LOG TD 3

Ce TD est une préparation au problème de la satisfaisabilité des formules du calcul propositionnel, et en particulier à l'étude de la résolution que nous verrons plus en détail au TD suivant.

Exercice 1 (* préliminaire à l'Exercice 2)

On considère le résultat suivant :

Théorème 1 (Complétude fonctionnelle) Supposons Prop = $\{p_1, p_2, \dots, p_n\}$ fini. Soit Val l'ensemble des valuations sur Prop. Toute fonction f de Val dans $\{0,1\}$ est la valeur de vérité d'une formule φ_f sur Prop.

On remarque que la réciproque est évidente : toute formule φ sur un ensemble de variables propsitionnelles Prop = $\{p_1, p_2, \dots, p_n\}$ correspond à une fonction de f_{φ} de Val^n dans $\{0,1\}$ définit par $f_{\varphi}(\nu) = \nu(\varphi)$, pour tout $\nu \in Val$.

Démontrer le Théorème 1 par récurrence sur le nombre n de variables dans Prop.

Exercice 2 (*)

- 2.1 Rappeler la définition d'une formule forme normale conjonctive (FNC).
- **2.2** Démontrer par récurrence sur le nombre n de variables propositionnelles dans la formule le théorème vu en cours :

Théorème 2 Pour toute $\varphi \in \mathcal{F}_{cp}$, il existe $\tilde{\varphi} \in \mathcal{F}_{cp}$ en FNC telle que $\varphi \equiv \tilde{\varphi}$.

On pourra noter $\varphi(p_1, \ldots, p_n)$ pour indiquer que les variables propositionnelles de φ sont p_1, \ldots, p_n .

Exercice 3

* Trouver deux formules (vraiment) différentes en FNC qui sont équivalentes.

MISE EN FNC

LOG TD 3

Exercice 4 (Un algorithme récursif)

On utilise "CNF" pour "conjunctive normal form".

Algorithm 1 $CNF(\varphi)$

```
1: \phi \leftarrow \varphi
 2: \phi \leftarrow \text{RemoveImpl}(\phi)
                                                                               ▷ on supprime les implications
 3: \phi \leftarrow \text{PushNeg}(\phi)
                                                         ⊳ on pousse les négations vers les propositions
 4: switch \phi do
         case \phi est un litéral
              return \phi
 6:
         case \phi = \psi_1 \wedge \psi_2
 7:
             return CNF(\psi_1) \wedge CNF(\psi_2)
 8:
         case \phi = \psi_1 \vee \psi_2
 9:
              return Distrib(CNF(\psi_1), CNF(\psi_2))
10:
11: return
```

οù

Algorithm 2 DISTRIB (ϕ_1, ϕ_2)

```
Require: \phi_1 et \phi_2 sont en CNF
 1: switch \phi_1, \phi_2 do
           case \phi_1 = \phi_{11} \wedge \phi_{12}
                                                                                                      \triangleright \phi_1 a au moins 2 clauses
 2:
                 return Distrib(\phi_{11}, \phi_2) \wedge \text{Distrib}(\phi_{12}, \phi_2)
 3:
           case \phi_2 = \phi_{21} \wedge \phi_{22}
                                                                                                      \triangleright \phi_2 a au moins 2 clauses
 4:
                 return Distrib(\phi_1, \phi_{21}) \wedge \text{Distrib}(\phi_1, \phi_{22})
 5:
           case autre
                                                                                   \triangleright ni \phi_1 ni \phi_2 ne sont des conjonctions
 6:
 7:
                 return \phi_1 \vee \phi_2
```

- **4.1** Décrire le principe d'un algorithme pour REMOVEIMPL (ϕ) et d'un algorithme pour PUSHNEG (ϕ) (sans détail).
 - **4.2** Montrer que $CNF(\varphi)$ termine.
 - **4.3** Montrer que $CNF(\varphi)$ est correct.

LE PROBLÈME SAT

Exercice 5

5.1 Enoncer le problème de satisfaisabilité d'une formule du calcul propositionel.

LOG TD 3

5.2 Proposer un algorithme naïf pour résoudre ce problème.

Pour le problème SAT, on se place maintenant dans le cas particulier des clauses de Horn.

Définition 1 (Clauses de Horn) Une clause de Horn est une clause contenant au plus un litéral positif. Les clauses de Horn sans littéraux positifs sont appelées négative pure et les autres des implication.

- **5.3** Expliquer la terminologie "négative pure" et "implication" de la Définition 1.
- 5.4 On considère l'algorithme suivant, écrit en pseudo code de très haut niveau :

Algorithm 3 Fonction SAT-HORN-GLOUTON(C)

- 1: Initialiser toutes les variables de l'ensemble des clauses de $\mathcal C$ à faux
- 2: while une implication de $\mathcal C$ n'est pas satisfaite do
- 3: mettre la variable droite de cette implication à vrai
- 4: end while
- 5: if toutes les clauses négatives pures de $\mathcal C$ sont satisfaites par la valuation then
- 6: **return** cette valuation
- 7: else
- 8: **return** "la formule n'est pas satisfaisable"
- 9: end if

Analyser cet algorithme (terminaison et correction). Qu'en conclure?