

概率论 与数理统计

笔记

© syqwq
East China Normal University

景目

1.	随机事件与概率 3
	1.1. 随机事件及其运算 3
	1.2. 概率的定义及其确定方法 5
	1.2.1. 三大重要收敛定理 6
	1.3. 概率的性质
	1.4. 条件概率 11
	1.5. 独立性
2.	随机变量及其分布 15
	2.1. 随机变量及其分布
	2.2. 随机变量的数学期望
	2.3. 随机变量的方差和标准差
	2.4. 常用离散分布 20
	2.4.1. 二项分布
	2.4.2. 泊松分布 ······ 22
	2.4.3. 超几何分布 23
	2.4.4. 几何分布 · · · · · · · · · · · 23
	2.4.5. 负二项分布 24
	2.5. 常用连续分布 26
	2.5.1. 正态分布 · · · · · · · · · · · · 26
	2.5.2. 均匀分布 ······ 31
	2.5.3. 指数分布 ······ 32
	2.5.4. 伽马分布 · · · · · · · 34
	2.5.5. 贝塔分布 ······ 36
	2.5.6. 总结 · · · · · · · · · · · · · · · · · ·
	2.6. 随机变量函数的分布 39
	2.6.1. 离散随机变量函数的分布 39
	2.6.2. 连续随机变量函数的分布 39
I.	Definitions · · · · · · · · · · · · · · · · · · ·
II.	Theorems 1
III.	Figures · · · · · 1

Chapter 1 随机事件与概率

1.1 随机事件及其运算

定义 1.1.1 样本空间

随机现象的一切可能基本结果组成的集合称为**样本空间**,记作 $\Omega = \{\omega\}$.

定义 1.1.2 样本点

样本空间中的每一个基本结果称为**样本点**,记作 $\omega \in \Omega$.

定义 1.1.3 离散样本空间

如果样本空间 Ω 中的样本点是可数个的,则称样本空间 Ω 为**离散样本空间**.

定义 1.1.4 连续样本空间

如果样本空间 Ω 中的样本点是不可数个的,则称样本空间 Ω 为**连续样本空间**.

定义 1.1.5 随机事件

样本空间 Ω 的任一子集称为**随机事件**,简称**事件**,记作 $A \subseteq \Omega$.

注解 1.1.1 随机事件的分类

(1) **基本事件**: 包含单个样本点的事件, 记作 $A = \{\omega\}$.

(2) **必然事件**: 包含样本空间中所有样本点的事件, 记作 $A = \Omega$.

(3) **不可能事件**: 不包含任何样本点的事件,记作 $A = \emptyset$.

注解 1.1.2 事件的关系

设 $A, B \subset \Omega$ 是样本空间 Ω 上的两个事件,

- (1) **包含关系**: 若属于 A 的任一样本点也属于 B, 则称事件 A 包含于事件 B, 记作 $A \subseteq B$.
- (2) **等价关系**: 若属于 A 的任一样本点也属于 B, 且属于 B 的任一样本点也属于 A, 则称事件 A 与事件 B 等价,记作 A = B.
- (3) **互不相容**: 若事件 A 与事件 B 没有共同的样本点,则称事件 A 与事件 B 互不相容,记作 $A \cap B = \emptyset$.

定义 1.1.6 可测函数

对于两个可测空间 $(\Omega, \mathcal{F}), (S, \mathcal{S}),$ 如果存在一个函数 $X: \Omega \to S$ 满足

$$X^{-1}(B) \coloneqq \{\omega \,|\, X(\omega) \in B\} \in \mathcal{F}, \forall B \in \mathcal{S}$$

那么,称 X 是一个从 (Ω, \mathcal{F}) 到 (S, \mathcal{S}) 的**可测函数**.

注解 1.1.3

这说的就是对于任何一个事件 $\omega \in \mathcal{F}$,我们固然可以得知他的结果 $X(\omega)$,而可测函数的 定义是在说,我任意给定一个 $B \in \mathcal{S}$,他一定有 \mathcal{F} 中的可测事件与他对应.

定义 1.1.7 随机向量、随机变量

在 定义 1.1.6 中, 如果 $(S,\mathcal{S}) = (\mathbb{R}^d,\mathcal{R}^d)$, 当 d > 1 时, 我们称 X 为**随机向量**; 当 d =1 时, 我们称 X 为随机变量.

定义 1.1.8 事件的并

设 $A, B \subseteq \Omega$ 是样本空间 Ω 上的两个事件,则定义它们的**并**为

$$A \cup B := \{ \omega \mid \omega \in A \lor \omega \in B \}$$

定义 1.1.9 事件的交

设 $A, B \subseteq \Omega$ 是样本空间 Ω 上的两个事件,则定义它们的**交**为

$$A \cap B := \{ \omega \mid \omega \in A \land \omega \in B \}$$

定义 1.1.10 事件的差

设 $A, B \subseteq \Omega$ 是样本空间 Ω 上的两个事件,则定义它们的差为

$$A - B := \{ \omega \mid \omega \in A \land \omega \notin B \}$$

定义 1.1.11 对立事件

设 $A \subseteq \Omega$ 是样本空间 Ω 上的一个事件,则定义它的**对立事件**为

$$\overline{A} := \Omega - A = \{ \omega \mid \omega \in \Omega \land \omega \notin A \}$$

命题 1.1.1 互为对立事件

事件 $A, B \subseteq \Omega$ 互为对立事件的充分必要条件是 $A \cup B = \Omega$ 且 $A \cap B = \emptyset$.

注解 1.1.4

- (1) 对立事件一定是互不相容的. 但是, 互不相容的事件不一定是对立事件.
- $(2) \ A B = A\overline{B}.$

性质 1.1.1 事件的运算性质

设 $A, B, C \subseteq \Omega$ 是样本空间 Ω 上的任意三个事件,则有:

(1) 交換律: $A \cup B = B \cup A$, $A \cap B = B \cap A$.

(2) **结合律**: $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B) \cap C = A \cap (B \cap C)$.

(3) 分配律: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

(4) **De Morgan ‡**: $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

定义 1.1.12 σ-代数

设 Ω 是一个集合, \mathcal{F} 是 Ω 的幂集的子集. 如果 \mathcal{F} 满足:

- (1) $\emptyset \in \mathcal{F}$
- (2) 对任意 $A \in \mathcal{F}$, 有 $\overline{A} \in \mathcal{F}$
- $(3) \ \, 对任意可列个集合 \,\, A_1,A_2,A_3,\cdots \in \mathcal{F}, \ \, f \, \bigcup_{i=1}^\infty A_i \in \mathcal{F}$

则称 (Ω, \mathcal{F}) 是一个可测空间, \mathcal{F} 称为 Ω 上的一个 σ -代数.

定义 1.1.13 样本空间的分割

设 Ω 为样本空间, $A_1,A_2,...,A_n$ 为样本空间 Ω 上的 n 个事件. 如果 $A_1,A_2,...,A_n$ 满足:

$$(1) \bigcup_{i=1}^{n} A_i = \Omega$$

(2) 对任意 i, j = 1, 2, ..., n 且 $i \neq j$,有 $A_i \cap A_j = \emptyset$

则称事件组 $\{A_1,A_2,...,A_n\}$ 为样本空间 Ω 的一个**分割**.

1.2 概率的定义及其确定方法

定义 1.2.1 测度空间

设 (Ω, \mathcal{F}) 是一个可测空间, $\mu : \mathcal{F} \to [0, +\infty]$ 是一个函数. 如果 μ 满足:

- (1) $\mu(\emptyset) = 0$
- (2) 对任意互不相容的集合 $A_1,A_2,A_3,\dots\in\mathcal{F},$ 有 $\mu\left(\bigcup_{i=1}^\infty A_i\right)=\sum_{i=1}^\infty \mu(A_i)$

则称 $(\Omega, \mathcal{F}, \mu)$ 为一个**测度空间**, μ 称为 Ω 上的一个**测度**.

定义 1.2.2 概率空间

设 (Ω, \mathcal{F}, P) 是一个测度空间,且满足 $P(\Omega) = 1$. 则称 (Ω, \mathcal{F}, P) 为一个概率空间,P 称为 Ω 上的一个概率.

1.2.1 三大重要收敛定理

定理 1.2.1 单调收敛定理(Monotone Convergence Theorem - MCT)

若 (Ω,\mathcal{F},μ) 是一个测度空间, $\{f_i\}_{i=1}^\infty$ 是一族 $\Omega\to\mathbb{R}$ 的可测函数,满足 $f_i\uparrow f$ a.e. 且 $\int f_1\,\mathrm{d}\mu>-\infty$. 则积分和极限可以交换,且积分也单调收敛,即

$$\int f_i \, \mathrm{d}\mu \uparrow \int f \, \mathrm{d}\mu$$

注解 1.2.1 热气球

- 想象 f_i 是一个热气球在时刻 i 的体积, $\int f_i d\mu$ 是它的总浮力.
- 条件 $f_i \uparrow f$ 意味着这个热气球只增不减,不断地膨胀,最终趋近于一个最终形态 f.
- MCT 定理说: 既然热气球一直在稳定地、单调地变大, 那么它浮力的极限, 理所当然就是它最终形态的浮力. 这个过程中没有"泄气"或者其他诡异的事情发生.

Proof. 我们将证明分为两个主要部分: 首先处理更简单也更基础的非负函数情况, 然后利用它来证明一般情况.

先假设 $f_1 \ge 0$ 相当于证明等式:

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu$$

考虑一边、即证明

$$\lim \int f_n \, \mathrm{d}\mu \le \int f \, \mathrm{d}\mu$$

这是显然的. 因为 $f_n \uparrow f$ 意味着 $\forall n, f_n(\omega) \leq f(\omega)$,从而 $\int f_n \, \mathrm{d}\mu \leq \int f \, \mathrm{d}\mu$. 因为 $\int f_n \, \mathrm{d}\mu$ 单调有上界,因此 $\lim \int f_n \, \mathrm{d}\mu$ 存在,且 $\lim \int f_n \, \mathrm{d}\mu \leq \int f \, \mathrm{d}\mu$.

接下来考虑另一侧

$$\lim \int f_n \, \mathrm{d}\mu \ge \int f \, \mathrm{d}\mu$$

回顾 $\int f d\mu$ 的定义是

$$\int f \, \mathrm{d} \mu \coloneqq \sup \left\{ \int g \, \mathrm{d} \mu \, \middle| \, 0 \le g \le f, g \, \, \text{为简单函数} \right\}$$

如果我们可以证明对于任意的简单函数 g, 都有 $c \coloneqq \lim \int f_n d\mu \ge \int g d\mu$, 那么一定可以得 到 c 比他们的上确界大,从而得证.

为此, 任取简单函数 g s.t. $0 \le g \le f$, 再取一个略小于 1 的数 $a := 1 - \varepsilon$. 构造集合

$$E_n \coloneqq \{\omega \,|\, f_n(\omega) \geq ag(\omega)\}$$

这个集合 E_n 是指那些 f_n 的值已经"长得足够高",至少达到了 g 的 a 倍的点 ω 的集合. 由于 f_n 单调递增,因此这个集合也单调,即 $E_1\subseteq E_2\subseteq\cdots$ 因为 $f_n(\omega)\uparrow f(\omega)$ 且 $f(\omega)\geq g(\omega)$,这个集合会不断扩大,直至整个 g 的支撑集,也就是

$$\bigcup_{n=1}^{\infty} E_n = \{\omega \,|\, g(\omega) > 0\}$$

从而,得到

$$\int f_n \, \mathrm{d}\mu \ge \int_{E_n} f_n \, \mathrm{d}\mu \ge a \int_{E_n} g \, \mathrm{d}\mu$$

不等式两侧取极限得到

$$c \geq a \cdot \lim_{n \to \infty} \int_{E_n} g \, \mathrm{d}\mu = a \cdot \int g \, \mathrm{d}\mu$$

因为 g 是任取的,且 a 可以任意接近 1, 因此就有

$$c \ge \sup \int g \,\mathrm{d}\mu = \int f \,\mathrm{d}\mu$$

从而 f_1 非负部分证完了.

接下来,证明另一部分.

我们构造函数列 $f_n'=f_n-f_1$,则 $f_n'\geq 0$ 且 $f_n'\uparrow f':=f-f_1$,因此现在的 f_n' 满足上面情况的所有条件,从而我们得到

$$\int f_n{'}\,\mathrm{d}\mu\uparrow\int f'\,\mathrm{d}\mu \Leftrightarrow \int (f_n-f_1)\,\mathrm{d}\mu\uparrow\int (f-f_1)\,\mathrm{d}\mu$$

由于 $\int f_1 d\mu > -\infty$ 利用积分的线性性,得到

$$\int f_n \, \mathrm{d}\mu \uparrow \int f \, \mathrm{d}\mu$$

定理 1.2.2 Fatou 引理(Fatou's Lemma)

若 (Ω,\mathcal{F},μ) 是一个测度空间, $\{f_i\}_{i=1}^\infty$ 是一族 $\Omega \to \mathbb{R}$ 的**非负**可测函数. 则

$$\int \liminf_{i \to \infty} f_i \, \mathrm{d}\mu \le \liminf_{i \to \infty} \int f_i \, \mathrm{d}\mu$$

注解 1.2.2 一个可能漏水的水桶

- 想象 $\int f_i d\mu$ 是一个桶在时刻 i 的总水量. f_i 是水的分布.
- f_i 不要求单调,你可以把水在桶里晃来晃去,甚至有些水会溅出来.
- $\lim\inf f_i$ 是在晃动过程中,每个位置"最终"稳定留下的水位.
- **Fatou 引理**说:最终桶里剩下的水量(左边),小于等于你每次测量水量的极限(右边).
- 为什么是不等式? 因为在晃动的过程中(f_i 不单调),可能有一部分"质量"(积分值)泄露掉了或"蒸发"了(数学上叫"跑到无穷远处"). 所以你最终看到的实体($\liminf f_i$)的积分,可能会比积分的极限要小.

Proof. 我们手里的工具是强大的**单调收敛定理(MCT)**,但它的使用条件很苛刻,要求函数序列是单调递增的. 而 Fatou Í 引理的 $\{f_i\}$ 序列不保证单调性. 所以,证明的核心思想是: 从不单调的 $\{f_i\}$ 出发,构造出一个相关的、新的、单调递增的序列 $\{g_j\}$,然后对 $\{g_j\}$ 应用MCT,最后再把结果和 $\{f_i\}$ 联系起来.

我们先回顾 lim inf 的定义:

$$\liminf_i f_i \coloneqq \sup_j \inf_{i \geq j} f_i$$

受到启发,我们定义新的函数列 g_i

$$g_i \coloneqq \inf\{f_i \mid i \ge j\}$$

也就是 g_j 是原序列 f_i 从第 j 项开始的 "尾巴" 的下确界. 由于所选取的集合越来越小,因此下确界是递增的,从而有 $g_1 \leq g_2 \leq \cdots$,这就意味着我们构造出了一个单调递增的序列.

而根据 \liminf 的定义,这个单调递增序列 $\{g_j\}$ 的极限(也就是它的上确界 $\sup g_j$)正好就是 $\liminf f_i$. 所以我们有: $g_j \uparrow \liminf f_i$. 因为 f_i 都非负,所以 g_j 也非负. 应用 MCT,我们得到

$$\lim_{j\to\infty}\int g_j\,\mathrm{d}\mu=\int \liminf_{i\to\infty} f_i\,\mathrm{d}\mu$$

而这就是我们要证明的不等式的左边,接下来我们考虑右边.

由于 g_j 的定义 $g_j = \inf\{f_i \, | \, i \geq j\}$,于是 $\forall i \geq j, f_i \geq g_j$,利用积分的单调性有

$$\forall i \geq j, \int f_i \, \mathrm{d}\mu \geq \int g_j \, \mathrm{d}\mu$$

既然 $\int g_j \,\mathrm{d}\mu$ 比这里的每一项都要小,那么一定小于等于他们的下确界,从而有关键不等式

$$\int g_j \,\mathrm{d}\mu \leq \inf_{i\geq j} \int f_i \,\mathrm{d}\mu$$

我们对上面这个不等式两边同时取 $i \to \infty$ 的下极限 $\lim \inf$

$$\lim_{j\to\infty}\int g_j\,\mathrm{d}\mu=\liminf_{j\to\infty}\int g_j\,\mathrm{d}\mu\leq \liminf_{j\to\infty}\biggl(\inf_{i\geq j}\int f_i\,\mathrm{d}\mu\biggr)$$

由于 g_j 是单调收敛的序列,因此下极限等于极限等于 $\int \liminf_{i \to \infty} f_i \, \mathrm{d}\mu$. 在这个不等式的右边,被取极限的部分正好符合 \liminf 的定义,因此就等于 \liminf $\int f_j \, \mathrm{d}\mu$,把两侧的分析结果带入,就得到了我们要证明的 Fatou 引理

$$\int \liminf_{i \to \infty} f_i \, \mathrm{d}\mu \le \liminf_{i \to \infty} \int f_i \, \mathrm{d}\mu$$

定理 1.2.3 控制收敛定理 (Dominated Convergence Theorem - DCT)

若 (Ω,\mathcal{F},μ) 是一个测度空间, $\{f_i\}_{i=1}^\infty$ 是一族 $\Omega\to\mathbb{R}$ 的可测函数, g 是一个可积函数.如果 $|f_i|\leq g$ a.e. 且 $\forall\omega\in\Omega,f_i(\omega)\to f(\omega)$ (逐点收敛),则 f 也是可积的,且积分和极限可交换,即

$$\int f_i \, \mathrm{d}\mu \to \int f \, \mathrm{d}\mu \Leftrightarrow \int f \, \mathrm{d}\mu = \int \lim_{n \to \infty} f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu$$

注解 1.2.3 有盖子的桶

- 这就像 Fatou 引理里那个可能漏水的桶,但现在我们给它加了一个坚固的盖子 (g).
- $f_i \to f$ 意味着桶里的水最终会形成一个稳定的形态 f.
- $|f_i| \le g$ 且 $\int g \, \mathrm{d}\mu < \infty$ 这个"盖子"的作用是阻止任何水的泄露和蒸发. 因为所有的水都被限制在一个总容量有限的空间里.
- **DCT 定理**说: 既然一滴水都没有损失, 那么水量的极限, 自然就等于极限形态下水的总量.

Proof. 证明的核心思想是构造两条"单调的夹板"来挤压 原始的序列 $\{f_i\}$ 本身不一定是单调的,所以我们不能直接用 MCT. 因此,我们从 $\{f_i\}$ 出发,构造出两个新的、单调的函数序列,一个从下方逼近 f ,一个从上方逼近 f ,像两块夹板一样把 f_i 夹在中间. 然后我们分别对这两条"单调的夹板"应用 MCT.

我们定义两个辅助序列:

(1) 地板序列 f_i^{\wedge}

$$f_i^\wedge \coloneqq \inf \bigl\{ f_j \, \big| \, j \geq i \bigr\}$$

这个序列是单调递增的,并且收敛到 $\liminf f_i$. 因为 $f_i \to f$,所以 $f_i^{\wedge} \uparrow f$. (2) 天花板序列 f_i^{\vee}

$$f_i^\vee \coloneqq \sup \bigl\{ f_i \, \big| \, j \geq i \bigr\}$$

这个序列是单调递减的,并且收敛到 $\limsup f_i$. 因为 $f_i \to f$,所以 $f_i^\vee \downarrow f$. 通过定义,我们得到

$$f_i^{\wedge} \le f_i \le f_i^{\vee} \tag{1.2.1}$$

由于 g 的存在保证了有限且可积,因此对于地板序列应用 MCT,我们得到

$$\lim_{i\to\infty}\int f_i^\wedge\,\mathrm{d}\mu=\int f\,\mathrm{d}\mu$$

类似的,应用 MCT (递减版),我们得到

$$\lim_{i \to \infty} \int f_i^{\vee} \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu$$

对式 (1.2.1) 取积分,得到

$$\int f_i^\wedge \,\mathrm{d}\mu \le \int f_i \,\mathrm{d}\mu \le \int f_i^\vee \,\mathrm{d}\mu$$

再通过取极限,应用夹逼定理得到

$$\lim_{i \to \infty} \int f_i \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu$$

1.3 概率的性质

性质 1.3.1 互补事件的概率

设 $A \subseteq \Omega$ 是样本空间 Ω 上的一个事件,则有 $P(\overline{A}) = 1 - P(A)$.

性质 1.3.2 概率的单调性

设 $A, B \subseteq \Omega$ 是样本空间 Ω 上的两个事件,且 $A \subset B$,则有 P(B-A) = P(B) - P(A).

推論 1.3.1

设 $A, B \subseteq \Omega$ 是样本空间 Ω 上的两个事件,且 $A \subseteq B$,则有 $P(A) \leq P(B)$.

性质 1.3.3 概率的加法公式

设 $A, B \subseteq \Omega$ 是样本空间 Ω 上的两个事件,则有 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

推論 1.3.2 容斥原理

设 $A_1, A_2, ..., A_n \subseteq \Omega$ 是样本空间 Ω 上的 n 个事件,则有

$$P\bigg(\bigcup_{i=1}^n A_i\bigg) = \sum_{i=1}^n P(A_i) - \sum_{1 \leq i < j \leq n} P\Big(A_i \cap A_j\Big) + \sum_{1 \leq i < j < k \leq n} P\Big(A_i \cap A_j \cap A_k\Big)$$

$$+ \cdots + (-1)^{n-1} P \left(\bigcap_{i=1}^n A_i \right)$$

推論 1.3.3 概率的半可加性

设 $A_1,A_2,A_3,\cdots\subseteq\Omega$ 是样本空间 Ω 上的可列个事件,则有 $Pigg(\bigcup_{i=1}^\infty A_iigg)\leq \sum_{i=1}^\infty P(A_i).$

定义 1.3.1 极限事件

(1) 对 $\mathcal F$ 中任一单调不减的事件列 $A_1\subset A_2\subset\cdots\subset A_n\subset\cdots$,称可列并 $\bigcup_{i=1}^\infty A_i$ 为 $\{A_n\}$ 的**极限事件**,记作

$$\lim_{n \to \infty} A_n \coloneqq \bigcup_{i=1}^{\infty} A_i$$

(2) 对 $\mathcal F$ 中任一单调不增的事件列 $A_1\supset A_2\supset\cdots\supset A_n\supset\cdots$,称可列交 $\bigcap_{i=1}^\infty A_i$ 为 $\{A_n\}$ 的**极限事件**,记作

$$\lim_{n\to\infty}A_n\coloneqq\bigcap_{i=1}^\infty A_i$$

定义 1.3.2 连续性

对 \mathcal{F} 上的一个测度 μ ,

- $(1) \ \, \text{如果他对任一单调不减的集合序列} \,\, A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots \,\, \text{满足} \,\, \mu\Bigl(\lim_{n \to \infty} A_n\Bigr) = \lim_{n \to \infty} \mu(A_n), \,\, \text{则称测度} \,\, \mu \,\, \text{具有$ **下连续性** $}.$
- (2) 如果他对任一单调不增的集合序列 $A_1\supset A_2\supset\cdots\supset A_n\supset\cdots$ 满足 $\mu\Bigl(\lim_{n\to\infty}A_n\Bigr)=\lim_{n\to\infty}\mu(A_n)$,则称测度 μ 具有**上连续性**.

性质 1.3.4 概率的连续性

若 P 为可测集 \mathcal{F} 上的概率测度,则 P 具有上、下连续性.

1.4 条件概率

定义 1.4.1 条件概率

设 (Ω, \mathcal{F}, P) 是一个概率空间, $A, B \subseteq \Omega$ 是样本空间 Ω 上的两个事件,且 P(B) > 0. 定义在事件 B 已经发生的条件下事件 A 发生的概率为**条件概率**,记作 P(A|B),其计算公式为

$$P(A|B) = \frac{P(AB)}{P(B)}$$

性质 1.4.1 条件概率是概率

条件概率是概率,即

(1) **非负性**: 对任意事件 $A \subseteq \Omega$, 有 $P(A|B) \ge 0$.

(2) **正则性**: $P(\Omega|B) = 1$.

(3) **可列可加性**: 对任意互不相容的事件列 $A_1, A_2, A_3, \dots \subseteq \Omega$, 有

$$P\!\left(\left. \bigcup_{i=1}^{\infty} A_i \, \right| B \right) = \sum_{i=1}^{\infty} P(A_i \, | \, B)$$

性质 1.4.2 乘法公式

(1) 若 P(B) > 0, 则

$$P(AB) = P(B)P(A \mid B)$$

(2) 若 $P(A_1A_2\cdots A_{n-1}) > 0$, 则

$$P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 A_2) \cdots P(A_n \mid A_1 A_2 \cdots A_{n-1})$$

定理 1.4.1 全概率公式

设 $B_1,B_2,...,B_n\subseteq\Omega$ 是样本空间 Ω 上的一个事件分割,且对任意 i=1,2,...,n,有 $P(B_i)>0$. 则对任意事件 $A\subseteq\Omega$,有

$$P(A) = \sum_{i=1}^n P(B_i) P(A \,|\, B_i)$$

Fig. 1.1 Total Probability Formula

对于全概率公式, 我们要注意以下几点:

(1) 假如 0 < P(B) < 1, 则

$$P(A) = P(B)P(B \mid A) + P(\overline{B})P(\overline{B} \mid A)$$

- (2) 条件中 B_1,B_2,\cdots,B_n 为样本空间的一个划分可以改成 B_1,B_2,\cdots,B_n 互不相容,且 $A\subset\bigcup_{i=1}^\infty B_i$,全概率公式依然成立.
- (3) 对可列无限个事件,全概率公式依然成立.

定理 1.4.2 Bayes 公式

设 $B_1,B_2,...,B_n\subseteq\Omega$ 是样本空间 Ω 上的一个事件分割,如果 $P(A)>0,P(B_i)>0$,则

$$P(B_i \mid A) = \frac{P(B_i)P(A \mid B_i)}{\sum_{j=1}^n P(B_j)P(A \mid B_j)} \quad i = 1, 2, \cdots, n$$

1.5 独立性

定义 1.5.1 两个事件的独立性

设 $A, B \subseteq \Omega$ 是样本空间 Ω 上的两个事件,如果 P(AB) = P(A)P(B),则称事件 A 与事件 B 相互**独立**.

性质 1.5.1

若 A 与 B 独立,则 $A 与 \overline{B}$ 独立, $\overline{A} 与 B$ 独立, $\overline{A} 与 \overline{B}$ 独立.

定义 1.5.2 多个事件的独立性

设有 n 个事件 $A_1, A_2, ..., A_n \subseteq \Omega$,如果对任意的子集 $\{i_1, i_2, ..., i_k\} \subseteq \{1, 2, ..., n\}$,都有

$$\begin{cases} P\left(A_{i_1}A_{i_2}\right) = P\left(A_{i_1}\right)P\left(A_{i_2}\right) \\ P\left(A_{i_1}A_{i_2}A_{i_3}\right) = P\left(A_{i_1}\right)P\left(A_{i_2}\right)P\left(A_{i_3}\right) \\ \dots \\ P\left(A_{i_1}A_{i_2}\cdots A_{i_k}\right) = P\left(A_{i_1}\right)P\left(A_{i_2}\right)\cdots P\left(A_{i_k}\right) \end{cases}$$

则称这 n 个事件 $A_1, A_2, ..., A_n$ 相互独立.

注解 1.5.1

两两独立 ≠ 相互独立.

定义 1.5.3 试验的独立性

设有两个试验 E_1, E_2 ,假如试验 E_1 的任一结果(事件)与试验 E_2 的任一结果(事件)相互独立,则称试验 E_1 与试验 E_2 相互独立.

类似的,可以定义 n 个试验的独立性. 如果试验 E_1, E_2, \cdots, E_n 的任一结果都是互相独立的事件,则称试验 E_1, E_2, \cdots, E_n 相互独立.

如果这 n 个试验还是相同的,则称其为 n **重独立试验**.

如果这 n 个试验,每次试验的结果都只有两个 A, \overline{A} ,则称其为 n 重伯努利试验.

Chapter 2 随机变量及其分布

2.1 随机变量及其分布

定义 1.1.7 随机向量、随机变量

在 定义 1.1.6 中, 如果 $(S,\mathcal{S}) = (\mathbb{R}^d,\mathcal{R}^d)$, 当 d > 1 时, 我们称 X 为**随机向量**; 当 d = 1 时, 我们称 X 为**随机变量**.

定义 2.1.1 离散型随机变量

假如一个随机变量仅可能取有限个或者可列个值,则称该随机变量为离散型随机变量.

定义 2.1.2 连续型随机变量

假如一个随机变量可能取某个区间内的任意值,则称该随机变量为连续型随机变量.

随机变量是从 $\Omega \to \mathbb{R}$ 的一个可测函数,若 \mathcal{B} 是某些实数组成的集合,则 $\{X \in \mathcal{B}\}$ 表示如下集合

$$\{X\in\mathcal{B}\}=\{\omega\in\Omega\,|\,X(\omega)\in\mathcal{B}\}$$

定义 2.1.3 分布函数

对于随机变量 X, 对于任意 $-\infty < x < \infty$ 称

$$F(x) = P(X \le x)$$

为随机变量 X 的**分布函数**. 且称 X 服从 F(x), 记作 $X \sim F(x)$

注解 2.1.1

从分布函数的定义可见,任何随机变量 X 都能诱导出一个分布函数.

性质 2.1.1 分布函数的性质

对于任意随机变量 X, 其分布函数 F(x) 具有如下性质:

- (1) **单调性**: 对任意 $x_1 < x_2$, 有 $F(x_1) \le F(x_2)$
- (2) 有界性: $F(\infty) = \lim_{x \to \infty} F(x) = 1$, $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$
- (3) **右连续性**: 对任意实数 x_0 ,有 $\lim_{x \to x_0^+} F(x) = F(x_0)$

Proof. 对于右连续性,取任意实数 x_0 ,对于任意 $\varepsilon>0$,令 $\delta=\varepsilon$,当 $0< x-x_0<\delta$ 时,有 $|F(x)-F(x_0)|=|P(X\leq x)-P(X\leq x_0)|=P(x_0< X\leq x)\leq P(X\leq x_0+\delta)-P(X\leq x_0)=F(x_0+\delta)-F(x_0)<\varepsilon$,因此 $\lim_{x\to x_0^+}F(x)=F(x_0)$.

定义 2.1.4 分布列

对于离散型随机变量 X, 设其可能取的值为 $x_1, x_2, ..., x_n, ...$, 则称 x 取 x_i 的概率

$$p_i = p(x_i) = P(X = x_i)$$

为随机变量 X 的**分布列** , 记作 $X \sim \{p_i\}$.

性质 2.1.2 分布列的性质

 $(1) \ p(x_i) \geq 0, i=1,2,\cdots$

(2)
$$\sum_{i=1}^{\infty} p(x_i) = 1$$

离散型随机变量的分布函数是有限级的阶梯函数.

对于连续型随机变量,由于单点集是零测集,因此我们引入概率密度函数.

定义 2.1.5 概率密度函数

设随机变量 X 的分布函数为 F(x),如果存在非负可积函数 p(x),使得对于任意实数 x,都有

$$F(x) = \int_{-\infty}^{x} p(t) \, \mathrm{d}t$$

则称 p(x) 为随机变量 X 的**概率密度函数**. 称 X 为连续型随机变量,称 F(x) 为连续型分布函数.

可以看出, 在可导的点上有

$$F'(x) = p(x)$$

性质 2.1.3 概率密度函数的性质

对于概率密度函数 p(x), 有如下性质:

 $(1) p(x) \ge 0$

$$(2) \int_{-\infty}^{\infty} p(x) \, \mathrm{d}x = 1$$

例 2.1.1 均匀分布

设随机变量 X 在区间 [a,b] 上服从均匀分布,记作 $X \sim U(a,b)$,则其概率密度函数为

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{else} \end{cases}$$

2.2 随机变量的数学期望

定义 2.2.1 离散型随机变量的数学期望

设离散型随机变量 X 的分布列为 $\{p_i\}$,如果 $\sum_{i=1}^{\infty} |x_i| p(x_i) < \infty$,则称

$$E(X) = \sum_{i=1}^{\infty} x_i p(x_i)$$

为随机变量 X 的**数学期望**.

以上定义中,要求级数绝对收敛的目的在于使数学期望唯一.因为随机变量的取值可正可负,取值次序可先可后,由无穷级数的理论知道,如果此无穷级数绝对收敛,则可保证其和不受次序变动的影响.由于有限项的和不受次序变动的影响,故取有限个可能值的随机变量的数学期望总是存在的.

定义 2.2.2 连续型随机变量的数学期望

设连续型随机变量 X 的概率密度函数为 p(x),如果 $\int_{-\infty}^{\infty} |x| p(x) \, \mathrm{d}x < \infty$,则称

$$E(X) = \int_{-\infty}^{\infty} x p(x) \, \mathrm{d}x$$

为随机变量 X 的**数学期望**.

定义 2.2.3 数学期望

若 X 是定义在 (Ω, Σ, P) 上的随机变量,则称 Lesbegue 积分

$$E(X) = \int_{\Omega} X \, \mathrm{d}P$$

为随机变量 X 的**数学期望**. 其中, 概率测度为

$$P(x \in A) = \int_A p(x) \, \mathrm{d}x$$

注解 2.2.1

一般将期望记作 $\mu = \mu_X = E(X)$.

定理 2.2.1 随机变量函数的期望

若随机变量 X 的分布用分布列 $\{p_i\}$ 或者 概率密度函数 p(x) 表示,则 X 的某一函数 g(X) 的数学期望为

$$E(g(X)) = \begin{cases} \sum_i g(x_i) p(x_i), & \text{ 离散型随机变量} \\ \int_{-\infty}^{\infty} g(x) p(x) \, \mathrm{d}x, & \text{连续型随机变量} \end{cases}$$

也就是

$$E(g(X)) = \int_{\Omega} g(X) \, \mathrm{d}P$$

性质 2.2.1 期望的性质

- (1) 对于常数 c, 有 E(c) = c
- (2) 对于随机变量 X 和常数 a, 有 E(aX) = aE(X)
- (3) 对于随机变量 X 和 Y, 有 E(X + Y) = E(X) + E(Y)

2.3 随机变量的方差和标准差

定义 2.3.1 方差

若随机变量 X^2 的数学期望 $E(X^2)$ 存在,则称

$$Var(X) := E[(X - \mu)^2]$$

为随机变量 X 的**方差**, 其中 $\mu = E(X)$.

定义 2.3.2 标准差

随机变量 X 的标准差定义为方差的正平方根,即

$$\sigma(X) = \sigma_X = \sqrt{\operatorname{Var}(X)}$$

方差与标准差之间的差别主要在量纲上,由于标准差与所讨论的随机变量、数学期望有相同的量纲,其加减 $E(X) \pm k\sigma(X)$ 是有意义的 (k 为正实数),所以在实际中,人们比较乐意选用标准差,但**标准差的计算必须通过方差**才能算得.

注解 2.3.1

- 如果随机变量 X 的数学期望存在, 其方差不一定存在
- 当 X 的方差存在时,则 E(X) 必定存在,其原因在于 $|X| \le X^2 + 1$ 总是成立的

性质 2.3.1 方差的性质

- $(1) \ \operatorname{Var}(X) = E\big(X^2\big) E(X)^2$
- (2) 对于常数 c,有 Var(c) = 0
- (3) 对于随机变量 X 和常数 a,b,有 $Var(aX+b)=a^2 Var(X)$
- (4) 对于随机变量 X 和 Y,若 X 和 Y 相互独立,则有 $\mathrm{Var}(X+Y)=\mathrm{Var}(X)+\mathrm{Var}(Y)$

Proof. 对第1条性质的证明如下

$$\begin{split} \operatorname{Var}(X) &= E\big[(X - \mu)^2 \big] \\ &= E\big(X^2 - 2\mu X + \mu^2 \big) \\ &= E\big(X^2 \big) - 2\mu E(X) + \mu^2 \\ &= E\big(X^2 \big) - \mu^2 \end{split}$$

定理 2.3.1 Markov 不等式

若随机变量 X 的数学期望 E(X) 存在, 且 $X \ge 0$, 则对于任意 a > 0, 有

$$P(X \geq a) \leq \frac{E(X)}{a}$$

Proof.

$$E(X) = \int_{\Omega} X \, \mathrm{d}P \geq \int_{X \geq a} X \, \mathrm{d}P \geq \int_{X \geq a} a \, \mathrm{d}P = a P(X \geq a)$$

定理 2.3.2 Chebyshev 不等式

若随机变量 X 的数学期望 E(X) 和方差 $\mathrm{Var}(X)$ 存在,则对于任意 $\varepsilon>0$,有

$$P(|X - \mu| \ge \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}$$

或

$$P(|X-\mu|<\varepsilon)\geq 1-\frac{\mathrm{Var}(X)}{\varepsilon^2}$$

Proof. 由 定理 2.3.1 得

$$P(|X-\mu| \geq \varepsilon) = P\big((X-\mu)^2 \geq \varepsilon^2\big) \leq \frac{E\big[(X-\mu)^2\big]}{\varepsilon^2} = \frac{\mathrm{Var}(X)}{\varepsilon^2}$$

切比雪夫不等式给出大偏差发生概率的上界,这个上界与方差成正比,方差愈大上界也愈大 以下定理进一步说明了方差为 0 就意味着随机变量的取值几乎集中在一点上.

定理 2.3.3 单点分布

若随机变量 X 的方差存在,则

$$Var(X) = 0 \Leftrightarrow P(X = c) = 1 \Leftrightarrow X = c \text{ a.e.}$$

Proof. 充分性显然, 必要性则由切比雪夫不等式得证. 对于任意 $\varepsilon > 0$, 有

$$P(|X - \mu| \ge \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2} = 0$$

因此 $P(|X-\mu|<\varepsilon)=1$,即 X 在 $[\mu-\varepsilon,\mu+\varepsilon]$ 上几乎处处取值. 由于 ε 可任意小,故 $X=\mu$ a.e.

2.4 常用离散分布

2.4.1 二项分布

定义 2.4.1 二项分布

若随机变量 X 表示在 n 次独立重复的伯努利试验中成功的次数,且每次试验成功的概率为 p,则称 X 服从参数为 (n,p) 的二**项分布**,记作 $X \sim b(n,p)$,其分布列为

$$p(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n$$

定义 2.4.2 二点分布

n=1 时的二项分布称为二**点分布** 或者 **伯努利分布**,记作 $X \sim b(1,p)$,其分布列为

$$p(x) = P(X = x) = p^{x}(1-p)^{1-x}, x = 0, 1$$

假设样本空间只有 A 和 \overline{A} ,由此形成伯努利试验. n 重伯努利试验由 n 个相同的、相互独立的伯努利试验组成. 若将第 i 个伯努利试验中 A 出现的次数记作 X_i 由于 n 重伯努利试验中,每个伯努利试验是相互独立的,因此 X_i 互相独立,且均服从参数为 (1,p) 的二点分布. 设 X 表示 n 重伯努利试验中 A 出现的总次数,则有

$$X = X_1 + X_2 + \dots + X_n$$

就是 n 重伯努利试验中出现的 A 的总次数, 服从二项分布 b(n,p).

服从二项分布的随机变量总可分解为 n 个独立同为二点分布的随机变量之和.

若 $X \sim b(n, p)$, 则有

$$\begin{split} E(X) &= \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k} \\ &= np \sum_{k=1}^n \binom{n-1}{k-1} p^{k-1} (1-p)^{n-k} \\ &= np (p+1-p)^{n-1} = np \end{split}$$

其中的第二个等号是利用组合数的性质 $k\binom{n}{k} = n\binom{n-1}{k-1}$ 得到的,可以考虑在 n 个人中选择 k 个人组成小组,然后再选择一个组长.

定义 2.4.3 原点矩

若随机变量 X 的第 n 阶矩存在,则称

$$\mu'_n = E(X^n)$$

为随机变量 X 的第 n 阶原点矩.

定义 2.4.4 中心矩

若随机变量 X 的第 n 阶中心矩存在,则称

$$\mu_n = E[(X-\mu)^n]$$

为随机变量 X 的**第** n **阶中心矩**, 其中 $\mu = E(X)$.

注解 2.4.1

记
$$X^{(r)} := X(X-1)(X-2)\cdots(X-r+1)$$

定义 2.4.5 阶乘矩

若随机变量 X 的第 n 阶阶乘矩存在,则称

$$\mu^{(r)} = E[X^{(r)}]$$

为随机变量 X 的第 n 阶阶乘矩.

若 $X \sim b(n, p)$, 考虑他的阶乘矩

$$\begin{split} \mu^{(r)} &= E[X(X-1)(X-2)\cdots(X-r+1)] \\ &= \sum_{k=0}^n k(k-1)(k-2)\cdots(k-r+1)\binom{n}{k} p^k (1-p)^{n-k} \\ &= \sum_{k=r}^n \frac{k!}{(k-r)!} \cdot \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} \\ &= \frac{n!}{(n-r)!} p^r \cdot \sum_{k=r}^n \binom{n-r}{k-r} p^{k-r} (1-p)^{n-k} \\ &= \frac{n!}{(n-r)!} p^r (p+1-p)^{n-r} \end{split}$$

$$= n^{(r)}p^r$$

从而 $E(X^2) = E[X(X-1)] + E(X) = n(n-1)p^2 + np = n^2p$. 于是,若 $X \sim B(n,p)$

$$\mathrm{Var}(X) = E(X^2) - E(X)^2 = n^2 p - (np)^2 = np(1-p)$$

注解 2.4.2

阶乘矩是下降幂的形式,而原点矩是普通幂的形式,两者可以通过 Stirling 反演相互转换.

2.4.2 泊松分布

定义 2.4.6 泊松分布

若随机变量 X 的分布列为

$$p(k)=P(X=k)=\frac{\lambda^k e^{-\lambda}}{k!}, \quad k=0,1,2,\dots$$

则称 X 服从参数为 λ 的**泊松分布**,记作 $X \sim P(\lambda)$.

注解 2.4.3

将 $e^{-\lambda}$ 提出后,其余项是 e^x 在 $x = \lambda$ 处的 Taylor 展开.

若 $X \sim P(\lambda)$, 则

$$E(X) = \sum_{k=0}^{\infty} k \frac{\lambda^k e^{-\lambda}}{k!} = \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

考虑他的阶乘矩

$$\begin{split} \mu^{(r)} &= E[X(X-1)(X-2)\cdots(X-r+1)] \\ &= \sum_{k=0}^{\infty} k(k-1)(k-2)\cdots(k-r+1)\frac{\lambda^k e^{-\lambda}}{k!} \\ &= \sum_{k=r}^{\infty} \frac{k!}{(k-r)!} \frac{\lambda^k e^{-\lambda}}{k!} \\ &= \lambda^r e^{-\lambda} \sum_{k=r}^{\infty} \frac{\lambda^{k-r}}{(k-r)!} \\ &= \lambda^r e^{-\lambda} e^{\lambda} \\ &= \lambda^r \end{split}$$

因此, 若 $X \sim P(\lambda)$, 则

$$Var(X) = E(X^2) - E(X)^2 = \lambda + \lambda^2 - \lambda^2 = \lambda$$

定理 2.4.1 泊松定理

设随机变量 $X_n \sim B(n,p_n)$,且当 $n \to \infty$ 时, $np_n \to \lambda$,则对于任意非负整数 k,有

$$\lim_{n\to\infty}P(X_n=k)=\frac{\lambda^k e^{-\lambda}}{k!}$$

即二项分布 $B(n,p_n)$ 在 $n\to\infty$ 且 $np_n\to\lambda$ 时收敛到泊松分布 $P(\lambda)$.

Proof.

$$\begin{split} \lim_{n \to \infty} P(X_n = k) &= \lim_{n \to \infty} \binom{n}{k} p_n^k (1 - p_n)^{n-k} \\ &= \lim_{n \to \infty} \frac{n!}{k! (n-k)!} \frac{(np_n)^k}{n^k} (1 - p_n)^n (1 - p_n)^{-k} \\ &= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n(n-1) \cdots (n-k+1)}{n^k} \cdot \lim_{n \to \infty} (1 - p_n)^n \cdot \lim_{n \to \infty} (1 - p_n)^{-k} \\ &= \frac{\lambda^k}{k!} \cdot 1 \cdot e^{-\lambda} \cdot 1 \\ &= \frac{\lambda^k e^{-\lambda}}{k!} \end{split}$$

2.4.3 超几何分布

定义 2.4.7 超几何分布

设总体中有 N 个个体,其中有 M 个是某一特征的个体,从中不放回地随机抽取 n 个个体,若随机变量 X 表示所抽取的个体中具有该特征的个体数,则称 X 服从参数为 (N,M,n) 的**超几何分布**,记作 $X \sim H(N,M,n)$,其分布列为

$$p(k) = P(X = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}, \quad \max(0, n-N+M) \le k \le \min(n, M)$$

2.4.4 几何分布

定义 2.4.8 几何分布

在成功概率为 p 的伯努利试验中,得到一次成功所需要的试验次数 X 服从参数为 p 的**几何分布**,记作 $X \sim Ge(p)$,其分布列为

$$p(k) = P(X = k) = (1 - p)^{k-1}p, \quad k = 1, 2, \dots$$

若 $X \sim Ge(p)$, 记 q = 1 - p, 则

$$\begin{split} E(X) &= \sum_{k=1}^\infty k (1-p)^{k-1} p = p \sum_{k=1}^\infty k q^{k-1} = p \frac{\mathrm{d}}{\mathrm{d}q} \left(\sum_{k=0}^\infty q^k \right) \\ &= p \frac{\mathrm{d}}{\mathrm{d}q} \left(\frac{1}{1-q} \right) = p \frac{1}{(1-q)^2} = \frac{1}{p} \end{split}$$

定理 2.4.2 几何分布的无记忆性

设随机变量 $X \sim \text{Ge}(p)$,则对于任意正整数 m, n,有

$$P(X > m + n \mid X > m) = P(X > n)$$

这个定理表明, 在前 m 次试验 A 没有出现的情况下, 在接下来的 n 次试验中 A 出现的概率与前 m 次试验是否出现 A 无关, 只与 n 有关, 因此称几何分布具有**无记忆性**.

2.4.5 负二项分布

定义 2.4.9 负二项分布

在伯努利试验中,记事件 A 发生的概率是 p, 如果 X 为事件 A 第 r 次出现时的试验次数,则 X 服从参数为 (r,p) 的**负二项分布**,记作 $X \sim \mathrm{Nb}(r,p)$,其分布列为

$$p(k) = P(X = k) = \binom{k-1}{r-1} (1-p)^{k-r} p^r, \quad k = r, r+1, \dots$$

注解 2.4.4

当 r=1 时,负二项分布即为几何分布.

问题 2.1

设 X 为随机变量, 且 $X(\Omega) \subseteq \mathbb{Z}_+$. 若其方差存在, 证明:

$$\operatorname{Var}(X) = 2\sum_{n=1}^{\infty} nP(X \ge n) - E(X)[E(X) + 1]$$

Proof. 因为

$$Var(X) = E(X^2) - E(X)^2$$

即证:

$$E(X^2) = 2\sum_{n=1}^{\infty} nP(X \ge n) - E(X)$$

考虑

$$2\sum_{n=1}^{\infty}nP(X\geq n)-E(X)=2\sum_{n=1}^{\infty}n\sum_{k=n}^{\infty}P(X=k)-E(X)$$

$$\begin{split} &= 2\sum_{k=1}^{\infty} P(X=k)\sum_{n=1}^{k} n - E(X) \\ &= 2\sum_{k=1}^{\infty} P(X=k)\frac{k(k+1)}{2} - \sum_{n=1}^{\infty} nP(X=n) \\ &= \sum_{k=1}^{\infty} k^2 P(X=k) = E(X^2) \end{split}$$

问题 2.2

设 X 为仅取非负整数的离散随机变量, 若其数学期望存在, 证明:

(1)
$$E(X) = \sum_{k=1}^{\infty} P(X \ge k)$$

(2)
$$\sum_{k=0}^{\infty} kP(X > k) = \frac{1}{2} (E(X^2) - E(X))$$

Proof. 类似 问题 2.1.

- (1) 不难发现, 这是由于无穷级数收敛, 从而求和可以交换次序.
- (2) 同理,由于无穷级数求和收敛,根据等差数列求和公式易证.

问题 2.3 比赛冠军概率

甲、乙、丙三人进行比赛,规定每局两个人比赛,胜者与第三人比赛,依次循环,直至有一人连胜两次为止,此人即为冠军.而每次比赛双方取胜的概率都是 1/2,现假定甲、乙两人先比,试求各人得冠军的概率.

Solution. 假设 (X,Y) 表示在上一场比赛中, X 战胜了 Y. 记甲,乙,丙分别为 A,B,C. 那么比赛的可能状态有 (A,B),(B,A),(A,C),(C,A),(B,C),(C,B). 记 $P_A(X,Y)$ 为在状态 (X,Y)下, A 最终获得冠军的概率. 那么,由于初始条件,我们得到

$$P(A) = \frac{1}{2}(P_A(A, B) + P_A(B, A))$$

接下来,考虑各个状态下的转移概率:

(1) (A, B) 下,如果 A 获胜了,那么直接赢得比赛;如果 A 战败了,那么进入 (C, A) 状态. 因此

$$P_A(A,B) = \frac{1}{2}(1 + P_A(C,A))$$

(2) (B,A) 下,如果 B 获胜了, B 直接赢了,此时 A 获胜的概率为 0;如果 B 战败了,那 么进入 (C,B) 状态. 因此

$$P_A(B,A) = \frac{1}{2}(0 + P_A(C,B))$$

(3) (A,C) 下,如果 A 赢了,那么 A 直接获胜;如果 A 输了,那么进入 (B,A) 状态.因此

$$P_A(A,C) = \frac{1}{2}(1 + P_A(B,A))$$

(4) (C,A) 下,如果 C 赢了,那么 C 直接获胜,此时 A 获胜的概率为 0;如果 C 输了,那么进入 (B,C) 状态. 因此

$$P_A(C, A) = \frac{1}{2}(0 + P_A(B, C))$$

(5) (B,C) 下,如果 B 赢了,那么 B 直接获胜了,此时 A 获胜的概率为 0;如果 B 输了,那么进入 (A,B) 状态. 因此

$$P_A(B,C) = \frac{1}{2}(0 + P_A(A,B))$$

(6) (C,B) 下,如果 C 赢了,那么 C 直接获胜了,此时 A 获胜的概率为 0;如果 C 输了,那么进入 (A,C) 状态. 因此

$$P_A(C, B) = \frac{1}{2}(0 + P_A(A, C))$$

联立以上的6个方程,得到

$$P_A(A, B) = \frac{4}{7}$$

$$P_A(B, A) = \frac{1}{7}$$

因此得到

$$P(A) = \frac{1}{2}(P_A(A,B) + P_A(B,A)) = \frac{5}{14}$$

2.5 常用连续分布

2.5.1 正态分布

正态分布源于高斯在 19 世纪初研究天文学和大地测量学时对测量误差的思考.

高斯设定了几个他认为"理所当然"的公理来描述测量误差的概率分布. 设 μ 是一个物理量的 "真值",我们进行了 n 次独立测量 x_1,x_2,\cdots,x_n . 每次测量的误差为 $\varepsilon_i=x_i-\mu$. 我们想要找 到误差的概率密度函数 $\varphi(\varepsilon)$.

高斯提出 3 个公理:

- (1) **对称性与最大值**: 误差的概率密度函数 $\varphi(\varepsilon)$ 关于 $\varepsilon = 0$ 对称,并且在 $\varepsilon = 0$ 处取得最大值.
- (2) **独立性**:每次测量是相互独立的.因此,观测到这一组特定误差的联合概率(似然)是它们各自概率的乘积:

$$L(\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n) = \prod_{i=1}^n \varphi(\varepsilon_i)$$

(3) **算数平均公理**: 高斯假设,对于一组测量值,其**算术平均值** $\overline{x} = \frac{1}{n} \sum x_i$ 是真值 μ 的"最可几估计值"(Maximum Likelihood Estimate).

因此,我们的目标是找到一个概率密度函数 $\varphi(\varepsilon)$,使得对于任意 n 和任意误差组 $\varepsilon_1, \cdots, \varepsilon_n$,当算术平均值 $\overline{x} = \mu$ 时,联合概率 $L(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)$ 取得最大值.

为了计算方便, 我们最大化 L 的对数 ln(L)

$$\ln(L) = \sum_{i=1}^n \ln(\varphi(x_i - \mu))$$

要找到最大值,我们对 μ 求导并令其为 0

$$\frac{\mathrm{d}}{\mathrm{d}\mu}\ln(L) = -\sum_{i=1}^n \frac{\varphi'(x_i - \mu)}{\varphi(x_i - \mu)} = 0 \Rightarrow \sum_{i=1}^n \frac{\varphi'(x_i - \mu)}{\varphi(x_i - \mu)} = 0$$

现在,我们代入高斯的关键公理(3):这个等式在 $\mu = \overline{x}$ 时必须成立

$$\sum_{i=1}^{n} \frac{\varphi'(x_i - \overline{x})}{\varphi(x_i - \overline{x})} = 0$$

定义函数 $g(z) = \frac{\varphi'(z)}{\varphi(z)}$,则上式变为

$$\sum_{i=1}^{n} g(x_i - \overline{x}) = 0 (2.5.2)$$

我们还需要一个已知的事实: 算术平均值的定义. 对于任何一组 x_i , 其偏差之和恒为零:

$$\sum_{i=1}^{n} (x_i - \overline{x}) = 0 \tag{2.5.3}$$

现在,我们有两个等式 式 (2.5.2) 式 (2.5.3),他们必须对任意一组测量值 x_i 成立. 要使这两个和式同时为零,唯一的(最简单的)非平凡解是 $g(x_i-\overline{x})$ 必须与 $x_i-\overline{x}$ 成正比.

于是,我们得到

$$g(z) = \frac{\varphi'(z)}{\varphi(z)} = kz$$

解这个微分方程得到

$$\ln(\varphi) = \frac{1}{2}kz^2 + C \Rightarrow \varphi(z) = A\exp\left(\frac{1}{2}kz^2\right)$$

现在,由于公理 (1), $\varphi(z)$ 在 z=0 处取得最大值,因此 k 必须是一个负数. 设 $k=-\frac{1}{\sigma^2}$,则

$$\varphi(\varepsilon) = A \exp\left(-\frac{\varepsilon^2}{2\sigma^2}\right)$$

接下来就是进行归一化,即

$$\int_{-\infty}^{\infty} A \exp \left(-\frac{\varepsilon^2}{2\sigma^2} \right) \mathrm{d} \varepsilon = 1 = A \cdot \sqrt{2\pi} \sigma$$

因此, $A = \frac{1}{\sqrt{2\pi}\sigma}$, 最终得到

$$\varphi(\varepsilon) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\varepsilon^2}{2\sigma^2}\right)$$

如果误差 $\varepsilon = x - \mu$, 那么测量值 x 的概率密度函数就是将这个函数平移 μ 个单位:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

定义 2.5.1 正态分布

设随机变量 X 的概率密度函数为

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad -\infty < x < \infty$$

则称 X 服从参数为 (μ, σ^2) 的**正态分布**,记作 $X \sim N(\mu, \sigma^2)$.

Fig. 2.1 PDF and CDF of Normal Distribution

正态分布的 PDF 是一个钟形曲线,对称于 $x = \mu$,在 $x = \mu$ 处取得最大值 $\frac{1}{\sqrt{2\pi}\sigma}$,并且随着 $|x - \mu|$ 的增大而迅速趋近于 0. $\mu \pm \sigma$ 是图像的拐点.

正态分布 $N(\mu, \sigma^2)$ 的分布函数为

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^x \exp\!\left(-\frac{(t-\mu)^2}{2\sigma^2}\right) \mathrm{d}t$$

定义 2.5.2 标准正态分布

称 $\mu = 0, \sigma = 1$ 的正态分布为**标准正态分布**,记作 $U \sim N(0,1)$,其 PDF 和 CDF 分别为

$$\varphi(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$$

$$\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} \exp\left(-\frac{t^2}{2}\right) dt$$

性质 2.5.1 常用的计算

(1)
$$\Phi(-u) = 1 - \Phi(u)$$

(1)
$$\Phi(-u) = 1 - \Phi(u)$$

(2) $P(a < U \le b) = \Phi(b) - \Phi(a)$
(3) $P(|U| \le u) = 2\Phi(u) - 1$
(4) $P(U > u) = 1 - \Phi(u)$

(3)
$$P(|U| \le u) = 2\Phi(u) - 1$$

(4)
$$P(U > u) = 1 - \Phi(u)$$

设随机变量 $X \sim N(\mu, \sigma^2)$,则随机变量 $U = \frac{X - \mu}{\sigma} \sim N(0, 1)$.

Proof. 考虑分布函数,对于任意实数 u,有

$$\begin{split} P(U \leq u) &= P\bigg(\frac{X - \mu}{\sigma} \leq u\bigg) \\ &= P(X \leq \sigma u + \mu) = F(\sigma u + \mu) \\ &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\sigma u + \mu} \exp\bigg(-\frac{(t - \mu)^2}{2\sigma^2}\bigg) \,\mathrm{d}t \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} \exp\bigg(-\frac{s^2}{2}\bigg) \,\mathrm{d}s \\ &= \Phi(u) \end{split}$$

从而,对于 $X \sim N(\mu, \sigma^2)$,有

$$P(a \le x \le b) = P\left(\frac{a-\mu}{\sigma} \le \frac{x-\mu}{\sigma} \le \frac{b-\mu}{\sigma}\right) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

若 $X \sim N(\mu, \sigma^2)$,由于 $U = \frac{X - \mu}{\sigma} \sim N(0, 1)$,因此

$$E(U) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u \exp\left(-\frac{u^2}{2}\right) \mathrm{d}u = 0$$

从而, $E(X) = E(U)\sigma + \mu = 0 \cdot \sigma + \mu = \mu$.

同样的

$$\begin{split} \operatorname{Var}(U) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u^2 \exp\left(-\frac{u^2}{2}\right) \mathrm{d}u \\ &= \frac{1}{\sqrt{2\pi}} \cdot 2 \int_{0}^{\infty} u^2 \exp\left(-\frac{u^2}{2}\right) \mathrm{d}u \\ &= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} 2t \cdot e^{-t} \frac{1}{\sqrt{2t}} \, \mathrm{d}t = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \sqrt{2t} \cdot e^{-t} \, \mathrm{d}t \end{split}$$

$$=\sqrt{\frac{2}{\pi}}\cdot\sqrt{2}\cdot\Gamma\!\left(\frac{3}{2}\right)=\frac{2}{\sqrt{\pi}}\cdot\frac{\sqrt{\pi}}{2}=1$$

从而, $\operatorname{Var}(X) = \operatorname{Var}(U) \cdot \sigma^2 = 1 \cdot \sigma^2 = \sigma^2$.

定义 2.5.3 标准化

对于任意随机变量 X, 如果其数学期望和方差存在, 则称

$$X^* = \frac{X - E(X)}{\sqrt{\operatorname{Var}(X)}}$$

为 X 的标准化随机变量, 且有

$$E(X^*) = 0, \operatorname{Var}(X^*) = 1$$

定义 2.5.4 分位数

设随机变量 X 的分布函数为 F(x),对于给定的 $0 ,如果实数 <math>x_p$ 满足

$$F(x_p) = P(X \le x_p) = p$$

则称 x_p 为随机变量 X 的 p-分位数.

Fig. 2.2 Illustration of quantiles

注解 2.5.1

- 一般来说,如果 $X \sim F(x)$ 是连续型随机变量
- (1) 给定 x 可以计算 p = F(x),也就是 CDF
- (2) 给定 p 可以计算 $x_p = F^{-1}(p)$,也就是 p-分位数

这里的 F^{-1} 实际上是

$$F^{-1}(p) := \inf\{x \in \mathbb{R} \,|\, F(x) \ge p\}$$

 $F^{-1}(p)$ 是所有满足"累积概率 F(x) 至少达到 p 的 x 值中,最小的那个 x.

例 2.5.1 标准正态分布的 p-分位数

若随机变量 $X \sim N(0,1),\;\;$ 则对于 0 即为 <math>X 的 p-分位数.

问题 2.4 正态分布的 p-分位数

若 $X \sim N(\mu, \sigma^2)$, 则 X 的 p-分位数为多少?

Solution. 设 X 的 p-分位数为 x_n , 则

$$p = P(X \le x_p) = \Phi\left(\frac{x_p - \mu}{\sigma}\right)$$

因此

$$x_p = \mu + \sigma \cdot u_p = \mu + \sigma \cdot \Phi^{-1}(p)$$

设随机变量 $X \sim N(\mu, \sigma^2)$, 则

$$P(\mu-k\sigma \leq X \leq \mu+k\sigma) = P\left(\left|\frac{X-\mu}{\sigma}\right| \leq k\right) = \Phi(k) - \Phi(-k) = 2\Phi(k) - 1$$

当 k = 1, 2, 3 时, 分别有

$$\begin{split} &P(\mu - \sigma \leq X \leq \mu + \sigma) = 2\Phi(1) - 1 \approx 0.6826 \\ &P(\mu - 2\sigma \leq X \leq \mu + 2\sigma) = 2\Phi(2) - 1 \approx 0.9545 \\ &P(\mu - 3\sigma \leq X \leq \mu + 3\sigma) = 2\Phi(3) - 1 \approx 0.9973 \end{split}$$

Fig. 2.3 Empirical Rule

2.5.2 均匀分布

定义 2.5.5 均匀分布

若随机变量 X 的概率密度函数为

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & x < a \lor x > b \end{cases}$$

则称 X 服从参数为 (a,b) 的**均匀分布**,记作 $X \sim U(a,b)$.

Fig. 2.4 PDF and CDF of Uniform Distribution

U(a,b) 的 CDF 为

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, a \le x \le b \\ 1, & x > b \end{cases}$$

设 $X \sim U(a,b)$, 则

$$E(X) = \int_a^b \frac{x}{b-a} \, \mathrm{d}x = \frac{a+b}{2}$$

又有

$$E(X^2) = \int_a^b \frac{x^2}{b-a} \, \mathrm{d}x = \frac{b^3 - a^3}{3(b-a)} = \frac{a^2 + ab + b^2}{3}$$

因此

$$Var(X) = E(X^2) - E(X)^2 = \frac{(b-a)^2}{12}$$

2.5.3 指数分布

定义 2.5.6 指数分布

设随机变量 X 的概率密度函数为

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, x \ge 0\\ 0, & x < 0 \end{cases}$$

 $Exp(\lambda)$ 的 CDF 为

$$F(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$

设 $X \sim \text{Exp}(\lambda)$,则

$$E(X) = \int_0^\infty x \lambda e^{-\lambda x} \, \mathrm{d}x = \int_0^\infty x \, \mathrm{d} \big(-e^{-\lambda x} \big) = \frac{1}{\lambda}$$

考虑

$$E(X^2) = \int_0^\infty x^2 \lambda e^{-\lambda x} \, \mathrm{d}x = \int_0^\infty x^2 \, \mathrm{d} \big(-e^{-\lambda x} \big) = \frac{2}{\lambda^2}$$

从而

$$\operatorname{Var}(X) = E(X^2) - E(X)^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$$

注解 2.5.2

对于指数分布 $\operatorname{Exp}(\lambda)$ 有时记 $\theta \coloneqq \frac{1}{\lambda} = E(X)$.

定理 2.5.2 指数分布的无记忆性

设随机变量 $X \sim \text{Exp}(\lambda)$,则对于任意 $s, t \geq 0$,有

$$P(X>s+t\ |\ X>s)=P(X>t)$$

Proof.

$$P(X > s + t \mid X > s) = \frac{P(X > s + t)}{P(X > s)} = \frac{e^{-\lambda(s + t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X > t)$$

2.5.4 伽马分布

定义 2.5.7 Г 函数

设复数 z 的实部 Re(z) > 0,则称函数

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, \mathrm{d}t$$

为 Γ-函数.

Fig. 2.6 The Γ function along part of the real axis

性质 2.5.2 Gamma 函数的性质

- $\Gamma(z) = (z-1)!$ $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
- $\Gamma(z+1) = z\Gamma(z)$

定义 2.5.8 伽马分布

若随机变量 X 的概率密度函数为

$$p(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

则称 X 服从参数为 (α, λ) 的**伽马分布**,记作 $X \sim \Gamma(\alpha, \lambda)$.

设 $X \sim \Gamma(\alpha, \lambda)$, 记 $\theta = \frac{1}{\lambda}$. 考虑 X 的 r 阶矩

$$\begin{split} E(X^r) &= \int_0^\infty x^r \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \, \mathrm{d}x \\ &= \frac{\lambda^\alpha}{\Gamma(\alpha)} \int_0^\infty x^{r+\alpha-1} e^{-\lambda x} \, \mathrm{d}x \\ &= \frac{\lambda^\alpha}{\Gamma(\alpha)} \frac{1}{\lambda^{r+\alpha}} \int_0^\infty t^{r+\alpha-1} e^{-t} \, \mathrm{d}t \\ &= \theta^r \cdot \frac{\Gamma(r+\alpha)}{\Gamma(\alpha)} \end{split}$$

从而,

$$E(X) = \alpha \theta$$
, $Var(X) = \alpha \theta^2$

例 2.5.2 指数分布

 $\alpha = 1$ 时的伽马分布即为指数分布 $Exp(\lambda)$,即 $\Gamma(1,\lambda) = Exp(\lambda)$.

定义 2.5.9 χ^2 分布

$$\alpha=rac{n}{2}, \lambda=rac{1}{2}$$
 时的伽马分布称为 χ^2 分布,记作 $X\sim\chi^2(n)$,即

$$\chi^2(n) \sim \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$$

其概率密度函数为

$$p(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} e^{-\frac{x}{2}} x^{\frac{n}{2}-1}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

这里的 n 称为 **自由度**,可以是正实数,但一般是正整数.

若 $X \sim \chi^2(n)$,则

$$E(X) = n$$
, $Var(X) = 2n$

2.5.5 贝塔分布

定义 2.5.10 B 函数

设 $a, b \in \mathbb{C}$ 且 Re(a), Re(b) > 0 , 则称函数

$$\mathrm{B}(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} \, \mathrm{d}x$$

为 **B-函数**.

性质 2.5.3 Beta 函数的性质

- $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ B(a,b) = B(b,a)• $B(a+1,b) = \frac{a}{a+b}B(a,b)$

定义 2.5.11 贝塔分布

若随机变量 X 的概率密度函数为

$$p(x) = \begin{cases} \frac{1}{\mathrm{B}(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}, & 0 \leq x \leq 1 \\ 0, & \text{otherwise} \end{cases}$$

设 $X \sim B(\alpha, \beta)$, 则

$$E(X) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^1 x^{\alpha} (1-x)^{\beta-1} \, \mathrm{d}x = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot \frac{\Gamma(\alpha+1)\Gamma(\beta)}{\Gamma(\alpha+\beta+1)} = \frac{\alpha}{\alpha+\beta}$$

又

$$\begin{split} E(X^2) &= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^1 x^{\alpha+1} (1-x)^{\beta-1} \, \mathrm{d}x \\ &= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot \frac{\Gamma(\alpha+2)\Gamma(\beta)}{\Gamma(\alpha+\beta+2)} \\ &= \frac{\alpha(\alpha+1)}{(\alpha+\beta)(\alpha+\beta+1)} \end{split}$$

从而,

$$\mathrm{Var}(X) = E(X^2) - E(X)^2 = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

2.5.6 总结

我们将常见的概率分布和方差做一下总结

分布	PMF / PDF	E(X)	$\mathrm{Var}(X)$
二点分布	$\begin{aligned} p_k &= p^k (1-p)^{1-k} \\ k &= 0, 1 \end{aligned}$	p	p(1-p)
二项分布 $b(n,p)$	$p_k = \binom{n}{k} p^k (1-p)^{n-k}$ $k = 0, 1,, n$	np	np(1-p)
泊松分布 $P(\lambda)$	$p_k = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, 2, \dots$	λ	λ

分布	PMF / PDF	E(X)	$\mathrm{Var}(X)$
超几何分布 $H(n,N,M)$	$p_k = \frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}$ $k = 0, 1, \cdots r, r = \min\{M, n\}$	$rac{nM}{N}$	$\frac{nM(N-M)(N-n)}{N^2(N-1)}$
几何分布 $\operatorname{Ge}(p)$	$\begin{aligned} p_k &= (1-p)^{k-1} p \\ k &= 1, 2, \cdots \end{aligned}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
负二项分布 $\operatorname{Nb}(r,p)$	$\begin{aligned} p_k &= \binom{k-1}{r-1} (1-p)^{k-r} p^r \\ k &= r, r+1, \cdots \end{aligned}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
正态分布 $N(\mu,\sigma^2)$	$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $-\infty < x < \infty$	μ	σ^2
均匀分布 $U(a,b)$	$p(x) = \frac{1}{b-a}, a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指数分布 $\operatorname{Exp}(\lambda)$	$p(x) = \lambda e^{-\lambda x}, x \ge 0$	$rac{1}{\lambda}$	$rac{1}{\lambda^2}$
伽马分布 $\Gamma(\lambda)$	$p(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, x \ge 0$	$lpharac{1}{\lambda}$	$lpharac{1}{\lambda^2}$
χ^2 分布 $\chi^2(n)$	$p(x) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}e^{-\frac{x}{2}}x^{\frac{n}{2}-1}$ $x \ge 0$	n	2n
贝塔分布 $\mathrm{B}(lpha,eta)$	$p(x) = \frac{1}{\mathrm{B}(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$ $0 \le x \le 1$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
对数正态分布 $\operatorname{LN}(\mu,\sigma^2)$	$p(x) = \frac{1}{\sqrt{2\pi}\sigma x} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}$ $x > 0$	$e^{\mu + \frac{1}{2}\sigma^2}$	$\left(e^{\sigma^2}-1\right)\!e^{2\mu+\sigma^2}$
柯西分布 $\mathrm{Cau}(\mu,\lambda)$	$p(x) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + (x - \mu)^2}$ $-\infty < x < \infty$	DNE	DNE

分布	PMF / PDF	E(X)	$\mathrm{Var}(X)$
韦布尔分布 $\mathrm{Wb}(\eta,m)$	$p(x) = F'(x)$ $F(x) = 1 - \exp\left\{-\left(\frac{x}{\eta}\right)^m\right\}$	$\eta\Gamma\Big(1+rac{1}{m}\Big)$	$\eta^2 \left[\Gamma \left(1 + \frac{2}{m} \right) - \Gamma^2 \left(1 + \frac{1}{m} \right) \right]$

2.6 随机变量函数的分布

已知随机变量 X 的分布, 求随机变量函数 Y = g(X) 的分布是概率论中的一个重要问题.

2.6.1 离散随机变量函数的分布

设离散型随机变量 X 的取值为 $x_1,x_2,...$,且对应的概率为 $p_1,p_2,...$ 设 Y=g(X),则 Y 的取值为 $y_i=g(x_i)$,且对应的概率为 p_i . 如果存在 $i\neq j$ 使得 $y_i=y_j$,则将这些 y_i 合并,其对应的概率为这些 p_i 之和.

2.6.2 连续随机变量函数的分布

离散随机变量的函数一定是离散型随机变量,但是连续型随机变量的函数不一定是连续的.

当 Y = g(X) 为离散型随机变量时,可以用离散随机变量函数的分布方法求解.

当 Y = g(X) 为严格单调函数时,可以用以下定理求解.

定理 2.6.1 连续随机变量函数的分布

设连续型随机变量 X 的概率密度函数为 $p_X(x)$, Y=g(X). 若 y=g(x) 严格单调,其反函数 h(y) 有连续导函数,则 Y=g(X) 的密度函数为

$$p_Y(y) = \begin{cases} p_X[h(y)]|h'(y)|, & a < y < b \\ 0, & \text{otherwise} \end{cases}$$

其中, $a = \min\{g(-\infty), g(\infty)\}, b = \max\{g(-\infty), g(\infty)\}.$

定理 2.6.2 正态变量的线性变换

设 $X \sim N(\mu, \sigma^2)$, 若 $a \neq 0$, 则 $Y = aX + b \sim N(a\mu + b, a^2\sigma^2)$.

定义 2.6.1 对数正态分布

若随机变量 X 的对数 $\ln(X)$ 服从参数为 (μ, σ^2) 的正态分布,则称 X 服从参数为 (μ, σ^2) 的**对数正态分布**,记作 $X \sim \text{LN}(\mu, \sigma^2)$. 其概率密度函数为

I. Defin	nitions		32
学以111	松木 穴间		34
定义 1.1.1	样本空间 3	定义 2.5.8 伽马分布 ·	34
定义 1.1.2	样本点 3	定义 $2.5.9$ χ^2 分布 \cdots	35
定义 1.1.3	离散样本空间3	定义 2.5.10 B 函数	36
定义 1.1.4	连续样本空间3	定义 2.5.11 贝塔分布	36
定义 1.1.5	随机事件 3	定义 2.6.1 对数正态分	布39
定义 1.1.6	可测函数 4		
定义 1.1.7	随机向量、随机变量 · · · · · · 4	II. Theorems	
定义 1.1.8	事件的并 4	今班 1 0 1 英通股份会I	CHI (N. / Lance)
定义 1.1.9	事件的交 4	定理 1.2.1 单调收敛定理	•
定义 1.1.10			e Theorem - MCT) · 6
	对立事件 4	定理 1.2.2 Fatou 引理(
	<i>σ</i> -代数 ····· 5	定理 1.2.3 控制收敛定理	
	样本空间的分割5		e Theorem - DCT) · 9
定义 1.2.1	测度空间5	定理 1.4.1 全概率公式	
定义 1.2.2	概率空间5	定理 1.4.2 Bayes 公式 ·	
定义 1.3.1	极限事件11	定理 2.2.1 随机变量函数	
定义 1.3.2	连续性11	定理 2.3.1 Markov 不等	
定义 1.4.1	条件概率11	定理 2.3.2 Chebyshev 7	
定义 1.5.1	两个事件的独立性13	定理 2.3.3 单点分布 …	
定义 1.5.2	多个事件的独立性13	定理 2.4.1 泊松定理 …	
定义 1.5.3	试验的独立性 13	定理 2.4.2 几何分布的	
定义 2.1.1	离散型随机变量15	定理 2.5.1 标准化	
定义 2.1.2	连续型随机变量15	定理 2.5.2 指数分布的	
定义 2.1.3	分布函数15	定理 2.6.1 连续随机变量	
定义 2.1.4	分布列16	定理 2.6.2 正态变量的绝	线性变换39
定义 2.1.5	概率密度函数16		
定义 2.2.1	离散型随机变量的数学期望 · · 17	III. Figures	
定义 2.2.2	连续型随机变量的数学期望 · · 17	Fig. 1.1 Total Probab	ility Formula 19
定义 2.2.3	数学期望17	Fig. 2.1 PDF and CD	
定义 2.3.1	方差18	_	28
定义 2.3.2	标准差18		f quantiles · · · · · · 30
定义 2.4.1	二项分布20	-	le · · · · · · · 31
定义 2.4.2	二点分布20	Fig. 2.4 PDF and CD	
定义 2.4.3	原点矩21	_	32
定义 2.4.4	中心矩 21		F of Exponential
定义 2.4.5	阶乘矩21	_	33
定义 2.4.6	泊松分布22		on along part of the
定义 2.4.7	超几何分布 23		34
定义 2.4.8	几何分布 23	Fig. 2.7 PDF and CD	
定义 2.4.9	负二项分布 · · · · · · 24	-	35
定义 2.5.1	正态分布 28	Fig. 2.8 Contour plot	of B function · · · · 36
定义 2.5.1	标准正态分布28	Fig. 2.9 PDF and CD	
定义 2.5.2	标准化 30	-	37
定义 2.5.4	分位数 30	Fig. 2.10 PDF and CD	F of Log-Normal
定义 2.5.4	均匀分布31		40
/L / 4.U.U	- +: - + - / / 118		