2.5.1: SAS - Multiple Predictors

Dr. Bean – Stat 5100

<u>Example</u>: (Exercises 6.15-6.17) A hospital administrator is studying the relation between patient satisfaction (Y, an index) and patient's age (X1, in years), severity of illness (X2, an index), and anxiety level (X3, an index). Data are reported for 46 randomly selected patients. For all index variables, higher values indicate more (satisfaction, severity, anxiety).

```
/* Input data (see Exercises 6.15-6.17) */
data patient;
   input satisfaction age severity anxiety @@; cards;
  48
         50
                51
                     2.3
                             57
                                    36
                                           46
                                                 2.3
  66
         40
                48
                     2.2
                             70
                                    41
                                           44
                                                 1.8
  89
         28
                43
                     1.8
                             36
                                    49
                                           54
                                                 2.9
                     2.2
                                                 2.4
  46
         42
                50
                             54
                                    45
                                           48
                     2.9
                                                 2.1
  26
         52
                62
                             77
                                    29
                                           50
                                                 2.4
  89
         29
                48
                     2.4
                             67
                                    43
                                           53
  47
                     2.2
                                                 2.3
         38
                55
                             51
                                    34
                                           51
  57
         53
                54
                     2.2
                             66
                                    36
                                           49
                                                 2.0
                                                 1.9
  79
                     2.5
                                    29
         33
                56
                             88
                                           46
  60
         33
                49
                     2.1
                             49
                                    55
                                           51
                                                 2.4
  77
         29
                                                 2.9
                52
                     2.3
                             52
                                    44
                                           58
                                                 1.8
  60
         43
                50
                     2.3
                             86
                                    23
                                           41
                                                 2.5
  43
         47
                53
                     2.5
                             34
                                    55
                                           54
  63
         25
                49
                     2.0
                                    32
                                                 2.6
                             72
                                           46
  57
         32
                52
                     2.4
                                    42
                                           51
                                                 2.7
                             55
                     2.0
  59
         33
                42
                             83
                                    36
                                           49
                                                 1.8
  76
         31
                47
                     2.0
                             47
                                    40
                                           48
                                                 2.2
  36
         53
                57
                     2.8
                             80
                                    34
                                           49
                                                 2.2
                                                 2.4
         29
                     2.5
  82
                48
                             64
                                    30
                                           51
  37
         47
                     2.4
                                           50
                                                 2.6
                60
                             42
                                    47
                                                 2.0
  66
         43
                53
                     2.3
                             83
                                    22
                                           51
  37
         44
                51
                     2.6
                                           51
                                                 2.2
                             68
                                    45
  59
         37
                53
                     2.1
                             92
                                    28
                                           46
                                                 1.8
run;
/* Look at scatterplot matrix */
proc sgscatter data=patient;
  matrix satisfaction age severity anxiety /
       markerattrs=(symbol=CIRCLEFILLED size=2pt);
  title1 'Patient Satisfaction Data';
run;
```



```
/* Fit regression model */
proc reg data=patient;
  model satisfaction = age severity anxiety;
  output out=out1 r=resid p=pred;
  title1 'Patient Satisfaction Regression';
run;
```

Number of Observations Used 46

Analysis of Variance									
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F				
Model	3	9120.46367	3040.15456	30.05	<.0001				
Error	42	4248.84068	101.16287						
Corrected Total	45	13369							

Patient Satisfaction Regression

Root MSE	10.05798	R-Square	0.6822
Dependent Mean	61.56522	Adj R-Sq	0.6595
Coeff Var	16.33711		

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	1	158.49125	18.12589	8.74	<.0001				
age	1	-1.14161	0.21480	-5.31	<.0001				
severity	1	-0.44200	0.49197	-0.90	0.3741				
anxiety	1	-13.47016	7.09966	-1.90	0.0647				


```
/* Joint 90% intervals for beta1, beta2, and beta3 */
proc reg data=patient;
  model satisfaction = age severity anxiety /
      clb alpha=.0333;
  title1 'Simultaneous 90% intervals for three predictors
effects';
run;
```

Simultaneous 90% intervals for three predictors effects

	Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	96.67% Confidence Limits			
Intercept	1	158.49125	18.12589	8.74	<.0001	118.59967	198.38283		
age	1	-1.14161	0.21480	-5.31	<.0001	-1.61434	-0.66888		
severity	1	-0.44200	0.49197	-0.90	0.3741	-1.52473	0.64072		
anxiety	1	-13.47016	7.09966	-1.90	0.0647	-29.09514	2.15482		

```
/* Simultaneous 90% prediction limits on two new patients
   (using Scheffe and Bonferroni), with profiles
      age=35, severity=45, anxiety=2.2
  and
      age=42, severity=61, anxiety=1.8
 */
data dummy; input age severity anxiety check; cards;
  35 45 2.2 1
  42 61 1.8 1
data temp; set patient dummy;
proc reg data=temp noprint;
  model satisfaction = age severity anxiety;
  output out=out1 p=Yhat stdi=seYhatnew;
    /* KEY: stdi is SE of individual prediction */
data out1; set out1;
  alpha = 0.10; /* 1-alpha is simult. pred. level */
                /* # of beta's (including intercept) */
 p = 4;
                /* sample size */
  n = 46;
                /* number of simultaneous intervals */
  q = 2;
  S = sqrt(g*finv(1-alpha,g,n-p)); /* Scheffe crit val */
  t = tinv(1-alpha/(2*q), n-p);
                                   /* Bonf. crit. val. */
  S upper = Yhat + S*seYhatnew;
  S lower = Yhat - S*seYhatnew;
  B upper = Yhat + t*seYhatnew;
  B lower = Yhat - t*seYhatnew;
proc print data=out1;
  where check = 1;
  var age severity anxiety Yhat S_lower S_upper
      B lower B upper;
  title1 'Simultaneous 90% intervals of individual
prediction';
  title2 'at two X-profiles, using Scheffe and Bonferroni';
run;
```

Simultaneous 90% intervals of individual prediction at two X-profiles, using Scheffe and Bonferroni

Obs	age	severity	anxiety	Yhat	S_lower	S_upper	B_lower	B_upper
47	35	45	2.2	69.0103	46.0553	91.9652	48.0122	90.0083
48	42	61	1.8	59.3350	31.3797	87.2903	33.7629	84.9071

