# Partial Order and Hasse Diagram

Partial Order: A relation  $\rho \subseteq \mathcal{A} \times \mathcal{A}$  on set  $\mathcal{A}$  is called a partial ordering relation (or partial order) if it is reflexive, antisymmetric and transitive.

We call  $(A, \rho)$  as a Poset (Partial Ordered Set).

Example: Let  $S = \{1, 2, 3\}$  and  $\rho = \{(A, B) \mid A \subseteq B \text{ and } A, B \in \mathcal{P}(S)\}$ , therefore  $(\mathcal{P}(S), \rho)$  or  $(\mathcal{P}(S), \subseteq)$  is a poset.

Also,  $(\mathcal{P}(\mathcal{S}),\supseteq)$  is a poset and called dual of the poset  $(\mathcal{P}(\mathcal{S}),\subseteq)$ .

Covering Relation: Let  $(\mathcal{A}, \rho)$  is a poset and  $p, q, r \in \mathcal{A}$ . We call q as the cover for p (denoted as  $p \prec q$ ) when  $(p, q) \in \rho$ , and no element  $r \in \mathcal{A}$  exists such that  $p \prec r \prec q$ , that is  $(p, r) \in \rho$  and  $(r, q) \in \rho$ .

Hasse Diagram: A directed acyclic graph (DAG) with elements of set  $\mathcal{A}$  as nodes and (p,q) as directed edges from p to q  $(p,q\in\mathcal{A})$  iff  $p\prec q$  (q covers p).

Example: Note that,  $(\{2\}, \{1,3\}) \notin \rho$  and  $\{1,2\} \prec \{1,2,3\}$  (forming the cover), but  $\{1\} \not = \{1,2,3\}$  as  $\{1\} \prec \{1,3\} \prec \{1,2,3\}$ .



Total Order: If  $(\mathcal{A}, \rho)$  is a Poset, we call  $\mathcal{A}$  is totally ordered (or linearly ordered) if for all  $x, y \in \mathcal{A}$  either  $(x, y) \in \rho$  or  $(y, x) \in \rho$ . In this case,  $\rho$  is also called a total order (or linear order).

# Properties of Partial Orders

- Maximal Element: In the poset  $(A, \rho)$ , an element  $x \in A$  is called a maximal element of A if  $\forall a \in A$   $[(a \neq x) \Rightarrow (x, a) \notin \rho] (\equiv \exists a \in A \ [(x, a) \in \rho \Rightarrow (a = x)])$ .
- Minimal Element: In the poset  $(A, \rho)$ , an element  $y \in A$  is called a minimal element of A if  $\forall b \in A$   $[(b \neq y) \Rightarrow (b, y) \notin \rho]$   $(\equiv \exists b \in A \ [(b, y) \in \rho \Rightarrow (b = y)])$ .
  - Example: In the poset  $(\mathcal{P}(\mathcal{S}),\subseteq)$  where  $\mathcal{S}=\{1,2,3\}$ , we have  $\{1,2,3\}$  and  $\{\}$  as the maximal and minimal elements, respectively.

If  $(A, \rho)$  is a poset and A is finite, then A has both a maximal and a minimal element.

- Least Element: Let  $(A, \rho)$  is a poset. An element  $x \in A$  is called the least element if  $\forall a \in A, (x, a) \in \rho$ .
- Greatest Element: Let  $(A, \rho)$  is a poset. An element  $y \in A$  is called the greatest element if  $\forall a \in A$ ,  $(a, y) \in \rho$ .
  - Example: In the poset  $(\mathcal{P}(\mathcal{S}),\subseteq)$  where  $\mathcal{S}=\{1,2,3\}$ , we have  $\{\}$  and  $\{1,2,3\}$  as the least and greatest elements, respectively.

If  $(A, \rho)$  is a poset has a least (greatest) element, then that element is unique.

## Properties of Partial Orders

- Lower Bound: Let  $(\mathcal{A}, \rho)$  is a poset and  $\mathcal{B} \subseteq \mathcal{A}$ . An element  $x \in \mathcal{A}$  is called a lower bound of  $\mathcal{B}$  if  $\forall b \in \mathcal{B}$ ,  $(x, b) \in \rho$ .
- Upper Bound: Let  $(\mathcal{A}, \rho)$  is a poset and  $\mathcal{B} \subseteq \mathcal{A}$ . An element  $y \in \mathcal{A}$  is called a upper bound of  $\mathcal{B}$  if  $\forall b \in \mathcal{B}$ ,  $(b, y) \in \rho$ .
- Greatest Lower Bound: Let  $(\mathcal{A}, \rho)$  is a poset. An element  $x' \in \mathcal{A}$  is called the greatest lower bound (glb) of  $\mathcal{B}$  if it is a lower bound of  $\mathcal{B}$  and  $(x'', x') \in \rho$  for all other lower bounds x'' of  $\mathcal{B}$ .
- Least Upper Bound: Let  $(\mathcal{A}, \rho)$  is a poset. An element  $y' \in \mathcal{A}$  is called the least upper bound (lub) of  $\mathcal{B}$  if it is an upper bound of  $\mathcal{B}$  and  $(y', y'') \in \rho$  for all other upper bounds y'' of  $\mathcal{B}$ .
  - Example: In the poset  $(\mathcal{P}(\mathcal{S}),\subseteq)$  where  $\mathcal{S}=\{1,2,3\}$  and let  $\mathcal{B}=\{\{1\},\{2\},\{1,2\}\}\subseteq\mathcal{P}(\mathcal{S}).$  Then,  $\{1,2\}$  and  $\{1,2,3\}$  both are the upper bounds for  $\mathcal{B}$  in  $(\mathcal{P}(\mathcal{S}),\rho)$ ; whereas  $\{1,2\}$  is the lub (and is in  $\mathcal{B}$ ). However, the glb for  $\mathcal{B}$  is  $\{\}$ , i.e.  $\phi$ , which does not belong to  $\mathcal{B}$ .

If  $(A, \rho)$  is a poset and  $B \subseteq A$ , then B has at most one lub (glb).



## Lattice

#### Definition

A lattice is a poset,  $(A, \rho)$ , in which for every pair of elements  $a, b \in A$ , the  $lub\{a, b\}$  and  $glb\{a, b\}$  both exists in A.

A lattice is complete in which every subset of elements has a lub and glb.

## Examples:

All the following posets are lattice.

- ① Poset  $(\mathbb{N}, \rho)$ , where  $\rho = \{(x, y) \mid x \leq y \text{ and } x, y \in \mathbb{N}\}$  is a lattice. Here, for any  $x, y \in \mathbb{N}$ ,  $lub\{x, y\} = max\{x, y\}$  and  $glb\{x, y\} = min\{x, y\}$ .
- Poset  $(\mathcal{P}(\mathcal{S}), \rho)$ , where  $\rho = \{(\mathcal{A}, \mathcal{B}) \mid \mathcal{A} \subseteq \mathcal{B} \text{ and } \mathcal{A}, \mathcal{B} \in \mathcal{P}(\mathcal{S})\}$  is a lattice. Here, for any  $\mathcal{A}, \mathcal{B} \in \mathcal{P}(\mathcal{S})$ ,  $lub\{\mathcal{A}, \mathcal{B}\} = \mathcal{A} \cup \mathcal{B} \text{ and } glb\{\mathcal{A}, \mathcal{B}\} = \mathcal{A} \cap \mathcal{B}$ .
- ③ Poset ( $\mathbb{Z}^+$ ,  $\rho$ ), where  $\rho = \{(x,y) \mid x \text{ divides } y \text{ and } x,y \in \mathbb{Z}^+\}$  is a lattice. Here, for any  $x,y \in \mathbb{Z}^+$ ,  $lub\{x,y\} = LCM\{x,y\}$  and  $glb\{x,y\} = GCD\{x,y\}$ .

### Example:

The following poset is NOT a lattice.

Let  $S = \{1, 2, 3\}$  and  $Q \subset \mathcal{P}(S)$  (all proper subsets) where  $\phi \notin Q$ . Poset  $(Q, \rho)$ , where  $\rho = \{(A, B) \mid A \subseteq B \text{ and } x, y \in Q\}$  is NOT a lattice.

Here, the pair of elements  $\{1,2\}$  and  $\{1,3\}$  in  $\mathcal Q$  do not have a lub, whereas the pair of elements  $\{1\}$  and  $\{2\}$  in  $\mathcal Q$  do not have a glb.

# Thank You!