In the name of God

Department of Physics Shahid Beheshti University

ADVANCED METHODS ON COMPUTATIONAL PHYSICS

Exercise Set 7

(Date Due: 1399/01/31)

- **1.** For random walk in 1D, compute $\langle x(N) \rangle$ and σ_N^2 for following cases:
 - A: Suppose each steps coming form random variable with flat PDF.
 - **B:** Suppose the probability of step value is a gaussian and to be random, namely: $P(s) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{s^2}{2\sigma^2}\right)$.
- 2. Simulate a particle based on Langevin equation and then compute:
 - **A:** $\langle v(t) \rangle$.
 - **B:** $\langle v(t)^2 \rangle$.
 - C: $\langle v(t_1)v(t_2)\rangle$.
 - **D:** $\langle x(t) \rangle$.
 - **E:** $\langle x(t)^2 \rangle$.
 - **F:** $\langle x(t_1)x(t_2)\rangle$.
 - **G:** p(v).
 - **H:** Compare all of above parts with theoretical predictions.
 - **I:** $p(v(t); v(t+\tau))$. What happens if $\tau \to \infty$.

Good luck, Movahed