	ф	479 395 312 312 187
Σ		
01	A B	
6 8	A B	
∞	A B	
7	A B	
9	A B A	
Σ		
ς.	m 1	
4	A B A	
т	В	
2	B A B A	
	A B	

FIG. ,

-310 -300 -290 -280 -270 -260 -250 -240 -230 -220 1 1 1 1 1 1 1 1 1	D	AGA.GA.G	FIG. 2A
type 1a 1b	2a 2b	3a 3a	.4
type HCV 1 1a HCV J 1b	HC J6 HC J8	BR56 E-b8	92

-120 -110 -100 -90 -80 -70 -60 -100	AC	GTCA GTCA GTCA 21	
-120 - GCCTGGAGA T		ACAA- - ACAA-	
-140 ICTTG GA.TCAACCC GCTCAAT GCC	-A -A		- A
-140 	28 A	A	
type 1a 1b	2a 2a 2b	3a 3b	4444
HCV1 HCVJ	HCJ6 JP62 GB81 HCJ8	8R56 E-b8	26 BU79 BU74 GB80

FIG. 2B

FIG. 3

		SEQ ID NO 61 SEQ ID NO 62		SEQ ID NO 63	SEQ ID NO 64	SEQ ID NO 65 SEQ ID NO 66		SEQ ID NO 80
Сн -	H	8 8	m	Α,	<i>0</i> 3	თ თ ნი	ا و	<u>~</u>
Accession -140 ref.	TTGGATC.AA		A		33		A	
-150	SACCGGGT	28	T		L			54
-160	C*AGTACACCGGAATTGCCAGGACGACGGGGTCCTTTC	- L	GA-	AG-A-AT G-A-AT	A	-CTGGT- -CTGGT- -CTGGT-	GT-	GTT-
-170	ACCGGAATT		1 1			000	-DC-	C-
0 - 180	GTAC	1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			
-220 -	AGGACCC*A		C*-	C*-		* * * *	-*C*-	*
-230	GAGTGTCGTGCAGCCTCCAGGACC		-A	-A	.A			1
-240 +	GAGTGTCG	[-4 1 1 1 1 1 1 1 1 1			1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Туре	1a	222	2a	2b 2b	2c	3a 3a	35	30
Iso- late	HCV-1	HCV-J BE82 BE90	HC-J6	HC-J8 BE91	BE92	BR56 BE93 BE94	HCV-TR	BE98

FIG. 4A-1

	SEQ ID NO 67 SEQ ID NO 68 SEQ ID NO 69 SEQ ID NO 70	2	SEQ ID NO 72 SEQ ID NO 73 SEQ ID NO 74		SEQ ID NO 71		SEQ ID NO 76	SEQ ID NO 75
O- Type -240 -230 -220-180 -170 -160 -150 -140 ref.	GB48 4aTATATT GB16 4aTA	4bTA	CAM600 4CT-A	4dT-	GB549 4eT	GB438 4fAAT*TCGTATC	GB724 49ATT BE97 49TA	GB487 4hTAT
Iso- late	GB4 GB1 GB5 GB3	12	338 8	DK13	GB GB	<u> </u>	GB72, BE97	8

FIG. 4A-2

ssion number ref.	7		80	
Type -240 -230 -220-180 -170 -160 -150 -140 ref.	5aAATTTTTT	5aAA47	6aA	6?
0 to	-	BE96	нкл	HK2

FIG. 4A-3

FIG. 4B-1

Isolate	Туре	-130	-120	-110	-100	06 -	08-	-70	Accession number reference
GB48 GB116 GB569 GB358	4444		CA						
GB549	4 e		CCA	41	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
CAM600 CAM736 GB809	4 C 4 C 4 C		TCA TCA	43				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
GB487	4 h	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A	80	1				
GB724 BE97	4. 4. Q. Q.		A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1				
SA1 BE96 BE95	55 a a a			46					7
НК1	6а		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8
BE98	3c	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CA		·9				
GB438	4£	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CA		B				

FIG. 4B-2

HCV-1	R. K. K. G. G. G. K. G. G. G. G. G. K. G.
---	---

SEQ ID NO 101 SAGVQEDAASLRA HCV-1 HC-J1 HCV-H ---T----A---HCV-J ---T-----V HCV-JK1 HCV-CHINA HCV-T ---T----A---HC-J4.91 **HCV-TA HCV-JT HCV-BK** 82 ---T----V **BE90** -Q-TE--ERN---HC-J6 -Q-NE--ERN---HC-J8 83 -Q-NE--ERN---**BE91** 84 -Q-TE--ERN---**BE92** -D--D--R-A---T1 -D--D--RTA---**T7** 85 -D--D--R-A---**BE93** -C~-E--R-A---**T9** -C--E--R-A---T10 86 -D--E--KRP-G-**GB48** 87 -D--E--KRA-G-**GB116** 88 -D--E--KRA-GV **GB215** 89 -D--E--KRA-G-GB358 90 -G--E---RA---**GB549** 91 -G--E--KRA-G-**GB809** 92 -Q-TH--E----**BE95** -Q-TH--K----CHR18

FIG. 5B

1 2 3

FIG. 6

FIG. 7	FIG. 8
- F G H - J K - K	- F G
- C - D - E	- D - E
	— — — — A — — — — B
1 2 3	1 2 3 4

	1 2	
		– A – B
44 –	(manufa)	- C
45 –	وومين مغو	– D
46 [—]		_ E
31_		- F
7 –		– G

FIG. 9

FIG. 10