CONCURRENT SYSTEM DESIGN SE 3BB4 - TUTORIAL

Rokan U. Faruqui

Department of Computing and Software

McMaster University

Hamilton, ON, Canada

September 16, 2015

TEACHING ASSISTANTS

► Rokan Faruqui

Office: ITB 102, Email: faruqumr@mcmaster.ca

► Ali Safilian

Office: ITB 102, Email: a.a.safilian@gmail.com

► Duy Vu

Office: ITB 204, Email: vuanhduy1809@gmail.com

PRELIMINERIES

- ► The class will be split into three groups for tutorials
- Attendance at tutorials is compulsory
- ► You MUST attend your assigned session of the tutorial
- ► There will be a mandatory graded quiz/exercise in every tutorial
- ► Total percentage for the tutorial exercise is 20

INTENDED LEARNING OUTCOME

- ► Introduction to Modeling and Model Checking
- ► Installing Model Checking tool LTSA
- ► FSP Language Specification

WHY MODELLING IN SE?

- ► Building analysis models early in the software lifecycle
- Models are developed shortly after the initial requirements capture
- ► Refined in parallel with further requirements elicitation
- Potential design problems of the proposed system can be detected early
- Modeling provides insight into concurrent behavior
- ► Aids reasoning about particular designs.

MODEL REPRESENTATION

Models are described using **state machines**, known as Labelled Transition Systems LTS

- ► Textual Representation
 - finite state processes (FSP) to model processes as sequences of actions
- ► Graphical Representation
 - labelled transition systems (LTS) to analyse, display and animate behavior

LABELLED TRANSITION SYSTEM (LTS)

► a light switch LTS

▶ A sequence of actions are $on \rightarrow off \rightarrow on \rightarrow \dots$

LTSA

► Install the tool form the following link:

```
http://www.doc.ic.ac.uk/~jnm/book/ltsa/
LTSA_applet.html
```


FSP - ACTION PREFIX

▶ If x is an action and P a process then $(x \to P)$ describes a process that initially engages in the action x and then behaves exactly as described by P.

LTS - ACTION PREFIX

FSP - CHOICE

- ▶ If x and y are actions then $(x \to P|y \to Q)$ describes a process which initially engages in either of the actions x or y.
- ▶ After the first action has occurred, the subsequent behavior is described by *P* if the first action was *x* and *Q* if the first action was *y*.

LTS - CHOICE

FSP - NON-DETERMINISM

▶ Process $(x \to P | x \to Q)$ describes a process which engages in x and then behaves as either P or Q.

LTS - Non-determinism

TUTORIAL EXERCISE

► Please give the Finite State Process (FSP) for the following LTS graph.

