigma_{yi}, m, b, \sigma) = \frac{1}{\sqrt{2\pi (\sigma_{yi}^2 + \sigma^2)}} \exp\left(-\frac{[y_i - m x_i - b]^2}{2(\sigma_{yi}^2 + \sigma^2)}\right)$$
(2.14)

where y_i is the observed cluster mass, x_i is the observed richness, σ_{yi} is the uncertainty in observed cluster mass, m is the power law slope, b is the overall cluster mass scale,

and σ is the intrinsic scatter between richness and cluster mass. We assume that the intrinsic scatter is constant from point to point and that all of the measurement errors are Gaussian. We convert this objective function into a likelihood by taking the product of all the individual probabilities:

$$\mathcal{L} = \prod_{i=1}^{N} P(y_i|x_i, \sigma_{yi}, m, b, \sigma).$$
 (2.15)

We again rely on MCMC samples to sample the posterior probability distribution and thus maximize the likelihood. The best fitting slope and intercept are quoted as the median value of the posterior probability distribution with 68% error bars defined as the square root of the second moment of the same distribution.

We limit our clusters to those with $10 \le \lambda < 130$ in our fitting analysis because above $\lambda = 130$ there are too few clusters and number-counting errors dominate. Other observational studies (e.g., Saro et al. 2015) which have lower limits on λ , so we exclude anything less than $\lambda = 10$. For a richness-mass relation with an intrinsic scatter of $\langle \sigma_{M|\lambda} \rangle = 0.25$ dex, we find a best-fitting relation for the Targeted observations as

$$\text{Log } M_{200c}/\text{M}_{\odot} = 12.46 \pm 0.02 + 1.07 \pm 0.02 \text{ Log } \lambda$$
 (2.16)

and the Survey observations as

$$\text{Log } M_{200c}/\text{M}_{\odot} = 12.64 \pm 0.05 + 0.98 \pm 0.03 \text{ Log } \lambda$$
 (2.17)

This gives $M_{200c} = (1.45 \pm 0.12) \times 10^{14} \text{ M}_{\odot}$ and $M_{200c} = (1.59 \pm 0.27) \times 10^{14} \text{ M}_{\odot}$ at $\lambda = 40$ for the Targeted and Survey observations respectively. In both cases, this normalization differs significantly from the $M_{200c} \approx 2.1 \times 10^{14} h^{-1} \text{ M}_{\odot}$ found in recent

work Li et al. (2016); Simet et al. (2016). If the intrinsic scatter is reduced to ~ 0.05 dex we recover an overall normalization of $M_{200c} = (2.14 \pm 0.12) \times 10^{14} \text{ M}_{\odot}$ and $M_{200c} = (2.10 \pm 0.26) \times 10^{14}$ for the Targeted and Survey observations at $\lambda = 40$.

We also estimate the intrinsic scatter. For observations with a richness-mass relation intrinsic scatter of $\langle \sigma_{M|\lambda} \rangle = 0.25$ dex, we recover $\langle \sigma_{M|\lambda} \rangle = 0.236 \pm 0.003$ dex and $\langle \sigma_{M|\lambda} \rangle = 0.257 \pm 0.007$ dex for the Targeted and Survey observations respectively.

Figure 2.8 summarizes the main results of this investigation. The top panel shows the generated optical richness, λ , versus the predicted cluster mass. The cluster masses are the $\mathrm{ML}_{\sigma,z,N_{gal}}$ based and correspond to the Targeted and Survey observation strategies. The bottom panel of Figure 2.8 shows the scatter in the predicted cluster masses at fixed richness, $\sigma_{M|\lambda}$. The solid line represents the intrinsic amount of scatter added to the masses. The cluster masses are binned in increasing ten richness intervals (10 – 20, 20 – 30, etc.). The inset upper panel shows the intrinsic scatter versus the recovered average scatter at fixed richness, $\langle \sigma_{M|\lambda} \rangle$ and illustrates how well the two observation strategies recover the intrinsic scatter.

We find that we are able to accurately recover an average intrinsic scatter of $0.2 < \langle \sigma_{M|\lambda} \rangle < 0.3$ dex, finding $\langle \sigma_{M|\lambda} \rangle = 0.257 \pm 0.007$ at $\sigma_{true} = 0.25$ with Survey observations. This is very promising as other observational studies have estimated the intrinsic scatter of real clusters to be ~ 0.25 dex (e.g., Rozo & Rykoff 2014; Rozo et al. 2015a). As the intrinsic scatter increases or decreases, we fail to recover the scatter as accurately.

For the richness range $10 \le \lambda < 130$ the intrinsic scatter in between the $M_{pred,corr}$ predicted cluster masses and the true cluster mass (the basis of our richnesses) is ~ 0.15 dex for Targeted observations and ~ 0.20 dex for Survey observations. This forms an effective floor on the amount of scatter we are able to recover from our fitting process. As we reduce the overall scatter in our cluster mass recovery, this floor will

Figure 2.8: Top: The optical richness, λ , versus the corrected predicted cluster mass. The solid, purple line is the median predicted mass for the Targeted observing, and the turquoise, dashed line is the median recovered mass for the HETDEX-like observations. The shaded regions represent the 68% scatter around the median values. Bottom: The scatter in the relation at fixed richness. The solid black line shows the intrinsic scatter of $\sigma_{true} = 0.25$ dex. Color coding is the same as the top panel. Inset: The evolution of the intrinsic scatter versus the average recovered scatter, σ_{rec} .

lower. We underestimate the scatter in high intrinsic scatter relations because any residual bias remaining in the predicted clusters masses after correction reduces the observed scatter. Because the bias subtraction when creating $M_{pred,corr}$ subtracts the mean bias, we are left with a small amount of residual bias, lowering the measured scatter for high scatter relationships.

2.6 Summary

Here, we present detailed simulations of the upcoming HETDEX survey's applicability to the detection and total mass measurement of galaxy clusters. Using mock galaxy catalogs and HETDEX-like observational strategies and limits, we observe our simulated sky, estimate the number of clusters observed, and derive basic cluster parameters, redshift, line-of-sight velocity dispersion (LOSVD). Using a traditional power law-based, velocity dispersion, scaling relation along with more advanced probability and machine learning (ML) techniques, we estimate each cluster's total mass. We discuss each cluster mass estimate's precision, and discuss HETDEX's ability to constrain the cosmological parameter $\sigma_8 h^{-1}$ based on those predicted cluster masses. In addition, we comment on how HETDEX may improve current and future photometric large-area sky surveys' cluster mass estimates derived from optical richness.

Our main conclusions are the following:

- 1. After considering HETDEX's observational limits, we find 14,189 clusters with at least five cluster members in the HETDEX survey volume. Of those, 1,760 clusters are detected with HETDEX-like survey observations. The number of cluster members recovered with Survey observations is almost exactly 4.5 times fewer than a fully Targeted survey, across both a wide range of redshifts and cluster masses.
- 2. We find a traditional power law conversion from LOSVD to cluster mass pre-

dicts the true cluster mass with little bias or scatter for clusters Log M/M $_{\odot}$ = 14.5 and above. Below this mass the bias and scatter rapidly increases. In contrast, the probability based and ML based cluster mass estimators are able to predict cluster mass with similar or smaller scatter across all cluster masses. The scatter further decreases when the probability based and ML estimators are combined with other cluster observables besides the LOSVD. For HETDEX-like observations and clusters with 13 < Log M/M_{\odot} < 14.5, we find the ML $_{\sigma,z,N_{gal}}$ method results in the smallest scatter. Below Log M/M $_{\odot}$ = 13 no method with Survey observations gives a bias of less than 50%. For the highest mass clusters the power law method gives the lowest bias and scatter. In short, no single method is superior in all regards. The technique should be chosen to minimize the desired systematic, but we find ML $_{\sigma,z,N_{gal}}$ provides the best performance across the large range of cluster masses, and observation strategies.

- 3. In general, we find that the measured scatter of cluster masses decreases when considering Targeted versus Survey observations. Clusters at all masses can benefit from targeted follow-up observations, although the accuracy gain will be smaller than can be achieved from cluster mass prediction method changes. Targeted follow-up observations reduces the measured scatter by $\sim 10\%$ when comparing like recovery methods.
- 4. The $\sim 51\%$ cluster mass accuracy of Survey observations places approximately a 20% constraint on $\sigma_8 h^{-1}$. This can be tightened to approximately 12% with follow-up targeted observations. Most importantly, the observations from HETDEX will provide systematics checks on other studies, ultimately improving all future measurements of $\sigma_8 h^{-1}$

5. HETDEX will be able to place important, independent constraints on the amount of scatter in the optical richness-mass relationship. It will to a less extent constrain the overall normalization of the relation. This should provide an important tool in the calibration of large-area sky surveys which rely on photometric data only to estimate cluster masses.

It is the author's hope that this work may be useful to others when conducting their own research. Because this work relies heavily on (often) complex data analysis, and in order to promote transparency and reproducible science, we provide all of the code used to conduct this study at https://github.com/boada/desCluster. Regrettably, large file size prevents including the source data with the analysis routines. The authors are happy to provide them, if requested.

3. TARGETED OBSERVATIONS WITH THE VIRUS PROTOTYPE INSTRUMENT

*

3.1 Introduction

Clusters of galaxies form the largest bound objects in the universe, and as such their study is a cornerstone in modern day astronomy. Thought to form out of the primordial density fluctuations in the very early universe (e.g., Press & Schechter 1974), the number and distribution of galaxy clusters across the sky is the finger print of the cosmology imprinted on the universe at its birth.

Many large area-sky surveys both currently underway and upcoming are prioritizing the identification of clusters for both detailed studies of cosmology and for fundamental physical studies of the individual clusters. At present, the greatest number of clusters are being discovered using large millimeter wave surveys with the South Pole Telescope (SPT; Carlstrom et al. 2011) or the Atacama Cosmology Telescope (ACT; Swetz et al. 2011). These observations rely on the Sunyaev-Zel'dovich effect (SZE; Sunyaev & Zeldovich 1972) which uses the up-scattering of cosmic microwave background (CMB) photons to both identify the cluster and to estimate its mass. However, deep, wide field optical surveys, such as the Dark Energy Survey (DES; The Dark Energy Survey Collaboration 2005) and planned Large Synoptic Survey Telescope (LSST; LSST Dark Energy Science Collaboration 2012) will discover many more clusters at increasing lower mass in the near future. Such clusters will rely on follow up to better constrain their dynamical mass. But, as the number

^{*}Reprinted with permission from "Introduction: The Importance of Research" by AUTHOR et al., 2015. The Astrophysical Journal, Volume XYZ, Issue X, article id. XY, XY pp., Copyright 20XX by the American Astronomical Society.

of clusters grows to many tens of thousands, individual followup becomes unfeasible. Therefore, we rely on well calibrated observable-mass relationships to estimate the masses of the observed clusters.

Unfortunately, mass is not directly observable, so we must estimate it through another observable. Observed X-ray temperatures and luminosities correlate tightly with a cluster's dynamical mass (e.g., Mantz et al. 2010; Rykoff et al. 2014), especially for dynamically relaxed clusters (e.g., Mantz et al. 2015). Observations of the SZE can provide accurate estimations of mass (e.g., Vanderlinde et al. 2010; Sehgal et al. 2011), but can be effected by the physics of the intracluster medium (e.g., Pipino & Pierpaoli 2010) and the ability to detect low mass galaxy clusters is currently limited by technology (e.g., Carlstrom et al. 2002). The richness (e.g., Abell 1958; Rykoff et al. 2012), the weighted number of cluster member galaxies within a scale aperture, is a promising method which has been shown to correlate strongly with cluster mass (e.g., Rozo et al. 2010).

Of the methods listed, the richness is most promising for future large area-sky surveys as it relies on photometry only. It is already being used in many optical studies (e.g., Ruel et al. 2014; Sifón et al. 2015a), but the absolute mass scale and more importantly the intrinsic scatter in the relation are currently under active investigation (e.g., Rozo et al. 2015a; Saro et al. 2015; Baxter et al. 2016; Farahi et al. 2016; Simet et al. 2016). These systematics remain the major source of uncertainty in deriving cosmological constraints from cluster abundances and testing structure growth in a Λ CDM universe. To realize fully the promise of the large samples from DES and LSST, we must measure both the absolute mass scale and scatter in the optical-richness mass estimator using independent methods.

In this work, we present a pilot study of ten massive galaxy clusters using integral field spectroscopy with the Mitchell Spectrograph as a pilot program for the Hobby Eberly Dark Energy Experiment (HETDEX; Hill et al. 2008b). HETDEX is a forthcoming blind spectroscopic survey that could potentially be used to accurately calibrate the optical richness-mass relation for a significant number of galaxy clusters at both extremes of the mass scale. At present, because HETDEX is designed to measure the dark energy equation of state at $z \sim 2$, and the applicability to galaxy cluster science has not yet been investigated. We began this investigation with Boada et al. (2016a) (hereafter Paper I). The second installment of this two part work, the goal of this study is to obtain spectroscopic redshifts of the individual cluster galaxies, determine the velocity dispersion and to infer each cluster's dynamical mass. This allows us to compare the inferred mass with other mass estimators (e.g., the clusters in this sample have deep *Chandra* or *XMM-Newton* X-ray data, and richness measurements) with the aim of better characterizing the scatter in the richness-mass relation, $\sigma_{M|\lambda}$. The ability of HETDEX to further constrain optically derived masses is of paramount importance to upcoming large photometric surveys. This study provides insight into how well a HETDEX type survey will constrain mass estimations and cosmological parameters in the future.

The layout of this work is the following. In Section 3.2 we discuss the target selection and the setup of the Mitchell Spectrograph used to conduct the observations. Section 3.3 describes the methods and tools used to reduce the observations. We present our redshift catalog, cluster members and cluster dynamical properties in Section 3.4. We discuss a machine learning based alternative to a traditional power law estimate of cluster mass in Section 3.5 In Section 3.6, we compare and discuss the different mass estimations and remark on the applicability of these methods for the study of the optical richness-cluster mass relationship. Finally, we summarize this work in Section 3.7.

Throughout this paper, we adopt the following cosmological model: $\Omega_{\Lambda} = 0.714$,

 $\Omega_M = 0.286$, $\sigma_8 = 0.82$ and $H_0 = 70$ km s⁻¹Mpc⁻¹, assume a Chabrier initial mass function (IMF; Chabrier 2003), and use AB magnitudes (Oke, 1974).

3.2 Design

3.2.1 Target Selection

We select clusters at z=0.2-0.3 using two different methods and for two different purposes. Eight of the ten clusters are optically selected from Rykoff et al. (2012) using the *Sloan Digital Sky Survey* (SDSS; Blanton et al. 2001) Data Release 8. These clusters have high $(M_{DM}>8\times10^{14}{\rm M}_{\odot})$ optically traced mass (richness; discussed further below), and are a combination of relaxed and unrelaxed systems. The last two clusters are selected from the *XMM Cluster Survey* (XCS; Mehrtens et al. 2012) and correspond to individually measured X-ray temperatures of $T_X<2.5$ keV. Such X-ray temperatures have inferred masses of $10^{14}{\rm M}_{\odot}>M_{DM}>5\times10^{13}{\rm M}_{\odot}$.

Table 3.1: Basic properties of the ten galaxy clusters targeted with the MS: Column 1: Our internal cluster name; Column 2: An alternative cluster name; Column 3: The right ascension of the cluster; Column 4: The declination of the cluster; Column 5: the nominal (often photometric) cluster redshift; Column 6: The date of our observations.

Cluster	Alt. Name	RA (J2000)	DEC (J2000)	z	Obs. Date
(1)	(2)	(3)	(4)	(5)	(6)
c16p23+0p06	SOGRAS J0104+0003	01:04:55.369	+00:03:36.28	0.277	August, 2012
c203p83+41p0	Abell 1763	13:35:20.092	+41:00:04.12	0.223	May, 2012
c210p2+02p8	Abell 1835	14:01:01.965	+02:52:42.63	0.252	May, 2012
c234p2+24p4	MaxBCG J234.23439+24.40877	15:36:56.253	+24:24:31.60	0.226	May, 2012
c250p08+46p7	Abell 2219	16:40:19.812	+46:42:41.51	0.225	May, 2012
c260p61 + 32p13	Abell 2261	17:22:27.182	+32:07:57.24	0.224	May, 2012
c319p70 + 0p56	MaxBCG J319.70446+00.56035	21:18:49.069	+00:33:37.33	0.270	August, 2012
c328p33+0p19	Abell 2392	21:54:22.936	+00:37:23.48	0.223	August, 2012
XMMXCSJ124425.9+164758.0	WHL J124425.4 $+164756$	12:44:25.203	+16:47:48.00	0.235	May, 2013
XMMXCSJ125650.2+254803.2		12:56:49.999	+25:48:02.99	0.280	May, 2013

The optically selected clusters have many more members (see Table 3.3) than the X-ray selected clusters which allows us to investigate the accuracy of our mass recovery methods at both cluster and group scales. See Table 3.1 for individual cluster sky positions and associated parameters.

3.2.2 The Mitchell Spectrograph

The Mitchell Spectrograph (MS; formerly known as VIRUS-P; Hill et al. 2008a) is an integral field unit (IFU) in a square array of 246 4″24 diameter optical fibers. This provides a 1′.7 × 1′.7 field-of-view (FOV) with a 1/3 filling factor. A Fairchild Instruments, 2k×2k charge couple device (CCD) images the spectra from each of the 246 fibers. The spectra have approximately a gaussian profile with a 5 pixel full width at half maximum (FWHM), and each are separated by 8 pixels to minimize the amount of cross-talk between the fibers.

There are two spectral configurations available on MS, a blue setup, 3600-5800 Å and a red setup, 4600-6800 Å. In addition, there are four volume phase holographic gratings available to disperse the light. For the purpose of this work, the lowest resolution, ~ 5 Å, grating is used. Using 1×1 binning, this translates into a spectral dispersion of ~ 1.11 Å pixel⁻¹.

3.2.3 Observations

We use MS to target the galaxy clusters using the 5 Å grating covering a wavelength range of 4400 – 6600Å. With this instrumental setup and for galaxies z = 0.2 - 0.3, we will cover the Ca H&K, Fe I (λ 4383), H- δ , H- γ and H- β absorption features. Additionally, we cover emission of the [O II] ($\lambda\lambda$ 3727, 3729) doublet, H- β , and [O III] ($\lambda\lambda$ 4960, 5008), which allows for the identification of actively star-forming galaxies.

The FOV of the MS corresponds to an approximately 0.4 Mpc square region at

Figure 3.1: SDSS r-band image of an optically selected galaxy cluster selected from the SDSS DR8 data. The field is centered on the BCG, which has a measured spectroscopic redshift from SDSS of z=0.277. The large black circle shows the region $R<0.5~{\rm Mpc}~(r<2.3)$. Nearly all galaxies within this region are associated with the cluster. The four MS fields (and fiber positions for the first dither position) are overdrawn on the field, illustrating how we survey each cluster.

z=0.2-0.3. To ensure adequate coverage of the cluster out to a radius of 0.5 Mpc, we use four MS pointings per cluster. Figure 3.1 shows an example of the pointing pattern done on each cluster. The northeast, northwest, southwest, and southeast fields with the fiber positions are shown in black, blue, green and purple respectively. The entire field is centered on the brightest cluster galaxy (BCG) and the individual tiles are shifted away. Furthermore, each of the four tiles are dithered at relative positions $(\Delta \alpha, \Delta \delta) = (0.0, 0.0, 0.0)$, (-3.6, -2.0, 0.0), and (0.0, -4.0) from the origin to ensure full coverage of the FOV. Therefore, there are 736 individual spectra for each of the four fields or 2952 measurements for the cluster as a whole.

We have set exposure times to achieve spectra with signal-to-noise ratios (SNRs) ~ 3 per spectral element in the continuum for objects with g=21.3 mag (which corresponds to approximately $0.2L^*$ for cluster galaxies at z=0.2). We base the expected SNR on the experience of Shetrone et al. (2010), who achieves SNR = 100 per pixel in the continuum for point sources with B = 16.5 mag at 4000 Å in 4800 seconds. Therefore, for our faintest objects with B \approx g = 21.3 mag, we expect to achieve SNR = 3 per spectral element (averaged over 4.6 pixels) in 3600 seconds per pointing. We require 4 pointings to cover the full area for each cluster. Therefore, we require 1 hr/pointing \times 4 pointings = 4 hrs on sky per cluster. Even though the field is dense with galaxies, there is sufficient "blank" area to allow for enough "sky" fibers for background subtraction. Therefore, no individual "sky" exposures are required.

3.3 Data Reduction

All data are reduced using P3D¹ (Sandin et al., 2010) a general-use IFU reduction pipeline. The first step is to min/max-filtered average combine a minimum of 20 bias

¹http://p3d.sourceforge.net/

images from each night into a master-bias image, which is subtracted from each other image from the same night. Secondly, a trace mask is created from flat-fielding on the dusk or dawn sky. The fibers are fairly densely packed, so to determine the position of each spectrum in the dispersion direction each spectrum is extracted using a multiprofile deconvolution approach (Sharp & Birchall, 2010) to account for cross talk between fibers. Third, a dispersion mask for the wavelength calibration from images of Hg+Cd (for the May, 2012 observations) or Cd+Ne (for all other observations) arc lamps. The residuals between the derived wavelength solution and the known wavelengths of the emission lines is calculated from a fifth order polynomial and lie between 0.02 - 0.06 Å. Finally, a fiber flat is created from the sky flats by a min/max-filtered average combine as in step one.

All that remains is the extraction of the science images, however there are several steps in this process. First, the science frames are bias subtracted. Next each frame is cleaned of cosmic ray hits using the PyCosmic (Husemann et al., 2012) integrated into P3D with the default parameters. Third the extracted spectra are wavelength calibrated using the previously created dispersion mask. Any flexure in the instrument between the images of the arc lamps and science frames is accounted for by aligning the dispersion mask to bright telluric lines (namely O_I at 5577 Å). Finally the extracted spectra are normalized using the transmission in the fiber flat from above.

The result of this process is a row-stacked spectrum where each of the 246 fibers are stored individually. A table of fiber positions maps each spectrum onto the image plane. However, for many of our observations a precise astrometric solution for the fiber positions is unknown. The position of the individual fibers can be recomputed by observing dense star fields after each telescope service in which the MS is involved. To correct our fiber positions we first identify fibers which observe stars and identify

which fibers the astrometric solution indicates should contain stars. In many cases the stars are located between fibers. To account for this we use a simple Gaussian centroid weighted by the observed flux $5000 \le \lambda \le 5010$ Å to find the correct sky position of the star. We then shift the fiber grid to match the sky position of the stars as reported by the SDSS. For each observation we use as many stars as possible and combine the shifts to generate a mean offset. This offset is applied to all dithers of each observation. There is little need to obtain highly accurate fiber positions as the 4".24 fibers insures that reasonably correct positions will identify which fibers should and should not contain galaxies.

A simple sky subtraction scheme is used to remove the majority of sky contamination. Because the majority of fibers for any single pointing are empty, we use a 3σ clipped median selection to identify sky fibers and a simple mean to combine them. The result is then subtracted from every fiber. This adequately removes the bulk of sky emission lines, but often fails to completely remove the O_I line at 5577 Å. This line is masked throughout the determination of redshifts.

After reducing all spectra we find an average residual mismatch in the wavelength solution of $\sigma_{\lambda} \sim 0.4$ Å or 24 km s⁻¹ at 5000 Å. Fitting gaussians to each of the arc lines we find an average instrumental resolution of ~ 144 km s⁻¹, and combining the two in quadrature gives a total instrumental resolution of $\sigma_{inst} = 146$ km s⁻¹, similar to that of other studies using the MS (e.g., Murphy et al. 2011; Blanc et al. 2013).

3.4 Analysis

The analysis of our reduced spectra occurs in two stages. First we derive individual redshifts using the observed galaxies, and then we work with the redshifts collectively to identify which galaxies likely belong to the galaxy cluster in question. This section outlines the steps required in each of those processes.

Figure 3.2: SDSS r image of cluster c203p83+41p0. The symbols show the position of observed galaxies. Blue circles indicate galaxies with Q=0 or Q=1 spectroscopic redshifts, red squares indicate galaxies where a redshift could not be reliably determined, and the orange diamond corresponds to galaxies with pre-existing redshifts from the SDSS. Right: Example spectra, with major features identified, showing the three quality flags. Q=0 represents the best quality spectra and Q=2 the poorest quality. Q=0, and Q=1 are sufficient to measure galaxy redshifts.

Individual galaxy selection is done through cross matching the IFU fiber sky positions with galaxies selected from the SDSS. We select all galaxies brighter than 22 mag in g within 3' of the BCG in each cluster. For each galaxy we query the SDSS for photometry in all SDSS bands (ugriz), photometric redshift, and any spectroscopic redshift.

Because of the large number of fiber pointings, only fibers which overlap with SDSS sources are considered for redshift analysis. The left panel of Figure 3.2 shows cluster c203p83+41p0 with the SDSS detections and measured redshifts overlaid. Orange diamonds are galaxies with SDSS available redshifts. The blue circles and red squares correspond to galaxies where a redshift was and was not determined from the observed spectra. See Figure ?? for similar representation of the remaining nine clusters.

3.4.1 Redshift Catalog

A redshift solution is determined for each galaxy by cross-correlating (Tonry & Davis, 1979) each of the spectra with six galaxy template spectra from the SDSS² using the XCSAO task in the IRAF RVSAO package (Kurtz et al., 1992; Kurtz & Mink, 1998). For each galaxy we select the spectral template with the highest cross-correlation coefficient and visually inspect the fit. During visual inspection a "Q" or quality flag is assigned. High-confidence redshifts, clearly determined by at least two obvious features (such as the Ca H, K and E absorption features), receive Q=0, spectra with only a single strong feature (e.g., [OII] emission) are assigned Q=1 and redshifts resulting from enigmatic features are assigned Q=2. Figure 3.2 shows representative example spectra for each of the Q flags. For the determination of cluster properties we only consider Q=0 and Q=1 quality flags.

²http://classic.sdss.org/dr7/algorithms/spectemplates/index.html

Figure 3.3: Redshift recovery fractions across all clusters. The bar heights represent the fraction of the total redshifts with the respective Q value at a particular magnitude. For example, $\sim 40\%$ of the Q=2 redshifts have $m_r=20.5-21$. We find a general decrease in redshift quality with increasing m_r .

Figure 3.3 shows the breakdown of Q values for the redshifts across all clusters. We compute 447 redshifts, of which 44% have Q = 0, 27% have Q = 1 and 29% have Q = 2. We find a general decrease in Q flag with increasing m_r . Approximately 30% of the Q = 0 redshifts correspond to galaxies with $19 < m_r < 20$ whereas about 40% Q = 2 galaxies have $m_r = 20.5 - 21$.

Table 3.2: Spectroscopic redshifts for galaxies in c203p8+41p0 measured with the MS: Column 1: The telescope pointing; Column 2: The dither position; Column 3: The fiber number; Column 4: The right ascension of the galaxy; Column 5: The declination of the galaxy; Column 6: The the observed SDSS r magnitude; Column 7: The galaxy redshift; Column 8: The redshift Q flag; Column 9: The galaxy membership information; Column 10: The clustercentric radial distance; Column 11: The LOSV of the galaxy with respect to the cluster. See the appendix for similar tables for the remaining nine clusters.

tile	dither	fiber	RA (J2000)	DEC (J2000)	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
NE	1	14	13:35:27.004	+41:01:36.20	20.47	0.2019 ± 0.0003	1	•••	0.40	-6945 ± 146
NE	1	111	13:35:24.177	+41:00:54.16	20.10	0.1178 ± 0.0001	1		0.15	-27397 ± 63
NE	1	154	13:35:23.853	+41:00:33.19	19.28	0.2214 ± 0.0002	0		0.18	-2214 ± 83
NE	2	6	13:35:21.777	+41:01:34.15	20.38	0.1691 ± 0.0002	1		0.27	-14929 ± 102
NE	2	14	13:35:26.632	+41:01:33.06	20.95	0.0403 ± 0.0003	0	•••	0.09	-46214 ± 131
NE	2	63	13:35:20.998	+41:01:08.49	17.90	0.2381 ± 0.0001	0	\checkmark	0.25	1849 ± 49
NE	3	22	13:35:22.879	+41:01:24.60	19.76	0.2386 ± 0.0003	0	\checkmark	0.33	1961 ± 131
NE	3	25	13:35:24.669	+41:01:26.21	19.54	0.1444 ± 0.0001	0		0.25	-20924 ± 58
NE	3	73	13:35:18.447	+41:01:00.60	19.63	0.0779 ± 0.0001	0	•••	0.09	-37080 ± 29
NE	3	106	13:35:20.957	+41:00:50.19	18.83	0.2235 ± 0.0002	0	\checkmark	0.17	-1691 ± 78
NE	3	147	13:35:19.341	+41:00:31.82	19.48	0.2380 ± 0.0001	0	•••	0.11	1822 ± 73
NE	3	185	13:35:24.990	+41:00:18.06	20.51	0.1887 ± 0.0002	1	•••	0.18	-10169 ± 83
NE	3	206	13:35:20.095	+41:00:04.12	16.39	0.2274 ± 0.0001	1	\checkmark	0.00	-763 ± 34
NE	3	210	13:35:22.528	+41:00:05.00	19.59	0.2242 ± 0.0001	1	\checkmark	0.10	-1543 ± 49
NW	1	127	13:35:16.384	+41:00:47.33	17.43	0.2377 ± 0.0001	0	\checkmark	0.23	1752 ± 68
NW	1	167	13:35:14.400	+41:00:29.73	19.69	0.2333 ± 0.0002	0	\checkmark	0.26	690 ± 117
NW	2	27	13:35:17.216	+41:01:27.25	20.21	0.1512 ± 0.0002	0	•••	0.24	-19279 ± 117
NW	2	63	13:35:12.486	+41:01:10.57	18.84	0.1638 ± 0.0001	0	•••	0.31	-16210 ± 44
NW	2	73	13:35:09.729	+41:01:03.49	20.00	0.2402 ± 0.0001	1	•••	0.50	2367 ± 58
NW	2	165	13:35:12.728	+41:00:25.16	18.74	0.2394 ± 0.0001	0	\checkmark	0.33	2155 ± 58
NW	2	171	13:35:16.434	+41:00:25.31	21.68	0.1617 ± 0.0002	1	•••	0.13	-16728 ± 121

Table 3.2 Continued

Table	0.2 001	ninaca								
tile	dither	fiber	RA (J2000)	DEC (J2000)	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
NW	2	173	13:35:17.911	+41:00:27.16	19.49	0.1039 ± 0.0002	0	•••	0.06	-30763±107
NW	2	220	13:35:10.891	+41:00:03.07	19.45	0.2994 ± 0.0002	0		0.47	16739 ± 102
NW	2	239	13:35:13.582	+40.59.54.58	20.24	0.2316 ± 0.0002	1	\checkmark	0.28	265 ± 92
NW	3	142	13:35:16.981	+41:00:35.55	19.44	0.2233 ± 0.0002	0	\checkmark	0.17	-1745 ± 78
SE	1	27	13:35:25.896	+40.59.52.05	19.35	0.2295 ± 0.0004	1	\checkmark	0.25	-238 ± 170
SE	1	46	13:35:19.779	+40.59:41.85	18.73	0.2293 ± 0.0002	0	\checkmark	0.08	-284 ± 107
SE	1	86	13:35:26.506	+40.59:28.30	20.59	0.2255 ± 0.0002	1	\checkmark	0.29	-1205 ± 112
SE	1	123	13:35:22.588	+40.59:11.02	18.17	0.2307 ± 0.0002	0	\checkmark	0.22	44 ± 102
SE	1	129	13:35:26.254	+40:59:08.50	19.42	0.1282 ± 0.0002	0		0.20	-24863 ± 107
SE	2	164	13:35:20.600	+40.58:48.65	20.02	0.2938 ± 0.0001	0		0.33	15369 ± 53
SE	3	157	13:35:25.857	+40:58:53.46	18.31	0.1701 ± 0.0001	0		0.28	-14684 ± 29
SE	3	171	13:35:25.332	+40:58:48.88	19.49	0.2400 ± 0.0003	0		0.36	2296 ± 126
SE	3	198	13:35:24.191	+40.58:35.23	20.83	0.1177 ± 0.0002	1	•••	0.21	-27419 ± 87
SW	1	41	13:35:17.295	+40:59:47.40	19.87	0.2231 ± 0.0002	0	•••	0.13	-1808 ± 107
SW	1	114	13:35:17.529	+40.59:15.55	20.60	0.2493 ± 0.0003	1	•••	0.22	4561 ± 156
SW	1	224	13:35:13.709	+40:58:25.25	20.03	0.1276 ± 0.0003	0	•••	0.28	-25006 ± 126
SW	1	227	13:35:15.509	+40.58:27.26	19.27	0.2328 ± 0.0002	0	\checkmark	0.41	559 ± 83
SW	1	245	13:35:17.832	+40:58:19.02	19.29	0.2211 ± 0.0003	1	•••	0.39	-2275 ± 136
SW	1	246	13:35:18.529	+40:58:20.43	21.31	0.1970 ± 0.0002	1	•••	0.34	-8140 ± 117
SW	2	24	13:35:15.282	+40.59.51.52	21.29	0.2225 ± 0.0002	1	\checkmark	0.20	-1934 ± 97
SW	2	29	13:35:18.391	+40:59:50.06	18.17	0.2405 ± 0.0001	0	•••	0.09	2440 ± 44
SW	2	39	13:35:15.539	+40:59:43.86	18.73	0.2263 ± 0.0002	0	\checkmark	0.20	-1023 ± 107
SW	2	53	13:35:15.211	+40:59:38.90	18.73	0.2412 ± 0.0001	0	\checkmark	0.23	2593 ± 58
SW	2	59	13:35:09.857	+40.59:32.82	19.83	0.2334 ± 0.0002	1	\checkmark	0.45	697 ± 107
SW	2	65	13:35:13.725	+40.59:31.94	20.58	0.3156 ± 0.0003	0	•••	0.37	20688 ± 156
SW	2	86	13:35:17.737	+40:59:25.25	19.71	0.2236 ± 0.0002	0	\checkmark	0.17	-1684 ± 78

Table 3.2 Continued

tile	dither	fiber	RA (J2000)	DEC (J2000)	r (mag)	redshift	\overline{Q}	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
\overline{SW}	2	90	13:35:11.098	+40:59:19.79	20.41	0.2354 ± 0.0002	0	√	0.42	1195±97
SW	3	26	13:35:16.763	+40.59:48.52	17.94	0.2250 ± 0.0001	0	\checkmark	0.15	-1334 ± 34
SW	3	37	13:35:14.503	+40.59:43.50	19.79	0.2428 ± 0.0002	0	\checkmark	0.26	2979 ± 107
SW	3	65	13:35:13.944	+40.59:28.57	18.60	0.2362 ± 0.0001	0	\checkmark	0.29	1385 ± 58
SW	3	73	13:35:10.002	+40.59:23.42	19.52	0.2307 ± 0.0001	0	\checkmark	0.45	39 ± 73

XCSAO reports errors on the cross-correlation redshift. Previous work (e.g., Quintana et al. 2000; Sifón et al. 2015b) show the cross-correlation velocity uncertainties by up to a factor of two. We report our redshift uncertainties as twice the uncertainty estimated by XCSAO.

Redshift information, with Q=0 or Q=1 spectra, for each galaxy are given in Table 3.2. The right panel of Figure 3.2 shows selected spectra from cluster c203p83+41p0 with corresponding best fitting SDSS template. See the appendix for similar examples from the remaining nine clusters.

3.4.2 Cluster Membership

The determination of cluster membership begins with the calculation of the cluster central redshift. This serves as a zero-point from which all other galaxies will be compared. Therefore, the accurate determination of the cluster redshift (z_c) is crucial to the reliability of all following measurements. An incorrect cluster redshift introduces errors into the measured line of sight velocity (LOSV) and corresponding dispersion, which, in turn, contributes to errors associated with dynamical mass and radius.

In simple terms, the cluster redshift is the mean of the redshifts of all galaxies associated with the cluster. However, because the standard mean can be quite sensitive to outliers or otherwise contaminated data, we require a more resistant statistic, and turn to the biweight location estimator (Beers et al., 1990) which provides improved performance. The biweight location does not give us the freedom to use all galaxies measured but provides protection against a small number of interlopers. Therefore, the process of determining z_c and the cluster membership are linked. We begin with the nominal z_c (see Table 3.1) and apply and initial velocity cut of 5000 km s⁻¹ to remove any foreground or background galaxies. Then, using the member-

ship determination techniques described below we determine the member galaxies from which a new z_c is calculated. The entire process is repeated until convergence, usually within a single iteration. The cluster central redshift and associated 68% uncertainties, derived from bootstrap shuffling, are given in Table 3.3.

To reject the galaxies not associated with the targeted cluster, we employ two methods. For clusters with 20 or more Q = 0 or Q = 1 redshifts we use the "shifting gapper" method of (e.g., Fadda et al. 1996; Crawford et al. 2014), which combines both the positional and velocity information. Galaxies are first sorted by their radial separation from the cluster center (See Table 3.1) and binned into radial bins of at least 10 members. Once in the radial bins, the galaxies are sorted by the LOSV,

$$LOSV = c \frac{(z - z_c)}{(1 + z_c)} \tag{3.1}$$

where c is the speed of light in km s⁻¹, z is the redshift of the individual galaxy and z_c is the redshift of the cluster. Any galaxy with a LOSV greater than 1000 km s⁻¹ of a neighboring galaxy (the velocity "gap") is rejected as an interloper. The procedure repeats until the number of galaxies stabilizes in the bin. Once the members have been identified we recompute z_c , LOSVs, and begin the membership selection again. This entire process is repeated until the number of member galaxies stabilizes.

For galaxy clusters with fewer than 20 Q=0 or Q=1 redshifts we employ the general of membership determination method outlined in Wilman et al. (2005); Connelly et al. (2012). We assume an initial velocity dispersion, $\sigma(v)$, of 500(1 + z)km s⁻¹ and apply both redshift and spatial limits given by:

$$\delta(z)_{max} = 2\sigma(v)/c \tag{3.2}$$

and

$$\delta(r)_{max} = \frac{c \times \delta(z)_{max}}{bH(z)} \tag{3.3}$$

where b = 9.5 is the aspect ratio, $H(z) = H_0 E(z)$ and $E(z) = \sqrt{\Omega_m (1 + z^3) + \Omega_\Lambda}$. We select all galaxies with $|z - z_c| < \delta(z)_{max}$ and radial separation, $R, < \delta(r)_{max}$. During each step, we update both the z_c and $\sigma(v)$ using the identified members and this process is repeated until the number of member galaxies converges.

To calculate the velocity dispersion in this membership determination method, we use the gapper estimator (Beers et al., 1990) which provides accurate dispersions for groups as small as five members (Hou et al., 2009). It is given by

$$\sigma_g = \frac{\sqrt{\pi}}{n(n-1)} \sum_{i=1}^{n-1} w_i g_i$$
 (3.4)

where the weights are $w_i = i(n-i)$ and $g_i = x_{i+1} - x_i$ are the gaps between ordered pairs of LOSVs. The dispersion estimate is corrected by 1.135 to account for the 2σ redshift space cut applied during membership determination. We follow this method for the calculation of the dispersion for consistency in member determination only. The final velocity dispersion of each cluster is determined din the following subsection.

Membership information for the galaxies observed in and around cluster c203p83+41p0 is given in Column 9 of Table 3.2. See the appendix for the membership of the other observed clusters.

To compute the line-of-sight velocity dispersion (LOSVD) of each cluster we follow the maximum likelihood method of Walker et al. (2006). We assume that the each galaxy is drawn from a Gaussian distribution centered on the mean cluster

velocity and we maximize the log of the product of each cluster member's individual Gaussian probabilities (their Eq. 8):

$$\ln(p) = -\frac{1}{2} \sum_{i=1}^{N} \ln(\sigma_i^2 + \sigma_p^2) - \frac{1}{2} \sum_{i=1}^{N} \frac{(v_i - \langle u \rangle)^2}{(\sigma_i^2 + \sigma_p^2)} - \frac{N}{2} \ln(2\pi).$$
 (3.5)

where σ_p , $\langle \mu \rangle$, and σ_i is the LOSVD, the average radial velocity and the error on the individual LOSVs respectively. To maximize the probability, we use EMCEE³ (Foreman-Mackey et al., 2013), a Monte Carlo Markov Chain (MCMC) sampler, based on affine-invariant ensemble sampler (see Goodman & Weare 2010 for details on affine-invariant samplers). We set priors on $\langle \mu \rangle$, and σ_p by requiring that $\langle \mu \rangle$ lies between the maximum and minimum LOSV and that σ_p be positive and less than 1400 km s⁻¹which corresponds approximately to a 10¹⁶ M_{\odot} cluster at z=0, larger than any expected cluster mass in our sample. We draw twenty thousand samples from the posterior probability distribution and report a measured LOSVD as the median value of the posterior probability distribution with 68% error bars defined as the square root of the second moment of the same distribution.

We adopt the scaling relation of Munari et al. (2013) to estimate cluster masses based solely on their LOSVD. The scaling relation is based on the work of Evrard et al. (2008) and has the form:

$$M_{200c} = \frac{10^{15}}{h(z)} \left(\frac{\sigma_{1D}}{A_{1D}}\right)^{1/\alpha} M_{\odot}$$
 (3.6)

where $A_{1D} = 1177 \pm 4.2 \text{ km s}^{-1}$, $\alpha = 0.634 \pm 0.0021$, h(z) = H(z)/100, and σ_{1D} is the LOSVD. The relation is calibrated through a cosmological simulation using

74

³http://dan.iel.fm/emcee/current/

galaxies (instead of dark matter particles or subhalos) as the tracers of LOSVD. This choice of tracer results in dynamical masses which are 16 - 26% lower (e.g., Kirk et al. 2015; Sifón et al. 2015b) than masses obtained through the scaling relation of Evrard et al. (2008), which has been calibrated using dark matter particles alone. This is due dynamical effects which act upon the galaxies but not the dark matter particles.

3.5 Machine Learning Methods

The goal of this section is to describe the methods used to create a suitable training set for a machine learning (ML) method and to then predict the dynamical masses of the ten clusters in our sample. In order to accomplish this, we must first assign Q flags to a mock galaxy catalog which, as best possible, accurately reflect the actual observations described previously. This will allow us to construct a catalog which contains galaxies which closely resemble the galaxies observed with the MS.

We begin the discussion with a brief introduction to supervised ML methods and a discussion about the creation of the mock galaxy catalogs used in this analysis. We then discuss the process used to assign the Q flags and conclude with an overview of the method we use to make cluster mass predictions.

3.5.1 Supervised Machine Learning

ML is a subfield of computer science which provides tools to give computers the ability to infer the relationship between known variables without that relationship being explicitly programed. Supervised ML provides the algorithm with a set of known inputs, "features" in ML speak, and a set of desired outputs or "targets." The relationship between the features and targets is determined through the use of a training set. The ML algorithm is first provided with both the features and targeted which it uses to infer their relationship, then it is given a new set of features which

it uses to predict the desired targets.

Because there are many different ML algorithms the initial training set is often broken into a training and testing set (e.g., Ripley 2007; Xu et al. 2013; Ntampaka et al. 2015a,b; Acquaviva 2016). For both sets the desired targets are known, so they can be used to both train the ML method and to test how well it predicts the desired targets. The performance achieved can be used to select the best ML method. Once an algorithm is selected we can attempt to optimize the model's input parameters (often called hyper-parameters) by further splitting the training sample into a cross-validation (CV) set. We use 5-fold CV throughout.

Just as in Paper I, we rely on an ensemble ML method (e.g., Caruana & Niculescu-Mizil 2006) where we use many estimators and then combine them at the end to make the best possible prediction. The combination of estimators come in two flavors. Averaging methods average the final estimates together into a single prediction, and boosting estimators which seek to boost the predictive power by combining weak estimates at each step in the learning process.

A forest of randomized decision trees (or random forest; RF; Tin Kam Ho 1995, 1998) is a type of ensemble method where the trees can be visualized as flow chart. The path through the flow chart (the trees) is decided by the values of the training features at each fork. RF use a random subset of the train data to decide which fork should be followed. The final prediction is the mean of each tree's final value. We use RF methods implemented in the Scikit-Learn (Pedregosa et al., 2012) Python library.

3.5.1.1 The Buzzard Catalog

We require a catalog which provides both the observable features and desired targets in order to train our ML method. The "Buzzard" mock galaxy catalog

contains 238 million galaxies with r mag < 29 and $z \le 8.7$. The galaxies are located in a 398.49 degree² portion of the sky and their luminosities are derived from a combination of Sub-halo Abundance Matching (SHAM; Reddick et al. 2013) and Adding Density Dependent Spectral Energy Distributions (ADDSED). The galaxies are assigned to the dark matter halos identified by the ROCKSTAR halo finder (Behroozi et al., 2013). The catalogs assume the following cosmological parameters: $\Omega_{\Lambda} = 0.714$, $\Omega_{M} = 0.286$, $\sigma_{8} = 0.82$ and $H_{0} = 70$ km s⁻¹Mpc⁻¹. See Paper I for a more thorough description of the process used to create the catalogs.

3.5.2 ML Based Observations

In order to create a mock dataset which resembles our actual observations we first rely on the RF method as a classifier. The goal is to assign each galaxy in the Buzzard catalog a Q flag of either 0, 1 or 2 based on their observed magitudes in the five SDSS filters, ugriz, the ten combinations of possible colors, and the square of those colors. Acquaviva (2016) uses a similar feature set to predict the metallicity of SDSS galaxies with good effect.

The RF classifier is tasked with learning which combinations of magnitudes and colors best separates the three possible Q flags and to assign each Buzzard galaxy into one of those classes. The classifier is trained using the redshift catalog derived from our cluster observations (Section 3.4.1), and the 447 observations are split into a training, CV and test sample. We use the training set to train the ML method, the CV set to tune the model hyper-parameters and the test sample to verify how well our model classifies each galaxy. We also perform recursive feature elimination to remove features which contribute very little to the classification.

We compute two statistics to evaluate how well our model classifies the galaxies, the recall and the precision. The recall is the number predicted compared to the true number of classifications, N_{pred}/N_{true} . The precision is the number of correct predictions compared to the total number of predictions for each class, N_{corr}/N_{pred} . In both cases the metrics range from zero to one, and higher numbers are better. For our optimized RF classifier we achieve overall recall and precision of $\sim 60\%$. For the individual classes (Q flags), the RF classifier performs significantly better when classifying Q=0 and Q=2 galaxies, with recall rates well above 70%. The Q=1 training galaxies have significant overlap between Q=0 and Q=2 (see Figure 3.3) which leads to a recall for Q=1 galaxies of only $\sim 20\%$.

This is a difficult problem. Figure 3.3 shows there is significant overlap between the Q flags. In our testing, we find no combination of features which wholly separates the Q flags, providing a high level of confusion for the RF. We find similar levels of recall and precision for other ML classification methods besides RF.

We assign each galaxy in the Buzzard catalog with z < 0.5 and g < 22 mag a Q flag using the optimized RF classifier trained with all 447 observations. Figure 3.4 shows the Q flag distribution as a function of r magnitude. The total distribution of the 2.7 million Q flags is 45.6% Q = 0, 24.7% Q = 1, and 29.6% Q = 2. This distribution closely resembles the fractions of the actual observations with some Q = 1 galaxies misclassified as Q = 0. Because we use galaxies with either Q = 0 or Q = 1 this is does not significantly bias our analysis.

3.5.3 ML Based Cluster Masses

We use the "observed" (Q = 0 and Q = 1) galaxies created in the previous subsection to construct total mass distributions of the mock clusters. For this task we again use a RF, not as a classifier but as a regressor, which predicts a cluster mass given a set of input features, such as the observed LOSVD and redshift. Similarly to our classification methods, we create an optimized ML method by splitting the

Figure 3.4: Quality flag (Q) assignments for the 2.7 million Buzzard catalog galaxies with g < 22 mag. The bar heights represent the fraction of the total redshifts with the respective Q value at a particular magnitude. The distributions resemble the actual observations in Figure 3.3. See the text for a detailed explanation of the classification process.

Buzzard catalogs into a training, CV, and testing set.

Because the cluster masses presented with this method are predictions based on the feature data, any uncertainties quoted by this method are prediction intervals not confidence intervals. Prediction intervals are an estimate of the interval encompassing future observations, with a given probability. Confidence intervals, on the other hand, describe the different moments of a population. The prediction intervals are unique to each prediction, and are often based on the underlying assumption of normally distributed residuals. RF estimators do not assume normally distributed residuals, and thus, require special treatment.

The prediction intervals for our RF estimator as based on the method of quantile regression forests (Meinshausen, 2006). The basic principle is that we record all response variables (the predictions), not simply the mean. This allows us to give the prediction as the full conditional probability distribution of all possible predictions. For brevity, we quote predicted masses as the median prediction and the 68% prediction interval as the square root of the second moment of the full conditional probability distribution.

3.5.4 The Importance of Training Features

The data used to train our ML algorithm is critical to the success of the method. We require training data which is broad enough to expose the ML method to a wide enough range of cluster parameters as not to influence the final outcome. If we use training data which include only galaxy clusters with $M < 10^{13} \text{ M}_{\odot}$, for example, then it would not be able to correctly identify clusters with higher masses.

The features of our training sample can be selected such that it does not bias the final predictions in an expected way. Figure 3.5 shows the σ and z features of the training sample from the Buzzard catalogs. The large red circles indicate the

Figure 3.5: Corner plot of the *training* data with features σ and z. The corner plots shows all of the one and two dimensional posterior probability distributions used to determine the correct cluster mass. The colored circles show the position in the Log σ -redshift plane of the ten clusters in this sample.

observed positions of our ten clusters in relation to the training data. Immediately noticeable, is that our observed clusters occupy a narrow redshift range (0.2 < z < 0.3). We also notice that seven of the ten clusters sit at the top edge of the training data in the z-Log σ plane. Because the observed clusters are separate from the training data, the accuracy of the predictions of the cluster masses will be diminished.

Effectively, the narrow redshift range where our observed clusters lie reduces the predicted cluster mass of the high mass clusters. This can be seen by moving the red points in Figure 3.5 up into the z-Log M_{200c} plane where very few clusters with 0.2 < z < 0.3 have masses above 10^{14} M_{\odot}.

To combat the effect of cluster mass under-prediction, we make two critical changes from our method presented in Paper I. First, instead of using the membership information provided by the Buzzard catalogs we observe the clusters much in the same way we have with our actual observations. We select all galaxies within 2'.3 around the center of each cluster (see Figure 3.1 for an illustration), and determine the cluster membership using the methods described in Section 3.4.2. This serves to broaden the LOSVD distribution of the training data as interloping galaxies are certainly to be erroneously included.

Secondly, we exclude the redshift information from the training features when predicting the cluster masses. This has the effect of flattening the HMF, allowing for high mass clusters to exist at all redshifts.

3.6 Results and Discussion

The goal of this work to perform a practical test of some of the potential applications of a HETDEX-like survey to cluster science. Here, we present the predicted total masses of our ten clusters and estimate the absolute scale and scatter of a richness-mass relation based on those cluster masses. Because the accuracy of the

predicted cluster masses is paramount to a well constrained richness-mass relation, we combine our results presentation with a discussion on their accuracy.

In Paper I we found that the ML based method with the LOSVD (σ) , redshift (z) and number of galaxies observed (N_{gal}) showed both the smallest bias and scatter over the largest range of cluster masses. This worked well because the training data were selected from a volume of similar size to the survey in question. As discussed previously, we modify our analysis slightly and use the power law based approach (Eqn. 3.6) and the $ML_{\sigma,N_{gal}}$ method to estimate the masses of our ten clusters.

The prediction process uses two steps. Firstly, we use a method to predict the individual masses and secondly we correct those masses based on the results of the training data. The upper panel of Figure 3.6 show the cluster mass predictions for the Buzzard catalog clusters using the power law and $ML_{\sigma,N_{gal}}$ approaches. The black diagonal line shows the perfect 1:1 relation. The lower panel of Figure 3.6 show the fractional error

$$\epsilon = (M_{pred} - M_{200c})/M_{200c} \tag{3.7}$$

as a function of true cluster mass.

Using the predicted cluster masses for the Buzzard catalog we can quantify the amount of bias, and the scatter about that bias for different bins of predicted cluster mass. The bias is correctable by simply shifting our predicted cluster mass up or down by the appropriate amount. The scatter estimates the overall mass scale uncertainty in each bin of predicted cluster mass. We report the uncertainties in our cluster mass estimates as the sum in quadrature of the either confidence interval of the power law method or the prediction interval from the ML method and the mass scale uncertainty discussed here. The problem with this is that we are about to talk

Figure 3.6: Mass predictions for the power law scaling relation (Equation 3.6) and the ML based technique with different input features as a function of true cluster mass. The bottom row of panels shows the fractional error (Equation 3.7) also as a function of true cluster mass. The solid black line shows the 1:1 relation. The solid, colored line is the median predicted mass for the targeted observing, and the colored, dashed line is the median recovered mass for the HETDEX-like observations. The shaded regions represent the 68% scatter around the median values.

about how the training data isn't like the SDSS data. So why are we going to correct our masses, PL or ML, using this data. If we aren't going to correct with it, then why go through all that exercise? We could only correct in the $10^{13} - 10^{14}$ region where we have lots of clusters.

Table 3.3: Summary of derived cluster parameters: Column 1: The cluster name; Column 2: The number of SDSS sources observed; Column 3: The number of Q = 0(1) sources; Column 4: The number of member galaxies; Column 5: The redshift of the cluster; Columns 6: The LOSVD; Column 7: The power law predicted cluster mass; Column 8: The ML predicted cluster mass.

Cluster	Sources	Q=0 (1)	Members	z_c	$\sigma \; (\mathrm{km} \; \mathrm{s}^{-1})$	${ m Log}~M_{pred}/{ m M}_{\odot}$	${\rm Log}~M_{pred}/{\rm M}_{\odot}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
c16p23+0p06	41	10 (10)	15	0.2727 ± 0.003	1194 ± 135	15.11 ± 0.14	14.58 ± 0.27
c203p83+41p0	67	35 (17)	25	0.2310 ± 0.002	1314 ± 91	15.24 ± 0.08	14.71 ± 0.47
c210p27 + 2p87	67	14(30)	16	0.2543 ± 0.003	1295 ± 115	15.22 ± 0.11	14.55 ± 0.45
c234p2+24p4	37	14 (14)	11	0.2255 ± 0.003	932 ± 189	14.83 ± 0.24	14.21 ± 0.16
c250p08+46p7	61	36 (14)	32	0.2274 ± 0.002	1183 ± 121	15.11 ± 0.12	14.96 ± 0.23
c260p61 + 32p13	61	26 (18)	23	0.2260 ± 0.002	1044 ± 154	14.97 ± 0.18	14.54 ± 0.14
c319p70 + 0p56	45	21 (8)	18	0.2750 ± 0.003	820 ± 148	14.67 ± 0.22	14.30 ± 0.12
c328p33+0p19	28	19(2)	16	0.2167 ± 0.003	547 ± 124	14.20 ± 0.27	14.04 ± 0.09
XMMXCSJ124425.9+164758.0	25	11 (8)	6	0.2316 ± 0.003	375 ± 191	13.75 ± 0.61	13.60 ± 0.14
XMMXCSJ125650.2+254803.2	15	8 (3)	3	0.2821 ± 0.006	372 ± 258	13.72 ± 0.83	13.52 ± 0.13

Table 3.3 presents a summary of the derived parameters for each cluster. We include the LOSVD, the estimated cluster redshift, and the number of member galaxies observed. We provide two predicted cluster masses, the power law based cluster mass and the $ML_{\sigma,N_{gal}}$ predicted cluster mass. We discuss the accuracy of both of these predictions in the following subsections.

3.6.2 Cluster Mass Accuracy

Unlike our simulated galaxies in the Buzzard catalogs, we do not know the true cluster mass for our ten observed clusters. Fortunately, seven of the ten have other measurements from the literature. Sifón et al. (2015a) report total cluster masses for four of our clusters. One has a reported LOSVD measurement and two have X-ray temperature measurements. We first compare our power law based cluster mass estimates to other estimates from the literature, and secondly we comment on the ML approach of predicting cluster masses.

3.6.2.1 High Mass Clusters

Total mass estimates for the four highest mass clusters are also reported by Sifón et al. (2015a). Using targeted spectra obtained with the Canada-France-Hawaii Telescope, they measure a LOSVD for each cluster. They convert the LOSVD into a dynamical cluster mass using the power law scaling relation of Evrard et al. (2008) (which is the basis of our Equation 3.6) and estimate the uncertainties using jackknife resampling.

Mass estimates for three of the four clusters overlap within the 1σ error estimates, but the fourth cluster, c210p27+2p87 (Abell 1835), differs by almost a decade. c210p27+2p87 is a relatively well studied cluster, providing several cluster mass estimates. Hoekstra et al. (2012) report a LOSVD for c210p27+2p87 of 1295±115 km s⁻¹, compared to our 1302 ± 91km s⁻¹. Geller et al. (2013) find

 $M_{200c} = (16.57 \pm 1.86) \times 10^{14} \,\mathrm{M_{\odot}}$ from the best fitting caustic mass profiles, which is similar to our reported value. Using *Chandra* X-ray observations, Bonamente et al. (2012) report a $M_{200c} = (8.35^{+0.81}_{-0.86}) \times 10^{14} \,\mathrm{M_{\odot}}$.

The predicted mass of this cluster is significantly lower than expected. Previous work (Wing & Blanton, 2013) find it has a LOSVD of 1485 km s⁻¹(they do not report an uncertainty) significantly greater than our recovered value. Wing & Blanton (2013) report a LOSVD based on 32 member galaxies within 3 Mpc of the cluster center. We observe galaxies within 0.4 Mpc (see Table A.7) which can impact our LOSVD estimates (e.g., Crawford et al. 2014). In addition, there is evidence to suggest that the cores of some galaxy clusters exhibit a smaller velocity dispersion than the outskirts (e.g., Bahcall 1977; Muriel et al. 2002). If this is the case with c328p33+0p19, it could explain why we recover such a low LOSVD. If we replace our LOSVD measurement and recompute the predicted cluster mass, we find $M_{200c} = 24.4 \times 10^{14} \,\mathrm{M}_{\odot}$.

With only six member galaxies identified, XMMXCSJ124425.9+164758.0 is near the very limit of our ability to produce accurate cluster mass estimates. Fortunately, the cluster has an measured x-ray temperature which we can use to as another estimate of mass. Its XCS data release 1⁴ (Mehrtens et al., 2012) measured temperature is $1.3^{+0.2}_{-0.3}$ KeV which equates to $M_{500c} \approx (0.41 \pm 0.08) \times 10^{14}$ M_{\odot} using the T_x -M relationship for low-temperature systems of Finoguenov et al. (2001).

We convert this predicted mass from M_{500c} to M_{200c} using the general prescription in Hu & Kravtsov (2003) to arrive at a predicted mass of $M_{200c} \approx (0.53 \pm 0.11) \times 10^{14}$ $\overline{}^4$ http://www.astro.ljmu.ac.uk/xcs/DR1/XCSDataRelease.html

 ${\rm M}_{\odot}$, in reasonable agreement with our LOSVD predicted value of $M_{200c} \approx (0.59 \pm 0.81) \times 10^{14} {\rm M}_{\odot}$.

3.6.2.4 XMMXCSJ125650.2+254803.2

The three member galaxies identified in XMMXCSJ125650.2+254803.2 do not place a statistically strong constraint on the LOSVD predicted cluster mass. It too has a X-ray temperature measurement as part of XCS. Using the same approach as with XMMXCSJ124425.9+164758.0, a measured X-ray temperature of $1.4^{+0.2}_{-0.3}$ KeV gives a predicted cluster mass of $M_{200c} \approx 0.61 \times 10^{14}$ M_{\odot}. This is about 26% higher than our LOSVD derived cluster masses.

3.6.2.5 ML Based Cluster Masses

We find many of the cluster masses predicted using the ML approach are significantly different from both the power law based masses and the values found in the literature. Specifically, we find the largest differences for the high mass clusters, and this can wholly be attributed to the training data used to inform the ML method (see the discussion in Subsection 3.5.4).

In Paper I we found significantly reduced scatter in our mass predictions through the use of ML methods. We argue that the amount of scatter and cluster mass accuracy are reasonable estimates of those for a survey such as HETDEX. In large part, this is because the cosmic volume probed by HETDEX is of similar size to that simulated by Buzzard. However, the clusters observed for this work are selected from the SDSS which covers a much larger cosmological volume. The smaller simulated volume of Buzzard leads to the issue where the training data does not accurately represent the population of clusters in question. We attempt to mitigate this problem by removing the cluster redshift as a feature of the training data and calculating our own cluster membership. The fewer training features lowers the predictive power

through an increase in both the bias and scatter (see Figure 6 in Paper I as an example).

For the ML method to accurately predict our cluster masses we would require a training simulation of similar size to the SDSS. This allows the ML to have adequate exposure to the intermediate redshift, high-mass clusters we are studying in this work. Simply, Buzzard lacks those types of clusters, which influences the ML predictions. The intervals associated with the predictions also show the effect of the training sample. The ML prediction intervals are narrower than the power law-infered confidence intervals for all clusters with masses below $10^{15} \text{ M}_{\odot}$. This is due to an abundance of training clusters in this range. Above this, there are too few clusters to give reliable predictions and the prediction interval widens to reflect that situation.

It is important to note, that the cluster mass predictions from the ML methods are not a failure of the method. Based on the training data the algorithm has seen, it has predicted cluster masses which closely resemble the observed features. Supervised ML shows incredible promise as a tool for future astrophysical investigations, but a deep understanding of how the input training data effects the target output is also required.

3.6.3 Optical Richness-Mass

We found in Paper I that HETDEX will be able to accurately estimate the absolute calibration and intrinsic scatter of the optical-richness-cluster-mass relationship for a small range of intrinsic scatters. Here we use the ten clusters observed to do the same. For our cluster mass estimates we use the masses predicted by the power law relation given in Equation 3.6.

To find a best-fitting richness-mass relation for our data we are required to fit

Figure 3.7: Richness, λ , versus total cluster mass for the clusters in our sample. The solid black like shows our best-fitting relation (Equation 3.14), the dashed line shows the relation from Farahi et al. (2016), and the dotted line shows the relation from Rykoff et al. (2012). The gray shaded region corresponds to the 68% confidence area on our best-fit. We also include stacked WL masses from Rozo et al. (2010) and the high-mass cluster mass estimates of Sifón et al. (2015a) for comparison.

y = mx + b where y is the predicted cluster mass and x is the optical richness, considering measurement errors in richness and predicted cluster mass along with intrinsic scatter of the relation. We assume the intrinsic scatter is constant from point to point, and we assume (not necessarily correctly) that all measurement errors are Gaussian. With the assumption of all Gaussian scatters we have:

$$p(y_i|x_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{[y_i - mx_i - b]^2}{2\sigma^2}\right)$$
(3.8)

for the intrinsic scatter,

$$p(\hat{x}_i|x_i) = \frac{1}{\sqrt{2\pi\,\sigma_{x,i}^2}} \exp\left(-\frac{[\hat{x}_i - x_i]^2}{2\,\sigma_{x,i}^2}\right)$$
(3.9)

and

$$p(\hat{y}_i|y_i) = \frac{1}{\sqrt{2\pi\,\sigma_{y,i}^2}} \exp\left(-\frac{[\hat{y}_i - y_i]^2}{2\,\sigma_{y,i}^2}\right)$$
(3.10)

for the measurement errors on the x and y variables respectively. We combine these three probabilities into

$$p(\hat{y}_i|\hat{x}_i) = \int_{-\infty}^{\infty} dy_i p(\hat{y}_i|y_i) \int_{-\infty}^{\infty} dx_i p(y_i|x_i) p(x_i|\hat{x}_i).$$
(3.11)

We assume flat priors on x_i so that $p(x_i|\hat{x}_i) = p(\hat{x}_i|x_i)$ and substitute our probability equations from above. We find

$$p(\hat{y}_{i}|\hat{x}_{i}) = \frac{1}{\sqrt{2\pi\left(\sigma^{2} + \sigma_{y,i}^{2} + m^{2}\sigma_{x,i}^{2}\right)}} \exp\left(-\frac{[y_{i} - m x_{i} - b]^{2}}{2\left(\sigma^{2} + \sigma_{y,i}^{2} + m^{2}\sigma_{x,i}^{2}\right)}\right)$$
(3.12)

which for $\sigma_{x,i} = 0$ (no uncertainty on the independent variable) reduces to the familiar

form of a Gaussian with a combination of measurement error and intrinsic scatter. We convert this probability function into a likelihood by taking the product of all the individual probabilities,

$$\mathcal{L} = \prod_{i=1}^{N} p(\hat{y}_i | \hat{x}_i). \tag{3.13}$$

and maximize this likelihood by sampling from the posterior probability distribution. We quote the most probable slope and intercept as the median value of the posterior probability distributions with uncertainties as the square root of the second moment of the same distribution.

After fitting to the cluster masses in this work, we find a best fitting relation of

$$Log M_{200c} = 1.17 \pm 0.39 Log \lambda + 12.4863 \pm 0.82. \tag{3.14}$$

This best-fitting relation is shown in Figure 3.7 where the large orange points are the power law estimated cluster masses from this work. The dotted and dashed lines show the richness-mass relations of Rykoff et al. (2012) and Farahi et al. (2016) respectively. The shaded region shows our 1σ confidence area of our best fit. We compare the properties of our optical richness-mass relation to others from the literature in the following subsection.

We can estimate the intrinsic scatter in the relation two ways. Because our generative model includes an intrinsic scatter term, we can use the MCMC samples directly. We find $\sigma_{M|\lambda} = 0.22 \pm 0.13$ dex. We can also calculate the standard deviation of the residuals, which gives $\sigma_{M|\lambda} = 0.27 \pm 0.07$ dex. Both values fall into the range where HETDEX is most sensitive (Paper I), which is encouraging for the larger survey. Both of these scatter estimates include all ten clusters. The two lowest mass clusters have significant uncertainties associated with their mass estimates. If

we exclude the two low mass clusters, and c328p33+0p19 where we significantly underestimate the mass, the scatter for remaining seven clusters is $\sigma_{M|\lambda} = 0.24 \pm 0.09$ dex.

3.6.4 Calibration of the Richness-Mass Relation

Here we compare our fit of the richness-mass relation to a variety of constraints from the literature. Because we have selected our clusters from the redMapper catalog, we begin with the richness-mass relation from Rykoff et al. (2012). The authors suggest a power law index of $\alpha = 1.06$ and an absolute mass scale of Log $M_{200c}/\mathrm{M}_{\odot} = 14.64$ at $\lambda = 60$. We find a small difference in the slope, and a lower absolute mass scale of Log $M_{200c}/\mathrm{M}_{\odot} = 14.57 \pm 1.07$. Figure 3.7 shows this difference. Rykoff et al. (2012) go on to note that their relationship should not be taken as a rigorously measured relationship, so this discrepancy is unsurprising.

With very careful handling of uncertainties, Simet et al. (2016) find the a normalization of Log M/M $_{\odot} = 14.344 \pm 0.021 ({\rm statistical}) \pm 0.023 ({\rm systematic})$ at $\lambda = 40$ with a power-law index of $\alpha = 1.33^{+0.10}_{-0.09}$. Our power law index is smaller, possibly due to the large errors (and few points in general) of the two low mass clusters. We find very good agreement with our reported value of Log $M_{200c}/{\rm M}_{\odot} = 14.36 \pm 1.03$

Farahi et al. (2016) has also calibrated the richness-mass relation of redMapper clusters through stacked LOSVD measurements. They report a power-law index of $\alpha = 1.31 \pm 0.14$ and an absolute mass scale of Log $M_{200c}/\mathrm{M}_{\odot} = 14.19 \pm 0.10$, at $\lambda = 30$, z = 0.2 and assuming h = 0.7. Again, while our slope is slightly misaligned with their reported value, we find excellent agreement in the absolute mass scale (see Figure 3.7).

While our reported absolute mass scale is very similar to those measured by recent studies, our measurement has quite a substantial uncertainty associated with XMM selected clusters. Coupled with so few clusters, in general, our fitting procedure cannot place tight constraints on the measured slope and intercept. With the many clusters expected to be observed with HETDEX these uncertainties should decrease significantly. Also promising is our measurement of the scatter about the best-fitting relation. Farahi et al. (2016); Simet et al. (2016) rely on stacked richness measurements to calibrate their relations. Here we use individual cluster mass measurements which enables us to better grasp the amount of intrinsic scatter. The scatter around the richness-mass relation for the redMapper clusters has been estimated to be $\sigma_{M|\lambda} \sim 0.2 - 0.3$ dex (Rozo & Rykoff, 2014; Rozo et al., 2015a). This corresponds well to our estimate of $\sigma_{M|\lambda} \sim 0.25$ dex and the range most sensitively probed in our simulated HETDEX survey (Paper I).

The ability of blind spectroscopy such as this to constrain all three parameters of interest to values similar to other studies is extremely positive for the potential of HETDEX. As cluster mass estimates become better constrained through the use of ML methods, we can expect to find even tighter constrains on the relation. This should lead to excellent calibration of other large-area sky surveys which produce optical photometry only.

3.7 Summary

We carry out a proof-of-concept study where we present integral field unit observations with the Mitchelle Spectrograph of ten intermediate redshift (z = 0.2 - 0.3) galaxy clusters. We observe cluster member galaxies within $R \sim 0.5$ Mpc of each cluster, and determine each cluster's membership based on the line-of-sight velocity of each galaxy. The mass of each cluster is determined through a traditional power law and through a machine learning based approach. We use these estimates of

cluster mass to measure the absolute mass scale and intrinsic scatter of the optical richness-cluster mass relationship. The goal of this study is to investigate how a blind spectroscopic survey, such as the forthcoming Hobby Eberly Dark Energy Experiment (HETDEX), will be able to predict cluster masses, and then to use those masses to help calibrate other observable-cluster mass scaling relations. Our main results are as follows:

- Using a power law scaling relation to estimate cluster mass from observed velocity dispersion, we find our galaxy clusters have masses $(0.52-17.37)\times10^{14}$ ${\rm M}_{\odot}~(M_{200c})$. The majority of these estimate are consistent with other published mass estimates which use a variety of estimation techniques.
- The machine learning based approach of cluster mass estimation, while powerful, requires a deep understanding of both the machine learning algorithms available, and expert knowledge of the problem domain. We find that a suit of sample data drawn from a similarly sized cosmological volume is critical to the reliable prediction of cluster masses. When this is available, the predicted cluster masses show less bias and lower scatter compared to a traditional power law scaling relation.
- We fit a power law to all ten observed clusters which gives a best-fitting optical richness-mass relationship of:

$$\text{Log } M_{200c} = 1.17 \pm 0.39 \,\text{Log } \lambda + 12.4863 \pm 0.82.$$
 (3.15)

with an overall normalization of Log $M_{200c}/\mathrm{M}_{\odot} = 14.21 \pm 1.00$ at $\lambda = 30$ and an intrinsic scatter $\sigma_{M|\lambda} \sim 0.25$. Both of these properties compare well to other recent richness-mass studies. This suggests that a survey such as HETDEX will

be able to provide a crucial, independent, measurement of these uncertainties, to a much higher precision than is possible in this work. This bodes well for the success of HETDEX as not only a high redshift galaxy survey but as a important calibration tool for many large-area sky surveys for years to come.

It is the author's hope that this work may be useful to others when conducting their own research. Because this work relies heavily on (often) complex data analysis, and in order to promote transparency and reproducible science, we provide all of the code used to conduct this study at https://github.com/boada/vpCluster. Regrettably, large file size prevents including the source data with the analysis routines. The authors are happy to provide them, if requested.

4. FUTURE WORK

4.1 Introduction

Clusters of galaxies form the largest bound objects in the universe, and as such their study is a cornerstone in modern day astronomy. Thought to form out of the primordial density fluctuations in the very early universe, the number and distribution of galaxy clusters across the sky is the finger print of the cosmology imprinted on the universe at its birth. The Λ CDM model of cosmology makes explicit predictions about the number and masses of galaxy clusters throughout the universe. Connecting these predictions to a set of, sufficiently large in size, observed clusters remains a principal problem. Specifically, the largest threat to modern, precision, cluster cosmology is not the identification of large numbers of clusters (the total number of clusters known is only going up) but the accurate recovery of galaxy cluster mass (e.g., Sehgal et al. 2011; Planck Collaboration 2013; Bocquet et al. 2015).

As mass is not a direct observable, a lot of work is underway to characterize galaxy cluster masses with an observable feature of galaxy clusters. Observed X-ray temperatures and luminosities correlate tightly with a cluster's dynamical mass (e.g., Mantz et al. 2010; Rykoff et al. 2014), especially for dynamically relaxed clusters (e.g., Mantz et al. 2015). The Sunyaev–Zel'dovich effect (SZE; Sunyaev & Zeldovich 1972), which uses the up–scattering of cosmic microwave background (CMB) photons to estimate cluster masses, provides accurate estimations of mass (e.g., Vanderlinde et al. 2010; Sehgal et al. 2011), but the ability to detect low mass galaxy clusters is currently limited by technology (e.g., Carlstrom et al. 2002). Optical studies (e.g., Rozo et al. 2010, 2015b) primarily use the richness (e.g., Abell 1958; Rykoff et al. 2012) or galaxy velocity dispersions to estimate the mass, and are often used to

calibrate other mass estimators (e.g., Ruel et al. 2014; Sifón et al. 2015a).

Today, the greatest number of clusters are being discovered using large SZE surveys with the South Pole Telescope (SPT; Carlstrom et al. 2011) or the Atacama Cosmology Telescope (ACT; Swetz et al. 2011). However, deep, wide field optical surveys, such as the Dark Energy Survey (DES; The Dark Energy Survey Collaboration 2005) will discover many more, low mass clusters in the near future. Such clusters will rely on spectroscopic follow up to better constrain their dynamical mass. But, as the number of clusters grows to many tens of thousands, spectroscopic followup becomes unfeasible. Therefore, large, single telescope, spectroscopic surveys will be required to reduce systematics and calibrate the observable—mass relation to a level that will allow accurate mass estimations using other methods.

In this work, we present a pilot study of ten massive galaxy clusters using integral field spectroscopy with the Mitchell Spectrograph as a pilot program for the Hobby Eberly Dark Energy Experiment (HETDEX; Hill et al. 2008b) survey. HETDEX is a forthcoming blind spectroscopic survey that could potentially be used to accurately calibrate the observable—mass relation for a significant number of galaxy clusters at both extremes of the mass scale. At present, because HETDEX is designed to measure the dark energy equation of state at $z \sim 2$, the applicability to galaxy cluster science has not yet been investigated. We began this investigation with Boada et al. (2016a) (hereafter Paper I). The second installment of this two part work, the goal of this study is to obtain spectroscopic redshifts of the individual cluster galaxies, determine the velocity dispersion and to infer each cluster's dynamical mass. This allows us to compare the inferred mass with other mass estimators (e.g., the clusters in this sample have deep *Chandra* or *XMM-Newton* X-ray data, and richness measurements) with the aim of reducing the scatter in the richness—mass relation, $\sigma_{M|\lambda}$. The ability of HETDEX to further constrain optically derived masses is of

paramount importance to upcoming large photometric surveys. This study provides insight into how well a HETDEX type survey will constrain mass estimations and cosmological parameters in the future.

The layout of this work is the following. In Section ?? we discuss the target selection and the setup of the MS used to conduct the observations. Section ?? describes the methods and tools used to reduce the observations. We present our redshift catalog, cluster members and cluster dynamical properties in Section ??. In Section 2.5, we compare and discuss the different mass estimations and remark on the applicability of these methods for HETDEX. Finally, we summarize this work in Section 2.6.

Throughout this paper, we use a concordance cosmological model ($\Omega_{\Lambda}=0.7$, $\Omega_{m}=0.3$, and $H_{0}=70~\mathrm{km~s^{-1}Mpc^{-1}}$), assume a Chabrier initial mass function (Chabrier, 2003), and use AB magnitudes (Oke, 1974) unless specifically noted.

REFERENCES

Abell, G. O. 1958, ApJS, 3, 211

Acquaviva, V. 2016, MNRAS, 456, 1618

Acquaviva, V., Gawiser, E., Leung, A. S., & Martin, M. R. 2014, Proc. IAU, 10, 365

Alam, S., Albareti, F. D., Prieto, C. A., et al. 2015, ApJS, 219, 12

Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, Annu. Rev. Astron. Astrophys., 49, 409

Bahcall, N. A. 1977, Annu. Rev. Astron. Astrophys., 15, 505

Balogh, M. L., Navarro, J. F., & Morris, S. L. 2000, ApJ, 540, 113

Baxter, E. J., Rozo, E., Jain, B., Rykoff, E., & Wechsler, R. H. 2016, eprint arXiv:1604.00048, 7

Beers, T. C., Flynn, K., & Gebhardt, K. 1990, AJ, 100, 32

Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2013, ApJ, 762, 109

Blanc, G. a., Weinzirl, T., Song, M., et al. 2013, AJ, 145, 138

Blanton, M. R., Dalcanton, J., Eisenstein, D., et al. 2001, AJ, 121, 2358

Boada, S., Papovich, C., Wechsler, R., et al. 2016a, MNRAS

—. 2016b, MNRAS

Bocquet, S., Saro, A., Mohr, J. J., et al. 2015, ApJ, 799, 214

Bonamente, M., Landry, D., Maughan, B., et al. 2012, MNRAS, 428, 2812

Bond, J. R., Efstathiou, G., Lubin, P. M., & Meinhold, P. R. 1991, Phys. Rev. Lett., 66, 2179

Carlstrom, J. E., Holder, G. P., & Reese, E. D. 2002, Annu. Rev. Astron. Astrophys., 40, 643

Carlstrom, J. E., Ade, P. A. R., Aird, K. A., et al. 2011, PASP, 123, 568

Caruana, R., & Niculescu-Mizil, A. 2006, in Proc. 23rd Int. Conf. Mach. Learn. - ICML '06, ACM (New York, New York, USA: ACM Press), 161–168

Chabrier, G. 2003, PASP, 115, 763

Colless, M., Dalton, G., Maddox, S., et al. 2001, MNRAS, 328, 1039

Connelly, J. L., Wilman, D. J., Finoguenov, A., et al. 2012, ApJ, 756, 139

Crawford, S. M., Wirth, G. D., & Bershady, M. A. 2014, ApJ, 786, 30

Crocce, M., Pueblas, S., & Scoccimarro, R. 2006, MNRAS, 373, 369

de Haan, T., Benson, B. A., Bleem, L. E., et al. 2016, eprint arXiv:1603.06522, arXiv:1603.06522

Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. 2005, ApJ, 633, 560

Evrard, A. E., Bialek, J., Busha, M., et al. 2008, ApJ, 672, 122

Fadda, D., Girardi, M., Iuricin, G., Mardirossian, F., & Mezzetti, M. 1996, ApJ, 473, 670

Farahi, A., Evrard, A. E., Rozo, E., Rykoff, E. S., & Wechsler, R. H. 2016, eprint arXiv:1601.05773, arXiv:1601.05773

Finoguenov, A., Reiprich, T. H., & Böhringer, H. 2001, Astron. Astrophys., 368, 749

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306

Geller, M. J., Diaferio, A., Rines, K. J., & Serra, A. L. 2013, ApJ, 764, 58

Goodman, J., & Weare, J. 2010, Commun. Appl. Math. Comput. Sci., 5, 65

Gott, J. R. I., & Rees, M. J. 1975, A&A, 45, 365

Gunn, J. E., & Gott, J. Richard, I. 1972, ApJ, 176, 1

Hill, G. J., MacQueen, P. J., Smith, M. P., et al. 2008a, in Ground-based Airborne Instrum. Astron. II. Ed. by McLean, ed. I. S. McLean & M. M. Casali, Vol. 7014, 701470–701470–15

Hill, G. J., Gebhardt, K., Komatsu, E., et al. 2008b, Panor. Views Galaxy Form. Evol. ASP Conf. Ser., 399 Hill, G. J., Tuttle, S. E., Lee, H., et al. 2012, in Ground-based Airborne Instrum. Astron. IV. Proc. SPIE, ed. I. S. McLean, S. K. Ramsay, & H. Takami, Vol. 8446, 84460N

Hoekstra, H., Mahdavi, A., Babul, A., & Bildfell, C. 2012, MNRAS, 427, 1298

Hogg, D. 1999, Arxiv Prepr. astro-ph/9905116, 1, 1

Hogg, D. W., Bovy, J., & Lang, D. 2010, eprint arXiv:1008.4686, arXiv:1008.4686

Hou, A., Parker, L. C., Harris, W. E., & Wilman, D. J. 2009, ApJ, 702, 1199

Hu, W., & Kravtsov, A. V. 2003, ApJ, 584, 702

Hubble, E., & Humason, M. L. 1931, ApJ, 74, 43

Hubble, E. P. 1926, ApJ, 64, 321

Husemann, B., Kamann, S., Sandin, C., et al. 2012, A&A, 545, A137

Kelz, A., Jahn, T., Haynes, D., et al. 2014, in Proc. SPIE, ed. S. K. Ramsay, I. S. McLean, & H. Takami, Vol. 9147, 914775

Kirk, B., Hilton, M., Cress, C., et al. 2015, MNRAS, 449, 4010

Kravtsov, A. V., & Borgani, S. 2012, Annu. Rev. Astron. Astrophys., 50, 353

Kurtz, M. J., & Mink, D. J. 1998, PASP, 110, 934

Kurtz, M. J., Mink, D. J., Wyatt, W. F., et al. 1992, Astron. Data Anal. Softw. Syst.
I, 25

Lemson, G., & The Virgo Consortium. 2006, eprint arXiv:astro-ph/0608019, arXiv:0608019

Li, R., Shan, H., Kneib, J.-P., et al. 2016, MNRAS, 458, 2573

LSST Dark Energy Science Collaboration. 2012, arXiv Prepr. arXiv1211.0310, 133

Mantz, A., Allen, S. W., Rapetti, D., & Ebeling, H. 2010, MNRAS, 406, no

Mantz, A. B., Allen, S. W., Morris, R. G., et al. 2015, MNRAS, 449, 199

Mehrtens, N., Romer, A. K., Hilton, M., et al. 2012, MNRAS, 423, 1024

Meinshausen, N. 2006, J. Mach. Learn. Res., 7, 983

Milvang-Jensen, B., Noll, S., Halliday, C., et al. 2008, A&A, 482, 419

Munari, E., Biviano, A., Borgani, S., Murante, G., & Fabjan, D. 2013, MNRAS, 430, 2638

Muriel, H., Quintana, H., Infante, L., Lambas, D. G., & Way, M. J. 2002, AJ, 124, 1934

Murphy, J. D., Gebhardt, K., & Adams, J. J. 2011, ApJ, 729, 129

Murray, S., Power, C., & Robotham, A. 2013, Astron. Comput., 3-4, 23

Neal, R. M. 1997, Markov Chain Monte Carlo Methods Based on 'Slicing' the Density Function, Tech. Rep. 9722, Department of Statistics, University of Toronto, Toronto, doi:10.1.1.48.886

Ntampaka, M., Trac, H., Sutherland, D. J., et al. 2015a, ApJ, 803, 50

—. 2015b, eprint arXiv:1509.05409, arXiv:1509.05409

Oke, J. B. 1974, ApJS, 27, 21

Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2012, J. Mach. Learn. Res., 12, 2825

Pipino, A., & Pierpaoli, E. 2010, MNRAS, 404, 16

Planck Collaboration. 2013, A&A, 571, 19

Press, W. H., & Schechter, P. 1974, ApJ, 187, 425

Quintana, H., Carrasco, E. R., & Reisenegger, A. 2000, AJ, 120, 511

Reddick, R. M., Wechsler, R. H., Tinker, J. L., & Behroozi, P. S. 2013, ApJ, 771, 30

Ripley, B. D. 2007, Pattern recognition and neural networks (Cambridge university press)

Robotham, A. S. G., Norberg, P., Driver, S. P., et al. 2011, MNRAS, 416, 2640

Rozo, E., & Rykoff, E. S. 2014, ApJ, 783, 80

Rozo, E., Rykoff, E. S., Bartlett, J. G., & Melin, J.-B. 2015a, MNRAS, 450, 592

Rozo, E., Rykoff, E. S., Becker, M., Reddick, R. M., & Wechsler, R. H. 2015b,

MNRAS, 453, 38

Rozo, E., Wu, H.-Y., & Schmidt, F. 2011, ApJ, 735, 118

Rozo, E., Wechsler, R. H., Rykoff, E. S., et al. 2010, ApJ, 708, 645

Ruel, J., Bazin, G., Bayliss, M., et al. 2014, ApJ, 792, 45

Rykoff, E. S., Koester, B. P., Rozo, E., et al. 2012, ApJ, 746, 178

Rykoff, E. S., Rozo, E., Busha, M. T., et al. 2014, ApJ, 785, 104

Sandin, C., Becker, T., Roth, M. M., et al. 2010, A&A, 515, A35

Saro, A., Mohr, J. J., Bazin, G., & Dolag, K. 2013, ApJ, 772, 47

Saro, A., Bocquet, S., Rozo, E., et al. 2015, MNRAS, 454, 2305

Sehgal, N., Trac, H., Acquaviva, V., et al. 2011, ApJ, 732, 44

Sharp, R., & Birchall, M. N. 2010, Publ. Astron. Soc. Aust., 27, 91

Shetrone, M., Martell, S. L., Wilkerson, R., et al. 2010, AJ, 140, 1119

Sifón, C., Hoekstra, H., Cacciato, M., et al. 2015a, A&A, 575, A48

Sifón, C., Menanteau, F., Hasselfield, M., et al. 2013, ApJ, 772, 25

Sifón, C., Battaglia, N., Menanteau, F., et al. 2015b, eprint arXiv:1512.00910, arXiv:1512.00910

Simet, M., McClintock, T., Mandelbaum, R., et al. 2016, eprint arXiv:1603.06953, arXiv:1603.06953

Smith, S. 1936, ApJ, 83, 23

Spergel, D. N., Verde, L., Peiris, H. V., et al. 2003, ApJS, 148, 175

Springel, V. 2005, MNRAS, 364, 1105

Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Nature, 435, 629

Sunyaev, R. A., & Zeldovich, Y. B. 1972, Comments Astrophys. Sp. Phys., 4

Swetz, D. S., Ade, P. A. R., Amiri, M., et al. 2011, ApJS, 194, 41

The Dark Energy Survey Collaboration. 2005, eprint arXiv:astro-ph/0510346, 42

Tin Kam Ho. 1995, in Proc. 3rd Int. Conf. Doc. Anal. Recognit., Vol. 1, IEEE (IEEE

Comput. Soc. Press), 278–282

Tin Kam Ho. 1998, IEEE Trans. Pattern Anal. Mach. Intell., 20, 832

Tinker, J., Kravtsov, A. V., Klypin, A., et al. 2008, ApJ, 688, 709

Tonry, J., & Davis, M. 1979, AJ, 84, 1511

van der Burg, R. F. J., Muzzin, A., Hoekstra, H., et al. 2014, A&A, 561, A79

Vanderlinde, K., Crawford, T. M., de Haan, T., et al. 2010, ApJ, 722, 1180

Walker, M. G., Mateo, M., Olszewski, E. W., et al. 2006, AJ, 131, 2114

Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., et al. 2013, Phys. Rep., 530, 87

White, M., Cohn, J. D., & Smit, R. 2010, MNRAS, 408, 1818

White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341

Wilman, D. J., Balogh, M. L., Bower, R. G., et al. 2005, MNRAS, 358, 71

Wing, J. D., & Blanton, E. L. 2013, ApJ, 767, 102

Xu, X., Ho, S., Trac, H., et al. 2013, ApJ, 772, 147

Zwicky, F. 1933, Helv. Phys. Acta, 6, 110

APPENDIX A

MS OBSERVATIONS

Table A.1: Spectroscopic redshifts for galaxies in c16p23+0p06 measured with the MS: Columns as in Table 3.2.

tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
NE	1	223	01:04:56.937	+00:03:39.60	19.38	0.2691 ± 0.0002	0	√	0.10	-748±89
NE	2	42	01:05:00.449	+00:04:57.41	19.80	0.2766 ± 0.0001	1	\checkmark	0.47	1005 ± 52
NE	2	168	01:04:58.247	+00:04:02.62	19.75	0.3054 ± 0.0003	1		0.23	7783 ± 122
NE	2	216	01:05:00.487	+00:03:44.70	18.85	0.0826 ± 0.0004	1		0.12	-44576 ± 193
NE	2	220	01:04:55.367	+00:03:36.34	17.27	0.2715 ± 0.0001	0	\checkmark	0.00	-193 ± 61
NE	3	38	01:04:58.559	+00:04:55.13	19.95	0.3510 ± 0.0001	1		0.46	18494 ± 56
NE	3	106	01:04:56.545	+00:04:23.15	18.36	0.2788 ± 0.0001	0	\checkmark	0.21	1517 ± 47
NE	3	118	01:04:55.276	+00:04:19.53	19.49	0.2747 ± 0.0001	0	\checkmark	0.18	566 ± 71
NE	3	160	01:04:54.563	+00:04:00.66	18.19	0.2747 ± 0.0001	0	\checkmark	0.11	559 ± 52
NW	1	156	01:04:53.064	+00:04:10.99	20.22	0.2234 ± 0.0001	1		0.18	-11495 ± 52
NW	2	173	01:04:54.217	+00:04:02.78	19.62	0.2629 ± 0.0002	0	\checkmark	0.13	-2205 ± 80
NW	3	187	01:04:54.051	+00:03:52.42	19.35	0.3290 ± 0.0001	1		0.12	13319 ± 52
SE	1	50	01:04:57.440	+00:03:17.71	19.51	0.2718 ± 0.0002	1	\checkmark	0.15	-123 ± 75
SE	2	191	01:04:55.332	+00:02:14.18	19.79	0.2794 ± 0.0001	0	\checkmark	0.35	1658 ± 66
SE	3	208	01:04:56.734	+00:02:05.07	18.75	0.2781 ± 0.0001	0	\checkmark	0.40	1358 ± 42
SE	3	238	01:04:57.284	+00:01:53.04	19.58	0.2705 ± 0.0001	0	\checkmark	0.45	-421 ± 66
SW	2	26	01:04:53.268	+00:03:26.04	18.99	0.2666 ± 0.0002	0	\checkmark	0.14	-1352 ± 85
SW	2	135	01:04:49.814	+00:02:38.18	20.10	0.2697 ± 0.0002	1	\checkmark	0.42	-619 ± 85
SW	2	218	01:04:47.988	+00:01:59.05	19.55	0.2627 ± 0.0001	1	\checkmark	0.60	-2259 ± 42
SW	3	228	01:04:52.934	+00:01:56.95	20.37	0.2763 ± 0.0001	1	✓	0.45	928 ± 47

 $Table \ A.2: \ Spectroscopic \ redshifts \ for \ galaxies \ in \ c234p2+24p4 \ measured \ with \ the \ MS: \ Columns \ as \ in \ Table \ 3.2.$

tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
NE	1	78	15:36:58.192	+24:25:36.14	19.81	0.3228 ± 0.0001	0		0.33	23652 ± 44
NE	1	124	15:36:59.468	+24:25:17.76	19.83	0.2324 ± 0.0004	1	\checkmark	0.24	1609 ± 195
NE	1	208	15:36:57.848	+24:24:41.47	20.35	0.1881 ± 0.0001	0		0.08	-9197 ± 34
NE	2	11	15:37:00.861	+24:26:04.40	20.48	0.0947 ± 0.0001	1		0.20	-31965 ± 54
NE	2	153	15:36:59.174	+24:25:04.55	20.37	0.1036 ± 0.0002	1		0.10	-29809 ± 98
NE	2	232	15:37:02.759	+24:24:34.63	19.98	0.3017 ± 0.0001	1		0.40	18513 ± 49
NE	3	23	15:36:59.839	+24:25:59.51	18.05	0.1275 ± 0.0000	0		0.23	-23979 ± 20
NE	3	55	15:37:01.554	+24:25:45.67	19.79	0.2115 ± 0.0001	1		0.36	-3477 ± 49
NE	3	181	15:36:59.035	+24:24:48.56	20.11	0.1874 ± 0.0001	1		0.13	-9363 ± 39
NE	3	182	15:36:59.498	+24:24:50.78	19.62	0.1231 ± 0.0003	1		0.11	-25050 ± 151
NE	3	191	15:36:56.681	+24:24:43.40	19.54	0.1808 ± 0.0000	0		0.04	-10980 ± 24
NE	3	198	15:37:00.334	+24:24:44.60	17.27	0.2274 ± 0.0002	0	\checkmark	0.21	387 ± 112
NE	3	210	15:36:58.911	+24:24:37.07	19.67	0.4813 ± 0.0000	1		0.22	62324 ± 24
NE	3	219	15:36:56.253	+24:24:31.59	17.36	0.2262 ± 0.0001	0	\checkmark	0.00	94 ± 63
NW	1	116	15:36:55.756	+24:25:25.38	18.90	0.2706 ± 0.0001	1		0.23	10924 ± 49
NW	1	148	15:36:49.817	+24:25:04.96	20.02	0.2224 ± 0.0001	0	\checkmark	0.34	-813 ± 63
NW	2	26	15:36:54.106	+24:25:59.10	20.79	0.2298 ± 0.0000	0	\checkmark	0.34	972 ± 24
NW	3	44	15:36:48.628	+24:25:45.78	21.29	0.3341 ± 0.0001	1		0.62	26416 ± 59
NW	3	210	15:36:52.024	+24:24:36.09	19.78	0.2281 ± 0.0001	0	\checkmark	0.21	570 ± 63
SE	1	48	15:36:57.612	+24:24:12.18	19.43	0.2215 ± 0.0002	0	\checkmark	0.10	-1038 ± 78
SE	1	64	15:36:58.605	+24:24:04.80	20.06	0.2124 ± 0.0001	1		0.15	-3277 ± 59
SE	2	80	15:36:59.058	+24:23:57.63	19.24	0.2280 ± 0.0002	0	\checkmark	0.19	528 ± 93
SE	2	95	15:36:59.393	+24:23:51.85	19.35	0.1244 ± 0.0002	1		0.13	-24730 ± 98
SE	3	108	15:36:58.708	+24:23:45.47	17.70	0.2235 ± 0.0002	0	\checkmark	0.21	-565 ± 83
SW	1	66	15:36:52.487	+24:24:08.35	20.29	0.1248 ± 0.0001	1		0.13	-24633 ± 63
SW	1	142	15:36:54.270	+24:23:37.37	20.15	0.2546 ± 0.0001	0		0.24	7019 ± 54

Table A.2 Continued

			-							
tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
SW	2	185	15:36:53.657	+24:23:15.33	19.58	0.2239 ± 0.0002	0	√	0.30	-450±98
SW	3	65	15:36:51.996	+24:24:02.62	20.31	0.2201 ± 0.0001	1	\checkmark	0.23	-1382 ± 34

Table A.3: Spectroscopic redshifts for galaxies in c250p08+46p7 measured with the MS: Columns as in Table 3.2.

									- (3.5.)	
tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
NE	1	34	16:40:21.617	+46:43:25.07	20.12	0.1014 ± 0.0003	0		0.09	-30528 ± 141
NE	1	110	16:40:23.879	+46:42:52.76	17.81	0.2333 ± 0.0000	0	\checkmark	0.16	1617 ± 24
NE	1	133	16:40:19.812	+46:42:41.30	16.61	0.2238 ± 0.0001	0	\checkmark	0.00	-699 ± 39
NE	1	156	16:40:25.818	+46:42:33.87	18.36	0.2099 ± 0.0001	0		0.21	-4092 ± 54
NE	1	183	16:40:24.352	+46:42:21.79	19.33	0.2248 ± 0.0002	0	\checkmark	0.18	-462 ± 93
NE	1	211	16:40:23.651	+46:42:10.01	17.62	0.2287 ± 0.0001	0	\checkmark	0.19	483 ± 39
NE	2	65	16:40:22.597	+46:43:10.93	19.73	0.1813 ± 0.0002	1		0.13	-11053 ± 88
NE	2	81	16:40:23.696	+46:43:04.86	18.62	0.2324 ± 0.0001	0	\checkmark	0.17	1400 ± 68
NE	2	95	16:40:23.219	+46:42:58.04	19.32	$0.2264 {\pm} 0.0001$	0	\checkmark	0.14	-75 ± 39
NE	2	122	16:40:22.018	+46:42:46.03	18.84	0.2079 ± 0.0001	0		0.08	-4574 ± 73
NE	2	136	16:40:21.428	+46:42:39.59	19.11	0.2180 ± 0.0002	0	\checkmark	0.06	-2120 ± 93
NE	2	195	16:40:22.346	+46:42:14.63	19.21	0.2289 ± 0.0002	0	\checkmark	0.14	542 ± 93
NE	3	37	16:40:23.777	+46:43:19.71	19.22	0.2229 ± 0.0002	0	\checkmark	0.20	-933 ± 102
NE	3	120	16:40:20.755	+46:42:43.96	17.82	0.2216 ± 0.0002	0	\checkmark	0.04	-1240 ± 83
NE	3	181	16:40:23.067	+46:42:18.32	18.39	0.2191 ± 0.0001	0	\checkmark	0.14	-1852 ± 39
NE	3	184	16:40:24.861	+46:42:18.39	19.09	0.2110 ± 0.0002	0		0.20	-3816 ± 78
NW	1	50	16:40:13.038	+46:43:18.14	19.37	0.2289 ± 0.0002	0	\checkmark	0.29	539 ± 78
NW	1	79	16:40:13.042	+46:43:06.31	19.12	0.2297 ± 0.0001	0	\checkmark	0.27	730 ± 34
NW	1	81	16:40:14.572	+46:43:04.50	20.49	0.2249 ± 0.0002	1	\checkmark	0.21	-443 ± 102
NW	1	128	16:40:16.854	+46:42:48.04	20.31	0.2281 ± 0.0001	1	\checkmark	0.11	342 ± 68
NW	1	215	16:40:17.060	+46:42:11.27	19.21	0.2580 ± 0.0002	1		0.17	7632 ± 122
NW	2	33	16:40:10.991	+46:43:22.18	19.33	0.2228 ± 0.0001	1	\checkmark	0.36	-940 ± 49
NW	2	56	16:40:16.794	+46:43:15.13	20.91	0.2350 ± 0.0001	1	\checkmark	0.17	2021 ± 73
NW	2	70	16:40:16.608	+46:43:09.56	20.70	0.2167 ± 0.0002	1	\checkmark	0.15	-2427 ± 88
NW	2	81	16:40:14.180	+46:43:05.00	19.20	$0.2252 {\pm} 0.0001$	0	\checkmark	0.23	-375 ± 68
NW	2	156	16:40:15.807	+46:42:31.47	18.88	0.2281 ± 0.0002	0	\checkmark	0.16	344 ± 83

Table A.3 Continued

Table	A.5 CO	minuec	1							
tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
NW	3	33	16:40:11.463	+46:43:19.95	19.11	0.2249 ± 0.0002	0	\checkmark	0.34	-426 ± 97
NW	3	65	16:40:13.553	+46:43:08.81	20.49	0.1319 ± 0.0001	1		0.16	-23097 ± 29
NW	3	74	16:40:09.583	+46:43:03.29	20.34	0.1735 ± 0.0001	1		0.32	-12967 ± 58
NW	3	122	16:40:12.635	+46:42:44.68	19.66	0.2270 ± 0.0001	0	\checkmark	0.27	79 ± 63
NW	3	144	16:40:18.116	+46:42:35.97	19.27	0.2080 ± 0.0002	1		0.06	-4567 ± 102
NW	3	149	16:40:11.390	+46:42:31.31	20.02	0.0844 ± 0.0002	1		0.14	-34675 ± 88
SE	1	4	16:40:20.674	+46:41:59.40	20.48	0.2341 ± 0.0001	0	\checkmark	0.16	1797 ± 54
SE	1	50	16:40:22.486	+46:41:42.33	20.51	0.2376 ± 0.0002	1		0.25	2670 ± 78
SE	1	107	16:40:21.903	+46:41:15.96	18.82	0.1866 ± 0.0001	0		0.28	-9766 ± 58
SE	1	147	16:40:19.343	+46:40:57.31	18.39	0.1864 ± 0.0001	0		0.33	-9815 ± 34
SE	1	211	16:40:23.625	+46:40:32.22	19.06	0.2325 ± 0.0001	0	\checkmark	0.50	1410 ± 54
SE	1	214	16:40:25.819	+46:40:33.21	19.03	0.2272 ± 0.0002	0	\checkmark	0.52	113 ± 93
SE	2	113	16:40:25.565	+46:41:14.28	20.51	0.2221 ± 0.0002	0	\checkmark	0.38	-1116 ± 83
SE	2	165	16:40:21.553	+46:40:47.83	18.59	0.2110 ± 0.0001	1		0.40	-3819 ± 68
SE	3	18	16:40:20.484	+46:41:48.57	18.80	0.2347 ± 0.0001	0	\checkmark	0.20	1960 ± 58
SE	3	77	16:40:21.250	+46:41:25.01	18.21	0.1892 ± 0.0001	0		0.25	-9128 ± 29
SE	3	118	16:40:19.417	+46:41:05.03	19.40	0.2238 ± 0.0002	0	\checkmark	0.35	-701 ± 102
SE	3	176	16:40:19.231	+46:40:41.13	19.36	0.2167 ± 0.0001	0		0.42	-2444 ± 39
SW	1	122	16:40:12.787	+46:41:09.93	18.22	0.2340 ± 0.0001	0	\checkmark	0.44	1785 ± 34
SW	1	243	16:40:16.232	+46:40:20.20	20.28	0.2278 ± 0.0002	1	\checkmark	0.53	274 ± 88
SW	1	246	16:40:18.377	+46:40:20.93	17.51	0.1874 ± 0.0002	0		0.44	-9576 ± 107
SW	2	98	16:40:15.754	+46:41:21.37	20.03	0.2243 ± 0.0001	0	\checkmark	0.33	-572 ± 63
SW	3	22	16:40:13.962	+46:41:49.44	17.63	0.1107 ± 0.0001	0	•••	0.16	-28264 ± 54

 ${\it Table A.4: Spectroscopic redshifts for galaxies in c210p27+2p87 measured with the MS: Columns as in Table 3.2. } \\$

tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
$\underline{}(1)$	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
NE	1	6	14:01:04.022	+02:54:20.65	19.01	0.2478 ± 0.0002	0	√	0.40	-1626±81
NE	1	16	14:01:01.771	+02:54:13.80	20.37	0.3158 ± 0.0002	1		0.42	14574 ± 81
NE	1	123	14:01:04.410	+02:53:29.95	19.70	0.2325 ± 0.0002	1		0.22	-5275 ± 119
NE	2	43	14:01:07.682	+02:54:03.80	20.20	0.2039 ± 0.0001	1		0.40	-12093 ± 33
NE	2	64	14:01:03.691	+02:53:52.63	20.48	0.2876 ± 0.0002	1		0.32	7854 ± 110
NE	2	222	14:01:03.134	+02:52:45.00	18.66	0.2517 ± 0.0002	0	\checkmark	0.07	-699 ± 91
NE	3	63	14:01:03.475	+02:53:50.51	18.68	0.2598 ± 0.0002	0	\checkmark	0.29	1217 ± 110
NE	3	65	14:01:04.494	+02:53:50.70	20.31	0.2540 ± 0.0002	0	\checkmark	0.31	-149 ± 86
NE	3	79	14:01:04.203	+02:53:45.54	20.26	0.2192 ± 0.0001	1		0.25	-8444 ± 67
NE	3	114	14:01:07.185	+02:53:30.54	20.11	0.2606 ± 0.0002	1	\checkmark	0.37	1405 ± 81
NE	3	198	14:01:05.757	+02:52:54.15	19.70	0.2516 ± 0.0002	0	\checkmark	0.23	-737 ± 114
NE	3	237	14:01:03.483	+02:52:35.96	18.94	0.3110 ± 0.0001	1		0.11	13416 ± 52
NW	1	23	14:00:58.786	+02:54:14.18	20.07	0.2318 ± 0.0001	1		0.38	-5458 ± 71
NW	1	92	14:00:57.098	+02:53:42.10	18.42	0.2108 ± 0.0002	0		0.32	-10444 ± 119
NW	1	105	14:00:56.404	+02:53:36.25	18.55	0.2504 ± 0.0002	0	\checkmark	0.39	-1030 ± 91
NW	1	111	14:00:59.191	+02:53:33.62	19.78	0.2458 ± 0.0002	0	\checkmark	0.25	-2108 ± 105
NW	2	103	14:00:55.146	+02:53:33.41	21.44	0.1642 ± 0.0003	1		0.32	-21563 ± 143
NW	2	119	14:00:55.968	+02:53:27.36	20.34	0.3084 ± 0.0003	1	•••	0.46	12808 ± 129
NW	2	127	14:00:59.815	+02:53:26.69	19.29	0.2723 ± 0.0001	1	•••	0.23	4205 ± 38
NW	3	13	14:01:00.752	+02:54:14.53	17.96	0.2492 ± 0.0002	1	\checkmark	0.37	-1312 ± 81
NW	3	62	14:00:56.466	+02:53:49.12	20.53	0.3932 ± 0.0001	1	•••	0.57	33012 ± 67
NW	3	95	14:00:58.558	+02:53:38.37	20.03	0.2363 ± 0.0001	1	•••	0.28	-4369 ± 48
NW	3	98	14:00:59.942	+02:53:37.00	20.63	0.4784 ± 0.0000	1	•••	0.37	53304 ± 24
NW	3	138	14:00:58.352	+02:53:20.29	18.69	0.2557 ± 0.0002	0	\checkmark	0.26	245 ± 100
NW	3	168	14:00:58.824	+02:53:07.37	18.61	0.2321 ± 0.0001	0		0.20	-5375 ± 67
NW	3	211	14:00:58.625	+02:52:47.07	20.02	0.1463 ± 0.0002	1		0.13	-25817 ± 86

Table A.4 Continued

Table	0 11.4 00	minuce								
tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
SE	1	90	14:01:02.616	+02:52:04.19	19.19	0.2639 ± 0.0002	1	√	0.16	2201±91
SE	1	234	14:01:02.016	+02:51:03.83	21.20	0.2830 ± 0.0002	1		0.42	6738 ± 86
SE	2	56	14:01:06.778	+02:52:19.68	17.90	0.2249 ± 0.0002	1		0.27	-7098 ± 76
SE	2	72	14:01:07.685	+02:52:16.24	20.08	0.3193 ± 0.0002	0		0.42	15401 ± 81
SE	3	103	14:01:01.894	+02:51:52.53	19.80	0.2437 ± 0.0001	1	\checkmark	0.19	-2625 ± 67
SE	3	127	14:01:06.471	+02:51:48.78	19.58	0.2726 ± 0.0001	1		0.36	4284 ± 71
SW	1	57	14:01:01.072	+02:52:22.71	20.15	0.1615 ± 0.0002	0		0.07	-22207 ± 91
SW	1	144	14:01:01.183	+02:51:45.62	20.01	0.2670 ± 0.0002	0	\checkmark	0.24	2930 ± 119
SW	2	58	14:01:01.278	+02:52:21.62	20.96	0.2581 ± 0.0001	1	\checkmark	0.09	821 ± 57
SW	2	65	14:00:57.802	+02:52:13.21	20.18	0.4127 ± 0.0002	1		0.38	37664 ± 86
SW	2	98	14:00:59.802	+02:52:01.88	19.31	0.2549 ± 0.0002	1	\checkmark	0.21	49 ± 105
SW	2	148	14:00:55.880	+02:51:36.29	21.24	0.1548 ± 0.0002	1		0.30	-23794 ± 119
SW	2	231	14:01:00.954	+02:51:06.98	20.55	0.3329 ± 0.0001	1		0.46	18635 ± 62
SW	3	128	14:01:00.529	+02:51:49.71	18.25	0.2628 ± 0.0003	1	\checkmark	0.23	1934 ± 153
SW	3	169	14:00:59.240	+02:51:28.42	21.07	0.4035 ± 0.0001	1		0.46	35457 ± 57
SW	3	187	14:01:00.832	+02:51:23.59	20.68	0.1628 ± 0.0001	1		0.23	-21887 ± 52
SW	3	202	14:01:01.230	+02:51:16.08	19.95	0.2355 ± 0.0002	0		0.33	-4560 ± 76
SW	3	246	14:01:01.370	+02:50:59.59	20.01	0.2207 ± 0.0001	1		0.37	-8106 ± 62

 ${\it Table A.5: Spectroscopic redshifts for galaxies in c260p61+32p13 measured with the MS: Columns as in Table 3.2. } \\$

tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
NE	1	21	17:22:29.818	+32:09:29.21	20.20	0.1014 ± 0.0004	0		0.18	-30318±200
NE	1	29	17:22:34.413	+32:09:25.72	19.68	0.2321 ± 0.0001	0	\checkmark	0.47	1553 ± 34
NE	2	32	17:22:27.631	+32:09:18.17	19.76	0.2200 ± 0.0002	0		0.29	-1396 ± 78
NE	2	62	17:22:28.177	+32:09:05.94	19.38	0.2246 ± 0.0001	1	\checkmark	0.25	-282 ± 34
NE	2	179	17:22:28.895	+32:08:16.78	19.86	0.2332 ± 0.0002	1	\checkmark	0.11	1819 ± 93
NE	3	42	17:22:33.506	+32:09:18.50	20.35	0.2318 ± 0.0001	1	\checkmark	0.42	1492 ± 44
NE	3	73	17:22:26.441	+32:08:58.70	19.12	0.2084 ± 0.0001	0		0.21	-4221 ± 34
NE	3	98	17:22:32.542	+32:08:52.14	20.50	0.2100 ± 0.0003	1		0.30	-3831 ± 161
NE	3	102	17:22:26.378	+32:08:45.31	19.76	0.1683 ± 0.0001	0		0.14	-14010 ± 44
NE	3	128	17:22:32.971	+32:08:38.74	19.34	0.2315 ± 0.0001	1		0.31	1419 ± 44
NE	3	167	17:22:30.347	+32:08:20.40	19.86	0.2909 ± 0.0002	1		0.20	15894 ± 117
NE	3	219	17:22:27.184	+32:07:57.25	15.38	0.2226 ± 0.0002	0	\checkmark	0.00	-762 ± 78
NW	1	102	17:22:18.160	+32:08:42.50	18.84	0.2228 ± 0.0001	0	\checkmark	0.44	-716 ± 63
NW	1	200	17:22:24.352	+32:08:04.74	20.42	0.2744 ± 0.0001	1		0.15	11881 ± 44
NW	1	205	17:22:18.953	+32:07:57.82	19.67	0.2275 ± 0.0001	0	\checkmark	0.38	433 ± 44
NW	2	68	17:22:23.220	+32:08:57.64	21.00	0.2798 ± 0.0002	1		0.33	13189 ± 88
NW	2	116	17:22:25.574	+32:08:39.54	17.80	0.1685 ± 0.0001	0		0.14	-13964 ± 54
NW	2	148	17:22:19.197	+32:08:20.80	18.98	0.2245 ± 0.0001	0	\checkmark	0.38	-304 ± 44
NW	2	161	17:22:18.289	+32:08:12.33	19.59	0.2203 ± 0.0002	0	\checkmark	0.41	-1318 ± 98
NW	2	163	17:22:19.559	+32:08:15.27	19.47	0.2143 ± 0.0001	0		0.34	-2782 ± 63
NW	3	26	17:22:24.290	+32:09:12.65	19.16	0.1680 ± 0.0003	0		0.24	-14079 ± 137
NW	3	50	17:22:21.475	+32:09:02.84	19.02	0.2260 ± 0.0002	0	\checkmark	0.36	55 ± 98
NW	3	184	17:22:23.454	+32:08:06.50	19.96	0.2628 ± 0.0001	1		0.20	9047 ± 68
NW	3	206	17:22:19.500	+32:07:52.06	20.94	0.2185 ± 0.0001	1	\checkmark	0.35	-1753 ± 39
SE	1	202	17:22:33.893	+32:06:35.34	18.68	0.2203 ± 0.0001	1	\checkmark	0.42	-1333 ± 59
SE	2	91	17:22:28.227	+32:07:18.12	20.29	0.2135 ± 0.0001	0		0.14	-2982 ± 63

Table A.5 Continued

Table	11.5	minuce	1							
tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
SE	2	189	17:22:26.261	+32:06:33.18	20.64	0.2897 ± 0.0002	1		0.37	15599 ± 122
SE	2	226	17:22:30.791	+32:06:22.27	20.60	0.2482 ± 0.0001	1		0.41	5478 ± 39
SE	3	45	17:22:27.117	+32:07:35.51	19.77	0.2210 ± 0.0003	0	\checkmark	0.08	-1157 ± 151
SE	3	171	17:22:32.779	+32:06:43.69	20.61	0.2261 ± 0.0000	0	\checkmark	0.37	92 ± 24
SW	1	160	17:22:18.982	+32:06:49.70	19.60	0.2262 ± 0.0001	0	\checkmark	0.45	121 ± 44
SW	1	203	17:22:26.919	+32:06:36.74	18.29	0.2256 ± 0.0002	0	\checkmark	0.29	-30 ± 78
SW	1	214	17:22:24.770	+32:06:30.20	20.93	0.2334 ± 0.0001	1	\checkmark	0.34	1880 ± 68
SW	2	121	17:22:21.021	+32:07:05.24	19.59	0.2293 ± 0.0002	0	\checkmark	0.35	882 ± 78
SW	3	5	17:22:21.443	+32:07:53.68	19.98	0.1781 ± 0.0002	0		0.22	-11617 ± 117
SW	3	23	17:22:23.499	+32:07:47.19	19.62	0.1771 ± 0.0001	0		0.14	-11852 ± 29
SW	3	53	17:22:23.894	+32:07:32.82	20.45	0.3593 ± 0.0001	1		0.24	32587 ± 29
SW	3	58	17:22:26.813	+32:07:34.55	19.46	0.2238 ± 0.0001	0	\checkmark	0.08	-474 ± 68
SW	3	89	17:22:19.677	+32:07:15.96	19.83	0.2258 ± 0.0001	0	\checkmark	0.38	21 ± 63
SW	3	144	17:22:26.332	+32:06:55.93	20.24	0.2292 ± 0.0001	1	\checkmark	0.23	845 ± 73
SW	3	146	17:22:19.254	+32:06:49.42	19.04	0.2258 ± 0.0001	0	\checkmark	0.44	18 ± 59
SW	3	162	17:22:19.860	+32:06:44.09	19.95	0.3840 ± 0.0001	1		0.62	38622 ± 73
SW	3	221	17:22:20.506	+32:06:21.01	19.35	0.2242 ± 0.0002	0	\checkmark	0.46	-372 ± 78
SW	3	236	17:22:20.911	+32:06:13.52	20.04	0.1851 ± 0.0001	1		0.41	-9900 ± 39

Table A.6: Spectroscopic redshifts for galaxies in c319p70+0p56 measured with the MS: Columns as in Table 3.2.

4.1	1.1	C1		1	(1 1 . C		N.f. 1	D (M	I OCI /1 -1\
tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
NE	1	193	21:18:50.285	+00:33:52.08	20.09	0.2785 ± 0.0002	0	\checkmark	0.10	633 ± 112
NE	1	216	21:18:54.243	+00:33:45.76	19.71	0.2765 ± 0.0001	0	\checkmark	0.33	169 ± 66
NE	2	220	21:18:49.071	+00:33:37.32	17.42	0.2756 ± 0.0001	0	\checkmark	0.00	-37 ± 47
NE	3	21	21:18:51.226	+00:35:01.96	19.56	0.2740 ± 0.0002	1	\checkmark	0.38	-424 ± 103
NE	3	66	21:18:51.814	+00:34:44.38	20.20	0.3058 ± 0.0004	1		0.36	7022 ± 169
NE	3	75	21:18:49.304	+00:34:36.62	19.15	0.1346 ± 0.0001	0		0.14	-33096 ± 66
NE	3	77	21:18:50.210	+00:34:37.07	20.14	0.2195 ± 0.0003	1		0.22	-13192 ± 127
NE	3	118	21:18:49.121	+00:34:20.26	18.85	0.2610 ± 0.0003	1		0.17	-3470 ± 127
NE	3	178	21:18:50.051	+00:33:55.37	19.01	0.3132 ± 0.0004	1		0.11	8768 ± 192
NW	1	25	21:18:46.617	+00:35:06.97	20.60	0.2727 ± 0.0001	0	\checkmark	0.41	-724 ± 70
NW	2	112	21:18:46.414	+00:34:26.28	20.33	0.2621 ± 0.0001	0		0.26	-3217 ± 70
NW	2	209	21:18:44.289	+00:33:42.58	19.24	0.2688 ± 0.0001	0	\checkmark	0.30	-1645 ± 61
NW	3	161	21:18:42.244	+00:34:02.14	20.31	0.2735 ± 0.0002	0	\checkmark	0.44	-531 ± 84
NW	3	218	21:18:41.776	+00:33:36.44	19.08	0.1644 ± 0.0001	0		0.31	-26114 ± 66
SE	1	55	21:18:53.543	+00:33:18.15	18.90	0.2717 ± 0.0001	0	\checkmark	0.29	-953 ± 61
SE	1	185	21:18:53.214	+00:32:21.39	20.36	0.2774 ± 0.0002	1	\checkmark	0.42	369 ± 80
SE	2	19	21:18:50.005	+00:33:26.22	19.07	0.2794 ± 0.0002	0	\checkmark	0.08	842 ± 80
SE	2	24	21:18:52.466	+00:33:27.23	19.30	0.2786 ± 0.0001	0	\checkmark	0.22	652 ± 61
SE	2	42	21:18:53.957	+00:33:21.27	19.97	0.2754 ± 0.0001	0	\checkmark	0.32	-105 ± 61
SE	2	155	21:18:52.670	+00:32:32.22	20.33	0.2132 ± 0.0003	1		0.29	-14680 ± 131
SE	3	56	21:18:54.097	+00:33:12.36	19.86	0.2284 ± 0.0000	0		0.29	-11096 ± 9
SW	1	100	21:18:47.781	+00:32:58.96	18.20	0.2276 ± 0.0000	0		0.16	-11305 ± 23
SW	1	120	21:18:43.405	+00:32:45.55	19.22	0.2811 ± 0.0002	0	\checkmark	0.42	1236 ± 89
SW	1	152	21:18:45.023	+00:32:33.46	18.62	0.2770 ± 0.0001	0	\checkmark	0.37	291 ± 42
SW	1	167	21:18:45.081	+00:32:27.08	19.91	0.2786 ± 0.0002	0	\checkmark	0.39	669 ± 80
SW	2	38	21:18:45.564	+00:33:22.07	20.54	0.3010 ± 0.0001	1		0.24	5907 ± 28

Table A.6 Continued

			- -							
tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
$\overline{\text{SW}}$	2	122	21:18:44.203	+00:32:45.66	20.29	0.2775 ± 0.0001	0	√	0.38	404±66
SW	2	206	21:18:42.699	+00:32:06.10	17.62	0.2700 ± 0.0001	0	\checkmark	0.55	-1356 ± 33
SW	3	220	21:18:42.834	+00:31:57.86	21.05	0.2739 ± 0.0000	0	\checkmark	0.57	-440 ± 19

Table A.7: Spectroscopic redshifts for galaxies in c328p33+0p19 measured with the MS: Columns as in Table 3.2.

tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
NE	1	62	21:53:22.219	+00:12:39.81	20.97	0.0766 ± 0.0001	1	•••	0.10	-34369 ± 34
NE	1	215	21:53:26.220	+00:11:40.21	16.71	0.2159 ± 0.0001	0	\checkmark	0.26	-146 ± 44
NE	2	138	21:53:23.595	+00:12:08.78	20.12	0.2737 ± 0.0002	0	•••	0.21	14070 ± 88
NE	2	220	21:53:21.347	+00:11:30.70	19.12	0.2192 ± 0.0002	0	\checkmark	0.00	667 ± 79
NE	3	129	21:53:26.616	+00:12:12.42	19.97	0.2172 ± 0.0002	0	\checkmark	0.32	178 ± 84
NE	3	154	21:53:24.770	+00:11:59.52	20.86	0.2809 ± 0.0000	0	•••	0.25	15838 ± 25
NE	3	168	21:53:24.545	+00:11:53.74	21.00	0.2210 ± 0.0001	0	\checkmark	0.19	1119 ± 44
NE	3	174	21:53:27.197	+00:11:53.68	19.85	0.2161 ± 0.0001	0	\checkmark	0.32	-92 ± 69
NW	1	206	21:53:15.345	+00:11:39.78	19.96	0.2170 ± 0.0001	0	\checkmark	0.32	131 ± 44
NW	2	55	21:53:19.205	+00:12:46.30	20.20	0.2134 ± 0.0002	0	\checkmark	0.29	-751 ± 108
NW	3	151	21:53:16.776	+00:11:59.52	19.20	0.2166 ± 0.0001	0	\checkmark	0.26	45 ± 39
NW	3	217	21:53:20.606	+00:11:34.95	20.71	0.2188 ± 0.0002	1	\checkmark	0.04	586 ± 98
SE	1	12	21:53:26.058	+00:11:29.27	19.79	0.2164 ± 0.0001	0	\checkmark	0.25	-19 ± 59
SE	1	40	21:53:25.627	+00:11:16.34	18.96	0.2164 ± 0.0001	0	\checkmark	0.23	-9 ± 49
SE	3	43	21:53:27.012	+00:11:14.01	19.55	0.2159 ± 0.0002	0	\checkmark	0.30	-127 ± 88
SE	3	57	21:53:26.805	+00:11:06.27	19.54	0.2143 ± 0.0001	0	\checkmark	0.30	-537 ± 54
SE	3	61	21:53:21.720	+00:11:00.41	20.37	0.2144 ± 0.0001	0	\checkmark	0.11	-510 ± 59
SW	1	51	21:53:17.384	+00:11:10.44	19.13	0.2189 ± 0.0001	0	\checkmark	0.22	608 ± 34
SW	1	174	21:53:20.933	+00:10:22.05	19.86	0.3719 ± 0.0001	0	•••	0.36	38208 ± 34
SW	2	133	21:53:14.825	+00:10:33.36	20.80	0.2085 ± 0.0002	0		0.39	-1958 ± 84
$_{ m SW}$	3	41	21:53:19.548	+00:11:13.96	19.84	0.2138 ± 0.0001	0	✓	0.11	-658±39

Table A.8: Spectroscopic redshifts for galaxies in XMMXCSJ124425.9+164758.0 measured with the MS: Columns as in Table 3.2.

tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
NE	1	39	12:44:29.179	+16:49:17.17	19.38	0.4514 ± 0.0001	0	•••	0.61	53398±44
NE	1	79	12:44:27.588	+16:48:59.30	20.00	0.2235 ± 0.0001	1		0.29	-1943 ± 44
NE	1	85	12:44:30.641	+16:48:58.51	19.65	0.2376 ± 0.0001	0		0.40	1475 ± 39
NE	1	207	12:44:26.458	+16:48:01.70	20.04	0.2372 ± 0.0002	1		0.09	1398 ± 92
NE	2	65	12:44:27.576	+16:49:04.52	20.86	0.2529 ± 0.0001	1		0.33	5207 ± 39
NE	2	123	12:44:27.689	+16:48:39.78	18.94	0.1079 ± 0.0001	1		0.12	-29994 ± 63
NE	3	205	12:44:25.438	+16:48:00.39	18.15	0.2313 ± 0.0002	0	\checkmark	0.05	-52 ± 78
NW	1	17	12:44:23.999	+16:47:52.05	19.70	0.3377 ± 0.0001	0		0.09	25789 ± 58
NW	1	70	12:44:28.565	+16:47:33.65	20.71	0.2372 ± 0.0002	1		0.19	1402 ± 97
NW	2	6	12:44:25.438	+16:47:56.96	17.43	0.2340 ± 0.0001	0	\checkmark	0.04	606 ± 34
NW	3	50	12:44:25.866	+16:47:35.40	20.14	0.2324 ± 0.0002	0	\checkmark	0.06	222 ± 83
SE	1	164	12:44:27.304	+16:46:39.99	20.92	0.2302 ± 0.0001	0	\checkmark	0.27	-317 ± 39
SE	3	14	12:44:31.911	+16:47:47.15	19.72	0.4523 ± 0.0001	0	•••	0.56	53626 ± 49
SE	3	17	12:44:26.252	+16:47:41.10	20.39	0.2312 ± 0.0000	0	\checkmark	0.06	-71 ± 15
SE	3	105	12:44:26.799	+16:47:00.82	19.89	0.1361 ± 0.0001	1		0.13	-23149 ± 49
SW	1	25	12:44:23.322	+16:47:43.10	21.16	0.2192 ± 0.0002	1		0.10	-2975 ± 92
SW	1	29	12:44:25.243	+16:47:44.50	19.12	0.2316 ± 0.0000	0	\checkmark	0.01	23 ± 24
SW	2	28	12:44:24.524	+16:47:42.65	17.24	0.0253 ± 0.0001	1	•••	0.01	-50068 ± 53
SW	2	241	12:44:22.332	+16:46:07.60	18.90	0.2372 ± 0.0001	0		0.41	1381±29

Table A.9: Spectroscopic redshifts for galaxies in XMMXCSJ125650+254803.2 measured with the MS: Columns as in Table 3.2.

tile	dither	fiber	ra	dec	r (mag)	redshift	Q	Member	R (Mpc)	$LOSV (km s^{-1})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
NE	1	223	12:56:53.588	+25:48:02.73	19.64	0.3931 ± 0.0001	1		0.26	25900 ± 70
NE	3	6	12:56:53.977	+25:49:31.89	18.33	0.1720 ± 0.0001	0		0.30	-25656 ± 33
NE	3	47	12:56:52.732	+25:49:10.94	18.32	0.1728 ± 0.0001	0		0.23	-25472 ± 61
NW	1	158	12:56:50.241	+25:48:32.88	19.07	0.2819 ± 0.0001	0	\checkmark	0.13	-34 ± 56
NW	1	170	12:56:49.017	+25:48:27.68	21.28	0.1665 ± 0.0002	1		0.08	-26948 ± 93
NW	3	201	12:56:50.112	+25:48:10.26	17.68	0.2810 ± 0.0001	0	\checkmark	0.03	-237 ± 47
SE	1	227	12:56:55.806	+25:46:22.69	19.95	0.3972 ± 0.0001	1		0.68	26859 ± 47
SW	1	122	12:56:46.504	+25:47:04.28	19.49	0.3287 ± 0.0001	0		0.36	10880 ± 51
SW	2	58	12:56:50.691	+25:47:36.32	19.90	0.2580 ± 0.0001	0		0.11	-5604 ± 70
SW	3	132	12:56:44.117	+25:46:56.15	18.06	0.2833 ± 0.0001	0	\checkmark	0.45	304 ± 47
$_{ m SW}$	3	138	12:56:47.249	+25:46:54.73	21.12	0.3280 ± 0.0001	0	•••	0.37	10722 ± 28