COURSE SYNOPSIS

Linear Algebra and Numerical Analysis (MA2030)

* Vector Spaces

> Definition :

A set V with two operations + (addition) and \cdot (scalar multiplication) is said to be a vector space if it satisfies the following axioms:

- (a) x + y = y + x, $\forall x, y \in V$.
- (b) $(x + y) + z = x + (y + z), \forall x, y, z \in V$.
- (c) $\exists 0 \in V$ such that $x + 0 = x \forall x \in V$.
- (d) for each $x \in V$, $\exists x$ such that x + x = 0.
- (e) $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y \forall \alpha \in F \text{ and } \forall x, y \in V$.
- (f) $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot y$, $\forall \alpha, \beta \in F$ and $\forall x \in V$.
- (g) $(\alpha\beta) \cdot x = \alpha \cdot (\beta \cdot x) \forall \alpha, \beta \in F, \forall x \in V$.
- (h) $1 \cdot x = x \forall x \in V$.

Basic Properties:

- The zero element is unique, i.e., if there exists θ_1 , θ_2 such that $x + \theta_1 = x$ and $x + \theta_2 = x$, $\forall x \in V$, then $\theta_1 = \theta_2$.
- Additive inverse for each vector is unique, i.e., for $x \in V$, if there exist $x_1 \& x_2$ such that $x + x_1 = 0 = x + x_2$, then $x_1 = x_2$.
- In a vectorspace V over F, for any $x \in V$ and $\alpha \in F$:
 - (a) $0 \cdot x = 0$
 - (b) $(-1) \cdot x = -x$
 - (c) $\alpha \cdot 0 = 0$.

★ Vector Subspaces

> Definition :

Let W be a subset of a vector space V . Then W is called a subspace of V if W is a vector space with respect to the operations of addition and scalar multiplication as in V .

- \succ *Theorem (i)*: Let W be a subset of a vector space V . Then W is a subspace of V if and only if W is non-empty and x + αy ∈ W for all x, y ∈ W and α, ∈ F.
- ightharpoonup Theorem (ii): Let V_1 and V_2 are subspace of a vector space V . Then $V_1 \cap V_2$ is a subspace of V .
- *Theorem (iii)*: Let V_1 and V_2 be subspaces of a vector space. Then $V_1 \cup V_2$ is a subspace if and only if either $V_1 \subseteq V_2$ or $V_2 \subseteq V_1$.

★ Linear Combination of a set of vectors

> Definition:

Let V be a vector space and v_1 , ..., $v_n \in V$. Then, by a linear combination of v_1 ,..., v_n , we mean an element in V of the form $\alpha_1 v_1 + \cdots + \alpha_n v_n$ with $\alpha_j \in F$, $j = 1, \ldots, n$.

* Span of a set of vectors

> Definition:

Let S be a subset of V. Then the set of all linear combinations of elements of S is called the span of S, and is denoted by span S.

- ➤ <u>Theorem (ii)</u>: Let V_1 and V_2 be subspaces of a vector space V. Define $V_1 + V_2 = \{u + v : u \in V_1 \& v \in V_2\}$. Then, $V_1 + V_2 = \text{span}(V_1 \cup V_2)$.

🜟 Linearly Dependent and Linearly Independent sets

> Definition:

- A set of vectors $\{v_1, \ldots, v_n\}$ is said to be *linearly dependent* if one of the vectors can be written as a linear combination of others.
- A set of vectors $\{v_1\,,\,\ldots\,,\,v_n\,\}$ is said to be linearly independent if the set is not linearly dependent

Properties:

- If $\{u_1, \ldots, u_n\}$ is linearly dependent, then for any vector $v \in V$, the set $\{u_1, \ldots, u_n, v\}$ is linearly dependent.
- If $E = \{u_1, \ldots, u_n\}$ is linearly independent, then any subset of E is linearly independent.

***** Basis of Vector Spaces and Dimensions

> Definition:

- Let V be an F-vector space. A set which is linearly independent and spans a vector space V is called an *F-basis* of V .
- Consider set $\{M_{ij}: i=1,\ldots,m; j=1,\ldots,n\}$, where M_{ij} is the matrix with (i,j)-th entry 1 and all other entries 0. Then this is a basis of M_{mxn} (F), called the standard basis.
- \triangleright *Theorem (i)*: Let V be a vector space and B ⊂ V. Then TFAE:
 - (i) B is a basis of V
 - (ii) B is a maximal linearly independent set in V ,i.e., B is linearly independent and B \cup {u} is linearly dependent for any u \in V .
 - (iii) B is a minimal spanning set of V , i.e., span(B) = V and no proper subset of B can span V .

Dimensions

- ➤ <u>Definition</u>: A vector space V is said to be finite dimensional if there exists a finite basis for V, otherwise it is called infinite dimensional vector space. Suppose V is a finite dimensional vector space. Then the cardinality of a basis is said to be the dimension of V, *denoted by dim V*.
- Theorem (ii): If a vector space has a finite spanning set, then it has a finite basis.
- *Theorem* (iii): Let V be a vector space with basis consisting of n elements.

Then any subset of V having n + 1 vectors is linearly dependent.

- *Corollary* (*a*): Any two bases of a finite dimensional vector space has same cardinality.
- *Corollary* (*b*): If a vector space contains an infinite linearly independent subset, then it is an infinite dimensional space.
- ➤ <u>Theorem (iv)</u>: Let V be a vector space of dimension n and A be a subset of V containing m vectors.
 - (a) If A is linearly independent, then $m \le n$.
 - (b) If m > n, then A is linearly dependent.
 - (c) If A is linearly independent and m = n, then A is a basis of V.
- ightharpoonup Theorem (v): If V is a finite dimensional vector space and W is a proper subspace of V, then dim W < dim V.

- Theorem (viii): Let V_1 and V_2 be finite dimensional subspaces of a vector space V. Then $\dim(V_1 + V_2) = \dim V_1 + \dim V_2 \dim(V_1 \cap V_2).$

* Linear Transformations

▶ <u>Definition</u>:

Let V_1 and V_2 be vector spaces over F. A function $T: V_1 \rightarrow V_2$ is said to be a linear transformation (or a linear map) if

T (x + y) = T(x) + T(y) and T $(\alpha x) = \alpha T(x)$ for every $x, y \in V_1$ and for every $\alpha \in F$.

- - (i) T(0) = 0
 - (ii) T(u v) = T(u) T(v)
 - (iii) $T(\alpha_1 v_1 + \cdots + \alpha_n v_n) = \alpha_1 T(v_1) + \cdots + \alpha_n T(v_n)$.
- $\begin{array}{ll} \hline \text{F Theorem (ii):} & \text{Let V be a finite dimensional vector space with basis} \\ B = \{v_1, \ldots, v_n\}. \text{ If T_1 and T_2 are two linear maps from V to another vector} \\ \text{space W such that T_1 $(v_i) = T_2$ (v_i) for all $i = 1, \ldots, n$, then T_1 $(v) = T_2$ (v) for all $v \in V$ $. \end{array}$

* Matrices of Linear Maps (Properties)

i.e., every linear transformation can be realized as a matrix multiplication.

Theorem (ii): Let V , W , Z be finite dimensional vector spaces with A, B, C their respective ordered bases. Let $T_1: V \to W$ and $T_2: W \to Z$ be linear transformations. Then

$$[T2 \circ T1]^{C}_{A} = [T2]^{C}_{B}[T1]^{B}_{A}$$

* Properties of Linear Transformations

- ➤ Kernel of $T = N(T) = \{v \in V : T(v) = 0\}.$
- Range of $T = R(T) = \{w \in W : w = T(v) \text{ for some } v \in V \}.$
- ightharpoonup Theorem (iii): Let T: V \rightarrow W is a linear transformation. Then
 - 1. ker T is a subspace of V.
 - 2. Im T is a subspace of W.
- \triangleright Nullity of T = dim N(T)
- \triangleright Rank of T = dim R(T)
- **B**ijective Transformation : A f : X → Y is called one-one if $f(x_1) = f(x_2)$ ⇒ $x_1 = x_2$. f is called onto if for every $y \in Y$, there exists $x \in X$ such that f(x) = y. If f is one-one and onto, then it is called **b**ijective. A bijective linear transformation is called an **isomorphism**.
- ➤ <u>Theorem (iv)</u>: A linear transformation $T : V \to W$ is one-one if and only if $N(T) = \{0\}$.
- ightharpoonup Theorem (v): Let T : V → W be a bijective linear transformation. Then T $^{-1}$: W → V is linear.

Rank Nullity Theorem

Let V be an n-dimensional vector space and $T:V\to W$ be a linear transformation. Then

$$Rank(T) + Nullity(T) = n.$$

- Two vector spaces V and W are isomorphic if <u>there exists</u> an isomorphism $T: V \to W$.
- ightharpoonup Theorem (vi): V and W are isomorphic if and only if dim V = dim W.

* System of Linear Equations

> Definition:

is called a system of linear equations for the unknowns x_1, \ldots, x_n with coefficients in F.

- The solution set of the system Ax = b is Sol(A, b) = {x ∈ Fⁿ : Ax = b}.
 The system Ax = b is solvable if Sol(A, b) = Ø.
- **Proposition 1**: Ax = b is solvable iff rank (A) = rank (A|b).
- ightharpoonup Proposition 2: Let $x_0 \in F^n$ be a solution of Ax = b. Then $Sol(A, b) = x_0 + N(A) = \{x_0 + x : x \in N(A)\}.$
- **Corollaries**:
 - 1. If x_0 is a solution of Ax = b and $\{v_1, \ldots, v_r\}$ is a basis for N(A), then $Sol(A, b) = \{x_0 + \lambda_1 \ v_1 + \cdots + \lambda_r \ v_r : \lambda_i \in F\}$. Here, r = nullity(A) = n rank (A).
 - 2. A solvable system Ax = b is uniquely solvable iff N(A) = 0 iff rank (A) = n.
 - 3. If A ia a square matrix, then Ax = b is uniquely solvable iff det(A) = 0.
- **Cramer's Rule**: Let det(A) = 0. Denote by C_i the ith column of A. Then the solutions of Ax = b is given by $x_i = det(A[C_i \leftarrow b])/det(A)$.
- *Proposition 3*: Elementary row operations preserve the row rank of a matrix. Elementary column operations preserve the column rank of a matrix.
- ightharpoonup Proposition 4: For a matrix A, rowrank (A) = colrank (A) = rank (A).

➤ Gaussian Elimination when det(A)<>0

- 1. Start with the augmented matrix (A|b). If the (1,1) entry is 0, then interchange first row with another to bring the (1,1) entry of the new matrix nonzero. Replace all other rows by that row minus a suitable multiple of the first row to kill all (j, 1) entries for j > 1.
- 2. After the k th step, Do not touch the first k rows. Continue as in Step 1 with the rest of the matrix.
- 3. After the (n-1)th step, the matrix is of the form (A | b), where A is upper triangular. Use back-substitution to solve it.

F Gaussian Elimination when $A ∈ F^{m \times n}$

- (A) Start as in Gaussian Elimination as long as possible. After, say, t steps, you find that the first t diagonal elements are nonzero, but no interchange among the last m-t rows can fill the (t+1,t+1) entry with a nonzero element.
- (B) Use interchange of columns from among the last n t columns and keep track of the corresponding variables. Continue to proceed as in Step (A). Reach finally at a matrix where the first r diagonal elements are nonzero, and all the rest n r rows are zero rows in the matrix A. Call the b-entries as b_i^l
- (C) If one of $b_r + 1$, ..., bn is nonzero, then Ax = b is not solvable.
- (D) Otherwise, omit the last n-r rows. You now end up with the augmented matrix as (T | S | b), where T is an upper triangular $r \times r$ invertible matrix, S is an $r \times k$ matrix, b is an r vector.
- (E) Write the unknowns as $y_1, \ldots, y_r, z_1, \ldots, z_k$. It is a permutation of the original x_1, \ldots, x_n . The system is Ty + Sz = b.
- (F) Solve Ty = b and adjoin k zeros to get w_0 . For jth vector w_j solve Ty = -Sj, the jth column of S. Adjoin one 1 at jth position rest 0 for getting w_j . (We want to get k linearly independent solutions, since nullity of T + S is k.)
- (G) Finally reorder the vectors w_0 , ..., w_k for v_0 , ... v_k taking care of the reordering of the unknowns done in Step (F).
- (H) Sol(A, b) = $\{v_0 + \lambda_1 v_1 + \cdots + \lambda_k v_k : \lambda_i \in F\}$.

* Eigenvalues and Eigenvectors

> *Definition*:

Let V be a vector space over F, and $T:V\to V$ be a linear operator. By an eigenvector associated with the eigenvalue $\lambda\in F$ we mean a nonzero vector $v\in V$ with the property that $Tv=\lambda v$.

- \triangleright <u>Proposition 1</u>: A vector v is an eigenvector of T: V → V for the eigenvalue $\lambda \in F$ iff v ∈ N(T λI). Thus λ is an eigenvalue of T iff the operator T λI is not one-one.
- ightharpoonup Proposition 2: Let V over F be finite dimensional. Let A be the matrix for an operator T: V → V with respect to some basis. Then $\lambda \in F$ is an eigenvalue of T iff det(A − λ I) = 0.
- **Characteristic Polynomial** : The polynomial $det(A \lambda I)$ in the variable λ is called the characteristic polynomial of the matrix A.
- ightharpoonup Proposition 3: A and A^t have the same eigenvalues.
- ➤ <u>Proposition 4</u>: Similar matrices have the same eigenvalues.
- *Proposition 5* : If A is diagonal or upper triangular or lower triangular, then its diagonal elements are precisely its eigenvalues.
- Proposition 6: det(A) equals the product of all eigenvalues.
 tr (A) equals the sum of all eigenvalues.

Cayley-Hamilton Theorem

Any square matrix satisfies its characteristic polynomial.

➤ Hermitian Matrices

<u>Proposition 7</u>: Eigenvalues of a real symmetric matrix or of a Hermitian matrix are real. Eigenvalues of a skew-hermitian matrix are purely imaginary or zero.

- ightharpoonup Proposition 8: Eigenvectors associated with distinct eigenvalues of an $n \times n$ matrix are linearly independent.
- ightharpoonup : If an n × n matrix has n distinct eigenvalues, then A is similar to a diagonal matrix.

Inner Product of Vector Spaces

- \triangleright <u>Definition</u>: An inner product on a vector space V is a map x, y which associates a pair of vectors in V to a scalar (x, y) x, y satisfying
 - (a) x, $x \ge 0$ for each $x \in V$.
 - (b) x, x = 0 i# x = 0.
 - (c) x + y, z = x, z + y, z for all x, y, $z \in V$.
 - (d) αx , $y = \alpha x$, y for each $\alpha \in F$ and for all x, $y \in V$.
 - (e) y, x = x, y for all $x, y \in V$.

- ➤ A vector space with an inner product on it is called an **inner product space** (ips).
- Proposition 1: Let V be an ips. For all x , y , z ∈ V and for all α ∈ F, <x, y +z> = <x, y> + <x, z> , <x,αy> = α^c<x,y> (α^c is the conjugate of α).
- Let V be an ips. For any $x \in V$, the length of x, also called the **norm** of x is $||x|| = \text{square root of } \langle x, x \rangle$.
- *Proposition 2*: Let x,y∈V, an ips. The parallelogram law holds: $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$
- *Proposition 3*: Let $x,y \in V$, an ips. $|\langle x,y \rangle| \le ||x|| ||y||$. Further, the equality holds iff $\{x,y\}$ is linearly dependent.
- *Proposition 4*: (Triangle Inequality) For all x,y ∈ V, an ips, ||x+y|| ≤ ||x|| + ||y||.

† Orthogonality

- *Definition*: Let x , y ∈ V , an ips. The vector x is orthogonal to y, i.e., $x \perp y$ iff $\langle x,y \rangle = 0$.
- Proposition 1 (Pythagoras): Let V be an ips. Let x, y \in V.
 - (a) If $x \perp y$, then $||x + y||^2 = ||x||^2 + ||y||^2$.
 - (b) Suppose V is a real vector space. If $||x + y||^2 = ||x||^2 + ||y||^2$, then $x \perp y$.

Orthogonal Set

Let V be an ips, $S \subseteq V$, and $x \in V$.

- (a) $x \perp S$ iff for each $y \in S$, $x \perp y$.
- (b) $S^{\perp} = \{x \in V : x \perp S \}.$
- (c) S is called an orthogonal set when $x, y \in S$, $x \ne y$ implies $x \perp y$.

An orthogonal set of nonzero vectors is lineraly independent.

Orthonormal Sets

Let V be an ips. A set $S \subseteq V$ is called an orthonormal set if S is orthogonal and ||x|| = 1 for each $x \in S$. In addition, if an orthonormal set S is also a basis for V, then S is called an <u>orthonormal basis</u>.

➤ <u>Proposition 2 (Fourier expansion and Parseval's Identity)</u>: Let $S = \{u_1, u_2, \ldots, u_n\}$ be an orthonormal set in an ips V. Let $x \in \text{span}(S)$. Then $x = \sum_{j=1 \text{ to } n} \langle x, u_j \rangle u_j \quad \text{and} \quad ||x||^2 = \sum_{j=1 \text{ to } n} |\langle x, u_j \rangle|^2$

Bessel's Inequality : Let $\{u_1, u_2, ..., u_n\}$ be an orthonormal set in an ips V . Let x ∈ V . Then

$$\sum_{i=1 \text{ to } n} |\langle x, u_i \rangle|^2 \le ||x||^2$$

➤ Gram-Schmidt Orthogonalization

Let
$$V = \text{span } \{u_1, \dots, u_n\}$$
. Define $v_1 = u_1$ $v_2 = u_2 - (\langle u_2, v_1 \rangle / \langle v_1, v_1 \rangle) v_1$ $v_{n+1} = u_{n+1} - (\langle u_{n+1}, v_1 \rangle / \langle v_1, v_1 \rangle) v_1 - \dots - (\langle u_{n+1}, v_n \rangle / \langle v_n, v_n \rangle) v_n$

> Best Approximation

Let U be a subspace of an ips V . Let $v \in V$. A vector $u \in U$ is a best approximation of v if $||v - u|| \le ||v - x||$ for each $x \in U$.

- \triangleright <u>Proposition 3</u>: Let U be a subspace of an ips V . A vector u ∈ U is a best approximation of v ∈ V iff v − u ⊥ U. Moreover, a best approximation is unique.
- **Best Approximation Solution**

Let U be a vector space, V an ips, $A:U\to V$ a linear transformation. A vector $u\in U$ is a Best Approximate Solution (also called a Least Square Solution) of the equation Ax=y if

$$||Au - y|| \le ||Az - y||$$
 for all $z \in U$.

- ightharpoonup Proposition 4: Let U be a vector space, V an ips, A: U \rightarrow V a linear transformation.
 - (a) A vector $u \in U$ is a best approximate solution iff $Au y \perp R(A)$.
 - (b) If $\dim(R(A)) < \infty$, then Ax = y has a best approximate solution.
 - (c) A best approximate solution is unique iff A is one-one.
- **>** <u>Proposition 5</u>: Let $A ∈ R^{m \times n}$. A vector $u ∈ R^n$ is a best approximate solution of Ax = y iff $A^tAu = A^ty$.