- 1. $\mu = \mu_1$. $\sum_{i=1}^{N} (v_i \mu)^2 = \sum_{i=1}^{N} v_i^2 2\mu \sum_{i=1}^{N} v_i + N\mu^2 = \sum_{i=1}^{N} v_i^2 N\mu^2$, since $\sum_{i=1}^{N} v_i = N\mu$. Hence $\sigma^2 = \mu_2 \mu_1^2$.
- 2. Let $h(m) = v_m^2$. Since M has a uniform distribution, $E(X^2) = E\{h(M)\} = \sum_{i=1}^N v_i^2 \frac{1}{N} = \mu_2$. From Survey Sampling I, $E(X) = \mu$ which is μ_1 from (a). Hence $var(X) = E(X^2) \{E(X)\}^2 = \mu_2 \mu_1^2$ which is equal to σ^2 by (a).

[Why is $\operatorname{var}(X) = \sigma^2$ new? In the first lecture, σ^2 was defined as $\operatorname{var}(X)$. But here, σ^2 is defined as the variance of the population, not X. Similarly, $\mu = \operatorname{E}(X)$ by definition, but now μ is the population mean. Hence $\operatorname{E}(X) = \mu$ and $\operatorname{var}(X) = \sigma^2$ are theorems.]

3. (a) $Pr(M_1 = 1, ..., M_N = N) =$

$$\Pr(M_1 = 1) \times \Pr(M_2 = 2 | M_1 = 1) \times \Pr(M_3 = 3 | M_1 = 1, M_2 = 2) \times \cdots \Pr(M_N = N | M_1 = 1, \dots, M_{N-1} = N - 1)$$
$$= \frac{1}{N} \times \frac{1}{N-1} \times \frac{1}{N-2} \cdots \times 1 = \frac{1}{N!}$$

[Note that the third probability conditions on both $M_1 = 1$ and $M_2 = 2$, not just on $M_2 = 2$. Similarly for subsequent factors.]

(b)
$$\Pr(M_1 = \pi(1), \dots, M_N = \pi(N)) =$$

$$\Pr(M_1 = \pi(1)) \times \Pr(M_2 = \pi(2) | M_1 = \pi(1)) \times \Pr(M_3 = \pi(3) | M_1 = \pi(1), M_2 = \pi(2)) \times \cdots \Pr(M_N = \pi(N) | M_1 = \pi(1), \dots, M_{N-1} = \pi(N-1))$$

The conditional probabilities are exactly like (a), so the answer is also $\frac{1}{N!}$.

[If the notation seems abstract, think of a concrete rearrangement, like $M_1 = N, M_2 = N - 1, \dots, M_N = 1$.]

- (c) From (b), (M_1, \ldots, M_N) has the same probability to be any permutation of $1, \ldots, N$.
- 4. (a) Each of the 10,000 undergraduates consumed a number of bubble teas during the previous week. The mean of the 10,000 numbers is μ .
 - (b) The 400 numbers are realisations from RV's X_1, \ldots, X_{400} which are a simple random sample from the population. μ is estimated as 5.4.
 - (c) SE is $SD(\bar{X}) = \sigma/\sqrt{400}$, where σ is the population SD. By the bootstrap, estimated SE is $5.3/20 \approx 0.3$.
 - (d) The assumption in (b) is invalid. μ is likely to be smaller than 5.4, but it is hard to say by how much.

[We assume that the population size is much largaer than 400, so that an SRS is like drawing with replacement. Consequent to the assumption in (b), the data x_1, \ldots, x_{400} are realisations of the RV's, and 5.4 is a realisation of the random sampmle mean \bar{X} . The SD of 5.3 is calculated with 400 in the denominator, though it does not matter so much if 399 were used instead.]

- 5. (a) (ii) $E(\hat{p}) = p$, which is unknown and estimated as 0.69.
 - (b) (ii) SE = SD(\hat{p}) = $\sqrt{p(1-p)/1500}$, which is also unknown, and estimated as

$$\sqrt{\frac{0.69 \times 0.31}{1500}} \approx 0.01$$

[We also assume here that the population size is much larger than 1500.]