Section efficasse avec des diagrammes de Feynman

$$\mathcal{M} = g^2 \left\{ \frac{1}{(p_1 - p_3)^2 - m_2} + \frac{1}{(p_1 - p_4)^2 - m^2} + \frac{1}{(p_1 + p_2)^2 - m^2} \right\}$$

Puisque les particules en question sont indiscernables on rajoute un facteur $\frac{1}{2}$ pour enlever les états comptés en trop

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{2} \frac{|\mathcal{M}|^2}{(8\pi)^2} \frac{|\mathbf{p}_3|}{|\mathbf{p}_1|} \frac{1}{E^2}$$

Figure 1 – collsion

$$\mathbf{p}_1 = p\hat{x}$$

$$\mathbf{p}_2 = -p\hat{x}$$

$$\mathbf{p}_3 = p\hat{n}$$

$$\mathbf{p}_4 = -p\hat{n}$$

• • •

$$(p_1 + p_4)^2 = (2E)^2 = 4E^2$$

$$\frac{d\sigma}{d\Omega} = \frac{1}{128\pi^2} \frac{1}{\gamma^2} \left(\frac{1}{4(\gamma^2 - 1)\sin^2\frac{\theta}{2} + 1} + \frac{1}{4(\gamma^2 - 1)\cos^2\frac{\theta}{2} + 1} + \frac{1}{4\gamma^2 - 1} \right)$$

limite non relativiste $(\gamma \to 1)$:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \to \frac{g^4}{128\pi^2 m^4} \left(\frac{5}{3}\right)^2$$

Limite ultra relativiste ($\gamma\gg 1$) :

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \to \frac{g^4}{128\pi^2 m^2} \frac{1}{\gamma?} \left(\frac{1}{\sin^2 \theta} - \frac{1}{4}\right)^2$$

On remarque que la probabilité de collision dans la limite ultra relativiste est beaucoup plus faible que dans la limite classique.

Feynman rules!

- 1. $i\mathcal{M}$
- 2. identifier les particles entrantes et sortantes
- 3. construire les diagrammes $\rightarrow N$ vertex (ordre N en théorie des perturbation)
- 4. chaque ligne \rightarrow 4-impulsion
- 5. vertex $\to -ig(2\pi)^4 \delta(k_1 + k_2 k_3)$
- 6. ligne interne $\rightarrow \frac{-i}{q^2-m^2}$
- 7. intégrer sur les 4-impulsion internes $\int \frac{\mathrm{d}^4q}{(2\pi)^4}$
- 8. Amputer le facteur global $(2\pi)^4 \delta(p_1 + p_2 \cdots p_n)$

FIGURE 2 – Diagramme

Figure 3 – diagrammes

Potentiel de Yukawa

Le potentiel de Yukawa donne le potentiel généré par des particules virtuelles. Il décroit exponentiellement en fonction de la masse. Cela explique la porté limités des forces qui utilise des bosons massifs. La force électromagnétique a une portée infinie car la photon est sans masse.

$$U(r) = -\frac{g}{4\pi} \frac{e^{-mr}}{r}$$

 $\nabla^2 \Phi - \partial_7^2 \Phi = -e \delta(r)$ Potentiel retardé

$$\nabla^2 \Phi = -e\delta(\mathbf{r}) \to \Phi(\mathbf{r}) = \frac{e}{4\pi r}$$

spineur

$$\Psi = \begin{pmatrix} \psi_{\uparrow} \\ \psi_{\downarrow} \end{pmatrix}$$

rotation:

$$\mathbf{r} \to \mathbf{r}' = \mathscr{R}(\mathbf{r}, \theta)\mathbf{r}$$

$$\psi(\mathbf{r}) \to R(\hat{n}, \theta) \psi(\mathbf{r})$$

$$R(\hat{n},\theta) = \exp\biggl(i\frac{\theta}{2}\hat{n}\cdot\sigma\biggr) = \cos\frac{\theta}{2} + i\hat{n}\cdot\sigma\sin\frac{\theta}{2} \qquad \sigma = \begin{pmatrix}\sigma_x & \sigma_y & \sigma_z\end{pmatrix}$$

$$\psi^\dagger x \to \text{scalaire}$$

$$\psi^{\dagger} \sigma x \to \text{vecteur}$$