Catalyst Meta Acceleration Framework: The history and the gist of it

Hongda Li

UBC Okanagan

November 13, 2024

ToC

- Introduction
 - The History and a Series of Papers
 - Nesterov's Estimating Sequence
 - Example: Accelerated proximal gradient
- Quler 1993
 - Exact Accelerated PPM
 - Inexact accelerated PPM
- 3 Lin 2015

- The Catalyst Algorithm
- The algorithm
- Convergence and practical importance
- Key theoretical innovations
- 4 Paquette 2018
 - Major Contributions
 - The Basic 4WD Catalyst
 - Convergence claims
 - Convergence Proofs
- Morals of the story
- 6 References

Nesterov's Book

• Yurri Nesterov's book: "Lectures on Convex Optimization" 2018, Springer [1].

Accelerated Proximal Point Method

SIAM J. OPTIMIZATION Vol. 2, No. 4, pp. 649-664, November 1992 © 1992 Society for Industrial and Applied Mathematics 007

NEW PROXIMAL POINT ALGORITHMS FOR CONVEX MINIMIZATION*

OSMAN GÜLER†

Abstract. This paper introduces two new proximal point algorithms for minimizing a proper, lower-semicontinuous convex function $f: \mathbf{R}^n \to \mathbf{R} \cup \{\infty\}$. Under this minimal assumption on f, the first algorithm possesses the global convergence rate estimate $f(x_k) - \min_{\mathbf{m} \in \mathbf{R}^n} f(x) = O(1/(\sum_{j=0}^{k-1} \sqrt{\lambda_j})^2)$, where $\{\lambda_k\}_{k=0}^n$ are the proximal parameters. It is shown that this algorithm converges, and global convergence rate estimates for it are provided, even if minimizations are performed inexactly at each iteration. Both algorithms converge even if f has no minimizers or is unbounded from below. These algorithms and results are valid in infinite-dimensional Hilbert spaces.

Key words. proximal point algorithms, global convergence rates, augmented Lagrangian algorithms, convex programming

AMS(MOS) subject classifications. primary 90C25; secondary 49D45, 49D37

 Osman Guler's, "New proximal point algorithm for convex optimization", SIAM J.Optimization 1992. [2]

Catalyst Acceleration

A Universal Catalyst for First-Order Optimization

Hongzhou Lin¹, Julien Mairal¹ and Zaid Harchaoui^{1,2}

¹Inria ²NYU

{hongzhou.lin, julien.mairal}@inria.fr
zaid.harchaoui@nvu.edu

Abstract

We introduce a generic scheme for accelerating first-order optimization methods in the sense of Nesterow, which builds upon a new analysis of the accelerated proximal point algorithm. Our approach consist of minimizing a convex objective by approximately solving a sequence of well-chosen auditary problems, leading to faster convergence. This strategy applies to a large class of algorithms, in-cluding gradient descent, flock coronimate descent, flook, Coronimate descent, flook, Coronimate descent, flook, Coronimate descent, flook, Toronimate descent, flook, and public specific support for non-strongly convers objectives. In advanced acceleration and explicit support for non-strongly convers objectives, and carelament of a calculation of the order of the support of the coronic support of the cor

(a) Lin 2015

Catalyst Acceleration for Gradient-Based Non-Convex Optimization

 Courtney Paquette
 Hongzhou Lin
 Dmittriy Drussyntskiy

 C2paquette@uwdereloo.ca
 hongzhou@nit.edu
 University of Washington

 Julien Mairal
 Zaid Harchaoui

 Innia*
 University of Washington

julien.mairal@inria.fr zaid@uw.edu

January 3, 2019

. .

Abstract

We introduce a generic scheme to solve moncourse optimization problems using gradient-based algorithms originally designed for minimizing conver functions. Even though these methods may originally require convexity to operate, the proposed approach allows one to use them on weakly connex objectives, which covers a large class of non-conver functions typically appearing in machine learning and signal processing. In general, the scheme is guaranteed to produce a stationary point with a worst-case difficulty typical of first order methods, and whether the objective time ont to be convex, it automatically accelerates in the sense of Nesterov and achieves near-optimal convergence rate in function values, and active the convergence of the convergence

(b) Paquette 2018

- Honzhou Lin et al. "Universal Catalyst for first order optimization" 2015 JMLR [3].
- Paquette et al. "Catalyst for gradient-based non-convex optimization" 2018 JMLR [4].

Objectives of the Talk

List of objectives

- Introduce the technique of Nesterov's estimating sequence for convergence proof of algorithms.
- Understand the historical context for the inspirations of the Catalyst algorithm.
- Understand the theories behind the Catalyst meta acceleration.
- Understand key innovations for controlling the errors in Catalyst accelerations.
- Introduce the Non-convex extension of the method.

Objectives of the Talk

List of objectives

- Introduce the technique of Nesterov's estimating sequence for convergence proof of algorithms.
- Understand the historical context for the inspirations of the Catalyst algorithm.
- Understand the theories behind the Catalyst meta acceleration.
- Understand key innovations for controlling the errors in Catalyst accelerations.
- Introduce the Non-convex extension of the method.

A note on the scope

Specific applications and algorithms are outside the scope because variance reduced stochastic method is itself a big topic.

Nesterov's Estimating Sequence

Definition (Nesterov's estimating sequence)

Let $(\phi_k : \mathbb{R}^n \mapsto \mathbb{R})_{k \geq 0}$ be a sequence of functions. We call this sequence of function a Nesterov's estimating sequence when it satisfies the conditions:

- **1** There exists another sequence $(x_k)_{k\geq 0}$ such that for all $k\geq 0$ it has $F(x_k)\leq \phi_k^*:=\min_x\phi_k^*(x)$.
- ② There exists a sequence of $(\alpha_k)_{k\geq 0}$ where $\alpha_k \in (0,1) \ \forall k \geq 0$ such that for all $x \in \mathbb{R}^n$ it has $\phi_{k+1}(x) \phi_k(x) \leq -\alpha_k(\phi_k(x) F(x))$.

Nesterov's Estimating Sequence and Convergence

Observations

If we define ϕ_k , $\Delta_k(x) := \phi_k(x) - F(x)$ for all $x \in \mathbb{R}^n$ and assume that F has minimizer x^* . Then observe that $\forall k \geq 0$:

$$\phi_{k+1}(x) - \phi_k(x) \le -\alpha_k(\phi_k(x) - F(x))$$

$$\iff \phi_{k+1}(x) - F(x) - (\phi_k(x) - F(x)) \le -\alpha_k(\phi_k(x) - F(x))$$

$$\iff \Delta_{k+1}(x) - \Delta_k(x) \le -\alpha_k \Delta_k(x)$$

$$\iff \Delta_{k+1}(x) \le (1 - \alpha_k) \Delta_k(x).$$

Unroll the recurrence, by setting $x=x^*$, $\Delta_k(x^*)$ is non-negative and using the property of Nesterov's estimating sequence it gives:

$$F(x_k) - F(x^*) \le \phi_k^* - F(x^*) \le \Delta_k(x^*) = \phi_k(x^*) - F(x^*)$$

 $\le \left(\prod_{i=0}^k (1 - \alpha_i)\right) \Delta_0(x^*).$

Example: accelerated proximal gradient

The following algorithm is proved in the report which it's similar to Nesterov's 2.2.20 in his book [1].

Quick Notations

Assume that: F=f+g where f is L-Lipschitz smooth and $\mu \geq 0$ strongly convex and g is convex. Define

$$\mathcal{M}^{L^{-1}}(x;y) := g(x) + f(y) + \langle \nabla f(x), x - y \rangle + \frac{L}{2} ||x - y||^2,$$

$$\widetilde{\mathcal{J}}_{L^{-1}}y := \operatorname*{argmin}_{x} \mathcal{M}^{L^{-1}}(x;y),$$

$$\mathcal{G}_{L^{-1}}(y) := L\left(I - \widetilde{\mathcal{J}}_{L^{-1}}\right)y.$$

Example: accelerated proximal gradient

Definition (Accelerated proximal gradient estimating sequence)

Define $(\phi_k)_{k\geq 0}$ be the Nesterov's estimating sequence recursively given by:

$$I_{F}(x; y_{k}) := F\left(\widetilde{\mathcal{J}}_{L^{-1}}y_{k}\right) + \langle \mathcal{G}_{L^{-1}}y_{k}, x - y_{k} \rangle + \frac{1}{2L} \|\mathcal{G}_{L^{-1}}y_{k}\|^{2},$$

$$\phi_{k+1}(x) := (1 - \alpha_{k})\phi_{k}(x) + \alpha_{k} \left(I_{F}(x; y_{k}) + \frac{\mu}{2} \|x - y_{k}\|^{2}\right).$$

The Algorithm generates a sequence of vectors y_k, x_k , and scalars α_k satisfies the following:

$$\begin{aligned} x_{k+1} &= \widetilde{\mathcal{J}}_{L^{-1}} y_k, \\ \text{find } \alpha_{k+1} &\in (0,1) : \alpha_{k+1} = (1 - \alpha_{k+1}) \alpha_k^2 + (\mu/L) \alpha_{k+1} \\ y_{k+1} &= x_{k+1} + \frac{\alpha_k (1 - \alpha_k)}{\alpha_k^2 + \alpha_{k+1}} (x_{k+1} - x_k). \end{aligned}$$

One of the possible base case can be $x_0 = y_0$ and any $\alpha_0 \in (0,1)$.

Guler 1993: Accelerated proximal point method

Guler in 1993 discovered the following:

- The method of proximal point can be accelerated via Nesterov's estimating sequence.
- The accelerated convergence rate retains for certain magnitude of errors on inexact evaluation of proximal point method.

Quick notations

We use the following list of notations:

$$\mathcal{M}^{\lambda}(x;y) := F(x) + \frac{1}{2\lambda} ||x - y||^{2}$$
$$\mathcal{J}_{\lambda}y := \operatorname*{argmin}_{x} \mathcal{M}^{\lambda}(x;y)$$
$$\mathcal{G}_{\lambda} := \lambda^{-1} (I - \mathcal{J}_{\lambda}).$$

We use \mathcal{G}_k , \mathcal{J}_k , \mathcal{M}_k as a short for \mathcal{G}_{λ_k} , \mathcal{J}_{λ_k} , \mathcal{M}_{λ_k} . $(\lambda_k)_{k\geq 0}$ is a sequence that controls proximal operator.

Estimating sequence of accelerated PPM

Definition (Accelerated PPM estimating sequence)

 $(\phi_k)_{k\geq 0}$ has for all $k\geq 0$, any $A\geq 0$:

$$\phi_0 := f(x_0) + \frac{A}{2} \|x - x_0\|^2,$$

$$\phi_{k+1}(x) := (1 - \alpha_k) \phi_k(x) + \alpha_k (F(\mathcal{J}_k y_k) + \langle \mathcal{G}_k y_k, x - \mathcal{J}_k y_k \rangle).$$

 $(\lambda_k)_{k\geq 0}$, $x_k=\mathcal{J}_{\lambda}y_k$. Auxiliary vectors (y_k,v_k) , and $(\alpha_k,A_k)_{k\geq 0}$ satisfies $k\geq 0$:

$$\alpha_k = \frac{1}{2} \left(\sqrt{(A_k \lambda_k)^2 + 4A_k \lambda_k} - A_k \lambda_k \right)$$

$$y_k = (1 - \alpha_k) x_k + \alpha_k v_k$$

$$v_{k+1} = v_k - \frac{\alpha_k}{A_{k+1} \lambda_k} (y_k - \mathcal{J}_k y_k)$$

$$A_{k+1} = (1 - \alpha_k) A_k.$$

Hongda Li Catalyst Acceleration November 13, 2024

Convergence of accelerated PPM

An accelerated rate

The accelerated PPM generate $(x_k)_{k\geq 0}$ such that $F(x_k) - F^*$ converges at a rate of:

$$\mathcal{O}\left(\frac{1}{\left(\sum_{i=1}^k \sqrt{\lambda_i}\right)^2}\right).$$

Note, PPM without accelerate converges at a rate of $\mathcal{O}((\sum_{i=1}^k \lambda_i)^{-1})$.

Hongda Li Catalyst Acceleration November 13, 2024

Accelerated Inexact PPM

Guler cited Rockafellar 1976 [5] for condition (A'):

$$x_{k+1} pprox \mathcal{J}_k y_k$$
 be such that: $\operatorname{dist}\left(\mathbf{0}, \partial \mathcal{M}^k(x_{k+1}; y_k)\right) \leq \frac{\epsilon_k}{k}$
 $\implies \|x_{k+1} - \mathcal{J}_k y_k\| \leq \epsilon_k.$

Putting things into the context of accelerated PPM, the theorem follows is pivotal:

Theorem (Guler's inexact proximal point error bound (Lemma 3.1))

Define the minimum of the Moreau Envelope: $\mathcal{M}_k^* := \min_z \mathcal{M}^{\lambda_k}(z; y_k)$. If x_{k+1} is an inexact evaluation under condition (A'), then the estimating sequence admits the conditions that:

$$\frac{1}{2\lambda_k}\|x_{k+1}-\mathcal{J}_ky_k\|^2=\mathcal{M}_k(x_{k+1},y_k)-\mathcal{M}_k^*\leq \frac{\epsilon_k^2}{2\lambda_k}.$$

Guler's Major Results

Theorem (Guler's accelerated inexact PPM convergence (Theorem 3.3))

If the error sequence $(\epsilon_k)_{k\geq 0}$ for condition A' is bounded by $\mathcal{O}(1/k^{\sigma})$ for some $\sigma>1/2$, then the accelerated proximal point method has for any feasible $x\in\mathbb{R}^n$:

$$f(x_k) - f(x) \le \mathcal{O}(1/k^2) + (1/k^{2\sigma-1}) \to 0.$$

If $\sigma \geq 3/2$, the method converges at a rate of $\mathcal{O}(1/k^2)$.

Theorem (Guler's accelerated inexact PPM convergence (Theorem 3.3))

If the error sequence $(\epsilon_k)_{k\geq 0}$ for condition A' is bounded by $\mathcal{O}(1/k^{\sigma})$ for some $\sigma>1/2$, then the accelerated proximal point method has for any feasible $x\in\mathbb{R}^n$:

$$f(x_k) - f(x) \le \mathcal{O}(1/k^2) + (1/k^{2\sigma-1}) \to 0.$$

If $\sigma \geq 3/2$, the method converges at a rate of $\mathcal{O}(1/k^2)$. It looks exciting, but it's not exciting for practical purposes because:

- ① Determining $(\epsilon_k)_{k>0}$ requires knowledge on ϕ_k^* .
- ϕ_k^* is expressed with intractable quantity: $F(\mathcal{J}_k y_k)$.

So the algorithm contains intractable quantities: $F(\mathcal{J}_k y_k)$. It's not yet ready to be formulated into a concrete algorithm.

Lin 2015

Hongzhou Lin 2015 [3] did the following:

- Improved the proof from Guler 1993 to include strongly convex objectives.
- ② Showed that $(\epsilon_k)_{k\geq 0}$ can be determined algorithmically and an accelerated rate can be achieved.
- Invented his own accelerated variance reduced incremental method called: "Accelerated MISO-Prox" to demonstrate the Catalyst Framework.
- First time in history he obtained an accelerated rate for many classes of incremental methods.

Quick notations

Assume F is a $\mu \geq 0$ strongly convex function. Fix κ and the notations are:

$$\mathcal{M}^{\kappa^{-1}}(x;y) := F(x) + \frac{\kappa}{2} ||x - y||^2,$$
$$\mathcal{J}_{\kappa^{-1}}y := \operatorname*{argmin}_{x} \mathcal{M}^{\kappa^{-1}}(x,y).$$

Lin's accelerated proximal point method

Definition (Lin's accelerated proximal point method)

Let the initial estimate be $x_0 \in \mathbb{R}^n$, fix parameters κ and α_0 . Let $(\epsilon_k)_{k \geq 0}$ be an error sequence chosen for the evaluation for inexact proximal point method. Initialize $x_0 = y_0$, then the algorithm generates (x_k, y_k) satisfies for all $k \geq 1$

find
$$x_k \approx \mathcal{J}_{\kappa^{-1}} y_{k-1}$$
 such that $\mathcal{M}^{\kappa^{-1}}(x_k, y_{k-1}) - \mathcal{M}^{\kappa^{-1}}(\mathcal{J}_{\kappa^{-1}} y_{k-1}, y_{k-1}) \le \epsilon_k$
find $\alpha_k \in (0, 1)$ such that $\alpha_k^2 = (1 - \alpha_k) \alpha_{k-1}^2 + (\mu/(\mu + \kappa))$
 $y_k = x_k + \frac{\alpha_{k-1} (1 - \alpha_{k-1})}{\alpha_{k-1}^2 + \alpha_k} (x_k - x_{k-1}).$

Lin's accelerated proximal point method

Definition (Lin's accelerated proximal point method)

Let the initial estimate be $x_0 \in \mathbb{R}^n$, fix parameters κ and α_0 . Let $(\epsilon_k)_{k \geq 0}$ be an error sequence chosen for the evaluation for inexact proximal point method. Initialize $x_0 = y_0$, then the algorithm generates (x_k, y_k) satisfies for all $k \geq 1$

find
$$x_k \approx \mathcal{J}_{\kappa^{-1}} y_{k-1}$$
 such that $\mathcal{M}^{\kappa^{-1}}(x_k, y_{k-1}) - \mathcal{M}^{\kappa^{-1}}(\mathcal{J}_{\kappa^{-1}} y_{k-1}, y_{k-1}) \le \epsilon_k$ find $\alpha_k \in (0, 1)$ such that $\alpha_k^2 = (1 - \alpha_k) \alpha_{k-1}^2 + (\mu/(\mu + \kappa))$
$$y_k = x_k + \frac{\alpha_{k-1} (1 - \alpha_{k-1})}{\alpha_k^2} (x_k - x_{k-1}).$$

- It's very similar compared to accelerated proximal gradient!!!
- 2 Determining $(\epsilon_k)_{k\geq 1}$ depends on the specific context of the algorithm.
- **3** Strong convexity of $\mathcal{M}_k(\cdot; y_{k-1})$ can approximate x_k up to ϵ_k (i.e. PL Inequality).

Practical importance

A major result on page 6 of Lin's 2015 [3].

Accelerated convergence

Assume F is $\mu \geq 0$ strongly convex and L-Lipschitz smooth. Using full gradient, or randomized coordinate descent to evaluation $x_k \approx \mathcal{J}_{\kappa^{-1}} y_{k-1}$ up to ϵ_k , then the overall complexity is:

$$\widetilde{\mathcal{O}}\left(n\sqrt{L/\mu}\log(1/\epsilon)\right)$$
.

It's the same as accelerated gradient method up to a log term. In absent of strong convexity, acceleration for Variance reduced stochastic method such as: SAG, SAGA, Finito/MISO-Prox, SDCA, SVRG is $\widetilde{\mathcal{O}}(nL/\sqrt{\epsilon})$, strictly faster $\mathcal{O}(nL/\epsilon)$ without acceleration.

Note: SAG, SAGA, Finito/MISO-Prox, SDCA, SVRG are examples of variance reduced incremental methods. $\widetilde{\mathcal{O}}$ hides log factor in complexity.

Hongda Li Catalyst Acceleration November 13, 2024

Inexact proximal inequality in Lin 2015

Lemma A.7 in Lin 2015 [3] stated the following:

Lemma

Inexact proximal inequality Let F be a $\mu \geq 0$ strongly convex. Suppose x_k is an inexact proximal point evaluation of $x_k \approx \mathcal{J}_{\kappa^{-1}} y_{k-1}$ with κ fixed. Assume the approximation error is characterized by $\mathcal{M}^{\kappa^{-1}}(x_k;y_{k-1}) - \mathcal{M}^{\kappa^{-1}}(\mathcal{J}_{\kappa^{-1}} y_{k-1},y_{k-1}) \leq \epsilon_k$. Denote $x_k^* = \mathcal{J}_{\kappa^{-1}} y_{k-1}$ to be the exact evaluation of the proximal point then for all x:

$$F(x) \ge F(x_k) + \kappa \langle y_{k-1} - x_k, x - x_k \rangle + \frac{\mu}{2} ||x - x_k||^2$$

+ $(\kappa + \mu) \langle x_k - x_k^*, x - x_k \rangle - \epsilon_k.$

- **①** The parts in red is the regular proximal inequality but with x_k instead of x_k^* .
- ② This inequality allows for definition for estimating sequence ϕ_k that is rid of $\mathcal{J}_{\kappa^{-1}}y_{k-1}$

Major contribution in Paquette 2018

In Paquette 2018, these major improvements for Lin's Universal Catalyst had been made:

- It supports weakly convex function with an unknown weak convexity constant through a procedures call Auto Adapt.
- ② The convergence to stationary point under weak convexity is claimed.
- The method retains accelerated convergence rate if the function is convex.

Note: F is ρ -weakly convex if and only if $f + \rho/2 \|\cdot\|^2$ is convex.

Quick notations

Fix κ we use the following notations:

$$\mathcal{M}(x;y) := F(x) + \frac{\kappa}{2} ||x - y||^2$$
$$\mathcal{J}y := \operatorname*{argmin}_{x} \mathcal{M}(x;y).$$

Definition (Basic 4WD Catalyst Algorithm)

Find any $x_0 \in \text{dom}(F)$. Initialize the algorithm with $\alpha_1 = 1, v_0 = x_0$. For $k \ge 1$, the iterates (x_k, y_k, v_k) are generated by the procedures:

find
$$\bar{\mathbf{x}}_k \approx \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ \mathcal{M}(\mathbf{x}; \mathbf{x}_{k-1}) \right\}$$
such that:
$$\begin{cases} \operatorname{dist}(\mathbf{0}, \partial \mathcal{M}(\bar{\mathbf{x}}_k; \mathbf{x}_{k-1})) \leq \kappa \|\bar{\mathbf{x}}_k - \mathbf{x}_{k-1}\|, \\ \mathcal{M}(\bar{\mathbf{x}}_k; \mathbf{x}_{k-1}) \leq F(\mathbf{x}_{k-1}). \end{cases}$$

$$\mathbf{y}_k = \alpha_k \mathbf{y}_{k-1} + (1 - \alpha_k) \mathbf{x}_{k-1};$$

find
$$\tilde{x}_k \approx \operatorname{argmin} \{ \mathcal{M}(x; y_k) \}$$
 such that: $\operatorname{dist}(\mathbf{0}, \partial \mathcal{M}(\tilde{\mathbf{x}}_k; y_k)) \leq \frac{\kappa}{k+1} \|\tilde{\mathbf{x}}_k - y_k\|;$

$$v_k = x_{k-1} + \frac{1}{\alpha_k} (\tilde{x}_k - x_{k-1});$$

$$\mathsf{find}\ \alpha_{k+1} \in (0,1): \frac{1-\alpha_{k+1}}{\alpha_{k+1}^2} = \frac{1}{\alpha_k^2};$$

choose x_k such that: $f(x_k) = \min(f(\bar{x}_k), f(\tilde{x}_k))$.

Convergence claim

Theorem (Basic 4WD Catalyst Convergence)

Let (x_k, v_k, y_k) be generated by the basic Catalyst algorithm. If F is weakly convex and bounded below, then x_k converges to a stationary point where

$$\min_{j=1,\cdots,N} \mathsf{dist}^2(\mathbf{0},\partial F(\bar{x}_j)) \leq \frac{8\kappa}{N} (F(x_0) - F^*).$$

And when F is convex, $F(x_k) - F^*$ converges at a rate of $O(k^{-2})$.

Convergence claim

Theorem (Basic 4WD Catalyst Convergence)

Let (x_k, v_k, y_k) be generated by the basic Catalyst algorithm. If F is weakly convex and bounded below, then x_k converges to a stationary point where

$$\min_{j=1,\cdots,N} \mathsf{dist}^2(\mathbf{0},\partial F(\bar{x}_j)) \leq \frac{8\kappa}{N} (F(x_0) - F^*).$$

And when F is convex, $F(x_k) - F^*$ converges at a rate of $O(k^{-2})$.

Let's prove this.

Note:

- The original proof in the paper is awfully presented, please read the appendix for a renewed proof.
- The convergence to stationary point is true for any $\kappa > 0$ that is not necessarily lager than the weak convexity constant.

Auxiliary Sequence Bounds

Lemma (Nesterov's Estimating sequence auxiliary sequence bounds)

If the sequence α_k has for all $k \geq 1$:

$$\alpha_{k+1} = \frac{\sqrt{\alpha_k^4 + 4\alpha_k^2} - \alpha_k^2}{2}, \alpha_1 = 1$$

then for all $k \ge 0$:

$$\frac{\sqrt{2}}{k+1} \le \alpha_k \le \frac{2}{k+1}.$$

Note: This is not exactly the same sequence that is being used in FISTA.

Proof.

Skipped, see report.

Proximal Stationary Point

Lemma (Lemma B.2)

Assume that F is weakly convex. Fix any y, suppose that y^+ satisfies $dist(\mathbf{0}, \partial \mathcal{M}(y^+; y)) \leq \epsilon$ then the following inequality holds:

$$\mathsf{dist}(\mathbf{0}; \partial F(y^+)) \le \epsilon + \kappa ||y^+ - y||.$$

Proof.

Skipped, see report.

A short proof

Algorithm has:

$$F(x_{k-1}) \ge \mathcal{M}(\bar{x}_k, x_{k-1}) \ge F(x_k) + \frac{\kappa}{2} ||\bar{x}_k - x_{k-1}||^2.$$
 (ineq1)

By $F(x_k) = \min(F(\bar{x}_k), F(\tilde{x}_k))$. Using Lemma B.2, set $\epsilon = \kappa ||\bar{x}_k - x_{k-1}||$, $y = x_{k-1}$, $y^+ = \bar{x}_k$ then

$$\mathsf{dist}(\mathbf{0}, \partial F(\bar{x}_k)) \leq 2\kappa \|\bar{x}_k - x_{k-1}\|.$$

A short proof

Using (ineq1):

$$F(x_{k-1}) - F(x_{k}) \ge \frac{\kappa}{2} \|\bar{x}_{k} - x_{k-1}\|^{2}$$

$$8\kappa(F(x_{k-1}) - F(x_{k})) \ge 4 \|\kappa(\bar{x}_{k} - x_{k-1})\|^{2} \ge \text{dist}^{2}(\mathbf{0}, \partial F(\bar{x}_{k}))$$

$$\implies \text{dist}^{2}(\mathbf{0}, \partial F(\bar{x}_{k})) \le 8\kappa(F(x_{k-1}) - F(x_{k}))$$

$$\implies \min_{j=1,\dots,N} \text{dist}^{2}(\mathbf{0}, \partial F(\bar{x}_{j})) \le \frac{8\kappa}{N} \sum_{j=1}^{N} F(x_{j-1}) - F(x_{j})$$

$$\le \frac{8\kappa}{N} (F(x_{0}) - F(x_{N})) \le \frac{8\kappa}{N} (F(x_{0}) - F^{*}).$$

Hongda Li Catalyst Acceleration November 13, 2024

A short proof

Now assume F is convex with minimum F^* and minimizer x^* . By convexity $\mathcal{M}(\cdot, y_k)$ is κ strong convex. By the algorithm there exists $\xi_k \in \partial \mathcal{M}(\tilde{x}_k, y_k)$ such that $\|\xi_k\| \leq \frac{\kappa}{k+1} \|\tilde{x}_k - y_k\|$. Therefore, it has for all x:

$$0 \leq F(x) + \frac{\kappa}{2} \|x - y_k\|^2 - \left(F(\tilde{x}) + \frac{\kappa}{2} \|\tilde{x}_k - y_k\|^2\right) \\ - \frac{\kappa}{2} \|x - \tilde{x}_k\|^2 - \langle \xi_k, x - \tilde{x}_k \rangle,$$

$$F(x_k) \leq F(\tilde{x}_k) \leq F(x) + \frac{\kappa}{2} \left(\|x - y_k\|^2 - \|x - \tilde{x}_k\|^2 - \|\tilde{x}_k - y_k\|^2\right) \\ + \langle \xi_k, \tilde{x}_k - x \rangle \\ \leq F(x) + \frac{\kappa}{2} \left(\|x - y_k\|^2 - \|x - \tilde{x}_k\|^2 - \|\tilde{x}_k - y_k\|^2\right) \\ + \frac{\kappa}{k+1} \|\tilde{x}_k - y_k\| \|x - \tilde{x}_k\|.$$

A short proof

Set $x = \alpha_k x^* + (1 - \alpha_k) x_{k-1}$ where x^* is the minimizer then by the algorithm

$$x - y_{k} = \alpha_{k}x^{*} + (1 - \alpha_{k})x_{k-1} - y_{k}$$

$$= \alpha_{k}x^{*} + (1 - \alpha_{k})x_{k-1} - (\alpha_{k}v_{k-1} + (1 - \alpha_{k})x_{k-1})$$

$$= \alpha_{k}(x^{*} - v_{k-1}),$$

$$x - \tilde{x}_{k} = \alpha_{k}x^{*} + (1 - \alpha_{k})x_{k-1} - \tilde{x}_{k}$$

$$v_{k} = x_{k-1} + \alpha_{k}^{-1}(\tilde{x}_{k} - x_{k-1})$$

$$\tilde{x}_{k} - x_{k-1} = \alpha_{k}(v_{k} - x_{k-1})$$

$$\tilde{x}_{k} = x_{k-1} + \alpha_{k}(v_{k} - x_{k-1})$$

$$= \alpha_{k}x^{*} + (1 - \alpha_{k})x_{k-1} - (x_{k-1} + \alpha_{k}(v_{k} - x_{k-1}))$$

$$= \alpha_{k}x^{*} - \alpha_{k}x_{k-1} - \alpha_{k}(v_{k} - x_{k-1})$$

$$= \alpha_{k}(x^{*} - v_{k}).$$

A short proof

Substituting back, use F convex and $\alpha_k \in (0,1), k \geq 1$:

$$F(x_{k}) \leq \alpha_{k}F(x^{*}) + (1 - \alpha_{k})F(x_{k-1}) + \frac{\alpha_{k}^{2}\kappa}{2} \left(\|x^{*} - v_{k-1}\|^{2} - \|v_{k} - x^{*}\|^{2} \right)$$

$$- \frac{\kappa}{2} \|\tilde{x}_{k} - y_{k}\|^{2} + \frac{\kappa\alpha_{k}}{k+1} \|\tilde{x} - y_{k}\| \|v_{k} - x^{*}\|$$

$$= \alpha_{k}F(x^{*}) + (1 - \alpha_{k})F(x_{k-1}) + \frac{\alpha_{k}^{2}\kappa}{2} \left(\|x^{*} - v_{k-1}\|^{2} - \|v_{k} - x^{*}\|^{2} \right)$$

$$- \frac{\kappa}{2} \left(\|\tilde{x}_{k} - y_{k}\| - \frac{\alpha_{k}}{k+1} \|v_{k} - x^{*}\| \right)^{2} + \frac{\kappa}{2} \left(\frac{\alpha_{k}}{k+1} \right)^{2} \|v_{k} - x^{*}\|^{2}$$

$$\leq \alpha_{k}F(x^{*}) + (1 - \alpha_{k})F(x_{k-1}) + \frac{\alpha_{k}^{2}\kappa}{2} \left(\|x^{*} - v_{k-1}\|^{2} - \|v_{k} - x^{*}\|^{2} \right)$$

$$+ \frac{\kappa\alpha_{k}^{2}}{2} \left(\frac{1}{k+1} \right)^{2} \|v_{k} - x^{*}\|^{2}$$

$$\iff F(x_{k}) - F^{*} \leq (1 - \alpha_{k})(F(x_{k-1}) - F^{*})$$

$$+ \frac{\alpha_{k}^{2}\kappa}{2} \left(\|x^{*} - v_{k-1}\|^{2} - \left(1 - \frac{1}{(k+1)^{2}} \right) \|v_{k} - x^{*}\|^{2} \right)$$

A short proof

Denote $A_k := 1 - 1/(1+k)^2$ to simplify the notations. Rearranging and use $(1-\alpha_k)/\alpha_k^2 = \alpha_{k-1}^{-2}$ it has for all $k \ge 2$:

$$\begin{split} F(x_{k}) - F^{*} + \frac{\alpha_{k}^{2} \kappa}{2} \left(1 - \frac{1}{(k+1)^{2}} \right) \| v_{k} - x^{*} \|^{2} \\ & \leq (1 - \alpha_{k}) (F(x_{k-1}) - F^{*}) + \frac{\alpha_{k}^{2} \kappa}{2} \| x^{*} - v_{k-1} \|^{2} \\ & \iff \alpha_{k}^{-2} (F(x_{k}) - F^{*}) + \frac{\kappa A_{k}}{2} \| v_{k} - x^{*} \|^{2} \\ & \leq \alpha_{k}^{-2} (1 - \alpha_{k}) (F(x_{k-1}) - F^{*}) + \frac{\kappa}{2} \| x^{*} - v_{k-1} \|^{2} \\ & \iff \alpha_{k}^{-2} (F(x_{k}) - F^{*}) + \frac{\kappa A_{k}}{2} \| v_{k} - x^{*} \|^{2} \\ & \leq \alpha_{k-1}^{-2} (F(x_{k-1}) - F^{*}) + \frac{\kappa}{2} \| x^{*} - v_{k-1} \|^{2} \\ & \leq \frac{1}{A_{k-1}} \left(\alpha_{k-1}^{-2} (F(x_{k-1}) - F^{*}) + \frac{\kappa A_{k-1}}{2} \| x^{*} - v_{k-1} \|^{2} \right). \end{split}$$

A short proof

Make k into k+1 so for all k>1:

$$\begin{split} \alpha_{k+1}^{-2}(F(x_{k+1}) - F^*) + \frac{\kappa A_k}{2} \|v_k - x^*\|^2 &\leq \frac{1}{A_k} \left(\alpha_k^{-2}(F(x_k) - F^*) + \frac{\kappa A_k}{2} \|v_k - x^*\|^2 \right) \\ &\leq \left(\prod_{i=1}^k A_i^{-1} \right) \left(\underbrace{\alpha_1^2(F(x_1) - F^*) + \frac{\kappa A_1}{2} \|v_1 - x^*\|^2}_{=:C} \right) \\ &\Longrightarrow \alpha_{k+1}^{-2}(F(x_{k+1}) - F^*) \leq \left(\prod_{i=1}^k A_i^{-1} \right) C \\ F(x_{k+1}) - F^* &\leq \alpha_{k+1}^2 \left(\prod_{i=1}^k A_i^{-1} \right) C. \end{split}$$

A short proof

Finally,

$$\prod_{i=1}^{k} A_j^{-1} = \prod_{i=1}^{k} \left(1 - \frac{1}{(i+1)^2} \right)^{-1}$$
$$\leq \left(1 - \frac{1}{4} \right)^{-1} \leq 2.$$

So by the lemma for α_k :

$$F(x_{k+1}) - F^* \le \alpha_{k+1}^2 2C \le \frac{4C}{(k+1)^2}.$$

Catalyst Acceleration

The morals of the story

Morals of the story

Besides all the gory details of the theories, the historical development reveals crucial aspects and general patterns in developing theories for optimization algorithms.

- Identify existing theoretical frameworks relevant to optimization algorithms but still leave rooms for creativity, i.e. Nesterov's acceleration and inexact proximal point.
- Always assume inexact evaluations of proximal point for flexibility and:
 - "outsource" it to existing algorithms;
 - control the errors and keep track of the complexity;
 - 3 show that it still has a favorable complexity at the end.
- Finally, and perhaps most importantly: identify the demands for applications, in this case it was: Machine Learning and accelerating existing incremental methods.

References

Y. Nesterov, *Lectures on Convex Optimization*, ser. Springer Optimization and Its Applications. Cham: Springer International Publishing, 2018, vol. 137. [Online]. Available: http://link.springer.com/10.1007/978-3-319-91578-4

O. Güler, "New Proximal Point Algorithms for Convex Minimization," *SIAM Journal on Optimization*, vol. 2, no. 4, pp. 649–664, Nov. 1992, publisher: Society for Industrial and Applied Mathematics. [Online]. Available: https://epubs.siam.org/doi/10.1137/0802032

H. Lin, J. Mairal, and Z. Harchaoui, "A Universal Catalyst for First-Order Optimization." MIT Press, Dec. 2015, p. 3384. [Online]. Available: https://inria.hal.science/hal-01160728

C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Harchaoui, "Catalyst for Gradient-based Nonconvex Optimization," in *Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics*. PMLR, Mar. 2018, pp. 613–622, iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.press/v84/paquette18a.html

R. T. Rockafellar, "Monotone operators and the proximal point algorithm," vol. 14, no. 5, pp. 877–898. [Online]. Available: http://epubs.siam.org/doi/10.1137/0314056