

#### CONCLUSION ON PESTICIDE PEER REVIEW

# Conclusion on the peer review of the pesticide risk assessment of the active substance 6-benzyladenine<sup>1</sup>

## **European Food Safety Authority<sup>2</sup>**

European Food Safety Authority (EFSA), Parma, Italy

#### **SUMMARY**

6-benzyladenine is one of the 295 substances of the fourth stage of the review programme covered by Commission Regulation (EC) No 2229/2004³, as amended by Commission Regulation (EC) No 1095/2007⁴. In accordance with the Regulation, at the request of the Commission of the European Communities (hereafter referred to as 'the Commission'), the EFSA organised a peer review of the initial evaluation, i.e. the Draft Assessment Report (DAR), provided by the United Kingdom being the designated rapporteur Member State (RMS). The peer review process was subsequently terminated following the applicant's decision, in accordance with Article 24e, to withdraw support for the inclusion of 6-benzyladenine in Annex I to Council Directive 91/414/EEC.

Following the Commission Decision of 6 December 2008 (2008/941/EC)<sup>5</sup> concerning the non-inclusion of 6-benzyladenine in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance, the applicants Fine Agrochemicals Limited and Valent Biosciences Corporation, made a resubmission application for the inclusion of 6-benzyladenine in Annex I in accordance with the provisions laid down in Chapter III of Commission Regulation (EC) No. 33/2008<sup>6</sup>. The resubmission dossier included further data in response to the issues identified in the DAR.

In accordance with Article 18 of Commission Regulation (EC) No. 33/2008, the United Kingdom being the designated RMS, submitted an evaluation of the additional data in the format of an Additional Report. The Additional Report was received by the EFSA on 27 November 2009.

In accordance with Article 19 of Commission Regulation (EC) No. 33/2008, the EFSA distributed the Additional Report to Member States and the applicants for comments on 1 December 2009. The EFSA collated and forwarded all comments received to the Commission on 20 January 2010.

In accordance with Article 20, following consideration of the Additional Report, the comments received, and where necessary the DAR, the Commission requested the EFSA to conduct a focused peer review in the area of mammalian toxicology and deliver its conclusions on 6-benzyladenine.

<sup>1</sup> On request from the European Commission, Question No EFSA-Q-2010-00148, issued on 27 August 2010.

<sup>2</sup> Correspondence: praper@efsa.europa.eu

<sup>&</sup>lt;sup>3</sup> OJ L 379, 24.12.2004, p.13

<sup>&</sup>lt;sup>4</sup> OJ L 246, 21.9.2007, p. 19

<sup>&</sup>lt;sup>5</sup> OJ L 335, 13.12.2008, p. 11

 $<sup>^6</sup>$  OJ L 15, 18.01.2008, p.5

Suggested citation: European Food Safety Authority; Conclusion on the peer review of the pesticide risk assessment of the active substance 6-benzyladenine. EFSA Journal 2010; 8(10):1716. [49 pp.]. doi:10.2903/j.efsa.2010.1716. Available online: www.efsa.europa.eu



The conclusions laid down in this report were reached on the basis of the evaluation of the representative uses of 6-benzladenine as a plant growth regulator on maize and apples as proposed by the applicant. Full details of the representative uses can be found in Appendix A to this report.

No critical areas of concern were identified in the area of physical-chemical properties. One data gap for a plant method was identified.

No critical areas of concern or data gaps were identified in the area of mammalian toxicology. The risk assessment is finalised.

There were no critical areas of concern in the residues section, however a data gap was identified for quantitative evidence of the natural occurrence of 6-benzyladenine in edible crops, and the consumer risk assessment could not be finalised.

In soil, 6-benzyladenine exhibits very low persistence and did not show any metabolite needing further consideration. 6-benzyladenine is stable to hydrolysis; however, in water/sediment systems it is degraded relatively rapidly. According to the FOCUS GW models available (using worst case input parameters), it is not expected that 6-benzyladenine will contaminate groundwater above the limit of 0.1µg/L when used according to the representative uses proposed (FOCUS 2000, 2007).

No critical areas of concern were identified in the area of ecotoxicology; however a data gap was identified to address the effects of the formulation to aquatic plants and to the most sensitive algae species, for which the risk assessment could not be finalised.

#### **KEY WORDS**

6-benzyladenine, peer review, risk assessment, pesticide, plant growth regulator.



## TABLE OF CONTENTS

| Summary                                                                                             | . 1 |
|-----------------------------------------------------------------------------------------------------|-----|
| Table of contents                                                                                   | . 3 |
| Background                                                                                          | . 4 |
| The active substance and the formulated product                                                     | . 7 |
| Conclusions of the evaluation                                                                       | . 7 |
| 1. Identity, physical/chemical/technical properties and methods of analysis                         | . 7 |
| 2. Mammalian toxicity                                                                               | . 7 |
| 3. Residues                                                                                         | . 8 |
| 4. Environmental fate and behaviour                                                                 | . 9 |
| 5. Ecotoxicology                                                                                    |     |
| 6. Overview of the risk assessment of compounds listed in residue definitions triggering assessment | nt  |
| of effects data for the environmental compartments                                                  | 10  |
| 6.1. Soil                                                                                           | 10  |
| 6.2. Ground water                                                                                   | 10  |
| 6.3. Surface water and sediment                                                                     | 10  |
| 6.4. Air                                                                                            | 11  |
| List of studies to be generated, still ongoing or available but not peer reviewed                   | 12  |
| Particular conditions proposed to be taken into account to manage the risk(s) identified            | 12  |
| Issues that could not be finalised                                                                  | 12  |
| Critical areas of concern                                                                           | 12  |
| References                                                                                          | 13  |
| Appendices                                                                                          | 14  |
| Abbreviations                                                                                       | 47  |



#### **BACKGROUND**

#### Legislative framework

Commission Regulation (EC) No 2229/2004<sup>7</sup>, as amended by Commission Regulation (EC) No 1095/2007<sup>8</sup>, lays down the detailed rules for the implementation of the fourth stage of the work programme referred to in Article 8(2) of Council Directive 91/414/EEC. This regulates for the European Food Safety Authority (EFSA) the procedure for organising, upon request of the Commission of the European Communities (hereafter referred to as 'the Commission'), a peer review of the initial evaluation, i.e. the Draft Assessment Report (DAR), provided by the designated rapporteur Member State.

Commission Regulation (EC) No 33/2008<sup>9</sup> lays down the detailed rules for the application of Council Directive 91/414/EEC for a regular and accelerated procedure for the assessment of active substances which were part of the programme of work referred to in Article 8(2) of Council Directive 91/414/EEC but which were not included in Annex I. This regulates for the EFSA the procedure for organising the consultation of Member States and the applicant(s) for comments on the Additional Report provided by the designated RMS, and upon request of the Commission the organisation of a peer review and/or delivery of its conclusions on the active substance.

## Peer review conducted in accordance with Commission Regulation (EC) No 2229/2004

6-benzyladenine is one of the 295 substances of the fourth stage of the review programme covered by Commission Regulation (EC) No 2229/2004, as amended by Commission Regulation (EC) No 1095/2007. In accordance with the Regulation, at the request of the Commission, the EFSA organised a peer review of the DAR provided by the designated rapporteur Member State, France, which was received by the EFSA on 30 October 2007 (France 2007)

The peer review was initiated on 25 February 2008 by dispatching the DAR to Member States and the applicants Fine Agrochemicals Limited and Valent Biosciences Corporation, for consultation and comments. In addition, the EFSA conducted a public consultation on the DAR. The comments received were collated by the EFSA and forwarded to the RMS for compilation and evaluation in the format of a Reporting Table.

The peer review process was subsequently terminated following the applicants' decision, in accordance with Article 24e, to withdraw support for the inclusion of 6-benzyladenine in Annex I to Council Directive 91/414/EEC.

## Peer review conducted in accordance with Commission Regulation (EC) No 33/2008

Following the Commission Decision of 6 December 2008 (2008/941/EC)<sup>10</sup> concerning the non-inclusion of 6-benzyladenine in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance, the applicants Fine Agrochemicals Limited and Valent Biosciences Corporation, made a resubmission application for the inclusion of 6-benzyladenine in Annex I in accordance with the provisions laid down in Chapter III of Commission Regulation (EC) No. 33/2008. The resubmission dossier included further data in response to the issues identified in the DAR, in all sections

In accordance with Article 18, the United Kingdom, being the designated RMS, submitted an evaluation of the additional data in the format of an Additional Report (United Kingdom 2009). The Additional Report was received by the EFSA on 27 November 2009.

<sup>&</sup>lt;sup>7</sup> OJ L 379, 24.12.2004, p.13

<sup>&</sup>lt;sup>8</sup> OJ L 246, 21.9.2007, p.19

<sup>&</sup>lt;sup>9</sup> OJ L 15, 18.01.2008, p.5

<sup>&</sup>lt;sup>10</sup> OJ L 335, 13.12.2008, p. 11



In accordance with Article 19, the EFSA distributed the Additional Report to Member States and the applicant(s) for comments on 1 December 2009. In addition, the EFSA conducted a public consultation on the Additional Report. The EFSA collated and forwarded all comments received to the Commission on 20 January 2010. At the same time, the collated comments were forwarded to the RMS for compilation in the format of a Reporting Table. The applicants were invited to respond to the comments in column 3 of the Reporting Table. The comments and the applicants' response was evaluated by the RMS in column 3.

In accordance with Article 20, following consideration of the Additional Report, the comments received, and where necessary the DAR, the Commission decided to further consult the EFSA. By written request, received by the EFSA on 24 February 2010, the Commission requested the EFSA to arrange a consultation with Member State experts as appropriate and deliver its conclusions on 6-benzyladenine within 6 months of the date of receipt of the request, subject to an extension of a maximum of 90 days where further information were required to be submitted by the applicant(s) in accordance with Article 20(2).

The scope of the peer review and the necessity for additional information, not concerning new studies, to be submitted by the applicants in accordance with Article 20(2), was considered in a telephone conference between the EFSA, the RMS, and the Commission on 12 February 2010, the applicants were also invited to give their view on the need for additional information. On the basis of the comments received, the applicant's response to the comments, and the RMS's subsequent evaluation thereof, it was concluded that the EFSA should organise a consultation with Member State experts in the areas of mammalian toxicology and that further information should be requested from the applicants in the areas of physical-chemical properties and ecotoxicology.

The outcome of the telephone conference, together with EFSA's further consideration of the comments, is reflected in the conclusions set out in column 4 of the Reporting Table. All points that were identified as unresolved at the end of the comment evaluation phase and which required further consideration, including those issues to be considered in consultation with Member State experts, and the additional information to be submitted by the applicants, were compiled by the EFSA in the format of an Evaluation Table.

The conclusions arising from the consideration by the EFSA, and as appropriate by the RMS, of the points identified in the Evaluation Table, together with the outcome of the expert discussions where these took place, was reported in the final column of the Evaluation Table.

A final consultation on the conclusions arising from the peer review of the risk assessment took place with Member States via a written procedure in July 2010.

This conclusion report summarises the outcome of the peer review of the risk assessment on the active substance and the representative formulation evaluated on the basis of the representative uses as a plant growth regulator on maize and apples, as proposed by the applicants. A list of the relevant end points for the active substance as well as the formulation is provided in Appendix A. In addition, a key supporting document to this conclusion is the Peer Review Report (EFSA 2010), which is a compilation of the documentation developed to evaluate and address all issues raised in the peer review, from the initial commenting phase to the conclusion. The Peer Review Report comprises the following documents:

- the comments received,
- the Reporting Table (revision 1-1, 09 February 2010),
- the Evaluation Table (27 August 2010)
- the reports of the scientific consultation with Member State experts (where relevant).



Given the importance of the DAR and the Additional Report including its addendum (compiled version of July 2010 containing all individually submitted addenda; United Kingdom 2010)) and the Peer Review Report, both documents are considered respectively as background documents A and B to this conclusion.



#### THE ACTIVE SUBSTANCE AND THE FORMULATED PRODUCT

6-benzyladenine is the common name for  $N^6$ -benzyladenine (IUPAC), this compound does not have an ISO common name.

The representative formulated product for the evaluation was 'MaxCel' a soluble concentrate formulation (SL) containing 20 g/l 6-benzyladenine.

The representative uses evaluated comprise outdoor foliar spraying as a plant growth regulator on apples and maize. The use on maize is for seed production only. Full details of the GAP can be found in the list of end points in Appendix A.

#### CONCLUSIONS OF THE EVALUATION

## 1. Identity, physical/chemical/technical properties and methods of analysis

The minimum purity of 6-benzyladenine as manufactured should be not less than 973 g/kg. No relevant impurities were identified. There is currently no FAO specification for this compound

The main data regarding the identity of 6-benzyladenine and its physical and chemical properties are given in Appendix A.

The submitted method of analysis for plants is not acceptable due to unexplained low recoveries and communications between the primary and ILV laboratories. Therefore a data gap has been identified for a method of analysis for apples with ILV. A method is not required for the maize use as no MRL is proposed (see section 3), although a LC-MS/MS method was provided without ILV. A method of analysis for animal products is not required as no MRLs are proposed. HPLC-MS/MS methods are available for soil, water and air. A method of analysis for body fluids and tissues is not required as the active substance is not classified as toxic or very toxic.

#### 2. Mammalian toxicity

6-benzyladenine was discussed at the PRAPeR Expert's Meeting on mammalian toxicology (PRAPeR 76) in May-June 2010.

Overall, it was noted that the available database was rather limited with respect to repeated short-term and long term carcinogenicity exposure. Only a few original studies were submitted, the remaining information was collected from published papers or summaries from other authorities evaluations. In mammals 6-benzyladenine is shown to be harmful if swallowed (R22). The substance is of low acute toxicity after dermal and inhalation exposure, it is neither a skin or eye irritant nor a skin sensitizer.

Extensively and rapidly absorbed and excreted after oral administration; oral absorption is ~80%. The target organ in a valid 13-week rat study is the kidney (dilated renal pelvises, mineralised semifluid material within the pelvises and secondary inflammation) with a NOAEL of 41 mg/kg bw/day. The observed effects and the established NOAEL are supported in two additional limited rat studies (diet and gavage) however these are only regarded as supplementary information.

PRAPeR 76 concluded that 6-benzyladenine was of no genotoxic concern based on the results from *in vitro* and *in vivo* mutagenicity studies.

No acceptable long-term studies were submitted; only a short summary of the Japanese authority's evaluations of a 2 year rat study (purity not stated) is available. A full and valid evaluation of this study was not possible due to lack of raw data. PRAPeR76 concluded that no long term studies were needed in view of the proposed GAP which would not lead to a relevant consumer exposure or long term exposure of operators or workers. It was noted that a carcinogenic potential of the substance could not be dismissed due to the absence of appropriate data, but this was not a concern for these specific uses due to above mentioned reasons.



In the 2-generation study in rats, no adverse effects on fertility or reproductive parameters were observed, but lower body weight gain and a delay in sexual maturation for the offspring were seen in the presence of maternal toxicity leading to a maternal and offspring NOAEL of 30 mg/kg bw/day and a reproductive NOAEL of 115 mg/kg bw/day. In the rat developmental study lower foetal body weight, increased incidence of hydrocephalus, and skeletal effects (unossified sternebrae, incompletely ossified phalanges and misaligned sternebrae) were observed at a dose with maternal toxicity (reduced body weight gain and decreased food consumption). The hydrocephalus is a rare finding and was regarded as a congenital effect and the PRAPeR76 meeting proposed the risk phrase R63 "Possible risk of harm to the unborn child". The NOAEL for maternal and developmental effects in rats was 50 mg/kg bw/day. No teratogenic effects were seen in the rabbit study with a developmental NOAEL of 20 mg/kg bw/day based on lower foetal body weight and maternal NOAEL <10 mg/kg bw/day based on reduced body weight gain.

No Acceptable Daily Intake (ADI) or Acute Reference Dose (ARfD) values were considered necessary since no consumer exposure was expected for the representative uses, also based on the indication in the residue assessment that 6-benzyladenine was a naturally occurring compound. However, during the preparation of the EFSA conclusion, a data gap was identified by the residue experts for further quantitative evidence that 6-benzyladenine is a naturally occurring compound, hence the consumer risk assessment could not be finalised. It is noted that the setting of ADI and ARfD might be needed once the clarification on the natural occurrence of 6-benzyladenine is provided.

The Acceptable Operator Exposure Level (AOEL) is 0.03 mg/kg bw/day based on a LOAEL from developmental toxicity study in rabbits. A safety factor of 300 was applied to account for the use of a LOAEL value. The estimated operator exposure is below the AOEL without the use of personal protective equipment for all the representative uses (German model for field and orchard use, and UK POEM for field use only) as well as bystander exposure. Estimated worker exposure for re-entry in treated apple (orchards) is below the AOEL when gloves are worn (12%). For maize seed production (field use) the worker exposure is below the AOEL (2%) without PPE. Bystander exposure is below the AOEL.

#### 3. Residues

The metabolism of 6-benzyladenine was investigated in a foliar applied metabolism study. The metabolites identified in this study were either conjugates of 6-benzyladenine or benzoic acid. At harvest no significant residues were present and the residue definition for risk assessment and monitoring is by default 6-benzyladenine. The maize use does not need to be considered for residues as it is only for seed production. There is no risk of significant residues of 6-benzyladenine in succeeding crops given the rapid degradation of this substance in soil. The DT50 range in soil is between 1 and 1.2 days. Therefore no studies on residues in succeeding crops are required for 6-benzyladenine. The need for animal studies and processing studies are not triggered because of the low residues. Six residue trials were available for the North of Europe and 4 for the South. The trials were overdosed and all gave residues of <0.005 mg/kg. The reduced data set can be accepted for this low residue situation.

It was initially proposed that 6-benzyladenine is a naturally occurring plant hormone. In view of this, and given that the available data indicated that residues would be expected to be low, it was proposed that consumer exposure would not be significant. However, during the writing of the conclusion it was questioned whether 6-benzyladenine is naturally occurring, at least in edible crops. The paper cited in the Additional Report (Malkawi, 2007) was examined, and it is clear that 6-benzyladenine itself was not found, but only similar compounds. Since this paper was the key information to support the proposal that 6-benzyladenine is naturally occurring a data gap is identified for further quantitative evidence that 6-benzyladenine is a naturally occurring compound, and the consumer risk assessment cannot be finalised at this stage.



#### 4. Environmental fate and behaviour

Investigation of the route of degradation of 6-benzyladenine did not show any metabolite needing further consideration with respect to soil or groundwater contamination. Degradation rate experiments show that 6-benzyladenine exhibits very low persistence in soil under laboratory conditions. Mineralization reached a 67.8-86.6 % AR and non extractable residue 12-21 % AR after 120 d. Field studies are available in two Korea sites where 6-benzyladenine exhibited low persistence in soil. The available photolysis study in soil shows that photolysis is unlikely to be a significant route of dissipation compared with biotic degradation in the absence of light. PEC soil were calculated with worst case field half-lives.

6-benzyladenine may be considered to be medium to low mobile in soil on the basis of batch adsorption/desorption experiments.

6-benzyladenine is stable to hydrolysis (pH 5, 7 and 9). Photolysis may contribute only slightly to the degradation of 6-benzyladenine in water. Main metabolite resulting from aqueous photolysis identified as adenine. In water/sediment systems 6-benzyladenine is degraded relatively rapidly. Dissipation from the water phase is fast due to partitioning to the sediment.  $PEC_{SW}$  has been calculated with FOCUS SW models up to step 4 to consider the effect of mitigation from a 10 m no-spray buffer zone (FOCUS 2001).

According to the FOCUS GW models available (using worst case input parameters), it is not expected that 6-benzyladenine will contaminate groundwater above the limit of 0.1µg/L when used according the good agriculture practices proposed for the representative uses (FOCUS 2000, 2007).

## 5. Ecotoxicology

The acute, short-term and long-term risk to birds via dietary exposure was assessed as low at tier 1 for the representative uses. The acute and long-term risk to mammals via dietary exposure was assessed as low at tier 1 for the representative uses. The risk assessment to earthworm-eating birds and mammals was not required since the  $logP_{ow}$  was 2.16. The risk to birds and mammals from consumption of contaminated drinking water was assessed as low.

6-benzyladenine is very toxic to aquatic organisms and the most sensitive species was *Lemna gibba*. The toxicity of the formulation is 2-order of magnitude higher than expected from the content of the active substance for fish, aquatic invertebrates and algae. Therefore, the endpoints for the formulation were used for the risk assessment. The study to assess the effects of the formulation on *Lemna gibba* was not considered valid. In addition, the algae species tested with the formulation was not the most sensitive species tested in the studies with the active substance, and some uncertainty regarding the toxicity of the formulation to algae remains. Therefore a data gap was identified during the peer review for the applicant to submit studies with the formulation MaxCel on aquatic plants and the most sensitive algae species. Overall, the risk assessment for aquatic organisms could not be finalised.

For the non-target arthropods the in-field and off-field risk for the two standard test species *Aphidius rhopaloshipi* and *Typhlodromus pyri* was assessed as low for the use in maize. For the use in apples the off-field risk was assessed as low for both *A. rhopaloshipi* and *T. Pyri*, The in-field risk was assessed as low for *T. pyri*. However, the in field HQ for *A. rhopalosiphi* exceeded the trigger of 2 recommended in the ESCORT-2 guidance (Candolfi *et al.*, 2001). Overall, considering the short foliar half-life and the single application, it is reasonable to assume that the recolonisation will occur within 1 year.

The risk to bees, earthworms, non-target soil micro-organisms, non-target plants and the function of waste water treatment plants was assessed as low for all representative uses.



# 6. Overview of the risk assessment of compounds listed in residue definitions triggering assessment of effects data for the environmental compartments

## **6.1.** Soil

| Compound (name and/or code) | Persistence                                                                       | Ecotoxicology                                                  |
|-----------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------|
| 6-benzyladenine             | Very low to low persistent $(DT_{50lab} = 1.0 \ 1.3 \ d; DT5_{0field} = 7-8 \ d)$ | The risk of 6-benzyladenine to earthworms was assessed as low. |

## **6.2.** Ground water

| Compound<br>(name and/or code) | Mobility in soil                                      | >0.1 µg/L 1m depth for<br>the representative uses<br>(at least one FOCUS<br>scenario or relevant<br>lysimeter) | Pesticidal activity | Toxicological relevance | Ecotoxicological activity                                                                                                 |
|--------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 6-benzyladenine                | medium to low mobile $(K_{Foc} = 282 - 1945 \; mL/g)$ | FOCUS GW = no scenarios exceed $0.1\mu g/L$ limit.                                                             | Yes                 |                         | 6-benzyladenine is very toxic to aquatic organisms. The risk assessment for the aquatic organisms could not be finalised. |

## **6.3.** Surface water and sediment

| Compound (name and/or code) | Ecotoxicology |
|-----------------------------|---------------|
|                             |               |



| 6-benzyladenine | 6-benzyladenine is very toxic to aquatic organisms. The risk assessment for aquatic organisms could not be finalised. |
|-----------------|-----------------------------------------------------------------------------------------------------------------------|
|                 |                                                                                                                       |

## 6.4. Air

| Compound<br>(name and/or code) | Toxicology                                                                                            |
|--------------------------------|-------------------------------------------------------------------------------------------------------|
| 6-benzyladenine                | Rat LC <sub>50</sub> inhalation > 5.0 mg/L air, 4 h. whole body exposure – no classification proposed |



# LIST OF STUDIES TO BE GENERATED, STILL ONGOING OR AVAILABLE BUT NOT PEER REVIEWED

- Method of analysis for apples with ILV (relevant for the apple use only; submission date proposed by the applicants: unknown; see section 1).
- Further quantitative evidence to demonstrate that 6-benzyladenine is naturally occurring in edible crops. If this is not clearly demonstrated then the need for toxicological reference values will need to be reconsidered (relevant for all representative uses evaluated; submission date proposed by the applicants: unknown, see section 1).
- Data gap was identified for applicant to provide a study to assess the effects of formulation 'MaxCel' on aquatic plants (relevant for all representative uses evaluated; submission date proposed by the applicants: unknown, see section 5).
- Data gap was identified for applicant to provide a study to assess the effects of formulation 'MaxCel' on the most sensitive algae species (relevant for all representative uses evaluated; submission date proposed by the applicants: unknown, see section 5).

# PARTICULAR CONDITIONS PROPOSED TO BE TAKEN INTO ACCOUNT TO MANAGE THE RISK(S) IDENTIFIED

None proposed

#### ISSUES THAT COULD NOT BE FINALISED

- The consumer risk assessment cannot be finalised because it is not yet clear whether 6-benzyladenine occurs naturally in edible crops.
- The risk assessment for the aquatic organisms could not be finalised.

#### CRITICAL AREAS OF CONCERN

None proposed.



#### REFERENCES

- France 2007, Draft Assessment Report (DAR) on the active substance 6-benzyladenine. prepared by the rapporteur Member State France in the framework of Directive 91/414/EEC, October 2007
- United Kingdom 2009. Additional Report to the Draft Assessment Report on the active substance 6-benzyladenine prepared by the rapporteur Member State the United Kingdom in the framework of Commission Regulation (EC) No 33/2008, November 2009
- United Kingdom 2010. Final Addendum to the Additional Report on 6-benzyladenine, compiled by EFSA, July 2010
- EFSA (European Food Safety Authority), 2010 Peer Review Report to the conclusion regarding the peer review of the pesticide risk assessment of the active substance 6-benzyladenine EFSA Scientific Report.

## Guidance documents<sup>11</sup>:

- FOCUS (2001). "FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC". Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.2. 245 pp.
- FOCUS (2007). "Landscape And Mitigation Factors In Aquatic Risk Assessment. Volume 1. Extended Summary and Recommendations". Report of the FOCUS Working Group on Landscape and Mitigation Factors in Ecological Risk Assessment, EC Document Reference SANCO/10422/2005 v2.0. 169 pp.
- FOCUS (2000). "FOCUS Groundwater Scenarios in the EU review of active substances". Report of the FOCUS Groundwater Scenarios Workgroup, EC Document Reference SANCO/321/2000-rev.2. 202 pp, as updated by the Generic Guidance for FOCUS groundwater scenarios, version 1.1 dated April 2002
- Malkawi 2007: Malkawi A, Jensen B, Langille A, Plant Hormones Isolated from "Katahdin" Potato Plant Tissues and the Influence of Photoperiod and Temperature on Their Levels in Relation to Tuber Induction, J Plant Growth Regul (207) 26: 308-317
- Candolfi MP, Barrett KL, Campbell PJ, Forster R, Grandy N, Huet M-C, Lewis G, Oomen PA, Schmuck R and Vogt H, 2001. Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods. Proceedings from the ESCORT-2 workshop, Wageningen, 21-23 March 2000. SETAC Office, Pensacola, Florida, USA, 46 pp.

EFSA Journal 2010; 8(10):1716

<sup>&</sup>lt;sup>11</sup> For further guidance documents see <a href="http://ec.europa.eu/food/plant/protection/resources/publications">http://ec.europa.eu/food/plant/protection/resources/publications</a> en.htm#council (EC) or <a href="http://www.oecd.org/document/59/0,3343,en">http://www.oecd.org/document/59/0,3343,en</a> 2649 34383 1916347 1 1 1 1,00.html (OECD)



#### **APPENDICES**

# APPENDIX $\mathbf{A}$ – List of end points for the active substance and the representative formulation

## Identity, Physical and Chemical Properties, Details of Uses, Further Information

Active substance (ISO Common Name) ‡

 $N^6$ -benzyladenine

Note: There is no ISO common name for this substance; the name "6-benzyladenine" has been used in the

literature but has no official status

Function (e.g. fungicide)

Fruit thinning

Plant growth regulator

Rapporteur Member State

France/UK

Co-rapporteur Member State

/

#### **Identity (Annex IIA, point 1)**

Chemical name (IUPAC) ‡

Chemical name (CA) ‡

CIPAC No ‡

CAS No ‡

EC No (EINECS or ELINCS) ‡

FAO Specification (including year of publication) ‡

Minimum purity of the active substance as manufactured ‡

Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured

Molecular formula ‡

Molecular mass ‡

Structural formula ‡

N<sup>6</sup>-benzyladenine

N-(phenylmethyl)-1H-purin-6-amino

829

1214-39-7

214-92-7-5

None

973 g/kg (combined task force specification)

None

 $C_{12}H_{11}N_5$ 

225.26



#### Physical and chemical properties (Annex IIA, point 2)

Melting point (state purity) ‡

Boiling point (state purity) ‡

Temperature of decomposition (state purity)

Appearance (state purity) ‡

Vapour pressure (state temperature, state purity) ‡

Henry's law constant ‡

Solubility in water (state temperature, state purity and pH) ‡

Solubility in organic solvents ‡ (state temperature, state purity)

Surface tension ‡ (state concentration and temperature, state purity)

Partition co-efficient ‡ (state temperature, pH and purity)

Dissociation constant (state purity) ‡

| വസംഗ | 4~ <b>1</b> 2 | 0.50C | (99%) |
|------|---------------|-------|-------|
| //91 | 10 / 3        | 1171  | 199%  |
|      |               |       |       |

No boiling point observed up to a temperature of 360°C (98.6%)

Decomposition observed following melting, at temperatures above ~ 245°C (98.6%)

white powder with no detectable odour (99.9%)

6 x 10<sup>-7</sup> Pa (98.5%) at 25°C

1.77 x 10<sup>-6</sup> Pa.m<sup>3</sup>.mol<sup>-1</sup> at 25 °C (QSAR) Calculated to be 2.98 x 10<sup>-6</sup> Pa.m<sup>3</sup>.mol<sup>-1</sup> at 20 °C

at 20°C (99%)

| pН            | Solubility (g/L) |
|---------------|------------------|
| Pure water    | 65.7 mg/L        |
| pH 4.0 Buffer | 116 mg/L         |
| pH 7.0 Buffer | 64.5 mg/L        |
| pH 9.0 Buffer | 77.8 mg/L        |

#### at 20°C (99%)

| Solvent             | Solubility (mg/L) |
|---------------------|-------------------|
| n-heptan            | 0.15 mg/L         |
| xylene              | 9.78 mg/L         |
| 1,2-dichloro-ethane | 96.9 mg/L         |
| methanol            | 5820 mg/L         |
| acetone             | 1130 mg/L         |
| Ethyl acetate       | 493 mg/L          |

at 90% saturated solution and at  $20^{\circ}\text{C}$ : 70.0 mN/m (Not surface active)

at 20°C (99%).

| Tested solution         | Log Pow |
|-------------------------|---------|
| PH 4.0 buffer solution: | 1.86    |
| PH 7.0 buffer solution: | 2.16    |
| PH 9.0 buffer solution: | 2.13    |

 $pKa_1 = 9.4 (99\%)$ 

 $pKa_2 = 7.3 (99\%)$ 



UV/VIS absorption (max.) incl.  $\epsilon \ddagger$  (state purity, pH)

Purity 99 %

The molar extinction coefficients were determined to be:

In methanol/water 9/1

| λ             | $\varepsilon$ (dm <sup>3</sup> /mol/cm) |
|---------------|-----------------------------------------|
| 207 (maximum) | 20800                                   |
| 270 (maximum) | 18800                                   |
| 290           | 10800 *                                 |

#### In methanol/ HCl 1M 9/1

| λ max         | $\varepsilon$ (dm <sup>3</sup> /mol/cm) |
|---------------|-----------------------------------------|
| 209 (maximum) | 24900                                   |
| 270 (maximum) | 19000                                   |
| 290           | 1000 *                                  |

#### In methanol/ NaOH 1M 9/1

| λ max          | $\varepsilon$ (dm <sup>3</sup> /mol/cm) |
|----------------|-----------------------------------------|
| 220 (maximum)  | 21600                                   |
| 276 (maximum)  | 18600                                   |
| 284 (shoulder) | 14000                                   |
| 290            | 2000 *                                  |

not highly flammable (99%)

no explosive properties (99%)

no oxidising properties (99%)

Flammability ‡ (state purity)

Explosive properties ‡ (state purity)

Oxidising properties ‡ (state purity)

<sup>\*</sup>Graphically estimated by RMS



**Summary of representative uses evaluated** (6-Benzyladenine)

| Crop and/<br>or situation | Member<br>State<br>or<br>Country | Product<br>name | F<br>G<br>or<br>I | Pests or<br>Group of<br>pests<br>controlled                  | Prepa      | ration         |                         | Applica                                                | tion                         |                                              | (for exp                       | lication ra<br>treatmen<br>planation se<br>ont of this s | t e the text          | PHI<br>(days)   | Remarks  |
|---------------------------|----------------------------------|-----------------|-------------------|--------------------------------------------------------------|------------|----------------|-------------------------|--------------------------------------------------------|------------------------------|----------------------------------------------|--------------------------------|----------------------------------------------------------|-----------------------|-----------------|----------|
| (a)                       |                                  |                 | (b)               | (c)                                                          | Type (d-f) | Conc.<br>of as | method<br>kind<br>(f-h) | growth<br>stage & season<br>(j)                        | number<br>min/<br>max<br>(k) | interval<br>between<br>applications<br>(min) | g as/hL<br>min –<br>max<br>(l) | water<br>L/ha<br>min –<br>max                            | g as/ha min – max (1) | (m)             |          |
| Maize (seed production)   | -                                | MaxCel          | F                 | Anti stress<br>and anti<br>freezing<br>(growth<br>regulator) | SL         | 20 g/L         | Spraying                | 6 leaves<br>(BBCH 16)<br>Spring/<br>Summer             | 1                            | Not relevant                                 | 6                              | 300 L                                                    | 18                    | Not<br>relevant | (1), (2) |
| Apples                    | -                                | MaxCel          | F                 | Fruit<br>thinning                                            | SL         | 20 g/L         | Spraying                | Fruit between 7 and 15 mm (BBCH 71- 74) Spring/ Summer | 1                            | Not relevant                                 | 7.5 –<br>15                    | 1000 L                                                   | 75 –<br>150           | 90              | (1), (2) |

- (1) Consumer risk assessment could not finalised
- (2) The risk assessment for aquatic organisms could not be finalized.
- \* For uses where the column "Remarks" is marked in grey further consideration is necessary. Uses should be crossed out when the notifier no longer supports this use(s).
- (a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
- (b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
- (c) e.g. biting and suckling insects, soil born insects, foliar fungi, weeds
- (d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- (e) GCPF Codes GIFAP Technical Monograph No 2, 1989
- (f) All abbreviations used must be explained
- (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
- (h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant-type of equipment used must be indicated
- (i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
- (j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- (k) Indicate the minimum and maximum number of application possible under practical conditions of use
- (l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
- (m) PHI minimum pre-harvest interval

EFSA Journal 2010; 8(10):1716

#### Analytical methods for the active substance (Annex IIA, point 4.1)

Fine Agrochemical: HPLC-UV (validated) Technical as (analytical technique)

Valent: HPLC-UV (validated) Impurities in technical as (analytical technique)

Fine Agrochemical:

HPLC-UV (fully validated). No other data required

CIPAC MT 17.4, loss in weight (validated)

Valent:

- HPLC-UV (fully validated). No other data required

ion chromatography (fully validated). No other data required

method (STM 0328200) similar to CIPAC MT17.2 (loss in weight) (validated)

Plant protection product (analytical technique)

#### MaxCel:

Not relevant

HPLC-UV (validated, recoveries within acceptable range)

#### Analytical methods for residues (Annex IIA, point 4.2)

## Residue definitions for monitoring purposes

Food of plant origin 6-Benzyladenine

Soil 6-Benzyladenine

Water surface 6-Benzyladenine

> drinking/ground 6-Benzyladenine

Air 6-Benzyladenine

#### Monitoring/Enforcement methods

Food of animal origin

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)

Open for apples In maize: no MRL

LC-MS/MS (fully validated).

LOQ: 0.01 mg/kg in maize

No ILV required as no MRL has been set on Maize

Due to the nature of the compound the suitability of a

multi-residue method has not been assessed

Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)

Soil (analytical technique and LOQ)

No MRL. No method required

HPLC-MS/MS (validated)

LOQ: 0.01 mg/kg in soil

18314732, 2010, 10, Downboaded from https://efsa.onlinelibrary.wiley.com/doi/10.2903/efsa.2010.1716 by University College London UCL Library Services, Wiley Online Library on [14/05/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons



Water (analytical technique and LOQ)

Air (analytical technique and LOQ)

HPLC-MS/MS (validated)

LOQ: 0.05 μg/L in drinking and surface water

HPLC-MS/MS (validated)

LOQ: 22.5 ng/m³ in air

No method required as 6-BA is not classified as toxic or very toxic.

## Classification and proposed labelling with regard to physical and chemical data (Annex IIA, point 10)

| RMS/peer review proposal |
|--------------------------|
| None                     |

Active substance

~80 % (based urine + bile + residual carcass)

## **Impact on Human and Animal Health**

## Absorption, distribution, excretion and metabolism (toxicokinetics) (Annex IIA, point

#### 5.1)

| Distribution ‡                 | Rats Highest concentration was found in stomach wall. Greater levels than that associated with whole blood                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | were intestine wall, liver kidneys, lungs and ovaries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Potential for accumulation ‡   | No potential for accumulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rate and extent of excretion ‡ | 80-95% within 24 h mainly via urine (60%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Metabolism in animals ‡        | The major component found in urine was hippuric acid; the monohydroxylated metabolite of 6BA was also present as a major component in urine.  Other minor components identified in urine were the hydrated adduct of monohydroxylated 6BA, dihydroxylated 6BA, and the glucuronide conjugates of both the mono and dihydroxylated 6BA.  Parent 6BA was also detected in urine, but was very close to the limit of quantification.  The major identified components in the faecal extracts were hippuric acid and isomers of both mono and dihydroxylated 6BA. |

Toxicologically relevant compounds ‡ (animals and plants)

Rate and extent of oral absorption ‡

Toxicologically relevant compounds ‡ (environment)

6-Benzyladenine

6-Benzyladenine

#### Acute toxicity (Annex IIA, point 5.2)

Rat LD<sub>50</sub> oral ‡

Rat LD<sub>50</sub> dermal ‡

Rat LC<sub>50</sub> inhalation ‡

Skin irritation ‡

Eye irritation ‡

Skin sensitisation ‡

| 2094 and 814 mg/kg bw in males and females respectively and 1584 mg/kg bw (combined) | R22 |
|--------------------------------------------------------------------------------------|-----|
| >2000 mg/kg bw in both sexes                                                         |     |
| >5.0 mg/L in both sexes                                                              |     |
| Non-irritant                                                                         |     |
| Non-irritant                                                                         |     |
| Not sensitizing                                                                      |     |

The major identified component in bile was the glutathione conjugate of monohydroxylated 6BA.

## Short term toxicity (Annex IIA, point 5.3)

Target / critical effect ‡

Rat:

Lower body weight, lower blood glucose level, kidney changes: dilated renal pelvises, mineralised semifluid material within the pelvises and secondary inflammation. Limited information on other species (mice and dogs)

onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1716 by University College London UCL Library Services, Wiley Online Library on [14/05/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

| efsa European Food Safety Authority  Peer Review of the pesti                                         | icide risk assessment of the active substance 6-benzyl                                                                   | ladenine |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------|
| •                                                                                                     |                                                                                                                          |          |
| Relevant oral NOAEL ‡                                                                                 | 13-week rat: 41 mg/kg bw/day (F)                                                                                         |          |
| Relevant dermal NOAEL ‡                                                                               | No data/ not required                                                                                                    |          |
| Relevant inhalation NOAEL ‡                                                                           | No data/ not required                                                                                                    |          |
| Genotoxicity ‡ (Annex IIA, point 5.4)                                                                 |                                                                                                                          | T 1      |
|                                                                                                       | No genotoxic potential.                                                                                                  |          |
| Long term toxicity and carcinogenicity ( Target/critical effect ‡ Relevant NOAEL ‡                    | No valid data, not required because of the representates  Not available                                                  | ntative  |
| Carcinogenicity ‡                                                                                     | No valid data/ not required because of the representative uses.                                                          |          |
| Reproductive toxicity (Annex IIA, point Reproduction toxicity Reproduction target / critical effect ‡ | Rat: Lower body weight and food consumption (F0 and F1 parents). Lower weight gain in pup and delay in sexual maturation |          |
|                                                                                                       | M/E-20/45 /1 1/1                                                                                                         | 1        |

| 1 0                           |                                                             |  |
|-------------------------------|-------------------------------------------------------------|--|
|                               | Lower body weight and food consumption (F0 and F1 parents). |  |
|                               | Lower weight gain in pup and delay in sexual maturation     |  |
| Relevant parental NOAEL ‡     | M/F: 30/45 mg/kg bw/day                                     |  |
| ·                             | M/F: > 115/170 mg/kg bw /day                                |  |
| Relevant reproductive NOAEL ‡ | W/T. > 113/1/0 Hig/kg 0w /day                               |  |
| Relevant offspring NOAEL ‡    | M/F: 30/45 mg/kg bw /day                                    |  |
|                               |                                                             |  |
|                               |                                                             |  |

| Development | al toxicity |  |
|-------------|-------------|--|
|             |             |  |

| Developmental target / critical effect ‡ | Rat: Lower body weight and food consumption in dams. Lower body weight in foetuses, increased incidence of hydrocephalus and skeletal effects. | R63 |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                          | Rabbit Lower mean foetal body weights.                                                                                                         |     |
| Relevant maternal NOAEL ‡                | Rat: 50 mg/kg bw/day Rabbit <10 mg/kg bw/day                                                                                                   |     |
| Relevant developmental NOAEL ‡           | Rat: 50 mg/kg bw/day Rabbit 20 mg/kg bw/day                                                                                                    |     |

# **Neurotoxicity (Annex IIA, point 5.7)**

| Acute neurotoxicity ‡ | No data/ not required |  |
|-----------------------|-----------------------|--|
|-----------------------|-----------------------|--|

1831732, 2010, 10, Downloaded from https://efsa.onlinelibrary.wiley.com/doi/102903/j.efsa.2010.1716 by University College London UCL Library Services, Wiley Online Library on [14052025]. See the Terms and Conditions) on Wiley Online Library on the applicable Creative Commons Licensea



| Repeated neurotoxicity ‡ | No data/ not required |  |
|--------------------------|-----------------------|--|
| Delayed neurotoxicity ‡  | No data/ not required |  |

#### Other toxicological studies (Annex IIA, point 5.8)

| Mechanism studies ‡                              | No data/ not required |
|--------------------------------------------------|-----------------------|
| Studies performed on metabolites or impurities ‡ | No data/ not required |
|                                                  |                       |

#### Medical data ‡ (Annex IIA, point 5.9)

No evidence of toxicological concern from medical surveillance of manufacturing plant personnel

| Summary (Annex IIA, point 5.10) | Value                        | Study                                  | Safety factor |
|---------------------------------|------------------------------|----------------------------------------|---------------|
| ADI ‡                           | Not allocate, not necessary° |                                        |               |
| AOEL ‡                          | 0.03 mg/kg bw/day            | Developmental toxicity study in rabbit | 300*          |
| ARfD ‡                          | Not allocate, not necessary° |                                        |               |

<sup>\*</sup> an additional safety factor of 3 to account for the **LOAEL**During the preparation of the EFSA conclusion, a data gap was identified by the residue experts for further quantitative evidence that 6-benzyladenine is a naturally occurring compound, hence the consumer risk assessment could not be finalised. It is noted that the setting of ADI and ARfD might be needed once the clarification on the natural occurrence of 6-benzyladenine is provided

#### **Dermal absorption** ‡ (Annex IIIA, point 7.3)

MAXCEL formulation (SL, 20 g/L 6-benzyladenine)

Concentrate:13 % Spray dilutions:7 %

In vivo dermal absorption study in rats.

## Exposure scenarios (Annex IIIA, point 7.2) To be recalculated

Operator

German model –
maize
8% of AOEL without PPE,
3% with gloves for mix/load
apples
65% of AOEL without PPE,
47% with gloves for mix load

maize

23% of AOEL without PPE, 11% with gloves for mix/load

apples

106% of AOEL without PPE,

77% with gloves for mix/load

Crop inspection in maize (no PPE) 2% of AOEL.

Harvesting apples (no PPE) 117% of AOEL

(with PPE) 12% of AOEL

Bystanders

Workers

Maize <1% of AOEL. Apples 2% of AOEL.

Exposure to vapour for orchard sprayers 28% of AOEL.

Exposure to drift fallout (apples) 3% of AOEL

## Classification and proposed labelling with regard to toxicological data (Annex IIA, point 10)

RMS/peer review proposal

Substance classified (6-Benzyladenine)

Xn; (Harmful) R22: Harmful if swallowed

Repr. Cat3; R63: Possible risk of harm to the unborn

child

of use; OA articles are governed by the applicable Creative Commons

onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1716 by University College London UCL Library Services, Wiley Online Library on [14/05/2025]. See the Terms



## Metabolism in plants (Annex IIA, point 6.1 and 6.7, Annex IIIA, point 8.1 and 8.6)

| Plant groups covered                                                                    | Metabolism study in apple submitted together with scientific review reports on roots vegetables, cereals and pulses and oilseeds |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Rotational crops                                                                        | No data available, not required.                                                                                                 |
| Metabolism in rotational crops similar to metabolism in primary crops?                  | Not applicable                                                                                                                   |
| Processed commodities                                                                   | Not required although a processing study has been evaluated for apple pomace.                                                    |
| Residue pattern in processed commodities similar to residue pattern in raw commodities? | No concentration of residues during processing                                                                                   |
| Plant residue definition for monitoring                                                 | 6-Benzyladenine                                                                                                                  |
| Plant residue definition for risk assessment                                            | 6-Benzyladenine                                                                                                                  |
| Conversion factor (monitoring to risk assessment)                                       | None                                                                                                                             |

## Metabolism in livestock (Annex IIA, point 6.2 and 6.7, Annex IIIA, point 8.1 and 8.6)

| Animals covered                                               | No data available, not required. |
|---------------------------------------------------------------|----------------------------------|
| Time needed to reach a plateau concentration in milk and eggs | Not applicable                   |
| Animal residue definition for monitoring                      | Not applicable                   |
| Animal residue definition for risk assessment                 | Not applicable                   |
| Conversion factor (monitoring to risk assessment)             | None                             |
| Metabolism in rat and ruminant similar (yes/no)               | Not applicable                   |
| Fat soluble residue: (yes/no)                                 | Not applicable                   |

## Residues in succeeding crops (Annex IIA, point 6.6, Annex IIIA, point 8.5)

No study available. Not required, because only uses in seed production and permanent crops are intended. Furthermore 6-BA rapidly degrades in soil (DT $_{50}$  1 - 1.2 days).

## Stability of residues (Annex IIA, point 6 introduction, Annex IIIA, point 8 Introduction)

Apples at – 18°C: 12 months at 0.025 mg/kg level 18 months at 0.25 mg/kg level



Residues from livestock feeding studies (Annex IIA, point 6.4, Annex IIIA, point 8.3)

Expected intakes by livestock  $\geq 0.1$  mg/kg diet (dry weight basis) (yes/no - If yes, specify the level)

Potential for accumulation (yes/no):

Metabolism studies indicate potential level of residues  $\geq 0.01$  mg/kg in edible tissues (yes/no)

| Muscle |  |  |  |
|--------|--|--|--|
| Liver  |  |  |  |
| Kidney |  |  |  |
| Fat    |  |  |  |
| Milk   |  |  |  |
| Eggs   |  |  |  |

| oint 6.4, Annex IIIA, | point 8.3)                                 |          |
|-----------------------|--------------------------------------------|----------|
| Ruminant:             | Poultry:                                   | Pig:     |
| Conditions of requ    | irement of feeding                         | studies  |
| No                    | No                                         | No       |
|                       |                                            |          |
| N/A                   | N/A                                        | N/A      |
| N/A                   | N/A                                        | N/A      |
| poultry studies cor   | pecify the feeding ransidered as relevant) | )        |
| Residue levels in r   | matrices : Mean (ma                        | x) mg/kg |
| N/A                   | N/A                                        | N/A      |
| N/A                   |                                            |          |
|                       | N/A                                        |          |



## Summary of residues data according to the representative uses on raw agricultural commodities and feedingstuffs (Annex IIA, point 6.3, Annex IIIA, point 8.2)

| Crop  | Northern or<br>Mediterranean<br>Region, field or<br>glasshouse, and<br>any other useful<br>information | Trials results relevant to the representative uses  (10) | Recommendation/comments                                                                                                              | MRL estimated<br>from trials<br>according to the<br>representative use | HR<br>(c)   | STMR (b)    |
|-------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------|-------------|
| apple | N                                                                                                      | 6 x <0.005                                               | No trials conformed to the GAP ± 25 % but residues were all <loq< td=""><td>0.01</td><td>0.005 (LOQ)</td><td>0.005 (LOQ)</td></loq<> | 0.01                                                                   | 0.005 (LOQ) | 0.005 (LOQ) |
|       | S                                                                                                      | 4 x <0.005                                               |                                                                                                                                      |                                                                        |             |             |

<sup>(</sup>a) Numbers of trials in which particular residue levels were reported

EFSA Journal 2010; 8(10):1716

<sup>(</sup>b) Supervised Trials Median Residue i.e. the median residue level estimated on the basis of supervised trials relating to the representative use

<sup>(</sup>c) Highest residue



## Consumer risk assessment (Annex IIA, point 6.9, Annex IIIA, point 8.8)

The applicant proposed that this compound is a naturally occurring plant hormone. However, full evidence for this was not available and a data gap has been identified. The mammalian toxicology expert meeting agreed that given the use and low residue situation it was not necessary to set an ADI or ARfD.

| ADI                                                                                   | - |
|---------------------------------------------------------------------------------------|---|
| NEDI (% ADI) according to EFSA Primo model                                            | - |
| NEDI (% ADI) according to UK diet                                                     | 1 |
| Factors included in IEDI and NEDI                                                     | - |
| ARfD                                                                                  | - |
| IESTI (% ARfD)                                                                        | - |
| NESTI (% ARfD) according to national (to be specified) large portion consumption data | - |
| Factors included in IESTI and NESTI                                                   | - |

## Processing factors (Annex IIA, point 6.5, Annex IIIA, point 8.4)

| Crop/ process/ processed product | Number of studies | Processing factors |                 | Amount                     |  |
|----------------------------------|-------------------|--------------------|-----------------|----------------------------|--|
|                                  |                   | Transfer factor    | Yield<br>factor | transferred (%) (Optional) |  |
| Apple pomace                     | 1                 | Not detern         | nined as res    | sidues <loq< td=""></loq<> |  |



## Proposed MRLs (Annex IIA, point 6.7, Annex IIIA, point 8.6)

6-BA is proposed as a naturally-occurring compound and therefore the origin of residues may not be conclusively attributed to the authorised use of 6-BA as a plant growth regulator and fruit thinner. 6-BA is not currently listed in Regulation 396/2005 and therefore the default 0.01 mg/kg value on apple applies Consideration should be given to inclusion of 6-BA in Annex IV of Directive 396/2005, in which case the compound would be exempt from MRLs. This is subject to the data gap identified in the EFSA conclusion.



maximum)

Soil photolysis ‡

#### Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1.1)

Mineralization after 100 days ‡

67.81-86.61 % after 120 d, [¹⁴C-benzyl] and [¹⁴C-purine] label mixed (n= 4)

Non-extractable residues after 100 days ‡

11.98-20.96 % after 120 d, [¹⁴C-benzyl] and [¹⁴C-purine] label mixed (n= 4)

Metabolites requiring further consideration ‡
- name and/or code, % of applied (range and

#### Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2)

| Anaerobic degradation ‡                                                                                                     |               |
|-----------------------------------------------------------------------------------------------------------------------------|---------------|
| Mineralization after 100 days                                                                                               | Not required. |
| Non-extractable residues after 100 days                                                                                     | Not required. |
| Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum) | Not required. |

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)

Unidentified metabolite code 'component 1a', 5.1% at 10 d; assumed degradation product of adenine, unlikely to be toxicologically relevant

Component 1b, 3.5% at 10 d, identified as adenine



#### Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

## Laboratory studies ‡

| Parent          | Aerobic conditions |                                |                |                                        |                                            |                       |                       |  |
|-----------------|--------------------|--------------------------------|----------------|----------------------------------------|--------------------------------------------|-----------------------|-----------------------|--|
| Soil type       | X <sup>1</sup>     | pH<br>(Ca<br>Cl <sub>2</sub> ) | t. °C / % MWHC | DT <sub>50</sub> /DT <sub>90</sub> (d) | DT <sub>50</sub> (d)<br>20 °C<br>pF2/10kPa | St. (r <sup>2</sup> ) | Method of calculation |  |
| Sandy loam      |                    | 4.4                            | 20°C/50% MWHC  | 1.0/3.3                                | 1.0                                        | 0.999                 | Non linear SFO        |  |
| Silty clay loam |                    | 5.7                            | 20°C/50% MWHC  | 1.0/3.3                                | 1.0                                        | 0.998                 | Non linear SFO        |  |
| Sandy loam      |                    | 7.4                            | 20°C/50% MWHC  | 1.2/3.9                                | 1.2                                        | 0.999                 | Non linear SFO        |  |
| Clay loam       |                    | 7.4                            | 20°C/50% MWHC  | 1.1/3.6                                | 1.1                                        | 0.997                 | Non linear SFO        |  |
| Sandy loam      |                    | 4.4                            | 10°C/50% MWHC  | 2.9/9.6                                | 1.3                                        | 0.993                 | Non linear SFO        |  |
| Geometric mean  |                    |                                |                | 1.1*/3.5*                              | 1.1                                        | -                     | Non linear SFO        |  |

<sup>\*</sup> Geometric mean based on the four values at 20°C.

## Field studies ‡

Submitted by applicant although not required since lab DT50 is < 60 days. Study conducted on Korean soils with low moisture content (microbial activity not provided). Considered as indicative only by the RMS (France) in original DAR. Longest field DT50 (8 d) used in PECsoil calculations since it is more conservative than lab data.

| Parent                                                 | Aerobic conditi     | Aerobic conditions |     |            |                             |                                |                       |                                         |                       |
|--------------------------------------------------------|---------------------|--------------------|-----|------------|-----------------------------|--------------------------------|-----------------------|-----------------------------------------|-----------------------|
| Soil type (indicate if bare or cropped soil was used). | Location (country). | X¹                 | pН  | Depth (cm) | DT <sub>50</sub> (d) actual | DT <sub>90</sub> (d)<br>actual | St. (r <sup>2</sup> ) | DT <sub>50</sub> <sup>b</sup> (d) Norm. | Method of calculation |
| Soil K / Loam                                          | Korea               |                    | 5.6 | 0-10       | 7                           | n/a                            | n/a                   | n/a                                     | SFO                   |
| Soil P / Loam                                          | Korea               |                    | 5.1 | 0-10       | 8                           | n/a                            | n/a                   | n/a                                     | SFO                   |
| Arithmetic mean/median                                 |                     |                    | n/a |            |                             |                                |                       |                                         |                       |

n/a not available.

| pH dependence ‡ (yes / no) (if yes type of dependence) | No           |
|--------------------------------------------------------|--------------|
| Soil accumulation and plateau concentration ‡          | Not required |

<sup>&</sup>lt;sup>1</sup> X This column is reserved for any other property that is considered to have a particular impact on the degradation rate.



## Laboratory studies ‡

| Anaer          | Anaerobic conditions – Not studied |                   |                                        |                                           |                       |                       |  |  |
|----------------|------------------------------------|-------------------|----------------------------------------|-------------------------------------------|-----------------------|-----------------------|--|--|
| X <sup>2</sup> | pН                                 | t. °C / %<br>MWHC | DT <sub>50</sub> /DT <sub>90</sub> (d) | DT <sub>50</sub> (d)<br>20°C<br>pF2/10kPa | St. (r <sup>2</sup> ) | Method of calculation |  |  |
| -              | -                                  | -                 | -                                      | -                                         | -                     | -                     |  |  |
| Geom           | etric me                           | an/median         | -                                      | -                                         | -                     | -                     |  |  |

## Soil adsorption/desorption (Annex IIA, point 7.1.2)

| Parent ‡                  |      |         |              |               |              |             |        |
|---------------------------|------|---------|--------------|---------------|--------------|-------------|--------|
| Soil Type                 | OC % | Soil pH | Kd<br>(mL/g) | Koc<br>(mL/g) | Kf<br>(mL/g) | Kfoc (mL/g) | 1/n    |
| SK961089, clay loam       | 4.8  | 7.5     |              |               | 21.62        | 451         | 0.7897 |
| SK104691, silty clay loam | 2.7  | 6.1     |              |               | 24.43        | 905         | 0.7615 |
| SK179618, clay loam       | 3.8  | 5.5     |              |               | 10.73        | 282         | 0.7927 |
| SK566696, loamy sand      | 0.8  | 4.2     |              |               | 15.56        | 1945        | 0.8178 |
| Arithmetic mean/median    |      |         | 18.0/18.6    | 896/678       | 0.79/0.79    |             |        |
| pH dependence, Yes or No  | No.  |         |              |               |              |             |        |

# Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)

| Column leaching ‡                    | Not required.                                            |
|--------------------------------------|----------------------------------------------------------|
|                                      |                                                          |
| Aged residues leaching ‡             | Not required.                                            |
|                                      |                                                          |
|                                      |                                                          |
| Lysimeter/ field leaching studies ‡  | Not required.                                            |
|                                      |                                                          |
| PEC (soil) (Annex IIIA, point 9.1.3) |                                                          |
| Parent                               | DT <sub>50</sub> (d): 8 days                             |
| Method of calculation                | Kinetics: SFO                                            |
|                                      | Field or Lab: worst case from an indicative field study. |

<sup>&</sup>lt;sup>2</sup> X This column is reserved for any other property that is considered to have a particular impact on the degradation rate.



Application data

Crop: maize and apples

Depth of soil layer: 5cm Soil bulk density: 1.5g/cm<sup>3</sup>

% plant interception: 25% for maize, 80% for apples

Number of applications: 1

Interval (d): -

Application rate(s): 18 g as/ha for maize, 150 g as/ha for

apples

|                                                                 | •    | M                               | aize                                              | Apı                             | oles                                              |
|-----------------------------------------------------------------|------|---------------------------------|---------------------------------------------------|---------------------------------|---------------------------------------------------|
| $\begin{array}{c} \textbf{PEC}_{(s)} \\ (\mu g/kg) \end{array}$ |      | Single<br>application<br>Actual | Single<br>application<br>Time weighted<br>average | Single<br>application<br>Actual | Single<br>application<br>Time weighted<br>average |
| Initial                                                         |      | 18.000                          |                                                   | 40.000                          |                                                   |
| Short term                                                      | 24h  | 16.506                          | 17.253                                            | 36.680                          | 38.340                                            |
|                                                                 | 2d   | 15.136                          | 16.547                                            | 33.636                          | 36.772                                            |
|                                                                 | 4d   | 12.728                          | 15.250                                            | 28.284                          | 33.889                                            |
| Long term                                                       | 7d   | 9.815                           | 13.555                                            | 21.810                          | 30.122                                            |
|                                                                 | 28d  | 1.591                           | 6.872                                             | 3.536                           | 15.272                                            |
|                                                                 | 50d  | 0.237                           | 4.201                                             | 0.526                           | 9.336                                             |
|                                                                 | 100d | 0.003                           | 2.147                                             | 0.007                           | 4.771                                             |
| Plateau<br>concentration                                        | on   | -                               |                                                   |                                 |                                                   |

## Route and rate of degradation in water (Annex IIA, point 7.2.1)

| Hydrolytic degradation of the active substance and metabolites $>$ 10 % $\ddagger$ | pH 5: Stable: no degradation at 50°C during 5 days                                                                                                                                                                                       |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    | pH 7: Stable: no degradation at 50°C during 5 days                                                                                                                                                                                       |
|                                                                                    | pH 9: Stable: no degradation at 50°C during 5 days                                                                                                                                                                                       |
| Photolytic degradation of active substance and metabolites above 10 % ‡            | Direct photolysis: Artificial light (Xenon arc lamp), cycle 12 hours light / 12 hours dark pH 5: DT50 = 50.6 days (extrapolated) pH 7: DT50 = 19.2 days pH 9: DT50 = 244 days (extrapolated) Indirect photolysis: no data. Not required. |
| Quantum yield of direct phototransformation in water at $\Sigma > 290 \ \text{nm}$ | 6-benzyladenine:<br>pH 5: 0.00195<br>pH7: 0.7337<br>pH 9: 0.8899                                                                                                                                                                         |



| Readily biodegradable ‡ | Yes |
|-------------------------|-----|
| (yes/no)                |     |

## Degradation in water / sediment

| Parent                     | Distribu             | Distribution (max in water 96.6-97.9 % after 0 d. Max. sed 34.6-51.5 % after 6-13 d) |       |                                               |                       |                                             |                       |                                               |                       |                       |
|----------------------------|----------------------|--------------------------------------------------------------------------------------|-------|-----------------------------------------------|-----------------------|---------------------------------------------|-----------------------|-----------------------------------------------|-----------------------|-----------------------|
| Water / sediment<br>system | pH<br>water<br>phase | pH<br>sed<br>(KCl                                                                    | t. °C | DT <sub>50</sub> -DT <sub>90</sub> whole sys. | St. (r <sup>2</sup> ) | DissT <sub>50</sub> -DT <sub>90</sub> water | St. (r <sup>2</sup> ) | DT <sub>50</sub> -<br>DT <sub>90</sub><br>sed | St. (r <sup>2</sup> ) | Method of calculation |
| Sandy clay loam            | 7.6                  | 7.5                                                                                  | 20±2  | 17.1                                          | 0.95                  | 2.4                                         | 0.99                  | -                                             | -                     | Non linear<br>SFO     |
| Clay loam                  | 7.7                  | 7.4                                                                                  | 20±2  | 8.6                                           | 0.97                  | 4.1                                         | 1.00                  | -                                             | -                     | Non linear<br>SFO     |
| Geometric mean             |                      |                                                                                      |       | 12.1                                          |                       | 3.1                                         |                       | -                                             |                       | Non linear<br>SFO     |



## PEC (surface water) and PEC sediment (Annex IIIA, point 9.2.3)

Parent

Parameters used in FOCUSsw step 1 and 2

Version control no. of FOCUS calculator: 1.1

Molecular weight (g/mol): 225.26

Water solubility (mg/L): 64.5

 $K_{OC}$  (L/kg): 896 (mean value obtained on 4 soils)

1/n: 0.79

DT<sub>50</sub> soil (d): 1.1 days (Lab geometric mean SFO)

DT<sub>50</sub> water/sediment system (d): 17.1

DT<sub>50</sub> water (d): 17.1 DT<sub>50</sub> sediment (d): 17.1

Crop interception (%): Maize, minimal crop cover;

Apples, full canopy

Parameters used in FOCUSsw step 3 (if performed)

Vapour pressure (Pa): 6 x 10<sup>-7</sup>

DT50 sediment: 1000 d (FOCUS default)

Application rate

Crop: Maize and apples

Crop interception: calculated by the model

Number of applications: 1

Interval (d): -

Application rate(s): 18 g as/ha for maize, 150 g as/ha for

apples

Application window (for Step 3):

- Maize: March-May for southern Europe, June

September for northern Europe

- Apples: 1 May – 31 May for northern Europe and 1

April – 1 May for southern Europe

| FOCUS    | Day after |        | Ma       | aize           |         | Apples       |         |                |          |
|----------|-----------|--------|----------|----------------|---------|--------------|---------|----------------|----------|
| STEP 1   | overall   | PECsw  | ′ (μg/l) | PECsed (μg/kg) |         | PECsw (µg/l) |         | PECsed (µg/kg) |          |
| Scenario | maximum   | Actual | TWA      | Actual         | TWA     | Actual       | TWA     | Actual         | TWA      |
|          | 0         | 2.8994 | -        | 24.4957        | -       | 30.6450      | -       | 204.1312       | -        |
|          | 1         | 2.6977 | 2.7986   | 24.1717        | 24.3337 | 25.3177      | 27.9814 | 226.8467       | 215.4890 |
|          | 2         | 2.5906 | 2.7212   | 23.2115        | 24.0110 | 24.3120      | 26.3964 | 217.8354       | 218.8998 |
|          | 4         | 2.3888 | 2.6048   | 21.4040        | 23.1533 | 22.4188      | 24.8745 | 200.8724       | 214.0696 |
|          | 7         | 2.1153 | 2.4524   | 18.9532        | 21.8677 | 19.8518      | 23.2608 | 177.8722       | 203.3851 |
|          | 14        | 1.5927 | 2.1471   | 14.2710        | 19.1846 | 14.9476      | 20.2724 | 133.9305       | 179.1244 |
|          | 21        | 1.1993 | 1.8936   | 10.7454        | 16.9314 | 11.2549      | 17.8529 | 100.8441       | 158.2849 |
|          | 28        | 0.9030 | 1.6812   | 8.0909         | 15.0374 | 8.4745       | 15.8395 | 75.9315        | 140.6636 |
|          | 42        | 0.5120 | 1.3505   | 4.5871         | 12.0830 | 4.8046       | 12.7153 | 43.0492        | 113.0903 |
|          | 50        | 0.3702 | 1.2044   | 3.3167         | 10.7765 | 3.4740       | 11.3374 | 31.1266        | 100.8784 |
|          | 100       | 0.0488 | 0.6815   | 0.4370         | 6.0987  | 0.4577       | 6.4128  | 4.1014         | 57.1064  |



| FOCUS    | Day after |        | Maize  |        |         |        | Ap     | ples    |         |
|----------|-----------|--------|--------|--------|---------|--------|--------|---------|---------|
| STEP 2   | overall   | PECsw  |        | PECsed | (µg/kg) | PECsw  |        | PECsed  | (µg/kg) |
| Scenario | maximum   | Actual | TWA    | Actual | TWA     | Actual | TWA    | Actual  | TWA     |
| Northern | 0         | 0.1655 |        | 0.9302 |         | 7.8625 |        | 29.3634 |         |
| EU       | 1         | 0.1013 | 0.1334 | 0.8932 | 0.9117  | 4.8102 | 6.3364 | 28.1970 | 28.7802 |
|          | 2         | 0.0872 | 0.1138 | 0.8577 | 0.8936  | 4.1417 | 5.4062 | 27.0769 | 28.2086 |
|          | 4         | 0.1224 | 0.1036 | 0.7909 | 0.8588  | 4.0912 | 4.7057 | 24.9684 | 27.1103 |
|          | 7         | 0.0957 | 0.1039 | 0.7004 | 0.8100  | 3.0220 | 4.1148 | 22.1095 | 25.5687 |
|          | 14        | 0.0721 | 0.0936 | 0.5274 | 0.7099  | 2.2754 | 3.3731 | 16.6475 | 22.4104 |
|          | 21        | 0.0543 | 0.0833 | 0.3971 | 0.6263  | 1.7133 | 2.9092 | 12.5349 | 19.7723 |
|          | 28        | 0.0409 | 0.0743 | 0.2990 | 0.5562  | 1.2900 | 2.5549 | 9.4383  | 17.5580 |
|          | 42        | 0.0232 | 0.0599 | 0.1695 | 0.4469  | 0.7314 | 2.0314 | 5.3510  | 14.1064 |
|          | 50        | 0.0168 | 0.0535 | 0.1226 | 0.3985  | 0.5288 | 1.8064 | 3.8690  | 12.5807 |
|          | 100       | 0.0022 | 0.0303 | 0.0161 | 0.2255  | 0.0697 | 1.0165 | 0.5098  | 7.1192  |
| Southern | 0         | 0.1664 |        | 1.3085 |         | 7.8625 | -      | 27.6295 |         |
| EU       | 1         | 0.1460 | 0.1562 | 1.2565 | 1.2825  | 4.8102 | 6.3364 | 26.5319 | 27.0807 |
|          | 2         | 0.1402 | 0.1497 | 1.2066 | 1.2570  | 4.1417 | 5.4062 | 25.4779 | 26.5428 |
|          | 4         | 0.1293 | 0.1422 | 1.1126 | 1.2081  | 3.8897 | 4.6805 | 23.4940 | 25.5094 |
|          | 7         | 0.1145 | 0.1334 | 0.9852 | 1.1394  | 2.8435 | 4.0191 | 20.8039 | 24.0588 |
|          | 14        | 0.0862 | 0.1166 | 0.7418 | 0.9987  | 2.1411 | 3.2476 | 15.6645 | 21.0870 |
|          | 21        | 0.0649 | 0.1027 | 0.5586 | 0.8811  | 1.6121 | 2.7865 | 11.7947 | 18.6047 |
|          | 28        | 0.0489 | 0.0912 | 0.4206 | 0.7824  | 1.2139 | 2.4408 | 8.8809  | 16.5211 |
|          | 42        | 0.0277 | 0.0732 | 0.2385 | 0.6286  | 0.6882 | 1.9360 | 5.0350  | 13.2734 |
|          | 50        | 0.0200 | 0.0653 | 0.1724 | 0.5606  | 0.4976 | 1.7203 | 3.6406  | 11.8378 |
|          | 100       | 0.0026 | 0.0369 | 0.0227 | 0.3172  | 0.0656 | 0.9668 | 0.4797  | 6.6988  |

## **FOCUS Step 3 and Step 4 Apples**

| Crop  | Water-body | Application | Application Initial PECsw (µg/l) |                           |        | sed (µg/kg)               |
|-------|------------|-------------|----------------------------------|---------------------------|--------|---------------------------|
|       |            | dates       | Step 3                           | Step 4:<br>10 m<br>Buffer | Step 3 | Step 4:<br>10 m<br>Buffer |
| Apple | D3 Ditch   | 4 May       | 5.486                            | 1.653                     | 3.647  | 1.150                     |
|       | D4 Pond    | 30 May      | 0.246                            | -                         | 1.161  | -                         |
|       | D4 Stream  | 30 May      | 5.309                            | 1.851                     | 0.466  | 0.163                     |
|       | D5 Pond    | 8 April     | 0.246                            | -                         | 1.282  | -                         |
|       | D5 Stream  | 8 April     | 5.022                            | 1.751                     | 0.134  | 0.047                     |
|       | R1 pond    | 2 May       | 0.246                            | -                         | 1.187  | -                         |
|       | R1 stream  | 2 May       | 4.144                            | 1.445                     | 0.410  | 0.144                     |
|       | R2 stream  | 22 April    | 5.561                            | 1.939                     | 0.352  | 0.123                     |
|       | R3 stream  | 4 April     | 5.930                            | 2.068                     | 1.361  | 0.481                     |
|       | R4 stream  | 15 April    | 4.215                            | 1.470                     | 0.627  | 0.220                     |

#### PEC (ground water) (Annex IIIA, point 9.2.1)

PECgw was originally calculated (RMS France) based on a worst case Koc  $20 \, \text{L/kg}$ ,  $1/n \, 0.9$ . A new adsorption/desorption study has been provided (Kfoc  $896 \, \text{L/kg}$ ,  $1/n \, 0.79$ ). However since acceptable concentrations in groundwater were originally achieved using a worst case default Koc, further groundwater calculations were not considered necessary and not performed by the Notifer.



Application rate

Method of calculation and type of study (*e.g.* modelling, field leaching, lysimeter )

For FOCUS gw modelling, values used -

Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.

Model(s) used: PELMO 3.3.2

Scenarios (list of names): Châteaudun, Hamburg, Jokioinen, Kremsmünster, Okehampton, Piacenza, Porto, Sevilla, Thiva

Crop: Maize and apples

Geometric mean parent DT50lab 1.1 d (normalisation to pF2, 20 °C with Q10 of 2.2).

 $K_{OC}$ : 20 ml/g (worst case default),  $^{1}/_{n}$ = 0.9.

Application rate: 13.5 g/ha for maize (25% interception), 30 g/ha for apples (80% interception).

No. of applications: 1

Time of application (month or season):

- maize: 30 days after emergence

- apples: 4 months after emergence

PEC(gw) - FOCUS modelling results (80<sup>th</sup> percentile annual average concentration at 1m)

| Mc          | Scenario     | Parent  | Metabolite (μg/L) |   |   |  |  |
|-------------|--------------|---------|-------------------|---|---|--|--|
| del/        |              | (µg/L)  | 1                 | 2 | 3 |  |  |
| Model /Crop | Chateaudun   | <0.001  | -                 | - | - |  |  |
|             | Hamburg      | <0.001  | -                 | - | - |  |  |
|             | Jokioinen    | < 0.001 | -                 | - | - |  |  |
|             | Kremsmunster | <0.001  | -                 | - | - |  |  |
|             | Okehampton   | <0.001  | -                 | - | - |  |  |
|             | Piacenza     | < 0.001 | -                 | - | - |  |  |
|             | Porto        | <0.001  | -                 | - | - |  |  |
|             | Sevilla      | <0.001  | -                 | - | - |  |  |
|             | Thiva        | < 0.001 | -                 | - | - |  |  |

#### Fate and behaviour in air (Annex IIA, point 7.2.2, Annex III, point 9.3)

| Direct photolysis in air ‡                   | No data, not required                                                                                        |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Quantum yield of direct phototransformation  | No data. Not required.                                                                                       |
| Photochemical oxidative degradation in air ‡ | $DT_{50}$ of 28 minutes derived by the Atkinson model. OH concentration assumed = 1.5 $10^6$ cm <sup>3</sup> |
| Volatilisation ‡                             | No data, not required                                                                                        |
|                                              |                                                                                                              |
| Metabolites                                  | -                                                                                                            |



| - | _   | $\sim$ | /  | •  |   |
|---|-----|--------|----|----|---|
| и | H.C | ٠,     | เล | 11 | r |

| Method of calculation | Based on the vapour pressure < 6 10 <sup>-7</sup> Pa at 25°C and the DT50 of 28 minutes (Atkinson), 6-BA is not expected to partition to air. |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                       | PEC not required.                                                                                                                             |
|                       |                                                                                                                                               |
| $PEC_{(a)}$           |                                                                                                                                               |
| Maximum concentration | -                                                                                                                                             |
|                       |                                                                                                                                               |

#### Residues requiring further assessment

Environmental occurring metabolite requiring further assessment by other disciplines (toxicology and ecotoxicology). Soil: 6-benzyladenine
Surface Water: 6-benzyladenine
Sediment: 6-benzyladenine
Ground water: 6-benzyladenine

Air: 6-benzyladenine

#### Monitoring data, if available (Annex IIA, point 7.4)

| Soil (indicate location and type of study)          | No data, not required |
|-----------------------------------------------------|-----------------------|
| Surface water (indicate location and type of study) | No data, not required |
| Ground water (indicate location and type of study)  | No data, not required |
| Air (indicate location and type of study)           | No data, not required |

Points pertinent to the classification and proposed labelling with regard to fate and behaviour data



#### Effects on terrestrial vertebrates (Annex IIA, point 8.1, Annex IIIA, points 10.1 and 10.3)

| Species                   | Test substance   | Time scale | End point<br>(mg/kg<br>bw/day) | End point (mg/kg feed) |
|---------------------------|------------------|------------|--------------------------------|------------------------|
| Birds ‡                   |                  |            |                                |                        |
| Bobwhite quail.           | 6-benzyladenine  | Acute      | 1 599                          |                        |
|                           | Preparation      | Acute      | No data<br>required            |                        |
|                           | Metabolite       | Acute      | No metabolite                  |                        |
|                           | 6-benzyladenine  | Short-term | > 2875                         | > 5620                 |
|                           | 6-benzyladenine. | Long-term  | 41.3                           | 500                    |
| Mammals ‡                 |                  |            |                                |                        |
| Rat.                      | 6-benzyladenine  | Acute      | 1584                           |                        |
|                           | MAXCEL           | Acute      | > 5000 mg<br>prep./kg bw       |                        |
|                           | Metabolite       | Acute      | No metabolite                  |                        |
|                           | 6-benzyladenine  | Long-term  | 30                             | 400                    |
| Additional higher tier st | udies ‡          | <u>.</u>   | •                              |                        |
| No data required          |                  |            |                                |                        |

#### Toxicity/exposure ratios for terrestrial vertebrates (Annex IIIA, points 10.1 and 10.3)

Maize (18 g a.s./ha)

| Indicator species/Category   | Time scale | ETE   | TER    | Annex VI Trigger |
|------------------------------|------------|-------|--------|------------------|
| Tier 1 (Herbivorous bird)    |            | ·     |        |                  |
|                              | Acute      | 1.19  | 1344   | 10               |
|                              | Short-term | 0.55  | > 5254 | 10               |
|                              | Long-term  | 0.29  | 142    | 5                |
| Tier 1 (Insectivorous bird)  |            |       |        |                  |
|                              | Acute      | 0.97  | 1643   | 10               |
|                              | Short-term | 0.54  | > 5296 | 10               |
|                              | Long-term  | 0.54  | 76.5   | 5                |
| Tier 1 (Medium herbivorous n | nammal)    |       |        |                  |
|                              | Acute      | 0.438 | 3616   | 10               |
|                              | Long-term  | 0.107 | 280    | 5                |
| Higher tier refinement       | •          | ·     |        |                  |
| No refinements necessary     |            |       |        |                  |



Apple orchard (150 g a.s./ha)

| Indicator species/Category     | Time scale | ETE  | TER   | Annex VI Trigger |  |
|--------------------------------|------------|------|-------|------------------|--|
| Tier 1 (Insectivorous bird)    |            |      |       |                  |  |
|                                | Acute      | 8.11 | 197   | 10               |  |
|                                | Short-term | 4.52 | > 636 | 10               |  |
|                                | Long-term  | 4.52 | 9.14  | 5                |  |
| Tier 1 (Small herbivorous mami | nal)       |      |       |                  |  |
|                                | Acute      | 17.7 | 89.5  | 10               |  |
|                                | Long-term  | 5.08 | 5.91  | 5                |  |
| Higher tier refinement         |            |      |       |                  |  |
| No refinements necessary       |            |      |       |                  |  |

No risk to terrestrial vertebrates was identified from other routes of exposure, such as consumption of contaminated drinking water (lowest acute TER for birds = 193 from apple use).

### Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA, point 10.2)

| Group                                                                     | Test substance       | Time-scale (Test type)  | End point                                        | Toxicity (mg/L)                              |  |  |
|---------------------------------------------------------------------------|----------------------|-------------------------|--------------------------------------------------|----------------------------------------------|--|--|
| Laboratory tests ‡                                                        |                      | 1                       |                                                  |                                              |  |  |
| Fish                                                                      |                      |                         |                                                  |                                              |  |  |
| Brachydanio rerio                                                         | 6-benzyladenine      | 96 hr (semi-<br>static) | Mortality, LC <sub>50</sub>                      | 32-56 (nom)                                  |  |  |
| Oncorhynchus mykiss                                                       | MAXCEL               | 96 hr (static)          | Mortality, LC <sub>50</sub>                      | 28 mg form.n/L<br>(≡ 0.53 mg a.s./L)<br>(mm) |  |  |
| Aquatic invertebrate                                                      | Aquatic invertebrate |                         |                                                  |                                              |  |  |
| Daphnia magna                                                             | 6-benzyladenine      | 48 h (semi-<br>static)  | Mortality, EC <sub>50</sub>                      | 13.4-22.1 (mm)                               |  |  |
|                                                                           | 6-benzyladenine      | 21 d (static)           | Reproduction, NOEC                               | 4.0 (mm)                                     |  |  |
|                                                                           | MAXCEL               | 48 h (semi-<br>static)  | Mortality, EC <sub>50</sub>                      | 17 mg form.n/L<br>(≡ 0.32 mg a.s./L)<br>(mm) |  |  |
| Sediment dwelling orga                                                    | anisms               |                         |                                                  |                                              |  |  |
| Chironomus riparius.                                                      | 6-benzyladenine      | 28 d (static)           | NOEC, Emergence                                  | 4.52 (mm, water phase)                       |  |  |
| Algae                                                                     |                      |                         |                                                  |                                              |  |  |
| Pseudokirchneriella<br>subcapitata (syn.<br>Selenastrum<br>capricornutum) | 6-benzyladenine      | 72 h (static)           | Biomass: $E_bC_{50}$<br>Growth rate: $E_rC_{50}$ | 36 (nom)<br>45.1 (nom)                       |  |  |
| Navicula pelliculosa                                                      | 6-benzyladenine      | 72 h (static)           | Biomass: $E_bC_{50}$<br>Growth rate: $E_rC_{50}$ | 7.6 (nom)<br>15 (nom)                        |  |  |



| Group                                                   | Test substance  | Time-scale<br>(Test type) | End point                                   | Toxicity (mg/L)                        |
|---------------------------------------------------------|-----------------|---------------------------|---------------------------------------------|----------------------------------------|
| Pseudokirchneriella<br>subcapitata (syn.<br>Selenastrum | MAXCEL          | 72 h (static)             | Biomass: E <sub>b</sub> C <sub>50</sub>     | 9.32 mg form.n/L<br>(≡ 0.18 mg a.s./L) |
| capricornutum)                                          |                 |                           | Growth rate: E <sub>r</sub> C <sub>50</sub> | 9.76 mg form.n/L                       |
|                                                         |                 |                           |                                             | $(\equiv 0.19 \text{ mg a.s./L})$      |
|                                                         |                 |                           |                                             | (nom)                                  |
| Higher plant                                            |                 |                           |                                             |                                        |
| Lemna gibba                                             | 6-benzyladenine | 7 d (static)              | Fronds, EC <sub>50</sub>                    | 0.31 (mm)                              |
| Lemna gibba <sup>1</sup>                                | MAXCEL          | 7 d (static)              | Fronds, EC                                  | ca 30 mg form/L (0.57 mg a.s./L)       |
| Microcosm or mesocos                                    | m tests         |                           |                                             |                                        |
| Not required                                            |                 |                           |                                             |                                        |

<sup>&</sup>lt;sup>1</sup> Non-GLP study but endpoint included for comparison with that for technical a.s. (which is used for risk assessment)

# Toxicity/exposure ratios for the most sensitive aquatic organisms (Annex IIIA, point 10.2) FOCUS Step 2

Maize (18 g a.s./ha) N & S EU

| Test substance  | Organism                        | Toxicity<br>end point<br>(µg a.s./L) | Time scale | Maximum<br>PEC <sub>i</sub><br>(μg a.s./L) | TER   | Annex VI<br>Trigger |
|-----------------|---------------------------------|--------------------------------------|------------|--------------------------------------------|-------|---------------------|
| 6-benzyladenine | Fish                            | 530 <sup>1</sup>                     | Acute      | 0.1664                                     | 3185  | 100                 |
| 6-benzyladenine | Aquatic invertebrates           | 320 <sup>1</sup>                     | Acute      | 0.1664                                     | 1923  | 100                 |
| 6-benzyladenine | Aquatic invertebrates           | 4000                                 | Chronic    | 0.1664                                     | 24038 | 100                 |
| 6-benzyladenine | Sediment-dwelling invertebrates | 4520 <sup>2</sup>                    | Chronic    | 0.1664                                     | 27163 | 100                 |
| 6-benzyladenine | Algae                           | 180 <sup>1</sup>                     | Short-term | 0.1664                                     | 1082  | 10                  |
| 6-benzyladenine | Higher plants                   | 310                                  | Short-term | 0.1664                                     | 1863  | 10                  |

<sup>&</sup>lt;sup>1</sup> Active substance endpoints derived from studies on the 'MaxCel' formulation.

Apple orchards (150 g a.s./ha) N & S EU

| Test substance  | Organism                        | Toxicity<br>end point<br>(µg a.s./L) | Time scale | Maximum<br>PEC <sub>i</sub><br>(μg a.s./L) | TER  | Annex VI<br>Trigger |
|-----------------|---------------------------------|--------------------------------------|------------|--------------------------------------------|------|---------------------|
| 6-benzyladenine | Fish                            | 530 <sup>1</sup>                     | Acute      | 7.8625                                     | 67.4 | 100                 |
| 6-benzyladenine | Aquatic invertebrates           | 320 <sup>1</sup>                     | Acute      | 7.8625                                     | 40.7 | 100                 |
| 6-benzyladenine | Aquatic invertebrates           | 4000                                 | Chronic    | 7.8625                                     | 509  | 100                 |
| 6-benzyladenine | Sediment-dwelling invertebrates | 4520                                 | Chronic    | 7.8625                                     | 575  | 100                 |

<sup>&</sup>lt;sup>2</sup> Sediment-dweller endpoint based on exposure through water phase therefore compared with PEC<sub>sw</sub>.



| Test substance  | Organism      | Toxicity<br>end point<br>(µg a.s./L) | Time scale | Maximum<br>PEC <sub>i</sub><br>(μg a.s./L) | TER  | Annex VI<br>Trigger |
|-----------------|---------------|--------------------------------------|------------|--------------------------------------------|------|---------------------|
| 6-benzyladenine | Algae         | 180 <sup>1</sup>                     | Short-term | 7.8625                                     | 22.9 | 10                  |
| 6-benzyladenine | Higher plants | 310                                  | Short-term | 7.8625                                     | 39.4 | 10                  |

Active substance endpoints derived from studies on the 'MaxCel' formulation.

#### **FOCUS Step 3**

Apple orchards (150 g a.s./ha)

| Test substance  | Organism      | Toxicity<br>end point<br>(µg a.s./L) | Time<br>scale | Scenario<br>& water<br>body | Maximum<br>PEC <sub>i</sub><br>(µg a.s./L) | TER  | Annex VI<br>Trigger |
|-----------------|---------------|--------------------------------------|---------------|-----------------------------|--------------------------------------------|------|---------------------|
| 6-benzyladenine | Fish          | 530 <sup>1</sup>                     | Acute         | D3 ditch                    | 5.486                                      | 96.6 | 100                 |
|                 |               |                                      |               | D4 pond                     | 0.246                                      | 2154 |                     |
|                 |               |                                      |               | D4 stream                   | 5.309                                      | 99.8 |                     |
|                 |               |                                      |               | D5 pond                     | 0.246                                      | 2154 |                     |
|                 |               |                                      |               | D5 stream                   | 5.022                                      | 106  |                     |
|                 |               |                                      |               | R1 pond                     | 0.246                                      | 2154 |                     |
|                 |               |                                      | R1 stream     | 4.144                       | 128                                        |      |                     |
|                 |               |                                      |               | R2 stream                   | 5.561                                      | 95.3 |                     |
|                 |               |                                      |               | R3 stream                   | 5.930                                      | 89.4 |                     |
|                 |               |                                      |               | R4 stream                   | 4.215                                      | 126  |                     |
| 6-benzyladenine | Aquatic       | 320 <sup>1</sup>                     | Acute         | D3 ditch                    | 5.486                                      | 58.3 | 100                 |
|                 | invertebrates |                                      |               | D4 pond                     | 0.246                                      | 1301 | ]                   |
|                 |               |                                      |               | D4 stream                   | 5.309                                      | 60.3 |                     |
|                 |               |                                      |               | D5 pond                     | 0.246                                      | 1301 |                     |
|                 |               |                                      |               | D5 stream                   | 5.022                                      | 63.7 |                     |
|                 |               |                                      |               | R1 pond                     | 0.246                                      | 1301 |                     |
|                 |               |                                      |               | R1 stream                   | 4.144                                      | 77.2 |                     |
|                 |               |                                      |               | R2 stream                   | 5.561                                      | 57.5 |                     |
|                 |               |                                      |               | R3 stream                   | 5.930                                      | 54   |                     |
|                 |               |                                      |               | R4 stream                   | 4.215                                      | 75.9 |                     |

<sup>&</sup>lt;sup>1</sup> Active substance endpoints derived from studies on the 'MaxCel' formulation.

#### **FOCUS Step 4**

Apple orchards (150 g a.s./ha) with 10 m buffer zone

| Tipple ofendeds (150 g dissina) with 10 in outlet zone |          |                                      |               |                             |                                            |     |                     |
|--------------------------------------------------------|----------|--------------------------------------|---------------|-----------------------------|--------------------------------------------|-----|---------------------|
| Test substance                                         | Organism | Toxicity<br>end point<br>(µg a.s./L) | Time<br>scale | Scenario<br>& water<br>body | Maximum<br>PEC <sub>i</sub><br>(µg a.s./L) | TER | Annex VI<br>Trigger |
| 6-benzyladenine                                        | Fish     | 530 <sup>1</sup>                     | Acute         | D3 ditch                    | 1.653                                      | 321 | 100                 |
|                                                        |          |                                      |               | D4 stream                   | 1.851                                      | 286 |                     |

<sup>&</sup>lt;sup>2</sup> Sediment-dweller endpoint based on exposure through water phase therefore compared with PEC<sub>sw</sub>.



| Test substance  | Organism      | Toxicity<br>end point<br>(µg a.s./L) | Time<br>scale | Scenario<br>& water<br>body | Maximum<br>PEC <sub>i</sub><br>(μg a.s./L) | TER | Annex VI<br>Trigger |
|-----------------|---------------|--------------------------------------|---------------|-----------------------------|--------------------------------------------|-----|---------------------|
|                 |               |                                      |               | R2 stream                   | 1.939                                      | 273 |                     |
|                 |               |                                      |               | R3 stream                   | 2.068                                      | 256 |                     |
| 6-benzyladenine | Aquatic       | 320 <sup>1</sup>                     | Acute         | D3 ditch                    | 1.653                                      | 194 | 100                 |
|                 | invertebrates | brates                               |               | D4 stream                   | 1.851                                      | 173 |                     |
|                 |               |                                      |               | D5 stream                   | 1.751                                      | 183 |                     |
|                 |               |                                      |               | R1 stream                   | 1.445                                      | 221 |                     |
|                 |               |                                      |               | R2 stream                   | 1.939                                      | 165 |                     |
|                 |               |                                      |               | R3 stream                   | 2.068                                      | 155 |                     |
|                 |               |                                      |               | R4 stream                   | 1.470                                      | 218 |                     |

<sup>&</sup>lt;sup>1</sup> Active substance endpoints derived from studies on the 'MaxCel' formulation.

| Bioconcentration                             |                  |                         |             |             |  |
|----------------------------------------------|------------------|-------------------------|-------------|-------------|--|
|                                              | Active substance | Metabolite1             | Metabolite2 | Metabolite3 |  |
| $log P_{O/W}$                                | 2.16             | No relevant metabolites |             |             |  |
| Bioconcentration factor (BCF) <sup>1</sup> ‡ | -                |                         |             |             |  |

<sup>&</sup>lt;sup>1</sup> only required if  $\log P_{O/W} > 3$ .

### Effects on honeybees (Annex IIA, point 8.3.1, Annex IIIA, point 10.4)

| Test substance            | Acute oral toxicity (LD <sub>50</sub> μg a.s./bee) | Acute contact toxicity (LD <sub>50</sub> μg a.s./bee) |
|---------------------------|----------------------------------------------------|-------------------------------------------------------|
| 6-benzyladenine ‡         | > 58.73                                            | > 100                                                 |
| MAXCEL                    | > 7.31                                             | > 7.31                                                |
| Field or semi-field tests |                                                    |                                                       |
| Not required              |                                                    |                                                       |

<sup>&</sup>lt;sup>1</sup> Formulation endpoints are expressed in terms of µg a.s./bee

#### Hazard quotients for honey bees (Annex IIIA, point 10.4)

Maize use: 18 g a.s./ha; apple orchard use: 150 g a.s/ha

| Test substance  | Route   | Maize           | Apples          | Annex VI |
|-----------------|---------|-----------------|-----------------|----------|
|                 |         | Hazard quotient | Hazard quotient | Trigger  |
| 6-benzyladenine | Contact | < 0.18          | < 1.50          | 50       |
|                 | oral    | < 0.31          | < 2.55          | 50       |
| MAXCEL          | Contact | < 2.47          | < 20.5          | 50       |
|                 | oral    | < 2.47          | < 20.5          | 50       |

#### Effects on other arthropod species (Annex IIA, point 8.3.2, Annex IIIA, point 10.5)

Laboratory tests



| Species               | Test<br>Substance | End point | Effect (LR <sub>50</sub> : g a.s./ha <sup>1</sup> ) |
|-----------------------|-------------------|-----------|-----------------------------------------------------|
| Typhlodromus pyri‡    |                   |           |                                                     |
|                       | MAXCEL            | Mortality | > 80                                                |
| Aphidius rhopalosiphi |                   |           |                                                     |
| ‡                     | MAXCEL            | Mortality | 36.2                                                |
| Chrysoperla carnea    | MAXCEL            | Mortality | > 80                                                |

<sup>&</sup>lt;sup>1</sup> Formulation endpoints are expressed in terms of g a.s./ha

#### Maize (18 g a.s./ha)

| Test<br>substance | Species               | Effect LR <sub>50</sub> (g a.s./ha) | HQ in-field | HQ off-field <sup>1</sup> | Trigger |
|-------------------|-----------------------|-------------------------------------|-------------|---------------------------|---------|
| MAXCEL            | Typhlodromus pyri     | > 80                                | < 0.23      | < 0.0062                  | 2       |
| MAXCEL            | Aphidius rhopalosiphi | 36.2                                | 0.5         | 0.014                     | 2       |

<sup>&</sup>lt;sup>1</sup> Initial distance of 1 m used to calculate the off-field drift rate

#### Apple orchard (150 g a.s./ha)

| Test<br>substance | Species               | Effect (LR <sub>50</sub> g/ha) | HQ in-field              | HQ off-field <sup>1</sup> | Trigger |
|-------------------|-----------------------|--------------------------------|--------------------------|---------------------------|---------|
| MAXCEL            | Typhlodromus pyri     | > 80                           | < 1.88                   | < 0.29                    | 2       |
| MAXCEL            | Aphidius rhopalosiphi | 36.2                           | <b>4.14</b> <sup>2</sup> | 0.65                      | 2       |

<sup>&</sup>lt;sup>1</sup> Initial distance of 3 m used to calculate the off-field drift rate

<sup>&</sup>lt;sup>2</sup> Reduced to 3.3 based on 80% deposition at late growth stage. This HQ considered acceptable based on case relating to toxicological effects of 6-BA, its single application and short foliar half life and likelihood of recovery within 1 year (see DAR Vol.3, B.9.5.3.4).

| Extended laboratory studies, semi-field or field tests |
|--------------------------------------------------------|
| Not required                                           |

## $Effects \ on \ earthworms, other \ soil \ macro-organisms \ and \ soil \ micro-organisms \ (Annex \ IIA \ points \ 8.4 \ and \ 8.5. \ Annex \ IIIA, \ points, \ 10.6 \ and \ 10.7)$

| Test organism                                                                | Test substance    | Time scale       | End point                                           |  |  |
|------------------------------------------------------------------------------|-------------------|------------------|-----------------------------------------------------|--|--|
| Earthworms                                                                   |                   |                  |                                                     |  |  |
| Eisenia fetida                                                               | 6-benzyladenine ‡ | Acute 14 days    | $LC_{50corr}^{1} > 500 \text{ mg a.s./kg d.w.soil}$ |  |  |
|                                                                              | 6-benzyladenine ‡ | Chronic 8 weeks  | Not required                                        |  |  |
|                                                                              | Preparation       | Acute or chronic | Not required                                        |  |  |
|                                                                              | Metabolite        | Acute or chronic | No relevant soil metabolite                         |  |  |
| Other soil macro-organisms                                                   |                   |                  |                                                     |  |  |
| Not required (1 application p.a., DT <sub>90lab</sub> in soil: 3.3 - 4 days) |                   |                  |                                                     |  |  |



| Test organism           | Test substance                         | Time scale                  | End point                                                                                                                                   |  |  |
|-------------------------|----------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Soil micro-organisms    |                                        | ·                           |                                                                                                                                             |  |  |
| Nitrogen mineralisation | 6-benzyladenine ‡                      | 28 days                     | 2.93% effect at day-28 at 0.2 mg<br>a.s./kg dw soil<br>1.1% effect at day-28 at 1.0 mg<br>a.s./kg dw soil<br>(both <25% Annex VI trigger)   |  |  |
|                         | Metabolite                             | No relevant soil metabolite |                                                                                                                                             |  |  |
| Carbon mineralisation   | 6-benzyladenine ‡                      | 28 days                     | -2.4% effect at day-28 at 0.2 mg<br>a.s./kg dw soil<br>-19.9% effect at day-28 at 1.0 mg<br>a.s./kg dw soil<br>(both <25% Annex VI trigger) |  |  |
|                         | Metabolite No relevant soil metabolite |                             |                                                                                                                                             |  |  |
| Field studies           | •                                      | ·                           |                                                                                                                                             |  |  |
| Not required            |                                        |                             |                                                                                                                                             |  |  |

<sup>&</sup>lt;sup>1</sup>End point has been corrected due to log Pow >2.0.

#### Toxicity/exposure ratios for soil organisms

Maize (18 g a.s./ha)

| Test organism              | Test substance    | Time scale | Soil PEC (max. initial) | TER      | Trigger |
|----------------------------|-------------------|------------|-------------------------|----------|---------|
| Earthworms                 |                   |            |                         |          |         |
| Eisenia fetida             | 6-benzyladenine ‡ | Acute      | 0.018                   | > 27 778 | 10      |
| Other soil macro-organisms |                   |            |                         |          |         |
| Not required               |                   |            |                         |          |         |

Apple orchard (150 g a.s./ha)

| Test organism              | Test substance    | Time scale | Soil PEC (max. initial) | TER      | Trigger |
|----------------------------|-------------------|------------|-------------------------|----------|---------|
| Earthworms                 | Earthworms        |            |                         |          |         |
| Eisenia fetida             | 6-benzyladenine ‡ | Acute      | 0.040                   | > 12 500 | 10      |
| Other soil macro-organisms |                   |            |                         |          |         |
| Not required               |                   |            |                         |          |         |

#### Effects on non target plants (Annex IIA, point 8.6, Annex IIIA, point 10.8)

Preliminary screening data

Not required for plant growth regulators as ER<sub>50</sub> tests should be provided

Laboratory dose/rate:response tests

| Test type | Test substance | Most sensitive | ER <sub>50</sub> and units (effect based | Exposure <sup>1</sup> (g/ha) <sup>2</sup> | TER | Trigger |
|-----------|----------------|----------------|------------------------------------------|-------------------------------------------|-----|---------|
|           |                | species        | on)                                      |                                           |     |         |



| Seedling<br>emergence | 6-<br>benzyladenine | Ryegrass | 1.27 mg a.s./kg<br>soil<br>(plant dry<br>weight) | 0.031 mg<br>a.s./kg soil <sup>2</sup> | 41.0 | 5 |
|-----------------------|---------------------|----------|--------------------------------------------------|---------------------------------------|------|---|
| Vegetative<br>vigour  | MAXCEL              | Tomato   | 187 g a.s./ha <sup>1</sup> (plant dry weight)    | 23.6 g a.s./ha <sup>3</sup>           | 7.92 | 5 |
| No data               |                     |          |                                                  |                                       |      |   |

<sup>&</sup>lt;sup>1</sup> Formulation endpoint is expressed in terms of g a.s./ha.

| Additional st | tudies (e.g. | semi-field  | or field | studies' |
|---------------|--------------|-------------|----------|----------|
| riadinonai si | iuuics (c.g. | belli licia | or ricia | btuares, |

No data required.

#### Effects on biological methods for sewage treatment (Annex IIA 8.7)

| Test type/organism    | end point        |  |
|-----------------------|------------------|--|
| Activated sludge test | > 1000 mg a.s./L |  |
| Pseudomonas sp.       | No data required |  |

**Ecotoxicologically relevant compounds** (consider parent and all relevant metabolites requiring further assessment from the fate section)

| Compartment |                          |
|-------------|--------------------------|
| soil        | Parent (6-benzyladenine) |
| water       | Parent (6-benzyladenine) |
| sediment    | Parent (6-benzyladenine) |
| groundwater | Parent (6-benzyladenine) |

### Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

|                  | RMS/peer review proposal |
|------------------|--------------------------|
| Active substance | R 50                     |

<sup>&</sup>lt;sup>2</sup> Off-crop soil PEC, based on a maximum application rate of 150 g a.s./ha (to apples) and a default drift value at 3 m of 15.73%, for field crops (Ganzelmeier drift data) and assuming a soil depth of 5 cm and density of 1.5 g/cm<sup>3</sup>.

<sup>&</sup>lt;sup>3</sup> Based on the maximum proposed application rate of 150 g a.s./ha (to apples) and a default drift value at 3m of 15.73% (Ganzelmeier drift data) for late fruit crops.



#### APPENDIX B – USED COMPOUND CODE(S)

| Code/Trivial name* | Chemical name | Structural formula |
|--------------------|---------------|--------------------|
| -                  | Adenine       | NH <sub>2</sub>    |
|                    | Benzoic acid  | ОН                 |

<sup>\*</sup> The metabolite name in bold is the name used in the conclusion.



#### **ABBREVIATIONS**

1/n slope of Freundlich isotherm

ε decadic molar extinction coefficient

°C degree Celsius (centigrade)

μg microgram

μm micrometer (micron)
a.s. active substance
AChE acetylcholinesterase
ADE actual dermal exposure
ADI acceptable daily intake
AF assessment factor

AOEL acceptable operator exposure level

AP alkaline phosphatase
AR applied radioactivity
ARfD acute reference dose

AST aspartate aminotransferase (SGOT)

AV avoidance factor
BCF bioconcentration factor
BUN blood urea nitrogen
bw body weight

CAS Chemical Abstract Service
CFU colony forming units
ChE cholinesterase
CI confidence interval

CIPAC Collaborative International Pesticide Analytical Council Limited

CL confidence limits

d day

DAA days after application
DAR draft assessment report
DAT days after treatment

DM dry matter

DT<sub>50</sub> period required for 50 percent disappearance (define method of estimation) DT<sub>90</sub> period required for 90 percent disappearance (define method of estimation)

dw dry weight

EbC<sub>50</sub> effective concentration (biomass)

ECHA European Chemical Agency
EEC European Economic Community

EINECS European Inventory of Existing Commercial Chemical Substances

ELINCS European List of New Chemical Substances

 $\begin{array}{ll} EMDI & estimated \ maximum \ daily \ intake \\ ER_{50} & emergence \ rate/effective \ rate, \ median \\ ErC_{50} & effective \ concentration \ (growth \ rate) \end{array}$ 

EU European Union

EUROPOEM European Predictive Operator Exposure Model

f(twa) time weighted average factor

FAO Food and Agriculture Organisation of the United Nations

FIR Food intake rate

FOB functional observation battery

FOCUS Forum for the Co-ordination of Pesticide Fate Models and their Use

g gram

GAP good agricultural practice GC gas chromatography

GCPF Global Crop Protection Federation (formerly known as GIFAP)

GMgeometric mean GS growth stage **GSH** glutathion hour(s) h ha hectare haemoglobin Hb Hct haematocrit hectolitre hL

pressure **HPLC** high liquid chromatography

or high performance liquid chromatography

high pressure liquid chromatography – mass spectrometry **HPLC-MS** 

HO hazard quotient

**IEDI** international estimated daily intake international estimated short-term intake **IESTI** ISO International Organisation for Standardisation International Union of Pure and Applied Chemistry **IUPAC** 

Joint Meeting on the FAO Panel of Experts on Pesticide Residues in Food and **JMPR** 

the Environment and the WHO Expert Group on Pesticide Residues (Joint

Meeting on Pesticide Residues)

organic carbon linear adsorption coefficient  $K_{\text{doc}}$ 

kilogram kg

Freundlich organic carbon adsorption coefficient  $K_{Foc}$ 

L

liquid chromatography LC lethal concentration, median  $LC_{50}$ 

LC-MS liquid chromatography-mass spectrometry

LC-MS-MS liquid chromatography with tandem mass spectrometry

lethal dose, median; dosis letalis media  $LD_{50}$ 

LDH lactate dehydrogenase

lowest observable adverse effect level **LOAEL** 

LOD limit of detection

LOQ limit of quantification (determination)

metre m

mixing and loading M/Lmultiple application factor **MAF** mean corpuscular haemoglobin MCH

mean corpuscular haemoglobin concentration **MCHC** 

mean corpuscular volume **MCV** 

milligram mg millilitre mLmillimetre mm

maximum residue limit or level **MRL** 

mass spectrometry MS **MSDS** material safety data sheet **MTD** maximum tolerated dose

maximum water holding capacity **MWHC NESTI** national estimated short-term intake

nσ

**NOAEC** no observed adverse effect concentration

no observed adverse effect level **NOAEL NOEC** no observed effect concentration

**NOEL** no observed effect level OMorganic matter content

Pascal Pa

on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

18314732, 2010, 10, Downloaded from https:

onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1716 by University College London UCL Library Services, Wiley Online Library on [14/05/2025]. See the Terms



PD proportion of different food types
PEC predicted environmental concentration
PEC<sub>air</sub> predicted environmental concentration in air

 $\begin{array}{ll} PEC_{gw} & predicted \ environmental \ concentration \ in \ ground \ water \\ PEC_{sed} & predicted \ environmental \ concentration \ in \ sediment \\ PEC_{soil} & predicted \ environmental \ concentration \ in \ soil \end{array}$ 

PEC<sub>sw</sub> predicted environmental concentration in surface water

pH pH-value

PHED pesticide handler's exposure data

PHI pre-harvest interval

PIE potential inhalation exposure

pK<sub>a</sub> negative logarithm (to the base 10) of the dissociation constant

 $P_{ow}$  partition coefficient between n-octanol and water

PPE personal protective equipment

ppm parts per million (10<sup>-6</sup>) ppp plant protection product

PT proportion of diet obtained in the treated area

PTT partial thromboplastin time

QSAR quantitative structure-activity relationship

r<sup>2</sup> coefficient of determination RPE respiratory protective equipment

RUD residue per unit dose
SC suspension concentrate
SD standard deviation
SFO single first-order

SSD species sensitivity distribution STMR supervised trials median residue  $t_{1/2}$  half-life (define method of estimation)

TER toxicity exposure ratio

TER<sub>A</sub> toxicity exposure ratio for acute exposure

TER<sub>LT</sub> toxicity exposure ratio following chronic exposure TER<sub>ST</sub> toxicity exposure ratio following repeated exposure

TK technical concentrate TLV threshold limit value

TMDI theoretical maximum daily intake

TRR total radioactive residue

TSH thyroid stimulating hormone (thyrotropin)

TWA time weighted average UDS unscheduled DNA synthesis

UV ultraviolet
W/S water/sediment
w/v weight per volume
w/w weight per weight
WBC white blood cell

WG water dispersible granule WHO World Health Organisation

wk week yr year