Image Processing

Lecture 10: Morphological Image Processing – I

(Ch9 Morphological Image Processing)

Zhiguo Zhang

zhiguozhang@hit.edu.cn

Contents of This Lecture

• What is morphology?

• Basic concepts of set theory

Dilation and erosion

Opening and closing

• Hit-or-miss transform

What Is Morphology?

- Morphological image processing (or morphology) describes a range of image processing techniques that deal with the shape (or morphology) of features in an image.
- The basic idea of morphology is to use a special structuring element to measure or extract the corresponding shape or characteristics in the input images for further image analysis and object recognition.
- The mathematical foundation of morphology is the set theory.
- In this chapter, the input images are binary images.

0, 1, Black, White?

- Throughout all of the following slides whether 0 and 1 refer to white or black is a little interchangeable.
- All of the discussion that follows assumes that images are made up of 0s for background pixels and 1s for object pixels (foreground).
- After this it doesn't matter if 0 is black, white, yellow, green, etc.

- A is a set, if $a = (a_1, a_2)$ is an element of A, then, $a \in A$
- If not, then $a \notin A$
- \emptyset : null (empty) set

• Typical set specification (example):

$$C = \{ w \mid w = -d, \text{ for } d \in D \}$$

Set C is the set of elements, w, such that w is formed by multiplying each of the two coordinates of all the elements of set D by -1.

- A is a subset of B: $A \subseteq B$
- Union of A and B: $C=A\cup B$
- Intersection of A and B: $D=A \cap B$
- Disjoint sets: $A \cap B = \emptyset$
- Complement of A: $A^c = \{w | w \notin A\}$
- Difference of *A* and *B*:

$$A - B = \{ w \mid w \in A, w \notin B \} = A \cap B^c$$

The complement of A

The difference between A and B

• Translation of A by $z = (z_1, z_2)$:

$$(A)_z = \{ w \mid w = a + z, a \in A \}$$

• Reflection of A:

$$\hat{A} = \{ w \mid w = -a, a \in A \}$$

Sets in Image Processing

- Morphological operations are defined in terms of sets.
- In image processing, we use morphology with two types of sets of pixels: objects and structuring elements (SEs). Typically, objects are defined as sets of foreground pixels. SEs can be specified in terms of both foreground and background pixels.

Structuring Element, Hit, Fit, & Miss

A: Fit; B: Hit; C: Miss

1	1	Standarding Element (SE)
1	1	Structuring Element (SE)

- Fit: for all SE pixels having a value of 1, the corresponding image pixels are also 1.
- **Hit:** for at least one SE pixel having a value of 1, the corresponding image pixel is 1.
- Miss: for any SE pixel having a value of 1, the corresponding image pixel is not 1.

All morphological processing operations are based on these simple ideas.

Fit, Hit, & Miss

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	B	1	1	1	0	(O)	0	0	0
0	1	1	1	1	1	1	1	0	0	0	0
0	1	1	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	1	0	0	0
0	0	1	1	1	1	1	1	1	1	1	0
0	0	0	0	0	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0

1	1	1
1	1	1
1	1	1

0	1	0
1	1	1
0	1	0

S2

S1

		Α	В	С
fit	s ₁	yes	no	no
	S ₂	yes	yes	no
hit	S ₁	yes	yes	yes
	S ₂	yes	yes	no

Structuring Elements

- A SE can be any size and any shape.
- Usually, element values are 0,1 and none (×). "None" (empty) elements in the SEs are *don't care's*.
- A SE has an *origin*. For simplicity we usually use rectangular SE, then we can take the middle pixel as its origin.

1	1	1
1	(1)	1
1	1	1

	1	
1	①	1
	1	

Fundamental Operations

- Fundamentally, morphological image processing is very like spatial filtering.
- The structuring element is moved across every pixel in the original image to give a pixel in a new processed image.
- The value of this new pixel depends on the operation performed.
- There are two basic morphological operations: dilation and erosion.

Dilation

- Dilation of image f by structuring element s is given by $f \oplus s$
- The structuring element s is positioned with its origin at (x, y) and the new pixel value is determined using the rule:

$$g(x, y) = \begin{cases} 1, & \text{if } s \text{ hits } f \\ 0, & \text{otherwise} \end{cases}$$

Structuring Element

Dilation

• Dilation:

$$A \oplus B = \{z \mid [(\hat{B})_z \cap A \neq \emptyset\}$$
$$A \oplus B = \{z \mid [(\hat{B})_z \cap A] \subseteq A\}$$

- \blacksquare *B* is the structuring element.
- \blacksquare The process consists of obtaining the reflection of B about its origin.
- \blacksquare Then shifting this reflection, B, by z.
- The dilation of A by B is the set of all z, displacements such that B and A overlap by at least one element.

Original Image

Processed Image

Structuring Element

Original Image

Processed Image

Note: For each structuring element, we should give a origin point. The origin point can be inside or outside the structuring element. The result should be different for different origin point.

Structuring Element

Image *I*, composed of set (object) *A* and background

Dilation of *A* by *B* (the dotted line is the boundary of *A*)

Dilation of *A* by this elongated SE

Original image

Dilation by 3×3 square structuring element

Dilation by 5×5 square structuring element

Original image

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

After dilation

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Result is similar to that of low pass filtering

0	1	0
1	1	1
0	1	0

Structuring element

What is Dilation for?

• Dilation can repair breaks

• Dilation can repair intrusions

• Note: Dilation enlarges objects

Erosion

- Erosion of image f by structuring element s is given by $f \ominus s$
- The structuring element s is positioned with its origin at (x, y) and the new pixel value is determined using the rule:

$$g(x, y) = \begin{cases} 1, & \text{if } s \text{ fits } f \\ 0, & \text{otherwise} \end{cases}$$

Example for Erosion

Example for Erosion

Erosion Example

Erosion

• Erosion:

$$A \ominus B = \{z \mid (B)_z \subseteq A\}$$

$$A \ominus B = \{z \mid (B)_z \cap A^c = \emptyset\}$$

• The erosion of A by B is the set of all points z such that B, translated by z, is contained in A.

Erosion Example

Original Image

Processed Image

Structuring Element: The origin point can be inside or outside the structuring element

Erosion Example

What is Erosion for?

Original image

Erosion by 3×3 square structuring element

Erosion by 5×5 square structuring element

What is Erosion for?

Erosion can split apart joined objects • Erosion can strip away extrusions

• Note: Erosion shrinks objects

Erosion Example

• Use of morphological erosion for removing image components

Erosion & Dilation Application

• Use of both morphological erosion and dilation

(a) Image of squares of size 1, 3, 5, 7, 9, and 15 pixels on the side

(b) Erosion of (a) with a square structuring element of 1's, 13 pixels on the side

(c) Dilation of (b) with the same structuring element.

Compound Operations

- More interesting morphological operations can be performed by performing combinations of erosions and dilations
- The most widely used of these **compound operations** are:
 - Opening
 - Closing

Opening

• The opening of image f by structuring element s, denoted as $f \circ s$, is simply an erosion followed by a dilation.

$$f \circ s = (f \ominus s) \oplus s$$

Image *I*, composed of set (object) *A* and background

Structuring element, *B*

Image, I

Translations of *B* while being contained in *A* (*A* is shown dark for clarity)

B "rolling" along the inner boundary of *A*

Opening of A by B

Opening Example

Opening Example

Opening Example

Opening

Image *I*, composed of a set (object) *A* and background; a solid, circular structuring element is shown also. (The dot is the origin.)

Structuring element in various positions

The morphological operations used to obtain the opening

Closing

• The closing of image f by structuring element s, denoted f • s is simply a dilation followed by an erosion.

$$f \bullet s = (f \oplus s) \ominus s$$

Image *I*, composed of set (object) *A* and background

Structuring element, B

Translations of *B* such that *B* does not overlap any part of *A* (*A* is shown dark for clarity)

B "rolling" on the outer boundary of *A*

Closing of *A* by *B*

Closing Example

Closing Example

Closing Example

Closing

Image *I*, composed of a set (object) *A* and background; a solid, circular structuring element is shown also. (The dot is the origin.)

Structuring element in various positions

The morphological operations used to obtain the closing

 $A \oplus B$

Properties of Opening and Closing

- Opening
 - $\blacksquare A \circ B$ is a subset of A
 - If C is a subset of D, then $C \circ B$ is a subset of $D \circ B$
 - $\blacksquare (A \circ B) \circ B = A \circ B$
- Closing
 - $\blacksquare A$ is a subset of $A \bullet B$
 - If C is a subset of D, then $C \bullet B$ is a subset of $D \bullet B$
 - $\blacksquare (A \bullet B) \bullet B = A \bullet B$

Opening & Closing

• In essence, dilation expands an image and erosion shrinks it.

- Opening:
 - generally smoothes the contour of an image,
 breaks thin connections, eliminates protrusions.

- Closing:
 - smoothes sections of contours, but it generally fuses breaks, holes, gaps, etc.

Morphological Processing Example

• Hit-or-miss transform (HMT) is a basic tool for shape detection.

Definitions:

- Let I be a binary image composed of foreground (A) and background pixels (A^c) , respectively.
- HMT uses two structuring elements:
 - B_1 is for detecting shapes in the foreground
 - B_2 is for detecting shapes in the background
- HMT of the image *I* is defined as:

$$I \circledast B_{1,2} = \{z \mid (B_1)_z \subseteq A \text{ and } (B_2)_z \subseteq A^c\}$$
$$= (A \ominus B_1) \cap (A^c \ominus B_2)$$

$$I \circledast B_{1,2} = \{z \mid (B_1)_z \subseteq A \text{ and } (B_2)_z \subseteq A^c\}$$
$$= (A \ominus B_1) \cap (A^c \ominus B_2)$$

- This equation says that the morphological HMT is the set of translations, z, of structuring elements B_1 and B_2 such that, *simultaneously*, B_1 finds a match in the foreground (i.e., B_1 is contained in A) and B_2 finds a match in the background (i.e., B_2 is contained in A^c).
- The word "simultaneous" implies that z is the *same* translation of both structuring elements.
- The word "miss" in the HMT arises from the fact that B_2 finding a match in A^c is the same as B_2 not finding (missing) a match in A.

$$I \circledast B_{1,2} = (A \ominus B_1) \cap (A^c \ominus B_2)$$

(a) Image consisting of a foreground (1's) equal to the union, *A*, of set of objects, and a background of 0's

(c) Structuring elements designed to detect object *D*

(e) Erosion of A^c by B_2

(b) Image with its foreground defined as A^c

(d) Erosion of A by B_1

Origin of $D \nearrow$ Background

(f) Intersection of (d) and (e), showing the location of the origin of *D*, as desired.

$$I \circledast B_{1,2} = (A \ominus B_1) \cap (A^c \ominus B_2)$$

• If we define a structuring element *B* having additionally a border of background elements with a width of one pixel. We can use a structuring element formed in such a way to restate the hit-or-miss transform as:

$$I \circledast B = \{x \mid (B)_x \subseteq A\}$$

• The form is the same as erosion, but now we see the structuring element is composed of both foreground and background pixels.

Same solution, but using the equation below with a single structuring element

$$I \circledast B = \{x \mid (B)_x \subseteq A\}$$

• Sometimes, we want to match the pattern (not an object) in one image, then, the hit-or-miss transform is similar to erosion operation

Three examples of using a single SE in HMT to detect specific features

Detection of single-pixel holes

Detection of an upper-right corner

Detection of multiple features

Summary

- In this lecture we have learnt:
 - What is morphology?
 - Basic concepts of set theory
 - Dilation and erosion
 - Opening and closing
 - Hit-or-miss transform