미시경제학 *Microeconomic Theory*

소비자의 선호와 효용

서울시립대 경제학부 성낙일 교수

강의 순서

- 1. 소비자의 최적선택이란?
- 2. 소비자의 선호와 효용함수
- 3. 무차별곡선의 개념과 특성
- 4. 무차별곡선의 유형

1. 소비자의 최적선택이란?

상품묶음의 의미

	피자	휴대폰	커피		상품?
상품묶음A	10	3	3	• • •	5
상품묶음 B	2	8	5	• • •	2
상품묶음 C	5	6	9	•••	3
상품묶음?	0	20	0	• • •	8

[❖] 앞으로 두 개의 상품만이 존재한다고 가정

소비자의 최적선택이란?

소비자는 자신의 소득으로 구입할 수 있는 여러 상품묶음(commodity bundle) 중에서 가장 큰 만족감을 주는 것을 선택한다.

- ① 자신의 소득→ 소비자의 제약조건: 예산선
- ② 만족감 → 선호 또는 효용: 무차별곡선
- ③ 가장 큰 만족감 → 최적선택: 효용극대화

2. 소비자의 선호와 효용함수

소비자의 선호체계

■ 두 상품묶음간의 선호관계

- "A를 B보다 좋아(선호)한다"
- "B를 A보다 좋아(선호)한다"
- "둘 사이에 아무런 차이를 느끼지 못한다(무차별하다)"

■ 선호체계의 공리

완비성(completeness), 이행성(transitivity), 강단조성 (strong monotonicity), 연속성(continuity), 볼록성 (convexity)

❖ 선호체계의 공리가 충족되면 소비자의 선호체계를 연속적인 효용함수로 대표할 수 있다.

효용함수(Utility Function)

- 소비자의 선호체계를 효용함수(U)로 표현
 - "A를 B보다 좋아한다" ↔ U(A) > U(B)
- 효용함수의 값은 만족감의 순서만 표시
 - 서수적 효용의 개념
 - 한 선호체계를 대표하는 효용함수는 유일하지 않음
 U(A)=10 & U(B)=20 ↔ U(A)=100 & U(B)=150
 - ❖ 그러나 기수적 효용을 가정하여 논리를 전개해도 무방 (버냉키/프랭크의 설명방식)

효용곡면(Utility Surface)

❖ 상품묶음의 효용수준을 수평면으로부터의 높이로 나타낸 그림

한계효용

■ 한계효용(MU: Marginal Utility)

$$MU = \frac{\Delta U}{\Delta X} \implies MU = \frac{dU}{dX}$$

• X재 소비량이 한 단위 증가할 때 총효용의 증가 정도

■ 한계효용체감의 법칙

- 우하향하는 한계효용곡선
- 질문: 한계효용은 항상 체감하는가?

3. 무차별곡선의 개념과 특성

무차별곡선

- 무차별곡선(indifference curve)
 - 소비자에게 똑같은 크기의 효용을 주는 상품묶음의 집합
 - 무차별곡선은 구체적 효용 값(수준)이 아니라 효용의 순서를 나타냄
 - 무차별지도(indifference map): 무차별곡선의 집합
- 효용곡면에서 무차별곡선의 도출
 - 3차원 지도를 "등고선"으로 표현한 것

한계대체율

(MRS: Marginal Rate of Substitution)

한계효용과 한계대체율

■ 한계효용과 한계대체율의 관계

$$MU_x \times \Delta X = -MU_y \times \Delta Y \implies$$

$$MRS_{x,y} = -\frac{\Delta y}{\Delta x}\Big|_{(\frac{5}{2} \stackrel{\text{do a}}{=} \frac{9}{4} \stackrel{\text{do a}}{=} \frac{MU_x}{MU_y})}$$

무차별곡선의 특성: 종합

- 무차별곡선이 원점에서 더 멀리 떨어질 수록 더 높은 효용수준을 나타낸다.
- 무차별곡선은 우하향한다.
- 두 무차별곡선은 서로 교차할 수 없다.
- 무차별곡선은 원점에 대해 볼록하다.
 - ❖ 한계대체율 체감의 법칙이 성립한다.

특성 1: 무차별곡선이 원점에서 멀리 떨어질수록 효용수준이 더 높다.

특성 2: 무차별곡선은 우하향한다.

우상향하는 무차별곡선

수익률

0

위험

특성 3: 두 무차별곡선은 교차할 수 없다.

특성 4: 무차별곡선은 원점에 대해 볼록하다.

4. 무차별곡선의 유형

콥-더글라스 효용함수

(Cobb-Douglas utility function)

$$U = XY$$

상품묶음	X	Υ	U
1	2.00	5.00	10.0
2	4.00	2.50	10.0
3	6.00	1.67	10.0
4	8.00	1.25	10.0
5	10.00	1.00	10.0
6	4.00	2.50	10.0
7	8.00	2.50	20.0
8	12.00	1.67	20.0
9	16.00	1.25	20.0
10	20.00	1.00	20.0

❖ 한계대체율이 체감하는 효용함수

선형효용함수: 완전대체재

(Linear utility funciton)

$$U = X + 2Y$$

상품묶음	X	Υ	U
1	2.0	4.0	10.0
2	4.0	3.0	10.0
3	6.0	2.0	10.0
4	8.0	1.0	10.0
5	10.0	0.0	10.0
6	4.0	8.0	20.0
7	8.0	6.0	20.0
8	12.0	4.0	20.0
9	16.0	2.0	20.0
10	20.0	0.0	20.0

선형효용함수: 완전대체재 (Linear utility funciton)

$$U = X + 2Y$$

$$\frac{dU}{dX} = 1, \frac{dU}{dY} = 2$$

$$MRS = \frac{MU_x}{MU_y} = 0.5$$

❖ 한계대체율: 상수

레온티에프효용함수: 완전보완재

(Leontief utility function)

$$U = \min\{X, Y\}$$

상품묶음	X	Y	U
1	2.0	2.0	2.0
2	2.0	4.0	2.0
3	2.0	6.0	2.0
4	4.0	2.0	2.0
5	6.0	2.0	2.0
6	4.0	4.0	4.0
7	4.0	6.0	4.0
8	4.0	8.0	4.0
9	6.0	4.0	4.0
10	8.0	4.0	4.0

레온티에프효용함수: 완전보완재 (Leontief utility function)

❖ 한계대체율: 0 또는 무한대

