

퍼셉트론

- 인공신경망의 한 종류
- 다수의 입력 (x_1,x_2,\ldots,x_n) 과 가중치 (w_1,w_2,\ldots,w_n) 를 곱하여 그 값에 편향(bias)을 더한 값이 어느 임계치 값 (θ) 을 초과하면 활성화 함수를 통과

한 출력값을 내보냄

출처: https://towardsdatascience.com/rosenblatts-perceptron-the-very-first-neural-network-37a3ec09038a

뉴런의 수학적 표현

출처: https://cs231n.github.io/convolutional-networks/

$$y = f(\sum_{i} w_{i} x_{i} + b)$$

- f : 활성화 함수
 - 임계값(θ)을 경계로 출력이 바뀜
- *b* : 편향
 - <u>결정 경계선을 원점에서부터 벗어나게 해줌</u>
 - 따로 표현이 없어도 기본적으로 존재한다고 생각
- $\sum_i w_i x_i$: 두 벡터의 내적으로 표현 가능

$$x_1w_1 + x_2w_2 + \ldots + x_nw_n = w^Tx$$

완전 연결 계층(Fully-Connected Layer) 수학적 표현

$$W = [w_0, w_1, \dots, w_{M-1}]^T$$

각각의 $w_k \in N \times 1$ 형태의 벡터
 $W \in N \times M$ 행렬
 $b = [b_0, b_1, \dots, b_{M-1}]$
 $y_0 = f(w_0^T x + b_0)$
 $y_1 = f(w_1^T x + b_1)$
 $y_2 = f(w_2^T x + b_2)$
...
 $y_{M-1} = f(w_{M-1}^T x + b_{M-1})$
 $\Rightarrow y = f(W x + b)$

논리회로

- •논리 게이트(Logic Gates)
 - AND
 - OR
 - NOT
 - NAND
 - NOR

Input	Output
I	F
0	1
1	0

Inputs		Output
Α	В	F
0	0	0
1	0	0
0	1	0
1	1	1

Inputs		Output
Α	В	F
0	0	1
1	0	1
0	1	1
1	1	0

Inputs		Output
Α	В	F
0	0	0
1	0	1
0	1	1
1	1	1

NOR

Inputs		Output
Α	В	F
0	0	1
1	0	0
0	1	0
1	1	0

다층 퍼셉트론(Multi Layer Perceptron, MLP)

다층 퍼셉트론의 구성

- •입력층(input layer)
- •은닉층(hidden layer)
 - 1개 이상 존재
 - 보통 5개 이상 존재하면 Deep Neural Network라고 칭함
- •출력층(output layer)
- 수식
 - (input layer \rightarrow hidden layer) $z = f_L(W_L x + b_L)$
 - ∘ (hidden layer \rightarrow output layer) $y = a_K(W_K z + b_K)$

XOR 게이트

- 서로 다른 두 값이 입력으로 들어가면 1을 반환
- 진리표

Inpu	its	Output
Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	0

순환 신경망(Recurrent Neural Network, RNN)

합성곱 신경망(Convolutional Neural Network, CNN)

활성화 함수(Activation Function)

- •입력 신호의 총합을 출력 신호로 변환하는 함수
- •활성화 함수에 따라 출력값이 결정
- •단층, 다층 퍼셉트론 모두 사용
- •대표적인 활성화 함수
 - Sigmoid
 - ReLU
 - tanh
 - Identity Function
 - Softmax
- •하나의 layer에서 다음 layer로 넘어갈 때는 항상 활성화 함수를 통과
- •[참고] 여러가지 활성화 함수

Step Function(계단 함수)

$$y = \begin{cases} 0 & (x < 0) \\ 1 & (x \ge 0) \end{cases}$$

$$0.5 - \frac{1}{2} = \frac{$$

출처: https://www.intmath.com/laplace-transformation/1a-unit-step-functions-definition.php

Sigmoid Function(시그모이드 함수)

- 이진분류(binary classification)에 주로 사용
 - 마지막 출력층의 활성화 함수로 사용
- 출력값이 0~1 의 값이며, 이는 **확률**로 표현 가능

$$y = \frac{1}{1 + e^{-x}}$$

 \times

ReLU(Rectified Linear Unit)

• 가장 많이 쓰이는 함수 중 하나

$$y = \begin{cases} 0 & (x \le 0) \\ x & (x > 0) \end{cases}$$

Identity Function(항등 함수)

- 회귀(Regression) 문제에서 주로 사용
 - 출력층의 활성화 함수로 활용
- y = x
- 입력값 그대로 출력하기 때문에 굳이 정의할 필요는 없지만 신경망 중간 레이어 흐름과 통일하기 위해 사용

Softmax

- 다중 클래스 분류에 사용(Multi Class Classification)
- 입력값의 영향을 크게 받음 입력값이 크면 출력값도 큼
- 출력값을 확률에 대응가능
- 출력값의 총합은 1
- 수식

$$y_k = \frac{exp(a_k)}{\sum_{i=1} exp(a_i)}$$

소프트맥스 함수 주의점

- 오버플로우(overflow) 문제
- 지수함수(exponential function)을 사용하기 때문에 입력값이 너무 크면 무한대(inf)가 반환됨
- 개선한 수식

$$y_k = \frac{exp(a_k)}{\sum_{i=1} exp(a_i)} = \frac{Cexp(a_k)}{C \sum_{i=1} exp(a_i)}$$
$$= \frac{exp(a_k + logC)}{\sum_{i=1} exp(a_i + logC)}$$
$$= \frac{exp(a_k + C')}{\sum_{i=1} exp(a_i + C')}$$

활성화 함수를 비선형 함수(non-linear function)로 사용하는 이유

- 신경망을 깊게(deep) 하기 위함
- 만약 활성화 함수를 선형함수(linear function)으로 하게 되면 은닉층의 갯수가 여러개이더라도 의미가 없어짐
- 만약, h(x) = cx이고, 3개의은닉층이존재한다면

$$y = h(h(h(x)))$$

$$= c * c * c * x$$

$$= c^{3}x$$

이므로 결국에는 선형함수가 되어버림

그 외의 활성화 함수

LeakyReLU

$$f_a(x) = \begin{cases} x & (x \ge 0) \\ ax & (x < 0) \end{cases}$$

Leaky ReLU Activation Function

ELU(Exponential Linear Units)

$$f(\alpha, x) = \begin{cases} \alpha (e^x - 1) & (x \le 0) \\ x & (x > 0) \end{cases}$$

3층 신경망 구현하기

- 2클래스 분류
- 입력층(Input Layer)
 - ㅇ 뉴런수: 3
- 은닉층(Hidden Layers)
 - ㅇ 첫번째 은닉층
 - 뉴런수: 3
 - ㅇ 두번째 은닉층
 - 뉴런수: 2
- 출력층(Output Layer)
 - ㅇ 뉴런수: 2