Namen: _____

Aufgabe	10.1	10.2	10.3	Z10.1	\sum
Punkte					

Höhere Analysis – Übungsblatt 10

Wintersemester 2020/2021, Universität Heidelberg

Prof. Dr. Hans Knüpfer Denis Brazke

denis.brazke@uni-heidelberg.de

Aufgabe 10.1 (*n*-dimensionale Mannigfaltigkeiten)

5 Punkte

Sei $\Omega \subset \mathbb{R}^n$ nicht-leer. Zeigen Sie, dass Ω genau dann eine C^1 -Mannigfaltigkeit der Dimension n ist, falls Ω eine offene Menge ist.

Aufgabe 10.2 (Beispiele von Mannigfaltigkeiten)

5 Punkte

Wir definieren die Mengen

$$\mathbb{S}^{n-1} := \{ x \in \mathbb{R}^n : |x| = 1 \}, \qquad K^{n-1} := \left\{ x \in \mathbb{R}^n : x_n^2 = \sum_{k=1}^{n-1} x_k^2 \right\}. \tag{2.1}$$

- a) Zeigen Sie, dass \mathbb{S}^{n-1} eine \mathbb{C}^1 -Mannigfaltigkeit der Dimension n-1 ist.
- b) Zeigen Sie, dass $K^{n-1} \setminus \{0\}$ eine C^1 -Mannigfaltigkeit der Dimension n-1 ist.
- c) Zeigen Sie, dass K^{n-1} keine C^1 –Mannigfaltigkeit ist.

Aufgabe 10.3 (Langrange-Multiplikatoren)

5 Punkte

Sei $M \subset \mathbb{R}^n$ eine C^1 -Mannigfaltigkeit der Dimension m und sei $F \in C^1(\mathbb{R}^n)$. Sei $\xi \in M$ und F nehme in ξ ein lokales Minimum an, d.h. es existiert ein F = 0, so dass F = 0 für alle F = 0 für alle F = 0.

- a) Zeigen Sie, dass $\nabla F(\xi) \in N_{\xi}M$.
- b) Sei $\rho > 0$ und sei $f \in C^1(B_{\rho}(\xi), \mathbb{R}^{n-m})$, so dass rang Df(x) = n m für alle $x \in B_{\rho}(\xi)$, und $f^{-1}(0) = B_{\rho}(\xi) \cap M$. Zeigen Sie, dass ein $y \in \mathbb{R}^{n-m}$ existiert, so dass

$$\nabla F(\xi) = \sum_{k=1}^{n-m} y_j \nabla f_j(\xi). \tag{3.1}$$

Die Zahlen $y_1, \ldots, y_{n-m} \in \mathbb{R}$ heißen Lagrange-Multiplikatoren.

Zusatzaufgabe 10.1 (Helmholtz-Gleichung)

3 Punkte

Sei $\lambda > 0$ und sei $f \in \mathcal{S}(\mathbb{R})$. Zeigen Sie, dass eine eindeutige Lösung $u \in \mathcal{S}(\mathbb{R})$ existiert, so dass

$$u''(x) - \lambda u(x) = f(x)$$
 für alle $x \in \mathbb{R}$. (4.1)

Hinweis: Nutzen Sie die Fouriertransformation.