Obstacle Avoidance for a Quadrotor

Nikoli Dryden Bryan Plummer

Introduction

- ► Obstacle avoidance for an ARDrone 2.0 quadrotor
- ► Use the approach in *Obstacle avoidance for small UAVs using monocular vision* (Lee et al. 2011)
- ► Test with real data as opposed to simulations

Proposed Solution

- ► Extract SIFT and MOPS features from two images
- Match SIFT and MOPS features in images to locate points in 3D
- ► Use MOPS to get object outlines
- Use SIFT to get internal object structure
- ► Determine type of object

MOPS

- ► Multi-Scale Oriented Patches (*Image Matching using Multi-Scale Oriented Patches* (Brown et al. 2004))
- ► Detect features with multi-scale Harris corner detector
- ► Compute 8 × 8 patches of bias/gain normalized intensity values
- ► Orient using a blurred local gradient

Some Results: SIFT

Some Results: MOPS

Some Results

- ► MOPS is not robust on real data:
 - ► Poor keypoints (multi-scale Harris)
 - ► Poor matches
 - ► Computationally intensive
- ► SIFT is also relatively slow
- Do not have sufficient "good" matches to generate object outlines
- ► Lee et al. approach is not robust on real-world data

A Better Idea

- ▶ Use faster and more robust features than SIFT and MOPS
- ▶ PTAM
 - An existing monocular SLAM framework using FAST (and other) features
 - Robust enough to work with real-world indoor and outdoor data
 - ► Significantly faster than our approach
- ► Integrate with the quadrotor using ardrone_autonomy and tum_ardrone

Further Results

Conclusions

- ► MOPS is slow and not robust
- ► The Lee, et al. approach is not robust on the quadrotor
- ► PTAM works well