This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(3)

@

Int. Cl. 2:

C 07 C 127-19 C 07 C 147-06

A 61 K 31-17

® BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift 1 2

Aktenzeichen:

P 23 34 355.7-42

Anmeldetag:

6. 7.73

Offenlegungstag:

16. 1.75

(30) Unionspriorität:

@ @ 3

Anmelder:

Bezeichnung: Diphenylharnstoffderivate und ihre Herstellung

Farbwerke Hoechst AG, vormals Meister Lucius & Brüning,

6000 Frankfurt

0 Erfinder: Raether, Wolfgang, Dr., 6072 Dreieichenhain; Schönowsky, Hubert, Dr.,

6074 Urberach; Hörlein, Gerhard, Dr., 6000 Frankfurt;

Winkelmann, Erhard, Dr., 6233 Kelkheim

FARBWERKE HOECHST AG vormals Meister Lucius & Brüning

Az.:

HOE 73/F 192

Datum: 5. Juli 1973

Dr.KM/Hei

Diphenylharnstoffderivate und ihre Herstellung

Als Mittel gegen Coccidiose ist 4,4'-Dinitrodiphenylharnstoff (Nicarbazin) bekannt. Seine Wirkung ist jedoch nicht immer befriedigend.

Gegenstand der Erfindung sind substituierte Diphenylharnstoffderivate der Formel

$$\begin{array}{c|c}
R_1 & R_2 \\
NII-C-NH-R_3 \\
X & R_4
\end{array}$$
(1)

worin R Wasserstoff, Chlor, Brom, die Methyl-, Trifluormethyl-, Methoxy- oder Nitrogruppe,
R1 einen Alkyl-, Alkoxy- oder Alkylthiorest mit 1 bis 3

C-Atomen od r einen Alkenoxyrest mit 2 bis 3 C-Atomen, welche Reste ihrerseits mit 2 bis 6 Fluoratomen substitutert sein und zusätzlich weitere Halogenatome, vorzugsweise Chlor und/oder Fluor enthalten können,

Cyclohexyl, einen Phenoxyrest, der ein- oder zweimal mit Chlor und/oder Trifluormethyl substituiert ist, einen Alkylsulfonylrest mit 1 bis 2 C-Atomen, der mit Halogen, insbesondere Chlor und/oder Fluor, substituiert sein kann, den Fluorsulfonylrest, einen Phenylsulfonylrest, der mit der Gruppe -NO₂, -HN-C-CH₃

oder -N-CH-N-(CH3)2 substituiert ist oder den

worin

- für einen Alkoxy- oder Alkylthiorest mit 1 bis 2 C-Atomen oder den Vinyloxyrest steht, welche Reste mindestens einmal mit Halogen, insbesondere Chlor und/oder Fluor, substituiert sind.
- R2 Wasserstoff, Halogen oder einen Alkyl-, Alkoxy-, Alkylthio-Rest mit 1 bis 2 C-Atomen oder den Vinyloxyrest,
 welche Reste mit Halogen, vorzugsweise Fluor und/oder
 Chlor, substituiert sind,
- R₃ Wasserstoff, Chlor, die Trifluormethyl- Methoxy- oder Nitrogruppe,
- R₄ Wasserstoff, Chlor oder die Trifluormethylgruppe bedeuten

wobel mindestens einer der Reste \mathbf{R}_2 und \mathbf{R}_3 nicht Wasserstoff 1st und worln

X Sauerstoff oder Schwefel bedeutet.

Vorzugsweise kommen Verbindungen der allgemeinen Formel I in Betracht, worin

- R Wasserstoff, die Trifluormethyl-, Methoxy- oder Nitrogruppe,
- einen Alkoxy- oder Alkylthiorest mit 1 2 C-Atomen oder den Vinyloxyrest, welche Reste ihrerseits mit 2 Fluoratomen substituiert sein und zusätzlich weitere Halogenatome, vorzugsweise Chlor, enthalten können, oder den

worin

- R' einen Alkoxy oder Alkylthiorest mit 1 oder 2 C-Atomen oder den Vinyloxyrest darstellt, welche Reste mit Halogen, insbesondere Chlor und/oder Fluor, substituiert sind,
- R₂ Wasserstoff, einen Alkoxy-, Alkylthiorest mit 1 bis 2
 C-Atomen oder den Vinyloxyrest oder mit einem oder zwei
 Halogenatomen vorzugsweise Fluor und/oder Chlor, substituiert sind,
- R₃ Wasserstoff oder die Trifluormethyl- oder die Nitrogruppe und
- $R_{\mathcal{A}}$ Wasserstoff oder die Trifluormethylgruppe bedeuten,

wobei mindestens einer der Reste R_2 und R_3 nicht Wasserstoff ist, und worin

X Sauerstoff oder Schwefel bedeutet.

Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung der Diphenylharnstoffderivate der Formel I, das dadurch gekenn-

409883/1438

١

zeichnet ist, daß man vorzugsweise molare Mengen ines substituierten Phenylisocyanates bzw. Isothiocyanates (II) m1t ein m substituierten Anilin (III) umsetzt.

Die Umsetzung erfolgt nach folgendem Schema:

Darin haben die Substituenten R bis R₄ und X die vorstehend zur Formel I angegebene Bedeutung.

Die Umsetzung der Phenyliso- oder Isothiocyanate mit einem substituierten Anilin wird vorteilhaft bei einer Temperatur zwischen 40° und 130° in einem inerten Lösungsmittel und in Gegenwart einer tert. Base, wie z.B. Pyridin oder Triäthylamin, durchgeführt. Als Verdünnungsmittel können z.B. Benzol, Toluol, Chlorbenzol, Dioxan etc. verwendet werden.

Die als Ausgangsmaterial benötigten Isocyanate wie z.B.

4-Trifluormethoxyphenylisocyanat, 4-Trifluormethylthiophenylisocyanat, 3-Trifluormethylthiophenylisocyanat, 4-(1,2-Dichlorvinyloxyphenylisocyanat, 3-(1,1-Difluor-2,2-dichlorathoxy)phenylisocyanat, 3-Trifluormethyl-4-(1,1,2-trifluor-2'-chloräthoxy)-phenylisocyanat, 3-Trifluormethyl-4-(1,1-2-2-tetrafluoräthoxy)-phenylisocyanat bzw. Isothiocyanate, wie z.B.

4-Methylthiophenylisothiocyanat, 4-(1,1,2-Trifluor-2-chloräthoxy)-phenylisothiocyanat, 4-Chlorphenoxyphenylisothiocyanat
können durch Umsetzung der entsprechenden Amine mit Phosgen
bzw. Thiophosgen erhalten werden. (Vergl. Ullmann 9 (1957), 1;
Houben-Weyl 9 (1955), 875; Annalen 562, 75;

Die neu n Verbindungen entstehen in guten Ausbeuten; sie sind kristallin und können für die meisten Zwecke ohn weit re Reinigung verwendet werden. Wenn gewünscht kann eine Reinigung durch Umkristallisieren aus einem geeigneten Lösungsmittel z.B. aus einem Alkohol wie Methanol, Aethanol, Propanol oder Butanol oder auch aus einem aromatischen Kohlenwasserstoff wie Benzol, Toluol, Xylol, oder ähnlichen organischen Lösungsmitteln gegebenenfalls auch aus Mischungen solcher Lösungsmittel vorgenommen werden.

Die Verbindungen der Formel P sind wertvolle Arzneimittel. Sie haben eine ausgeprägte Wirkung gegen Protozoen, insbesondere gegen Coccidiose; sie sind dem bekannten Nicarbazin wesentlich überlegen. Sie eignen sich z.B. zur Therapie und Prophylaxe der Coccidiose bei Haustieren wie Schweinen, Kälbern, Schafen und Kaninchen, insbesondere von Geflügel wie Hühnern und Puten. Sie können grundsätzlich den vor Coccidiose zu schützenden Tieren als solche verabreicht werden. Zweckmäßig ist jedoch die Verwendung der neuen Wirkstoffe in Mischung mit einem geeigneten inerten Trägermaterial. Als Träger bieten sich die üblichen Futtenmittelmischungen an, insbesondere solche für Geflügel. Das Diphenylharnstoffderivat der Formel I wird-zweckmäßig dem Futter in einer Konzentration von 20 - 750 ppm, vorzugsweise 80 - 200 ppm, zugemischt.

Gegenstand der Erfindung sind daher auch Arzneimittel gegen Protozoenerkrankungen, gekennzeichnet durch den Gehalt an einer Verbindung der Formel I als Wirkstoff neben üblichen, medizinisch unbedenklichen Zusatzstoffen. Gegenstand der Erfindung ist weiterhin die Verwendung der Verbindungen der Formel I zur Bekämpfung von Protozoen.

HERSTELLUNGSBEISPIELE

Allgemeine Vorschrift

0,1 Mol eines substituierten Phenylisocyanates bzw. Isothiocyanates der Formel II werden in 100 ml eines inerten Lösungsmittels, z.B. Benzol, gelöst und l ml einer tertiären organischen Base, z.B. Triäthylamin, zugesetzt. Danach werden 0,1 Mol eines Anilinderivates der Formel III, gelöst in 50 ml des oben verwendeten inerten Lösungsmittels, eingetropft. Nach einer Stunde Erhitzen auf Rückfluβtemperatur wird das kristallin anfallende Reaktionsprodukt abgesaugt und getrocknet.

Analog wurden die Verbindungen 1 - 88 hergestellt.

Die Verbindungen werden in Ausbeuten zwischen 75 und 90 Prozent - der Theorie erhalten.

40988341438

	Kp/Fp/n _D 2°	Fp.178-180	Fp.158-160	Fp.195-196°	Fp.213-215°	Fp.167-169°	Fp.172-173°	Fp.177-178°	Fp.163-165°	Fp.198-201°	Fp.167-169°	Fp.200-202°	Fp. 202-204°	Fp.264-265°
	a ^y	Ħ	ш	#	#	Ħ	ii:	æ	Ħ	H	ш	K	5-CF3	Ħ
H. A.	R	5-CFs	3-CFs	5-CFs	5-CF3	5-CFs	5-CFs	5-CFs	5-CFs	5-CF3	5-CF3	5-NO ₂	4-NOg	Ħ
-NH-C-NH-C	ቲ°	3-CF3	3-CFs	5-CF3	3-CF3	3-CF3	3-CF ₃	3-CFs	3-CF3	3-CFs	3-CFs	3-CFs	2-CF3	4-SCFs
W. H.	전	4-0CHs	3-0CF3	4-0CFs	4-0CF ₃	4-SCH ₃	4-SCH _s	4-SCH ₃	3-SCFs	4-SCFs	4-SCFs	4-SCF3	4-SCF3	4-SCFa
	æ	3-CFs	Ħ	Щ,	2-CF3	ıı	æ	3-c1	¤	Ħ	2-C1	#	Ħ	Ħ
	×	0	0	0	0	0	Ŋ	0	٥	.0	. 0	0	0	0
	Verbindung Nr.	1	د 40	۳ 98	834	ري 1 4	ۍ ع 8	-	æ	6	10	H	12	13

Verbindung Nr.	-	æ	చ	R2	R ₃	R4	$\mathrm{Kp}/\mathrm{Fp}/\mathrm{n_{\mathrm{D}}^{20}}$
14	0	Ħ	4-SCF,	4-80, CH, C1	Ħ	Н	Fp. 225-227°
15	0	н	3-SCF ₂ H	3-CF3	5-CFs	Ħ	Fp. 193~196
16	0	Ħ	4-SC ₂ H ₅	3-CF3	5-CF3	æ	Fp. 136-138°
17	·	3-61	4-SC ₂ H ₆	3-CF3	5-CF3	æ	Fp.156-158°
8t 40	0	3-CFs	4-0C2 Hs	3-CF3	5-CF3	II.	Fp.179-181°
8 e	0	3-CF3	4-0C2 H5	4-SCF3	Ħ	×	Pp.165-166°
8 8 8 8	0	3-CFs	4-0C ₂ H ₆	3-SCF3	ш	Ħ	Fp.137-139
ว ส 14	0	4-CH _s	3-0CH2-CH3C1	S-CF3	5-CFs	æ	Fp.170-172
3 8	0	H	4-0cc1=cc1H	3-CF3	4-67	Ħ	Fp.137-140°
23	0	H	4-0cc1=cc1H	3-CF3	5-CF3	Ħ	Fp.179-180°
24	0	Ħ	4-0CF2-CC1s	3-CF3	5-CF3	Ħ	Fp.189-191°
25	0	H	2-OCF3-CCl2H	3-CF3	5-CF3	Œ	Fp.159-160
56	0	H	3-0CF2-CCl2H	3-CFs	5-CF3	ш	Fp.158-159°
27	0	4-Br	3-OCF2-CCl2H	3-CF3	5-CF3	Ħ	Fp. 202-204°
28	0	Ħ	4-0CF3-CCl2H	3-CFs	5-CFs	Ħ	Fp.168-170°
59	0	н	4-0CF2-CC12H	3-CF3	12 - 4	ĸ	Fp.160-161°
30	0	3-0CH3	4-0CF2-CC12H	3-CFs	5-CF3	ĸ	Fp.163-166°

3-CH ₃ 4-OCF ₂ -CCTl ₂ H 3-CF ₃ 6-CF ₃ H Fp.118-120° 3-CH ₃ 4-OCF ₂ -CCTl ₂ H 4-CH(CH ₃) ₂ H Fp.118-120° 3-CH ₃ 4-OCF ₂ -CCTl ₂ H 3-CF ₃ H Fp.116-179° 3-CF ₃ 4-OCF ₂ -CCTl ₂ H 3-CF ₃ H Fp.137-134° 3-CF ₃ 4-OCF ₂ -CFCl ₂ H 3-CF ₃ H Fp.137-134° 3-CF ₃ 4-OCF ₂ -CFCl ₂ H 3-CF ₃ H Fp.137-134° H 4-OCF ₂ -CFCl ₂ H 3-CF ₃ H Fp.137-177° H 4-OCF ₂ -CFCl ₂ H 3-CF ₃ H Fp.137-177° H 4-OCF ₂ -CFCl ₂ H 3-CF ₃ H Fp.139-201° H 4-OCF ₂ -CFCl ₂ H 3-CF ₃ H Fp.139-125° H 4-OCF ₂ -CFCl ₂ H 3-CF ₃ H Fp.139-125° H 4-OCF ₂ -CFCl ₂ H 3-CF ₃ H Fp.139-125° 3-CF ₃ 4-CI H Fp.139-125° 3-CF ₃ 4-CI H Fp.139-125° </th <th>×</th> <th>æ</th> <th>ಜ</th> <th>S.</th> <th>Rs</th> <th>ਲ੍ਹੇ</th> <th>$\mathrm{Kp}/\mathrm{Fp}/\mathrm{n_D}^{20}$</th>	×	æ	ಜ	S.	Rs	ਲ੍ਹੇ	$\mathrm{Kp}/\mathrm{Fp}/\mathrm{n_D}^{20}$
4-0CF ₂ -CCl ₂ H 4-CH(CH ₃) ₂ H H H F F 6-0CF ₂ -CCl ₂ H 3-CF ₃ F C-0CF ₂ -CFClH 4-0CF ₂ -CFClH A-0CF ₂	 	15 %	4-0CFCC1, H	3-CFs	5-CF3	I	Fp.118-120°
4-OCF ₂ -CCI ₂ H 3-CF ₃ 5-CF ₃ H F F 2-OCF ₂ -CFC1H 3-CF ₃ 5-CF ₃ H F F 7-CF ₂ -CFC1H 3-CF ₃ 5-CF ₃ H F 7-CF ₂ -CFC1H 3-CF ₃ 5-CF ₃ H F 7-CF ₂ -CFC1H 3-CF ₃ 5-CF ₃ H F 7-CF ₂ -CFC1H 3-CF ₃ 5-CF ₃ H H F 7-CCF ₂ -CFC1H 3-CF ₃ 5-CF ₃ H H H H H H H H H H H H H H H H H H H		2 5	4-00F-0012H	4-CH(CH ₃) ₂	=	Ħ	Fp.181-183
2-OCF ₂ -CFC1H		S C S	4-OCF, -CC1, H	3-CFs	5-CFs	Ħ	Fp.176-179°
4-OCF_2-CC1_2H 3-CF_3 5-CF_3 H F 3-OCF_2-CFC1H 3-CF_3 5-CF_3 H F 4-OCF_2-CFC1H 3-CF_3 5-CF_3 H F 4-OCF_2-CFC1H 3-CF_3 5-CF_3 H F 4-OCF_2-CFC1H 3-CF_3 5-CF_3 H H F 4-OCF_2-CFC1H 4-OCF_2-CFC1H H H H H H 4-OCF_2-CFC1H 3-CF_3 4-C1 H		Z H	2-OCF,-CFCIH	3-CF3	5-CF3	Ħ	Fp.135-134°
3-OCF ₂ -CFC1H 3-CF ₃ 5-CF ₃ H F 4-OCF ₂ -CFC1H 3-CF ₃ 5-CF ₃ H F 4-OCF ₂ -CFC1H 3-CF ₃ 5-NO ₂ H F 4-OCF ₂ -CFC1H 4-OCF ₂ -CFC1H H H H F 4-OCF ₂ -CFC1H 4-OCF ₂ -CFC1H 3-CF ₃ 4-C1 H H F 4-OCF ₂ -CFC1H 3-CF ₃ 5-NO ₂ H H		3-CF3	4-0CF2-CC12H	3-CFs	5-CFs	#	Fp.184-186°
4-OCE_2-CFCIH 3-CF_3 6-FS_3		===	3-OCF2-CFCIH	3-CF3	5-CFs	Ħ	Fp.150-151°
4-OCF2-CFC1H 3-CF3 5-CF3 H F 4-OCF2-CFC1H 7-CF3 5-NO2 H F 4-OCF2-CFC1H 4-OCF2-CFC1H H H H F 4-OCF2-CFC1H 4-OCF2-CFC1H H H H H H 4-OCF2-CFC1H 3-CF3 4-C1 H H H H H 4-OCF2-CFC1H 3-CF3 5-CF3 H H H H 3-OCF2-CFC2H 3-CF3 5-CF3 H H H 3-OCF2-CF2H 3-CF3 5-CF3 H H 4-OCF2-CF2H 3-CF3 5-CF3 H H		Ħ	4-0CE -CFCIH	3-CF3	5-CFs		Fp.176-177°
4-OCF ₂ -CFC1H 3-CF ₃ 5-NO ₂ H F 4-OCF ₂ -CFC1H H H H F 4-OCF ₂ -CFC1H 4-SCF ₃ H H F 4-OCF ₂ -CFC1H 3-CF ₃ 4-C1 H F 4-OCF ₂ -CFC1H 3-CF ₃ 5-NO ₂ H F 4-OCF ₂ -CFC1H 3-CF ₃ 5-CF ₃ H H 3-OCF ₂ -CFC1H 3-CF ₃ 5-CF ₃ H 3-OCF ₂ -CF ₂ H 3-CF ₃ H H 4-OCF ₂ -CF ₂ H 3-CF ₃ H H		Ħ	4-OCF2-CFCIH	3-CFs	5-CF3	Ħ	Fp.125-125°
4-OCF ₂ -CFC1H H		超	4-ocra-crclh	3-CF3	5-N02	Ħ	Fp. 168°C
4-OCF_2-CFC1H 4-SCF_3 H		#	4-ocf -cfch	4-OCF2-CFCIH	Ħ	#	Fp. 200-201°
4-OCF2-CFC1H 3-CF3 4-C1 H H 4-OCF2-CFC1H 3-CF3 5-NO2 H H 4-OCF2-CFC1H 3-CF3 5-CF3 H H 3-OCF2-CFH2 3-CF3 5-CF3 H 3-OCF2-CF2H 3-CF3 5-CF3 H 4-OCF2-CF2H 3-CF3 H H		æ	4-OCF2-CFC1H	4-SCFs	Ħ	#	Fp.199-201°
4-OCF2-CFC1H 3-CF3 5-NO2 H 4-OCF2-CFC1H 3-CF3 5-CF3 H 3-OCF2-CFH2 3-CF3 5-CF3 H 3-OCF2-CF2H 3-CF3 5-CF3 H 4-OCF2-CF2H 3-CF2CH H H		×	4-0CF2-CFC1H	3-CFs	4-CI	H	Fp.123-125°
4-0CF2-CFC1H 3-CF3 5-CF3 H 3-0CF2-CFH2 3-CF3 5-CF3 H 3-0CF2-CF2H 3-CF3 5-CF3 H 4-0CF2-CF2H 3-CF2C1 H H		3-CF	4-OCF2-CFCIH	3-CFs	5-NO ₂	=	Fp.180-183°
3-0CF ₂ -CFH ₂ 3-CF ₃ 5-CF ₃ H 3-0CF ₂ -CF ₂ H 3-CF ₃ H 4-0CF ₂ -CF ₂ H 3-CF ₂ CI H		3-CF3	4-0CF2-CFCIH		5-CF ₃	=	Fp.172-173°
3-ocr ₂ -cr ₂ H 3-cr ₃ 5-cr ₃ H 4-ocr ₂ -cr ₂ H 3-cr ₂ cl H		#	3-OCF2-CFH2		5-CFs	m	Fp.133-135
4-0CF ₂ -CF ₂ H 3-CF ₂ Cl H H		H	3-OCF8-CF2H	3-CF3	5-CF3	H -	Fp.157-160°
		3-CH3		3-CF2C1	1 2	. #	Fp.108-109°

72/Fm/m 20	Q11 / 4 1 / 4V	Fp.157-158°	Fp.194-195°			· Fp.136-137°	Fp. 125-125°	Fp.130-155	Pp.153-155	Fp.170-141°	Fp.175-177°		Fp.145-148	Fp.170-172°	Fp.234-236°	Fp.159-161°	
	e e	耳	ц	-	#	II.	æ	Ħ	#	Ħ	Ħ		Ħ	æ	#	#	
-	S.	4-01			5-CF3	5-CFs	5-CFs	5-CFs	5-CFs	5-NO2	5-CFs		Ħ	5-CF3	5-CFs	5-N0 ₂	•
_	Rz	3-CF.	-	4-Br	3-CFs	3-CF3	3-CF3	3-CFs	3-CFs	3-CF ₃	3-CFs		4-SCF3	5-CFs	3-CF3	3-CFs	
•	잔	H 45. 850.	410018101811	4-0CF2-CF2H	3-OCF2-CFH-CF3	4-0CF3-CFH-CF3	4-OCF2-CFH-CF3	4-0CF2-CFH-CF3	4-0CF2-CFH-CF3	4-OCF2-CFH-CF3	4-S-C-OCH	=0	4-0	4-0-C1	4-0-61	4-0-C1	
	~	1	STOR	3-CF3	Ħ	æ	3-01	3-CH3	3-CF3	3-CF.	, ,		#	##.	3-01	#	_
	×	1	-	0	0	0	0	0	0	9	0		Ø	0	0	•	-
	Verbindung		48	49	S. C.	ت ک					14:		57	58	59	09	

×	. 🗷	.	Ę,	R	2,	Kp/Fp/n _D go
EH CO		4-0-CF ₃	3-CFs	5-CF3	#	Fp.151-153°
н		4-co-CH ₃	3-CFs	5-CFs	æ	Fp. 246-248
# · · · · · · · · · · · · · · · · · · ·		4-co-ch ₂	4-SCF ₃	H	د ¤	Fp.211-213°
0 3-CF3		5-CF8	2-C1	12-4 ,	- - - 9	Fp.275 (subl)
0 3-CF3		5-CF3	2-C1	4-01	5-C1	Fp. 280° (subl)
н		3-CF3	3-CE3	5-N02	ਸ਼	Fp.187-190°
0 3-CF3		5-CF.	3-CF3	5-N02	Ħ	Fp.195-197°
O 3-CF3		5-CFs	2-CF3	4-N02	6-CF ₃	Fp.137-140°
ш		3-CF2C1	3-CFs	5-CF3	#	Fp.149-151°
м		3-CP CP H	3-CFs	5-CF ₈	H	Fp. 205-207°
		Ç	3-CF	5-CF ₃	Ħ	Fp.198-200
ж		3-50 F	3-CF	5-CF3	II	Fp.197-199°
Э Н		4-SO ₂ F	4-SCF3	# —	#	Fp.230-231°

& '	4-SO ₂ F	4-S02CH2C1	2-SQ2 C2 H6	2-S0g C3H5	4-S02 CF3	4-S02 CF3	4-SO ₂ CF3	$4-SO_2-\langle \bigcirc \rangle -NO_3$	4-SO ₂	4-SO ₂	4-so ₂ -ON-C-NH-C	4-SO ₂	
æ	Ħ	#	5-CFs	5-CF2	Ħ	Ħ	チ	æ	æ	11	Ħ	Ħ	
×	0	0	0	0	0	0	0	0	0	0	0	0	
V rbindung Nr.	74	. 52	92	77	8L 4	6. 0.9	& 8 8 3	평 8 / 1	28 4 3 8	63	84	85	

BARDEHLE MUNICH OFFICE

R ₄ Kp/Fp/np ²		Fp.158-160°	Fp.113-115°	Fp.213-215°	
a.		H	#	Ħ	
ξ.		=	Ħ	æ	
~~ ~~		3-0CF2-CF2H	4-OCF2-CFCIH	4-SCF ₃	·
c.	T.	$4-SO_2 - \bigcirc \bigcirc -NH-C-NH- \bigcirc \bigcirc$	4-SO ₂ -CFC1H	4-SO ₂ -C-NH-C-NH-C-SCF ₃	
	ĸ	Н	=	=	
;	×	0	0	. 0	
Մ բեմովող	Mr.	98	87	8 4098	83/1438

<u>ANVENDUNGSBEISPIELE</u>

Die Wirksamkeit der erfindungsgemäßen Verbindungen gegenüber Geflügel-Coccidiose (Eimeria tenella) wird nach Fütterungs-versuchen an 4 Tage alten männlichen Küken nach folgendem Beurteilungsschema festgestellt:

- 1. Gewichtsentwicklung: Nach Versuchsende wird das Durchschnittsgewicht pro Versuchsgruppe festgestellt (absolute
 und prozentuale durchschnittliche Gewichtszunahme bzw.
 -abnahme)
- 2. Der Kotbefund wird durch tägliche Adspektion während des gesamten Versuchs nach folgendem Schema beurteilt:

Kothefund:	Bewertungszahl:
Normal geformt, fest, vereinzelt breiig (braun)	1
überwiegend normal geformt, z.T. dünnflüssig – wäßrig – schleimig (grün – weiß)	. 2
überwiegend dünnflüssig - wäβrig (grün - weiβ), <u>geringe</u> <u>Blutbeimengungen</u> , schleimig	3
dünnflüssig - schleimig, <u>deutliche</u> <u>Blutbeimengungen</u> (dunkelrot über- wiegt)	4
dünnflüssig - schleimig, <u>starke</u> Blutbeimengungen, Blutabgang	5

<u>Sektion:</u> Am Ende des Versuch werden die Tiere mit Chloroform getötet und die Blinddärme sowöhl makroskopisch als auch mikroskopisch auf pathologisch anatomische Veränderungen untersucht.

Die Beurteilung der pathologischen Veränderungen an der Darmschleimhaut wird wie folgt vorgenommen:

Darmschleimhaut:	Bewertungszahl:
ohne besonderen Befund	. 1
geschwollen, sulzig, glasig, katarrhalische, fibrinöse Entzündungen	2
vereinzelt Petechien, ört- liche hämorrhagische Ent- zündungen	3
diffus rosarot - Uebergang zur diffusen hämorrhagischen Entzündung, z.T. blutiger Darminhalt	4
deutlich rot; blutiger Darm- inhalt, hämorrhagische Ent- zündung des gesamten Darmab- schnittes	5

Oocysteneusscheidung: Sie gibt Aufschluß über die Anzahl der im Kot ausgeschiedenen nicht sporolierten Oocysten.

Objektiv: 10-fach

Okular: Periplan GF 10 x; Tubusvergrößerung 1,25

Gesamtvergrößerung: 125-fach

Anzahl der Oocysten:	Wertungsziffer:
1	ı
2 - 10	2
11 - 50	3
51 - 200	4
. 201 - 400	5
über 400	6
vercinzelt bis wenig Werozoiten (bei über 400 Oocysten)	7
wenig bis sehr viele Herozoiten (über 4009883/1438 Oocysten)	8
Die Ergebnisse sind in der folgenden Tabe	lle zusammengefaßt.

sten ungs- er		2334
Oocysten Wertungs ziffer	000000004400000110	
	и 444444 4 П 44444444444 1 1 1 1 1 1 1 1 1 1 1 1 1	rl
Durchschnittl. Gewichtszunahme in &	000894008900000000000000000000000000000	27,8
Veberlebende gesamt	2 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8/8
fund 6 tungszahl		
Kotbefun d+5/6 Bewertun	העקטקקקקקקקקקקקקקקקקקקקקקקקקקקקקקקקקק	Н
Anwendungs- konzentration ppm/im Futter	100 100 100 100 100 100 100 100 100 100	l
verbindung gemäß Beispiel	11 12 12 15 66 80 88 88 17 17 10 10 10 10 10 10 10 10 10 10 10 10 10	infizierte Kontrolle
	40883/1438	

HOE 73/F .142

PATENTANSPRÜCHE:

1) Substituierte Diphenylharnstoffderivate der Formel

$$\begin{array}{c}
R_1 \\
R
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_4
\end{array}$$

$$\begin{array}{c}
R_3 \\
R_4
\end{array}$$

worin R Wasserstoff, Chlor, Brom, die Methyl-, Trifluormethyl-, Methoxy- oder Nitrogruppe, R $_1$ einen Alkyl-, Alkoxy- oder Alkylthiorest mit 1 bis 3

-2-

C-Atomen oder einen Alkonoxyrest mit 2 bis 3 C-Atomen, welche Reste ihrerseits mit 2 bis 6 Fluoratomen substituiert s in und zusätzlich weitere Halogenatome, vorzugsweise Chlor und/oder Fluor enthalten können,

Cyclohexyl, einen Phenoxyrest, der ein- oder zweimal mit Chlor und/oder Trifluormethyl substituiert ist, einen Alkylsulfonylrest mit 1 bis 2 C-Atomen, der mit Halogen, insbesondere Chlor und/oder Fluor, substituiert sein kann, den Fluorsulfonylrest, einen Phenylsulfonylrest, der mit der Gruppe -NO₂, -HN-C-CH₃

oder -N-CII-N-(CII $_3$) $_2$ substituiert ist oder den

worin

- R' für einen Alkoxy- oder Alkylthiorest mit 1 bis 2 C-Atomen oder den Vinyloxy est steht, welche Reste mindestens einmal mit Halogen, insbesondere Chlor und/oder Fluor, substituiert sind.
- R2 Wasserstoff, Halogen oder einen Alkyl-, Alkoxy-, Alkylthio-Rest mit 1 bis 2 C-Atomen oder der Vinylangiest,
 welche Reste mit Halogen, vorzugsweise Fluor und/oder
 Chlor, substituiert sind,
- R₃ Wasserstoff, Chlor, die Trifluormethyl- Methoxy- oder Nitrogruppe,
- ${f R}_4$ Wasserstoff, Chlor oder die Trifluormethylgruppe bedeuten

wobel mindestens einer der Reste \mathbf{R}_2 und \mathbf{R}_3 nicht Wasserstoff ist und worin

X Sauerstoff oder Schwefel bedeutet.