Forced Pendulum Numerical approach

Trond Svandal, Espen Sande, Solveig Masvie

UiO

April 2014 Revised slightly April 2015 by G.P.

Physical problem and equation

We have a pendulum of length I, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force. We denote the acceleration of gravity as g, and the angle of the pendulum as θ . The forcing has magnitude F and angular frequency ω , while α is a measure of the resistance force. This gives us the following equation of motion:

$$ml\frac{d^2\theta}{dt^2} + \alpha l\frac{d\theta}{dt} + mg\sin(\theta) = F\cos(\omega t)$$

Scaling

$$\frac{d^2\theta}{dt^2} + \frac{\alpha}{m}\frac{d\theta}{dt} + \frac{g}{l}\sin(\theta) = \frac{F}{ml}\cos(\omega t)$$

We assume that the forcing is near the resonance frequency:

$$\sqrt{g/I} = \omega + \Delta \omega$$
 \Rightarrow $\frac{g}{I} = \omega_0^2 = 1 + 2\omega \Delta \omega + \Delta \omega^2$

We also assume that the system has an periodic response with small amplitude. When we rescale the equation we assume that the leading non-linear term, the forcing, the damping, and the term associated with $\Delta\omega$ are of the same order of magnitude.

Scaling

First we change variable to $\tau=\omega t$, and scale the angle $\theta=Bz$. We also taylor expand the sine term.

$$z'' + \frac{\alpha}{m\omega}z' + \frac{\omega_0^2}{\omega^2}(z - \frac{B^2}{6}z^3) = \frac{F}{Bml\omega^2}\cos(\tau)$$

We want the non-linear term to be of the same order as the forcing, and we obtain this be choosing:

$$B^2 = \frac{F}{BmI\omega^2} \quad \Rightarrow \quad B = \left(\frac{F}{mI\omega^2}\right)^{\frac{1}{3}}$$

We use our assumptions and introduce:

$$\epsilon = B^2, \quad \beta \epsilon = \frac{\alpha}{m\omega}, \quad \kappa = \frac{1}{6}, \quad \gamma \epsilon = \frac{2\Delta\omega}{\omega} + \left(\frac{\Delta\omega^2}{\omega^2}\right),$$

which implies that the damping and linear detuning are both weak.

Scaling

There is ambiguity, in form of a constant factor, concerning the identification of κ and ϵ .

The equation becomes:

$$z'' + \epsilon \beta z' + (1 + \gamma \epsilon)z - \kappa \epsilon z^3 = \epsilon \cos(\tau) + O(\epsilon^2)$$

where the term $\beta z'$ represents linear damping, $(1+\gamma\epsilon)z$ represents linear detuning, $\kappa\epsilon z^3$ represents nonlinear detuning and $\epsilon\cos(\tau)$ represents the forcing.

Asymptotic solution

We use:
$$z = z_0 + \epsilon z_1 + O(\epsilon^2)$$

This gives the leading order terms:

$$\epsilon^0: \quad z_0'' + z_0 = 0 \quad \Rightarrow \quad z_0 = ae^{i\tau} + c.c$$

To decide a we need to use the terms linear in ϵ :

$$\epsilon^{1}: z_{1}'' + z_{1} = -\gamma z_{0} - \beta z_{0}' + \kappa z_{0}^{3} + \cos(\tau) = e^{i\tau}(-\gamma a - i\beta a + \frac{1}{2} + 3\kappa a|a|^{2}) + \kappa a^{3}e^{3i\tau} + c.c$$

Since $e^{i\tau}$ and its complex conjugated solve the homogeneous equation for z_1 we need to exclude them from the RHS in order to avoid secular terms in the particular solution.

Asymptotic solution

$$-\gamma a - i\beta a + \frac{1}{2} + 3\kappa a|a|^2 = 0$$

We write $a = |a|e^{i\delta}$

$$-\gamma|\mathbf{a}| - i\beta|\mathbf{a}| + 3\kappa|\mathbf{a}|^3 = -\frac{e^{-i\delta}}{2}$$
 (1)

$$|-\gamma|a| - i\beta|a| + 3\kappa|a|^3|^2 = |-\frac{e^{-i\delta}}{2}|^2$$

$$(3\kappa|a|^2 - \gamma)^2|a|^2 + \beta^2|a|^2 = \frac{1}{4}$$

This is a third order equation for $|a|^2 = \rho$

$$9\kappa^2 \rho^3 - 6\kappa \gamma \rho^2 + (\gamma^2 + \beta^2)\rho - \frac{1}{4} = 0$$

Asymptotic solution

When we have found $|a|^2$ numerically we find δ from eq. (1) $(\sin(\delta) = -2\beta |a|$ etc.)

With δ and |a| we can write the leading order solution as:

$$z_0(\tau) = 2|a|\cos(\tau + \delta)$$

Numerical solution

In order to solve the equation with a numerical ODE solver we rewrite it as two coupled equations.

We do this by introducing $x = \frac{dz}{d\tau}$:

$$z' = x$$

$$x' = -\epsilon \beta x - (1 + \epsilon \gamma)z + \epsilon \beta z^3 + \epsilon \cos(\tau)$$

The initial conditions are often x=z=0 or adopted from an analytic solution.

Numerical solution, case 1

$$z'' + \epsilon \beta z' + (1 + \gamma \epsilon)z - \kappa \epsilon z^3 = \epsilon \cos(\tau)$$

Here we have $\gamma = 0$, $\beta = 0$ and $\kappa = 1$.

This gives the asymptotic solution: $z_0 = -2\left(\frac{1}{6}\right)^{\frac{1}{3}}\cos(\tau)$

Numerical solution, case 1

$$z'' + \epsilon \beta z' + (1 + \gamma \epsilon)z - \kappa \epsilon z^3 = \epsilon \cos(\tau)$$

Comments:

- Start from equilibrium z(0) = z'(0) = 0. No damping, the solution will not stabilize with a fixed amplitude.
- Start with $z(0) = z_0(0)$, $z'(0) = z'_0(0)$: Almost a periodic solution.

z' versus z: limit cycle is not approached.

Here we have $\gamma=1$, $\beta=0$ and $\kappa=0$. This gives the asymptotic solution: $z_0=\cos(\tau)$ We also have an exact solution: $z=\frac{1}{\gamma}\cos(\tau)+A\cos(\sqrt{(1+\gamma\epsilon)}\tau)$ where $A=-\frac{1}{\gamma}=-1$ if we start from equilibrium, and $A=-\frac{1}{\gamma}+1=0$ if we start like z_0

Comments:

- The solution that starts at rest consist of two solution with slightly different angular frequency, hence convolution. Max amplitude is two.
- Solution that starts as z_0 stays as z_0 for a long time. Eventually it will be convoluted as well.

Numerical solution, case 3

 $z'' + \epsilon \beta z' + (1 + \gamma \epsilon)z - \kappa \epsilon z^3 = \epsilon \cos(\tau)$

Here we have $\gamma = 0$, $\beta = 1$ and $\kappa = 1$.

This gives the asymptotic solution: $z_0 = 0.8698 \cdot \cos(\tau - 2.08687)$

Numerical solution, start from equilibrium

Comparsion with z_0 for large times.

Comments:

- Because of the damping term the solution for all initial conditions stabilizes at a fixed amplitude.
- For large times z_0 and z agree wery well.

$$\gamma=0, \beta=1$$
 and $\kappa=1$

Left: τ < 200,

right $\tau \leq 1000$.

Here we have $\gamma = 0$, $\beta = 0.1$ and $\kappa = 1$. This gives the asymptotic solution: $z_0 = 1.0984 \cdot \cos(\tau - 3.03153)$

Numerical solution, start from equilibrium

Comparsion with z_0 for large times. Slight deviations due to finite τ still noticeable.

Comments:

- Because of the damping term the solution for all initial conditions stabilizes at a fixed amplitude, but it takes a long time.
- Compared to case3 it takes a lot longer for the amplitude to stabilize at a fixed value

Maximum excursion
$$z'' + \epsilon \beta z' + (1 + \gamma \epsilon)z - \kappa \epsilon z^3 = \epsilon \cos(\tau)$$

For the case $\gamma=0$ and $\kappa=\beta=1$ we want to find the value for ϵ that gives an maximum excursion close to 10° and 30° .

$$\theta_{1,\max} = 10^{\circ}$$
 \Rightarrow $z_{1,\max} = \frac{\pi}{18\sqrt{\epsilon}}$
 $\theta_{2,\max} = 30^{\circ}$ \Rightarrow $z_{2,\max} = \frac{\pi}{6\sqrt{\epsilon}}$

Iterating over $\epsilon \in (0,1]$ while testing for

$$|z_{numeric,max} - z_{i,max}| < \chi$$

where $\chi \ll 1$ and i = 1, 2 gives this values for ϵ $\begin{array}{lll} \theta_{1,\max} & \Rightarrow & \epsilon = 0.04 \\ \theta_{2,\max} & \Rightarrow & \epsilon = 0.33 \end{array}$

$$z'' + \epsilon \beta z' + (1 + \gamma \epsilon)z - \kappa \epsilon z^3 = \epsilon \cos(\tau)$$

$$\gamma = 0, \beta = 1 \text{ and } \kappa = 1$$

$$z'' + \epsilon \beta z' + (1 + \gamma \epsilon)z - \kappa \epsilon z^3 = \epsilon \cos(\tau)$$

$$\gamma = 0, \beta = 1 \text{ and } \kappa = 1$$

$$z'' + \epsilon \beta z' + (1 + \gamma \epsilon)z - \kappa \epsilon z^3 = \epsilon \cos(\tau)$$

 $\gamma = 0, \beta = 0$ and $\kappa = 1$

Case 1 Maximum excursion $z'' + \epsilon \beta z' + (1 + \gamma \epsilon)z - \kappa \epsilon z^3 = \epsilon \cos(\tau)$

$$z'' + \epsilon \beta z' + (1 + \gamma \epsilon)z - \kappa \epsilon z^3 = \epsilon \cos(\tau)$$

Case 1 with $\epsilon = 0.33$ \Rightarrow $\theta_{2,\text{max}} = 30^{\circ}$ Comments:

Convolution makes restoring term change its sign ($\kappa \epsilon z^3 > z$); solution becomes unstable.