

Lecture 22: GLM: Link Functions

4. GLM: Statistical Model and

Course > Unit 7 Generalized Linear Models > and the Canonical Link Function

> Notation

4. GLM: Statistical Model and Notation

We now combine our ingredients together.

We have discussed **canonical exponential famlies** parametrized by θ , with the log-partition function $b\left(\theta\right)$ having the property that $b'\left(\theta\right)=\mu$. Recall that in GLMs, the point of the link function is to assume $g\left(\mu\left(\mathbf{x}\right)\right)=\mathbf{x}^{T}\boldsymbol{\beta}$, where μ is the **regression function**: the mean of Y given $\mathbf{X}=\mathbf{x}$, $\mathbb{E}\left[Y\mid\mathbf{X}=\mathbf{x}\right]$.

Concept Check: Properties of the Canonical Link Function

1/1 point (graded)

Let $f_{\theta} = \exp\left(\frac{y\theta - b(\theta)}{\phi} + c\left(y, \phi\right)\right)$ for $\phi \neq 0$ describe an exponential family. Which one of the following statements about the function $g\left(\mu\right) = \theta$ is **false**?

- The canonical link function always exists.
- g is identical to $(b')^{-1}$.
- If g strictly increases, then g^{-1} strictly increases.
- ullet Regardless of the value of $oldsymbol{\phi}$, $oldsymbol{g}$ is strictly increasing. $oldsymbol{\checkmark}$

Solution:

- We can always write down the function $g\left(\mu\right)=\theta$.
- Based on the properties of the log-partition function b, we derived previously that $b'(\theta) = \mu$, so we have the identity $g(\mu) = (b')^{-1}(\mu)$.
- It is a general fact that if f is a function that strictly increases, then its inverse is a function that strictly increases. The same holds for strictly decreasing functions.
- g decreases if $\phi < 0$. This can be seen from the fact that $\phi \cdot b''(\theta)$ is the variance of a random variable, which means b'' < 0. Thus, b' is a decreasing function, which means $(b')^{-1}$ is decreasing. **Ultimately, this demonstrates that there is a "canonical" choice of parametrization.** If $\phi < 0$, all that tells us is that we should re-parametrize by multiplying both ϕ and b by -1. We can always make such a choice, as long as $\phi \neq 0$, so that g is an increasing function. Recall that this is one of the properties we wanted out of link functions of GLMs!

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

GLM and Introduction of Beta for Estimation

Model and notation

Let $(X_i,Y_i)\in {\rm I\!R}^p\times {\rm I\!R},\ i=1,\ldots,n$ be independent random pairs such that the conditional distribution of Y_i given $X_i=x_i$ has density in the call exponential family:

$$f_{\theta_i}(y_i) = \exp\left\{\frac{g_i \sigma_i}{\phi} b(\theta_i) + c(y_i, \phi)\right\}.$$

- $ightharpoonup (Y_1, ..., Y_n)^{\top}, \ X = (X_1, ..., X_n)^{\top}$
- lackbox Here the mean $\mu_i = \mathbb{E}[Y_i|X_i]$ is related to the canonical parameter θ_i via

$$\mu_i =$$

(Caption will be displayed when you start playing the video.)

$$g(\mu_i) =$$

OK, so I've talked about my random component.

And I've talked about how I want to link

the conditional expectation of this random component

to X through this X transpose beta.

So now, if you tell me Y is part of this canonical exponential

family with this very specific choice of b and phi,

and you're telling me a link function,

▶ 0:00 / 0:00 ▶ 1.0x → ★ © 66

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

Concept Check: Assumptions for GLM

0/1 point (graded)

Choose from the following the assumptions we make in fitting data using a GLM.

- lacktriangle We assume a noise model that captures the relationship between ${\bf X}$ and ${\bf Y}$.

×

Solution:

In spirit it's the same thing; if you know the whole distribution then you know all of its conditionals, and vice versa.

The only assumptions we make in using a GLM (from the choices we are given in this problem) are **a distribution for** Y and **a link** function $g(\cdot)$. We do not need need to assume a noise model to capture the relationship between Y and X = x. The assumptions of a distribution for Y and a link function $g(\mu(x))$ relate Y and X = x through the following equation:

$$g\left(\mu\left(\mathbf{x}
ight) = \mathbb{E}\left[Y|\mathbf{X}=\mathbf{x}
ight]
ight) = \mathbf{x}^{T}oldsymbol{eta}.$$

Submit

You have used 2 of 2 attempts

Answers are displayed within the problem

Discussion

Show Discussion

Topic: Unit 7 Generalized Linear Models:Lecture 22: GLM: Link Functions and the Canonical Link Function / 4. GLM: Statistical Model and Notation