

Applying Machine Learning to Identify Functional Classifiers in the Kidney From Resting-State MRI Spectra

Mallinckrodt Institute of Radiology

Will Burgess
Bennett Lab. EN2026

Project Goals

- Autonomously identify functional classifiers that distinguish pathology from healthy kidney
 - Use spectra from repeated "resting state" MRI of the kidney
- THIS STAGE: Get machine learning to recognize kidney cortex vs. medulla
- <u>END GOAL</u>: Identify functional classifiers that detect kidney disease and response to therapies

Overview

- Repeated MRI scanning reveals physiological fluctuations associated with specific tissues
- This is the basis for "resting state" functional MRI
- Spectral features of these time series in each voxel can be linked to physiological autoregulation, critical to kidney health
- Applied Random Forest machine learning model
- Successfully trained and generated a prediction of features in a human kidney

Hodneland, et al. *Introduction*. 2014

How is Data collected Using Magnetic Resonance?

MRI Fundamentals

Detecting Signal

- Primary magnet distorts
 hydrogen atoms in the body
- Gradient coils isolates magnetic field to a desired point
- RF coil detects signal
- Signal is recorded in onboard computer

MRI time series in a single voxel, showing spontaneous fluctuations in the MRI signal that reflect underlying natural physiological processes, including autoregulation of perfusion.

Spectral features of the resting state time series in each voxel confirm the likely association of the fluctuations With known frequencies associated with physiological processes.

The time series vary spatially, demonstrating that they are physiological in origin

Applying Machine Learning

Needed Elements

01 Raw Data

Partitioned MRI spectra ie. Fourier transform data

Output details

Pre-defined classification results

03 ML Model

Random forest

04 Testing data

Remaining MR spectra

Cleaning up data

Edge detection filters & functions

All black voxels have spectra zeroed

Output Details

Original Image

Pre - Defined Mask

Educated guess of cortex, medulla, pelvis, vessels, & ureter

Uratar O palvia avaluda

Ureter & pelvis excluded

How Random Forest Works

- Feed test data & results
- Generate decision trees
 - Series of if/else statements
- 'Prunes' by limiting branch and decision nodes
- Advantageous for low amounts of testing data

The Final Step

- After the model is trained it is fed the remainder of the spectral data
 - Post-edge detection

- Predicts what part of the kidney each voxel belongs to

Results

Parameter Combination 1

Parameter Combination 2

Potential improvements

- More accurate mask
 - Utilize contrast fluid to eliminate guesswork
- More time training
- Different hyperparameter ranges
- Edge Detection Improvements
- Interlaced ML predictors
 - Spectra varies depending on upper/lower/mid kidney

References

G. Chavhan, P. Babyn, B. Jankharia, H. M. Cheng, and M. Shroff, "Steady-State MR Imaging sequences: physics, classification, and clinical applications," *Radiographics*, vol. 28, no. 4, pp. 1147–1160, Jul. 2008, doi: 10.1148/rg.284075031.

N. Donges, "Random Forest: A complete guide for machine learning," *Built In*, Jul. 2021, [Online]. Available: https://builtin.com/data-science/random-forest-algorithm

E. Hodneland, E. A. Hanson, A. Lundervold, J. Modersitzki, E. Eikefjord, and A. Z. Munthe-Kaas, "Segmentation-Driven Image Registration-Application to 4D DCE-MRI recordings of the moving kidneys," *IEEE Transactions on Image Processing*, vol. 23, no. 5, pp. 2392–2404, May 2014, doi: 10.1109/tip.2014.2315155.