CS365 Homework #1

Joshua Gleason

August 30, 2010

Page 16

- 8. (a) If you have the flu, then you miss the final examination.
 - (b) You do not have the flu if and only if you pass the course.
 - (c) If you miss the final examination, then you will not pass the course.
 - (d) You have the flu, or you miss the examination, or you pass the course.
 - (e) If you have the flu then you will not pass the course, or if you miss the final examination then you will not pass the course.
 - (f) You have the flu and you miss the final examination, or you do not miss the final examination and you pass the course.
- 10. (a) $r \wedge \neg q$
 - (b) $p \wedge q \wedge r$
 - (c) $r \to p$
 - (d) $p \wedge \neg q \wedge r$
 - (e) $r \leftrightarrow (p \lor q)$
- 34.

p	q	r	s	$((p \to q) \to r) \to s$
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

- 48. (a) $r \wedge \neg p$
 - (b) $(r \wedge p) \rightarrow q$
 - (c) $\neg r \rightarrow \neg q$
 - (d) $(\neg p \land r) \rightarrow q$

Page 28

14.

$$(\neg p \land (p \to q)) \to \neg q \quad \equiv \quad \neg(\neg p \land (p \to q)) \lor \neg q \qquad \text{(From Table 7)}$$

$$\equiv \quad \neg(\neg p \land (\neg p \lor q)) \lor \neg q \qquad \text{(From Table 7)}$$

$$\equiv \quad (\neg(\neg p) \lor \neg(p \lor q)) \lor \neg q \qquad \text{(De Morgan's law)}$$

$$\equiv \quad (p \lor \neg(p \lor q)) \lor \neg q \qquad \text{(Double negation law)}$$

$$\equiv \quad (p \lor (\neg p \land \neg q)) \lor \neg q \qquad \text{(De Morgan's law)}$$

Proposition can not be reduced further, therefore this is **not** a *tautology*, it is a *contingency*.

16. The propositions are true only when p and q are both positive, or both negative.

p	q	$p \leftrightarrow q$	$(p \wedge q) \vee (\neg p \wedge q \neg)$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	1	1

40.
$$p \wedge q \wedge \neg r$$