Math 453

Selected Solutions to Assignment 4

Problem 2: Give an example of a non-cyclic group all of whose subgroups are cyclic.

Solution: Let $G = \mathbb{Z}_2 \times \mathbb{Z}_2$. Then the subgroups of G are $\langle e \rangle$, $\langle (1,0) \rangle$, and $\langle (0,1) \rangle$, which are all cyclic, but G is not cyclic.

Problem 3: Suppose (G, *, e) is an abelian group of order 35, and that every element $x \in G$ satisfies the equation $x^{35} = e$. Show that G is cyclic.

Solution: First, we will need a lemma.

Lemma. Let H be a group, and let $G_1, G_2 \subseteq H$ be cyclic subgroups of order p for some $p \in \mathbb{Z}$ prime. Then either $G_1 \cap G_2 = \langle e \rangle$ or $G_1 = G_1 \cap G_2 = G_2$.

Proof. By the definition of subgroup, we have that $e \in G_1$ and $e \in G_2$, so $e \in G_1 \cap G_2$. Suppose there are no nonidentity elements in $G_1 \cap G_2$; then $G_1 \cap G_2 = \langle e \rangle$.

On the other hand, suppose there exists a nonidentity $g \in G_1 \cap G_2$; then by Theorem 10.5 and the fact that G_1 is finite and cyclic, we have that $|g| \mid p$. Since $g \neq e$, $|g| \neq 1$; since p is prime, we have |g| = p. Thus, by Theorem 10.3, $g^0, g^1, \ldots, g^{p-1}$ are distinct. Then by definition of subgroup, we have $g^i \in G_1$ and $g^i \in G_2$ for $0 \leq i \leq p-1$. But $|G_1| = |G_2| = p$, so $G_1 = \{g^i | i \in \mathbb{Z}\} = G_2 = G_1 \cap G_2$.

Now, assume for contradiction that there is no element in G of order 7, and no element in G of order 35. Since |G| > 1 and the identity is unique, by Theorem 10.5 and the fact that G is finite, every nonidentity element of G has order 5. Let $g_1, ..., g_{34}$ be the distinct nonidentity elements of G, and for each $1 \le i \le 34$, define $\mathcal{K}_i = \langle g_i \rangle \setminus \{e\}$, so $|\mathcal{K}_i| = 4$ for each $1 \le i \le 34$ by Theorem 10.3. (Note that the \mathcal{K}_i are not subgroups but simply subsets; $|\cdot|$ denotes the cardinality, or size, of each subset.) Then by the Lemma, for each $g_i, g_j, 1 \le i, j \le 34$, either $\langle g_i \rangle \cap \langle g_j \rangle = \langle g_i \rangle = \langle g_j \rangle$ or $\langle g_i \rangle \cap \langle g_j \rangle = \langle e \rangle$. Hence, for each $\mathcal{K}_i, \mathcal{K}_j, 1 \le i, j \le 34$, either $\mathcal{K}_i \cap \mathcal{K}_j = \mathcal{K}_i = \mathcal{K}_j$ or $\mathcal{K}_i \cap \mathcal{K}_j = \emptyset$. Note that $\bigcup_{i=1}^{34} \mathcal{K}_i = G \setminus \{e\}$, so that the subsets \mathcal{K}_i form a partition of $G \setminus \{e\}$. Thus, $4 = |\mathcal{K}_i| \mid |G \setminus \{e\}| = 34$, a contradiction. Hence, G has an element of order 7 or an element of order 35.

By a similar argument (with the contradiction being $6 = |\mathcal{K}_i| \mid |G| = 34$), G has an element of order 5 or an element of order 35.

By the above, G has an element of order 35, or G has both an element of order 5 and an element of order 7 (or all of the above). If G has an element g of order 35, by Theorem 10.3 and the fact that |G|=35, $\langle g \rangle = G$, so G is cyclic. If G has both an element g_1 of order 5 and an element g_2 of order 7, we have $g_1^5=e$ and $g_2^7=e$. Since G is abelian, $(g_1g_2)^{35}=g_1^{35}g_2^{35}=(g_1^5)^7(g_2^7)^5=e^7\cdot e^5=e$, so by Theorem 10.5, $|g_1g_2|=|35$. If $|g_1g_2|=1$, $g_1=g_2^{-1}$, so $(g_2^{-1})^5=g_2^{-5}=e$, a contradiction. If $|g_1g_2|=5$, since G is abelian, $e=(g_1g_2)^5=g_1^5g_2^5=eg_2^5=g_2^5$, so $7\mid 5$, a contradiction. Similarly, if $|g_1g_2|=7$, since G is abelian, $e=(g_1g_2)^7=g_1^7g_2^7=g_1^7e=g_1^7$, so $5\mid 7$, a contradiction. Thus, $|g_1g_2|=35$, so again by Theorem 10.3 and the fact that |G|=35, $\langle g \rangle = G$, so G is cyclic.

Problem 5: Prove that a group of order 3 must be cyclic.

Solution: Let G be a group with |G| = 3. Since the identity is unique, G has exactly two nonidentity elements, so we may write $G = \{e, x, y\}$, where e is the identity of G, and e, x, y are distinct. Then we have xy = e, x, or y. If xy = x, y = e, a contradiction. If xy = y, x = e, a contradiction. Hence, xy = e.

Now, if $x^2 = x$, we have x = e, a contradiction. If $x^2 = e$, by the previous paragraph, we have $x^2 = xy$, so x = y, a contradiction. Hence, $x^2 = y$, so G is cyclic.