Inventor: Steward et al. Serial No.: 09/942,024 Filed: August 28, 2001

Page 2

AMENDMENTS TO THE SPECIFICATION

Please amend the specification to replace the first full paragraph at page 4 with the following:

The invention further provides, for example, a botulinum toxin serotype A (BoNT/A) substrate containing a donor fluorophore; an acceptor having an absorbance spectrum overlapping the emission spectrum of the donor fluorophore; and a BoNT/A recognition sequence that includes a cleavage site, where the cleavage site intervenes between the donor fluorophore and the acceptor and where, under the appropriate conditions, resonance energy transfer is exhibited between the donor fluorophore and the acceptor. A BoNT/A substrate of the invention can include, for example, at least six consecutive residues of synaptosome-associated protein of 25 kDa (SNAP-25) [[SNAP-25]], where the six consecutive residues include Gln-Arg, or a peptidomimetic thereof. In these and other amino acid sequences provided herein, it is understood that the sequence is written in the direction from N-terminus to C-terminus. A BoNT/A substrate of the invention also can have, for example, at least six consecutive residues of human SNAP-25, where the six consecutive residues include Gln_{197} -Arg₁₉₈, or a peptidomimetic thereof. In one embodiment, a BoNT/A substrate of the invention includes the amino acid sequence Glu-Ala-Asn-Gln-Arg-Ala-Thr-Lys (SEQ ID NO: 1), or a peptidomimetic thereof. In another embodiment, a BoNT/A substrate of the invention includes residues 187 to 203 of human SNAP-25 (SEQ ID NO: 2), or a peptidomimetic thereof. A variety of donor fluorophores and acceptors are useful in a BoNT/A substrate of the invention,

Inventor: Steward et al. Serial No.: 09/942,024 Filed: August 28, 2001

Page 3

including but not limited to, fluorescein-tetramethylrhodamine; DABCYL-EDANS; and Alexa Fluor® 488-QSY 7®.

Please amend the specification to replace the first incomplete paragraph at page 5 with the following:

fluorophore; and a BoNT/B recognition sequence that includes a cleavage site, where the cleavage site intervenes between the donor fluorophore and the acceptor and where, under the appropriate conditions, resonance energy transfer is exhibited between the donor fluorophore and the acceptor. A BoNT/B substrate of the invention can contain, for example, at least six consecutive residues of vesicle-associated membrane protein (VAMP) [[VAMP]], where the six consecutive residues include Gln-Phe, or a peptidomimetic thereof. For example, a BoNT/B substrate of the invention can contain at least six consecutive residues of human VAMP-2, the six consecutive residues including Gln₇₆-Phe₇₇, or a peptidomimetic thereof. In one embodiment, a BoNT/B substrate includes the amino acid sequence Gly-Ala-Ser-Gln-Phe-Glu-Thr-Ser (SEQ ID NO: 3), or a peptidomimetic thereof. In another embodiment, a BoNT/B substrate includes residues 55 to 94 of human VAMP-2 (SEQ ID NO: 4); residues 60 to 94 of human VAMP-2 (SEQ ID NO: 4); or residues 60 to 88 of human VAMP-2 (SEQ ID NO: 4), or a peptidomimetic of one of these sequences. It is understood that a variety of donor fluorophores and acceptors are useful in a BoNT/B substrate of the invention; such donor fluorophore-acceptor combinations include, but are not limited to, fluorescein-tetramethylrhodamine; DABCYL-EDANS; and Alexa Fluor[®] 488-QSY[®] 7.