Lab02 Addressing Mode

HackMD (https://hackmd.io?utm_source=view-page&utm_medium=logo-nav)

Lab02 Addressing Mode

(1) What is Addressing Mode?

Link: IS for PIC18F4520 (http://technology.niagarac.on.ca/staff/mboldin/18F Instruction Set/)

(2) PIC18F4520 Adressing Mode

No Operation

NOP

Inherent Addressing (Implied Addressing)

SLEEP \ RESET \ DAW

Literal Addressing (Immediate Addressing)

MOVLW \ ADDLW \ SUBLW \ ANDLW \ GOTO \ CALL...

Direct Addressing (Absolute Addressing)

Indirect Addressing

Bit Addressing

Relative addressing

No Operation

NOP

NOF	•	No Oper	ation			
Synt	ax:	[label]	NOP			
Оре	rands:	None				
Ope	ration:	No opera	tion			
Statu	us Affected:	None				
Encoding:		0000	0000	0000		0000
		1111	xxxx	xxxx		xxxx
Des	cription:	No opera	tion.			
Wor	ds:	1				
Cycles:		1				
Q Cycle Activity:						
	Q1	Q2	Q3	3		Q4
	Decode	No	No			No
		operation	operat	ion	ор	eration

Example:

None.

```
#INCLUDE <p18f4520.inc>
 1
 2
             CONFIG OSC = INTIO67
 3
             CONFIG WDT = OFF
 4
             org 0x10; PC = 0x10
 5
     start:
 6
             nop
 7
             nop
 8
             nop
 9
              nop
10
             nop
11
     end
```

- PC += 2
- "wasting" 1 clock cycle
- delay loop

Inherent Addressing

• SLEEP \ RESET \ DAW

• SLEEP

SLE	EP	Enter SL	Enter SLEEP mode					
Synt	ax:	[label]	SLEEP					
Ope	rands:	None						
Ope	ration:	00h → WDT, 0 → WDT postscaler, 1 → TO, 0 → PD						
Statu	us Affected:	$\overline{TO}, \overline{PD}$						
Enco	oding:	0000	0000	0000	0011			
Description:		cleared. (TO) is so its postso The proc	The power-down status bit (PD) is cleared. The time-out status bit (TO) is set. Watchdog Timer and its postscaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.					
Word	ds:	1						
Cycl	es:	1	1					
Q Cycle Activity:								
	Q1	Q2	Q3	,	Q4			
	Decode	No operation	Proces Data		Go to sleep			

RESET

RESET Reset

Syntax: [label] RESET

Operands: None

Operation: Reset all registers and flags that

are affected by a MCLR Reset.

Status Affected: All

Encoding: 0000 0000 1111 1111

Description: This instruction provides a way to

execute a MCLR Reset in software.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Start	No	No
	reset	operation	operation

Example: RESET

After Instruction

Registers = Reset Value Flags* = Reset Value

DAW

DAW Decimal Adjust W Register

Syntax: [label] DAW

Operands: None

Operation: If [W<3:0>>9] or [DC=1] then

 $(W<3:0>) + 6 \rightarrow W<3:0>;$

else

 $(W<3:0>) \rightarrow W<3:0>;$

If [W<7:4>>9] or [C=1] then

 $(W<7:4>) + 6 \rightarrow W<7:4>;$

else

 $(W<7:4>) \rightarrow W<7:4>;$

Status Affected: C

Encoding: 0000 0000 0000 0111

Description: DAW adjusts the eight-bit value in

W, resulting from the earlier addi-

tion of two variables (each in

packed BCD format) and produces

a correct packed BCD result.

Words: 1

Cycles: 1

Q Cycle Activity:

• BCD addition adjustment

Literal Addressing

- 8-bits literal MOVLW \ ADDLW \ SUBLW \ ANDLW
- 20-bits literal *GOTO...

```
#INCLUDE <p18f4520.inc>
CONFIG OSC = INTIO67
CONFIG WDT = OFF
org 0x10 ;PC = 0x10
start:
MOVLW 0x05

end
```


Direct Addressing

Data Memory MAP

- 12-bits memory address, higher 4 bits for bank select.
- ==> 將整塊4096Bytes的記憶體區分成16個小區(bank0~bank15)
- Some data movement instructions on file register
 - *Access Bank
 - Access RAM (or GPRs) (0x000 ~ 0x07F and 0xF80 ~ 0xFFF)
 - ∘ Bank Select (higher address) (0x000 ~ 0xFFF)
- (*) 因為 data movement 的 file register 欄位只有 8 個 bits · 所以 Access Bank 方式只能存取 256 個 bytes 的記憶體空間(0x000 ~ 0x07F 和 0xF80 ~ 0xFFF)。因此若要存取整個 4096-bytes 大小的記憶體空間,要使用 Bank Select 的方式存取。

MOVWF

MOVWF	Move W to f					
Syntax:	[label]	MOVW	f [,a]			
Operands:	$0 \le f \le 255$ $a \in [0,1]$					
Operation:	$(W) \rightarrow f$					
Status Affected:	None					
Encoding:	0110	111a	ffff	ffff		
Description:	Location 's 256 byte to Access Ba riding the the bank v	Move data from W to register 'f'. Location 'f' can be anywhere in the 256 byte bank. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	3	Q4		
Decode	Read	Proce	ss	Write		

register 'f'

Data

register 'f'

• MOVLB (Use MOVLB to select bank)

MOVLB Move literal to low nibble in BSR

Syntax: [label] MOVLB k

Operands: $0 \le k \le 255$

Operation: $k \rightarrow BSR$

Status Affected: None

Encoding: 0000 0001 kkkk kkkk

Description: The 8-bit literal 'k' is loaded into

the Bank Select Register (BSR).

Words: 1

Cycles: 1

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read literal	Process	Write
	'k'	Data	literal 'k' to
			BSR

Example: MOVLB 5

Before Instruction

BSR register = 0x02

After Instruction

BSR register = 0x05

MOVFF

Syntax: [label] MOVFF f_s,f_d

Operands: $0 \le f_s \le 4095$

 $0 \le f_d \le 4095$

Operation: $(f_s) \rightarrow f_d$

Status Affected: None

Encoding:

1st word (source) 2nd word (destin.)

1100	ffff	ffff	ffffg
1111	ffff	ffff	ffffd

Description:

The contents of source register 'f_s' are moved to destination register 'f_d'. Location of source 'f_s' can be anywhere in the 4096 byte data space (000h to FFFh), and location of destination 'f_d' can also be anywhere from 000h to FFFh. Either source or destination can be W (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the

The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register

transmit buffer or an I/O port).

MOVFF 是一個很特別的指令,他的指令格式是給你兩個 12-bits 的 file register 欄位去填,所以在整個 4096-bytes 大小的記憶體裡,想去哪就去哪,不需要在乎bank這件事,也就是這個指令可以隨意在 4096-bytes 大小的記憶體空間裡存取。

Sample code: Access Bank

```
1
    #INCLUDE <p18f4520.inc>
2
            CONFIG OSC = INTIO67
3
            CONFIG WDT = OFF
4
            org 0x10; PC = 0x10
5
    start:
6
            MOVLW 0x99; WREG = 0x99
7
            MOVWF 0x10; [0x010] = 0x99
8
    end
```


Sample code: Bank Select

```
#INCLUDE <p18f4520.inc>
1
2
            CONFIG OSC = INTIO67
            CONFIG WDT = OFF
3
            org 0x10; PC = 0x10
4
5
    start:
            MOVLW 0x99; WREG = 0x99
6
7
            MOVLB 0x4; BSR = 4
            MOVWF 0x10, 1; use BSR select bank; [0x410] = 0x99
8
9
    end
```


Sample code: MOVFF

```
1
     #INCLUDE <p18f4520.inc>
 2
             CONFIG OSC = INTIO67
 3
             CONFIG WDT = OFF
 4
             org 0x10; PC = 0x10
 5
     start:
 6
             MOVLW 0x99; WREG = 0x99
 7
             MOVLB 0x4; BSR = 4
 8
             MOVWF 0x10, 1; use BSR select bank; [0x410] = 0x99
 9
             MOVFF 0x410, 0x420; [0x420] = 0x99
10
     end
```


Indirect Addressing

Three SFRs call FSRx (x for 0~2)

- FSR0 \ FSR1 \ FSR2
- 16bits (FSRxH : FSRxL) to cover all data memory address
- they are pointer
- LFSR (let FSRx point to memory address k)

	LFS	R	Load FSF	2				
	Synt	ax:	[label]	LFSR f	f,k			
	Operands:		$0 \le f \le 2$ $0 \le k \le 40$	$0 \le f \le 2$ $0 \le k \le 4095$				
	Ope	ration:	$k \rightarrow FSRf$	$k \rightarrow FSRf$				
	Statu	us Affected:	None					
	Enco	oding:	1110 1111	1110 0000	00 k ₇ k		k ₁₁ kkk kkkk	
	Des	cription:	The 12-bit the file se by 'f'.					
•	Words:		2					
0	Cycles:		2					
	QC	ycle Activity:						
		Q1	Q2	Q3			Q4	
		Decode	Read literal 'k' MSB	Proces Data		lite M	Vrite eral 'k' SB to SRfH	
		Decode	Read literal 'k' LSB	Proce Data			e literal FSRfL	
	Exa	mple:	LFSR 2,	0x3AB				
		After Instruct FSR2H FSR2L	= 0x	03 AB				

Some SFRs related to pointer FSRx (x for 0~2)

• INDFx:指針不變,對指向的記憶體位置進行操作

• POSTINCx:對指向的記憶體位置進行操作後,指針+1

• POSTDECx:對指向的記憶體位置進行操作後,指針-1

• PREINCx:指針 + 1 後,對指向的記憶體位置進行操作

• PLUSWx:指針 + WREG = 新的記憶體位置後,對指向的記憶體位置進行操作

```
#INCLUDE <p18f4520.inc>
 2
      CONFIG OSC = INTIO67
 3
      CONFIG WDT = OFF
 4
      org 0x00; PC = 0x00
 5
     setup1:
 6
      LFSR 0, 0x000 ; FSR0 point to 0x000
 7
      LFSR 1, 0x010; FSR1 point to 0x010
      LFSR 2, 0x020; FSR2 point to 0x020
 8
 9
      MOVLW 0 \times 10; WREG = 0 \times 10
     start:
10
11
      INCF POSTINCO
      ; [0x000] += 1; FSR0 point to 0x001
12
13
14
      INCF PREINC1
15
      ; FSR1 point to 0x011; [0x011] += 1
16
17
      INCF POSTDEC2
      ; [0x020] += 1 ; FSR2 point to 0x01F
18
19
20
      INCF INDF2
21
      ; [0x01F] += 1;
22
      ; FSR2 point to 0x01F(unchanged)
23
24
      INCF PLUSW2
25
      ; [0x01F+0x10] += 1
      ; FSR2 point to 0x01F(unchanged)
26
27
     end
```

Bit Addressing

```
• BSF \ BCF \ BTFSC \ BTFSS
```

Set or clear specific bit file register

o BSF: Bit set f

o BCF: Bit clear f

o BTFSC: Bit test f skip if clear

• BTFSS: Bit test f skip if set

```
1
     #INCLUDE <p18f4520.inc>
 2
             CONFIG OSC = INTIO67
             CONFIG WDT = OFF
 3
 4
             org 0x10; PC = 0x10
 5
     start:
         BSF 0 \times 000, 1; [0 \times 000] = b'00000010
 6
 7
         BTFSC 0x000, 0; test bit 0 of [0x000], skip if bit 0 is 0
         MOVFF 0x000, 0x001
 8
 9
         BTFSC 0x000, 1; test bit 1 of [0x000], skip if bit 1 is 0
         MOVFF 0x000, 0x001
10
11
     end
```

Address	Symbol	Hex	Decimal	Binary	Char
000		0x02	2	00000010	1.1
001		0x00	0	00000000	1.1
002		0x00	0	00000000	1.1
003		0x00	0	00000000	1.1
004		0x00	0	00000000	'.'
Address	Symbol	Hex	Decimal	Binary	Char
Address	Symbol	Hex 0x02		Binary 00000010	
	Symbol		2	-	1.1
000	Symbol	0x02	2	00000010	'.' '.'
000 001	Symbol	0x02 0x02	2 0	00000010	'.' '.' '.'

Relative Addressing

- BC · BN · BNC · BNN · BNZ(branch if not zero) ...
- for all the "Branch" instruction to addressing
- relative address to PC value (branch的下一行)
- offset is word address(for PIC18F4520 1 word = 2Bytes)
- if branch: PC = PC + 2 + n * 2 (2's complement) if not branch: PC = PC + 2

BZ Branch if Zero

Syntax: [label] BZ n

Operands: $-128 \le n \le 127$

Operation: if Zero bit is '1'

 $(PC) + 2 + 2n \rightarrow PC$

Status Affected: None

Encoding: 1110 0000 nnnn nnnn

Description: If the Zero bit is '1', then the pro-

gram will branch.

The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then

a two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:

If Jump:

Q1	Q2	Q3	Q4		
Decode	Read literal	Process	Write to PC		

• Example:

Memory				1:		#INCLUD	E <p18f4321.inc></p18f4321.inc>
address	Op code			2:		ORG	0x00
0000	000	MONTAN	02		DACK		
0000	0E02	MOVLW	0x2	<i>3</i> :	BACK	MOVLW	0x02
0002	0802	SUBLW	0x2	4:		SUBLW	0x02
0004	E001	BZ	0x8	5:		BZ	DOWN
0006	0E04	MOVLW	0x4	6:		MOVLW	0x04
8000	0804	SUBLW	0x4	7:	DOWN	SUBLW	0x04
000A	E0FA	BZ 0		8:		BZ	BACK
000C	0003	SLEEP		9:		SLEEP	