Feuille 5 : Transformée de Fourier

Exercice 1 (Calculs de transformées de Fourier) 1. Calculer la transformée de Fourier de $f(x) = e^{-|x|}$. Calculer celle de g(x) = U(x)f(x), U étant l'échelon unité, valant 1 sur \mathbb{R}_+ et 0 sinon. En déduire que :

$$F[x^n e^{-x} U(x)](\nu) = \frac{n!}{(1 + 2i\pi\nu)^{n+1}}$$

- 2. Calculer la transformée de Fourier de la fonction $\rho_n(x) = n\Pi(nx)$ (Π étant défini à l'équation (2). Tracer les graphes de ρ_n et $\hat{\rho}_n$. Que se passe-t-il quand $n \to +\infty$?
- 3. Modulation Evaluer $F[\cos(2\pi\nu_0x)f(x)]$. Exemple : $f(x)=\chi_{[-a,a]}(x)$. Illustration graphique.

Exercice 2 Le but de cet exercice est le calcul de la transformée de Fourier de $f(x) = e^{-\pi x^2}$.

- 1. Vérifier que $f \in L^1(\mathbb{R})$ et tracer son graphe.
- 2. Montrer que f est solution de l'équation différentielle :

$$y' + 2\pi xy = 0 \tag{1}$$

- 3. Appliquer la transformée de Fourier à l'équation (1) et en déduire l'équation différentielle vérifiée par \hat{f} .
- 4. En déduire le calcul de \hat{f} .

Exercice 3 (Fonction porte) Soit II la fonction définie sur R par :

$$\Pi(x) = \begin{cases} 1 & si & |x| \le 1/2 \\ 0 & si & |x| > 1/2 \end{cases}$$
 (2)

1. Calculer $\hat{\Pi}$ et tracer le spectre de Π . Vérifier le théorème du cours $\lim_{\nu\to\infty}\hat{\Pi}(\nu)=0$.

Exercice 4 (Fonction triangle) Soit Λ la fonction, affine par morceaux, valant 0 sur $]-\infty,-1]$ et $[1,+\infty[$, et 1 au point x=0.

- 1. Donner l'expression de $\Lambda(x)$.
- 2. Montrer que Λ est dérivable par morceaux, et montrer que l'on peut écrire $\Lambda'(x) = \Pi(x+1/2) \Pi(x-1/2).$
- 3. Calculer la transformée de Fourier de Λ' . En déduire celle de Λ .
- 4. Montrer que Λ s'exprime en fonction de Π par le produit de convolution $\Lambda = \Pi * \Pi$.

Exercice 5 (Fourier et convolution) Résoudre dans $L^1(\mathbb{R})$ l'équation intégrale (a>0):

$$\int_{-\infty}^{+\infty} e^{-a|x-t|} f(t) dt = e^{-x^2}$$

Exercice 6 (Fourier et convolution) Soit a et b deux réels tels que a, b > 0 et $a \neq b$.

- 1. Calculer la transformée de Fourier de $e^{-a|x|}$.
- 2. En déduire les valeurs des produits de convolution $\frac{1}{a^2+x^2}*\frac{1}{b^2+x^2}$ et $e^{-a|x|}*e^{-b|x|}$.

Exercice 7 (Fourier et convolution) Montrer, en utilisant la régularité d'une transformée de Fourier, qu'il n'existe pas de fonction χ , intégrable sur \mathbb{R} , non identiquement nulle, telle que $\chi * \chi = \chi$. En déduire que la convolution dans $L^1(\mathbb{R})$ n'admet pas d'élément neutre.

Exercice 8 (Equation de la chaleur) Soit l'équation aux dérivées partielles :

$$\begin{cases} \partial_t f = \partial_{xx} f \\ f(x,0) = \varphi(x) \end{cases}$$
 (3)

où φ est une fonction de $C^{\infty}(\mathbb{R})$ à support compact. On pose : $F(\nu,t)=\int_{-\infty}^{+\infty}f(x,t)\;e^{-2i\pi\nu x}dx$.

1. On suppose que la solution f appartient à l'espace $L^1(\mathbb{R})$. Vérifier que F vérifie :

$$\frac{\partial F}{\partial t} + 4\pi^2 \nu^2 F = 0$$

2. En déduire F, puis f.

Exol (modifié) 1) Calarler la TF de fine, e

2) En Sódvina la TF de gint 1

1) On a fe L'(IR) clavrement et (VreR) first e- 2010at + 1th alt = fe t (1+2010a) alt + fet (1-2010a) dt D'à (YREIR) f (91) = 2 1+412922 2) Du pre $\hat{f} \in \mathcal{L}^1(IR)$, le thotorome d'inversion ansure $f(x) = f(x)e^{i\pi xx}dx$ $\psi = 2\pi x$ Ansi $f(n) = \int \frac{2}{lR} \frac{2 \operatorname{ein}(n)}{1 + 4\pi^2 n^2} dn = \int \frac{1}{R} \frac{\operatorname{io}(n)}{(1 + v^2)} dv$ Or $\hat{g}(n) = \int_{R} \frac{1}{1+\nu^2} e^{-2i\pi\nu n} d\nu$ Rest conc claur one (freir) à la) = mf (-211 x) = TTe → / 1 e du = T/e

exo2 On pose finn e-1122 $On a ff = 2 f ot f(x) = o\left(\frac{1}{x^2}\right) x + \infty$ Donc fe 2°(R)

fin) 2) On a f'(n) = -211nf(n) Donc frentie (E) Y'+ 2TINY = 0 (a) On a $f(Y' + 2\pi n Y) = f(0) = 0$ linearlé(=) $f(Y') + 2\pi f(nY) = 0$ Or f (Y') = 2in = f(Y)(01) $f(n\Upsilon(n))(n) = \frac{-1}{2i\pi} \frac{d}{dr} \left(f(\Upsilon)(n)\right)$ D'oi 2iter (G) + 211 x -1 d () (x) = 0 (-, d ((a) + 2TOR ((b)) = 0 Des lors y et à verifient textes les deux (E), une oposaif linéaire homogène d'arone 1. Les solutions stant donc une devoite linéaire On a Y = AY at Y(O) = 1 A' après le thum A' inversión $Y(O) = \int_{R} e^{-\pi x^2} \partial x = 1$ It fixes A = 1If $f: x \mapsto e^{-\pi x^2}$ est un point fixe de f

∂X∈21(R) Exo 7 hoposons par l'absurde De las f(X*X)=f(X) xf(X)=f(X)=f(X) Dés lors X: 2 -> fo selon 2 Or par C° de X mr R prisone X e L¹

on soit que X = 0 on X = 1 (le cas, 0 n'est pas) Ainsi X-7 et 8'après Lebergre len X = 0 Abourde 1 n'y a donc pas d'élément peutre dons (&1, *) can mijon e * e = e -) Il faut être dans un empace plus siand Co Eler des Distributions