Non-Negative Matrix Factorization

We have the following ratings on 5 movies by 4 users:

user	Titanic	Tiffany	Terminator	Star Trek	Star Wars	
Ada	5	4	1	1	-	
Bob	3	2	1	-	1	
Steve	-	-	-	-	5	
Margaret	1	1	5	4	4	

We will decompose the matrix manually to get a grip on how NMF works.

Step 1: Create a movie-genre matrix

First, divide the movies into two genres. Assign positive coefficients to each movie. Use numbers from 0-3:

	Titanic	Tiffany	Terminator	Star Trek	Star Wars
genre 1	1	0	3	2	2
genre 2	3	2	0	1	3

Step 2: Create a user-genre matrix

Next, assign the users' preference for genres. Assign positive coefficients to each user. Use numbers from 0-2:

	Ada	Bob	Steve	Margaret
genre 1	0	0	2	2
genre 2	2	1	1	1

Hint: Use your intuition! Don't try to come up with a super-accurate assignment of the numbers.

Step 3: Recompose the matrix

Now calculate the dot product of the two matrices.

Example:

Titanic belongs to genre 1 with strength 2.0 and to genre 2 with 0.5

Ada likes genre 1 with strength 2.0 and genre 2 with 1.0

The recomposed value for Titanic/Ada is:

$$2.0 * 2.0 + 0.5 * 1.0 = 4.5$$

Fill the matrix below. It contains the original numbers for comparison.

Step 1: Create a movie-genre matrix

First, divide the movies into two genres. Assign positive coeff Use numbers from 0-3:

	Titanic	Tiffany	Terminator	
genre 1	1	0	3	
genre 2	3	2	0	

Step 2: Create a user-genre matrix

Next, assign the users' preference for genres. Assign positive Use numbers from 0-2:

	Ada	Bob	Steve		
genre 1	0	0	2		
genre 2	2	1	1		

Hint: Use your intuition! Don't try to come up with a super-a

user	ser Titanic		Tiffany		Terminator		Star Trek		Star Wars			
Ada	6	5		4	4		0	1	2	1		
Bob	3	3	2		2	0		1	1		3	1
Steve	5		2			6			5		7	5
Margaret	5	1	2		1	6		5	5	4	7	4

See how close you get to the original numbers.

Step 4: Reflection

- What movie recommendations could you generate for Steve?
- How could you make the reconstructed matrix more similar to the original?
- Would it help to have more genres?
- Are the genres created by the procedure really genres? What other properties of movies or users could thes *hidden features* represent?
- Would the method suffer if some of your users are "grumpy"?
 (i.e. they always give lower ratings)
- Would the method suffer if the data is very sparse? (e.g. each user gives only 1-2 reviews)