Apellido:

Nombre: DNI:

- 1. (a) (6 pts.) Defina cuando un entero p se dice primo y enuncie el Teorema fundamental de la aritmética (completo).
 - (b) (7 pts.) Sea $n \in \mathbb{N}$, $x, z, a, b \in \mathbb{Z}$.
 - ullet Defina cuando a y b se dicen congruentes módulo n.
 - Enuncie 3 propiedades de la congruencia.
 - Demuestre que si $x \equiv a$ (n) y $z \equiv b$ (n) entonces $x + z \equiv a + b$ (n).
- 2. (a) (6 pts.) Defina cuando dos números enteros de dicen coprimos. Demuestre que si $a,b\in\mathbb{Z}$ son coprimos y $a\mid bc$ entonces $a\mid c$.
 - (b) (6 pts.) Definir qué es la valencia de un vértice de un grafo. Enunciar una fórmula que relacione las valencias de un grafo con las aristas.
- 3. (10 pts.) Sea $\{u_n\}_{n\in\mathbb{N}}$ la sucesión definida por recurrencia como sigue:

$$u_1 = 6$$
, $u_2 = 28$, $u_{k+1} = 6u_k - 4u_{k-1}$, $\forall k \ge 2$.

Demostrar que u_n es múltiplo de 2^n para todo $n \in \mathbb{N}$.

- 4. (5 pts.) Sean $p, q \in \mathbb{Z}$ enteros primos distintos. Calcule cuantos enteros comprimos con $n = p^{10}q^{30}$ hay entre 1 y n-1 inclusive. Ayuda: Cuente los números naturales que **si** posean un divisor común con n y haga la diferencia.
- 5. (10 pts.) Calcular el resto de dividir 21^{163} por 19.
- 6. $(15 \ pts.)$ Supongamos tener un alfabeto que tiene 130 símbolos. Pepe quiere formar una contraseña de 8 caracteres. De cuantas formas puede hacerlo si:
 - (a) No hay ninguna restricción.
 - (b) Quiere que los tres primeros dígitos de la contraseña sean iguales (XXX-.-.-). Observación: podría haber más caracteres iguales, pero los primeros 3 deben ser iguales.
 - (c) Asumamos que los símbolos P, E, 1, 9 están en el alfabeto de 130. Pepe quiere quiere que la contraseña contenga exactamente los 8 caracteres que tiene entre su nombre y año de nacimiento: PEPE y 1991.
- 7. (a) (3 pts.) Decida si la siguiente ecuación admite alguna solución entera justificando apropiadamente.

$$470x \equiv 8 \ (151).$$

- (b) (10 pts.) En caso afirmativo, encuentre **todos** los $x \in \mathbb{Z}$ que satisfacen la congruencia.
- (c) (2 pts.) Hay una única solución x_0 tal que $0 < x_0 < 164$?
- 8. (20 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justifique apropiadamente.
 - (a) Existen infinitos $x \in \mathbb{Z}$ tales que $4274 x \equiv 27 \ (802)$.
 - (b) $10^{10} < \binom{100}{5}$.
 - (c) No existe un número natural a tal que $a^6 = 13^{71}$.
 - (d) El número

 $222\cdots222$

un millón de dos

es divisible por 9.

1(a)	1(b)	2(a)	2(b)	3	4	5	6(a)	6(b)	6(c)
7(a)	7(b)	7(c)	8(a)	8(b)		8(c)	8(d)	Total	Nota