Basic Electronic Circuits (IEC-103)

Lecture-06

Op-Amp Circuits

Example

Example (Continued)

$$V_{out} = -R_f C \frac{dV_{in}}{dt}$$

Example (Continued)

$$V_{out} = -R_f C \frac{dV_{in}}{dt}$$

Differentiator

Example

Example (Continued)

$$V_{out} = -\frac{1}{RC} \int V_{in} dt$$

Example (Continued)

$$V_{out} = -\frac{1}{RC} \int V_{in} dt$$

Integrator

Integrator

Integrator

Integrator

A constant input voltage produces a ramp on the output of the integrator before it saturates.

Example

Determine the output voltage of the op-amp ckt.

Example

Non-linear Applications

☐ A comparator is an op-amp circuit without negative feedback and takes the advantage of very high open-loop gain.

- ☐ A comparator is an op-amp circuit without negative feedback and takes the advantage of very high open-loop gain.
- ☐ It is operated in a non-linear mode.

$$+V_{sat} = +V_{supply} - 2 = 15 - 2 = +13 \text{ V}$$

 $-V_{sat} = -V_{supply} + 2 = -15 + 2 = -13 \text{ V}$

Comparator (Square Wave Generator)

Comparator (Square Wave Generator)

Comparator (Zero Crossing Detector)

Comparator (Zero Crossing Detector)

Comparator (Level Detector)

Comparator (Level Detector)

(i) Battery reference

(ii) Voltage-divider reference

Comparator (Level Detector)

□ 2 types of feedback: regenerative (+ve feedback) degenerative (-ve feedback).

- 2 types of feedback: regenerative (+ve feedback) degenerative (-ve feedback).
- ☐ Unless we want your circuit to oscillate, we use NEGATIVE FEEDBACK.

- 2 types of feedback: regenerative (+ve feedback) degenerative (-ve feedback).
- Unless we want your circuit to oscillate, we use NEGATIVE FEEDBACK.
- ☐ This idea negative feedback was first used in the late 1920's when building amplifiers with certain gain was difficult.

- 2 types of feedback: regenerative (+ve feedback) degenerative (-ve feedback).
- Unless we want your circuit to oscillate, we use NEGATIVE FEEDBACK.
- ☐ This idea negative feedback was first used in the late 1920's when building amplifiers with certain gain was difficult.
- ☐ Harold Black invented negative feedback.

☐ The gain of the circuit is made less sensitive to the values of individual components.

- ☐ The gain of the circuit is made less sensitive to the values of individual components.
- Nonlinear distortion can be reduced.

- ☐ The gain of the circuit is made less sensitive to the values of individual components.
- Nonlinear distortion can be reduced.
- ☐ The effects of noise can be reduced (but not the noise itself).

- ☐ The gain of the circuit is made less sensitive to the values of individual components.
- Nonlinear distortion can be reduced.
- The effects of noise can be reduced (but not the noise itself).
- ☐ The input and output impedances of the amplifier can be modified.

- ☐ The gain of the circuit is made less sensitive to the values of individual components.
- Nonlinear distortion can be reduced.
- ☐ The effects of noise can be reduced (but not the noise itself).
- The input and output impedances of the amplifier can be modified.
- ☐ The bandwidth of an amplifier can be extended.

Implementation of Feedback

Portion of output is fed back to the inverting terminal of the amplifier.

Implementation of Feedback

Portion of output is fed back to the inverting terminal of the amplifier.

☐ If we use negative feedback, overall gain of the amplifier is always less than the maximum achievable by the amplifier without feedback.

Basic Block Diagram

Closed Loop Gain

$$A_f = \frac{x_o}{x_s} = \frac{A}{1 + A\beta} \approx \frac{1}{\beta}$$
 (for very large A)

Open loop gain

$$A(s) = \frac{A_0}{1 + \frac{s}{\omega_H}}$$

Open loop gain

$$A(s) = \frac{A_0}{1 + \frac{s}{\omega_H}}$$

If we use amplifier with negative feedback

Open loop gain

$$A(s) = \frac{A_0}{1 + \frac{s}{\omega_H}}$$

If we use amplifier with negative feedback

$$A_f(s) = \frac{A(s)}{1 + \beta A(s)}$$

$$A_f(s) = \frac{\frac{A_0}{1 + \beta A_0}}{1 + \frac{s}{\omega_H(1 + \beta A_0)}}$$

$$A_{f}(s) = \frac{\frac{A_{0}}{1 + \beta A_{0}}}{1 + \frac{s}{\omega_{H}(1 + \beta A_{0})}} = \frac{A_{0f}}{1 + \frac{s}{\omega_{Hf}}}$$

$$A_{f}(s) = \frac{\frac{A_{0}}{1 + \beta A_{0}}}{1 + \frac{s}{\omega_{H}(1 + \beta A_{0})}} = \frac{A_{0f}}{1 + \frac{s}{\omega_{Hf}}}$$

where

$$\omega_{\rm Hf} = \omega_{\rm H} (1 + \beta A_0)$$

$$A_{f}(s) = \frac{\frac{A_{0}}{1 + \beta A_{0}}}{1 + \frac{s}{\omega_{H}(1 + \beta A_{0})}} = \frac{A_{0f}}{1 + \frac{s}{\omega_{Hf}}}$$

where

$$\omega_{\rm Hf} = \omega_{\rm H} (1 + \beta A_0)$$

$$A_{0f} = \frac{A_0}{(1+\beta A_0)}$$

$$A_{f}(s) = \frac{\frac{A_{0}}{1 + \beta A_{0}}}{1 + \frac{s}{\omega_{H}(1 + \beta A_{0})}} = \frac{A_{0f}}{1 + \frac{s}{\omega_{Hf}}}$$

where

$$\omega_{\rm Hf} = \omega_{\rm H} (1 + \beta A_0)$$

$$A_{0f} = \frac{A_0}{(1+\beta A_0)}$$

The cut-off frequency is increased by a factor (1+ ${
m A}_0eta$)

Types of Amplifiers

Ideal Voltage Amplifier

Ideal Transconductance Amplifier

Ideal Transresistance Amplifier

Ideal Current Amplifier

Ideal Amplifiers

Type of Amplifier	Gain Expression	Ideal Input Impedance	Ideal Output Impedance
Voltage	A _v = V _o /V _s Voltage Gain (dimensionless)	Z _i = ∞	$Z_0 = 0$
Transconductance	G _m = I _o /V _s Transconductance (Siemens)	$Z_i = \infty$	$Z_o = \infty$
Transresistance	R _m = V _o /I _s Transresistance (Ohms)	$Z_i = 0$	$Z_0 = 0$
Current	A _i = I _o /I _s Current Gain (dimensionless)	$Z_i = 0$	$Z_o = \infty$

Types of Mixers

Basic Block Diagram

Series Mixer

Shunt Mixer

Types of Samplers

Basic Block Diagram

Shunt Sampler

Series Sampler

