DEEP LEARNING

FOR COMPUTER VISION

Summer School at UPC TelecomBCN Barcelona. June 28-July 4, 2018

Instructors

Organized by

Supported by Vilynx.

+ info: http://bit.ly/dlcv2018

Day 4 Lecture 1

3D Analysis

Javier Ruiz Hidalgo

Associate Professor
Universitat Politecnica de Catalunya
Technical University of Catalonia

[course site]

Outline

- Motivation
- Point Clouds
- 3D datasets
- Deep Learning considerations
- Techniques
 - o 2.5D
 - Voxelization
 - Projection
 - Direct
- Conclusions

Acknowledgments

Belen Luque López CV Master student

Alba Pujol Miró PhD Student

Motivation

- New / cheaper / smaller sensors to acquire 3D structure of the scene
 - Microsoft Kinect, Structure Sensor, Primesense Carmine
 - New datasets
- Virtual and Augmented reality applications

Point clouds (1)

- Common representation for 3D data
- Collection of data points defined by a given coordinates system
- Represents surface of objects
- Usually in Cartesian Coordinate System
 - o X,Y,Z coordinates for each point of the cloud

3D Point cloud of a Torus

Point clouds (2)

Extra data can be added for each point:

- Color (RGB)
- Orientation
- Curvature

Point clouds vs. Meshes

 A more complete 3D representation may include faces defined between points / vertices

Face-Vertex Meshes

3D datasets: Classification

Large Dataset of Object Scans

- PrimeSense Carmine sensor
- o 10k scans
- o 43 objects

3D datasets: Pose estimation

- T-less: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects
 - O Primesense Carmine, Kinect v2 and Canon IXUS 950 sensors
 - o 38k (training) + 10k (test) scans
 - 30 objects + groundtruth pose

3D datasets: Segmentation

Sematic3d

- Velodyne LIDAR sensor
- 30 scenes, 1 billion labelled points
- o 8 classes

ScanNet

- Structure sensor
- 1.5k scenes, 2.5M views
- o 20 classes

3D datasets: Autonomous driving

- <u>Cityscapes</u>: semantic understanding of urban street scenes
 - Stereo cameras
 - o 5 cities, 20k images
 - 20 classes (instances)

3D datasets: Scene understanding (1)

- SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite
 - Kinect sensor
 - o 10k scans

Room Layout

Semantic Segmentation

Detection and Pose

3D datasets: Scene understanding (2)

- Stanford 2D-3D-Semantics dataset
 - Kinect sensor
 - o 70k scans, 6 areas with over 6000 m²
 - o 13 classes

Deep learning from 3D point clouds? (1)

There are several challenges when using 3D point clouds in a deep learning framework:

1. Undefined neighborhood

Image neighbours are easily defined by their connectivity

Point cloud neighbours need to be explicitly defined (Euclidean distance)

Deep learning from 3D point clouds? (2)

There are several challenges when using 3D point clouds in a deep learning

framework:

2. No lattice (convolution layers?)

Deep learning from 3D point clouds? (3)

There are several challenges when using 3D point clouds in a deep learning framework:

3. Different density

Velodyne LIDAR data

Techniques

RGB-D / 2.5D Data

Multiview Projection

Voxelization

Point clouds

RGB-D / 2.5D data (1)

Use depth as RGB + Depth (RGB-D) images

- Very common and used in the deep learning literature
 - o RAW data from Kinect / Structure / Primesense sensors
- Multiple applications (classification, gesture recognition, semantic segmentation, etc.)

RGB-D / 2.5D data (2)

Straight-forward solution → include depth as a new channel (RGBD input)

RGB-D / 2.5D data (3)

However, better results are obtained when depth is incorporated as a

two-stream network

Voxelization

Discretize 3D space with occupancy grid

- Difficult to define a voxel size for all applications (density of point clouds)
- Use 3D convolutional layers

Voxelization: Architecture examples

3D ShapeNets

VoxNet

Projection

- Instead of using the point cloud directly or voxelize it, project back the point cloud into 1 (single) or several (multi-view) images
- Use the projected images as input tensors for the network

Projection: Example (1)

Point cloud 1

Correspondence matching

Find correspondent 3D points between two point clouds

Project neighbouring points into principal plane for the two candidates

Projection: Example (2)

Multiview projections

Voxelization vs. Projection (1)

Experiments indicate that projection based multiview CNNs perform better than voxelized volumetric representations

Accuracy in object classification

Voxelization vs. Projection (2)

Experiments indicate that projection based multiview CNNs perform better than voxelized volumetric representations

New architectures are closing the gap

Point clouds

Is it possible to use point clouds directly in a learning framework?

PointNet (1)

Novel deep learning architecture that directly consumes point clouds

PointNet (2)

Input is an unordered list of XYZ coordinates (point cloud)

Graph Neural Networks - GNNs (1)

Generalization of CNNs to work on arbitrarily structured graphs

Graph Neural Networks - GNNs (2)

Build graphs from 3D point clouds

Conclusions

- Point clouds rich representation of 3D data
- Working with point clouds on deep learning frameworks is a challenge due to the unorganized nature of point clouds
- Techniques
 - RGB-D / 2.5D data
 - Voxelization
 - Multi-view projections
 - Point clouds as input gaining momentum

Questions?

PointNet (3)

Classification results

	input	#views	accuracy avg. class	accuracy overall
SPH [11]	mesh		68.2	39-3
3DShapeNets [28]	volume	1	77.3	84.7
VoxNet [17]	volume	12	83.0	85.9
Subvolume [18]	volume	20	86.0	89.2
LFD [28]	image	10	75.5	356
MVCNN [23]	image	80	90.1	355
Ours baseline	point	-	72.6	77.4
Ours PointNet	point	1	86.2	89.2

Table 1. Classification results on ModelNet40. Our net achieves state-of-the-art among deep nets on 3D input.

Projection: Example (3)

Panoramic projections: DeepPano

