المعادلات والمتراجحات والنظمات

معادلة من الدرجة الأولى بمجهول واحد

b و a و المجهول و احد هي كل معادلة يمكن أن تكتب على شكل ax+b=0 حيث x هو المجهول و a و و عددان حقيقيان معلومان

متراجحة من الدرجة الأولى بمجهول واحد

ax+b>0 المتراجحة من الدرجة الأولى بمجهول واحد في $\mathbb R$ هي كل متراجحة يمكن أن تكتب على شكل ax+b>0 أو ax+b>0 أو ax+b<0 عددان حقيقيان معلومان

ax+b جدول إشارة الحداثية

 $a \neq 0$ حيث ax + b نعتبر الحدانية

- a إذا كان $\frac{-b}{a}$ فإن إشارة $x \ge \frac{-b}{a}$ هي إشارة •
- a فإن إشارة ax + b فإن إشارة $x \le \frac{-b}{a}$ هي عكس إشارة •

معادلة من الدرجة الأولى بمجهولين

المعادلة من الدرجة الأولى بمجهولين هي كل معادلة يمكن أن تكتب على شكل ax+by+c=0 حيث x و y هما المجهولان و x عادلد حقيقية معلومة x و y و ما عداد حقيقية معلومة

$$S = \left\{ \left(\frac{-b}{a} y - \frac{c}{a}; y \right) / y \in \mathbb{R} \right\}$$
 فإن $a \neq 0$ اذا كان $a \neq 0$

$$S = \left\{ \left(x; \frac{-a}{b} y - \frac{c}{b} \right) / x \in \mathbb{R} \right\}$$
 فإن $b \neq 0$ اذا كان •

: b = 0 و a = 0

$$S=\mathbb{R}^2$$
: فإن $c=0$ فإن \gt

$$S=\varnothing$$
: اذا کان $c \neq 0$ فإن

نظمة معادلتين من الدرجة الأولى

النظمة
$$a$$
 و a و a

نعتبر النظمة
$$\left(S\right):\begin{cases} ax+by=c\\ a'x+b'y=c'\end{cases}$$
 نعتبر النظمة $\left(S\right):\begin{cases} ax+by=c\\ a'x+b'y=c'\end{cases}$ وإذا كان $\left(S\right):\begin{cases} ax+by=c\\ a'x+b'y=c'\end{cases}$ وإذا كان $\left(S\right):\begin{cases} ax+by=c\\ a'x+b'y=c'\end{cases}$ وقد يكون لهذه النظمة أي حل وقد يكون لها ما لا نهاية من الحلول $\left(S\right):\begin{cases} ax+by=c\\ a'x+b'y=c'\end{cases}$

إشارة ax + by + c و تجويه المستوى

المستوى منسوب إلى معلم O,I,J المستوى منسوب إلى معلم ax+by+c=0 مستقيما معادلته D مستقيم D يحدد نصفي مستوى مفتوحين.

- ax + by + c > 0 أحدهما مجموعة النقط M(x,y) التي تحقق العلاقة •
- ax + by + c < 0 و الآخر هو مجموعة النقط M(x,y) التي تحقق العلاقة M(x,y)

المعادلات من الدرجة الثانية بمجهول واحد

الكتابة
$$a = a + b$$
 عيث $a = a + b$ تسمى الشكل القانوني لثلاثية الحدود $a = a + b + a + c$ عيث $a = a + b + a + c$ عداد حقيقية $a = a + b + a + c$ بحيث $a = a + b + c$ بحيث $a = a + b + c$

- ح كل معادلة على الشكل $ax^2+bx+c=0$ حيث a و b و c أعداد حقيقية بحيث a تسمى معادلة من الدرجة الثانية في \mathbb{R}
 - $ax^2 + bx + c$ يسمى مميز هذه المعادلة أو مميز ثلاثية الحدود $\Delta = b^2 4ac$

تعميل ثلاثية الحدود من الدرجة الثاتية

نعتبر ثلاثیة الحدود ax^2+bx+c و لیکن Δ ممیزها

: اذا كان $\Delta>0$ فإن المعلالة $\Delta>0$ اذا كان $\Delta>0$ تقبل حلين مختلفين $\Delta>0$ و لدينا •

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$

: إذا كان $\Delta = 0$ فإن

$$ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2$$

 $\mathbb R$ لا يمكن تعميلها إلى جداء حدوديتين من الدرجة الأولى في ax^2+bx+c اذا كان $\Delta < 0$

مجموع و جداء حلى معادلة من الدرجة الثانية

: اذا كان المعادلة
$$x_1$$
 هذه المعادلة يحققان $ax^2+bx+c=0$ اذا كان المعادلة يحققان $x_1+x_2=\frac{-b}{a}$
$$x_1x_2=\frac{c}{a}$$

إشارة ثلاثية الحدود من الدرجة الثانية

نعتبر ثلاثية الحدود $P(x) = ax^2 + bx + c$ و Δ مميزها

- a العدد a
 - $\frac{-b}{2a}$ اذا كان $\Delta = 0$ فإن إشارة P(x) هي إشارة العدد $\Delta = 0$ كان $\Delta = 0$
 - \mathbb{R} من x کان a کان a فإن إشارة P(x) هي إشارة العدد a لکل a من a