Later Author Guidelines for CVPR Proceedings

Anonymous CVPR submission

Paper ID *****

Abstract

The ABSTRACT is to be in fully justified italicized text, at the top of the left-hand column, below the author and affiliation information. Use the word "Abstract" as the title, in 12-point Times, boldface type, centered relative to the column, initially capitalized. The abstract is to be in 10-point, single-spaced type. Leave two blank lines after the Abstract, then begin the main text. Look at previous CVPR abstracts to get a feel for style and length.

1. Introduction

2. Related Work

Progress Prediction. Activity progress, how complete an activity is, was first introduced by [1]. They introduce ProgressNet, an LSTM based network, to predict activity progress on the ucf24 dataset.

Phase Prediction. The current phase an activity is in is often correlated to the progress of the activity, especially in linear activities.

Remaining Surgery Duration. The remaining time left in a surgery, or any other activity, is directly correlated to the progress of the activity. [7] use this to jointly predict surgery progress and remaining surgery duration.

3. Method

3.1. Definition of Progress

3.2. Networks

We implemented 3 different networks. ProgressNet [1], RSDNet [7], and UTE [4].

3.3. Data

We use the following datasets: Breakfast (BF) [2, 3], UCF101-24 [6], and cholec80 [5]. For BF we have dense trajectories, RSDNet embeddings, and ProgressNet embeddings. For UCF101-24 and Cholec80 we have i3d embeddings, RSDNet embeddings, and ProgressNet embeddings.

Data	MSE Loss
BF train/test (Dense Trajectories)	0.114
BF train/test (ResNet embeddings)	-
BF train/test (Indices)	0.019
BF all (Dense Trajectories)	0.041
BF all (ResNet embeddings)	-
BF all (Indices)	0.017
Cholec80 (i3d embeddings)	0.050
Cholec80 (ResNet embeddings)	_
Cholec80 (Indices)	0.024
UCF101-24 (i3d embeddings)	0.103
UCF101-24 (ResNet embeddings)	-
UCF101-24 (Indices)	0.034

Table 1. UTE

Data	MSE Loss
BF train/test (Dense Trajectories)	-
BF train/test (ResNet embeddings)	-
BF train/test (Indices)	-
BF all (Dense Trajectories)	-
BF all (RResNetSD embeddings)	-
BF all (Indices)	-
Cholec80 (i3d embeddings)	0.112
Cholec80 (ResNet embeddings)	0.019
Cholec80 (Indices)	0.018
UCF101-24 (i3d embeddings)	0.060
UCF101-24 (RSD embeddings)	-
UCF101-24 (Indices)	0.033

Table 2. RSDNet

4. Experiments

Why is this interesting!?

5. Conclusion

Data	MSE Loss
BF train/test (Dense Trajectories)	-
BF train/test (ResNet embeddings)	-
BF train/test (Indices)	-
BF all (Dense Trajectories)	-
BF all (RResNetSD embeddings)	-
BF all (Indices)	-
Cholec80 (i3d embeddings)	-
Cholec80 (ResNet embeddings)	-
Cholec80 (Indices)	-
UCF101-24 (i3d embeddings)	-
UCF101-24 (RSD embeddings)	-
UCF101-24 (Indices)	-
UCF101-24 (Frames & Boxes)	-

Table 3. ProgressNet

Data	MAE (minutes)
Cholec80 (i3d embeddings)	17.78
Cholec80 (RSD embeddings)	8.64
Cholec80 (Indices)	7.35

Table 4. RSD Predictions

References

- Federico Becattini, Tiberio Uricchio, Lorenzo Seidenari, Lamberto Ballan, and Alberto Del Bimbo. Am i done? predicting action progress in videos, 2017.
- [2] H. Kuehne, A. B. Arslan, and T. Serre. The language of actions: Recovering the syntax and semantics of goal-directed human activities. In *Proceedings of Computer Vision and Pattern Recognition Conference (CVPR)*, 2014. 1
- [3] Hilde Kuehne, Juergen Gall, and Thomas Serre. An end-toend generative framework for video segmentation and recognition. In *Proc. IEEE Winter Applications of Computer Vision Conference (WACV 16)*, Lake Placid, Mar 2016.
- [4] Anna Kukleva, Hilde Kuehne, Fadime Sener, and Juergen Gall. Unsupervised learning of action classes with continuous temporal embedding, 2019. 1
- [5] Chinedu Innocent Nwoye, Tong Yu, Cristians Gonzalez, Barbara Seeliger, Pietro Mascagni, Didier Mutter, Jacques Marescaux, and Nicolas Padoy. Rendezvous: Attention mechanisms for the recognition of surgical action triplets in endoscopic videos. *Medical Image Analysis*, 78:102433, may 2022. 1
- [6] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions classes from videos in the wild, 2012.
- [7] Andru Putra Twinanda, Gaurav Yengera, Didier Mutter, Jacques Marescaux, and Nicolas Padoy. RSDNet: Learning to predict remaining surgery duration from laparoscopic videos

without manual annotations. IEEE Transactions on Medical Imaging, 38(4):1069-1078, apr $2019.\ 1$