Administrative

- MATLAB1 due @ midnight tonight
 - -Turnitin problems? Check 'howto' guide in Lecture4 folder on Trunk. Most importantly, use the shibboleth website
- MATLAB2 is open on Trunk, due midnight 10/2 (related to today's lecture)
- See HW_Sampling.pdf in Lecture 5 folder 2 small problems due next Monday

Updated schedule, from Trunk

Date						
		Unit	Topic	book section # (P&M)	OUT-MATLAB	IN-MATLAB
6-Sep	1	review	Course overview; LTI systems	2.1-2.2	MATLAB1	
11-Sep	2	review	Convolution, start Z transform	2.3-2.4		
13-Sep	3	review	Z, Fourier transform	3.1-3.2; 4.1, 4.4		
18-Sep	4	review	Sampling	6.1, 6.2		
20-Sep	5	"review"	Reconstruction	66	MATLAB2	MATLAB1
25-Sep	6	LTI systems	LTI system analysis using Z-transform; Rational systems	3.5, some of 3.6		
27-Sep	7	LTI systems	LTI systems analysis using the Fourier transform	5.1,5.2		
2 Oct	8	LTI systems	Phase and group delay, geometric interpretation	5.4		MATLAB2
4-Oct	9	LTI systems	15 min quiz, lectures 1-6. Filter design by pole-zero placement, common simple filters	5.4	MATLAB 3	

EE-125: Digital Signal Processing

Lecture 5:
Review of Sampling (A/D) and
Reconstruction (D/A)

Professor Tracey

Lecture 5: Outline

- Finish up sampling from (A/D)
- Signal reconstruction (Digital-to-analog, or D/A)
 - -Idealized vs. practical reconstruction
- Aliasing

Link to book:

- Idealized sampling and reconstruction is P&M 6.1
- Practical A/D and D/A is in 6.3
- (Bonus topic) Band-limited sampling (P&M 6.4.1) Worth knowing about, but not on HW/tests

Questions (from last lecture)

Continuous time (CT)
$$x(t)$$
, $X(f)$

Discrete time (DT)
$$x(n), X(\omega)$$

- 1) How are CT quantities (time t, frequency f) related to DT quantities (sample n, radial frequency ω)?
- 2) How does the process of sampling affect the frequency response?

Sampling, in frequency domain

1) We start with the true CT signal, in continuous frequency. Here the signal is a cosine (peaks) plus other content

2) We take samples at t = nT, (time domain pulse train) where T = 1/Fs, the sampling rate.

Mathematically, we multiply x(t) by D(t), a pulse train.

D(F) is shown here.

Infinite # of copies at +/- 2 Fs, +/- 3 Fs, etc

Sampling - continued

- 3) The sampled signal's spectrum is X * D.
- Periodic w/ period Fs
- Get overlap if B>Fs/2

4) Mapping from F to ω is:

Fs ->
$$2\pi$$

Fs/2 -> π

B->
$$2 \pi$$
 B/Fs = $\omega 1$

Practical A/D: Sample and Hold

Figure 6.3.1 (a) Block diagram of basic elements of an A/D converter; (b) time-domain response of an ideal S/H circuit.

Practical A/D: quantization

- A/D output is in integer "counts", or levels
- Spacing of levels is the quantization step:
 Δ = (Xmax-Xmin)/(L-1)
 for L levels (figure shows L=8)

Lots more detail in P&M 6.3

Figure 6.3.3 Example of a midtread quantizer.

Reconstruction (D/A) Really simple in pictures (in freq)....

The sampled signal's spectrum is X * D.

Mapping from ω to F: Fs -> 2π Fs/2 -> π f1 -> 2π f1/Fs = ω 1 - Fs -B B Fs

-Fs/2

-Fs

For idealized reconstruction, we use a perfect **ANALOG** low pass filter (LPF)...

-Fs -f1 f1 Fs F

Fs/2

H(**F**)

... thus recovering the original spectrum

Amplitude T

Fs

F

Sinc-based interpolation during reconstruction

Figure 6.1.2 Reconstruction of a continuous-time signal using ideal interpolation.

See 'recon.pdf' on Trunk for derivation

Practical D/A: Sample & Hold + LPF

Figure 6.3.8 Response of an S/H interpolator to a discrete-time sinusoidal signal.

Then, pass S/H output through a low-pass filter to smooth out the rough edges

This is a fairly simple system that can be analyzed exactly....

Setup for Matlab2, 2nd part

- D/A converters (this lecture): convert x(n) to x(t) by interpolating the original samples x(n) (at times t = nT) to other times t
- Matlab2, 2nd part: goal is to study reconstruction without having you build hardware!
 - Write code that interpolates the original samples x(n)
 (at times t = nT) to other discrete time points
 between the original samples
 - -A picture should help...

Sinc-based interpolation during reconstruction

Figure 6.1.2 Reconstruction of a continuous-time signal using ideal interpolation.

Question: how would linear interpolation in time look?

Aliasing (related to part 1 of MATLAB2)

- Aliasing of sinusoidal components
- Aliasing of non-bandlimited signals
 - Definition of bandlimited
- Need for prefiltering before A/D

Sampling refresher – Aliasing in the frequency domain (DTFT)

1) Here we are well sampled – high Fs

2) Here we've lowered sampling rate so Fs/2 $(\omega=\pi)$ is just a little larger than the max frequency

3) Here we've lowered sampling rate so Fs/2 ($\omega = \pi$) is < signal frequency; signal is **aliased**

4) After low-pass filtering and reconstruction, sinusoid appears at lower frequency

Video example of aliasing

https://www.youtube.com/watch?v=lEOF9VDE_kk

Aliasing of non-bandlimited signals (see example in book)

Figure 6.1.7 (a) Analog signal $x_a(t)$ and its spectrum $X_a(F)$; (b) $x(n) = x_a(nT)$ and its spectrum for $F_s = 3$ Hz; and (c) $x(n) = x_a(nT)$ and its spectrum for $F_s = 1$ Hz.

Lecture 5: Outline

- Review of sampling from last week (A/D)
- Signal reconstruction (Digital-to-analog, or D/A)
- Band-limited sampling (P&M 6.4.1)
 - -For reading only...

A quick question

•True or false:

The Nyquist criterion says that we should sample at twice the highest frequency in the data

A quick question

•True or false:

The Nyquist criterion says that we should sample at twice the highest frequency in the data

It says to sample at Fs>2B

where B is <u>bandwidth</u> – not necessarily the highest frequency

Sampling/reconstruction of bandpass signals

- We often think of the sampling theorem as stating "sample at twice the highest frequency of the signal"
- Really, it states "sample at twice the bandwidth".
 - For most signals, the bandwidth is from 0 Hz to the highest frequency of interest
 - However, when signals are bandpass (0 outside some range F1<F<F2) we can exploit this
- See section 6.4 for discussion of bandpass sampling
 - Integer band positioning (6.4.1) will be explored as part of MATLAB1.
 - Arbitrary band positioning is much more involved but same general idea

Integer band sampling, graphically

This bandpass signal is an example of integer band positioning, with highest frequency = integer multiple of the bandwidth; Fh = mB (here m=2)

Sampled signal, Fs > 2*2B (>twice highest frequency). Here, the periodic repetitions of the signal (orange) don't encroach into the [-pi, pi] region.

Integer band sampling, graphically

Sampled signal, lower sample rate: 2B < Fs < 2*2B. Aliasing is clear. Note, plot doesn't show signals centered around +/- 4 pi, etc.

Sampled signal, even lower sample rate: Fs = 2B. No overlap, so signal can be recovered!

Here, showing signals centered around +/- 4 pi in green, but not +/- 6 pi – those would fill in the other gaps

Wavelet decomposition – one use of bandpass sampling

- •With wavelets, we split a iteratively split a signal into low-pass and high-pass components. If the filters are designed correctly (special filters needed) then we can reconstruct the signal
- •Bandpass sampling says that the highpass and lowpass signals at each stage can sampled at half the rate of the previous stage (as each contains half the bandwidth).
- This limits the data storage needed

Wavelet compression (JPEG2000)

- Example from image processing.
- The image can be split iteratively into bandpass versions w/o increasing storage
- Because many
 wavelet coefficients
 are zero, we don't
 need to store them
 this leads to
 compression

High freq

