Task 4 – Bewertung des genetischen Algorithmus

Alex, Yaroslav, Manuel

EvoTest

30.11.2016

Systematischer Ansatz

Systematisierung durch zwei Ansätze:

- Untersuchen der Entwicklung der Fitnesswerten von Generation zu Generation
- Manuelles Ableiten von Testfällen und der Vergleich mit den Ergebnissen des Algorithmus

Beide werden im Folgenden erläutert

Fitness-Analyse

- Mit steigender Generationen-Anzahl sollte die Fitness steigen
- Der Algorithmus wird für 100 Chromosome durchlaufen
- Die Anzahl der Epochen wird in Zehner-Schritten erhöht
- Der Mittelwert und die Standardabweichung der Fitnesswerte jeder End-Generation werden verglichen

Entwicklung der Fitness

Äquivalenzklassen

Generierte Testfall-Klassen:

Testfälle (Initial und nach 500 Generationen)

Äquivalenzklassen

	50 Generationen		500 Generationen	
	Mittelwert	Abweichung	Mittelwert	Abweichung
X-Position	0.515882	2.301561	0.352941	2.883735
Y-Position	0.888431	0.934355	-0.538824	0.420933
Orientation	2.456849	2.272890	3.691803	2.331866
Slot-Length	2.402382	0.164123	2.308667	0.092787
Slot-Depth	1.158000	0.125341	1.116588	0.148013

Tendenz zu zentralisierter Fahrzeugposition bei kleiner Parklücke

Manuell gewählte Testfälle

Position	Winkel	Parklücke	Fitness	Reale Eignung
5/0	0	2.5/1	0.0	Kollision
-5/0	0	2.5/1	0.0	Kollision
4/0	0	2.5/1	0.039828	Beinahe Kollision
-4/0	0	2.5/1	0.039828	Beinahe Kollision
2/0	270	2.5/1	0.0	Kollision
2.5/0	180	5/2	0.0	Falsches Ziel und Kollision
-2.5/0	180	5/2	0.008106	Falsches Ziel
0/4	0	2.5/1	0.020079	Merkwürdige Fahrspur
0/0	0	5/2	0.006673	Merkwürdige Fahrspur

Manuell gewählte Testfälle

Ausblick

Zusammenfassend lässt sich sagen:

- Die Fitness nimmt über die Generationen zu
- Der Algorithmus liefert bevorzugt zentrale Parkszenarien
- Manuell abgeleitete Testfälle sind heterogener

Zukünftige Aufgaben könnten beinhalten:

- Formulieren eines automatisierten Abbruchkriteriums
- Erkennen von Kollisionsszenarien
- Weitere Fitnessfunktionen für andere Testfall-Klassen und erhöhte Heterogenität