GIMNAZIJA JOVAN JOVANOVIĆ ZMAJ

MATURSKI RAD

Primene Teorije Grupa

Daniel Silađi

SADRŽAJ

1.	Motivacija, grupe i simetrije		1
	1.1.	Simetrije ravanskih figura	1
	1.2.	Simetrije trodimenzionalnih tela	1
	1.3.	Simetrije u fizici	1
2.	Uvod u teoriju grupa		
	2.1.	Osnovne definicije	2
	2.2.	Simetrič cna grupa S_n , permutacije	2
	2.3.	Lagranžova teorema	2
	2.4.	Invarijantne podgrupe, faktor grupa	2
3.	Teorija grupa u fizici		3
	3.1.	Vektorski prostor	3
	3.2.	Izometrijske transofrmacije n-dimenzionog prostora	3
	3.3.	Dvodimenzionalne tačkaste kristalografske grupe	3
	3.4.	Lorencova grupa	3
4	7 .ak	linčak	Δ

1. Motivacija, grupe i simetrije

Symmetry registers regularity, and thus, records beauty. A symmetry of an object or a figure in space is a transformation in space that maps the object to itself. Sto vise simetrija, to je objekat simetricniji, dakle, lepsi.

1.1. Simetrije ravanskih figura

Trougao, kvadrat, sestougao. Frieze, kao primer beskonacne grupe. 7 frieze grupa Wallpaper groups, 2 primera, jedan je manje simetrican, generisan samo sa 2 translacije, i jedan koji je vise simetrican.

1.2. Simetrije trodimenzionalnih tela

Kocka, ikosaedar Simetrije kristala/molekula, 2 primera

1.3. Simetrije u fizici

Simetrije u klasicnoj i kvantnoj mehanici, npr lorencova grupa i resenja sredingerove jednacine za vodonikov atom. Lijeve grupe.

2. Uvod u teoriju grupa

2.1. Osnovne definicije

Definicija grupe, red grupe, red elementa, podgrupe. Primeri: brojevi (sta jeste i sta nije), transofrmacije, simetrije Klasifikacija grupa sa 2, 3, 4 elementa, primer da 1 grupa moze imati vise od 1 realizacije, izomorfizam

2.2. Simetrič cna grupa S_n , permutacije

Definicija permutacije, ciklusi, parnost. Definicija simetricne grupe cayleyeva teorema

2.3. Lagranžova teorema

2.4. Invarijantne podgrupe, faktor grupa

Konjugacija, unutrasnji automorfizam, invarijantna (normalna) podgrupa, faktor grupa, homomorfizam. Veza homomorfizma i normalnih podgrupa.

3. Teorija grupa u fizici

3.1. Vektorski prostor

Definicija vektorskog prostora Linearne transofrmacije, veza sa matricama Skalarni proizvod (unitaran vektorski prostor). Ortogonalnost, cuvanje skalarnog proizvoda.

3.2. Izometrijske transofrmacije n-dimenzionog prostora

Moze biti i nad R GL(N, C) - opsta linearna grupa SL(N, C) - specijalna linearna grupa U(N, C) - unitarna grupa SU(N, C) - specijalna unitarna grupa O(N, C) - ortogonalna grupa SO(N, C) - specijalna ortogonalna

3.3. Dvodimenzionalne tačkaste kristalografske grupe

3.4. Lorencova grupa

 $U(p,\,q)$ - pseudo-unitarna grupa $O(p,\,q)$ - pseoudo-ortogonalna grupa $O(1,\,3)$ - Lorencova grupa

4. Zaključak

Zaključak.