IIIT, Vadodara Autumn 2017-18 CS405 Computer Vision

Lab#3: Geometric transformations

- This is as discussed in the class.
- Apply following geometric transformations on image(s) and comment on your results including properties of each transform.
- Consider appropriate (grayscale) image(s) to perform the tasks.
- Select suitable values, wherever necessary.
- $\{(x,y)\}$ are image coordinates and $\{(x',y')\}$ are corresponding transformed coordinates.

Q. 1: **Translation:**
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Q. 2: **Rotation:**
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Q. 3: Reflections: (i)
$$x'_p = x_p$$
, $y'_p = -y_p$; and (ii) $x'_p = -x_p$, $y'_p = y_p$

Q. 4: **Similarity:**
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = s \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$
, where s stands for uniform scaling.

Q. 5: **Affine:**
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$
, i.e., nonuniform scaling.