Tecnologia da Informação II

Prof. Evaldo de Oliveira

<u>evaldo.oliveira@gmail.com</u>

sites.google.com/site/evaldooliveira

TI II

□O que é e para que serve um

banco de dados?

Prof. Evaldo de Oliveira

THI

??

□ Opção 1

□ Opção 2

Prof. Evaldo de Oliveira

Conceitos Introdutórios

Introdução

□ Sistemas de Arquivos

- Tipicamente formado por conjuntos de arquivos contendo informações a respeito de uma empresa (os arquivos possuem relacionamento entre si), e por um conjunto de programas de aplicação que são escritos para extrair ou adicionar registros nos arquivos apropriados
- Se forem necessárias informações adicionais, mais arquivos e programas de aplicação são criados

- ORGANIZAÇÕES BÁSICAS DE ARQUIVOS:
 - Estruturas de Dados: define a forma como os dados estão organizados, como se relacionam e como serão manipulados pelos programas. Ex: vetores e matrizes, registros, filas, pilhas, árvores, grafos, etc.
 - Arquivo: coleção de registros lógicos, cada um deles representando um objeto ou entidade. Na prática os arquivos geralmente estão armazenados na memória secundária (fitas e discos) e são usados para armazenar os resultados intermediários de processamento ou armazenar os dados de forma permanente.
 - Registro lógico (registro): seqüência de itens, cada item sendo chamado de campo ou atributo, correspondendo a uma característica do objeto representado. Os registros podem ser de tamanho fixo ou de tamanho variável.
 - □ Campo: item de dados do registro, com um nome e um tipo associados

ORGANIZAÇÕES BÁSICAS DE ARQUIVO

- Bloco: unidade de armazenamento do arquivo em disco, também denominado registro físico. Um registro físico normalmente é composto por vários registros lógicos. Cada bloco armazena um número inteiro de registros.
- Chave: é uma seqüência de um ou mais campos em um arquivo
- Chave primária: é uma chave que apresenta um valor diferente para cada registro do arquivo. É usada para identificar, de forma única, cada registro.
- Chave de acesso: é uma chave usada para identificar o(s) registro(s) desejado(s) em uma operação de acesso ao arquivo.

ESTRUTURAS DE ARQUIVOS

■ Nos arquivos seqüenciais a ordem lógica e física dos registros armazenados é a mesma. Os registros podem estar dispostos seguindo a seqüência determinada por uma chave primária (chamada chave de ordenação), ou podem estar dispostos aleatoriamente.

#	Numero	Nome	Idade	Salario
0	1000	ADEMAR	25	600
1	1050	AFONSO	27	700
2	1075	CARLOS	28	500
3	1100	CESAR	30	1000
4	1150	DARCI	23	1500
5	1180	EBER	22	2000
6	1250	ENIO	27	750
7	1270	FLAVIO	28	600
8	1300	IVAN	30	700
9	1325	MIGUEL	34	1000
10	1340	MARIA	35	1500
11	1360	RAMON	32	2000
12	1400	SANDRA	29	700
13	1450	TATIANA	30	500

Prof. Evaldo de Oliveira

□ Inserção de um registro

- Se o arquivo não está ordenado, o registro pode ser simplesmente inserido após o último registro armazenado.
- Se o arquivo está ordenado, normalmente é adotado o seguinte procedimento:
- □ Dado um arquivo base B, é construído um arquivo de transações T, que contem os registros a serem inseridos, ordenado pela mesma chave que o arquivo B. Os arquivos B e T são então intercalados, gerando o arquivo A, que é a versão atualizada de B.

Arquivo B					
#	Num	Nome	Idade		
0	1000	ADEMAR	25		
1	1050	AFONSO	27		
2	1075	CARLOS	28		
3	1100	CESAR	30		
4	1150	DARCI	23		
5	1180	EBER	22		
6	1250	ENIO	27		
7	1270	FLAVIO	28		
8	1300	IVAN	30		
9	1325	MIGUEL	34		
10	1340	MARIA	35		
11	1360	RAMON	32		
12	1400	SANDRA	29		
13	1450	TATIANA	30		

#	Num	Nome	Idade
0	1070	ANGELA	25
1	1120	CLAUDIA	27
2	1280	IARA	28
3	1310	LUIS	30
4	1420	SONIA	23

#	Num	Nome	Idade
0	1000	ADEMAR	25
1	1050	AFONSO	27
2	1070	ANGELA	25
3	1075	CARLOS	28
4	1100	CESAR	30
5	1120	CLAUDIA	27
6	1150	DARCI	23
7	1180	EBER	22
8	1250	ENIO	27
9	1270	FLAVIO	28
10	1280	IARA	28
11	1300	IVAN	30
12	1310	LUIS	30
13	1325	MIGUEL	34
14	1340	MARIA	35
15	1360	RAMON	32
16	1400	SANDRA	29
17	1420	SONTA	23

Exclusão de um registro

- Normalmente é implementada como a inserção, com a criação de um arquivo de transações que contém os registros a serem excluídos, que é processado posteriormente.
- Pode ainda ser implementada através de um campo adicional no arquivo que indique o estado (status) de cada registro. Na exclusão, o valor deste campo seria alterado para "excluído". Posteriormente, é feita a leitura seqüencial de todos os registros, sendo que os registros que não estiverem marcados como "excluídos" são copiados para um novo arquivo.

Alteração de um registro

- Consiste na modificação do valor de um ou mais atributos de um registro. O registro deve ser localizado, lido e os campos alterados, sendo gravado novamente, na mesma posição.
- A alteração é feita sem problemas, desde que ela não altere o tamanho do registro nem modifique o valor de um campo usado como chave de ordenação

Ambiente Utilizando Arquivos

Ambiente Utilizando BD

Prof. Evaldo de Oliveira

Dados:

- É a descrição de algum fenômeno do mundo real de um fato ou de uma idea
- Representação de uma propriedade ou característica de um objeto real
 - Não tem significado por si só
- Ex.: quantidade de Kwh consumidos em uma residência

- Informação: Conhecimento adquirido pelo uso e interpretação do dado
 - Organização e agregação dos dados
 - Informação interpretação dos dados
 - Ex.: Consumo de energia comparado com a capacidade geradora da usina.

Banco de Dados: É uma coleção de dados armazenados. Pode ser considerado como um modelo da porção do mundo real que é de interesse para determinada aplicação

Sistema de Gerenciamento de Banco de Dados:

Conjunto de software para gerenciar (definir, criar, modificar, usar) um BD e garantir a integridade e segurança dos dados. O SGBD é a interface entre os programas de aplicação e o BD. Em inglês é denominado DataBase Management System (DBMS)

■ Instâncias: é a coleção de informações armazenadas no banco de dados em um instante qualquer (em linguagens de programação seria o equivalente ao valor das variáveis de um programa em determinado instante)

□ Ex.:

nome : Luis

sexo : Masculino

profissão : Engenheiro

Modelo X Esquema

- Modelo: Conjunto de estrutura, operadores e restrições de integridade usadas para representar o mundo real de forma mais ordenada
- Esquema: Representação da parte da realidade na qual estamos interessados através do uso do modelo de dados

■ Esquema: é a concepção global do BD. Sua descrição no BD é denominada de metadados

> Esquema externo para o departamento pessoal

Pessoas:

NOME, ENDEREÇO, SEXO, PROFISSÃO

Cargos:

PROFISSÃO, SALÁRIO

Componentes de um SGBD

Linguagem de consulta (QUERY)

 Permite que o usuário final, com poucos conhecimentos técnicos, possa obter de forma simples, informações do BD

Utilitários administrativos

 Programas auxiliares para carregar, reorganizar, adicionar, modificar a descrição do BD, obter cópias de reserva e recuperar a integridade física do BD

□ 1/8 - Independência dos dados

- O SGBD deve oferecer isolamento das aplicações em relação aos dados. Esta característica permite modificar o modelo de dados do BD sem necessidade de reescrever ou recompilar todos os programas que estão prontos.
- As definições dos dados e os relacionamentos entre os dados são separados dos códigos os programas

2/8 - Facilidade uso/desempenho

- Embora o SGBD trabalhe com estruturas de dados complexas, os arquivos devem ser projetados para atender a diferentes necessidades, permitindo desenvolver aplicações melhores, mais seguras e mais rapidamente.
- Deve possui comandos poderosos em sua linguagem de acesso

3/8 - Integridade dos dados

 O SGBD deve garantir a integridade dos dados, através da implementação de restrições adequadas. Isto significa que os dados devem ser precisos e válidos

□ 4/8 - Redundância dos dados

 O SGBD deve manter a redundância de dados sob controle, ou seja, ainda que existam diversas representações do mesmo dado, do ponto de vista do usuário é como se existisse uma única representação

5/8 - Segurança e privacidade dos dados

 O SGBD deve assegurar que estes só poderão ser acessados ou modificados por usuários autorizados

6/8 - Rápida recuperação após falha

Os dados são de importância vital e não podem ser perdidos. Assim, o SGBD deve implementar sistemas de tolerância a falhas, tais como estrutura automática de recover e uso do conceito de transação

- 7/8 Uso compartilhado
 - O BD pode ser acessado concorrentemente por múltiplos usuários
- 8/8 Controle do espaço de armazenamento
 - O SGBD deve manter controle das áreas de disco ocupadas, evitando a ocorrência de falhas por falta de espaço de armazenamento

Abstração de Dados

 O SGBD deve esconder certos detalhes de como os dados são armazenados ou mantidos.

 Dados precisam ser recuperados eficientemente. A preocupação com a eficiência leva a concepção de estruturas de dados complexas para representação dos dados no BD

Nível Físico:

É o nível mais baixo de abstração, no qual se descreve como os dados são armazenados. Estruturas complexas, de baixo nível, são descritas em detalhe

Nível Conceitual:

- É o nível que descreve quais os dados são realmente armazenados no BD e quais os relacionamentos existentes entre eles
- Este nível descreve o BD como um conjunto de estruturas relativamente simples. Muito embora a implementação de estruturas simples no nível conceitual possa envolver estruturas complexas no nível físico, o usuário do nível conceitual não precisa saber disto.
- Geralmente é usado pelos administradores de banco de dados, que devem decidir qual informação deve ser mantida no banco de dados

Nível Visão:

- Este é o nível mais alto de abstração, no qual se expõe apenas parte do BD, expondo apenas parte do banco de dados que seja de interesse do usuário final.
- Na maioria das vezes os usuários não estão preocupados com todas as informações do BD e sim com apenas parte delas (Visões dos Usuários)

Modelos de Dados

- É uma coleção de ferramentas conceituais para descrição dos dados, relacionamento, semântica e restrições de dados
- Métodos para se estruturar e organizar os dados
- Componentes básicos
 - Modelo conceitual: entidades, relacionamentos, atributos
 - Modelo lógico: relação, tuplas, atributos e relacionamentos
 - Modelo físico: arquivos, registros, campos e ponteiros

Modelo Conceitual

- Utilizado para descrever o mini-mundo da aplicação
- É concebido em um nível de abstração alto, de fácil entendimento por parte do usuário
- Independe dos aspectos implementacionais podendo ser aplicado a diferentes tipos de SGBD
- Geralmente possui mecanismos de abstração que facilitam a modelagem
- É o ponto de partida para o projeto da base de dados
- Mais estável que o esquema lógico
 - Ex: Entidade-Relacionamento / Modelos Orientado a Objetos

Modelo Lógico

- É utilizado para descrever a base de dados conforme é vista pelos usuários do SGBD
- Utilizado para descrever a estrutura de um banco de dados em um nível dependente do SGBD a ser escolhido para a implementação, porém não apresenta detalhes de implementação
- Ex: Relacional / Rede / Hierárquico / Orientado a Objetos

Modelo Físico (Interno)

- Utilizado para descrever as estruturas físicas de armazenamento dos dados
- Não são muito utilizados pois os SGBD´s já possuem o interfaceamento do modelo lógico para o físico
- Geralmente só é alterada para ajuste de desempenho
- A tendência de produtos modernos é ocultar cada vez mais os detalhes físicos de implementação
- Ex: Procedimentos para definição da estrutura de índices

Independência de Dados

- Capacidade de modificar a estrutura do banco de dados em um nível de abstração sem afetar o nível mais acima
- Tipos de independência de dados
 - Física: é a capacidade de se modificar o esquema físico sem precisar de reescrever os programas de aplicação (ex. para melhorar a performance)
 - Lógica: é a capacidade de se modificar o esquema conceitual sem a necessidade de reescrever os programas de aplicação (quando muda a estrutura lógica do BD)

Usuários de Banco de Dados

Programador de aplicação

- Escreve programas que utilizam a base de dados (usando C, Cobol, linguagens de aplicação do SGBD). Os comandos LMD são inseridos no programa a cada referência a base de dados
- Busca-se cada vez mais maior integração entre os dois tipos de linguagens (aplicação e LMD)

Usuários finais

 Acessam os dados através de linguagem de consulta ou através das aplicações desenvolvidas

Usuários especializados

 Escrevem aplicações consideradas não convencionais como CASE, Automação de Escritório, Sistema especialistas, CAD, etc.

Arquiteturas para o uso do SGBD

Cliente/Servidor

- Multi-usuário
- Servidor dedicado ao Banco de Dados, executando o SGBD
- As estações clientes executam apenas as aplicações
- Tráfego na rede é menor
- Arquitetura atualmente em uso

Prof. Evaldo de Oliveira

Construir o Modelo Conceitual

- Modelo de alto nível, independente do SGBD
- Etapa de levantamento de dados
- Determinação dos relacionamentos dos dados
- Uso de uma técnica de modelagem de dados
- Abstração do ambiente de hardware/software

Construir o Modelo Lógico

- Modelo implementável, dependente do tipo de SGBD a ser usado
- Considera as necessidades de processamento
- Considera as características e restrições do SGBD
- Etapa de normalização dos dados

Construir o Modelo Físico

- Modelo implementável, com métodos de acesso e estrutura física
- Considera necessidades de desempenho
- Considera as características e restrições do SGBD
- Dependente das características de hardware/software

Prof. Evaldo de Oliveira

Modelagem de Dados

Exercício

- Dividir a turma em 8 grupos de 2 pessoas:
 - Mini Mundos:
 - Locadora de veículos
 - Salão de Beleza
 - Cartório
 - Pague Rápido
 - Distribuidora de Bebidas
 - Administradora de Condomínio
 - Administradora Imobiliária
 - Cursos Profissionalizantes
 - Administração de Escritório Contábil

Modelagem de Dados

Abstração

Processo mental através do qual selecionamos determinadas propriedades ou características dos objetos e excluímos outras, consideradas menos relevantes para o problema sendo analisado

Modelo

É uma abstração, uma representação simplificada, de uma parcela do mundo real, composta por objetos reais

Modelagem de Dados

Modelagem

Atividade através da qual se cria um modelo

Modelo de dados

Um modelo de dados é uma descrição das informações que devem ser armazenadas em um banco de dados, ou seja, é a descrição formal da estrutura de BD (descrição dos dados, dos relacionamentos entre os dados, da semântica e das restrições impostas aos dados)

Requisitos para Modelagem

- Entender a realidade em questão, identificando os objetos que compõe a parte da realidade que vai ser modelada
- Representar formalmente a realidade analisada construindo um modelo de dados
- Estruturar o modelo obtido e adequá-lo ao SGBD a ser usado, transformando o modelo conceitual em modelo lógico

Modelos Conceituais

São usados para descrição de dados no nível conceitual. Proporcionam grande capacidade de estruturação e permitem a especificação de restrições de dados de forma explícita.

Exemplos:

- Modelo Entidade-Relacionamento (M.E.R.)
- Modelos Orientados para Objetos (OO)

Modelos Lógicos

São usados na descrição dos dados no nível lógico. Em contraste com modelos conceituais, esses modelos são usados para especificar tanto a estrutura lógica global do BD como uma descrição em alto nível da implementação.

Tipos:

- Modelo Relacional
- Modelo de Rede
- Modelo Hierárquico

- Um BD relacional possui apenas um tipo de construção, a tabela. Uma tabela é composta por linhas (tuplas) e colunas (atributos). Os relacionamentos entre os dados também são representados ou por tabelas, ou através da reprodução dos valores de atributos
- Idéias básicas Edward F. Codd, laboratório pesquisas da IBM em 1970

Peça

CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
PI	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embarq

Linear				
CodPeça	CodFornec	QtdeEmbarc		
P1	F1	300		
P1	F2	400		
P1	F3	200		
P2	F1	300		
P2	F4	350		

Fornec

CodFornec	NomeFornec	StatusFornec	CidadeFornec
FI	Silva	5	SãoPaulo
F2	Souza	10	Rio
F3	Álvares	5	SãoPaulo
F4	Tavares	8	Río

NOME	RUA	CIDADE	Nº CONTA
José	Rua A	JF	40
Juca	Rua B	RJ	30
Juca	Rua B	RJ	38
Carlos	Rua C	SP	45
Carlos	Rua C	SP	38

Nº CONTA	SALDO
40	1.000,00
30	2.000,00
38	2.500,00
45	3500,00

Modelos de Dados Físico

 Usados para descrever os dados em seu nível mais baixo.

 Capturam os aspectos de implementação do SGBD

Modelo Entidade -Relacionamento (MER)

Prof. Marcos Miguel

Modelo Entidade-Relacionamento (MER)

- Introduzido por Peter Chen em 1976
- Modelo Conceitual e portanto independente de aspectos de implementação e conseqüentemente do tipo de SGBD escolhido
- O modelo é representado graficamente por um Diagrama de Entidade-Relacionamento (DER)
- Componentes básicos
 - Entidades
 - Atributos
 - Relacionamentos
 - Generalização / Especialização
 - Agregação

Entidades

ENTIDADE

- São objetos, conceitos ou coisas no universo de discurso, que são representadas no Banco de Dados
- Ex.: O EMPREGADO chamado "Pedro Costa"
 O DEPARTAMENTO "Suporte de Sistemas"

Tipos:

- Físicos (Pessoas, Empregados, Carros, Notas Fiscais, ...)
- Conceituais (Empregos, Tipos de Carros, ...)
- Fatos (Históricos, Reservas, Viagens, ...)

Entidades

Nomenclatura e Representação (DER)

- **Entidade-Tipo:** Entidades que possuem os mesmos atributos básicos são agrupadas em uma classe (ou conjunto) de entidades correspondente ao mesmo tipo de entidade
- Ex.: o tipo EMPREGADO
 - o tipo DEPARTAMENTO

EMPREGADO

□Instância de Entidade

Prof. Evaldo de Oliveira

ATRIBUTO

- São propriedades usadas para descrever uma entidade
- São as informações que desejamos guardar à respeito das instâncias de Entidades
 - Ex.: a entidade EMPREGADO pode ser descrita pelos atributos NOME, REGISTRO, SEXO, ENDEREÇO
- Cada instância de uma entidade tem um valor para cada um de seus atributos

Nomenclatura e Representação (DER)

Nomes dos Atributos

Valores dos Atributos

```
(Maria, F, 10000) (Márcia, F, 15000)
O
(João, M, 12000)
```

Prof. Evaldo de Oliveira

Domínio de Atributo

- Todo atributo é baseado em um único domínio
- Pode existir mais de 1 atributo baseado no mesmo domínio
- Podem existir domínios que aceitem valores nulos (desconhecidos ou não aplicável)

```
nroApto -> inteiro ou nulo (não aplicável se mora em casa) salário -> inteiro > 5000 ou nulo
```

Exemplos:

```
Sexo = ("M", "F")
Nome = Char (30)
Salário = Inteiro tal que > 5000
```

Tipos de Atributos

- Opcional/Mandatório
 - Opcional: o atributo pode possuir um valor nulo (vazio). Ex: número de telefone
 - Mandatório: o atributo deve possuir um valor válido, não nulo. Ex: nome do cliente
- Atributo Simples: cada instância da entidade tem um valor atômico (indivisível) para o atributo.
 - Ex.: Idade
- Atributo Composto: o atributo é composto por vários componentes
 - Ex.: ENDEREÇO (rua, número, apto, cidade, estado, país)
 NOME(sobrenome, nome)

- Atributo Multivalorado: cada instância da entidade tem múltiplos valores (um conjunto de valores) para o atributo
 - Ex.: TELEFONES do EMPREGADO / TAMANHOS da PEÇA
- Atributo Derivado: atributo que pode ser obtido através de operações sobre outros atributos da própria entidade ou de outra entidade
 - Ex.: DEPENDENTES de EMPREGADO pode ser obtido através de consulta à entidade DEPENDENTES
- Atributo Determinante: atributo para qual cada instância da entidade tem um valor único
 - Ex.: REGISTRO do EMPREGADO

□ Tipos de Atributos

Prof. Evaldo de Oliveira

Observações

- Toda Entidade deve ter pelo menos 1 atributo determinante (sublinhar todos)
- Pode ser artificialmente criado ou concatenado
- Devo representar todo atributo derivado que posso imaginar?

RELACIONAMENTO

- Relaciona duas ou mais entidades e tem um significado específico
 - Ex.: O EMPREGADO "João da Silva" GERENCIA o DEPARTAMENTO "Suporte de Sistemas"
- Relacionamentos semelhantes são agrupados em um TIPO DE RELACIONAMENTO
 - Ex.: TRABALHA-EM entre EMPREGADO e PROJETO GERENCIA entre EMPREGADO e DEPARTAMENTO

Exemplos:

- Um cliente faz pedidos de compra de um ou mais livros, para um ou mais fornecedores
- Um livro é especificado em um ou mais pedidos de compra, de um ou mais clientes, para um ou mais fornecedores
- Um fornecedor recebe um ou mais pedidos de compra, de um ou mais livros, de um ou mais clientes

Exemplo


```
dom (deptrab) = dom (nomedep)
dom (emp) = dom (nome)
```

- Quando o domínio de um atributo de uma entidade-tipo a é o mesmo de um atributo determinante de uma entidade-tipo B, então:
 - Deve existir um atributo na entidade-tipo B cujo domínio é o mesmo que um atributo determinante da entidade-tipo A
 - Removemos estes atributos e substituímos por um relacionamento

Prof. Evaldo de Oliveira

Nomenclatura e Representação (DER)

Prof. Evaldo de Oliveira

 Mais de um relacionamento pode existir entre os mesmos tipos de entidades

 Cada um contém um conjunto diferente de instâncias

- □ A) UM PARA UM (1:1)
 - Uma entidade em "A" está associada com no máximo uma entidade em "B". Uma entidade em "B" está associada com no máximo uma entidade em "A"

Prof. Evaldo de Oliveira

CARDINALIDADE (1:1)

Prof. Evaldo de Oliveira

- B) UM PARA MUITOS (1:N)
 - Uma entidade em "A" está associada a qualquer número de entidades em "B"
 - Uma entidade em "B", todavia, pode estar associada a no máximo uma entidade em "A"

CARDINALIDADE (1:N)

Prof. Evaldo de Oliveira

- MUITOS PARA MUITOS (N:N)
 - Uma entidade em "A" está associada a qualquer número de entidades em "B". Uma entidade em "B" está associada a qualquer número de entidades em "A"

Prof. Evaldo de Oliveira

CARDINALIDADE (N:N)

A concatenação destas colunas não repete

- Grau: especifica o número de instâncias de cada um dos tipos de entidades que podem estar associadas a cada instância das demais entidades naquele relacionamento. Ex.: (_,N)
- Participação de uma entidade em um relacionamento: especifica se a existência de uma instância do relacionamento é obrigatória para cada instância daquela entidade. Ex.: (0,_)

CARDINALIDADE:

 Nenhum ou vários empregados (0,N) trabalham em um e somente um (1,1) departamento

 Cardinalidade e Participação podem também ser vistas como o número mínimo e máximo de associações de cada entidade participante do relacionamento

Um relacionamento pode ter atributos

 Cada instância do relacionamento terá um valor para aquele atributo

■ Natural em N:N

(Maria, Vendas, 30) (Maria, Técnico, 10)

 Não existe atributo determinante de relacionamento

Modelagem com Atributo Multivalorado

(Maria, Proj1, {(04/09, 30), (05/90, 20)})

Relacionamentos de grau mais alto

Auto-Relacionamentos

 Um relacionamento pode associar entidades do mesmo tipo, onde cada instância da entidade tem um papel distinto. Também chamado de relacionamento recursivo ou auto-relacionamento

 Relacionamento Supervisão: cada instância do relacionamento relaciona dois empregados: um empregado tem o papel de supervisor, o outro tem o papel de subordinado

Processo de Modelagem

- Classificar atributos e entidades
 - Atributo é uma propriedade e assume valores. Tipo de entidade é uma classe de objetos
- Identificar generalizações
 - Se forem identificados subconjuntos de entidades com propriedades específicas, isto é, se existem tipos com propriedades comuns e algumas diferenças

Processo de Modelagem

- Definir relacionamentos
 - definindo grau, cardinalidade e participação
- Integrar múltiplas visões de entidades, atributos e relacionamentos
 - Quando o projeto é muito grande e muitas pessoas estão envolvidas na análise de requisitos, deve-se utilizar visões que posteriormente devem ser consolidadas em uma visão

Exemplo - Modelo Conceitual

EXEMPLO

- EMPRESA DE PROJETOS (Requisitos)
 - TODO EMPREGADO PERTENCE A UM DEPARTAMENTO
 - TODO DEPARTAMENTO POSSUI UM GERENTE
 - UM ENGENHEIRO PODE PARTICIPAR DE MAIS DE UM PROJETO
 - TODO PROJETO POSSUI UM LIDER
 - TODO PROJETO É COORDENADO POR UM DEPARTAMENTO
 - UM EMPREGADO PODE TER UM OU MAIS DEPENDENTES

Exemplo - Modelo Conceitual

Prof. Evaldo de Oliveira

Prof. Marcos Miguel

- Introduzido por Codd (1970) sendo o mais simples, mais formal (correspondência com relação matemática) e o que tem estruturas de dados mais uniformes
- Conceitos do modelo relacional:
 - Representa os dados como uma coleção de relações (informalmente, cada relação lembra uma tabela ou, algumas vezes, um arquivo)
 - LINHAS REGISTROS TUPLAS
 COLUNAS CAMPOS ATRIBUTOS

 Cada linha da relação é uma tupla, ou seja, um conjunto de valores relacionados. Estes valores podem ser interpretados como um fato que descreve uma instância de uma entidade ou relacionamento

 No desenho acima, a relação é chamada ESTUDANTE porque cada linha representa um instância da entidade ESTUDANTE

- É um modelo que opera com os dados organizados como um conjunto de RELAÇÕES
- O modelo de dados relacional representa o BD como uma coleção de tabelas, cada uma das quais associada a um nome único

REPRESENTAÇÃO TABULAR

- Toda relação pode ser vista como uma TABELA, onde cada linha é uma TUPLA e em cada coluna estão valores de um mesmo domínio
- Uma tabela é um formato de apresentação de dados mais entendido universalmente

. Relação = tabela

. Tupla = linha

. Atributo = coluna

	COLUNAS	
LINHAS		

Exemplo:

Fornecimento

FORNECEDOR	PEÇA	PROJETO	QUANTIDADE
1	2	5	18
2	3	7	25
4	1	1	4

- Algumas propriedades das relações
 - Cada tabela tem um nome único através do qual é referenciada
 - Cada tabela contém um número fixo de colunas
 - Cada linha da tabela representa uma tupla ou registro da relação
 - Todas as linhas são distintas uma das outras (não existem linhas iguais)
 - A ordem das linhas da tabela é irrelevante
 - Cada coluna tem um nome único
 - A ordem das colunas é irrelevante
 - Cada coluna representa um atributo mono-valorado

- Os nomes das colunas (atributos): nome, endereço, etc., especificam como interpretar os valores dos dados em cada linha, baseando-se na coluna em que o dado está
- Um domínio D de um atributo é um conjunto de valores atômicos (especificam que cada valor em um domínio é indivisível)

- Um esquema de uma relação R, denotado por R (A1, A2,..., AN), é um conjunto de atributos R = {A1, A2, ..., AN}. Cada atributo Ai é o nome de algum domínio D no esquema da relação R. D é denotado por dom (Ai). Um esquema de relação é usado para descrever a relação.
 - R é chamado nome da relação. O grau da relação é o número de atributos do esquema da relação

- Associado a cada domínio, temos um nome (que em geral é o nome de um atributo), uma definição lógica e também um tipo de dado ou formato para o domínio. O tipo de dado para número de telefones pode ser declarado como um conjunto de caracteres na forma (ddd) dddd-dddd, onde cada d é um dígito decimal
- Um domínio é portanto formado por um nome, uma definição lógica e um formato. Outras informações podem ser dadas a respeito de um domínio como, por exemplo, unidades de medida

FORNECEDOR

#FORN	NOME_FORN	CÓDIGO	CIDADE
F1	Cohen S.A.	2	RJ
F2	Albert & Cia	1	SP

FORNECEDOR (#FORN, NOME_FORN, CÓDIGO, CIDADE)

FORNECIMENTO

#FORN	#PEÇA	QTD
F1	P1	300
F1	P2	400
F2	P2	1000

PEÇA

#PEÇA	NOME_PEÇA	COR	TIPO
P1	SAPATO	PRETO	М
P2	BOLSA	VERDE	F

PEÇA (#PEÇA, NOME_PEÇA, COR, TIPO)

FORNECIMENTO (#FORN, #PEÇA, QTD)

102

Características

- Cada relação tem um número fixo de atributos, todos com nomes distintos
- Os atributos em uma tupla são atômicos (grupos de repetição não são permitidos)
- Cada tupla é única (duplicatas não são permitidas)
- As tuplas não tem uma ordem específica na relação
- O mesmo domínio pode ser usado para diferentes atributos, tornando-se fonte de valores para diferentes colunas na mesma ou em diferentes tabelas
- Instância de uma relação = tabela com linhas e colunas
- Conjunto destas instâncias = extensão de uma tabela
 - EX: PEÇA (#PEÇA, NOME_PEÇA, COR, TIPO)
- Conjunto destes esquemas = esquema do BD

Atributos Chave

103

Chave

Conjunto de atributos de uma relação R com a propriedade de que nenhum par de tuplas na instância r de R tem a mesma combinação de valores para aqueles atributos

Chave Candidata

- É comum uma relação ter mais de uma chave. Neste caso, cada uma das chaves é chamada chave candidata (ou alternativa)
- Todo atributo (ou conjunto de atributos) para o qual não pode haver repetição de valores na tabela. Identifica, de maneira inequívoca, uma linha da tabela
- Toda relação tem pelo menos uma chave candidata: a concatenação de todos os atributos

<u>NUM-FUNC</u>	Nome-Func	Num-CPF-Func	< CHAVE
			CANDIDATA

Chave Primária

- A chave candidata cujos valores são usados para identificar tuplas em uma relação é chamada chave primária (Primary Key)
- É a chave candidata escolhida para identificar univocamente uma linha de uma relação
- A chave primária de uma tabela T1, corresponde a uma ou mais colunas de T1 de tal forma que identifique univocamente as ocorrências (linhas) de T1, ou seja, não há 2 ou mais linhas de T1 que tenham o mesmo valor de chave primária

Chaves Secundária, Composta e Cega

- CHAVE SECUNDÁRIA (SECUNDARY KEY)
 - É a chave candidata que não foi escolhida como primária
- CHAVE COMPOSTA
 - É a chave formada por dois ou mais atributos concatenados
- CHAVE CEGA (BLIND KEY)
 - Chave primária arbitrada que incorpora atributos não representativos para o negócio que estiver sendo modelado. Esse(s) atributo(s) são criados para identificar cada linha de uma relação

Num-Func-Depen	Seq-Depen	Nome-Depen

Chave Estrangeira

- Se um atributo (ou atributos) chave não-primário em uma relação é chave primária em outra relação, então este atributo na primeira relação é chamado de chave estrangeira (Foreign Key)
- É chave primária de outra tabela, colocada como atributo para mostrar o relacionamento entre tabelas
- A chave estrangeira de uma tabela T2, corresponde a uma ou mais colunas de T2 de tal forma que, para cada valor não nulo da chave estrangeira de T2, há um valor igual a uma chave primária da tabela T1

<u>NUM-FUNC</u>	Nome-Func	Num-CPF-Func	Cod-Depto-Func
			CHAVE ESTRANGEIRA

Chaves Primária e Estrangeira

FUNC

NUMFUNC	NOME	SALÁRIO
100	JOÃO	1000
200	JOSÉ	500
	•	

Onde NUMFUNC é chave primária, pois permite identificar univocamente todos os funcionários.

Restrições de Integridade

109

- São regras gerais que se aplicam a qualquer banco de dados baseado no modelo relacional
 - Integridade de Chave: Uma relação deve ter pelo menos uma chave
 - Integridade de Entidade: Nenhum atributo participante da chave primária de uma relação pode aceitar valor nulo
 - Integridade Referencial: A chave estrangeira deve ter correspondência com a chave primária em outra tabela ou ser nula
 - Integridade Semântica ou Regras de Negócio: São regras ditadas pelo negócio e não tratadas na modelagem.
 - Ex.: o valor mínimo de depósito para abertura de contas é de R\$ 500,00
 - Respeitar as cardinalidades mínimas e máximas

- Toda entidade vira uma tabela
- Todo relacionamento com atributo vira uma tabela
- Todo relacionamento N:N vira uma tabela
- Simbologia

Mapeamento 1:1

- As duas relações possuem a mesma chave primária
- Pode-se unir as duas relações

Mapeamento 1:1

- As duas relações possuem chaves primárias diferentes
 - Pelo menos uma das entidades possui participação total no relacionamento

Prof. Evaldo de Oliveira

Mapeamento 1:1

 Ambas as entidades possuem participação parcial no relacionamento

Mapeamento 1:N

 A entidade do lado 1 possui participação total no relacionamento

Mapeamento 1:N

 A entidade do lado 1 possui participação parcial no relacionamento

Prof. Evaldo de Oliveira

Mapeamento N:N

- Um relacionamento N:N pode ser resolvido em dois relacionamentos 1:N
- Uma relação de interseção deve ser implementada

Prof. Evaldo de Oliveira

Mapeamento N:N

Mapeamento Agregação

Prof. Evaldo de Oliveira

Mapeamento Auto-Relacionamento

Mapeamento de Hierarquias

Mapeamento de Hierarquias

a) Mapear como uma única relação

b) Mapear nas subclasses das relações

c) Mapear como relações distintas

