IE406: Final Project

Group 4: Music Genre Classification

Rohin Nanavati: 201801108

Methodology: K-means Algorithm Instructor: Prof.Manjunath Joshi Shivam Bodiwala: 201801111 Ravi Makwana: 201801461 In [2]: #importing useful modules of python import numpy as np import pandas as pd import scipy as sp import seaborn as sns import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import confusion_matrix In [3]: #loading the data from .csv file dataframe=pd.read_csv('Genre_data.csv') print("Coloumns of the data file....\n") for col in dataframe.columns: print(col) Coloumns of the data file.... filename length ${\tt chroma_stft_mean}$ chroma_stft_var rms_mean rms_var spectral_centroid_mean spectral_centroid_var spectral_bandwidth_mean spectral_bandwidth_var rolloff_mean rolloff_var zero_crossing_rate_mean zero_crossing_rate_var harmony_mean harmony_var perceptr_mean perceptr_var tempo mfcc1_mean mfcc1_var mfcc2_mean mfcc2_var mfcc3_mean mfcc3_var mfcc4_mean mfcc4_var mfcc5_mean mfcc5_var mfcc6_mean mfcc6_var mfcc7_mean mfcc7_var mfcc8_mean mfcc8_var mfcc9_mean mfcc9_var mfcc10_mean mfcc10_var mfcc11_mean mfcc11_var mfcc12_mean mfcc12_var mfcc13_mean mfcc13_var mfcc14_mean mfcc14_var mfcc15_mean mfcc15_var mfcc16_mean mfcc16_var mfcc17_mean mfcc17_var mfcc18_mean mfcc18_var mfcc19_mean mfcc19_var mfcc20_mean mfcc20_var label In [4]: #dictionary which maps lable name to a positive integer genre_to_number= { 'blues':0, 'classical':1, 'country':2, 'disco':3, 'hiphop':4, 'jazz':5, 'metal':6, 'pop':7, 'reggae':8, 'rock':9, In [5]: #removing unnecessary columns dataframe.label=[genre_to_number[item] for item in dataframe.label] labels=dataframe['label'] dataframe=dataframe.drop(['filename', 'length', 'label'], axis = 1) In [6]: #Converting into numpy array X=dataframe.to_numpy() y=labels.to_numpy() In [7]: #Verifying the shape print(X.shape) print(y.shape) (9990, 57)(9990,)In [8]: print("Number of datapoints: ", X.shape[0]) print("Number of features: ", X.shape[1]) Number of datapoints: 9990 Number of features: 57 In [9]: #Performing the K-means clustering km = KMeans(n_clusters=10, init='random', n_init=200, max_iter=500, tol=1e-04, random_state=0 $y_pred = km.fit_predict(X)$ In [11]: #Calculating the density of each cluster freq_denominator=np.zeros(10) for i in range(9990): freq_denominator[y_pred[i]]+=1 print("ith element represents the number of data points belonging to cluster i") print(freq_denominator) ith element represents the number of data points belonging to cluster i [269. 2343. 1674. 498. 71. 1255. 2538. 821. 186. 335.] **Observation:** Here we can see that each cluster contains different amount of data points. So K-means is not able to form appropriate clusters. In [13]: #giving proper lables m=y_pred.shape[0] cluster_to_label=np.zeros(10) freq=np.zeros([10,10]) for i in range(m): freq[y_pred[i]][y[i]]+=1 for i in range(10): cluster_to_label[i]=np.argmax(freq[i]) for i in range(m): y_pred[i]=cluster_to_label[y_pred[i]] In [14]: print("(i,j) element represents the number of datapoints belonging to cluster i and having j as original label: ") print(freq) print("ith element represents which cluster represents which label: ") print(cluster_to_label) (i,j) element represents the number of datapoints belonging to cluster i and having j as original label: [[2. 0. 11. 13. 59. 1. 2. 113. 53. 15.] [349. 77. 277. 289. 203. 318. 339. 105. 93. 293.] [116. 21. 255. 282. 183. 177. 101. 175. 140. 224.] [44. 6. 43. 39. 71. 15. 2. 99. 148. 31.] 0. 17. 19. 14.] Θ. 1. Θ. 4. 14. 2. [89. 13. 168. 197. 174. 95. 16. 199. 172. 132.] [304. 869. 136. 64. 81. 312. 532. 21. 45. 174.] 7. 139. 183. 84.] 9. 85. 80. 98. 66. 3. 9. 50. 6. 0. 41. 55. 13.] [19. 0. 19. 22. 65. 8. 1. 91. 92. 18.]] ith element represents which cluster represents which label: [7. 0. 3. 8. 8. 7. 1. 8. 8. 8.]

sns.heatmap(confusion_matrix(y,y_pred),annot=True) plt.show() Confusion matrix is visualized below. Where X axis has ground truth and Y axis has predicted values.

print("Confusion matrix is visualized below. Where X axis has ground truth and Y axis has predicted values.\n\n\n")

In [15]:

#plotting confusion matrix

plt.figure(figsize=(15,15))