

STSPIN L6470 and L6472

ST motor drivers are moving the future

Digital. Accurate. Versatile.

The L6470 and L6472 ICs integrate a complex logic core providing a set of high-level features

Digital. Accurate. Versatile.

The devices also integrate analog circuitry and a dual full-bridge power stage making it a stand-alone solution for stepper motor driving applications.

L6470 and L6472 characteristics

- Supply voltage from 8 to 45 V
- Power stage
 - 3 A_{RMS}
 - $R_{DS(ON)} = 0.28 \Omega$
- Integrated current sensing (no external shunt)
- Up to 128 microsteps (L6470)
- Current control
 - L6470: Voltage mode driving
 - L6472: Advanced current control
- Sensorless stall detection (L6470)
- **Digital Motion Engine**
 - Programmable speed profile
 - High-level commands

- 8-bit 5 MHz SPI interface (Daisy-chain compatible)
- Integrated 16 MHz oscillator
- Integrated 5-bit ADC
- Integrated 3 V voltage regulator
- Overcurrent, overtemperature and undervoltage protections
- HTSSOP and POWERSO packages

Intelligence integration •

Before L6470 and L6472 ...

Intelligence integration ••

with **L6470 and L6472** ...

- System is greatly simplified
- No more dedicated MCU to perform speed profile and positioning calculations
- Less components
- Single MCU can drive more devices at the same time

A full-digital interface to MCU

- The fast SPI interface with daisy-chain capability allows a single MCU to manage multiple devices
- Programmable alarm FLAG opendrain output for interrupt-based FW In daisy-chain configuration, FLAG pins of different devices can be OR-wired to save host controller GPIOs
- BUSY open-drain output allows the MCU to know when the last command has been performed In daisy-chain configuration, BUSY pins of different devices can be OR-wired to save host controller GPIOs
- BUSY can be used as SYNC signal giving a feedback of the step-clock to the MCU

Fully programmable speed profile boundaries

Positioning features: Movement command

Move(N, DIR) command perform a motion of N steps in the selected direction.

This command can be performed only when the motor is stopped.

Positioning features: Absolute positioning commands

GoTo(Target) command: reach the target position using shortest path.

This command can be performed only when motor is stopped or is running at constant speed.

GoTo_DIR(Target, DIR) command: reach the target position moving the motor in the selected direction.

This command can be performed only when the motor is stopped or is running at constant speed.

Speed tracking features: Constant speed command

Run(SPD, DIR) command drives the motor to reach the target speed SPD in the selected direction. Target speed and direction can be changed anytime.

Limit switch management 12

At power-up, the load could be in an unknown position.

The absolute position counter should be initialized.

The **GoUntil** command moves the mechanical load to the limit switch position.

The ReleaseSW command moves the mechanical load on the limit switch triggering threshold.

Programmable overcurrent protection 13

Each MOSFET of the power stage is protected by an overcurrent protection system.

The overcurrent threshold can be programmed from 375 mA to 6 A.

When the current in one of the MOSFET exceeds the threshold, the whole power stage is **immediately turned OFF**.

The power stage cannot be enabled until a GetStatus command releases the failure condition.

Current sensing

The devices integrate a nondissipative current sensing on each MOSFET.

The **overcurrent protection** is performed measuring the current in **each MOSFET**.

The stall detection (L6470) and current control (L6472) are performed using the low-side MOSFETs current value.

Warning temperature and thermal shutdown

Diagnostic register 16

The devices integrate a diagnostic register collecting the information about the status of the system:

STATUS

Register

- Power stage enabled/disabled
- Command under execution (BUSY)
- Motor status (direction, acc., dec., etc.)
- Step-clock mode
- Overcurrent
- Thermal status
- Undervoltage (it also indicates the power-up status)
- Stall detection
- SW status
- SW input falling edge (limit switch turn-on)
- Incorrect or not performable command received

Programmable output slew-rate

Four output slew-rate values can be selected via SPI in order to fit the application EMI / Power dissipation tradeoff.

L6470 Voltage mode driving

Without BEMF compensation

With BEMF compensation

According to motor conditions (acc/deceleration, constant speed, hold), a different torque, and then current, could be needed.

Supply voltage compensation 23

The voltage sinewaves are generated through a PWM modulation. As a consequence, the actual phase voltage depends on the supply voltage of the power stage.

Supply voltage compensation i

Sensorless stall detection

Using integrated current sensing and the adjustable STALL current threshold, a cheap and easy stall detection function can be implemented.

Normal operation

Sensorless stall detection 27

Using integrated current sensing and the adjustable STALL current threshold, a cheap and easy stall detection function can be implemented.

STALL! **BEMF** is null and current is suddenly increased

Sensorless stall detection limitations 28

Stall detection performances can be reduced in the following conditions:

- Low speed (negligible BEMF value)
- High speed (current can be low due to the low-pass filtering effect of the inductor)

Slow speed optimization

 During low-speed movements, the sinewave current could suffer from zero-crossing distortion.

As result, the motor rotation is discontinuous.

 New low-speed optimization algorithm heavily reduce the distortion.

Smoothness of the driving is increased.

Without low speed optimizazion

L6472 Advanced current control

Advanced current control

- Automatic selection of the decay mode
 Stable current control in microstepping
- Slow decay and fast decay balancing Reduced current ripple
- Predictive current control
 Average current control

Challenges to perform the right decay 32

During the OFF state, both slow and fast decay must be used for a better control:

> L6472 performs an **AUTO-ADJUSTED DECAY**

Auto-adjusted decay

Auto-adjusted decay

Falling step control 35

during falling steps

Predictive current control: average current

The extra on time is calculated cycle-by-cycle using the following formula:

$$t_{PRFD}n = (t_{ON}n-1 + t_{ON}n)/2$$

Note: The TON_MIN limit of the current control is checked on t_{ON} time only. If t_{ON} < TON_MIN, no extra on time is performed and the decay adjustment sequence is performed.

Predictive current control: average current 37

Reference current = average current

When the system reaches the stability $\rightarrow t_{PRED}n = t_{ON}n$

In this case the average current is equal to the reference: the system implements a control of the average value of the current.

Predictive current control: switching freq.

Typical application 39

- Minimal component count
- MCU needs only 1 SPI interface and 2-4 optional GPIOs

Competitive advantages 40

- High level of integration
- Integrated current sensing
- Advanced diagnostics
- Stand-alone solution
- Suitable for multi-motor applications

Further information and full design support can be found at www.st.com/stspin

