Project 3

Submitted by: Kanupriya Parashar

Panel Data: Analysis of ETF Arbitrage Oppurtunity

Qualitative Dependent Variable Model: Analysis of the Cardiovascular Disease Presence

```
In [1]: import yfinance as yf
        import statistics
        import numpy as np
        import pandas as pd
        from pandas import DataFrame as df
        import scipv
        from scipy import io as spio
        from scipy import stats
        import matplotlib.pyplot as plt
        from scipy import misc
        from scipy.stats import norm
        import warnings
        %matplotlib inline
        warnings.filterwarnings('ignore')
        import seaborn as sns
        sns.set(style="whitegrid")
        import math
        from BorutaShap import BorutaShap
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.ensemble import RandomForestClassifier
        import random
        import statsmodels.formula.api as smf
        import statsmodels.stats.api as sms
        from sklearn.model selection import train test split
        from sklearn import linear_model
        from sklearn.linear model import LinearRegression
        from sklearn import metrics
        from sklearn.model selection import cross val score
        import linearmodels as plm
        from sklearn.linear model import LogisticRegression
        from sklearn.metrics import accuracy score
        from sklearn.metrics import confusion_matrix, classification_report, precision_score
```

1. Panel Data Models

We form a Panel Data with Adjusted Closing prices of S&P 500(GSPC), Dow Jones Industrial (DJI) and NASDAQ (IXIC). We aim to run three comparative models and find the arbitrage oppurutnites to invest in Exchange Traded Funds (ETF) backed against the S&P 500 index, seeing the movement and direction of the Adjusted Close prices of NASDAQ and Dow Jones Industrial indices.

Q1.

```
In [2]: indices_tickers=["^GSPC","^DJI","^IXIC"]
    start_date="2019-12-31"
    end_date="2023-01-01"
    index_data=yf.download(indices_tickers,start=start_date,end=end_date)["Adj Close"]
    index_data
```

[********** 3 of 3 completed

VIXIC

Out[2]:

	"DJI	~GSPC	AIXIC
Date			
2019-12-31	28538.439453	3230.780029	8972.599609
2020-01-02	28868.800781	3257.850098	9092.190430
2020-01-03	28634.880859	3234.850098	9020.769531
2020-01-06	28703.380859	3246.280029	9071.469727
2020-01-07	28583.679688	3237.179932	9068.580078
	•••	•••	
2022-12-23	33203.929688	3844.820068	10497.860352
2022-12-27	33241.558594	3829.250000	10353.230469
2022-12-28	32875.710938	3783.219971	10213.290039
2022-12-29	33220.800781	3849.280029	10478.089844
2022-12-30	33147.250000	3839.500000	10466.480469

VD II

ACSDC

757 rows × 3 columns

In [3]: #index_data=index_data.stack().reset_index().rename(columns={"level_1":"Index",0:"Adj_Close"})

Project 3_Kanupriya 006318889 - Jupyter Notebook 06/12/23, 4:48 PM

In [4]: index_data.head(100)

Out[4]:

Date 2019-12-31 28538.439453 3230.780029 8972.59960 2020-01-02 28868.800781 3257.850098 9092.19043	С
2020-01-02 28868.800781 3257.850098 9092.19043	
	19
2002 04 00 00004 000050 0004 050000 0000	0
2020-01-03 28634.880859 3234.850098 9020.76953	1
2020-01-06 28703.380859 3246.280029 9071.46972	27
2020-01-07 28583.679688 3237.179932 9068.58007	'8
	
2020-05-18 24597.369141 2953.909912 9234.83007	'8
2020-05-19 24206.859375 2922.939941 9185.09960	19
2020-05-20 24575.900391 2971.610107 9375.78027	'3
2020-05-21 24474.119141 2948.510010 9284.87988	3
2020-05-22 24465.160156 2955.449951 9324.58984	4

100 rows × 3 columns

In [5]: index_data.columns=["DJI","GSPC","IXIC"]

```
In [6]: index data.head()
Out[6]:
                           DJI
                                    GSPC
                                                IXIC
              Date
          2019-12-31 28538,439453 3230,780029 8972,599609
          2020-01-02 28868.800781 3257.850098 9092.190430
          2020-01-03 28634.880859 3234.850098 9020.769531
          2020-01-06 28703.380859 3246.280029 9071.469727
          2020-01-07 28583.679688 3237.179932 9068.580078
In [7]: index data.shape
Out[7]: (757, 3)
In [8]: index data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 757 entries, 2019-12-31 to 2022-12-30
         Data columns (total 3 columns):
              Column Non-Null Count Dtype
              DJI
                       757 non-null
                                         float64
          1
              GSPC
                       757 non-null
                                        float64
              IXIC
                                        float64
                       757 non-null
         dtypes: float64(3)
         memory usage: 23.7 KB
```

Out[10]:

	DJI	GSPC	IXIC
count	757.000000	757.000000	757.000000
mean	31269.544917	3861.253225	12261.137562
std	3724.274585	551.299490	2117.388188
min	18591.929688	2237.399902	6860.669922
25%	28745.089844	3401.199951	10829.500000
50%	32098.990234	3915.590088	12334.639648
75%	34364.500000	4319.939941	13972.530273
max	36799.648438	4796.560059	16057.440430

The table presents statistical measures for three financial indices: DJI, GSPC, and IXIC. With 757 data points, it outlines their central tendencies and dispersion. DJI's average stands at approximately 31,269, while GSPC and IXIC show means around 3,861 and 12,261, respectively. These figures, alongside minimum, maximum, and quartile values, offer insights into the distribution and variability of these indices over the specified period.

Tn [34]:

fig, ax = plt.subplots(1, 3, figsize = (15,5))
plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.4,hspace=0.8)
fig.suptitle('Histograms of Variables')

ax[0].hist(index_data["DJI"], alpha = 0.8, bins = "fd")
ax[0].set_title("Dow Jones")
ax[0].set_xlabel("Adj Close")
ax[0].set_ylabel("Date")

ax[1].hist(index_data["GSPC"], alpha = 0.8, bins = "fd")
ax[1].set_title("S&P 500")
ax[1].set_xlabel("Adj Close")
ax[1].set_ylabel("Date")

ax[2].hist(index_data["IXIC"], alpha = 0.8, bins = "fd")
ax[2].set_title("NASDAQ")
ax[2].set_title("NASDAQ")
ax[2].set_xlabel("Adj Close")

Out[34]: Text(0, 0.5, 'Years')

ax[2].set_ylabel("Years")

We see that the data distribution is right skewed for all the indices. For NASDAQ the right skewness is less as compared to the other indices.

```
In [12]: fig, ax = plt.subplots(1, 3, figsize = (15, 5))
plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.4, hspace=0.8)
fig.suptitle('Q-Q Plots of Variables')

stats.probplot(index_data["DJI"], dist = "norm", plot = ax[0])
ax[0].set_title("Dow Jones Industrial")
ax[0].set_ylabel("Adj Close")

stats.probplot(index_data["GSPC"], dist = "norm", plot = ax[1])
ax[1].set_title("S&P 500")
ax[1].set_ylabel("Adj close")

stats.probplot(index_data["IXIC"], dist = "norm", plot = ax[2])
ax[2].set_title("NASDAQ")
ax[2].set_ylabel("Adj Close")
```

Out[12]: Text(0, 0.5, 'Adj Close')

The QQ plot above show that there exists skewness in all the indices distribution. Also none of the indices are normally distributed. The left tails in all the indices are deviating from normal distribution, also indicating presence of outliers in the dataset. For DJI even the right tail is deviating indicating the presence of outliers even in that direction.

```
In [13]: plt.figure(figsize=(10,10))
sns.pairplot(index_data, height = 7.0, kind='reg')
```

Out[13]: <seaborn.axisgrid.PairGrid at 0x16118f460>

<Figure size 1000x1000 with 0 Axes>

There seems to be a linear relationship between all pairs of the indices. We further give a strong support for this assessment below in our correlation matrix.

In [14]: corr_matrix=index_data.corr()

corr_matrix

Out[14]:

	DJI	GSPC	IXIC
DJI	1.000000	0.979125	0.881534
GSPC	0.979125	1.000000	0.928735
IXIC	0.881534	0.928735	1.000000

Type Markdown and LaTeX: α^2

In [15]: plt.figure(figsize=(10,6))

sns.heatmap(corr_matrix,annot=True, cmap="Blues")

Out[15]: <AxesSubplot:>

There doesn't seem to be a perfect collinearity between the variables. Therefore, solving the multicollinearity problem in our model. but there exists strong positive collinearity between the variables. But that wouldn't be a problem in our multiple linear regression estimation, since, it doesn't violate the assumptions.

```
In [16]: fig, ax = plt.subplots(1, 3, figsize = (18, 10))
plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.7, hspace = 0.2)

ax[0].boxplot(index_data["DJI"])
ax[0].set_title("Dow Jones Industrial")
ax[0].set_ylabel("Adj Close")
```

```
ax[1].boxplot(index_data["GSPC"])
ax[1].set_title("S&P 500")
ax[1].set_ylabel("Adj Close")

ax[2].boxplot(index_data["IXIC"])
ax[2].set_title("NASDAQ")
ax[2].set_ylabel("Adj Close")
```

Out[16]: Text(0, 0.5, 'Adj Close')

There is an overlap amongst the distribution for S&P 500, Dow Jones Industrial and NASDAQ. There is a right skewness in the distribution of all the variables. There are some potential outliers for Dow Jones Industrial. The spread for all three variables are almost the same. There is not much significant difference between the distribution of the three variables. The median value for Dow Jones Industrial is higher than for S&P 500 and NASDAQ.

Q3.

Pooled Model

```
In [17]: index_data.reset_index(inplace=True)
index_data['year'] = index_data['Date'].dt.year

index_data['nr'] = range(len(index_data))

index_data = index_data.set_index(['nr', 'year'], drop=False)
index_data
```

Out[17]:

		Date	DJI	GSPC	IXIC	year	nr
nr	year						
0	2019	2019-12-31	28538.439453	3230.780029	8972.599609	2019	0
1	2020	2020-01-02	28868.800781	3257.850098	9092.190430	2020	1
2	2020	2020-01-03	28634.880859	3234.850098	9020.769531	2020	2
3	2020	2020-01-06	28703.380859	3246.280029	9071.469727	2020	3
4	2020	2020-01-07	28583.679688	3237.179932	9068.580078	2020	4
	•••						
752	2022	2022-12-23	33203.929688	3844.820068	10497.860352	2022	752
753	2022	2022-12-27	33241.558594	3829.250000	10353.230469	2022	753
754	2022	2022-12-28	32875.710938	3783.219971	10213.290039	2022	754
755	2022	2022-12-29	33220.800781	3849.280029	10478.089844	2022	755
756	2022	2022-12-30	33147.250000	3839.500000	10466.480469	2022	756

757 rows × 6 columns

```
In [18]: index data.info()
         <class 'pandas.core.frame.DataFrame'>
         MultiIndex: 757 entries, (0, 2019) to (756, 2022)
         Data columns (total 6 columns):
              Column Non-Null Count Dtype
                                       datetime64[ns]
                      757 non-null
          0
              Date
          1
                      757 non-null
                                       float64
              DJI
              GSPC
                      757 non-null
                                       float64
          3
              IXIC
                      757 non-null
                                       float64
                      757 non-null
                                       int32
              vear
              nr
                      757 non-null
                                       int64
         dtypes: datetime64[ns](1), float64(3), int32(1), int64(1)
         memory usage: 57.1 KB
In [19]: index data.isnull().any()
Out[19]: Date
                 False
                 False
         DJI
         GSPC
                 False
         IXIC
                 False
                 False
         year
                 False
         nr
         dtype: bool
In [25]: model1 = plm.PooledOLS.from formula(
             formula='GSPC ~ DJI + IXIC', data=index_data)
         results1 = model1.fit()
         results1
Out[25]:
             Dep. Variable:
                                GSPC
                                                         0.9994
                                             R-squared:
```

Estimator:	PooledOLS	R-squared (Between):	0.9994
No. Observations:	757	R-squared (Within):	0.0000
Date:	Wed, Dec 06 2023	R-squared (Overall):	0.9994
Time:	14:07:42	Log-likelihood	-4507.3
Cov. Estimator:	Unadjusted		
		F-statistic:	6.601e+05
Entities:	757	P-value	0.0000
Avg Obs:	1.0000	Distribution:	F(2,755)
Min Obs:	1.0000		
Max Obs:	1.0000	F-statistic (robust):	6.601e+05
		P-value	0.0000
Time periods:	4	Distribution:	F(2,755)
Avg Obs:	189.25		
Min Obs:	1.0000		
Max Obs:	253.00		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
DJI	0.0870	0.0012	69.898	0.0000	0.0846	0.0894
IXIC	0.0934	0.0032	29.664	0.0000	0.0873	0.0996

id: 0x17348ada0

```
In [27]: #checking heteroscedasticity
fig, ax = plt.subplots()
ax.scatter(results1.fitted_values, results1.resids, color = 'blue')
ax.axhline(0, color = 'r', ls = '--')
ax.set_xlabel('Predicted Values', fontsize = 15)
ax.set_ylabel('Residuals', fontsize = 15)
ax.set_title('Homoskedasticity Test', fontsize = 15)
plt.show()
```


The graph above plotting Predicted Values against the Residuals clearly show heteroscedasticity, but we would do further investigation to confirm the same.

```
In [32]: from statsmodels.stats.diagnostic import het_white, het_breuschpagan
import statsmodels.api as sm

# Extract residuals and exogenous variables
residuals1 = results1.resids
exog_vars = index_data[['DJI', 'IXIC']]
exog = sm.add_constant(exog_vars)

# Breusch-Pagan test for heteroscedasticity
breusch_pagan_test_results = het_breuschpagan(residuals1, exog)
bp_F_stat, bp_p_value = breusch_pagan_test_results[2], breusch_pagan_test_results[3]
print(f"\nBreusch-Pagan Test F-stat: {bp_F_stat}, P-value: {bp_p_value}")
```

Breusch-Pagan Test F-stat: 31.51934081364031, P-value: 7.1372409812457e-14

Since the p-value is small and the F-statistics is also small, it indicates that we reject the null hypothesis and confirm that there is heteroscedasticity in our Pooled panel model.

```
In [35]: #Durbin Watson test for autocorrelation
    from statsmodels.stats.stattools import durbin_watson

durbin_watson_test_results = durbin_watson(residuals1)
    print(durbin_watson_test_results)
```

0.006537988032687623

A Durbin-Watson statistic of 0.006537988032687623, which is extremely close to 0, indicates strong positive autocorrelation in the residuals. Positive autocorrelation means that adjacent residuals are highly positively correlated, violating the assumption of independence between residuals.

Since the Pooled panel model violates its assumption for homoscedasticity and autocorrelation, we will not consider the model for violating its assumptions.

Fixed Effects Model

Out [39]:

PanelOLS Estimation Summary

0.9994	R-squared:	GSPC	Dep. Variable:
0.9994	R-squared (Between):	PanelOLS	Estimator:
0.0000	R-squared (Within):	757	No. Observations:
0.9994	R-squared (Overall):	Wed, Dec 06 2023	Date:
-4507.3	Log-likelihood	16:29:51	Time:
		Unadjusted	Cov. Estimator:
6.601e+05	F-statistic:		
0.0000	P-value	757	Entities:
F(2,755)	Distribution:	1.0000	Avg Obs:

06/12/23, 4:48 PM

Min Obs:	1.0000		
Max Obs:	1.0000	F-statistic (robust):	6.601e+05
		P-value	0.0000
Time periods:	4	Distribution:	F(2,755)
Avg Obs:	189.25		
Min Obs:	1.0000		
Max Obs:	253.00		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
DJI	0.0870	0.0012	69.898	0.0000	0.0846	0.0894
IXIC	0.0934	0.0032	29.664	0.0000	0.0873	0.0996

id: 0x28c4a38b0

Excluded the Entity Effects as it was abosorbing too much variance. Better estimation can be seen on removing it.

```
In [40]: #with time entity
model7= plm.PanelOLS.from_formula(
    formula='GSPC ~ DJI + IXIC + TimeEffects', data=index_data).fit()
model7
```

Out [40]:

PanelOLS Estimation Summary

0.9697	R-squared:	GSPC	Dep. Variable:
0.9990	R-squared (Between):	PanelOLS	Estimator:
0.0000	R-squared (Within):	757	No. Observations:
0.9990	R-squared (Overall):	Wed, Dec 06 2023	Date:
-4065.6	Log-likelihood	16:30:24	Time:
		Unadjusted	Cov. Estimator:
1.203e+04	F-statistic:		
0.0000	P-value	757	Entities:
F(2,751)	Distribution:	1.0000	Avg Obs:
		1.0000	Min Obs:
1.203e+04	F-statistic (robust):	1.0000	Max Obs:
0.0000	P-value		
F(2,751)	Distribution:	4	Time periods:
		189.25	Avg Obs:
		1.0000	Min Obs:
		253.00	Max Obs:

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
DJI	0.0754	0.0016	48.249	0.0000	0.0724	0.0785
IXIC	0.1286	0.0025	51.577	0.0000	0.1237	0.1335

F-test for Poolability: 367.39

P-value: 0.0000

Distribution: F(3,751)

Included effects: Time

id: 0x28cc54cd0

We will also not consider the model with both Time and Entity Effects becasue it absorbs alot variance and doesn't give an estimation.

Model Comparison

	Model 0	Model 1
Dep. Variable	GSPC	GSPC
Estimator	Panel0LS	Panel0LS
No. Observations	757	757
Cov. Est.	Unadjusted	Unadjusted
R-squared	0.9994	0.9697
R-Squared (Within)	0.0000	0.0000
R-Squared (Between)	0.9994	0.9990
R-Squared (Overall)	0.9994	0.9990
F-statistic	6.601e+05	1.203e+04
P-value (F-stat)	0.0000	0.0000
DJI	0.0870	0.0754
	(69.898)	(48.249)
IXIC	0.0934	0.1286
	(29.664)	(51.577)
Effects	=======================================	======== Time

T-stats reported in parentheses

Based on this comparison of the two model, one where we don't take either entity or time efects and one where we only take time effects, we see that the R squared is better for the model2 (sans entity and time effects), where 99.94% of the GSPC Adj Close is explained by the Adj Close of IXIC and DJI. We also see that the F-statistics, which is significant, is better for the model2 than model7, indicating overall significance of the model2. The coefficients in both the models are positive but the coefficient for IXIC changes in the two models, but for model2, the Standard Errors associated with that model is less, giving better reasoning to consider model2.

Random Effects

Zero Division Error occurred during model estimation.

In [11]: #taking returns and seeing if random effects works on that indices_tickers=["^GSPC","^DJI","^IXIC"] start_date="2019-12-31" end date="2023-01-01" index_data1=yf.download(indices_tickers,start=start_date,end=end_date)["Adj_Close"].pct_change() index data1

3 of 3 completed

Out[11]:

	^DJI	^GSPC	^IXIC	
Date				
2019-12-31	NaN	NaN	NaN	
2020-01-02	0.011576	0.008379	0.013328	
2020-01-03	-0.008103	-0.007060	-0.007855	
2020-01-06	0.002392	0.003533	0.005620	
2020-01-07	-0.004170	-0.002803	-0.000319	

2022-12-23	0.005342	0.005868	0.002075	
2022-12-27	0.001133	-0.004050	-0.013777	
2022-12-28	-0.011006	-0.012021	-0.013517	
2022-12-29	0.010497	0.017461	0.025927	
2022-12-30	-0.002214	-0.002541	-0.001108	

757 rows × 3 columns

In [12]: index_data1.columns=["DJI","GSPC","IXIC"]

```
In [13]: index_data1.dropna(inplace=True)
In [14]: index_data1.columns
Out[14]: Index(['DJI', 'GSPC', 'IXIC'], dtype='object')
```

```
In [15]: index_data1.reset_index(inplace=True)
    index_data1['year'] = index_data1['Date'].dt.year

index_data1['nr'] = range(len(index_data1))

index_data1 = index_data1.set_index(['nr', 'year'], drop=False)
    index_data1
```

Out[15]:

		Date	DJI	GSPC	IXIC	year	nr
nr	year						
0	2020	2020-01-02	0.011576	0.008379	0.013328	2020	0
1	2020	2020-01-03	-0.008103	-0.007060	-0.007855	2020	1
2	2020	2020-01-06	0.002392	0.003533	0.005620	2020	2
3	2020	2020-01-07	-0.004170	-0.002803	-0.000319	2020	3
4	2020	2020-01-08	0.005647	0.004902	0.006689	2020	4
		•••					
751	2022	2022-12-23	0.005342	0.005868	0.002075	2022	751
752	2022	2022-12-27	0.001133	-0.004050	-0.013777	2022	752
753	2022	2022-12-28	-0.011006	-0.012021	-0.013517	2022	753
754	2022	2022-12-29	0.010497	0.017461	0.025927	2022	754
755	2022	2022-12-30	-0.002214	-0.002541	-0.001108	2022	755

756 rows × 6 columns

```
In [16]: import linearmodels as plm

try:
    model3 = plm.RandomEffects.from_formula(formula='GSPC ~ DJI + IXIC', data=index_data1)
    results3 = model3.fit()
    print(results3)
except ZeroDivisionError:
    print("Zero Division Error occurred during model estimation.")
```

Zero Division Error occurred during model estimation.

We will drop the Ramndom Effects model when we take both Adjusted Close price and Returns, and we see the problem that there exists Zero Division Error. There seems to be division by zero since there is not much variance between the values of the indices. Since, we would not like to interfere with the intergity of the data from Yahoo Finance, we will retain the originality of the data, and conclude that the Random Effects Model doesn't work for estimating the relationship in our model. We will continue with our analysis with two models i.e., Pooled Model and Fixed Effects model.

Final Model

As our final model we will be considering the Fixed Effects model (model2) where we have taken neither time or entity effects. Based on the comparison above for the two types of Fixed Effects model, the model2 (sans the effects) give us the best estimation and goodness of fit. It shows that both DJI and IXIC adjusted close prices have a positive imapet on the GSPC adjusted close prices. The IXIC has more strength in its influence on the GSPC adjusted close price. The coefficients of this model are also statiscally significant. This positive relationship between these indices, could suggest investment strategies leveraging the information to balance a portfolio or exploit market trends for potential arbitrage opportunities.

2. Qualitative Dependent Variable Models

Q1.

Data taken from the UCI Machine Learning Repository. It is an assessment of presence of Cardiovascular Disease, here the term "cardio" indicated as a binary variable, indicated the presence of cardiovascular disease, where 1 indicates presence of cardiovascular disease and 0 indicates the absence of the same. In our analysis we wish to see which lifestyle choices and co-morbidities can increase probability of cardiovascular disease. In our models we will be taking, "cardio" as our dependent variable and "weight", to indicate obesity, "ap_hi" and "ap_lo" to indicate Systolic and Diastolic Blood Pressure respectively, "cholesterol", to indicate different level of cholesterol, "glucose", to indicate differenct levels of glucose, "smoke", "alco", to indicate smoking and alcohol consumption by people and "active" to show whether the individuals are following a active lifestyle.

In [22]:	<pre>dt=pd.read_csv("cardio_train.csv") dt.head()</pre>									
Out[22]:	id;age;gender;height;weight;ap_hi;ap_lo;cholesterol;gluc;smoke;alco;active;cardio									
	0	0;18393;2;168;62.0;110;80;1;1;0;0;1;0								
	1	1;20228;1;156;85.0;140;90;3;1;0;0;1;1								
	2	2;18857;1;165;64.0;130;70;3;1;0;0;0;1								
	3	3;17623;2;169;82.0;150;100;1;1;0;0;1;1								
	4	4;17474;1;156;56.0;100;60;1;1;0;0;0;0								
In [23]:	dt.columns									
Out[23]:	<pre>: Index(['id;age;gender;height;weight;ap_hi;ap_lo;cholesterol;gluc;smoke;alco;active;cardio'], dtype='obj ect')</pre>									

```
In [24]:
    dt = pd.read_csv("cardio_train.csv", delimiter=';')
    combined_column_string = 'id;age;gender;height;weight;ap_hi;ap_lo;cholesterol;gluc;smoke;alco;active;car individual_columns = combined_column_string.split(';')
    dt.columns = individual_columns
    print(dt.head())
```

	id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	\
0	0	18393	2	168	62.0	110	80	1	1	0	
1	1	20228	1	156	85.0	140	90	3	1	0	
2	2	18857	1	165	64.0	130	70	3	1	0	
3	3	17623	2	169	82.0	150	100	1	1	0	
4	4	17474	1	156	56.0	100	60	1	1	0	

	alco	active	cardio
0	0	1	0
1	0	1	1
2	0	0	1
3	0	1	1
4	0	0	0

```
In [25]: dt.head()
Out[25]:
                  age gender height weight ap hi ap lo cholesterol gluc smoke alco active cardio
             0 18393
                           2
                               168
                                      62.0
                                            110
                                                  80
                                                                              0
                                                                                    1
                                                              1
                                                                  1
                                                                         0
                                                                                           0
           1 1 20228
                                      85.0
                                                                              0
                                156
                                            140
                                                   90
                                                              3
                                                                         0
                                                                                    1
                                                                                           1
           2 2 18857
                                165
                                      64.0
                                            130
                                                  70
                                                              3
                                                                                    0
                                                                                           1
              3 17623
                                169
                                      82.0
                                                  100
                                                                         0
                                            150
                                                                                    1
                                                                                           1
                                                                                    0
                                                                                           0
           4 4 17474
                                156
                                      56.0
                                            100
                                                   60
                                                              1
                                                                         0
                                                                              0
In [26]: |dt.shape
Out[26]: (70000, 13)
In [27]: dt.isnull().any()
Out[27]: id
                           False
                           False
          age
          gender
                           False
          height
                           False
          weight
                           False
          ap_hi
                           False
          ap lo
                           False
          cholesterol
                           False
                           False
          gluc
          smoke
                           False
          alco
                           False
          active
                           False
                           False
          cardio
          dtype: bool
```

In [28]: dt.dropna()

Out[28]:

	id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
0	0	18393	2	168	62.0	110	80	1	1	0	0	1	0
1	1	20228	1	156	85.0	140	90	3	1	0	0	1	1
2	2	18857	1	165	64.0	130	70	3	1	0	0	0	1
3	3	17623	2	169	82.0	150	100	1	1	0	0	1	1
4	4	17474	1	156	56.0	100	60	1	1	0	0	0	0
69995	99993	19240	2	168	76.0	120	80	1	1	1	0	1	0
69996	99995	22601	1	158	126.0	140	90	2	2	0	0	1	1
69997	99996	19066	2	183	105.0	180	90	3	1	0	1	0	1
69998	99998	22431	1	163	72.0	135	80	1	2	0	0	0	1
69999	99999	20540	1	170	72.0	120	80	2	1	0	0	1	0

70000 rows × 13 columns

In [58]: dt=dt[["cardio","weight","ap_hi","ap_lo","cholesterol","gluc","smoke","alco","active"]]
dt.head()

Out [58]:

	cardio	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active
0	0	62.0	110	80	1	1	0	0	1
1	1	85.0	140	90	3	1	0	0	1
2	1	64.0	130	70	3	1	0	0	0
3	1	82.0	150	100	1	1	0	0	1
4	0	56.0	100	60	1	1	0	0	0

In [60]: dt.shape

Out[60]: (70000, 9)

Q2.

In [35]: dt.describe()

Out[35]:

	cardio	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active
count	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000
mean	0.499700	74.205690	128.817286	96.630414	1.366871	1.226457	0.088129	0.053771	0.803729
std	0.500003	14.395757	154.011419	188.472530	0.680250	0.572270	0.283484	0.225568	0.397179
min	0.000000	10.000000	-150.000000	-70.000000	1.000000	1.000000	0.000000	0.000000	0.000000
25%	0.000000	65.000000	120.000000	80.000000	1.000000	1.000000	0.000000	0.000000	1.000000
50%	0.000000	72.000000	120.000000	80.000000	1.000000	1.000000	0.000000	0.000000	1.000000
75%	1.000000	82.000000	140.000000	90.000000	2.000000	1.000000	0.000000	0.000000	1.000000
max	1.000000	200.000000	16020.000000	11000.000000	3.000000	3.000000	1.000000	1.000000	1.000000

There are 70,000 observations in this dataset. The mean value of the 'cardio' variable is approximately 0.5, suggesting that on average, there's an almost equal split between the two categories (0 and 1). The average weight is around 74.2 kg, with a standard deviation of approximately 14.4 kg. The mean systolic blood pressure is approximately 128.8 mmHg, with a significantly high standard deviation (154.0 mmHg). The mean diastolic blood pressure is about 96.6 mmHg, with a high standard deviation of 188.5 mmHg. The mean for cholesterol and glucose represent that 136% and 122% respectively are observed in the data. It also shows that on average 8.8% people smoke, 5.3% people consume alcohol and 80.3% partake in activity as a lifestyle choice.

```
In [38]: fig, ax = plt.subplots(3, 1, figsize=(15, 15))
plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.4, hspace=0.8)
fig.suptitle('Histograms of Variables')

# Weight
ax[0].hist(dt["weight"], alpha=0.8, bins="fd")
ax[0].set_title("Weight")
```

```
ax[0].set_xlabel("kg")
ax[0].set_ylabel("Frequency")

# Systolic Blood Pressure (ap_hi)
ax[1].hist(dt["ap_hi"], alpha=0.8, bins=10)
ax[1].set_title("Systolic blood pressure")
ax[1].set_xlabel("mmHg")
ax[1].set_ylabel("Frequency")

# Diastolic Blood Pressure (ap_lo)
ax[2].hist(dt["ap_lo"], alpha=0.8, bins=10)
ax[2].set_title("Diastolic blood pressure")
ax[2].set_xlabel("mmHg")
ax[2].set_ylabel("Frequency")

plt.tight_layout()
plt.show()
```


From the histograms above, we can observe that the data distribution for weight is almost symmetric with a slight left skewness, which will be verified later in the QQ plots. For the Systolic and Diastolic BP, since the values are restricted to the range of blood pressure metrics, they are rather a bar representing the values, concentrated in that region.

```
In [144]: fig, ax = plt.subplots(3, 2, figsize=(15, 10))
          plt.subplots adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.4, hspace=0.8)
          fig.suptitle('Bar Plots of Categorical Variables')
          # Cholesterol
          cholesterol counts = dt['cholesterol'].value counts()
          ax[0, 0].bar(cholesterol counts.index, cholesterol counts.values, alpha=0.8)
          ax[0, 0].set title('Cholesterol')
          ax[0, 0].set xlabel('Cholesterol Levels')
          ax[0, 0].set ylabel('Frequency')
          # Glucose
          glucose counts = dt['gluc'].value counts()
          ax[0, 1].bar(glucose counts.index, glucose counts.values, alpha=0.8)
          ax[0, 1].set title('Glucose')
          ax[0. 1].set xlabel('Glucose Levels')
          ax[0, 1].set ylabel('Frequency')
          # Smoke
          smoke counts = dt['smoke'].value counts()
          ax[1, 0].bar(smoke counts.index, smoke counts.values, alpha=0.8)
          ax[1, 0].set title('Smoking')
          ax[1. 0].set xlabel('Smoking Levels')
          ax[1, 0].set ylabel('Frequency')
          # Alcohol
          alcohol counts = dt['alco'].value counts()
          ax[1, 1].bar(alcohol_counts.index, alcohol_counts.values, alpha=0.8)
          ax[1, 1].set title('Alcohol')
          ax[1, 1].set xlabel('Alcohol Levels')
```

```
ax[1, 1].set_ylabel('Frequency')

# Active
active_counts = dt['active'].value_counts()
ax[2, 0].bar(active_counts.index, active_counts.values, alpha=0.8)
ax[2, 0].set_title('Activity')
ax[2, 0].set_xlabel('Activity Levels')
ax[2, 0].set_ylabel('Frequency')

ax[2, 1].axis('off')

plt.tight_layout()
plt.show()
```


Project 3 Kanupriya 006318889 - Jupyter Notebook 06/12/23, 4:48 PM

We can clearly observe that for cholesterol, there are more number of observations for normal level of cholesterol and almost equal frequency for those above normal and well above normal levels. The same observation can be made for the glucose levels in individuals, where there are more people with more normal levels of glucose. We also see that there are less people in our dataset who are smoking and consume alcohol. In the case of activity, we can see that there are more people who are active.

-0.25

0.00

0.25

0.50

Alcohol Levels

0.75

1.00

1.25

```
In [43]:
    fig, ax = plt.subplots(1, 3, figsize=(20, 5))
    plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.4, hspace=0.8)
    fig.suptitle('Q-Q Plots of Variables')

stats.probplot(dt["weight"], dist="norm", plot=ax[0])
    ax[0].set_title("Weight")
    ax[0].set_ylabel("kg")

stats.probplot(dt["ap_hi"], dist="norm", plot=ax[1])
    ax[1].set_title("Systolic blood pressure")
    ax[1].set_ylabel("mmHg")

stats.probplot(dt["ap_lo"], dist="norm", plot=ax[2])
```

```
ax[2].set_title("Diastolic blood pressure")
ax[2].set_ylabel("mmHg")
plt.tight_layout()
plt.show()
```


We can clearly observe that the weight variable is not normally distributed, the left tail of the observations devaites indicating left skewness. On the other hand for Systolic and Diastolic BP, we can see, that it is also not normally distributed, there is again a left tail devaition, indicating left skewness even in the distribution fo these two variables.

In [136]: plt.figure(figsize=(20,20))
sns.pairplot(dt, height = 7.0, kind='reg')

Out[136]: <seaborn.axisgrid.PairGrid at 0x2b100f1c0>

<Figure size 2000x2000 with 0 Axes>

In [46]: corr_matrix1=dt.corr()
corr_matrix1

Out [46]:

	cardio	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active
cardio	1.000000	0.181660	0.054475	0.065719	0.221147	0.089307	-0.015486	-0.007330	-0.035653
weight	0.181660	1.000000	0.030702	0.043710	0.141768	0.106857	0.067780	0.067113	-0.016867
ap_hi	0.054475	0.030702	1.000000	0.016086	0.023778	0.011841	-0.000922	0.001408	-0.000033
ap_lo	0.065719	0.043710	0.016086	1.000000	0.024019	0.010806	0.005186	0.010601	0.004780
cholesterol	0.221147	0.141768	0.023778	0.024019	1.000000	0.451578	0.010354	0.035760	0.009911
gluc	0.089307	0.106857	0.011841	0.010806	0.451578	1.000000	-0.004756	0.011246	-0.006770
smoke	-0.015486	0.067780	-0.000922	0.005186	0.010354	-0.004756	1.000000	0.340094	0.025858
alco	-0.007330	0.067113	0.001408	0.010601	0.035760	0.011246	0.340094	1.000000	0.025476
active	-0.035653	-0.016867	-0.000033	0.004780	0.009911	-0.006770	0.025858	0.025476	1.000000

In [47]: plt.figure(figsize=(10,6))
 sns.heatmap(corr_matrix1,annot=True, cmap="Blues")

Out[47]: <AxesSubplot:>

										1.0
cardio	1	0.18	0.054	0.066	0.22	0.089	-0.015	-0.0073	-0.036	
weight	0.18	1	0.031	0.044	0.14	0.11	0.068	0.067	-0.017	- 0.8
ap_hi	0.054	0.031	1	0.016	0.024	0.012	-0.00092	0.0014	-3.3e-05	
ap_lo	0.066	0.044	0.016	1	0.024	0.011	0.0052	0.011	0.0048	- 0.6
cholesterol	0.22	0.14	0.024	0.024	1	0.45	0.01	0.036	0.0099	
gluc	0.089	0.11	0.012	0.011	0.45	1	-0.0048	0.011	-0.0068	- 0.4
smoke	-0.015	0.068	-0.00092	0.0052	0.01	-0.0048	1	0.34	0.026	- 0.2
alco	-0.0073	0.067	0.0014	0.011	0.036	0.011	0.34	1	0.025	0.2
active	-0.036	-0.017	-3.3e-05	0.0048	0.0099	-0.0068	0.026	0.025	1	- 0.0
	cardio	weight	ap_hi	ap_lo	cholestero	l gluc	smoke	alco	active	

We can observe from the pairplots, correlation matrix as well as from the heatmap that there exists no perfect multicollinearity or even high correlation between the variables, indicating that there exists no problem with multicollinearity.

```
In [49]:
         fig. ax = plt.subplots(3, 1, figsize=(15, 15))
         plt.subplots adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.7, hspace=0.2)
         # Weiaht
         ax[0].boxplot(dt["weight"])
         ax[0].set title("Weight")
         ax[0].set vlabel("kg")
         # Systolic Blood Pressure (ap hi)
         ax[1].boxplot(dt["ap hi"])
         ax[1].set title("Systolic blood pressure")
         ax[1].set_ylabel("mmHg")
         # Diastolic Blood Pressure (ap lo)
         ax[2].boxplot(dt["ap_lo"])
         ax[2].set title("Diastolic blood pressure")
         ax[2].set ylabel("mmHq")
         plt.tight_layout()
         plt.show()
```



```
In [51]: fig, ax = plt.subplots(figsize=(15, 8))
plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.4, hspace=0.5)

boxplot_data = [dt["weight"], dt["ap_hi"], dt["ap_lo"]]
ax.boxplot(boxplot_data)
ax.set_xticklabels(['Weight', 'Systolic BP', 'Diastolic BP'])
ax.set_ylabel("Values")

plt.title('Boxplots of Numerical Variables')
plt.show()
```


We see that there is an overlap between the three variables, weight, Systolic BP and Diastolic BP. The spread for Susytolic and Diastolic BP is more as compared to weight. It also indicates that weight, Systolic and Diastolic BP are left skewed and have potential outliers. The median for weight is more than for the Systolic and Diastolic BP. The Inter Quartile Range is also larger for the weight variable, showing that the spread for weight is more than for the Systolic and Diastolic BP.

Q3.

Linear Probability Model

Model:

```
In [76]: modelx = smf.ols(formula='cardio ~ weight + ap_hi + ap_lo+ C(cholesterol) + C(gluc)+ C(smoke)+ C(alco)
    resultsx = modelx.fit(cov_type='HC3')

In [77]: resultsx.summary()

Out[77]:
    OLS Regression Results

Dep. Variable: cardio R-squared: 0.080
```

0.080

Adj. R-squared:

OLS

Method:	Least	t Squares	F	-statisti	c: 69	692.8		
Date:	Wed, 06	Dec 2023	Prob (F-	statistic): (0.00		
Time:		03:26:51	Log-Li	kelihood	d: -478	-47881.		
No. Observations:		70000		AIC	9.578e	+04		
Df Residuals:		69989		ВІС	9.589e	+04		
Df Model:		10						
Covariance Type:		HC3						
	coef	std err	z	P> z	[0.025	0.975]		
Intercept	0.0651	0.011	5.730	0.000	0.043	0.087		
C(cholesterol)[T.2]	0.1377	0.006	24.496	0.000	0.127	0.149		
C(cholesterol)[T.3]	0.3182	0.006	54.586	0.000	0.307	0.330		
C(gluc)[T.2]	0.0229	0.007	3.158	0.002	0.009	0.037		
C(gluc)[T.3]	-0.0622	0.008	-8.179	0.000	-0.077	-0.047		
C(smoke)[T.1]	-0.0382	0.007	-5.692	0.000	-0.051	-0.025		
C(alco)[T.1]	-0.0389	0.008	-4.622	0.000	-0.055	-0.022		
C(active)[T.1]	-0.0435	0.005	-9.445	0.000	-0.052	-0.034		
weight	0.0053	0.000	41.203	0.000	0.005	0.006		
ap_hi	0.0001	4.81e-05	2.986	0.003	4.93e-05	0.000		
ap_lo	0.0001	2.12e-05	6.764	0.000	0.000	0.000		
Omnibus: 3	Omnibus: 309393.406 Durbin-Watson: 1.986							
Prob(Omnibus): 0.000 Jarque-Bera (JB): 8207.113								

0.032

Prob(JB):

0.00

Skew:

Kurtosis: 1.324 **Cond. No.** 1.41e+03

Notes:

- [1] Standard Errors are heteroscedasticity robust (HC3)
- [2] The condition number is large, 1.41e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Probit model

```
In [86]: modely = smf.probit(formula='cardio ~ weight + ap_hi + ap_lo+ C(cholesterol) + C(gluc)+ C(smoke)+ C(alcoresultsy = modely.fit(disp=0)
```

```
In [79]: resultsy.summary()
```

Out [79]:

Probit Regression Results

Dep. Variable: cardio **No. Observations:** 70000

Model: Probit Df Residuals: 69989

Method: MLE Df Model: 10

Date: Wed, 06 Dec 2023 Pseudo R-squ.: nan

Time: 03:27:36 Log-Likelihood: nan

converged: True LL-Null: -48520.

Covariance Type: nonrobust LLR p-value: nan

coef std err z P>|z| [0.025 0.975]

Intercept nan nan nan nan nan nan

```
C(cholesterol)[T.2]
                   nan
                            nan nan
                                       nan
                                               nan
                                                       nan
C(cholesterol)[T.3]
                   nan
                                       nan
                                                       nan
                            nan
                                nan
                                               nan
      C(gluc)[T.2]
                   nan
                                       nan
                            nan
                                nan
                                               nan
                                                       nan
      C(gluc)[T.3]
                   nan
                            nan
                                nan
                                       nan
                                               nan
                                                       nan
    C(smoke)[T.1]
                   nan
                                       nan
                            nan
                                nan
                                               nan
                                                       nan
      C(alco)[T.1]
                   nan
                                nan
                                       nan
                                               nan
                                                       nan
                            nan
    C(active)[T.1]
                   nan
                            nan
                                nan
                                       nan
                                               nan
                                                       nan
          weight
                   nan
                            nan
                                nan
                                       nan
                                               nan
                                                       nan
            ap hi
                   nan
                            nan
                                nan
                                       nan
                                               nan
                                                       nan
            ap lo
                   nan
                            nan
                                nan
                                       nan
                                               nan
                                                       nan
```

```
In [88]: import statsmodels.api as sm

X = dt[["weight", "ap_hi", "ap_lo", "cholesterol", "gluc", "smoke", "alco", "active"]]
y = dt["cardio"]

modeln = sm.Probit(y, X).fit(method='bfgs', maxiter=1000)
print(modeln.summary())
```

Optimization terminated successfully.

Current function value: 0.670835

Iterations: 28

Function evaluations: 35 Gradient evaluations: 35

Probit Regression Results

Dep. Variable: cardio No. Observations: 70000

Model: Method: Date: Time: converged: Covariance Ty	thod: te: Wed, me:			el: R-squ.: kelihood: l:	69992 7 0.03219 -46958. -48520. 0.000		
=========	coef	std err	z	P> z	[0.025	0.975]	
weight ap_hi ap_lo cholesterol gluc	-0.0008	0.000	-4.107	0.000	-0.001	-0.000	
	0.0004	5.06e-05	7.301	0.000	0.000	0.000	
	0.0004	3e-05	12.427	0.000	0.000	0.000	
	0.3623	0.008	43.858	0.000	0.346	0.379	
	-0.1538	0.009	-16.345	0.000	-0.172	-0.135	
smoke	-0.0965	0.018	-5.337	0.000	-0.132	-0.061	
alco	-0.0643	0.023	-2.825	0.005	-0.109	-0.020	

-29.512

0.000

-0.359

-0.314

0.011

```
In [67]: # log likelihood value:
         print(f'results_probit.llf: {modeln.llf}\n')
```

-0.3364

results_probit.llf: -46958.478118725034

```
In [68]: # McFadden's pseudo R2:
         print(f'results_probit.prsquared: {modeln.prsquared}\n')
```

results_probit.prsquared: 0.032188841395919154

```
In [89]: modeln.aic
```

Out[89]: 93932.95623745007

active

```
In [90]: modeln.bic
```

Out[90]: 94006.20624161832

Logit Model

In [80]: modelz = smf.logit(formula='cardio ~ weight + ap_hi + ap_lo+ C(cholesterol) + C(gluc)+ C(smoke)+ C(alco)
modelz.summary()

Out[80]:

Logit Regression Results

Dep. Variable:	cardio	No. Observations:	70000
Model:	Logit	Df Residuals:	69989
Method:	MLE	Df Model:	10
Date:	Wed, 06 Dec 2023	Pseudo R-squ.:	0.1271
Time:	03:28:29	Log-Likelihood:	-42351.
converged:	True	LL-Null:	-48520.
Covariance Type:	nonrobust	LLR p-value:	0.000

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-6.4584	0.082	-79.125	0.000	-6.618	-6.298
C(cholesterol)[T.2]	0.4369	0.026	17.085	0.000	0.387	0.487
C(cholesterol)[T.3]	1.2517	0.034	36.865	0.000	1.185	1.318
C(gluc)[T.2]	0.0483	0.034	1.425	0.154	-0.018	0.115
C(gluc)[T.3]	-0.2923	0.038	-7.745	0.000	-0.366	-0.218
C(smoke)[T.1]	-0.2049	0.031	-6.545	0.000	-0.266	-0.144

```
C(alco)[T.1] -0.2024
                                   0.040
                                         -5.098 0.000 -0.280 -0.125
              C(active)[T.1] -0.2113
                                   0.021 -10.187 0.000 -0.252 -0.171
                                                     0.012 0.015
                   weight 0.0136
                                   0.001
                                         21.951 0.000
                          0.0431
                                   0.001
                                         71.977 0.000
                                                     0.042
                                                           0.044
                    ap hi
                    ap lo 0.0003 6.51e-05
                                          4.068 0.000
                                                     0.000
                                                           0.000
In [81]: # log likelihood value:
          print(f'results_logit.llf: {modelz.llf}\n')
          results_logit.llf: -42351.00751529075
In [82]: # McFadden's pseudo R2:
          print(f'results logit.prsquared: {modelz.prsquared}\n')
          results logit.prsquared: 0.12714850880146011
In [91]: modelz.aic
Out[91]: 84724.0150305815
In [92]: modelz.bic
Out[92]: 84824.73378631285
          Confusion Matrix
In [83]: #for linear probability
          X_cols = ["weight", "ap_hi", "ap_lo", "cholesterol", "gluc", "smoke", "alco", "active"]
          lr = LogisticRegression()
```

```
logit_mod = lr.fit(dt[X_cols], dt['cardio'])
conf_mat = confusion_matrix(dt['cardio'], lr.predict(dt[X_cols]))
print(conf_mat)
print('Accuracy =', lr.score(dt[X_cols],dt['cardio']))

# Confusion matrix plot Raschka (2014)
fig, ax = plt.subplots(figsize=(2, 2))
ax.matshow(conf_mat, cmap=plt.cm.Reds, alpha=0.3)
for i in range(conf_mat.shape[0]):
    for j in range(conf_mat.shape[1]):
        ax.text(x=j, y=i,
        s=conf_mat[i, j],
        va='center', ha='center')
plt.xlabel('predicted label')
plt.ylabel('true label')
plt.ylabel('true label')
```

[[27670 7351] [12322 22657]] Accuracy = 0.7189571428571429

True Positives (TP): 22,657 cases were correctly predicted as positive (e.g., predicted as having cardiovascular disease). False Positives (FP): 7,351 cases were wrongly predicted as positive (predicted as having cardiovascular disease, but they do not). True Negatives (TN): 27,670 cases were correctly predicted as negative (e.g., predicted as not having cardiovascular disease). False Negatives (FN): 12,322 cases were wrongly predicted as negative (predicted as not having cardiovascular disease, but they do). The logit model gives an accruacy level of approximately 72%, indicating that it correctly predcited outcomes for 71.90% of the cases. Since there are high TP and TN values, it predcited high number of true negative and positive cases. There are also moderate number of false positive and negative cases but these are not overwhelming.

In the aobve assessment of running our model with "cardio" as the dependent variable and weight, systolic blood pressue, cholesterol, glucose, smoke, alcohol and activity as the dependent variables, we see a similar result for all three. There are some slight changes across the statistical summary fo each model. Overall on analysis, I observe that the linear probability model shows the lowest AIC and BIC value amongst the three models. When looking at the adjusted R squared, it is 8% and the psuedo R squared is higher for the probit model. When looking at the log likelihood value it is the logit model giving the goodness of fit. Looking at all these parameters, and observing that association to the probability of outcomes is almost the same across models, we will choose the logit model, for higher psuedo R squared, and highest Log Likelihood value. Even though the AIC and BIC values are the lowest for the linear probability model, but with several reasons supporting logit, I will still choose the Logit model.

Q4.

```
In [117]: X_new = pd.DataFrame({
    'weight': [74, 65, 200, 82],
    'ap_hi': [128, 140, 130, 150],
    'ap_lo': [80, 90, 60, 85],
    'cholesterol': [1, 2, 3, 0],
    'gluc': [1, 2, 3, 0],
    'smoke': [0, 1, 0, 0],
    'alco': [0, 1, 0, 0],
    'active': [0, 1, 0, 0]
})
X_new
```

Out[117]:

	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active
0	74	128	80	1	1	0	0	0
1	65	140	90	2	2	1	1	1
2	200	130	60	3	3	0	0	0
3	82	150	85	0	0	0	0	0

```
In [120]: X_new=X_new.dropna()
X_new
```

Out[120]:

	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active
0	74	128	80	1	1	0	0	0
1	65	140	90	2	2	1	1	1
2	200	130	60	3	3	0	0	0
3	82	150	85	0	0	0	0	0

```
In [122]: categorical_cols = ['cholesterol', 'gluc', 'smoke', 'alco', 'active']
          for col in categorical cols:
              X_new[col] = pd.Categorical(X_new[col], categories=[0, 1, 2, 3])
          print(X new dtypes)
                             int64
          weight
          ap hi
                             int64
          ap lo
                             int64
          cholesterol
                         category
          aluc
                         category
                         category
          smoke
          alco
                         category
          active
                          category
          dtype: object
In [123]: print(X_new.iloc[2])
          weight
                          200
          ap hi
                          130
                           60
          ap_lo
          cholesterol
                            3
          aluc
                            0
          smoke
          alco
          active
          Name: 2, dtype: int64
```

```
In [125]: print(X new['cholesterol'].unique())
          print(X new['gluc'].unique())
          print(X new['smoke'].unique())
          print(X new['alco'].unique())
          print(X new['active'].unique())
           [1, 2, 3, NaN]
          Categories (4, int64): [0, 1, 2, 3]
           [1, 2, 3, NaN]
          Categories (4, int64): [0, 1, 2, 3]
           [0, 1]
          Categories (4, int64): [0, 1, 2, 3]
           [0, 1]
          Categories (4, int64): [0, 1, 2, 3]
           [0, 1]
          Categories (4, int64): [0, 1, 2, 3]
In [132]: X new['cholesterol'] = pd.Categorical(X new['cholesterol'], categories=[1, 2, 3])
          X new['gluc'] = pd.Categorical(X new['gluc'], categories=[1, 2, 3])
          X new['cholesterol'].fillna(1, inplace=True)
          X new['qluc'].fillna(1, inplace=True)
          print(X new['cholesterol'].unique())
          print(X new['qluc'].unique())
           [1, 2]
          Categories (3, int64): [1, 2, 3]
          [1, 2]
          Categories (3, int64): [1, 2, 3]
```

For observations 0 and 1, there are around 52 - 59% chances of cardiovasular disease presence when the weight of the person is around 74 to 65 kg, systolic and diastolic pressure 128-140 and 80-90 respectively, and their cholesterol and glucose are normal or above normal. The only set of difference occurs in their lifestyle, where in the first observation the person doesn't smoke, drink or is not active but in the second observations he smokes, drinks and is active. In the third set of observations, the chnaces of cardiovascular disease is accounting to a very high probability of 87% wherein the weight is as high as 200kg, systolic an ddiastolic blood pressure is 130 and 60 respectively, cholesterol and glusoces are well above normal levels but the person doesn't smoke, drink or is active. This indicates a very important observation, that obesity, high cholesterol levels and diabetes are major causes of cardiovascular diseases and the interplay of these alone can significantly increase chances of cardiovascular health problems. in the last prediction, there are 76% chances of cardiovascular disease presence, wherein the weight if 82kg, and the systolic blood pressure is as high as 150 and diastolic is normal ranging at 85, and the person doesn't have cholesterol, diabetes and doesn't smoke, drink or is active. We observe that obesity and high blood pressure can itself lead to larger probaballity of cardiovascular diseases in people. This analysis gives a very clear picture on the major causes and how the interplay of different co-morbidities and lifestyle choices can effect you chances of cardiovascular diseases. The main cause can be attributed to weight and and bloos pressure levels, seeing the difference in result from predictions in observation 0 and 1 to predictions in observation 2 and 3. This also gives a intuitively reliable predcitions for the values that were given to the model.