

Oct 09, 2024

O Designing sgRNA Oligos and Inserting Guides into the GEARBOCS Vector

7

Forked from <u>Designing sgRNA Oligos and Inserting Guides into the GEARBOCS Vector</u>

In 1 collection

DOI

dx.doi.org/10.17504/protocols.io.5jyl8271rl2w/v1

Luke Bradley¹

¹Duke University

ASAP Collaborative Rese...

Eroglu_Lab

Luke Bradley

Duke University

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.5jyl8271rl2w/v1

Protocol Citation: Luke Bradley 2024. Designing sgRNA Oligos and Inserting Guides into the GEARBOCS Vector . **protocols.io** https://dx.doi.org/10.17504/protocols.io.5jyl8271rl2w/v1

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's

working

Created: September 27, 2024

Last Modified: October 09, 2024

Protocol Integer ID: 108552

Funders Acknowledgement:

ASAP

Grant ID: 383000083

Abstract

This protocol describes designing sgRNAs for genes of interest using the GEARBOCS vector backbone. This method allows researchers to utilize the GEARBOCS system for astrocyte-specific genetic manipulation in CRISPR/Cas9 mice for in vivo assays

Designing sgRNA oligos

- 1 Use <u>UCSC</u> to get gene's exons and introns. Make sure the area you are targeting is in all isoforms.
- 2 Before designing your own guides, check the literature for guides that you can use.
- 3 Second, try **CRISPick** with the exon you want to target.
 - Reference Genome: Mouse GRCm38 (NCBI RefSeg v.108.20200622)
 - Mechanism: CRISPRko
 - Enzyme: SpyoCas9(NGG) and <u>Hsu (2013)</u> tracrRNA
 - Target(s): Bulk/Advanced targets enter up to 2000 bp
 - CRISPick Quota: 10
- 4 Make sure these aren't targeting helical structures or motifs by searching uniprot (https://www.uniprot.org/uniprotkb/P55088/entry).
- 5 Ordering oligos for sgRNA annealing:
- Add the following bolded sequences to 20bp sgRNAs to add restriction enzyme recognition sites. We have written a script to add the overhangs for you **here**. It requires you to enter your gRNA names and sequences and click run on that website.
- 7 Example:
- 8 Agp4 gRNA FW: **CACCG** ATTGTCTTCCGTATGACTAGAGG
- 9 Aqp4 gRNA RV: **AAAC** CCTCTAGTCATACGGAAGACAAT **C**
- 10 ^non-bolded sequence to add the Sapl restriction enzyme recognition sites

Insert guides into GEARBOCS vector

11 **GEARBOCS Vector digestion:**

protocols.io Tartor Sprinderivatore	
12	Set up the digestion reaction with the following components in a 0.6µL tube 1. GEARBOCS Vector -> 2ug 2. Sapl Enzyme -> 1uL
	3. NEB rCutSmart buffer -> 5uL 4. UltraPure H2O -> XuL (Volume will vary based on volume of vector) 5. Total Volume = 50uL
13	Incubate @37°C for 1 hour and run the sample in 1% agarose gel.
14	Elute the linearized vector in 25µL water using Qiagen Gel purification kit.
15	Use the eluted sample for ligation or preserve in -20°C
16	sgRNA Oligo Annealing:
17	Set up the annealing reaction with the following components in a 0.2µL tube.
	 UltraPure Water -> 7μl Forward Primer, 100uM -> 1μl Forward Primer, 100uM -> 1μl NEB Buffer 2.1 -> 1μl Total = 10μL
18	Heat to 95'C for 5 min (use heat block). Cool to room temp over 1-2 hours
19	Once the annealing is completed, add 90µL water to the tube and mix well
20	Use the annealed sample for ligation or preserve the rest in -20°C

21 Ligation:

22 Take $6\mu L$ of annealed sample for the ligation into pUGC Vector and keep the reaction as below

- 1. Insert- Annealed Oligo -> 6uL
- 2. GEARBOCS-SapI digested -> 2µI
- 3. T4 Ligase Buffer -> 1µl
- 4. T4 Ligase -> 1µl
- 5. Total -> 10uL
- 23 Incubate at 4°C overnight and transform 4 µL into Stbl3 cells the next day. Plate 50 uL of S.O.C. medium + cells.
- 24 Pick clones for minicultures.
- Save 0.5-1 mL for glycerol stock and mini-prep the rest for sequencing with the U6 primer. 25