Fundamentos de Redes (Grado en Ingeniería Informática y Doble Grado en Ingeniería Informática y Matemáticas)

Seminario 2: Resolución de problemas del Tema 2

https://www.davidc.net/sites/default/subnets/subnets.html

Curso 2022/2023

Profesores:

- Rafael A. Rodríguez (A1, A3, B1, B2, C1, D2, DG1, DG2, DG3): rodgom@ugr.es
- Jesús Minguillón (A2, C2, D1): minguillon@ugr.es

Ejercico 1 ASIGNACIÓN DE DIRECCIONAMIENTO Y ENCAMINAMIENTO IP

Se dispone de una red con la siguiente topología. Cada una de las redes finales (redes A, ..., H) está compuesta por el número de hosts indicado entre paréntesis. Además, se ha contratado el rango de direcciones públicas 168.168.168.0/22.

- a) Proponga un esquema de asignación de direcciones (de todos los equipos) que cumpla los siguientes requisitos:
 - Todos los hosts han de tener asignadas direcciones públicas.
 - La asignación de direcciones ha de minimizar el tamaño de las tablas de encaminamiento.
- b) Muestre las tablas de encaminamiento de todos los routers, suponiendo que se utiliza el esquema de asignación de direcciones del apartado anterior. NOTA: El router R0 tiene una IP pública diferente en su interfaz hacia Internet, e.g. 33.33.33/24.

	Α	В	С	D	E	F	G	Н	
1		Н	G	F	E	D	С	В	Α
2	RED	168.0/24	169.0/24	170.0/25	170.128/25	171.0/26	171.64/26	171.128/27	171.160/27
3	bits	00.00000000	01.000000000	10.000000000	10.100000000	11.000000000	11.010000000	11.100000000	11.101000000
4	DIFUSIÓN	168.255	169.255	170.127	170.255	171.63	171.127	171.159	171.191
5	bits	00.1111111	01.1111111	10.0111111	10.1111111	11.00111111	11.01111111	11.10011111	11.10111111
6	ROUTER	1	1	1	129	1	65	129	161

	Α	В	С	D	E	F	G
1		R0-R1	R0-R2	R1-R3	R1-R4	R2-R5	R2-R6
2	RED	171.192/30	171.196/30	171.200/30	171.204/30	171.208/30	171.212/30
3	bits	11.11000000	11.11000100	11.11001000	11.11001100	11.11010000	11.11010100
4	DIFUSIÓN	171.195	171.199	171.203	171.207	171.2011	171.215
5	bits	11.11000011	11.11000111	11.11001011	11.11001111	11.11010011	11.11010111

R_0

Destino	Máscara	Siguiente salto	
168.168.168.0	/23	R ₂ (168.168.171.198)	Hacia redes G y H
168.168.170.0	/24	R ₂ (168.168.171.198)	Hacia redes E y F
168.168.171.0	/24	R ₁ (168.168.171.194)	Hacia redes A, B, C y D
168.168.171.208	/29	R ₂ (168.168.171.198)	Hacia subredes R ₂ -R ₅ y R ₂ -R ₆
168.168.171.192	/30	*	Conexión directa subred R ₀ -R ₁
168.168.171.196	/30	*	Conexión directa subred R ₀ -R ₂
default	/0	IP Gateway ISP	Hacia Internet

R_1

Destino	Máscara	Siguiente salto	
168.168.171.0	/25	R ₄ (168.168.171.206)	Hacia redes C y D
168.168.171.128	/26	R ₃ (168.168.171.202)	Hacia redes A y B
168.168.171.192	/30	*	Conexión directa subred con R ₀
168.168.171.200	/30	*	Conexión directa subred con R ₃
168.168.171.204	/30	*	Conexión directa subred con R ₄
default	/0	R ₀ (168.168.171.193)	Hacia Internet y otras subredes

R_2

Destino	Máscara	Siguiente salto	
168.168.168.0	/23	R ₆ (168.168.171.214)	Hacia redes G y H
168.168.170.0	/24	R ₅ (168.168.171.210)	Hacia redes E y F
168.168.171.196	/30	*	Conexión directa subred con R ₀
168.168.171.208	/30	*	Conexión directa subred con R ₅
168.168.171.212	/30	*	Conexión directa subred con R ₆
default	/0	R ₀ (168.168.171.197)	Hacia Internet y otras subredes

R_3

Destino	Máscara	Siguiente salto	
168.168.171.160	/27	*	Conexión directa red A
168.168.171.128	/27	*	Conexión directa red B
168.168.171.200	/30	*	Conexión directa subred con R ₁
default	/0	R ₁ (168.168.171.201)	Hacia Internet y otras subredes

R_4

Destino	Máscara	Siguiente salto	
168.168.171.64	/26	*	Conexión directa red C
168.168.171.0	/26	*	Conexión directa red D
168.168.171.204	/30	*	Conexión directa subred con R ₁
default	/0	R ₁ (168.168.171.205)	Hacia Internet y otras subredes

R_5

Destino	Máscara	Siguiente salto	
168.168.170.128	/25	*	Conexión directa red E
168.168.170.0	/25	*	Conexión directa red F
168.168.171.208	/30	*	Conexión directa subred con R ₂
default	/0	R ₂ (168.168.171.209)	Hacia Internet y otras subredes

R

Destino	Máscara	Siguiente salto	
168.168.169.0	/24	*	Conexión directa red G
168.168.168.0	/24	*	Conexión directa red H
168.168.171.212	/30	*	Conexión directa subred con R ₂
default	/0	R ₂ (168.168.171.213)	Hacia Internet y otras subredes

Nota: En las tablas falta la columna "Interfaz". También habría que indicar las interfaces ethX en el diagrama anterior.

Ejercicio 2

ASIGNACIÓN DE DIRECCIONAMIENTO Y ENCAMINAMIENTO IP

La siguiente figura muestra la topología de red de una empresa, que tiene contratado con su ISP el rango de direcciones 15.16.17.0/24. El número de ordenadores conectados a las redes A, B y C están indicados en la figura entre paréntesis.

- Realice la asignación de direcciones IP tanto de equipos como de routers (incluyendo las redes entre los routers), utilizando direcciones públicas siempre que sea posible
- b) Indique las tablas de encaminamiento de todos los routers de forma que, para el tráfico entre las redes A, B y C, se encamine de acuerdo a las flechas en la figura). Debe haber conectividad completa entre estas redes y hacia Internet.

Ejercicio 3

ASIGNACIÓN DE DIRECCIONAMIENTO Y ENCAMINAMIENTO IP (Y NAT)

Dada la siguiente topología, que representa la red de una empresa, asigne direcciones IP a los diferentes equipos y redes, minimizando el número de entradas en las tablas de encaminamiento. El ISP sólo nos proporciona la dirección IP pública 44.44.44. Ajustar en lo posible las asignaciones al número de ordenadores.

Ejercicio 4 ENCAMINAMIENTO DINÁMICO

Dada la topología de la figura, explique qué ruta se utilizaría para mandar información entre el host A y el host B suponiendo:

- a) Que los routers implementan RIP.
- b) Que los routers implementan OSPF. En el caso de que haya varias rutas posibles, explique cómo se elegiría la ruta a seguir en un caso real.

RIP (menor número de saltos) → cualquier ruta con 3 saltos (por ejemplo, A-R1-R2-R4-R5-B)

R3

OSPF (menor coste en términos de 10⁸/BW) → la ruta elegida sería A-R1-R6-R4-R5-B (coste = 55)

DPTO. TEORÍA DE LA SEÑAL, TELEMÁTICA Y COMUNICACIONES