Preparação para exame

12.º Ano de Escolaridade | Turmas G-K

PROBABILIDADES E CÁLCULO COMBINATÓRIO

1. Numa caixa estão três fichas verdes, duas amarelas e quatro brancas. Vão ser retiradas as fichas, uma a uma, e colocadas em fila numa mesa.

As fichas da mesma cor não se distinguem.

- 1.1. Quantas sequências se podem construir se não houver qualquer restrição?
- 1.2. Quantas sequências se podem construir se as fichas verdes saem todas seguidas no início da sequência?
- 1.3. De todas as sequências que se podem construir, escolhe-se uma ao caso. Qual é a probabilidade de a sequência escolhida iniciar com uma ficha amarela e terminar também com uma ficha amarela?
- 2. Numa escola do distrito de Santarém foi realizado um estudo com todos os alunos do 12º.ano, com o objetivo de saber em que cursos superiores pretendiam ingressar. Sabe-se que participaram no referido estudo 200 alunos, sendo 30% do sexo masculino. Pretende-se escolher ao acaso seis alunos para formar uma comissão que vai organizar esse estudo. Qual é a probabilidade dessa comissão ser constituída por alunos dos dois sexos, mais rapazes do que raparigas e a Joana, que é uma aluna da escola, ser um dos elementos escolhidos?

Uma resposta possível a este problema é
$$\frac{139 \times ^{60} C_4 + ^{60} C_5}{^{200} C_6}$$

Numa pequena composição, explica porquê.

Deves organizar a tua composição de acordo com os seguintes tópicos:

Explicação do número de casos possíveis; Explicação do número de casos favoráveis. Referência à Lei de Laplace;

TRIGONOMETRIA

1. Na figura 1 está representado, em referencial o.n. xOy, a circunferência de centro O e raio 4.

Sabe-se que:

- A e C são os pontos de interseção da circunferência com os semieixos positivos Ox e Oy, respetivamente;
- O ponto P desloca-se ao longo do arco AC, nunca coincidindo com o ponto A nem com o ponto C;
- Os pontos Q, R e S, acompanham o movimento do ponto P, de tal modo que se tem sempre, [PS]//[QR]; [PQ]//[RS]; [PS]±[AB] e [PQ]±[CD];
- β é a amplitude, em radianos, do ângulo AOP, $(\beta \in]0; \frac{\pi}{2}[)$.

Figura 1

Resolve os itens seguintes sem recorreres à calculadora.

- 1.1. Mostra que a área da região sombreada, é dada, em função de β , por $A(\beta)=32\sin\beta\cdot\cos\beta.$
- 1.2. Sabendo que $\beta \in \left]0; \frac{\pi}{2}\right[$ e que $2tg(\pi \beta) + tg(\pi + \beta) = -\frac{1}{3}$, determina o valor exato de $A(\beta)$.
- 2. Na figura 2 está representado o círculo trigonométrico e nele o ângulo de amplitude x.

Sabe-se que:

- a reta r é tangente à circunferência no ponto de coordenadas (1;0);
- o ponto P pertence à circunferência;
- o ponto T é o ponto de interseção da reta OP com a reta r;
- a abcissa do ponto $P \neq \frac{4}{5}$.

Figura 2

- 2.1. Determina as coordenadas do ponto P.
- 2.2. Determina a ordenada do ponto T.
- 2.3. Mostra que $\frac{tg(5\pi + x)}{\sin\left(\frac{5\pi}{2} x\right) \cdot \cos\left(\frac{3\pi}{2} + x\right)} = \frac{25}{16}.$
- 3. Determina os valores de m para os quais a condição $\cos x = \frac{1-2m^2}{3} \land x \in \left] \frac{\pi}{2}; \pi\right]$ é possível.
- 4. Considera, em \mathbb{R} , a função g, definida por $g(x) = \sqrt{3} 4\sin(3x)$.
 - 4.1. Determina o valor exato de $g\left(\frac{\pi}{0}\right)$.
 - 4.2. Determina o contradomínio da função q.
 - 4.3. Indica, justificando, se é verdadeira ou falsa, a afirmação: "a função g admite $\frac{8\pi}{3}$ como período positivo mínimo".

Nota: Uma função f admite τ como período, se, e somente se, $f(x+\tau)=f(x), \forall x, x+\tau \in D_f$

- 4.4. Resolve, em $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, a equação g(x) = 3g(0).
- 5. Na figura 3 está representado, num referencial o.n. xOy, o gráfico da função f, definida em $[-\pi;\pi]$, por $f(x) = 1 2\cos(2x)$ e o triângulo [ABC].

Sabe-se que:

- A é ponto de interseção do gráfico de f com o eixo Oy
- B é ponto do gráfico onde a função f atinge o seu valor máximo.
- C é ponto do gráfico onde a função f atinge o seu valor máximo.

Figura 3

Sem recorreres à calculadora gráfica, Determina o valor exato da área do triângulo [ABC].

Sugestão de resolução:

Na tua resolução deves:

- $\bullet\,$ Determinar a ordenada do ponto A
- \bullet Determinar as abcissas dos pontos B e C
- 6. Sejam f, g e h, as funções definidas,
respetivamente, por $f(x) = \sqrt{2} 2\sin^2(2x)$, $g(x) = 4\cos(2x)$ e
 $h(x) = \tan\left(\frac{x}{4}\right)$.
 - 6.1. Mostra que $f(0) \frac{1}{2}g\left(\frac{\pi}{8}\right) = 0$.
 - 6.2. Mostra que o contradomínio da função g é [-4;4].
 - 6.3. Mostra que o contradomínio da função f é $[\sqrt{2}-2;\sqrt{2}]$.
 - 6.4. Mostra que a função fadmite 2π como período.
 - 6.5. Determina o período positivo mínimo da função g.
 - 6.6. Determina o período positivo mínimo da função h.
 - 6.7. Mostra que as funções f e g são pares e a função h é ímpar.
 - 6.8. Sabe-se que $\alpha \in \left] -\frac{\pi}{4}; \frac{\pi}{2} \right[$ e que $\sin(2\alpha) = -\frac{12}{13}$. Determina o valor exato de $\frac{g(\alpha)}{h(8\alpha)}$.