

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 1 355 149 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
22.10.2003 Bulletin 2003/43

(51) Int Cl.7: G01N 33/48, C07H 21/04,
C12Q 1/68

(21) Application number: 03252022.3

(22) Date of filing: 31.03.2003

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PT RO SE SI SK TR

Designated Extension States:
AL LT LV MK

(30) Priority: 29.03.2002 US 368798 P

(71) Applicant: Ortho-Clinical Diagnostics, Inc.
Rochester, NY 14626-5101 (US)

(72) Inventor: Wang, Yixin
San Diego, CA 92130 (US)

(74) Representative: Mercer, Christopher Paul et al
Carpmaels & Ransford
43, Bloomsbury Square
London WC1A 2RA (GB)

(54) Assessing colorectal cancer

(57) A method of assessing the presence or absence of colorectal cancer or the likely condition of a person believed to have colorectal cancer is conducted by analyzing the expression of a group of genes. Gene

expression profiles in a variety of medium such as microarrays are included as are kits that contain them.

EP 1 355 149 A2

Description**BACKGROUND**

- 5 [0001] This application claims the benefit of U.S Provisional Application No.60/368,798 filed on March 29, 2002.
- [0002] This invention relates to diagnostics and prognostics for colorectal cancer based on the gene expression profiles of biological samples.
- [0003] Colorectal cancer is a heterogenous disease, consisting of tumors thought to emerge through three major molecular mechanisms: 1) mutations in the adenomatous polyposis coli (APC) gene, or the β -catenin gene, combined with chromosomal instability, 2) mutations in DNA mismatch repair genes, such as MLH1, MSH2, PMS1, PMS2 and MSH6, associated with microsatellite instability and mutations in genes containing short repeats, and 3) gene silencing induced by hypermethylation of the promoter regions of tumor suppressor genes. The genetic complement of individual colorectal cancers is likely to include different combinations of genetic instability, specific mutations, and gene silencing. Chromosomal instability (CIN) is a common feature of cancers in general. It implies an aneuploid phenotype, in which whole chromosomes or large parts of them are being lost or gained. Microsatellite instability (MIN) is found in diploid tumors with an increased mutation rate in short repeats. Both forms of genetic instability are common in colorectal cancer.
- [0004] Colorectal cancers thus have complex origins and involve a number of interactions in different biological pathways. Serum markers, histological, and cytological examinations historically used to assist in providing diagnostic, prognostic, or therapy monitoring decisions often do not have desired reliability. Likewise, while use of a single genetic marker (e.g., increased expression of a particular gene) may be beneficial, the diversity of the cancers make it more likely that a portfolio of genetic markers is the best approach.

SUMMARY OF THE INVENTION

- 25 [0005] The invention is a method of assessing the presence or absence of colorectal cancer or the likely condition of a person believed to have colorectal cancer. In the method, a gene expression profile of a patient sample is analyzed to determine whether a patient has a colorectal cancer, whether a patient does not have colorectal cancer, whether a patient is likely to get colorectal cancer, or the response to treatment of a patient being treated for colorectal cancer.
- 30 [0006] Articles used in practising the methods are also an aspect of the invention. Such articles include gene expression profiles or representations of them that are fixed in machine-readable media such as computer readable media.
- [0007] Articles used to identify gene expression profiles can also include substrates or surfaces, such as microarrays, to capture and/or indicate the presence, absence, or degree of gene expression.

DETAILED DESCRIPTION

- 35 [0008] The mere presence or absence of particular nucleic acid sequences in a tissue sample has only rarely been found to have diagnostic or prognostic value. Information about the expression of various proteins, peptides or mRNA, on the other hand, is increasingly viewed as important. The mere presence of nucleic acid sequences having the potential to express proteins, peptides, or mRNA (such sequences referred to as "genes") within the genome by itself is not determinative of whether a protein, peptide, or mRNA is expressed in a given cell. Whether or not a given gene capable of expressing proteins, peptides, or mRNA does so and to what extent such expression occurs, if at all, is determined by a variety of complex factors. Irrespective of difficulties in understanding and assessing these factors, assaying gene expression can provide useful information about the occurrence of important events such as tumorigenesis, metastasis, apoptosis, and other clinically relevant phenomena. Relative indications of the degree to which genes are active or inactive can be found in gene expression profiles. The gene expression profiles of this invention are used to diagnose and treat patients for colorectal cancer.
- 40 [0009] Sample preparation requires the collection of patient samples. Patient samples used in the inventive method are those that are suspected of containing diseased cells such as epithelial cells taken from a colon sample or from surgical margins. One useful technique for obtaining suspect samples is Laser Capture Microdissection (LCM). LCM technology provides a way to select the cells to be studied, minimizing variability caused by cell type heterogeneity. Consequently, moderate or small changes in gene expression between normal and cancerous cells can be readily detected. In a preferred method, the samples comprise circulating epithelial cells extracted from peripheral blood.
- 45 [0010] These can be obtained according to a number of methods but the most preferred method is the magnetic separation technique described in U.S. Patent 6,136,182 assigned to Immunivest Corp which is incorporated herein by reference. Once the sample containing the cells of interest has been obtained, RNA is extracted and amplified and a gene expression profile is obtained, preferably via micro-array, for genes in the appropriate portfolios.

[0010] Preferred methods for establishing gene expression profiles include determining the amount of RNA that is produced by a gene that can code for a protein or peptide. This is accomplished by reverse transcriptase PCR (RT-PCR), competitive RT-PCR, real time RT-PCR, differential display RT-PCR, Northern Blot analysis and other related tests. While it is possible to conduct these techniques using individual PCR reactions, it is best to amplify complementary DNA (cDNA) or complementary RNA (cRNA) produced from mRNA and analyze it via microarray. A number of different array configurations and methods for their production are known to those of skill in the art and are described in U.S. Patents such as: 5,445,934; 5,532,128; 5,556,752; 5,242,974; 5,384,261; 5,405,783; 5,412,087; 5,424,186; 5,429,807; 5,436,327; 5,472,672; 5,527,681; 5,529,756; 5,545,531; 5,554,501; 5,561,071; 5,571,639; 5,593,839; 5,599,695; 5,624,711; 5,658,734; and 5,700,637; the disclosures of which are incorporated herein by reference.

[0011] Microarray technology allows for the measurement of the steady-state mRNA level of thousands of genes simultaneously thereby presenting a powerful tool for identifying effects such as the onset, arrest, or modulation of uncontrolled cell proliferation. Two microarray technologies are currently in wide use. The first are cDNA arrays and the second are oligonucleotide arrays. Although differences exist in the construction of these chips, essentially all downstream data analysis and output are the same. The product of these analyses are typically measurements of the intensity of the signal received from a labeled probe used to detect a cDNA sequence from the sample that hybridizes to a nucleic acid sequence at a known location on the microarray. Typically, the intensity of the signal is proportional to the quantity of cDNA, and thus mRNA, expressed in the sample cells. A large number of such techniques are available and useful. Preferred methods for determining gene expression can be found in US Patents 6,271,002 to Linsley, et al.; 6,218,122 to Friend, et al.; 6,218,114 to Peck, et al.; and 6,004,755 to Wang, et al., the disclosure of each of which is incorporated herein by reference.

[0012] Analysis of the expression levels is conducted by comparing such intensities. This is best done by generating a ratio matrix of the expression intensities of genes in a test sample versus those in a control sample. For instance, the gene expression intensities from a diseased tissue can be compared with the expression intensities generated from normal tissue of the same type (e.g., diseased colon tissue sample vs. normal colon tissue sample). A ratio of these expression intensities indicates the fold-change in gene expression between the test and control samples.

[0013] Gene expression profiles can also be displayed in a number of ways. The most common method is to arrange a raw fluorescence intensities or ratio matrix into a graphical dendrogram where columns indicate test samples and rows indicate genes. The data is arranged so genes that have similar expression profiles are proximal to each other. The expression ratio for each gene is visualized as a color. For example, a ratio less than one (indicating down-regulation) may appear in the blue portion of the spectrum while a ratio greater than one (indicating up-regulation) may appear as a color in the red portion of the spectrum. Commercially available computer software programs are available to display such data including "GENESPRING" from Silicon Genetics, Inc. and "DISCOVERY" and "INFER" software from Partek, Inc.

[0014] Modulated genes used in the methods of the invention are shown in Table 1. The genes that are differentially expressed are shown as being either up regulated or down regulated in diseased cells. Up regulation and down regulation are relative terms meaning that a detectable difference (beyond the contribution of noise in the system used to measure it) is found in the amount of expression of the genes relative to some baseline. In this case, the baseline is the measured gene expression of a normal cell. The genes of interest in the diseased cells are then either up regulated or down regulated relative to the baseline level using the same measurement method. Diseased, in this context, refers to an alteration of the state of a body that interrupts or disturbs, or has the potential to disturb, proper performance of bodily functions as occurs with the uncontrolled proliferation of cells. Someone is diagnosed with a disease when some aspect of that person's genotype or phenotype is consistent with the presence of the disease. However, the act of conducting a diagnosis or prognosis includes the determination disease/status issues such as therapy monitoring. In therapy monitoring, clinical judgments are made regarding the effect of a given course of therapy by comparing the expression of genes over time to determine whether the gene expression profiles have changed or are changing to patterns more consistent with normal tissue.

[0015] Preferably, levels of up and down regulation are distinguished based on fold changes of the intensity measurements of hybridized microarray probes. A 2.0 fold difference is preferred for making such distinctions or a p-value less than .05. That is, before a gene is said to be differentially expressed in diseased versus normal cells, the diseased cell is found to yield at least 2 more, or 2 times less intensity than the normal cells. The greater the fold difference, the more preferred is use of the gene as a diagnostic. Genes selected for the gene expression profiles of the instant invention have expression levels that result in the generation of a signal that is distinguishable from those of the normal or non-modulated genes by an amount that exceeds background using clinical laboratory instrumentation.

[0016] Statistical values can be used to confidently distinguish modulated from non-modulated genes and noise. Statistical tests find the genes most significantly different between diverse groups of samples. The Student's t-test is an example of a robust statistical test that can be used to find significant differences between two groups. The lower the p-value, the more compelling the evidence that the gene is showing a difference between the different groups. Nevertheless, since microarrays measure more than one gene at a time, tens of thousands of statistical tests may be

asked at one time. Because of this, there is likelihood to see small p-values just by chance and adjustments for this using a Sidak correction as well as a randomization/permuation experiment can be made. A p-value less than .05 by the t-test is evidence that the gene is significantly different. More compelling evidence is a p-value less than .05 after the Sidak correct is factored in. For a large number of samples in each group, a p-value less than 0.05 after the randomization/permuation test is the most compelling evidence of a significant difference.

[0017] Another parameter that can be used to select genes that generate a signal that is greater than that of the non-modulated gene or noise is the use of a measurement of absolute signal difference. Preferably, the signal generated by the modulated gene expression is at least 20% different than those of the normal or non-modulated gene (on an absolute basis). It is even more preferred that such genes produce expression patterns that are at least 30% different than those of normal or non-modulated genes.

[0018] Genes can be grouped so that information obtained about the set of genes in the group provides a sound basis for making a clinically relevant judgment such as a diagnosis, prognosis, or treatment choice. These sets of genes make up the portfolios of the invention. In this case, the judgments supported by the portfolios involve colorectal cancer. Portfolios of gene expression profiles can be comprised of combinations of genes described in Example 3. As with most diagnostic markers, it is often desirable to use the fewest number of markers sufficient to make a correct medical judgment. This prevents a delay in treatment pending further analysis as well inappropriate use of time and resources. In this case, such a minimal portfolio can be comprised of a combination of genes from Example 4.

[0019] Preferably, portfolios are established such that the combination of genes in the portfolio exhibit improved sensitivity and specificity relative to individual genes or randomly selected combinations of genes. In the context of the instant invention, the sensitivity of the portfolio can be reflected in the fold differences exhibited by a gene's expression in the diseased state relative to the normal state. Specificity can be reflected in statistical measurements of the correlation of the signaling of gene expression with the condition of interest. For example, standard deviation can be used as such a measurement. In considering a group of genes for inclusion in a portfolio, a small standard deviation in expression measurements correlates with greater specificity. Other measurements of variation such as correlation coefficients can also be used in this capacity. The most preferred method of establishing gene expression portfolios is through the use of optimization algorithms such as the mean variance algorithm widely used in establishing stock portfolios. This method is described in detail in the co-pending patent application entitled "Portfolio Selection" by Tim Jatkoe, et. al., of equal date hereto. Essentially, the method calls for the establishment of a set of inputs (stocks in financial applications, expression as measured by intensity here) that will optimize the return (e.g., signal that is generated) one receives for using it while minimizing the variability of the return. Many commercial software programs are available to conduct such operations. "Wagner Associates Mean-Variance Optimization Application", referred to as "Wagner Software" throughout this specification, is preferred. This software uses functions from the "Wagner Associates Mean-Variance Optimization Library" to determine an efficient frontier and optimal portfolios in the Markowitz sense is preferred.

[0020] Use of this type of software requires that microarray data be transformed so that it can be treated as an input in the way stock return and risk measurements are used when the software is used for its intended financial analysis purposes. For example, when Wagner Software is employed in conjunction with microarray intensity measurements the following data transformation method is employed.

[0021] Genes are first pre-selected by identifying those genes whose expression shows at least some minimal level of differentiation. The preferred pre-selection process is conducted as follows. A baseline class is selected. Typically, this will comprise genes from a population that does not have the condition of interest. For example, if one were interested in selecting a portfolio of genes that are diagnostic for breast cancer, samples from patients without breast cancer can be used to make the baseline class. Once the baseline class is selected, the arithmetic mean and standard deviation is calculated for the indicator of gene expression of each gene for baseline class samples. This indicator is typically the fluorescent intensity of a microarray reading. The statistical data computed is then used to calculate a baseline value of ($X \times \text{Standard Deviation} + \text{Mean}$) for each gene. This is the baseline reading for the gene from which all other samples will be compared. X is a stringency variable selected by the person formulating the portfolio. Higher values of X are more stringent than lower. Preferably, X is in the range of .5 to 3 with 2 to 3 being more preferred and 3 being most preferred.

[0022] Ratios between each experimental sample (those displaying the condition of interest) versus baseline readings are then calculated. The ratios are then transformed to base 10 logarithmic values for ease of data handling by the software. This enables down regulated genes to display negative values necessary for optimization according to the Markman mean-variance algorithm using the Wagner Software.

[0023] The preprocessed data comprising these transformed ratios are used as inputs in place of the asset return values that are normally used in the Wagner Software when it is used for financial analysis purposes.

[0024] Once an efficient frontier is formulated, an optimized portfolio is selected for a given input level (return) or variance that corresponds to a point on the frontier. These inputs or variances are the predetermined standards set by the person formulating the portfolio. Stated differently, one seeking the optimum portfolio determines an acceptable

input level (indicative of sensitivity) or a given level of variance (indicative of specificity) and selects the genes that lie along the efficient frontier that correspond to that input level or variance. The Wagner Software can select such genes when an input level or variance is selected. It can also assign a weight to each gene in the portfolio as it would for a stock in a stock portfolio.

- 5 [0025] Determining whether a sample has the condition for which the portfolio is diagnostic can be conducted by comparing the expression of the genes in the portfolio for the patient sample with calculated values of differentially expressed genes used to establish the portfolio. Preferably, a portfolio value is first generated by summing the multiples of the intensity value of each gene in the portfolio by the weight assigned to that gene in the portfolio selection process. A boundary value is then calculated by (Y^* standard deviation + mean of the portfolio value for baseline groups) where
 10 Y is a stringency value having the same meaning as X described above. A sample having a portfolio value greater than the portfolio value of the baseline class is then classified as having the condition. If desired, this process can be conducted iteratively in accordance with well known statistical methods for improving confidence levels.
 [0026] Optionally one can reiterate this process until best prediction accuracy is obtained.
 [0027] The process of portfolio selection and characterization of an unknown is summarized as follows:

- 15 1. Choose baseline class.
 2. Calculate mean, and standard deviation of each gene for baseline class samples.
 3. Calculate (X^* Standard Deviation + Mean) for each gene. This is the baseline reading from which all other samples will be compared. X is a stringency variable with higher values of X being more stringent than lower.
 20 4. Calculate ratio between each Experimental sample versus baseline reading calculated in step 3.
 5. Transform ratios such that ratios less than 1 are negative (eg.using Log base 10). (Down regulated genes now correctly have negative values necessary for MV optimization).
 6. These transformed ratios are used as inputs in place of the asset returns that are normally used in the software application.
 25 7. The software will plot the efficient frontier and return an optimized portfolio at any point along the efficient frontier.
 8. Choose a desired return or variance on the efficient frontier.
 9. Calculate the Portfolio's Value for each sample by summing the multiples of each gene's intensity value by the weight generated by the portfolio selection algorithm.
 30 10. Calculate a boundary value by adding the mean Portfolio Value for Baseline groups to the multiple of Y and the Standard Deviation of the Baseline's Portfolio Values. Values greater than this boundary value shall be classified as the Experimental Class.
 11. Optionally one can reiterate this process until best prediction accuracy is obtained.

- 35 [0028] Alternatively, genes can first be pre-selected by identifying those genes whose expression shows some minimal level of differentiation. The pre-selection in this alternative method is preferably based on a threshold given by

$$1 \leq \left| \frac{(\mu_t - \mu_n)}{(\sigma_t + \sigma_n)} \right|,$$

- 40 where μ_t is the mean of the subset known to possess the disease or condition, μ_n is the mean of the subset of normal samples, and $\sigma_t + \sigma_n$ represent the combined standard deviations. A signal to noise cutoff can also be used by pre-selecting the data according to a relationship such as

$$0.5 \leq \left| \frac{(\mu_t - MAX_n)}{(\sigma_t + \sigma_n)} \right|.$$

- 50 This ensures that genes that are pre-selected based on their differential modulation are differentiated in a clinically significant way. That is, above the noise level of instrumentation appropriate to the task of measuring the diagnostic parameters. For each marker pre-selected according to these criteria, a matrix is established in which columns represents samples, rows represent markers and each element is a normalized intensity measurement for the expression of that marker according to the relationship:

$$55 \left| \frac{(\mu_t - \bar{\mu})}{\mu_t} \right|$$

where I is the intensity measurement.

[0029] It is also possible to set additional boundary conditions to define the optimal portfolios. For example, portfolio size can be limited to a fixed range or number of markers. This can be done either by making data pre-selection criteria more stringent (e.g.,

5

$$.8 \leq \left| \frac{(\mu_t - MAX_n)}{(\sigma_t + \sigma_n)} \right|$$

10 instead of

$$0.5 \leq \left| \frac{(\mu_t - MAX_n)}{(\sigma_t + \sigma_n)} \right|$$

15

or by using programming features such as restricting portfolio size. One could, for example, set the boundary condition that the efficient frontier is to be selected from among only the most optimal 10 genes. One could also use all of the genes pre-selected for determining the efficient frontier and then limit the number of genes selected (e.g., no more than 10).

20

[0030] The process of selecting a portfolio can also include the application of heuristic rules. Preferably, such rules are formulated based on biology and an understanding of the technology used to produce clinical results. More preferably, they are applied to output from the optimization method. For example, the mean variance method of portfolio selection can be applied to microarray data for a number of genes differentially expressed in subjects with breast cancer. Output from the method would be an optimized set of genes that could include some genes that are expressed in peripheral blood as well as in diseased breast tissue. If sample used in the testing method are obtained from peripheral blood and certain genes differentially expressed in instances of breast cancer could also be differentially expressed in peripheral blood, then a heuristic rule can be applied in which a portfolio is selected from the efficient frontier excluding those that are differentially expressed in peripheral blood. Of course, the rule can be applied prior to the formation of the efficient frontier by, for example, applying the rule during data pre-selection.

25

[0031] Other heuristic rules can be applied that are not necessarily related to the biology in question. For example, one can apply the rule that only a given percentage of the portfolio can be represented by a particular gene or genes. Commercially available software such as the Wagner Software readily accommodates these types of heuristics. This can be useful, for example, when factors other than accuracy and precision (e.g., anticipated licensing fees) have an impact on the desirability of including one or more genes.

30

[0032] One method of the invention involves comparing gene expression profiles for various genes (or portfolios) to conduct diagnoses as described above. The gene expression profiles of each of the genes comprising the portfolio are fixed in a medium such as a computer readable medium. This can take a number of forms. For example, a table can be established into which the range of signals (e.g., intensity measurements) indicative of disease is input. Actual patient data can then be compared to the values in the table to determine whether the patient samples are normal or diseased. In a more sophisticated embodiment, patterns of the expression signals (e.g., fluorescent intensity) are recorded digitally or graphically. The gene expression patterns from the gene portfolios used in conjunction with patient samples are then compared to the expression patterns. Pattern comparison software can then be used to determine whether the patient samples have a pattern indicative of the disease in question. Of course, these comparisons can also be used to determine whether the patient results are normal. The expression profiles of the samples are then compared to the portfolio of a normal or control cell. If the sample expression patterns are consistent with the expression pattern for a colorectal cancer then (in the absence of countervailing medical considerations) the patient is diagnosed as positive for colorectal cancer. If the sample expression patterns are consistent with the expression pattern from the normal/control cell then the patient is diagnosed negative for colorectal cancer.

40

[0033] Numerous well known methods of pattern recognition are available. The following references provide some examples:

45

Weighted Voting: Golub, TR., Slonim, DK., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, JP., Coller, H., Loh, L., Downing, JR., Caligiuri, MA., Bloomfield, CD., Lander, ES. *Molecular classification of cancer: class discovery and class prediction by gene expression monitoring*. Science 286:531-537, 1999

50

Support Vector Machines: Su, Al., Welsh, JB., Sapino, LM., Kern, SG., Dimitrov, P., Lapp, H., Schultz, PG., Powell, SM., Moskaluk, CA., Frierson, HF. Jr., Hampton, GM. *Molecular classification of human carcinomas by use of gene expression signatures*. Cancer Research 61:7388-93, 2001 and

Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, CH., Angelo, M., Ladd, C., Reich, M., Latu-

- lippe, E., Mesirov, JP., Poggio, T., Gerald, W., Loda, M., Lander, ES., Gould, TR. *Multiclass cancer diagnosis using tumor gene expression signatures* Proceedings of the National Academy of Sciences of the USA 98:15149-15154, 2001
- 5 **K-nearest Neighbors:** Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, CH., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, JP., Poggio, T., Gerald, W., Loda, M., Lander, ES., Gould, TR. *Multiclass cancer diagnosis using tumor gene expression signatures* Proceedings of the National Academy of Sciences of the USA 98:15149-15154, 2001
- 10 **Correlation Coefficients:** van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH. Gene expression profiling predicts clinical outcome of breast cancer. *Nature.* 2002 Jan 31;415(6871):530-6.

[0034] The gene expression profiles of this invention can also be used in conjunction with other non-genetic diagnostic methods useful in cancer diagnosis, prognosis, or treatment monitoring. For example, in some circumstances it is beneficial to combine the diagnostic power of the gene expression based methods described above with data from conventional markers such as serum protein markers (e.g., carcinoembryonic antigen). A range of such markers exists including such analytes as CA19-9, CA 125, CK-BB, and Guanylyl Cyclase C. In one such method, blood is periodically taken from a treated patient and then subjected to an enzyme immunoassay for one of the serum markers described above. When the concentration of the marker suggests the return of tumors or failure of therapy, a sample source amenable to gene expression analysis is taken. Where a suspicious mass exists, a fine needle aspirate is taken and gene expression profiles of cells taken from the mass are then analyzed as described above. Alternatively, tissue samples may be taken from areas adjacent to the tissue from which a tumor was previously removed. This approach can be particularly useful when other testing produces ambiguous.

[0035] Combining the use of genetic markers with other diagnostics is most preferred when the reliability of the other diagnostic is suspect. For example, it is known that serum levels of CEA can be substantially affected by factors having nothing to do with a patient's cancer status. It can be beneficial to conduct a combination gene expression/CEA assay when a patient being monitored following treatment for colon cancer shows heightened levels of routine CEA assays.

[0036] Articles of this invention include representations of the gene expression profiles useful for treating, diagnosing, prognosticating, and otherwise assessing diseases. These profile representations are reduced to a medium that can be automatically read by a machine such as computer readable media (magnetic, optical, and the like). The articles can also include instructions for assessing the gene expression profiles in such media. For example, the articles may comprise a CD ROM having computer instructions for comparing gene expression profiles of the portfolios of genes described above. The articles may also have gene expression profiles digitally recorded therein so that they may be compared with gene expression data from patient samples. Alternatively, the profiles can be recorded in different representational format. A graphical recordation is one such format. Clustering algorithms such as those incorporated in "GENESPRING" and "DISCOVER" computer programs mentioned above can best assist in the visualization of such data.

[0037] Different types of articles of manufacture according to the invention are media or formatted assays used to reveal gene expression profiles. These can comprise, for example, microarrays in which sequence complements or probes are affixed to a matrix to which the sequences indicative of the genes of interest combine creating a readable determinant of their presence. Alternatively, articles according to the invention can be fashioned into reagent kits for conducting hybridization, amplification, and signal generation indicative of the level of expression of the genes of interest for detecting colorectal cancer.

[0038] Kits made according to the invention include formatted assays for determining the gene expression profiles. These can include all or some of the materials needed to conduct the assays such as reagents and instructions.

45 [0039] The invention is further illustrated by the following non-limiting examples.

Examples: Genes analyzed according to this invention are identified by reference to Gene ID Numbers in the GenBank database. These are typically related to full-length nucleic acid sequences that code for the production of a protein or peptide. One skilled in the art will recognize that identification of full-length sequences is not necessary from an analytical point of view. That is, portions of the sequences or ESTs can be selected according to well-known principles for which probes can be designed to assess gene expression for the corresponding gene.

Example 1- Sample Handling and LCM.

[0040] Twenty-seven fresh frozen tissue samples were collected from patients who had surgery for a colorectal tumor. 55 Nineteen of the samples were colorectal malignancy specimens, and eight of the samples were of normal colon mucosa. The tissues were snap frozen in liquid nitrogen within 20-30 minutes of harvesting, and stored at -80C° thereafter. For laser capture, the samples were cut (6μm), and one section was mounted on a glass slide, and the second on film (P. A.L.M.), which had been fixed onto a glass slide (Micro Slides Colorfrost, VWR Scientific, Media, PA). The section

mounted on a glass slide was after fixed in cold acetone, and stained with Mayer's Haematoxylin (Sigma, St. Louis, MO). A pathologist analyzed the samples for diagnosis and grade. The clinical stage was estimated from the accompanying surgical pathology and clinical reports, using the Dukes classification. The section mounted on film was after fixed for five minutes in 100% ethanol, counter stained for 1 minute in eosin/100% ethanol (100 μ g of Eosin in 100ml of dehydrated ethanol), quickly soaked once in 100% ethanol to remove the free stain, and air dried for 10 minutes.

[0041] Two of the colorectal adenocarcinomas were of grade 1, 10 of grade 2, and 5 of grade 3. One of the malignant samples was a carcinoid tumor of the caecum, and one a metastatic melanoma lesion. Two of the adenocarcinoma samples represented the mucinous subtype, and one the signet cell subtype. The Dukes staging of the adenocarcinomas divided them as follows: Dukes A: 2, Dukes B: 5, Dukes C: 7, Dukes D: 3. Six of the adenocarcinomas had been irradiated preoperatively.

[0042] Before use in LCM, the membrane (LPC-MEMBRANE PEN FOIL 1.35 μ m No 8100, P.A.L.M. GmbH Mikrolaser Technologie, Bernried, Germany) and slides were pretreated to abolish RNases, and to enhance the attachment of the tissue sample onto the film. Briefly, the slides were washed in DEP H₂O, and the film was washed in RNase AWAY (Molecular Bioproducts, Inc., San Diego, CA) and rinsed in DEP H₂O. After attaching the film onto the glass slides, the slides were baked at +120°C for 8 hours, treated with TI-SAD (Diagnostic Products Corporation, Los Angeles, CA, 1:50 in DEP H₂O, filtered through cotton wool), and incubated at +37°C for 30 minutes. Immediately before use, a 10 μ l aliquot of RNase inhibitor solution (RNasin Inhibitor 2500U=33U/ μ l N211A, Promega GmbH, Mannheim, Germany, 0.5 μ l in 400 μ l of freezing solution, containing 0.15 mol NaCl, 10 mmol Tris pH 8.0, 0.25 mmol dithiothreitol) was spread onto the film, where the tissue sample was to be mounted.

[0043] The tissue sections mounted on film were used for LCM. Approximately 2000 epithelial cells/sample were captured using the PALM Robot-Microbeam technology (P.A.L.M. Mikrolaser Technologie, Carl Zeiss, Inc., Thornwood, NY), coupled into Zeiss Axiovert 135 microscope (Carl Zeiss Jena GmbH, Jena, Germany). The surrounding stroma in the normal mucosa, and the occasional intervening stromal components in cancer samples, were included. The captured cells were put in tubes in 100% ethanol and preserved at -80°C.

25 Example 2- RNA Extraction and Amplification.

[0044] Zymo-Spin Column (Zymo Research, Orange, CA 92867) was used to extract total RNA from the LCM captured samples. About 2 ng of total RNA was resuspended in 10 μ l of water and 2 rounds of the T7 RNA polymerase based amplification were performed to yield about 50 ug of amplified RNA.

Example 3- cDNA Microarray Hybridization and Quantitation.

[0045] A set of cDNA microarrays consisting of approximately 20,000 human cDNA clones was used to test the samples. About 30 plant genes were also printed on the microarrays as a control for non-specific hybridization. Cy3-labeled cDNA probes were synthesized from 5 ug of aRNA of the LCM captured cells. The probes were purified with Qiagen's Nucleotide Removal Columns and then hybridized to the microarrays for 14-16 hours. The slides were washed and air-dried before scanning. cDNA microarrays were scanned for cy3 fluorescence and ImaGene software (Biodiscovery, Los Angeles, CA) was used for quantitation. For each cDNA clone, four measurements were obtained using 40 duplicate spots and duplicate arrays and the intensities were averaged.

[0046] cDNAs were printed on amino silane-coated slides (Coming) with a Generation III Micro-array Spotter (Molecular Dynamics). The cDNAs were PCR amplified, purified (Qiagen PCR purification kit), and mixed 1:1 with 10 M NaSCN printing buffer. Prior to hybridization micro-arrays were incubated in isopropanol at room temperature for 10 min. The probes were incubated at 95°C for 2 min, at room temperature for 5 min, and then applied to three replicate slides. Cover slips were sealed onto the slides with DPX (Fluka) and incubated at 42°C overnight. Slides were then washed at 55°C for 5min in 1X SSC/0.2% SDS and 0.1X SSC/0.2% SDS, dipped in 0.1X SSC and dried before being scanned by a GenIII Array Scanner (Molecular Dynamics). The fluorescence intensity for each spot was analyzed with AUTOGENE software (Biodiscovery, Los Angeles).

[0047] Chip intensities were linearly normalized forcing the intensity reading at the 75th percentile equivalent to a value of 100 on each chip. Every gene on the chip was normalized to itself by dividing the intensity reading for that gene by the median of the gene's expression value readings over all the samples. Prior to clustering, genes that did not have an intensity reading of 100 or greater in at least one sample were filtered out in order to limit the background affect on the similarity metrics. A set of 6,225 genes was selected for clustering analysis. Hierarchical clustering was performed using correlation as a measure of similarity, which groups together samples with genes that are showing positive changes at the same time without any consideration for negative changes (Silicon Genetics, Sunnyvale, CA). Each of the major nodes in the dendrogram was then considered a subgroup of samples. Differentially expressed genes were identified by comparing each tumor subgroup to the normal group. The selection was based on a signal to noise measurement threshold given by

$$1 \leq \left| \frac{(\mu_t - \mu_n)}{(\sigma_t + \sigma_n)} \right|,$$

5 where μ_t is the mean of the tumor subset, μ_n is the mean of the subset of normal samples, and $\sigma_t + \sigma_n$ represent the combined standard deviations. The within-group coefficient of variation of the intensity readings of a gene had to be less than 0.33, for the gene to be included in the pair-wise comparisons. The median of the tumor group over the median of the normal group had to) be greater than, or equal to 2 for up-regulation, and less than, or equal to 0.5 for down-regulation. If a gene met all the criteria, it was selected. The genes selected in all the comparisons were considered consistently dysregulated in colorectal cancer. The p-values for the statistical significance were calculated using a T-test assuming unequal variance. The gene set for clustering was also subjected to principal component analysis (PCA) using a software package (Partek, St Louis, MO). The data was then projected onto the reduced 3-dimensional space. The normal and tumor colorectal samples were represented by the projected expression levels.

10 [0048] A list of genes with large up-regulated differentials was created to distinguish between the tumor and normal samples. One-hundred and twenty-three genes were preselected by using

$$0.5 \leq \left| \frac{(\mu_t - MAX_n)}{(\sigma_t + \sigma_n)} \right|$$

20 as a signal to noise cutoff. A ratio equal to, or greater than 1.5 was the minimal criterion for up-regulation. Genes were also included if

$$0.9 \leq \left| \frac{(\mu_t - \mu_n)}{(\sigma_t + \sigma_n)} \right|.$$

A portfolio of four genes was established, each having at least a three fold expression differential between tumor and normal cells.

30 [0049] Differentially Expressed Genes in Colorectal Cancer. Thirty-nine genes were differentially expressed in all tumor samples as compared to normal colon mucosa. Thirty-seven of them were significantly down-regulated in all the tumors, except for an outlier. Two of them were up-regulated. The identities of the genes were verified by sequencing the cDNA clones placed on the microarray. Results are shown in Table 1.

35

Table 1

Modulated Genes					
	ACCESSION	GENE DESCRIPTION	MEAN SIGNAL INTENSITY (NORMAL)	MEAN SIGNAL INTENSITY (TUMOR)	P-VALUE
40	AF071569	CaM kinase II gene subtype delta 2.	93	39	4.64E-09
45	AB014530	Homo sapiens mRNA for KIAA0630 protein	108	50	4.83E-07
50	AK000319	Human cDNA KIAA0630	236	69	7.84E-06
55	U81504	beta-3A-adaptin subunit of the AP-3 complex mRNA,	241	75	3.52E-05
	AB011166	Human cDNA KIAA0594	116	55	3.53E-05
	AB040914	Human cDNA KIAA1481	187	59	8.85E-05

Table 1 (continued)

Modulated Genes						
	ACCESSION	GENE DESCRIPTION	MEAN SIGNAL INTENSITY (NORMAL)	MEAN SIGNAL INTENSITY (TUMOR)	P-VALUE	
5	AK025205	Human cDNA FLJ21552	322	97	0.00013	Seq. ID No.7
10	AJ278219	Fatty acid hydroxylase	143	53	0.00011	Seq. ID No.8
15	AB046854	Human cDNA KIAA1634	142	59	0.00020	Seq. ID No.9
20	R00585	Unknown	149	57	1.28E-09	Seq. ID No.10
25	S45844	Spi-B transcription factor	140	43	0.00043	Seq. ID No.11
30	X98311	Carcinoembryonic antigen family member 2 (CGM2)	6137	223	0.00044	Seq. ID No.12
35	BAA78050	NADPH oxidoreductase homolog	153	84	0.00048	Seq. ID No.40
40	N72128	Unknown	164	77	0.00068	Seq. ID No.13
45	AB040955	Human cDNA KIAA1552	334	120	0.00067	Seq. ID No.14
50	AF125101	HSPC040 protein	363	115	0.0011	Seq. ID No.15
55	AB023229	Human cDNA KIAA1012	263	88	0.00099	Seq. ID No.16
	N95761	a-L-fucosidase gene	429	104	0.00047	Seq. ID No.17
	AK025033	Human cDNA FLJ21380	180	85	0.0010	Seq. ID No.18
	L10844	Human cellular growth regulating protein	206	101	0.0013	Seq. ID No.19
	H96534	H.sapiens mRNA for gp25L2 protein.	147	58	0.0015	Seq. ID No.20
	AK001521	Human cDNA FLJ10659	157	58	0.0019	Seq. ID No.21
	AF151039	HSPC205 protein	117	60	0.0017	Seq. ID No.22
	AF052059	SEL 1L protein	168	53	0.0016	Seq. ID No.23
	N24597	Unknown	166	62	0.0016	Seq. ID No.24
	AK001950	Inner centromere protein	148	64	0.0029	Seq. ID No.25
	BAA02649	Macrophage scavenger receptor type I	118	44	0.0031	Seq. ID No.41
	N75004	Unknown	98	48	0.0031	Seq. ID No.26

Table 1 (continued)

Modulated Genes					
	ACCESSION	GENE DESCRIPTION	MEAN SIGNAL INTENSITY (NORMAL)	MEAN SIGNAL INTENSITY (TUMOR)	P-VALUE
5	W16916	Human cDNA KIAA0260	162	61	0.0037
10	X52001	H.sapiens endothelin 3 mRNA.	89	33	0.0042
15	T50788	Unknown	364	102	0.0059
20	AJ005866	Putative Sqv-7 like protein	381	163	0.0049
25	AF113535	MAID protein	218	100	0.0053
30	AB037789	Human cDNA KIAA1368	164	62	0.0092
35	M33987	Carbonic anhydrase	652	46	0.0074
	M77830	Desmoplakin 1 (DPI)	184	61	0.0092
	H81220	EST domain transcription factor ELF1	113	55	0.017
	AF000592	Human chromosome 21q11-q21 genomic clone	33	69	1.16E-05
	AK021701	Human cDNA FLJ11639	31	63	0.00070
					Seq. ID No.36

Example 4: Optimized Portfolio for Colorectal Tumors.

[0050] The mean-variance optimization algorithm was used to generate a multiple genebased signature, where the genes that are included can be used in combination to distinguish between the normal and tumor samples. Intensity measurements were processed using the samples and microarrays described in Examples 1-3. The data to be analyzed was first preselected based on a pre-specified 5-fold differential between tumor and normal cells. The expression data from genes preselected according to this criteria were then used as follows. The mean and standard deviation of the intensity measurements for each gene were calculated using the non-metastatic samples as the baseline. A discriminating value of $X^*(\text{Standard Deviation} + \text{Mean})$ was then calculated for each baseline gene (X was assigned a value of 3). This value was used to ensure the resulting portfolio would be stringent. A ratio of the discriminating value to the baseline value was then calculated for each metastatic sample. This ratio was then converted to a common logarithm. This data was then imported into Wagner Software which produced an efficient frontier from which a portfolio of 4 genes was selected. The set included an unknown sequence, procollagen type I, large subunit of ribosomal protein L21 and fibronectin. These genes are identified as Seq. ID No 42, Seq. ID No. 43, Seq. ID No. 44 and Seq. ID No. 45. Alternatively, a combination of genes used to make up the portfolio can be used to produce diagnostic information that is useful for making clinical decisions regarding colorectal cancer. This is particularly beneficial in the case when a combination of genes selected from the portfolio are combined with additional markers (genetic or not).

Optimized Gene Portfolio:

[0051]

5 >gil1264443lgbIN92134.1IN92134 za23f09.r1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:
 293417 5' similar to gblM87908IHUMALNE32 Human carcinoma cell-derived Alu RNA transcript, (rRNA); gb:
 X57025_mal INSULIN-LIKE GROWTH FACTOR IA PRECURSOR (HUMAN)
 >gil2221047lgbIAA490172.1IAA490172 ab06b08.s1 Stratagene fetal retina 937202 Homo sapiens cDNA clone
 IMAGE:839991 3' similar to gb:J03464 PROCOLLAGEN ALPHA 2(I) CHAIN PRECURSOR (HUMAN)
 10 >gil2188918lgbIAA464034.1IAA464034 zx86b09.r1 Soares ovary tumor NbHOT Homo sapiens cDNA clone IM-
 AGE:810617 5' similar to SW:RL21_HUMAN P46778 60S RIBOSOMAL PROTEIN L21.
 >gil834491lgbIR62612.1IR62612 yl12d01.s1 Soares placenta Nb2HP Homo sapiens cDNA clone IMAGE:139009
 3' similar to gb:X02761_cds1 FIBRONECTIN PRECURSOR (HUMAN);

15 [0052] Using a different set of criteria but the same method, a further four gene portfolio was selected by the software.
 These are Seq. ID no. 46, Seq. ID No. 47, Seq. ID No. 48 and Seq. ID No. 49. Two genes overlap with the first four-
 gene portfolio. The two optimized portfolios can also be combined to form a six-gene portfolio.

Optimized Gene Portfolio:

20

[0053]

>gil2114953lgbIAA431245.1IAA431245 zw78d06.r1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:
 782315 5' similar to WP:F36H1.2 CE05814 ANKYRIN LIKE
 25 >gil2156172lgbIAA443497.1IAA443497 zw34d03.r1 Soares ovary tumor NbHOT Homo sapiens cDNA clone IM-
 AGE:771173
 >gil2221047lgbIAA490172 ab06b08.s1 Stratagene fetal retina 937202 Homo sapiens cDNA clone IMAGE:
 839991 3' similar to gb:J03464 PROCOLLAGEN ALPHA 2(I) CHAIN PRECURSOR (HUMAN)
 >gil1264443lgbIN92134.1IN92134 za23f09.r1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:
 30 293417 5' similar to gblM87908IHUMALNE32 Human carcinoma cell-derived Alu RNA transcript, (rRNA); gb:
 X57025_mal INSULIN-LIKE GROWTH FACTOR IA PRECURSOR (HUMAN);

35

40

45

50

55

SEQUENCE LISTING

<110> WANG, YIXIN
 5 <120> COLORECTAL CANCER DIAGNOSTICS
 <130> CDS 267 US NP
 10 <140> TBD
 <141> 2003-03-21
 <150> 60/368,798
 <151> 2002-03-29
 <160> 49
 15 <170> PatentIn version 3.1
 <210> 1
 <211> 1500
 <212> DNA
 <213> human
 20 <400> 1
 atggcttcga ccaccacctg caccagggtc acggacgagt atcagcttt cgaggagctt
 60
 25 gaaaaaggggg cattctcagt ggtgagaaga tttatgaaaa ttccctactgg acaaggatat
 120
 gctgccaaaa ttatcaacac caaaaagctt tctgcttaggg atcatcagaa actagaaaga
 180
 30 gaagctagaa tctgcccgtct tttgaagcac cctaataattt tgccacttca tgatagcata
 240
 tcagaagagg gctttcacta ctgggtttt gattttgtt ctggagggtga actgtttgaa
 300
 35 gacatagtgg caagagaata ctacagtcaa gctqatgcc a gtcattgtat acagcagatt
 360
 cttagaaagtg ttaatcattt tcacctaaat ggcatacgatc acagggacct gaagcctgag
 420
 40 aatttgcttt tagctagcaa atccaaggaa gcagctgtga aattggcaga ctggcgttca
 480
 gccatagaag ttcaaggggg ccagcaggcg tggttggtt ttgctggcac acctggatat
 540
 45 ctttctccag aagtttacg taaagatct tatggaaagc cagtgatgt gtgggcatgt
 600
 ggtgtcattc tctatattct acttgtgggg tatccacccct tctggatgt agaccaacac
 660
 50 agactctatc agcagatcaa ggctggagct tatgattttccatcaccaga atggacacg
 720
 gtgactcccg aagccaaaga cctcatcaat aaaatgctta ctatcaaccc tgccaaacgc
 780
 55 atcacagcct cagaggcact gaagcaccca tggatctgtc aacgttctac tgggtttcc
 840

atgatgcaca gacaggagac ttagactgc ttgaagaat ttaatgtcg aagaaaacta
 900
 5 aagggtgcca tcttgacaac tatgtggct acaaggaatt tctcagcgc caagagttt
 960
 ttgaagaaac cagatggagt aaaggagtca actgagatc caaatacaac aaltgaggat
 1020
 10 gaagatgtga aagcacgaaa gcaagagatt atcaaagtca ctgaacaact gatcgaagct
 1080
 atcaacaatg gggacttga agcctacaca aaaatctgtg acccaggcct tactgcttt
 1140
 15 gaacctgaag ctttggtaa ttttagtgaa gggatggatt ttcaccgatt ctactttgaa
 1200
 aatgctttgt ccaaaagcaa taaaccaatc cacactatta ttctaaaccc tcatacat
 1260
 20 ctggtaggg atgatgccgc ctgcatacgca tatattaggc tcacacagta catggatggc
 1320
 agtggaatgc caaagacaat gcagtcagaa gagactcgtg tgtggcacgg ccggatgg
 1380
 25 aagtggcaga atgttcattt tcatacgctcg gggtcaccaa cagtacccatt caagccaccc
 1440
 tgtattccaa atggaaaga aaacttctca ggaggcacct ctttgtggca aaacatctga
 1500
 30 <210> 2
 <211> 5761
 <212> DNA
 <213> human
 35 <400> 2
 cacaccgcag tatgcggtgc ctttactct qagctgcgc gccggccggc cggcgctgg
 60
 tgaacagact gccgcgtlac tggcggtggcc tggagggact cagcaaattc tcctgccttc
 120
 40 aacttggcaa cagttgcctg gggtagctct acacaactct gtccagccca cagcaatgtat
 180
 tccagaggcc atggggagtg gacagcagct agctgactgg aggaatgccc actctcatgg
 240
 45 caaccagtac agcaactatca tgcaagcagcc atcctgtcg actaaccatg tgacattggc
 300
 cactgctcag cctctgaatg ttgggtgtgc ccatgttgc agacaacaac aatccagttc
 360
 50 cctcccttcg aagaagaata agcagtcagc tccagtcctc tccaaatgttctctatgt
 420
 tctgccttc caagtctatt ctctgggtgg gagcagtcacca cttccgcacca ctttttctta
 480
 55 taattcccttg gtccctgtcc aagatcagca tcagccatc atcattccag atactccag
 540

1 ccctcctgtg agtgtcatca ctatccgaag tgacactgt gaggaagagg acaacaata
 600
 5 caagccccagt agctctggac tgaagccaag gtctaatgtc atcagttatg tcactgtcaa
 660
 10 tgattctcca gactctgact cttcttttag cagcccttat tccactgata ccctgagtgc
 720
 15 tctccgaggg aatagtggat ccgttttggaa ggggcctggc agagttgtgg cagatggcac
 780
 20 tggcacccgc actatcatgt tgccctccact gaaaactcaag ctgggtgact gcactgtac
 840
 25 aacccagggc tcaggtctcc tgagcaataa qactaagcca gtcgcttcag tgagtggca
 900
 30 gtcatctgga tgctgtatca ccccccacagg gtatcgact caacgcgggg ggaccaggc
 960
 35 agcacaacca ctcaatctta gccagaacca gcagtcatcg gcggctccaa cctcacagga
 1020
 40 gagaaggcaggc aacccagccc cccgcaggca gcaggcggtt gtggcccttc tctccaaage
 1080
 45 cccttacacc ttccagcatg qcagccccgt acactcgaca qggcacccac acettgcccc
 1140
 50 ggcccccgtt caccctgccaa gccaggtca tctgtatacg tatgtgtccc cgacttctgc
 1200
 55 tgctgcactg ggctcaacca gctccattgc tcatacttttc tccccacagg gttcctcaag
 1260
 60 gcatgctgca gcctataacca ctcaccctag cactttggtg caccagggtcc ctgtcagtgt
 1320
 65 tggggccagc ctcctcactt ctgccagcgt ggcccccgtt cagtaccaac accagtttgc
 1380
 70 cacccaaatcc tacattgggt ctccccaggc ctcaacaatt tacactggat acccgctgag
 1440
 75 tccctaccaag atcagccagt attcctactt atatgtggtg agcatgaggg aggaggaatc
 1500
 80 atggctacct ttcctggcc ctgcgttctt aatattgggc tatggagaga tcctccctta
 1560
 85 ccctcttcaa atttcttagc cagcaacttg ttctgcaggq gcccactgaa qcaqaaggtt
 1620
 90 tttctctggg ggaacctgtc tcagtgttga ctycattgtt gtaglcttcc caaagtttgc
 1680
 95 cctatttta aattcattat ttttgtgaca gtaattttgg tacttggaaag agttcagatg
 1740
 100 cccatcttct gcagttacca aggaagagag attgttctga agttaccctc tgaaaaatat
 1800
 105 tttgccttc tgacttgatt tctataaaatg cttttaaaaa caagtgaagc cccttttat
 1860

ttcattttgt gttattgtga ttgctggtca ggaaaaatgc tgatagaagg agtggaaatc
 1920
 5 tcatgacaaa aaaagaaaaa ttacttttg tttgttata aactcagact tgcctatccc
 1980
 attttaaaag cggcttacac aatctccctt ttttttattt gacattttaa ctacagagt
 2040
 10 tttagtttg ttttaatgtc atattatact taatggcaa ttgttatttt tgcaaaactg
 2100
 tttacgttattt actctgtgtt actattgaga ttctctcaat tgctcctgtg tttgttataa
 2160
 15 agtagtgttt aaaaggcagc tcaccatgg ctggtaactt aatgtgagag aatccatatac
 2220
 tgcgtgaaaa caccaagtat tttttttaaa tgaagcacca tgaattcttt tttaaatttat
 2280
 20 ttttttaaaag tctttctctc tctgattcag cttaaatttt tttatcqaaa aagccattaa
 2340
 ggtgtgttattt attacatggt ggtgggtgtt ttattatatg caaaatctct gtctattatg
 2400
 25 agatactggc attgatgagc tttgcctaaa gatlagtatg aattttcagt aatacacctc
 2460
 tgttttgttc atctctccct tctgttttat gtgattgtt tggggagaaaa gctaaaaaaaaa
 2520
 30 cctgaaacca gataagaaca tttcttggt atagtttta tactcaaag tagcttcctt
 2580
 tgtatgccag cagcaaattt aatgctctt tattaagact tataataataa gtgcattgt
 2640
 35 gaattgcaaa aaatatttta aaaattttt actgaatttta aaaatattttt agaagtttg
 2700
 taatgggtgtt gttttaatat tttacataat taaatatgtt catattgattt agaaaaatatt
 2760
 40 aacaagcaat ttttcctgtt aacccaaaat gttttgtt atcaaattgtt tagtgattac
 2820
 acttgaattt tgtaacttagt gtgtatgttca tcctccagtg ttatcccgaa gatggattgt
 2880
 45 tgctccatt gtatttaaac caaaatgttac tgatacttgtt tgaaatgtat gtgaactaat
 2940
 tgcaattata ttagagcata ttactgttgtt gctgaatgtt caggggcatt gcctgcaagg
 3000
 50 agaggagacc ctttggaaattt ttttgcacag gtgtgtctgg tgaggagttt ttcaattgtt
 3060
 gtctcttcct tccctttctt cctccttccc ttattgttgtt gcttataatg ataattgttgt
 3120
 55 gtttaataga gtttacagtg agcttgcctt aggatggacc agcaagcccc cgtggaccct
 3180

aagttgttca ccgggattta tcagaacagg attagtagct gtattgtgtatgcattgtt
 3240
 5 ctcagttcc ctgccaacat tgaaaaataa aaacagcagc ttttcctt taccaccacc
 3300
 tctacccctt tccatttgg attctcggtl gagttctcac agaagcattt tccccatgtg
 3360
 10 getctctcac tgcgttgc taccttgc ttgtgagaat tcaggaagca ggtgagagga
 3420
 gtcaagccaa tattaaatat gcattttt aaagtatgtg caatcactt tagaatgaat
 3480
 15 tttttttcc tttccatg tggcagtctt tcctgcacat agtgcacatt cctgtaaaa
 3540
 tatttgcttg ttgaaaaaaaaa catgttaaca gatgtttta taccaaagag cctgttlat
 3600
 20 tgcttaccat gtccccatac tatgaggaga agttttgtgg tgccgctgg gacaaggaac
 3660
 tcacagaaag gtttcttagc tggtaagaa tatagagaag gaaccaaagc ctgttgagtc
 3720
 25 attgaggctt ttgaggtttc ttttttaaca gcttgatag tcttgggcc cttcaagctg
 3780
 tgaaatttgc ttgtactct cagctctgc atggatctgg gtcaagtaga aggtactgg
 3840
 30 gatggggaca ttctgccc taaaggattt gggaaaagaa gattaatctt aaaatacagg
 3900
 tggttccat ccgaattgaa aatgatataa ttgagatata attttaggac tggttctgtg
 3960
 35 tagatagaga tggtgtcaag gaggtgcagg atggagatgg gagatttcat ggacgcgtt
 4020
 cagccagtc tgtaccagg tgaacaccga ggagctgtca aagtattgg agtttctca
 4080
 40 ttgttaaggag taagggtttc caagatgggg caggtgtcc gtacagecta ccaggaacat
 4140
 gttgtgtttt ctttattttt taaaatcatt atattgagtt gtgtttcag cactatattg
 4200
 45 gtcaagatag ccaagcagg ttgtataattt ctgtcaactag tgcatacag ttttcggc
 4260
 aacatgttg atctttgtgt ctcccttttgc ccaagcacat tctgatlltc ttgttgaaac
 4320
 50 acagggtctag ttctaaagg acaaattttt tgttccctgt ctttttctg taagggacaa
 4380
 gattttgtgt tttgttaaga aatgagatgc aggaaagaaa accaaatccc attcctgcac
 4440
 55 cccagtc当地 taagcagata ccacttaaga taggagtcta aactccacag aaaaggataa
 4500

taccaagagc ttgtattgtt accttagtca cttgcctayc agtgtgtggc tttaaaaact
 4560
 5 agagattttt cagtcttagt ctgcaaactg gcattccga tttccagca taaaaatcca
 4620
 cctgtgtctg ctgaatgtgt atgtatgtgc tcactgtggc ttttagattct gtcctgggg
 4680
 10 ttagccctgt tggccctgac aggaaggag gaagcctggt gaatttagtg aecagctygc
 4740
 ctgggtcaca gtgacctgac ctcaaaccag cttaaaggctt taagtccctc ctcagaactt
 4800
 15 ggcatttcca acttcttcct ttccgggtga gagaagaagc ggagaagggt tcagtgtac
 4860
 cactctgggc tcataaggac acttggcac tccagagttt ttaatagctc ccaggaggtg
 4920
 20 atattatttt cagtgctcag ctgaaatacc aaccccaagga ataagaactc catttcaaac
 4980
 agttctggcc attctgagcc tgctttgtg attgctcatc cattgtccctc cactagaggg
 5040
 25 gctaagcttg actgccctta gccaggcaag cacagtaatg tgtgtttgt tcagcattat
 5100
 tatgaaaaaaaa ttcaactagtt gagalggttt gtttttagat aggaaatgaa attgcctetc
 5160
 30 agtgacagga gtggcccgag cctgcttcct atttgatttt tttttttttt taactgatag
 5220
 atgggcgcagc atgtctacat ggttgttgc tgctaaactt tatataatgt gtggttcaa
 5280
 35 ttcagcttga aaaataatct cactacatgt agcagttacat tataatgtaca ttatatgtaa
 5340
 ttttagtatt tctgcttga atccttata ttgcaatggaa attcctactt tattaaatgt
 5400
 40 atttgatatg ctatgttatg tgtgcgattt aaactttttt tgctttctcc ctttttttgg
 5460
 ttgtgcgctt tctttacaa caagcctcta gaaacagata gttctgaga attactgagc
 5520
 45 tatgtttgtt atgcagatgt acttagggag tatgtaaaat aatcatatata aaaaaagaaaa
 5580
 tagatattta aaatthaata ctaactatgg gaaaagggtc cattgtgtaa aacatagttt
 5640
 50 atctttggat tcaatgtttg tctttggttt tacaatgtttt cttgtatccc ctttttttgc
 5700
 tacataatata ggtttttttt agagcaattt gttttttttt cttttttttt ctttttttgc
 5760
 55 g
 761

5 <210> 3
 <211> 2129
 <212> DNA
 <213> human

 10 <400> 3
 ctgtattttagt acaaaggaag ggatctgtca gaaagcaaca cttgttatct tgggcttggc
 60
 agcaaggaaag aggacaggtt gtggagatcc tgcataatctga aaaggcagact gaaagggtgac
 120
 aaaaaggctg aagatgggtg gtggagagag gtataacatt ccagcccctc aatctagaaa
 180
 15 tgtagtaag aaccaacaac agcttaacag acagaagacc aaggAACAGA attcccat
 240
 gaagattttt cataagaaaa aagaaagagg acatggttat aactcatcag cagctgcctg
 300
 20 gcaggccatg caaaatgggg ggaagaacaa aaattttcca aataatcaaa gttggattc
 360
 tagtttatca ggtcccgagt tacttttta atctcaagct aatcagaact atgctggtgc
 420
 25 caaattttatg gagccgcatt caccaagtgt tcttccaaa ccaccaagcc actgggtccc
 480
 tgtttcctt aatccttcag ataaggaaat aatgacattt caactaaaaa cttacttaa
 540
 30 agtacaggta taaaataaga caaatgtta aatllagttt tttcacggg tagttgtcaa
 600
 ttggtctgaa acaaatttgc tagggaaatct attttgttag aactaattaa tgtaaaaaaa
 660
 35 atagaccatc tcgtgttgtg tgcactgtga tataatggta gtatcagtgc aacttaaact
 720
 aatgatttgc tttgatatta agtggatca actggatcaac tttttagtgg aaaccaagtt
 780
 40 tagattttggg gagtgtaaa ggaatcact ttttctattt ttagggaaag acagtaattt
 840
 atcattcatg gaccgtttaga ttgttggaaag ttgggttgc ggattataag cttctagcta
 900
 45 acacaaggat tcagaatttgc gtaaacatctt gaaggtttag tatattagaa acacccaaac
 960
 cagtaataatgc ctaacctgat gcactgtca aagaaaatgt gaattttcg taataattgc
 1020
 50 attttagtgc attgtacagt ggggtggaaag ggcatttggc gtcatttgc atgagacata
 1080
 gtacacccca atggccctgt ttattaaatgc tagtgatca agtgcgtgc aacaaataca
 1140
 55 ccaaaaccat tttttataga aacagtattt aatggtcaact caatagctt caaaatacat

1200
 5 ttttgttata cagcaactgca caagctattc taatagtgt ctggcctcat cattcctgca
 1260
 aagcltgctt tggggaggttg galaalgtga aaattttaag tacctagggg agaaagagcc
 1320
 10 atgtaaaatat ctgtataataa cttgttagcat atgtaaagtt ttcttggcct ttatcttaca
 1380
 aaaatggagt attttagtat gaatttgctg aatgtaaagac cgtggactgt ttttataat
 1440
 15 atggcctaata tttaaagggtc caaaataact tgttttaaa gtttgcctt gtgctaaagt
 1500
 gcccagtgtat gtatgttata cttgatttgg ttgttaacta tatttcaaag taaaccctag
 1560
 tgtataatagt tttataacta aaaagggtta agctgtaaa actatttta agagatgtga
 20 1620
 aatgcagtat gggactatct ttttttcctc ctctaaagccc aaagattaac tagatccct
 1680
 ccaaccctat agattgttgg ctttccaaat cttataacctt aggatacagg lagttcgag
 25 1740
 tatggtgcca gtatgtttt gttttgttt ggtcaagggg taggtgcaac ccaatggacc
 1800
 actttatgcaa aagatgtaaa ctcttgata atacattgtt aacatgtttt gccaaacttta
 30 1860
 aatgcctaaa cataaggcga accagtagca agtatgtgg tcagcttaaa aattttgatt
 1920
 gttaatgccc tattttctaa tttggcacct cttgtatgcct aagcaggtaa gcagatgcct
 35 1980
 aagctgtatt tctccaaata aatcaagatg aagtactgcc caagttaaat attgatagcc
 2040
 taaagacaag tttatgttgtt acttaatgtt catgatgtt agcataaaat taaataaaat
 40 2100
 tttccccat tgaaaaaaaaaaaaaaa
 2129
 45 <210> 4
 <211> 3950
 <212> DNA
 <213> human
 <400> 4
 50 cgagaactag ttttgttccg tgccctctgg actggAACCT tttggagaga acccccccga
 60
 ggaccaaccc cgaccccgcc agcaccgccc caatgtccag caatagttt ctttacaatg
 120
 55 agcaactccgg aggagggggag ggcacggagc tgggtcagga ggcacccctca accatttccc
 180

cctcgggggc ctteggcctc tttagcagcg atttgaagaa gaatgaagat ctaaagcaaa
 240
 5 tglttagagag caacaaagat tctgctaaac tggatgtat gaagcggatt gttggatga
 300
 ttgcaaaaagg gaaaaatgca tctgaactgt ttccctgtgt tgtgaagaat gtggccagta
 360
 10 aaaaatattga gatcaagaag ttggtatatg ttacacctgt tcgatatgct gaagaacagc
 420
 aggatcttgc actcctgtcc ataagcactt ttcagcggc tctgaaggac ccaaaccAAC
 480
 15 taattcgtgc aagcgctttg agagttctgt caagtattag agtgcattt attgtaccta
 540
 tcatgatgtct tgctattaag gaagcttctg ctgacttatac accatatgtt aggaagaatg
 600
 20 cagccccatgc aatacaaaaa ttatacagcc ttgatccaga gcagaaggaa atgttaattt
 660
 aagtaattga aaaacttctg aaagataaaa gcacatttgtt agctggcagt gttgtatgg
 720
 25 ctttgaaga agtatgcccg gacagaatag atctgattca taaaattac cgcaagctat
 780
 gtaacttact agtggatgtt gaagagtggg ggcagggtgt cataatccac atgctaactc
 840
 30 gatatgctcg gacacagttt gtcagccctt ggaaagaggg tggatatta gaagacaatg
 900
 gaaagaattt ctacgaatct gatgatgatc agaaggaaaa gactgacaaa aagaagaagc
 960
 35 cgtatactat ggatccagat catagactct taatttagaaa tacaaggct ttgcttcaga
 1020
 gcaggaatgc tgcgggtgtt atggcagttt ctcagctgtt ttggcacata tcaccaaat
 1080
 40 ctgaagctgg cataatttctt aaatcactag tgcgtttact tcgttagcaat agggagggtgc
 1140
 agtatattgt cctacaaaat atagcaacta tgtcaattca aagaagggg atgtttgaac
 1200
 45 cttatctgaa gagtttctat gtttaggtcaa ctgatccaac tatgtcaag acactgaagc
 1260
 ttgaaatttt gacaaacttg gcaaatgaag ccaacatalc aactttttt cgagaatttc
 1320
 50 agacccatgt gaaaagccag gataaacaat ttgcagcggc cactattcag actataaggca
 1380
 gatgtgcaac caacatcttg gaagtcactg acacgtgcctt caatggcttg gtctgtctgc
 1440
 55 tgcgtccaaacag ggtatgaaata gttgttgctg aaagtgtgggt tggatataag aaattactgc
 1500

aaatgcacc tgcacaacat ggtgaaatta tlaaacatat ggccaaactc ctggacagta
 1560
 5 tcactgttcc tggctaga gcaagtattc tttggctaat tggagaaaac tgtgaacgag
 1620
 ttccctaaat tgcccctgat gtttgagga agatggctaa aagcttact agtgaagatg
 1680
 10 atctggtaaa actgcagata ttaaatctgg gagcaaaatt gtatttaacc aactccaaac
 1740
 agacaaaatt gcttacccag tacatattaa atctcgcaa gtatgatcaa aactacgaca
 1800
 15 tcagagaccc tacaaagattt attaggcagc ttattgttcc qaatgaaaag agtggagctt
 1860
 taagtaaata tgccaaaaaaaaa atattcctag cacaaaaaycc tgcaccactg cttgagtctc
 1920
 20 cttttaaga tagagatcat ttccagcttgc gcacccatc tcatactctc aacattaaag
 1980
 ctactgggta cctggaaatta tctaattggc cagaggtggc gcccggccca tcagttcgaa
 2040
 25 atgttagaagt aatagagttt gcaaaaagaat ggaccccaagc aggaaaagca aagcaagaga
 2100
 attctgctaa gaagttttat tctgaatctg aggaagagga ggactttct gatagtagca
 2160
 30 gtgacagtga gagtgaalct ggaagtgaaa gtggagaaca aggccaaagt ggggaggaag
 2220
 gagacagccaa tgaggacagc agtgaggact cctccagtga gcaggacagt gagagtggac
 2280
 35 gggagtcagg cctggaaac aaaagaacag ccaagaggaa ctcaaaagcc aaaggaaaaa
 2340
 gtgattctga agatggggag aaggaaaatg aaaaatctaa aacttcagat tcttcaaattg
 2400
 40 acgaatcttag ttcaatagaa gacagttttt ccgattctga atcagagtca gaacctgaaa
 2460
 gtgaatctga atccagaaga gtcactaagg agaaagaaaa gaaaacaag caagatagaa
 2520
 45 ctccctttac caaagatgtt tcacttcttag atctggatga ttttacccca gtatccactc
 2580
 cagttgcact tcccacacca gcttttctc caagtttgat ggctgtatctt gaaggttac
 2640
 50 acttgtcaac ttccctttca gtcatcagtg tcagttactcc tgcatttgc ccaacgaaaa
 2700
 ctccacgtgtc gtttcatcga atgagtggaa aaggacttagc tgccatttat ttctttccaa
 2760
 55 gacagccttg cattttgggt gataagatgg tctctataca aataacactg aataacacta
 2820

ctgatcgaaa gatagaaaaat atccacatag gggaaaaaaaaa acttcctata ggcatgaaaa
 2880
 5 tgcgtgttt taatccaata gactctctt agcctgaggg atccattaca gtttcaatgg
 2940
 gtattgactt ttgtgattct actcagactg ccagttcca gttgtgtacc aaggatgatt
 3000
 10 gcttcaatgt taatattcag ccacctgtt gagaactgct tttacctgtg gccatgtcag
 3060
 agaaagattt taagaaagag caaggagtgc taacaggaat gaatgaaact tctgctgtaa
 3120
 15 tcattgctgc accacagaat ttcactccct ctgtgtatc ttcaagggtt gtaaatgttag
 3180
 ccaatgttagg tgcaagtccct tctggccagg ataatacaca caggttgca gctaaaactg
 3240
 20 tgcacagtgg gtcattgtatc ctatgcacag tggaactgaa gqaaggctct acageccacg
 3300
 ttatcataaaa cactgagaaa actgtgattt gctctgttL gctgcggaa ctgaaggctg
 3360
 25 tcctgtctca ggggtaaacct gcttacatct ggactttaga atctggcaca caacaaaagt
 3420
 gcctggcattc cactactgct gccttcatt tataataata gcccttccat ctggcagtgg
 3480
 30 gggtagaaata cacttttgac atttttgtct cctgctttag aatgttagtg tgtatctatc
 3540
 atgtatgcaa tactttcccc cttttgtct tgctaaccga agagcatata ttttactgtc
 3600
 35. agttgtctca actcttgaat ccatgtggcg ttttctctgt cctgctgctt ctttggct
 3660
 cctcggtttc cttcttttt tcgacaatgg tagacatgaa tgagatatii aaagttcatt
 3720
 40 ggaatcttc ttccctacag cagtaagcaa aaattagcaa agagatagtc taaatggct
 3780
 ctcagcttgg tatgtaaaaa tgagatcaca tacttttaa atccaaatac aaaagcatag
 3840
 45 tctctgcaag attttgttct ttgaatttct tgatattgtt attgatttatt gataactgtc
 3900
 atcatgaaat tatctctcaa taataagata aataaactag catatgaatc
 3950
 50 <210> 5
 <211> 5191
 <212> DNA
 <213> human
 55 <400> 5
 gagaaagaaaa aacagctcga gacctcatgc aaagagaaaa ctgagtatct acagaaaaatg
 60

gtcagagga atgaaagata taaacaagat gtggagaggt tctatgaacg gaagcgacat
 120

5 ttagatttaa ttgagatgct tgaagcaaaa aggccatggg tggatatga aaatgttcgt
 180

caggaatatg aagaagtaaa actagttcgt gaccgagtga aggaagaggt cagaaaactt
 240

10 aaagaaggc agattcctat aacatgtcga attgaagaaa tggaaaacga gcgtcacaat
 300

ttggaggctc qaatcaaaga aaaggcaaca yatattaagg aggcattctca aaaatgcaaa
 360

15 cagaagcaag atgttataga aaggaaagat aaacatattg aggaacttca gcaggctta
 420

atagtaaagc aaaatgaaga gcttgaccga cagaggagaa tagtaatac ccgcaaaatg
 480

20 atagaggatt tgcaaaatga actaaagacc acggaaaact gcgagaatct tcagccccag
 540

attgatgcca ttacaaatga tctgagacgg attcaggatg aaaaggcatt atgtgaaggc
 600

25 gaaataattg ataagcgaag agagagggaa actctagaga aggaaaaaa gagtgtggac
 660

gatcatattt tacgttttga caatctttagt aatcagaagg aagataagct aagacagaga
 720

30 ttccgtgaca cgtatgatgc tgtttatgg ctaagaaata acagagacaa atttaacaa
 780

agagtctgtg agcccataat gtcacgatc aatatgaaag ataataaaaa tgccaaatat
 840

35 atgaaaatc atattccatc aaatgactta agagccttg tatttggaaag tcaagaagat
 900

atggaggttt tcctcaaaga ggttcgtac aataaaaaat taagagtaaa tyctgttatt
 960

40 gctcccaaga gttcatatgc agacaaagca cttcaagat ctttgaatga acttaacaa
 1020

tacggatttt tctcttattt gagagaatta tttgatgcac ctgatcctgt aatgagttac
 1080

45 cttgctgtc agtatcatat tcatgaagtt cctgttagaa ctgaaaagac cagagaaaga
 1140

attgaacggg taatacaaga aacccgatta aaacagattt atacagcaga agaaaaagtat
 1200

50 gtggtgaaaa cttctttta ttcaaacaaa gttatttcta gtaacacatc tctaaaagta
 1260

ggcagttc tcactgtcac tgtggaccta gacgagagaa gacactttaga agaacagcta
 1320

55 aaggaaattc atagaaaattt gcaagcagt gattcagggt tgattgcctt acgtgaaaca
 1380

agcaaacatc tggagcacaa agacaatgaa cttagacaaa agaagaagga gcttcttgag
 1440
 5 agaaaaacca aqaaaagaca actggaacaa aaaatcagtt ccaaactagg aagtttaag
 1500
 ctgatggaac aggatacttg caatcttcaa gaggaagagc gaaaagcaag taccaaatac
 1560
 10 aaagaataa atgttcaaaa agcgaaacctt gttaccgaat taacaaacctt aataaaagatt
 1620
 tgtacttctt tgcatataca aaaagttagat ttaattctcc aaaatactac agtgatctct
 1680
 15 gagaagaaca aattagaatc agatllalag gccgcattt cacaactccg tcttacagag
 1740
 caacatttca ttgaatttggaa tgaaaataga cagagattat tgcagaaatg caaggaactt
 1800
 20 atgaaaagag ctaggcaagt atgtAACCTG ggtgcagagc aqactttcc tcaagaatac
 1860
 cagacacaag tacccaccat tccaaatgga cacaactccl cactccccat ggtttccaa
 1920
 25 gaccttccaa acacatttggaa tgaaatttgc gctttattaa ctgaagaaag atcaagagct
 1980
 tcctgcttca cgggactgaa tcctacaatt gttcaggaat atacaaaaag agaagaagaa
 2040
 30 atagaacagt taactgagga actaaaggaa aagaaatttgc aactagatca atacaggaa
 2100
 aacatttcac aggtaaaaga aagggtggctt aatccctttaa aagagctggt agaaaaatt
 2160
 35 aatgaaaaat tcagcaattt ttttagttcc atgcagtgtg ctggtaagt tgatctccat
 2220
 acagaaaaatg aggaagatta tgataaatat ggaattcgaa ttagagtcaa atttcaagt
 2280
 40 agtactcaac tgcatgaattt aactcctcat catcaaagtq gaggtgaaag aagtgtttct
 2340
 accatgttat acttgatggc acttcaggag ctaaatagat glccattcag agtagttgat
 2400
 45 gaaatcaatc agggaatgga cccaatcaat gaacggagag ttttgaat gtttgaat
 2460
 actgcctgtt aagaaaatac atctcaatc ttttcataa caccaagct cctgcaaat
 2520
 50 cttccttattt ctgaaaagat gacagttttg tttgtctaca atggccctca tatgctggaa
 2580
 ccaaacacat ggaatttaaa ggctttccaa aggccggcggc gccgttac attcactcaa
 2640
 55 ctttctttaat aaaagttaag ayagggact tggaaattt ttttgtttaaa ttctgtttat
 2700

aagtatggct caactgaata aaaggagatt cactaaaacg aaaagcagtt atttttggaa
 2760

5 acctgccttt aaatacaaat aggttgataa tggaaactat aatgaccttt cccaaaatgc
 2820

10 agctggtaqt aaaagttaag tcttccttag tcttggttga acttgagttc ttggcactct
 2880

15 gaccatgagt cattcagttc tcattgttaaa atgtacttaa tattacaatcaa caaaggta
 2940

20 gtggagaag ggttaatcac aagaagttac ttatcggtt gcccgtgagct ttaattgcag
 3000

25 agtaacttta attacttttta gagcctaaag atgactctag agcctaagtc ctatgttctc
 3060

30 ccatgttat atttaattttt aaaaaattta tatgaaaatg tctaattgtat agtaataatt
 3120

35 tatgacagat ctatgtcattt ctcccttattt aaaaagatta ccttatctcc agtaggaaat
 3180

40 ggaattttat gggcctttaa aagaaagttt tatgaaactt gatgtataa ttttatttgt
 3240

45 attcaaggaa gaaaaaaagca ctgggggttca aaaaatggtag cagaactgct ttgaaatgct
 3300

50 gcaagggtggc cactagatga tgcaaaatac aaccaaaaga ttgactgaga ataaaaattag
 3360

55 gtgacaaggaa tttttaaaga ataacctttt aaagtgtggg ggcagggtt gcttttttt
 3420

60 attttattta aagtcaattt tattttacat cttacatttc taaaagcattt ttataattat
 3480

65 tttagtaag atttttctta aaatttcata tactggttc tacaattttt atttggaaatt
 3540

70 tctcagtgtt atgtaaagag tcatggaaaa gcattgattt cttttttttt gtaatgtttt
 3600

75 tagaacttaa gcctataagg cccttcttac aatgttgatg tacccattat cttagaaaaat
 3660

80 ctatgtttaa ctgtttctt tcacccgcaaa agaatttaat gggaaaatca ttgttttac
 3720

85 tctaaggat actaattttt agaaccacaa aaattttttt cttttttttt ataaatctta
 3780

90 tagggaaaata gacagtccaa agtcatgtct ttgaacagtg gattggatct gtgccagtaa
 3840

95 tgacaaaattt attttttttga cttgccttgcc tgaataaattt gaagaattgc ttgcgttt
 3900

100 gttttgtat attcttaagt agccattgaa atttataattc ttaacttaggt caaaaaataaa
 3960

105 tgagccataa gtttatgtcc tctcacttag acattttctc tttttttttt tttttttt
 4020

tttataaaaca ttttaaaaga gccttcctt cttaaactaa ctccagtgc tgaagtgtga
 4080

5 aaatatttta aatgacatt ttactaata tgagcaagtc atgtaaacat tgaagaactt
 4140

ggtacatat tagtaaatgg atattaccaa atgtttcat cgtaattac ttgcgttcc
 4200

10 accaaaatat ctttactaaa atgtgcttgg tgtagttgt ttattglcta aattagtacc
 4260

agtcatctta ttcttgcaaa atgagtatca atgtgaaaaa gacacgtgaa gattaagcat
 4320

15 gttgaaaat aaaatggtca attacattc aatttacata ggccaacaac tggccatac
 4380

tttgtttgta aacatttaat ttctctactg gacaaaatta atattggct ttacattgaa
 4440

20 tttttagctg tgaagaataa attatgtatc atttttagcat attaaacagt agtaagtcta
 4500

gcacatagtc tcagccactt aaaacaaaag tttttttgtt tggttgttgg tttgttttt
 4560

25 tgagatggag ttcactctg ttgccaggc tggagtgcag tggcgatc tcggcttact
 4620

gcaacctccg cctcccggtt tcaagcgatt ctccctgcctc agcctcccaa gtaactggga
 4680

30 caacaggcgc gtcccaccac acccagctaa tttttatac ttttagtaga gatgggttt
 4740

cagcatatttgc gccaggctgg tctcgaactc ctgacccctgt gatccaccccg cctcggcctc
 4800

35 ccaaagtgtc gggattatacg gcgtgagccc ctgcacccgg ccaaaagttt attttaatt
 4860

acataaaaat cgtaaaaact tctagtaaaa acttgatttgc gtgaatacag ttatattta
 4920

40 aaaccttaag gtgacaagca tttctatgc ctaaatcttc attggtttgc ctggaaagag
 1980

tctctgttaa aagattttcc atattcaaag taaaaggaaa gattcttgc ttccataatttgc
 5040

45 tctttggac acatgcctat ttttttgcgtataaacct ttagatgtga aaaaatgtat
 5100

ttcattctgc tattgtgtgt gcttgcgtgt gtgtatttgc aaaaactggg aaatcctgt
 5160

50 ttgttgtaa taaatcaata tttttatatt c
 5191

<210> 6
 <211> 4755
 <212> DNA
 55 <213> human

<400> 6
 aagagatctt ccaggctctc agagccctgg gaggggcatt tccaggaaga ccacaatgcc
 60
 5
 aacctctggaa qqaggctgga gagagaaygc cttagccaga gcctgtcagg caactttggc
 120
 aagaccaagt cagccttctc atctctccag aacattcctg agagtcgtgag aagacacagc
 180
 10
 aacccctggagg taggcccggg aaccaggag gtttaccccg gggcaggcc cacctgtca
 240
 gtcacaccca aggcaagaaga ccctgggggg aaagccgctc ctgacccctgg gagccatctg
 300
 15
 gaccggcagg ttcccttaccc gcggcccgag gggaggaccg gtgcctcggc ttctttcaac
 360
 agcacagacc caagtccccga agagccgcct gccccctcgc acccgacac atccagtctg
 420
 20
 ggccggaggg ggccgggccc aggccagcgc tcggcttcc agggcttca gtacggaaag
 480
 ccccaactgct cggtgctgga gaaggcttcc aaatlcgagc agcgagagca agggagccag
 540
 25
 agaccgagtg tggccggctc tggtttggc cataactata ggccccacag gaccgtctca
 600
 acttccagta ctctctggaa tgacttcqag gagacaaaag cacacattcg ttctctgag
 660
 30
 tcagctgaac ccctaggcaa cggggagcag cacttcaaaa acggggagct gaagttggaa
 720
 gaggcttccc ggcagccctg cggcagcag ctgagcggag gagcgtcggc cagcggccgt
 780
 35
 ggccccccaga ggccggacgc tcggctcctc cgtaccaga gcaccccttcca gctctccagc
 840
 gagccagaga gggagcccgaa gtggcgggac aggcccggct cgcccaatc gcccctgctg
 900
 40
 gatgccccct tcagccgcgc ctaccggAAC acgtcaagg acgcacagtc ccgtgtcttg
 960
 gggggccacct ctttcgacg tggagacctg gagctggggg cccccgtggc gtccgggtcc
 1020
 45
 tggccggccac ggccttcctc gggccacgtg gggctgcggc gccccggagc gtcggccctcc
 1080
 gctccccccgc acacgcccccg ggagcggcac agcgtgaccc ctgctgaggg cgacccgtggc
 1140
 50
 agggccgtgc cccctggccgc cggagaggt gtcggccggc gctgactcc cgagcagaag
 1200
 aagcgctctt actcgaggcc cgagaagatg aacgaggtgg ggatcggtgg ggaggccgaa
 1260
 55
 ccggcaccggc tggggccggca gagaatggg atgcgtttcc cggagagcag cgtggccgac

1320
 5 cggcgcccgtc tcttcgagcg cgatggcaag gcctgtcca cgctcagcct gtcggggccc
 1380
 10 gagctgaagc agttccaqca gagcgccctg gcggactaca tccagcgcaa gaccggcaag
 1440
 15 cggcctacct cggccgcccgg ctgcagcctc caggagcccg ggccactgct tgagcgcgcc
 1500
 15 caggagtgcct acctccagcc cggcccccgcg gcgctcgaag gctccggcct cgcctcgccc
 1560
 15 tccagcttga gctcactgct ggagcccaga ctgcagcccc gcagggaggc cactgccttg
 1620
 15 ccggccacag ttgcagaaac ccaycaggct ccccgagatc gcagcagctc cttcgccgg
 1680
 20 ggccgcccggc tcgggaaacg gcgacgcggg gacctgctta gcggagcaaa cggtggaaaca
 1740
 20 gggggcaccc agagagggga tgagaccccc agggagccat ctcctqggg ggccaggggcc
 1800
 25 ggaaagtcca tgtcgccga ggacctqctg gaacgctcg acgtccttgc gggccctgtc
 1860
 25 catgtgaggc ccaggtcata tcccgccacc gcagacaagc gccaggatgt gctttgggg
 1920
 30 caagacagtg gcttttgtct tgtgaaggat ccatgttatt tggctggtcc tggatctagg
 1980
 30 tcactcagtt gttcagaaag aggcaagaa gagatgtgc tgccttcca ccatctcacc
 2040
 35 cctcgttggg gtggttcagg ctgcaaagcc atgggtgatt ctcctgtcc tagtgaatgt
 2100
 35 cctggAACCC tggaccatca gaggcaagcc agtaggacac cctgccccag gcccaccatg
 2160
 40 gcaggaacgc aagggttgtt cacagacacc agggctgcac ccctgacccc aattggcacc
 2220
 40 cctctgcctt cagccattcc ctctggctac tgctcacagg acggtcagac agggcgacag
 2280
 45 cctctcccgc cctacaccccc tgccatgtat cacagaagca atggtcacac cctgaccccag
 2340
 45 cctcccggtc caagaggctg tgagggcgat ggcccaagac atgggttaga agagggaaacg
 2400
 50 aggaagaggg tctcgctgcc tcaglggcca ctccttctc gagcaaagtg ggcccacgca
 2460
 50 gcccagagagg acagcattcc tgaggaatcc tcagccctg atttgcaaa cctgaagcac
 2520
 55 tatcaaaaac agcagaggtct tccaaatgttgcagcactt ctgaccccaga cacaccttt
 2580
 55 ggggccccca gcaactccagg gaggatctcc ctccgaatat ctgagtcgt cctgcgggac

2640
 tccccggccac ctcatgagga ttatgaagac gaagtgttg tgagggatcc gcaccccaag
 2700
 5 gcccacgtcca gccccacatt tgaacctt cccccacccc cacccctcc accgagtcag
 2760
 gaaaccccggttgtatagcat ggatgacttc cctccacactc ctccccacac tgtatgtgag
 2820
 10 ggcgcagctgg acagtgagga tcccgagggg ccacgccccca gcttcaacaa actttctaaa
 2880
 gtgacaatttgc caagggaaag gcacatgcct ggtgcagccc atgtggtagg tagtcagaca
 2940
 15 ctggcttcca gactccaaac ttcttatcaag ggttcagagg ctgagtccac accaccctcc
 3000
 ttcatgagcg ttcacgccccaaatggctggg tctcttggtg ggcagccagc acccatecag
 3060
 20 actcaaagcc tcagccatga tccagtcaatggaaactcagg qtttagaaaa gaaagtcaatgg
 3120
 cctgatcctc agaagagttc agaagacate agaacagagg ctttggccaa ggaaattgtc
 3180
 25 caccaagaca aatctcttagc agacattttg gatccagact ccaggctgaa gacaacaatgg
 3240
 gacctgatgg aagggttggtt tccccgagat gtgaacttgc tgaaggaaaa caqtgttaaag
 3300
 30 aggaaggccatcacagagaac tgcgtatcttc tcaggatgtg aaggcaagag gaatgaagac
 3360
 aagggcag tgagcatgtt ggtaactgc cctgcctact acagtgtgtc tgctcccaag
 3420
 35 gctgagctac tgaacaaaaat caaagagatg ccagcagaag tgaatgagga agaggaacag
 3480
 gcagatgtca atgaaaagaa ggctgagtc attggaaatgc tcacccacaa gctggagacc
 3540
 40 ctccaggagg cgaaggggag cctgctcagc gacatcaagc tcaacaacgc cctgggagaa
 3600
 gaggtggagg ctctgatcag cgagctctgc aagcccaatg agttgacaa gtataggatg
 3660
 45 ttcatagggg atttggacaa ggtggtcaac ctgtgtcttccctctcggt gctgttagcc
 3720
 cgtgttgaga atgtccttag cggccttgggt gaagatgcca gtaatgaaga aaggagctt
 3780
 50 ctttacgaga aaaggaagat cctggctgggt cagcatgagg atgcccggga qctgaaggag
 3840
 aacctggatc gcagggagcg agtagtqctg ggcacatctgg ccaattaccc ttcaaggag
 3900
 55 cagctccagg actaccagca cttcgtgaaa atgaagtccat cgctccat tgagcaacgg

3960
 aagctggatg acaagatcaa gctgggccag gagcagggtca agtgtctgct ggagagcctg
 4020
 5 cccctcagatt tcattccccaa ggctggggcc ctggctctgc ccccaaacct cacgagttag
 4080
 cccattctcg ctgggggctg tactttcgt ggtatttcc caacattaac ctctccactt
 10 4140
 taaccttc taaaataccc aaccaaaaaga tcactgttac tctcaacact attaatctg
 4200
 aaaaatgttt cagtacaaac cactgtttga actatctggg ttattgggtt ttgttcctga
 15 4260
 taaaaggaaa aaaattctct ccaggaggaa gccttttcc ttcttgccct tcctgattga
 4320
 tcttctgaga gctcgaatgc tgctggcac acatccctt ctattattac tttgttagtag
 20 4380
 aaagaaaagtta aatgaaaactg agaactgatt ggagggtgtt tgatcattta gtttttaaca
 4440
 ggctgaggca acatggatca gtgtgtgtcc ccctcaggaa tgtatccaca gtggccttcc
 25 4500
 ttgctgggttgc cgagtgtatc ctgatggcag ggtacaagta ccattaatga agggtctgca
 4560
 acataaagcc taaaaagac acacactaag aaaactgtaa aacttgaac attgttattt
 30 4620
 atatttttta aatggaaaa gatcaactatg ttlgttgtc taaccactta tttgattctg
 4680
 ttttgtggtg gacatagatg attacgttg agctttgtat tttgtgaaaa ccttaatgaa
 35 4740
 atgaattcca aagat
 4755
 <210> 7
 40 <211> 2045
 <212> DNA
 <213> human
 <400> 7
 gaaacttgac cccggctcat cctgtctctg gctgtggccc ggcaaaagcac tggaaaacccc
 45 60
 tctggtctca gagacagtag yggcagtgcc actttctaca acctgccaac ccacacactg
 120
 gagtaaltct gaaaaaaaaatt attcctaacc tctctaagt tggacggaga atgagcaagc
 50 180
 cccagaagta ttttacaacc agagtggta atgaggaggg ggcttactgg aatcgtcata
 240
 tctctgaata ttgaaaacaa caactaaaaa agtggacctt ctcagaaaaa aagggcagca
 55 300

aatgaccaag ggccccctt ctggccgtgc ttggctttag ttaactgtctc tttttccccca
360
5 ccccccacatcac agggtttca gtttggcaaa ggaaaagcag ataaaaacag aacattccat
420
atgtttcttt ctccatcgcc caaaaacatt ttgacacaat gtttgtgaaa caccttggaa
480
10 gaggtgcact tctgaatgct gcctctgccg taaaatcctgg ggcaaggat cagcctcttc
540
ccaggaacca tcgccttcta taaaccgtga actcaagcag gcatttttt tttcttaccg
600
15 aaaggctgct atttgtcaag ggcacataat gggctgttg ctcttattgg ctcccaaattg
660
tgcatggcaa agagagagat gtgggcctag agcagalata ttcaagcaagg tgacagcttc
720
20 ccataacaat tctaacactt cttaaccttat gtgagaataa aatatthaag gttgaacct
780
tatllgcca aatgtatctt ttctgctttt gaattggca gaagattta gcaactatat
840
25 tctacaaatg ttacttataa cacacacaca cacatctgaa atatatgccg aaaattgacg
900
tcttgcacct cagggagagc acctgtccag gtctgcctaa agggaaatggc tccagtggt
960
30 ctaaacaacc acatcctatc catggatagg tctagtcata acactttaga gagaatgtca
1020
gagcaggagg gaggcaagcc gcctttctc ggccatcaac tgcagatgat gaaagagccg
1080
35 gattcaactt tgttttttt tccctgtggcc ccaqtqaaac ctccctgcctt ccctgcacgt
1140
ctgtgtcttc atttctaaaa tgggggtgat gctttcatat tgacctcacc ccatactacc
1200
40 tcacagatgt gtttgagga ttaataaaaat tatgtctatg gtatttcag tttctggaga
1260
aaaatactta tagacagttt aactattaca tagatataa agtgatctca gtttcttggtt
1320
45 tgctgtata ctaatgtttt gttttactt attccataaa atgacagttg tgccttagcc
1380
acatcagaca gctatctaag ctctggacta ccccttgyt cagctgaatc actgcagggt
1440
50 cgaccatgcc tggtgccaca gccatggttt ccatttctag atgaaaggat ggcctaggac
1500
ataggatctca aagactctt gatcagaatc aggagatgg gaaaaacagg atggataacct
1560
55 gagcactaac agcagtagac gtagacccctt gtcctttacc atctgaggtc ttctggattc
1620

tttgtggggt taattttgcat ttgtatgtcat ctgtttgccccc ttcatcttgc ttgcaagtgt
 1680
 5 gcatgggtca atcccccaca tccaggaaat gaattttgca atttggccag atgctaattt
 1740
 10 gcacgttgcat tcaccccttgc cttttttttt cttttttttt ttttttttttgc
 1800
 15 aatgaatgtta ccattcaac tttgattttt atagtgttagt ttgatattgg taataatgtc
 1860
 20 aaccaagaga tcaatgccag atttttctct tggggtaagt tagctgaagt cattaaaga
 1920
 25 tgaaaagggtg ggaaaattctt ttgatatttg atgtcattgt atccacattt gttgttaagac
 1980
 atattgcata ccaattataaa ttatataaat taaagttgtat aaaagcttca aaaaaaaaaaaaa
 2040
 30 aaaaaa
 2045
 <210> 8
 <211> 2096
 <212> DNA
 25 <213> human
 <400> 8
 atggagaacg agcctgttagc ctttgaggaa actcagaaga cagatcctgc tatggAACCA
 60
 30 cggttcaaag tggtggttttggggact ggcaaggac ctggtgact ggcaaaagcc tccctgtgg
 120
 caggtggggcc acttgggaga gaagtacgat gagtttttc accagccccgtt gaccaggccc
 180
 35 atccgcctct tccactcaga cctcatttagc ggcctctcta agactgtctg gtacagtgtc
 240
 cccatcatct ggggtccccctt ggtgtgttat ctcagctgtt cctactaccg aacctttgcc
 300
 40 caggggcaacg tccgactctt cacgtcattt acaacaaatgtt acacgggtggc agtggccaaag
 360
 tccatgttcc ccgggtctttt catgttgggg acattccctt ggagcctcat cgagtacctc
 420
 45 atccaccgtt tccatgttcca catgttgggg acattccctt ggagcctcat cgagtacctc
 480
 cacttcgtca tgcacggcca gcaccacaag gcacccttcg acgggtccccgtt cctgggtttc
 540
 50 cccctgtgc cagcctccctt ggtgttggc gtcttctact tgtgtatgtca gctcatcctg
 600
 cccgaggcag tagggggcac tgggtttgcg gggggctcc tgggtacgtt cctctatgac
 660
 55 atgaccctt actacccyca ctttggctcg ccgcacaagg gctccctacccgtt gtagccctg
 720

aaggcccacc acgtcaagca ccacttgca catcagaagt caggattgg tatcagcact
 780
 5 aaattgtggg attactgttt ccacaccctc actccagaga aaccccacct gaagacgcag
 840
 tgacaactcc cacccccctcc gtccctgccct cagccggcc ctggccctt cccgacccccc
 900
 10 acccgccatt cagaccccat taagaagggtt ggcttggcca ggcaggatgg gctgtgtccg
 960
 gcctgtcagc ctagtggaaag gtgctgaggg ggccctgagg caggaccgcc ctccgtaccc
 1020
 15 ctggtaggag ggtcacatcc acttggtgca ggtggccctt ggtgacccac ttcttcctgg
 1080
 agcgtccctg cctagagctc agcccacagg actgcttcag gccgtggcca caggtacag
 1140
 20 ccgcaaggaa aatgaagaa aactgagccc tcgtggccac ctgtgtcacc ctgtgcctt
 1200
 agcctcatgg gctgcctagg agctgcctgc acggcacage tcgccttcac agtcagaagt
 1260
 25 gggctgtgg gatctgttgtt ccctgtccctc cctgctgtcc cttctggggaa ggctttggtg
 1320
 getctgaggt ggacaaaagag ctctcgcaag aagagacagc gtgatgcctc ccacagtcca
 1380
 30 ccccaagaccc tggggcagcc cctctggccc tgccagctgc ctgcgtcggtt gggcccagg
 1440
 tggctggcag gagtcccagc tgcttgcttt aggacctggc agctttctt gccgtccctc
 1500
 35 ccctgcctcc agaatcacag cccttctccc caagggaggc tgaggaggct tctccaccag
 1560
 tggcagccccc accccgtcccc tggccattct tggcctccac cccgctcagg cccctactcg
 1620
 40 ggcgtcccca gaaggagccca cctctcagtg cctcacctcc ccctgcctcc cagcctccgc
 1680
 agatgagggtt cctgcctctt ctcctcgta accaaaaaccc tcactgctcc caggacggc
 1740
 45 ttatttataa accagataca ttttttagt ctggtcccag accaaggagc tggtcagac
 1800
 gccccttcta atcctacatg tlgagcttat gtaaaaatg ttgtttctc ctgttttgg
 1860
 50 ttcccttctt acccacaaac cattactact tgaaacttaa aaaactcgcc aagtgtaaag
 1920
 gctaaagaga agcagtttg a cggaccttgt gatttgcact gtttgcgc gagctattta
 1980
 55 aagatttgg aataaaatata caaaactacg gttgtgaaat aaaaacttaa attgtatatt
 2040

ttgaaaata aaacactgaa aagaaaccaa caaaaaaaaaaaaaaaa
2096
5
<210> 9
<211> 5640
<212> DNA
<213> human
10
<400> 9
ggaaacgcag aaaacagaga gaggcattct gagtcatctg actggatgaa gactgttcca
60
15
agttacaacc aaacaatag ctccatggac ttttagaaatt atatgtatgag agatgagact
120
180
ctggAACAC tgcccaaaaa ctggaaatg gcctacactg acacaggat gatctacttc
20
attgaccaca ataccaagac aaccacctgg ttggatcctc gtctttgtaa gaaagccaaa
240
20
gccccgtgaag actgtgaaga tggagagctt ccttatggct gggagaaaaat agaggaccc
300
25
cagttatggta catactatgt tgatcacctt aaccagaaaa cccagtttga aaatccagtg
360
420
gaggaagcca aaagaaaaaa gcagtttagga cagttgaaa ttgggtcttc aaaaccagat
480
540
atggaaaaat cacacttcac aagagatcca tcccagctta aaggtgtctt tgttcgagca
540
600
tcactgaaaa aaagcacaat gggatttgtt tttactatta ttggtygaga tagacctgat
660
720
gagttcctac aagtggaaaaa tgtgctgaaa gatggtcccg cagctcagga tggggaaatt
780
840
gcaccaggcg atgttattgt agacatcaat ggcaactgtg tcctcggtca cactcatgca
900
gatgttgtcc agatgtttca attggcacct gtcaatcagt atgtaaacct cactttatgt
960
1020
cgtggttatc cacttcctga tgacagtgaa gatcctgtt gggacatgt tgctgtacc
1080
1140
cctgtcatca atggacagtc attaaccaag ggagagactt gcatgaatcc tcaggattt
1200
1260
aagccaggag caatggttct ggagcagaat ggaaaatcg gacacacttt gactggtgat
1320
1380
ggtctcaatg gaccatcaga tgcacgtgag cagagagtat ccatggcata gtcaggcagc
1440
1500
tcccagcctg aactagtgac tatcccttgc attaagggcc ctaaaagggtt tgggtttgca
1560
1620
attgtgtaca gccctactgg acagaagggtg aaaatgatac tggatagtca gtgggtca
1680
1740
ggccttcaga aaggagatataatlaaggaa atataccatc aaaatgtgca gaatttaaca

1140
 catctccaag tggtagaggt gctaaagcag tttccagtag gtgcgtatgt accattgctt
 1200
 5 atcttaagag qaqqtcctcc ttccaccaacc aaaactgccaa aaatgaaaac agataaaaag
 1260
 10 gaaaatgcag gaagtttggaa ggccataaat gagcctatttc ctcagcctat gcctttcca
 1320
 15 ccgagcatta tcaggtcagg atccccaaa ttggatcctt ctgaggtcta cctgaaatct
 1380
 aagactttat atgaagataa accaccaaacc accaaagatt tggatgtttt tcttcgaaaa
 1440
 20 caagagtcaag ggtttggctt cagggtgcta ggaggagatg gacctgacca gtctatatat
 1500
 25 attggggcta ttattccctt gggagcagct gagaaagatg gtcggctcg cgcaagctgat
 1560
 30 gaactaatgt gcattgatgg aattcctgtt aaaggaaat cacacaaaca agtcttgac
 1620
 35 ctcatgacaa ctgctgctcg aatggccat gtgttactaa ctgtcagacg gaagatcttc
 1680
 40 tatggagaaa aacaacccya ggacgacacg tctcaggcct tcatttcaac acagaatgga
 1740
 45 tctccccgcc tgaaccgggc agaggtccca gccaggctg caccggcga gccctatgat
 1800
 50 gttgtcttgc aacgaaaaga aatgaagga tttggctttg tcatttcac ctccaaaaac
 1860
 55 aaaccacctc caggagttat tcctcataaa attggccag tcatagaagg aagtccggct
 1920
 60 gaccgctylg gaaaactgaa agttggagat catabtctg cagtgaatgg gcagtccatt
 1980
 65 gttgaactgt ctcatgataa cattgttcag ctgatcaaag atgtgggtt caccgtcaca
 2040
 70 ctacggtca ttgctgaaga agagcatcat ggtccaccat caggaacaaa ctcagccagg
 2100
 75 caaagcccag ccctgcagca caggcccatg ggacagtcac aggccaacca catacctgg
 2160
 80 gacagaagtgc ccctagaagg tgaaattgga aaagatgtct ccacttctta cagacattct
 2220
 85 tggtcagacc acaaggcacct tgcacagcct gacaccgcag taatttcagt tgtaggcagt
 2280
 90 cggcacaatc agaaccttgg ttgttatcca gtagagctgg agaqaggccc ccggggctt
 2340
 95 ggattcagcc tccgaggggg gaaggagtag aacatggggc tgltcatcct tcgtcttgct
 2400
 100 gaagatggtc ctgcccccaaa agatggcaga attcatgtt gtagaccagat tgttgaaatc

2460
 aatgggaaac ctacacaagg aatcacacat actcgagcaa tttagctcat tcaggctgg
 2520
 5 gggaaataaag ttcttcttct tttqaqqcca ggaactggct tgataacctga ccatggtttg
 2580
 gtccttcgg gtctgtgtc ctacgtaaa cccgagcaac attaaggctt tcagggctt
 2640
 10 ttctggctt tccttaaaaa gacttggtga ttgggatatt aataatcctt cgtcttcaaa
 2700
 tgtgatttat gatgaacagt caccattacc cccatctca catttgctt ccatatttga
 2760
 15 agagtctcac qtgccagtaa ttgaagaatc tttagaggtt cagatatgtg aaaaggcaga
 2820
 aaaaaaaaaaag gacattgtgc ctgaaaagaa aagcacttta aatgaaaatc agcctgagat
 2880
 20 aaagcatcag tctttctcc agaaaaatgt gagtaagagg gatccaccca gcagtcattgg
 2940
 gcacagtaac aagaaaaatc tattaaaagt agaaaatggt gttacacgaa gagglagatc
 3000
 25 ggtagtccc aaaaagccag ccagtcaaca tttagggaa cattggata agattcctag
 3060
 tcctctaaaa aataacccca aaagaagacc cagagatcaa tccctcagcc ccagcaaagg
 3120
 30 ggaaaataaa agttgtcagg tcagcaccag ggcaggctct ggacaagatc agtgcagaaaa
 3180
 aagcagaggt cggtcgccca gcccaaaaaa gcagcaaaaa attgaaggaa gcaaagctcc
 3240
 35 atcaaatgtc gaggccaaat tattagaggg taagagtca agaatagcag gctatacggg
 3300
 cagtaatgtc gaggcagatcc cagatggaa ggaaaaatca gacgtcatca gggaaagatgc
 3360
 40 aaagcagaat cagttggaaa aaagcagaac aaggctcca gagaaaaaaa tcaaaagaat
 3420
 ggttagaaaa tctttccat cccaaatgac taataagact acaagtaaag aagtatctga
 3480
 45 aaatgaaaaa ggaaagaaa taaccacagg agaaacaagt tctagtaacg ataaaatagg
 3540
 agaaaatgtc cagctatcag aaaagaggct gaagcaagaa cctgaagaga agtagttc
 3600
 50 aaacaaaaaca gaagatcaca aaggaaaga actagaggca gctgacaaaa acaaagagac
 3660
 tggaaaggttc aaaccggaaa gcagttctcc agttaagaaa acactgataa ctccaggccc
 3720
 55 ctggaaaggtt ccaagtggaa ataaagtca c aggcaactall ggtatggctg agaaacggca

3780
 gtaacctta gtataaaaca aagaaaaaca agttgtatc ttttcttaca gcagcattt
 5 3840
 tc当地aaaaa gcctttttt tttttcaga tattctgaaa cagataagta catgttaatg
 10 3900
 tgaggctcaa gttacctagg ctgcgtgaag ggcctttagg attgctaaga accaactgtc
 3960
 ccctggccg gctgccctcc ctcgcgtca ggaaggagct gcatccacat gctcatctga
 15 4020
 cccgcctgc tcaggctgcc cagctcgct tcgtatgtt ctgaacaaat gacatatgtt
 4080
 15 gatattaaca atgtggtcac aactcaattt gtatttgtc caagttatct actgttatcat
 4140
 gtctgtttt atccttttg ttcaagctgtt tccacagtaa tgaaaaagtt aggtttggct
 20 4200
 tggaaagtga tgatctcaat agcatgttgc atgttacag agagaaatat gtgagtcctt
 4260
 gcaagaagaag agactgttaa ctcategtta aagatggccg ttgtctcttc taacagctac
 25 4320
 tggatgtgtc ccactttaaa aataaaaccc ccaaacatca ctactttaag gaaaaaaaaa
 4380
 atgttagtcca atattgtatc tttcttatgg ctttttattt taatttgct ggataagttg
 30 4440
 tttcaataaa ctgttaaaga tattacttac aattgaatgt ttgaaataag aaagtacttt
 4500
 aaccaataga gttcatctcc tgctgtgtt tccaacctcg atglataactt acagcatctc
 35 4560
 aggtcacccct ttttatttca gtttatttaat tatgaaacca taaagaagca tggaaata
 4620
 gtgtttatttgc ctctttgaag aaaaaccacc aactatttctt ggatattttg gctgtaccta
 4680
 40 ctactaaagt cattagtctt taatacataa tacatatttgc aaaagtaaac atatttatata
 4740
 gattatgtga gggacttaat catgaaacca gttcacagt ccaagtacca actcttctgg
 4800
 45 tagcagggtgc acaagcttgg gtgtttaaa acaacacctg tagggtatgc ccagcaaatg
 4860
 aggacaaatg tgttagacagt acttacttgc tcttatttaa cttttagcta cattaactaa
 50 4920
 ctttcttattt taaaaacaag aaagggagac taaacatctg cttaacttgtt acacatttc
 4980
 agaattcttt taaaagtc agttaaaat gtttcttgc agttggagac ttttacaaac
 55 5040
 ttccataaaa tagatccagg ttttcttgc ttccgttgc gatctatata

```

5100
aaataaaggc accttctgag aataaaacta ttttatggag tgtgtqaaca cacttgttct
5160
5 gtcacacctggg ttcatcttgc tqtqaagcac attaggcca ggtccttccc tctggggagtc
5220
tgactgtgaa actctttaac ccaacaactc aattagcccc tgttagataag acatgctcc
5280
10 .
cagagtgaga ttttgaaat cccctttca tccagaacta tatttaccca cctattgtaa
5340
ctattcaa at agagaaaaat taggaggctt gataaatact aagaatttag taccacagaa
5400
15 attattttt attttccctg tagtccacaa tagtgataa cgaatcctat ttttgtaac
5460
tgtgacataa ctttgatgtc atatgttgc ctatgtggtt cttcctaagt aaactctgta
5520
20 ctgattatat actgacttag caatgtggcc ttggaatgct gagcaaaatg tggatgtact
5580
ggttgttaat gtttatataat tgtacagtac ctttatataat acacttgagg ttctgattag
5640
25

<210> 10
<211> 457
<212> DNA
<213> human
30
<220>
<221> misc_feature
<222> {242}..(242)
<223> any kind of base

35
<220>
<221> misc_feature
<222> {369}..(369)
<223> any kind of base

40
<220>
<221> misc_feature
<222> {394}..(394)
<223> any kind of base

45
<220>
<221> misc_feature
<222> {406}..(406)
<223> any kind of base

50
<220>
<221> misc_feature
<222> {457}..(457)
<223> any kind of base

55
<400> 10

```

tcagtcactc tttcacccctg ccaaagcttc actgtctac tgattgaatt gtatgtgaga
 60
 5 aataaaatgt catcatatta agccactggg atttgtatgt ttatctgtta tagcagcaag
 120
 tcttaattta cctaatacac acattgtac agatgtctt aatgtcccac cccatattgt
 180
 10 tacatgtcca gctttgagga tccctggcat gtggggtag gagtttctgg gcatgctgga
 240
 tncaattccc acttttaagg catctgtggc ctctgtggcc tctgtggcct tcactgttat
 300
 15 ggaagggatt tatctggggc accataggaa actttaccat ggcacagtgg acaacctagg
 360
 agggggtgng gaggaggggc cttagggccc aacnggggg accagngttc gtggggtag
 420
 20 ggtqqlttgg ggggtttcc ctcttacccg tgggggn
 457
 25 <210> 11
 <211> 1493
 <212> DNA
 <213> human
 30 <400> 11
 aataagggttg gcccgtgcag cggggggcaa acagcccccc cggcaccacc atgctcgccc
 60
 tggaggctgc acagctcgac gggccacact tcagctgtct gtacccagat ggcgtttct
 120
 35 atgaccttggc cagctgcagg cattccagct accctgattc agaggggct cctgactccc
 180
 tgtgggactg gactgtggcc ccacctgtcc cagccacccc ctatgaagcc ttgcacccgg
 240
 40 cagcagccgc ttttagccac ccccaggctg cccagctctg ctacgaaccc cccacccata
 300
 gcccgtcagg gAACCTCGAA CTGGCCCCCA GCCTGGAGGC CCCGGGCGT GGCCTCCCCG
 360
 cataacccac ggagaacttc gctagccaga ccctgggtcc cccggcatat gccccgtacc
 420
 45 ccagccctgt gctatcagag gaggaagact taccgttgg cagccctgcc ctggaggct
 480
 cggacacgcgaa gtcggatgag gcctcgtgg ctggcccgaa gggaaaggga tccgaggcag
 540
 50 ggactcgcaa gaagctgcgc ctgtaccagt tcctgtggg gctactgacg cgccgggaca
 600
 tccgtgagtg cgtgtgggtgg gtggagccag gcggccggcgt ctccagttc tcctccaagc
 660
 55 acaagaaact cctggcgccgc cgctggggcc agcagaaggg gaaccgcaag cgcatgaccc
 720

accagaagct ggcgcgcgccc ctccgaaact acgccaagac cggcgagatc cgcaagggtca
 780
 5 aqcgcaagct cacctaccag ttgcacagcg cgctgctgcc tgcagtccgc cgggcctgag
 840
 cacacccgag yctcccacct gcggagccgc tgggggacct cacgtccccag ccaggatccc
 900
 10 cctggaagaa aaagggcgtc cccacactct aggtgataagg acttacgcat ccccaccttt
 960
 tgggtaagg ggagtgtgc cctgccataa tcccaagcc cagcccyggc ctgtctggga
 1020
 15 ttccccactt gtgcctgggg tccctctggg atttcttgt catgtacaga ctccctggga
 1080
 tcclcatgtt ttgggtgaca ggacctatgg accactatac tcggggaggc agggtagcag
 1140
 20 tgctccaga gtcacaagag cttctctggg attttttgt gatatctgat tcccccagtga
 1200
 ggcctggac cttttaaga tcgctgttg tctgtaaacc ctgaatctca tctgggtgg
 1260
 25 gggccctgtc ggcaaccctg agccctgtcc aaggttccct cttgtcagat ctgagattc
 1320
 ctatgtatgt ctggggccct ctgggagctg ttatcatctc agatctttc gcccatctat
 1380
 30 ggctgtgttg tcacatctgt cccctcattt ttgagatccc ccaattctct ggaactattc
 1440
 tgctccccct ttttatgttg ctggagttcc ccaatcacat ctagggtcc tcc
 1493
 35 <210> 12
 <211> 2292
 <212> DNA
 <213> human
 40 <400> 12
 ccatgggttc cccttcagcc tgtccataca gagtgtcat tccctggcag gggctctgc
 60
 tcacagcctc gcttttaacc ttctggaacc tgccaaacag tgccagacc aatattgtatg
 120
 45 tcgtgccgtt caatgtcgca gaaggaaagg aggtcctct agtagtccat aatgagtccc
 180
 agaatcttta tggctacaac tggtaacaag gggaaagggt gcatgccaac tatcgaatta
 240
 50 taggatatgt aaaaaatata agtcaagaaa atgccccagg gccgcacac aacggtcgag
 300
 agacaatata ccccaatgga accctgctga tccagaacgt taccacaaat gacqcgaggat
 360
 55 tctataccct acacgttata aaagaaaatc ttgtgaatga agaagtaacc agacaattct

420
 acgtattctc ggagccaccc aagccctcca tcaccagcaa caacttcaat ccggtgaga
 480
 5
 acaaagatata tgtggttta acctgtcaac ctgagactca gaacacaacc tacctgtggt
 540
 gggtaaaacaa tcagagcctc ctggtcagtc ccaggctgct gctctccact gacaacagga
 600
 10
 cccctcggttct actcagcgc acaaagaatg acataggacc ctatgaatgt gaaatacaga
 660
 acccagtggg tgccagccgc agtgacccag tcaccctgaa tgtccgctat gagtcagtag
 720
 15
 aagcaagttc acctgacctc tcagctggga ccgctgtcag catcatgatt ggagtactgg
 780
 ctgggatggc tctgatatacg cagccttgggt gtagttctg catttcggga agagtgaaaa
 840
 20
 tattatccac ctgcagactg gactggatcc ttctagctcc ttcaatccca ttttcctcg
 900
 tggcatcaact aagtataaga cctgctcttc tcctgaagac ctataagctg gaggtggaca
 960
 25
 actcaatgtaa aatttcaagg aaaaaccctc atgcctgaga tgtgggccac tcagagctaa
 1020
 cccaaatgtt caacaccata actagagaca ctcaaaattgc caaccaggac aagaagttga
 1080
 30
 tgacttcatg ctgtggacag ttttcccaa gatgtcccaa gcctcatcgt gacgaggctc
 1140
 ttatcccact ccattttcc ctgctcatgc ctgcctctt aatttggtaa gataatgctg
 1200
 35
 taactagaat ttccacaatca gcgccttgcg caggcaattt gacagagtgt tggatgtgtc
 1260
 atgtcatcat gtcacaaacca aatatttgac ctaagggttc ctttattctg cccagtggtc
 1320
 40
 aaccttaaca acatccctaa tacaactgtt tattcaaatg cacgtggtc cctgttagag
 1380
 tttagacctct agactcacct gttctcacgc cctgttttaa tttaacccag ctatggatg
 1440
 45
 ccagataaca gaattgctgc ctacgagctg aacaggagg agtttgtca gttgctgaca
 1500
 cttcttqttg cacataaata aatacagtgg gtactataga gactcagttg caaaaattaa
 1560
 50
 caaaatgtt gcttgattaa aatgggtagg cttctcatgt ggctcattct ttaatctatt
 1620
 ctcttttatt tggtttgggtt catggggctc ctgcctatgg atcataacttc aaactcttgg
 1680
 55
 tgtgatcctc ctgattgtca caatattgtt taccctgggtg tgctgttattc tctaaaacct

1740
 ttaaatgttt qcatgcagcc attcgtaaaa tgtcaaatat lctctcttg gctggaatga
 1800
 5 caaaaactca aataaatgta tgattaggag gacatcataa cctatgaatg atgaaagtcc
 1860
 aaaatgatgg taactgacag tagtgttaat gccttatgtt tagtcaaact ctcatttagg
 1920
 10 tgacagcctg gtgactccag aatggagcca gtcatctaa atgccccata ctcacactga
 1980
 aacatgagga agcaggtaga tcccagaaca gacaaaactt tcctaaaaac atgagagtcc
 2040
 15 aggctgtctg agtcagcaca gtaagaaagt cctttctgct ttaactctta gaaaaaaagta
 2100
 atatgaagta ttctgaaatt aaccaatcag tttatTTAA tcaatttatt tatattttc
 2160
 20 tttccctgga ttcccatttt acaaaaccca ctgttctact gttgtattgc ccagtaggag
 2220
 ctatcaatat ttttgcaga atgaaactg ccctgactct tgaatcacaa ataaaagcca
 2280
 25 attgtatctg tt
 2292
 30 <210> 13
 <211> 519
 <212> DNA
 <213> human
 <220>
 <221> misc_feature
 <222> (212)..(212)
 35 <223> any kind of base
 <220>
 <221> misc_feature
 <222> (451)..(451)
 <223> any kind of base
 40 <400> 13
 gaaaacaacaa cagtgtaatc tttaacaggg atgttaaagg taagaagtca ggaagataaa
 45 60
 ccaaatgat tgagtatgat aaagaatTTT gcatggcgat taaaatagaa aacctataaa
 120
 ttttagaaaaa gcaggtctgg acttagcaaa gaaacaatat agttggaga aggcatgaaa
 50 180
 taagttcttt tcatgttcac tgctggtcac ancataacag agagtgtatgt ggagagctt
 240
 55 gggaaaggTTT cacgttgagt tacatcagtgt gtcaacaatg gagcaacaag actccgtaga
 300

ggatgccacc ctgggagaat tgcaaggaa aggaggctga agcacaactg gtaatagct
 360
 5 ttagatattt aatggatatg caaataaagc tctgattaat tgtatTTCA ctTATTATAT
 420
 atcatcttg gacTTTCTA aaagtggac nctagaaaag atatactgaa actccaaaag
 480
 10 aatacttcag ctcgagttga atggattcaa gatgttgtt
 519
 15 <210> 14
 <211> 5294
 <212> DNA
 <213> human
 20 <400> 14
 ggctcgcatc cccatagtgc tgggttacag tgaaggtaCG ccccgcgcTC tgctctggAG
 60
 25 aggcagggtg ggataggaa cgtctcgagt ggcgcGGCA gtcatggTgg tggcggTgg
 120
 cccgcgcTC cccgcgcTC tagggctgtt taagaagaAG ggctctGCCA aggctgagaa
 180
 30 tgacaaacat ctaagtgtAG ggcctggca gggccaggG tctgcAGTgg atgagcacca
 240
 ggacaacgTC ttctttcccA gtgggcgacc ccccaacctG gaagagctGC acactcaggC
 300
 35 ccaggaggGGG ctccgctccc tacaacacca agagaAACAG aaactgaaca agggtggctG
 360
 ggaccatggA gacaccAGA gtatccAGTC ctcccgacG gggccggatG aagacaacat
 420
 40 ctccctctgc agtcagacca catcctacGT ggctgagAGC tccacAGCAG aggacgcgcT
 480
 ctccatccgc tcggagatGA tccAGCGAA aggctccACC ttccgACCCC atgactcatt
 540
 45 tcccaaATCT ggaaAGTCAG ggccggcgtG gcggggAGCgg cggAGcACTG tgctgggACT
 600
 cccgcAGCAT gtgcAGAAGG agcttggcCT gagGAATGAG cgtgaggCAC caggCACGCC
 660
 50 ccgggctCTT ggtgcACGGG atGCCGTACG catccccACA gtggACGGCC gccccggagg
 720
 cacCTcAGGG atgggggccc gggtgtccCT gcaggcgctG gagggcgagg cagaggctgg
 780
 55 cgctgagaca gaggccatGC tgcAGCGCA cattgaccGT gtctaccGGG atgacacCTT
 840
 tggTggcGG tccacgggta cccggggccc accattgacc cggcccatGT ccctAGCAGT
 900
 960 gcctggattG acaggaggGGG caggGCCTG AGAGCCCTG AGCCCGGCCA tgcACATCTC

cccccaggcc acctaacctgt cgaagttgat tccacatgct gtgtgccgc ctacagtgg
1020
5 cgtggtgccct ctagggcgct gcagccctgcg cacactaagc cgctgcagcc tgcaactcgcc
1080
cagcccagcc tcagtcgcgt cgctggggcg ctttcctcc gtcctccagcc cacagcccc
1140
10 cagccggccac ccatccctctt ccagtgacac ctggagccac tctcaatcctt ccgacaccat
1200
tgtgtctgac ggttccaccc tcttccttaa gggtggctct gagggccagc cggagagctc
1260
15 tacggcttagc aatacgctgg tacccttc ccagggaggc agtggggaggc gctctccag
1320
tggggccagc actgctgagg cctcagacac actcagcatt cygagcagtg ggcagttgtc
1380
20 tggccggagt gtgtccctgc gtaagctgaa gcggcctcca cccctcccc gccggaccca
1440
ctccctccat cagccccgt tagcagtgcc tgcgtggcca tttagggttgc cccctaagcc
1500
25 tgagcgtaag cagcagcccc agctgcctcg gccacccacc actgggtggct cagaaggggc
1560
ggggccagca ccctgtccac ccaacccagc caacagctgg gtacctggct tgtctccgg
1620
30 tggttcccg cggcccccac ggtccccaga acggacactt tcgcctcca gtggatactc
1680
gagccaaagt ggtactccca ccctccctcc caaggcctcg gcaggtcccc ctgcttcccc
1740
35 aggcaaggcc cagcccccta aaccagagcg tgtcacgtct ctgcgtcccc ctggggccctc
1800
cgtctccctct tccctcacgt ctttatgttc ctccctctt gaccaggccc ctcagaccc
1860
40 ctctgggcca cagatattga cccccctgg tgacaggttt gtcataacctc ctcaccccaa
1920
ggtgccctgcc cccttcctcc cacccctccca caagccccagg agccctaacc cagctgcccc
1980
45 tgctctagcc gccccctgcgt tggttcctgg gcctgtttctt accactgacg ccagtcctca
2040
gtccccctccca actccccaga caacccctgac tccactgcag gagtctccgt tcatactccaa
2100
50 agaccaggca cccccacccctt ccccccccccc atcttatcat ccaccccccac cacccactaa
2160
gaagccagag gtgggtgtgg aggcaccatc tgcctcagag actgctgagg agccctcca
2220
55 agatcccaac tggcccccctc ccccccccccc tgcctcagag gaggcaggacc tgcctatggc
2280

tgaattcccc ccaccagagg aggctttttt ctctgtggcc agccctgagc ctgcaggccc
 2340

5 ttcaggctcc ccagagcttg tcagctcccc ggctgtttcg tcctcctcag ctactgttt
 2400

gcagattcag ccccccggta gcccagaccc tcctccagct ccgccagccc cagctcctgc
 2460

10 tagttccgcc ccagggcatg tggccaagct ccctcagaag gaaccggtgg gctgttagcaa
 2520

ggggtggtygg cctcccagg aggacgttagg tgccgcctcg gtcaacgcct cgctcctgca
 2580

15 gatggtgtcgg ctgcgtccg tgggtgtcc aggagggct cccacccca cactggggcc
 2640

atcggcccc cagaaaccac tgcaagggc cctgtcaggg cggccagcc cagtgcctgc
 2700

20 cccctcctca gggctccatg ctgcggtccg actcaaggcc tgcaacgtgg ccggccagtga
 2760

aggccctctca aytgctcagc ccaacggacc gcctgaggca gagccacggc ctccccagtc
 2820

25 ccctgcctca acggccagtt tcatcttctc caagggctct aggaagctgc agctggagcg
 2880

gccccgtgtcc cctgagaccc aggctgaccc ccageggaat ctggtggeag aactccggag
 2940

30 catctcagag cagcggccac cccaggcccc aaagaagtca cctaaggctc ccccacctgt
 3000

gggccgcaga cctgtgtgg gagtcccccc accgcctcc cccagttacc ctgcagctga
 3060

35 gcccccttact gctcctccca ccaatggct ccctcacacc caggacagga ctaagaggga
 3120

gctggcggag aatggaggtg tcctgcagct ggtggggcca gaggagaaga tgggcctccc
 3180

40 gggctcagac tcacagaaaag agctggcctg accaccaggc acctcaactgg cactgctgac
 3240

ccatcccaga aacacaatct cagggacccg agcagctcca aggacgagaa gatacagcag
 3300

45 acacaaccta atagagaggg cgcctgcagc cttAACCTCC acggccttcg atacttatgc
 3360

aaggcctggtg ttgctcctgt cctcagagtc atcctgcgtc catgccttt cccgaatggg
 3420

50 ttcacacccg gcagttgcgg cttcagtctt ggcttagcc tcatcttggaa gtgggtagct
 3480

ggcggggagag ggtggctgcg cccctgtcg gcccgtggc tgcaagatgg ggagcaggac
 3540

55 acctcacccg agtttcattt ttttcattgt ccaaaccatg cacatactat agtccagaat
 3600

caaagcactt ttgaaaagt gctgcattggc catccctccag ggcccaggaa gttgcattcc
 3660
 5 aagggcctgt ttacatggca gcagaatcca tccccggcag tcagcccata gcttgggacc
 3720
 agtctytgcc ctcctgccc gtcaggtta ctcccttgg ttcctgaagg tggccaagtc
 3780
 10 attgtgttcc cacaggcttc tctaggctgg gggcaggtgt ggggctgtgg aattccaaag
 3840
 cacaaaaggc gcagagggga ttggccttcc tgtgcctcaa ctaccaacc accctctgc
 3900
 15 ctccagttc tgccagggtgc tccatgtgg ggacaagtag gagactgcca gggccaaag
 3960
 aaatgggtga gcagtagagt catctcgaaa cacttggcag tgtcaagcac ctgccccttg
 4020
 20 cctcccttgc acactgggg tgggtggcc cccagcactt cagaggcagg agcctttggg
 4080
 ctgagcaagc actgaggagg tggatgaaag ggagcatctg gaggggggga gttcccttga
 4140
 25 cgagtgggcc caggectggc cctccacact tcattctctg acctttctct ctcccttattt
 4200
 cggtgcatgt cctttctgca gtcgccttc agcacaggtg gttccactgg gggcagctaa
 4260
 30 cgctgagtga caaggatggg aagccacagg tgcattttac tcaagtcttc tctagtcaat
 4320
 gaggggcacc cagtgcttct agggcagget gggtggttgtt cccctaggta ttagcctctc
 4380
 35 ttactgtact ctccggaaat gttaaccttt ctatttcag cctgtgccac ctgtcttaggc
 4440
 aagctggctt ccccatggc ccctgtgggtt ccacagcagc gtggctgccc cccaggggcca
 4500
 40 ccgcttcttt ctgtatccctc ttcccttaac agtgaatgg gtttgagtct ggcaaggaac
 4560
 ctggctttta gtttaccac caaggagaga gtttgacatg acctccccgc cccctcacca
 4620
 45 aggctggaa cagagggat gtggtgagag ccaggttctt ctggccctct ccagggttt
 4680
 ttccactagt cactactgtc ttctccttgtt agctaataaa tcaatattct tcccttgct
 4740
 50 gtgggcagt gtagatgtc ctgggtgtac gtcacactg cccactgagt tggggaaaga
 4800
 ggataatcg tgagcactgt tctgtcaga gtcctgtac taccccaccc cctaggatcc
 4860
 55 aggactgggtt caaagctgca taaaaccagg ccctggcagc aacctggaa tggctggagg
 4920

tgggagagaa cctgacttct cttccctct ccctcetcca acattactgg aactctatcc
 4980

5 tggtaggatc ttctgagctt gttccctgc tgggtggac agaggacaaa ggagaaggga
 5040

gggcttagaa gaggcagccc ttcttgtaa tctgggtaa atgagcttga cctagagtaa
 5100

10 atggagagac caaaagcctc tgatTTTaa tttccataaa atgttagaag tatatatata
 5160

catatatata tttctttaaa ttttgagtc tttgatatgt ctaaaaatcc attccctctg
 5220

15 ccctgaagcc tgagtgagac acatgaagaa aactgtgtt cattaaaga tgttaattaa
 5280

atgattgaaa ctgg
 5294

20 <210> 15
 <211> 988
 <212> DNA
 <213> human

25 <400> 15
 gtcgtgaggc gggccttcgg gctggctcg cgtcggctgc cgggggggttg gcctgggtgt
 60

cattggctct gggaaagcggc agcagaggca gggaccactc ggggtcttgt gtccgcacag
 120

30 ccatggcggg cgcggtggtg cggaaagcgg cggactatgt cggaaagcaag gattccggg
 180

actacctcat gagtacgcac ttctgggccc cagtagccaa ctgggtctt cccattgtcg
 240

35 ccatcaatga tataaaaaag tctccagaga ttatcagtgg gcggatgaca tttgccctct
 300

gttgttatcc tttgacatcc atgagatttgcctacaaggta acagcctcg aactggcttc
 360

40 tttttgcattt ccacgcacaa aatgaagtag cccagctcat ccaggaggagg cggcttatca
 420

aacacgagat gactaaaacg gcatctgcat aacaatggga aaaggaagaa caaggcttgc
 480

45 aaggcacaggc attgccagct gctgctgagt cacagatttc attataaata gcctccctaa
 540

ggaaaataca ctgaatgcta ttttactaa ccattctatt tttatagaaa tagctgagag
 600

50 ttctaaacc aactctctgc tgccttacaa gtattaaata ttttacttct ttccataaaag
 660

aatgtatcaa aatatgcaat taatTTAATA atttctgatg atgtttatc tgcagtaata
 720

55 tttatatcat ctattagaat ttacttaatg aaaaactgaa gagaacaaaa tttgtaaacca

ggattagata acgaagtcaa agatggctta ccaaataact ttagagctca cccacttcag
 960

5 ttgagcaat ccagtgcacc ttctaacagt attgatggcc cagatcatct aagatctgct
 1020

10 tcatcggtac atgaaacaaa gaaaggaaat actggaataa ltcatgggc atgttaaca
 1080

15 cttactgatc atgatagaat tcgacagttt atacaagagt tcacattcg gggcctttg
 1140

20 ccacatatacg agaaaacaat taggcaatta aacgatcagc taatatcaag aaaaggttt
 1200

25 agtcgatctc tattttctgc aactaaaaaa tggtttagtg gcagtaaagt tccagaaaaag
 1260

30 agcattaatg acctgaaaaa tacatctggc ttgctgtatc ctccggaaagc accagaactt
 1320

35 , caaatcagga aaatggctga cttatgtttt ttggcgcage attatgattt ggcttacagt
 1380

40 tgctatcata ctgcaaagaa agatttctt aatgatcaag caatgctta tgcaagctgg
 1440

45 gccttggaaa tggcagcagt gtctgctttt cttcaaccag gagcacctag gcccatacct
 1500

50 gctcattaca tggatacagc aattcagaca tacagagata tctgcaagaa tatgggttt
 1560

55 gctgaaagat gtgtgttgct tagtgctgaa cttttaaaaa gccaaagcaa atattcagag
 1620

60 gctcagcgtc tccataatacg gttgaccagt gaggattctg atcttcgaag tgcaacttctt
 1680

65 ttgaaacagg cagcacattg ctttataaac atgaaaagtc ccatggtag aaaaatgca
 1740

70 tttcatatga tattggcagg ccatcgattt agtaaagcag ggcagaaaaa gcatgctta
 1800

75 cgctgttattt gtcaagccat gcaagttac aaaggaaaaag gctggctct tgcaaggat
 1860

80 cacattaattt tcaactattgg gcgccagtcc tatactctt gacagctgga taatgctgt
 1920

85 tctgctttta ggcataattctt aattaatgaa agtaaacaat ctgctgctca acagggggct
 1980

90 ttccctcagag aatatcttta tggtaacaag aatgtaagtc agctgtcacc agatggct
 2040

95 ttgccacagc ttcccttacc gtatattaac agttcagcaa cacgggtttt ttttggccat
 2100

100 gacagacgac cagcggatgg taaaaacaa gcagctactc atgtaagtct tgatcaagaa
 2160

105 tatgaltctg aatcctctca gcagtggcga gaacttgagg aacaagttgt ttctgtggtt
 2220

aacaaaggag taattccatc caattttcat cccacacaat actgtttgaa cagttactca
 2280
 5 gataatcaa gattccact tgcaagtgtt gaagaacaa ttacagtggaa agtggcttt
 2340
 agaaaccctt taaaaggttct actttttgtt actgatttgtt cattgttttgaagtttcat
 2400
 10 cctaaagatt tcagtggaaa ggataatgaa gaagttaaac aactagttac aagtgaacct
 2460
 gaaatgattt gagctgaagt tatttcagag ttcttaatta atggcagaaga atcaaaagt
 2520
 15 gcaagactaa agctcttcc ccatcacata ggggagctgc atattctggg agttgttat
 2580
 aatcttgca ctattcaggg ctctatgaca gtagatggca ttgggtctct tcccgatgt
 2640
 20 cacacaggaa aatattcctt gagtatgtca gtccgaggga agcaggattt agaaattcaa
 2700
 ggtcctcgac ttaacaacac aaaagaagag aaaacatctg taaaatatgg ccctgatcga
 2760
 25 ctgttagatc ccataatcac agaagaaatg ccactgtgg aggtgttctt tatacattt
 2820
 cctacagggc ttctctgtgg agaaatccga aaagcatatg tagaatttgtt caatgtcagc
 2880
 30 aatgtccac ttactggatt gaagggttggtt tctaaacgtc cagagttctt tactttcggt
 2940
 ggtaatactg ctgttctaacc accactaagt ccctcagtt ctgagaattt tagtgcttac
 3000
 35 aagactgttg tgacagatgc tacctctgtg tgtacagcac tcataatcatc agttttct
 3060
 gtagacttttgcattggcac aggaagtcaa ccagaggtga ttccctgtcc ctttcctgac
 3120
 40 actgttcttacccggagc ctcagtgcaag ctgccaatgt ggttacgtgg gcctgatgaa
 3180
 gaagggtgtcc atgaaattaa cttttgttt tactatgaaa gtgtcaaaaa gcagccaaaa
 3240
 45 atacggcaca gaatattaag acacactgca attatttgc ccaagtcggc tttaaatgt
 3300
 cggggccactg tctgcagaag taattctctt gaaaatgaaag aaggcagagg aggcaatatg
 3360
 50 ctatgttttgcggatgtggaa aaataccat actagtggaa caggcgtaa ggaattccac
 3420
 ataglgcaag tatcaagtag tagcaaacac tggaaagttac agaaatctgtt aatcttct
 3480
 55 gaaaacaaag atgccaaact tgccagtagg gagaaggaa agttttgtt taaggcaata
 3540

agatgtgaga aagaagaagc ggccacacag tcctctgaaa aatacactt tgcagatata
 3600
 atcttggaa atgaacagat aataagtca gcaagccat gtgcagactt ctttatcgaa
 3660
 agtttatctt ctgaattgaa aaaaccacaa gctcaattgc ctgtgcatac agaaaaacag
 3720
 tcaacagagg atgctgtgag attgattcaa aaatgcagt aggtagattt gaatattgtc
 3780
 atattatgaa aggcatacgt tggtggaaagac agtaaacagc ttatggaa aggtcaacat
 3840
 catgttaltc ttgcactat aggaaaagaa gcctttcat atcctcagaa acaggagcca
 3900
 ccagaaaatgg aactattgaa attttcagg ccagaaaaca ttagttttc ctaaggccaa
 3960
 tcagtagagc agctttctag tctcattaaa acgagtcttc actacccaga atcatttaat
 4020
 catccatttc atcaaaaaag cttttgtta gtaccagtca ctctttact ttccaatttg
 4080
 tcttaaggctg atgttagatgt catagttgat cttcggcata aaacaacaag tccagaagca
 4140
 ctggaaatcc atggatcatt cacatggctt ggacaaacac agtataaact tcaacttaaa
 4200
 agccaggaga ttcacagtct gcagctgaaa gcatgctttg ttcatacagg tgtttataac
 4260
 cttggaaatc ctagggattt tgccaaatgg tccggaccaag ttacagtgtt taaaacaatg
 4320
 cagcagaatt ccatgcctgc cctgatcatc atcagtaatg tgtgacaact tgaaatgg
 4380
 tactgaaatc cacaataatc agttttgct ggatgggttt tacagcagta tttgatatac
 4440
 ctaacttgtt atggagggtt altgatatct gatccctgca aaatacttg acttgtcatt
 4500
 ttgttgtatga tggaaagcac gttggactga gaataacttaa cattttttt ctgttattct
 4560
 ttaaaccctg agaataattn acatgctcat aatacaggat atcagcataat ttgtgcaccc
 4620
 tattaagccc catcttaaga aaacacaaag tctaagtctg ctgttacaac ttgtcaatgg
 4680
 tatacgaata ttaggagatg attctgagaa agggaaaggcc ttgttggcag tactcctgtt
 4740
 aagccattag tctctaaattt ccagcttac tgtgaagttc tatagagtgt taaaataaaaa
 4800
 ttttcctgtc ttgttcaca cagttcctta aaatcagttt tgaacttgg tcatagagtc
 4860

tccatatttc agtatttggt ggtccctatg acttatacat aactttgt
4908

5 <210> 17
 <211> 435
 <212> DNA
 <213> human

10 <220>
 <221> misc_feature
 <222> (30)..(30)
 <223> any kind of base

15 <220>
 <221> misc_feature
 <222> (49)..(49)
 <223> any kind of base

20 <220>
 <221> misc_feature
 <222> (75)..(75)
 <223> any kind of base

25 <220>
 <221> misc_feature
 <222> (76)..(76)
 <223> any kind of base

30 <220>
 <221> misc_feature
 <222> (78)..(78)
 <223> any kind of base

35 <220>
 <221> misc_feature
 <222> (79)..(79)
 <223> any kind of base

40 <220>
 <221> misc_feature
 <222> (109)..(109)
 <223> any kind of base

45 <220>
 <221> misc_feature
 <222> (136)..(136)
 <223> any kind of base

50 <220>
 <221> misc_feature
 <222> (137)..(137)
 <223> any kind of base

55 <220>
 <221> misc_feature
 <222> (149)..(149)

```

<223> any kind of base

5   <220>
<221> misc_feature
<222> (227)..(227)
<223> any kind of base

10  <220>
<221> misc_feature
<222> (236)..(236)
<223> any kind of base

15  <220>
<221> misc_feature
<222> (246)..(246)
<223> any kind of base

20  <220>
<221> misc_feature
<222> (342)..(342)
<223> any kind of base

25  <220>
<221> misc_feature
<222> (363)..(363)
<223> any kind of base

30  <220>
<221> misc_feature
<222> (389)..(389)
<223> any kind of base

35  <220>
<221> misc_feature
<222> (426)..(426)
<223> any kind of base

40  <400> 17
ggttagaaatg attgtgatgt acaaatttn tattttgatc atacttaana agacagagca
60
gactcacatt catnnncnna atagtatcac tgtacacata gcgaattntt ggcgctttta
120
45  gattgctctg aaaatnnctg aagagttgnc catagcagcc tggtaagcct tttcccttc
180
cccaaagctc tcctgccctt tgcagaaaaga ctgttggtga caactgntgc taactnaata
240
50  gcatngggtt gaacttcgcc aaaatcccttc cacccclcc catagggcaa caggggtgac
300
ttgggcttaa agggcattga gtaagcaagt aggttatcag anaacagagg gaagattcca
360
55  ttntagataa tttccaaata ttacaatng tggaactcag agttcaactg ctcagttcct
420

```

5 ttttcngctg accct
435

5 <210> .18
<211> 2224
<212> DNA
<213> human

10 <400> 18
ctttagatct gtgcagcctt tgcggtccaa acttgtgaaa ttccctttac ctttttgga
60

15 gtacttgcta taaagccacc tgtcaacaaa ccccccattat gtacagaata ggacctatcc
120

19 agtagccagg ccagtaggca gttggggaaag gtgggaagga tccagcgagg cccctgagcc
180

23 'tgcaccccttggaa cagggtgtacg tctgcacccca tcaccctcaag caccaggcca ccctgcagtc
240

27 cacttactgt actgtgttgt ggaaggatat gctaagtgtat gaaagttgcg agcagtc
300

31 ctggcgtgt aaactttttt ttttttttgg aaattgaagc tgttagagtgc tgccccaaat
360

35 ctcttaggaag ttgggtggcaa gggacagcac tcacactctt ctggtcatga tctctgtatct
420

39 ccacctcaaa tgacaataaa aaactggtcc aacgaagaca ctgctcagca cttcagccat
480

43 caggactaat ccatcgatga ctggaaaaga ggctagctt gaggaaaaca gcctgggctc
540

47 ttgggaggcag agtccagtggtt gtgtgaggct gacttgccga cggtcggcag gtaatggctc
600

51 tcagccggcg aggccgtccc acagctctcc tcccaggcca gcctgaggag gaggaggccg
660

55 ggtgcctgtt tggggcagc ttcagcctag ggataacctga agctgttag caacacctt
720

59 atgaaatgtt gccagagcag caacacttcc ctgtgggcac agccccggga aatccggtag
780

63 caagtgagca aggtggcagg acccacccaa gcctgatacg catctgggcc cgccgggctc
840

67 agcaggggag gctgctacgg ctgcccactt cccagcacccg tctgtcaggc ttgaacccct
900

71 ctgtgctttt cccttcctgg ctaataggga gacccttcgc aggcacccac tgttcaact
960

75 tgaccctcccc accccctgct actctccctcc acacacccct ccgttccgct agcctacccct
1020

79 glcagccctttt caataaaaagt tatgcacaaa tgtgaacacc tgagatggag ctgaacattt
1080

83 cttaacttttgc ttctttttctt qaaatcaaac tcttatcaaa tgccctaaaa ttattaccac

1140
 ccaagagaaa caggaaaaag gttacatgtt tttgtttact gagagtaaga tcacctgcat
 1200
 5 ctggaaagacg ggctggtaaa ttggtttggc tacagaacag aaagaaaaca aaaacaaacc
 1260
 tcgttaaggga agtacgcac tcagacacca ccacttccta gagccaaatg agcaatccca
 1320
 10 aactgcagaatg gccgttaagtg ggcctgtgac gtacacccgc cggccccgag gtatcgcatg
 1380
 tgccccggag gcccacacta cagctgtcct ctcgtctaga aggccaccacc tegctttcat
 1440
 15 gtcccggtgt tttggaaaa gcagtatggt gtgtcatgtc tagcggcgaa cacttcctc
 1500
 cctctgtcct tgagggttta atataaaaac tgtgtttctg tacgtgtggg tgggaattct
 1560
 20 ctgacgggtgc tcgttcatag cacaagctt cgtcgatgc lgaactgtcg ttcacagctg
 1620
 cgtgtctgca tgggtcgca tctgttgac ctttggggaa aattttgtatg taaatgtaca
 1680
 25 gaaataaaaaa cggtggccca ttaacagatt tcctctggaa tgtcttcct acctcacctg
 1740
 atggtatcca ccgaagggcata tttcaactacc attaatggtg agtaataaaa tcctccgtgt
 1800
 30 tcattcagac ctcaactgcgt cactactttg aacgcctctg taagctgtgt cttcacccgc
 1860
 cccgagggtgg gtggagggag gcctctcaact ctgcttcgag tcctggtctt aaaggtagtc
 1920
 35 agaggcagag gctggattaa acacacactg tttaccaagt gccactctca gaccacctga
 1980
 gagacgggggg gccatca gtaaaatagag gaattttttt cccttggatcg tggatgttct
 2040
 40 gctgatccgt ggccctgaagg ttccttagaga cgtcaagaaa tggatatctt acactgtgat
 2100
 tctgtgagga aagactggta accccaaaact ctcttcata atgtatttt taacgaaaat
 2160
 45 gacaatattt cttaataaaa gtatttatac caaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 2220
 aaaa
 2224
 50 <210> 19
 <211> 2244
 <212> DNA
 <213> human
 55 <400> 19

gttgtttaaa agcaaggcat gcttgtggat gactctgtaa cagactaatt ggaattgttg
 60
 5 aagctgctcc ctgggttccac tctggagagt aatctgggac atcttagtgt tttgtttgt
 120
 tttttccct cctctttttt tgggggggag tgtgtgtggg gtttqtttt tagtcttggt
 180
 10 ttttaattc attaaccagt ggttaqcctt aaggggagga yyacggattg attccacatt
 240
 ccacttccta gatcttagtll agaaaacatg ttccccatct ggtgctctta ggaaggagta
 300
 15 tagtaaatgc ctcatttaat aacatactcc ttttgaaag ttgcctttc tctccaccct
 360
 tgagtagatc cagtatttga tgaaactcat gaaaqtgggt ggagccatc ttccccctcc
 420
 20 tctttctag gacgcactat atgtgactgt gactttaagg acatttggg gccatttgc
 480
 gatttttlg ggaagttaat ttcttaacttc tt.cactgat aaatgaagaa aagtattgca
 540
 25 ccttgaaat gcaccaaatg aatttagttt gtaattaaaa aaatttttt tccctttcag
 600
 tcattgtctt atatgcttag catagatttgc cagtcagta gtatatgtgt tcctagaatg
 660
 30 cagctgaaga cctgttatgt agaggaaata cgaggggtgg tgctagaaga cagacatctg
 720
 tggaatgatt cacatccctc caagtttagga ggtggggc ctgcttcatt aagaagctgg
 780
 35 gggtagggtg ggggtgggaa gaacacttaa caacatgggg accagtcagg ggaatcccct
 840
 tatttctgtt ttgcataatga ggaacccttag agcagccagg tgaggcttc tagttaata
 900
 40 aaaatcatgg aaagactttt aatgcagact cttcttaagt gttaataggg attttttcag
 960
 ctatatttgg ttgcagtttc caattttaa aatgttgag gtaatctttc ccaccttccc
 1020
 45 aaacctaatt ctgttagatg cattagtggtt gaaccaatgc ttctcatgtc tcaatcttg
 1080
 atatcatctt ttcatgtttaa aacacttaaa aagagtagat gaattgccaa
 1140
 50 acacaattcc taccaataat aaatcgatca actctatcta ttccaggaaag caggaagcat
 1200
 ttggaccaca gtgcataaaa acttcaacat tctgttatta gataatgaat caaccaaatg
 1260
 55 aacaatccag agaaaagaaa attgcataaa taaaaggtaa attaacagaa agataatata
 1320

agcaagatag taatagttga ccattctgaa aagcttataa catcactcat catccagcat
 1380
 5 ccttctgaa aacaaaggat ttttaatca ctttatgcac atataacaaca taggagggtg
 1440
 gcaaataat gcactatttc ttaacagcca tgtctttgtt agaacttcaa gttaatctac
 1500
 10 aaatgaccat tgtgtcttaa tttagattat gaataccaca tttagtcaggt atttgacta
 1560
 accctaata gtatatacag tttctatgga aaattcagtg gtccaaaaat ttccgtagaa
 1620
 15 tttgagagga cgttggggg ctgaagatag ctccttgagg gtcactgatg taggctgaa
 1680
 tgggggtca caaggccctg acaccgtatt tatagtctaa ccttttatg aaaatctgac
 1740
 20 tacagctatt taaggatgt tcttaatagc tgaaaatgaa gatagagaaa gacaccaaga
 1800
 atatgacaca gtttacattc tagtgaggga cacaacaaaa tcaaatttaa aaaagagtgt
 1860
 25 aatagatgct gataaatact gtagataaag cacataagaa aatagaata aaggctgtca
 1920
 atggagaagt catgattttt attttattta ttttattttt tatttgagac agagtcaggc
 1980
 30 tctgtgcagg ctggagtgc aatgggtgtat ctcgctca acaacctctg ctcctggctc
 2040
 aagctatcct cccacctcg ctctcaagta gctggatca caggtgcgtg ctaccatgcc
 2100
 35 cggctaattt ttttagaga tgaggtttg ccatgttgcc caggctggtc tcgaactct
 2160
 ggactcaact gaccccacct cggectctca aagtgcgtgat attataggcg tgcagccggc
 2220
 40 agctggccat tttttatgtt ctgc
 2244
 45 <210> 20
 <211> 351
 <212> DNA
 <213> human
 <220>
 <221> misc_feature
 <222> (62)..(62)
 <223> any kind of base
 50 <220>
 <221> misc_feature
 <222> (121)..(121)
 <223> any kind of base
 55

```

<220>
<221> misc_feature
<222> (207)..(207)
<223> any kind of base
5

<220>
<221> misc_feature
<222> (220)..(220)
<223> any kind of base
10

<220>
<221> misc_feature
<222> (276)..(276)
<223> any kind of base
15

<220>
<221> misc_feature
<222> (300)..(300)
<223> any kind of base
20

<220>
<221> misc_feature
<222> (315)..(315)
<223> any kind of base
25

<220>
<221> misc_feature
<222> (336)..(336)
<223> any kind of base
30

<400> 20
tctacttcca catcgccgag accgagaaggc gctgtttcat cgagggaaatc cccgacgaga
60

35      cnatggtcat cggcaactat cgtacccaga tgtggataa gcagaaggag gtcttcctgc
120

nctcgacccc tggctggc atgcacgtgg aagtgaaggc ccccgacggc aaggtggtgc
180

40      tgtcctggca gtacggctcg gagggcnctt tcacggtcan ctccccacacg cccggtgacc
240

atcaaatctg tctgcactcc aattcttacc aggtatngctc tctttcgctg gtgggcaan
300

45      tgcgtgttgc atctngacat ccaggttgg gggagnatgc caacaatta c
351

50      <210> 21
<211> 2631
<212> DNA
<213> human

<400> 21
accttccaac ccagccctcg gctgagccgc gccgcacccat gcccggcgtg gacaagctcc
60

55      tgcttagagga ggcgttgcag gacagcccc agactcgctc tttactgagc gtgttgaag

```

120
 5 aagatgctgg caccctcaca gactatacca accagctgct ccaggcaatg cagcgcgtct
 180
 atggagccca gaatgagatg tgcctggcca cacaacagct ttctaagcaa ctgctggcat
 240
 10 atgaaaaaca gaactttgct cttggcaaag gtgatgaaga agtaattca acactccact
 300
 attttccaa agtggtgat gagcttaatc ttctccatac agagctggct aaacagttgg
 360
 15 cagacacaat ggttctacct atcatacaat tccgagaaaa ggttctcaca gaagtaagca
 420
 cttaaagga tctatggta ctcgcttagca atgagcatga cctctcaatg gaaaaataca
 480
 20 gcaggctgcc taagaaaaag gagaatgaga aggtgaagac cgaagtccga aaagaggtgg
 540
 ccggggcccg gcggaaagcag cacctctcct cccttcagta ctactgtgcc ctcaacgcgc
 600
 tgcagtacag aaagcaaatg gccatgatgg agcccatgat aggcttgcc catggacaga
 660
 25 ttaactttt taagaaggga gcagagatgt ttccaaacg tatggacagc ttttatcct
 720
 ccgttgcaga catggttcaa agcattcagg tagaactggg accgaggcgg aaaagatgcg
 780
 30 ggtgtcccaag caagaattac tttctgtga tgaatctgtt tacactccag actctgatgt
 840
 ggccgcacca cagatcaaca ggaacctcat ccagaaggct ggttaccta atcttagaaa
 900
 35 caaaacaggg ctggtcaccg ccacctggga gaggctttat ttcttcaccc aaggcggaa
 960
 tctcatgtgt cagcccaggg gagccgtggc tggaggtttgc atccaggacc tggacaactg
 1020
 40 ctcagtatg gccgtggatt gcaagaccg ggcgtactgc ttccagatca ccacgccccaa
 1080
 tggaaaatcg ggaataatcc tccaggctga gaggcagaaag gaaaatgaag agtggatatg
 1140
 45 tgcaataaac aacatctcca gacagatcta cctgaccgac aaccctgagg cagtcgcgt
 1200
 caagttgaat cagaccgctc tgcaaggagt gactcctatt acaagtttg gaaaaaaaca
 1260
 50 agaaagctca tgccccagcc agaacctgaa aaattcagag atggaaaatg aaaatgacaa
 1320
 gattgttccc aaagcaacag ccagtctacc tgaaggcagag gagctgatcg cgcctggagc
 1380
 55 gccgattcaa ttcgatattg tgcttcctgc tacagaattc cttgatcaga acagagggag

1440
caggcgtaacc aacccttttgcgtgaaactga ggatgaatca tttccagaag cagaagattc
1500
5
tcttttcgcag cagatgttta tagttcgggtt tttggatca atggcagtttta aaacagacag
1560
cactactgaa gtgatttatg aagcgatgag acaagtatgt gctgctcggg ctattcataaa
1620
10
catcttccgc atgacagaat cccatctgtat ggtcaccaggc caatcttga ggttgataga
1680
tccacagact caagtatcaa ggccaaattt tgaacttacc agtgtcacac aatttgctgc
1740
15
tcataaagaa aacaagagac tggttggtt tgcattccgt gttcctgaat ccactggaga
1800
agaatctctg agtacataca ttttgaaag caactcagaa ggcgaaaaga tatgttatgc
1860
20
tattaatttg gaaaaagaaa ttattttaggt tcagaaggat ccagaaagcac tggctcaatt
1920
aatgtgtcc ataccactaa ccaatgttgg aaaatatgtt ctgttaaacg atcaaccaga
1980
25
tgacgatgtat gaaaatccaa atgaacatag aggccgcagaa tccgaagcat aactcacttg
2040
cgcctgtggg ggaagagcga acaggaagga gagctaccc ctaagggttt taacgtctct
2100
30
gacatacagg cacactgacc tgatttccga aggctgacaa tgcgttgcgg aatgttatct
2160
tgatgccttg atactgagac ttgggaggga aactaagaaa tggttgacag cgttcccacc
2220
35
catctacaat gttattttag gtgcgttgcgt gtaagtcttt tttcttagat tgcgtaaaa
2280
tttcttagat tggtcagcgc tcagaacaaa agtttggaaa atgcattgtt catatgaatg
2340
40
tcatctttt tcagttcca gtatcctttt taaaaatgg caaaaggcta gatttacaat
2400
ttgtatgttca ctaaatatattt cttatataata taatcttattt ttgtatgttca cttatgtt
2460
45
tttaagtgcc tgcgttctg aaaattgtgt atttataatt cagttatctt cataattgg
2520
cctaatacgca ttctttgtt cagtttaggtt atgagcactt ctttggggcc caagcacttag
2580
50
tagagatgcg cgatacagggt ctatgttccgg taactgttcc agacatcaag c
2631
55
<210> 22
<211> 2851
<212> DNA

<213> human
 5 <400> 22
 agcatctcag gccatcatcc tgaaacttgg cagccttcgt ggagtataag gacagcatta
 60
 tttagccatca ttgggtttac tgccaacaaa aggagagggga gccataggtt ctcttagatta
 120
 10 cactcctgag gaaagaagag cacttgccaa aaaatcacaa gatttctgtt gtgaaggatg
 180
 tggctctgcc atgaaggatg tcctgttqcc tttaaaatct ggaagcgatt caagccaagc
 240
 15 tgaccaagaa gccaaagaac tggctaggca aataagctt aaggcagaag tcaattcatc
 300
 tggaaagact atctctgagt cagacttaaa ccactcttt tcactaactg atttacaaga
 360
 20 tgatataacct acaaaccattcc agggtgctac ggccagtgaca tcgtacggac tccagaattc
 420
 ctcagcagca tcctttcatc aacctaccca acctgttagct aagaataacct ccatgagccc
 480
 25 tcgcacagcgc cgggcccagc agcagagtca gagaagggtt tctacttcac cagatgtaat
 540
 ccagggccac cagccaaagag acaaccacac tgatcatggt gggtcagctg tactgattgt
 600
 30 catcctgact ttggcattgg cagcttttat attccgacga atatatctgg caaacgaata
 660
 catatggac tttgagttat aatatggttt tgtgacttat gagctgtgac tcaactgctt
 720
 35 cattaaacat tctgcattgg gtataatcta agaattgttt aaaaaagat tattttgtat
 780
 ttacccttca ttcccttttt tgatccttgt aagtttagta taaatatatac tagacattca
 840
 40 gactgtgtct agcagttacg tcctgcttaa agggactaga agtcaaagtt cttgtctca
 900
 ctatttgatc tgctttgcag ggaaataact tgtttttct catgtttcat cttctttta
 960
 45 tgtaaatttg taatactttc ctatattgcc cttgaaatt tttggataaa agatgatgtt
 1020
 ttaagttcca atgagtatta ctagttactc aataccactt attgagtact ctgtttctac
 1080
 50 gtatgtgaa tgatagggaa tagaagagtt gaaaaggaa agaaaaactt cttaagtggc
 1140
 ttccttaaaa tgcattcat aggagatgtc ctggattgc tcattctgtg actttatgg
 1200
 55 tgccctaaac attcttcagt gaaaataatt ttatccagt caaacattt tgaggaaatg
 1260

agatcacatc tttgtcaactg gatgctactt gaagagggag tactttgtaa ccacttgat
 1320
 atgctgttat caccaccccc tgccctctgc tgccataatc acacaatattt aaaaagaaaag
 5 1380
 aaaaacagtct tc当地gatt tt当地aggaag aaaggccc当地 agtcaggaga tc当地gtt当地
 1440
 tt当地tcc当地 agt当地aatgg gggatctga agatttgaat gttc当地gtctg ct当地t当地aaatg
 10 1500
 tatgtctttt ggaaatgtat tatatgc当地ta gctt当地ataat caggtataaa attt当地atta
 1560
 ttccc当地agaa tatgc当地ataat attgaatattt tcatgtc当地ta tt当地taataga aaacctc当地agg
 15 1620
 gccc当地aagtaa cc当地gtatag aagttgaaa aacc当地ttta ct当地tagaaatg tccaccttagt
 1680
 cagagcccaa gaaagaaattt tca当地tgaaa aatcaatata taacttagt当地 ct当地gtacg
 20 1740
 ccacagactc tagtagataa tattatcatc ataatggctg gt当地aaaccat ataatcacag
 1800
 aaaaacattt ccttc当地agcat gttc当地gtt当地cagcactgag ggc当地actctt当地 agggtt当地gt
 25 1860
 taatgaagat ttaatttta aatacaggtg gttccaagct tt当地aaatagg tt当地gtt当地cca
 1920
 aagtgttat tt当地taatgtaa attt当地tttaact aagtcaaaaca atgttgaaag tt当地gtt当地tag
 30 1980
 gttcttagatc ggtccacgaa agttagccc当地 tatgtatatac tt当地aatagta taggggaggg
 2040
 tattc当地ataaa gtc当地ttatgt gttt当地taact aagt当地aaattt atggacaaga gaaataatty
 35 2100
 taaaatcgctc ttaaaggcaa attt当地atttt taccctgtt tatgggacat tc当地ttctatt
 2160
 aactgtc当地aga cacaalttct gttt当地catct gagagccagg tttc当地tttat tt当地t当地atct
 40 2220
 aaaaataagaa catattgtac actattatata aatacagaat tgtctt当地acac tt当地ataaaat
 2280
 tc当地gatttta aaggtgttta caggattatt tt当地tatatct gtagctgaat tt当地t当地aaatg
 45 2340
 ctaaaaaagct caaggactt当地 atgaagatct cattatatga gggaaatcat aggttaccat
 2400
 tt当地ataactc tattgccata agaaaataca ctctaaaatc tt当地attt当地aa acatattt当地
 50 2460
 aacctt当地gatt cagtgctc当地 agt当地tctt当地 gtaagaagtc accgacggta gc当地t当地atg
 2520
 agaagaaaga aatccccacc acctcaacct ctgctgagat tgtgtgcttag gaacagc当地tt
 55 2580

ccctccgttt cccctcagtc aaacttgagc cagcctctgg atcgatgtga tcttattgca
 2640
 5 tgttccatg gggtgtacct atacttaag ccaatccgc tgcattcact gctaagttaa
 2700
 10 ataaaaagcc aagaagaaaa aaaaaatttt gcactgtca gatccttgc tatctgactt
 2760
 gcatctcttc ccccacctgt cagctagcca cctgcttggta ttttttttag
 2820
 15 cacatgaagc accatctgaa aggggcacca t
 2851
 <210> 23
 <211> 3473
 <212> DNA
 <213> human
 20 aagagcagcg gcgaggcggc ggccggct gactccgtgg tggcagagggc gaaggcgaca
 60
 gctctagggg ttggcaccgg ccccgagagg aggatgcggg tccggatagg gctgacgctg
 120
 25 ctgctgtgtg cggtgctgct gagcttgccc tcggcgtcct cggatgaaga aggcagccag
 180
 gatgaatcct tagattccaa gactactttg acatcagatg agtcagtaaa ggaccacact
 240
 30 actgcaggca gagtagttgc tggtaataa tttcttgatt cagaagaatc tgaattagaa
 300
 tcctctattc aagaagagga agacagcctc aagagccaag agggggagag tgcacagaa
 360
 35 gatatcagct ttctagagtc tccaaatcca gaaaacaagg actatgaaga gccaaagaaa
 420
 gtacggaaac cagcttgac cgccattgaa ggcacagcac atggggagcc ctgccacttc
 480
 40 cctttcttt tcctagataa ggagtatgat gaatgtacat cagatggag ggaagatggc
 540
 agactgtggt gtgctacaac ctatgactac aaagcagatg aaaagtgggg cttttgtgaa
 600
 45 actgaagaag aggctgctaa gagacggcag atgcaggaag cagaaatggt gtatcaaact
 660
 ggaatgaaaa tccttaatgg aagcaataag aaaagccaa aaagagaagc atatcggtat
 720
 50 ctccaaaagg cagcaagcat gaaccatacc aaagccctgg agagagtgtc atatgtctt
 780
 ttatgggt attacttgcc acagaatatc caggcagcga gagagatgtc tgagaagctg
 840
 55 actgaggaag gctctccaa gggacagact gctctggct ttctgtatgc clctggactt
 900

ggtgttaatt caagtcaggc aaaggctctt gtatattata cattggagc tcttggggc
 960
 5 aatctaatacg cccacatggt tttgggttac agataactggg ctggcatcg cgccctccag
 1020
 agttgtgaat ctgccctgac tcactatcg tttgttgc aatcatgtgc tagtgatatc
 1080
 10 tcgctaacag gagggctcagt agtacagaga atacggctgc ctgtgaagt ggaaaatcca
 1140
 ggaatgaaca gtggaatgct agaagaagat ttgattcaat attaccagtt cctagctgaa
 1200
 15 aaagggtatc tacaaggcaca gtttgttctt ggacaactgc acctgcacgg agggcgtgaa
 1260
 gtagaaacaga atcatcagag agcaatttgac tacttcaatt tagcagcaaa tgctggcaat
 1320
 20 tcacatgcca tggcctttt gggaaagatg tattcggaaag gaagtgcacat tgtacacctg
 1380
 agtaatgaga cagctctcca ctacttaag aaagctgctg acatggcaa cccagttgaa
 1440
 25 cagagtggc ttggaaatqgc ctacctctat gggagaggag ttcaagttaa ttatgatcta
 1500
 gcccttaagt atttccagaa agctgctgaa caaggctggg tggatggca gctacagctt
 1560
 30 ggccccatgt actataatgg cattggagtc aagagagatt ataaacagyc cttgaagttat
 1620
 tttaatttag cttctcaggg aggccatatac ttggctttct ataacctagc tcagatgcatt
 1680
 35 gccagttggca ccggcgtgat ycgatcatgt cacactgcag tggagttttt taagaatgt
 1740
 tgtgaacgag gccgttggc taaaaggctt atgactgcct ataacagcta taaagatggc
 1800
 40 gattacaatg ctgcagtgtat ccagttaccc tcctggctg aacagggtta tgaagtggca
 1860
 caaagcaatg cagcctttat tcttgatcag agagaagcaa gcattgttagg tgagaatgaa
 1920
 45 acttatccca gagtttgct acattggAAC agggccgcct ctcaaggctt tactgtggct
 1980
 agaattaagc tcggagacta ccatttctat gggttggca ccgatgtaga ttatgaaact
 2040
 50 gcatttatttc attaccgtct ggcttctgag cagcaacaca gtgcacaagc tatgttaat
 2100
 ctggatata tgcatgagaa aggactggc attaaacagg atattcacct tgcgaaacgt
 2160
 55 ttttatgaca tggcagctga agccagccca gatgcacaag ttccagttt cctagccctc
 2220

tgcaaattgg gcgtcgctca tttcttgcag tacatacggg aaacaaacat tcgagatatg
 2280
 5 ttcacccaac ttgatatgga ccagctttt ggacctgagt gggaccttta cctcatgacc
 2340
 atcattgcgc tgctgttggg aacagtata gcttacaggc aaaggcagca ccaagacatg
 2400
 10 cctgcaccca ggcctccagg gccacggcca gctccacccc agcaggaggg gccaccagag
 2460
 cagcagccac cacagtaata ggcactgggt ccagcattga tcagtgacag cgaaggaagt
 2520
 15 tatctgctgg gaacacttgc atttgatttta ggaccttggta tcagtggta cctccagaa
 2580
 gaggcacggc acaaggaagc attgaattcc taaagctgct tagaatctga tgccttatt
 2640
 20 ttcagggata agtaactctt acctaaactg agctgaatgt ttgttcagt gccatatgga
 2700
 ataacaactt tcagtggctt tttttttct tttctggaaa catatgttag acactcagag
 2760
 25 taatgtctac tgtatccagc tatctttctt ggatcctttt ggtcattatt tcagtgtgca
 2820
 taagttctta atgtcaacca tctttaaggt attgtgcatc gacactaaaa actgatcagt
 2880
 30 gtaaaaagga aaacccagtt gcaagttaa acgtgttgcg aagtctgaaa atagaacttg
 2940
 ccttttaagt taaaaaaaaaa aaaagctatc ttgaaaatgt tttggactg cgataactga
 3000
 35 gaaactctta ccagtcacaca tgcaattaga catattcagc atattgtta tttaaaagg
 3060
 gagggttggg aggtttctta ttggtgattt tcacacggta taccatactc ctctccttca
 3120
 40 aagaatgaaa ggccttgtta aggagttttt tgtgagctt acttcttgg aatggaatat
 3180
 acttatgcaa aaccttgtga actgactcct tgcactaacg cgagttgcc ccacctactc
 3240
 45 tgaatattgc ttgtttgttt tgaatataca gagccttgat ccagaagcca gaggatggac
 3300
 taagtggag aaattagaaa acaaaacgaa ctctgggg ggtactacga tcacagacac
 3360
 50 agacataactt tccctaaagt tgaagcattt gttcccagga tttatattac tttgcatttc
 3420
 ctttgcaca aagaacacat caccattcc tttgcacaa agaacacatc acc
 3473
 55 <210> 24

```

<211> 401
<212> DNA
<213> human

5      <220>
<221> misc_feature
<222> (252)..(252)
<223> any kind of base

10     <220>
<221> misc_feature
<222> (303)..(303)
<223> any kind of base

15     <220>
<221> misc_feature
<222> (390)..(390)
<223> any kind of base

20     <400> 24
tttagattatttcaalttat tattcagaat aaatatatct tttttcttta acttctcaaa
60

tagttattga attgtattgg tttaaattaa atgcgtcatg tgtatataatc agtattaatt
120

25     caagagatac aaaaggaaat tgagtgaaaa ataagtctgc ctccttccca tcactctcat
180

gtctctacctt agaggcaattt attgtcaaca gtttttgatg tgtcttcaa aaaatagtcc
240

30     attaaggctg gngtactaga tctctttaa aagtttacaa cctgttacag aatatatata
300

aangttcaat tactagtaac accttattac agatacagat tacaacttag gaaatataatt
360

35     ttcatggacc attgatgtca ttggattcn cccctacaat c
401

40     <210> 25
<211> 1820
<212> DNA
<213> human

45     <400> 25
aatgtcttag aaaaaggctt tctaaaagaa aaagagcaag aggccatttc ttttcaagat
60

agatacaaag aacttcagga aaaacataaa caagaattgg aagacatgag gaaagctgg
120

50     cacgaagccc tcagcattat tgtggatgaa tataaggcac tactgcagtc ttcagttaag
180

caacaagtag aagctattga aaaacagtac atttctgcaa ttgagaaaca ggcacacaag
240

55     tgtgaggagt tgctaaatgc tcagcatcag aggctccttg aaatgctaga tacagagaaq
300

```

gaactgttaa aagaaaaat aaaggaagct ttgattcgc aatctaaga acagaaggaa
 360
 5 atatggaaa agtgtttgga ggaagaaagg caaagaaata aagaggcatt agtatccgct
 420
 gcaagcttg aaaaagaagc agtgaaggat gcagtttaa aagtctaga agaagaaaga
 480
 10 aaaaatttag aaaaagcgca tgctgaagaa aggaaattat ggaagacaga acatgcaaaa
 540
 gatcaagaaa aagtatctca gaaaltcaa aaagctatac aagaacaaag aaaaataagt
 600
 15 cagggaaactg ttaaggcgc aataatagaa gagcagaaac gaagtgaaaa ggctgtggaa
 660
 gaggcgtga aaagaacaag agatgaattt atagagtata taaaagaaca gaaaaggctc
 720
 20 gatacaagtca tccgc当地 aagcctgtcc agtttggAAC tttcccttc ctgtgcacag
 780
 aaacagttaa gtgttttaat agtacggaa ccagttgaca ttgataaaaa agaacatgac
 840
 25 aaacccacac tggcatttggaa taatcatat tacaccccaaa tacacacac tctgaattat
 900
 aagatgtgt ttgtttctt tccaaatcat gtataattttt tttccatgtc aaggataaac
 960
 30 caaaacaata tttagaacta tcaagtgtac taattttttt tctttgggtt tcttctttac
 1020
 atttactgtt atttttattat tatttagt agcagcaaca gagttgtata tgacccaaaa
 1080
 35 gccattgtaa agtgccacat tacaaaattt aattaagtaa actttatgc ctgtggagt
 1140
 ctattatata ttatggca aaagtagtaa atatattttt gtttcatgt gactcttgat
 1200
 40 gagatgttag aatgttaacca tacatttttac ttatggat gatagaataa gcatggattt
 1260
 caacatcaat ttttatctg tataatttggaa aataaaacac cgatgtata gagaatcatt
 1320
 45 ccggcattac ctaaccttctt ctgcagttgg atctatgtat tttcattggc ctactgaaaa
 1380
 cgaacaatac aattaaaagc actaaagattt attatattaa ttcaactttt atctgtata
 1440
 50 tcacttaaac taaagggttgg tttttttttt cttttttttt cttttttttt
 1500
 atactttgaa tcaataaaac cattagtctt caaatcaaat tgtgaactta atctctagaa
 1560
 55 agagaatata actcagccat ttataggaat tttaggttcaa gtacaggata tatgaaatct
 1620

tttcccgta ttccagaatg tacttaattc acaggcagga tgcttcaatg caaaatcatg
 1680
 5 aatattttta attcaaaaact aaaatgtcat taatatgtat gatatcaaat gttttatctt
 1740
 10 attttctgaa atgcatctac tttcatggc tttgtacgtt tctgagattt ctcagtgtaa
 1800
 15 taaaaagagc tcccaaactt
 1820
 20 <210> 26
 <211> 280
 <212> DNA
 <213> human
 <220>
 <221> misc_feature
 <222> (261)..(261)
 <223> any kind of base
 25 <220>
 <221> misc_feature
 <222> (237)..(237)
 <223> any kind of base
 30 <400> 26
 tcagaatcata agataaagtt taatcatttg atcatgttaa aagacacaaa acacagccaa
 60
 35 tctaaccaaa ttcaggcat gcatttacat aaatatatta aattaagaaa agaaattgtt
 120
 cacttaaacg tcctttcac cttagaatca ttaaatccac agatcaacaa taaaaccaat
 180
 40 tctctgcatt taccacttca agatacaatt gttctatTTT aaagataaca caaactncac
 240
 tagtctggtt aggaatttat ntgcattata catatattat
 280
 45 <210> 27
 <211> 392
 <212> DNA
 <213> human
 <400> 27
 ttggtttcaa atggcacccc aggactttgg gcctgcctta cttgatagcc tcgttcagtg
 60
 50 agcaaagact tagtgagcag ctcttgtatg ccaagtattt tgcttaagctc tgaaaaaaag
 120
 ataaacaaga catggttctt gctttcaagg agtgttaat tcttttagcca gatatggaaa
 180
 cctggaccct gagtgggaga aaggagacag atgaaaggag tccgtgattt tgtaaccaag
 240
 55 agctgcctgc atggttatga gtatcactga ttttagggac gcccacagag ctaaagcatt

300
 ttttaatcc gagaagactt ttgttaactca tattagttaa tcttctagct ctgagatagc
 360
 5 aacacagctc tttagaattct gtaagtaagc tt
 392
 10 <210> 28
 <211> 2299
 <212> DNA
 <213> human
 15 <400> 28
 cgaacccca cagctggagg gcgaggccag ctgtacccgg ccccagtgcc cttdcgccgc
 60
 cacaagcggc cgtectcctg gtccqgtgtc ccggcgctg atctaggttc atggagccgg
 120
 20 ggctgtggct cctttcggg clcacagtga cctccggcgc aggattcgtg ccttgctccc
 180
 agtctgggga tgctggcagg cgcggcgtgt cccaggcccc cactgcagcc agatctgagg
 240
 25 gggactgtga agagactgtg gctggccctg gcgaggagac tgtggctggc cctggcgagg
 300
 ggactgtggc cccgacagca ctgcagggtc caagccctgg aagccctgg caggagcagg
 360
 30 cggccgaggg ggccccctgag caccaccgtt ccaggcgctg cacgtgcttc acctacaagg
 420
 acaaggagtg tgtctactat tgccacctgg acatcatttgc gatcaacact cccgaacaga
 480
 35 cggtgcccta tggactgtcc aactacagag gaagcttccg gggcaagagg tctgcggggc
 540
 cactccagg gaatctgcag ctctcacalc ggccacactt ggcgtgcgt tttgtgggg
 600
 40 gatatgacaa ggctgcctg cacttttgc cccaaactct ggacgtcagc agacaggttg
 660
 aagtcaagga ccaacaaagc aaggaggctt tagacctcca ccatccaaag ctcatgccc
 720
 45 gcagtggact ggccctcgct ccatctacctt gccccgctg cctcttcag gaaggagccc
 780
 ctttaggagga caggcctgca gcatcctggc ctcgggaggc ttctgtcatt gtcacacac
 840
 50 agttcagatt tccaccttt tatagacaag aagtgaattt gcctggggca gaacacccac
 900
 ccaaagagtc cccacttaac aatacccccc ccccacggca agaatgccc aatccgaatg
 960
 55 accccagttt tcctaatgag taaaatgatc ccagatgtgc cccagagcat gacgcctgca
 1020

gctccggttt catgcaggaa attgggtttg gagaggtttg gcaagtttga aagccactta
 1080
 5 ctggcgtttt acatgacttc tcttgagaa taagtggact ccaagctaac tctttgcaaa
 1140
 tgtaaacaca tgtccatctt gtaataaatg caaaaatgccc gtgcagcaga agcatgcac
 1200
 10 tttcatatcc ttgccttagaa taggctgcat ggtgtatgtc agtgagggcc acgaggcgac
 1260
 ggcttagac acagatcata gctctacagg agtttatgaa tttgaagctt atgggattt
 1320
 15 ggcagagaaa tttcagctg tgcttgatac ccaccaaag aatgtatctc gaaagaatga
 1380
 aggaagaaga aaaaaggatc cttgatgttt gtgacaagaa aatgagaaag ttagtatactg
 1440
 20 caatacagag ctgttcctg ttcaagtact gaccctctgt attctgtata gacaccaggc
 1500
 cgatacacag tggagttccc aggcccttgtt tgcaggaagc cgactgtaaa gacagcccc
 1560
 25 gctcaaggct attaggttga atatttgctt tcatgagtaa atgtggatct ttggggatg
 1620
 gcttcaaaat aagtcacgaa cacaattct ttgtaaatttca tggaaatcc tgtttatata
 1680
 30 aattggcaac aacttataacc gtctgacagt tcaaaatctc tttcagctgc gctcttcca
 1740
 ccgagccgag cttactgtga gtgtggagat gttatccac catgtaaagt cgcctgcga
 1800
 35 ggggagggtt gccccatctcc ccaacccagt cacagagaga taggaaacgg catttgatgt
 1860
 ggtgtccagg gccccgtaga gagacatttta agatgggtta tgacagagca ttggccttga
 1920
 40 ccaaaatgtta aatcctctgt gtgtatttca taagtttata caggataaaa agtgatgacc
 1980
 tatcatgagg aaatgaaagt ggctgatttgc ctggtaggat tttgtacagt ttagagaagc
 2040
 45 gattattttat tggaaactg ttctccactc caactccctt atgtggatct gttcaagta
 2100
 gtcactgtat atacgtatag agaggttagat aggttaggtat attttaaattt gcattctgaa
 2160
 50 tacaaactca tactccttag agcttgaattt acattttaa aatgcataatg tgctgtttgg
 2220
 caccgtggca agatggtac agagagaaac ccatcaatttgc tcaaatact cagaaagtac
 2280
 55 tggtaaaaagc ctaataaaaa
 2299

5 <210> 29
 <211> 1339
 <212> DNA
 <213> human

 10 <400> 29
 ctaaacaaaa tcattcaattt ccctgatttt gataagaaaa ttccctgtaaa gctgtttcct
 60

 15 ctgcctctcc tctacgttgg aaaccacata agtggattat caagcacaag taaattaagc
 120

 20 ctaccatgt tcaccgtgct caggaaattc accattccac ttaccttact tctggaaacc
 180

 25 atcatacttg ggaagcagta ttcactcaac atcatcctca gtgtcttgc cattattctc
 240

 30 ggggcttca tagcagctgg gtctgacctt gcttttaact lagaaggcta tattttgt
 300

 35 ttcctgaatg atatcttcac atcagcaa atgagttata ccaaacagaa aatggaccca
 360

 40 aaggagctag ggaaatacgg agtacttttc tacaatgcct gcttcatgat tatcccaact
 420

 45 cttattatta gtgtctccac tggagacctc caacaggcta ctgaattcaa ccaatggaag
 480

 50 aatgttgtt ttagtccaca gtttcttctt tccgtttttt tggttttct gctgatgtac
 540

 55 tccacggttc tggcgaccta ttacaattca gccctgacga cagcagtgg tggagccatc
 600

 60 aagaatgtat ccgttgccta cattggata ttaatcggtt gagactacat tttctttt
 660

 65 ttaaaactttt taggttaaa tatttgcattt gcagggggct tgagatattc cttttlaaca
 720

 70 ctgagcagcc agttaaaacc taaacctgtt ggtgaagaaa acatctgtt ggatttgaag
 780

 75 agctaaagag tctgcagcag gattggagac tgacttgc tgcgggctg gggggcatt
 840

 80 cccagtagga atgtgaagcc agaggttcg gattcgttac atccaccccc tggcaagtg
 900

 85 agagcatctg caaaatgca agagaactac ctcatatgca ggtgagccca atggcagtc
 960

 90 caagaaatgt actcgggcga caccttaccc gtggaaagca aatctttca aaataagcca
 1020

 95 ctgggactcg gtaggtggag ccccagctgc tcttcttaggg acctatggg ctttcgtgg
 1080

 100 atctctgtgc tgggtgtgg ggaggagtt gatgtatgg tgactctttt ctgatcagca
 1140

 105 ccttggccgt gattcccaag gtcccgacca aagcaaaggg ccagttttt cagttaaac
 1200

agacatgtct ttagtcta ataaattttt aactgccagt aaagtttattt gtttttttt
 1260

5 atgaaagcta tgggttatac ttccctaat catcaaagta aataaaaaat catttctatg
 1320

taaaaaaaaaaaa aaaaaaaaaa
 1339

10 <210> 30
 <211> 4250
 <212> DNA
 <213> human

15 <400> 30
 gaacacatcg cgtttgcata ccagaaagta gtcgcccgcga ctatttcccc caaagagaca
 60

agcacacatg taggaatgac aaaggcttgc gaaggagaga gcgcagcccg cgccccggag
 120

20 agatccccctc gataatggat tactaaatgg gatacacgct gtaccagttc gctccgagcc
 180

ccggccgcct gtccgtcgat gcaccgaaaa gggtaaqta gagaataaa gtctccccgc
 240

25 tgaactacta tgaggtcaga agccttgctg ctatatttca cactgctaca ctttgctggg
 300

gctggtttcc cagaagattc tgagccaatc agtatttcgc atggcaacta tacaaaacag
 360

30 tatccggtgt ttgtggcca caagccagga cggaacacca cacagaggca caggctggac
 420

atccagatga ttatgatcat gaacggaacc ctctacattt ctgcttaggga ccatatttat
 480

35 actgttgata tagacacatc acacacggaa gaaattttt gtagaaaaa actgacatgg
 540

aaatctagac aggccgatgt agacacatgc agaatgaagg gaaaacataa ggatgagtgc
 600

40 cacaacttta ttaaagttct tctaaagaaa aacgatgatg cattgtttgt ctgtggact
 660

aatgccttca accttcctg cagaaactat aagatggata cattggaaacc attcggggat
 720

45 gaattcagcg gaatggccag atgcccataat gatgccaaac atgccaacgl tgactgttt
 780

gcagatggaa aactatactc agccacagtg actgacttcc ttgcattga cgcaatgtt
 840

50 taccggagtc ttggagaaag ccctaccctg cggaccgtca agcacgattc aaaatggttg
 900

aaagaaccat actttgttca agccgtggat tacggagatt atatctactt cttcttcagg
 960

55 gaaatagcag tggagtataa caccatggga aaggtagttt tcccaagagt ggctcaggtt

1020
 tgtaagaatg atatggagg atctcaaaga gtcctggaga aacagtggac gtcgttccgt
 1080
 5 aaggcgcgct tgaactgctc agttcctgga gacttcatt tttatttcaa catttcag
 1140
 10 gcagttacag atgtgattcg tatcaacggg cgtgatgttgc ttctggcaac gtttctaca
 1200
 15 ccttataaca gcatccctgg gtctgcagtc tgtgcctatg acatgttga cattgccagt
 1260
 gttttactg ggagattcaa ggaacagaag tctcctgatt ccacctggac accagttcct
 1320
 20 gatgaacgag ttccctaagcc caggccaggt tgctgtgctg gctcatcctc cttagaaaga
 1380
 tatgcaacct ccaatgagtt ccctgatgtat accctgaact tcataaagac gcacccgctc
 1440
 25 atggatgagg cagtgcctc catcttcaac aggccatggt ttctgagaac aatggtcaga
 1500
 taccgcctta cccaaattgc agtggacaca gctgctggc catatcgaa tcacactgtg
 1560
 30 gttttctgg gatcagagaa gggaatcattt ttgaagttt tggccagaat agaaaatagt
 1620
 gttttctaa atgacagcct ttccctggag gagatgatgt tttacaactc taaaaatgc
 1680
 35 agctatgatg gagtcgaaga caaaaggatc atgggcattc agctggacag agcaaggcgc
 1740
 tctctgtatg ttgcgttctc tacctgtgtg ataaagggttcc cccltggccg gtgtgaacga
 1800
 40 catggaaagt gtaaaaaaac ctgtattgcc tccagagacc catattgtgg atggataaag
 1860
 gaaggtggtg cctgcagcca tttatcaccc aacagcagac tgactttga gcaggacata
 1920
 45 gacgtggca atacagatgg tctggggac tgtcacaatt cctttgtggc actgaatgac
 1980
 atttcaactc ctctaccaga taatgaaatg tcttacaaca cagtgatgg gcattccagt
 2040
 50 tccctttgc ccagcacaac cacatcagat tcgacggctc aagagggta tgagtctagg
 2100
 ggaggaatgc tggacggaa gcatctgctt gactcacctg acagcacaga cccttgggg
 2160
 55 gcagtgtctt cccataatca ccaagacaag aaggaggtga ttcccggaaag ttacctcaa
 2220
 ggccacgacc agctggttcc cgtaaccctc ttggccattg cagtcattcctt ggcttcgtc
 2280
 atggggccg tcttctcggtt catcaccgtc tactgcgtct gtgatcatcg gcgaaagac

2340
 5 gtggctgtgg tgcagcgcaa ggagaaggag ctcaccact cgccgcgggg ctccatgagc
 2400
 10 agcgtcacca agctcagcgg cctctttggg gacactaat ccaaagaccc aaagccggag
 2460
 15 gccatcctca cgccactcal gcacaacaygc aagctcgcca ctcccgcaaa cacggccaag
 2520
 20 atgctcatta aagcagacca gcaccacctg gacctgacgg ccctccccac cccagagtca
 2580
 25 accccaacgc tgcagcagaa gcggaagccc agccgcggca gccgcgagtg ggagaggaac
 2640
 30 cagaacctca tcaatgcctg cacaaggac atgccccca tgggctcccc tgtgattccc
 2700
 35 acggacctgc ccctgcgggc ctcccccagc cacatccccca gcgtggtggt cctgcccata
 2760
 40 acgcagcagg gctaccagca tgagtacgtg gaccagccca aatgagcga ggtggcccaag
 2820
 45 atggcgtgg aggaccaggc cgccacactg gagtataaga ccatcaagga acatctcagc
 2880
 50 agcaagagtc ccaaccatgg ggtgaacctt gtggagaacc tggacagcct gccccccaaa
 2940
 55 gttccacagc gggaggcctc cctgggtccc ccgggagcct ccctgtctca gaccggtcta
 3000
 60 agcaagcggc tggaaatgca ccactcctct tccctacgggg ttgactataa gaggagctac
 3060
 65 cccacgaact cgctcacgag aagccaccag gccaccactc taaaaagaaa caacactaac
 3120
 70 tcctccaatt cctctcacct ctccagaaac cagagcttg gcaggggaga caaccggccg
 3180
 75 cccgccccgc agagggtgga ctccatccag gtgcacagct cccagccatc tggccaggcc
 3240
 80 gtgactgtct cgaggcagcc cagcctcaac gcctacaact cactgacaag gtcggggctg
 3300
 85 aagcgtacgc cctcgctaaa gcccggacgta ccccccAAC catcctttgc tcccccttcc
 3360
 90 acatccatga agcccaatga tgcgtgtaca taatcccagg gggaggggggt caggtgtcga
 3420
 95 accagcaggc aaggcggaggc gcccgtcaag ctcagcaagg ttctcaactg cctcgagtac
 3480
 100 ccaccagacc aagaaggcct gcccggcagagc cgaggacgct gggtcctcct ctctgggaca
 3540
 105 cagggtact cacgaaaact gggccgcgtg gtttggtaa ggttgtcaac ggcggggact
 3600
 110 cacccatttcttcc actttcccccc acaccctaca acaggtcgga cccacaaaaag

3660
 acttcagttt tcacatcacaaa catgagccaa aagcacatac ctaccccatc ccccacccccc
 3720
 5 acacacacac acacatgcac acaacacata cacacacacg cacagaggta aacagaaaact
 3780
 gaaacatttt gtccacaact tcacgggacg tggccagact gggtttgcgt tccaacctgc
 3840
 10 aaaacacaaa tacatttttt aaaatcaaga aaattaaaa agacaaaaaa aaaagaattc
 3900
 attgataatt ctaactcaga cttaacaat ggcagaagtt tactatgcgc aaalactgtg
 3960
 15 aaatgcccgc cagtgttaca gctttctgtt gcagcagata aatgccatgt tggcaacta
 4020
 tgtcatagat ttctgtctt cctctttttt aatgaaataa cgtgaccgtt aacgcaagta
 4080
 20 actctttatt tattgttcac cttttttttc cttaaggaaa ggactttcc aaatatcatc
 4140
 ctatgaacag ctcttcagaa agcccatgaa aagttaaact atttAACGtg aaatccatta
 4200
 25 actggaataa ttgagttct ttatTTTAC aataaaattca ctgagtaat
 4250
 30 <210> 31
 <211> 2785
 <212> DNA
 <213> human
 <400> 31
 cttagccca acagtcaaaa ataattgatg ctaccctaca aatgtccaaa actctagtat
 35 60
 atcatatttc taagttacag caaatattag tcctgctaaa ccagggagct ttggcaaaaa
 120
 tgTTTTTGA cagtaaattt gtccttgatt atatattaac tagtcaaaga ggtgtttgtA
 40 180
 acattattag agttcttgtl tgttaggtggg ttaacaccac caatcaagag gtcattctaa
 240
 45 cagaaaggct ggatcagaaa accatcaccc taaaaaaaaaca tgccttacat atttAACACA
 300
 ctctgaaatc cagtcaaaat atgactaaag gcccttgcca tgactgatgt attctctgg
 360
 50 ccaacgccaa acaaatggga gcctggttac gagtcagct tcagggactt gtcacattc
 420
 tacttggttt cttccttgcattt attgtcataa taaaatgttt tctatgtgtt ttatgtcaac
 480
 55 tttagcccta ttctgttagaa gtctcctcta ctattcaggc cactcaaaca ccccaataa
 540

ttgagttcaa aatcgacatac aagatataaa ggaatcgtg actaaatata tttcatatat
 600
 5 ggtatTTTta ttgattattt tgctgtcttg accttagtgc gaggccttgg ctagaggctg
 660
 gtcagTTTcc tctcttgagc agctgattaa atccacaccc caaccacttc ccttatcagg
 720
 10 ttctcacact ctggggccac tatgtaccca ctctaattcac cacagggcca gacatcagac
 780
 aatTAAGGAC agcgcccattg ccccaaaGCC cgccaaaattt atgcaaaattt ttcaaaattt
 840
 15 ttcaaccttag ctaacccac ccttttgcgt gtacataagc tgccattcc ccctccagcc
 900
 tgggtaccc agtcctcagg tgcaaccccc tgctgtggtcc tctgtggcag ctttctctca
 960
 20 ttcaagctg tttccacag aggttagtgc aagaacttgg a tttcaagtt cactttgca
 1020
 gagaAAAAGA aaACTCAGTA gaagataatg gcaagtccag actggggata tggatgacaaa
 1080
 25 aatggtcctg aacaatggag caagctgtat cccattgcca atggaaataa ccaatccc
 1140
 gttgatatta aaaccagtga aaccaaacat gacaccttc taaaacctat tagtgtctcc
 1200
 30 tacaacccag ccacagccaa agaaatttac aatgtggggc attcttcca tgtaaatttt
 1260
 gggacaacg ataaccgatc agtgctgaaa ggtggctt tctctgacag ctacaggctc
 1320
 35 ttccagttc attttcactg gggcagtaca aatgagcatg gttcagaaca tacagtggat
 1380
 ggagtcaaat attctgccga gcttcacgtc gctcacttgc attctgcaaa gtactccagc
 1440
 40 ctggctgaag ctgcctcaaa ggctgtatgg ttggcagtta ttgggtttt gatgaaggtt
 1500
 ggtgaggcca acccaaagct gcagaaagta cttgtatgccc tccaagcaat taaaaccaag
 1560
 45 ggcaaaacgag ccccaattcac aaattttgac ccctctactc tccttccttc atccctggat
 1620
 ttctggacct accctggctc tctgactcat cctcctctt atgagagtgt aacttggatc
 1680
 50 atctgttaagg agagcatcag tgcagctca gagcagctgg cacaattccg cagccttc
 1740
 tcaaATGTTT aagggtataa cgctgtcccc atgcagcaca acaaccggcc aacccaaac
 1800
 55 ctggggca gaacagttag agcttcattt tggatgtttt gagaagaaac ttgtccttcc
 1860

5 tcaagaacac agccctgctt ctgacataat ccagttaaaa taataatttt taagaataaa
1920
atttatttca atattagcaa gacagcatgc cttcaaatac atctgtaaaa ctaagaaaact
1980
taaatttttag ttcttactgc ttaattcaaa taataatttag taagctagca aatagtaatc
2040
10 tgtaaggata agcttatctt aaattcaagt ttagtttgag gaattcttta aaattacaac
2100
taagtgattt gtatgtctat tttttcagt ttattlgaac caataaaaata attttatctc
2160
15 tttctttctg ttgtgcattc agtttctaaa accattaagt ttctactcca tttacattca
2220
aaaatcttaa atactttact tgcaagagta ttttgcttca aatacaacaa cctaagagca
2280
20 gctggagatg aaatattggg aaattcattt gcttactctt gaagacaaaa atatagctga
2340
gatgaccact ggatttaata tcgttatgct ggcccaacat tgctaccatt tgtgttgtct
2400
25 gtgatcaaaa tgattatctt ttatataggta agatgacgct tctggatatt gcttcactt
2460
cttctccccca cgtagcaag gacaatgctt ctctgccatt attacaacta gtttagtlgc
2520
30 atggagaatc tttactttaa aattggaaga aaagtccacaa gtgaatggtt tataaaaatg
2580
ctaaagaagt catttttgct tagaatcata tagaaacatc atgcaatctt ttagtcagat
2640
35 gtgcgttca ccttatgcta ttttatctt taattgacac acaataattt tacatgttta
2700
tggaggatag tgtgggttt tctgtttgtt tgtttgggg ttgagacaag gtctcactct
2760
40 gccagtcagg gtggagtgcg atggt
2785

<210> 32
<211> 9588
<212> DNA
<213> human

45 <400> 32
ccgaccaaca ccaacaccca gctccgacgc agctccctcg cgcccttgcc gcccctcgag
60
50 ccacagctt cctcccgetc ctgccccggg cccgtcgccg tctccgcgtt cgcaagggcc
120
tcggaggggc ccaggttagcg agcagcgacc tcgcgagctt tccgcactcc cggccgggtt
180
55 cccggccgtc cgcctatcct tggccccctc cgcttctcc ggcggggccc gcctcgctt
240

tgcctcgccg ctgagccgct ctcccattt cccgccaca tgagctgcaa cggaggctcc
 300
 5 caccgcgga tcaacactctt gggccgcattt atccgcgcgg agtctggccc ggacctgcgc
 360
 tacgaggtta ccagcggcgg cgggggcacc agcaggatgt actattctcg ggcggcgtg
 420
 10 atcaccgacc agaactcgga cggctactgt caaacggca cgtatgtccag gcaccagaac
 480
 cagaacacca tccaggagct gctgcagaac tgctccact gcttgatgcg agcagagctc
 540
 15 atcgtgcagc ctgaatttgaat gttatggat ggaatacaac tgactcgag tcgagaatttga
 600
 gatgagtgtt ttgcccaggc caatgaccaaa atggaaatcc tcgacagctt gatcagagag
 660
 20 atgcggcaga tggccagcc ctgtgtatgtt taccagaaaa ggcttcttca gctccaagag
 720
 caaatgcgag cccttataaa agccatcaatgtt gtcctcgag tccgcaggc cagctccaag
 780
 25 ggtgggtggag gctacacttg tcagagtggc tctggctggg atgagttcac caaacatgtc
 840
 accagtgaat gtttgggtt gatgaggcag caaaggcgg agatggacat ggtggctgg
 900
 30 ggtgtggacc tggcctcagt ggagcagcac attaacagcc accggggcat ccacaactcc
 960
 atcggcgact atcgctggca gctggacaaa atcaaagccg acctgcgcga gaaatctgcg
 1020
 35 atctaccagt tggaggagga gtatgaaaac ctgctgaaag cgtccttga gaggatggat
 1080
 cacctgcgac agctgcagaa catcatttagt gccacgttca gggagatcat gtggatcaat
 1140
 40 gactgcgagg aggaggagct gctgtacgac tggagcgcaca agaacaccaa catcgctcag
 1200
 aaacaggagg ctttctccat acgcatgagt caactgaaag taaaagaaaa agagctcaat
 1260
 45 aagctgaaac aagaaagtga ccaacttgtc ctcaatcagc atccagtttc agacaaaatt
 1320
 gaggcctata tggacactct gcagacgcag tggagtttga ttcttcagat caccaagtgc
 1380
 50 attgatgttc atctgaaaga aaatgctgcc tactttcagt tttttgaaga ggcgcagtct
 1440
 actgaagcat acctgaaggg gctccaggac tccatcagga agaagtaccc ctgcgacaag
 1500
 55 aacatgcccc tgcagcacct gctgaaacag atcaaggagc tggagaaaga acgagagaaa
 1560

atccttgaat acaaggcgca ggtgcayaac ttggtaaaaca agtctaagaa gattgtacay
 1620
 5 ctgaaggcctc gtaacccaga ctacagaagc aataaaccctt ttattctcag agctctctgt
 1680
 gactacaaac aagatcagaa aatcgtgcat aaggggatg agtgtatcct gaaggacaac
 1740
 10 aacgagcgca gcaagtggta cgtgacgggc ccgggaggcg ttgacatgct tgttccctct
 1800
 gtggggctga tcatccctcc tccgaacccca ctggccgtgg acctctttt caagatttag
 1860
 15 cagtaactacg aagccatctt ggctctgtgg aaccagctct acatcaacat gaagagcctg
 1920
 gtgtcctggc actactgcat gattgacata gagaagatca gggccatgac aatcgccaag
 1980
 20 ctgaaaacaa tgcggcagga agattacatg aagacatag ccgaccttga gttacattac
 2040
 caagagttca tcagaaatag ccaaggctca gagatgtttt gagatgtatca caagcggaaa
 2100
 25 atacagtctc agttcaccga tgcccagaag cattaccaga ccctggtcat tcaagtcct
 2160
 ggctatcccc agcaccagac agtgaccaca actgaaatca ctcatcatgg aacctgccaa
 2220
 30 gatgtcaacc ataataaaatg aattgaaacc aacagagaaa atgacaagca agaaacatgg
 2280
 atgctgtatgg agctgcagaa gattcgcagg cagatagagc actgcgaggg caggatgact
 2340
 35 ctcaaaaacc tccctctagc agaccagggg tcttctcacc acatcacagt gaaaattaac
 2400
 gagcttaaga gtgtgcagaa tgattcacaa gcaattgctg agttctcaa ccagcttaaa
 2460
 40 gatatgcttg ccaacttcag aggttctgaa aagtactgct atttacagaa tgaagtatgg
 2520
 ggactatttc agaaactgga aaatatcaat ggtgttacag atggctactt aaatagctt
 2580
 45 tgcacagtaa gggcactgct ccaggctatt ctccaaacag aagacatgtt aaaggtttat
 2640
 gaagccaggc tcactgagga ggaaactgtc tgcctggacc tggataaaat ggaagcttac
 2700
 50 cgctgtggac tgaagaaaat aaaaaatgac ttgaacttga agaagtctttt gttggccact
 2760
 atgaagacag aactacagaa agcccagcag atccactctc agacttcaca gcagtatcca
 2820
 55 ctttatgatc tggacttggg caagttcggt gaaaaagtca cacagctgac agaccgctgg
 2880

caaaggatag ataaacagat cgactttaa ttatggacc tggagaaaca aatcaagcaa
 2940

5 ttgaggaatt atcgtgataa ctatcaggct ltctgcaagt ggctctatga tcgtaaacgc
 3000

cgcaggatt ccttagaaatc catgaaattt ggagattcca acacagtcat gcggttttg
 3060

10 aatgagcaga agaacttgca cagtgaaata tctggcaaac gagacaatac agaggaagta
 3120

caaaaaattt ctgaactttg cgccaaattca attaaggatt atgagctcca gctggcctca
 3180

15 tacacctca gactggaaac tctgctgaac atacctatca agaggaccat gattcagtcc
 3240

cttctgggg tgattctgca agaggctgca gatgttcatg ctcggcacat tgaactactt
 3300

20 aacaatctg gagactatta caggttctta agtgagatgc tgaagagttt ggaagatctg
 3360

aagctgaaaa ataccaagat cgaagttttg gaagaggagc tcagactggc ccgagatgcc
 3420

25 aactcgaaaa actgtataaa gaacaaattc ctggatcaga acctgcagaa ataccaggca
 3480

gagtgtcccc agttcaaagc gaagcttgcg agcctggagg agctgaagag acaggctgag
 3540

30 ctggatggga agtcggctaa gcaaatcta gacaagtgc acggccaaat aaaagaactc
 3600

aatgagaaga tcacccgact gactttagag attgaagatg aaaagagaag aagaaaatct
 3660

35 gtggagaca gatttgcacca acagaagaat gactatgacc aactgcagaa agcaaggcaa
 3720

tgtgaaaagg agaaccttgg ttggcagaaa ttagagtctg agaaagccat caaggagaag
 3780

40 gagtacgaga ttgaaaggaa gagggttcta ctgcaggaaag aaggcacccg gaagagagaa
 3840

tataaaaatg agctggcaaa ggtaaagaaac cactataatg aggagatgag taatttaagg
 3900

45 aacaagtatg aaacagagat taacattacg aagaccacca tcaaggagat atccatgcaa
 3960

aaagaggatg attccaaaaa tcttagaaac cagcttgcata gacttcaag gaaaaatcga
 4020

50 gatctgaagg atgaaattgt caggctcaat gacagcatct tgccggccac tgagcagcga
 4080

aggcgagctg aagaaaacgc ctttcagcaa aaggcctgtg gctctgagat aatgcagaag
 4140

55 aagcagcatc tggagataga actgaagcag gtcatgcagc agcgctctga ggacaatgcc
 4200

4260 cgccacaaggc agtccctgga ggaggctgcc aagaccattc aggacaaaaa taaggagatc
 4270
 4320 gagagactca aagctyagtt tcaggaggag gccaaagcgcc gctggaaata taaaatgaa
 4380 cttagtaagg taagaaacaa ttatgtatgag gagatcatta gcttaaaaaa tcagtttgag
 4440 accgagatca acatcaccaa gaccaccatc caccagctca ccatgcagaa ggaagaggat
 4500 accagtggct accgggctca gatagacaat ctcacccgag aaaacaggag cttatctgaa
 4560 gaaataaaga ggctgaagaa cactctaacc cagaccacag agaatctcg gagggtggaa
 4620 gaagacatcc aacagcaaaa ggccactggc tctgaggtgt ctcagaggaa acagcagctg
 4680 gagtttgc tgagacaagt cactcagatg cgaacagagg agacgtaag atataagcaa
 4740 tctcttgatg atgctgcca aaccatccag gataaaaaca aggataga aaggttaaaa
 4800 caactgatcg acaaagaaac aaatgaccgg aaatgcctgg aagatgaaaa cgcgagatta
 4860 caaagggtcc agtatgacct gcagaaagca aacagtagtg cgacggagac aataaacaaa
 4920 ctgaagggttc aggagcaaga actgacacgc ctqaggatcg actatgaaag ggttccag
 4980 gagaggactg tgaaggacca ggatatacag cggttccaga actctctgaa agagctgcag
 5040 ctgcagaagc agaaggtgga agaggagctg aatcggtga agaggaccgc gtcagaagac
 5100 tcctgcaaga ggaagaagct ggaggaagag ctggaggca tgaggaggc gctgaaggag
 5160 caagccatca aaatcaccaa cctgacccag cagctggagc aggcatccat tggtaagaag
 5220 aggagtgggg atgacccctcg gcagcagagg gacgtgtgg atggccacct gaggaaaaag
 5280 cagaggaccc aggaagagct gaggaggctc tcttctgagg tcgaggccct gaggcggcag
 5340 ttactccagg aacagggaaag tgtcaaacaa gtcacttga ggaatgagca ttccagaag
 5400 gcgatagaag ataaaagcag aagcttaaat gaaagcaaaa tagaaattga gaggctgcag
 5460 tcttcacag agaacctgac caaggagcac ttgatgttag aagaagaact gcgaaacctg
 5520 aggctggagt acgatgacct gaggagaagg cgaagcgaag cggacagtga taaaaatgca

accatcttgg aactaaggag ccagctgcag atcagcaaca accggaccct ggaactgcag
 5580

5 gggctgatta atgatttaca gagagagagg gaaaatttg aacaggaaat tgagaaattc
 5640

caaaagcagg cttagaggc atctaataagg attcaggaat caaagaatca gtgtactcag
 5700

10 gtgg tacagg aaagagagag cttctggtg aaaatcaaag tcctggagca agacaaggca
 5760

aggclgcaga ggctggagga tgagctgaat cgtcaaaat caactctaga ggcagaaacc
 5820

15 agggtaaac acgccttgg a t g t g a g a a a c a g c a a a t t c a g a t g g
 5880

a a a g a c t c a a t a t c c c g c a a g g a g g y c t a t t g a a a g a t c g g a a
 5940

20 a g t g a g a g a g a g a a a c a g t c t a g g a g a g a t c a a g
 6000

a g a a t t g a a g a g a g t c a g g c t a g g a t t c t a c a g t c a c a g
 6060

25 t t g a a a c a g a a c g c t c c c g a t a t c a g a g g a t t g a a c a
 6120

g g g t c c c a t c a g a g c c c a g t g a g t g t g a g t g g a c c g t t g
 6180

30 t t t g a t g g g c a g a g a a g a g a c a g c a t g c a g c t c t a g t g t c a
 6240

a a a a c a a c c t t g g a c a a a c t a t g a a g g g g a a g a g t c a g
 6300

35 a t c c a g c c a t t c c t c g g g g t c a g g a t c t a t c g t g g a g
 6360

a a a t a c t c t t g g t a g a g g c a a g a g a a a g a a t t a c a
 6420

40 c t t c t g g a g g c c c a g g c a g c a c a g g t g g t a t t g a t c
 6480

a c t g t c g a c a t g c c a t a g c t c g g a c c t c t g a c t t c
 6540

45 g c a g c a g a a a a g c t a t c a c t g g t t t g a t c a g g a a g
 6600

t c a g a a g c c a t a g a a a a a t t g a t t g a t a g a a c c g
 6660

50 c a g a t t g c t t c a g g g g g t g a t a g a c c t g t a c a g
 6720

g c c t t g g c c c g g g g t g a t a g a g a t t g a t c g a t
 6780

55 a g t c a g a a a a a c t t t g g a t c a c c a g g a a g g t a c
 6840

6900
 5 gaacggtgca gaatcgaacc acatactggt ctgctttgc tttcagtaca gaagagaagc
 6960
 10 atgtccttcc aaggaatcg acaacctgtg accgtcactg agcttagtga ttctggata
 7020
 15 ttgagaccgt ccactgtcaa tgaactggaa tctggtcaga tttcttatga cgagggttgt
 7080
 20 gagagaatta aggacttcct ccagggttca agctgcatac caggcatata caatgagacc
 7140
 25 acaaaacaga agcttggcat ttatgaggcc atgaaaattt gcttagtccg acctggtaact
 7200
 30 gctctggagl tgctggaaac ccaaggcact actggcttta tagtggatcc tggtagcaac
 7260
 35 ttgaggttac cagtggagga agcctacaag agaggtctgg tgggcattga gttcaaagag
 7320
 40 aagctcctgt ctgcagaacg agctgtcaact gggtataatg atcctgaaac agggaaacatc
 7380
 45 atctcttgc tccaagccat gaataaggaa ctcatcgaaa agggccacgg tattcgctt
 7440
 50 ttagaaggcac agatcgcaac cggggggatc attgacccaa aggagagccca tcgtttacca
 7500
 55 gttgacatag catataagag gggctatttc aatgaggaac tcagttagat tctctcagat
 7560
 60 ccaagtgtatc ataccaaagg attttttgc cccaacactg aagaaaatct tacatatctg
 7620
 65 caactaaaag aaagatgcat taaggatgag gaaacaggc tctgtcttct gcctctgaaa
 7680
 70 gaaaagaaga aacagggtgc gacatcacaa aagaataaccc tcaggaagcg tagagtggc
 7740
 75 atagttgacc cagaacccaa taaagaaatg tctgttcagg aggcttacaa gaaggccta
 7800
 80 atgattatgc aaacccatca agaactgtgt gaggcggat gtgaatggga agaaataacc
 7860
 85 atcacggat cagatggctc caccagggtg gtcctggtag atagaaagac aggcaatcag
 7920
 90 tatgatattc aagatgttat tggacaaggc cttgttgaca ggaagttctt tgatcgtac
 7980
 95 cgatccggca gcctcagcct cactcaattt gctgacatga tctccttgc aaatgggtgc
 8040
 100 ggcaccagca gcagcatggg cagtggtgtc agcgatgtg ttttttagcag ctccccacat
 8100
 105 gaatcagtaa gtaagatttc caccatatcc agcgatcgaa atttaaaccat aqggagcagc
 8160
 110 tctttttcag acaccctgga agaatcgagc cccatggcag ccatcttgc cacagaaaac

ctggagaaaa tctccattac agaaggata gagcggggca tcgttgcacg catcacggg
 8220
 5 cagaggcttc tggaggctca ggcctgcaca yytggcatca tccacccaac cacgggccag
 8280
 aagctgtcac ttcaggacgc agtctccag ggtgtgattt accaagacat gccaccaggc
 8340
 10 gtgaagcctg ctcagaaagc cttcataggc ttcgagggtg tgaaggaaa gaagaagatg
 8400
 tcagcagcag aggcaagtcaa agaaaaatgg ctcccgtatg aggcgtggca gcgcctcctg
 8460
 15 gagtccagt acctcacggg aggtcttgtt gacccgaaag tgcatggag gataagcacc
 8520
 gaagaagcca tccggaaggg gttcatagat ggccgcgcgc cacagaggct gcaagacacc
 8580
 20 agcagctatg ccaaattcct gacctgc(cc) aaaaccaat taaaatatc ctataaggat
 8640
 gcataaaatc gctccatggt agaagatatc actgggtgc gcctctgga agccgcctcc
 8700
 25 gtgtcgccca agggcttacc cagcccttac aacatgtttt cggctccggg gtccccgtcc
 8760
 ggctcccgct cgggatctcg ctccggatct cgctccgggt ccccgagtgg gtcccgaga
 8820
 30 ggaagctttg acgccacagg gaattctcc tacttttattt cctactcatt tagcagtagt
 8880
 tctattgggc actagtagtc agttgggagt ggttgtata ctttacttc atttatatga
 8940
 35 attccacatt tattaaataa tagaaaagaa aatcccggtg cttcagtag agtgatagga
 9000
 cattctatgc ttacagaaaa tatagccatg attgaatca aatagtaaag gctgttctgg
 9060
 40 ctttttatct tcttagctca tcttaataa gcactacact tggatgcagt ggtctgaag
 9120
 tgctaattcgtttt ttgttacaaat agcacaatc gaacttagga tttgtttttt ctcttctgtg
 9180
 45 ttccgatttt tgatcaattc tttaatttg gaagctata atacagttt ctattcttgg
 9240
 agataaaaat taaatggatc actgatattt tagtcttct gcttctcata taaatatttc
 9300
 50 catattctgt attaggagaa aattaccctc ccagcaccag cccccccttc aaaccccaaa
 9360
 cccaaaaacca agcattttgg aatgagtctc ctttagtttc agagtgtggaa ttgtataacc
 9420
 55 catataactct tcgatgtact tttttgggtt ggtattaatt tgactgtgca tgacagcggc
 9480

```

aacttttctt tggtcaaag tttctgtt atttgcttg tcataatcga tgtactttaa
9540

5      ggtgtcttta tgaagttgc tattctggca ataaactttt agactttt
9588

10     <210> 33
<211> 366
<212> DNA
<213> human

15     <220>
<221> misc_feature
<222> (351)..(351)
<223> any kind of base

20     <400> 33
gaagtccat ttatatttat aaaaaatatacataattc agtagtattt ggtacataa
60

25     ttttagttat atgggtgata taatggcat aatttttagc atctaataaa gatctttta
120

tgagtccat ataaaatatg tgaacaaagc aatctgtca taagatttgt gatgatttag
180

25     gagaaagtac tttgagataa ttttttctg tctcttgc aactctctca acagtagttc
240

30     tcttttagatt agagccagca ggtcgccat aacagtttc ttcaatttt ggcaacagt
300

30     atacaatgc ttgaatttca agacaacata ttaaagggtc tatgaactgg naatctaacc
360

35     tgggtt
366

35     <210> 34
<211> 1466
<212> DNA
<213> human

40     <400> 34
agccccaaagc ttaccacctg caccggaga gctytgtgtc accatgtggg tcccggtgt
60

45     cttcctcacc ctgtccgtga cgtggattgg tgctgcaccc ctcatcctgt ctccgattgt
120

45     gggaggctgg gagtgcgaga agcattccca accctggcag gtgcttgc cctctcggt
180

50     cagggcagtc tgcggcggtg ttctggtgca cccccagtgg gtcctcacag ctgcccactg
240

50     catcaggaac aaaagcgtga ttttgcgtgg tcggcacagc ctgtttcatc ctgaagacac
300

55     aggccaggta tttcaggta gccacagctt cccacacccg ctctacgata tgagcctcct
360

```

gaagaatcga ttccctcaggc caggtgatga ctccagccac gacctcatgc tgctccgcct
 420

5 gtcagagcct gccgagctca cggatgctgt gaaggatcg gacctgccc cccaggagcc
 480

10 agcaactgggg accacctgct acgeectcagg ctggggcgc attgaaccag aggagttctt
 540

15 gaccccaaag aaacttcagt gtgtggaccc ccatgttatt tccaatgacg tgtgtgcgc
 600

20 agttcacccct cagaaggta ccaagttcat gctgtgtct ggacgctgga cagggggcaa
 660

25 aagcacctgc tcgggtgatt ctggggcccc acttgtctgt aatggtgtgc ttcaaggtat
 720

30 cacgtcatgg ggcagtgaac catgtgccct gcccggaaagg cttccctgt acaccaaggt
 780

35 ggtgcattac cggaagtgga tcaaggacac catcgccgc aacccttag caccctata
 840

40 aaccccttat ttagttaaac ttggAACCTT ggaaatgacc aggccaagac tcaaggcctcc
 900

45 ccagttctac tgacctttgt ccttaggtgt gaggtccagg gttgcttagga aaagaaatca
 960

50 gcagacacag gtgttagacca gagttttct taaatgggtgt aattttgtcc tctctgtgtc
 1020

55 ctggggaaata ctggccatgc ctggagacat atcactcaat ttctctgagg acacagatag
 1080

60 gatggggtgt ctgtgttatt tgggggtac agagatgaaa gaggggtggg atccacactg
 1140

65 agagagtgga gagtgacatg tgctggacac tgccatgaa gcactgagca gaagctggag
 1200

70 gcacaacgcgca ccagacactc acagcaagga tggagctgaa aacataaccc actctgtcct
 1260

75 ggaggcactg ggaaggctag agaaggctgt gagccaagga gggagggtct tccttggca
 1320

80 tggatgggg atgaagtaag gagagggact ggacccctg gaagctgatt cactatgggg
 1380

85 ggaggtgtat tgaagtcctc cagacaaccc tcaagattga tgatttccta gtagaactca
 1440

90 cagaataaa gagctgttat actgtg
 1466

95 <210> 35
 <211> 187
 <212> DNA
 <213> human

100 <400> 35
 55 gatctgggtgc attccggtcg acactctcg tttatggac tglaaatctg acctctatga
 60

ataattactt cagccctga gtgctccgg gccaagctcc ttggccaaac tttcaccta
 120

5 gcttctgata agtcttggc caagctaagc agcatctatc aatcatccct tcagctctg
 180

attgatc
 187

10 <210> 36
 <211> 2913
 <212> DNA
 <213> human

15 <400> 36
 actgggtacc gaggactggg tgtgttaaq gcagacagcc aggtgaggat cccagctact
 60

gggccctgct gtcatctcct gggagtaccc gggggtcagg agcctagggg actcttgac
 120

20 ttcacatcca gccatgctaa ttacactttt tggcaaagga aacagctagg agcagttct
 180

ttcactccta cagccccgtt ttctcagtgt ttagacctcg aattattact gggctagagg
 240

25 gaaggcagcc tctgaagtgt ggcaggagga ggggaagtct gcctgcattt tggtgtgtct
 300

gtcagatgcc agcactaata acctggcttc tgtgaggcct gtcagtgc tcaggaatga
 360

30 aaggggaccc ctgagaggtg ctcagttacca gcaggctgtg aatgctctct acccaccacc
 420

ctcacctcct cgttaaagat ggtgctacctt gccacacagc agacatctgg tcgctgcaca
 480

35 cccgaaagac cccaaggcag tctgcccctt gtccagccac acgcccagcac ccacccctct
 540

ggccctgccc tcggcctccc cagaccagct gcacccagcc cccaacacgc accccttctc
 600

40 cagatgtgtg cagggcctca ttttgcagag caaagacaga tgtttcagcc acacgcttta
 660

ttaacttcta aaacctgtgc tcaggacact cttcaacagt catgaaaagt ttgatcatt
 720

45 gccacagtca ggacctttgt gtggggctct gatctgatgt tcggltctcat catctccaa
 780

accagcagtc gtttgcaccc caacccctctg ctcaagggtct cataccccc aatgattttc
 840

50 ctgatttatg tatttcccta caaagggtttt tctataccctt gcatctgcct ccagcatgag
 900

aaggggaaat aggtgagacc catttgcaccc tagcagacgg ggaccctggg gagaaaaatgg
 960

55 cagagcctgt tggagactcc ctgtctccag ctgaccagcc aatgggatcc ctctccctc

1020
 5 cactgtctcc cacaaaatggtag aagaatcctg gtacatttag cccatgagcc tggcacagat
 1080
 ccctatctag acatgaggcc cttagacat gactttggca ttgaccagcc tggatggcaat
 1140
 10 gggtcgaaaa ggcagaggggg atgctcacac cagtaattct catccccctga atgcttggaa
 1200
 tcacctgggg agagttcaca aaatactggt gcaggggtcc cacctctgtat gatgctgagt
 1260
 15 ggtgtggctcg ggggtggcc caggcatcat gatgtttcag gcccccaagg gacttcttag
 1320
 gcagcccaagc taagcccta gagccttgca atttcccca aatgacctca gagggccca
 1380
 tttgaggaa atgcctaact tcagggcccg taagaatccc ccagggagca tggaaatgc
 1440
 20 agataccagg cccacccca gagatgagct gaggtgggtc aggggtgaag tgcagggatc
 1500
 agtttttc acaagctcca tacctccagg aatgggttt tgggtgggc ccgtayaaaa
 1560
 25 cattctgaga gtcctgttgc ctgtgccttg gtgcacgtgg ggtggaaatcc cagtggccct
 1620
 gccttgagga ggatgtgcat taacgtggta gggagacag agacagctcc acctgcccc
 1680
 30 tgtcccaccc gggacctcca aaaacttcat ggatgttaga gcaaggcagcc atgctgcagc
 1740
 agaggatgag gctggcgat ttagtaagag ccctctgtgt ttgggtgag ttctttctct
 1800
 35 agttgcctg tcatctggcc tctggataac ccacccctcc tccctcatcc taaaattaca
 1860
 gatggcggaa gacggccaca tttagtgaga cccctaagggt cctccaaacta ggggtgggtcc
 1920
 40 acagtgccccc ctggtgcatg gaccacacac tctttccct cctctgggtc aggactacgg
 1980
 tctgaaaatta gggagatatg aatgttttc ttgaaaactt ctcttccctt tcttccact
 2040
 45 ttgcttgggg gtccttggtc aaggccagct ttggactagg gcttggatgc actaccagct
 2100
 gtctcatttt gctgtactgc aaactcaggc ttggttccaa gcttatgggg gcccgttcct
 2160
 50 tccccttagta gggttttttt tgggttcaca tctggtcata cccttcagag agctttccc
 2220
 cagcccttac atcaggaga gagtaggta gggaggagca ttcaaggatt agaagaaggaa
 2280
 55 ctaaagtaca acagccttgg aggaactgcc aggaactaag ggcgagcact. ggagaaggca

2340
 5 acctgggacc ccctgcgtt ctgagcagga agaccaagac cttcaggggc cctaagcact
 2400
 gaaaacatca ttctcatcc ccaagccctg gcatccccct gttcttctaa aataattctt
 2460
 10 ttcttaggtat ttctgattgc aaaattctgg atgggttcat ccaagctgac ctttgcgttt
 2520
 tttcccttc ccaacaaggc ctcactttt ggagccacct tagtggtgc ctaggcagag
 2580
 gggcagtcag cagtggltat caggatcctg gctctatgg ttgccttctt cctggctgt
 2640
 15 aaagcccctg caggcaggga cttcttagat agctgcttcc tttagggcatg gcatgtggtg
 2700
 ggtggtaat gaatggaaga gagggaatga gtgatcaagg gagggaggag ggagtggagt
 2760
 20 ggagatttct catccttcc tgtaattta tgacatcctc ctgcctatga gtccttgact
 2820
 ctggagttt acaaaggcagt cacattcaa ataaaagtct gggaaagcaa cacatcatcg
 2880
 25 ccaactttta attttgcataa ataaggatat tag
 2913
 30 <210> 37
 <211> 1466
 <212> DNA
 <213> human
 35 <400> 37
 agccccaaac ttaccacctg caccggaga gctgtgtgc accatgtggg tcccggttgt
 60
 ctccctcacc ctgtccgtga cgtggattgg tgctgcaccc ctcatcctgt ctggattgt
 120
 40 gggaggctgg gagtgcgaga agcattccca accctggcag gtgcttgtgg cctctcggt
 180
 cagggcagtc tgcggcggtg ttctggtgca cccccagtgg gtcctcacag ctgcccactg
 240
 45 catcaggaac aaaagcgtga tcttgcgtgg tcggcacagc ctgtttcatc ctgaagacac
 300
 aggccaggta tttcaggta gccacagtt cccacacccg ctctacgata tgagcctcct
 360
 50 gaagaatcga ttccctcaggc caggtgtatc ctccagccac gacctcatgc tgctccgcct
 420
 gtcagagcct gccgagctca cggatgctgt gaaggtcatg gacctgccc cccaggagcc
 480
 55 agcactyggg accacctgtc acgcctcagg ctggggcagc attgaaccag aggagttctt
 540

gaccccaaag aaacttcagt gtgtggacct ccatgttatt tccaatgacg tgtgtgcgca
 600
 5 agttcacctc cagaaggtaa ccaagttcat gctgtgtgct ggacgctgga cagggggcaa
 660
 aagcacctgc tcgggtgatt ctgggggcc acttgtctgt aatggltgc ttcaaggat
 720
 10 cacgtcatgg ggcagtgaac catgtgccct gcccgaaagg cttccctgt acaccaagg
 780
 ggtgcattac cggaaagtgga tcaaggacac catcgllggcc aaccctgag caccctata
 840
 15 aacccttat ttagtaaac ttggAACCTT ggaaatgacc aggccaagac tcaaggctcc
 900
 ccagttctac tgactttgat ctttaggtgt gaggtccagg gttgcttagga aaagaaatca
 960
 20 gcagacacag gttagaccca gagtgtttct taaatgggtgt aattttgtcc tctctgtgtc
 1020
 ctgggaata ctggccatgc ctggaaqacat atcactcaat ttctctgagg acacagatag
 1080
 25 gatgggggtgt ctgtgttatt tgggggtac agagataaa gaggggtggg atccacactg
 1140
 agagagtgga gagtgacatg tgctggacac tgcctcatgaa gcactgagca gaagctggag
 1200
 30 gcacaacgca ccagacactc acagcaagga tggagctgaa aacataaccc actctgtct
 1260
 ggaggcactg ggaaggctag agaaggctgt gagccaagga gggagggct tcccttggca
 1320
 35 tggatgggg atgaagtaag gagagggact ggacccctg gaagctgatt cactatgggg
 1380
 ggaggtgtat tgaagtccctc cagacaaccc tcagatttgat gatccctta gtagaactca
 1440
 40 cagaaaataaa gagctgttat actgtg
 1466
 45 <210> 38
 <211> 462
 <212> DNA
 <213> human
 <220>
 <221> misc_feature
 <222> (197)..(197)
 <223> any kind of base
 50 <220>
 <221> misc_feature
 <222> (116)..(116)
 <223> any kind of base
 55

```

<220>
<221> misc_feature
<222> (334)..(334)
<223> any kind of base

5

<220>
<221> misc_feature
<222> (402)..(402)
<223> any kind of base

10

<220>
<221> misc_feature
<222> (429)..(429)
<223> any kind of base

15

<220>
<221> misc_feature
<222> (438)..(438)
<223> any kind of base

20

<220>
<221> misc_feature
<222> (443)..(443)
<223> any kind of base

25

<220>
<221> misc_feature
<222> (459)..(459)
<223> any kind of base

30

<400> 38
taaggttta taatttattt tattttctt ttcltttttt tttatggctt ggatgacact
60

35
ttatttcag atccaatact agaagttgtt tccatgttca catttcctt cctggntaa
120

aaaaaaagagt tgtatTTTT ttttttgctt tttttaaatt atacttaag ttttagggta
180

40
catgtgcaca acgcagnggt tagctacata tgtatacatg tgccatgttgcgtgctgca
240

tccagtaact cgtcatttaa cattaglat atctccaaat gctatcccttc cccccattgt
300

45
atttttcata gctaaaaat cattgacata ggantaattc caactaaagt acggattaa
360

atccctgggg gaataaattt tgtcttaaca agggtaaggt tngtggaaag gatggttttg
420

50
tcacagggnna aaaggganat ccncccattt taaaaccncnct
462

55

<210> 39
<211> 1490
<212> DNA
<213> human

```

<400> 39
 ctgcgtgcccc ccacggaggg gactgctctc ccccgctgca tcctttctgt gaggtacctt
 60
 5 acccacctca guacacctgaga ggggtgaaata gaattctaac ctcgacatcc gggaaagtgtt
 120
 tttgagaagt ctcggcgtcggt aagggaaagtc ttccaagtcgtt ctcgacatcc aacgtattgg
 180
 10 cacctgcctc ctcttcggcc accccccaga tgaggcagct gtgactgtgt caaggaaagc
 240
 cacgactctg accatagtct tctctcagct tccactgccc tctccacagg aaaccaggaa
 300
 15 gtttctgtgaa caagtccatg ctgccatcaa ggcatttattt gcagtgtaactt atttgcttcc
 360
 aaaggatcag gggatcaccc tgagaaagct ggtacggggc gccaccctgg acatcgtgga
 420
 20 tggcatggct cagctcatgg aagtactttc cgtcactcca actcagagcc ctgagaacaa
 480
 tgaccttattt tcctacaaca gtgtctgggt tgcgtgccag cagatgcctc agataccaag
 540
 25 agataacaaa gctgcagctc ttttgcgtt gaccaagaat gtggattttgc tgaaggatgc
 600
 acatgaagaa atggagcagg ctgtgaaaga atgtgaccct tactctggcc tcttgaatga
 660
 30 tactgaggag aacaactctg acaaccacaa tcatgaggat gatgtgttgg ggttcccaag
 720
 caatcaggac ttgttatttgtt cagaggacga tcaagagctc ataatcccat gccttgcgt
 780
 35 ggtgagagca tccaaaggct gcctgaagaa aattcggatg ttagtggcag agaatggaa
 840
 gaaggatcag gtggcacagc tggatgacat tgtggatatt tctgtgaaa tcagccctag
 900
 40 tgtggatgat ttggctctga gcataatcc acctatgtt cacctgaccg tgcgaatcaa
 960
 ttctgcgaaa ctgttatctg ttttaaagaa ggcacttgaa attacaaaag caagtcatgt
 1020
 45 gaccgcctcag ccagaagata gttggatccc tttacttattt aatgcatttgc atcattgc
 1080
 gaatagaatc aaggagctca ctcagagtga acttgaatta tgactttca ggctcatlgt
 1140
 50 tactctcttc ccctctcatac gtcatggtca ggctctgata cctgccttta aaatggagct
 1200
 agaatgcctg ctggattgaa agggagtgcc tatctatatt tagcaagaga cactattacc
 1260
 55 aaagattgll ggttaggcca gattgacacc tatttataaa ccatatgcgt atattttct

1320
 5 gtgctatata taaaaataa ttgcattgatt tctcatttcc qagtcatttc tcagagatc
 1380
 ctaggaaagc tgccttatic tcltttgca gtaaagtatg ttgtttcat tgtaaagatg
 1440
 10 ttgatggtct caataaaaatg ctaacttgcc agtgattaaa aaaaaaaaaa
 1490
 15 <210> .40
 <211> 1677
 <212> DNA
 <213> human
 20 <400> 40
 cttgacccta tttatagtggt ctctaaaggt ggtgttatta tgtttctag agcacttcga
 60
 25 ttatacaaac gtcaaggaat ccgagttaat gtgcttgcc ctgagtttgt tgaaacagac
 120
 atgggcacaa tgatcggtcc caaattccctt agtatgtatgg ggggctttgt acctatggaa
 180
 30 atgggtgtga aaggtgtttt tgagctcatc actgtatgaga ataaagccgg cgattgccta
 240
 tggattacta atcggcgagg tctttagtac tggcccaccc catcagaaga agcaaagtac
 300
 35 ttgctgcgtt ctacacgttc caggagaaga actgaataca aagctccacc aattaaacta
 360
 cctgagagtt ttgagaaaaat agttgttcaag accttgactc acaactttcg gaatgttacc
 420
 40 agtgttagtaa gagcaccact gagattacct atcaaaccba actatgttct tgtgaagata
 480
 atctatgctg gtgtaaatgc tagtgtatgt aatttttagct caggtcgcta ttttgggtggc
 540
 45 aataaacatg acactgcattt ccgtcttcgg tttgatgcag gatttgaggc tgtgggagta
 600
 attgcagcag ttggggattt tgttactgac ttgaaagttt gcatgccttgc tgcgttcatg
 660
 acttttggag gctatgtga atttacaatg attccttcga aatacgccttcc tccaatgcct
 720
 agaccagaac cggaaagggtgt tgccatgctt acatcaggat taacagcttc aattgttctt
 780
 50 gaaaaggcag gacagatgga atctggaaaa ttgggttgc ttactgttgc ggcaggagga
 840
 actggtcagt ttgctgttca gcttgcaaaa tttagtggta ataccgtggt tgccacttgt
 900
 55 ggaggtgggg caaaggccaa gcttctgaaa gaattgggag tcgacagagt catacgactat
 960

cacagtgaag atataaaaac gggttctaagg aaagagtcc cgaaaggat tatatc
 1020
 5 tacgaatctg ttgggggaa catgttaaag ttgtgcttgg atgctttggc agtccatgga
 1080
 cgactcattg tcattggcat gatttctca gatcaaggag aaaatggtg gacccatca
 1140
 10 aaatatcctg gactatgtga gaagctcttgc tcaaagatc aaactgtggc tggcttttc
 1200
 ctggtgcaat atagtcacat gtaccaagaa caccttaaca agttatggta cctttactct
 1260
 15 tccggaaaac taaagggtgc tgtggatcca aagagat taaaatggc ttctgttgc
 1320
 gatgctgttgc agtatctcca ttcaggcaaa agcggtggaa aggtgggtgt ctgcgtggac
 1380
 20 ccgaccttcg glcatcaagt agccaaat taaatgaaca cgggtcaaa tacagaaaga
 1440
 agtgaagttt tcaattctta gtctagagat ttttctcgaa tgttactgaa aatagctgct
 1500
 25 agaccaggatc tggaaatattt attctcaatg cttttcaat tttggattac ttgaaagaat
 1560
 aatccattta tgtataccat gttttagttt acactataca acaactatga gcagaagaaa
 1620
 30 gcgagat taaaaataa attataatcc tttcattttt aaaaaaaaaa aaaaaaaaa
 1677
 <210> 41
 <211> 1330
 <212> DNA
 35 <213> human
 <400> 41
 atggcgcagt gggacagctt cactgatcaa caggaggaca ctgatagctg ttcaaatct
 60
 40 gtgaagtttgc atgctcgctc caatacagct ttgctcccc caaatcctaa aaatggccct
 120
 ccacttcaag aaaagctgaa atccttcaaa gctgcactga ttgccttta tctccttgc
 180
 45 ttgtgttgc tcattcctat catcgcaata atggcagctc aactcctgaa gtggaaatg
 240
 aagaattgca cagttggttc aattaatgca aacagtgtat cctccagtct cctggaaaga
 300
 50 ggaaatgaca gtgaagatqa agtgagattt cgagaaggatg ttatgaaaca cattagcaag
 360
 atggagaaaa gaatccaata tatttcagat actgaagaaa atctcgtaga ttcaagacat
 420
 55 ttccaaaatt tcagtgtgac aactgatcaa cgatttgctg atgttcttct ccaactaagt
 480

```

accttggttc ccacagtcca gggacatggg aatgccgtag atgaaatcac caggcctta
5 540

ataagtctga ataccacgct gcttgatttg cacctctatg tagaaacact gaatgtcaaa
600

ttccaggaga atacacttaa agggcaagag gaaatcagca aattaaagga gcgtgtgcac
660

10 aatgcacatcag cagaaattat gtctatgaaa gaagaacaag tgcatttggaa acaggaaata
720

aaaagagaag tgaaagtccct gaataacatc actaatgatc tcaggctgaa agattggaa
780

15 cattctcaga cgttgagaaa tatcacttta attcaaggtc ctccctggacc cccaggagaa
840

aaaggagata gaggtccaaac cggagaaagt ggtccaccag gcgttccagg tccagtaggt
900

20 cctccaggc ttaagggtga tcgaggatct attggcttcc cggttgcgg aggatatcca
960

ggacaatcag ggaagactgg gaggacagga tatcctggac caaaaggcca aaaggqaqaa
1020

25 aaaggcagtg gaagcattct gactccttct gcgactgtcc gactgggtgg tggccgtggc
1080

cctcatgagg gtagagtggaa gataltgcac aatggacagt gggcacagt ttgtgtatgt
1140

30 cactgggaac tgcgtccgg gcagggttgc tgcaggagct tgggataccg aggtgttaag
1200

agtgtgcaca agaaagctta ttttggacaa ggtactggtc ccattggct gaatgaagta
1260

35 ccctgtttgg ggatggagtc atccattgaa gagtgcaaaa tcagacagt gggcggtgaga
1320

gtctgttcac
1330

40 <210> 42
<211> 431
<212> DNA
<213> human

45 <220>
<221> misc_feature
<222> (97)..(97)
<223> any kind of base

50 <220>
<221> misc_feature
<222> (347)..(347)
<223> any kind of base

55 <220>
<221> misc_feature

```

```

<222> (349)..(349)
<223> any kind of base

5      <220>
<221> misc_feature
<222> (361)..(361)
<223> any kind of base

10     <220>
<221> misc_feature
<222> (362)..(362)
<223> any kind of base

15     <220>
<221> misc_feature
<222> (363)..(363)
<223> any kind of base

20     <220>
<221> misc_feature
<222> (401)..(401)
<223> any kind of base

25     <220>
<221> misc_feature
<222> (428)..(428)
<223> any kind of base

30     <400> 42
ctttttat ttatttcat cgctacacaa acattttta ggagttgat tctacctcca
60

ttttggtag atatacaaac tctacccat gagggantgt atggtgtatt tctagattta
120

35     gcaacaattt tcttgaaaaa tgtacaatac tatagaaaaa tgaagatagt aaataccagg
180

tataagttaa taacagtgtt tctttgttc agtaataatg aactgtgtac tagcactgaa
240

40     ctttaggccc tcctatttgc gtatttctg tttgtatatt tttaaataga ggaattgtga
300

ttataatatt attatttgg aatatcctaa atcataaatt caaaacntna tttagtttt
360

45     nnntttttt ttaagatgg agtcccgtt tgtcccaggc nggagtgcag tgccatgatc
420

tcagtcnct g
431

50     <210> 43
<211> 669
<212> DNA
<213> human

55     <220>

```

```

<221> misc_feature
<222> (641)..(641)
<223> any kind of base

5
<400> 43
ttcttttggaaaaccaaaaca tgctttatTTT cattttttc acaatttatt taaacatctc
60

10 acatatacaa aataggtaaca atttaatttt tctgcttgcc caagaaacaa agcttctgtg
120

15 ggaccaacttt gggcaaataa tctgcataact tttaatttggg aataagatgg aaaatatgaa
240

20 tgctaaatca aattttttaa aaaatacacc acacgataca actcaataca ggagtatttc
300

25 ttctcaaatt cttcttagcac catcaacatt cttcaagtat ctgaaatact attaatttgc
360

30 acctttgtat tatgaacaaa aaaaaacaag gacctcagtt catclctgtc taggtcagca
420

35 ccttacaatg tggatcacac tcatggaaa gtgttttag gtatTTaaa cctttggaaag
480

40 tttgggtttt aaacttccct ctgtggaga tattcaaaag ccacaagtgg tgcaaatgtt
540

45 tatgggtttt attttcaat ttttattttg gtttcttac aaaggttgac attttcata
600

50 acaggtgtaa gagtggtaa aaaaaaattt caattttgg ngggaacggg ggaaggagtt
660

55 aatgaaaact
669

<210> 44
<211> 287
<212> DNA
40 <213> human

<400> 44
gcccggagagt ctacaatgtt acccagcatg ctgttggcat tgTTgtaaac aaacaagtta
60
|
45 agggcaagat tcttgccaag agaattaatg tgcgtattga gcacattaag cactctaaga
120

50 gcccggatag cttcctgaaa cgtgtgaagg aaaaatgtca gaaaaagaaa gaagccaaag
180

55 agaaaggtagtac ctgggttcaa ctaaagcgcc acgctgctcc acccagagaa gcacactttg
240

tgagaaccaa tgggaaggag cctgagctgc tggAACCTAT tccctat
287

55 <210> 45

```

```

<211> 383
<212> DNA
<213> human

5      <220>
<221> misc_feature
<222> (147)..(147)
<223> any kind of base

10     <220>
<221> misc_feature
<222> (309)..(309)
<223> any kind of base

15     <220>
<221> misc_feature
<222> (349)..(349)
<223> any kind of base

20     <220>
<221> misc_feature
<222> (365)..(365)
<223> any kind of base

25     <220>
<221> misc_feature
<222> (372)..(372)
<223> any kind of base

30     <220>
<221> misc_feature
<222> (380)..(380)
<223> any kind of base

35     <400> 45
ggaacggaaa aggagaattc aagtgtgacc ctcatgaggc aacgtgttat gatgtatggaa
60
agacatacca cgtaggagaa cagtggcaga aggaatatct cgggccatt tgccctgca
120

40     catgctttgg aggccagcgg ggctcgncct gtgacaactg ccgcagacacct ggggggtgaa
180
cccagtcccc aaggcactac tggccagtcc tacaaccagt attttcaga gataccattc
240

45     agagaacaaa cactaatgtt taatttgcgg aatttgatgt cttcatgcct ttttaggtgt
300
tacaggctng acagagaagg ttttcccgag gagttaaatc atcttttnc catttcccga
360

50     ggggncaagg ctttgttttn ttt
383

<210> 46
55     <211> 523
<212> DNA

```

```

<213>  human
<400>  46
5      cagaggggca gggggacgg ctaggagttc aagaaacatc ctggtctgag ggaaaggctg
       60

10     cagctgcacc gccatgaata agctttcag cttctgaaag aggaagaatg agacccgcag
       120

15     ccagggtcac aaccttcgag aaaaggattt aaagaaactt cacagagctg cttcagtcgg
       180

20     ggatttgaag aagctgaagg aatcacttca gatcaagaaa tatgtatgtaa atatgcagga
       240

25     ctatgaatac agaacacctt tgcacccatgc ctgtgctaat ggacatacag atgttgtaact
       300

30     ttccctaatt gagcaacaat gcaagataaa tgtccggat agtggaaaca aatccccatt
       360

35     gattaaggca gtacagtgtc aaaatgagga ttgtgctact attctgctaa actttgggtgc
       420

40     agacccagat ctgagggata ttcgttataa tactgttctt cactatgctg tttgtggtca
       480

45     aagtttgtca ttagttgaaa aactgcttga atacgaagct gat
       523

<210>  47
<211>  390
<212>  DNA
50     <213>  human

55     <400>  47
       tccaagggtca tggcaaaaca tctgaagttc atcgccagga ctgtgatggt acaggaagg
       60

60     aacgtggaaa ggcgcatacag gaccctaaac agaattctca ctatggatgg gtcatttag
       120

65     gacattaagc atcggcggtt ttatgagaag ccatgccccc ggcacagagg gaaagctatg
       180

70     aaaggtgccg gccgatctac aacatggaaa tggctcgaa gatcaacttc ttgtatgcgaa
       240

75     agaatcgggc agatccgtgg cagggctgtc gaggcctgtg ggtgggacac cagtcgaaa
       300

80     ccctcatcca gtttctctc catctttt ctttgcataaa tcccatttcc tattaccatt
       360

85     ctctgcaata aactcaaatac acatgtctgc
       390

90     <210>  48
       <211>  669
       <212>  DNA
       <213>  human

95     <220>
55     <221>  misc_feature

```

```

<222> (641)..(641)
<223> any kind of base

      <400> 48
ttctttgga aaaccaaaca tgctttattt cattttttc acaalttattt taaacatctc
60

      acatatacaa aataggtaaa atttaatttt tctgcttgcc caagaaacaa agcttctgtg
120

      gaaccatgga agaagatgaa aatgagactg gcaaagaaca aatgctgaat ctgaagaaga
180

      ggacaacttt gggcaaataa tctgcatact tttatttggg aataagatgg aaaatatgaa
240

      tgctaaatca aatttttaa aaaatacacc acacgataca actcaataca ggagtatttc
300

      ttctcaaattt cttctagcac catcaacattt cttcaagtat ctgaaatact attaatttc
360

      acctttgtat tatgaacaaa aaaaaacaag gacctcgat catctctgtc taggtcagca
420

      cctaaacaatg tggatcacac tcatgggaaa gtgttttagg gtatgttaaa cctttggaaag
480

      tttgggtttt aaactccct ctgtggaaga tattcaaaag ccacaagtgg tgcaaatgtt
540

      tatgggtttt attttcaat ttttattttg gttttttac aaagggttgc attttcata
600

      acaggtgtaa gagtgttgaa aaaaaaattt caattttgg nggAACGGG ggaaggagtt
660

      aatgaaact
669

      <210> 49
<211> 431
<212> DNA
<213> human

      <220>
      <221> misc_feature
      <222> (97)..(97)
      <223> any kind of base

      <220>
      <221> misc_feature
      <222> (347)..(347)
      <223> any kind of base

      <220>
      <221> misc_feature
      <222> (349)..(349)
      <223> any kind of base

      <220>

```

```

<221> misc_feature
<222> (361)..(361)
<223> any kind of base
5

<220>
<221> misc_feature
<222> (362)..(362)
<223> any kind of base
10

<220>
<221> misc_feature
<222> (363)..(363)
<223> any kind of base
15

<220>
<221> misc_feature
<222> (401)..(401)
<223> any kind of base
20

<220>
<221> misc_feature
<222> (428)..(428)
<223> any kind of base
25

<400> 49
cttttatat ttatttcat cgctacacaa acattttta ggagttgat tctacctcca
30          60

tttggtag atatacaaac tctacccat gagggantgt atggtgtatt tctagattta
          120

gcaacaattt tcttgaaaaa tgtacaatac tatagaaaaa tgaagatagt aaataccagg
35          180

tataagttaa taacagtgtt tctttgttc agtaataatg aactgtgtac tagcactgaa
          240

ctttaggcc tcctatttgc gtatttctg tttgtatatt tttaaataga ggaattgtga
40          300

ttataatatt attatttgg aatatcctaa atcataaatt caaacntna tttagtttt
          360

nnnttttt ttttagatgg agtcccgtt tgtcccaggc nggagtgcag tggcatgatc
45          420

tcagctcnct g
          431

50

```

Claims

55

1. A method of assessing colorectal cancer status comprising identifying differential modulation of each gene (relative to the expression of the same genes in a normal population) in a combination of genes selected from the group consisting of Seq. ID. No. 42-49.

2. The method of claim 1 wherein there is at least a 2 fold difference in the expression of the modulated genes.
3. The method of claim 1 wherein the p-value indicating differential modulation is less than .05.
- 5 4. The method of claim 1 further comprising employing a colorectal diagnostic that is not genetically based.
5. The method of claim wherein the cancer marker that is not genetically based is selected from the group consisting of carcinoembryonic antigen, CA19-9, CA 125, CK-BB, and Guanylyl Cyclase C.
- 10 6. A diagnostic portfolio comprising isolated nucleic acid sequences, their complements, or portions thereof of a combination of genes selected from the group consisting of Seq. ID. No. 42-49.
7. The diagnostic portfolio of claim 6 in a matrix suitable for identifying the differential expression of the genes contained therein.
- 15 8. The diagnostic portfolio of claim 7 wherein said matrix is employed in a microarray.
9. The diagnostic portfolio of claim 8 wherein said microarray is a cDNA microarray.
- 20 10. The diagnostic portfolio of claim 8 wherein said microarray is an oligonucleotide microarray.
11. A diagnostic portfolio comprising isolated nucleic acid sequences, their complements, or portions thereof of a combination of genes selected from the group consisting of Seq. ID. No. 42-49.
- 25 12. A kit for diagnosing colorectal cancer comprising isolated nucleic acid sequences, their compliments, or portions thereof of a combination of genes selected from the group consisting of Seq. ID. No. 42-49.
13. The kit of claim 12 further comprising reagents for conducting a microarray analysis.
- 30 14. The kit of claim 12 further comprising a medium through which said nucleic acid sequences, their complements, or portions thereof are assayed.
15. A method of assessing response to treatment for colorectal cancer comprising identifying differential modulation of each gene (relative to the expression of the same genes in a normal population) in a combination of genes selected from the group consisting of Seq. ID. No. 42-49.
- 35 16. The method of claim 15 wherein the assessment of the response to therapy includes a determination of whether the patient is improving, not improving, relapsing, likely to improve, or likely to relapse.
- 40 17. Articles for assessing colorectal cancer status comprising isolated nucleic acid sequences, their complements, or portions thereof of a combination of genes selected from the group consisting of Seq. ID. No. 42-49.
18. Articles for assessing colorectal cancer status comprising representations of isolated nucleic acid sequences, their complements, or portions thereof of a combination of genes selected from the group consisting of Seq. ID. No. 42-49.

50

55