

Figure 7.1: PriorArt

Figure 7.2: TCM overview

Figure C

Figure 7.3: TCM run-time scheduler

BEST AVAILABLE CC.

Figure 7.4: System layer of MPEG4 IM1 player, with several concurrent modules and complex dynamic control constructs.

Figure 7.5: System layer of MPEG4 IM1 player, with several concurrent modules and complex dynamic control constructs.

Figure 7.6: Illustration of important grey-box model elements.

Figure 7.7: A real-life example of a grey-box model extracted from system layer of the MPEG4 IM1-player.

Figure 7.8: A global unified system design methodology covering different levels of abstraction with emphasis on the concurrent task related context.

Figure 7.9: Global Pareto curve after TCM scheduling and processor allocation/assignment exploration

Figure 7.10: Global Pareto curve after TCM concurrency extraction and transformations

Figure 7.11: Selection of appropriate point on Pareto curves for TCM characterized task clusters, after entering a foreign task cluster from the network.

Figure 7.12: System level modules of the MPEG4 IM1 player

Figure 7.13: Increasing the amount of concurrency by breaking data dependencies \mathbf{r}

Figure 7.14: Comparison between scheduling the original and the transformed graphs

Hierarchical rewriting hides less important constructs for TCM

Figure 7.15: Hierachical rewriting hides less important constructs for TCM

Example in IM1

Figure 7.16: Hierachical rewriting illustrated on IM1 player

Hide undesired constructs without trade-off to simplify the graph

Figure 7.17: Hide undesired constructs without trade-off

Code expansion creates freedom for scheduling

Figure 7.18: Code expansion creates freedom for scheduling

Code expansion in IM1(1)

Figure 7.19: Code expansion in IM1 (1)

Code expansion in IM1(2)

Figure 7.20: Code expansion in IM1 (2)

Remove constructs that make concurrency analysis difficult

Figure 7.21: Remove constructs that make concurrency analysis difficult

Trade-off complexity/freedom must be taken into account (1)

Figure 7.22: Trade-off complexity/freedom must be taken into account (1)

Trade-off complexity/freedom must be taken into account (2)

Figure 7.23: Trade-off complexity/freedom must be taken into account (2)

Transform constructs that cannot be removed

Figure 7.24: Transform constructs that cannot be removed

Concurrency analysis focuses on the parallelism

Figure 7.25: Concurrency analysis focuses on parallelism

Remove unused or redundant code

Figure 7.26: Remove unused or redundant code

Weight-based hiding reduces complexity further with trade-off

Figure 7.27: Weight-based hiding reduces complexity further with trade-off

Partitioning clusters tasks with high interaction

Figure 7.28: Partitioning clusters tasks with high interaction

Figure 7.29: An example of a task graph.

Figure 7.30: Static scheduling result.

Figure 7.31: Dynamic scheduling of two example thread frame.

Figure 7.32: The dynamic scheduling of ADSL.

Figure 7.33: ADSL digital modem schematic.

Figure 7.34: Comparison between scheduling the initial and the second transformed graphs

Figure 7.35: Examples of scheduling the second transformed graph

Figure 7.36: The difference between case 1 and case 2.

Figure 7.37: All possible schedules of the timers in case 3.

			Exec	ution	Time	e		Energy Consumption						
1	t_0	t_1	t_2	t_3	t_4	t_5	t_6	t_0	t_1	t_2	t_3	t_4	t_5	t_6
P1(H)	3	10	12	13	16	13	30	27	90	108	117	144	117	270
P2(L)	9	30	36	39	48	39	90	3	10	12	13	16	13	30

Table 7.1: Thread nodes performance.

	Threa	d Fram	e One	Thread Frame Two				
	opt.1	opt.2	opt.3	opt.1	opt.2	opt.3		
Cycle Budget	20	60	100	40	60	80		
Energy Cost	110	80	50	90	60	50		

Table 7.2: Two example thread frames.

Vdd	1 V	3 V	4 V	5 V
Frequency	10MHz	30MHz	40MHz	50MHz
Power				
(normalized)	1	27	64	125

Table 7.3: Assumption on processors.

Task	4	5	6	7	8	9	10	11	12	14	15	16	17	18
Deadline (symbol)	128	96	128	128	768	256	128	132	16	64	16	2048	64	576
Ex. Time (ms)(10MHz)	3	3	3	21	240	9	60	12	3	21	3	864	18	285

Table 7.4: Dead line and execution time of SW tasks.

(L,H)	1	,1	2	2,_	_,2	
	S,_	_,S	S,_	_,S	S,_	_,\$
Eq. $C_{S,i}(\mu s)$	166	624	102	690	230	564
$E_{S,i} + E_{T,i}(\times 10^{-6})$	797	6247	230	6338	1364	6210

Table 7.5: Execution time and energy consumption in one TB, case 1.

(L,H)	1	,1	2	?,-	_,2	}	Energy
	S,_	_,S	8,_	_,S	8,-	_,S	$(\times 10^{-6})$
task4			30				6900
task7	1		65		62		100315
task8	1			138	629		1.73×10^6
task9			89				20470
task10			2	67	59		505582
task11			3	11	18		94960
task12			5		11		16154
task14			1	14	49		155798
task16	1		2	855	1190		7.04×10^{6}
task17			3	8	53		123686
task18	1		1	332	242		2.44×10^{6}
					T	otal	1.22×10^7

Table 7.6: Scheduling result, case 1.

(L,H)	1	,1	2	2,_	-1	,2
	S,_	_,S	S,_	_,S	S,_	_,S
Eq. $C_{S,i}(\mu s)$	166	498	102	306	188	564
$E_{S,i} + E_{T,i} (\times 10^{-6})$	797	5113	230	2882	1322	6210

Table 7.7: Execution time and energy consumption in one TB , case 2.

(L,H)	1	,1	2	,-		,2	Energy
	s,_	_,8	s,_	_,S	S,_	_,s	$(\times 10^{-6})$
task4			30				6900
task7	123		4		1		100273
task8	429	339					2.075×10^{6}
task9			89				20470
task10	10	117	1				606421
task11	12	19				1	112921
task12	14	1			1		17593
task14	32	30			1	1	186426
task16	467	1579		2			8.45×10^{6}
task17	40	22	1	1			147478
task18	4	570		1	1		2.92×10^{6}
					T	otal	1.464×10^{7}

Table 7.8: Scheduling result, case 2.

(L,H)		22,		21,_1		,11	1_,12		,22	
	s,_	_,S	S,-	_,s	S,_	-,S	S,_	_,S	S,_	_,S
Eq. $C_{S,i}(\mu s)$	204	612	268	804	332	996	352	1056	376	1128
$E_{S,i} + E_{T,i} (\times 10^{-6})$	460	5764	1027	7975	1594	10226	2117	11269	2644	12420

Table 7.9: Execution time and energy consumption in one TB , case 3.

(L,H)	22	,	21	,_1	11	,11	1_,	12	,	22	Energy
	S,_	_,s	S,_	_,S	8,_	_,S	S,_	_,S	S,_	_,\$	$(\times 10^{-6})$
task4	15										6900
task7			4		69		1				100271
task8				2	213	168	1				2.076×10^{6}
task9	45										20700
task10				2	5	57					606802
task11					6	9		1			112867
task12			2	1	5						17999
task14			1	1	14	15	1				186825
task16					234	787	1	2	1		8.446×10^{6}
task17					20	10	1	1			147526
task18					2	284	1			1	2.92×10^{6}
									To	otal	1.464×10^{7}

Table 7.10: Scheduling result, case 3.

(L,H)	222,		22	1,1	121	,1_1	12.	.,12	_2_,2_2	
	S,_	_,S	S,_	-,S	S,_	_,S	S,_	_,S	s,_	_,S
Eq. $C_{S,i}(\mu s)$	204	816	268	1072	332	1328	364	1456	396	1584
$E_{S,i} + E_{T,i}(\times 10^{-6})$	588	13440	1612	18496	2636	23552	3628	26560	4620	29568

Table 7.11: Execution time and energy consumption in one TB , case 4.

(L,H)	222	2,	221	,1	121	,1_1	12_	,1_2	_2_	,2_2	Energy
	S,_	-, S	8,_	_,s	8,_	_,S	S,_	_,S	s,_	-,S	$(\times 10^{-6})$
task4	15										8820
task7					33	7	1		1_		260100
task8		1			99	154	1	1			3.93×10^{6}
task9	45										26460
task10						25		1		16	1.09×10^{6}
task11				1	1	8					209548
task12	1	1			2	1					42852
task14					5	14	1		1		351156
task16					41	639	1	1			1.52×10^7
task17					8	11	1		1		288408
task18						74		1		117	5.23×10^{6}
									,	Total	2.665×10^{7}

Table 7.12: Scheduling result, case 4.

(L,H)	2222,		2221,1 12		122	1221,1_1 12		_,1_2	_22_,22	
	S,_	_,S	S,_	_,S	S,-	_,S	S,_	_,S	S,_	_,S
Eq. $C_{S,i}(\mu s)$	204	1020	268	1340	332	1660	370	1850	408	2040
$E_{S,i} + E_{T,i}(\times 10^{-6})$	716	26012	2065	35297	3710	44878	5309	51189	6908	57500

Table 7.13: Execution time and energy consumption in one TB , case 5.

(L,H)	222	2,	222	1,1	122	1,1_1	122.	_,12	_22.	,2_2	Energy
	S,_	_,s	s,_	_,S	S,_	_,S	S,_	_,S	S,_	_,S	$(\times 10^{-6})$
task4	15										10740
task7				1	23	7			1		441681
task8			1	1	57	132	1				6.18×10^{6}
task9	45										32220
task10				1				24		7	1.67×10^{6}
task11				4		4					320700
task12			1		1		1	_		1	68584
task14				1	3	11			1		546993
task16				1		437		72		2	2.34×10^{7}
task17				6	5	5					454722
task18								46		98	7.99×10^{6}
	Total								4.11×10^7		

Table 7.14: Scheduling result, case 5.

Case Number	1	2	3	4	5
Total Energy Cost	12.2	14.64	14.64	26.65	41.1

Table 7.15: Energy cost of different cases at different working voltages.

Case Number	1	2	3	4	5
Total Energy Cost	31.2	34.6	34.6	39.1	41.1

Table 7.16: Energy cost of different cases at the same working voltages.

Figure 7.38: DM oriented transformations illustrated on the input buffers of the IM1-player $\,$

Figure 7.39: Constraints on the task-schedule reducing the DM requirements of a system

Table 7.17: Execution times and processing energy of most important tasks in IM1-player on a heterogeneous platform with one and two hardware accelerators

	1 HW ac	celerator	2 HW acc	celerators	
	Execution	Processor	Execution	Processor	
	Time	Energy	Time	Energy	
OD	9ms	0.37 mJ	9ms	0.37ms	
BIFS	24ms	0.98mJ	24ms	0.98mJ	
Delivery	8.1ms	0.32 mJ	16.2ms	0.64mJ	
Wavelet	30ms	1mJ	30ms	2mJ	
Total	30ms	2.58mJ	30ms	4mJ	

Table 7.18: Memory requirements and memory energy of most important tasks in IM1-player on a heterogeneous platform with one and two hardware accelerators

	1 F	IW acceler	ator	2 HW accelerators			
	Mem.	Mem.	Mem.	Mem.	Mem.	Mem.	
	Accesses	Size Pre	Size Post	Accesses	Size Pre	Size Post	
OD	0.58k	10kB	0.58kB	0.58kB	10kB	0.58kB	
BIFS	2.41k	41kB	2.41kB	2.41k	41kB	2.41kB	
Delivery	35.9k	35.9Bk	12.4kB	71.8k	71.8kB	17kB	
Wavelet	35.9k	35.9kB	12.4kB	71.8k	71.8kB	17kB	
Total	74.9k	86.9kB	14.8k	146k	193kB	19.4k	

1 HW a	ccelerator	2 HW accelerators		
Energy Pre	Energy Post	Energy Pre	Energy Post	
0.78mJ	0.16mJ	1.54mJ	0.19mJ	