README.md 2024-04-13

User Guide

Fourier Intelligence Inc.

介绍

此代码为StateEstimator的测试例程

Code

- CMakeLists.txt
- inputdata.txt (状态估计输入值)
- main.cpp
- model.json (GR1T1模型参数)
- StateEstimator (状态估计器)
- ThirdParty (所用到的第三方库)

说明

- 1. inputdata.txt为采集的左右腿 **十二个电机** 的 **位置、速度**和**力矩**,在main中解析并以400Hz的频率(机器人控制频率)发送给状态估计器。前5秒为机器人启动状态,获取的状态会有误差。
- 2. 状态估计器 StateEstimator (1) 输入: 十二个电机的位置、速度和力矩、IMU数据(欧拉角、角速度和加速度) (2) 输出: 12 * 6 的矩阵用于存放估计状态值,包含各位置的角度、角速度、角加速度、位移、速度、加速度、力矩和力

estState.block(0, 0, 4, 6) - 浮动基状态值

φ(x)	ф(у)	φ(z)	p(x)	p(y)	p(z)
ω(x)	ω(y)	ω(z)	v(x)	v(y)	v(z)
a(x)	a(y)	a(z)	a(x)	a(y)	a(z)
null	null	null	null	null	null

其中,角度、角速度、角加速度和浮动基的线速度都是基于世界坐标系的,位置量指当前时刻浮动基到支撑脚 的位置差

estState.block(4, 0, 4, 6): 左脚状态值

ф(х)	ф(у)	φ(z)	p(x)	p(y)	p(z)
ω(x)	ω(y)	ω(z)	v(x)	v(y)	v(z)
a(x)	a(y)	a(z)	a(x)	a(y)	a(z)
τ(x)	τ(y)	τ(z)	F(x)	F(y)	F(z)

estState.block(8, 0, 4, 6): 右脚状态值

README.md 2024-04-13

_	ф(х)	ф(у)	φ(z)	p(x)	p(y)	p(z)
_	ω(x)	ω(y)	ω(z)	v(x)	v(y)	v(z)
-	a(x)	a(y)	a(z)	a(x)	a(y)	a(z)
•	τ(x)	τ(y)	τ(z)	F(x)	F(y)	F(z)

注意,左右脚的状态是基于base计算的(base为运动学计算基点),对于世界坐标系还需要额外转换 具体细节请参考RBDL官网