Deep Learning with torch:: CHEAT SHEET

torch is based on Pytorch, a framework popular among deep learning researchers.

torch's GPU acceleration allows to implement fast machine learning algorithms using its convenient interface, as well as a vast range of use cases, not only for deep learning, according to Its flexibility and its low level API.

It is part of an ecosystem of packages to interface with specific dataset like torchaudio for timeseries-like and torchvision for image-like data.

https://torch.mlverse.org/

https://mlverse.shinyapps.io/torch-tour/

INSTALLATION

The torch R package uses the C++ libtorch library. You can install the prerequisites directly from R.

https://torch.mlverse.org/docs/articles/installation.html

```
install.packages("torch")
library(torch)
                          See ?install_torch for
install_torch()
                           GPU instructions
```

Working with torch models

DEFINE A NN MODULE dense ← nn_module("no_biais_dense_layer", initialize = function(in_f, out_f) { self\$w ← nn_parameter(torch_randn(in_f, out_f)) forward = function(x) { torch_mm(x, self\$w) Create a nn module names no_biais_dense_layer

ASSEMBLE MODULES INTO NETWORK

 $model \leftarrow dense(4, 3)$ Instantiate a network from a single module

model ← nn_sequential(dense(4,3), nn_relu(), nn_dropout(0.4), dense(3,1), nn_sigmoid()) Instantiate a sequential network with multiple layers

MODEL FIT

model\$train() Turns on gradient update with_enable_grad({ y_pred ← model(trainset) loss \leftarrow (y_pred - y)\$pow(2)\$mean() loss\$backward() Detailed training loop step (alternative)

EVALUATE A MODEL

model\$eval() with_no_grad({ model(validationset) Perform forward operation with no gradient update

OPTIMIZATION

optim_sgd() Stochastic gradient descent optimiser

optim_adam() ADAM optimiser

CLASSIFICATION LOSS FUNCTION

nn_cross_entropy_loss() nn_bce_loss() nn_bce_with_logits_loss() (Binary) cross-entropy losses nn_nll_loss() Negative log-likelihood loss nn_margin_ranking_loss() nn_hinge_embedding_loss() nn_multi_margin_loss() nn_multilabel_margin_loss() (Multiclass) (multi label) hinge losses

REGRESSION LOSS FUNCTION

nn_l1_loss() L1 loss nn_mse_loss() MSE loss nn_ctc_loss() Connectionist Temporal Classification loss nn_cosine_embedding_loss() Cosine embedding loss nn_kl_div_loss() Kullback-Leibler divergence loss nn_poisson_nll_loss() Poisson NLL loss

OTHER MODEL OPERATIONS

summary() Print a summary of a torch model

torch_save(); torch_load() Save/Load models to files

load_state_dict() Load a model saved in python

Neural-network layers

CORE LAYERS nn_linear() Add a linear transformation NN layer to an input nn_bilinear() to two inputs nn_sigmoid(), nn_relu() Apply an activation function to an nn_dropout() nn_dropout2d() nn_dropout3d() Applies Dropout to the input nn_batch_norm1d() nn_batch_norm2d() nn_batch_norm3d() Applies batch normalisation to the

CONVOLUTIONAL LAYERS

weights

nn_conv_transpose3d() Transposed 3D (deconvolution) nn_conv3d() 3D, e.g. spatial convolution over volumes

nnf_pad() Zero-padding layer

nn_adaptive_avg_pool1d() nn_adaptive_avg_pool2d() nn_adaptive_avg_pool3d() Adaptive average pooling RECURRENT LAYERS nn_rnn() Fully-connected RNN where the output is to be fed back to input nn_gru() Gated recurrent unit - Cho et al nn_lstm() Long-Short Term Memory unit -Hochreiter 1997

Adaptive maximum pooling

CC BY SA Christophe Regouby • torch 0.4.0 • Updated: 2021-06

Tensor manipulation

TENSOR CREATION

tt <- torch_rand(4,3,2) uniform distrib.

 $tt \leftarrow torch_randn(4,3,2)$ unit normal distrib. $tt \leftarrow torch_randint(1,7,c(4,3,2))$ uniform integers within [1,7)

Create a random values tensor with shape

 $tt \leftarrow torch_ones(4,3,2)$ torch_ones_like(a)

Create a tensor full of 1 with given shape, or with the same shape as 'a'. Also torch_zeros, torch_full, torch_arange,...

tt\$ndim tt\$dtype tt\$shape [1] 3 [1] 4 3 2 torch_Float tt\$requires_grad tt\$device

[1] FALSE torch_device(type='cpu') Get 't' tensor shape and attributes

tt\$stride() [1] 6 2 1

jump needed to go from one element to the next In each

dimension

 $tt \leftarrow torch_tensor(a,$ dtype=torch_float(), device= " cuda ") Copy the R array 'a' into a tensor of float on the

a ← as.matrix(tt\$to(device="cpu ")

TENSOR SLICING

tt[1:2, -2:-1,]

Slice a 3D tensor tt[5:N, -2:-1, ..] Slice a 3D or more tensor, N for last

tt[1:2, -2:-1, 1:1] Slice a 3D and keep the unitary dim.

tt[1:2, -2:-1, 1] Slice by default remove unitary dim.

tt[tt > 3.1]

Boolean filtering (flattened result)

TENSOR VALUES OPERATIONS

Operations with two tensors

\$pow(2), \$log(), \$exp(), \$abs(), \$floor(), \$round(), \$cos(), \$fmod(3), \$fmax(1), \$fmin(3) Element-wise operations on a tensor

\$eq(), \$ge(), \$le() Element-wise comparison

\$to(dtype = torch_long()) Mutate values type

\$sum(dim=1), \$mean(), \$max() Aggregation functions on a single tensor \$amax()

torch_repeat_interleave() Repeats the input n times

TENSOR SHAPE OPERATIONS

tt\$unsqueeze(1) torch_unsqueeze(t,1)

Add a unitary dimension to tensor "tt" as first dimension

torch_squeeze(t,1)

Remove first unitary dimension to

(tentatively) without with copy or

torch_movedim(c(1,2))

torch_movedim(c(1,2,3), c(3,1,2)) move dim 1 to dim 3, dim 2 to 1, dim 3 to 2 torch_permute(c(3,1,2)) Only provide the target dimension order

flip values along dim 1 torch_flip(1)

torch_flip(2)

torch_flip(c(1,2))

torch_stack()

torch_cat()

Stack of tensors

Assemble tensors

torch_split(2)

torch_split(c(1,3,1))

split tensor in sections of size 2

split tensor into explicit sizes

both dims

tt\$squeeze(1)

tensor "tt"

\$view() torch_reshape() Change the tensor shape,

torch_transpose()

switch dimension 1 with 2

TENSOR CONCATENATION

Callbacks

A callback is a set of functions to be applied at given stages of the training procedure. You can use callbacks to get a view on internal states and statistics of the model during training.

torchvision t rchaudio torch

TRAINING AN IMAGE RECOGNIZER ON MNIST DATA 5041/

```
The "Hello, World!" of
   deep learning
```

Pre-trained models

Torch applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

input layer: use MNIST images library(torchvision) train_ds ← mnist_dataset(root = " ~/.cache", download = TRUE, transform = torchvision::transform_to_tensor test_ds ← mnist_dataset(root = " ~/.cache", train = FALSE, transform = torchvision::transform_to_tensor train_dl ← dataloader(train_ds, batch_size = 32, shuffle = TRUE) test_dl <- dataloader(test_ds, batch_size = 32) # defining the model and layers net ← nn module("Net", initialize = function() { self\$fc1 \leftarrow nn_linear(784, 128) self\$fc2 \leftarrow nn_linear(128, 10) forward = function(x) { x %>% torch_flatten(start_dim = 2) %>% self\$fc1() %>% nnf_relu() %>% nnf_log_softmax(dim = 1) self\$fc2() %>% $model \leftarrow net()$ # define loss and optimizer optimizer ← optim_sgd(model\$parameters, lr = 0.01) # train (fit) for (epoch in 1:10) { train_losses \leftarrow c() test_losses \leftarrow c() for (b in enumerate(train_dl)) { optimizer\$zero_grad() output \leftarrow model(b[[1]]\$to(device = device)) loss ← nnf_nll_loss(output, b[[2]]\$to(device = device)) loss\$backward() optimizer\$step() train_losses ← c(train_losses, loss\$item()) for (b in enumerate(test_dl)) { model\$eval() output ← model(b[[1]]\$to(device = device)) loss ← nnf_nll_loss(output, b[[2]]\$to(device = device)) test_losses ← c(test_losses, loss\$item()) model\$train()