W1. Objectives, Challenges, State of the Art, Technologies

- Socio-economic context
- Technological evolution of Robotics & State of the Art
- New challenges for Robotics in Human Environments
- Decisional & Control Architecture for Autonomous Mobile Robots & IV
- Sensing technologies: Object Detection
- Sensing technologies: Robot Control & HRI
- Basic technologies for Navigation in Dynamic Human Environments
- Intelligent Vehicles: Context & State of the Art
- Intelligent Vehicles: Technical Challenges & Driving Skills

Place & Role of automobile in our human society

Automobile => Social & Industrial revolution in the 20th century !

The car today

Supposed to be a technological machine designed for enhancing individual Mobility

For most car owners it's more than that!

- ✓ Synonymous to motion freedom
- ✓ Often considered as a **Precious Personal Goods** & Showing a particular **Social Position**
- ✓ Also often synonymous to **Driving Pleasure** (including speed feeling)
- ✓ **Look / Performances & Comfort / Safety** are important choice criteria

But the reality is somewhat different!

(in particular in cities)

A Drastic Future Social & Economic Change

- Huge expected growth of the number of vehicles (3 Billions in 2050) & number of people in cities (75% of population in 2050)
- Human society is no more accepting the nuisances & the incredible socioeconomic cost of traffic accidents (~ 1.2 million fatalities / year in the world)
- Driving Safety is now becoming a major issue for both Governments (Regulation
 - + Supporting plans) & Automotive Industry (Technology + commercial issues)
- New Technologies can strongly help for:
 - ✓ Constructing Cleaner & More Intelligent Cars
 - => Next cars generation
 - ✓ Developing Sustainable Mobility solutions for smart cities
 - => Cybercars

The good news

- Thanks to the last decade advances in the fields of Robotics & ICT, Smart Cars & ITS are gradually becoming a reality
 - → Driving assistance & Autonomous driving, Passive & Active Safety systems, V2V & V2I communications, Green technologies for reducing fuel consumption & pollution... and also significant advances for **Embedded Perception & Decisional systems**

- Legal issue is also progressively addressed by Governmental authorities
 - → June 22, 2011: Law Authorizing Driverless Cars on Nevada roads ... Law also adopted later on by California and some other states in USA
 - →Some other countries (including Europe, Japan...) are also currently analyzing the way to adapt the legislation to this new generation of cars

Steps towards "Automated Road"

The Automotive approach (Advanced Driver Assistance Systems)

- Normal roads & High speed
- From ADAS to Fully Autonomous Driving

Numerous R&D projects in the world since about 30 years:

AHS in Japan; Path & IVI in USA;

Prometheus, Chauffeur, Carsense ... in Europe

Steps towards "Automated Road"

The "Cybercar" approach (Autonomous Vehicles in protected areas)

- Medium speed (e.g. 4m/s, 4 times average speed of classical mobile robots)
- From protected areas to progressively more open areas

Several R&D projects since about 2 decades:

ICVS in Japan
Praxitele, Parkshuttle, Cybercars ... in Europe

State of the Art Cybercar technologies for Sustainable Mobility

- An EU driven concept since the 90's: "Cybercar"
 - Autonomous Self Service Urban & Green Vehicles
 - Numerous R&D projects in Europe during more than 2 decades
 - Several European cities involved
 - Some commercial products already exist for protected areas (e.g. airports, amusement parks...), SME Robosoft, 2GetThere ...

Cycab (Inria /Robosoft)

Cybergo (Induct)

Parkshuttle Schiphol Airport (1997)

State of the Art Cybercar technologies for Sustainable Mobility

Several early large scale public experiments in Europe

Cybus experiment, La Rochelle 2012, 3 months (CityMobil EU project & Inria)

State of the Art Fully Autonomous Driving

- More than 25 years of research, both for off-road & road Vehicles
 - Significant recent steps towards fully autonomous driving
 Partly pushed forward by events such as DARPA Grand & Urban Challenges ... and Google Car project
 - Fully Autonomous driving is gradually becoming a reality, for both the Technical
 Industrial & Legal point of views
 - => e.g. Car industry announcements & Recent Nevada law for driverless cars

State of the Art Fully Autonomous Driving

- Several major events & results
 - Darpa Grand Challenge 2004 & Urban Challenge 2007
 - Intercontinental Autonomous Challenge 2010 (VIAC)
 - Google car project

State of the Art Advanced Driving Assistance Systems (ADAS)

- Increasing number of Products & Equipped commercial cars
- Traded by Automotive Constructors & Often developed by Car Suppliers

Intelligent Cars – Towards Driverless Cars?

Horizon 2025-30?

Nissan promises a driverless car for 2020

LE FIGARO 29/08/2013

Autonomous car: An industrial challenge for tomorrow!
French Minister of Industry & Carlos Ghosn (PDG Renault-Nissan)

Google Car 2011 140 000 miles covered

Toyota Automated Highway Driving Assist
Demo Tokyo 2013, Product 2017?

But also most of the Automotive Constructors!

e.g.

Tesla (90% Autonomous in 2016), Volvo, Mercedes Class S, BMW

...

Pictures & Movies

- p.2: Rights Reserved
- p. 3:
- Traffic Congestion: By Robert Jack Will- CC-BY-SA-2.0, via Wikimedia Commons
- Pollution: By Sheila flickr- CC BY-NC-ND 2.0
- Car accident: By La Cara Salma CC-BY-SA-3.0, via Wikimedia Commons
- Parking problems: Rights Reserved
- p.6: Rights Reserved
- p.7: © Inria
- p. 8:
- © Inria
- © Cybergo Induct
- Parkshuttle Schiphol Airport © 2getthere
- p. 11: Rights Reserved
- p. 12:
- By Ford Motor Company from USA (Collision Warning with Brake Support) - CC BY 2.0, via Wikimedia Commons
- Rights Reserved

- p. 13:
 - Autonomous Drive Nissan: Norbert Aepli, Switzerland CC-BY-3.0, via Wikimedia Commons
- By Flckr user jurvetson. Trimmed and retouched with PS9 by Mariordo - CC-BY-SA-2.0, via Wikimedia Commons
- © Volvo Car Group 2014
- C. Ghosn: By World Economic Forum from Cologny, Switzerland - CC-BY-SA-2.0, via Wikimedia Commons
- A. Montebourg: By Romain Clercq-Roques GNU Free Documentation License