

NPN Silicon RF Transistor

- For low noise, high-gain amplifiers up to 2 GHz
- For linear broadband amplifiers
- $f_T = 8 \text{ GHz}$

F = 1.3 dB at 900 MHz

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration			Package
BFR193	RCs	1 = B	2 = E	3 = C	SOT23

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}	12	V
Collector-emitter voltage	V _{CES}	20	
Collector-base voltage	V _{CBO}	20	
Emitter-base voltage	V _{EBO}	2	
Collector current	l _C	80	mA
Base current	l _B	10	
Total power dissipation	P _{tot}	580	mW
$T_{S} \le 69 ^{\circ}\text{C}^{1)}$			
Junction temperature	T _j	150	°C
Ambient temperature	T _A	-65 150	
Storage temperature	$T_{ m stg}$	-65 150	

Thermal Resistance

Junction - soldering point ²⁾	R _{thJS}	≤ 140	K/W

 $^{^{1}}T_{\mathrm{S}}$ is measured on the collector lead at the soldering point to the pcb

 $^{^{2}}$ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC characteristics				•	•
Collector-emitter breakdown voltage	V _{(BR)CEO}	12	-	-	V
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$					
Collector-emitter cutoff current	I _{CES}	-	-	100	μΑ
$V_{CE} = 20 \text{ V}, \ V_{BE} = 0$					
Collector-base cutoff current	l _{CBO}	-	-	100	nA
$V_{CB} = 10 \text{ V}, I_{E} = 0$					
Emitter-base cutoff current	l _{EBO}	-	-	1	μΑ
$V_{EB} = 1 \text{ V}, I_{C} = 0$					
DC current gain	h _{FE}	50	100	200	-
$I_{\rm C} = 30 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}$					

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC characteristics (verified by random sampling)					
Transition frequency	f _T	6	8	-	GHz
$I_{\rm C} = 50 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}, \ f = 500 \text{ MHz}$					
Collector-base capacitance	C _{cb}	-	0.68	1	pF
$V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}$					
Collector-emitter capacitance	C _{ce}	-	0.24	-	
$V_{CE} = 10 \text{ V}, f = 1 \text{ MHz}$					
Emitter-base capacitance	C _{eb}	-	1.8	-	
$V_{EB} = 0.5 \text{ V}, f = 1 \text{ MHz}$					
Noise figure	F				dB
$I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,					
f = 900 MHz		-	1.3	-	
f = 1.8 GHz		-	2.1	-	
Power gain, maximum available 1)	G _{ma}				
$I_{C} = 30 \text{ mA}, V_{CE} = 8 \text{ V}, Z_{S} = Z_{Sopt}, Z_{L} = Z_{Lopt},$					
f = 900 MHz		-	14.5	-	
f = 1.8 GHz		-	9	-	
Transducer gain	S _{21e} ²				
$I_{\rm C} = 30 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}, \ Z_{\rm S} = Z_{\rm L} = 50 \Omega$,					
f = 900 MHz		-	12.5	-	
f = 1.8 GHz		-	7	-	

 $^{{}^{1}}G_{\text{ma}} = |S_{21} / S_{12}| (k-(k^{2}-1)^{1/2})$

SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) :

Transistor Chip Data

IS =	0.2738	fA	BF =	125	-	NF =	0.95341	-
VAF =	24	V	IKF =	0.26949	Α	ISE =	10.627	fA
NE =	1.935	-	BR =	14.267	-	NR =	1.4289	-
VAR =	3.8742	V	IKR =	0.037925	Α	ISC =	0.037409	fA
NC =	0.94371	-	RB =	1.8368	Ω	IRB =	0.91763	mA
RBM =	1	Ω	RE =	0.76534		RC =	0.11938	Ω
CJE =	1.1824	fF	VJE =	0.70276	V	MJE =	0.48654	-
TF =	18.828	ps	XTF =	0.69477	-	VTF =	0.8	V
ITF =	0.96893	mA	PTF =	0	deg	CJC =	935.03	fF
VJC =	1.1828	V	MJC =	0.30002	-	XCJC =	0.053563	-
TR =	1.0037	ns	CJS =	0	fF	VJS =	0.75	V
MJS =	0	-	XTB =	0	-	EG =	1.11	eV
XTI =	3	-	FC =	0.72063	-	TNOM	300	K

All parameters are ready to use, no scalling is necessary.

Extracted on behalf of Infineon Technologies AG by:

Institut für Mobil-und Satellitentechnik (IMST)

Package Equivalent Circuit:

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/silicondiscretes

Total power dissipation $P_{tot} = f(T_S)$

Permissible Pulse Load $R_{thJS} = f(t_p)$

10³ K/W 10² 10¹ 1

Permissible Pulse Load

$$P_{\text{totmax}}/P_{\text{totDC}} = f(t_{p})$$

Collector-base capacitance $C_{cb} = f(V_{CB})$ f = 1MHz

Power Gain G_{ma} , $G_{ms} = f(I_C)$

f = 0.9 GHz

 V_{CE} = Parameter

Transition frequency $f_T = f(I_C)$

 V_{CE} = Parameter

Power Gain G_{ma} , $G_{ms} = f(I_C)$

f = 1.8GHz

 V_{CE} = Parameter

Power Gain G_{ma} , $G_{ms} = f(V_{CE})$:______ $|S_{21}|^2 = f(V_{CE})$:------

f = Parameter

Power Gain G_{ma} , $G_{ms} = f(t)$

V_{CE} = Parameter

Intermodulation Intercept Point $IP_3=f(I_C)$

(3rd order, Output, $Z_S = Z_L = 50\Omega$)

 V_{CE} = Parameter, f = 900MHz

Power Gain $|S_{21}|^2 = f(f)$

 V_{CE} = Parameter

www.s-manuals.com