Week 3 HW, distinction tasks

a)

A stated properties of regular language is, finite unions of regular languages are also regular. However countable unions can be infinite. A trivial antiexample that disproves countably infinite union are closed can be as follows.

Consider a series of finite (regular) languages $L_i = 0^i \cdot 1^i$. For $L = 0^j 1^j \forall j \in \mathbb{N}$, this is not regular. Hence we can take $w = 0^p 1^p \in L$. By the Pumping Lemma, we can divide the string into xyz. Notice that for the following three cases,

- If y contains 0, then |xy| > p. This dissatisfies the first condition of PL.
- y cannot be epsilon due to the second condition of PL.
- If $y = a^m$ where m < p, then $xyyz \notin L$, violates third condition of PL.

Hence the general L described above is not pumpable by the Pumping Lemma, therefore L is not regular.

Meanwhile, any L_i is trivial to represent with a NFA with 2*i+1 states and i transitions of 0 and 1 sequentially.

Hence, a countable union of regular languages is not necessarily regular.

b)

As mentioned above already, the given proof ignores the fact that k is not bounded for the DFA $Q_k, \Sigma, \delta_k, q_k^0, F_k$). The collection of q^0 and F is not bounded, meaning that this DFA conains infinite states, which contradicts its nature. Hence the proof is inconsistent.