Mixed characteristic shtukas

Jiahao Niu

Brief into to global function frew shtukas.

 X/F_q smooth proj. (usue, k(X) function field

a split reductive gp — Bung, x: S/F_q — $\{L-tassess over X \times S\}$ Smooth Artin Stack

The moduli space of shtukas: is legs labeled by I= {2,-.,n} (n legs)

Sht I,
$$\alpha$$
: $S/F_q \mapsto \{(x_i)_{i \in I} \in X^{I}(S), \mathcal{E} \in Bun_{G,X}(S), \mathcal{E} \in Bun_{G,X}(S), \mathcal{E} \}$

$$\forall : (Folskid)^* \mathcal{E} |_{X \neq S} \downarrow \mathcal{E}_{X} \Rightarrow \mathcal{E} |_{X \neq S} \downarrow \mathcal{E}_{X} \}$$

- · this is an ind-Deligne Muniford Stack
- · one can also add some ~ level structures " to make it an ind-scheme.
- By "geometric Satake equivalence": mo produce a functor

Shtukas ~ V -> HI,V for any I,V functorially.

eg. $I = \phi$, 1, $H\phi$, $1 = \{smosth unanified auto. forms <math>/k(x)\}$ 1 leg. H123,1 5 T1(X) Weil(X)2

H (1,2), VOW = H (1), VOW (H(1), 1 (chosing 1 -> V&W) Rep (22) 10W -> 1

find more symmetries to H(1), 1 through HI,V. cuspidal

These will generate an algebra A C End (H11): 4)

A = O (moduli space of L- parameters for a)

(upidal = \bigoplus V_6 decomposition $A^{\frac{5}{2}}, \overline{u_0}$

X as above, & completion at one pt Local version / Fq (t) Spt IF et]

G= GLn Local shtukas a functor sending adic space S

S \(\rightarrow\) \{ \((x_i) \in Spa \text{ \lefth \text{ \text{ \lefth \tefth \text{ \lefth \text{ \lefth \text{ \lefth \text{ \lefth \text

eg.
$$S = Spa(C, Oc)$$
, $S \times Spa[Eq [I+D] = IDc$ open unit disc.
 $Q_S: C \longrightarrow C, x_I \longrightarrow z^P$
 $t \longmapsto t$

Mixed version. SE Part, "Sx Spa Zp"

Det S = Spa (R, R+) affinid perfection space of chan. p

Sispazp = $\{([\varpi] \neq 0) \subset SpaW(R^{+}), \overline{\omega} \in R^{+} \text{ pseudo uniformizer }\}$ $\{(\omega S \subset Spa(R^{+}, R^{+}), \{\omega \neq 0\})\}$ $\{(\omega S \subset Spa(R^{+}, R^{+}), \{\omega \neq 0\})\}$

- Six Spa Zp is an adic space.

U { $|p| \le |[\omega Y^{pn}]| \ne 0$ } = U spa (Rn, Rn) 1 NZ1 Stable uniform

Rn Splitting as an Rn-module

Rn Sp Cp [pm]^n

Spa (Rn, Pat) Sous perfection

. (Sx Spazp) = Sx (SpaZp)

pafatoid

Spa (A^{*}, A^{+}) TE Put att, $T = Spa (A, A^{+})$, $(S\overset{\circ}{\times} Spa Zp)^{\diamond}(T) \iff T^{*}, T^{*} S\overset{\circ}{\times} Spa Zp$ C=1 $W(R^{+}) \longrightarrow A^{+}$ sending [100] \longmapsto Unit in A^{*} .

$$(=) R^{+} \longrightarrow (A^{+})^{b} \cong A^{+} , T^{*}$$

$$R \longrightarrow A , \qquad \bowtie \longmapsto unit in A.$$

{utiania preadic space }

(complete Huber pair } op

Osispazp - Os#

this will give as a Contier divisor (is knowned with be locally tree of 2k1)

Runk This is hard to check.

C/Op mixed chan.
$$C^b/\mathbb{F}_p$$

Aing = $W(O_{C^b}) \xrightarrow{\theta} O_C$

Spa Ains

Xx unique nonanelytic print, k residue field of Och.

x (6: Ain ->> Och co cb

Xc: Ainy - Oc -> C

xL: AM -> W(k) -> W(k) [+] =: L

K:
$$y = Spa Airy | (x_k) \rightarrow [0, \infty]$$

 $\times (-) \frac{log(Cpb)(x)|}{log(p(x))}$

is the unique rank I generalization

$$k(x_c)=1$$
, $k(x_{c6})=0$. $k(x_L)=\omega$, $\chi\cdot\varphi=p\circ\kappa$.

Sections of
$$(S \times Spa Zp)^{2} \rightarrow S$$

$$((SpaZp)^{4})^{I} \qquad \text{until of } S$$

48: 4x 8 | Spadpis \ U [x; = 8 | Spadpis VIx;

Meromorphic along U (xi

eg. Shrukas our Spa (Cb, Och), (Ap complete alg. closed Cb/IFp

E is a ver. bdle / Spa (cb, Ocb) x Spa Bp

Ψ \(\xi\): \(\psi^*\) \(\psi\) \(

(schematic version)

A Brenil - Kin - Fargues module is a finite free $W(O_{cb})$ -module M $\varphi_{M}: (\varphi^{+}M)[3^{-1}] \Longrightarrow M[3^{-1}]$ is an isom. $(3 = (con(0: W(O_{cb}) \longrightarrow c))$

Then (Fargues) {Shtukas over $Spa(c^b,O_{c^b})$ up one leg of $Spa(c,O_c)$ } $\{Bkf-m-dales over W(O_{c^b})\}$

{p-divisible groups /oc}

{ shtukas/cb w one leg at c}

{ BKF modules}

{ p-divisible gr/h}

{ Dieudenne modules}

k residue field of Oc.

Thun R is an integral perfection ring, $h(R^b)$ Lp-divisible gps touly faithful thirty proj. Airty (R)-module M | Pb Both sides |

R | M: M[$\frac{1}{4}$] = $M[\frac{1}{4}]$ | Satisfy v-descent |

Legential image: there M s.t. $M \subset \Psi_M(M) \subset \overline{\Psi(S)}$ M

h.