Albert Ratschinski (5154309)

Aufgabe:	1	2	3	4	\sum
Punkte:					

Exercise Sheet Nr. 2 (Deadline - Freitag bis 14 Uhr)

Aufgabe 1

- a) Ich zeige, dass \mathbb{Z}_4 kein Körper ist, indem ich zeige, dass mindestens eine der Körperaxiome nicht erfüllt ist:
 - Assoziativität der Addition und Multiplikation
 - Kommutativität der Addition und Multiplikation
 - Existenz eines neutralen Elements bezüglich der Addition und Multiplikation
 - Existenz eines inversen Elements bezüglich der Addition und Multiplikation
 - Distributivgesetz

 \mathbb{Z}_4 besteht aus den Elementen $\{0,1,2,3\}$. Ich prüfe zunächst die ersten vier Axiome, die \mathbb{Z}_4 erfüllen muss:

- Assoziativität und Kommutativität der Addition und Multiplikation von +4 und ·4 sind erfüllt, da die Operation modulo 4 diese Eigenschaft von den ganzen Zahlen bereits erfüllt.
- Neutrale Elemente: 0 ist das additive neutrale Element, und 1 ist das multiplikative neutrale Element.
- Additives Inverses: Jedes Element in Z₄ hat ein additiv Inverses (0 zu 0, 1 zu 3, 2 zu 2, 3 zu 1).

Das mir entscheidende Problem für \mathbb{Z}_4 liegt bei der Existenz des multiplikativen Invesren.

• Multiplikatives Inverses: Ein multiplikatives Invervses zu einem Element $a \in \mathbb{Z}_4$ ist ein Element $b \in \mathbb{Z}_4$, sodass $a \cdot_4 b = 1$.

Ich zeige, dass es kein multiplikatives Inverses für $2 \in \mathbb{Z}_4$ gibt:

$$2 \cdot_4 0 = 0$$

$$2 \cdot_4 1 = 2$$

$$2 \cdot_4 2 = 0$$

$$2 \cdot_4 3 = 2$$

Da es kein Element $b \in \mathbb{Z}_4$ gibt, sodass $2 \cdot_4 b = 1$, ist \mathbb{Z}_4 kein Körper.

- b) Additionstabelle: Die Additionstabelle für \mathbb{F}_4 ist gegeben durch:
 - Die Werte für die Addition mit Null (neutrales Element) folgen trivial.
 - Die Werte für die Addition mit Eins (additives Inverses) in \mathbb{F}_4 sind ebenfalls trivial.
 - * 0 + 1 = 1 und 1 + 1 = 0
 - * a + 1 = b und b + 1 = a
 - Die Werte für die Addition mit a und b folgen aus den Eigenschaften der Addition in \mathbb{F}_4 .
 - * a + a = 0 und b + b = 0
 - * a+b=1 und b+a=1 dies folgt durch Fallunterscheidung der Addition in \mathbb{F}_4 . Für den Fall a+b gibt es zwei Möglichkeiten: a+b=0 oder a+b=1.
 - a + b = 0 ist nicht möglich, da a und b unterschiedliche Elemente sind.
 - (a+b=1) = a + (a+1) = a + a + 1 = 0 + 1 = 1

Somit foglt die gegebnene Additionstabelle für \mathbb{F}_4 :

- Multiplikationstabelle: Die Multiplikation für \mathbb{F}_4 ist gegeben durch:
 - Die Werte für die Multiplikation mit Null folgen trivial.
 - Die Werte für die Multiplikation mit Eins (neutrales Element) in \mathbb{F}_4 sind ebenfalls trivial.
 - Die Werte für die Multiplikation mit a und b unter der Annahme, dass $a^2 = a + 1$ und $b^2 = b + 1$.
 - * $a \times a = a^2 = a + 1$, nach der Definition von a.
 - * $a \times b$: Da $a \times b$ ein Element in \mathbb{F}_4 sein muss und wir wissen, dass $\{0,1,a,b\}$ abgeschlossen unter Multiplikation ist, muss $a \times b$ das fehlende Element sein, wenn wir a,b,0,1 als Ergebnisse betrachten. Wenn $a^2 = a + 1 = b$, dann $a \times b = 1$, da a,b invers zueinander sein müssen.
 - * $b \times b$: Wegen der symmetrischen Eigenschaften und weil $a \times b = 1$ und b ein anderes Element als a ist, muss $b^2 = b + 1 = a$.

Somit foglt die gegebnene Multiplikationstabelle für \mathbb{F}_4 :

Aufgabe 2

a) Um zu entscheiden, ob die Menge

$$\left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \mid a,b,c \in \mathbb{Q} \right\}$$

ein \mathbb{R} -Untervektorraum des \mathbb{R}^3 ist, müssen wir prüfen, ob diese Menge drei grundlegende Eigenschaften erfüllt, die für einen Untervektorraum notwendig sind:

a) Vorhandensein des Nullvektors

Der Nullvektor in \mathbb{R}^3 ist $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, und da $0 \in \mathbb{Q}$, gehört der Nullvektor zur gegebenen Menge. Diese Bedingung ist somit erfüllt.

b) Abgeschlossenheit bezüglich der Vektoraddition

Wenn
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 und $\begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$ zwei Vektoren der Menge sind, mit $a,b,c,a',b',c' \in \mathbb{Q}$, dann ist ihre Summe

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} + \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} = \begin{pmatrix} a+a' \\ b+b' \\ c+c' \end{pmatrix}$$

Da die Summe zweier rationaler Zahlen wieder rational ist $(a+a',b+b',c+c' \in \mathbb{Q})$, ist die Menge abgeschlossen unter Addition.

c) Abgeschlossenheit bezüglich der Skalarmultiplikation

Hier prüfen wir, ob das Produkt eines Skalars $r \in \mathbb{R}$ mit einem Vektor $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$, wobei $a, b, c \in \mathbb{Q}$, immer noch in der Menge liegt. Das Produkt ist

$$r \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} ra \\ rb \\ rc \end{pmatrix}$$

Da r eine reelle Zahl sein kann und nicht notwendigerweise rational sein muss, können die Produkte ra, rb, rc irrational sein, wenn r irrational ist. Zum Beispiel

würde
$$r = \sqrt{2}$$
 und $a = b = c = 1$ zu $\begin{pmatrix} \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \end{pmatrix}$ führen, ein Vektor, dessen

Komponenten nicht rational sind und somit nicht in der Menge enthalten sind.

b) Um zu entscheiden, ob die Menge

$$\left\{\alpha \cdot \begin{pmatrix} 0\\1\\2 \end{pmatrix} + \begin{pmatrix} 1\\2\\4 \end{pmatrix} \mid \alpha \in \mathbb{R} \right\}$$

ein \mathbb{R} -Untervektorraum des \mathbb{R}^3 ist, müssen wir die drei grundlegenden Eigenschaften eines Untervektorraums überprüfen:

a) Vorhandensein des Nullvektors

Für den Nullvektor muss gelten, dass er durch eine lineare Kombination der Vektoren in der Menge mit Skalaren aus \mathbb{R} darstellbar ist. Der Nullvektor in \mathbb{R}^3 ist $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. Setzen wir diesen in unsere Menge ein, erhalten wir die Gleichung:

$$\alpha \cdot \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Dies lässt sich umformen zu:

$$\begin{pmatrix} 0 \\ \alpha + 2 \\ 2\alpha + 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Aus den letzten beiden Gleichungen ergibt sich für α :

$$\alpha + 2 = 0 \Rightarrow \alpha = -2$$

$$2\alpha + 4 = 0 \Rightarrow 2(-2) + 4 = 0$$

Die Gleichungen sind konsistent und zeigen, dass $\alpha=-2$ eine mögliche Lösung ist, um den Nullvektor zu erzeugen. Allerdings führt die spezifische Kombination von $\alpha=-2$ und dem konstanten Vektor $\begin{pmatrix} 1\\2\\4 \end{pmatrix}$ dazu, dass der resultierende Vektor nicht

der Nullvektor ist:

$$-2 \cdot \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ -2+2 \\ -4+4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Dies ist ein Widerspruch. Daher kann der Nullvektor nicht als Linearkombination dieser Form in der Menge erzeugt werden, ohne den konstanten Vektor $\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$ zu modifizieren.

Schlussfolgerung

Da die Menge den Nullvektor nicht enthält, ist sie kein \mathbb{R} -Untervektorraum des \mathbb{R}^3 . Dies ist eine grundlegende Anforderung, die nicht erfüllt ist, daher müssen wir nicht weiter prüfen (Addition oder Skalarmultiplikation).

c) Um zu entscheiden, ob die Menge

$$\left\{\alpha \cdot \begin{pmatrix} 2\\1\\2 \end{pmatrix} + \begin{pmatrix} -4\\-2\\-4 \end{pmatrix} \mid \alpha \in \mathbb{R} \right\}$$

ein \mathbb{R} -Untervektorraum des \mathbb{R}^3 ist, müssen wir prüfen, ob diese Menge drei grundlegende Eigenschaften erfüllt, die für einen Untervektorraum notwendig sind:

a) Vorhandensein des Nullvektors

Der Nullvektor in \mathbb{R}^3 ist $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. Setzen wir $\alpha=2$ in unsere Menge ein, erhalten wir die Gleichung:

$$2 \cdot \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} -4 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Somit ist der Nullvektor in der Menge enthalten.

b) Abgeschlossenheit bezüglich der Vektoraddition Es muss gelten für alle $u, v \in V$ auch $u + v \in V$. In der gegebenen Menge betrachten wir zwei allgemeine Vektoren:

$$v_1 = \alpha_1 \cdot \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} -4 \\ -2 \\ -4 \end{pmatrix} \text{ und } v_2 = \alpha_2 \cdot \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} -4 \\ -2 \\ -4 \end{pmatrix}$$

Die Addition dieser Vektoren ergibt:

$$v_1 + v_2 = (\alpha_1 + \alpha_2) \cdot \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + 2 \cdot \begin{pmatrix} -4 \\ -2 \\ -4 \end{pmatrix}$$
$$= (\alpha_1 + \alpha_2) \cdot \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 8 \\ 4 \\ 8 \end{pmatrix}$$

Die Summe der Vektoren v_1 und v_2 kann umgeformt werden zu einem Vektor in V durch Einstellen von $\gamma = \alpha_1 + \alpha_2$ und Berücksichtigung, dass der konstante

Vektor $\begin{pmatrix} -4 \\ -2 \\ -4 \end{pmatrix}$ sich skalieren lässt. Daher ist V abgeschlossen unter Addition.

c) Abgeschlossen unter der Skalarmultiplikation Sei $\lambda \in \mathbb{R}$ und $v \in V$:

$$\lambda v = \lambda \left(\alpha \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} -4 \\ -2 \\ -4 \end{pmatrix} \right)$$
$$= \lambda \alpha \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ -2 \\ -4 \end{pmatrix}$$

Dies ist wiederum ein Vektor in V mit $\gamma = \lambda \alpha$ und dem entsprechenden skalierten konstanten Vektor. Daher ist V abgeschlossen unter Skalarmultiplikation.

Schlussfolgerung: Da V den Nullvektor enthält, unter Addition und Skalarmultiplikation abgeschlossen ist, ist V ein Untervektorraum von \mathbb{R}^3 .

Aufgabe 3

a) Vektorraumstruktur von $U \subseteq \mathbb{R}^3$

Die Menge U wird beschrieben durch:

$$U = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid 2x_1 + 4x_2 = 1 \right\}$$

Um zu überprüfen, ob U einen Untervektorraum des \mathbb{R}^3 bildet, müssen zwei Bedingungen erfüllt sein: Die Abgeschlossenheit bezüglich der Vektoraddition und der Skalarmultiplikation. Zudem muss der Nullvektor in U enthalten sein.

• Nullvektor: Der Nullvektor im \mathbb{R}^3 ist $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. Setzt man diesen in die Bedingung $2x_1 + 4x_2 = 1$ ein, ergibt sich $2 \cdot 0 + 4 \cdot 0 = 0$, was ungleich 1 ist. Also ist der Nullvektor nicht in U, was bereits zeigt, dass U kein Untervektorraum ist.

Da der Nullvektor nicht enthalten ist, ist U kein Untervektorraum von \mathbb{R}^3 .

b) Untervektorraumstruktur von $V \subseteq \mathbb{R}^4$

Die Menge V wird definiert als:

$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4 \mid x_2 = x_1 - 2x_3 + x_4 \right\}$$

Zu zeigen ist, dass V ein Untervektorraum ist und von den Vektoren v_1, v_2, v_3 aufgespannt wird.

• Nullvektor: Setzen wir $x_1 = x_3 = x_4 = 0$ ein, folgt $x_2 = 0 - 2 \cdot 0 + 0 = 0$. Damit ist der Nullvektor in V enthalten.

• Abgeschlossenheit unter Addition: Seien
$$\begin{pmatrix} x_1 \\ x_1 - 2x_3 + x_4 \\ x_3 \\ x_4 \end{pmatrix}$$
 und $\begin{pmatrix} y_1 \\ y_1 - 2y_3 + y_4 \\ y_3 \\ y_4 \end{pmatrix}$ in V . Die Summe ist $\begin{pmatrix} x_1 + y_1 \\ (x_1 + y_1) - 2(x_3 + y_3) + (x_4 + y_4) \\ x_3 + y_3 \\ x_4 + y_4 \end{pmatrix}$, was ebenfalls die Bedingung $x_2 = x_1 - 2x_3 + x_4$ erfüllt.

• Abgeschlossenheit unter Skalarmultiplikation: Für einen Skalar k und $\begin{pmatrix} x_1 \\ x_1 - 2x_3 + x_4 \\ x_3 \\ x_4 \end{pmatrix}$

in
$$V$$
 gilt für $k \cdot \begin{pmatrix} x_1 \\ x_1 - 2x_3 + x_4 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} kx_1 \\ kx_1 - 2kx_3 + kx_4 \\ kx_3 \\ kx_4 \end{pmatrix}$, was wieder die Bedingung aufüllt

V ist also ein Untervektorraum. **Aufspannen durch** v_1, v_2, v_3 : Vergleichen wir nun, ob sich jeder Vektor in V als Linearkombination von v_1, v_2, v_3 darstellen lässt. Dies kann überprüft werden, indem man die Vektoren v_1, v_2, v_3 als Spaltenvektoren in eine Matrix einträgt und prüft, ob die resultierende Matrix den ganzen Raum V beschreibt. Wenn das der Fall ist, spannen sie V auf. Um zu zeigen, dass die Vektoren v_1, v_2, v_3 den Untervektorraum V aufspannen, müssen wir überprüfen, ob jeder Vektor in V als Linearkombination dieser Vektoren dargestellt werden kann. Das bedeutet, wir müssen die lineare Unabhängigkeit der Vektoren überprüfen und sehen, ob sie den gesamten Raum V abdecken. Die Vektoren v_1, v_2, v_3 sind gegeben durch:

$$v_1 = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}$$

Wir können diese Vektoren als Spalten einer Matrix schreiben:

$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Um zu überprüfen, ob v_1, v_2, v_3 linear unabhängig sind und ob sie V aufspannen, betrachten wir die reduzierte Zeilenstufenform von A. Wenn jede Zeile der reduzierten Zeilenstufenform von A eine Pivotspalte hat, sind die Vektoren linear unabhängig und spannen den Raum auf.

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Da die dritte und vierte Zeile der reduzierten Zeilenstufenform Nullzeilen sind, haben v_1, v_2, v_3 nur zwei unabhängige Vektoren. Das bedeutet, sie spannen keinen 4-dimensionalen Raum auf, sondern lediglich eine Ebene oder einen 2-dimensionalen Unterraum. Daher spannen die Vektoren v_1, v_2, v_3 den Unterraum V nicht auf, da sie nicht linear unabhängig sind und nicht den gesamten Raum V abdecken.