

for Explainable Translation Evaluation with Generative Al

From Research to Business Integration

- Introduction
- Methodology & Prompting Strategies
- **Evaluation & Results**
- Conclusion & Future Work

Manual Quality Assessment in Translation Workflow

- Expert review process: Translators check TM outputs and suggest corrections
- High-quality judgment: Captures subtle distinctions in translation quality
- Scalability challenges: Costly, time-consuming, and sensitive to terminology updates

Goal: Semi-Automated Quality Assurance

- Automated pre-check: Insert QA before human review to improve scalability
- Human-like output: Explainable, actionable, and robust error feedback
- Cross-domain ready: Works across different content types without retraining

Task Definition: Explainable Translation Evaluation

- Reference-less setup: No gold translation needed; context-aware evaluation
- Three-part output: rating label, detailed diagnosis, and revised translation
- Human-like process: Detects, explains, and corrects flawed translations

Motivation for a GenAl-Based QA Solution

- Prompt-driven adaptation: Handles new tasks without domain-specific training
- Human-like feedback: Produces explainable and actionable outputs
- Scalable & efficient: Reduces manual effort compared to traditional reviews

Research Questions

- RQ1 Prompting Strategies: How do different prompts affect LLM output quality?
- RQ2 Terminology Retrieval: Can RAG improve error detection and correction?
- RQ3 Cross-Domain Robustness: Does the approach generalize across domains?

- 1 Introduction
- Methodology & Prompting Strategies
- **Evaluation & Results**
- Conclusion & Future Work

System Architecture

Domain Overview

- Text Type & Length
 - Infotainment: Short, context-bound UI strings
 - OneWeb: Longer, narrative-style marketing content
- Linguistic Characteristics
 - Infotainment: High noun density, many UI placeholders, low readability
 - OneWeb: Stylistically rich, no placeholders, higher readability
- Common Error Types
 - Infotainment: Frequent terminology, incorrect, and incomprehensible errors
 - OneWeb: Dominated by style and incompleteness; minimal terminology issues

Prompting Strategies Overview

Core Strategies

- Baseline: minimal guidance
- **CLA**: Single-step Chain-of-Thought
- NEXUS: Multi-step Least-to-Most

Terminology-Aware Variants

RAG: Adds relevant glossary entries

Domain-Aware Extensions

- RAG+: Incorporates domain-specific rules
- Genre: Adds information on text type, audience, and context
- **Style**: Introduces a subtask for stylistic appropriateness

Baseline

- minimal guidance
 - task description
 - expected output description (3-part outputs: ratings, explanation, correction)
- input (translation pair and context)

Evaluate translation quality

The output should be in the following schema

label: OK or Error,

explain: Brief explanation,

suggest: Improved translation

if Error

Checklist

CLA

Notes: Avoid correcting

User-defined Chain-of-thought key acceptance criteria

• structured, explicit guidance

- task description
- checklist
- [extended instruction].
- [domain rules]
- expected output description
- input (translation pair and context)
- ,[Relevant terminology entries]

Steps:

- Check Spelling
- Check Syntax
- Check Semantic accuracy and completeness
- Check Terminology compliance
- Check Stylistic appropriateness

Output Description

Input

Relevant CorpTerm entries: {source term} → {target term}

abbreviations, double slashes

- 1 Introduction
- Methodology & Prompting Strategies
- **Evaluation & Results**
- Conclusion & Future Work

Evaluation Metrics

- Error Detection: Precision, Recall, F1
- Refinement: BLEU, ROUGE, METEOR
- Explanation (Indirect):
 - Use FINE Scores (Fine-grained Identification of Nuanced Edits)
 - No direct evaluation due to ground truth inconsistencies
- FINE Score Evaluation Steps:
 - 1. Derive revision logs from both system and human corrections
 - 2. Compute BLEU, ROUGE, and METEOR over these edit segments

RQ1 - Prompting Strategies: CLA vs. NEXUS

- **Hypothesis**: Clear guidance (CLA) and structured reasoning (NEXUS) improve performance
- CLA
- NEXUS

Error Detection
CLA: strength in all error types, even subtle
ones (style, incomprehensible)

NEXUS: high precision, but not for subtle and subjective errors

RQ1 - Prompting Strategies: CLA vs. NEXUS

- Hypothesis:
- CLA: Best for error detection
- NEXUS: Strongest in correction quality
- The structure of the prompt directly influences model responses
- Choosing the right strategy depends on the task goal

RQ2 - Impact of Terminology and Domain Knowledge Integration

Hypothesis

Integrating enterprise terminology boosts translation quality evaluation.

Adding Terminology (RAG)

- CLA-RAG
- NEXUS-RAG

Adding Domain Rules (RAG+)

- CLA-RAG+
- NEXUS-RAG+

CLA-RAG+: modest gains in all metrics

Metric Changes from Baseline

NEXUS-RAG+: significant gains in Precision and generation metrics

RQ2 - Impact of Terminology and Domain Knowledge Integration

Hypothesis

√ Integrating enterprise terminology boosts translation quality evaluation

Adding Terminology (RAG)

- CLA-RAG: Higher Recall and F1 better at catching terminology errors
- **NEXUS-RAG**: Higher **Precision** and **correction quality** excels in terminology-heavy segments

Adding Domain Rules (RAG+)

- CLA-RAG+: Delivers modest, consistent gains across metrics
- NEXUS-RAG+: Yields best overall performance, but lowers Recall

RQ3 - Cross-Domain Robustness

Hypothesis

Domain-agnostic prompts are expected to perform effectively; slight adaptations may further improve performance.

• CLA-based variants (CLA, CLA-RAG, Genre, Style)

NEXUS-Style

RAG: minimal gains

NEXUS: improves Precision, METEOR and FINE-METEOR

RQ3 - Cross-Domain Robustness

Hypothesis:

→ Domain-agnostic prompts are expected to perform effectively; slight adaptations may further improve performance.

• **CLA-based variants** (CLA, CLA-RAG, Genre, Style):

- Improve Recall
- Address stylistic and omission-related errors
- Modest Recall gains, but often at the cost of Precision

NEXUS-Style:

- Improve Precision, METEOR, and FINE-METEOR
- Minor gains in revision quality, but lower Recall rate

Takeaway:

Baseline works reasonably well; domain-aware adaptations provide measurable benefits, especially when tuned to the genre information

- 1 Introduction
- Methodology & Prompting Strategies
- **Evaluation & Results**
- <u>A</u>L Conclusion & Future Work

Limitations

Annotation Challenges

- Label inconsistency: Full rewrites vs. minimal edits, major vs. minor errors
- Source variation: Human-annotated (Infotainment) vs. semi-automated (One Web)

Technical Constraints

- Content filtering: Azure moderation blocked some segments
- Prompt limitations: Token and budget constraints restricted complexity

Evaluation Limitations

- **Surface metrics:** BLEU/ROUGE may miss deeper quality differences
- **Direction mismatch**: Infotainment (→ English), OneWeb (← English)
- Language gaps: No low-resource or morphologically rich language coverage
- Lack of feedback: No human-in-the-loop or user study evaluation

Conclusion

Practical Contribution

- Scalable QA system: Enables explainable translation evaluation in enterprise workflows
- Cross-domain applicability: Works across domains with minimal adaptation

Theoretical Contribution

- Structured prompting: Proposes CLA and NEXUS for explainable translation QA
- Complementary strategies: CLA excels at detection; NEXUS at refinement
- Terminology integration: RAG enhances performance in term-sensitive domains
- Prompt tuning: Improves alignment with domain-specific requirements
- A scalable, explainable, and production-ready approach to translation quality assurance.

Future Work

Prompting Strategies:

Explore compressed prompts, dynamic few-shot examples from TM, and alternate formats/languages

• RAG Improvements:

Use richer sources (e.g., style guides, reclamation data), and optimize retrieval quality

• Broader Scope:

Test on new domains, language pairs, and low-resource settings

Evaluation Enhancements:

Incorporate semantic metrics and human feedback

Deployment:

Prepare for integration into production QA workflows

Thank You!

- Supervisor: Dr. Agnieszka Faleńska
- Advisors: Nadia Mast, Sevde Ceylan
- Team Translation R&D, Driver Information & Production IPS/142
- Language Technology IPS/14