

Capítulo 8: Conclusão

- Capítulo 1: Introdução
- Capítulo 2: Conceitos Básicos
- Capítulo 3: Qualidade de Produto (ISO9126)
- Capítulo 4: ISO9001 e ISO90003
- Capítulo 5: CMMI
- Capítulo 6: PSP
- Capítulo 7: SPICE
- Capítulo 8: Conclusão

Evolução da qualidade de software

Funcionalidade:

- no início, inteligência do sistema no hardware
- com o crescimento da programabilidade ->
 preocupação era a funcionalidade do software
- o software consegue substituir o hardware?
- Agregar "Confiabilidade":
 - disseminação do software → confiabilidade importante
 - possível confiar no software?

Evolução da qualidade de software

- Agregar "Foco no produto":
 - indústria e os consumidores → outros atributos de qualidade do software
 - exemplos: usabilidade, manutenibilidade
 - consolidados na norma ISO 9126
- Agregar "Foco no cliente, processos e TQM":
 - aparecimento da Qualidade Total
 - preocupações também com a qualidade dos processos
 - normas da família ISO 9000 consolidaram este enfoque

Evolução da qualidade de software

- Agregar "Maturidade de Processo e Capacidade":
 - novos modelos concebidos especificamente para software
 - maturidade e capacidade dos processos de software
 - neste texto:
 - dois dos mais importantes modelos nesta área, o CMM e o SPICE
 - PSP: derivado do CMM para o nível pessoal
 - TSP: derivado do CMMI e do PSP para a aplicação a equipes de desenvolvimento

Outros modelos: associados à maturidade

Bootstrap:

- Desenvolvido pelo Projeto ESPRIT europeu
- Baseado nos modelos CMM, ISO 9000 e em padrões da Agência Espacial Européia

• Trillium:

- Desenvolvido pela Bell Canada (Bell Northern Research)
- Baseado no CMM
- Objetivo de avaliar o desenvolvimento de produtos e capacidade de produção de fornecedores de produtos para telecomunicações

MPS.BR:

- Desenvolvido no Brasil (MCT, Universidades)
- Baseado na ISO/IEC 15504 e no CMMI
- Níveis de maturidade em maior número (de A a G) permitem evolução mais suave e menos custosa

Outros modelos: associados à software

ISO/IEC 15939

- Sistema de medição para o setor de software
- Serviu de base para a área de processo MA (Medição e Análise) do CMMI e o processo Medição e Análise da ISO/IEC 12207.

Métodos ágeis

- Buscam acelerar o processo e promover colaboração efetiva em pequenas equipes de desenvolvimento
- Em 2001: no Agile Manifesto
- Algumas metodologias derivadas: Extreme Programming –
 XP e SCRUM
- SCRUM: muito popular (semelhante ao TSP)

Outros modelos: não específicos para software

- PMBoK: Project Management Body of Knowledge
 - Modelo consagrado para gestão de projeto
- BSC: Balanced Scorecard
 - Equilíbrio metas entre 4 perspectivas balanceadas
- Seis Sigma
 - Projetos de melhoria com gestão estatística
 - Bastante utilizado nos níveis 4 e 5 do CMMI
- Malcolm Baldrige, PNQ
 - Os prêmios da qualidade: Fundação Prêmio Nacional da Qualidade
 - Sete critérios: Liderança, Estratégias e Planos, Clientes e Sociedade, Informação e Conhecimento, Pessoas, Processos, Resultados da Organização
 - Diferencial com relação aos demais: foco no resultado financeiro

Evolução dos modelos

Visão comparativa dos modelos

	9126	9001	СММІ	PSP/TSP	15504	PNQ
Partes interessadas	Cliente s	Clientes	Clientes acionistas	Desenv. Equipe	Clientes acionistas	Balanceado (\$\$)
Liderança	-	5.3 5.6	Ger. Sênior	Líder	MAN.1 alinh.	Perspec. Liderança
Processos	-	4.1	Todo o modelo	+/-	Todo o modelo	Perspec. Processos
Medição	-	5.4 8.2	MA e PAs	Sim	MAN.6 medição	Perspec. Inform. conhec.
Ferramentas	-	6.1	GP 2.3	-	RIN.4 infraestr.	-
Pessoas	-	6.2.2	OT GP 2.5	Team Building	RIN.1 RIN.2 3	Perspec. pessoas
Gar. Qual.	-	8.2.2	PPQA GP 2.9	-	SUP.1	-

Outras fontes de informação

Periódicos:

 IEEE Software, ASQC Quality Progress, Software Quality Journal, Communications of the ACM., IEEE Transactions on Software Engineering.

Conferências:

 SEPG Conference, International Conference on Software Engineering, Simpósio Brasileiro de Engenharia de Software (SBES), Simpósio Brasileiro de Qualidade de Software, SIMPROS

Internet:

- http://softeng.cs.mcgill.ca/, Software Process Newsletter (periódico online sobre melhoria de processos). Somente números antigos
- http://www.sei.cmu.edu/, site do SEI
- Crosstalk: http://www.stsc.hill.af.mil/CrossTalk

Os modelos da qualidade e o setor de Software

- Modelos surgiram e foram elaboradas por:
 - orgãos governamentais, universidades, institutos de pesquisa, orgãos normativos e mesmo nas empresas
- Concorrência e o crescente nível de exigência do mercado consumidor:
 - desafios cada vez maiores para os produtores
- Hoje, também no setor de software: a qualidade é pré-condição, deixou de ser diferencial competitivo
- Empresa de software com pretensões de ser bem sucedida: não pode desconhecer/desprezar estas técnicas

Benefícios da adoção de modelos

- Projeção de imagem positiva no mercado
 - Objetivo legítimo, porém visão limitada do potencial de retorno
- Verdadeiros benefícios a serem buscados
 - redução de custos
 - redução de prazos
 - redução de defeitos e retrabalho
 - aumento da satisfação do cliente
 - aumento do mercado
 - suporte aos programas → atendimento aos objetivos estratégicos e de negócio

Para escolher um modelo: comparação

Adequação:

- o modelo tem aplicação no tipo de negócio em questão?
- é de aplicação geral ou específica?
- Estabilidade e estado da prática:
 - tem um número razoável de usuários?
 - está estabelecido ou está em desenvolvimento?

Suporte:

- existe auxílio disponível e experimentado no mercado para serviços de treinamento e consultoria?
- Custo:
 - é de propriedade de alguma empresa?
 - quais são os custos associados à sua aplicação?

Para dimensionar / configurar o programa, considerar

- Objetivos estratégicos e de negócio
 - principais problemas e metas
 - confiabilidade? custo? prazo?
 - choose one??
- Tamanho da organização
- Tipo de mercado alvo e cliente
- Tamanho e complexidade do software, e da equipe de desenvolvimento

Usar um, muitos ou nenhum modelo?

- Todos os modelos descritos e disponíveis na literatura são muito semelhantes
- Duas posturas extremamente negativas ao se escolher um modelo:
 - paralisia devido à indefinição sobre qual é o melhor modelo
 - falta de constância na implementação de programas de qualidade, com mudanças frequentes de linhas de ação
- É mais barato e conveniente adotar um modelo do que criar o seu próprio modelo
- Por que um modelo é melhor do que nenhum?

"Todos os modelos são errados, alguns são úteis"

Efeito da não introdução de processos

Efeito da Introdução de Processos

Ciclos de aceitação / rejeição

Persistência e perseverança

"Maturity is a function of scar tissue"

Mark Paulk

Conclusão

"todos modelos são errados alguns são úteis"