

CURVAS PARAMETRIZADAS

ALAN REYES-FIGUEROA GEOMETRÍA DIFERENCIAL

(AULA 02) 12.ENERO.2023

Definición

Una **curva parametrizada** α en \mathbb{R}^n es una aplicación diferenciable definida en un intervalo abierto $(a,b) \subseteq \mathbb{R}$, $\alpha : (a,b) \to \mathbb{R}^n$.

Definición

Una **curva parametrizada** α en \mathbb{R}^n es una aplicación diferenciable definida en un intervalo abierto $(a,b) \subseteq \mathbb{R}$, $\alpha : (a,b) \to \mathbb{R}^n$.

$$\alpha(t) = (x_1(t), x_2(t), \dots, x_n(t)) \in \mathbb{R}^n$$
, para $t \in (a, b)$.

Definición

Una **curva parametrizada** α en \mathbb{R}^n es una aplicación diferenciable definida en un intervalo abierto $(a,b) \subseteq \mathbb{R}$, $\alpha : (a,b) \to \mathbb{R}^n$.

$$\alpha(t) = (x_1(t), x_2(t), \dots, x_n(t)) \in \mathbb{R}^n$$
, para $t \in (a, b)$.

• La función α lleva el parámetro $t \in (a,b)$ en un punto $\alpha(t)$ de \mathbb{R}^n .

Definición

Una **curva parametrizada** α en \mathbb{R}^n es una aplicación diferenciable definida en un intervalo abierto $(a,b) \subseteq \mathbb{R}$, $\alpha : (a,b) \to \mathbb{R}^n$.

$$\alpha(t) = (x_1(t), x_2(t), \dots, x_n(t)) \in \mathbb{R}^n$$
, para $t \in (a, b)$.

- La función α lleva el parámetro $t \in (a,b)$ en un punto $\alpha(t)$ de \mathbb{R}^n .
- Cuando decimos que α es diferenciable, usualmente endenderemos estos como que α es clase C^{∞} (infinitamente diferenciable). **Obs!** En el libro de Do Carmo, diferenciable = C^{∞} . Cuidado!, en otros textos, diferenciable = C^{1} . Cuando sea conveniente, indicaremos explícitamente que α es de clase C^{k} .

Definición

Una **curva parametrizada** α en \mathbb{R}^n es una aplicación diferenciable definida en un intervalo abierto $(a,b) \subseteq \mathbb{R}$, $\alpha : (a,b) \to \mathbb{R}^n$.

$$\alpha(t) = (x_1(t), x_2(t), \dots, x_n(t)) \in \mathbb{R}^n$$
, para $t \in (a, b)$.

- La función α lleva el parámetro $t \in (a,b)$ en un punto $\alpha(t)$ de \mathbb{R}^n .
- Cuando decimos que α es diferenciable, usualmente endenderemos estos como que α es clase C^{∞} (infinitamente diferenciable). **Obs!** En el libro de Do Carmo, diferenciable = C^{∞} . Cuidado!, en otros textos, diferenciable = C^{1} . Cuando sea conveniente, indicaremos explícitamente que α es de clase C^{k} .
- Entenderemos intervalo abierto en el sentido amplio (incluimos los casos $a=-\infty$, $b=\infty$).

Sea $\alpha(t)$ una curva de clase C^1 en \mathbb{R}^n . La derivada

$$\alpha'(t) = (\mathbf{x}_1'(t), \mathbf{x}_2'(t), \dots, \mathbf{x}_n'(t)) \in \mathbb{R}^n$$

será llamada el **vector tangente** (o *vector velocidad*) de α en el punto t.

Si I = (a, b), la imagen $\alpha(I)$ se llama el **trazo** de la curva α .

Sea $\alpha(t)$ una curva de clase C^1 en \mathbb{R}^n . La derivada

$$\alpha'(t) = (\mathbf{x}_1'(t), \mathbf{x}_2'(t), \dots, \mathbf{x}_n'(t)) \in \mathbb{R}^n$$

será llamada el **vector tangente** (o *vector velocidad*) de α en el punto t.

Si I = (a, b), la imagen $\alpha(I)$ se llama el **trazo** de la curva α .

• No se debe confundir a la curva α con su trazo. Pueden existir diferentes curvas, todas con un mismo trazo o imagen.

Dados $a, b, c \in \mathbb{R}$, la curva parametrizada

$$\alpha(t) = (a \cos ct, a \sin ct, bt), \quad t \in \mathbb{R}$$

tiene por trazo una hélice de paso $2\pi b$ sobre el cilindro $x^2 + y^2 = a^2$ en \mathbb{R}^3 .

Dados $a,b,c\in\mathbb{R}$, la curva parametrizada

$$\alpha(t) = (a \cos ct, a \sin ct, bt), \quad t \in \mathbb{R}$$

tiene por trazo una hélice de paso $2\pi b$ sobre el cilindro $x^2 + y^2 = a^2$ en \mathbb{R}^3 .

 α es una curva parametrizada diferenciable (de clase C^{∞}). Su vector tangente está dado por

$$\alpha'(t) = (-ac \sin ct, ac \cos ct, b) \in \mathbb{R}^3.$$

La aplicación $\alpha(t)=(t^3,t^2)$, con $t\in\mathbb{R}$, s una curva parametrizada diferenciable (clase C^{∞}), Su trazo es una cúspide.

La aplicación $\alpha(t)=(t^3,t^2)$, con $t\in\mathbb{R}$, s una curva parametrizada diferenciable (clase C^{∞}), Su trazo es una cúspide.

Su derivada es $\alpha'(t) = (3t^2, 2t)$. Observe que en t = 0, $\alpha(0) = (0, 0)$ y su vector tangente es $\alpha'(0) = (0, 0)$.

La aplicación $\alpha(t)=(t^3,t^2)$, con $t\in\mathbb{R}$, s una curva parametrizada diferenciable (clase C^{∞}), Su trazo es una cúspide.

Su derivada es $\alpha'(t) = (3t^2, 2t)$. Observe que en t = 0, $\alpha(0) = (0, 0)$ y su vector tangente es $\alpha'(0) = (0, 0)$.

Cuando sea conveniente, identificaremos una curva α en \mathbb{R}^m a una curva en \mathbb{R}^{m+p} mediante una inclusión $\alpha(t) = (x_1(t), \dots, x_m(t)) \longrightarrow (x_1(t), \dots, x_m(t), 0, 0, \dots, 0)$.

La curva $\alpha: \mathbb{R} \to \mathbb{R}^2$ data por $\alpha(t) = (t, |t|)$, no es una curva diferenciable en t = 0. En este caso, α sólo es de clase C° .

La curva $\alpha: \mathbb{R} \to \mathbb{R}^2$ data por $\alpha(t) = (t, |t|)$, no es una curva diferenciable en t = 0. En este caso, α sólo es de clase C^0 .

Las curvas parametrizadas $\alpha:\mathbb{R}\to\mathbb{R}^2$ y $\beta:\mathbb{R}\to\mathbb{R}^2$ dadas por

$$\alpha(t) = (\cos t, \sin t)$$

$$\beta(t) = (\cos 2t, \sin 2t)$$

Las curvas parametrizadas $\alpha:\mathbb{R}\to\mathbb{R}^{\mathbf{2}}$ y $\beta:\mathbb{R}\to\mathbb{R}^{\mathbf{2}}$ dadas por

$$\alpha(t) = (\cos t, \sin t)$$

 $\beta(t) = (\cos 2t, \sin 2t)$

ambas poseen el mismo trazo (el círculo unitario S^1). Observe que el vector velocidad de la curva β es el doble del de la curva α .

Las curvas parametrizadas $\alpha:\mathbb{R}\to\mathbb{R}^2$ y $\beta:\mathbb{R}\to\mathbb{R}^2$ dadas por

$$\alpha(t) = (\cos t, \sin t)$$

 $\beta(t) = (\cos 2t, \sin 2t)$

ambas poseen el mismo trazo (el círculo unitario S^1). Observe que el vector velocidad de la curva β es el doble del de la curva α .

$$\alpha'(t) = (-\sin t, \cos t)$$
 $|\alpha'| = 1,$
 $\beta'(t) = (-2\sin 2t, 2\cos 2t)$ $|\beta'| = 2.$

Las curvas parametrizadas $\alpha:\mathbb{R}\to\mathbb{R}^2$ y $\beta:\mathbb{R}\to\mathbb{R}^2$ dadas por

$$\alpha(t) = (\cos t, \sin t)$$

 $\beta(t) = (\cos 2t, \sin 2t)$

ambas poseen el mismo trazo (el círculo unitario S^1). Observe que el vector velocidad de la curva β es el doble del de la curva α .

$$lpha'(t) = (-\sin t, \cos t)$$
 $|lpha'| = 1,$ $eta'(t) = (-2\sin 2t, 2\cos 2t)$ $|eta'| = 2.$

(la curva β recorre el círculo el doble de rápido que α).

Sea α una curva parametrizada de clase C^1 en \mathbb{R}^n . Si $\alpha'(t) \neq \mathbf{0}$ en un punto $\mathbf{p} = \alpha(t)$, entonces en el punto \mathbf{p} está bien definida una recta en la dirección de $\mathbf{v} = \alpha'(t)$.

Sea α una curva parametrizada de clase C^1 en \mathbb{R}^n . Si $\alpha'(t) \neq \mathbf{o}$ en un punto $\mathbf{p} = \alpha(t)$, entonces en el punto \mathbf{p} está bien definida una recta en la dirección de $\mathbf{v} = \alpha'(t)$.

Esta se llama la **recta tangente** a α en el punto **p**.

Sea α una curva parametrizada de clase C^1 en \mathbb{R}^n . Si $\alpha'(t) \neq \mathbf{o}$ en un punto $\mathbf{p} = \alpha(t)$, entonces en el punto \mathbf{p} está bien definida una recta en la dirección de $\mathbf{v} = \alpha'(t)$.

Esta se llama la **recta tangente** a α en el punto **p**.

Sea α una curva parametrizada de clase C^1 en \mathbb{R}^n . Si $\alpha'(t) \neq \mathbf{o}$ en un punto $\mathbf{p} = \alpha(t)$, entonces en el punto \mathbf{p} está bien definida una recta en la dirección de $\mathbf{v} = \alpha'(t)$.

Esta se llama la **recta tangente** a α en el punto **p**.

- Esta recta es esencial para el desarrollo de la geometría diferencial de curvas.
- Usualmente requeriremos que una curva α tenga recta tangente definida en todos sus puntos.

Definición

Sea $\alpha:(a,b)\to\mathbb{R}^n$ una curva parametrizada de clase C^1 . Si para algún $t\in(a,b)$ se tiene que $\alpha'(t)=\mathbf{0}$, entonces diremos que t es un **punto** singular de α .

Definición

Sea $\alpha:(a,b)\to\mathbb{R}^n$ una curva parametrizada de clase C^1 . Si para algún $t\in(a,b)$ se tiene que $\alpha'(t)=\mathbf{0}$, entonces diremos que t es un **punto** singular de α .

Un punto $t \in (a, b)$ donde $\alpha'(t) \neq \mathbf{0}$ se llama un **punto regular** de α .

Definición

Sea $\alpha:(a,b)\to\mathbb{R}^n$ una curva parametrizada de clase C¹. Si para algún $t\in(a,b)$ se tiene que $\alpha'(t)=\mathbf{0}$, entonces diremos que t es un **punto** singular de α .

Un punto $t \in (a, b)$ donde $\alpha'(t) \neq \mathbf{0}$ se llama un **punto regular** de α .

Definición

Una curva $\alpha:(a,b)\to\mathbb{R}^n$ de clase C^1 tal que $\alpha'(t)\neq \mathbf{0}$, para todo $t\in(a,b)$, se llama una **curva parametrizada regular**.

Definición

Sea $\alpha: (a,b) \to \mathbb{R}^n$ una curva parametrizada de clase C^1 . Si para algún $t \in (a,b)$ se tiene que $\alpha'(t) = \mathbf{0}$, entonces diremos que t es un **punto singular** de α . Un punto $t \in (a,b)$ donde $\alpha'(t) \neq \mathbf{0}$ se llama un **punto regular** de α .

Definición

Una curva $\alpha:(a,b)\to\mathbb{R}^n$ de clase C^1 tal que $\alpha'(t)\neq \mathbf{0}$, para todo $t\in(a,b)$, se llama una **curva parametrizada regular**.

Obs! De ahora en adelante nos limitamos a estudiar curvas regulares.

Definición

Sea $\alpha: I = (c_1, c_2) \to \mathbb{R}^n$ una curva regular de clase C^1 . La **longitud de arco** de α , a partir de punto $t_0 \in I$ es

$$\mathsf{s}(\mathsf{t}) = \int_{\mathsf{t_0}}^{\mathsf{t}} |lpha'(au)| \, d au.$$

¿Por qué se define así la longitud de arco?

Definición

Sea $\alpha: I = (c_1, c_2) \to \mathbb{R}^n$ una curva regular de clase C^1 . La **longitud de arco** de α , a partir de punto $t_0 \in I$ es

$$\mathsf{s}(\mathsf{t}) = \int_{\mathsf{t_0}}^{\mathsf{t}} |lpha'(au)| \, \mathsf{d} au.$$

¿Por qué se define así la longitud de arco?

Recordemos que si $[a,b] \subset I$ y $t_0 = a < t_1 < t_2 < \ldots < t_k = b$ es una partición del intervalo [a,b], podemos definir una poligonal $P = \{P_0, P_1, \ldots, P_k\}$, con $P_i = \alpha(t_i)$, $i = 0, 1, 2, \ldots, k$.

La longitud de esta poligonal es

$$\ell(\alpha, P) = \sum_{i=1}^{k} |P_i - P_{i-1}| = \sum_{i=1}^{k} |\alpha(t_i) - \alpha(t_{i-1})|.$$

La longitud de esta poligonal es

$$\ell(\alpha, P) = \sum_{i=1}^{k} |P_i - P_{i-1}| = \sum_{i=1}^{k} |\alpha(t_i) - \alpha(t_{i-1})|.$$

Por el Teorema del Valor Medio, como α es diferenciable (en todo punto), para cada $i=1,2,\ldots,k$, existen $\xi_i\in(t_{i-1},t_i)$ tales que

$$|\alpha(t_i) - \alpha(t_{i-1})| = |\alpha'(\xi_i) \cdot (t_i - t_{i-1})| = |\alpha'(\xi_i)| \Delta t_i.$$

La longitud de esta poligonal es

$$\ell(\alpha, P) = \sum_{i=1}^{k} |P_i - P_{i-1}| = \sum_{i=1}^{k} |\alpha(t_i) - \alpha(t_{i-1})|.$$

Por el Teorema del Valor Medio, como α es diferenciable (en todo punto), para cada $i=1,2,\ldots,k$, existen $\xi_i\in(t_{i-1},t_i)$ tales que

$$|\alpha(\mathbf{t}_i) - \alpha(\mathbf{t}_{i-1})| = |\alpha'(\xi_i) \cdot (\mathbf{t}_i - \mathbf{t}_{i-1})| = |\alpha'(\xi_i)| \Delta \mathbf{t}_i.$$

Luego $\ell(\alpha,P)=\sum_{i=1}^{R}|\alpha'(\xi_i)|\,\Delta t_i$, y tomando el límite en la norma de la partición. obtenemos

$$s = \lim_{\Delta P o 0} \ell(\alpha, P) = \int_{t_0}^t |\alpha'(\tau)| d\tau.$$

$$s = \lim_{\Delta P \to 0} \ell(\alpha, P) = \int_{t_0}^t |\alpha'(\tau)| d\tau.$$

Como $\alpha'(t) \neq 0$ para todo t, la función s(t) es diferenciable y

$$\frac{ds}{dt} = \frac{d}{dt} \int_{t_{-}}^{t} |\alpha'(\tau)| d\tau = |\alpha'(t)|.$$

$$s = \lim_{\Delta P \to 0} \ell(\alpha, P) = \int_{t_0}^{t} |\alpha'(\tau)| d\tau.$$

Como $\alpha'(t) \neq 0$ para todo t, la función s(t) es diferenciable y

$$\frac{ds}{dt} = \frac{d}{dt} \int_{t_0}^t |\alpha'(\tau)| d\tau = |\alpha'(t)|.$$

Puede ocurrir que t ya sea la longitud de arco de la curva α medido a partir de cierto punto t_0 . En este caso, $|\alpha'(t)| = \frac{ds}{dt} = 1$.

$$s = \lim_{\Delta P o 0} \ell(\alpha, P) = \int_{t_0}^{\tau} |\alpha'(\tau)| d\tau.$$

Como $\alpha'(t) \neq 0$ para todo t, la función s(t) es diferenciable y

$$\frac{ds}{dt} = \frac{d}{dt} \int_{t_0}^t |\alpha'(\tau)| d\tau = |\alpha'(t)|.$$

Puede ocurrir que t ya sea la longitud de arco de la curva α medido a partir de cierto punto t_0 . En este caso, $|\alpha'(t)| = \frac{ds}{dt} = 1$.

Recíprocamente, si $|\alpha'(t)| = 1$, entonces

$$\mathbf{s} = \int_{\mathbf{t_0}}^{\mathbf{t}} |\alpha'(\tau)| d\tau = \int_{\mathbf{t_0}}^{\mathbf{t}} d\tau = \mathbf{t} - \mathbf{t_0}.$$