estimated. However, the resolvent has to be known in the right halfplane instead of a right half-line.

On the other hand, given a strongly continuous semigroup, merely an estimate on a vertical line implies that the semigroup is holomorphic. More precisely, the following holds.

<u>Corollary</u>. A strongly continuous semigroup with generator A is holomorphic if and only if there exist $w > \omega(A)$ and $M \ge 0$ such that one has $\|R(w+i\eta,A)\| \le M/|\eta|$ for all $\eta \in \mathbb{R}$.

<u>Proof.</u> In fact, assume that the condition holds. Since A-w is the generator of a bounded semigroup one has $\|R(\lambda,A-w)\| \le N/Re\lambda$ for some N > 0 and all $\lambda \in \mathbb{C}$ satisfying $Re\lambda > 0$. Consequently, for every $\alpha \in (0,\pi/2)$, $\|R(\lambda,A-w)\| \le (|\lambda|/Re\lambda)\cdot N/|\lambda| \le N(\cos\alpha)^{-1}/|\lambda|$ for all $\lambda \in S(\alpha)$. The remaining estimate for a sector around the imaginary axis is given by the proof of Thm.1.14 and shows that A-w generates a holomorphic semigroup. The reverse implication is clear.

We now prove the following extension of Cor.1.13.

Theorem 1.15. Let A be the generator of a strongly continuous group. Then A^2 generates a holomorphic semigroup of angle $\pi/2$.

<u>Proof.</u> There exists $w \ge 0$ such that $(\pm A - w)$ generates a bounded semigroup. Consequently, there exists $M \ge 0$ such that $\|R(\mu, \pm A - w)\| \le M/Re \mu$ whenever $Re \mu > 0$.

Let $\alpha \in (0,\pi/2)$. There exist $r \ge 0$ and $\beta \in (0,\pi/2)$ such that $S(\alpha+\pi/2)\setminus B(r_0) \subset \{z^2: z \in S(\beta) + w\}$.

[In fact, the line $\{w + r(\cos \beta + i \sin \beta) : r \ge 0\}$ can be parameterized by $z(t) = w + t + i \cdot t/\epsilon$ ($t \ge 0$) (where $\epsilon > 0$ depends on β). Then $z(t)^2 = (w+t)^2 - t^2/\epsilon^2 + i2t(w+t)/\epsilon$.

Thus $\lim_{t\to\infty} |\operatorname{Im}_{z}(t)|^2/\operatorname{Re}_{z}(t)|^2 = 2\varepsilon/(\varepsilon^2-1)$. Choose $\beta \in (\pi/4,\pi/2)$ such that $\tan(\alpha + \pi/2) > 2\varepsilon/(\varepsilon^2-1)$.

Now let $\lambda \in S(\alpha+\pi/2)\setminus B(r_0)$. Then there exist $\theta \in (-\beta,\beta)$ and $r \ge 0$ such that $\lambda = (re^{i\theta}+w)^2$. Thus $(\lambda-A^2) = (re^{i\theta}+w-A) \cdot (re^{i\theta}+w-A)$. Hence $\lambda \in \rho(A^2)$ and $R(\lambda,A^2) = R(re^{i\theta},A-w)R(re^{i\theta},-A-w)$. We conclude that $|\lambda|\cdot \|R(\lambda,A^2)\| \le |\lambda|\cdot M^2/(\cos\theta)^2 r^2 \le (|\lambda|/r^2)\cdot M^2/(\cos\beta)^2$. Thus $|\lambda|\cdot R(\lambda,A^2)$ is uniformly bounded for $\lambda \in S(\alpha+\pi/2)\setminus B(r_0)$.