HEALTH DETECTOR

sistema di telemedicina durante la pandemia COVID-19

Internet of Things and 3D systems

Progetto realizzato da:

Riccardo Agazzotti

Federico Cocchi

- 1. Caratteristiche del progetto
- 2. Architettura
- 3. Principali elementi del sistema
- 4. Dimostrazione del funzionamento del prototipo
- 5. Aspetti innovativi e sviluppi futuri

Pitch deck

Fase ideativa

Come abbiamo proceduto?

- Ricerca progetto che contenga i principali argomenti affrontati a lezione
- Progetto fortemente legato all'attualità e a fabbisogni concreti

A quali fabbisogni vogliamo rispondere?

- Favorire interazioni tra paziente e medico durante periodo di pandemia COVID-19
- Aggiornare le persone sul loro stato di salute

Il progetto

Prototipo funzionante
di un sistema di monitoraggio a distanza
della salute delle persone
attraverso la rilevazione di parametri vitali

controllare e predire la malattia COVID-19

Obiettivi

• conoscere lo stato di salute no COVID 🕢 sì COVID 🔕

- in tempo reale / predizione

- restando a casa / riducendo le occasioni di contagio

- anticipando il decorso della malattia

- permettere un' interazione a distanza tra medico e paziente
- intensificare l'attività della medicina sul territorio,
 sfruttando le capacità del 'digitale' => telemedicina

da qui nasce l'idea di HEALTH DETECTOR

Destinatari

Paziente

Medico di base

Azienda
 Sanitaria Locale

si collega ai sensori del dispositivo e fornisce i dati comunica con il medico di base

Il servizio può essere esteso in modo scalabile, consegnando i dispositivi a tutti gli assistiti di un territorio

analizza i dati stabilisce lo stato di salute
comunica con il paziente agisce prescrizione cure
coinvolgimento USCA
ricovero in ospedale

analizza i dati aggregati conosce dinamiche e tendenze della pandemia sul territorio

Prototipo e modello 3D

Dal prototipo al design di prodotto

Simulazione del dispositivo

Modello 3D

Creazione del prototipo in 3D

Dati del dispositivo acquisiti con tecniche della fotogrammetria

Presentazione al committente

Ricerca di miglioramenti

Stampa 3D: produzione del dispositivo

Architettura del sistema

Sistema realizzato da più blocchi in comunicazione tra loro

Ogni blocco esegue compiti distinti

Software dei blocchi scritto interamente da noi

Architettura del sistema

Schema degli stati

Controllo dello stato di salute del paziente, attraverso le informazioni in discesa dal server verso Arduino

Stati di controllo
if (iState==0 && iReceived=='O') iFutureState=1;
if (iState==1 && iReceived=='N') iFutureState=2;
if (iState==1 && iReceived=='F') iFutureState=3;
if (iState==3 && iReceived=='F') iFutureState=4;
if (iState==4 && iReceived=='O') iFutureState=1;
if (iState==2 && iReceived=='O') iFutureState=1;
if(iFutureState==2 && iState==1) digitalWrite(12, HIGH);
if(iFutureState==4 && iState==3) digitalWrite(12, LOW);

Codifiche utilizzate

Tramite la comunicazione seriale vengono inviati da Arduino verso il Bridge due pacchetti contenenti i dati dei sensori

Sensore GPS

Sensore GT-U7 alimentato a 5V

Collegamenti eseguiti:

TX, RX, GND, VIN

Utilizzo della libreria TinyGPS per accedere ai dati ricevuti dal sensore

I dati sono forniti in formato GPRMC e prima di essere inviati sono convertiti in coordinate di posizione

Sensore di temperatura

Sensore MLX-90614: rileva la temperatura corporea tramite raggi infrarossi

Non è necessario il contatto tra sensore e superficie della pelle

La misurazione è relativa alla temperatura esterna del corpo umano

Scelta di un sensore con FOV basso (angolo di visione) per misurare la temperatura di un oggetto specifico

Sensore battito cardiaco — 0₂ sangue

Sensore MAX-30100 è un pulsimetro restituisce 2 parametri fondamentali per l'analisi della salute del paziente

Il principio di funzionamento si basa

- 0₂ sangue: assorbimento da parte dell'emoglobina della luce rossa ed infrarossa
- Battito cardiaco: valutato sulla quantità di luce che attraversa il dito

Protocolli di comunicazione

UART

 Comunicazione asincrona tra Arduino-Bridge

- Un byte alla volta
- Indipendenza tra i vari byte

12C

Protocollo basato su 2 linee

I dati passano su SDA

Per selezionare il giusto sensore utilizzo il suo indirizzo

Collegamenti Sensori / Arduino

SW

Tecnologie software utilizzate

- Flask web server
- DB relazionale
- Tkinter
- Bokeh
- FBProphet

Flask

Per realizzare il server web abbiamo usato il framework Flask con le sue estensioni

- Flask-Login
- Flask-Form
- SQLAlchemy
- Blueprint
- Jinja → Templalte Render

DB relazionale

Il DB relazionale utilizzato per mantenere i dati in memoria al interno del server

I dati memorizzati attraverso questa tecnologia comprendono sia i dati inerenti alla logica di funzionamento che quelli acquisiti tramite i sensori

Il sever si interfaccia con il database attraverso SQLAlchemy

Come database engine è stato usato SQLite

Rappresentazione DB relazionale

Tkinter

Tkinter è una libreria python utilizzata per fornire un'interfaccia grafica alla parte di bridge per rendere il dispositivo più user-frendly

Bokeh

Bokeh è un tool che permette, grazie ad un interazione con python, di generare grafici e mappe interattive inseribili in pagine html

Funzionamento:

FB Prophet

Prophet è una procedura sviluppata da Facebook che permette di fare predizioni di serie temporali con trend annuali, settimanali o giornalieri

Phropet è robusto ai missing values

L' utilizzo di prophet segue l'API proposta da sklearn, abbiamo un modello sul quale fare Fit e Predict

Aspetti innovativi del sistema

> Predizione attraverso ML

 Database annotato rispetto allo stato di salute

 Geolocalizzazione della distribuzione dei malati › Utilizzo su larga scala

 Interazione a distanza tra medico e paziente

 Dati caricati attraverso il dispositivo

Sviluppi futuri

- Inserire nuovi sensori
- Migliorare algoritmi di Al
- Pre-calcolo dei parametri del modello per la predizione
- Analizzare le aree critiche nella mappa in base ai dati
- Protocollo HTTPS
- Connessione bluetooth tra ARDUINO e PC

Grazie per l'attenzione

Riccardo Agazzotti

E-mail: 244836@studenti.unimore.it

Federico Cocchi

E-mail: 289842@studenti.unimore.it