

20 Maart 2018

Herman Teirlinck, 01.17 - Clara Peeters

What have I done?!?

```
library(rvest)
library(dplyr)
library(magrittr)
waarnemingen <- read html("https://waarnemingen.be/")</pre>
waarnemingen %>%
   html nodes("table") %>%
    .[[3]] %>%
   html table() %>%
    set colnames(c("intro", "datum", "count", "soort", "photo", "gebied")) %>%
    select(datum, count, soort, gebied) %>%
   slice(-1)
```


PART 2

Data Wrangling with dplyr and tidyr

Cheat Sheet

Syntax - Helpful conventions for wrangling

tbl df(iris)

Converts data to tbl class, tbl's are easier to examine than data frames. R displays only the data that fits onscreen:

```
Source: local data frame [150 x 5]
  Sepal.Length Sepal.Width Petal.Length
           4.7
                                    1.3
                       3.6
                                    1.4
Variables not shown: Petal.Width (dbl),
 Species (fctr)
```

glimpse(iris)

Information dense summary of tbl data.

ls::View(iris)

View data set in spreadsheet-like display (note capital V).

0	21 70	ter		Q,	=
	SepalLength	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	secosa
2	4.9	3.0	1.4	0.7	10000
3	4.7	3.2	1.3	0.2	100014
9	4.5	3.1	1.5	0.2	160002
5	5.0	3.6	1.4	0.2	MONE
6	5.4	3.9	1.7	0.4	secosa
7	4.8	3.4	1.4	0.3	100000
8	5.0	3.4	1.5	0.2	second

dplyr::%>%

Passes object on left hand side as first argument (or . argument) of function on righthand side.

```
x %>% f(v) is the same as f(x, v)
y \gg f(x, .., z) is the same as f(x, y, z)
```

"Piping" with %>% makes code more readable, e.g.

iris %>% group_by(Species) %>% summarise(avg = mean(Sepal.Width)) %>% arrange(avg)

RStudio* is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com

Tidy Data - A foundation for wrangling in R

In a tidy

Each variable is saved Each observation is saved in its own row in its own column

Tidy data complements R's vectorized operations, R will automatically preserve observations as you manipulate variables.

Reshaping Data - Change the layout of a data set

gather(cases, "year", "n", 2:4) Gather columns into rows.

idyr::separate(storms, date, c("y", "m", "d")) Separate one column into several.

tidyr::spread(pollution, size, amount) Spread rows into columns.

tidyr::unite(data, col, ..., sep) Unite several columns into one.

dplyr::data_frame(a = 1:3, b = 4:6)

Combine vectors into data frame (optimized).

dplyr::arrange(mtcars, mpg) Order rows by values of a column

(low to high). dplyr::arrange(mtcars, desc(mpg)) Order rows by values of a column

(high to low). dplyr::rename(tb, y = year) Rename the columns of a data

Subset Observations (Rows)

dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.

dplyr::distinct(iris)

Remove duplicate rows.

dplyr::sample_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.

dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows. dplyr::slice(iris, 10:15) Select rows by position.

dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

		Logic in R - /Comparison, /base::Logic			select(iris, starts_with("Sepal"))	
	<	Less than	la la	Not equal to	Select columns whose name starts with a character string.	
	>	Greater than	%in%	Group membership	select(iris, Sepal.Length:Petal.Width)	
	==	Equal to	is.na	Is NA	Select all columns between Sepal.Length and Petal.Width (inclusive).	
	<=	Less than or equal to	!is.na	Is not NA	select(iris, -Species)	
	>=	Greater than or equal to	&, , !, xor, any, all	Boolean operators	Select all columns except Species.	
• rstu	dio.com	n devtools:instal	Lgithub("rstudio/EDAWR") for	data sets Learn mo	ore with browseVignettes(package = c("dplyr", "tidyr")) + dplyr 0.4.0+ tidyr 0.2.0 + Updated: 1/15	

Subset Variables (Columns)

dplyr::select(iris, Sepal.Width, Petal.Length, Species)

Select columns by name or helper function.

Helper functions for select -?select select@ris, contains("."))

Select columns whose name contains a character string.

select(iris, ends_with("Length"))

Select columns whose name ends with a character string. select(iris, everything())

Select every column.

select(iris, matches(".t."))

Select columns whose name matches a regular expression.

select(iris, num_range("x", 1:5))

Select columns named x1, x2, x3, x4, x5,

select(iris, one_of(c("Species", "Genus")))

Select columns whose names are in a group of names.

select(iris, starts with("Sepal"))

Select columns whose name starts with a character string. select(iris, Sepal, Length: Petal, Width)

R packages for data science

The tidyverse is an opinionated **collection of R packages** designed for data science. All packages share an underlying design philosophy, grammar, and data structures.

Install the complete tidyverse with:

install.packages("tidyverse")

Learn the tidyverse

See how the tidyverse makes data science faster, easier and more fun with "R for Data Science". Read it online,

Install the package suite:

install.packages("tidyverse")

Load the package suite:

library (tidyverse)

TIDY?!?

See https://inbo.github.io/dwc-in-R/tidy.html#14

Share your snippets during the coding session!

Go to https://hackmd.io/7Yd3NsCFTwqHbRnHZbhlzg and post your code in between backticks:

For example:

```
library(dplyr)
my_data <- ...</pre>
```

Excel might contain column names with capital letters, spaces, etc., which can be annoying to select:

```
brandganzen <- read_excel("./data/20180123_brandganzen.xlsx")</pre>
```

brandganzen %>% select(`Locatie vangst`) # Ugh

```
With janitor your column names can be cleaned (lowercase, underscores
instead of spaces). In addition, you can remove empty rows:
  library(janitor) # Also tidyverse, but not loaded by default
```

brandganzen %>% remove_empty_rows() %>% # Additional step to remove empty rows clean_names() -> brandganzen brandganzen %>% select(locatie_vangst)

recap/showcase

20180222_survey_data_spreadsheet_tidy.csv

- Show min, max, mean weight per sex and species and save as a new object (df) `weight per species sex`
- 2. Execute the following:
 - a. Rename column 'weight_in_g' to
 'weight'
 - b. Replace 'weight' values with values in kg
 - C. Add column 'country' with value 'US'
 - d. Save as new object 'data_kg_US'

20180123_brandganzen.xlsx

1. How many adult geese per sex can you count (consider 'onbekend ' as a sex)?

2. How many different catching methods were used in each location?

```
`Locatie vangst` n_methods
<chr> <int>
1 DEINZE
2 DESTELBERGEN
...
```

recap/showcase

```
20180222 survey data spreadsheet tidy.csv
```

- group_by & summarise Show min, max, mean was species a
- Execute the following:
 - Rename column 'weight in g' to 'weight'
 - rename & mutate Replace values in kg country' with value 'US'
 - Save as new object 'data kg US'

20180123 brandganzen.xlsx

filter & group_by & count u

```
3 Vrouw
```

How many different catching group_by & summarise were used in a

We defined a number of challenges. If you were able to achieve a challenge, add a to r laptop screen.

The objective is that everyone achieves

- Someone has more than you? **Ask for help!**
- Someone has less than you? **Provide help!**

- Download coding club material and work locally, not in sync with the Google drive

- Create new Rstudio project in the /STC folder

- Download coding club material and work locally, not in sync with the Google drive
- Create new Rstudio project in the **src** folder...
- Use relative paths to data files:

```
> library(readr)
> read csv2("../data/20180123 gent groeiperwijk.csv")
     My Drive > INBO coding club > data - 3
     Name J
         20180222_surveys.csv 45
         20180222_survey_data_spreadsheet_tidy.csv ##
      20180222_species.csv 45
      20180123_turbidity_zes07g.txt 4.5
         20180123_stierkikker_formulieren_reacties.csv 🚢
         20180123_rainfall_klemskerke.csv 45
         20180123_rainfall_klemskerke_clean.csv #$
      20180123_observations_NPHK_cameratrapping.csv 45
        20180123_gent_groeiperwijk.csv 35
         20180123_example_samples.xlsx ===
     X 20180123_brandganzen.xlsx 45
         20180123_brandganzen_empty_rows.xlsx ===
```


. . .

Read in the data set

20180123 gent groeiperwijk.csv

This is NOT a *tidy* data set! Make this a tidy data set:

	wijk	year	growth
	<chr></chr>	<int></int>	<int></int>
1	Binnenstad	1999	- 36
2	Bloemekenswijk	1999	12
3	Brugse Poort - Rooigem	1999	85
4	Dampoort	1999	107
5	Drongen	1999	3
6	Elisabethbegijnhof - Papegaai	1999	- 4
7	Gentbrugge	1999	4
8	Kanaaldorpen en -zone	1999	5
9	Ledeberg	1999	- 4
10	Macharius - Heirnis	1999	47
# .	with 265 more rows		

Tidy Data - A foundation for waraging in R

with dplyr and didy

Check Sheet

Syntax - Helpfol conventions for waraging

(ii) - 18. efficient

Converted to the total data. Only an easier to convene that data forms it is fluidy provided to the state of the state of

Read in the <u>20180222_surveys.csv</u> and the <u>20180222_species.csv</u> data.

Join the species information columns (genus, species, taxa) to the survey data set, using the common identifier.

Compare the result when applying the different commands to join the data...

- count the observed humans for each month:

	sequenceMonth humans_	observed
	<int></int>	<int></int>
1	5	1
2	6	1
3	7	38
4	8	153
5	9	38
6	10	25

- add an additional column with the counts for each animal-deploymentID combination

seq	quenceDay sequen	ceMonth seque	nceYear deploymentSampli	ingPoint animalVernacularName	animalCount point_an	imal_counts
	<int></int>	<int></int>	<int> <chr></chr></int>	<chr></chr>	<int></int>	<int></int>
1	7	7	2017 JW 0090	Ass	1	12
2	6	7	2017 JW 0090	Ass	3	12
3	7	7	2017 JW 0090	Ass	1	12
4	15	7	2017 JW 0090	Ass	1	12
5	16	7	2017 JW 0090	Ass	2	12
6	27	7	2017 JW 0090	Ass	2	12
7	27	7	2017 JW 0090	Ass	1	12
8	27	7	2017 JW 0090	Ass	1	12
9	13	5	2017 JW 0020	Beech Marten	1	3
10	13	5	2017 JW 0020	Beech Marten	1	3
II.	111 2 750		-			

More challenges!

For the <u>stierkikker</u> formulieren data, derive all the columns concerning `blankvoorn` and remove those rows for which all values are NA:

```
# A tibble: 95 x 12
   `Fuik 1 - Bijvangs… `Fuik 2 - Bijvangs… `Fuik 3 - Bijvangs… `Fuik 4 - Bijvangs… `Fuik 5 - Bijvang… `Fuik 6 - Bijvang…
   <chr>
                         <chr>
                                                <chr>
                                                                      <chr>
                                                                                             <chr>
                                                                                                                  <chr>
 1 NA
                         5 - 10 \, cm
                                                                                                               NA
                                                                                                               NA
 3 ??
                                                                                                               NA
                                                                                                               NA
 5 ??
                         NA
                                              NΑ
                                                                                                               NA
                                                                                                               NA
                                                                                                               NA
 7 5-10cm
 85-10cm
                                                                                                               NA
                         5 - 10 \, cm
 9 5-10cm
                                               5 - 10 \, cm
                         5 - 10 \, \text{cm}
                                               5 - 10 \, \text{cm}
                                                                                          5-10cm
                                                                                                               5-10cm
# ... with 85 more rows, and 6 more variables: `Fuik 7 - Bijvangst [Blankvoorn]`
                                                                                          <chr>, `Fuik 8 - Bijvangst
    [Blankvoorn]` <chr>, `Fuik 9 - Bijvangst [Blankvoorn]` <chr>, `Fuik 10 - Bijvangst [Blankvoorn]` <chr>, `Fuik 11 -
    Bijvangst [Blankvoorn] \ <chr>, \Fuik 12 - Bijvangst [Blankvoorn]
```

For the 20180123_rainfall_klemskerke_clean.csv data, calculate the yearly rainfall sum from 2012 till 2016:

У	ear	value		
	<dttm></dttm>		<db1></db1>	
1	2012-01-01	00:00:00	934	
2	2013-01-01	00:00:00	701	
3	2014-01-01	00:00:00	727	
4	2015-01-01	00:00:00	789	
5	2016-01-01	00:00:00	775	

Zaal: Herman Teirlinck - 01.21 - Jeanne Brabants Datum: 26/04/2018, van 10:00 tot 12:00

(registratie aangekondigd via DG_useR@inbo.be)