Preliminares para el Teorema de la Función Inversa

Proposición 1. Sea $g: B_r(\mathbf{0}) \subseteq \mathbb{R}^n \to \mathbb{R}^n$ clase \mathbb{C}^1 tal que

- 1. g(0) = 0
- 2. existe $L: \mathbb{R}^n \to \mathbb{R}^n$ lineal, biyectiva tal que

$$||g(w) - g(v) - L(v - w)|| \le \frac{1}{2m} ||v - w||$$

para todo $v, w \in B_r(\mathbf{0})$, donde $m = ||L^{-1}||$.

Entonces, para todo $\mathbf{q} \in B_{r/2m}(\mathbf{0})$ existe $\mathbf{p} \in B_r(\mathbf{0})$ tal que $g(\mathbf{p}) = \mathbf{q}$.

Proof. Vamos a definir $p_0 = 0$ y $q_0 = q$.

Por recursión vamos a definir

$$\begin{array}{c|cccc} B_r(\mathbf{0}) & B_{1/2m}(\mathbf{0}) \\ \hline p_1 := L^{-1}(q_0) + p_0 & q_1 := q_0 + g(p_0) - g(p_1) \\ p_2 := L^{-1}(q_1) + p_1 & q_2 := q_1 + g(p_1) - g(p_2) \\ & \vdots & & \vdots \\ p_n := L^{-1}(q_{n-1}) + p_{n-1} & q_n = q_{n-1} + g(p_{n-1}) - g(p_n) \\ p_{n+1} = L^{-1}(q_n) + p_n & q_{n+1} = q_n + g(p_n) - g(p_{n+1}) \end{array}$$

Para que las sucesiones estén bien definidas debemos de probar que $p_n \in B_r(\mathbf{0})$ y $q_n \in B_{1/2m}(\mathbf{0})$. Para esto se va a probar

- 1. $||p_k p_{k-1}|| \le \frac{m}{2^{k-1}} |||q||$;
- 2. $||q_k|| \le \frac{1}{2^k} ||q||$

Lo anterior se prueba por inducción.

Caso k = 1.

Para el primero debemos de probar $||p_1 - p_0|| \le m||q||$. Pero

$$||p_1 - p_0|| = ||p_1|| = ||L^{-1}(q_0) + p_0|| = ||L^{-1}(q)|| \le m||q||.$$

Para el segundo tenemos, por la hipótesis

$$||q_1|| = ||q_0 + g(p_0) - g(p_1)||$$

$$= ||L(p_1 - p_0) + g(p_0) - g(p_1)||$$

$$\leq \frac{1}{2m} ||p_1 - p_0||$$

$$= \frac{1}{2m} ||p_1||$$

$$\leq \frac{m||q||}{2m}$$

$$= \frac{||q||}{2}$$

Caso k+1. Suponemos para k y probamos para k+1. Para la primer parte

$$||p_{k+1} - p_k|| = ||L^{-1}(q_k)|| \le m||q_k|| \le m \frac{||q||}{2^k}$$

Para la segunda parte

$$||q_{k+1}|| = ||q_k + g(p_k) - g(p_{k+1})||$$

$$= ||L^{-1}(p_{k+1} - p_k) + g(p_k - g(p_{k+1}))|$$

$$\leq \frac{1}{2m} ||p_{k+1} - p_k||$$

$$\leq \frac{1}{2m} \frac{m||q||}{2^k} = \frac{||q||}{2^{k+1}}$$

Esto acaba la inducción.

La condición sobre las q_k implica que para toda $k, q_k \in B_{1/2m}(\mathbf{0})$. De la condición para las p_k se tiene que

$$||p_k|| = ||p_k - p_0|| \le ||p_k - p_{k-1}|| + ||p_{k-1} - p_{k-2}|| + \dots + ||p_1 - p_0||$$

$$\le \sum_{j=0}^{k-1} \frac{m||q||}{2^j}$$

$$< m||q|| \sum_{j=0}^{\infty} \frac{1}{2^j} = 2m||q|| < 2m(\frac{r}{2m}) = r$$

Como $p_k \in Br(\mathbf{0})$, para toda k, por Bolzano-Weirestrass exsite una sunsucesión $(p_{k_n})_{n\geq 1}$ y $p\in R^n$ tal que $\lim_n p_{k_n}=p$. Notar que $\|p_k\|\leq 2m\|q\|$ al tomar límite se tiene $\|p\|\leq 2m\|q\|< r$, por lo que $p\in B_r(\mathbf{0})$.

También de la relaciones es claro que $\lim_n q_n = 0$.

Ahora, si sumamos el lado derecho de la columnas tenemos que

$$q_n = q_0 - g(p_n)$$

Tomando límite cuando $n \to \infty$ se concluye que 0 = q - g(p).

Teorema 1 (Solubilidad local). Sea $F: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$, clase C^1 en U y $\mathbf{p}_0 \in U$ tal que $D_{\mathbf{p}_0}F$ sea invertible. Existen $\alpha > 0$ y $\beta > 0$ tal que: para todo $q \in B_{\beta}(F(\mathbf{p}_0))$ existe $p \in B_{\alpha}(\mathbf{p}_0)$ tal que F(p) = q.

Proof. Sea $L = D_{\mathbf{p}_0} F$ y $m := ||L^{-1}||$. Por una proposición anterior, para $\varepsilon = \frac{1}{2m}$ existe $\alpha > 0$ tal que, para $v, w \in B_{\alpha}(\mathbf{0})$

$$||F(p_0+v)-F(p_0+w)-D_{p_0}F(v-w)|| \le \frac{1}{2m}||v-w||$$

Definimos $g: B_{\alpha}(\mathbf{0}) \to \mathbb{R}^n$ por $g(v) = F(p_0 + v) - F(p_0)$. Entonces

- 1. g es de clase C^1
- 2. g(0) = 0
- 3. $||g(v) g(w) L(v w)|| \le \frac{1}{2m} ||v w||$

Para $w=q-F(p_0)\in B_{1/2m}(\mathbf{0})$, exsite $v\in B_\alpha(0)$ tal que g(v)=w, es decir $F(p_0+v)-F(p_0)=q-F(p_0)$ por lo que $F(p_0+v)=q$. Se toma $p=p_0+v$.

Teorema 2 (Teorema del mapeo abierto). Sea $F: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ tal que D_pF es invertible para todo $p \in U$. Entonces $F(U) \subseteq \mathbb{R}^n$ es abierto en \mathbb{R}^n .

Proof. Sea $F(p_0) \in F(U)$. Por el teorema de solubilidad local, existe $\alpha > 0$ y $\beta > 0$ tal que, para todo $q \in B_{\beta}(F(p_0))$ existe $p \in B_{\alpha}(p_0)$ tal que F(p) = q. Esto quiere decir que $B_{\beta}(F(p_0)) \subseteq F(U)$.

3