Q: Suppose that $X_1, X_2, ..., X_n$ are independent and identically distributed random variables, each having probability density function $f(\cdot)$ and median θ . We want to test

 $H_0: \theta = \theta_0 \text{ against } H_1: \theta > \theta_0$

Consider a test that rejects H_0 if S > c for some c depending on the size of the test, where S is the cardinality of the set $\{i: X_i > \theta_0, 1 \le i \le n\}$. Then which one of the following statements is true?

- (A) Under H_0 , the distribution of S depends on $f(\cdot)$.
- (B) Under H_1 , the distribution of S does not depend on $f(\cdot)$.
- (C) The power function depends on θ .
- (D) The power function does not depend on θ .

Solution: Under H_0 , we have:

$$X_1, X_2, \dots, X_n \sim f(\theta) \tag{1}$$

Now, let's consider the expected value (mean) of S under H_0 :

$$E(S) = E\left(\sum_{i=1}^{n} I(X_i > \theta_0)\right) \tag{2}$$

$$=\sum_{i=1}^{n}E(I(X_{i}>\theta_{0}))$$
(3)

$$E(I(X_i > \theta_0)) = P(X_i > \theta_0) = \int_{\theta_0}^{\infty} f(x) dx \tag{4}$$

So, the expected value of S depends on the probability density function $f(\theta)$.

Under H_1 , we assume that $\theta > \theta_0$, which implies that we expect more of the X_i to be greater than θ_0 . It is assumed that the distribution of each random variable, X_i , and their independence from each other are the same under both hypotheses H_0 and H_1 .

Therefore, the distribution of S under both H_0 and H_1 depends on the specific probability density function $f(\cdot)$.

The power function can be expressed as:

$$\pi(\theta) = P(\text{Reject } H_0 | H_1 \text{ is true}) \tag{5}$$

We are testing:

$$H_0: \theta = \theta_0$$
 (null hypothesis) (6)

$$H_1: \theta > \theta_0$$
 (alternative hypothesis) (7)

The power depends on the true value of θ because we are comparing the observed set $\{i \mid X_i > \theta_0\}$ to the critical value c, which depends on the size of the test and, indirectly, on θ_0 .

Let $c(\theta_{\text{true}})$ be the critical value for a given true value of θ (θ_{true}). Then, the power can be expressed as:

$$\pi(\theta_{\text{true}}) = P(\text{Reject } H_0 \mid \theta = \theta_{\text{true}})$$

This probability depends on whether θ_{true} is greater than θ_0 , which determines whether the alternative hypothesis is true or not. If $\theta_{\text{true}} > \theta_0$ (i.e., the alternative hypothesis is true), then the power depends on how likely the observed set $\{i \mid X_i > \theta_0\}$ is to be larger than the critical value $c(\theta_{\text{true}})$, given the true value of θ_{true} . This dependence on θ_{true} demonstrates that the power function depends on the true value of θ .