On maximal S-free sets and the Helly number for the family of S-convex sets

Gennadiy Averkov*
October 6, 2011

Abstract

Let S be a subset of \mathbb{R}^d . A subset K of \mathbb{R}^d is said to be S-free if K is closed, convex and the interior of K is disjoint with S. An S-free set K is said to be maximal if K is not properly contained in another S-free set. We present a condition on S which guarantees that every maximal S-free set is a polyhedron with at most f facets, where the bound f depends only on S. This condition on S is formulated in terms of the Helly number for the family of S-convex sets. The presented result yields corollaries related to the cutting-plane theory from integer and mixed-integer optimization.

2010 Mathematics Subject Classification: Primary 90C11; Secondary 90C10, 52A01, 52C07

Keywords: cutting plane; Doignon's theorem; Helly's theorem; Helly number; intersection cut; lattice-free set; S-convex set; S-free set

1 Introduction

Let $d \in \mathbb{N}$ and $S \subseteq \mathbb{R}^d$. A subset K of \mathbb{R}^d is said to be S-free if K is closed, convex and the interior of K is disjoint with S. An S-free set K in \mathbb{R}^d is said to be maximal if there exists no S-free set properly containing K. Dey and Morán [7] have recently studied maximal S-free sets in the case that S is the intersection of \mathbb{Z}^d and a convex set. In particular, in [7] the following result was obtained.

Theorem 1. (Dey & Morán, [7, Theorem 3.4]). Let $S = \mathbb{Z}^d \cap C$, where $C \subseteq \mathbb{R}^d$ is convex. Then every d-dimensional maximal S-free set is a polyhedron with at most 2^d facets.

In the case $S = \mathbb{Z}^d$ Theorem 1 was formulated by Lovász [11, Theorem 3.4] (a proof can be found in [4, §2.2]). Various special cases of Theorem 1 were considered and used in [4, 5, 8, 10]. This note presents a theorem (Theorem 4), which implies Theorem 1 and also yields the following mixed-integer analog of Theorem 1.

Theorem 2. Let $d, n \in \mathbb{N}$ and $S = (\mathbb{Z}^d \times \mathbb{R}^n) \cap C$, where $C \subseteq \mathbb{R}^d \times \mathbb{R}^n$ is convex. Then every d-dimensional maximal S-free set is a polyhedron with at most 2^d facets.

^{*}Institute for Mathematical Optimization, Faculty of Mathematics, University of Magdeburg, 39106 Magdeburg, Germany; email: averkov@math.uni-magdeburg.de

We remark that maximal S-free sets of dimension less than d can be characterized in rather simple terms: a subset K of \mathbb{R}^d is maximal S-free and of dimension less than d if and only if K is a hyperplane and in both open subspaces determined by K one can find points of S lying arbitrarily close to K. Hence in what follows our considerations are restricted to the case of d-dimensional maximal S-free sets.

A natural question in the context of the cutting-plane theory (from integer and mixed-integer programming) is whether for a given S one can find $f \geq 0$ such that every maximal S-free set is a polyhedron with at most f facets. The motivation provided by the cutting-plane theory is based on the fact that maximal S-free sets for $S := \mathbb{Z}^d \cap C$ (where C is convex) can be used as 'cutting objects' for generation of intersection cuts (see, for example, [1, 3, 10]). It is thus desirable to have an upper bound on the combinatorial complexity of such cutting objects.

Our question on the existence of an upper bound f can be expressed in terms of a parameter f(S), which we introduce as follows. If, for a given S, there exist maximal S-free sets which are not polyhedra or if there exist d-dimensional maximal S-free polyhedra with arbitrarily large number of facets we let $f(S) := +\infty$. If there exist no d-dimensional maximal S-free sets (e.g., for $S = \mathbb{R}^d$) we let $f(S) := -\infty$. In the remaining cases the set of d-dimensional maximal S-free sets is nonempty and consists of polyhedra whose number of facets is bounded in terms of S; in such cases we denote by f(S) the largest possible number of facets in a d-dimensional maximal S-free polyhedron. Thus, we ask for conditions on S which ensure $f(S) < +\infty$. The main message of this note is that there exists a strong relation between f(S) and the Helly number associated to the family of S-convex sets.

Definition 3. Let \mathcal{F} be a nonempty family of sets with $\mathcal{F} \neq \{\emptyset\}$. Then the *Helly number* $h(\mathcal{F})$ of \mathcal{F} is defined to be the minimal $h \in \mathbb{N}$ such that the following implication holds: If \mathcal{X} is an arbitrary finite subfamily of \mathcal{F} such that \mathcal{X} contains at least h sets and every h-element subfamily of \mathcal{X} has nonempty intersection, then also \mathcal{X} has nonempty intersection. If no $h \in \mathbb{N}$ as above exists, we let $h(\mathcal{F}) := +\infty$. We also define the Helly number of $\{\emptyset\}$ by $h(\{\emptyset\}) := 0$.

A subset A of \mathbb{R}^d is called S-convex if $A = S \cap C$ for some convex subset C of \mathbb{R}^d . The notion of S-convexity is reduced to the standard notion of convexity for $S = \mathbb{R}^d$ and to the notion of lattice-convexity for $S = \mathbb{Z}^d$. Let h(S) denote the Helly number for the family of all S-convex sets. That is

$$h(S) := h\left(\left\{S \cap C \,:\, C \text{ is a convex subset of } \mathbb{R}^d\right\}\right).$$

The equality

$$h(\mathbb{R}^d) = d + 1 \tag{1}$$

represents the classical theorem of Helly (see, for example, [13, Theorem 1.1.6]). Doignion [9, (4.2)] proved the equality

$$h(\mathbb{Z}^d) = 2^d, \tag{2}$$

which is the analog of Helly's theorem for \mathbb{Z}^d -convex sets. See also [14, §16.5] for interpretation of (2) in terms of integer optimization. The result of Doignon and its special cases have often been rediscovered (see [6, 12, 15]). Based on (1) and (2) the authors of [2] showed

$$h(\mathbb{Z}^d \times \mathbb{R}^n) = (n+1)2^d \tag{3}$$

for all $d, n \in \mathbb{N}$. Equality (3) is the mixed-integer analog of Helly's theorem. Now we are ready to formulate our main result.

Theorem 4. Let $S \subseteq \mathbb{R}^d$. Then $f(S) \leq h(S)$.

As a consequence of Theorem 4 and (2) we obtain

Theorem 5. Let $d, n \in \mathbb{N}$. Let $A \subseteq \mathbb{R}^d$ and $B \subseteq \mathbb{R}^d \times \mathbb{R}^n$ be convex. Then

$$f(A \cap \mathbb{Z}^d) \le 2^d,\tag{4}$$

$$f(\mathbb{Z}^d) = 2^d, \tag{5}$$

$$f(B \cap (\mathbb{Z}^d \times \mathbb{R}^n)) \le 2^d, \tag{6}$$

$$f(\mathbb{Z}^d \times \mathbb{R}^n) = 2^d. \tag{7}$$

Comparing (5), (7) with (2), (3) we see that, for different choices of S, in Theorem 4 one can have the equality f(S) = h(S) as well as the strict inequality f(S) < h(S).

Inequalities (4) and (6) represent the assertions of Theorems 1 and 2, respectively. The authors of [7] indicate that their proof of Theorem 1 is quite technical (see [7, p. 382, remark after Proposition 3.3]). In contrast to this, our arguments lead to a shorter and less technical proof of Theorem 1.

2 Proofs

We use standard terminology from the theory of polyhedra (see, for example, [14, Part III]). For $n \in \mathbb{N}$ let $[n] := \{1, \ldots, n\}$. The standard scalar product of \mathbb{R}^d is denoted by $\langle \cdot, \cdot \rangle$. By int we denote the interior with respect to the Euclidean topology of \mathbb{R}^d .

Lemma 6. Let $S \subseteq \mathbb{R}^d$ and $f \in \mathbb{N}$. Assume that every d-dimensional S-free rational polyhedron P is contained in an S-free polyhedron Q with at most f facets. Then every d-dimensional maximal S-free set is a polyhedron with at most f facets.

Proof. Let K be an arbitrary d-dimensional maximal S-free set. It suffices to show that K is contained in an S-free polyhedron with at most h facets. We consider a sequence $(P_n)_{n=1}^{+\infty}$ of d-dimensional rational polytopes such that

$$P_n \subseteq P_{n+1} \quad \forall n \in \mathbb{N} \tag{8}$$

and

$$int(K) = \bigcup_{n=1}^{+\infty} P_i.$$
(9)

Such polytopes P_n can be constructed as follows. Let $(z_n)_{n=1}^{+\infty}$ be a sequence of all rational points of $\operatorname{int}(K)$ such that the first d+1 points z_1, \ldots, z_{d+1} are affinely independent. Then, for every $n \in \mathbb{N}$, we define P_n to be the convex hull of $\{z_1, \ldots, z_{n+d}\}$. By the assumption, each P_n is contained in an S-free polyhedron Q_n having at most f facets. Every Q_n can be represented by

$$Q_n = \left\{ x \in \mathbb{R}^d : \langle u_{1,n}, x \rangle \le \beta_{1,n}, \dots, \langle u_{f,n}, x \rangle \le \beta_{f,n} \right\}$$

where $u_{1,n}, \ldots, u_{f,n} \in \mathbb{R}^d$ are vectors of unit (Euclidean) length and $\beta_{1,n}, \ldots, \beta_{f,n} \in \mathbb{R}$. There exists an infinite subset \mathbb{N}_{∞} of \mathbb{N} such that, for every $i \in [f]$, the vector $u_{i,n}$ converges to some unit vector u_i and β_i converges to some $\beta_i \in (-\infty, +\infty]$, as n goes to infinity over points of \mathbb{N}_{∞} . We define the polyhedron

$$Q := \left\{ x \in \mathbb{R}^d : \langle u_1, x \rangle \le \beta_1, \dots, \langle u_f, x \rangle \le \beta_f \right\}.$$

By construction, $P_1 \subseteq P_n \subseteq Q_n$ for every $n \in \mathbb{N}$. Hence $P_1 \subseteq Q$, which shows that Q is d-dimensional. Let us show that Q is S-free. We assume the contrary. Then there exists $x \in S$ belonging to $\operatorname{int}(Q) = \left\{x \in \mathbb{R}^d : \langle u_1, x \rangle < \beta_1, \dots, \langle u_f, x \rangle < \beta_f \right\}$. The latter implies $\langle u_{i,n}, x \rangle < \beta_{i,n}$ for all $i \in [f]$ if $n \in \mathbb{N}_{\infty}$ is sufficiently large. This implies $x \in S \cap \operatorname{int}(Q_n)$ for all sufficiently large $n \in \mathbb{N}_{\infty}$, contradicting the fact that Q_n is S-free. We also show $\operatorname{int}(K) \subseteq Q$ arguing by contradiction. If x is a point belonging to $\operatorname{int}(K)$ but not to Q, then one can fix $i \in [f]$ such that $\langle u_i, x \rangle > \beta_i$. Consequently, $\langle u_{i,n}, x \rangle > \beta_{i,n}$ for all sufficiently large $n \in \mathbb{N}_{\infty}$. The inequality $\langle u_{i,n}, x \rangle > \beta_{i,n}$ implies $x \notin Q_n$ and, by this, $x \notin P_n$. Thus, $x \notin P_n$ for all sufficiently large $n \in \mathbb{N}_{\infty}$. Since the sequence of P_n 's is monotone (as described by (8)), we get $x \notin P_n$ for every $n \in \mathbb{N}$. Consequently, $x \notin \bigcup_{n=1}^{+\infty} P_n$. In view of (9), we obtain $x \notin \operatorname{int}(K)$, which is a contradiction. We have verified the inclusion $\operatorname{int}(K) \subseteq Q$. Taking the closure of the left and the right hand side we arrive at $K \subseteq Q$. This finishes the proof.

Proof of Theorem 4. Let us first consider degenerate cases. If $S = \emptyset$, we have $h(S) = h(\{\emptyset\}) = 0$. On the other hand, for $S = \emptyset$, the whole space \mathbb{R}^d is the only maximal S-free set, and thus f(S) = 0. If S is nonempty we have $h(S) \in \mathbb{N}$ or $h(S) = +\infty$. In the case $h(S) = +\infty$ the assertion is trivial. Now assume $h(S) \in \mathbb{N}$.

Let us verify the assumption of Lemma 6 for f := h(S). Let P be an arbitrary d-dimensional S-free rational polyhedron in \mathbb{R}^d . We represent P by $P = H_1 \cap \cdots \cap H_n$, where $n \in \mathbb{N}$ and H_1, \ldots, H_n are closed rational halfspaces. Then $\operatorname{int}(H_1) \cap S, \ldots, \operatorname{int}(H_n) \cap S$ are S-convex sets whose intersection is empty. By the definition of the Helly number h(S), there exist indices $i_1, \ldots, i_f \in [n]$ such that $(\operatorname{int}(H_{i_1}) \cap \cdots \cap \operatorname{int}(H_{i_f})) \cap S = \emptyset$. It follows that $P \subseteq Q := H_{i_1} \cap \cdots \cap H_{i_f}$, where Q is an S-free polyhedron with at most f facets. Thus, the assumption of Lemma 6 is fulfilled. Lemma 6 yields the assertion.

Proof of Theorem 5. Directly from the definition of the Helly number it follows that for every $S \subseteq \mathbb{R}^d$ and every convex set $A \subseteq \mathbb{R}^d$ one has

$$h(S \cap A) \le h(S). \tag{10}$$

Using Theorem 4, (10) and Doignon's theorem (represented by (2)) we obtain $f(A \cap \mathbb{Z}^d) \leq h(A \cap \mathbb{Z}^d) \leq h(\mathbb{Z}^d) = 2^d$, which shows (4).

For the verification of (5) it suffices to establish the existence of maximal \mathbb{Z}^d -free polyhedra with 2^d facets. Such polyhedra can easily be constructed. Let $\|\cdot\|_1$ be the l_1 -norm in \mathbb{R}^d and let c be the vector in \mathbb{R}^d whose components are all equal to 1/2. Let $P := \{x \in \mathbb{R}^d : \|x - c\|_1 \le d/2\}$. The polytope P is \mathbb{Z}^d -free since $\|z - c\|_1 \ge d/2$ for all $z \in \mathbb{Z}^d$ and is maximal \mathbb{Z}^d -free since each of the 2^d facets of P is 'blocked' by a point from $\{0,1\}^d$. This shows $f(\mathbb{Z}^d) \ge 2^d$ and yields (5).

For every $S \subseteq \mathbb{R}^d$ the trivial equality $f(S \times \mathbb{R}^n) = f(S)$ holds. The latter equality and Doignon's theorem yield $f(\mathbb{Z}^d \times \mathbb{R}^n) = f(\mathbb{Z}^d) = 2^d$, which verifies (7). Inequality (4) is a straightforward consequence of (7) and (10).

Remark 7. As can be seen from the proof of Theorem 4, the inequality $f(S) \leq h(S)$ can be improved to

$$f(S) \le h\left(\left\{\operatorname{int}(P) \cap S \,:\, P \text{ is a rational polyhedron in } \mathbb{R}^d\right\}\right).$$

Thus, in the proof of Theorem 5 it is sufficient to apply the following 'rational' version of Helly's theorem:

$$h\left(\left\{\operatorname{int}(P)\cap S: P \text{ is a rational polyhedron in } \mathbb{R}^d\right\}\right) = 2^d.$$
 (11)

Note that, for (11), replacing int(P) by P does not change the family on the left hand side. A very short proof of (11) was given by Bell [6].

We also remark that (11) can be used to show $h(\mathbb{Z}^d) = 2^d$ (the full version of Doignon's theorem). This is done as follows. Let $n \in \mathbb{N}$, $n \geq 2^d$ and let A_1, \ldots, A_n be convex sets in \mathbb{R}^d such that for all $1 \leq i_1 < \cdots < i_{2^d} \leq n$ one has $A_{i_1} \cap \cdots \cap A_{i_{2^d}} \cap \mathbb{Z}^d \neq \emptyset$. Using (11) we now show $A_1 \cap \cdots \cap A_n \cap \mathbb{Z}^d \neq \emptyset$. Consider the box $B := [-N, N]^d$ with N > 0 large enough to guarantee that for all $1 \leq i_1 < \cdots < i_{2^d} \leq n$ one has $A_{i_1} \cap \cdots \cap A_{i_{2^d}} \cap B \cap \mathbb{Z}^d \neq \emptyset$. Since, for every $i \in [n]$, the convex hull of $A_i \cap B \cap \mathbb{Z}^d$ ($i \in [n]$) is an integral polytope, one can determine rational polytopes P_1, \ldots, P_n such that, for every $i \in [n]$, one has $A_i \cap B \cap \mathbb{Z}^d = \operatorname{int}(P_i) \cap \mathbb{Z}^d$. Applying (11) to the sets $\operatorname{int}(P_1) \cap \mathbb{Z}^d, \ldots, \operatorname{int}(P_n) \cap \mathbb{Z}^d$ we deduce $\operatorname{int}(P_1) \cap \cdots \cap \operatorname{int}(P_n) \cap \mathbb{Z}^d \neq \emptyset$. Hence $A_1 \cap \cdots \cap A_n \cap \mathbb{Z}^d \neq \emptyset$. This implies $h(\mathbb{Z}^d) \leq 2^d$. The inequality $h(\mathbb{Z}^d) \geq 2^d$ follows by considering the family \mathcal{F} of 2^d sets $\{0,1\}^d \setminus \{z\}$ with $z \in \{0,1\}^d$. The elements of \mathcal{F} are \mathbb{Z}^d -convex, the intersection of \mathcal{F} is emtpy, and the intersection of every nonempty proper subfamily of \mathcal{F} is nonempty.

Remark 8. We indicate that the authors of [7] work under somewhat more general assumptions than the assumptions of Theorem 1. They consider the following sets:

- an affine subspace W of \mathbb{R}^n (where $n \in \mathbb{N}$);
- a subset S of $W \subseteq \mathbb{Z}^n$ such that $S = \mathbb{Z}^d \cap C$ for some convex set $C \subseteq W$;
- a closed, convex set K such that $K \subseteq W$, the relative interior of K does not contain points of S and such that K is inclusion-maximal with respect to the above properties.

Also in this more general situation the polyhedrality of K and a bound on the number of facets of K can be determined using Theorem 4 and Doignon's theorem. Let d be the dimension of W. It suffices to consider the case that K is d-dimensional and $S \neq \emptyset$. Let us fix a nonsingular affine transformation $T: W \to \mathbb{R}^d$ which maps some point of $W \cap \mathbb{Z}^d$ to the origin. Then $\Lambda := T(W \cap \mathbb{Z}^d)$ is a lattice in \mathbb{R}^d and T(K) is a maximal T(S)-free set. Doignon's theorem implies $h(\Lambda) = 2^r$, where r is the rank of Λ . Furthermore, $h(T(S) \cap \Lambda) \leq h(\Lambda)$. Taking into account Theorem 4 we deduce that T(K) (and, by this, also K) is a polyhedron with at most 2^r facets.

References

[1] K. Andersen, Q. Louveaux, R. Weismantel, and L. A. Wolsey, *Inequalities from two rows of a simplex tableau*, Integer programming and combinatorial optimization, Lecture Notes in Comput. Sci., vol. 4513, Springer, Berlin, 2007, pp. 1–15.

- [2] G. Averkov and R. Weismantel, Transversal numbers over subsets of linear spaces, 10pp., Preprint arXiv:1002.0948 (to appear in Adv. Geom.), 2009.
- [3] E. Balas, Intersection cuts—a new type of cutting planes for integer programming, Operations Res. 19 (1971), 19–39.
- [4] A. Basu, M. Conforti, G. Cornuéjols, and G. Zambelli, *Maximal lattice-free convex sets in linear subspaces*, Math. Oper. Res. **35** (2010), no. 3, 704–720.
- [5] ______, Minimal inequalities for an infinite relaxation of integer programs, SIAM J. Discrete Math. **24** (2010), no. 1, 158–168.
- [6] D. E. Bell, A theorem concerning the integer lattice, Studies in Appl. Math. **56** (1977), no. 2, 187–188.
- [7] S. S. Dey and D. A. Morán R., On maximal S-free convex sets, SIAM J. Discrete Math. 25 (2011), no. 1, 379–393.
- [8] S. S. Dey and L. A. Wolsey, Constrained infinite group relaxations of MIPs, SIAM J. Optim. **20** (2010), no. 6, 2890–2912.
- [9] J.-P. Doignon, Convexity in crystallographical lattices, J. Geometry 3 (1973), 71–85.
- [10] R. Fukasawa and O. Günlük, Strengthening lattice-free cuts using non-negativity, Discrete Optim. 8 (2011), no. 2, 229–245.
- [11] L. Lovász, Geometry of numbers and integer programming, Mathematical programming (Tokyo, 1988), Math. Appl. (Japanese Ser.), vol. 6, SCIPRESS, Tokyo, 1989, pp. 177–201.
- [12] H. E. Scarf, An observation on the structure of production sets with indivisibilities, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 9, 3637–3641.
- [13] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993.
- [14] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons Ltd., Chichester, 1986, A Wiley-Interscience Publication.
- [15] M. J. Todd, The number of necessary constraints in an integer program: A new proof of Scarf's theorem, Technical Report 355, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, N.Y., 1977.