Phase 1: Data Preparation & EDA in Spark

CS236 — Database Management System

Pankaj Sharma (SID: 862549035) Saransh Gupta (SID: 862548920)

Fall 2025

Contents

0. Executive Summary	2
1. Installation Process	2
1.1 Unpack the Project	2
1.2 Creating a Virtual Environment	
1.3 Install Dependencies	
1.4 Installing Java 11	
1.5 Running the Script	2
2. Exploratory Data Analysis Process	2
2.1 Schema Inspection	3
2.2 Size Inspection	4
2.3 Missing Values	4
2.4 Distinct Values Inspection	6
2.5 Correlation Inspection	
Summary	10
Data Merge & Integration	10
1. Dataset Overview	10
1.1 Source Datasets	
2. Key Challenges	10
2.1 Different Column Names for Same Data	10
2.2 Different Data Formats	10
2.3 Missing Columns	11
3. Data Cleaning Decisions	11
3.1 Customer Reservations Dataset	
3.2 Hotel Bookings Dataset	12
3.3 Final Merged Dataset Transformations	
4. Schema Alignment Strategy	
4.1 Unified Column Set	13
5. Merge Methodology	14
5.1 Union vs Join Decision	14

5.2 Duplicate Detection and Removal	15
6. Final Schema	15
6.1 Merged Dataset Structure	15
7. Key Decisions Summary	15
7.1 Data Quality	15
7.2 Database Readiness	15
7.3 Data Lineage	16
8. Summary	16
7.1 Data Quality	1 1 1

0. Executive Summary

In this phase, we set up a local PySpark environment, used two CSV datasets (customer-reservations.csv and hotel-booking.csv), performed exploratory data analysis (EDA), and data preprocessing.

1. Installation Process

1.1 Unpack the Project

unzip CS236-Project.zip
cd CS236-Project

1.2 Creating a Virtual Environment

python3 -m venv venv
source venv/bin/activate

1.3 Install Dependencies

pip install -r requirements.txt

1.4 Installing Java 11

```
brew install openjdk@11
export JAVA_HOME=/opt/homebrew/opt/openjdk@11/libexec/openjdk.jdk/Contents/Home
export PATH="/opt/homebrew/opt/openjdk@11/bin:$PATH"
```

1.5 Running the Script

```
export JAVA_HOME=/opt/homebrew/opt/openjdk@11/libexec/openjdk.jdk/Contents/Home \
&& export PATH="/opt/homebrew/opt/openjdk@11/bin:$PATH" \
&& spark-submit phasel-eda.py
```

2. Exploratory Data Analysis Process

This sections contains EDA process and findings that we performed on the datasets - customer-reservations.csv and hotel-booking.csv. Here we will answer What, Why and Insights we gained from the EDA steps that we performed.

2.1 Schema Inspection

Customer Reservations Schema

Column Name	Data Type	Nullable
Booking_ID	string	True
stays_in_weekend_nights	integer	True
stays_in_week_nights	integer	True
lead_time	integer	True
arrival_year	integer	True
arrival_month	integer	True
arrival_date	integer	True
market_segment_type	string	True
avg_price_per_room	double	True
booking_status	string	True

Hotel Bookings Schema

Column Name	Data Type	Nullable
hotel	string	True
booking_status	integer	True
lead_time	integer	True
arrival_year	integer	True
arrival_month	string	True
arrival_date_week_number	integer	True
arrival_date_day_of_month	integer	True
stays_in_weekend_nights	integer	True
stays_in_week_nights	integer	True
market_segment_type	string	True
country	string	True
avg_price_per_room	double	True
email	string	True

Why:

We did this step to confirm proper loading of datasets using PySpark and to get brief idea about the dataset like columns and its data types.

Insights:

- Customer Reservations: This Dataset contains columns of different data types. We have Numeric fields such as lead_time, arrival_year, and avg_price_per_room, and categorical fields like market_segment_type and booking_status were StringType.
- *Hotel Bookings*: This Dataset contains columns of 2 data types. arrival_month was inferred as a StringType (e.g., "July", "September"), while other date components were integers.

2.2 Size Inspection

Why:

We did to check the size of the database in order to fit within Spark in memory limits.

Insights:

- *Customer Reservations:* **36,275 rows** × **10 columns** each row represents one unique booking (Booking_ID).
- *Hotel Bookings:* **78,703 rows** × **13 columns** includes additional contextual fields such as hotel, country, and email.
- Both datasets are of moderate size and fit comfortably within Spark's in-memory analysis limits.

2.3 Missing Values

Missing Values Count — Customer Reservations

Column Name	Missing Values
Booking_ID	0
stays_in_weekend_nights	0
stays_in_week_nights	0
lead_time	0
arrival_year	0
arrival_month	0
arrival_date	0
market_segment_type	0
avg_price_per_room	0
booking_status	0

Note: Customer Reservations Dataset does not have arrival_date_week_number field. However, during data preprocessing, we calculate it from the existing date components (year, month, day) using ISO 8601 week numbering to ensure compatibility with the Hotel Bookings Dataset.

Missing Values Count — Hotel Bookings

Column Name	Missing Values
hotel	0
booking_status	0
lead_time	0
arrival_year	0
arrival_month	0
arrival_date_week_number	0
arrival_date_day_of_month	0
stays_in_weekend_nights	0
stays_in_week_nights	0
market_segment_type	0
country	405
avg_price_per_room	0
email	0

Why:

We did this step to find incomplete fields to decide whether to remove them or to fill in mean value.

Insights:

- Customer Reservations: **0 missing values** across all the columns.
- *Hotel Bookings:* Only the country column contained **405 missing values** all other columns were complete.
- Overall both the datasets were almost complete with only Hotel Bookings Dataset having very less percentage of missing values.

2.4 Distinct Values Inspection

Distinct Values Count — Customer Reservations

Column Name	Distinct Count
Booking_ID	36,275
stays_in_weekend_nights	8
stays_in_week_nights	18
lead_time	352
arrival_year	2
arrival_month	12
arrival_date	31
market_segment_type	5
avg_price_per_room	3,930
booking_status	2

${\bf Distinct\ Values\ Count-Hotel\ Bookings}$

Column Name	Distinct Count
hotel	2
booking_status	2
lead_time	439
arrival_year	2
arrival_month	12
arrival_date_week_number	53
$arrival_date_day_of_month$	31
stays_in_weekend_nights	17
stays_in_week_nights	32
market_segment_type	8
country	159
avg_price_per_room	6,985
email	77,144

Why:

This is essential EDA process which results in determining primary keys, redundancy and also helps in process of prediction.

Insights:

- Customer Reservations:
 - Booking_ID had **36,275 unique values**, which means every row can be uniquely identified from the Booking_ID hence it can be used as a primary.
 - market_segment_type had **5 categories** and can be used to draw significant inference from the data.
 - ► booking_status had 2 values Canceled and Not_Canceled.
 - ► No duplicate rows found.
- Hotel Bookings:
 - ▶ hotel had 2 values (City Hotel, Resort Hotel).
 - ▶ market_segment_type had 8 categories.
 - ▶ country had 159 unique codes.
 - email had 77,144 unique entries, nearly matching total rows, implying one booking per customer.

2.5 Correlation Inspection

Correlation map - Customer Reservations

Figure 1: Correlation for Customer Reservation

Correlation map - Hotel Bookings

Figure 2: Correlation for Customer Reservation

Why:

This steps helps us in finding strong and weak relationships between continuous variables.

Insights:

• Customer Reservations

- stays_in_week_nights and stays_in_weekend_nights show a **moderate positive correlation (0.18)** which seems reasonable as customers might extend their stays for the weekend if booked initially for the week days.
- ► lead_time has very weak or no correlation with avg_price_per_room (≈ -0.06). This insight was kind of surprising as booking earlier had little or no effect in average room price.
- Other relationships are near zero, confirming that most numeric fields (dates, lead time, price) are largely independent.

· Hotel Bookings

- ► stays_in_week_nights and stays_in_weekend_nights have a **strong positive correlation** (~0.50) with same reasoning as above.
- ► lead_time and booking_status are **positively correlated** (~0.33) which means bookings made far in advance are slightly more likely to be canceled.

- ▶ lead_time and avg_price_per_room show a **weak negative correlation (-0.10)** earlier bookings tend to be marginally cheaper.
- Other variables show near-zero correlations, suggesting minimal temporal dependencies.

Summary

Both the datasets are well structured and mostly clean. With EDA steps performed, we were able to find some useful insights from the datasets. These findings are useful in next steps of the data pre processing.

Data Merge & Integration

1. Dataset Overview

1.1 Source Datasets

We merged two hotel booking datasets: - Customer reservations: 36,275 records from customer booking system (no duplicates) - Hotel bookings: 78,703 records from hotel management system (1 duplicate removed during cleaning \rightarrow 78,702 records) - Total merged: 114,977 records

2. Key Challenges

2.1 Different Column Names for Same Data

Customer Reservations Dataset	Hotel Bookings Dataset	Issue
Booking_ID	N/A	Hotel data lacks book- ing identi- fiers
arrival_date	arrival_date_day_of_month	Dif- ferent nam- ing for same field

2.2 Different Data Formats

Field	Customer Reservations Format	Hotel Bookings Format
booking_status	Text ('Canceled', 'Not_Canceled')	Binary (0, 1)
arrival_month	Numeric (1-12)	Text ('January', 'February',)

2.3 Missing Columns

Dataset	Dataset Missing Columns Resolution	
Customer Reserva-	hotel, country, email,	Added (hotel, country, email
tions	arrival_date_week_number	as NULL; week_number cal- culated)
Hotel Bookings	booking_id	Generated with INN prefix and offset

3. Data Cleaning Decisions

3.1 Customer Reservations Dataset

Column Standardization

- Renamed Booking_ID → booking_id for consistency
- Renamed arrival_date \rightarrow arrival_date_day_of_month for clarity

Missing Column Handling

_	Column Added	Value	Rationale			
_	hotel	NULL	Customer Reservations system doesn't track hotel type			
	country	NULL	Geographic information not available			
	email	NULL	Privacy/data availability limitation			
arriva	l_date_week_	_nu@ be r	Computed	from	arrival_year,	arrival_month,
		culated	l arrival_date_day_of_month			

Week Number Calculation

The customer reservations dataset doesn't include week numbers, but we can derive them from the existing date components:

```
# Construct date from year, month, day components
date_string = concat_ws('-', year, padded_month, padded_day)
arrival_date = to_date(date_string)

# Extract ISO week number (1-53)
arrival_date_week_number = weekofyear(arrival_date)
```

Why:

- Maximizes data completeness by deriving missing information
- Uses ISO 8601 week numbering standard
- Enables consistent week-based analysis across both datasets
- · Using NULL for hotel, country, and email follows database best practices for truly missing data

Duplicate Removal

- Checked for duplicate rows using all fields
- No duplicates found in customer reservations dataset

3.2 Hotel Bookings Dataset

Booking Status Standardization

- **Original:** Binary (0 = not canceled, 1 = canceled)
- Target: Text ('Not_Canceled', 'Canceled')

```
when(col('booking status') == 0, 'Not Canceled').otherwise('Canceled')
```

Why:

- · Matches customer reservations dataset format
- Self-documenting (no need to remember 0/1 mapping)
- Prevents accidental numeric operations on categorical data

Arrival Month Conversion

- Original: Text ('January', 'February', ..., 'December')
- Target: Numeric (1-12)

Why:

- Matches customer reservations dataset format
- Enables numeric operations (sorting, filtering, calculations)
- Reduces storage space
- Facilitates time-series analysis

Booking ID Generation

- Format: INN50000, INN50001, INN50002, ...
- Offset: Starting at 50,000

Why:

Customer Reservations Dataset Booking IDs range from INN00001 to INN36275. Starting hotel IDs at 50,000 prevents ID collision while maintaining the same INN prefix pattern.

Duplicate Removal

- Found 1 duplicate record in Hotel Bookings Dataset
- Removed during cleaning process

3.3 Final Merged Dataset Transformations

Boolean Conversion

• Field: booking_status \rightarrow is_canceled

• Format: Boolean (True/False)

Why:

• Database-ready format (PostgreSQL BOOLEAN type)

• More efficient storage (1 byte vs 12+ bytes for text)

• Enables boolean operators in queries

• Clearer semantic meaning

ID Simplification

• Field: booking_id \rightarrow id

Why:

Shorter, simpler column name for the primary identifier.

4. Schema Alignment Strategy

4.1 Unified Column Set

The following 14 columns were standardized across both datasets:

Column Name	Data Type	Description
booking_id	String	Unique booking identifier
hotel	String	Hotel type (or NULL)
booking_status	String	Cancellation status
lead_time	Integer	Days between booking and arrival
arrival_year	Integer	Year of arrival
arrival_month	Integer	Month of arrival (1-12)
arrival_date_week_number	Integer	ISO week number (or calculated)
arrival_date_day_of_month	Integer	Day of month
stays_in_weekend_nights	Integer	Weekend nights booked
stays_in_week_nights	Integer	Weekday nights booked
market_segment_type	String	Market segment
country	String	Country code (or NULL)
avg_price_per_room	Double	Average room price
email	String	Customer email (or NULL)

5. Merge Methodology

5.1 Union vs Join Decision

Chosen Approach: UNION (vertical concatenation)

merged_df = customer_aligned.union(hotel_aligned)

Why:

- Datasets represent independent booking sources
- No natural join key exists between them
- Goal is to combine all records, not match them
- Preserves all records from both sources

Alternative Considered: JOIN operation

Why Rejected: Would require matching keys and could lose records; datasets are complementary, not overlapping.

5.2 Duplicate Detection and Removal

Duplicates are removed at the individual dataset level before merging: - **Customer Reservations:** Checked and found 0 duplicates - **Hotel Bookings:** Found and removed 1 duplicate record (Lisa_M@gmail.com with identical booking details)

6. Final Schema

6.1 Merged Dataset Structure

Total Columns: 14

Column	Type	Constraints
id	String	Primary identifier
hotel	String	Nullable
is_canceled	Boolean	Not null
lead_time	Integer	Not null
arrival_year	Integer	Not null
arrival_month	Integer	Not null
arrival_date_week_number	Integer	Not null
arrival_date_day_of_month	Integer	Not null
stays_in_weekend_nights	Integer	Not null
stays_in_week_nights	Integer	Not null
market_segment_type	String	Not null
country	String	Nullable
avg_price_per_room	Double	Not null
email	String	Nullable

7. Key Decisions Summary

7.1 Data Quality

- NULL Representation: Missing data stored as NULL (blank in CSV) rather than placeholder strings
- Duplicate Handling: Business-logic-based deduplication catching semantic duplicates
- ID Strategy: Offset-based ID generation preventing collisions between datasets

7.2 Database Readiness

- Boolean Fields: booking_status converted to is_canceled boolean
- Consistent Types: All data types aligned and validated

• Primary Key: Unique id field for every record

7.3 Data Lineage

• Customer Reservation Records: INN00001 - INN36275 (36,275 records)

• Hotel Booking Records: INN50000 - INN128702 (78,702 records after deduplication)

• Total Records: 114,977 unique bookings

8. Summary

The data merge process successfully unified two independent booking systems into a single, clean dataset suitable for analysis and database import. Key achievements include:

- 1. Schema Harmonization: Resolved naming and format inconsistencies
- 2. Data Quality: Removed duplicates and standardized missing data handling
- 3. Database Compatibility: Converted to database-friendly formats (booleans, NULLs)
- 4. Data Integrity: Prevented ID collisions through offset strategy
- 5. **Complete Traceability:** All decisions documented with clear rationale

The resulting merged dataset provides a comprehensive view of hotel bookings across both systems, ready for downstream analysis and database integration.