

www.manabadi Guess Papers March 2024 bad com www.man Board of Intermediate Education 11 Telephone 12 Telephon

Time::3 Hrs www.manabadi.co.in www.manabadi.co.in www.manabadi.co.i Total Marks:: 75 M

SECTION-Adico.in

I. Answer all the questions. Each question carries '2' marks.

 $10 \times 2 = 20M$

- 1) If $f(y) = \frac{y}{\sqrt{1-\frac{2}{y}}}$, $g(y) = \frac{y}{\sqrt{1+\frac{2}{y}}}$ then show that (fog)(y)=y
- 2) Find the domain of $f(x) = \frac{1}{[x]^2 [x] 2}$
- www.m3) Construct a 3x2 matrix whose elements are defined by $a_y = \frac{1}{2}|i-3j|$
 - 4) Find the cofactors of 2 and -5 in the matrix $\begin{bmatrix} -1 & 0 & 5 \\ 1 & 2 & -2 \\ 4 & -5 & 3 \end{bmatrix}$
 - 5) Let a = 2i + 4j 5k, $\bar{b} = i + j + k$, c = j + 2k. Find the unit vector in the opposite direction of a+b+c.
- Www.manalthe vector equation of the median through the vertex A. manabadi.co.in www.manabadi.co.in www.manabadi.co.in
 - 7) Find the angle between the planes r.(2i-j+2k) = 3, r.(3i+6j+k) = 4.
 - 8) a Prove that $\frac{c \circ s^0 + s i n^0}{c \circ s^0 + s i n^0} = \cot 36^0$ www.manabad
 - 9) Find the range of 7 cosx 24sinx+5.
 - y.manabadi.co.in www.manabadi.co.in www.manabadi.c

SECTION-B

II. Answer ANY FIVE questions. Each question carries '4' marks.

 $5 \times 4 = 20M$

11) If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 then show that $A^2 - 4A - 5I = 0$

12) If a, \overline{b}, c are non-coplanar vectors, then prove that four points $-a + 4\overline{b} - 3c$, $3a + 2\overline{b} - 5c - 3a + 2\overline{b} + c$ are coplanar.

.m**:13)If**di.co.in

 $[\bar{b}\ c^-\bar{d}] + [c^-\bar{a}^-]d + [\bar{a}^-\bar{b}]d = [\bar{a}^-\bar{b}]the\ n\ hso\ w\ hta\ t\ hte\ f\ o\ u\ r\ p\ o\ i\ nhtpsows\ i\ t\ i\ o\ n\ v\ e, \bar{b}, tc\bar{p}dr\ s\ a^-$ are coplanar.

14) Prove that	$(1+co^{\frac{\pi}{4}})$	$(1 + c o \frac{3\pi}{5})$	$(1 + \cos^{\frac{7}{11}})$	$+\cos\frac{9\pi}{10} = \frac{1}{16}$
-1 iji iove diae	(1,0)	100	1000	10/ 16

16) Prove that
$$T \ a \ \overline{n}^{\frac{1}{2}} + T \ a \ \overline{n}^{\frac{1}{5}} + T \ a \ \overline{n}^{\frac{1}{8}} = \frac{\pi}{4}$$

17) If
$$\sin\theta = \frac{a}{b+c}$$
 the n how that $c \circ \theta = \frac{\partial^2 \sqrt{b} \cdot c}{b+c} \circ \frac{A}{2}$

SECTION-C

www.III. Answer ANY FIVE questions. Each question carries '7' marks.

www.5 x 7 = 35M

www.m18) If f:A
$$\rightarrow$$
B, g: B \rightarrow C are two bijections then prove that (gof)-1=f-1og-1.0 in

19) Show that
$$4^3+8^3+12^3+...n$$
 terms = $16n^2(n+1)^2$ for all $n \in \mathbb{N}$

20) Show that
$$\begin{vmatrix} -2a & a+b & a+c \\ a+b & -2b & b+c \\ a+c & b+c & -2c \end{vmatrix} = 4(a+b)(b+c)(c+a)$$

22) If
$$a, \bar{b}, c^-a$$
 r lette e v e c , t thoerns p r o heree $t(t\bar{a} \times \bar{b}) \times c^- = (c.\bar{a})\bar{b} - (c.\bar{b})a^-$

23) In ΔABC, Prove that
$$S$$
 i $\frac{A}{n} + s$ i $\frac{B}{n} + s$ i $\frac{C}{n} = 1 + 4 sin \left(\frac{\pi - \lambda}{4}\right) sin \left(\frac{\pi - B}{4}\right) sin \left(\frac{\pi - C}{4}\right)$

24) If a=13, b=14,c=15, show that
$$R = \frac{65}{8}$$
, $r = 4$, $r_1 = \frac{21}{2}$, $r_2 = 12$, $r_3 = 14$

Disclaimer: This Question paper is purely for preparation purpose only. Manabadi.com is no where claiming this to be the Main Examination Paper.

March - 2024

www.manBoard of Intermediate Education co.in www.manabadi.co.in www.manabadi.co.in www.manabadi.co.in www.manabadi.co.in www.manabadi.co.in

Time:	3.00Hrs	www.manabadi.co.m	CODE No:	ww.manabadi.
Marks	75		www.manabaar.ee.in	ww.managagi

I. ANSWERS THE FOLLOWING QUESTIONS.

 $10 \times 2 = 20$

- www.1. and If $f: R \to R$ is defined by f(x) = 2x + 3 then show that $f: R \to R$ is a bijection abadico in
- 2. and If $f: R \{0\} \to R$ is defined by $f(x) = x^3 \frac{1}{x^3}$, then show that f(x) + f(1/x) = 0 www.manabadi.co.in www.manabadi.co.in www.manabadi.co.in www.manabadi.co.in
 - 3. an Define Inverse of a Square matrix. Give example.
 - 4. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$ and 2X+A=B then find X.
- 5. If **a=2i-j+k, b=i-3j-5k** then find the vector **c** such that **a, b** and **c** from the sides of www.manabadi.co.in www.manabadi.co.in www.manabadi.co.in www.manabadi.co.in

www.manatriangle.

6. and Find the vector equation and Cartesian equation to the line passing through the points

manabadi.co.in www.manabadi.co.in anabadi.co.in
$$2\hat{i} + \hat{j} + 3\hat{k}, -4\hat{i} + 3\hat{j} - \hat{k}$$

- Find the angle between the planes $\hat{r} \cdot (2\hat{i} \hat{j} + 2\hat{k}) = 3, \hat{r} \cdot (3\hat{i} + 6\hat{j} + \hat{k}) = 4$.
 - 8. and If $180^{\circ} < \theta < 270^{\circ}$ and $\sin \theta = -4/5$ find the values of $\sin(\theta/2)$ and $\cos(\theta/2)$. A substitution of $\sin(\theta/2)$ and $\cos(\theta/2)$ a
- Find the period of function $f(x) = \tan(x + 4x + 9x + \dots + n^2x)$, n is a positive integer.
 - 10. If $\sinh x = 3/4$, show that $\cosh 2x = 17/8$ and $\sinh 2x = \frac{15}{8}$.

II. ANSWER ANY FIVE OF THE FOLLOWING QUESTIONS.

 $5 \times 4 = 20$

- 11. Find the value of x, if $\begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ x-4 & 2x-9 & 3x-16 \\ x-8 & 2x-27 & 3x-64 \end{vmatrix} = 0$
- 12. If the points whose position vectors are

badi.co.in www.manabadi.co.in www.manabadi.co.in

- 13. Prove that the smaller angle θ between ant two diagonals of a cube is given by mabadico in www.manabadi.co.in www.manabadi.co.in www.manabadi.co.in www.manabadi.co.in
- 14. Prove that $\sin A \sin (60^\circ + A) \sin (60^\circ A) = \frac{1}{4} \sin 3A$ and hence deduce that

 $\sin\frac{\pi}{9}\sin\frac{2\pi}{9}\sin\frac{3\pi}{9}\sin\frac{4\pi}{9} = \frac{3}{16}.$

- 15. Solve $\cot^2 \theta (1 + \sqrt{3})\cos \theta + \sqrt{3} = 0[0 < \theta < \pi/2].$
- 16. If $Sin^{-1}x + Sin^{-1}y + Sin^{-1}z = \pi$, prove that $x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xyz$.
- 17. Show that $\cot A + \cot B + CotC = \frac{a^2 + b^2 + c^2}{4\Delta}$

III. ANSWER ANY FIVE OF THE FOLLOWING QUESTIONS.

 $5\times7=35$

- 18. If $f: A \to B, g: B \to C$ are two one onto functions then show that $g \circ f: A \to C$ is also one one onto .
 - 19. By using mathematical induction, prove that $3.5^{2n+1} + 2^{3n+1}$ is divisible by 17. manabadi co. in
 - 20. Show that $\begin{vmatrix} a+b+2c & a \\ c & b+c+2a \\ c & a \end{vmatrix} = 2(a+b+c)^3$
 - 21. Examine whether the following system of equations

x + y + z = 1,2x + y + z = 2,x + 2y + 2z = 1 are consistent or inconsistent and if

If $\overline{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\overline{b} = 2\hat{i} + \hat{j} + \hat{k}$, $\overline{c} = \hat{i} + \hat{j} + 2\hat{k}$ then find $|(\overline{a} \times \overline{b}) \times \overline{c}|$ and $|\overline{a} \times (\overline{b} \times \overline{c})|$.

23. If $A + B + C = 180^{\circ}$, prove that $\cos 2A + \cos B + \cos 2C = -1 - 4\cos A\cos B\cos C$

www.manabadi.co.in www.manabadi

` ,	, , , , , , , , , , , , , , , , , , , ,	,	
	wwwTHEENDin		

Disclaimer: This Question paper is purely for preparation purpose only. Manabadi.com is no where claiming this to be the Main Examination Paper.