Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

ДЕТЕКТИРОВАНИЕ ОБЪЕКТОВ НА ИЗОБРАЖЕНИИ С ПОМОЩЬЮ СВЁРТОЧНЫХ НЕЙРОННЫХ СЕТЕЙ

Выполнил: Ильянов Вячеслав Николаевич, гр. 5303

Руководитель: Черниченко Дмитрий Александрович, к.т.н., доцент

Цель и задачи

Актуальность исследования обусловлена двумя факторами:

- Возрастающий спрос на системы с НС (например, компьютерное зрение),
- Низкая производительность крупных и сложных НС.

Цель: исследовать возможности Intel OpenVINO Toolkit.

Задачи:

- 1. Изучить инструмент OpenVINO.
- 2. Создать демо-приложение.
- 3. Провести сравнительный анализ различных оптимизаций.

Проблемы запусков HC на CPU:

Факторы влияющие на производительность:

- Ограниченный объем кэша
- Частые обращения к ОЗУ
- Распараллеливание ограничено количеством ядер

Решение:

 Мощные процессоры (увеличенный кэш и частота, много ядер) – дорогие

Проблемы запусков HC на GPU

- Высокая стоимость
- Адаптация моделей под GPU
- Узкий круг применения
- Габариты

1. Возможности

Основной функционал OpenVINO:

- Оптимизация моделей и конвертация в IRформат
- 2. Запуск модели на целевом устройстве(-ах)

Дополнительный функционал:

- 1. Инструменты для бенчмаркинга
- 2. Дополнительные инструменты оптимизации
- з. Дополнительные инструменты для работы с данными

1. Возможности

За счет чего OpenVINO ускоряет работу нейронной сети:

- Оптимизация самих моделей
- Выполнение на нескольких устройствах
- Ускорение примитивных операций
- Гетерогенное выполнение
- Понижение точности

2. Демо-приложение

Цели написания приложения:

- Оценка сложности интеграции OpenVino
- Оценка производительности

Результат:

- Трудностей в интеграции не выявлено
- Время распознавание объектов на одном изображении в среднем уменьшилось в 12 раз (с 11293мс до 884мс)

2. Демо-приложение

Детали эксперимента:

- Входные данные:
 - Исходная модель: набор фотографий городской улицы (20 шт.).
 - Модель OpenVino: видео поток (15 сек.) с камеры на городской улице.
- Основная метрика: время выполнения работ НС на СРU (без пред- и постобработки)
- Модель НС: взятая из открытых источника обученная модель Yolo v3 (датасете COCO)

2. Демо-приложение

Основной функционал приложения:

 Распознавание объектов (из датасета <u>СОСО</u>) на изображении.

Этапы работы приложения:

- 1. Загрузка IR-модель HC (.xml + .bin)
- Загрузка фото или видео
- з. Изменение размера кадра
- 4. Запуск HC на CPU и получение результата
- 5. Выделение на изображении объектов
- Вывод итогового изображение или видео

Сравнение с различными оптимизациями:

- Работы экспериментальной модели (из демоприложения)
- Работы иных обученных моделей Метрики:
- Задержка (мс) актуально в случае разовой обработки изображения
- Пропускная способность (FPS) актуально для систем с параллельным выполнением

Экспериментальная модель

Экспериментальная модель

Эксперимент:

- Количество экспонентов:
 - 20 раз для экспериментальной модели
 - 10 раз для иных моделей
- Эксперимент проводился с использованием инструмента OpenVino Workbench
- Для калибровки в INT8 использовалась сотая часть датасета <u>COCO</u>

Апробация работы

Код приложения размещен в интернет ресурсе github:

https://github.com/TETpagon/app_yolo_3

Заключение

- Написано консольное приложение для демонстрации возможностей инструмента.
- Вывод: OpenVino дает значительный прирост в производительности.
- Дальнейшие направления исследований включают в себя:
 - эксперименты на иных вычислительных устройствах компании Intel.
 - гетерогенный режим работы модели

Характеристики лабораторной машины

Тип ЦП	Mobile QuadCore Intel Core i7-4710HQ, 3233 MHz
	(33 x 98)
Системная	MSI MegaBook GE60 2PL (MS-16GH)
плата	
Чипсет	Intel Lynx Point HM86, Intel Haswell
системной платы	
DIMM1	Kingston MSI16D3LS1KBG/8G 8 ГБ DDR3-1600
	DDR3 SDRAM
DIMM3	AMD R538G1601S2SL
Тип BIOS	AMI (07/19/2014)
GPU	Intel HD Graphics 4600
GPU	NVIDIA GeForce GTX 850M

OpenVino Workbench

