EXTENSION OF THE CLASSICAL SCAN STATISTICS WITH APPLICATIONS

Alexandru Amărioarei

Faculty of Mathematics and Computer Science University of Bucharest

National Institute of Research and Development for Biological Sciences

The 20th Conference of the Romanian Society of Probability and Statistics
28-29 April, 2017, Brasov, România

OUTLINE

- Introduction
 - Framework
 - Problem
- 2 Methodology
 - Approximation
- APPLICATIONS
 - Application: Length of the Longest increasing/non-decreasing run
 - Application: Scanning with windows of arbitrary shape
 - Application: Scanning the surface of a cylinder

OUTLINE

- INTRODUCTION
 - Framework
 - Problem
- 2 METHODOLOGY
 - Approximation
- APPLICATIONS
 - Application: Length of the Longest increasing/non-decreasing run
 - Application: Scanning with windows of arbitrary shape
 - Application: Scanning the surface of a cylinder

Definitions and notations

The d dimensional scan statistic

Let $2 \leq m_s \leq T_s$, $s \in \{1, 2, \ldots, d\}$ be positive integers

• Define for $1 \leq i_s \leq T_s - m_s + 1$ and $1 \leq j_s \leq m_s$ the d-way tensor $\mathfrak{X}_{i_1,\ldots,i_d} \in \mathbb{R}^{m_1 \times \cdots \times m_d}$,

$$\mathfrak{X}_{i_1,...,i_d}(j_1,\ldots,j_d) = X_{i_1+j_1-1,...,i_d+j_d-1}$$

• Take $S: \mathbb{R}^{m_1 \times \cdots \times m_d} \to \mathbb{R}$ to be a measurable real valued function (score function) and define

$$Y_{i_1,\ldots,i_d}(\mathcal{S}) = \mathcal{S}(\mathfrak{X}_{i_1,\ldots,i_d})$$

Definition

The d dimensional scan statistic with score function ${\mathcal S}$ is defined by

$$S_{m_1,\dots,m_d}(T_1,\dots,T_d;\mathcal{S}) = \max_{\substack{1 \leq i_s \leq T_s - m_s + 1\\ s \in \{1,\dots,d\}}} Y_{i_1,\dots,i_d}(\mathcal{S})$$

Animation for 2 dimensional scan statistics

OUTLINE

- Introduction
 - Framework
 - Problem
- 2 METHODOLOGY
 - Approximation
- APPLICATIONS
 - Application: Length of the Longest increasing/non-decreasing run
 - Application: Scanning with windows of arbitrary shape
 - Application: Scanning the surface of a cylinder

Problem and related work

OBJECTIVE

Find a good estimate for the distribution of the two dimensional discrete scan statistic with score function ${\cal S}$

$$Q_{\mathsf{m}}(\mathsf{T};\mathcal{S}) = \mathbb{P}\left(S_{\mathsf{m}}(\mathsf{T};\mathcal{S}) \leq \tau\right)$$

with $\mathbf{m}=(m_1,\ldots,m_d)$ and $\mathbf{T}=(T_1,\ldots,T_d)$

Remark

If, in particular, the score function is given by

$$S(X_{i_1,...,i_d}) = \sum_{s_1=i_1}^{i_1+m_1-1} \cdots \sum_{s_d=i_d}^{i_d+m_d-1} X_{s_1,...,s_d}$$

then $S_{\mathbf{m}}(\mathsf{T};\mathcal{S})$ is the *classical d* dimensional discrete scan statistics.

OUTLINE

- INTRODUCTION
 - Framework
 - Problem
- METHODOLOGY
 - Approximation
- APPLICATIONS
 - Application: Length of the Longest increasing/non-decreasing run
 - Application: Scanning with windows of arbitrary shape
 - Application: Scanning the surface of a cylinder

Approximation methodology for the general scan statistic

APPROXIMATION AND ERROR BOUNDS

Theorem (Generalization of [Amărioarei, 2014])

Let $t_s \in \{2,3\}$, $Q_{t_1,...,t_d} = \mathbb{P}\left(S_{\mathbf{m}}\left(t_1(m_1-1),\ldots,t_d(m_d-1);\mathcal{S}\right) \leq \tau\right)$ and $L_s = \left\lfloor \frac{T_s}{m_s-1} \right\rfloor$, $s \in \{1,2\}$. If $\hat{Q}_{t_1,...,t_d}$ is an estimate of $Q_{t_1,...,t_d}$, $\left|\hat{Q}_{t_1,...,t_d} - Q_{t_1,...,t_d}\right| \leq \beta_{t_1,...,t_d}$ and τ is such that $1-\hat{Q}_{2,...,2}(\tau) \leq 0.1$ then

$$\left| \mathbb{P}\left(S_{\mathsf{m}}(\mathsf{T};\mathcal{S}) \leq \tau \right) - H\left(\hat{Q}_{2}, \hat{Q}_{3}, L_{1} \right) \right| \leq E_{sf} + E_{sapp},$$

where

$$\begin{split} H(x,y,m) &= \frac{2x-y}{[1+x-y+2(x-y)^2]^{m-1}} \\ \hat{Q}_{t_1,\dots,t_{s-1}} &= H\left(\hat{Q}_{t_1,\dots,t_{s-1},2},\hat{Q}_{t_1,\dots,t_{s-1},3},L_s\right) \;,\; 2 \leq s \leq d \end{split}$$

The quantities $\hat{Q}_{t_1,...,t_d}$ will be estimated by Monte Carlo simulations. \triangleright Error bounds

Illustration for d=3

Illustration for d=3

Illustration for d=3

OUTLINE

- Introduction
 - Framework
 - Problem
- 2 METHODOLOGY
 - Approximation
- APPLICATIONS
 - Application: Length of the Longest increasing/non-decreasing run
 - Application: Scanning with windows of arbitrary shape
 - Application: Scanning the surface of a cylinder

SPSR 2017

Application 1:

Longest increasing/non-decreasing run

Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. r.v.'s with the common distribution G.

Increasing run

A subsequence (X_k,\ldots,X_{k+l-1}) forms an *increasing run* of length $l\geq 1$, starting at position $k\geq 1$, if

$$X_{k-1} > X_k < X_{k+1} < \cdots < X_{k+l-1} > X_{k+l}$$

Non-decreasing run

A subsequence (X_k, \ldots, X_{k+l-1}) forms an *non-decreasing run* of length $l \ge 1$, starting at position $k \ge 1$, if

$$X_{k-1} > X_k \le X_{k+1} \le \cdots \le X_{k+l-1} > X_{k+l}$$

NOTATIONS

• $M_{T_1}^I$ = the length of the longest increasing run among the first T_1 r.v.'s

$$M_{T_1}^I = \max\{I \mid X_k < \dots < X_{k+l-1} \text{ for some } k, 1 \le k \le T_1 - I + 1\}$$

• $M_{T_1}^{ND}$ = the length of the longest non-decreasing run among the first T_1 r.v.'s

$$M_{T_1}^{ND} = \max\{I \mid X_k \leq \dots \leq X_{k+l-1} \text{ for some } k, 1 \leq k \leq T_1 - l + 1\}$$

Example
$$(T_1 = 10)$$

 X_i : 1 3 5 2 4 7 1 3 3 8

IR: 1 3 5 2 4 7 1 3 3 8

NOTATIONS

• $M_{T_1}^I$ = the length of the longest increasing run among the first T_1 r.v.'s

$$M_{T_1}^{l} = \max\{l \mid X_k < \dots < X_{k+l-1} \text{ for some } k, 1 \le k \le T_1 - l + 1\}$$

• $M_{T_1}^{ND}$ = the length of the longest non-decreasing run among the first T_1 r.v.'s

$$M_{T_1}^{ND} = \max\{I \mid X_k \leq \dots \leq X_{k+l-1} \text{ for some } k, 1 \leq k \leq T_1 - l + 1\}$$

Example
$$(T_1 = 10)$$

 X_i : 1 3 5 2 4 7 1 3 3 8

IR: <u>1 3 5</u> 2 4 7 1 3 3 8

NOTATIONS

• $M_{T_1}^I$ = the length of the longest increasing run among the first T_1 r.v.'s

$$M_{T_1}^I = \max\{I \mid X_k < \dots < X_{k+l-1} \text{ for some } k, 1 \le k \le T_1 - I + 1\}$$

• $M_{T_1}^{ND}$ = the length of the longest non-decreasing run among the first T_1 r.v.'s

$$M_{T_1}^{ND} = \max\{I \mid X_k \leq \dots \leq X_{k+l-1} \text{ for some } k, 1 \leq k \leq T_1 - I + 1\}$$

Example
$$(T_1 = 10)$$

 X_i : 1 3 5 2 4 7 1 3 3 8

IR: <u>1 3 5</u> <u>2 4 7</u> 1 3 3 8

NOTATIONS

• $M_{T_1}^I$ = the length of the longest increasing run among the first T_1 r.v.'s

$$M_{T_1}^I = \max\{I \mid X_k < \dots < X_{k+l-1} \text{ for some } k, 1 \le k \le T_1 - I + 1\}$$

• $M_{T_1}^{ND}$ = the length of the longest non-decreasing run among the first T_1 r.v.'s

$$M_{T_1}^{ND} = \max\{I \mid X_k \leq \dots \leq X_{k+l-1} \text{ for some } k, 1 \leq k \leq T_1 - I + 1\}$$

Example
$$(T_1 = 10)$$

 X_i : 1 3 5 2 4 7 1 3 3 8

 $IR: \ \underline{1} \ 3 \ \underline{5} \ \underline{2} \ 4 \ 7 \ \underline{1} \ 3 \ 3 \ 8$

NOTATIONS

• $M_{T_1}^I$ = the length of the longest increasing run among the first T_1 r.v.'s

$$M_{T_1}^I = \max\{I \mid X_k < \dots < X_{k+l-1} \text{ for some } k, 1 \le k \le T_1 - I + 1\}$$

• $M_{T_1}^{ND}$ = the length of the longest non-decreasing run among the first T_1 r.v.'s

$$M_{T_1}^{ND} = \max\{I \mid X_k \leq \dots \leq X_{k+l-1} \text{ for some } k, 1 \leq k \leq T_1 - I + 1\}$$

Example
$$(T_1 = 10)$$

 X_i : 1 3 5 2 4 7 1 3 3 8

IR: 1 3 5 2 4 7 1 3 3 8

NOTATIONS

• $M_{T_1}^I$ = the length of the longest increasing run among the first T_1 r.v.'s

$$M_{T_1}^I = \max\{I \,|\, X_k < \cdots < X_{k+l-1} \, \text{ for some } k,\, 1 \leq k \leq T_1 - I + 1\}$$

• $M_{T_1}^{ND}$ = the length of the longest non-decreasing run among the first T_1 r.v.'s

$$M_{T_1}^{ND} = \max\{I \mid X_k \leq \dots \leq X_{k+l-1} \text{ for some } k, 1 \leq k \leq T_1 - I + 1\}$$

Example
$$(T_1 = 10)$$

 X_i : 1 3 5 2 4 7 1 3 3 8

$$IR: \ \underline{1} \ \underline{3} \ \underline{5} \ \underline{2} \ \underline{4} \ \underline{7} \ \underline{1} \ \underline{3} \ \underline{3} \ \underline{8} \ M_{10}' = 3$$

NOTATIONS

• $M_{T_1}^I$ = the length of the longest increasing run among the first T_1 r.v.'s

$$M_{T_1}^I = \max\{I \, | \, X_k < \cdots < X_{k+l-1} \, \text{ for some } k, \, 1 \leq k \leq T_1 - l + 1\}$$

• $M_{T_1}^{ND}$ = the length of the longest non-decreasing run among the first T_1 r.v.'s

$$M_{T_1}^{ND} = \max\{I \mid X_k \leq \dots \leq X_{k+l-1} \text{ for some } k, 1 \leq k \leq T_1 - I + 1\}$$

Example
$$(T_1 = 10)$$

 X_i : 1 3 5 2 4 7 1 3 3 8

$$IR: \ \underline{1} \ \underline{3} \ \underline{5} \ \underline{2} \ \underline{4} \ \underline{7} \ \underline{1} \ \underline{3} \ \underline{3} \ \underline{8} \qquad M_{10}' = 3$$

NOTATIONS

• $M_{T_1}^I$ = the length of the longest increasing run among the first T_1 r.v.'s

$$M_{T_1}^I = \max\{I \,|\, X_k < \cdots < X_{k+l-1} \, \text{ for some } k,\, 1 \leq k \leq T_1 - I + 1\}$$

• $M_{T_1}^{ND}$ = the length of the longest non-decreasing run among the first T_1 r.v.'s

$$M_{T_1}^{ND} = \max\{I \mid X_k \leq \dots \leq X_{k+l-1} \text{ for some } k, 1 \leq k \leq T_1 - I + 1\}$$

Example
$$(T_1 = 10)$$

 X_i : 1 3 5 2 4 7 1 3 3 8

$$IR: \ \underline{1} \ \underline{3} \ \underline{5} \ \underline{2} \ \underline{4} \ \underline{7} \ \underline{1} \ \underline{3} \ \underline{3} \ \underline{8} \qquad M_{10}' = 3$$

NOTATIONS

• $M_{T_1}^I$ = the length of the longest increasing run among the first T_1 r.v.'s

$$M_{T_1}^I = \max\{I \,|\, X_k < \cdots < X_{k+l-1} \, \text{ for some } k,\, 1 \leq k \leq T_1 - I + 1\}$$

• $M_{T_1}^{ND}$ = the length of the longest non-decreasing run among the first T_1 r.v.'s

$$M_{T_1}^{ND} = \max\{I \mid X_k \leq \dots \leq X_{k+l-1} \text{ for some } k, 1 \leq k \leq T_1 - I + 1\}$$

Example
$$(T_1 = 10)$$

 X_i : 1 3 5 2 4 7 1 3 3 8

 $M'_{10} = 3$ IR: 1 3 5 2 4 7 1 3 3 8

NOTATIONS

• $M_{T_1}^I$ = the length of the longest increasing run among the first T_1 r.v.'s

$$M_{T_1}^I = \max\{I \, | \, X_k < \cdots < X_{k+l-1} \, \text{ for some } k, \, 1 \leq k \leq T_1 - l + 1\}$$

ullet $M_{T_1}^{ND}=$ the length of the longest non-decreasing run among the first T_1 r.v.'s

$$M_{T_1}^{ND} = \max\{I \mid X_k \leq \dots \leq X_{k+l-1} \text{ for some } k, 1 \leq k \leq T_1 - I + 1\}$$

Example
$$(T_1 = 10)$$

 X_i : 1 3 5 2 4 7 1 3 3 8

$$IR: 1 3 5 2 4 7 1 3 3 8 M'_{10} = 3$$

$$NDR: 1 \ 3 \ 5 \ 2 \ 4 \ 7 \ 1 \ 3 \ 3 \ 8 \qquad M_{10}^{ND} = 4$$

PROBLEM

GOAL

Find a good estimate for the distribution of the longest increasing or non-decreasing run in the sequence $(X_n)_{n\geq 1}$ of i.i.d. r.v.'s

$$\mathbb{P}\left(M_{\mathcal{T}_1}^I \leq k
ight)$$
 and $\mathbb{P}\left(M_{\mathcal{T}_1}^{ND} \leq k
ight)$

The asymptotic distribution was studied

 G continuous distribution: [Pittel, 1981], [Révész, 1983], [Grill, 1987], [Novak, 1992]

$$\mathbb{P}\left(M_{T_{\mathbf{1}}}^{I}=M_{T_{\mathbf{1}}}^{ND}\right)=1$$

- G discrete distribution:
 - IR: geometric [Grabner et al., 2003], [Louchard and Prodinger, 2003]
 - NDR: geometric [Csaki and Foldes, 1996], [Eryilmaz, 2006]
 - NDR: Poisson [Csaki and Foldes, 1996]
 - NDR: uniform [Louchard, 2005]

Let $1 \leq m_1 \leq T_1$ be positive integers and X_1, \ldots, X_{T_1} a sequence of i.i.d. r.v.'s. Define $S_1, S_2 : \mathbb{R}^{m_1} \to \mathbb{R}$ by

$$S_1(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i < x_{i+1}\}}, \quad S_2(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i \leq x_{i+1}\}}$$

Example
$$(X_i \sim \mathcal{U}(0,1), \ \tilde{X}_i = \mathbf{1}_{\{X_i < X_{i+1}\}}, \ T_1 = 10)$$

$$X_i: 0.79 \quad 0.31 \quad 0.52 \quad 0.16 \quad 0.60 \quad 0.26 \quad 0.65 \quad 0.68 \quad 0.74 \quad 0.45$$
 $\tilde{X}_i:$

Let $1 \leq m_1 \leq T_1$ be positive integers and X_1, \ldots, X_{T_1} a sequence of i.i.d. r.v.'s. Define $S_1, S_2 : \mathbb{R}^{m_1} \to \mathbb{R}$ by

$$S_1(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i < x_{i+1}\}}, \quad S_2(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i \leq x_{i+1}\}}$$

Example
$$(X_i \sim \mathcal{U}(0,1), \ \tilde{X}_i = \mathbf{1}_{\{X_i < X_{i+1}\}}, \ T_1 = 10)$$

$$X_i: 0.79 \quad 0.31 \quad 0.52 \quad 0.16 \quad 0.60 \quad 0.26 \quad 0.65 \quad 0.68 \quad 0.74 \quad 0.45$$

$$\tilde{X}_i: \quad 0$$

Let $1 \leq m_1 \leq T_1$ be positive integers and X_1, \ldots, X_{T_1} a sequence of i.i.d. r.v.'s. Define $S_1, S_2 : \mathbb{R}^{m_1} \to \mathbb{R}$ by

$$S_1(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i < x_{i+1}\}}, \quad S_2(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i \le x_{i+1}\}}$$

Example
$$(X_i \sim \mathcal{U}(0,1), \ \tilde{X}_i = \mathbf{1}_{\{X_i < X_{i+1}\}}, \ T_1 = 10)$$

$$X_i : 0.79 \quad 0.31 \quad 0.52 \quad 0.16 \quad 0.60 \quad 0.26 \quad 0.65 \quad 0.68 \quad 0.74 \quad 0.45$$

$$\tilde{X}_i : \qquad 0 \qquad 1$$

Let $1 \leq m_1 \leq T_1$ be positive integers and X_1, \ldots, X_{T_1} a sequence of i.i.d. r.v.'s. Define $S_1, S_2 : \mathbb{R}^{m_1} \to \mathbb{R}$ by

$$\mathcal{S}_1(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i < x_{i+1}\}}, \quad \mathcal{S}_2(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i \leq x_{i+1}\}}$$

Let $1 \leq m_1 \leq T_1$ be positive integers and X_1, \ldots, X_{T_1} a sequence of i.i.d. r.v.'s. Define $\mathcal{S}_1, \mathcal{S}_2 : \mathbb{R}^{m_1} \to \mathbb{R}$ by

$$\mathcal{S}_1(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i < x_{i+1}\}}, \quad \mathcal{S}_2(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i \leq x_{i+1}\}}$$

Let $1 \leq m_1 \leq T_1$ be positive integers and X_1, \ldots, X_{T_1} a sequence of i.i.d. r.v.'s. Define $S_1, S_2 : \mathbb{R}^{m_1} \to \mathbb{R}$ by

$$\mathcal{S}_1(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i < x_{i+1}\}}, \quad \mathcal{S}_2(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i \leq x_{i+1}\}}$$

Let $1 \leq m_1 \leq T_1$ be positive integers and X_1, \ldots, X_{T_1} a sequence of i.i.d. r.v.'s. Define $S_1, S_2 : \mathbb{R}^{m_1} \to \mathbb{R}$ by

$$\mathcal{S}_1(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i < x_{i+1}\}}, \quad \mathcal{S}_2(x_1,\ldots,x_{m_1}) = \sum_{i=1}^{m_1-1} \mathbf{1}_{\{x_i \leq x_{i+1}\}}$$

We have, for k > 1

$$\begin{split} & \mathbb{P}\left(M_{T_1}^I \leq k\right) = \mathbb{P}\left(L_{T_1-1} < k\right) = \mathbb{P}\left(\mathbf{S}(k+1, T_1, \mathcal{S}_1) < k\right), \\ & \mathbb{P}\left(M_{T_1}^{ND} \leq k\right) = \mathbb{P}\left(L_{T_1-1} < k\right) = \mathbb{P}\left(\mathbf{S}(k+1, T_1, \mathcal{S}_2) < k\right). \end{split}$$

NOVAK'S RESULT

Let $\left(ilde{X}_n
ight)_{n \geq 1}$ be a 1 - dependent stationary sequence of r.v.'s with $ilde{X}_n \in \{0,1\}$,

$$s(k) = \mathbb{P}\left(\tilde{X}_1 = \cdots = \tilde{X}_k = 1\right),$$

 $r(k) = s(k+1) - s(k),$

and let $L_{\mathcal{T}_1}$ be the length of the longest success run among the first \mathcal{T}_1 trials

$$L_{\mathcal{T}_1} = \max\{l \mid \tilde{X}_k = \dots = \tilde{X}_{k+l-1} \text{ for some } k, 1 \leq k \leq \mathcal{T}_1 - l + 1\}$$

THEOREM ([NOVAK, 1992])

If there exists positive constants $t, C < \infty$ such that

$$\frac{s(k+1)}{s(k)} \ge \frac{1}{Ck^t}$$
 for all $k \ge C$,

then, as $T_1 \to \infty$

$$\max_{1 \leq k \leq T_1} \left| \mathbb{P} \left(L_{T_1} < k \right) - e^{T_1 r(k)} \right| = \mathcal{O} \left(\frac{(\log(T_1))^d}{T_1} \right)$$

where $d = \max\{t, 1\}$.

Longest increasing run: $G = \mathcal{U}([0,1])$

Let X_1,\ldots,X_{T_1} be a sequence of i.i.d. r.v.'s with the common distribution $G=\mathcal{U}\left([0,1]\right)$ and $\tilde{X}_i=\mathbf{1}_{\{X_i< X_{i+1}\}}$. In the view of [Novak, 1992] result we have

$$s(k) = \frac{1}{(k+1)!}, \quad r(k) = \frac{k+1}{(k+2)!}, \quad C = 2, \quad t = 1, \quad d = 1$$

and since
$$\mathbb{P}\left(M_{T_1}^l \leq k\right) = \mathbb{P}\left(L_{T_1-1} < k\right) = \mathbb{P}\left(\mathbf{S}(k+1, T_1, \mathcal{S}_1) < k\right)$$
,

$$\max_{1 \leq k \leq T_1} \left| \mathbb{P}\left(M_{T_1}^l \leq k\right) - \mathrm{e}^{-(T_1 - 1)\frac{k + 1}{(k + 2)!}} \right| = \mathcal{O}\left(\frac{\ln T_1}{T_1}\right)$$

k	Sim	App H $E_{total}(1)$		LimApp	
5	0.00000700	0.00000733	0.14860299	0.00000676	
6	0.17567262	0.17937645	0.01089628	0.17620431	
7	0.80257424	0.80362353	0.00110990	0.80215088	
8	0.97548510	0.97566460	0.00011579	0.97550345	
9	0.99749821	0.99751049	0.00001114	0.99749792	
10	0.99977074	0.99977183	0.00000098	0.99977038	
11	0.99998075	0.99998083	0.00000008	0.99998073	
12	0.99999851	0.99999851	0.00000001	0.99999851	
13	0.99999989	0.99999989	0.00000000	0.99999989	
14	0.99999999	0.99999999	0.00000000	0.99999999	
15	1.00000000	1.00000000	0.00000000	1.00000000	

We used $T_1 = 10001$ and $Iter = 10^5$.

SPSR 2017

Let $X_1,\ldots,X_{\mathcal{T}_1}$ be a sequence of i.i.d. r.v.'s with the common distribution $G=\mathcal{U}\left([0,1]\right)$ and $ilde{X}_i = \mathbf{1}_{\{X_i < X_{i+1}\}}$. In the view of [Novak, 1992] result we have

$$s(k) = \frac{1}{(k+1)!}, \quad r(k) = \frac{k+1}{(k+2)!}, \quad C = 2, \quad t = 1, \quad d = 1$$

and since
$$\mathbb{P}\left(M_{T_1}^l \leq k\right) = \mathbb{P}\left(L_{T_1-1} < k\right) = \mathbb{P}\left(\mathbf{S}(k+1, T_1, \mathcal{S}_1) < k\right)$$
,

$$\max_{1 \leq k \leq T_1} \left| \mathbb{P}\left(M_{T_1}^l \leq k\right) - \mathrm{e}^{-(T_1 - 1)\frac{k + 1}{(k + 2)!}} \right| = \mathcal{O}\left(\frac{\ln T_1}{T_1}\right)$$

k	Sim	АррН	$E_{total}(1)$	LimApp
5	0.00000700	0.00000733	0.14860299	0.00000676
6	0 17567262	0.17937645	0.01089628	0.17620431
7	0.80257424	0.80362353	0.00110990	0.80215088
8	0.97548510	0.97566460	0.00011579	0.97550345
9	0 99749821	0.99751049	0.00001114	0.99749792
10	0.99977074	0.99977183	0.00000098	0.99977038
11	0.99998075	0.99998083	0.0000008	0.99998073
12	0 99999851	0.99999851	0.00000001	0.99999851
13	0.99999989	0.99999989	0.00000000	0.99999989
14	0.99999999	0.99999999	0.00000000	0.99999999
15	1.00000000	1.00000000	0.00000000	1.00000000

EXTENSION OF THE CLASSICAL SCAN STAT

We used $T_1 = 10001$ and $Iter = 10^5$.

Longest non-decreasing run: G = Geom(p)

Let $X_1,\ldots,X_{\mathcal{T}_1}$ be a sequence of i.i.d. r.v.'s with the common distribution G=Geom(p) and $\tilde{X}_i=\mathbf{1}_{\{X_i\leq X_{i+1}\}}$. In the view of [Novak, 1992] result we have ([Eryilmaz, 2006])

$$s(k) = \frac{\rho^{k+1}}{\prod\limits_{l=1}^{k+1} \left[1 - (1-\rho)^l\right]}, \quad r(k) = \frac{(1-\rho)\rho^{k+1}}{\prod\limits_{l=1}^{k} \left[1 - (1-\rho)^l\right] \left[1 - (1-\rho)^{k+2}\right]}, \quad C = 2, \quad t = 1, \quad d = 1$$

and since
$$\mathbb{P}\left(M_{T_1}^{ND} \leq k\right) = \mathbb{P}\left(L_{T_1-1} < k\right) = \mathbb{P}\left(\mathbf{S}(k+1, T_1, S_2) < k\right)$$
,

$$\max_{\mathbf{1} \leq k \leq T_{\mathbf{1}}} \left| \mathbb{P}\left(M_{T_{\mathbf{1}}}^{ND} \leq k \right) - e^{-(T_{\mathbf{1}} - \mathbf{1})r(k)} \right| = \mathcal{O}\left(\frac{|\mathbf{n}|T_{\mathbf{1}}}{T_{\mathbf{1}}} \right)$$

k	Sim	App H $E_{total}(1$		LimApp
6	0.00910000	0.00881996	0.04299442	0.00955270
7	0.41785119	0.43020013	0.00530043	0.43655368
8	0.86812059	0.86944409	0.00077029	0.87208008
9	0.97847345	0.97856327	0.00011366	0.97901482
10	0.99681593	0.99681619	0.00001621	0.99689102
11	0.99955034	0.99955248	0.00000222	0.99956349
12	0.99993975	0.99993967	0.00000029	0 99994116
13	0.99999211	0.99999214	0.00000004	0.99999234
14	0.99999900	0.99999900	0.00000000	0.99999903
15	0.99999988	0.99999988	0.00000000	0.99999988

Longest non-decreasing run: G = Geom(p)

Let $X_1, \ldots, X_{\mathcal{T}_1}$ be a sequence of i.i.d. r.v.'s with the common distribution G = Geom(p) and $\tilde{X}_i = \mathbf{1}_{\{X_i \leq X_{i+1}\}}$. In the view of [Novak, 1992] result we have ([Eryilmaz, 2006])

$$s(k) = \frac{\rho^{k+1}}{\prod\limits_{l=1}^{k+1} \left[1 - (1-\rho)^l\right]}, \quad r(k) = \frac{(1-\rho)\rho^{k+1}}{\prod\limits_{l=1}^{k} \left[1 - (1-\rho)^l\right] \left[1 - (1-\rho)^{k+2}\right]}, \quad C = 2, \quad t = 1, \quad d = 1$$

and since
$$\mathbb{P}\left(M_{T_1}^{ND} \leq k\right) = \mathbb{P}\left(L_{T_1-1} < k\right) = \mathbb{P}\left(\mathbf{S}(k+1, T_1, S_2) < k\right)$$
,

$$\max_{\mathbf{1} \leq k \leq T_{\mathbf{1}}} \left| \mathbb{P}\left(M_{T_{\mathbf{1}}}^{ND} \leq k \right) - \mathrm{e}^{-(T_{\mathbf{1}} - \mathbf{1})r(k)} \right| = \mathcal{O}\left(\frac{\ln T_{\mathbf{1}}}{T_{\mathbf{1}}} \right)$$

ĺ	k	Sim	АррН	$E_{total}(1)$	LimApp	
	6	0.00910000	0.00881996	0.04299442	0.00955270	
	7	0.41785119	0.43020013	0.00530043	0.43655368	
	8	0.86812059	0.86944409	0.00077029	0.87208008	
	9	0.97847345	0.97856327	0.00011366	0.97901482	
	10	0.99681593	0.99681619	0.00001621	0.99689102	
	11	0.99955034	0.99955248	0.00000222	0.99956349	
	12	0.99993975	0.99993967	0.00000029	0.99994116	
	13	0.99999211	0.99999214	0.00000004	0.99999234	
	14	0.99999900	0.99999900	0.00000000	0.99999903	
	15	0.99999988	0.99999988	0.0000000	0.99999988	

LONGEST INCREASING RUN: G = Geom(p)

Let X_1, \ldots, X_{T_1} be a sequence of i.i.d. r.v.'s with the common distribution G = Geom(p) and $\tilde{X}_i = \mathbf{1}_{\{X_i < X_{i+1}\}}$. The result of [Novak, 1992] cannot be applied since

$$s(k) = \frac{\rho^{k+1}}{\prod\limits_{l=1}^{k+1} \left[1 - (1-\rho)^l\right]} (1-\rho)^{\frac{(k+1)(k+2)}{2}}, \quad \frac{s(k+1)}{s(k)} = \frac{\rho(1-\rho)^{k+1}}{1 - (1-\rho)^{k+2}}.$$

For this case, [Louchard and Prodinger, 2003] showed that

$$\mathbb{P}\left(M_{T_{1}}^{l} \leq k\right) \sim \exp\left(-\exp\eta\right),$$

$$\eta = \frac{k(k+1)}{2} \log \frac{1}{1-p} + k \log \frac{1}{p} - \log T_{1} - \log p + \log D(k),$$

$$D(k) = \prod_{l=1}^{k} \left[1 - (1-p)^{l}\right] \left[1 - (1-p)^{k+2}\right]$$

k	Sim	АррН	$E_{total}(1)$	LimApp
6	0.56445934	0.56997462	0.00255592	0.56810748
7	0.95295406	0.95325180	0.00018554	0.95294598
8	0.99658057	0.99659071	0.00001214	0.99657969
9	0.99979460	0.99979550	0.00000068	0.99979435
10	0.99998950	0.99998950	0.0000003	0.99998947

LONGEST INCREASING RUN: G = Geom(p)

Let X_1, \ldots, X_{T_1} be a sequence of i.i.d. r.v.'s with the common distribution G = Geom(p) and $ar{X}_i = \mathbf{1}_{\{X_i < X_{i+1}\}}$. The result of [Novak, 1992] cannot be applied since

$$s(k) = \frac{\rho^{k+1}}{\prod\limits_{l=1}^{k+1} \left[1 - (1-\rho)^l\right]} (1-\rho)^{\frac{(k+1)(k+2)}{2}}, \quad \frac{s(k+1)}{s(k)} = \frac{\rho(1-\rho)^{k+1}}{1 - (1-\rho)^{k+2}}.$$

For this case, [Louchard and Prodinger, 2003] showed that

$$\mathbb{P}\left(M_{T_{1}}^{l} \leq k\right) \sim \exp\left(-\exp\eta\right),$$

$$\eta = \frac{k(k+1)}{2} \log \frac{1}{1-p} + k \log \frac{1}{p} - \log T_{1} - \log p + \log D(k),$$

$$D(k) = \prod_{l=1}^{k} \left[1 - (1-p)^{l}\right] \left[1 - (1-p)^{k+2}\right]$$

k	Sim	АррН	$E_{total}(1)$	LimApp	
6	0.56445934	0.56997462	0.00255592	0.56810748	
7	0.95295406	0.95325180	0.00018554	0.95294598	
8	0.99658057	0.99659071	0.00001214	0.99657969	
9	0.99979460	0.99979550	0.00000068	0.99979435	
10	0.99998950	0.99998950	0.00000003	0.99998947	

EXTENSION OF THE CLASSICAL SCAN STAT

23 / 42

Longest non-decreasing run: $G = \mathcal{U}(\{1, \dots, s\})$

Let $X_1,\ldots,X_{\mathcal{T}_1}$ be a sequence of i.i.d. r.v.'s with the common distribution $G=\mathcal{U}\left(\{1,\ldots,s\}\right)$ and $\tilde{X}_i=\mathbf{1}_{\{X_i\leq X_{i+1}\}}$. By [Novak, 1992] result ([Louchard, 2005]) we have for $k\geq s$

$$s(k) = \binom{k+s}{s-1} \left(\frac{1}{s}\right)^{k+1} \,, \quad r(k) = (k+1)\binom{k+s}{s-2} \left(\frac{1}{s}\right)^{k+2} \,, \quad C = s, \quad t = 0, \quad d = 1$$

and since
$$\mathbb{P}\left(M_{T_1}^{ND} \leq k\right) = \mathbb{P}\left(L_{T_1-1} < k\right) = \mathbb{P}\left(\mathbf{S}(k+1, T_1, S_2) < k\right)$$
,

$$\max_{\mathbf{1} \leq k \leq T_{\mathbf{1}}} \left| \mathbb{P}\left(M_{T_{\mathbf{1}}}^{ND} \leq k \right) - e^{-(T_{\mathbf{1}} - \mathbf{1})r(k)} \right| = \mathcal{O}\left(\frac{|\mathbf{n}|T_{\mathbf{1}}}{T_{\mathbf{1}}} \right)$$

k	Sim	АррН	$E_{total}(1)$	LimApp	
6	0.00011600	0.00009250	0.12199130	0.00012230	
7	0.12501359	0.13542539	0.01560743	0.14301582	
8	0.66274522	0.66691156	0.00260740	0.67447410	
9	0.92424548	0.92504454	0.00046466	0.92720370	
10	0.98565802	0.98582491	0.00008240	0.98623886	
11	0.99748606	0.99747899	0.00001420	0.99756110	
12	0.99956827	0.99957165	0.00000238	0.99958439	
13	0.99992879	0.99992933	0.00000039	0.99993136	
14	00.99998862	0.99998861	0.00000006	0.99998897	

Longest non-decreasing run: $G = \mathcal{U}(\{1, \dots, s\})$

Let X_1,\ldots,X_{T_1} be a sequence of i.i.d. r.v.'s with the common distribution $G=\mathcal{U}\left(\{1,\ldots,s\}\right)$ and $\tilde{X}_i=\mathbf{1}_{\{X_i\leq X_{i+1}\}}$. By [Novak, 1992] result ([Louchard, 2005]) we have for $k\geq s$

$$s(k) = \binom{k+s}{s-1} \left(\frac{1}{s}\right)^{k+1} \,, \quad r(k) = (k+1)\binom{k+s}{s-2} \left(\frac{1}{s}\right)^{k+2} \,, \quad C = s, \quad t = 0, \quad d = 1$$

and since
$$\mathbb{P}\left(M_{T_1}^{ND} \leq k\right) = \mathbb{P}\left(L_{T_1-1} < k\right) = \mathbb{P}\left(\mathbf{S}(k+1, T_1, S_2) < k\right)$$
,

$$\max_{\mathbf{1} \leq k \leq T_{\mathbf{1}}} \left| \mathbb{P}\left(M_{T_{\mathbf{1}}}^{ND} \leq k \right) - e^{-(T_{\mathbf{1}} - \mathbf{1})r(k)} \right| = \mathcal{O}\left(\frac{|\mathbf{n}|T_{\mathbf{1}}}{T_{\mathbf{1}}} \right)$$

k	Sim	АррН	$E_{total}(1)$	LimApp	
6	0.00011600	0.00009250	0.12199130	0.00012230	
7	0.12501359	0.13542539	0.01560743	0.14301582	
8	0.66274522	0.66691156	0.00260740	0.67447410	
9	0.92424548	0.92504454	0.00046466	0.92720370	
10	0.98565802	0.98582491	0.00008240	0.98623886	
11	0.99748606	0.99747899	0.00001420	0.99756110	
12	0.99956827	0.99957165	0.00000238	0.99958439	
13	0.99992879	0.99992933	0.00000039	0.99993136	
14	00.99998862	0.99998861	0.00000006	0.99998897	

OUTLINE

- Introduction
 - Framework
 - Problem
- 2 METHODOLOGY
 - Approximation
- APPLICATIONS
 - Application: Length of the Longest increasing/non-decreasing run
 - Application: Scanning with windows of arbitrary shape
 - Application: Scanning the surface of a cylinder

Application 3:

Scanning with windows of arbitrary shape

SHAPE OF THE SCANNING WINDOW

Let G be the geometrical shape of the scanning window (rectangle, quadrilateral, ellipse, etc.) and \tilde{G} be its corresponding discrete form.

- ullet Rasterization algorithms (computer vision): continuous shape odiscrete shape
 - Line Bresenham line algorithm ([Bresenham, 1965])
 - Circle Bresenham circle algorithm ([Bresenham, 1977])
 - Bezier curves [Foley, 1995]

SHAPE OF THE SCANNING WINDOW

To each discrete shape \tilde{G} it corresponds an unique matrix (2-way tensor) $A(G)=A\left(ilde{G}
ight)$ (of smallest size) with 0 and 1 entries (1 if there is a point and 0 otherwise):

 \tilde{G} : Circle

 $A\left(ilde{G}
ight) :$ Circle

				1	1	1	1	1				
			1	1	1	1	1	1	1			
		1	1	1	1	1	1	1	1	1		
	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	
		1	1	1	1	1	1	1	1	1		
			1	1	1	1	1	1	1			
				1	1	1	1	1				

SHAPE OF THE SCANNING WINDOW

To each discrete shape \tilde{G} it corresponds an unique matrix (2-way tensor) $A\left(G
ight) =A\left(ilde{G}
ight)$ (of smallest size) with 0 and 1 entries (1 if there is a point and 0 otherwise):

 \tilde{G} : Annulus

$A\left(\tilde{G}\right)$: Annulus

Let G be a geometric shape and A=A(G) its corresponding $\{0,1\}$ matrix of size $m_1\times m_2$.

ullet Define the score function ${\cal S}$ associated to the shape G by

$$S\left(\mathfrak{X}_{i_{1},i_{2}}\right) = A \circ \mathfrak{X}_{i_{1},i_{2}} = \sum_{s_{1}=i_{1}}^{i_{1}+m_{1}-1} \sum_{s_{2}=i_{2}}^{i_{2}+m_{2}-1} A(s_{1}-i_{1}+1,s_{2}-i_{2}+1) X_{s_{1},s_{2}}$$

Remark

If, in particular, the shape G is a rectangle of size $m_1 \times m_2$ than its corresponding $\{0,1\}$ matrix of the same size has all the entries equal to 1 so the score function

$$\mathcal{S}\left(\mathfrak{X}_{i_{1},i_{2}}\right) = \sum_{s_{1}=i_{1}}^{i_{1}+m_{1}-1} \sum_{s_{2}=i_{2}}^{i_{2}+m_{2}-1} X_{s_{1},s_{2}}$$

is the classical rectangular window of the two dimensional scan statistics.

Table 1: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Triangle

Window's shape

Triangle $(m_1 = 14, m_2 = 18, Nt = 133, IS = 1e5, IA = 1e6)$

$X_{s_1,s_2} \sim \mathcal{B}(1,0.01)$					$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$					
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total			
3	0.916397	0.918667	0.004333	59	0.863336	0.897101	0.004902			
4	0.997488	0.997483	0.000082	60	0.936684	0.948160	0.002010			
5	0.999947	0.999947	0.000002	61	0.971529	0.974938	0.000894			
6	0.999999	0.999999	0	62	0.987094	0.988279	0.000412			
7	0.999999	0.999999	0	63	0.994372	0.994664	0.000192			
8	1.000000	1.000000	0	64	0.997563	0.997643	0.000089			
9	1.000000	1.000000	0	65	0.998946	0.998971	0.000041			
10	1.000000	1.000000	0	66	0.999564	0.999567	0.000018			
11	1.000000	1.000000	0	67	0.999817	0.999820	8000000			

	$X_{s_1,s}$	$_{2} \sim \mathcal{P}(0.25)$		$X_{s_{1},s_{2}} \sim \mathcal{N}(0,1)$				
τ		АррН	ETotal	τ	Sim	АррН	E Total	
59	0.739866	0.820277	0.011813	50	0.911170	0.934999	0.002737	
60	0.871829	0.902957	0.004483	51	0.945219	0.957777	0.001655	
6	0.939577	0.950977	0.001911	52	0.966494	0.972997	0.001026	
6:	0.971673	0.975649	0.000890	53	0.979944	0.982929	0.000644	
63	0.987075	0.988206	0.000425	54	0.987840	0.989469	0.000406	
6	0.994104	0.994492	0.000204	55	0.992768	0.993477	0.000257	
6	0.997384	0.997452	0.000098	56	0.995667	0.996022	0.000162	
6	0 998821	0.998855	0.000046	57	0.997412	0.997574	0.000102	
6	0.999489	0.999490	0.000022	58	0.998509	0.998563	0.000063	

Table 1: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Triangle

Window's shape

Triangle $(m_1 = 14, m_2 = 18, Nt = 133, IS = 1e5, IA = 1e6)$

	$X_{s_1,s_2} \sim \mathcal{B}(1,0.01)$					$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$					
_	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total			
_	3	0.916397	0.918667	0.004333	59	0.863336	0.897101	0.004902			
	4	0.997488	0.997483	0.000082	60	0.936684	0.948160	0.002010			
	5	0.999947	0.999947	0.000002	61	0.971529	0.974938	0.000894			
	6	0.999999	0.999999	0	62	0.987094	0.988279	0.000412			
	7	0.999999	0.999999	0	63	0.994372	0.994664	0.000192			
	8	1.000000	1.000000	0	64	0.997563	0.997643	0.000089			
	9	1.000000	1.000000	0	65	0.998946	0.998971	0.000041			
	10	1.000000	1.000000	0	66	0.999564	0.999567	0.000018			
_	11	1.000000	1.000000	0	67	0.999817	0.999820	0.000008			

	$X_{s_1,s_2} \sim \mathcal{P}(0.25)$				$X_{s_{1},s_{2}} \sim \mathcal{N}(0,1)$				
	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
_	59	0.739866	0.820277	0.011813	50	0.911170	0.934999	0.002737	
	60	0.871829	0.902957	0.004483	51	0.945219	0.957777	0 001655	
	61	0.939577	0.950977	0.001911	52	0.966494	0.972997	0 001026	
	62	0.971673	0.975649	0.000890	53	0.979944	0.982929	0.000644	
	63	0.987075	0.988206	0.000425	54	0.987840	0.989469	0.000406	
	64	0.994104	0.994492	0.000204	55	0.992768	0.993477	0.000257	
	65	0.997384	0.997452	0.000098	56	0.995667	0.996022	0.000162	
	66	0.998821	0.998855	0.000046	57	0.997412	0.997574	0.000102	
	67	0.999489	0.999490	0.000022	58	0.998509	0.998563	0.000063	

SCANNING A REGION OF SIZE $T_1 \times T_2 = 250 \times 250$

Table 2: Numerical results for $\mathbb{P}(S \leq \tau)$: Rectangle

Window's shape

Rectangle ($m_1 = 11, m_2 = 12, Nt = 132, IS = 1e5, IA = 1e6$)

	$X_{s_1,s_2} \sim \mathcal{B}(1,0.01)$				$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
3	0.947896	0.948226	0.002110	59	0.856993	0.857094	0.005485		
4	0.997983	0.997986	0.000058	60	0.919416	0.919589	0.002300		
5	0.999943	0.999943	0.000001	61	0.956420	0.956569	0.001024		
6	0.999999	0.999999	0	62	0.977142	0.977065	0.000471		
7	0.999999	0.999999	0	63	0.988228	0.988208	0.000220		
8	1.000000	1.000000	0	64	0.994130	0.994095	0.000103		
9	1.000000	1.000000	0	65	0.997121	0.997107	0.000048		
10	1.000000	1.000000	0	66	0 998610	0.998607	0.000022		
11	1.000000	1.000000	0	67	0.999342	0.999342	0.000010		

	$X_{s_1,s_2} \sim \mathcal{P}(0.25)$			$X_{\mathbf{s_1},\mathbf{s_2}} \sim \mathcal{N}(0,1)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
59	0.764372	0.764495	0.013285	50	0.865858	0.865484	0.004572	
60	0.857872	0.859289	0.005320	51	0.904555	0.904805	0.002691	
61	0.918972	0.918732	0.002307	52	0.933323	0.933206	0.001620	
62	0.954682	0.954579	0.001059	53	0.953950	0.953807	0.000993	
63	0.975271	0.975391	0.000502	54	0.968340	0.968483	0.000617	
64	0.986996	0.986966	0.000242	55	0.978632	0.978687	0.000386	
65	0.993240	0.993261	0.000117	56	0.985791	0.985752	0.000242	
66	0.996557	0.996551	0.000056	57	0.990621	0.990585	0.000152	
67	0.998290	0.998283	0.000027	58	0.993837	0.993815	0.000096	

Table 2: Numerical results for $\mathbb{P}(S \leq \tau)$: Rectangle

Window's shape Rectangle ($m_1 = 11, m_2 = 12, Nt = 132, IS = 1e5, IA = 1e6$)

$X_{s_1,s_2} \sim \mathcal{B}(1,0.01)$				$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
3	0.947896	0.948226	0.002110	59	0.856993	0.857094	0.005485	
4	0.997983	0.997986	0.000058	60	0.919416	0.919589	0.002300	
5	0.999943	0.999943	0.000001	61	0.956420	0.956569	0.001024	
6	0.999999	0.999999	0	62	0.977142	0.977065	0.000471	
7	0.999999	0.999999	0	63	0.988228	0.988208	0.000220	
8	1.000000	1.000000	0	64	0.994130	0.994095	0.000103	
9	1.000000	1.000000	0	65	0.997121	0.997107	0.000048	
10	1.000000	1.000000	0	66	0.998610	0.998607	0.000022	
11	1.000000	1.000000	0	67	0.999342	0.999342	0.000010	

	$X_{s_1,s_2} \sim \mathcal{P}(0.25)$				$X_{\mathbf{s_1},\mathbf{s_2}} \sim \mathcal{N}(0,1)$				
	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
_	59	0.764372	0.764495	0.013285	50	0.865858	0.865484	0.004572	
	60	0.857872	0.859289	0.005320	51	0.904555	0.904805	0.002691	
	61	0.918972	0.918732	0.002307	52	0.933323	0.933206	0.001620	
	62	0.954682	0.954579	0.001059	53	0.953950	0.953807	0.000993	
	63	0.975271	0.975391	0.000502	54	0.968340	0.968483	0.000617	
	64	0.986996	0.986966	0.000242	55	0.978632	0.978687	0.000386	
	65	0.993240	0.993261	0.000117	56	0.985791	0.985752	0.000242	
	66	0.996557	0.996551	0.000056	57	0.990621	0.990585	0.000152	
	67	0.998290	0.998283	0.000027	58	0.993837	0.993815	0.000096	

Table 3: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Quadrilateral

Window's shape

Quadrilateral ($m_1 = 14, m_2 = 18, Nt = 131, IS = 1e5, IA = 1e6$)

	^s ₁ ,s ₂	$\sim B(1, 0.01)$		$A_{s_1,s_2} \sim B(5,0.05)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
3	0.926068	0.927398	0.003806	59	0.914546	0.927613	0.002942	
4	0.997622	0.997627	0.000075	60	0.959599	0.963873	0.001255	
5	0.999946	0.999946	0.000002	61	0.981235	0.982506	0.000571	
6	0.999999	0.999999	0	62	0.991423	0.991796	0.000266	
7	0.999999	0.999999	0	63	0.996113	0.996233	0.000124	
8	1.000000	1.000000	0	64	0.998283	0.998337	0.000057	
9	1.000000	1.000000	0	65	0.999266	0.999266	0.000026	
10	1.000000	1.000000	0	66	0.999684	0.999684	0.000012	
11	1.000000	1.000000	0	67	0.999868	0.999869	0.000005	

	$X_{s_1,s_2} \sim \mathcal{P}(0.25)$			$X_{\mathbf{s_1},\mathbf{s_2}} \sim \mathcal{N}(0,1)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
59	0.835054	0.870351	0.006852	50	0.920004	0.935266	0.002571	
60	0.917972	0.931040	0.002768	51	0.950232	0.957711	0.001556	
61	0.960397	0.964711	0.001237	52	0.968755	0.972594	0.000964	
62	0.981228	0.982451	0.000585	53	0.980695	0.982566	0.000606	
63	0.991142	0.991510	0.000281	54	0.988110	0.989060	0.000383	
64	0.995855	0.995971	0.000136	55	0.992626	0.993110	0.000242	
65	0.998108	0.998124	0.000065	56	0.995569	0.995771	0.000153	
66	0.999135	0.999153	0.000031	57	0.997361	0.997394	0.000096	
67	0.999620	0.999622	0.000014	58	0.998379	0.998435	0.000060	

Table 3: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Quadrilateral

Window's shape

Quadrilateral ($m_1 = 14, m_2 = 18, Nt = 131, IS = 1e5, IA = 1e6$)

	^ ₅₁ , ₅₂	$\sim B(1,0.01$		$A_{s_1,s_2} \sim B(5,0.05)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
3	0.926068	0.927398	0.003806	59	0.914546	0.927613	0.002942	
4	0.997622	0.997627	0.000075	60	0.959599	0.963873	0.001255	
5	0.999946	0.999946	0.000002	61	0.981235	0.982506	0.000571	
6	0.999999	0.999999	0	62	0.991423	0.991796	0.000266	
7	0.999999	0.999999	0	63	0.996113	0.996233	0.000124	
8	1.000000	1.000000	0	64	0.998283	0.998337	0.000057	
9	1.000000	1.000000	0	65	0.999266	0.999266	0.000026	
10	1.000000	1.000000	0	66	0.999684	0.999684	0.000012	
11	1.000000	1.000000	0	67	0.999868	0.999869	0.000005	

	$X_{s_1,s_2} \sim \mathcal{P}(0.25)$				$X_{s_1,s_2} \sim \mathcal{N}(0,1)$				
	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
•	59	0.835054	0.870351	0.006852	50	0.920004	0.935266	0.002571	
	60	0.917972	0.931040	0.002768	51	0.950232	0.957711	0.001556	
	61	0.960397	0.964711	0.001237	52	0.968755	0.972594	0.000964	
	62	0 981228	0.982451	0.000585	53	0.980695	0.982566	0.000606	
	63	0 991142	0.991510	0.000281	54	0.988110	0.989060	0.000383	
	64	0.995855	0.995971	0.000136	55	0.992626	0.993110	0.000242	
	65	0.998108	0.998124	0.000065	56	0.995569	0.995771	0.000153	
	66	0.999135	0.999153	0.000031	57	0.997361	0.997394	0.000096	
	67	0.999620	0.999622	0.000014	58	0.998379	0.998435	0.000060	

Table 4: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Circle

Window's shape

Circle $(m_1 = 13, m_2 = 13, Nt = 129, IS = 1e54, IA = 1e6)$

	$X_{s_1,s_2} \sim \mathcal{B}(1,0.01)$				$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$				
	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
_	3	0.950311	0.950461	0.002195	59	0.920229	0.920388	0.002318	
	4	0.998118	0.998114	0.000059	60	0.956814	0.957143	0.001016	
	5	0.999947	0.999947	0.000001	61	0.977460	0.977614	0.000462	
	6	0.999999	0.999999	0	62	0.988568	0.988567	0.000214	
	7	0.999999	0.999999	0	63	0.994312	0.994309	0.000099	
	8	1.000000	1.000000	0	64	0.997229	0.997228	0.000046	
	9	1.000000	1.000000	0	65	0.998678	0.998679	0.000021	
	10	1.000000	1.000000	0	66	0.999380	0.999381	0.000009	
	11	1.000000	1.000000	0	67	0.999715	0.999715	0.000004	

	$X_{\mathbf{s_1},\mathbf{s_2}} \sim \mathcal{P}(0.25)$				$X_{s_{1},s_{2}} \sim \mathcal{N}(0,1)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
59	0.858454	0.859178	0.005391	50	0.888137	0.887891	0.003485		
60	0 919182	0.919586	0.002310	51	0 921173	0.921549	0.002058		
61	0.955229	0.955388	0.001047	52	0 945761	0.945644	0.001243		
62	0.976023	0.975987	0.000491	53	0.962790	0.962825	0.000760		
63	0 987414	0.987344	0.000234	54	0.974848	0.974878	0.000470		
64	0.993477	0.993502	0.000112	55	0.983235	0.983263	0.000293		
65	0.996706	0.996703	0.000054	56	0.988885	0.988907	0.000182		
66	0.998372	0.998365	0.000025	57	0.992730	0.992734	0.000114		
67	0.999207	0.999203	0.000012	58	0.995269	0.995287	0.000071		

Table 4: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Circle

Window's shape

Circle $(m_1 = 13, m_2 = 13, Nt = 129, IS = 1e54, IA = 1e6)$

$X_{s_1,s_2} \sim \mathcal{B}(1,0.01)$				$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	ETotal	
3	0.950311	0.950461	0.002195	59	0.920229	0.920388	0.002318	
4	0.998118	0.998114	0.000059	60	0.956814	0.957143	0.001016	
5	0.999947	0.999947	0.000001	61	0.977460	0.977614	0.000462	
6	0.999999	0.999999	0	62	0.988568	0.988567	0.000214	
7	0.999999	0.999999	0	63	0 994312	0.994309	0.000099	
8	1.000000	1 000000	0	64	0.997229	0.997228	0.000046	
9	1.000000	1.000000	0	65	0.998678	0.998679	0.000021	
10	1.000000	1 000000	0	66	0.999380	0.999381	0.000009	
11	1.000000	1.000000	0	67	0.999715	0.999715	0.000004	

	$X_{s_1,s_2} \sim \mathcal{P}(0.25)$				$X_{s_1,s_2} \sim \mathcal{N}(0,1)$				
	τ	Sim	АррН	E Total	τ	Sim	АррН	ETotal	
_	59	0.858454	0.859178	0.005391	50	0.888137	0.887891	0.003485	
	60	0.919182	0.919586	0.002310	51	0.921173	0.921549	0.002058	
	61	0.955229	0.955388	0.001047	52	0.945761	0.945644	0.001243	
	62	0.976023	0.975987	0.000491	53	0.962790	0.962825	0.000760	
	63	0.987414	0.987344	0.000234	54	0.974848	0.974878	0.000470	
	64	0.993477	0.993502	0.000112	55	0.983235	0.983263	0.000293	
	65	0.996706	0.996703	0.000054	56	0.988885	0.988907	0.000182	
	66	0.998372	0.998365	0.000025	57	0.992730	0.992734	0.000114	
	67	0.999207	0.9992032	0.000012	58	0.995269	0.995287	0.000071	

Table 5: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Ellipse

Window's shape

Ellipse $(m_1 = 19, m_2 = 9, Nt = 135, IS = 1e5, IA = 1e6)$

$X_{s_1,s_2} \sim \mathcal{B}(1,0.01)$					$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
3	0 944001	0.944211	0.002297	59	0.764871	0.763482	0.009128		
4	0.997757	0.997758	0.000069	60	0.860903	0.860548	0.004127		
5	0.999935	0.999935	0.000002	61	0.921089	0.920882	0.001941		
6	0.999998	0.999998	0	62	0.956735	0.956866	0.000934		
7	1.000000	1.000000	0	63	0.977118	0.977094	0.000452		
8	1.000000	1.000000	0	64	0.988182	0.988152	0.000218		
9	1.000000	1.000000	0	65	0.994044	0.994012	0.000104		
10	1.000000	1.000000	0	66	0.997037	0.997037	0.000049		
11	1.000000	1.000000	0	67	0.998554	0.998558	0.000023		

	X_{s_1,s_2}	$\sim \mathcal{P}(0.25)$		$X_{s_1,s_2} \sim \mathcal{N}(0,1)$					
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
59	0.638962	0.639102	0.019442	50	0.843156	0.844113	0.004369		
60	0.768283	0.769666	0.008610	51	0.887477	0.887692	0.002755		
61	0.861614	0.860885	0.004012	52	0 920601	0.920385	0.001757		
62	0.919144	0.919301	0.001948	53	0.944398	0.944328	0.001127		
63	0.954941	0.954864	0.000965	54	0.961682	0.961667	0.000725		
64	0.975255	0.975369	0.000481	55	0.973797	0.973864	0.000468		
65	0.986869	0.986900	0.000240	56	0.982232	0.982330	0.000301		
66	0.993115	0.993127	0.000119	57	0.988183	0.988132	0.000193		
67	0.996485	0.996472	0.000058	58	0.992138	0.992134	0.000123		

Table 5: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Ellipse

Window's shape

Ellipse $(m_1 = 19, m_2 = 9, Nt = 135, IS = 1e5, IA = 1e6)$

	X_{s_1,s_2}	$\sim \mathcal{B}(1, 0.01$.)	$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
3	0.944001	0.944211	0.002297	59	0.764871	0.763482	0.009128	
4	0.997757	0.997758	0.000069	60	0.860903	0.860548	0.004127	
5	0.999935	0.999935	0.000002	61	0.921089	0.920882	0.001941	
6	0.999998	0.999998	0	62	0.956735	0.956866	0.000934	
7	1.000000	1.000000	0	63	0.977118	0.977094	0.000452	
8	1.000000	1.000000	0	64	0.988182	0.988152	0.000218	
9	1.000000	1.000000	0	65	0.994044	0.994012	0.000104	
10	1.000000	1.000000	0	66	0.997037	0.997037	0.000049	
11	1.000000	1.000000	0	67	0.998554	0.998558	0.000023	

$X_{s_1,s_2} \sim \mathcal{P}(0.25)$					$X_{s_1,s_2} \sim \mathcal{N}(0,1)$				
	τ	Sim	АррН	ETotal	τ	Sim	АррН	ETotal	
_	59	0.638962	0.639102	0.019442	50	0.843156	0.844113	0.004369	
	60	0.768283	0.769666	0.008610	51	0.887477	0.887692	0.002755	
	61	0 861614	0.860885	0.004012	52	0.920601	0.920385	0.001757	
	62	0 919144	0.919301	0.001948	53	0.944398	0.944328	0.001127	
	63	0 954941	0.954864	0.000965	54	0.961682	0.961667	0.000725	
	64	0.975255	0.975369	0.000481	55	0.973797	0.973864	0.000468	
	65	0.986869	0.986900	0.000240	56	0.982232	0.982330	0.000301	
	66	0.993115	0.993127	0.000119	57	0.988183	0.988132	0.000193	
	67	0.996485	0.996472	0.000058	58	0.992138	0.992134	0.000123	

Table 6: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Ellipse2

Window's shape

Ellipse2 ($m_1 = 9$, $m_2 = 19$, Nt = 135, IS = 1e5, IA = 1e6)

		$\sim B(1, 0.01)$		$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
3	0.944180	0.943779	0.003420	59	0.764090	0.763753	0.036701	
4	0.997761	0.997767	0.000071	60	0.859511	0.860602	0.011219	
5	0.999934	0.999935	0.000002	61	0.921173	0.920669	0.003816	
6	0.999998	0.999998	0	62	0.956920	0.956693	0 001440	
7	0.999999	0.999999	0	63	0.977198	0.977129	0.000586	
8	1.000000	1.000000	0	64	0.988162	0.988177	0.000253	
9	1.000000	1.000000	0	65	0.993979	0.994008	0.000113	
10	1.000000	1.000000	0	66	0.997032	0.997036	0.000051	
11	1.000000	1.000000	0	67	0.998558	0.998562	0.000023	

	X_{s_1,s_2}	$\sim \mathcal{P}(0.25)$		$X_{s_{1},s_{2}} \sim \mathcal{N}(0,1)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
59	0.638389	0.640805	0.117483	50	0.843792	0.844342	0.013346	
60	0.770899	0.769795	0.034030	51	0.888070	0.887823	0.006857	
61	0.860847	0.861092	0.010890	52	0.920460	0.920691	0.003626	
62	0.919522	0.919537	0.003909	53	0.944514	0.944368	0.001974	
63	0.954873	0.954742	0.001516	54	0.961591	0.961748	0.001109	
64	0.975326	0.975379	0.000635	55	0.973861	0.973830	0.000640	
65	0.986856	0.986843	0.000282	56	0.982294	0.982269	0.000377	
66	0.993154	0.993119	0.000130	57	0.988180	0.988143	0.000226	
67	0.996482	0.996478	0.000061	58	0.992154	0.992123	0.000138	

12/1 0 01)

Table 6: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Ellipse2

Window's shape

Ellipse2 ($m_1 = 9$, $m_2 = 19$, Nt = 135, IS = 1e5, IA = 1e6)

	^s ₁ ,s ₂	$\sim B(1,0.01$,	$\lambda_{s_1,s_2} \sim \mathcal{B}(s,0.0s)$				
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total	
3	0.944180	0.943779	0.003420	59	0.764090	0.763753	0.036701	
4	0.997761	0.997767	0.000071	60	0.859511	0.860602	0.011219	
5	0.999934	0.999935	0.000002	61	0.921173	0.920669	0.003816	
6	0.999998	0.999998	0	62	0.956920	0.956693	0.001440	
7	0.999999	0.999999	0	63	0.977198	0.977129	0.000586	
8	1.000000	1.000000	0	64	0.988162	0.988177	0.000253	
9	1.000000	1.000000	0	65	0.993979	0.994008	0.000113	
10	1.000000	1.000000	0	66	0.997032	0.997036	0.000051	
11	1.000000	1.000000	0	67	0.998558	0.998562	0.000023	

	$X_{s_1,s_2} \sim \mathcal{P}(0.25)$					$X_{s_1,s_2} \sim \mathcal{N}(0,1)$				
	τ	Sim	АррН	ETotal	τ	Sim	АррН	ETotal		
-	59	0.638389	0.640805	0.117483	50	0.843792	0.844342	0.013346		
	60	0.770899	0.769795	0.034030	51	0.888070	0.887823	0.006857		
	61	0.860847	0.861092	0.010890	52	0.920460	0.920691	0.003626		
	62	0 919522	0.919537	0.003909	53	0 944514	0.944368	0.001974		
	63	0.954873	0.954742	0.001516	54	0.961591	0 961748	0.001109		
	64	0.975326	0.975379	0.000635	55	0.973861	0.973830	0.000640		
	65	0.986856	0.986843	0.000282	56	0.982294	0.982269	0.000377		
	66	0.993154	0.993119	0.000130	57	0.988180	0.988143	0.000226		
	67	0.996482	0.996478	0.000061	58	0.992154	0.992123	0.000138		

Table 7: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Annulus

Window's shape

Annulus ($m_1 = 17, m_2 = 17, Nt = 124, IS = 1e5, IA = 1e6$)

			$\sim B(1, 0.01)$			$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$				
	τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total		
	3	0.881798	0.882489	0.004812	59	0.951170	0.951245	0.000699		
	4	0.995434	0.995465	0.000069	60	0.975772	0.975727	0.000255		
	5	0.999883	0.999883	0.000001	61	0.988275	0.988270	0.000099		
	6	0.999998	0.999998	0	62	0.994460	0.994466	0.000041		
	7	0.999999	0.999999	0	63	0.997439	0.997440	0.000017		
	8	1.000000	1.000000	0	64	0.998839	0.998840	0.000007		
	9	1.000000	1.000000	0	65	0.999484	0.999484	0.000003		
	10	1.000000	1.000000	0	66	0.999775	0.999775	0.000001		
_	11	1.000000	1.000000	0	67	0.999903	0.999903	0.000000		

	$X_{s_1,s}$	$\sim \mathcal{P}(0.25)$			$X_{s_1,s}$	$_{2}\sim\mathcal{N}(0,1)$	
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total
59	0.903956	0.903852	0.002128	50	0.860708	0.860416	0.004097
60	0.949083	0.949059	0.000735	51	0 904651	0.904644	0.001977
61	0.973814	0.973844	0.000277	52	0.936077	0.935938	0.000987
62	0.986909	0.986876	0.000111	53	0.957564	0.957650	0.000508
63	0.993576	0.993570	0.000047	54	0.972378	0.972311	0.000270
64	0.996910	0.996907	0.000020	55	0.982139	0.982136	0.000148
65	0.998539	0.998539	0.000009	56	0.988564	0.988587	0.000082
66	0.999320	0.999320	0.000004	57	0.992769	0.992769	0.000047
67	0.999689	0.999689	0.000002	58	0.995471	0.995466	0.000027

Table 7: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Annulus

Window's shape Annulus $(m_1 = 17, m_2 = 17, Nt = 124, IS = 1e5, IA = 1e6)$

	X_{s_1,s_2}	$\sim \mathcal{B}(1,0.01$	1)	$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$							
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total				
3	0.881798	0.882489	0.004812	59	0.951170	0.951245	0.000699				
4	0.995434	0.995465	0.000069	60	0.975772	0.975727	0.000255				
5	0.999883	0.999883	0.000001	61	0.988275	0.988270	0.000099				
6	0.999998	0.999998	0	62	0.994460	0.994466	0.000041				
7	0.999999	0.999999	0	63	0.997439	0.997440	0.000017				
8	1 000000	1.000000	0	64	0.998839	0.998840	0.000007				
9	1.000000	1.000000	0	65	0.999484	0.999484	0.000003				
10	1 000000	1.000000	0	66	0.999775	0.999775	0.000001				
11	1.000000	1.000000	0	67	0.999903	0.999903	0.000000				

	X_{s_1, s_2}	$\sim \mathcal{P}(0.25)$		$X_{s_{1},s_{2}} \sim \mathcal{N}(0,1)$							
τ	Sim	АррН	ETotal	τ	Sim	АррН	E Total				
59	0.903956	0.903852	0.002128	50	0.860708	0.860416	0.004097				
60	0.949083	0.949059	0.000735	51	0.904651	0.904644	0.001977				
61	0.973814	0.973844	0.000277	52	0.936077	0.935938	0.000987				
62	0.986909	0.986876	0.000111	53	0.957564	0.957650	0.000508				
63	0.993576	0.993570	0.000047	54	0.972378	0.972311	0.000270				
64	0.996910	0.996907	0.000020	55	0.982139	0.982136	0.000148				
65	0.998539	0.998539	0.000009	56	0.988564	0.988587	0.000082				
66	0.999320	0.999320	0.000004	57	0.992769	0.992769	0.000047				
67	0.999689	0.999689	0.000002	58	0.995471	0.995466	0.000027				

OUTLINE

- - Framework
 - Problem
- - Approximation
- APPLICATIONS
 - Application: Length of the Longest increasing/non-decreasing run
 - Application: Scanning with windows of arbitrary shape
 - Application: Scanning the surface of a cylinder

SPSR 2017

Application 3:

Scanning the surface of a cylinder

SCANNING THE SURFACE OF A CYLINDER

Transformation of the unfolded cylinder

	X _T							

Transformation of the unfolded cylinder

$X_{1,1}$ $X_{m_1,1}$ $X_{T_1,1}$ X_{1,m_2} X_{m_1,m_2} X_{T_1,m_2}	 							
$x_{1,1}$ $x_{m_1,1}$ $x_{T_1,1}$ x_{1,m_2} x_{m_1,m_2} x_{T_1,m_2}								
$x_{1,1}$ $x_{m_1,1}$ $x_{T_1,1}$ x_{1,m_2} x_{m_1,m_2} x_{T_1,m_2}								
$X_{1,1}$ $X_{m_1,1}$ $X_{T_1,1}$ X_{1,m_2} X_{m_1,m_2} X_{T_1,m_2}								
$X_{1,1}$ $X_{m_1,1}$ $X_{T_1,1}$ X_{1,m_2} X_{m_1,m_2} X_{T_1,m_2}								
$A_{1,1}$ $A_{1,1}$ $A_{1,1}$ $A_{1,1}$ A_{1,m_2} A_{1,m_2} A_{1,m_2} A_{1,m_2}								

Transformation of the unfolded cylinder

			X_{T_1,m_2}	

SPSR 2017

- The size of the scanning window is $\tilde{m}_1 = T_1 m_2 (T_1 m_1)$
- The score function is defined by

$$S(x_1,...,x_{\tilde{m}_1}) = \sum_{i_1=1}^{\tilde{m}_1} A(i_1)X_{i_1}$$

- The size of the scanning window is $\tilde{m}_1 = T_1 m_2 (T_1 m_1)$
- The score function is defined by

$$S(x_1,...,x_{\tilde{m}_1}) = \sum_{i_1=1}^{\tilde{m}_1} A(i_1)X_{i_1}$$

- The size of the scanning window is $\tilde{m}_1 = T_1 m_2 - (T_1 - m_1)$
- The score function is defined by

$$S(x_1,\ldots,x_{\tilde{m}_1})=\sum_{i_1=1}^{\tilde{m}_1}A(i_1)X_{i_1}$$

where A is the corresponding $\{0,1\}$ vector

SPSR 2017

- The size of the scanning window is $\tilde{m}_1 = T_1 m_2 - (T_1 - m_1)$
- The score function is defined by

$$S(x_1,\ldots,x_{\tilde{m}_1}) = \sum_{i_1=1}^{\tilde{m}_1} A(i_1)X_{i_1}$$

- The size of the scanning window is $\tilde{m}_1 = T_1 m_2 - (T_1 - m_1)$
- The score function is defined by

$$S(x_1,\ldots,x_{\tilde{m}_1}) = \sum_{i_1=1}^{\tilde{m}_1} A(i_1)X_{i_1}$$

- The size of the scanning window is $\tilde{m}_1 = T_1 m_2 - (T_1 - m_1)$
- The score function is defined by

$$S(x_1,\ldots,x_{\tilde{m}_1}) = \sum_{i_1=1}^{\tilde{m}_1} A(i_1)X_{i_1}$$

Scanning a region of size $T_1 \times T_2 = 300 \times 350$

Table 8: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Cylinder

Cylinder: $(m_1 = 10, m_2 = 15, T_1 = 300, T_2 = 350, IS = 1e4, IA = 1e5)$

	X_{s_1, s_2}	$\sim \mathcal{B}(1,0.1)$		$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$						
$\overline{\tau}$	Sim	AppH	E Tot al	τ	Sim	AppH	ETot al			
33	0.871559	0.870200	0.003674	68	0.955593	0.955671	0.000938			
34	0.946216	0.946527	0.001177	69	0.976348	0.976285	0.000461			
35	0.979458	0.979381	0.000393	70	0.987406	0.987574	0.000227			
36	0.992379	0.992465	0.000131	71	0.993526	0.993593	0.000111			
37	0.997384	0.997367	0.000043	72	0.996772	0.996751	0.000054			
38	0.999116	0.999111	0.000014	73	0.998401	0.998391	0.000026			
39	0.999713	0.999714	0.000004	74	0.999214	0.999212	0.000012			
40	0.999911	0.999911	0.000001	75	0.999623	0.999626	0.000006			

Scanning a region of size $T_1 \times T_2 = 300 \times 350$

Table 8: Numerical results for $\mathbb{P}(S \leqslant \tau)$: Cylinder

Cylinder: $(m_1 = 10, m_2 = 15, T_1 = 300, T_2 = 350, IS = 1e4, IA = 1e5)$

	X_{s_1,s_2}	$\sim \mathcal{B}(1, 0.1)$)	$X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$						
$\overline{\tau}$	Sim	AppH	E Total	au	Sim	AppH	ETot al			
33	0.871559	0.870200	0.003674	68	0.955593	0.955671	0.000938			
34	0.946216	0.946527	0.001177	69	0.976348	0.976285	0.000461			
35	0.979458	0.979381	0.000393	70	0.987406	0.987574	0.000227			
36	0.992379	0.992465	0.000131	71	0.993526	0.993593	0.000111			
37	0.997384	0.997367	0.000043	72	0.996772	0.996751	0.000054			
38	0.999116	0.999111	0.000014	73	0.998401	0.998391	0.000026			
39	0.999713	0.999714	0.000004	74	0.999214	0.999212	0.000012			
40	0.999911	0.999911	0.000001	75	0.999623	0.999626	0.000006			

thank you!

ERROR BOUNDS: APPROXIMATION ERROR

Approximation error

$$E_{app}(d) = \sum_{s=1}^{d} (L_1 - 1) \cdot \cdot \cdot (L_s - 1) \sum_{t_1, \dots, t_{s-1} \in \{2, 3\}} F_{t_1, \dots, t_{s-1}} \left(1 - \gamma_{t_1, \dots, t_{s-1}, 2} + B_{t_1, \dots, t_{s-1}, 2} \right)^2,$$

where for $2 \le s \le d$

$$\begin{split} &F_{t_1,...,t_{s-1}} = F\left(Q_{t_1,...,t_{s-1},2},L_s-1\right), \ F = F\left(Q_2,L_1-1\right), \\ &B_{t_1,...,t_{s-1}} = (L_s-1)\left[F_{t_1,...,t_{s-1}}\left(1-\gamma_{t_1,...,t_{s-1},2}+B_{t_1,...,t_{s-1},2}\right)^2 + \sum_{t_s \in \{2,3\}} B_{t_1,...,t_s}\right], \\ &B_{t_1,...,t_{d-1}} = (L_d-1)F_{t_1,...,t_{d-1}}\left(1-\gamma_{t_1,...,t_{d-1},2}+B_{t_1,...,t_{d-1},2}\right)^2, \ B_{t_1,...,t_d} = 0, \end{split}$$

and for
$$s=1$$
: $\sum_{t_1,t_0\in\{2,3\}}$ $x=x,$ $F_{t_1,t_0}=F,$ $\gamma_{t_1,t_0,2}=\gamma_2$ and $B_{t_1,t_0,2}=B_2.$

∢ Return

Error Bounds: Simulation errors

SIMULATION ERRORS

$$\begin{split} E_{sf}(d) &= (L_1-1)\dots(L_d-1) \sum_{t_1,\dots,t_d \in \{2,3\}} \beta_{t_1},\dots,t_d \\ E_{sapp}(d) &= \sum_{s=1}^d (L_1-1)\dots(L_s-1) \sum_{t_1,\dots,t_{s-1} \in \{2,3\}} F_{t_1},\dots,t_{s-1} \left(1-\hat{Q}_{t_1},\dots,t_{s-1},2\right) \\ &+ A_{t_1,\dots,t_{s-1},2} + C_{t_1},\dots,t_{s-1},2 \right)^2 \end{split}$$

where for
$$2 \le s \le d$$

$$A_{t_{1},...,t_{s-1}} = (L_{s}-1)...(L_{d}-1) \sum_{t_{s},...,t_{d} \in \{2,3\}} \beta_{t_{1},...,t_{d}}, A_{t_{1},...,t_{d}} = \beta_{t_{1},...,t_{d}}$$

$$C_{t_{1},...,t_{s-1}} = (L_{s}-1) \left[F_{t_{1},...,t_{s-1}} \left(1 - \hat{Q}_{t_{1},...,t_{s-1},2} + A_{t_{1},...,t_{s-1},2} + C_{t_{1},...,t_{s-1},2} \right)^{2} + \sum_{t_{s} \in \{2,3\}} C_{t_{1},...,t_{s}} \right]$$

Amărioarei, A. (2014).

Approximations for the multidimensional discrete scan statistics.

PhD thesis, University of Lille 1.

Bresenham, J. (1965).

Algorithm for computer control of a digital printer.

IBM Systems Journal, 4(1).

Bresenham, J. (1977).

A linear algorithm for incremental digital display of circular arcs.

Communications of the ACM, 20(2):100–106.

Csaki, E. and Foldes, A. (1996).

On the length of theh longest monnotone block.

Studio Scientiarum Mathematicarum Hungarica, 31:35-46.

Eryilmaz, S. (2006).

A note on runs of geometrically distributed random variables.

Discrete Mathematics, 306:1765-1770.

Foley, J. (1995).

Computer Graphics, Principles and Practice in C. Addison-Wesley Professional.

Grabner, P., Knopfmacher, A., and Prodinger, H. (2003).

Combinatorics of geometrically distributed random variables: run statistics.

Theoret. Comput. Sci., 297:261-270.

Grill, K. (1987).

Erdos-Révész type bounds for the length of the longest run from a stationary mixing sequence.

Probab. Theory Relat. Fields, 75:169-179.

Louchard, G. (2005).

Monotone runs of uniformly distributed integer random variables: a probabilistic analysis.

Theoret. Comput. Sci., 346:358-387.

Louchard, G. and Prodinger, H. (2003).

Ascending runs of sequences of geometrically distributed random variables: a probabilistic analysis.

EXTENSION OF THE CLASSICAL SCAN STAT

Theoretical Computer Science, 304:59-86.

Novak, S. (1992).

Longest runs in a sequence of *m*-dependent random variables.

Pittel, B. (1981).

Limiting behavior of a process of runs.

Ann. Probab., 9:119-129.

Révész, P. (1983).

Three problems on the llength of increasing runs.

Stochastic Process. Appl., 5:169–179.

