Advanced numerical engineering

& Gaussian Process

Y. Richet (yann.richet@irsn.fr)

credits: N. Durrande, R. Le Riche, V. Picheny, N. Garland

2018

- - -

- · General metamodel engineering approach
- · Optimization basics & engineering context
- · Inversion basics & engineering context
- · Improved numerical engineering algorithms & models

Overview

What was/is engineering?

· Before 70's Analytical approach to *roughly* design nuclear plants, rockets, cars, ...

The Unreasonable Effectiveness of Mathematics, E. Wigner

· Since 70-80's Experimental/numerical engineering to simulate (vs. solve) fine multiphysics, unstable systems, ...

"I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment.

One is quantum electrodynamics, and the other is the turbulent motion of fluids.

And about the former I am rather optimistic.", H. Lamb

Engineering: industry & standards

Engineering: industry vs. standards

Industrial products:

- wide product target identification
- · optimization of products profitability
- optimization of investments

Regulatory control:

- · define industrial-field standards
 - end-user safety
 - ecological & resources parcimony
 - (fair market)
- check products conformity
- evolve standards to best knowledge

Optimization (reminder)

$$f^* = \min_{x \in S \subset \mathbb{R}^d} f(x)$$
$$x^* = \operatorname{argmin}_{x \in S \subset \mathbb{R}^d} f(x)$$

- $\cdot \, \, S$ is the input domain for x
- · d is the dimension of x
- f is the cost function (ex. stress, risk, power, temperature, ...)

Optimization

Optimization - basics

Gradient / Newton methods

Optimization - basics

Evolutionnary algorithms (CMA-ES, PSO, ...)

10/82

Optimization - basics vs. engineering

Optimization in **engineering** context raises many issues:

- one f evaluation is expensive (CPU/time/user)
- · dimension of problem input d may be large
- time to result is constrained
- added-value from optimization is initially unknown

But **basic** methods are not suitable:

- · Gradient / Newton methods
 - gradients have to be computed (finite differences?)
 - *local* optimization, while we need *global*
 - handle noise of f evaluation?
- Evolutionnary algorithms

Optimization - basics vs. engineering

Optimization in **engineering** context raises many issues:

- one f evaluation is expensive (CPU/time/user)
- · dimension of problem input d may be large
- time to result is constrained
- added-value from optimization is initially unknown

But **basic** methods are not suitable

So, **true** practice is often very rough:

- change one parameter at a time (to avoid mistakes)
- $\cdot f$ evaluations performed should be enough different
- startup with some assumptions on the solution
 - intrinsing physics

Optimization - engineering

One-at-a-time optimization

Optimization - engineering++

Bayesian optimization (EGO,...)

14/82

Inversion

$$\{x^*\} = arg_{x \in S \subset \mathbb{R}^d} \{f(x) = T\}$$

 $\{x^*\} = arg_{x \in S \subset \mathbb{R}^d} \{f(x) < T\}$

- S is the input domain for x
- · d is the dimension of x
- \cdot f is the cost function (ex. stress, risk, power, temperature, ...)

Inversion

Numerical engineering algorithms...

- · uncertainties propagation:
 - "What spreading of output when inputs follow given random laws?"
 - random sampling (~ Monte Carlo), dedicated models (polynomial chaos)
- sensitivity analysis
 - "What share of output spreading is due to random inputs?"
 - relative indices: V[S[Y|X]]/... (Sobol, HSIC, ...), random sampling, dedicated models (Fourier, polynomial chaos)
- parameters screening
 - "What output behaviour for each input?"
 - screening designs (sparse), OaT designs (Morris)
- · optimization
 - "What worst/best value possible for output?"
 - bayesian optimization (EGO)

Metamodel based engineering

f

19/82

To limit number of f evaluations:

• create a $model\ of\ f$ based on few evaluations x=X

20/82

To limit number of f evaluations:

· create a $model \ of \ f$ based on few evaluations x = X

But it is risky to take decision only based on a single model ...

... However, we would expect the minimum to be not so far from model's one.

To limit number of f evaluations:

· create a *model of f* based on few evaluations x = X

But it is risky to take decision only based on a model ...

=> Diversifiy the model

... However, we would expect the minimum to be not so far from model's one.

=> Take model minimum just as a clue

To limit number of f evaluations:

· create a *model of f* based on few evaluations x = X

But it is risky to take decision only based on a model ...

=> Diversifiy the model: [EXPLORE]

... However, we would expect the minimum to be not so far from model's one.

=> Take model minimum just as a clue: [EXPLOIT]

To limit number of f evaluations:

· create many $models\ of\ f$ based on few evaluations x=X

Conditional Gaussian Process

- · Suitable to "interpolate" few evaluations
- · Suitable to sample in a model family

•

Conditional Gaussian Process

- · Suitable to "interpolate" few evaluations
- · Suitable to sample in a model family
- · Give an **explicit** (Gaussian) density marginal on x

Conditional Gaussian Process

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

 $\cdot \ \, C$ is the covariance kernel

$$C(.) = C(X,.), c(.) = C(x,.)$$

- · define a suitable criterion for engineering target
- find its maximum over X
- \cdot sample f at this new point

Model pointwise mining

Optimization

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

• C is the covariance kernel C(.) = C(X,.), c(.) = C(x,.)

To trade-off between exploration/exploitation we will consider:

- · distribution of M(x): [EXPLORE]
- set of x where $M(x) < min\{f(X)\}$: [EXPLOIT]

Efficient Global Optimization

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

• C is the covariance kernel C(.) = C(X,.), c(.) = C(x,.)

Let's define the *Probability of Improvement*:

$$PI(x) = P[M(x) < min\{f(X)\}]$$

which is analytical thanks to M properties...

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

• C is the covariance kernel C(.) = C(X,.), c(.) = C(x,.)

$$u(x) = \frac{\min\{f(X)\} - m(x)}{s(x)}$$

$$PI(x) = p_{\mathcal{N}}(u(x))$$

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

• C is the covariance kernel C(.) = C(X,.), c(.) = C(x,.)

$$PI(x) = P[M(x) < min\{f(X)\}]$$

But, x for highest PI is often

close to best $X \dots$

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

• C is the covariance kernel C(.) = C(X,.), c(.) = C(x,.)

Let's define the *Expected Improvement*:

$$EI(x) = E[(min\{f(X)\} - M(x))^{+}]$$

which is (also) analytical thanks to M properties...

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

• C is the covariance kernel C(.) = C(X,.), c(.) = C(x,.)

$$u(x) = \frac{\min\{f(X)\} - m(x)}{s(x)}$$

$$EI(x) = s(x) \left(u(x)p_{\mathcal{N}}(u(x)) + d_{\mathcal{N}}(u(x)) \right)$$

"Efficient Global Optimization of Expensive Black-Box Functions"- Jones, Schonlau, Welch, (Journal of Global Optimization, December 1998)

EGO:

Maximize EI(x) (*), compute f there, add to X. Repeat until ...

- + good trade-off between exploration and exploitation
- + requires few evaluations of f
- often lead to add close points to each others ...
 Which is not very comfortable for kriging numerical stability
- · "one step lookahead" (myopic) strategy
- \cdot rely on model suitability to f

40/82

Support for parallel evaluations of f

- · Obviously major feature of optimization:
 - make profit of HPC investment
 - even multi-CPU standalone computers
 - non-parallel numerical solvers become relevant (again)

EGO++:

- · GP-consistency q EI criterion (quite hard)
- · Batch-sequential heuristic "Constant Liar":
 - 1. instead of evaluating $f(x^*)$, assume $f(x^*) = min\{f(X)\}$
 - 2. update (including $(x^*, min\{f(X)\})$ in X) and optimize EI
 - 3. . . .

Inversion

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

 \cdot C is the covariance kernel

$$C(.) = C(X,.), c(.) = C(x,.)$$

$$\{x^*\} = arg_{x \in S \subset \mathbb{R}^d} \{f(x) < T\}$$

- what [approx] trend(x) will be useful?
- · draw s(x), m(x), T m(x), ...

Build your own inversion criterion ...

Build your own inversion criterion ...

49/82

Efficient Global Inversion - Bichon's

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

• C is the covariance kernel C(.) = C(X,.), c(.) = C(x,.)

Let's define the *Expected Excursion*:

$$EE(x) = E[(s_n(x) - |T - M(x)|)^+]$$

which is (also) analytical thanks to M properties...

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

• C is the covariance kernel

$$C(.) = C(X,.), c(.) = C(X,.)$$

$$v(x) = \frac{T - m(x)}{s(x)}$$

$$EE(x) = s(x) \left(p_{\mathcal{N}}(v(x) + 1) - p_{\mathcal{N}}(v(x) - 1) \right)$$

"Sequential design of computer experiments for the estimation of a probability of failure" - Bect, Ginsbourger, Li, Picheny, Vazquez, (Statistics and Computing 2012)

EGI:

Maximize EE(x) (*), compute f there, add to X. Repeat until ...

- + trade-off between exploration and exploitation
- + requires few evaluations of f
- often lead to add close points to each others ...
 Which is not very comfortable for kriging numerical stability
- · "one step lookahead" (myopic) strategy
- \cdot rely on model suitability to f

- · define a suitable criterion for engineering target
- compute its integral *conditionally* to any x added
- find the minimizer of x
- \cdot sample f at this new point

Model conditional uncertainty mining

Inversion

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

• C is the covariance kernel C(.) = C(X,.), c(.) = C(x,.)

Exploration >> exploitation, which is interesting for identification problems, where discrete solution never apply (like inversion).

Stepwise Uncertainty Reduction

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

• C is the covariance kernel C(.) = C(X,.), c(.) = C(x,.)

Let's define the *Probability of Excursion*:

$$PE(x) = P[M(x) < T]$$

... and the *Uncertainty of Excursion*:

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

 \cdot C is the covariance kernel

$$C$$
 is the covariance kernel $C(.) = C(X,.)$, $c(.) = C(x,.)$

$$SE(x) = p_{\mathcal{N}}(v(x)) \times (1 - p_{\mathcal{N}}(v(x)))$$

64/82

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

$$y_{new} \sim \mathcal{N}(m(x_{new}), s^2(x_{new}))$$

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

$$y_{new} \sim \mathcal{N}(m(x_{new}), s^2(x_{new}))$$

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

$$y_{new} \sim \mathcal{N}(m(x_{new}), s^2(x_{new}))$$

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

$$y_{new} \sim \mathcal{N}(m(x_{new}), s^2(x_{new}))$$

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

$$y_{new} \sim \mathcal{N}(m(x_{new}), s^2(x_{new}))$$

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

$$y_{new} \sim \mathcal{N}(m(x_{new}), s^2(x_{new}))$$

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

$$y_{new} \sim \mathcal{N}(m(x_{new}), s^2(x_{new}))$$

$$M(x) = \mathcal{N}(m(x), s^2(x))$$

$$m(x) = C(x)^T C(X)^{-1} f(X)$$

$$s^{2}(x) = c(x) - C(x)^{T} C(X)^{-1} C(x)$$

$$y_{new} \sim \mathcal{N}(m(x_{new}), s^2(x_{new}))$$

Reference

KrigInv: An efficient and user-friendly implementation of batchsequential inversion strategies based on Kriging

- · Clément Chevalier, IMSV University of Bern
- · Victor Picheny, INRA Toulouse
- David Ginsbourger, IMSV University of Bern

Implements

- · Pointwise criterions: Bichon, Ranjan, TMSE
- · SUR criterions: TIMSE, SUR, Jn

Conclusions

Pointwise vs. conditional uncertainty

Instead of a *local* criterion (like SE(x)), use a *global* gain which integrates *local* criterion:

$$SE(x) = P[T < M_n(x)] \times P[T > M_n(x)]$$

$$\downarrow$$

$$SUR(x) = \int_S P[T < M_{n+\{x\}}(y)] \times P[T > M_{n+\{x\}}(y)] dy$$

i.e. We search for x which, once added to X, most reduces $\int_S SE$.

Pointwise vs. conditional uncertainty

Instead of a *local* criterion (like EI(x)), use a *global* gain which integrates *local* criterion:

$$EI(x) = E[min\{f(X_n)\} - M_n(x)]^+$$

$$\downarrow$$

$$IECI(x) = \int_{S} E[min\{f(X_n \oplus x)\} - M_{n+\{x\}}(y)]^+ dy$$

i.e. We search for x which, once added to X, most reduces $\int_S EI$.

Stepwise Uncertainty Reduction

SUR criterions are:

- more flexible than *local* ones (EI) to handle:
 - constraints:

$$\min_{x \in S \subset \mathbb{R}^d} \{ f(x) : g(x) \le 0 \}$$

- robustness:

$$\min_{x \in S \subset \mathbb{R}^d} \{ f(x) : g(x, u) \le 0, \forall u \in U \}$$

• but **much** more costly to evaluate (\int_S)

Constrained optimization

Basically using *EI*:

$$EI(x) = \mathbf{1}_{g(x) \le 0} E[min\{f(X)\} - M(x)]^+$$

... but this excludes to sample x if g(x) > 0.

Or using *IECI*:

$$IECI(x) = \int_{S} \mathbf{1}_{g(y) \le 0} E[min\{f(X_n \oplus x)\} - M_{n+\{x\}}(y)]^+ dy$$

Tips & tricks

On-shelf available (tech.)

General optimization

Languages:

- · R, Python, Matlab/Octave
- · C++, Java, C, Fortran

Libraries:

- NLOpt (C, C++, Fortran, Matlab/Octave, Python, Julia, R)
 DiRect, CRS, COByLA, Nelder-Mead, BFGS, ...
- · SciPy.optimize (Python) BFGS, COByLA, Nelder-Mead, ...
- · optim (R) Nelder-Mead, BFGS, Simulated-Annealing, ...

State-of-the-Art algorithms: EGO, CMA-ES, NSGA2, PSO (C, C++, Fortran, Matlab/Octave, Python, R, Scilab, Julia, ...)

On-shelf available (tech.)

Kriging

Languages:

- · R, Python, Matlab/Octave
- · C++, Java,

Libraries:

- DiceKriging/KerGP (R)
- SKL (Matlab/Octave)
- · geoR (R)
- GPy/GPflow (Python)
- · OpenTURNS (Python)

If problem remains too hard...

Go deeper in f.

- 1. Get more runs
 - · numerical model: more CPU, HPC, cloud
- 2. Get more prior informations
 - boundary conditions
 - trending hypothesis
 - simplified model (multi-level opt.)
- 3. Get derivatives
 - physical model: intrinsic physics
 - · numerical model: integrated | auto differentiation
 - source code differentiation