STA 104 Applied Nonparametric Statistics

Chapter 5: Two-Way Layout Problems: Nonparametric Two-Way Analysis of Variance

Xiner Zhou

Department of Statistics, University of California, Davis

Table of contents

- 1. Friedman test for General Alternatives in a Randomized Complete Block Design
- 2. Two-Sided All-Treatments Multiple Comparisons for General Alternative in a Randomized Complete Block Design
- 3. Mack-Skillings test for General Alternatives in a Randomized Block Design with Equal Number of Replications Per treatment-Block Combination
- 4. Two-Sided All-Treatments Multiple Comparisons for General Alternative in a Randomized Block Design with Equal Number of Replications Per treatment-Block Combination

Two-Sided All-Treatments Multiple Comparisons for General Alternative in a Randomized Block Design with Equal Number of Replications Per treatment-Block Combination

After rejection of

$$H_0$$
:
$$\underline{\tau_1 = \ldots = \tau_k}$$
 F_{i1}, \ldots, F_{ik} within block i are the same; that is, $F_{i1} \equiv F_{i2} \equiv \cdots \equiv F_{ik} \equiv F_i$, for each fixed $i=1,\ldots,n$ H_1 :
$$\underline{\tau_1 \ldots \tau_k} \text{ not all equal}$$
 at least two of the treatment effects are not equal

with Mack-Skillings test, it is important to reach conclusions about all $\binom{k}{2}=k(k-1)/2$ pairs of treatment effects and these conclusions are naturally two-sided.

Hypothesis

$$\begin{cases} H_0: \tau_1 = \tau_2 & H_1: \tau_1 \neq \tau_2 \\ H_0: \tau_1 = \tau_3 & H_1: \tau_1 \neq \tau_3 \\ \dots & \\ H_0: \tau_{k-1} = \tau_k & H_1: \tau_{k-1} \neq \tau_k \\ \end{cases}$$

$$\frac{k(k-1)}{2} \text{ simultaneous tests/multiple comparisons}$$

Motivation

- Uptional: $\Rightarrow S_1, \dots, S_k$: the treatment sums of cellwise averages of within-blocks ranks
 - $\Rightarrow |R_u R_v|$ tend to be small when null $\tau_u = \tau_v$ is true, and tend to be large when alternative $\tau_u \neq \tau_v$ is true
 - ⇒ So we use absolute difference in within block rank sums as the test statistics
 - $\Rightarrow (R_1, \ldots, R_k)$ as N tends to infinity, an asymptotic multivariate normal distribution $(Z_1 \dots Z_k)$

 \Rightarrow

$$\max_{1 \leq u < v \leq k} |R_u - R_v| \sim range(Z_1 \dots Z_k) \chi$$

- ⇒ To get the null distribution for the simultaneous tests, it is equivalent to know the null distribution of $\max_{1 < u < v < k} |R_u - R_v|$
- \Rightarrow It is then equivalent to the distribution of the range when we draw k independent N(0,1)

Procedure

For each pair of treatments (u,v), for $1 \le u < v \le k$, Decide $\tau_u \ne \tau_v$ if $|S_u - S_v| \ge [k(N+n)/12]^{1/2} q_{\rm ext}$ (nitial Value otherwise decide $\tau_u = \tau_v$

• q_{α} is the upper α quantile of the range of k normal variates.

Example: Determination of Niacin in Bran Flakes

We have found rather strong evidence that the studied process for assessing niacin content in bran flakes does not produce consistent results across a variety of laboratories.

To determine which of the laboratories differ in median detected niacin content in the bran flakes.

	Δ.		• • • •
	Amount of niacin enrichment		
	(milligrams per 100 g bran flakes)		
Laboratory	0	4	8
1	7.58(3)	11.63(7)	15.00(2)
	7.87(8)	11.87(11)	15.92(9)
	7.71(6)	11.40(3)	15.58(4)
2	7.95(9)	12.20(12)	16.60(12)
	8.27(12)	11.6(8)	16.40(11)
	8.05(10)	11.80(10)	15.90(7)
3	7.60(4)	11.04(2)	15.87(6)
	7.30(1)	11.45(5)	15.91(8)
	7.82(7)	11.49(4)	16.28(10)
4	8.03(11)	11.50(6)	15.10(3)
	7.35(2)	10.10(1)	14.80(1)
	7.66(5)	11.70(9)	15.70(5)

Hostisa Historia

```
> library (NSM3)  
> cRangeNor (0.05, k=4)  
[1] 3.634  
Decide \tau_{u} \neq \tau_{v} if |S_{u} - S_{v}| \geq [4(36+3)/12]^{1/2}(3.634) = 13.1  
 |S_{2} - S_{1}| = 12.83 < 13.1 \Rightarrow \text{ decide } \tau_{2} = \tau_{1}, \\ |S_{3} - S_{1}| = 1.84 < 13.1 \Rightarrow \text{ decide } \tau_{3} = \tau_{1}, \\ |S_{4} - S_{1}| = 3.67 < 13.1 \Rightarrow \text{ decide } \tau_{4} = \tau_{1}, \\ |S_{3} - S_{2}| = 14.67 > 13.1 \Rightarrow \text{ decide } \tau_{3} \neq \tau_{2}, \\ |S_{4} - S_{2}| = 16.5 > 13.1 \Rightarrow \text{ decide } \tau_{4} \neq \tau_{2}, \\ |S_{4} - S_{3}| = 1.83 < 13.1 \Rightarrow \text{ decide } \tau_{4} = \tau_{3}.
```

Thus, at an approximate experimentwise error rate of .05, we see that Laboratory 2 yielded significantly different median detected niacin content than either Laboratory 3 or Laboratory 4.

These multiple comparison decisions help to focus the rationale for the original rejection of the Mack-Skillings test, as it now seems reasonable to question the reliability of Laboratory 2 in conducting this niacin content process.