课程编号: 100172003

2016 级概率与数理统计试题 (A卷)

座号_		班:	~		学号			姓名_		
(本试	港共8页	<u>,八个</u> ナ	に题, 满夕 「	分 100分	;最后- 	·页空白9	纸为草稿 	纸)	1	_
题号	_		三	四	五.	六	七	八	总分	核分
得分										
签名										
附表:									·	
φ(2)=	0.9772, ф	(1.64)=0	.95, φ (1.9	96)=0.975	5, $t_{0.025}(1:$	(5) = 2.13	$14, t_{0.025}(1$	6) = 2.11	.99,	
$t_{0.05}(15)$) = 1.7531,	$t_{0.05}(16) =$	=1.7459,	$\chi^2_{0.025}(4) =$	=11.1433	$,\chi^{2}_{0.975}(4)$) = 0.4844	$1, \chi^2_{0.025}(5)$	(5) = 12.832	25,
$\chi^2_{0.975}(5$	(5) = 0.8312	$2, \chi^2_{0.05}(4)$	4) = 9.487	$7, \chi^2_{0.95}$	4) = 0.71	07 , $\chi^2_{0.584}$	₄₅ (4)=2.8	428		
一、填	空题(12	分)	得分							
1. 设 🛭	4, <i>B</i> 为两 [。]	个事件,	则事件 <u>—</u> 则事件 <i>A</i>	<u>∪</u> B表示			((回答该	事件表示	的含义).
2. 若 F	P(A) = 0.6,	$P(A \cup B)$	0 = 0.84,	$P(\overline{B} \mid A)$	= 0.4 则	P(B)=				
3. 设隙	負机变量 λ	了的密度	函数为 f	$(x) = \begin{cases} 2x \\ 0, \end{cases}$	·, 0 <x· 其他</x· 	<1, 用	Y表示对	X的3 {	欠独立重?	复观察中
事件{/	$X \leq \frac{1}{2}$ } 出其	见的次数	,则 <i>P</i> (Y	=2)=		·				
4. 设隙	直机变量 <i>X</i>	【和 Y 相】	互独立,	都服从参	数为2	的泊松分	·布,则 <i>I</i>	$P\{X+Y=0$)}=	·
5. 已知	EX=-2,	$EX^2=5$,	则 D(1-	-3 <i>X</i>)=			<u>·</u>			
6. 设隙	有机变量 <i>X</i>	/满足 E(.	$X)=\mu$, $D($	$X)=\sigma^2$,贝	山由切比	雪夫不等	学式可得	$P(X-\mu >$	·3σ)≤	
7. 设隙	 机变量序	琴列 X1, X2	X_1, \ldots, X_n	相互独	立,都服	从参数 /	1=1的泊	松分布,	则	
$\lim_{n\to\infty}$	$P(X_1 + \cdots$	$+X_n \ge n$	$+2\sqrt{n})=$.				
8. 设隙	的机变量 ξ	和η相互	独立且為	$\xi \sim \chi^2(n)$	$,\eta\sim\chi^2$	(m),则 I	$E(\xi+\eta)$:	=	$D(\xi + \eta)$:	=
9. 已知	口一批零件	中的长度。	X(单位:	cm)服从	正态分布	$\vec{j} N(\mu, 1),$	从中随村	乳的取出	16 个零	件,得到
长度的	平均值为	40cm,	则 μ 的置	信水平为	95%的	置信区间]是	·		
10. 设.	总体 <i>X~N</i> ($\mu, \sigma^2), \mu$	ı, σ² 均未	E知, x1,.	, x5是总	总体X的棒	羊本值, 個	浸设 <i>H</i> ₀: α	$\sigma^2 = 4$, H	$\sigma^2 = 1$
在显著	性水平α	= 0.05下	的拒绝域	是 $s^2 \le 0$.	7107,贝	可该检验	犯第一类	错误的构	既率是	,
犯第二	类错误的	概率是		•						

二、(12分) 得分

甲、乙、丙 3 台机床各自独立的加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为 $\frac{1}{4}$,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为 $\frac{1}{12}$,甲、丙两台机床加工的零件都是一等品的概率为 $\frac{3}{20}$.

- 1. 分别求甲、乙、丙 3 台机床各自加工的零件是一等品的概率;
- 2. 从甲、乙、丙加工的零件中各自取一个检验,求至少有一个一等品的概率.

三、(16分)

得分

1. 设离散型随机变量 X 的分布律为

X	-2	-1	1	3
P_k	$\frac{1}{6}$	$\frac{1}{5}$	$\frac{1}{15}$	С

 $\diamondsuit Y = X^2$.

- (1) 确定常数c的值; (2) 求Y的分布律; (3) 求Y的分布函数。
- 2. 设连续型随机变量 X 的分布函数为

$$F(x) = \begin{cases} A + Be^{-x}, & x \ge 0, \\ 0, & x < 0 \end{cases}$$

求(1)常数 A, B 的值;(2) $P\{X \le 2\}$, $P\{X > 3\}$;(3) X 的概率密度函数 f(x).

四、(14分) 得分

设二维随机变量(X, Y)在区域 $D=\{(x,y): x>0, y>0, 2x+y\leq 2\}$ 上服从均匀分布.

- 1. 写出(X, Y)的联合概率密度函数f(x, y);
- 2. 求X和Y的边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$,并判断X和Y是否相互独立(说明理由);
- 3. 求 Z = X+Y的概率密度函数 $f_Z(z)$.

五、(14分) 得分

设二维随机变量(X, Y),已知 EX=1, EY=0, DX=4, DY=1, $\rho_{XY}=\frac{2}{3}$, 令 Z=2X-3Y 。

试求: 1. EZ, DZ; 2. cov(X,Z), ρ_{XZ} ; 3. 判断X与Z是否独立,为什么?

设总体 X 的概率密度函数为

$$f(x) = \begin{cases} \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}}, & x > 0, \\ 0, & \text{ \Leq} \end{cases}$$

其中 $\theta>0$ 为未知参数. X_1,X_2,\cdots,X_n 为来自总体 X 的一个样本, x_1,x_2,\cdots,x_n 为相应的样本观测值. 求 1. 参数 θ 的矩估计; 2. 参数 θ 的最大似然估计.

八、(12分) 得分

已知维尼纶纤度在正常条件下服从正态分布 $N(\mu,0.048^2)$ 。今抽取5根纤维,测得其纤度的样本均值 $\bar{x}=1.414$,样本方差 $s^2=0.00778$ 。问在显著性水平 $\alpha=0.05$ 下,这天纤度的波动是否正常?