Interatomic Potentials & Defect Simulations

introduction to "atomistic" modelling

hierarchy of modelling techniques

why "atomistic" modelling?

Typical questions at the atomic scale concern how the properties of a system depend on the arrangement & identities of atoms.

Li intercalation and diffusion in layered vs. spinel cathodes.

why "atomistic" modelling?

Typical questions at the atomic scale concern how the properties of a system depend on the arrangement & identities of atoms.

Li diffusion pathways in solid electrolytes

why "atomistic" modelling?

Typical questions at the atomic scale concern how the properties of a system depend on the arrangement & identities of atoms.

Solvation structure in Li+ liquid electrolytes

properties depend on structure

(but which structures are we interested in?)

most important property of a system is its energy

energy as a function of atomic coordinates → potential energy surface

The potential energy surface is, in general, a multidimensional complex function (3N-6 or 3N-5 degrees of freedom).

what about electronic degrees of freedom?

Born-Oppenheimer approximation: assume that motion of atomic nuclei and electrons can be separated.

$$\Psi_{\text{total}} = \psi_{\text{electronic}} \otimes \psi_{\text{nuclear}}$$

$$E_{\text{total}} = E_{\text{electronic}} + E_{\text{vibrational}} + E_{\text{rotational}} + E_{\text{nuclear}}$$

electrons are much lighter than nuclei

→ respond "instantaneously" to changes in nuclear coordinates

3 atoms collinear (2 DoF)

non-collinear case (3 DoF)

parameters defining PES do not need to be interatomic distances (choice of coordinate system / orthogonal basis)

focus on "relevent" degrees of freedom → reduced PES

e.g. dichloroethane (C₂H₄Cl₂) internal rotation

energy is lowest when chlorine atoms are oppositely oriented

other important points on PES

global maximum

local minimum

local maximum

often interested in stationary points on the PES

local maximum

$$\frac{\mathrm{d}E}{\mathrm{d}x} = 0$$

$$\frac{\mathrm{d}E}{\mathrm{d}x} = 0$$

$$\frac{\mathrm{d}E}{\mathrm{d}x} = 0$$

$$\frac{\mathrm{d}^2 E}{\mathrm{d}x^2} < 0$$

$$\frac{\mathrm{d}^2 E}{\mathrm{d} x^2} > 0$$

$$\frac{\mathrm{d}^2 E}{\mathrm{d}x^2} > 0, \frac{\mathrm{d}^2 E}{\mathrm{d}y^2} < 0$$

gradient is first derivative with respect to position

$$g = \frac{\partial E}{\partial x} \qquad F = -g$$

second derivative = local curvature (how quickly does the slope change?)

second derivatives give vibrational frequencies (harmonic approximation)

$$V(x) = V(x_0) + \frac{dV(x)}{dx} \Big|_{x_0}^x (x - x_0) + \frac{1}{2!} \frac{d^2V(x)}{dx^2} \Big|_{x_0}^x (x - x_0)^2 + \dots$$

$$V(x) = -k(x - x_0)^2$$
 $k = -W$

in general working with vector coordinates / forces / second derivatives (e.g. 3N cartesian coordinates)

$$g = \frac{\partial E}{\partial x} \qquad \qquad w = \frac{\partial^2 E}{\partial x \partial y}$$

second derivatives are $3N \times 3N$ matrix:

- diagonalise to get independent directions
- eigenvectors = new coordinate basis
- eigenvalues = second derivatives in this basis

dynamical matrix → mass weighted second derivatives

diagonalise →

eigenvectors = normal modes

sqrt of eigenvalues = vibrational frequencies

$$D = \frac{1}{\sqrt{m_x m_y}} \left(\frac{\partial^2 E}{\partial x \partial y} \right)$$

how to find (local) minima?

(hopefully) have a reasonable first guess

how to find (local) minima?

finding the minimum using local information?

how to find (local) minima?

several numerical methods that try to solve this...

We want to find f(x) = 0:

Taylor expansion of y = f(x) around x_0 :

$$y = f(x_0) + f'(x_0)(x - x_0) + \dots$$

If we are close to the solution:

$$0 = f(x_n) + f'(x_n)(x_{n+1} - x_n)$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

calculate $f(x_0)$ and $f'(x_0)$

predict x_1 (assuming local linearity)

calculate $f(x_1)$

Newton-Raphson geometry optimisation

We want to find points of zero force.

$$F = -g g = \frac{\partial E}{\partial x} = 0$$

.: work with 1st and 2nd derivatives of PES:

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

In multiple dimensions:

$$g_i = W_{ij}(\partial x_i)$$
 $W_{ij} = \left(\frac{\partial^2 E}{\partial x_i \partial x_j}\right)$

$$x_{n+1} = x_n - (W_{ij,n})^{-1} g_{i,n}$$

how to calculate E(r) (and derivatives)?

"atomistic" modelling hierarchy

more degrees of freedom

shorter timescales / lengthscales

higher computational cost

fewer degrees of freedom

longer timescales / lengthscales

lower computational cost

"ab initio" electronic structure

effective Hamiltonian (e.g. lattice models)

$$E = \langle \psi | \hat{H} | \psi \rangle$$

$$E = F\left(\left\{r_{ij}\right\}\right)$$

molecular mechanics / interatomic potentials

$$E = F\left(\left\{\sigma_i\right\}\right)$$

cluster expansion

"classical models"

analytical expression used to calculate the energy

e.g. simple "pairwise" model

$$U_{\text{total}} = \sum_{ij} F(r_{ij})$$

example I: Lennard-Jones potential

$$U_{\rm LJ} = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

