PARCIAL 1 – ANÁLISIS NUMÉRICO

Presentado por Adrián Esteban García Ardila.

PUNTO 1

Se realizaron las siguientes pruebas

Para n = 2

```
Digite n: 2
La suma es 11. Numero de operaciones realizadas fue 3. Tiempo de ejecucion = 0 segundos
El numero de operaciones realizadas (calculado) es igual a 3
```

Para n = 1000

```
Digite n: 1000
La suma es 1.50001e+006. Numero de operaciones realizadas fue 500500. Tiempo de ejecucion = 0.002 segundos
El numero de operaciones realizadas (calculado) es igual a 500500
```

Para n = 5000

```
Digite n: 5000
La suma es 3.65292e+007. Numero de operaciones realizadas fue 12502500. Tiempo de ejecucion = 0.041 segundos
El numero de operaciones realizadas (calculado) es igual a 12502500
```

Para n = 10000

```
Digite n: 10000
La suma es 1.23319e+008. Numero de operaciones realizadas fue 50005000. Tiempo de ejecucion = 0.183 segundos
El numero de operaciones realizadas (calculado) es igual a 50005000
```

Para n = 20000

```
Digite n: 20000
La suma es 1.34218e+008. Numero de operaciones realizadas fue 200010000. Tiempo de ejecucion = 0.807 segundos
El numero de operaciones realizadas (calculado) es igual a 200010000
```

n	Tiempo de ejecución (s)
2	0
1000	0.002
5000	0.041
10000	0.183
20000	0.807

Se determinó que dada una matriz A_n se tiene que el número de operaciones requeridas mínimas para calcular la suma de los elementos de la submatriz triangular superior está dado por $f(n) = \frac{n(n+1)}{2}$. Dicha fórmula fue aplicada en las pruebas y se comprobó (como se muestra en los pantallazos) que coincide con el número de operaciones hechas durante la ejecución.

La complejidad del algoritmo implementado es O(n²).

PUNTO 2

Se comprobó que la sucesión converge, con cada término calculado aproximándose cada vez más hacia el valor de e.

A continuación, se muestra el resultado obtenido.

Término	Iteración	Error relativo
3.0	1	
2.749999999999996	2	0.090909090909109
2.7222222222222	3	0.010204081632653026
2.7187500000000004	4	0.0012771392081734002
2.7183333333333333	5	0.00015328019619883848
2.718287037037037	6	1.70314229753378e-05
2.7182823129251696	7	1.7379033240986566e-06
2.7182818700396827	8	1.6292846295018792e-07
2.718281831765628	9	1.4080237797666107e-08
2.7182818287037036	10	1.1264190708260698e-09
2.7182818284759573	11	8.378316917123542e-11
2.7182818284601415	12	5.818305134519292e-12
2.718281828459112	13	3.786946510310784e-13
2.718281828459049	14	2.319872322968696e-14
2.718281828459045	15	1.4703416131491758e-15
2.718281828459045	16	0.0

PUNTO 3

Las dos funciones tienen un punto de intersección, como se muestra a continuación.

Se planteó una función h(x) como la resta de f(x) y g(x) para hallar la intersección de éstas últimas dos. Por tanto, $h(x) = f(x) - g(x) = \log(x+2) - \sin(x)$. Esta última función se usó para aplicar los algoritmos.

Parte a)

Dada la restricción en el dominio de la función f(x), esto es, $x \ne -2$, y con el respaldo de la gráfica de las funciones f(x) y g(x), se tomó el intervalo [-1.8,-1] para aplicar el algoritmo.

Se obtuvo el punto de intersección en x = -1.6314435969774892, como se muestra enseguida.

```
x = -1.840215350016111
                           E = 0.13334201147774308
x = -1.573703771789245
                            E = 0.06274762265997307
x = -1.6123100245020496
                            E = 0.01968388196267236
    -1.6331029050504058
                             E = 0.0016551578952348689
x =
    -1.6313958129917459
x =
                             E = 4.778741787903624e-05
                            E = 1.194976707349975e-07
x = -1.6314434774712356
x = -1.6314435969774892
                            E = 8.604381612152636e-12
```

Parte b)

Dada la restricción ya nombrada en el dominio de la función f(x) con el respaldo de la gráfica de las funciones f(x) y g(x), se tomó -0.8 como valor inicial para aplicar el algoritmo.

Se obtuvo el punto de intersección en x = -1.63144359696828, como se muestra enseguida.

Iteración	Aproximación	Error relativo
1 2	-1.49279847723886 -1.61000342859342	0.205789011340199 0.0727979514037130
3	-1.63079569811286 -1.63144296577157	0.0127497696636723 0.000396745502164725
5	-1.63144296577157	3.86894597495152e-7

La raíz es -1.63144359696828