Marshallian Demands for an n-Good Perfect-Substitutes Utility

Given a consumer with utility function

$$u(x_1, x_2, \dots, x_n) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

where $a_i > 0$ for all i, facing prices $\mathbf{p} = (p_1, p_2, \dots, p_n)$ and income m, find the Marshallian (ordinary) demand functions $x_i(p, m)$ and the indirect utility function v(p, m).

Solution

1. Utility maximization problem

We want to solve

$$\max_{x_1,\dots,x_n} a_1 x_1 + a_2 x_2 + \dots + a_n x_n \quad \text{subject to} \quad \sum_{i=1}^n p_i x_i = m \quad \text{and} \quad x_i \ge 0$$

Because $u(\cdot)$ is linear in the $\{x_i\}$, the maximum is typically attained at a *corner solution*: the consumer spends all income on the good that yields the highest "bang for the buck" ratio, $\frac{a_i}{p_i}$.

2. Bang-for-the-buck and corner solutions

Define

$$\frac{a_i}{p_i}$$
 for each good i

The consumer will choose the good i^* for which $\frac{a_{i^*}}{p_{i^*}}$ is the largest (assuming a unique maximum). In that case, she devotes her entire income m to buying good i^* , so

$$x_{i^*} = \frac{m}{p_{i^*}}$$
 and $x_j = 0$ for all $j \neq i^*$

3. Marshallian demand functions

Thus, the demand for each good i depends on which good has the highest $\frac{a_i}{p_i}$. If a single ratio is strictly larger than all others, all income is spent on that unique good. Formally, let

$$i^* = \arg\max_{1 \le k \le n} \frac{a_k}{p_k}$$

Then

$$x_i(p,m) \ = \ \begin{cases} \frac{m}{p_{i^*}} & \text{if } i=i^* \text{ and } \frac{a_{i^*}}{p_{i^*}} > \frac{a_j}{p_j} \text{ for all } j \neq i^*, \\ 0 & \text{otherwise} \end{cases}$$

In case of a tie among multiple goods for the highest ratio, there are infinitely many solutions: the consumer can split her income among any goods sharing the same maximal ratio $\frac{a_i}{p_i}$, and achieve the same utility level.

4. Indirect utility function

Substitute the corner solution back into the utility function. If the consumer spends all income on good i^* , then

$$u(x_1, \dots, x_n) = a_{i^*} \left(\frac{m}{p_{i^*}}\right) = m \frac{a_{i^*}}{p_{i^*}}$$

Hence the indirect utility is the maximum of $m \frac{a_i}{p_i}$ over all i. Therefore,

$$v(p,m) = m \max_{1 \le i \le n} \frac{a_i}{p_i}$$