Certificate Validation in TLS: Challenges and Emerging Trends

DR. BALAJI RAJENDRAN
PRINCIPAL TECHNICAL OFFICER
CENTRE FOR DEVELOPMENT OF ADVANCED COMPUTING
NO.68, ELECTRONICS CITY, BANGALORE

IIESOC CONNECTIONS @ INFOSYS, BANGALORE 8TH NOVEMBER 2017

Agenda

- ► Electronic Trust Models
- ▶ CA, CRL, Types of Certificates in TLS
- Validation for Certificate Issuance
- ► RFCs ACME
- Certificate Validation Algorithm
- Certificate Transparency and RFCs
- Summary

Approaches to Establish Electronic Trust

Certifying Authority (CA)

- Certifying authority is an entity which issues Digital Signature Certificate(DSC)
- ▶ It is a trusted third party
- ▶ CA's are the important components of Public Key Infrastructure (PKI)

Responsibilities of CA

- Verify the credentials of the entity requesting for the certificate (RA's responsibility)
- ▶ Issue certificates
- ▶ Revoke certificate
- ▶ Generate and upload CRL

Sample Certificate

Sample Certificate and CRL

CRL – Certificate Revocation List

- A list containing the serial number of those certificates that have been revoked by a particular CA
 - CRL is digitally signed by CA;
 - Maintained by the CA's
- Why they have been revoked?
 - If keys are compromised and users reports to the CA
 - ▶ If CA discovers, false information being used to obtain the certificate
- ▶ How frequently the CRL is updated ?
 - ► Generally twice a day; based on CA's policies
- Is there any automated system in place for accessing the CRL?
 - ▶ OCSP

CRL

Types of Certificates

- ▶ Based on Business requirement
 - ▶ Multi-domain Certificate
 - Wild Card Certificate
- ▶ Based on Validation
 - Domain Validated (DV) Certificates
 - Organization Validated (OV) Certificates
 - Extended Validation (EV) Certificates

Sample DV Certificate

Sample OV Certificate

Process of Obtaining DV Certificate

- ▶ Generate a PKCS#10 [RFC2986] Certificate Signing Request (CSR).
- Cut-and-paste the CSR into a CA web page.
- Prove ownership of the domain by one of the following methods:
 - ▶ Put a CA-provided challenge at a specific place on the web server.
 - ▶ Put a CA-provided challenge at a DNS location corresponding to the target domain.
 - Receive CA challenge at a (hopefully) administrator-controlled email address corresponding to the domain and then respond to it on the CA's web page.
- Download the issued certificate and install it on their Web Server.

Few incidents ...

Comodo

- Exploiting the CA process to issue bogus certificates
- March 2011, 9 bogus certificates were issued based on request coming from Iran

DigiNotar

- A dutch CA had to close its business owing to exploitation of its infrastructure
 - ▶ July 2011, an attacker issued a Wildcard Certificate for Google!
 - Around 500 fake Diginotar certificates were found to be issued
 - ▶ All browsers started to remove DigiNotar from their trust stores
 - ▶ As a result of this, one of the sub-CA of DigiNotar that was issuing certificates to Dutch Government also was affected

Automatic Certificate Management Environment (ACME)

- ▶ Working Group: ACME
- draft-ietf-acme-acme-07
 - Authors: Richard Barnes, Hoffman-Andrews, Kasten
- Proposes to automate the process of verification of domain names (as given by applicant) by the CA for DV Certificates
 - Also proposes to automate the process of Certificate Issuance and Revocation
- Designed as a REST application

ACME - Explained ...

ACME - Verification

ACME – Issuance and Revocation

ACME - Protocol

- The ACME client prompts the operator for the intended domain name(s) that the web server is to stand for
- The ACME client presents the operator with a list of CAs from which it could get a certificate.
- The operator selects a CA.
- In the background, the ACME client contacts the CA and requests that it issue a certificate for the intended domain name(s).
- ▶ The CA verifies that the client controls the requested domain name(s).
- Once the CA is satisfied, the certificate is issued and the ACME client automatically downloads and installs it, potentially notifying the operator via email, SMS, etc.
- The ACME client periodically contacts the CA to get updated certificates, stapled OCSP responses
- To request that a certificate be revoked, the client sends a POST request to the ACME server's revoke-cert URL.

OCSP

- Online Certificate Status Protocol
 - ▶ A request is made by the browser to the CA about the validity of a specific TLS Certificate
 - ► CA runs a OCSP Responder that checks and tells whether the certificate is valid or revoked
 - Response returned by the CA is digitally signed by it;
 - ▶ Defined in RFC 2560 and RFC 5019

OCSP Stapling

- An alternative to OCSP
- Web server sends a query to CA Server (OCSP Responder)
- OCSP Responder responds with status of certificate and digitally signs the response and timestamps it
- Web server caches the response received and staples with TLS Certificate and sends it to client during SSL handshake
- ▶ Defined in RFC 6066
 - ▶ The word stapling is not used; but "status_request" is used

OCSP Stapling

- Advantage:
 - ▶ Eliminates the need for browser to contact the CA
- Disadvantage:
 - Most TLS certificates are signed by intermediate CA's which are signed by a root CA
 - Validity of both certificates need to be verified; however OCSP stapling allows only one certificate status to be sent

Certificate Validation

- Validating Chain of Trust A recursive program!
 - ▶ As you go several levels deeper, complexity increases and potential of risk increases!
- Implemented by PKI enabled Application (Eg: Browsers)
- ▶ The validation process performs following checks
 - ▶ Format
 - Signature Validation Digital signature of the issuer (CA)
 - Time (Validity of the certificate)
 - Revocation (CRL verification)
 - ▶ Trust (Public Key verification) till root level

Certificate Validation Failures – Typical Cases

- Domain Mismatch
- Certificate Expired
- Could not find path to certificate

Certificate Validation Algorithm

► Algorithm in Brief

- 1. Check for Validity (Time, CRL (except for root), Format) of Certificate
- Check and Validate the Signature in the Certificate using the issuer's certificate (which contains the public key) – including the CPS (Policy)
- 3. If the issuer's certificate is not a self-signed certificate, then continue with this certificate from Step 1
- If it is a self-signed certificate,
 - ▶ Check if the Certificate is present in trust stores (Trusted Root CA)
 - ▶ If present, trust it and exit (allow user to proceed further)
 - ▶ If not prompt the user to take a decision to trust it or leave the site

Certificate Transparency

- Certificate Logs
 - Append-only, Cryptographically-assured, publicly auditable;
 - Operated as a network service
 - ▶ Few copies of logs (around 10) accessible across the world is sufficient
 - ► Each log can operate independently of other logs
 - ► Each certificate log must publicly advertise its URL and its public key
- Log Operations
 - Any one can submit a certificate to a log
 - Log server validates it, and respond with a signed certificate timestamp (SCT)
 - ▶ SCT is the maximum time period (MMD) required to add the certificate to the log
 - ▶ SCT accompanies certificate throughout the certificate lifetime

Delivering SCT with a Certificate

- ➤ X.509 v3 Extension
 - ► CA's add SCT to certificate using an X.509 V3 extension
- ▶ TLS Extension
 - Server operators add SCT using special TLS Extension
 - ▶ In this case, server operator submits the certificate to log instead of CA
 - signed_certificate_timestamp TLS Extension is used
- OCSP Stapling
 - ► CA simultaneously issues certificate to log server and server operator
 - Server makes OCSP query to CA, CA responds with SCT
 - SCT is added to the OCSP extension

Auditing and Monitoring Services

- Monitors are programs that watch for:
 - Suspicious certificates in logs, such as:
 - illegitimate or unauthorized certificates
 - Unusual certificate extensions
 - Certificates with strange permissions
 - Typically run by CAs
- Auditors verify overall integrity of logs
 - ► Programs that compute Merkle Proofs
 - ► Typically run by browsers

Summary

- Ever-increasing use of TLS Certificates, thanks to Cloud and IoT
- Ever-increasing attacks and bugs!
- Mechanisms to increase Transparency, and block-chain inspired solutions springing up!

References

- Automated Certificate Management Environment (ACME)
 - ▶ https://tools.ietf.org/html/draft-ietf-acme-acme-07
- Automated Certificate Management ACME + Let's Encrypt by Richard Barnes
 - https://ripe71.ripe.net/presentations/32-Automated-Certificate-Management.pdf
- Certificate Transparency RFC 6962
 - https://www.certificate-transparency.org/how-ct-works
- Polygora https://polygora.tech/

Thank you