Midterm Exam

1. Consider the following propositions:

•
$$\neg [p \rightarrow (q \land r)]$$

$$(p \land \neg q) \lor (p \land \neg r)$$

(a) Use a truth table to show that these propositions are logically equivalent.

p	q	r	qΛr	$\neg [p \rightarrow (q \land r)]$	р∧¬q	p∧¬r	$(p \land \neg q) \lor (p \land \neg r)$
T	T	T	T	${f F}$	F	F	F
T	T	F	F	T	F	T	T
T	F	T	F	T	T	F	T
T	F	F	F	T	T	T	T
F	T	T	T	F	F	F	F
F	T	F	F	F	F	F	F
F	F	T	F	F	F	F	F
F	F	F	F	F	F	F	F

(b) What can we then conclude about the following proposition?

$$\neg \left[p \rightarrow \!\! \left(q \land r \right) \right] \leftrightarrow \!\! \left(p \land \neg q \right) \lor \left(p \land \neg r \right)$$

We can then conclude that this proposition is always true because they are logically equivalent.

- 2. Let the domain for x and y be Z, the set of integers.
 - (a) Determine the truth value of $\forall x \exists y (y = x/2)$. Briefly explain your answer.

This is equivalent to the English statement: "For all values of x, there exists some y such that y = x/2." This is not true, therefore the truth value is FALSE. For example, if x = 5, then there is no y = 5/2 that is an integer, therefore not all values of x satisfy the statement.

(b) Determine the truth value of $\exists y \forall x (y = x/2)$. Briefly explain your answer.

This is equivalent to the English statement: "There exists some y such that for all value of x, y = x/2." This is not true, therefore the truth value is FALSE. For example, if y = 3, not all x will produce 3, only the integer 6.

3. Using a proof by contraposition, prove the following statement:

Let a, b, c be integers. If a does not divide b + c, then a does not divide b or a does not divide c.

<u>Proof</u>: Let a, b, c be integers, where a does not divide b+c and does and $a\mid b$ and $a\mid c$. By definition, there exists some integer k such that b=ak and some integer m such that c=am. If this is true, then b+c=ak+am=a(k+m). Thus, by definition $a\mid b+c$.

Therefore, by contraposition, if a does not divide b + c, then a does not divide b or a does not divide c.

4. Consider the following statement:

 $\sqrt{3}$, the cube root of 2, is irrational.

(a) Using a proof by contradiction, prove that if n³ is even, then n is even, where n is an integer.

Assume, for contradiction, that n is odd and n^3 is even. By definition with some integer k, n=2k+1. $n^3=(2k+1)^3=(2k+1)(2k+1)(2k+1)=(4k^2+4k+1)(2k+1)=8k^3+12k^2+6k+1=2(4k^3+6k^2+3k)+1$. Let m be some integer such that $m=4k^3+6k^2+3k$, therefore, the above is 2m+1. By definition this is odd, so n^3 is both even and odd.

Therefore, by contradiction, if n³ is even, then n is even, where n is an integer.

(b) Using a proof by contradiction, prove that $\sqrt[3]{2}$, the cube root of 2, is irrational.

Proof: Suppose, for contradiction, that ${}^3\sqrt{2}$ is rational. By definition ${}^3\sqrt{2}=a/b$, where a and b are integers, $b\neq 0$ and gcd(a,b)=1. Then $2=(a/b)^3$; thus $2b^3=a^3$. By definition a^3 is even, and if this is true, then a is even see above proof). Then a is even and there exists an integer k such that a=2k. Then $2b^3=(2k)^3=8k^3$, then $b^3=4k^3=2(2k^3)$. Then b^3 is also eve, thus b is even. Since a and b are both even, gcd(a,b) greater than or equal to 2. This contradicts the definition of ${}^3\sqrt{2}$ being rational.

5. Let the universe be Z and let:

$$A = \{1, 2, 4, 8\}, B = \{-2, -1, 0, 1, 2\}, and C = \{8, 9, 10\}$$

(a) Find $(A \cup C) \cap B$.

$$\{-2, -1, 0\}$$

(b) Find $C \times A$

$$\{(8, 1), (8, 2), (8, 4), (8, 8), (9, 1), (9, 2), (9, 4), (9, 8), (10, 1), (10, 2), (10, 4), (10, 8)\}$$

6. Let A and B be sets. Prove the following statement:

$$A \cap (A \cup B) = \emptyset$$

Proof: Assume, for contradiction, the set is not empty and contains an element x. This leads to $x \in A$ $\cap (\overline{A \cup B})$. By definition, this leads to x being an element that is in both sets, A and $(\overline{A \cup B})$. This leads to $\{x \mid x \in A \land \neg (x \in B \land A)\}$. This means that x is both in A and not in A.

Therefore, by contradiction, $A \cap (\overline{A \cup B}) = \emptyset$

7. Let A, B, and C be sets. Prove the following statement:

If
$$A \subseteq B$$
 or $A \subseteq C$, then $A \subseteq B \cup C$

Proof: Let a be a set such that $x \in A$. By definition, if $A \subseteq B$, then $\forall x (x \in A \rightarrow x \in B)$, meaning $x \in B$. If $A \subseteq C$, then by definition $\forall x (x \in A \rightarrow x \in C)$, meaning $x \in C$; then $x \in C \lor x \in B$. By definition, A is a subset of the union of B and C.

Therefore, $A \subseteq B$ or $A \subseteq C$, then $A \subseteq B \cup C$.

- 8. Let $f: A \to B$ and $g: B \to A$ be functions.
 - (a) What are the domain and codomain of $g \circ f$, the composition of g and f?

Domain: set A. Codomain: set A. Composition of g and f: $g \circ f$

(b) Prove or disprove the following statement:

If $g \circ f$ is an injection, then g is also an injection.

Proof: If $g \circ f$ is an injection, then by definition each output may not have multiple inputs. Suppose there is are elements $x, z \in A$ and $y \in B$ and that f(x) = y and f(z) = y and g(y) = x. $g \circ f = g(f(x)) = g(y) = x$. If both f(x) and f(z) = y, then z = x and there are not multiple inputs for one output.

Therefore, if $g \circ f$ is an injection, then g is also an injection.

(c) Prove or disprove the following statement:

If $g \circ f$ is a surjection, then g is also a surjection.

Proof: if $g \circ f$ is a surjection, then all possible outputs must have some input. Suppose there are elements $x \in A$ and $y \in B$ where f(x) = y and g(y) = x. Then $g \circ f = g(f(x)) = g(y) = x$. Since g(y) = x, there is some input for the output which by definition is a surjection.

Therefore, if $g \circ f$ is a surjection, then g is also a surjection.

9. Recall the following statement:

The set of natural numbers, N, is countably infinite.

Briefly explain how — if at all — this statement can be proven.

Let some infinite set be a subset of N. Then this subset is countably infinite. Prove it is a bijection which then also make N countably infinite

10. Consider the following statement:

For all positive integers n, $133 \mid (11^{n+1} + 12^{2n+1})$.

In order to prove this by induction...

(a) ... what must be shown in the Basis Step?

Let n = 1. Then we have $11^{1+1} + 12^{2-1} = 121 + 12 = 133$, and certainly 133 | 133

(b) ...what can be assumed for the Inductive Hypothesis?

Suppose, for some k, $133 \mid (11^{k+1} + 12^{2k-1})$.

(c) ...what must then, given the hypothesis, be shown in the Inductive Step?

Let n = k + 1. Then we have: $11^{k+1+1} + 12^{2(k+1)-1} = 11 \cdot 11^{k+1} + 12^2 \cdot 12^{2k-1} = 11 \cdot 11^{k+1} + (11 + 133) \cdot 12^{2k-1} = 11(11^{k+1} + 12^{2k-1}) + 133 \cdot 12^{2k-1}$. By hypothesis, the first part is divisible by 133 and 133 is divisible by 133.

Therefore, by PMI, for all positive integers n, 133 | $(11^{n+1} + 12^{2n-1})$

(d) ...what axiom allows us to complete this proof?

The axiom that $x^{a+b} = x^a \cdot x^b$

11. Suppose that the following propositions are known to be equivalent:

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Consider, then, the following generalization, for all integers $n \ge 1$:

$$p \lor (q_1 \land q_1 \land \ldots \land q_n) \equiv (p \lor q_1) \land (p \lor q_2) \land \ldots \land (p \lor q_n)$$

Using a proof by induction, prove the latter of the above statements.

<u>Basis Step:</u> Let n = 1. Then we have: $p \lor q_1 \equiv (p \lor q_1)$, and certainly two equivalent propositions are equal.

<u>Inductive Hypothesis</u>: Suppose, for some k, p V $(q_1 \land q_1 \land \ldots \land q_k) \equiv (p \lor q_1) \land (p \lor q_2) \land \ldots \land (p \lor q_k)$.

<u>Inductive Step</u>: Let n = k + 1. We then have $p \lor (q_1 \land q_1 \land \ldots \land q_k \land q_{k+1})$. Using the known proposition above, $p \lor (\land q_{k+1}) = p \lor q_{k+1}$. By hypothesis this equals $(p \lor q_1) \land (p \lor q_2) \land \ldots \land (p \lor q_k) \land (p \lor q_{k+1})$

Therefore, by PMI, $p \lor (q_1 \land q_1 \land \ldots \land q_n) \equiv (p \lor q_1) \land (p \lor q_2) \land \ldots \land (p \lor q_n).$