SiamFC Tracker Comparison from multiple perspectives

SiamFC Tracker Comparison from multiple perspectives

- 1. Backbone network
- 2. Training dataset
- 3. Loss function
- 4. Optimizer

SiamFC(Fully-Convolutional Siamese Networks for Object Tracking)

Test Dataset:

OTB2015 : Object Tracking Benchmark(2015) 100 sequences

Comparison Backbone Network

Backbone network details

Residual Network 18-layer

Residual Network 50-layer

Alex Network

Comparison Backbone Network

Learning Curve

Orange: ResidualNet-18
Blue: ResidualNet-50
Light Blue: AlexNet

Performance

	Res-18	Res-50	AlexNet
Precision	Cannot track due to lack of memory	Cannot track due to lack of memory	0.788
Success rate	Cannot track due to lack of memory	Cannot track due to lack of memory	0.593

Training Dataset: Got-10k

Loss Function: Balanced Cross Entropy Loss

Optimizer: SGD-Momentum

Success rate : Average success rate for each threshold. Succeed if IoU is above the threshold. (threshold = 0.6)

Comparison training datasets

Learning Curve

Red: ImageNet-VID

Blue: Got-10k

Performance

	ImageNet-VID	Got-10k
Precision	0.739	0.788
Success rate	0.547	0.593

Backbone Network (feature detection): AlexNet Loss Function: Balanced Cross Entropy Loss

Optimizer: SGD-Momentum

Success rate: Average success rate for each threshold. Succeed if IoU is above the threshold. (threshold = 0.6)

Comparison LossFunction

Loss Function details

Binary Cross Entropy Loss

$$ext{CE}(p_t) = - ext{log}(p_t).$$
 $p_t = \left\{egin{array}{ll} p & ext{if } y = 1 \ 1 - p & ext{otherwise.} \end{array}
ight.$

Focal Loss

$$\mathrm{FL}(p_t) = -(1-p_t)^{\gamma} \log(p_t).$$

Balanced Cross Entropy Loss

$$CB_{\text{sigmoid}}(\mathbf{z}, y) = -\frac{1 - \beta}{1 - \beta^{n_y}} \sum_{i=1}^{C} \log \left(\frac{1}{1 + \exp(-z_i^t)} \right)$$

Comparison LossFunction

Learning Curve

Red: Cross Entropy Loss

Orange: Focal Loss

Light Blue: Balanced Cross Entropy Loss

Performance

	CrossEntropy	Focal	BalancedCE
Precision	0.691	0.756	0.788
Success rate	0.511	0.569	0.593

Backbone Network (feature detection) : AlexNet

Training Dataset: Got-10k Optimizer: SGD-Momentum **Success rate**: Average success rate for each threshold. Succeed if IoU is above the threshold. (threshold = 0.6)

Comparison Optimizer

Optimizer

1. SGD (Stochastic Gradient Decent: 確率的勾配降下法)

$$W \leftarrow W \text{-} \eta \frac{\partial L}{\partial W}$$

(W:パラメータ、η:学習率、L:損失関数、dL/dW:勾配)

2. Momentum

$$v \leftarrow \alpha v \text{--} \eta \frac{\partial L}{\partial W}$$

$$W \leftarrow W + v$$

3. Adam (Adaptive Moment Estimation)

$$m \leftarrow eta_1 m + (1 ext{-}eta_1) rac{\partial L}{\partial W}$$

$$v \leftarrow eta_2 v + (1 - eta_2) igg(rac{\partial L}{\partial W}igg)^2$$

$$\hat{v} = rac{v}{1 - eta_2}$$

$$\hat{m} = \frac{m}{1-\beta_1}$$

$$W \leftarrow W - rac{\eta \hat{m}}{\sqrt{\hat{v} + \epsilon}}$$

1 torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)

Comparison Optimizer

Learning Curve

Blue: SGD(No momentum)

Green: Adam

Light Blue: SGD(Momentum)

Performance

	SGD	Adam	Momentum
Precision	0.732	0.773	0.788
Success rate	0.543	0.575	0.593

Backbone Network (feature detection) : AlexNet

Training Dataset: Got-10k
Loss function: Balanced CE loss

Success rate: Average success rate for each threshold. Succeed if IoU is above the threshold. (threshold = 0.6)

Conclusion and Discussion

Backbone network:

• "SiamFC" is a structure that trains a similarity score map between the target image and the search image by convolution it with the target image against the search image.

So using a <u>deep layered network like ResNet</u> as a Backbone is <u>not a good match</u> due to the **increased number of dimensions and weight parameters**.

Loss function:

· Class Balanced Cross entropy loss gave the best results.

There was also an example of a combination of Focal loss and Class Balance loss, which I would like to try.

Optimizer:

• The results using <u>Momentum as an optimizer were the best</u>, but we believe that adjusting Adam's hyperparameters would give better results. However, it is difficult to optimize Adam's hyperparameters because of the long training time per session.

