An In-depth Analysis of Implicit and Subtle Hate Speech Messages

Nicolas Benjamin Ocampo, Ekaterina Sviridova, Elena Cabrio, and Serena Villata

Université Côte d'Azur, Inria, CNRS, I3S, France

Objectives and Challenges

Security in **social media** has grown substantially due to We use 7 datasets, already annotated with HS and the enforcement of anti-hate speech (HS) policies. The most relevant approaches to detect HS messages rely on supervised ML architectures. But current state-of-the-art (SOTA) models detect well explicit HS messages but fail on implicit and subtle ones.

Our contributions:

Provide a newly created HS dataset named ISHate with implicit and subtle labels, fine-grained implicit properties annotations, and augmentation methods.

Classify messages with SOTA models on two 3-label supervised tasks, Task A (Non-HS/Explicit HS/Implicit HS) and Task B (Non-HS/Non-Subtle HS/Subtle HS).

Experiments and Results

We propose the following HS SOTA models:

- Universal Sentence Encoder (USE)+SVM.
- Bert-like models: Vanilla BERT, HateBERT, and DeBERTa.

We augment the target minority classes of both tasks, Implicit HS and Subtle HS:

- Replace Scalar Adverbs
 Replace Adjectives (RA) (RSA)
- Add Adverbs to Verbs (AAV)
- Replace Named Entities
 Generative Models (GM) (RNE)
- Replace In-Domain Expressions (RI)
- Easy Data Augmentation (EDA)
- Back Translation (BT)
- Generative Models with human valid. (GM+R.)
- Use all methods (ALL)

Label		RSA	A AAV		RNE		RI	R	Α	EDA	EDA			GM		GM + R.		ALL	
Implicit HS		848	7032		828		817	467		6935		748		200		82		23957	
Subtle HS		3192	3136		480	0 210		172		2912		179	200		0 204		4	10685	
Label	OF	RIG	RSA	AA	\	RN	NE	RI		RA	EC	DΑ	В	Г	GN	Л	GM + F	₹.	ALL
Non-HS	.6′	14	.459	.4	56	.59	9	.590	0 .	.600	.45	58	.59	92	.60	8(.611		.282
Explicit HS	.34	44	.257	.25	56	.33	3	.33	1 .	.336	.25	57	.332		.340		.342		.158
Implicit HS	.04	42	.283	.28	88	30.	3	.079	9 .	.064	.28	36	.0	76	.05	52	.046		.560
Non-HS	.6′	14	.531	.53	32	.60	00	.60	7 .	.609	.53	37	.60	08	.60)8	.608		.403
Non-Subtle	.37	77	.326	.32	27	.36	69	.374	4 .	.374	.33	30	.3	.374		74	.374		.248
Subtle	.00	09	.143	.14	41	.03	32	.019	9 .	.017	.13	33	.0	18	.01	19	.019		.350

implicit/subtle Number of additional messages and distribution (%) generated by each augmentation method.

HS, Implicitness and Subtlety

Explicit HS is easily identifiable (words whose definition is hateful), whereas Implicit HS employs exaggeration, metaphor, irony, etc., coding a message's true nature for ML models. Subtle HS depends on user's perception pushing out the attention from the hateful meaning.

Implicit HS: "I'm either in North Florida or Nigeria sometimes i can't tell the difference"

Subtle HS: "As a brit my knowledge of american law is somewhat lacking but even i know that this holder groid has committed treason."

The ISHate Dataset

Non-HS labels (1st layer), collected from users potentially prone to produce HS content.

On top of HS messages, implicit and subtle labels are added (2nd, 3rd layers). Implicit cases are fine-grained annotated with 18 linguistic features (4th layer).

Aı	nnotated Corpus		Tra	in	De	ev	Te	st
	HS and Non-HS) Message	Label	#	%	#	%	#	%
1st ∫	HS Non-HS	Non-HS	12508	.614	2680	.614	2681	.614
Layer	no Non-no	Explicit HS	7007	.344	1501	.344	1501	.344
2nd _ Layer	Implicit HS Explicit HS	Implicit HS	866	.042	186	.043	186	.043
3rd _ Layer	Subtle HS Non-Subtle HS	Non-HS	12508	.614	2680	.614	2681	.614
4th	Implicit Irony Sarcasm Reth. Question Context	Non-Subtle	7691	.377	1648	.377	1648	.377
Layer	Properties Fallacy Hyperbole Sentiment	Subtle	182	.009	39	.009	39	.009

ISHate label schema and data distribution of each layer.

The best performing models on Task A and B are HateBERT+ALL, and USE+SVM+BT, respectively.

The most misclassified implicit properties in task A are Inference (53%), Context (41%), Sentiment (40%), Exaggeration (24%), and Extralinguistic knowledge (24%). In task B word order and circumlocution affect models' performances.

Model	Non-	HS		Explicit HS			Implicit HS			Non-l	HS		Non-Subtle HS			Subtle HS		
	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1
USE+SVM	.888	.866	.877	.766	.803	.784	.399	.382	.390	.891	.868	.879	.783	.832	.807	.667	.103	.178
BERT	.903	.893	.898	.81	.833	.821	.394	.371	.382	.902	.891	.897	.819	.846	.832	.250	.103	.145
HateBERT	.904	.89	.897	.811	.849	.829	.447	.382	.412	.903	.890	.897	.814	.850	.831	.143	.026	.043
DeBERTa	.927	.899	.913	.825	.880	.851	.467	.419	.442	.920	.893	.906	.823	.877	.849	.375	.077	.128
HateBERT+ALI	.903	.896	.899	.827	.827	.827	.502	.559	.529	.903	.881	.892	.816	.844	.830	.391	.462	.424
BERT+BT	.909	.887	.898	.824	.826	.825	.459	.608	.523	.898	.900	.899	.839	.832	.835	.304	.359	.329
DeBERTa + BT	.919	.885	.902	.830	.857	.844	.428	.543	.479	.920	.897	.908	.835	.876	.855	.385	.256	.308
USE+SVM+BT	.897	.856	.876	.782	.787	.785	.403	.645	.496	.892	.868	.880	.789	.831	.809	.739	.436	.548
BERT+RNE	.897	.897	.897	.807	.829	.818	.455	.349	.395	.899	.895	.897	.826	.839	.833	.400	.256	.312
DeBERTa+RI	.922	.894	.908	.821	.878	.849	.460	.398	.427	.910	.894	.902	.828	.860	.843	.364	.205	.262
HateBERT+GM	.901	.898	.899	.824	.827	.825	.414	.425	.419	.899	.898	.899	.831	.834	.832	.250	.231	.240
HateBERT+GM R	+ .905	.891	.898	.816	.835	.826	.408	.419	.414	.894	.898	.896	.826	.826	.826	.192	.128	.154

Relevant results of SOTA models on tasks A and B.

t-SNE Embedding of HateBERT+ALL and USE+SVM+BT in the test sets of task A and B respectively.