Практический линал. Лабораторная работа № 2

Троицкая Тамара 368924

20 октября 2023 г.

Todo:

- 1. Содержание с навигацией
- 2. Оставить второе отдельно, а третье написать вместе с первым

В прошлый раз я написала код на C, но не заморочилась с оформлением. На этот раз я написала код на C++ для умножения матриц и, как видите, оформила отчёт в латехе. Основные функции из этой работы я вставлю в конце отчёта, чтобы не смущать людей. Также, признаюсь, написала на python код, чтобы оборачивать в IATEX матрицы и векторы. При желании все исходники можно найти здесь: https://github.com/cgsgtt6ITMO/s3 practlinal lab2

Задание 1. Придумайте. Придумайте матрицы 2×2 , которые задают:

 $\fbox{1}$ Отображение (симметрия) плоскости относительно $y=ax\;(a=2)$

Примеры преобразования точек:

$$\begin{pmatrix} 0 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 \end{pmatrix}$$

$$\hat{A} \cdot \hat{B} = C$$

где матрица A - искомая матрица преобразования, столбцы матрицы B - это исходные векторы, а столбцы матрицы C - это полученые в результате преобразования векторы.

1

$$A = C \cdot B^{-1}$$

$$\begin{pmatrix} 4 & -1 \\ 3 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 & 3 \\ 5 & 1 \end{pmatrix}^{-1} = \begin{bmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{bmatrix}$$

Проверка:

$$\begin{pmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} (-0.6) \cdot (-2) + 0.8 \cdot 1 \\ 0.8 \cdot (-2) + 0.6 \cdot 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

2 Отображение всей плоскости в прямую $y = bx \; (b = 3)$

Примеры преобразования точек:

$$\begin{pmatrix} -2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 \end{pmatrix}$$
$$\begin{pmatrix} -4 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & -3 \end{pmatrix}$$
$$C \cdot B^{-1} = A$$
$$\begin{pmatrix} 1 & -1 \end{pmatrix} \quad \begin{pmatrix} -2 & -4 \end{pmatrix}^{-1}$$

$$\begin{pmatrix} 2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} -4 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & -3 \end{pmatrix}$$

$$C \cdot B^{-1} = A$$

$$\begin{pmatrix} 1 & -1 \\ 3 & -3 \end{pmatrix} \cdot \begin{pmatrix} -2 & -4 \\ 4 & -2 \end{pmatrix}^{-1} = \boxed{\begin{pmatrix} 0.1 & 0.3 \\ 0.3 & 0.9 \end{pmatrix}}$$

Проверка:

$$\begin{pmatrix} 0.1 & 0.3 \\ 0.3 & 0.9 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 0.1 \cdot 3 + 0.3 \cdot (-1) \\ 0.3 \cdot 3 + 0.9 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

3 Поворот плоскости на 10с (60) градусов против часовой стрелки.

Примеры преобразования точек:

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \to \begin{pmatrix} 1/2 & \sqrt{3}/2 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 0 \end{pmatrix} \to \begin{pmatrix} -1/2 & -\sqrt{3}/2 \end{pmatrix}$$

$$C \cdot B^{-1} = A$$

$$\begin{pmatrix} 1/2 & -1/2 \\ \sqrt{3}/2 & -\sqrt{3}/2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}^{-1} = \boxed{\begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}}$$

Вспомним, что матрица поворота на α :

$$\begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) \\
\sin(\alpha) & \cos(\alpha)
\end{pmatrix}$$

Полученный нами результат согласуется с теорией.

2

Проверка:

$$\begin{pmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

4 Центральную симметрию плоскости относительно начала координат.

Примеры преобразования точек:

$$\begin{pmatrix}
3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix}
-3 & -1 \end{pmatrix} \\
\begin{pmatrix}
-1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix}
1 & -2 \end{pmatrix} \\
C \cdot B^{-1} = A \\
\begin{pmatrix}
-3 & 1 \\
-1 & -2 \end{pmatrix} \cdot \begin{pmatrix}
3 & -1 \\
1 & 2
\end{pmatrix}^{-1} =
\begin{pmatrix}
-1 & 0 \\
0 & -1 \end{pmatrix}$$

Проверка:

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $\boxed{5}$ Отображение, которое можно описать так: сначала отражение относительно прямой $y=ax\ (y=2x),$ потом поворот на 10d (90) градусов по часовой стрелке.

Будем искать точки в два этапа (отразить, повернуть):

Запишем преобразование векторов в два этапа:

Заметим, что

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} = \begin{pmatrix} 0.8 & 0.6 \\ 0.6 & -0.8 \end{pmatrix}$$

То есть эту матрицу можно получить последовательным умножением матрицы поворота (см. п. 3) и матрицы отражения (см. п. 1). Порядок именно такой, потому что при умножении этой конструкции на вектор сначала на него умножится матрица отражения, находящаяся правее, а потом уже матрица поворота. Можно

3

сказать, что действие произойдёт справа налево.

Проверка:

$$\begin{pmatrix} 1 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 \end{pmatrix}$$
$$\begin{pmatrix} 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$$

 $\boxed{6}$ Отображение, которое переводит прямую y=0 в $y=ax\ (y=2x)$ и прямую x=0 в $y=bx\ (y=3x)$.

Примеры преобразования точек:

$$\begin{pmatrix} 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 4 \end{pmatrix}$$
$$C \cdot B^{-1} = A$$

$$C \cdot B^{-1} = A$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}^{-1} = \boxed{\begin{pmatrix} 1 & 1/3 \\ 2 & 1 \end{pmatrix}}$$

Проверка:
$$\begin{pmatrix} 1 & 1/3 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$

7 Отображение, которое переводит прямую $y = ax \ (y = 2x)$ в y = 0 и прямую $y = bx \ (y = 3x)$ в x = 0.

Примеры преобразования точек:

$$\begin{pmatrix} 2 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 2 \end{pmatrix}$$
$$C \cdot B^{-1} = A$$

$$\hat{C} \cdot B^{-1} = \hat{A}$$

$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 6 & 2 \end{pmatrix}^{-1} = \boxed{\begin{pmatrix} -2 & 1 \\ 6 & -2 \end{pmatrix}}$$

$$\begin{pmatrix} -2 & 1 \\ 6 & -2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

8 Отображение, которое меняет местами прямые y = ax и y = bx (y = 2x и y = 3x).

Примеры преобразования точек:

$$\begin{pmatrix} 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1.5 & 3 \end{pmatrix}$$

$$\overset{\searrow}{C} \cdot B^{-1} = \overset{\searrow}{A}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \\ 3 & 6 \end{pmatrix}^{-1} = \boxed{\begin{pmatrix} -1 & 5/6 \\ 0 & 1 \end{pmatrix}}$$

Проверка:

$$\begin{pmatrix} -1 & 5/6 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ -3 \end{pmatrix} = \begin{pmatrix} -1.5 \\ -3 \end{pmatrix}$$

9 Отображение, которое переводит круг единичной площади с центром в начале координат в круг площади с (c = 6).

$$\pi r^2 = 1$$

$$r = 1/\sqrt{\pi}$$

$$\pi R^2 = c$$

$$R = \sqrt{c/\pi} = \sqrt{6/\pi}$$

Примеры преобразования точек:

$$\begin{pmatrix} 0 & r \end{pmatrix} \to \begin{pmatrix} 0 & R \end{pmatrix}$$

$$\begin{pmatrix} r & 0 \end{pmatrix} \rightarrow \begin{pmatrix} R & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 1/\sqrt{\pi} \\ 1/\sqrt{\pi} & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & \sqrt{6/\pi} \\ \sqrt{6/\pi} & 0 \end{pmatrix}$$

$$\mathbf{A} = \boxed{ \begin{pmatrix} \sqrt{6} & 0 \\ 0 & \sqrt{6} \end{pmatrix} }$$

10 Отображение, которое переводит круг единичной площади с центром в начале координат в некруг площади d (d = 9).

$$\pi r^2 = 1$$

$$r = 1/\sqrt{\pi}$$

Допустим, некруг это эллипс. Площадь эллипса вычисляется как $S=ab\pi$. Например, $a=9/\pi,b=1$. Тогда по оси оу фигура растягивается в $1/\sqrt{\pi}:1$ раз, по оси ох в $\frac{1}{\sqrt{\pi}}:\frac{9}{\pi}$ раз.

То есть собственные векторы: $v_1 = (0, 1)$ и $v_2 = (1, 0)$,

а соответствующие им собственные числа: $\lambda_1=1/\sqrt{\pi}, \lambda_2=9\sqrt{\pi}$

11 Отображение, у которого собственные вектора перпендикулярны, и ни один из них не лежит на прямой y=0 или y=x.

Пусть
$$v_1 = \begin{pmatrix} 2 & 1 \end{pmatrix} \lambda_1 = -1,$$

$$v_2 = \begin{pmatrix} -1 & 2 \end{pmatrix} \lambda_2 = 3/2$$

$$A \begin{pmatrix} 2 \\ 1 \end{pmatrix} = -1 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$A \begin{pmatrix} -1 \\ 2 \end{pmatrix} = 3/2 \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

$$A \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} -2 & -1.5 \\ -1 & 3 \end{pmatrix}$$

$$A = C \cdot B^{-1} = \begin{pmatrix} -2 & -1.5 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}^{-1} = \begin{bmatrix} -0.5 & -1 \\ -1 & 1 \end{pmatrix}$$

12 Отображение, у которого нет двух неколлинеарных собственных векторов.

$$\begin{array}{|c|c|}
\hline
\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

Это Жорданова клетка для $\lambda=2$ с геометрической кратностью 1. Все собственные векторы пропорциональны $\binom{1}{0}$, то есть коллинеарны. (Если говорить безграмотно, у неё только один собственный вектор)

13 Отображение, у которого нет ни одного вещественного собственного вектора (но при этом само отображение задаётся вещественной матрицей).

$$\begin{bmatrix} \begin{pmatrix} -2 & -1 \\ 9 & -2 \end{pmatrix} \end{bmatrix}$$

$$det \begin{pmatrix} -2 - \lambda & -1 \\ 9 & -2 - \lambda \end{pmatrix} = (\lambda + 2)^2 + 9 = 0$$

$$\lambda_1 = -2 - 3i \ v_1 = \begin{pmatrix} -i/3 \\ 1 \end{pmatrix}$$

$$\lambda_2 = -2 + 3i \ v_2 = \begin{pmatrix} i/3 \\ 1 \end{pmatrix}$$

14 Отображение, для которого любой ненулевой вектор является собственным.

$$\begin{array}{|c|c|}
\hline
\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \\
\lambda = 4 \\
\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4x \\ 4y \end{pmatrix} \\
\forall x, y$$

15 Пару отображений, последовательное применение которых даёт различные результаты в зависимости от порядка: AB = BA.

Отразим относительно прямой y=x и повернём на 90° против часовой стрелки.

Матрица поворота на 90° против часовой стрелки:

$$A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Матрица отражения относительно прямой у = х:

$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Отразить и потом повернуть:

$$A \cdot B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Повернуть и потом отразить:

$$B \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Слева отразили и повернули, справа повернули и отразили. Результаты не совпали.

16 Пару отображений, последовательное применение которых даёт одинаковый результат независимо от порядка: АВ = ВА. Постарайтесь, чтобы матрицы А и В были максимально непохожими друг на друга.

Сделать два поворота. Сначала на 60° , потом на 30° . И в обратной последовательности.

Матрица поворота на 60° против часовой стрелки:

$$A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$$
 Матрица поворота на 30° против часовой стрелки: $B = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} = \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix}$

$$B = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} = \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Нетрудно заметить, что в обоих случаях получилась матрица поворота на 90° против часовой оси. Это согласуется с теорией (и здравым смыслом) – порядок выполнения двух поворотов неважен, повороты "складываются".

8

Задание 2. Проанализируйте.

• Найдите образ и ядро придуманных вами отображений из пунктов 1, 2, 13, 14.

$$1) \begin{pmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \tilde{\quad} \begin{pmatrix} 0 & 1.25 \\ 0.8 & 0.6 \end{pmatrix}$$

$$\begin{pmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -0.6 \\ 0.8 \end{pmatrix}, \begin{pmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.8 \\ 0.6 \end{pmatrix}$$
Получаем образ:

$$im(A) = Span\begin{bmatrix} \begin{pmatrix} -0.6 \\ 0.8 \end{pmatrix}, \begin{pmatrix} 0.8 \\ 0.6 \end{pmatrix} \end{bmatrix} = Span\begin{bmatrix} \begin{pmatrix} -3 \\ 4 \end{pmatrix}, \begin{pmatrix} 4 \\ 3 \end{pmatrix} \end{bmatrix}$$

$$rank(A) = 2$$

$$nullity(A) = 0$$

$$kerf(A) = \{0\}$$

$$2) \begin{pmatrix} 0.1 & 0.3 \\ 0.3 & 0.9 \end{pmatrix} \tilde{\ } \begin{pmatrix} 0.1 & 0.3 \\ 0 & 0 \end{pmatrix}$$

$$rank(A) = 1$$

$$nullity(A) = 1$$

$$im(A) = Span[\begin{pmatrix} 1 \\ 3 \end{pmatrix}]$$

Ядро:
$$0.1x + 0.3y = 0$$

$$kerf(A) = Span\begin{bmatrix} -3\\1 \end{bmatrix}$$

13)
$$\begin{pmatrix} -2 & -1 \\ 9 & -2 \end{pmatrix}$$
 $\sim \begin{pmatrix} -2 & -1 \\ 0 & -6.5 \end{pmatrix}$ rank(A) = 2

$$rank(A) = 2$$

$$im(A) = Span\begin{bmatrix} -2\\ 9 \end{bmatrix}, \begin{pmatrix} -1\\ -2 \end{bmatrix}$$

$$\operatorname{nullity}(A) = 0$$

$$\ker f(A) = \{0\}$$

$$14) \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$$

$$rank(A) = 2$$

$$\operatorname{nullity}(A) = 0$$

Образ – любой вектор длины 2.

$$\operatorname{Im}(A) = \operatorname{Span}\left[\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}\right]$$

$$kerf(A) = \{0\}$$

• Найдите собственные числа и собственные вектора придуманных вами отображений из пунктов 1, 2, 3, 4, 8, 11, 12, 13, 14, 15, 16.

1)
$$\begin{pmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{pmatrix}$$

$$det \begin{pmatrix} -0.6 - \lambda & 0.8 \\ 0.8 & 0.6 - \lambda \end{pmatrix} = (\lambda + 0.6) \cdot (\lambda - 0.6) - 0.64 = \lambda^2 - 0.36 - 0.64 = \lambda^2 - 1 = 0$$

$$\lambda_1 = 1, \ \lambda_2 = -1$$

$$v_1 = \begin{pmatrix} 0.5 \\ 1 \end{pmatrix}, \ v_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$2) \begin{pmatrix} 0.1 & 0.3 \\ 0.3 & 0.9 \end{pmatrix}$$

$$det \begin{pmatrix} 0.1 - \lambda & 0.3 \\ 0.3 & 0.9 - \lambda \end{pmatrix} = (0.1 - \lambda) \cdot (0.9 - \lambda) - 0.9 = \lambda^2 - \lambda + 0.9 - 0.9 = 0$$

$$\lambda_1 = 0, \lambda_2 = 1$$

$$v_1 = \begin{pmatrix} -3 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1/3 \\ 1 \end{pmatrix}$$

$$3) \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$$

$$\lambda_1 = -\sqrt{3}i + 1, \lambda_2 = \sqrt{3}i + 1$$

$$v_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$4) \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\lambda_1 = -1$$

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 & 1 \end{pmatrix}$$

$$\lambda_1 = 1, \lambda_2 = -1$$

$$v_1 = \begin{pmatrix} 5/12 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$11) \begin{pmatrix} -0.5 & -1 \\ -1 & 1 \end{pmatrix}$$

$$\lambda_1 = -1, \lambda_2 = 1.5$$

$$v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} -0.5 \\ 1 \end{pmatrix}$$

$$12) \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

$$\lambda_1 = 2$$

$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1/3 \\ 1/3 \end{pmatrix}$$

$$13) \begin{pmatrix} -2 & -1 \\ 9 & -2 \end{pmatrix}$$

$$\lambda_1 = -2 - 3i, \lambda_2 = -2 + 3i$$

$$v_1 = \begin{pmatrix} -i/3 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} i/3 \\ 1 \end{pmatrix}$$

$$14) \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$$

$$\lambda_1 = 4$$

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$15)$$

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\lambda_1 = i, \lambda_2 = -i$$

$$v_1 = \begin{pmatrix} i \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} -i \\ 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\lambda_{1} = 1, \lambda_{2} = -1$$

$$v_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, v_{2} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\lambda_{1} = 1, \lambda_{2} = -1$$

$$v_{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, v_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\lambda_{1} = 1, \lambda_{2} = -1$$

$$v_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, v_{2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$16)$$

$$A = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$$

$$\lambda_{1} = \frac{-\sqrt{3}i+1}{2}, \lambda_{2} = \frac{\sqrt{3}i+1}{2}$$

$$v_{1} = \begin{pmatrix} -i \\ 1 \end{pmatrix}, v_{2} = \begin{pmatrix} i \\ 1 \end{pmatrix}$$

$$B = \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix}$$

$$\lambda_{1} = \frac{\sqrt{3}-i}{2}, \lambda_{2} = \frac{\sqrt{3}+i}{2}$$

$$v_{1} = \begin{pmatrix} -i \\ 1 \end{pmatrix}, v_{2} = \begin{pmatrix} i \\ 1 \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\lambda_{1} = i, \lambda_{2} = -i$$

$$v_{1} = \begin{pmatrix} i \\ 1 \end{pmatrix}, v_{2} = \begin{pmatrix} -i \\ 1 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

ределитель матриц из пунктов 1, 2, 3, 4, 5, 9, 10.

1)
$$det \begin{pmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} = -0.36 - 0.64 = -1$$

2) $det \begin{pmatrix} 0.1 & 0.3 \\ 0.3 & 0.9 \end{pmatrix} = 0$

2)
$$\det \begin{pmatrix} 0.1 & 0.3 \\ 0.3 & 0.9 \end{pmatrix} = 0$$

3) $\det \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} = 1/4 + 3/4 = 1$

4)
$$\det \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = 1$$

4)
$$det \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = 1$$

5) $det \begin{pmatrix} 0.8 & 0.6 \\ 0.6 & -0.8 \end{pmatrix} = -0.64 - 0.36 = -1$

9)
$$\det \begin{pmatrix} \sqrt{6} & 0 \\ 0 & \sqrt{6} \end{pmatrix} = 6$$

10)
$$\det \begin{pmatrix} 1/\sqrt{\pi} & 0\\ 0 & 9\sqrt{\pi} \end{pmatrix} = 9/\pi$$

• В каких пунктах матрица обязательно получается симметричной?

Точно да: 1, 4, 9, 14. Может быть: 2, 5, 11.

Точно не: 3, 6, 7, 8, 12, 13, 15, 16. 10

Задание 3. Визуализируйте. Используя MATLAB или Python, выполните визуализацию полученных линейных преобразований. Для этого:

- Задайте произвольную фигуру как многоугольник с вершинами в выбранных вами точках. Постройте её графическое изображение. Это оригинал.
- Найдите образ каждой вершины многоугольника при линейном отображении рассматриваемой матрицей. Постройте графическое изображение многоугольника на полученных (отображённых) вершинах. Это – результат преобразования, образ.
 - Выполните указанную визуализацию для всех отображений из первого задания.
- \bullet При работе с пунктами 15 и 16 сделайте визуализацию всех рассматриваемых отображений, а именно: A, B, AB и BA.
- Для пунктов 1, 11, 12, 14, 15, 16 добавьте на картинку прямые, совпадающие с направлениями собственных векторов.

1)!

красный и фиолетовый – направления собственных векторов.

2)

3)

4)

5)

красный квадратик отразили, получили фиолетовый. Фиолиетовый повернули на 90 градусов — получили коричневый.

- 6)
- 7)
- 8)
- 9)
- 10)
- 11)!

- 12)!
- 13)
- 14)!
- 15)!
- 16)!

А здесь мой уважаемый читатель может наконец увидеть небольшую выжимку из самых важных функций моего проекта.

1) Вспомогательные функции для подсчёта определителя (с++)

```
⊡/* Calculates minor of the matrix.
        * Arguments:
        * - pointer to the matrix nxm:
147
        * - indexes of row and column to be deleted:
148
        * size_t x, size_t y.
        * Returns:
        * (matrix) - minor matrix (n-1)x(m-1)
      matrix math::matr_minor(matrix* M, size_t x, size_t y) {
        size_t n = M->n, m = M->m;
        double** a = M->arr;
         double** res = allocate_memory(n - 1, m - 1);
        size_t i_m = 0, j_m;
        for (size_t i = 0; i < n; i++) {
          if (i == x) continue;
          j_m = 0;
          for (size_t j = 0; j < m; j++) {
161
           if (j != y \&\& i_m < (n-1) \&\& j_m < (m-1)) {
             res[i_m][j_m] = a[i][j];
164
               j_m++;
           }
          if (i != x) {
167
           i_m++;
169
170
171
         return matrix{ n - 1, m - 1, res };
172
```

```
174
      ⊟/* Calculates the determinant.
175
        * Arguments:
177
178
            (double) - the determinant.
179
      double math::determinant(matrix* M) {
       size_t n = M->n;

    if (n != M->m) {
          std::cout << "This matrix is not squared, determinant cannot be calculated."</pre>
             << std::endl;</pre>
         double** a = M->arr;
        if (M->n == 1) return a[0][0];
         if (M->n == 2) return a[0][0] * a[1][1] - a[0][1] * a[1][0];
190
         double res = 0, coef = 1;
         for (size_t i = 0; i < n; i++) {
          matrix cur_minor = matr_minor(M, 0, i);
           res += coef * a[0][i] * determinant(&cur_minor);
194
          coef *= -1;
        return res;
```

```
2) Функции для работы с матрицами для первого задания (c++)
         \Box/* There is an equation A * B = C. Get matrix A.
          * Arguments:
  234
          * matrix B,
  236
  237
           * Returns:
  238
          * (matrix) - matrix A.
  239
          |*/
  240
         matrix math::get_matrix(matrix B, matrix C) {
  241
          return matr_mul_matr(C, matr_invert(&B));
  243
         ⊡/* Calculates inverted matrix.
  200
           * Arguments:
           * - pointer to matrix to be inverted:
          * matrix* M.
  204
           * (matrix) - the inverted matrix.
  206
         matrix math::matr_invert(matrix* M) {
  207
          | size_t n = M->n, m = M->m;
  208

    if (n != m) {

  209
             std::cout << "This matrix cannot be inverted." << std::endl;</pre>
            return matrix{ 0, 0, NULL };
  211
  212
            double** arr = allocate_memory(n, m);
  213
            double coef;
           // adjusted
  215
         ☐ for (size_t i = 0; i < n; i++) {
☐ for (size_t j = 0; j < n; j++)
☐ if (i % 2 != i % 2) {
  216
             for (size_t j = 0; j < n; j++) {
  218
                coef = -1;
  220
               else coef = 1;
                matrix minorr = matr_minor(M, i, j);
  222
  223
                arr[i][j] = determinant(&minorr) * coef;
  224
            // transpose
            matrix res = matr_transpose(matrix{ n, m, arr });
  227
            // multiply to inv to det
  228
```

return num_mul_matr(1.0 / determinant(M), res);

229 230

```
* Arguments:
 * - first matrix:
* matrix A,
    ·····matrix·B.
matrix math::matr_mul_matr(matrix A, matrix B) {
 size_t n = A.n, m = B.m, l = A.m;
  // validate sizes
if (l != B.n) {
    printf("Those matrices cannot be multiplied\n");
     printf("A: %zux%zu, B: %zux%zu\n", n, l, B.n, m);
     matrix res = { 0, 0, NULL };
    return res;
   double** a = A.arr, ** b = B.arr;
   double** res = allocate_memory(n, m);
  for (size_t i = 0; i < n; i++) {
   for (size_t j = 0; j < m; j++) {
     res[i][j] = 0;
for (size_t k = 0; k < l; k++) {
     res[i][j] += a[i][k] * b[k][j];
   matrix matr = { n, m, res };
   return matr;
```