CO20-320241

Computer Architecture and Programming Languages

CAPL

Lecture 3 & 4

Dr. Kinga Lipskoch

Fall 2019

Binary to Decimal Conversion

Conversions

Convert binary data to decimal by summing the positions that contain a 1

CAPL Fall 2019 2 / 70

Decimal to Binary Conversion (1)

Conversions

Two methods to convert decimal data to binary:

- 1. Reverse process described before
- 2. Use repeated division

CAPL Fall 2019 3 / 70

Decimal to Binary Conversion (2)

Conversions

Reverse process described before

► Note that all positions must be accounted for

$$43_{10} = 2^5 + 0 + 2^3 + 0 + 2^1 + 2^0$$

$$1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1_2$$

CAPL Fall 2019 4 / 70

Decimal to Binary Conversion (3)

Conversions

- ► Repeated integer division steps:
 - ▶ Divide the decimal number by 2
 - Write the remainder after each division until a quotient of zero is obtained
- ► The first remainder is the LSB (least significant bit) and the last one is the MSB (most significant bit)

CAPL Fall 2019 5 / 70

Decimal to Binary Conversion (4)

Repeated integer division:

Conversions

This flowchart describes the process and can be used to convert from decimal to any other number system

$$43/2 = 21 \rightarrow 1 \text{ (LSB)}$$

 $21/2 = 10 \rightarrow 1$
 $10/2 = 5 \rightarrow 0$
 $5/2 = 2 \rightarrow 1$
 $2/2 = 1 \rightarrow 0$
 $1/2 = 0 \rightarrow 1 \text{ (MSB)}$

CAPL Fall 2019 6 / 70

Hexadecimal Number System (1)

- ► Most digital systems deal with groups of bits in even powers of 2 such as 8, 16, 32, and 64 bits
- ▶ The hexadecimal system uses groups of 4 bits
- ► Base 16

Conversions

- ▶ 16 possible symbols
- \triangleright 0 9 and A F
- Allows for convenient handling of long binary strings

CAPL Fall 2019 7 / 70

Hexadecimal Number System (2)

- ► Convert from hexadecimal to decimal by multiplying each hexadecimal digit by its positional weight
- ► Example:

Conversions

$$163_{16} = 1 \times (16^{2}) + 6 \times (16^{1}) + 3 \times (16^{0})$$
$$= 1 \times 256 + 6 \times 16 + 3 \times 1$$
$$= 355_{10}$$

CAPL Fall 2019 8 / 70

Hexadecimal Number System (3)

Conversions

- ► Convert from decimal to hexadecimal by using the repeated division method used for decimal to binary, decimal to octal conversion, etc.
- ▶ Divide the decimal number by 16
- ► The first remainder is the LSB and the last one is the MSB

CAPL Fall 2019 9 / 70

Hexadecimal Numbers (1)

Conversions

► Hexadecimal to binary conversion:

Decimal	0	1	2	3	4	5	6
Hexadecimal	0	1	2	3	4	5	6
Binary	0000	0001	0010	0011	0100	0101	0110

7	8	9	10	11	12	13	14	15
7	8	9	Α	В	С	D	Ε	F
0111	1000	1001	1010	1011	1100	1101	1110	1111

Example:

$$9F2_{16} = 9 F 2$$

 $1001 1111 0010 = 100111110010_2$

CAPL Fall 2019 10 / 70

Hexadecimal Numbers (3)

Conversions

- ► Example of binary to hexadecimal conversion
 - ► Note the addition of leading zeroes

$$11101001102 = 0011 1010 0110 = 3 A 6 = 3A616$$

 Counting in hexadecimal requires a reset and carry after reaching F

CAPL Fall 2019 11 / 70

Hexadecimal Numbers (4)

Conversions

- ► Hexadecimal is useful for representing long strings of bits
- ► Understanding the conversion process and memorizing the 4 bit patterns for each hexadecimal digit will prove valuable later

CAPL Fall 2019 12 / 70

Binary-Coded Decimal (BCD) (1)

Conversions

- ► Another way to represent decimal numbers in binary form
- ► BCD is widely used and combines features of both decimal and binary systems
- ► Applications: electronic systems where a numeric value is to be displayed, small processors with limited computation power, date and time in BIOS
- ► Essence of BCD: Each digit is converted to its binary equivalent

CAPL Fall 2019 13 / 70

Binary-Coded Decimal (BCD) (2)

Conversions

- To convert the number 874_{10} to BCD: 8 7 4 $1000 0111 0100 = 100001110100_{BCD}$
- ► Each decimal digit is represented using 4 bits
- ► Each 4-bit group can never be greater than 9
- ▶ Reverse the process to convert BCD to decimal

CAPL Fall 2019 14 / 70

Binary-Coded Decimal (BCD) (3)

Conversions

- ▶ BCD is not a number system
- ▶ BCD is a decimal number with each digit encoded to its binary equivalent
- ▶ A BCD number is not the same as a straight binary number
- ► The primary advantage of BCD is the relative ease of converting to and from decimal

CAPL Fall 2019 15 / 70

Bytes, Nibbles and Words

Conversions

- ▶ 1 byte = 8 bits
- ▶ 1 nibble = 4 bits
- ▶ 1 word = size depends on data bus width
 - ▶ 32-bit system: 1 word = 32 bits
 - ▶ 64-bit system: 1 word = 64 bits

CAPL Fall 2019 16 / 70

Alphanumeric Codes

Conversions

- Represent characters and functions found on a computer keyboard
- ► ASCII American Standard Code for Information Interchange
 - Seven-bit code: $2^7 = 128$ possible code groups
 - ▶ Was developed from telegraph code, first commercial use was as a seven-bit teleprinter code promoted by Bell data services (in 1960's)
 - Extended ASCII refers to eight-bit or larger character encodings
 - ► Table on next slide lists the standard ASCII codes
 - ► Examples of use: transfer information between computers, between computers and printers, and for internal storage

CAPL Fall 2019 17 / 70

80: Ρ 96:

ASCII Table

48:

0

Conversions

```
32:
                    64:
                                                   112:
                                         97:
33:
          49:
               1
                    65:
                         Α
                              81:
                                                   113:
     Ţ
                                   0
                                              а
                                                         q
                    66:
                                         98:
34:
          50:
               2
                         В
                              82:
                                   R
                                              b
                                                   114:
35:
          51:
               3
                    67:
                              83:
                                         99:
                                                   115:
     #
                         C
                                   S
                                              C
36:
     $
          52:
                    68:
                              84:
                                        100:
                                              d
                                                   116:
                         D
                                   т
37:
     %
          53:
               5
                    69:
                         Е
                              85:
                                   U
                                        101:
                                              е
                                                   117:
                                                         u
38:
     æ
          54:
               6
                    70:
                         F
                              86:
                                   v
                                        102:
                                              f
                                                   118:
39:
          55:
                    71:
                              87:
                                        103:
                                                   119:
               7
                         G
                                   W
                                              g
                                                         w
40:
          56:
                    72:
                                        104:
                                              h
                                                   120:
                         Η
                              88:
                                   Х
                                        105:
                                              i
41:
          57:
                    73:
                         Т
                              89:
                                   Y
                                                   121:
                                                         У
42:
                    74:
                                        106:
                                              i
                                                   122:
          58:
                         J
                              90:
43:
          59:
                    75:
                              91:
                                        107:
                                              k
                                                   123:
                         K
                                        108:
                                              1
44:
          60:
                    76:
                              92:
                                                   124:
                         L
45:
                                        109:
          61:
                    77:
                         M
                              93:
                                              m
                                                   125:
                                        110:
46:
          62:
                    78:
                              94:
                                                   126:
                         N
                                              n
47:
                                        111:
          63:
                    79:
                         0
                              95:
                                              0
                                                   127:
```

@

CAPL Fall 2019 18 / 70

Basic Logic Functions

Conversions

- ► Information in digital computers is represented and processed by electronic networks called logic circuits
- ► These circuits operate on binary variables that assume one of two distinct values, usually called 0 and 1
- ▶ Boolean algebra is an important tool in describing, analyzing, designing, and implementing digital circuits

Boolean Constants and Variables

- ▶ Boolean algebra allows only two values 0 and 1
- Logic 0 can be:

Conversions

- ► false, off, low, no, open switch
- Logic 1 can be:
 - true, on, high, yes, closed switch
- ► Three basic logic operations: OR, AND, and NOT

CAPL Fall 2019 20 / 70

Truth Tables

Conversions

Examples of truth tables with 2, 3, and 4 inputs:

Α	В	С	П	Х
0	0	0		0
0	0	1	Ш	1
0	1	0	Ш	1
0	1	1	Ш	0
1	0	0	Ш	0
1	0	1	Ш	0
1	1	0	Ш	0
1	1	1		1
		(b)		

Α	В	С	D	х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	1 0	0
0 0 0 0 0 0 1 1	0	0	1	0 0 1 1 0 0 0 1 0 0 0 1
1	0	1	0	0
1	0	1	1	1
1	1	0	Ö	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1
		(c)		

CAPL Fall 2019 21 / 70

Simple Practical Problem

Conversions

Parallel Connection (OR Control)

Conversions

x ₁	x ₂	$f(x_1, x_2) = x_1 + x_2$
0	0	0
0	1	1
1	0	1
1	1	1

$$1 + x = 1$$
$$0 + x = x$$

CAPL Fall 2019 23 / 70

Series Connection (AND Control)

Conversions

x ₁	X ₂	$f(x_1, x_2) = x_1 \cdot x_2$
0	0	0
0	1	0
1	0	0
1	1	1

CAPL Fall 2019 24/70

Exclusive-OR Connection (XOR Control)

Conversions

x ₁	x ₂	$f(x_1, x_2) = x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

CAPL Fall 2019 25 / 70

OR Operation with OR Gates (1)

Conversions

- ▶ The Boolean expression for the OR operation is x = A + B
- ► This is read as "x equals A OR B"
- x = 1 if A = 1 or B = 1
- Truth table and circuit symbol for a two input OR gate:

		_	
Α	В		x = A + B
0	0		0
0	1		1
1	0		1
1	1		1

OR

CAPL Fall 2019 26 / 70

OR Operation with OR Gates (2)

- ▶ The OR operation is similar to addition, but if A = 1 and B = 1, the OR operation produces 1 + 1 = 1
- x = 1 + 1 + 1 = 1

Conversions

► In the Boolean expression

$$x = A + B + C$$

x is true (1) if

- ► *A* is true (1) OR
- ▶ B is true (1) OR
- ► *C* is true (1)

CAPL Fall 2019 27 / 70

OR Operation with OR Gates (3)

Conversions

There are many examples of applications where an output function is desired if one of multiple inputs is activated

AND Operations with AND Gates (1)

- ▶ The Boolean expression for the AND operation is $x = A \cdot B$
- ► This is read as "x equals A AND B"
- \triangleright x = 1 if A = 1 and B = 1

Conversions

- Truth table and circuit symbol for a two input AND gate are shown
- Notice the difference between OR and AND gates

AND Operation with AND Gates (2)

- ► The AND operation is similar to multiplication
- ► In the Boolean expression

$$x = A \cdot B \cdot C$$

Conversions

$$x = 1$$
 only if

- ightharpoonup A = 1 AND
- \triangleright B = 1 AND
- C=1

NOT Operation (1)

Conversions

- ▶ The Boolean expression for the NOT operation is $x = \overline{A}$
- ► This is read as:
 - ► x equals NOT A, or
 - x equals the inverse of A, or
 - x equals the complement of A

CAPL Fall 2019 31 / 70

NOT Operation (2)

Conversions

Truth table, symbol, and sample waveform for the NOT circuit

CAPL Fall 2019 32 / 70

Describing Logic Circuits Algebraically (1)

Conversions

- ► The three basic Boolean operations (OR, AND, NOT) can describe any logic circuit
- ► If an expression contains both AND and OR gates then the AND operation will be performed first, unless there is a parenthesis in the expression

CAPL Fall 2019 33 / 70

Describing Logic Circuits Algebraically (2)

Conversions

Examples of Boolean expressions for logic circuits:

CAPL Fall 2019 34 / 70

Describing Logic Circuits Algebraically (3)

Conversions

Examples of Boolean expressions for logic circuits:

CAPL Fall 2019 35 / 70

Describing Logic Circuits Algebraically (4)

- ▶ Input A through an inverter equals \overline{A}
- ► The output of an inverter is equivalent to the input with a bar over it
- **Example** using an inverter:

Conversions

Evaluating Logic Circuit Outputs (1)

Conversions

Rules for evaluating a Boolean expression:

- ▶ Perform all inversions of single terms
- ▶ Perform all operations within parenthesis
- ► Perform AND operation before an OR operation unless parenthesis indicates otherwise
- ► If an expression has a bar over it, perform the operations inside the expression and then invert the result

CAPL Fall 2019 37 / 70

Evaluating Logic Circuit Outputs (2)

- ► Evaluate Boolean expressions by substituting values and performing the indicated operations
- Example:

Conversions

$$A = 0, B = 1, C = 1, \text{ and } D = 1$$

$$x = \overline{ABC(A + D)}$$

$$= \overline{0} \cdot 1 \cdot 1 \cdot \overline{(0 + 1)}$$

$$= 1 \cdot 1 \cdot 1 \cdot \overline{(0 + 1)}$$

$$= 1 \cdot 1 \cdot 1 \cdot \overline{(1)}$$

$$= 1 \cdot 1 \cdot 1 \cdot 0$$

$$= 0$$

CAPL Fall 2019 38 / 70

Implementing Circuits From Boolean Expressions

► The expression

Conversions

$$x = A \cdot B \cdot C$$

could be drawn as a three input AND gate

► A more complex example such as

$$x = AC + B\overline{C} + \overline{A}BC$$

- ► Could be drawn as two 2-input AND gates and one 3-input AND gate feeding into a 3-input OR gate
- ► Two of the AND gates have inverted inputs

CAPL Fall 2019 39 / 70

Truth Table for Some Circuit

Conversions

$$f = \overline{x_1} \cdot x_2 + x_1 \cdot \overline{x_2} = x_1 \oplus x_2$$

 $f = ((\overline{x_1}) \cdot x_2) + (x_1 \cdot (\overline{x_2})) = x_1 \oplus x_2$

x ₁ x ₂	-x ₁ • x ₂	x ₁ • x ₂	f
0 0	0	0	0
0 1	1	0	1
1 0	0	1	1
1 1	0	0	0

CAPL Fall 2019 40 / 70

Truth Table for Three Inputs

Conversions

x ₁	x ₂	Х3	f ₁	f ₂
0	0	0	1	1
0	0	1	1	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	0

CAPL Fall 2019 41/70

Synthesize Algebraic Function from Truth Table

Determine f_1 using AND, OR and NOT gates

- \triangleright For each row where $f_1 = 1$ include product term (AND) in sum of products form
- ightharpoonup Use x_i , if $x_i = 1$

Conversions

- ▶ Use $\overline{x_i}$. if $x_i = 0$
- Fourth row: $(x_1, x_2, x_3) = (0, 1, 1)$
- ightharpoonup Product term: $\overline{x_1}x_2x_3$
- $ightharpoonup f_1 = \overline{x_1} \ \overline{x_2} \ \overline{x_3} + \overline{x_1} \ \overline{x_2} \ x_3 +$ $\overline{X_1}$ X2 X3 + X1 X2 X3

x ₁	x ₂	Х3	f_1	f ₂
0	0	0	1	1
0	0	1	1	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	0

CAPL Fall 2019 42 / 70

Karnaugh-Maps

$$w(y+z) = wy + wz$$
 (distributive rule)

$$ightharpoonup w + \overline{w} = 1$$
 (identity)

$$ightharpoonup w\overline{w} = 0$$

$$\triangleright w + w = w$$

$$\triangleright$$
 $ww = w$

$$\triangleright w + wy = w$$

$$(w + y)(w + z) = w + yz$$

$$f_1 = \overline{x_1} \ \overline{x_2} \ \overline{x_3} + \overline{x_1} \ \overline{x_2} \ x_3 + \overline{x_1} \ x_2 \ x_3 + x_1 \ x_2 \ x_3$$

$$= \overline{x_1} \ \overline{x_2} (\overline{x_3} + x_3) + (\overline{x_1} + x_1) x_2 x_3$$

$$= \overline{x_1} \ \overline{x_2} \ 1 + 1 \quad x_2 x_3$$

$$= \overline{x_1} \ \overline{x_2} + x_2 x_3$$

CAPL Fall 2019 43 / 70

NOR Gates and NAND Gates (1)

- ► Combine basic AND, OR, and NOT operations
- ► The NOR gate is an inverted OR gate
- ▶ An inversion "bubble" is placed at the output of the OR gate
- ► The NAND gate is an inverted AND gate
- ► The Boolean expression for NOR is:

$$x = \overline{A + B}$$

Conversions

► The Boolean expression for NAND is:

$$x = \overline{A \cdot B}$$

CAPL Fall 2019 44 / 70

NOR Gates and NAND Gates (2)

► NOR gate:

Conversions

► NAND gate:

Rules of Binary Logic

Conversions

Name	Algebraic identity	
Commutative	w + y = y + w	wy = yw
Associative	(w+y)+z=w+(y+z)	(wy)z = w(yz)
Distributive	w + yz = (w + y)(w + z)	w(y+z)=wy+wz
Idempotent	w + w = w	ww = w
Involution	$\overline{\overline{w}} = w$	
Complement	$w + \overline{w} = 1$	$w\overline{w}=0$
de Morgan	$\overline{w+y} = \overline{w} \ \overline{y}$	$\overline{wy} = \overline{w} + \overline{y}$
	1+w=1	$0 \cdot w = 0$
	0+w=w	$1 \cdot w = w$

CAPL Fall 2019 46 / 70

DeMorgan's Theorems

Conversions

- ► When the OR sum of two variables is inverted, it is equivalent to inverting each variable individually and ANDing them
- ▶ When the AND product of two variables is inverted, it is equivalent to inverting each variable individually and ORing them
- ▶ A NOR gate is equivalent to an AND gate with inverted inputs
- ► A NAND gate is equivalent to an OR gate with inverted inputs

CAPL Fall 2019 47 / 70

Universality of NAND and NOR Gates

Conversions

- NAND or NOR gates can be used to implement the three basic logic functions/expressions (OR, AND, and INVERT)
- ► Next figures illustrate how combinations of NANDs or NORs are used to create the three logic functions
- ► This characteristic provides flexibility and is very useful in logic circuit design

CAPL Fall 2019 48/70

Using NOR to Implement NOT, OR

Conversions

CAPL Fall 2019 49 / 70

Three NOR for Implementing AND

Conversions

CAPL Fall 2019 50 / 70

Summary of Methods to Describe Logic Circuits

Conversions

- ► Basic logic gate functions can be combined in combinational logic circuits
- ➤ Simplification of logic circuits can be done using Boolean algebra or a mapping technique (explained later)

CAPL Fall 2019 51/70

Sum-of-Products Form

- ► A sum-of-products (SOP) expression will appear as two or more AND terms which are ORed together
- **Examples:**

CAPL Fall 2019 52 / 70

Simplifying Logic Circuits

Conversions

► The circuits below both provide the same output, but the lower one is clearly less complex

 We study simplifying logic circuits using Boolean algebra and Karnaugh-mapping

CAPL Fall 2019 53 / 70

Algebraic Simplification (Minimization)

Conversions

- ► Place the expression in SOP form by applying DeMorgan's theorems and multiplying terms
- Check the SOP form for common factors and perform factoring where possible
- Note that this process may involve some trial and error to obtain the simplest result

CAPL Fall 2019 54 / 70

Designing Combinational Logic Circuits

Conversions

Steps from problem to corresponding logic circuit:

- ▶ Interpret the problem and set up its truth table
- ► Write the AND (product) term for each case where the output equals 1
- Combine the terms in SOP form
- ► Simplify the output expression if possible
- ▶ Implement the circuit for the final, simplified expression

CAPL Fall 2019 55 / 70

Gray Code

Conversions

- The gray code is used in applications where numbers/values change rapidly
- Originally designed to prevent spurious output from electromechanical switches
- ► In the gray code, only one bit changes from each value to the next one
- ► Applications: used in digital television, genetic algorithms, plays important role in error correction, helps to label Karnaugh-maps, etc.

Gray Code on 2 Bits

Conversions

Binary Counting	Gray Code
00	00
01	01
10	11
11	10

CAPL Fall 2019 57 / 70

Simplifying Circuits

Karnaugh-Maps

Binary Counting	Gray Code
000	000
001	001
010	011
011	010
100	110
101	111
110	101
111	100

Gray Code Ring on 3 Bits

Conversions

CAPL Fall 2019 59 / 70

Karnaugh-Map Method (1)

Conversions

- ► A graphical method of simplifying logic expressions or truth tables
- ► It is also called a K-map
- ► Theoretically can be used for any number of input variables, but practically limited to up to 5 or 6 variables

CAPL Fall 2019 60 / 70

Karnaugh-Map Method (2)

Conversions

- ► The truth table values are placed in the K-map as shown on next slides
- Adjacent K-map cells differ in only one variable both horizontally and vertically
- ▶ The pattern from top to bottom and left to right must be in the form \overline{A} \overline{B} , \overline{A} B, A B, A \overline{B}
- ► A SOP expression can be obtained by ORing all cells that contain a 1

CAPL Fall 2019 61/70

Karnaugh-Map Method (3)

Conversions

- ► Looping adjacent groups of 2, 4, or 8 1s will result in further simplification
- ► When the largest possible groups have been looped, only the common terms are placed in the final expression
- Looping may also be wrapped between top, bottom, and sides
- Next slides illustrate this looping

Truth Table and K-map for Two Variables

Conversions

CAPL Fall 2019 63 / 70

Truth Table and K-map for Three Variables

Conversions

T	С	Х		
	0	1	$\rightarrow \overline{A} \overline{B} \overline{C}$	
	1	1	$\rightarrow \overline{A} \overline{B} C$	
	0	1	$\rightarrow \overline{A} B \overline{C}$	
	1	0		ĀΒ
	0	0		ĀΒ
	1	0		AB
	0	1	→ A B \overline{C}	ΑB
T	1	0		

CAPL Fall 2019 64 / 70

Looping Groups of Two (1)

Conversions

- Vertically adjacent 1s
- ► Can be looped (combined) to eliminate A
- ► Can also be applied to horizontally adjacent 1s

CAPL Fall 2019 65 / 70

Looping Groups of Two (2)

Conversions

- ► In a K-map the top row and bottom row are considered to be adjacent
- ► Can also be looped (combined) to eliminate A
- ► Same applies to horizontally adjacent columns

$$x = \overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C}$$
$$= \overline{B} \overline{C}$$

CAPL Fall 2019 66 / 70

Karnaugh-Map Method (1)

Conversions

By looping (combining) a pair of adjacent 1s the variable that appears in both complemented and uncomplemented form can be eliminated

CAPL Fall 2019 67 / 70

Looping Groups of Four (Quads) (1)

Conversions

- ► A quad is a group of four adjacent 1s
- When a quad is looped, the resultant term contains only variables that do not change their form for all cells in the quad

CAPL Fall 2019 68 / 70

Looping Groups of Four (Quads) (2)

Conversions

	CD	Ū D	C D	C D
$\overline{A} \overline{B}$	0	0	0	0
ĀΒ	0	1	1	0
A B	0	1	1	0
ΑB	0	0	0	0

x = try at home

CAPL Fall 2019 69 / 70

Looping Groups of Four (Quads) (3)

Conversions

- ▶ These 1s are all adjacent to each other
- ► Looping a variable of adjacent 1s eliminates the two that appear both in uncomplemented and complented form

	CD	$\overline{\mathbf{C}}$ D	C D	CD
ĀΒ	1	0	0	1
A B	0	0	0	0
A B	0	0	0	0
ΑB		0	0	1

$$x = \overline{B} \overline{D}$$

CAPL Fall 2019 70 / 70