

Experiment design for MIMO model identification

Marco Lovera

Dipartimento di Scienze e Tecnologie Aerospaziali

Politecnico di Milano

Introduction

- Experiment design: fundamental role in the practice of model identification
- Problem of optimal experiment design has been studied extensively in the model identification literature
- The problem of defining optimal input sequences for MIMO model identification while taking into account operational constraints is considered
- Step-wise and multi-cyclic MIMO proposed methods are based on
 - C. Jauberthie, L. Denis-Vidal, P. Coton, and G. Joly-Blanchard. An optimal input design procedure. Automatica, 42(5):881884, 2006.
 - D.E. Rivera, H. Lee, H.D. Mittelmann, and M.W. Braun. Constrained multisine input signals for plant-friendly identification of chemical process systems. Journal of Process Control, 19(4):623–635, 2009.

Excite the dynamic system so that the data contain sufficient information **respecting the constraints**

Constraints

Inputs/outputs amplitude, experiment duration, system behaviour, etc.

Excite the dynamic system so that the data contain sufficient information **respecting the constraints**

Constraints

Inputs/outputs amplitude, experiment duration, system behaviour, etc.

Non linear model

$$egin{aligned} \dot{x} &= f(x,u, heta) \ y &= f(x,u, heta) \end{aligned} egin{aligned} igoplus & & Equilibrium & x \in \mathbb{R}^n & u \in \mathbb{R}^q \ ar{x}, & ar{u} \Rightarrow ar{y} & y \in \mathbb{R}^m & heta \in \mathbb{R}^p \end{aligned}$$

Excite the dynamic system so that the data contain sufficient information **respecting the constraints**

Constraints

Inputs/outputs amplitude, experiment duration, system behaviour, etc.

Non linear model

$$\begin{array}{c|c} \dot{x} = f(x,u,\theta) \\ y = f(x,u,\theta) \end{array} \longleftrightarrow \begin{array}{c|c} \textit{Equilibrium} & x \in \mathbb{R}^n \ u \in \mathbb{R}^q \\ \bar{x}, \ \bar{u} \Rightarrow \bar{y} & y \in \mathbb{R}^m \ \theta \in \mathbb{R}^p \end{array}$$

Measured outputs

$$z(i)=y(iT_s)+v(i)$$
 $i=1,2,...,N$
$$\frac{E[v(i)]=0}{E[v(i)v^T(j)]=R\delta_{ij}}$$

Fisher Information Matrix

$$M = \sum_{i=1}^{N} \frac{\partial y(i)}{\partial \theta}^{T} R^{-1} \underbrace{\left(\frac{\partial y(i)}{\partial \theta}\right)}_{\text{Sensitivity}} \text{ Sensitivity } (x, \textbf{\textit{u}}) \theta)$$

Asymptotic variance of θ_1 :

$$M^{-1} = \begin{bmatrix} \sigma_1^2 & \dots & \dots \\ \vdots & \sigma_2^2 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

Optimality criteria: scalar functions of *M*

Linear SISO models

✓ Closed form solutions exist

- - √ A priori knowledge on θ

Fisher Information Matrix

$$M = \sum_{i=1}^{N} \frac{\partial y(i)}{\partial \theta}^{T} R^{-1} \underbrace{\frac{\partial y(i)}{\partial \theta}}^{T} \quad \text{Sensitivity } (x, \mathbf{u}) \theta)$$

Optimisation Problem

$$\min_{u \in U} Tr[M^{-1}] = \sum_{i=1}^{n_p} \sigma_{\theta_i}^2$$

Unconstrained problem is convex...

but the optimal solution might not be compatible with the dynamics!

Fisher Information Matrix

$$M = \sum_{i=1}^{N} \frac{\partial y(i)}{\partial \theta}^{T} R^{-1} \underbrace{\frac{\partial y(i)}{\partial \theta}}^{T} \quad \text{Sensitivity } (x, \textbf{\textit{u}}, \boldsymbol{\theta})$$

Constrained Optimisation Problem

$$\min_{u \in U} Tr[M^{-1}]$$
s.t. $y \in Y$

Fisher Information Matrix

$$M = \sum_{i=1}^{N} \frac{\partial y(i)}{\partial \theta}^{T} R^{-1} \underbrace{\left(\frac{\partial y(i)}{\partial \theta}\right)}^{T} \quad \textit{Sensitivity} \ (x, \textbf{\textit{u}}) \ \theta)$$

Optimisation Problem

$$\min_{u \in U} Tr[M^{-1}]$$
s.t. $y \in Y$

Nonconvex problem (except some cases)

Considered input signal classes

Multisine signals (SISO)

Single Input

$$u(t) = \bar{u} + \sum_{i=1}^{N_f} \alpha_i \cos(\omega_i t + \phi_i)$$

Input design: parameters

- ✓ Bandwidth $(\omega_1, \, \omega_{N_f})$
- ✓ Number of harmonics (N_f)
- ✓ Output constraints

Multisine signals (SISO)

Single Input

$$u(t) = \bar{u} + \sum_{i=1}^{N_f} \alpha_i \cos(\omega_i t + \phi_i)$$

Optimisation variables

Input design: parameters

- ✓ Bandwidth $(\omega_1, \, \omega_{N_f})$
- ✓ Number of harmonics (N_f)
- ✓ Output constraints

Multisine signals (SISO)

Single Input

$$u(t) = \bar{u} + \sum_{i=1}^{N_f} \alpha_i \cos(\omega_i t + \phi_i)$$

Optimisation variables

Initial solution

Amplitudes $(\alpha_i) \Longrightarrow Uniform$ Phases $(\phi_i) \Longrightarrow Schroeder$

Input design: parameters

- \checkmark Bandwidth $(\omega_1,\,\omega_{N_f})$
- \checkmark Number of harmonics (N_f)
- ✓ Output constraints

Schroeder's phases

$$\phi_1 = 0$$

$$\phi_i = \phi_{i-1} - rac{\pi\,i^2}{N_f} \;\; i = 2, 3 \dots N_f$$
 . Multisinusoidal Signal (Zero phases)

Multisine signals (MIMO) - 1

Multiple Input Design (Rivera et al. 2009)

Different harmonic frequencies —— Orthogonality between signals

Primary Frequency Bandwidth

Multisine signals (MIMO) - 2

Optimisation problem $\min_{u \in \mathcal{U}} Tr[M^{-1}]$

Optimisation variables

- ✓ Harmonics amplitude (α_{ij})
- ✓ Harmonics phase (ϕ_{ij})

Constraints

- ✓ Input amplitude $u_i(t)$ s.t. $|u_i(t) \bar{u}| \le \varepsilon_i \ \forall t, i = 1, \ldots, q$
- ✓ Output amplitude $y_i(t)$ s.t. $|y_i(t) \bar{y}| \le \mu_i \ \forall t, i = 1, ..., m$

First Step

$$u(t) = \bar{u} + \sum_{k=1}^{r} (\alpha \varepsilon_k - \alpha \varepsilon_{k-1}) H(t - \tau_k)$$

Input

Input Design Parameters

- \checkmark Number of steps (r)
- ✓ Duration of each step (τ_k)
- ✓ Maximum step amplitude (α)
- ✓ Output constraints
- ✓ Experiment duration

(Jauberthie et al. 2006)

First Step

$$u(t) = \bar{u} + \sum_{k=1}^{r} (\alpha \varepsilon_k - \alpha \varepsilon_{k-1}) H(t - \tau_k)$$

Input

(Jauberthie et al. 2006)

Input Design Parameters

- \checkmark Number of steps (r)
- ✓ Duration of each step (τ_k)
- ✓ Maximum step amplitude (α)
- ✓ Output constraints
- ✓ Experiment duration

Optimisation

✓ Signal shape u(t) \longrightarrow (ε_k) $\varepsilon_k \in \{-1, 0, 1\}$

Large number of solutions (3^r)

First Step

$$u(t) = \bar{u} + \sum_{k=1}^{r} (\alpha \varepsilon_k - \alpha \varepsilon_{k-1}) H(t - \tau_k)$$

Input

(Jauberthie et al. 2006)

Input Design Parameters

- \checkmark Number of steps (r)
- ✓ Duration of each step (τ_k)
- ✓ Maximum step amplitude (α)
- ✓ Output constraints
- ✓ Experiment duration

Optimisation

✓ Signal shape u(t) \longrightarrow (ε_k) $\varepsilon_k \in \{-1, 0, 1\}$

Large number of solutions (3^r)

Dynamic programming

$$J_2 < J_3$$

$$J_2 < J_3$$

$$J_2 < J_3$$

Second step

Approximation of u(t)

$$\tilde{u}(t) = \bar{u} + \sum_{k=1}^{r} \frac{a_k \bar{\varepsilon}_k - a_{k-1} \bar{\varepsilon}_{k-1}}{1 + e^{K(t_k - t)}}$$

Initial solution

✓ First step Optimal solution

Optimisation variables

- \checkmark Duration of each step (t_k)
- ✓ Signal amplitude (a_k)

Multiple input

Quadrotor UAV

- √ 4 independent rotors
- ✓ Attitude control

$$\checkmark$$
 Collective $U_1=\Omega_1^2+\Omega_2^2+\Omega_3^2+\Omega_4^2$

✓ Roll

$$U_2=\Omega_4^2-\Omega_2^2$$

✓ Pitch

$$U_3=\Omega_3^2-\Omega_1^2$$

✓ Yaw

$$U_4 = \Omega_2^2 + \Omega_4^2 - \Omega_1^2 - \Omega_3^2$$

Pitch/Roll

Yaw

Quadrotor model

4 inputs, 7 outputs

$$\dot{\phi} = p + \sin(\phi) \tan(\theta) q + \cos(\phi) \tan(\theta) r$$

$$\dot{\theta} = \cos(\phi) q - \sin(\phi) r$$

$$\dot{\psi} = \frac{\sin(\phi)}{\cos(\theta)} q + \frac{\cos(\phi)}{\cos(\theta)} r$$

$$\ddot{z} = -g + (\cos(\theta) \cos(\phi)) \frac{b}{m} U_1$$

$$\dot{p} = \frac{I_y - I_z}{I_x} q r + \frac{lb}{I_x} U_2$$

$$\dot{q} = \frac{I_z - I_x}{I_y} p r + \frac{lb}{I_y} U_3$$

$$\dot{r} = \frac{I_x - I_y}{I_z} p q + \frac{d}{I_z} U_4$$

Model Parameters

Moments of Inertia $I_x \ I_y \ I_z$

Aerodynamic coefficients $b \cdot d$

Quadrotor model

4 inputs, 7 outputs

$$\dot{\phi} = p + \sin(\phi) \tan(\theta) q + \cos(\phi) \tan(\theta) r$$

$$\dot{\theta} = \cos(\phi) q - \sin(\phi) r$$

$$\dot{\psi} = \frac{\sin(\phi)}{\cos(\theta)} q + \frac{\cos(\phi)}{\cos(\theta)} r$$

$$\ddot{z} = -g + (\cos(\theta) \cos(\phi)) \frac{b}{m} U_1$$

$$\dot{p} = \frac{I_y - I_z}{I_x} q r + \frac{lb}{I_x} U_2$$

$$\dot{q} = \frac{I_z - I_x}{I_y} p r + \frac{lb}{I_y} U_3$$

$$\dot{r} = \frac{I_x - I_y}{I_x} p q + \frac{d}{I_x} U_4$$

Model Parameters

Moments of Inertia $I_x \ I_y \ I_z$

Aerodynamic coefficients

Quadrotor model

3 inputs, 7 outputs

$$\dot{\phi} = p + \sin(\phi) \tan(\theta) q + \cos(\phi) \tan(\theta) r$$

$$\dot{\theta} = \cos(\phi) q - \sin(\phi) r$$

$$\dot{\psi} = \frac{\sin(\phi)}{\cos(\theta)} q + \frac{\cos(\phi)}{\cos(\theta)} r$$

$$\ddot{z} = -g + (\cos(\theta) \cos(\phi)) \frac{b}{m} U_1$$

$$\dot{p} = \frac{I_y - I_z}{I_x} q r + \frac{l b}{I_x} U_2$$

$$\dot{q} = \frac{I_z - I_x}{I_y} p r + \frac{l b}{I_y} U_3$$

$$\dot{r} = \frac{I_x - I_y}{I_x} p q + \frac{d}{I_x} U_4$$

Model Parameters

Moments of Inertia $I_x \ I_y \ I_z$

Aerodynamic coefficients

Maneuver constraints

- ✓ Flight condition: hover
- ✓ Open-loop
- ✓ Unstable equilibrium
- ✓ Output constraints

$$|\phi| \leq 0.35 \,\mathrm{rad}$$

$$|\theta| \leq 0.35\,\mathrm{rad}$$

$$|\ddot{z}| \le 1 \, \frac{m}{s^2}$$

Roll

Pitch

Vertical Acceleration

Results: optimal cost

Input signal class	Cost function (J=Tr[M ⁻¹])	
	Initial guess	Optimal solution
Multisine	1.57 x 10 ⁻⁴	1.51 x 10 ⁻⁶
Piece-wise constant		4.11 x 10 ⁻⁷

Results: multisine signals

Inputs

Experiment duration: 38 s Bandwidth: 1 - 6 rad/s

Outputs

Results: piecewise constant signals

Inputs

Experiment duration: 34 s

Steps: 17

Outputs

Results: identification

- ✓ Output Error Method
- ✓ Output noise

- ✓ Initial error of the true value: 10%
- √ 50 runs

