The Curse of Dimensionality

And how to ward off it

Guillaume Lozenguez

@imt-nord-europe.fr

IMT Nord Europe

École Mines-Télécom IMT-Université de Lille

- 1. The Curse of Dimensionality
- 2. Geometric reduction
- 3. State Decomposition
- 4. Quid of the set of actions

1. The Curse of Dimensionality

- Example With Risky
- 2. Geometric reduction
- 3. State Decomposition
- 4. Quid of the set of actions

System Difficulty

Directly correlated to the state space:

The number of states: the Cartesian product of variable domains $\left|S\right|$ (minus some unreachable states)

421 game: 3 dice-6 at the horizon 3: $\left(3 \times 6^3 = 648\right)$ but 168 effectives.

Then the branching:

Finally, the number of games:

System Difficulty

Directly correlated to the state space

The number of states: ert S ert

Then the branching:

The number of possible actions and actions' outcomes.

ightharpoonup 421 game: 2^3 actions, 6^r action outcomes (r, the number of rolled dice).

Finally, the number of games:

The number of all possible succession of states until reaching an end. $|Branching|^h$ (h the horizon) Potentially $|S|^h$ (h the horizon).

Reminder over Combinatorics

With a Classical 32-card game: Possible distribution $32! = 2.6 \times 10^{35}$

Human life: around 5×10^7 seconds

Probability to play 2 times the same distribution in a human life is very close to 0

Learning Risky game

A strategic game over 12 cells to conquer by 2 armies: State Space: $\sim (4*30)^{12}$

Exploration / average End / average Q Values

> <u>python code</u> (10000 games, one point each 10 games)

The root problem: handle large systems

A first basic solution: reduce the state space definition

State reduction in QLearning

Project the states in a smallest space (dimension and size)

By mitigate the negative impact on the resulting built policy.

- 1. The Curse of Dimensionality
- 2. Geometric reduction
 - Reduce the dimension (PCA)
 - Clustering (K-means)
- 3. State Decomposition
- 4. Quid of the set of actions

Geometry Reduction

- Consider that close states are similar.
- ▶ Based on the assumption that: *it is possible to define a distance between States*
- By using regular discretization or adaptative clustering

Reduce the dimension - (Principal Component Analysis)

Searching the hyper-plan that better separate the data, in a given dimension.

Clustering - (K-means)

regroup the states in coherent sets

K-means:

Searching the optimal k center positions that better group/separate the data

Basic 'simple' classification method

Principal Component Analysis (PCA)

Searching the hyper-plan that better separate the data, in a given dimension.

Python scikit-learn module: sklearn.decomposition.PCA

K-means

Searching the optimal *k* center positions that better group the data together.

Python scikit-learn module: sklearn.cluster.KMeans

- Work well with 'linear state transitions' and different states density.
- ► Suppose a data set (trace) ideally with proper values

- 1. The Curse of Dimensionality
- 2. Geometric reduction
- 3. State-Space Decomposition
 - Decision Tree (Again)
 - Example With 421
- 4. Quid of the set of actions

State-Space Decomposition

Factorized method: Based on state variable prevalence

▶ Decision tree (Again) **Nodes:** variables ; **Edges:** assignment ; **leaf:** group of states

Decision Tree On 421 Q-Learning

Simply reduce the state definition to 6 states...

```
def state(self):
if self.turn == 0 :
   return 'end'
if self.dices[2] == 1 :
   if self.dices[1] == 2 :
         if self.dices[0] == 4 :
            return "4-2-1"
         return "X-2-1"
   if self.dices[1] == 1 :
         return "X-1-1"
   return "X-X-1"
return "X-X-X"
```

Decision Tree On 421 Q-Learning

Results:

python code: <u>Decision Tree Q-Learning</u> - <u>plotting</u>

Decision Tree Conclusion...

Conclusion:

It is all about defining the appropriate variable prevalence (Decision Tree Structure)

Learn the structure:

- Expert based Decision Trees or learned (<u>ID3 algorithm</u>)
- Again on python scikit learn: (module tree)

But...

The evaluation of the structure of the tree is performed by deadly execution of Q-Learning!

- 1. The Curse of Dimensionality
- 2. Geometric reduction
- 3. State Decomposition
- 4. Quid of the set of actions
 - The need of SuperAction

Dealing with combinatorial actions

The same strategy: Decomposition

- Group together 'similar' actions > SuperAction
- Geometric or decomposed technic
- ► Learn Q-Value over *SuperActions*

Dealing with combinatorial actions

At decision steps:

From superaction to local action

Choose one of the actions of the SuperAction:

- randomly
- with the use of an heuristic.
- ▶ The 'best' one accordingly to the reached next state...

- 1. The Curse of Dimensionality
- 2. Geometric reduction
- 3. State Decomposition
- 4. Quid of the set of actions

Apply Decomposition in Risky game

My advice:

- ▶ Think iterative: the last increase initializes the next learning phase.
- Start small and grow...

Before to go:

The actual killing strategy: (AlphaGo)

Deep-Learning-based Decision Architecture

