《编译原理》课程期中考试试卷

2017年5月 **丰**业.

姓名	:学号: _	专	比:	<u>—</u> .
— 、	Single Choice (12 cents)		
1,	which of the following l	anguage is g	enerated by the contex	kt free grammar G:
	$S \rightarrow xSx \mid y$			
[A	[B](xyx)	*	$C] x^n y x^n (n > = 0)$	[D] $x*yx*$
2,	If the context-free gramm	nar G is not an	nbiguous, for any sente	ence generated by
	G, which of the following	ng description	is correct?	_
[A]	a] the parse tree correspor	ding to the lef	t-most derivation must	be the same to that
	of the right-most deriv	ation.		
[B] the parse tree correspon	nding to the let	ft-most derivation may	not be the same to
	that of the right-most de	rivation.		
[C] the left-most derivation	must be the sa	me to the right-most d	erivation.
$[\Gamma$] there will be more than	one left-most	derivation, but the pars	e tree is the same.
3、I	f one CFG grammar is Ll	L(1) and conta	ins the rules: $A \rightarrow \alpha_1 \alpha_2$; $B \rightarrow \beta_1 \beta_2$, then the
f	ollowing condition () must be sati	sfied.	
[A] First (A) \cap First (B) is	empty	[B] First(α ₁) ∩First	$\alpha(\alpha_2)$ is empty
[C] First (A) \cap Follow (A)	is empty	[D] First (B) ∩Foll	ow (A) is empty
4、I	$LR(1)$ item $[A \rightarrow \alpha \cdot B \gamma,$	a], follow(H	3)= {	
	[A] a [B] the parsing method of	Ιγ	[C] $\{ \gamma, a \}$	[D] { γa }
5, t	he parsing method of	YACC is ()	
	$[A] LALR(1) \qquad [B]$]LR(1)	[C] SLR(1)	[D] LL(1)
6、I	n the Bottom-Up Parsing,	the action () will never be used.	
	[A] Reduce [B] M	atch	[C] Shift	[D] Accept
_	anastian (19 aanta)			
	question (48 cents)	1	- 41 C-11 DEA /	T11
	Apply the state minimizat	_	_	i nen give a regular
expr	ession to describe this lan	guage. (10 c	ents)	

Answer:

2. Show that the following grammar is ambiguous.(8 cents)

G:
$$S \rightarrow S R S \mid e$$

 $R \rightarrow < \mid >$

[Answer]

Given the string e<e>e, which belongs to the language L(G)

There are two distinct parsing trees illustrated as follows:

(1) The first parsing tree

(2) The second parsing tree

Therefore, according to the definition of ambiguous grammar, the grammar G is ambiguous.

2. Consider the following grammar (30 cents)

$$P \to A \mid L$$

$$L \rightarrow (S)$$

$$S \rightarrow S P | P$$

$$A \rightarrow n|i$$

- (1) Remove the left recursion
- (2) Construct First and Follow sets from the non-terminals of the resulting grammar
- (3) Construct the LL(1) parsing table for the resulting grammar.
- (4) Show the actions of the corresponding LL(1) parser, given the input string (i (i (n))(i))

[Answer]

(1) The revised version of the above grammar after removing the left recursion is below: (5 cents)

$$P \to A \mid L$$

$$L \rightarrow (S)$$

$$S \rightarrow PS'$$

$$S' \rightarrow PS' \mid \varepsilon$$

$$A \to n | i$$

(2) The First and Follow sets for the non-terminals in the revised grammar (7 cents)

$$First(S) = \{ n, i, (\} Follow(S) = \{ \} \}$$

$$First(S') = \{ n, i, (,\varepsilon) \} Follow(S') = \{ \}$$

(3) The LL(1) parsing table of the revised grammar (10 cents)

	n	i	()	\$
P	$P \rightarrow A$	$P \rightarrow A$	$P \rightarrow L$		
L			$L \rightarrow (S)$		
S	$S \rightarrow PS'$	$S \rightarrow PS'$	$S \rightarrow PS'$		
S'	$S' \rightarrow PS'$	$S' \rightarrow PS'$	$S' \rightarrow PS'$	$S \rightarrow \epsilon$	
A	$A \rightarrow n$	$A \rightarrow i$			

(4) Given the input string (i (i (n))(i)), the actions of the corresponding LL(1) parser are as follows: (8 cents)

Stack	Input string	Actions
\$P	(i(i(n))(i))\$	Generation
\$L	(i(i(n))(i))\$	Generation
\$)S((i(i(n))(i))\$	Match
\$)S	i(i(n))(i)\$	Generation
\$)S'P	i(i(n))(i)\$	Generation

\$)S'A	i(i(n))(i))\$	Generation
\$)S'i	i(i(n))(i))\$	Match
\$) S'	(i(n))(i)\$	Generation
\$)S' P	(i(n))(i)\$	Generation
\$)S' L	(i(n))(i)\$	Generation
\$)S')S((i(n))(i)\$	Match
\$)S ['])S	i(n))(i))\$	Generation
\$)S') S'P	i(n))(i))\$	Generation
\$)S') S'A	i(n))(i))\$	Generation
\$)S') S'i	i(n))(i))\$	Match
\$)S') S'	(n))(i))\$	Generation
\$)S') S' P	(n))(i))\$	Match
••••		