Calculus I

Reference: The notation $F(x)]_a^b$

Todor Milev

2019

We often use the notation

$$F(x)]_a^b = F(b) - F(a)$$

or

$$[F(x)]_a^b = F(b) - F(a)$$

Therefore we can write

$$\int_a^b f(x) \mathrm{d}x = F(x)]_a^b$$

or

$$\int_a^b f(x) dx = [F(x)]_a^b$$

Find the area under the parabola $y = x^2$ from 0 to 1.

• x^2 is continuous on [0, 1] (in fact, it's continuous everywhere).

- x^2 is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is ?

- x² is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is $\frac{1}{3}x^3$.

- x² is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is $\frac{1}{3}x^3$.

$$\int_0^1 x^2 \, \mathrm{d}x = \left[\frac{1}{3} x^3 \right]_0^1$$

- x² is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is $\frac{1}{3}x^3$.

$$\int_0^1 x^2 \, \mathrm{d}x = \left[\frac{1}{3}x^3\right]_0^1$$

- x² is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is $\frac{1}{3}x^3$.

$$\int_0^1 x^2 dx = \left[\frac{1}{3} x^3 \right]_0^1 = \frac{1}{3} (1)^3 - \frac{1}{3} (0)^3$$

- x² is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is $\frac{1}{3}x^3$.

$$\int_0^1 x^2 \, \mathrm{d}x = \left[\frac{1}{3}x^3\right]_0^1 = \frac{1}{3}(1)^3 - \frac{1}{3}(0)^3$$

- x² is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is $\frac{1}{3}x^3$.

$$\int_0^1 x^2 dx = \left[\frac{1}{3}x^3\right]_0^1 = \frac{1}{3}(1)^3 - \frac{1}{3}(0)^3 = \frac{1}{3}$$

Find the area under the cosine curve from 0 to b, where $0 \le b \le \frac{\pi}{2}$.

• $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of cos x is ?

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of $\cos x$ is $\sin x$.

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of $\cos x$ is $\sin x$.

$$\int_0^b \cos x \, \mathrm{d}x = [\sin x]_0^b$$

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of cos x is sin x.

$$\int_0^b \cos x \, \mathrm{d}x = [\sin x]_0^b$$

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of cos x is sin x.

$$\int_0^b \cos x \, dx = [\sin x]_0^b = \sin(b) - \sin(0)$$

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of cos x is sin x.

$$\int_{0}^{b} \cos x \, dx = [\sin x]_{0}^{b} = \sin(b) - \sin(0)$$

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of cos x is sin x.

$$\int_0^b \cos x \, dx = [\sin x]_0^b = \sin(b) - \sin(0) = \sin b$$