Отчет о выполнении лабораторной работы 17 "Демодуляция в шумах"

Калашников Михаил, Б03-202

1. Канал с двоичной фазовой модуляцией

Повернем созвездие на угол $\frac{\pi}{4}$. При snr = 6 dB, получим, что $P_e' \approx 0.023$. Как видно из графика, при snr = 3 dB вероятность ошибки изначального созвездия так же составляет $P_e \approx 0.023$.

2. Канал с двоичной ортогональной модуляцией

Повернем созвездие на угол $\frac{\pi}{8}$. При snr = 6 dB, получим, что $P_e'\approx 0.071$. Это примерно соответствует значению snr ≈ 3.5 dB.

3. Канал с двоичной амплитудной модуляцией

4. Канал с квадратурной модуляцией QPSK

Оценим выигрыш в отношении сигнал/шум, который нумерация Грея дает при $P_b \approx 10^{-3}$. Для этого установим snr = 10 dB. При этом вероятность ошибки на бит при Віпагу-нумерации составит $P_b' \approx 0.0012$. Затем перейдем на нумерацию Грея и будем постепенно снижать отношение сигнал/шум. При snr = 9.6 dB получим ту же самую вероятность ошибки.

5. Каналы с М-ичной модуляцией

Выясним насколько нужно увеличить snr, чтобы сохранить уровень $P_e \approx 10^{-4}$ при переходе от 8ASK к 16ASK. Получим, что $P_{e,~8ASK} \approx 10^{-4}$ при snr = 22 dB, а $P_{e,~16ASK} \approx 10^{-4}$ при snr ≈ 28 dB. Аналогично, 16ASK проигрывает 16QAM по snr примерно на 9 dB. А при переходе от 16QAM к 32QAM для сохранения уровня $P_e \approx 10^{-4}$ необходимо увеличить snr на 3.

6. Линейная модуляция с прямоугольным импульсом

Рис. 1: Спектр мощности сигнала (snr = 30 dB)

7. Корень из приподнятого косинуса

Рис. 2: Глазковая диаграмма при различных значениях т

Рис. 3: Спектр мощности при различных значениях m

8. Двоичная частотная модуляция

Рис. 4: Спектр мощности сигнала в отсутствии шума (snr = $100~\mathrm{dB}$)

9. Модуляция с минимальным частотным сдвигом

Рис. 5: Траектория движения сигнальной точки при различных соотношениях сигнал/шум

Рис. 6: Спектр мощности сигнала в отсутствии шума (snr = $100~\mathrm{dB}$)