Handreichung zum Praktikumsversuch

Frequenzganganalyse

Abbildung 1: Harmonische Schwingung in Zeigerbild und Zeitfunktion

Abbildung 2: Phasenverschiebung φ von x_a , bezogen auf x_e

$$e^{j\varphi} = \cos\varphi + j \cdot \sin\varphi$$
 (Eulersche Formel)
 $\cos^2\varphi + \sin^2\varphi = 1$

Abbildung 3: Messprinzip zur Frequenzganganalyse

Abbildung 4: Verlauf der Signalgrößen $x_e(t)$ und $x_a(t)$

Abbildung 5: Entstehung der Lissajous-Figur (Ellipse) auf dem Oszilloskopbildschirm

Grafische Darstellung des Frequenzgangs:

Abbildung 6: Bode-Diagramm mit Amplitudengang (oben) und Phasengang (unten)

Abbildung 7: Ortskurve

Abbildung 8: Ortskurve mit Einheitskreis und Hilfslinie

Tabelle 1: Geradenapproximation des Amplitudenganges für einfache Übertragungsglieder

Systemverhalten	Approximierter Amplitudengang
P-Verhalten	G in dB
$G(j\omega) = K$	
	0 $1g\omega$
I-Verhalten	G in dB
$G(j\omega) = \frac{1}{j\omega T_I}$	$0 \frac{1}{\frac{1}{T_I}} \log \omega$
D-Verhalten	G in dB
$G(j\omega) = j\omega T_D$	
	$\begin{array}{c c} 0 & & \\ \hline \frac{1}{T_D} & \lg \omega \end{array}$
T ₁ -Verhalten	G in dB
$G(j\omega) = \frac{1}{1 + j\omega T_1}$	$\frac{1}{T_1}$ $\log \omega$
PD-Verhalten	G in dB
$G(j\omega) = 1 + j\omega T_D$	$\frac{1}{T_D} \qquad \qquad$

Konstruktion logarithmischer Frequenzgänge:

Beispiel: Gegeben sei folgende Frequenzganggleichung:

$$G(j\omega) = \frac{1+j\omega T_D}{(1+j\omega T_1)\cdot(1+j\omega T_2)}$$
 mit $T_D = 0.5s$; $T_1 = 2.5s$; $T_2 = 0.025s$

 \rightarrow Zerlegung von $G(j\omega)$ in Faktoren:

$$G(j\omega) = (1 + j\omega T_D) \cdot \frac{1}{1 + j\omega T_1} \cdot \frac{1}{1 + j\omega T_2} = G_1(j\omega) \cdot G_2(j\omega) \cdot G_3(j\omega)$$

mit
$$G_1(j\omega) = 1 + j\omega T_D;$$
 $G_2(j\omega) = \frac{1}{1 + j\omega T_1};$ $G_3(j\omega) = \frac{1}{1 + j\omega T_2}$

→ Logarithmierung der zerlegten Frequenzganggleichung

$$lg[G(j\omega)] = lg[G_1(j\omega) \cdot G_2(j\omega) \cdot G_3(j\omega)] = lgG_1(j\omega) + lgG_2(j\omega) + lgG_3(j\omega)$$

$$lg[G(j\omega)] = lg[G_1(j\omega) \cdot G_2(j\omega) \cdot G_3(j\omega)] = lgG_1(j\omega) + lgG_2(j\omega) + lgG_3(j\omega)$$
$$lg[G(j\omega)] = lg(1 + j\omega T_D) + lg\frac{1}{1 + j\omega T_1} + lg\frac{1}{1 + j\omega T_2}$$

$$\rightarrow \omega_{e1} = \frac{1}{T_D} = 2s^{-1}; \ \omega_{e2} = \frac{1}{T_1} = 0.4s^{-1}; \ \omega_{e3} = \frac{1}{T_1} = 40s^{-1}$$

Abbildung 9: Konstruktion des logarithmischen Amplitudenganges (grafische Addition)

Beachte: Geradenanstieg a der Asymptoten im logarithmischen Amplitudengang immer:

$$a = \frac{[dB]}{[Dec]} = k \cdot \frac{20dB}{Dec} \text{ mit } k \in \mathbb{N}; (Dec \dots Dekade)$$

Tabelle 2: Übertragungsverhalten linearer Glieder (Ortskurve und Bode-Diagramm)

