Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний

інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1.

Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант 32

Виконав студент	<u>111-13, Черкасов Станіслав Олексійович</u>
	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Основи програмування – 1. Алгоритми та структури даних

Лабораторна робота 4

Дослідження арифметичних циклічних алгоритмів

Мета — дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 32

32. Для заданого дійсного х і натурального п обчислити

$$y = \frac{1}{\sum_{i=0}^{n} \frac{1}{i^2} \sin x}$$
 для $x = 0,5$

Постановка задачі

Для обчислення заданої суми побудуємо цикл. Із кожною ітерацією циклу будемо додавати до змінної SUM певний вираз, який залежить від І (лічильник циклу) та дорівнює поточному елементу суми. Цикл повторюємо N разів.

Побудова математичної моделі

Ділення на нуль

У заданій сумі І є змінною-лічильником, початкове значення якої дорівнює 0. Проте у формулі І розташовано у знаменнику дробу. Отже, перший елемент суми є невизначеним.

Щоб уникнути цього, задамо I початкове значення 1

Таблиця змінних

Змінна	Тип	Ім'я	Призначення
Задане число X	Ціле	X	Початкове дане
Задане число N	Натуральне	N	Початкове дане
Лічильник циклу	Натуральне	I	Лічильник циклу
Шукана сума	Дійсне	SUM	Кінцеве дане

Обрахування

Нехай початкові значення SUM та І дорівнюють 0 та 1 відповідно.

Припустимо, що X задано в радіанах. Тоді із кожною ітерацією циклу змінюємо SUM наступним чином:

$$SUM += \sin(X) / (I * I);$$

Розв'язання

Програмні специфікації запишемо у формі псевдокоду та у вигляді блок-схеми.

Крок 1: визначимо основні дії

Крок 2: задамо початкові значення SUM

Крок 3: деталізуємо знаходження SUM

Псевдокод

Крок 1:

Крок 2:

Крок 3:

початок

введення X, N

задання SUM

знаходження SUM

виведення SUM

кінець

початок

введення X, N

SUM := 0

знаходження SUM

виведення SUM

кінець

початок

введення X, N

SUM := 0

повторити N разів

 $SUM += \sin(X) / (I * I)$

кінець циклу

виведення SUM

кінець

Блок-схема

Випробування алгоритму

Блок	Дія
	початок
1	введення X := 0.5, N := 2
2	SUM = 0
3	SUM := 0.479 0 + 0.479; 60 1 <= 2 == True
4	SUM := 0.599 0.479 + 0.12; 60 2 <= 2 == True
5	кінець циклу бо 3 <= 2 == False
9	виведення SUM
	кінець

Блок	Дія
	початок
1	введення X := 1, N := 3
2	SUM = 0
3	SUM := 0.841 0 + 0.841; бо 1 <= 3 == True
4	SUM := 1.051 0.841 + 0.21; 60 2 <= 3 == True
	SUM := 1.145 1.051 + 0.093; бо 3 <= 3 == True
5	кінець циклу бо 4 <= 3 == False
9	виведення SUM
	кінець

Висновок

Під час виконання цієї лабораторної роботи я вдосконалив навички написання математичної моделі, праці з блок схемами та випробування алгоритму. Дослідити особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій.