שאלה 1

$R, RE, coRE, \overline{RE \cup coRE}$

סעיף ב

$$L_2 = \{M : M \text{ is a } TM \text{ s.t.} \{\varepsilon, 0, 1110\} \subseteq L(M) \text{ and } 11111 \notin L(M)\}$$

עם משפט רייס: התכונה היא תכונה של שפה (לפי הגדרה), וגם אם יש שתי מכונות שמקבלות את אותה שפה, אז או שבשתיהן התנאי מתקיים או שלא.

התכונה לא טריוויאלית: מכונה שמקבלת את 11111 לא מקיימת, ומכונה שמקבלת בדיוק את מכונה שמקבלת את 11111 התכונה לא טריוויאלית: מכונה שמקבלת את את מקיימת.

.coRE או REא בשפה). אז ממשפט רייס, השפה לא ב- Σ^* או בנוסף, \emptyset לא מקיימת (כי יש מילים בשפה) וגם בשפה) או בנוסף, Σ

y על קלט $N.N \in L_2$ אי עוצר אז M(arepsilon) אפשר את כך את נייצר את בהינתן הינתן או פשר בהינתן אפשר בהינתן או נייצר את א

- .) אם $y \in \{\varepsilon, 0, 1110\}$ אם .1
- . אחרת, מריץ את $M(\varepsilon)$ ואז מקבל.

$$N(\varepsilon) \in \overline{SHALT} \Longrightarrow N(\varepsilon) = \infty \Longrightarrow \forall y \notin \{\varepsilon, 0, 1110\}: N(y) = \infty \Longrightarrow L(N) = \{\varepsilon, 0, 1110\} \Longrightarrow N \in L_2$$
$$N(\varepsilon) \notin \overline{SHALT} \Longrightarrow N(\varepsilon) \neq \infty \Longrightarrow \forall y : N(y) \neq \infty \Longrightarrow L(N) = \Sigma^* \Longrightarrow N \notin L_2$$

:SHALT-מ

 $:\!\!y$ קלט את N . או $N\in L_2$ אז עוצר אז $M(\varepsilon)$ שאם כך את נייצר את בהינתן M

- . ומקבל $M(\varepsilon)$ את מריץ את $y \in \{\varepsilon, 0, 1110\}$ ומקבל.
 - .2 אחרת, דוחה.

$$N(\varepsilon) \in SHALT \Rightarrow N(\varepsilon) \neq \infty \Rightarrow \forall y : N(y) \neq \infty \Rightarrow L(N) = \{\varepsilon, 0, 1110\} \Rightarrow N \in L_2$$

 $N(\varepsilon) \notin SHALT \Rightarrow N(\varepsilon) = \infty \Rightarrow \forall y : N(y) = \infty \Rightarrow L(N) = \emptyset \Rightarrow N \notin L_2$

סעיף ג

$$L_3 = \{(A, B, k) : A, B \text{ are TMs and } |L(A) \cap L(B)| \ge k^3\}$$

. מספיק מספיק מספיק מבוקרת בהרצה ברצה מבוקרת מקבלים מקבלים מילים. RE אינטואיטיבית: ב-RE

A את ביצר אם אבוכל לדעת אם עוד לא מצאנו מספיק מילים כדי לדחות. נוכיח ע"י רדוקציה מ-SHALT. בהינתן M, נייצר את ב-CORE, כי גם בהרצה מבוקרת, לא נוכל לדעת אם עוד לא מצאנו מספיק מילים כדי לדחות. נוכיח ע"י בחזיר את $M(\varepsilon)$ ואז מקבלת. אם $M(\varepsilon)$ או או $M(\varepsilon)$ או או מקבלת. אם $M(\varepsilon)$ או או מקבלת.

שאלה 2

$$P, NP, coNP, \overline{NP \cup coNP}$$

סעיף א

$$L_4 = \left\{ \varphi : \varphi \text{ is a formula of } n \text{ variables and } > \frac{5}{8} \text{ of assignments are satisfying} \right\}$$

 $L_4 \in \overline{NP \cup coNP}$ אז $\overline{L_4}$ -א שייכות כדי לבדוק שייכות ל-בדוק השמות כדי לבדוק שייכות ל- $\frac{3}{8} \cdot 2^n = O(2^n)$ -ו או בריך לבדוק שייכות ל- $\frac{5}{8} \cdot 2^n = O(2^n)$ אז

$$L_5 = \left\{ \varphi 1^{2^n} : \varphi \text{ is a formula of } n \text{ variables and } > \frac{7}{8} \text{ of assignments are satisfying} \right\}$$

סעיף ב

x שלכל עד פולינומי בזמן פולינומי להן שיש להן שרצה בזמן פולינומי כך שלכל: מחלקת x

$$x \in L \Longrightarrow P[M(x) = 1] \ge 1/2$$
, $x \notin L \Longrightarrow P[M(x) = 1] < 1/2$

.coPP- מוכל מוכל ב- $PP \subseteq coRP \subseteq BPP$ ומכיוון ש- $BPP \subseteq coPP$, הקבל הגדרה,

שאלה 3

סעיף ב

:הוכחה NP = coNP אז P = NP אם

נניח P = NP אז:

 $L \in NP \iff^{\aleph} L \in P \iff^{\beth} \overline{L} \in P \iff^{\aleph} \overline{L} \in NP \iff^{\gimel} L \in coNP$

- P = NP -ש.
 - ב. סגירות P למשלים.
 - .coNP ג. הגדרת

שאלה 4

סעיף א

ומ"ט מהסוג הזה הוא בפרט מ"ט רגיל.

סעיף ב

מכיוון שהמודל החדש שקול למ"ט רגיל, הדרישה היא בעצם:

$$L = \{M : there \ exists \ a \ TM \ M' \ s.t. \ L(M) \subset L(M')\}$$

 $L \notin RE$ אמקיימת לפי רייס המורחב לא Σ^* לא מקיימת) והיא תכונה לא טריוויאלית (השפה הריקה מקיימת, Σ^* לא מקיימת) והיא תכונה לא טריוויאלית