Teoretická informatika (TIN) – 2024/2025 Úkol 1

(max. zisk 7 bodů – 10 bodů níže odpovídá 1 bodu v hodnocení předmětu)

1. Uvažujme abecedu $\Sigma = \{a,b\}$ a jazyk $L_1 = \{w \in \Sigma^* : |w| \mod 2 = 1\}$. Sestrojte relaci pravé kongruence \sim , která splňuje následující tři podmínky: (1) L_1 je sjednocením některých tříd rozkladu $\Sigma_{/\sim}^*$, (2) index \sim je konečný a soudělný s indexem \sim_{L_1} a (3) jedna ze tříd rozkladu $\Sigma_{/\sim}^*$ má právě dva prvky.

15 bodů

2. Uvažte následující operaci na jazycích nad abecedou Σ :

$$\Box L = \{ w \in L \mid \forall u, v \in \Sigma^* \colon w = uv \Rightarrow u \in L \},\$$

Rozhodněte a dokažte, zda jsou následující třídy jazyků uzavřeny na operaci □:

- (a) třída regulárních jazyků a
- (b) třída rekurzivně vyčíslitelných jazyků.

15 bodů

3. Uvažujte následující jazyk nad abecedou $\Sigma = \{a, b\}$:

$$L_3 = \{ a^k b^\ell \mid \ell = k^2 \}$$

Dokažte, že jazyk L_3 není bezkontextový.

15 bodů

4. Navrhněte algoritmus, který pro bezkontextovou gramatiku $G=(N,\Sigma,P,S)$ spočítá množinu

$$N_{abc} = \{ A \in N \mid \exists u, v \in \Sigma^* \colon A \Rightarrow_G^* uabcv \}.$$

V algoritmu můžete využít množiny $N_{\epsilon} = \{A \in N \mid A \Rightarrow_{G}^{+} \epsilon\}$ a $N_{t} = \{A \in N \mid \exists w \in \Sigma^{*} : A \Rightarrow_{G}^{+} w\}$. Doporučujeme nadefinovat si další vhodné množiny neterminálů a algoritmicky popsat jejich výpočet (u N_{ϵ} a N_{t} popis výpočtu není potřeba).

Ilustrujte použití algoritmu na příkladě gramatiky nad abecedou $\Sigma = \{a, b, c, d\}$ s pravidly

$$S \rightarrow V \mid caUca \mid RTcU \qquad V \rightarrow Vabc \qquad U \rightarrow b \mid \epsilon \qquad R \rightarrow Uca \qquad T \rightarrow W \mid aU \qquad W \rightarrow UbU$$

15 bodů

5. Doplňte do rámečků v přechodovém diagramu Turingova stroje M_5 s páskovou abecedou $\Gamma=\{a,\#,\Box,\Delta\}$ v Obrázku 1 chybějící popisky přechodů tak, aby platilo, že $L(M_5)=\{a^{\ell_1}\#a^{\ell_2}\#a^{\ell_3}\mid 1\leq \ell_1\leq \ell_2\leq \ell_3\wedge\ell_2-\ell_1=\ell_3-\ell_2\}$. V jednom popisku může být i více operací. Nic jiného nepřidávejte.

10 bodů

Obrázek 1: Přechodový diagram Turingova stroje ${\cal M}_5$