Inhaltsverzeichnis

1	Einf 1.1	ührung Inhalt	3				
2	Kryptologie						
_	2.1	Grundbegriffe und einfache Verfahren	4				
		2.1.1 Verschlüsselung erfordert	4				
		2.1.2 Beispiel für (nicht sicheres) symm. Verfahren	5				
		2.1.3 Prinzip von Kerkhoffs (1835-1903)	5				
		2.1.4 Arten von Angriffen	6				
3	One-Time-Pad und perfekte Sicherheit						
	3.1	One-Time-Pad	7				
	3.2	Perfekte Sicherheit	8				
4	Symmetrische Blockchiffre						
	4.1	Blockchiffre	9				
5	Affin-lineare Chiffre						
	5.1	Vorbemerkung	10				
		5.1.1 $n \times m$ -Matrix	10				
		5.1.2 Quadritsche Matrix $(n \times n)$	11				
	5.2	Affin-lineare Chiffren	11				
6	Der Advanced Encryption Standard (AES)						
	6.1	Mathematische Methoden gebraucht fuer AES	14				
	6.2	SubBytes-Transfer	15				
	6.3	Shift Rows Transformation	16				
	6.4	Mix Columns Transformation	16				
	6.5		16				
7	Public-Key-Systeme						
	7.1	Grundidee	18				
	7.2		18				
		7.2.1 Schlüsseslerzengung	19				

		7.2.2 Verschlüsselung		. 19	
		7.2.3 Entschlüsselung		. 19	
	7.3	Sicherheit vom RSA-Verfahren		. 20	
		7.3.1 Wie bestimmt man große Primzahlen?			
		7.3.2 Fermat-Test		. 21	
		7.3.3 Miller-Rabin-Test		. 22	
		7.3.4 Diffie-Hellman-Verfahren zur Schlüssel	vereinbarung	. 22	
		7.3.5 Sicherheit		. 23	
		7.3.6 Man-in-the-Middle		. 23	
	7.4	ElGamal-Public Key Verfahren (1984)		. 23	
		7.4.1 Schlüsselerzeugung		. 23	
		7.4.2 Verschlüsselung		. 23	
		7.4.3 Entschlüsselung		. 23	
8	Sign	turen, Hashfunktionen, Authentifizierung		24	
	8.1	Anforderung an digitale Signaturen			
	8.2	RSA-Signatur (vereinfachte Version)	. .	. 24	
		8.2.1 Wie lassen sich lange RSA-Signaturen v			
	8.3	RSA-Signatur mit HASH-Funktion			
		8.3.1 Angriffsmöglichkeiten			
		8.3.2 Satz: Geburtstagsparadoxon			
		8.3.3 Hashfunktion			
	8.4	Authentifizierung			
	8.5	Challenge-Response-Authentifizierung		. 27	
9	6				
	9.1	(k, n) - Schwellenwertsysteme			
		9.1.1 Konstruktion			
		9.1.2 Verteilung der Teilgeheimnisse			
		9.1.3 Rekonstruktion(sversuch) des Geheimn	isses	. 29	
10	Codi	erungstheorie		30	
	10.1	Grundbegriffe und einfache Beispiele			
		10.1.1 Codierung			
		10.1.2 Ziele	. .	. 30	
	10.2	Grundprinzip	. .	. 30	
		10.2.1 FEC-Verfahren (Forward Error Correcti	on)	. 31	
		10.2.2 ARO-Verfahren (Automatic Reneat Red	mest)	31	

Einführung

1.1 Inhalt

Übertragung (Speicherung) von Daten: Schutz vor:

- zufälligen oder systematischen (physikalischen bedingten) Störungen
- Abhören, absichtliche Veränderung von Dritten (Kryptologie / Verschlüsselung)

Kryptologie:

- symmetrische Verfahren
- asymmetrische Verfahren (Public-Key Verfahren)
- Authentifizierung
- Signaturen

Codierungstheorie

- Fehlererkennung und Fehlerkorrektur
- lineare Blockcodes
- Decodierverfahren

Kryptologie

2.1 Grundbegriffe und einfache Verfahren

Abbildung 2.1: Schaubild der Kryptologie

2.1.1 Verschlüsselung erfordert

- Verschlüsselungsverfahren, Algorithmus (Funktion)
- Schlüssel k_e (encryption key)

$$E(m, k_e) = c$$

E=Verschlüsselungs Funktion, m=Klartext, c=Chiffretext

$$E(m_1, k_e) \neq E(m, k_e)$$
 fuer $m_1 \neq m_2$

$$D(c, k_d) = m$$

 $(k_d \text{ zu } k_e \text{ gehöriger Dechiffrierschlüssel!})$

 $k_d = k_e$ (oder k_d leicht aus k_e zu berechnen):

symmetrisches Verschl.verf., ansonsten **asymm. Verschl.verf.**. Ist k_d nur sehr schwer (oder garnicht) zu k_e berechenbar, so kann k_e veröffentl. werden: **Public-Key-Verfahren**.

2.1.2 Beispiel für (nicht sicheres) symm. Verfahren

- a) $R = S = \{0, 1, ..., 25\}$ Verfahren: Verschiebechiffre Schlüssel: $i \in \{0, 1, ..., 25\}$ Verfahren $x \in \mathbb{R} \longrightarrow x + i \mod 26 = y$ $y \longmapsto y - i \mod 26 = y$ $m = x_1...x_2 \longrightarrow c = (x_1 + i \mod 26) ... (x_n + i \mod 26), E(m, i)$ Unsicher, weil Schlüsselmenge klein ist (Brute Force Angriff).
- b) R,S, Schlüsselmenge=Menge aller Permutationen von $\{1, \dots, 25\} = S_{26}$ Verschl.: Wähle Permuation π

$$x \in \mathbb{R} \longrightarrow \pi(x) = y$$

Entschl.: $y \longrightarrow \pi^{-1}(y) = x$
 $m = x_1 \dots x_r \to c = \pi(x_1) \dots \pi(x_r)$
 $\begin{pmatrix} 0 & 1 & 2 & \dots & 25 \\ 3 & 17 & 4 & \dots & 13 \end{pmatrix} \longrightarrow \pi(0) = 3$, u.s.w.

Anzahl der Permutationen: $|S_{26}| = 26! \approx 4 \cdot 10^{26} \longrightarrow \text{Brute-Force Angriff}$ nicht mehr möglich!

Warum? Man muss im Schnitt 50% der Permutationen testen. Angenommen man könnte 10^12 Perm. pro Sekunde testen.

Aufwand: $2 \cdot 10^{14}$ Sekunden $\approx 6.000.000$ Jahre

Trotzdem unsicher!

Grund: Charakteristiches Häufigkeitsverteilung von Buchstaben in natürlichspr. Texten.

Verfahren beinhalten viele Verschlüsselungsmöglichkeiten, abhängig von der Auswahl des Schlüssels.

Verfahren bekannt, aber Schlüssel k_d geheim!

2.1.3 Prinzip von Kerkhoffs (1835-1903)

Sicherheit eines Verschlüsselungsverfahren darf nicht von der Geheimhaltung des Verfahrens, sondern nur von der Geheimhaltung des verwendeten Schlüssels abhängen!

Kryptologie besteht aus Kryptographie (Entwurf) und der Kryptoanalyse (Angriff). Angriffserfolge:

- Schlüssel k_d wird gefunden
- Eine zu der Dechiffrierfunktion $D(\cdot, k_d)$ äquivalente Funktion finden ohne Kenntnis von k_d
- gewisste Chiffretexte werden entschlüsselt

2.1.4 Arten von Angriffen

- Ciphertext-Only Angriff
- Known-Plaintext Angriff
- Chosen-Plaintext Angriff
- Chosen-Ciphertext Angriff

One-Time-Pad und perfekte Sicherheit

Lauftextverschlüsselung

Alphabet $\mathbb{Z}_k = \{0, 1, ..., k - 1\}$

In \mathbb{Z}_k kann man addieren und multiplizieren mit mod k.

Klartext $x_1, x_2, ..., x_n$ Schlüsselwort $k_1, k_2, ..., k_n$ $x_1 + k_1 \mod k, x_n + k_n \mod k \leftarrow \text{Chiffretext}$

Mit natürlichsprachlichen Texten ist das Verfahren unsicher.

$$\mathbb{Z}_2 = \{0, 1\}, 1 \oplus 1 = 0 = 0 \oplus 0, 0 \oplus 1 = 1 = 1 \oplus 0 \Rightarrow XOR$$

Klartext in $\mathbb{Z}_2^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{Z}_2\}$ Schlüssel: Zufallsfolge über \mathbb{Z}_2 der Länge n. m Klartext, k Zufallsfolge (beide Länge n)

$$c = m \oplus k, (x_1, \dots, x_n) \oplus (k_1, \dots, k_n) := (x_1 \oplus k_1, \dots, x_n \oplus k_n)$$

3.1 One-Time-Pad

Schlüssel *k* darf nur einmal verwendet werden!

$$m_1 \oplus k = c_1, m_2 \oplus k = c_2, c_1 \oplus c_2 = m_1 \oplus k \oplus m_2 \oplus k = m_1 \oplus m_2$$

Wieder nur Lauftext → unsicher!

 m_1 und m_2 lässt sich ermitteln.

Zufallsfolge der Länge n: eigentlich unsinniger Begriff. Da jedes Bit unabhängig von anderen mit Wahrscheinlichkeit $\frac{1}{2}$ erzeugt wird (Output einer binär symmetrischen Quelle)

Jede Folge der Länge n ist gleich wahrscheinlich (Wahrscheinlichkeit $\frac{1}{2}n$ One-Time-Pad ist perfekt sicher.

3.2 Perfekte Sicherheit

Ein Verschlüsselungsverfahren ist perfekt sicher, falls gilt: Für jeden Klartext m und jedem Chiffretext c (der festen Länge n)

$$pr(m|c) = pr(m)$$

 $pr(m|c) \to \text{A-posteriori-Wahrscheinlichkeit}$ (Wahrscheinlichkeit, dass m Klartext, wenn c empfangen wurde)

 $pr(m) \rightarrow A$ -priori-Wahrscheinlichkeit

Beispiel: Substitutionschiffre aus Kapitel 2.

n = 5, m = HALLO, pr(m) > 0

Ang:c = QITUA wird empfangen, $LL \neq TU \rightarrow pr(m|c) = 0$ nicht perfekt sicher.

One-Time-Pad ist perfekt sicher.

(Bayes'sche Formel) $m \oplus k$

Jede Folge c lässt sich mit geeignetem k in der Form $c = m \oplus k$ erhalten.

Wähle $k = m \oplus c, m \oplus k = m \oplus m \oplus c = c$

Bei gegebenem m und zufällige gewählten Schlüssel k ist jeder Chiffretext gleichwertig.

Symmetrische Blockchiffre

4.1 Blockchiffre

Zerlege Klartext in Blöcke (Strings) der Länge *n*. Jeder Block wird einzeln verschlüsselt (in der Regel wieder in einem Block der Länge *n*). Gleiche Blöcke werden gleich verschlüsselt.

```
Wieviele Blockchiffren der Länge n gibt es?
Alphabet \mathbb{Z}_2 = \{0, 1\}
|\{\underbrace{(0, \dots, 0)}_{Block}, (0, \dots, 1), \dots, (1, \dots, 1)\}| = 2^n
Blockchiffre = Permuation der 2^n Blöcke.
(2^n)! Blockchiffre
```

Wenn alle verwendet werden:

Schlüssel = Permuation der 2^n Blöcke

$$(x_{1,1},\ldots,x_{1,n},x_{2,1},\ldots,x_{2,n},\ldots)$$
 $n \cdot 2^n$ Bit

Zur Speicherung eines Schlüssels werden $n \cdot 2^n$ Bit benötigt.

Zum Beispiel:

$$n = 64, 64 \cdot 2^{64} = 2^{70} \approx 1$$
 ZetaByte ≈ 1 Milliarde Festplatten à 1 TB

Illusional!

Konsequenz: Verwende Verfahren, wo nur ein kleiner Teil der Permutation als Schlüssel verwendet wird und so sich die Schlüssel dann in kürzerer Fom darstellt.

Affin-lineare Chiffre

5.1 Vorbemerkung

5.1.1 $n \times m$ -Matrix

$$\begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix}$$

 $1 \times n = \text{Zeilenvektor} = (a_1, \dots, a_m)$

$$n \times 1 = \text{Spaltenvektor} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

z.B. $a_{ij} \in \mathbb{R}$, $a_{ij} \in \mathbb{Z}$ oder $a_{ij} \in R$, R Ring $n \times m$ -Matrix A,B

$$\begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1m} \\ \vdots & & \vdots \\ b_{n1} & \dots & b_{nm} \end{pmatrix} := \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1m} + b_{1m} \\ \vdots & & \vdots \\ a_{n1} + b_{n1} & \dots & a_{nm} + b_{nm} \end{pmatrix}$$

$$A = n \times m, \ B = m \times k,$$

$$A \cdot B \begin{pmatrix} c_{1l} & \dots & c_{1k} \\ \vdots & & \vdots \\ c_{m1} & \dots & c_{mk} \end{pmatrix} = n \times k$$

$$c_{1l} = (a_{i1} \cdot b_{ij}) + (a_{i2} \cdot b_{2j}) + \ldots + (a_{im} \cdot b_{mj})$$

$$(A + B) \cdot C = A \cdot B + B \cot C$$

Im Allgemeinem: $A \cdot B \neq B \cdot A$

5.1.2 Quadritsche Matrix $(n \times n)$

$$E_n = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$

$$A = n \times n$$
, $A \cdot E_n = E_n \cdot A = A$

 $A \ n \times n$ -Matrix über kommutativen Ring R mit Eins. Wann existiert Matrix A^{-1} (Inverse Matrix) mit $A^{-1} \cdot A = A \cdot A^{-1} = E_n$? $det(A) \in R$ Determinante von A

$$2 \times 2$$
-Matrix: $det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{21} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$

A besitzt inverse Matrix $\Leftrightarrow det(A)$ in R ein inverses besitzt (z.B. R Körper, $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_p$, $det(A) \neq 0$

$$A^{-1} = \begin{pmatrix} \frac{1}{\det(A)} \cdot b_{11} & \dots & \frac{1}{\det(A)} \cdot b_{1m} \\ \vdots & & & \vdots \\ \frac{1}{\det(A)} \cdot b_{n1} & \dots & \frac{1}{\det(A)} \cdot b_{nm} \end{pmatrix}$$

$$b_{ij} = (-1)^{i+j} \det(A_{ji})$$

 $A_{ji} = (n-1) \times (n-1)$ -Matrix, die aus A durchstreichen der j-ten Zeile und i-ten Spalte entsteht.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} A^{-1} = \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

$$R = \mathbb{Z}_k \{0, 1, \dots, k\}$$

Addition und Multiplikation in $\mathbb{Z}_k(\oplus, \odot)$

normale Add. und Mult. mit mod k

5.2 Affin-lineare Chiffren

Klartextalphabet = Chiffretextalphabet = \mathbb{Z}_k (k = 2, k = 26)

Wähle $n \times n$ -Matrix A über \mathbb{Z}_k und Zeilenvektor b der Länge n über \mathbb{Z}_k . Dies wird der Schlüssel sein für die Chiffrierung.

Blockchiffre der Länge n. Block = Zeilenvektor der Länge n über \mathbb{Z}_k . Klartextblock v

Chiffretextblock $v \cdot A + b =: w$

 $v \rightarrow v \cdot A + b =: w \cdot w - b = v \cdot A$ benötigen: A^{-1} existiert (d.h. ggT(det(A), k) = 1) Dechiffrierung: $(w - b) \cdot A^{-1} = v \cdot A \cdot A^{-1} = v \cdot E_n = v$ (wenn immer b=0 gewählt wird, dann lineare Chiffren, Hill-Chiffren) Beispiel:

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix} \mathbb{Z}_6$$

Blockchiffre der Länge $n \det(A) = 1 \cdot 2 - 3 \cdot 3 = -7 = 5$ inverse in \mathbb{Z}_6

$$\frac{1}{det(A)} = det(A)^{-1} = 5$$

$$A^{-1} = 5 \cdot \begin{pmatrix} 2 & -3 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 10 & -15 \\ -15 & 5 \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix}$$

Test:

$$A \cdot A^{-1} = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 4+9 & 3+15 \\ 12+6 & 9+10 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Verschlüsselung:

Schlüssel:
$$A = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix} b = (3, 5)$$

Klartextblock: (1, 2)

Chiffretextblock:

$$w = (1,2) \cdot \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix} + (3,5) = (1,1) + (3,5) = (4,0)$$

Entschlüsselung:

$$(w-b) \cdot A^{-1} = (1,1) \cdot \begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix} = (1,2)$$

 $\mathbb{Z}_2: n^2 + n$ Bit zur Speicherung eines Schlüssels.

Wieviele inverse Matrizen über \mathbb{Z}_2 mit n = 64?

$$(2^{64} - 1) \cdot (2^{64} - 2) \cdot \dots \cdot (2^{64} - 2^{63}) \approx 0.29 \cdot 2^{4096}$$

Verfahren ist unsicher gegenüber Known-Plaintext-Angriffe.

(A, b) Schlüssel, A inverse $n \times n$ -Matrix über $\mathbb{Z}_k, b \in \mathbb{Z}_k^n$

Angenommen Angreifer kennt n+1 Klartext/Chiffretextpaare verschlüsselt mit $(A, b), v_0, v_1, \dots, v_n w_0, \dots, w_n$

Dann kann er haufig (A, b) bestimmen.

$$V = \begin{pmatrix} v_1 - v_0 \\ v_2 - v_0 \\ \vdots \\ v_n - v_0 \end{pmatrix} n \times n\text{-Matrix}$$

Angenommen: V ist invertierbar. Setze
$$W = \begin{pmatrix} w_1 - w_0 \\ \vdots \\ w_n - w_0 \end{pmatrix}$$

$$V \cdot A = \begin{pmatrix} (v_1 - v_0) \cdot A \\ \vdots \\ (v_n - v_0) \cdot A \end{pmatrix} = \begin{pmatrix} v_1 \cdot A + b - v_0 \cdot A + b \\ \vdots \\ v_n \cdot A + b - v_0 \cdot A + b \end{pmatrix} = \begin{pmatrix} w_1 - w_0 \\ \vdots \\ w_n - w_0 \end{pmatrix} = W$$

 $V \cdot A$ bekannt, also auch V^{-1} :

$$A = V^{-1} \cdot w$$

$$b = w_0 - v_0 \cdot A$$

Beispiel: $n = 2, k = 25 \{A, ..., Z\} = \{0, ..., 25\}$

$$V = \begin{pmatrix} 10 & -3 \\ 11 & 15 \end{pmatrix} = \begin{pmatrix} 10 & 23 \\ 11 & 15 \end{pmatrix}, \ W = \begin{pmatrix} 14 & 7 \\ 21 & 2 \end{pmatrix}$$

$$det(V) = 10 \cdot 15 + 33 = 183 \equiv 1 \pmod{26}$$

$$V^{-1} = \begin{pmatrix} 15 & 3 \\ -11 & 10 \end{pmatrix} = \begin{pmatrix} 15 & 3 \\ 15 & 10 \end{pmatrix}$$

$$A = V^{-1} \cdot W = \begin{pmatrix} 15 & 3 \\ 15 & 10 \end{pmatrix} \cdot \begin{pmatrix} 14 & 7 \\ 21 & 2 \end{pmatrix} = \begin{pmatrix} 210 + 63 & 105 + 6 \\ 210 + 210 & 105 + 20 \end{pmatrix} = \begin{pmatrix} 13 & 7 \\ 4 & 21 \end{pmatrix}$$

$$b = w_0 - v_0 \cdot A = (13, 4) - (7, 4) \cdot \begin{pmatrix} 13 & 7 \\ 4 & 21 \end{pmatrix} = (10, 1)$$

Test:

$$v_1 \cdot A + b = w_1, v_2 \cdot A + b = w_2$$

Der Advanced Encryption Standard (AES)

6.1 Mathematische Methoden gebraucht fuer AES

Seit 70er Jahren gab es DES (Blocklänge 64 Bit, Schlüssellänge 56 Bit)

Nachfolger des DES: Daemen, Rijmen (Belgier) Rijndael-Verfahren → AES (2002 FIPS 197)

Iterierte Blockchiffre

Version mit 128 Bit Block und Schlüsselänge.

<BILD VON EINER RUNDE VON AES KOMMT HIER HIN>

Vorbemerkung: 128-Bit Blöcke werden dargestellt als:

$$\begin{pmatrix} a_{01} & a_{02} & \dots & a_{03} \\ a_{10} & a_{11} & \dots & a_{13} \\ \vdots & \vdots & \vdots & \vdots \\ a_{30} & \dots & \dots & a_{33} \end{pmatrix}$$

Jedes a_{ij} = Byte

128er Block $\stackrel{\wedge}{=} a_{00}a_{10}a_{20} \dots a_{01}a_{11} \dots a_{33}$ (spaltenweise gelesen)

endlicher Körper: einfachste Möglichkeit \mathbb{Z}_p (p Primzahl) \mathbb{F}_{2^8} Körper mit $2^8=256$ Elementen

Menge: Polynome vom Grad < 8 über \mathbb{Z}_2

$$b_7 x^7 + \ldots + b_1 x + b_0, b_i \in \mathbb{Z}_2$$

 (b_7, b_6, \dots, b_0) Byte

Addition = normale Addition von Polynomen Multiplikation = normale Multiplikation von Polynomen + Reduktion modulo irreduzibler Polynom vom Grad 8. $(x^8 + x^4 + x^3 + x + 1)$

Bsp.

$$(x^7 + x + 1) \odot (x^3 + x) = x^{10} + x^8 + x^4 + x^3 + x^2 + x$$

$$x^{10} + x^8 + x^4 + x^3 + x^2 + x \mod x^8 + x^4 + x^3 + x + 1$$

$$x^{10} + x^8 + x^4 + x^3 + x^2 + x \div x^8 + x^4 + x^3 + x + 1 = x^2 + 1$$

$$x^{10} + x^6 + x^5 + x^3 + x^2$$

$$x^8 + x^6 + x^5 + x^4 + x$$

$$x^8 + x^4 + x^3 + x + 1$$

$$x^6 + x^5 + x^3 + 1 \leftarrow$$

$$(x^7 + x + 1) \odot (x^3 + x) = x^6 + x^5 + x^3 + 1$$

In \mathbb{F}_{2^8} hat jedes Element $\neq 0$ ein Inverses bzgl. \odot : $g \neq 0.Ex.g^{-1} \in \mathbb{F}_{2^8} : g \odot g^{-1} = 1$

Erweiterte Euklid. Algo. für Polynome:

$$g \neq 0$$
 (Grad ≤ 7) $h = x^8 + x^4 + x^3 + x + 1$ irred. $ggT(g, h) = 1$

EEA:
$$u, v \in \mathbb{Z}_2[x] : u \cdot g + v \cdot h = 1$$

 $u \mod h =: g^{-1}$
 $g^{-1} \odot g = ((u \mod h) \cdot g) \mod h = u \cdot g \mod h = (1 - vh) \mod h = 1 \mod h = 1$

6.2 SubBytes-Transfer

$$S_{i-1} = \begin{pmatrix} a_{01} & a_{02} & \dots & a_{03} \\ a_{10} & a_{11} & \dots & a_{13} \\ \vdots & \vdots & \vdots & \vdots \\ a_{30} & \dots & \dots & a_{33} \end{pmatrix}, a_{ij} \text{ Bytes}$$

Sei g eines dieser Bytes, $g = (b_7b_6 \dots b_0), b_i \in \mathbb{Z}_2$

- 1. Schritt: Fasse g als Element in \mathbb{F}_{2^8} auf. Ist g = (0, ..., 0), so lasse g unverändert. Ist $g \neq (0, ..., 0)$, so ersetzte g durch g^{-1} .
- 2. Schritt: Ergebnis nach Schritt 1: \tilde{g} wird folgenderm. Transformiert $\tilde{g} \cdot A + b = \tilde{\tilde{g}}$ (affin-lin. Transformation) (\tilde{g} : g-schlange, $\tilde{\tilde{g}}$:g-doppel-schlange)

A wird durch zyklischer Shift der vorherigen Zeile um 1 Stelle nach rechts erzeugt.

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} b = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

Schritt 1 und 2 werden kombiniert, nicht jedes mal berechnet. Alle möglichen Sub-Bytes (2⁸ viele) sind in einer 16x16 Matrix und wird per Table-Lookup nachgeschlagen.

$$g = (b_7b_6b_5b_4b_3b_2b_1b_0)$$
 $b_7b_6b_5b_4 = 0$ bis 15 (Zeile) $b_3b_2b_1b_0$ (Spalte)

6.3 Shift Rows Transformation

6.4 Mix Columns Transformation

4x4-Matrix, Einträge als Elemente in \mathbb{F}_{2^8} auffassen.

Multiplikation von links mit Matrix (Mult. der Eintr. in
$$\mathbb{F}_{2^8}$$
) :
$$\begin{pmatrix} x & x+1 & 1 & 1 \\ 1 & x & x+1 & 1 \\ 1 & 1 & x & x+1 \\ x+1 & 1 & 1 & x \end{pmatrix}$$
 $x \stackrel{\triangle}{=} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$

6.5 Schlüsselerzeugung

Ausgangsschlüssel hat 128 Bit. (16er String in Hexcode)

Schreibe als 4x4-Matrix von Bytes. 4 Spalten w(0), w(1), w(2), w(4). Definiere weitere 40 Spalten à 4 Bytes.

```
w(i-1) sei schon definiert.

4 \nmid i : w(i) := w(i-4) \oplus w(i-1) (byteweise XOR)

4 \mid i : w(i) := w(i-4) \oplus T(w(i-1)) (T Transformation)

T?
```

$$w(i-1) = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}, \ a, \dots, d \text{ Bytes}$$
Wende auf b, c, d, a SubBytes-Transformation an $\rightarrow e, f, g, h$

$$r(i) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}^{\frac{(i-4)}{4}} \text{ Potenz. in } \mathbb{F}_{2^8}$$

$$T(w(i-1)) = \begin{pmatrix} e \oplus r(i) \\ f \\ g \\ h \end{pmatrix}$$
Rundenschlüssel K_i : 4x4-Matrix mit Spalten $w(4i), w(4i+1), w(4i+1)$

$$r(i) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}^{\frac{(i-4)}{4}}$$
 Potenz. in \mathbb{F}_{2^8}

$$T(w(i-1)) = \begin{pmatrix} e \oplus r(i) \\ f \\ g \\ h \end{pmatrix}$$

Rundenschlüssel K_i : 4x4-Matrix mit Spalten w(4i), w(4i + 1), w(4i + 2), w(4i + 3)

(Nebenbemerkung: Linear heißt f(x + y) = f(x) + f(y))

Public-Key-Systeme

7.1 Grundidee

Diffie, Hellman, 1976 Jeder Teilenehmer hat ein Paar von Schlüsseln:

- Öffentlichen Schlüssel P_A
- geheimen Schlüssel G_A

Zu P_A gehört öffentlich bekannte Verschlüsselungsfunktion E_{P_A} (= $E(\cdot, P_A)$ $B \xrightarrow{m} A: E_{P_A}(m) = c$

- 1. m darf mit "realistischen Aufwand" nicht aus $E_{P_A}(m)$ berechenbar sein. E_{P_A} ist **Einwegfunktion**
- (E_{P_A} muss effizient berechenbar sein, aber E_{P_A}⁻¹ nicht!)
 2. A muss mit Hilfe einer Zusatzinformation (=G_A) in der Lage sein, E_{P_A}⁻¹ effi-

$$D_{G_A}(c) = m = E_{P_A}^{-1}(c)$$

Injektive Einwegfunktionen, die mit Zusatzinformation effizient invertierbar sind: **Geheimtürfunktion** (trapdoor function)

Aus 1) und 2) folgt:

zient zu berechnen.

3 G_A darf aus P_A nicht schnell berechenbar sein!

Es ist unbekannt ob Einwegfunktion existieren! Notwendig für die Existenz von Einwegfunktionen:

$$P \neq NP$$

Es gibt Kandidaten für Einwegfunktionen.

7.2 RSA-Verfahren

(Rivest, Shamir, Adleman, 1977) Beruht auf Schwierigkeit große Zahlen zu faktorisieren!

7.2.1 Schlüsseslerzeugung

Wähle zwei große Primzahlen $p, q(p \neq q)$ (mindestens 500 Bit Länge) Bilde $n = p \cdot q$

$$\varphi(n) = \|\{a \in \mathbb{N} : 1 \le a < n, ggt(a, n) = 1\}\|$$

$$n = p \cdot q : \varphi(n) = (p - 1) \cdot (q - 1)$$

[nicht teilerfremd zu $n: 1 \cdot p, 2 \cdot p, \dots, (q-1) \cdot p = n = 1 \cdot q, 2 \cdot q, \dots, (p-1) \cdot q$ (p-1) + (q-1) + 1

$$\varphi(n) = n - (p - 1) - (q - 1) - 1 = n - p - q + 1 = p \cdot q - p - q + 1 = (p - 1) \cdot (q - 1)$$
] Wähle $e, 1 < e < \varphi(n)$ mit $ggT(e, \varphi(n)) = 1$

Zufallswahl, bestimme $ggT(e, \varphi(n))$ mit Euklidischer Algorithmus, so lange, bis e mit $ggT(e, \varphi(n)) = 1$ gefunden ist.)

öffentlicher Schlüssel

$$(n,e)=P_A$$

Wähle $d < \varphi(n)$ mit $e \cdot d \equiv 1 \pmod{n}$ (d.h. $\varphi(n) \mid e \cdot d - 1, e \cdot d = 1 + k \cdot \varphi(n)$ für $k \in \mathbb{N}$)

(Wende erweiterten Euklidischen Algorithmus auf e, $\varphi(n)$ an:

Liefert
$$u, v \in \mathbb{Z}$$
 mit $u \cdot e + v \cdot \varphi(n) = ggT(e, \varphi(n)) = 1$

 $d = u \bmod \varphi(n)$

$$u \cdot e + v \cdot \varphi(n) \mod \varphi(n) = 1$$

$$(\underbrace{u \bmod \varphi(n)}_{d} \cdot e) \bmod \varphi(n) = 1)$$

Geheimerschlüssel

$$G_A = d$$

7.2.2 Verschlüsselung

B Nachrichtan *A*. Codiere Nachricht als Zahl. Zerlege in Blöcke deren Zahlwert < n. Sei m so ein Block. (m < n) $m^e \ mod n = c$

7.2.3 Entschlüsselung

 $c^d mod n = m$

Gültigkeit basiert auf kleinem Satz von Fermat:

$$r$$
 Primzahl, $ggT(a, r) = 1$ (d.h. $r \nmid a$)

$$a^{r-1} \equiv 1 \pmod{r}$$

Sei
$$m < n = p \cdot q$$

$$c = m^e \mod n, c^d \mod n = m^{e \cdot d} \mod n$$

$$e \cdot d = 1 + k \cdot \varphi(n) = 1 + k \cdot (p-1) \cdot (q-1)$$

Ist $p \nmid m$, so

$$m^{e \cdot d} = m^{1 + k \cdot (p-1) \cdot (q-1)} = m \cdot = (m^{p-1})^{k \cdot (q-1)} \overset{mod \ p}{\Longrightarrow} m \cdot 1^{k \cdot (q-1)} (mod \ p) = m (mod \ p)$$

Ist $p \mid m$:

$$m \equiv 0 \equiv m^{e \cdot d} (mod \ p)$$

In jedem Fall:

$$m^{e \cdot d} \equiv m \pmod{p}$$

Genauso:

$$m^{e \cdot d} \equiv m \pmod{q}$$

$$p \mid m^{e \cdot d} - m, \ q \mid m^{e \cdot d} - m, \ p \neq q \Rightarrow n = p \cdot q \mid m^{e \cdot d} - m$$

$$m^{e \cdot d} \equiv m \pmod{n}, \ m^{e \cdot d} \mod n = m$$

Schnelle Berechnung von modularen Produkten

$$m^{e} \mod n$$

$$e = \sum_{i=0}^{k} e_{i} \cdot z^{k}, \ e_{i} \in \{0, 1\}, e_{k} = 1$$

$$m^{e} = m^{2 \cdot k + e_{k-1} \cdot 2^{k-1} + \dots + e_{1} \cdot 2 + e_{0}}$$

$$((\dots ((m^{2} \cdot m^{e_{k-1}})^{2} \cdot m^{e_{k-2}})^{2} \dots)^{2} \cdot m^{e_{1}})^{2} \cdot m^{e_{0}}$$

gelöst im worst case mit $2 \cdot k$ Multiplikationen

$$k = \lfloor log_2(e) \rfloor$$

Nach jedem Rechenschritt *mod n* reduzieren!

7.3 Sicherheit vom RSA-Verfahren

Falls p, q bekannt $\Rightarrow \varphi(n)$, d bekannt. $\varphi(n)$ bekannt $\Rightarrow p$, q bekannt. $\varphi(n) = n - q - p + 1$ bekannt $\Rightarrow p + q = s$ bekannt, $p \cdot q = n$ bekannt. $p \cdot (s - p) = n \ p^2 - s \cdot p + n = 0$ quadratische Gleichung für p **Es gilt auch:** Bestimmung von d ist "genauso schwierig" wie die Faktorisierung von n.

Komplexität der besten Faktorisierungsalgorithmen:

$$O(e^{c \cdot (\log n)^{\frac{1}{3}} \cdot ((\log \log n)^{\frac{2}{3}})})$$

Um eine 640 Bit Zahl zu faktorisieren braucht man 30-CPU-Jahre auf einer 2.2 GHz CPU.

Häufig wird e = 3 gewählt.

HIER KOMMT NOCH EINE GRAFIK HIN

 $ggT(n_i, n_j) = 1$

$$c_1 = m^3 \mod n_1$$

$$c_2 = m^3 \mod n_2$$

$$c_3 = m^3 \mod n_3$$

Eve fängt c_1 , c_2 , c_3 ab: Chinesisches Restsatz:

$$0 \le x \le n_1, \ n_2, \ n_3 \ \text{mit } x = c_i \ mod \ n_i$$

 $i = 1, 2, 3$
 $x \text{ ist eindeutig bestimmbar}$
 $m^3 \equiv c_i \ mod \ n_i, \ m^3 < n_1, n_2, n_3$
 $\Rightarrow x = m^3 \Rightarrow m = \sqrt[3]{x}$

Wenn e = 5, dann braucht man 5 Nachrichten.

7.3.1 Wie bestimmt man große Primzahlen?

$$p$$
Primzahl, $a \in \mathbb{Z}$, $ggT(a, p) = 1$
 $a^{p-1} \equiv 1 \pmod{p}$ [kl. Satz von Fermat]

gegeben: $n, ggT(a, n) = 1 \ a^{n-1} \equiv 1 \ (mod \ n)$?

7.3.2 Fermat-Test

Wenn nicht, so ist n keine Primzahl. Wenn ja, so keine Aussage möglich. Wähle neues a!

Es gibt zusammengesetze Zahlen n (Carmichael-Zahlen) mit:

$$a^{n-1} \equiv 1 \pmod{n} \ \forall \ a \ \text{mit } ggT(a, n) = 1$$

7.3.3 Miller-Rabin-Test

$$ggT(a, p) = 1$$

$$p \text{ Primzahl } p - 1 = 2^{s} \cdot t, \ 2 \nmid t$$

$$a^{2^{s} \cdot t} \equiv 1 \pmod{p}$$

$$(a^{2^{s-1} \cdot t})^{2} = b$$

$$a^{2^{s-1} \cdot t} = \begin{cases} 1 \mod p \\ -1 \mod p \end{cases}$$

$$b^{2} \equiv 1 \pmod{p}$$

$$(b \mod p)^{2} = 1 \in \mathbb{Z}_{p}$$

$$x^{2} - 1 \in \mathbb{Z}_{p}[x]$$

Entweder $a^t \equiv 1 \pmod{p}$ oder $a^{s^i \cdot t} \equiv -1 \pmod{p}$ für ein $0 \le i \le s$ Teste dies mit n statt p.

Wenn *n* keine Primzahl ist, dann gibt es mindestens $\frac{3}{4}\varphi(n)$ viele *a*, so dass der Test fehlschlägt.

→ probabilistischer Primzahltest

p Primzahl $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$ Gruppe bezüglich Multiplikation (zyklisch)

$$\exists g \in \mathbb{Z}_p^* : \{g^0, g^1, g^2, \dots, g^{p-2}\} = \mathbb{Z}_p$$

 $g^{p-1} \equiv 1 \pmod{p}$

Primitivwurzel mod p

 $0 \le a \le p-2 : a \mapsto g^a \mod p$ Kandidat für Einwegfunktion. $g^a \mod p \to a$ (diskreter Logarithmus) ist nach heutigem Stand schwer!

7.3.4 Diffie-Hellman-Verfahren zur Schlüsselvereinbarung

A, B wollen gemeinsamen Schlüssel K für ein symm. Verfahren vereinbaren; es steht nur unsichere Kommuniaktionskanal zur Verfügung.

Lösung: p, g (Bitlänge von p > Bitlänge von K) (können öffentlich bekannt sein).

- 1. A wählt zufällig $a \in \{2, ..., p-2\}$ A berechnet $x = g^a \mod p$ (a geheim halten)
- 2. *B* wählt zufällig $b \in \{2, ..., p-2\}$ *B* berechnet $y = g^b \mod p$ (*b* geheim halten)

3.
$$A \stackrel{x=g^a}{\rightarrow} B$$

 $B \stackrel{y=g^b}{\rightarrow} A$
 $A: y^a \mod p = g^{b \cdot a} \mod p = K$
 $B: x^b \mod p = g^{a \cdot b} \mod p = K$

7.3.5 Sicherheit

Angreifer: $p, g, g^a \mod p, g^b \mod p$

gesucht: $g^{a \cdot b} \mod p$

Einzig bekannte Möglichkeit ist das Berechnen a aus g^a : $(g^b)^a \mod p = K$ müsste

diskretes Logarithmus-Problem lösen.

7.3.6 Man-in-the-Middle

M fängt g^a und g^b ab und wählt $c \in \{2, ..., p\}$ und schickt $g^c \mod p$ an A und B. $A: g^{c \cdot a} \mod p$, $B: g^{c \cdot b} \mod p$. Beide Schlüssel kennt auch M

7.4 ElGamal-Public Key Verfahren (1984)

7.4.1 Schlüsselerzeugung

A wählt p, g wie bei Diffie-Hellman. Wählt $a \in \{2, ..., p-2\}, x = g^a \mod p$. Öffentlicher Schlüssel: (p, g, x)

Geheimer Schlüssel: a

7.4.2 Verschlüsselung

Klartext $m: 1 \le m \le p-1$

 $B \stackrel{m}{\rightarrow} A$

B wählt zufällig $b \in \{2, \ldots, p-2\}$

 $y = g^b \mod p$

Er berechnet $x^b \mod p$ und $f = m \cdot x^b \mod p$, sendet (y, f) an A,

7.4.3 Entschlüsselung

$$y^a \mod p \ (= x^b \mod p)$$

Berechnet
$$(y^a)^{-1} \mod p \ [(y^a)^{-1} = (y^{p-1-a})]$$

 $f \cdot (y^a)^{-1} \mod p = m$

Nachteil zu RSA

Doppelte Länge wird gebraucht, da Nachricht (Chiffre) und Teilschlüssel versendet werden.

Signaturen, Hashfunktionen, Authentifizierung

8.1 Anforderung an digitale Signaturen

Identitätseigenschaft: ID des Unterzeichners des Dokuments wird sichergestellt

Echtheitseigenschaft: des signiertem Dokument

Verifikationseigenschaft: Jeder Empfänger muss digitale Signatur verifizieren können.

8.2 RSA-Signatur (vereinfachte Version)

A will Dokument m signieren.

A bestitzt öffentlichen RSA-Schlüssel (n, e), geheimen Schlüssel d.

Signatur: $m^d \mod n$ sendet $(m, m^d \mod n)$ an B.

 $(m^d \mod n)^e = m^{e \cdot d} \mod n = m \pmod n$

m < n

Wenn $m^{e \cdot d} \mod n = m$, dann akzeptiert B die Signatur.

 $m > n \mod n \pmod n$. Ist $m' \mod n = m \mod n$, dann $(m', m^d \mod n)$ gültige Signatur.

8.2.1 Wie lassen sich lange RSA-Signaturen vermeiden?

Def: Sei *R* ein endliches Alphabet.

Hashfunktion $H: \mathbb{R}^* \to R^k (k \in \mathbb{N} \text{ fest })$ soll effizient berechenbar sein.

8.3 RSA-Signatur mit HASH-Funktion

H öffentlich bekannte Hashfunktion.

A will Nachricht m signieren.

Bildet H(m) und signiert H(m): $H(m)^d \mod n$ sendet $(m, H(m)^d \mod n)$

Verifikation durch $B: m \to H(m)$

 $(H(m)^d \bmod n)^e \bmod n = H(m)$

8.3.1 Angriffsmöglichkeiten

- Angreifer kann H(m) bestimmen wenn es ihm gelingt, $m' \neq m$ zu finden, so $(m', H(m)^d \mod n)$ gültige Signatur von m durch A.
- Angreife wählt zufällig y und berechnet $y^e \mod n = z$ Gelingt es ihm, m zu finden mit H(m) = z, dann ist (m, y) gütlige Signatur von m durch A

H(m) $y^e = H(m)$

Def: Eine **kryptographische Hashfunktion** ist eine Hashfunktion, die folgende Bedinungen erfüllt.

- 1. *H* ist Einwegfunktion (um Angriffe des zweiten Typs zu vermeiden)
- 2. H ist **schwach kollisionsresistent**, d.h. zu gegebenem $m \in R^*$, soll es effizient nicht möglich sein ein $m' \neq m$, mit H(m) = H(m'), zu finden. (um Angriffe des ersten Typs zu vermeiden)

Verschärfung von 2.

2' *H* ist **stark kollisions resistent**, wenn es effizient nicht möglich ist $m \neq m'$ zu finden, mit H(m) = H(m').

Da R^* unendlich und $|R^k| = |R|^k$ endlisch ist, existiert unendlich viele Paare (m, m'), $m \neq m'$ mit H(m) = H(m').

(Bilde $|R|^k + 1$ viele Hashwerte: Kollision)

Kollisionen lassen sich nicht vermeiden, sie sollten aber nicht schnell herstellbar sein.

8.3.2 Satz: Geburtstagsparadoxon

Ein Merkmal komme in m verschiedenen Ausprägungen vor. Jede Person besitze genau eine dieser Merkmalsausprägungen. Ist $c \ge \frac{1+\sqrt{1+8\cdot m\cdot \ln 2}}{2} \approx 1.18 \sqrt{m}$, so ist die Wahrscheinlichkeit, dass unter l Personen zwei die gleiche Merkmalsausprägung haben, mindestens $\frac{1}{2}$ (Geburtstage: m = 366, l = 23).

Beweis l Personen

Alle Möglichkeiten $(g_1, g_2, \dots, g_l), g_i \in \{1, \dots, m\}$ Möglichkeiten.

Alle Merkmalausprägungen verschieden: $m \cdot (m-1) \cdot (m-2) \cdot \ldots \cdot (m-(l-1))$

Wahrscheinlichkeit, dass *l* Personen lauter verschiedene Geburtstage haben.

$$q = \frac{m \cdot (m-1) \cdot (m-2) \cdot \ldots \cdot (m-(l-1))}{m^{l}} = \prod_{i=0}^{l-1} 1 - \frac{i}{m}$$

Wann ist $q \le \frac{1}{2}$?

$$e^x \ge 1 + x$$

$$\prod_{0}^{l-1} 1 - \frac{i}{m} \le \prod_{0}^{l-1} e^{-\frac{i}{m}} = e^{\prod_{0}^{l-1} - \frac{i}{m}} = e^{-\frac{1}{m} \sum_{0}^{l-1} i} = e^{-\frac{1}{m} \cdot \frac{l \cdot (l-1)}{2}}$$

$$\ln a \le -\frac{1}{m} \cdot \frac{l \cdot (l-1)}{2} = -\frac{l^2 - l}{2 \cdot m}$$

8.3.3 Hashfunktion

 $H(m) = H(m'), m \neq m'$

 $H: \mathbb{Z}_2^* \to \mathbb{Z}_2^n (2^n \text{ Hashwerte})$

Bei Erzeugung von circa $2^{\frac{n}{2}}$ Hashwerten ist die Wahrscheinlichkeit, dass zwei gleich sind ungefähr $\frac{1}{2}$.

 $n = 64 : 2^{32}$ Hashwerte $(4 \cdot 10^9)$ unsicher.

Weit verbreitet waren und sind:

MD5 (message digerst / Ron Rivest, 1991, 128 Bit)

SHA-1 (Secure Hash Algorithm, NSA, 1992/1993, 160 Bit)

8.4 Authentifizierung

Nachweise bzw. Überprüfung, dass jemand derjenige ist für den er sich ausgbit. Möglichkeiten der Authentifizierung durch:

Wissen

Besitz

biometische Merkmale

gängiste Methode: Passwort

Im Allgemeinem: Passwort w abgespeichert als f(w) f Einwegfunktion.

 $w f^n(w) = w_0 \stackrel{sicher}{\rightarrow} \text{Id.}$ überprüfer f Einweg.

1. Auth. $w_1 = f^{n-1}(w) \to f(f^{n-1}(w)) = w_0$ ersetzt w_0 durch w_1

2. Auth. $w_2 = f^{n-2}(w) \to ...$

Passwortsicherheit: http://www.schneier.com/crypto-gram-0701.html

8.5 Challenge-Response-Authentifizierung

```
RSA-Verfahren A \xrightarrow{auth.} B
Öffentlicher Schlüssel: (n,e)
geheimer Schlüssel: d
A \xrightarrow{Zufallszahl} r B, r < n \leftarrow Challenge
A \xrightarrow{r^d \mod n} B überprüft, ob r^{d^e} \mod n = r \leftarrow Response
```

Damit B sich sicher seien kann, dass es wirklich A ist, kann B so oft wie es für nötig hält neue r schicken und dadurch die Chance verringern, dass A nicht A ist.

Secret Sharing Scheme

Geheimnis wird auf mehrere Teilnehmer verteilt (Teilgeheimnisse), so dass gewisse Teilmengen der Teilnehmer das Geheimnis mit ihren Teilgeheimnissen rekonstruieren können, die anderen nicht.

$$T = \{t_1, \dots, t_n\}, k < n \pmod{\text{Teilnehmer}}$$

Jede Teilmenge von T mit mindestens k Teilnehmer sollen Geheimnis rekonstruieren können, Teilmengen von T mit weniger als k Teilnehmer nicht.

9.1 (k, n) - Schwellenwertsysteme

1979 Shamir (How to share a secret)

9.1.1 Konstruktion

Vereinbarung von großer Primzahl p, mindestens $p \ge n + 1$

$$g \in \mathbb{Z}_p = \{0, \dots, p-1\}$$

9.1.2 Verteilung der Teilgeheimnisse

Dealer wählt zufällig $a_1, \ldots, a_{k-1} \in \mathbb{Z}_p, a_{k-1} \neq 0, k =$ Schwelle

$$f(x) = g + a_1 x + \dots + a_{k-1} x^{k-1} \in \mathbb{Z}_p[x]$$

 (a_1, \ldots, a_{k-1}) hält er geheim, natürlich auch g

Dealer wählt zufällig $x_1, \ldots, x_n \in \mathbb{Z}_p$ (paarweise verschieden). Teilnehmer t_i erhält als Teilgeheimnis $(x_i, f(x_i))$ (Punkt auf Polynom) Bei x = 0 hast du g.

9.1.3 Rekonstruktion(sversuch) des Geheimnisses

k Teilnehmer $(x_{i_1}, f(x_{i_1})), \dots, (x_{i_k}, f(x_{i_k}))$

Durch diese Punkte ist f eindeutig bestimmt, z.B. durch Lagrange-Interpol.:

$$f(x_{i_i}) = g_{i_i}$$

$$f(x) = \sum_{i=1}^{k} g_{i_j} \cdot \frac{(x - x_{i_1}), \dots, (x - x_{i_{j-1}})(x - x_{i_{j+1}}), \dots, (x - x_{i_k})}{(x_{i_j} - x_{i_1}), \dots, (x_{i_j} - x_{i_{j-1}})(x_{i_j} - x_{i_{j+1}}), \dots, ((x_{i_j} - x_{i_k}))}$$

$$f(0) = g$$

$$g = \sum_{j=1}^{k} g_{i_j} \prod_{l=j} \frac{x_{i_l}}{(x_{i_l} - x_{i_j})}$$

Bei mehr als k Teilnehmer selbe Ergebnis.

Weniger als k Teilnehmer (k'): Anderes Polynom wegen weniger Punkte, also warscheinlich anderer g.

Erzeugen Polynom vom Grad $\leq k' - 1$

Für alle $k \in \mathbb{Z}_p$ existiert gleich viele Polynome vom Grad $\leq k' - 1$ durch die vorgegebene k' Punkte, die bei h durch y-Achse gehen.

Codierungstheorie

10.1 Grundbegriffe und einfache Beispiele

10.1.1 Codierung

(Kanalcodierung)

Sicherung von Daten/Nachrichten gegen zufällig auftretenden Fehler bei Speicherung/Übertragung.

Abbildung 10.1: Schaubild der Codierung

10.1.2 Ziele

- Möglichst viele Fehler erkennen und gegebenenfalls korrigieren.
- Aufwand für Codierung und Decodierung möglichst gering.

10.2 Grundprinzip

Hinzufügen von Redundanz

Es gibt zwei Typen um Redundanz zu erzeugen.

10.2.1 FEC-Verfahren (Forward Error Correction)

Aufgetretene Fehler sollen erkannt und korrigiert werden.

Vorteil: keine Verzögerung der Übertragung aber ggf. große Redundanz notwendig.

10.2.2 ARQ-Verfahren (Automatic Repeat Request)

Aufgetretene Fehler sollen erkannt werden, werden nicht korrigiert. Stattdessen wiederholt die Übertragung beim Sender anfordern.

Vorteil: geringe Redundanz, aber Verzögerung.

Beispiele

```
1. Parity-Check-Codes
```

z.B. Nachrichten: 00, 01, 10, 11

Codierung: $00 \rightarrow 000$

 $01 \rightarrow 011$

 $10 \rightarrow 101$

 $11 \rightarrow 110$

(gerade Anzahl von Einsen in den Codewörtern)

- 1 Fehler wird erkannt, nicht korrigiert.
- 2 Fehler werden nicht erkannt.
- 2. Wiederholungscode

Nachrichten wie in 1.

Codierung: $00 \to 000000 \ 01 \to 010101$

 $10 \to 101010$

 $11 \rightarrow 111111$

(3-Fache Wiederholung)

1 Fehler wird erkannt und korrigiert.

 $010101 \to 010101 \to 01$

3. Nachrichten wie in 1. Codierung: $00 \rightarrow 00000$

 $01 \rightarrow 01101$

 $10 \rightarrow 10110$

 $11 \to 11011$

Je zwei Codewörter unterscheiden sich an mindestens 3 Positionen.

Angenommen 1 Fehler tritt bei Übertragung auf. Dann gibt es genau ein Codewort, dass sich vom empfangenen Wort an genau einer Stelle unterscheidet; in das wird decodiert.

Muss immer Ungerade unterschiede in Codewörtern sein. Bei 5 diffs sind 2 Fehler korrigierbar.

4. (ehmaliger) ISBN-Code International Standard Book Number

10-Stelliger Code

Erste 9 Ziffern haben inhaltliche Bedingung (

Nachricht)

10. Ziffer: Prüfziffer

Beispiel: 3-540-26121-? (Land - Verlag - Buchnummer - Prüfziffer)

Uncodierte Wörter sind gebildet über $R = \{0, \dots, 9\}$

Codierte Wörter sind gebildet über $S = \{0, ..., 9, X\}$

ISBN-Wort $C_{10}C_9 \dots C_2C_1$

 $C_{10} \dots C_2$ inhaltliche Bedingung, C_1 wird so gewählt, dass

$$\sum_{k=1}^{10} k \cdot C_k \equiv 0 \pmod{11}$$

 $10 \cdot C_{10} + \ldots + 2 \cdot C_2 + C_1 \equiv 0 \pmod{11}$ falls $C_1 = 10$ so setzte $C_1 = X$ C_1 vom Beispiel ausrechnen.

$$10 \cdot 3 + 9 \cdot 5 + 8 \cdot 4 + 7 \cdot 0 + 6 \cdot 2 + 5 \cdot 6 + 4 \cdot 1 + 3 \cdot 2 + 2 \cdot 1 + C_1 = 0 \pmod{11}$$

 $161 + C_1 = 0 \pmod{11} \Rightarrow C_1 = 4$

Ändern einer Ziffer wird erkannt:

 $C_{10}C_9 \dots C_2C_1 \rightarrow C_i \text{ wird } X_i \neq C_i \text{ ersetzt}$ $C_{10} \dots C_{i+1}X_iC_{i-1} \dots C_1$

$$\sum_{k=1, k \neq i}^{10} k \cdot C_k + i \cdot x_i = \underbrace{\sum_{k=1, k \neq i}^{10} k \cdot C_k}_{\equiv 0 \pmod{11}} \underbrace{\frac{i}{i} \cdot (\underbrace{x_i - c_i}_{\text{mod } 11})}_{\equiv 0 \pmod{11}} \not\equiv 0 \pmod{11}$$

Fehler wird erkannt, Korrektur nicht möglich.

$$3 - 540 - 26121 - 4 \equiv 0 \pmod{11}$$

$$3 - 540 - 26121 - 6$$

 $3 - 540 - 26122 - 4$ Prüfsumme 2.

Vertauschung von Zwei Ziffern wird erkannt.

 C_i und C_j vertauscht.

O.B.d.A
$$C_{i} \neq C_{j}$$

 $C_{10} \dots C_{j} \dots C_{i} \dots C_{1}$

$$\sum_{k=1, k \neq i, j}^{10} k \cdot C_{k} + i \cdot C_{j} + j \cdot C_{i} = \sum_{k=1}^{10} k \cdot C_{k} + i(C_{j} - C_{i}) + j(C_{i} - C_{j})$$

$$= \sum_{k=1}^{10} k \cdot C_{k} + \underbrace{(C_{j} - C_{i})}_{\not\equiv 0 \pmod{11}} \underbrace{(i - j)}_{\not\equiv 0 \pmod{11}} \not\equiv 0 \pmod{11}$$

Vertauschung wird durch gewichtete Quersummen erkannt.

5. EAN-13-Code

European Article Number

13-Stelliger Code, erste 12 Ziffer sind inhaltlich festgelegt.

13. Ziffer ist Prüfziffer.

$$R = S = \{0, \dots, 9\}$$

$$C_1 \dots C_{12} C_{13}$$

 $C_1 \dots C_{12}$ inhaltliche Angabe (in der Regel):

*C*₁*C*₂ Herstellerland (40-43 Deutschland)

 $C_6 \dots C_7$ Hersteller $C_8 \dots C_1 2$ interne Produktions Nummer

 C_{13} so gewählt, dass

$$C_1 + 3 \cdot C_2 + C_3 + 3 \cdot C_4 + \dots + 3 \cdot C_{12} + C_{13} \equiv 0 \pmod{10}$$

 $x \to 3x$ Permutation auf $\mathbb{Z}_{10} \pmod{10}$, da ggT(3,10)=1

1 Fehler wird erkannt. Vertauschung in der Regel nicht erkannt.