

3.3 V Slew Rate Limited, Half- and Full-Duplex, RS-485/RS-422 Transceivers

Data Sheet

ADM3483/ADM3485/ADM3488/ADM3490/ADM3491

FEATURES

Operate with 3.3 V supply Interoperable with 5 V logic EIA RS-422 and RS-485 compliant over full common-mode range Data rate options ADM3483/ADM3488: 250 kbps

ADM3485/ADM3490/ADM3491: 10 Mbps

Half- and full-duplex options

Reduced slew rates for low EMI (ADM3483 and ADM3488)

2 nA supply current in shutdown mode

(ADM3483/ADM3485/ADM3491)

Up to 32 transceivers on the bus

-7 V to +12 V bus common-mode range

Specified over the -40°C to $+85^{\circ}\text{C}$ temperature range

8 ns skew (ADM3485/ADM3490/ADM3491)

8-lead SOIC and 14-lead SOIC (ADM3491 only) packages

APPLICATIONS

Low power RS-485/RS-422 applications Telecom Industrial process control HVAC

GENERAL DESCRIPTION

The ADM3483/ADM3485/ADM3488/ADM3490/ADM3491 are low power, differential line transceivers designed to operate using a single 3.3 V power supply. Low power consumption, coupled with a shutdown mode, makes the ADM3483/ADM3485/ADM3488/ADM3490/ADM3491 ideal for power-sensitive applications.

The ADM3488/ADM3490/ADM3491 feature full-duplex communication, while the ADM3483/ADM3485 are designed for half-duplex communication.

The ADM3483/ADM3488 feature slew rate limited drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission at data rates up to 250 kbps.

The ADM3485/ADM3490/ADM3491 transmit at up to 10 Mbps. The receiver input impedance is $12 \, \mathrm{k}\Omega$, allowing up to 32 transceivers to be connected on the bus. A thermal shutdown circuit prevents excessive power dissipation caused by bus contention or by output shorting. If a significant temperature increase is detected

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

Figure 2.

Figure 3.

in the internal driver circuitry during fault conditions, then the thermal shutdown circuit forces the driver output into a high impedance state. If the inputs are unconnected (floating), the receiver contains a fail-safe feature that results in a logic high output state. The parts are fully specified over the commercial and industrial temperature ranges. The ADM3483/ADM3485/ADM3489/ADM3490 are available in 8-lead SOIC_N; the ADM3491 is available in a 14-lead SOIC_N.

TABLE OF CONTENTS		
Features	Switching Characteristics	13
Applications1	Circuit Description	14
General Description	Devices with Receiver/Driver Enables	
Functional Block Diagrams	(ADM3483/ADM3485/ADM3491)	14
Revision History	Devices Without Receiver/Driver Enables— ADM3488/ADM3490	14
Specifications	Reduced EMI and Reflections (ADM3483/AI)M3488) 14
Timing Specifications—ADM3485/ADM3490/ADM3491 5	Low Power Shutdown Mode	1113 100) 1
Timing Specifications—ADM3483/ADM34885	(ADM3483/ADM3485/ADM3491)	
Timing Specifications—	Driver Output Protection	
ADM3483/ADM3485/ADM3488/ADM3490/ADM3491 6	Propagation Delay	
Absolute Maximum Ratings	Typical Applications	
ESD Caution	••	
Pin Configurations and Function Descriptions	Line Length vs. Data Rate	
Typical Performance Characteristics9	Outline Dimensions	
Test Circuits	Ordering Guide	18
REVISION HISTORY		
11/11—Rev. D to Rev. E		
Changes to Digital I/O Voltage (DE, RE, DI) Parameter,		
Table 6	10/06—Rev. A to Rev. B	
Moved Typical Performance Characteristics Section9	Updated Format	
Moved Test Circuits Section	Added ADM3491	
Moved Switching Characteristics Section	Changes to Specifications Section	
Changes to Note 1, Table 814	Changes to Typical Applications Section	14
Changes to Outline Dimensions		
	7/06—Rev. 0 to Rev. A	
12/10—Rev. C to Rev. D	Changes to Applications	
Changes to Figure 3315	Changes to General Description	
-	Changes to Figure 19	10
8/10—Rev. B to Rev. C	Changes to Typical Applications Section	
Changes to Table 2, Driver Input Logic	Changes to Figure 31 and Figure 32	14
	Updated Outline Dimensions	15

Data Sheet

Table 1. ADM34xx Part Comparison

Part No.	Guaranteed Data Rate (Mbps)	Supply Voltage (V)	Half-/Full- Duplex	Slew Rate Limited	Driver/Receiver Enable	Shutdown Current (nA)	Pin Count
ADM3483	0.25	3.0 to 3.6	Half	Yes	Yes	2	8
ADM3485	10	3.0 to 3.6	Half	No	Yes	2	8
ADM3488	0.25	3.0 to 3.6	Full	Yes	No	N/A	8
ADM3490	10	3.0 to 3.6	Full	No	No	N/A	8
ADM3491	10	3.0 to 3.6	Full	No	Yes	2	14

SPECIFICATIONS

 V_{CC} = 3.3 V \pm 0.3 V, T_{A} = T_{MIN} to $T_{\text{MAX}},$ unless otherwise noted.

Table 2.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
DRIVER					
Differential Output Voltage (VoD)	2.0			V	$R_L = 100 \Omega$ (RS-422), $V_{CC} = 3.3 V \pm 5\%$ (see Figure 17)
	1.5			V	$R_L = 54 \Omega$ (RS-485) (see Figure 17)
	1.5			V	$R_L = 60 \Omega$ (RS-485), $V_{CC} = 3.3 V$ (see Figure 18)
Δ V _{OD} for Complementary Output States ¹			0.2	V	$R_L = 54 \Omega$ or 100 Ω (see Figure 17)
Common-Mode Output Voltage (Voc)			3	V	$R_L = 54 \Omega$ or 100 Ω (see Figure 17)
$\Delta V_{OC} $ for Common-Mode Output Voltage ¹			0.2	V	$R_L = 54 \Omega$ or 100 Ω (see Figure 17)
DRIVER INPUT LOGIC					
CMOS Input Logic Threshold Low (V _{IL})			8.0	V	DE, DI, RE
CMOS Input Logic Threshold High (V _H)	2.0			V	DE, DI, RE
CMOS Logic Input Current (I _{IN1})			±2	μΑ	DE, DI, RE
Input Current—A, B (I _{IN2})			1.0	mA	$V_{IN} = 12 \text{ V}, DE = 0 \text{ V}, V_{CC} = 0 \text{ V or } 3.6 \text{ V}$
			-0.8	mA	$V_{IN} = -7 \text{ V}$, DE = 0 V, $V_{CC} = 0 \text{ V}$ or 3.6 V
Output Leakage—Y, Z (I ₀)		0.1		μΑ	$V_{IN} = 12 \text{ V}, DE = 0 \text{ V}, \overline{RE} = 0 \text{ V}, V_{CC} = 0 \text{ V or } 3.6 \text{ V},$
				-	ADM3491 only
		-0.1		μΑ	$V_{IN} = -7 \text{ V}$, DE = 0 V, $\overline{RE} = 0 \text{ V}$, $V_{CC} = 0 \text{ V}$ or 3.6 V,
					ADM3491 only
Output Leakage (Y, Z) in Shutdown Mode (Io)		0.01		μΑ	$V_{IN} = 12 \text{ V}, DE = 0 \text{ V}, \overline{RE} = V_{CC}, V_{CC} = 0 \text{ V or } 3.6 \text{ V},$
					ADM3491 only
		-0.01		μΑ	$V_{IN} = -7 \text{ V}$, DE = 0 V, $\overline{RE} = V_{CC}$, $V_{CC} = 0 \text{ V}$ or 3.6 V,
					ADM3491 only
RECEIVER					
Differential Input Threshold Voltage (V _{TH})	-0.2		+0.2	V	$-7 \text{ V} < \text{V}_{\text{CM}} < +12 \text{ V}$
Input Hysteresis (Δ V _{TH})		50		m۷	$V_{CM} = 0 V$
CMOS Output Voltage High (V _{OH})	V _{CC} – 0.4			V	$I_{OUT} = -1.5 \text{ mA}, V_{ID} = 200 \text{ mV} \text{ (see Figure 19)}$
CMOS Output Voltage Low (Vol.)			0.4	٧	$I_{\text{OUT}} = 2.5 \text{ mA}, V_{\text{ID}} = 200 \text{ mV} \text{ (see Figure 19)}$
Three-State Output Leakage Current (I _{OZR})			±1	μΑ	$V_{CC} = 3.6 \text{ V}, 0 \text{ V} \leq V_{OUT} \leq V_{CC}$
Input Resistance (R _{IN})	12			kΩ	$-7 \text{ V} < \text{V}_{\text{CM}} < +12 \text{ V}$
POWER SUPPLY CURRENT					
Supply Current (Icc)		1.1	2.2	mA	$DE = V_{CC}$, $\overline{RE} = 0 \text{ V or } V_{CC}$, no load, $DI = 0 \text{ V or } V_{CC}$
		0.95	1.9	mA	$DE = 0 \text{ V}, \overline{RE} = 0 \text{ V}, \text{ no load, DI} = 0 \text{ V or V}_{CC}$
Supply Current in Shutdown Mode (I _{SHDN})		0.002	1	μΑ	$DE = 0 \text{ V}, \overline{RE} = V_{CC}, DI = V_{CC} \text{ or } 0 \text{ V}$
Driver Short-Circuit Output Current (IoSD)			-250	mΑ	$V_{OUT} = -7 V$
			250	mΑ	V _{OUT} = 12 V
Receiver Short-Circuit Output Current (IosR)	±8		±60	mA	$0 \text{ V} < \text{V}_{RO} < \text{V}_{CC}$

 $^{^1\}Delta V_{\text{OD}}$ and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when DI input changes state.

TIMING SPECIFICATIONS—ADM3485/ADM3490/ADM3491

 V_{CC} = 3.3 V, T_A = 25°C, unless otherwise noted.

Table 3.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
DRIVER					
Differential Output Delay (t _{DD})	1	22	35	ns	$R_L = 60 \Omega$ (see Figure 20 and Figure 26)
Differential Output Transition Time (t_{TD})	3	8	25	ns	$R_L = 60 \Omega$ (see Figure 20 and Figure 26)
Propagation Delay, Low-to-High Level (t _{PLH})	7	22	35	ns	$R_L = 27 \Omega$ (see Figure 21 and Figure 27)
Propagation Delay, High-to-Low Level (t _{PHL})	7	22	35	ns	$R_L = 27 \Omega$ (see Figure 21 and Figure 27)
$ \mathbf{t}_{PLH} - \mathbf{t}_{PHL} $ Propagation Delay Skew ¹ (\mathbf{t}_{PDS})			8	ns	$R_L = 27 \Omega$ (see Figure 21 and Figure 27)
DRIVER OUTPUT ENABLE/DISABLE TIMES (ADM3485/ ADM3491 ONLY)					
Output Enable Time to Low Level (t _{PZL})		45	90	ns	$R_L = 110 \Omega$ (see Figure 23 and Figure 29)
Output Enable Time to High Level (t _{PZH})		45	90	ns	$R_L = 110 \Omega$ (see Figure 22 and Figure 28)
Output Disable Time from High Level (t _{PHZ})		40	80	ns	$R_L = 110 \Omega$ (see Figure 22 and Figure 28)
Output Disable Time from Low Level (t _{PLZ})		40	80	ns	$R_L = 110 \Omega$ (see Figure 23 and Figure 29)
Output Enable Time from Shutdown to Low Level (t _{PSL})		650	900	ns	$R_L = 110 \Omega$ (see Figure 23 and Figure 29)
Output Enable Time from Shutdown to High Level (t_{PSH})		650	900	ns	$R_L = 110 \Omega$ (see Figure 22 and Figure 28)

 $^{^{1}}$ Measured on $\left|t_{PLH}\left(Y\right)-t_{PHL}\left(Y\right)\right|$ and $\left|t_{PLH}\left(Z\right)-t_{PHL}\left(Z\right)\right|.$

TIMING SPECIFICATIONS—ADM3483/ADM3488

 V_{CC} = 3.3 V, T_A = 25°C, unless otherwise noted.

Table 4.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
DRIVER					
Differential Output Delay (t _{DD})	600	900	1400	ns	$R_L = 60 \Omega$ (see Figure 20 and Figure 26)
Differential Output Transition Time (t_{TD})	400	700	1200	ns	$R_L = 60 \Omega$ (see Figure 20 and Figure 26)
Propagation Delay, Low-to-High Level (t _{PLH})	700	1000	1500	ns	$R_L = 27 \Omega$ (see Figure 21 and Figure 27)
Propagation Delay, High-to-Low Level (t _{PHL})	700	1000	1500	ns	$R_L = 27 \Omega$ (see Figure 21 and Figure 27)
$ t_{PLH} - t_{PHL} $ Propagation Delay Skew ¹ (t_{PDS})		100		ns	$R_L = 27 \Omega$ (see Figure 21 and Figure 27)
DRIVER OUTPUT ENABLE/DISABLE TIMES (ADM3483 ONLY)					
Output Enable Time to Low Level (t _{PZL})		900	1300	ns	$R_L = 110 \Omega$ (see Figure 23 and Figure 29)
Output Enable Time to High Level (tpzh)		600	800	ns	$R_L = 110 \Omega$ (see Figure 22 and Figure 28)
Output Disable Time from High Level (tPHZ)		50	80	ns	$R_L = 110 \Omega$ (see Figure 22 and Figure 28)
Output Disable Time from Low Level (tplz)		50	80	ns	$R_L = 110 \Omega$ (see Figure 23 and Figure 29)
Output Enable Time from Shutdown to Low Level (t _{PSL})		1.9	2.7	μs	$R_L = 110 \Omega$ (see Figure 23 and Figure 29)
Output Enable Time from Shutdown to High Level (t_{PSH})		2.2	3.0	μs	$R_L = 110 \Omega$ (see Figure 22 and Figure 28)

 $^{^{1}}$ Measured on $\left|t_{PLH}\left(Y\right)-t_{PHL}\left(Y\right)\right|$ and $\left|t_{PLH}\left(Z\right)-t_{PHL}\left(Z\right)\right|.$

TIMING SPECIFICATIONS—ADM3483/ADM3485/ADM3488/ADM3490/ADM3491

 V_{CC} = 3.3 V, T_A = 25°C, unless otherwise noted.

Table 5.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
RECEIVER					
Time to Shutdown (t _{SHDN})					
ADM3483/ADM3485/ADM3491 ¹	80	190	300	ns	
Propagation Delay, Low-to-High Level (trplh)					
ADM3485/ADM3490/ADM3491	25	65	90	ns	$V_{ID} = 0 \text{ V to } 3.0 \text{ V}, C_L = 15 \text{ pF (see Figure 24 and Figure 30)}$
ADM3483/ADM3488	25	75	120	ns	
Propagation Delay, High-to-Low Level (trphl)					
ADM3485/ADM3490/ADM3491	25	65	90	ns	$V_{ID} = 0 \text{ V to } 3.0 \text{ V}, C_L = 15 \text{ pF (see Figure 24 and Figure 30)}$
ADM3483/ADM3488	25	75	120	ns	
tplh - tphl Propagation Delay Skew (trpds)					
ADM3485/ADM3490/ADM3491			10	ns	$V_{ID} = 0 \text{ V to } 3.0 \text{ V, } C_L = 15 \text{ pF (see Figure 24 and Figure 30)}$
ADM3483/ADM3488			20	ns	
RECEIVER OUTPUT ENABLE/DISABLE TIMES					
(ADM3483/ADM3485/ADM3491 ONLY)					
Output Enable Time to Low Level (tprzl)		25	50	ns	$C_L = 15 \text{ pF}$ (see Figure 25 and Figure 31)
Output Enable Time to High Level (tprzh)		25	50	ns	$C_L = 15 \text{ pF}$ (see Figure 25 and Figure 31)
Output Disable Time from High Level (tprhz)		25	45	ns	$C_L = 15 \text{ pF}$ (see Figure 25 and Figure 31)
Output Disable Time from Low Level (tprlz)		25	45	ns	$C_L = 15 \text{ pF}$ (see Figure 25 and Figure 31)
Output Enable Time from Shutdown to Low Level (t _{PRSL})		720	1400	ns	$C_L = 15 \text{ pF}$ (see Figure 25 and Figure 31)
Output Enable Time from Shutdown to High Level (t _{PRSH})		720	1400	ns	$C_L = 15 \text{ pF}$ (see Figure 25 and Figure 31)

 $^{^{1}}$ The transceivers are put into shutdown by bringing the $\overline{\text{RE}}$ high and DE low. If the inputs are in this state for less than 80 ns, the parts are guaranteed not to enter shutdown. If the parts are in this state for 300 ns or more, the parts are guaranteed to enter shutdown.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 6.

Parameter	Rating
V _{cc} to GND	7 V
Digital I/O Voltage (DE, RE, DI)	−0.3 V to +6 V
Digital I/O Voltage (RO)	$V_{CC} - 0.5 V$ to $V_{CC} + 0.5 V$
Driver Output/Receiver Input Voltage	−7.5 V to +12.5 V
Operating Temperature Range	−40°C to +85°C
Storage Temperature Range	−65°C to +125°C
θ_{JA} Thermal Impedance	
8-Lead SOIC	121°C/W
14-Lead SOIC	86°C/W
Lead Temperature	
Soldering (10 sec)	300°C
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 4. ADM3483/ADM3485 Pin Configuration

Figure 5. ADM3488/ADM3490 Pin Configuration

Figure 6. ADM3491 Pin Configuration

Table 7. Pin Function Descriptions

ADM2402/	ADM3488/	ADM3491		
ADM3483/ ADM3485 Pin No.	ADM3488/ ADM3490 Pin No.	Pin No.	Mnemonic	Description
1	2	2	RO	Receiver Output. When enabled, if A > B by 200 mV, then RO = high. If A < B by 200 mV, then RO = low.
2	Not applicable	3	RE	Receiver Output Enable. A low level enables the receiver output, RO. A high level places it in a high impedance state. If RE is high and DE is low, the device enters a low power shutdown mode.
3	Not applicable	4	DE	Driver Output Enable. A high level enables the driver differential Output A and Output B. A low level places it in a high impedance state. If RE is high and DE is low, the device enters a low power shutdown mode.
4	3	5	DI	Driver Input. With a half-duplex part when the driver is enabled, a logic low on DI forces A low and B high while a logic high on DI forces A high and B low. With a full-duplex part when the driver is enabled, a logic low on DI forces Y low and Z high while a logic high on DI forces Y high and Z low.
5	4	6, 7	GND	Ground.
Not applicable	5	9	Υ	Noninverting Driver Output.
Not applicable	6	10	Z	Inverting Driver Output.
6	Not applicable	Not applicable	Α	Noninverting Receiver Input A and Noninverting Driver Output A.
Not applicable	8	12	Α	Noninverting Receiver Input A.
7	Not applicable	Not applicable	В	Inverting Receiver Input B and Inverted Driver Output B.
Not applicable	7	11	В	Inverting Receiver Input B.
8	1	13, 14	V cc	Power Supply (3.3 V \pm 0.3 V).
Not applicable	Not applicable	1, 8	NC	No Connect.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Output Current vs. Receiver Output Low Voltage

Figure 8. Output Current vs. Receiver Output High Voltage

Figure 9. Receiver Output High Voltage vs. Temperature, $I_{RO} = 1.5 \text{ mA}$

Figure 10. Receiver Output Low Voltage vs. Temperature, $I_{RO} = 2.5 \text{ mA}$

Figure 11. Driver Output Current vs. Differential Output Voltage

Figure 12. Driver Differential Output Voltage vs. Temperature, $R_L = 54 \Omega$

Figure 13. Output Current vs. Driver Output Low Voltage

Figure 14. Output Current vs. Driver Output High Voltage

Figure 15. Supply Current vs. Temperature

Figure 16. Shutdown Current vs. Temperature

TEST CIRCUITS

Figure 17. Differential Output Voltage and Common-Mode Voltage Drivers

Figure 18. Differential Output Voltage Drivers with Varying Common-Mode Voltage

Figure 19. CMOS Output Voltage High and CMOS Output Voltage Low Receivers

Figure 20. Driver Differential Output Delay and Transition Times

Figure 21. Driver Propagation Delays

Figure 22. Driver Enable and Disable Times (tpzh, tpsh, tphz)

Figure 23. Driver Enable and Disable Times (tpzl, tpsl, tplz)

Figure 24. Receiver Propagation Delays

Figure 25. Receiver Enable and Disable Times

SWITCHING CHARACTERISTICS

Figure 26. Driver Differential Output Delay and Transition Times

Figure 27. Driver Propagation Delays

Figure 28. Driver Enable and Disable Times (tpzh, tpsh, tphz)

Figure 29. Driver Enable and Disable Times (tpzl, tpsl, tplz)

Figure 30. Receiver Propagation Delays

Figure 31. Receiver Enable and Disable Times

CIRCUIT DESCRIPTION

The ADM3483/ADM3485/ADM3488/ADM3490/ADM3491 are low power transceivers for RS-485 and RS-422 communications. The ADM3483/ADM3488 transmit and receive at data rates up to 250 kbps; the ADM3485/ADM3490/ADM3491 transmit at up to 10 Mbps. The ADM3488/ADM3490/ADM3491 are full-duplex transceivers, while the ADM3483/ADM3485 are half-duplex transceivers. Driver enable (DE) and receiver enable (RE) pins are included on the ADM3483/ADM3485/ADM3491. When disabled, the driver and receiver outputs are high impedance.

DEVICES WITH RECEIVER/DRIVER ENABLES (ADM3483/ADM3485/ADM3491)

Table 8. Transmitting Truth Table

Transmitting Input			Transmitti		
RE	DE	DI	B ¹	\mathbf{A}^{1}	Mode
X ²	1	1	0	1	Normal
X^2	1	0	1	0	Normal
0	0	X^2	High-Z ³ High-Z ³	High-Z³	Normal
1	0	X^2	High-Z³	High-Z ³	Shutdown

¹ A and B outputs are Y and Z, respectively, for full-duplex part (ADM3491).

Table 9. Receiving Truth Table

Receiving Input			Receiving Output	
RE	DE ¹	A – B	RO	Mode
0	0	≥ +0.2 V	1	Normal
0	0	≤ -0.2 V	0	Normal
0	0	Inputs Open	1	Normal
1	0	X ²	High-Z³	Shutdown

¹ DE is a don't care; X for the full-duplex part (ADM3491).

DEVICES WITHOUT RECEIVER/DRIVER ENABLES—ADM3488/ADM3490

Table 10. Transmitting Truth Table

Transmitting Input	Trans	mitting Output
DI	Z	Υ
1	0	1
0	1	0

Table 11. Receiving Truth Table

Receiving Input	Receiving Output
A – B	RO
≥ +0.2 V	1
≤ -0.2 V	0
Inputs open	1

REDUCED EMI AND REFLECTIONS (ADM3483/ADM3488)

The ADM3483/ADM3488 are slew rate limited transceivers, minimizing EMI and reducing reflections caused by improperly terminated cables.

LOW POWER SHUTDOWN MODE (ADM3483/ADM3485/ADM3491)

A low power shutdown mode is initiated by bringing \overline{RE} high and DE low. The devices do not shut down unless both the driver and receiver are disabled (high impedance). In shutdown mode, the devices typically draw only 2 nA of supply current. For these devices, the t_{PSH} and t_{PSL} enable times assume the part is in the low power shutdown mode; the t_{PZH} and t_{PZL} enable times assume the receiver or driver was disabled, but the part is not shut down.

DRIVER OUTPUT PROTECTION

Two methods are implemented to prevent excessive output current and power dissipation caused by faults or by bus contention. Current limit protection on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Performance Characteristics section). In addition, a thermal shutdown circuit forces the driver outputs into a high impedance state if the die temperature rises excessively.

PROPAGATION DELAY

Skew time is the difference between the low-to-high and high-to-low propagation delays. Small driver/receiver skew times help maintain a symmetrical mark-space ratio (50% duty cycle). The receiver skew time ($|t_{PRLH} - t_{PRHL}|$) is under 10 ns (20 ns for ADM3483/ADM3488). The driver skew times are 8 ns for ADM3485/ADM3490/ADM3491 and typically under 100 ns for ADM3483/ADM3488.

TYPICAL APPLICATIONS

The ADM3483/ADM3485/ADM3491 transceivers are designed for half-duplex bidirectional data communications on multipoint bus transmission lines, Figure 32 and Figure 33 show typical network applications circuits. The ADM3488 and the ADM3490 full-duplex transceivers are designed to be used in a daisy-chain network topology or in a point-to-point application, see Figure 34 and Figure 35. The ADM3491 can be used as line repeat Figure 36. To minimize reflections, the line must be terminated at both ends in its characteristic impedance, and stub lengths off the main line must be kept as short as possible. The slew rate limited ADM3483/ADM3488 are more tolerant of imperfect termination.

 $^{^{2}}$ X = don't care.

³ High-Z = high impedance.

 $^{^{2}}$ X = don't care.

³ High-Z = high impedance.

LINE LENGTH vs. DATA RATE

The RS-485 and RS-422 standards cover line lengths up to 4000 feet. For line lengths greater than 4000 feet, see Figure 36.

Figure 32. ADM3483/ADM3485 Typical Half-Duplex RS-485 Network

Figure 33. ADM3491 Typical Full-Duplex RS-485 Network

NOTES 1. $\ensuremath{R_{T}}$ IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE.

Figure 34. ADM3488/ADM3490 Full-Duplex Daisy-Chain Network

Figure 35. ADM3488/ADM3490 Full-Duplex Point-to-Point Applications

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 37. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-012-AB
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 38. 14-Lead Narrow Body Small Outline [SOIC_N] Narrow Body (R-14)

Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Ordering Quantity
ADM3483ARZ	−40°C to +85°C	8-Lead Narrow Body Small Outline (SOIC_N)	R-8	
ADM3483ARZ-REEL7	−40°C to +85°C	8-Lead Narrow Body Small Outline (SOIC_N)	R-8	1,000
ADM3485ARZ	-40°C to +85°C	8-Lead Narrow Body Small Outline (SOIC_N)	R-8	
ADM3485ARZ-REEL7	-40°C to +85°C	8-Lead Narrow Body Small Outline (SOIC_N)	R-8	1,000
ADM3488ARZ	-40°C to +85°C	8-Lead Narrow Body Small Outline (SOIC_N)	R-8	
ADM3488ARZ-REEL7	−40°C to +85°C	8-Lead Narrow Body Small Outline (SOIC_N)	R-8	1,000
ADM3490ARZ	-40°C to +85°C	8-Lead Narrow Body Small Outline (SOIC_N)	R-8	
ADM3490ARZ-REEL7	-40°C to +85°C	8-Lead Narrow Body Small Outline (SOIC_N)	R-8	1,000
ADM3491AR	−40°C to +85°C	14-Lead Narrow Body Small Outline (SOIC_N)	R-14	
ADM3491AR-REEL	-40°C to +85°C	14-Lead Narrow Body Small Outline (SOIC_N)	R-14	2,500
ADM3491AR-REEL7	-40°C to +85°C	14-Lead Narrow Body Small Outline (SOIC_N)	R-14	1,000
ADM3491ARZ	-40°C to +85°C	14-Lead Narrow Body Small Outline (SOIC_N)	R-14	
ADM3491ARZ-REEL	-40°C to +85°C	14-Lead Narrow Body Small Outline (SOIC_N)	R-14	2,500
ADM3491ARZ-REEL7	-40°C to +85°C	14-Lead Narrow Body Small Outline (SOIC_N)	R-14	1,000

¹ Z = RoHS Compliant Part.

Data Sheet

ADM3483/ADM3485/ADM3488/ADM3490/ADM3491

NOTES

Data Sheet

NOTES