Notation 1 (*Preliminaries*). Let \mathcal{L} be a countable language. We will also let \mathcal{A} and \mathcal{B} denote \mathcal{L} -structures with universes A and B respectively.

- Let S be the set of all \mathcal{L} -formulas. Throughout this write-up, we will let Δ be a set of \mathcal{L} -formulas, so $\Delta \subseteq S$.
- Let S_n be the set of all \mathcal{L} -formulas with at most one free variable x.
- For any set X, let $\mathcal{L}_X = \mathcal{L} \cup \{c_x : x \in X\}$, where we augment \mathcal{L} with constant symbols for every element of X.
- Let S(X) be the set of all \mathcal{L}_X formulas.
- Let $S_1(X)$ be defined similarly.
- If $X \subseteq A$, we define Th(A, X) to be the theory of A interpreted as an \mathcal{L}_X -structure. In particular, Th(A, A) is the elementary diagram of A.
- An A-instance of a formula φ is any formula obtained from φ by substituting $c_a \in \mathcal{L}_A$ for each variable.

Definition 1 (*Boolean closure*). Let Δ be a set of \mathcal{L} -formulas and let X be a set. We define $\Delta^b(X)$ to be the set of formulas in $S_1(X)$ obtained from formulas in Δ using conjunction, disjunction, negation, and substituting instances of c_x for a variable. Trivially, $S^b(A) = S(A)$.

Definition 2 (*Partitioning*). Let $\varphi \in S_1(B)$ and $\Gamma = \{\psi_1, \dots, \psi_n\} \subset S_1(B)$. We say that Γ *partitions* φ if we have the following.

$$\mathcal{B} \vDash \forall x (\psi_1(x) \lor \cdots \lor \psi_n(x) \lor \neg \varphi(x))$$

$$\mathcal{B} \vDash \forall x ((\psi_i(x) \land \psi_j(x)) \to \neg \varphi(x)) \quad \text{for all } i \neq j$$

$$\mathcal{B} \vDash \exists x (\varphi(x) \land \psi_i(x)) \quad \text{for all } i$$

In other words, whenever $\varphi(x)$ is true in \mathcal{B} , exactly one of the $\psi_i(x)$'s is true.

Definition 3 (*Generalized rank and degree*). Let $\Delta \subseteq A$. In order to define a generalized version of Morley rank and degree, we will need to define two sets $S^{\alpha}(\mathcal{A}, \Delta)$ and $\operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$ for any ordinal α inductively.

- Let $S^0(\mathcal{A}, \Delta) = \{ \varphi \in S_1(A) : \mathcal{A} \models \exists x \varphi(x) \}$, i.e. the set of all \mathcal{L} -formulas that have witnesses in \mathcal{A} .
- If $S^{\alpha}(\mathcal{A}, \Delta)$ is already defined, we may define $\operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$ as follows. Given a formula φ , we say that $\varphi \in \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$ if and only if there exists a finite k such that for all $\mathcal{B} \succeq \mathcal{A}$ and any finite $\Gamma \subset \Delta^b(\mathcal{B})$ partitioning \mathcal{A} , there are no more than k formulas ψ

in Γ such that $(\varphi \wedge \psi) \in S^{\alpha}(\mathcal{A}, \Delta)$.

- Let $S^{\alpha+1}(\mathcal{A}, \Delta) = S^{\alpha}(\mathcal{A}, \Delta) \setminus \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$.
- For α limit, let $S^{\alpha}(\mathcal{A}, \Delta) = \bigcap_{\beta < \alpha} S^{\beta}(\mathcal{A}, \Delta)$.
- The Δ -rank of φ in \mathcal{A} is the least ordinal α such that $\varphi \in \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$.
- The Δ -degree of φ in \mathcal{A} is the least number k witnessing that $\varphi \in \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$.

Proposition 1 (Δ -rank generalizes Morley rank). Let p be a 1-type in Th(\mathcal{A} , A). The Morley rank of p is the least p such that $p \cap \operatorname{Tr}^{\alpha}(\mathcal{A}, S) \neq \emptyset$. The Morley degree of p is the minimum of the S-degrees of the formulas in $p \cap \operatorname{Tr}^{\alpha}(\mathcal{A}, S)$.

Proof.
$$\Box$$

Definition 4 (*Minimality*). A formula φ is *minimal* in $\operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$ if $\varphi \in \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$ and there is no $\psi \in \Delta$ with some \mathcal{A} -instance ψ' such that $(\varphi \wedge \psi')$ and $(\varphi \wedge \neg \psi')$ are both in $\operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$. **Lemma 1** (*Properties of rank*). Let φ , φ_0 , φ_1 , and ψ be formulas in $S_1(A)$.

- (i) If $\varphi(A) \subseteq \psi(A)$ and $\varphi \in S^{\alpha}(A, \Delta)$, then $\psi \in S^{\alpha}(A, \Delta)$.
- (ii) Suppose $\mathcal{B} \succeq \mathcal{A}$. Then $\varphi \in S^{\alpha}(\mathcal{A}, \Delta)$ if and only if $\varphi \in S^{\alpha}(\mathcal{B}, \Delta)$.
- (iii) If $(\varphi_0 \vee \varphi_1)(\mathcal{A}) \supseteq \varphi(\mathcal{A})$ and $\varphi \in S^{\alpha}(\mathcal{A}, \Delta)$, then one of φ_0 and φ_1 is in $S^{\alpha}(\mathcal{A}, \Delta)$.

$$\square$$

Definition 5 (*Weak satisfiability*). First, for any set of formulas Θ , we define

$$\Theta^- = \{ \neg \phi : \phi \in \Theta \}$$

to be the set of negations of all formulas in Θ . The set $\Gamma \subset S(A)$ is *weakly satisfiable* in \mathcal{A} if no finite disjunctions of formulas in Γ^- is valid in \mathcal{A} .

Remark 1. A set $\Gamma \subset S(A)$ is weakly satisfiable in \mathcal{A} if and only if Γ is satisfiable in some $\mathcal{B} \succeq \mathcal{A}$.

$$\Box$$

Lemma 2 (*A characterization of rank*). Let \mathcal{A} and \mathcal{B} be \mathcal{L} -structures. Let $\varphi \in S^{\alpha}(\mathcal{A}, \Delta)$. Let Γ be the set of all formulas obtained by switching around variables in the formulas of $\{\phi\} \cup \Delta \cup \Delta^-$. There exists $\Gamma^* \subseteq \Gamma$ weakly satisfiable in \mathcal{A} such that if $\psi \in S_1(\mathcal{B})$ and Γ^{\dagger} is weakly satisfiable in \mathcal{B} , where Γ^{\dagger} is obtained from Γ^* by replacing each instance of φ by the corresponding instance of ψ , then $\psi \in S^{\alpha}(\mathcal{B}, \Delta)$.

Michael Fiore, Álvaro Ramos

Proof. \Box
Lemma 3. Let $n \in \omega$, let Δ be finite, and φ be an \mathcal{L}_X -formula containing at most one variable x free and possibly names for the elements of the universe of some model. There exists $\Gamma^* \subseteq S(X)$ depending only on n , φ , and Δ such that for any \mathcal{A} , if $\varphi \in S_1(A)$, then $\varphi \in S^n(\mathcal{A}, \Delta)$ if and only if Γ^* is weakly satisfied in \mathcal{A} .
Proof.
Lemma 4. Let Δ be finite, $n \in \omega$, and let $\varphi \in \operatorname{Tr}^n(\mathcal{A}, \Delta)$ have Δ -degree 1. For each $\psi \in (\Delta \cup \Delta^-) \cap S_{k+1}$ there exists $\theta \in S_k(A)$ such that if $\mathcal{B} \succeq \mathcal{A}$, then
$(\varphi \wedge \psi)(x,b_1,\ldots,b_k) \in \operatorname{Tr}^n(\mathcal{B},\Delta) \Leftrightarrow \mathcal{B} \vDash \theta(b_1,\ldots,b_k),$
where b_1, \ldots, b_k are arbitrary in B .
Proof.
Lemma 5. If Δ is finite then $\operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta) = \emptyset$ if $\alpha \geq \omega$.
Proof.
Definition 6 (Δ-stable).
Lemma 6. Let $\mathcal{A} \preceq \mathcal{B}$, let φ be a formula in $S_1(A)$ which is Δ -stable, and let $\psi \in \Delta^b(B)$. Then there exists $\theta \in S_1(A)$ such that $\varphi(\mathcal{A}) \cap \psi(\mathcal{B}) = \theta(\mathcal{A})$.
<i>Proof.</i> No proof but some references listed, including Shelah. \Box
Lemma 7. If φ is minimal in $\operatorname{Tr}^{\alpha}(\mathcal{A}, S)$, then the <i>S</i> -degree of φ is 1.
Proof.
Lemma 8. If Δ is finite and φ is minimal in $\operatorname{Tr}^n(\mathcal{A}, \Delta)$, then the Δ -degree of φ in \mathcal{A} is 1.
Proof.
Theorem 1 (<i>Model extension</i>). Let \mathcal{A} and \mathcal{B} be models of a countable stable theory and suppose that $\mathcal{A} \prec \mathcal{B}$ and $P(\mathcal{A}) = P(\mathcal{B})$ where P is a unary predicate symbol. There exists $\mathcal{C} \succ \mathcal{B}$ such that $P(\mathcal{C}) = P(\mathcal{B})$.
Proof.