

Presents: Monika Krzak

Contact me at: m.krzak@na.iac.cnr.it

National Research Council - Library Via P. Castellino 111, 80131, Napoli Close to Montedonzelli Metro 1 Station

Outline

- What is single-cell RNAseq (scRNAseq) ?
 - scRNAseq technology
 - ScRNAseq protocols and data types
 - Challenges in analyzing scRNAseq data
 - Preprocessing scRNAseq data dealing with noise and dimensionality
 - ScRNAseq Applications
- Online Materials
- Let's start!
 - SingleCellExperiment Object
 - Scater Package
 - CellDataSet Object
 - Monocle Package

AIM

Useful tools and functions for analysis of scRNAseq data

NOT: Golden standard analysis pipeline

Motivation

Sample

Single-cell RNAseq

Cell isolation

RNA extraction, Library preparation

Sequencing

AATTG

TGTAC TGTAC TGACG

GGAAA GCGCA ACGTG

COMPUTATIONAL TOOLS

INVESTIGATE VARIOUS BIOLOGICAL QUESTIONS

Analysis

Quantification

Count matrix scRNAseq dataset

Noise in the data!

Alignment

Reference genome

ScRNAseq protocols

ScRNAseq data types

Read counts

	cell 1	cell 2	cell 3	 cell M
gene 1	0	0	0	0
gene 2	20	22	1	5
gene 3	90	26	10	10

gene N	5	5	1	5

bigger counts

UMI counts

	cell 1	cell 2	cell 3	 cell M
gene 1	0	0	0	0
gene 2	10	5	1	2
gene 3	27	10	3	3
gene N	3	2	1	0

smaller counts

Both data types has different characteristics and contain different source of noise

Not all computational methods are suitable for both data types!

Challenges in analyzing scRNAseq data

Challenges are posed by:

- Technical and biological factors
- Dropouts missing information about genes expression
- Outliers
- High-dimensionality
 - o nr genes: ~ thousands
 - o nr cells: ~ hundreds / thousands

Preprocessing scRNAseq data

For removing noise

FILTERING low quality cells

	cell1	cell2	cell3
gene A	18	28	3
gene B	6	140	0
gene C	180	35	0
gene D	0	0	2

NORMALIZATION

	cell1	cell2	cell3
gene A	18	28	3
gene B	6	140	0
gene C	180	35	0
gene D	68	67	2

factor 1

FILTERING lowly expressed genes

	cell1	cell2	cell3
gene A	18	28	3
gene B	6	140	C
gene C	180	35	C
gene D	0	0	2

IMPUTATION - optional

	cell1	cell2	cell3
gene A	18	28	3
gene B	6	140	18
gene C	180	35	6
gene D	68	67	2

scaling factor 2

^{*} scaling factor 3

Preprocessing scRNAseq data

For dealing with dimensionality

FEATURE SELECTION Highly variable genes

DIMENSION REDUCTION

ScRNAseq Applications

DIFFERENTIAL EXPRESSION

TRACKING STAGES OF PROCESS

CELL POPULATION DETECTION

GENE REGULATORY NETWORKS

Online Materials

For this course:

My github materials:

https://github.com/mkrzak/Single Cell Analysis Workflow

Additional materials:

Single cell Workflows:

Marioni Workflow link

Risso Workflow link

Online single cell course:

https://hemberg-lab.github.io/scRNA.seq.course/

List of softwares for scRNAseq data analysis:

https://github.com/seandavi/awesome-single-cell

Up-to-date articles:

http://academickarma.org/theme/singlecell rna sequencing

Let's start!

Requirements:

- R and RStudio
- Bioconductor packages:

SingleCellExperiment

Class for storing data from single cell experiments

Scater

Tools for quality control and visualization of scRNA-seq data

Monocle

Package for downstream analysis of scRNAseq data

SingleCellExperiment

SingleCellExperiment(assays = list(counts = count_matrix, colData = cell_info, rowData = gene_info)

```
# genes # cells
Info about experiment

assays(2): counts logcounts
rownames(19896): gene1 gene2 ... gene19895 gene19896
Info about features

Info about cells

Info about cells
```

Quality control:

calculateQCMetrics()
isOutlier()

Useful for Filtering: calcAverage()

Normalization:

calculateCPM()
calculateFPKM()

Visualization:

runPCA() / plotPCA()
runTSNE() / plotTSNE()

plotExpression()
plotHighestExprs()
plotExplanatoryVariables()

Scater

plotHighestExprs()

plotTSNE(colour_by="marker_gene")

plotExpression()

CellDataSet

newCellDataSet(cellData = count_matrix, phenoData = cell_info, featureData = gene_info)

```
CellDataSet (storageMode: environment)
        # genes # cells
                         assayData: 218 features, 185 samples
                           element names: exprs
Info about experiment
                         protocolData: none
                         phenoData
                           sampleNames: SRR1033854_0 SRR1033855_0 ... SRR1034053_0 (185 total)
      Info about cells
                           varLabels: file total_mass ... num_genes_expressed (29 total)
                           varMetadata: labelDescription
                         featureData
                           featureNames: ENSMUSG00000000031.9 ENSMUSG00000000058.6 ... ENSMUSG00000096768.1
   Info about features
                           fvarLabels: gene id gene short name ... use for ordering (10 total)
                           fvarMetadata: labelDescription
                         experimentData: use 'experimentData(object)'
                         Annotation:
```


Useful for Filtering:

estimateDispersions() (BiocGenerics)
plot_ordering_genes()

Useful for Normaliation:

estimateSizeFactors() (BiocGenerics)

Dimension reduction:

reduceDimension()

Cell population Detection:

clusterCells()
plot_cell_clusters()

Monocle

Merry Christmas and Happy New Year!

