Car Evaluation Example For Non-numerical Data

There are 5 features in the dataset:

```
buying - buying price
maint - price of the maintenance
doors - number of doors
persons - capacity in terms of persons to carry
lug_boot - the size of luggage boot
safety - estimated safety of the car
```

All these 5 features are categorical data. The target value is the evaluation level of the car.

Part 1. Decision Tree for Non-numerical Data

Given scikit-learn implementation of decision tree/random forest does not support non-numerical variables, we provide an implementation of decision tree in the folder/package 'decisiontreec'. The idea is from https://github.com/riccardobucco/CDT (https://github.com/riccardobucco/CDT), where the author implemented the algorithm of random forest for categorical data. Here we modified the functions and let it work as a decision tree algorithm for non-numerical data, please note that the split condition is based on the largest information gain for the categorical targets.

```
In [2]: import pandas as pd
    from decisiontreec.classifier import _decision_tree, _decision_tree_classify, get_acc
    uracy
    from decisiontreec.utilities import get_dataset, export_graphviz
In [3]: df = pd.read_csv("car.csv")
    df.head(5)
```

Out[3]:

	buying	maint	doors	persons	lug_boot	safety	class
0	vhigh	vhigh	2	2	small	med	unacc
1	vhigh	vhigh	2	2	small	high	unacc
2	vhigh	vhigh	2	2	med	low	unacc
3	vhigh	vhigh	2	2	med	med	unacc
4	vhigh	vhigh	2	2	med	high	unacc

```
In [4]: # Split the data into 75% training and 25% test
train, test = get_dataset("car.csv","class",0.75)
```

```
In [5]: # Dataset - Object : we can get the instance by index using get_instance
# Data instance - Object: can get accessed to the feature values by field 'attribute
s'
train.get_instance(0).attributes
```

```
# Get instances (each row) from the test set
instances = test._get_instances()
pred_list = []
for instance in instances:
    # Make prediction on each instance in the test set
    pred = _decision_tree_classify(clf,instance)
    pred_list.append(pred)

In [8]: # Calculate the accuracy
print("the accuracy of the classification:", get_accuracy(test,pred_list))
# Visualise the decision tree
# End Node ID [target value]
# Decision Node ID -> Child Node ID [split condition]
# Try text description of the tree by:
# export_graphviz(clf)
```

the accuracy of the classification: 0.8564814814814815

In [6]: # Construct the decision tree by training data

clf = _decision_tree(train)

Please note that this is not a perfect implementation of decision tree, the problems are: (1) It can only deal with non-numerical data, (2) When the feature set A is empty, it cannot mark the leaf node to the majority class in D (please refer to an example in week10 lecture slides: lec9-classification3, p.5).

If you are interested in solving the problems mentioned above, please have a look at the functions **_decision_tree** and **_information_gain** in classifier.py, and try to modify the algorithms to make the model more adaptable.

Part 2. Naive Bayes for Non-numerical Data

The categorical Naive Bayes classifier is suitable for classification with **discrete features** that are categorically distributed. So for non-numerical data, we can use LabelEncoder to encode the categorical data into dicrete integers, then fit the data with CategoricalNB.

```
In [17]: from sklearn.naive_bayes import CategoricalNB
    from sklearn.preprocessing import LabelEncoder
    from sklearn.model_selection import train_test_split
    from sklearn import metrics
In [10]: df = pd.read_csv("car.csv")
    df.head(5)
```

Out[10]:

	buying	maint	doors	persons	lug_boot	safety	class
0	vhigh	vhigh	2	2	small	med	unacc
1	vhigh	vhigh	2	2	small	high	unacc
2	vhigh	vhigh	2	2	med	low	unacc
3	vhigh	vhigh	2	2	med	med	unacc
4	vhigh	vhigh	2	2	med	high	unacc

```
In [11]: # Transform categorical data
    df = df.apply(LabelEncoder().fit_transform)
    df
```

Out[11]:

	buying	maint	doors	persons	lug_boot	safety	class
0	3	3	0	0	2	2	2
1	3	3	0	0	2	0	2
2	3	3	0	0	1	1	2
3	3	3	0	0	1	2	2
4	3	3	0	0	1	0	2
1722	1	1	3	2	1	2	1
1723	1	1	3	2	1	0	3
1724	1	1	3	2	0	1	2
1725	1	1	3	2	0	2	1
1726	1	1	3	2	0	0	3

1727 rows × 7 columns

```
In [12]: # Split the dataset into X and y for classification
# Select the last column as label
y = df['class'].values
# Select column 0~5 as features
X = df.iloc[:,0:6].values
```

The number of training data: 1295 The number of test data: 432

	precision	recall	f1-score	support		
0	0.61	0.70	0.65	96		
1	0.57	0.22	0.32	18		
2	0.92	0.94	0.93	298		
3	0.88	0.35	0.50	20		
accuracy			0.83	432		
macro avg	0.74	0.55	0.60	432		
weighted avg	0.83	0.83	0.82	432		
[[67 3 2	6 0]					
[13 4	0 1]					
[17 0 28	1 0]					
[13 0	0 7]]					
The prediction	185					
Number of mislabeled points out of a total 432 points : 73						

How to deal with mix data (continous + non-numerical) in Naive Bayes

Naive Bayes based on applying Bayes' theorem with the "naive" assumption of independence between every pair of features - meaning you calculate the Bayes probability dependent on a specific feature without holding the others - which means that the algorithm multiply each probability from one feature with the probability from the second feature (and we totally ignore the denominator - since it is just a normalizer).

so the right answer is:

- 1. calculate the probability from the non-numerical variables.
- 2. calculate the probability from the continuous variables.
- 3. multiply 1. and 2.