AniMove 2024

Day1

- Movement Analysis (Kamran Safi, Martina Scacco, Anne Scharf)
 - Introduction into movement data collection
 - Defining movement, space and time. Projections, intro to SF and time zones.
 - Introduction to Move2: load, manipulate & export movement data
 - o Data visualization
 - Properties of Movement: track metrics (time lag, distance, speed, azimuth and turning angle). Outliers. Interpolation & thinning and consequences on track metrics.

Day2

- Movement Analysis (Kamran Safi, Martina Scacco, Anne Scharf)
 - Trajectory Centered Analysis: Net square displacement, fist passage time, recursion, variance components of movement (variance of dBBMM)
 - <u>Movement models</u> (*by Eliezer Gurarie*): Discrete and continuous time movement models as fundamental units of movement analysis.
 - Segmentation (by Eliezer Gurarie):
 - Changepoints (BPMM / BCPA)
 - Hidden Markov Models
 - Pitfalls and risks
 - Targeted likelihood-based tools:
 - Parturition
 - Migration and range change
 - Dispersal
 - Area centered analysis: overview of space use estimators (MCP, kernel density estimators, LoCoH, UD of dBBMM)

Day3

- **Continuous time movement models (ctmm)** (*Christen Fleming, Ines Silva*)
 - Autocorrelation and continuous-time movement models
 - Home-range estimation
 - Home-range meta-analysis
 - Population-range estimation
 - Occurrence distributions
 - Experimental design of animal tracking
 - Measures of interaction
 - Continuous-time speed and distance estimation

Day4

- **Remote sensing** (*Ines Standfuss*)
 - Introduction to remote sensing (theory)
 - Remote sensing practical unit
 - Download and get a first glimpse of satellite images
 - Some preprocessing tasks for satellite images
 - Raster data manipulation (generate higher-order information layers)
 - Vegetation phenology based on remote sensing time series

• **Environmental annotation** (*Elham Nourani*)

- Introduction of wind components
- Introduction and demonstration of Env-Data service on Movebank
- Downloading ECMWF data directly in R
- Annotating tracks with dynamic environmental data (e.g. of wind) in R
- Plotting annotated tracks two ways + creating an animation

• **Auxiliary sensors** (Hannah Williams)

- Introduction to inertial measurement units
- Resolving posture from static acceleration component
- calculation of Dynamic Body Acceleration metrics for activity
- classification of behaviour using DBA, orientation, and pressure
- deadreckoning procedure

Day5

• **Resource selection function** (*Björn Reineking*)

- RSF as a model of range distribution (third-order selection)
- RSF: habitat selection and geographic availability
- Inhomogeneous Poisson point process likelihood and temporal autocorrelation
- Selection: use-availability in geographic and environmental space
- (Numerical integration)

• **Step selection function** (Björn Reineking)

- SSF as a discrete-time model of movement
- SSF: habitat selection and movement kernel (geographic availability)
- Numerical integration in SSF
- SSF and simulation of trajectories
- Ecological realism in SSF: temporal variation of selection and movement; homeranging; barriers; long-term goals