

East West University Department of Computer Science and Engineering

Course: CSE251 Electronic Circuits

Expt No.: 7

Title: Biasing of a Common-Source Voltage Amplifier

Objectives:

1. Identify an appropriate DC operation point for a NMOS transistor.

Theory: The common-source amplifier with a NMOS transistor is shown here.

- 1. The biasing is done by fixing the gate voltage with a voltage divider and also by using a source resistor R_S. The source resistor gives negative feedback and stabilizes the bias current as a function of temperature variations and transistor characteristics. This is a popular biasing scheme for discrete transistor circuits.
- 2. Select source resistor such that voltage Vs at source terminal is about $1/3^{rd}$ to $1/5^{th}$ of V_{DD} . The resistance R_D is chosen such that drain voltage V_D is about in the middle of V_{DD} and V_S . This is done so that the signal at the drain has a relatively large and symmetrical output swing.

$$i_{D} = \frac{1}{2} k_{n}' \frac{W}{L} (v_{GS} - V_{t})^{2} \qquad V_{GS} = V_{t} + \sqrt{\frac{2I_{D}}{k_{n}' \frac{W}{L}}} \cdot V_{G} = V_{S} + V_{GS} = V_{S} + V_{t} + \sqrt{\frac{2I_{D}}{k_{n}' \frac{W}{L}}}$$

- 3. We choose the resistors such that the parallel resistor is relatively large to ensure a large input resistance of the amplifier and prevent loading of the signal source $R_{in} = R_{GI} / R_{G2}$.
- 4. An important characteristics of a transistor is its *transconductance* g_m . It is a measure of the rate of change of output current with respect to input voltage v_{gs} . The g_m can be written as follows,

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}}|_{Q} = k_{n}^{'} \frac{W}{L} (V_{GS} - V_{t}) = \sqrt{2I_{D}k_{n}^{'} \frac{W}{L}} g_{m} = \frac{2I_{D}}{V_{GS} - V_{t}}$$

Circuit Diagram:

Figure 1. Pin diagram of CD4007C IC.

Equipments and Components Needed:

- 1. Digital trainer board
- 2. DC power supply
- 3. Digital multimeter
- 4. DC Voltmeter
- 5. CD4007C IC (1 pc)
- 6. Resistor (1K Ω 1 pc)
- 7. Breadboard
- 8. Connecting wires

Lab Procedure:

Pre-Lab:

- a. Read: Section 4.5.2 (example 4.9) Sedra-Smith, 5th ed.
- b. You have to bias the transistor with a bias current $I_D\!=\!0.6mA$. Let the source voltage V_S be 4V
- c. Choose drain voltage V_D such that it is in the middle of V_{Sn} and V_{DD} .
- d. The input resistance R_G should be larger than 15 kOhm.
- e. The NMOS transistor (CD4007CN array) characteristics are: V_t = 1.2V , k_n 'W/L=0.7mA/V²,
- a. Following example 4.9 procedure and information above determine the value of V_D , R_S , and R_D , R_{G1} and R_{G2}
- b. What is the total DC power dissipation in the amplifier? (hint: power dissipation is $V_{DD}I_{total}$).

PROCEDURE:

In this part you will bias the transistor (Figure to the right) using pre-lab data.

a. Build the circuit to the right. Use the transistor between the pins 3, 4 and 5. Connect the pin 7 source (pin 5) of the NMOS transistor; drain-to-source short is done to eliminate the back-gate (body) effect on the threshold voltage. (If this transistor does not work try any of the other two NMOSes). For the biasing resistor R_{G2}, use a 100 kOhm pot. For R_{G1}, R_D and R_S use the values from pre-lab.

b. Set the pot R_{G2} such that the drain voltage V_D (pin 4 of MOSFET) is between 9 and 10 V. Note the drain voltage $V_D = V$. Now measure the gate and source voltages. $V_G = V$. $V_S = V$. Calculate the drain current $I_D = A$?