ADSP HW5

B10505047 電機三 邱郁喆

- (1) 程式已隨這份作業文件繳交到 NTU COOL
- (2) 注:在使用 sectioned convolution 方法計算時的 L_0 是用 MATLAB 得到的,而最後選的 P 則是取附近適合的幾個點計算比較而得到的最好選擇。

```
(2)(a) N=1200, M=300

Direct method: 3MN=1080000

non-sectioned convolution method(DFT): P>N+M-1=1499 => Use 1680-point DFT

=> 2-MULISO +3.1680 = 2.10420+3.1680 = 25800

Sectioned convolution method: Lo=600, Po=Lo+M-1=899

=> Set P=1152, L=P+M+1=853, S=[N=2]=> S(2:MULp+3:P)=2 (27088+3.1152)=35264

The best method is non-sectioned method(DFT), total # of real mul.= 25880

Direct: 3MN=108000

DFT: P>N+M-1=1229=> Use 1260-point DFT

=> 2.MULp60+3.1260=2.7640+3.1260=19060

D sectioned conv.: Lo=174, Po=Lo+M-1=203

=> Set P=144, L=P-M+1=115, S=[N=11]=11=> S(2:MULp+3P)=11.(2:436+3.144)=14344

The best method is sectioned conv. method, total # of real mul.=(4344)
```


- (3) (a) 我們可以知道 Walsh transform 除了第一個 row 都是 1 之外,其他每個 row 中都是有一半數量為 1,一半數量為 -1。因此,等於 1 的 entries 總共 有 $2^k + \frac{2^k}{2} \times (2^k 1) = 2^k + 2^{2k-1} 2^{k-1} = 2^{k-1} + 2^{2k-1}$ 個,而等於 -1 的 entries 則總共有 $\frac{2^k}{2} \times (2^k 1) = 2^{2k-1} 2^{k-1}$ 個。
 - (b) 按照上課所講, 2^k point Haar transform 共可分成 k+1 個 groups 等於 1 的 entries:除了第一個 group (其實就是第一個 row)都是 1 之外,其 他每個 group 中各有 2^{k-1} 個 1,因此共有 $2^k + k \cdot 2^{k-1}$ 個。

等於 -1 的 entries:除了第一個 group (其實就是第一個 row) 沒有 -1 之外,其他每個 group 中各有 2^{k-1} 個 -1,因此共有 $k \cdot 2^{k-1}$ 個。

等於 0 的 entries:總 entries 數減去等於 1 或 -1 的 entries,即共有 $2^k \times 2^k - (2^k + k \cdot 2^{k-1}) - (k \cdot 2^{k-1}) = 2^{2k} - (k+1) \cdot 2^k$ 個。

- (c) The most important application of the Walsh transform nowadays is modulation, which is using some man-made waveform to represent a data. 像是用在 CDMA 這個無線通訊技術上, which is using the basis (rows) of the Walsh transform to perform modulation.
- (d) The most important advantage of the Haar transform nowadays is analysis of the local high frequency component (edges of different locations and scales).

(4)

(5) 根據上課講義如下

最後結論,大家可以把 DFT 的地方換成 NTT ,結論還是一樣

現在我們知道 fft[x] = [4020-20-40-2020], 也就是 Ramanujan's Sum。因此 CNT of x 的結果就是 fft[x] modulo M 的結果, 即為[402090709020]

(6)

學號尾數(2,7)的 extra 問題:

If length(x) = N, x is real

$$h[n] = [0.1, 0.2, 0.4, 0.2, 0.1] \quad for n = -2 \sim 2$$

$$y[n] = \chi[n] * h[n] = \sum_{m=-2}^{\infty} \chi[n + m] h[m] = 0.1 \chi[n+2] + 0.2 \chi[n+1] + 0.4 \chi[n] + 0.2 \chi[n-1] + 0.1 \chi[n-2]$$

$$= 0.1 \left[\chi[n+2] + \chi[n-2]\right) + 0.2 \left(\chi[n+1] + \chi[n-1]\right) + 0.4 \chi[n]$$

$$= 0.1 \left[\chi[n+2] + \chi[n-2]\right) + 2 \left(\chi[n+1] + \chi[n-1]\right) + 2 \cdot \chi[n]$$

$$\Rightarrow N \quad MULs \implies$$