Lezione di Informatica Teorica

Appunti da Trascrizione Automatica 30 giugno 2025

Indice

1 Introduzione e Recap

Questa lezione riprende e approfondisce i concetti introdotti precedentemente, con un focus sulla formalizzazione dei problemi e l'introduzione di un modello di calcolo più potente: la Macchina di Turing.

1.1 Problemi e Linguaggi

Abbiamo studiato la complessità non degli algoritmi, ma dei **problemi**. La differenza sostanziale è che qui formalizziamo i problemi stessi.

Esistono due tipi principali di problemi:

- Problemi di Ricerca: Le risposte possono essere varie.
- Problemi di Decisione: La risposta è sempre un booleano (Sì/No).

I problemi di decisione possono riguardare vari contesti (matrici, grafi, immagini, testo, ecc.). Per semplificare l'analisi, si scelgono problemi che possono essere formalizzati in modo uniforme. Abbiamo scelto di studiare i **problemi di decidere linguaggi**.

Definizione 1 (Decidere un linguaggio). *Decidere un linguaggio significa verificare se una data stringa appartiene o meno a un determinato linguaggio.*

- Input: Una stringa.
- *Linguaggio*: Fa parte della definizione del problema, non dell'input.
- Output: Sì/No (la stringa appartiene al linguaggio?).

Codifica dei Problemi in Linguaggi: È possibile ricodificare problemi di decisione arbitrari in problemi di decisione di linguaggi.

Esempio 1 (Problema dei Grafi Totalmente Connessi). *Problema*: Dato un grafo, stabilire se è totalmente connesso.

- Questo è un problema di decisione (risposta Sì/No).
- Codifica in un linguaggio: Possiamo inventare un alfabeto Σ e una codifica tale per cui le stringhe che fanno parte del linguaggio L_{GC} sono solo quelle stringhe che, secondo la nostra codifica, rappresentano grafi totalmente connessi.
- ullet Una stringa in input che non codifica un grafo (secondo la nostra codifica) non appartiene a L_{GC} .
- Le stringhe che codificano grafi non totalmente connessi non appartengono a L_{GC} .

In questo modo, decidere se una stringa appartiene a L_{GC} equivale a decidere se il grafo codificato è totalmente connesso.

Questa codifica può essere estesa anche ai problemi di ricerca:

- Un problema di ricerca è una relazione binaria tra stringhe (input-output).
- Per codificare un problema di ricerca in un linguaggio, il linguaggio conterrebbe stringhe che
 codificano le coppie (input, output) valide per quel problema. Decidere l'appartenenza di
 una stringa a tale linguaggio implicherebbe, in qualche modo, il calcolo della soluzione.

Per semplicità, in questo corso ci concentreremo sui problemi di decisione e sulla loro formalizzazione come problemi di decisione di linguaggi.

1.2 Automi a Stati Finiti (Recap)

Per determinare se un linguaggio è decidibile (intuitivamente, se esiste un algoritmo che lo risolve), abbiamo introdotto i modelli di calcolo. Inizialmente, abbiamo visto gli **Automi a Stati Finiti (FA)**.

- **DFA** (**Deterministic Finite Automata**): Per ogni stato e simbolo in input, esiste una sola transizione possibile.
- NFA (Non-Deterministic Finite Automata): Per ogni stato e simbolo in input, possono esserci più transizioni possibili. Un NFA accetta una stringa se esiste almeno un percorso di computazione che porta a uno stato accettante consumando tutto l'input.

Potere Computazionale degli FA: Gli NFA e i DFA hanno lo stesso potere computazionale. Ogni NFA può essere convertito in un DFA equivalente. Il tempo di esecuzione è lineare rispetto alla lunghezza dell'input.

Esempio 2 (Linguaggio $L = \{a^nb^n \mid n \geq 0\}$). Questo linguaggio, che rappresenta stringhe con n'a' seguite da n'b' (es. aabb, aaabb), non può essere riconosciuto da un automa a stati finiti.

• *Intuito*: Un FA non ha memoria sufficiente per "contare" le 'a' e confrontarle con le 'b'. Ha un numero finito di stati, quindi non può memorizzare un numero arbitrario n.

Questo implica la necessità di un modello di calcolo più potente.

1.3 Linguaggi Regolari ed Espressioni Regolari

Gli automi a stati finiti (DFA/NFA) sono in grado di riconoscere tutti e soli i linguaggi regolari.

Definizione 2 (Linguaggio Regolare ed Espressioni Regolari). Sia Σ un alfabeto. Un linguaggio regolare su Σ è un linguaggio le cui stringhe possono essere descritte da **espressioni regolari**. Le regole per costruire espressioni regolari sono:

- Se $\alpha \in \Sigma$, allora α è un'espressione regolare (es. 0, 1).
- Se α e β sono espressioni regolari, allora anche la loro **concatenazione** $\alpha\beta$ è un'espressione regolare (es. 00, 0111).
- Se α e β sono espressioni regolari, allora anche la loro disgiunzione α ∨ β (spesso scritta α + β o α | β)
 è un'espressione regolare. Rappresenta le stringhe che sono generate da α oppure da β (es. 0 | 11 accetta 0 o 11).
- Se α è un'espressione regolare, allora α^* (Kleene Star) è un'espressione regolare. Rappresenta una concatenazione di zero o più occorrenze di α (es. (10)* accetta ϵ , (10, 1010, ...).
- A volte si usa α^+ (Kleene Plus) per indicare una concatenazione di una o più occorrenze di α (es. (10)+ accetta 10, 1010, ... ma non ϵ).

Proprietà: I linguaggi riconoscibili dagli automi a stati finiti sono esattamente i linguaggi regolari. Il linguaggio $\{a^nb^n\mid n\geq 0\}$ non è un linguaggio regolare, motivo per cui gli FA non possono riconoscerlo.

2 Macchine di Turing (TM)

Per risolvere problemi più complessi come $\{a^nb^n \mid n \ge 0\}$, è necessario un modello di calcolo più potente: la Macchina di Turing.

2.1 Introduzione e Concetti Base

La Macchina di Turing è un modello astratto di calcolo ideato da Alan Turing negli anni '30 per formalizzare il concetto di "calcolabilità".

Differenze chiave rispetto agli Automi a Stati Finiti:

- Nastro Infinito: La TM opera su un nastro infinito in entrambe le direzioni, diviso in celle.
- **Simbolo Blank** (B): Le celle vuote del nastro contengono un simbolo speciale (blank) per delimitare la stringa di input.
- **Testina di Lettura/Scrittura**: La TM ha una testina che può non solo leggere un simbolo, ma anche *scrivere* (sovrascrivere) un simbolo sulla cella corrente.
- Movimento Bidirezionale della Testina: La testina può spostarsi a destra (R) o a sinistra (L) lungo il nastro.

Queste capacità conferiscono alla TM una "memoria" infinita e la capacità di manipolare i dati sul nastro, superando le limitazioni degli FA.

Funzionamento: Una TM è un automa con un numero finito di stati. Ogni passo della computazione è determinato dallo stato corrente e dal simbolo letto dalla testina. La TM esegue le seguenti azioni:

- 1. Transisce a un nuovo stato.
- 2. Scrive un simbolo sulla cella corrente (sovrascrivendo quello precedente).
- 3. Sposta la testina a destra o a sinistra.

2.2 Definizione Formale della Macchina di Turing

Definizione 3 (Macchina di Turing). *Una Macchina di Turing (TM) M è una 7-tupla: M* = $\langle \Sigma, \Gamma, B, Q, q_0, F, \delta \rangle$ *dove:*

- Σ: è l'alfabeto di input (insieme finito di simboli che possono apparire nella stringa di input).
- Γ : è l'alfabeto di nastro (insieme finito di simboli che possono essere scritti sul nastro). Deve essere $\Sigma \subseteq \Gamma$.
- $B \in \Gamma \setminus \Sigma$: è il simbolo di blank, non è parte dell'input e indica una cella vuota.
- Q: è l'insieme finito degli stati interni della macchina.
- $q_0 \in Q$: è lo stato iniziale.
- $F \subseteq Q$: è l'insieme degli stati accettanti (o finali).
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: è la funzione di transizione (parziale). Data una coppia (stato corrente, simbolo letto), restituisce una tripla (nuovo stato, simbolo da scrivere, direzione del movimento della testina).

2.3 Esempio: Macchina di Turing per $L = \{a^n b^n \mid n \ge 0\}$

Strategia intuitiva: L'idea è "barrare" una 'a' dal lato sinistro e una 'b' dal lato destro ad ogni passo, tornando indietro e avanti fino a quando tutte le 'a' e 'b' sono state "consumate". Se il numero di 'a' e 'b' è lo stesso, il nastro sarà vuoto alla fine.

Figura 1: Rappresentazione del nastro della Macchina di Turing con testina.

Figura 2: Diagramma di stati per la Macchina di Turing che riconosce $L = \{a^n b^n \mid n \ge 0\}$. **Nota**: Le etichette degli archi sono nel formato: SimboloLetto/SimboloScritto, DirezioneMovimento.

Traccia del funzionamento (con correzioni al diagramma basate sulla discussione): 1. q_0 (Stato Iniziale):

- Se legge A: Scrive B (blank), sposta a destra (R), va in q_1 . (Cancella la prima 'a').
- Se legge B o B (blank, dopo aver cancellato tutto): Significa che non ci sono più 'a' da cancellare, quindi verifica se anche le 'b' sono finite. Se legge B e sposta a destra, va in q₄ (stato accettante).

2. *q*₁ (Cerca l'ultima 'b'):

- Se legge A: Scrive A, sposta a destra (R), rimane in q_1 . (Salta le 'a' rimanenti).
- Se legge B: Scrive B, sposta a destra (R), rimane in q_1 . (Salta le 'b' fino alla fine).
- Se legge B (blank): Scrive B, sposta a sinistra (L), va in q_2 . (Ha raggiunto la fine della stringa, torna indietro per trovare l'ultima 'b').

3. q_2 (Cancella l'ultima 'b'):

• Se legge B: Scrive B (blank), sposta a sinistra (L), va in q_3 . (Cancella l'ultima 'b' e inizia a tornare all'inizio della stringa).

4. q_3 (Torna all'inizio):

- Se legge A: Scrive A, sposta a sinistra (L), rimane in q_3 . (Salta le 'a' rimanenti, andando a sinistra).
- Se legge B: Scrive B, sposta a sinistra (L), rimane in q_3 . (Salta le 'b' rimanenti, andando a sinistra).
- Se legge B (blank): Scrive B, sposta a destra (R), va in q_0 . (Ha raggiunto l'inizio della stringa, torna a q_0 per la prossima iterazione).

5. q_4 (Stato Accettante):

• Questo è uno stato accettante. Se la TM raggiunge q_4 , la stringa è accettata.

Gestione di stringhe "strane" (e.g., ABaAB): La macchina come progettata dovrebbe rifiutare stringhe che non seguono il pattern a^*b^* .

- Se q_0 legge B all'inizio, si muove a q_4 , quindi accetterebbe la stringa vuota ϵ . Ma se è B e non ϵ , si muoverebbe a q_4 e accetterebbe una stringa di soli Bs (e.g., B). Questo è un dettaglio che richiede un'attenzione specifica sul caso base ϵ o stringhe di soli Bs.
- Se in q_1 (dopo aver cancellato la prima 'a' e spostato a destra) la macchina incontra un'altra 'a' dopo una 'b', non ci sono transizioni definite per questa sequenza, e la macchina si blocca, rifiutando la stringa.

2.4 Computazione di una Macchina di Turing

Per formalizzare il comportamento di una TM, si introduce il concetto di configurazione.

Definizione 4 (Configurazione di una TM). *Una configurazione di una TM M è una fotografia dello stato corrente di esecuzione della macchina.* È rappresentata da una stringa che include:

- La parte non-blank del nastro.
- Lo stato corrente della TM.
- La posizione della testina sul nastro.

La notazione comune è uqv, dove u è la stringa sul nastro a sinistra della testina, q è lo stato corrente, e v è la stringa sul nastro a destra della testina (incluso il simbolo letto dalla testina, che è il primo simbolo di v). Si omettono i blank a meno che non siano rilevanti per la posizione della testina.

Esempio 3. • Aq_1BB : La stringa sul nastro è ABB, la TM è nello stato q_1 , e la testina sta leggendo il primo B.

 ABBq₁B: La stringa sul nastro è ABB, la TM è nello stato q₁, e la testina sta leggendo il primo blank a destra della stringa.

Definizione 5 (Successore Legale di una Configurazione). Date due configurazioni C_1 e C_2 per una TM M, diciamo che C_2 è un **successore legale** (o raggiungibile in un passo) di C_1 rispetto a M, e scriviamo $C_1 \xrightarrow{M} C_2$, se C_2 è la configurazione che M raggiunge partendo da C_1 ed eseguendo un solo passo secondo la sua funzione di transizione δ .

Esempio 4. Per la TM di a^nb^n , se $C_1 = q_0AABB$, allora $C_2 = Bq_1ABB$ (dopo aver cancellato la prima A e mosso a destra).

Definizione 6 (Configurazione Iniziale). La configurazione iniziale di una TM M su una stringa di input $w = w_1 w_2 \dots w_n$ è $q_0 w_1 w_2 \dots w_n$. Si assume che la testina sia sul primo simbolo di w.

Definizione 7 (Configurazione Finale). *Una configurazione finale* è una configurazione C per la quale la funzione di transizione δ non è definita per la combinazione (stato di C, simbolo letto in C). In altre parole, la macchina si blocca.

Definizione 8 (Configurazione Accettante). *Una configurazione accettante* è una configurazione finale il cui stato corrente appartiene all'insieme degli stati accettanti F.

Definizione 9 (Configurazione Rifiutante). *Una configurazione rifiutante* è una configurazione finale il cui stato corrente **non** appartiene all'insieme degli stati accettanti F.

Definizione 10 (Computazione Parziale). *Una computazione parziale* di una TM M è una sequenza di configurazioni C_1, C_2, \ldots, C_k tale che $C_i \xrightarrow{M} C_{i+1}$ per ogni $1 \le i < k$.

Definizione 11 (Computazione (Completa)). *Una computazione di una TM M su una stringa di input* w è una computazione parziale C_1, C_2, \ldots, C_k tale che:

- C_1 è la configurazione iniziale di M su w.
- C_k è una configurazione finale.

Definizione 12 (Computazione Accettante). *Una computazione accettante di una TM M su una stringa w è una computazione* C_1, \ldots, C_k *dove* C_k *è una configurazione accettante.*

Definizione 13 (Linguaggio di una Macchina di Turing L(M)). Il linguaggio di una Macchina di Turing M, denotato L(M), è l'insieme di tutte le stringhe w tali che la computazione di M su w è accettante. $L(M) = \{w \mid M \text{ accetta } w\}$ Se una TM non si ferma mai su una stringa w, allora w non appartiene a L(M). Se si ferma in uno stato non accettante, w non appartiene a L(M).

2.5 Accettazione vs. Decisione di un Linguaggio

La differenza tra "accettare" e "decidere" un linguaggio da parte di una Macchina di Turing è fondamentale in Teoria della Computabilità.

Definizione 14 (Macchina di Turing che Decide un Linguaggio). *Una Macchina di Turing M decide* un linguaggio L se e solo se per ogni stringa $w \in \Sigma^*$:

- Se $w \in L$, allora M si arresta (termina) e accetta w (ovvero, la computazione termina in una configurazione accettante).
- Se w ∉ L, allora M si arresta (termina) e rifiuta w (ovvero, la computazione termina in una configurazione rifiutante).

In questo caso, si dice che L è un **linguaggio decidibile**. Una macchina che decide garantisce una risposta (Sì o No) in tempo finito per ogni input.

Definizione 15 (Macchina di Turing che Accetta un Linguaggio). *Una Macchina di Turing M accetta* un linguaggio L se e solo se per ogni stringa $w \in \Sigma^*$:

- Se $w \in L$, allora M si arresta e accetta w.
- Se w ∉ L, allora M non accetta w. Ciò significa che M potrebbe arrestarsi e rifiutare w, oppure potrebbe non arrestarsi mai (loop indefinitamente).

In questo caso, si dice che L è un **linguaggio accettabile** (o ricorsivamente enumerabile).

Implicazioni:

- La classe dei linguaggi decidibili è un sottoinsieme stretto della classe dei linguaggi accettabili.
- Se un linguaggio è decidibile, allora è anche accettabile.
- Esistono linguaggi che sono accettabili ma non decidibili. Per questi linguaggi, se la risposta è "Sì", la macchina terminerà e lo dirà. Ma se la risposta è "No", la macchina potrebbe entrare in un loop infinito e non fornire mai una risposta, lasciando l'utente in attesa indefinita. Questo è un problema fondamentale in Informatica Teorica.