

Cubes and Cubes Roots Ex 4.3 Q3

Answer:

(i)

We have:

 $\begin{array}{r}
130 \\
\underline{1} \\
129 \\
\underline{7} \\
122 \\
\underline{19} \\
103 \\
\underline{37} \\
66 \\
\underline{61} \\
5
\end{array}$

- : The next number to be subtracted is 91, which is greater than 5.
- : 130 is not a perfect cube.

However, if we subtract 5 from 130, we will get 0 on performing successive subtraction and the number will become a perfect cube.

If we subtract 5 from 130, we get 125. Now, find the cube root using successive subtraction.

We have:

$$\begin{array}{r}
125 \\
\underline{1} \\
124 \\
\underline{7} \\
117 \\
\underline{19} \\
98 \\
\underline{37} \\
61 \\
\underline{61} \\
0
\end{array}$$

- . The subtraction is performed 5 times.
- $\sqrt[3]{125} = 5$

Thus, it is a perfect cube.

We have:

- $\begin{array}{r}
 345 \\
 \hline
 1 \\
 344 \\
 \hline
 7 \\
 337 \\
 \hline
 19 \\
 318 \\
 \hline
 37
 \end{array}$
- 281 61
- 220 91
- 129
- $\frac{127}{2}$
- . The next number to be subtracted is 161, which is greater than 2.
- : 345 is not a perfect cube.

However, if we subtract 2 from 345, we will get 0 on performing successive subtraction and the number will become a perfect cube.

If we subtract 2 from 345, we get 343. Now, find the cube root using successive subtraction.

343

 $\frac{1}{342}$

 $\frac{7}{335}$

19

 $\frac{316}{37}$

279

 $\frac{61}{218}$

 $\frac{91}{127}$

 $\frac{127}{0}$

.. The subtraction is performed 7 times.

$$\sqrt[3]{343} = 7$$

Thus, it is a perfect cube.

(iii)

We have:

$$792$$
 1
 791
 7
 784
 19
 765
 37
 728
 61
 667
 91
 576
 109
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169
 169

- : The next number to be subtracted is 271, which is greater than 63.
- .. 792 is not a perfect cube.

However, if we subtract 63 from 792, we will get 0 on performing successive subtraction and the number will become a perfect cube.

If we subtract 63 from 792, we get 729. Now, find the cube root using the successive subtraction.

We have:

$$729$$
 -1
 728
 7
 721
 19
 702
 37
 665
 61
 604
 91
 513
 127
 386
 169
 217
 217
 0

: The subtraction is performed 9 times.

$$...\sqrt[3]{729} = 9$$

Thus, it is perfect cube.

******* END *******