Decidable Reasoning in a **First-Order** Logic of Limited **Conditional Belief**

Christoph Schwering^{1,2,3} Gerhard Lakemeyer¹

¹ RWTH Aachen University

² The University of New South Wales

³ Supported by a EurAl travel grant

All we believe:

- The box is empty
- If it's *not* empty, it contains only gifts
 - it contains nothing broken

All we believe:

- The box is empty
- If it's not empty, it contains only gifts
- —

 it contains nothing broken

Then we believe:

- ▶ If something is in the box, then it's an unbroken gift
- lt's possible, but unlikely that it's a bomb

All we believe:

- The box is empty
- If it's not empty, it contains only gifts
- — "— it contains nothing broken

Then we believe:

- ▶ If something is in the box, then it's an unbroken gift
- It's possible, but unlikely that it's a bomb

All we believe:

- The box is empty
- If it's *not* empty, it contains only gifts
- — II— it contains nothing broken

Then we believe:

- If something is in the box, then it's an unbroken gift
- lt's possible, but unlikely that it's a bomb

Reasoner is **omniscient** \rightarrow **undecidable** (f.o.), **intractable** (prop.)

All we believe:

- The box is empty
- If it's not empty, it contains only gifts
- — it contains nothing broken

Then we believe:

- If something is in the box, then it's an unbroken gift
- ▶ It's possible, but unlikely that it's a bomb

Reasoner is **omniscient** \rightarrow **undecidable** (f.o.), **intractable** (prop.)

This paper:

Limited reasoning to keep entailments decidable / tractable

All we believe:

- The box is empty
- If it's *not* empty, it contains only gifts
- — "— it contains nothing broken

Then we believe:

- If something is in the box, then it's an unbroken gift
- ▶ It's possible, but unlikely that it's a bomb

Reasoner is **omniscient** \rightarrow **undecidable** (f.o.), **intractable** (prop.)

This paper:

Limited reasoning to keep entailments decidable / tractable

sets of clauses + case splitting unit propagation + subsumption

Logic of conditional belief

First-order predicate logic with two modal operators:

Belief entailment

Does
$$\mathbf{O}\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$$
 entail $\mathbf{B}(\alpha \Rightarrow \beta)$?

Logic of conditional belief

First-order predicate logic with two modal operators:

 $\blacksquare B(\alpha \Rightarrow \beta)$

- $\hat{}$ we believe that if α , then β
- **O** $\{\alpha_1 \Rightarrow \beta_1, ..., \alpha_m \Rightarrow \beta_m\} \triangleq all \text{ we believe is } \{\alpha_i \Rightarrow \beta_i\}$
 - a.k.a. only-believing

Belief entailment

Does
$$\mathbf{O}\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$$
 entail $\mathbf{B}(\alpha \Rightarrow \beta)$?

Semantics wrt system of spheres \vec{s} :

- \vec{s} satisfies $\mathbf{B}(\alpha \Rightarrow \beta)$ iff the most-plausible α -worlds satisfy β
- \vec{s} satisfies $\mathbf{O}\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$ iff
 - (i) \vec{s} satisfies all $\mathbf{B}(\alpha_i \Rightarrow \beta_i)$
 - (ii) \vec{s} is maximal subject to (i)


```
\mathbf{O}\{\text{True} \Rightarrow \forall x \neg \text{InBox}(x), \\ \exists y \text{InBox}(y) \Rightarrow \forall x (\text{InBox}(x) \supset \text{Gift}(x)), \\ \exists y \text{InBox}(y) \Rightarrow \forall x (\text{InBox}(x) \supset \neg \text{Broken}(x))\}
```



```
\begin{aligned} \mathbf{O}\{\text{True} &\Rightarrow \forall x \neg \text{InBox}(x), \\ &\exists y \, \text{InBox}(y) \Rightarrow \forall x \, (\text{InBox}(x) \supset \text{Gift}(x)), \\ &\exists y \, \text{InBox}(y) \Rightarrow \forall x \, (\text{InBox}(x) \supset \neg \text{Broken}(x))\} \\ s_1 &= \{\neg \text{InBox}(n) \mid n \in N\} \\ s_2 &= \{\neg \text{InBox}(n) \vee \text{Gift}(n), \, \neg \text{InBox}(n) \vee \neg \text{Broken}(n) \mid n \in N\} \\ s_3 &= \{\} \end{aligned}
```



```
\begin{split} s_1 &= \{\neg \mathsf{InBox}(n) \mid n \in N\} \\ s_2 &= \{\neg \mathsf{InBox}(n) \vee \mathsf{Gift}(n), \ \neg \mathsf{InBox}(n) \vee \neg \mathsf{Broken}(n) \mid n \in N\} \\ s_3 &= \{\} \end{split}
```

Does \vec{s} satisfy $\mathbf{B}(\underline{\mathsf{InBox}}(n) \Rightarrow \mathsf{Gift}(n) \land \neg \mathsf{Broken}(n))$?

```
\begin{split} s_1 &= \{\neg \text{InBox}(n) \mid n \in N\} \\ s_2 &= \{\neg \text{InBox}(n) \vee \text{Gift}(n), \ \neg \text{InBox}(n) \vee \neg \text{Broken}(n) \mid n \in N\} \\ s_3 &= \{\} \end{split}
```

Does \vec{s} satisfy $\mathbf{B}(\underline{\mathsf{InBox}}(n) \Rightarrow \mathsf{Gift}(n) \land \neg \mathsf{Broken}(n))$?

- \blacksquare s_1 is <u>not consistent</u> with $\underline{\operatorname{InBox}}(n)$
 - $ightharpoonup s_1$ contains $\neg \operatorname{InBox}(n)$

```
\begin{split} s_1 &= \{\neg \mathsf{InBox}(n) \mid n \in N\} \\ s_2 &= \{\neg \mathsf{InBox}(n) \vee \mathsf{Gift}(n), \ \neg \mathsf{InBox}(n) \vee \neg \mathsf{Broken}(n) \mid n \in N\} \\ s_3 &= \{\} \end{split}
```

Does \vec{s} satisfy $\mathbf{B}(\underline{\operatorname{InBox}(n)} \Rightarrow \operatorname{Gift}(n) \land \neg \operatorname{Broken}(n))$?

- \blacksquare s_2 is <u>consistent</u> with $\underline{InBox}(n)$
 - ▶ $s_2 \cup \{\operatorname{InBox}(n)\}\$ contains $\operatorname{InBox}(n)$
 - $ightharpoonup s_2 \cup \{\operatorname{InBox}(n)\}$ mentions no lit. pos+neg after unit prop., subsumption

```
\begin{split} s_1 &= \{\neg \mathsf{InBox}(n) \mid n \in N\} \\ s_2 &= \{\neg \mathsf{InBox}(n) \lor \mathsf{Gift}(n), \ \neg \mathsf{InBox}(n) \lor \neg \mathsf{Broken}(n) \mid n \in N\} \\ s_3 &= \{\} \end{split}
```

Does \vec{s} satisfy $\mathbf{B}(\operatorname{InBox}(n) \Rightarrow \operatorname{Gift}(n) \land \neg \operatorname{Broken}(n))$?

- \blacksquare s_2 is <u>consistent</u> with $\underline{\operatorname{InBox}}(n)$
 - ▶ $s_2 \cup \{\operatorname{InBox}(n)\}\$ contains $\operatorname{InBox}(n)$
 - $lacksquare s_2 \cup \{\operatorname{InBox}(n)\}$ mentions no lit. pos+neg after unit prop., subsumption
- s_2 satisfies $InBox(n) \supset (Gift(n) \land \neg Broken(n))$
 - ▶ $s_2 \cup \{\neg InBox(n)\}\$ contains $\neg InBox(n)$
 - ▶ $s_2 \cup \{InBox(n)\}$ contains Gift(n), $\neg Broken(n)$ after unit prop.

```
s_1 = \{ \neg \operatorname{InBox}(n) \mid n \in N \}
s_2 = \{ \neg \operatorname{InBox}(n) \lor \operatorname{Gift}(n), \neg \operatorname{InBox}(n) \lor \neg \operatorname{Broken}(n) \mid n \in N \}
s_3 = \{ \}
belief level \hat{=} added literals

Does \vec{s} satisfy \mathbf{B}_1(\operatorname{InBox}(n) \Rightarrow \operatorname{Gift}(n) \land \neg \operatorname{Broken}(n))? \checkmark
```

- \blacksquare s_2 is <u>consistent</u> with $\underline{InBox}(n)$
 - ▶ $s_2 \cup \{\operatorname{InBox}(n)\}\$ contains $\operatorname{InBox}(n)$
 - $ightharpoonup s_2 \cup \{\operatorname{InBox}(n)\}$ mentions no lit. pos+neg after unit prop., subsumption
- s_2 satisfies $InBox(n) \supset (Gift(n) \land \neg Broken(n))$
 - ▶ $s_2 \cup \{\neg InBox(n)\}\$ contains $\neg InBox(n)$
 - ▶ $s_2 \cup \{InBox(n)\}$ contains Gift(n), $\neg Broken(n)$ after unit prop.

- \blacksquare s_2 is <u>consistent</u> with $\underline{\operatorname{InBox}}(n)$
 - ▶ $s_2 \cup \{\operatorname{InBox}(n)\}\$ contains $\operatorname{InBox}(n)$
 - $lacksquare s_2 \cup \{\operatorname{InBox}(n)\}$ mentions no lit. pos+neg after unit prop., subsumption
- s_2 satisfies $InBox(n) \supset (Gift(n) \land \neg Broken(n))$
 - ▶ $s_2 \cup \{\neg InBox(n)\}\$ contains $\neg InBox(n)$
 - ▶ $s_2 \cup \{InBox(n)\}$ contains Gift(n), $\neg Broken(n)$ after unit prop.

Logic of limited conditional belief

Language as before plus reasoning effort $k \in \{0, 1, 2, ...\}$:

- $\mathbf{O}_k\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$ $\hat{=}$ only-belief at level k prenex-NNF of $\alpha_i \supset \beta_i$ is \forall -clause

Limited belief entailment

Does
$$\mathbf{O}_k\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$$
 entail $\mathbf{B}_{k'}(\alpha \Rightarrow \beta)$?

Logic of <u>limited</u> conditional belief

Language as before plus reasoning effort $k \in \{0, 1, 2, ...\}$:

- $\mathbf{O}_k\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$ $\hat{=}$ only-belief at level k prenex-NNF of $\alpha_i \supset \beta_i$ is \forall -clause

Limited belief entailment

Does
$$\mathbf{O}_k\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$$
 entail $\mathbf{B}_{k'}(\alpha \Rightarrow \beta)$?

Semantics for \mathbf{B}_k and \mathbf{O}_k as before except:

- lacktriangleright Sets of worlds ightarrow sets of ground clauses closed under subsumption and unit propagation
- Sound but incomplete consistency test
- satisfaction test

Limited belief entailment: sound and decidable

Soundness

If
$$\mathbf{O}_k\{\alpha_1\Rightarrow\beta_1,...,\alpha_m\Rightarrow\beta_m\}$$
 entails $\mathbf{B}_{k'}(\alpha\Rightarrow\beta)$, then $\mathbf{O}\{\alpha_1\Rightarrow\beta_1,...,\alpha_m\Rightarrow\beta_m\}$ entails $\mathbf{B}(\alpha\Rightarrow\beta)$

Limited belief entailment: sound and decidable

Soundness

If
$$\mathbf{O}_k\{\alpha_1\Rightarrow\beta_1,...,\alpha_m\Rightarrow\beta_m\}$$
 entails $\mathbf{B}_{k'}(\alpha\Rightarrow\beta)$, then $\mathbf{O}\{\alpha_1\Rightarrow\beta_1,...,\alpha_m\Rightarrow\beta_m\}$ entails $\mathbf{B}(\alpha\Rightarrow\beta)$

Limited belief entailment: sound and <u>decidable</u>

Complexity

Whether $\mathbf{O}_k\{\alpha_1 \Rightarrow \beta_1,...,\alpha_m \Rightarrow \beta_m\}$ entails $\mathbf{B}_{k'}(\alpha \Rightarrow \beta)$ is

- First-order case: decidable
- Propositional case: tractable for fixed effort k, k'

Summary: limited conditional belief

- Limited reasoning ...
 - limits inferences by reasoning effort bound
 - avoids syntactic restrictions (in the query)
- Limited belief entailment is ...
 - sound (w.r.t. unlimited logic)
 - decidable (first-order)
 - tractable for fixed effort (propositional)
- Based on Liu, Lakemeyer, Levesque [KR'04, IJCAl'13, KR'14, KR'16]

Summary: limited conditional belief

- Limited reasoning ...
 - limits inferences by reasoning effort bound
 - avoids syntactic restrictions (in the query)
- Limited belief entailment is ...
 - sound (w.r.t. unlimited logic)
 - decidable (first-order)
 - tractable for fixed effort (propositional)
- Based on Liu, Lakemeyer, Levesque [KR'04, IJCAl'13, KR'14, KR'16]

What's next?

- Implementation
- Functions
- Limited revision
- Actions
- Introspection