İŞLEM

Tanımı, Özellikleri

KONU: İŞLEM

"A ve B kümeleri 2 küme olsun. A x B Kartezyen çarpım kümesinin bir alt kümesi C yani ise C kümesi A'dan "B'ye bir bağıntıdır ve β ile gösterilir." Demiştik ve bağıntıları görmüştük.

 $A=\{1, 3, 8\}$ ve $B=\{2, 5, 7\}$ olsun.

 $AxB=\{(1,2), (1,5), (1,7), (3,2), (3,5), (3,7), (8,2), (8,5), (8,7)\}$ iken;

 $\beta \subseteq AxB$ olacak şekilde bir β bağıntısı:

Bağıntı β ={(1, 2), (1, 5), (1, 7) (3, 5) (3,7)} olsun.

Burada (1, 2) ikilisinde;

1 : birinci eleman ve 2 : ikinci eleman olarak isimlendirilir.

Daha sonra:

"A ve B kümeleri boş olmayan 2 farklı küme olsun. A'nın her bir elemanını B'nin yalnızca bir elemanına bağlayan kurala "<u>fonksiyon</u>" denir. Bu kural, f ile gösterilir ve f:A→B şeklinde ifade edilir." Diyerek bağıntılardan 3 kuralı sağlayanlara fonksiyon demiştik. Bu 3 kural:

- 1) A'nın her bir elemanını B'nin bir elemanına bağlar.
- 2) A'nın hiçbir elemanını B'nin birden çok elemanına bağlamaz.
- 3) Fonksiyon için tanım kümesi belli olacak.

 $A=\{1, 3, 8\}$ ve $B=\{2, 4, 5, 7, 9\}$ olsun. Burada $f:A \rightarrow B$ ve f(x)=y=x+1 iken;

Fonksiyon $f = \{(1, 2), (3, 4), (8, 9)\}$ olur.

Şimdi ise; fonksiyonlardan özel bir tanıma giderek, "işlem" konusunu göreceğiz.

<u>Birli işlem:</u> A≠Ø ve Fonksiyon f:A→A'ya, A kümesi üzerinde "birli işlem" denir. Burada

 $A=\{1,2,3\}$ iken f:A \rightarrow A için eğer f(1)=2, f(2)=3 ve f(3)=1 olsun. Bu durumda f birli işlemdir.

<u>İkili işlem:</u> $A \neq \emptyset$ ve $\emptyset \neq B \subseteq AxA$ olsun. Fonksiyon f: $B \rightarrow A'ya$, "ikili işlem" denir. Yani bir kümenin elemanlarının herhangi bir sıralı ikilisini birleştirerek, sonucun yine bu kümenin elemanı olmasını sağlayan kurala "ikili işlem" denir.

A= $\{1,2,3\}$ ve AxA= $\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$ iken B= $\{(1,1),(1,2),(2,1)\}$ olsun. Bu durumda tanımlanacak f:B \rightarrow A fonksiyonu için f(x)= $\{x+y: (x,y) \in B \text{ ve } f(x) \in A\}$ olsun. B kümesindeki her $\{x,y\}$ için $\{x+y=f(x)\}$ olmalı. B kümesindeki elemanlara bakılacak olursa;

(1,1) için: $1+1=2 \in A$

(1,2) için: 1+2=3∈ A

(2,1) için: 2+1=3∈ A olduğundan f fonksiyonu bir ikili işlemdir.

ÖRNEK:

- 1) Pozitif tam sayılar (Z⁺) kümesinde toplama işlemi bir ikili işlem midir?
- 2) Pozitif tam sayılar (Z⁺) kümesinde çıkarma işlemi bir ikili işlem midir?
- 3) Tam sayılar (Z) kümesinde toplama ve çıkarma işlemi bir ikili işlem midir?
- 1) Evet Pozitif tam sayılar (Z⁺) kümesinde toplama işlemi bir ikili işlemdir. Çünkü toplama işlemi sonucu yine bir pozitif tamsayıdır.
- 2) Hayır Pozitif tam sayılar (Z⁺) kümesinde çıkarma işlemi bir ikili işlem değildir. Çünkü 2 pozitif tamsayının çıkarılması sonucu negatif olabilir.
- 3) Evet Tam sayılar (Z) kümesinde toplama ve çıkarma işlemi bir ikili işlemdir.

A≠Ø ve "•" işlemi verilsin. Burada •, □, •, ◊, ○ gibi simgeler de olabilir.

1) Kapalılık:

Her x,y ∈ A için x•y ∈ A oluyorsa, A kümesi • işlemine kapalıdır. • işlemin kapalılık özelliği yoksa, zaten ikili işlem değildir.

Doğal sayılar kümesi üzerinde tanımlanan

$$X \Delta y = X \cdot y$$

işlemine göre, doğal sayılar kümesi "∆" işlemine göre kapalı mıdır?

Her $x, y \in N$ için $x \Delta y = x \cdot y \in N$ olduğundan dolayı doğal sayılar kümesi " Δ " işlemine göre kapalıdır.

2) Birleşme özelliği:

 $A \neq \emptyset$ ve " \bullet " işlemi verilsin. Her x, y, z \in A için;

$$x \bullet (y \bullet z) = (x \bullet y) \bullet z \text{ oluyorsa},$$

A kümesinin ● işlemine göre birleşme özelliği vardır.

Reel sayılar kümesi üzerinde tanımlanan işleminin birleşme özelliği var mıdır?

$$x \Leftrightarrow y = x - y$$

😩 Çözüm

Her $x, y, z \in R$ için $(x \Leftrightarrow y) \Leftrightarrow z = x \Leftrightarrow (y \Leftrightarrow z)$ olmalıdır.

$$(x \Leftrightarrow y) \Leftrightarrow z = x \Leftrightarrow (y \Leftrightarrow z)$$

$$(x - y) \Leftrightarrow z = x \Leftrightarrow (y - z)$$

$$(x-y)-z=x-(y-z)$$

$$x-y-z=x-y+z$$
 olur.

(x ☆ y) ☆ z ≠ x ☆ (y ☆ z) olduğundan reel sayılar kümesi üzerinde "☆" işleminin birleşme özelliği yoktur.

3) Değişme özelliği:

 $A\neq\emptyset$ ve " \bullet " işlemi verilsin. Her x, y \in A için x \bullet y = y \bullet x oluyorsa, A kümesinin \bullet işlemine göre değişme özelliği vardır.

Reel sayılar kümesi üzerinde tanımlanan işleminin değişme özelliği var mıdır?

$$x \Leftrightarrow y = 4x + 4y$$

x ☆ y = y ☆ x eşitliği var ise "a" işleminin değişme özelliği vardır.

$$x \Leftrightarrow y = y \Leftrightarrow x$$

 $4x + 4y = 4y + 4x$

olduğundan reel sayılar kümesi üzerinde "☆" işleminin değişme özelliği vardır.

4) Birim (etkisiz) eleman:

A≠Ø ve "•" işlemi verilsin.

Her $x \in A$ için $x \bullet e_1 = x$ olacak şekilde bir e_1 varsa, $e_1'e \bullet$ işleminin sağdan birim elemanı,

Her $x \in A$ için $e_2 \bullet x = x$ olacak şekilde bir e_2 varsa, e_2 'ye \bullet işleminin soldan birim elemanı denir.

Bir işlemde hem sağdan, hem soldan birim elemanı varsa ve eşitse yani $e_1 = e_2$ = e ise e'ye • işlemine göre birim eleman denir.

Not: Eğer işlemin değişme özelliği varsa, sağdan ya da soldan birim (etkisiz) eleman bulunması yeterlidir. Her 2 taraftan da bulunmasına gerek yoktur!

4) Birim (etkisiz) eleman:

Tamsayılar kümesi üzerinde ∆ işlemi

$$x \Delta y = x + y - 6$$

biçiminde tanımlanıyor.

Buna göre ∆ işleminin birim (etkisiz) elemanı kaçtır?

İşlemin değişme özelliği olduğundan sadece tek bir taraftan birim eleman bakılması yeterlidir.

🚄 Çözüm

Her $x \in Z$ için $x \Delta e = x$ olmalıdır. $x \Delta e = x$ x + e - 6 = x

5) Ters eleman:

A≠Ø ve "•" işlemi verilsin.

Her $x \in A$ için $x \bullet y_1 = e$ olacak şekilde bir y_1 varsa, $y_1'e \bullet$ işleminin sağdan ters elemanı,

Her $x \in A$ için $y_2 \bullet x = e$ olacak şekilde bir y_2 varsa, y_2' ye \bullet işleminin soldan ters elemanı denir.

Bir işlemde hem sağdan, hem soldan ters eleman varsa ve eşitse yani $y_1 = y_2 = y$ ise y'ye • işlemine göre ters eleman denir. • işlemine göre y elemanına x'in tersi denir ve $y=x^{-1}$ ile gösterilir.

Not: Eğer işlemin değişme özelliği varsa, sağdan ya da soldan ters eleman bulunması yeterlidir. Her 2 taraftan da bulunmasına gerek yoktur!

5) Ters eleman:

R de tanımlı ∆ işlemi

$$x \Delta y = x + y - 10$$

biçiminde tanımlanıyor. Buna göre, 6 nın tersi kaçtır?

İşlemin değişme özelliği olduğundan, sadece tek bir taraftan birim ve ters eleman bulınması yeterlidir.

😩 Çözüm

Δ işlemine göre birim eleman,

$$x \Delta e = x$$

 $x + e - 10 = x$
 $e = 10$ olur.

Δ işlemine göre 6 nın tersi k olsun.

$$6 \triangle 6^{-1} = e$$

 $6 \triangle k = 10$
 $6 + k - 10 = 10$
 $k = 14$ tür.

Δ işlemine göre 6 nın tersi 14 olur.

6) Dağılma özelliği:

A≠Ø ve A kümesi üzerinde • ve o işlemleri verilsin.

Her $x,y,z \in A$ için $x \bullet (y \circ z) = (x \bullet y) \circ (x \bullet z)$ oluyorsa, \bullet işleminin \circ işlemi üzerine soldan dağılması,

Her $x,y,z \in A$ için $(x \circ y) \bullet z = (x \bullet z) \circ (y \bullet z)$ oluyorsa, \bullet işleminin \circ işlemi üzerine sağdan dağılması olur.

• işleminin o işlemi üzerinde hem sağdan, hem soldan dağılma varsa, • işleminin o işlemi üzerine dağılma özelliği vardır.

7) Yutan eleman:

A≠Ø ve "•" işlemi verilsin.

Her $x \in A$ için $x \cdot y_1 = y_1$ olacak şekilde bir y_1 varsa, $y_1'e \cdot işleminin sağdan yutan elemanı,$

Her $x \in A$ için $y_2 \bullet x = y_2$ olacak şekilde bir y_2 varsa, y_2' ye \bullet işleminin soldan yutan elemanı denir.

Bir işlemde hem sağdan, hem soldan yutan elemanı varsa ve eşitse yani $y_1 = y_2 = y$ ise y'ye • işlemine göre yutan eleman denir.

Yutan eleman varsa bir tanedir ve yutan elemanın tersi yoktur!

7) Yutan eleman:

R de tanımlı Δ işlemi

$$x \Delta y = x + y + 4xy$$

biçiminde tanımlanıyor.

İşlemin değişme özelliği olduğundan, sadece tek br taraftan yutan eleman bakılması yeterlidir.

🚅 Çözüm

$$x \Delta y = y$$

$$x + y + 4xy = y$$

$$x + 4xy = 0$$

$$x(1 + 4y) = 0$$

$$x = 0 \text{ veya } 1 + 4y = 0 \text{ dir.}$$

$$1 + 4y = 0 \implies y = -\frac{1}{4} \text{ tür.}$$

$$\Delta \text{ işleminin yutan elemanı} - \frac{1}{4} \text{ tür.}$$

İkili işlemler matematiksel ifadelerle gösterilebildiği gibi matris formatında tablo şeklinde de gösterilebilir. Matris özelliklerine bakarak da işlem hakkında bilgi edinilebilir.

7) A={a, b, c, e} kümesi üzerinde tanımlanan ● işleminin tablosu verilmiştir.

•	е	a	b	С
е	е	а	b	С
a	а	b	С	е
b	b	С	е	а
С	С	е	а	b

- a) Kapalı mıdır?
- b) Birim eleman?
- c) Ters eleman?
- d) Değişme özelliği var mı?
- e) Yutan eleman?

a) Bir işlem çizelgesinde sonuçları gösteren kısımda boş yer yoksa ve elemanlardan her biri işlemin tanımlandığı kümenin elemanı ise; bu küme ilgili işleme göre kapalıdır denir.

Bu tanıma göre A kümesi ● işlemine göre kapalıdır.

•	е	a	b	С
е	е	a	b	С
a	а	b	С	е
b	b	С	е	а
С	С	е	a	b

b) Tabloda birim elemanı bulmak için tanım satırı ve tanım sütunu matriste aynen seçilir, kesişimleri birim elemandır. (e=birim)

•	е	а	b	С -	
е	е	а	b	C	\
а	а	b	С	Ф	
b	b	С	е	а	
C,	▲ C	е	а	b	
\mathcal{T}	J				

•	е	а	b	С
е	е	а	b	С
a	а	b	С	е
b	b	С	е	а
С	С	е	а	b

•	е	а	b	C 🛕
е	е	а	b	С
a	а	b	C	e
b	b	С	е	а
С	С	е	а	b

•	е	a_	b	С	
е	е	а	b	С	
а	а	b	С	е	
b	b	С	е	а	
C -	C	е	а	b	

c) Ters elemanı bulmak için e=birim elemanı bulduktan sonra; her elemanın birim eleman sonucu veren ikilisi tespit edilir.

•	е	а	b	С
е	е	а	b	С
а	а	b	С	е
b -	b	С	►e l	а
С	С	е	а	b

•	е	а	b	С
е	е	a	b	С
a	а	b	С	е
b	b	С	е	а
С	С	е	а	b

d) Sonuç tablosu verileri; işlemden geçen köşegene göre simetrik ise işlemin değişme özelliği vardır.

•	е	а	b	С
е	Φ	,a	· b	С
а	a	Š	,e´	_e
b	b	Ç'	Ò.	,a
С	C ´	e	a,	р

*	1	2	3
1	1	1	1
2	1	2	3
3	1	3	2

e) Sonuç tablosu verilerinde; yutan eleman hangi elemanlar işleme girerse girsin, sonuç hep kendisine eşit olan elemandır. Bunun için, sonuçlar kısmında aynı elemandan oluşan satır ve sütun belirlenir. Bulunan değer, yutan elemandır.

Yukarıdaki tablo A={1, 2, 3} kümesinde tanımlanan * işlemine göre:

- 1) Birim (etkisiz) eleman = 2'dir.
- 2) Yutan eleman = 1'dir.

Görüşmek üzere

