

ADLR Final Presentation: Development of a reinforcement learning based controller for a VTOL drone.

Christopher Narr & Oliver Hausdörfer

Supervisor: Finn Süberkrüb

TUM / DLR Institute of Robotics and Mechatronics

Advanced Deep Learning for Robotics

23rd February 2023

c.narr@tum.de
oliver.hausdoerfer@tum.de

Agenda

Topic

Main results

Deep dives

Developing a RL-based velocity-tracking controller for VTOL (Vertical Take Off and Landing) drones

Our contributions: + Model time-dependencies

+ Use active wing flaps

+ Incorporate gusty conditions

Midterm status:

- Good tracking of simple trajectories
- Using FNN for actor network
- ToDo: model time dependencies

Midterm status

RL-Algorithm: PPO

State space (9D): rotation [x,y,z]

rotational velocity [x,y,z] linear velocity error [x,y,z]

Action space (4D): 2x thrusts, 2x active flaps

Reward: $r = 4.0 - 0.5 * || \boldsymbol{v_d} - \boldsymbol{v_t} ||_1 - 0.01 * || \boldsymbol{\omega_B} ||_1 - 0.01 * || \boldsymbol{a} ||_1$

stay alive

tracking

rotational

actuation

error velocity

Blue: target velocity | Yellow: actual velocity | Red: thrusts

Midterm status: Actor Network

FNN (Baseline)

Initial Idea: Use RNN in actor network for modelling time-dependency

But: RNN for RL not supported in Julia "ReinforcementLearning" Library GitHub Issue #144

Agenda

Topic

Main results

Deep dives

2. Main results

Performance of network architectures on test set of 100 envs

Network	Reward	Reward Tracking error (m/s)		# train- able params
FNN (Baseline)	2696	1.214	4	36.7k
Shared filters (classic				
1 Filter \rightarrow FNN	2664	1.231	2	36.7k
3 Filters → FNN	2531	1.586	4	41.1k
5 Filters → FNN	2691	1.158	3	46.1k
9 Filters → FNN	2714	1.138	2	55.5k
18 Filters → FNN	2820	0.899	1	76.6k

Result

State history significantly improves performance

2. Main results

Performance of network architectures on test set of 100 envs

Network	Reward	Tracking error (m/s)	# early term. envs	# train- able params
FNN (Baseline)	2696	1.214	4	36.7k
Shared filters (classic				
1 Filter \rightarrow FNN	2664	1.231	2	36.7k
3 Filters \rightarrow FNN	2531	1.586	4	41.1k
5 Filters \rightarrow FNN	2691	1.158	3	46.1k
9 Filters → FNN	2714	1.138	2	55.5k
18 Filters → FNN	2820	0.899	1	76.6k
State dependent filters				
2*9 Filters → FNN	2924	0.62	0	39.1k
4*9 Filters → FNN	2951	0.56	0	45.1k

Result

State history significantly improves performance

Agenda

Topic

Main results

Deep dives

Modelling time dependencies: Shared filters (classical CNN)
Implementation

Network	Reward	Tracking error (m/s)	# early term. envs	# train- able params	
FNN (Baseline)	2696	1.214	4	36.7k	
Shared filters (classical CNN)					
1 Filter → FNN	2664	1.231	2	36.7k	
3 Filters → FNN	2531	1.586	4	41.1k	
5 Filters → FNN	2691	1.158	3	46.1k	
9 Filters → FNN	2714	1.138	2	55.5k	
18 Filters → FNN	2820	0.899	1	76.6k	

Modelling time dependencies: Shared filters (classical CNN) Analyzing filter length

Network	Reward	Tracking error (m/s)	# early term. envs	# train- able params
FNN (Baseline)	2696	1.214	4	36.7k
Shared filters (classical CNN)				
1 Filter \rightarrow FNN	2664	1.231	2	36.7k
3 Filters \rightarrow FNN	2531	1.586	4	41.1k
5 Filters \rightarrow FNN	2691	1.158	3	46.1k
9 Filters → FNN	2714	1.138	2	55.5k
18 Filters → FNN	2820	0.899	1	76.6k

Activation of weights of trained CNN filter with length 100 (=2.5s)

Reward: 2415 | Tracking Error: 1.7m/s

Result

Only short-term dependencies relevant

Modelling time dependencies: Shared filters (classical CNN)

Analyzing filter number

Low filter number reduces performance

Result: Increase filter number

Network	Reward	Tracking error (m/s)	# early term. envs	# train- able params	
FNN (Baseline)	2696	1.214	4	36.7k	
Shared filters (classical CNN)					
1 Filter → FNN	2664	1.231	2	36.7k	
3 Filters → FNN	2531	1.586	4	41.1k	
5 Filters → FNN	2691	1.158	3	46.1k	
9 Filters → FNN	2714	1.138	2	55.5k	
18 Filters → FNN	2820	0.899	1	76.6k	

Modelling time dependencies: Shared filters (classical CNN)

Analyzing filter activation (Take with grain of salt!)

Example feature: rotational velocity around z

CNN weight for filter 7

Modelling time dependencies: Shared filters (classical CNN)

Analyzing filter activation (Take with grain of salt!)

Example feature: rotational velocity around z

CNN weight for filter 7

Results

Filters are selected
Filters might be state dependent
Filters are 'meaningful'

Modelling time dependencies: State dependent filters Implementation

State dependent filters							
2*9 Filters → FNN	2924	0.62	0	39.1k			
4*9 Filters → FNN	2951	0.56	0	45.1k			

Modelling time dependencies: State dependent filters

Network	Reward	Reward Tracking error (m/s)		# train- able params			
FNN (Baseline)	2696	1.214	4	36.7k			
Shared filters (classical CNN)							
1 Filter \rightarrow FNN	2664	1.231	2	36.7k			
3 Filters \rightarrow FNN	2531	1.586	4	41.1k			
5 Filters → FNN	2691	1.158	3	46.1k			
9 Filters \rightarrow FNN	2714	1.138	2	55.5k			
18 Filters → FNN	2820	0.899	1	76.6k			
State dependent filters							
2*9 Filters → FNN	2924	0.62	0	39.1k			
4*9 Filters → FNN	2951	0.56	0	45.1k			

Results

Better performance Less parameters

Modelling time dependencies: State dependent filters

Network	Reward	Tracking error (m/s)	# early term. envs	# train- able params	Total energy consumption on test trajectories:
FNN (Baseline)	2696	1.214	4	36.7k	}→ 1.965
Shared filters (classic	al CNN)				
1 Filter \rightarrow FNN	2664	1.231	2	36.7k	
3 Filters → FNN	2531	1.586	4	41.1k	
5 Filters → FNN	2691	1.158	3	46.1k	
9 Filters → FNN	2714	1.138	2	55.5k	
18 Filters → FNN	2820	0.899	1	76.6k	} → 1.767
State dependent filter.	S				
2*9 Filters → FNN	2924	0.62	0	39.1k	
4*9 Filters → FNN	2951	0.56	0	45.1k	} → 1.701

Less energy consumption indicate more stable flights

Results

Better performance Less parameters More stable flights

One example trajectory

Reward: 2897

Tracking error: 0.68 m/s

Bonus

Drone to fixed-wing mode

Current velocity as input didn't improve performance

Green: target velocity | Yellow: actual velocity | Red: thrusts

Bonus

Other results

- Wind speed as input didn't improve performance
 - Maybe used too low wind speeds (5m/s max)
- Two step training is a double edge sword
 - Updated reward function (less stay alive reward)

Network	Reward	Tracking error (m/s)	# early terminated envs
18 filters → FNN (Baseline)	2820	0.899	1
Add wind speed [x,y,z] as input	2816	0.879	2
Two-step training	-	0.667	13

Summary & Outlook

- Why has no one done this?
- CNN might be better than RNN for our case
- Good bias improves performance

- State-history control?
- Benchmarks for comparison?

Network	Reward	Tracking error (m/s)	# early term. envs	# train- able params	
FNN (Baseline)	2696	1.214	4	36.7k	
Shared filters (classic	al CNN)				
1 Filter \rightarrow FNN	2664	1.231	2	36.7k	
3 Filters \rightarrow FNN	2531	1.586	4	41.1k	
5 Filters \rightarrow FNN	2691	1.158	3	46.1k	
9 Filters \rightarrow FNN	2714	1.138	2	55.5k	
18 Filters \rightarrow FNN	2820	0.899	1	76.6k	
State dependent filters	S				
2*9 Filters → FNN	2924	0.62	0	39.1k	
4*9 Filters → FNN	2951	0.56	0	45.1k	

ADLR Final Presentation: Development of a reinforcement learning based controller for a VTOL drone.

Christopher Narr & Oliver Hausdörfer

Supervisor: Finn Süberkrüb

TUM / DLR Institute of Robotics and Mechatronics

Advanced Deep Learning for Robotics

23rd February 2023

Thank you!

Q&A

