Tom Wang

FinalPrep of Math 312

Tom Wang

Spring, 2024

1 Induction

Induction/ Strong Induction is basically another way of Well well-ordering principle.

Theorem 1. Every non-empty subset of \mathbb{N} has a smallest element.

1.1 Division algorithm

Theorem 2. For any integers a and b with b > 0, there exist unique integers q and r such that a = bq + r and $0 \le r < b$. Moreover, q is called the quotient and r is called the remainder and they are unique.

2 Primes

Definition 1. A natural number p is called a prime if p > 1 and the only positive divisors of p are 1 and p.

2.1 Euclid's Lemma

Lemma. There are infinitely many primes.

2.2 Sieve of Eratosthenes

Theorem 3. \exists a prime p s.t. $p \le n, \forall n \in \mathbb{N}, n > 1$.

2.3 The prime number theorem

Theorem 4. Let $\pi(x)$ be the number of primes less than or equal to x. Then $\lim_{x\to\infty}\frac{\pi(x)}{x/\ln(x)}=1$.

In other words, the number of primes less than x is approximately less than or equal to $x/\ln(x)$.

3 Division

3.1 GCD

Definition 2. Let a and b be integers, not both zero. The greatest common divisor of a and b, denoted gcd(a, b), is the largest integer that divides both a and b.

Corollary. *e is a divisor of* a *and* b *if and only if* e *is a divisor of* gcd(a, b).

Corollary. ax + by = c has an integer solution if and only if gcd(a, b) divides c.

3.2 Bezout's Identity

Theorem 5. gcd(a, b) is the **smallest** positive integer that can be written in the form ax + by. (linear combination of a and b)

3.3 Euclidean Algorithm

```
Lemma. If a = bq + r, for a, b, q, r \in \mathbb{Z}, then gcd(a, b) = gcd(b, r).
```

While loop version:

Input: $a, b \in \mathbb{Z}$

Output: gcd(a, b)

Procedure:

while $b \neq 0$ do

 $r = a \mod b$

a = b

b = r

end while

return a

Recursive version:

```
Input: a,b\in\mathbb{Z}

Output: \gcd(a,b)

Procedure:

if b=0 then

return a

else

return \gcd(b,a\mod b)

end if
```

3.4 Linear equations

Solve linear equations in the form of ax + by = c.

- 1. Use the Euclidean Algorithm to find gcd(a, b).
- 2. Check if gcd(a, b) divides c.
- 3. If it does, find x_0, y_0 such that $ax_0 + by_0 = \gcd(a, b)$.
- 4. Multiply the equation by $c/\gcd(a,b)$ to get the solution.
- 5. The general solution is $x = x_0 + c \cdot k$, $y = y_0 c \cdot k$ for $k \in \mathbb{Z}$.
- 6. If gcd(a, b) does not divide c, there is no solution.

3.4.1 Describe all solutions

Theorem 6. Let $d = \gcd(a, b)$. The equation ax + by = c has a solution if and only if d divides c. The set of solutions is given by

$$\{(x_0 + \frac{b}{d}t, y_0 - \frac{a}{d}t)|t \in \mathbb{Z}\}$$

Here x_0, y_0 is a particular solution.

 x_0, y_0 can be found by solving ax + by = d using the Euclidean Algorithm as described above.

3.4.2 Key lemma

Lemma. Let $a, b \in \mathbb{Z}$ and $d = \gcd(a, b)$. $d = 1 \iff (a|bc \implies a|c)$.

Note how it is not true for d > 1.

3.5 Fundemental Theorem of Arithmetic

Theorem 7. $\forall n \in \mathbb{N}, n > 1, n \text{ can be written as a product of primes. Moreover, this factorization is unique.$

Usually, we write $n=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}$. Note that e_i can be 0 and p_i are distinct primes.

Corollary. Let p be a prime. $p|a_1a_2\cdots a_n \implies p|a_i$ for some i.

Proposition. Suppose
$$m = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$
 and $n = p_1^{f_1} p_2^{f_2} \cdots p_k^{f_k}$, then $\gcd(m,n) = p_1^{\min(e_1,f_1)} p_2^{\min(e_2,f_2)} \cdots p_k^{\min(e_k,f_k)}$ and $lcm(m,n) = p_1^{\max(e_1,f_1)} p_2^{\max(e_2,f_2)} \cdots p_k^{\max(e_k,f_k)}$.

Corollary. $gcd(m, n) \cdot lcm(m, n) = mn$.

4 Congruences

Definition 3. Let $a, b, n \in \mathbb{Z}$ with n > 0. We say a is congruent to b modulo n if n | (a - b). We write $a \equiv b \pmod{n}$.

Note that it is reflective, symmetric and transitive. It is also closed under addition, exponentiation and multiplication.

4.1 Congruence Class

Definition 4. Let $n \in \mathbb{Z}$ with n > 0. The congruence class of a modulo n is the set of all integers that are congruent to a modulo n. We denote this by $[a]_n$.

$$[a]_n = \{x \in \mathbb{Z} | x \equiv a \pmod{n}\}$$

4.2 Modular exponentiation

Theorem 8. Let $a, b, n \in \mathbb{Z}$ with n > 0. Then $a \equiv b \pmod{n} \implies a^k \equiv b^k \pmod{n}$.

Thus, we can calculate large powers by repetitively squaring the number and multiply the result.

4.2.1 Representations of integer

Theorem 9. Let $b \in \mathbb{Z}$ with b > 1. Then every integer n can be written in the form

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0$$

where $0 \le a_i < b, a_k \ne 0, k \in \mathbb{N}$.

Moreover this representation is unique.

This is how binary representation works and it can extend to any base.

4.3 Linear Congruences

 $ax \equiv b \pmod{n}$ is a linear congruence. It has a solution if and only if gcd(a, n)|b. Basically expressing it as ax + ny = b and solving it.

Theorem 10. If $d = \gcd(a, n)$ and d|b, then the linear congruence $ax \equiv b \pmod{n}$ has exactly d solutions modulo n.

Solutions are considered the same if they differ by a multiple of n/d.

4.4 Multiplicative Inverse

Definition 5. Let $a, n \in \mathbb{Z}$ with n > 0. The multiplicative inverse of a modulo n is an integer x such that $ax \equiv 1 \pmod{n}$. We denote this by a^{-1} .

Corollary. Let p be a prime, then every $a \neq 0 \pmod{p}$ has a multiplicative inverse.

Corollary. Let p be a prime, $a \equiv a^{-1} \pmod{p} \iff a \equiv \pm 1 \pmod{p}$.

4.5 Chinese Remainder Theorem

Theorem 11. Let n_1, n_2, \dots, n_k be positive integers that are pairwise relatively prime. Then the system of congruences

$$\begin{cases} x \equiv a_1 \pmod{n_1} \\ x \equiv a_2 \pmod{n_2} \end{cases}$$

$$\vdots$$

$$x \equiv a_k \pmod{n_k}$$

has a unique solution modulo $n_1 n_2 \cdots n_k$.

Theorem 12. The system of linear congruences

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$
 \vdots
 $x \equiv a_r \pmod{n_r}$

has a solution if and only if $a_i \equiv a_j \pmod{\gcd(n_i, n_j)}$ for all i, j. Moreover, the solution is unique modulo $N = lcm(n_1, n_2, \dots, n_r)$.

4.5.1 Algorithm

Let $N = n_1 n_2 \cdots n_k$. Then $N_i = N/n_i$. Let y_i be the multiplicative inverse of N_i modulo n_i . Then the solution is

$$x = a_1 y_1 N_1 + a_2 y_2 N_2 + \dots + a_k y_k N_k$$

To see that $x \equiv a_i \pmod{n_i}$, note that $N_i \equiv 0 \pmod{n_j}$ for $j \neq i$ and $N_i \equiv 1 \pmod{n_i}$. Thus $x \equiv a_i y_i \pmod{n_i}$ and $a_i y_i \equiv 1 \pmod{n_i}$.

4.6 Divisibility criteria

To be added if needed.

5 Fermat's Little Theorem

5.1 Wilson's Theorem

Theorem 13. *let* p *be a prime. Then* $(p-1)! \equiv -1 \pmod{p}$.

5.2 Fermat's Little Theorem

Theorem 14. Let p be a prime and $a \in \mathbb{Z}$ with $p \nmid a$. Then $a^{p-1} \equiv 1 \pmod{p}$.

Corollary. Let p be a prime and $a \in \mathbb{Z}$. Then if $d \equiv e \pmod{p-1}$, then $a^d \equiv a^e \pmod{p}$.

Proof. Let
$$d=e+k(p-1)$$
. Then $a^d\equiv a^{e+k(p-1)}\equiv a^ea^{k(p-1)}\equiv a^e(a^{p-1})^k\equiv a^e\pmod p$.

5.3 Euler's Theorem

Theorem 15. Let $n \in \mathbb{Z}$ with n > 0 and $a \in \mathbb{Z}$ with gcd(a, n) = 1. Then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Lemma. $gcd(a, n) = 1 \land gcd(b, n) = 1 \implies gcd(ab, n) = 1.$

Lemma. Suppose $n = p^r$ for some prime p and $r \in \mathbb{N}$. Then $\phi(n) = p^r - p^{r-1}$.

Lemma. If gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.

5.3.1 Euler's phi function

Definition 6. Let $n \in \mathbb{Z}$ with n > 0. The Euler's phi function $\phi(n)$ is the number of positive integers less than n that are relatively prime to n.

Theorem 16. Let
$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$
. Then $\phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2}) \cdots (1 - \frac{1}{p_k})$.

Note that it is because of the two lemmas above. ϕ is morphism and is multiplicative.

Theorem 17. $\sum_{d|n} \phi(d) = n$

This is because $\phi(d)$ is the number of elements in the set $\{x \in \mathbb{Z} | 1 \le x \le n, \gcd(x,n) = d\}$.

5.3.2 Multiplicative group

Note that the Euler ϕ function is multiplicative only if gcd(m, n) = 1.

Lemma. If $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, where p_i are distinct primes and $e_i \ge 1$, then

$$f(n) = \prod_{i=1}^{k} f(p_i^{e_i}) = \prod_{i=1}^{k} p_i^{e_i - 1} (p_i - 1)$$

Theorem 18. If f(n) is multiplicative, so is $F(n) = \sum_{d|n} f(d)$.

Definition 7. *Define two more multiplicative functions:*

- $\sigma(n)$ is the sum of all positive divisors of n.
- $\tau(n)$ is the number of positive divisors of n.

5.4 Perfect numbers

Theorem 19. Let n be a positive integer, then n is a perfect number if and only if $\sigma(n) = 2n$.

Or equivalently, n is the sum of its proper divisors.

Theorem 20. Suppose $m \le 2$ is a prime and $p = 2^m - 1$ is also a prime. Then $n = 2^{m-1}p$ is a perfect number.

Lemma. If $2^m - 1$ is prime, then m is prime.

Definition 8. Mersenne prime is a prime of the form $2^m - 1$.

Theorem 21. Even numbers of the form $n = 2^{m-1}(2^m - 1)$ are perfect if $2^m - 1$ is prime.

5.4.1 Euler's Perfect Number Theorem

Theorem 22. Let n be an even perfect number. There exists a prime m such that $n = 2^{m-1}(2^m - 1)$ and $2^m - 1$ is prime.

5.5 Mobius Inversion Formula

Definition 9. The Mobius function $\mu(n)$ is defined as

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } p^2 | n \text{ for some prime } p \\ (-1)^k & \text{if } n = p_1 p_2 \cdots p_k \text{ for distinct primes } p_i \end{cases}$$

If f(n) is a multiplicative function, and $F(n) = \sum_{d|n} f(d)$ is also multiplicative. We want to recover f(n) from F(n).

Definition 10. The Mobius inversion formula is

$$f(n) = \sum_{d|n} \mu(d) F(n/d)$$

Note that $\mu(n)$ is multiplicative.

Corollary.

$$f(n) = \sum_{d|n} F(d)\mu(n/d) = \sum_{d|n} F(n/d)\mu(d)$$

Note $F(n/d) = \sum_{e \mid \frac{n}{d}} f(e)$.

$$f(n) = \sum_{d|n} F(\frac{n}{d}) \mu(d) = \sum_{d|n} \sum_{e|\frac{n}{d}} f(e) \mu(d) = \sum_{e|n} \sum_{d|\frac{n}{e}} f(e) \mu(d) = \sum_{e|n} f(e) \sum_{d|\frac{n}{e}} \mu(d)$$

5.6 Primality Testing

5.6.1 Fermat's Primality Test

If there exists an a such that $a^{n-1} \not\equiv 1 \pmod{n}$, then n is composite. Otherwise, n is probably prime. (Fermat's Little Theorem)

5.6.2 Carmichael Numbers

Definition 11. A composite number n is a Carmichael number if $a^{n-1} \equiv 1 \pmod{n}$ for all a such that $\gcd(a,n)=1$.

Suppose $n = p_1 p_2 \cdots p_r$ where p_1, p_2, \dots, p_r are distinct primes. If $p_i - 1 \mid n - 1$ for all i, then n is a Carmichael number.

So each prime of Carmichael number would satisfy Fermat's Primality Theorem to get $b^{p_i-1} \equiv b^{n-1} \equiv 1 \pmod{n}$. Then by CRT, we can get $b^{n-1} \equiv 1 \pmod{n}$.

5.6.3 Miller-Rabin Primality Test

To deal with Carmichael numbers, we use the Miller-Rabin Primality Test. It is a probabilistic algorithm.

- 1. Start out the same way as Fermat's Primality Test. Choose a random integer b in [2, n-2]. Then compute $b^{n-1} \pmod{n}$.
- 2. If $b^{n-1} \not\equiv 1 \pmod{n}$, then n is not prime.
- 3. If $b^{n-1} \equiv 1 \pmod{n}$, then we probe a bit deeper by computing $x \equiv b^{(n-1)/2} \pmod{n}$. (Here we are assuming that n-1 is even. If n-1 is odd, then n is not prime since $b \geq 2$)

- 4. Note that $x^2 = b^{n-1} \equiv 1 \pmod{n}$. If n is a prime, then $x \equiv \pm 1 \pmod{n}$.
- 5. If $x \equiv 1 \pmod{n}$, and $\frac{n-1}{2}$ is odd, We cannot say anything here, pick another b and repeat the test.
- 6. If $x \equiv -1 \pmod{n}$, then n is **probably** prime. We cannot say anything here, pick another b and repeat the test.
- 7. However, if $x \equiv 1 \pmod n$, and $\frac{n-1}{2}$ is even, then we can dig deeper by computing $y \equiv b^{(n-1)/4} \pmod n$.
- 8. Same idea: If $y \equiv -1 \pmod{n}$, or $y \equiv 1 \pmod{n}$ and $\frac{n-1}{4}$ is odd, then pick another b and repeat the test.
- 9. If $y \equiv 1 \pmod{n}$, and $\frac{n-1}{4}$ is even, then repeat checking.
- 10. The only stop criterion is when we conclude that n is composite.
- 11. We never conclude with 100% certainty that n is prime. We can only say that n is **probably** prime. It is a probabilistic test!

5.6.4 Rabin's Theorem

Theorem 23. Fix a composite number n. Pick $a \in [2, n-2]$ at random. Then the probability that $a^{n-1} \equiv 1 \pmod{n}$ is at most $\frac{1}{4}$.

In other words, the Miller-Rabin Primality Test can detect a composite number with probability at least $\frac{1}{4}$.

Thus if we run m iterations of the test, the probability that n is composite is at most $(\frac{3}{4})^m$.

5.7 Pollard's Factorization Algorithm

Goal: factor a given composite number n.

- 1. Choose $r_0 \equiv 2^{0!} \pmod{n}$.
- 2. Compute the next one using the formula $r_k \equiv r_{k-1}^k \pmod{n}$.
- 3. For each k compute $\gcd(r_k-1,n)=g_k$. Note that $1\leq g_k\leq r_{k-1}\leq n-2$ and g_k divides n.

- 4. For each k So if $g_k > 1$, then we have found a factor of n which is greater than 1.
- 5. Repeat the process till we find a factor of n.

The idea is that if n is prime, $2^{k!} \equiv 1 \pmod{n}$. If n is composite, then $2^{k!} \not\equiv 1 \pmod{n}$.

6 Cryptography

6.1 Classical Cryptography

No public key.

6.1.1 Affine Cipher

Basically solving two linear congruences. $\begin{cases} ax_1+b\equiv c_1\pmod{26}\\ ax_2+b\equiv c_1\pmod{26} \end{cases}$ where c_1,c_2 are the ciphertext and x_1,x_2 are the plaintext. Then we can recover a,b by solving the system of congruences.

Start by eliminating one variable by subtracting the two equations. Then solve for the other variable.

6.1.2 Exponentiation Cipher

Use the lemma:

Lemma.
$$de \equiv 1 \pmod{\phi(n)} \implies m^{de} \equiv m \pmod{n}$$
.

Then we can encrypt by $c \equiv m^e \pmod{n}$ and decrypt by $m \equiv c^d \pmod{n}$.

6.2 RSA

Theorem 24. Let n = pq where p, q are distinct primes. Let e be an integer such that $gcd(e, \phi(n)) = 1$. Then the encryption function is $c \equiv m^e \pmod{n}$ and the decryption function is $m \equiv c^d \pmod{n}$ where d is the multiplicative inverse of e modulo $\phi(n)$.

A variation of the Exponentiation Cipher.

6.2.1 Fermat's Factorization Method

Theorem 25. Let n be a composite number. Then n can be factored as $n = a^2 - b^2 = (a + b)(a - b)$.

One of a,b is larger than \sqrt{n} and the other is smaller. We can find a by computing $\lceil \sqrt{n} \rceil$ and keep incrementing until we find a square. Then we can find b by computing a^2-n and keep incrementing until we find a square.