Name			

Instructions

- All Backpacks, Purses, Cell Phones, Textbooks, Notes, etc. should be placed at the front of the classroom.
- Write your name, and bubble in your exam version (A, B, C, etc.) on your scantron!
- Do not write any equations, or work out any problems on your scantron (this may be considered cheating).
- Be careful to check all answers and make sure mistakes on your scantron are properly erased before turning in your exam. (Grade corrections for incorrectly marked scantrons will not be made.)

MULTIPLE CHOICE.	Choose the one	Iternative that	hest completes t	he statement or	answers the auestion
MULTILL CHOICE.	Choose the one a	memanye mai	best completes t	me statement of	answers the duestion

1) Which of the	following is the corr	ect ground state elec	tron configura	tion for a sodium	1)
atom?	_	-	J		
A) $1s^2 2s^2 2p$	$63s^{1}$				
B) $1s^2 2s^2 2p$	$p^{6}3s^{2}3p^{1}$				
C) $1s^2 2s^2 2p$	_				
D) $1s^2 2s^2 2p$	$p^{6}3p^{1}$				
E) $1s^2 2s^2 2p$					
2) What is the ion	ic charge for the nickel	ion in NiCO3?			2)
A) zero					
B) 1+					
C) 2+					
D) 3+	1				
E) none of th	ie above				
3) The density of	water at 3.98 °C is 1.00	g/mL. What is the den	sity in g/cm ³ ?		3)
A) 1.00 g/cm	3				
B) 2.54 g/cm	3				
C) 16.4 g/cm	3				
D) 62.4 g/cm	3				
E) 3.98 g/cm	3				
4) Which elemen	nt has the abbreviate	d ground-state electi	on configurati	on [Ar]4 <i>s</i> ² 3 <i>d</i> ⁵ ?	4)
A) V	B) Fe	C) Cr	D) Cl	E) Mn	,
5) What is the pre	dicted ionic charge for	a Ba ion?			5)
A) 1-	· ·				,
B) 1+					
C) 2+					
D) 2-	1				
E) none of th	ne above				
6) The correct mu	ltiplier for the prefix m	illi is:			6)
	B) 10-12	C) 10 ⁻	6	D) 10 ⁻⁹	~ <i>/</i>

7) What is the systematic A) diammonium I B) ammonium dia C) ammonium can D) diammonium can E) none of the abo	nydrogen carbonat carbonate rbonate carbonate				7)
8) The mass of a san kilograms?	nple is 0.550gran	ns. Which of the f	following expresse	s that mass in	8)
A) 5.5×10^{-4} kg B) 5.5×10^{-6} kg C) 5.5×10^{-1} kg D) 5.5×10^{8} kg E) 5.5×10^{5} kg	5				
9) How many significa A) 1 B) 2 C) 3 D) 4 E) none of the abo		mass measurement	0.050 g?		9)
10) Which of the follo	wing electron tra	nsitions in the hy	drogen atom resul	t in emission of	10)
_	B) $n = 3 \text{ to}$	o $n = 2$ C) n	n=2 to $n=5$	D) $n = 2$ to $n = 6$	
11) What is the chemical A) Co ₂ Br ₃ B) CoBr ₂ C) Co ₂ Br D) Co ₃ Br ₂ E) none of the abo		t(II) bromide?			11)
12) Calculate the follow	ing to the correct p	recision			12)
250.0 mL + 5.0 A) 250 mL	0 mL = B) 256 mL	C) 255 mL	D) 255.00 mL	E) 255.0 mL	
13) Osmium is one of th	e most dense eleme	ents (22.5 g/cm ³). W	hat is the mass of 10	0.0cm ³ of the metal?	13)

C) 225 g

D) 2.25 g

E) 444 g

A) 0.444 g

B) 22.5 g

14) What is the che	mical formula for the	manganese(II) ion?			14)	
A) Mn ² +						
B) Mn ³ +						
C) Mg ³ +						
D) Mg ² +						
E) none of the	ne above					
15) Express the exp	onential number 5.15	5×10^5 as an ordinary	number.		15)	
A) 515,000	_					
B) 0.000 051	5					
C) 51,500 D) 0.000 515						
E) none of the	ne above					
10 10 10 10 10 10 10 10 10 10 10 10 10 1		1 . (1	ltale of dead all earlies	1	16)	
	trogen, oxygen, argon neous mixture	i, and other gases. Wi	nich of the following	describes air?	16)	
B) element	icous illixture					
· ·	eous mixture					
D) compoun	d					
E) none of the	ne above					
17) Which of the fo	llowing elements has	the largest atomic ra	idius?		17)	
A) Na	B) Al	C) Ca	D) Cs	E) Fe	,	
18) What is the che	mical formula for hyd	drobromic acid?			18)	
A) HBrO(aq)	inicai ioimaia ioi ny	arobronne dela:			10)	
B) HBrO3(ac	ı)					
C) HBrO2(ad	<u>(</u>					
D) HBr(aq)						
E) none of the	ne above					
19) Which of the fo	llowing subatomic pa	articles is found outsi	de the nucleus?		19)	
A) neutron						
B) electron						
C) proton	.1					
D) all of the E) none of the						
L) Hone of th	ie above					
•	mical formula for the	perchlorate ion?			20)	
A) ClO ₂ -						
B) ClO ₃ -						
C) ClO-						
D) ClO ₄ -						
E) none of the	ne above					
21) A hybrid vehic	le has a mileage rating	σ of 22 km/L. What is	s the gas mileage in r	niles per gallon?	21)	
	1.61 km, and $1 gal = 3$, are gas mineage mi	inico per ganon;	<u>-</u> 1)	_
·	B) 94 mi/gal	•	1 D) 35 mi/gal	E) 3.6 mi/ga	al	

A) N ₂ O B) NO C) NO ₂ D) N ₂ O ₂ E) none of the above
C) NO ₂ D) N ₂ O ₂
D) N ₂ O ₂
·
E) none of the above
23) What is the chemical formula for the ternary compound composed of Zn ²⁺ and OH ⁻ ions? 23)
A) ZnOH ₂
B) Zn ₂ OH
C) ZnOH
D) Zn(OH)2
E) none of the above
24) If a glass marble weighs 3150 mg, what is the mass in centigrams? 24)
A) 3.15 cg
B) 31,050 cg
C) 315 cg
D) 31.5 cg
E) none of the above
25) Using atomic notation, indicate the isotope having 30 p+, 35 n ⁰ , and 30 e ⁻ .
A) $\frac{35}{30}$ Br B) $\frac{65}{30}$ Zn C) $\frac{65}{35}$ Br D) $\frac{65}{35}$ Zn E) $\frac{35}{30}$ Zn

Formulas

d = m / V

 $K = {}^{\circ}C + 273.15$

 $^{\circ}F = (9/5) (^{\circ}C) + 32^{\circ}$

 $q = mc\Delta T$

 $\Delta T = T_f - T_i$ or $\Delta T = T_2 - T_1$

Volume of a rectangular prism(bar), V = 1•w•h

Volume of a cylinder, $V = \pi r^2 h$

Greek Prefixes

1-mono

2-di

3-tri

4-tetra

5-penta

6-hexa

7-hepta

8-octa

9-nona

10-deca

Conversions

 $1 \text{mol} = 6.022 \text{ x} 10^{23}$

 $1 \text{ cm}^3 = 1 \text{ mL (exactly)}$

1 m = 39.37 in

1 in = 2.54 cm (exactly)

1mi = 1.609 km

1 gal = 3.785 L

4 qt = 1 gal (exactly)

1 kg = 2.205 lb

1 lb = 453.6 g

1 cal = 4.184 J

1 metric ton = 1000 kg

Densities

Water = 1.0 g/mL

Mercury = 13.5 g/mL

Specific Heat Capacities

Lead = $0.128 \text{ J/g} \cdot ^{\circ}\text{C}$

Gold = $0.128 \text{ J/g} \cdot ^{\circ}\text{C}$

Ethanol = $2.42 \text{ J/g} \cdot ^{\circ}\text{C}$

Copper = $0.385 \text{ J/g} \cdot ^{\circ}\text{C}$

Water = $4.18 \text{ J/g} \cdot ^{\circ}\text{C}$

Metric

 $pico = 10^{-12}$

 $mega = 10^6$

tera = 10^9

10
ري
7
-
$\boldsymbol{\Phi}$
ധ
Elements
D
ت
of the
u.
$\overline{}$
\cup
đ١
=
2
Œ
Table
۷.
$\overline{}$
rioa
٧.
(D)
Periodic
-
đ١
The
7
-
-

18 2 Heium 7.003	Neon 10 Neon 20.180	Argon 18 Ar 39.95	Krypton 36 Kr 83.80 3.0	Xenon 54 Xe 131.29 2.6	Radon 86 Rn (222) 2.4	Uuo (294)
4	Fluorine 9 7 7 18.998	Chlorine 17 CI 35.45	Bromine 35 Br 79.90 2.8	126.90	Astatine 85 At (210) 2.2	Ununseptium 117 Uus (294)
92	Oxygen 8 0 0 15.999	Sulfur 16 S 32.07 2.5	Selenium 34 Se 78.97 2.4	Tellurium 52 Te 127.60	Polonium 84 Po (209) 2.0	Livermorium 116 LV (293)
5	Nitrogen N N N N N N N N N N N N N N N N N N N	Phosphorus 15 P 30.97 2.1	Arsenic 33 AS 74.92 2.0	Antimony 51 Sb 121.76	Bismuth 83 Bi 208.98	Ununpentium 115 Uup (288)
4	Carbon 6 C C 12.011 2.5	Silicon 14 Si 28.09 1.8	Germanium 32 Ge 72.61	Tin 50 Sn 118.71	Lead 82 Pb 207.20	Flerovium 114 Fl (289)
5	Baron 5 B 10.81 2.0	Aluminum 13 AI 26.98 1.5	Gallium 31 Ga 69.72	Hindium 49 Ho 	Thallium 81 T 204.38	Ununtrium 113 Uut (284)
		12	Zinc 30 Zn 65.39	Cadmium 48 Cd 112.41	Mercury 80 HQ 200.59	Copernicium 112 Cn (285)
	v	£	Copper 29 Cu 63.55	Silver 47 Ag 107.87	Goold 79 AU 196.97	Roentgenium 111 Rg (280)
Atomic#	Avg. Mass	9	Nickel 28 Ni Ni 58.69 1.8	Palladium 46 Pd Pd 106.42 2.2	Platinum 78 Pt 195.08	Damstadtium 110 DS (281)
Ato	V σ	တ	Cobalt 27 Co 58 .93 1.8	Rhodium 45 Rh 102.91	Iridium 77 77 Ir 192.22 2.2	Meitnerium 109 Mt (276)
Mercury 80 <		œ			Osmium 76 OS 190.23 2.2	Hassium 108 HS (270)
		7	Manganese 25 Mn 54.94	Technetium 43 7c (98) 1.9	Rhenium 75 Re 186.21 1.9	Bohrium 107 Bh (272)
Element name	Symbol - Symbol - Electronegativity	မ	Chromium 24 Cr Cr 52.00 1.6	Molybdenum 42 Mo 95.94 1.8	Tungsten 74	Seaborgium 106 Sg (271)
Elemen	Electror	ĸ	Vanadium 23 V V 50.94 1.6	Niobium 41 Nb 92.91	Tantalum 73 Ta Ta 180.95 1.5	Dubnium 105 Db (268)
		4			Hafhium 72 72 Hf 178.49 1.3	* Rf (267)
		ო	Scandium 21 21 SC 44.96 11.3	39 39 X 88.91 1.2		Actinium 89 * (227) 1.1
	Beryllium 4 Be 9.01	Magnesium 12 Mg 24.31 1.2	Calcium 20 Ca 40.08 1.0	Strontium 38 Sr Sr 87.62 1.0	Barium 56 Ba 137.33	Radium 88 Ra (226) 0.9
Hydrogen 1.008	Lithium 3 3 6.94 1.0	Sodium 11 Na 22.99 0.9	Potassium 19 K K 39.10 0.8	Rubidium 37 Rb 85.47	Cesium 55 CS 132.91 0.7	Francium 87 Fr (223) 0.7

lanthanides	Cerium 58 Ce 140.12	Praseodymium Neodi	Neodymium 60 Nd 144.24	Promethium 61 Pm (145)	Samarium 62 Sm 150.36	Europium 63 Eu 151.97	Gadolinium 64 Gd 157.25 1.2	Terbium 65 Tb 158.93	Dysprosium 66	Holmium 67 Ho 164.93	Erbium 68 Er 167.26 1.2	Thulium 69 Tm 168.93	Ytterbium 70 Yb 173.04	Lutetium 71 Lu 174.97
**actinides	Thorium 90 Th 232.04	Protactinium 91 Pa 231.04 1.5	Uranium 92 U 238.03	Neptunium 93 Np (237)	Plutonium 94 Pu (244) 1.3	Americium 95 Am (243) 1.3	Curium 96 Cm (247) 1.3	Berkelium 97 BK (247) 1.3	Californium 98 Cf (251)	Einsteinium 99 ES (252) 1.3	Femium 100 Fm (257)	Mendelevium 101 Md (259) 1.3	Nobelium 102 NO (258) 1.3	Lawrendum 103 Lr (262)

Answer Key Testname: EXAM 1-S2024

- 1) A
- 2) C
- 3) A 4) E 5) C 6) A 7) C

- 8) A
- 9) B 10) B 11) B 12) E

- 13) C
- 14) A
- 15) A 16) C 17) D 18) D

- 19) B
- 20) D
- 21) A 22) A 23) D
- 24) C
- 25) B