AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (original): A compound represented by the formula (I):

wherein

X is an oxygen atom or a sulfur atom;

C* and C** are each independently an asymmetric carbon;

R¹ and R² are

the same or different and each is a lower alkyl group optionally having substituent(s), an aralkyl group optionally having substituent(s) or an aryl group optionally having substituent(s), or R¹ and R² optionally form, together with the nitrogen atom they are bonded to, an aliphatic heterocycle optionally having substituent(s) (the aliphatic heterocycle is optionally condensed with an aromatic hydrocarbon);

R³ is

Yoshiji TAKEMOTO Atty. Dkt.: Q91454

Preliminary Amendment

Page 3

a lower alkyl group optionally having substituent(s), an aralkyl group optionally having substituent(s), an aryl group optionally having substituent(s) or a heteroaryl group optionally having substituent(s);

R⁴ and R⁵ are

the same or different and each is a lower alkyl group optionally having substituent(s), an aralkyl group optionally having substituent(s) or an aryl group optionally having substituent(s), or R⁴ and R⁵ optionally form, together with the asymmetric carbons they are respectively bonded to, a homocyclic ring optionally having substituent(s) or a heterocycle optionally having substituent(s); and

R⁶ and R⁷ are

the same or different and each is a hydrogen atom or a lower alkyl group optionally having substituent(s),

or a salt thereof.

- 2. (original): The compound of claim 1, wherein X is a sulfur atom, or a salt thereof.
- 3. (currently amended): The compound of claim 1-or 2, wherein R⁴ and R⁵ form, together with the asymmetric carbons they are respectively bonded to, cyclopropane, cyclobutane, cyclopentane or cyclohexane, or a salt thereof.

- Page 4
- 4. (original): The compound of claim 3, wherein R⁴ and R⁵ form cyclohexane together with the asymmetric carbons they are respectively bonded to, and R⁶ and R⁷ are each a hydrogen atom, or a salt thereof.
- 5. (original): The compound of claim 4, wherein the absolute configurations of C* and C** are both S-configurations or both R-configurations, or a salt thereof.
- 6. (currently amended): A method of producing a compound represented by the formula (IV):

$$\begin{array}{c|c}
R^8 \\
Nu \\
C^{****} \\
R^{10}
\end{array}$$
EWG (IV)

wherein

C*** is an asymmetric carbon;

 R^8 , R^9 and R^{10} are

the same or different and each is a hydrogen atom, a lower alkyl group optionally having substituent(s), an aralkyl group optionally having substituent(s), an aryl group optionally having substituent(s), a hetero atom optionally having substituent(s) or an electron withdrawing group, or R⁹ and R¹⁰ optionally form, together with the carbon atoms they are respectively bonded to, a homocyclic ring optionally having substituent(s) or a heterocycle optionally having substituent(s), provided that R⁸ and R⁹ are not the same groups;

EWG is

an electron withdrawing group selected from a nitro group, a cyano group, - COR^{11} , - SO_2R^{12} , - $COOR^{13}$ and - $PO(OR^{14})(OR^{15})$

wherein

R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ are the same or different and each is a hydrogen atom, a lower alkyl group optionally having substituent(s), an aralkyl group optionally having substituent(s) or a heteroaryl group optionally having substituent(s), or R¹¹ and R⁸, or R¹¹ and R¹⁰, optionally form, together with the carbon atom(s) they are respectively bonded to, a homocyclic ring having an electron withdrawing group and optionally having substituent(s); and

Nu is

$$-CR^{16}(COR^{17})(COR^{18}), -OR^{19}, -SR^{20}, -NR^{21}R^{22}, -C(NO_2)R^{23}R^{24}$$

wherein

R¹⁶ is a hydrogen atom, a halogen atom, a hetero atom having substituent(s), a lower alkyl group optionally having substituent(s) or an aryl group optionally having substituent(s);

R¹⁷ and R¹⁸ are the same or different and each is a hydrogen atom, a lower alkyl group, a lower alkoxy group, a mono-lower alkylamino group or a di-lower alkylamino group;

Yoshiji TAKEMOTO Atty. Dkt.: Q91454

Preliminary Amendment

Page 6

R¹⁶ and R¹⁷ optionally form, together with the carbon atoms they are respectively bonded to, a homocyclic ring optionally having substituent(s) or a heterocycle optionally having substituent(s) (the homocyclic ring and heterocycle are optionally condensed with an aromatic hydrocarbon); and R¹⁹, R²⁰, R²¹, R²², R²³ and R²⁴ are the same or different and each is a hydrogen atom, a lower alkyl group optionally having substituent(s), an aralkyl group optionally having substituent(s), an aryl group optionally having substituent(s) or a heteroaryl group optionally having substituent(s), or R²¹ and R²² optionally form, together with the nitrogen atom they are bonded to, an aliphatic heterocycle optionally having substituent(s), or

an azido group,

or a salt thereof, which comprises conjugately adding a nucleophilic reagent represented by the formula (III): H-Nu (III) wherein Nu is as defined above, to a compound represented by the formula (II):

$$R^9$$
 EWG (II)

wherein each symbol is as defined above, or a salt thereof, in the presence of a compound represented by the formula (I):

Page 7

$$\begin{array}{c|c}
R^3 & X & R^6 & R^4 \\
N & C^* & R^5 \\
N & R^7 & R^7
\end{array}$$

$$\begin{array}{c|c}
R^1 & R^2
\end{array}$$

wherein

X is an oxygen atom or a sulfur atom;

C* and C** are each independently an asymmetric carbon;

R¹ and R² are

the same or different and each is a lower alkyl group optionally having substituent(s), an aralkyl group optionally having substituent(s) or an aryl group optionally having substituent(s), or R¹ and R² optionally form, together with the nitrogen atom they are bonded to, an aliphatic heterocycle optionally having substituent(s) (the aliphatic heterocycle is optionally condensed with an aromatic hydrocarbon);

R^3 is

a lower alkyl group optionally having substituent(s), an aralkyl group optionally having substituent(s), an aryl group optionally having substituent(s) or a heteroaryl group optionally having substituent(s);

R⁴ and R⁵ are

the same or different and each is a lower alkyl group optionally having substituent(s), an aralkyl group optionally having substituent(s) or an aryl group optionally having

Page 8

substituent(s), or R⁴ and R⁵ optionally form, together with the asymmetric carbons they are respectively bonded to, a homocyclic ring optionally having substituent(s) or a heterocycle optionally having substituent(s); and

R⁶ and R⁷ are

the same or different and each is a hydrogen atom or a lower alkyl group optionally having substituent(s),

or a salt thereofor a salt thereof of any of claims 1 to 5.

7. (original): The method of claim 6, wherein Nu is $-CR^{16}(COR^{17})(COR^{18})$, $-OR^{19}$, $-SR^{20}$, $-NR^{21}R^{22}$, $-C(NO_2)R^{23}R^{24}$ wherein

R¹⁶ is a hydrogen atom, a halogen atom, a lower alkyl group optionally having substituent(s) or an aryl group optionally having substituent(s);

R¹⁷ and R¹⁸ are the same or different and each is a hydrogen atom, a lower alkyl group, a lower alkoxy group, a mono-lower alkylamino group or a di-lower alkylamino group; R¹⁹, R²⁰, R²¹, R²², R²³ and R²⁴ are the same or different and each is a hydrogen atom, a lower alkyl group optionally having substituent(s), an aralkyl group optionally having substituent(s) or a heteroaryl group optionally having substituent(s) or a heteroaryl group optionally having substituent(s), or R²¹ and R²² optionally form, together with the nitrogen atom they are bonded to, an aliphatic heterocycle optionally having substituent(s), or

an azido group.

- 8. (currently amended): The method of claim 6-or 7, wherein the electron withdrawing group for EWG is a nitro group.
- 9. (currently amended): The method of any of claims 6 to 8claim 6, wherein R⁸ and R¹⁰ are each a hydrogen atom, and R⁹ is a lower alkyl group optionally having substituent(s), an aryl group optionally having substituent(s) or a heteroaryl group optionally having substituent(s).
- 10. (currently amended): The method of any of claims 6 to 9claim 6, wherein the nucleophilic reagent (III) is represented by HCR¹⁶(COR¹⁷)(COR¹⁸) wherein each symbol is as defined above in claim 6.
- 11. (original): The method of claim 10, wherein R¹⁶ is a hydrogen atom, a lower alkyl group optionally having substituent(s), a halogen atom or a hetero atom having substituent(s), and R¹⁷ and R¹⁸ are the same or different and each is a lower alkoxy group.
- 12. (original): The method of claim 11, wherein R¹⁶ is a hydrogen atom, methyl, a chlorine atom, methoxy or tert-butoxycarbonylamino, and R¹⁷ and R¹⁸ are each methoxy or ethoxy.
- 13. (original): The method of claim 10, wherein R¹⁶ and R¹⁷ optionally form, together with the carbon atoms they are respectively bonded to, a homocyclic ring optionally having substituent(s) (the homocyclic ring is optionally condensed with an aromatic hydrocarbon).

- 14. (original): The method of claim 13, wherein the homocyclic ring is 1,2,3,4-tetrahydronaphthalen-1-one.
- 15. (currently amended): The method of any of claims 6 to 14claim 6, which is performed in at least one solvent selected from toluene and methylene chloride.
- 16. (currently amended): The method of any of claims 6 to 14claim 6, which is performed without a solvent.