Construction and Optimality of an Unoriented Variation on de Bruijn Sequences

Christie S. Burris
Colorado State University
08 · 20 · 15

EXAMPLES

$00110 \parallel 0100011101 \parallel 222021010200022121110$	2220210102000221211101012011	
00 010 222 200 110		
01 100 220 000 101		
11 000 202 002 100		
10 001 021 022 001		
011 210 221 012		
111 101 212 120		
110 010 121 201		
101 102 221 011		
020 111 112		

- ▶ Σ_k = alphabet of size k
- ightharpoonup n = length of subwords (underlined)

EXAMPLES

B(k, n)	B(2,2)	B(2,3)	B(3,3)		
	0 <u>01</u> 10	0 <u>100</u> 011101	2 <u>220</u> 210102000		
subwords	00	010 100	222	200 000	110 101
	11	000	202	002	100
	10	001	021	022	001
		011	210	221	012
		111	101	212	120
		110	010	121	201
		101	102	221	011
			020	111	112

EXAMPLES

B(k,n)	B(2,2)	B(2,3)	B(3,3)	
	00 <u>11</u> 0	01 <u>000</u> 11101	22 <u>202</u> 10102000	
subwords	00 01	010 100	222 200 110 220 000 101	
	11 10	000	202 002 100 021 022 001	
		011	210 221 012	
		111	101 212 120	
		110	010 121 201	
		101	102 221 011	
			020 111 112	

CONSTRUCTION

Forming a de Bruijn sequence

Traverse an Eulerian circuit in Bg(2,4):

$$B(2,4) = 000100111101011000$$

DEFINITION: de Bruijn Sequence, B(k, n)

A finite sequence with elements drawn from an alphabet Σ_k of size k whose subwords of length n are exactly the k^n words of length n on k characters.

- ► $l(k, n) = k^n + n 1$ is the length of any de Bruijn sequence
- ▶ de Bruijn proved that such sequences exist for all *k* and *n*

How did de Bruijn prove this?

THEORY

DEFINITION: Eulerian Circuit (Path)

A circuit that traverses every edge of a graph exactly once, and begins and ends on the same (different) vertex (vertices).

Condition imposed on graphs where an Eulerian circuit (path) exists: The number of odd degree vertices is 0 (2).

When the graph has 2 odd degree vertices, the Eulerian path starts and ends on these vertices.

DE BRUIJN GRAPHS

For every $v \in Bg(k, n)$, deg v = 2k. i.e. traversing an Eulerian circuit in the graph gives a de Bruijn sequence.

UNORIENTATION

Consider **00010111**, n = 3.

Traverse forward: $\xrightarrow{00010111}$, and backward: $\xleftarrow{00010111}$

We say {001, 100} and {011, 110} are reflected pairs.

Unoriented de Bruijn Sequences

DEFINITION: Unoriented de Bruijn Sequence uB(k, n)

00000

A sequence of characters drawn from an alphabet Σ_k of k characters that contains as subwords one member from each of the length-*n* reflections on *k* symbols exactly once.

▶ By combinatorial argument, the length of any sequence uB(k,n) is

$$l(k,n) = \frac{k^n + k^{\lceil n/2 \rceil} + 2n - 2}{2}.$$

WHY UNORIENTED?

This is the case in general. The undirected edges $[v] \leftrightarrow [w]$, may be thought of as being formed from the two directed edges $v \to w$ and $w' \to v'$.

Unoriented de Bruijn Graphs

00000

Vertices (edges) represent length-(n-1) (length-n) reflected pairs.

Nonexistence

THEOREM: Unoriented de Bruijn sequences uB(k, n) do not exist if either k or n is greater than 3.

Example: An Eulerian path doesn't exist because 4 vertices have odd degree.

Figure : uBg(4,3)

EXISTING UNORIENTED DE BRUIJN SEQUENCES

	k = 2	k = 3
n=2	0011	0011220
n=3	00010111	00010111212020122200

EXISTING UNORIENTED DE BRUIJN SEQUENCES

Arrows indicate path taken on the graph (edges remain undirected). Red edges and vertices represent the start of the path.

Future Work

- ▶ Eulerizations
- Can we create an algorithm to find suboptimal sequences?

Dotted vertices represent an *Eulerization* of the graph. One can form a sequences *almost* as optimal as an unoriented de Bruijn sequence.

QUESTIONS, COMMENTS?

Thank you!