

Bayes' Theorem

100 people in a bar...

$$\widetilde{p}(a=A,b=\bar{B})=40$$

	A	$ar{A}$	
B	10	30	
$ar{B}$	40	20	

A: Caipirinha

 \bar{A} : Beer

B: German

100 people in a bar...

$$\widetilde{p}(a=A,b=\bar{B})=40$$

Normalize so that

$$p(a,b) \propto \widetilde{p}(a,b),$$

$$\sum_{a=\{A,\bar{A}\},b=\{B,\bar{B}\}} p(a,b) = 1$$

	A	$ar{A}$	
B	0.1	0.3	
$ar{B}$	0.4	0.2	

A: Caipirinha

 \bar{A} : Beer

B: German

100 people in a bar...

$$\widetilde{p}(a=A,b=\bar{B})=40$$

Normalize so that

$$p(a,b) \propto \widetilde{p}(a,b),$$

$$\sum_{a=\{A,\bar{A}\},b=\{B,\bar{B}\}} p(a,b) = 1$$

 $p(a,b)\,$: joint probability

	A	$ar{A}$	
B	0.1	0.3	
$ar{B}$	0.4	0.2	

A: Caipirinha

 $ar{A}$: Beer

B: German

$$p(a=A,b=\bar{B})=0.4$$
 : probability that a randomly chosen person is Brasilian drinking caipirinha.

Randomly chose a single person, then observed that she/he is drinking beer.

	A	$ar{A}$	
B	0.1	0.3	
$ar{B}$	0.4	0.2	

A: Caipirinha

 \bar{A} : Beer

B: German

Randomly chose a single person, then observed that she/he is drinking beer.

- 1. Which is more likely?
 - She is German.
 - She is Brasilian.
- 2. Probability that she is German.

	A	$ar{A}$	
B	0.1	0.3	
$ar{B}$	0.4	0.2	

A: Caipirinha

 $ar{A}$: Beer

B: German

Randomly chose a single person, then observed that she/he is drinking beer.

- 1. Which is more likely?
 - She is German.
 - She is Brasilian.
- 2. Probability that she is German.

	A	$ar{A}$	
B	0.1	0.3	
$ar{B}$	0.4	0.2	

A: Caipirinha

 $ar{A}$: Beer

B: German

Randomly chose a single person, then observed that she/he is drinking beer.

- 1. Which is more likely?
 - She is German.
 - She is Brasilian.
- 2. Probability that she is German.

$$p(b = B|a = \bar{A}) = 0.6$$

	A	$ar{A}$	
B	0.1	0.3	
$ar{B}$	0.4	0.2	

A: Caipirinha

 $ar{A}$: Beer

B: German

Randomly chose a single person, then observed that she/he is drinking beer.

Condition!

- 1. Which is more likely?
 - She is German.
 - She is Brasilian.
- 2. Probability that she is German.

$$p(b = B|a = \bar{A}) = 0.6$$

	A	$ig(ar{A}ig)$	
B	0.1	0.3	
$ar{B}$	0.4	0.2	

A: Caipirinha

 $ar{A}$: Beer

B: German

Randomly chose a single person, then observed that she/he is drinking beer.

Condition!

- 1. Which is more likely?
 - She is German.
 - She is Brasilian.
- 2. Probability that she is German.

$$p(b = B|a = \bar{A}) = 0.6$$

$$p(a) = \sum_{b = \{B, \bar{B}\}} p(a, b)$$
 : marginal probability

	A	$ig(ar{A}ig)$	
B	0.1	0.3	
$ar{B}$	0.4	0.2	
		0.5	

A: Caipirinha

 $ar{A}$: Beer

B: German

 $ar{B}$: Brasilian

 $p(a=\bar{A})=0.5$: probability that a randomly chosen person drinks beer.

$$p(b|a) = \underbrace{\frac{p(a,b)}{p(a)}}_{\text{condition}}$$

	A	(\bar{A})	
B	0.1	0.3	
$ar{B}$	0.4	0.2	
		0.5	

A: Caipirinha

 \bar{A} : Beer

B: German

$$p(b|a) = \frac{p(a,b)}{p(a)}$$

	A	$ar{A}$	
B	0.1	0.3	0.4
$ar{B}$	0.4	0.2	0.6
	0.5	0.5	

p(a)

 ${\cal A}$: Caipirinha

 \bar{A} : Beer

B: German

$$p(b|a) = \underbrace{\frac{p(a,b)}{p(a)}}_{\text{condition}}$$

	A	$ar{A}$	
B	0.1	0.3	0.4
\bar{B}	0.4	0.2	0.6
	0.5	0.5	

A: Caipirinha

 $ar{A}$: Beer

B: German

 $ar{B}$: Brasilian

$$p(a|b) = \frac{p(a,b)}{p(b)}$$

3. A randomly chosen person was Brasilian. What is probability that she/he is drinking Caipirinha?

$$p(b|a) = \underbrace{\frac{p(a,b)}{p(a)}}_{\text{condition}}$$

	A	$ar{A}$	
В	0.1	0.3	0.4
$ar{B}$	0.4	0.2	0.6
	0.5	0.5	

A: Caipirinha

 $ar{A}$: Beer

B: German

 $ar{B}$: Brasilian

$$p(a|b) = \frac{p(a,b)}{p(b)}$$

3. A randomly chosen person was Brasilian. What is probability that she/he is drinking Caipirinha?

$$p(a = A|b = \bar{B}) = 0.666...$$

$$p(b|a) = \frac{p(a,b)}{p(a)}$$

$$p(a|b) = \frac{p(a,b)}{p(b)}$$

$$p(b|a) = \frac{p(a,b)}{p(a)}$$

$$p(b|a)p(a) = p(a,b) = p(a|b)p(b)$$

$$p(a|b) = \frac{p(a,b)}{p(b)}$$

$$p(b|a) = \frac{p(a,b)}{p(a)}$$

$$p(b|a)p(a) = p(a,b) = p(a|b)p(b)$$

$$p(a|b) = \frac{p(a,b)}{p(b)}$$

$$p(b|a) = \frac{p(b)}{p(a)}p(a|b)$$

Bayes' theorem

$$p(b|a) = \frac{p(a,b)}{p(a)}$$

$$p(b|a)p(a) = p(a,b) = p(a|b)p(b)$$

$$p(a|b) = \frac{p(a,b)}{p(b)}$$

$$p(b|a) = \frac{p(b)}{p(a)}p(a|b)$$

Bayes' theorem