Projeto: Estação meteorológica

Objetivos do projeto:

- Construir uma estação meteorológica.
- Aplicar os conceitos desenvolvidos em sala

Instrumentação:

- > Elementos principais do projeto:
 - o Um sensor LM 35
 - o Um sensor DHT 22
 - o Um sensor BMP 180
 - o Um sensor de livre escolha (MQ 7)
 - o Um Arduino Uno
 - Um Display LCD 2x16
 - \circ Um resistor de $10k\Omega$
 - Uma placa de cobre
- Para a calibração:
 - o Analog Discover
 - o Cronômetro
 - o Forno de calibração
 - Sais (MgCl₂, Ca(NO₃)₂, KOH, NaCl, KCl)
 - o Um termômetro Pt-100
 - Um protoboard
 - o Um multímetro FLUKE 115
 - o Jumpers
- Para a finalização:
 - o Ferro de solda
 - o Router
 - Estanho
 - Sugador

Observações iniciais:

- ➤ A constante de tempo está relacionada ao instante em que a variação equivale a 63,2% da variação total
- > Pt 100 será usado como um padrão de medição secundário
- A incerteza tipo A está relacionada a erros aleatórios, os quais influenciam na precisão
- Já incerteza tipo B está relacionada com a aparelhagem e com erros sistemáticos, os quais influenciam na exatidão
- > O Arduino é um conversor Analógico/Digital de 10 bits
- A resolução é o valor mínimo que é detectável pelo sensor

Para a realização do projeto, este foi dividido em etapas:

I. Calibração do LM 35

Informações iniciais:

O LM 35 é um sensor de temperatura, apresentando uma tensão correspondente para cada temperatura medida e está representado na Figura 1

Figura 1: Representação do LM 35

As informações técnicas relevantes desse sensor para esse projeto estão presentes na *Tabela 1*.

Dados LM 35				
Precisão	± 0,5 °C			
Escala	10mV/ºC			

Tabela 1: Dados técnicos do LM 35, disponíveis em: http://www.ti.com/lit/ds/symlink/lm35.pdf

Processo de calibração:

1. Montou-se no protoboard o circuito como demonstrado na Figura 2. Levando em consideração que foi utilizado o Analog Discover, pode-se afirmar que no "+V_s" da Figura 2, conctouse o fio vermelho do Analog Discover, no "OUTPUT", o amarelo e, no Ground, o preto

Figura 2: Circuito utilizado para o LM 35

- **2.** Utilizando o software WaveForms como fonte de tensão, estabeleceu-se uma tensão de 5V
- 3. Mediu-se a constante de tempo (τ) do aparelho. Para isso, colocou-se o sensor a uma certa temperatura e com o software, observou-se a curva obtida quando se analisa a tensão em função do tempo, o *Gráfico* 1.

Gráfico 1: Gráfico da tensão em função do tempo já com a demarcação do τ

A partir do *Gráfico 1*, analisou-se quanto foi a variação da tensão, do momento inicial, até sua estabilização, a qual foi 194,6mV (416,4mV –

221,8mV = 194,6mV). Sabendo isso, calculou-se qual foi a tensão em que a variação, comparando com a inicial, já havia sido de 63,2% da variação até estabilização:

$$194,6mV \cdot 0,632 \approx 122,98mV$$
$$221,8mV + 122,98mV = 344,78mV$$

Obtido o valor de 344,78mV, observou-se pelo *Gráfico 1* quanto tempo demorou para a tensão chegar a esse valor, sendo esse tempo, o τ .

$$t_0 = -119,4s$$

$$t_{\tau} = -71,8s$$

$$\Delta t = -71,8 - (-119,4) = 47,6s = \tau$$

4. Encontrou-se o tempo de acomodação do sensor no *Gráfico 1*, para isso utilizou-se a fórmula:

tempo de acomodação =
$$4 \cdot \tau$$

Dessa maneira,

 $tempo\ de\ acomoda$ ção $= 4\cdot 47,6 = 190,4s = 3\min 10,4s$ Aproximando esse valor para facilitar processos futuros, admitiu-se, por fim, o tempo de acomodação de 3 minutos e 11 segundos

- 5. Passou-se a utilizar o Analog Discover apenas como fonte de tensão e um multímetro para a obtenção de medidas. Para isso, desconectou-se o fio amarelo do Analog Discover e, por meio de jumpers, conectou-se as saídas OUTPUT e +Vs ao multímetro
- 6. Regulou-se o multímetro para medidas de tensão
- 7. Iniciou-se a obtenção de medidas:
 - a. Inseriu-se o sensor no forno de calibração juntamente com um termômetro Pt-100
 - b. Esperou-se, utilizando um cronômetro, 3min11s e anotou-se a medida observada no multímetro
 - c. Retirou-se o sensor do forno
 - d. Repetiu-se o processo 4 vezes para cada temperatura
 - e. Modificou-se a temperatura do forno de calibração e repetiu-se o processo, até que no final, obteve-se 4 medidas de tensões para 5 temperaturas diferentes.
- **8.** A partir das medidas obtidas, calculou-se a incerteza padrão de cada uma. Para isso, para cada temperatura:
 - a. Calculou-se a média das tensões medidas
 - b. Calculou-se o desvio padrão, através da fórmula:

$$\sigma_{N-1} = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_N - \bar{x})^2}{N - 1}}$$

Sendo N o número de medidas anotadas

c. Calculou-se a incerteza tipo A, através da fórmula:

$$\sigma_A = \frac{\sigma_{N-1}}{\sqrt{N}}$$

d. Calculou-se as incertezas tipo B, que são duas, já que há a do multímetro e a do próprio LM 35.

Especificações de precisão (FLUKE 115)							
	Resolução/Gama	6,000V/0,001V					
Volte	Resolução/Gama	60,00V/0,01V					
Volts	Resolução/Gama	600,0V/0,1V					
	Precisão	0,5% + 2					

Tabela 2: Especificações do multímetro FLUKE 115, encontraadas no manual do aparelho

Para a incerteza do multímetro, analisou-se a Tabela 2. Dessa maneira, utilizou-se a seguinte fórmula:

ra, utilizou-se a seguinte fórmula:
$$\sigma_{B1} = \frac{0,005 \cdot \bar{x} + 2 \cdot resolução}{2}$$

Sendo o valor da resolução de acordo com a Tabela 2, assim, nessa etapa a resolução será igual a 0,001, já que todos os valores são menores que 6V.

> Já, para a incerteza do LM 35, analisou-se a sua precisão, que está explicitada na *Tabela 1* e é equivalente a ±0,5°C. Como as medidas obtidas estão em Volts, convertendo de grau Celsius para Volts na escala que também está explicitada na Tabela 1, ou seja, 10mV/°C, a precisão é de 0,005mV. A partir desse valor calculou-se a incerteza:

$$\sigma_{B2} = \frac{0,005}{2} = 0,0025 mV$$

e. Para calcular a incerteza padrão, utilizou-se a combinação de incertezas B1 e B2:

$$\sigma_B = \sqrt{{\sigma_{B1}}^2 + {\sigma_{B2}}^2}$$

 $\sigma_{\!B} = \sqrt{{\sigma_{\!B1}}^2 + {\sigma_{\!B2}}^2}$ Além da propagação das incertezas A e B:

$$\sigma_{padr\~ao} = \sqrt{\sigma_{\!A}^{\,2} + \sigma_{\!B}^{\,2}}$$

9. Obtendo-se, desse modo, a Tabela 3

	Medidas do LM 35											
T [0C]	Leituras [V]			Tensão média	σ _{N-1} [V]	~ [V]	σ _{B1} [V]	σ _{B2} [V]	σ _{padrão}			
i [oc]	1	2	3	4	(U _{med}) [V]	ON-1[V]	σ _A [V]	O _{B1} [V]	O _{B2} [V]	[V]		
0,300	0,005	0,008	0,006	0,005	0,006	0,001	0,001	0,001	0,003	0,003		
11,600	0,106	0,097	0,097	0,098	0,100	0,004	0,002	0,001	0,003	0,004		
20,900	0,216	0,216	0,218	0,215	0,216	0,001	0,001	0,002	0,003	0,003		
29,900	0,292	0,291	0,290	0,291	0,291	0,001	0,000	0,002	0,003	0,003		
40,100	0,390	0,389	0,389	0,390	0,390	0,001	0,000	0,002	0,003	0,003		

Tabela 3: Tabela do LM 35 com as medidas obtidas no processo

- 10. A partir disso, buscou-se obter a função de calibração, para isso utilizou-se o método dos mínimos quadrados (MMQ):
 - a. Cálculos necessários:

$$> S_{\sigma} = \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}$$

$$> S_x = \sum_{i=1}^n \frac{\dot{x_i}}{\sigma_i^2}$$

$$S_{x^{2}} = \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}}$$

$$S_{y} = \sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}}$$

$$S_{xy} = \sum_{i=1}^{n} \frac{x_{i} \cdot y_{i}}{\sigma_{i}^{2}}$$

$$\Delta = \left(S_{\sigma} \cdot S_{x^{2}} - S_{x^{2}}\right)$$

$$a = \frac{1}{\Delta} \left(S_{\sigma} \cdot S_{xy} - S_{x} \cdot S_{y}\right)$$

$$b = \frac{1}{\Delta} \left(S_{x^{2}} \cdot S_{y} - S_{x} \cdot S_{xy}\right)$$

$$f(x) = a \cdot x + b$$

Admitindo-se que x equivale a T, yi a Umed e oi a opadrão

b. Obteve-se, desse modo, a *Tabela 4*, a partir da qual obteve-se a *Tabela 5*

	Cálculos para utilizar o método dos mínimos quadrados											
т[⁰С]	U _{med} [V]	σ _{padrão} [V]	Sσ (V ⁻²)	(V ⁻²) Sx (⁰ C.V ⁻²) Sx ² (⁰ C ² .V ⁻²) Sy (V ⁻¹)		Sxy (⁰ C.V ⁻¹)						
0,3	0,006	0,003	128530,987	38559,296	11567,789	771,186	231,356					
11,6	0,100	0,004	79621,787	923612,724	10713907,600	7922,368	91899,466					
20,9	0,216	0,003	110872,627	2317237,915	48430272,414	23976,206	501102,699					
29,9	0,291	0,003	106372,535	3180538,790	95098109,827	30954,408	925536,788					
40,1	0,390	0,003	97761,053	3920218,223	157200750,744	38077,930	1526924,998					
			522158 080	10380166 9/8	211/15/1608 272	101702 097	20/15695 207					

Tabela 4: Cálculos para o método dos mínimos quadrados

Função MMQ inicial							
Δ (⁰ C.V ⁻⁴)	a (V/ºC)	b (V)	f(x)= ax + b				
55192412165899,5	0,009742	0,00110	U (V) = 0, 009742.T(°C) +0,00110				

Tabela 5: Tabela com os valores da função obtida pelo MMQ

- **11.** A função obtida pelo MMQ, porém, não é a que se buscava. Por isso, é necessário que se troque os eixos para que, enfim, a função seja a desejada.
 - a. Cálculos para a troca de eixos:

 \triangleright Antes da troca: f (x) = a.x + b

➤ Depois da troca: x= (f (x) - b)/a

b. Obtendo-se, assim a *Tabela 6*, contendo a função desejada:

$$T = 102,6457 \cdot U - 0,113002$$

Função de calibração						
1/a (°C/V)	-b/a (°C)	f(x)= ax + b				
102,6457	-0,113002	T(°C)= 102,6457.U(V) - 0,113002				

Tabela 6: Função de calibração do LM 35

12. Por fim, foi possível obter a *Tabela 7* e o *Gráfico 2*, os quais contém os valores medidos e os calculados pela função de calibração encontrada.

Tabela com valores medidos e da função								
T[ºC]			Valor de T pela função					
0,3	0,006	0,003	0,5					
11,6	0,100	0,004	10,1					
20,9	0,216	0,003	22,1					
29,9	0,291	0,003	29,8					
40,1	0,390	0,003	39,9					

Tabela 7: Tabela com os valores de T medidos e os encontrados por meio da função

Gráfico 2: Gráfico final de calibração do LM 35: Temperatura[⁰C] vs Tensão [V]

II. Calibração do DHT 22

Informações iniciais:

- O DHT 22 é um sensor que mede tanto a temperatura, quanto a umidade relativa e está representado na Figura 3.
- As medidas obtidas por meio desse sensor estão em grau Celsius, no caso da temperatura, e em porcentagem, no caso da umidade

Dados DHT 22						
D	Temperatura	Umidade Relativa				
Precisão	± 0,5 °C	± 2%				

Tabela 8: Dados técnicos do DHT 22

Figura 3: Representação do DHT 22

Processo de calibração:

- **1.** Montou-se no protoboard o circuito demonstrado na *Figura 4*.
- 2. Estabeleceu-se o tempo que foi esperado a cada medição até que o sensor se estabilizasse. Ao contrário do que foi feito com o LM 35, essa estimativa foi necessária, pois percebeu-se que o tempo de acomodação do DHT 22 era muito

Figura 4: Representação do circuito utilizado com o DHT 22

elevado. Desse modo, para que a calibração pudesse ser concluída até o tempo desejado e para que houvesse um padrão entre as medições, estabeleceu-se um intervalo de tempo de 6 minutos entre o momento em que o DHT 22 era colocado em contato com uma nova circunstância e o

momento em que se anotavam as medidas obtidas

- 3. Para que fosse possível visualizar os valores obtidos pelo sensor, conectou-se o Arduino Uno a um computador e utilizou-se o software Arduino configurado com o código presente na *Figura 5*. Dessa maneira, imprimiu-se, na tela do computador, as medidas de temperatura e umidade do sensor a cada instante determinado
- 4. Iniciou-se a obtenção de medidas:
 - a. Inseriu-se o sensor em um béquer com sistema de um sal praticamente isolado
 - b. Esperou-se 6 minutos
 - c. Anotou-se as medidas de temperatura e de umidade relativa
 - d. Retirou-se o sensor do béquer
 - e. Repetiu-se o processo quatro vezes para o mesmo sal

#include "DHT.h" #define DHTPIN 2 #define DHTTYPE DHT22 DHT dht(DHTPIN, DHTTYPE); void setup() { Serial.begin(9600); dht.begin(); void loop() { float h = dht.readHumidity(); float t = dht.readTemperature(); Serial.print("Temperatura DHT (C): "); Serial.println(t); Serial.print("Umidade Relativa (%): "); Serial.println(h); Serial.println(): delay (2000);

Figura 5: Código do DHT 22 do software Arduino

- f. Trocou-se o sal e repetiu-se o processo até que se totalizassem 4 medidas de umidade e temperatura para cada um dos 5 sais escolhidos: MgCl₂,Ca(NO₃)₂, KOH, NaCl,KCl
- **5.** A partir das medidas obtidas, foi possível calcular a incerteza padrão da média das medidas de cada sal. Para isso:
 - a. Calculou-se a média das umidades relativas medidas
 - b. Calculou-se o desvio padrão, através da fórmula:

$$\sigma_{N-1} = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_N - \bar{x})^2}{N - 1}}$$

Sendo N o número de medidas anotadas

c. Calculou-se a incerteza tipo A, através da fórmula:

$$\sigma_A = \frac{\sigma_{N-1}}{\sqrt{N}}$$

d. Calculou-se a incerteza tipo B. Para isso, foi necessário:

- Constatar que o sensor tem uma certa precisão para a temperatura medida e outra para a umidade relativa, como demonstra a *Tabela 8*.
- ii. Calcular a incerteza tipo B de cada uma das grandezas, de acordo com os valores presentes na *Tabela 8*

>
$$\sigma_{BU} = \frac{2}{2} = \pm 1\%$$

> $\sigma_{BT} = \frac{0.5}{2} = 0.25 \, ^{\circ}\text{C}$

- iii. Notar que a medida a qual se busca analisar com o DHT 22 é a de umidade relativa
- iv. Reconhecer que se deve fazer o processo de transferência de incertezas, já que há incertezas relacionadas a duas grandezas diferentes e pretende-se obter apenas a relacionada a umidade relativa, que é a relevante para o projeto.
- v. Utilizar a seguinte fórmula de transferência de incertezas para transferir a incerteza da temperatura para a da umidade:

$$\sigma_B = \sqrt{\sigma_{BU}^2 + \left(\frac{dU}{dT}\right) \cdot \sigma_{BT}^2}$$

Ao final do processo descrito, obteve-se o valor da incerteza tipo B:

$$\sigma_B = \sqrt{1^2 + \left(\frac{1}{0,25}\right) \cdot 0,25^2} = 1,41\%$$

e. Calculou-se, enfim, a incerteza padrão utilizando a fórmula:

$$\sigma_{padr\tilde{a}o} = \sqrt{\sigma_{A}^{2} + \sigma_{B}^{2}}$$

6. Calculou-se o valor médio das temperaturas medidas como mostrado na *Tabela 9*

Sal		T _{média}			
Jai	1	2	3	4	• media
кон	22,1	22,7	22,2	22,9	22,5
NaCl	21,9	22,2	22,1	22,7	22,2
MgCl ₂	22,6	22,7	23,0	23,2	22,9
Ca(NO ₃) ₂	22,4	23,0	23,0	23,0	22,8
KCI	23,5	23,5	23,4	23,3	23,4

Tabela 9: Tabela com as medidas e a média das temperaturas

7. Analisando a *Tabela 10*, foi possível relacionar a temperatura média encontrada com a umidade teórica correspondente por meio da extrapolação ou interpolação de dados da *Tabela 10*.

Sal	Umidades [%]								
Jai	5 ºC	15 ºC	20 ºC	25 °C					
кон	13,0	9,0		8,0					
MgCl ₂	34,0	33,5	33,0	32,5					
Ca(NO ₃) ₂	61,0	58,0	56,0	52,2					
NaCl	76,0	75,5	75,3	75,1					
KCI	87,8	86,0	85,3	85,0					

Tabela 10: Valores de umidade relativa utilizados para comparação

8. Dessa maneira, obteve-se a Tabela 11.

	Medidas do DHT 22											
	Temperatura	Umidade		Medid	as [%]		U _{med}	σ _{N-1} [%]	σ _Α [%]	σ _в [%]	σ _{padrão} [%]	
Sal	[ºC]	desejada [%]	1	2	3	4	[%]					
КОН	22,5	7,2	15,9	14,1	18,6	21,2	17,4	3,1	1,6	1,4	2,1	
MgCl ₂	22,9	29,7	26,7	28,6	27,7	28,2	27,8	0,8	0,4	1,4	1,5	
Ca(NO ₃) ₂	22,8	47,7	45,5	45,1	45,2	45,2	45,2	0,2	0,1	1,4	1,4	
NaCl	22,2	66,8	57,2	56,3	56,7	54,1	56,1	1,4	0,7	1,4	1,6	
KCI	23,4	79,6	55,2	59,9	57,8	58,1	57,8	1,9	1,0	1,4	1,7	

Tabela 11: Tabela do DHT 22 com medidas e incertezas obtidas

9. A partir dos dados obtidos, utilizou-se o método dos mínimos quadrados(MMQ), obtendo-se a *Tabela 12* e a *Tabela 13*

	Cálculos para utilizar o método dos mínimos quadrados										
U _{des} [%]	U _{med} [%]	σ _{padrão} [%]	Sσ (% ⁻²)	Sx (% ⁻¹)	Sx ²	Sy (% ⁻¹)	Sxy				
7,2	17,4	2,1	0,2	1,6	11,7	4,0	28,4				
66,8	56,1	1,5	0,5	30,8	2055,7	25,9	1726,6				
29,7	27,8	1,4	0,5	14,8	440,5	13,8	411,8				
47,7	45,2	1,6	0,4	19,3	922,6	18,3	875,0				
79,6	57,8	1,7	0,3	27,1	2159,4	19,7	1565,8				
	_		1,9	93,7	5589,9	81,7	4607,6				

Tabela 12: Tabela com valores obtidos com o MMQ

Função da reta MMQ inicial						
Δ (% ⁻³)	а	b (%)	f(x)= ax + b			
2020,135574	0,618379902	12,28501345	U _{med} (%) = 0, 618379902.U _{des} (%)+12,28501			

Tabela 13: Dados e função inicial para o DHT 22

- **10.** A função obtida pelo MMQ, porém, não é a que se buscava. Por isso, é necessário que se troque os eixos para que, enfim, a função seja a desejada
 - a. Cálculos para a troca de eixos:
 - i. Antes da troca: f(x) = a.x + b
 - ii. Depois da troca: x=(f(x) b)/a
 - b. Obteve-se, desse modo, a *Tabela 14*, contendo a função desejada:

$$U_{des} = 1,617128883 \cdot U_{med} - 19,8665$$

Função da reta MMQ final					
1/a	-b/a (%)	f(x)= ax + b			
1,617128883	-19,86645008	U _{des} (%)= 1,617128883.U _{med} (%) -19,8665			

Tabela 14: Função de calibração do DHT 22

11. Por fim, obteve-se a *Tabela 15* e o *Gráfico 3*, os quais contém tanto os dados medidos, quanto os encontrados pela função de calibração

Tabela com valores medidos e da função							
U _{des} [%]	U _{med} [%]	σ _{padrão} [%]	Reta MMQ [%]				
7,2	17,4	2,1	8,4				
66,8	56,1	1,5	70,8				
29,7	27,8	1,4	25,1				
47,7	45,2	1,6	53,3				
79,6	57,8	1,7	73,5				

Tabela 15: Tabela do DHT 22 com os valores medidos e os encontrados utilizando a função de calibração

Gráfico 3: Grafico da Umidade desejada vs Umidade medida

III. Implementação do BMP 180 e do MQ 7

Informações iniciais:

- O BMP 180 é um sensor o qual mede a pressão, a altitude e a temperatura em, respectivamente, Pa, m e ^oC, e está representado na *Figura 6*.
- O MQ 7 é o sensor escolhido pelo grupo e está representado na *Figura* 7. Esse mede a concentração de monóxido de carbono presente no ar. Foi julgado relevante, considerando que São Paulo é uma cidade muito poluída e que o CO é um gás tóxico prejudicial a saúde e ao meio ambiente.

Figura 6: Representação de um BMP 180

Processo de implementação:

➤ BMP 180:

- 1. Montou-se o circuito ilustrado na Figura 8
- 2. Utilizando o software Arduino e configurando-o de acordo com o código presente na *Figura 10*, testou-se o sensor imprimindo, na tela do computador, as medidas de temperatura e altitude a cada instante determinado, medidas respectivamente em grau Celsius e metros

Figura 7: Representação do sensor MQ 7

3. Constatou-se que o sensor estava funcionando e que para esse projeto, apenas as medidas de pressão e altitude serão relevantes.

Figura 8: Representação do circuito do BMP 180

- ➤ MQ 7:
 - Montou-se o circuito ilustrado na Figura
 9
 - 2. Utilizando o software Arduino e configurando-o de acordo com o código presente na *Figura 11*, testou-se o sensor imprimindo, na tela do computador, a medida de concentração de monóxido de carbono em ppm (parte por milhão)

Figura 9: Representação do circuito do MQ 7

Códigos implementados:

O código implementado para o BMP 180 está presente na Figura 10

```
#include <Wire.h>
#include <Adafruit BMP085.h>
Adafruit_BMP085 bmp;
void setup()
 Serial.begin(9600);
 if (!bmp.begin())
 Serial.println("BMP180 sensor not found");
 while (1) {}
void loop() {
   Serial.print("Temperature = ");
    Serial.print(bmp.readTemperature());
    Serial.println(" *C");
   Serial.print("Altitude = ");
    Serial.print(bmp.readAltitude(101500));
   Serial.println(" meters");
    Serial.println();
    delay(1000);
```

Figura 10: Código de teste do BMP 180 utilizado no Arduino

> O código implementado para o MQ 7 está presente na Figura 11

```
int value;

void setup() {
    Serial.begin(115200);
    pinMode(DOUTpin, INPUT);
    pinMode(ledPin, OUTPUT);
}

void loop()
{
    value= analogRead(AOUTpin);
    limit= digitalRead(DOUTpin);
    Serial.print("CO value: ");
    Serial.println(value);
    delay(100);
}
```

Figura 11: Código de teste do MQ 7 utilizado no Arduino

IV. Implementação do Display LCD

Informações iniciais:

 O Display LCD é onde serão impressos os valores medidos pelos sensores e está representado na Figura 12

Processo de implementação:

- 1. Montou-se o circuito representado na Figura 13
- 2. Utilizou-se o software Arduino e configurandoo com o código presente na *Figura 14*, testouse o Display LCD imprimindo a mensagem "Insper Teste LCD"
- **3.** Com o teste dando certo, constatou-se que o mecanismo montado é funcional, restando apenas modificar o código para que imprima o que se deseja no projeto

Figura 12: Representação do Dispaly LCD 2x16

Figura 13: Representação do circuito do Display LCD

```
#include <Wire.h>
#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27,2,1,0,4,5,6,7,3, POSITIVE);

void setup()
{
    lcd.begin(16,2);
}

void loop()
{
    lcd.setBacklight (HIGH);
    lcd.setCursor ( 0, 0 );
    lcd.print ("Insper");
    lcd.setCursor ( 0, 1 );
    lcd.print ("Teste LCD");
    delay (1000);
    lcd.setBacklight (LOW);
    delay (1000);
}
```

Figura 14: Código de teste do Display LCD

V. Montagem do circuito final

Processo de montagem:

1. Esquematizou-se o circuito final utilizando o software Fritzing, obtendo como resultado a *Figura 15*, o que possibilitou a montagem do circuito utilizando o protoboard.

Figura 15: Circuito montado no Fritzing

2. A partir disso, obteve-se o diagrama elétrico presente na Figura 16

Figura 16: Diagrama elétrico

3. Utilizando a *Figura 16* como parâmetro, realizou-se o esquemático no software Eagle, obtendo a *Figura 17*, em que um jumper foi representado pela resistência R2. O jumper foi necessário para que todos os locais necessários estivessem conectados com o "GND".

Figura 17: Esquemático do circuito no Eagle

4. Feito isso, desenhou-se o board presente na Figura 18

Figura 18: Board montado no software Eagle

- **5.** A partir disso, obteve-se o G-code desejado e imprimiu-se a placa de cobre finalizada utilizando a Router
- **6.** Por fim, soldou-se a os elementos necessários na placa de cobre, utilizando o ferro de solda, o estanho e o sugador

VI. Código final

Observações iniciais:

No código do LM 35 diminuiu-se a resolução do sensor, para tanto, alterou-se a tensão de fundo de escala para 1,1V. Isso ocorre já que:

$$resolução = \frac{V_{fundo\ de\ escala}}{2^n - 1}$$

Sendo n o número de bits.

Como não é possível alterar o número de bits do Arduino, o que se altera é a tensão de fundo de escala, ou seja, altera-se o valor máximo de tensão.

Essa etapa foi realizada para a medição ficar mais precisa. Pode-se perceber a significante diminuição da resolução através dos cálculos abaixo:

$$resolução_{antes} = \frac{5}{2^{10} - 1} = \frac{5}{1023} = 0,004887V$$

Sendo que, para o LM 35, admitindo 10mV/°C:

$$resolução_{antes} = \frac{0.004887}{0.01} = 0.4887$$
°C

E:

$$resolução_{depois} = \frac{1,1}{2^{10} - 1} = \frac{1,1}{1023} = 0,001075$$

Portanto:

$$resolução_{depois} = \frac{0.001075}{0.01} = 0.1075$$
°C

Obteve-se, por fim, o código que será utilizado para o projeto funcionar, o qual está presente nas *Figura 19, Figura 20, Figura 21* e *Figura 22*

```
#include "DHT.h"
#define DHTPIN 2
#define DHTTYPE DHT22
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#include <Wire.h>
#include <Adafruit_BMP085.h>
#include <LiquidCrystal.h>
// Inicializa o display no endereço 0x3F
LiquidCrystal_12C lcd(0x27,2,1,0,4,5,6,7,3, POSITIVE);
DHT dht(DHTPIN, DHTTYPE);
float temperatura = 0;
const int ACUTpin A1;
const int DOUTpin=8;
const int ledPin=13;
Adafruit_BMP085 bmp180;
int lmPin = A0;
int pinoSensor = 1;
int valorLido = 0;
int limit;
int value;
```

Figura 19: Parte 1 do código final

```
void setup()
Serial.begin(9600);
bmp180.begin();
analogReference (INTERNAL);
1cd.begin(16,2);
pinMode (ImPin, INPUT);
pinMode (DOUTpin, INPUT);
pinMode (ledPin, CUTPUT);
void loop()
 // BMP 180
 float pressao = bmp180.readPressure();
 float alt = bmp180.readAltitude();
 // LM-35
 float raw = analogRead(lmPin);
 float percent = raw/1023.0;
 float volts = percent*1.1;
 float tempC = 102.645*volts-0.113;
  float value= analogRead (AOUTpin);
 float limit= digitalRead(DOUTpin);
  float h = dht.readHumidity();
  float hum = h*1.617-19.866;
  float t = dht.readTemperature();
```

Figura 20: Parte 2 do código final

```
lod.setCursor(0,0);
lod.print(" ");
lod.setCursor(0,1);
lod.print(" ");

lod.setCursor(0,0);
lod.print("ppm/CO: ");
lod.setCursor(0,1);
lod.print(value);

delay(5000);
lod.setBacklight(LOW);
}
```

Figura 22: Parte 4 do código final

Conclusão:

Ao final do projeto, atingiu-se o objetivo: construir uma estação meteorológica aplicando os conceitos desenvolvidos em sala.

```
lcd.setBacklight(HIGH);
lcd.setCursor (0,0);
lcd.print("Temp.(C): ");
lcd.print(tempC);
lcd.setCursor(0,1);
lcd.print("Umid.(%): ");
lcd.print(h);
delay (5000);
lcd.setCursor(0,0);
                           ");
led.print("
lcd.setCursor(0,1);
led.print ("
                           ");
led.setCursor ( 0, 0 );
lcd.print ("P (Pa): ");
lcd.print (pressao);
lcd.setCursor ( 0, 1 );
lcd.print("Height (m): ");
1cd.print (alt);
delay (5000);
```

Figura 21: Parte 3 do código final