Digital Integrated Circuit Lecture 1 Introduction

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Welcome

Welcome!

- Digital Integrated Circuit (디지털 집적회로)
 - -Code: EC4202
 - Lecture 3, no experiment, credit 3
- Instructor: Sung-Min Hong
 - -School of EECS

Resources

Presentation materials

https://github.com/hi2ska2/dic2023f

-There is an archived repository for 2019.

- Homework submission
 - -GIST LMS system
- YouTube channel

https://www.youtube.com/@SungMinHong

Evaluation

- Attendance (10%)
- Homework (30%)
- Mid-term examination (30%)
- Final examination (30%)

1.3 MOS Transistors

1.3. MOS transistors (1)

- Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)
 - Four terminals: Gate, source, drain, and body(/substrate)
 - NMOSFET & PMOSFET

1.3. MOS transistors (2)

- Usually, $V_D > V_S$.
 - When we have an electron between the source/drain regions, it is drifted toward the drain. (Current conduction)

Source (0 V) $e^- \longrightarrow (V_D > 0 \text{ V})$

- The key is to control the number of electrons.
- (# of electrons) ≠ (# of negatively charged particles)

1.3. MOS transistors (3)

- MOS capacitor
 - It is a "nonlinear" capacitor.

Gate voltage (V)

1.3. MOS transistors (4)

- Body is tied to ground (GND).
- When $V_{GS} \equiv V_G V_S$ is low, (BTW, "low" means what?)
 - No current flows.
 - The transistor is said to be OFF.

1.3. MOS transistors (5)

- When $V_{GS} \equiv V_G V_S$ is high, (Again, "high" means what?)
 - Current can flow from the source thorugh the channel to the drain.
 - The transistor is said to be ON.

1.3. MOS transistors (6)

PMOS

- Similar, but doping and voltages are reversed.
- Body is tied to V_{DD} .
- $-V_{GS}$ is negative.

Fig. 1.9(b)

1.3. MOS transistors (7)

- Power supply voltage
 - $-\ln 1980$'s, V_{DD} was 5 V.
- IEDM(or VLSI) papers

-130nm: 2000

-90nm: 2003

-65nm: 2004

-45nm: 2007

-32nm: 2008

-22nm: 2012

- 14nm (or 16nm): 2014

Source: P. Packan (Intel), 2007 IEDM Short Course

1.3. MOS transistors (8)

Transistors as switches

pMOS

 $-V_G$ controls path from source to drain.

g = 0

Fig. 1.10

Thank you!