

Università degli Studi di Cagliari

DICAAR

DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA

CORSO DI LAUREA TRIENNALE IN INGEGNERIA ELETTRICA INDUSTRIALE

ANALISI MATEMATICA 2

edited by

NICOLA FERRU

 $Un of \!\!\! ficial \ Version$

2022 - 2023

Indice

	0.1	Premesse	7				
	0.2	Simboli	8				
_	. .		_				
1		oduzione	9				
	1.1	tipologia in R	9				
	1.0	1.1.1 Distanza	9				
	1.2	Intorno	9				
			10				
			11				
			11				
			11				
			11				
			11				
			11				
			12				
		1.2.9 Teorema di Weierstrass	12				
2	Der	ivate Parziali	۱3				
	2.1		13				
			13				
	2.2	Derivata parziale seconde	14				
		-	14				
	2.3	,	14				
			15				
			۱7				
3	Differenziabilità						
			18				
		3.0.2 Tutte le funzioni differenziali sono derivabili	18				
		3.0.3 Le funzioni con derivate parziali continue sono diferenziabili	19				
	3.1	Significato geometrico del differenziale e piano tengente	19				
		3.1.1 Differenziale primo	19				
		3.1.2 Piano Tangente	19				
		3.1.3 Significato geometrico del differenziale primo	20				
		3.1.4 Funzioni composite	20				
		3.1.5 Funzione composta	21				
		3.1.6 Teorema della derivata della funzione composta	21				
	3.2	Teorema differenziabilità delle funzioni composite	22				
	3.3	Differenziale secondo	23				
		3.3.1 Condizioni sufficiente per l'esistenza di minimo e massimo relativo	24				

Elenco delle figure

0.1 Premesse...

In questo repository, inoltre, sono disponibili le dimostrazioni grafiche realizzate con Geogebra; consiglio a tutte le persone che usufruiranno di questo lavoro, di dare un occhiata alle dimostrazioni grafiche e stare attenti, in quanto nel tempo potranno essere presenti delle modifiche, cosi da apportare miglioramenti al contenuto degli stessi appunti. Solitamente il lavoro di revisione viene fatto tre/quattro volte alla settimana perché sono in piena fase di sviluppo. Ricordo a tutti che essendo un progetto volontario ci potrebbero essere dei rallentamenti per cause di ordine superiore e quindi potrebbero esserci meno modifiche del solito oppure essere presenti degli errori. Chiedo pertanto la cortesia a voi lettori di contattarmi per apportare eventuali correzioni . Tengo a precisare che tutto il progetto è puramente open source, pertanto vengono resi disponibili i sorgenti dei file LaTex insieme ai PDF compilati.

Cordiali saluti

0.2 Simboli

Simbolo	Nome	Simbolo	Nome
\in	Appartiene	∋:	Tale che
∉	Non appartiene	<u> </u>	Minore o uguale
3	Esiste	<u>></u>	Maggiore o uguale
∃!	Esiste unico	α	alfa
\subset	Contenuto strettamente	β	beta
\subseteq	Contenuto	γ, Γ	gamma
\supset	Contenuto strettamente	δ, Δ	delta
\supseteq	Contiene	ϵ	epsilon
\Rightarrow	Implica	σ, Σ	sigma
\iff	Se e solo se	ρ	${f rho}$
\neq	Diverso		
\forall	Per ogni		

Capitolo 1

Introduzione

1.1 tipologia in R

1.1.1 Distanza

- $R: d(x_1, x_2) = |x_1 x_2|$
- \mathbb{R}^2 : Siano $P_1(x_1, y_1)$ e $P_2(x_2, y_2)$, la loro distanza è $d(P_1, P_2) = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- \mathbb{R}^3 : Siano $Q_1(x_2, y_2, z_2)$, la loro distanza è $d(Q_1, Q_2) = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$
- R^4 : Siano $x = (x_1, x_2, x_3, \dots, x_n) \in R^n$ e $y = (y_1, y_2, y_3, \dots, y_n) \in R^n$

$$d(x,y) = \sqrt{\sum_{a=1}^{D} (x_a y_a)^2}$$

La distanza è un'applicazione $R^n*R^n \to R^+ \vee \{0\}$ (ha come immagine al più nullo)

Proprietà 1. questi sono vincolati dalle sequenti proprietà

- $d(x,y) \le 0$ $d(x,y) = 0 \Leftrightarrow x \equiv y$ la distanza è nulla se i due punti coincidono
- ullet d(x,y)=d(y,x) la distanza tra x e y uguale alla distanza da y a x
- $d(x,y) \ge d(x,y) + d(z,y)$ disuguaglianza triangolare.

1.2 Intorno

Definizione 1. Insieme dei punti che distano da un punto P_0 meno di un δ

• R Intervallo $]x_0 - \delta, x_0 + \delta[$, P(x) generico punto $d(P_0, P) < \delta$

$$|x-x_0|<\delta$$

 \bullet R^2

$$P_{0}(x_{0}, y_{0})$$

$$P(x, y)$$

$$d(P_{0}, P) < \delta$$

$$\sqrt{(x - x_{0})^{2} + (y - y_{0})^{2}} < \delta$$

Cerchio di cerntro P_0 e di perimetro δ privato della circonferenza

 R^3

$$\begin{aligned} Q_0(x_0,y_0,z_0) \\ Q(x,y,z) \\ d(Q,Q_0) &< \delta \\ \sqrt{(x-x_0)^2 + (x-y_0)^2 + (z-z_0)^2} &< \delta \end{aligned}$$

Sfera di centro Q_0 e raggio δ privata della sua superficie.

Punto interno P_0 è interno all'insieme D se:

$$\exists I_{P_0,\delta} \subset D \tag{1.1}$$

Esiste un interno di P_0 di ampiezza δ incluso nell'insieme D, cioè l'interno contiene tutti i punti dell'insieme.

Punto esterno P_0 è esterno all'insieme D se è interno al complementare di D, CD

$$\exists I_{P_0,\delta} \subset CD \tag{1.2}$$

esiste un interno di P_0 di ampiezza δ incluso nel complementare dell'interno D

Punto di frontiera P_0 è un un punto di frontiera se

$$P_0 \in F_D \to \text{frontiera dell'insieme D}$$
 (1.3)

 $\forall I_{F_D}$ in esso cadono punti di D e pinti di CD qualunque interno, in esso cadono punti dell'insieme D e del suo complementare.

Punto di accumulazione P_0 è un punto di accumulazione se $\forall I_{P_0}$ cade in un punto $\in D$, se cade un punto di D in I_{p_0} , allora ne cadono infiniti.

Punto isolato P_0 è un punto isolato se $\exists I_{P_0,\delta}$ in cui non cade nessun punto dell'insieme.

Insieme Aperto

Definizione 2. A si dice aperto se $\forall P \in A \exists I_p \subset A$ per qualunque punto di A esiste un interno incluso in A, cioè ogni intorno di P è formato da punti dell'insieme aperto è formato da punti interni $a:b[x^2+y^2< r^2 \text{ cerchio senza circonferenza:}$

$$\begin{cases} y < 1 - x \\ y > 0 & triangolo \ senza \ lati \\ 0 < x < 1 \end{cases}$$
 (1.4)

1.2.1 Insieme chiuso

Definizione 3. A si dice chiuso se coincide con il suo insieme chiususura, che è formato dall'insieme tesso più gli eventuali punti di accumunlazione che non gli appartengono. Un insieme è chiuso quando contiene i suoi punti di accumulazione. [a:b]; $x^2 + y^2 \le r^2$ cerchio più circonferenza:

$$\begin{cases} y \le 1 - x \\ y \ge 0 & tringolo \ con \ lati \\ 0 \le x \le 1 \end{cases}$$
 (1.5)

1.2. INTORNO 11

1.2.2 Insieme connesso

Definizione 4. un insieme A si dice connesso se e solo se $\forall P_1, P_2 \subset A \ \exists \Gamma i(P_1, P_2) \subset A$. A è connesso se per qualunque P_1, P_2 di A esiste una spezzata inclusa in in A

A si dice semplicemente connessa se qualunque chiusa inclusa in A è frontiera dell'insieme.

1.2.3 Insieme convesso

Definizione 5. un insieme A si dice convesso se per ogni coppia di $x, y \in A$ il segmento \bar{xy} è contenuto in A

Insiemi Limitati In R:A è limitato se $\forall x \in A:$ Insieme illimitato In $R:[2;+\infty[$ illimitato $x \leq M$

$$[-1;1]$$
 limitato

$$InR^2: illimitato \begin{cases} x \ge 0 \\ y \ge 0 \end{cases}$$
 (1.7)

In \mathbb{R}^2 : A è limitato se è contenuto in un intorno circolare dell'origine

$$\exists M > 0 : \sqrt{x^2 + y^2} \le M$$
 (1.6)

1.2.4 Coordinate Polari

Definizione 6. in molti casi è utile utilizzare una funzione in coordinate polari, sia P(x, y) un punto nel piano; esso è individuato univocamente da una coppia di valori: le coordinate cartesiano X e y oppure le coordinate polari ρ e θ .

$$\begin{cases} \rho = \sqrt{x^2 + y^2} \\ x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

per capire, facciamo un esempio

$$f(x,y) = \frac{x^3}{x^2 + y^2} \equiv f(\rho,\theta) = e^3 \frac{\cos^2 \theta}{e^2}$$
 (1.8)

1.2.5 Limiti e continuità

Definizione 7. f(x,y) una funzione definito in D e siano (x_0,y_0) punto di accumulazione per D

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l \quad \forall \xi > 0 \ \exists \delta_{(E)} > 0 : \forall I_{(x_0,y_0),\delta}/\{(x_0,y_0)\}, \forall (x,y) \in I | f(x,y)$$
(1.9)

Per qualunque $\xi > 0$ esiste un $\delta(\xi) > 0$ per cui qualunque intorno di (x_0, y_0) al più x_0, y_0 e per qualunque (x_0, y_0) di quast'intorno la funzione dista da i meno di ξ .

1.2.6 Continuità

Definizione 8. Sia f(x,y) definita in D, f(x,y) si definisce continuo in $(x_0,y_0) \in D$

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0) \tag{1.10}$$

1.2.7 Esistenza del limite

Definizione 9. Calcolando il limite con f in forma polare esiste se non dipende da θ . È possibile calcolare il limite di f in forma cartesiano nel segmento nodo. Anziché considerare tutti i punti dell'interno, si

considerino queli si ina generica retta.

$$y = y_0 + m(x - x_0) (1.11)$$

- Se il limite dipende da m esso non siste.
- Se non dipende da m esite.

1.2.8 Teorema di esistenza dei valori intermedi

Teorema 1. Sie f(x,y) definita in un insieme chiuso e limitato. Allora f(x,y) assume tutti i valori campresi fra il massimo ed il minimo di f(x,y) su D

1.2.9 Teorema di Weierstrass

Teorema 2. Una funzione continua in un intervallo chiuso e limitato, che ammette massimo e minimo assoluto.

Sia f(x,y) una funzione continua in D e sia D un insieme chiuso e limitato. Allora f(x,y) ha massimo e minimo assoluto in D.

Capitolo 2

Derivate Parziali

2.1 Derivate parziali di primo grado

Definizione 10. Sia f(x,y) una funzione di due variabili definita in un punto interno ad A Consideriamo un interno circolare di $P(x_0,y_0), I(x_0,y_0), \delta$, in netto sulla retta $y=y_0$ e incrementa la x_0 passante da x_0 a $x_0 + h$. Ho così un punto $P(x_0 + h, y_0) \in A$.

Definisco il rapporto di f(x,y) nella sola x

$$\frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} \tag{2.1}$$

f(x,y) si definisce derivabile parzialmente se $\exists \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} = l \in R$ reale e finito.

$$\frac{\partial f}{\partial x} = fx = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} \tag{2.2}$$

Analogamente, considero un interno di $P(x_0, y_0), I(x_0, y_0), \delta$. Mi ruoto sulla retta $x = x_0$ e incremento la y_0 passando da y_0 a $y_0 + k$. Ho così un punto $P(x_0, y_0 + h) \in A$.

Definisco il rapporto ingrementale di f(x,y) nella sola y

$$\frac{f(x_0 + k, y_0) - f(x_0, y_0)}{k}$$

derivabile parzialmente se $\exists \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} = l \in R$ reale e finito.

Se in un punto (x,y) esistono entrambi le derivate parziale si dice che la funzione è derivabile in (x,y) inoltre se f è derivabile in ogni punto $(x,y) \in A$, si dice che f è derivabile in A.

2.1.1 Significato geometrico

- Lo derivata prima par parziale in P è $fx(x_0, y_0)$, è la tangente alla curva che si crea intersecando f(x, y) con il piano $y = y_0$
- La derivata prima parziale in P, $fy(x_0, y_0)$ è la tangente alla curva che si crea intersecando f(x, y) con il piano $x = x_0$

Se esistono entrambe allora le due rette tangenti alle sezioni della funzione individuano il piano tangente al solido nel punto $P(x_0, y_0, z)$

2.2 Derivata parziale seconde

Definizione 11. Sia f(x,y) una derivabile e siano definite in un deminio le due derivate parziali

$$f_x(x,y)$$
 $f_y(x,y)$

Tali funzioni passano a loro volta essere derivabili e si ottengono così le derivate seconde parziali di f(x,y)

$$f_{x}(x,y) \qquad f_{y}(x,y)$$

$$f_{xx}(x,y) \qquad f_{xy}(x,y) \qquad f_{yx}(x,y) \qquad f_{yy}(x,y)$$

$$f_{yx}(x,y) \qquad \text{derivata seconde pure} \qquad f_{yx} \qquad \text{derivata seconde resto}$$

$$f_{yx}(x,y) \qquad f_{yx}(x,y) \qquad f_{yx}(x,y) \qquad f_{yx}(x,y)$$

 $f_{yx}(x,y) \label{eq:fyx}$ derivata prima rispetto a

y poi rispetto a rispetto a x

con n variabili si hanno n^2 derivate seconde parziali – Spesso le derivate seconde sono disposte in una matrice quadrata, detta hessiana, con il sinbolo D^2

$$D^{2}f = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$$
n variabili $\rightarrow n * n$ (2.3)

Se esistono le quanto derivate di f, nel punto (x,y), si dice che f è dirivabile due volte in (x,y). Se ciò accade $\forall (x,y) \in A$, f è derivabile due volte nell'insieme A.

2.2.1 Teorema di Schwarz (Dell'invertibilità dell'ordine di derivazione)

Teorema 3. Sia f(x,y) definita in D e derivabile due volte $\forall (x,y) \in D$. Se le derivate seconde in (x_0,y_0) $f_{xy}(x_0,y_0)$ e $f_{yx}(x_0,y_0)$ sono continue in (x_0,y_0) allora risulta $f_{xy}(x_0,y_0) = f_{yx}(x_0,y_0)$.

In generale se vale il teorema di Schwarz, la matrice Hessiana può essere scritta come

$$H = D^2 f = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix} = \begin{bmatrix} f_{xx} & f_{yx} \\ f_{yx} & f_{yy} \end{bmatrix}$$

$$detH = f_{xx} * f_{yy} - (f_{xy})^2 = f_{xx} * f_{yy} - (f_{yx})^2$$

2.3 Massimi e minimi relativi

Definizione 12. Sia f(x,y) una funzione definita in un insieme D, un punto $p_0(x_0,y_0) \in D$, si dice di massimo relativo per la funzione se esiste intorno circolare di P_0 per cui il valore assunto della funzione nei punti dell'interno è minore o uguale a quello assunto in P_0 .

Analogamente un punto $P_0(x_0, y_0)$ si dice di minimo relativo per la funzione se esiste un interno circolare di P_0 per cui il valore assunto dalla funzione nei punti dell'intorno è maggiore o uguale.

$$\exists I_{(x,y),\delta} : \forall (x,y) \in I_{(x,y),\delta} \quad f(x_0,y_0) \ge f(x,y) \quad \text{Massimo relativo}$$

$$\exists I_{(x,y),\delta} : \forall (x,y) \in I_{(x,y),\delta} \quad f(x_0,y_0) \le f(x,y) \quad \text{Minimo relativo}$$

2.3.1 Teorema di Fermat

Teorema 4. Sia f(x,y) derinita in D e derivabile in un punto $P_0(x_0,y_0)$

Se in $P_0(x_0, y_0)$ f(x, y) ha un massimo o un minimo relativo, allora le derivate prime parziali si annullano $(\nabla f = 0 \text{ gradiente nullo})$. La pendenza della tangente è zaro un massimo o minimo.

Gradiente

Sia f(x,y) una funzione derivabile in un punto (x,y), cioè esistano in (x,y) le due derivate parziali f_x e f_y .

Si definisce gradiente di f(x,y) nel punto (x,y): i vettore ∇f le cui componenti sono le derivate parziali di f(x,y).

$$\nabla f(x,y) \equiv (f_x(x,y); f_y(x,y)) \tag{2.4}$$

Massimi e minimi – condizione necessaria

Definizione 13. Se $P_0(x_0, y_0)$ è un punto di massimo/minimo relativo il gradiente è nullo. Così di massimo o minimo relativo interni al dominio della funzione f vanno ricercati tra i punti che annullano la funzione f. Pertanto un punto critico per una funzione derivabile e un punto in cui si annulla il gradiente della funzione.

Capitolo 3

Differenziabilità

Definizione 14. Sia f(x,y) definita in D e $P_0(x_0,y_0) \in D$. In $P_0, z = f(x_0,y_0)$, incremento la x_0 di un h e la y_0 di un k.

Così passo da $P_0(x_0, y_0)$ a $P(x_0 + h, y_0 + k)$. La funzione avrà avuto un certo incremento

$$f(x+h, y_0, y_0+k) - f(x_0, y_0)$$

Si definisce differenziale in $P_0(x_0, y_0)$ se $\exists A, B \in R : f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah + Bk + o(\sqrt{h^2 + k^2})$, cioè se esistono due costanti reali A e B per cui l'increm, ento di f(x, y) che si ha passando da P_0 a P si può riscrivere come somma di una parte lineare Ah + Bk e di un infinitesimo di ordine superiore a $\sqrt{h^2 + k^2}$ (distanza di P_0 da P).

Se f(x,y) ammette derivate prime parziali le due costanti A e B sono:

$$\begin{cases} A = fx(x_0, y_0) \\ B = fy(x_0, y_0) \end{cases}$$

e il differenziale diventa

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = f(x_0, y_0)h + f(x_0, y_0)k + o(\sqrt{h^2 + k^2})$$
(3.1)

Esempio 1. verificare che z = xy è differenziale $\forall (x_0; y_0) \in \mathbb{R}^2$, se z è differenziale $\rightarrow f(x_0 + h, y_0 + k) - f(x_0, y_0) = fx(x_0, y_0)h + fy(x_0, y_0)k + o(\sqrt{h^2 + k^2})$ dove

$$\begin{cases} A = fx(x_0, y_0) \\ B = fy(x_0, y_0) \end{cases}$$

se z è derivabile in (x_0, y_0) .

$$f(x_0 + h, y_0 + k) = \underbrace{(x_0 + h)(y_0 + k)}_{Sostituisco} = x_0 y_0 + x_0 k + y_0 h + hk$$

$$f_x = y \ fx(x_0, y_0) = y_0$$
 $f_y = x$ $f_y(x_0, y_0) = x_0$
 $f \ \hat{e} \ derivabile \ in \ (x_0, y_0)$ $A = y_0$ $D = x_0$

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah + Bk + o(\sqrt{h^2 + k^2})$$

$$\cancel{x}_0 y_0 + \cancel{x}_0 k + hk - \cancel{x}_0 y_0 = \cancel{y}_0 h + \cancel{x}_0 k + o(\sqrt{h^2 + k^2})$$

$$hk = o(\sqrt{h^2 + k^2})$$

detto quindi dimostrare che $\lim_{h\to 0k\to 0} \frac{hk}{\sqrt{h^2+k^2}} = 0$ e poi passo alle coordinate polari:

$$\begin{split} h &= \rho \cos \theta \\ k &= \rho \sin \theta \qquad \lim_{\rho \to 0} \frac{\phi' \cos \theta * \phi' \sin \theta}{\phi^2} \quad z = xy \ defferenziale \ \forall (x_0, y_0) \in R^2 \\ e^2 &= h^2 + k^2 \\ h &\to 0, k \to 0, \rho \to 0 \end{split}$$

3.0.1 Tutte le funzioni differenziali sono continue

Sia f(x,y) differenziabile (x_0,y_0) , allora f(x,y) è continua in (x_0,y_0)

Ip: Th:

$$f(x,y)$$
 differenziabile in (x_0,y_0) $f(x,y)$ è continua in (x_0,y_0)

Dimostrazione. Poiché f(x,y) è differenziabile in (x_0,y_0) vale la relazione

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah + Bk + o(\sqrt{h^2 + k^2})$$

Se $f(x_0, y_0)$ è continua in (x_0, y_0)

$$\lim_{h \to 0} f(x_0 + h, y_0 + k) - f(x_0, y_0) = 0$$

Calcolo il limite a destra per $h \to 0$ $k \to 0$

$$\lim_{h\to 0}\underbrace{Ah}_{k\to 0} + \underbrace{Bk}_{0} + o\underbrace{\left(\sqrt{h^2+k^2}\right)}_{0} = 0 \text{ per cui } f(x,y) \text{ è continua in } (x_o,y_0)$$

3.0.2 Tutte le funzioni differenziali sono derivabili

Sia f(x,y) differenziabile in un punto (x_0,y_0) . Allora f(x,y) è derivabile in (x_0,y_0)

Ip: Th:

$$f(x,y)$$
 differenziabile in (x_0,y_0) $f(x,y)$ è derivabile in (x_0,y_0)

Dimostrazione. Poiché f(x,y) è differenziabile in (x_0,y_0) vale la relazione

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah + Bk + o(\sqrt{h^2 + k^2})$$

divido entrambi per h e calcolo il limite per $h \to 0$

$$\lim_{h \to 0} \underbrace{\frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}}_{\frac{\partial f}{\partial x}(x_0, y_0) = fx} = \underbrace{\frac{Ah + o(\sqrt{h^2})}{h}}_{A}$$

 $fx(x_0, y_0) = A$

Analogamente si demostra che $f_y(x_0, y_0) = B$. Qundi dato che esistono f_x e f_y in (x_0, y_0) , f(x, y) è derivabile in (x_0, y_0) e in oltre $A = f_x(x_0, y_0)$, $B = f_y(x_0, y_0)$

Esercizio 1. Dimostrare che $z = x^2 = y^2$ è differenziabile in (1;1) – Per definire

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah = Bk + o(\sqrt{h^2 + k^2})$$

$$f(x_0 + h, y_0 + k) = (1 + h)^2 = (1 + k)^2$$

$$f(x_0, y_0) = 1 + 1 = 2$$

$$A = f(1, 1) = |2x|_{x=1} = 2$$

$$B = f_y(1, 1) = |2y|_{y=1} = 2$$

Così ho
$$(1+h)^2 + (1+k)^2 - 2 = 2h + 2k + o(\sqrt{h^2 + k^2})$$

$$h^2 + k^2 = o(\sqrt{h^2 + k^2})$$

$$k = e \sin \theta$$
$$e^2 = h^2 + k^2$$

 $h = e \cos \theta$

$$k \to 0, h \to 0, p \to 0$$

$$\lim_{\epsilon \to 0} \frac{e^2}{|\epsilon|} = 0 \to z = x^2 + z^2 \text{ è differeziabile in (1,1)}$$

3.0.3Le funzioni con derivate parziali continue sono diferenziabili

Definizione 15. Sia f(x,y) definita in D_1 e sia derivabile in D. Sono f_x e f_y continue in D, allora |f(x,y)| è differenziale in D.

Condizione sufficiente per la differenzialità

Definizione 16. Affinché una funzione sia differenziabile in (x_0, y_0) basta che in (x_0, y_0) abbia derivate In questo modo per determinare se una funzione è differenziabile in un punto si calcola le derivate parziali in quel punto, se esistono la funzione è differenziabile, in caso contrario non è derivabile.

Esempio 2. Dimostrare che $z = \sqrt{x^2 + y^2}$ non è differenziabile in (0;0)

$$z_x = \frac{2x}{2\sqrt{x^2 + y^2}} = \frac{x}{\sqrt{x^2 + y^2}}$$
 $D: x^2 + y^2 > 0$

$$z_y = \frac{2y}{2\sqrt{x^2 + y^2}} = \frac{y}{\sqrt{x^2 + y^2}}$$
 $D: x^2 + y^2 > 0$

Sia z_x sia z_y sono definite per $x^2 + y^2 > 0$ cioè nei punti esterni al cerchio di centro (0,0) e 1, frontiera eclusa. Il punto (0,0) è interno al cerchio, quindi in esso f(x,y) non è derivabile. Per cui in punto (0,0)|f(x,y)| non è neanche differenziabile.

Significato geometrico del differenziale e piano tengente 3.1

3.1.1Differenziale primo

È la parte lineare nella definizione di differenziale

$$f(x,y)$$
 definita in D $(x_0,y_0) \in D$

f(x,y) differentiale in (x_0,y_0) se

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = \underbrace{f_x(x_0, y_0)h + f_y(x_0, y_0)k}_{\text{parte lineare}} + o(\sqrt{h^2 + k^2})$$

$$df(x_0, y_0) = f_x(x_0, y_0)h + f_y(x_0, y_0)k$$

3.1.2Piano Tangente

La f(x,y) una funzione derivabile in (x_0,y_0) , il piano tangente alla funzione (x_0,y_0,z_0) ha equazione:

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

 \vec{n} direzione ortogonale al piano tangente, è unitario

$$\vec{n} = \frac{(-f_{x_i} - f_{y_i}1)}{\sqrt{1 + f_x^2 + f_y^2}}$$

poiché
$$\nabla f(f_x, f_y) |\nabla f|^2 = f_x^2 + f_y^2 \rightarrow \vec{n} = \frac{(-f_{x_i} - f_{y_i})}{\sqrt{1 + |\nabla f|}}$$

Esempio 3. $z = x^2 + y^2$ (1,1)

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

$$z_0 = f(1,1) = 1 + 1 = 2$$
 $z - 2 = 2(x - 1) + 2(y - 1)$ $f_x = 2x|_{1_{ii}} = 2$
 $f_y = 2y|_{1_{ii}} = 2$

3.1.3 Significato geometrico del differenziale primo

Passando da P_0 a P(x) si incrementa da $f(x_0)$ a $f(x_0+h)$ – Il differenziale primo dy indica la variazione che subisce la retta tangente passando da P_0 a P.

L'incremento $f(x_0 + h) - f(x_0)$ si approssima sempre più con dy per incrementi $h \to 0$

$$f(x_0 + h) - f(x_0) = f'(x)(x - x_0) - f(x_0) + o|x|$$

L'incremento $f(x_0 + h) - f(x_0)$ differisce dal valore $f'(x)(x - x_0)$ [retta tangente] per un o|x|, o|x| ci da l'errore.

3.1.4 Funzioni composite

Definizione 17. Sia x(t) E y(t) due funzioni reali definite al variare in un intervallo I di R. $t \in T \le R$ corrisponde il punto (x(t), y(t))

$$\begin{cases} x = x(t) & Rappresenta \ nel \ piano \ una \ currva \ in \ frontiera \\ y = y(t) & Parametrica \end{cases}$$

Al variare di $t \in I \leq R$

x = x(t), y = y(t) descrive una curva γ nel piano

Esempio 4.

$$\begin{cases} x = t - 1 \\ y = t + 1 \end{cases} \qquad t \in [0, 1] \qquad \begin{cases} x = \Gamma \cos t \\ y = \Gamma \sin t \end{cases}$$

$$y = (t - 1) + 2 = x + 2 \qquad r^2 \cos t + r^2 \sin^2 t = r^2$$

circonferenza con certro nel origine e raggio r

$$[x(t)]^2 + [y(t)]^2 = r^2$$

Se si ha
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 al variare di $t \in T \le R$ si ha una curva nello spazio.
$$z = z(t)$$

Esempio 5.
$$\begin{cases} x = \Gamma \cos t \\ y = \Gamma \sin t \end{cases}$$
 elica circolare
$$z = Kt$$

3.1.5 Funzione composta

Definizione 18. Sia γ la curva $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ $t \in I < R$ di codominio B

 $I \to B$

 $|Sia\ f(x,y)|\ definita\ in\ A$

 $t \in f(x(t), y(t))$ se il codominio di γ coincide con il codomio di f(x, y), cioè $B \leq A$

Teorema della derivata della funzione composta 3.1.6

Definizione 19. Sia γ la curva di punti (x(t), y(t)) e sia derivabile in un intervallo I (<u>cioè esistono</u>) Sia f(x,y) differenziabile in x(t)

Allora la funzione conposta da F(t) = f(x(t), y(t)) è derivabile in I e la sua derivata prima vale:

$$F'(t) = f_x(x(t), y(t))x'(t) + f_y(x(t), y(t))y'(t)$$
(3.2)

$$(\nabla f * \Gamma'(t)) \quad \nabla f \equiv (f_x; f_y) \quad \Gamma' \equiv (x'(t); y'(t))$$

Ipotesi $\gamma \equiv (x(t), y(t))$ derivabile in I f(x,y) differenziale in x(t)**Tesi** F(t) = f(x(t), y(t)) derivabile in I $F'(t) = f_x(x(t), y(t))x'(t) + f_y(x(t), y(t))y'(t)$

Dimostrazione. Devo dimostrare che $\lim_{h\to 0} \frac{F(t+h)-F(t)}{h} = F'(t) = F_x(x(t),y(t))x'(t) + f_y(x(t),y(t))y'(t)$ Scrivo l'incremento di F(t) per un h

F(t+h) - F(t) = f[x(t+h), y(t+h)] - f[x(t), y(t)] Per definizione di funzione composta F(t)

Poiché f(x,y) è differenziabile si ha

$$f[x(t+h), y(t+h)] - f[x(t), y(t)] = f_x \underbrace{[x(t), y(t)]}_{fx} \underbrace{[x(t+h) - x(t)]}_{h} + f_y \underbrace{[x(t+h) - y(t+h)]}_{fy} \underbrace{[y(t+h) - y(t)]^{2}}_{k} + o\underbrace{\left(\underbrace{[x(t+h) - x(t)]^{2} + \underbrace{[y(t+h) - y(t)]^{2}}_{k^{2}}}\right)}_{fy}$$

Divido entrambi i membri per h e calcolo il $\lim_{h\to 0}$

I membro

$$\lim_{h \to 0} \frac{f[x(t+h), y(t+h)] - f[x(t), y(t)]}{h} = F'(t)$$

II membro

$$\lim_{h \to 0} fx[x(t), y(t)] \underbrace{\left[\frac{x(t+h) - x(t)}{h}\right]}_{x'(t)} + \lim_{h \to 0} f_y[x(t+h) - y(t+h)] \underbrace{\left[\frac{y(t+h) - y(t)}{h}\right]}_{y'(t)} + \lim_{h \to 0} o\underbrace{\left(\sqrt{[x(t+h) - x(t)]^2 + [y(t+h) - y(t)]^2}\right)}_{0}$$

$$F' = f_x[x(t), y(t)]x'(t) + f_y[x(t), y(t)]y'(t)$$

Esempio 6.

$$z = x^{2}y \begin{cases} x(t) = -t & F(t) = z(x(t), y(t)) = -t^{2} * t = -t^{3} \\ y(t) = t & F'(t) = z' = -3t^{2} \end{cases}$$
$$F'(t) = f_{x}(x(t), y(t))x'(t) + f_{x}(x(t), y(t))y'(t) = z_{x}x'(t) + z_{y}y'(t) = -3t^{2}$$

3.2 Teorema differenziabilità delle funzioni composite

Teorema 5. Siano $x = (x_1, x_2, \dots, x_n)$ n funzioni in k variabili $t = (t_1, t_2, \dots, t_k)$

$$\begin{cases} x_1 = x_1(t_1, t_2, \dots, t_k) \\ x_2 = x_2(t_1, t_2, \dots, t_k) \\ \dots \\ x_n = x_n(t_1, t_2, \dots, t_k) \end{cases}$$
(3.3)

Componiamo le funzioni ottenendo la funzione composita

$$f[x_1(t_1,t_2,\ldots,t_k),x_2(t_1,t_2,\ldots,t_k),\ldots,x_n(t_1,t_2,\ldots,t_k)]$$

Siano $(x_1(t_1, t_2, ..., t_k), x_2(t_1, t_2, ..., t_k), ..., x_n(t_1, t_2, ..., t_k))$ n funzioni definite in un insieme aperto $D \leq R^n$ e siano derivabili parzialmente rispetto a t_i (i = 1, 2, ..., k).

Sia $f(x_1,...,x_n)$ una funzione definita in A contenente in codominio x(D) e sia f differenziabile in A Allora la funzione composita $F(t) = x_1(t_1,t_2,...,t_k), x_2(t_1,t_2,...,t_k),...,x_n(t_1,t_2,...,t_k)$ è derivabile parzialmente rispetto a $t_i(i=1,2,...,k)$ nel punto t.

$$\frac{\partial F}{\partial t_i}(t) = \frac{\partial f}{\partial x_i}(x(t)) + \frac{\partial x_i}{\partial t_i}(t)$$
 (si somma sugli inasci ripetuti)

Inoltre, se f e $(x_1(t_1, t_2, \ldots, t_k), x_2(t_1, t_2, \ldots, t_k), \ldots, x_n(t_1, t_2, \ldots, t_k))$ sono di classe C^1 , anche $F = f(x(t)) \in c^1$ ed è quindi differenziabile.

 $\hbar = k = 2$ coordinate polari

$$\begin{cases} x_1 = x \\ x_2 = y \end{cases} \begin{cases} t_1 = \varphi \\ t_2 = \varphi \end{cases} f(x,y) \begin{cases} x = x(\varphi, \varphi) \\ y = y(\varphi, \varphi) \end{cases} \rightarrow \begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$$
$$f(x,y) = f(\rho \cos \varphi, \rho \sin \varphi)$$
$$\frac{\partial f}{\partial \rho} = \frac{\partial f}{\partial x} x \rho + \frac{\partial f}{\partial y} y \rho = \frac{\partial f}{\partial x} \cos \varphi + \frac{\partial f}{\partial y} \sin \varphi$$
$$\frac{\partial f}{\partial \rho} = \frac{\partial f}{\partial x} x \rho + \frac{\partial f}{\partial y} y \varphi = \frac{\partial f}{\partial x} (-\rho \sin \varphi) + \frac{\partial f}{\partial y} (\rho \sin \varphi)$$

3.3 Differenziale secondo

Definizione 20. d^2f è il differenziale del differenziale primo

$$d^{2}f = d(df) = d(f_{x}h + f_{y}k) = \frac{\partial}{\partial x}(f_{x}h + f_{y}k)h + \frac{\partial}{\partial x}(f_{x}h + f_{y}k)k =$$

$$= (f_{xx}h + f_{xy}k)h + (f_{xy}h + f_{yy}k)k = f_{xx}h^{2} + f_{xy}khx + f_{xy}hx + f_{yy}k^{2}$$

Se $f(x,y) \in c^2$ (derivate parziali II continue) vale il teorema di Schwarz (2.2.1), cioè fyx = fxy - Il differenziale secondo allora diventa

$$d^2f = fxxh2 + 3fxyhk + fyyk^2$$

Per ipotesi il gradiente è nulla $\Delta f(x_0, y_0) = 0$ cioè $\nabla f(x_0, y_0) \equiv (f_x(x_0, y_0), f_y(x_0, y_0)) \equiv (0, 0)$ ovvero le derivate parziali prime sono nulle $f_x(x_0, y_0) = 0$, $f_y(x_0, y_0) = 0$ – Ciò comporta l'annullarsi del differenziale primo

$$df(x_0, y_0) = fx(x_0, y_0)h + fy(x_0, y_0)k = 0 * h + 0 * k = 0$$

Per cui nella foruma di Taylor si ha:

$$f(x,y) = f(x_0, y_0) + \frac{1}{2!}d^2f(x_0 + \theta h, y_0 + \theta k)$$
 Forme quadratiche

Il segno di $f(x,y) - f(x_0,y_0)$ è lo stesso di $\frac{1}{2!}d^2f(x_0 + \theta h, y_0 + \theta k)$, cioè è lo stesso differenziale secondo. Per ipotesi $det Hp(x_0,y_0) > 0$, $(f(x,y) \in C_A^2 \Rightarrow vale\ il\ teorema\ di\ Schwarz)$

$$\begin{vmatrix} fxx(x_0, y_0) & fxy(x_0, y_0) \\ fyx(x_0, y_0) & fyy(x_0, y_0) \end{vmatrix} = fxx * fyy - fxy^2 > 0$$

 $e fxx(x_0, y_0) > 0$

Ciò implica per definizione che la forma quadratica associata ad $Hp(x_0, y_0)$ è positiva tutto ciò implica $d^2f(x_0 + \theta h, y_0 + \theta k) > 0$

 $|Per\ cui\ f(x,y) - f(x_0,y_0)| > 0$

$$cioè f(x,y) > f(x_0,y_0)$$
 difiniziondi di Minimo relativo (2.3)

 $|quindi(x_0,y_0)|$ è un punto di muinimo relativo

Analogamente, se $f(x_0, y_0) < 0$ si dimosta che (x_0, y_0) è un punto di massimo relatovo (2.3)

3.3.1 Condizioni sufficiente per l'esistenza di minimo e massimo relativo

Sia f(x,y) definita in A, $f(x,y) \in C_A^2$, $(x_0,y_0) \in A$ Se $\nabla f(x_0,y_0) = 0$

$$det H_F(x_0,y_0) \begin{cases} > 0 \begin{cases} fxx(x_0,y_0) > 0 \text{ Minimo relativo} \\ fxx(x_0,y_0) < 0 \text{ Massimo relativo} \end{cases} \\ < 0 \text{ Punto di sella (non sono presenti Max e min)} \\ = 0 \text{ Non si vsa se sono presenti Max o min} \end{cases}$$

Esempio 7. Massimi e minimi

1.
$$z = x^2 + y^2$$

$$\nabla f = 0 \begin{cases} zx = 0 \\ zy = 0 \end{cases} \begin{cases} 2x = 0 \\ -2y = 0 \end{cases} \begin{cases} x = 0 \\ y = 0 \end{cases} in(0,0) \ \nabla f = 0 \ pu\`{o} \ MAX \ o \ MIN$$

$$det H_f = \begin{vmatrix} z_{xx} & z_{zy} \\ z_{xy} & z_{yy} \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & -2 \end{vmatrix} = -4$$

2. Semisuperfici sferica $z = \sqrt{c^2 - x^2 - y^2}$

$$\nabla f = 0 \begin{cases} z_x = \frac{-x}{\sqrt{\Gamma^2 - x^2 - y^2}} \\ z_y = \frac{-y}{\sqrt{\Gamma^2 - x^2 - y^2}} \end{cases} dominio \ D \ x^2 - y^2 < \Gamma^2$$

$$\begin{cases} z_x = 0 & \begin{cases} x = 0 \\ z_y = 0 \end{cases} & (0,0) \leftarrow D \text{ può esserci un Max e un Min} \end{cases}$$

Verifico e trovo che det H > 0 $f_{xx} < 0$: in(0,0) è presente il Max.

3. Cono
$$z = \sqrt{x^2 + y^2}$$

Figura 3.1: Rappresentazione grafica della conica

$$\nabla f = 0 \begin{cases} z_x = \frac{x}{\sqrt{x^2 + y^2}} \\ z_y = \frac{y}{\sqrt{x^2 + y^2}} \end{cases} \begin{cases} x = 0 \\ y = 0 \end{cases}$$