

Exercise 1.2

```
Relations Ex 1.2 Q1
We have,
R = \{(a,b): a-b \text{ is divisible by 3; a,b, } \in Z\}
To prove: R is an equivalence relation
Proff:
Reflexivity: Let a ∈ Z
       a - a = 0
```

$$\Rightarrow$$
 $(a, a) \in R$

Symmetric: Let $a,b \in Z$ and $(a,b) \in R$

$$\Rightarrow$$
 a – b is divisible by 3

$$\Rightarrow$$
 $a-b=3p$ For some $p \in Z$

$$\Rightarrow$$
 $b-a=3\times(-p)$

$$\Rightarrow$$
 $b-a \in R$

R is symmetric

Transitive: Let $a,b,c \in Z$ and such that $(a,b) \in R$ and $(b,c) \in R$

$$\Rightarrow$$
 $a-b=3p$ and $b-c=3q$ For some $p,q\in Z$

$$\Rightarrow$$
 $a-c=3(p+q)$

$$\Rightarrow$$
 a-c is divisible by 3

$$\Rightarrow$$
 (a,c) $\in R$

R is transitive \Rightarrow

Since, R is reflexive, symmetric and transitive, so R is equivalence relation.

Relations Ex 1.2 Q2

```
TWe have,
R = \{(a,b): a-b \text{ is divisible by 2; a,b, } \in Z\}
To prove: R is an equivalence relation
Reflexivity: Let a ∈ Z
    a – a = 0
a –a is divisible by 2
⇒
    (a, a) ∈ R
⇒
⇒ R is reflexive
Symmetric: Let a,b \in Z and (a,b) \in R
    a – b is divisible by 2
a - b is divisible by 2

⇒ a - b = 2p For some p ∈ Z
     b-a=2\times (-p)
⇒
⇒
     b-a\in R
⇒
    R is symmetric
Transitive: Let a,b,c \in Z and such that (a,b) \in R and (b,c) \in R
    a-b=2p and b-c=q For some p,q\in Z
\Rightarrow a-c=2(p+q)
    a-c is divisible by 2
⇒ (a,c) ∈ R
⇒ R is transitive
```

Relations Ex 1.2 Q3

We have,

$$R = \{(a,b): (a-b) \text{ is divisible by 5} \} \text{ on Z.}$$

We want to prove that R is an equivalence relation on Z.

Now,

Reflexivity: Let a ∈ Z

∴
$$(a,a) \in R$$
, so R is reflexive

Symmetric: Let $(a,b) \in R$

$$\Rightarrow$$
 $a-b=5P$ For some $P \in Z$

$$\Rightarrow b - a = 5 \times (-P)$$

$$\Rightarrow$$
 (b,a) $\in R$, so R is symmetric

Transitive: Let $(a,b) \in R$ and $(b,c) \in R$

$$\Rightarrow$$
 $a-b=5p$ and $b-c=5q$ For some p, q \in Z

$$\Rightarrow$$
 a-c = 5 $(p+q)$

$$\Rightarrow$$
 a-c is divisible by 5.

⇒ R is transitive.

Thus, R being reflexive, symmetric and transitive on Z.

Hence, R is equivalence relation on Z

Relations Ex 1.2 Q4

 $R = \{(a,b): a-b \text{ is divisible by n}\}$ on Z.

Now,

Reflexivity: Let $a \in Z$

- ⇒ a-a=0xn
- ⇒ a-a is divisible by n
- \Rightarrow $(a,a) \in R$
- ⇒ R is reflexive

Symmetric: Let $(a,b) \in R$

$$\Rightarrow$$
 $a-b=np$ For some $p \in Z$

$$\Rightarrow$$
 $b-a=n(-p)$

$$\Rightarrow$$
 b – a is divisible by n

$$\Rightarrow$$
 $(b,a) \in R$

⇒ R is symmetric

Transitive: Let $(a,b) \in R$ and $(b,c) \in R$

$$\Rightarrow$$
 $a-b=xp$ and $b-c=xq$ For some p, $q \in \mathbb{Z}$

$$\Rightarrow \qquad a-c=n\left(p+q\right)$$

$$\Rightarrow$$
 a-c is divisible by n

$$\Rightarrow$$
 $(a,c) \in R$

⇒ R is transitive

Thus, R being reflexive, symmetric and transitive on Z.

Hence, R is an equivalence relation on Z

******* END *******