INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYON

Département du Premier Cycle - SCAN - First

IE 2 MTES - Duration 1h30

Warnings and advices

- Documents, dictionaries, phones, and calculators are FORBIDDEN.
- The marking scheme is only given as an indication.

EXERCISE 1 (4 pts)

No justifications required!

Consider the following maps f_1 and f_2 defined below from \mathbb{R}^2 to \mathbb{R} by:

$$-f_1:(x,y)\mapsto x-|y|$$

$$-f_2:(x,y)\mapsto arctan(\sqrt{x^2+y^2})$$

- 1. For f_1 , draw the graphs of:
 - (a) The partial map with respect to x at the points (0,0).
 - (b) The partial maps with respect to y at the points (-1,0), (0,0) and (1,0). (On the same picture)
 - (c) The map f_1 from \mathbb{R}^2 to \mathbb{R} .
- 2. For f_2 , draw the graphs of:
 - (a) The partial map with respect to x at the points (0,0).
 - (b) The partial map with respect to y at the points (0,0).
 - (c) The map f_2 from \mathbb{R}^2 to \mathbb{R} .

EXERCISE 2 (4 pts)

We consider the differential form $\omega = \frac{yz + xy + 1}{z + x} dx + x dy + \frac{1}{x + z} dz$ on $D = \{(x, y, z) \in \mathbb{R}^3 | x > 0, y > 0, z > 0\}.$

- 1. Show that the differential form ω is a closed form on D.
- 2. Is it an exact form on D? If yes, give a function f defined on D such that $df = \omega$.

EXERCISE 3 (5 pts)

The capacitance C of a spherical capacitor is given by the formula $C = k \left(\frac{1}{R_1} - \frac{1}{R_2}\right)^{-1}$ where k is a positive constant in $F.m^{-1}$ that depends on the capacitor and R_1 and R_2 are the radii with $R_1 < R_2$.

- 1. Over time, the values of k, R_1 and R_2 are modified of δk , δR_1 and δR_2 . Express the variation δC with respect to the variations δk , δR_1 and δR_2 . $\mathbf{N.A.}: k = 1F.m^{-1}, R_1 = 1m, R_2 = 2m, \delta k = 10^{-3}F.m^{-1}, \delta R_2 = 4\delta R_1$
- 2. The manufacturer can give the values of k, R_1 and R_2 with uncertainties of Δk , ΔR_1 and ΔR_2 .

Express the uncertainty ΔC with respect to the uncertainties Δk , ΔR_1 and ΔR_2 .

N.A.: $k = 1F.m^{-1}$, $R_1 = 1m$, $R_2 = 2m$, $\Delta k = 10^{-3}F.m^{-1}$, $\Delta R_2 = \Delta R_1 = 10^{-3}m$.

EXERCISE 4 (7 pts) No justifications are required in this exercise except for the last 2 questions!

- 1. (a) Recall the expression of the cartesian coordinates x, y, z with respect to the spherical coordinates r, θ, φ .
 - (b) Recall the expression of the vectors $\overrightarrow{e_r}$, $\overrightarrow{e_\theta}$ and $\overrightarrow{e_\varphi}$ of the local spherical frame with respect to the cartesian vectors \overrightarrow{i} , \overrightarrow{j} and \overrightarrow{k} .
 - (c) Recall the expression of the position vector \overrightarrow{OM} in the spherical frame with spherical coordinates.
- 2. Consider the following parametric curve in spherical coordinates:

$$\begin{cases} r(t) &= (2-t)\sqrt{2} \\ \theta(t) &= \frac{\pi}{4} & t \in [0,2] \\ \varphi(t) &= 2\pi t \end{cases}$$

It represents the trajectory of a point M(t).

- (a) On what surface is this trajectory?
- (b) Give a representation of the trajectory of M(t). Place the points for t = 0, t = 1 and t = 2.
- (c) Give the expression of $\overrightarrow{e_r}(t)$ on this parametric curve.
- (d) Show that on this parametric curve $\frac{d\overrightarrow{e_r}(t)}{dt} = \sqrt{2}\pi\overrightarrow{e_\varphi}$.
- (e) Compute the velocity $\overrightarrow{v}(t) = \overrightarrow{OM}'(t)$ in the spherical frame.