JZ4770

used only **Mobile Application Processor**

internal internal internal internal

北京君正集成电路股份有限公司 Ingenic Semiconductor Co., Ltd.

JZ4770 Mobile Application Processor

User-Interfaces Programming Manual

Copyright © 2005-2011 Ingenic Semiconductor Co. Ltd. All rights reserved.

Disclaimer

This documentation is provided for use with Ingenic products. No license to Ingenic property rights is granted. Ingenic assumes no liability, provides no warranty either expressed or implied relating to the usage, or intellectual property right infringement except as provided for by Ingenic Terms and Conditions of Sale.

Ingenic products are not designed for and should not be used in any medical or life sustaining or supporting equipment.

All information in this document should be treated as preliminary. Ingenic may make changes to this document without notice. Anyone relying on this documentation should contact Ingenic for the current interna documentation and errata.

Ingenic Semiconductor Co., Ltd.

Room 108, Building A, Information Center, Zhongguancun Software Park 8 Dongbeiwang West Road, Haidian District, Beijing, China,

Tel: 86-10-82826661 Fax: 86-10-82825845 Http://www.ingenic.cn

CONTENTS

1	LCI	D Controller	. 1
	1.1	Overview	1
	1.2	Pin Description	3
	1.3	Block Diagram	4
	1.4	LCD Display Timing	7
	1.5	TV Encoder Timing	8
	1.6	OSD Graphic	9
	1.6.1	Color Key	9
	1.7	TV Graphic	. 12
	1.7.1	Different Display Field	. 12
	1.8	Register Description	
	1.8.1		. 15
	1.8.2		. 18
	1.8.3	Status Register (LCDSTATE)	. 19
	1.8.4	4 OSD Configure Register (LCDOSDC)	. 20
	1.8.5		. 21
	1.8.6		. 22
	1.8.7		. 22
	1.8.8	,	
	1.8.9	Foreground Color Key Register 1 (LCDKEY1)	. 23
	1.8.1	7	
	1.8.1		
	1.8.1		
	1.8.1		
	1.8.1		
	1.8.1	, ,	
	1.8.1	,	
	1.8.1	5 (<u>=</u> /	
	1.8.1		
	1.8.1		
	1.8.2	3 (= /	
	1.8.2		
	1.8.2		
	1.8.2	,	
	1.8.2		
	1.8.2		
	1.8.2		
	1.8.2		
	1.8.2		
	1.8.2	29 Descriptor Address Registers (LCDDAx, 0_PART2)	33

1.8.30	Source Address Registers (LCDSAx, 0_PART2)	34
1.8.31	Frame ID Registers (LCDFIDx, 0_PART2)	34
1.8.32	DMA Command Registers (LCDCMDx, 0_PART2)	35
1.8.33	DMA OFFSIZE Registers (LCDOFFSx, 0_PART2)	36
1.8.34	DMA Page Width Registers (LCDPWx, 0_PART2)	36
1.8.35	DMA Commend Counter Registers (LCDCNUMx)	37
1.8.36	Foreground x Size in Descriptor (LCDDESSIZEx, 0_PART2)	37
1.8.37	Priority level threshold configure Register (LCDPCFG)	38
1.9 LCI	D Controller Pin Mapping	39
1.9.1	TFT and CCIR Pin Mapping	39
1.9.2	Single Panel STN Pin Mapping	41
1.9.3	Dual Panel STN Pin Mapping	42
1.9.4	Data mapping to GPIO function	43
1.10 Dis	play Timing	44
1.10.1	General 16-bit and 18-bit TFT Timing	44
1.10.2	8-bit Serial TFT Timing.	45
1.10.3	Special TFT Timing	46
1.10.4	Delta RGB panel timing	47
1.10.5	RGB Dummy mode timing	48
1.11 For	mat of Palette	49
1.11.1	STN	49
1.11.2	TFT	49
1.12 For	mat of Frame Buffer	50
1.12.1	16bpp	50
1.12.2	18bpp	50
1.12.3	24bpp	50
1.12.4	16bpp with alpha	50
1.12.5	(18bpp with alpha	50
1.12.6	24bpp with alpha	51
1.12.7	24bpp compressed	51
1.13 For	mat of Data Pin Utilization	52
1.13.1	Mono STN	52
1.13.2	Color STN	52
1.13.3	18-bit Parallel TFT	52
1.13.4	16-bit Parallel TFT	52
1.13.5	8-bit Serial TFT (24bpp)	53
1.14 LCI	D Controller Operation	54
1.14.1	Set LCD Controller AHB Clock and Pixel Clock	54
1.14.2	Enabling the Controller	54
1.14.3	Disabling the Controller	54
1.14.4	Resetting the Controller	55
1.14.5	Frame Buffer & Palette Buffer	55
1.14.6	CCIR601/CCIR656	55

1.14.7	OSD Operation	55
1.14.8	Descriptor Operation	
1.14.9	IPU direct connect mode	60
1.14.1	O VGA output	61
1.14.1	Foreground 0 divide mode	61
2 Sma	rt LCD Controller	63
2.1 O	verview	63
2.2 St	ructure	63
2.3 Pi	n Description	64
2.4 R	egister Description	65
2.4.1	SLCD Configure Register (MCFG)	65
2.4.2	SLCD Control Register (MCTRL)	67
2.4.3	SLCD Status Register (MSTATE)	
2.4.4	SLCD Data Register (MDATA)	68
2.5 S	ystem Memory Format	69
2.5.1	Data format	69
2.5.2	Command Format	69
2.6 Tr	ansfer Mode	70
2.6.1	DMA Transfer Mode	70
2.6.2	Register Transfer Mode	71
2.7 Ti		
2.7.1	mingParallel Timing	72
2.7.2	Serial Timing	72
2.8 O	peration Guide	73
2.8.1	DMA Operation	73
2.8.2	Register Operation	73
3 Dec	ompresser	75
3.1 O	verview	75
	ompress Method	
	peration Guide	
4 TV E	ncoder	78
4.1 O	verview	78
	ructure	
	n Description	
	egister Description	
4.4.1	TV Encoder Control Register (TVECR)	
4.4.2	Frame configure register (FRCFG)	
4.4.3	Signal level configure register 1, 2 and 3 (SLCFG1, SLCFG2, SLCFG3)	
4.4.4	Line timing configure register 1 and 2 (LTCFG1, LTCFG2)	
4.4.5	Chrominance configure registers (CFREQ, CPHASE, CFCFG)	
¬.+.∪	official factor of the distribution of the dis	

4.6.1 DAC Connection .88 4.6.2 DAC DC Character .88 4.6.3 DAC Power Down Setup Time .89 5.5 EPDC Controller .90 5.1 Overview .90 5.2 EPDC Pin Mappings .91 5.3 Function Block Diagram .93 5.4 EPD Controller Registers .94 5.5 Registers Description .96 5.5.1 EPDC Control Registers .96 5.5.2 EPDC Status Register .97 5.5.3 EPDC ISR Register .97 5.5.4 EPDC Configuration Register 0 .98 5.5.5 EPDC Optipeline Frame Register 0 .00 5.5.7 EPDC Pipeline Frame Register 1 .01 5.5.8 EPDC Virtual Display Area Setting Register .101 5.5.10 EPDC Horizontal Display Area Setting Register .101 5.5.11 EPDC Gate Overtical Synchronous Start Pulse Setting .102 5.5.12 EPDC Gate Overtical Synchronous Start Pulse Setting .102 5.5.14 EPDC Gate Overtical Synchronous Start Pulse Setting .103<		4.5	Switch between LCD pan	el and TV set	87
4.6.2 DAC DC Character 88 4.6.3 DAC Power Down Setup Time 89 5 EPD Controller 90 5.1 Overview 90 5.2 EPDC Pin Mappings 91 5.3 Function Block Diagram 93 5.4 EPD Controller Registers 94 5.5 Registers Description 96 5.5.1 EPDC Control Registers 96 5.5.2 EPDC Status Register 97 5.5.3 EPDC ISR Register 97 5.5.4 EPDC Configuration Register 0 98 5.5.5 EPDC Onfiguration Register 1 99 5.5.6 EPDC Vipeline Frame Register 1 100 5.5.7 EPDC Pipeline Frame Register 1 101 5.5.8 EPDC Virtual Display Area Setting Register 101 5.5.1 EPDC Vertical Display Area Setting Register 101 5.5.11 EPDC Vertical Synchronous Start Pulse Setting 102 5.5.12 EPDC Horizontal Synchronous Start Pulse Setting 102 5.5.13 EPDC Gate Driver Clart Pulse Register 103 5.		4.6	DAC		88
4.6.3 DAC Power Down Setup Time		4.6	DAC Connection		88
5.1 Overview		4.6	DAC DC Character		88
5.1 Overview .90 5.2 EPDC Pin Mappings		4.6	DAC Power Down Se	etup Time	89
5.2 EPDC Pin Mappings .91 5.3 Function Block Diagram .93 5.4 EPD Controller Registers .94 5.5 Registers Description .96 5.5.1 EPDC Control Registers .97 5.5.2 EPDC Status Register .97 5.5.4 EPDC Configuration Register 0 .98 5.5.5 EPDC Configuration Register 0 .98 5.5.6 EPDC Pipeline Frame Register 0 .100 5.5.7 EPDC Pipeline Frame Register 1 .101 5.5.9 EPDC Virtual Display Area Setting Register .101 5.5.9 EPDC Horizontal Display Area Setting Register .101 5.5.10 EPDC Horizontal Synchronous Start Pulse Setting .102 5.5.11 EPDC Vertical Synchronous Start Pulse Setting .102 5.5.12 EPDC Horizontal Synchronous Start Pulse Setting .102 5.5.13 EPDC Gate Oriver Elock Setting Register .103 5.5.14 EPDC Gate Oriver Start Pulse Setting .103 5.5.15 EPDC Gate Diver Start Pulse Setting Register .104 5.5.16 EPDC Source Driver Start Pulse Setting Registe	5	EF	PD Controller		90
5.3 Function Block Diagram 93 5.4 EPD Controller Registers .94 5.5 Registers Description .96 5.5.1 EPDC Control Registers .96 5.5.2 EPDC Status Register .97 5.5.4 EPDC Configuration Register 0 .98 5.5.5 EPDC Configuration Register 0 .99 5.5.6 EPDC Pipeline Frame Register 0 .100 5.5.7 EPDC Pipeline Frame Register 1 .101 5.5.8 EPDC Virtual Display Area Setting Register .101 5.5.9 EPDC Vertical Display Area Setting Register .101 5.5.10 EPDC Horizontal Display Area Setting Register .102 5.5.11 EPDC Vertical Synchronous Start Pulse Setting .102 5.5.12 EPDC Horizontal Synchronous Start Pulse Setting .102 5.5.13 EPDC Gate Driver Clock Setting Register .103 5.5.14 EPDC Gate Driver Start Pulse Setting .103 5.5.15 EPDC Gate Driver Start Pulse Setting Register .103 5.5.16 EPDC Source Driver Start Pulse Setting Regis		5.1	Overview		90
5.4 EPD Controller Registers .94 5.5 Registers Description .96 5.5.1 EPDC Control Registers .96 5.5.2 EPDC Status Register .97 5.5.3 EPDC ISR Register .97 5.5.4 EPDC Configuration Register 0 .98 5.5.5 EPDC Configuration Register 1 .99 5.5.6 EPDC Pipeline Frame Register 0 .100 5.5.7 EPDC Pipeline Frame Register 1 .101 5.5.8 EPDC Virtual Display Area Setting Register .101 5.5.9 EPDC Vertical Display Area Setting Register .101 5.5.1 EPDC Horizontal Display Area Setting Register .102 5.5.1.1 EPDC Vertical Synchronous Start Pulse Setting .102 5.5.1.2 EPDC Horizontal Synchronous Start Pulse Setting .102 5.5.1.2 EPDC Horizontal Synchronous Start Pulse Setting .102 5.5.1.2 EPDC Gate Driver Clock Setting Register .103 5.5.1.2 EPDC Gate Driver Start Pulse Setting Register .103 5.5.1.5 EPDC Gate Driver Start Pulse Setting Register .104 5.5.1.6 EPD		5.2	EPDC Pin Mappings		91
5.5 Registers Description .96 5.5.1 EPDC Control Registers .96 5.5.2 EPDC Status Register .97 5.5.3 EPDC ISR Register .97 5.5.4 EPDC Configuration Register 0 .98 5.5.5 EPDC Open Configuration Register 1 .99 5.5.6 EPDC Pipeline Frame Register 0 .100 5.5.7 EPDC Pipeline Frame Register 1 .101 5.5.9 EPDC Virtual Display Area Setting Register .101 5.5.9 EPDC Horizontal Display Area Setting Register .101 5.5.10 EPDC Horizontal Synchronous Start Pulse Setting .102 5.5.11 EPDC Gate Driver Clock Setting Register .102 5.5.12 EPDC Gate Driver Clock Setting Register .103 5.5.13 EPDC Gate Driver Start Pulse Setting Register .103 5.5.14 EPDC Gate Driver Start Pulse Setting Register .103 5.5.15 EPDC Source Driver Start Pulse Setting Register .104 5.5.16 EPDC Source Driver Start Pulse Setting Register .104 5.5.19 EPDC Power Management Registers 3 .104 5.5.20		5.3	Function Block Diagram		93
5.5.1 EPDC Control Registers .96 5.5.2 EPDC Status Register .97 5.5.3 EPDC ISR Register .97 5.5.4 EPDC Configuration Register 0 .98 5.5.5 EPDC Configuration Register 1 .99 5.5.6 EPDC Pipeline Frame Register 0 .100 5.5.7 EPDC Pipeline Frame Register 1 .101 5.5.8 EPDC Virtual Display Area Setting Register .101 5.5.9 EPDC Vertical Display Area Setting Register .101 5.5.10 EPDC Horizontal Display Area Setting Register .102 5.5.11 EPDC Vertical Synchronous Start Pulse Setting .102 5.5.12 EPDC Horizontal Synchronous Start Pulse Setting .102 5.5.13 EPDC Gate Output Enable Setting Register .103 5.5.14 EPDC Gate Output Enable Setting Register .103 5.5.15 EPDC Gate Oriver Start Pulse Setting .103 5.5.16 EPDC Source Driver Start Pulse Setting Register .104 5.5.17 EPDC Source Driver Start Pulse Setting Register .104 5.5.19 EPDC Power Management Registers 0 .104 5		5.4	EPD Controller Registers		94
5.5.2 EPDC Status Register .97 5.5.3 EPDC ISR Register .97 5.5.4 EPDC Configuration Register 0 .98 5.5.5 EPDC Configuration Register 1 .99 5.5.6 EPDC Pipeline Frame Register 0 .100 5.5.7 EPDC Pipeline Frame Register 1 .101 5.5.8 EPDC Virtual Display Area Setting Register .101 5.5.9 EPDC Vertical Display Area Setting Register .101 5.5.10 EPDC Horizontal Display Area Setting Register .102 5.5.11 EPDC Vertical Synchronous Start Pulse Setting .102 5.5.12 EPDC Horizontal Synchronous Start Pulse Setting .102 5.5.13 EPDC Gate Driver Clock Setting Register .103 5.5.14 EPDC Gate Output Enable Setting Register .103 5.5.15 EPDC Gate Driver Start Pulse Setting Register .103 5.5.16 EPDC Gate Driver Start Pulse Setting Register .104 5.5.17 EPDC Source Driver Start Pulse Setting Register .104 5.5.18 EPDC Power Management Registers 0 .104 5.5.20 EPDC Power Management Registers 1 .105		5.5	Registers Description		96
5.5.3 EPDC ISR Register .97 5.5.4 EPDC Configuration Register 0 .98 5.5.5 EPDC Opinguration Register 1 .99 5.5.6 EPDC Pipeline Frame Register 0 .100 5.5.7 EPDC Pipeline Frame Register 1 .101 5.5.8 EPDC Virtual Display Area Setting Register .101 5.5.9 EPDC Vertical Display Area Setting Register .102 5.5.10 EPDC Horizontal Display Area Setting Register .102 5.5.11 EPDC Vertical Synchronous Start Pulse Setting .102 5.5.12 EPDC Horizontal Synchronous Start Pulse Setting .102 5.5.13 EPDC Gate Driver Clock Setting Register .103 5.5.14 EPDC Gate Output Enable Setting Register .103 5.5.15 EPDC Gate Driver Start Pulse Setting Register .103 5.5.16 EPDC Gate Driver Start Pulse Setting Register .104 5.5.17 EPDC Source Driver Start Pulse Setting Register .104 5.5.18 EPDC Power Management Registers 0 .104 5.5.20 EPDC Power Management Registers 1 .105 5.5.21 EPDC Power Management Registers 2 .105 <td></td> <td>5.5</td> <td>5.1 EPDC Control Regis</td> <td>ters</td> <td>96</td>		5.5	5.1 EPDC Control Regis	ters	96
5.5.4 EPDC Configuration Register 0		5.5	5.2 EPDC Status Registe	er	97
5.5.5 EPDC Configuration Register 1 .99 5.5.6 EPDC Pipeline Frame Register 0 .100 5.5.7 EPDC Pipeline Frame Register 1 .101 5.5.8 EPDC Virtual Display Area Setting Register .101 5.5.9 EPDC Vertical Display Area Setting Register .101 5.5.10 EPDC Horizontal Display Area Setting Register .102 5.5.11 EPDC Vertical Synchronous Start Pulse Setting .102 5.5.12 EPDC Horizontal Synchronous Start Pulse Setting .102 5.5.13 EPDC Gate Driver Clock Setting Register .103 5.5.14 EPDC Gate Output Enable Setting Register .103 5.5.15 EPDC Gate Oriver Start Pulse Setting .103 5.5.16 EPDC Gate Driver Start Pulse Setting Register .103 5.5.17 EPDC Source Driver Start Pulse Setting Register .104 5.5.17 EPDC Source Driver Start Pulse Setting Register .104 5.5.18 EPDC Power Management Registers 0 .104 5.5.19 EPDC Power Management Registers 1 .105 5.5.20 EPDC Power Management Registers 3 .105 5.5.21 EPDC Power Management Regi		5.5	EPDC ISR Register	15	97
5.5.5 EPDC Configuration Register 1 .99 5.5.6 EPDC Pipeline Frame Register 0 .100 5.5.7 EPDC Pipeline Frame Register 1 .101 5.5.8 EPDC Virtual Display Area Setting Register .101 5.5.9 EPDC Vertical Display Area Setting Register .101 5.5.10 EPDC Horizontal Display Area Setting Register .102 5.5.11 EPDC Vertical Synchronous Start Pulse Setting .102 5.5.12 EPDC Horizontal Synchronous Start Pulse Setting .102 5.5.13 EPDC Gate Driver Clock Setting Register .103 5.5.14 EPDC Gate Output Enable Setting Register .103 5.5.15 EPDC Gate Oriver Start Pulse Setting .103 5.5.16 EPDC Gate Driver Start Pulse Setting Register .103 5.5.17 EPDC Source Driver Start Pulse Setting Register .104 5.5.17 EPDC Source Driver Start Pulse Setting Register .104 5.5.18 EPDC Power Management Registers 0 .104 5.5.19 EPDC Power Management Registers 1 .105 5.5.20 EPDC Power Management Registers 3 .105 5.5.21 EPDC Power Management Regi		5.5	EPDC Configuration	Register 0	98
5.5.7 EPDC Pipeline Frame Register 1 101 5.5.8 EPDC Virtual Display Area Setting Register 101 5.5.9 EPDC Vertical Display Area Setting Register 101 5.5.10 EPDC Horizontal Display Area Setting Register 102 5.5.11 EPDC Vertical Synchronous Start Pulse Setting 102 5.5.12 EPDC Horizontal Synchronous Start Pulse Setting 102 5.5.13 EPDC Gate Driver Clock Setting Register 103 5.5.14 EPDC Gate Output Enable Setting Register 103 5.5.15 EPDC Gate Driver Start Pulse Setting 103 5.5.16 EPDC Source Driver Output Enable Setting Register 104 5.5.17 EPDC Source Driver Start Pulse Setting Register 104 5.5.18 EPDC Power Management Registers 0 104 5.5.19 EPDC Power Management Registers 1 105 5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers		5.5	5.5 EPDC Configuration	Register 1	99
5.5.8 EPDC Virtual Display Area Setting Register 101 5.5.9 EPDC Vertical Display Area Setting Register 101 5.5.10 EPDC Horizontal Display Area Setting Register 102 5.5.11 EPDC Vertical Synchronous Start Pulse Setting 102 5.5.12 EPDC Horizontal Synchronous Start Pulse Setting 102 5.5.13 EPDC Gate Driver Clock Setting Register 103 5.5.14 EPDC Gate Output Enable Setting Register 103 5.5.15 EPDC Gate Driver Start Pulse Setting Register 103 5.5.16 EPDC Source Driver Output Enable Setting Register 104 5.5.17 EPDC Source Driver Start Pulse Setting Register 104 5.5.18 EPDC Power Management Registers 0 104 5.5.19 EPDC Power Management Registers 1 105 5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting		5.5	5.6 EPDC Pipeline Fram	ne Register 0	100
5.5.8 EPDC Virtual Display Area Setting Register 101 5.5.9 EPDC Vertical Display Area Setting Register 101 5.5.10 EPDC Horizontal Display Area Setting Register 102 5.5.11 EPDC Vertical Synchronous Start Pulse Setting 102 5.5.12 EPDC Horizontal Synchronous Start Pulse Setting 102 5.5.13 EPDC Gate Driver Clock Setting Register 103 5.5.14 EPDC Gate Output Enable Setting Register 103 5.5.15 EPDC Gate Driver Start Pulse Setting Register 103 5.5.16 EPDC Source Driver Output Enable Setting Register 104 5.5.17 EPDC Source Driver Start Pulse Setting Register 104 5.5.18 EPDC Power Management Registers 0 104 5.5.19 EPDC Power Management Registers 1 105 5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting		5.5	5.7 EPDC Pipeline Fram	ne Register 1	101
5.5.10 EPDC Horizontal Display Area Setting Register 102 5.5.11 EPDC Vertical Synchronous Start Pulse Setting 102 5.5.12 EPDC Horizontal Synchronous Start Pulse Setting 102 5.5.13 EPDC Gate Driver Clock Setting Register 103 5.5.14 EPDC Gate Output Enable Setting Register 103 5.5.15 EPDC Gate Driver Start Pulse Setting Register 103 5.5.16 EPDC Source Driver Output Enable Setting Register 104 5.5.17 EPDC Source Driver Start Pulse Setting Register 104 5.5.18 EPDC Power Management Registers 0 104 5.5.19 EPDC Power Management Registers 1 105 5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Pipeline 0 ~7 Position Registers 107 5.5.26 EPDC Pipeline 0 ~7 Position Registers 108 5.6 Application Guide 109 </th <td></td> <td>5.5</td> <td>5.8 EPDC Virtual Display</td> <td>y Area Setting Register</td> <td>101</td>		5.5	5.8 EPDC Virtual Display	y Area Setting Register	101
5.5.11 EPDC Vertical Synchronous Start Pulse Setting 102 5.5.12 EPDC Horizontal Synchronous Start Pulse Setting 102 5.5.13 EPDC Gate Driver Clock Setting Register 103 5.5.14 EPDC Gate Output Enable Setting Register 103 5.5.15 EPDC Gate Driver Start Pulse Setting Register 103 5.5.16 EPDC Source Driver Output Enable Setting Register 104 5.5.17 EPDC Source Driver Start Pulse Setting Register 104 5.5.18 EPDC Power Management Registers 0 104 5.5.19 EPDC Power Management Registers 1 105 5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Pipeline 0 ~7 Position Registers 108 5.5.27 EPDC Pipeline 0 ~7 Size Registers 108 5.6 Application Guide 109 5.6.1 Pixel format in buffers 109 5.6.		5.5	5.9 EPDC Vertical Displa	ay Area Setting Regis <mark>ter</mark>	101
5.5.12 EPDC Horizontal Synchronous Start Pulse Setting 102 5.5.13 EPDC Gate Driver Clock Setting Register 103 5.5.14 EPDC Gate Output Enable Setting Register 103 5.5.15 EPDC Gate Driver Start Pulse Setting 103 5.5.16 EPDC Source Driver Output Enable Setting Register 104 5.5.17 EPDC Source Driver Start Pulse Setting Register 104 5.5.18 EPDC Power Management Registers 0 104 5.5.19 EPDC Power Management Registers 1 105 5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC Power Management Registers 4 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting 107 5.5.26 EPDC Pipeline 0 ~7 Position Registers 108 5.5.27 EPDC Pipeline 0 ~7 Size Registers 108 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	5.10 EPDC Horizontal Dis	splay Area Setting Register	102
5.5.13 EPDC Gate Driver Clock Setting Register 103 5.5.14 EPDC Gate Output Enable Setting Register 103 5.5.15 EPDC Gate Driver Start Pulse Setting 103 5.5.16 EPDC Source Driver Output Enable Setting Register 104 5.5.17 EPDC Source Driver Start Pulse Setting Register 104 5.5.18 EPDC Power Management Registers 0 104 5.5.19 EPDC Power Management Registers 1 105 5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting 107 5.5.26 EPDC Pipeline 0~7 Position Registers 108 5.5.27 EPDC Pipeline 0~7 Size Registers 108 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	5.11 EPDC Vertical Synch	hronous Start Pulse Setting	102
5.5.14 EPDC Gate Output Enable Setting Register 103 5.5.15 EPDC Gate Driver Start Pulse Setting 103 5.5.16 EPDC Source Driver Output Enable Setting Register 104 5.5.17 EPDC Source Driver Start Pulse Setting Register 104 5.5.18 EPDC Power Management Registers 0 104 5.5.19 EPDC Power Management Registers 1 105 5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting 107 5.5.26 EPDC Pipeline 0~7 Position Registers 108 5.6 Application Guide 109 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	5.12 EPDC Horizontal Syl	nchronous Start Pulse Setting	102
5.5.15 EPDC Gate Driver Start Pulse Setting 103 5.5.16 EPDC Source Driver Output Enable Setting Register 104 5.5.17 EPDC Source Driver Start Pulse Setting Register 104 5.5.18 EPDC Power Management Registers 0 104 5.5.19 EPDC Power Management Registers 1 105 5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting 107 5.5.26 EPDC Pipeline 0~7 Position Registers 108 5.5.27 EPDC Pipeline 0~7 Size Registers 108 5.6 Application Guide 109 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	.13 EPDC Gate Driver C	Clock Setting Register	103
5.5.16 EPDC Source Driver Output Enable Setting Register 104 5.5.17 EPDC Source Driver Start Pulse Setting Register 104 5.5.18 EPDC Power Management Registers 0 104 5.5.19 EPDC Power Management Registers 1 105 5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting 107 5.5.26 EPDC Pipeline 0 ~7 Position Registers 108 5.5.27 EPDC Pipeline 0~7 Size Registers 108 5.6 Application Guide 109 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	.14 EPDC Gate Output E	Enable Setting Register	103
5.5.17 EPDC Source Driver Start Pulse Setting Register. 104 5.5.18 EPDC Power Management Registers 0 104 5.5.19 EPDC Power Management Registers 1 105 5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting 107 5.5.26 EPDC Pipeline 0 ~7 Position Registers 108 5.5.27 EPDC Pipeline 0 ~7 Size Registers 108 5.6 Application Guide 109 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	.15 EPDC Gate Driver S	tart Pulse Setting	103
5.5.18 EPDC Power Management Registers 0 104 5.5.19 EPDC Power Management Registers 1 105 5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting 107 5.5.26 EPDC Pipeline 0 ~7 Position Registers 108 5.5.27 EPDC Pipeline 0 ~7 Size Registers 108 5.6 Application Guide 109 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	.16 EPDC Source Driver	Output Enable Setting Register	104
5.5.19 EPDC Power Management Registers 1 105 5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting 107 5.5.26 EPDC Pipeline 0 ~7 Position Registers 108 5.5.27 EPDC Pipeline 0~7 Size Registers 108 5.6 Application Guide 109 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	EPDC Source Driver	r Start Pulse Setting Register	104
5.5.20 EPDC Power Management Registers 2 105 5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting 107 5.5.26 EPDC Pipeline 0 ~7 Position Registers 108 5.5.27 EPDC Pipeline 0~7 Size Registers 108 5.6 Application Guide 109 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	.18 EPDC Power Manag	gement Registers 0	104
5.5.21 EPDC Power Management Registers 3 105 5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting 107 5.5.26 EPDC Pipeline 0 ~7 Position Registers 108 5.5.27 EPDC Pipeline 0~7 Size Registers 108 5.6 Application Guide 109 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	5.19 EPDC Power Manag	gement Registers 1	105
5.5.22 EPDC Power Management Registers 4 106 5.5.23 EPDC VCOM Registers 0~5 106 5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting 107 5.5.26 EPDC Pipeline 0 ~7 Position Registers 108 5.5.27 EPDC Pipeline 0~7 Size Registers 108 5.6 Application Guide 109 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	5.20 EPDC Power Manag	gement Registers 2	105
5.5.23 EPDC VCOM Registers 0~5		5.5	5.21 EPDC Power Manag	gement Registers 3	105
5.5.24 EPDC Border Voltage Setting Registers 107 5.5.25 EPDC Handwriting Mode Setting. 107 5.5.26 EPDC Pipeline 0 ~7 Position Registers 108 5.5.27 EPDC Pipeline 0~7 Size Registers 108 5.6 Application Guide 109 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	5.22 EPDC Power Manag	gement Registers 4	106
5.5.25 EPDC Handwriting Mode Setting. 107 5.5.26 EPDC Pipeline 0 ~7 Position Registers. 108 5.5.27 EPDC Pipeline 0~7 Size Registers. 108 5.6 Application Guide. 109 5.6.1 Pixel format in buffers. 109 5.6.2 Waveform LUT Format 109		5.5	5.23 EPDC VCOM Regist	ters 0~5	106
5.5.26 EPDC Pipeline 0 ~7 Position Registers 108 5.5.27 EPDC Pipeline 0~7 Size Registers 108 5.6 Application Guide 109 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	5.24 EPDC Border Voltag	e Setting Registers	107
5.5.27 EPDC Pipeline 0~7 Size Registers 108 5.6 Application Guide 109 5.6.1 Pixel format in buffers 109 5.6.2 Waveform LUT Format 109		5.5	5.25 EPDC Handwriting N	Mode Setting	107
5.6Application Guide1095.6.1Pixel format in buffers1095.6.2Waveform LUT Format109		5.5	5.26 EPDC Pipeline 0 ~7	Position Registers	108
5.6.1 Pixel format in buffers		5.5	5.27 EPDC Pipeline 0~7 S	Size Registers	108
5.6.2 Waveform LUT Format		5.6	Application Guide		109
		5.6	7.1 Pixel format in buffer	^S	109
5.6.3 Power On/Off Sequence		5.6	3.2 Waveform LUT Form	nat	109
		5.6	.3 Power On/Off Seque	ence	110

	5.6.4	Display Timing Setting	111
	5.6.5	Update image/text flow	113
	5.6.6	Multi-zone concurrent updating	114
	5.6.7	Update VCOM0~5	114
	5.6.8	Handwriting mode	114
	5.6.9	Border Display	114
6	Image	Process Unit	115
	6.1 Ove	erview	115
	6.1.1	Feature	115
	6.2 Bloc	ck	116
	6.3 Data	a flow	117
	6.3.1	Input data	117
	6.3.2	Output data	117
	6.3.3	Resize Coefficients LUT	
	6.4 Reg	jisters Descriptions	118
	6.4.1	IPU Control Register	
	6.4.2	IPU Status Register	121
	6.4.3	IPU address control register	122
	6.4.4	Data Format Register	122
	6.4.5	Input Y Data Address Register	124
	6.4.6	Input U Data Address Register	124
	6.4.7	Input V Data Address Register	125
	6.4.8	Input source TLB base address	125
	6.4.9	Destination TLB base address	126
	6.4.10	TLB monitor.	126
	6.4.11	TLB controller	126
	6.4.12	Input Y Data Address of next frame Register	127
	6.4.13	Input U Data Address of next frame Register	127
	6.4.14	Input V Data Address of next frame Register	128
	6.4.15	Source TLB base address of next frame	128
	6.4.16	Destination TLB base address of next frame	128
	6.4.17	ADDRESS Mapping	129
	6.4.18	Input Geometric Size Register	129
	6.4.19	Input Y Data Line Stride Register	130
	6.4.20	Input UV Data Line Stride Register	130
	6.4.21	Output Frame Start Address Register	130
	6.4.22	Output Data Address of next frame Register	131
	6.4.23	Output Geometric Size Register	131
	6.4.24	Output Data Line Stride Register	132
	6.4.25	CSC C0 Coefficient Register	132
	6.4.26	CSC C1 Coefficient Register	133
	6.4.27	CSC C2 Coefficient Register	133

	6.4.28	CSC C3 Coefficient Register	134
	6.4.29	CSC C4 Coefficient Register	134
	6.4.30	Resize Coefficients Table Index Register	135
	6.4.31	Horizontal Resize Coefficients Look Up Table Register group	135
	6.4.32	Vertical Resize Coefficients Look Up Table Register group	
	6.4.33	Calculation for Resized width and height	141
	6.4.34	CSC Offset Parameter Register	142
	6.4.35	Picture enhance table	142
(6.5 IPU	Operation Flow	144
	6.5.1	Data out to frame buffer	144
	6.5.2	Data out to lcdc	145
	6.5.3	Operation example	146
(6.6 Spe	cial Instruction	149
	A1. Resi	zing size feature	149
		r convention feature	
	A3. YUV	/YCbCr to RGB CSC Equations	149
	A4. Outr	out data package format (RGB order)	150
	A5. Inpu	t data package format (RGB order)	151
		ce Data storing format in external memory (separated YUV Frame)	
7	Alpha _.	_osd	152
-	7.1 Ove	erviewOn	152
7			
7	7.3 Alph	na blending function	154
7		gister Description\	
	7.4.1	Reg_addr0 ~Reg_addr3, Reg_waddr	156
	7.4.2	Reg_addrlen	157
	7.4.3	\$Iv_reg_alphavalue	157
	7.4.4	CTRL	158
	7.4.5	INT	159
	7.4.6	Clk_Gate	160
7	7.5 Alph	na_osd Operation	161
8	LVDS	Controller	162
8	3.1 Ove	erview	162
8	3.2 Reg	gister Description	163
	8.2.1	TXCTRL (LVDS Transmitter Control Register)	163
	8.2.2	TXPLL0 (LVDS Transmitter's PLL Control Register 0)	
	8.2.3	TXPLL1 (LVDS Transmitter's PLL Control Register 0)	
9	Came	ra Interface Module	167
ç	9.1 Ove	erview	167
	9.1.1	Features	

9.1.2	Pin Description	. 167
9.2 CIM	1 Special Register	
9.2.1	CIM Configuration Register (CIMCFG)	168
9.2.2	CIM Control Register (CIMCR)	. 171
9.2.3	CIM Control Register 2 (CIMCR2)	172
9.2.4	CIM Status Register (CIMST)	174
9.2.5	CIM Interrupt ID Register (CIMIID)	176
9.2.6	CIM Descriptor Address (CIMDA)	176
9.2.7	CIM Frame buffer Address Register (CIMFA)	177
9.2.8	CIM Frame ID Register (CIMFID)	. 177
9.2.9	CIM DMA Command Register (CIMCMD)	178
9.2.10	CIM Window-image Size (CIMSIZE)	179
9.2.11	CIM Image Offset (CIMOFFSET)	179
9.2.12	CIM Y Frame buffer Address Register (CIMYFA)	180
9.2.13	CIM Y DMA Command Register (CIMYCMD)	
9.2.14	CIM Cb Frame buffer Address Register (CIMCBFA)	181
9.2.15	CIM Cb DMA Command Register (CIMCBCMD)	181
9.2.16	CIM Cr Frame buffer Address Register (CIMCRFA)	182
9.2.17	CIM DMA Cr Command Register (CIMCRCMD)	182
9.3 CIM	1 Data Sampling Modes	183
9.3.1	Gated Clock Mode	183
9.3.2	ITU656 Interlace Mode	183
9.3.3	ITU656 Progressive Mode	
9.4 DM	A Descriptors	
9.4.1	4-Word Descriptor	186
9.4.2	8-Word Descriptor	186
	errupt Generation	
	tware Operation	188
9.6.1	Enable CIM with DMA	188
9.6.2	Enable CIM without DMA	
9.6.3	Disable CIM	
9.6.4	CIM Priority	188
10 Intern	al CODEC Interface	190
10.1 Ove	erview	190
10.1.1	Features	190
10.1.2	Signal Descriptions	191
10.1.3	Block Diagram	
10.2 Ma _l	pped Register Descriptions	194
10.2.1	CODEC internal register access control (RGADW)	
10.2.2	CODEC internal register data output (RGDATA)	196
10.3 Ope	eration	
10.3.1	Access to internal registers of the embedded CODEC	197

10.3.2 C	ODEC controlling and typical operations	. 198
10.3.3 P	ower saving	. 199
10.3.4 P	op noise and the reduction of it	. 199
10.4 Timing	parameters	.201
10.5 AC & I	DC parameters	.202
10.6 CODE	C internal Registers	.203
10.6.1 C	ODEC internal registers	.204
10.7 Progra	mmable gains	.225
10.7.1 P	rogrammable boost gain: GIM	.225
10.7.2 P	rogrammable input gain amplifier: GID	.225
10.7.3 P	rogrammable digital attenuation: GOD	.226
10.7.4 P	rogrammable attenuation: GO	.226
10.7.5 P	rogrammable Bypass path attenuation: GI	.227
10.7.6 P	rogrammable digital mixer gain: GIMIX and GOMIX	.228
	ain refresh strategy	
10.8 Config	uration of the headphone output stage	.229
10.9 Out-of	-band noise filtering	.230
10.10 Out	out short-circuit protection (headphone output)	.231
10.10.1	Indication of the short circuit detection	.231
10.10.2	Reset of short circuit detection	.231
10.10.3	Capacitor-coupled headphone connection	.231
	npling frequency: FREQ	
	grammable data word length	
10.13 Ran	nping system note	.234
10.14 AG	C system guide	.235
10.14.1	AGC operating mode	.235
10.15 Digi	tal Mixer description	.238
10.16 Digi	tal microphone interface	.239
10,16.1	Chronogram	.239
10.16.2	Timings	.240
10.16.3	Noise template (TBC)	.240
10.17 COI	DEC Operating modes	.241
10.17.1	Power-On mode and Power-Off mode	.242
10.17.2	RESET mode	.242
10.17.3	STANDBY mode	.242
10.17.4	SLEEP mode	.243
10.17.5	Soft Mute mode	.243
10.17.6	Power-Down mode and ACTIVE mode	.244
10.17.7	Working modes summary	.245
10.18 SYS	S_CLK turn-off and turn-on	.246
10.19 Req	uirements on outputs and inputs selection and power-down modes	.247
10.20 Anti	-pop operation sequences	.248
10.20.1	Initialization and configuration	.248

10.20.2	Start up sequence (DAC)	248
10.20.3	Shutdown sequence (DAC)	
10.20.4	Start up sequence (Line input)	252
10.20.5	Shutdown sequence (Line input)	252
10.21 C	Circuits design suggestions	254
10.21.1	Avoid quiet ground common currents	254
10.21.2	Headphone connection (Capacitor-coupled)	255
10.21.3	Microphone connection	
10.21.4	Description of the connections to the jack	
10.21.5	PCB considerations	260
10.22 N	Main paths characteristics	262
10.22.1	Line input to audio ADC path	
10.22.2	Microphone input to audio ADC path	262
10.22.3	Audio DAC to headphone output path	
10.22.4	Audio DAC to mono line output path	
10.22.5	Line input to headphone output path (analog bypass)	264
10.22.6	Microphone input to headphone output path (analog sidetone)	
10.22.7	Micbias and reference	
11 AC97	/I2S/SPDIF Controller	266
11 7(001)	erview	200
	erview	266
11.1.1	Block Diagram	267
11.1.2	Features	
11.1.3	Interface Diagram	
11.1.4	Signal Descriptions	
· ·	gister Descriptions	
11.2.1	AIC Configuration Register (AICFR)	
11.2.2	AIC Common Control Register (AICCR)	
11.2.3	AIC AC link Control Register 1 (ACCR1)	
11.2.4	AIC AC-link Control Register 2 (ACCR2)	
11.2.5	AIC I2S/MSB-justified Control Register (I2SCR)	
11.2.6	AIC Controller FIFO Status Register (AICSR)	
11.2.7	AIC AC-link Status Register (ACSR)	
11.2.8	AIC I2S/MSB-justified Status Register (I2SSR)	
11.2.9	AIC AC97 CODEC Command Address & Data Register (ACCAR, ACCDR)	
11.2.10	AIC AC97 CODEC Status Address & Data Register (ACSAR, ACSDR)	
11.2.11	AIC I2S/MSB-justified Clock Divider Register (I2SDIV)	
11.2.12	AIC FIFO Data Port Register (AICDR)	
11.2.13	SPDIF Enable Register (SPENA)	
11.2.14	SPDIF Control Register (SPCTRL)	
11.2.15	SPDIF State Register (SPSTATE)	
11.2.16	SPDIF Configure 1 Register (SPCFG1)	
11.2.17	SPDIF Configure 2 Register (SPCFG2)	295

11.2.18	SPDIF FIFO Register (SPFIFO)	296
11.3 Se	rial Interface Protocol	297
11.3.1	AC-link serial data format	297
11.3.2	I2S and MSB-justified serial audio format	298
11.3.3	Audio sample data placement in SDATA_IN/SDATA_OUT	301
11.3.4	SPDIF Protocol	302
11.4 AC	97/I2S Operation	303
11.4.1	Initialization	303
11.4.2	AC '97 CODEC Power Down	304
11.4.3	Cold and Warm AC '97 CODEC Reset	304
11.4.4	External CODEC Registers Access Operation	305
11.4.5	Audio Replay	306
11.4.6	Audio Record	307
11.4.7	FIFOs operation	308
11.4.8	Data Flow Control	
11.4.9	Audio Samples format	311
11.4.10	Serial Audio Clocks and Sampling Frequencies	313
11.4.11	Interrupts	317
11.5 SP	DIF Guide	318
11.5.1	Set SPDIF clock frequency	318
11.5.2	PCM audio mode operation (Reference IEC60958)	318
11.5.3	Non-PCM mode operation (Reference IEC61937)	
11.5.4	Disable operation	
12 PCM	Interface	320
	Interface	
12.1 Ov	erviewç.Ş.	320
12.1 Ov 12.2 Pir	erview	320
12.1 Ov 12.2 Pir 12.3 Blo	erview	320 321 322
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re	erview n Description pck Diagram gister Description	320 321 322 323
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1	erview	320 321 322 323
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1 12.4.2	erview	320 321 322 323 323
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1	erview	320 321 322 323 324 326
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1 12.4.2 12.4.3 12.4.4	erview Description ock Diagram gister Description PCM Control Register (PCMCTL) PCM Configuration Register (PCMCFG) PCM FIFO DATA PORT REGISTER (PCMDP) PCM INTERRUPT CONTROL REGISTER (PCMINTC)	
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1 12.4.2 12.4.3 12.4.4 12.4.5	erview Description Description Gister Description PCM Control Register (PCMCTL) PCM Configuration Register (PCMCFG) PCM FIFO DATA PORT REGISTER (PCMDP) PCM INTERRUPT CONTROL REGISTER (PCMINTC) PCM INTERRUPT STATUS REGISTER (PCMINTS)	
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1 12.4.2 12.4.3 12.4.4 12.4.5 12.4.6	erview Description ock Diagram gister Description PCM Control Register (PCMCTL) PCM Configuration Register (PCMCFG) PCM FIFO DATA PORT REGISTER (PCMDP) PCM INTERRUPT CONTROL REGISTER (PCMINTC) PCM INTERRUPT STATUS REGISTER (PCMINTS) PCM CLOCK DIVIDE REGISTER (PCMDIV)	320 321 323 323 324 326 326 327
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1 12.4.2 12.4.3 12.4.4 12.4.5 12.4.6	erview	
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1 12.4.2 12.4.3 12.4.4 12.4.5 12.4.6	erview Description Ock Diagram gister Description PCM Control Register (PCMCTL) PCM Configuration Register (PCMCFG) PCM FIFO DATA PORT REGISTER (PCMDP) PCM INTERRUPT CONTROL REGISTER (PCMINTC) PCM INTERRUPT STATUS REGISTER (PCMINTS) PCM CLOCK DIVIDE REGISTER (PCMDIV) SM Interface Timing Short Frame SYN	320 321 323 323 324 326 326 327 328 329
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1 12.4.2 12.4.3 12.4.4 12.4.5 12.4.6 12.5 PO 12.5.1 12.5.2	erview	
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1 12.4.2 12.4.3 12.4.4 12.4.5 12.4.6 12.5 PO 12.5.1 12.5.2 12.5.3	erview Description pok Diagram gister Description PCM Control Register (PCMCTL) PCM Configuration Register (PCMCFG) PCM FIFO DATA PORT REGISTER (PCMDP) PCM INTERRUPT CONTROL REGISTER (PCMINTC) PCM INTERRUPT STATUS REGISTER (PCMINTS) PCM CLOCK DIVIDE REGISTER (PCMDIV) SM Interface Timing Short Frame SYN Long Frame SYN Multi-Slot Operation	320 321 323 323 324 326 326 327 328 329 330
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1 12.4.2 12.4.3 12.4.4 12.4.5 12.4.6 12.5 PO 12.5.1 12.5.2 12.5.3	erview	
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1 12.4.2 12.4.3 12.4.4 12.4.5 12.5.1 12.5.2 12.5.3 12.6 PO 12.6.1	erview	
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1 12.4.2 12.4.3 12.4.4 12.4.5 12.4.6 12.5 PC 12.5.1 12.5.2 12.5.3 12.6 PC 12.6.1 12.6.2	erview Description pock Diagram gister Description PCM Control Register (PCMCTL) PCM Configuration Register (PCMCFG). PCM FIFO DATA PORT REGISTER (PCMDP). PCM INTERRUPT CONTROL REGISTER (PCMINTC). PCM INTERRUPT STATUS REGISTER (PCMINTS). PCM CLOCK DIVIDE REGISTER (PCMDIV). SM Interface Timing Short Frame SYN Long Frame SYN Multi-Slot Operation M Operation PCM Initialization PCM Initialization	
12.1 Ov 12.2 Pir 12.3 Blo 12.4 Re 12.4.1 12.4.2 12.4.3 12.4.4 12.4.5 12.5.1 12.5.2 12.5.3 12.6 PO 12.6.1	erview	

12.6.4	FIFOs operation	332
12.6.5	Data Flow Control	
12.6.6	PCM Serial Clocks and Sampling Frequencies	
12.6.7	Interrupts	
	·	
13 SAR <i>A</i>	VD Controller	335
13.1 Ove	erview	. 335
13.2 Reg	gister Description	. 337
13.2.1	ADC Enable Register (ADENA)	. 337
13.2.2	ADC Configure Register (ADCFG)	. 338
13.2.3	ADC Control Register (ADCTRL)	. 340
13.2.4	ADC Status Register (ADSTATE)	. 341
13.2.5	ADC Same Point Time Register (ADSAME)	. 342
13.2.6	ADC Wait Pen Down Time Register (ADWAIT)	. 342
13.2.7	ADC Touch Screen Data Register (ADTCH)	. 342
13.2.8	ADC VBAT Data Register (ADVDAT)	. 345
13.2.9	ADC AUX Data Register (ADADAT)	. 346
13.2.10	ADC Clock Divide Register (ADCLK)	. 346
13.2.11	ADC Command Register (ADCMD)	. 347
13.3 SAF	R A/D Controller Guide	. 349
13.3.1	Power Down Mode	. 349
13.3.2	A Sample Touch Screen Operation	. 349
13.3.3	SLEEP mode Sample Operation	. 350
13.3.4	VBAT Sample Operation	. 350
13.3.5	AUX Sample Operation	
13.3.6	Disable Touch Screen	. 351
13.3.7	Multi-touch Operation	. 351
13.3.8	Use Software Command Operation	. 352
13.3.9	Use 5-wire touch panel Operation	. 352
13.3.10	Use External Touch Screen Controller Operation	. 352
13.3.11	Use TSC to support keypad	352

long eiffel@126.com internal used only

TABLES

Table 1-1 LCD Controller Pins Description	3
Table 1-2 LCD Controller Registers Description	14
Table 2-1 SLCD Pins Description	64
Table 4-1 TVE Pins Description	80
Table 5-1 EPDC Pin Mapping	91
Table 5-2 EPD Controller Registers	94
Table 5-3 2 bits per pixel data buffer format	109
Table 5-4 4 bits per pixel data buffer format	109
Table 5-5 5 bits per pixel data buffer format	109
Table 5-6 Frame N LUT format	110
Table 5-7 Frame HW/NO LUT format	110
Table 6-1 register list	
Table 6-2 no mapping mode	146
Table 6-3 mapping mode	147
Table 8-1 LVDS Register Description	163
Table 9-1 Camera Interface Pins Description	167
Table 9-2 CIM Registers	168
Table 9-3 The modes and the corresponding signals used	183
Table 10-1 CODEC signal IO pin description	191
Table 10-2 Internal CODEC Mapped Registers Description (AIC Registers)	194
Table 11-1 AIC Pins Description	271
Table 11-2 AIC Registers Description	274
Table 11-3 Sample data bit relate to SDATA_IN/SDATA_OUT bit	301
Table 11-4 Cold AC '97 CODEC Reset Timing parameters	305
Table 11-5 Warm AC '97 CODEC Reset Timing Parameters	305
Table 11-6 Audio Sampling rate, BIT_CLK and SYS_CLK frequencies	314
Table 11-7 BIT_CLK divider setting	315
Table 11-8 Approximate common multiple of SYS_CLK for all sample rates	315
Table 11-9 CPM/AIC clock divider setting for various sampling rate if PLL = 270.64MHz	316
Table 11-10 PLL parameters and audio sample errors for EXCLK=12MHz	316
Table 12-1 PCM Interface Pins Description	321
Table 12-2 PCM0 Registers Description	323
Table 13-1 SADC Pin Description	335
Table 13-2 SADC Register Description	337

long eiffel@126.com internal used only

FIGURES

Figure 1-1 Block Diagram when use OSD mode	4
Figure 1-2 Block Diagram of STN mode (not use OSD)	5
Figure 1-3 Block Diagram of TFT mode (not use OSD)	5
Figure 1-4 Block Diagram of TV interface	6
Figure 1-5 Display Parameters	7
Figure 1-6 TV-Encoder Display Parameters	8
Figure 1-7 OSD Graphic	9
Figure 1-8 General 16-bit and 18-bit TFT LCD Timing	44
Figure 1-9 8-bit serial TFT LCD Timing (24bpp)	45
Figure 1-10 Special TFT LCD Timing 1	46
Figure 1-11 Special TFT LCD Timing 2	46
Figure 1-12 Delta RGB timing	47
Figure 1-13 RGB Dummy timing	48
Figure 5-1 EPDC Function Diagram	93
Figure 5-2 Mono mode frame LUT format	109
Figure 5-3 Powers On/Off Sequence	111
Figure 5-4 Source Drivers Reference Timing for PVI EPD	112
Figure 5-5 Gate Drivers Reference Timing for PVI EPD	112
Figure 5-6 Source Drivers Reference Timing for AUO EPD	113
Figure 5-7 Gate Drivers Reference Timing for AUO EPD	113
Figure 6-1 The Block about the IPUData flow	116
Figure 9-1 Typical BT.656 Vertical Blanking Intervals for 625/50 Video Systems	184
Figure 9-2 ITU656 Progressive Mode	185
Figure 10-1 CODEC block diagram	192
Figure 10-2 Internal CODEC works with AIC	193
Figure 10-3 AGC adjusting waves	236
Figure 10-4 AGC adjust areas	236
Figure 10-5 Digital microphone interface connection	239
Figure 10-6 Digital microphone timing diagram at MCLK = 12 MHz	239
Figure 10-7 Digital microphone modulation noise reference spectrum	240
Figure 10-8 CODEC Power Diagram	241
Figure 10-9 Gain up and gain down sequence	244
Figure 10-10 Start up sequence	249
Figure 10-11 Shutdown sequence	251
Figure 10-12 Capacitor-coupled connection	255
Figure 10-13 Capacitor-less connection	256
Figure 10-14 Ground distributing	259
Figure 10-15 the bottom corner of chip PCB Layer	260
Figure 11-1 AIC Block Diagram	267
Figure 11-2 Interface to an External AC'97 CODEC Diagram	269
Figure 11-3 Interface to an External Master Mode I2S/MSB-Justified CODEC Diagram	269

Figure 11-4 AC-link audio frame format	297
Figure 11-5 AC-link tag phase, slot 0 format	297
Figure 11-6 AC-link data phases, slot 1 ~ slot 12 format	297
Figure 11-7 I2S data format (A: LR mode)	298
Figure 11-8 I2S data format (B: RL mode)	298
Figure 11-9 MSB-justified data format (C: LR mode)	299
Figure 11-10 MSB-justified data format (D: RL mode)	299
Figure 11-11 Block format	302
Figure 11-12 Sub-frame format in PCM mode	302
Figure 11-13 Sub-frame format in non-PCM mode	302
Figure 11-14 Cold AC '97 CODEC Reset Timing	305
Figure 11-15 Warm AC '97 CODEC Reset Timing	305
Figure 11-16 Transmitting/Receiving FIFO access via APB Bus	309
Figure 11-17 One channel (Left) and Two channels (right) mode (16 bits packed mode)	311
Figure 11-18 Four channels (Left) and Six channels (right) mode (16 bits packed mode)	311
Figure 11-19 Eight channels mode (16 bits packed mode)	
Figure 11-20 One channel (Left) and Two channels (right) mode	312
Figure 11-21 Four channels (Left) and Six channels (right) mode	312
Figure 11-22 Eight channels mode	313
Figure 11-23 SYS_CLK, BIT_CLK and SYNC generation scheme	314
Figure 12-1 Short Frame SYN Timing (Shown with 16bit Sample)	329
Figure 12-2 Short Frame SYN Timing (Shown with 16bit Sample)	329
Figure 12-3 Long Frame SYN Timing (Shown with 16bit Sample)	330
Figure 12-4 Long Frame SYN Timing (Shown with 16bit Sample)	330
Figure 12-5 Multi-Slot Frame SYN Timing (Shown with two Slots and 8bit Sample)	330
Figure 12-6 Transmitting/Receiving FIFO access via APB Bus	333
Figure 12-7 PCMCLK and PCMSYN generation scheme	334
Figure 13-1 6x5 keypad circuit	353
Figure 13-2 Wait for pen-down (C=1100) circuit	354
Figure 13-3 Measure X-position (C=0010) circuit	355
Figure 13-4 Measure Y-position (C=0011) circuit	355

long eiffel@126.com internal used only

long eiffel@126.com internal used only

1 LCD Controller

1.1 Overview

The JZ integrated LCD controller has the capabilities to driving the latest industry standard STN and TFT LCD panels. It also supports some special TFT panels used in consuming electronic products. The controller performs the basic memory based frame buffer and palette buffer to LCD panel data transfer through use of a dedicated DMA controller. Temporal dithering (frame rate modulation) is supported for STN LCD panels. And OSD is also supported for LCD controller.

Features:

Basic Features

- internal used only Support PAL/NTSC TV out. 3-components (YUV) TV out (refer TVE spec). VGA
- Support CCIR601/656 data format
- Single and Dual panel displays in STN mode
- Single panel displays in TFT mode
- Display size up to 1280x720@60Hz(BPP24)
- Internal palette RAM 256x16 bits

Colors Supports

- Encoded pixel data of 1, 2, 4, 8 or 16 BPP in STN mode
- Support 2, 4, 16 grayscales and up to 4096 colors in STN mode
- Encoded pixel data of 1, 2, 4, 8, 16, 18 or 24 BPP in TFT mode
- Support 65,536(65K), 262,144(260K) and up to 16,777,216 (16M) colors in TFT mode

Panel Supports

- Support single STN panel and dual STN panel with 1, 2, 4, 8 data output pins
- Support 16-bit parallel TFT panel
- Support 18-bit parallel TFT panel
- Support 24-bit serial TFT panel with 8 data output pins
- Support 24-bit parallel TFT panel
- Support Delta RGB panel

OSD Supports

- Supports one single color background
- Supports two foregrounds, and every size can be set for each foreground
- Supports one transparency for the whole graphic
- Supports one transparency for each pixel in one graphic
- Supports color key and mask color key

Decompressor

- Support bpp16 compressed data
- Support bpp24 compressed data with alpha
- Support bpp24 compressed data without alpha

Tons eiffel@126.com internal used only

1.2 Pin Description

Table 1-1 LCD Controller Pins Description

Name	I/O	Description
Lcd_pclk	Input/Output	Display device pixel clock
Lcd_vsync	Input/Output	Display device vertical synchronize pulse
Lcd_hsync	Input/Output	Display device horizontal synchronize pulse
Lcd_de	Output	Display device is STN: AC BIAS Pin
		Display device is NOT STN: data enable Pin
Lcd_d[17:0]	Output	Display device data pins
lcd_lo6_o[5:0]	Output	Display device data pins use in 24 bit parallel mode.
Lcd_spl*1	Output	Programmable special pin for generating control signals
Lcd_cls*1	Output	Programmable special pin for generating control signals
Lcd_ps*1	Output	Programmable special pin for generating control signals
Lcd_rev*1	Output	Programmable special pin for generating control signals

NOTE: The mode and timing of special pin Lcd_spl, Lcd_cls, Lcd_ps and Lcd_rev can be seen in

1.3 Block Diagram

Figure 1-2 Block Diagram of STN mode (not use OSD)

Figure 1-3 Block Diagram of TFT mode (not use OSD)

Figure 1-4 Block Diagram of TV interface

am of TV in interior interior interiors.

1.4 LCD Display Timing

Figure 1-5 Display Parameters

NOTES:

1 VPS === 0
VSYNC pulse always start at point (0,0)

2 H: Horizontal V: Vertical T: Total

D: Display Area P: Pulse S: Start point E: End point

In the (H, V) Coordinates:

- 1 The gray rectangle (0, 0) to (HT, VT) is "Virtual Area".
- 2 The blue rectangle (HDS, VDS) to (HDE, VDE) is "Display Area".
- 3 VPS, VPE defines the VSYNC signal timing. (VPS always be zero)
- 4 HPS, HPE defines the HSYNC signal timing.

All timing parameters start with "H" is measured in lcd_pclk ticks.

All timing parameters start with "V" is measured in lcd_hsync ticks.

This diagram describes the general LCD panel parameters, these can be set via the registers that describes in next section.

1.5 TV Encoder Timing

Some of Video Encoders for TV (Tele Vision) require interlaced timing interface.

Figure 1-6 TV-Encoder Display Parameters

NOTES:

- Even Field contains one more blank line.e.g. For standard PAL timing, Odd filed has 312 lines while even field has 313 lines.
- 2 Interface mode generate 2 vsync pulse for each field. The second vsync start at (VT/2), end at (VT/2 + VPE).
- 3 Display Area & Virtual Area has the same size. VDS=HDS=0, VDE=VT, HDE=HT.

1.6 OSD Graphic

Figure 1-7 OSD Graphic

NOTES:

- 1 Background is one single color and the size is the full screen.
- 2 The size of foregrounds can be every size smaller than background.
- 3 The order of the graphic is as follows:
 - a Top layer: Foreground 0.
 - b Middle layer: Foreground 1.
 - c Bottom layer: Background.

1.6.1 Color Key

This function gives user a method to implement irregular display window. User can make foreground 0 and foreground 1 to different shape. The color key has two implements mode that called color key and mask color key.

Color Key mode is meant to mask a chosen color and show others.

Mask Color Key mode is meant to only show a chosen color and mask others.

mli

Not use color key function

Color key mode

Mask color key mode

. key mode in in com in land i

1.7 TV Graphic

1.7.1 Different Display Field

used only

foreground data odd field
foreground data even field
totle display area odd field
totle display area even field

foreground data odd field first, 3 line even field, 2 line

1.8 Register Description

Table 1-2 LCD Controller Registers Description

LCDCFG			Address	Access Size
2020.0	RW	0x00000000	0x13050000	32
LCDCTRL	RW	0x00000000	0x13050030	32
LCDSTATE	RW	0x00000000	0x13050034	32
LCDOSDC	RW	0x0000	0x13050100	16
LCDOSDCTRL	RW	0x0000	0x13050104	16
LCDOSDS	RW	0x0000	0x13050108	16
LCDBGC	RW	0x00000000	0x1305010C	32
LCDKEY0	RW	0x00000000	0x13050110	32
LCDKEY1	RW	0x00000000	0x13050114	32
LCDALPHA	RW	0x00	0x13050118	8
LCDIPUR	RW	0x00000000	0x1305011C	32
LCDRGBC	RW	0x0000	0x13050090	16
LCDVAT	RW	0x00000000	0x1305000C	32
LCDDAH	RW	0x00000000	0x13050010	32
LCDDAV	RW	0x00000000	0x13050014	32
LCDXYP0	RW	0x00000000	0x13050120	32
LCDXYP0_PART2	RW	0x00000000	0x130501F0	32
LCDXYP1	RW	0x00000000	0x13050124	32
LCDSIZE0	RW 🔨 🕔	0x00000000	0x13050128	32
LCDSIZE0_PART2	RW	0x00000000	0x130501F4	32
LCDSIZE1	RW	0x00000000	0x1305012C	32
LCDVSYNCO	RW	0x00000000	0x13050004	32
LCDHSYNC	RW	0x00000000	0x13050008	32
LCDPS ^{*1}	RW	0x00000000	0x13050018	32
LCDCLS*1	RW	0x00000000	0x1305001C	32
LCDSPL*1	RW	0x00000000	0x13050020	32
LCDREV*1	RW	0x00000000	0x13050024	32
LCDIID	R	0x00000000	0x13050038	32
LCDDA0	RW	0x00000000	0x13050040	32
LCDSA0	R	0x00000000	0x13050044	32
LCDFID0	R	0x00000000	0x13050048	32
LCDCMD0	R	0x00000000	0x1305004C	32
LCDOFFS0	R	0x00000000	0x13050060	32
LCDPW0	R	0x00000000	0x13050064	32
LCDCNUM0	R	0x00000000	0x13050068	32
LCDDESSIZE0	R	0x00000000	0x1305006C	32

LCDDA1 ^{*2}	RW	0x00000000	0x13050050	32
LCDSA1*2	R	0x00000000	0x13050054	32
LCDFID1*2	R	0x00000000	0x13050058	32
LCDCMD1 ^{*2}	R	0x00000000	0x1305005C	32
LCDOFFS1*2	R	0x00000000	0x13050070	32
LCDPW1*2	R	0x00000000	0x13050074	32
LCDCNUM1*2	R	0x00000000	0x13050078	32
LCDDESSIZE1*2	R	0x00000000	0x1305007C	32
LCDDA0_PART2	RW	0x00000000	0x130501C0	32
LCDSA0_PART2	R	0x00000000	0x130501C4	32
LCDFID0_PART2	R	0x00000000	0x130501C8	32
LCDCMD0_PART2	R	0x00000000	0x130501CC	32
LCDOFFS0_PART2	R	0x00000000	0x130501E0	32
LCDPW_PART2	R	0x00000000	0x130501E4	32
LCDCNUM0_PART2	R	0x00000000	0x130501E8	32
LCDDESSIZE0_PA	R	0x00000000	0x130501EC	32
RT2			11500) "
LCDPCFG	RW	0x00000000	0x130502C0	32

NOTES:

- 1 *1: These registers are only used for SPECIAL TFT panels.
- 2 *2: These registers are only used for Dual Panel STN panels and use DMA channel 1 in OSD mode for TFT panels.

1.8.1 Configure Register (LCDCFG)

LCDCFG 0x13050000 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RECOVER **NEWDES** SYNDIR IVEPEH PALBP REVM INVDAT TVEN CLSM CLSP REVP 18/16 PSM HSP РСР DEP VSP **MODE**

Bits	Name	Description		RW
31	LCDPIN*1	LCD PIN Select bit. It is used to choose the function of LCD PINS or		RW
		SLCD PINS. The function of pins is as follows.		
		LCDPIN	PIN SELECT	
		0	LCD PIN	
		1	SLCD PIN	
30	TVEPEH	TVE PAL enable extra_halfline signal.		RW

29		KEEP THIS BIT TO 0.	RW
28	NEWDES	indicate use new 8 words descriptor or not.	RW
		0: use old 4 words descriptor	
		1: use new 8 words descriptor (add LCDOFFSx, LCDPWx,	
		LCDCUNMx, LCDDESSIZEx)	
		OSD mode use 8 word descriptor.	
27	PALBP	Indicate bypass pal in BPP8, and in OSD mode, set this bit to 1 is also	RW
		bypass data format and alpha blending.	
		0: use PAL; 1: not use PAL.	
26	TVEN	Indicate the terminal is LCD panel or TV.	RW
25	RECOVER	Auto recover when output FIFO under run. 0: disable; 1: enable.	RW
24	DITHER	Dither function. (use when 24bpp data output to a 18/16bit panel)	RW
		0: disable; 1: enable.	
		Dither function use to make the picture misty, when you show a static	
		picture with few color, strongly recommend you not use it.	
		When you use this function both static and dynamic picture, strongly	
		recommend you to set the static picture with 16/18BPP color.	
23	PSM	PS signal mode bit. 0: enabled; 1: disabled.	RW
22	CLSM	CLS signal mode bit. 0: enabled; 1: disabled	RW
21	SPLM	SPL signal mode bit. 0: enabled; 1; disabled.	RW
20	REVM	REV signal mode bit. 0: enabled, 1: disabled.	RW
19	HSYNM	H-Sync signal polarity choice function. 0: enabled; 1: disabled.	RW
18	PCLKM	Dot clock signal polarity choice function. 0: enabled; 1: disabled.	RW
17	INVDAT	Inverse output data. 0: normal; 1: inverse.	RW
16	SYNDIR	V-Sync and H-Sync direction. 0: output; 1: input.	RW
15	PSP 💃	PS pin reset state.	RW
14	CLSP	CLS pin reset state.	RW
13 🔨	SPLP	SPL pin reset state.	RW
12	REVP	REV pin reset state.	RW
11	HSP	H-Sync polarity. 0: active high; 1: active low.	RW
10	PCP	Pix-clock polarity.	RW
		0: data translations at rising edge	
		1: data translations at falling edge	
9	DEP	Data Enable polarity. 0: active high; 1: active low.	RW
8	VSP	V-Sync polarity.	RW
		0: leading edge is rising edge	
		1: leading edge is falling edge	
7	18/16	18-bit TFT Panel or 16-bit TFT Panel. This bit will be available when	RW
		MODE [3:2] is equal to 0 and 24[6] is equal to 0.	
		0: 16-bit TFT Panel	
		1: 18-bit TFT Panel	
6	24	Set this bit to 1 for 24-bit TFT Panel.	RW

5:4	PDW	STN	pins ut	ilization	1.	R۱	W
					Signal Panel		
			00	Lcd_d	[0]		
			01	Lcd_d	[0:1]		
			10	Lcd_d	[0:3]		
			11	Lcd_d	[0:7]		
					Dual-Monochrome Panel		
			00	Reser	ved		
			01	Reser	ved		
			10	Upper	r panel: lcd_d[3:0], lower panel: lcd_d[11:8]		
			11	Upper	panel: lcd_d[7:0], lower panel: lcd_d[15:8]		
3:0	MODE	Disp	lay Dev	rice Mod	de Select/Output mode.	R۱	>
					LCD Panel		
			0000		Generic 16-bit/18-bit Parallel TFT Panel	1	
			0001		Special TFT Panel Mode1	۲	
			0010		Special TFT Panel Mode2		
			0011		Special TFT Panel Mode3		
			0100		Non-Interlaced TV out		
			0101		Reserved		
			0110		Interlaced TV out		
			0111		Reserved		
			1000		Single-Color STN Panel		
			1001	20	Single-Monochrome STN Panel		
			1010	10	Dual-Color STN Panel		
		55	1011		Dual-Monochrome STN Panel		
	0.1	1	1100		8-bit Serial TFT		
	ong ei		1101		LCM		
1	O		1110		Reserved		
			1111		Reserved		

NOTES:

*1.

LCDPIN	PIN25	PIN24	PIN23	PIN22	PIN21	PIN20	PIN19	PIN18	PIN17-0
0	LCD								
	PCLK	VSYNC	HSYNC	DE	REV	PS	CLS	SPL	D [17:0]
1	SLCD	SLCD	SLCD						SLCD
	CLK	CS	RS						D [17:0]

- 1 The direction of PIN25 is set by register LPCDR.LCS in CPM SPEC.
- 2 The direction of PIN23 and PIN23 are set by register LCDCFG.SYNDIR.

1.8.2 Control Register (LCDCTRL)

	LCI	DC.	ΓRL	•																									0x	130	50 0)30
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PINMD		BST		RGB	OFUP	Jas					PE	OD					DACTE	EOFM	SOFM	OFUM	1FUM0	IFUM1	WQQT	MOD	NGBB	PEDN	SIQ	ENA	E	3PP	1
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name		Description	RW
31	PINMD	This register set	t Pin distribution in 16-bit parallel mode.	RW
		0: 16-bit data co	prrespond with LCD_D[15:0]	
		1: 16-bit data co	prrespond with LCD_D[17:10], LCD_D[8:1]	
30:28	BST	Burst Length Se	election.	RW
			Burst Length	
		000	4 word	
		001	8 word	
		010	16 word	
		011	32 word	
		101	Contiue16	
		100	64 word	
27	RGB	Bpp16 RGB mo	de. 0 <mark>: RGB</mark> 565; 1: RGB555.	RW
		In OSD mode, t	his bit configure the foreground 0. If use parallel 18 bit,	
		set this bit to 0.		
26	OFUP	Output FIFO un	der run protection. 0: disable; 1: enable.	RW
25:24	FRC	STN FRC Algor	ithm Selection.	RW
	20		Grayscale	
1	Olio	00	16 grayscale	
,		01	4 grayscale	
		10	2 grayscale	
		11	Reserved	
23:16	PDD	Load Palette De	elay Counter.	RW
15		keep this bit to 0	D.	
14	DACTE	DAC loop back	test.	RW
13	EOFM	Mask end of fra	me interrupt. 0: INT-disabled; 1: INT-enabled.	RW
12	SOFM	Mask start of fra	ame interrupt. 0: INT-disabled; 1: INT-enabled.	RW
11	OFUM	Mask out FIFO	under run interrupt. 0: INT-disabled;1: INT-enabled.	RW
10	IFUM0	Mask in FIFO 0	under run interrupt. 0: INT-disabled; 1: INT-enabled.	RW
9	IFUM1	Mask in FIFO 1	under run interrupt. 0: INT-disabled; 1: INT-enabled.	RW
8	LDDM	Mask LCD disal	ble done interrupt. 0: INT-disabled; 1: INT-enabled.	RW
7	QDM	Mask LCD quicl	k disable done interrupt. 0: INT-disabled; 1:	RW
		INT-enabled.		

6	BEDN	Endian selection.	0: same as system Endian; 1: reverse endian format.	RW
5	PEDN	Endian in byte. 0:	msb first; 1: lsb first.	RW
4	DIS	Disable controller	indicate bit. 0: enable; 1: in disabling or disabled.	RW
3	ENA	Enable controller	. 0: disable; 1: enable.	W
2:0	BPP	Bits Per Pixel.		RW
			Bits Per Pixel	
		000	1bpp	
		001	2bpp	
		010	4bpp	
		011	8bpp	
		100	15/16bpp	
		101	18bpp/24bpp	
		110	24bpp compressed	
		111	30bpp	
		In OSD mode, the	ose bits configure the foreground 0.	
			internal used ox13	
1.8.3	Status Regi	ster (LCDSTATE	erna -	
LCI	DSTATE		0x13	050034

1.8.3 Status Register (LCDSTATE)

LCDSTATE 0x13050034 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OUF CDD SOF IFU1

Bits	Name	Description	RW
31:8	Reserved	Writing has no effect, read as zero.	R
7	QD	LCD Quick disable. 0: not been quick disabled; 1: quick disabled done.	RW
6	Reserved	Writing has no effect, read as zero.	R
5	EOF	End of Frame indicate bit.	RW
4	SOF	Start of Frame indicate bit.	RW
3	OUF	Out FIFO under run.	RW
2	IFU0	In FIFO 0 under run.	RW
1	IFU1	In FIFO 1 under run.	RW
0	LDD	LCD disable. 0: not been normal disabled; 1: been normal disabled.	RW

1.8.4 OSD Configure Register (LCDOSDC)

LCDOSDC													0 x	130)50°	100
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SOFM1	EOFM1	Reserved	VIGSO	SOFMO	EOFMO			Reserved			F1EN	FOEN	ALPHAEN	ALPHAMD	OSDEN
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
15	SOFM1	Start of frame interrupt mask for foreground 1.	RW
14	EOFM1	End of frame interrupt mask for foreground 1.	RW
13	Reserved	Writing has no effect, read as zero.	R
12	OSDIV	Not supported in this release.	RW
11	SOFM0	Start of frame interrupt mask for foreground 0.	RW
10	EOFM0	End of frame interrupt mask for foreground 0.	RW
9:5	Reserved	Writing has no effect, read as zero.	R
4	F1EN	1: Foreground 1 is enabled	RW
		0: Foreground 1 is disabled	
3	F0EN	1: Foreground 0 is enabled	RW
		0: Foreground 0 is disabled.	
		*When use slcd, F0EN must set 1.	
2	ALPHAEN	1: Alpha blending is enabled	RW
		0: Alpha blending is disabled	
1	ALPHAMD,	Alpha blending mode.	RW
	6 9	0: One transparency for the whole graphic, and the LCDALPHA	
1	OUS	register is used for transparency	
)		1: One transparency for each pixel in one graphic, and the alpha value	
		is coming from each pixel data	
0	OSDEN	OSD mod enable.	RW
		1: enabled. And you can use F0 F1	
		0: disabled	

1.8.5 OSD Control Register (LCDOSDCTRL)

LCDOSDCTRL													0x	130)50 1	104
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IPU					Doggood	ואפפפואפת					RGB	CHANGES		OSDBPP	
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name		Description R									
15	IPU	Indicate use IPU or D	MA channel 1 to transport data to FIFO 1. This bit	RW								
		is only use in OSD mo	ode.									
		0: use DMA channel 1	1									
		1: use IPU	1 1									
13:5	Reserved	Writing has no effect,	read as zero.	R								
4	OSDRGB	Bpp16 RGB mode. 0:	: RGB565; 1: RGB555.	RW								
		This bit only use in Os	SD mode to configure foreground 1.									
3	CHANGES	Change configure flag	g, when software need change the foreground0	RW								
		and foreground1's en	ground1's enable/position/size, it need set this bit to 1.									
		When hardware finish	rdware finishes the change, It will clear this bit to 0.									
		DO NOT set this bit w	set this bit when you needed change size or position.									
		AND make sure the re	nake sure the reconfigure value is different to the old one.									
		Only one of these (F0	o's position, F1's position, F0's size, F1's size)									
		could be change in or	ne time. Refer to 1.8.6.									
2:0	OSDBPP	Bits Per Pixel of OSD	channel 1.(this channel cannot use palette)	RW								
			Bits Per Pixel									
	ong ei	000 R	Reserved									
1	OLIE	001 R	Reserved									
		010 R	Reserved									
		011 R	Reserved									
		100 1	5/16bpp									
		101 1	8bpp/24bpp									
		110 2	24bpp compressed									
		111 3	30bpp									
		Those bits only use in	n OSD mode to configure display window 1.									

1.8.6 OSD State Register (LCDOSDS)

Bits	Name	Description	RW
15	SOF1	Start of frame flag for foreground 1.	RW
14	EOF1	End of frame flag for foreground 1.	RW
13:12	Reserved	Writing has no effect, read as zero.	R
11	SOF0	Start of frame flag for foreground 0.	RW
10	EOF0	End of frame flag for foreground 0.	RW
9:1	Reserved	Writing has no effect, read as zero.	R
0	READY	Ready for accept the change.	R
		When this bit set 1, the software can change the descriptor's	
		LCDDESSIZE0, 1 to change the foreground size.	
		This bit will clear by hardware when the change is finished.	

1.8.7 Background Color Register (LCDBGC)

Bits	Name	Description	RW
31:27	Reserved	Writing has no effect, read as zero.	R
23:16	Red	Red part or Y part of background.	RW
15:8	Green	Green part or Cb part of background.	RW
7:0	Blue	Blue part or Cr part of background.	RW

1.8.8 Foreground Color Key Register 0 (LCDKEY0)

	LC	DK	ΈY	0																									0x	130	50°	110
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	KEYEN	KEYMD			Beconved	חארים אינים					F	Red	[7:0)]					Gr	eer	า [7	:0]					В	lue	[7:0	0]		
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31	KEYEN	The enable bit of color key for foreground 0.	RW
30	KEYMD	Color key mod. 0: color key; 1: mask color key.	RW
29:27	Reserved	Writing has no effect, read as zero.	R
23:16	Red	Red part of color key for foreground 0.	RW
15:8	Green	Green part of color key for foreground 0.	RW
7:0	Blue	Blue part of color key for foreground 0.	RW

1.8.9 Foreground Color Key Register 1 (LCDKEY1)

LCDKEY1 0x13050114 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 KEYEN KEYMD Red [7:0] Green [7:0] Blue [7:0]

Bits	Name	Description	RW
31	KEYEN	The enable bit of color key for foreground 1.	RW
30	KEYMD	Color key mod. 0: color key; 1: mask color key.	RW
29:27	Reserved	Writing has no effect, read as zero.	R
23:16	Red	Red part of color key for foreground 1.	RW
15:8	Green	Green part of color key for foreground 1.	RW
7:0	Blue	Blue part of color key for foreground 1.	RW

1.8.10 ALPHA Register (LCDALPHA)

Bits	Name	Description	RW
7:0	ALPHA	The alpha value for one graphic with one transparency.	RW

The formula of alpha blending is as follows:

$$NewPixel = \frac{\left[(256 - Alpha) * (Foreground1_or_background) + Alpha * Froeground0 + 128 \right]}{256}$$

Note that foreground 1 must be overlay background.

1.8.11 IPU Restart (LCDIPUR)

Bits	Name	Description	RW
31	IPUREN	IPU restart function enable. 0:disable; 1:enable.	RW
30:24	Reserved	Writing has no effect, read as zero.	R
23:0	IPUR	This register is indicating when one frame is end, how long the panel can	RW
		wait for the next frame data from IPU.	
		In common, set this number larger than frame front porch and near to	
		((HT-0) X (VPE-VPS))/3.	
		This signal only use when foreground1 work in IPU mode. Trigger IPU	
		transfer the last frame again to avoid output FIFO under run.	

1.8.12 RGB Control (LCDRGBC)

LCDRGBC	0x1305	090
Bit	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
	Reserved YCC YCC Reserved OddRGB Reserved	
RST	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
	* 61,	

Bits	Name	Description	RW
15	RGBDM	RGB with dummy data enable.	RW
		Only useful for RGB serial mode. If this bit set to 1, the one pixel	
		include 4 clock periods, that Red, Green, Blue and Dummy data.	
		Dummy is equal to 0.	
	•	0: Disable; 1: Enable.	
14	DMM C	RGB dummy mode.	
4	0118	0: R-G-B-Dummy	
		1: Dummy-R-G-B	
13:9	Reserved	Writing has no effect, read as zero.	R
8	YCC	Change RGB to YCbCr.	RW
		0: not change; 1: change to YUV.	
		This bit only use in OSD mode. Change RGB data to YCbYCr and sent	
		to TV encoder.	
		Please notice that the data will be translated as 16 bits parallel. And	
		only half of it will be transfer. (YCb or YCr in one pixel). If you not use	
		OSD mode and TV encoder, please set this bit to 0.	
		When use this function with IPU transfer data to an interlaced TV,	
		please set IPU output as RGB 888, and OSDBPP to 24. or IPU output	
		data as PACKAGE(YCbYCr) and OSDBPP to 16.	
7	Reserved	Writing has no effect, read as zero.	RW
6:4	OddRGB	Odd line serial RGB data arrangement, useful for RGB serial mode	RW

		only.		e that you must set 000 when use 16/18parallel		
				RGB mode		
			000	RGB		
			001	RBG		
			010	GRB		
			011	GBR		
			100	BRG		
			101	BGR		
			110	Reserved		
			111	Reserved		
3	Reserved	Writi	ng has no effe	ct, read as zero.	R	
2:0	EvenRGB	Ever	line serial RG	BB data arrangement, useful for RGB serial mode	RW	/
		only.	*Please notice	e that you must set 000 when use 16/18parallel 🦯 🧹		
		mod	e	m_1		
				RGB mode		
			000	RGB 15		
			001	RBG		
			010	GRB		
			011	GBR		
			100	BRG		
			101	BGR		
			110	Reserved		
			111	Reserved		

1.8.13 Virtual Area Setting (LCDVAT)

LCDVAT 0x1305000C Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 HT

		٥	2															Ċ	ř														
RST	0	0	0	n	0	0	0	0	0	0	0	٥	0	n	0	n	0	0	0	0	0	0	n	٥	n	n	0	0	n	0	0	0	

VT

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	HT	Horizontal Total size. (in dot clock, sum of display area and blank space)	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	VT	Vertical Total size. (in line clock, sum of display area and blank space)	RW

1.8.14 Display Area Horizontal Start/End Point (LCDDAH)

	LC	DDAI	4																									0 x	130	50	010
Bit	31	30 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved							НС	os							Doggood	ואפספו אפת							Н	DΕ					
рет	0	0 0	Λ	Λ	Λ	Λ	Λ	0	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	HDS	Horizontal display area start. (in dot clock)	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	HDE	Horizontal display area end. (in dot clock)	RW
1.8.15	Display Ar	rea Vertical Start/End Point (LCDDAV)	
LCI	DDAV	Ox13	050014

1.8.15 Display Area Vertical Start/End Point (LCDDAV)

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	VDS	Vertical display area start position. (in line clock)	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	VDE	Vertical display area end position. (in line clock)	RW

1.8.16 Foreground 0 XY Position Register (LCDXYP0)

	LC	D)	(YP	0																									0x	130)50 ⁻	120
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Reserved							ΥP	os							Doggood	חבאם אפת							ΧP	os					
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	YPOS	The Y position of top-left part for foreground 0.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	XPOS	The X position of top-left part for foreground 0.	RW

1.8.17 Foreground 0 PART2 XY Position Register (LCDXYP0_PART2)

	LC	DX.	YP()_F	PAR	T2																							0x	130	50 ′	IF0
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved								ΥP	os							Doggada	ואפשפו אפת							ΧP	os					
DCT	0	Λ	Λ	Λ	Λ	0	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	YPOS	The Y position of top-left part for foreground 0 PART2.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	XPOS	The X position of top-left part for foreground 0 PART2.	RW

1.8.18 Foreground 1 XY Position Register (LCDXYP1)

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	YPOS	The Y position of top-left part for foreground 1.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	XPOS	The X position of top-left part for foreground 1.	RW

1.8.19 Foreground 0 Size Register (LCDSIZE0)

	LC	DS	IZE	0																									0x	130	50 ′	128
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Doynoad	חפפפו אפת							Hei	ght							Reserved								Wi	dth					
PST	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ.	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	Height	The height of foreground 0.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	Width	The width of foreground 0.	RW

When use TVE interlaced mode, please set the area of F0 and F1 aligned with BST.

1.8.20 Foreground 0 PART2 Size Register (LCDSIZE0_PART2)

	LC	DS	IZE	0_	PA	RT2	2								~	\	1	7,											0x	130	501	F4
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1 31 30 29 28 27 26 25 24 23 2									Hei	ght							Doggood	ואפשפו אפת							Wi	dth					
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits\	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	Height	The height of foreground 0 PART2.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	Width	The width of foreground 0 PART2.	RW

1.8.21 Foreground 1 Size Register (LCDSIZE1)

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	Height	The height of foreground 1.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	Width	The width of foreground 1.	RW

1.8.22 Vertical Synchronize Register (LCDVSYNC)

	LC	D۷	SY	NC																									0x	130	500	004
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Downgood	200000000000000000000000000000000000000							VF	S							bornood	חפאוואפטע							VF	PE					
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	VPS	V-Sync Pulse start position, fixed to 0. (in line clock)	R
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	VPE	V-Sync Pulse end position. (in line clock)	RW

1.8.23 Horizontal Synchronize Register (LCDHSYNC)

 LCDHSYNC

 Bit
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 HPS
 By The second of the second

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	HPS	H-Sync pulse start position. (in dot clock)	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	HPE	H-Sync pulse end position. (in dot clock)	RW

1.8.24 PS Signal Setting (LCDPS)

	LC	DP	S																										0 x	130	500)18
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Beconved								PS	SS							Doggana	חבאבו אפר							PS	SE					
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	PSS	PS signal start position. (in dot clock)	RW
		In STN mode, PS signal is ignored. But this register is used to define the	
		AC BIAS signal. AC BIAS signal will toggle very N lines per frame. PSS	
		defines the Toggle position.	j
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	PSE	PS signal end position. (in dot clock)	RW
		In STN mode, PSE defines N, which described in PSS.	

1.8.25 CLS Signal Setting (LCDCLS)

com interna **LCDCLS** 0x1305001C Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 **CLSS CLSE**

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	CLSS	CLS signal start position. (in dot clock)	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	CLSE	CLS signal end position. (in dot clock)	RW

1.8.26 SPL Signal Setting (LCDSPL)

	LC	DS	PL																										0x	130	500)20
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		_	Keserved							SP	LS							00000	Reserved							SP	LE					
DCT	. ^	Λ	0	Λ	Λ	Λ	0	0	Λ	0	Λ	0	Λ	Λ	0	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	SPLS	SPL signal start position. (in dot clock)	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	SPLE	SPL signal end position. (in dot clock)	RW

internal use * In test mode this register use to keep TV encoder module's output data: comp luma([25:16]) and chroma([9:0]).

1.8.27 REV Signal Setting (LCDREV)

	LC	DR	EV											ر (M	7													0x	130	500)24
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Keserved							RE	VS													PO12000	nesei ved							
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	REVS	REV signal start position. (in dot clock)	RW
15:0	Reserved	Writing has no effect, read as zero.	R

1.8.28 Interrupt ID Register (LCDIID)

LCDIID is a read-only register that contains a copy of the Frame ID register (LCDFID) from the descriptor currently being processed when a start of frame (SOF) or end of frame (EOF) interrupt is generated. LCDIID is written to only when an unmasked interrupt of the above type is signaled and there are no other unmasked interrupts in the LCD controller pending. As such, the register is considered to be sticky and will be overwritten only when the signaled interrupt is cleared by writing the LCD controller status register. For dual-panel displays, LCDIID is written only when both channels have reached a given state.

LCDIID is written with the last channel to reach that state. (i.e. LCDFID of the last channel to reach SOF would be written in LCDIID if SOF interrupts are enabled). Reserved bits must be written with zeros and reads from them must be ignored.

Bits	Name	Description	RW
31:0	IID	A copy of Frame ID register, which transferred from Descriptor.	RW

1.8.29 Descriptor Address Registers (LCDDAx, 0_PART2)

A frame descriptor is a 4-word block, aligned on 4-word (16-byte) boundary, in external memory:

WORD [0] contains the physical address for next LCDDAx.

WORD [1] contains the physical address for LCDSAx.

WORD [2] contains the value for LCDFIDx.

WORD [3] contains the value for LCDCMDx.

Software must write the physical address of the first descriptor to LCDDAx before enabling the LCD Controller. Once the LCD Controller is enabled, the first descriptor is read, and all 4 registers are written by the DMAC. The next frame descriptor pointed to by LCDDAx is loaded into the registers for the associated DMA channel after all data for the current descriptor has been transferred.

NOTE: If only one frame buffer is used in external memory, the LCDDAx field (word [0] of the frame descriptor) must point back to itself. That is to say, the value of LCDDAx is the physical address of itself.

Read/write registers LCDDA0 and LCDDA1, corresponding to DMA channels 0 and 1, contain the physical address of the next descriptor in external memory. The DMAC fetches the descriptor at this location after finishing the current descriptor. On reset, the bits in this register are zero. The target address must be aligned to 16-byte boundary. Bits [3:0] of the address must be zero.

Bits	Name	Description	RW
31:0	DA0, 1	Next descriptor physical address. And descriptor structure as following:	RW
		WORD [0]: next descriptor physical address	
		WORD [1]: the buffer physical address	
		WORD [2]: the buffer ID value (Only for debug)	
		WORD [3]: the buffer property. The value is same as LCDCMD	

1.8.30 Source Address Registers (LCDSAx, 0_PART2)

Registers LCDSA0 and LCDSA1, corresponding to DMA channels 0 and 1, contain the physical address of frame buffer or palette buffer in external memory. The address must be aligned on a 4, 8, or 16 word boundary according to register LCDCTRL.BST. If this descriptor is for palette data, LCDSA0 points to the memory location of the palette buffer. If this descriptor is for frame data, LCDSAx points to the memory location of the frame buffer. This address is incremented by hardware as the DMAC fetches data from memory. If desired, the Frame ID Register can be used to hold the initial frame source address.

Bits	Name	Description	RW
31:0	SA0, 1	Buffer start address. (Only for driver debug)	R

1.8.31 Frame ID Registers (LCDFIDx, 0_PART2)

Registers LCDFID0 and LCDFID1, corresponding to DMA channels 0 and 1, contain an ID field that describes the current frame. The particular use of this field is up to the software. This ID register is copied to the LCD Controller Interrupt ID Register when an interrupt occurs.

	LC	DFI	D0,	LC	DFI	D 1	, LC	DF	IDO)_P	AR	Γ2									0 x1	30	500	48,	0x1	130	50 0	58,	0x	130	501	C 8
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																FID	0, 1															
RST	0	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	n	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ

Bits	Name	Description	RW
31:0	FID0, 1	Frame ID. (Only for debug)	R

1.8.32 DMA Command Registers (LCDCMDx, 0_PART2)

	LCI	DCI	MD), L	CD	СМ	D1,	LC	DC	MD)_F	PAR	T2							0	c13	050	040	c, c)x1	305	005	C,	0x1	30	501	СС
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SOFINT	EOFINT	CMD	PAL	Uncomp_en	Uncomp_md	pozaoso	200												LE	ΞN											
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31	SOFINT	Enable start of frame interrupt.	R
		When SOFINT =1, the DMAC sets the start of frame bit	
		(LCDSTATE.SOF) when starting a new frame. The SOF bit is set after a	
		new descriptor is loaded from memory and before the palette/frame data	
		is fetched. In dual-panel mode, LCDSTATE.SOF is set only when both	
		channels reach the start of frame and both frame descriptors have	
		SOFINT set. SOFINT must not be set for palette descriptors in dual-panel	
		mode, since only one channel is ever used to load the palette descriptor.	
30	EOFINT	Enable end of frame interrupt.	R
		When EOFINT =1, the DMAC sets the end of frame bit (LCDSTATE.EOF)	
		after fetching the last word in the frame buffer. In dual-panel mode,	
		LCDSTATE.EOF is set only when both channels reach the end of frame	
		and both frame descriptors have EOFINT set. EOFINT must not be set for	
		palette descriptors in dual-panel mode, since only one channel is ever	
		used to load the palette descriptor.	
29	CMD C	It is used to distinguish command and data in lcm mode. And it is only	R
4	0118	loaded via DMA channel 0.	
		1: The data is command	
		0: The data is data	
28	PAL	The descriptor contains a palette buffer.	R
		PAL indicates that data being fetched will be loaded into the palette RAM.	
		If PAL =1, the palette RAM data is loaded via DMA channel 0 as follows:	
		In bpp1, 2, 4, 8 mode, software must load the palette at least once after	
		enabling the LCD. In bpp16 mode, PAL must be 0.	
27	Uncomp_	It indicate this frm is compressed or not.	R
	en	0: not compressed; 1: compressed.	
26	Uncomp_	It indicate this compressed frm is with alpha o without alpha.	R
	md	0:with alpha; 1:without alpha.	
25:24	Reserved	Writing has no effect, read as zero.	R
23:0	LEN	The buffer length value. (in WORD)	R
		The LEN bit field determines the number of bytes of the buffer size	

pointed by LCDSAx. LEN = 0 is not valid. DMAC fetch data according to	
LEN. Each time one or more word(s) been fetched, LEN is decreased	
automatically. Software can read LEN.	
*When you use decompressed function, the LEN should be the line	
number, not word number.	

1.8.33 DMA OFFSIZE Registers (LCDOFFSx, 0_PART2)

Bits	Name	Description	RW
23:0	OFFSIZE0, 1	OFFSIZE value for DMA 0,1. Indicate the offset in word.	R
	OFFSIZE0_P	*please notice that when you need OFFSIZE function, to set this reg	
	ART2	to an un-zero value and also need to set LCDPW0, 1 to indicate how	
		much word in one line of this frame.	
		*When you use decompress function, you must use this to indicate of	
		how many word of a line in the source buffer.	

1.8.34 DMA Page Width Registers (LCDPWx, 0_PART2)

Bits	Name	Description	RW
23:0	PAGEWIDTH0, 1	Page width for DMA 0,1.	R
	PAGEWIDTH0_P	* When you set LCDOFFS.OFFSIZE0/1 to 0, you need keep the	
	ART2	PAGEWIDTH0/1 0.	
		*When you use decompress function, you don't need set this	
		register, dma will get pagewidth of every line automatically.	

1.8.35 DMA Commend Counter Registers (LCDCNUMx)

When LCDCMD.CMD = 1, 0x13050068, 0x13050078 is use as LCDCNUM0, 1 LCDCNUM0_PART2 are not used now, set it to 0.

Bits	Name	Description	RW
7:0	CNUM0,1	Commands' number in this frame transfer by DMA. (only use in	R
		Smart LCD mode)	
1 2 26	Foreground v	Size in Descriptor (I CDDESSIZEY () PART2)	

1.8.36 Foreground x Size in Descriptor (LCDDESSIZEx, 0_PART2)

When LCDCMD.CMD = 0, 0x1305006C, 0x1305007C is use as LCDDESSIZE0, 1, to indicator the next frame foreground0, 1's size.

LCDDESSIZEO, 1, LCDDESSIZEO PART2 0x1305006C, 0x1305007C, 0x130501EC Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved Width Height

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	Height	The height of foreground 0.	R
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	Width	The width of foreground 0.	R

1.8.37 Priority level threshold configure Register (LCDPCFG)

	LC	DP	CF	G																									0x	130	502	C0
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Lcd_pri_md		HP_BST		Reserved					Pcfg2									Pcfg1									Pcfg0				
RST	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

The 3 thresholds cut the output fifo into 4 space,. When the entries remained triggers one of them, the priority level will be altered by hardware. And the 3 thresholds must follow the order: $pcfg2 \ge pcfg1 \ge pcfg0$.

Priority level

Priority_lv	Space	
11	Empty ~ threshold0	29 0
10	Threshold0 ~ threshold1	11500
01	Threshold1 ~ threshold2	1
00	Threshold2 ~ full). ·

Bits	Name		Description	RW
31	Lcd_pri_md	Lcd priority me	ode.	RW
		0: use lcd dyn	amitic priority level; 1: use arbiter priority level.	
30:28	HP_BST	Highest priorit	y Burst Length Selection.	RW
	C	662	Burst Length	
	01)	000	4 word	
	ong eil	001	8 word	
1	Olic	010	16 word	
		011	32 word	
		101	Contiue16	
		100	64 word	
		111	disable	
27	Reserved	Writing has no	o effect, read as zero.	R
26:18	Pcfg2	Threshold2: 0	~511.	RW
17:9	Pcfg1	Threshold1: 0	~511.	RW
8:0	Pcfg0	Threshold0: 0	~511	RW

1.9 LCD Controller Pin Mapping

There are several mapping schemes for different LCD panels.

1.9.1 TFT and CCIR Pin Mapping

	Generic	Ger	neric	Spe	cial	Spe	cial	Spe	cial		
D:	8-bit	18/1	6-bit	TF	T 1	TF	T 2	TF	Т 3	CCIR656	CCIR601
Pin	Serial	Par	allel	18/1	6-bit	18/1	6-bit	18/1	6-bit	8-bit	16-bit
	TFT	T	FT	Par	allel	Par	allel	Par	allel		
Lcd_pclk/	CLK	CLK		DCL	K	CLK		HCL	K	CLK	CLK
Slcd_clk											
Lcd_vsync/	VSYNC	VSYNC		SPS		GSRT		STV		VSYNC	VSYNC
Slcd_cs											1
Lcd_hsync/	HSYNC	HSY	NC	LP		GPC	K	STH		HSYNC	HSYNC
Slcd_rs										λ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Lcd_de	DE	DE		-		-		-	. 4	5eu	-
Lcd_ps	-	-		Pulse	е	Togg	jle	Togg	gle 💛	-	-
Lcd_cls	-	-		Pulse	е	Pulse	e	Puls	é	-	-
Lcd_rev	-	-		Togg	jle	Togg	le 🕽	Togg	gle	-	-
Lcd_spl	-	-		Pulse	е	Puls	е	Tog	gle	-	-
Lcd_dat17	-	R5	ı	R5	-	R5	-	R5	-	-	-
Lcd_dat16	-	R4	ı	R4	-	R4	-	R4	-	ı	1
Lcd_dat15	1	R3	R5	R3	R5	R3	R5	R3	R5	1	D15
Lcd_dat14	- c&(R2	R4	R2	R4	R2	R4	R2	R4	-	D14
Lcd_dat13	- 111	R1	R3	R1	R3	R1	R3	R1	R3	-	D13
Lcd_dat12	5	R0	R2	R0	R2	R0	R2	R0	R2	-	D12
Lcd_dat11	0	G5	R1	G5	R1	G5	R1	G5	R1	-	D11
Lcd_dat10	-	G4	G5	G4	G5	G4	G5	G4	G5	-	D10
Lcd_dat9	-	G3	G4	G3	G4	G3	G4	G3	G4	-	D9
Lcd_dat8	-	G2	G3	G2	G3	G2	G3	G2	G3	-	D8
Lcd_dat7	R7/G7/B7	G1	G2	G1	G2	G1	G2	G1	G2	D7	D7
Lcd_dat6	R6/G6/B6	G	G1	G0	G1	G0	G1	G0	G1	D6	D6
Lcd_dat5	R5/G5/B5	B5	G0	B5	G0	B5	G0	B5	G0	D5	D5
Lcd_dat4	R4/G4/B4	B4	B5	B4	B5	B4	B5	B4	B5	D4	D4
Lcd_dat3	R3/G3/B3 B3 B4 B3 B4 B3 B4		В3	B4	D3	D3					
Lcd_dat2	R2/G2/B2	B2	ВЗ	B2	В3	B2	ВЗ	B2	В3	D2	D2
Lcd_dat1	R1/G1/B1	B1	B2	B1	B2	B1	B2	B1	B2	D1	D1
Lcd_dat0	R0/G0/B0	B0	B1	В0	B1	В0	B1	В0	B1	D0	D0

TFT 24 bit parallel mode/16 bit parallel mode2:

Pin	16 bit Parallel mode2	24 bit Parallel
Lcd_pclk/	CLK	CLK
Slcd_clk		
Lcd_vsync/SI	VSYNC	VSYNC
cd_cs		
Lcd_hsync/SI	HSYNC	HSYNC
cd_rs		
Lcd_de	DE	DE
Lcd_ps	-	-
Lcd_cls	-	-
Lcd_rev	-	-
Lcd_spl	-	-
Lcd_dat17	R7	R7
Lcd_dat16	R6	R6
Lcd_dat15	R5	R5
Lcd_dat14	R4	R4
Lcd_dat13	R3	R3
Lcd_dat12	G7	R2
Lcd_dat11	G6	G7
Lcd_dat10	G5	G6
Lcd_dat9	0 (NC for panel)	G5
Lcd_dat8	G4	G4
Lcd_dat7	G3	G3
Lcd_dat6	G2	G2
Lcd_dat5	B7	B7
Lcd_dat4	B6	B6
Lcd_dat3	B5	B5
Lcd_dat2	B4	B4
Lcd_dat1	B3	B3
Lcd_dat0	0 (NC for panel)	B2
Lcd_lo6_o[5]	0	R1
Lcd_lo6_o[4]	0	R0
Lcd_lo6_o[3]	0	G1
Lcd_lo6_o[2]	0	G0
Lcd_lo6_o[1]	0	B1
Lcd_lo6_o[0]	0	B0

ternal used only

1.9.2 Single Panel STN Pin Mapping

Pin	Color STN		Mono S	STN	
	PDW=3	PDW=0	PDW=1	PDW=2	PDW=3
Lcd_pclk	CLK	CLK	CLK	CLK	CLK
Lcd_vsync	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC
Lcd_hsync	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC
Lcd_de	BIAS	BIAS	BIAS	BIAS	BIAS
Lcd_ps	-	-	-	-	-
Lcd_cls	-	-	-	-	-
Lcd_rev	-	-	-	-	-
Lcd_spl	-	-	-	-	-
Lcd_dat17	-	-	-	-	-
Lcd_dat16	-	-	-	-	-11
Lcd_dat15	-	-	-	-	$\mathcal{Q}_{\mathcal{T}}$
Lcd_dat14	-	-	-	-	<u>-</u>
Lcd_dat13	-	-	-	- 115	-
Lcd_dat12	-	-	-	1	-
Lcd_dat11	-	-	- The	-	-
Lcd_dat10	-	-	nte	-	-
Lcd_dat9	-	-	- 7	-	-
Lcd_dat8	-	- c COA	-	-	-
Lcd_dat7	D7	-196.	-	-	D7
Lcd_dat6	D6	@ / _	-	-	D6
Lcd_dat5	D5	-	-	-	D5
Lcd_dat4	D4	-	-	-	D4
Lcd_dat3	D3	-	-	D3	D3
Lcd_dat2	D2	-	-	D2	D2
Lcd_dat1	D1	-	D1	D1	D1
Lcd_dat0	D0	D0	D0	D0	D0

1.9.3 Dual Panel STN Pin Mapping

Pin	Color STN		Mono S	STN	
	PDW=3	PDW=0	PDW=1	PDW=2	PDW=3
Lcd_pclk	CLK	-	-	CLK	CLK
Lcd_vsync	VSYNC	-	-	VSYNC	VSYNC
Lcd_hsync	HSYNC	-	-	HSYNC	HSYNC
Lcd_de	BIAS	-	-	BIAS	BIAS
Lcd_ps	-	-	-	-	-
Lcd_cls	-	-	-	-	-
Lcd_rev	-	-	-	-	-
Lcd_spl	-	-	-	-	-
Lcd_dat17	-	-	-	-	-
Lcd_dat16	-	-	-	-	-11
Lcd_dat15	UD7	-	-	-	UD7
Lcd_dat14	UD6	-	-	-	UD6
Lcd_dat13	UD5	-	-	- 115	UD5
Lcd_dat12	UD4	-	-	7	UD4
Lcd_dat11	UD3	-	- The	UD3	UD3
Lcd_dat10	UD2	-	-: nte	UD2	UD2
Lcd_dat9	UD1	-	- 7	UD1	UD1
Lcd_dat8	UD0	- c _{On}	-	UD0	UD0
Lcd_dat7	LD7	390.	-	-	LD7
Lcd_dat6	LD6	$\overline{g}_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_$	-	-	LD6
Lcd_dat5	LD5	-	-	-	LD5
Lcd_dat4	LD4	-	-	-	LD4
Lcd_dat3	LD3	-	-	LD3	LD3
Lcd_dat2	LD2	-	-	LD2	LD2
Lcd_dat1	LD1	-	-	LD1	LD1
Lcd_dat0	LD0	-	-	LD0	LD0

1.9.4 Data mapping to GPIO function.

pin name in LCD	mapping to GPIO function
Lcd_dat17/Slcd_dat17	lcd_r7
Lcd_dat16/Slcd_dat16	lcd_r6
Lcd_dat15/Slcd_dat15	lcd_r5
Lcd_dat14/Slcd_dat14	lcd_r4
Lcd_dat13/Slcd_dat13	lcd_r3
Lcd_dat12/Slcd_dat12	lcd_r2
Lcd_dat11/Slcd_dat11	lcd_g7
Lcd_dat10/Slcd_dat10	lcd_g6
Lcd_dat9/Slcd_dat9	lcd_g5
Lcd_dat8/Slcd_dat8	lcd_g4
Lcd_dat7/Slcd_dat7	lcd_g3
Lcd_dat6/Slcd_dat6	lcd_g2
Lcd_dat5/Slcd_dat5	lcd_b7
Lcd_dat4/Slcd_dat4	lcd_b6
Lcd_dat3/Slcd_dat3	lcd_b5
Lcd_dat2/Slcd_dat2	lcd_b4
Lcd_dat1/Slcd_dat1	lcd_b3
Lcd_dat0/Slcd_dat0	lcd_b2
Lcd_lo6_o[5]	lcd_r1
Lcd_lo6_o[4]	lcd_r0
Lcd_lo6_o[3]	1cd_g1
Lcd_lo6_o[2]	lcd_g0
Lcd_lo6_o[1]	lcd_b1
Lcd_lo6_o[0]	lcd_b0
Lcd_dat0/Slcd_dat0 Lcd_lo6_o[5] Lcd_lo6_o[4] Lcd_lo6_o[3] Lcd_lo6_o[2] Lcd_lo6_o[1]	lcd_b2 lcd_r1 lcd_r0 lcd_g1 lcd_g0 lcd_b1

aternal used only

1.10 Display Timing

1.10.1 General 16-bit and 18-bit TFT Timing

This section shows the general 16-bit and 18-bit TFT LCD timing diagram, the polarity of signal "Vsync", "Hsync", and "PCLK" can be programmed correspond to the LCD panel specification.

Figure 1-8 General 16-bit and 18-bit TFT LCD Timing

1.10.2 8-bit Serial TFT Timing

This section shows the 8-bit serial TFT LCD timing diagram, the polarity of signal "Vsync", "Hsync", and "PCLK" can be programmed correspond to the LCD panel specification.

Figure 1-9 8-bit serial TFT LCD Timing (24bpp)

1.10.3 Special TFT Timing

Based on the general TFT LCD support, this controller also provides 4 special signals that can be programmed to general some special timing used for some panel. All 4 signals are worked in two modes: pulse mode and toggle mode. Signal "CLS" is fixed in pulse mode, and "REV" in toggle mode. The work mode of signals "SPL" and "PS" are defined in the special TFT LCD mode 1 to mode 3, either pulse mode or toggle mode. The position and polarity of these 4 signals can be programmed via registers. The Figures show the two modes as follows: (The toggle mode of signal "SPL" is different with the others signal. "SPL" does toggle after display line.)

Figure 1-11 Special TFT LCD Timing 2

These two Figures show the timing of pulse mode and toggle mode, the pulse mode timing is same

and the toggle mode timing is different. Timing 1 shows the condition when the total lines in 1 frame is odd (the number of display is even and the number of blank is odd), so the phase of REV inverse at the first line of each frame and the phase of SPL dose not inverse at the first line of each frame. Timing 2 shows the condition when the total lines in 1 frame is even (the number of display is even and the number of blank is even), so the phase of REV and SPL dose not inverse at the first line of each frame.

When LCDC is enabled ,there will be a null line to be add before transferring data to LCD panel. So the toggle mode exept SPL signal of special 3 TFT mode is when reset level is high,the first valid edge will be rising edge. SPL signal of special 3 TFT mode is when reset level is high,the first valid edge will be falling edge.

1.10.4 Delta RGB panel timing

This section shows the Delta RGB timing diagram, the polarity of signal "Vsync", "Hsync", and "PCLK" can be programmed. And the odd/even line RGB order also can be programmed correspond to the LCD panel specification.

Figure 1-12 Delta RGB timing

1.10.5 RGB Dummy mode timing

This section shows the RGB Dummy diagram, the polarity of signal "Vsync", "Hsync", and "PCLK" can be programmed.

1.11 Format of Palette

This LCD controller contains a palette RAM with 256-entry x 16-bit used only for BPP8, BPP4, BPP2 and BPP1. Palette RAM data is loaded directly from the external memory palette buffer by DMAC channel 0. Each word of palette buffer contains 2 palette entries.

- In 8-bpp modes, palette buffer size is 128 words.
- 2 In 4-bpp modes, palette buffer size is 8 words.
- In 2-bpp modes, palette buffer size is 2 words.
- 4 In 1-bpp modes, palette buffer size is 1 word.
- 5 In 16/18/24-bpp modes, has no palette buffer.

Palette buffer base address	Bit: 31 16	Bit: 15 0
Palette entry	Entry-1 bit: 15 0	Entry-0 bit: 15 0
Palette buffer base address + 4	Bit: 31 16	Bit: 15 0
Palette entry	Entry-3 bit: 15 0	Entry-2 bit: 15 0
Palette buffer base address + 8	Bit: 31 16	Bit: 15 0
Palette entry	Entry-5 bit: 15 0	Entry-4 bit: 15 0
1.11.1 STN	.c.X	ial useu

1.11.1 STN

For STN Panel, 16-bpp pixel data is encoded with RGB 565 or RGB 555.

Please refer to register LCDCTRL.RGB.

BPP 16, RGB 565, pixel encoding for STN Panel:

15	14	13	12	c11	10	9	8	7	6	5	4	3	2	1	0
R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B4	В3	B2	B1	В0

BPP 16, RGB 555, pixel encoding for STN Panel:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	R4	R3	R2	R1	R0	G4	G3	G2	G1	G0	B4	В3	B2	B1	В0

1.11.2 TFT

BPP 16, RGB 565, pixel encoding for TFT Panel:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B4	ВЗ	B2	B1	В0

NOTE: For BPP 16, 18, 24, palette is bypass.

1.12 Format of Frame Buffer

1.12.1 16bpp

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B4	В3	B2	B1	B0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

1.12.2 18bpp

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	R5	R4	R3	R2	R1	R0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1)	0
G5	G4	G3	G2	G1	G0	0	0	B5	B4	В3	B2	B1	B0	0	0
1.12.	3 24b	ppp							x e.y	nal) U	5 ^{e0}			
31	30	29	28	27	26	25	24	23 🔨	22	21	20	19	18	17	16

1.12.3 24bpp

31	30	29	28	27	26	25	24	23 🔨	22	21	20	19	18	17	16
0	0	0	0	0	0	0	20	R7	R6	R5	R4	R3	R2	R1	R0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	ВЗ	B2	B1	B0
4.40	4 401		:5	fe)											

1.12.4 16bpp with alpha

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A7	A6	A5	A4	А3	A2	A1	A0	0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

1.12.5 18bpp with alpha

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A7	A6	A5	A4	А3	A2	A1	A0	R5	R4	R3	R2	R1	R0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

1.12.6 24bpp with alpha

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A7	A6	A5	A4	А3	A2	A1	A0	R7	R6	R5	R4	R3	R2	R1	R0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

1.12.7 24bpp compressed

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			BLUE	1 [7:0]]			RED 0 [7:0]								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			GREE	N 0 [7:	0]						BLUE ([7:0]		4 41		
													~ (17,2		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			GLEEI	N 2 [7:0	0]						BLUE 2	[7:0]				
15	14	13	12	11	10	9	8	7	6	5 1	4	3	2	1	0	
			RED	1 [7:0]					~	1000	LEEN	1 [7:0]				
								• 1	16,							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			RED	3 [7:0]			cO_{U}	GLEEN 3 [7:0]								
15	14	13	12	11	10 🤈	9.	8	7	6	5	4	3	2	1	0	
			BLUE	E3 [7:0]	1(10)						RED2	[7:0]				
	4 O ^V	ng-	eif	fe;												

1.13 Format of Data Pin Utilization

1.13.1 Mono STN

In Mono STN mode, data pin pixel ordering of one LCD screen row. Column 0 is the first pixel of a screen row.

Upper panel													
Panel data width	Col0	Col1	Col2	Col3	Col4	Col5	Col6	Col7					
1 bit	D0	D0	D0	D0	D0	D0	D0	D0					
2 bit	D1	D0	D1	D0	D1	D0	D1	D0					
4 bit	D3	D2	D1	D0	D3	D2	D1	D0					
8 bit	D7	D6	D5	D4	D3	D2	D1	D0					
		Lower p	anel (dua	I-panel m	ode)								
4 bit	D11	D10	D9	D8	D11	D10	D9	D8					
8 bit	D15	D14	D13	D12	D11	D10	D9	D8					

1.13.2 Color STN

In Color STN mode, data pin pixel ordering of one LCD screen row Column 0 is the first pixel of a screen row.

	Upper panel													
Col0 (R)	Col0 (R) Col0 (G) Col0 (B) Col1 (R) Col1 (G) Col1 (B) Col2 (R) Col2 (G)													
D7	D6	D5	D4	D3	D2	D1	D0							
	- (Lo	wer panel (d	lual-panel mo	de)									
D15	D14	D13	D12	D11	D10	D9	D8							

1.13.3 18-bit Parallel TFT

Ī	Col0 (RGB)																	
Ī	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

1.13.4 16-bit Parallel TFT

	Col0 (RGB)														
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

1.13.5 8-bit Serial TFT (24bpp)

	Col0 (R)											
D7	D6	D5	D4	D3	D2	D1	D0					
Col0 (G)												
D7	D6	D5	D4	D3	D2	D1	D0					
	Col0 (B)											
D7	D6	D5	D4	D3	D2	D1	D0					

Tons eiffel@126.com internal used only

1.14 LCD Controller Operation

1.14.1 Set LCD Controller AHB Clock and Pixel Clock

The LCD Controller has 2 clock input: AHB clock and pixel clock. The both clocks are generated by CPM (Clock and Power Manager). The frequency of the 2 clocks can be set by CPM registers. Icdc 's AHB clock is equal to AHB0 clock (HCLK in CPM spec), and CPM.LPCDR set LCD pixel clock division ratio. Please refer to CPM spec for detail.

LCD AHB clock is the LCD controller's internal clock while LCD pixel clock is output to drive LCD panel. There have 2 rules for LCD clocks:

- 1 For TFT Panel, the frequency of LCD AHB clock must be at least 1.5 times of LCD pixel clock.
- 2 For STN Panel, the frequency of LCD AHB clock must be at least 3 times of LCD pixel clock.

LCD panel determines the frequency of LCD pixel clock.

1.14.2 Enabling the Controller

If the LCD controller is being enabled for the first time after system reset or sleep reset, all of the LCD registers must be programmed as follows:

- 1 Write the frame descriptors and, if needed, the palette descriptor to memory.
- 2 Program the entire LCD configuration registers except the Frame Descriptor Address Registers (LCDDAx) and the LCD Controller enable bit (LCDCTRL.ENA).
- 3 Program LCDDAx with the memory address of the palette/frame descriptor.
- 4 Enable the LCD controller by writing to LCDCTRL.ENA.

If the LCD controller is being re-enabled, there has not been a reset since the last programming; only the registers LCDDAx and LCDCTRL.ENA need to be reprogrammed. The LCD Controller Status Register (LCDSTATE) must also be written to clear any old status flags before re-enabling the LCD controller.

Once the LCD controller has been enabled, do not write new values to LCD registers except LCDCTRL.ENA or DIS or LCDDA0/1 or LCDOSDC.F0/1EN.

1.14.3 Disabling the Controller

The LCD controller can be disabled in two ways: regular and quick.

Regular disabling.

Regular disabling is accomplished by setting the disable bit, LCDCTRL.DIS. The other bits in LCDCTRL must not be changed — read the register, set the DIS bit, and rewrite the register. This method causes the LCD controller to stop cleanly at the end of a frame. The LCD Disable Done bit, LCDSTATE.LDD, is set when the LCD controller finishes displaying the last frame, and the enable bit, LCDCTRL.ENA, is cleared automatically by hardware.

LCDCTRL.DIS must be set zero when enabling the controller.

2 Quick disabling.

Quick disabling is accomplished by clearing the enable bit, LCDCTRL.ENA. The LCD controller will finish any current DMA transfer, stop driving the panel, setting the LCD Quick Disable bit (LCDSTATE.QD) and shut down immediately. This method is intended for situations such as a battery fault, where system bus traffic has to be minimized immediately so the processor can have enough time to store critical data to memory before the loss of power. The LCD controller must not be re-enabled until the QD bit is set, indicating that the quick shutdown is complete. Do not set the DIS bit when a quick disabling command has been issued.

NOTE: It is strongly recommended that software set the "LCD Module Stop Bit" in PMC to shut down LCDC clock supply to save power consumption after disable LCDC. Please refer to PMC for detailed information.

1.14.4 Resetting the Controller

At reset, the LCD Controller is disabled. All LCD Controller Registers are reset to the conditions shown nal used in the register descriptions.

1.14.5 Frame Buffer & Palette Buffer

The starting address of frame buffer stored in external memory must be aligned to 4, 8 or 16 words boundary according to register LCDCTRL.BST. The length of buffer must be multiple of word (32-bit).

If LCDCTRL .BST = 0, align frame and palette buffer to 16 word boundary If LCDCTRL .BST = 1, align frame and palette buffer to 8 word boundary If LCDCTRL .BST = 2, align frame and palette buffer to 4 word boundary

One frame buffer contains encoded pixel data of multiple of screen lines; each line of encoded pixel data must be aligned to word boundary. If the length of a line is not the multiple of word, extra bits must be applied to reach a word boundary. It is suggested that the extra bits to be set zero.

1.14.6 CCIR601/CCIR656

CCIR601: just as 16bit-parallel output.

CCIR656: need external encoder, or software designer need give digital blanking data and timing reference signal in data buffer.

1.14.7 OSD Operation

- Normal process.
 - a Configuration.
 - * LCDCFG and LCDCTRL
 - * LCDOSDC and LCDOSDCTRL

* LCDRGBC and LCDIPUR

- b Set Color.
 - * LCDBGC, LCDKEY0, LCDKEY1, LCDALHPA
- c Set Display.
 - * LCDVAT, LCDDAH, LCDDAV
 - * LCDXYP0, LCDXYP1, LCDSIZE0, LCDSIZE1
 - * LCDVSYNC, LCDHSYNC
- d Set DMAC.
 - * LCDIID
 - * LCDDA0, LCDSA0, LCDFID0, LCDCMD0, LCDOFFS0, LCDPW0, LCDCNUM0, LCDDESSIZE0
 - * LCDDA1, LCDSA1, LCDFID1, LCDCMD1, LCDOFFS1, LCDPW1, LCDCNUM1, L used or LCDDESSIZE1
- e Enable LCDC.
- Check the state from register LCDSTATE and LCDOSDS.

2 Reconfigure OSD.

If foreground0 and foreground1 (enable, position, size) need to reconfigure during display process, there has two methods.

Method1: (recommend in TFT and SLCD)

- a Reconfigure the relate Register after disable LCDC.
- b __In_TET mode, use normal disable to avoid lcd panel flicker.
- [c] In SLCD mode, use quick disable. (smart LCD could keep the frame by its inner buffer)
- After disable LCDC, you can reconfigure any register/descriptor, but please make sure this process is quick enough in TFT mode. (less than the interval between two frame)

Method2:

Dynamic reconfigure the register:

You can reconfigure some register(LCDOSDC.F0/1EN) during display process but there some rule you must follow:

- a Foreground 0 and foreground 1's data can not less than 65 words(except 0 word). Or you only can change those register after disable LCDC.
- b When use TFT panel. During the display process, you can re-configure the LCDOSDC.F0EN, LCDCOSDC.F1EN; (You can not change them when use SLCD or TVE) but the new configuration will recognized by LCDC module after finished a complete frame. If you need to re-configure LCDOSDCTRL.IPU to

select IPU or DMA channel 1, you need to follow the process below:

- Quick or Normal disable LCDC. (SLCD only can use Quick disable)
- Configure the LCDOSDCTRL to set IPUEN, and then enable LCD.
 To change IPU to DMA1 you can:
- Quick or Normal disable LCDC. (SLCD only can use Quick disable)
- Configure the LCDOSDCTRL to set IPUEN = 0, and then enable LCD.
- 3 During the display process, while foreground 1 use IPU, to change size of foreground 1 you need follow the step shown bellow:

Method1:

- a Quick or Normal disable LCDC. (SLCD only can use Quick disable)
- b Configure the IPU, and LCDSIZE1.
- c Run IPU and enable LCDC.

Method2:

- a Set LCDCOSDC.F1= 0. (follow the rule above)
- b Configure the IPU.
- c Change LCDSIZE1.(follow the rule change LCDSIZE1 method 2).
- d Set LCDCOSDC.F1= 1. (follow the rule above)
- 4 You **CAN NOT** change BPP or OSDBPP during the display process. if you want to change them first you should disable LCDC, change the BPP or OSDBPP and then enable LCDC. If you need not use Foreground0 during the whole display process. set BPP to 5.
- 5 You can change LCDSIZE0/1 during display process without disable LCD controller.

 Method 1:
 - a Set LCDCOSDC.F0/1EN = 0. (follow the rule above)
 - b Re-configure LCDSIZE0/1 (and the relate DMA0/1 descriptor);
 - then set LCDOSDCTRL.CHANGE = 1.
 - c Wait until CHANGE = 0 and then set LCDOSDC.F0/1EN = 1.

Method 2:

- a Set LCDOSDCTRL.CHANGE = 1.
- b Wait until LCDOSDS. READY = 1.
- c Change relate DMA0/1 channel descriptor.
- d Wait until LCDOSDCTRL.CHANGE = 0.

*Please notice that in TVE (not include VGA) and SLCD only use method 2.

- 6 You can change LCDXY0/1 during display process without disable LCD controller. Method 1:
 - a Set LCDOSDC.F0/1EN = 0. (follow the rule above)
 - b Change LCDXYPOS0/1 and then set LCDOSDCTRL.CHANGE = 1.
 - c Wait until CHANGE = 0 and then set LCDOSDC.F0/1EN = 1.

Method 2:

- a Set LCDOSDCTRL.CHANGE = 1.
- b Wait until LCDOSDS. READY = 1.
- c Change LCDXYPOS0/1.
- d Wait until LCDOSDCTRL.CHANGE = 0.
- *Please notice that in TVE (not include VGA) and SLCD only use method 2.
- *Please notice that if you do not change foreground 0/1's size and position, keep LCDOSDCTRL.CHANGE = 0. And you can only change one of them in one time.
- 7 How to "close/open" foreground0 and foreground1?

Method 1:

- a Set LCDOSDCTRL.CHANGE = 1.
- b Wait until LCDOSDS. READY = 1.
- c Direct change LCDOSDC.F0/1EN.
- d Wait until LCDOSDCTRL.CHANGE = 0.

Method 2:

Change foreground0/1 size to 0 Without change LCDOSDC.F0/1EN.

Method 3: (recommend)

Normal disable LCDC, and change LCDOSDC.F0/1EN. Use normal disable need to wait LCDSTATE.LDD, and set relate register soon, to make sure the LCD panel are not flicker.

*Please notice that in TVE (not include VGA) and SLCD only use method 2,3. And strongly suggest that DO NOT close both foreground0 and 1 or set both foreground0 and 1 's size to 0.

1.14.8 Descriptor Operation

TFT panel

Not use palette: you can use only one descriptor or several connected descriptor. As which shown below.

Use palette: add one PAL descriptor at the beginning of descriptor chain.

When you need to change palette during the display you need follow the steps shown below.

*Please notice that you cannot disable foreground 0 during the whole process. and also You can not change PAL when Foreground 0's area == 0 or not enable LCDOSDC.F0EN.

SLCD

Not use palette.

Use palette.

You can not change PAL when Foreground 0's area == 0. Or not enable LCDOSDC.F0EN and during you change PAL, you can not change F0 or F1's size.

1.14.9 IPU direct connect mode

When you use IPU direct connect mode, you need to:

- 1 Open IPU early than LCDC.
- 2 Use normal disable in TFT mode, and use quick disable in SLCD/TVE mode.
- 3 When you use normal disable you need to wait IPU frame end flag.
- 4 When you use quick disable you must not wait IPU frame end flag, and must reset IPU before restart LCDC and IPU.
- 5 In SLCD mode, you can first wait IPU frame end flag, then quick stop LCDC. Then you need not reset IPU before restart LCDC and IPU.

^{* &}quot;IPU frame end flag" please refer to IPU spec.

1.14.10 VGA output

When you use VGA output you need:

- 1 Open all channel of DAC. (refer to TVEDAC spec)
- 2 Set TVEN to 0.
- 3 Disable LCD panel pins (except HSYNC/VSYNC) for save power. (refer to GPIO spec)

1.14.11 Foreground 0 divide mode

In divide mode the original register of foreground 0 position and size are correspond to F0 PART1, the additional (named with "_part2") registers correspond to F0 PART2.

LCDOSDC.F0EN correspond the total foreground 0 (part1 and part2) and each part has a F0PxEN to enable.

F0EN, F0P2EN, F0P1EN, and part2's position/size can be reconfigure during display process. (refer to 1.12.6)

MODE 1: LCDOSDC.F0DIVMD = 0. F0P2MD = 1.

Foreground 0 divided into 2 parts, and PART1, PART2 must begin with same line and has the same height. They can have different width but cannot overlay each other.

They can use only one descriptor (connect to it self).

The two parts data must "combination" in one data buffer as follow:

^{*}Please notice that in this mode, you need to disable LCDC before reconfigure foreground0/1's Register.

MODE 2: LCDOSDC.F0DIVMD = 1. F0P2MD = 0. F0P1EN = 1. F0P2EN = 1.

Foreground 0 divided into 2 parts, and PART1, PART2 can have different width and height but cannot overlay each other. PART2 must below PART1 they also cannot have any superposition in vertical.

PART1 and PART2 use independent descriptor refer to descriptor register with "part2"

2 Smart LCD Controller

2.1 Overview

The Smart LCD Controller affords an interface to transfer data from the LCD controller to the LCD Module. It supports DMA operation and register operation.

Features:

- Supports a large variety of LCD Module from different vendors
- Supports parallel and serial interfaces
- Supports different size of display panel
- Supports different width of pixel data
- Supports internal DMA operation and register operation
- Supports Write Operation. Read Operation is not supported

2.2 Structure

*Please notice that the command only can transfer by DMA channel 0. No matter the DMA channel 1 or IPU are use or not.

2.3 Pin Description

Table 2-1 SLCD Pins Description

Name	I/O	Description	Interface
SLCD_RS	0	Command/Data Select Signal. The	Serial: RS
		polarity of the signal can be	Parallel: RS
		programmable.	
SLCD_CS	0	Data Sample Signal. The polarity of	Serial: CS
		the signal can be programmable.	Parallel: Sample Data
			with the edge of CS
SLCD_CLK	0	The clock of SLCD. The polarity of the	Serial or not used
		clock can be programmable.	
SLCD_DAT*1 [17:0]	0	The data of SLCD.	Serial:
		Relate to 1.9.4 Data mapping to GPIO	SLCD_DAT [15]
		function.	Parallel:
			18bit SLCD_DAT [17:0]
		1	16bit SLCD_DAT [15:0]
		nal	8bit SLCD_DAT [7:0]
LCD_LO6_O	0	24 bit parallel SLCD RGB (or 24 bit	
		command) low bit	
		([17:16],[9:8],[1:0]) output	
		Relate to 1.9.4 Data mapping to GPIO	
		function.	
		, ,	
NOTE:	fter		

NOTE:

^{*1:} SLCD_DAT[15] is also use as data pin for serial. The SLCD pins are shared with LCDC. You can see the set of register LCDCFG.LCDPIN in LCDC spec.

2.4 Register Description

In this section, we will describe the registers in Smart LCD controller. Following table lists all the registers definition. All register's 32bit address is physical address. And detailed function of each register will be described below.

Name	Description	RW	Reset Value	Address	Access
					Size
MCFG	SLCD Configure Register	RW	0x0000	0x130500A0	32
MCTRL	SLCD Control Register	RW	0x00	0x130500A4	8
MSTATE	SLCD Status Register	RW	0x00	0x130500A8	8
MDATA	SLCD Data Register	RW	0x00000000	0x130500AC	32

2.4.1 SLCD Configure Register (MCFG)

2.4.1 SLCD Configure Register (MCFG)											4	<1		
The register MCFG is used to configure SLCD.								6.	(21	17	, 7		
MCFG						11	34	5		-	0x1	305	00/	40
Bit	15	14	13	12	11 10	9 8	7	6	5	4	3	2	1	0
		Reserved			DWIDTH	CWIDTH		Reserved		CSPLY	RSPLY	Reserved	CLKPLY	TYPE
RST	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0

Bits	Name	C C 2 W 5	Description	RW
15:13	Reserved	Writing has no	effect, read as zero.	R
12:10	DWIDTH	Data Width.	onest, read as zero.	RW
1	OUP	DWIDTH	Data Width	
		000	18-bit once Parallel/Serial	
		001	16-bit once Parallel/Serial	
		010	8-bit third time Parallel	
		011	8-bit twice Parallel	
		100	8-bit once Parallel/Serial	
		101	24-bit once Parallel	
		111	9-bit twice Parallel	
		110	Reserved	
		*Please notice	that you can only use 24-bit parallel command when	
		use 24-bit para	illel data. (The command may not 24-bit but need put	
		them as 24-bit	in memory(one command use one word))	

9:8	CWIDTH*1	Command Wid	th.	RW
		CWIDTH	Command Width	
		00	16-bit once / 9bit once	
		01	8-bit once	
		10	18-bit once	
		11	24-bit once	
		*Please notice	that you can only use 24-bit parallel command when	
		use 24-bit para	llel data. (The command may not 24-bit but need put	
		them as 24-bit	in memory (one command use one word))	
7:5	Reserved	Writing has no	effect, read as zero.	R
4	CSPLY	CS Polarity. (C	S initial level will be different from CS Polarity)	RW
		0: Active Level	is Low	
		1: Active Level	is High	
3	RSPLY	RS Polarity.	4.41	RW
		0: Command R	S = 0, Data RS = 1	
		1: Command R	S = 1, Data RS = 0	
2	Reserved	Writing has no	effect, read as zero.	R
1	CLKPLY	LCD_CLK Pola	rity.	RW
		0: Active edge	is Falling is Rising	
		1: Active edge	is Rising	
0	TTYPE	Transfer Type.	111	RW
		0: Parallel	COM	
		1: Serial		

NOTE:

*1: The set of DWIDTH and CWIDTH should keep to the rules as follows:

Interface Mode	Command Width	Data Width	Color
Parallel	18-bit	18-bit once	R6G6B6
	16-bit	16-bit once	R5G6B5
		9-bit twice	
	9-bit	9-bit twice	
	8-bit	8-bit once	
		8-bit twice	
		8-bit third times	
Serial	18-bit	18-bit once	
	16-bit	16-bit once	
	9-bit	9bit twice	
	8-bit	8-bit once	
		8-bit twice	
		8-bit third times	

2.4.2 SLCD Control Register (MCTRL)

MCTRL is SLCD Control Register.

Bits	Name	Description	RW
7:3	Reserved	Writing has no effect, read as zero.	R
2	DMAMODE	SLCD descriptor DMA mode select.	RW
		0: DMA will continually transfer data follow descriptor chain	
		1: DMA will stop when one descriptor finished	
1	DMASTART	Only use when DMAMODE = 1, set 1 to restart DMA transfer.	RW
0	Reserved	Writing has no effect, read as zero.	R
		ternar	
2.4.3	SLCD Status	Register (MSTATE)	
The rea	ister of MSTATE	is SLCD status register.	

2.4.3 SLCD Status Register (MSTATE)

The register of MSTATE is SLCD status register.

Bits	Name	Description	RW
7:1	Reserved	Writing has no effect, read as zero.	R
0	BUSY	Transfer is working or not.	RW
		This bit will be set to 1 when transfer is working. It will be cleared by	
		hardware when transfer is finished.	
		0: not busy	
		1: busy	

2.4.4 SLCD Data Register (MDATA)

The register MDATA is used to send command or data to LCM. When RS=0, the low 24-bit is used as command. When RS=1, the low 24-bit is used as data.

Bits	Name	Description	RW
31	RS	The RS bit of data register is used to decide the meanings of the low	RW
		24-bit.	
		0: data	
		1: command	
30:24	Reserved	Writing has no effect, read as zero.	R
23:0	DATA/CMD	Data or Command Register.	RW

System Memory Format

2.5.1 Data format

You can configure these registers according to LCDC module.

2.5.2 Command Format

1 18-bit command

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Х	Х	Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	C17	C16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
C15	C14	C13	C12	C11	C10	C9	C8	C7	C6	C5	C4	C3	C2	C1	C0

2 16-bit command

													/		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
C15	C14	C13	C12	C11	C10	C9	C8	C7	C6	C5	C4	C3	C2	C1	C0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
C15	C14	C13	C12	C11	C10	C9	C8	C7	C6	C50	C4	C3	C2	C1	C0
3	3 9-bit command once														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

3 9-bit command once

							(17)								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Χ	Х	Χ	Χ	X	X	C9	C8	C7	C6	C5	C4	C3	C2	C1	C0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Χ	Х	Х	X	X	Χ	C9	C8	C7	C6	C5	C4	C3	C2	C1	C0

8-bit command once

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
C7	C6	C5	C4	C3	C2	C1	C0	C7	C6	C5	C4	C3	C2	C1	C0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
C7	C6	C5	C4	C3	C2	C1	C0	C7	C6	C5	C4	C3	C2	C1	C0

5 8-bit command twice (Command = command part + data part)

*Please notice that when you use this kind command, set CWIDTH as 8bit once and set the LCDCNUM.CNUM as doubled the real command number.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
D7	D6	D5	D4	D3	D2	D1	D0	C7	C6	C5	C4	C3	C2	C1	C0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0	C7	C6	C5	C4	C3	C2	C1	C0

2.6 Transfer Mode

Two transfer modes can be used: DMA/IPU Transfer Mode and Data Register Transfer Mode. In DMA/IPU mode, always transfer commands by DMA 0.

2.6.1 DMA Transfer Mode

Command and data can be recognized by RS bit coming from memory. The format of DMA transfer can be as follows:

1 Command and Data

^{*}Please notice that the command only can insert between two complete frame and the number of command is 0~255.

2 Only Data

^{*}You can also not use command but you still need to use a command descriptor and set the CNUM = 0.

Because DMA transfer mode only can work in OSD mode, you need to configure the panel according OSD mode:

- 1 Configuration.
 - * LCDCFG and LCDCTRL
 - * LCDOSDC and LCDOSDCTRL
 - * LCDRGBC and LCDIPUR
- 2 Set Color.
 - * LCDBGC, LCDKEY0, LCDKEY1, LCDALHPA
- 3 Set Display.
 - * LCDVAT, LCDDAH, LCDDAV
 - * LCDXYP0, LCDXYP1, LCDSIZE0, LCDSIZE1
 - * LCDVSYNC, LCDHSYNC
- 4 Set DMAC.
 - * LCDIID
 - * LCDDA0, LCDSA0, LCDFID0, LCDCMD0, LCDOFFS0, LCDPW0, LCDCNUM0, LCDDESSIZE0

- * LCDDA1, LCDSA1, LCDFID1, LCDCMD1, LCDOFFS1, LCDPW1, LCDCNUM1, LCDDESSIZE1
- 5 Enable slcd DMA.
- 6 Enable LCDC.

2.6.2 Register Transfer Mode

Each time you can write a command or a data to the register, then it will transfer the RS signal and data or command to LCM. Command and data can be recognized by RS bit coming from data register. The format of data register transfer can be as follows:

	RS	Data Or C	ommand			11
Command	RS [31] = 1	XXX [30:n-	+1]		Comma	nd [n:0]
	RS [31] = 0	XXX [30:24]			Data [23:0)]
Data	RS [31] = 0] XXX	30:16]		D	ata [15:0]
	RS [31] = 0		XXX [30	0:9]		Data [8:0]
	RS [31] = 0		XXX [3	80:8]		Data [7:0]
long	eiffel	ø150.				

2.7 Timing

2.7.1 Parallel Timing

2.8 Operation Guide

2.8.1 DMA Operation

1 Start DMA transfer.

- a Set LCDCFG.MODE to 1101 to choose LCM.
- b Set LCDCTRL.BST to choose burst length for transferring.
- c Set register LCDIID0, LCDDA0, LCDSA0, LCDFID0, LCDCMD0, LCDOFFS0, LCDPW0, LCDCNUM0, LCDDESSIZE0 to initial internal DMA.
- d Also set register LCDIID1, LCDDA1, LCDSA1, LCDFID1, LCDCMD1, LCDOFFS1, LCDPW1, LCDCNUM1, LCDDESSIZE1 when use DMA channel 1 in OSD mode.
- e Set MCFG to configure SLCDC.
- f Before starting DMA, Wait for MSTATE.BUSY == 0.
- g Set MCTRL.DMATXEN to 1 to prepare DMA transfer.
 Note that if you don't want to stop DMA transfer, you need not to check MSTATE.BUSY.
- h Set LCDCCTRL.ENA to 1 to start LCDC internal DMA.
- The LCDC internal DMA will transfer data to SLCDC, and SLCDC transfer data to LCM. Repeat this step till you want to close the SLCDC to transfer data to LCM Panel.

*please notice that use and only use DMA0 to transfer command no matter use DMA0 to transfer frame data or not.

One recommend descriptor chain (CMD0 with CNUM>0 and CMD1 with CNUM=0):

2 Stop DMA transfer.

- a Set LCDCCTRL.ENA to 0 to stop LCDC internal DMA at once.
- Wait till MSTATE.BUSY is set to 0 by hardware.
 MSTATE.BUSY == 1: there is data in the FIFO waited for transferring to LCM.
 MSTATE.BUSY == 0: all data in the FIFO have finished transferring to LCM.
- c Set MCTRL.DMATXEN to 0 to stop DMA transfer.

3 Restart DMA transfer.

When MCTRL.DMATXEN is set to 0, and then you want to restart DMA transfer at once, you should ensure that MCTRL.DMATXEN must keep 0 at least three cycles of PIXCLK.

2.8.2 Register Operation

1 Set MCFG to configure SLCD.

- 2 Wait for MSTATE.BUSY == 0.
- 3 Set MDATA register.
- 4 Wait for MSTATE.BUSY == 0.
- 5 Set MDATA register.
- 6 Wait for MSTATE.BUSY == 0.
- 7

Tons eiffel@126.com internal used only

3 Decompresser

3.1 Overview

- Support bpp16 compressed data
- Support bpp24 compressed data with alpha
- Support bpp24 compressed data without alpha

3.2 Compress Method

Components

There are two kinds of Components in this method, one is command, the other is data.

Command:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0.00 _0			
POS REP	Reserved	PW	LEN

Bits	Name		Description O									
31:30	POS	Position flag, in	ndicates this command is in the head or middle or end of a	а								
		giving line.	100									
		Value	Description									
		2'b00	Reserved									
		2'b01	This is the last command of the line									
		2'b10	This is sequent command of the line									
	1	2'b11	The is the first command of the line									
29	REP 2	Repeated flag,	indicates the following data is/are repeated or not , in									
10	11.6	another word,	indicates the following data is/are compressed or original	ıl.								
		0: repeated										
		1: non-repeate	d									
28:24	Reserve	All zero.										
23:12	PW	Page width of o	current line.									
		In the start cmo	d, it Indicates how many words in this line.									
		In other cmd, it	is zero.									
11:0	LEN	Length , in repe	eated case, it indicates how many times the following data	ta								
		repeated; in no	epeated; in non-repeated case, it indicates the number of following data									
		frames.										
		*in the case of	compressed without alpha bpp24, this should be all zero.)_								

^{*}In the case of compressed without alpha bpp24, there is just start command, no sequent command and last command, the length is the high 8bits of every data.

Data:

In the case of compressed without alpha bpp24, the length is the high 8bits of every data, other bits are original data.

In the case of compressed with alpha bpp24, the data is ARGB8888.

In the case of compressed bpp16, the data is RGB565 or RGB555, and should be word aligned.

Example

There is an example, in next page.

The first one of the following figures is compressed with alpha;

The second one of the following figures is compressed without alpha.

That is 7 x 4 picture.

The dummies will not be fetched by DMA.

The first line contains 3 repeated pixels, 2 non-repeated pixels, and 2 repeated pixels;

The second contains 7 repeated pixels;

The third line contains 3 repeated pixels, 2 non-repeated pixels, and 2 repeated pixels,

The last line contains 2 repeated pixels, 2 non-repeated pixels, and 3 repeated pixels.

[31:30] = 2511 [29]=0 [31:30] = 2510 [29]=1 [31:30] = 2'601 [29]=0 start cmd data [11:0]=3 [23:12]=7 [11:0]=2 [31:30] = 2'611 [29]=0 start cmd
[11:0]=7 [23:12]=2 data [31:30] = 2511 [29]=0 start cmd [31:30] = 2'601 [29]=0 [31:30] = 2510 [29]=1 data sequent cmd [11:0]=3 [23:12]=7 [11:0]=2 [11:0]=2 [31:30] = 2511 [29]=0 start cmd [31:30] = 2510 [29]=1 [31:30] = 2501 [29]=0 data data data [11:0]=2 [23:12]=7 [11:0]=2 [11:0]=3

dummy dum	my
dummy dum	my
•	
dummy dum	my
· ·	
	durarny dura

3.3 Operation Guide

The routine operations are the same as normal operations except descriptor operation:

- 1 Uncomp_en (LCDCMDx[27])should be set if decompressing function is used.
- 2 Uncomp_md(LCDCMDx[26])should be set if the frame is bpp24 without alpha compressed frame, otherwise, should be clear.
- 3 LCDPWx don't need to set value.
- 4 LEN (LCDCMDx[11:0]) should be set to the LPP value of the frame.
- 5 LCDOFFSx should be set to how many word in per line of frame buffer for compressed frame, count in word, 64-word align or 16-word align(depend on the configuration of aosd comp).

Ions eiffel@126.com internal used only

4 TV Encoder

4.1 Overview

The TV Encoder enables the data for LCD panel showing in TV screen. This release does not support S-video output.

Features:

- CVBS output
- PAL and NTSC supported

1018 eiffel@126.com internal used only

4.2 Structure

Ions eiffel@126.com internal used only

4.3 Pin Description

Table 4-1 TVE Pins Description

Name	I/O	Description	Interface
YCMP	AO	CVBS analog output	

Tons eiffel@126.com internal used only

4.4 Register Description

TVE memory mapped registers are put together with LCD controller, occupied address area of 'H13050140 ~ 'H130501FF. Following table lists all the registers definition. All register's 32bit address is physical address. And detailed function of each register will be described below.

Name	Description	RW	Reset Value	Address	Size
TVECR	TV Encoder Control register	RW	0x01040301	0x13050140	32
FRCFG	Frame configure register	RW	0x00170271	0x13050144	32
SLCFG1	TV signal level configure register 1	RW	0x0320011A	0x13050150	32
SLCFG2	TV signal level configure register 2	RW	0x012800F0	0x13050154	32
SLCFG3	TV signal level configure register 3	RW	0x00000048	0x13050158	32
LTCFG1	Line timing configure register 1	RW	0x00143F4E	0x13050160	32
LTCFG2	Line timing configure register 2	RW	0x05A0103D	0x13050164	32
CFREQ	Chrominance sub-carrier frequency configure register	RW	0x2A098ACB	0x13050170	32
CPHASE	Chrominance sub-carrier phase configure register	RW	0x0000001	0x1 <mark>3</mark> 050174	32
CCFG	Chrominance filter configure register	RW	0x3B3B8989	0x13050178	32
WSSCR	Wide screen signal control register	RW	0x00000070	0x13050180	32
WSSCFG1	Wide screen signal configure register 1	RW	0x00000000	0x13050184	32
WSSCFG2	Wide screen signal configure register 2	RW	0x0000000	0x13050188	32
WSSCFG3	Wide screen signal configure register 3	RW	0x00000000	0x1305018C	32

4.4.1 TV Encoder Control Register (TVECR)

This register is used to control TV encoder.

	TV	ECF	2																										0 x	130	50 ′	140
Bit	31	30	29	28 2	27 2	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BLANK	SOGEN	SYNC	IBCTRL		Reserved	YUV	ECVBS	Becerved	NO SOLVEY	CHSEL	DAPD	IREN		YCDLY		CGAIN		CBW		Reserved	100001	SYNCT	PAL	FINV	ZBLACK	CR1ST	CLBAR		Reserved		SWRST
RST	0	0	1	0	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1

Bits	Name	Description	RW
31	BLANK	BLANK level control. 0: disable; 1: enable.	RW
30	SOGEN	Sync-On-Green enable. 0: disable; 1: enable.	RW

29	SYNC	SYNC level co	ontrol.	RW								
28:27	IBCTRL	Output current	tuning. 00: -20%; 01:-10%; 10: 0%; 11:+10%.	RW								
26	Reserved	Writing has no	effect, read as zero.	R								
25	YUV	Keep this bit z	ero.	RW								
24	ECVBS	Keep this bit o	ne.	RW								
23:22	Reserved	Writing has no	effect, read as zero.	R								
21	CHSEL	DAC output er	nable. 0: disable; 1: enable.	RW								
20	DAPD	DAC power do	own. When it is 0, power down all DACs.	RW								
19	IREN	7.5 IRE pedes	tal control enable. 0: disable; 1: enable.	RW								
18:16	YCDLY	(internal used	(internal used only)									
15:14	CGAIN	Chrominance	Chrominance modulated signal gain factor setting when it is added to									
		luminance sign	nal in composite output format.									
		CGAIN	Description									
		00	1	1								
		01	1/4	7								
		10	1/2									
		11	3/4									
13:12	CBW	Bandwidth set	ting for chrominance filter.	RW								
		CBW	Description									
		00	Narrow band									
		01	Wide band									
		10	Extra wide band									
		11	Ultra wide band									
11:10	Reserved	Writing has no	effect, read as zero.	R								
9	SYNCT	Choose the se	equence of field synchronizing pulses duration.	RW								
	0	SYNCT	Description									
	200	0	The duration of sequence of field									
1	Orre		synchronizing pulses is 3 H, where H is a line									
			period. Set SYNCT to this for NTSC TV set									
		1	The duration of sequence of field									
			synchronizing pulses is 2.5 H. Set SYNCT to									
			this for PAL TV set									
8	PAL		or PAL TV set, 0 for NTSC TV set.	RW								
7	FINV		s 1, invert top and bottom fields.	RW								
6	ZBLACK		ance (Y) input is 0. Set this bit to 1 if the input video	RW								
			a for black is 0. Set this bit to 0 if the input video									
			a for black is 16. When this bit is 0, the Y input data will									
_	00/0=	be clamped to		5								
5	CR1ST		bed the Cb and Cr data order in input video.	RW								
		ECVBS	Description									
		0	Cb comes before Cr, which is ITU656									
			standard									

		1	Cr comes before Cb							
4	CLBAR	Color bar mode	e. In this mode, a color bar picture is output to T	V.	RW					
		CLBAR	Description							
		0	Output input video to TV							
		1	Output color bar to TV							
3:1	Reserved	Writing has no	effect, read as zero.		R					
0	SWRST	Software reset	Software reset. When set this bit to 1, TVE is reset.							

4.4.2 Frame configure register (FRCFG)

This register is used to configure line in a frame.

	FR	CF	G																										0 x	130	50 1	144
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			R	ese	erve	d						L1	ST					R	ese	erve	ed			1	36	6	NL	NE		7		
RST	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0	0	0	0	0	1	0	0	1	1	1	0	0	0	1

Bits	Name	Description	RW
31:24	Reserved	Writing has no effect, read as zero.	R
23:16	L1ST	This field defines the first active video line of a field. The reset value	RW
		is 23 in decimal. The frame active video line number is (NLINE – 1 –	
		2 * L1ST). The top and bottom field line number is a half of the frame	
	C	line number.	
15:10	Reserved	Writing has no effect, read as zero.	R
9:0	NLINE	This field defines number of lines per-frame. The reset value is 625 in	RW
1	OUP	decimal.	

4.4.3 Signal level configure register 1, 2 and 3 (SLCFG1, SLCFG2, SLCFG3)

These registers are used to configure the TV signal level in difference phases.

	SLO	CFG	31																										0x	130	50 1	150
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		R	ese	rve	d					۷	VHI	TEI	_					R	ese	rve	d					E	BLA	CK	L			
RST	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	1	0

Bits	Name	Description	RW
31:26	Reserved	Writing has no effect, read as zero.	R

25:16	WHITEL	Signal level for white color. The reset value is 800 in decimal.	RW
15:10	Reserved	Writing has no effect, read as zero.	R
9:0	BLACKL	Signal level for black color. The reset value is 282 in decimal.	RW

Bits	Name	Description	RW
31:26	Reserved	Writing has no effect, read as zero.	R
25:16	VBLANKL	Signal level in vertical blank period. The reset value is 296 in	RW
		decimal.	
15:10	Reserved	Writing has no effect, read as zero.	R
9:0	BLANKL	Signal level in other blank period. The reset value is 240 in decimal.	RW

Bits	Name	Description	RW
31:8	Reserved	Writing has no effect, read as zero.	R
7:0	SYNCL	Signal level in sync period. The reset value is 72 in decimal.	RW

4.4.4 Line timing configure register 1 and 2 (LTCFG1, LTCFG2)

These registers are used to configure timing period in a line.

| Comparison | Com

Bits	Name	Description	RW
31:21	Reserved	Writing has no effect, read as zero.	R

20:16	FRONTP	Front porch width, 16 cycles of 13.5MHz for 525 line system and 20	RW
		cycles for 625 line.	
15	Reserved	Writing has no effect, read as zero.	R
14:8	HSYNCW	HSYNC width in cycles of 13.5MHz. The reset value is 63 in decimal.	RW
7	Reserved	Writing has no effect, read as zero.	R
6:0	BACKP	Back porch width in cycles of 13.5MHz. The reset value is 78 in	RW
		decimal.	

	LTC	CFG	2																										0x	130	50 1	164
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Res	ser\	/ed						AC	CTL	IN						Reserved			PF	REB	W		Reserved			BU	RS ⁻	TW		
RST	0	0	0	0	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	1	1	0	1

Bits	Name	Description	RW
31:27	Reserved	Writing has no effect, read as zero.	R
26:16	ACTLIN	Active line length in cycles of 27MHz. The reset value is 1440 in	RW
		decimal, which represent 720 pixels per line.	
15:13	Reserved	Writing has no effect, read as zero.	R
12:8	PREBW	Pre-burst width. The width after HSYNC and before the burst signals	RW
		of back porch in cycles of 27MHz. The reset value is 16 in decimal.	
7	Reserved	Writing has no effect, read as zero.	R
6:0	BURSTW	The sub-carrier burst width inside back porch in cycles of 27MHz.	RW
		The reset value is 61 in decimal.	

4.4.5 Chrominance configure registers (CFREQ, CPHASE, CFCFG)

This register is used to define chrominance sub-carrier frequency.

Bits	Name	Description	
32	CFREQ	Chrominance sub-carrier frequency.	RW

This register is used to define chrominance sub-carrier phase.

Bits	Name	Description				
31:24	INITPH	Initial phase of chrominance sub-carrier. Corresponding to upper 8				
		bits of CFREQ.				
23:16	ACTPH	This is added to chrominance sub-carrier angle (corresponding to F				
		upper 8 bits of CFREQ) in case of active video period.				
15:2	Reserved	Writing has no effect, read as zero.				
1:0	CCRSTP	Chrominance clock reset period. After the reset, chrominance clock				
		is set to INITPH. Besides this, chrominance clock is reset also to				
		INITPH in case of chip reset.				
		CCRSTP	Description			
		00	Every 8 field			
		01	Every 4 fields			
		10	Every 2 lines			
		11	Never			

This register is used to configure chrominance filter.

CCFG
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRBA

CBGAIN

CRGAIN

RST 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1

Bits	Name	Description		
31:24 CBBA Cb amplitude for burst period. The reset value is 59 in de			RW	
		corresponding to 59*4 = 236		
		≈ (WHITEL – BLANKL) * 4 / 10 (±10%) = 224 ± 22		
		≈ (WHITEL – BLANKL) * 3 / 7 (±3%) = 240 ± 7		
23:16	CRBA	Cr amplitude for burst period. The reset value is 59 in decimal.	RW	
		In PAL mode CRBA value is 59 in decimal and in NTSC mode CRBA		
		value is 0 in decimal.		
15:8	CBGAIN	Cb gain. The reset value is 137 in decimal. CBGAIN=128 means no	RW	
		changing to the incoming Cb data.		
7:0	CRGAIN	Cr gain. The reset value is 137 in decimal. CRGAIN=128 means no	RW	
		changing to the incoming Cr data.		

4.5 Switch between LCD panel and TV set

LCD panel → TV set switch

- Step 1. Configure TVE (CVBS, N/P, and etc), enable DAC.
- Step 2. Disable LCDC. If data is from IPU, stop IPU. Then LCD panel is turned off.
- Step 3. Configure LCDC for output via TVE.
- Step 4. Configure TVE and LCDC pixel clock and enable TVE clock (CPM).
- Step 5. If data is from IPU, start IPU. Then start LCDC.
- Step 6. Enable TVE (TVECR.SWRST=0). Then data stream from LCDC is output to TV set via TVE.

TV set → LCD panel switch

- Step 1. Disable TVE (TVECR.SWRST=1). Then no signal is output to TV set.
- Step 2. Disable TVE clock (CPM), and disable DAC.
- Step 3. Disable LCDC. If data is from IPU, stop IPU.
- Step 4. Configure LCDC pixel clock. Configure LCDC for output to LCD panel. Step 5. If data is from IPU, start IPU. Start LCDC. Then LCD panel is work.

4.6 DAC

4.6.1 DAC Connection

Full-Scale adjust resistor. A resistor (RSET) connected between this pin and AVSS controls the magnitude of the full-scale video signal. RSET (ohm) = 35k, where IOFS is full-scale output current per channel under the conditions of IREN =0, and SOGEN = 0.

4.6.2 DAC DC Character

VDDDAC =3.3V; DVDD=1.2V; RL=37.5ohm, CL=10Pf; Temp = 25° C.

Parameter	Symbol	Min	Type	Max	Unit
Operating voltage range	VDDDAC	3. 0	3.3	3.6	V
Max output voltage	DVDD	1.08	1. 20	1.32	V
DAC resolution			10		bits
Integral non-linearity error	INL	-1.2	-0.6~+0.6	+1.2	LSB
Differential non-linearity er	DNL	-1.2	-0.6~+0.6	+1.2	LSB

4.6.3 DAC Power Down Setup Time

As the output current's max value per channel is 34.1mA, keep the DAC power down when you not use TV encoder.

1018 eiffel@126.com internal used only

5 EPD Controller

5.1 Overview

The controller provides a low cost SOC solution for EPD applications.

Features:

- Supports PVI and AUO compatible EPD panels
- Supports different size up to 1024x768
- Supports 2/4/5 bits grayscale and color display
- Supports up to 8 multi-zone concurrent updating

1018 eiffel@126.com internal used only

5.2 EPDC Pin Mappings

Table 5-1 EPDC Pin Mapping

PVI	AUO	PIN
GDCLK	YCLK	LCD_VSYN_PC19
GDRL	UD	LCD_B0_LCD_REV_PC00
GDSP	YDIOU	LCD_B1_LCD_PS_PC01
GDOE	YOE	LCD_B2_PC02
SDCLK	XCLK	LCD_PCLK_PC08
SDOE		LCD_DE_PC09
SDLE	LD	LCD_HSYN_PC18
SDRL	RL	LCD_B3_PC03
SDCE [7]	YDIOD	LCD_R1_PC21
SDCE [6]	VCOM[1]	LCD_R0_LCD_CLS_UART4_RXD_PC20
SDCE [5]	VCOM[0]	CIM_D5_EPD_SCE5PB15
SDCE [4]		CIM_D4_EPD_SCE4PB14
SDCE [3]		CIM_D3_EPD_SCE3PB1
SDCE [2]		CIM_D2_EPD_SCE2PB12
SDCE [1]	XDIOR	LCD_G1_PC11
SDCE [0]	XDIOL	LCD_G0_LCD_SPL_UART4_TXD_PC10
SDDO [15]	DATA [15]	LCD_R7_PC27
SDDO [14]	DATA [14]	LCD_R6_PC26
SDDO [13]	DATA [13]	LCD_R5_PC25
SDDO [12]	DATA [12]	LCD_R4_PC24
SDDO [11]	DATA [11]	LCD_R3_PC23
SDDO [10] O	DATA [10]	LCD_R2_PC22
SDDO [9]	DATA [9]	LCD_G7_PC17
SDDO [8]	DATA [8]	LCD_G6_PC16
SDDO [7]	DATA [7]	LCD_G5_PC15
SDDO [6]	DATA [6]	LCD_G4_PC14
SDDO [5]	DATA [5]	LCD_G3_PC13
SDDO [4]	DATA [4]	LCD_G2_PC12
SDDO [3]	DATA [3]	LCD_B7_PC07
SDDO [2]	DATA [2]	LCD_B6_PC06
SDDO [1]	DATA [1]	LCD_B5_PC05
SDDO [0]	DATA [0]	LCD_B4_PC04
PWRCOM		CIM_MCLK_EPD_PWC_PB09
PWR7	PWR7	AIC0_SDATO_EPD_PWR7_PE07
PWR6	PWR6	AIC0_SDATI_EPD_PWR6_PE06
PWR5	PWR5	LRCLK0_EPD_PWR5_PD13
PWR4	PWR4	UART3_RXD_BCLK0_EPD_PWR4_PD12

PWR3	PWR3	CIM_D7_EPD_PWR3_PB17
PWR2	PWR2	CIM_D6_EPD_PWR2_PB16
PWR1	PWR1	CIM_D1_EPD_PWR1_PB11
PWR0	PWR0	CIM_D0_EPD_PWR0_PB10
BD[3]	BD[3]	TSDI5_EPD_BD3_PB25
BD[2]	BD[2]	TSDI4_EPD_BD2_PB24
BD[1]	BD[1]	TSDI3_EPD_BD1_PB23
BD[0]	BD[0]	TSDI2_EPD_BD0_PB22

long eiffel@126.com internal used only

5.3 Function Block Diagram

Figure 5-1 EPDC Function Diagram

5.4 EPD Controller Registers

Table 5-2 EPD Controller Registers

Name	Address	Reset Value	Access Size	RW
EPDC_CTRL	0x13050200	0x00000000	32	RW
EPDC_STA	0x13050204	0x00000000	32	R
EPDC_ISR	0x13050208	0x00000000	32	RW
EPDC_CFG0	0x1305020C	0x00000000	32	RW
EPDC_CFG1	0x13050210	0x00000000	32	RW
EPDC_PPL0	0x13050214	0x00000000	32	RW
EPDC_PPL1	0x13050218	0x00000000	32	RW
EPDC_VAT	0x1305021C	0x00000000	32	RW
EPDC_DAV	0x13050220	0x00000000	32	RW
EPDC_DAH	0x13050224	0x00000000	32	RW
EPDC_VSYN	0x13050228	0x00000000	32	RW
EPDC_HSYN	0x1305022C	0x00000000	32	RW
EPDC_GDCLK	0x13050230	0x00000000 \	32	RW
EPDC_GDOE	0x13050234	0x00000000	32	RW
EPDC_GDSP	0x13050238	0x00000000	32	RW
EPDC_SDOE	0x1305023C	0x00000000	32	RW
EPDC_SDSP	0x13050240	0x00000000	32	RW
EPDC_PMGR0	0x13050244	0x00000000	32	RW
EPDC_PMGR1	0x13050248	0x00000000	32	RW
EPDC_PMGR2	0x1305024C	0x00000000	32	RW
EPDC_PMGR3	0x13050250	0x00000000	32	RW
EPDC_PMGR3	0x13050254	0x00000000	32	RW
EPDC_VCOM0	0x13050258	0x00000000	32	RW
EPDC_VCOM1	0x1305025C	0x00000000	32	RW
EPDC_VCOM2	0x13050260	0x00000000	32	RW
EPDC_VCOM3	0x13050264	0x00000000	32	RW
EPDC_VCOM4	0x13050268	0x00000000	32	RW
EPDC_VCOM5	0x1305026C	0x00000000	32	RW
EPDC_BORDR	0x13050270	0x00000000	32	RW
EPDC_HWPAL	0x1305027C	0x00000000	32	RW
EPDC_PPL0_POS	0x13050280	0x00000000	32	RW
EPDC_PPL0_SIZE	0x13050284	0x00000000	32	RW
EPDC_PPL1_POS	0x13050288	0x00000000	32	RW
EPDC_PPL1_SIZE	0x1305028C	0x00000000	32	RW
EPDC_PPL2_POS	0x13050290	0x00000000	32	RW
EPDC_PPL2_SIZE	0x13050294	0x00000000	32	RW
EPDC_PPL3_POS	0x13050298	0x00000000	32	RW

EPDC_PPL3_SIZE	0x1305029C	0x00000000	32	RW
EPDC_PPL4_POS	0x130502A0	0x00000000	32	RW
EPDC_PPL4_SIZE	0x130502A4	0x00000000	32	RW
EPDC_PPL5_POS	0x130502A8	0x00000000	32	RW
EPDC_PPL5_SIZE	0x130502AC	0x00000000	32	RW
EPDC_PPL6_POS	0x130502B0	0x00000000	32	RW
EPDC_PPL6_SIZE	0x130502B4	0x00000000	32	RW
EPDC_PPL7_POS	0x130502B8	0x00000000	32	RW
EPDC_PPL7_SIZE	0x130502BC	0x00000000	32	RW

Ions eiffel@126.com internal used only

5.5 Registers Description

5.5.1 EPDC Control Registers

	EPI	DC_	СТ	RL																									0x	130	502	200
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PPL7_FRM_INTE	PPL6_FRM_INTE	PPL5_FRM_INTE	PPL4_FRM_INTE	PPL3_FRM_INTE	PPL2_FRM_INTE	PPL1_FRM_INTE	PPL0_FRM_INTE	Reserved	FRM_VCOM_INTE	IMG_DONE_INTE	FRM_DONE_INTE	FRM_ABT_INTE	PWR_OFF_INTE	PWR_ON_INTE	DMA_DONE_INTE	PPL7_FRM_ENA	PPL6_FRM_ENA	PPL5_FRM_ENA	PPL4_FRM_ENA	PPL3_FRM_ENA	PPL2_FRM_ENA	PPL1_FRM_ENA	PPL0_FRM_ENA	IMG_RFE_ABT	IMG_REF_ENA	PWROFF	PWRON	poracoo	אפאפו אפת	EPD_DMA_MODE	EPD_ENA
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31	PPL7_FRM_INTE	PPL7_FRM_INT interrupt enable.	RW
30	PPL6_FRM_INTE	PPL7_FRM_INT interrupt enable.	RW
29	PPL5_FRM_INTE	PPL7_FRM_INT interrupt enable.	RW
28	PPL4_FRM_INTE	PPL7_FRM_INT interrupt enable.	RW
27	PPL3_FRM_INTE	PPL7_FRM_INT interrupt enable:	RW
26	PPL2_FRM_INTE	PPL7_FRM_INT interrupt enable.	RW
25	PPL1_FRM_INTE	PPL7_FRM_INT interrupt enable.	RW
24	PPL0_FRM_INTE	PPL7_FRM_INT interrupt enable.	RW
23	Reserved	Writing has no effect, read as zero.	R
22	FRM_VCOM_INTE	FRM_VCOM_INT interrupt enable.	RW
21	IMG_DONE_INTE	IMG_DONE_INT interrupt enable.	RW
20	FRM_DONE_INTE	FRM_DONE_INT interrupt enable.	RW
19	FRM_ABT_INTE	FRM_ABT_INT interrupt enable.	RW
18	PWR_OFF_INTE	PWR_OFF_INT interrupt enable.	RW
17	PWR_ON_INTE	PWR_ON_INT interrupt enable.	RW
16	DMA_DONE_INTE	DMA_DONE_INT interrupt enable.	RW
15	PPL7_FRM_ENA	Enable the 8 th pipeline updating, cleared by HW when it finished.	RW
14	PPL6_FRM_ENA	Enable the 7 th pipeline updating, cleared by HW when it finished.	RW
13	PPL5_FRM_ENA	Enable the 6 th pipeline updating, cleared by HW when it finished.	RW
12	PPL4_FRM_ENA	Enable the 5 th pipeline updating, cleared by HW when it finished.	RW
11	PPL3_FRM_ENA	Enable the 4 th pipeline updating, cleared by HW when it finished.	RW
10	PPL2_FRM_ENA	Enable the 3 rd pipeline updating, cleared by HW when it finished.	RW
9	PPL1_FRM_ENA	Enable the 2 nd pipeline updating, cleared by HW when it finished.	RW
8	PPL0_FRM_ENA	Enable the 1 st pipeline updating, cleared by HW when it finished.	RW
7	IMG_REF_ABT	Abort current image updating, cleared by HW when it finished.	RW
6	IMG_REF_ENA	Start to update the image, cleared by HW when it finished.	RW
5	PWROFF	Start the power off sequence, cleared by HW when it finished.	RW

4	PWRON	Start the power on sequence, cleared by HW when it finished.	RW
3:2	Reserved	Writing has no effect, read as zero.	R
1	EPD_DMA_MODE	1: The DMA will stop at the last frame data has been loaded;	RW
		0: The DMA will stop at end of each frame data has been loaded.	
		It is available when DMAMODE in LCD MCTRL set to 1.	
0	EPD_ENA	Enable EPD controller.	RW

5.5.2 EPDC Status Register

EPDC_STA 0x13050204 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved CUR_TOT_FRM

Bits	Name	Description	RW
31:16	Reserved	Writing has no effect, read as zero.	R
15:0	CUR_TOT_FRM	The numbers of frames have been processed in current	RW
		operation, including border updating.	

5.5.3 EPDC ISR Register

auer upd interest of the company of EPD_ISR 0x13050208 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPL6_FRM_INT FRM IN FRM INT FRM IN FRM_INI PPL7 FRM IN FRM IN DONE DONE FRM Reserved PPL5 PPL3 PPL2

Bits	Name	Description	RW
31:16	Reserved	Writing has no effect, read as zero.	R
15	PPL7_FRM_INT	The 8 th pipeline interrupt.	RW
14	PPL6_FRM_INT	The 7 th pipeline interrupt.	RW
13	PPL5_FRM_INT	The 6 th pipeline interrupt.	RW
12	PPL4_FRM_INT	The 5 th pipeline interrupt.	RW
11	PPL3_FRM_INT	The 4 th pipeline interrupt.	RW
10	PPL2_FRM_INT	The 3 rd pipeline interrupt.	RW
9	PPL1_FRM_INT	The 2 nd pipeline interrupt.	RW

8	PPL0_FRM_INT	The 1 st pipeline interrupt.	RW
7	Reserved	Writing has no effect, read as zero.	R
6	FRM_VCOM_INT	This interrupt will be asserted when frame counter reaches	RW
		95 at current updating. It means SW should update	
		EPDC_VCOM0~5 if necessary. It is available when need	
		more than 96 frames to update an image or text.	
5	IMG_DONE_INT	It interrupt will be asserted when all pipelines completed.	RW
4	FRM_DONE_INT	It interrupt will asserted when each frame.	RW
3	FRM_ABT_INT	This interrupt will be asserted when abort current display	RW
		updating completed.	
2	PWR_OFF_INT	It interrupt will be asserted when perform power off	RW
		sequence completed.	
1	PWR_ON_INT	This interrupt will be asserted when perform power on	RW
		sequence completed.	
0	DMA_DONE_INT	This interrupt will be asserted when last frame data loaded	RW
		by DMA.	

5.5.4 EPDC Configuration Register 0

iternal used EPDC_CFG0 0x1305020C Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 COLOR_MODE GDOE_MODE OMODE GATE CAS CAS GDCLK POL COLOR_FM GDOE POL SDCLK POL EPD_OBPP РО PQ SDSP POL PO SDCE_POL Reserved GDOD SDRL GDSP_ SDSP GDSP EPD **RST** 0 0 0 0 0 0 0

Bits	Name	Description	RW
31	DUAL_GATE	Dual Gate Mode for some AUO EPD.	RW
30	COLOR_MODE	Color or mono mode selection.	RW
29:27	COLOR_FMT	Source Driver data format when in color mode.	RW
26	SDSP_CAS	It means output start pulse for Source Drivers cascading from	RW
		XDIOR or XDIOL depending on data shift direction.	
25	SDSP_MODE	It means output start pulse for Source Drivers to start line a line	RW
		data, or using chip enable for data sampling.	
24	GDCLK_MODE	0: GDCLK will be terminated when the last line data output, 1:	RW
		GDCLK will last another line when outputted the last line data.	
		For PVI EPD, it always should be set to 1; for AUO EPD, set it to	
		0 for normal mode and set it to 1 for fast mode.	
23:22	Reserved	Writing has no effect, read as zero.	R

			1
21	GDUD	Up/Down pulse direction control and setting concatenating	RW
		sequence for the Gate Driver.	
20	SDRL	Left/Right pulse direction control and setting concatenating	RW
		sequence for the Source Driver.	
19	GDCLK_POL	Polarity of Gate Driver clock.	RW
18	GDOE_POL	Polarity of Gate Driver output enable.	RW
17	GDSP_POL	Polarity of Gate Driver start pulse.	RW
16	SDCLK_POL	Source Driver clock sample edge selection.	RW
		0: sample data at rising edge	
		1: sample data at falling edge	
15	SDOE_POL	Polarity of Source Driver output enable.	RW
14	SDSP_POL	Polarity of Source Driver start pulse.	RW
13	SDCE_POL	Polarity of Source Drivers chip enable.	RW
12	SDLE_POL	Polarity of Source Driver data latch signal.	RW
11:10	Reserved	Writing has no effect, read as zero.	R
9	GDSP_CAS	It means output start pulse for Gate Drivers cascading from	RW
		YDIOU or YDIOD depending on data shift direction.	
8:4	Reserved	Writing has no effect, read as zero.	R
3:1	EPD_OBPP	Bits per pixel for Source Driver.	RW
		1: 2 bits per pixel 2: 4 bits per pixel	
		2: 4 bits per pixel	
		others reserved	
0	EPD_OMODE	The Source Driver data bus width.	RW
		0: 8-bit	
	c & P	1: 16-bit	

5.5.5 EPDC Configuration Register 1

Bits	Name	Description	RW
31	Reserved	Writing has no effect, read as zero.	R
30	SDDO_REV	Set it to reverse pixels arrangement output to Source Driver.	RW
		For instance, if SDDO_REV = 0, EPD_OBPP = 1, EPD_OMODE =	
		0, controller will output 4 pixels in each SDCLK in the format: [P3,	

1		
	P2, P1, P0]. But if SDDO_REV = 1, then the output looks like [P0,	
	P1, P2, P3].	
PDAT_SWAP	Swap padding data or not, using it with SDRL in following	RW
	combinations:	
	PDAT_SWAP = 0, SDRL = 0: padding after the display data	
	PDAT_SWAP = 0, SDRL = 1: padding before the display data	
	PDAT_SWAP = 1, SDRL = 0: padding before the display data	
	PDAT_SWAP = 1, SDRL = 1: padding after the display data	
SDCE_REV	If Source Driver using chip enable, set it will reverse chips enable	RW
	sequence, using it with SDCE_STN and SDCE_NUM.	
	For instance, if SDCE_NUM = 4, SDCE_STN = 0, controller output	
	chips enable [SDCE0, SDCE1, SDCE2, SDCE3] in order. But if	
	SDCE_REV = 1, outputs will be [SDCE3, SDCE2, SDCE1, SDCE0].	
Reserved	Writing has no effect, read as zero.	R
SDOS	It is available when Source Driver using chip enable.	RW
	SDOS = (Single Source Driver output size) / (Pixels per Clock)	
PDAT	Source Driver padding data, only available when Source Driver use	RW
	chip enable. PDAT = (Source Driver Output Size * Number – Line	
	Display Size) / (Pixels per Clock)	
SDCE_STN	Source Driver start number, only available when Source Driver use	RW
	chip enables.	
SDCE_NUM	Source Driver total number, only available when Source Driver use	RW
	chip enables:	
	SDCE_REV Reserved SDOS PDAT SDCE_STN	P1, P2, P3]. Swap padding data or not, using it with SDRL in following combinations: PDAT_SWAP = 0, SDRL = 0: padding after the display data PDAT_SWAP = 0, SDRL = 1: padding before the display data PDAT_SWAP = 1, SDRL = 0: padding before the display data PDAT_SWAP = 1, SDRL = 1: padding after the display data PDAT_SWAP = 1, SDRL = 1: padding after the display data If Source Driver using chip enable, set it will reverse chips enable sequence, using it with SDCE_STN and SDCE_NUM. For instance, if SDCE_NUM = 4, SDCE_STN = 0, controller output chips enable [SDCE0, SDCE1, SDCE2, SDCE3] in order. But if SDCE_REV = 1, outputs will be [SDCE3, SDCE2, SDCE1, SDCE0]. Reserved Writing has no effect, read as zero. SDOS It is available when Source Driver using chip enable. SDOS = (Single Source Driver output size) / (Pixels per Clock) PDAT Source Driver padding data, only available when Source Driver use chip enable. PDAT = (Source Driver Output Size * Number – Line Display Size) / (Pixels per Clock) SDCE_STN Source Driver start number, only available when Source Driver use chip enables. SDCE_NUM Source Driver total number, only available when Source Driver use

5.5.6 EPDC Pipeline Frame Register 0

Bits	Name	Description	RW
31:24	PPL3_FRM_NUM	The 4 th pipeline frame number.	RW
23:16	PPL2_FRM_NUM	The 3 rd pipeline frame number.	RW
15:8	PPL1_FRM_NUM	The 2 nd pipeline frame number.	RW
7:0	PPL0_FRM_NUM	The 1 st pipeline frame number.	RW

5.5.7 EPDC Pipeline Frame Register 1

	EPI	DC_	PP	L1																									0x	(130)50:	218
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		PF	PL7	_FF	RM_	NU	JM			PF	PL6	_FF	RM_	NU	JM			PF	PL5	_FF	RM_	NU	M			PF	PL4	_FF	SM_	NU	M	
RST	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:24	PPL7_FRM_NUM	The 8 th pipeline frame number.	RW
23:16	PPL6_FRM_NUM	The 7 th pipeline frame number.	RW
15:8	PPL5_FRM_NUM	The 6 th pipeline frame number.	RW
7:0	PPL4_FRM_NUM	The 5 th pipeline frame number.	RW

5.5.8 EPDC Virtual Display Area Setting Register

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	VT	The period of each frame in lines.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	HT 1	The period of each line in SDCLK.	RW

5.5.9 EPDC Vertical Display Area Setting Register

	EP	DC_	_DA	V																									0 x	130	502	220
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	lese	erve	d						VD	E						R	ese	rve	d						VE	os					
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	VDE	The line number at which each frame displays data ends.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	VDS	The line number at which each frame displays data starts.	RW

5.5.10 EPDC Horizontal Display Area Setting Register

	EPI	DC_	_DA	Н																									0x	130	502	224
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	lese	erve	d						HD	E						R	lese	erve	d						Н	os					
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	HDE	The position at which each line displays data ends.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	HDS	The position at which each line displays data starts.	RW

5.5.11 EPDC Vertical Synchronous Start Pulse Setting

ised only **EPDC VSYN** 0x13050228 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 **VPE VPS** Reserved Reserved

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	VPE	The last line number for Gate Driver generating start pulse.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	VPS C	The first line number for Gate Driver generating start pulse.	RW

5.5.12 EPDC Horizontal Synchronous Start Pulse Setting

EPDC_HSYN 0x1305022C Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved **HPE** Reserved **HPS**

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	HPE	The position at which Source Driver data latch signal de-asserts.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	HPS	The position at which Source Driver data latch signal asserts.	RW

5.5.13 EPDC Gate Driver Clock Setting Register

	EPI	DC_	GE	CL	.K																								0x	130)502	230
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved GDCLK_DIS														R	lese	rve	d					GD	CLŁ	_ E	NA						
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	GDCLK_DIS	The position at which Gate Driver clock signal de-asserts.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	GDCLK_ENA	The position at which Gate Driver clock signal asserts.	RW

5.5.14 EPDC Gate Output Enable Setting Register

sed only **EPDC GDOE** 0x13050234 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 GDOE DIS **GDOE ENA** Reserved Reserved

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	GDOE_DIS	The position at which Gate Driver output enable signal de-asserts.	RW
15:12	Reserved ,	Writing has no effect, read as zero.	R
11:0	GDOE_ENA	The position at which Gate Driver output enable signal asserts.	RW

5.5.15 EPDC Gate Driver Start Pulse Setting

EPDC_GDSP 0x13050238

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved GDSP_DIS Reserved **GDSP ENA**

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	GDSP_DIS	The position at which Gate Driver start pulse signal de-asserts.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	GDSP_ENA	The position at which Gate Driver start pulse signal asserts.	RW

5.5.16 EPDC Source Driver Output Enable Setting Register

	EPI	D_S	SDC	E																									0 x	130	502	3C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved SDOE_DIS															R	lese	rve	d					SD	OE	_EI	NA					
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	SDOE_DIS	The position at which Source Driver output enable signal de-asserts.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	SDOE_ENA	The position at which Source Driver output enable signal asserts.	RW

5.5.17 EPDC Source Driver Start Pulse Setting Register

sed only **EPDC SDSP** 0x13050240 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SDSP_DIS Reserved SDSP ENA Reserved

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	SDSP_DIS	The position at which Source Driver start pulse signal asserts.	RW
15:12	Reserved 🔨	Writing has no effect, read as zero.	R
11:0	SDSP_ENA	The position at which Source Driver start pulse signal de-asserts.	RW

5.5.18 EPDC Power Management Registers 0

EPDC_PMGR0 0x13050244

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved PWR DLY12 Reserved PWR DLY01

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	PWR_DLY12	The delay time in line between PWR [1] and PWR [2].	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	PWR_DLY01	The delay time in line between PWR [0] and PWR [1].	RW

5.5.19 EPDC Power Management Registers 1

	EPI	DC_	_PN	/IGF	R1																								0x	:130	502	248
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved PWR_DLY34														R	lese	erve	d					PW	/R_	DLY	′23						
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	PWR_DLY34	The delay time in lines between PWR [3] and PWR [4].	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	PWR_DLY23	The delay time in lines between PWR [2] and PWR [3].	RW

5.5.20 EPDC Power Management Registers 2

used only EPDC_PMGR2 0x1305024C Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved PWR_DLY56 Reserved PWR_DLY45

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	PWR_DLY56	The delay time in lines between PWR [5] and PWR [6].	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	PWR_DLY45	The delay time in lines between PWR [4] and PWR [5].	RW

5.5.21 EPDC Power Management Registers 3

	EPI	OC.	_PN	IGF	23																								0 x	130	502	250
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		VCOM_IDLE	PWRCOM_POL	NNI_POL	PPL7_BDR_ENA	BDR_LEVEL		BDR_IDLE			P	WR _.	_P(DL			R	ese	erve	d					PW	/R_	DLY	⁄67				
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:30	VCOM_IDLE	VCOM [1:0] default value when idle.	RW
29	PWRCOM_POL	The polarity of PWRCOM.	RW
28	UNIPOL	This bit choose PWRCOM or VCOM [1:0] as common	RW
		voltage control signals of Source Driver.	
		0: VCOM [1:0]	
		1: PWRCOM	
27	PPL7_BDR_ENA	The 7 th pipeline used for border updating or not.	RW
26	BDR_LEVEL	Border voltage control level setting.	RW
		0:2 bits	
		1:4 bits	
25:24	BDR_IDLE	Border voltage control signals default value when idle.	RW
23:16	PWR_POL	Polarity of PWR7~0.	R
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	PWR_DLY67	The delay time in lines between PWR [6] and PWR [7].	RW
	EPDC Power Manage	rnal	
	DC_PMGR4	_χ _. Ο ^Σ 0x1	3050254
Bit 31	30 29 28 27 26 25 24 23	22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	2 1 0

5.5.22 EPDC Power Management Registers 4

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PWR FNA

			R	ese	erve	d					P۱	NR.	_EN	AA(O_{II}				R	ese	erve	d					P۱	۷R	_VA	۸L			
PST	<u> </u>	Λ	0	0	0	Λ	٥	0	0	0	0	0	Λ	٥	0	0	0	0	0	0	0	0	Λ	٥	0	0	0	٥	0	0	Λ	Λ	

Bits	Name (Description	RW
31:24	Reserved	Writing has no effect, read as zero.	R
23:16	PWR_ENA	These bits enable PWR7~0 individually.	RW
15:8	Reserved	Writing has no effect, read as zero.	R
7:0	PWR_VAL	The PWR [x] pin value individually if it is not enabled.	RW

5.5.23 EPDC VCOM Registers 0~5

EPDC_VCOM0, EPDC_VCOM1, EPDC_VCOM1 0x13050258, 0x1305025C, 0x13050260 EPDC_VCOM3, EPDC_VCOM4, EPDC_VCOM5 0x13050264, 0x13050268, 0x1305026C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VCOM

Bits	Name	Description	RW
31:0	VCOM	The VCOM [1:0] of each frame up to 16-frames, EPDC_VCOM0	RW

	contains the first 16 frames of VCOM[1:0].	
	EPDC_VCOM0: 16~1	
	EPDC_VCOM1: 32~17	
	EPDC_VCOM2: 48~33	
	EPDC_VCOM3: 64~49	
	EPDC_VCOM4: 80~65	
	EPDC_VCOM5: 96~81	

5.5.24 EPDC Border Voltage Setting Registers

	EPDC_BORDR	0x130502
Bit	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
	BOF	RDR

Bits	Name	Description	RW
31:0	BORDR	These bits set border voltage control signals in each frame.	RW
		If BDR_LEVEL = 0, it contains up to 16 frames, but if	
		BDR_LEVEL = 1, it contains only 8 frames.	

BDR_LEVEL = 1, it contains only 8 frames.																																
5.5.	5.5.25 EPDC Handwriting Mode Setting																															
	EP	DC_	HV	VP/	۱L			CC	/																				0 x	130	502	7C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16											/ _(COI	_OF	₹						1	PAL	A	DDI	R_C	OFF						
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31	PPL7_HW_MODE.	The 8 th pipeline handwriting mode.	RW
30	PPL6_HW_MODE.	The 7 th pipeline handwriting mode.	RW
29	PPL5_HW_MODE.	The 6 th pipeline handwriting mode.	RW
28	PPL4_HW_MODE.	The 5 th pipeline handwriting mode.	RW
27	PPL3_HW_MODE.	The 4 th pipeline handwriting mode.	RW
26	PPL2_HW_MODE.	The 3 rd pipeline handwriting mode.	RW
25	PPL1_HW_MODE.	The 2 nd pipeline handwriting mode.	RW

24	PPL0_HW_MODE.	The 1 st pipeline handwriting mode.	RW
23:9	PPL_HW_COLOR.	In color mode: PPL_HW_COLOR = { R[4:0], G[4:0], B[4:0] }	RW
		In grayscale mode: PPL_HW_COLOR = { [4:0] }	
		When a pipeline in handwriting mode, any pixels in its zone	
		and match PPL_HW_COLOR will be updated using HW	
		waveform.	
8:0	PAL_ADDR_OFF.	The address offset for dynamic changing palette.	RW

5.5.26 EPDC Pipeline 0 ~7 Position Registers

	EPDC_PPL0_	POS,	EPDC_	PPL1	_POS,											0	x13	805	02	80,	0x1	130	502	288
	EPDC_PPL2_	POS,	EPDC_	PPL3	_POS											0	x13	805	02	90,	0x1	130	502	98
	EPDC_PPL4_	POS,	EPDC_	PPL5	_POS,											0	x13	05	02	A0 ,	0x1	130	502	2 A8
	EPDC_PPL6_	POS,	EPDC_	PPL7	_POS											0	x13	05	02 l	В0,	0x1	130!	502	B8
Bit	31 30 29 28	27 26	25 24	23 22	21 20	19	18 17	16	15	14	13	12	11	10	9	8	7 (6	5	4	3	2	1	0
	Reserved		Р	PL_YI	POS				Res	serv	ed				1	19	PL). X	(PC	s				
ВСТ	0 0 0	0 0	0 0	0 0	0 0	^	0 0	^	^	0	^	0	0	^	^	0 (1	`	^	^	^	^	^	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	PPL_YPOS	The top-left Y position of rectangle zone for the specific pipeline.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	PPL_XPOS	The top-left X position of rectangle zone for the specific pipeline.	RW

5.5.27 EPDC Pipeline 0~7 Size Registers

	EPD	C_PF	PLO_	SIZ	ZE,	ΕP	DC	_PF	PL1	_	IZE	,												0x1	30	502	84,	0 x	130	502	28C
	EPD	C_PF	L2	SI	ZE,	EF	DC	_ P	PL3	<u> </u>	SIZE													0x1	30	502	94,	0 x	130	50 2	9C
	EPD	C_PF	L4	SI	ZE,	EP.	DC	_ P	PL	5_ \$	SIZE	Ξ,											(0x1	305	502 .	A4 ,	0x	130	502	AC
	EPD	C_PF	PL6_	SI	ZE,	EP.	DC	_ P	PL7	<u>_</u> §	SIZE													0x1	305	502	B4,	0x	130	502	ВС
Bit	31 3	30 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Re	serve	ed				PI	PL_	HE	IGH	łТ					Res	serv	ed						PP	L_V	VID	тн				
RST	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	PPL_HEIGHT	The height of rectangle zone for the specific pipeline.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	PPL_WIDTH	The width of rectangle zone for the specific pipeline.	RW

5.6 Application Guide

5.6.1 Pixel format in buffers

The format of texts and images stored in buffers is depending on how they're used. But it can be rearranged by setting PEDN and BEDN in LCDCTRL. Following tables illustrate the formats with different BPP.

Table 5-3 2 bits per pixel data buffer format

	pixel 7	pixel 6	pixel 5	pixel 4	pixel 3	pixel 2	pixel 1	pixel 0
FG0/1	15:14	13:12	11:10	9:8	7:6	5:4	3:2	1:0
	pixel 15	pixel 14	pixel 13	pixel 12	pixel 11	pixel 10	pixel 9	pixel 8
FG0/1	31:30	29:28	27:26	25:24	23:22	21:20	19:18	17:16

Table 5-4 4 bits per pixel data buffer format

	pixel 7	pixel 6	pixel 5	pixel 4	pixel 3	pixel 2	pixel 1	pixel 0
FG0	31:28	27:24	23:20	19:16	15:12	11:8	7:4	3:0
FG1	31:28	27:24	23:20	19:16	15:12	11.8	7:4	3:0

Table 5-5 5 bits per pixel data buffer format

		pixel 3		pixel 2		pixel 1		pixel 0
FG0/1	31:29	28:24	23:21	20:16	15:13	12:8	7:5	4:0

5.6.2 Waveform LUT Format

There are 3x512 words RAM embedded in LCD used for waveform LUT. The number of LUT frames it can store depending on COLOR_MODE, OBPP, OSDOBPP and EPD_OBPP. A frame LUT needs 2 (Bits per pixel for text or image * 2) + (Bits per pixel for source driver) bits RAM in mono mode. For example, when COLOR_MODE = 0, OBPP = OSDBPP = 2, and EPD_OBPP = 1, a frame LUT needs 2⁹ = 512 bits RAM. In other words, the whole RAM can store up to 96 frames LUT in this case. For multi-zone concurrent updating and handwriting mode, the topmost frame LUT reserved for "Do Noting LUT", and the second topmost frame reserved for "Handwriting Mode LUT".

Figure 5-2 Mono mode frame LUT format

The following tables illustrate frame LUT content. The Index is generated by,

Index = {Pixel in FG1, Pixel in FG0}.For instance, when pixel in FG0 equals to 0x0 and pixel in FG1 equals to 0xf, then the green highlighted one will be addressed. Specially, the "Frame HW" and "Frame NO" index are generated by pipeline's current frame count.

Table 5-6 Frame N LUT format

WORD	31:30	29:28	27:26	25:24	23:22	21:20	19:18	17:16	15:14	13:12	11:10	9:8	7:6	5:4	3:2	1:0
0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15	255	254	253	252	251	250	249	248	247	246	245	244	243	242	241	240

Table 5-7 Frame HW/NO LUT format

WORD	31:30	29:28	27:26	25:24	23:22	21:20	19:18	17:16	15:14	13:12	11:10	9:8	7:6	5:4	3:2	1:0
0	Frame 15													OD	۲.۵	Frame 0
												10	9			
15	Frame 255										\)	S	• • • •			
									40	na						
5.6.3	Power	On/C	Off Se	quen	се			: 10	rez							
TI	ا محالحماجيج	:	والمائد والم	_1 _:4_	4							:	1-1		ь. т	h:- :-

5.6.3 Power On/Off Sequence

The controller has individual bits to enable and set all power management signals' polarity. This is useful for using high and low active power switches. All delay times are in lines, calculated by, (Delay between PWRn to PWRm) = PWR_DLYnm * (HT * (SDCLK Clock Period)).

Those power management pins delays which are not used should be set to 0. Please refer to vendor's EPD displays panel data sheet to find out the required power on/off sequence for VDNS, VDPS, VDPG, VDNG, and VCOM L and VCOM_H when using AUO EPD. Confirm EPD controller enabled and EPDC_PMGR0~3 settings correct before you start power on/off sequence by setting the bit EPD_PWRON in EPDC_CTRL.

Figure 5-3 Powers On/Off Sequence

5.6.4 Display Timing Setting

The controller is designed as part of LCD controller. The frequency of pixel clock of the LCD is always double of the Source Driver clock. Typically, the frame frequency is 50 Hz in EPD display. Calculate timing parameters as followings,

Frame Rate = Line Number * Line Period, and Line number is set as VT.

Line Period = HT* (SDCLK Clock Period), SDCLK Clock Period = 2 * Pixel Clock Period.

So, first set pixel clock frequency according vendor's data sheet to get requirement SDCLK and frame rate. The following diagrams illustrate the Source and Gate Drivers' timing parameters for PVI and AUO EPD.

Figure 5-4 Source Drivers Reference Timing for PVI EPD

Figure 5-5 Gate Drivers Reference Timing for PVI EPD

Figure 5-6 Source Drivers Reference Timing for AUO EPD

Figure 5-7 Gate Drivers Reference Timing for AUO EPD

5.6.5 Update image/text flow

- 1 Initialize LCD and EPD registers, such as display resolution, grayscale, and power on/off sequence requirements, source & gate driver's timings, according EPD data sheets.
- 2 Prepares LUT waveforms, display buffers and their descriptors relatively.
- 3 Set pipelines' sizes and frames if need multi-zone concurrent updating.
- 4 Starting EPD power on sequence, wait PWRON_INT assertion.

- 5 Start LCD DMA to transfer LUT and buffers data to controller and set PPL FRM ENA and IMG REF ENA to update image on EPD display.
- 6 If necessary, start power off sequence to reduce power.

5.6.6 Multi-zone concurrent updating

Waveform LUT for "Do Nothing LUT" frame should be filled before using multi-zone updating. If Source Driver using PWRCOM, just fill 0 to all words of it. But if using VCOM, fill it with VCOM values for all frames. If a pipeline is available, it can be start at any time by setting its frame and size. A pipeline's frame count will increments from 0 to its PPL FRM NUM after it started. That is independent from others pipelines. There pipelines zones should not overlap, if not, pipeline 0 has higher priority than pipeline 1, and so on.

5.6.7 Update VCOM0~5

VCOM0~5 should be updated when need more than 96 frame to display an image or text. If FRM_VCOM_INTE enabled, a FRM_VCOM_INT interrupt will be asserted when controller has outputted 95 frame data. ternal

5.6.8 Handwriting mode

Multi-zone pipelines can be used for handwriting. There are individual bits to enable each pipeline's handwriting mode. If a pipeline used for handwriting, any pixels in FG1 buffer lies in its zone and matches PPL HW_COLOR will be updated using "HW Mode LUT" waveform. If not matches PPL HW COLOR, it will be updated using "Do Nothing LUT", means no change will happen for that pixel. Before starting handwriting, SW fills the "Do Nothing LUT" and "HW Mode LUT" properly, which are indexed by pipeline's frame count.

5.6.9 Border Display

Some EPD want to display border, if necessary, the 7th pipeline can be used to update border. Border updating can be used with images or texts display. Properly set EPDC BORDR, BDR LEVEL and BDR IDLE, then set PPL7 BDR ENA, the 7th frame number and start it.

6 Image Process Unit

6.1 Overview

IPU (Image process unit) contains Resize and CSC (color space conversion), which is used for image post processing.

6.1.1 Feature

- Location: AHB bus
- Input format
 - Separate frame: YUV /YCbCr (4:2:0, 4:2:2, 4:4:4, 4:1:1), RGB888
 - Packaged data: YUV422, RGB888, RGB565, RGB555, YUV444
 - Separate frame in block format: YUV/YCbCr 420
- Output data format
 - RGB (565, 555, 888, AAA)
 - Packaged data YUV422
- Color convention coefficient: configurable (CSC enable)
- Minimum input image size (pixel): 4x4
- Maximum input image size (pixel): 4095x4095
- Maximum output image size (pixel)
 - Width: up to 4095 (without vertical resizing)
 up to 2048 (with vertical resizing)
 - Height: up to 4095
- Image resizing
 - Support bilinear
 - O and bi-cube zooming mode
 - Up scaling ratios up to 1:31 in fractional steps with 1/32 accuracy
 - Down scaling ratios up to 31:1 in fractional steps with 1/32 accuracy

*For more details, refer to Special Instruction.

SB555, YUV444

le)ernal used only

6.2 Block

Tons eiffel@126.com internal used on.

6.3 **Data flow**

6.3.1 Input data

- Separated YUV (or YcbCr/RGB888; the following use YUV for convenience) Frame case: Y, U, V data would be fetched from external memory by DMA burst read operation.
- Packaged YUV422 (or RGB888/ RGB565/ RGB555/YUV444) case: Packaged YUV(RGB888/ RGB565/ RGB555/YUV444) data would be fetched from external memory by DMA burst read operation.

6.3.2 Output data

- DMA output to external memory case: The output data format could be RGB (565, 555, 888) or YUV (package422), and the data would be stored to the external memory by DMA burst write operation.
- Flow into LCDC case: The output data format can be RGB or YUV (package), and the transfer would not cross AHB BUS. ternal

6.3.3 Resize Coefficients LUT

The resize coefficients look up table is preset by software according to specific format (see for 6.4.30, 6.4.31 detail). There are 2 tables to support independent horizontal and vertical scaling. Each table 1008 eiffeld has 32 entries that can accommodate up to 32 coefficient-groups.

6.4 Registers Descriptions

The physical address base for the address-mapped registers of IPU is 0x13080000.

The following table will show all the register address.

Table 6-1 register list

NAME	Offset	Descript
IPU_CONTROL	0x0	IPU global controller
IPU_STATUS	0x4	IPU global status register
D_FMT	8x0	IPU data format register
Y_ADDR	0xC	Source Y (or R) base address
<u>U_ADDR</u>	0x10	Source U (or G) base address
V_ADDR	0x14	Source V (or B) base address
IN_FM_GS	0x18	Input Geometric Size (height and width)
Y_STRIDE	0x1C	Source Y frame stride
<u>UV_STRIDE</u>	0x20	Source U and V frame stride
OUT_ADDR	0x24	Result frame base address
OUT_GS	0x28	Result frame size (height and width)
OUT STRIDE	0x2C	Result frame stride
RSZ_COEF_INDEX	0x30	Resize Coefficients Table Index
CSC C0 COEF	0x34	Color conversion Coefficient
CSC_C1_COEF	0x38	Color conversion Coefficient
CSC C2 COEF	0x3C	Color conversion Coefficient
CSC_C3_COEF	0x40	Color conversion Coefficient
CSC_C4_COEF	0x44 (()	Color conversion Coefficient
HRSZ_COEF_LUT C	0x48	Horizontal Resize Coefficients Look Up Table
VRSZ_COEF_LUT	0x4C	Vertical Resize Coefficients Look Up Table
CSC_OFSET_PARA	0x50	Color conversion offset Coefficient
SRC_TLB_ADDR	0x54	Base address of the source Y's physical address map table
DEST_TLB_ADDR	0x58	Base address of the destination's physical address map table
TLB_MONITOR	0x60	TLB monitor
IPU_ADDR_CTRL	0x64	IPU address set controller
Y_ADDR_N	0x84	Source Y base address of next frame
U_ADDR_N	0x88	Source U base address of next frame
V_ADDR_N	0x8C	Source V base address of next frame
OUT_ADDR_N	0x90	Result frame base address of next frame
SRC_TLB_ADDR_N	0x94	Base address of the source Y's physical address map table for
		next frame
DEST_TLB_ADDR_N	0x98	Base address of the destination's physical address map table
		for next frame
TLB_CTRL	0x68	TLB controller
PIC_ENC_TABLE	0x400	Picture enhance table stone.
118	~0X7FF	

6.4.1 IPU Control Register

	IPU	J_C	10	ITR	ROL	_																										0x0
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserved				DMA_OPT	PENC_OPT	Reserved	CONF_MODE	ADDR_SEL	Reserved	ZOOM_SEL	DFIX_SEL	FIELD_SEL	FIELD_CONF	DISP_SEL	DPAGE_MAP	SPAGE_MAP	LCDC_SEL	SPKG_SEL		אפאם אפט	IPU_STOP*4	IPU_RST	FM_IRQ_EN	CSC_EN	VRSZ_EN	HRSZ_EN	IPU_RUN	CHIP_EN
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W
31:25	Reserved	Writing has no effect, read as zero.	R
24	DMA_OPT	DMA strategy evaluation:	RW
		0: disable	3
		1: enable DMA strategy auto adjust	
23	PENC_OPT	Picture enhance selector: 0: no picture enhance	RW
		0: no picture enhance	
		1: picture enhance(for YUV format)	
22	Reserved	Writing has no effect, read as zero.	R
21	CONF_MODE	IPU configure mode selector.	RW
		0: IPU's registers can be changed any time	
		1: IPU's registers only can be changed when it is not	
		busy	
20	ADDR_SEL*3	IPU address mode selector.	RW
	: ETE	0: IPU source and destination address only can be	
	ezz	modified when IPU is free, just like it is in XBurst	
A (n8/	JZ4750 processor	
1) >	1: IPU source and destination address can be modified	
		anytime	
19	Reserved	Writing has no effect, read as zero.	R
18	ZOOM_SEL	IPU rooming mode selector.	RW
		1: bi-cube	
		0: bilinear	
17	DFIX_SEL	Fixed destination address choose.	RW
		(Valid when LCDC_SEL == 0)	
		0: not use the fixed address	
		1: use the fixed address	
16	FIELD_SEL *1	Destination field choose.	RW
		(Valid when FIELD_CONF_EN == 1)	
		0: top field	
		1: bottom field	

15	FIELD_CONF_EN *1	FIELD_SEL mask.	W
		0: do not change FIELD_SEL	
		1: configure FIELD_SEL	
		Read as zero.	
14	DISP_SEL	Destination display choose.	RW
		0: frame display mode	
		1: field display mode	
13	DPAGE_MAP	Destination address page mapping choose.	RW
		0: not use the page mapping	
		1: use the page mapping	
12	SPAGE_MAP	Source address page mapping choose.	RW
		0: not use the page mapping	
		1: use the page mapping	
11	LCDC_SEL	Output data destination choose.	RW
		0: output to external memory	3
		1: output to LCDC FIFO	
10	SPKG_SEL	Input data case choose. 0: Separated Frame	RW
		0: Separated Frame	
		1: Packaged Frame	
9:8	Reserved	Writing has no effect, read as zero.	R
7	IPU_STOP*4	Stop IPU. 1: stop IPU.	W
		When stop IPU, the end flag will be pull up to 1.	
6	IPU_RST *2	Reset IPU. Writing 1: reset IPU; 0: no effect.	W
		Read as zero.	
5	FM_IRQ_EN	Frame process finish interrupt enable.	RW
	if the	1: enable; 0: disable.	
4	CSC_EN	CSC enable. 1: enable; 0: disable.	RW
3	VRSZ_EN	Vertical Resize enable. 1: enable; 0: disable.	RW
2	HRSZ_EN	Horizontal Resize enable. 1: enable; 0: disable.	RW
1	IPU_RUN	Run the IPU. 1: run.	RW
		Software just can set 1 to IPU_RUN.	
0	CHIP_EN	IPU chip enable. 1: enable; 0: disable.	RW
		L	1

NOTES:

- *1: The FIELD_SEL will work when the DISP_ SEL is 1, which indicates the IPU is under the field display mode. And the IPU will output the picture from the initial field (top or bottom) to the next field (bottom or top) automatically when the current field has been outputted or stopped. The initial field can be configured by setting the FIELD_SEL to 0 or 1 with FIELD_CONF_EN is 1. The FIELD_CONF_EN is just the trigger that controls the FIELD_SEL's valuation.
- 2 *2: Setting 1 to IPU_RST can reset all registers except the CHIP_EN immediately, but user must make sure the IPU is free when need to assert IPU_RST.

- *3: When ADDR_SEL is set to 0, the address set method is the same as XBurst JZ4750 processor, and the frame address of IPU can be set just like the way in XBurst JZ4750 processor, which limits the address setting time to IPU none working period (after frame end-flag). When the ADD_SEL is 1, the above limitation is released. The addresses of IPU can be changed at anytime. It just needs to set the correspond bits in IPU_ADDR_CTRL to 1 to tell IPU that new address can be used, after the addresses are changed.
- 4 *4: The IPU_STOP is used to stop IPU in anytime in save mode. When the IPU_STOP has been written to 1, the IPU need some time to stop. And the user can monitor the IPU_STATUS.OUT_END to make sure the IPU has been stopped.

6.4.2 IPU Status Register

	IPU	J_S	TA	TU	S																											0x4
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												R	ese	erve	d												MCTATILE	ל ל	Reserved	SIZE_ERR	FMT_ERR	OUT_END
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1

Bits	Name	Description	R/W				
31:2	Reserved	Writing has no effect, read as zero.	R				
5:4	MSTATUS	PU main status.					
		00:1PU is free and waiting the CPU or LCDC to get the IPU's					
	cf(control					
	017.	01: IPU is running now					
	20	10: IPU is under the control of CPU					
10	Jus.	11: reserved					
3	Reserved	Writing has no effect, read as zero.	R				
2	SIZE_ERR	The size error flag. 1: size error; 0: size ok.	R				
1	FMT_ERR	IPU format error flag. 1: format error; 0: format OK.	R				
0	OUT_END *1	Output termination flag. 1: finished; 0: not finished.	R/W				

NOTE:

*1: If IPU_CONTROL.FM_IRQ_EN has been set 1, once OUT_END is set value 1 which denotes a frame's post process done, an low level active interrupt request will be issued until corresponding software handler read IPU_STATUS and clean end flag.

When the IPU_CONTROL.FM_LCDC_SEL has been set 1, and the IPU has finished one transfer, the LCDC and CPU need to occupy the IPU control. The IPU will monitor the request signal from LCDC and the read signal from the CPU, then it will determine whether dre-configure itself by the CPU if the CPU read first or output the same frame to LCDC again if the LCDC get the control.

6.4.3 IPU address control register

Bits	Name	Description	R/W
31:6	Reserved	Writing has no effect, read as zero.	R
5	PTD_READY	New destination TLB base address ready. (Only used when	RW
		IPU_CONTROL.ADDR_SEL==1&&IPU_CONTROL.DPAGE_	
		MAP == 1)	Y
4	PTS_READY	New source TLB base address ready. (only used when	RW
		IPU_CONTROL.ADDR_SEL==1&&IPU_CONTROL,SPAGE_	
		MAP == 1)	
3	D_READY	New destination address ready.	RW
2	V_READY	New source V address ready.	RW
1	U_READY	New source U address ready.	RW
0	Y_READY	New source Y address ready.	RW

NOTES:

- 1 When the xx_READY bit has been set 1, the IPU will use the new corresponding address in the next frame, and use the old address value whose corresponding bit in IPU_ADDR_CTRL is 0.
- 2 IPU_ADDR_CTRL works when IPU_CONTROL. ADDR_SEL is 1.
- 3 When the IPU has fetched the new address, it will clear the IPU_ADDR_CTRL to 0.

6.4.4 Data Format Register

Bits	Name	Name Description						
31:26	Reserved	Writing has no effect, read as zero.	R					

25	RGB_888_	RGB888 output format indicator. (only used in RGB888 out	RW
	OUT_FMT	OUT FMT == 010)	
		0: the low 24 bits will be the pixel in a word	
		1: the high 24 bits will be the pixel in a word	
24:22	RGB_OUT_	Output data packaged offset. (only used in RGB out	RW
	OFT	OUT_FMT!= 011)	
		000: RGB	
		001: RBG	
		010: GBR	
		011: GRB	
		100: BRG	
		101: BGR	
		Others: reserved	
21:19	OUT_FMT	Indicates the destination data format.	RW
		001: RGB565	٥
		010: RGB888	
		000: RGB555 001: RGB565 010: RGB888 011: YUV422 package	
		100: RGBAAA(R(or G or B) is 10 bits wide)	
18:16	YUV_PKG_	Output data packaged offset. (only used in CSC disable	RW
	OUT_OFT	case and in the source is YUV422 packaged case	
	_	(IPU_CONTROL. SPKG_SEL == 1))	
		000: Y1UY0V C001: Y1VY0U	
		010; UY1VY0 011: VY1UY0	
		100:Y0UY1V 101: Y0VY1U	
	. & \$	110: UY0VY1 111: VY0UY1	
15: 6	Reserved	Writing has no effect, read as zero.	R
4	BLK_SEL	Indicate the source data format when source is YUV420	RW
3:2	IN_OFT	Input data packaged offset. (when the source is YUV422	RW
		packaged case (IPU_CONTROL. SPKG_SEL == 1 && IN_FMT	
		== 01))	
		00: Y1UY0V	
		10: UY1VY0 11: VY1UY0	
1:0	IN_FMT	Indicates the source data format.	RW
		When IPU_CONTROL.SPKG_SEL == 0	
		00: YUV 4:2:0	
		10: YUV 4:4:4 11: YUV 4:1:1	
		When IPU_CONTROL.SPKG_SEL == 1	
		00: RGB555 01: YUV 4:2:2	
		10: RGB888 or YUV444 11: RGB565	

NOTES:

1 When the source frame is packed RGB, the IPU_CONTROL. SPKG_SEL must be 1 and

IN_FMT must be 10, and when the source frame is packed YUV, the IPU_CONTROL. SPKG_SEL must be 1 and IN_FMT must be 01.

2 When the source frame is packed YUV444, the data format about a pixel should be as following:

31	24	23	16 1	15	8	7	0
	0	Y		U		V	

6.4.5 Input Y Data Address Register

Bits	Name	Description	R/W
31:0	Y_ADDR *1	In separated Frame case, it indicates the source Y (or R) data buffer's start address. In source YUV422 package case, it indicates the start Address of the packaged Frame.	RW

NOTES:

- 1 When the IPU_CONTROL.SPAGE_MAP == 1, the Y_ADDR should be the start virtual address.
- 2\ Y\ADDR should be word align.

6.4.6 Input U Data Address Register

	U_ADDR													0	x10																	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	U_ADDR											0	0																			
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description									
31:0	U_ADDR *1	The source U data buffer's start address of	RW								
		separated frame case.									

NOTES:

- When the IPU_CONTROL.SPAGE_MAP == 1, the U_ADDR should be the start virtual 1 address.
- 2 U_ADDR should be word align.

6.4.7 Input V Data Address Register

Bits	Name	Description	R/W
31:0	V_ADDR	The source V data buffer's start address of separated Frame	RW
		case.	
NOTES:		interna	

NOTES:

- When the IPU_CONTROL.SPAGE_MAP == 1, the V_ADDR should be the start virtual address.
- 2 V_ADDR should be word align.

6.4.8 Input source TLB base address

Bits	Name	Description	R/W
31:0	SRC_TLB_	The SOURCE TLB base address. (This register will act	RW
	ADDR	when the IPU_CONTROL.PAGE_MAP==1)	

6.4.9 Destination TLB base address

Bits	Name	Description	R/W
31:0	DEST_TLB_	The destination frame's TLB base address. (This register will	RW
	ADDR	work when the IPU_CONTROL DPAGE_MAP==1)	

6.4.10 TLB monitor

TLB_MONITOR

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Re

Bits	Name C & (Description	R/W
31:11	Reserved	Writing has no effect, read as zero.	R
10:0	MIS_CNT	The TLB cache miss counter.	RW

6.4.11 TLB controller

Bits	Name	Description	R/W
31:25	Reserved	Writing has no effect, read as zero.	R
23:20	DEST_BURST	The destination TLB burst length.	RW

		1: 1; 2:2; 4:4; 8:8.	
19:16	DEST_PAGE	The destination TLB page size.	RW
		1: 4K; 2: 8K; 4:16K; 8:32K.	
15:4	Reserved	Writing has no effect, read as zero.	R
7:4	SRC_BURST	The sources TLB burst length.	RW
		1: 1; 2:2; 4:4; 8:8.	
3:0	SRC_PAGE	The source TLB page size.	RW
		1: 4K; 2: 8K; 4:16K; 8:32K.	

6.4.12 Input Y Data Address of next frame Register

Bits	Name	Description	R/W
31:0	Y_ADDR_N	In separated Frame case, it indicates the source Y (or R) data buffer's start address of the next frame. In package case, it indicates the start address of the packaged Frame of the next frame.	R

6.4.13 Input U Data Address of next frame Register

Bits	Name	Description	R/W
31:0	U_ADDR_N	The source U (G) data buffer's start address of the next frame	RW
		in separated frame case.	

NOTE: When the IPU_CONTROL.SPAGE_MAP == 1, the U_ADDR_N will be the start virtual address.

6.4.14 Input V Data Address of next frame Register

Bits	Name	Description	R/W
31:0	V_ADDR_N	The source V (B) data buffer's start address of the next frame	RW
		in separated frame case.	

NOTE: When the IPU_CONTROL.SPAGE_MAP == 1, the V_ADDR_N will be the start virtual address.

6.4.15 Source TLB base address of next frame

Bits	Name	Description	R/W
31:0	SRC_TLB_AD	The TLB base address about the next source frame's data	R
10	DR_N	which will be DMA in.	

6.4.16 Destination TLB base address of next frame

	Bits	Name	Description	R/W
ſ	31:0	DEST_TLB_AD	The TLB base address about the next frame's data that will be	R
		DR_N	DMA out.	

6.4.17 ADDRESS Mapping

The Y (U, V, OUT)_PHY_T_ADDR should store the base address of the Y (U, V, QUT) physics-mapping table. In the Y (U, V, OUT) physics-mapping table, it should contain different physics page base address, and the physics page must be 4(8, 16, 32)KB align.

6.4.18 Input Geometric Size Register

Bits	Name	Description	R/W
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	IN_FM_W	The width of the input frame (unit: byte). Y data width is the same as this value while U/V or Cb/Cr data width should do relatively zoom in according to the source data format. And in the source package pattern, this value should be the Y data width also.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	IN_FM_H	The height of the input frame (unit: byte). Y data width is same as this value while U/V or Cb/Cr data width should do relatively zoom in according to the source data format.	RW

6.4.19 Input Y Data Line Stride Register

Bits	Name	Description	R/W
31:16	Reserved	Writing has no effect, read as zero.	R
15:0	Y_S	The line stride of the source Y data in the external memory of	RW
		separated Frame case or packaged Frame stride(Unit: byte).	IXVV

NOTE: Y_S should be world align.

6.4.20 Input UV Data Line Stride Register

Bits	Name	Description	R/W
31:29	Reserved	Writing has no effect, read as zero.	R
28:16	U_S	The line stride of the source U data in the external memory.	RW
15:13	Reserved	Writing has no effect, read as zero.	R
12:0	V_S	The line stride of the source V data in the external memory.	RW

NOTE: U_S and V_S should be word align and unit is byte.

6.4.21 Output Frame Start Address Register

JZ4770 Mobile Application Processor User-Interfaces Programming Manual Copyright © 2005-2011 Ingenic Semiconductor Co., Ltd. All rights reserved.

Bits	Name	Description	R/W
31:0	OUT_ADDR *1	The output buffer's start address.	RW

NOTES:

- 1 *1: When the IPU_CONTROL.DPAGE_MAP == 1, the OUT_ADDR should be the start virtual address.
- 2 it should be word align.

6.4.22 Output Data Address of next frame Register

Bits	Name	Description	R/W
31:0	OUT_ADDR *1	The output buffer's start address.	RW

NOTES:

- 1 *1: When the IPU_CONTROLDPAGE_MAP == 1, the OUT_ADDR should be the start virtual address.
- 2 it should be word align.

6.4.23 Output Geometric Size Register

	OU	T _	GS																												0)	(28
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved						0	UT	_FI	VI_V	٧						Re	ser\	/ed					(TUC	[_F	M_l	1				
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W
31	Reserved	Writing has no effect, read as zero.	R
30:16	OUT_FM_W	The width of the output destination frame (unit: byte).	RW
15:13	Reserved	Writing has no effect, read as zero.	R
12:0	OUT_FM_H	The height of the output destination frame (unit: byte).	RW

NOTES:

- 1 In the package YUV out pattern, the OUT_FM_W should be the **pixel number** in a line.
- 2 In the **RGB** out pattern, the OUT_FM_W should be the **data space** width in the RAM.
- 3 In the out package pattern, the OUT_FM_W **must be** even number, and otherwise IPU will not run.

e.g.

Package YUV out: 480x273 (OUT_FM_W: 480 OUT_FM_H: 273)

RGB 888 (or AAA) out: 480x273 (OUT_FM_W: 480*4 OUT_FM_H: 273)

RGB 555 (or 565) out: 480x273 (OUT_FM_W: 480*2 OUT_FM_H: 273)

6.4.24 Output Data Line Stride Register

Bits	Name	Description	R/W
31:16	Reserved	Writing has no effect, read as zero.	R
15:0	OUT_S	The line stride of the destination data buffer in the external memory(Unit: byte).	RW

6.4.25 CSC C0 Coefficient Register

Bits	Name	Description	R/W
31:12	Reserved	Writing has no effect, read as zero.	R
11:0	C0_COEF	The C0 coefficient of the YUV/YCbCr to RGB conversion.	RW
		C0_COEF = [C0 * 1024 + 0.5].	IXVV

NOTE:

 $R = C0*(Y - LUMA_OF) + C1*(Cr-CHROM_OF)$

 $G = C0*(Y - LUMA_OF) - C2*(Cb-CHROM_OF) - C3*(Cr-CHROM_OF)$

 $B = C0*(Y - LUMA_OF) + C4*(Cb-CHROM_OF)$

6.4.26 CSC C1 Coefficient Register

CSC_C1_COEF 0x38

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved C1_COEF

Bits	Name	Description	R/W
31:12	Reserved	Writing has no effect, read as zero.	R
11:0	C1_COEF	The C1 coefficient of the YUV/YCbCr to RGB conversion.	RW
		C1_COEF = [C1 * 1024 + 0.5].	KW

NOTE:

 $R = C0*(Y - LUMA_OF) + C1*(Cr-CHROM_OF)$

 $G = C0*(Y - LUMA_OF) - C2*(Cb-CHROM_OF) - C3*(Cr-CHROM_OF)$

 $B = C0*(Y - LUMA_OF) + C4*(Cb-CHROM_OF)$

6.4.27 CSC C2 Coefficient Register

CSC_C2_COEF 0x3C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved C2_COEF

Bits	Name	Description	R/W
31:12	Reserved	Writing has no effect, read as zero.	R
11:0	C2_COEF	The C2 coefficient of the YUV/YCbCr to RGB conversion.	RW
		C2_COEF = [C2 * 1024 + 0.5].	KVV

C3_COEF

NOTE:

 $R = C0*(Y - LUMA_OF) + C1*(Cr-CHROM_OF)$

 $G = C0*(Y - LUMA_OF) - C2*(Cb-CHROM_OF) - C3*(Cr-CHROM_OF)$

Reserved

 $B = C0*(Y - LUMA_OF) + C4*(Cb-CHROM_OF)$

6.4.28 CSC C3 Coefficient Register

CSC_C3_COEF

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits	Name	Description	R/W
31:12	Reserved	Writing has no effect, read as zero.	R
11:0	C3_COEF	The C3 coefficient of the YUV/YCbCr to RGB conversion.	RW
		C3_COEF = [C3 * 1024 + 0.5].	LZVV

NOTE:

 $R = C0*(Y - LUMA_OF) + C1*(Cr-CHROM_OF)$

 $G = C0*(Y - LUMA_OF) - C2*(Cb-CHROM_OF) - C3*(Cr-CHROM_OF)$

 $B = C0*(Y - LUMA_OF) + C4*(Cb-CHROM_OF)$

6.4.29 CSC C4 Coefficient Register

CSC_C4_COEF 0x44

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved C4_COEF

Bits	Name	Description	R/W
31:12	Reserved	Writing has no effect, read as zero.	R
11:0	C4_COEF	The C4 coefficient of the YUV/YCbCr to RGB conversion.	RW
		C4_COEF = [C4 * 1024 + 0.5].	KVV

NOTE:

 $R = C0*(Y - LUMA_OF) + C1*(Cr-CHROM_OF)$

 $G = C0*(Y - LUMA_OF) - C2*(Cb-CHROM_OF) - C3*(Cr-CHROM_OF)$

 $B = C0*(Y - LUMA_OF) + C4*(Cb-CHROM_OF)$

6.4.30 Resize Coefficients Table Index Register

Bits	Name	Description	R/W
31:21	Reserved	Writing has no effect, read as zero.	R
20:16	HE_IDX *1	Indicates the end address of the horizontal resize look up table.	RW
15:5	Reserved	Writing has no effect, read as zero.	R
4:0	VE_IDX *1	Indicates the end address of the vertical resize look up table.	RW

NOTE: The HE_IDX (VE_IDX) should be the depth of the horizontal (vertical) resize look up table **minus 1**, and how to get HE_IDX or VE_IDX, please refer to 3.34.

6.4.31 Horizontal Resize Coefficients Look Up Table Register group

Bits	Name	Description	R/W
31:28	Reserve	Writing has no effect, read as zero.	W
27:17	W_COEF_31	Weighting coefficients for pix_3 or pix_1.	W
16:6	W_COEF_20	Weighting coefficients for pix_2 or pix_0.	W
5:1	HRSZ_OFT	Horizontal Resize pixel offset.	W
0	H_CONF	Start to configure the horizontal resize table, read as zero:	W
		1: start.	

Bits	Name	Description							
31:17	Reserve	Writing has no effect, read as zero.	R						
16:6	W_COEF0	Weighting coefficients for pix_0.	W						
5:1	H_OFT	Horizontal Resize pixel offset.	W						
0	H_CONF	Start to configure the horizontal resize table, read as zero:	W						
		1: start.							

NOTES:

1 The **bilinear zooming** weighting coefficients should be calculated as following: because it is 11 bits length, a one bit is the sign-bit, so, that is to say the precision is 1/512.

 W_{c} COEF _k = [512 * W _k] (stands for get the rounding integer, [20.33] = 20 while [20.66] = 21)

Here n stands for original pixel points, m stands for pixel points after resize. For example down-scaling 5:3, n = 5, m = 3. Moreover, m and n are prime, that is, for example 8:2 should be converted to 4:1.

When IPU_CONTROL.RSZ_EN set as 1 and m:n = 1:1, all coefficients should be calculated as up-scale case.

2 The **bi-cube zooming** weighting coefficients should be calculate as following: because it is 10 bits length, that is to say the precision is 1/512.

Step1:

```
For up-scaling, W_k = 1 - (k*n/m - [k*n/m]), k = 0, 1, ... m-1. For down-scaling, for (t=0, k=0; k < n; k++) \{ \\ If ([(t*n+1)/m] - k >= 1) \{ W_k = 0; \}
```



```
else if ((t^*n+1)/m - k == 0) { W _k = 1; t++;} else { W _k = 1 - ((t^*n+1)/m - [t^*n/m]); t++;} } 
W_COEF _k = [512 * W _k] (stands for get the rounding integer, [20.33] = 20 while [20.66] = 21)
```

Here n stands for original pixel points, m stands for pixel points after resize. For example down-scaling 5:3, n = 5, m = 3. Moreover, m and n are prime, that is, for example 8:2 should be converted to 4:1.

When IPU_CONTROL.RSZ_EN set as 1 and m:n = 1:1, all coefficients should be calculated as up-scale case.

Step 2:

```
After calculate the Wk, then using the following rule to get the coefficients:
double SinXDivX(double x)
{
    const float a = -1; //a can be a=-2,-1,-0.75,-0.5 and so on to control the blur level
    double x2=x*x;
    double x3=x2*x;
    if (x<=1)
    return (a+2)*x3 - (a+3)*x2 + 1;
    else if (x<=2)
    return a*x3 - (5*a)*x2 + (8*a)*x - (4*a);
    else
    return 0;
}
W0 = 512*SinXDivX(1+Wk)
W1 = 512*SinXDivX(Wk)
W2 = 512*SinXDivX(1-Wk)
Step 3:
```

And then the zooming weight coefficient should set to IPU as following:

Prepare: Set H_CONF to 1

a set W4n+1 & W4n+0

b set W4n+3 & W4n+2

Index(n)	step	W0	W1	step	W2	W3
0	0	-34	129	1	100	-19
1	2	-45	45	3	77	-33
2	4	-12	122	5	94	-56
3	6	-13	230	7	123	-77
4	8	-23	11	9	45	-100
5	10	-19	87	11	69	-90
6	12	-12	79	13	148	-8

3 Calculate the H_OFT.

Step 1: calculate the line in enable flag (IN EN) and out enable flag (OUT EN) table.


```
IN EN:
                        In down scale case, IN EN always equals 1.
                        In up scale case,
                        For (i=0, k=0; k < m; k++) {
                        If(i \le k*n/m) \{ IN_EN [k] = 1; i++; \}
                        else { IN_EN [k] =0;}
            OUT_EN: In up scale case, OUT_EN always equals 1.
                        In down scale case,
                        For (t=0, k=0; k < n; k++) {
                        If([(t*n+1)/m] - k >=1)
                        OUT_EN[k] = 0;
                        else {OUT_EN[ k ]=1; t++;}
 Step 2: calculate the H MAX LUT.
          __aole_buf[33];
int *hoft_table = &hoft_table_buf[1];
int *hcoef_table = &hcoef_table_buf[1];
int *voft_table = &voft_table_buf[1];
int *vcoef_table = &vcoef +6'
int in_oft_tmn = 6
          H MAX LUT = max(m, n) - 1
 Step 3: Calculate the LUT.
           int hcoef_real_heint = 0 ;
           int vcoef_real_heiht = 0 ;
           int coef_tmp = 0 ;
009 j=-1;
           for (i=0; i<=H MAX LUT+1; i++)
                if ( h_lut[i].out_n )
                {
                     hoft_table[j] = (h_lut[i].in_n == 0)? 0: in_oft_tmp;
                     hcoef_table[j] = coef_tmp;
                     coef_tmp = h_lut[i].coef;
                     in_oft_tmp = h_lut[i].in_n==0? in_oft_tmp : h_lut[i].in_n ;
                     j++;
                 }
                 in_oft_tmp = h_lut[i].in_n + in_oft_tmp;
           }
          if ( h_lut[0].out_n )
          {
```



```
hoft_table[j] = (h_lut[0].in_n == 0)? 0: in_oft_tmp;
           hcoef_table[j] = coef_tmp;
        }
       j++;
       hcoef_real_heiht = j;
        RSZ_COEF_INDEX. HE_IDX = j-1;
Step 4: Calculate the last table of resize coefficient.
       Bilinear:
       for (cnt =0; cnt<hcoef_real_heiht; cnt ++)
             HRSZ_COEF_LUT_bilinear[cnt] = (hcoef_table[cnt], hoft_table[cnt]);
       Bicube:
        int sinxdivx_table_8[(2<<9)+1];
       for (i = 0; i < (2 < 9); ++i)
                                               ternal used only
        {
           sinxdivx_table_8[i] = (int)(0.5 + 512*sinxdivx(i*(1.0/512)));
        }
       int u_8;
       for (i = 0; i <hcoef_real_heiht; i++)
            int au_8[4];
            u_8 = 512 - hcoef_table[i];
            cube_hcoef_table[i][0] = sinxdivx_table_8[(1<<9)+u_8];
            cube_hcoef_table[i][1] = sinxdivx_table_8[u_8];
            cube_hcoef_table[i][2] = sinxdivx_table_8[(1<<9)-u_8];
            cube_hcoef_table[i][3] = sinxdivx_table_8[(2<<9)-u_8];
         }
       for (cnt =0; cnt<hcoef_real_heiht; cnt ++)
             HRSZ_COEF_LUT_bicube[cnt] = (cube_hcoef_table[cnt], hoft_table[cnt]);
```

Following are two examples of setting LUT in bilinear scale mode.

Resize coefficients for 7:3:

W	W_COEF	IN_EN	OUT_EN	Pixel	Pixel	OUT
				1	2	
2/3	341	1	1	P [0]	P [1]	P [0] * 2/3 + P [1] * 1/3
0	0	1	0	P [1]	P [2]	No new pixel out
1/3	171	1	1	P [2]	P [3]	P [2] * 1/3 + P [3] * 2/3
0	0	1	0	P [3]	P [4]	No new pixel out
0	0	1	0	P [4]	P [5]	No new pixel out
1	512	1	1	P [5]	P [6]	P [5] * 1 + P [6] * 0
0	0	1	0	P [6]	P [7]	No new pixel out

Parameter set to IPU is following:

index	W	W_COEF	OFSE	Pixel1	Pixel	OUT
			Т		2	
0	2/3	341	2	P [0]	P [1]	P [0] * 2/3 + P [1] * 1/3
1	1/3	171	3	P [2]	P [3]	P [2] * 1/3 + P [3] * 2/3
2	1	512	2	P [5]	P [6]	P [5] * 1 + P [6] * 0

Resize coefficients for 3:5:

W	W_COEF	IN_EN	OUT_EN	Pixel	Pixel	OUT
				1	2	
1	512	1	1	P [0]	P [1]	P [0] * 1 + P [1] * 0
2/5	205	0	1	P [0]	P [1]	P [0] * 2/5 + P [1] * 3/5
4/5	410	1	1	P [1]	P [2]	P [1] * 4/5 + P [2] * 1/5
1/5	102	0	1	P [1]	P [2]	P [1] * 1/5 + P [2] * 4/5
3/5	307	1	1	P [2]	P [3]	P [2] * 3/5 + P [3] * 2/5

The parameter set to IPU is as following:

						110
index	W	W_COEF	OFSET	Pixel	Pixel	OUT
				1	2	191
0	1	512	0	P [0]	P[1]	P [0] * 1 + P [1] * 0
1	2/5	205	1	P [0]	P [1]	P [0] * 2/5 + P [1] * 3/5
2	4/5	410	0	P [1]	P [2]	P [1] * 4/5 + P [2] * 1/5
3	1/5	102	1	P [1]	P [2]	P [1] * 1/5 + P [2] * 4/5
4	3/5	307	1	P [2]	P [3]	P [2] * 3/5 + P [3] * 2/5

6.4.32 Vertical Resize Coefficients Look Up Table Register group

Bits	Name	Description	R/W					
31:28	Reserved	Writing has no effect, read as zero.	W					
27:17	W_COEF_31	DEF_31 Weighting coefficients for pix_3 or pix_1.						
16:6	W_COEF_20	Weighting coefficients for pix_2 or pix_0.	W					
5:1	VRSZ_OFT	Vertical Resize pixel offset.	W					
0	V_CONF	Start to configure the vertical resize table, read as zero:	W					
		1: start.						

VRSZ COEF LUT (bilinear) 0x4C Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CON V OFT Reserved W_COEF0

Bits	Name	Description	R/W									
31:17	Reserved	Writing has no effect, read as zero.	R									
16:6	W_COEF0	Weighting coefficients for pix_0.	ghting coefficients for pix_0. W									
5:1	V_OFT	cal Resize pixel offset.										
0	V_CONF	Start to configure the vertical resize table, read as zero:	W									
		1: start.										
NOTE: re	NOTE: refer to Horizontal HRSZ_COEF_LUT.											
6.4.33 Calculation for Resized width and height												

6.4.33 Calculation for Resized width and height

For software, to preset correct value for register OUT_GS, please refer to following formula. Set IW stand for original input frame width, IH stand for original input frame height, OW stand for new frame width after resize, OH stand for new frame height after resize.

In Up-scale case (n < m):

```
If [(IW - 1) * (m/n)] * (n/m) = (IW - 1) then
    OW = [(IW - 1) * (m/n)] + 1;
Else OW = [(IW - 1)^* (m/n)] + 2;
If [(IH - 1)^*(m/n)] * (n/m) == (IH-1) then
    OH = [(IH - 1) * (m/n)] + 1;
Else OH = [(IH - 1) * (m/n)] + 2;
```

In Down-scale case (n>m):

For example:

A 36x46 frame with the horizontal resize ratio of 4:5 (up-scale) and vertical resize ratio of 7:6 (down-scale), by the expressions above we get its new size after resize from the following process.

For Width:
$$[(36 - 1) * (5/4)] * (4/5) = 34.4 \neq (36-1)$$

So OW =
$$[(36 - 1) * (5/4)] + 2 = 45$$

For Height: $[(46 - 1) * (6/7)] * (7/6) = 44.33 \neq (46 - 1)$
So OH = $[(46 - 1) * (6/7)] + 1 = 39$

6.4.34 CSC Offset Parameter Register

CSC_OFSET_PARA 0x50

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	Reserved							CHROM_OF								Reserved								LUMA_OF							
Τ.	0		Λ	Λ	0	0	0	Λ	0	0	0	Λ	0	Λ	Λ	Λ	0	Λ	Λ	0	Λ	0	0	Λ	0	Λ	0	Λ	0	0	Λ

Bits	Name	Description								
31:24	Reserved	Writing has no effect, read as zero.	R							
23:16	CHROM_OF	Chroma offset value.	RW							
15:8	Reserved	Writing has no effect, read as zero.	R							
7:0	LUMA_OF	Luma offset value.	RW							

NOTE:

 $R = C0*(Y - LUMA_OF) + C1*(Cr-CHROM_OF)$

 $G = C0*(Y - LUMA_OF) - C2*(Cb-CHROM_OF) - C3*(Cr-CHROM_OF)$

 $B = C0*(Y - LUMA_OF) + C4*(Cb-CHROM_OF)$

6.4.35 Picture enhance table

PENC TAB 0x7FF~0x400

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C4n+3 C4n+2 C4n+1 C4n	•••	01 00 20 20 21 20 20 21	20 22 21 20 10 10 11 10	10 11 10 12 11 10 0 0	1 0 0 1 0 2 1 0
C4n+3 C4n+2 C4n+1 C4n		04-10	04-10	04-14	04-
		C4n+3	C4n+2	C4n+1	C4n

Bits	Name	Description	R/W
31:24	C4n+3	Color mapping result.	W
23:16	C4n+2	Color mapping result.	W
15:8	C4n+1	Color mapping result.	W
7:0	C4n	Color mapping result.	W

When the IPU_CONTROL.PENC_OPT == 1 and the source picture is YUV, this table will act. This

table will tell IPU how to mapping the resizing result to the final result. For an example, if the resizing result is 0x80, and the index 0x80 of this table is 0x70, so the final result will be 0x70.

Ions eiffel@126.com internal used only

6.5 IPU Operation Flow

6.5.1 Data out to frame buffer

6.5.2 Data out to lcdc

6.5.3 Operation example

Table 6-2 no mapping mode

Step	Action
Base	Chip_enable()
Base_0	ipu_addr_sel(1);
0	Do { } while {!polling_end_flag}
1	set_primary_ctrl(VRSZ_ENABLE, HRSZ_ENABLE, CSC_EN, irq_en); //
2	set_source_ctrl(source_pkg_sel, SPAGE_SEL);
3	set_out_ctrl(lcdc_sel, DPAGE_SEL, DISP_SEL, FIELD_SEL, FIELD_CONF_EN);
4	set_scale_ctrl(V_SCALE, H_SCALE);
5	set_ipu_fmt(RGB888_OUT_FMT, OUT_OFT_RGB, OUT_FMT, OUT_Y1UY0V,
	IN_OF_YUYV, IN_FM_YUV444);
6	set_inframe_gsize(FIN_W, FIN_H, FIN_Y_STRIDE, FIN_U_STRIDE, FIN_V_STRIDE);
7	set_y_addr((unsigned int)fin_y & 0x1FFFFFFF); set_u_addr((unsigned int)fin_y & 0x1FFFFFFF); set_y_addr((unsigned int)fin_y & 0x1FFFFFFF);
	set_u_addr((unsigned int)fin_y & 0x1FFFFFFF);
	set_v_addr((unsigned int)fin_y & 0x1FFFFFFF);
8	set_outframe_gsize(FOUT_W, FOUT_H , FOUT_STRIDE);
9	set_out_addr((unsigned int)fout & 0x00000FFF);
9A	set_addr_ready(0xFF);
	NOTE: this step is necessary when ipu address set mode is 1.
10	set_csc_c0(YUV_CSC_C0);
	set_csc_c1(YUV_CSC_C1);
	set_csc_c2(YUV_CSC_C2);
	set_csc_c3(YUV_CSC_C3);
	set_csc_c4(YUV_CSC_C4);
11	set_csc_ofset_para(128, 0);
12	set_rsz_lut_end(H_MAX_LUT-1, V_MAX_LUT-1);
13	start_hlut_coef_write();
	NOTE: This step is necessary before write new LUT.
14	for $(i=0;i {$
	set_hrsz_lut_coef(h_lut[i].coef, h_lut[i].in_n, h_lut[i].out_n);
	}
15	start_vlut_coef_write();
	NOTE: This step is necessary before write new LUT.
16	for (i=0;i <v_max_lut;i++) th="" {<=""></v_max_lut;i++)>
	set_vrsz_lut_coef(v_lut[i].coef, v_lut[i].in_n, v_lut[i].out_n);
	}
17	Clean_end_flag();
	run_ipu();

Table 6-3 mapping mode

```
Action
Step
         y phy table[0] = ((unsigned int)fin y & 0x0FFFF000) | 0x20000000;
Prepare
          u phy table[0] = ((unsigned int)fin u \& 0x0FFFF000) | 0x20000000;
          v_phy_table[0] = ((unsigned int)fin_v & 0x0FFFF000) | 0x20000000 ;
                      out_phy_table[0] = ((unsigned int)fout & 0x0FFFF000) | 0x20000000 ;
            for (i = 1; i < 100; i + +)
              y_phy_table[i] = y_phy_table[i-1] + 4096 ;
              u phy table[i] = u phy table[i-1] + 4096;
              v_phy_table[i] = v_phy_table[i-1] + 4096;
                                out phy table[i] = out phy table[i-1] + 4096;
         Chip_enable()
 Base
Base 0
                                            ipu_addr_sel(1);
   0
          Do { } while {!polling_end_flag}
          set primary ctrl(VRSZ ENABLE, HRSZ ENABLE, CSC EN, irg en ); //
   1
   2
          set_source_ctrl(source_pkg_sel, SPAGE_SEL);
   3
          set out ctrl(lcdc sel, DPAGE SEL, DISP SEL, FIELD SEL, FIELD CONF EN);
   4
          set scale ctrl(V SCALE, H SCALE);
   5
          set ipu fmt(RGB888 OUT FMT, OUT OFT RGB, OUT FMT, OUT Y1UY0V,
                    IN OF YUYV, IN FM YUV444);
   6
          set_inframe_gsize(FIN_W, FIN_H, FIN_Y_STRIDE, FIN_U_STRIDE, FIN_V_STRIDE);
   7
          set y addr((unsigned int)fin y & 0xFFF);
          set_u_addr((unsigned int)fin_y & 0xFFF);
          set v addr((unsigned int)fin y & 0xFFF);
          set_outframe_gsize(FOUT_W, FOUT_H , FOUT_STRIDE);
   9
          set out addr((unsigned int)fout & 0x00000FFF);
          set_y_phy_t_addr((unsigned int)y_phy_table & 0x1FFFFFF);
  10
          set_u_phy_t_addr((unsigned int)u_phy_table & 0x1FFFFFFF);
          set v phy t addr((unsigned int)v phy table & 0x1FFFFFFF);
          set_out_phy_t_addr((unsigned int)out_phy_table & 0x1FFFFFFF);
  10A
          set addr ready(0xFF);
          NOTE: this step is necessary when ipu address set mode is 1.
          set_csc_c0(YUV_CSC_C0);
  11
          set csc c1(YUV CSC C1);
          set_csc_c2(YUV_CSC_C2);
          set csc c3(YUV CSC C3);
          set_csc_c4(YUV_CSC_C4);
  12
          set csc ofset para (128, 0);
  13
          set_rsz_lut_end(H_MAX_LUT-1, V_MAX_LUT-1);
```



```
14
        start_hlut_coef_write();
        NOTE: This step is necessary before write new LUT.
15
          for (i=0;i<H_MAX_LUT;i++) {
            set_hrsz_lut_coef(h_lut[i].coef, h_lut[i].in_n, h_lut[i].out_n);
          }
16
          start vlut coef write();
        NOTE: This step is necessary before write new LUT.
17
          for (i=0;i<V_MAX_LUT;i++) {
            set_vrsz_lut_coef(v_lut[i].coef, v_lut[i].in_n, v_lut[i].out_n);
          }
18
        Clean_end_flag();
        run_ipu();
```

Tons eiffel@126.com internal used only

6.6 Special Instruction

A1. Resizing size feature

Input si	ze (W x H)	Output size (W	x H)
Min	4x4	Disable vertical	Min: 4x4
		scale	Max: 4095x4095
Max	4095x4095	Enable vertical	Min: 4x4
		scale	Max: 1280x4095

A2. Color convention feature

Source format	Output format	Parameter configure (necessary)
RGB	RGB	IPU CONTROL.CSC EN =0
1.02		IPU_CONTROL. SPKG_SEL = 0 or 1
		D_FMT. IN_FMT
		D_FMT.OUT_FMT = 2'b00, 2'b01, 2'b10
YUV	RGB	IPU_CONTROL.CSC_EN =1
		IPU_CONTROL. SPKG_SEL
		D_FMT. IN_EMT
		D_FMT.IN_OFT (IPU_CONTROL. SPKG_SEL == 1)
	col	D_FMT.OUT_FMT = 2'b00, 2'b01, 2'b10
	ifi	D_FMT.RGB_OUT_OFT.
	-0 6	CSC_C0 (1,2,3,4)_COEF, CSC_OFSET_PARA
YUV	YUV (package)	IPU_CONTROL.CSC_EN =0
<i>y</i>		IPU_CONTROL. SPKG_SEL
		D_FMT. IN_FMT
		D_FMT. IN_OFT (IPU_CONTROL. SPKG_SEL == 1)
		D_FMT.OUT_FMT = 2'b11

A3. YUV/YCbCr to RGB CSC Equations

Input data	Matrix	CSC_COEF
	R = C0*(Y - X0) + C1*(V-128)	CSC_C0_COEF = 0x400
YUV	$G = C^0*(Y - X0) - C2*(U-128) - C3*(V-128)$	CSC_C1_COEF= 0x59C
100	B = C0*(Y - X0) + C4*(U-128)	CSC_C2_COEF = 0x161
	X0: 0	CSC_C3_COEF = 0x2DC

	C0: 1	CSC_C4_COEF = 0x718
	C1: 1.4026	
	C2: 0.3444	
	C3: 0.7144	
	C4: 1.7730	
	R = C0*(Y - X0) + C1*(Cr-128)	CSC_C0_COEF = 0x4A8
	G = C0*(Y - X0) - C2*(Cb-128) - C3*(Cr-128)	CSC_C1_COEF = 0x662
	B = C0*(Y - X0) + C4*(Cb-128)	CSC_C2_COEF = 0x191
	X0: 16	CSC_C3_COEF = 0x341
YCbCr	C0: 1.164	CSC_C4_COEF = 0x811
	C1: 1.596	
	C2: 0.391	
	C3: 0.813	
	C4: 2.018	
		and the second of the second o

A4. Output data package format (RGB order)

A5. Input data package format (RGB order)

A6. Source Data storing format in external memory (separated YUV Frame)

NOTES:

- 1 Every line's start address should be word aligned.
- 2 All pixel data should be stored as little-endian format.
- 3 Destination data (RGB) storing format in external memory is similar with above figure, but RGB555 and RGB565 frame's every line start address can be half-word aligned. (RGB888 frame still need word aligned)

Alpha_osd

7.1 Overview

4-level overlay DMA, which can calculate Alpha Blending.

Features:

- Support ARGB8888, RGB565, RGB555 (16'h0000 means total transparent, others mean total overlaid). (this called pixel alpha mode)
- Each layer has an alpha value for all pixels (called frame alpha mode). Those value only use in a special mode, which all pixels in this layer use same alpha value
- Up to 800*480
- Software can change overlay orders
- The level of overlay can be set by software
- Software must make sure the address of source and destination are 64-word aligned. If not, alpha_osd will change the parts unaligned For example:

	64-aligned	64-aligned	64-una	ligned
• • •	Expected result	Expected result	Expected result	Unexpected result
	64-word	64-word	32-word	

- Support 64-burst in AHB bus
- In RGB656 & RGB555mode, software must make sure each line aligned in word. If not, software need fill the extra half-word with 16'h0000

Word 0	Word 1	Word 2	HW	0
--------	--------	--------	----	---

7.2 Structure

7.3 Alpha blending function

This function is to calculate the Alpha blending. The blending is between two layers data and has 2 modes. One is the whole graph use one registered Alpha value and the other is each pixel have its own Alpha value. This function has 2 inputs, one (called foreground data in this module) is input foreground 0 data, and the other (called background data in this module) is input foreground 1 our background data determined by the display area. The calculate function is:

$$NewPixel = \frac{[(255 - Alpha)*background + Alpha*Foreground]}{255}$$

The calculate function that we used:

$$NewPixel = \frac{\left[(256 - Alpha) * background + Alpha * Foreground + 128 \right]}{256}$$

$$= \frac{\left[256 * background + Alpha * (Foreground - background) + 128 \right]}{256}$$

$$Alpha == 255 ? NewPixel = Foreground$$

For simplify the calculator process, we use 256 to instead the original 255, then add a 128/256 to approach the exact result. In this case we can use a shift register instead of a divider. To change the formula's format, use two full adder (in fact one of them is a subtractor) and one multiplier instead of one full-adder and two multipliers. Notice that 256 * background + 128 do not need adder or multiplier, use one 16-bit register which high 8-bit save the value of background, and low 8-bit is 8'b1000_0000.

In different mode the input, output and the Alpha have different values:

Alpha_osd_enable:

When alpha is disable, the output equal to foreground.

When alpha is enable, the output is the calculating result.

Alpha_osd_mode and format mode:

When alpha mode is **pixel alpha blending**:

Output low 24bits equal to the calculating result of CHANNEL0, high 8bits equal to the Alpha of the bottom frame, and alpha value comes from the high 8-bits of foreground multiple the corresponding alpha value form slv_reg_alphavalue register in case **format mode is ARGB8888**; output is decided by whether the value of foreground is 16'b0000 in case **format mode is RGB565 or RGB555**.

When alpha mode is frame alpha blending:

Output equal to the calculating result of CHANNEL0 high 8bits equal to the Alpha of the bottom frame, and alpha value comes from the slv_reg_alphavalue register in case format mode is ARGB8888; output is compose of results of CHANNEL0 and CHANNEL1, inputs of two channels must do format transforming as shown the figure below, the alpha value comes from the slv_reg_alphavalue register, specially foreground is all zero means total transparent in case format mode is RGB565 or RGB555.

RGB565

RGB555

											•			r U									
23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R4	R3	R2	R1	R0	0	0	0	G4	G3	G2	G1	$\mathbf{G}0$	0	0	0	B 4	B 3	B2	B 1	B 0	0	0	0

7.4 Register Description

In this section, we will describe the registers in Alpha_osd. Following table lists all the registers definition. All register's 32bit address is physical address. And detailed function of each register will be described below.

Name	Description	RW	Reset	Address	Access
			Value		Size
Reg_addr0	Address of DMA channel 0	RW	0x00000000	0x13070000	32
Reg_addr1	Address of DMA channel 1	RW	0x00000000	0x13070004	32
Reg_addr2	Address of DMA channel 2	RW	0x00000000	0x13070008	32
Reg_addr3	Address of DMA channel 3	RW	0x00000000	0x1307000C	32
Reg_waddr	Address of the destination of DMA	RW	0x00000000	0x13070010	32
Reg_addrlen	Length of DMA channel	RW	0x00000000	0x13070014	32
Slv_reg_	Alpha value of 4 frames	RW	0x00000000	0x13070018	32
alphavalue				00	7,
CTRL*1	Ctrl register	RW	0x00060000	0x1307001C	32
int	Interrupt flag	RW	0x00000000	0x13070020	32
Clk_Gate	Control hclk gate	RW	0x00000001	0x13070048	32

NOTE:

7.4.1 Reg_addr0 ~Reg_addr3, Reg_waddr

These 5 registers define the address of 4 source frames and the destination respectively.

^{*1:} This register must be set at last and please make sure other registers have been set correctly, if not you will get result unexpected.

7.4.3 Slv_reg_alphavalue

This register defines the alpha values for each frame.

In the case of **ARGB8888 pixel alpha blending mode**, the alpha for calculating is high 8-bits of each foreground pixel multiplying corresponding alpha value in this register;

Reg addrlen

In the case of RGB565 and RGB555 pixel alpha blending mode, this register is unused;

In other cases, the alpha for calculating comes from corresponding alpha value in this register directly.

	Slv_reg_alphavalue														0x13070									700 ⁻	18							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Alp	ha v	/alu	e fo	r ad	ddr3	3	,	Alph	na v	/alu	e fo	or a	ddr2	2	J	Alph	na v	alu	e fo	r ad	ddr1	1		Alpl	ha v	⁄alu	e fo	or ac	ddr0)
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

7.4.4 CTRL

This register is combined by several control bits.

	CTI	RL																											0x1	307	001	C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					R	tese	erve	ed						À E L	Frm_end	Alpha_start	Int_mask			Cha	ınne	el_lo	eve	I		Alp	oha	mo	de	Format mode	וומרוווסמ	Alpha enable
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name		Description	RW					
31:20	Reserved	Writing has no effect, read as zero.							
19:18	Frmlv	[19:18]	Number of frames	RW					
		00 (1)	invalid						
	c f	01	2						
	011	10	3						
	20	11	4						
17 1	Frm_end	1: all frames' a	lpha blending are finished and send to frame buffer	R					
		0: alpha_osd is	s under working						
16	Alpha_start	Writing 1 to this bit to start alpha_osd. When alpha_osd start to							
		work, this bit is cleared by hardware automatically.							
15	Int_mask		RW						
		1: enable interrupt							
		0: disable interrupt							
14:7	Channel_level	2bits x 4, 4-laye	er order form up to down.	RW					
		When Frmlv wa	as 2'b01 , [14:11] is useless;						
		When Frmly was 2'b10, [14:13] is useless.							
		Bits	Description						
		14:13	The top frame ID	Ī					
		12:11	The secondary top frame ID						
		10:9	The secondary bottom frame ID						
		The bottom frame ID							

6:3	Alpha_mode	1bit x 4, represent alpha mode of each frame corresponded with								
		addr0~addr3.	0~addr3.							
		0: pixel alpha b	plending							
		1: frame alpha								
		Bits	Description							
		6	Alpha mode for addr3 frame							
		5	Alpha mode for addr2 frame							
		4	Alpha mode for addr1 frame							
		3	Alpha mode for addr0 frame							
2:1	Format mode	[2:1]	Format							
		00	RGB565							
		01	RGB555							
		10	ARGB8888							
		11	Reserved	(
0	Alpha_enable	1: alpha enable	e	RW						
		0: alpha disabl	le							
	1 USEC									
7.4.5	7.4.5 INT									
\//b a m .										

7.4.5 INT

When frm_end became high, alpha_osd would generate interrupt signal if INT_mask was high, and interrupt would last until software written 1 to this register.

Bits	Name	Description	RW
31:2	Reserved	Writing has no effect, read as zero.	R
1	C_Int_flag	Compress end flag.	RW
		writing 1 to this bit to clear flag.	
		1:interrupt	
		0:no interrupt	
		*NOTE: this flag(c_int_flag) used in compress module.	
0	A_Int_flag	Alpha_osd end flag.	RW
		writing 1 to this bit to clear flag.	
		1:interrupt	
		0:no interrupt	

7.4.6 Clk_Gate

This register set hclk gate for aosd_comp.

Bits	Name	Description	RW
31:1	Reserved	Writing has no effect, read as zero.	R
0	Gate_en	1: Enable hclk gate when controller idle	RW

Tons eiffel@126.com internal used only

7.5 Alpha_osd Operation

- 1 Look at frm end.
 - Read CTRL and make sure frm_end is 1.
- 2 Configuration1.
 - Set Reg_addr0~Reg_addr3, Reg_waddr, Reg_addrlen and Slv_reg_alphavalue.
- 3 Configuration2 and start.
 - Set CTRL. If you want to start alpha_osd, set Alpha_start (CTRL[16]) to 1, if not set it to 0. Be aware that Frmlv's default value is 2'b01, don't set it to 2'b00.
- 4 Interrupt handle.
 - Do configuration1, configuration2 and start. If you want to start alpha_osd, set Alpha_start (CTRL[16]) to 1, if not set it to 0.
 - Clear the interrupt flag by writing 1 to Int.

Ions eiffel@126.com internal used only

8 LVDS Controller

8.1 Overview

This product is a single-Link high speed LVDS (Low-Voltage Differential Signaling) transmitter used for digital flat panel display systems. It's compatible with ANSI/TIA/EIA-644-A (LVDS) Standard. The transmitter converts 28bits parallel TTL data into four LVDS data streams. An in-phase transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. It support full HDTV display up to 1920x1080p @ 60 Hz.

Feature:

- 25 to 135 MHz input clock support
- Supports VGA, SVGA, XGA, SXGA and HDTV
- Compatible with TIA/EIA-644 LVDS standard
- Support 24-bit Flat Panel Display
- Support VESA and JEIDA LVDS Data format

Ions eiffel@126.com internal used only

8.2 Register Description

In this section, we will describe the registers in LVDS controller. Following table lists all the register definitions. All registers' 32bit addresses are physical addresses. And detailed function of each register will be described below.

Table 8-1 LVDS Register Description

Name	Description	RW	Reset Value	Address	Access
					Size
TXCTRL	LVDS Transmitter 's Control	RW	0x80040060	0x130503C0	32
	Register				
TXPLL0	LVDS Transmitter's PLL Control	RW	0x60001304	0x130503C4	32
	Register 0				
TXPLL1	LVDS Transmitter's PLL Control	RW	0x61000000	0x130503C8	32
	Register 1				19

8.2.1 TXCTRL (LVDS Transmitter Control Register)

1 / 1	_ LL	- !	_	۷D	S 1	ıaı	1511	IIILLE	51 5	ГL	L	,011	uoi				Γ\ V V	' '	UXU	10	oot	,00	Ι,	UX I	30	500		,	٥,	_		
			R	egi	iste	r 1																							1	3		
8.2. The		jiste	er T		•												egis	ste	r)	X,	V.		1	J.	36	6,	·	0) 2)	(13	805 (030	20
				20	27	26	25	24	22	22	24	20	10	10	17	16	15	11	12	10	11	10	0	0	7	6	_				1	0
Bit	31	30	29	20	21	20	25	24	23	22	21	20	19	10	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2		U
	LYDS_MODEL_SEL	aoa_xt	X)_BOB_CK	Reserved	RESERVE_7	8_SERVE_6	S_BVABSBR	RESERVE_4	RESERVE_3	RESERVÈ	RESERVE_1	SESERVE_0_	Reserved	TX_RSTB () TX_CKBIT_PHA_SEL	TX_CKBYTE_PHA_SEL		TX_CKOUT_PHA_S		TX_CKOUT_SET	TX_OUT_SEL		TX_DLY_SEL		TX_AMP_ADJ	SGAT_XT		TX_CR		TX_CR_CK	s_do_xT	TX_OD_EN
RST	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0

Bits	Name	Description	RW
31	LVDS_MODEL_SEL	VESA model or JEIDA model select.	RW
		0: JEIDA; 1:VESA.	
30	TX_PDB	Data channel Power down. 0: power down.	RW
29	TX_PDB_CK	Clock channel Power down. 0: power down.	RW
28	Reserved	Writing has no effect, read as zero.	R
27	LVDS_RESERVE_7	Reserved.	RW
26	LVDS_RESERVE_6	Reserved.	RW
25	LVDS_RESERVE_5	Reserved.	RW
24	LVDS_RESERVE_4	Reserved.	RW
23	LVDS_RESERVE_3	Reserved.	RW

22	LVDS_RESERVE_2	Reserved.	RW
21	LVDS_RESERVE_1	Reserved.	RW
20	LVDS_RESERVE_0	Reserved.	RW
19	Reserved	Writing has no effect, read as zero.	R
18	TX_RSTB	System reset signal. 0: Reset.	RW
17	TX_CKBIT_PHA_SEL	7x clock sampling edge configuration.	RW
		0: Rising edge; 1: Falling Edge.	
16	TX_CKBYTE_PHA_SE	1x clock sampling edge configuration.	RW
	L	0: Rising edge; 1:Falling Edge.	
15:13	TX_CKOUT_PHA_S	Output data start-edge tuning in 1x clock output mode.	RW
		000: 0 of T _{7X}	
		001: 1 of T _{7X}	
		111: 7 of T _{7X}	(
12	TX_CKOUT_SET	TX clock channel output clock frequency set.	RW
		0: 1x clock output	
		TX clock channel output clock frequency set. 0: 1x clock output 1: 7x clock output	
11	TX_OUT_SEL	Transmitter output select.	RW
		0: LVDS output; 1: CMOS RGB output.	
10:8	TX_DLY_SEL	Input clock edge delay control, for setup/hold time fine	RW
		tuning.	
7	TX_AMP_ADJ	LVDS output swing control.	RW
		When AMP_ADJ=1, LVDS output swing is adjustable by	
	<u> </u>	CR<2:0>.	
6	TX_LVDS	Output amplitude tuning in mode of 'TX	RW
	157	_AMP_CTRL'='0'.	
	6 x	0b, V _{OD} =200mV; 1b, V _{OD} =350mV.	
5:3	TX_CR	Digital logic input used to control output swing level.	RW
2	TX_CR_CK	Additional control bit of output swing level.	RW
1	TX_OD_S	Output level selectable pin.	RW
0	TX_OD_EN	Tx output control functions.	RW
		0: Disable ;1: Enable.	

8.2.2 TXPLL0 (LVDS Transmitter's PLL Control Register 0)

The register TXPLL0 is used to control PLL to work.

	ΤX	PL	L0																									()x1	30	503	C4
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	LVDS_PLL_LOCK	PLL_DIS	BG_PWD	Reserved	PLL_SSC_EN	PLL_SSC_MODE	PLL_TEST	poracoo	> D	AVIO TSOG 119				PLL_POST_DIVB			Reserved								VIG FOLL	1	PLL_IN_BYPASS			PLL_INDIV		
RST	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	1	0	0

Bits	Name	Description	RW
31	LVDS_PLL_LOCK	Lock detection output. 1: Lock.	R
30	PLL_DIS	PLL power down control.	RW
		1: power down.	
29	BG_PWD	Band-gap power down control.	RW
		1: power down.	
28	Reserved	Writing has no effect, read as zero.	R
27	PLL_SSC_EN	SSC function enable control. 1: Enable.	RW
26	PLL_SSC_MODE	SSC mode select.	RW
		0: Down spread	
	. (6	1: Center spread	
25	PLL_TEST	Test enable control. 1:Enable.	RW
24:23	Reserved	Writing has no effect, read as zero.	R
22:21	PLL_POST_DIVA	Post divider control bits A.	RW
20:16	PLL_POST_DIVB	N/C.	RW
15	Reserved	Writing has no effect, read as zero.	R
14:8	PLL_PLLN[6:0]	PLL feedback divider value configure.	RW
7:6	PLL_TEST_DIV	Output divider ratio control in test mode.	RW
		00: 1/2	
		01: 1/4	
		10: 1/8	
		11: 1/16	
5	PLL_IN_BYPASS	Input divider bypass.	RW
4:0	PLL_INDIV	Input divider value configure.	RW

8.2.3 TXPLL1 (LVDS Transmitter's PLL Control Register 0)

The register TXPLL1 is used to control PLL to work.

	TX	PLL	_1																							()x1	30	503	C8
Bit	31	30	29	28	27 26	25 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		PLL_ICP_SEL		Reserved	PLL_KVCO	PLL_IVCO_SEL				PLL_SSCN										PLL_COUNT										
RST	0	1	1	0	0 0	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:29	PLL_ICP_SEL	Charge-pump current configure.	RW
28	Reserved	Writing has no effect, read as zero.	R
27:26	PLL_KVCO	VCO gain control.	RW
25:24	PLL_IVCO_SEL	VCO biasing current setup.	RW
23:17	PLL_SSCN	Internal divider for 30KHz clock generation.	RW
16:4	PLL_COUNT	SSC counter.	RW
3:0	PLL_GAIN	SSC counter gain.	RW

9 Camera Interface Module

9.1 Overview

The camera interface module (CIM) supports commonly available CMOS or CCD type image sensors. The CIM sources the digital image stream through a common 8-bit parallel digital protocol. The CIM can directly connect to external CMOS image sensors and ITU656 standard video decoders.

9.1.1 Features

- Input image size up to 4096x4096 pixels
- Max. VGA for image preview
- Max. VGA for video record
- Integrated DMA
- Input format
- internal used only ITU601:YCbCr 4:4:4, YCbCr 4:2:2 and other formats
 - ITU656 (YCbCr 4:2:2)
- Output format
 - Packed : for all data format
 - YCbCr 4:4:4 Planar
 - YCbCr 4:2:2 Planar
- Configurable CIM_VSYNC and CIM_HSYNC signals: active high/low
- Configurable CIM_PCLK: active edge rising/falling
- 256x33 image data receive FIFO (RXFIFO)
- PCLK max. 120MHz 🕻 🤌
- Output format: csc mode is YCbCr 4:2:2, bypass mode is the input data format
- Configurable output order

9.1.2 Pin Description

Table 9-1 Camera Interface Pins Description

Name	I/O	Description
CIM_MCLK	0	CIM work clock
CIM_PCLK	I	Pixel clock from Image Sensor
CIM_VSYNC	I	Vertical synchronous from Image Sensor
CIM_HSYNC	ı	Horizontal synchronous from Image Sensor
CIM_DATA[7:0]	I	Data bus from Image Sensor

9.2 CIM Special Register

The special registers are for CIM to configure and control the interface and DMA operation. The table below lists these registers.

Table 9-2 CIM Registers

Name	RW	Reset Value	Address	Access Size
CIMCFG	RW	0x00000000	0x13060000	32
CIMCR	RW	0x00000000	0x13060004	32
CIMST	RW	0x02020202	0x13060008	32
CIMIID	R	0x00000000	0x1306000C	32
CIMDA	RW	0x00000000	0x13060020	32
CIMFA	R	0x00000000	0x13060024	32
CIMFID	R	0x00000000	0x13060028	32
CIMCMD	R	0x00000000	0x1306002C	32
CIMSIZE	RW	0x00000000	0x13060030	32
CIMOFFSET	RW	0x00000000	0x13060034	32
CIMYFA	R	0x00000000	0x13060038	32
CIMYCMD	R	0x00000000	0x1306003C	32
CIMCBFA	R	0x00000000	0x13060040	32
CIMCBCMD	R	0x00000000	0x13060044	32
CIMCRFA	R	0x00000000	0x13060048	32
CIMCRCMD	R	0x00000000	0x1306004C	32
CIMCR2	RW \	0x00000000	0x13060050	32

9.2.1 CIM Configuration Register (CIMCFG)

CIMCFG 0x13060000 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 VSYNC ORDER **BYPASS** EEOFEN NV DA VSP HSP **JRST** BW 님 **RF_TRIG PACK DSM**

Bits	Name	Description	RW
31	EEOFEN	Early EOF Mode Enable.	RW
		0: EEOF mode is disabled	
		1: When CIMCR.EEOF_LINE lines data has been transferred of a frame,	
		the EEOF flag will be set, and the EEOF interrupt will occur	

30	EXP	Expand mode for CIM_DA	TA width.	
		0: CIM DATA width = 8		
		1: CIM_DATA width > 8		
29:24	RF_TRIG	Specifies the trigger value	of RXFIFO.	RW
	_	CIMCFG.BURST_TY		
		INCR4	Trigger value is (n + 1) * 4	
		INCR8	Trigger value is (n + 1) * 8	
		INCR16	Trigger value is (n + 1) * 16	
		INCR32	Trigger value is (n + 1) * 32	
23:22	BW	Bus width of CIM_DATA Ir	, ,	RW
		When BW is n, the bus wid		
20	SEP	Separate frame format ena	,	RW
		·	t of YCbCr 4:4:4 and YcbCr 4:2:2.	
		0: Output is packaged fram		
		1: Output is separated fram	1 1	3
19:18	ORDER	Input data stream order.		RW
			TU656/YCbCr 4:2:2	
		00 YCbCr	Y ₀ CbY ₁ Cr	
		01 YCrCb	Y ₀ CrY₁Cb	
		10 CbCrY	CbY ₀ CrY ₁	
		11 CrCbY	CrY₀CbY₁	
17:16	DF	Input data format.)III	RW
		00: reserved		
		01: YCbCr 4;4;4		
		10: YCbCr 4:2:2		
		11: ITU656 YCbCr 4:2:2		
15	INV_DAT	Inverse every bit of input d	lata.	RW
1	OUS	0: not inverse; 1: inverse.		
14	VSP	VSYNC polarity selection.	When VSYNC signal is input from pin	RW
		CIM_VSYNC, this bit spec	ifies the VSYNC signal active level and leading	
		edge. When VSYNC is reti	rieved from SAV&EAV, this bit is ignored.	
		0: VSYNC signal active hig	gh, VSYNC signal leading edge is rising edge	
		1: VSYNC signal active lov	w, VSYNC signal leading edge is falling edge	
13	HSP	Specifies the HSYNC sign	al active level and leading edge.	RW
		0: HSYNC signal active high	gh, HSYNC signal leading edge is rising edge	
		1: HSYNC signal active lov	w, HSYNC signal leading edge is falling edge	
12	PCP	Specifies the PCLK working	ng edge.	RW
		0: Data is sampled by PCL	_K rising edge	
		1: Data is sampled by PCL	K falling edge	
11:10	BURST_	DMA burst type.		RW
	TYPE	00: INCR4		
		01: INCR8		

		10: INCF	R16											
		11: INCF												
9	DUMMY	DUMMY	zero function.	When DUMMY is 1.	CIM hardware adds	one byte	RW							
	-			ata bytes to form 32-b		,								
			MY zero functio	•										
			MY zero functio											
8	E_VSYN				DSM is ITU656Proar	essive	RW							
	C		tternal / internal VSYNC selection. When DSM is ITU656Progressive ode, VSYNC can be external (provided by sensor) or internal (retrieved											
				"	56Progressive Mode									
			,	bit should always be	•	,								
				le, pin CIM_VSYNC										
				· –	ed by image sensor	via pin								
			/SYNC	•	, ,	•								
7	LM	Line Mod	de for ITU656.			4 41	RW							
		0: EAV is	s before SAV ir	n each line		with								
		1: SAV is	s before EAV ir	n each line	- 2	Or								
6:4	PACK	Data pad	cking mode, pa	ck 8-bit input data in	to 32-bit data for FIF	Ο.	6:4							
			PACK	Bypass Mode	CSC Mode									
			3'b000	0x 11 22 33 44	0x Y₀ Cb Y₁ Cr									
			3'b001	0x 22 33 44 11	0x Cb Y ₁ Cr Y ₀									
			3'b010	0x 33 44 11 22	0x Y ₁ Cr Y ₀ Cb									
			3'b011	0x 44 11 22 33	0x Cr Y ₀ Cb Y ₁									
			3'b100	0x 44 33 22 11	0x Cr Y ₁ Cb Y ₀									
		4	3'b101	0x 33 22 11 44	0x Y ₁ Cb Y ₀ Cr									
		cfe	3'b110	0x 22 11 44 33	0x Cb Y ₀ Cr Y ₁									
	0	17.	3'b111	0x 11 44 33 22	0x Y ₀ Cr Y ₁ Cb									
	20/													
1	01,0				an the received data									
				d first and 0x44 is re	ceived last, and Y0 is	3								
			before Y1.	۲ ۱۸/۱ ITLIOFO			DIA							
3	FP	`		•	rogressive stream is	•	RW							
		· ·	•	d flag active level. vv	hen other modes are	e usea,								
			ignored.											
			flag active low											
2	DVDAGG		flag active high				DIM							
	BYPASS		e CIM CSC				RW							
1:0	DCM			vaca rafor to the table	a holow		D\A/							
1:0	DSM	Data Sar	npie mode. Ple	ease refer to the table	E DEIUW.		RW							

	DSM	Description
1	2'b00	ITU656Progressive Mode
	2'b01	ITU656Interlace Mode
!	2'b10	Gated Clock Mode
	2'b11	Reserved

9.2.2 CIM Control Register (CIMCR)

	CIMCR 0x1													130	600	004																
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					EE	OF	_LI	NE						FF	RC		DMA_EEOFM	WINE	VDDM	DMA_SOFM	DMA_EOFM	DMA_STOPM	RF_TRIGM	RF_OFM	DMA_SYNC	Reserved	H_SYNC	PP	w	DMA_EN	RF_RST	ENA
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:20	EEOF_LINE	When EEOF_LINE lines data has been transferred of a frame, the	RW
	_	EEOF flag will be set, and the EEOF interrupt will occur.	
19:16	FRC	CIM frame rate control.	RW
		If FRC = n, CIM sampling one frame from every (n+1) frames from	
		the sensor.	
15	DMA_EEOFM	The control bit to enable EEOF interrupt.	RW
14	WINE C	To enable window-image. Used to indicate whether the registers	RW
	011	CIMSIZE and CIMOFFSET work or not.	
	ong	0: the value in CIMSIZE and CIMOFFSET will be ignored	
1	Office	1: the value in CIMSIZE and CIMOFFSET will be used	
13	VDDM	The control bit to enable VDD interrupt.	RW
		0: disable; 1: enable.	
12	DMA_SOFM	The control bit to enable DMA_SOF interrupt.	RW
		0: disable; 1: enable.	
11	DMA_EOFM	The control bit to enable DMA_EOF interrupt.	RW
		0: disable; 1: enable.	
10	DMA_STOPM	The control bit to enable DMA_STOP interrupt.	RW
		0: disable; 1: enable.	
9	RF_TRIGM	The control bit to enable RXF_TRIG interrupt.	RW
		0: disable; 1: enable.	
8	RF_OFM	The control bit to enable RX_OF interrupt.	RW
		0: disable; 1: enable.	
7	DMA_SYNC	The control bit to enable DMA synchronization.	RW
		0: The valid data input to CIM will be transferred by DMA to	

ng CIMDA,
na CIMDA
ing Child,
RXFIFO
R
RW
RW
1 1
RW
10,
et RXFIFO RW
RXFIFO.
enable RW
М
-

9.2.3 CIM Control Register 2 (CIMCR2)

Bits	Name	Description	RW
31:6	Reserved	Writing has no effect, read as zero.	R

5:4	OP	Optional Price	ority Configuration. Only use	ed when OPE is set to 1.	RW
		PG	CIM AHB Priority	Number of Data in	
				FIFO	
		2'b00	0	n <= 8	
			1	8 < n <= 16	
			2	16 < n <= 32	
			3	32 < n	
		2'b01	0	n <= 16	
			1	16 < n <= 32	
			2	32 < n <= 64	
			3	64 < n	
		2'b10	0	n <= 32	
			1	32 < n <= 64	
			2	64 < n <= 96	
			3	96 < n	
		2'b11	0	n <= 64	
			1	64 < n <= 96	
			2	96 < n <= 128	
			3	128 < n	
		It is suggest	ed to use 2'b10.		
3	Reserved		no effect, read as zero.		R
2	OPE		prity Mode Enable Control.	Only used when APM is 1.	RW
_	0. =		lates the priority according	•	
	c S		, ,	to OPG which is configured	
	eit	by softwa			
1	EME	Emergency	Mode Enable Control.		RW
1	Olio	0: Emergeno	cy Mode Disable		
		_	cy Mode Enable		
0	APM	Auto Priority	Mode Enable Control.		RW
		_	ity mode disable. CIM uses	the priority set by arbiter	
			ity mode enable. CIM can ι		
		the fifo sta	-		

9.2.4 CIM Status Register (CIMST)

	CIMST																										0x	130	600	800
Bit	31 30	29 28	3 27	26	25	24	23	22	21 2	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved	Cr_RF_OF	Cr_RF_TRIG	Cr_RF_EMPTY		Re	serv	ed		Cb_RF_OF	Cb_RF_TRIG	Cb_RF_EMPTY		Res	serv	⁄ed		Y_RF_OF	Y_RF_TRIG	Y_RF_EMPTY	Reserved	DMA_EEOF	DMA_SOF	DMA_EOF	DMA_STOP	RF_OF	RF_TRIG	RF_EMPTY	VDD
RST	0 0	0 0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0

Bits	Name	Description							
31:28	Reserved	Writing has no effect, read as zero.	R						
27	Cr_RF_OF	Cr_RXFIFO over flow.	RW						
		When Cr_RXFIFO over flow happens, Cr_RX_OF is set 1.							
		Can generate interrupt if CIMCR.RF_OFM bit is set.							
		Write 0 to this bit to clear.							
26	Cr_RF_TRIG	Cr_RXFIFO trigger. Indicates whether Cr_RXFIFO meet the trigger	R						
		value or not.							
		Can generate interrupt if CIMCR.RF_TRIGM bit is set.							
		0: Cr_RXFIFO does not meets the trigger value							
		1: Cr_RXFIFO meets the trigger value							
25	Cr_RF_EMP	Cr_RXFIFO empty. Indicates whether Cr_RXFIFO is empty or not.	R						
	TY	After reset, RXFIFO is empty, and Cr_RX_EMPTY is 1.							
	; 5	0: Cr_RXFIFO is not empty							
	6 y	1: Cr_RXFIFO is empty							
24:20	Reserved	Writing has no effect, read as zero.	R						
19	Cb_RF_OF	Cb_RXFIFO over flow. When Cb_RXFIFO over flow happens,	RW						
		Cb_RX_OF is set 1.							
		Can generate interrupt if CIMCR.RF_OFM bit is set.							
		Write 0 to this bit to clear.							
18	Cb_RF_TRIG	Cb_RXFIFO trigger. Indicates whether Cb_RXFIFO meet the trigger	R						
		value or not.							
		Can generate interrupt if CIMCR.RF_TRIGM bit is set.							
		0: Cb_RXFIFO does not meets the trigger value							
		1: Cb_RXFIFO meets the trigger value							
17	Cb_RF_EMP	Cb_RXFIFO empty. Indicates whether Cb_RXFIFO is empty or not.	R						
	TY	After reset, Cb_RXFIFO is empty, and Cb_RX_EMPTY is 1.							
		0: Cb_RXFIFO is not empty							
		1: Cb_RXFIFO is empty							
16:12	Reserved	Writing has no effect, read as zero.	R						

			1
11	Y_RF_OF	Y_RXFIFO over flow. When Y_RXFIFO over flow happens,	RW
		Y_RX_OF is set 1.	
		Can generate interrupt if CIMCR.RF_OFM bit is set.	
		Write 0 to this bit to clear.	
10	Y_RF_TRIG	Y_RXFIFO trigger. Indicates whether Y_RXFIFO meet the trigger	R
		value or not.	
		Can generate interrupt if CIMCR.RF_TRIGM bit is set.	
		0: Y_RXFIFO does not meets the trigger value	
		1: Y_RXFIFO meets the trigger value	
9	Y_RF_EMPT	Y_RXFIFO empty. Indicates whether Y_RXFIFO is empty or not.	R
	Υ	After reset, Y_RXFIFO is empty, and Y_RX_EMPTY is 1.	
		0: Y_RXFIFO is not empty	
		1: Y_RXFIFO is empty	
8	Reserved	Writing has no effect, read as zero.	R
7	DMA_EEOF	When set to 1, indicate the DMA has transferred	RW
		CIMCTRL.EEOF_LINE lines data of a frame.	
		Write 0 to this bit to clear.	
6	DMA_SOF	When set to 1, Indicate the DMA start a transfer from RXFIFO to a	RW
	_	frame buffer.	
		Write 0 to this bit to clear.	
5	DMA_EOF	When set to 1, indicate the DMA complete a transfer from RXFIFO to	RW
		a frame buffer.	
		Write 0 to this bit to clear.	
4	DMA_STOP	When set to 1, indicate the DMA complete transferring data and stop	RW
	_	the operation. Can generate interrupt if CIMCR.DMA_STOPM bit is	
	. 8	set.	
	67	Write 0 to this bit to clear.	
3	RF OF	RXFIFO over flow. When RXFIFO over flow happens, RX_OF is set	RW
1	OF	1.	
		Can generate interrupt if CIMCR.RF_OFM bit is set.	
		Write 0 to this bit to clear.	
2	RF_TRIG	RXFIFO trigger. Indicates whether RXFIFO meet the trigger value or	R
	_	not. When the valid data number in RXFIFO reaches the trig value,	
		RXF_TRIG is set 1; when the valid data number in RXFIFO do not	
		reach the trig value, RXF_TRIG is set 0. Can generate interrupt if	
		CIMCR.RF_TRIGM bit is set.	
		0: RXFIFO does not meets the trigger value	
		1: RXFIFO meets the trigger value	
1	RF_EMPTY	RXFIFO empty. Indicates whether RXFIFO is empty or not. After	R
-		reset, RXFIFO is empty, and RX_EMPTY is 1.	-
		0: RXFIFO is not empty	
		1: RXFIFO is empty	
		1. Tota ii o lo ompty	<u> </u>

0	VDD	CIM disable done. Indicate this module is disabled after clear the	RW
		CIMCR.ENA bit to disable the CIM module. Can generate interrupt if	
		CIMCR.DMA_VDDM bit is set.	
		0: CIM has not been disabled	
		1: CIM has been disabled	
		Write 0 to this bit to clear.	

9.2.5 CIM Interrupt ID Register (CIMIID)

Bits	Name	Description (RW
31:0	FID	Interrupt frame ID. Contains a copy of the Frame ID register	R
		(CIMFID) from the descriptor currently being processed when a	
		DMA_SOF or DMA_EOF interrupt is generated. CIMIID is written to	
		only when CIMCMD.SOFINT or CIMCMD.EOFINT is high. As such,	
		the register is considered to be sticky and will be overwritten only	
		when the associated interrupt is cleared by writing the CIM state	
	. 8	register.	

9.2.6 CIM Descriptor Address (CIMDA)

Bits	Name	Description	RW
31:0	NDA	Next descriptor physical address in external memory. DMAC gets the	RW
		next descriptor according to it after finishing the current one. The target	
		address Bits [3:0] must be zero to be aligned to 16-byte boundary.	

9.2.7 CIM Frame buffer Address Register (CIMFA)

Bits	Name	Description	RW
31:0	FPA	Frame buffer physical address in external memory when CIMCFG. SEP is	R
		0. When starts CIM, DMA transfers data from RXFIFO to frame buffer.	
		This address is increased by hardware automatically.	
		Bits [6:0] must be zero to be aligned to 32-word boundary.	

NOTE: CIMFA comes from DMA Descriptor, so here it is read-only.

9.2.8 CIM Frame ID Register (CIMFID)

Bits	Name	Description	RW
31:0	FID	Frame ID. The particular use of this field is up to the software. This ID will	R
		be copied to the CIMIID register when an interrupt occurs.	

NOTE: CIMFID comes from DMA Descriptor, so here it is read-only.

9.2.9 CIM DMA Command Register (CIMCMD)

	CIN	/IFIC)																										0 x	130	600	2C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SOFINT	EOFINT	EEOFINTEn	STOP	R	ese	rve	d												LE	ΞN											
RS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31	SOFINTEn	Interrupt enable for DMA starting a frame-buffer transfer.	R
		1: DMA will set CIMSTATE.DMA_SOF when start of a frame-buffer	
		transfer	
		When one frame uses several buffers, it is suggested to set	
		SOFINTEn of first buffer only.	
30	EOFINTEn	Interrupt enable for DMA ending a frame-buffer transfer.	R
		1: DMA will set CIMSTATE.DMA_EOF when CIMCMD.LEN is	
		decreased to 0, which means end of a frame-buffer transfer	
		When one frame uses several buffers, it is suggested to set	
		EOFINTEn of last buffer only.	
29	EEOFINTEn	Interrupt enable for DMA issuing an earlier eof interrupt.	R
28	STOP	DMA stop. When DMA complete transferring data, STOP bit decides	R
		whether DMA should loading next descriptor or not.	
	. 8	0: DMA start loading next descriptor	
	67,	1: DMA stopped, and CIMSTATE.DMA_STOP bit is set 1 by	
	ng/	hardware	
27	OFRCVEN	Auto recovery enable when there is RXFIFO overflow.	
		0: No auto recovery when overflow occurs, thus the software should	
		do something	
		1: Auto recovery enable, the hardware will correct the overflow	
26:24	Reserved	Writing has no effect, read as zero.	R
23:0	LEN	Length of transfer in words. Indicate the number of words to be	R
		transferred by DMA to a frame buffer. LEN = 0 is not valid. DMA	
		transfers data according to LEN. Each time one or more word(s)	
		been transferred, LEN is decreased automatically.	

9.2.10 CIM Window-image Size (CIMSIZE)

	CIN	IFIC)																										0x	130	600	30
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Res	serv	/ed						ļ	LPF	•						Re	serv	ed							PPL	-					
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:29	Reserved	Writing has no effect, read as zero.	R
28:16	LPF	Lines per frame for CIM output.	RW
15:13	Reserved	Writing has no effect, read as zero.	R
12:0	PPL	PPL must be multiples of 2. In fact, the number of CIM output data in	RW
		word is equal to PPL/2.	

NOTE:

When CIMCFG.SEP is 1, the total pixel number of window-size must be multiple of 4 or 8.

- When output data format is YCBCR4:4:4, it must be multiple of 4.
- When output data format is YCBCR4:2:2, it must be multiple of 8.

9.2.11 CIM Image Offset (CIMOFFSET)

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:16	V_OFFSET	Vertical offset.	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	H_OFFSET	Horizontal offset. It should be an even number.	RW

9.2.12 CIM Y Frame buffer Address Register (CIMYFA)

Bits	Name	Description	RW
31:0	YFPA	Y Frame buffer physical address in external memory when CIMCFG. SEP	R
		is 1. When starts CIM, DMA transfers data from Y_RXFIFO to frame	
		buffer. This address is increased by hardware automatically.	
		Bits [6:0] must be zero to be aligned to 32-word boundary.	

9.2.13 CIM Y DMA Command Register (CIMYCMD)

					l B	Bits	[6:0)] m	ust	be	zei	ro 1	to t	oe a	alıç	gne	d to	32	2-W	ord	bc	un	dar	у.			_ 1	/	-)		
9.2.	13	CIN	1 Y I	DΜ	Α (Col	mm	nan	d F	Reg	gist	er	(C	IM	IY(СМ	D)		40 ¹	0.6	1,1	4	J.	36	6	۲	2,		·		
	CIN	IYCN	ID														X	6		y .								0 x	130	600)3C
Bit	31	30 2	9 28	27	26	25	24	23 2	22 2	21 2	20 1	9 1	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SOFINT	EOFINT	STOP	R	tese	erve	d		<u>0</u> 1	2	0	•	<u></u>)II					YL	EN											
RST	0	0 0	0	0	0	0	0	0	0	0	0 ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31	SOFINTEn	Interrupt enable for DMA starting a frame-buffer transfer.	R
		DMA will set CIMSTATE.DMA_SOF when start of a frame-buffer transfer	
		When one frame uses several buffers, it is suggested to set	
		SOFINTEn of first buffer only.	
30	EOFINTEn	Interrupt enable for DMA ending a frame-buffer transfer.	R
		1: DMA will set CIMSTATE.DMA_EOF when CIMYCMD.YLEN and	
		CIMCbCMD.CbLEN and CIMCrCMD.CrLEN are decreased to 0,	
		which means end of a frame-buffer transfer	
		When one frame uses several buffers, it is suggested to set	
		EOFINTEn of last buffer only.	
29	EEOFINTEn	Interrupt enable for DMA issuing an earlier eof interrupt.	R
28	STOP	DMA stop. When DMA complete transferring data, STOP bit decides	R
		whether DMA should loading next descriptor or not.	

			1
		0: DMA start loading next descriptor	
		1: DMA stopped, and CIMSTATE.DMA_STOP bit is set 1 by	
		hardware	
27	OFRCVEN	Auto recovery enable when there is RXFIFO overflow.	
		0: No auto recovery when overflow occurs, thus the software should	
		do something	
		1: Auto recovery enable, the hardware will correct the overflow	
		DMA will do a frame synchronization, and retransfer the current	
		descriptor.	
26:24	Reserved	Writing has no effect, read as zero.	R
23:0	YLEN	Length of transfer in words. Indicate the number of words to be	R
		transferred by DMA to a frame buffer. YLEN = 0 is not valid. DMA	
		transfers data according to YLEN. Each time one or more word(s)	
		been transferred, YLEN is decreased automatically.	
9.2.14	CIM Cb Fram	e buffer Address Register (CIMCBFA)	
CIM	ICBFA		3060040

9.2.14 CIM Cb Frame buffer Address Register (CIMCBFA)

CIMICBFA 0x13060040 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Olgopea

		. 61	
Bits	Name _	Description	RW
31:0	CbFPA	Cb Frame buffer physical address in external memory when CIMCFG.	R
1	Olio	SEP is 1. When starts CIM, DMA transfers data from Cb_RXFIFO to	
		frame buffer. This address is increased by hardware automatically.	
		Bits [6:0] must be zero to be aligned to 32-word boundary.	

9.2.15 CIM Cb DMA Command Register (CIMCBCMD)

CIMCBCMD 0x13060044 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved **CbLEN**

Bits	Name	Description	RW					
31:24	Reserved	Writing has no effect, read as zero.	R					
23:0	CbLEN	Cb Length of transfer in words. Indicate the number of words to be	R					
		nsferred by DMA to a frame buffer. CbLEN = 0 is not valid. DMA						
		transfers data according to CbLEN. Each time one or more word(s)						
		been transferred, CbLEN is decreased automatically.						

9.2.16 CIM Cr Frame buffer Address Register (CIMCRFA)

Bits	Name	Description	RW
31:0	CrFPA	Cr Frame buffer physical address in external memory when CIMCFG.	R
		SEP is 1. When starts CIM, DMA transfers data from Cr RXFIFO to frame	
		buffer. This address is increased by hardware automatically.	
		Bits [6:0] must be zero to be aligned to 32-word boundary.	

9.2.17 CIM DMA Cr Command Register (CIMCRCMD)

Bits	Name	Description	RW
31:24	Reserved	Writing has no effect, read as zero.	R
23:0	CrLEN	Cr Length of transfer in words. Indicate the number of words to be	R
		transferred by DMA to a frame buffer. CrLEN = 0 is not valid. DMA	
		transfers data according to CrLEN. Each time one or more word(s)	
		been transferred, CrLEN is decreased automatically.	

9.3 CIM Data Sampling Modes

CIM module supports several types of data sampling mode. The modes and the corresponding signals used are shown in the following diagram:

Table 9-3 The modes and the corresponding signals used

Mode \ Signals	CIM_VSYNC	CIM_HSYNC	CIM_PCLK	CIM_DATA
Gated Clock Mode	Y	Y	Y	Y
ITU656 Interlace Mode	N	N	Y	Y
ITU656 Progressive Mode	N	N	Y	Y

9.3.1 Gated Clock Mode

CIM_VSYNC, CIM_HSYNC, and CIM_PCLK signals are used in this mode.

A frame starts with VSYNC leading edge, then HSYNC goes active and holds the entire line. Data is sampled at the valid edge of PCLK when HSYNC is active; That means, HSYNC functions like "data enable" signal. Please refer to the figure below.

Gated Clock Input Timing

The VSYNC leading edge, HSYNC active HIGH or LOW, PCLK valid edges are programmable.

9.3.2 ITU656 Interlace Mode

In this mode, CIM_PCLK and CIM_DAT signals are used, CIM_VSYNC, CIM_HSYNC signals are ignored.

CIM utilizes the SAV & EAV code within ITU656data stream to get active video data.

The following diagrams and tables are quoted from ITU656standard. For more information about

ITU656, please refer to ITU656 standard.

9.3.2.1 PAL Timing

LINE	F	V	H (EAV)	H (SAV)	P0, P1, P2, P3
NUMBER			TILL		
1-22	0	1: blanking			
23-310	Field 1	0: video data	1: in EAV, to	0: in SAV, to	
311-312	rieiu i	1: blanking	indicate the	indicate the	Protection bits
313-335	a & e	1: blanking	end of active	start of active	Frotection bits
336-623	Field 2	0: video data	video	video	
624-625	Jeiu 2	1: blanking			
1 0110			•		

Figure 9-1 Typical BT.656 Vertical Blanking Intervals for 625/50 Video Systems

9.3.2.2 Coding for Protection Bits

F	V	Н	P3	P2	P1	P0
0	0	0	0	0	0	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	1	1
1	0	1	1	0	1	0
1	1	0	1	1	0	0

1	1 1	1		 	1 1
I	l I	l l	0	 	l I

9.3.3 ITU656 Progressive Mode

CIM PCLK and CIM DAT signals are used in this mode. CIM HSYNC signal is ignored.

CIM_VSYNC is optional in this mode. When the start of frame information is retrieved from SAV and EAV, it is known as internal VSYNC mode. When CIM_VSYNC is provided by sensor directly, it is known as external VSYNC mode. CIM supports both internal and external VSYNC modes.

ITU656Progressive Mode is a kind of Non-Interlace Mode. The image data are encoded within only one field. Most sensors support ITU656Progressive Mode.

Figure 9-2 ITU656 Progressive Mode

9.4 DMA Descriptors

9.4.1 4-Word Descriptor

Used when output is packaged frame format.

A DMA descriptor is a 4-word block corresponding to the four DMA registers – CIMDA, CIMFA, CIMFID, and CIMCMD, aligned on 4-word (16-byte) boundary, in external memory:

- word [0] contains the physical address for next CIMDA
- word [1] contains the value for CIMFID
- word [2] contains the physical address for CIMFA
- word [3] contains the value for CIMCMD

Software must write the physical address of the first descriptor to CIMDA before enabling the CIM. Once the CIM is enabled, the first descriptor is read, and all 4 registers are written by the DMAC. The internal use next DMA descriptor pointed to by CIMDA is loaded into the registers after all data for the current descriptor has been transferred.

9.4.2 8-Word Descriptor

Used when output is separated frame format.

A DMA descriptor is a 8-word block corresponding to the four DMA registers – CIMDA, CIMFA, CIMFID, and CIMCMD, aligned on 8-word (32-byte) boundary, in external memory:

- word [0] contains the physical address for next CIMDA
- word [1] contains the value for CIMFID
- word [2] contains the physical address for CIMYFA
- word [3] contains the value for CIMYCMD
- word [4] contains the physical address for CIMCBFA
- word [5] contains the value for CIMCBCMD
- word [6] contains the physical address for CIMCRFA
- word [7] contains the value for CIMCRCMD

Software must write the physical address of the first descriptor to CIMDA before enabling the CIM. Once the CIM is enabled, the first descriptor is read, and all 8 registers are written by the DMAC. The next DMA descriptor pointed to by CIMDA is loaded into the registers after all data for the current descriptor has been transferred.

NOTE: If only one frame buffer is used in external memory, the CIMDA field (word [0] of the DMA descriptor) must point back to itself. That is to say, the value of CIMDA is the physical address of itself.

9.5 Interrupt Generation

CIM has next interrupt sources:

- Step 1. RXFIFO FULL Interrupt. (RF_TRIG)

 When the valid data number of RXFIFO reaches trigger value, CIMST.RF_TRIG bit is set.

 At the same time, if RF_TRIGM is 1, RF_TRIG interrupt is generated.
- Step 2. RXFIFO Over Flow Interrupt. (RF_OF)
 When the valid data number of RXFIFO reaches 32 and one more data are written to RXFIFO, CIMST.RF_OF bit is set. At the same time, if RF_OFM is 1, RF_OF interrupt is generated.
- Step 3. DMA Start Of Frame Data Transferring Interrupt. (DMA_SOF)

 When the CIMCMD.SOFINT bit is 1 and DMA start transferring the first data from RXFIFO to frame buffer, CIMST.DMA_SOF bit is set. At the same time, if DMA_SOFM is 1, DMA_SOF interrupt is generated.
- Step 4. DMA End Of Frame Data Transferring Interrupt. (DMA_EOF)

 When the CIMCMD.EOFINT bit is 1 and DMA complete transferring the last data from RXFIFO to frame buffer, CIMST.DMA_EOF bit is set. At the same time, if DMA_EOFM is 1, DMA_EOF interrupt is generated.
- Step 5. DMA Stop Transferring Interrupt. (DMA_STOP)

 When the CIMCMD.STOP bit is 1 and DMA complete transferring the last data from RXFIFO to frame buffer, CIMST.DMA_STOP bit is set. At the same time, if DMA_STOPM is 1, DMA_STOP interrupt is generated.
- Step 6 CIM Disable Done Interrupt. (VDD)

 When disable the module by clearing the CIMCR.ENA, the module should be disabled after transferring current valid data. Then set the CIMST.VDD bit, at the same time, if VDDM is set, VDD interrupt is generated.

Software Operation

9.6.1 Enable CIM with DMA

- Step 1. Configure register CIMCFG.
- Step 2. Prepare frame buffer and descriptors.
- Step 3. Configure register CIMDA.
- Step 4. Clear state register: write 0 to register CIMSTATE.
- Step 5. Reset RXFIFO: configure register CIMCTRL with DMA_EN=1, RXF_RST=1, ENA=0.
- Step 6. Stop resetting RXFIFO: configure register CIMCTRL with DMA EN=1, RXF RST=0, ENA=0.
- Step 7. Enable CIM: configure register CIMCTRL with DMA_EN=1, RXF_RST=0, ENA=1.

9.6.2 Enable CIM without DMA

- Configure register CIMCFG.
- Clear state register: write 0 to register CIMSTATE.
- Reset RXFIFO: configure register CIMCTRL with DMA_EN=0, RXF_RST=1, ENA=0.
- Stop resetting RXFIFO: configure register CIMCTRL with DMA EN=0, RXF RST=0, ENA=0.
- Enable CIM: configure register CIMCTRL with DMA_EN=0, RXF_RST=0, ENA=1.

9.6.3 Disable CIM

Method 1:

26. com inti Step 1. Configure register CIMCTRL with RXF_RST=0, ENA=0. // quick disable

Step 2. Clear state register: write 0 to register CIMSTATE.

Method 2:

When DMA is enabled, the following sequence is recommended:

- Step 1. Configure descriptor with STOP = 1.
- Step 2. Wait DMA_STOP interrupt, then write 0 to CIMCTRL.ENA.
- Step 3. Clear state register: write 0 to register CIMSTATE.

9.6.4 CIM Priority

There are three methods to use CIM priority to transfer data from receiving fifo to external memory, called bus, module and software mode.

9.6.4.1 Bus Priority Mode

CIM uses the priority distributed by AHB bus arbiter.

Step:

Set CIMCR2.APM to 1'b0.

9.6.4.2 Module Priority Mode

CIM module chooses the priority automatically, which is according to the receiving fifo status only. It is recommended. It is recommended.

Steps:

- Set CIMCR2.OPE to 1'b0.
- 2 Set CIMCR2.APM to 1'b1.

9.6.4.3 Software Priority Mode

CIM module chooses the priority according to the receiving fifo status and CIMCR2.OR. Steps:

- 1 Set CIMCR2.OP to the value expected.
- 2 Set CIMCR2.OPE to 1'b1.

Ions eiffel@126.com internal used only

10 Internal CODEC Interface

10.1 Overview

This chapter describes the embedded audio CODEC in the processor and related software interface.

This embedded CODEC is an I2S audio CODEC. AIC module is an interface to this CODEC in audio data replaying and recording. Several memory mapped registers are used to access this embedded CODEC, and write/read these registers could access the CODEC's internal control and configure registers that is using 12 MHz clock.

10.1.1 Features

The following are internal CODEC features:

- 24 bits ADC and DAC
- Headphone load up to 16 Ohm
- Sample frequency supported: 8k, 11.025k, 12k, 16k, 22.05k, 24k, 32k, 44.1k, 48k, and 96k
- Stereo line input
- DAC to HP path: Power consumption: 17.6mW, THD: -65dB @17.6mW /16Ohm
- DAC to stereo line output path @10kOhm: SNR: 95dB A-Weighted, THD: -80dB @FS-1dB
- Line input to ADC path: SNR: 95dB A-Weighted, THD: -80dB @FS-1dB
- Separate power-down modes for ADC and DAC path with several shutdown modes
- Reduction of audible glitches systems: Pop Reduction system, Soft Mute mode
- Output short circuit protection
- Support Capacitor-coupled and Capacitor-less mode headphone connection

TBD = parameter or document section to be defined later on TBC = parameter or document section subject to change TO BE COMPLETED = section to be filled or subject to change

10.1.2 Signal Descriptions

CODEC has max 13 analog signal IO pins and 4 power pins on chip. They are listed and described in the flowing table.

Table 10-1 CODEC signal IO pin description

Pin Names	Ю	Pin Description	Power
MICP1	ΑI	Microphone mono differential analog input 1 (MIC1), positive pin.	AVDCDC
MICN1	ΑI	Microphone mono differential analog input 1 (MIC1), negative pin.	AVDCDC
MICP2	ΑI	Microphone mono differential analog input 2 (MIC2), positive pin.	AVDCDC
MICN2	Al	Microphone mono differential analog input 2 (MIC2), negative pin.	AVDCDC
MICBIAS	AO	Microphone bias.	AVDCDC
AIL	ΑI	Left line single-ended analog input.	AVDCDC
AIR	ΑI	Right line single-ended analog input.	AVDCDC
AOLOP	AO	Differential line output, positive pin.	AVDCDC
AOLON	AO	Differential line output, negative pin.	AVDCDC
AOHPL	AO	Left headphone single ended analog output	AVDHP
AOHPR	AO	Right headphone single ended analog output.	AVDHP
AOHPM	AO	Headphone common mode output.	AVDHP
AOHPMS	Al	Headphone common mode sense input.	AVDHP
VCAP	AO	Voltage Reference Output. An 10µF ceramic or tantalum capacitor in parallel with a 0.1µF ceramic capacitor attached from this pin to AVSCDC eliminates the effects of high frequency noise.	AVDCDC
AVDHP	Р	Headphone amplifier power, 2.5V.	-
AVSHP	Р	Headphone amplifier ground.	-
AVDCDC	Р	CODEC analog power, 2.5V, inter signal VREFP.	-
AVSCDC	Р	CODEC analog ground, inter signal VREFN.	-
HPSENSE	Al	Headphone jack sense.	AVDHP
DMIC_IN	DI	Digital microphone data input pin.	AVDCDC
DMIC_CLK	DO	Digital microphone clock output pin.	AVDCDC

NOTES:

- 1 AVDHP = 2.5v (typ). AVDCDC= 2.5v (typ).
- 2 Inter signal VREFP is connected to AVDCDC, inter signal VREFN is connected to AVSCDC.
- 3 Please refer to data sheet of the chip for details.
- 4 DMIC_IN is GPIO: PB18, MIC_CLK is GPIO: PB19. Please refer to GPIO specification for

these pins operating.

10.1.3 Block Diagram

Figure 10-1 CODEC block diagram

Figure 10-2 Internal CODEC works with AIC

1018 eiffel@126.com internal used only

10.2 Mapped Register Descriptions

The internal CODEC software interface includes 2 registers. They are mapped in IO memory address space of AIC module so that program can access them to control the operations of the CODEC.

Table 10-2 Internal CODEC Mapped Registers Description (AIC Registers)

Name	Description	RW	Reset value	Address	Size
RGADW	Address, data in and write command for accessing to internal registers of internal embedded CODEC.	RW	0x00000000	0x100200A4	32
RGDATA	The read out data and interrupt request status of Internal registers data in the internal embedded CODEC.	R	0x00000000	0x100200A8	32

NOTES:

- 1 All these registers are AIC Registers, because they are mapped in AIC IO memory address.
- 2 RGADW contains data, address and write command to the internal registers of the internal CODEC.
- 3 RGDATA returns the internal register value of the internal CODEC and interrupt request status.

10.2.1 CODEC internal register access control (RGADW)

RGADW contains address, data and write command to the internal registers of the internal embedded CODEC.

Bits	Name	Description	RW
31:17	Reserved	Writing has no effect, read as zero.	R
16	RGWR	Write 1 to this bit issues writing to CODEC's internal register process. This bit keeps value 1 until the current writing process is finished. A register read or a new register writing process cannot be issued before the previous writing process finished. In another word, it should not write to RGADW before RGADW.RGWR becomes 0. A writing process takes max of 0.17us plus 1 PCLK cycle. Write 0 to this bit is ignored.	RW
15	Reserved	Writing has no effect, read as zero.	R
14:8	RGADDR	When it issues a writing to CODEC's internal register command, i.e. RGWR=1, this field specifies the register's address. In addition, this field also decides the address of the register's data out at any time.	RW
7:0	RGDIN	When it issues a writing to CODEC's internal register command, i.e. RGWR=1, this field contains the data to be written to the register.	RW

NOTES:

- 1 It is strong suggesting verifying the data (using read RGDATA below) after writing it to internal register of CODEC. When RGDATA returns the right data which writing to the address, the writing process is finish.
- 2 Please notice that AIC needs SYS_CLK (refers to AIC spec), when write new value to or read from CODEC internal registers.

10.2.2 CODEC internal register data output (RGDATA)

RGDATA returns the internal register value of the internal embedded CODEC and interrupt request status.

	RGDATA													0x100200							8 A											
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved												IRQ			R	GD	OU	Т													
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description			RW	
31:9	Reserved	Wr	Writing has no effect, read as zero.			
8	IRQ	Thi	This field returns the internal embedded CODEC's interrupt request.			
			IRQ	Description		
			0	No CODEC's interrupt request found.		
			1	CODEC's interrupt request is pending.		
7:0	RGDOUT	Thi	This field returns the value of the internal register in internal embedded CODEC. As the RGADW.RGADDR field specifies the register's			
		CC				
		ado	address.			

NOTE: AIC needs SYS_CLK (refers to AIC spec), when write new value to or read from CODEC internal registers.

10.3 Operation

The internal embedded CODEC is controlled its internal registers. These registers can be accessed by through memory-mapped registers, RGADW and RGDATA, just like L3 bus or I2C bus for an external CODEC. AIC'S BITCLK and SYNC are from/to the CODEC and is controlled by CKCFG.SELAD register. The audio data transferring, i.e. audio replaying and recording, is down by AIC. AIC still takes the role of I2S controller. We will refer to many AIC operations and registers in the following audio operation descriptions, please reference to AIC spec for the details.

This is a guide for software.

10.3.1 Access to internal registers of the embedded CODEC

The embedded CODEC is controlled through its internal registers. RGADW and RGDATA are used to write to and read from these registers. Here are some examples.

Example 1. Write to a CODEC internal register.

Step 1: RGADW.RGWR == 0.

Step 2: If not, go to step 1.

Step 3: Write to RGADW and make it.

RGADW.RGDIN = <data to be written to the register>.

RGADW.RGADDR = <the register's address >.

Step 4: Write to RGADW to commit the writing operation.

RGADW.RGWR = 1,

Example 2. Read from a CODEC internal register.

Step 1: RGADW.RGWR == 0.

Step 2. If not, go to step 1.

Step 3: write to RGADW and make it.

RGADW.RGWR = 0.

RGADW.RGDIN = <don't care>.

RGADW.RGADDR = <the register's address>.

Step 4: read RGDATA.DOUT, which returns the register's content.

10.3.2 CODEC controlling and typical operations

This section is some typical operations. We are assumed the power supply of CODEC is on, and CODEC is in STANDBY mode, CRR is configured for audio Ramping system.

Before using any of these operations, make sure AIC is configured properly as list below:

1 Make AIC to use internal CODEC mode:

AICFR.ICDC = 1; Use internal CODEC.

AICFR.AUSEL = 1; Use I2S mode.

AICFR.BCKD = 0; CODEC input BIT_CLK to AIC.

AICFR.SYNCD = 0; CODEC input SYNC to AIC.

I2SCR.AMSL = 1; Use I2S operation mode.

I2SCR.ESCLK = 1; Open SYS CLK to internal CODEC. (if using PLL Clock)

- 2 Make sure AICCR.FLUSH = 0; AICFR.RST = 0; AICCR.ENLBF = 0.
- 3 Clear AICSR.ROR, AICSR.TUR, AICSR.RFS, AICSR.TFS = 0 to 0.
- 4 Set proper value to AICCR.M2S; AICCR.ENDSW; AICCR.ASVTSU.
- 5 Set AICFR.ENB to 1; Open AIC.

When using DMA mode, configure AICFR.RFTH, AICCR.RDMS or AICFR.TFTH, AICCR.TDMS.

Configure TX-FIFO and interrupt means setting proper value to AICFR.TFTH, clear AICCR.ETFS to 0, and clear AICCR.ETUR to 0.

Configure RX-FIFO and interrupt means setting proper value to AICFR.RFTH, clear AICCR.ERFS to 0 and clear AICCR.EROR to 0.

When configure interrupt, software must handle all the interrupt. So all interrupt is recommended disabled as shown above.

CODEC shares the interrupt with AIC module.

The register or register bit of CODEC will use the same form as the Mapped registers, but software should use the method in the section "Mapped Register Descriptions" to access this registers.

More details are listed in the CODEC guide.

10.3.3 Power saving

There are many power modes in CODEC. In every working mode, it should close stages (parts) of CODEC for saving power.

The power diagram is shown in "CODEC Power Diagram"; please refer to "CODEC Operating modes".

10.3.4 Pop noise and the reduction of it

Please refre to "Ramping system note" and "Anti-pop operation sequences" for details.

10.3.4.1 Reference open step

1 Init play.

used only Step 0: Open DMA and two AIC modules Clocks in CPM.CLKGR.

Step 1: Configure AIC as slave and using inter CODEC mode.

AICFR.ICDC = 1; Use internal CODEC.

AICFR.AUSEL = 1; Use I2S mode.

CODEC input BIT_CLK to AIC. AICFR.BCKD = 0;

CODEC input SYNC to AIC. AICFR.SYNCD = 0; I2SCR.AMSL = 1; Use I2S operation mode.

I2SCR.ESCLK = 1; Open SYS CLK to internal CODEC.

Step 2: Configure DMA as slave mode using internal CODEC.

2 Open.

Step 0: Enable DMA Channel Clock.

Step 1: Configure AIC sample size and sample rate. Configure AIC Output FIFO Threshold.

Step 2: Configure DMA.

Step 3: Configure CODEC.

3 Write.

Step 0: Enable DMA Channel Clock.

Step 1: Configure AIC.

Step 2: Configure DMA.

Step 3: Configure CODEC.

4 Read.

Step 0: Enable DMA Channel Clock.

Step 1: Configure AIC.

Step 2: Configure DMA.

Step 3: Configure CODEC.

- 5 Close.
- 6 End.

NOTES:

SB DAC Control the internal OBIT CLK from CODEC to AIC, First turn it on when write data

(replay).

2 SB_ADC Control the internal IBIT_CLK from CODEC to AIC, First turns it on when read data (record).

1018 eiffel@126.com internal used only

10.4 Timing parameters

Parameter	Condition	Min.	Тур.	Max.	Unit
Tsbyu	Cext = 10uF/100nF +/-20%		250	500	ms
Tshd_adc	Cext = 10uF/100nF +/-20%		200		ms
Tshd_dac	Cext = 10uF/100nF +/-20%		400	900	ms
Tr, Tf (all inputs)	All modes			5	ns
Tr, Tf (all outputs)	All modes			5	ns

NOTES:

- 1 Tsbyu is the reference wake-up time after complete power down.

1018 eiffel@126.com internal used only

10.5 AC & DC parameters

Voltages:

AVSHP and AVSCDC are connected to analog ground.

AVDHP = 2.5V (typ).

AVDCDC= 2.5V (typ).

power consumption

mode		power consumption	Unit	
Sleep mode		900	uW	
Playback stereo audio DAC	only (capacitor coupled load	5.5	mW	
configuration)				
Record line input only (audio ADC	5)	5.5	mW	
Record mic stereo input only (aud	io ADC)	5.5	mW	
Record mic mono input only (audi	o ADC)	3.8	mW	
Bypass path (capacitor coupled load configuration) 3.05			mW	
Current value is at AVDCDC = AVDHP = 2.5 V.				
Chin nin Nama	MAY Comment conded 110 6	AVDCDC AVDUD 2	- \/	

Chip pin Name	MAX Current across I/O @ AVDCDC = AVDHP = 2.5 V
AVDCDC	< 20 mA in normal working mode
AVSCDC	< 20 mA in normal working mode
AVDHP	< 160 mA in normal working mode
AVDHF	1400 mA in case of short circuit
AVSHP	< 160 mA in normal working mode
AVSIIF	< 1400 mA in case of short circuit
VCAP	< 2 mA in normal working mode
MICP1, MICN1	< 2 mA in normal working mode
MICP2, MICN2	< 2 mA in normal working mode
MICBIAS	< 5 mA in normal working mode
AOHPL	< 80 mA in normal working mode
AOHFL	< 1200 mA in case of short circuit
AOHPR	< 80 mA in normal working mode
7.01111	< 1200 mA in case of short circuit
AOHPM	< 80 mA in normal working mode
	< 1200 mA in case of short circuit
AOHPMS	< 1 mA in normal working mode
AIL, AIR	< 1 mA in normal working mode
AOLOP,AOLON	< 1 mA in normal working mode
HPSENSE	< 1 mA in normal working mode

The current in case of short circuit is the max value. This current is only sink or drawn until the short circuit detection system acts.

Please refer to Chip Datasheet for more details.

10.6 CODEC internal Registers

Register Name	Function	Address	Reset value
SR	Status Register	000000 / 0x0 / 00	h00
AICR_DAC	DAC Audio Interface Control Register	000001 / 0x1 / 01	hC3
AICR_ADC	ADC Audio Interface Control Register	000010 / 0x2 / 02	hC3
CR_LO	differential line-out Control Register	000011 / 0x3 / 03	h90
CR_HP	HeadPhone Control Register	000100 / 0x4 / 04	h98
CR_DAC	DAC Control Register	000110 / 0x6 / 06	h90
CR_MIC	Microphone Control Register	000111 / 0x7 / 07	hB1
CR_LI	Control Register for line inputs	001000 / 0x8 / 08	h11
CR_ADC	ADC Control Register	001001 / 0x9 / 09	h10
CR_MIX	Control Register for digital mixer	001010 / 0xA / 10	h00 <
CR_VIC	Control Register for the codec	001011 / 0xB / 11	h03
CCR	Clock Control Register	001100 / 0xC / 12	h00
FCR_DAC	DAC Frequency Control Register	001101 / 0xD 1/13	h00
FCR_ADC	ADC Frequency Control Register	001110 / 0xE /14	h40
ICR	Interrupt Control Register	001111 / 0xF / 15	h00
IMR	Interrupt Mask Register	010000 / 0x10 / 16	hFF
IFR	Interrupt Flag Register	010001 / 0x11 / 17	h00
GCR_HPL	left channel headphone Control Gain Register	010010 / 0x12 / 18	h06
GCR_HPR	right channel headphone Control Gain Register	010011 / 0x13 / 19	h06
GCR_LIBYL	left channel bypass line Control Gain Register	010100 / 0x14 / 20	h06
GCR_LIBYR	right channel bypass line Control Gain Register	010101 / 0x15 / 21	h06
GCR_DACL	Left channel DAC Gain Control Register	010110 / 0x16 / 22	h00
GCR_DACR	right channel DAC Gain Control Register	010111 / 0x17 / 23	h00
GCR_MIC1	Microphone 1 Gain Control Register	011000 / 0x18 / 24	h00
GCR_MIC2	Microphone 2 Gain Control Register	011001 / 0x19 / 25	h00
GCR_ADCL	Left ADC Gain Control Register	011010 / 0x1A / 26	h00
GCR_ADCR Right ADC Gain Control Register		011011 / 0x1B / 27	h00
GCR_MIXADC ADC Digital Mixer Control Register		011101 / 0x1D / 29	h00
GCR_MIXDAC	DAC Digital Mixer Control Register	011110 / 0x1E / 30	h00
AGC1	Automatic Gain Control 1	011111 / 0x1F / 31	h34
AGC2	Automatic Gain Control 2	100000 / 0x20 / 32	h07

AGC3	Automatic Gain Control 3	100001 / 0x21 / 33	h44
AGC4	Automatic Gain Control 4	100010 / 0x22 / 34	h1F
AGC5	Automatic Gain Control 5	100011 / 0x23 / 35	h00

10.6.1 CODEC internal registers

10.6.1.1 SR: Status Register

Register Name: SR Register Address: 0x0

bit7-R-0	bit6-R-0	bit5-R-0	bit4-R-0	Bit3-R-0	bit2-R-0	bit1-R-0	bit0-R-0
PON_ACK	IRQ_ACK	JACK			Reserved		

Bits	Field	Description
7	PON_ACK	Acknowledge status bit after power on.
		Read 0 = reset value
		Read 1 = codec is ready to operate
6	IRQ_ACK	Acknowledge status bit after IRQ sending.
		Read 0 = reset value
		Read 1 = codec has requested an interrupt (IRQ signal activated)
5	JACK	Output Jack plug detection status.
		Read 0 = no jack
		Read 1 = output jack present
4:0	Reserved	Writing has no effect, read as zero.

10.6.1.2 AICR_DAC: Audio Interface Control Register

Register Name: AICR_DAC Register Address: 0x1

bit7-RW-1	bit6-RW-1	bit5-RW-0	bit4-RW-0	bit3-RW-0	bit2-RW-0	bit1-RW-1	bit0-RW-1
DAC_	ADWL		Rese	erved		DAC_SERIAL	DAC_I2S

Bits	Field	Description
7:6	DAC_ADWL	Audio Data Word Length: for respectively DAC and ADC paths.
		Read / Write
		00: 16-bit word length data
		01: 18-bit word length data
		10: 20-bit word length data
		11: 24-bit word length data
5:2	Reserved	Writing has no effect, read as zero.
1	DAC_SERIAL	Selection of DAC digital serial audio interface.
		Read / Write
		0: Parallel interface

204

		1: Serial interface
0	DAC_I2S	Working mode of DAC serial mode. (only relevant when serial interface
		is selected)
		Read/Write
		0: DSP mode
		1: I2S mode

NOTES:

- 1 DAC_SERIAL should be configured to 1.
- 2 DAC_I2S should be configured to 1.

10.6.1.3 AICR_ADC: Audio Interface Control Register

Register Name: AICR_ADC Register Address: 0x2

bit7-RW-1 bit6-RW-1 bit5-RW-0 bit4-RW-0 bit3-RW-0 bit2-RW-0 bit1-RW-1 bit0-RW-1

ADC_ADWL Reserved ADC_SERIAL ADC_I2S

		7 6		
Bits	Field	Description		
7 :6	ADC_ADWL	Audio Data Word Length: for respectively DAC and ADC paths.		
		Read / Write		
		00: 16-bit word length data		
		01: 18-bit word length data		
		10: 20-bit word length data		
		11: 24-bit word length data		
5:2	Reserved	Writing has no effect, read as zero.		
1	ADC_SERIAL	Selection of the ADC digital serial audio interface.		
	1008	Read / Write		
	$\int_{\Omega_{\lambda}}$	0: Parallel interface		
		1: Serial interface		
0	ADC_I2S	Working mode of the ADC digital serial audio interface. (only relevant		
		when serial interface is selected)		
		Read/Write		
		0: DSP mode		
		1: I2S mode		

NOTES:

- 1 ADC_SERIAL should be configured to 1.
- 2 ADC_I2S should be configured to 1.

10.6.1.4 CR_LO: differential line-out Control Register

Register Name: CR_LO Register Address: 0x3

bit7-RW-1 bit6-RW-0 Bit5-RW-0 bit4-RW-1 bit3-RW-0 bit2-RW-0 bit1-RW-0 bit0-RW-0

LO_MUTE Reserved SB_LO Reserved LO_SEL

Bits	Field	Description			
7	LO_MUTE	differential line output mute mode.			
		Read/Write			
		0: mute inactive, Signal applied to line output			
		1: no signal on line output			
6:5	Reserved	Writing has no effect, read as zero.			
4	SB_LO	differential line out conditioning circuitry power-down mode.			
		Read/Write			
		0: active			
		1: power-down			
3:2	Reserved	Writing has no effect, read as zero.			
1:0	LO_SEL	differential line-output Amplifier input selection.			
		Read/Write			
		If MICSTEREO = 0			
		00 : Microphone 1 enabled			
		01 : Microphone 2 enabled			
		10 : Bypass path enabled			
		11 : DAC output enabled			
	c & E	If MICSTEREO = 1			
	long eiffe	00 : Microphone 1 & 2 enabled			
	0	01 : Microphone 1 & 2 enabled			
/	Olip	10 : Bypass path enabled			
	V	11 : DAC output enabled			

10.6.1.5 CR_HP: HeadPhone Control Register

Register Name: CR_HP Register Address: 0x4

bit7-RW-1 Bit6-RW-0 Bit5-RW-0 Bit4-RW-1 bit3-RW-1 bit2-RW-0 bit1-RW-0 bit0-RW-0

HP_MUTE LOAD Reserved SB_HP SB_HPCM Reserved HP_SEL

Bits	Field	Description
7	HP_MUTE	HeadPhone output signal disabled.
		Read/Write
		0: Signal applied to headphone outputs
		1: no signal on headphone outputs, acts as a mute signal

6	LOAD	Selection of load impedance value for ramp generation.			
		Read/Write			
		0: 16 Ohm / 220 uF			
		1: 10 kOhm / 1 uF			
5	Reserved	Writing has no effect, read as zero.			
4	SB_HP	headphone output stage power-down mode.			
		Read/Write			
		0: headphone output stage is active			
		1: power-down			
3	SB_HPCM	headphone output stage common mode buffer power-down mode.			
		Read/Write			
		0: active (capacitor less headphone output configuration)			
		1: power-down (line output configuration)			
2	Reserved	Writing has no effect, read as zero.			
1:0	HP_SEL	Headphone Output Amplifier input selection.			
		Read/Write If MICSTEREO = 0			
		If MICSTEREO = 0			
		00: Microphone 1 input to left and right channels			
		01: Microphone 2 input to left and right channels			
		10: Bypass path enabled			
		11: DAC output enabled			
		If MICSTEREO = 1			
		00: Microphone 1 input to left channel and microphone 2 input			
		to right channel			
	C. C	01: Microphone 2 input to left channel and microphone 1 input			
	: Et	to right channel			
	ons eiff	10: Bypass path enabled			
	108/	11: DAC output enabled			

NOTE: The LOAD register is the load of AOHP.

10.6.1.6 CR_DAC: Control Register for DAC 3

Register Name: CR_DAC Register Address: 0x6

bit7-RW-1	bit6-RW-0	bit5-RW-0	Bit4-RW-1	bit3-RW-0	bit2-RW-0	Bit1-RW-0	bit0-RW-0
DAC_MUTE	DAC_MONO	DAC_LEFT_	SB_DAC	DAC_		Reserved	
		ONLY		LRSWAP			

Bits	Field	Description		
7	DAC_MUTE	DAC soft mute mode.		
		Read/Write		
		0: mute inactive, digital input signal transmitted to the DAC		

	1				
		1: puts the DAC in soft mute mode			
6	DAC_MONO	Digital stereo-to-mono conversion for DAC path.			
		Read/Write			
		0: stereo			
		1: mono			
		When DAC_MONO=1, the left and right channels are mixed in digital			
		part: the result is emitted on both left and right channel of DAC output. It			
		corresponds to the average of left and right channels when			
		DAC_MONO=0.			
5	DAC_LEFT_ONLY	Left data only are considered.			
		Read/Write			
		0: DAC right channel active			
		1: DAC left data are used for left and right channel			
		To avoid any audible pop, it is required to put the DAC in soft mute			
		mode before modifying the DAC_LEFT_ONLY bit.			
4	SB_DAC	DAC power-down mode.			
		Read/Write			
		mode before modifying the DAC_LEFT_ONLY bit. DAC power-down mode. Read/Write 0: active 1: power-down			
		1: power-down			
3	DAC_LRSWAP	swap between Left an d right channels.			
		Read/Write			
		0: left data are sent to right channel, right data to left channel (swap)			
		1: left data are sent to left channel, right data to left channel (do not			
		swap)			
2:0	Reserved	Writing has no effect, read as zero.			

NOTE: DAC_LRSWAP should be configured to 1.

10.6.1.7 CR_MIC: Control Register for microphone inputs

Register Name: CR_MIC Register Address: 0x7

bit7-RW-1	bit6-RW-0	bit5-RW-1	Bit4-RW-1	bit3-RW-0	bit2-RW-0	Bit1-RW-0	bit0-RW-1
MIC_STEREO	MICIDFF	SB_MIC2	SB_MIC1	Rese	rved	MICBIAS_V0	SB_MICBIAS

Bits	Field	Description	
7	MIC_STEREO	Microphone input mode selection.	
		Read/Write	
		0: Microphone mono inputs	
		1: Microphone stereo inputs	
		This signal affects IN_SEL, HP_SEL, LO_SEL. Refer to its description.	
6	MICIDFF	Microphone input mode selection.	

		Read/Write			
		0:Microphone single-ended inputs			
		1: Microphone differential inputs			
5	SB_MIC2	Analog MIC2 Input conditioning circuitry power-down mode.			
		Read/Write			
		0: active			
		1: power-down			
4	SB_MIC1	Analog MIC1 Input conditioning circuitry power-down mode.			
		Read/Write			
		0: active			
		1: power-down			
3:2	Reserved	Writing has no effect, read as zero.			
1	MICBIAS_V0	B-port MICBIAS stage output voltage in operating mode.			
		Read/Write			
		0: 5/6*VREF output voltage 1: 4/6*VREF output voltage Microphone biasing buffer power-down. Read/Write			
		1: 4/6*VREF output voltage			
0	SB_MICBIAS	Microphone biasing buffer power-down.			
		Read/Write			
		0: active			
		1: power-down			

10.6.1.8 CR_LI: Control Register for line inputs

Register Name: CR_LI

bit7-RW-0 bit6-RW-0 bit5-RW-0 Bit4-RW-1 bit3-RW-0 bit2-RW-0 Bit1-RW-0 bit0-RW-1

Reserved SB_LIBY Reserved SB_LIN

Register Address: 0x8

Bits	Field	Description
7:5	Reserved	Writing has no effect, read as zero.
4	SB_LIBY	Linein used for bypass path power-down.
		Read/Write
		0: active
		1: power-down
3:1	Reserved	Writing has no effect, read as zero.
0	SB_LIN	Linein used to ADC power-down.
		Read/Write
		0: active
		1: power-down

10.6.1.9 CR_ADC: Control Register for ADC

Register Name: CR_ADC Register Address: 0x9

bit7-RW-0 bit6-RW-0 bit5-RW-0 Bit4-RW-1 bit3-RW-0 bit2-RW-0 Bit1-RW-0 bit0-RW-0

DMIC_SEL	ADC_MONO	ADC_LEFT_	SB_ADC	ADC_LRSWAP	Reserved	IN_SEL
		ONLY				

Bits	Field	Description			
7	DMIC_SEL	digital filter input selection.			
		Read/Write			
		0: ADC			
		1: Digital microphone			
6	ADC_MONO	Digital stereo-to-mono conversion for ADC path.			
		Read/Write			
		0: stereo			
		1: mono			
		When ADC_MONO=1, the left and right channels are mixed in digital			
		part: the result is emitted on both left and right channel of ADC digital			
		output. It corresponds to the average of left and right channels when			
		ADC_MONO=0.			
5	ADC_LEFT_ONLY	Deactivation of ADC right channel.			
		Read/Write			
		0: ADC right channel active			
		1: ADC right channel inactive			
	c & &	Note that when ADC right channel is deactivated, left channel is emitted			
		on both left and right channel of ADC digital output.			
4	SB_ADC	ADC power down mode.			
-	10/12	Read/Write			
	<i>Y</i> -	0: active			
		1: power-down			
3	ADC_LRSWAP	swap between Left an d right channels.			
		Read/Write			
		0: left data are sent to right channel, right data to left channel (swap)			
		1: left data are sent to left channel, right data to right channel (do not			
		swap)			
2	Reserved	Writing has no effect, read as zero.			
1:0	IN_SEL	selection of the signal converted by the ADC.			
		Read/Write			
		If MICSTEREO = 0			
		00: Microphone 1 input to left and right channels (codec			
		automatically considers that ADC_LEFT_ONLY equals			
		'1' to optimize power consumption)			

DAC_MIX

01: Microphone 2 input to left and right channels (codec automatically considers that ADC_LEFT_ONLY equals '1' to optimize power consumption) 10: Line input 11: Reserved for further use Note that when digital microphone is selected, the ADC LEFT ONLY is not automatically modified. If MICSTEREO = 1 00: Microphone 1 input to left channel and microphone 2 input to right channel 01: Microphone 2 input to left channel and microphone 1 input to right channel 10: Line input ial used only 11: Reserved for test

NOTE: ADC_LRSWAP should be configured to 1.

Reserved

CR_MIX: Control Register for digital mixer 10.6.1.10

Register Address: 0xA Register Name: CR_MIX

bit7-RW-1 bit6-RW-0 bit3-RW-0 bit5-RW-0 Bit4-RW-0 bit2-RW-0 Bit1-RW-0 bit0-RW-0

MIX_REC

Bits	Field	Description
7:4	Reserved	Writing has no effect, read as zero.
3:2	MIX_REC	Mixer mode on ADC Path.
	ang-	Read/Write
,	\int_{Ω_1}	00: Record input only
		01: Record input + DAC
		10: Reserved for further use
		11: Reserved for further use
1:0	DAC_MIX	Mixer mode on DAC Path.
		Read/Write
		00: Playback DAC only
		01: Playback DAC + ADC
		10: Reserved for further use

11: Reserved for further use

SB

10.6.1.11 CR_VIC: Control Register for the codec

Register Name: CR_VIC Register Address: 0xB

bit7-RW-0 bit6-RW-0 bit5-RW-0 Bit4-RW-0 bit3-RW-0 bit2-RW-0 Bit1-RW-1 bit0-RW-1

> Reserved SB_SLEEP

Bits	Field	Description		
7:2	Reserved	Writing has no effect, read as zero.		
1	SB_SLEEP	sleep mode.		
		Read/Write		
		0: normal mode (active)		
		1: sleep mode		
0	SB	complete power-down mode.		
		Read/Write		
		0: normal mode (active)		
		1: complete power-down		
10.6.	1.12 CCR: Contro	ol Clock Register		
Regis	Register Name: CCR Register Address: 0xC			

10.6.1.12 **CCR: Control Clock Register**

bit7-RW-0 bit6-RW-0 Bit5-RW-0 bit4-RW-0 bit3-RW-0 bit2-RW-0 bit0-RW-0 bit1-RW-0

DMIC_CLKON CRYSTAL Reserved

Bits	Field C		Description			
7	DMIC_CLKON	Digital m	Digital microphone clock (DMIC_CLK) enable.			
	Q E	Read/W	Read/Write			
	10118	0: clock	0: clock off			
	70	1: clock	1: clock on, clock frequency varies with DMIC_RATE and MCLK			_K
			MCLK CRYSTAL		DMIC_CLK frequency	
			12 MHz	0000	3 MHz	
			13 MHz	0001	3.25 MHz	
6:4	Reserved	Writing h	Writing has no effect, read as zero.			
3:0	CRYSTAL	Selection	Selection of the SYS_CLK frequency.			
		Read/Write				
		The sam	The sampling frequency value is given in the CRYSTAL table.			_
		,	CRYSTAL		Master Clock Frequency	
			0000		12 MHz	
			0001		13 MHz	
					Reserved for further use	
			1111		Reserved for further use	

NOTE: This register should be configured to 0x00 for setting the internal 12Mhz master clock SYS_CLK (default).

10.6.1.13 FCR_DAC: DAC Frequency Control Register

Register Name: FCR_DAC Register Address: 0xD

bit7-RW-0 bit6-RW-0 Bit5-RW-0 bit4-RW-0 bit3-RW-0 bit2-RW-0 bit1-RW-0 bit0-RW-0

Reserved DAC FREQ

Bits	Field	Description			
7:4	Reserved	Writing has no effect, read as zero.			
3:0	DAC_FREQ	Selection of the DAC sampling rate (Fs).			
		Read/Write			
		The sampling frequency value is given in the FREQ table.			
NOTE	NOTE: Please refer to section Sample frequency: FREQ.				
10.6.	10.6.1.14 FCR_ADC: ADC Frequency Control Register				
	inte				
Regis	ter Name: FCR_ADC	Register Address: 0xE			
bit7-	RW-0 bit6-RW-0	Bit5-RW-0 bit4-RW-0 bit3-RW-0 bit2-RW-0 bit1-RW-0 bit0-RW-0			

10.6.1.14

Reserved ADC_HPF ADC_FREQ Reserved

Bits	Field	Description	
7	Reserved C	Writing has no effect, read as zero.	
6	ADC_HPF	DC High Pass Filter enable.	
	10,	Read/Write	
		0: inactive	
		1: enables the ADC High Pass Filter	
5:4	Reserved	Writing has no effect, read as zero.	
3:0	ADC_FREQ	election of the ADC sampling rate (Fs).	
		Read/Write	
		The sampling frequency value is given in the FREQ table.	

NOTE: Please refer to section Sample frequency: FREQ.

10.6.1.15 **ICR: Interrupt Control Register**

Register Name: ICR Register Address: 0xF

bit7-RW-0 bit6-RW-0 Bit5-RW-0 bit4-RW-0 bit3-RW-0 bit2-RW-0 bit0-RW-0 bit1-RW-0

INT_FORM Reserved

Bits	Field	Description			
7:6	INT_FORM	Waveform and polarity of the IRQ signal.			
		ead/Write			
		00: The generated IRQ is a high level			
		01: The generated IRQ is a low level			
		10: The generated IRQ is a high level pulse with an 8 SYS_CLK cycles			
		duration			
		11: The generated IRQ is a low level pulse with an 8 SYS_CLK cycles			
		duration			
5:0	Reserved	Writing has no effect, read as zero.			
	NOTE: Please refer to section Sample frequency: FREQ. 10.6.1.16 IMR: Interrupt Mask Register				

10.6.1.16 **IMR: Interrupt Mask Register**

Register Name: IMR Register Address: 0x10

bit7-RW-1 bit6-RW-1 Bit5-RW-1 bit4-RW-1 bit3-RW-1 bit2-RW-1 bit1-RW-1 bit0-RW-1 JACK_MASK Reserved SCLR_MASK SCMC_MASK **RUP_MASK** RDO_MASK **GUP_MASK GDO_MASK**

Bits	Field	Description		
7	Reserved	Writing has no effect, read as zero.		
6	SCLR_MASK	Mask for the SCLR flag.		
		Read/Write		
		0: interrupt enabled		
		1: interrupt masked (no IRQ generation)		
5	JACK_MASK	Mask for the JACK_EVENT flag.		
		0: interrupt enabled		
		1: interrupt masked (no IRQ generation)		
4	SCMC_MASK	Mask for the SCMC flag.		
): interrupt enabled		
		1: interrupt masked (no IRQ generation)		
3	RUP_MASK	Mask for the RUP flag.		
		0: interrupt enabled		
		1: interrupt masked (no IRQ generation)		
2	RDO_MASK	Mask for the RDO flag.		

		0: interrupt enabled		
		1: interrupt masked (no IRQ generation)		
1	GUP_MASK	Mask for the GUP flag.		
		0: interrupt enabled		
		1: interrupt masked (no IRQ generation)		
0	GDO_MASK	Mask for the GDO flag.		
		0: interrupt enabled		
		1: interrupt masked (no IRQ generation)		

NOTES:

- When an interrupt is masked, the event do not generates any change on the IRQ signal, but the corresponding flag value is set to '1' in the IFR register.
- When the IRQ signal is active on level, the IRQ signal is set to the inactive level while the bits IFR & (!IMR) equals '0'.
- When the IRQ signal is a pulse, the IRQ signal is set to the inactive state until a new non-masked event occurs in IFR or until a masked event is unmasked. ternal used
- SYS_CLK must not be stopped in order to propagate IRQ signal.

10.6.1.17 **IFR: Interrupt Flag Register**

Register Address: 0x11 Register Name: IFR

bit7-RW-0	Bit6-R-0	bit5-RW-0	bit4-R-0	bit3-RW-0	bit2-RW-0	bit1-RW-0	bit0-RW-0
Reserved	SCLR	JACK_EVENT	SCMC	RUP	RDO	GUP	GDO

Bits	Field	Description		
7	Reserved C	Writing has no effect, read as zero.		
6	SCLR	_eft or Right Output short circuit detection status.		
	10,	Read		
		0 : no event		
		1 : event detected (due to JACK flag change to '0' or '1')		
		Write 1 to Reset of the flag.		
5	JACK_EVENT	Event on output Jack plug detection status.		
		Read		
		0: no event		
		1: event detected (due to JACK flag change to '0' or '1').		
		Write 1 to Reset of the flag.		
4	SCMC	Common mode buffer output short circuit detection status.		
		Read		
		0: inactive		
		1: indicates that a short circuit has been detected by the output stage		
		Write 1 to Update of the flag.		

3	RUP	End of output stage ramp up flag.		
		Read		
		1: the ramp-up sequence is completed (output stage is active).		
		Write 1 to Reset of the flag.		
2	RDO	End of output stage ramp down flag.		
		Read		
		1: the ramp-down sequence is completed (output stage in stand-by		
		mode)		
		Write 1 to Reset of the flag.		
1	GUP	End of mute gain up sequence flag.		
		Read		
		1: the mute sequence is completed; the DAC input signal is transmitted		
		to the DAC path		
		Write 1 to Reset of the flag.		
0	GDO	End of mute gain down sequence flag.		
		Read		
		1: the mute sequence is completed, a 0 DC signal is transmitted to the		
		DAC path		
		Write 1 to Reset of the flag.		

NOTES:

- 1 The flags RUP, RDO, GUP and GDO can be reset after 4 cycles of SYS_CLK.
- 2 Interpretation of any unspecified point is absolutely up to the designer of analog part, so it is need to pay an attention to using this flags in section <u>"Anti-pop operation sequences"</u>.

10.6.1.18 GCR_HPL: left channel headphone Control Gain Register

Register Name: GCR_HPL Register Address: 0x12

bit7-RW-0 bit6-RW-0 Bit5-RW-0 bit4-RW-0 bit3-RW-0 bit2-RW-1 Bit1-RW-1 bit0-RW-0

LRGO Reserved GOL

Bits	Field	Description
7	LRGO	HP amplifier gain coupling.
		Read/Write
		0: Left and right channels gains are independent
		1: Left and right channels gain track left channel gain
6:5	Reserved	Writing has no effect, read as zero.
4:0	GOL	Left channel HP amplifier gain programming value.

NOTE: Please refer to section "Programmable attenuation: GO" for more details.

GCR_HPR: right channel headphone Control Gain Register 10.6.1.19

Register Name: GCR HPR Register Address: 0x13

bit7-RW-0 bit6-RW-0 Bit5-RW-0 bit4-RW-0 bit3-RW-0 bit2-RW-1 Bit1-RW-1 bit0-RW-0

Reserved	GOR

Bits	Field	Description
7:5	Reserved	Writing has no effect, read as zero.
4:0	GOR	Right channel HP amplifier gain programming value.

NOTE: Please refer to section <u>"Programmable attenuation: GO"</u> for more details.

10.6.1.20 GCR_LIBYL: left channel bypass line Control Gain Register

Register Name: GCR_LIBYL Register Address: 0x14

bit1-RW-1 bit6-RW-0 bit3-RW-0 bit7-RW-0 bit4-RW-0 bit2-RW-1 bit0-RW-0 Bit5-RW-0

LRGI Reserved GIL

Bits	Field	Description
7	LRGI	analog bypass gain coupling.
		Read/Write Collinson
		0: Left and right channels gains are independent
		1: Left and right channels gain track left channel gain
6:5	Reserved	Writing has no effect, read as zero.
4:0	GIL	Left channel Line in gain programming value.

NOTE: Please refer to section "Programmable Bypass path attenuation: GI" for more details.

10.6.1.21 GCR_LIBYR: right channel bypass line Control Gain Register

Register Name: GCR_LIBYR Register Address: 0x15

Reserved

bit7-RW-0 Bit6-RW-0 Bit5-RW-0 Bit4-RW-0 bit3-RW-0 bit2-RW-1 bit1-RW-1 bit0-RW-0 **GIR**

Bits	Field	Description
7:5	Reserved	Writing has no effect, read as zero.
4.0	GIR	Left channel Line in gain programming value

NOTE: Please refer to section "Programmable Bypass path attenuation: GI" for more details.

10.6.1.22 GCR_DACL: Left channel DAC Gain Control Register

Register Name: GCR_LIBYL Register Address: 0x16

bit7-RW-0 Bit6-RW-0 Bit5-RW-0 Bit4-RW-0 bit3-RW-0 bit2-RW-0 bit1-RW-0 bit0-RW-0

RLGOD Reserved GODR

Bits	Field	Description
7	RLGOD	DAC digital gain coupling.
		Read/Write
		0: Left and right channels gains are independent
		1: Left and right channels gain track left channel gain
6:5	Reserved	Writing has no effect, read as zero.
4:0	GODL	Left channel DAC digital gain programming value.

NOTE: Please refer to section "Programmable digital attenuation: GOD" for more details.

10.6.1.23 GCR_DACR: right channel DAC Gain Control Register

Register Name: GCR_DACR Register Address: 0x17

bit7-RW-0 Bit6-RW-0 Bit5-RW-0 Bit4-RW-0 bit3-RW-0 bit2-RW-0 bit1-RW-0 bit0-RW-0

Reserved GODR

Bits	Field	Description
7:5	Reserved	Writing has no effect, read as zero.
4:0	GODR 1	Right channel DAC digital gain programming value.

NOTE: Please refer to section "Programmable digital attenuation: GOD" for more details.

10.6.1.24 GCR_MIC1: Microphone 1 Gain Control Register

Register Name: GCR_MIC1 Register Address: 0x18

bit7-RW-0 Bit6-RW-0 Bit5-RW-0 Bit4-RW-0 bit3-RW-0 bit2-RW-0 bit1-RW-0 bit0-RW-0

Reserved GIM1

Bits	Field	Description
7:3	Reserved	Writing has no effect, read as zero.
2:0	GIM1	Microphone 1 boost stage gain programming value.

NOTE: Please refer to section "Programmable boost gain: GIM".

10.6.1.25 GCR_MIC2: Microphone 2 Gain Control Register

Register Name: GCR MIC2 Register Address: 0x19

bit7-RW-0 Bit6-RW-0 Bit5-RW-0 Bit4-RW-0 bit3-RW-0 bit2-RW-0 bit1-RW-0 bit0-RW-0

Reserved GIM2

Bits	Field	Description
7:3	Reserved	Writing has no effect, read as zero.
2:0	GIM2	Microphone 2 boost stage gain programming value.

NOTE: Please refer to section "Programmable boost gain: GIM".

10.6.1.26 GCR_ADCL: Left ADC Gain Control Register

Register Name: GCR_ADCL Register Address: 0x1A

bit7-RW-0 Bit6-RW-0 Bit5-RW-0 Bit4-RW-0 bit3-RW-0 bit2-RW-0 bit0-RW-0

LRGID Reserved GIDL

Bits	Field	Description
7	LRGID	ADC digital gain coupling.
		Read/Write Collinson
		0: Left and right channels gains are independent
		1: Left and right channels gain track left channel gain
6	Reserved	Writing has no effect, read as zero.
5:0	GIDL	Left channel ADC digital gain programming value.

NOTE: Please refer to the section "Programmable input attenuation amplifier: GID".

10.6.1.27 GCR_ADCR: Right ADC Gain Control Register

Register Name: GCR_ADCR Register Address: 0x1B

bit7-RW-0 Bit6-RW-0 Bit5-RW-0 Bit4-RW-0 bit3-RW-0 bit2-RW-0 bit1-RW-0 bit0-RW-0

Reserved GIDR

Bits	Field	Description
7:6	Reserved	Writing has no effect, read as zero.
5:0	GIDR	Right channel ADC digital gain programming value.

NOTE: Please refer to the section "Programmable input attenuation amplifier: GID".

10.6.1.28 GCR_MIXADC: ADC Digital Mixer Control Register

Register Name: GCR MIXADC Register Address: 0x1D

bit7-RW-0 bit6-RW-0 bit3-RW-0 bit2-RW-0 bit0-RW-0 bit5-RW-0 bit4-RW-0 bit1-RW-0

Reserved **GIMIX**

Bits	Field	Description
7:5	Reserved	Writing has no effect, read as zero.
4:0	GIMIX	Mixer gain for input path.
		Read/Write
		00000 : 0dB
		00001 : -1dB
		by step of 1dB
		11111 : -31dB
10.6.	1.29 GCR_MIXD	PAC: DAC Digital Mixer Control Register

GCR_MIXDAC: DAC Digital Mixer Control Register 10.6.1.29

Register Address: 0x1E Register Name: GCR MIXDAC

bit7-RW-0 bit6-RW-0 bit5-RW-0 bit4-RW-0 bit3-RW-0 bit2-RW-0 bit1-RW-0 bit0-RW-0

Reserved **GOMIX**

Bits	Field	Description
7:5	Reserved	Writing has no effect, read as zero.
4:0	GOMIX	Mixer gain for DAC path.
	111	Read/Write
	Q C Y	00000 : 0dB
-	OUS	00001 : -1dB
		by step of 1dB
		11111 : -31dB

10.6.1.30 **AGC1: Automatic Gain Control Register 1**

Register Name: AGC1 Register Address: 0x1F

bit7-RW-0 bit6-RW-0 bit5-RW-1 bit4-RW-0 bit3-RW-0 bit2-RW-1 bit1-RW-0 bit0-RW-0

AGC_EN AGC_STEREO **TARGET** Reserved

Bits	Field	Description
7	AGC_EN	selection of the AGC system.
		Read/Write
		0 : inactive

		1 : enables the automatic level control				
6	AGC_STEREO	selection of the AGC system.				
		Read/Write				
		0 : same gain applied to Left and Right channel				
		1 : different gains applied to Left and Right channel				
5:2	TARGET	Target output level of the ADC.				
		Read/Write:				
		0000 : -6dB				
		0001 : -7.5dB				
		by step of 1.5 dB				
		1111 : - 28.5dB				
1:0	Reserved	Writing has no effect, read as zero.				

NOTE: Please refer to section <u>"AGC system guide"</u> for more details.

10.6.1.31 **AGC2: Automatic Gain Control Register 2**

used only Register Name: AGC2 Register Address: 0x20

bit3-RW-0 bit2-RW-1 bit7-RW-0 bit6-RW-1 bit5-RW-0 bit4-RW-0 bit0-RW-1 bit1-RW-1 NG_EN NG_THR HOLD

Bits	Field	Description						
7	NG_EN	Selection of the Noise Gate system.						
	C (Read/Write						
	; { T	0: inactive						
	67	1: enables the noise gate system						
6:4	NGATHR	Noise Gate Threshold value.						
	10,	Input level (dB) < Noise Gate Level (dB).						
		Read/Write						
		000: -72 dB						
		001: -66 dB						
		by step of 6dB						
		111: -30 dB						
3:0	HOLD	Hold time before starting AGC adjustment to the TARGET value.						
		Read/Write						
		0000: 0ms						
		0001: 2 ms						
		0010: 4 ms						
		Time Step x2						
		1111: 32.768s						

NOTE: Please refer to section <u>"AGC system guide"</u> for more details.

10.6.1.32 AGC3: Automatic Gain Control Register 3

Register Name: AGC3 Register Address: 0x21

bit7-RW-0 bit6-RW-1 bit5-RW-0 bit4-RW-0 bit3-RW-0 bit2-RW-1 bit1-RW-0 bit0-RW-0

ATK DCY

Bits	Field	Description
7:4	ATK	Attack Time - Gain Ramp Down.
		Read/Write
		0000: 32 ms
		0001: 64 ms
		by step of 32 ms
		1111: 512 ms
3:0	DCY	Decay Time - Gain Ramp up.
		Read/Write
		0000: 32 ms
		0000: 32 ms 0001: 64 ms by step of 32 ms
		by step of 32 ms
		1111: 512 ms

NOTES:

- 1 DCY and ATK registers values are delays between each step of gain.
- 2 Please refer to section "AGC system guide" for more details.

10.6.1.33 AGC4: Automatic Gain Control Register 4

Register Name: AGC4 Register Address: 0x22

Bit7-RW-0 bit6-RW-0 bit5-RW-0 bit4-RW-1 bit3-RW-1 bit2-RW-1 bit1-RW-1 bit0-RW-1

Reserved AGC_MAX

Bits	its Field Description				
7:5	Reserved	Writing has no effect, read as zero.			
4:0	AGC_MAX	Maximum Gain Value to apply to the ADC path.			

NOTES:

1 Please refer below table for AGC_MAX setup.

AGC_MAX	Gain	AGC_MAX	Gain	AGC_MAX	Gain	AGC_MAX	Gain Value
	Value		Value		Value		
00000	0	01000	12	10000	23	11000	32
00001	1.5	01001	13.5	10001	23	11001	33.5
00010	3	01010	15	10010	23	11010	35
00011	4.5	01011	16.5	10011	24.5	11011	36.5
00100	6	01100	18	10100	26	11100	38
00101	7.5	01101	19.5	10101	27.5	11101	39.5
00110	9	01110	21	10110	29	11110	41
00111	10.5	01111	22.5	10111	30.5	11111	42.5
AGC_MAX	Gain	AGC_MAX	Gain	AGC_MAX	Gain	AGC_MAX	Gain Value
	Value		Value		Value		
00000	0	01000	12	10000	23	11000	32
00001	1.5	01001	13.5	10001	23	11001	33.5
00010	3	01010	15	10010	23	11010	35
00011	4.5	01011	16.5	10011	24.5	11011	36.5
00100	6	01100	18	10100	26 🔨	11100	38
00101	7.5	01101	19.5	10101	27.5	11101	39.5
00110	9	01110	21	10110 \chi 🥲	29	11110	41
00111	10.5	01111	22.5	10111	30.5	11111	42.5

2 Please refer to section <u>"AGC system guide"</u> for more details.

10.6.1.34 AGC5: Automatic Gain Control Register 5

Register Name: AGC5 Register Address: 0x23

bit7-RW-0	bit6-RW-0	bit5-RW-0	Bit4-RW-0	bit3-RW-0	bit2-RW-0	bit1-RW-0	bit0-RW-0
	Reserved				AGC_MIN		

Bits	Bits Field Description			
7:5 Reserved Writing has no effect, read as zero.		Writing has no effect, read as zero.		
4:0	AGC_MIN	Maximum Gain Value to apply to the ADC path.		

NOTES:

1 Please refer to below table for AGC_MIN setup.

AGC_MIN	Gain Value	AGC_MIN	Gain Value	AGC_MIN	Gain Value	AGC_MIN	Gain
							Value
00000	0	01000	12	10000	23	11000	32
00001	1.5	01001	13.5	10001	23	11001	33.5
00010	3	01010	15	10010	23	11010	35
00011	4.5	01011	16.5	10011	24.5	11011	36.5
00100	6	01100	18	10100	26	11100	38
00101	7.5	01101	19.5	10101	27.5	11101	39.5
00110	9	01110	21	10110	29	11110	41
00111	10.5	01111	22.5	10111	30.5	11111	42.5

2 Please refer to section <u>"AGC system guide"</u> for more details.

1018 eiffel@126.com internal used only

10.7 Programmable gains

This section helps you to configure the programmable gain amplifier in the CODEC. Internal signal VREFP is connected to AVDCDC Pin and internal signal VREFN is connected to AVSCDC Pin.

In this section, VREF equals to (VREFP – VREFN).

10.7.1 Programmable boost gain: GIM

The following table gives the relation between the gain and the input level for the microphone input amplifier when GI = 0000.

GIM	Gain value (dB)	Maximum input amplitude		
000	0	0.85*VREF ^ <		
001	4	0.536*VREF		
010	8	0.338*VREF		
011	12	0.213*VREF		
100	16	0.134*VREF		
101	20	0.085*VREF		
110	20	0.085*VREF		
111	20	0.085*VREF		

NOTES:

- 1 Maximum analog input amplitude value is given in Vpp differential.
- 2 Maximum analog input amplitude is referenced as Full Scale (FS). After conversion, the corresponding digital code of the output value varies from 0x7FFF down to 0x8000 for a 16-bit word. When the analog input amplitude is greater than FS, the dynamic characteristics are not guaranteed.
- 3 When a change occurs on GIDi inputs, data are valid on the digital output after about 64 sample periods. If the HPF is activated, data are valid after about 64 sample periods but the offset cancellation is not still completed at this time due to its internal time constant.

10.7.2 Programmable input gain amplifier: GID

The digital gain of ADC path may be programmed through the registers bits GIDL and GIDR. The value of the gain is programmable from 0 to 23dB with a pitch of 1dB.

The gain and input levels are obtained according to the following table:

GID	Decimal decoded	Gain (dB)	Maximum input amplitude (Vpp. Differential) (FS)
000000	0	0	0.85*VREF

000001	1	1	0.757*VREF
000010	2	2	0.6021*VREF
x y z t u v	i	i	0.85 / {10^(i/20)} * VREF
010111	23	23	0.06 * VREF
011000	24	24	0.06 * VREF
101010	43	43	0.06 * VREF
111111	63	43	0.06 * VREF

NOTE: The last column of the table gives the maximum analog input to be applied on the MICi inputs.

The value is given in Vpp differential. These values refer to the external voltage reference

VREF equals to (VREFP – VREFN). The voltage levels depend on the VREF voltage.

10.7.3 Programmable digital attenuation: GOD

The attenuation of DAC output amplifier may be programmed independently for the both channels through the registers bits GODL and GODR.

The value of the gain GODL/R is programmable from +0 to -31dB with 1 dB pitch. The gain and output levels are obtained according to the following table:

	70120.							
	GOD			7	Decimal decoded value	Gain Value (dB)		
0	Q 9/	0	0	0	0	0		
90,	0	0	0	1	1	-1		
0	0	1	1	0	6	-6		
				·				
1	1	1	1	0	30	-30		
1	1	1	1	1	31	-31		

10.7.4 Programmable attenuation: GO

The attenuation of Headphone output amplifier may be programmed independently for the both channels through the registers bits GOL and GOR.

The value of the gain GOL/R is programmable from +6 to –25dB with 1 dB pitch. The gain and output levels are obtained according to the following table:

GO					Decimal decoded value	Gain Value (dB)	Maximal PGAT input amplitude (Vpp)	Maximal PGAT output amplitude (Vpp)
0	0	0	0	0	0	+6	0.425*VREF	0.85*VREF
0	0	0	0	1	1	+5	0.478*VREF	0.85*VREF
					•••			
0	0	1	0	1	5	+1	0.757*VREF	0.85*VREF
0	0	1	1	0	6	0	0.85*VREF	0.85*VREF
0	0	1	1	1	7	-1	0.85*VREF	0.757*VREF
1	1	1	1	0	30	-24	0.85*VREF	0.054*VREF
1	1	1	1	1	31	-25	0.85*VREF	0.048*VREF

NOTES:

- 1 When headphone driver is loaded by a 16 Ohm load, setting GOL/R = 0 is possible. However, set GOL/R to 9 at maximum to preserve dynamic performances. The output stage is sized to support a 70mA current and no more.
- The last column of the table gives the analog output voltage delivered on the outputs and corresponding to a digital input at FS (Full Scale). The value is given in Vpp single-ended.
- These values refer to the external voltage reference VREF equals to (VREFP VREFN). The voltage levels depend on the VREF voltage.

10.7.5 Programmable Bypass path attenuation: GI

The analog input gain may be programmed through GIL/R.

The value of the gain is programmable from +6 to -25dB with a pitch of 1dB. The gain and input levels are obtained according to the following table:

GI					Decimal decoded value	Gain value (dB)	Maximum input amplitude (Vpp) (FS)
0	0	0	0	0	0	+6	0.425*VREF
0	0	0	0	1	1	+5	0.478*VREF
0	0	0	1	0	2	+4	0.536*VREF
Х	у	z	t	u	i	6 - i	0.85/{10^((6 - i)/20)}*VREF
0	0	1	1	0	6	0	0.85*VREF
							0.85*VREF

_								
	1	1	1	1	1	31	-25	0.85*VREF

The last column of the table gives the maximum analog input to be applied on the line inputs. The value is given in Vpp. These values refer to the external voltage reference VREF equals to (VREFP – VREFN). The voltage levels depend on the VREF voltage.

10.7.6 Programmable digital mixer gain: GIMIX and GOMIX

The following table gives the relation between the gain and the input level for the microphone input amplifier when GI = 0000.

GIMIX or GOMIX	Gain value (dB)	
00000	0	
00001	-1	1
00010	-2	, OD,
00011	-3	g
	, 115	
11101	-29	
11110	-30	
11111	-31	
strategy 26 · COM		

10.7.7 Gain refresh strategy

GI* and GO* gains are controlled through the control interface. To avoid sound artifacts, the gain increases or decreases each time the gain stage output crosses the zero value. Tcrossout time-out counter forces the gain to be updated if a zero crossing event doesn't occur. After each gain step, zero crossing events are ignored during at least Tcrossmin.

In case that gain coupling between both left and right channels is active (LRGi different of RLGi), gain stepping of each channel is independent from the other depending on zero crossing event occurrence.

The duration of Tcrossout and Tcrossmin are given below:

MCLK (MHz)	Tcrossout (ms)	Tcrossmin (ms)	
12	21.8	0.171	
13	20.2	0.158	

10.8 Configuration of the headphone output stage

In cap-coupled connection, codec uses the LOAD register bit to control the ramping duration. Inappropriate setting will lead to a too long or too fast ramping and will create audio artifacts.

To prevent pop-up noise generation due to floating nodes when no load is plugged in the jack connector, it is required to add some resistor devices that act as pull down function (named Rhpl and Rhpr in section "Headphone connection" and section "Required external components").

Its value has to be determined as following:

Working Mode	Load resistor and bypass capacitor values	LOAD value	Rhpdo value
Driving Headphone	16 Ohm / 220uF	0	470 Ohm typ.
Driving Lineout	10k Ohm / 1uF	1	4.7k Ohm max.

1 4.7k Oh used used to the internal used to the int

10.9 Out-of-band noise filtering

An internal analog Low Pass Filter at the DAC output is designed to remove the out-of-band noise generated by the delta sigma modulation (Noise Shaper). The internal LPF reduces the amount of energy contained in the wide band part (> 24 kHz) of the output signal. The out-of-band noise, when not removed, can be damageable in some high quality applications.

This filter is always working and does not need configure.

Ions eiffel@126.com internal used only

10.10 Output short-circuit protection (headphone output)

Analog short-circuit protection in the output stage has been implemented to prevent excessive current from flowing through AOHPL, AOHPR output pins. This prevents the output stage from over-heating. The system detects the following cases:

- Abnormal headphone load.

10.10.1 Indication of the short circuit detection

When such an overload is detected on one of AOHPL, AOHPR output pins,

- An interrupt is sent on the IRQ pin and the SCMC flag in the IFR register is set to '1'.
- Internally to codec:

Automatic power-down of the 2 output amplifiers (AOHPL, AOHPR signals) when a short-circuit is detected on AOHPL or AOHPR pin (SCMC flag set to '1').

10.10.2 Reset of short circuit detection

The following sequence has to be to apply:

- 1 Mask the interrupt by writing '1' in the Interrupt Control Register.
- 2 Handle the cause of short-circuit according to the events presented in following paragraphs (Capacitor-coupled headphone connection).
- 3 Update the short-circuit flag by writing '1' in the Interrupt Flag Register.
- 4 Check the reset of flag by reading the Interrupt Flag Register. The bit must be equal to '0'. If it remains at '1', that means that short-circuit is not resolved.
- 5 Enable the interrupt by writing '0' in the Interrupt Control Register.

10.10.3 Capacitor-coupled headphone connection

It is up to the application to put the output stage in power down mode (SB_HP = '1'), to put codec in sleep or complete power-down mode, to reset it.

The short-circuit will be solved by the following events:

- Removal of the inserted jack. (needs the use of HPSENSE pins)
- Reset of codec. (NRST signal)
- Putting the output stage in power-down mode. (SB HP=1)
- Putting codec in sleep mode. (SB_SLEEP=1)
- Putting codec in complete power-down mode. (SB=1)

10.11 Sampling frequency: FREQ

The sampling frequency value is given in the FREQ table below.

	FREQ	Sampling Rate (Fs)	
	0000	96kHz	
	0001	48kHz	
	0010	44.1kHz	
	0011	32kHz	
	0100	24kHz	
	0101	22.05kHz	
	0110	16kHz	
	0111	12kHz	
	1000	11.025kHz	
	1001	8kHz	273
	1010	Reserved for further use	9 OII.
			1500
	1111	Reserved for further use	1 113
10ng eiffel	0126	.com interné	

Programmable data word length

The Data Word Length block (DWL) allows selecting the length of the input data and of the output data between 24-/20-/18-/16-bit thanks to AICR.DAC ADWL and AICR.ADC ADWL (respectively for the DAC and ADC paths) in accordance with the following table:

ADWL	Word length
0 0	16-bit word length data
0 1	18-bit word length data
1 0	20-bit word length data
11	24-bit word length data

The size of the buses is always 24 bits, but the input/output data only use the number of MSB programmed with ADWL. The LSB are considered as '0' in input and set to '0' in output.

The capability to use a data word length of 16 bits is kept for compatibility with standard applications.

10.13 Ramping system note

An internal mechanism is used to reduce output glitches when the headphone stage enters or leaves the power-down mode.

When the SB HP is set to '1', the headphone output voltages (AOHPL, AOHPR) are slowly decreased in the same time from AVDHP/2 down to 0.

When the SB HP is set to '0', the headphone output voltages (AOHPL, AOHPR) are slowly increased in the same time from 0 to AVDHP/2.

After power supplies ramp up, the CODEC start its internal initialization sequence and set SR.ACK PON register bit once completed.

An interrupt request is sent when the ramp completes.

Do not change the level of SB_HP as long as the sequence due to the previous change is not complete or working not guaranteed.

In order to prevent audible glitch, it is required to power-down the output stage (SB_HP=1) before

10.14 AGC system guide

For the microphone input to ADC path, an Automatic Gain Control (AGC) system allows to optimize the signal swing at the input of the ADC.

The AGC circuit compares the output of the ADC to a level and increases or decreases the gain of the microphone preamplifier and the digital gain to compensate. The full dynamic range of the ADC can be used automatically if the audio from the microphone is to be output digitally through the ADC.

The AGC_EN register bit enables the AGC system, in this case INSEL must be equal to "00" or "01".

AGC Block Diagram:

The AGC system is used at the MIC input.

The HPF filter characteristics: Cut Frequency =300 Hz.

In the in AGC mode, the system of gain control will directly assign the values of the gains GIDL, GIDR and GIM1 (or GIM2).

10.14.1 AGC operating mode

TARGET sets the desired ADC output range level. The AGC system adapts the gain stages (GID and GIM) in order to best reach this target. AGC_MAX and AGC_MIN fix the limits of the gain variation. Please refer to "CODEC Operating modes" for the AGC System diagram in the "CODEC Power Diagram".

In order that the AGC system should not alter the dynamic content of the signal (voice "tonic" for instance) by continuously adapting the gain to fit the target level, the time between two consecutives gain adjustments is modifiable by the HOLD register value.

After this delay:

- If the output level is lower than TARGET, the gain is increased step by step in accordance to the DCY register value.
- If the output level is higher than TARGET, the gain is decreased step by step in accordance to the ATK register value.

The following figure illustrates the behavior of AGC system:

Figure 10-3 AGC adjusting waves

A noise-gating feature, enabled by the NG_EN register bit, prevents gain increases when no signal or small signal is present at the input. The noise gate threshold is set by the NG_THR register value. The following graph shows a more detailed application.

The following graph summarizes the operations and shows more details.

Figure 10-4 AGC adjust areas

The areas from A to E are deferent working area of AGC system, which is listing below:

A: If the signal level is in this critical area: the AGC system decreases quickly the gain at the input of the ADC until the signal goes under the critical threshold.

- B: If the signal level remains in this area after the HOLD delay: the AGC system decreases the gain at the input of the ADC until the signal reaches the target area with a slope defined by AGC3.ATK register value.
- C: If the signal level is in this area: the AGC system does not perform gain adjustment.
- D: If the signal level remains in this area after the HOLD delay: the AGC system increases gain at the input of the ADC until the signal reach the target area with a slope defined by AGC3.DCY register value.
- E: If the signal level is in this range: the AGC system considers the signal as noise and does not perform gain adjustment.

Ions eiffel@126.com internal used only

10.15 **Digital Mixer description**

CODEC includes a digital mixer which provides a loopback of the ADC output to the DAC and Headphone output and a loopback of the mixer output to the record path.

Two gains GIMIX and GOMIX control each input of the mixer to adapt the amplitude of the mixed signal. A zero-crossing detection is included on each gain stage to minimize the zipper noise.

A digital multiplexer allows choosing between the ADC signal and the mixer output signal on the record path.

Another digital multiplexer allows choosing between the DAC signal and the mixer output signal on the playback path.

Please refer to "CODEC Operating modes" for the digital mixer diagram in the "CODEC Power Diagram".

10.16 Digital microphone interface

CODEC accepts bitstream from digital microphone and converts it into audio data at the sample rate (Fs) selected in FCR_ADC register. CODEC provides a clock (DMIC_CLK) and receives data on DMIC_IN at the same frequency. DMIC_CLK frequency depends on MCLK frequency selection in CCR register.

Figure 10-5 Digital microphone interface connection

After conversion, the corresponding digital code of the output value varies from 0x7FFF down to 0x8000 for a 16-bit word, coded in 2's complement.

CODEC can receive simultaneously data from two digital microphones.

10.16.1 Chronogram

Figure 10-6 Digital microphone timing diagram at MCLK = 12 MHz

(DMIC_CLK = 3 MHz) and MCLK = 13 MHz (DMIC_CLK = 3.25 MHz)

10.16.2 Timings

Parameter	Symbol	Min	Тур	Max	Unit
DMIC_CLK frequency	F dmic_clk	3	-	3.25	MHz
DMIC_CLK duty cycle	D dmic_clk	0.4	0.5	0.6	-
DMIC_IN setup time	T dmic_setup	T _{MCLK} + 10	-	-	n ins
DMIC_IN hold time	T dmic_hold	0	-	ised	ns

Figure 10-7 Digital microphone modulation noise reference spectrum

(with FFT resolution = 20 Hz and 7 terms Blackman-Harris windowing)

If the noise at the digital microphone output is higher than the reference in the [20 Hz - 20 kHz] bandwidth, the SNR will be limited by the digital microphone in-band noise.

If the noise at the digital microphone output is higher than the reference for frequencies beyond 20 kHz, the SNR will be limited by the aliasing of the digital microphone quantization noise.

10.17 CODEC Operating modes

Different operating modes are available:

- Power-up mode: During power on time, CODEC is in this mode.
- Reset mode: When NRST is low, CODEC is in this mode.
- Soft mute mode: When DAC_MUTE is 1, CODEC is in this mode.
- Complete Power-down mode: After RESET, CODEC is in this mode.
- SLEEP modes: When SB_SLEEP is 1, CODEC is in this mode.
- Normal mode: When CODEC is not in above mode, it is in this mode. This mode has three modes: RECORD mode, REPLAY mode, RECORD_REPLAY mode.

The power diagram is shown below.

Figure 10-8 CODEC Power Diagram

There are many power parts of CODEC. Any part could be powered down independently.

10.17.1 Power-On mode and Power-Off mode

When the power supply ramps up, CODEC enters the power-on mode. During the reset, the CODEC is put in stand-by in order to reduce audible pops.

The CODEC doesn't handle the power supply ramp down on itself. The software has to turn the CODEC in complete stand-by mode before the power supply starts to ramp down.

10.17.2 RESET mode

The reset input signal is asynchronous; the reset minimum duration is one SYS_CLK cycle. During the power-up mode and system reset, the CODEC goes into Reset mode.

After system reset the CODEC will exit Reset mode and go to STANDBY mode.

NOTES:

- 1 Except during the power-up mode, do NOT perform any reset in order to avoid audible pops.
- 2 Resetting the CODEC during normal operating mode will turn instantaneously the CODEC in STANDBY mode. This will lead to generate a large audible pop.

10.17.3 STANDBY mode

CODEC goes to STANDBY mode when the SB register bit equals 1, and all functions including ADC path, DAC path and analog references will stop and whole CODEC is shutdown for saving power. CODEC is complete down in this mode.

During the STANDBY mode, the power consumption is reduced to a minimum, so it is also called Complete Power-Down mode. When SB is set to '0', CODEC leaves the STANDBY mode. It is necessary to wait some time before the CODEC references settle. This time is called Tsbyu. When CODEC reference settled, it is in SLEEP mode.

Please refer to the section <u>"Timing parameters"</u> for the Tsbyu Value.

10.17.4 SLEEP mode

When SB_SLEEP is set to 1, CODEC enters in sleep mode. The logical part and the analog functions, except the voltage and biasing references, enter in power-down mode. So, the power consumption is reduced without penalizing the start-up time.

When SB_SLEEP falls, CODEC leaves the corresponding STANDBY mode; it is necessary to wait some time before the CODEC reaches the normal mode. Depending on the selected mode, this time is either called Tshd_adc (SB_ADC=0) for the ADC path or Tshd_dac (SB_DAC=0) for the DAC path.

Please refer to the section "Timing parameters" for the Tshd_adc and Tshd_dac Value.

10.17.5 Soft Mute mode

Soft Mute mode is used in order to reduce audible parasites when before the DAC enters or after leaves the Normal mode. Set the DAC_MUTE register bit to 1, it will go to Soft Mute mode.

Set DAC_MUTE to 1 puts the DAC in Soft Mute mode. The CODEC decreases progressively the digital gain from 0dB to -∞. When the gain down sequence is completed, the signal of the DAC is equal to 0 whatever the value of the digital input data is. Then CODEC generates an interrupt and if ICR.GDO_MASK is 0, and set IFR.GDO register bit to 1.

During Soft Mute mode, the DAC is still converting but the output final voltages (AOLO, AOR) are equal to VREF/2, so the differential of the Headphone voltage is zero that cause no sound output.

Figure 10-9 Gain up and gain down sequence

In the opposite, when DAC_MUTE is set to 0, the DAC leaves the Soft Mute mode by increasing progressively the digital gain from -∞ to 0dB. When the gain up sequence is completed, the DAC returns in Normal mode. The CODEC then generates an interrupt and if ICR.GDO_MASK is 0, and set IFR.GDO register bit to 1.

After exiting Soft Mute mode, the DAC output will flow the DAC input data, and there is sound in the Headphone.

The duration of gain down and gain up sequences are nearly independent of Fs and is about 23ms.

NOTES:

- 1 Do NOT change the value of DAC_MUTE while the effect of the previous change is not reached, or the working is not guaranteed.
- 2 Do NOT enter in stand-by mode while the gain sequence is not completed, or the working is not guaranteed.

10.17.6 Power-Down mode and ACTIVE mode

Twelve stand-by inputs allow putting independently the different parts of CODEC into Power-Down mode.

When all SB_*=1 except SB=0 and SB_SLEEP=0, the CODEC is in ACTIVE mode, it's ready for play sound or record sound. But still need follow the anti-pop start or stop sequence. Please refer to "Start up sequence" and "Shutdown sequence".

10.17.7 Working modes summary

Different working modes are sum-up in the following table (non exhaustive table):

Mode	SB	SB_SLEEP	SB_DAC	SB_HP	SB_LO	SB_ADC	SB_MICBIAS	SB_MIC1	SB_MIC2	SB_LIN	SB_LIBY	IN_SEL	HP_SEL	LO_SEL	MIC_STEREO	DAC_LEFT_ONLY	ADC_LEFT_ONLY	DAC_MUTE	HP_MUTE	LO_MUTE
Reset mode (complete power-down mode)	1	1	1	1	1	1	1	1	1	1	1	00	00	00	1	0	0	1	1	1
Complete power-down mode	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	xx	XX	xx	х	х	х	Х	Х	Х
Sleep mode	0	1	х	х	Х	Х	Х	Х	Х	Х	х	XX	XX	XX	Х	Х	Х	Х	х	Х
Record Mode	_						-										1	1		\dashv
Mono MIC1 input	0	0	х	х	х	0	х	0	х	х	х	00	XX	ХX	0	X	X	X	х	Х
Mono MIC2 input	0	0	х	х	х	0	х	х	0	х	х	01	XX	xx	0	х				х
Record Mode, stereo MIC													15							
inputs,											~?									
MIC1 to left channel	0	0	х	х	х	0	х	0	X	x	x	00	XX	ХХ	1	х	0	х	х	х
MIC2 to left channel	0	0	х	х	х	0	X	(x)	0	х	х	01	xx	ХХ	1	х	0	х	х	х
Record Mode, Line input	0	0	х	х	X	Ó	X	Х	Х	0	Х	10	XX	хх	Х	х	0	х	х	Х
Playback mode, DAC to HP	0	0	0	0	X	Х	Х	Х	Х	Х	х	XX	11	хх	Х	0	х	0	0	Х
Playback mode, DAC to LO	0	0	0	х	0	Х	Х	Х	Х	Х	Х	XX	XX	11	Х	х	х	х	х	0
Bypass mode, Line to HP	0	0	х	0	Х	Х	Х	Х	Х	Х	0	XX	10	хх	Х	х	х	Х	0	Х
Bypass mode, Line to LO	0	0	0	х	0	Х	Х	Х	Х	Х	Х	XX	XX	10	Х	х	х	Х	х	0
Sidetone mode,																				
Mono MIC1 input to HP	0	0	х	0	х	х	х	0	х	х	х	xx	00	xx	0	х	х	х	0	х
Mono MIC2 input to HP	0	0	х	0	х	х	Х	Х	0	х	х	xx	01	xx	0	х	х	Х	0	х
Sidetone mode, stereo MIC to																				
HP,																				
MIC1 to left channel	0	0	х	0	х	х	х	0	х	х	х	xx	00	xx	1	х	х	х	0	х
MIC2 to left channel	0	0	х	0	х	х	Х	Х	Х	х	х	xx	01	xx	1	х	х	Х	0	х
Sidetone mode,																				
Mono MIC1 input to LO								0	х	х	х	xx	XX	00	0	х	х	х	х	0
Mono MIC2 input to LO	0	0	х	х	0	х	х	х	0	х	х	xx	XX	01	0	х	х	х	х	0
MIC1+MIC2 to LO	0	0	х	х	0	Х	Х	0	0	Х	х	xx	XX	0x	1	х	х	Х	х	0

10.18 SYS CLK turn-off and turn-on

The main clock of CODEC is called SYS_CLK, which is generated in CPM module and called MCLK. During the SLEEP mode and the complete power-down mode, the main clock SYS_CLK may be stopped to reduce the power consumption to the leakage currents only. In other modes, the main clock SYS_CLK must not be stopped.

The main clock SYS_CLK must not be stopped until CODEC has reached the complete power-down mode and must be restarted before leaving the power-down mode.

After SYS_CLK restarts, it is required to wait 4 SYS_CLK cycles before reading or writing the registers.

When SYS_CLK is turned off (SB_SLEEP=1 or SB=1), writing on register values are not taken into account, register values are not up to date when read and interrupts not generated until SYS_CLK turns on.

INTERREDICTION OF THE PROPERTY OF T

10.19 Requirements on outputs and inputs selection and power-down modes

The following rules must be respected in order not to damage performances and to keep the functionality:

- If SB_MIC1 is set to 1, MICSTEREO must be equal to 0, IN_SEL, HP_SEL and LO_SEL must not be equal to '00'.
- If SB_MIC2 is set to 1, MICSTEREO must be equal to 0, IN_SEL, HP_SEL and LO_SEL must not be equal to '01'.
- If SB LINE is set to 1, IN SEL must not be equal to '10'.
- If SB_LIBY is set to 1, HP_SEL and LO_SEL must not be equal to '10'.
- If SB_DAC is set to 1, HP_SEL and LO_SEL must not be equal to '11'.

Ions eiffel@126.com internal used only

10.20 Anti-pop operation sequences

The main idea of this section is to describe the sequences to perform to minimize the audible pop to the minimum for the headphone output.

Due to the large number of stand-by combinations and to be the most flexible, the handling of the sequence from one working mode to another is left to the software. So for helping the software designer in this task, some specific sequences are automatically performed by CODEC and an interrupt mechanism (IRQ signal and associated registers) warns the application when these sequences end.

10.20.1 Initialization and configuration

To use the embedded CODEC with AIC, several AIC registers should be set up the below register of com internal used only AIC before start the CODEC:

AICFR.ICDC = 1

AICFR.AUSEL = 1

AICFR.BCKD = 0

AICFR.SYNCD = 0

I2SCR.AMSL = 0

I2SCR.ESCLK = 1

10.20.2 Start up sequence (DAC)

This sequence is from Power-on mode to CODEC REPLAY mode.

The output sound is driving by DAC.

The intent of the following sequence is to prevent for large audible glitches due to the system start-up with the CODEC. O

Figure 10-10 Start up sequence

NOTES:

- 1 The sequences in **blue** are manually handled by the software.
- 2 The sequences in **black** are automatically handled by the CODEC.
- 3 Red circles are interrupts automatically generated by the CODEC.

SEQUENCE:

- A Initial state.
 - The power supply is off.
- B Power supply ramp up.

The RESET of CODEC is '0' during system reset. The CODEC starts its internal initialization sequence and set ACK_PON register bit once completed.

C Starting of CODEC reference.

The software turns the CODEC on SLEEP mode by clearing SB register bit to 0. The duration equals Tsbyu. After waiting the Tsbyu duration (for example, on event generated by a timer at the application level), the CODEC is in SLEEP mode, the ADC and DAC path are ready to be turn to active mode.

D Go from SLEEP mode to active.

The application turns on the DAC by clearing SB_SLEEP register bits to 0.

E Turn on DAC.

Once after leaving SLEEP mode, the application turns on the DAC (SB_DAC=0) and after 0.5 ms switch the analog mute signal of the port to activate to 0 (MUTE HP=0).

F Ramp up cycle.

After waiting 1 ms, the application turns on the headphone output stage (SB_HP=0).

G Ramp up IRQ generation.

Once the ramp up cycle completes, the CODEC sets the RUP flag to 1 and generates an interrupt.

H IRQ handling and gain up cycle.

The application handles the interrupt, resets the RUP flag by writing 1 on it and releases the mute of the DAC (DAC_MUTE=0). In the same time, the application sends valid audio data to the CODEC DAC.

I Gain up IRQ generation.

Once the gain up cycle completes, the CODEC sets the GUP flag to 1 and generates an interrupt.

J IRQ handling and DAC active mode.

The application handles the interrupt and resets the GUP flag by writing 1 on. The CODEC DAC path is now fully activated.

10.20.3 Shutdown sequence (DAC)

This sequence is from CODEC REPLAY mode to STANDBY mode.

The output sound is driving by DAC.

The intent of the following sequence is to prevent for large audible glitches due to the system shutdown with the CODEC.

Figure 10-11 Shutdown sequence

NOTES:

- 1 The sequences in blue are handled by the software.
- 2 The sequences in black are automatically handled by the CODEC.

SEQUENCE:

A\ Initial state.

The power supply is on, CODEC DAC path is fully activated.

B Gain down cycle.

The application activates the mute of the DAC (DAC_MUTE=1). Once the gain down cycle completes, the CODEC sets the GDO flag to 1 and generates an interrupt.

- C Gain down IRQ handling and ramp down cycle.
 - The application handles the interrupt and resets the GDO flag by writing 1 on it. The application can then stop sending audio data and turns off the headphone output stage (SB_HP=1).
- D Ramp down IRQ generation.
 - Once the ramp down cycle completes, the CODEC sets the RDO flag to 1 and generates an interrupt.
- E IRQ handling.
 - The application handles the interrupt and resets the RDO flag by writing 1 on it. Then, the application can activate the analog mute (MUTE_HP=1). Finally, the application turns off the

DAC path (SB_DAC=1) to be in sleep mode or turn off the CODEC (SB_SLEEP=1, SB=1).

10.20.4 Start up sequence (Line input)

This sequence is from Power-on mode to CODEC REPLAY mode.

The output sound is driving by Line input.

The intent of the following sequence is to prevent for large audible glitches due to the system start-up with the CODEC.

SEQUENCE:

A initial state.

DAC or Line in channel is already in use, valid analog audio signals are available at the input of the switch matrix.

B initializing output port.

The application first set the line in and headphone gain stages to their minimum value (gain automatically forced when the port is in power-down mode). This setting is taken into account in few clocks cycles. Set the MUTE_HP=0, Then the application turns on the headphone output stages (SB_HP = 0).

C Ramp up IRQ generation.

Once the ramp up cycle completes, the CODEC sets the RUP flag to 1 and generates an interrupt.

D Ramp up IRQ handling and line in stage gain up.

The application handles the interrupt and resets the RUP flag by writing 1 on it. The application then set the line in gain stage to the wished value.

The maximum duration of the gain ramping equals Trlinemax:

Trlinemax = N1 * Tcrossout

N1 is the number of line in gain steps.

Please Refer to section "Gain refresh strategy" for the value of Tcrossout.

E Headphone stage gain up.

The application set the headphone gain stage to the wished value. The maximum duration of the gain ramping equals Troutmax:

Troutmax = N2 * Tcrossout

N2 is the number of headphone gain steps.

F active mode.

The signal path is now fully activated.

10.20.5 Shutdown sequence (Line input)

This sequence is from CODEC REPLAY mode to STANDBY mode.

The output sound is driving by Line input.

The intent of the following sequence is to prevent for large audible glitches due to the system shutdown with the CODEC.

SEQUENCE:

A active mode.

The signal path is now fully activated.

B headphone stage gain down.

The application set the headphone gain stage to the minimum value. The maximum duration of the gain ramping equals Tdoutmax:

Tdoutmax = N3 * Tcrossout

N3 is the number of headphone gain steps.

Please Refer to section "Gain refresh strategy" for the value of Tcrossout.

C line in stage gain down.

The application set the line in gain stage to the minimum value. The maximum duration of the gain ramping equals Tdlinemax:

Tdlinemax = N4 * Tcrossout

N4 is the number of headphone gain steps.

D Ramp down cycle.

Then, the application can activate the analog mute (MUTE_HP=1) and turns off the headphone output stages (SB_HP=1).

E Ramp down IRQ generation.

Once the ramp up cycle completes, the CODEC sets the RDO flag to '1' and generates an interrupt.

Ramp down IRQ handling.

eiffel@126.co The application handles the interrupt and resets the RDO flag by writing '1' on it. The signal

10.21 Circuits design suggestions

This section lists a few PCB design suggestions with difference using mode.

10.21.1 Avoid quiet ground common currents

10.21.1.1 References pins

To work properly, CODEC requires few additional external components.

CODEC includes an internal voltage reference. To insure a correct common mode biasing of the internal components, an additional voltage VCAP is used. This requires connecting two decoupling capacitors (Cext) between the pin VCAP and AVSCDC. One 10uF low ESR (ceramic or tantalum) and one 100nF ceramic have to be used. The ceramic capacitor has to be kept as close as possible to IC package (closer than 0.2 inch).

10.21.1.2 Power supply pins

CODEC analog power supplies require external decoupling capacitors.

For each power supply pin, one 100nF ceramic capacitor has to be used. This ceramic capacitor has to be kept as close as possible to IC package (closer than 0.2 inch). One low ESR (ceramic or tantalum) capacitor has to be used to decouple the analog power supply provided to the CODEC. Its value depends on the power supply generator; its typical value is between 1uF and 10uF. Ideally use separate ground planes for analog and digital parts.

Connect all ground pins with thick traces to power plane in order to ensure lowest impedance connections.

AVSCDC must be connected to the PCB analog single point reference (star connection) ground (AGND).

10.21.2 Headphone connection (Capacitor-coupled)

Capacitor-coupled headphone and line connection

Figure 10-12 Capacitor-coupled connection

The AOHPL and AOHPR pins are connected to the headphone through an external bypass capacitor which is a DC blocking capacitors.

This capacitor is called C_L . When the headphone resistance R_L is 16 Ohm, The tantalum blocking capacitor C_L is 220 uF.

The DC value of the signal AOHPL or AOHPR equals to AVDCDC/2.

The ground of the headphone is connected to AGND, which is the PCB analog single point reference (star connection) ground.

Capacitor-less headphone connection

Figure 10-13 Capacitor-less connection

The signals AOHPL and AOHPR from chip are applied directly to the loads. The ground of the headphone is connected to AOHPM. The DC value of the signal AOHPi equals to VREF/2. The measurement ground reference corresponds to the physical interconnection of AOHPM and AOHPMS.

The measurement is done between AOHPL/R and the measurement ground reference.

NOTE: If you want to use headphone as the antenna for FM, you had better choose this mode.

10.21.3 Microphone connection

The optimal performance for the SNR is obtained in differential Microphone inputs with a FS input level corresponding to the following values: the peak-to-peak amplitude of the signal is 0.2125V, corresponding to 0.085*VREF Vpp.

We recommend customer to use differential MIC input for better performance.

Application schematic with differential MIC input (using MICBIAS pin):

Application schematic with differential MIC input (Vmicbias generated on board):

Application schematic with single-ended MIC input (using MICBIAS pin):

Application schematic with single-ended MIC input (Vmicbias generated on board):

In single-ended connection, one external resistor (R) has to be used to bias the electret microphone. In differential connection, a pair of external resistor (R1, R2) has to be used to bias the electret microphone. The resistors value relation between them is R1 = R2 = R/2.

Specific value of resistor (R, commonly from 2.2k Ohm to 4.7k Ohm) and Vmicbias (if generated on board, usually from 1 to 2V or more) depends on the selected EC (Electret Condenser) microphone. The 1nf decoupling capacitance used in MICBIAS pin removes high frequency noise of the chip.

Setting SB_MIC1/SB_MIC2 to 1 will close microphone input path for saving power, also setting SB_MICBIAS to 1 will close MICBIAS stage and the MICBIAS output voltage will be zero.

MICBIAS output voltage scales with AVDCDC, equals to 5/6*AVDCDC (typical 2.08V). MICBIAS output current is 4mA max.

MICBIAS output noise is 40uVrms max.

This configuration is better suited for microphone with single wire + shielding.

The AVSCDC Pin is connected the analog quiet reference ground in the chip (refers to <u>Grounds and analog signal references</u>). So the ground of MIC must be connected to AVSCDC using a star connection.

10.21.4 Description of the connections to the jack

When the jack is inserted, "sense" and "ground" are disconnected.

No jack plugged: the switch acts as a short-circuit.

Jack plugged: the switch acts as an open circuit.

10.21.4.1 Grounds and analog signal references

In order to limit the parasitic disturbances from the AVSHP output power supplies to inter VREFN analog quiet ground(which is using AVSCDC pin), should use the following principle to distribute the grounds.

259

Minimize the values of the connections parasitic resistance Rpar1, Rpar2.

Take a special care for Rpar1 in order to limit the disturbance from the output stages (AVSHP) to the signal reference (VREFN).

The reference of the input signals must be connected to VREFN (internal quiet ground which using the AVSCDC pin) using a star connection.

10.21.5 PCB considerations

To work properly, CODEC analog power supplies require external decoupling capacitors.

In the VCAP pin, one 10uF low ESR (ceramic or tantalum) called C2 and one 100nF ceramic called C1 have to be used. The ceramic capacitor has to be kept as close as possible to IC package (closer than 0.2 inch).

For each power supply pin, one 100nF ceramic capacitor has to be used. The capacitor used in AVDCDC pin is called C4, the capacitor used in AVDHP pin is C6. These ceramic capacitors have to be kept as close as possible to IC package (closer than 0.2 inch).

One low ESR (ceramic or tantalum) capacitor called C3 has to be used to decouple the analog power supply provided to the CODEC. Its value depends on the power supply generator; its typical value is between 1uF and 10uF. Ideally use separate ground planes for analog and digital parts.

C1, C2, C3, C4, C5, C6 are defined in section "Required external components".

The reference PCB design is shown below:

Figure 10-15 the bottom corner of chip PCB Layer

This is just an example reference diagram. You should change and select the PCB layer and route with

your design constraints.

10.21.5.1 Required external components

The following table summarizes the external components required for a proper working of CODEC, except those used for the analog input and output signals.

Name	Description	Typical Value	Unit
C1	Ceramic reference decoupling capacitor. Cext.	100	nF
C2	Tantalum reference decoupling capacitor. Cext.	10	uF
C3	Tantalum analog power supply decoupling capacitor.	1 to 10	uF
C4	Ceramic AVDCDC decoupling capacitor.	100	nF
C5	Ceramic inter signal VREFP decoupling capacitor (can be shared with C4).	100	nF
C6	Ceramic AVDHP decoupling capacitor. Not shown in section PCB considerations.	1000	nF
C8	MICBIAS decoupling capacitor, Refer to section "Microphone connection".	1	nF
C9, C10	External bypass capacitor, for DC blocking, Refer to section "Headphone connection (Capacitor-coupled)".	220	uF
Rhpl, Rhpr	Headphone jack pull-down resistors, Refer to section "Headphone connection (Capacitor-coupled)".	470 or 4.7K	Ohm
R	In single-ended connection, one external resistor (R) has to be used to bias the electret microphone. Refer to section "Headphone connection (Capacitor-coupled)".	2.2K ~ 4.7K	Ohm

10.22 Main paths characteristics

10.22.1 Line input to audio ADC path

Measurement conditions:

T = 25°C, AVDCDC = AVDHP = VREFP = 2.5V, input sine wave with a frequency of 1kHz, Fmclk = 12MHz, Fs = 8 to 96kHz, measurement bandwidth 20Hz – 20kHz, unless otherwise specified.

	•			•	
Parameter	Test conditions	Min.	Тур	Max.	Unit
Input level	Full Scale, Gain GIDL, GIDR = 0dB (note 1)	1.89	2.12	2.39	Vpp
Input resistance		8.5			kOhm
Input capacitance	Includes 10pF for ESD, bonding and package pins capacitances			25	pF
Input bypass capacitor	Cbyline		1		uF

Note 1: The Full Scale input voltage scales with AVDCDC, equals to 0.85*VREF (typ)

10.22.2 Microphone input to audio ADC path

Measurement conditions:

T = 25°C, AVDCDC = AVDHP = VREFP = 2.5V, input sine wave with a frequency of 1kHz, Fmclk = 12MHz, Fs = 8 to 96kHz, measurement bandwidth 20Hz – 20kHz, unless otherwise specified.

Parameter	Test conditions	Min.	Тур	Max.	Unit
Input level	Full Scale, Gain GIDL, GIDR = 0dB,	0.189	0.212	0.239	Vpp
	boost gain GIM1,GIM2 = 20dB (note 1)				۷۲۲
Input resistance	Boost gain GIM1,GIM2 = 0 dB	66	80	100	
(Differential mic	Boost gain GIM1,GIM2 = 20 dB	10	13	15	kOhm
configuration)	Boost gailt Glivi 1,Glivi2 – 20 dB	10	13	15	
Input resistance	Boost gain GIM1,GIM2 = 0 dB	92	115	138	
(single-ended mic	Popot gain CIM1 CIM2 = 20 dB	19	24	29	kOhm
configuration)	Boost gain GIM1,GIM2 = 20 dB	19	24	29	
Input capacitance	Includes 10pF for ESD, bonding and			25	۲
	package pins capacitances				pF
Input bypass	Cbyline		1		uF
capacitor					ur

Note 1: The Full Scale input voltage scales with AVDCDC, equals to 0.085*VREF (typ)

10.22.3 Audio DAC to headphone output path

Measurement conditions:									
T = 25° C, AVDCDC = AVDHP = VREFP = 2.5 V, input sine wave with a frequency of 1kHz, Fmclk =									
12MHz, Fs = 8 to 96 kHz, measurement bandwidth 20Hz – 20kHz, unless otherwise specified.									
Parameter	Test conditions	Min.	Тур	Max.	Unit				
DAC playback on 16 Ohm HeadPhone									
Output level	Full Scale, Gain GOL, GOR = -3 dB,	1.33	1.5	1.69	Vpp				
	GODL, GODR=0dB, 16 Ohm load				v pp				
Maximum output	RI = 16 Ohm		17.6		mW				
power					IIIVV				
Output resistance	R1	16			Ohm				
Output bypass	CI (RI = 16 Ohm)			220	uF				
capacitor					uı				
	DAC playback to 10k Ohms lineout s	ingle		4	4 1				
Output level	Full Scale, Gain GOL, GOR = 0 dB,	1.89	2.12	2.39	Vnn				
	GODL, GODR=0dB (note 1)		- 2	Or	Vpp				
Output resistance	R1	10k	1500		Ohm				
Output bypass	CI (RI = 10 kOhm)	1		1	uF				
capacitor	x X	(O) E			ur				
	Common characteristics								
Output capacitance	Ср			200	, C				
(note 2)	COM				pF				

Note 1: The Full Scale output voltage scales with AVDCDC, equals to 0.85*VREF. The minimum and maximum output levels are given with gain accuracy.

Note 2: Output may oscillate above specified load capacitances. The capacitance is equivalent to a 2-meter cable.

10.22.4 Audio DAC to mono line output path

Measurement conditions: T = 25°C, AVDCDC = AVDHP = VREFP = 2.5V, input sine wave with a frequency of 1kHz, Fmclk = 12MHz, Fs = 8 to 96kHz, measurement bandwidth 20Hz - 20kHz, unless otherwise specified. Parameter Test conditions Min. Max. Unit Typ Output level Full Scale, Gain GODL, GODR = 0dB 3.78 4.25 4.78 Vpp (note 1) Output resistance 10 kOhm Output capacitance 100 pF Ср CI(RI = 10 kOhm)1 Output bypass uF capacitor

Note 1: The Full Scale output voltage scales with AVDCDC, equals to 1.7*VREF (typ)

10.22.5 Line input to headphone output path (analog bypass)

<u> </u>									
Measurement conditions:									
T = 25°C, AVDCDC = AVDHP = VREFP = 2.5V, input sine wave with a frequency of 1kHz, Fmclk =									
12MHz, Fs = 8 to 96 kHz, measurement bandwidth 20Hz – 20kHz, unless otherwise specified.									
Parameter	Test conditions	Min.	Тур	Max.	Unit				
Input level	Full Scale	1.89	2.12	2.39	Vpp				
Input resistance		8.5			kOhm				
	bypass on 16 Ohm HeadPhone								
Output level	Full Scale, Gain GOL, GOR = -3 dB, GIL,	1.33	1.5	1.69	\/mm				
	GIR=0dB, 16 Ohm load				Vpp				
Output resistance	R1	16			Ohm				
	bypass to 10k Ohms lineout single	e							
Output level	Full Scale, Gain GOL, GOR = 0 dB, GIL,	1.89	2.12	2.39	\/mm				
	GIR=0 dB (note 1)			4	Vpp				
	Common characteristics			20	7 3				
Input capacitance	Includes 10pF for ESD, bonding and		- 2	25	~F				
	package pins capacitances	4	1500		pF				
Input bypass	Cbyline	1	1						
capacitor	~~	O			uF				

Note 1: The Full Scale output voltage scales with AVDCDC, equals to 1.7*VREF (typ)

10.22.6 Microphone input to headphone output path (analog sidetone)

_	1 10 5							
Measurement conditions:								
T = 25°C, AVDCDC = AVDHP = VREFP = 2.5V, input sine wave with a frequency of 1kHz, Fmclk =								
12MHz, Fs = 8 to 96kH	12MHz, Fs = 8 to 96kHz, measurement bandwidth 20Hz – 20kHz, unless otherwise specified.							
Parameter	Test conditions	Min.	Тур	Max.	Unit			
Input level	Full Scale, Gain GOL, GOR = 0dB, boost	0.189	0.212	0.239	Van			
	gain GIM1,GIM2 = 20dB (note 1)				Vpp			
Output level	Full Scale, Gain GOL,GOR= 0dB, boost	1.89	2.12	2.39				
	gain GIM1,GIM2 = 0 to 20dB, 10kOhm				Vpp			
	load (note 2)							
	Full Scale, Gain GOL,GOR= -3 dB, boost	1.33	1.5	1.69				
	gain GIM1,GIM2 = 0 to 20dB, 16Ohm				Vpp			
	load (note 2)							

Note 1: The Full Scale input voltage scales with AVDCDC, equals to 0.085*VREF (typ)

Note 2: The Full Scale output voltage scales with AVDCDC, equals to 0.85*VREF (typ)

10.22.7 Micbias and reference

Measurement conditions:

T = 25°C, AVDCDC = AVDHP = VREFP = 2.5V, input sine wave with a frequency of 1kHz, Fmclk = 12MHz, Fs = 8 to 96kHz, measurement bandwidth 20Hz – 20kHz, unless otherwise specified.

,	•			'	
Parameter	Test conditions	Min.	Тур	Max.	Unit
Micbias output level	(note 1)		2.08		M
			1.66		V
Micbias output current				4	mA
Micbias decoupling	Cmic	0.75	1	1.25	nF
capacitor					
VCAP voltage	(note 2)		2		٧

Note 1: Micbias output voltage scales with AVDCDC, equals to 5/6*VREF or 4/6*VREF (typ)

Note 2: VCAP output voltage scales with AVDCDC, equals to 0.8*VREF (typ)

Ions eiffel@126.com internal used only

11 AC97/I2S/SPDIF Controller

11.1 Overview

This chapter describes the AIC (AC'97 and I²S Controller) included in this processor.

The AIC supports the Audio Codec '97 Component Specification 2.3 for AC-link format and I2S or IIS (for inter-IC sound), a protocol defined by Philips Semiconductor. Both normal I2S and the MSB-justified I2S formats are supported by AIC.

AIC consists of buffers, status registers, control registers, serializers, and counters for transferring digitized audio between the processor's system memory and an internal I2S CODEC, an external AC97 or I2S CODEC. AIC can record digitized audio by storing the samples in system memory. For playback of digitized audio or production of synthesized audio, the AIC retrieves digitized audio samples from system memory and sends them to a CODEC through the serial connection with AC-link or I2S formats. The internal or external digital-to-analog converter in the CODEC then converts the audio samples into an analog audio waveform. The audio sample data can be stored to and retrieved from system memory either by the DMA controller or by programmed I/O.

The AC-link is a synchronous, fixed-rate serial bus interface for transferring CODEC register control and status information in addition to digital audio. Where both normal I2S and MSB-justified-I2S work with a variety of clock rates, which can be obtained either by dividing the PLL clock by two programmable dividers or from an external clock source.

For I2S systems that support the L3 control bus protocol, additional pins are required to control the external CODEC. CODECs that use an L3 control bus require 3 signals: L3_CLK, L3_DATA, and L3_MODE for writing bytes into the L3 bus register. The AIC supports the L3 bus protocol via software control of the general-purpose I/O (GPIO) pins. The AIC does not provide hardware control for the L3 bus protocol.

To control the internal CODEC, internal CODEC Spec can be referenced.

SPDIF (Sony/Philips Digital Interconnect Format) is a digital audio interface. The transmission medium can be either electrical or optical. Supports IEC60958 two-channel PCM audio and IEC61937 multi-channel compressed audio (Dolby Digital, DTS, etc.).

This chapter describes the programming model for the AIC. The information in this chapter requires an understanding of the AC'97 specification, Revision 2.3.

11.1.1 Block Diagram

Figure 11-1 AIC Block Diagram

The O_BIT_CLK and O_SYNC ports are only used by inter CODEC.

11.1.2 Features

AIC support following AC97/I2S/SPDIF features:

AC-link (AC97) features

- Up to 20 bit audio sample data sizes supported
- DMA transfer mode supported
- Stop serial clock supported
- Programmable Interrupt function supported
- Support mono PCM data to stereo PCM data expansion on audio play back
- Support endian switch on 16-bits normal audio samples play back
- Support variable sample rate in AC-link format
- Multiple channel output and double rated supported for AC-link format
- Power Down Mode and two Wake-Up modes Supported for AC-link format

I2S features

- 8, 16, 18, 20 and 24 bit audio sample data sizes supported, 16 bits packed sample data is supported
- Up to 8 channels sample data supported

- DMA transfer mode supported
- Stop serial clock supported
- Programmable Interrupt function supported
- Support mono PCM data to stereo PCM data expansion on audio play back
- Support endian switch on 16-bits normal audio samples play back
- Internal programmable or external serial clock and optional system clock supported for I2S or MSB-Justified format
- Internal I2S CODEC supported
- Two FIFOs for transmit and receive respectively

SPDIF features

- 8, 16, 18, 20 and 24 bit audio sample data sizes supported
- DMA transfer mode supported
- Stop serial clock supported

- -kHz to com

11.1.3 Interface Diagram

Figure 11-2 Interface to an External AC'97 CODEC Diagram

Figure 11-3 Interface to an External Master Mode I2S/MSB-Justified CODEC Diagram
(Share Clock Mode)

Figure 11-4 Interface to an External Master Mode I2S CODEC Diagram
(Split Clock Mode)

Figure 11-5 Interface to an External Slave Mode I2S/MSB-Justified CODEC Diagram (Share Clock Mode)

Figure 11-6 Interface to an External Slave Mode I2S CODEC Diagram
(Split Clock Mode)

Figure 11-7 Interface to a HDMI Transmitter via I2S Diagram

Figure 11-8 Interface to a HDMI Transmitter via SPDIF Diagram

Figure 11-9 Interface to an internal Master Mode I2S CODEC Diagram

Please refer to the related CODEC specification for the details.

11.1.4 Signal Descriptions

There are all 5 pins used to connect between AIC and an external audio CODEC device. If an internal CODEC is used, these pins are not needed. Please refer to Chip Spec. They are listed and described in Table 11-1.

Table 11-1 AIC Pins Description

Function Name	1/0		Description
RESET# SYS_CLK	SCLK_R STN	0	RESET#: AC-link format, active-low CODEC reset. SYS_CLK: I2S/MSB-Justified formats, supply system clock to CODEC.

IBIT_CLK	BCLK_A D	I/O	Sample rate dependent bit-rate clock input/output for I2S/MSB-Jistified, only input AD channel.
ISYNC	SYNC_A D	I/O	Indicates the left- or right-channel for I2S/MSB-Justified format, only input AD channel
SDATA_IN	SDATI	I	Serial audio input data from CODEC.
BIT CLK	BCLK	I	12.288 MHz bit-rate clock input for AC-link, and sample rate
BII_CLK	BCLK	I/O	dependent bit-rate clock input/output for I2S/MSB-Jistified.
SYNC	SYNC	0	48-kHz frame indicator and synchronizer for AC-link format.
STNC	STNC	I/O	Indicates the left- or right-channel for I2S/MSB-Justified format.
SDATA_OUT	SDATO	0	Serial audio output data to CODEC / I2S line 0 / SPDIF output.
SDATA_OUT1	SDATO1	0	Serial audio output data I2S line 1.
SDATA_OUT2	SDATO2	0	Serial audio output data I2S line 2.
SDATA_OUT3	SDATO3	0	Serial audio output data I2S line 3.

The O_BIT_CLK and O_SYNC signals are not connected to any pin for only using by internal CODEC.

11.1.4.1 RESET# / SYS_CLK Pin

RESET# is AC97 active-low CODEC reset, which outputs to CODEC The CODEC's registers are reset when this RESET# is asserted. This pin is useful only in AC-link format. If AIC is disabled, it retains the high.

SYS_CLK outputs the system clock to CODEC. This pin is useful only in I2S/MSB-justified format. It generates a frequency between approximately 2.048 MHz and 24.576 MHz by dividing down the PLL clock with a programmable divisor. This frequency can be 256, 384, 512 and etc. times of the audio sampling frequency. Onit can be set to a wanted frequency. If AIC is disabled, it retains the high.

11.1.4.2 BIT CLK Pin

BIT_CLK is the serial data bit rate clock, at which AC97/I2S data moves between the CODEC and the processor. One bit of the serial data is transmitted or received each BIT_CLK period. It is fixed to 12.288 MHz in AC-link format, which inputs from the CODEC. In I2S and MSB-justified format it inputs from the CODEC in slave mode and outputs to CODEC in master mode. In the master mode, the clock is generated internally that is 64 times the sampling frequency. Table 11-7 lists the available sampling frequencies based on an internal clock source. If AIC is disabled, AICFR.AUSEL and AICFR.BCKD determine the direction. And it retains the low if it is output and the state is undefined if it is input.

The IBIT_CLK is for the SDATA_IN signal on division CLOCK function.

11.1.4.3 SYNC Pin

In AC-link format, SYNC provides frame synchronization, fixed to 48kHz, by specifying beginning of an audio sample frame and outputs to CODEC. In I2S/MSB-Justified formats, SYNC is used to indicate 272

left- or right-channel sample data and toggled in sample rate frequency. It outputs to CODEC in master mode and inputs from CODEC in slave mode. If AIC is disabled, AICFR.AUSEL and AICFR.BCKD determine the direction. And it retains the low if it is output and the state is undefined if it is input.

The ISYNC is for the SDATA_IN signal on division CLOCK function.

11.1.4.4 SDATA_OUT Pin

SDATA_OUT is AIC output data pin, which outputs AC97/I2S serial audio data, SPDIF serial data or data of AC97 CODEC register control to an external audio CODEC device.

If in multi channels mode, it outputs the first two channels serial data.

If AIC is disabled, it retains the low.

SDATA OUTn (n = 1,2,3) is AIC output data pin, which outputs multi channels serial audio data.

11.1.4.5 SDATA_IN Pin

SDATA_IN is AIC inputs data pin, which inputs serial audio data or data of AC97 CODEC register status from an external audio CODEC device. If AIC is disabled, its state is undefined.

11.1.4.6 IBIT_CLK Pin

The IBIT_CLK is for the SDATA_IN signal on division CLOCK function. When in Split Clock mode(AICFR.DMODE = 1), this pin is effective.

11.1.4.7 ISYNC Pin

The ISYNC is for the SDATA_IN signal on division CLOCK function. When in Split Clock mode(AICFR.DMODE = 1), this pin is effective.

11.2 Register Descriptions

AIC software interface includes 13 registers and 1 FIFO data port. They are mapped in IO memory address space so that program can access them to control the operation of AIC and the outside CODEC.

Table 11-2 AIC Registers Description

Name	Description	RW	Reset value	Address	Size
AICFR	AIC Configuration Register	RW	0x07100000	0x10020000	32
AICCR	AIC Common Control Register	RW	0x01240000	0x10020004	32
ACCR1	AIC AC-link Control Register 1	RW	0x00000000	0x10020008	32
ACCR2	AIC AC-link Control Register 2	RW	0x00000000	0x1002000C	32
I2SCR	AIC I2S/MSB-justified Control Register	RW	0x00000000	0x10020010	32
AICSR	AIC FIFO Status Register	RW	0x00000008	0x10020014	32
ACSR	AIC AC-link Status Register	RW	0x00000000	0x10020018	32
I2SSR	AIC I2S/MSB-justified Status Register	RW	0x00000000	0x1002001C	32
ACCAR	AIC AC97 CODEC Command Address Register	RW	0x00000000	0x10020020	32
ACCDR	AIC AC97 CODEC Command Data Register	RW	0x00000000	0x10020024	32
ACSAR	AIC AC97 CODEC Status Address Register	R	0x00000000	0x10020028	32
ACSDR	AIC AC97 CODEC Status Data Register	R	0x00000000	0x1002002C	32
I2SDIV	AIC 12S/MSB-justified Clock Divider Register	RW	0x00000003	0x10020030	32
AICDR	AIC FIFO Data Port Register	RW	0x???????	0x10020034	32
SPENA	SPDIF Enable Register	RW	0x00	0x10020080	8
SPCTRL	SPDIF Control Register	RW	0x0003	0x10020084	16
SPSTATE	SPDIF Status Register	RW	0x0000	0x10020088	16
SPCFG1	SPDIF Configure 1 Register	RW	0x00000000	0x1002008C	32
SPCFG2	SPDIF Configure 2 Register	RW	0x00000000	0x10020090	32
SPFIFO	SPDIF FIFO Register	W	0x???????	0x10020094	32
CKCFG	Clock Configure for the embedded CODEC to AIC	RW	0x00000000 0x00000002	0x100200A0	32
RGADW	Address, data in and write command for accessing to internal registers of embedded CODEC	RW	0x00000000	0x100200A4	32
RGDATA	The read out data and interrupt request status of Internal registers	R	0x00000000	0x100200A8	32

data in the embedded CODEC

- 1 AICFR is used to control FIFO threshold, AC-link or I2S/MSB-justified selection, AIC reset, master/slave selection, and AIC enable.
- 2 AICCR is used to control DMA mode, FIFO flush, interrupt enable, internal loop-back, play back and recording enable. It also controls sample size and signed/unsigned data transfer.
- 3 ACCR1 is used to reflect/control valid incoming/outgoing slots of AC97.
- 4 ACCR2 is used to control interrupt enable, output/input sample size, and alternative control of RESET#, SYNC and SDATA OUT pins in AC-link.
- 5 I2SCR is used to control BIT_CLK stop, audio sample size, I2S or MSB-justified selection in I2S/MSB-justified.
- 6 AICSR is used to reflect FIFOs status.
- 7 ACSR is used to reflect the status of the connected external CODEC in AC-link.
- 8 I2SSR is used to reflect AIC status in I2S/MSB-justified.
- 9 ACCAR and ACCDR are used to hold address and data for AC-link CODEC register read/write.
- 10 ACSAR and ACSDR are used to receive AC-link CODEC registers address and data.
- 11 I2SDIV is used to set clock divider for BIT_CLK generating in I2S/MSB-justified format.
- 12 AICDR is act as data input/output port to/from transmit/receive FIFO when write/read.
- 13 CKCFG, RGADW and RGDATA are used to access internal CODEC, please refer to <u>CODEC</u>

 <u>Spec.</u>

11.2.1 AIC Configuration Register (AICFR)

AICFR contains bits to control FIFO threshold, AC-link or I2S/MSB-justified selection, AIC reset, master/slave selection, and AIC enable.

	AICFR 0x															10020000																
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	ese	rve	d		RF	TH		Res	serv	red		Т	FTI	Н			Res	serv	⁄ed		IBCKD	ISYNCD	DMODE	Reserved	LSMP	ICDC	AUSEL	RST	BCKD	SYNCD	ENB
RST	0	0	0	0	0	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:28	Reserved	Writing has no effect, read as zero.	R
27:24	RFTH	Receive FIFO threshold for interrupt or DMA request. The RFTH valid	RW
		value is 0 ~ 15.	
		This value represents a threshold value of (RFTH + 1) * 2. When the	
		sample number in receive FIFO, indicated by AICSR.RFL, is great than or	
		equal to the threshold value, AICSR.RFS is set. Larger RFTH value	
		provides lower DMA/interrupt request frequency but have more risk to	

		involve receive FIFO overflow. The optimum value is system dependent.	
23:21	Reserved	Writing has no effect, read as zero.	R
20:16	TFTH	Transmit FIFO threshold for interrupt or DMA request. The TFTH valid	RW
		value 0 ~ 31.	
		This value represents a threshold value of TFTH * 2. When the sample	
		number in transmit FIFO, indicated by AICSR.TFL, is less than or equal to	
		the threshold value, AICSR.TFS is set. Smaller TFTH value provides	
		lower DMA/interrupt request frequency but have more risk to involve	
		transmit FIFO underflow. The optimum value is system dependent.	
15:11	Reserved	Writing has no effect, read as zero.	R
10	IBCKD	The IBIT_CLK Direction. This bit specifies input/output direction of	RW
		IBIT_CLK. It is only valid in I2S/MSB-justified format. When AC-link	
		format is selected, IBIT_CLK is always input and this bit is ignored.	
		Change this bit in case of IBIT_CLK is stopped (I2SCR.ISTPBK = 1).	
		This is only available when DMODE = 1.	
		BCKD BIT_CLK Direction	
		0 IBIT_CLK is input from an external source.	
		1 IBIT_CLK is generated internally and driven out to	
		the CODEC.	
9	ISYNCD	ISYNC Direction. This bit specifies input/output direction of ISYNC in	RW
		I2S/MSB-justified format. When AC-link format is selected, ISYNC is	
		always output and this bit is ignored. Change this bit in case of IBIT_CLK	
		is stopped (I2SCR:ISTPBK = 1).	
		This is only available when DMODE = 1.	
		SYNCD SYNC Direction	
		ISYNC is input from an external source.	
	9 6	1 ISYNC is generated internally and driven out to the	
1	ons	CODEC.	
8	DMODE	The Division Clock Mode control.	RW
		BCKD BIT_CLK Direction	
		0 Disable. Shared clock mode.	
		The BIT_CLK, SYNC, SDATA_IN and	
		SDATA_OUT are configured to one shared clock	
		I2S channel.	
		1 Enable. Spilt clock mode.	
		The BIT_CLK, SYNC and SDATA_OUT are	
		configured to one output I2S channel.	
		The IBIT_CLK, ISYNC and SDATA_IN are	
		configured to one input I2S channel.	
7	Reserved	Writing has no effect, read as zero.	R
6	LSMP	Select between play last sample or play ZERO sample in TX FIFO	RW
		underflow. ZERO sample means sample value is zero. This bit is better	

		be changed while audio replay is stopped.									
		LSMP	CODEC used								
		0	Play ZERO sample when TX FIFO underflow.								
		1	Play last sample when TX FIFO underflow.								
5	ICDC	Internal CODEC us	ed. Select between internal or external CODEC.	RW							
		ICDC	CODEC used								
		0	External CODEC.								
		1	Internal CODEC.								
4	AUSEL	Audio Unit Select. S	Select between AC-link and I2S/MSB-justified. Change	RW							
		this bit in case of B	IT_CLK is stopped (I2SCR.STPBK = 1).								
		AUSEL	Selected								
		0	Select AC-link format.								
		1	Select I2S/MSB-justified format.								
3	RST	Reset AIC. Write 1	to this bit reset AIC registers and FIF0 except AICFR	W							
		and I2SDIV registe	r. Writing 0 to this bit has no effect and this bit is								
		always reading 0.	70,								
2	BCKD	BIT_CLK Direction.	This bit specifies input/output direction of BIT_CLK. It	RW							
		•	MSB-justified format. When AC-link format is selected,								
		BIT_CLK is always	input and this bit is ignored. Change this bit in case of								
		BIT_CLK is stoppe	d (I2SCR.STPBK ¥ 1).								
		BCKD	BIT_CLK Direction								
		0	BIT_CLK is input from an external source.								
		1	BIT_CLK is generated internally and driven out to								
		101	the CODEC.								
1	SYNCD		nis bit specifies input/output direction of SYNC in	RW							
	0	<i>y</i>	ormat. When AC-link format is selected, SYNC is								
	200	,	his bit is ignored. Change this bit in case of BIT_CLK is								
	10110	stopped (I2SCR.ST									
		SYNCD	SYNC Direction								
		0	SYNC is input from an external source.								
		1	SYNC is generated internally and driven out to the								
			CODEC.								
0	ENB	1	n. This bit is used to enable or disable the AIC function.	RW							
		ENB	Description								
		0	Disable AIC Controller.								
		1 Enable AIC Controller.									

The BCKD bit (bit 2) and SYNCD bit (bit 1) configure the mode of I2S/MSB-justified interface. This is compliant with I2S specification.

BCKD	SYNCD	Description
0 (input)	0 (input)	AIC roles the slave of I2S/MSB-justified interface.

AICCR

0x10020004

	1 (output)	AIC roles the master with external serial clock source of I2S/MSB-justified interface.
4 (0.140.14)	0 (input)	Reserved.
1 (output)	1 (output)	AIC roles the master of I2S/MSB-justified interface.

11.2.2 AIC Common Control Register (AICCR)

AICCR contains bits to control DMA mode, FIFO flush, interrupt enable, internal loop-back, play back and recording enable. It also controls sample size and signed/unsigned data transfer.

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ı										_						_							_	- 1		
	Reserved	Reserved	PACK16	Keserved	CHANNEL	Reserved	SSO		SSI		RDMS	TDMS	poradosod	אפאפועפת	M2S	ENDSW	ASVTSU	TFLUSH	RFLUSH	EROR	ETUR	ERFS	ETFS	FALBF	ERPL	EREC
RST	0	0 0	0	0 0	0 1	0 0	1 0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	_									_						1	1	7.)							
Bit			ame													R۱	N									
31:	30	Res	erve	d		3 11 11 11 11 11											R									
29		Res	erve	d	Keep	this va	lue to	0 iı	n norn	nal	use	37	U U												R	
									n	1	<i>y</i>															
							C		CO																	
						26. com																				
28		PAC	K16		Outpu	ıt Sam	ple da	ta 1	16bit p	ack	ced	m	ode	se	lec	t. T	his	bit	ref	lec	ts t	nat	on	е	R۷	٧
				•	word	contai	ns two	sa	mple o	data	a or	or	nly c	ne	sa	mp	le d	data	a w	ith	LSI	Ва	lign	١.		
				0	The p	acked	mode	is (only s	upp	ort	16	bit	san	npl	e si	ze.									
		~N	9	/		PA	CK16	;					Sa	mp	le	Siz	е									
		Or				0			Unpa	acke	ed (dat	a m	od	e.											
									One	woı	rd c	nly	у со	nta	ins	on	e 1	6bi	t sa	amı	ple					
									data	alig	jne	d L	SB													
						1			Pack	ed	dat	a r	nod	le.												
									One	now	rd c	on	tain	s tv	NO	16	bit :	san	nple	e da	ata					
27		Res	erve	d	Writin	g has	no effe	ect,	read	as z	zer	٥.													R	
26:	24	CHA	NNE	ΞL	Outpu									R۷	٧											
					from A	from AIC to device. The data supported are: 1(mono), 2(stereo), 4, 6 and																				
					8 channels. The sample data is LSB-justified in memory/register.																					
						СН	ANNE	L					Sa	mp	le	Siz	е									
						0x0			1 cha	ann	el,	mc	no,	Or	ıly	SD	ΑT	A0 :	use	ed.						
					0x1 2 channels, stereo, Only SDATA0 used.																					
1									_													\neg				

0x2 0x3 Reserved.

4 channels, SDATA0 and SDATA1 used.

			0.4	Decemied		
			0x4	Reserved.	D.1.T.1.0	
			0x5	6 channels, SDATA0 to SI	DATA2 used.	
			0x6	Reserved.		
			0x7	8 channels, , SDATA0 to S	SDATA3 used.	
23:22	Reserved	Writing	has no effect,	read as zero.		R
21:19	OSS	Output	Sample Size.	These bits reflect output sa	mple data size from	RW
		memor	ry or register. T	The data sizes supported are	e: 8, 16, 18, 20 and 24	
		bits. Th	ne sample data	is LSB-justified in memory	/register.	
			oss	Sample Size		
			0x0	8 bit.		
			0x1	16 bit.		
			0x2	18 bit.		
			0x3	20 bit.		
			0x4	24 bit.	A 4	1
			0x5~0x7	Reserved.	\sim \sim \sim	7
18:16	ISS	Input S	Sample Size. T	hese bits reflect input samp	le data size to memory	RW
		or regis	ster. The data	sizes supported are: 8, 16,	18, 20 and 24 bits. The	
		sample	e data is LSB-j	ustified in memory/register.	Tro-	
		·	ISS	Sample Size		
			0x0	8 bit.		
			0x1	16 bit.		
			0x2	18 bit.		
			0x3 00 •	20 bit.		
			0x4	24 bit.		
		088	0x5~0x7	Reserved.		
15	RDMS	Receiv	re DMA enable	. This bit is used to enable	or disable the DMA	RW
	o (receiving audi			
1	OUS	3	RDMS	Receive DMA		
			0	Disabled.		
			1	Enabled.		
14	TDMS	Transn	nit DMA enable	e. This bit is used to enable	or disable the DMA	RW
	. =•		transmit audio			
		9	TDMS	Transmit DMA		
			0	Disabled.	1	
			1	Enabled.		
13:12	Reserved	Writing	•	read as zero.		R
11	M2S			s bit control whether to do m	nono to stereo sample	RW
'	20			ck. When this bit is set, ever	•	
		-		both left and right channels.		
				figuration. It takes effective		
				ge this before replay started	•	
		2.000	M2S	Description		
			IVIZO	Describuon		279

			0		No mono to stereo		
					expansion.		
			1		Do mono to stereo		
			!		expansion.		
10	ENDSW	Endian	Swite	h Thick	oit control endian change on o	utaoina 16 hite eize	RW
10	ENDSW				pping high and low bytes in the	• •	IXVV
		addio		DSW	Description	le sample data.	
			0	D011	No change on outgoing sa	ımnle	
					data.	imple	
			1		Swap high and low byte for	or	
					outgoing 16-bits size sam		
9	ASVTSU	Audio	Sample	e Value	Transfer between Signed and	I Unsigned data	RW
		format	This b	oit is use	d to control the signed ←→ur	nsigned data transfer.	
		If it is 1	, the ir	ncoming	and outgoing audio sample d	ata will be transferred	
		by togg	gle its i	most sig	nificant bit.	717	
		ASV	TSU		Description	7 01	
		0		No aud	dio sample value signed 🗲	→ unsigned	
				transfe	er. 🔨	11.5	
		1		Do aud	dio sample value signed 🗲	→ unsigned	
				transfe	er.		
8	TFLUSH				Write 1 to this bit flush transi		W
					as no effect and this bit is always	<u> </u>	
7	RFLUSH		A		Write 1 to this bit flush receiv		W
			100		as no effect and this bit is alwa	·	
6	EROR	$CA \sim$		•	t. This bit is used to control th	e ROR interrupt	RW
	e ¹	enable			DOD by Comment		
	-19			ROR	ROR Interrupt		
1	Orre		0		Disabled.		
_	ETUD	Co alala	1		Enabled.	TUD into must an abla	DW
5	ETUR	or disa		merrupt	. This bit is used to control the	TOK Interrupt enable	RW
		oi uisa		ΓUR	TUR Interrupt		
			0	IUN	Disabled.		
			1		Enabled.		
4	ERFS	Fnahle	_	nterrunt	. This bit is used to control the	RFS interrunt enable	RW
		or disa		orrupt	. The sit is used to control the	o intorrupt chable	
		J. 4104		RFS	RFS Interrupt		
			0		Disabled.		
			1		Enabled.		
3	ETFS	Enable	TFS I	nterrupt	. This bit is used to control the	TFS interrupt enable	RW
	-	or disa				2 2211 241 211 211	
				TFS	TFS Interrupt		
280		<u> </u>		_			<u> </u>

			0	Disabled.		
			1	Enabled.		
2	ENLBF	Enable	AIC Loop Bac	ck Function. This bit is used to	enable or disable the	RW
		interna	l loop back fur	nction of AIC, which is used for	or test only. When the	
		AIC loc	p back function	on is enabled, normal audio r	eplay/record functions	
		are dis	abled.			
			ENLBF	Descriptio	n	
			0	AIC Loop Back Function is	Disabled.	
			1	AIC Loop Back Function is	Enabled.	
1	ERPL	Enable	Playing Back	function. This bit is used to o	disable or enable the	RW
		audio s	sample data tra	ansmitting.		
			ERPL	Descriptio	n	
			0	AIC Playing Back Function	n is Disabled.	
			1	AIC Playing Back Function	on is Enabled.	
0	EREC	Enable	Recording Fu	nction. This bit is used to dis	able or enable the	RW
		audio s	sample data re	ceiving.	7 0,	
			EREC	Descriptio	n 1500	
			0	AIC Recording Function i	s Disabled.	
			1	AIC Recording Function i	s Enabled.	

11.2.3 AIC AC-link Control Register 1 (ACCR1)

ACCR1 contains bits to reflect/control valid incoming/outgoing slots of AC97. It is used only in AC-link format.

Bits	Name		Description		RW								
31:26	Reserved	Writing has no effect	ng has no effect, read as zero.										
25:16	RS	Receive Valid Slots.	These bits are used to indicate which in	ncoming slots	RW								
		are valid. Slot 3 is ma	apped to bit 16 or RS[0], slot 4 to bit 17	or RS[1] and									
		so on. When write to	this field, a bit 1 means we expect a PC	M data in the									
		corresponding slot, a	a bit 0 means the corresponding slot PC	M data will be									
		discarded. When rea	ad from this field, a bit 1 means we recei	ive an									
		expected valid PCM	data in the corresponding slot. This field	d should be									
		written before record	en before record started.										
		RS[n] Value	Description										

		0		Slot n+3 is invalid.		
		1		Slot n+3 has valid PCM data.		
15:10	Reserved	Writing h	as no effect	, read as zero.		R
9:0	XS	Transmit	Valid Slots.	These bits making up slots map to the	valid bits in	RW
		the AC'9	7 tag (slot 0	on SDATA_OUT) and indicate which o	utgoing slots	
		have vali	d PCM data	. Bit 0 or XS[0] maps to slot 3, bit 1 or X	(S[1] to slot 4	
		and so or	n. Setting th	e corresponding bit indicates to AIC to t	ake an audio	
		sample fr	om transmi	t FIFO to fill the respective slot. And it ir	ndicates to	
		the COD	EC that valid	d PCM data will be in the respective slot	. The number	
		of valid b	its will desig	nate how many words will be pulled ou	t of the FIFO	
		per audic	frame. This	s field should be written before record a	nd replay	
		started.				
		XS	S[n] Value	Description		
		0		Slot n+3 is invalid.	1	
		1		Slot n+3 has valid PCM data.	273	
					9 0,	
11 2 1	AIC AC.lin	k Contro	l Pogistor	2 (ACCR2)	, ~	
1.2.4	AIC AC-IIII	K COIILIO	i ivedisiei	Z (ACCNZ)		

11.2.4 AIC AC-link Control Register 2 (ACCR2)

ACCR2 contains bits to control interrupt enable, output/input sample size, and alternative control of RESET#, SYNC and SDATA_OUT pins in AC-link. It is valid only in AC-link format.

ACCR2 0x1002000C Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ECADT SS SA Reserved Reserved

	() ×	ı				1 1							
Bits	Name		Description										
31:19	Reserved	Writing	/riting has no effect, read as zero.										
18	ERSTO	Enable	Enable RSTO Interrupt. This bit is used to control the RSTO interrupt										
		enable	enable or disable.										
			ERSTO RSTO Interrupt										
			0	Disabled.									
			1	Enabled.									
17	ESADR	Enable	SADR Interru	upt. This bit is used to control	the SADR interrupt	RW							
		enable	or disable.										
			ESADR	SADR Interrupt									
			0	Disabled.									
			1	Enabled.									
16	ECADT	Enable	Enable CADT Interrupt. This bit is used to control the CADT interrupt										
		enable	nable or disable.										

			ECA	DT	CADT Interrupt		
			0		Disabled.		
			1		Enabled.		
15:4	Reserved	Writir	ng has no	effect,	read as zero.		R
3	SO	SDAT	ra_out d	output	value. When SA is 1, this bit	controls SDATA_OUT	RW
		pin vo	oltage leve	el, 0 fo	r low, 1 for high; otherwise, i	t is ignored.	
2	SR	RESE	ET# pin le	vel. W	hen AC-link is selected, this	bit is used to drive the	RW
		RESE	ET# pin.				
			SF	₹	RESET# Pin Voltage Lev	rel	
			0		High.		
			1		Low.		
1	SS	SYNO	C value. V	Vhen th	nis bit is read, it returns the a	actual value of SYNC.	RW
		Wher	SA is 1,	write v	ralue controls SYNC pin valu	ie. When SA is 0, write	
		to it is	s ignored.			4.41	
0	SA	SYNO	C and SD/	ATA_C	OUT Alternation. This bit is us	sed to determine the	RW
		drive	n signal of	f SYNC	C and SDATA_OUT. When S	SA is 0, SYNC and	
			_	•	Iriven AIC function logic; oth	112	
			-		and SDATA_OUT is controlled	ed by the SO. The true	
		table	of SYNC	is des	cribed in following.		
			SA	SS	Descri	iption	
				0	When read, indicated S	SYNC is 0.	
			0		When write, not effect.		
			•	36	When read, indicated S	SYNC is 1.	
			10)		When write, not effect.		
		c &	e,	0	When read, indicated S	SYNC is 0.	
		11	1		When write, SYNC is d	riven to 0.	
	ong e) [1	1	When read, indicated S	SYNC is 1.	
1	Olio			1	When write, SYNC is d	riven to 1.	

11.2.5 AIC I2S/MSB-justified Control Register (I2SCR)

I2SCR contains bits to control BIT_CLK stop, audio sample size, I2S or MSB-justified selection in I2S/MSB-justified. It is valid only in I2S/MSB-justified format.

Bits	Name		Description	RW							
31:18	Reserved	Writing has no effect, read as zero.									
17	RFIRST	Send R channel fire	st in stereo mode. This bit should only be set in 2	RW							
		channels configura	tion. The frame is LR like or RL like. It takes effective								
		immediately when t	he bit is changed.								
		Change this before	replay started.								
		RFIRST	Description								
		0	Send L channel first. (LR)								
		1	Send R channel first. (RL)								
16	SWLH	Switch LR channel	in 16bit-packed stereo mode.	RW							
		This bit control whe	ther the low address data is L or R. This bit should								
		only be set in 2 cha	nnels configuration and 16bit-packed mode. That								
		means it can only v	alid with packed mode (PACK16 =1) and 2 channels								
		(CHANNEL=0x1).									
		It takes effective im	mediately when the bit is changed. Change this before								
		replay started.	7 OII								
		SWLH	Description								
		0	16 bit LSB and 16bit MSB is								
			not switched.								
		1	16 bit LSB and 16bit MSB is								
			switched.								
15:12	Reserved	Writing has no effect	ct, read as zero.	R							
13	ISTPBK	Stop IBIT_CLKIt is	used to stop the IBIT_CLK in I2S/MSB-justified	RW							
		format. When AC-li	nk is selected, all of its operations are ignored.								
		STPBK	Description								
		0	IBIT_CLK is not stopped.								
	-0	1	IBIT_CLK is stopped.								
1	OUS										
)		Please set this bit to	o 1 to stop IBIT_CLK when change AICFR.AUSEL								
		and AICFR.IBCKD.									
12	STPBK	Stop BIT_CLK. It is	used to stop the BIT_CLK in I2S/MSB-justified format.	RW							
		When AC-link is se	lected, all of its operations are ignored.								
		STPBK	Description								
		0	BIT_CLK is not stopped.								
		1	BIT_CLK is stopped.								
		Please set this bit to	o 1 to stop BIT_CLK when change AICFR.AUSEL and								
		AICFR.BCKD.									
11:5	Reserved	Writing has no effect	ct, read as zero.	R							
4	ESCLK	Enable SYSCLK ou	tput. When this bit is 1, the SYSCLK outputs to chip	RW							
		outside is enabled.	Else, the clock is disabled.								
3:1	Reserved	Writing has no effect	ct, read as zero.	R							

0	AMSL	Specify	Alternate Mo	de (I2S or MSB-Justified) Operation.	RW
			AMSL	Description	
			0	Select I2S Operation Mode.	
			1	Select MSB-Justified Operation Mode.	

11.2.6 AIC Controller FIFO Status Register (AICSR)

AICSR contains bits to reflect FIFOs status. Most of the bits are read-only except two, which can be written a 0.

	AIC	SR																											0 x	100	200	14
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Devaged	>			RI	FL.						R	lese	erve	d						TF	FL			Reserved	ROR	TUR	RFS	TFS	Res	serv	ed
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name				Description \(\frac{1}{2} \)	RW							
31:30	Reserved	Writin	ng has no	effect, re	ead as zero.	R							
29:24	RFL	Recei	ive FIFO I	_evel. Th	ne bits indicate the amount of valid PCM data in	R							
		Recei	iv <u>e FIFO.</u>		1111								
			RFL '	Value	Description								
			0x00 ~	0x20	RFL valid PCM data in receive FIFO.								
			0x21 ~	0x3F	Reserved.								
23:14	Reserved	Writin	ing has no effect, read as zero.										
13:8	TFL	Trans	smit FIFO Level. The bits indicate the amount of valid PCM data in										
	-0	Trans	smit FIFO.										
1	OUS		TFL Value Description										
			0x00 ~ 0x20 TFL valid PCM data in transmit FIFO.										
			0x21 ~	0x3F	Reserved.								
7	Reserved	Writin	g has no	effect, re	ead as zero.	R							
6	ROR	Recei	ive FIFO	Over Ru	n. This bit indicates that receive FIFO has or has	RW							
		not ex	xperience	d an ove	errun.								
			ROR		Description								
		0		When	read, indicates over-run has not been found.								
				When	write, clear itself.								
				When	read, indicates data has even been written to								
		1	full receive FIFO.										
				When	write, not effects.								
5	TUR	Trans	mit FIFO	Under R	un. This bit indicates that transmit FIFO has or has	RW							
		not ex	xperience	d an und	der-run.								
			TUR Description										

		,	When read, indicates under-run has not been found.	
		1	When write, clear itself.	
		1	When read, indicates data has even been read from	
	1		empty transmit FIFO.	
		,	When write, not effects.	
RFS	Receiv	e FIFO Se	ervice Request. This bit indicates that receive FIFO level	R
	is or no	ot below re	eceive FIFO threshold, which is controlled by	
	AICFR	.RFTH. W	/hen RFS is 1, it may trigger interrupt or DMA request	
	depend	ds on the i	interrupt enable and DMA setting.	
		RFS	Description	
		0	Receive FIFO level below RFL threshold.	
		1	Receive FIFO level at or above RFL threshold.	
TFS	Transn	nit FIFO S	ervice Request. This bit indicates that transmit FIFO level	R
	is belo	w Transm	it FIFO threshold, which is controlled by AICFR.TFTH.	(
	When	TFS is 1, i	it may trigger interrupt or DMA request depends on the	3
	interru	pt enable	and DMA setting.	
		TFS	Description	
		0	Transmit FIFO level exceeds TFL threshold.	
		1	Transmit FIFO level at or below TFL threshold.	
Reserved	Writing	has no e	ffect, read as zero.	R
	TFS	RFS Receive is or not AICFR dependent. TFS Transmis below When interrupts.	RFS Receive FIFO So is or not below re AICFR.RFTH. We depends on the RFS 0 1 TFS Transmit FIFO So is below Transmom When TFS is 1, interrupt enable TFS 0 1	When write, clear itself. When read, indicates data has even been read from empty transmit FIFO. When write, not effects. RES Receive FIFO Service Request. This bit indicates that receive FIFO level is or not below receive FIFO threshold, which is controlled by AICFR.RFTH. When RFS is 1, it may trigger interrupt or DMA request depends on the interrupt enable and DMA setting. RFS Description 0 Receive FIFO level below RFL threshold. 1 Receive FIFO level at or above RFL threshold. Transmit FIFO Service Request. This bit indicates that transmit FIFO level is below Transmit FIFO threshold, which is controlled by AICFR.TFTH. When TFS is 1, it may trigger interrupt or DMA request depends on the interrupt enable and DMA setting. TFS Description 0 Transmit FIFO level exceeds TFL threshold. 1 Transmit FIFO level at or below TFL threshold.

11.2.7 AIC AC-link Status Register (ACSR)

ACSR contains bits to reflect the status of the connected external CODEC in AC-link format. Bits in this register are read-only in general, except some of them can be written a 0.

	AC	SR		റ്	6	,1	. >																						0x	100	200	018
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				R	ese	erve	ed				SLTERR	CRDY	CLPM	RSTO	SADR	CADT							R	lese	erve	d						
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:22	Reserved	Writing has no effect, read as zero.	R
21	SLTERR	Hardware detects a Slot Error. This bit indicates an error in SLOTREQ bits	RW
		on incoming data from external CODEC is detected. The error can be: (1)	
		find 1 in a SLOTREQ bit, which corresponding to an inactive slot; (2) all	
		active slots should be request in the same time by SLOTREQ, but an	
		exception is found. All errors are accumulated to ACSR.SLTERR by	
		hardware until software clears it. Software writes 0 clear this bit and write	
		1 has no effect.	

20	CRDY	Extern	al CODEC R	leady. This bit is derived from the CODEC Ready bit of	R								
		Slot 0	in SDATA_IN	N, and it indicates the external AC97 CODEC is ready									
		or not.											
			CRDY	Description									
			0	CODEC is not ready.									
			1	CODEC is ready.									
19	CLPM	Extern	al CODEC L	ow Power Mode. This bit indicates the external	R								
		CODE	C is switched	d to low power mode or BIT_CLK is active from									
		CODE	C after wake	up.									
			CLPM	Description									
			0	BIT_CLK is active.									
			1	CODEC is switched to low power mode.									
18	RSTO	Extern	al CODEC R	Registers Read Status Time Out. This bit indicates that	RW								
		the rea	ad status time	e out is detected or not. It is set to 1 if the data not									
		return	in 4 frames a	after a CODEC registers read command issued.									
			RSTO	Description									
			0	When read, indicates time out has not occurred.									
		·	1 When read, indicates read status time out found.										
		Write (rite 0 clear this bit and write 1 is ignored. When RSTO is 1, it may										
		trigger	rigger an interrupt depends on the interrupt enable setting.										
17	SADR	Extern	al CODEC R	Registers Status Address and Data Received. This bit	RW								
		indicat	es that addre	ess and data of an external AC '97 CODEC register									
		has or	has not bee	n received.									
			SADR	Description									
		c & (6	When read, indicates no register address/data									
	0	11		received.									
	200	Ľ	1	When read, indicates address/data received.									
1	Oligi	Write (3 clear this bi	it and write 1 is ignored. When SADR is 1, it may									
				depends on the interrupt enable setting.									
16	CADT	Comm	and Address	and Data Transmitted. This bit indicates that a	RW								
		CODE	.C register rea	ading/writing command transmission has completed or									
		not.											
			CADT	Description									
		<u>-</u>		When read, indicates the command has not done.									
		<u> </u>		When read, indicates the command has done.									
				it and write 1 is ignored. When CADT is 1, it may									
		trigger	an interrupt	depends on the interrupt enable setting.									
15:0	Reserved	Writing	j has no effe	ct, read as zero.	R								

11.2.8 AIC I2S/MSB-justified Status Register (I2SSR)

I2SSR is used to reflect AIC status in I2S/MSB-justified. It is a read-only register.

Bits	Name		Description							
31:3	Reserved	Writing has	no effect, read as zero.	R						
5	CHBSY	AIC Transr	nitter busy in I2S/MSB-justified format.(Multi-channel status)	R						
		CHBSY	Description							
		0	AIC Transmitter part is idle or disabled.							
		1	AIC Transmitter part currently is transmitting or receiving a							
			frame.							
4	TBSY	AIC Transr	nitter busy in I2S/MSB-justified format.	R						
		TBSY	Description							
		0	AIC Transmitter part is idle or disabled.							
		1	AIC Transmitter part currently is transmitting or receiving a							
			frame:							
3	RBSY	AIC Receiv	ver busy in I2S/MSB-justified format.	R						
		RBSY	Description							
		0	AIC Receiver part is idle or disabled.							
	9 6	1	AIC Receiver part currently is transmitting or receiving a							
1	ons		frame.							
2	BSY	AIC busy ir	n I2S/MSB-justified format.	R						
		BSY	Description							
		0	AIC controller is idle or disabled.							
		1	AIC controller currently is transmitting or receiving a frame.							
1:0	Reserved	Writing has	no effect, read as zero.	R						

11.2.9 AIC AC97 CODEC Command Address & Data Register (ACCAR, ACCDR)

ACCAR and ACCDR are used to hold register address and data for external AC-link CODEC register read/write operation through SDATA_OUT. The format of ACCAR.CAR and ACCDR.CDR is compliant with AC'97 Component Specification 2.3 where ACCAR.CAR[19] of "1" specifies CODEC register read operation, of "0" specifies CODEC register write operation. The write access to ACCAR and ACCDR signals AIC to issue this operation. Please reference to 11.4.4 for software flow. These registers are valid only in AC-link. It is ignored in I2S/MSB-justified format.

Bits	Name	Description	RW
31:20	Reserved	Writing has no effect, read as zero.	R
19:0	CAR	Command Address Register. This is used to hold 20-bit AC '97 CODEC	RW
		register address transmitted in SDATA_OUT slot 1. After this field is	
		write, it should not be write again until the operation is finished.	

	ACCDR																					0x	100	200)24						
Bit	31	30	29	28	27	26	25 2	4 2	3 22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved													CI	DR	J.	36	6	·	2,											
PST	Λ	Λ	Λ	Λ	0	Λ	0	١ (<u> </u>	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	0

Bits	Name	Description	RW
31:20	Reserved	Writing has no effect, read as zero.	R
19:0	CDR	Command Data Register. This is used to hold 20-bit AC'97 CODEC	RW
		register data transmitted in SDATA_OUT slot 2. After this field is write, it	
		should not be write again until the operation is finished.	

11.2.10 AIC AC97 CODEC Status Address & Data Register (ACSAR, ACSDR)

ACSAR and ACSDR are used to receive the external AC-link CODEC registers address and data from SDATA_IN. When AIC receives CODEC register status from SDATA_IN, it set ACSR.SADR bit and put the address and data to ACSAR.SAR and ACSDR.SDR. Please reference to 11.4.4 for software flow. These registers are valid only in AC-link format and are ignored in I2S/MSB-justified format.

	AC	SAR																											0 x	100	200)28
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved																SA	AR														
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:20	Reserved	Writing has no effect, read as zero.	R

19:0	SAR	CODEC Status Address Register. This is used to receive 20-bit AC '97	R
		CODEC status address from SDATA_IN slot 1. Which reflect the register	
		index for which data is being returned. The write operation is ignored.	

Bits	Name	Description	RW
31:20	Reserved	Writing has no effect, read as zero.	R
19:0	SDR	CODEC Status Data Register. This is used to receive 20-bit AC '97	R
		CODEC status data from SDATA_IN slot 2. The register data of external	
		CODEC is returned. The write operation is ignored.	

11.2.11 AIC I2S/MSB-justified Clock Divider Register (I2SDIV)

12SDIV is used to set clock divider to generated BIT_CLK from SYS_CLK in I2S/MSB-justified format.

Bits	Name	Description	RW
31:12	Reserved	Writing has no effect, read as zero.	R
11:8	IDV	Audio IBIT_CLK clock divider value minus 1. I2SDIV.IDV is used to control the generating of IBIT_CLK from dividing SYS_CLK. The dividing value should be even and I2SDIV.IDV should be set to the dividing value minus 1. So I2SDIV.IDV bit0 is fixed to 1. IBIT_CLK frequency is fixed to 64 f_S in AIC, where f_S is the audio sample frequency. I2SDIV.IDV depends on SYS_CLK frequency f_{SYS_CLK} , which is selected according to external CODEC's requirement and internal PLL frequency. Please reference to 1.4.10 Serial Audio Clocks and Sampling Frequencies for further description.	RW
7:4	Reserved	Writing has no effect, read as zero.	R
3:0	DV	Audio BIT_CLK clock divider value minus 1. I2SDIV.DV is used to control the generating of BIT_CLK from dividing SYS_CLK. The dividing value	RW

should be even and I2SDIV.DV should be set to the dividing value minus

1. So I2SDIV.DV bit0 is fixed to 1. BIT_CLK frequency is fixed to 64 f_S in
AIC, where f_S is the audio sample frequency. I2SDIV.DV depends on
SYS_CLK frequency f_{SYS_CLK}, which is selected according to external
CODEC's requirement and internal PLL frequency. Please reference to
1.4.10 Serial Audio Clocks and Sampling Frequencies for further
description.

11.2.12 AIC FIFO Data Port Register (AICDR)

AICDR is act as data input port to transmit FIFO when write and data output port from receive FIFO when read, one audio sample every time. The FIFO width is 24 bits. Audio sample with size N that is less than 24 is located in LSB N-bits. The sample size is specified by ACCR2.OASS and ACCR2.IASS in AC-link, and by I2SCR.WL in I2S/MSB-justified. The sample order is specified by ACCR1.XS and ACCR1.RS in AC-link. In I2S/MSB-justified, the left channel sample is prior to the right channel sample.

Care should be taken to monitor the status register to insure that there is room for data in the FIFO when executing a program read or write transaction. This is taken care automatically in DMA.

Bits	Name	Description	RW
31:24	Reserved	Writing has no effect, read as zero.	R
23:0	DATA	FIFO port. When write to it, data is push to the transmit FIFO. When read	RW
		from it, data is pop from the receiving FIFO.	

11.2.13 SPDIF Enable Register (SPENA)

The register SPENA is used to trigger SPDIF transmitter to work.

Bits	Name	Description	RW
7:1	Reserved	Writing has no effect, read as zero.	R
0	SPEN	Enable / disable the SPDIF transmitter.	RW
		0: SPDIF transmitter is disabled	
		1: SPDIF transmitter is enabled	

11.2.14 SPDIF Control Register (SPCTRL)

The register SPCTRL is used to control SPDIF to work.

SPCTRL	0x10020084
Bit	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	DMA_EN D_TYPE SIGN_N INVALID SFT_RST SPDIF_I2S M_TRIG M_FFUR
RST	0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Bits	Name	Description								
15	DMA_EN	DMA transmitter enable bit.								
		0: DMA transmitter disable								
		1: DMA transmitter enable								
14	D_TYPE	If the bit number of data is less tha	n16, the data in memory is as	RW						
		follows								
		0:0								
	-15	XXXXXXXXXXXXXXXX	Data 0							
	00	XXXXXXXXXXXXXXX	Data 1							
1	Olip	1:								
)		Data 1	Data 1 Data 0							
		Data 3 Data 2								
13	SIGN_N	Signed to unsigned or not. If it is 1	, the incoming and outgoing audio	RW						
		sample data will be transferred by	toggle its most significant bit.							
		0: Not transfer								
		1: Do transfer								
12	INVALID	Data invalid bit. The data transmitt	ed on SPDIF is valid or not.	RW						
		0: Valid								
		1: Invalid								
11	SFT_RST	SPDIF FIFO software-reset. Set it	to 1 and later it will be cleared by	RW						
		hardware auto. When SFT_RST re	hardware auto. When SFT_RST returns back to 0, the FIFO finish							
		reset.								
		0: Stop reset								
		1: Start reset								

10	SPDIF_I2S	Choose SPDIF or I2S.	
		0: I2S	
		1: SPDIF	
9:2	Reserved	Writing has no effect, read as zero.	R
1	M_TRIG	Trigger interrupt mask.	RW
		0: Enabled	
		1: Masked	
0	M_FFUR	FIFO underrun interrupt mask.	RW
		0: Enabled	
		1: Masked	

11.2.15 SPDIF State Register (SPSTATE)

The register SPSTATE is used to keep the state of SPDIF.

Bits	Name	Description	RW
15	Reserved	Writing has no effect, read as zero.	R
14:8	FIFO_LVL	FIFO level. The bits indicate the amount of valid data in FIFO.	R
7	BUSY	SPDIF busy bit.	R
1	OUS	0: SPDIF is not working	
		1: SPDIF is working	
6:2	Reserved	Writing has no effect, read as zero.	R
1	F_TRIG	Trigger flag.	R
		0: Not active	
		1: Active	
0	F_FFUR	FIFO underrun flag.	RW
		0: Not active	
		1: Active	

11.2.16 SPDIF Configure 1 Register (SPCFG1)

The register SPCFG1 is used to configure SPDIF.

Bits	Name		Description F								
31:18	Reserved	Writii	Vriting has no effect, read as zero.								
17	INIT_LVL	Initia	nitial level set bit.								
		0: SF	: SPDIF initial level is low								
		1: SF	PDIF initial leve	el is high							
16	ZRO_VLD	The	valid bit of cha	nnel state is 0 or 1 when play ZERO sample unde	r RW						
		FIFO	underflow.								
		0: Va	ılid	or n.o.							
		1: Inv	/alid	· nter							
15:14	Reserved	Writi	ng has no effe	ct, read as zero.	R						
13:12	TRIG	Spec	ify the trigger	value of FIFO.	RW						
			TRIG	Description							
		1	00	Trigger Value is 4.							
	C	93	O1 Trigger Value is 8.								
	01)		10	Trigger Value is 16.							
	20		11	Trigger Value is 32.							
11:8	SRC_NUM	Sour	ce number.		RW						
		0000	:Unspecified								
		0001	~1111:1~15								
7:4	CH1_NUM	Char	nnel 1 number		RW						
		0000	:Unspecified								
		0001	~1111:A~O								
3:0	CH2_NUM	Char	nnel 2 number		RW						
		0000	:Unspecified								
		0001	~1111:A~O								

11.2.17 SPDIF Configure 2 Register (SPCFG2)

The register SPCFG2 is used to configure SPDIF.

	SP	CFC	32																										0x1	002	2009	90
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Poynosod	>		F	S		OF	RG_	_FR	<u>Q</u>		SAMPL_WL		MAX_WL	7	CEN_ACC			CA	π_0	COL	DΕ			CM		pozuosog	>	PRE	COPY_N	AUDIO_N	CON_PRO
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:30	Reserved	Writing has no effect, read as zero.	R
29:26	FS	Sampling frequency.	RW
		0000:44.1kHz	
		0010:48kHz	
		0011:32kHz	
		1010:96kHz	
		1110:192kHz	
		Sampling frequency. 0000:44.1kHz 0010:48kHz 0011:32kHz 1010:96kHz 1110:192kHz Others: Reference IEC60958-3	
25:22	ORG_FRQ	Original sampling frequency.	RW
		1111:44.1kHz	
		1101:48kHz	
		1100:3 <mark>2kHz</mark>	
	C	0101:96kHz	
		0001:192kHz	
		Others: Reference IEC60958-3	
21:19	SAMPL_WL	Sample word length.	RW
		When MAX_WL=1:	
		001:20 bit	
		110:21 bit	
		010:22 bit	
		100:23 bit	
		101:24 bit	
		Others: reserved	
		When MAX_WL=0:	
		001:16 bit	
		110:17 bit	
		010:18 bit	
		100:19 bit	
		101:20 bit	
		Others: reserved	

18	MAX_WL	Maximum audio sample word length.	RW
10	IVIAX_VVL	0:20 bit; 1:24 bit.	1700
17:16	CLK ACU		RW
17.16	CLK_ACU	Clock Accuracy of transmitted clock.	KVV
		00: Level II	
		01: Level I	
		10: Level III	
		11: Interface frame rate not matched to sampling frequency	
15:8	CAT_CODE	Category code.	RW
		Reference IEC60958-3 for full details.	
		00 indicates "general" mode.	
7:6	CH_MD	Channel mode choose bit.	RW
		00: Mode 0	
		01~11: Reserved	
5:4	Reserved	Writing has no effect, read as zero.	R
3	PRE	Pre-emphasis set bit.	RW
		0: None	
		Pre-emphasis set bit. 0: None 1: 15us/15us	
2	COPY_N	Convright cot hit	RW
		0: Copyright is asserted 1: Copyright is not asserted	
		1: Copyright is not asserted	
1	AUDIO_N	Linear PCM identification bit	RW
		0: Audio sample word represents linear PCM samples	
		1: Audio sample word used for other purpose	
0	CON_PRO	Consumer mode and professional mode choose bit.	RW
		0: Consumer mode	
	. 8	1: Professional mode	
	e_{1}	Professional is not supported in the chip.	
		<u> </u>	

11.2.18 SPDIF FIFO Register (SPFIFO)

The register SPCFG1 is used to configure SPDIF.

Bits	Name	Description	RW
31:24	Reserved	Writing has no effect, read as zero.	R
23:0	DATA	FIFO port. When write to it, data is push to the transmit FIFO. Read from it as 0.	W

11.3 Serial Interface Protocol

11.3.1 AC-link serial data format

Following figures are AC-link serial data format. Audio data is MSB adjusted, regardless of 8, 16, 18, 20, 24 bits sample size. When a 24-bits sample is transmitted, the LSB 4-bits are truncated. When try to record 24-bits sample, 4-bits of 0 are appended in LSB. Please reference to "AC '97 Component Specification Revision 2.3, 2002", provided by Intel Corporation, for details of AC '97 architecture and AC-link specification.

Figure 11-4 AC-link audio frame format

Figure 11-6 AC-link data phases, slot 1 ~ slot 12 format

11.3.2 I2S and MSB-justified serial audio format

Normal I2S and MSB-justified are similar protocols for digitized stereo audio transmitted over a serial path.

The BIT_CLK supplies the serial audio bit rate, the basis for the external CODEC bit-sampling logic. Its frequency is 64 times the audio sampling frequency. Divided by 64, the resulting 8 kHz to 48 kHz or even higher signal signifies timing for left and right serial data samples passing on the serial data paths. This left/right signal is sent to the CODEC on the SYNC pin. Each phase of the left/right signal is accompanied by one serial audio data sample on the data pins SDATA_IN and SDATA_OUT.

Figure 11-7 I2S data format (A: LR mode)

In the A: LR mode, first send the left channel in a stereo frame. One Left slot and one Right slot make a sample frame. It is the normal mode of I2S.

Figure 11-8 I2S data format (B: RL mode)

In the B: RL mode, first send the right channel in a stereo frame. One Right slot and one Left slot make a sample frame. It is used in same CODEC.

Figure 11-9 MSB-justified data format (C: LR mode)

In the C: LR mode, first send the left channel in a stereo frame. One Left slot and one Right slot make a sample frame. It is the normal mode in MSB-justified.

In the D: RL mode, first send the right channel in a stereo frame. One Right slot and one Left slot make a sample frame.

Figure 11-7 and Figure 11-9 provide timing diagrams that show formats for the normal I2S and MSB-justified modes of operations. Data is sampled on the rising edge of the BIT CLK and data is sent out on the falling edge of the BIT CLK.

Data is transmitted and received in frames of 64 BIT CLK cycles(If BIT CLK is generated internally). Each frame consists of a left sample and a right sample. Each sample holds 8, 16, 18, 20 or 24 bits of valid data. The LSB other bits of each sample is padded with zeroes.

In the normal I2S mode, the SYNC is low for the left sample and high for the right sample. Also, the MSB of each data sample lags behind the SYNC edges by one BIT_CLK cycle.

In the MSB-justified mode, the SYNC is high for the left sample and low for the right sample. Also, the MSB of each data sample is aligned with the SYNC edges.

When use with the internal CODEC, the BIT_CLK and SYNC signals also with O_BIT_CLK and O_SYNC signals are provided by the internal CODEC from the SYSCLK, which is enabled by I2SCR.ESCLK and configured to 12MHz clock using CPM.

Ions eiffel@126.com internal used only

11.3.3 Audio sample data placement in SDATA_IN/SDATA_OUT

The placement of audio sample in incoming/outgoing serial data stream for all formats support in AIC is MSB (Most Significant Bit) justified. Suppose n bit sample composed by

Table 11-3 described the how sample data bits are transferred.

Table 11-3 Sample data bit relate to SDATA_IN/SDATA_OUT bit

	,	AC-link	Format				I2S/M	SB-Just	ified Fo	rmat	
SDATA		Audio S	Sample	Size (bit	:)	SDATA					
IN/OUT	8	16	18	20	24	IN/OUT	8	16	18	20	24
B19	S7	S15	S17	S19	S23	B31	S7	S15	S17	S19	S23
B18	S6	S14	S16	S18	S22	B30	S6	S14	S16	S18	S22
B17	S5	S13	S15	S17	S21	B29	S5	S13	S15	S17	S 21
B16	S4	S12	S14	S16	S20	B28	S4	S12	S14	S16	S20
B15	S3	S11	S13	S15	S19	B27	S3	S11	S13	S15	S19
B14	S2	S10	S12	S14	S18	B26	S2	\$10 ^{\\}	S12	S14	S18
B13	S1	S9	S11	S13	S17	B25	S1	S 9	S11	S13	S17
B12	S0	S8	S10	S12	S16	B24 ×	S0	S8	S10	S12	S16
B11	0	S7	S9	S11	S15	B23	0	S7	S9	S11	S15
B10	0	S6	S8	S10	S14	B22	0	S6	S8	S10	S14
B9	0	S5	S7	S9 (S13	B21	0	S5	S7	S9	S13
B8	0	S4	S6 (S8	S12	B20	0	S4	S6	S8	S12
B7	0	S3	S5	S7	S11	B19	0	S3	S5	S7	S11
B6	0	S2	S4	S6	S10	B18	0	S2	S4	S6	S10
B5	0 💍	S 1	S3	S5	S9	B17	0	S1	S3	S5	S9
B4 🔨 (0	S0	S2	S4	S8	B16	0	S0	S2	S4	S8
B3	0	0	S1	S3	S7	B15	0	0	S1	S3	S7
B2	0	0	S0	S2	S6	B14	0	0	S0	S2	S6
B1	0	0	0	S1	S5	B13	0	0	0	S1	S5
В0	0	0	0	S0	S4	B12	0	0	0	S0	S4
						B11	0	0	0	0	S3
						B10	0	0	0	0	S2
						B9	0	0	0	0	S1
						B8	0	0	0	0	S0
						B7~	0	0	0	0	0
						В0					

If in 16 bits packed mode, the data transferred is the same as the 16 bits normal mode as shown above. But there are two samples in one word.

11.3.4 SPDIF Protocol

SPDIF block format is shown below:

Figure 11-11 Block format

Sub-frame format in PCM mode is shown below:

Figure 11-12 Sub-frame format in PCM mode

Sub-frame format in non-PCM mode is shown below:

Figure 11-13 Sub-frame format in non-PCM mode

11.4 AC97/I2S Operation

The AIC can be accessed either by the processor using programmed I/O instructions or by the DMA controller. The processor uses programmed I/O instructions to access the AIC and can access the following types of data.

- The AIC memory mapped registers data—All registers are 32 bits wide and are aligned to word boundaries.
- AIC controller FIFO data—An entry is placed into the transmit FIFO by writing to the I2S controller's Serial Audio Data register (AICDR). Writing to AICDR updates a transmit FIFO entry. Reading AICDR flushes out a receive FIFO entry.
- The external CODEC registers for I2S CODEC—CODEC registers can be accessed through the L3 bus. The L3 bus operation is emulated by software controlling three GPIO pins.
- The external CODEC registers for AC97 CODEC—An AC97 audio CODEC can contain up
 to sixty-four 16-bit registers. A CODEC uses a 16-bit address boundary for registers. The AIC
 supplies access to the CODEC registers through several registers.
- The internal CODEC registers can be accessed via memory-mapped registers in the CODEC.

The DMA controller can only access the FIFOs. Accesses are made through the data registers, as explained in the previous paragraph. The DMA controller responds to the following DMA requests made by the I2S controller:

- The transmit FIFO request is based on the transmit trigger-threshold (AICFR.TFTH) setting.
 See 11.2.1 for further details regarding AICFR.TFTH.
- The receive FIFO request is based on the receive trigger-threshold (AICFR.RFTH) setting.
 See 11.2.1 for further details regarding AICFR.RFTH.

Before operation to AIC, you may need to set proper PIN function selection from GPIO using if the pin is shared with GPIO.

Please also reference to "AC '97 Component Specification Revision 2.3, 2002" when deal with AIC AC-link operations.

11.4.1 Initialization

At power-on or other hardware reset (WDT and etc), AIC is disabled. Software must initiate AIC and the internal or external CODEC after power-on or reset. If errors found in data transferring, or in other places, software must initial AIC and optional, the internal or external CODEC. Here is the initial flow.

- 1 Select internal or external CODEC (AICFR.ICDC).
- 2 If external CODEC is selected, select AC-link or I2S/MSB-Justified (AICFR.AUSEL). If internal CODEC is used, select I2S/MSB-Justified format (AICFR.AUSEL=1). If the resettlement without involving link format and architecture changing, this step can be skip.
- 3 If I2S/MSB-Justified is selected, select between I2S and MSB-Justified (I2SCR.AMSL).

- 4 Decide BIT CLK direction (AICFR.BCKD) and SYNC direction (AICFR.SYNCD).
- If BIT CLK is configured as output, BIT CLK divider I2SDIV.DV must be set to what correspond with the values as shown in Table 11-7. And the clock selection and the divider between PLL clock out and AIC also must be set (CFCR.I2S and I2SCDR in CPM). If internal CODEC is used, select 12MHz clock input (via set proper value in CFCR.I2S and I2SCDR), format (I2SCR.AMSL=0), input BIT CLK (AICFR.BCKD=0), input SYNC (AICFR.SYNCD=0).
- Enable AIC by write 1 to AICFR.ENB.
- If it needs to reset AIC registers and flush FIFOs, write 1 to AICFR.RST. If it need only flush FIFOs, write 1 to AICCR.FLUSH. BIT_CLK must exist here and after.
- In AC-link format, issue a warm or cold CODEC reset.
- In AC-link format, configure AC '97 CODEC via ACCAR and ACCDR registers. If the resettlement doesn't involving AC'97 CODEC registers changing, this step can be skipped.
- 10 In case of external CODEC with I2S/MSB-Justified format, configure I2S/MSB-justified CODEC via the control bus connected to the CODEC, for instance I2C or L3, depends on CODEC. In case of internal CODEC, configure CODEC via CODEC's memory mapped registers. If the resettlement without involving I2S/MSB-justified CODEC or ADC/DAC function changing, this step can be skip. ternal

11.4.2 AC '97 CODEC Power Down

AC '97 CODEC can be placed in a low power mode. When the CODEC's power-down register (26h), is programmed to the appropriate value, the CODEC will be put in a low power mode and both BIT_CLK and SDATA_IN will be brought to and held at a logic low voltage level.

Once powered down, re-activation of the AC-link via re-assertion of the SYNC signal must not occur for a minimum of four audio frame times following the frame in which the power down was triggered. When AC-link powers up it indicates readiness via the CODEC Ready bit (input slot 0, bit 15).

11.4.3 Cold and Warm AC '97 CODEC Reset

AC-link reset operations occur when the system is initially powered up, when resuming from a lower powered sleep state, and in response to critical subsystem failures that can only be recovered from with a reset.

11.4.3.1 Cold AC '97 CODEC Reset

A cold reset is achieved by asserting RESET# for the minimum specified time. By driving RESET# low, BIT CLK, and SDATA IN will be activated, or re-activated as the case may be, and all AC '97 CODEC registers will be initialized to their default power on reset values.

RESET# is an asynchronous AC '97 CODEC input.

Figure 11-14 Cold AC '97 CODEC Reset Timing

Table 11-4 Cold AC '97 CODEC Reset Timing parameters

Parameter	Symbol	Min	Туре	Max	Units
RESET# active low pulse width	T _{rst_low}	1.0	-	-	μs
RESET# inactive to BIT_CLK startup delay	T _{rst2clk}	162.8	-	-	ns

11.4.3.2 Warm AC '97 CODEC Reset

A warm AC'97 reset will re-activate the AC-link without altering the current AC'97 register values. Driving SYNC high for a minimum of 1 µs in the absence of BIT_CLK signals a warm reset.

Within normal audio frames SYNC is a synchronous AC '97 CODEC input. However, in the absence of BIT_CLK, SYNC is treated as an asynchronous input used in the generation of a warm reset to AC '97 CODEC.

Figure 11-15 Warm AC '97 CODEC Reset Timing

Table 11-5 Warm AC '97 CODEC Reset Timing Parameters

Parameter	Symbol	Min	Туре	Max	Units
SYNC active high pulse width	T _{sync_high}	1.0	-	-	Ms
SYNC inactive to BIT_CLK startup delay	T _{sync2clk}	162.8	-	-	Ns

11.4.4 External CODEC Registers Access Operation

The external audio CODEC can be configured/controlled by its internal registers. To access these registers, an I2S/MSB-justified CODEC usually employs L3 bus, SPI bus, I2C bus or other control bus.

The L3 bus operation can be emulated by software by using 3 GPIO pins of the chip. For AC '97, "AC '97 Component Specification" defines the CODEC register access protocol. Several registers are provided in AIC to accomplish this task.

The ACCAR and ACCDR are used to send a register accessing request command to external AC'97 CODEC. The ACSAR and ACSDR are used to receive a register's content from external AC'97 CODEC. The register accessing request and the register's content returning is asynchronous.

The AC'97 CODEC register accessing request flow:

- 1 If ACSR.CADT is 0, wait for 25.4µs. If no previous accessing request, this step can be skip.
- 2 Clear ACSR.CADT.
- 3 If read access, write read-command and register address to ACCAR, if write access, write write-command and register address to ACCAR and write data to ACCDR. Any order of write ACCAR and ACCDR is OK.
- 4 Polling for ACSR.CADT changing to 1, which means the request has been send to CODEC via AC-link.

The AC'97 CODEC register content receiving flow by polling:

- 1 Polling for ACSR.SADR changing to 1.
- 2 Read the CODEC register's address from ACSAR and content from ACSDR.
- 3 Clear ACSR.SADR.

The AC'97 CODEC register content receiving flow by interrupt:

- 1 Before accessing request, clear ACSR.SADR and set ACCR2.ESADR.
- 2 Waiting for the interrupt. When the interrupt is found, check if ACSR.SADR is 1, if not, repeat this step again.
- 3 Read the CODEC register's address from ACSAR and content from ACSDR.
- 4 Clear ACSR.SADR.

11.4.5 Audio Replay

Outgoing audio sample data (from AIC to CODEC) is written to AIC transmit FIFO from processor via store instruction or from memory via DMA. AIC then takes the data from the FIFO, serializes it, and sends it over the serial wire SDATA_OUT to an external CODEC or over an internal wire to an internal CODEC.

The audio transmission is enabled automatically when the AIC is enabled by set AICFR.ENB. But all replay data is zero at this time except both of the following conditions are true:

- 1 AICCR.ERPL must be 1. If AICCR.ERPL is 0, value of zero is send to CODEC even if there are samples in transmit FIFO.
- 2 At least one audio sample data in the transmit FIFO. If the transmit FIFO is empty, value of zero or last sample depends on AICFR.LSMP, is send to CODEC even if AICCR.ERPL is 1.

Here is the audio replay flow:

- 1 Configure the CODEC as needed.
- 2 Configure sample size by AICCR.OSS.
- 3 Configure sample channels (AICCR.CHANNEL).
- 4 If sample size is configured 16 bit, select packed or unpacked mode (AICCR.PACK16).
- 5 If two channels is configured, select the right-channel-first sample data or not (I2SCR.RFIRST).
- 6 If two channels is configured, select the sample data switched or not (I2SCR.SWLH).
- 7 Configure sample rate by clock dividers (for I2S/MSB-Justified format with BIT_CLK is provided internally) or by CODEC registers (for AC-link or BIT_CLK provided by external CODEC) or by accessing CODEC internal registers (for internal CODEC).
- 8 For AC-link, configure replay channels by ACCR1.XS.
- 9 Some other configurations: mono to stereo, endian switch, signed/unsigned data transfer, transmit FIFO configuration, play ZERO or last sample when TX FIFO under-run, and etc.
- 10 Write 1 to AICCR.ERPL.
 - It is suggested that at least a frame of PCM data is pre-filled in the transmit FIFO to prevent FIFO under-run flag (AICSR.TUR).
 - But when using internal CODEC, write first frame of PCM data to transmit FIFO till TX FIFO under-run (AICSR.TUR is set to 1), otherwise left/right channel may be switched.
- 11 Fill sample data to the transmit FIFO. Repeat this till finish all sample data. In this procedure, please control the FIFO to make sure no FIFO under-run and other errors happen. When the transmit FIFO under-run, noise or pause may be heard in the audio replay, AICSR.TUR is 1, and if AICCR.ETUR is 1, AIC issues an interrupt. Please reference to 11.4.7 for detail description on FIFO.
- 12 Waiting for AICSR.TFL change to 0. So that all samples in the transmit FIFO has been replayed, then we can have a clean start up next time.
- 13 Write 0 to AICCR.ERPL.

NOTE: Before replaying Open ADC BITCLK and close it to generating Record internal circuit reset when using internal CODEC.

11.4.6 Audio Record

Incoming audio sample data (from CODEC to AIC) is received from SDATA_IN (for an external CODEC) or an internal wire (for an internal CODEC) serially and converted to parallel word and stored in AIC receive FIFO. Then the data can be taken from the FIFO to processor via load instruction or to memory via DMA.

The audio recording is enabled automatically when the AIC is enabled by set AICFR.ENB. But all received data is discarded at this time except both of the following conditions are true:

- 1 AICCR.EREC must be 1. If AICCR.EREC is 0, the received data is discarded even if there are rooms in the receive FIFO.
- 2 At least one room left in the receive FIFO. If the receive FIFO is full, the received data is

discarded even if AICCR.EREC is 1.

Here is the audio record flow:

- 1 Configure the CODEC as needed.
- 2 Configure sample size by AICCR.ISS.
- 3 Configure sample rate by clock dividers (for I2S/MSB-Justified format with BIT_CLK is provided internally) or by CODEC registers (for AC-link or BIT_CLK provided by external CODEC) or by CODEC memory mapped registers (for internal CODEC).
- 4 Some other configurations: signed/unsigned data transfer, receive FIFO configuration, and etc.
- 5 Write 1 to AICCR.EREC. Make sure there are rooms available in the receive FIFO before set AICCR.EREC. Usually, it should empty the receive FIFO by fetch data from it before set AICCR.EREC.
- Take sample data form the receive FIFO. Repeat this till the audio finished. In this procedure, please control the FIFO to make sure no FIFO over-run and other errors happen. When the receive FIFO over-run, same recorded audio samples will be lost, AICSR.ROR is 1, and if AICCR.EROR is 1, AIC issues an interrupt. Please reference to 11.4.7 for detail description on FIFO. For AC-link, ACCR1.RS tells which channels are recorded.

 When using internal CODEC, the first data should be ignored.
- 7 Write 0 to AICCR.EREC.
- Take sample data from the receive FIFO until AICSR.RFL change to 0. So that all samples in the receive FIFO has been taken away, then we can have a clean start up next time. When the receive FIFO is empty, read from it returns zero.

11.4.7 FIFOs operation

AIC has two FIFOs, one for transmit audio sample and one for receive. All AIC played/recorded audio sample data is taken from/send to transmit/receive FIFOs. The RX FIFO is in 24 bits width and 32 entries depth, one entry for keeping one audio sample regardless of the sample size. The RX FIFO is in 32 bits width and 64 entries depth, one entry for keeping one audio sample regardless of the sample size, but in 16 bits packed mode, one entry for keeping two audio samples. AICDR.DATA provides the access point for processor/DMA to write to transmit FIFO and read from receive FIFO. One time access to AICDR.DATA process one sample. The sample data should be put in LSB (Least Significant Bit) in memory or processor registers. For transmitting, bits exceed sample are discarded. For receiving, these bits are set to 0. Figure 11-16 illustrates the FIFOs access.

Figure 11-16 Transmitting/Receiving FIFO access via APB Bus

The software and bus initiator must guarantee the right sample placement at the bus.

In case of DMA bus initiator, one 24, 20, 18 bits audio sample must occupies one 32-bits word in memory, so 32-bits width DMA must be used. One 16 bits sample occupies one 16-bits half word in memory, so 16-bits width DMA must be used. One 8-bits sample occupies one byte in memory, and use 8-bits width DMA except 16bits packed mode. If in 16 bits packed mode, Two 16 bits sample occupies one 32-bits word in memory, so 32-bits width DMA must be used.

In case of processor bus initiator, any type of the audio sample must occupy one CPU general-purpose register at LSB, and read/write from/to AICDR.DATA with 32-bits load/store instruction. When process small sample size, 16-bits or 8-bits, software may need to do the data pack/unpack except 16 bits packed mode. In the 16bits packed mode, the sample data is packed, and two 16 bits audio samples occupy one CPU general-purpose register.

The AICFR.TFTH and AICFR.RFTH are used to set the FIFO level thresholds, which are the trig levels of DMA request and/or FIFO service interrupt. The AICFR.TFTH and AICFR.RFTH should be set to proper value; too small or too big are not good. When AICFR.RFTH is too small, or AICFR.TFTH is too big, the DMA burst length or the number of sample can be processed by processor is too small, which

harms the bus or processor efficiency. When AICFR.RFTH is too big or AICFR.TFTH is too small, the bus or the interrupt latency left for under-run/over-run is too small, which may causes replay/record errors.

AICSR.TUR is set to 1 during transmit under-run conditions. If AICCR.ETUR is 1, this can trigger an interrupt. During transmit under-run conditions, zero or last sample is continuously sent out across the serial link. Transmit under-run can occur under the following conditions:

- Valid transmit data is still available in memory, but the DMA controller/processor starves the transmit FIFO, as it is busy servicing other higher-priority tasks.
- 2 The DMA controller/processor has transferred all valid data from memory to the transmit FIFO.

AICSR.ROR is set to 1 during receive over-run conditions. If AICCR.EROR is 1, this can trigger an interrupt. During receive over-run conditions, data sent by the CODEC is lost and is not recorded.

When replay/record two channels data, the left channel is default the first data in FIFOs and in the serial link. If multiple channels in AC-link are used, the channel sample order is follows the slot order. In 16bits packed mode, could configure that the left channel is the first data or the right channel. By default, the 16 bits LSB is left channel, 16 bits MSB is the right channel. But it also could be switched interna the Left or the Right channel (I2SCR.SWLH).

11.4.8 Data Flow Control

There are three approaches provided to control/synchronize the audio incoming/outgoing data flow.

11.4.8.1 Polling and Processor Access

AICSR.RFL and AICSR.TFL reflect how many samples exist in receiving and transmitting FIFOs. Through read these register fields, processor can detect when there are samples in receiving FIFO in audio record and then load them from the RX-FIFO, and when there are rooms in transmitting FIFO in audio replay and then store samples to the TX-FIFO.

Polling approach is in very low efficiency and is not recommended.

11.4.8.2 Interrupt and Processor Access

Set proper values to AICFR.TFTH and AICFR.RFTH, the FIFO interrupts trig thresholds. Set AICCR.ETFS and/or AICCR.ERFS to 1 to enable transmitting and/or receiving FIFO level trigger interrupts. When the interrupt found, it means there are rooms or samples in the TX or RX FIFO, and processor can store or load samples to or from the FIFO.

Interrupt approach is more efficient than polling approach.

11.4.8.3 DMA Access

Audio data is real time stream, though it is in low data bandwidth, usually less than 1.2Mbps. DMA approach is the most efficient and is the recommended approach.

To enable DMA operation, set AICCR.TDMS and AICCR.RDMS to 1 for transmit and receive respectively. It also needs to allocate two channels in DMA controller for data transmitting and receiving respectively. Please reference to the processor's DMA controller spec for the details.

The AICFR.TFTH and AICFR.RFTH are used to set the transmitting and receiving FIFO level thresholds, which determine the issuing of DMA request to DMA controller. To respond the request, DMAC initiator and controls the data movement between memory and TX/RX FIFO.

11.4.9 Audio Samples format

11.4.9.1 16 bits packed mode

One channel (mono) mode and two channels (stereo) mode:

Figure 11-17 One channel (Left) and Two channels (right) mode (16 bits packed mode)

Four channels mode and six channels mode:

Figure 11-18 Four channels (Left) and Six channels (right) mode (16 bits packed mode)

Eight channels mode:

Figure 11-19 Eight channels mode (16 bits packed mode)

11.4.9.2 Normal mode.

One channel (Mono) and two channels (stereo) mode:

Figure 11-20 One channel (Left) and Two channels (right) mode

Four channels mode and six channels mode:

Figure 11-21 Four channels (Left) and Six channels (right) mode

Eight channel mode:

bit31		bit0	
0	R3		0xXXXXXX01C
0	R2		0xXXXXX018
0	R1		0xXXXXXX014
0	R0		0xXXXXX010
0	L3		0xXXXXXX00C
0	L2		0xXXXXX008
0	L1		0xXXXXXX004
0	L0		0xXXXXX000
	•		

Figure 11-22 Eight channels mode

11.4.10 Serial Audio Clocks and Sampling Frequencies

For internal CODEC, CODEC module containing the audio CODEC circuit/logic and corresponding controlling registers. CODEC needs a 12MHz clock from CPM called SYS_CLK and provides I_BITCLK, O_BITCLK and I_SYNC, O_SYNC (left-right clock which is the sample rate as ADC or DAC) to AIC for outgoing and incoming audio respectively. These clocks change when change the sample rate in CODEC controlling registers. When using internal CODEC, must configure SYNC and BIT_CLK as input, more details refers to CODEC Spec.

For AC-link, the bit clock is input from chip external and is fixed to 12.288MHz. The sample frequency of 48kHz is supported in nature. Variable Sample Rate feature is supported in this AIC. If the CODEC supports this feature, sample rate other than 48kHz audio data can be replay directly. Otherwise, software has to do the rate transfer to replay other sample rate audio data. Double rate, 96kHz or even 88.2kHz audio is also supported with proper CODEC.

Following are for BIT_CLK/SYS_CLK configuration in I2S/MSB-Justified format with external CODEC.

The BIT_CLK is the rate at which audio data bits enter or leave the AIC. BIT_CLK can be supplied either by the CODEC or an internally PLL. If it is supplied internally, BIT_CLK is configured as output pins, and is supplied out to the CODEC. If BIT_CLK is supplied by the CODEC, then it is configured as an input pin. Register bit AICFR.BCKD is used to select BIT_CLK direction.

The audio sampling frequency is the frequency of the SYNC signal, which must be 1/64 of BIT_CLK, f_{BIT} CLK = 64 $f_{S.}$ But SYNC signal frequency is not fixed when using internal CODEC.

SYS_CLK is only for CODEC. It usually takes one of the two roles, as CODEC master clock input or as CODEC over-sampling clock input. If SYS_CLK roles as CODEC master clock input, it usually should

be set to a fixed frequency according to CODEC requirement but independent to audio sample rate. In this case, usually there is a PLL in the CODEC and CODEC roles master mode. See Figure 11-3 for the interface diagram. This is the recommended AIC CODEC system configuration.

If SYS_CLK roles as CODEC over-sampling clock, its frequency is usually 4, 6, 8 or 12 times of BIT_CLK frequency, which are 256, 384, 512 and 768 times of audio sample rates. Table 11-6 lists the relation between sample rate, BIT_CLK and SYS_CLK frequencies.

Sample Rate	BIT_CLK (MHz)	SYS_CLK (MHz)			
f _S (kHz)	$f_{BIT_CLK} = 64 f_{S}$	256 f _S	384 f _S	512 f _s	768 f _s
48	3.072	12.288	18.432	24.576	36.864
44.1	2.8224	11.2896	16.9344	22.5792	33.8688
32	2.048	8.192	12.288	16.384	24.576
24	1.536	6.144	9.216	12.288	18.432
22.05	1.4112	5.6448	8.4672	11.2896	16.9344
16	1.024	4.096	6.144	8.192	12.288
11.025	0.7056	2.8224	4.2336	5.6448	8.4672
8	0.512	2.048	3.072	4.096	6.144

Table 11-6 Audio Sampling rate, BIT_CLK and SYS_CLK frequencies

In this processor, SYS_CLK can be selected from EXCLK or generated by dividing the PLL output clock in a CPM divider controlled by I2SCDR. If BIT_CLK is chosen as an output, another divider in AIC is used to divide SYS_CLK for it.

Figure 11-23 SYS_CLK, BIT_CLK and SYNC generation scheme

The setting of I2SDIV.DV is shown in Table 11-7.

I2SDIV.DV	f _{SYS_CLK}	f _{BIT_CLK}	f _{SYS_CLK} / f _{BIT_CLK}
0x1	128 f _S	64 f _S	2
0x2	196 f _S	64 f _S	3
0x3	256 f _S	64 f _S	4
0x5	384 f _S	64 f _S	6
0x7	512 f _S	64 f _S	8
0xB	768 f _S	64 f _S	12

As we observe in Table 11-6, if SYS_CLK is taken as over-sampling clock by CODEC, the common multiple of all SYS_CLK frequencies is much bigger than the PLL output clock frequency. To generate all different SYS_CLK frequencies, one approach is change PLL frequency according to sample rate. This is not realistic, since frequently change PLL frequency during normal operation is not recommended.

Another approach is to found some approximate common multiples of all SYS_CLK frequencies according to the fact that there tolerance in audio sample rate. Take f_{SYS_CLK} = 256 f_s, Table 11-8 list most frequencies, which are less than 400MHz, with relatively small sample rate errors. It is suggested to set PLL frequency as close to the frequencies listed as possible, then use clock dividers to generate different SYS_CLK/BIT_CLK for different sample rate.

Table 11-8 Approximate common multiple of SYS_CLK for all sample rates

Approximate Common	Max Error Caused in
Frequency (MHz)	Audio Sample Rate (%)
123.53	0.53
147.11	0.24
170.68	0.79
235.5	0.87
247.06	0.53
270.64	0.11
280.56	0.73
294.22	0.24
305.14	0.67
317.79	0.53
329.57	0.66
341.35	0.79
347	0.85
353.13	0.90
358.79	0.69
370.59	0.53

382.96	0.54
394.17	0.24

Take PLL = 270.64 MHz as an example, Table 11-9 lists the divider settings for various sample rates.

Table 11-9 CPM/AIC clock divider setting for various sampling rate if PLL = 270.64MHz

Sample Rate (kHz)	I2SCDR	I2SDIV.DV	Sample Rate Error (%)
48	1	11	0.11
44.1	1	12	-0.11
32	0	33	0.11
24	1	22	0.11
22.05	1	24	-0.11
16	1	33	0.11
12	1	44	0.11
11.025	1	48	-0.11
8	1	66	2091

For an EXCLK clock frequency, try to generate PLL frequencies as close to the frequencies listed in Table 11-8 as possible. Table 11-10 lists the PLL parameters and audio sample errors at different PLL frequencies for EXCLK at 12MHz.

Table 11-10 PLL parameters and audio sample errors for EXCLK=12MHz

318	11	346.91	0.88%
206	7	353.14	0.90%
299	10	358.8	0.69%
247	8	370.5	0.55%
351	11	382.91	0.55%
230	7	394.29	0.27%

The BIT_CLK should be stopped temporary when change the divider settings, or when change BIT_CLK source (from internal or external), to prevent clock glitch. Register I2SCR.STPBK is provided to assist the task. When I2SCR.STPBK = 1, BIT_CLK is disabled no matter whether it is generated internally or inputted from the external source. The operation flow is described in following.

- 1 Stop all replay/record by clear AICCR.ERPL and AICCR.EREC.
- 2 Polling I2SSR.BSY till it is 0.
- 3 Stop the BIT_CLK by write 1 to I2SCR.STPBK.
- 4 Operations concerning BIT CLK.
- 5 Resume the BIT_CLK by write 0 to I2SCR.STPBK.

11.4.11 Interrupts

The following status bits, if enabled, interrupt the processor:

- Receive FIFO Service (AICSR.RFS). It's also DMA Request.
- Transmit FIFO Service (AICSR.TFS). It's also DMA Request.
- Transmit Under-Run (AICSR.T⊎R).
- Receive Over-Run (AICSR.ROR).
- Command Address and Data Transmitted, AC-link only (ACSR.CADT).
- External CODEC Registers Status Address and Data Received, AC-link only (ACSR.SADR).
- External CODEC Registers Read Status Time Out, AC-link only (ACSR.RSTO).

For further details, see the corresponding register description sections.

11.5 SPDIF Guide

11.5.1 Set SPDIF clock frequency

Set SPDIF clock frequency is as same as i2s clock.

11.5.2 PCM audio mode operation (Reference IEC60958)

- 1 Set SPCFG1 and SPCFG2 to configure SPDIF transmitter.
 - a Set SPCFG2.CON PRO to 0 to choose consumer mode.
 - b Set SPCFG2. AUDIO_N to 0 to choose linear PCM audio data mode.
 - c Set SPCFG1.XXX to configure SPDIF.
 - d Set SPCFG2.XXX to configure SPDIF.
- 2 Set SPCTRL.DMA EN to choose DMA mode or CPU mode.
- 3 Set SPCTRL.SIGN_N to choose whether to transfer the most significant bit by toggle or not.
- 4 Set SPCTRL. SFT RST to 1 reset FIFO.
- 5 Wait SPCTRL. SFT_RST set to be set 0 by hardware.
- 6 Set SPCTRL.M_TRIG and SPCTRL.M_FFUR to enable or disable the interrupt.
- 7 Set SPCTRL.INVALID 1 or 0 to set the V bit of sub-frame.
- 8 Set SPENA.SPEN to 1 to Enable SPDIF to transmitter.

11.5.3 Non-PCM mode operation (Reference IEC61937)

- 1 Set SPCFG1 and SPCFG2 to configure SPDIF transmitter.
 - a Set SPCFG2.CON PRO to 0 to choose consumer mode.
 - b Set SPCFG2.AUDIO N to 1 to choose non-PCM mode.
 - c Set SPCFG1.SRC NUM to 0.
 - d Set SPCFG1.CH1 NUM to 0.
 - e Set SPCFG1.CH2_NUM to 0.
 - f Set SPCFG2.PRE to 0.
 - g Set SPCFG2.CH_MD to 0.
 - h Set SPCFG2.ORG FRQ to 0.
 - i Set SPCFG2.SAMPL WL to 0.
 - j Set SPCFG2.MAX WL to 0.
 - k Set SPCFG1.XXX to configure SPDIF.
 - I Set SPCFG2.XXX to configure SPDIF.
- 2 Set SPCTRL.DMA_EN to choose DMA mode or CPU mode.
- 3 Set SPCTRL.SIGN N to choose whether to transfer the most significant bit by toggle or not.
- 4 Set SPCTRL. SFT_RST to 1 reset FIFO.
- 5 Wait SPCTRL. SFT_RST to be set to 0 by hardware.
- 6 Set SPCTRL.M TRIG and SPCTRL.M FFUR to enable or disable the interrupt.
- 7 Set SPCTRL.INVALID 1 or 0 to set the V bit of sub-frame.
- 8 Set SPENA.SPEN to 1 to Enable SPDIF to transmitter.

11.5.4 Disable operation

- 1 Set SPENA.SPEN to 0 to disable SPDIF to transmitter.
- 2 Wait SPSTATE.BUSY to be set to 0 by hardware.
- 3 You can do other operation.

1018 eiffel@126.com internal used only

PCM Interface 12

12.1 Overview

The PCM has the following features:

- Data starts with the frame PCMSYN or one PCMCLK later
- Support three modes of operation for PCM
 - Short frame sync mode
 - Long frame sync mode
 - Multi-slot mode
- Data is transferred and received with the MSB first
- Support master mode and slave mode
- The PCM serial output data, PCMDOUT, is clocked out using the rising edge of the PCMSCLK
- The PCM serial input data, PCMDIN, is clocked in on the falling edge of the PCMSCLK
- 8/16 bit sample data sizes supported
- DMA transfer mode supported
- 1078 eiffel@126.com interi Two FIFOs for transmit and receive respectively with 16 samples capacity in every direction
- Two independent PCM interface. As PCM0,PCM1

12.2 Pin Description

There are all 4 pins used to connect between PCM interface and an external device. They are listed and described in Table 12-1.

Table 12-1 PCM Interface Pins Description

Name	I/O	Description
PCMCLK	Input/Output	PCM Serial clock Line signal input/output
PCMSYN	Input/Output	PCM sync signal input/output
PCMDOUT	Output	PCM Serial data output
PCMDIN	Input	PCM Serial data input

1018 eiffel@126.com internal used only

12.3 Block Diagram

12.4 Register Description

Table 12-2 PCM0 Registers Description

Name	Description	RW	Reset Value	Address	Size
PCMCTL0	PCM Control Register	RW	0x00000000	0x10071000	32
PCMCFG0	PCM Configure Register	RW	0x00000110	0x10071004	32
PCMDP0	PCM FIFO Data Port Register	RW	0x00000000	0x10071008	32
PCMINTC0	PCM Interrupt Control Register	RW	0x00000000	0x1007100c	32
PCMINTS0	PCM Interrupt Status Register	RW	0x00000100	0x10071010	32
PCMDIV0	PCM Clock Divide Register	RW	0x00000001	0x10071014	32

Table 12-3 PCM1 Registers Description

Name	Description	RW	Reset Value	Address	Size
PCMCTL1	PCM Control Register	RW	0x00000000	0x10074000	32
PCMCFG1	PCM Configure Register	RW	0x00000110	0x10074004	32
PCMDP1	PCM FIFO Data Port Register	RW	0x00000000	0x10074008	32
PCMINTC1	PCM Interrupt Control Register	RW	0x00000000	0x1007400c	32
PCMINTS1	PCM Interrupt Status Register	RW	0x00000100	0x10074010	32
PCMDIV1	PCM Clock Divide Register	RW	0x0000001	0x10074014	32

12.4.1 PCM Control Register (PCMCTL)

Bits	Name			Description		RW									
31:10	Reserved	Writing	has no effect,	read as zero.		R									
9	ERDMA	Receiv	e DMA Enable	e. This bit is used to enable o	r disable the DMA	RW									
		during	receiving audi	o data.											
			ERDMA Receive DMA												
			0	Disabled.											
			1	Enabled.											
8	ETDMA	Transmit DMA Enable. This bit is used to enable or disable the DMA													
		during transmit audio data.													

		ETDN	MA Transmit DMA	
		0	Disabled.	
		1	Enabled.	
7	LSMP		n play last sample or play ZERO sample in TX FIFO	RW
			RO sample means sample value is zero.	
		LSMP	CODEC used	
		0	Play ZERO sample when TX FIFO underflow.	
		1	Play last sample when TX FIFO underflow.	
6	ERPL	Enable Playing	Back function. This bit is used to disable or enable the	RW
		audio sample d	lata transmitting.	
		ERP	PL Description	
		0	PCM Playing Back Function is Disabled.	
		1	PCM Playing Back Function is Enabled.	
5	EREC	Enable Recordi	ing Function. This bit is used to disable or enable the	RW
		audio sample d	data receiving.	
		ERE		
		0	PCM Recording Function is Disabled.	
		1	PCM Recording Function is Enabled.	
4	FLUSH	FIFO Flush, Wr	rite 1 to this bit flush transmit/receive FIFOs to empty.	W
•	. 200		s bit has no effect and this bit is always reading 0.	
3	RST		rite 1 to this bit reset PCM registers and FIFOs. Writing	W
Ü	1.01		s no effect and this bit is always reading 0.	••
2	Reserved		effect, read as zero.	R
1	CLKEN		ial clock division logic. Must be HIGH for the PCM to	RW
ı	OLINLIN	operate.	iai Glock division logic. Ividst be i lion for the FOW to	1744
0	DOMEN	·	inction. This bit is used to enable or disable the PCM	RW
U	PCMEN e 1	function.	inction. This bit is used to enable of disable the PCM	KVV
	1008		Page sinding.	
	10,	PCMENB	<u>'</u>	
		0	Disable PCM Controller.	
		1	Enable PCM Controller.	

12.4.2 PCM Configuration Register (PCMCFG)

	РС	PCMCFG0, PCMCFG1																						0>	100	071	004	, 0 x	100	740	004	
Bit	31	30	29	28 2	27	26	25	24	23	22	21	20	19	18	17	16	15	14 1	3 1	2	11	10	9	8	7	6	5	4	3	2	1	0
								Res	ser\	/ed								SLOT	2	155	SSO	IMSBPOS	OMSBPOS		RF	ТН			TF	TH		PCMMOD
RST	· 0	n	0	0	n	0	0	0	n	n	n	n	0	0	n	0	0	0	n	n	٥	0	0	1	0	0	0	1	0	0	0	0

Bits	Name	Description Writing has no effect, read as zero. Controls the amount of valid PCM timeslot in one PCMSYN frame.													
31:15	Reserved	Controls the amount of valid PCM timeslot in one PCMSYN frame. Input Sample Size. These bits reflect input sample data size to													
14:13	SLOT	Controls the amount of valid PCM timeslot in one PCMSYN frame.	RW												
12	ISS	Input Sample Size. These bits reflect input sample data size to	RW												
		memory or register. The data sizes supported are: 8/16bits. The													
		sample data is LSB-justified in memory/register.													
		ISS Sample Size													
		0 8 bit													
		1 16 bit													
11	OSS	Output Sample Size. These bits reflect output sample data size from	RW												
		memory or register. The data sizes supported are: 8/16 bits. The													
		sample data is LSB-justified in memory/register.													
		OSS Sample Size													
		0 8 bit													
		1 16 bit													
10	IMSBPOS	Controls the position of the MSB bit in the serial input stream relative													
		to the PCMSYN signal.													
		0: MSB is captured on the falling edge of PCMCLK during the same													
		cycle that PCMSYNC is high													
		1: MSB is captured on the falling edge of PCMCLK during the cycle													
		after the PCMSYNC is high													
9	OMSBPOS	Controls the position of the MSB bit in the serial output stream	RW												
		relative to the PCMSYN signal.													
		0: MSB sent during the same clock that PCMSYN is high													
		1: MSB sent on the next PCMSCLK cycle after PCMSYNC is high													
8:5	RFTH (Receive FIFO threshold for interrupt or DMA request. Determines	RW												
	o C	when the RFS flags go active for the RXFIFO. When the sample													
1	OLIS	number in receive FIFO, indicated by PCMINTS.RFL, is great than													
		the threshold value, PCMINTS.RFS is set. Larger RFTH value													
		provides lower DMA/interrupt request frequency but have more risk													
		to involve receive FIFO overflow. The optimum value is system													
		dependent.													
4:1	TFTH	Transmit FIFO threshold for interrupt or DMA request. Determines	RW												
		when the TFS flags go active for the TXFIFO. When the sample													
		number in transmit FIFO, indicated by PCMINTS.TFL, is less than													
		the threshold value, PCMINTS.TFS is set. Smaller TFTH value													
		provides lower DMA/interrupt request frequency but have more risk													
		to involve transmit FIFO underflow. The optimum value is system													
		dependent.													
0	PCMMOD	PCM mode select.	RW												
		0: Master mode; 1: Slave mode.													

12.4.3 PCM FIFO DATA PORT REGISTER (PCMDP)

Bits	Name	Description	RW
31:0	DATA	FIFO port. When write to it, data is push to the transmit FIFO. When	RW
		read from it, data is pop from the receiving FIFO.	

Bits	Name _C	867		Description		RW						
31:4	Reserved	Writing	has no effect,	read as zero.		R						
3	ETFS	Enable	TFS Interrupt	. This bit is used to control th	e TFS interrupt	RW						
1	OLIS	enable	or disable.									
)			ETFS	TFS Interrupt								
			0	Disabled.								
			1	Enabled.								
2	ETUR	Enable	TUR Interrupt	ne TUR interrupt	RW							
		enable	or disable.									
			ETUR	TUR Interrupt								
			0	Disabled.								
			1	Enabled.								
1	ERFS	Enable	RFS Interrupt	. This bit is used to control th	ne RFS interrupt	RW						
		enable	or disable.									
			ERFS RFS Interrupt									
			0	Disabled.								
			1	Enabled.								
0	EROR	Enable	ROR Interrup	t. This bit is used to control t	he ROR interrupt	RW						

326

enable or disable.						
EROR	ROR Interrupt					
0	Disabled.					
1	Enabled.					

12.4.5 PCM INTERRUPT STATUS REGISTER (PCMINTS)

	PCMINTS0, PCMINTS1																					0x	100)7 1	010	, 0 2	(10)74	010			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								Re	ser	ved								RSTS			TFI	-		TFS	TUR			RFI	_	1	RFS	ROR
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

Bits	Name			Description 🔒 📏	RW										
31:15	Reserved	Writing	has no	effect, read as zero.	R										
14	RSTS	Soft re	set / flus	h state.	R										
		0: Noth	ning / res	et or flush operation has completed											
		1: rese	t or flush	operation has not completed											
13:9	TFL	Transn	nit FIFO	Level. The bits indicate the amount of valid PCM data	a R										
		in Tran	smit FIF	O.											
8	TFS	Transn	nit FIFO	Service Request. This bit indicates that transmit FIFO	RW										
	. 8	level e	xceeds 7	FFL threshold which is controlled by PCMCFG.TFTH											
	67,	When ¹													
	208	the inte	nterrupt enable and DMA setting. TFS Description												
	O		TFS Description 0 Transmit FIFO level exceeds TFL threshold.												
			1	Transmit FIFO level at or below TFL threshold.											
7	TUR	Transn	nit FIFO	Under Run. This bit indicates that transmit FIFO has c	r RW										
		has no	t experie	enced an under-run.											
			TUR	Description											
				When read, indicates under-run has not been											
			0	found.											
				When write, clear itself.											
			When read, indicates data has even been read												
			1 from empty transmit FIFO.												
				When write, not effects.											
6:2	RFL	Receiv	e FIFO I	evel. The bits indicate the amount of valid PCM data	R										
		in Rece	eive FIF	О.											

1	RFS	Receive FIFO Service Request. This bit indicates that receive FIFO RV	W												
		level is or not below RFL threshold which is controlled by													
		PCMCFG.RFTH. When RFS is 1, it may trigger interrupt or DMA													
		request depends on the interrupt enable and DMA setting.													
		RFS Description													
		0 Receive FIFO level below RFL threshold.													
		Receive FIFO level at or above RFL threshold.													
0	ROR	Receive FIFO Over Run. This bit indicates that receive FIFO has or RV	W												
		has not experienced an overrun.													
		ROR Description													
		When read, indicates over-run has not been found.													
		When write, clear itself.													
		When read, indicates data has even been written													
		1 to full receive FIFO.													
		When write, not effects.													
		DIVIDE REGISTER (PCMDIV)													
12.4.6	PCM CLOCK	DIVIDE REGISTER (PCMDIV)													
		nal													
P	CMDIVO, PCMDI	0x10071014, 0x100740	014												
Bit 31	30 29 28 27 26	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0												

12.4.6 PCM CLOCK DIVIDE REGISTER (PCMDIV)

PCMDIV0, PCMDIV1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																1																
							Re	ser	ved									SY	NL				S١	/NE	Ν			(CLK	DIV	,	
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	6		
Bits	Name	Description	RW
31:27	Reserved	Writing has no effect, read as zero.	R
16:11	SYNL	Controls the length that the PCMSYN based upon the PCMCLK.	RW
		The length of PCMSYN = (SYNL + 1) * PCMCLK cycle.	
10:6	SYNDIV	Controls the frequency of the PCMSYN signal based upon the PCMCLK.	RW
		PCMSYN = PCMCLK / 8 (SYNDIV + 1).	
5:0	CLKDIV	PCMCLK clock divider value minus 1. Controls the divider used to create	RW
		the PCMCLK based upon the CPM_PCM_SYSCLK.	
		PCMCLK = CPM_PCM_SYSCLK / (CLKDIV + 1).	

12.5 PCM Interface Timing

The following figures show the timing relationship for the PCM transfers, Note in all cases. In master mode, the PCMCLK is derived from dividing the input clock, CPM_PCM_SYSCLK, and the PCMSYN is divided depended on the PCMCLK. In slave mode, the PCMCLK and PCMSYN are input from the external device. Data is sampled on the falling edge of the PCMCLK and sent out on the rising edge of the PCMCLK. The PCMSYN signal determines when the next data sample is to be transferred between the controller and the external device. Also, the PCMSYN signal as seen in the figure can be one bit time or a long bit time controlled by PCMDIV.SYNL. The PCMSYN frequency controlled by PCMDIV.SYNDIV is usually the sample rate. There are some variations controlled by PCMCFG.ISS, PCMCFG.OSS and PCMCFG.SLOT to accommodate 8 / 16bit sample sizes and multi-slot transmission.

12.5.1 Short Frame SYN

NOTE: Figure 12-1 shows a PCM transfer with the MSB configured to be coincident with the PCMSYN.

Figure 12-2 Short Frame SYN Timing (Shown with 16bit Sample)

NOTE: Figure 12-2 shows a PCM transfer with the MSB configured one shift clock after the PCMSYN.

12.5.2 Long Frame SYN

Figure 12-3 Long Frame SYN Timing (Shown with 16bit Sample)

NOTE: Figure 12-3 shows a PCM transfer with the MSB configured one shift clock after the PCMSYN.

Figure 12-4 Long Frame SYN Timing (Shown with 16bit Sample)

NOTE: Figure 12-4 shows a PCM transfer with the MSB configured to be coincident with the PCMSYN.

12.5.3 Multi-Slot Operation

Figure 12-5 Multi-Slot Frame SYN Timing (Shown with two Slots and 8bit Sample)

12.6 PCM Operation

12.6.1 PCM Initialization

At power-on or other hardware reset (WDT and etc), PCM is disabled. Software must initiate PCM after power-on or reset.

For further details, see the corresponding register description sections.

12.6.2 Audio Replay

Outgoing audio sample data is written to PCM transmit FIFO from processor via store instruction or from memory via DMA. PCM then takes the data from the FIFO, serializes it, and sends it over the serial wire PCMDOUT to an external DEVICE.

The audio transmission is enabled automatically when the PCM is enabled by set PCMCTL.PCMEN. And PCMCTL.ERPL must be 1. If PCMCTL.ERPL is 0, value of zero is sent to external DEVICE even if there are samples in transmit FIFO. At least one audio sample data in the transmit FIFO. If the transmit FIFO is empty, value of zero or last sample depends on AICFR.LSMP, is send to external DEVICE even if PCMCTL.ERPL is 1.

Here is the audio replay flow:

- 1 Configure the external DEVICE as needed.
- 2 Initialize PCM and configure the register.
- 3 Write 1 to PCMCTL.PCMEN and PCMCTL.CLKEN.
- 4 Fill sample data to the transmit FIFO. Repeat this till finish all sample data. In this procedure,

please control the FIFO to make sure no FIFO under-run and other errors happen. When the transmit FIFO under-run, noise or pause may be heard in the audio replay, PCMINTS.TUR is 1, and if PCMINTC.ETUR is 1, PCM issues an interrupt. Please reference to _12.6.4 for detail description on FIFO.

- Write 1 to PCMCTL.ERPL. It is suggested that at least a frame of PCM data is pre-filled in the transmit FIFO to prevent FIFO under-run flag (PCMINTS.TUR).
- 6 Waiting for PCMINTS.TFL change to 0. So that all samples in the transmit FIFO has been replayed, then we can have a clean start and write 0 to PCMCTL.ERPL.

12.6.3 Audio Record

Incoming audio sample data is received from PCMDIN serially and converted to parallel word and stored in PCM receive FIFO. Then the data can be taken from the FIFO to processor via load instruction or to memory via DMA.

The audio recording is enabled automatically when the PCM is enabled by set PCMCTL.PCMEN, And PCMCTL.EREC must be 1. If PCMCTL.EREC is 0, the received data is discarded even if there are rooms in the receive FIFO. At least one room left in the receive FIFO. If the receive FIFO is full, the received data is discarded even if PCMCTL.EREC is 1.

Here is the audio record flow:

- 1 Configure the external DEVICE as needed.
 - a Initialize PCM and configure the register.
 - b Write 1 to PCMCTL.PCMEN and PCMCTL.CLKEN.
- Write 1 to PCMCTL.EREC. Make sure there are rooms available in the receive FIFO before set PCMCTL.EREC. Usually, it should empty the receive FIFO by fetch data from it before set PCMCTL.EREC.
- Take sample data form the receive FIFO. Repeat this till the audio finished. In this procedure, please control the FIFO to make sure no FIFO over-run and other errors happen. When the receive FIFO over-run, same recorded audio samples will be lost, PCMINTS.ROR is 1, and if PCMINTC.EROR is 1, PCM issues an interrupt. Please reference to ₋12.6.4 for detail description on FIFO.
- 4 Write 0 to AICCR.EREC.
- Take sample data from the receive FIFO until PCMINTS.RFL change to 0. So that all samples in the receive FIFO has been taken away, then we can have a clean start up next time. When the receive FIFO is empty, read from it returns zero.

12.6.4 FIFOs operation

PCM has two FIFOs, one for transmitting and one for receiving. The FIFOs are in 16 bits width and 16 entries depth, one entry for keep one sample regardless of the sample size. PCMDP.DATA provides the access point for processor/DMA to write to transmit FIFO and read from receive FIFO. One time access to PCMDP.DATA process one sample. The sample data should be put in LSB (Least Significant

Bit) in memory or processor registers. For transmitting, bits exceed sample are discarded. For receiving, these bits are set to 0. Figure 6 illustrates the FIFOs access.

Figure 12-6 Transmitting/Receiving FIFO access via APB Bus

The software and bus initiator must guarantee the right sample placement at the bus. In case of DMA bus initiator, One 16 bits sample occupies one 16-bits half word in memory, so 16-bits width DMA must be used. One 8-bits sample occupies one byte in memory, and use 8-bits width DMA.

12.6.5 Data Flow Control

There are three approaches provided to control/synchronize the incoming/outgoing data flow.

12.6.5.1 Polling and Processor Access

PCMINTS.RFL and PCMINTS.TFL reflect how many samples exist in receiving and transmitting FIFOs. Through read these register fields, processor can detect when there are samples in receiving FIFO and then load them from the RxFIFO, and when there are rooms in transmitting FIFO and then store samples to the TxFIFO.

Polling approach is in very low efficiency and is not recommended.

12.6.5.2 Interrupt and Processor Access

Set proper values to PCMCFG.TFTH and PCMCFG.RFTH, the FIFO interrupts trig thresholds. Set PCMINTC.ETFS and/or PCMINTC.ERFS to 1 to enable transmitting and/or receiving FIFO level trigger interrupts. When the interrupt found, it means there are rooms or samples in the TX or RX FIFO, and processor can store or load samples to or from the FIFO.

Interrupt approach is more efficient than polling approach.

12.6.5.3 DMA Access

To enable DMA operation, set PCMCTL.ERDMA and PCMCTL.ETDMA to 1 for transmit and receive respectively. It also needs to allocate two channels in DMA controller for data transmitting and receiving respectively. Please reference to DMAC spec for the details.

The PCMCFG.TFTH and PCMCFG.RFTH are used to set the transmitting and receiving FIFO level thresholds, which determine the issuing of DMA request to DMA controller. To respond the request, DMAC initiator and controls the data movement between memory and TX/RX FIFO.

12.6.6 PCM Serial Clocks and Sampling Frequencies

Figure 12-7 PCMCLK and PCMSYN generation scheme

12.6.7 Interrupts

The following status bits, if enabled, interrupt the processor:

- Receive FIFO Service (PCMINTS.RFS). It's also DMA Request.
- Transmit FIFO Service (PCMINTS.TFS). It's also DMA Request.
- Transmit Under-Run (PCMINTS.TUR).
- Receive Over-Run (PCMINTS.ROR).

For further details, see the corresponding register description sections.

SAR A/D Controller 13

13.1 Overview

The A/D in falcon is CMOS low-power dissipation 12bit touch screen SAR analog to digital converter. It operates with 3.3/1.2V power supply. It is developed as an embedded high resolution ADC targeting to the 65nm CMOS process and has wide application in portable electronic devices, high-end home entertainment center, communication systems and so on.

The SAR A/D controller is dedicated to control A/D to work at three different modes: Touch Screen (measure pen position and pen down pressure), Battery (check the battery power), and two auxiliary input. Touch Screen can transfer the data to memory though the DMA or CPU. Battery and two com internal used only auxiliary input can transfer the data to memory though CPU.

Features:

- 7 Channels
- Resolution: 12-bit
- Integral nonlinearity: ±1 LSB
- Differential nonlinearity: ±0.5 LSB
- Resolution/speed: up to 2Msps
- Max Frequency: 200k
- Low power dissipation: 1.5mW(worst)
- Support 4-wire and 5-wire touch panel measurement (Through pin XP, XN, YP, YN and AUX2)
- Support multi-touch detect
- Support write control command by software
- Support voltage measurement (Through pin VBAT)
- Support two auxiliary input (Through pin AUX1, AUX2)
- Single-end and Differential Conversion Mode
- Auto X/Y, X/Y/Z1/Z2 and X/Y/Z1/Z2/X2/Y2 position measurement
- Support external touch screen controller
- Pin Description

Table 13-1 SADC Pin Description

Name	I/O	Description
XN	Al	Touch screen analog differential X- position input
YN	Al	Touch screen analog differential Y- position input
XP	Al	Touch screen analog differential X+ position input
YP	Al	Touch screen analog differential Y+ position input
VBAT	Al	VBAT direct input *1
AUX1	Al	Auxiliary Input

AUX2	Al	Auxiliary Input
------	----	-----------------

NOTE:

*1: Users who already deployed resistor networks on board level can use VBAT to direct measure the battery value.

1018 eiffel@126.com internal used only

13.2 Register Description

In this section, we will describe the registers in SAR A/D controller. Following table lists all the register definitions. All registers' 32bit addresses are physical addresses. And detailed function of each register will be described below.

Table 13-2 SADC Register Description

Name	Description	RW	Reset Value	Address	Access Size							
ADENA	ADC Enable Register	RW	0x80	0x10070000	8							
ADCFG	ADC Configure Register	RW	0x00040000	0x10070004	32							
ADCTRL	ADC Control Register	RW	0x3F	0x10070008	8							
ADSTATE	ADC Status Register	RW	0x00	0x1007000C	8							
ADSAME	ADC Same Point Time Register	RW	0x0000	0x10070010	16							
ADWAIT	ADC Wait Time Register	RW	0x0000	0x10070014	16							
ADTCH	ADC Touch Screen Data Register	RW	0x00000000	0x10070018	32							
ADVDAT	ADC VBAT Data Register	RW	0x0000	0x1007001C	16							
ADADAT	ADC AUX Data Register	RW	0x0000	0x10070020	16							
ADCLK	ADC Clock Divide Register	RW	0x00041000	0x10070028	32							
ADCMD	ADC Command Register	RW	0x00000000	0x10070024	32							
13.2.1 ADC Enable Register (ADENA) The register ADENA is used to trigger A/D to work.												
The register ADEIWA'S does to tragge, AD to work.												

	ADI	EN	4			.1	3	7,																					0x	100	700	000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											R	lese	erve	ed											POWER	SLP_MD	Doggood	חשא ושפשע	PENDEN	TCHEN	VBATEN	AUXEN
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0

Bits	Name	Description	RW
31:8	Reserved	Writing has no effect, read as zero.	R
7	POWER	SADC Power control bit.	RW
		1: SADC power down	
		0: SADC power on	
		When POWER is set from 1 to 0, you should wait at least 2ms to enable	
		SADC.	
6	SLP_MD	SLEEP Mode Control.	RW
		1:Enter sleep mode	
		0:Exit sleep mode	

5:4	Reserved	Writing has no effect, read as zero.	R
3	PENDEN	Pen Down Detect Enable control.	RW
		0: disable	
		1: enable	
2	TCHEN	Touch Screen Enable Control.	RW
		0: disable	
		1: enable	
1	VBATEN	VBAT Enable Control.	RW
		No matter TCHEN is 1 or 0, VBATEN can be set to 1 to sample the voltage	
		of battery, and when the value of voltage is ready, PBATEN will be cleared	
		by hardware auto.	
0	AUXEN	AUX n Enable Control.	RW
		No matter TCHEN is 1 or 0, AUXEN can be set to 1 to sample the voltage	
		of AUX1, AU2 or AUX3, and when the value of voltage is ready. AUXEN	
		will be cleared by hardware auto.	

NOTES:

- 1 TCHEN, VBATEN and AUXEN can be set to 1 at the same time. The priority of the three mode is AUX > VBAT > TCH.
- 2 SLP_MD, TCHEN can be set to 1 at the same time. The priority of the two mode is SLP_MD > TCH.
- 3 When VBATEN and AUXEN are all 0, SLP_MD can be set to 1.

13.2.2 ADC Configure Register (ADCFG)

The register ADCFG is used to configure the A/D.

	ΑD	CF	<u></u>	g,	/																								0x	100	070	04
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ZZdS			Res	ser\	/ed			Wire_cel_r	Cmd_sel_r			PF	RU			DMA_EN	2///	714		SNUM				R	ese	erve	d			CMD	
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31	SPZZ*1	The X _d Y _d Z _m Z _n of different point measure can be different.	RW
		But the $X_d Y_d Z_m Z_n$ of the same point measure can be same or different.	
		0: The X _d Y _d Z _m Z _n of the same point measure is all the same	
		$(X_dY_dZ1Z2, X_dY_dZ1Z2, X_dY_dZ1Z2, X_dY_dZ1Z2 X_dY_dZ1Z2)$	
		1: The X _d Y _d Z _m Z _n of the same point measure maybe different	
		$(X_dY_dZ1Z2, X_dY_dZ3Z4, X_dY_dZ3Z4, X_dY_dZ1Z2 X_dY_dZ1Z2)$	
30:24	Reserved	Writing has no effect, read as zero.	R

00	14/IDE 051				DIA								
23	WIRE_SEL	0: use 4-wire	•		RW								
		1: use 5-wire											
22	CMD_SEL			mand to control touch panel	RW								
				nand to control touch panel									
21:16	RPU		•	Pen Detection.	RW								
				2kΩ (least sensitive)									
			0.01111110: 64KΩ/62 = 1.03 KΩ										
			(pull-up = $64kΩ$ / binary value of RPU)										
		6'b000010: 6	$64K\Omega/2 = 32K\Omega$	Ω									
		6'b000001: 6	$64k\Omega/1 = 64k\Omega$	(most sensitive) default									
		6'b000000: F	RESERVED (d	lo not use this setting)									
15	DMA_EN	When A/D is	used as Touc	h Screen , DMA_EN is used as follows:	RW								
		0: The samp	le data is read	by CPU									
		1: The samp	le data is read	by DMA									
14:13	XYZ	When A/D is	used in Touch	n Screen mode, XYZ is used as follows:	RW								
		XYZ		Measure									
		00	$X_s \rightarrow Y_s$,500									
		01	$X_d \rightarrow Y_d$	1 115									
		10	$X_d \rightarrow Y_d \rightarrow Z1_d$	\rightarrow Z2 _d or X _d \rightarrow Y _d \rightarrow Z3 _d \rightarrow Z4 _d									
		11	$X_d \rightarrow Y_d \rightarrow Z1_d$	\rightarrow Z2 _d \rightarrow X2 \rightarrow Y2 or									
			$X_d \rightarrow Y_d \rightarrow Z3_d$,→Z4 _d →X2→Y2									
12:10	SNUM	The number	of repeated s	mpling one point. When A/D is used as	RW								
		Touch Scree	n, SNUM is us	sed as follows:									
		SNUM		Number									
		000	Reserved										
		001	1										
	9	010	2										
1	ons	011	3										
)		100	4										
		101	5										
		110	Reserved										
		111	Reserved										
9:2	Reserved	Writing has r	o effect, read	as zero.	R								
1:0	CMD	CMD is used	to choose the	e current sample command when	RW								
		ADENA.AUX	EN is set to 1										
		С	MD	Function									
		00		Reserved									
		01		Measure AUX1 voltage									
		10		Measure AUX2 voltage									
		11		Reserved									
		I	Reserved										

NOTE:

*1: X_s, Y_s means the reference mode of X, Y is single-end mode.

 X_d , Y_d , $Z1_d$, $Z2_d$, $Z3_d$, Z4d means the reference mode of X, Y, Z1, Z2, Z3, Z4 is differential mode.

When you measure Xs you need to make sure that X-plate is driven by external DC power.

When you measure Ys you need to make sure that Y-plate is driven by external DC power.

13.2.3 ADC Control Register (ADCTRL)

The register ADCTRL is used to control A/D to work.

Bits	Name	Description	RW
31:6	Reserved	Writing has no effect, read as zero.	R
5	SLPENDM	In SLEEP mode pen down interrupt mask.	RW
		0: enabled	
		1: masked	
4	PENDM	Pen down interrupt mask.	RW
		0: enabled	
	C C	1: masked	
3	PENUM .	Pen up interrupt mask.	RW
	67	0: enabled	
4	000	1: masked	
2	DTCHM	Touch Screen Data Ready interrupt mask.	RW
		0: enabled	
		1: masked	
1	VRDYM	VBAT data ready interrupt mask.	RW
		0: enabled	
		1: masked	
0	ARDYM	AUX data ready interrupt mask.	RW
		0: enabled	
		1: masked	

13.2.4 ADC Status Register (ADSTATE)

The register ADSTATE is used to keep the status of A/D.

	AD	STA	ΥΤΕ																										0 x	100	700)0C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved																SLP_RDY	Reserved	SLPEND	PEND	PENU	DTCH	VRDY	ARDY								
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:8	Reserved	Writing has no effect, read as zero.	R
7	SLP_RDY	Sleep state bit.	R
		1:The set of sleep mode is ready	
		0:The set of sleep mode is not ready	}
6	Reserved	Writing has no effect, read as zero.	R
5	SLPEND	In SLEEP mode pen down interrupt flag. Write 1 to this bit, the	RW
		bit will clear this bit.	
		1: active	
		0: not active	
4	PEND	Pen down interrupt flag. Write 1 to this bit, the bit will clear this	RW
		bit.	
		1: active	
		0: not active	
3	PENU CS C	Pen up interrupt flag. Write 1 to this bit, the bit will clear this bit.	RW
		1: active	
	Q e	0: not active	
2	DTCH	Touch screen data ready interrupt flag. Write 1 to this bit, the	RW
		bit will clear this bit.	
		1: active	
		0: not active	
1	VRDY	VBAT data ready interrupt flag. Write 1 to this bit, the bit will	RW
		clear this bit.	
		1: active	
		0: not active	
0	ARDY	AUX data ready interrupt flag. Write 1 to this bit, the bit will	RW
		clear this bit.	
		1: active	
		0: not active	

13.2.5 ADC Same Point Time Register (ADSAME)

The register ADSAME is used to store the interval time between repeated sampling the same point. The clock of the counter is clk_us.

13.2.6 ADC Wait Pen Down Time Register (ADWAIT)

The register ADWAIT is used to store the interval time of wait pen down. And the register can be used as the interval time among the different point. The clock of the counter is clk_us.

13.2.7 ADC Touch Screen Data Register (ADTCH)

The read-only ADTCH is corresponded to 16x32 bit FIFO, it keep the sample data for touch screen. 0~11 bits are data, 15 bit is data type. 16~27 bits are data, 31 bit is data type. When write to the register, DATA will be clear to 0.

	AD	TCI	TCH 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12																						0x	100	700)18				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TYPE1	TDATA1														TYPE0		Reserved						٦	ΓDA	TΑ)					
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31	TYPE1	Type of the Touch Screen Data1.	RW
		When A/D is used as Touch Screen, ADCFG.XYZ=10 or XYZ=11:	
		TYPE1=1: $X_d \rightarrow Y_d \rightarrow Z1 \rightarrow Z2$ or $X_d \rightarrow Y_d \rightarrow Z1 \rightarrow Z2 \rightarrow X2 \rightarrow Y2$;	
		TYPE1=0: $X_d \rightarrow Y_d \rightarrow Z3 \rightarrow Z4$ or $X_d \rightarrow Y_d \rightarrow Z3 \rightarrow Z4 \rightarrow X2 \rightarrow Y2$.	
		When A/D is used as Touch Screen, ADCFG.XYZ=00 or XYZ=01:	
		TYPE1=0.	
30:28	Reserved	Writing has no effect, read as zero.	R
27:16	TDATA1	The concert data of touch screen A/D.	RW
15	TYPE0	Type of the Touch Screen Data2.	RW
		When A/D is used as Touch Screen, ADCFG.XYZ=10 or XYZ=11:	
		TYPE0=1: $X_d \rightarrow Y_d \rightarrow Z1 \rightarrow Z2$ or $X_d \rightarrow Y_d \rightarrow Z1 \rightarrow Z2 \rightarrow X2 \rightarrow Y2$;	
		TYPE0=0: $X_d \rightarrow Y_d \rightarrow Z3 \rightarrow Z4$ or $X_d \rightarrow Y_d \rightarrow Z3 \rightarrow Z4 \rightarrow X2 \rightarrow Y2$.	
		When A/D is used as Touch Screen, ADCFG.XYZ=00 or XYZ=01:	1
		TYPE0=0.	3
14:12	Reserved	Writing has no effect, read as zero.	R
11:0	TDATA0	The concert data of touch screen A/D.	RW

NOTES:

1 When A/D is used as Touch Screen, ADCFG.XYZ=00.

The format of touch screen data is as follows:

Type1	Reserved	Data1	Type0	Reserved	Data0
0	000	Ys	0	000	X _s

When A/D is used as Touch Screen, ADCFG.XYZ=01.
The format of touch screen data is as follows:

Type1	Reserved	Data1	Type0	Reserved	Data0
0	000	Y_d	0	000	X _d

3 When A/D is used as Touch Screen, ADCFG.XYZ=10.TYPE=1. The format of touch screen data is as follows:

Type1	Reserved	Data1	Type0	Reserved	Data0
1	000	Y _d	1	000	X _d
1	000	Z2 _d	1	000	Z1 _d

Users need to read twice to get the whole data. The first time reading gets the data Yd and Xd. The second time reading gets the data Z2d and Z1d.

The touch pressure measurement formula is as follows: (You can use formula 1 or formula 2.)

$$R_{\text{TOUCH}} = R_{\text{X-Plate}} \bullet \frac{\text{X-Position}}{4096} \left(\frac{Z_2}{Z_1} - 1 \right)$$
 (1)*1

$$R_{\text{TOUCH}} = \frac{R_{\text{X-Plate}} \bullet \text{X-Position}}{4096} \left(\frac{4096}{Z_1} - 1\right) - R_{\text{Y-Plate}} \bullet \left(1 - \frac{\text{Y-Position}}{4096}\right)$$
 (2)*1

4 When A/D is used as Touch Screen, ADCFG.XYZ=10.TYPE=0. The format of touch screen data is as follows:

Type1	Reserved	Data1	Type0	Reserved	Data0
0	000	Y_d	0	000	X _d
0	000	Z4 _d	0	000	Z3 _d

Users need to read twice to get the whole data. The first time reading gets the data Y_d and X_d . The second time reading gets the data $Z4_d$ and $Z3_d$.

The touch pressure measurement formula is as follows: (You can use formula 3 or formula 4.)

$$R_{\text{TOUCH}} = R_{\text{Y-Plate}} \bullet \frac{\text{Y-Position}}{4096} \left(\frac{Z_4}{Z_3} - 1 \right)$$
 (3)*1

$$R_{\text{TOUCH}} = \frac{R_{\text{Y-Plate}} \bullet \text{Y-Position}}{4096} \left(\frac{4096}{Z_3} - 1\right) - R_{\text{X-Plate}} \bullet \left(1 - \frac{\text{X-Position}}{4096}\right) \tag{4}^{*1}$$

5 When A/D is used as Touch Screen, ADCFG.XYZ=11.TYPE=1. The format of touch screen data is as follows:

	Type1	Reserved	Data1	Type0	Reserved	Data0
1	1008	000	Y _d	1	000	X_d
1	10,	000	Z2 _d	1	000	Z1 _d
1		000	Y2	1	000	X2

Users need to read thrice to get the whole data. The first time reading gets the data Y_d and X_d . The second time reading gets the data $Z2_d$ and $Z1_d$. The third time reading gets the data Y2 and X2.

6 When A/D is used as Touch Screen, ADCFG.XYZ=11.TYPE=0. The format of touch screen data is as follows:

Type1	Reserved	Data1	Type0	Reserved	Data0
0	000	Y _d	0	000	X_d
0	000	Z4 _d	0	000	Z3 _d
0	000	Y2	0	000	X2

Users need to read thrice to get the whole data. The first time reading gets the data Y_d and X_d. The second time reading gets the data Z4_d and Z3_d. The third time reading gets the data Y2 and X2.

NOTE:

*1: To determine pen or finger touch, the pressure of the touch needs to be determined. Generally, it is not necessary to have very high performance for this test; therefore, the 8-bit resolution mode is recommended (however, calculations will be shown here are in 12bit resolution mode).

 $R_{X-plate}$: Total X-axis resistor value (about 200 Ω ~ 600 Ω)

 $R_{Y-plate}$: Total Y-axis resistor value (about 200 Ω ~ 600 Ω)

X-Position: X-axis voltage sample value

Y-Position: Y-axis voltage sample value

Z1, Z2: Z1, Z2 voltage sample value

Z3, Z4: Z3, Z4 voltage sample value

X2, Y2: X2, Y2 voltage sample value

13.2.8 ADC VBAT Data Register (ADVDAT)

used only The read-only ADVDAT is a 16-bit register, it keep the sample data of VBAT. 0~11 bits are data.

0x1007001C **ADBDAT** Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved **VDATA**

Bits	Name	Description	RW
15:12	Reserved	Writing has no effect, read as zero.	R
11:0	VDATA	Data of VBAT A/D convert.	RW
		When write to the register, DATA will be clear to 0.	

The measured voltage V_{BAT} is as follows:

$$V_{BAT} = \frac{VDATA}{4096} \bullet 1.2V$$

13.2.9 ADC AUX Data Register (ADADAT)

The read-only ADADAT is a 16-bit register, it keep the sample data. 0~11 bits are data.

	AD:	SDAT 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1																								0 x	100	700)20			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved																			AD	ΔΤΑ										
		Reserved																														
PST	O	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	0

Bits	Name	Description	RW									
15:12	Reserved	Writing has no effect, read as zero.										
11:0	ADATA	Data of AUX.	RW									
		When write to the register, DATA will be clear to 0.										
The measured voltage V_{AUX} (V_{AUX1} and V_{AUX2}) is as follows: $V_{SAD} = \frac{ADATA}{4096} \bullet AVDD33$												
13.2.10 ADC Clock Divide Register (ADCLK)												

$$V_{SAD} = \frac{ADATA}{4096} \bullet AVDD33$$

13.2.10 ADC Clock Divide Register (ADCLK)

The register ADCLK is used to set the A/D's clock dividing number.

ADCLK 0x10070028 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CLKDIV_MS CLKDIV_US **CLKDIV**

Bits	Name	Description	RW
31:16	CLKDIV_MS	Dividing number to get ms clock from ADC clock.	RW
		ms_clk = us_clk / (CLK_MS +1)	
15:8	CLKDIV_US	Dividing number to get us clock from ADC clock.	RW
		us_clk = adc_clk / (CLKDIV_US+1)	
		0 ≤CLKDIV_10 ≤127	
7:0	CLKDIV	Dividing number to get ADC clock from device clock.	RW
		The A/D works at the frequency between 20KHz and 200KHz.	
		If CLKDIV = N, Then the freq of adc_clk = dev_clk / (N+1).	
		0 ≤ N ≤ 255	

13.2.11 ADC Command Register (ADCMD)

ADC Command Register ADCMD is used for write touch screen control command by software. Then, if the cmd_sel_r = 1, the controller will read ADCMD's command, then use command to control touch screen. The controller has 32x32 bit FIFO to store commands, the command format like this.

	AD	СМ	D																										0x	100	700)24
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PIL		F	RPU	J		XPSUP	ANSNX	YPSUP	XPGRU	XNGRU	YNGRU	VREFNAUX	VREFNXN	VREFNXP	VREFNYN	VREFPVDD33	VREFPAUX	VREFPXN	VREFPXP	VREFPYP	XPADC	XNADC	YPADC	YNADC	WIPEADC	AUX2ADC	AUX1ADC	RPUWP	RPUXP	RPUYP	APIL
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Tons eiffel@126.com internal used only

Bits	Name	Description								
31	PIL	Current used for pressure measurement.	RW							
		0: $Ip = 200\mu A(default)$								
		1: lp = 400µA								
30:26	RPU	Internal Pull-up resistor for Pen Detection.	RW							
25	XPSUP	XP to TPVDD control Switch. 0: open; 1:close.	RW							
24	XNSUP	XN to TPGND control Switch. 0: open; 1:close.	RW							
23	YPSUP	YP to TPVDD control Switch. 0: open; 1:close.	RW							
22	XPGRU	XP to TPGND control Switch. 0: open; 1:close.	RW							
21	XNGRU	XN to TPGND control Switch. 0: open; 1:close.	RW							
20	YNGRU	YN to TPGND control Switch. 0: open; 1:close.	RW							
19	VREFNAUX	ADC low voltage reference to AUX control switch. 0: open; 1: close.	RW							
18	VREFNXN	ADC low voltage reference to XN control switch. 0: open; 1: close.	RW							
17	VREFNXP	ADC low voltage reference to XP control switch. 0: open; 1: close.	RW							
16	VREFNYN	ADC low voltage reference to YN control switch. 0: open; 1: close.	RW							
15	VREFPVDD33	ADC high voltage reference to VDD control switch. 0: open; 12	RW							
		close.								
14	VREFPAUX	ADC high voltage reference to AUX control switch. 0: open; 1:	RW							
		close.								
13	VREFPXN	ADC high voltage reference to XN control switch. 0: open; 1: close.	RW							
12	VREFPXP	ADC high voltage reference to XP control switch. 0: open; 1: close.	RW							
11	VREFPYP	ADC high voltage reference to YP control switch. 0: open; 1: close.	RW							
10	XPADC	Use XP as ADC input channel control switch. 0: open; 1: close.	RW							
9	XNADC	Use XN as ADC input channel control switch. 0: open; 1: close.	RW							
8	YPADC	Use YP as ADC input channel control switch. 0: open; 1: close.	RW							
7	YNADC 💢	Use YN as ADC input channel control switch. 0: open; 1: close.	RW							
6	WIPEADC	Use WIPE as ADC input channel control switch. 0: open; 1: close.	RW							
5 🔨	AUX2ADC	Use AUX2 as ADC input channel control switch. 0: open; 1: close.	RW							
4	AUX1ADC	Use AUX1 as ADC input channel control switch. 0: open; 1: close.	RW							
3	RPUWP	Connect WP to RPU control switch. 0: open; 1: close.	RW							
2	RPUXP	Connect XP to RPU control switch. 0: open; 1: close.	RW							
1	RPUYP	Connect YP to RPU control switch. 0: open; 1: close.	RW							
0	APIL	Use inter current source control switch. 0: open; 1: close.	RW							

13.3 SAR A/D Controller Guide

The following describes steps of using SAR-ADC.

13.3.1 Power Down Mode

- 1 Then initial value of ADENA.POWER is 1, and the state of SADC is in dower down state.
- When you want to use SADC, you should first set ADENA.POWERON to 0 to power on SADC. And you should wait for at least 2ms, then you can enable Touch Screen, VBAT and ALIX
- When you want to power down SADC to get lower power, you should disable Touch Screen, VBAT and AUX, and then set ADENA.POWER to 1.

13.3.2 A Sample Touch Screen Operation

(Pen Down → Sample some data of several points → Pen Up)

- 1 Set ADCTRL to 0x1f to mask all the interrupt of SADC.
- 2 Set DMA_EN to choose whether to use DMA to read the sample data out or to use CPU to read the sample data out.
- 3 Set ADCFG.RPU to choose the Internal Pull-up resistor for Pen Detection.
- 4 Set ADCFG.WIRE_SEL to choose 4-wire or 5-wire mode in pendown detect.
- 5 Set ADCFG.CMD_SEL to choose use hardware inter command or software command control touch screen. If you want to use software command, you must write your command by ADCMD register. And if you want to use hardware inter command, please straight to set ADCFG.SPZZ.
- 6 Set ADCFG.SPZZ and ADCFG.XYZ to choose sample mode.
 - a $X_s \rightarrow Y_s$ (Single-end X \rightarrow Single-end Y).
 - b $X_d \rightarrow Y_d$ (Differential X \rightarrow Differential Y).
 - c $X_d \rightarrow Y_d \rightarrow Z1_d \rightarrow Z2_d$ or $X_d \rightarrow Y_d \rightarrow Z3_d \rightarrow Z4_d$ (Reference register ADCFG.SPZZ) (Differential $X \rightarrow$ Differential $Y \rightarrow$ Differential $Z1 \rightarrow$ Differential Z2 or Differential $X \rightarrow$ Differential $Y \rightarrow$ Differential $Z3 \rightarrow$ Differential Z4).
 - d $X_d \rightarrow Y_d \rightarrow Z1_d \rightarrow Z2_d \rightarrow X2 \rightarrow Y2$ or $X_d \rightarrow Y_d \rightarrow Z3_d \rightarrow Z4_d \rightarrow X2 \rightarrow Y2$ (Reference register bit SPZZ).
- 7 Set ADCFG.SNUM to choose one point sampling times.
- 8 Set ADCLK.CLKDIV, ADCLK.CLKDIV_US and ADCLK.CLKDIV_MS to set A/D clock frequency.
- 9 Set ADWAIT to decide the wait time of pen down and the interval time between sampling different points. This time delay is necessary because when pen is put down or pen position change, there should be some time to wait the pen down signal to become stable.
- 10 Set ADSAME to decide the interval time between repeated sampling the same point. User can repeat sampling one point to get the most accurate data.
- 11 Set ADCTRL.PENDM to 0 to enable the pen down interrupt of touch panel.
- 12 Set ADENA.TCHEN to 1 to start touch panel.
- 13 When pen down interrupt happened, you should set ADCTRL.PENDM to 1 and clear

- ADSTATE.PEND to close pen down interrupt. Then you should clear ADSTATE.PENDU and set ADCTRL.PENUM to 0 to enable pen up interrupt.
- 14 When pen down interrupt happened, the SARADC is sampling data. When ADSTATE.DTCH to 1, user must read the sample data from ADTCH. The SARADC will not sample the next point until the whole data of the one point are read (no matter by CPU or DMA). If ADCFG.XYZ is mode zero and mode one, user needs to read 1*ADCFG.SNUM times to get the whole data. In mode two, user needs to read 2*ADCFG.SNUM times to get the whole data. And in mode three, user needs to read 3*ADCFG.SNUM times to get all data.
- 15 Repeat 14 till pen up interrupt happened.
- 16 When pen up interrupt happened, you should set ADCTRL.PENUM to 1 and clear ADSTATE.PENU. Then you should clear ADSTATE.PEND and set ADCTRL.PENDM to 0 to enable pen down interrupt.
- 17 Wait pen down interrupt and repeat from 13.
- 18 When you want to shut down the touch screen, user can set the ADENA.TCHEN to 0. If the used only last point is not sampled completely, user can abandon it.

13.3.3 SLEEP mode Sample Operation

- 1 If the register ADCLK have not been set before, you should set ADCLK.CLKDIV, ADCLK.CLKDIV US and ADCLK.CLKDIV MS to set A/D clock frequency.
- 2 Clear ADSTATE.SLP_RDY, then you can set ADENA.SLP_MD to 1. When ADSTATE.SLP RDY = 1, the Touch Screen is have entered the SLEEP mode.
- After that you should clear ADSTATE. SLPEND and set ADCTRL. SLPENDM to 0 to enable "in SLEEP mode pen down interrupt" and mask all other interrupts. Then you can execute the SLEEP instruction to enter the SLEEP mode.
- 4 When "in SLEEP mode pen down interrupt" happened, it will switch from the SLEEP mode to NORMAL Then you should set ADCTRL.SLPENDM to 1 and clear ADSTATE.SLPEND to close in SLEEP mode pen down interrupt". Clear ADSTATE.SLP RDY, and you should set ADENA.SLP MD to 0. When ADSTATE.SLP RDY = 1, the Touch Screen is have exited the SLEEP mode.
- 5 Then you can do any other operations.

13.3.4 VBAT Sample Operation

- Set ADCLK.CLKDIV, ADCLK.CLKDIV_US and ADCLK.CLKDIV_MS to set A/D clock frequency.
- 2 Set ADCFG.CH MD to choose VBAT test mode channel.
- Set ADENA.VBATEN to 1 to enable the channel.
- When ADSTATE.VRDY = 1, you can read the sample data from ADVDAT. And the VBATEN will be set to 0 auto.

13.3.5 AUX Sample Operation

- Set ADCFG.CMD to choose one CMD. (AUX1 or AUX2)
- Set ADCLK.CLKDIV, ADCLK.CLKDIV US and ADCLK.CLKDIV MS to set A/D clock frequency.
- 3 Set ADENA.AUXEN to 1 to enable the channel.
- When ADSTATE. ARDY = 1, you can read the sample data from ADADAT. And the AUXEN will be set to 0 auto.

13.3.6 Disable Touch Screen

- When ADENA.TCHEN=1, ADENA.VBATEN=0, ADENA.AUXEN=0.
- Set ADENA.TCHEN to 0.
- Read ADENA.TCHEN till it is set to 0 by hardware, then Touch Screen is fully disabled.

13.3.7 Multi-touch Operation

If you want to detect multi-touch, you should follow to steps as below.

- Set ADCTRL.PENDM to 0 to enable the pen down interrupt of touch panel.
- Set ADCFG.TCHEN=1 to start touch panel.
- 4 When pen down interrupt happened, you should set ADCTRL.PENDM to 1 and clear ADSTATE.PEND to close pen down interrupt. Then you should clear ADSTATE.PENDU and set ADCTRL.PENUM to 0 to enable pen up interrupt.
- 5 When ADSTATE.DTCH to 1, you can read the sample data from ADTCH. The measured data recorded as X2₁, Y2₁, You need to compare the measurement values of X2₁, Y2₁ and calibration values of X2, Y2. If X2₁<X2 and Y2₁<Y2, now is two points touch.
- 6 If the next measure is two points touch, the measured data recorded as X2₂, Y2₂, you can compare the X2₁, y2₁ and X2₂, Y2₂. If X2₂ > X2₁ and Y2₂ > y2₁, the touch movement state is shrinkage; if X2₂ <X2₁ and Y2₂ < Y2₁, the touch movement state is expand.

NOTE: Before in normally measurement ,you must calibration the values of X2 and Y2. When you calibration the X2, Y2 value, you need a single point of touch the touch panel, record the measurements data. Then repeat these measurements at least three times, recording measure data is X2₁, X2₂, X2₃ and Y2₁, Y2₂, Y2₃. You can use the formula (5),(6) to calculate the X2, Y2 value.

$$X 2 = \frac{X 2_1 + X 2_2 + X 2_3}{3} \tag{5}$$

$$Y 2 = \frac{Y 2_1 + Y 2_2 + Y 2_3}{3} \tag{6}$$

13.3.8 Use Software Command Operation

If you want to use software write command, you should follow to steps as below.

- 1 Set ADCFG.CMD SEL =1.
- 2 Read ADCMD register once, discard the read-in data. This reading purpose is to activate the command logic.
- 3 Write you command to ADCMD register.
- 4 Write 0x00000000 to ADCMD register, indicate the written command is end.
- 5 Set ADENA.TCHEN=1 to start touch panel.

NOTE: The RPU values are 6bits in SARADC, but in ADCMD register, it has 5 bits only. In fact, the lowest RPU bit circuit is given as a fixed value of 1.

13.3.9 Use 5-wire touch panel Operation

If you want to use 5-wrie touch panel, you should complete the following set.

- 1 Set ADCFG.WIRE SEL=1 to use 5-wire pendown detect.
- 2 Write all your commands to the command FIFO through ADCMD register.
- 3 Set ADENA.TCHEN=1 to start touch panel.

NOTE: In 5-wire mode, the ADCFG.SNUM will disable. The control logic will execution the control commands until the command value equals to 0x00000000.

13.3.10 Use External Touch Screen Controller Operation

If you want to use external touch screen controller, you should set ADCENA.TCHEN=0 and ADCENA.PEND=0, than you can use external touch screen controller freely.

NOTE: In this mode, all switches will open(default), but you can use VBAT or AUX sample operation by configure the appropriate register.

13.3.11 Use TSC to support keypad

SADC TSC function can apply to a keypad, if touch screen is not used. Suppose the keypad is a NxM matrix, where X direction has N key columns and Y direction has M key rows. Kij is used to indicate the key in ith column from left to right and jth row from bottom to top, where i=0~(N-1) and j=0~(M-1). Figure 13-1 is a 6x5 keypad circuit. The blue color is for X direction network and pink color is for Y. The networks are composed by resistors and metal line. These two networks should be connected to SADC 4 pins: XP/XN/YP/YN as illustrated in the figure. The gray circle is the key. When no key pressing, X network and Y network is open circuit. When a key is pressed, the X network and Y network is shorted under the key position.

Figure 13-1 6x5 keypad circuit

When SADC is in waiting for pen-down status (C=1100), the equivalent circuit is show in Figure 13-2. When the key is not pressed, XP is open and the PEN is pulled to VDDADC, which is logic 1. When the key Kij is pressed, the circuit is: VDDADC \rightarrow (10k Ω resistor) \rightarrow R_{XP} \rightarrow R_{YN} \rightarrow VSSADC.

Figure 13-2 Wait for pen-down (C=1100) circuit

Where

Figure 13-2 Wait for pen-down (C=1100) circles
$$R_{XP} = \frac{(N-1)^2 - i^2}{M \times (N-1-i) + 2i} \times R$$

$$R_{YN} = \frac{j \times (2M-2-j)}{N \times j + 2M - 2 - 2j} \times R$$
 where logic 0 at PEN in this case, following formula should be above:

To ensure logic 0 at PEN in this case, following formula should be obeyed.

$$R_{xP} + R_{yN} + R_{xP0} + R_{yN0} \le 3k\Omega \tag{7}$$

It is suggested the value of N and M is as close to each other as possible. For N=2~20, M=2~20 and M=(N-1, N or N+1), we found

$$R_{YP} + R_{YN} < 2.7 \times R \tag{8}$$

After key pressing is found, the key Kij location, columns and row, should be measured by using C=0010 and C=0011 respectively. The equivalent circuits are show in Figure 13-3 and Figure 13-4, where

$$R_{X0} = \frac{N-1}{M-1} \times R$$

$$R_{Y0} = \frac{M-1}{N-1} \times R$$

$$R_{XNi} = i \times R$$

$$R_{XPi} = (N-1-i) \times R$$

$$R_{YNj} = j \times R$$

$$R_{YPj} = (M-1-j) \times R$$

Figure 13-3 Measure X-position (C=0010) circuit

Figure 13-4 Measure Y-position (C=0011) circuit

So for Kij pressing, we should get ADC converted number Ni and Nj for i and j respectively.

$$Ni = \frac{R_{XN0} + \frac{i}{M}R}{R_{XN0} + \frac{N-1}{M}R + R_{XP0}} \times 4096$$

$$Nj = \frac{R_{YN0} + \frac{j}{N}R}{R_{YN0} + \frac{M-1}{N}R + R_{YP0}} \times 4096$$

It is required the resistor between XP and XN in case of C=0010, between YP and YN in case of C=0011, must be $\ge 200\Omega$ and it better be $\ge 500\Omega$. Also consider the requirement in formula (7) and (8) above, we suggest to put R_{XP0} = R_{XN0} = R_{YP0} = R_{YN0} = 50Ω or 100Ω , put R = 500Ω ~ $1k\Omega$.

To use the keypad, the software should set:

ADENA.TCHEN = 1

ADCFG.XYZ = 10

The operation is similar to touch screen.

Ions eiffel@126.com internal used only