Übungsblatt 4 zur Algebra I

Abgabe bis 13. Mai 2013, 17:00 Uhr

Aufgabe 1. Lage der Lösungen von Polynomgleichungen

Sei $X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 = 0$ eine normierte Polynomgleichung mit komplexen Koeffizienten. Zeige, dass jede komplexe Lösung z höchstens die Entfernung $1 + \max\{|a_0|, \ldots, |a_{n-1}|\}$ zum Ursprung hat.

Aufgabe 2. Stetigkeit von Polynomfunktionen

Sei $f: \mathbb{C} \to \mathbb{C}, z \mapsto a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ eine Polynomfunktion mit Koeffizienten $a_0, \ldots, a_n \in \mathbb{C}$. Zeige, dass f in folgendem starken Sinn stetig ist:

$$\forall R > 0 \ \forall \epsilon > 0 \ \exists \delta > 0 \ \forall z, w \in \mathbb{C} \text{ mit } |z|, |w| \leq R: \ |z - w| < \delta \Longrightarrow |f(z) - f(w)| < \epsilon$$

Aufgabe 3. Rechenregeln

- a) Seien f und g Polynome mit komplexen Koeffizienten und $\deg f \leq n$ und $\deg g \leq m$. Zeige, dass $\deg(f+g) \leq \max\{n,m\}$ und $\deg(fg) \leq n+m$.
- b) Beweise oder widerlege: Für alle Polynome f und Zahlen x, y gilt f(xy) = f(x)f(y).
- c) Sei q eine komplexe Zahl ungleich Eins. Zeige: $\sum_{k=0}^{n} q^k = \left(q^{n+1}-1\right)/\left(q-1\right)$.

Aufgabe 4. Teiler von Polynomen

- a) Ist $X + \sqrt{2}$ ein Teiler von $X^3 2X$?
- b) Besitzt $X^7 + 11X^3 33X + 22$ einen Teiler der Form (X a)(X b) mit $a, b \in \mathbb{Q}$?
- c) Sei $f = 3X^4 X^3 + X^2 X + 1$ und $g = X^3 2X + 1$. Finde Polynome q und r mit f = qg + r und $\deg r < \deg g$.
- d) Sei d ein gemeinsamer Teiler zweier Polynome f und g und seien p und q weitere Polynome. Zeige, dass d dann auch ein Teiler von pf + qg ist.
- e) Seien f, g und h Polynome mit ganzzahligen Koeffizienten und $f = g \cdot h$. Zeige, dass für jede ganze Zahl n die ganze Zahl g(n) ein Teiler von f(n) ist.

Aufgabe 5. Polynomielle Ausdrücke

- a) Schreibe $\frac{1}{\sqrt{2}+5\sqrt{3}}$ als polynomiellen Ausdruck in $\sqrt{2}$ und $\sqrt{3}$ mit rat. Koeffizienten.
- b) Sei z eine komplexe Zahl mit $\mathbb{Q}(z) = \mathbb{Q}[z]$. Zeige, dass z algebraisch ist.
- c) Inwiefern kann man ein Polynom in zwei Unbestimmten X und Y als Polynom in einer einzigen Unbestimmten Y, dessen Koeffizienten Polynome in X sind, auffassen?

Aufgabe 6. Beweis des Fundamentalsatzes

Im Beweis des Fundamentalsatzes der Algebra tritt die Zahl 3 immer wieder auf. Kann sie durch eine kleinere Zahl $3 - \epsilon$ ersetzt werden?