Algoritmi

lunedì 23 marzo 2009

Chiaramente per la simulzione devono essere creati anche due file diversamente ritardati per ogni sorgente per simulare le ricezioni diverse dei due distinti microfoni

Come descritto nell'articolo 1

-->STFT , size della finestra $\frac{T=512 \text{ con fs}=8\text{kHz}}{T=512 \text{ con fs}=8\text{kHz}}$, overlap di T/4 (nell'articolo ...capire se va bene T/2) --> $\frac{T}{T}$

--> sorgenti sonore di durata circa 3 sec

--> valutazioni fatte con SIR e SDR (vedere l'appendice del primo articolo!)???

Ritardi al secondo microfono:

1° sorg --> 160 (20 ms) 2° sorg --> 560 (70 ms) 3° sorg--> 800 (100 ms)

Sostituire il numero dei cicli parametrizzandolo, Usare la formula calcolata:

numero_splice=1+((length(signal)-length(win))/(length(win)/2))

$Seganli\,generati\,per\,i\,microfoni;$

CODICE:

%creo il segnale totale al primo e al secondo microfono mic1=signal1+signal2+signal3; mic2=signal1r+signal2r+signal3r;

%ora devo creare i grafici SDTF ottenuti dai segnali dei due microfoni

%grafico microfono 1 mic1part(1:512,1)=mic1(1:length(win),1); mic1splice(1:512,1)=mic1part(1:512,1)'.*win';

%andrà poi inserito il controllo per usare tutti i campioni dei %segnali....con uteriore padding

 $\label{lem:cicli} cicli=fix ((length(mic1)-length(win))/(length(win)/2)); \\ % uso fix per prendere l'intero inferiore$

```
%FILE DEL PROGETTO DI TATA
%prova stft e risintesi di un segnale audio
%
% CALCOLO DEL NUMERO DI SPLICE:
% numero_splice=1+((length(signal)-length(win))/(length(win)/2))
```

clear all; close all;

%creazione finestra win=hamming(512);

%definita anche la frequenza di campionamnto per come viene importato il file audio

[signal1,Fs1]=wavexread('3personePCM.wav'); [signal2,Fs2]=wavexread('Toms_diner.wav'); [signal3,Fs3]=wavexread('voce_maschile.wav');

lunghezza=25000;

iflength(signal1)>lunghezza | | length(signal2)>lunghezza | |
length(signal3)>lunghezza;
lunghezza=max(length(signal1),length(signal2));
lunghezza=max(lunghezza,length(signal3));

 $signal 1 = cat(1, signal 1, zeros(lunghezza-length(signal 1), 1)); \\ signal 2 = cat(1, signal 2, zeros(lunghezza-length(signal 2), 1)); \\ signal 3 = cat(1, signal 3, zeros(lunghezza-length(signal 3), 1)); \\ \end{cases}$

%eseguo la finestratura dei seganli, lo splicing part1(1:512,1)=signal1(1:length(win),1); part2(1:512,1)=signal2(1:length(win),1); part3(1:512,1)=signal3(1:length(win),1); splice1(1:512,1)=part1(1:512,1)'.*win'; splice2(1:512,1)=part2(1:512,1)'.*win'; splice3(1:512,1)=part3(1:512,1)'.*win';

fori=2:95;)

start=1+(i-1)*(256); fin=start+length(win)-1; part1(1:512,i)=signal1(start:fin,1); part2(1:512,i)=signal2(start:fin,1); part3(1:512,i)=signal3(start:fin,1); splice1(1:512,i)=part1(1:512,i)'.*win'; splice2(1:512,i)=part2(1:512,i)'.*win'; splice3(1:512,i)=part3(1:512,i)'.*win';

end;

%memorizzo le trasformate

fori=1:95;

fourier1(1:512,i)=fft(splice1(1:512,i)); fourier2(1:512,i)=fft(splice2(1:512,i)); fourier3(1:512,i)=fft(splice3(1:512,i));

end;

%moduli per poterli rappresentare mod_stft1=abs(fourier1); mod_stft2=abs(fourier2); mod_stft3=abs(fourier3); figure(1); surf(mod_stft1); figure(2); surf(mod_stft2); figure(3); surf(mod_stft3);

%segnale risintettizzato (utilizzando solamente le stft calcolate)

[...] for i=2:cicli; start=1+(i-1)*(256); fin=start+length(win)-1; mic1part(1:512,i)=mic1(start:fin,1); mic1splice(1:512,i)=mic1part(1:512,i)'.*win'; end; (***stessi cilci per il microfono 2***) %diagrammi STFT for i=1:cicli; mic1FFT(1:512,i)=fft(mic1splice(1:512,i)); mic2FFT(1:512,i)=fft(mic2splice(1:512,i)); end; %calcolo i moduli per rappresentarli (solo per chiarezza e controllo) mod_mic1=abs(mic1FFT); mod_mic2=abs(mic2FFT); figure(1); subplot(2,2,1); surf(mod mic1); subplot(2,2,2); surf(mod_mic2); subplot(2,2,3); imagesc(mod_mic1); subplot(2,2,4); imagesc(mod_mic2)

IFFT + PhaseUnwrapping --> vedere codici di Antonacci

OK!!!-->la ricostruzione OVERLA-&-ADD funziona anche senza phase unwrapping nel caso in cui non si eseguano elaborazioni particolarisugli spettri!!!!

--> Bisognerà capire se l'applicazione delle maschere binarie è una di queste el aborazioni per cui poi si richie de l'applicazione di algoritmi di phase unwrapping!!

CLUSTERING

APPLICAZIONE MASCHERE BINARIE

File sonori originali e rigenerati dopo trasformazione inversa di fourier

Vedi

Mic1.wav -->originale Mic1ric.wav -->ricostruito

Mic2.wav Mic2ric.wav