

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name: Chenh UB Pe	(A.O	Zou Ni	w.	er:		\$,	Instru	ctions:	9	
5 0 0 1 1 2 2 3 3 4 4 6 6 7 7 8 8 9 9	1 1						elect You i	ronic de may use full cre	evices are i one sheet	each problem
1	2		3		4	5	6	7	TOTAL	GRADE

20	9	10	18	16	5	6		10	92	A-
1	2	3	4	5	6	7	PIAZZA	HILL	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.
- a) We Span (V1, V2, V3)

$$\begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 2 & -3 & 0 & b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 2 \\ 2 & -3 & 0 & b \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 3 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & -3 & -6 & b \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 3 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & -3 & -6 & b \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 0 & 3 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 2 \end{bmatrix}$$

==== 2 b=-6 so that the matrix is consistant and has solution that makes We Span (V, 16, 16)

b)
$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 2 & -3 & 0 & 0 \end{bmatrix}$$

so that there are other softens other that $X_1=X_2=X_3=0$

- {V1, V2, V3} is linearly dependent.

2. (10 points) Consider the following matrix:

$$A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{array} \right]$$

Compute A^{-1} .

$$\begin{vmatrix}
1 & - & 2 & 100 & 0 \\
1 & 0 & 1 & 0 & 10 & 0 \\
0 & 2 & - & 0 & 0 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 1 & -1 & 0 & 0 \\
0 & 2 & -1 & 0 & 0 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 & 0 \\
0 & 2 & -1 & 0 & 0 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 2 & -1 & 0 & 0 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & -7 & 1
\end{vmatrix}$$

$$(-1)^{2}\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 2 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -2 & 3 & -1 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 2 & -2 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} A & A & A \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{array} \right]$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{2} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -1 \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} & C_{4} \\ C_{3} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} & C_{4} \\ C_{3} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} & C_{4} \\ C_{3} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} & C_{4} \\ C_{3} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} & C_{4} \\ C_{3} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} & C_{4} \\ C_{3} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} & C_{4} \\ C_{3} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} & C_{4} \\ C_{3} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{4} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{7} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{7} \end{bmatrix}$$

$$A^{T} C = B$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{7} \end{bmatrix}$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{7} \end{bmatrix}$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{1} & C_{2} & C_{3} \end{bmatrix}$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{1} & C_{2} & C_{3} \end{bmatrix}$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{1} & C_{2} & C_{3} \end{bmatrix}$$

$$\mathcal{E} t \quad C = \begin{bmatrix} C_{1} & C_$$

Simpler:
$$C = (A^T)^{-1}B = (A^{-1})^T \cdot B$$

Then use A^{-1} from problem 2.

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.
- a) the standard matrix of T

b)
$$T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix} \mathcal{U} = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$$

and is no u

$$U = \begin{bmatrix} 7 \\ 3 \end{bmatrix} + \begin{bmatrix} 9 \\ 1 \end{bmatrix} U_3$$

$$u = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b) $A = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 4 & 4 \\ 0 & 2 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0$$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 2 & 4 & 4 \\ 0 & 2 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 1 &$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

True Waspan (u,v)
thon waspan Nul(u,v)?

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

- **7.** (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True.

$$UG Span (V_1 W) \qquad U=C_1V+C_2W \checkmark$$
 $T(u) = AN$
 $T(v) = AV$
 $T(W)=AW$
 $Au = C_1Av + C_2Aw$. \checkmark