MA3227 Numerical Analysis II

Lecture 7: Convergence of GMRES

Simon Etter

2019/2020

Recap GMRES

GMRES approximates $x = A^{-1}b$ by

$$x_k := p_{k-1}(A) b$$
 where $p_{k-1} := \underset{p_{k-1} \in \mathcal{P}_{k-1}}{\arg\min} \left\| \left(A p_{k-1}(A) - I \right) b \right\|_2.$

This x_k can be determined using

k matrix-vector products, $\mathcal{O}(Nk^2)$ other operations.

Observations

 $x_N = x$ because then we can choose $p_{N-1}(x)$ such that $p_{N-1}(\lambda) = \frac{1}{\lambda}$ for all eigenvalues λ of A and hence $p_{N-1}(A) = A^{-1}$.

Alternatively, for k=N the Krylov subspace $K_N=\text{span}\{b,Ab,\ldots,A^{N-1}b\}$ is N-dimensional and hence $K_N=\mathbb{R}^N$.

Unfortunately, for k = N the runtime becomes $\mathcal{O}(N^3)$ which is even worse than sparse LU factorisation.

Discussion

Krylov methods are powerful if we can get $x_k \approx x$ already for $k \ll N$.

This lecture will discuss under what conditions on A (and to a lesser extent b) this is the case.

Error measure

In the following, we will provide bounds for $||Ax_k - b||_2$.

The main reason for doing so is that bounding $||Ax_k - b||_2$ is easier than bounding other error measures because GMRES explicitly minimises this quantity.

In applications, we are often interested in $||x_k - x||_2$.

We have the following bound:

$$||x_k - x||_2 \le ||A^{-1}||_2 ||Ax_k - b||_2.$$

This bound may be quite loose for practical purposes, but it is the best we can do given the current setting.

Bounding the GMRES residual

Assume A has eigendecomposition $A = V \Lambda V^{-1}$. Then,

$$\begin{aligned} \|Ax_{k} - b\|_{2} &= \min_{p_{k-1} \in \mathcal{P}_{k-1}} \| (Ap_{k-1}(A) - I) b \|_{2} \\ &\leq \min_{p_{k-1} \in \mathcal{P}_{k-1}} \|V\|_{2} \| \Lambda p_{k-1}(\Lambda) - I \|_{2} \|V^{-1}\|_{2} \|b\|_{2} \\ &\leq \kappa(V) \|b\|_{2} \min_{\substack{p_{k-1} \in \mathcal{P}_{k-1} \\ \rho_{k-1} \in \mathcal{P}_{k-1}}} \max_{\lambda_{\ell}} |\lambda_{\ell} p_{k-1}(\lambda_{\ell}) - 1|. \end{aligned}$$

 $\lambda_\ell = \Lambda[\ell,\ell]$ on last line are the eigenvalues of A. $\kappa(V) = \|V\|_2 \|V^{-1}\|_2$ is the condition number of V. We have $\|\Lambda\|_2 = \max_\ell |\Lambda[\ell,\ell]|$ for any diagonal matrix Λ .

Conclusion

To get an asymptotic error estimate for $||Ax_k - b||_2$, we should study the behaviour of

$$\min_{p_{k-1} \in \mathcal{P}_{k-1}} \max_{\lambda_{\ell}} |\lambda_{\ell} \, p_{k-1}(\lambda_{\ell}) - 1|$$

as a function of k.

We next reformulate this problem to make it easier to argue about it.

GMRES minimisation problem, observation 1

$$p_{k-1} \in \mathcal{P}_{k-1} \implies q_k(x) := x \, p_{k-1}(x) - 1 \in \mathcal{P}_k, \ q(0) = -1$$

$$q_k \in \mathcal{P}_k, \ q_k(0) = -1 \implies q_k(x) := x p_{k-1}(x) - 1 \text{ for some } p_{k-1} \in \mathcal{P}_{k-1}.$$

Proof. First implication is obvious.

Second implication: $p_{k-1}(x) = \frac{q_k(x)+1}{x}$ is a polynomial since $q_k(0) = -1$.

Corollary

The GMRES minimisation problem may equivalently be formulated as

$$\min_{q_k \in \mathcal{P}_k} \max_{\lambda_\ell} \frac{|q_k(\lambda_k)|}{|q_k(0)|}.$$

Hence, we want $q_k \in \mathcal{P}_k$ such that $|q_k(\lambda_\ell)|$ is small relative to $|q_k(0)|$.

GMRES minimisation problem, observation 2

Eigenvalues λ_{ℓ} typically cluster in a set $\mathcal{E} \subset \mathbb{C}$.

The GMRES minimisation problem

$$\min_{q_k \in \mathcal{P}_k} \max_{\lambda_k} \frac{|q_k(\lambda_\ell)|}{|q(0)|}$$

may then be replaced by

$$\min_{q_k \in \mathcal{P}_k} \max_{x \in \mathcal{E}} \frac{|q_k(x)|}{|q(0)|}$$

without losing much in sharpness.

Example

Recall eigenvalues $\lambda_{\ell} := (n+1)^2 (2\cos(\pi \frac{\ell}{n+1}) - 2)$ of discrete Laplacian.

These eigenvalues cluster in the interval $\mathcal{E} = [-4(n+1)^2, 0]$.

GMRES minimisation problem, conclusion

Summary of the above: there exists a $C \neq C(k)$ such that

$$||Ax_k - b||_2 \le C \min_{q_k \in \mathcal{P}_k} \max_{x \in \mathcal{E}} \frac{|q_k(x)|}{|q_k(0)|}.$$

To get a good bound on $||Ax_k - b||_2$, we should hence look for a $q_k(x)$ which is as small as possible on \mathcal{E} relative to $q_k(0)$.

It is hard to make rigorous statements about this problem for general \mathcal{E} . Instead, we will do the following:

- ightharpoonup Develop some intuition for what properties of $\mathcal E$ make GMRES converge fast.
- ▶ Provide a rigorous estimate for the case $\mathcal{E} = [a, b]$.

Qualitative convergence theory

Recipe for constructing $q_k(x)$ such that $\max_{x \in \mathcal{E}} \frac{|q_k(x)|}{|q_k(0)|}$ is small:

Choose $q_k(x) = \prod_{\ell=1}^k (x - x_\ell)$ with x_ℓ distributed over \mathcal{E} .

This choice ensures $q_k(x) \approx 0$ for $x \approx x_\ell$, i.e. each factor makes $q_k(x)$ in a small region around x_ℓ . If we add enough factors, we get that $q_k(x)$ is small throughout \mathcal{E} .

Example for $\mathcal{E} = [1, 3]$.

Qualitative convergence theory (continued)

Properties of ${\mathcal E}$ which make GMRES converge fast:

- \triangleright \mathcal{E} is small: few x_{ℓ} are enough to ensure that $\max_{x \in \mathcal{E}} |q_k(x)|$ is small.
- \triangleright \mathcal{E} is far away from 0: $|q_k(0)| \ge \left(\min_{x \in \mathcal{E}} |x|\right)^k$.

These two points are equivalent after scaling:

- $\mathcal{E} = [\frac{1}{n}, 1]$ is bounded ("small") but close to 0 for $n \to \infty$.
- $\mathcal{E} = [1, n]$ is unbounded ("large") but bounded away from 0 for $n \to \infty$.

Convergence is the same in both cases (see next slide)

Thm: Scale-invariance of GMRES

Let $\mathcal{E} \subset \mathbb{C}$ and define $\theta \mathcal{E} = \{\theta x \mid x \in \mathcal{E}\}$ for $\theta \in \mathbb{R} \setminus \{0\}$. Then,

$$\min_{q_k \in \mathcal{P}_k} \max_{\mathbf{x} \in \mathcal{E}} \frac{|q_k(\mathbf{x})|}{|q_k(\mathbf{0})|} = \min_{q_k \in \mathcal{P}_n} \max_{\mathbf{x} \in \theta \mathcal{E}} \frac{|q_k(\mathbf{x})|}{|q_k(\mathbf{0})|}.$$

Proof.

Assume there exists $\theta \in \mathbb{R} \setminus \{0\}$ such that

$$\min_{q_k^{(1)} \in \mathcal{P}_k} \max_{\mathbf{x} \in \mathcal{E}} \frac{|q_k^{(1)}(\mathbf{x})|}{|q_k^{(1)}(0)|} < \min_{q_k^{(\theta)} \in \mathcal{P}_n} \max_{\mathbf{x} \in \theta \mathcal{E}} \frac{|q_k^{(\theta)}(\mathbf{x})|}{|q_k^{(\theta)}(0)|} = \min_{q_k^{(\theta)} \in \mathcal{P}_n} \max_{\mathbf{x} \in \mathcal{E}} \frac{|q_k^{(\theta)}(\theta \mathbf{x})|}{|q_k^{(\theta)}(0)|},$$
(1)

Let $q_k^{(1)}(x) = \prod_{\ell=1}^k (x - x_\ell)$ be the minimiser from the left-hand side.

Note that any $q_k \in \mathcal{P}_k$ is of the form $q_k(x) = C \prod_{\ell=1}^k (x - x_\ell)$ by the fundamental theorem of algebra, and we can assume C = 1 in our case because we are only interested in the ratio $q_k(x)/q_k(0)$.

Proof (continued).

Then, we obtain for $\tilde{q}_k^{(\theta)}(\theta x) = \prod_{\ell=1}^k (\theta x - \theta x_\ell) \in \mathcal{P}_k$ that

$$\max_{x \in \mathcal{E}} \frac{|\tilde{q}_{k}^{(\theta)}(\theta x)|}{|\tilde{q}_{k}^{(\theta)}(0)|} = \max_{x \in \mathcal{E}} \frac{\prod_{\ell=1}^{k} |\theta x - \theta x_{\ell}|}{\prod_{\ell=1}^{k} |\theta x_{\ell}|}$$

$$= \max_{x \in \mathcal{E}} \frac{\prod_{\ell=1}^{k} |x - x_{\ell}|}{\prod_{\ell=1}^{k} |x_{\ell}|} = \max_{x \in \mathcal{E}} \frac{|q_{k}^{(1)}(x)|}{|q_{k}^{(1)}(0)|}.$$
(2)

Equation (2) contradicts the assumption (1); hence we have

$$\min_{q_k \in \mathcal{P}_k} \max_{\mathbf{x} \in \mathcal{E}} \frac{|q_k(\mathbf{x})|}{|q_k(\mathbf{0})|} \ge \min_{q_k \in \mathcal{P}_n} \max_{\mathbf{x} \in \theta \mathcal{E}} \frac{|q_k(\mathbf{x})|}{|q_k(\mathbf{0})|}.$$

The bound in the other direction follows by applying the above bound to $\mathcal{E}' = \theta \mathcal{E}$ and $\theta' = \theta^{-1}$.

Qualitative convergence theory (continued)

Previous slides showed that GMRES converges fast if $\mathcal E$ is small relative to its distance to 0. Now we somewhat relax this condition.

Thm: Invariance of GMRES with respect to outliers

Assume $\mathcal{E}=\bar{\mathcal{E}}\cup\{\lambda^\star\}$, i.e. the eigenvalues of A are all contained in some set $\bar{\mathcal{E}}$ except for a single outlier eigenvalue $\lambda^\star\in\mathbb{C}$. Then,

$$\min_{q_{k+1} \in \mathcal{P}_{k+1}} \max_{x \in \mathcal{E}} \frac{|q_{k+1}(x)|}{|q_{k+1}(0)|} \leq \left(\max_{x \in \bar{\mathcal{E}}} \frac{|x - \lambda^\star|}{|\lambda^\star|}\right) \left(\min_{q_k \in \mathcal{P}_k} \max_{x \in \bar{\mathcal{E}}} \frac{|\bar{q}_k(x)|}{|\bar{q}_k(0)|}\right).$$

In words:

- ▶ The convergence of GMRES on \mathcal{E} is at most a constant factor worse than the convergence of GMRES on $\bar{\mathcal{E}}$.
- ▶ This constant factor $\max_{x \in \bar{\mathcal{E}}} \frac{|x \lambda^{\star}|}{|\lambda^{\star}|}$ may be large if λ^{\star} is close to 0.

Proof. Let

$$\bar{q}_k(x) = \operatorname*{arg\,min\,max}_{\bar{q}_k \in \mathcal{P}_k} \frac{|\bar{q}_k(x)|}{x \in \bar{\mathcal{E}}} \quad \text{and} \quad q_{k+1}(x) = (x - \lambda^\star) \, \bar{q}_k(x).$$

Then $q_{k+1}(\lambda^*) = 0$ and hence

$$\begin{aligned} \max_{x \in \mathcal{E}} \frac{|q_{k+1}(x)|}{|q_{k+1}(0)|} &= \max_{x \in \bar{\mathcal{E}}} \frac{|q_{k+1}(x)|}{|q_{k+1}(0)|} = \max_{x \in \bar{\mathcal{E}}} \frac{|x - \lambda^*|}{|\lambda^*|} \frac{|\bar{q}_k(x)|}{|\bar{q}_k(0)|} \\ &\leq \left(\max_{x \in \bar{\mathcal{E}}} \frac{|x - \lambda^*|}{|\lambda^*|}\right) \left(\max_{x \in \bar{\mathcal{E}}} \frac{|\bar{q}_k(x)|}{|\bar{q}_k(0)|}\right). \end{aligned}$$

Quantitative convergence estimate

$$\min_{q_k \in \mathcal{P}_k} \max_{\mathbf{x} \in [1, \kappa]} \frac{|q_k(\mathbf{x})|}{|q_k(\mathbf{0})|} \le 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^k.$$

Remarks

- By the scale-invariance of GMRES, this result applies to any interval $[a, b] \not\equiv 0$ with $\kappa = \frac{b}{a}$.
- ▶ This result can be shown by choosing $q_k(x)$ as a shifted and scaled Chebyshev polynomial. See **[TB97]** for details.

Numerical illustration

See gmres_convergence().

Recap: bound on GMRES residual

$$||Ax_k - b||_2 \le \kappa(V) ||b||_2 \min_{q_k \in \mathcal{P}_k} \max_{\lambda_{\ell}} \frac{|q_k(\lambda_{\ell})|}{|q(0)|}$$

Previous slides discussed how to choose q_k such that the right hand side becomes as small as possible.

Surprisingly, it turns out that we can also play around with b and λ_ℓ to make the right-hand side even smaller.

The following slides will explain further.

GMRES with initial guess (modifying b)

Assume we have an initial guess $x_0 \approx x$ for the solution to Ax = b. We can exploit the knowledge contained in x_0 by making the ansatz

$$A(x_0 + \Delta x) = b$$

and solving for Δx :

$$A \Delta x = b - Ax_0$$
.

GMRES applied to the last equation will produce a sequence of estimates Δx_k which satisfy the bound

$$||A(x_0 + \Delta x_k) - b||_2 = ||A \Delta x_k - (b - Ax_0)||_2$$

$$\leq \kappa(V) ||b - Ax_0||_2 \min_{q_k \in \mathcal{P}_k} \max_{\lambda_\ell} \frac{|q_k(\lambda_\ell)|}{|q(0)|}.$$

If $x_0 \approx x$, then $||b - Ax_0||_2$ is small and hence $||A(x_0 + \Delta x_k) - b||_2$ is small as well.

Restarted GMRES

One way to obtain an initial guess x_0 is to run GMRES with a small, a-priori determined number of steps $k_{\rm inner}$. (A common choice is $k_{\rm inner}=20$.) Iterating this idea yields the following algorithm.

Algorithm 1 Restarted GMRES

- 1: $x_0 = 0$
- 2: **for** k = 1, 2, ... **do**
- 3: Approximately solve $A \Delta x_k = b Ax_{k-1}$ using k_{inner} GMRES steps.
- 4: Update $x_k = x_{k-1} + \Delta x_k$.
- 5: end for

The advantage of restarting is that it avoids the $\mathcal{O}(k^2)$ scaling of non-restarted GMRES.

The disadvantage is that it may converge (much) more slowly. See restarted_gmres_good() and restarted_gmres_bad().

Preconditioning (modifying λ_k)

Instead of Ax = b, we can solve

- ▶ $P^{-1}Ax = P^{-1}b$ (left preconditioning), or
- $(AP^{-1})(Px) = b$ and $x = P^{-1}(Px)$ (right preconditioning)

with P some invertible matrix (preconditioner).

GMRES applied to these modified systems converges in fewer iterations if the eigenvalues of $P^{-1}A$ or AP^{-1} are "nicer" than those of A. In particular, GMRES converges in a single iteration if we choose P = A.

On the other hand, each iteration is more expensive because each Arnoldi iteration now requires us to evaluate two matrix-vector products $P^{-1}(Av)$ or $A(P^{-1}v)$ instead of just Av.

In particular, P=A useless because if we could compute $P^{-1}v=A^{-1}v$ cheaply we would not be thinking about using GMRES in the first place.

We conclude from the above that a good preconditioner should balance

$$P^{-1} \approx A^{-1}$$
 and $P^{-1}v$ is easy to evaluate.

Remark

The discussion on the previous slide assumed that we evaluate $P^{-1}Av$ or $AP^{-1}v$ as two matrix-vector products $P^{-1}(Av)$ or $A(P^{-1}v)$.

It is also possible to evaluate $P^{-1}A$ or AP^{-1} once and then evaluate $(P^{-1}A)v$ or $(AP^{-1})v$ as a single matrix-vector product.

The second approach is rarely used in practice because we typically have a fast matrix-vector product for A and P^{-1} but not for AP^{-1} or $P^{-1}A$.

For this reason, the two-matrix-vector-products strategy is typically faster than the one-matrix-vector-product strategy.

Incomplete LU (ILU) preconditioning

Recall: the problem with LU factorisation is excessive fill-in.

Idea: only store a limited number of fill-in entries and discard the rest.

The resulting factors \tilde{L}, \tilde{U} may be inaccurate ($\tilde{L}\tilde{U}-A$ may be large), but they may be accurate enough that $P=\tilde{L}\tilde{U}$ is a good preconditioner.

Two versions of ILU are in widespread use:

- ▶ ILU(c): only allow $(\tilde{L} + \tilde{U})[i,j] \neq 0$ if i,j are connected by a fill path of length $\leq c+1$.
- ▶ ILU(τ): only allow $(\tilde{L} + \tilde{U})[i,j] \neq 0$ if $|(L + U)[i,j]| > \tau$.

I will demonstrate ILU preconditioning in Lecture 9.

Summary

GMRES residual bound:

$$||Ax_k - b||_2 \le C \min_{q_k \in \mathcal{P}_k} \max_{\lambda_\ell} \frac{|q_k(\lambda_\ell)|}{|q_k(0)|}$$
(3)

where λ_{ℓ} are the eigenvalues of A and C is some constant which depends on A and b but not on k.

- ► The right-hand side of (3) is the same if we scale the eigenvalues, and it is asymptotically independent of "outlier eigenvalues".
- We have an explicit bound on the polynomial minimisation problem if the eigenvalues cluster in an interval $\mathcal{E} = [1, \kappa]$:

$$\min_{q_k \in \mathcal{P}_k} \max_{\mathbf{x} \in [1, \kappa]} \frac{|q_k(\mathbf{x})|}{|q_k(0)|} \le 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{\kappa}.$$

You do not have to remember the precise form of this bound, but you should remember that larger κ means slower convergence.

Summary (continued)

► GMRES with initial guess:

$$\Delta x \approx A^{-1} (b - Ax_0) \iff x \approx x_0 + \Delta x.$$

Preconditioning:

$$P^{-1}Ax = P^{-1}b$$
 or $(AP^{-1})(Px) = b$ and $x = P^{-1}(Px)$.