日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 3月24日

出 願,番 号 Application Number:

特願2003-079233

[ST. 10/C]:

[J P 2 0 0 3 - 0 7 9 2 3 3]

出 願 人
Applicant(s):

コニカミノルタホールディングス株式会社

特許庁長官 Commissioner, Japan Patent Office 2003年 9月 2日

今井原

ページ: 1/E

1

【書類名】 特許願

【整理番号】 DKT2498825

【あて先】 特許庁長官殿

【国際特許分類】 C09K 11/08

C09K 11/77

【発明者】

【住所又は居所】 東京都日野市さくら町1番地コニカ株式会社内

【氏名】 前澤 明弘

【発明者】

【住所又は居所】 東京都日野市さくら町1番地コニカ株式会社内

【氏名】 三科 紀之

【特許出願人】

【識別番号】 000001270

【氏名又は名称】 コニカ株式会社

【代表者】 岩居 文雄

【手数料の表示】

【予納台帳番号】 012265

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 放射線画像変換パネル、その製造方法、蛍光体粒子の形成方法 、輝尽性蛍光体前駆体の形成方法、蛍光体前駆体及び輝尽性蛍光体

【特許請求の範囲】

【請求項1】 支持体上に輝尽性蛍光体層を有する放射線画像変換パネルの製造方法において、該輝尽性蛍光体層の輝尽性蛍光体中のRb原子の添加量をCs原子に対し1/1,000,000~5/1000molになるように製造することを特徴とする放射線画像変換パネルの製造方法。

【請求項2】 請求項2に記載の放射線画像変換パネルの製造方法で得られた輝尽性蛍光体がX線回折結果より(400)面が主ピークであり、該輝尽性蛍光体を含有することを特徴とする放射線画像変換パネル。

【請求項3】 輝尽性蛍光体層が、下記一般式(1)で表されるハロゲン化アルカリを母体とする輝尽性蛍光体を含有し、該輝尽性蛍光体層が球状の蛍光体粒子及び高分子材料により形成され、該輝尽性蛍光体層の膜厚が50μm~20mmであることを特徴とする請求項2に記載の放射線画像変換パネル。

一般式(1)

 $M^1X \cdot a M^2X' \cdot b M^3X'' : e A$

[式中、 M^1 はLi、Na、K、Rb及びCsの各原子から選ばれる少なくとも 1種のアルカリ金属原子であり、 M^2 はBe、Mg、Ca、Sr、Ba、Zn、Cd、Cu及びNiの各原子から選ばれる少なくとも 1種の二価金属原子であり、 M^3 はSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Ga及びInの各原子から選ばれる少なくとも 1種の三価金属原子であり、X、X'、X''はF、Cl、Br及び Iの各原子から選ばれる少なくとも 1種のハロゲン原子であり、AはEu、Tb、In、Ce、Tm、Dy、Pr、Ho、Nd、Yb、Er、Gd、Lu、Sm、Y、Tl、Na、Ag、Cu及びMgの各原子から選ばれる少なくとも 1種の金属原子であり、また、a、b、eはそれぞれ 0 \leq a < 0. 5 、0 \leq b < 0. 5 、0 < e \leq 0. 2 の範囲の数値を表す。]

【請求項4】 輝尽性蛍光体中の蛍光体微粒子が400℃以上加熱して形成

されていることを特徴とする請求項2又は3に記載の放射線画像変換パネル。

【請求項5】 請求項2、3又は4に記載の放射線画像変換パネル中の蛍光体粒子が真空下で形成されることを特徴とする輝尽性蛍光体前駆体。

【請求項6】 請求項5に記載の輝尽性蛍光体前駆体をCs原子を含む液相中に液膜相を順次形成した後、該Cs原子を含む液相と溶解度の異なる有機溶媒を攪拌しながら添加することを特徴とする輝尽性蛍光体前駆体の形成方法。

【請求項7】 請求項5に記載の蛍光体前駆体を600~800℃で加熱焼成して得られることを特徴とする輝尽性蛍光体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、放射線画像(以下、放射線像ともいう)変換パネル、その製造方法、 、蛍光体粒子の形成方法、輝尽性蛍光体前駆体の形成方法、蛍光体前駆体及び輝 尽性蛍光体(以下、蛍光体ともいう)に関する。

[0002]

【従来の技術】

従来、放射線画像を得るために銀塩を使用した、いわゆる放射線写真法が利用されているが、銀塩を使用しないで放射線像を画像化する方法が開発されている。即ち、被写体を透過した放射線を蛍光体に吸収せしめ、しかる後この蛍光体をある種のエネルギーで励起してこの蛍光体が蓄積している放射線エネルギーを蛍光として放射せしめ、この蛍光を検出して画像化する方法が開示されている。

[0003]

具体的な方法としては、支持体上に輝尽性蛍光体層を設けたパネルを用い、励起エネルギーとして可視光線及び赤外線の一方又は両方を用いる放射線像変換方法が知られている(米国特許第3,859,527号参照)。

[0004]

より高輝度、高感度の輝尽性蛍光体を用いた放射線像変換方法として、例えば特開昭59-75200号等に記載されているBaFX:Eu²⁺系(X:Cl、Br、I) 蛍光体を用いた放射線像変換方法、同61-72087号等に記載さ

れているようなアルカリハライド蛍光体を用いた放射線像変換方法が開発されており、又、同61-73786号、同61-73787号等に記載のように、共賦活剤としてT1+及び Ce^{3+} 、 Sm^{3+} 、 Eu^{3+} 、 Y^{3+} 、 Ag^{+} 、 Mg^{2+} 、 Pb^{2+} 、 In^{3+} の金属を含有するアルカリハライド蛍光体も開発されている。

[0005]

更に、近年診断画像の解析において、より高鮮鋭性の放射線像変換パネルが要求されている。鮮鋭性改善の為の手段として、例えば形成される輝尽性蛍光体の形状そのものをコントロールし感度及び鮮鋭性の改良を図る試みがされている。

[0006]

これらの試みの1つの方法として、例えば特開昭61-142497号等に記載されている微細な凹凸パターンを有する支持体上に輝尽性蛍光体を堆積させ形成した微細な擬柱状ブロックからなる輝尽性蛍光体層を用いる方法がある。

[0007]

また、特開昭61-142500号に記載のように微細なパターンを有する支持体上に、輝尽性蛍光体を堆積させて得た柱状ブロック間のクラックをショック処理を施して更に発達させた輝尽性蛍光体層を有する放射線像変換パネルを用いる方法、更には、特開昭62-39737号に記載されている支持体上に形成された輝尽性蛍光体層にその表面側から亀裂を生じさせ擬柱状とした放射線像変換パネルを用いる方法、更には、特開昭62-110200号に記載に記載されているように、支持体上に蒸着により空洞を有する輝尽性蛍光体層を形成した後、加熱処理によって空洞を成長させ亀裂を設ける方法等も提案されている。

[0008]

更に、特開平2-58000号には、気相法によって支持体上に、支持体の法線方向に対し一定の傾きをもった細長い柱状結晶を形成した輝尽性蛍光体層を有する放射線像変換パネルが記載されている。

[0009]

最近、CsBrなどのハロゲン化アルカリを母体にEuを賦活した輝尽性蛍光体を用いた放射線像変換パネルが提案され、特にEuを賦活剤とすることで従来不可能であったX線変換効率の向上が可能になると期待された。

[0010]

しかしながら、Euは熱による拡散が顕著で、真空下における蒸気圧も高いという性質を有するため、母体中で離散しやすく、Euが母体中に、遍在して存在するという問題が発生した。その結果、Euを用いて賦活させ、高いX線変換効率を得ることが難しく、市場での実用化に至らなかった。

$[0\ 0\ 1\ 1]$

特に高いX線変換効率を得られる希土類元素の賦活においては真空下における 蒸着膜形成に関しては蒸着時の加熱が基板に輻射熱となり熱分布の影響を与える。

[0012]

この熱分布は真空度によっても変化し、熱分布によって結晶成長が不均一となり輝度・鮮鋭性が急激な乱れを生じさせていた。真空蒸着には制御が難しい問題であった。

[0013]

アルカリハライドを母体とした蛍光体結晶は蛍光体としては気相堆積法(真空 蒸着法)や引き上げ法による単結晶形成法などで蛍光体性能を引き出し、耐湿性 の低さからガラスあるいは金属のケースに封入されて用いられる。

[0014]

真空蒸着法を用いたCsBr:Eu蛍光体放射線像変換パネルにおいては前述の形成上真空状態では安定にEu拡散が行えないこと、耐湿性が低くガラスを用いるために取り扱い上の制限が大きく、汎用での利用が難しいことが問題となっていた。

$[0\ 0\ 1\ 5]$

しかしながら、Euは熱による拡散が顕著で、真空下における蒸気圧も高いという性質を有するため、母体中で離散しやすく、Euが母体中に、遍在して存在するという問題が発生した。その結果、Euを用いて賦活させ、高X線変換効率を得ることが難しく、市場での実用化には至らなかった。

[0016]

また、高X線変換効率が得られる希土類元素の賦活剤においては真空蒸着膜形

49

成方法は蒸着時の加熱が基板の輻射熱となり、基盤の熱分布に影響を与える。

[0017]

この熱分布は真空度によっても変化し、熱分布によって結晶成長が不均一となり輝度、鮮鋭性に急激な乱れを生じさせ、真空蒸着形成方法では、これらの性能を制御することが難しい問題であった。(例えば、特許文献1、2を参照)

従って、真空蒸着膜形成方法は、特に、Eu等の希土類元素を用いる場合、安定にEu拡散が行えないこと、耐湿性が低くガラスを用いるために取り扱い上の制限が大きく、また、真空蒸着膜形成方法は、原材料利用効率が数%~10%にすぎず、利用効率の低さから高価なものとなり汎用性に欠けていた。

[0018]

従って、市場では、放射線像変換パネルとして要求される、安定性、輝度、鮮 鋭性の改善に見合う製造上の均一性に改良が求められていた。

[0019]

【特許文献1】

特開平10-140148号公報

[0020]

【特許文献2】

特開平10-265774号公報

[0021]

【発明が解決しようとする課題】

本発明の目的は、蛍光体層中の賦活剤の均一性に優れ、且つ、高輝度、高鮮鋭性を示す放射線画像変換パネル及び該放射線画像変換パネルの製造方法を提供することにある。

[0022]

【課題を解決するための手段】

本発明の上記目的は以下の構成により達成される。

[0023]

1. 支持体上に輝尽性蛍光体層を有する放射線画像変換パネルの製造方法において、該輝尽性蛍光体層の輝尽性蛍光体中のRb原子の添加量をCs原子に対し

1/1, 000, 000~5/1000molになるように製造することを特徴とする放射線画像変換パネルの製造方法。

[0024]

2. 前記2に記載の放射線画像変換パネルの製造方法で得られた輝尽性蛍光体がX線回折結果より(400)面が主ピークであり、該輝尽性蛍光体を含有することを特徴とする放射線画像変換パネル。

[0025]

3. 輝尽性蛍光体層が、前記一般式(1)で表されるハロゲン化アルカリを母体とする輝尽性蛍光体を含有し、該輝尽性蛍光体層が球状の蛍光体粒子及び高分子材料により形成され、該輝尽性蛍光体層の膜厚が $5.0~\mu$ m $\sim 2.0~\mu$ m \sim

[0026]

4. 輝尽性蛍光体中の蛍光体微粒子が400℃以上加熱して形成されていることを特徴とする前記2又は3に記載の放射線画像変換パネル。

[0027]

5. 前記2、3又は4に記載の放射線画像変換パネル中の蛍光体粒子が真空下で形成されることを特徴とする輝尽性蛍光体前駆体。

[0028]

6. 前記5に記載の輝尽性蛍光体前駆体をCs原子を含む液相中に液膜相を順次形成した後、該Cs原子を含む液相と溶解度の異なる有機溶媒を攪拌しながら添加することを特徴とする輝尽性蛍光体前駆体の形成方法。

[0029]

7. 前記5に記載の蛍光体前駆体を600~800℃で加熱焼成して得られることを特徴とする輝尽性蛍光体。

[0030]

以下、本発明を詳細に説明する。

(4,0,0) 面の輝尽性蛍光体

本発明者らは、種々検討した結果、(4,0,0)面に成長させた主ピークを 持つ蛍光体は輝度向上とともに、残光を低減し蛍光体発光特性が改善されること を見いだした。

[0031]

この(4,0,0)面の主ピーク化は蒸着結晶では柱状粒子の透明性を増し、 輝度向上となり、結晶性(格子間)の安定性が増した結晶構造となったことで残 光特性が改良されたものと推定している。

[0032]

また、(4,0,0)面を主ピークに持つ蛍光体の成長方法は、

- a) 蛍光体層中にRb原子をCs原子に対して5/1000以下添加すること
- b) 蛍光体前駆体粒子を真空加熱にて加熱形成することで達成される。

[0033]

((4,0,0) 面を主ピークに持つ蛍光体にするには、上記 a), b) は必須の条件ですか(それとも、どちらか満足すれば o k ですか)?、それにより、クレームの内容も変わってきます。・・・・・ご検討、ご確認下さい。)上記 a)、b) を特徴とするクレームを最初に起こす必要があります。

[0034]

上記、加熱雰囲気としては400 \mathbb{C} 以上が好ましく、雰囲気としては H_2/N_2 、 $Air、N_2$ 、Arなど種々検討したが真空下で実施したものが最も良かった

[0035]

本発明を更に詳細に述べる。

本発明は塗布方式で本発明の輝尽性蛍光体層を作製することができ、主に蛍光体と高分子樹脂より構成され、支持体上にコーターを用いて塗設、形成される。

[0036]

塗布型蛍光体層で用いることのできる輝尽性蛍光体としては、波長が400~900nmの範囲にある励起光によって、300~500nmの波長範囲の輝尽発光を示す輝尽性蛍光体が一般的に使用される。

[0037]

以下、本発明に好ましく用いられる前記一般式(1)で表される輝尽性蛍光体

[0038]

前記一般式(1)で表される輝尽性蛍光体において、 M^1 は、Li、Na、K、Rb 及びCs等の各原子から選ばれる少なくとも1種のアルカリ金属原子を表し、中でもRb 及びCs の各原子から選ばれる少なくとも1種のアルカリ土類金属原子が好ましく、更に好ましくはCs 原子である。

[0039]

M²はBe、Mg、Ca、Sr、Ba、Zn、Cd、Cu及びNi等の各原子から選ばれる少なくとも1種の二価の金属原子を表すが、中でも好ましく用いられるのは、Be、Mg、Ca、Sr及びBa等の各原子から選ばれる二価の金属原子である。

[0040]

M³はSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Ga及びIn等の各原子から選ばれる少なくとも1種の三価の金属原子を表すが、中でも好ましく用いられるのはY、Ce、Sm、Eu、Al、La、Gd、Lu、Ga及びIn等の各原子から選ばれる三価の金属原子である。

[0041]

AはEu、Tb、In、Ce、Tm、Dy、Pr、Ho、Nd、Yb、Er、Gd、Lu、Sm、Y、Tl、Na、Ag、Cu及びMgの各原子から選ばれる少なくとも1の金属原子である。

[0042]

輝尽性蛍光体の輝尽発光輝度向上の観点から、X、X′及びX″はF、Cl、Br及びIの各原子から選ばれる少なくとも1種のハロゲンで原子を表すが、F、Cl及びBrから選ばれる少なくとも1種のハロゲン原子が好ましく、Br及びIの各原子から選ばれる少なくとも1種のハロゲン原子が更に好ましい。

[0043]

一般式(I)で表される化合物において、aは $0 \le a < 0$. 5、好ましくは $0 \le a < 0$. 01、bは $0 \le b < 0$. 5、好ましくは $0 \le b \le 1$ 0 $^{-2}$ 、eは0 < e

 ≤ 0 . 2、好ましくは $0 < e \leq 0$. 1である。

[0044]

前記一般式(1)で表される輝尽性蛍光体の蛍光体原料としては、

(a) NaF、NaCl、NaBr、NaI、KF、KCl、KBr、KI、 RbF、RbCl、RbBr、RbI、CsF、CsCl、CsBr及びCsI から選ばれる少なくとも1種の化合物が用いられる。

[0045]

(b) MgF₂、MgCl₂、MgBr₂、MgI₂、CaF₂、CaCl₂、CaBr₂、CaI₂、SrF₂、SrCI₂、SrBr₂、SrI₂、BaF₂、BaCl₂、BaBr₂、BaBr₂、BaBr₂、BaBr₂、ZnF₂、ZnCl₂、ZnBr₂、ZnI₂、CdF₂、CdCl₂、CdBr₂、CdI₂、CuF₂、CuCl₂、CuBr₂、CuI、NiF₂、NiCl₂、NiBr₂及びNiI₂の化合物から選ばれる少なくとも1種の化合物が用いられる。

[0046]

(c)Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Ga及びInの各原子から選ばれる少なくとも1種の三価金属原子を有するハロゲン化合物が用いられる。

[0047]

(d) 賦活剤の原料としては、Eu、Tb、In、Cs、Ce、Tm、Dy、Pr、Ho、Nd、Yb、Er、Gd、Lu、Sm、Y、Tl、Na、Ag、Cu及びMg等の各原子から選ばれる金属原子を有する化合物が用いられる。

[0048]

一般式(1)において、前記a、b、cの数値範囲の混合組成になるように前記(a)~(d)の蛍光体原料を秤量し、純水にて溶解する。

[0049]

この際、乳鉢、ボールミル、ミキサーミル等を用いて充分に混合しても良い。 次に、得られた水溶液のpH値Cを0<C<7に調整するように所定の酸を加えた後、水分を蒸発気化させる。

[0050]

上記の輝尽性蛍光体のうちで、輝尽性蛍光体粒子がヨウ素を含有していることが好ましく、例えば、ヨウ素を含有する二価ユーロピウム賦活アルカリ土類金属 弗化ハロゲン化物系蛍光体、ヨウ素を含有する二価ユーロピウム賦活アルカリ土 類金属ハロゲン化物系蛍光体、ヨウ素を含有する希土類元素賦活希土類オキシハロゲン化物系蛍光体、およびヨウ素を含有するビスマス賦活アルカリ金属ハロゲン化物系蛍光体、およびヨウ素を含有するビスマス賦活アルカリ金属ハロゲン化物系蛍光体は、高輝度の輝尽発光を示すため好ましく、特に、輝尽性蛍光体がEu付加BaFI化合物であることが好ましい。

[0051]

本発明において、蛍光体層に用いられる結合剤の例としては、ゼラチン等の蛋 白質、デキストラン等のポリサッカライド、またはアラビアゴムのような天然高 分子物質;および、ポリビニルブチラール、ポリ酢酸ビニル、ニトロセルロース 、エチルセルロース、塩化ビニリデン・塩化ビニルコポリマー、ポリアルキル(メタ)アクリレート、塩化ビニル・酢酸ビニルコポリマー、ポリウレタン、セル ロースアセテートブチレート、ポリビニルアルコール、線状ポリエステルなどの ような合成高分子物質などにより代表される結合剤を挙げることができるが、本 発明では、結合剤が熱可塑性エラストマーを主成分とする樹脂であることが特徴 であり、熱可塑性エラストマーとしては、例えば、上記にも記載のポリスチレン 系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリウレタ ン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド 系熱可塑性エラストマー、ポリブタジェン系熱可塑性エラストマー、エチレン酢 酸ビニル系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー、天 然ゴム系熱可塑性エラストマー、フッ素ゴム系熱可塑性エラストマー、ポリイソ プレン系熱可塑性エラストマー、塩素化ポリエチレン系熱可塑性エラストマー、 スチレンーブタジエンゴム及びシリコンゴム系熱可塑性エラストマー等が挙げら れる。

[0052]

これらのうち、ポリウレタン系熱可塑性エラストマー及びポリエステル系熱可 塑性エラストマーは、蛍光体との結合力が強いため分散性が良好であり、また延 性にも富み、放射線増感スクリーンの対屈曲性が良好となるので好ましい。なお 、これらの結合剤は、架橋剤により架橋されたものでも良い。

[0053]

塗布液における結合剤と輝尽性蛍光体との混合比は、目的とする放射線画像変換パネルのヘイズ率の設定値によって異なるが、蛍光体に対し1~20質量部が好ましく、さらには2~10質量部がより好ましい。

[0054]

輝尽性蛍光体層塗布液の調製に用いられる有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール等の低級アルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン、酢酸メチル、酢酸エチル、酢酸n-ブチル等の低級脂肪酸と低級アルコールとのエステル、ジオキサン、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテルなどのエーテル、トリオール、キシロールなどの芳香族化合物、メチレンクロライド、エチレンクロライドなどのハロゲン化炭化水素およびそれらの混合物などが挙げられる。

[0055]

なお、塗布液には、該塗布液中における蛍光体の分散性を向上させるための分散剤、また、形成後の輝尽性蛍光体層中における結合剤と蛍光体との間の結合力を向上させるための可塑剤などの種々の添加剤が混合されていてもよい。そのような目的に用いられる分散剤の例としては、フタル酸、ステアリン酸、カプロン酸、親油性界面活性剤などを挙げることができる。また、可塑剤の例としては、燐酸トリフェニル、燐酸トリクレジル、燐酸ジフェニルなどの燐酸エステル;フタル酸ジエチル、フタル酸ジメトキシエチル等のフタル酸エステル;グリコール酸エチルフタリルエチル、グリコール酸ブチルフタリルブチルなどのグリコール酸エステル;そして、トリエチレングリコールとアジピン酸とのポリエステル、ジエチレングリコールとコハク酸とのポリエステルなどのポリエステル、ジエチレングリコールとコハク酸とのポリエステルなどのポリエチレングリコールと脂肪族二塩基酸とのポリエステルなどを挙げることができる。また、輝尽性蛍光体層塗布液中に、輝尽性蛍光体粒子の分散性を向上させる目的で、ステアリン酸、フタル酸、カプロン酸、親油性界面活性剤などの分散剤を混合してもよい

[0056]

輝尽性蛍光体層用塗布液の調製は、例えば、ボールミル、ビーズミル、サンドミル、アトライター、三本ロールミル、高速インペラー分散機、Kadyミル、あるいは超音波分散機などの分散装置を用いて行なわれる。

[0057]

上記のようにして調製された塗布液を、後述する支持体表面に均一に塗布することにより塗膜を形成する。用いることのできる塗布方法としては、通常の塗布手段、例えば、ドクターブレード、ロールコーター、ナイフコーター、コンマコーター、リップコーターなどを用いることができる。

[0058]

上記の手段により形成された塗膜を、その後加熱、乾燥されて、支持体上への輝尽性蛍光体層の形成を完了する。輝尽性蛍光体層の膜厚は、目的とする放射線画像変換パネルの特性、輝尽性蛍光体の種類、結合剤と蛍光体との混合比などによって異なるが、本発明においては、 $0.5\mu m \sim 1 mm$ であり、より好ましくは $10\sim500\mu m$ である。

[0059]

また、輝尽性蛍光体層には高光吸収の物質、高光反射率の物質等を含有させてもよい。これにより輝尽性蛍光体層に入射した輝尽励起光の横方向への光拡散の低減に有効である。

[0060]

高光反射率の物質とは、輝尽励起光(500~900 nm、特に600~800 nm)に対する反射率の高い物質のことをいい、例えば、アルミニウム、マグネシウム、銀、インジウム、その他の金属等、白色顔料及び緑色~赤色領域の色材を用いることができる。白色顔料は輝尽発光も反射することができる。

$[0\ 0\ 6\ 1]$

白色顔料としては、例えば、 TiO_2 (アナターゼ型、ルチル型)、MgO、 $PbCO_3 \cdot Pb$ (OH) $_2$ 、 $BaSO_4$ 、 Al_2O_3 、M($_{II}$) FX(但し、M($_{I}$ I)はBa、Sr 及びCa の各原子から選ばれるの少なくとも一種の原子であり、XはCl 原子又はBr 原子である。)、 $CaCO_3$ 、ZnO、 Sb_2O_3 、Si

 O_2 、Z r O_2 、y トポン(B a S O_4 r Z r S)、珪酸マグネシウム、塩基性珪硫酸塩、塩基性燐酸鉛、珪酸アルミニウムなどがあげられる。

[0062]

これらの白色顔料は隠蔽力が強く、屈折率が大きいため、光を反射したり、屈 折させることにより輝尽発光を容易に散乱し、得られる放射線像変換パネルの感 度を顕著に向上させることができる。

[0063]

また、高光吸収率の物質としては、例えば、カーボンブラック、酸化クロム、酸化ニッケル、酸化鉄など及び青の色材が用いられる。このうちカーボンブラックは輝尽発光も吸収する。

[0064]

また、色材は、有機又は無機系色材のいずれでもよい。

有機系色材としては、例えば、ザボンファーストブルー3G(ヘキスト製)、エストロールブリルブルーN-3RL(住友化学製)、D&CブルーNo.1(ナショナルアニリン製)、スピリットブルー(保土谷化学製)、オイルブルーNo.603(オリエント製)、キトンブルーA(チバガイギー製)、アイゼンカチロンブルーGLH(保土ヶ谷化学製)、レイクブルーAFH(協和産業製)、プリモシアニン6GX(稲畑産業製)、ブリルアシッドグリーン6BH(保土谷化学製)、シアンブルーBNRCS(東洋インク製)、ライオノイルブルーSL(東洋インク製)等が用いられる。

[0065]

また、カラーインデクスNo. 24411、23160、74180、74200、22800、23154、23155、24401、14830、15050、15760、15707、17941、74220、13425、13361、13420、11836、74140、74380、74350、74460等の有機系金属錯塩色材もあげられる。

[0066]

無機系色材としては群青、例えば、コバルトブルー、セルリアンブルー、酸化 クロム、 $TiO_2-ZnO-Co-NiO$ 系等の無機顔料があげられる。

[0067]

また、本発明の輝尽性蛍光体層は保護層を有していても良い。

保護層は保護層用塗布液を輝尽性蛍光体層上に直接塗布して形成してもよいし、あらかじめ別途形成した保護層を輝尽性蛍光体層上に接着してもよい。あるいは別途形成した保護層上に輝尽性蛍光体層を形成する手段を取ってもよい。

[0068]

保護層の材料としては、酢酸セルロース、ニトロセルロース、ポリメチルメタクリレート、ポリビニルブチラール、ポリビニルホルマール、ポリカーボネート、ポリエステル、ポリエチレンテレフタレート、ポリエチレン、ポリ塩化ビニリデン、ナイロン、ポリ四フッ化エチレン、ポリ三フッ化ー塩化エチレン、四フッ化エチレンー六フッ化プロピレン共重合体、塩化ビニリデンー塩化ビニル共重合体、塩化ビニリデンーアクリロニトリル共重合体等の通常の保護層用材料が用いられる。他に透明なガラス基板を保護層としてもちいることもできる。

[0069]

これらの保護層の層厚は0.1~2000 μ mが好ましい。

図1は、本発明の放射線像変換パネルの構成の一例を示す概略図である。

$[0 \ 0 \ 7 \ 0]$

図1において21は放射線発生装置、22は被写体、23は輝尽性蛍光体を含有する可視光ないし赤外光輝尽性蛍光体層を有する放射線像変換パネル、24は放射線像変換パネル23の放射線潜像を輝尽発光として放出させるための輝尽励起光源、25は放射線像変換パネル23より放出された輝尽発光を検出する光電変換装置、26は光電変換装置25で検出された光電変換信号を画像として再生する画像再生装置、27は再生された画像を表示する画像表示装置、28は輝尽励起光源24からの反射光をカットし、放射線像変換パネル23より放出された光のみを透過させるためのフィルタである。

[0071]

尚、図1は被写体の放射線透過像を得る場合の例であるが、被写体22自体が 放射線を放射する場合には、前記放射線発生装置21は特に必要ない。

[0072]

また、光電変換装置 2 5 以降は放射線像変換パネル 2 3 からの光情報を何らかの形で画像として再生できるものであればよく、前記に限定されない。

[0073]

図1に示されるように、被写体22を放射線発生装置21と放射線像変換パネル23の間に配置し放射線Rを照射すると、放射線Rは被写体22の各部の放射線透過率の変化に従って透過し、その透過像RI(即ち、放射線の強弱の像)が放射線像変換パネル23に入射する。

[0074]

この入射した透過像RIは放射線像変換パネル23の輝尽性蛍光体層に吸収され、これによって輝尽性蛍光体層中に吸収された放射線量に比例した数の電子及び/又は正孔が発生し、これが輝尽性蛍光体のトラップレベルに蓄積される。

[0075]

即ち、放射線透過像のエネルギーを蓄積した潜像が形成される。次にこの潜像 を光エネルギーで励起して顕在化する。

[0076]

また、可視あるいは赤外領域の光を照射する輝尽励起光源24によって輝尽性 蛍光体層に照射してトラップレベルに蓄積された電子及び/又は正孔を追い出し 、蓄積されたエネルギーを輝尽発光として放出させる。

[0077]

この放出された輝尽発光の強弱は蓄積された電子及び/又は正孔の数、すなわち放射線像変換パネル23の輝尽性蛍光体層に吸収された放射線エネルギーの強弱に比例しており、この光信号を、例えば、光電子増倍管等の光電変換装置25で電気信号に変換し、画像再生装置26によって画像として再生し、画像表示装置27によってこの画像を表示する。

[0078]

画像再生装置26は単に電気信号を画像信号として再生するのみでなく、いわゆる画像処理や画像の演算、画像の記憶、保存等が出来るものを使用するとより 有効である。

[0079]

また、光エネルギーで励起する際、輝尽励起光の反射光と輝尽性蛍光体層から放出される輝尽発光とを分離する必要があることと、輝尽性蛍光体層から放出される発光を受光する光電変換器は一般に600nm以下の短波長の光エネルギーに対して感度が高くなるという理由から、輝尽性蛍光体層から放射される輝尽発光はできるだけ短波長領域にスペクトル分布を持ったものが望ましい。

[0080]

本発明の輝尽性蛍光体の発光波長域は300~500nmであり、一方輝尽励起波長域は500~900nmであるので前記の条件を同時に満たすが、最近、診断装置のダウンサイジング化が進み、放射線像変換パネルの画像読み取りに用いられる励起波長は高出力で、且つ、コンパクト化が容易な半導体レーザが好まれ、そのレーザ光の波長は680nmであることが好ましく、本発明の放射線像変換パネルに組み込まれた輝尽性蛍光体は、680nmの励起波長を用いた時に、極めて良好な鮮鋭性を示すものである。

[0081]

即ち、本発明の輝尽性蛍光体はいずれも500mm以下に主ピークを有する発光を示し、輝尽励起光の分離が容易でしかも受光器の分光感度とよく一致するため、効率よく受光できる結果、受像系の感度を高めることができる。

[0082]

輝尽励起光源24としては、放射線像変換パネル23に使用される輝尽性蛍光体の輝尽励起波長を含む光源が使用される。特にレーザ光を用いると光学系が簡単になり、また輝尽励起光強度を大きくすることができるために輝尽発光効率をあげることができ、より好ましい結果が得られる。

[0083]

レーザとしては、例えば、He-Neレーザ、He-Cdレーザ、Arイオンレーザ、Krイオンレーザ、 N_2 レーザ、YAGレーザ及びその第 2 高調波、ルビーレーザ、半導体レーザ、各種の色素レーザ、銅蒸気レーザ等の金属蒸気レーザ等がある。通常はHe-NeレーザやArイオンレーザのような連続発振のレーザが望ましいが、パネル 1 画素の走査時間とパルスを同期させればパルス発振のレーザを用いることもできる。

[0084]

また、フィルタ28を用いずに特開昭59-22046号に示されるような、 発光の遅延を利用して分離する方法によるときは、連続発振レーザを用いて変調 するよりもパルス発振のレーザを用いる方が好ましい。

[0085]

上記の各種レーザ光源の中でも、半導体レーザは小型で安価であり、しかも変調器が不要であるので特に好ましく用いられる。

[0086]

フィルタ28としては放射線像変換パネル23から放射される輝尽発光を透過し、輝尽励起光をカットするものであるから、これは放射線像変換パネル23に含有する輝尽性蛍光体の輝尽発光波長と輝尽励起光源24の波長の組合わせによって決定される。

[0087]

例えば、輝尽励起波長が500~900nmで輝尽発光波長が300~500nmにあるような実用上好ましい組合わせの場合、フィルタとしては例えば東芝社製C-39、C-40、V-40、V-42、V-44、コーニング社製7-54、7-59、スペクトロフィルム社製BG-1、BG-3、BG-25、BG-37、BG-38等の紫~青色ガラスフィルタを用いることができる。又、干渉フィルタを用いると、ある程度、任意の特性のフィルタを選択して使用できる。光電変換装置25としては、光電管、光電子倍増管、フォトダイオード、フォトトランジスタ、太陽電池、光導電素子等光量の変化を電子信号の変化に変換し得るものなら何れでもよい。

[0088]

【実施例】

以下、本発明を実施例により具体的に説明するが、本発明の実施態様はこれらに限定されるものではない。

[0089]

実施例1

《放射線画像変換パネル試料1~10の作製》

輝尽性蛍光体の形成方法

蛍光体粒子-蒸着

[0090]

図2に示した蒸着装置においては、アルミニウム製のスリットを用い、支持体とスリットとの距離 d を 6 0 c mとして、支持体と平行な方向に支持体を搬送しながら蒸着を行ない、輝尽性蛍光体層の厚みが 3 0 0 μ mになるように調整した

[0091]

尚、蒸着にあたっては、前記支持体を蒸着器内に設置し、次いで、蛍光体原料 (CsBr:Eu)、Rbを表1記載量の添加して、蒸着源としてプレス成形し水冷したルツボにいれた。

[0092]

尚、X線解析の結果、(400)面が主ピークの蛍光体であった。

その後、蒸着器内を一旦排気し、その後 N_2 ガスを導入し 1×10^{-1} Paに真空度を調整した後、支持体の温度(基板温度ともいう)を約150 $\mathbb C$ に保持しながら、蒸着した。輝尽性蛍光体層の膜厚が 300μ mとなったところで蒸着を終了させた。

[0093]

上記輝尽性蛍光体層を設けた支持体を裏面がAL泊で貼り付けられたバリア袋(GL-AE凸版)に入れて密封して放射線像変換パネル試料1を作製した。

[0094]

Rbの添加量、蛍光体形成の加熱温度、雰囲気を替えた以外は、試料1と同様にして、試料2~6を得た。

[0095]

尚、試料2、3、5,6の蛍光体は(400)面が主ピークであった。 蛍光体層-塗布 CsBr1molic対し、Eu量5/10000moleなるように<math>CsCO3とHBr及び Eu_2O_3 を加え溶解し、更に、表1記載のRb添加量を添加した。 $90\sim110$ Cにて前記水溶液を濃縮し、飽和溶液としたこれを水溶液液相とする。

[0096]

この液相上にEDTAの液膜形成層を形成し、その上にイソプロピルアルコールからなる相を順次形成する。この液をホモジナイザーで3000rpmにて攪拌したところ球状のCsBr粒子を析出し5ミクロンのCsBr:Eu蛍光体前駆体を得た。

[0097]

水相と有機相の比率は1:1であった。

この蛍光体前駆体にを真空雰囲気下で620℃、2hrにて焼成し蛍光体粒子とした。

[0098]

蛍光体層形成するために前記蛍光体粒子、とポリエステル溶液(バイロン63ss東洋紡社製)を固形分濃度95質量%、蛍光体5質量%樹脂溶液として混合分散して塗料とした。

[0099]

この塗料にて、188ミクロンポリエチレンテレフタレートフィルム(東レ製 188 X 30)支持体の表面に塗布し、乾燥雰囲気A r のイナートオーブン中を 80 \mathbb{C} 、100 \mathbb{C} 、110 \mathbb{C} 03 ゾーンの乾燥ゾーンを \mathbb{C} S:2 \mathbb{m} \mathbb{m} in の速度で塗布し輝尽性蛍光体層を形成した。

[0100]

該輝尽性蛍光体層を形成したシートを裏面AL泊が貼り付けられたバリア袋(GL-AE凸版)に入れて密封して放射線像変換パネル(試料7)を作製した。

$[0\ 1\ 0\ 1]$

R b の添加量、蛍光体粒子形成の加熱温度、雰囲気を表1に示すように替えた 以外は試料7と同様にして、試料8~10を作製した。

[0102]

尚、試料7、8の蛍光体は(400)面が主ピークであった。

各試料について、以下の評価を行った。

[0103]

《鮮鋭性評価》

各々作製した放射線像変換パネル試料の鮮鋭性は、変調伝達関数(MTF)を 求めて評価した。

[0104]

MTFは、放射線像変換パネル試料にCTFチャートを貼付した後、放射線像変換パネル試料に80 k V pのX線を10 m R(被写体までの距離:1.5 m) 照射した後、 $100 \mu \text{ m} \phi$ の直径の半導体レーザ(680 n m:パネル上でのパワー40 mW)を用いてCTFチャート像を走査読み取りして求めた。表の値は、2.01 p/mmのMTF値を足し合わせた値で示す。得られた結果を表1に示す。

[0105]

《輝度、輝度ムラの評価》

輝度はコニカ(株)製Regius350を用いて評価を行った。

[0106]

鮮鋭性評価と同様にX線をタングステン管球にて80kVp、10mAsで爆射線源とプレート間距離2mで照射した後、Regius350にプレートを設置して読みとった。得られたフォトマルからの電気信号をもとに評価を行った。

[0107]

撮影された面内のフォトマルからの電気信号分布を相対評価し、標準偏差を求め、それぞれ各試料の輝度分布(S.D.)とした。値が小さい程、輝度ムラが少ない。

[0108]

《残光の評価》

各試料を50mm角に断裁し、板に貼り付けて撮影カセットに入れる。

[0109]

X線照射を照射し、読みとり時に50画素目との信号差を残光値とする。

表中、温度は各蛍光体微粒子を加熱した温度を表す。

[0110]

【表1】

	Rb添加量	加熱温度	雰囲気		#	MTF	輝度ムラ	米
	mol/Cs 1 mol	့ပ		(400) 画比	草及	(21p/mm)	(S.D.)	7876
既本1	5 /100000	009	献品	2:1	1.67	32%	4	0.00004
武料2	5 / 10000	909	真郎王	4:1	1.72	33%	ထ	0.00002
武料3	5 / 1000	009	割	3:1	1.54	31%	10	0.00003
試料4	1 / 100	009	真空	1:2	0.43	11%	43	0.00002
試料 2	5 / 10000	009	Ar	3:1	1.22	32%	6	0.00005
武 46	5 / 10000	009	H2/N2	3:1	1.18	34%	80	0.00004
試料7	5 / 10000	009	真空	4:1	1.52	31%	က	0.00001
就本8	5 / 10000	009	真兒	4:1	1.55	35%	4	0.00008
就料9	0				0.12	12%	56	0.00321
試料10	0				01.0	10%	44	0.00582

[0111]

表中、

- 1. 試料 1~3, 5, 6 (本発明)、試料 4 比較) 蒸着型
- 2. 試料 7, 8 (本発明)、試料 9, 10 (比較) 塗布型

表1から明らかなように、本発明の試料が比較の試料に比して優れていることが分かる。

[0112]

【発明の効果】

実施例で実証した如く、本発明による放射線画像変換パネル及び蛍光体の製造 方法は、残光が少なく、且つ、安価で輝度、鮮鋭性に優れた効果を有する。

【図面の簡単な説明】

【図1】

本発明の放射線像変換パネルの構成の一例を示す概略図である。

【図2】

蒸着により支持体上に輝尽性蛍光体層を作製する方法の一例を示す概略図である。

【符号の説明】

- 2 1 放射線発生装置
- 2 2 被写体
- 23 放射線像変換パネル
- 24 輝尽励起光源
- 25 光電変換装置
- 26 画像再生装置
- 27 画像表示装置
- 28 フィルタ

【書類名】

図面

【図1】

【図2】

【書類名】

要約書

【要約】

【課題】 残光が少なく、且つ、安価で輝度、鮮鋭性に優れた放射線画像変換パネル及び輝尽性蛍光体の製造方法の提供。

【解決手段】 支持体上に輝尽性蛍光体層を有する放射線画像変換パネルの製造 方法において、該輝尽性蛍光体層の輝尽性蛍光体中のRb原子の添加量をCs原 子に対し1/1,000,000~5/1000molになるように製造するこ とを特徴とする放射線画像変換パネルの製造方法。

【選択図】

なし

ページ: 1/E

認定・付加情報

特許出願の番号 特願2003-079233

受付番号 50300464817

書類名 特許願

担当官 第六担当上席 0095

作成日 平成15年 3月25日

<認定情報・付加情報>

【提出日】 平成15年 3月24日

特願2003-079233

出願人履歴情報

識別番号

[000001270]

1. 変更年月日 [変更理由]

1990年 8月14日

住所

新規登録

東京都新宿区西新宿1丁目26番2号

コニカ株式会社

2. 変更年月日 [変更理由]

2003年 8月 4日

名称変更

住 所 氏 名 東京都新宿区西新宿1丁目26番2号

コニカミノルタホールディングス株式会社

3. 変更年月日 [変更理由]

2003年 8月21日

住所変更

住 所 氏 名 東京都千代田区丸の内一丁目6番1号

コニカミノルタホールディングス株式会社