DWDM PROJECT

All Roll Numbers of your Team:	18BCD7008
	18BCD7080
Student names in your team :	Kathal Aditya Rajendra
	Anshika Singh
Contribution by each team member in percentage	Kathal Aditya Rajendra : 51%
to complete this project:	Anshika Singh: 49%
Slot (L1/L2/L4):	L1
Title of the Project:	Daily News for Stock Market
	Prediction
Objective of the Project (What exactly the project	The goal of the project is to predict whether
is about?)	the stock goes up or down based on top 25
	headlines.

Dataset Link	Number of rows and	About columns
	Columns	
https://www.kaggle.com/aaron7sun/sto	Rows: 1989	Number of Categorical columns: 1
cknews?select=upload DJIA table.csv	Columns: 32	Number of Integer/Float Columns: 6
		Number of Pure String Columns: 25
		Unique Values in each Column:
		1. Open: 1980
		2. High:1983
		3. Low:1980
		4. Close:1978
		5. Volume:1897
		6. Adj Close:1978
		In string column, every text is unique.

Challenges identified in the project	How did you address that challenge?	References
1) The dataset doesn't contain	By creating NAN values randomly in	https://stackoverflow.com/questi
any NAN values.	different chosen columns with the	ons/36413314/filling-missing-
	help of random package.We haven't	data-by-random-choosing-from-
	generated random NAN values in	non-missing-values-in-pandas-
	Date and Label columns	<u>datafr</u>

2) Input contains NAN, infinity or	By either dropping NAN values from	https://datascience.stackexchang
a value too large for dtype	that column if not required or	e.com/questions/11928/valueerr
('float32')-dealing with nan	replacing NAN values with different	or-input-contains-nan-infinity-or-
values	methods.	a-value-too-large-for-
		dtypefloat32
3)_Applying new models	By importing respective models after	
	reading from the documentation	
	page.	
4) Dealing with string columns	For string columns we went through	https://www.analyticsvidhya.com
	various materials present online and	/blog/2018/02/the-different-
	chose different techniques.	methods-deal-text-data-
		<u>predictive-python/</u>
5) Improving accuracy	When using the uni-gram approach	https://towardsdatascience.com/
	for string columns specifically the	available-hyperparameter-
	maximum accuracy achieved was	optimization-techniques-
	57% thus we had to look into	<u>dc60fb836264</u>
	different techniques and hyper	
	parameters to increase that.	

Without Pre-processing- Different Algorithms	Performance(Accuracy/other confusion matrix measures)	Which model worked well on the test data and WHY?
<u>Light GBM</u>	Accuracy: 0.87 Recall: 0.86	Gradient Boosting(n_estim
Stratified 10 Fold (base = RandomForest)	Accuracy: 0.81 Recall: 0.85	ators=200) worked better than other models because overall
Stratified 10 Fold (base =XGBoost)	Accuracy: 0.82 Recall: 0.84	it's accuracy was high with good recall value.
Logistics Regression	Accuracy: 0.51 Recall: 1	
K – Nearest Neighbours(N = 5)	Accuracy: 0.61 Recall: 0.67	
K – Nearest Neighbours(N = 11)	Accuracy: 0.58 Recall: 0.69	
K – Nearest Neighbours(N = 21)	Accuracy: 0.56 Recall: 0.69	

Decision Tree (criterion = 'gini', max_dept = 10)	Accuracy: 0.58 Recall: 0.83	
Decision Tree (criterion = 'entropy' , max_dept = 10)	Accuracy: 0.6 Recall: 0.82	
Random Forest(n_estimators=10)	Accuracy: 0.82 Recall: 0.79	
Random Forest(n_estimators=100)	Accuracy:0.84 Recall:0.87	
Random Forest(n_estimators=200)	Accuracy:0.85 Recall:0.90	
Gradient Boosting(n_estimators=10)	Accuracy:0.72 Recall:0.91	
Gradient Boosting(n_estimators=100)	Accuracy:0.86 Recall:0.90	
Gradient Boosting(n_estimators=200)	Accuracy: 0.88 Recall: 0.90	
XGBoost	Accuracy: 0.83 Recall: 0.85	
Meta Classifier Stacking Base classifier: Logistics Regression Estimators: KNN Decision Tree GradientBoosting	Accuracy: 0.37 Recall: 0.68	

Meta Classifier Stacking	Accuracy: 0.51	
Base classifier: Logistics Regression Estimators: Random forest	Recall: 1	
XGBClassifier		

Without Preprocessing(String Columns only)

Without Pre- processing - Different	Performance(Accuracy/ other confusion matrix measures)	Which model worked well on the test data and WHY?
Algorithms	measuresy	
Logistics Regression	0.50	No algorithm performed better.
KNN	0.55	Relatively, Light GBM stands out
Naive Bayes	0.50	better.
Decision Tree	0.55	
Random Forest	0.49	
Gradient Boosting	0.53	
XGB	0.53	
LGB	0.56	
StackingClassifier(RF	0.55	
,XGBoost)		
Stratified 10	0.53	
Fold(base=Random		
Forest)		

<u>ID</u>	Which Pre-processing technique you applied?	Why you applied that pre- processing Technique?	References
1	Convert all string to lowercase	String matching is usually case sensitive and thus has the same words but may contain characters in different cases(upper, lower) thus forming a new column in the document term matrix. This increases the dimensionality of the dataset.	https://www.analyticsvidhy a.com/blog/2018/02/the- different-methods-deal- text-data-predictive- python/
2	Remove punctuations	Punctuations are present in every text. These do not provide any value to the model when we use different algorithms. They serve as noise.	https://www.analyticsvidhy a.com/blog/2018/02/the- different-methods-deal- text-data-predictive- python/
3	Remove Stop Words	Stop Words are words that are used commonly in a language. Thus they have very high frequency but have no value to the model so we remove them.	https://www.analyticsvidhy a.com/blog/2018/02/the- different-methods-deal- text-data-predictive- python/
4	Remove Numerical Values	This depends on the objective of the project to remove numerical values or not. This project did not require them se we remove all numerical values.	https://www.analyticsvidhy a.com/blog/2018/02/the- different-methods-deal- text-data-predictive- python/
5	Porter Stemmer	The most used stemming algorithm . It is very gentle while creating stems when compared to lancaster.	https://www.geeksforgeeks .org/python-stemming- words-with-nltk/
6	Snowball Stemmer	This algorithm is also known as the Porter2 stemming algorithm. It is almost universally accepted as better than the Porter stemmer, even being acknowledged as such	https://www.geeksforgeeks .org/snowball-stemmer- nlp/

		by the individual who created the Porter stemmer	
7	Lancaster Stemmer	This one is the most aggressive stemming algorithm of the bunch.	https://towardsdatascience .com/stemming- lemmatization-what- ba782b7c0bd8
8	Lemmatization	Lemmatization converts the word into its root word, rather than just stripping the suffices. Thus reducing the number of columns.	https://towardsdatascience .com/stemming- lemmatization-what- ba782b7c0bd8
9	Removal Of Words based on Document Frequency	The intuition behind document frequency is that a word is not of much use to us if it's appearing in all the documents.	https://www.analyticsvidhy a.com/blog/2018/02/the- different-methods-deal- text-data-predictive- python/
10	N – Gram	N-Gram analysis helps us in understanding word association and reduce the dimensionality of the dataset.	https://www.tidytextmining. com/ngrams.html
11	Replacing NAN values with mean and median.	We can try to acquire better accuracy.It also decreases the loss of data.	Class Material
12	Replacing NAN values with forward fill and backward fill.	It is one more technique in which we can fill NAN values.Forward fill	Class Material
13	KNN Imputer	To complete missing values using K nearest neigbours.	Class Material
14	Standardization and Normalization of columns	Standardized values are useful to track data which is not easy to compare otherwise.Moreover,data normalization gets rid of a number of anomalies.	Class Material

15	Dealing with Outliers	Outliers may lead us to wrong results,so it's better if we remove them from our dataset.	Class Material
16	Smote Analysis	To address imbalanced datasets which is to oversample the minority class.	https://machinelearningma stery.com/smote- oversampling-for- imbalanced-classification/

UNI GRAM

Pre-processing technique name?	Data Mining Algorithms you applied?	Performance(Accuracy/other confusion matrix measures)		Which model worked well on the test data and WHY?
		(Before pre-processing)	(After Pre-processing)	
Drop Na +	KNN(N = 5 <u>)</u>	Accuracy: 0.61	Accuracy:0.62	Light GBM model
toLowerCase		Recall: 0.67	Recall:0.66	worked well on the
IZAIAI	LCNA	A 0 0 7	A	test data since it's
KNN	LGM	Accuracy: 0.87	Accuracy:0.89	based on decision
Imputer+toLowerCas		Recall: 0.86	Recall: 0.90	tree,it splits the tree
е				leaf with the est fit
Fill Na with mean +	XG Boost	Accuracy:0.83	Accuracy:0.84	whereas other
toLower + remove		Recall:0.85	Recall:0.88	boosting algorithms
numericals				split the leaf tree
	XG Boost			depth wise.Hence,its
Fill Na with mean +		Accuracy:0.83	Accuracy:0.86	faster and efficient.
remove Stop words +		Recall:0.85	Recall: 0.94	Moreover, boosting
Lancaster Stemming				always aims at
				reducing bias in the
KNN Imputer +	LGM	Accuracy:0.87	Accuracy: 0.90	dataset.That's why
remove numerical +		Recall:0.86	Recall: 0.92	LGM performs much
lemmatization				better.

	Gradient	Accuracy:0.85	Accuracy:0.90	
Fill forward +	Boostin <u>g</u>	Recall:0.90	Recall:0.92	
tokenization(min_df				
= 0.01 , max_df =				
0.95)				
Fill backward +	LGM	Accuracy:0.87	Accuracy:0.88	
remove stop words +		Recall:0.86	Recall:0.90	
remove				
numerical+lemmatiza				
tion + token(min_df =				
0.1 , max_df = 0.85)				

UNI Gram (String Columns only)

Pre-processing technique name?	Data Mining Algorithms you applied?	Performance(Accuracy/other confusion matrix measures)		Which model worked well on the test data and
		(Before pre- processing)	A(After pre- processing	WHY?
toLowerCase+remove	1.Logistic Regression	0.50	0.49	No algorithm
stop words+remove	2.KNN	0.55	0.53	performed better.
numerical+remove	3.Naive Bayes	0.50	0.49	Relatively, Decisio
punctuation+snowball	4.Decision Tree	0.55	0.56	n tree stands out
stemmer+tokenization(5.Random Forest	0.49	0.53	better.
min_df=0.01,max_df=0.	6.Gradient Boosting	0.53	0.51	
95)	7.XGB	0.53	0.51	
	8.LGB	0.56	0.52	
	9.StackingClassifier(RF,XG	0.55	0.56	
	Boost)			
		0.53	0.53	

10.Stratified 10		
Fold(base=Random		
Forest)		

BI GRAM(String Columns only)

When we tried to run bi gram analysis with both numerical and string columns the google colab notebook re started throwing an error that RAM usage was exceeding the limit. The highest accuracy for uni gram analysis for only string columns was 57%. Here we can see that the highest is above 80.

Pre-processing technique name?	Data Mining Algorithms you applied?	Performance(Accuracy/other confusion matrix measures) (Before pre-processing) (After Pre-processing)		Which model worked well on the test data and WHY?
toLowerCase	Stratified 10 Fold (base = RandomForest)	Accuracy: 0.81 Recall: 0.98	Accuracy: 0.82 Recall: 0.98	Stratified 10 fold (base=Random Forest)model works
toLower + remove numericals	Decision Tree (criterion = 'gini', max_dept = 10)	Accuracy: 0.55 Recall: 0.96	Accuracy: 0.56 Recall: 0.95	better than other models because it

				Austra on startifical
remove Stop words + Lancaster Stemming	KNN(N = 5)	Accuracy: 0.50 Recall: 1	Accuracy: 0.51 Recall: 1	trains on stratified data again and again which creates a bias in it.Due to
remove numerical + lemmatization	Gradient Boosting(n_estima tors=200)	Accuracy: 0.83 Recall: 0.86	Accuracy: 0.81 Recall: 0.88	this, we are getting higher accuracy and higher recall value. Moreover, thi
toLowercase + remove stop words + remove numerical + Remove punctuation + porter stemmer + tokenization(min_df = 0.01 , max_df = 0.95)	Meta Classifier Stacking Base classifier: Light GBM Estimators: KNN Decision Tree GradientBoosting	Accuracy: 0.47 Recall:0.52	Accuracy: 0.58 Recall: 0.63	s also handles noise in the dataset.
toLowercase + remove stop words + remove numerical+lemmatiza tion + token(min_df = 0.1 , max_df = 0.90) + max_number = 700	XGBoost	Accuracy:0.75 Recall: 0.91	Accuracy: 0.84 Recall: 0.91	
toLowercase + remove stop words + remove numerical + Remove punctuation + snowball stemmer + tokenization(min_df = 0.01 , max_df = 0.95)	RandomForest(n = 200)	Accuracy: 0.84 Recall: 0.97	Accuracy: 0.87 Recall: 0.82	

Summary:

Number of Pre-processing Techniques applied with their names: 19

- 1. Replacing Nan values with mean
- 2. Replacing Nan values with median
- **3.** forward fill
- **4.** backward fill
- 5. KNN Imputer
- **6.** dropping NAN values
- **7.** Standard Scaler(Standardization)

- 8. Smote Analysis
- 9. Convert all string to lowercase
- **10.** Remove punctuations
- **11.** Remove Stop Words
- 12. Remove Numerical Values
- 13. Stemmer
- **14.** Lemmatization
- **15.** Removal Of Words based on Document Frequency,
- **16.** N Gram.
- **17.** Removing Outlier using Z Score
- 18. Removing outliers using IQR
- 19. Removing outliers using quantiles

Number of Data Mining Algorithms applied with their names: 10

- 1. K-Nearest Neighbour(KNN)
- 2. Logistic Regression
- 3. Random Forest Classifier
- 4. Decision Tree Classifier
- 5. Gradient Boosting
- 6. Gaussian Naive Bayes
- 7. XG Boost
- 8. Light GBM
- 9. Stratified 10 Fold (base = RandomForest)
- 10. Stratified 10 Fold (base = XGBoost)

Which algorithm showed highest performance after "All" pre-processing techniques and WHY?:

In UNIGRAM analysis,LGM showed the highest performance with an accuracy of 90% and has low number of false positives and false negatives when compared to other models. Moreover, we know that boosting works while training and testing the missing values constantly, which is one of the reasons for it's higher accuracy.

In BIGRAM analysis, Stratified Fold 10(base=Random Forest) works better than other models because it trains on stratified data again and again which creates a bias in it. Due to this, we are getting higher accuracy and higher recall value. Moreover, this also handles noise in the dataset.

Conclusion-Write in your own words:

In conclusion achieved an accuracy above 80 percent in both cases when considering only string columns and string + numerical. We saw drastic changes in recall and accuracy when hyper parameters are changed and association of words is considered. When training the model.

Since we had limited rows and there was a bias in result in unigram analysis of only strings columns we used Stratified k fold technique to deal with this and also looked at various n-gram approaches.

We also applied a better version of XGBoost that is Light GBM which performed better than it in almost all cases.