

Progress Report

TRAFFIC ENGINEERING DEMONSTRACTION PROJECT ON U.S. 52 BYPASS; LAFAYETTE, INDIANA

INVENTORY, ANALYSIS AND RECOMENDATIONS

To: G. A. Leonards, Director

Joint Highway Research Project

May 10, 1966

From: H. L. Michael, Associate Director

Joint Highway Research Project

File: 8-7-4 Project: C-36-66D

The attached Summary Report entitled "Traffic Engineering Demonstration Project on U.S. 52 Bypass; Lafayette, Indiana, - Inventory, Analysis, and Recommendations" was prepared by G. A. Shunk and H. L. Michael of our staff. It is a summarization of all work done to date in this study. It presents recommendations for work to be undertaken by the State Highway Commission to improve the operative efficiency of the highway. The work recommended is of such a nature as to be generally applicable to similar situations elsewhere in Indiana and other states to improve the efficiency and safety of traffic movement at minimal expenditure.

This work was undertaken in order to guide the State in improving efficiency of the facility until major reconstruction becomes possible. The effectiveness of the improvements recommended and made will be measured and used to develop a simulation model which will permit the prediction of the effects of similar improvements on other facilities, thereby presenting a tool for evaluation of benefits to be received. Several projects outlined in this report have already been implemented as a result of earlier preliminary recommendations to the State.

The report is presented for the record and will be submitted to the State Highway Commission and the Bureau of Public Roads for review and comment.

Respectfully submitted, S.T. Warsh & Michael

Harold L. Michael, Secretary

HIM: sat

Attachment

Copies: F. L. Ashbaucher

J. R. Cooper

J. W. Delleur W. L. Dolch

W. H. Goetz

W. L. Grecco G. K. Hallock

F. S. Hill

J. F. McLaughlin

F. B. Mendenhall

R. D. Miles

J. C. Oppenlander

W. P. Privette

M. B. Scott

K. B. Woods

E. J. Yoder

			•	
,				•
	÷			

Progress Report

TRAFFIC ENGINEERING DEMONSTRATION PROJECT

ON U.S. 52 BYPASS; LAFAYEFFE, INDIANA

INVENTORY, ANALYSIS, AND RECOMMENDATIONS

By

Gordon A. Shunk Research Assistant

And

Harold I. Michael Associate Director

Joint Highway Research Project

Froject No.: C-36-66D File No.: 8-7-4

Prepared as Part of an Investigation

Conducted by

Joint Highway Research Project Engineering Experiment Station Purdue University

in cooperation with

Indiana State Highway Commission

and the

Bureau of Public Roads U S Department of Commerce

Not Released for Publication

Subject to Change

Not Reviewed by

Indiana State Highway Commission or the Bureau of Public Roads

Purdue University Lefayette, Indiana

May 10, 1966

	Digitized by the Internet Archive in 2011 with funding from Sloan Foundation; Indiana Department of Transportation
http://www	v.archive.org/details/trafficengineeri00shun

TABLE OF CONTENTS

	Page
INTRODUCTION	. 1
	. 2
PROCEDURA	٠ 4
Physical	. 6
Operational	7
Speed-and-Delay	. 13
Accidents	
AMALYSIS	. 16
RECOMPENDED INTROVINEURS	. 25
Stage I - Traffic Engineering	9
General Recommendations	
Specific Recommendations	
Lacordections	
Non-intersections	
Stage II - Minor Construction	
Stage III - Major Construction.	
CONCLUSION	. 79
	. 84

LIST OF FIGURES

Figure		Pege
1	Map of Study Location and Counting Sections	3
2	Development on the Bypass since 1938	5
3	Mean Speeds of Section of the Eypass	14
4	Location Map of Speed-Delay Study Sestions	15
5	Three year cumulative accident rates at in- tersections	19
6	Three year cumulative accident rates at other than intersections	20
7	Spot map of 1963 accidents	21
8	Sample Collision-Condition accident analysis diagram	23
9	Variation of accident rate throughout the day	24
10	Recommended Intersection Layout for a 4 lane undivided Bypass section	28
11	Example of signing exeroschment in Right of Way	31
12	Example of good driveway delimitation	31
13	Existing Teal Road-Indiana 25-U.S. 231 intersection plan	34
14	Example of poor approach alignment at Teal Road inter- section	35
15	Traffic control device at Indiana 38 Intersection	35
16	Existing Indiana 38-Main Street intersection plea	38
17	Existing Indiana 26-South Street intersection plan	42
18	Existing Union Street intersection plan	45
19	Existing Greenbush Street intersection plan	47
20	Exicting Rediena 25-Schueler : Plate authoragetion	# D

		Ð

LIST OF FIGURES

Continued

LTEALS			Fage
21	Example of driveways in Northwest quadrant of Indians 25-Schuyler Street intersection	. 0	52
22	Example of driveways in Northeast quadrant of Indians 25- Schuyler Street intersection	0 0	. 52
23	Plan of existing local streets at Indiana 25-South Street intersection	e 0	. 53
24	Recommended Stage I revisions to Indiana 25-Schwyler Street intersection		. 54
25	Recommended treatment of local streats at Indiana 25-Schuyl Street intersection		. 55
26	Existing Rappy Hollow-Soldiers Four Road intersection plan	o c	57
27	Existing Salisbury Street-County Farm Road intersection plan	D 0	. 60
28	Existing Northwestern Avenue-U. S. 52 intersection plan	0 0	62
29	Example of poor driveway delimitation	0 0	65
30	Example of multiple, closely spaced low volume driveways .		65
31	Example of proximity development	0 0	67
32	Recommended modification of Eappy Bollow-Soldiers Bone Rox intersection in Stage II		. 70
33	First alternate Stage II modification at Happy Hollow-Soldi Home Road intersection		
34	Second alternate Stage II modification at Happy Hollow-Sold Home Road intersection		
35	Recommended intersection design for Stage III	0 0	74
36	Recommended cross section for Stage III	0 9	75
37	Recommended Stage II modification of Teal Road-S.R.25-U.S. 231 intersection	0 0	76
38	Existing conditions on alignment for recommended intersection at Teal Road		77

APPENDIX PIGURES

Figure		Pege
A1	Approach and Turning AADT for each intersection	84
A2	Hourly verieties of traffic volume at three locations	98
A3	Directional variation of traffic at one location	101
M4	Variation of percent commercial vehicles one location	102
A5	Existing vehicle arrival headways for five volume levels.	103
A6	Location map of socident analysis sactions	104
A7	Accident involvement rate of saveral driver groups	105
A8	Location map of areas discussed in mon-intersection area recommendations	107
A9	Sectioned orientation maps chowing development and location of areas discussed in non-intersection recommendations .	108

		ž,	

LEST OF TABLES

Table		Page
1.	Proportion of Bypass frontage used by several general acti- vity classes	8
2.	Hierarchical representation of Bypass volume count program and volumes obtained	10
3.	Results of "Headlights On" travel character study	12
	APPENDIX	
Al.	Summary of Physical Laventory of Typess	128
A2.	Summery of Driveway Laventory of Eypass	136
A3.	Summary of Speeds and Delays on Expass	139
M.	Summary of statistical analysis of speeds and delay	140
A5.	Summary of several intersection accident rates	143
A6.	Summary of several non-intersection accident rates	145
A7.	Summary of types of non-intersection accidents	147
A8.	Capacity and Peak Hour Volume at all intersection approaches	148
A9.	Capacity and Peak Hour Volume of all non-intersection	9.80
		150
A10.	Existing and recommended traffic signal cycles	151
All.	Summary of percent commercial and axia/vehicle ratio at all	152

INTRODUCTION

Traffic congestion on city streets is currently a major problem of nearly every urban area in the United States. This condition is the result of increases in travel demand for beyond the capability of existing streets to carry traffic. The resulting congestion is causing strangulation of central business areas as people avoid constriction and seek desire satisfaction in areas accessible by less restricted traffic facilities. When no better alternatives exist, congestion contributes to loss of productive time and increased travel costs as people require more time to reach their destination and drive carelessely in attempting to circumvent congestion situations.

Congested conditions also exist on arterial highways in suburban areas. In this situation, however, travelers usually are not sufficiently familiar with the area to be able to select an alternate to the marked route and must, therefore, deal with the problem in whatever manner they feel necessary. The result of passive acceptance of the congested situation is the inefficiency of increased travel time. The result of drivers' attempts to climinate delay may be an accident and injury or death. The problem presented to the highway engineer is, therefore, one of improving the traffic carrying capabilities of streets and highways in order to satisfactorily serve travel desires.

Congestion can be attributed to several factors, most of which may be grouped under either of two general headings. The more abvious of the two is inadequacy of the existing physical facility. This condition is difficult and expensive to remedy. The less recognizable

		,	
	4		

able. This latter condition is usually relatively easily and inexpensively remedied if the effectiveness of traffic engineering techniques is known and the ability to apply these is within the grasp of persons responsible.

The project reported here was designed to demonstrate the effectiveness of applied traffic engineering for attaining the ultimate operating potential of an arterial highway in a suburban area. Its seeds were in the work done by the U. S. Bureau of Public Roads on Wisconsin Avenue in Washington, D. C. The Wisconsin Avenue Study demonstrated that application of traffic engineering principles could yield significant results in the improvement of traffic operation on an urban arterial street. The present project proposed to demonstrate how these same techniques could yield similar improvements for a different situation, the suburban arterial highway. This type facility was chosen because of its similarity to several situations in Indiana, as well as other states, and the generalized applicability that could thereby be derived. It is felt that results obtained here will be helpful to the State Highway Commission in decisions relating to how to utilize limited available funds for improving existing facilities so as to obtain maximum benefit for each dollar spent. The results will also demonstrate means of obtaining temporary relief for areas badly in need thereof, but for which remedial major construction is currently financially infeasible.

THE STUDY

The U.S. 52 Bypass of Lafayette, Indiana, was the location chosen for study, principally because of its proximity to the University (Figure 1).

FIGURE 1 LOCATION OF CONTROL COUNTERS AT BOUNDRIES OF COUNTING SECTIONS

This location is the principal bottleneck on a heavily traveled route between Chicago and Indianapolis. It is a typical suburban area arterial highway on which no access control has been exercised (Figure 2), and it is badly in need of improvement. Readily available funds are nowhere near sufficient for the type of improvement that is presently necessary. Existing physical and operating conditions were studied in depth, and are summarized in this report. Inventories and analyses of accidents, speed and delays of traffic flow were also made. These studies were reported in detail in two previous reports and are summarized here. The effectiveness of improvements recommended in this report will also be estimated by use of a mathematical simulation model. Details of the model and results of such tests will be presented in subsequent reports.

PROCEDURE

The inventories of existing conditions were conducted between August 1, 1964, and July 1, 1965, and included the following surveys:

- A. Physical Conditions
 - 1. Highway geometrics
 - 2. Physical dimensions other than geometrics
 - 3. Type and intensity of marginal development
- B. Traffic Conditions
 - 1. Traffic volume
 - 2. Turning movements
 - 3. Vehicle classification
 - 4. Travel character analysis
- C. Accidents
- D. Speed-and-Delay

FIGURE 2 DEVELOPMENT ALONG PORTION OF THE U.S. 52 BY-PASS FOR 1939, 1952 AND 1964.

The data was gathered by the staff of the Joint Highway Research Project with the cooperation of the Indiana State Highway Commission, the Indiana State Police, and police and public works agencies of the cities of Lafayette and West Lafayette.

Physical Conditions

The inventory of geometric features utilized plans for the original construction of the present facility. This construction was completed in 1937 and has since been mulified in only minor respects except for the addition of two lanes and a transition to a divided crossection at the south end in 1943. Information obtained from the plans included horizontal and vertical curvature, right-of-way width, intersection angles, and stationing of control points. The physical features are summarized in Table Al. (Tables and Figures with an "A" prefix number are in the appendix)

The Bypass is 41,954 feet long from the north end tangent to the Teal Read intersection. There are 15 intersections, 8 of which are signalized. The maximum horizontal curvature is 3.0 degrees and the steepest grade is 6.0 percent. The readway is centered on a 100 foot right-of-way except at one location where only 78 feet is available for a distance of 1100 feet.

Pavement type and quality are consistent for the entire length of the facility: a deteriorating bituminous overlay on Portland Cement Concrete. Underlying concrete is heaving, causing roughness at many locations. At several locations "extra" lanes used to relieve locally

pavement. These lanes were constructed as a maintenance activity and have a thin layer of bituminous material over the aggregate shoulder (Table Al (4)). Shoulder quality and width are inconsistent. The area measured was that other than turf, adjacent to the pavement, and includes three informal rest areas. The width of maintained shoulder is ten feet at most locations (Table Al (5)).

Development along the facility was cataloged by use of aerial photography, and each developed parcel was classified according to function. Width of driveways as well as estimated AADTs are shown in Table A2. The only quantitative measure of the influence of driveways is that inferred from the results of the regression analyses of accidents and travel speed-and-delay, which is discussed in a later section of this report. Because of the small number of samples, no attempt was made to correlate specific land uses with location, accidents, or delays.

Land use along the Bypass was summarized on a front-footage basis for informational purposes and is shown in Table 1. Land use along intersecting facilities was cataloged in only a general manner by inspection of aerial photographs and field recommaissance and is given in the intersection analysis portion of each recommendation. Figure A9 shows a general orientation of the bypass and development along the route.

Traffic Conditions

Measurement of traffic volumes utilized pneumatic actuated equipment.

In order to utilize a control counting technique, the facility was broken into sections and a hierarchy of control counters established. The sections

TABLE 1

FUNCTIONAL IAND USE

OF

BYPASS MARGINAL DEVELOPMENT

Lend Use	Percent
Residential.	7.3
Retail Commercial	19.8
Wholesale Commercial	0.1
Services and Offices	2.7
Manufacturing Industrial	12.4
Non-Manufacturing Industrial	1.9
Public and QuasiPublic Buildings	0.5
Public and QuasiPublic Open Space	2.2
Other Open Space and Miscellaneous	53.1

(Figure 1) were designed according to the section length criterion of the simulation model and were four in number.

The master control counter was an Automatic Traffic Recorder (ATR) station operated by the State Highway Commission south of Lafayette on U. S. 52. It was possible to obtain nearly complete data from this counter for the year during which the local volume counting was done and thereby calculate a true AADT. The major control counters, located at the ends of the Bypass, were operated during any period when counting was being done. The AADT at these counters was calculated by multiplying the average ratio of their counts to the ATR counts by the AADT of the ATR. These AADT values were then used as a basis for calculating AADT at Bypass locations. Secondary control counters were located at the boundaries of given sections. These were operated whenever any traffic counting was being done in the section. AADT for each secondary control was based on those of major control. AADT for counts within sections was based on those for secondary control at the section boundaries. The hierarchy was arranged in this manner in order to minimize variation due to diversity of location. Accuracy of the volume counts was paramount in order to achieve a valid calibration of the simulation model. The AADT of all control locations are summarized in a hierarchical representation in Table 2. AADT of each intersection approach is given in Figure Al. Daily variation of major control is shown in Figure A2.

Signalized intersections were counted for four full days including a weekend; non-signalized intersections were counted for at least 24 hours, including either a Tuesday or a Thursday. Driveways were counted manually for one hour during business hours. Establishments with periodic

		*	

VOLUMES AND COUNTING HIERARCHY TABLE AADT BYPASS

demands were counted for one hour at both peak and non-peak periods.

Estimated driveway AADT is given in Table A2. Furning movements at all intersections (Figure A1) were tabulated manually during the afternoon peak and several non-peak hours, at a time when automatic traffic counters were in operation at that location. Directional breakdowns were made at all major and secondary control locations. That at secondary control location No. 3 is shown in Figure A3. Vehicular classification was done manually, directionally at each section boundary on one week day, from noon until 6 P.M. (Table All). One station was counted for 24 hours to establish the hourly pattern (Figure A4).

The analysis of travel character, that is the through or terminal nature, was done using a "headlights on" technique during a weekday in the auturn. The object of the survey was to estimate what percentage of the traffic approaching the area on the five main routes (including two approaches of U.S. 52) is truly through traffic. It is felt that these results will serve as a good base for a sufficient estimate of the traffic that will be diverted from the present facility upon completion of the proposed I-65 bypass east of Infayette. The figures were necessarily gross but sufficiently accurate for the use intended and are presented in Table 3.

The simulation model currently being developed from the Indiana
University SIMMAR program requires accurate vehicular arrival rates,
that is headway distributions, at the entrance and exit of all sections.
Such data was obtained utilizing modified pneumatic traffic counters
as detectors and a multi-pen graphic recorder to indicate the times

TABLE 3

STIMMARY

"HEADIJGHTS ON"

TRAVEL CHARACTER SURVEY

(Survey Conducted November 4, 1965, 8:00 a.m. to 5:00 p.m.)

OUTEBOUND

ion	Trucks	Through	c/s	All Vehicles	Through	70
52 North	604	447	74	5108	1157	55
ma 25	394	88	22	2145	25 6	13
ma 26	229	43	19	1138	164	14
ma. 38	171	21	12	1212	115	9
52 South	637	390	61	2771	934	3l;
. Outbound	2035	989	49	9368	2626	28
Inbound	2443	~~	40	10898	en en es	24
			li li			26
	52 North 25 26 26 28 52 South Outbound	52 North 604 ma 25 394 ma 26 229 ma 38 171 52 South 637 Outbound 2035	52 North 604 447 ana 25 394 88 ana 26 229 43 ana 38 171 21 52 South 637 390 Outbound 2035 989	52 North 604 447 74 ma 25 394 88 22 ma 26 229 43 19 ma 38 171 21 12 52 South 637 390 61 Outbound 2035 989 49 Inbound 2443 40	52 North 604 447 74 2108 ma 25 394 88 22 2145 ma 26 229 43 19 1132 ma 38 171 21 12 1212 52 South 637 390 61 2771 Outbound 2035 989 49 9368 Inbound 2443 40 10898	52 North 604 447 74 2108 1157 ma 25 394 88 22 2145 256 ma 26 229 43 19 1132 164 ma 38 171 21 12 1212 115 52 South 637 390 61 2771 934 Outbound 2035 989 49 9368 2626 Inbound 2443 40 10898

of vehicle arrivals. This data was obtained directionally at each secondary and major control station. Data was collected at one location in morning and evening peak and non-peak hours on 2 weekdays and a weekend. Other locations were surveyed between 1 p.m. and 7 p.m. on one weekday. The results of these surveys are shown in Figure A5.

Speed-and-Delay *

The speed-and-delay study determined locations of consistent speed reduction and delay utilizing an "average car" method for determination of travel times on the facility. Forty runs were made in each direction, travelling the full length of the Bypess each time. This yielded a total of 400 samples in interrupted flow (signalized intersections) and 800 samples in uninterrupted flow. Runs were made on weekdays in day-light, in good weather, and were done at various times during the day, including the noon and evening peak periods and non-peak periods between 8:00 a.m. and 6:00 p.m. Field data collected included time to traverse study subsections and elapsed time of and reason for stop and slow-down delays. Travel speeds of various subsections are represented in Figure 3. A summary of the speed and delay data is presented in Table A3. The subsections used in the speed-delay study are depicted in Figure 4.

^{*} Treadway, T. B., An Analysis of Travel Speed and Delay on a High-Volume Highway; Purdue University, Joint Highway Research Project; Lafayette, Indiana; Jume, 1965.

FIGURE 3 AVERAGE TRAVEL SPEEDS FOR SECTIONS

FIGURE 4 TEST SECTIONS OF U.S. 52 BYPASS SPEED-DELAY

Accidents *

A study of historical accident records and contributory conditions constituted the final major investigation of the facility. This analysis encompassed all accidents occurring between January 1, 1961, and December 31, 1963, including 334 accidents with 374 injuries and 10 deaths. Substantial portions of this data were obtained from the Accident Records Section of the Indiana State Police. Supplementary accident data was obtained from local police departments. Historical data on physical features and development were supplied by the Indiana State Highway Commission and local agencies. Sufficient information on the history of development was available from these sources to preclude the necessity of examining building permit records.

ANALYSIS

The previous reports of this project have been largely devoted to extremely detailed statistical analyses of existing physical and operational conditions on the Bypass. These works have emphasized the influence of various factors on speed, delay, and accident propensity. They have delineated locations of high accident frequency and severe speed restriction and implied the conditions which must be modified if improvement is to be realized. Further mathematical analysis is being conducted in connection with development of the computer program to simulate operation of the facility.

^{*} Peterson, A. O., An Analysis of Traffic Accidents on a High-Volume Highway; Purdue University, Joint Highway Research Project; Isfayette, Indiana, July, 1965.

The analysis utilized statistical procedures to evaluate the coexistence of various physical and operational conditions with fluctuations in speed and delay. The multivariate and multiple linear regression analyses delineated several factors which appear to be significantly related to the occurrence of speed reduction and delay. Highest overall travel speeds in uninterrupted flow conditions were attained in areas where commercial development was sparse. The presence of urban and absence of rural development were also correlated with decreases in speed. The single most important and significant factor was that describing stream friction conditions. This included effects of volume, roadway capacity and the proximity of traffic signals.

Results of the interrupted flow analysis indicated peak period volumes, topography, and cross street volume affected speed and delay significantly. Green time ratio of signals, intersection approach grade, and length of turning lane were elements of these factors and thus affected both speed and delay. A summary of the statistical analyses of travel speeds and delays is shown in Table A4.

The accident data were analyzed by several statistical techniques, including regression and quality control. A map depicting subsections used in the accident analysis is Figure A6. The purpose of this multiple analysis was to emphasize deficiencies as well as to compare the results given by various methods.

It was found that 57% of all reported accidents occurred within

100 feet of an intersection. Regression equation variables found sign
ificant most often in equations predicting various accident rates at

intersections represented Bypass green-time at signals, maximum observed

approach speed, and cross street and Bypass volume. Total width of drive-

•		
	*>	

ways and total number of cormercial establishments were statistically significant factors in occurrence of type II (marginal) accidents. By-pass percent green and percent left-turns were significant for type I (intersection) accidents. Number of commercial establishments and total width of driveways per mile were statistically significant for prediction of non-intersection accident rates. Commercial establishments per mile was most often the nost significant variable for predicting non-intersection accident rates.

Further analysis of the accident data by statistical quality control techniques indicated that only Teal Road of all intersections was statistically out of control. No non-intersection areas were out of control although several were consistently above or below the mean non-intersection involvement rate.

Ranking of various study sections according to several variations of accident rate consistently showed Teal Road to be the most dangerous intersection and Yeager Road the safest (Table A5). Similar ranking of non-intersection areas showed those in which marginal development is dense and driveway incidence high to be consistently atop the list (Table A6). Figures 5 and 6 show three year accident rates for intersection and non-intersection areas respectively. Figure 7 is a location spot map of 1963 accidents.

Collision-condition diagrams proved very valuable for assigning causes of accidents. Such diagrams summarize accidents by type and precise location. They indicate physical conditions in existence at the time of the accident in such a manner that specific contributory

FIGURE 5 'AVERAGE ANNUAL INTERSECTION ACCIDENT RATE. FOR 1961, 1962 AND 1963.

ACCIDENTS PER MILLION VEHICLE MILES

FIGURE 6 AVERAGE NONINTERSECTION ACCIDENT RATES
ON THE U.S. 52 BY-PASS FOR 1961, 1962
AND 1963.

FIGURE 7 1963 ACCIDENT SPOT MAP FOR THE U.S. 52 BY-PASS.

situations are more evident. A sample collision-condition for Teal Road in 1963 is shown in Figure 3.

Installation of traffic signals during the study period appeared in each of three instances to be related to an increase in rear-end and lane-change accidents. Accidents involving vehicles on cross-streets decreased as did the number of right-angle and left-turn types involving vehicles on any approach. Rear-end collisions increased by 400% at Indiana 38. At that location, Bypass travelers were involved in all types of accidents more than twice as often as previously, and cross traffic was involved 75% as often as during the pre-signal period. Teal Road rear-end and lane-change accidents increased eight-fold, while only left-turn accidents were reduced.

Installation of a "passing blister" in one location seemed to reduce accidents of all types. A substantial number of accidents at all locations concerned lane changes, usually for the purpose of by-passing a left-turning vehicle. Similarly, sideswipes occurred abundantly at locations where recovery lanes beyond the intersection were too short to permit an easy merger of two vehicles crossing side by side; this type of accident could also be attributed to inadequate lane use designation. Half of all non-intersection accidents occurred on 1.6 miles of non-intersection length, the location of dense readside development. Fifty-eight percent of these accidents were concerned with marginal movements. Table A7 summarizes the types of non-intersection accidents. Above average (6.87 per M.V.M.) accident rates occurred between 1 a.m. and 2 a.m., the only night hours throughout the year with such a distinction (Figure 9). Figure A7

FIGURE 9. AVERAGE ANNUAL ACCIDENTS PER MILLION VEHICLE MILES BY HOUR OF DAY FOR 1961, 1962 AND 1963.

displays some interesting figures on accident involvement rates of several groups. While these results present excellent guidelines for remedial and preventive action, examination of the collision-condition summary is more useful for determining specific improvements necessary. Collision diagrams were presented in detail in the previous report * on accident analysis and will not be reproduced here.

An analysis of lane capacity was conducted in connection with the speed-delay and accident studies. This involved observing operation of existing "extra" lanes at several intersections during local peak periods, i.e. under conditions when possible capacity could be attained. The number of vehicles entering the intersection from the extra lanes was tabulated during each "loaded" cycle throughout the peak period. This process was repeated for several peak periods at each of several high volume intersections having such lanes. The results indicated that lanes of this type and condition handle only about one-third the theoretically possible capacity of a similar lane which is properly designed and constructed.

Practical capacity of all intersections was computed by accepted techniques. The capacity and volume of each intersection is given in Table A8;
Table A9 gives non-intersection section capacities and volumes. An analysis of existing signal cycle allocations versus those theoretically desirable according to existing volumes is shown in Table A10.

Computation of AADT at all counter locations involved calculating the ratio of the volume for each hour at a given location to that for the identical hour at each of its next higher order control counters. These ratios were then averaged,

within a particular control, and the average ratios were multiplied by the respective control AADT values, computed previously by a similar process. The resulting two AADT values for the given location were averaged to yield the final AADT (Figure Al). Driveway AADT was computed by expanding the one hour count according to the general pattern of similar establishments and the relative importance of that particular hour in the day's total traffic.

The remainder of the analysis was somewhat subjective and descriptive, based on common traffic engineering statistics and variability. By examining the physical situations in light of operational conditions, it was possible to recommend standard traffic engineering modifications to improve traffic movement. Such standard techniques are explained in great detail in the first report of the Wisconsin Avenue Study *by the Bureau of Public Roads. It would be redundant to do more here than mention that these are the techniques proposed for use on the Lafayette Bypass.

RECOMMENDED IMPROVEMENTS

The improvements proposed will be presented in three stages, based on the extent of work required and the cost involved. Stage I improvements will involve minimal expenditure and in most cases should be easily financed by regularly budgeted operation and maintenance funds. This work will primarily involve operational modifications and in some cases minor reconstruction. Stage II will entail extensive traffic

W. S. Department of Commerce, Bureau of Public Roads; "Increasing the Traffic-Carrying Capability of Urban Arterial Streets",
 U. S. Government Printing Office; Washington, D. C., May, 1962.

engineering work and more involved construction. These changes can be planned for an annual period and budgeted accordingly. Stage III work will involve major reconstruction for which long range fiscal planning is required.

The effectiveness of all proposed improvements will be estimated by the simulation model and the results compared to the results of before and after evaluations which will be conducted in this research. Improvements found to be truly beneficial and effective and economically just-ifiable will be recommended for use on similar facilities. It is desirable that as much first stage work as possible be implemented immediately in order to reduce the economic loss to travelers on the Bypass.

Stage I-Traffic Engineering

General Recommendations

- 1. Efficient utilization of available intersection area must be achieved. Turn lane confusion can be reduced by placing clear, precise over-head signing and pavement marking to define the proper use of existing lanes. Signs should be placed well in advance of an intersection; pavement marking should include turn arrows and stop-lines at all locations. Consistent lane-use assignment will assist drivers and improve compliance. Unless otherwise noted the inside arrival lane should be marked for left-turn-and-through and the outside lane for right-turn-and-through. Figure 10 shows a typical intersection layout with recommended marking and signing procedures. The standards in this example should be the guide for upgrading all intersections.
- 2. The use of two lanes for through movement, as made in recommendation 1, is feasible only if adequate

			G

TYPICAL 4 LANE UNDIVIDED INTERSECTION

FIGURE 10

29

merging-recovery lanes are available on the opposite approach. This can be achieved by improving the size and condition of supplementary lanes, including both bypass and recovery lanes (see Figure 10). In connection with well operated signals, good quality lanes will carry more nearly the possible capacity of the roadway. Reconstruction should take into account heavy commercial vehicles that use the road and design pavements accordingly.

- 3. The existing traffic signal system and its operation are principal factors in delay and accidents on the facility. Since cross movement cannot be eliminated, the necessary signals should be operated to serve traffic with maximum efficiency. Phase timing must be set with careful regard for the approach volumes presented in this report (Table AlO). Operation should be coordinated where intersections are closely spaced. Interconnection of such signals would be desirable with use of volumedensity equipment considered.
- 4. Improvement of signal face visibility is paramount. This can be accomplished by using dual large red faces with background shields on the signal head. Elimination of electrical advertising using flashing and red lights would be desirable.
- 5. Installation of signals was seen in the accident analysis to increase collision experience. Care must be taken to avoid installation of unnecessary or unwarranted control devices. No traffic signal should be installed unless it satisfies the warrants of the Manual of Uniform Traffic Control Devices.
- 6. In order to ensure safe and efficient utilization of available road-

- way, the pavement rust be marked in a manner clearly understood at all times by all motorists. Center, edge, and no-passing zone lines should be placed at least twice yearly at all necessary locations.
- 7. Safety considerations require construction and maintenance of adequate shoulders where buffer lanes are not available. Until such time as the roadway can be widened, the shoulders should be brought to and maintained at a ten foot wide, aggregate standard throughout the facility.
- 3. Strict enforcement of existing traffic, encrosedment and access regulations is vital to proper operation of any facility. All types of right-of-way encroachment and shoulder use must be prohibited and continually enforced if the problem of marginal friction is to be minimized. Points of access to private property must be kept to a minimum and designed properly. Driveways must be clearly delinested by curbing or other means so they do not spread to become broad open expanses. The curbing or other means must be sufficiently far from the roadway to permit a full shoulder or deceleration lane. No unauthorized access can be permitted. Improper use of marked lanes must be discouraged if intersections are to function correctly.
- 9. Remove all redundant and unmercessary informational signing within the right-of-way. These signs are subconsciously distracting to drivers and cause sight distance restrictions. Many are useless either because they are too small, too far from the roadway, or are obstructed in some manner (Figure 11).
- 10. Be extremely discerning and exacting when issuing permits for points of access.

FIGURE II SIGNS PLACED IN RIGHT OF WAY

FIGURE 12 GOOD DRIVE WAY DELIMITATION AND RECOVERY LANE

- a. Do not permit a driveway if a more desirable means of access is available.
- b. Limit the points of access to one unless there is sufficient volume or other warrant for more.
- c. Where feasible, permit only entrance from the Bypass with exit onto a cross street.
- d. Require an adequate deceleration lene and curbing to delimit the driveway.
- e. Serve several establishments with one entrance or a frontage road arrangement to limit the number of access points.
- f. Grant access permission with the understanding that use of a frontage road will be required when construction of one becomes feasible.
- 11. Improve existing physical and access situations in whatever manner possible.
 - a. Eliminate existing physical restrictions of sight distance and physical obstructions near the readway.
 - b. Consolidate existing driveways where feasible by use of frontage reads.
 - c. Reduce the number of entrances per establishment to a minimum, requiring entrance from the Bypass and exit to cross streets where feasible.
 - d. Require precise delimitation of all existing entrances and improvement of acceleration lanes. Figure 12 shows an example of good driveway definition.

Specific Recommendations - Intersections

1. Teal Road - Indiana 25 - U.S. 231 South; Figure 13

This intersection serves traffic of the K-Mart shopping center and a developing residential area south of Lafayette. The West approach carries Indiana 25 to the Bypass as well as traffic to some industrial development south and west of the city.

The accident analysis demonstrated that this is the worst intersection on the Bypass. It was consistently on top for all rankings of accident rates and was statistically out of control for all three years analyzed. Following construction of a commercial entrance (the east approach) in October, 1962, and installation of traffic signals in January, 1963, substantial increases were noted in all but left-turning accidents. Bypass and northbound vehicles were involved more than three and four times the previous rates respectively, and injuries tripled.

Lane-change and rear-end accidents increased eight times. Conditions indicate a lack of awareness of the presence of the traffic signal, due in part to the fact that Teal is the first stop encountered by northbound drivers after a long uninterrupted 60 mph section.

Since the east approach does not aline with that from the west (Figure 11.), through traffic on Teal must jog slightly. Vehicles turning from Teal must zig-zag to complete their maneuver without blocking opposing through and left-turning movements. Another anomaly of orientation concerns the location of entrances to the shopping center parking lot. The signals at the Indiana 38 intersection can be bypassed by short-cutting across the parking area between the Teal intersection and a point on the east approach

			24.2

FIGURE 14 TEAL ROAD POOR APPROACH ALIGNMENT

FIGURE 15 MAIN STREET-PARREL TO CONTROL LEFT TURNING VEHICLES

of Indiana 38. Several accidents have occurred between vehicles doing this and others in the parking area. An idea of the magnitude of this movement can be inferred from the volume at the Teal east approach during hours when the shopping center is not open for business. On some days, over 300 vehicles use the parking area entrances during the ten hour period (11 p.m. - 9 a.m.) commencing an hour after the store closes and ending an hour prior to its reopening. These movements are during normally low volume hours. The volume during the 7 - 3 a.m. period often exceeds 100 vehicles. The volume during normal daytime hours can therefore be assumed quite sizeable. A facility to properly satisfy this novement and relieve the Indiana 38 intersection would be desirable.

The speed analysis indicated that the greatest differential between operating and average running speeds existed at the Teal Road intersection. This can be attributed primarily to the absence of smooth traffic flow between Teal and Indiana 38. Substantial delay and confusion exist for left-turners from the Teal approaches, due again to the geometry. If either queue is several cars in length, it blocks the progress of opposing vehicles unless unusual maneuvering is employed.

a. Install additional warnings of the impending intersection on the south approach. There should be two sets of signs, the nearer with flashing yellow lights. Route markers should also be placed farther south. Place speed limit reduction signs farther from the intersection in order to slow traffic to a speed at which the signs and situation ahead can be comprehended.

		Ç.

- b. In line with a comprehensive program of signal improvement, the system at Teal Road should be interconnected with that at Indiana 38, only 1750 feet to the north.
- c. Add a protected left-turn phase to provide for the heavy movement from the Teal west approach, and decrease the through movement phase for the exit traffic from the shopping center.
- d. Improve approach indications and left-turn markings on both

 Bypass approaches. Indicate "left-turn on arrow only."
- e. Improve the outside lane on the Teal west approach. This lane is narrow and has very little shoulder. Overhead signing here would improve lane use compliance.
- f. Because of the large area of the intersection, an all-red phase to clear the intersection would be desirable.
- g. Improve approach signing and delimitation of the right-turn lane from the north approach.

2. State Road 38 - Main Street, Figure 16

Main Street is a principal north-south arterial of Lafayette. The traffic here is primarily interested in reaching residential areas on the city's south side and the central business district. Indiana 33 serves a rural area where considerable suburban development has recently begun.

Heavy left-turn movements from both Bypass approaches are the problem at this location. The barrel currently employed to remedy the situation should have been only a temporary expedient (Figure 15). Accidents here

are typical of those found where signals exist and occur at only a slightly greater rate than the overall average. Delays can be attributed primarily to the lack of signal coordination with the system at Teal Road. The approaches are too wide for decision clarity. The lack of driveway definition in the northwest quadrant is a problem.

- a. Interconnect the signal system with that at Teal.
- b. Place pavement stripe markings in the intersection to channalize vehicles making left-turns from the Bypass approaches, and eliminate the barrel. Include an actuated left-turn phase for these approaches when upgrading the signal system. Also improve lines separating the left-turn from the through lanes.
- c. Channelize right-turns from the east approach under signal control. Channelized right-turns for the Bypass approaches should be under stop-sign control. The right-turn lane from the north approach should be marked and delimited better.
- d. Addition of lane use indicators for southbound traffic well in advance of the intersection can be achieved since a similar lane use situation exists at McCarty Lane.
- e. Construct curbing or use guard posts to improve delimitation of driveways in the northwest quadrant.

3. McCarty Lane

Four right-angle collisions and six involving lane-change maneuvers occurred during the studied period. The lane-change accidents occurred most often in the southbound lanes, indicating confusion over the lane expansion situation and vehicles turning left onto McCarty. The cross

street is a low volume facility serving a tributary area of minor importance. The cross street approaches are not in very good condition, but there does not appear to be sufficient justification for increasing present capacity. There is no significant delay situation at the intersection.

- a. Construct median left-turn lanes for both Bypass approaches, including proper signing and marking. There is adequate median width to accompdate these.
- b. Paint stop-lines and place large stop signs on the McCarty approaches at a location that will permit good visibility of traffic on the Bypass.
- c. Driveways in the northeast and southwest quadrants are poorly defined and should be better delimited by curbing or guard posts.

4. Kossuth Street

This street serves a residential and industrial area. The principal problem here concerns vehicles turning between Kossuth and the south By pass approach. Vehicles turning left from the Bypass were involved in ten accidents during the studied period. Vehicles turning right onto the Bypass were a factor in several others. The waiting required to obtain an acceptable gap is often great, causing drivers to take chances in order to enter traffic. Delay to southbound Bypass traffic is minimal due to existence of a right-turn lane. Delay to northbound Bypass traffic is great because of the heavy left-turn movement and inadequacy of the existing "passing blister" and east shoulder. The differential between operating and average running speeds was the second largest found.

A driveway recently constructed opposite the west approach promises to be troublesome in the future. Entrances to the commercial establishment in the southwest quadrant are poorly delimited.

- a. Construct a longer, wider, and better surfaced lane for bypassing of vehicles turning left from the northbound lane. Include
 proper use signing and delimitation, marking the present northbound lane for left-turn-and-through.
- b. Improve marking of the existing right-turn lane for southbound traffic.
- c. Close entrances to the burned-out cormercial establishment in the southwest quadrant where cross-cutting is occurring.
- d. Construct curbing on the Kossuth approach and repave as necessary.

 Mark two east-bound lanes, one for right and one for left-turning traffic, and a stop-line with a large stop sign properly situated for good visibility.
- e. Install a flasher warning light over the intersection.
- f. Require curbing or guard posts for improved delimitation of driveways on the east side of the Bypass. Include a stop-line and stop sign on the newly constructed access road to a trailer park.

5. South Street - State Road 26, Figure 17

This is the principal access route to the Bypass from Lafayette and a well traveled highway in its own right. It handles the heaviest volume of any intersection studied and ranks second in accident occurrence. These accidents were not as severe as elsewhere and were principally of the rear-end and left-turn types. There were also a few lane-

change collisions. These types of accidents occur where unprotected left-turning movements exist. There are heavy left-turn movements from the south and west approaches. A heavy right-turn movement exists from the north approach; the left-turn here is not a large proportion but is a heavy volume. Recent studies have indicated a definite need for left-turn relief at this location. The existing outer lanes on the north and south approaches are worfully inadequate for the volume, speed, and weight of vehicles using them to bypass left-turners. The present signal cycle is very long and heavily favors the Bypass; no separate left-turn phases are included. As a result, all traffic, especially left-turns, from the cross street is delayed excessively. There is confusion over proper lane use and interference from nearby driveways in all quadrants. Sign encroachment on the right-of-way is prevalent here (Figure 11).

- a. The outer lanes on the Bypass approaches are narrow, short, and poorly surfaced. Recovery lanes on these approaches are especially in need of improvement. Mark the center lanes for left-turn-only on all approaches.
- b. Revise the signal cycle. Shorten the total cycle and allocate time relative to current volumes (Table AlO). Include protected left-turn phases for the Bypass approaches. The desirable green time for these volumes yields much too long a total cycle time.
- c. This intersection is sufficiently close to Union Street to

^{*} Shaw, R. B., Evaluation of Delays and Accidents at Intersections to Warrant Construction of a Median Lane; Purdue University,

Joint Highway Research Project; Lafayette, Indiana; March, 1966.

		20

permit effective operation of interconnected signals. There are no intermediate cross-streets, and the volume of traffic makes platooning necessary since passing is very restricted.

- d. Increase the radius of curbing in the northwest and southeast quadrants in order to permit low speed right-turns, and include channelization. These right-turns should be placed under stopsign control.
- e. Closing or further restricting the driveway onto Indiana 26 in the northeast quadrant is necessary to prevent cross-cutting.

 This should be done in connection with channelization for the right-turn movement. This right-turn should remain under signal control.
- f. Entrance and exit curb cuts for each service station at this intersection should be minimized and redesigned for safe and channelized movement.

6. Union Street, Figure 18

This intersection serves commercial and residential areas and is a direct connector to West Lafayette. The north approach is on a grade and commercial development on the west side of both Bypass approaches is intensive. Passing and recovery lanes are worse than at any other location. Minor street cross traffic is relatively light.

Once again, as at all other signalized intersections, rear-end, lane-change, and left-turn accidents dominated, involving primarily Bypass traffic. Left-turns from the north approach are insignificant; those from the south are very heavy. The cross-street approach from the west is very good; the approach from the east is in poor condition

but carries little traffic. Significant delay to southbound traffic was due to slow starting of trucks stopped on the grade. Faster vehicles try to pass the slow starters, and this leads to conflicts in the outside approach lane and the recovery lane. Passing left-turners in the northbound stream can also cause trouble because of the very short recovery lane (75 foot taper) next to which is a ditch and a soft unimproved shoulder.

- a. Increase the length, width, and surface quality of outer approach and recovery lanes. This is especially necessary for the recovery lane on the south side in order to permit smooth merging without hazard. Mark the outer lane on the south approach for right-turn-and-through; mark the center lane for left-turn-only.
- b. Eliminate right-of-way encroachment of signs and mail boxes on the west side of the Bypass. Close the two entrances nearest the intersection from each service station.
- c. An exclusive left-turn phase for the south and north approaches combined with right-turns from the east and west would be desirable.
- d. Remove the bus stop in the southeast quadrant.

7. Greenbush Street, Figure 19

This is currently a low volume street serving established residential and commercial areas west of the Bypass. A large residential area currently being developed to the east can be expected to increase traffic on the east approach substantially over the presently low volume. The accidents are typical of signalized locations, principally rear-end and lane-change.

15			

The recovery lanes for Bypass traffic are again very poor, that for southbound traffic being extremely short due to a right-of-way constriction. A crest vertical curve through the intersection flattens to the south. Substantial delay here can be attributed to slow acceleration of stopped commercial vehicles at the traffic signal and the protected left-turn phase for the south approach. The left-turn movement here is here is not as heavy as at the two previously discussed locations. The special phase is questionably warranted and is a severe detriment to operation of the intersection. The very need for the signal is questionable at present, but will surely exist soon due to the new residential development.

- a. Remove the protected left-turn phase of the signal and reallocate cycle time in line with current volumes. Revision of the signal phasing could well include interconnection with Union and South.

 These three intersections are relatively close, and heavy traffic moves in a platoen manner.
- b. Extend and improve both Bypass recovery lanes. Place drain tile in the ditch in front of the cenetery and extend the recovery lane over it; improve shoulders as well. Improve the shoulder on the east edge of the south approach to permit easier right-turns.
- c. Remove the right-turn only sign on the right lane of the north approach. Mark this lane for right-turn-end-through and designate it for use by commercial vehicles. Mark the center lane for left-turn-end through.

d. Closure of one entrance onto the Bypass at the service stations in the northeast and southwest quadrants is desirable. Under the present situation cross-cutting does occur.

3. Underwood Street

This residential service street, with a "T" intersection, has relatively low volumes. All accidents involved Laft-turning movements, mostly from the northbound lane. This may be due to the fact that the intersection is located on a curve. Sight distance is limited for all approaches.

- a. Construct a lane to permit passing of left-turn traffic from the northbound lane. The center lane should be marked left-turn-and-through. Improve and mark the right-turn lane on the north approach.
- b. Prohibit signs in the right-of-way in the northwest quadrant.

 This is one cause of restricted sight distance for southbound traffic and that turning left from Underwood. Place the stop-line and large stop sign for Underwood sufficiently far out to permit good sight distance in both directions.
- c. Close the curb cut on the east side of the Bypass. It is no longer used and creates driver concern.
- d. Mark two turning lanes on the Underwood approach.

9. Beech Lane, County Road, Darby Lane

These three facilities are very low volume service routes to residential areas. Beech is very well constructed. The surface on the County Road approach is poor requiring severe slowing prior to turning into it. Both have excellent sight distance. Sight distance

at Darby is poor for both directions but can be remedied by removing shrubbery and other objects in the right-of-way.

10. Schuyler Street-Indiana 25 (North), Figure 20

Infayette. All Lafayette-bound traffic on Indiana 25 continues on Schuyler to the center of the city. Most Bypass traffic uses this street to reach areas on the city's north side. The intersection ranks third in accidents per million vehicles. One third of these were a result of improper lane usage or lane-changes. There were also nine right-angle collisions and thirteen of the rear-end type. Delays are not especially excessive here since the intersection is level and has sufficient area to permit maneuvering around waiting vehicles. A very hazardous situation exists in both western quadrants due to termination of city streets at the Bypass (Figure 21 and 22). Driveways in the northeastern quadrant are very poorly defined (Figure 23).

- a. The vast open area of the intersection calls for extensive channelization. This should be done in coordination with widening and lane assignment as indicated in Figure 24.
- b. Close openings onto the Bypass from Stillwell and Monon Streets, and of 24th, 25th, and 26th Streets (Figure 25). These can all be served readily from the 24th Street entrances to Schuyler. The present condition causes apprehension for southbound drivers ascending the hill to the north approach and leaving the intersection on the south approach.
- c. Cooperation with the Devon Plaza Motel should be sought to erect a barrier to prevent cross-cutting of their parking lot to reach 26th Street (Figure 25). The driveways in the northeast

FIGURE 21 NORTHWEST QUADRANT OF INDIANA 25 INTERSECTION - POOR DRIVEWAY DELIMITATION

FIGURE 22 NORTHEAST QUADRANT OF INDIANA 25 INTERSECTION - POOR DRIVE WAY DELIMITATION

- quadrant should be modified to improve delimitation, reduce open area and reduce cross-cutting.
- d. Addition of flashers to signs warning approaching motorists of the impending signal is needed, especially on the north approach.

11. Ninth Street (Cutoff)

This rather low volume, industrial service route operates well, especially since addition of the lane for bypassing vehicles turning left from the northbound lane. Accidents here were reduced substantially by this addition. Two access roads on the north present slight problems due to driver apprehension. The right-turn lane for southbound traffic also functions well. The Ninth Street appreach is in poor condition.

- a. The recovery lanes for both Bypess directions should be lengthened and improved.
- b. The Ninth Street approach should be widened and resurfaced to accommodate three lanes, two for right- and left-turns onto the Bypass. Sight distance to the south is not good; the only improvement that can be easily realized is relocation of the fence in the southeast quadrant.

12. Happy Hollow-Soldiers Home Road (S.R. 443), Figure 26

This intersection poses one of the worst problems on the Bypass because of topographic effects on design, operation and sight distance. The intersection is atop a long down-grade to the east on which there are a "humpback" and a truck climbing lane. This route is the only currently feasible means of access to the urban area from mushroom-

ing residential developments to the north. The principal movements are left turns from the cross street approaches and the returning right turns of this traffic. There is a new commercial establishment immediate-ly west of the intersection. Accidents here were nearly 50 per cent right-angle. One third were rear-end collisions, most involving Bypass traffic waiting to turn onto the cross street. About 75 per cent of the accidents involved westbound Bypass vehicles, for and of whom sight distance is severly restricted by the humpback. Delays to cross-street traffic are severe due to driver reluctance to accept gaps because of the sight distance situation. The recovery lane for southbound Bypass traffic is poor, causing delay to people reluctant to bypass turners and slowing those who do. The situation here will be impossible to solve in a satisfactory manner without substantial construction. The

- a. Extend and improve the recovery lane for southbound Bypass traffic.
- b. Broaden the north approach of Soldiers' Home Road and construct
 a longer taper on the Bypass to act as an acceleration lane
 for right-turning vehicles.
- c. On both cross-street approaches mark lane lines and lane use designations. Place stop-lines sufficiently far out to permit good sight distance but prevent interference with Bypass traffic.
- d. Mark the right-turn lane from the west Bypass approach. Also improve lane use markings on the hill climbing lane near the top of the hill for northbound traffic on the Bypass.

- e. Install overhead Masher lights to warn approaching traffic.
- f. Post speed regulations to reduce the speed of passenger vehicles ascending the hill to 45 miles per hour.

These improvements are only temp wary measures to make the best of a difficult situation. The First Stage II work undertaken should be that for this location.

14. Salisbury Street-County Farm Road, Figure 27

This road provides access to central West Lafsyette and a new residential area north of the Eypasa. It carries relatively low volumes except at peak hours. The semi-activated signal is, therefore, ideal for the service necessary although a fixed time signal is warranted. Accident severity seemed to increase subsequent to installation of the signal, but the pattern of accident types was as would be expected.

Delay was no worse than would be expected in a signalized situation and somewhat better than at fixed-time signals. The south and east approaches are well designed. The north and wast approaches are not nearly so well done as those opposite.

- a. Widen the outside lanes on the west approach: on the right side for right-turning and through vehicles and on the left for a recovery lane.
- b. Increased terming for the intersection is apparently necessary.

 This can be test accomplished by increasing the size of signal faces and using double red faces on each head.

15. Yeager Road

This intersection carries an insignificant volume except at peak hours. It is principally a service road for the McClure Research Park,

although residential development on both sides of the Bypass is becoming heavy. All approach aprons are very good. A semi-actuated signal has been installed since completion of the speed-delay survey.

- a. All approaches have sufficient area to be marked for two lanes of arrival traffic.
- b. Operate the signal on flasher at all times except peak hours, when it would be semi-actuated.

16. Northwestern Avenue-U.S. 52 North, Figure 28

This is the principal means of access to Purdue. Heavy traffic on all approaches appears well acclimated to the present control situation and would suffer should these conditions be revised. The major conflicts occur in four locations. Southbound vehicles turning to the Bypass fail to yield the right-of-way to northbound Northwestern Avenue traffic.

Vehicles turning onto inbound Northwestern Avenue from northbound Bypass lanes conflict with northbound Northwestern Avenue traffic. There is friction in southbound traffic as vehicles move left preparatory to turning onto the Bypass. Traffic northbound on Northwestern moving left in anticipation of the merge with traffic northbound from the Bypass experiences the same problem. The best solution to problems here appears to lie in reconstruction.

a. Erect additional signs for southbound traffic sufficiently far in advance of the intersection to permit decision making and maneuvering with ease. Place yellow flashers on the last warning sign encountered. Place a red flasher aimed north for traffic in the left-turn lane.

- b. Use pavement markings and overhead signing to move northbound

 Northwestern Avenue traffic to the left lane in order to parati

 a smooth marge with northbound traffic from the bypass.
- c. Place two large stop signs at both lanes encountered by traffic turning left from the Bypass to imbound Morahwestern Avenue.

 Care should be taken so these signs do not unterfere with the line of sight.
- d. Close the existing turn-around in the madian near the marker point of the northbound lanes.
- e. Remove the yellow no-passing live in the northbound Bypass
 feeder lane. This causes confluent for vehicles that desire
 to turn left to inbound Northwestern Avenue

Specific Recommendations-Non-Intersection Areas

These areas are generally of less another than untersections because there is less opportunity for conflict. The principal problems in non-intersection areas are the result of marginal construction. It is an accepted fact that narrow lanes and proximity of physical obstacles have an adverse effect on the freedom of novement a criver feels. It is also recognized that marginal factors suggesting potential condict have an adverse effect as tell. Multiple cirrances and extensive area open for use by vehicles entering or leaving the highway cause apprehension to drivers moving on the highway and thus adversely affect their speed and increase unnecessary delay. But from another point of view, this effect is probably not as great as would be destrable. While concerned about the possible egress from such entrances, the noving driver

does not consider the ach the public of he with the lover probability of as a fine of traffic volume. The draws he has a fine of a fine of traffic volume. The draws he has a fine of a fine of the contract of the result of the public of the public of the public of the contract of the co

The volume to this limits in a limit when the constitution of the

2. Margency Frens Birthold 97-001, per and the first

The use of these areas for root per masses of police. The first ordered for solution is designable to the character of the control of the con

4. The overpass of the total had a send by a maintained shoulders.

FIGURE 29 EXAMPLE OF POOR DRIVEWAY DELIMITATION

FIGURE 30 EXCESSIVE NUMBER OF LOW VOLUME ENTRANCES

5. Railroad Yard-Station 208+00L

Define a single point of access.

6. Skelgas-Station 218+001

Prohibit shoulder parking and access to the commercial facility located here as access is by the adjacent county road.

7. Stations 250+57 to 259+27R, Figure 30

There are many low volume drives located close together on the west side along this stretch. Consolidation is feasible, and a service road would be desirable.

3. Best-Euilt-Station 225-00L

This area also has much too broad an expanse for use of customers.

The entire complex could be served by two drives at most, possibly only one.

9. Silver Park Motel-Station 233+58R

Again a much too broad expanse of open drive for the traffic served; designate one entrance.

10. County Highway Garage-Station 238+12R

Prohibit shoulder parking. Reduce width of access drive allowing drives at either end of the curb or fence.

11. National Homes-Station 278+56R, Figure 31

The closeness of the operations at this facility to the Bypass is extremely bad. The company is using all but a few feet of shoulder in a densely developed high volume section. The effect of this constriction on traffic operation is enormous. Lights on the posts (see Figure 31) holding cables at the edge of the readway are very distracting at night.

ROADWAY FRINGE IMPILIGEMENT AT NATIONAL HOMES EXCESSIVE 2 FIGURE

The situation has been made even more severe by installation of a semi-actuated, poorly operated signal (see Figure 31) for use by trucks of the company to cross the Bypass. Aggregate delay to Bypass traffic makes the signal unjustifiable. There is no alternative but to widen the right-of-way and remove the signal. The present use is definitely not in the interests of Bypass travelers.

12. Station 309+00R

Use of the median and shoulder areas by Highway Commission maintenance crews for equipment and personal vehicle parking should be eliminated.

Stage II-Minor Construction

The improvements recommended in this section are sufficiently extensive to preclude their financing from regular operation or maintenance funds. They are, however, modest enough to permit their being undertaken with no more than year to year budgetary planning. These recommendations will be listed in the order deemed most desirable for implementation.

1. Happy Hollow-Soldiers Home Road

The problems here concern the steep down-grade immediately east of the intersection. If the intersection could be moved to a more nearly level area the sight distance and commercial vehicle acceleration problems would be reduced and installation of a signal would be feasible. It is recommended that the intersection be moved west of its present location to near Station 54+00, location of a recently granted point of access.

	13	

This location would have sufficient stopping sight distance for vehicles on the east approach to permit installation of a traffic signal. The current intersection would be terminated completely and the cross-road approaches extended on frontage roads to the point of intersection (Figure 32). The automobile sales establishment at Station 66-73 would have access to the frontage road only. Bypass approaches would be four lanes each to match the cross section at the Salisbury intersection (1900 feet west) and carrying through the truck climbing lane from the hill. The cutside southbound lane would be tapered for a reasonable recovery distance to neet the present situation on the hill.

There is sufficient right-of-way svailable for 20 foot frontage roads on either side of four 11 foot lanes on the Bypass, allowing also for a marginal divider between the Bypass and the frontage roads. The frontage road on the south side should be constructed on the alignment which the southbound roadway will follow when the Bypass is widened and realigned in this area. The frontage road on the north side within the current right-of-way could still be used subsequent to the Stage II work. The cross-street approaches should have three lanes each to permit easy right-turns and through movements.

Two possible alternative solutions to this problem exist. One of these, prohibition of all but right turns at this intersection, would be workable if Cumberland Boulevard (north of the Bypass) were extended to Soldiers' Home Road. This prohibition could best be accomplished by installation of a four foot wide barrier medial island through the area of conflict (Figure 33). Traffic turning left and crossing from the

FIGURE 32 HAPPY HOLLOW - SOLDIERS HOME ROAD INTERSECTION WITH U.S. 52 BYPASS; STAGE 2 RECOMMENDED MODIFICATIONS

FIGURE 33. HAPPY HOLLOW - SOLDIER'S HOME ROAD AT U.S. 52 BYPASS: STAGE 2, ALTERNATE I

FIGURE 34 HAPPY HOLLOW-SOLDIER'S HOME ROAD AT U.S. 52 BYPASS: STAGE 2, ALTERNATE 2

north approach could then use Cumberland to Salisbury, and the Salisbury Street intersection for access to the Bypass. Salisbury (County Farm) Road would no doubt be rather overloaded for its present condition.

There would also probably be considerable resistance to the heavy traffic situation on Cumberland from property owners in the Parberry Heights residential area. But since the situation would be temporary, it might be managed. Through and left turning traffic from the south (Happy Hollow) approach to the intersection would have to use other local streets to get to the Bypass, and would probably select more direct routes of access. The right turns could be channelized and facilitated with merging-acceleration lanes.

The second alternative is movement of the intersection down the grade 350 feet with continued operation of the intersection similar to that employed at present. This solution would permit safe sight distance both directions from the intersection. Use of the present intersection by interchanges with the west Bypass approach would also still be possible (Figure 34).

Neither of these two alternatives were considered as desirable as the solution proposed. The first was rejected because of its extreme dependence on the contingencies of acceptance and action by local groups; improvement of this intersection must not be postponed any longer than necessary. The second was discounted because it solves only the sight distance problem and does not improve ease of traffic movement.

2. Median Left Turn Lanes

Widening the cross section to a four lane urban type with a median

	1 9 00	

(Figure 35 and 36) should be undertaken at several intersections. At each location median left-turn lanes with actuated left-turn signal. phases would be included. The wider cross-section proposed is in line with the recommendation of Stage III and actually is a first step in this direction. Existing right-of-way is adequate for this cross-section at all locations proposed.

The locations at which construction of this type is recommended as soon as possible are the Salisbury Street, Indiana 25, Indiana 26, and Union Street intersections. This situation already exists at the Indiana 38 and Teal Road locations. It is not recommended for the Happy Hollow intersection in lieu of the Stage II improvement and space restrictions discussed previously.

3. Teal Road

Relocation of both cross-street approaches is recommended. The work proposed here would be done in several steps (Figure 37).

- a. Construct a connector road along the south edge of the K-Mart property between U.S. 52 and Indiana 38. Land for this is available, and the facility has been sanctioned by the Area Flamming Commission. Figure 38 shows a fence which is on the line the new road would take. The road would serve movements currently interchanging between the south and east approaches of the U.S. 52-Indiana 38 intersection and would eliminate crosscutting of the K-Mart parking lot.
- b. Close the present main K-Mart drive onto U.S. 52 replacing it by a new entrance onto the new connector road. This should

TYPICAL CROSS SECTION FIGURE 36

	4.50

AD INTERSECTION MODIFICATIONS

		<i>A</i> .

FIGURE 38

- be acceptable to the K-Mart management now that patronage has been established.
- c. Carry Beal Road straight, in line with the existing tangent section to intersect U.S. 52. The approach will then align with that of the new connector. The intersection will not be at 90 degrees, but this is not too important since there will be signal control.
- d. Right-turns from southbound U.S. 52 could use the existing Teal Road approach as a ramp with Yield control at the terminus.

 U.S. 52 should retain median left-turn lanes with a shielded, actuated phase. All other movements would be made without special channelization. The U.S. 52 approaches will be 4 lanes in addition to the median left-turn lanes. The cross-street approaches will have three lanes, one for receding traific.

 The two for that approaching will be designated right-and-through and left-turns-only. An all red phase should be employed to clear the intersection because of the large area involved.

Stage III-Major Construction

This work involves financing of such magnitude as to require long range fiscal planning. Preparation should be started now to enable completion of these improvements within the next five years.

Reconstruct the Bypass to provide a minimum of four-lanes of traffic at all locations. The opposing traffic flows should be separated by a median, and median left-turn lanes should be added for virtually every intersection and crossover. The section should be of urban design where-

ever development is considerable, and entrances to abutting property should be minimized by consolidation and definition. Necessary channelization at large intersection areas should be properly designed. An overpass and interchange should be constructed for Soldiers Home-Happy Hollow Road. An interchange should be constructed at the intersection of the Bypass and Northwestern Avenue. Additional structures will also be required at the Wabash River and over the two railroads which are now overpassed. Further study is necessary to evaluate the need for an additional interchange of the Bypass with the facility serving traffic from the future I-65.

Plans for such improvements have received preliminary approval, and the Indiana State Highway Commission is proceeding with planning for this construction.

CONCLUSION

This report has dealt with measures to improve existing conditions on the Bypass. It has set down improvements which will assist traffic in traversing the facility safely and with less delay. These recommendations have varied in extent and effect, and similarly in cost. But this work is not uniquely adaptable or effective for this location. It may be assumed to produce similar results wherever applied. Such then is the thesis of this demonstration project: to show how effective such relatively minor work can be for improving operative efficiency of any high volume arterial highway.

In retrospect there is a tendency to look more deeply than for a solution to the problem in order to understand the very existence of the conditions. A major portion of the charge for this situation must certainly be laid to the lack of legal powers to limit access. Current legislative practice and powers do recognize the value of access control and no high type facility need ever again be built under this cloud. In at least the present instance, however, the problem can also be traced in some measure to breakdown in the proper administration of those limited powers available. Had adequate authority been exercised over construction and maintenance of access drives and other roadway and traffic aspects, the current problem might not be of the magnitude seen. By strict surveillance and maintenance of such manageable aspects of traffic design and operation, less controllable factors will not have such detrimental effect.

The recommendation for Stage III improvements is being implemented by the Indiana State Highway Commission but will not be completed for approximately five years. A few of the improvements recommended in Stage I have already been implemented by the Highway Commission from preliminary recommendations made to them several months ago from this research. Because heavy volumes of traffic will be using the Eypass for the next few years prior to completion of Stage III improvements, it is hoped that all or a substantial part of the Stage I and Stage II recommendations can be implemented at an early date. As one of the objectives of this research is to evaluate the effectiveness of each improvement, it is requested that the programming of improvements be done in coordination with the

staff of the research project, so that such an analysis can be made.

Certainly some of the improvements recommended should be completed at a very early date.

BILLLIOGRAPHY

- 1. Berry, D. S., "Evaluation of Techniques for Determining Over-All Travel Time," Proceedings, Highway Research Board, Volume 31, 1952, pp. 429-440.
- Berry, D. S., and C. J. Van Til, "A Comparison of Three Methods for Measuring Delay at Entersections," Traffic Engineering, Volume 25, December 1924, pp. 93-99.
- 3. Determining Travel Time, Procedure Manual 3B, Mational Committe on Urban Transportation, 1958.
- Dixon, W. J., Biomodical Computer Programs, Bealth Sciences Computing Facility, University of California, Los Angeles, January 1, 1964, pp. 169-184, 233-257.
- 5. Hell, E. M., and G. Stophen, Jr., "Travel Time-An Effective Heasure of Congestion and Level of Service, Proceedings, Highway Research Board, Volume 38, 1959, pp.511-529.
- 6. Harman, E. H., Modern Factor Analysis, Chicago, The University of Chicago Press, 1960.
- 7. Highway Capacity Manual, U. S. Department of Cosmorce, Bureau of Public Roads, Washington, D. C., U. S. Government Printing Office, 1950, pp.35-102.
- S. Matson, T. M., W. S. Smith, and F. W. Burd, Traffile Engineering, New York, McGraw-Bill Book Company, Inc., 1955, pp. 327-336.
- 9. Oppenlander, J. C., "Multivariate Analysis of Vehicular Speeds," Record 35, Righway Research Board, 1963, pp. 41-77.
- 10. Ostle, B., Statistics in Research, Amas, Losa, The Lowe State University Press, 1963.
- 11. American Association of Suca Highway Officials, Road Voer Benefit Analyses for Highway Emprovements, American Association of State Highway Officials, 1960.
- 12. Bureau of Public Roads, Increasing the Traffic-Carrying Capability on Urban Arterial Streets, Eureau of Public Roads, 1962.
- 13. Michael, H. L., "By-Passes Their Use, Effect and Control," Purdue University Road School Proceedings, 1953.
- 14. Woo, John C. H., "Correlation of Accident Rates and Roadway Factors," Thesis, Purdue University, 1957.
- 15. A Policy on Geometric Design of Rurol Highways; American Association of State Highway Officials; Wachington, D. C.; 1954.

BLELIOGRAPHY (Continued)

- 16. A Policy on Arterial Highways in Urban Areas; American Association of State Highway Officials, Washington, B. C.; 1954.
- 17. Manual on Urben Traffic Control Devices; published by U. S. Department of Commerce, Eureau of Public Rosds; Washington, D. C.; June, 1961.
- 18. Manual of Traffic Engineering Studion; published by Institute of Traffic Engineers; Weshington, D. C.; 1964.

		- 4.

APPENDIX

DAJA FOR U.S. 52 BYPLSS
LAFAYETTE, INCLANA
AUGUST, 1964 TO JUNE, 1965

FIGURE AI(g) 1964 ADT VOLUMES AND TURNING MOVEMENTS AT U.S. 52 BY-PASS AND UNDERWOOD.

139		

		-1-

FIGURE A6 U.S. 52 BY-PASS STUDY SECTIONS ACCIDENT ANALYSIS

INTERSECTIONS

VEHICLES IN ACCIDENTS PER MILLION VEHICLES

NONINTERSECTIONS

VEHICLES IN ACCIDENTS PER MILLION VEHICLE MILES

FIGURE A7(1) INVOLVEMENT RATES FOR VEHICLES BY TYPE, REGISTRATION AND DIRECTION FOR 1961, 1962 AND 1963.

INTERSECTIONS ACCIDENTS PER MILLION VEHICLES

NONINTERSECTIONS
ACCIDENTS PER MILLION VEHICLE MILES

FIGURE A7(2) AVERAGE ANNUAL ACCIDENT RATES BY DEGREE OF SEVERITY FOR 1961, 1962 AND 1963.

FIGURE A8

		ā	

FIGURE A9(2)

z

FIGURE A9(3)

FIGURE A9(4)

FIGURE A9(5)

z 4 - -

FIGURE A9(6)

FIGURE A9(7)

FIGURE A9(8)

FIGURE A9(9)

FIGURE A9(10)

FIGURE A9(11)

FIGURE A9(12)

z

FIGURE A9(13)

FIGURE A9(14)

z

FIGURE A9(15)

FIGURE A9(16)

FIGURE A9(17)

FIGURE A9(18)

FIGURE A9(20)

z

CROSSING LOCATIONS

TABLE Al (1)

Station	Name	Angle	Side
22+03 24+84 46+53 48+89	Yeager Road Sycamore Lane Salisbury Covington St.	90 138 90 90	R, L R R, L
73+00 104+26 104+99 114+87 147+92	Happy Hollow Road Overpass SR 43 WE River Bridge EE River Bridge 9th St. Cut-off Road	90	R,L
153+35 154+65 175+33 178+69	Overpass 9th St. Road Overpass Monon RR Hall Street Stillwell Street	88° 306° 68° 68°	R R
182+30 184+85 186+59 190+31	Monon Avenue Schuyler Avenue 25th Street 26th Street	38 58 120 120	3,L 3,L 3
199+75 201+41 209+35 219+50 229+74	Overpass Wabash RR Overpass Laf. Union Ry. Jo. Darby Tane Underwood Street Beech Drive	90 45;0 90 63 105	R R E
236+87 256+43 263+30 234+04	Greenbush Street; Holly Hill Drive Union Street Lefayette Belt RR SR 26	90 90 90 139 90	A,L R A,L R,L
244+98 271+76 285+00 298+64 307+05 324+55	Kossuth Street Begin Four Lene McCarty Lane Main Street Teal Road	90 90 40 100	R,L R,L
コニサインン	and the Colonial and the Color to the	Salar Service	

HORIZONTAL CURVATURE

TABLE A1 (2)

Southbound				North	bound
Starting Station	Degree	Length	starting Station	Degree	Length
0+00 11+19 12+38 12+96 13+67 13+69 15+69	50.4	1119 119 58 71 2 200	0+00 7:05 7+11 21+63	10 Ca 10 10 0 10 00 00 10 00 00	705 5 1452
15+79 21+10 22+44	5.0 ****	531 134			

Southbound and Northbound

Starting Station	Degree	Length.
21+70	ADP CIL «CA	3929
60+99	0.5	1647
77+46	visi dic C3	6372
141+18	2.0	394
150+12	27 16 70	1152
161+62	2.0	850
170+12	the car en	355
178+71	1.0	931
188+02	amps ca	2230
210+32	3.0	1.807
223+39	ally tap run	3384
25 8+30	2.0	1.000
223+29	Wa at all	10.572
285+00	Begin dual Lane	transition

Southbound				Northbound	
Starting Station	Degree	Length	Starting Station	Degree	Length
285+00	ලා මා යා	1397	285+00	1.0	550
298+97	9.0	712	290+50	1.0	550
305+81	60 S2 C2	400	296+00	to a contract	58
309+81	1.0	1474	296+58	0.5	690
324+55	1.0	1400	303+48	tio and day	698
338+55	end pro	oject	310+46	1.0	2803
	_		338+49	end pr	oject

VERTICAL CURVATURE

TABLE AL (3)

	Southbound		M	orthbound	
Starting Station	Grade	Length	Starting Station	Grade	Length
0+00 13+20 13+60 14+15 15+72 22+79 23+50	+0.26 V.C. +0.33 Transition +0.72 V.C. +0.40	1164* 40 55 157 300*	(+00 [+25 5+75 15+50 13+50 21+56 23-50	+0.26 V.C. +0.13 V.C. +0.72 V.C. +0.40	725 150 175 300 700 300*
		Two Ler	ne Section		
23+50 24+50 27+50 31+50 43+50 43+50 46+50 50+50 53+60 65+00 65+00 157+75 162+50 166+50 170+55 188+00 193+33 196+33 203+33 205+20 213+50 216+50 219+75 226+50 236+25 236+25 236+25 236+25 236+25 236+25 239+75 240+00	+0.40 V.C. +0.27 V.C0.51 V.C0.10 V.C1.17 V.C4.00 V.C. +0.12 V.C0.33 V.C. +1.00 V.C. +1.00 V.C. +1.00 V.C. +1.06 V.C.	100 300 400 300 900 300 300 300 300 300 400 375 400 375 525 300 300 400 375 525 300 300 300 400 375 300 300 300 400 375 300 300 300 400 375 300 300 300 300 300 300 300 300 300 30	67+50 78+50 78+50 78+60 96+65 116+80 116+80 116+80 116+80 116+80 116+80 125+75 114+50 147+50 147+50 248+50 248+50 252+00 252+00 252+00 252+00 253+50 264+50 233+50 234+50 237+50 234+50 237+50 237+50 237+50 246+50 256+50 267+50 277+50 277+50 277+50 277+50 277+50 277+50 277+50 277+50 277+50 277+50 277+50	V.C. +0.60 V.C5.00 V.C2.50 V.C. +1.35 V.C. +1.22 V.C1.40 V.C0.20 V.C. +1.73 V.C0.24 V.C0.24 V.C0.24 V.C0.24 V.C0.25 V.C0.25 V.C0.25 V.C0.25 V.C0.30 V.C0.52 V.C0.52 V.C0.52	300 50 500 1765 400 1515 300 1595 300 575 300 250 300 650 300 250 300 400 300 400 300 400 300 1100 300

^{*} Station Equation Included

TABLE A1 (3)

VERTICAL CURVATURE

	Southbound		
Starting Station	Grade	lergth	
300+50 302+00 303+00 307+00 311+00 329+50	-0.19 -0.20 V.C. V.C. -0.20 end project	150 1.00 400 400	

PAVEMENT WIDTH

No chiteune.

Station	Wa Itla
23+0 0 65+60 68+70	11' Width Begin taper from 11' -6 22' 22' Widt'
101-90	Begin tup m from RP co 11
104-99	La Wino
143+142	Begin taper from Li to 21'
145+98	SI, Mida
150+29 151+09	Pegin toger from 21' to 41'
178+15	End 11 - Sport 21 - Vide
192+20	End 21 Waath Store 11.
557+11	And 11' Sweet 21' Wate
230+114	End 21 Scart 11 Mach
238+77	End 11 Scart 21 Wildit
239+56	Fine "F = 235+63 + Jame "d"
238+62	Fnd 21 Bigin il Wick
262+43 264+80	End 11: 3 gin 21: Vidto
268+30	Fad 21 3 gir 11 Mldum Line "" : 223-28 / Line "a"
243+85	End 11 With Regar TV
246+83	End 21 Repn 11 Violb
270+71	End 11 Begin taper from L. Act at
271+67	21. Wilth
272+58	End 21 Began tages from 21 11
273+39	11. Width
290+03	End 11' Begin tapes from 11 to 2
294+98	22' Whith PF = 309+80.9
309+81. 330	22° Width
230	Benkinsen 11 mg Ne 140 C

TABLE A1 (4)

PAVENCHT WIDLE

Southbound

Station	Jidth
23+00 68+20 69+20 73+00 145+42 145+92 147+92 148+19 148+71 178+25 188+70 22+20	ll' Width Begin taper from 11 % 21 21' Width End 21 With Start A' Begin taper from 11 to 21 21' Width End 21' Wilth Start 22' End 22 Stort taper from 22' to 4' Al' Width End 11' Wilth Start 21' End 21 width Begin 11' End 21 Width Begin 21 End 21 Width Begin 21 End 21 Star 11' Width End 11 With Degin 21 End 21 Fegin 11' Width End 20 Segin 11' Width Begin taper from 11' or 20'
290+03	22 Victo Fn = PCC 309+80.9 22 Victo

TARLE A. (5)

SHOTLDER LIDER

Now liber nd

Station	Vidti
0+00 73+00 104+99 114+87 137+40 143+50 150+30 15+05 154+49 159+06 160+72 175+09	LO W. 6to Fine LO' Which Start Brt : Fine 5' Width Start Brt : Fine 6 ddge Start C' Fol 6 death Start LO the 20' Start 10' Nad Lo' Start [' Zhe 10' S
173+82 181+45 192+71 198+87 200+70 20+45 207+85 209+90 216+91 219+50 229+74 239+56 236+88 253+54 268+30 244+99	The 10% stath Star, has absent Findius Find Re. Area Start IO' Width Find IO' Start O' (Bridge) The Latine Start T Find S Start S' Find S Start SO' Find 108' Find Bar: 20 Find BO' Start 12' Line '= 235-63 at Baile 'C' Find IO' Start 10'

TABLE AL (5)

SHOULDER VIDIA

Southbound

Station	Widch
0+00	LOT Giusi
86+00	End 10' Midia Start 7' Hoan
104+99	En 17' Milith Start Bridge
114+87	End Builde Stern 6' Width
145+15	End 6" With Steam 10"
150+30	Enl 10: Vedta Steat 7'
153+32	End 7 Front tapes to 3
15+49	Jar tayer Start 3' Dringe)
159+06	That 3' I did btart 5'
161+54	Mar 51 Spert 101
179+35	War 10' bocco 5'
184+85	Wal 5' Blant 10'
192+71	English Start 7'
198+87	Ind T' Staro C' (Lridge
200+70	Sa - Esidge Stort 79
20+45	3.1 7" 3 Cart 61
209+33	Dr. S. S.ant JAV
213+57	Ead 1% Start 10°
219+50	Mr. 10 Midth Start 20
223+99	Far 20' , text 12
239+56	$1.1 - 1.3^{1} = 235 + 63 + 74 = 1.3^{1}$
227+20	Mar 121 Start 31
236+88	Fac 3' 3 ext 10'
268+30	Line 'G" = 223+28.7 Line "A"
24499	drt 10: Start 12:
— · · · J pl	

TABLE A2

DRIVEWAY SUMMARY

RIGHT SIVE

1 15+90 Service Station 52,29 110 2 17+72 Service Station 80,31 90 3 10+77 Motel 51.32 30 4 12+78 Restaurant-Motel 71,24 50 5 23+05 Service Station 30,32 70 6 24+78 Private Residence 10 5 7 14+92 Restaurant 34 110 8 147+07 Service Station 37,33 10 9 19+21 Restaurant Brive-in 31 330 10 51+16 Shopping Center 33 1100 11 186+16 Service Station 75 250 12 188+10 Restaurant, Drive-in 27,23 200 13 189+34 Service Station 90,32 70 14 191+17 Restaurant-Motel 7,14 190 15 214+22 Motel 70 215+15 Restaurant 88,40 210 16 218+09 Service Station 42,44 90 17 238+19 Service Station 41,41 120 18 247+23 Cemetery 10,20 20 19 210+57 Office Station 41,41 120 20 252+34 Auto Sales, Fower St. on 15 40 21 253+92 Auto Sales	Business Number	Stathon	Functional Classification	Wadth	Freimand Generalion
2 0.7472 Service Station 25,31 50 3 20+77 Motel 51.32 30 4 12478 Restaurant-Motel 27,24 50 5 23+05 Service Station 30,32 70 6 24+78 Private Residence 10 5 7 14+92 Restaurant 34 110 8 147+17 Service Station 37,33 10 5 9 19+21 Restaurant, Drive-in 31 330 10 51+16 Shopping Center 33 1100 11 186+16 Service Station 56 250 12 108+10 Restaurant, Drive-in 27,23 200 13 189+34 Service Station 50,32 70 14 191+17 Restaurant-Motel 7,14 190 15 214+22 Motel 37 170 215+15 Restaurant 36,40 210 16 218+09 Service Station 42,44 90 17 238+19 Service Station 42,44 90 17 238+19 Service Station 41,41 120 18 247+23 Cemetery 10,20 20 19 250+57 Office Exiliding 40,35 130 20 252+34 Auto Sales, Fower St. on 15		15+90	Service Station	32,20	110
9	2	17+72	Service Station	20,31	50
9	3	2:0+77	Motel	32 - 32	30
9	Į.	12478	Restaurat-Matel.	37,24	50
9	5	2.3+05	Service Station	30,32	70
9	€	Spr. 8	Private Residence	3.0	$=$ \circ
9	7	174435	Restaurent	34	
11 186+16 Service Station 53 250 12 188+10 Restaurant, Driv. An 27,23 200 13 189+3h Service Station 50,32 70 14 191+17 Restaurant-Motel 7,14 190 15 214+22 Motel 37 170 215+15 Restaurant 38,40 210 16 218+09 Service Station 42,44 90 17 238+19 Service Station 41,41 120 18 247+23 Cemetery 10,20 20 19 210+57 Office Building 40,35 130 20 252+3h Auto Sales, Fover St. on 15 40	8	1.7-1-1.7	Service Station	37,33	10,
11 186+16 Service Station 53 250 12 188+10 Restaurant, Driv. An 27,23 200 13 189+3h Service Station 50,32 70 14 191+17 Restaurant-Motel 7,14 190 15 214+22 Motel 37 170 215+15 Restaurant 38,40 210 16 218+09 Service Station 42,44 90 17 238+19 Service Station 41,41 120 18 247+23 Cemetery 10,20 20 19 210+57 Office Building 40,35 130 20 252+3h Auto Sales, Fover St. on 15 40		19421	Restaurant, Drive-in	3	330
11 186+16 Service Station 53 250 12 188+10 Restaurant, Driv. An 27,23 200 13 189+3h Service Station 50,32 70 14 191+17 Restaurant-Motel 7,14 190 15 214+22 Motel 37 170 215+15 Restaurant 38,40 210 16 218+09 Service Station 42,44 90 17 238+19 Service Station 41,41 120 18 247+23 Cemetery 10,20 20 19 210+57 Office Building 40,35 130 20 252+3h Auto Sales, Fover St. on 15 40	10	51:16	Shopping Center	33	
15 214+22 Motel 37 170 21.54.15 Restaurant 38,40 210 16 21.8+09 Service Station 42,44 90 17 238+19 Service Station 41,41 120 18 247+23 Cemetery 20,20 20 19 2.0+57 Office Unilding 20,35 130 20 252+34 Auto Sales, Forer St. on 15 40	11	186+16	Service Station	53	250
15 214+22 Motel 37 170 21.54.15 Restaurant 38,40 210 16 21.8+09 Service Station 42,44 90 17 238+19 Service Station 41,41 120 18 247+23 Cemetery 20,20 20 19 2.0+57 Office Unilding 20,35 130 20 252+34 Auto Sales, Forer St. on 15 40	12	188+10	Restaurant, Driv. Au	27,23	
15 214+22 Motel 37 170 21.54.15 Restaurant 38,40 210 16 21.8+09 Service Station 42,44 90 17 238+19 Service Station 41,41 120 18 247+23 Cemetery 20,20 20 19 2.0+57 Office Unilding 20,35 130 20 252+34 Auto Sales, Forer St. on 15 40	13	1.89+3L	Service Station	,0,32	70
15 214+22 Motel 37 170 21.54.15 Restaurant 38,40 210 16 21.8+09 Service Station 42,44 90 17 238+19 Service Station 41,41 120 18 247+23 Cemetery 20,20 20 19 2.0+57 Office Unilding 20,35 130 20 252+34 Auto Sales, Forer St. on 15 40	14	191717	Aesteurant-Mobel	8,74	190
20.5+15 Restaurant 38,40 210 16 20.8+09 Service Station 42,64 90 17 20.8+19 Service Station 41,41 120 18 247+23 Cemetery 10,20 20 19 2.0+57 Office Unilding 40,35 130 20 252+34 Auto Sales, Fover St. on 15 40	1.5	21.4+22	Motel.	3:7	170
16 20.8+09 Service Station 42,44 90 17 20.8+19 Service Station 41,41 120 18 247+23 Cemeterr 30,20 20 19 2.0+57 Office Unilding 40,35 130 20 252+34 Auto Sales, Fover St. or 15 40		27.5415	Restaurant	38,40	210
17 238*19 Service Station 41,41 120 18 247*23 Cemetery 30,20 20 19 250*57 Office Unildiag 30,35 130 20 252*34 Auto Sales, Forcer St. or 15 40	16	21.8+09	Service Station	They been	90
18 247*23 Cemetery 10,20 20 19 250*57 Office Unilding 10,35 130 20 252*34 Auto Sales, Forer St. on 15 40	17	238+19	Service Station	+1, 41	120
19 2:0457 Office Unilding 20,35 130 20 2:52+34 Auto Sales, Fourer St. on 15 40	18	247+23	Cemetery	30,20	21)
20 252+34 Acto Sales, Fourer St ut 15 49	19	2 0+57	Office Building		130
		2:12+34	Acto Sales, Ecter St ut	1.7	
	21				45
22 234+39 Arto Sales 34 90	22	2 14+39	Auto Sales		90
23 255+36 Residential Access 24 15)	23	255+06	Residential Accus	57	3.5)
24 257+30 Carwash 23		257+30	Carwash	23	91.
25 278+09 Truck Terminal 37 20	25	2584-09	Truck Cerminal	37	
26 259+27 Roadside Stand 35	26	259+27	Roadside Stapi	35	40
27 261-42 Service 3-stira 2,33 70	27	261+42	Service Station	4,39	70
28 264*16 Service Statilia 30.31 90	28	264+16	Service Statilia	30,32	50
29 255+81 Restair at 22, 11, 52 220		265+81	Restour at	JE, 7,1,52	220
30 267+25 Restaurent, Late 20 44,39 370	30			+1., 39	370
31 224+29 Commercial Buildia 30,30 270				30,30	270
32 226+87 Private Residence 15 ;		226+87	Private Residence		5
		228+08	Commercial	26	30
3h 229+49 Commercial 35,47 50	31 ₂	229+49	Commercial	35,47	50
35 231+36 Commercial 100 60	35	231+36	Commercial		60
35 231+36 Commercial 100 60 36 233+58 Motel 59 30 37 238+12 County Highway Garage 271 60	3 6	233+58		59	30
37 238+12 County Highway Garay 271 60	37	238+12	County Highway Garage		60
38 241+67 Commercial 40,35 30	3 8	241.+67	Commercial		30
39 243+54 Service Station 44, 12 43	39	243+54	Service Station	44,12	1.3

TABLE A2 (conc'a)

Business Number	Station	Functional Classification	÷ (F ₀	(n . 1)
40 41 42 43 44 45 46 47 48 49 50 51 53	246+18 248+01 250+32 253+00 258+02 256+80 272+55 275+06 276+95 231478 200+33 201451	Dervice Sout on Private Residence Drivate Residence Ladve-ic Residence Latve-ic Residence Latve Sales Latve Sales Lommane all Ladve-id Lad		

Business Number	Specion	The second.	40-3-49-	
123456400011	15+44 17+05 37+31 42+60 15+54 47+50 16+57 147+10 148+26 187+02 190+26 208+45	Commune al. Trailer Residing 1 Commune al Mondia Trailer Resider Leveles Sound Leveles Soun	21 29 C 27 3 TH 15 27 23 C 26 C	240 240 240 240 240 240 240 200
13 14 15 16	217+95 229*74 235+58 253*54	Convercial Fesidential Access Service Station nductors	30 41,51 56	_0 _0 _0 _0

TABLE A2 (cont'd)

Carro	73 400	
		50
		1.5
		<u> </u>
		15
	31,26	170
		14:
		3.51
	35,41	120
	20 31,21	83
Erivete Residen	.1.3	5
Service Station, Restainant	45,33	150
Service Synthetical		113
Service Stewion, Industrial		240
Service Station	12,48	97
	32	9:
Commercuali		91 30
	30,24	157
Industra, al		151
Drive-in Restaurant		15:
		EC
		50-
		30
		51
	26	11.1
Farking Lot	46	5.
Commercial	28,26	5.
	38, 31	170
	13,36	60
		12.0
	14	=
	17	- pa
	49,40	6:
		1110
	23	20
	50	300
	Frivate Resident Service Station, Restaumant Service Station, Industrial Service Station Industrial Commercial Commercial Industrial Drive-in Restaurant Service Station Auto Sales Commercial Commercial Farking Lot Commercial Bastaurant Industrial Service Station-delial Commercial	Office 19 Erivate Residence 15 Commercial 57,143 Commercial 31,26 Service Station 40,39 Industrial 18 Service Station 35,41 Commercial 20,31,21 Frivate Residence 20,36 Service Station, Restribut 45,33 Service Station, Restribut 32,36 Service Station 19,48 Industrial 32 Commercial 32,18 Commercial 32,18 Commercial 30,24 Industrial 22 Drive-in Residence 140,37 Service Station 37,30 Auto Sales 20 Commercial 26 Commercial 26 Commercial 26 Earking Lot 26 Commercial 26 Earking Lot 27 Commercial 28,26 Eartice Station-delication 41,42 Frivate Rescione 142,40 Service Station 49,29 Commercial 23

SURVET DATA SPEED-DELAK STUDY Average Travel Speed (aph)

	SE 8	low	1.1 1	100	Cost, Inc.	1 4 4 7 3
Section	Greed Speed	Essering. Spc 3d	25 A	Spead	Speed	ते भ्यारं ह ते १ व्हल
Northestern's	26.8	29.5	32.6	42.4	34 6	36.0
Salisbury	30.1	31.9	213	32.2	23	32.
Schayler	21.7	21.4	J. II	28.2	63 9	27.5
Greenbush	19.9	25.3	27.3	5 /-0	3 1	27.
Union	23.6	25.9	24.3	21 8	2.4	25.9
South	19.7	22.5	2 %	25.7	20.	24.1
Maina	39.0	39.6	31.)	35.7	33.5	16.0
Teals	29.2	32.9	#1 42 1	31.9	20	3?,4.

Average Sec 1982 tong thegat

Section	Average Stopped TL: per Res, st	Bith, the	Tunn tria	a Stopped	elent el la geografia en en geografia	Dist.
Borthwestern	5.3	50.3	160.0	⇔ 5. 0 ·	@ * a	e
Salisbury	3.7	12.34	30.0	& 1	5.5	17 5
Schwyler	10.0	13.6	21)	5 1	73-1	51.5
Greenbush	12.3	10 . "	65 B	4.	0.5	4117.0
Vaion	4.8	3 .4	-3 m - 3/2	507		4,5.0
South	9.2	17.5	22 5	8.6	. 6	55.0
Hains	5.3	26,0	\$2.3	110 3	16 4	60 0
Teals	3.8	1:5	57. 1	15 (79 -	70.5

duerage Delay year with but one

	S3 Fi	C.a.	T. \$ 05		
Section	Calculored	-THORE LEWIS	Ca. tr	istati	Theo or i.e.u.
Saliebury	7.0	6.4	1	l <u>s</u>	7.9
Schuyler	11.0	15.7	15	2.	12.9
Greenbush	15.5	16.4	3	3	8.5
Vaion	8.3	7.9	10.	6	8.9
South	113.5	14.2	13	0	12 7

What included in the multivariate enelysis

.) 70

P

1

SPEED - BLIST STUDY

Contributions of Princess of the terms of the

Factor

Commercial Devalopment
Horizontal Rodet and
Evening Chopping by
Time Topography
Time Varieties
Urban Davelopment
Driver Daston Stone
Controved Transfer
Rey-of-week harman

23 . 6 5

High told of the Non-pesk past of Plot topolar of the Conservation of the Conservation

HULTIPLE LINEAR PERSONNEL AND CONFESATION LESULTS IN TREMUPTON FLORI

Factor	torrelation of Africa	to feel
High major street volume	0.0278	-0 0 A6
Ron-pock period	The state of the s	-0 (1.15) &
Flat topography	€ 1 48 60 1	-0 1 78 :
Commercial devalopment	5 5	1 04 70
Low-minor street volume	die 2. de s	10 20 26
Heavy turning up /amints	C 3: 1	. 1 0, 79
Time variations	14, 20	19.0.20
Adverse wartiste alinguera	of the second	: 7 81.36
Through traffic	€ €.	141 B 345
Day-of-week variations	· · · · · · · · · · · · · · · · · · ·	. [1]

* Significant at the fig.

Dependent variables - 196
Intercepts 26.58 sph
Multiple consolution toofs - 1 - 1
Standard exper of optimities (5) -

	or erk kr
15) 1215
1 1	J. 1387
. * *	3.0263
-0.7	Jobs 1094
121 7. 8	139
	5 16 1 7 4

100.00

on dg H

TABLE A4 (3)

MULTIPLE LINEAR REGRESSION AND CORRELATION ANALYSIS OF TRAVEL SPEED, UNINFERRUITED FLOW

Factor	Correlation Coefficient
Commercial development	-0.5507 *
Horizontal resistance	-0.0525
Evening shopping travel.	-0.0923
Flat topography	+0.0049
Time variations	-0.0659
Urban development	-0.3874 ×
Driver distractions	+0.0956
Time variations	-0.0920
Cutbound traffic	+0.0535
Day-of-week variations	10.0239
Rural development	10. L741; *
Streem friction	-0.2674 *
Day-of-week variations	-0.0400

* Significant at the 5 percent level

Dependent variable: Travel Speed Intercept = 68.60 nph Multiple correlation coefficient = 0.704 Standard error of estimate = 6.55 mph

Variable	Wet Regression Coefficient	Stendard Error
Cross Streets Commercial Establishments	-0.4541 -0.1775	0.1214
No Passing Zone	-0.1007	0.(135
Practical Capacity Total Volume	-0.0150 -0.0301	0.C022 0.C024

TABLE A5(1)

RANKING OF INTERSECTIONS BY ANNUAL NUMBER OF ACCIDENTS AND ANNUAL NUMBER OF ACCIDENTS PER MILLION VEHICLES.

Rank	Intersection	No. of Accidents	Intersection	Accident Rate
1	Teal Road	27.3	Teal Road	3.33
2	State Road 26	27.0	State Road 26	2.85
3	Union	20.3	State Road 25	2.59
4	State Road 38	20.3	Greenbush	2.47
5	State Road 25	20.0	Union	2.39
6	Greenbush	18.0	State Road 38	2.36
7	Happy Hollow	10.3	Northwestern	1.73
8	Northwestern	8.7	Happy Hollow	1.69
9	Ninth St. Cutoff	8.3	Ninth St. Cutoff	1.53
10	Salisbury	8.0	Salisbury	1.38
11	McCarty	5.3	McCarty	.78
12	Kossuth	5.0	Underwood	.73
13	Underwood	4.7	Kossuth	.73
14	Yeager	1.7	Yeager	.33

TABLE A5(2)

RANKING OF INTERSECTIONS BY COSTS OF ACCIDENTS

Rank	Intersection	Cost (Dollars)	Intersection	Cost per MV (Dollars)	Intersection	Cost of Index of Hazard
Н	Teal Road	26,367	Teal Foad	3,429	Teal Road	127.3
2	Greenbush	13,673	Northwestern	2,160	Salisbury	91.8
Ж	Union	13,013	Greenbash	1,987	Hapry Ibllow	0.99
7	State Road 25	12,930	State Road 25	1,757	State Road 38	0.64
٧٠	State Road 26	12,283	Union	1,623	State Road 25	33.9
9	Northwestern	10,760	State Road 26	1,383	Union	28.2
7	State Road 38	9,303	Happy Hollow	1,368	State Road 26	23.5
82	Happy Hollow	7,987	Salisbury	1,261	Төадег	14.8
6	Salisbury	6,770	State Road 38	1,147	Greenbush	9.4
10	Underwood	4,313	Ninth St. Cutoff	878	Underwood	7.9
	Ninth St. Cutoff	17,647	Underwood	794	Northwestern	5.1:
12	McCarty	4,320	McCarty	670	McCarty	3.5
13	Kossuth	3,003	Kossuth	461	Ninth St. Cutoff	3.2
114	Yeager	123	Yeager	91	Kossuth	1.5

TABLE A6(1)

RANKING OF SECTIONS BY AVERAGE ANNUAL NUMBER OF ACCIDENTS AND SEVERAL MEASURES OF EXPOSURE

Rank	Sect.	No. of Acc.	Sect.	Acc. Mile	Sect.	Acc. 10,000 veh.	Sect.	Acc. MVM
1	18	15.0	19	49.9	18	8.46	14	9.30
2	19	13.3	21	35.6	19	7.33	19	6.70
3	21	10.3	18	34.9	21	6.16	21	5.46
4	17	6.3	17	28.7	6	3.90	18	5.01
5	14	5.3	14	23.3	17	3.72	17	4.36
6	12	5.0	12	18.3	8	3.66	14	3.88
7	6	4.7	23	16.3	11,	3.14	7	3.60
8	15	4.3	7	16.0	12	3.23	12	3.07
9	8	4.0	4	13.5	10	2.81	23	2.48
10	10	3.7	15	13.2	15	2.60	9	2.45
11	7	3.0	13	13.2	7	2.51	13	2.21
12	14	2.7	9	12.4	4	1.99	10	2.14
13	9	2.3	22	11.5	9	1.78	15	2.09
$1l_{i}$	5	2.0	10	10.8	5	1.49	6	1.83
15	16	1.7	11	8.9	22	0.99	1	1.81
16	22	1.7	16	8.3	16	0.98	22	1.77
17	20	1.3	20	8.1	1	0.97	11	1.66
18	23	1.3	6	8.1	3	0.89	8	1.56
19	1	1.0	1	7.1	23	0.79	3	1.37
20	3	1.0	8	6.9	11	0.77	16	1.25
21	11	1.0	3	5.9	20	0.71	20	1.14
22	13	1.0	5	5.4	13	0.65	5	1.06
23	24	0.7	5/1	1.9	24	0.39	24	0.39
24	2	0.3	2	1.5	2	0.30	2	0.38

TABLE A6(2)

RANKING OF SECTIONS BY A MEASURE OF HAZARD AND SEVERAL MEASURES OF AVERAGE ANNUAL COSTS OF ACCIDENTS

Rank	Sect.	Hazard (100)	Sect.	Cost (Dollars)	Sect.	Cost MVM (Dollars)	Sect.	Cost Hazard (1000)
1	4	141	19	12,723	4	12,679	4	199
2	19	102	18	10,332	19	6,531	19	98
3	21	84	21	7,300	17	4,441	17	67
4	18	76	15	6,407	21	3,883	15	61
5	23	76	17	6,373	14	3,877	14	59
6	17	67	14	5,323	7	3,747	21	58
7	14	59	6	5,253	18	3,513	7	57
8 [°]	7	55	8	5,203	15 .	3,139	18	53
	12	47	4	3,753	11	2,268	6	47
10	6	42	12	3,280	6	2,049	22	39
11	15	42	7	3,110	12	2,033	11	35
12	22	41	10	2,460	8	2,021	8	31
13	9	37	5	2,073	1	1,881	12	31
14	13	34	9	1,870	13	1,758	9	29
15	10	33	11	1,363	10	1,427	1	27
16	1	28	20	1,246	23	1,291	13	27
17	11	25	1	1,063	9	1,085	10	25
18	8	24	16	860	5	1,078	5	17
19	20	22	13	786	20	1,047	20	16
20	3	21	23	683	16	656	23	12
21	16	19	22	487	22	523	16	10
22	5	16	24	466	3	5 2 0	3	8
23	24	12	3	400	24	266	24	8
24	2	6	2	43	2	49	2	1

TABLE A7

TYPES OF ACCIDENTS ON THE HOST HAZARDOUS NONINTERSECTION STUDY SECTIONS

				O J	Section Number	Number						
	7	7	10	12	14	51	17	18	19	12	To tal	% of these acc.
Accident Rate 9.30	1	3.60	2.14	3:07	3.88	2.09	4.35	5.01	9.60	5.46	4.29	1
No. of Acc.	တ	6	11	<u> </u>	16	13	19	45	70	37	207	1
Injuries	2	9	~	N	10	12	14	13	28	12	115	1
Pavement wet or icy	. =	9	9	9	V 1	9	~	12	16	18	82	07
Type I	0	0		rd	0	2	9	75	6	5	×	18
Type II	2	Н	2	ΣŅ	8	r-	80	23	56	12	108	52
Type III	٦	~	77	\sim	2	П	~	2	ω,	٦	27	13
Type IV	0	ì۸	_1	9	٦	ω	\sim	κ	Ċ	7	36	17
7 - 8 AM 2 - 8 PM	9	7	\sim	9	12	•0	777	31	25	19	126	61
Night	٦		7	9	m	0	Н	=	_7	۰,0	33	16

TABLE AS
INTERSECTIONS
CAPACITIES AND VILUNES

HO.	APPR	HAM	CAPACITY!	VP VE HOURE WOLUME	TIME ! JAP
001	H	Horrimootera Ave	1.720	460	0.26
	S		826	390	0.48
	W		920	410	9.50
102		Teager Ed.	a6 0	430	£ 418
	S		300	450	2 12
	E		130	260	1.53
	W		130	50	0 69
103		Salisbary St.	370	630	1 11
	S		530	44.0	0 80
	22		350	60	0 23
	H		306	250	0.93
10%	21	Espay Hall or Rd.	.371	896	4 . 25
	S		370	390	6 30
	E3 E3		1.14	26	0.30
	21		100	2113	2.70
201	H	Mach St.	285	430	1.7)
	3		380	429	1 54
	69		220	240	1,39
202	21	Semylor-Tadian 12	120	500	1 25
	3		+30	520	1.33
			340	256	0.74
			alc	250	0.61
301	ig .	Talerwood St.	310	490	1.26
	S		is I C	450	1.17
	6.3		350	70	0.13
302	C. P. S.	Greenbush St.	570	570	1.00
	S		530	730	1.16
	E		200	20	0.10
	W		210	220	1.05

^{*}Approaches are named relative to the direction of Expans Traffic.

" TABLE AS

Continued

XO.	APP.	EAM	CASUCTUS	PEAR PRIZ VOLUME	VOL/C.^
303	8 8 8 W	Vaien St.	560 550 200 260	540 710 120 400	3 96 1 29 5 25 1 43
304	e S E	South StLudland 24	570 560 160 220	340 980 270 699	12 (1) (1) (2) (2) (3) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5
401	3	Rossuth St.	050 950 120	170 720 900	1 60
403	3 3 8	McCarty Land	1650 1650 450 450	230 230 230	5-4-8 5-4-3 5-4-5
404	T 6 R T	Kelu StIellen 31	16 0 0 1470 128 140	030 713 230 431	7.63 7.63 7.83 67
405	e e e	Teel Be. It liens the	1.03 156 210	620 -30 -99 410	0.75 0.94 0.52 0.65

MANAGER TO SECTION OF THE ASSETS OF THE ASSE

TABLE A9

RCH-LETELOUCTION ALBAS VOLUMES ALL CAPACITIES

				PELL HOW.	
mo.t	Length	CAPACITATO	1 2122	YOURS.	Visa./Car
2	747	2750	10310	710	6.63
2	1150	2757	10356	750	0.63
83	897	1750	11090	796	1,45
Es	3.00	1750	13549	940	0.54
5	19.44	1.90	13320	940	0 33
6	3041	1650	12400	860	0 12
7	9.17	1210	12 100	830	9 12
8	3060	1320	12466	846	0.65
9	9:13	910	129 10	850	3 95
10	17 17	940	12360	840	3 81
22	5.12	900	13020	951	0 96
12	14 14	155.	17466	200	1 13
	4,110	1150	14510	1000) 115
14	12.19	2737	6111	\$.16	0 1
15	17/3	1344	LEDZO	3330	0 73
16	10.3	227	17300	1230	37
17	11;7	2190	.6350	1110	8 55
18	22)8	219	16730	1360	7 73
19	14.0	2190	17100	1196	0 %
20	8 15	5180	13580	1231	0 3
21	1529	219	17831	1276	0 56
22	7 19	239	17390	1230	0 55
23	4-12	350	15523	4.30	i 7
24	13 38	3563	17850	1750	27 - 18 59

*Sections are traffic ordered **Two Direction Capacity.

TABLE ALO
TRAFFIC SIGNAL CYCLES*

LOCATION	AP PR			A	CACTU LOLYT LITCOLL
SCHUTLER (S.R. 25H.) empass cross	25	25		1.8
GREDIDISH.	hrpas? Cross	100 mm		W 3 - 5	60
UNICH	Bupase Cluss	20 K7	17	20 + cr 3 =	C) to
S0974 (S.R. 26)	CROSS		95 17	10 FT 48 **	0
**************************************	STRAGG CRASS	3)	25	20	50
TEAL (S.R.298.)	SYFACE	24	55 7 Q	10 47	7" da

^{*}Existing comiscionated nigral in Juliabusy of aid to less if in status quo although fired wire olympia is consumed.

two cal cycle includes I canonic policy and has said at one or cach phase change.

5. T. V.

ording No. 1.

16. 2 Pes. 103

10. 3 7. 200

10. 3

16. 3 1009 1009 11 1009

110. 4

Spain, Io. 5 -88: 1989 1.H.)

0620, M. 5 66. 1969 2.M.)

27.7

			· (E

