Derivative Rules & Formulas

Power Rule, Product Rule and Quotient Rule: Ex. 3.3, 3.5, 3.6

Sr.	Derivative Formulas	Examples	
1.	Power Rule: $\frac{d}{dx}(x^n) = n x^{n-1}$	1. $\frac{d}{dx}(x^3) = 3x^{3-1} = 3x^2$, 2. $\frac{d}{dt}(\frac{1}{t^3}) = \frac{d}{dt}(t^{-3}) = -3t^{-4} = \frac{-3}{t^4}$.	
2.	Generalized Power Rule: $\frac{d}{dx}[f(x)]^n = n[f(x)]^{n-1}f'(x)$	$\frac{d}{dx}(1-2x)^3 = 3(1-2x)^2 \frac{d}{dx}(1-2x)$ $= 3(1-2x)^2 \times (-2)$ $= -6(1-2x)^2$	
3.	$\frac{d}{dx}(x) = 1,$ Derivative of "x" w.r.t. "x" is 1.	$\frac{d}{d\theta}(\theta) = 1, \frac{d}{ds}(s) = 1, \frac{d}{dy}(y) = 1.$	
4.	$\frac{d}{dx}(c) = 0,$ Derivative of a constant is zero.	$\frac{d}{dx}(2) = 0, \frac{d}{dx}\left(\frac{1}{5}\right) = 0, \frac{d}{dx}(\pi) = 0.$	
5.	$\frac{d}{dx}(cx^n) = c\frac{d}{dx}(x^n) = cnx^{n-1}$	$\frac{d}{dx}(2x^5) = 2\frac{d}{dx}(x^5) = 2(5x^4) = 10x^4.$	
Let u and v be functions of x , i.e., $u = u(x)$, $v = v(x)$. Then,			
6.	Product Rule: $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	$y = (x - 1)(2x^{3} - 7x)$ $\frac{dy}{dx} = (x - 1)\frac{d}{dx}(2x^{3} - 7x) + (2x^{3} - 7x)\frac{d}{dx}(x - 1)$ $= (x - 1)(6x^{2} - 7) + (2x^{3} - 7x)(1 - 0)$ $= 6x^{3} - 7x - 6x^{2} + 7 + 2x^{3} - 7x$ $= 8x^{3} - 6x^{2} - 14x + 7$	
7.	Quotient Rule: $\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$	$y = \frac{x-1}{2x^3 - 7x}$ $\frac{dy}{dx} = \frac{(2x^3 - 7x)\frac{d}{dx}(x-1) - (x-1)\frac{d}{dx}(2x^3 - 7x)}{(2x^3 - 7x)^2}$ $= \frac{(2x^3 - 7x)(1-0) - (x-1)(6x^2 - 7)}{(2x^3 - 7x)^2}$ $= \frac{-4x^3 + 6x^2 - 7}{(2x^3 - 7x)^2}$	

Derivatives of Trigonometric Functions: Ex. 3.5, 3.6

Sr.	Formula	Generalization
1.	$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}(\sin ax) = \cos ax \frac{d}{dx}(ax) = a\cos ax$
2.	$\frac{d}{dx}(\cos x) = -\sin x$	$\frac{d}{dx}(\cos ax) = -\sin ax \frac{d}{dx}(ax) = -a\sin ax$
3.	$\frac{d}{dx}(\tan x) = \sec^2 x$	$\frac{d}{dx}(\tan ax) = \sec^2 ax \frac{d}{dx}(ax) = a \sec^2 ax$
4.	$\frac{d}{dx}(\cot x) = -\csc^2 x$	$\frac{d}{dx}(\cot ax) = -\csc^2 ax \frac{d}{dx}(ax) = -a\csc^2 ax$
5.	$\frac{d}{dx}(\sec x) = \sec x \tan x$	$\frac{d}{dx}(\sec ax) = \sec ax \tan ax \frac{d}{dx}(ax) = a \sec ax \tan ax$
6.	$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\frac{d}{dx}(\csc ax) = -\csc ax \cot ax \frac{d}{dx}(ax) = -a \csc ax \cot ax$

Derivatives of Logarithmic & Exponential Functions: Ex. 7.2, 7.3

Sr.	Formula	Generalization
1.	$\frac{d}{dx}(\ln x) = \frac{1}{x}$	$\frac{d}{dx}\ln(ax+b) = \frac{1}{ax+b} \times \frac{d}{dx}(ax+b)$ $= \frac{1}{ax+b}(a+0) = \frac{a}{ax+b}$
2.	$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$	$\frac{d}{dx}\log_a(cx+d) = \frac{1}{(cx+d)\ln a} \times \frac{d}{dx}(cx+d)$ $= \frac{c}{(cx+d)\ln a}$
3.	$\frac{d}{dx}(e^x) = e^x$	$\frac{d}{dx}(e^{ax+b}) = e^{ax+b} \times \frac{d}{dx}(ax+b)$ $= e^{ax+b} \times a = ae^{ax+b}$
4.	$\frac{d}{dx}(a^x) = a^x \ln a$	$\frac{d}{dx}(a^{cx+d}) = a^{cx+d} \ln a \times \frac{d}{dx}(cx+d)$ $= a^{cx+d} \ln a \times c = c \ln a \cdot a^{cx+d}$

Derivatives of Inverse Trigonometric Functions: Ex. 7.6

Sr.	Formula	Generalization
1.	$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}(\sin^{-1}ax) = \frac{1}{\sqrt{1 - (ax)^2}} \times \frac{d}{dx}(ax)$ $= \frac{a}{\sqrt{1 - a^2x^2}}$
2.	$\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$	$\frac{d}{dx}(\cos^{-1}ax) = \frac{-1}{\sqrt{1 - (ax)^2}} \times \frac{d}{dx}(ax)$ $= \frac{-a}{\sqrt{1 - a^2x^2}}$
3.	$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$	$\frac{d}{dx}(\tan^{-1}ax) = \frac{1}{1 + (ax)^2} \times \frac{d}{dx}(ax)$ $= \frac{a}{1 + a^2x^2}$
4.	$\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$	$\frac{d}{dx}(\cot^{-1}ax) = \frac{-1}{1 + (ax)^2} \times \frac{d}{dx}(ax)$ $= \frac{-a}{1 + a^2x^2}$
5.	$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{ x \sqrt{x^2 - 1}}$	$\frac{d}{dx}(\sec^{-1}ax) = \frac{1}{ ax \sqrt{(ax)^2 - 1}} \times \frac{d}{dx}(ax)$ $= \frac{a}{ ax \sqrt{a^2x^2 - 1}}$
6.	$\frac{d}{dx}(\csc^{-1}x) = \frac{-1}{ x \sqrt{x^2 - 1}}$	$\frac{d}{dx}(\csc^{-1}ax) = \frac{-1}{ ax \sqrt{(ax)^2 - 1}} \times \frac{d}{dx}(ax)$ $= \frac{-a}{ ax \sqrt{a^2x^2 - 1}}$

Credits: Dr. Usman Afzal

Assistant Professor (Mathematics),

University of Management and Technology (UMT), Lahore.

Email: usman.afzal@umt.edu.pk