Zásobník úloh

Počítání, přemýšlení, zkoušení a testování...

aneb Cvik dělá mistra

V zásobníku úloh, který právě otevíráte, naleznete otevřené úlohy (tj. úlohy, v nichž sami tvoříte odpověď) sloužící k samostatnému procvičení problematiky úvodního univerzitního kurzu *Mechaniky a molekulové fyziky*. Úlohy jsou vybrány tak, aby rozšířily soubor ukázkově řešených úloh a typických úloh k procvičení uvedený v jednotlivých *Nástrahách*, avšak přitom nebyly zbytečně "klonovány", tj. aby se jen malými obměnami zadání neověřoval stále tentýž poznatek.

Kinematika částice

- 1. Zrychlení částice, která se pohybuje po přímce, se mění podle vztahu $a = \alpha t^2$, kde α je konstanta (určete její fyzikální rozměr). Počáteční rychlost částice je $v(t = 0) = v_0$. Určete průměrnou rychlost částice v časovém intervalu $[0, t_0]$.
- 2. Částice se pohybuje rovnoměrně po kružnici o poloměru R s periodou T ve směru pohybu hodinových ručiček. Kružnice má směr v počátku soustavy souřadnic a leží v rovině Oxy. V čase t=0 se částice nachází na kladné poloose x.
 - (a) Určete průměrnou rychlost částice v intervalech $\left[0, \frac{T}{2}\right]$ a [0, T].
 - (b) Určete průměrné zrychlení částice v intervalech $\left[0,\frac{T}{2}\right]$ a $\left[0,T\right]$.
- **3.** Určete úhel, pod nímž dopadne na povrch Země částice vržená vodorovně rychlostí \vec{v}_0 z výšky h.
- 4. V okně ve výšce h nad přímým vodorovným chodníkem číhá student s kelímkem naplněným studenou vodou. Po ulici se přibližuje dívka rychlostí o konstantní velikosti v_0 . Jaká je vzdálenost dívky od místa přímo pod oknem v okamžiku, kdy má student upustit kelímek tak, aby spadl právě k nohám dívky? Odpor vzduchu zanedbejte.
- 5. Cástice se pohybuje rovnoměrně po kružnici o poloměru R=10 cm tak, že ji opíše za dobu T=4 s. Ve vhodně zvolené soustavě souřadnic určete okamžitou rychlost, okamžité zrychlení a okamžité úhlové zrychlení (velikosti i směry).
- 6. Hmotný bod se pohybuje rovnoměrně po kružnici o poloměru R=3 m a vykoná jeden oběh za dobu T=20,0 s. Soustavu souřadnic zvolte tak, aby kružnice ležela v rovině xy, její střed na kladné poloose y a osa x k ní byla tečná. V okamžiku t=0 se částice nachází v jejím počátku. Určete:
 - (a) závislost polohového vektoru $\vec{r}(t)$ na čase a polohu částice v okamžicích $t_1 = 5.0$ s, $t_2 = 7.5$ s, $t_3 = 10.0$ s,
 - (b) vektor posunutí $\Delta \vec{r}$ v intervalu [5, 0 s, 10, 0 s],
 - (c) vektor průměrné rychlosti v tomto intervalu,
 - (d) vektor průměrného zrychlení v tomto intervalu,
 - (e) vektor okamžitého zrychlení na začátku a na konci tohoto intervalu.

(Převzato z [6.].)

- 7. Automobil se rozjíždí z klidu v kruhové zatáčce rovnoměrně zrychleně. Zakreslete schematicky směr jeho rychlosti a směr jeho zrychlení v okamžiku, kdy opíše úhel $\frac{\pi}{2}$. (Převzato z [11.] a upraveno.)
- 8. Určete úhel, pod nímž dopadne na povrch Země částice vržená vodorovně rychlostí \vec{v}_0 z výšky h.
- 9. Částice se pohybuje ve svislé souřadnicové rovině xy se zrychlením $\vec{g} = (0, -g, 0)$, které jí udílí homogenní tíhové pole Země. Určete časové závislosti:
 - (a) okamžité rychlosti $\vec{v}(t)$,
 - (b) polohového vektoru $\vec{r}(t)$,
 - (c) tečného a normálového zrychlení $\vec{a}_{\tau}(t)$, $\vec{a}_{n}(t)$,
 - (d) poloměru křivosti trajektorie

za těchto počátečních podmínek:

- (α) $\vec{r}(0) = (0, h, 0), \ \vec{v}(0) = (0, v_0, 0),$
- (β) $\vec{r}(0) = (0, h, 0), \ \vec{v}(0) = (v_0, 0, 0),$
- (γ) $\vec{r}(0) = (0,0,0), \ \vec{v}(0) = (v_0 \cos \alpha, v_0 \sin \alpha, 0).$

(Převzato z [6.].)

10. Ve vzdálenosti r pozorujeme pod úhlem φ těleso, které lze považovat za hmotný bod. Pod jakým elevačním úhlem α musíme vystřelit v okamžiku, kdy toto těleso začíná padat volným pádem, abychom je zasáhli? Jaká musí být počáteční rychlost střely? Odpor vzduchu zanedbejte. (Převzato z [11.].)

Dynamika částice

- 1. Student si vyrobil speciální skateboard dřevěný klín na kolečkách, jehož plošina je po umístění na nakloněnou rovinu s úhlem sklonu α vodorovná. Určete sílu, jíž student na plošinu při jízdě po této nakloněné rovině působí. (Převzato z [11.] a upraveno.)
- 2. Na nakloněné rovině s úhlem sklonu α leží těleso o hmotnosti m. Koeficient statického tření mezi tělesem a rovinou je f_0 . Těleso je vůči nakloněné rovině v klidu, přestože na něj působíme silou \vec{F} dolů podél nakloněné roviny. Určete (okamžitou) velikost statické třecí síly.
- 3. Na nakloněnou rovinu s měnitelným úhlem sklonu umístíme kostku. Koeficient statického tření mezi kostkou a nakloněnou rovinou je f_0 . Jaký musí být úhel sklonu nakloněné roviny, aby kostka zůstala v klidu?
- 4. Na nakloněné rovině s úhlem sklonu α je umístěn podstavec ve tvaru kvádru o hmotnosti M a na něm hranol o hmotnosti m. Na podstavec působíme silou \vec{F} vzhůru podél nakloněné roviny tak, že podstavec se pohybuje ve směru této síly. Předpokládejte, že je splněna podmínka pro to, aby se hranol vzhledem k podstavci pohyboval. Určete zrychlení (velikost i směr) hranolu vzhledem k Zemi, podstavce vzhledem k Zemi a hranolu vzhledem k podstavci, je-li koeficient dynamického tření mezi hranolem a podstavcem f a tření mezi podstavcem a nakloněnou rovinou je zanedbatelné. (Inspirováno [11.].)
- 5. Jakou tlakovou silou musíme působit na těleso o hmotnosti m přiložené ke svislé stěně, aby se nedalo do pohybu? Koeficient statického tření mezi stěnou a tělesem je f_0 .

- 6. Na dvojité nakloněné rovině s úhly sklonu α a β jsou nehmotným nepružným vláknem přes kladku zanedbatelné hmotnosti spojena tělesa o hmotnostech m_1 a m_2 . Koeficient statického tření mezi tělesy a rovinou je f_0 , koeficient dynamického tření mezi tělesy a rovinou je f. Odpor vzduchu je zanedbatelný, kladka se může otáčet bez tření. Podrobně popište pohybový stav této soustavy v závislosti na parametrech úlohy $(\alpha, \beta, m_1, m_2, f_0, f)$. Jakou silou je napínáno vlákno? (Převzato z [6.] a upraveno.)
- 7. Na vlákně délky l, které je jedním koncem upevněno v bodě O, je zavěšena malá kulička. Napnuté vlákno vychýlíme do horizontální polohy a uvolníme. V bodě B ležícím ve vzdálenosti l/2 od bodu O na téže svislé přímce je umístěn hřebík.
 - (a) Určete úhel α , který svírá napnuté vlákno se svislicí v okamžiku, kdy je v něm nulový tah.
 - (b) Určete rychlost kuličky v tomto bodě.
 - (c) Jaká je trajektorie kuličky od okamžiku, kdy je tah ve vlákně nulový?

Předpokládejte, že odpor vzduchu je zanedbatelný. (Převzato z [11.].)

8. Kruhovou zatáčkou, jejíž úhel klopení je α , projíždí automobil o hmotnosti m rychlostí o velikosti v. Jaký musí být koeficient statického tření mezi pneumatikami a vozovkou, aby byl průjezd zatáčkou bezpečný (tj. aby automobil nedostal smyk)? Automobil považujte za hmotný bod. Úlohu řešte z pohledu inerciální vztažné soustavy spojené se Zemí i z pohledu neinerciální vztažné soustavy spojené s automobilem. (Inspirováno [4.].)

Soustavy částic, mechanika tuhého tělesa

- 1. Střela o hmotnosti m a vodorovné rychlosti $\vec{v_0}$ narazí do dolního okraje tyče o délce L a hmotnosti M, která se může otáčet kolem vodorovné osy procházející jejím druhým koncem. Střela se v tyči okamžitě zastaví. Určete úhel, o nějž se tyč vychýlí, je-li odpor vzduchu zanedbatelný. (Inspirováno [11.])
- 2. Na dvou vodorovných rovnoběžných kolejnicích se nachází válec o poloměru R a hmotnosti M, na němž je kolem těžiště namotáno vlákno. Osa válce je kolmá na kolejnice. Na volný konec vlákna působí svisle dolů síla \vec{F} , jejíž velikost je $\frac{1}{2}Mg$. Určete zrychlení těžiště válce (velikost a směr) za předpokladu, že válec nepodkluzuje. Jakou podmínku při tom musí splňovat koeficient statického tření mezi válcem a kolejnicemi? (Převzato z [11.].)
- 3. Plochý železniční vůz se může pohybovat po přímých vodorovných kolejích bez tření. Člověk stojící na voze drží vodorovnou hadici, do níž je čerpadlem vháněna voda z nádrže tak, že rychlost \vec{v}_r vody vytékající z hadice (vzhledem k hadici) je stálá. Hmotnost vozu s člověkem je M_0 , počáteční hmotnost vody v nádrži je m_0 , průřez hadice je S. Počáteční rychlost vozu je nulová. Určete rychlost vozu v okamžiku, kdy je nádoba vyprázdněna. (Převzato z [6.].)
- 4. Tuhá kulička o poloměru r a hmotnosti m se může bez klouzání valit po nepohyblivé nakloněné rovině s úhlem sklonu α zakončené smyčkovou dráhou o poloměru R. Výška nakloněné roviny je h. Vypočtěte velikost svislé i vodorovné síly, jimiž působí smyčka na kuličku při průchodu bodem ležícím ve výšce R nad vodorovnou podložkou. Zjistěte také, zda kulička projde vrcholem smyčky, aniž se od ní oddělí. (Převzato z [6.].)

Práce a energie

- 1. Chlapec táhne po vodorovné rovině sáňky o hmotnosti m tak, že vektor jeho síly \vec{F} svírá s rovinou úhel α . Jakou práci vykoná na dráze s třecí síla, je-li koeficient dynamického tření mezi sáňkami a podložkou f? Jakou práci vykoná výsledná síla působící na sáňky?
- 2. Kostka o hmotnosti m=250 g dopadne na svislou pružinu o tuhosti k=2,5 N \cdot cm $^{-1}$ a pevně se s ní spojí. Soustava začne kmitat. V okamžiku, kdy kostka poprvé dosáhne bodu obratu, je stlačení pružiny d=12 cm. Určete, jakou práci vykonaly do tohoto okamžiku
 - (a) tíhová síla,
 - (b) pružná síla?
 - (c) Jaká byla rychlost kostky bezprostředně před dopadem na pružinu?
 - (d) Jaké by bylo maximální stlačení pružiny při dvojnásobné rychlosti dopadu kostky?

Odpor prostředí zanedbejte. (Převzato z [4.].)

- 3. Kostka ledu o hmotnosti m=100 kg klouže po nakloněné rovině délky l=5 m a výšce h=3 m. Na počátku pohybu byla kostka v klidu. Proti pohybu kostky působí člověk silou, která svírá s nakloněnou rovinou úhel $\alpha=30^{\circ}$. Kostka se pohybuje se stálým zrychlením o velikosti a=1 m·s⁻². Koeficient dynamického tření mezi ledem a podložkou je f=0,01. Určete:
 - (a) práci, kterou vykoná člověk,
 - (b) práci, kterou vykoná tíhová síla,
 - (c) práci, kterou vykoná třecí síla,
 - (d) práci, kterou vykoná výsledná síla

od okamžiku uvolnění kostky v horním bodě nakloněné roviny do okamžiku jejího sklouznutí na vodorovnou podložku. (Převzato z [6.].)

Mechanika kapalin

- 1. Siloměr, na jehož konci je zavěšeno těleso, ukazuje údaj F_1 . Ponoříme-li těleso do vody, ukáže siloměr údaj F_2 . Určete hustotu tělesa. (Vztlakovou sílu vzduchu zanedbejte. Za jakých okolností je toto zanedbání oprávněné? Vysvětlete.)
- 2. Jakou silou \vec{F} musíme působit na těleso o objemu V a hustotě ρ , má-li být zcela ponořeno ve vodě? Diskutujte rovněž směr této síly pro všechny přípustné situace.
- **3.** Kostka o straně a a hustotě ρ větší než je hustota vody je ponořena tak, že její horní podstava splývá s vodní hladinou. Jakou práci vykonáme, vytáhneme-li kostku rovnoměrně tak, že hladina splývá s dolní podstavou?
- 4. Balon o hmotnosti m začal klesat s konstantním zrychlením o velikosti a. Určete hmotnost zátěže, kterou je třeba vyhodit přes palubu, aby balon začal stoupat s týmž zrychlením. (Převzato z [11.].)
- 5. Ledová kra o konstantní tloušťce 0,2 m plove na hladině jezera. Plošný obsah podstavy kry je 4 m², hustota ledu je 920 kg \cdot m⁻³.
 - (a) V jaké výšce nad vodní hladinou je horní podstava kry?

- (b) V jaké vzdálenosti od vodní hladiny bude horní podstava kry, položíme-li na ni těleso o hmotnosti 24 kg tak, aby kra zůstala ve vodorovné poloze?
- (c) Při jaké zátěži se kra ještě nepotopí?

(Převzato z [11.].)

- 6. Na vodorovné podložce stojí nádoba naplněná do výšky h vodou. Jak vysoko nad podložkou je třeba udělat malý otvor, aby voda stříkala co nejdále? (Převzato z [11.])
- 7. Válcová nádoba je naplněna do výšky 40 cm. Ve stěně nádoby jsou dva otvory téhož průřezu, jeden ve výšce 10 cm a druhý ve výšce 30 cm nade dnem nádoby. Určete poměr hmotnostních toků z obou otvorů. (Převzato z [11.])

Základy termodynamiky a statistické fyziky

- 1. Vypočtěte změnu vnitřní energie n molů ideálního plynu při izobarické změně objemu na hodnotu α -krát větší, je-li počáteční teplota T_1 a tepelná kapacita plynu při konstantním tlaku C_p .
- 2. Schematicky zakreslete graf izochorického, izobarického, izotermického a adiabatického děje s ideálním plynem:
 - (a) v p, T diagramu,
 - (b) ve V, T diagramu.

(Převzato z [11.].)

- 3. Ideální plyn se rozpínal podle vztahu $p = \alpha V$, kde α je konstanta. Počáteční objem plynu byl V_0 , konečný objem plynu byl η -krát větší. Poissonova konstanta je γ . Určete:
 - (a) přírůstek vnitřní energie plynu,
 - (b) práci vykonanou plynem,
 - (c) molární měrnou tepelnou kapacitu plynu při tomto procesu.

(Převzato z [11.].)

- 4. Ve válci, který je naplněn vzduchem a na obou koncích uzavřen, se nachází píst, který rozděluje objem válce na dvě stejné části, v nichž je atmosferický tlak. Jestliže píst nepatrně vychýlíme z rovnovážné polohy a potom jej uvolníme, začne konat harmonický kmitavý pohyb (dokažte). Určete periodu těchto kmitů za předpokladu, že děj v plynu lze považovat za
 - (a) izotermický,
 - (b) adiabatický.

(Převzato z [11.].)

- 5. Tepelný stroj, jehož pracovní látkou je 1 kmol ideálního plynu, pracuje v cyklu složeném ze tří za sebou následujících vratných dějů:
 - plyn se izobaricky ohřeje z původního objemu V_1 a teploty T_1 na teplotu T_2 ,
 - plyn adiabaticky zvětší svůj objem tak, že jeho teplota klesne na počáteční hodnotu T_1 ,
 - plyn se izotermicky stlačí na počáteční objem V_1 .

(Převzato z [11.].)

- 6. Tepelný stroj, jehož pracovní látkou je 1 kmol ideálního plynu, pracuje v cyklu složeném ze tří za sebou následujících vratných dějů:

 - plyn se izobaricky ohřeje z původního objemu V_1 a teploty T_1 na teplotu T_2 , plyn adiabaticky zvětší svůj objem tak, že jeho teplota klesne na počáteční hodnotu T_1 ,
 - \bullet plyn se izotermicky stlačí na počáteční objem V_1 .

Vypočtěte účinnost tohoto stroje.