Show that $cK_1(u, v)$ is a valid kernel. Let \emptyset , be the feature map for K_1 . $cK_1(u, v) = \langle \sqrt{c} \phi_1(u), \sqrt{c} \phi_2(v) \rangle$ (inner product axion and using c > 0) $= \langle \phi(u), \phi(v) \rangle$

Show that $f(y) K_1(y, y) f(y)$ is a valid kernel.

Let \emptyset , be the feature map for K_1 . Then $f(\underline{u})f(\underline{v}) K_1(\underline{u},\underline{v}) = \left\langle f(\underline{u}) \emptyset_1(\underline{u}), f(\underline{v}) \emptyset_1(\underline{v}) \right\rangle$ (inner product axiom) $= \left\langle \phi(\underline{u}), \phi(\underline{v}) \right\rangle$

Show that $K_1(u, v) + K_2(u, v)$ is a valid kernel.

Proof by Mercer's theorem

Given a set of instances $\{u_1, ..., u_n\}$, let \mathbb{K} , be the nxn Gram matrix associated with $K_1(\cdot, \cdot)$ (and sim. for $K_2(\cdot, \cdot)$).

The Gram matrix associated with $K = K_1 + K_2$ is $IK = IK_1 + IK_2$.

Now K is PSD since for any $x \in \mathbb{R}^n$ $x^T | K x = x^T | K_1 x + x^T | K_2 x > 0$ (since $x^T | K_1 x > 0$ and $x^T | K_2 x > 0$)

Alternate proof

Assume the implicit feature space is finitedimensional, and let ϕ_1 , ϕ_2 be the
feature maps for K_1 , K_2 respectively.

Consider the feature map ϕ which is
the concatenation of ϕ_1 , ϕ_2 : $\phi(u) = \begin{bmatrix} \phi_1(u) \\ \phi_2(u) \end{bmatrix}$

Now observe that $K(\underline{u},\underline{v}) := \langle \phi(\underline{u}), \phi(\underline{v}) \rangle$ $= \langle \phi_1(\underline{u}), \phi_1(\underline{v}) \rangle + \langle \phi_2(\underline{u}), \phi_2(\underline{v}) \rangle$ (here we're defining the inner product on the concatenated feature space—should show that this is

a valid inner product)

 $= K_1(\underline{u}) + K_2(\underline{v})$

Show that $\exp(K_1(u, v))$ is a valid kernel.

We'll need a couple of extra identities:

- (i) if K_1 , K_2 are valid kernels, so is $K(\underline{u},\underline{v}) = K_1(\underline{u},\underline{v}) K_2(\underline{u},\underline{v})$
- (ii) if $K_1, K_2, ...$ is a sequence of valid Kernels and $K(u, v) = \lim_{n \to \infty} K_n(u, v)$ exists for all $u, v \in X$ then K(u, v) is also valid.

Now we have that

 $\exp\left(K_{1}(\underline{u},\underline{v})\right) = \lim_{n \to \infty} K_{n}^{*}(\underline{u},\underline{v})$

where $K_{\lambda}^{*}(\underline{u},\underline{v}):=\sum_{j=0}^{n}\frac{1}{j!}\left[K_{i}(\underline{u},\underline{v})\right]^{j}$.

K* is a valid kernel by the "scalar (i) multiplication", "element-wise product", and "sum" identities.

Hence by the "limit" identity (ii), exp(K,(u,v)) is a valid kernel.