TIME

Text-to-Image Models for Counterfactual Explanations: a Black-Box Approach

Guillaume Jeanneret

Loic Simon

Frederic Jurie

Tymoteusz Kwieciński MI2.AI Research Seminars, summer 2024

Outline

- 1. Main paper contributions
- 2. Introduction LDM and CEs
- 3. Textual inversion how LDM can learn new concepts?
- 4. EDICT perfect inversion of images
- 5. Description of TIME method
- 6. Results

Article main contributions

- A black box approach to generate Counterfactual Explanations
- Method uses Latent Diffusion Models
- Does not require any optimization loop during inference
- Very short and low-resource inference

Method	Model	Training Specificity		Includes optimization
DiVE	VAE	Days Only	DNN	Yes
STEEX	GAN	Days Only	DNN	Yes
DIME	DDPM	Days Only	DNN	Yes
ACE	DDPM	Days Only	DNN	Yes
TIME	Text2Image	Hours	Black-Box	No

A comparison of different methods for generating Counterfactual Explanations for image classification

Latent Diffusion Models

Model consists of two parts:

- **1. Autoencoder**: encoder \mathcal{E} trained to encode image x into latent space $\mathcal{E}(x) = z$ and decoder D, trained to map latent back to image: $D(\mathcal{E}(x)) \approx x$
- **2. Diffusion model**: model ϵ_{θ} iteratively denosies the noised latent, minimizing the loss in each step:

$$L_{LDM} := E_{z \sim \mathcal{E}(x), y, \epsilon \sim N(0,1), t}[||\epsilon - \epsilon_{\theta}(z_t), t, c_{\theta}(y)||^2]$$

 x_t is an input noisy image, t the current step and $c_{\theta}(y)$ textual conditioning

Latent Diffusion Model

Counterfactual Explanations for image classification

For a given **classifier** and an **image**, counterfactual explanation is an image that has a **minimal semantic change** and **flips the model's decision**

Textual inversion

An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion

How model can learn new concepts?

Existing method	Drawbacks
Retraining with larger dataset	Very expensive
Finetuning	Prone to forgetting the prior knowledge
Freezing the model and learning a transformation on it	Cannot utilize new concepts with the prior ones

Inversion and reconstruction of an image

- Inversion process of finding a corresponding latent representation of a given image
- Reconstruction process of finding an *image* from latent representation

Textual inversion

- Process of finding new words in the textual embedding space
- ullet New words are denoted as S_* and correspond to learned embeddings that relates to a new concept

Method main ideas

- Don't change the model that much it may cause forgetting
- Latent representation is expressive enough to contain basic semantics information
- Method is based on LDM with BERT conditioning
- The only part of model that is trained are the new embeddings

Textual inversion process

Use set small set of images (3-5) presenting the concept New concept embedding v_* of pseudo-word S_* is found through **direct** optimization

$$v_* = \arg\min_{v} E_{z \sim \mathcal{E}(x), y, \epsilon \sim N(0,1), t} \left[||\epsilon - \epsilon_{\theta}(z_t, t, c_{\theta}(y))||^2 \right]$$

Reconstruction task – based on the simple prompt containing the *pseudo-word* we generate the image to be as similar to the original ones as possible

Textual inversion process

Visualization of textual inversion. The embedding v_* of token S_* is found by optimization. The generated image from the prompt should be similar to the ones from the given set

Results

- Method yields better results than textual image captioning
- Method was compared to DALLE-2 guided by image or prompt and LDM guided by longer and shorter text captions
- New embeddings are semantically meaningful

Input samples

"A photo of S_* full of cashew nuts"

"A mouse using S_* as a boat"

"A photo of a S* mask"

"Ramen soup served in S_* "

Input samples

Ours

"A photo of S*"

DALLE-2 (Image Inputs)

DALLE-2 (Long Captions)

LDM (Long Captions)

A mug having many skulls at the bottom and sculpture of a man at the top of it.

Mug or vase featuring grouchy faced native standing on skulls

TIME

Each dataset consists of biases:

- Context bias bias for whole dataset
- Class bias bias of certain class

We extract the class bias for each category from dataset and create *pseudo-words* for these concepts

EDICT

Exact Diffusion Inversion via Coupled Transformations

Inversion of images with conditioning

Having the embedded new concept, we want to **generate the concept into an image**

We **invert** the image and **denoise** the latent with conditioning. The change in the image should be **minimal**

DDIM

The denoising proces in the DDIM is deterministic

Reconstruction from the noised image (latent) is exact

The noising proces is done according to the schedule $\{\alpha_t\}_{t=0}^T$, $\alpha_T=0$, $\alpha_0=1$

$$x_t = \sqrt{\alpha_t}x + \sqrt{1 - \alpha_t}\epsilon$$

Where x is an original image and $\epsilon \sim N(0,1)$; The **denoising** proces consists of steps:

$$x_{t-1} = \sqrt{\alpha_{t-1}} \frac{x_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}(z_t, t, C)}{\sqrt{\alpha_t}} + \sqrt{1 - \alpha_{t-1}} \epsilon_{\theta}(z_t, t, C)$$

This notation can be simplified to:

$$x_{t-1} = a_t x_t + b_t \epsilon_{\theta}(x_t, t, C)$$

Invertibility

Thanks to the linearity assumption we may reverse each step and obtain x_t from x_{t-1} .

$$x_{t} = \frac{x_{t-1} - b_{t} \epsilon_{\theta}(x_{t}, t, C)}{a_{t}} \approx \frac{x_{t-1} - b_{t} \epsilon_{\theta}(x_{t-1}, t, C)}{a_{t}}$$

Conditional reconstructions are **extremely disorted** and yield inconsistent results In general to properly introduce the conditioning signal, we use the Classifier-Free Guidance:

$$\epsilon_{\theta}(x_t, t, C) = \epsilon'_{\theta}(x_t, t, \emptyset) + \lambda \cdot (\epsilon'_{\theta}(x_t, t, C) - \epsilon'_{\theta}(x_t, t, \emptyset))$$

Where ϵ'_{θ} is the bare network

EDICT method

- Modification of the process using with inspiration from Normalizing Flows and Ho's method to stabilize the inversion
- Method reduces the impact of conditioning to preserve most of the semantic information from the original image
- It uses two separate flows of noising and denoising process

Information flow of EDICT

EDICT method

Denoising proces:

$$x_t^{\text{inter}} = a_t \cdot x_t + b_t \cdot \epsilon(y_t, t, C)$$

$$y_t^{\text{inter}} = a_t \cdot y_t + b_t \cdot \epsilon(x_t^{\text{inter}}, t, C)$$

$$x_{t-1} = p \cdot x_t^{\text{inter}} + (1 - p) \cdot y_t^{\text{inter}}$$

$$y_{t-1} = p \cdot y_t^{\text{inter}} + (1 - p) \cdot x_{t-1}$$

Deterministic inversion proces:

$$y_{t+1}^{\text{inter}} = (y_t - (1-p) \cdot x_t)/p$$

$$x_{t+1}^{\text{inter}} = \left(x_t - (1-p) \cdot y_{t+1}^{\text{inter}}\right)/p$$

$$y_{t+1} = \left(y_{t+1}^{\text{inter}} - b_{t+1} \cdot \epsilon \left(x_{t+1}^{\text{inter}}, t+1, C\right)\right)/a_{t+1}$$

$$x_{t+1} = \left(x_{t+1}^{\text{inter}} - b_{t+1} \cdot \epsilon (y_{t+1}, t+1, C)\right)/a_{t+1}$$

Information flow of EDICT

EDICT results

EDICT doesn't require retraining the network

Method yields much less semantic changes into the edited image

The (inter) mixing steps are required to prevent divergence of images

The double flow (x, y) increases the inference time,

but improves the stability of inversion

Influence of the mixing layer of steps on the inversion proces, compared to the image inverted by baseline DDIM

EDICT results

Original Description "A stone church"→ Image edit using prompt: " A stone church in wildflowers"

Flipping classes – counterfactual generation

- Inverting an image with a caption and denoising it with modified caption will bring semantic changes
- We use *positive* (*i*) and *negative* (*j*) *drift* terms:

$$\epsilon_{\theta}^{c}(x_{t}, t, C_{i}, C_{j}) = (1 + \lambda)\epsilon_{\theta}(x_{t}, t, C_{i}) - \lambda\epsilon_{\theta}(x_{t}, t, C_{j}).$$

Authors also used additional hyperparameter τ – an early stop of noising process

(c) Counterfactual Generation from i to jInput (Classified as i)

Output (Classified as j)

Use C_i as the positive prompt and C_i as the negative

Flip C_i and C_j

Quantitative assessment

Feature	Metric			
Validity	Success Ratio (Flip Rate)			
Sparsity and proximity (faces)	Face Similarity, MNAC			
Sparsity and proximity (general purpose)	SimSiam similarity, COUT			
Realism	FID, sFID			
Efficiency	FLOPs			

Results

TIME yields worse results in every compared category
It is a blackbox method, with much shorter inference time

Method	Smile							
	FID (↓)	sFID (↓)	FVA (↑)	FS (†)	$MNAC\left(\downarrow \right)$	CD (↓)	COUT (†)	SR (†)
DiVE [39]	107.0	-	35.7	-	7.41	-	-	-
STEEX [23]	21.9	-	97.6	-	5.27	-	-	-
DiME [24]	18.1	27.7	96.7	0.6729	2.63	1.82	0.6495	97.0
ACE* ℓ_1 [25]	26.1	36.8	99.9	0.8020	2.33	2.49	0.4716	95.7
ACE ℓ_1 [25]	3.21	20.2	100.0	0.8941	1.56	2.61	0.5496	95.0
ACE* ℓ_2 [25]	26.0	35.2	99.9	0.8010	2.39	2.40	0.5048	97.9
ACE ℓ_2 [25]	6.93	22.0	100.0	0.8440	1.87	2.21	0.5946	95.0
TIME (Ours)	10.98	23.8	96.6	0.7896	2.97	2.32	0.6303	97.1

Visual examples

Visual examples

Input ACE TIME

Input ACE TIME

Limitations

- TIME modifications are very large in more complex cases
- On BDD100K dataset in predicting car behaviour it changes the scene a lot

Target Stop

Method	FID (↓)	sFID (↓)	S ³ (†)	COUT (†)	SR (†)
STEEX	58.8	-	-	-	99.5
DiME	7.94	11.40	0.9463	0.2435	90.5
ACE ℓ_1	1.02	6.25	0.9970	0.7451	99.9
ACE ℓ_2	1.56	6.53	0.9946	0.7875	99.9
TIME (Ours)	51.5	76.18	0.7651	0.1490	81.8

Thank you for your attention

you at the beggining of this presentation

you at the end of this presentation

References

- Jeanneret et al., Text-to-Image Models for Counterfactual Explanations: a Black-Box Approach, 2024 IEEE/CVF
- Gal et al. An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion, ICLR 2023
- Wallace et al., EDICT: Exact Diffusion Inversion via Coupled Transformations, CVPR 2023
- Song et al., Denoising Dffusion Implicit Models, ICLR 2021
- Dhariwal et al. Diffusion Models Beat GANs on Image Synthesis, NeurIPS 2021
- Ulhaq et al., Efficient Diffusion Models for Vision: A Survey, IEEE TPAMI 2023