Carlingford High School

2018

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

Mathematics Extension 2

Student Number:____

	1-10	11	12	13	14	15	16	Total
MC	/10							/10
Complex								
Numbers		/11			/4			/15
Graphs			/2	/7			/4	/13
Conics				/8		/6		/14
Polynomials					/11	/3		/14
Integration			/9			/3		/12
Volumes			/4			/3	/3	/10
Harder 3U		/4					/8	/12
Total	/10	/15	/15	/15	/15	/15	/15	/100

- **General Instructions**
- Reading time 5 minutes
- Working time -3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided at the back of this paper
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total Marks - 100

Section I Pages 2-5

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II

Pages 6 – 11

90 marks

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks

Attempt Questions 1 - 10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1 - 10.

A curve has equation $x^2 - y^2 + x^3 \cos y - 6 = 0$. 1.

What is $\frac{dy}{dx}$ for the curve?

$$(A) \quad \frac{2x - 3x^2 \cos y}{2y}$$

(B)
$$\frac{2x + 3x^2 \cos y}{2y}$$

(C)
$$\frac{2x + 3x^2 \cos y}{2y - x^3 \sin y}$$

(D)
$$\frac{2x + 3x^2 \cos y}{2y + x^3 \sin y}$$

In which of the following pairs is $g(x) = f^{-1}(x)$? 2.

(A)
$$f(x) = 2x + 3$$
, $g(x) = \frac{x+3}{2}$ (B) $f(x) = x^2 + 3$, $g(x) = \sqrt{x+3}$

$$g(x) = \frac{x+3}{2}$$

$$(B) \quad f(x) = x^2 + 3$$

$$g(x) = \sqrt{x+3}$$

(C)
$$f(x) = \frac{1}{\sqrt{x+1}}$$
, $g(x) = \frac{1-x^2}{x^2}$ (D) $f(x) = x^3 + 1$, $g(x) = \sqrt[3]{x+1}$

$$g(x) = \frac{1 - x^2}{x^2}$$

$$(D) \quad f(x) = x^3 + 1$$

$$g(x) = \sqrt[3]{x+1}$$

 $\int \frac{dx}{x^2 + 4x + 9} =$

(A)
$$\frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{x+2}{\sqrt{5}} \right) + C$$

(B)
$$\frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{x+2}{5} \right) + C$$

(C)
$$\frac{1}{5} tan^{-1} \left(\frac{x+2}{\sqrt{5}}\right) + C$$

(D)
$$\frac{1}{5} tan^{-1} \left(\frac{x+2}{5}\right) + C$$

4. The graphs of two functions, y = p(x) and y = q(x) are drawn below.

Which of the following describes the relationship between the two functions?

(A)
$$q(x) = \frac{1}{p(x)}$$

(B)
$$q(x) = [p(x)]^2$$

(C)
$$p(x) = \frac{1}{q(x)}$$

(D)
$$p(x) = [q(x)]^2$$

5. An ellipse has cartesian equation $\frac{x^2}{4} + \frac{y^2}{2} = 1$.

What is the parametric equation of this ellipse?

(A)
$$x = 2 \cos \theta, y = \sqrt{2} \sin \theta$$

(B)
$$x = 4 \cos \theta, y = 2 \sin \theta$$

(C)
$$x = \sqrt{2} \sin \theta, y = 2 \cos \theta$$

(D)
$$x = 2 \sin \theta, y = 4 \cos \theta$$

6. What is the range for the curve $y = \frac{x^2 - 5x + 1}{x - 5}$?

(A)
$$-1 \le y \le 8; \ y \ne 5$$

(B)
$$y \le 1$$
 and $y > 5$

(C)
$$3 \le y \le 7$$

(D)
$$y \le 3$$
 and $y \ge 7$

7. What is the square root of 12 - 16i?

(A)
$$\pm (2 - 4i)$$

(B)
$$\pm (2\sqrt{3} - 4i)$$

(C)
$$\pm (4 - 2i)$$

(D)
$$\pm (4 - 2\sqrt{3}i)$$

The polynomial $P(x) = x^4 - 5x^3 - 9x^2 + 81x - 108$ has a root of multiplicity 3. 8.

Where is this root located?

(A) x = -3

(B) $x = -\frac{1}{2}$

(C) $x = \frac{1}{2}$

- (D) x = 3
- The region bounded by the curve $y = x^2$, the x axis, x = 0 and x = 2 is rotated around 9. the line x = 2.

Which of the following gives the volume of the solid formed?

- (A) $V = \pi \int_0^2 (2-x)^2 dy$ (B) $V = \pi \int_0^4 (2-x)^2 dy$
- (C) $V = \pi \int_0^2 (2 x^2)^2 dy$ (D) $V = \pi \int_0^4 (2 x^2)^2 dy$
- The equation $x^4 + px + q = 0$ where $p \neq 0$ and $q \neq 0$ has roots α, β, γ and δ . 10.

What is $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$?

(A) -4q

(B) $p^2 - 2q$

(C) $p^4 - 2q$

(D) p^4

Section II

90 marks

Attempt Questions 11 – 16.

Allow about 2 hours and 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 writing booklet.

- (a) z is a complex number such that |z| = 2 and $\arg z = \frac{\pi}{3}$.
 - (i) Evaluate z^5
 - (ii) Write down z in cartesian form.
 - (iii) Find the value of $\frac{1}{z}$ in cartesian form.
 - (iv) If $\omega = 2 3i$, find the value of $\omega^2 z$
- (b) (i) Find the values of a, b, and c such that:

$$\frac{x+1}{(x+3)(x+2)^2} = \frac{a}{(x+3)} + \frac{b}{(x+2)} + \frac{c}{(x+2)^2}$$

- (ii) Hence evaluate $\int \frac{x+1}{(x+3)(x+2)^2} dx.$
- (c) (i) Show that $\cos x + \cos 3x = 4\cos^3 x 2\cos x$.
 - (ii) Hence or otherwise solve $\cos x + \cos 3x = 0$ for $0 \le x \le 2\pi$.
- (d) Sketch the region in the Argand diagram where $1 < z\bar{z} \le 3$ and $Im(z) \ge 0$.

Question 12 (15 marks) Use the Question 12 writing booklet.

- (a) (i) Find $\int sec^4x \tan x \ dx$.
 - (ii) Find $\int \frac{dx}{\sqrt{7+4x-x^2}}$.
 - (iii) Evaluate $\int \frac{dx}{x^2\sqrt{9+x^2}}$, using the trigonometric substitution $x=3\tan\theta$.
- (b) Find the exact value of $\int_2^3 \frac{x+1}{\sqrt{x^2+2x+5}} dx$.
- (c) Find the equation of the normal to the curve $x^2 + xy + y^2 = 7$ at the point (1, 2).
- (d) Let S be the solid having for its base the region bounded by the circle $x^2 + y^2 = 16$.

Every plane of the solid taken perpendicular to the x – axis is an isosceles right angled triangle with the hypotenuse in the plane of the base.

Find the volume of the solid *S*.

Question 13 (15 marks) Use the Question 13 writing booklet.

- (a) The points $P\left(3p, \frac{3}{p}\right)$, $p \neq 0$, and $Q\left(3q, \frac{3}{q}\right)$, $q \neq 0$, are two points on the rectangular hyperbola xy = 9.
 - (i) Find the equation of the chord *PQ*.
 - (ii) Prove that the tangent at P has equation $x + p^2y = 6p$.

2

2

2

- (iii) The tangents at P and Q intersect at T. Find the coordinates of T.
- (iv) The line through T, parallel to PQ passes through the point (0, 6). Show that p + q = 2.
- (b) The graph of y = f(x) is shown below.

Sketch the following curves on separate half page diagrams.

(i)
$$y = |f(x)|$$
 1

(ii)
$$y = \frac{1}{f(x)}$$

(iii)
$$y = f'(x)$$

$$(iv) y^2 = f(x)$$

Question 14 (15 marks) Use the Question 14 writing booklet.

(a) The polynomial $x^3 - 3x^2 + 4x - 6 = 0$ has roots α, β and γ .

Calculate the value of:

$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$$

(ii)
$$\alpha^3 + \beta^3 + \gamma^3$$

- (b) Suppose $p(x) = ax^3 + bx^2 + cx + d$ with a, b, c and d real, $a \ne 0$.
 - (i) Deduce that if $b^2 3ac < 0$ then p(x) cuts the x-axis only once.

2

1

- (ii) If $b^2 3ac = 0$ and $p\left(-\frac{b}{3a}\right) = 0$, find the multiplicity of the root $x = -\frac{b}{3a}$.
- (c) If $z^n = \cos n\theta + i\sin n\theta$, use De Moivre's theorem to show that $z^n + \frac{1}{z^n} = 2\cos n\theta.$
 - (ii) Find the constants A, B, and C such that: $cos^{5}\theta = Acos 5\theta + Bcos 3\theta + Ccos \theta.$
 - (iii) Hence evaluate $\int cos^5 \theta \ d\theta$.
- (d) One of the roots of the equation $x^2 (6-2i)x + k = 0$ is 2-3i.
 - (i) State the other root.
 - (ii) Find the value of k.

Question 15 (15 marks) Use the Question 15 writing booklet.

(a) The shaded region is bounded by the lines x = -1, y = 1 and y = -1 and by the curve $x - y^2 = 0$. The region is rotated 360° about the line x = 2 to form a solid.

When the region is rotated, the line segment S at height y sweeps out an annulus.

(i) Show that the area of the annulus at height y is equal to $\pi(5 + 4y^2 - y^4)$.

1

2

1

2

- (ii) Hence find the volume of the solid.
- (b) Find all solutions to the equation $x^4 5x^3 + 17x^2 + 37x 50 = 0$, given that x = 3 4i is one solution.
- (c) (i) Show that a reduction formula for $I_n = \int sec^n x \ dx$ is

$$I_n = \frac{1}{n-1} \sec^{n-2} x \tan x + \frac{n-2}{n-1} I_{n-2}$$

- (ii) Hence evaluate $\int_0^{\frac{\pi}{4}} \sec^4 x \, dx$.
- (d) The hyperbola *H* has equation $9x^2 16y^2 = 144$.
 - (i) Write down the eccentricity for this hyperbola and find the coordinates of its foci *S* and *S*'.
 - (ii) If $P(x_1, y_1)$ is an arbitrary point on H, prove that the equation of the tangent T at P is: $9xx_1 16yy_1 = 144$.
 - (iii) Hence find the coordinates of the point G at which the tangent T cuts the x axis. 1
 - (iv) Hence prove that $\frac{SP}{S'P} = \frac{SG}{S'G}$.

Question 16 (15 marks) Use the Question 16 writing booklet.

(a) If a, b and c are positive and unequal, prove that

$$(i) a+b-2\sqrt{ab} \ge 0$$

(ii)
$$(a+b)(b+c)(c+a) > 8abc$$
 2

- (b) The sequence $\{x_n\}$ is given by $x_1 = 1$ and $x_{n+1} = \frac{4+x_n}{1+x_n}$ for $n \ge 1$.
 - (i) Prove by induction that for $n \ge 1$, $x_n = 2\left(\frac{1+\alpha^n}{1-\alpha^n}\right), \quad \text{where } \alpha = -\frac{1}{3}.$
 - (ii) Hence find the limiting value of x_n as $n \to \infty$.
- (c) The region bounded by the curve $y = \sin x$, the x axis, x = 0 and $x = \pi$ is revolved around the y-axis

Find the volume of the solid of revolution formed.

(d) Sketch the graph of $y = x + \frac{8x}{x^2 - 9}$, clearly indicating any asymptotes and any points where the graph meets the axes.

End of Paper

Carlingford High School

2018

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

REFERENCE SHEET

- Mathematics –
- Mathematics Extension 1–
- Mathematics Extension 2-

Factorisation

$$a^{2} - b^{2} = (a+b)(a-b)$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

Angle sum of a polygon

$$S = (n-2) \times 180^{\circ}$$

Equation of a circle

$$(x-h)^2 + (y-k)^2 = r^2$$

Trigonometric ratios and identities

$$\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}}$$
 $\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}}$
 $\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}}$
 $\cot \theta = \frac{\sin \theta}{\sin \theta}$
 $\sin^2 \theta + \cos^2 \theta = 1$

Exact ratios

Sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Area of a triangle

Area =
$$\frac{1}{2}ab\sin C$$

Distance between two points

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Perpendicular distance of a point from a line

$$d = \frac{\left| ax_1 + by_1 + c \right|}{\sqrt{a^2 + b^2}}$$

Slope (gradient) of a line

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Point-gradient form of the equation of a line

$$y - y_1 = m(x - x_1)$$

nth term of an arithmetic series

$$T_n = a + (n-1)d$$

Sum to n terms of an arithmetic series

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 or $S_n = \frac{n}{2} (a+l)$

nth term of a geometric series

$$T_n = a r^{n-1}$$

Sum to n terms of a geometric series

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 or $S_n = \frac{a(1 - r^n)}{1 - r}$

Limiting sum of a geometric series

$$S = \frac{a}{1 - r}$$

Compound interest

$$A_n = P \bigg(1 + \frac{r}{100} \bigg)^n$$

Differentiation from first principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivatives

If
$$y = x^n$$
, then $\frac{dy}{dx} = nx^{n-1}$

If
$$y = uv$$
, then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

If
$$y = \frac{u}{v}$$
, then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

If
$$y = F(u)$$
, then $\frac{dy}{dx} = F'(u)\frac{du}{dx}$

If
$$y = e^{f(x)}$$
, then $\frac{dy}{dx} = f'(x)e^{f(x)}$

If
$$y = \log_e f(x) = \ln f(x)$$
, then $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$

If
$$y = \sin f(x)$$
, then $\frac{dy}{dx} = f'(x)\cos f(x)$

If
$$y = \cos f(x)$$
, then $\frac{dy}{dx} = -f'(x)\sin f(x)$

If
$$y = \tan f(x)$$
, then $\frac{dy}{dx} = f'(x) \sec^2 f(x)$

Solution of a quadratic equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sum and product of roots of a quadratic equation

$$\alpha + \beta = -\frac{b}{a} \qquad \alpha \beta = \frac{c}{a}$$

$$\alpha\beta = \frac{c}{a}$$

Equation of a parabola

$$(x-h)^2 = \pm 4a(y-k)$$

Integrals

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$$

$$\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + C$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

$$\int \sin(ax+b) dx = -\frac{1}{a}\cos(ax+b) + C$$

$$\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C$$

$$\int \sec^2(ax+b)dx = \frac{1}{a}\tan(ax+b) + C$$

Trapezoidal rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \Big[f(a) + f(b) \Big]$$

Simpson's rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Logarithms - change of base

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Angle measure

$$180^{\circ} = \pi \text{ radians}$$

Length of an arc

$$l = r\epsilon$$

Area of a sector

Area =
$$\frac{1}{2}r^2\theta$$

Angle sum identities

$$\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$$

$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$$

$$\tan(\theta + \phi) = \frac{\tan\theta + \tan\phi}{1 - \tan\theta \tan\phi}$$

t formulae

If
$$t = \tan \frac{\theta}{2}$$
, then

$$\sin\theta = \frac{2t}{1+t^2}$$

$$\cos\theta = \frac{1 - t^2}{1 + t^2}$$

$$\tan \theta = \frac{2t}{1 - t^2}$$

General solution of trigonometric equations

$$\sin \theta = a, \qquad \theta = n\pi + (-1)^n \sin^{-1} a$$

$$\cos \theta = a, \qquad \theta = 2n\pi \pm \cos^{-1} a$$

$$\tan \theta = a, \qquad \theta = n\pi + \tan^{-1} a$$

Division of an interval in a given ratio

$$\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$$

Parametric representation of a parabola

For
$$x^2 = 4ay$$
,

$$x = 2at$$
, $y = at^2$

At
$$(2at, at^2)$$
,

tangent:
$$y = tx - at^2$$

normal:
$$x + ty = at^3 + 2at$$

At
$$(x_1, y_1)$$
,

tangent:
$$xx_1 = 2a(y + y_1)$$

normal:
$$y - y_1 = -\frac{2a}{x_1}(x - x_1)$$

Chord of contact from
$$(x_0, y_0)$$
: $xx_0 = 2a(y + y_0)$

Acceleration

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

Simple harmonic motion

$$x = b + a\cos(nt + \alpha)$$

$$\ddot{x} = -n^2(x-b)$$

Further integrals

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} + C$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

Sum and product of roots of a cubic equation

$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$$

$$\alpha\beta\gamma = -\frac{d}{a}$$

Estimation of roots of a polynomial equation

Newton's method

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Trial HSC Examination 2018 Mathematics Extension 2 Course

Student Number:														
	Section I – Multiple Choice Answer Sheet													
	out 15 min alternative				s the questi	on. Fill in the resp	onse oval completely.							
Sample:	ple: 2 + 4 =			(A) 2 A O		(C) 8	(D) 9 D O							
If you thin answer.	k you have	made a n	nistake, pu	ıt a cross	through the	incorrect answer	and fill in the new							
			A •		В	c O	D 🔿							
If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.														
			A 💌		В	c O	D 🔿							
1.	A 🔿	В	c \bigcirc	D 🔾										
2.	$A \bigcirc$	$B \bigcirc$	c \bigcirc	$D \bigcirc$										
3.	$A \bigcirc$	$B \bigcirc$	c \bigcirc	$D \bigcirc$										
4.	$A \bigcirc$	$B \bigcirc$	c \bigcirc	$D \bigcirc$										
5.	$A \bigcirc$	$B \bigcirc$	c \bigcirc	$D \bigcirc$										
6.	$A \bigcirc$	$B \bigcirc$	c \bigcirc	$D \bigcirc$										
7.	$A \bigcirc$	$B \bigcirc$	c \bigcirc	D 🔾										
8.	$A \bigcirc$	$B \bigcirc$	$C \bigcirc$	$D \bigcirc$										

 $A \bigcirc B \bigcirc C \bigcirc D \bigcirc$

10. A O B O C O D O

9.