SCHOOL OF COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE			DEPARTMENT OF COMPUTER SCIENCE ENGINEERING		
Program Name: B. Tech		Assignment Type: Lab Acad		Academic Year: 2025-26	
Course Coordinator Name		Dr.Vairachilai Shenbagavel			
Instructor(s) Name		Srinivas Komakula			
Course Code	23CA201SE402	Course Title	Explainable AI (P)		
Year/Sem	III/V	Regulation	R24		
Date and Day of Assignment	28-08-2025	Time(s)	09:00AM -05:00PM		
Duration	2 Hours	Applicable to Batch	23CSBTB41		

Assignment Number: 04

Q. No.	Onestion	Expected Time to complete
1	Energy Efficiency (Regression)	

Objectives:

- Use Permutation Importance to identify building features that influence heating/cooling loads.
- Apply SHAP for global and local interpretations.
- Use LIME to generate explanations for two buildings.
- Compare and contrast across PI, SHAP, and LIME.

Assignment Details:

- Goal: Understand which architectural and material features drive building energy efficiency.
- Data: UCI Energy Efficiency dataset.
- Model: RandomForestRegressor

Steps:

- 1. Train RandomForestRegressor.
- 2. Permutation Importance: Rank features such as surface area, wall area, roof area.
- 3. SHAP: Global summary plot + force plot for one building.
- 4. LIME: Explain predictions for two buildings with different energy demands.
- 5. Compare results across methods.

Deliverables:

- PI bar chart.
- SHAP summary plot + local explanation.
- LIME explanations for 2 buildings.
- Comparative discussion.

Submission Requirements:

- Short methods summary (3–5 lines).
- Clean, runnable code/notebook.
- All required plots (PI, SHAP global + local, LIME local).
- 5–10 bullet insights highlighting consistencies and differences.