The Importance of Being Recurrent for Modeling Hierarchical Structure

Presenter: Baosong Yang

Motivation

Do FANs have the same ability to exploit hierarchical structures *implicitly* in comparison to RNNs

- ► Two tasks:
 - ▶ (1) subject-verb agreement
 - ▶ (2) logical inference.

Subject-Verb Agreement

- Predicting number agreement between subject and verb in naturally occurring English sentences:
 - a) a general language model
 - > 2) predict the number of the verb given its sentence history.

	Input	Train	Test
(a) (b)	the keys to the cabinet the keys to the cabinet	are plural	p(are) > p(is)?

- Settings:
 - ▶ 10% of the data for training, 1% for validation, and the rest for testing.
 - ▶ 4 layers, the dropout rate is 0.2, and word-embeddings and hidden sizes are set to 128.
 - 2 attention head for Transformer.

Subject-Verb Agreement

Figure 3: Proportion of times the subject is the most attended word by different heads at different layers (13 is the highest layer). Only cases where the model made a correct prediction are shown.

- LSTMs are clearly more robust than FANs with respect to task difficulty
 - (a) word distance
 - ▶ (b) number of agreement attractors: intervening nouns with the opposite number from the subject.

Logical Inference

```
(d(orf)) \sqsupset (f(and a))
(d(and(c(ord)))) \# (not f)
(not(d(or(f(orc))))) \sqsubset (not(c(and(not d))))
```

- ▶ 6 word types {a, b, c, d, e, f} and 3 logical operations {or, and, not}.
- 7 mutually exclusive logical relations between two sentences:
 - entailment(,)
 - ▶ equivalence (≡)
 - \triangleright exhaustive and non-exhaustive contradiction (\land , |)
 - two types of semantic independence (#,)
- Settings:
 - train/dev/test dataset ratios are set to 80%/10%/10% from 60k samples.

Logical Inference

- n: Number of logical operations
- ► (a): training on n<=6
- ► (b): training on n<=12

What we learn?

- LSTMs slightly but consistently outperform FANs with respect to the ability of capturing hierarchical structure.
 - more robust
- Problem:
 - ▶ Small training set.
 - ▶ Small model.
 - ► FANs might capture other aspects of language better than LSTMs.

Colorless green recurrent networks dream hierarchically

Presenter: Baosong Yang

Motivation

- Problem: In "dogs in the neighbourhood often bark", an RNN might get the right agreement by encoding information about what typically barks (dogs, not neighbourhoods), without relying on more abstract structural cues.
- Hypotheses: Grammaticalness cannot be identified with meaningfulness
- Solusion: A careful architecture/hyperparameter search is crucial to obtain RNNs that are not only good at language modeling, but able to extract syntactic generalizations.

Constructing a long-distance agreement benchmark

Substituting all content words with random words with the same morphology, resulting in grammatical but nonsensical sequences.

Experiments

	IT	EN	HE	RU
#constructions	8	2	18	21
#original	119	41	373	442
Unigram				
Original	54.6	65.9	67.8	60.2
Nonce	54.1	42.5	63.1	54.0
5-gram KN				
Original	63.9	63.4	72.1	73.5
Nonce	52.8	43.4	61.7	56.8
Perplexity	147.8	168.9	122.0	166.6
5-gram LSTM	11			
Original	81.8	70.2	90.9	91.5
	± 3.2	± 5.8	± 1.2	± 0.4
Nonce	78.0	58.2	77.5	85.7
	± 1.3	± 2.1	±0.8	±0.7
Perplexity	62.6	71.6	59.9	61.1
	± 0.2	± 0.3	± 0.2	±0.4
LSTM				
Original	92.1	81.0	94.7	96.1
	± 1.6	± 2.0	± 0.4	±0.7
Nonce	85.5	74.1	80.8	88.8
	± 0.7	± 1.6	±0.8	±0.9
Perplexity	45.2	52.1	42.5	48.9
-	± 0.3	± 0.3	± 0.2	±0.6

- Settings: 90M token subsets, training and validation sets (8-to-1 proportion)
- Vocabulary: 50K; Hidden size: 650

		NVV	V NP conj V
Italian	Original	93.3 _{±4.1}	83.3 _{±10.4}
	Nonce	$92.5_{\pm 2.1}$	$78.5_{\pm 1.7}$
English	Original	$89.6_{\pm 3.6}$	$67.5_{\pm 5.2}$
	Nonce	$68.7_{\pm 0.9}$	$82.5_{\pm 4.8}$
Hebrew	Original	$86.7_{\pm 9.3}$	$83.3_{\pm 5.9}$
	Nonce	$65.7_{\pm 4.1}$	$83.1_{\pm 2.8}$
Russian	Original	-	$95.2_{\pm 1.9}$
	Nonce	-	$86.7_{\pm 1.6}$

Table 2: LSTM accuracy in the constructions N V V (subject-verb agreement with an intervening embedded clause) and V NP conj V (agreement between conjoined verbs separated by a complement of the first verb).

Experiments

Compare with human being

Construction	#original	Original		Nonce	
		Subjects	LSTM	Subjects	LSTM
DET [AdjP] NOUN	14	98.7	$98.6_{\pm 3.2}$	98.1	$91.7_{\pm 0.4}$
NOUN [RelC / PartP] clitic VERB	6	93.1	$100_{\pm 0.0}$	95.4	$97.8_{\pm 0.8}$
NOUN [RelC / PartP] VERB	27	97.0	$93.3_{\pm 4.1}$	92.3	$92.5_{\pm 2.1}$
ADJ [conjoined ADJs] ADJ	13	98.5	$100_{\pm 0.0}$	98.0	$98.1_{\pm 1.1}$
NOUN [AdjP] relpron VERB	10	95.9	$98.0_{\pm 4.5}$	89.5	$84.0_{\pm 3.3}$
NOUN [PP] ADVERB ADJ	13	91.5	$98.5_{\pm 3.4}$	79.4	$76.9_{\pm 1.4}$
NOUN [PP] VERB (participial)	18	87.1	$77.8_{\pm 3.9}$	73.4	$71.1_{\pm 3.3}$
VERB [NP] CONJ VERB	18	94.0	$83.3_{\pm 10.4}$	86.8	$78.5_{\pm1.7}$
(Micro) average		94.5	$92.1_{\pm 1.6}$	88.4	$85.5_{\pm 0.7}$

Experiments

the overall pattern was comparable

robust

What we learn

- A new task and data set for analyzing the language model.
- RNNs are not simply memorizing frequent morphosyntactic sequences.