

Scalable Data Science

Lecture 8: Streaming model, counting distinct elements

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Large Data

- Data is massive, growing faster than our ability to store or index
- Predicted growth of data @ 1.7Mb/person/second

[Forbes]

- Scientific data:
 - Large Hadron Collider
 - Gravitational wave detector
 - Personalized genome sequences

Handling velocity + volume

- Can we process data without explicitly storing all of it in memory? E.g. in a network switch,
 - which IPs have most packets passing through a switch
 - has traffic pattern changed overnight?

Handling velocity + volume

- Can we process data without explicitly storing all of it in memory? E.g. in a network switch,
 - which IPs have most packets passing through a switch
 - has traffic pattern changed overnight?

- We have to give up on exact answer, and rely on...
 - approximation: return answer close to truth
 - randomization: be correct only with high probability

Streaming model: sketches

- Data is assumed to come as a stream of values
 - e.g. bytes seen when reading off a tape-drive
 - destination IPs seen by a network switch
- Size of universe/stream is much large compared to available memory
 - typically assume memory is poly(log)
 - Can make limited (possibly single) pass over data
 - Will create a "sketch": a summary data structure used to answer queries at the end

Streaming problem: distinct count

- Universe is U, number of distinct elements = n, stream size is m
 - Example: U = all IP addresses

```
10.1.21.10, 10.93.28,1,....,98.0.3.1,....10.93.28.1.....
```

- IPs can repeat
- Want to estimate the number of distinct elements in the stream

Other applications

- Universe = set of all k-grams, stream is generated by document corpus
 - need number of distinct k-grams seen in corpus

- Universe = telephone call records, stream generated by tuples (caller, callee)
 - need number of phones that made > 0 calls

Solutions

- Naïve solution : $O(n \log(U))$ space
 - store all the elements, sort and count distinct
 - store a hash map, insert only if not present in map
- Bit array: O(|U|) space
 - bits initialized to 1 only if element seen in stream
- Can we do this in less space? Not when exact solution needed!!

Approximations

- (ϵ, δ) –approximations
 - Algorithm will use random hash functions
 - Will return an answer \hat{n} such that

$$(1 - \epsilon)n \le \hat{n} \le (1 + \epsilon)n$$

– This will happen with probability $1-\delta$ over the randomness of the algorithm

First effort

- Stream length: *m*, universe size: *n*
- Proposed algo: Given space S, sample S items from the stream
 - Find the number of distinct elements in this set: \hat{n}
 - return $\hat{n} \times \frac{m}{S}$

First effort

- Stream length: m, distinct elements: n
- Proposed algo: Given space S, sample S items from the stream
 - Find the number of distinct elements in this set: \hat{n}
 - return $\hat{n} \times \frac{m}{S}$
- Not a constant factor approximation
 - -1,1,1,1,....1,2,3,4,....,n-1 m-n+1

Linear Counting

- Bit array B of size m, initialized to all zero
- Hash function $h: [n] \rightarrow [m]$
- When seeing item x, set B[h(x)] = 1

Linear Counting

- Bit array B of size m, initialized to all zero
- Hash function $h: [n] \rightarrow [m]$
- When seeing item x, set B[h(x)] = 1

- z_m = fraction of zero entries
- Return estimate $-m \log(\frac{z_m}{m})$

Linear Counting Analysis

- Pr[position remaining 0] = $\left(1 \frac{1}{m}\right)^n \approx e^{-\frac{n}{m}}$
- Expected number of positions at zero = $E[z_m] = me^{-n/m}$

- Using tail inequalities we can show this is concentrated
- Typically useful only for $m = \Theta(n)$, often useful in practice

Flajolet Martin Sketch

Components

- "random" hash function $h: U \to 2^{\ell}$ for some large ℓ
- -h(x) is a ℓ —length bit string
- initially assume it is completely random, can relax
- zero(v) = position of rightmost 1 in bit representation of v= $\max\{i, 2^i \ divides \ v\}$
 - zeros(10110) = 1, zeros(110101000) = 3

Flajolet Martin Sketch

Initialize:

- Choose a "random" hash function $h: U \to 2^{\ell}$
- $-z \leftarrow 0$

Process(x)

- if
$$zeros(h(x)) > z$$
, $z \leftarrow zeros(h(x))$

Estimate:

- return $2^{z+1/2}$

Example

	h(.)
	0110101
0	1011010
0	1000100
	1111010

Space usage

- We need $\ell \ge C \log(n)$ for some $C \ge 3$, say
 - by birthday paradox analysis, no collisions with high prob

- Sketch : z , needs to have only $O(\log \log n)$ bits !!!
- Total space usage = $O(\log n + \log \log n)$

Intuition

- Assume hash values are uniformly distributed
- The probability that a uniform bit-string
 - is divisible by 2 is ½
 - is divisible by 4 is ¼
 - **—**
 - is divisible by 2^k is $\frac{1}{2^k}$
- We don't expect any of them to be divisible by $2^{\log_2(n)+1}$

Formalizing intuition

- S = set of elements that appeared in stream
- For any $r \in [\ell]$, $j \in U$, $X_{rj} = \text{indicator of } zeros(h(j)) \ge r$
- $Y_r = \text{number of } j \in U \text{ such that } zeros(h(j)) \ge r$

$$Y_r = \sum_{j \in S} X_{rj}$$

• Let \hat{z} be final value of z after algo has seen all data

• $Y_r > 0 \leftrightarrow \hat{z} \ge r$, equivalently, $Y_r = 0 \leftrightarrow \hat{z} < r$

• $Y_r > 0 \leftrightarrow \hat{z} \ge r$, equivalently, $Y_r = 0 \leftrightarrow \hat{z} < r$

•
$$E[Y_r] = \sum_{j \in S} E[X_{rj}]$$
 $X_{rj} = \begin{cases} 1 & \text{with prob } \frac{1}{2^r} \\ 0 & \text{else} \end{cases}$

•
$$E[Y_r] = \frac{n}{2^r}$$
 $var(Y_r) = \sum_{j \in S} var(X_{rj}) \le \sum_{j \in S} E[X_{rj}^2]$

• $var(Y_r) \le \sum_{j \in S} E[X_{rj}^2] \le n/2^r$

$$\Pr[Y_r > 0] = \Pr[Y_r \ge 1] \le \frac{E[Y_r]}{1} = \frac{n}{2^r}$$

• $var(Y_r) \le \sum_{j \in S} E[X_{rj}^2] \le n/2^r$

$$\Pr[Y_r > 0] = \Pr[Y_r \ge 1] \le \frac{E[Y_r]}{1} = \frac{n}{2^r}$$

$$\Pr[Y_r = 0] \le \Pr[|Y_r - E[Y_r]| \ge E[Y_r]] \le \frac{var(Y_r)}{E[Y_r]^2} \le \frac{2^r}{n}$$

Upper bound

Returned estimate $\hat{n} = 2^{\hat{z}+1/2}$

 $a = \text{smallest integer with } 2^{a+1/2} \ge 4n$

$$\Pr[\hat{n} \ge 4n] = \Pr[\hat{z} \ge a] = \Pr[Y_a > 0] \le \frac{n}{2^a} \le \frac{\sqrt{2}}{4}$$

Lower bound

Returned estimate $\hat{n} = 2^{\hat{z}+1/2}$

 $b = \text{largest integer with } 2^{b+1/2} \le n/4$

$$\Pr\left[\hat{n} \le \frac{n}{4}\right] = \Pr\left[\hat{z} \le b\right] = \Pr[Y_{b+1} = 0] \le \frac{2^{b+1}}{n} \le \frac{\sqrt{2}}{4}$$

Understanding the bound

• By union bound, with prob $1 - \frac{\sqrt{2}}{2}$,

$$\frac{n}{4} \le \hat{n} \le 4n$$

- Can get somewhat better constants
- Need only 2-wise independent hash functions, since we only used variances

Improving the probabilities

- To improve the probabilities, a common trick: median of estimates
- Create $\widehat{z_1}$, $\widehat{z_2}$,...., $\widehat{z_k}$ in parallel
 - return median
- Expect at most $\frac{\sqrt{2}}{4}$ of them to exceed 4n

Improving the probabilities

- To improve the probabilities, a common trick: median of estimates
- Create $\widehat{z_1}$, $\widehat{z_2}$,...., $\widehat{z_k}$ in parallel
 - return median
- Expect at most $\frac{\sqrt{2}}{4}k$ of them to exceed 4n
- But if median exceeds 4n, then $\frac{k}{2}$ of them does \Rightarrow using Chernoff bound this prob is $\exp(-\Omega(k))$

Improving the probabilities

- To improve the probabilities, a common trick: median of estimates
- Create $\widehat{z_1}$, $\widehat{z_2}$,...., $\widehat{z_k}$ in parallel
 - return median

- Using Chernoff bound, can show that median will lie in $\left[\frac{n}{4},4n\right]$ with probability $1-\exp(-\Omega(k))$.
- Given error prob δ , choose $k = O(\log(\frac{1}{\delta}))$

Summary

- Streaming model
 — useful abstraction
 - Estimating basic statistics also nontrivial

- Estimating number of distinct elements
 - Linear counting
 - Flajolet Martin

k-MV sketch

Developed in an effort to get better accuracy

- Additional capabilities for estimating cardinalities of union and intersection of streams
 - If S_1 and S_2 are two streams, can compute their union sketch from individual sketches of S_1 and S_2

[kMV sketch slides courtesy Cohen-Wang]

Sampling via hashing: Thought experiment

• Suppose $h: U \to [0,1]$ is random hash function such that $h(x) \sim U[0,1]$ for all $x \in U$

- Maintain min-hash value y
 - initialize y ← 1
 - For each item x_i , $y \leftarrow \min(y, h(x_i))$

[kMV sketch slides courtesy Cohen-Wang]

Example

	h(.)
	0110101
0	1011010
0	1000100
	1111010

Intuition

• What information does *y* have about the number of distinct elements *n* ?

• Expectation of minimum is $E[\min_{i} h(x_i)] = \frac{1}{n+1}$

Why is expectation of min =
$$\frac{1}{n+1}$$
?

- Imagine a circle instead of [0, 1]
- Choose n+1 points uniformly at random

Why is expectation of min = $\frac{1}{n+1}$?

- Imagine a circle instead of [0, 1]
- Choose n+1 points uniformly at random
- n+1 intervals are formed
- Expected length of each interval is $\frac{1}{n+1}$

Why is expectation of min = $\frac{1}{n+1}$?

- Imagine a circle instead of [0, 1]
- Choose n+1 points uniformly at random
- n+1 intervals are formed
- Expected length of each interval is $\frac{1}{n+1}$
- Think of the first point as the place to cut the circle!

[kMV sketch slides courtesy Cohen-Wang]

k-minimum value sketch

Initialize:

$$- y_1, ..., y_k \leftarrow 1, ... 1$$

Process(x):

- For all
$$j \in [k]$$
, $y_j \leftarrow \min(y_j, h(x_i))$

Estimate:

- return median-of-means $(\frac{1}{y_1}, \dots, \frac{1}{y_k})$

Median-of-means

- Given (ϵ, δ) , choose $k = \frac{c}{\epsilon^2} \log(\frac{1}{\delta})$
- Group $t_1, \dots t_k$ into $\log(\frac{1}{\delta})$ groups of size $\frac{c}{\epsilon^2}$ each
- Find mean (t_i) for each group: $Z_1, ... Z_{\log(\frac{1}{\delta})}$

• Return $\hat{n} = \text{median of } Z_1, \dots Z_{\log(\frac{1}{8})}$

Example

	h1	h2	h3	h4
0	.45	.19	.10	.92
0	.35	.51	.71	.20
0	.21	.07	.93	.18
	.14	.70	.50	.25

Complexity

- Total space required = $O(k \log n) = O(\frac{1}{\epsilon^2} \log n \log(\frac{1}{\delta}))$
 - can be improved
 - don't need floating points, can use $h: U \to 2^{\ell}$ as before
 - can do with k-wise universal hash functions

- Update time per item = O(k)
 - However, can show that most items will not result in updates

Theoretical Guarantees

With probability $1 - \delta$, returns \hat{n} satisfies

$$(1 - \epsilon)n \le \hat{n} \le (1 + \epsilon)n$$

Proof is simple application of expectation and Chernoff bound

Merging

• For two stream S_1 and S_2 use same set of hash functions

• For each $j \in [k]$, find min (y_j, y'_j)

• Gives estimate of $|S_1 \cup S_2|$

References:

- Primary reference for this lecture
 - Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf

- Others
 - Blum, Hopcroft, Kannan.
 - Sketch techniques for approximate query processing, Graham Cormode. http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

Thank You!!

