

- 1. Motivación
- 2. Idea de un Árbol de Decisión
- 3. Aprendizaje de un Árbol de Decisión
 - 1. Criterio de Pureza
 - 2. Ganancia de Información
- 4. Uniendo las Piezas
- 5. Detalles Adicionales

Motivación

Hasta el momento hemos estudiado modelos de clasificación y regresión. En particular:

- Gradiente descendiente
- Funciones de error o pérdida
- Problema de optimización

Esta foto de Autor desconocido está bajo licencia CC BY-NC

Motivación

Modelo de clasificación de gatos basado en algunas reglas.

Forma de la Oreja (x_1)	Forma de la Cara (x_2)	Bigotes (x ₃)	¿Gato?
Punta	Redonda	Sí	1
Caídas	No redondas	Sí	1
Caídas	Redonda	No	0
Punta	No redonda	Sí	0
Punta	Redonda	Sí	1
Punta	Redonda	No	1
Caídas	No redonda	No	0
Punta	Redonda	No	1

y

Nuevo ejemplo:

Orejas: Punta

Cara: Redonda

Bigotes: Sí

Nuevo ejemplo:

Orejas: Punta

Cara: Redonda

Bigotes: Sí

Nuevo ejemplo:

Orejas: Punta

Cara: Redonda

Bigotes: Sí

Actividad: Propongan un árbol de decisión (uno por equipo) para resolver el problema de clasificación.

Forma de la Oreja (x_1)	Forma de la Cara (x_2)	Bigotes (x_3)	¿Gato?
Punta	Redonda	Sí	1
Caídas	No redondas	Sí	1
Caídas	Redonda	No	0
Punta	No redonda	Sí	0
Punta	Redonda	Sí	1
Punta	Redonda	No	1
Caídas	No redonda	No	0
Punta	Redonda	No	1

26

Aprendizaje de un Árbol de Decisión

Detalle #1: ¿Cómo se debe elegir qué característica de los datos usar para hacer la partición en cada nodo?

Pureza de la hoja

Aprendizaje de un Árbol de Decisión

Detalle #2: ¿Cómo detener las particiones en cada nodo?

- Si se llega a un 100% para cada clase.
- Si se llega a una profundidad máxima del árbol.
- Si al seguir expandiendo el árbol no se mejora el valor de pureza.
- Si al expandir un nodo, el número de ejemplos se encuentra debajo de un límite establecido.

¿Cómo medir la pureza?

- Para medir la pureza vamos a utilizar el concepto de entropía.
- Específicamente, **entropía binaria** para este caso de *clasificación binaria*.
- La entropía mide el nivel de incertidumbre en un mensaje.

¿Cómo medir la pureza?

¿Cómo medir la pureza?

 p_1 = la fracción de ejemplos que son gatos.

$$p_0 = 1 - p_1$$

La entropía binaria se define como

$$H(p_1) = -p_1 \log_2(p_1) - p_0 \log_2(p_0)$$

$$= -p_1 \log_2(p_1) - (1 - p_1) \log_2(1 - p_1)$$

¿Por qué logaritmos? La escala es *legible* y el máximo se encuentra en 1.

Nota: definimos $0 \log(0) = 0$

- La idea principal es elegir la característica que maximice la pureza o reduce el valor de la entropía.
- La reducción de la entropía también se llama ganancia de información (en los Árboles de Decisión).

$$H(p_1) = -p_1 \log_2(p_1) - (1 - p_1) \log_2(1 - p_1)$$

$$H(p_1) = -p_1 \log_2(p_1) - (1 - p_1) \log_2(1 - p_1)$$

Verifiquen los resultados

$$H(p_1) = -p_1 \log_2(p_1) - (1 - p_1) \log_2(1 - p_1)$$

También debemos considerar el número de ejemplos que entran en cada nodo, por lo que se considera una ponderación. Esto ayuda a considerar un único valor en la decisión.

Aquí ya se puede decidir: menor entropía.

Punta Caídas

$$p_1 = \frac{1}{3} \approx 0.33$$

 $H(0.8) \approx 0.72$

$$H(0.33)\approx 0.92$$

$$\frac{5}{8}H(0.8) + \frac{3}{8}H(0.33)$$

Forma de la cara

Redonda No redonda

$$p_1 = \frac{4}{5} = 0.8$$

$$H(0.8)\approx 0.72$$

$$p_1 = \frac{1}{3} \approx 0.33$$

$$H(0.33)\approx 0.92$$

$$\frac{5}{8}H(0.8) + \frac{3}{8}H(0.33)$$

Bigote

$$p_1 = \frac{3}{4} = 0.75$$

$$H(0.75)\approx 0.81$$

$$p_1 = \frac{2}{4} = 0.5$$

$$H(0.5)\approx 1.0$$

$$\frac{4}{8}H(0.75) + \frac{4}{8}H(0.5)$$

Esto es ganancia de información.

$$H(0.8) \approx 0.72$$
 $H(0.33) \approx 0.92$

$$H\left(\frac{5}{8}\right) - \left(\frac{5}{8}H(0.8) + \frac{3}{8}H(0.33)\right) \quad H\left(\frac{5}{8}\right) - \left(\frac{5}{8}H(0.8) + \frac{3}{8}H(0.33)\right)$$

≈ **0.16** 28/01/24

Forma de la cara

Redonda No redonda

$$p_1 = \frac{4}{5} = 0.8$$

$$H(0.8)\approx 0.72$$

 ≈ 0.16

$$p_1 = \frac{1}{3} \approx 0.33$$

$$H(0.33)\approx 0.92$$

Bigote

Ausente

$$p_1 = \frac{3}{4} = 0.75$$

$$H(0.75) \approx 0.81$$

$$p_1 = \frac{2}{4} = 0.5$$

$$H(0.5)\approx 1.0$$

$$H\left(\frac{5}{8}\right) - \left(\frac{4}{8}H(0.75) + \frac{4}{8}H(0.5)\right)$$

\$\approx 0.05\$

Árboles de Decisión

Esto es ganancia de información.

Punta Caídas

$$H(0.8) \approx 0.72$$

$$p_1 = \frac{1}{3} \approx 0.33$$

$$H(0.33) \approx 0.92$$

$H\left(\frac{5}{8}\right) - \left(\frac{5}{8}H(0.8) + \frac{3}{8}H(0.33)\right) \quad H\left(\frac{5}{8}\right) - \left(\frac{5}{8}H(0.8) + \frac{3}{8}H(0.33)\right)$

 ≈ 0.16

28/01/24

Forma de la cara

Redonda No redonda

$$p_1 = \frac{4}{5} = 0.8$$

$$H(0.8)\approx 0.72$$

 ≈ 0.16

$$p_1 = \frac{1}{3} \approx 0.33$$

$$H(0.33) \approx 0.92$$

Bigote

Ausente

$$p_1 = \frac{3}{4} = 0.75$$

$$H(0.75) \approx 0.81$$

$$p_1 = \frac{2}{4} = 0.5$$

$$H(0.5) \approx 1.0$$

$$H\left(\frac{5}{8}\right) - \left(\frac{4}{8}H(0.75) + \frac{4}{8}H(0.5)\right)$$

\$\approx 0.05\$

$$H(p_1) = -p_1 \log_2(p_1) - (1 - p_1) \log_2(1 - p_1)$$

orejas

Forma de las
$$p_1^{raiz} = \frac{5}{8} = 0.625$$

Ganancia de información

$$H(p_1^{raiz}) - \left(w^{izq}H(p_1^{izq}) + w^{der}H(p_1^{der})\right)$$

$$p_1^{izq} = \frac{4}{5} = 0.8$$

$$y^{izq} = \frac{5}{9} = 0.625$$

$$p_1^{der} = \frac{1}{3} \approx 0.33$$

$$p_1^{izq} = \frac{4}{5} = 0.8$$
 $p_1^{der} = \frac{1}{3} \approx 0.33$ $w^{izq} = \frac{5}{8} = 0.625$ $w^{der} = \frac{3}{8} = 0.375$

Árboles de Decisión

- 1. Se comienza con todos los datos en el nodo raíz.
- 2. Se calcula la ganancia de información para todas las posibles características. Se elige la que tenga el mayor valor.
- 3. Partir el conjunto de datos según la característica elegida y crear las ramas izquierda y derecha.
- 4. Recursión: se inicia 1 con los datos del nodo anterior, y se repite 2 y 3 hasta que:
 - Un nodo sea 100% de una clase.
 - Si al partir un nodo se excede la profundidad máxima establecida.
 - La ganancia de información de particiones subsecuentes es menor que un límite establecido.
 - Si el número de ejemplos en un nodo es menor que un límite establecido.

Construcción de un Árbol de Decisión

Características no binarias

Forma de la Oreja (x_1)	Forma de la Cara (x_2)	Bigotes (x_3)	¿Gato?
Punta	Redonda	Sí	1
Caídas	No redondas	Sí	1
Ovalada Redonda		No	0
Punta	No redonda	Sí	0
Ovalada	Redonda	Sí	1
Punta	Redonda	No	1
Caídas	Caídas No redonda		0
Ovalada Redonda		No	1

One hot encoding

	Forma de la Oreja	Orejas Punta (x_1)	Orejas Caídas (x_2)	Orejas Ovaladas (x_3)	Forma de la Cara (x_4)	Bigotes (x_5)	¿Gato?
	Punta	1	0	0	Redonda	Sí	1
	Caídas	0	1	0	No redondas	Sí	1
۴	Ovalada	0	0	1	Redonda	No	0
<u> </u>	Punta	1	0	0	No redonda	Sí	0
	Ovalada	0	0	1	Redonda	Sí	1
	Punta	1	0	0	Redonda	No	1
	Caídas	0	1	0	No redonda	No	0
	Ovalada	0	0	1	Redonda	No	1

One Hot Encoding

La idea del One Hot Encoding es que, si una variable categórica puede tomar k valores, se pueden crear k características binarias (0 y 1).

- 0 indica que no está presente esa característica
- 1 indica que sí está presente esa característica

One hot encoding

	Forma de la Oreja	Orejas Punta (x_1)	Orejas Caídas (x_2)	Orejas Ovaladas (x_3)	Forma de la Cara (x_4)	Bigotes (x_5)	¿Gato?
	Punta	1	0	0	Redonda	Sí	1
	Caídas	0	1	0	No redondas	Sí	1
۴	Ovalada	0	0	1	Redonda	No	0
<u>~</u>	Punta	1	0	0	No redonda	Sí	0
	Ovalada	0	0	1	Redonda	Sí	1
	Punta	1	0	0	Redonda	No	1
•	Caídas	0	1	0	No redonda	No	0
	Ovalada	0	0	1	Redonda	No	1

Forma de la Oreja (x ₁)	Forma de la Cara (x_2)	Bigotes (x_3)	Peso kg (x ₄)	¿Gato?
Punta	Redonda	Sí	2.3	1
Caídas	No redondas	Sí	4.5	1
Caídas	Redonda	No	6.4	0
Punta	No redonda	Sí	13.4	0
Punta	Redonda	Sí	5.6	1
Punta	Redonda	No	6.6	1
Caídas	No redonda	No	13.9	0
Punta	Redonda	No	8.5	1

$$H(p_1) = -p_1 \log_2(p_1) - (1 - p_1) \log_2(1 - p_1)$$

$$H\left(\frac{5}{8}\right) - \left(\left(\frac{3}{8}\right)H\left(\frac{3}{3}\right) + \left(\frac{5}{8}\right)H\left(\frac{2}{5}\right)\right) \approx 0.35$$

$$H(p_1) = -p_1 \log_2(p_1) - (1 - p_1) \log_2(1 - p_1)$$

$$H\left(\frac{5}{8}\right) - \left(\left(\frac{3}{8}\right)H\left(\frac{3}{3}\right) + \left(\frac{5}{8}\right)H\left(\frac{2}{5}\right)\right) \approx 0.35$$

$$H\left(\frac{5}{8}\right) - \left(\left(\frac{5}{8}\right)H\left(\frac{4}{5}\right) + \left(\frac{3}{8}\right)H\left(\frac{1}{3}\right)\right) \approx 0.16$$

$$H(p_1) = -p_1 \log_2(p_1) - (1 - p_1) \log_2(1 - p_1)$$

$$H\left(\frac{5}{8}\right) - \left(\left(\frac{3}{8}\right)H\left(\frac{3}{3}\right) + \left(\frac{5}{8}\right)H\left(\frac{2}{5}\right)\right) \approx 0.35$$

$$H\left(\frac{5}{8}\right) - \left(\left(\frac{5}{8}\right)H\left(\frac{4}{5}\right) + \left(\frac{3}{8}\right)H\left(\frac{1}{3}\right)\right) \approx 0.16$$

$$H\left(\frac{5}{8}\right) - \left(\left(\frac{6}{8}\right)H\left(\frac{5}{6}\right) + \left(\frac{2}{8}\right)H\left(\frac{0}{2}\right)\right) \approx 0.47$$

Esto es ganancia de información.

Punta Caídas

$$H(0.8) \approx 0.72$$

$$p_1 = \frac{1}{3} \approx 0.33$$

$$H(0.33) \approx 0.92$$

$H\left(\frac{5}{8}\right) - \left(\frac{5}{8}H(0.8) + \frac{3}{8}H(0.33)\right) \quad H\left(\frac{5}{8}\right) - \left(\frac{5}{8}H(0.8) + \frac{3}{8}H(0.33)\right)$

 ≈ 0.16

28/01/24

Forma de la cara

Redonda No redonda

$$p_1 = \frac{4}{5} = 0.8$$

$$H(0.8) \approx 0.72$$

 ≈ 0.16

$$p_1 = \frac{1}{3} \approx 0.33$$

$$H(0.33)\approx 0.92$$

Bigote

$$p_1 = \frac{3}{4} = 0.75$$

$$H(0.75) \approx 0.81$$

$$p_1 = \frac{2}{4} = 0.5$$

$$H(0.5) \approx 1.0$$

$$H\left(\frac{5}{8}\right) - \left(\frac{4}{8}H(0.75) + \frac{4}{8}H(0.5)\right)$$

\$\approx 0.05\$

¿Cómo se eligen esos límites para determinar la ganancia de información?

- Los valores se ordenan de menor a mayor.
- Los puntos medios entre los valores se eligen como límites para evaluar la ganancia de información.
- E.g., si los puntos son (20,29,40,50), los límites serían (24.5,34.5, 45).

Más detalles

- Es válido que en una partición de un nodo se elija la misma característica en ambas ramas.
- ¿Cuándo existe **alto sesgo**? Si la complejidad del modelo es baja, que se da cuando **los árboles son poco profundos**.
- ¿Cuándo existe **alta varianza**? Si la complejidad del modelo es alta, que se da cuando **los árboles son muy profundos**.
- Esta forma de crear Árboles de Decisión se conoce como **C4.5**.
- Los Árboles de Decisión pueden funcionar con poca información. Además, no requieren escalar las características o centrar los datos.

Tareas

- 1. ¿Cómo funcionan los Árboles de Decisión para el problema de regresión? Investigar su uso y particularidades.
 - E.g. No se usa entropía, más bien varianza como criterio de ganancia de información.
- 2. Investigar en qué consiste el criterio de pureza de Gini para los Árboles de Decisión.
- 3. Demostrar que para la función

$$H(p_1) = -p_1 \log_2(p_1) - p_0 \log_2(p_0)$$

su máximo se encuentra cuando $p_1 = p_0 = 1/2$.

Luis Zúñiga

p40887@correo.uia.mx

https://lzun.github.io