Hamiltonian Manifolds and the Regular Orbit Cylinder Theorem

Kevin Ruck

8. July, 2021

Table of Content

- The Poincaré section map and the regular orbit cylinder theorem
- Hamiltonian Manifolds
- Contact Manifolds
- Liouville Domains

The Poincaré section map and the regular orbit cylinder theorem

Given a vector field X on the 2n-dimensional manifold M. Assume that $x:I\to M$ is the trajectory of the vector field X, which is also periodic with fundamental period T>0. Then we can intersect x at the point p=x(0) with a (2n-1)-dimensional hypersurface Σ to which the vector field is nowhere tangent. This means that in a small neighbourhood around p we have

$$T_qM = T_q\Sigma \oplus \operatorname{span}\left\{X(q)\right\},$$

as long as q is also in Σ .

Let $\phi: M \times I \to M$ denote the flow of the vector field and since the flow is smooth in both components we can define a smooth map $\psi: U_p \subset \Sigma \to \Sigma$ by following an initial point $q \in U_p$ along its solution $\phi(q,t)$ until it meets Σ again at time $\tau(q)$, i.e.

$$\psi(q) = \phi(q, \tau(q)). \tag{1}$$

This map is called the Poincaré section map.

Lemma

 $\mathrm{d}\phi^T(p)$ has 1 as an eigenvalue with eigenvector X(p) and the remaining eigenvalues are those of $\mathrm{d}\psi(p)$.

Proof.

The first part is a straight forward computation:

$$d\phi^{T}(p)(X(p)) = \frac{d}{dt}\Big|_{t=0} \phi(\phi(p, t), T)$$

$$= \frac{d}{dt}\Big|_{t=0} \phi(p, t + T)$$

$$= \frac{d}{dt}\Big|_{t=0} \phi(p, t)$$

$$= X(p)$$

For the second part we differentiate ψ at p and obtain for $\zeta \in \mathcal{T}_p \Sigma$

$$d\psi(p)\zeta = d\phi^{\tau(\cdot)}(\cdot)\Big|_{p}\zeta$$

$$= d\phi^{T}(p)\zeta + \frac{d}{dt}\phi^{t}\Big|_{t=T} \cdot d\tau(p)\zeta$$

$$= d\phi^{T}(p)\zeta + (d\tau(p))(\zeta)X(p).$$

With respect to the splitting $T_pM = \operatorname{span} \{X(p)\} \oplus T_p\Sigma$, the linear map $\mathrm{d}\phi^T(p)$ is therefore of the form:

$$\mathrm{d}\phi^{\mathsf{T}}(\mathsf{p}) = \begin{pmatrix} \frac{1}{0} & -(\mathrm{d}\tau(\mathsf{p})) \\ 0 & \mathrm{d}\psi(\mathsf{p}) \end{pmatrix}$$

Theorem (the regular orbit cylinder theorem)

Let M be a symplectic manifold with Hamiltonian H and the Hamiltonian vector field X_H . Assume for a periodic solution $x(t,E^*)$ of X_H on M having energy $E^* = H(x(t,E^*))$ and period T^* the linear map $\mathrm{d}\phi^{T^*}(x(0,E^*))$ has exactly two eigenvalues equal to one. Then there exists a unique and smooth one parameter family x(t,E) of periodic solutions with period T(E) close to T^* and lying on the energy hypersurfaces

$$H(x(t,E))=E$$

for $|E - E^*|$ sufficiently small.

PERIODIC SOLUTIONS ON ENERGY SURFACES

Evidently the fixed points of ψ near $x(0, E^*)$ are the initial conditions of all the periodic solution near T^* . We shall use this observation in order to prove this theorem.

Claim: [Foundations of Mechanics, Theorem 8.2.2] In our current setting we can introduce near $p=x(0,E^*)$ convenient local coordinates $(x_1,\ldots,x_{2n})\in\mathbb{R}^{2n}$ such that p corresponds to $x^*=(E^*,0,...,0)$ and such that $H(x_1,\ldots,x_{2n})=x_1$ and moreover, such that $x_{2n}=0$ is our hypersurface Σ .

Since $H(\phi^t(p)) = H(p)$ the section map ψ is in these coordinates expressed by

$$\psi: \begin{pmatrix} x' \\ x'' \end{pmatrix} \mapsto \begin{pmatrix} \psi'(x', x'') = x' \\ \psi''(x', x'') \end{pmatrix},$$

where the coordinates (x', x'') on Σ stand for $x' = x_1$ and $x'' = (x_2, \dots, x_{2n-1})$.

In order to find fixed points, we need to solve the equation

$$\psi''(x',x'')=x''.$$

In our chosen coordinates the Jacobian at x^* of ψ is given by

$$\left(\frac{1}{*} \left| \begin{array}{c} 0 \\ \frac{\partial}{\partial x''} \psi''(x^*) \end{array} \right).$$

By the previous Lemma the eigenvalues of $\mathrm{d}\phi^{T^*}(p)$ consist of 1 and the eigenvalue of $\mathrm{d}\psi(p)$ and since by assumption $\mathrm{d}\phi^{T^*}(p)$ only has two times the eigenvalue 1, $\frac{\partial}{\partial x''}\psi''(x^*)$ can't have the eigenvalue 1. Therefore

$$\frac{\partial}{\partial x''} \left(\psi''(x^*) - x'' \right) = \frac{\partial}{\partial x''} \psi''(x^*) - \mathbb{1}$$

is bijective.

Theorem (Implicite Function Theorem)

Let $f: \mathbb{R}^{n+m} \to \mathbb{R}^m$ be a continuously differentiable function, and let \mathbb{R}^{n+m} have coordinates (x,y). Fix a point $(a,b)=(a_1,\ldots,a_n,b_1,\ldots,b_m)$ with f(a,b)=0, where $0\in\mathbb{R}^m$ is the zero vector. If the Jacobian matrix

$$\left[\frac{\partial f}{\partial y_i}(a,b)\right]$$

is invertible, then there exists an open set $U \in \mathbb{R}^n$ containing a such that there exists a unique continuously differentiable function $g: U \to \mathbb{R}^m$ such that g(a) = b and f(x, g(x)) = 0 for all $x \in U$.

Therefore

$$\frac{\partial}{\partial x''} \left(\psi''(x^*) - x'' \right) = \frac{\partial}{\partial x''} \psi''(x^*) - \mathbb{1}$$

is bijective. Hence by the implicit function theorem there exists a unique differentiable function $g:U\to\mathbb{R}^{2n-2}$ such that

$$\psi''(x', g(x')) - g(x') = 0.$$

This means we found a family of fixed points of ψ to which there exists a unique family of periodic orbits x(t, E) with x' = E and x(0, E) corresponds to (x', g(x')).

Hamiltonian Manifolds

Definition

A Hamiltonian manifold is a pair (Σ,ω) , where Σ is an odd-dimensional manifold and $\omega\in\Omega^2(\Sigma)$ is a closed two-form with the property that

$$\ker \omega := \bigsqcup_{p \in \Sigma} \left\{ v_p \in \mathcal{T}_p \Sigma \mid \omega_p(v_p, \, \cdot \,) = 0 \in \mathcal{T}_p^* \Sigma \right\}$$

defines a one-dimensional subbundle in $T\Sigma$.

Example

Let (M, ω) be a symplectic manifold and $H \in C^{\infty}(M, \mathbb{R})$ a Hamiltonian function with a regular value E_0 . Then the energy hypersurface

$$\Sigma = H^{-1}(E_0) \subseteq M$$

with the restricted symplectic form $\omega|_{\Sigma}$ forms a Hamiltonian manifold $(\Sigma, \omega|_{\Sigma})$:

Since for all $\zeta = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \gamma_{\zeta}(t) \in T_{p}\Sigma$

$$\omega_p(X_H(p),\zeta) = \mathrm{d}H_p(\zeta) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} H(\gamma_\zeta(t))$$

and H is by construction constant on Σ , we have

$$\omega_p(X_h(p),\zeta)=0$$
 for all $\zeta\in T_p\Sigma$.

Therefore

$$\bigsqcup_{p\in\Sigma}\operatorname{span}\left\{X_{H}(p)\right\}\subseteq\ker\omega\big|_{\Sigma}$$

and because ω is non degenerate on M the kernel can only be one dimensional. Hence

$$\bigsqcup_{p\in\Sigma}\operatorname{span}\left\{X_{H}(p)\right\}=\ker\omega\big|_{\Sigma},$$

i.e. $\ker \omega |_{\Sigma}$ is a one-dimensional subbundle in $T\Sigma$.

Contact Manifolds

Definition (contact form for a Hamiltonian manifold)

Assume that (Σ, ω) is a Hamiltonian manifold of dimension 2n-1. A contact form for (Σ, ω) is a one-form $\lambda \in \Omega^1(\Sigma)$ which meets the following two assumption

- **2** $\lambda \wedge \omega^{n-1}$ is a volume form on Σ .

But in fact we don't need to to assume that Σ is a Hamiltonian manifold in order to define a contact form:

Definition (contact manifold)

Let Σ be a 2n-1 dimensional manifold and $\lambda \in \Omega^1(\Sigma)$ a one-form such that

$$\lambda \wedge (\mathrm{d}\lambda)^{n-1} \tag{2}$$

is a volume form. Then we call (Σ, λ) a contact manifold with contact form λ .

Remark

Note that not every Hamiltonian manifold admits a contact form, in fact a necessary condition for the existence of a contact form would be $[\omega]=0\in H^2_{dR}(\Sigma).$ But on the other hand a contact manifold can always be made into a Hamiltonian manifold by setting $\omega:=\mathrm{d}\lambda.$

On a contact manifold we can then define the following vector field:

Definition (Reeb vector field)

Let (Σ, λ) be a contact manifold, then we define the Reeb vector field $R \in \Gamma(T\Sigma)$ implicitly by demanding:

$$i_R \, \mathrm{d}\lambda = 0 \quad \text{and} \quad \lambda(R) = 1 \tag{3}$$

Remark

From this definition we immediately see that the Reeb vector field is a non-vanishing section of the line bundle $\ker(\mathrm{d}\lambda)=\ker\omega$. If further Σ arises as the level set of a Hamiltonian $\Sigma=H^{-1}(0)$ on a symplectic manifold, the Reeb vector field is just a multiple of the Hamiltonian vector field.

Liouville Domains

Definition (Liouville vector field)

Let (M, ω) be a symplectic manifold. We call a vector field X, which satisfies

$$\mathcal{L}_{\mathsf{X}}\omega = \omega \tag{4}$$

a Liouville vector field

We can now use this Liouville vector field to define a one form by setting $\lambda = i_X \omega$.

Proposition

Suppose that X is a Liouville vector field defined on a neighbourhood of a hypersurface $\Sigma \subset M$. Assume that X is transverse to Σ , so $T_p\Sigma \bigoplus span\{X_p\} = T_pM$ for all $p\in \Sigma$. Then $(\Sigma, (i_X\omega)\big|_{\Sigma})$ is a contact manifold with contact form $\lambda:=(i_X\omega)\big|_{\Sigma}$.

First note that with the help of Cartan's magic formula we get:

$$\mathrm{d}i_X\omega = \mathcal{L}_X\omega - i_X\,\mathrm{d}\omega = \omega - 0 = \omega$$

Given $p \in \Sigma$, choose a basis $\{v_1, \ldots, v_{2n-1}\}$ of $T_p\Sigma$. We compute

$$\lambda \wedge (\mathrm{d}\lambda)^{n-1}(v_1,\ldots,v_{2n-1}) = i_X \omega \wedge \omega^{n-1}(v_1,\ldots,v_{2n-1})$$
$$= \frac{1}{n} \omega^n(X_p,v_1,\ldots,v_{2n-1}).$$

By assumption $\{X_p, v_1, \dots, v_{2n-1}\}$ is a basis of T_pM and since ω is non-degenerate, it follows that

$$\omega^n(X_p,v_1,\ldots,v_{2n-1})\neq 0$$

and we see that λ is indeed a contact form on Σ .

Definition (Liouville domain)

A Liouville domain is a compact exact symplectic manifold (M,λ) with the property that the Liouville vector field X, which is in this setting implicitly defined by $i_X \, \mathrm{d}\lambda = \lambda$, is transverse to the boundary.

Corollary

Assume that (M, λ) is a Liouville domain. Then $(\partial M, \lambda|_{\partial M})$ is a contact manifold.

Proof.

This would actually be a very good exercise, so I encourage you to give it a try.

Literature

Helmut Hofer and Eduard Zehnder: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser (1994)

Urs Frauenfelder and Otto van Koert: The Restricted Three-Body Problem and Holomorphic Curves. Birkhäuser (2018)