Image Processing

Hiệu chỉnh Gamma

Chuẩn hoá trước khi đưa vào hiệu chỉnh (chia cho tổng số bit điểm ảnh), gamma nhỏ hơn 1 ảnh sáng lên.

Giãn độ tương phản

Tìm xmax, xmin

$$y_0 = (x_0 - x_{min}) * 255)/(x_{max} - x_{min})$$

Cân bằng lược đồ xám

Quy tình tính 6 giá trị với mỗi điểm ảnh

- 1. Xây dựng giá trị rk là độ xám đã chuẩn hoá: 1/7, 2/7, v..v
- 2. Xây dựng lược đồ xám, đếm số điểm ảnh có giá trị 0,1,2,3,4..7
- 3. Pk là tỉ lệ điểm có độ sáng 0,1,2,3,4..7, ví dụ: 0: 4/32=0.125
- 4. Sk hàm phân phối tích luỹ: pk_i đến pk_k, cuối cùng sẽ là 1

- 5. S'k: lấy giá trị rk gần nhất với S'k: ví dụ: giá trị r gần nhất với $0.125 \Rightarrow 0.143$, giá trị r gần nhất với $0.375 \Rightarrow 0.429$
- 6. K', lấy k theo S'k, $0.143 \Rightarrow 1, 0.429 \Rightarrow 3$
- ⇒ Lấy k thay bằng k', ví dụ điểm ảnh 0 thành 1, điểm ảnh 1 thành 3, v..v
- ⇒ Trải đều hơn trong vùng từ 1-7 thay vì co cụm từ 0-4 theo ví dụ:

Cho ma trận ảnh (ảnh độ xám 3bit), tính giá trị của ma trận ảnh trên sau khi thực hiện cân bằng lược đồ xám

Phép tích chập

Tính kết quả của phép tích chạp với cách xử lý đường viền Ví dụ bộ lọc trung bình 3x3:

Zero padding: tất cả các điểm bên ngoài có giá trị là 0

6. Tích chập

	1/5	1/5	1/9	O	೦	0
	Yo	1/9	1/9	0	135	135
ĺ.	1/5	1/3	1/5	Ò	133	133

Cho ma trận ảnh (ảnh độ xám 8bit) và mặt nạ tích chập là bộ lọc trung bình 3x3. Tính kết quả của phép tích∕chập với cách xử lý đường viễn là zero padding

	0	0	0						
	0	135	135	129	133	130	134	134	137
Į	0	133	133	132	132	135	127	123	119
		132	127	129	115	121	87	96	110
		110	104	115	109	120	103	129	160
		105	112	136	162	173	201	219	231
		167	187	202	223	216	231	240	238

60	•			

Xử lý đường viền: lấy đối xứng

pnep tich chạp với

224	244	. ૧૧	. 44	
135	135	129	133	1 3
133	133	132	132	1 3
132	127	129	115	12
110	104	115	109	12
105	112	136	162	17
167	187	202	223	21
221	231	240	223	21
224	217	222	214	21

Lấy vòng tròn: đặt chồng ma trận lên nhau:

pnep tich chập với l

Chọn lọc theo ngưỡng

Tất cả các giá trị x≥=T0: đối tượng, x<T0: nền.

$$\sigma_{S}^{2} = \gamma_{1}.(m_{1}-m_{c})^{2} + p_{z}(m_{z}-m_{b})^{2}$$

 $\{m_g\}$ trung bình độ sáng điểm ảnh: ví dụ 8 ảnh độ sáng 0, 7 điểm độ sáng 1, .. \Rightarrow

Chọn độ sáng nằm trong số giá trị độ sáng của ảnh.

P1: côt 0: có bao nhiêu điểm ảnh x≥0: 36 trên 36 ⇒ tỉ lê 1.

P2: 1-P1

M1: ví dụ cột 1: trung bình của phần đối tượng: (7x1 + 2x2 + 6x3+9x4+4x5)/28

M2: Trung bình phần nền.

Cho ma trận ảnh và lược đồ xám. Tính kết quả của phép chọn ngưỡng tự động theo phương pháp Otsu ($x \ge 10$: đối tương, x < 10: nền)

⇒ Chọn cột phương sai lớn nhất, cột 3. ⇒ T0=3, tất cả các giá trị ≥3 là đối tượng, <3 là nền.

Split and merge

Hàm lựa chọn?

Ví dụ: giá trị độ xám lớn nhất và nhỏ nhất trong vùng không quá 4

⇒ Trên 4 chia, dưới 4 không chia

Ånh ban đầu chia $4 \Rightarrow$ chia, ảnh 1/4 ban đầu vẫn chia, 2/4 vẫn chia, 3/4 chia, 4/4 chia, vùng 1/16: không chia, chênh lệch 2, 2/16 không chia, 3/16 có chia, 4/16 có chia:

135	135	129	133	130	134	134	137
133	133	132	132	135	127	123	119
132	127	129	115	121	87	96	110
							160
105	112	1 36	162	173	201	219	231
167	187	202	22 3	216	231	240	238
221	231	240	22 3	214	216	218	219
224	217	222	214	215	217	219	220

Không quá 4, vẫn chia min=130 và max=134.

Hợp được các vùng độ chênh lệch không quá 4, hợp các vùng diện tích nhỏ trước: ví dụ diện tích 1, diện tích 2, v..v

135	135	129	133	130	134	134	137
133	133	132	132	135	127	123	119
132	127	129	115	121	87	96	110
							160
105	112	136	162	173	201	219	231
167	187	202	22 3	216	231	240	238
221	231	240	223	214	216	218	219
224	217	222	214	215	217	219	220

Tăng trưởng vùng

Để ý: hạt giống của vùng, hàm chọn, và lân cận

Ví dụ:

Cho ma trận ảnh (ảnh độ xám 8bit). Lấy điểm ảnh toạ độ (3,3) có giá trị 129 là hạt giống. Cho biết kết quả tăng trưởng vùng với hàm chọn là: Chênh lệch độ xám so với trung bình của vùng không quá 8 và sử dụng lân cận 8.

Xác định các điểm ảnh lân cận 8, 8 điểm ảnh xung quanh 129 là:

1	133	129	133	1
	133	132	132	1
	127	129	115	1
ì	104	115	109	1
П				

Lấy tất cả điểm ảnh so độ sáng so với chênh lệch của vùng không quá 8: 127, 133, 132, 132

3	133	132	132	1
		129		
)	104	11 5	109	1
\neg				

Tiếp tục xét lân cận vùng đang có:

Chừa 120 do không lấy 115 nên không lân cận 120 được:

13	5	135	129	133	130	1
133	3	133	132	132	135	1
132	2	127	129	115	121	;
110	0	104	115	109	120	1
10	5	112	136	162	173	2

Tính trung bình của vùng: 130.6, lấy không vượt quá 8: ⇒ 122.6≤x≤138.6

 135
 135
 129
 133
 130
 134
 134
 137

 133
 133
 132
 132
 135
 127
 123
 119

 132
 127
 129
 115
 121
 87
 96
 110

 110
 104
 115
 109
 120
 103
 129
 160

 105
 112
 136
 162
 173
 201
 219
 231

 167
 187
 202
 223
 216
 231
 240
 238

 221
 231
 240
 223
 214
 216
 218
 219

 224
 217
 222
 214
 215
 217
 219
 220

Một số hàm chọn: chênh lệch độ xám so với trung binh của vùng, ...

⇒ Tăng trưởng vùng có mấy phương pháp: 4: split and merge, tăng trường vùng, ..v.v

Tính entropy, log cơ số 2

Entropy cho biết lượng thông tin của hệ.

			- E pilog Pi	
S	ymbol	Prob	i 1. Jol.	
	S ₁	0.125	= - 0.125 /090.125	-0.125 /0,0.125
	s_2	0.125	3	J
	\mathbf{s}_3	0.125	-0.125 kg 0-125	-0 125 log 0.125
	S ₄	0.125	- 0.5 log 0.5	J
	S ₅	0.5	- 0.3 (by 0.3	

Entropy = $2 \Rightarrow$ Ít nhất phải sử dụng 2 bit cho một ký tự để nén ảnh.

Tính độ dài trung bình của 1 mã hoá

L: đô dài bit

	(Σ pili	
Symbol Prob	Code		
S ₁ 0.12	5 01111	= 0.125	.5 1
s ₂ 0.12	5 0111	0	- 1
s ₃ 0.12	5 011	40.13	5.5
s ₄ 0.12	5 01	+ 0,5	1
s ₅ 0.5	Press ∺+S	ift+M to unmute your microphone.	

Mã hoá Huffman

Thiết lập bảng mã hoá Huffman với hệ vừa cho. Tính trung bình độ dài của một ký tự.

Symbol	Prob
S ₁	0.125
s_2	0.125
s_3	0.125
S ₄	0.125
s ₅	0.5

Tìm ra 2 xác xuất thấp nhất: 0.125, 0.125, kết hợp: $\{S1,S2\} = 0.125 + 0.125 = 0.25$ Tiếp tục chọn 2 xác xuất thấp nhất còn lại: $\{S3,S4\} = 0.125$ Còn s5, $\{s1,s2\}$, $\{s3,s4\}$, chọn 2 xác xuất: $\{s1,s2,s3,s4\} = 0.25$ Được cây nhị phân:

Symbol	Prob
s ₁	0.125
s_2	0.125
s_3	0.125
s_4	0.125
s_5	0.5

Độ dài mã hoá bằng entropy ⇒ mã hoá tốt nhất.

Tính giá trị trung bình độ dài bằng đúng entropy thì tất cả xác xuất đều có dạng $\{2^{-i}\}$

Mã hoá loạt dài và nén Fax

Cho một dòng trong bản fax có nội dung như sau. Tìm mã hoá của dòng theo chuẩn ITU-T G3 G4.

0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1

Gộp các 0 và 1 liền nhau từ trái sang phải

Quy định điểm bắt đầu của 1 dòng là trắng:

Nếu bắt đầu bằng đen (0), như ví dụ trên phải viết là:

Phân tích các số trên thành 64m+t: (cặp m,t)

$$0,3,2,2,10,5,3,10,6,5,4$$

 $1,4m+t$
 $0,0,0,3,0,2...$

Xem bảng:

Ví dụ: m = 0, t = 3, 0 bỏ qua, 3 là đen (vì m,t biểu thị 0), tìm cột t black.

Một ví dụ khác: 0,0 2,42 15,40

0 trắng: 00110101

m=2 den: 0000011001000

t=42 den: 0000110011011010

...

