Proving Binomial Identities in Naproche

August 2, 2022

The Language of Arithmetic

[synonym number/numbers]

Signature. A number is a mathematical object.

Let x, y, z denote numbers.

Signature. x + y is a number.

Let the sum of x and y denote x + y.

Signature. x * y is a number.

Let the product of x and y denote x * y.

Signature. -x is a number.

Let the negative of x denote -x.

Signature. 0 is a number.

Signature. 1 is a number such that $1 \neq 0$.

Signature. Assume that $x \neq 0$. $\frac{1}{x}$ is a number.

The Axioms of Fields

Axiom. (x + y) + z = x + (y + z).

Axiom. x + y = y + x.

Axiom. x + 0 = x.

Axiom. x + (-x) = 0.

Axiom. (x * y) * z = x * (y * z).

Axiom. x * y = y * x.

Axiom. x * 1 = x.

Axiom. Let $x \neq 0$. Then $x * \frac{1}{x} = 1$.

Axiom. x * (y + z) = (x * y) + (x * z).

Simple Consequences

Lemma.
$$(y*x) + (z*x) = (y+z)*x$$
.

Lemma. If $x + y = x + z$ then $y = z$.

Proof. Assume $x + y = x + z$. Then

 $y = ((-x) + x) + y = (-x) + (x + y) = (-x) + (x + z) = ((-x) + x) + z = z$.

Lemma. If $x + y = x$ then $y = 0$.

Lemma. If $x \neq 0$ and $x*y = x*z$ then $y = z$.

Lemma. If $x \neq 0$ and $x*y = 1$ then $y = \frac{1}{x}$.

Lemma. If $x \neq 0$ then $\frac{1}{x} = x$.

Lemma. $0*x = 0$.

Lemma. $0*x = 0$.

Lemma. $(-x)*y = -(x*y)$.

Proof.

 $(x*y) + (-x*y) = (x + (-x))*y = 0*x = 0$.

The Binomial Identities

Let x - y stand for x + (-y). Let x^2 stand for x * x. Let 2 stand for 1 + 1.

Lemma. $(x + y)^2 = (x^2 + ((2 * x) * y)) + y^2$.

Proof. $(x + y)^2 = (x^2 + (x * y)) + ((y * x) + y^2) = (x^2 + ((x * y) + (y * x))) + y^2.$ Lemma. $(x - y)^2 = (x^2 - ((2 * x) * y)) + y^2$.

Proof. $(x - y)^2 = (x^2 - (x * y)) + (-(y * x) + (-y)^2) = (x^2 - ((x * y) + (y * x))) + y^2.$

Lemma.
$$(x+y)*(x-y) = x^2 - y^2$$
.

Proof.

$$(x+y)*(x-y) = (x^2 + (-(x*y))) + ((y*x) + (-y^2)) = x^2 + (((-x*y) + (y*x)) + (-y^2)) = x^2 - y^2.$$

П