Mailbox

Flat distributive lattices are trivial

S. BULMAN-FLEMING AND K. McDOWELL

For any algebras A and B in a variety $\mathcal V$ the tensor product $A\otimes B$ can be constructed, and has the defining property that any bi-homomorphism from $A\times B$ to any algebra in $\mathcal V$ factors uniquely through $A\otimes B$ (see [8]). An algebra $A\in \mathcal V$ is called *flat* if the functor $A\otimes -$ preserves monomorphisms in $\mathcal V$ (see [2], [3], [5], [6]). In this note we investigate flatness in the variety $\mathcal D$ of distributive lattices.

Suppose A and B are distributive lattices. A subset F of $A \times B$ will be called a bi-filter of $A \times B$ if, considering A and B as meet-semilattices, it is a bi-filter in the sense of Kimura (see [7]). A non-empty proper bi-filter P of $A \times B$ is called a prime bi-filter of $A \times B$ if $(a, b \vee b') \in P$ implies $(a, b) \in P$ or $(a, b') \in P$ ($a \in A, b, b' \in B$), and $(a \vee a', b) \in P$ implies $(a, b) \in P$ or $(a', b) \in P$ ($a, a' \in A, b \in B$). It is an easy matter to check that there is a 1-1 correspondence between the class of all bi-homomorphisms from $A \times B$ to the 2-element distributive lattice and the class consisting of all prime bi-filters on $A \times B$, together with $A \times B$ itself and the empty set. Furthermore, for a_i , $a'_i \in A$ and b_i , $b'_i \in B$ $(1 \le i \le m, 1 \le j \le n) \bigwedge_{i=1}^m a_i \otimes b_i \le \bigvee_{j=1}^n a'_j \otimes b'_j$ in $A \otimes B$ iff, for every prime bi-filter P of $A \times B$, $(a_i, b_i) \in P$ for all i implies $(a'_i, b'_i) \in P$ for some j (see [4]).

THEOREM. A distributive lattice A is flat iff |A| = 1.

Proof. Clearly every one-element distributive lattice A is flat since $A \otimes B \cong B$ for all $B \in \mathcal{D}$.

Now assume $A \in \mathcal{D}$ and $|A| \ge 2$. Then there exist $a, a' \in A$ with a < a'. Let B denote the three-element chain $\{0, b, 1\}$ with 0 < b < 1 and let D represent the diamond $\{0, b, c, 1\}$ with b and c incomparable. We shall show that the map $A \otimes B \to A \otimes D$ induced by the embedding $B \hookrightarrow D$ is not a monomorphism. (In

Research supported by National Research Council of Canada grants A4494 and A9241 and a Wilfrid Laurier University Summer Research Fellowship.

Presented by A. Horn. Received May 12, 1978. Accepted for publication in final form July 7, 1978.

[4], Fraser shows this for the case in which A is the two-element chain.) Now, $(a'\otimes b)\wedge (a\otimes 1)\leq (a'\otimes 0)\vee (a\otimes b)$ holds in $A\otimes D$. Indeed, if P is a prime bi-filter of $A\times D$ containing (a',b) and (a,1) then $(a,b)\vee (a,c)=(a,1)\in P$. Hence either $(a,b)\in P$ or $(a,c)\in P$. In the latter case $(a',c)\in P$, since a'>a, and so $(a',b)\wedge (a',c)=(a',0)\in P$. Thus either $(a,b)\in P$ or $(a',0)\in P$ as desired. On the other hand, the inequality $(a'\otimes b)\wedge (a\otimes 1)\leq (a'\otimes 0)\vee (a\otimes b)$ does *not* hold in $A\otimes B$. To see this, let π be a prime filter of A which contains a' but excludes a. Then, it is not difficult to verify that $A\times\{1\}\cup\pi\times\{b\}$ is a prime bi-filter of $A\times B$ which contains both (a',b) and (a,1), but excludes both (a',0) and (a,b). Therefore the induced map $A\otimes B\to A\otimes D$ is not a monomorphism and A is not flat.

Remarks. (1) The (dual of the) prime ideal theorem for distributive lattices ([1], p. 70) was employed in the above proof. There is no analogue of this result in the bi-filter situation. Let A be the two-element chain $\{0, 1\}$ and let D be the diamond $\{0, b, c, 1\}$ as above. Then $I = \{(0, 0), (1, 0), (0, b)\}$ is a bi-ideal of $A \times D$ and $F = \{(0, 1), (1, b), (1, 1)\}$ is a bi-filter of $A \times D$ with $I \cap F = \emptyset$. However there is no prime bi-filter of $A \times D$ which contains F and is disjoint from I.

(2) The tensor product construction employed in this note and in the references is of little interest in the variety \mathcal{D}_{01} of bounded distributive lattices with bound preserving homomorphisms. Indeed, if A, B, $C \in \mathcal{D}_{01}$ and $\phi \colon A \times B \to C$ is a bi-homomorphism, then |C| = 1 because $0 = \phi(1, 0) = 1$ (since $\phi(1, -)$ and $\phi(-, 0)$ are bound preserving). Thus $|A \otimes B| = 1$ for every A, $B \in \mathcal{D}_{01}$. Every algebra in \mathcal{D}_{01} is therefore (trivially) flat. Similar considerations also apply to the variety of Boolean Algebras.

REFERENCES

- R. BALBES and Ph. DWINGER, Distributive Lattices, University of Missouri Press, Columbia, Missouri, 1974.
- [2] S. BULMAN-FLEMING and K. McDowell, The category of mono-unary algebras, Algebra Universalis, to appear.
- [3] S. BULMAN-FLEMING and K. McDowell, Flat semilattices, Proc. Amer. Math. Soc., to appear.
- [4] G. A. FRASER, The tensor product of distributive lattices, Proc. Edinburgh Math. Soc. 20 (Ser. II, Part 2, 1976), 121-131.
- [5] P. A. GRILLET, The tensor product of commutative semigroups, Trans. Amer. Math. Soc. 138 (1969), 281-293.
- [6] M. KILP, On the homological classification of monoids, Siberian Math. J. 13 (1972), 396-401.
- [7] N. KIMURA, Tensor products of semilattices, Notices Amer. Math. Soc. 17 (1970), 554.
- [8] F. E. J. LINTON, Autonomous equatorial categories, J. Math. Mech. 15 (1966), 637-642.

Wilfrid Laurier University Waterloo, Ontario Canada