MA211 - Cálculo II - 2° semestre de 2012 Prova 3 - Turmas 1,2,3,4,5,6,D,E,F,G,H e I

Nome:	 	
RA:	 Turma:	

01	()2	03	04	Nota	final
4.2	2,4	-		-	-

1. Calcule $\oint_C \frac{-y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy$ em que C é a curva abaixo, orientada positivamente.

2. Calcule

$$\iint_{S} y^{2}z^{2} + y^{3} + zz^{2} + zz^{2} + dS,$$

onde S é a fronteira de um cubo definido por $-1 \le x \le 1, -1 \le y \le 1, \epsilon$ $0 \le z \le 2$.

- 3. Calcule $\iint_S \operatorname{rot}(F) dS$, onde $S = \{(x, y, z) \in \mathbb{R}^3; x = -1 + y^2 + z^2, x \leq 0\}$ e o campo F é dado por $F(x, y, z) = (xz, ze^x, -y)$.
- 4. Considere a porção do cone $x^2 + y^2 z^2 = 0$ contida entre os planos z = 0 e z = 2a, com a > 0. Esta porção de cone é seccionada pelo cilindro $x^2 + y^2 2ax = 0$. Calcule a área do cone exterior à secção cilindrica.

Observações: 1) Justifique todas as respostas. 2) É proibido colar! 3) Boa prova!