1.10.19

ee25btech11056 - Suraj.N

Question: If a line has direction ratios 2, -1, -2, determine its direction cosines. **Solution**:

Symbol	Value	Description
а	$\begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$	vector

Table: Vector

The direction vector of the line is

$$\mathbf{a} = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$$

The length of A is

$$a^{\mathsf{T}}a = \begin{pmatrix} 2 & -1 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$$
$$= 2^2 + (-1)^2 + (-2)^2$$
$$= 4 + 1 + 4 = 9$$

Therefore, the norm of a is

$$||a|| \stackrel{\Delta}{=} \sqrt{a^{\mathsf{T}}a} = \sqrt{9} = 3$$

The unit vector in the direction of a is

$$\frac{\mathbf{a}}{\|\mathbf{a}\|} = \frac{1}{3} \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$$

Let α, β, γ be the angles made by the line with the x, y, z axes respectively. Then, the direction cosines are the elements of the above direction vector

$$\cos \alpha = \frac{2}{3}$$
, $\cos \beta = -\frac{1}{3}$, $\cos \gamma = -\frac{2}{3}$

Vector OA with direction ratios (2,-1,-2)

Fig: Vector a