2011/2012

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Árvores abrangentes
 - Caminhos mais curtos
 - Fluxos máximos
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica
 - Algoritmos greedy
- Tópicos Adicionais [CLRS, Cap.32-35]
 - Emparelhamento de Cadeias de Caracteres
 - Complexidade Computacional
 - Algoritmos de Aproximação

Resumo

- Definições
 - Caminhos Mais Curtos
- Caminhos Mais Curtos com Fonte Única
 - Representação de Caminhos Mais Curtos
 - Propriedades dos Caminhos Mais Curtos
 - Operação de Relaxação
- Algoritmo Dijkstra
- Algoritmo Bellman-Ford
- 5 Caminhos mais curtos em DAGs

Caminhos Mais Curtos

Definições

Dado um grafo G = (V, E), dirigido, com uma função de pesos w : E → IR, define-se o peso de um caminho p, onde p = < v₀, v₁,..., v_k >, como a soma dos pesos dos arcos que compõem p:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

O peso do caminho mais curto de u para v é definido por:

$$\delta(u,v) = \left\{ \begin{array}{ll} \min \; \{w(p) : u \to_p v\} & \quad \text{se existe caminho de } u \; \text{para } v \\ \infty & \quad \text{caso contrário} \end{array} \right.$$

• Um caminho mais curto de u para v é qualquer caminho p tal que $w(p) = \delta(u, v)$

- Caminhos Mais Curtos com Fonte Única (SSSPs)
 - Identificar o caminho mais curto de um vértice fonte $s \in V$ para qualquer outro vértice $v \in V$

- Caminhos Mais Curtos com Fonte Única (SSSPs)
 - Identificar o caminho mais curto de um vértice fonte $s \in V$ para qualquer outro vértice $v \in V$
- Caminhos Mais Curtos com Destino Único
 - Identificar o caminho mais curto de qualquer vértice v ∈ V para um vértice destino t ∈ V

- Caminhos Mais Curtos com Fonte Única (SSSPs)
 - Identificar o caminho mais curto de um vértice fonte $s \in V$ para qualquer outro vértice $v \in V$
- Caminhos Mais Curtos com Destino Único
 - Identificar o caminho mais curto de qualquer vértice $v \in V$ para um vértice destino $t \in V$
- Caminho Mais Curto entre Par Único
 - Identificar caminho mais curto entre dois vértices u e v

Caminhos Mais Curtos

- Caminhos Mais Curtos com Fonte Única (SSSPs)
 - Identificar o caminho mais curto de um vértice fonte $s \in V$ para qualquer outro vértice $v \in V$
- Caminhos Mais Curtos com Destino Único
 - Identificar o caminho mais curto de qualquer vértice $v \in V$ para um vértice destino $t \in V$
- Caminho Mais Curto entre Par Único
 - Identificar caminho mais curto entre dois vértices u e v
- Caminhos Mais Curtos entre Todos os Pares (APSPs)
 - Identificar um caminho mais curto entre cada par de vértices de V

Ciclos Negativos

- Arcos podem ter pesos com valor negativo
- É possível a existência de ciclos com peso total negativo
 - Se ciclo negativo não atingível a partir da fonte s, então $\delta(s,v)$ bem definido
 - Se ciclo negativo atingível a partir da fonte s, então os pesos dos caminhos mais curtos não são bem definidos
 - Neste caso, é sempre possível encontrar um caminho mais curto de s para qualquer vértice incluído no ciclo e define-se $\delta(s,v)=-\infty$

Caminhos Mais Curtos

Ciclos Negativos

- Arcos podem ter pesos com valor negativo
- É possível a existência de ciclos com peso total negativo
 - Se ciclo negativo não atingível a partir da fonte s, então $\delta(s, v)$ bem definido
 - Se ciclo negativo atingível a partir da fonte s, então os pesos dos caminhos mais curtos não são bem definidos
 - Neste caso, é sempre possível encontrar um caminho mais curto de s para qualquer vértice incluído no ciclo e define-se $\delta(s, v) = -\infty$

$$w(< s, x, y, z >) = 3$$

 $w(< s, x, y, x, y, z >) = 1$
 $w(< s, x, y, x, y, x, y, z >) = -1$

Caminhos Mais Curtos

Identificação de Ciclos Negativos

- Dijkstra: requer pesos n\u00e3o negativos
- Bellman-Ford: identifica ciclos negativos e reporta a sua existência

Representação de Caminhos Mais Curtos

- Para cada vértice $v \in V$ associar predecessor $\pi[v]$
- Após identificação dos caminhos mais curtos, $\pi[v]$ indica qual o vértice anterior a v num caminho mais curto de s para v
- Sub-grafo de predecessores $G_{\pi} = (V_{\pi}, E_{\pi})$:

$$V_{\pi} = \{ v \in V : \pi[v] \neq \mathsf{NIL} \} \cup \{ s \}$$

$$E_{\pi} = \{ (\pi[v], v) \in E : v \in V_{\pi} - \{s\} \}$$

Caminhos Mais Curtos com Fonte Única

Representação de Caminhos Mais Curtos

- Uma árvore de caminhos mais curtos é um sub-grafo dirigido $G' = (V', E'), V' \subseteq V \in E' \subseteq E$, tal que:
 - V' é o conjunto de vértices atingíveis a partir de s em G
 - G' forma uma árvore com raiz s
 - Para todo o $v \in V'$, o único caminho de s para v em G' é um caminho mais curto de s para v em G

Observações:

- Após identificação dos caminhos mais curtos de G a partir de fonte s, G' é dado por $G_{\pi} = (V_{\pi}, E_{\pi})$
- Dados os mesmos grafo G e vértice fonte s, G' não é necessariamente único

Propriedades dos Caminhos Mais Curtos

Sub-estrutura óptima

Sub-caminhos de caminhos mais curtos são caminhos mais curtos

- Seja $p = \langle v_1, v_2, \dots, v_k \rangle$ um caminho mais curto entre v_1 e v_k , e seja $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ um sub-caminho de p entre v_i e v_i .
- Então p_{ii} é um caminho mais curto entre v_i e v_i
 - Porquê? Se existisse caminho mais curto entre v_i e v_i então seria possível construir caminho entre v_1 e v_k mais curto do que p; Contradição, dado que p é um caminho mais curto entre v_1 e v_k .

Propriedades dos Caminhos Mais Curtos

Sub-estrutura óptima

Sub-caminhos de caminhos mais curtos são caminhos mais curtos

- Seja $p = \langle v_1, v_2, \dots, v_k \rangle$ um caminho mais curto entre v_1 e v_k , e seja $p_{ii} = \langle v_i, v_{i+1}, \dots, v_i \rangle$ um sub-caminho de p entre v_i e v_i .
- Então p_{ii} é um caminho mais curto entre v_i e v_i
 - Porquê? Se existisse caminho mais curto entre v_i e v_i então seria possível construir caminho entre v_1 e v_k mais curto do que p; Contradição, dado que p é um caminho mais curto entre v_1 e v_k .

Peso de um Caminho Mais Curto

Seja $p = \langle s, \dots, v \rangle$ um caminho mais curto entre $s \in v$, que pode ser decomposto em $p_{su} = \langle s, ..., u \rangle$ e (u, v). Então $\delta(s, v) = \delta(s, u) + w(u, v)$

- p_{su} é caminho mais curto entre s e u
- $\delta(s, v) = w(p) = w(p_{su}) + w(u, v) = \delta(s, u) + w(u, v)$

Propriedades dos Caminhos Mais Curtos

Relação caminho mais curto com arcos do grafo

Para todos os arcos $(u, v) \in E$ verifica-se $\delta(s, v) \leq \delta(s, u) + w(u, v)$

- Caminho mais curto de s para v não pode ter mais peso do que qualquer outro caminho de s para v
- Assim, peso do caminho mais curto de s para v não superior ao peso do caminho mais curto de s para u seguido do arco (u, v) (i.e. exemplo de um dos caminhos de s para v)

Operação de Relaxação

0000000000

Operação de Relaxação

- Operação básica dos algoritmos para cálculo dos caminhos mais curtos com fonte única.
- d[v]: denota a estimativa do caminho mais curto de s para v; limite superior no valor do peso do caminho mais curto;
- Algoritmos aplicam sequência de relaxações dos arcos de G após inicialização para actualizar a estimativa do caminho mais curto

Initialize-Single-Source(G,s)

1 **for** each
$$v \in V[G]$$

2 **do** $d[v] \leftarrow \infty$
3 $\pi[v] \leftarrow NIL$
4 $d[s] \leftarrow 0$

Relax
$$(u, v, w)$$

1 if $d[v] > d[u] + w(u, v)$
2 then $d[v] \leftarrow d[u] + w(u, v)$
3 $\pi[v] \leftarrow u$

Propriedades da Relaxação

Operação de Relaxação

Após relaxar arco (u, v), temos que $d[v] \le d[u] + w(u, v)$

- Se d[v] > d[u] + w(u, v) antes da relaxação, então d[v] = d[u] + w(u, v) após relaxação
- Se $d[v] \le d[u] + w(u, v)$ antes da relaxação, então $d[v] \le d[u] + w(u, v)$ após relaxação
- Em qualquer caso, $d[v] \le d[u] + w(u, v)$ após relaxação

 $d[v] \ge \delta(s, v)$ para qualquer $v \in V[G]$ e para qualquer sequência de passos de relaxação nos arcos de G. Se d[v] atinge o valor $\delta(s, v)$, então o valor não é mais alterado

- $d[v] \ge \delta(s, v)$ é válido após inicialização
- Prova por contradição para os restantes casos:
 - Seja v o primeiro vértice para o qual a relaxação do arco (u, v) causa $d[v] < \delta(s, v)$
 - Após relaxar arco: $d[u] + w(u, v) = d[v] < \delta(s, v) \le \delta(s, u) + w(u, v)$
 - Pelo que, $d[u] < \delta(s, u)$ antes da relaxação de (u, v); Contradição, dado que v seria o primeiro vértice para o qual $d[v] < \delta(s, v)$
- Após ter $d[v] = \delta(s, v)$, o valor de d[v] não pode decrescer; e pela relaxação também não pode crescer!

Seja $p = \langle s, \dots, u, v \rangle$ um caminho mais curto em G, e seja Relax(u, v, w)executada no arco (u, v). Se $d[u] = \delta(s, u)$ antes da chamada a Relax(u, v, w), então $d[v] = \delta(s, v)$ após a chamada a Relax(u, v, w)

- Se $d[u] = \delta(s, u)$ então valor de d[u] não é mais alterado
- Após relaxar arco (u, v): $d[v] \le d[u] + w(u,v) = \delta(s,u) + w(u,v) = \delta(s,v)$
- Mas, $d[v] \ge \delta(s, v)$, pelo que $d[v] = \delta(s, v)$, e não se altera!

Resumo Propriedades Caminhos Mais Curtos

Sub-estrutura óptima

Sub-caminhos de caminhos mais curtos são caminhos mais curtos

- Seja $p = \langle v_1, v_2, \dots, v_k \rangle$ um caminho mais curto entre v_1 e v_k , e seja $p_{ii} = \langle v_i, v_{i+1}, \dots, v_i \rangle$ um sub-caminho de p entre v_i e v_i .
- Então p_{ii} é um caminho mais curto entre v_i e v_i

Sub-estrutura óptima

Seja $p = \langle s, \dots, v \rangle$ um caminho mais curto entre $s \in v$, que pode ser decomposto em $p_{su} = \langle s, ..., u \rangle$ e (u, v). Então $\delta(s, v) = \delta(s, u) + w(u, v)$

Relação caminho mais curto com arcos do grafo

Para todos os arcos $(u, v) \in E$ verifica-se $\delta(s, v) \leq \delta(s, u) + w(u, v)$

Após relaxar arco (u, v), temos que $d[v] \le d[u] + w(u, v)$

Propriedades da Relaxação (2)

 $d[v] \ge \delta(s, v)$ para qualquer $v \in V[G]$ e para qualquer sequência de passos de relaxação nos arcos de G. Se d[v] atinge o valor $\delta(s, v)$, então o valor não é mais alterado

Propriedades da Relaxação (3)

Seja $p = \langle s, \dots, u, v \rangle$ um caminho mais curto em G, e seja Relax(u, v, w)executada no arco (u, v). Se $d[u] = \delta(s, u)$ antes da chamada a Relax(u, v, w), então $d[v] = \delta(s, v)$ após a chamada a Relax(u, v, w)

Organização do Algoritmo

- Todos os arcos com pesos não negativos
- Algoritmo Greedy
- Algoritmo mantém conjunto de vértices S com pesos dos caminhos mais curtos já calculados
- A cada passo algoritmo selecciona vértice u em V S com menor estimativa do peso do caminho mais curto
 - vértice u é inserido em S
 - arcos que saem de u são relaxados

```
      Dijkstra(G, w, s)

      1 Initialize-Single-Source(G, s)

      2 S \leftarrow \emptyset

      3 Q \leftarrow V[G]
      ▷ Fila de Prioridade

      4 while Q \neq \emptyset

      5 do u \leftarrow \text{Extract-Min}(Q)

      6 S \leftarrow S \cup \{u\}

      7 for each v \in Adj[u]

      8 do Relax(u, v, w)
      ▷ Actualização de Q
```


Complexidade

- Estrutura muito semelhante ao Algoritmo de Prim para cálculo de MST
- Fila de prioridade baseada em amontoados (heap)
- Quando um vértice é extraído da fila Q, implica actualização de Q
 - Cada vértice é extraído apenas 1 vez O(V)
 - Actualização de Q: O(lg V)
 - Então, O(V lg V)
- Para cada arco (i.e. O(E)) operação de relaxação é aplicada apenas 1 vez. Cada operação de relaxação pode implicar uma actualização de Q em O(Ig V)
- Complexidade algoritmo Dijkstra: $O((V+E) \lg V)$

Correcção do Algoritmo

Provar invariante do algoritmo: $d[u] = \delta(s, u)$ quando u adicionado ao conjunto S, e que a igualdade é posteriormente mantida

- Prova por contradição. Assume-se que existe um primeiro vértice u tal que $d[u] \neq \delta(s, u)$ quando u é adicionado a S
- Necessariamente temos que $u \neq s$ porque $d[s] = \delta(s, s) = 0$
- $S \neq \emptyset$ porque $s \in S$ quando u é adicionado a S
- Tem que existir caminho mais curto de s para u, dado que caso contrário teriamos $d[u] = \delta(s, u) = \infty$

Correcção do Algoritmo (2)

Pressuposto: u é o primeiro vértice tal que $d[u] \neq \delta(s,u)$ quando u é adicionado a S

- Seja $p = \langle s, ..., x, y, ..., u \rangle$ o caminho mais curto de s para u
- Tem que existir pelo menos um vértice do caminho p que ainda não esteja em S, caso contrário, $d[u] = \delta(s,u)$ devido à relaxação dos arcos que compõem o caminho p
- Seja (x, y) um arco de p tal que $x \in S$ e $y \notin S$
 - Temos que $d[x] = \delta(s,x)$ porque $x \in S$ e u é o primeiro vértice em que isso não ocorre
 - Temos também que $d[y] = \delta(s, y)$ porque o arco (x, y) foi relaxado quando x foi adicionado a S
 - Como y é predecessor de u no caminho mais curto até u, então $\delta(s,y) \leq \delta(s,u)$, porque os pesos dos arcos são não-negativos
 - Mas se u é adicionado a S antes de y, temos que $d[u] \le d[y]$. Logo, $d[u] \le \delta(s, y) \le \delta(s, u)$. O que contradiz o pressuposto de $d[u] \ne \delta(s, u)$.

Pesos Negativos no Grafo

Os pesos do grafo têm que ser não-negativos para garantir a correcção do algoritmo

Exemplo

Execução do Algoritmo Dijkstra:

- Analisar w com d[w] = 3
- Analisar v com d[v] = 4
- Analisar u com d[u] = 6
- No final temos que $d[w] = 3 \neq \delta(s, w) = 2$

Algoritmo de Bellman-Ford

Organização do Algoritmo

- Permite pesos negativos e identifica existência de ciclos negativos
- Baseado em sequência de passos de relaxação
- Apenas requer manutenção da estimativa associada a cada vértice

Algoritmo de Bellman-Ford

```
Bellman-Ford(G, w, s)
   Initialize-Single-Source(G,s)
   for i \leftarrow 1 to |V[G]| - 1
3
       do for each (u, v) \in E[G]
4
             do Relax(u, v, w)
5
   for each (u, v) \in E[G]
       do if d[v] > d[u] + w(u, v)
6
           then return FALSE
                                      8
   return TRUE
```

Algoritmo de Bellman-Ford: Exemplo

Algoritmo de Bellman-Ford: Exemplo

Algoritmo de Bellman-Ford: Exemplo

Algoritmo de Bellman-Ford: Outro exemplo

Algoritmo de Bellman-Ford: Outro exemplo

Complexidade

- Inicialização: Θ(V)
- A complexidade do ciclo for é O(VE) devido aos dois ciclos, em V e em E.
 - Em cada iteração todos os arcos são relaxados
- Complexidade algoritmo Bellman-Ford: O(VE)

Correcção

Se G=(V,E) não contém ciclos negativos, então após a aplicação do algoritmo de Bellman-Ford, $d[v]=\delta(s,v)$ para todos os vértices atingíveis a partir de s

- Seja v atingível a partir de s, e seja $p = \langle v_0, v_1, \dots, v_k \rangle$ um caminho mais curto entre s e v, com $v_0 = s$ e $v_k = v$
- p é simples, pelo que $k \le |V| 1$
- Prova: provar por indução que $d[v_i] = \delta(s, v_i)$ para i = 0, 1, ..., k, após iteração i sobre os arcos de G, e que valor não é alterado posteriormente
 - Base: $d[v_0] = \delta(s, v_0) = 0$ após inicialização (e não se altera)
 - Passo indutivo: assumir $d[v_{i-1}] = \delta(s, v_{i-1})$ após iteração (i-1)
 - Arco (v_{i-1}, v_i) relaxado na iteração i, pelo que $d[v_i] = \delta(s, v_i)$ após iteração i (e não se altera)

Correcção (2)

Se G = (V, E) não contém ciclos negativos, o algoritmo de Bellman-Ford retorna TRUE. Se o grafo contém algum ciclo negativo atingível a partir de s, o algoritmo retorna FALSE

- Se não existem ciclos negativos, resultado anterior assegura que para qualquer arco $(u, v) \in E$, $d[v] \le d[u] + w(u, v)$, pelo que teste do algoritmo falha para todo o (u, v) e o valor retornado é TRUE
- Caso contrário, na presença de pelo menos um ciclo negativo atingível a partir de s, $c = \langle v_0, v_1, \dots, v_k \rangle$, onde $v_0 = v_k$, temos que $\sum_{i=1}^k w(v_{i-1}, v_i) < 0$

Correcção (3)

Se G=(V,E) não contém ciclos negativos, o algoritmo de Bellman-Ford retorna TRUE. Se o grafo contém algum ciclo negativo atingível a partir de s, o algoritmo retorna FALSE

- Prova por contradição. Admitir que algoritmo retorna TRUE na presença de ciclo negativo. Pelo que $d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i)$, para i = 1, ..., k
- Somando as desigualdades ao longo do ciclo temos que:

$$\sum_{i=1}^k d[v_i] \leq \sum_{i=1}^k d[v_{i-1}] + \sum_{i=1}^k w(v_{i-1}, v_i)$$

- Note-se que $\sum_{i=1}^k d[v_i] = \sum_{i=1}^k d[v_{i-1}]$ por ser um ciclo
- Temos então que $\sum_{i=1}^{k} w(v_{i-1}, v_i) > 0$, o que contradiz a existência de um ciclo negativo. Logo, o algoritmo retorna FALSE

DAG-Shortest-Path(G, w, s)

- 1 Ordenação topológica dos vértices de G
- 2 Initialize-Single-Source(G, s)
- 3 **for** each $u \in V[G]$ por ordem topológica
- 4 **do for** each $v \in Adj[u]$
- 5 **do** Relax(u, v, w)

Complexidade:

DAG-Shortest-Path(G, w, s)

- 1 Ordenação topológica dos vértices de G
- 2 Initialize-Single-Source(G, s)
- 3 **for** each $u \in V[G]$ por ordem topológica
- 4 **do for** each $v \in Adj[u]$
- 5 **do** Relax(u, v, w)

Complexidade: O(V + E)

Correcção

Dado G = (V, E), dirigido, acíclico, como resultado do algoritmo, temos que $d[v] = \delta(s, v)$ para todo o $v \in V$

- Seja v atingível a partir de s, e seja $p = \langle v_0, v_1, \dots, v_k \rangle$ um caminho mais curto entre s e v, com $v_0 = s$ e $v_k = v$
- Ordenação topológica implica que analisados por ordem (v_0, v_1) , $(v_1, v_2), \ldots, (v_{k-1}, v_k)$
- Prova por indução: $d[v_i] = \delta(s, v_i)$ sempre que cada vértice v_i é terminado
 - Base: Estimativa de s não alterada após inicialização;
 d[s] = d[v₀] = δ(s, v₀) = 0
 - Indução: $d[v_{i-1}] = \delta(s, v_{i-1})$ após terminar análise de v_{i-1}
 - Relaxação do arco (v_{i-1}, v_i) causa $d[v_i] = \delta(s, v_i)$, pelo que $d[v_i] = \delta(s, v_i)$ após terminar análise de v_i

Resumo

Algoritmo Dijkstra

- Só permite pesos não negativos
- Complexidade: $O((V+E) \lg V)$

Algoritmo Bellman-Ford

- Permite pesos negativos e identifica ciclos negativos
- Complexidade: O(VE)

Caminhos mais curtos em DAGs

- Grafos aciclicos. Podemos fazer ordenação topológica dos vértices
- Complexidade: O(V+E)