Question

Consider a quantum system made of one qubit. The system is in the initial state $|\psi\rangle = 1/\sqrt{N}$ (a|0> + b|1>), where a and b are complex numbers and N is a normalization factor. A quantum gate Pauli Z is applied on $|\psi\rangle$. Can you describe the action of this gate on the system? Can you give a graphical representation of the circuit? What is the final state of the system?

Answer 1

The Pauli Z gate is a single-qubit gate that acts as a bit-flip operation. It leaves the state $|0\rangle$ unchanged and maps $|1\rangle$ to $-|1\rangle$. Therefore, the action of Pauli Z gate on the initial state $|\psi\rangle$ is:

$$Z|\psi\rangle = 1/\sqrt{N} (a|0\rangle - b|1\rangle)$$

The graphical representation of the circuit for applying Pauli Z gate on the qubit in state $|\psi\rangle$ is shown below:

$$|\psi\rangle - Z - - > Z |\psi\rangle$$

The final state of the system after applying the Pauli Z gate is $1/\sqrt{N}$ (al0> - bl1>). This state can also be written as:

$$|\psi'\rangle = 1/\sqrt{N} (a|0\rangle + (-b)|1\rangle)$$

Thus, the Pauli Z gate flips the sign of the coefficient of the $|1\rangle$ state and leaves the coefficient of the $|0\rangle$ state unchanged.

Answer 2

The Pauli Z gate is a single-qubit gate in quantum computing that flips the sign of the $|1\rangle$ state while leaving the $|0\rangle$ state unchanged. It can be represented by the following matrix:

$$[1 \ 0]$$
 $Z = [0 \ -1]$

The action of the Pauli Z gate on the initial state $|\psi\rangle$ can be described as follows:

$$Z |\psi\rangle = 1/\sqrt{N} (a|0\rangle - b|1\rangle)$$

Graphical representation of the circuit:

$$|\psi\rangle$$
 --- Z --- final state

The initial state $|\psi\rangle$ is represented by a qubit wire entering the circuit from the left, the Z gate is applied to the qubit, and the final state is represented by a qubit wire exiting the circuit from the right.

The final state of the system is $1/\sqrt{N}$ ($a|0\rangle$ - $b|1\rangle$), which is the same as the initial state $|\psi\rangle$ but with the sign of the $|1\rangle$ state flipped. In other words, the Pauli Z gate has the effect of flipping the phase of the $|1\rangle$ state while leaving the $|0\rangle$ state unchanged.

Answer 3

The Pauli Z gate is a fundamental gate in quantum computing that operates on a single qubit. It is represented by the following matrix:

$$Z = [[1, 0], [0, -1]]$$

When the Pauli Z gate is applied to the initial state $|\psi\rangle = 1/\sqrt{N}$ (al0 \rangle + bl1 \rangle), the action of the gate can be described as follows:

$$Z|\psi\rangle = 1/\sqrt{N} (a|0\rangle - b|1\rangle)$$

In other words, the Pauli Z gate flips the sign of the state $|1\rangle$ while leaving the state $|0\rangle$ unchanged.

As for the graphical representation of the circuit, it is represented by a single qubit and a Pauli Z gate acting on it. Here's an ASCII representation:

$$|\psi\rangle - - - [Z] - - -$$

The final state of the system after the Pauli Z gate is applied is given by:

$$Z|\psi\rangle = 1/\sqrt{N} \; (a|0\rangle \; \text{--} \; b|1\rangle)$$

So, the system will be in a superposition of the states $|0\rangle$ and $|1\rangle$, but with the sign of the $|1\rangle$ component flipped. The normalization factor N remains unchanged.