Supplementary Material to "Sparse Feature Selection in Kernel Discriminant Analysis via Optimal Scoring"

Alexander F. Lapanowski

Irina Gaynanova

Texas A&M University {alapanow, irinag}@stat.tamu.edu

Abstract

This supplement contains the derivation of projection formula (6), proofs of Theorems 1 and 2, as well as proofs of supplementary Theorems and Lemmas.

S1 Derivation of projection formula (6)

Proof. Since
$$\widehat{f} = \sum_{i=1}^{n} \widehat{\alpha}_i [\Phi(x_i) - \overline{\Phi}]$$
.

$$\begin{split} \left\langle \Phi(x) - \overline{\Phi}, \widehat{f} \right\rangle_{\mathcal{H}} &= \left\langle \Phi(x) - \overline{\Phi}, \sum_{i=1}^{n} \widehat{\alpha}_{i} [\Phi(x_{i}) - \overline{\Phi}] \right\rangle_{\mathcal{H}} \\ &= \sum_{i=1}^{n} \widehat{\alpha}_{i} \left\langle \Phi(x) - \overline{\Phi}, \Phi(x_{i}) - \overline{\Phi} \right\rangle_{\mathcal{H}} \\ &= \sum_{i=1}^{n} \widehat{\alpha}_{i} \left\langle \Phi(x), \Phi(x_{i}) \right\rangle_{\mathcal{H}} - \sum_{i=1}^{n} \widehat{\alpha}_{i} \left\langle \Phi(x), \overline{\Phi} \right\rangle_{\mathcal{H}} - \sum_{i=1}^{n} \widehat{\alpha}_{i} \left\langle \overline{\Phi}, \Phi(x_{i}) \right\rangle_{\mathcal{H}} + \sum_{i=1}^{n} \widehat{\alpha}_{i} \left\langle \overline{\Phi}, \overline{\Phi} \right\rangle_{\mathcal{H}} \\ &= \sum_{i=1}^{n} \widehat{\alpha}_{i} k(x, x_{i}) - (\mathbf{1}^{\top} \widehat{\alpha}) \frac{1}{n} \sum_{i=1}^{n} k(x, x_{i}) - \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \widehat{\alpha}_{i} k(x_{j}, x_{i}) + (\mathbf{1}^{\top} \widehat{\alpha}) \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{i=1}^{n} k(x_{i}, x_{j}). \end{split}$$

Let $K(X,x) := (k(x_1,x) \cdots k(x_n,x))^{\top}$. Then from the above display

$$\begin{split} \left\langle \Phi(x) - \overline{\Phi}, \widehat{f} \right\rangle_{\mathcal{H}} &= K(X, x)^{\top} \widehat{\alpha} - n^{-1} K(X, x)^{\top} \mathbf{1} \mathbf{1}^{\top} \widehat{\alpha} - n^{-1} \mathbf{1}^{\top} K \widehat{\alpha} + \frac{1}{n^{2}} \mathbf{1}^{\top} K \mathbf{1} (\mathbf{1}^{\top} \widehat{\alpha}) \\ &= K(X, x)^{\top} C \widehat{\alpha} - \frac{1}{n} \mathbf{1}^{\top} K C \widehat{\alpha} \\ &= (K(X, x)^{\top} - \frac{1}{n} \mathbf{1}^{\top} K) C \widehat{\alpha}, \end{split}$$

where $C = I - n^{-1} \mathbf{1} \mathbf{1}^{\top}$ is the centering matrix.

Proceedings of the $22^{\rm nd}$ International Conference on Artificial Intelligence and Statistics (AISTATS) 2019, Naha, Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by the author(s).

S2 Technical Proofs

In this section we prove the results stated within the main text. We use C, C_1 , C_2 , ... to denote absolute positive constants that do not depend on the sample size n but which may depend on $\|\theta^*\|_{\infty}$, κ , or τ . Their values may change from line to line. The dependence between the main Theorems and supplementary results is depicted below.

S.2.1 Proofs of Theorems 1 and 2

Proof of Theorem 1. Consider

$$R(\widehat{f},\widehat{\beta}) - R(f^*,\beta^*) = \underbrace{R(\widehat{f},\widehat{\beta}) - \widetilde{R}_{\mathrm{emp}}(\widehat{f},\widehat{\beta})}_{I_1} + \underbrace{\widetilde{R}_{\mathrm{emp}}(\widehat{f},\widehat{\beta}) - \widetilde{R}_{\mathrm{emp}}(\widetilde{f},\widetilde{\beta})}_{I_2} + \underbrace{\widetilde{R}_{\mathrm{emp}}(\widetilde{f},\widetilde{\beta}) - R(f^*,\beta^*)}_{I_2}.$$

By the union bound and de Morgan's law,

$$\mathbb{P}\Big(R(\widehat{f},\widehat{\beta}) - R(f^*,\beta^*) > \varepsilon\Big) \leq \mathbb{P}\Big(I_1 > \frac{\varepsilon}{3}\Big) + \mathbb{P}\Big(I_2 > \frac{\varepsilon}{3}\Big) + \mathbb{P}\Big(I_3 > \frac{\varepsilon}{3}\Big).$$

Applying Theorems S.1, S.2 and S.3 to I_1 , I_2 and I_3 correspondingly, there exist constants $C, C_i > 0$ such that

$$\mathbb{P}\Big(R(\widehat{f},\widehat{\beta}) - R(f^*,\beta^*) > \varepsilon\Big) \\
\leq 2\mathcal{N}_{\varepsilon} \exp\Big(-\frac{n\varepsilon^2}{128(\|\theta^*\|_{\infty} + \kappa\tau)^4}\Big) + C_2 \exp\Big(-\frac{C_3 n\varepsilon^2}{1 + (\kappa\tau)^2}\Big) + 2 \exp\Big(-\frac{n\varepsilon^2}{16(\|\theta^*\|_{\infty} + \kappa\tau)^4}\Big) \\
\leq C_4 \mathcal{N}_{\varepsilon} \exp\Big(-\frac{C_5 n\varepsilon^2}{(\|\theta^*\|_{\infty} + \kappa\tau)^4}\Big),$$

where $\mathcal{N}_{\varepsilon} = \{1 + 2(\|\theta^*\|_{\infty} + \kappa \tau)/\varepsilon\} \exp(C\tau^2 \varepsilon^{-2})$. This concludes the proof of Theorem 1.

Proof of Theorem 2. Consider

$$R(\widehat{f}, \widehat{\beta}) - R_{\text{emp}}(\widehat{f}) = \underbrace{R(\widehat{f}, \widehat{\beta}) - \widetilde{R}_{\text{emp}}(\widehat{f}, \widehat{\beta})}_{I_1} + \underbrace{\widetilde{R}_{\text{emp}}(\widehat{f}, \widehat{\beta}) - R_{\text{emp}}(\widehat{f})}_{I_2}.$$

By the union bound and de Morgan's law,

$$\mathbb{P}\Big(R(\widehat{f},\widehat{\beta}) - R_{\text{emp}}(\widehat{f}) > \varepsilon\Big) \leq \mathbb{P}\Big(I_1 > \frac{\varepsilon}{2}\Big) + \mathbb{P}\Big(I_2 > \frac{\varepsilon}{2}\Big).$$

Applying Theorem S.1 for I_1 and Theorem S.4 for I_2 , the exist constants $C_i > 0$ such that

$$\mathbb{P}\Big(R(\widehat{f},\widehat{\beta}) - R_{\text{emp}}(\widehat{f}) > \varepsilon\Big) \leq 2\mathcal{N}_{\varepsilon} \exp\Big(-\frac{n\varepsilon^2}{128(\|\theta^*\|_{\infty} + \kappa\tau)^4}\Big) + C_3 \exp\Big(-\frac{C_4 n\varepsilon^2}{1 + (\kappa\tau)^2}\Big) \\
\leq C_5 \mathcal{N}_{\varepsilon} \exp\Big(-\frac{C_6 n\varepsilon^2}{(\|\theta^*\|_{\infty} + \kappa\tau)^4}\Big),$$

where $\mathcal{N}_{\varepsilon} = \{1 + 2(\|\theta^*\|_{\infty} + \kappa \tau)/\varepsilon\} \exp(C_1 \tau^2 \varepsilon^{-2})$. This concludes the proof of Theorem 2.

S.2.2 Supplementary Theorems

Theorem S.1. Under Assumptions 1-3, there exists a constant $C_2 > 0$ such that for all $\varepsilon > 0$,

$$\mathbb{P}\Big(\sup_{f\in\mathcal{H}_{\tau},\,\beta\in I_{\tau}} \{R(f,\beta) - \widetilde{R}_{emp}(f,\beta)\} > \varepsilon\Big) \le 2\mathcal{N}_{\varepsilon} \exp\Big(-\frac{n\varepsilon^2}{128(\|\theta^*\|_{\infty} + \kappa\tau)^4}\Big),$$

where $\mathcal{N}_{\varepsilon} = \{1 + 2(\|\theta^*\|_{\infty} + \kappa \tau)/\varepsilon\} \exp(C_2 \tau^2 \varepsilon^{-2}).$

Theorem S.2. Let $\widehat{\beta} = -\left\langle \overline{\Phi}, \widehat{f} \right\rangle_{\mathcal{H}}$. Under Assumptions 1 and 2, there exist constants $C_1, C_2 > 0$ such that for all $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\widetilde{R}_{emp}(\widehat{f},\widehat{\beta}) - \widetilde{R}_{emp}(\widetilde{f},\widetilde{\beta})\right| > \varepsilon\right) \le C_1 \exp\left(-\frac{C_2 n\varepsilon^2}{1 + (\kappa\tau)^2}\right).$$

Theorem S.3. Under Assumptions 1 and 2, for all $\varepsilon > 0$

$$\mathbb{P}\Big(\widetilde{R}_{emp}(\widetilde{f},\widetilde{\beta}) - R(f^*,\beta^*) > \varepsilon\Big) \le 2\exp\Big(-\frac{n\varepsilon^2}{16(\|\theta^*\|_{\infty} + \kappa\tau)^4}\Big).$$

Theorem S.4. Let Assumptions 1 and 2 be true, and let $\beta(f) := n^{-1} \sum_{i=1}^{n} y_i^{\top} \theta^* - \langle \overline{\Phi}, f \rangle_{\mathcal{H}} = \overline{Y} \theta^* - \langle \overline{\Phi}, f \rangle_{\mathcal{H}}$ be the minimizing $\beta \in I_{\tau}$ for fixed $f \in \mathcal{H}_{\tau}$ in the modified empirical risk. There exists constants $C_1, C_2 > 0$ such that for all $\varepsilon > 0$

$$\mathbb{P}\Big(\sup_{f\in\mathcal{H}_{\tau}}|R_{emp}(f)-\widetilde{R}_{emp}(f,\beta(f))|>\varepsilon\Big)\leq C_1\exp\Big(-\frac{C_2n\varepsilon^2}{1+(\kappa\tau)^2}\Big).$$

Definition 1. The empirical measure T_x with respect to $\{x_i\}_{i=1}^n$ is defined as $T_x := n^{-1} \sum_{i=1}^n \delta(x_i)$, where $\delta(x_i)$ is the point mass at x_i . The space $L^2(T_x)$ is the set \mathcal{H}_{τ} equipped with the semi-norm

$$||f||_{L^2(T_x)} := \sqrt{\frac{1}{n} \sum_{i=1}^n |f(x_i)|^2} = \sqrt{\frac{1}{n} \sum_{i=1}^n |\langle \Phi(x_i), f \rangle_{\mathcal{H}}|^2}.$$

Definition 2. Let (X,d) be a pseudometric space. An ε -net is any subset $\widetilde{X} \subset X$ such that for any $x \in X$, there exists a $\widetilde{x} \in \widetilde{X}$ satisfying $d(x,\widetilde{x}) < \varepsilon$. The ε -covering number of (X,d) is the minimum size of an ε -net for X.

Remark 1. Distances in \mathcal{H}_{τ} are given by the semi-norm generated by $L^2(T_x)$. Distances in I_{τ} are given by the Euclidean distance $d(\beta_1, \beta_2) = |\beta_1 - \beta_2|$.

S.2.3 Proofs of Supplementary Theorems

Proof of Theorem S.1. Let $\{(x_j, y_j)\}_{j=n+1}^{2n}$ be independent from $\{(x_i, y_i)\}_{i=1}^n$ and identically distributed set of n pairs, and let T_x be the empirical measure on $\{(x_i, y_i)\}_{i=1}^n$. Let $\widetilde{R}_{emp}(f, \beta)$ be the modified empirical risk on $\{(x_i, y_i)\}_{i=1}^n$, and $\widetilde{R}'_{emp}(f, \beta)$ on $\{(x_j, y_j)\}_{i=n+1}^{2n}$. By symmetrization lemma (see, for example, Lemma 2 in [1]), for $n\varepsilon^2 > 2$

$$\mathbb{P}\bigg(\sup_{f\in\mathcal{H}_{\tau},\,\beta\in I_{\tau}}\{R(f,\beta)-\widetilde{R}_{\mathrm{emp}}(f,\beta)\}>\varepsilon\bigg)\leq 2\mathbb{P}\bigg(\sup_{f\in\mathcal{H}_{\tau},\,\beta\in I_{\tau}}\{\widetilde{R}'_{\mathrm{emp}}(f,\beta)-\widetilde{R}_{\mathrm{emp}}(f,\beta)\}>\frac{\varepsilon}{2}\bigg).$$

Let $c = 64(\|\theta^*\|_{\infty} + \kappa \tau)$, and let $\{f_1, \ldots, f_M\}$ be the smallest $L^2(T_x)$ $\varepsilon/\sqrt{2}c$ -net of \mathcal{H}_{τ} and $\{\beta_1, \ldots, \beta_K\}$ an ε/c -net of I_{τ} . Applying Lemma 4 to the above display

$$\mathbb{P}\bigg(\sup_{f\in\mathcal{H}_{\tau},\,\beta\in I_{\tau}}\{R(f,\beta)-\widetilde{R}_{\mathrm{emp}}(f,\beta)\}>\varepsilon\bigg)\leq 2\mathbb{P}\bigg(\max_{\substack{f\in\{f_{1},\ldots,f_{M}\}\\\beta\in\{\beta_{1},\ldots,\beta_{K}\}}}\{\widetilde{R}'_{\mathrm{emp}}(f,\beta)-\widetilde{R}_{\mathrm{emp}}(f,\beta)\}>\frac{\varepsilon}{4}\bigg).$$

Applying Lemma 5 to the right-hand expression gives the final inequality

$$\mathbb{P}\bigg(\sup_{f\in\mathcal{H}_{\tau},\,\beta\in I_{\tau}}\{R(f,\beta)-\widetilde{R}_{\mathrm{emp}}(f,\beta)\}>\varepsilon\bigg)\leq 2\{1+2(\|\theta^*\|_{\infty}+\kappa\tau)/\varepsilon\}\exp\bigg(\frac{C_1\tau^2}{\varepsilon^2}\bigg)\exp\bigg(-\frac{n\varepsilon^2}{128(\|\theta^*\|_{\infty}+\kappa\tau)^4}\bigg).$$

This completes the proof of Theorem S.1.

Proof of Theorem S.2. Let $\beta(f) = \overline{Y\theta^*} - \langle \overline{\Phi}, f \rangle_{\mathcal{H}}$. By definition of \widetilde{f} , $\widetilde{\beta} = \beta(\widetilde{f})$, $\widetilde{R}_{emp}(\widehat{f}, \widehat{\beta}) \geq \widetilde{R}_{emp}(\widetilde{f}, \widetilde{\beta})$. On the other hand, since $R_{emp}(\widehat{f}) \leq R_{emp}(\widetilde{f})$,

$$\begin{split} \widetilde{R}_{\mathrm{emp}}(\widehat{f},\widehat{\beta}) - \widetilde{R}_{\mathrm{emp}}(\widetilde{f},\widehat{\beta}) &= \widetilde{R}_{\mathrm{emp}}(\widehat{f},\widehat{\beta}) - R_{\mathrm{emp}}(\widehat{f}) + R_{\mathrm{emp}}(\widehat{f}) - R_{\mathrm{emp}}(\widetilde{f}) + R_{\mathrm{emp}}(\widetilde{f}) - \widetilde{R}_{\mathrm{emp}}(\widetilde{f},\widehat{\beta}) \\ &\leq \widetilde{R}_{\mathrm{emp}}(\widehat{f},\widehat{\beta}) - R_{\mathrm{emp}}(\widehat{f}) + R_{\mathrm{emp}}(\widetilde{f}) - \widetilde{R}_{\mathrm{emp}}(\widetilde{f},\widehat{\beta}) \\ &\leq \widetilde{R}_{\mathrm{emp}}(\widehat{f},\widehat{\beta}) - \widetilde{R}_{\mathrm{emp}}(\widehat{f},\beta(\widehat{f})) + \widetilde{R}_{\mathrm{emp}}(\widehat{f},\beta(\widehat{f})) - R_{\mathrm{emp}}(\widehat{f}) + R_{\mathrm{emp}}(\widehat{f}) - \widetilde{R}_{\mathrm{emp}}(\widehat{f},\widehat{\beta}) \\ &\leq \underbrace{\left|\widetilde{R}_{\mathrm{emp}}(\widehat{f},\widehat{\beta}) - \widetilde{R}_{\mathrm{emp}}(\widehat{f},\beta(\widehat{f}))\right|}_{I_{1}} + 2\underbrace{\sup_{f \in \mathcal{H}_{\tau}} \left|R_{\mathrm{emp}}(f) - \widetilde{R}_{\mathrm{emp}}(f,\beta(f))\right|}_{I_{2}}. \end{split}$$

The union bound and de Morgan's law proves

$$\mathbb{P}\Big(\widetilde{R}_{\mathrm{emp}}(\widehat{f},\widehat{\beta}) - \widetilde{R}_{\mathrm{emp}}(\widetilde{f},\widetilde{\beta}) > \varepsilon\,\Big) \leq \mathbb{P}\Big(I_1 > \frac{\varepsilon}{2}\Big) + \mathbb{P}\Big(I_2 > \frac{\varepsilon}{2}\Big).$$

Consider I_1

$$\begin{split} &\left|\widetilde{R}_{\text{emp}}(\widehat{f},\widehat{\beta}) - \widetilde{R}_{\text{emp}}(\widehat{f},\beta(\widehat{f}))\right| \\ &= \left|\frac{1}{n}\sum_{i=1}^{n} \left(y_{i}^{\top}\theta^{*} - \left\langle\Phi(x_{i}) - \overline{\Phi},\widehat{f}\right\rangle_{\mathcal{H}}\right)^{2} - \frac{1}{n}\sum_{i=1}^{n} \left(y_{i}^{\top}\theta^{*} - \overline{Y}\overline{\theta^{*}} - \left\langle\Phi(x_{i}) - \overline{\Phi},\widehat{f}\right\rangle_{\mathcal{H}}\right)^{2}\right| \\ &= \left|2\frac{1}{n}\sum_{i=1}^{n} \overline{Y}\overline{\theta^{*}}\left(y_{i}^{\top}\theta^{*} - \left\langle\Phi(x_{i}) - \overline{\Phi},\widehat{f}\right\rangle_{\mathcal{H}}\right) - \frac{1}{n}\sum_{i=1}^{n} (\overline{Y}\overline{\theta^{*}})^{2}\right| \\ &= \left|(\overline{Y}\overline{\theta^{*}})^{2} - 2(\overline{Y}\overline{\theta^{*}})\frac{1}{n}\sum_{i=1}^{n} \left\langle\Phi(x_{i}) - \overline{\Phi},\widehat{f}\right\rangle_{\mathcal{H}}\right| \\ &= |\overline{Y}\overline{\theta^{*}}|^{2}. \end{split}$$

By Lemma 7, there exists $C_1 > 0$ such that $\mathbb{P}(I_1 > \varepsilon/2) \le 2 \exp(-C_1 n \varepsilon)$ for all $\varepsilon > 0$. By Theorem S.4, there exists constants $C_2, C_3 > 0$ such that $\mathbb{P}(I_2 > \varepsilon/2) \le C_2 \exp[-C_3(n\varepsilon^2)/\{1 + (\kappa \tau)^2\}]$. Combining the bounds for

 I_1 and I_2 gives

$$\mathbb{P}\Big(\widetilde{R}_{\text{emp}}(\widehat{f},\widehat{\beta}) - \widetilde{R}_{\text{emp}}(\widetilde{f},\widetilde{\beta}) > \varepsilon\Big) \le 2\exp(-C_1 n\varepsilon) + C_2 \exp\Big(-\frac{C_3 n\varepsilon^2}{1 + (\kappa\tau)^2}\Big)$$
$$\le C_4 \exp\Big(-\frac{C_5 n\varepsilon^2}{1 + (\kappa\tau)^2}\Big)$$

for some constants $C_i > 0$. This completes the proof of Theorem S.2.

Proof of Theorem S.3. Consider

$$\widetilde{R}_{emp}(\widetilde{f},\widetilde{\beta}) - R(f^*,\beta^*) = \widetilde{R}_{emp}(\widetilde{f},\widetilde{\beta}) - \widetilde{R}_{emp}(f^*,\beta^*) + \widetilde{R}_{emp}(f^*,\beta^*) - R(f^*,\beta^*)$$

$$\leq \widetilde{R}_{emp}(f^*,\beta^*) - R(f^*,\beta^*),$$

where the last inequality follows since $\widetilde{R}_{emp}(\widetilde{f},\widetilde{\beta}) \leq \widetilde{R}_{emp}(f^*,\beta^*)$ by the definition of $\widetilde{f},\widetilde{\beta}$.

Let $z_i := |y_i^\top \theta^* - \beta^* - \langle \Phi(x_i), f^* \rangle_{\mathcal{H}}|^2$, then $\widetilde{R}_{\text{emp}}(f^*, \beta^*) = n^{-1} \sum_{i=1}^n z_i$ is the average of i.i.d. random variables with $\mathbb{E}z_i = R(f^*, \beta^*)$ by definition of expected risk. Since $|z_i| \le 4(\|\theta^*\|_{\infty} + \kappa\tau)^2$, by Hoeffding's inequality

$$\mathbb{P}(|\widetilde{R}_{\mathrm{emp}}(f^*, \beta^*) - R(f^*, \beta^*)| > \varepsilon) = \mathbb{P}\left(\left|n^{-1} \sum_{i=1}^{n} (z_i - \mathbb{E}z_i)\right| > \varepsilon\right) \le 2 \exp\left(-\frac{n\varepsilon^2}{16(\|\theta^*\|_{\infty} + \kappa\tau)^4}\right).$$

Proof of Theorem S.4. By definition of $R_{\text{emp}}(f)$ and $\widetilde{R}_{\text{emp}}(f,\beta(f))$.

$$R_{\text{emp}}(f) - \widetilde{R}_{\text{emp}}(f, \beta(f)) = \frac{1}{n} \sum_{i=1}^{n} |y_i^{\top} \widehat{\theta} - \langle \Phi(x_i) - \overline{\Phi}, f \rangle_{\mathcal{H}}|^2 - \frac{1}{n} \sum_{i=1}^{n} |y_i^{\top} \theta^* - \beta(f) - \langle \Phi(x_i), f \rangle_{\mathcal{H}}|^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} |y_i^{\top} \widehat{\theta} - \langle \Phi(x_i) - \overline{\Phi}, f \rangle_{\mathcal{H}}|^2 - \frac{1}{n} \sum_{i=1}^{n} |y_i^{\top} \theta^* - \overline{Y} \theta^* - \langle \Phi(x_i) - \overline{\Phi}, f \rangle_{\mathcal{H}}|^2.$$

Expanding the squares and cancelling equal terms yields

$$R_{\text{emp}}(f) - \widetilde{R}_{\text{emp}}(f, \beta(f))$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left\{ (y_{i}^{\top} \widehat{\theta})^{2} - (y_{i}^{\top} \theta^{*})^{2} - 2y_{i}^{\top} (\widehat{\theta} - \theta^{*}) \left\langle \Phi(x_{i}) - \overline{\Phi}, f \right\rangle_{\mathcal{H}} - 2\overline{Y} \theta^{*} \left\langle \Phi(x_{i}) - \overline{\Phi}, f \right\rangle_{\mathcal{H}} + 2y_{i}^{\top} \theta^{*} \overline{Y} \theta^{*} - (\overline{Y} \theta^{*})^{2} \right\}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left\{ (y_{i}^{\top} \widehat{\theta})^{2} - (y_{i}^{\top} \theta^{*})^{2} \right\} - \frac{1}{n} \sum_{i=1}^{n} \left\{ 2y_{i}^{\top} (\widehat{\theta} - \theta^{*}) \left\langle \Phi(x_{i}) - \overline{\Phi}, f \right\rangle_{\mathcal{H}} \right\} + (\overline{Y} \theta^{*})^{2}$$

$$= I_{1} + I_{2}(f) + I_{3},$$

where I_1 and I_3 are independent of f. By the union bound and de Morgan's law,

$$\mathbb{P}\Big(\sup_{f\in\mathcal{H}_{\tau}}|R_{\mathrm{emp}}(f)-\widetilde{R}_{\mathrm{emp}}(f,\beta(f))|>\varepsilon\Big)\leq\mathbb{P}\Big(|I_{1}|>\frac{\varepsilon}{3}\Big)+\mathbb{P}\Big(\sup_{f\in\mathcal{H}_{\tau}}|I_{2}(f)|>\frac{\varepsilon}{3}\Big)+\mathbb{P}\Big(|I_{3}|>\frac{\varepsilon}{3}\Big).$$

We bound each probability separately. Since $y_i \in \mathbb{R}^2$ is an indicator vector of class membership for sample i, using the definition of $\widehat{\theta}$ and θ^*

$$|I_1| = \left| \frac{1}{n} \sum \left\{ (y_i^\top \widehat{\theta})^2 - (y_i^\top \theta^*)^2 \right\} \right| \le \max_i |(y_i^\top \widehat{\theta})^2 - (y_i^\top \theta^*)^2| = \max \left(|n_1/n_2 - \pi_1/\pi_2|, |n_2/n_1 - \pi_2/\pi_1| \right).$$

By Lemma 6, there exist $C_1, C_2 > 0$ such that $\mathbb{P}(|I_1| > \varepsilon/3) \le C_1 \exp(-C_2 n \varepsilon^2)$.

By Hólder's and Cauchy-Schwarz inequalities

$$|I_{2}(f)| = \left| \frac{1}{n} \sum_{i=1}^{n} 2y_{i}^{\mathsf{T}}(\widehat{\theta} - \theta^{*}) \left\langle \Phi(x_{i}) - \overline{\Phi}, f \right\rangle_{\mathcal{H}} \right|$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} 2|y_{i}^{\mathsf{T}}(\widehat{\theta} - \theta^{*})| \cdot |\left\langle \Phi(x_{i}) - \overline{\Phi}, f \right\rangle_{\mathcal{H}} |$$

$$\leq 2\|\widehat{\theta} - \theta^{*}\|_{\infty} \max_{i} |\left\langle \Phi(x_{i}) - \overline{\Phi}, f \right\rangle_{\mathcal{H}} |$$

$$\leq 2 \max \left(|\sqrt{n_{1}/n_{2}} - \sqrt{\pi_{1}/\pi_{2}}|, |\sqrt{n_{2}/n_{1}} - \sqrt{\pi_{2}/\pi_{1}}| \right) \max_{i} \|\Phi(x_{i}) - \overline{\Phi}\|_{\mathcal{H}} \|f\|_{\mathcal{H}}$$

$$\leq 4 \max \left(|\sqrt{n_{1}/n_{2}} - \sqrt{\pi_{1}/\pi_{2}}|, |\sqrt{n_{2}/n_{1}} - \sqrt{\pi_{2}/\pi_{1}}| \right) \kappa \tau,$$

where we used Assumption 2 in the last inequality. Since the upper bound does not depend on f, the same bound holds for $\sup_{f \in \mathcal{H}_{\tau}} |I_2(f)|$. Combining the bound with Lemma 6 gives for some $C_3, C_4 > 0$

$$\mathbb{P}\Big(\sup_{f\in\mathcal{H}_{\tau}}|I_2(f)|>\varepsilon\Big)\leq \mathbb{P}\bigg(\max\Big(|\sqrt{n_1/n_2}-\sqrt{\pi_1/\pi_2}|,|\sqrt{n_2/n_1}-\sqrt{\pi_2/\pi_1}|>\frac{\varepsilon}{4\kappa\tau}\Big)\leq C_3\exp(-C_4\frac{n\varepsilon^2}{(\kappa\tau)^2}).$$

By Lemma 7, there exists $C_5 > 0$ such that $\mathbb{P}(|I_3| > \varepsilon/3) \le 2 \exp(-C_5 n \varepsilon)$.

Combining the bounds for I_1 , I_2 and I_3 gives

$$\mathbb{P}\left(\sup_{f\in\mathcal{H}_{\tau}}|R_{\mathrm{emp}}(f)-\widetilde{R}_{\mathrm{emp}}(f,\beta(f))|>\varepsilon\right)\leq C_{1}\exp(-C_{2}n\varepsilon^{2})+C_{3}\exp(-C_{4}\frac{n\varepsilon^{2}}{(\kappa\tau)^{2}})+2\exp(-C_{5}n\varepsilon)$$

$$\leq C_{6}\exp\left(-C_{7}\frac{n\varepsilon^{2}}{1+(\kappa\tau)^{2}}\right)$$

for some $C_6, C_7 > 0$. This completes the proof of Theorem S.4.

S3 Supplementary Lemmas

Lemma 1. Consider minimizing $f(w) = 2^{-1}w^{\top}Qw - \beta^{T}w + 2^{-1}\lambda ||w||_{1}$ with respect to $w \in \mathbb{R}^{p}$ with $w_{i} \in [-1, 1]$, where Q is positive semi-definite and $\lambda \geq 0$. If $\lambda \geq 2||\beta||_{\infty}$, then the minimizing w is the zero vector.

Proof. Consider $2^{-1}\lambda ||w||_1 - \beta^\top w = \sum_{i=1}^p (\lambda/2|w_i| - \beta_i w_i)$. If $\lambda \geq 2||\beta||_{\infty}$, this expression is non-negative for all $w \in \mathbb{R}^p$ and a minimum occurs at w = 0. Since Q is positive semi-definite, $w^\top \frac{1}{2}Qw$ is always non-negative with a minimum at w = 0. It follows that for $\lambda \geq 2||\beta||_{\infty}$ the sum of these terms attains minimum at w = 0.

Lemma 2. Let $M = [(CKC)^2 + n\gamma(CKC)]^- CKC$, then $||M||_{op} \le (n\gamma)^{-1}$.

Proof of Lemma 2. The kernel matrix K is positive semi-definite since by the reproducing property for any $\alpha \in \mathbb{R}^n$

$$\alpha^{\top} \mathbf{K} \alpha = \left\langle \sum_{i=1}^{n} \alpha_{i} \Phi(x_{i}), \sum_{i=1}^{n} \alpha_{i} \Phi(x_{i}) \right\rangle_{\mathcal{H}} = \left\| \sum_{i=1}^{n} \alpha_{i} \Phi(x_{i}) \right\|_{\mathcal{H}}^{2} \geq 0.$$

It follows that $C\mathbf{K}C$ is also positive semi-definite. Let $\{\lambda_i\}_{i=1}^k$ be the set of non-zero eigenvalues of $C\mathbf{K}C$, then $\{\lambda_i/(\lambda_i^2+n\gamma\lambda_i)\}_{i=1}^k$ are the non-zero eigenvalues of $M=[(C\mathbf{K}C)^2+n\gamma(C\mathbf{K}C)]^-C\mathbf{K}C$. The function $t\mapsto t/(t^2+n\gamma t)$ is bounded above by $(n\gamma)^{-1}$ for t>0, hence $\|M\|_{\mathrm{op}}\leq (n\gamma)^{-1}$.

Lemma 3. Let $\gamma > 0$. The minimizer \hat{f} in (4) satisfies $\|\hat{f}\|_{\mathcal{H}} \leq 1/\sqrt{\gamma}$. Additionally, if Assumption 2 holds for $\kappa > 0$, then $\|\hat{f}\|_{\mathcal{H}} \leq 2\kappa/\gamma$.

Proof of Lemma 3. Comparing the value of objective function in (4) at $f = \hat{f}$ with the value at f = 0 gives

$$\gamma \|\widehat{f}\|_{\mathcal{H}}^2 \leq \frac{1}{n} \sum_{i=1}^n \left| y_i^\top \widehat{\theta} - \left\langle \Phi(x_i) - \overline{\Phi}, \widehat{f} \right\rangle_{\mathcal{H}} \right|^2 + \gamma \|\widehat{f}\|_{\mathcal{H}}^2 \leq \frac{1}{n} \sum_{i=1}^n |y_i^\top \widehat{\theta}|^2 = 1.,$$

where the last equality follows since $n^{-1}\widehat{\theta}Y^{\top}Y\widehat{\theta} = 1$. It follows that $\|\widehat{f}\|_{\mathcal{H}} \leq 1/\sqrt{\gamma}$.

On the other hand, since $\hat{f} = \sum_{i=1}^{n} \alpha_i (\Phi(x_i) - \overline{\Phi})$, by the triangle inequality and Assumption 2

$$\|\widehat{f}\|_{\mathcal{H}} = \left\| \sum_{i=1}^{n} \alpha_i (\Phi(x_i) - \overline{\Phi}) \right\|_{\mathcal{H}} \le \sum_{i=1}^{n} |\alpha_i| \|\Phi(x_i) - \overline{\Phi}\|_{\mathcal{H}} \le \max_i \|\Phi(x_i) - \overline{\Phi}\|_{\mathcal{H}} \|\alpha\|_1 \le 2\kappa \|\alpha\|_1 \le 2\kappa \sqrt{n} \|\alpha\|_2.$$

Since $\alpha = \{(C\mathbf{K}C)^2 + \gamma n C\mathbf{K}C\}^- C\mathbf{K}CY\widehat{\theta}$, applying Lemma 2 and using $\|Y\widehat{\theta}\|_2 = \sqrt{\widehat{\theta}Y^\top Y\widehat{\theta}} = \sqrt{n}$ gives

$$\|\alpha\|_2 \le \|\{(C\mathbf{K}C)^2 + \gamma n C\mathbf{K}C\}^- C\mathbf{K}C\|_{\mathrm{op}} \|Y\widehat{\theta}\|_2 \le \frac{\|Y\widehat{\theta}\|_2}{n\gamma} \le \frac{1}{\sqrt{n\gamma}}.$$

Combining the above two displays gives $\|\widehat{f}\|_{\mathcal{H}} \leq 2\kappa/\gamma$.

Lemma 4. Under Assumptions 1 and 2, let $\{(x_i, y_i)\}_{i=1}^n$ and $\{(x_j, y_j)\}_{j=n+1}^{2n}$ be two independent copies of i.i.d. data, and let T_x be the empirical measure on their union. Let $\widetilde{R}_{emp}(f,\beta)$ be the modified empirical risk on $\{(x_i, y_i)\}_{i=1}^n$, and $\widetilde{R}'_{emp}(f,\beta)$ on $\{(x_j, y_j)\}_{i=n+1}^{2n}$. Let $c = 64(\|\theta^*\|_{\infty} + \tau\kappa)$, and let $\{f_1, \ldots, f_M\}$ be the smallest $L^2(T_x)$ $\varepsilon/\sqrt{2}c$ -net of \mathcal{H}_{τ} , and let $\{\beta_1, \ldots, \beta_K\}$ be an ε/c -net of I_{τ} . Then

$$\mathbb{P}\bigg(\sup_{\substack{f\in H_{\tau}\\\beta\in I_{\tau}}}\{\widetilde{R}_{emp}(f,\beta)-\widetilde{R}'_{emp}(f,\beta)\}>\frac{\varepsilon}{2}\bigg)\leq \mathbb{P}\bigg(\max_{\substack{f\in \{f_{1},\ldots,f_{M}\}\\\beta\in \{\beta_{1},\ldots,\beta_{K}\}}}\{\widetilde{R}_{emp}(f,\beta)-\widetilde{R}'_{emp}(f,\beta)\}>\frac{\varepsilon}{4}\bigg).$$

Proof of Lemma 4. Let $f \in \mathcal{H}_{\tau}$, $\beta \in I_{\tau}$ be such that $\widetilde{R}_{\mathrm{emp}}(f,\beta) - \widetilde{R}'_{\mathrm{emp}}(f,\beta) > \varepsilon/2$. There exists $f_j \in \{f_1,\ldots,f_M\}$ and $\beta_{\ell} \in \{\beta_1,\ldots,\beta_K\}$ such that $\|f_j-f\|_{L^2(T_x)} < \varepsilon/\sqrt{2}c$ and $|\beta-\beta_{\ell}| < \varepsilon/c$. Applying Lemma 9 gives

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}|f(x_i)-f_j(x_i)|^2} < \frac{\varepsilon}{c} \quad \text{and} \quad \sqrt{\frac{1}{n}\sum_{i=n+1}^{2n}|f(x_i)-f_j(x_i)|^2} < \frac{\varepsilon}{c}.$$

Applying Lemma 8 yields

$$|\widetilde{R}_{\text{emp}}(f,\beta) - \widetilde{R}_{\text{emp}}(f_j,\beta_\ell)| < 8\frac{\varepsilon}{c}(\|\theta^*\|_{\infty} + \kappa\tau) = \frac{\varepsilon}{8}$$

and similarly $|\widetilde{R}'_{\text{emp}}(f,\beta) - \widetilde{R}'_{\text{emp}}(f_j,\beta_\ell)| < \varepsilon/8$. Therefore, $\widetilde{R}'_{\text{emp}}(f,\beta) - \widetilde{R}_{\text{emp}}(f,\beta) > \varepsilon/2$ for some $f \in \mathcal{H}_{\tau}$, $\beta \in I_{\tau}$ implies $\widetilde{R}'_{\text{emp}}(f_j,\beta_\ell) - \widetilde{R}_{\text{emp}}(f_j,\beta_\ell) > \varepsilon/4$ for some f_j and β_ℓ . Therefore,

$$\mathbb{P}\bigg(\sup_{f\in\mathcal{H}_{\tau},\,\beta\in I_{\tau}}\{\widetilde{R}'_{\mathrm{emp}}(f,\beta)-\widetilde{R}_{\mathrm{emp}}(f,\beta)\}>\frac{\varepsilon}{2}\bigg)\leq \mathbb{P}\bigg(\max_{\substack{f\in\{f_{1},\ldots,f_{M}\}\\\beta\in\{\beta_{1},\ldots,\beta_{K}\}}}\{\widetilde{R}'_{\mathrm{emp}}(f_{j},\beta_{\ell})-\widetilde{R}_{\mathrm{emp}}(f_{j},\beta_{\ell})\}>\frac{\varepsilon}{4}\bigg).$$

Lemma 5. Under Assumptions 1-3, let $\{f_1, \ldots, f_M\}$ and $\{\beta_1, \ldots, \beta_K\}$ be as in Lemma 4. There exist a constant $C_1 > 0$ such that for all $\varepsilon > 0$,

$$\mathbb{P}\bigg(\underset{\substack{f \in \{f_1, \dots, f_M\}\\\beta \in I(B), \quad \beta_{f_{\varepsilon}}\}}}{\operatorname{maximize}} \{\widetilde{R}_{emp}(f, \beta) - \widetilde{R}'_{emp}(f, \beta)\} > \frac{\varepsilon}{4}\bigg) \leq \mathcal{N}_{\varepsilon} \, \exp\Big(-\frac{n\varepsilon^2}{128(\|\theta^*\|_{\infty} + \kappa\tau)^4}\Big),$$

where $\mathcal{N}_{\varepsilon} = \{1 + 2(\|\theta^*\|_{\infty} + \kappa \tau)/\varepsilon\} \exp(C_1 \tau^2 \varepsilon^{-2}).$

Proof of Lemma 5. Let $\sigma = {\sigma_i}_{i=1}^n$ be i.i.d. Radamacher random variables, $\mathbb{P}(\sigma_i = 1) = \mathbb{P}(\sigma_i = -1) = 1/2$. Let

$$\widetilde{R}_{\mathrm{emp}}^{\sigma} = \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} |y_{i}^{\top} \theta^{*} - \beta - \langle \Phi(x_{i}), f \rangle_{\mathcal{H}}|^{2}, \quad \widetilde{R}_{\mathrm{emp}}^{'\sigma} = \frac{1}{n} \sum_{i=n+1}^{2n} \sigma_{i} |y_{i}^{\top} \theta^{*} - \beta - \langle \Phi(x_{i}), f \rangle_{\mathcal{H}}|^{2}.$$

Since (y_i, x_i) and (y_{n+i}, x_{n+i}) are independent, and have the same distribution, the distribution of $\xi_i := (|y_i^\top \theta^* - \beta - \langle \Phi(x_i), f \rangle_{\mathcal{H}}|^2 - |y_{n+i}^\top \theta^* - \beta - \langle \Phi(x_{n+i}), f \rangle_{\mathcal{H}}|^2)$ is the same as distribution of $\sigma_i \xi_i$. Let $Z = \{(x_i, y_i)\}_{i=1}^{2n}$, then

$$\mathbb{P}_{Z}\bigg(\max_{\substack{f \in \{f_{1}, \dots, f_{M}\}\\ \beta \in \{\beta_{1}, \dots, \beta_{K}\}}} \{\widetilde{R}_{\mathrm{emp}}(f, \beta) - \widetilde{R}'_{\mathrm{emp}}(f, \beta)\} > \frac{\varepsilon}{4}\bigg) = \mathbb{P}_{Z, \sigma}\bigg(\max_{\substack{f \in \{f_{1}, \dots, f_{M}\}\\ \beta \in \{\beta_{1}, \dots, \beta_{K}\}}} \{\widetilde{R}_{\mathrm{emp}}^{\sigma}(f, \beta) - \widetilde{R}'_{\mathrm{emp}}^{\sigma}(f, \beta)\} > \frac{\varepsilon}{4}\bigg).$$

Let $\mathcal{A}_{m,k}$ be the event $\mathcal{A}_{m,k} = \{\widetilde{R}_{\mathrm{emp}}^{\sigma}(f_m, \beta_k) - \widetilde{R}_{\mathrm{emp}}^{'\sigma}(f_m, \beta_k) > \varepsilon/4\}$ for $m = 1, \ldots, M(Z)$; $k = 1, \ldots, K$; where M(Z) emphasizes the dependence of M on Z. Using properties of conditional expectation and union bound

$$\mathbb{P}_{Z,\sigma} \left(\max_{\substack{f \in \{f_1, \dots, f_M\}\\ \beta \in \{\beta_1, \dots, \beta_K\}}} \{ \widetilde{R}_{\text{emp}}^{\sigma}(f, \beta) - \widetilde{R}_{\text{emp}}^{'\sigma}(f, \beta) \} > \frac{\varepsilon}{4} \right) = \mathbb{P}_{Z,\sigma} \left(\bigcup_{m=1}^{M(Z)} \bigcup_{k=1}^{K} \mathcal{A}_{m,k} \right) \\
= \mathbb{E}_{Z} \left\{ \mathbb{P}_{\sigma} \left(\bigcup_{m=1}^{M(Z)} \bigcup_{k=1}^{K} \mathcal{A}_{m,k} | Z \right) \right\} \\
\leq \mathbb{E}_{Z} \left\{ M(Z) K \mathbb{P}_{\sigma} (\mathcal{A}_{m,k} | Z) \right\}.$$

For fixed f_m , β_k and conditionally on Z, the terms $\psi_i := \sigma_i(|y_i^\top \theta^* - \beta_k - \langle \Phi(x_i), f_m \rangle_{\mathcal{H}}|^2 - |y_{n+i}^\top \theta^* - \beta_k - \langle \Phi(x_{n+i}), f_m \rangle_{\mathcal{H}}|^2)$, $i = 1, \ldots, n$, are independent, mean-zero random variables with $|\psi_i| \leq 4(\|\theta^*\|_{\infty} + \kappa \tau)^2$. Applying Hoeffding's inequality gives

$$\mathbb{P}_{\sigma}(\mathcal{A}_{m,k}|Z) = \mathbb{P}_{\sigma}\left(\frac{1}{n}\sum_{i=1}^{n}\psi_{i} > \varepsilon/4 \,\middle|\, Z\right) \le \exp\Big(-\frac{n\varepsilon^{2}}{128(\|\theta^{*}\|_{\infty} + \kappa\tau)^{4}}\Big).$$

On the other hand, since I_{τ} is a one-dimensional sphere of radius $\|\theta^*\| + \kappa \tau$, K is independent of the data and $K \leq 1 + 2(\|\theta^*\|_{\infty} + \kappa \tau)/\varepsilon$. Combining this with the above two displays gives

$$\begin{split} & \mathbb{P}_{Z,\sigma} \bigg(\max_{\substack{f \in \{f_1, \dots, f_M\}\\ \beta \in \{\beta_1, \dots, \beta_K\}}} \{ \widetilde{R}_{\text{emp}}^{\sigma}(f, \beta) - \widetilde{R}_{\text{emp}}^{'\sigma}(f, \beta) \} > \frac{\varepsilon}{4} \bigg) \\ & \leq \{ 1 + 2(\|\theta^*\|_{\infty} + \kappa\tau)/\varepsilon \} \, \mathbb{E}_Z \{ M(Z) \} \exp \bigg(- \frac{n\varepsilon^2}{128(\|\theta^*\|_{\infty} + \kappa\tau)^4} \bigg). \end{split}$$

Recall that $\{f_1,\ldots,f_M\}$ is the smallest $L^2(T_x)$ $\varepsilon/\sqrt{2}c$ -net of \mathcal{H}_τ , with $c=64(\|\theta^*\|_\infty+\tau\kappa)$. By Lemma 10

$$\mathbb{E}_{Z}\{M(Z)\} \le \sup_{Z = \{(x_{i}, y_{i})\}_{i=1}^{2n}} M(Z) \le \exp\left(\frac{C_{1}\tau^{2}}{\varepsilon^{2}}\right)$$
 (S3.1)

for some constant $C_1 > 0$. Setting $\mathcal{N}_{\varepsilon} = \{1 + 2(\|\theta^*\|_{\infty} + \kappa\tau)/\varepsilon\} \exp(C_1\tau^2\varepsilon^{-2})$ completes the proof of Lemma 5.

Lemma 6. Under Assumption 1 there exist constants $C_1, C_2 > 0$ such that for all $\varepsilon > 0$,

$$\mathbb{P}\bigg(\max\Big(|n_1/n_2 - \pi_1/\pi_2|, |n_2/n_1 - \pi_2/\pi_1|\Big) > \varepsilon\bigg) \le C_1 \exp\Big(-C_2 n\varepsilon^2\Big),$$

$$\mathbb{P}\bigg(\max\Big(|\sqrt{n_1/n_2} - \sqrt{\pi_1/\pi_2}|, |\sqrt{n_2/n_1} - \sqrt{\pi_2/\pi_1}|\Big) > \varepsilon\bigg) \le C_1 \exp\Big(-C_2 n\varepsilon^2\Big).$$

Proof of Lemma 6. We provide the proof for n_1/n_2 , the proof for n_2/n_1 is analogous. The first inequality is equivalent to Lemma 1 in [2]. For the second inequality, by Taylor expansion of the square root function centered at π_1/π_2

$$\sqrt{n_1/n_2} - \sqrt{\pi_1/\pi_2} = 2^{-1}\sqrt{\pi_2/\pi_1}(n_1/n_2 - \pi_1/\pi_2) + o(n_1/n_2 - \pi_1/\pi_2).$$

Since $|n_1/n_2 - \pi_1/\pi_2| = O_p(n^{-1/2})$ by the first inequality, it follows that there exist a constant $C_3 > 0$ such that $|\sqrt{n_1/n_2} - \sqrt{\pi_1/\pi_2}| \le C_2 \{\log(\eta^{-1})/n\}^{1/2}$ with probability at least $1 - \eta$. Setting $\varepsilon = C_3 \{\log(\eta^{-1})/n\}^{1/2}$ and solving for η completes the proof.

Lemma 7. Let Assumption 1 be true. For all $\varepsilon > 0$, we have $\mathbb{P}((\overline{Y\theta^*})^2 > \varepsilon) \le 2\exp(-n\varepsilon/\|\theta^*\|_{\infty})$.

Proof of Lemma 7. Let $z_i = y_i^{\top} \theta^*$, then z_i are independent,

$$\mathbb{E}(z_i) = \mathbb{E}(y_i)^{\top} \theta^* = \pi_1 \sqrt{\frac{\pi_2}{\pi_1}} - \pi_2 \sqrt{\frac{\pi_1}{\pi_2}} = \sqrt{\pi_1 \pi_2} - \sqrt{\pi_1 \pi_2} = 0$$

and

$$(\overline{Y}\overline{\theta^*})^2 = (n^{-1}\sum_{i=1}^n y_i^{\top}\theta^*)^2 = (n^{-1}\sum_{i=1}^n z_i)^2.$$

Since $|z_i| \leq \|\theta^*\|_{\infty} = \sqrt{\pi_{\max}/\pi_{\min}}$, by Hoeffding's inequality for $\varepsilon > 0$

$$\mathbb{P}\left(\left|n^{-1}\sum_{i=1}^{n}z_{i}\right|^{2}>\varepsilon\right)=\mathbb{P}\left(\left|n^{-1}\sum_{i=1}^{n}z_{i}\right|>\sqrt{\varepsilon}\right)\leq2\exp(-n\varepsilon/\|\theta^{*}\|_{\infty}).$$

Lemma 8. Let Assumptions 1 and 2 be true, and suppose that $\{f_1, \ldots, f_M\}$ is an $L^2(T_x)$ ε -net of \mathcal{H}_{τ} and that $\{\beta_1, \ldots, \beta_K\}$ be an ε -net of I_{τ} . Then for any admissible f and β , let f_j and β_{ℓ} be members of the ε -nets so that $||f - f_j||_{L^2(T_x)} < \varepsilon$ and $|\beta - \beta_{\ell}| < \varepsilon$. Then

$$\left| \widetilde{R}_{emp}(f,\beta) - \widetilde{R}_{emp}(f_j,\beta_l) \right| \le 8\varepsilon \Big(\|\theta^*\|_{\infty} + \kappa \tau \Big).$$
 (S3.2)

Proof of Lemma 8. By the reproducing property of \mathcal{H} , $\langle \Phi(x_i), f \rangle_{\mathcal{H}} = f(x_i)$, and

$$\begin{split} \left| \widetilde{R}_{emp}(f,\beta) - \widetilde{R}_{emp}(f_{j},\beta_{l}) \right| &= \left| \frac{1}{n} \sum_{i=1}^{n} |y_{i}^{\top} \theta^{*} - \beta - \langle \Phi(x_{i}), f \rangle_{\mathcal{H}} |^{2} - \frac{1}{n} \sum_{i=1}^{n} |y_{i}^{\top} \theta^{*} - \beta_{\ell} - \langle \Phi(x_{i}), f_{j} \rangle_{\mathcal{H}} |^{2} \right| \\ &= \left| \frac{1}{n} \sum_{i=1}^{n} |y_{i}^{\top} \theta^{*} - \beta - f(x_{i})|^{2} - \frac{1}{n} \sum_{i=1}^{n} |y_{i}^{\top} \theta^{*} - \beta_{\ell} - f_{j}(x_{l})|^{2} \right| \\ &= \left| -2 \frac{1}{n} \sum_{i=1}^{n} y_{i}^{\top} \theta^{*} \{\beta + f(x_{i}) - \beta_{\ell} - f_{j}(x_{i})\} + \frac{1}{n} \sum_{i=1}^{n} [\{\beta + f(x_{i})\}^{2} - \{\beta_{\ell} + f_{j}(x_{i})\}^{2}] \right| \\ &\leq 2 \|\theta^{*}\|_{\infty} \left| \beta - \beta_{l} + \frac{1}{n} \sum_{i=1}^{n} \{f(x_{i}) - f_{j}(x_{i})\} \right| + \underbrace{\left| \frac{1}{n} \sum_{i=1}^{n} [\{\beta + f(x_{i})\}^{2} - \{\beta_{\ell} + f_{j}(x_{i})\}^{2}] \right|}_{I_{2}}. \end{split}$$

Consider

$$I_{1} = 2\|\theta^{*}\|_{\infty} \left| \beta - \beta_{l} + \frac{1}{n} \sum_{i=1}^{n} \{f(x_{i}) - f_{j}(x_{i})\} \right| \leq 2\|\theta^{*}\|_{\infty} \left\{ |\beta - \beta_{l}| + \frac{1}{n} \sum_{i=1}^{n} |f(x_{i}) - f_{j}(x_{i})| \right\}$$

$$\leq 2\|\theta^{*}\|_{\infty} \left\{ \varepsilon + \left[\frac{1}{n} \sum_{i=1}^{n} |f(x_{i}) - f_{j}(x_{i})|^{2} \right]^{1/2} \right\}$$

$$\leq 4\|\theta^{*}\|_{\infty} \varepsilon,$$

where we used $n^{-1} \sum_{i=1}^{n} [|f(x_i) - f_j(x_i)|^2]^{1/2} \leq [n^{-1} \sum_{i=1}^{n} |f(x_i) - f_j(x_i)|^2]^{1/2}$ due to Jensen's inequality, and that $||f - f_j||_{L^2(T_x)} < \varepsilon$ and $|\beta - \beta_\ell| < \varepsilon$.

Consider I_2 . Using $a^2 - b^2 = (a + b)(a - b)$, the Cauchy-Schwarz inequality, and Jensen's inequality,

$$\begin{split} I_2 &= \frac{1}{n} \left| \sum_{i=1}^n \{\beta + f(x_i) + \beta_\ell + f_j(x_i)\} \{\beta - \beta_\ell + f(x_i) - f_j(x_i)\} \right| \\ &\leq 2 \left(\sup_{\beta \in I_\tau} |\beta| + \sup_{x, f \in \mathcal{H}_\tau} |f(x)| \right) \frac{1}{n} \sum_{i=1}^n (|\beta - \beta_j| + |f(x_i) - f_j(x_i)|) \\ &\leq 2 (\|\theta^*\|_\infty + \kappa\tau + \sup_{x, f \in \mathcal{H}_\tau} |\langle \Phi(x), f \rangle_{\mathcal{H}} |) (\varepsilon + \frac{1}{n} \sum_{i=1}^n |f(x_i) - f_j(x_i)|) \\ &\leq 2 \left(\|\theta^*\|_\infty + \kappa\tau + \kappa\tau \right) \left(\varepsilon + \sqrt{\frac{1}{n} \sum_{i=1}^n |f(x_i) - f_j(x_i)|^2} \right) \\ &= 4\varepsilon \left(\|\theta^*\|_\infty + 2\kappa\tau \right). \end{split}$$

Combining the bounds for I_1 and I_2 completes the proof of Lemma 8.

Lemma 9. Let $\{(x_i, y_i)\}_{i=1}^{2n}$ be the data, and consider an $L^2(T_x)$ ε -net $\{f_1, \ldots, f_M\}$ of \mathcal{H}_{τ} . Then $\{f_1, \ldots, f_M\}$ is an $\sqrt{2}\varepsilon$ -net with respect to the empirical measure on half of the data $\{(x_i, y_i)\}_{i=1}^n$.

Proof of Lemma 9. Since $\{f_1, \ldots, f_M\}$ is ε -net with respect to $\{(x_i, y_i)\}_{i=1}^{2n}$, for any $f \in \mathcal{H}_{\tau}$, there exists f_j such that

$$\sqrt{\frac{1}{2n} \sum_{i=1}^{2n} |f(x_i) - f_j(x_i)|^2} < \varepsilon.$$

If $\frac{1}{2n}\sum_{i=1}^{2n}|f(x_i)-f_j(x_i)|^2=0$, then $\frac{1}{n}\sum_{i=1}^n|f(x_i)-f_j(x_i)|^2=0$. Otherwise

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} |f(x_i) - f_j(x_i)|^2} = \sqrt{\frac{2n}{2n} \frac{1}{n} \sum_{i=1}^{n} |f(x_i) - f_j(x_i)|^2 \frac{\sum_{i=1}^{2n} |f(x_i) - f_j(x_i)|^2}{\sum_{i=1}^{2n} |f(x_i) - f_j(x_i)|^2}}$$

$$= \sqrt{\frac{2n}{n} \frac{\sum_{i=1}^{n} |f(x_i) - f_j(x_i)|^2}{\sum_{i=1}^{2n} |f(x_i) - f_j(x_i)|^2}} \sqrt{\frac{1}{2n} \sum_{i=1}^{2n} |f(x_i) - f_j(x_i)|^2} < \sqrt{2\varepsilon},$$

hence $\{f_1,\ldots,f_M\}$ is $\sqrt{2}\varepsilon$ -net with respect to $\{(x_i,y_i)\}_{i=1}^n$.

Lemma 10 (Theorem 2.1 of [3]). Let Assumption 3 be true, and Let M(Z) be the size of an $L^2(T_x)$ ε -covering number of \mathcal{H}_{τ} with data $Z = \{(x_i, y_i)\}_{i=1}^n$. There exists a C > 0 independent of n, such that

$$\sup_{Z=\{(x_i,y_i)\}_{i=1}^n} M(Z) \le \exp\left(\frac{C\tau^2}{\varepsilon^2}\right).$$
 (S3.3)

Remark 2. [4] notes that "Theorem 2.1 of [3] considered only the Gaussian RKHS, however the proof of the entropy bound for p = 2 in their notation only requires that the RKHS is separable." It is this case which is presented in Lemma 10.

References

- [1] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learning theory. In *Advanced lectures on machine learning*, pages 169–207. Springer, 2004.
- [2] Irina Gaynanova and Tianying Wang. Sparse quadratic classification rules via linear dimension reduction. arXiv preprint arXiv:1711.04817, 2017.

Alexander F. Lapanowski, Irina Gaynanova

- [3] Ingo Steinwart and Clint Scovel. Fast rates for support vector machines using gaussian kernels. *The Annals of Statistics*, pages 575–607, 2007.
- [4] Chong Zhang, Yufeng Liu, and Yichao Wu. On quantile regression in reproducing kernel hilbert spaces with data sparsity constraint. *Journal of Machine Learning Research*, 17(40):1–45, 2016.