회귀분석팀

6팀

김형석

김준령

윤여원

김현우

이채은

INDEX

- 1. Standard Regression Assumptions
 - 2. Residual Plot
 - 3. Linearity
 - 4. Homoscedasticity

INDEX

- 5. Normality
- 6. Independence
- 7. Multicollinearity
 - 8. Endogeneity

1

Standard Regression Assumptions

선형회귀모델의 기본 가정

변수에 대한 가정 | 선형성

선형성 (Linearity)

설명변수(X) 와 반응변수(Y) 가 서로 선형관계에 놓여있다는 가정

반응변수(Y) 의 평균 값은

회귀계수(β) 들의 Linear Combination 형태로 표현되어야 함

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

$$Y_i = \beta_0 + \beta_1 X_i^2 + \varepsilon_i$$

$$Y_i = \beta_0 e^{\beta_1 X_i} \leftrightarrow log Y_i = Y_i^* = log \beta_0 + \beta_1 X_i$$

변수에 대한 가정 | 선형성

선형성 (Linearity)

설명변수(X) 와 반응변수(Y) 가 서로 선형관계에 놓여있다는 가정

선형성 가정이 위배된다면,

지금까지 배운 회귀 모형은 모두 선형회귀모델이기 때문에

모델자체가 성립하지 않게 됨

$$Y_i = \beta_0 e^{\beta_1 X_i} \leftrightarrow log Y_i = Y_i^* = log \beta_0 + \beta_1 X_i$$

오차항에 대한 가정 | 정규성

정규성 (Normality)

오차항이 $N(0, \sigma^2)$ 분포를 따라야 한다는 가정

정규성의 가정하에서 회귀계수에 대한 t-test, F-test 유의성 검정을 수행할 수 있음

오차항에 대한 가정 | 정규성

정규성 (Normality)

오차항이 $N(0, \sigma^2)$ 분포를 따라야 한다는 가정

정규성 가정이 위배된다면,

회귀분석 과정에서 수행한 통계적 검정의 결과는 신뢰성을 잃게 됨

오차항에 대한 가정 | 등분산성

등분산성 (Homoscedasticity)

오차항의 분산 값이 항상 σ^2 로 일정해야 한다는 가정

만약 오차항의 등분산성이 위배되면 아래와 같은 문제들이 발생할 수 있음

- ① LSE 는 더 이상 **BLUE** 가 **아니게** 됨
- ② 회귀계수 추정량의 분산 값이 커지게 돼 모델의 예측성능이 떨어지게 됨

오차항에 대한 가정 | 등분산성

등분산성 (Homoscedasticity)

오차항의 분산 값이 항상 σ^2 로 일정해야 한다는 가정

만약 오차항의 등분산성이 위배되면 아래와 같은 문제들이 발생할 수 있음

- ① LSE 는 더 이상 **BLUE** 가 아니게 됨
- ② 회귀계수 추정량의 분산 값이 커지게 돼 모델의 예측성능이 떨어지게 됨

오차항에 대한 가정 | 독립성

독립성 (Independence)

오차항들 간에 자기상관성(Autocorrelation) 이 없고,

서로 독립이어야 한다는 가정

만약 오차항의 독립성이 위배될 시 아래와 같은 문제들이 발생할 수 있음

- ① LSE 는 더 이상 BLUE 가 아니게 됨
- ② 오차항의 분산(= σ^2) 및 회귀계수의 Standard Error(= $se(\hat{\beta})$) 를 과소추정 하게 돼 통계적 검정의 정확도가 떨어짐

오차항에 대한 가정 | 독립성

독립성 (Independence)

오차항들 간에 자기상관성(Autocorrelation) 이 없고,

서로 독립이어야 한다는 가정

만약 오차항의 독립성이 위배될 시 아래와 같은 문제들이 발생할 수 있음

① LSE 는 더 이상 **BLUE** 가 아니게 됨

② 오차항의 분산(= σ^2) 및 회귀계수의 Standard Error(= $se(\hat{\beta})$) 를 과소추정 하게 돼 통계적 검정의 정확도가 떨어짐

오차항에 대한 가정 | 독립성

독립성 (Independence) 과소추정이 문제가 되는 이유

$$H_0:eta_1=egin{array}{cccc} ec{\mathcal{A}}ec{\mathcal{A}}=rac{1}{2} & \mathcal{A} &$$

일반적으로 T_0 의 값이 크면 귀무가설 (H_0) 을 기각하는데,

만약 오차항의 독립 오차항의 독립성이 위배될 경유들이 발생할 수 있음

표준오차 $se(\hat{\beta})$ 의 값이 과소추정 되어 검정통계량 T_0 값이 커짐에 따라

귀무가설을 더 자주 기각하게 됨

2

Residual Plot

Residual Plot

잔차도 (Residual Plot)

회귀모델로부터 계산된 잔차(residual)를 이용하는 그래프들을 통칭하는 말

Residual Plot

Pos

Residual vs Fitted Plot, Scale-Location Plot

Residual vs Fitted Plot

X 축에 Fitted Values(= \hat{y}) 를,

Y 축에 **잔차**를 놓고 그린 Scatter Plot

Scale-Location Plot

X 축에 Fitted Values(= \hat{y}) 를,

Y 축에 **내표준화 잔차**를 놓고 그린 Scatter Plot

Residual vs Fitted Plot, Scale-Location Plot

설명변수와 반응변수 (Y)의 선형성과 오차항의 등분산성을 확인해볼 수 있음

예측값과 잔차 사이의

패턴이 존재하지 않고,

선형성과 등분산성 가정 만족

Residual vs Fitted Plot, Scale-Location Plot

예측 값이 커짐에 따라 잔차들도 커지는 경향을 보이기 때문에 등분산성 가정 위배를 의심해 볼 수 있음

2차 함수 형태의 특정 패턴이 존재하기 때문에 선형성 가정 위배를 의심해 볼 수 있음

2 Residual Plot

Normal Q-Q Plot

Q-Q Plot (Quantile - Quantile plot)

두 확률분포를 서로 비교해보기 위해 그리는 Plot

오차항의 정규분포를 가정하기 때문에

오차항의 분포와 정규분포를 서로 비교하는 Normal Q-Q Plot 을 사용

Normal Q-Q Plot

X 축에는 표준정규분포의 분위 수,

Y 축에는 내표준화 잔차의 순서통계랑을 표시함

내표준화 잔차가 실제로 정규분포를 따른다면, Normal Q-Q plot 은

y=x 직선에 근사한 형태로 나타남

Normal Q-Q Plot

Normal Q-Q Plot

반면에 위의 두 Plot 의 경우,

그래프의 형상이 직선에서 많이 벗어남

오차항의 정규성 가정 위배를 의심해볼 수 있음

2 Residual Plot

Residuals vs Leverage Plot

Residuals vs Leverage Plot

이상치와 영향점을 확인하는 데 사용하는 진단 그래프

선형회귀모델의 기본 가정을 체크하는 게 목적이 아니라는 점에서 앞선 두 Plot 들과 차이점 존재

Residuals vs Leverage Plot

X 축은 High leverage point를,

Y 축은 내표준화 잔차값(= Outlier 정도)을 표시함

빨간색 실선인

Cook's distance 경계선을 통해

영향점의 존재 여부 확인

Residuals vs Leverage Plot

X 축은 High leverage point를,

Y 축은 내표준화 잔차값(= Outlier 정도)을 표시함

좌측 Plot의 9번 관측치의 경우,

Cook's distance 값이 1을 넘어가기

때문에 영향점으로 간주할 수 있음

Residuals vs Leverage Plo

그래프를 통한 진단 방법의 한계

Y 축은 내표준화 잔차값(= Outlier 정도)을 표시함 정확한 판단기준이 없어 분석자마다 <mark>상이한 결론을 도출될</mark> 수 있음

3

Linearity

선형성의 진단

Residual vs Fitted Plot의 경우, 그래프의 추세 선이

x 축에 평행한 직선 형태인지를 확인하는 과정을 통해 선형성을 판단함

- ① 판단이 다소 주관적일 수 있음
- ② **어떤 변수의 영향** 때문에 선형성이 위배됐는지 확인하기 어려움

선형성의 진단

Residual vs Fitted Plot의 경우, 그래프의 추세 선이

Partial Residual Plot 을 통해

개별 설명 변수와 반응 변수 간의 선형성을 판단해보며

어떤 변수의 영향 때문에 선형성이 위배됐는지 확인 수 있음

어떤 변수의 영향 때문에 선형성이 위배됐는지 확인하기 어려움

선형성의 진단 | Partial Residual Plot

부분 잔차도 (Partial Residual Plot)

특정 독립 변수가 종속 변수에 미치는 영향을

시각적으로 평가하기 위해 사용하는 Plot

X 축은 단일 설명변수(X_{ki}) 를,

Y 축은 Partial Residual을 나타냄

Partial Residual = 회귀 모델의 잔차 값 (e_i) + 단일 설명변수 기반 예측 값 $(\hat{\beta}_k X_{ki})$

선형성의 진단 | Partial Residual Plot

파란색 점선

: 단순선형회귀를 Fitting 시킨 결과

분홍색 실선

: Local Regression 을 Fitting 시킨 결과

두 가지 선의 양상이 서로 비슷하면, 해당 설명변수와 반응변수 간의 선형성은 만족됐다고 판단할 수 있음

선형성의 진단 | Partial Residual Plot

따라서 위 Plot 의 결과를 해석하면 선형성이 위배되는 데 있어 X_1 의 영향이 컸을 거라고 판단할 수 있음

선형성의 진단 | Partial Residual Plot

그러나 설명변수들 간에 **교호작용**이나 **다중공선성**이 존재하는 경우

Partial Residual Plot 은 잘못된 정보를 제공할 수 있다는 한계점이 존재

설명변수들 간의 관계성을 반드시 먼저 확인해야 함

선형성이 위배되는 데 있어 X_3 의 영향이 컸을 거라고 판단할 수 있음

선형성 위배 시 처방 | 변수 변환

변수 변환 (Transformation)

설명변수(X) 에 적절히 치환을 적용해서 비선형성 문제를 해결해주는 방법

변수변환을 통해 선형성을 확보할 수 있는 모델도, 넓은 의미에서 선형모델로 여김

Ex) log 변환

Linearizable Function : $y = \beta_0 x^{\beta_1}$

 \log 변환 후 Linear Form : $\log y = \log \beta_0 + \beta_1 x' \quad (x' = \log x)$

선형성 위배 시 처방 | 변수 변환

설명변수(X)-반응변수(Y) Scatter Plot 및 Residuals vs Fitted Plot

①과 같이 선형성 가정이 위배되는 경우,

②와 같이 변수 변환을 통해서 어느 정도 해결할 수 있음

선형성 위배 시 처방 | 다항 회귀

다항회귀 (Polynomial Regression)

설명변수(X)가 2차, 3차 등의 k차 다항식 형태로 표현된 회귀 모델

i

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \dots + \beta_k X_i^k$$

- ① 일반적으로 단순선형회귀 모델에 존재하는 설명변수에 대해, 거듭제곱 항들을 설명변수로 추가해주는 방식으로 모델을 작성
 - ② 다중선형회귀에서의 분석 방법을 그대로 적용해볼 수 있음

선형성 위배 시 처방 | 다항 회귀

다항회귀 (Polynomial Regressic

- ① 하나의 설명변수에 대해 거듭제곱 된 형태이기 때문에, 설명변수들 간의 상관관계 정도가 높아 **다중공선성** 문제가 발생할 수 있음
 - ② 너무 높은 차수(k) 형태를 적용 시, 모델이 Overfitting 될 수 있음

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i + \dots + \beta_k X_i^k$$

적절한 차수 값을 선택하고,

변수 생성 시 설명변수들끼리 서로 직교하도록 만들어주는 과정이 필요함

② 다중선형회귀에서의 분석 방법을 그대로 적용해볼 수 있음

선형성 위배 시 처방 | 비모수회귀

비모수회귀 (Non-parametric Regression)

모델의 특정한 형태나 분포에 대해 가정하지 않고,

데이터를 통해 모형을 직접 추정하는 방법

선형성 위배 시 처방 | 비모수회귀

모수적 방법

고정된 개수의 파라미터들을 학습 분포적 가정을 필요로 함

비모수적 방법

학습 데이터가 늘어남에 따라 파라미터의 개수도 늘어남

분포적 가정을 필요로 하지 않음

선형성 위배 시 처방 | 비모수회귀

국소회귀 (Local Regression)

데이터의 개수가 많은 반면, 차원 수는 매우 낮은 경우에 사용되는 모델

구체적으로 데이터 셋의 Feature 수가 2~3 개 이하인 경우에만 사용됨

손실함수 :
$$J(\beta) = \sum_{i=1}^{n} w^{(i)} (y^{(i)} - \beta^T x^{(i)})^2$$
, $w^{(i)} = exp\left(-\frac{(x^{(i)} - x)^2}{2}\right)$

손실함수 특징 : Target x 에 가까운 관측치일수록 큰 가중치를 부여 받음

결과적으로 x 에 가까운 관측치들을 위주로 회귀 직선을 fitting 하게 됨

선형성 위배 시 처방 | 비모수회귀

x 주변에 있는 데이터로만 회귀 직선을 fitting하는 과정을 반복 수행하면, 최종적인 추정선은 데이터의 비선형 추세를 따라가는 형태로 출력됨

Local Regression

파란선: 데이터를 생성한 실제 함수

주황선: 국소회귀 모델로 추정된 선

초록색 종 모양의 면적에서 각 높이 : Target 관측치의 가중치 값(= $w^{(i)}$)

선형성 위배 시 처방 | 비모수회귀

Local 범위에서의 빨간 선들이 결합되어 만들어진 주황색의 곡선이 데이터의 비선형 추세를 잘 나타냄을 확인할 수 있음

_

선형성 위배 시 처방 | 비모수회귀

가중치함수의 경우 Target에 가까운 관측치일수록

더 큰 가중치를 부여한다는 특성만 지닌다면 여러 함수들을 적용해볼 수 있음

Ex) Gaussian Kernel

$$w^{(i)} = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x - x^{(i)}}{\lambda}\right)^{2}\right]$$

대역폭 매개변수(Bandwidth parameter) λ 를 통해

관측치로부터 얼마나 가까운 데이터들만 이용할지 결정할 수 있음

Boundary Problem

경계선에 위치한 target 관측치에 대하여, 비교적 적은 양의 데이터로 인해 가중치의 불균형이 발생하는 문제

모델의 Bias에 영향을 미쳐, 예측 성능 하락 (일차 회귀가 아닌 좀 더 Complex 한 모형을 Fitting 시키면 해당 문제를 어느 정도 해결 가능)

선형성 위배 시 처방 | 비모수회귀

커널회귀 (Kernel Regression)

커널 함수를 이용해 밀도함수를 추정한 뒤

해당 함수로부터 계산된 평균값을 이용해 반응변수 값을 추정하는 회귀 모델

국소회귀와는 달리 Feature 수가 많은 데이터 셋에서도 사용이 가능

커널 밀도함수의 추정 방식에 따라 크게 세 가지 종류로 분류 됨

① Nadaraya-Watson ② Priestley-chao ③ Gasse-Muller

Nadaraya-Watson 회귀모델

추정식:
$$Y = m(X) + \varepsilon$$
, $E(\varepsilon) = 0 \rightarrow \hat{Y} = \hat{m}(X)$

where
$$\widehat{m}(X) = \frac{\sum_{i=1}^{n} K_{\lambda}(x-x_{i})y_{i}}{\sum_{j=1}^{n} K_{\lambda}(x-x_{j})}$$
 (K_{λ} : Kernel Function)

국소회귀와 유사하게,

Target 관측치 값마다 커널 함수를 적용해 예측 값을

계산하기 때문에 Boundary Problem 이 발생할 수 있음

커널함수 (K_{λ}) 는 일반적으로 Gaussian Kernel 함수를 많이 사용함

Gaussian Kernel 함수:
$$w^{(i)} = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-x^{(i)}}{\lambda}\right)^2\right]$$

앞서 국소회귀에서 언급했던 Gaussian Kernel 함수식을 통해, 관측치가 target 에 가까워질수록 함수 값이 커지는 것을 알 수 있음 계산하기 때문에 Boundary Problem 이 발생할 수 있음

Nadaraya-Watson 회귀모델

추정식: $Y = m(X) - \varepsilon$, $E(\varepsilon) = 0 \rightarrow \hat{Y} = \hat{m}(X)$

그렇다면 커널함수(K_{λ}) 에는 어떤 특징이 있을까?

커널함수의 특징에 대해 알아보자!

Target 관측치 값마다 커널 함수를 적용해 예측 값을 계산하기 때문에 Boundary Problem 이 발생할 수 있음

선형성 위배 시 처방 | 비모수회귀

커널 함수의 대역폭(Bandwidth) λ 의 값이 커질수록

Complexity 가 감소하고,
커널 회귀 추정선은 Smooth한 형태가 됨

고차원 데이터 셋을 이용할 경우, Gaussian Kernel 함수는 Multivariate Normal 분포 식 형태로 취하게 됨

선형성 위배 시 처방 | 비모수회귀

Bandwidth(=λ) 값이 커질수록 커널 함수의 Complexity 가 감소해 커널 밀도 함수의 Complexity 역시 점점 감소됨을 확인 가능

4

Homoscedasticity

등분산성의 진단 | 잔차플롯 확인

등분산성을 만족하는 잔차플롯

등분산성을 만족하지 않는 잔차플롯

잔차플롯을 통해 산점도의 퍼진 정도가 일정한지 확인하여 등분산성을 만족하는지 확인할 수 있음

등분산성의 진단 | 잔차플롯 확인

통계적 검정 BP Test를 통해 정량적으로 등분산성을 진단해보자!

등분산성을 만족하는지 확인할 수 있음

등분산성의 진단 | BP Test

BP Test

추출한 **잔차의 제곱을 반응변수로** 두고 다시 선형 회귀모델을 적합하여 얻은 **결정계수(R^2) 를 통해 등분산성을 확인**하는 통계적 검정

BP Test의 원리

① 오차의 평균을 0으로 가정하므로 오차 제곱의 평균은 오차의 분산과 같음 $Var(\varepsilon) = E(\varepsilon^2) - E^2(\varepsilon) = E(\varepsilon^2)$

② 잔차 제곱을 반응변수로 두고 다음과 같은 선형 회귀모델을 적합 $e_i^2 = \gamma_0 + \gamma_1 X_{1i} + \gamma_2 X_{2i} + \dots + \gamma_p X_{pi} \ (i = 1, ..., n)$

4

Homoscedasticity

등분산성의 진단 | BP Test

BP Test

추출한 **잔차의 제곱을 반응변수로** 두고 다시 선형 회귀모델을 적합하여 얻은 **결정계수(R^2) 를 통해 등분산성을 확인**하는 통계적 검정

BP Test의 원리 -----

① 오차의 평균을 0으로 가정하므로 오차 제곱의 평균은 오차의 분산과 같음 $Var(\varepsilon) = E(\varepsilon^2) - E^2(\varepsilon) = E(\varepsilon^2)$

② 잔차 제곱을 반응변수로 두고 다음과 같은 선형 회귀모델을 적합

$$e_i^2 = \gamma_0 + \gamma_1 X_{1i} + \gamma_2 X_{2i} + \dots + \gamma_p X_{pi} \ (i = 1, \dots, n)$$

등분산성의 진단 | BP Test

$$e_i^2 = \gamma_0 + \gamma_1 X_{1i} + \gamma_2 X_{2i} + \dots + \gamma_p X_{pi} (i = 1, \dots, n)$$

모형에서 만약 γ_i 계수가 0이 아니라면

오차의 분산이 설명변수에 따라 증가하거나 감소한다고

판단할 수 있음

등분산성의 진단 | BP Test

Null Hypothesis vs Alternative Hypothesis

$$H_0$$
: $\gamma_1 = \gamma_2 = \cdots = \gamma_p = 0$ vs H_1 : Not H_0

잔차는 등분산성을 따라야 하므로, **귀무가설이 기각되지 않기를 원함!**

Test Statistic

$$\chi^2_{stat} = n R^2 \sim \chi^2_{p-1}$$

Reject H_0 if $\chi^2_{stat} > \chi^2_{p-1,\alpha}$ (Significance Level: α)

등분산성의 진단 | BP Test

Test Statistic

$$\chi^2_{stat} = n R^2 \sim \chi^2_{p-1}$$

잔차는 결정계수가 클수록 이분산성을,

작을수록 등분산성을 띤다고 볼 수 있음

등분산성의 진단 | BP Test

정밀한 BP Test 결과를 위해서는 다음 가정들을 충족해야 함!

① 표본 수가 많을 것

검정통계량이 카이제곱 분포를 따르기 위한 가정

② 오차항은 서로 독립이며, 정규분포를 따를 것

③ 오차항의 분산은 설명변수와 연관이 있을 것

등분산성의 처방

등분산성의 처방 | 변수 변환

변수 변환

반응변수(Y) 에 적절한 변환을 적용해 이분산성 문제를 해결하려는 방법으로,

로그 변환 $(\log Y)$, 제곱근 변환 (\sqrt{Y}) 등 변환을 시도

루피 얼굴 변환

등분산성의 처방 | 변수 변환

두 종류의 잔차 플롯에서 이분산성을 보이는 것을 확인

반응변수 Y에 대해 로그변환을 시도

등분산성의 처방 | 변수 변환

등분산성의 처방 | 변수 변환

앞서 확인한 이분산성이 상당 부분 해소된 것을 확인!

등분산성의 처방 | 가중 최소제곱법

가중 최소제곱법 (WLS, Weigted Least Squares)

가중치를 이용해 오차항의 분산을 이분산 형태로 설정해준 뒤,

가중오차의 제곱합을 최소로 하는 방식으로 회귀계수를 추정하는 방법

등분산성의 처방 | 가중 최소제곱법

$$Y = X\beta + \varepsilon$$
, $\varepsilon \sim N(0, \sigma^2 W^{-1})$ where $W = \begin{bmatrix} w_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & w_n \end{bmatrix}$

$$Var(Y_i) = \frac{\sigma^2}{w_i} \iff Var(\sqrt{w_i} Y_i) = \sigma^2$$

위 관계를 고려하여 반응변수 $\sqrt{w_i} Y_i$ 에 대하여 회귀모델을 다시 설정

:

$$W^{1/2} Y = W^{1/2} X\beta + \varepsilon^*, \ \varepsilon^* \sim N(0, \ \sigma^2)$$

등분산성의 처방 | 가중 최소제곱법

$$Y = X\beta + \varepsilon$$
, $\varepsilon \sim N(0, \sigma^2 W^{-1})$ where $W = \begin{bmatrix} w_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & w_n \end{bmatrix}$

$$Var(Y_i) = \frac{\sigma^2}{\omega} \iff Var(\sqrt{w_i} Y_i) = \sigma^2$$

변환 후 가중오차 ε^* 는 등분산성을 만족하므로

$$W^{1/2} Y = W^{1/2} X\beta + \varepsilon^*, \ \varepsilon^* \sim N(0, \ \sigma^2)$$

4 Homoscedasticity

등분산성의 처방 | 가중 최소제곱밥 🔁

어떤 관측치에 어느 정도의 가중치를 부여하게 될까?

$$Var(Y_i) = \frac{\sigma^2}{w_i}$$
 관계를 살펴본다면,

반응변수의 분산과 가중치 간 반비례 관계를 확인할 수 있음

변환 후 가증으차 * 는 등분산성을 민족하므로 따라서 가중 최소제곱법 적용 시 가증으로 제공일을 최소로 하는 이 작은 가능 상대적으로 정확도가 높은(=분산이 작은) 관측치에

상대적으로 높은 가중치를 부여하게 됨

등분산성의 처방 | 가중 최소제곱법

가중 최소제곱법의 모수 추정

$$L^{W} = \left(W^{1/2} Y - W^{1/2} X \beta\right)^{T} \left(W^{1/2} Y - W^{1/2} X \beta\right)$$
 최소로 하는 β 추정

Normal Equation

$$\frac{\partial L^{W}}{\partial \beta} = -2X^{T}W(Y - X\beta) = 0$$

WLSE (Weighted Least Square Estimator)

$$\hat{\beta}^W = (X^T W X)^{-1} X^T W Y$$

4 Homoscedasticity

등분산성의 처방 | 가중 최소제곱법

가중 최소제곱법의 모수 추정

$$L^{W} = \left(W^{1/2} Y - W^{1/2} X \beta\right)^{T} \left(W^{1/2} Y - W^{1/2} X \beta\right)$$
 최소로 하는 β 추정

Normal Equation

WLSE는 선형회귀의 기본 가정하에서 도출된 Estimator이므로

BLUE(Best Linear Unbiased Estimator)임!

WLSE (Weighted Least Square Estimator)

 $\hat{\beta}^W = (X^T W X)$ BLUE의 정의와 조건에 대한 자세한 내용은 회귀분석팀 1주차 클린업 자료 확인!

4 Homoscedasticity

등분산성의 처방 | 가중 최소제곱법

일반적으로 가중치를 추정하기는 어렵지만,

다음의 경우에는 쉽게 가중치를 추정해볼 수 있음!

① 반응변수가 비율이나 확률로 주어진 데이터

② 그룹의 평균으로 주어져 있고, 그룹의 크기를 알고 있는 데이터

5

Normality

정규성의 진단 | Normal Q-Q Plot 확인

잔차의 sample Quantile(검은선)이 Theoretical Quantile(초록선)에 근접하는지 여부를 확인하여 정규성을 만족하는지 확인할 수 있음

정규성의 진단 | Normal Q-Q Plot 확인

여러 통계적 검정방법을 통해 정량적으로 정규성을 진단해보자!

근접하는지 여부를 확인하여 정규성을 만족하는지 확인할 수 있음

정규성의 진단 | 여러가지 통계적 검정

정규성의 진단 | 여러가지 통계적 검정

K-S 검정

검정 통계량은 각기 다르지만,

귀무가설은 검정에 상관없이 동일하다는 것에 유의!

정규성 진단을 위한

Null Hypothesis vs Alternative Hypothesis

 H_0 : 주어진 데이터는 정규분포를 따른다 vs H_1 : Not H_0

잔차는 정규성을 따라야 하므로, **귀무가설이 기각되지 않기를 원함!**

정규성의 진단 | CDF, EDF

누적분포함수 (CDF, Cumulative Distribution Function)

주어진 확률변수가 특정 값보다 같거나 작을 확률을 나타내는 함수

적합도 검정에서는 이론적 누적분포함수(Theoretical CDF)라고도 쓰임

 x_0 가 주어졌을 때

$$F(x_0) := P_X(X \le x_0)$$

정규성의 진단 I CDF, EDF

경험적 누적분포함수 (EDF, Empirical Distribution Function)

주어진 데이터의 관측값을 크기 순으로 정렬한 후

각 값의 누적빈도를 계산하여 구한 누적분포함수의 추정치

$$x_0$$
 가 주어졌을 때

$$\widehat{F_n}(x_0) = \frac{number\ of\ X_i \leq x_0}{total\ number\ of\ observations} = \frac{\sum_{i=1}^n I(X_i \leq x_0)}{n}$$

정규성의 진단 | CDF, EDF

파란선: 표본의 EDF

빨간선: 검정하고자 하는 분포의 CDF

검은색 화살표: EDF와 CDF 값의 차이

정규성의 진단 | K-S Test

K-S Test (Kolmogorov – Smirnov Test)

확률분포의 동일성을 비모수적으로 검정하는 방법

One Sample K-S Test --

어떤 하나의 표본이

특정 분포의 CDF와 유사한지 검정

- Two Sample K-S Test --

두 집단의 표본이

서로 동일한 분포를 가지는지 검정

정규성의 진단 | K-S Test

K-S Test (Kolmogorov – Smirnov Test)

확률분포의 동일성을 비모수적으로 검정하는 방법

One Sample K-S Test --

어떤 하나의 표본이

특정 분포의 CDF와 유사한지 검정

Two Sample K-S Test ---

잔차의 분포가 정규분포와 동일한지

확인하는 것이 목표이므로,

One-Sample K-S Test 에 집중해볼 것임!

정규성의 진단 | K-S Test

Test Statistic

$$D = \sqrt{n} \sup_{x} |\widehat{F}_{n}(x) - F(x)|$$

Reject H_0 if p – value for $D < \alpha$ (Significance Level: α)

 \sup_{x} : Supremum, Least upper bound

 $|\hat{F}_n(x) - F(x)|$: K-S 통계량은 표본의 EDF와 검정하고자 하는 분포의

CDF 간의 거리를 측정하는 방식으로 계산

정규성의 진단 | A-D Test

A-D Test (Anderson-Darling Test)

데이터가 특정 분포를 따르는지 검정하는 방법

앞선 K-S Test를 수정한 검정으로,

분포의 꼬리(tail) 부분에 높은 가중치를 두고 검정을 수행

Test Statistic

$$A^{2} = n \int_{-\infty}^{\infty} \frac{\left\{\widehat{F}_{n}(x_{0}) - F(x)\right\}^{2}}{F(x)\left(1 - F(x)\right)} dF(x)$$

$$\approx -n - \sum_{i=1}^{n} \frac{2i-1}{n} \left[\ln \left(F(Z_i) \right) + \ln \left(F(Z_{n+1-i}) \right) \right]$$

i

Reject H_0 if $A^2 > critical\ value\ of\ theoretical\ distribution$ (Significance Level: α)

Test Statistic

$$A^{2} = n \int_{-\infty}^{\infty} \frac{\left\{\widehat{F}_{n}(x_{0}) - F(x)\right\}^{2}}{F(x)\left(1 - F(x)\right)} dF(x)$$

$$\approx -n - \sum_{i=1}^{n} \frac{2i-1}{n} [\ln(F(Z_i)) + \ln(F(Z_{n+1-i}))]$$

F(x): 검정을 통해 확인하고자 하는 분포의 누적분포함수로, 정규성 진단 시 F(x)는 정규분포의 이론적 누적분포함수

Test Statistic

$$A^{2} = n \int_{-\infty}^{\infty} \frac{\left\{\widehat{F}_{n}(x_{0}) - F(x)\right\}^{2}}{F(x)\left(1 - F(x)\right)} dF(x)$$

$$\approx -n - \sum_{i=1}^{n} \frac{2i-1}{n} [\ln(F(Z_i)) + \ln(F(Z_{n+1-i}))]$$

 $\widehat{F}_n(x_0)$: 표본의 경험적 누적분포함수로,

정규성 진단 시 $\widehat{F}_n(x_0)$ 는 잔차의 경험적 누적분포함수

Test Statistic

$$A^{2} = n \int_{-\infty}^{\infty} \frac{\left\{\widehat{F}_{n}(x_{0}) - F(x)\right\}^{2}}{F(x)\left(1 - F(x)\right)} dF(x)$$

$$\approx -n - \sum_{i=1}^{n} \frac{2i-1}{n} [\ln(F(Z_i)) + \ln(F(Z_{n+1-i}))]$$

 $\{F_n(x) - F(x)\}^2$: 표본의 EDF와 특정 분포의 CDF와의 거리

즉, 해당 값의 차이가 클수록 검정통계량이 커짐

Test Statistic

$$A^{2} = n \int_{-\infty}^{\infty} \frac{\left\{\widehat{F}_{n}(x_{0}) - F(x)\right\}^{2}}{F(x)\left(1 - F(x)\right)} dF(x)$$

$$\approx -n - \sum_{i=1}^{n} \frac{2i-1}{n} [\ln(F(Z_i)) + \ln(F(Z_{n+1-i}))]$$

F(x)(1-F(x)) : A-D Test에서 꼬리 부분에 더 가중치를 두게 함

Test Statistic

$$A^{2} = n \int_{-\infty}^{\infty} \frac{\left\{\widehat{F}_{n}(x_{0}) - F(x)\right\}^{2}}{F(x)\left(1 - F(x)\right)} dF(x)$$

$$\approx -n - \sum_{i=1}^{n} \frac{2i-1}{n} [\ln(F(Z_i)) + \ln(F(Z_{n+1-i}))]$$

 Z_i : x_i 를 표준화시킨 뒤 오름차순 정렬하였을 때 i번째 값

정규성의 진단 | Shapiro-Wilk Test

Shapiro-Wilk Test

정규분포의 분위수와 내표준화 잔차 간의 선형관계를 확인해

표본이 정규분포로부터 추출된 것인지 확인하는 검정 방법

:

표본 수가 적을 때 (SAS 기준 2,000개, R 기준 5,000개 이하)
Shapiro-Wilk Test 를 수행할 것을 권장

정규성의 진단 | Shapiro-Wilk Test

Test Statistic

$$W = \frac{(\sum_{i=1}^{n} a_i x_{(i)})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

where
$$(a_i, ..., a_i) = \frac{m^T V^{-1}}{(m^T V^{-1} V^{-1} m)^{1/2}}$$

Reject H_0 if $W > critical\ value\ of\ \alpha\ (Significance\ Level:\ \alpha)$

정규성의 진단 | Shapiro-Wilk Test

Test Statistic

$$W = \frac{(\sum_{i=1}^{n} a_i \mathbf{x}_{(i)})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

where
$$(a_i, ..., a_i) = \frac{m^T V^{-1}}{(m^T V^{-1} V^{-1} m)^{1/2}}$$

 $x_{(i)}$: 표본의 i번째 order statistics

m: iid 표준정규분포의 Order statistic 에 대한 기댓값 벡터 집합

 $oldsymbol{V}$: iid 표준정규분포의 Order statistic 에 대한 공분산 행렬

정규성의 진단 | Jarque-Bera Test

Jarque-Bera Test

정규분포의 왜도와 첨도가 각각 0과 3이라는 특성을 이용하여

표본의 왜도와 첨도에 따라 정규성 만족여부를 판단하는 검정

정규성의 진단 | Jarque-Bera Test

Test Statistic

$$JB = n(\frac{S^2}{6} + \frac{(K-3)^2}{24})$$

Reject H_0 if

 $W > critical\ value\ of\ chi - square\ (df = 2, Significance\ Level:\ \alpha)$

 $oldsymbol{S}$: 관측치의 왜도 $oldsymbol{K}$: 관측치의 첨도

이상치에 민감한 왜도 값을 사용하는 만큼,

이상치를 제거했을 때 정규분포임이 드러나는 경우가 많음!

정규성의 처방

정규성의 처방 | Box-Cox Transformation

Box-Cox Transformation

파라미터 λ 값에 따라 정규분포에 가깝도록 반응변수 Y를 변환하는 방법

$$y(\lambda) = \begin{cases} (y^{\lambda} - 1)/\lambda & (\lambda \neq 0) \\ \log(y) & (\lambda = 0) \end{cases}$$

:

반응변수 y 에 대해 위와 같은 변환을 수행하였을 때

 $y(\lambda)$ 가 근사적으로 정규분포에 가깝게 되도록 하는 λ 를 제안

정규성의 처방 | Box-Cox Transformation

Box-Cox Transformation

파라미터 λ 값에 따라 정규분포에 가깝도록 반응변수 Y를 변환하는 방법

 $\lambda = 0$ 일 때 로그변환을 수행하므로,

Box-Cox 변환은

반응변수가 양수인 값에 대해서만 적용할 수 있다는 점에 유의!

 $y(\lambda)$ 가 근사적으로 정규분포에 가깝게 되도록 하는 λ 를 제안

정규성의 처방 | Box-Cox Transformation

정규성의 처방 | Yeo-Johnson Transformation

Yeo-Johnson Transformation

Box-Cox 변환 시 반응변수가 양수여야 한다는 제약을 극복한 변환으로,

파라미터 λ 값에 따라 정규분포에 가깝도록 반응변수 Y를 변환하는 방법

$$\psi(\lambda, y) = \begin{cases} \{(y+1)^{\lambda} - 1\}/\lambda & (\lambda \neq 0, y \geq 0) \\ \log(y+1) & (\lambda = 0, y \geq 0) \\ -\{(-y+1)^{2-\lambda} - 1\}/(2-\lambda) & (\lambda \neq 2, y < 0) \\ -\log(-y+1) & (\lambda = 2, y < 0) \end{cases}$$

6

Independence

6 Independence

독립성의 진단 | Durbin-Watson Test

Durbin-Watson Test

관측치의 1차 자기상관성 (First order autocorrelation) 을 확인하여

독립성 여부를 판단하는 검정

* 1차 자기상관성: (t - 1) 시점의 잔차와 t 시점의 잔차 간 상관관계

Null Hypothesis vs Alternative Hypothesis

 H_0 : 잔차들 간 1차 자기상관성이 존재하지 않는다 vs H_1 : 그렇지 않다

Test Statistic

$$d = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$

6 Independence

독립성의 진단 | Durbin-Watson Test

Durbin-Watson Test

관측치의 1차 자기상관성 (First order autocorrelation) 을 확인하여

독립성 여부를 판단하는 검정

* 1차 자기상관성 : (t – 1) 시점의 잔차와 t 시점의 잔차 간 상관관계

Null Hypothesis vs Alternative Hypothesis

 H_0 : 잔차들 간 1차 자기상관성이 존재하지 않는다 vs H_1 : 그렇지 않다

Test Statistic

$$d = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$

독립성의 진단 | Durbin-Watson Test

검정통계량의 전개 -----

분자의 완전 제곱식을 전개 시

$$d = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2} = \frac{\sum_{i=2}^{n} e_i^2}{\sum_{i=1}^{n} e_i^2} + \frac{\sum_{i=2}^{n} e^2_{i-1}}{\sum_{i=1}^{n} e_i^2} - 2\frac{\sum_{i=2}^{n} e_i e_{i-1}}{\sum_{i=1}^{n} e_i^2}$$

표본의 크기 n이 충분히 크다면

$$d\approx 2(1-\hat{\rho}_1)$$

where
$$\hat{\rho}_1 = \frac{\widehat{Cov}(e_i, e_{i-1})}{\sqrt{V(e_i)}\sqrt{V(e_{i-1})}} = \frac{\sum_{i=2}^n e_i e_{i-1}}{\sum_{i=1}^n e_i^2}$$

독립성의 진단 | Durbin-Watson Test

검정통계량의 근사 결과 --

$$d \approx 2(1 - \hat{\rho}_1)$$

where
$$\hat{\rho}_1 = \frac{\widehat{Cov}(e_i, e_{i-1})}{\sqrt{V(e_i)}\sqrt{V(e_{i-1})}} = \frac{\sum_{i=2}^n e_i e_{i-1}}{\sum_{i=1}^n e_i^2}$$

ⓐ 1차 표본자기상관계수($\hat{\rho}_1$)는 -1부터 1 사이의 값을 가짐

ⓑ $\hat{\rho}_1$ 과 검정통계량(d)는 선형관계라는 점을 고려할 때,

만약 데이터가 독립적이라면 검정통계량 d는 2에 가까운 값을 가질 것임

독립성의 진단 | Durbin-Watson Test

① Durbin-Watson Test 의 임계값(Critical Value) d_L , d_U 은 Durbin-Watson 검정표를 통해 구해볼 수 있음

독립성의 진단 | Durbin-Watson Test

② 검정통계량이 **불확실 영역(Inconclusive Region)**에 속하게 될 때, Durbin-Watson Test 의 판정을 내리지 못하게 됨

독립성의 진단 | Durbin-Watson Test

② 검 2차 이상의 자기상관을 확인할 수 있는 ACF Plot을 확인! 될 때

Durbin-Watson Test 의 판정을 내리지 못하게 됨

독립성의 진단 | ACF Plot

ACF Plot (Autocorrelation Function Plot)

시차(lag)별 표본자기상관계수 값($\hat{
ho}_{lag}$)을 선으로 표현한 그래프

독립성의 진단 | ACF Plot

① 첫 번째 자기상관계수는 항상 1임

② 신뢰구간의 경계 값(파란선)을 넘었을 경우 해당 lag에서 데이터 간 자기상관이 존재한다고 판단

③ 전체적으로 경계선을 넘어가는 막대가 5개 미만일 때 데이터의 독립성 가정이 충족되었다고 판단

독립성의 진단 | ACF Plot

시각적으로 등분산성을 진단하는 만큼 여전히 **분석자의 주관에 의존**하게 되는 한계가 있음!

3 전 ACF Plot을 통한 계절성 확인, 정상화 등에 대해서는 시계열자료팀 1주차 클린업 참고!

데이터의 독립성 가정이 충족되었다고 판단

독립성의 처방

데이터가 독립성을 갖도록 변형해주는 것이 아님!

시계열자료팀 클린업 참고!

3주차에 자세히 다뤄볼 예정!

다중공선성

다중공선성 (Multicollinearity)

설명변수(X) 들 간에 서로 상관관계가 높거나 완전히 선형종속(Linearly dependent) 관계에 놓여있는 경우

다중공선성

다중공선성 (Multicollinearity)

설명변수(X) 들 간에 서로 상관관계가 높거나 완전히 선형종속(Linearly dependent) 관계에 놓여있는 경우

[다중공선성이 없는 경우]

[다중공선성이 있는 경우]

다중공선성 | 문제점

선형종속 관계에 놓인 경우

설명변수들이 선형종속 관계에 놓이게 되면 X^TX 행렬의 역행렬이 존재하지 않게 되므로 OLS 과정을 통해 $\hat{\beta}=(X^TX)^{-1}X^TY$ 유일해 도출 불가능

회귀계수 추정이 불가능해짐

다중공선성 | 문제점

상관관계가 높은 경우

r: 설명변수들 간의 상관계수

$$X^TX = \begin{bmatrix} 1 & r \\ r & 1 \end{bmatrix}, (X^TX)^{-1} = \frac{1}{1-r^2} \begin{bmatrix} 1 & -r \\ -r & 1 \end{bmatrix}$$

$$|r| \to 1 \longrightarrow det[(X^T X)^{-1}] \uparrow \longrightarrow V(\hat{\beta}) \uparrow$$

 $|r| \to 1$ 이면 **회귀계수의 분산이 매우 커지게 되어** 계수 추정의 정확도가 낮아지고 **회귀모형의 예측 정확도 감소**

다중공선성 | 진단 방법

① 중요하다고 생각한 설명변수의 회귀계수 추정치 분산 값이 매우 큰 경우

즉, 연관이 클 것이라 예상한 설명변수의 회귀계수에 대한 t-test 결과가 유의하지 않다는 결과가 나올 때

② 회귀계수 추정치의 부호가 사전적으로 기대하는 부호와 일치하지 않는 경우

Ex) 설명변수(X) 중 하나가 '공부시간', 반응변수(Y)가 '학점'일 때, 공부시간 설명변수의 계수 추정치 부호가 음수로 나온 경우

③ 특정 변수를 추가하거나 삭제했을 때 회귀계수 추정 값이 크게 변하는 경우

다중공선성 | 진단 방법

④ Scatter plot 및 Correlation matrix에서 높은 상관관계가 나타나는 경우

[Correlation plot]

Human Capital

0.71

0.58

0.66

0.72

0.64

0.58

0.64

0.62

Integration of

Digital

Technology

0.65

0.64

0.66

0.60

Use of Internet

0.77

0.62

0.72

0.60

다중공선성 | 진단 방법

⑤ VIF(Variance Inflation Factor) 값이 10보다 크게 나오는 경우

다중공선성 | 진단 방법

VIF (Variance Inflation Factor)

설명변수(X) 들 중 특정 하나를 반응변수(Y) 로 둔 뒤, 남은 X 변수들을 설명변수로 하는 선형회귀분석모형을 모델링하여 변수 간의 관계성을 측정하는 척도

j 번째 설명변수를 반응변수 자리에 대입하면

$$X_j = \beta_0 + \beta_1 X_1 + \dots + \beta_{j-1} X_{j-1} + \beta_{j+1} X_{j+1} + \dots$$

fitting $\forall X_j = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \dots + \hat{\beta}_{j-1} X_{j-1} + \hat{\beta}_{j+1} X_{j+1} + \dots \supseteq R^2 = R_j^2$

 X_{j} 가 $(X_{1}, X_{2}, \cdots, X_{j-1}, X_{j+1}, \cdots)$ 과 높은 상관관계를 가지면 R_{j} 가 커짐

VIF (Variance Inflation Factor)

설명변수(X) 들 중 특정 하나를 반응변수(Y) 로 Ξ 뒤,

남은 X 변수들을 설명변수로 하는 선형회귀분석모형을 모델링하여 변수 간의 관계성을 측정하는 척도

$$VIF_j = \frac{1}{1 - {R_j}^2}$$

i

 R_{j}^{2} : j 번째 설명변수(X_{j}) 를 반응변수로 두고 나머지 설명변수에 대해 회귀분석을 수행했을 때, 얻어지는 결정계수의 값

다중공선성 | 진단 방법

VIF (Variance Inflation Factor)

설명변수(X) 들 중 특정 하나를 반응변수(Y) 로 둔 뒤, 남은 X 변수들을 설명변수로 하는 선형회귀분석모형을 모델링하여 변수 간의 관계성을 측정하는 척도

 R_{j}^{2} 값이 1에 가까워 VIF_{j} 값이 매우 크다면, X_{j} 가 남은 설명변수들의 선형결합 형태로 충분히 표현될 수 있어 다중공선성이 존재할 가능성이 매우 높을 것 \Rightarrow

다중공선성 | 진단 방법

VIF (Variance Inflation Factor)

설명변수(X) 들 중 특정 하나를 반응변수(Y) 로 둔 뒤, 남은 X 변수들을 설명변수로 하는 선형회귀분석모형을 모델링하여 변수 간의 관계성을 측정하는 척도

 R_{j}^{2} 값이 1에 가까워 VIF_{j} 값이 매우 크다면, VIF 값이 10보다 큰 경우 X_{j} 가 남은 설명변수들의 선형결합 형태로 충분히 표현될 수 있어 다중공선성이 존재한다고 판단! 다중공선성이 존재할 가능성이 매우 높을 것

⑥ X^TX 의 고유값 조사 결과, $(\lambda_1/\lambda_p)^{1/2}$ 값이 40보다 크게 나오는 경우

 $X^T X$ 에 대해 고유값 분해를 진행했을 때 $\mathbf{0}$ 에 가까운 고유값이 존재한다면 다중공선성을 의심해볼 수 있음

$$V^T(X^TX)V = diag(\lambda_1, ..., \lambda_p)$$

⑥ X^TX 의 고유값 조사 결과, $(\lambda_1/\lambda_p)^{1/2}$ 값이 40보다 크게 나오는 경우

0 에 가까운 고유값들이 존재하면 왜 다중공선성을 의심해볼 수 있는 걸까?

$$V^{T}(X^{T}X)V = diag(\lambda_{1}, ..., \lambda_{p})$$

 $diag(\lambda_{1'}...,\lambda_{p})$ 의 k 번째 값인 λ_{k} 가 0 에 가까운 값을 가진다고 가정해본다면,

$$v_k{}^Tig(X^TXig)v_k=(Xv_k)^T\,Xv_k=\lambda_kpprox \mathbf{0}\leftrightarrow \sum_{i=1}^p v_{ik}X_ipprox \mathbf{0}$$
 이 성립하게 됨

 $\sum_{i=1}^p v_{ik} X_i$ 식에서 $v_{kk} X_k$ 부분만 좌항으로 이항 시켜주면 아래 식이 도출됨

$$-v_{kk}X_k=v_{1k}X_1+\cdots+v_{pk}X_p$$

0 에 가까운 고유값이 존재한다면 다중공선성을 의심해볼 수 있음

 $W^T(Y^TY)W = diag(\lambda)$

즉 X_k 가 $X_1, ..., X_p$ 의 선형 결합으로 표현돼

설명변수들이 서로 선형종속관계에 놓이게 되므로 다중공선성을 의심해봐야 함!

⑥ X^TX 의 고유값 조사 결과, $(\lambda_1/\lambda_p)^{1/2}$ 값이 40보다 크게 나오는 경우

임의의 고유값 λ_p 에 대하여 $\lambda_p o 0$ 일수록 $(\lambda_1/\lambda_p)^{1/2}$ 의 값은 커지게 됨

통상적으로 $(\lambda_1/\lambda_p)^{1/2}$ 값이 40을 넘으면 다중공선성이 존재한다고 판단

8

Endogeneity

내생성 | 원인

측정오차

정확하지 않은 측정값을 사용하는 경우

변수 누락

설명변수와 반응변수 모두 연관되는 생략변수가 존재하는 경우

동시성

설명변수와 반응변수 간의 인과관계가 불분명한 경우

내생성 | 원인

정확하지 않은 측정값을 사용하는 경우

변수 누락

설명변수와 반응변수

동시성

설명변수와 반응변수 간의

이번 회귀팀 클린업에서는

측정오차에 대해 중점적으로 알아볼 예정!

측정오차

측정오차 (Measurement Error)

응답자가 잘못 응답하거나 설문 집단을 잘못 선정한 상황에서 회귀모델의 변수에 대해 정확하지 않은 측정값을 사용하여 발생하는 Error

군별	공군
복무기간	2019.08.05 ~ 2024.05.21
면제 기타 사유	

Ex) 전역 년도를 잘못 기입한 회귀 팀장의 실제 이력서 제출본

내생성

내생성 (Endogeneity)

Measurement Error 등의 이유로 인해

설명변수(X) 와 오차항 간에 상관관계가 발생하는 현상

1

반응변수(Y) 에 측정오차가 발생하는 경우 2

설명변수(X) 에 측정오차가 발생하는 경우

내생성

내생성 (Endogeneity)

Measurement Error 등의 이유로 인해

설명변수(X) 와 오차항 간에 상관관계가 발생하는 현상

측정오차로 인해 **내생성이 발생**하게 되면 회귀계수의 **추정량은 더 이상 BLUE 가 되지 못함**

발생하는 경우

발생하는 경우

회귀모델의 예측, 추정, 상관관계 분석에 있어 문제를 발생시킴

내생성

내생성 (Endogeneity)

Measurement Error 등의 이유로 인해

설명변수(X) 와 오차항 간에 상관관계가 발생하는 현상

측정오차의 경우 설명변수(X) 에서 발생됐을 때, 내생성이 발생함

발생하는 경우

발생하는 경우

반응변수(Y) 와 설명변수(X) 각각에 대해

측정오차가 발생한 경우를 확인해보며 그 이유를 알아보자!

측정오차 | 반응변수 (Y)

 $E(\varepsilon) = 0, \ Cov(X, \varepsilon) = 0, \ Cov(v, \varepsilon) = 0$ 가정 하에서 측정오차가 발생한 부분을 제외한 Y 데이터를 이용해 회귀식을 작성 시 Gauss Markov Theorem 에 따라 추정량($\hat{\beta}$) 은 불편성과 일치성을 만족

$$y_i = y_i^* + v_i$$

$$y^* = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon \dots$$

 y_i : 측정오차가 발생한 Y 데이터

 y^*_i : 측정오차가 발생한 부분을 제외한 Y 데이터

측정오차 | 반응변수 (Y)

그러나 식 ① 을 y_i 값을 이용해서 다시 표현 했을 때, 해당 회귀식의 추정량($\hat{\beta}$) 은 <mark>불편성</mark>과 <mark>일치성</mark>을 만족한다는 보장을 못함

$$y^* = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon \dots \textcircled{1}$$

$$\leftrightarrow y = y^* + v = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon + v \dots \textcircled{2}$$

 $\widehat{\boldsymbol{\beta}}$ 은 BLUE 가 되지 못함

측정오차 | 반응변수 (Y)

그러나 식 ① 을 y_i 값을 이용해서 다시 표현 했을 때, 해당 회귀식의 추정량($\hat{\beta}$)은 **불편성**과 **일치성**을 만족한다는 보장을 못함 - $\widehat{\beta}$ -

따라서 식 ② 로 부터 도출된 추정량($\hat{\beta}$) 이

BLUE 가 되기 위해선 **추가적인 가정들의 도입이 필요함**

$$\leftrightarrow y = y^* + v = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon + v \dots 2$$

 $\hat{\beta}$ 은 BLUE 가 되지 못함

측정오차 | 반응변수 (Y)

식②의 BLUE 만족을 위한 가정

(a) E(v) = 0 Measurement Error 의기댓값은 항상 0

추정량($\hat{\beta}$) 의 불편성을 위한 가정

 $oldsymbol{6}$ $oldsymbol{\mathcal{Cov}(X,v)} = \mathbf{0}$ Measurement Error 와 설명변수들 간에는 상관관계 X

추정량($\hat{\beta}$) 의 <mark>일치성을 위한 가정</mark>

측정오차 | 반응변수 (Y)

식 ② 의 BLUE 만족을 위한 가정

E(v) = 0

v 는 반응변수(Y) 에서 발생된 측정 오차로
 설명변수(X) 와는 서로 무관하다고 볼 수 있음
 이 경우 가정 (D) 는 항상 만족한다고 간주

추정량($\hat{\beta}$) 의 **불편성을 위한 가정**

 $oldsymbol{\mathcal{C}ov}(X,oldsymbol{v})=oldsymbol{0}$ Measurement Error 와 설명변수들 간에는 상관관계 X

추정량($\hat{\beta}$) 의 <mark>일치성을 위한 가정</mark>

측정오차 | 반응변수 (Y)

식②의 BLUE 만족을 위한 가정

추정량($\hat{\beta}$) 의 불편성을 위한 가정

추정량($\hat{\beta}$) 의 **일치성을 위한 가정**

측정오차 | 반응변수 (Y)

식 ② 의 BLUE 만족을 위한 가정

추정량($\hat{\beta}$) 의 **불편성을 위한 가정**

$$E(v) = \delta$$
 라고 가정해보면

절편 항의 추정량에는 bias 발생하게 됨

$$E(Y|X) = (\widehat{\boldsymbol{\beta}}_0 + \boldsymbol{\delta}) + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

실병변수할 신에는 성변편계 X

추정량이 완전히 불편성을 가지려면 측정오차의 평균값은 0 이 돼야 함

측정오차 | 반응변수 (Y)

식 ② 의 BLUE 만족을 위한 가정

a

E(v) = 0

Measurement Error 의

 $E(v) = \delta$ 라고 가정해보면

절편 항의 추정량에는 bias 발생하게 됨

 $E(Y|X) = (\hat{\beta}_0 + \delta) + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$

기댓[®] 하지만 절편을 제외한 계수 추정량들을 다시 봐 보면 ... 공편된게 A

추정량($\hat{\beta}$) 의 불편성을 위한 가정

추정량이 완전히 불편성을 가지려면 측정오차의 평균값은 0 이 돼야 함

측정오차 | 반응변수 (Y)

$$E(Y|X) = (\widehat{\beta}_0 + \delta) + \widehat{\beta}_1 x_1 + \dots + \widehat{\beta}_p x_p$$

절편을 제외한 계수 추정량들에는 bias 가 발생하지 않음

관계분석 측면에서 반응변수(Y) 의 측정오차 발생은 Critical 한 영향을 주지 않는다는 사실을 확인 가능

측정오차 | 반응변수 (Y)

앞서 살펴본 가정들의 만족 여부와는 관계 없이 계수 추정치의 분산 정도는 커지게 됨

$$V(y) = V(\varepsilon + v) = V(\varepsilon) + V(v) \ (\because Cov(v, \varepsilon) = 0) > V(\varepsilon)$$

BLUE 가 되더라도 '측정오차가 발생하지 않았을 때' 와 비교해보면 구간 추정 및 예측의 정확도는 감소할 수밖에 없음

측정오차 | 반응변수 (Y)

정리

아래 가정들을 만족 시 OLS 추정량은 BLUE 가 됨

ⓐ
$$E(v) = 0$$
, ⓑ $Cov(X, v) = 0$

가정 ⓐ 가 위배돼도 절편에만 bias 가 발생하기 때문에 변수들 간의 관계 정도 파악에는 큰 문제가 되진 않음

측정오차 | 설명변수 (X)

 $E(\varepsilon)=0,\ Cov(x_1^*,\varepsilon)=0,\ Cov(\mu,\varepsilon)=0$ 가정 하에서 측정오차가 발생한 부분을 제외한 X 데이터를 이용해 회귀식을 작성 시 Gauss Markov Theorem 에 따라 추정량($\hat{\beta}$) 은 불편성과 일치성을 만족

$$x_1 = x_1^* + \mu$$

$$y = \beta_0 + \beta_1 x_1^* + \varepsilon \cdots \textcircled{1}$$

 x_i : 측정오차가 발생한 X 데이터

 x^*_i : 측정오차가 발생한 부분을 제외한 X 데이터

측정오차 | 설명변수 (X)

그러나 식 ① 을 x_1^* 값을 이용해서 다시 표현 했을 때, 해당 회귀식의 추정량 $(\hat{\beta})$ 은 <mark>불편성</mark>과 <mark>일치성</mark>을 만족한다는 보장을 못함

 $\widehat{\boldsymbol{\beta}}$ 은 BLUE 가 되지 못함

측정오차 | 설명변수 (X)

그러나 식 ① 을 x_1^* 값을 이용해서 다시 표현 했을 때, 해당 회귀식의 추정량($\hat{\beta}$) 은 **불편성**과 <mark>일치성</mark>을 만족한다는 보장을 못함 - \bigcirc -

반응변수(Y) 때와 마찬가지로 식 ② 로 부터 도출된 추정량($\hat{\beta}$) 이 BLUE 가 되기 위해선 **추가적인 가정들의 도입이 필요함**

$$\leftrightarrow y = \beta_0 + \beta_1(x_1 - \mu) + \varepsilon = \beta_0 + \beta_1 x_1 + (\varepsilon - \beta_1 \mu) \cdots 2$$

 $\hat{\beta}$ 은 BLUE 가 되지 못함

측정오차 | 설명변수 (X)

식②의 BLUE 만족을 위한 가정

a

 $E(\mu) = 0$

Measurement Error 의

기댓값은 항상 0

b

 $Cov(x_1, \mu) = 0$

Measurement Error 와

오류값 간에 상관관계 X

©

 $Cov(x_1^*, \mu) \neq 0$

Measurement Error 와

참값 간에는 상관관계 존재

추정량($\hat{\beta}$) 의

불편성을 위한 가정

추정량($\hat{\beta}$) 의

일치성을 위한 가정

측정오차 | 설명변수 (X)

식 ② 의 BLUE 만족을 위한 가정

측정오차 | 설명변수 (X)

식 ② 의 BLUE 만족을 위한 가정

만약 가정 © 가 위배되어 $Cov(x_1^*, \mu) = 0$ 인 경우

$$Cov(x_1, \mu) = E[x_1\mu] - E[x_1]E[\mu] = E[x_1\mu]$$

$$= E[(x_1^* + \mu)\mu] = E[x_1^* \mu] + E[\mu^2] \neq 0$$

(C)

$$Cov(x_1^*, \mu) \neq 0$$

Measurement Error 와

참값 간에는 상관관계 존재

결과적으로 가정 ⓑ $Cov(x_1, \mu) = 0$ 가 위배돼 계수 추정량($\hat{\beta}$) 은 일치성을 만족하지 않게 됨

불편성을 위한 가정

일치성을 위한 가정

측정오차 | 설명변수 (X)

따라서 가정 ⓒ 는, 가정 ⓑ 의 만족을 위한 충분조건이므로

만약 가정 © 가 위배될 경우 추정량($\hat{\beta}$) 은 BLUE 가 될 수 없음을 확인 가능

$$Cov(x_1, \mu) = E[x_1\mu] - E[x_1]E[\mu] = E[x_1\mu]$$

Measurement Error 와

 $UUU(X_1,\mu) \neq U$

추가로 설명변수 (x_1) 와 오차항 $(\varepsilon - \beta_1 \mu)$ 사이 역시

상관관계가 존재하게 되므로 내생성이 생김을 확인 가능

$$Cov(x_1, \varepsilon - \beta_1 \mu) = Cov(x_1, \varepsilon) - \beta_1 Cov(x_1, \mu)$$

=
$$Cov(x_1^*, \varepsilon) + Cov(\mu, \varepsilon) - \beta_1 V(\mu) = -\beta_1 V(\mu) \neq 0$$

계수추정량 $(\widehat{oldsymbol{eta}})$ 은 일치성을 만족하지 않게 됨

측정오차 | 설명변수 (X)

설명변수(X) 에서의 측정오차로 인해 내생성이 발생하게 되면 계수 추정량($\hat{\beta}$) 은 정확히 아래와 같은 bias 를 가지게 됨

$$plim \, \hat{\beta} = \beta \, \left(\frac{V(\varepsilon)}{V(\varepsilon) + V(\mu)} \right) < \, \beta$$

OLS 추정량에 1보다 작은 값을 곱하는 꼴로써 Attenuation bias 라고 부름

측정오차 | 설명변수 (X)

설명변수(X) 에서의 측정오차로 인해 내생성이 발생하게 되면

이러한 계수추정량의 bias 는 회귀분석 과정의 예측, 구간추정, 상관관계 파악에 있어 문제를 발생시키게 됨

$$plim \beta = \beta \left(\frac{1}{V(\varepsilon) + V(\mu)} \right) < \beta$$

- 꼴로써

측정오차 | 설명변수 (X)

앞서 살펴본 가정들의 만족 여부와는 관계 없이

계수 추정치의 분산 정도는 커지게 됨

$$V(\widehat{\beta}) = V(\varepsilon - \beta_1 \mu) (X^T X)^{-1} = \{V(\varepsilon) + \beta_1^2 V(\mu)\} (X^T X)^{-1}$$

예측, 구간추정, 상관관 $_{V(oldsymbol{arepsilon})}$ 나문제를 발생시키게 됨

BLUE 가 되더라도 '측정오차가 발생하지 않았을 때' 와 비교했을 땐 구간 추정 및 예측의 정확도는 감소할 수밖에 없음

측정오차 | 설명변수 (X)

정리

아래 가정들을 만족 시 OLS 추정량은 BLUE 가 됨

ⓐ
$$E(\mu) = 0$$
, ⓑ $Cov(x_1, \mu) = 0$, ⓒ $Cov(x_1^*, \mu) \neq 0$

특히 가정 © 가 위배되면 OLS 추정량은 BLUE 가 될 수 없어 회귀모델의 예측, 구간추정, 상관관계 파악 과정에 있어 문제가 발생

내생성의 처방 | 도구 변수

도구 변수 (Instrumental Variables)

외생적인 설명변수와 내생적인 설명변수를 분리하는

도구적인 역할을 수행하는 변수

내생성의 처방 | 도구 변수

2SLS (2 Stage Least Squares)

도구 변수를 이용해 **설명변수의 외생적인 부분을 예측**한 뒤 이를 원래 회귀식에 다시 적용하여 **반응변수를 예측**하는 방법

0. Original Equation ---

$$y = \alpha_0 + \alpha_1 x + u$$
$$Cov(x, u) \neq 0$$

내성성이 발생한 (즉 $Cov(x,u) \neq 0$) 원래 회귀식을 작성

내생성의 처방 | 도구 변수

2SLS (2 Stage Least Squares)

도구 변수를 이용해 **설명변수의 외생적인 부분을 예측**한 뒤 이를 원래 회귀식에 다시 적용하여 **반응변수를 예측**하는 방법

1. First-Stage

$$x = \beta_0 + \beta_1 z + v$$

$$\widehat{x} = \beta_0 + \beta_1 z$$

$$\beta_1 \neq 0$$

$$Cov(z,u) = 0$$

$$Cov(z, v) = 0$$

도구 변수(*z*) 를 이용해

설명변수의 외생적인 부분만을 예측

내생성의 처방 | 도구 변수

2SLS (2 Stage Least Squares)

도구 변수를 이용해 **설명변수의 외생적인 부분을 예측**한 뒤 이를 원래 회귀식에 다시 적용하여 **반응변수를 예측**하는 방법

2. Second-Stage

$$y = \gamma_0 + \gamma_1 \widehat{x} + u$$

$$\therefore Cov(\hat{x}, u) = 0$$

도구 변수(z) 로 예측한 설명변수의 **외생적 부분(\hat{x})** 을, 원래 회귀 식의 설명변수 자리에 다시 넣어 반응변수(\hat{y}) 를 예측

내생성 처방 | 도구 변수

2SLS (2 Stage Least Squares

도구 변수를 이용해 설명변수의 외생적인 부분을 예측하고

이를 원래 회귀식에 다시 적용하여 **반응변수를 예측**하는 방법

 $\beta_1 \neq 0$: Relevance condition

Cov(z, u) = 0: Exclusion condition

2. Secon Cov(z,v) = 0: Exogeneity condition

First-Stage 의 세 조건들을 만족하기가 현실적으로 어렵고

도출된 추정량($\widehat{oldsymbol{eta}}$) 의 분산은 이전 대비 커진다는 한계가 존재

 $Cov(\hat{x}, u) = 0$

다음 주 예고

- 1. Introduction(Prediction Error)
 - 2. Subset Selection
 - 3. Dimension Reduction
 - 4. Shrinkage
 - 5. Regression for Spatial data

감사합니다