motchy **の信号処理備忘録**

motchy

2019 年 11 月 16 日 ~ 2021 年 7 月 1 日

目次

第 部 表記法 第 I.1 章 数学記号 第 I.2 章 連続座標信号の表現 第 I.3 章 離散座標信号の表現	2 3 4 5
第 II 部 畳み込み 第 II.1 章 巡回畳み込み II.1.1 第 II.2 章 諸定理 II.2.1 線形変換と畳み込みの順序交換 III.2.1.1 動機 III.2.1.2 理論 III.2.2 数値実験	. 9
第 III.1 章 Fourier 解析 第 III.1 章 基底関数	12 13 13 13 14 14 14 15 15 16 17
第 IV 部 Laplace 変換 IV.0.1 複素指数関数入力に対する伝達関数の作用	
第 V 部 Z 変換 第 V.1章 基礎理論 V.1.1 最終値定理	
第 VI 部 応用 第 VI.1章 信号検出 VI.1.1 位置特定に於ける cos 類似度による方法と最良近似による方法の等価性 VI.1.1.1 手法 1: cos 類似度の絶対値の最大化 VI.1.1.2 手法 2: 最良近似 VI.1.1.3 手法 1,2 の等価性	. 29

第Ⅰ部

表記法

第 I.1 章

数学記号

- F: 体
- ℤ: 整数全体の集合
- ℝ: 実数全体の集合
- ℂ: 複素数全体の集合
- $\boldsymbol{a}/\boldsymbol{b} \ (d \in \mathbb{N}, \ \boldsymbol{a}, \boldsymbol{b} \in \mathbb{F}^d, \ b_i \neq 0 \text{ for all } i): [a_1/b_1, \cdots, a_d/b_d]^\top$
- $a\%b~(a,b\in\mathbb{Z},~b\ne 0)$: a を b で割った余り。符号に 2 通り考えられるが、本書では結果を 0 以上 |a| 未満とする定義を採用する。
- $\boldsymbol{a}\%\boldsymbol{b} \ (d \in \mathbb{N}, \ \boldsymbol{a}, \boldsymbol{b} \in \mathbb{Z}^d, \ b_i \neq 0 \text{ for all } i): [a_1\%b_1, \cdots, a_d\%b_d]^\top$

第1.2章

連続座標信号の表現

連続的な座標値 $x\in\mathbb{R}^{d_1}$ $(d_1\in\mathbb{N})$ から \mathbb{R}^{d_2} $(d_2\in\mathbb{N})$ への写像を d_1 次元連続座標信号という。信号値は全ての座標に対して定義される必要はない。

例えばカセットテープレコーダーに記録された音声信号は $d_1=d_2=1$ のものである。

信号 f の位置 $m{x}=[x_1,x_2,\cdots,x_{d_1}]^{ op}$ での値を $f(m{x})$ や $f(x_1,\cdots,x_{d_1})$ で表す。

第 I.3 章

離散座標信号の表現

離散的な座標値 $x\in\mathbb{Z}^{d_1}$ $(d_1\in\mathbb{N})$ から \mathbb{R}^{d_2} $(d_2\in\mathbb{N})$ への写像を d_1 次元離散座標信号という。信号値は全ての座標に対して定義される必要はない。

例えば離散的な時刻での電圧のサンプリングデータは $d_1=d_2=1$ のものである (この場合の「座標」は時間軸上での座標という意味になる)。また、コンピュータのディスプレイに映る 2 次元カラー画像は $d_1=2, d_2=3$ のものである。

信号 f の位置 $m{x}=[x_1,x_2,\cdots,x_{d_1}]^{ op}$ での値を $f(m{x})$ や $f(x_1,\cdots,x_{d_1})$ で表す。

第Ⅱ部

畳み込み

第 Ⅱ.1 章

巡回畳み込み

 $\Omega:=\{0,1,\cdots,N_1-1\} imes\{0,1,\cdots,N_2-1\} imes\cdots imes\{0,1,\cdots,N_d-1\}$ とする。f,g を周期が (N_1,\cdots,N_d) であるような離散座標信号 $f,g:\Omega\to\mathbb{C};\; m{n}=[n_1,n_2,\cdots,n_d]^ op\mapsto f(m{n}),g(m{n})$ とする。 $m{N}:=[N_1,\cdots,N_d]^ op$ とする。f と g の巡回畳み込み f * g を次式で定義する。

$$\left(f \underset{\mathrm{cyc}}{*} g\right)(\boldsymbol{n}) := \sum_{\boldsymbol{m} \in \Omega} f(\boldsymbol{m}) g((\boldsymbol{n} - \boldsymbol{m}) \% \boldsymbol{N})$$

Ⅱ.1.1 巡回畳み込みの可換則

 Ω, f, g の定義を $\mathrm{II}.1$ と同じものとするとき、次が成り立つ。

$$f * g = g * f_{\text{cyc}}$$

Proof.

$$\left(g * f\atop \operatorname{cyc}\right)(\boldsymbol{n}) = \sum_{\boldsymbol{m} \in \Omega} g(\boldsymbol{m}) f((\boldsymbol{n} - \boldsymbol{m}) \% \boldsymbol{N})$$

$$= \sum_{m_1 = 0}^{N_1 - 1} \sum_{\boldsymbol{m}_2 \in \Omega_2} g(m_1, \boldsymbol{m}_2) f((n_1 - m_1) \% N_1, (\boldsymbol{n}_2 - \boldsymbol{m}_2) \% \boldsymbol{N}_2) \tag{1}$$

ここに $m{n}_i := [n_i, \cdots, n_d]^ op (m{m}_i, m{N}_i$ も同様), $\Omega_i := \{0, 1, \cdots, N_i - 1\} imes \cdots imes \{0, 1, \cdots, N_d - 1\}$ である。

$$\begin{split} &(1) = \sum_{m_1=0}^{n_1} \sum_{\boldsymbol{m}_2 \in \Omega_2} g(m_1, \boldsymbol{m}_2) f(n_1 - m_1, (\boldsymbol{n_2} - \boldsymbol{m_2}) \% \boldsymbol{N_2}) \\ &+ \sum_{m_1=n_1+1}^{N_1-1} \sum_{\boldsymbol{m}_2 \in \Omega_2} g(m_1, \boldsymbol{m}_2) f(n_1 + N_1 - m_1, (\boldsymbol{n_2} - \boldsymbol{m_2}) \% \boldsymbol{N_2}) \\ &= \sum_{l_1=n_1}^{0} \sum_{\boldsymbol{m}_2 \in \Omega_2} g(n_1 - l_1, \boldsymbol{m}_2) f(l_1, (\boldsymbol{n_2} - \boldsymbol{m_2}) \% \boldsymbol{N_2}) \\ &+ \sum_{l_1=N_1-1}^{n_1+1} \sum_{\boldsymbol{m}_2 \in \Omega_2} g(n_1 + N_1 - l_1, \boldsymbol{m}_2) f(l_1, (\boldsymbol{n_2} - \boldsymbol{m_2}) \% \boldsymbol{N_2}) \\ &= \sum_{l_1=n_1}^{0} \sum_{\boldsymbol{m}_2 \in \Omega_2} g((n_1 - l_1) \% N_1, \boldsymbol{m}_2) f(l_1, (\boldsymbol{n_2} - \boldsymbol{m_2}) \% \boldsymbol{N_2}) \\ &+ \sum_{l_1=N_1-1}^{n_1+1} \sum_{\boldsymbol{m}_2 \in \Omega_2} g((n_1 - l_1) \% N_1, \boldsymbol{m}_2) f(l_1, (\boldsymbol{n_2} - \boldsymbol{m_2}) \% \boldsymbol{N_2}) \\ &= \sum_{l_1=0}^{N_1-1} \sum_{\boldsymbol{m}_2 \in \Omega_2} g((n_1 - l_1) \% N_1, \boldsymbol{m}_2) f(l_1, (\boldsymbol{n_2} - \boldsymbol{m_2}) \% \boldsymbol{N_2}) \end{split}$$

同様の変形を繰り返すと最終的に次のようになる。

$$\left(g * f\atop_{\text{cyc}}\right)(\boldsymbol{n}) = \sum_{\boldsymbol{l} \in \Omega} g((\boldsymbol{n} - \boldsymbol{l})\% \boldsymbol{N}) f(\boldsymbol{l}) = \left(f * g\atop_{\text{cyc}}\right)(\boldsymbol{n})$$

第Ⅱ.2章

諸定理

Ⅱ.2.1 線形変換と畳み込みの順序交換

Ⅱ.2.1.1 動機

画像処理に於いてカーネルとの畳み込みを実行してから線形変換を施す場合と、事前に画像とカーネルの両方に線形変換を施してから畳み込む場合の結果の違いに関心がある。

Ⅱ.2.1.2 理論

 $d\in\mathbb{N}$ とし、 $f:x\in\mathbb{R}^d\mapsto f(x)\in\mathbb{R}$ を d 次元信号とする。線形変換を表す正則行列を A とし、A による変換を T_A と表す。 T_A による変換は次式を以て定義する。

$$T_A(f)(\boldsymbol{x}) = f(A^{-1}\boldsymbol{x})$$

 $G: x \in \mathbb{R}^d \mapsto G(x) \in \mathbb{R}$ を d 次元信号とする。このとき次式が成り立つ。

$$T_A(G) * T_A(f) = |A|T_A(G * f)$$

Proof.

 μ を Jordan 測度とする。

$$T_A(G)*T_A(f)(oldsymbol{x}) = \int_{\mathbb{R}^d} T_A(G)(oldsymbol{x} - oldsymbol{u}) T_A(f)(oldsymbol{u}) \mu\left(\mathrm{d}oldsymbol{u}
ight) = \int_{\mathbb{R}^d} G(A^{-1}oldsymbol{x} - oldsymbol{u}^{-1}oldsymbol{u}) f(A^{-1}oldsymbol{u}) \mu\left(\mathrm{d}oldsymbol{u}
ight) = \int_{\mathbb{R}^d} G(A^{-1}oldsymbol{x} - A^{-1}oldsymbol{u}) f(A^{-1}oldsymbol{u}) \mu\left(\mathrm{d}oldsymbol{u}
ight) = \int_{\mathbb{R}^d} G(A^{-1}oldsymbol{x} - oldsymbol{v}) f(oldsymbol{v}) \|A\| \|\mu\left(\mathrm{d}oldsymbol{v}\right) \\ (oldsymbol{v} = A^{-1}oldsymbol{u} \, oldsymbol{v} \, oldsymbol{v} \, oldsymbol{v} \, oldsymbol{v} \, oldsymbol{v} \, oldsymbol{u} \, oldsymbol{u} \, oldsymbol{v} \, oldsymbol{$$

II.2.2 数值実験

Mathematica による例が「線形変換と畳み込み.nb」にある。

第Ⅲ部

Fourier 解析

第 Ⅲ.1 章

Fourier 級数展開

Ⅲ.1.1 基底関数

Fourier 級数展開の基底関数は Fourier 変換や DFT のものと違って正規化されていないため、美しさに欠ける。

 $d\in\mathbb{N},\ W_l>0\ (l=1,2,,\cdots,d),\ k\in\mathbb{Z}^d$ とする。次式で定義される、 $x\in\mathbb{R}^d$ に関する連続座標信号を、区間 $\prod_{l=1}^d[-W_l,W_l]$ に於ける第 k 基底関数という。

$$W(\boldsymbol{k}, \boldsymbol{x}) := \exp i \sum_{l=1}^{d} k_l \frac{x_l}{W_l} \pi$$

III.1.2 Fourier 係数

 $d\in\mathbb{N},\ W_l>0\ (l=1,2,,\cdots,d),\ \Omega:=\prod_{l=1}^d[-W_l,W_l],\ k\in\mathbb{Z}^d$ とする。 $f:x\in\mathbb{R}\mapsto f(x)\in\mathbb{R}$ を、第 l 座標に関して周期が $2W_l$ であるような周期関数とする。次式で定義する、k に関する離散座標信号を f の第 k Fourier 係数という。

$$c(f, \boldsymbol{k}) := \left(\prod_{l=1}^{d} 2W_l\right)^{-1} \int_{\Omega} \overline{W(\boldsymbol{k}, \boldsymbol{x})} f(\boldsymbol{x}) d\boldsymbol{x}$$

第Ⅲ.2章

Fourier 变換

Ⅲ.2.1 基底関数

 $d \in \mathbb{N}, \ x, \omega \in \mathbb{R}^d$ とする。次のものを d 次元 Fourier 変換に於ける基底関数という。

$$W(\boldsymbol{\omega}, \boldsymbol{x}) := (2\pi)^{-d/2} \exp i \boldsymbol{\omega}^{\top} \boldsymbol{x}$$

III.2.2 Fourier 変換の定義

 $d\in\mathbb{N},\;\pmb{\omega}\in\mathbb{R}^d$ とする。 $f:\mathbb{R}^d\to\mathbb{C}$ に対して、次式で定義される、 ω に関する連続座標信号を f の Fourier 変換という。

$$\mathcal{F}(f, \boldsymbol{\omega}) := \int_{\mathbb{R}^d} \overline{W(\boldsymbol{\omega}, \boldsymbol{x})} f(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} = (2\pi)^{-d/2} \int_{\mathbb{R}^d} \exp(-i\boldsymbol{\omega}^\top \boldsymbol{x}) f(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}$$

第Ⅲ.3章

離散 Fourier 変換 (DFT)

III.3.1 基底

 $d\in\mathbb{N},\ N_l\in\mathbb{N}\ (l=1,2,\cdots,d),\ m{k},m{n}\in\mathbb{Z}^d$ とする。次式で定義される、 $m{n}$ に関する離散座標信号を d 次元 DFT の第 $m{k}$ 基底ベクトルという。

$$W(\boldsymbol{k}, \boldsymbol{n}) := \left(\prod_{l=1}^{d} N_l\right)^{-1/2} \exp i \left(\sum_{l=1}^{d} \frac{k_l n_l}{N_l} 2\pi\right)$$

III.3.2 DFT の定義

 $d\in\mathbb{N},\ N_l\in\mathbb{N}\ (l=1,2,\cdots,d),\ m{k}\in\mathbb{Z}^d$ とする。 $\Omega:=\{0,1,\cdots,N_1-1\} imes\{0,1,\cdots,N_2-1\} imes\cdots imes\{0,1,\cdots,N_d-1\}$ とする。f を周期が (N_1,N_2,\cdots,N_d) であるような離散座標信号 $f:\mathbb{Z}^d\to\mathbb{C};\ m{n}=[n_1,n_2,\cdots,n_d]^{\top}\mapsto f(m{n})$ とするとき、次式で定義される、 $m{k}$ に関する離散座標信号を f の DFT という。

$$DFT(f, k) := \sum_{n \in \Omega} \overline{W(k, n)} f(n)$$

III.3.3 Hermite な離散時間信号の DFT は実数である

 $d,N_l,m{k},\Omega,f$ の定義は III.3.2 と同じものとする。f にさらに Hermite 性: $\overline{f(m{n})}=f(-m{n})$ を要請するとき、DFT $(f,m{k})$ は実数となる。

Proof.

$$\begin{split} 2\mathrm{Im}\left(\mathrm{DFT}(f,\boldsymbol{k})\right) &= \mathrm{DFT}(f,\boldsymbol{k}) - \overline{\mathrm{DFT}(f,\boldsymbol{k})} \\ &= \sum_{\boldsymbol{n} \in \Omega} \overline{W(\boldsymbol{k},\boldsymbol{n})} f(\boldsymbol{n}) - \sum_{\boldsymbol{n} \in \Omega} W(\boldsymbol{k},\boldsymbol{n}) \overline{f(\boldsymbol{n})} \end{split}$$

ここで $oldsymbol{n}_{\mathrm{M}} := [N_1, \cdots, N_d]^{ op}$ とすると、

$$\overline{W(\boldsymbol{k},\boldsymbol{n})} = W(\boldsymbol{k},-\boldsymbol{n}) = W(\boldsymbol{k},\boldsymbol{n}_{\mathrm{M}}-\boldsymbol{n})$$

また、f の Hermite 性の仮定より

$$\overline{f(n)} = f(-n) = f(n_{\mathrm{M}} - n)$$

以上より

$$2 ext{Im} \left(ext{DFT}(f, m{k}) \right) = \sum_{m{n} \in \Omega} W(m{k}, m{n}_{ ext{M}} - m{n}) f(m{n}) - \sum_{m{n} \in \Omega} W(m{k}, m{n}) f(m{n}_{ ext{M}} - m{n})$$

$$= \sum_{m{n} \in \Omega} W(m{k}, m{n}_{ ext{M}} - m{n}) f(m{n}) - \sum_{m{n} \in \Omega} W(m{k}, m{n}_{ ext{M}} - m{n}) f(m{n})$$

$$\left(\left\{ (m{n}, m{n}_{ ext{M}} - m{n}) | m{n} \in \Omega \right\} = \left\{ (m{n}_{ ext{M}} - m{n}), m{n} | m{n} \in \Omega \right\}$$
 を用いた)

III.3.3.1 系: Hermite な離散時間信号の IDFT は実数である

III.3.3 と同様にして示せる。

III.3.4 巡回畳み込みの DFT は DFT の積に比例する

 $d,N_l,m{k},\Omega$ の定義は III.3.2 と同じものとする。f,g を周期が (N_1,N_2,\cdots,N_d) であるような離散座標信号 $f,g:\mathbb{Z}^d\to\mathbb{C};\;m{n}=[n_1,n_2,\cdots,n_d]^{ op}\mapsto f(m{n}),g(m{n})$ とするとき、次が成り立つ。

$$\mathrm{DFT}\left(f_{\mathrm{cyc}}^*g, \boldsymbol{k}\right) = \left(\prod_{l=1}^d N_l\right)^{1/2} \mathrm{DFT}(f, \boldsymbol{k}) \mathrm{DFT}(g, \boldsymbol{k})$$

Proof.

 $oldsymbol{N} := [N_1, \cdots, N_d]^ op$ とする。

$$DFT \left(f * g, \mathbf{k} \right) = \sum_{\mathbf{n} \in \Omega} \overline{W(\mathbf{k}, \mathbf{n})} \left(f * g \right) (\mathbf{n}) = \sum_{\mathbf{n} \in \Omega} \overline{W(\mathbf{k}, \mathbf{n})} \sum_{\mathbf{m} \in \Omega} f(\mathbf{m}) g((\mathbf{n} - \mathbf{m}) \% \mathbf{N})$$

$$= \sum_{\mathbf{m} \in \Omega} f(\mathbf{m}) \sum_{\mathbf{n} \in \Omega} \overline{W(\mathbf{k}, \mathbf{n})} g((\mathbf{n} - \mathbf{m}) \% \mathbf{N})$$

$$= \sum_{\mathbf{m} \in \Omega} f(\mathbf{m}) \sum_{\mathbf{n} \in \Omega} \left(\prod_{l=1}^{d} N_l \right)^{1/2} \overline{W(\mathbf{k}, \mathbf{m}) W(\mathbf{k}, \mathbf{n} - \mathbf{m})} g((\mathbf{n} - \mathbf{m}) \% \mathbf{N})$$

$$= \left(\prod_{l=1}^{d} N_l \right)^{1/2} \sum_{\mathbf{m} \in \Omega} \overline{W(\mathbf{k}, \mathbf{m})} f(\mathbf{m}) \sum_{\mathbf{n} \in \Omega} \overline{W(\mathbf{k}, (\mathbf{n} - \mathbf{m}) \% \mathbf{N})} g((\mathbf{n} - \mathbf{m}) \% \mathbf{N})$$

$$= \left(\prod_{l=1}^{d} N_l \right)^{1/2} \sum_{\mathbf{m} \in \Omega} \overline{W(\mathbf{k}, \mathbf{m})} f(\mathbf{m}) \sum_{\mathbf{n} \in \Omega} \overline{W(\mathbf{k}, \mathbf{n})} g(\mathbf{n})$$

$$= \left(\prod_{l=1}^{d} N_l \right)^{1/2} DFT(f, \mathbf{k}) DFT(g, \mathbf{k})$$

III.3.5 Gaussian ノイズの DFT

 $F(n)\in\mathbb{C}$ $(n=0,1,\cdots,N-1)$ は互いに独立で、複素正規分布 $N(0,\sigma^2)$ に従うとする $\left(\mathrm{p}(f)=rac{1}{2\pi\sigma^2}\exprac{-\mathrm{Re}\,(f)^2-\mathrm{Im}\,(f)^2}{2\sigma^2}=rac{1}{2\pi\sigma^2}\exprac{-|f|^2}{2\sigma^2}
ight)$ 。これの DFT を $G(k)=\mathrm{DFT}(F,k)$ とするとき、G(k) $(k=0,1,\cdots,N-1)$ もまた互いに独立で、複素正規分布 $N(0,\sigma^2)$ に従う。

Proof.

$$P \in \mathbb{C}^{N \times N}, \ P_{k,n} := W(k,n) := \frac{1}{\sqrt{N}} \exp i \frac{kn}{N} 2\pi \ (k,n \in \{0,1,\cdots,N-1\})$$
$$\mathbf{F} := [F(0),F(1),\cdots,F(N-1)]^{\top}, \ \mathbf{G} := [G(0),G(1),\cdots,G(N-1)]^{\top}$$

と定義すると

$$G = P^*F$$

となる。

$$\Pr\left[G = g \in \mathbb{C}^{N}\right] = \Pr\left[P^{*}F = g\right] = \Pr\left[F = Pg\right]$$

$$= \prod_{i=0}^{N-1} \frac{1}{2\pi\sigma^{2}} \exp\frac{-|(Pg)[i]|^{2}}{2\sigma^{2}} = \left(\prod_{i=0}^{N-1} \frac{1}{2\pi\sigma^{2}}\right) \exp\sum_{i=0}^{N-1} \frac{-|(Pg)[i]|^{2}}{2\sigma^{2}}$$

$$= \left(\prod_{i=0}^{N-1} \frac{1}{2\pi\sigma^{2}}\right) \exp\frac{-\|Pg\|_{2}^{2}}{2\sigma^{2}} = \left(\prod_{i=0}^{N-1} \frac{1}{2\pi\sigma^{2}}\right) \exp\frac{-\|g\|_{2}^{2}}{2\sigma^{2}}$$

$$= \prod_{i=0}^{N-1} \frac{1}{2\pi\sigma^{2}} \exp\frac{-|g_{i}|^{2}}{2\sigma^{2}}$$

第Ⅲ.4章

サンプリング定理

 $d\in\mathbb{N},\ W_l>0\ (l=1,2,,\cdots,d),\ \Omega:=\prod_{l=1}^d[-W_l,W_l]$ とする。 $f:\mathbb{R}^d\to\mathbb{R}$ の Fourier 変換 $\mathcal{F}(f,\omega)$ が存在してその台が Ω に含まれるとき、次式が成り立つ。

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{n} \in \mathbb{N}} f\left(\pi \frac{n_1}{W_1}, \cdots, \pi \frac{n_d}{W_d}\right) \prod_{l=1}^d \operatorname{sinc} W_l\left(x_l + \pi \frac{n_l}{W_l}\right)$$

つまり f の各点での評価値を沢山集めて f を任意の精度で近似できる。

角周波数 W_l のかわりに周波数 $F_l=W_l/(2\pi)$ を使うと上式は次式になる。

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{n} \in \mathbb{N}} f\left(\frac{n_1}{2F_1}, \cdots, \frac{n_d}{2F_d}\right) \prod_{l=1}^d \operatorname{sinc} 2\pi F_l\left(x_l + \frac{n_l}{2F_l}\right)$$

Proof.

 $\mathcal{F}(f,\omega)$ の台が超直方体 Ω に含まれるから $\mathcal{F}(f,\omega)$ は Fourier 級数展開できる。第 nFourier 係数を $c(\mathcal{F}(f),n)$ とすると

$$\mathcal{F}(f, \boldsymbol{\omega}) = \sum_{\boldsymbol{n} \in \mathbb{N}^d} c(\mathcal{F}(f), \boldsymbol{n}) \exp i \sum_{l=1}^d n_l \frac{\omega_l}{W_l} \pi$$

となる。 $c(\mathcal{F}(f), n)$ は次式で求まる。

$$c(\mathcal{F}(f), \boldsymbol{n}) = \left(\prod_{l=1}^{d} 2W_l\right)^{-1} \int_{\Omega} \mathcal{F}(f, \boldsymbol{\xi}) \exp(-i) \sum_{l=1}^{d} n_l \frac{\boldsymbol{\xi}_l}{W_l} \pi d\boldsymbol{\xi}$$

$$= (2\pi)^{d/2} \left(\prod_{l=1}^{d} 2W_l\right)^{-1} (2\pi)^{-d/2} \int_{\mathbb{R}^d} \mathcal{F}(f, \boldsymbol{\xi}) \exp i \sum_{l=1}^{d} \left(\frac{-n_l}{W_l} \pi\right) \boldsymbol{\xi}_l d\boldsymbol{\xi}$$

$$= (2\pi)^{d/2} \left(\prod_{l=1}^{d} 2W_l\right)^{-1} \mathcal{F}^{-1} \left(\mathcal{F}(f), \frac{-\pi \boldsymbol{n}}{\boldsymbol{W}}\right)$$

$$= (2\pi)^{d/2} \left(\prod_{l=1}^{d} 2W_l\right)^{-1} f\left(\frac{-\pi \boldsymbol{n}}{\boldsymbol{W}}\right)$$

f は $\mathcal{F}(f)$ の Fourier 逆変換で次のようにして求まる。

$$f(\boldsymbol{x}) = \mathcal{F}^{-1}\left(\mathcal{F}(f), \boldsymbol{x}\right) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} \mathcal{F}(f, \boldsymbol{\omega}) \exp i\boldsymbol{\omega}^\top \boldsymbol{x} d\boldsymbol{\omega} = (2\pi)^{-d/2} \int_{\Omega} \mathcal{F}(f, \boldsymbol{\omega}) \exp i\boldsymbol{\omega}^\top \boldsymbol{x} d\boldsymbol{\omega}$$

$$= (2\pi)^{-d/2} \int_{\Omega} \sum_{\boldsymbol{n} \in \mathbb{N}^d} c(\mathcal{F}(f), \boldsymbol{n}) \left(\exp i \sum_{l=1}^d n_l \frac{\omega_l}{W_l} \pi \right) \exp i\boldsymbol{\omega}^\top \boldsymbol{x} d\boldsymbol{\omega}$$

$$= (2\pi)^{-d/2} \sum_{\boldsymbol{n} \in \mathbb{N}^d} \int_{\Omega} c(\mathcal{F}(f), \boldsymbol{n}) \exp i\boldsymbol{\omega}^\top \left(\boldsymbol{x} + \pi \frac{\boldsymbol{n}}{\boldsymbol{W}} \right) d\boldsymbol{\omega}$$

$$= (2\pi)^{-d/2} \sum_{\boldsymbol{n} \in \mathbb{N}^d} \int_{\Omega} (2\pi)^{d/2} \left(\prod_{l=1}^d 2W_l \right)^{-1} f\left(\frac{-\pi \boldsymbol{n}}{\boldsymbol{W}} \right) \exp i\boldsymbol{\omega}^\top \left(\boldsymbol{x} + \pi \frac{\boldsymbol{n}}{\boldsymbol{W}} \right) d\boldsymbol{\omega}$$

$$= \left(\prod_{l=1}^d 2W_l \right)^{-1} \sum_{\boldsymbol{n} \in \mathbb{N}^d} f\left(\frac{-\pi \boldsymbol{n}}{\boldsymbol{W}} \right) \int_{\Omega} \exp i\boldsymbol{\omega}^\top \left(\boldsymbol{x} + \pi \frac{\boldsymbol{n}}{\boldsymbol{W}} \right) d\boldsymbol{\omega}$$

ここで

$$\int_{\Omega} \exp i\boldsymbol{\omega}^{\top} \left(\boldsymbol{x} + \pi \frac{\boldsymbol{n}}{\boldsymbol{W}}\right) d\boldsymbol{\omega} = \prod_{l=1}^{d} \int_{-W_{l}}^{W_{l}} \exp i \left(x_{l} + \pi \frac{n_{l}}{W_{l}}\right) \omega_{l} d\omega_{l}$$

$$= \prod_{l=1}^{d} \frac{1}{i \left(x_{l} + \pi \frac{n_{l}}{W_{l}}\right)} \left[\exp i \left(x_{l} + \pi \frac{n_{l}}{W_{l}}\right) W_{l} - \exp(-i) \left(x_{l} + \pi \frac{n_{l}}{W_{l}}\right) W_{l}\right]$$

$$= \prod_{l=1}^{d} 2W_{l} \frac{\sin \left(x_{l} + \pi \frac{n_{l}}{W_{l}}\right) W_{l}}{\left(x_{l} + \pi \frac{n_{l}}{W_{l}}\right) W_{l}} = \prod_{l=1}^{d} 2W_{l} \prod_{l=1}^{d} \sin W_{l} \left(x_{l} + \pi \frac{n_{l}}{W_{l}}\right)$$

より、

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{n} \in \mathbb{N}^d} f\left(\frac{-\pi \boldsymbol{n}}{\boldsymbol{W}}\right) \prod_{l=1}^d 2W_l \operatorname{sinc}\left(x_l + \pi \frac{n_l}{W_l}\right) W_l = \sum_{\boldsymbol{n} \in \mathbb{N}^d} f\left(\frac{\pi \boldsymbol{n}}{\boldsymbol{W}}\right) \prod_{l=1}^d \operatorname{sinc} W_l \left(x_l - \pi \frac{n_l}{W_l}\right)$$
$$= \sum_{\boldsymbol{n} \in \mathbb{N}^d} f\left(\pi \frac{n_1}{W_1}, \dots, \pi \frac{n_d}{W_d}\right) \prod_{l=1}^d \operatorname{sinc} W_l \left(x_l - \pi \frac{n_l}{W_l}\right)$$

第Ⅲ.5章

高速 Fourier 変換 (FFT)

III.5.1 長さが2のべき乗でない信号の DFT を長さが2のべき乗の信号の FFT に帰着する方法

N を 2 のべき乗でない自然数とする。長さ N の信号 x の DFT

$$X(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) \exp\left(2\pi i \frac{-kn}{N}\right) \quad k = 1, 2, \dots, N-1$$

を長さが 2 のべき乗である信号の FFT に帰着する方法を考える。 $\forall a,b\in\mathbb{R},\ ab=\frac{a^2+b^2-(a-b)^2}{2}$ を用いて上の式を次のように変形する。

$$X(k) = \frac{1}{\sqrt{N}} \exp\left(\pi i \frac{-k^2}{N}\right) \sum_{n=0}^{N-1} x(n) \exp\left(\pi i \frac{-n^2}{N}\right) \exp\left(\pi i \frac{(k-n)^2}{N}\right)$$

$$= \frac{1}{\sqrt{N}} \exp\left(\pi i \frac{-k^2}{N}\right) \sum_{n=0}^{N-1} u(n)v(k-n)$$
where $u(n) := x(n) \exp\left(\pi i \frac{-n^2}{N}\right)$, $v(n) := \exp\left(\pi i \frac{n^2}{N}\right)$

$$\therefore X(k)\sqrt{N} \exp\left(\pi i \frac{k^2}{N}\right) = (u * v)(k)$$

u*v を、長さが2 のべき乗の信号に対して使える FFT, IFFT を用いて計算する。そのために長さが2 のべき乗の信号同士の**巡回畳み込み**の中に u*v が部分的に現れるような状況を以下のようにして作り出す。

 $N_2:=\min\{a|\exists b\in\mathbb{N}, a=2^b\geq 2N\}$ とする。長さ N_2 の信号 u_2,v_2 を以下のように定義する。

$$u_2(n) := \begin{cases} u(n) & (n \in [0, N-1]) \\ 0 & (n \in [N, N_2 - 1]) \end{cases}$$

$$v_2(n) := \begin{cases} v(n) & (n \in [0, N-1]) \\ 0 & (n \in [N, N_2 - N]) \\ v(N_2 - n) & (n \in [N_2 - N + 1, N_2 - 1]) \end{cases}$$

 u_2 は u の後ろに 0 を並べて長さ N_2 に拡張した信号である。 v_2 は長さ N_2 の 0 が並んだ信号の前部を v で塗り替え、後部を v の第 $1\sim N-1$ 要素をコピーして順番を逆にしたもので塗り替えた信号である。下の図は u_2,v_2 を視覚的に表現したものである。

図 III.5.1 u_2, v_2 の構造

このようにすると u_2*v_2 の先頭 N 要素が u*v と一致する。

$$FFT(u_2 * v_2) = \sqrt{N_2} FFT(u_2) FFT(v_2)$$

より

$$IFFT(\sqrt{N_2} FFT(u_2) FFT(v_2))$$

により u_2*v_2 を高速に計算し、結果の先頭 N 要素を切り出せば u*v を得る。得られた u*v の第 k 要素に $\frac{1}{\sqrt{N}}\exp\left(\pi i\frac{-k^2}{N}\right)$ を掛ければ x の DFT が得られる。 v_2 の FFT や $\frac{1}{\sqrt{N}}\exp\left(\pi i\frac{-k^2}{N}\right)$ $(k=0,1,\cdots,N-1)$ は初回の計算結果を保存しておけば別の信号の DFT の計算で再利用できる。

第Ⅳ部

Laplace 変換

IV.0.1 複素指数関数入力に対する伝達関数の作用

 $A>0,\; \omega\in\mathbb{R}$ とする。連続時間信号 $f:\mathbb{R}\to\mathbb{C}$ を次のように定める。

$$f(t) = \begin{cases} Ae^{i\omega t} & (t \ge 0) \\ 0 & (t < 0) \end{cases}$$

 $H:s\in\mathbb{C}\mapsto H(s)\in\mathbb{C}$ を proper で既約な有理関数とする。また、H の極の実部は全て負であるとする。伝達関数が H(s) である連続時間システムに信号 f を入力した時の出力を g とすると、十分大きい t に対して $g(t)\sim H(i\omega)f(t)$ となる。

Proof.

 $N_{
m p}$ を H(s) の分母多項式の相異なる零点の個数とし、それら零点を $p_0,\cdots,p_{N_{
m p}}$ とする。零点 p_k の次数を $N_{
m p,k}$ とし、H(s) の部分分数展開を

$$H(s) = c_0 + \sum_{k=1}^{N_p} \sum_{l=1}^{N_{p,k}} \frac{c_{k,l}}{(s - p_k)^l}$$

残りの項、すなわち $1/(s-i\omega)$ に比例する項は $AH(i\omega)/(s-i\omega)=H(i\omega)F(s)$ となる。以上より、十分大きい t に対して $g(t)\sim \mathcal{L}^{-1}\left[H(i\omega)F(s)\right](t)=H(i\omega)f(t)$ となる。

IV.0.1.1 系: 正弦波入力に対する伝達関数の作用

 $A>0,\ \omega\in\mathbb{R}$ とする。連続時間信号 $f_1,f_2:\mathbb{R}\to\mathbb{R}$ を次のように定める。

$$f_1(t) = \begin{cases} A\cos\omega t & (t \ge 0) \\ 0 & (t < 0) \end{cases}$$

$$f_2(t) = \begin{cases} A \sin \omega t & (t \ge 0) \\ 0 & (t < 0) \end{cases}$$

H を直前の定理と同じように定める。伝達関数が H(s) である連続時間 \mathbf{g} システムに信号 f_1,f_2 を入力した時の出力をそれぞれ g_1,g_2 とすると、十分大きい t に対して

$$g_1(t) \sim |H(i\omega)| \cos(\omega t + \text{Arg}(H(i\omega)))$$

 $g_2(t) \sim |H(i\omega)| \sin(\omega t + \text{Arg}(H(i\omega)))$

となる。

Proof.

 f_1 について示す。 f_2 も同様に示せる。 $f_1(t)=\mathrm{Re}\left(Ae^{i\omega t}\right)$ であり、実数システムだから出力は $Ae^{i\omega t}$ を入力したときの出力の実部と等しい。直前の定理の結果を用いて

$$g_1(t) = \operatorname{Re}\left(H(i\omega)Ae^{i\omega t}\right) = \operatorname{Re}\left(|H(i\omega)|e^{i\operatorname{Arg}(H(i\omega))}Ae^{i\omega t}\right) = |H(i\omega)|\cos(\omega t + \operatorname{Arg}(H(i\omega)))$$

Proof. (直接的な証明)

 f_1 について示す。 f_2 も同様に示せる。直前の定理の証明の (1) までは同じである。 f_1,g_1 の Laplace 変換をそれぞれ F_1,G_1 とすると

$$F_1(s) = \frac{As}{s^2 + \omega^2} = \frac{A}{2} \left(\frac{1}{s + i\omega} + \frac{1}{s - i\omega} \right)$$

であるから、 $G_1(s)=H(s)F(s)$ の部分分数展開のうち $1/(s+i\omega),\ 1/(s-i\omega)$ に比例する項を詳しく調べれば良い。 $1/(s+i\omega)$ の係数は

$$G(s)X(s)(s+i\omega)|_{s\to -i\omega} = AG(-i\omega)/2$$

となり、 $1/(s-i\omega)$ の係数は

$$G(s)X(s)(s-i\omega)|_{s\to i\omega} = AG(i\omega)/2$$

となる。よってこれらの項の和は

$$\frac{AG(-i\omega)/2}{s+i\omega} + \frac{AG(i\omega)/2}{s-i\omega} = \frac{A}{2} \left(\frac{G(-i\omega)}{s+i\omega} + \frac{G(i\omega)}{s-i\omega} \right)
= \frac{A}{2} \times \frac{1}{s^2 + \omega^2} \left(G(-i\omega)(s-i\omega) + G(i\omega)(s+i\omega) \right)
= \frac{As}{s^2 + \omega^2} \times \frac{1}{2} \left(G(i\omega) + G(-i\omega) \right) + \frac{A\omega}{s^2 + \omega^2} \times \frac{-1}{2i} \left(G(i\omega) - G(-i\omega) \right)$$
(1)

G(s) は有理式なので $G(-i\omega) = \overline{G(i\omega)}$ となることに注意して

$$\frac{1}{2}(G(i\omega) + G(-i\omega)) = |G(i\omega)| \frac{1}{2} \left(e^{i\operatorname{Arg}\left(G(i\omega)\right)} + e^{-i\operatorname{Arg}\left(G(i\omega)\right)} \right) = |G(i\omega)| \cos\operatorname{Arg}\left(G(i\omega)\right)$$

同様に

$$\frac{-1}{2i}(G(i\omega) - G(-i\omega)) = -|G(i\omega)| \sin \operatorname{Arg}(G(i\omega))$$

以上より、

$$(1) = |G(i\omega)| \left(\cos \operatorname{Arg} \left(G(i\omega) \right) \frac{As}{s^2 + \omega^2} - \sin \operatorname{Arg} \left(G(i\omega) \right) \frac{A\omega}{s^2 + \omega^2} \right)$$
$$g(t) \sim \mathcal{L}^{-1} \left[(1) \right] (t) = |G(i\omega)| \left(\cos \operatorname{Arg} \left(G(i\omega) \right) \cos \omega t - \sin \operatorname{Arg} \left(G(i\omega) \right) \sin \omega t \right)$$
$$= |G(i\omega)| \cos \left(\omega t + \operatorname{Arg} \left(G(i\omega) \right) \right)$$

第Ⅴ部

Z変換

第 V.1 章

基礎理論

V.1.1 最終値定理

X(z) $(z\in\mathbb{C})$ を離散時間信号 x(n) $(n\in\mathbb{Z},\ \forall n<0, x(n)=0)$ の Z 変換とする。 $\lim_{n\to\infty}x(n)$ が存在するとき次が成り立つ。

$$\lim_{z \to 1} (z - 1)F(z) = \lim_{n \to \infty} x(n)$$

但し上式に於ける $\lim_{z \to 1}$ では z が実軸上で右側から 1 に近づくことを意味する。

Proof.

 $lpha=\lim_{n o\infty}x(n)$ とする。発想としては、十分大きい $N\in\mathbb{N}$ に対して $\sum_{k=N}^\infty x(k)z^{-k}\sim\sum_{k=N}^\infty lpha z^{-k}=lpha z^{-N}rac{z}{z-1}$ となることを利用する。

任意の $\varepsilon \in (0,1)$ に対してある $N \in \mathbb{N}$ が存在して $\forall n \geq N, \; |x(n) - \alpha| < \varepsilon$ となる。

V.1.2 複素指数関数入力に対する伝達関数の作用

 $A>0,\ \omega\in\mathbb{R}$ とする。離散時間信号 $x:\mathbb{R}\to\mathbb{C}$ を次のように定める。

$$x(n) = \begin{cases} Ae^{i\Omega n} & (n \ge 0) \\ 0 & (n < 0) \end{cases}$$

 $H:z\in\mathbb{C}\mapsto H(z)\in\mathbb{C}$ を、1/z を変数とした有理式として既約であるような有理関数とする。また、H の極の絶対値は全て 1 未満であるとする。伝達関数が H(z) である離散時間システムに信号 x を入力した時の出力を y とすると、十分大きい n に対して $y(n)\sim H(e^{i\Omega})x(n)$ となる。

Proof.

 $N_{
m p}$ を H(s) の相異なる極の個数とし、それら極を $p_0,\cdots,p_{N_{
m p}}$ とする。極 p_k の次数を $N_{
m p,k}$ とし、H(z) の部分分数展開を

$$H(z) = c_0 + \sum_{k=1}^{N_{\rm p}} \sum_{l=1}^{N_{\rm p,k}} \frac{c_{k,l}}{(1 - p_k z^{-1})^l}$$

とする。ここに $c_0,c_{k,l}$ $(k=1,\cdots,N_{\rm p},l=1,\cdots,N_{{\rm p},k})$ は適当な複素数である。x,y の Z 変換をそれ ぞれ X,Y とすると $Y(z)=H(z)F(z)=AH(z)/(1-e^{i\Omega}z^{-1})$ である。これの部分分数展開に現れる、 $1/(1-p_kz^{-1})^l$ $(k=1,\cdots,N_{{\rm p}},l=1,\cdots,N_{{\rm p},k})$ に比例する項は逆 Z 変換すると n の多項式と公比 p_k の等比級数の積となり、 $n\to\infty$ で 0 に収束する。(このことは Z 変換の性質:時間シフト $\mathcal{Z}[x(n+k)]=z^kX(z)$ 、および Z 領域微分 $\mathcal{Z}[nx(n)]=-z\frac{\mathrm{d}}{\mathrm{d}z}\mathcal{Z}[x(n)]$ を繰り返し用いることで分かる)

残りの項、すなわち $1/(1-e^{i\Omega}z^{-1})$ に比例する項は $AH(e^{i\Omega})/(1-e^{i\Omega}z^{-1})=H(e^{i\Omega})X(z)$ となる。

第 V.2 章

IIR フィルタの計算手順

図 V.2.1 IIR フィルタのブロック図の例

上の例で示した IIR フィルタの出力は以下の手続きで計算できる (仕事で関わっていたデジタル無線機の信号処理部でそうやっていた)。

- 1. $D_1, \cdots D_4 \leftarrow 0$
- 2. $n \leftarrow 0$
- 3. $\alpha \leftarrow a_1D_1 + \cdots + a_4D_4$
- 4. $\beta \leftarrow b_1D_1 + \cdots b_4D_4$
- 5. $\gamma \leftarrow x(n) + \beta$
- 6. $y(n) \leftarrow \alpha + a_0 \gamma$
- 7. $D_4 \leftarrow D_3$, $D_3 \leftarrow D_2$, $D_2 \leftarrow D_1$, $D_1 \leftarrow \gamma$
- 8. $n \leftarrow n+1$
- $9.\ n$ が x の定義域の末尾に達しているなら終了。そうでないなら 3 に戻る。

第 VI 部

応用

第 VI.1 章

信号検出

VI.1.1 位置特定に於ける cos 類似度による方法と最良近似による方法の等 価性

複素数列で表される受信信号 $\{s_i\}$ の中から特定のパターン(「参照信号」と呼ぶ)を見つけ出したい時がある。例えば無線通信に於いては送信機から「同期ワード $(\mathrm{Sync}\ \mathrm{Word},\mathrm{SW})$ 」と呼ばれる数十 bit 分の変調信号が一定周期で送出されており、これが「フレーム」と呼ばれる単位の区切り位置の決定に使われる。受信機は常に $\mathrm{SW}\$ を探索し、フレームの区切り位置を絶えずトラッキングする必要がある。なぜならば、送信機、受信機に搭載されているクロック発生器には僅かだが誤差があり、受信機から見た送信機の送出する信号の時間軸は少しずつズレていくからである。

今、受信信号列の全体的な位相には関心が無いものとする。つまり、信号全体に大きさ 1 の複素定数を乗算する操作は受信側の信号処理にとって影響がないものとする。現実の無線機で言えば、例えば $\pi/4$ シフト QPSK がそうである。

受信信号から参照信号を検出する方法として、直観的に次の2つの方法を思いつくだろう。

VI.1.1.1 手法 1: cos 類似度の絶対値の最大化

参照信号の長さを $L\in\mathbb{N}$,参照信号を $m{d}\in\mathbb{C}^L$,受信信号中のテスト領域を $m{s}^{(i)}:=[s_i,s_{i+1},\cdots,s_{i+L-1}]^{\top}\in\mathbb{C}^L$ とするとき、 $m{d}$ と $m{s}^{(i)}$ の \cos 類似度の複素数版

$$\frac{\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}}{\left\|\boldsymbol{d}\right\|_{2}\left\|\boldsymbol{s}^{(i)}\right\|_{2}}$$

の位相を無視し、絶対値の 2 乗 (2 乗を使うのは、平方根の計算を無くして計算量を抑える為) で評価する。 $\|m{d}\|_2$ は $s^{(i)}$ に依存しないので評価値同士の大小比較に必要ないから取り除く。すると評価関数 c として次式を得る。

$$c(i) = \frac{|\boldsymbol{d}^*\boldsymbol{s}^{(i)}|^2}{\left\|\boldsymbol{s}^{(i)}\right\|_2^2}$$

これが最大となる i を参照信号の存在位置と見做す。

VI.1.1.2 手法 2: 最良近似

VI.1.1.1 で定義した記号をここでも用いる。受信信号中の参照信号は「参照信号 + ゲイン変化 + 位相回転 + ノイズ」の形で存在している。そこで、参照信号に定数 α を掛けて $s^{(i)}$ との差を取った絶対値の 2 乗を参照信号の L-2 ノルムの 2 乗で正規化した値が最小となるように α を選び、そのときの差の絶対値の 2 乗が最小になるような位置をもって参照信号の存在位置と見做す。評価関数 \tilde{c} は次式である。

$$\tilde{c}(i) = \frac{1}{\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2}} \min_{\alpha \in \mathbb{C}} \left\|\alpha \boldsymbol{d} - \boldsymbol{s}^{(i)}\right\|_{2}^{2}$$

正規化する理由は、テスト領域の強度の影響を減らすためである。テスト領域の形が参照信号と大きく異なっていても、テスト領域の強度が小さければ $\min_{lpha\in\mathbb{C}}\left\|lpha d-s^{(i)}
ight\|_2^2$ は小さくなり、誤った推定結果を導き得る。上の最小化問題の解は解析的に求められる。 $f(lpha):=\left\|lpha d-s^{(i)}
ight\|_2^2$ について微小な \Deltalpha を考え、 $f(lpha+\Deltalpha)-f(lpha)$ の変化量の \Deltalpha の 1 次の項が 0 になるような lpha が解である。これは次式である。

$$\mathring{\alpha} = \frac{\boldsymbol{d}^* \boldsymbol{s}^{(i)}}{\|\boldsymbol{d}\|_2^2}$$

よって $\tilde{c}(i)$ は次式である。

$$\tilde{c}(i) = \frac{1}{\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2}} \left\|\boldsymbol{s}^{(i)} - \frac{\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}}{\left\|\boldsymbol{d}\right\|_{2}^{2}} \boldsymbol{d}\right\|_{2}^{2}$$

VI.1.1.3 手法 1,2 の等価性

実は手法1と2は等価である。すなわち次の命題は真である。

$$\frac{1}{\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2}}\left\|\boldsymbol{s}^{(i)} - \frac{\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}}{\left\|\boldsymbol{d}\right\|_{2}^{2}}\boldsymbol{d}\right\|_{2}^{2} < \frac{1}{\left\|\boldsymbol{s}^{(j)}\right\|_{2}^{2}}\left\|\boldsymbol{s}^{(j)} - \frac{\boldsymbol{d}^{*}\boldsymbol{s}^{(j)}}{\left\|\boldsymbol{d}\right\|_{2}^{2}}\boldsymbol{d}\right\|_{2}^{2} \iff \frac{|\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}|^{2}}{\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2}} > \frac{|\boldsymbol{d}^{*}\boldsymbol{s}^{(j)}|^{2}}{\left\|\boldsymbol{s}^{(j)}\right\|_{2}^{2}}$$

これを示す。

$$\begin{split} \frac{1}{\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2}} \left\|\boldsymbol{s}^{(i)} - \frac{\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}}{\left\|\boldsymbol{d}\right\|_{2}^{2}} \boldsymbol{d} \right\|_{2}^{2} &= \frac{1}{\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2}} \left[\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2} + \frac{\left|\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}\right|^{2}}{\left\|\boldsymbol{d}\right\|_{2}^{4}} \left\|\boldsymbol{d}\right\|_{2}^{2} - \frac{\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}}{\left\|\boldsymbol{d}\right\|_{2}^{2}} \boldsymbol{s}^{(i)^{*}} \boldsymbol{d} - \frac{\overline{\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}}}{\left\|\boldsymbol{d}\right\|_{2}^{2}} \boldsymbol{d}^{*}\boldsymbol{s}^{(i)} \right] \\ &= \frac{1}{\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2}} \left[\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2} + \frac{\left|\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}\right|^{2}}{\left\|\boldsymbol{d}\right\|_{2}^{2}} - 2\frac{\left|\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}\right|^{2}}{\left\|\boldsymbol{d}\right\|_{2}^{2}} \right] \\ &= 1 - \frac{\left|\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}\right|^{2}}{\left\|\boldsymbol{d}\right\|_{2}^{2}} \end{split}$$

であり、

$$1 - \frac{|\boldsymbol{d}^*\boldsymbol{s}^{(i)}|^2}{\|\boldsymbol{d}\|_2^2} < 1 - \frac{|\boldsymbol{d}^*\boldsymbol{s}^{(j)}|^2}{\|\boldsymbol{d}\|_2^2} \iff \frac{|\boldsymbol{d}^*\boldsymbol{s}^{(i)}|^2}{\left\|\boldsymbol{s}^{(i)}\right\|_2^2} > \frac{|\boldsymbol{d}^*\boldsymbol{s}^{(j)}|^2}{\left\|\boldsymbol{s}^{(j)}\right\|_2^2}$$

であることから命題が真であることがわかる。

参考文献