Banks DB descStats

Emi

30/03/2021

R Markdown

Descriptive statistics for a probit model. Data is from 1997q4 to 2001q12.

FECHAdata contains the quarter in R format. It is built from the quarterly variable for Stata (FECHA_Q).

`summarise()` ungrouping output (override with `.groups` argument)

Descriptive statistics

Missing values as %

Show 10 v entries Search:

Percentage of missing values (%)

FECHAdataAnio	ActivoN_M	C8Est_w_M	CAR_IRR_3A6_M	P_ROA_M	P_DEP_ARS_RATE_M	P_LOANS_ARS_RATE_W_N
All	Al	All	All	А	All	All
1997	9	9	11	11	18	
1998	3	3	3	3	10	
1999	0	0	1	1	8	
2000	0	0	23	2	20	
2001	1	1	38	1	49	2

Banks desc stats table

Sample features

Showing 1 to 5 of 5 entries

Previous

Next

`summarise()` ungrouping output (override with `.groups` argument)

Show 10 v entries	Search:
	V1
N	159.00
Т	17.00
NxT	2,703.00
Avg n	12.81
Showing 1 to 4 of 4 entries	Previous 1 Next

varsList <- c('ActivoN', 'C8Est_w', 'CAR_IRR_3A6', 'P_ROA', 'P_DEP_ARS_RATE', 'P_LOANS_ARS_RATE_W', 'APRSpNF_RATE_W', 'APRSDNF_RATE_W', 'A SD_RATE', 'APR_RATE_W', 'GDP_D_Q', 'ARG_YTM') dSVals <- dbX %>% summarise(across(all of(varsList), list('min' = ~min(.x, na.rm=TRUE), 'median' = ~round(median(.x, na.rm=TRUE)), 'mean' = ~mean(.x, na.rm=TRUE), 'max' = ~round(max(.x, na.rm=TRUE)), 'SD' = ~round(sd(.x, na.rm=TRUE))))) descStatsTibble <- tibble('min' = as_vector(select(dSVals, ends_with('min'))),</pre> 'median' = as_vector(select(dSVals, ends_with('median'))), 'mean' = as_vector(select(dSVals, ends_with('mean'))), 'sd' = as_vector(select(dSVals, ends_with('sd'))), 'max' = as_vector(select(dSVals, ends_with('max')))) rownames(descStatsTibble) <- c('Assets \$', 'Equity/Assets (%)', 'Non-perfomring loans/Loans (%)', 'ROA (%)', 'Deposits interst rate (%)', 'Loans interest rate (%)', 'Public sector loans/Loans (%)', 'USD loans/Loans (%)', 'Loans/Assets (%)', 'Seas-a (%)', 'ROA (%)', 'ROA (%)', 'ROA (%)', 'Deposits interest rate (%)', 'Loans interest rate (%)', 'Public sector loans/Loans (%)', 'USD loans/Loans (%)', 'Loans/Assets (%)', 'Seas-a (%)', 'ROA (%)', 'Rdjusted quarterly chg GDP (%)', 'Country risk (%)')

Warning: Setting row names on a tibble is deprecated.

datatable(descStatsTibble) %>%
formatRound(columns=c('min', 'median', 'mean', 'sd', 'max'))

Show 10 v entries				Search:	
	min	median	mean	sd	max
Assets \$	1,051.00	229,710.00	1,181,350.25	2,740,041.00	18,187,022.00
Equity/Assets (%)	0.14	13.00	22.17	21.00	96.00
Non-perfomring loans/Loans (%)	0.00	10.00	13.31	12.00	100.00
ROA (%)	-84.21	0.00	-0.52	6.00	31.00
Deposits interst rate (%)	0.00	5.00	5.26	4.00	30.00
Loans interest rate (%)	0.00	22.00	21.71	11.00	49.00
Public sector loans/Loans (%)	0.00	0.00	6.59	12.00	67.00
USD loans/Loans (%)	0.00	56.00	54.83	26.00	100.00
Loans/Assets (%)	0.00	55.00	53.10	19.00	93.00
Seas-adjusted quarterly chg GDP (%)	-5.69	0.00	-0.67	2.00	2.00

Showing 1 to 10 of 11 entries

4/23/2021 Banks DB descStats

Previous 1 2 Next

APR RATE W is the ratio of Loans to Assets in percentage (%).

Failure descriptive statistics

Create quarterly dates and choose observations for banks alive by 1997q4.

This give 139 entities

For each quarter I count how many banks die and are alive.

```
# Count failures by quarter
failuresByQ <- dbEnts %>%
                # TODO: plot of exit by types group_by(EXIT_DATE_Q, EXIT_TYPE) %>%
                group_by(EXIT_DATE_Q) %>%
                count(., name='N_FAILS') %>%
                rename(Q = EXIT_DATE_Q)
allQs <- seq.Date(from=ymd('1997-10-01'), to=ymd('2004-12-31'), by='quarter') \%
          quarter(., with_year = TRUE)
# For each quarter, count alives at the beginning of the quarter
alives <- map_int(allQs, function(thisQ)</pre>
      dbEnts %>% arrange(IDENT) %>%
      filter(., START_Q <= thisQ & (EXIT_DATE_Q > thisQ) ) %>%
      nrow()
failsByTime <- left_join( tibble('Q' = allQs,'TOTAL_ENTS' = alives),</pre>
                            failuresByQ,
                          by='Q') %>%
              replace(., is.na(.), 0) %>%
              mutate(., HAZ_RATE = (N_FAILS/TOTAL_ENTS)*100,
                        SUR_RATE = (TOTAL_ENTS/139)*100)
```

Plots:

```
#ggplot(data=failuresByQ, mapping=aes(x=Q, y=N_FAILS, fill=EXIT_TYPE)) +
# ggplot(data=failuresByQ, mapping=aes(x=Q)) +
# geom_col(aes(y=N_FAILS)) +
# scale_x_continuous(name='Quarters') +
# theme(axis.text.x = element_text(angle=90, vjust=0.5)) +
# scale_y_continuous(name='Failure rate (%)') +
# coord_cartesian(ylim=20) +
# labs(title='Instantaneous failure rate (hazard)')
#

ggplot(data=failsByTime, mapping=aes(x=Q, y=SUR_RATE)) +
geom_line() +
# geom_curve(aes(xend=)) +
scale_x_continuous(name='Quarters') +
scale_y_continuous(name='Survival rate (%)') +
labs(title='Empirical survival function')
```


Export data to Matlab

Merge EXIT_DATE_Q with covariates X

In dbX, there are nrow(dbX) observations, and length(unique(dbX\$IDENT)) entities; and ncol(dbX) variables. There should be n=2037, np=159, and k=18. In dbEnts, there are nrow(dbEnts) observations, and length(unique(dbEnts\$IDENT)) entities; and ncol(dbEnts) variables. There should be n=2037, np=159, and k=18. All entities in dbEnts should have a match in dbX

Entitines in dbEnts without a match in dbX

```
xo <- anti_join(dbEnts, dbX, by='IDENT')
```

Choose X data on 1997-12.

```
X <- Xt %>%
    mutate('constant' = 1, .before=ActivoN) %>%
    write_csv(., 'probit/X.csv')

Y <- Yt %>%
    write_csv(., 'probit/Y.csv')
# solve(t(X) %*% X) %*% t(X) %*% Y

# For the probit the macro vars have no role
```

Try to estimate here

```
#h <- rms::orm(Y ~ Xt$ActivoN + Xt$C8Est_w + Xt$CAR_IRR_3A6 + Xt$P_ROA + Xt$P_DEP_ARS_RATE + Xt$P_LOANS_ARS_RATE_W + Xt$APRS
pNF_RATE_W + Xt$APR_USD_RATE + Xt$APR_RATE_W, family=probit)
p <- glm(as.matrix(Y) ~ X$constant + X$ActivoN + X$C8Est_w + X$CAR_IRR_3A6 + X$P_ROA + X$P_DEP_ARS_RATE + X$P_LOANS_ARS_RATE
_W + X$APRSpNF_RATE_W + X$APR_USD_RATE + X$APR_RATE_W, family=binomial)
p
```

```
##
## Call: glm(formula = as.matrix(Y) ~ X$constant + X$ActivoN + X$C8Est_w +
      X$CAR_IRR_3A6 + X$P_ROA + X$P_DEP_ARS_RATE + X$P_LOANS_ARS_RATE_W +
##
      X$APRSpNF_RATE_W + X$APR_USD_RATE + X$APR_RATE_W, family = binomial)
##
##
## Coefficients:
           (Intercept)
                               X$constant
                                                       X$ActivoN
             1.823e+00
                                                       2.579e-07
##
                                        NA
            1.823e+00 NA
X$C8Est_w X$CAR_IRR_3A6
1.861e-02 -4.717e-02
##
                                                       X$P_ROA
##
                                                       1.346e-01
     X$P_DEP_ARS_RATE X$P_LOANS_ARS_RATE_W X$APRSpNF_RATE_W
##
        9.762e-02
X$APR_USD_RATE
##
                               -9.006e-03
                                                       1.824e-02
##
                              X$APR_RATE_W
            -1.417e-02
##
                               -2.402e-02
##
## Degrees of Freedom: 110 Total (i.e. Null); 101 Residual
## Null Deviance: 152.4
## Residual Deviance: 129.1
                             AIC: 149.1
```