The Remainder Theorem

Evaluate each function at the given value.

1)
$$f(x) = -x^3 + 6x - 7$$
 at $x = 2$

2)
$$f(x) = x^3 + x^2 - 5x - 6$$
 at $x = 2$

3)
$$f(a) = a^3 + 3a^2 + 2a + 8$$
 at $a = -3$

4)
$$f(a) = a^3 + 5a^2 + 10a + 12$$
 at $a = -2$

5)
$$f(a) = a^4 + 3a^3 - 17a^2 + 2a - 7$$
 at $a = 3$

5)
$$f(a) = a^4 + 3a^3 - 17a^2 + 2a - 7$$
 at $a = 3$ 6) $f(x) = x^5 - 47x^3 - 16x^2 + 8x + 52$ at $x = 7$

State if the given binomial is a factor of the given polynomial.

7)
$$(k^3 - k^2 - k - 2) \div (k - 2)$$

8)
$$(b^4 - 8b^3 - b^2 + 62b - 34) \div (b - 7)$$

9)
$$(n^4 + 9n^3 + 14n^2 + 50n + 9) \div (n + 8)$$

10)
$$(p^4 + 6p^3 + 11p^2 + 29p - 13) \div (p + 5)$$

11)
$$(p^4 - 8p^3 + 10p^2 + 2p + 4) \div (p - 2)$$

12)
$$(n^5 - 25n^3 - 7n^2 - 37n - 18) \div (n+5)$$

13)
$$(x^5 + 6x^4 - 3x^2 - 22x - 29) \div (x + 6)$$

14)
$$(n^4 + 10n^3 + 21n^2 + 6n - 8) \div (n + 2)$$

Divide.

15)
$$(p^4 + 5p^3 - 11p^2 - 25p + 29) \div (p+6)$$
 16) $(8k^3 - 66k^2 + 14k + 8) \div (k-8)$

6)
$$(8k^3 - 66k^2 + 14k + 8) \div (k - 8)$$

17)
$$(x^4 + 11x^3 + 33x^2 + 24x + 32) \div (x+6)$$
 18) $(6v^3 + 42v^2 - 50v - 20) \div (v+8)$

18)
$$(6v^3 + 42v^2 - 50v - 20) \div (v + 8)$$

19)
$$(6b^4 + 53b^3 + 32b^2 - 61b + 19) \div (b + 8)$$
 20) $(4n^3 - 9n^2 + 9n + 3) \div (n - 1)$

20)
$$(4n^3 - 9n^2 + 9n + 3) \div (n - 1)$$

21)
$$(6a^3 + 20a^2 - 15a + 9) \div (a + 4)$$

22)
$$(n^4 - 6n^3 - 10n^2 + 20n + 15) \div (n + 2)$$

23)
$$(p^5 + 8p^4 + 2p^2 + 19p + 16) \div (p + 8)$$
 24) $(x^4 - 2x^3 - 16x^2 + 28x + 9) \div (x - 4)$

24)
$$(x^4 - 2x^3 - 16x^2 + 28x + 9) \div (x - 4)$$

25)
$$(r^5 + 6r^4 - 13r^3 - 5r^2 - 8r + 14) \div (r - 2)$$
 26) $(8v^5 + 32v^4 + 5v + 20) \div (v + 4)$

26)
$$(8v^5 + 32v^4 + 5v + 20) \div (v + 4)$$

The Remainder Theorem

Evaluate each function at the given value.

1)
$$f(x) = -x^3 + 6x - 7$$
 at $x = 2$

2)
$$f(x) = x^3 + x^2 - 5x - 6$$
 at $x = 2$

3)
$$f(a) = a^3 + 3a^2 + 2a + 8$$
 at $a = -3$

4)
$$f(a) = a^3 + 5a^2 + 10a + 12$$
 at $a = -2$

5)
$$f(a) = a^4 + 3a^3 - 17a^2 + 2a - 7$$
 at $a = 3$

6)
$$f(x) = x^5 - 47x^3 - 16x^2 + 8x + 52$$
 at $x = 7$

State if the given binomial is a factor of the given polynomial.

7)
$$(k^3 - k^2 - k - 2) \div (k - 2)$$

Yes

8)
$$(b^4 - 8b^3 - b^2 + 62b - 34) \div (b - 7)$$

9)
$$(n^4 + 9n^3 + 14n^2 + 50n + 9) \div (n + 8)$$

No

10)
$$(p^4 + 6p^3 + 11p^2 + 29p - 13) \div (p + 5)$$

No

11)
$$(p^4 - 8p^3 + 10p^2 + 2p + 4) \div (p - 2)$$

Yes

12)
$$(n^5 - 25n^3 - 7n^2 - 37n - 18) \div (n+5)$$

No

13)
$$(x^5 + 6x^4 - 3x^2 - 22x - 29) \div (x+6)$$

No

14)
$$(n^4 + 10n^3 + 21n^2 + 6n - 8) \div (n + 2)$$

Yes

Divide.

15)
$$(p^4 + 5p^3 - 11p^2 - 25p + 29) \div (p+6)$$

 $p^3 - p^2 - 5p + 5, R - 1$

16)
$$(8k^3 - 66k^2 + 14k + 8) \div (k - 8)$$

 $8k^2 - 2k - 2$, R -8

17)
$$(x^4 + 11x^3 + 33x^2 + 24x + 32) \div (x+6)$$

 $x^3 + 5x^2 + 3x + 6$, R -4

18)
$$(6v^3 + 42v^2 - 50v - 20) \div (v + 8)$$

 $6v^2 - 6v - 2$, R -4

19)
$$(6b^4 + 53b^3 + 32b^2 - 61b + 19) \div (b + 8)$$

 $6b^3 + 5b^2 - 8b + 3$, R -5

20)
$$(4n^3 - 9n^2 + 9n + 3) \div (n - 1)$$

 $4n^2 - 5n + 4$, R 7

21)
$$(6a^3 + 20a^2 - 15a + 9) \div (a + 4)$$

 $6a^2 - 4a + 1$, R 5

22)
$$(n^4 - 6n^3 - 10n^2 + 20n + 15) \div (n + 2)$$

 $n^3 - 8n^2 + 6n + 8, R - 1$

23)
$$(p^5 + 8p^4 + 2p^2 + 19p + 16) \div (p + 8)$$

 $p^4 + 2p + 3$, R -8

24)
$$(x^4 - 2x^3 - 16x^2 + 28x + 9) \div (x - 4)$$

 $x^3 + 2x^2 - 8x - 4$, R -7

25)
$$(r^5 + 6r^4 - 13r^3 - 5r^2 - 8r + 14) \div (r - 2)$$

 $r^4 + 8r^3 + 3r^2 + r - 6$, R 2

26)
$$(8v^5 + 32v^4 + 5v + 20) \div (v + 4)$$

 $8v^4 + 5$

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com