# COMP30030: Introduction to Artificial Intelligence

#### Neil Hurley

School of Computer Science University College Dublin neil.hurley@ucd.ie

October 25, 2018



## 1 Problem Solving by Search

- Uninformed Search
- Informed Search
- Adversarial Search
- Game Playing with Reinforcement Learning

#### 2 Optimisation

- Optimisation Overview
- Combinatorial Optimisation Problems
- Simulated Annealing
- Optimisation Problem Examples
- Convergence of Simulated Annealing
- Genetic Algorithms
- Optimisation in Continuous Spaces

## 3 Machine Learning



# Machine Learning I

- The term Machine Learning refers to "a scientific discipline that explores the construction and study of algorithms that can learn from data" (Wikipedia).
- In general, there are two broad ways that we can learn from data:
  - 1 Supervised methods learn by generalising from training data in the from of sets of inputs with desired outputs.
  - Unsupervised methods learn from input data, which has no desired outputs associated with it. Instead these method search for structure in the input data.
- Another important branch of machine learning is reinforcement learning, in which a program must interact with a dynamic environment to perform a certain goal or task.



## 1 Problem Solving by Search

- Uninformed Search
- Informed Search
- Adversarial Search
- Game Playing with Reinforcement Learning

### 2 Optimisation

- Optimisation Overview
- Combinatorial Optimisation Problems
- Simulated Annealing
- Optimisation Problem Examples
- Convergence of Simulated Annealing
- Genetic Algorithms
- Optimisation in Continuous Spaces

### 3 Machine Learning



- Suppose we are have a problem that we wish to learn from.
- Let's call the set of possible problem *instances*,  $\mathcal{X}$ . So an example problem is an element  $x \in \mathcal{X}$ .
- We can think of the solution to this problem as a map  $f: \mathcal{X} \to \mathcal{Y}$ , where  $\mathcal{Y}$  is the set of solutions to problems in  $\mathcal{X}$ .
- So, given x, the solution to x is f(x).
- We don't know this function f(.) we would like to learn an approximation to it.



- A learning algorithm is supervised, if, along with a set of instances  $x \in \mathcal{X}$ , we have their solutions f(x).
- So we have a training set  $D_{\text{train}} = \{(x, f(x)) | x \in \mathcal{X}\}.$
- If we are lucky, we may have many training examples and supervised Machine Learning algorithms generally work better, the more data that is available.
- The learning algorithm is guided, so supervised by the solutions to the training examples that are available.
- The goal is to *generalise* from the training examples, so that solutions to new, unseen instances can be found.



# Types of Supervised Learning Task

- While we can imagine many problem types, in fact there are two broad types of machine learning tasks, which apply to many real-world scenarios, which may be distinguished by the type of solution that we seek.
- **1** The solution space is a set of real-valued numbers  $\mathcal{Y} = \mathbb{R}^n$  for some dimension n. In this case the problem is referred to as a regression problem.
- 2 The solution space is discrete, consisting of a finite set of k > 0 labels.  $\mathcal{Y} = \{y_1, y_2, \dots, y_k\}$ . In this case, the problem is referred to as a classification problem.
  - Many approaches have been developed for the simplest case of binary classification, where there are just two possible labels.
  - In binary classification, the goal is to determine which, of two classes, each problem instance belongs to.



# Types of Supervised Learning Task

- These two problem categories may seem to simple to cover all the many learning tasks we can imagine in the real-world, but actually they are quite general.
- Note that we've (so far), said very little about the representation of the problem instances, nor the representation of their solutions.
- All of the above notation simply says that,
  - a problem is a regression problem if we can find a useful representation of its solution as a set of real-valued numbers.
  - a problem is a classification problem if wish to determine class which among a finite set of possibilities a problem instance belongs to.



## Real-world Examples

### Determining if an email is Spam

- x is a text a sequence of alphabetic characters, corresponding to an email message.
- f(x) is the binary label indicating, which of the two cases, Spam or Not Spam, applies to the given text.



## Real-world Examples

#### **Medical Diagnosis**

- x is a set of properties of the patient symptoms, results of lab tests, previous medical history etc. etc.
- f(x) is a disease. A set of possible diseases has been preselected, e.g. {NO\_DISEASE, CANCER, HEART\_DISEASE}.
- The problem then is, given x, label x with the correct disease
   a classification problem.



## Real-world Examples

#### Making a Computer Read

- *x* is a text a sequence of alphabetic characters.
- f(x) is the sound signal corresponding to the utterance of x. f(y) will be represented by an appropriate set of real-valued numbers, corresponding to a representation of the sound signal, or *features* of the sound signal.
- Typically, a database of examples is gathered from human reading of set texts.
- The goal is to train the computer to automatically read texts which are not in the training set.
- In the heart of this problem there is a regression mapping each x to a real-valued representation of the sound. However, to successfully achieve such a learning task, we need to apply detailed knowledge of speech and linguistics.



# Hypothesis Space I

- How is it possible to learn from training examples,  $D_{\text{train}} = \{x, f(x)\}$ ?
  - One way might be to try to create a (close to) exact model for f(.)
  - We can write down, for example, models of physical processes, such as fluid dynamics and use these to predict the weather tomorrow
  - Take our reading example can we write down the detailed steps by which a text becomes spoken language?
- Instead, we give up on creating such a detailed model of f(x) and instead we choose a set of *candidate* functions, from which a good approximation of f(x) can be selected.



# Hypothesis Space II

- We call such a set a Hypothesis Space, H
- The Hypothesis Space should be simple enough that it is tractable to select a good function from this space.
- The Hypothesis Space should be complex enough that a good candidate function exists in that space that well approximates f(x).



## Inductive Learning Hypothesis

- But how will we know that the function we select from  $\mathcal{H}$  is really a good approximation to f(x)?
  - In practise, we cannot test it on all instances in the problem space.
- The Inductive Learning Hypothesis
  - Any  $h(.) \in \mathcal{H}$  that approximates f(x) well on the training examples, will also approximate f(x) well on unseen examples.
- Whether or not this holds depends strongly on the training examples (and the learning algorithm applied to them).
- In statistical terms, the training examples need to be a representative sample of the full set of problems that occur in X and this may not always be the case.
- Nevertheless, supervised machine learning algorithms proceed by, as a primary objective, looking for functions in the Hypothesis space that approximate the training examples well.



# Some Terminology

■  $h(.) \in \mathcal{H}$  is called a consistent hypothesis if it agrees with f(.)on all training examples. Given the training data, only some hypothesis in  $\mathcal{H}$  are consistent. The set of consistent hypotheses is called the Version Space:  $\{h(.) \in \mathcal{H} : h(x) = f(x) \forall x \in D_{\text{train}}\}$ 

- A consistent learner always outputs a consistent hypothesis
- The empirical error is the fraction of the training examples for which  $h(x) \neq f(x)$ .
- So, for a consistent learning, the empirical error is 0%.



# Example – An ML approach to learning a Boolean Function I

- The following example shows how a machine learning algorithm might proceed to learn a function from examples.
- We assume that there is some unknown Boolean function, over four Boolean variables:
  - $x = (x_1, x_2, x_3, x_4)$  and each variable  $x_i \in \{0, 1\}$
  - $y = f(x) \in \{0, \}$
- How hard is the problem? Well, how many possible Boolean functions over 4 variables exist?
  - There are 2<sup>4</sup> = 16 possible inputs to this unknown function. The function is fully defined, once it is specified what the output is for each of these 16 inputs.
  - There are 2 choices for the output f(x). So there are 2 ways to set the output for each possible input. Hence, there are  $2^{16}$  different possible functions.



# Example – An ML approach to learning a Boolean Function II

- One of these functions is generating output, but we do not known which one it is all we have available to us is a set of training instances x and their associated output f(x).
- If there are very few training instances, then we will not be able to learn much.
- However, tractable learning depends not just on the instances we have, but on good selection of a Hypothesis space, that
  - 1 Is likely to contain a good approximation of f(x)
  - 2 But which can be searched efficiently for such an approximation.



$$\begin{array}{c}
f(x_1, x_2, x_3, x_4) = \neg x_2 \land x_4 \text{ (but it is unknown)} \\
x_1 & & & \\
x_2 & & & \\
x_3 & & & \\
x_4 & & & \\
\end{array}$$
Unknown
function

|                      | $\mathbf{x}_1$ | $\mathbf{x_2}$ | $\mathbf{x_3}$ | $X_4$ | У |
|----------------------|----------------|----------------|----------------|-------|---|
| Training<br>examples | 0              | 0              | 1              | 1     | 1 |
|                      | 1              | 0              | 0              | 1     | 1 |
|                      | 1              | 0              | 1              | 1     | 1 |
|                      | 1              | 1              | 0              | 0     | 0 |
|                      | 1              | 1              | 1              | 0     | 0 |



# Hypothesis Space of all Boolean functions

- We do not restrict the Hypothesis space, andx consider all possible Boolean functions among our candidates
- We have  $2^{16} = 64k$  possible functions.
- 5 outputs are specified in the training set, so there are  $2^{16-5} = 2048$  consistent hypothesis.
- We can do no better than choose randomly between them.
- How likely is it that our unknown function agrees with the chosen one on unseen examples?







# Hypothesis Space : Conjunction of Literals

- A literal is a variable  $x_i$  or its negation  $\neg x_i$
- A term is a conjunction of literals.
- We define the hypothesis space  $\mathcal{H} = \{\text{terms over } x_1, x_2, x_3, x_4\}$
- Now the hypothesis space only contains 3<sup>4</sup> = 18 possible functions. (Each term can be affirmed or negated or isn't present).
- Learning algorithm
  - 1 Initially h(.) = conjunction of all possible literals
  - 2 Remove literals associated with inconsisten *positive* examples.



# Learning Conjunctions

1. 
$$h = \neg x_1 x_1 \neg x_2 x_2 \neg x_3 x_3 \neg x_4 x_4$$

- 2. Observe 1<sup>st</sup> training example, remove literals  $x_1, x_2, \neg x_3$ , and  $\neg x_4$ h =  $\neg x_1 \neg x_2 x_3 x_4$
- 3. Observe  $2^{nd}$  training example, remove literals  $\neg x_1$  and  $x_3$ h =  $\neg x_2 x_4$
- 4. Observe  $3^{rd}$  training example: nothing to do (h =  $\neg x_2 x_4$ )
- 5. No more positive training examples Output  $h = \neg x_2 x_4$

| X <sub>2</sub> | <b>X</b> <sub>3</sub> | X <sub>4</sub> | у     |
|----------------|-----------------------|----------------|-------|
| 0              | 1                     | 1              | 1     |
| 0              | 0                     |                |       |
| 0              | 1                     | 1              | 1     |
|                | 0                     | 0 1<br>0 0     | 0 0 1 |



# Learning as Refinement

- Start with a small hypothesis class, such as Boolean conjunctions – we need domain knowledge to choose such as suitable class.
- Use examples to infer the particular function within this class.

