

本期论文主题:Transformer

导师: Yamada

Attention is all you need

注意力机制是大家需要掌握的

作者: Ashish Vaswani

单位: Google

发表会议及时间: NIPS, 2017

上节回顾

Review in the previous lesson

01 Transformer背景介绍

介绍了翻译数据集、翻译衡量指标bleu、transformer的历史意义 等等

02 论文泛读

快速浏览整篇论文、介绍了论文的摘要以及各个小标题并且分析了一下论文的实验结果

03 Seq2Seq以及attention回顾

回顾了Seq2Seq的翻译流程以及对attention的公式

第二课:论文精读

The second lesson: the paper in detail

论文算法模型总览

论文细节

2/Self Attention

实验设置和结果分析

3 Feed-Forward network 论文总结

Positional Encoding

本课回顾及下节预告

论文算法模型总览

注:这一部分主要介绍在论文改进前的原有模式模型

Architecture of Transformer

Transformer结构知识树 _{输出}

输入

Machine learning

Architecture of Transformer

decoder

Architecture of Transformer

Architecture of Transformer

输入

input embedding--> positional encoding

for i in range (6):

encod er

self attention --> layer normalization --> feed forward --> layer normalization

for i in range (6):

decod er self attention--> layer normalization
-->encoder-decoder attention-->
layer normalization-->feed forward->layer normalization

论文算法模型的细节一

self-attention

input

输入

x1:[batch_size,1,embedding_dim=5]

x2:[batch_size,1,embedding_dim=5]

 $W^{Q}=[d model=512,64]$

 $W^{K} = [d model = 512,64]$

 $W^{V}=[d_{model}=512,64]$

Architecture

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Architecture

输入

x1:[batch_size,1,embedding_dim=512]

x2:[batch_size,1,embedding_dim=512]

Architecture

输入

x1:[batch_size,1,embedding_dim=512]

x2:[batch_size,1,embedding_dim=512]

Multi-Head Attention

Architecture

将Q、K、V分成h个头,方便并行计算

Multi-Head Attention

深度之眼 deepshare.net

Architecture

"多头"注意力机制流程

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$

 $\overline{|where | head_i = Attention(Q^{W_i^Q}, K^{W_i^K}, V^{W_i^V})}$

内部Attention

Architecture

维度 [batch_size,sequence_length,embedding_dim]

	Quries	Keys	Values		
encoder-encoder	encoder-inputs	encoder-inputs	encoder-inputs	\longrightarrow	知己
encoder-decoder	decoder-inputs	encoder-inputs	encoder-inputs		知彼
decoder-decoder	decoder-inputs	decoder-inputs	decoder-inputs		

论文算法模型的细节

Feed-Forward Network

Feed-Forward Network

Architecture

$$FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$$

前馈层:包含两层。1、线性结构,2、卷积结构

x: 上一层的输出 (一般是self-attention的输出)

 W_1 、 W_2 、 b_1 、 b_2 都是需要学习的参数

论文算法模型的细节三

Positional Encoding

Positional Encoding

Architecture

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

i 代表的是当前的维度,pos代表的是当前的位置

 $[\sin(3/10000^{0/128}), \cos(3/10000^{1/128}), \sin(3/10000^{2/128}), \cos(3/10000^{3/128}), ...]$

pos=3, 对应的positional encoding

论文算法模型的细节四

Training Details

Training Details

Mask

- 1、Sequence Mask 为了防止decoder的时候看到"未来的信息"
- 2、Padding Mask attension时处理pad时为0的值

Layer Normalization

Training Details

实验设置和结果分析

Experiment results

深度之眼 deepshare.net

Experimental setup

硬件: 8块 NVIDIA P100 GPU

优化器:Adam,β1 = 0.9,β2 = 0.98 and _x000F_ = 10 -9.

学习率:

Irate = $d - 0.5 \cdot min(step_num - 0.5, step_num \cdot warmup_steps - 1.5)$

正则化: Dropout、Label Smoothing

实验结果及分析

Results and Discussion

English-to-German: 比现有最好模型的bleu高出2个点。

English-to-French: bleu值达到41.0,比单个模型都要 高,并且时间上缩减了1/4

Model	BLEU		Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [15]	23.75				
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [31]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$	
ConvS2S [8]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$	
MoE [26]	<u> 26.0</u> 3	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [31]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [8]	<u> 26.</u> 36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$	
Transformer (base model)	27.3	38.1	3.3 ·	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.0	2.3 ·	10^{19}	

论文总结

论文总结

Summary of the paper

关键点

- Self Attention和Soft Attention区别
- Scaled Dot-Product Attention原理
- MultiHead Attention实现

小细节

- Mask机制
- Layer Normalization
- 加法attention和dot attention区别

论文总结

Summary of the paper

启发点

- · 在进行attention机制的时候,对于padd为0的位置可以mask掉
- · 可以在模型中添加残差网络结构和layer normalization提高模型效果
- · 模型创新的时候,可以添加self attention结构

本课回顾及下节预告

Review in the lesson and Preview of next lesson

深度之眼 deepshare.net

本课回顾

Review in the lesson

01 Transformer总体结构

讲解Transformer网络的构成,为啥encoder和decoder组件里面会有6个组成部分,encoder和decoder差别

02 Self Attention结构

Self Attention结构是由Scaled Dot-Product Attention和Multi-head Attention组成,为什么可以实现并行。

03 实验设置及结果分析

网络超参数设置,学习率,batchsize等 实验结果分析对比

04 论文总结

总结论文中创新点、关键点及启发点

下节预告

Preview of next lesson

01 搭建Transformer网络代码介绍

02 介绍Self Attention实现

03 基于翻译数据集训练Transformer模型

Preview of next lesson

- 再次阅读Transformer论文
- 熟悉Transformer模型结构及数据预处理方式
- 配置PyTorch开发环境
- 下载Transformer代码
- https://github.com/leviswind/pytorch-transformer

结语-

循循而进,欲速则不达也。

联系我们:

电话: 18001992849

邮箱: service@deepshare.net

Q Q: 2677693114

公众号

客服微信