Symbolic Music Similarity Presentation

Ali Bektas Paul Kröger

February 10, 2020

Überblick

- 1. Grundlegendes
- 2. Die Techniken
- 2.1 MIREX 2014
- 2.2 Urbano MelodyShape
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 Mirex Results
- 4. Bibliographie

Darstellung von Noten

- Melodie: "singbare, in sich geschlossene Folge von Tönen" [1]
- Harmonie: "wohltönender Zusammenklang mehrerer Töne oder Akkorde" [2]
- Schlüssel: "dient in der Musiknotation dazu, im Notensystem festzulegen, welche Tonhöhe die fünf Notenlinien repräsentieren." [3]

Figure: Source: [3]

-Darstellung von Noten

Darstellung von Noten

Melodie: "singbare, in sich geschlossene Folge von Tönen" [1]

Harmonie : "wohltönender Zusammenklang mehrerer Töne oder Akkorde" [2]

é, Buéifing Figure: Source: [3]

Schlüssel: "dient in der Musiknotation dazu, im Notensystem festzulegen, welche Tonhöhe die fünf Notenlinien repräsentieren." [3]

- 1. Das bedeutet für uns immer ein Ton zu einer bestimmten Zeit.
- 2. In sich geschlossene Folge von Tönen hängt mit Harmonie zusammen.

Darstellung von Noten

"Representing music as a weighted point set in a two-dimensional space has a tradition of many centuries. Since approximately the 10th century, one popular way of writing music has been to use a set of notes (points) in a two-dimensional space, with time and pitch as coordinates." [6]

—Darstellung von Noten

Darstellung von Noten

"Representing music as a weighted point set in a two-dimensional space has a tradition of many centuries. Since approximately the 10th century, one popular way of writing music has been to use a set of notes (points) in a two-dimensional space, with time and pitch as coordinates." [6]

1. In diesem Kontext kann "Gewicht" vieles sein: Die Position einer Note im Takt , die Länge einer Note im Takt , usw.

Darstellung von Noten

- Rhytmus
- Tonlage
- und vieles mehr

Figure: Source: IMLSP Archive

Symbolic Music Similarity Grundlegendes

—Darstellung von Noten

1. Notendarstellung heißt nicht nur , zu welcher Zeit ein Ton gespielt wird , sondern auch , Informationen über , Gefühl beim Spielen , vortragsbetreffliche Elemente zu übermitteln.

Ein graph<u>basierter Ansatz</u>

- Inhalt schrittweise vereinfacht.
- Gewichte der einzelnen Noten von Bedeutung.
 - unterliegende harmonische Funktion
 - metrische Position
 - Differenz der Tonlagen zwischen dem Ton und dem Grundton

^{1&}quot;A Measure of Melodic Similarity Based on a Graph Representation of the Music Structure" [7] von Nicola Orio und Antonio Rodá.

 $ldsymbol{oxdot}$ Ein graphbasierter Ansatz

1. Die Modelle die sich mit der Wahrnehmung von Musik beschäftigt , geht davon aus dass wir Melodien nicht so speichern, wie sie sind sondern vereinfachen wir sie , behalten nur Merkmale.

Figure: Funktionen der Noten im Tonleiter[9]

—Ein graphbasierter Ansatz

1. Tonic harmonisch relevanter als Dominant und Dominant als Sub-Dominant usw.

- Inhalt schrittweise vereinfacht.
- **Gewichte** der einzelnen Noten von Bedeutung.
 - unterliegende harmonische Funktion (harmonic weight)
 - metrische Position (metric weight)
 - Differenz der Tonlagen zwischen dem Ton und dem Grundton(melodic weight)

—Ein graphbasierter Ansatz

- Inhalt schrittweise vereinfacht.
 Gewichte der einzelnen Noten von Bedeutung,
- unterliegende harmonische Funktion (harmonic weight)
 metrische Position (metric weight)
- Differenz der Tonlagen zwischen dem Ton und dem Grundton(melodic weight)

- Jeder Takt wird in jedem Schritt dadurch vereinfacht , dass einige Noten eliminiert sind , und die Bleibenden um die Länge der Eliminierten erweitert werden.
- 2. Diese Methode heißt Pseudo-Structural Representation (PSR)

Figure: Ablauf des gesamten Verfahren [7]

Symbolic Music Similarity Die Techniken

- 1. Zuerst wird eine harmonische Analyse durchgeführt. Diese hat die Aufgabe, die Beziehung zwischen Noten zu erkennen.
- 2. Die Funktionen der Noten in einem Tonleiter sind nicht immer genau zu bestimmen. Manchmal ist es nicht klar in welchem Kontext zwei Noten zueinander im Verhältnis stehen.
- In diesem Paper haben die Autoren deshalb die harmonische Eigenschaften manuell erstellt , was keine positive Eigenschaft ist.
- Im zweiten Schritt kommt Vereinfachung hinzu. Der Anfangsmelodie werden die erwähnten Gewichte zugeschrieben.
- Nach der Analyse erfolgt die Vereinfachung und dann geht der Algorithmus iterativ weiter , bis nur jeweils eine oder zwei Note in jedem Takt steht.

Symbolic Music Similarity

Die Techniken

—Ein graphbasierter Ansatz

1. Dies stellt eine Metrik dar: Es ist positiv-definiert , symmetrisch und die Dreieicksungleichung gilt offenbar.

$$s(c_i, q) = \left(1 + \frac{d(c_i, q)}{\sum_{j=1}^{N} \frac{d(c_i, c_j)}{N-1}}\right)^{-1}$$

 $ldsymbol{oxedsymbol{oxedsymbol{oxedsymbol{\mathsf{L}}}}}{\mathsf{Ein}}$ graphbasierter Ansatz

- 1. $d(c_i, c_j)$: Wir gucken , was die Distanzen zwischen Segmenten von den beiden Dokumenten sind.
- Nehmen dann den Median und der Medianwert bildet dann die Distanz. Dieser Wert wird dann normalisiert, indem er durch die durchschnittliche Distanz des Dokuments c_i zu allen anderen Dokumenten in der Sammlung geteilt wird. Die Werte zur Normalisierung können im Voraus berechnet werden.

Evaluierung

- RISM-Sammlung
- Basiswissen von Experten als Maßstab

LBDM

- Local Boundary Detection Model
- Change Rule (CR): Je größer die Differenz, desto wahrscheinlicher wird die Nichtzusammengehörigkeit.
- Proximity Rule (PR): Change Rule angewandt auf Intervalle.

Ähnliche Anwendung der Gestaltstheorie

- Implication/Realization Model.
- Dies besagt , dass man nach seinen Erfahrungen (sowohl kulturellen , als auch angeborenen) Erwartungen hat , wie ein Musikstück weitergeht.
- Wir beschäftigen uns hier mit den angeborenen Aspekten.

^{1&}quot;Melody Retrieval using the Implication/Realization Model" [?] Maarten Grachten, Josep Lluis Arcos and Ramon Lopez de Mantaras

Ähnliche Anwendungen der Gestaltstheorie

- I/R Modell besagt: Wir sind dazu geneigt, Elemente nach Konzepten zu gruppieren. Diese Konzepten sind denen der Gestalttheorie ähnlich
 - Proximity : Werden zwei Elemente gleich wahrgenommen?
 - Similarity : Haben zwei Elemente Ähnlichkeiten?
- PRD : kleines Intervall in eine Richtung impliziert noch ein Intervall in dieselbe Richtung
- PID : kleines Intervall impliziert ein kleines Intervall.
- Nach diesen Prinzipien ist ein Alphabet von Strukturen definiert.
- Mithilfe von Edit Distance wird die Ähnlichkeit festgestellt.

Evaluierung

# symbols	ADR	AP	R-P
3	0.65	0.60	0.54
5	0.66	0.60	0.52
7	0.65	0.59	0.51
no quantization	0.67	0.64	0.56

segmentation	ADR	AP	R-P
manual	0.67	0.64	0.56
gestalt	0.69	0.64	0.55
probabilistic	0.67	0.61	0.53
LBDM	0.61	0.53	0.50

Diskussion

- Sublineares Wachstum des Baumes
- Manuelle Annotierung der Akkorde

Ein mathematischer Ansatz

"Algorithms for Computing Geometric Measures of Melodic Similarity" [8] von Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio Mesa, Yurai Nunez, David Rappaport, and Godfried Toussaint

Ein mathematischer Ansatz

- Melodien werden als Polygonalketten dargestellt
- Tonlänge wird durch Länge der waagerechten Kanten modelliert
- Intervalle werden durch Länge der senkrechten Kanten modelliert

Figure: Source: [8]

Ein mathematischer Ansatz

Figure: Source: [8]

Symbolic Music Similarity Die Techniken

Ein mathematischer Ansatz

- 1. Similarity durch Fläche zwischen Polygonalketten
- 2. Zyklische Melodien betrachtet
- 3. Optimale z-position wird ermittelt über z-events
- 4. Gewichtsmedian in sortiertem array ausgewählt
- 5. Laufzeit O(n)
- 6. Kritik, wie werden Pausen behandelt.
- 7. Was wenn 2 Melodien nicht gleichlang
- 8. Keine Evaluierung, nur Laufzeit

Inhaltsübersicht

- 1. Grundlegendes
- 2. Die Techniken
- 2.1 MIREX 2014
- 2.2 Urbano MelodyShape
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 Mirex Results
- 4. Bibliographie

Ähnlichkeitssuche durch Pattern Mining

- Nur Note-On Events
- Dauer einer Note spielt keine Rolle.
- Grundton spielt keine Rolle. Es werden die Differenzen zwischen Tonlagen in Betracht gezogen.
- Jede Melodie wird durch primitive 'Items' dargestellt.

¹"MIREX 2014 Symbolic Melodic Similarity: Extracting Similar Melodies Based on Top-N Colossal Pattern Mining" [14] von Shiho Sugimoto, Yuto Nakashima, Masayuki Takeda.

Symbolic Music Similarity

Die Techniken

MIREX 2014

Ähnlichkeitssuche durch Pattern Mining

1. Obwohl es nachgewiesen ist , dass die Tonlage wichtigsten Aspekt der Wahrnehmung der Musik bildet , ist es immer noch keine gute Idee die restlichen Aspekte komplett zu vernachlässigen.

Ähnlichkeitssuche durch Pattern Mining

- Einer Melodie werden alle N-Gramme entnommen.
- $TDB_M = \{(ID(x), trans(x)) | x \in M\}$
- \blacksquare $TDB_M[Q]$
- $lacksquare X = \{X_1, \dots, X_m\}$ die Menge der Matches in der Datenbank , also $X_i \subset Q$
- Hole $M(X_i)\{x|x \in M \land X_i \subset trans(x)\}$

Ähnlichkeitssuche durch Pattern Mining

- Einer Melodie werden alle N-Gramme entnomme ■ $TDB_M = \{(ID(x), trans(x))|x \in M\}$
- $TDB_M[Q]$ ■ $X = \{X_1, ..., X_m\}$ die Mense der Matches in der Datenbank
- Hole $M(X_i)\{x|x \in M \land X_i \subset trans(x)\}$

also $X_i \subset Q$

- 1. Die entnommenen bezeichnen wir als Transaktionen und dann erstellen wir durch diese Transaktionen eine Datenbank
- 2. Wir extrahieren eine Menge von Items Q aus der Anfrage und dann suchen nach diesen Items in der Datenbank
- 3. Die Menge der geholten Melodien aus der Datenbank sind nun die Kandidaten , aus denen wir eine kleiner Menge wählen

$$sim(q,x)=rac{1}{|Q\cap trans(x)|}\sum_{f\in Q\cap trans(x)}weight(f)$$
 wobei für $f=(d_1,\ldots,d_l)$ $weight(f)=\sum_{i=1}^l |d_i|$

1. / bezeichnet die Länge der Sequenz der Differenzen der Tonlagen

Diskussion

- Kann man rhytmische Werte vernachlässigen ?
- Was ist das richtige n für das N-Gramm?

Inhaltsübersicht

- 1. Grundlegendes
- 2. Die Techniken
- 2.1 MIREX 2014
- 2.2 Urbano MelodyShape
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 Mirex Results
- 4. Bibliographie

Urbano MelodyShap

"MelodyShape at MIREX 2014 Symbolic Melodic Similarity" [10] von Julian Urbano

Urbano MelodyShape

- Töne werden als Punkt auf Pitch-Time plane dargestellt.
- Darstellung als Funktion durch Interpolation mithile von Splines.

Figure: Source: [10]

Needlemann - Wunsch Algorithmus

$$D = \begin{pmatrix} & - & A & G & T & C \\ - & 0 & -1 & -2 & -3 & -4 \\ A & -1 & 0 & 0 & 0 & 0 \\ C & -2 & 0 & 0 & 0 & 0 \\ G & -3 & 0 & 0 & 0 & 0 \\ T & -4 & 0 & 0 & 0 & 0 \\ C & -5 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & -1 & -2 & -3 & -4 \\ -1 & 1 & 0 & -1 & -2 \\ -2 & 0 & 0 & -1 & 0 \\ -3 & -1 & 1 & 0 & -1 \\ -4 & -2 & 0 & 2 & 1 \\ -5 & -3 & -1 & 1 & 3 \end{pmatrix}$$

(- A G T C)
4 -1 0 0 0 0
$D = \begin{array}{ccccccccccccccccccccccccccccccccccc$
G -3 0 0 0 0
$D = \begin{pmatrix} - & 0 & -1 & -2 & -3 & -4 \\ A & -1 & 0 & 0 & 0 & 0 \\ C & -2 & 0 & 0 & 0 & 0 \\ G & -3 & 0 & 0 & 0 & 0 \\ T & -4 & 0 & 0 & 0 & 0 \\ C & -5 & 0 & 0 & 0 & 0 \end{pmatrix}$
(0 -1 -2 -3 -4)
$D = \begin{pmatrix} 0 & -1 & -2 & -3 & -4 \\ -1 & 1 & 0 & -1 & -2 \\ -2 & 0 & 0 & -1 & 0 \\ -3 & -1 & 1 & 0 & -1 \\ -4 & -2 & 0 & 2 & 1 \\ -5 & -3 & -1 & 1 & 3 \end{pmatrix}$
$D = \begin{bmatrix} -2 & 0 & 0 & -1 & 0 \\ & & & & & \end{bmatrix}$

1. Hier match + 1, sonst -1, deletion,insertion auch -1

ShapeH

- Insertion: s(-,n) = -(1-f(n))
- Deletion: s(n, -) = -(1 f(n))
- Match: s(n, n) = 1 f(n)

Figure: Source: [10]

- 1. Hybrid Alignment Aproach, heißt lokales maximum wird genommen nicht globales.
- 2. Lokales maximum dann similarity score
- 3. Bei mismatch folgende Malusregeln :
- 4. 1. Ableitung betrachtet, vorzeichen der beiden Melodien am Anfang und Ende identisch kaum malus
- 5. Anfang oder Ende unterschiedlich, anderes gleich größere Malus
- 6. Beides unterschiedlich größter Malus

Time

- Insertion : $s(-, n) = -diff_p(n, \Theta(n)) \lambda k_t * diff_t(n, \Theta(n))$
- Deletion: $s(n, -) = -diff_p(n, \Theta(n)) \lambda k_t * diff_t(n, \Theta(n))$
- Match: $2\mu_p + 2\lambda k_t \mu_t = 2\mu_p (1 + k_t)$
- Substitution: $s(n, m) = -diff_p(n, m) \lambda k_t * diff_t(n, m)$

Figure: Source: [10]

- 1. The constants μ pand μ tarethe mean scores returned by the diffpand difftfunctions over a random sample of 100,000 pairs of spline spans drawn from the Essen Collection (μ p= 2.1838 and μ t= 0.4772)
- 2. k t = 0.5 is a constant that weights the time dissimilarity with respect to the pitch dissimilar- ity; and $\lambda = \mu$ p $/\mu$ t is a constant that normalizes time dissimilarity scores with respect to the pitch dissimilarity scores.

MIREX

- Ein Wettbewerb und Plattform für Interessierte
- Verschiedene Kategorien
 - Real-time Audio to Score Alignment (a.k.a Score Following)
 - Discovery of Repeated Themes and Sections
 - Audio Melody Extraction
 - Symbolic Melodic Similarity
 - **...**
- Welche Messmethoden gibt es, um den Erfolgt eines Algorithmus festzustellen?

MIREX

SCORE	JU1	JU2	JU3	Y01
ADR	0.7089	0.7962	0.7997	0.6912
NRGB	0.6786	0.7493	0.7602	0.6378
AP	0.7344	0.7534	0.7992	0.5535
PND	0.7361	0.7444	0.7611	0.5611
Fine	53.7767	54.5967	51.1933	36.9633
PSum	1.1167	1.13	1.1267	0.69
WCSum	1.5033	1.5133	1.5433	0.93667
SDSum	1.89	1.8967	1.96	1.1833
Greater0	0.73	0.74667	0.71	0.44333
Greater1	0.38667	0.38333	0.41667	0.24667

Figure: Source: [5]

Inhaltsübersicht

- 1. Grundlegendes
- 2. Die Techniken
- 2.1 MIREX 2014
- 2.2 Urbano MelodyShape
- 3. MIREX : Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 Mirex Results
- 4. Bibliographie

Ground Truth

- Experten werden befragt, Stücke aus der RISM A/II Sammlung nach deren Ähnlichkeiten zu einer Anfrage zu beurteilen.
- Die Sammlungen sind groß deswegen sind einige Techniken zur Eliminierung unrelevanter Elementen vorzunehmen , wie z.B
 - Nach der Differenz zwischen dem tiefsten und höchsten Ton.
 - Nach dem Verhältnis der kürzesten Note zu der längsten.
 - usw.
- Nicht für alle Stücke werden dieselben Elimierungsverfahren vorgenommen. Die Aspekte, durch die sich ein Stück auszeichnet sind beizubehalten. Das ist wiederum für die Experten zu entscheiden.

Ground Truth I

Figure: Abbildung: Ergebnisse der Befragung [6]

Ground Truth II

Ground Truth III

MIREX

SCORE	JU1	JU2	JU3	Y01
ADR	0.7089	0.7962	0.7997	0.6912
NRGB	0.6786	0.7493	0.7602	0.6378
AP	0.7344	0.7534	0.7992	0.5535
PND	0.7361	0.7444	0.7611	0.5611
Fine	53.7767	54.5967	51.1933	36.9633
PSum	1.1167	1.13	1.1267	0.69
WCSum	1.5033	1.5133	1.5433	0.93667
SDSum	1.89	1.8967	1.96	1.1833
Greater0	0.73	0.74667	0.71	0.44333
Greater1	0.38667	0.38333	0.41667	0.24667

Figure: Source: [5]

MIREX : Algorithmen treten gegeneinander an

LAverage Dynamic Recall

Inhaltsübersicht

- 1. Grundlegendes
- 2. Die Techniken
- 2.1 MIREX 2014
- 2.2 Urbano MelodyShape
- 3. MIREX : Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 Mirex Results
- 4. Bibliographie

Average Dynamic Recall

Beispiel: Average Dynamic Recall - ADR

Betrachte die Gruppierungen $\langle (1,2), (3,4,5) \rangle$ und die Ergebnisse (2,3,1,5,7,8,9,4)

Pos.	encountered	relevant	#found	recall
1	2	1, 2	1	1
2	2, 3	1, 2	1	0.5
3	2, 3, 1	1, 2, 3, 4, 5	3	1
4	2, 3, 1, 5	1, 2, 3, 4, 5	4	1
5	2, 3, 1, 5, 7	1, 2, 3, 4, 5	4	8.0

Figure: Abbildung: ADR Berechnung [6]

MIREX : Algorithmen treten gegeneinander an

└ Mirex Results

Inhaltsübersicht

- 1. Grundlegendes
- 2. Die Techniken
- 2.1 MIREX 2014
- 2.2 Urbano MelodyShape
- 3. MIREX : Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 Mirex Results
- 4. Bibliographie

Mirex Results

Urbano's Results

	ShapeH	ShapeL	ShapeG	ShapeTime	Time
ADR	0.609(3)	0.483 (5)	0.542 (4)	0.671(1)	0.657(2)
NRGB	0.534(3)	0.428 (5)	0.471(4)	0.579(1)	0.567(2)
AP	0.532(2)	0.273 (5)	0.418(4)	0.541(1)	0.487(3)
PND	0.524(1)	0.327 (5)	0.446(4)	0.516(2)	0.487(3)
Fine	0.629(2)	0.496 (5)	0.546 (4)	0.635(1)	0.626(3)
PSum	0.680(2)	0.467(5)	0.582(4)	0.685(1)	0.663(3)
WCSum	0.629(2)	0.391(5)	0.532(4)	0.636(1)	0.609(3)
SDSum	0.603(2)	0.353(5)	0.508(4)	0.611(1)	0.582(3)
Greater0	0.833*(1)	0.693 (5)	0.730(4)	0.833*(1)	0.827(3)
Greater1	0.527(2)	0.240(5)	0.433(4)	0.537(1)	0.500(3)
Median rank	2	5	4	1	3

	ShapeH		ShapeTime		Time	
ADR	0.734	(3)	0.794	(2)	0.798	(1)
NRGB	0.697	(3)	0.756	(1)	0.744	(2)
AP	0.690	(3)	0.708	(1)	0.694	(2)
PND	0.719	(1)	0.706	(2)	0.688	(3)
Fine	0.656	(1)	0.655	(2)	0.645	(3)
PSum	0.722	(1)	0.718	(2)	0.715	(3)
WCSum	0.673	(2)	0.676	(1)	0.668	(3)
SDSum	0.649	(2)	0.654	(1)	0.644	(3)
Greater0	0.867	(1)	0.847	(3)	0.857	(2)
Greater1	0.577	(2)	0.590	(1)	0.573	(3)
Median rank	2		1.5		3	

	ShapeH		ShapeTime		Time	
NRGB	0.679	(3)	0.749	(2)	0.760	(1)
AP	0.734	(3)	0.753	(2)	0.799	(1)
PND	0.736	(3)	0.744	(2)	0.761	(1)
Fine	0.538	(2)	0.546	(1)	0.512	(3)
PSum	0.558	(3)	0.565	(1)	0.563	(2)
WCSum	0.501	(3)	0.504	(2)	0.514	(1)
SDSum	0.473	(3)	0.474	(2)	0.490	(1)
Greater0	0.730	(2)	0.747	(1)	0.710	(3)
Greater1	0.387	(2)	0.383	(3)	0.417	(1)
Median rank	3		2		1	

Bibliographie I

- [1] Duden: Melodie: Rechtschreibung, Bedeutung, Definition, Herkunft https://www.duden.de/rechtschreibung/Melodie.
- [2] Duden: Harmonie: Rechtschreibung, Bedeutung, Definition, Herkunft https://www.duden.de/rechtschreibung/Harmonie.
- [3] "Notenschlüssel." Wikipedia, Wikimedia Foundation, 11 Dec. 2019, de.wikipedia.org/wiki/Notenschlüssel.
- [4] MIREX,Symbolic Melodic Similarity 2005,https://www.musicir.org/mirex/wiki/2005:Symbolic_Melodic.
- [5] MIREX,Symbolic Melodic Similarity Results 2014, https://www.musicir.org/mirex/wiki/2014:Symbolic_Melodic_Similarity_Results.

Bibliographie II

- [6] Typke, Rainer. (2007). Music Retrieval based on Melodic Similarity.
- [7] Orio, N., and A. Rodá. 2009. "A Measure of Melodic Similarity Based on a Graph Representation of the Music Structure." In Proceedings of the International Conference for Music Information Retrieval, pp. 543–548.
- [8] Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio Mesa, Yurai Nunez, David Rappaport, and Godfried Toussaint, "Algorithms for Computing Geometric Measures of Melodic Similarity" Computer Music Journal, Vol.30, No. 3 (Autumn, 2006), pp. 67-76

Bibliographie III

- [9] Tonal Degrees [Online]. [Accessed 30 Jan 2020]. Available from: http://www.piano-play-it.com/musical-scales.html
- [10] J. Urbano. MelodyShape at MIREX 2014 Symbolic Melodic Similarity. Technical report, Music Information Retrieval Evaluation eXchange, 2014
- [11] J. Urbano, MIREX 2013 Symbolic Melodic Similarity A Geometric Model supported with Hybrid Sequence Alignment, Music Information Retrieval Evaluation eXchange, 2013
- [12] J.Urbano, J. Llorens, J. Morato and S. Sanchez-Cuadrado, MIREX 2012 Symbolic Melodic Similarity, Music Information Retrieval Evaluation eXchange, 2012 Hybrid Sequence Alignment with Geometric Representations

Bibliographie IV

- [13] Wikipedia, Needlemann-Wunsch-Algorithmus, https://de.wikipedia.org/wiki/Needleman-Wunsch-Algorithmus, abgerufen am 02.02.20
- [14] Okubo Yoshiaki , Haraguchi Makoyo , "MIREX 2014 Symbolic Melodic Similarity : Extracting Similar Melodies Based on Top-N Colossal Pattern Mining". Technical report, Music Information Retrieval Evaluation eXchange, 2014