# Classification and evaluation of facial attractiveness and emotions for purposes of plastic surgery using machine-learning methods and R

useR!2018 Brisbane

Lubomír Štěpánek<sup>1, 2</sup>

Pavel Kasal<sup>2</sup>

Jan Měšťák<sup>3</sup>



<sup>1</sup>Institute of Biophysics and Informatics <sup>3</sup>Department of Plastic Surgery First Faculty of Medicine Charles University in Prague



<sup>2</sup>Department of Biomedical Informatics Faculty of Biomedical Engineering Czech Technical University in Prague

# Content

- Introduction
- 2 Methodology
- Results

4 Summary

### Quick introduction

Introduction

- human facial attractiveness perception is data-based and irrespective of the perceiver
- current plastic surgery deals with aesthetic indications such as an improvement of the attractiveness of a smile or other facial emotions



## Quick introduction

- total face impression is also dependent on presently expressed facial emotion
- there is no face without facial emotion at all



# Aims of the study

- to identify geometric features of a face associated with an increase of facial attractiveness after undergoing rhinoplasty
- to explore how accurate classification of faces into sets of facial emotions and their facial manifestations is

# Brief methodology of facial attractiveness evaluation

- profile facial image data were collected for each patient before and after rhinoplasty (about 80 images)
- images were
  - processed
  - landmarked
  - analyzed
- linear regression was performed to select predictors increasing facial attractiveness after undergoing rhinoplasty



# Brief methodology of facial emotions classification

- portrait facial image data were collected for each person just in the moment they show a facial expression according to the given incentive (about 170 images)
- images were
  - processed
  - landmarked
  - analyzed
- Bayesian naive classifiers (e1071), decision trees (CART) (rpart) and neural networks (neuralnet) were learned to allow assigning a new face image data into one of facial emotions

#### Data of interest

- facial attractiveness of patients' data was measured using Likert scale by a board of independent observers
- the sets of used facial emotions and other facial manifestation originate from Ekman-Friesen FACS scale, but was improved substantially

| cluster of emotions | quality  |
|---------------------|----------|
| contact             | positive |
| helpfulness         | positive |
| evocation           | positive |
| defence             | negative |
| aggression          | negative |
| reaction            | neutral  |
| decision            | neutral  |
| well-being          | positive |
| fun                 | positive |
| rejection           | negative |
| depression          | negative |
| fear                | negative |
| deliberation        | positive |
| expectation         | positive |

Introduction Methodology ○○○●○ Results

# Landmarking







Introduction

| definition                                                      |
|-----------------------------------------------------------------|
| angle between landmarks 2, 3, 18 (profile)                      |
| angle between landmarks 7, 6, 17 (profile)                      |
| horizontal Euclidean distance between landmarks 6, 5 (profile)  |
| Euclidean distance between landmarks 15, 16 (profile)           |
| horizontal Euclidean distance between landmarks 3, 4 (profile)  |
| Euclidean distance between landmarks 21, 22 (portrait)          |
| Euclidean distance between landmarks 25, 26 (portrait)          |
| Euclidean distance between landmarks 30, 33 (portrait)          |
| Euclidean distance between landmarks 6, 8 (profile)             |
| Euclidean distance between landmarks 7 (or 8) and 33 (portrait) |
|                                                                 |







# Evaluation of rhinoplasty effect on facial attractiveness

| predictor                                  | estimate | $t	ext{-value}$ | p-value |
|--------------------------------------------|----------|-----------------|---------|
| intercept <sub>after-before</sub>          | 3.832    | 1.696           | 0.043   |
| nasofrontal angle <sub>after-before</sub>  | 0.353    | 1.969           | 0.049   |
| nasolabial angle <sub>after-before</sub>   | 0.439    | 1.986           | 0.047   |
| nasal tip <sub>after-before</sub>          | -3.178   | 0.234           | 0.068   |
| nostril prominence <sub>after-before</sub> | -0.145   | 0.128           | 0.266   |
| cornea-nasion distanceafter-before         | -0.014   | 0.035           | 0.694   |







# Trees for prediction of the cluster & quality of emotions









# Predictions of the emotional quality based on the naive Bayes classifiers, CART's and neural networks, respectively

|            |          | predicted class |         |          |
|------------|----------|-----------------|---------|----------|
|            |          | negative        | neutral | positive |
|            | negative | 34              | 11      | 16       |
| true class | neutral  | 16              | 39      | 8        |
|            | positive | 4               | 10      | 30       |

|            |          | predicted class |         |          |
|------------|----------|-----------------|---------|----------|
|            |          | negative        | neutral | positive |
|            | negative | 35              | 7       | 15       |
| true class | neutral  | 12              | 40      | 9        |
|            | positive | 4               | 12      | 31       |

|            |          | predicted class |         |          |
|------------|----------|-----------------|---------|----------|
|            |          | negative        | neutral | positive |
|            | negative | 36              | 6       | 6        |
| true class | neutral  | 12              | 54      | 18       |
|            | positive | 3               | 4       | 32       |





## Summary

- enlargements of both a nasolabial and nasofrontal angle within rhinoplasty were determined as statistically significant predictors increasing facial attractiveness
- neural networks manifested the highest predictive accuracy of a new face categorization into facial emotions
- geometrical shape of mouth, then eyebrows and finally eyes affect in descending order the classification of facial images into emotions and emotional qualities

#### Thank you for your attention!

lubomir.stepanek@lf1.cuni.cz lubomir.stepanek@fbmi.cvut.cz

