CROSS RIVER UNIVERSITY OF TECHNOLOGY, CALABAR DEPARTMENT OF MATHEMATICS AND STATISTICS 2015/2016 SECOND SEMESTER EXAMINATION MTH 2201 LINEAR ALGEBRA II

INSTRUCTIONS: Only those who are qualified should take the examination. Read the questions carefully and answer only the questions asked. Credit will be given for clarity of expression and logical flow. <u>NO CALCULATOR, TABLE OR PHONE IS ALLOWED</u>. Any form of examination malpractice will be punished accordingly. ANSWER ANY FOUR QUESTIONS IN TWO HRS.

QUESTION ONE:

1(a) Solve the system by first finding the inverse of the coefficient matrix

$$x_1 + x_2 - 2x_3 = 3$$

$$2x_1 - x_2 + x_3 = 0$$

$$3x_1 + x_2 - x_3 = 8$$

- (b) Define with examples the basis of a vector space V over a field F.
- (c) Prove that if a vector space V (over F) has one basis with a finite number of elements, then all other basis of V are finite and have the same number of elements.

QUESTION TWO:

- 2(a) Prove that in a finite dimensional vector space V any linearly independent set of vectors can be extended to a basis.
- (b) Show that the set $A = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ is a basis of R^3 by showing that;
 - (i) It is linearly independent
 - (ii) L (A) contains the set B = $\{(1, 0, 0)(0, 1, 0), (0, 0, 1)\}$ where L (A) is a linear combination of vectors in A.

Why does it suffice to show (ii)

(c) Prove that in a finite dimensional vector space, every spanning set contains a basis.

QUESTION THREE:

- 3(a) Let {Ui}n i=1 be a basis of a vector space V (over F)
 Define the coordinate vector of V relative to the basis {U_i} of V
- (b) Find the coordinate vector of V = (4, -3, 2) relative to the basis $\{U_1 = (1, 1, 1), U_2 = (1, 1, 0) \text{ and } U_3 = (1, 0, 0) \text{ of } R^3$
- (c) Prove that similarity of metrices is an equivalence relation.

QUESTION FOUR:

(a) Let T: U - V be a linear transformation;

Prove that (i) m T is a subspace of V

(ii) Ker T is a subspace of U

- (b) Let T: $R^3 R$ be defined by (1, 1, 1) T = 3, (0, 1, -2) T = 1 and (0, 0, 1) T = -2. Find (a, b, c) T
- (c) If T: $R^3 R^3$ be defined by T (x, y, 2) = (x + 2y, y z, x + 2z)Find a basis for each of Im T and ker T.

QUESTION FIVE:

(a) Let T be a linear transformation on R^2 defined by $(x_1 x_1) T = (x_1 - 2x_2, 3x_1 + x_2)$ for every vector $(x_1 x_2)$ in R^2

Find (i) the matrix A of T relative to the standard basis of R²

- (ii) the transition matrix P from the standard basis to the basis $\{(f_1=(1,1),\ f_2=(1-1)\}$
- (b) State and prove Cayley Hamiltan theorem

(c) (i) if A =
$$\begin{bmatrix} 5 & 10 \\ 2 & 4 \end{bmatrix}$$
 Determine the characteristics polynomial, the characteristics equation and hence verify Cayley – Hamilton theorem.

(ii) Let
$$f(t) = 3^{t2} + 6t + 7$$
. Find $f(A)$ given that $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$ and hence find the characteristics polynomial having $f(A)$ as a root.

QUESTION SIX:

- (a) Prove that a symmetric matrix $A = a \cdot c \cdot c \cdot b$ is diagonalizable
- (b) Prove that if A be an $n \times n$ matrix, then A is Orthogonally diagonalizable and has real eigen values if and only if A is symmetric.
- (c) Consider the following two basis of R³ $\{E=e_1,\ e_2,e_3\}=\{(1,0,0),(0,1,0),(0,0,1)\}$ and $\{S=\{u_1,\ u_2,u_3\}=\{(1,0,1),(2,1,2),(1,2,2)\}$
 - (i) Find the change –of-basis matrix P from the "old" basis E to the "new" basis S.
 - (ii) Find the change –of-basis matrix Q from the "new" basis S back to the "old" basis E.

CROSS RIVER UNIVERSITY OF TECHNOLOGY, CALABAR DEPARTMENT OF MATHEMATICS 2018/2019 SECOND SEMESTER EXAMINATION MTH 2201 LINEAR ALGEBRA II

INSTRUCTIONS: Answer any FOUR questions. No calculator or cell phone is allowed. Any form of exam malpractice will be punished accordingly.

TIME: 2 ½ Hours

- Q1 (a) Let T: U W be a linear transformation, prove that
- (i) Ker T is a subspace of U
- (ii) Im T is a subspace of W
- (b) Let $A = \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$ Show that A is diagonalizable
- Q2 (a) (i) Show that P is orthogonal (i.e $PP^T = I$) given that $P = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{5}{3\sqrt{5}} \\ \frac{-2}{3\sqrt{5}} & \frac{-4}{3\sqrt{5}} & \frac{4}{3\sqrt{5}} \end{pmatrix}$
- (ii) Show also that column vectors of P form an orthonormal set.
- (b) (i) Find the inverse of the matrix A if it exits given that $A = 1 \left(2 \right) 0^{-1}$
- (ii) Determine A + B, AB and trace of A if A = $\begin{pmatrix} 1 & 1 & 0 \\ 2 & 3 & -7 \\ 1 & 0 & 0 \end{pmatrix}$ B = $\begin{pmatrix} -1 & -1 & -1 \\ -2 & -2 & -2 \\ 3 & 1 & 7 \end{pmatrix}$
- Q3 (a) Solve the non-homogenous system -2 + x + 2y = z

$$3y + 8x = 4 + 7z$$

$$4y - 12z = -8$$

(b) Find the eigen values and associated eigen vectors of $M = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}$

- Q4 (a) Prove that if $S=\{v_1,v_2,\ldots,v_n\}$ be a basis for a vector space V and v£V, then the coefficients in the representation $V=a_1v_1+a_2v_2+\ldots+a_nv_n$ are unique.
- (b) Determine the linear independence or otherwise of the following set of vectors
- (i) $S = \{v_1, v_2, v_3\}$, where $v_1 = (4, -2, 0, 6)$, $v_2 = (2, 4, 10, -2)$, $v_3 = (14, -2, 10, 16)$ in R^4
- (ii) $S = \{v_1, v_2, v_3\}$, where $v_1 = (1,0,0)$, $v_2 = (0,1,0)$, $v_3 = (0,0,1)$ in \mathbb{R}^3

Q5 (a) Express M as a linear combination of A, B,= and C where M =
$$4\begin{bmatrix} 7 & A \\ 7 & 9 \end{bmatrix} = 1\begin{bmatrix} 1 & B \\ 1 & 1 \end{bmatrix}$$
 B = $1\begin{bmatrix} 2 & A \\ 3 & 4 \end{bmatrix}$

(b) (i) Show that the matrix A is diagonalizable where A =
$$\begin{bmatrix} -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{bmatrix}$$

- (ii) Find a matrix P such that $P^{-1}AP = D$ where D is a diagonal matrix of the same order as A.
- Q6 (a) Prove that if a vector space V has one basis with a finite number of elements, then all other base of V are finite and have the same number of elements.
- (b) Determine the basis and dimension for the solution space of the homogenous system of equations x+2y-8z=0

$$2x + 3y - 5z = 0$$

$$3x + 2y - 12z = 0$$

CROSS RIVER UNIVERSITY OF TECHNOLOGY, CALABAR DEPARTMENT OF MATHEMATICS/STATISTICS 2017/2018 SECOND SEMESTER EXAMINATION

MTH 2201 LINEAR ALGEBRA II
INSTRUCTIONS: Answer any FOUR questions. No calculator or cell phone is allowed. Any form

of exam malpractice will be punished accordingly.

TIME: 2 ½ Hours

Q1 (a) State and prove Cayley-Hamilton theorem.

(b) (i) Find the inverse of the matrix A if it exists given that

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 2 \end{bmatrix}$$

(ii) Determine A + B, AB and trace of A for

$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & -7 \\ 1 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} -1 & -1 & -1 \\ -2 & -2 & -2 \\ 3 & 1 & 7 \end{bmatrix}$$

Q2 (a) Prove that if $S = \{v_1, v_2, ..., v_n\}$ be a basis for a vector space V and v£V, then the coefficients in the representation $V = a_1v_1 + a_2v_2 + ... + a_nv_n$ are unique.

(b) Determine whether S is linearly independent in the following set

(i)
$$S = \{v_1, v_2, v_3\}$$
, where $v_1 = (4, -2, 0, 6)$, $v_2 = (2, 4, 10, -2)$, $v_3 = (14, -2, 10, 16)$ in R^4

(ii)
$$S = \{v_1, v_2, v_3\}$$
, where $v_1 = (1,0,0), v_2 = (0,1,0), v_3 = (0,0,1)$ in \mathbb{R}^3

Q3 (a) a) Let T: U - W be a linear transformation, prove that

- (i) Ker T is a subspace of U
- (ii) Im T is a subspace of W
- (b) Let $A = \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$ Show that A is diagonalizable

Q4 (a) Solve the non-homogenous system -2 + x + 2y = z

$$3y + 8x = 4 + 7z$$
$$4y - 12z = -8$$

(b) Find the eigenvalues and associated eigenvectors of A given that

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Q5 Prove that if a vector space V has one basis with a finite number of elements, then all other base of V are finite and have the same number of elements.

(b) Determine the basis and dimension for the solution space of the homogenous system of equations x + 2y - 8z = 0

$$2x + 3y - 5z = 0$$
$$3x + 2y - 12z = 0$$

Q6 Express M as a linear combination of A, B,= and C where M = $4\begin{bmatrix} 7 \\ 7 \end{bmatrix}$ A = $1\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ B = $1\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ A = $1\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ B = $1\begin{bmatrix} 2 \\ 3 \end{bmatrix}$

(b) Consider the following two bases of R³: $E=\{e_1,e_2,e_3\}=\{(1,0,0),(0,1,0),(0,0,1)\} \text{ and } S=\{u_1,u_2,u_3\}=\{(1,0,1),(2,1,2),(1,2,2)\}$

- (i) Find the change of basis matrix P from the basis E to the basis S.
- (ii) Find the change of basis matrix Q from the basis S to the basis E.

CROSS RIVER UNIVERSITY OF TECHNOLOGY, CALABAR DEPARTMENT OF MATHEMATICS/STATISTICS 2012/2013 SECOND SEMESTER EXAMINATION MTH 2201 LINEAR ALGEBRA II

INSTRUCTIONS: Answer any FOUR questions.

Q1 (a) Let u, v and w be vectors in R^2 and c and d be scalars. Prove that (i) (u+v) + w = u + (v-w) (ii) (c+d) u = cu + du

TIME: 2 ½ Hours

- (b) Let u = (2, -1, 5, 0), v = (4, 3, 1, -1) and w = (-6, 2, 0, 3) be scalars in R^4 . Solve for x in each of the following (i) x = 2u (v + 3u) (ii) 3(x + w) = 2u v + x
- (c) Let P^2 be the set of all polynomials of the form $p(x) = a_2x^2 + a_1x + a_a$ where a_0, a_1 and a_2 are real numbers. The sum of two polynomials $p(x) = a_2x^2 + a_1x + a_a$ and $q(x) = b_2x^2 + b_1x + b_a$ is defined in the usual way by $p(x) + q(x) = (a_2 + b_2)x^2 + (a_1 + b_1)x$, and the calculate multiple of p(x) by a scalar c is defined by $cp(x) = ca_2x^2 + ca_2$. Show that p_2 is a vector space.
- Q2 (a) Let W be the of all 2 x 2 symmetric matrices. Show that W is a subspace of the vector space $M_{2,2}$ with the standard operations of matrix addition and scalar multiplication.
- (b) Which of the following subsets is a subspace of R³?
- (i) $W = \{(x_1, x_2, 1): x_1 \text{ and } x_2 \text{ are real numbers}\}$
- (ii) $W = \{(x_1, x_1 + x_3, x_3) : x_1 \text{ and } x_3 \text{ are real numbers}\}$
- (c) Define a spanning set and show that the set $s = \{(1,2,3), (0,1,2), (-2,0,1)\}$ spans R^3
- Q3 (a) (i) Prove that if $s=(v_1,\ v_2...v_k)$ is a set of vectors in a vectors space V, then span(s) is a subspace.
- (ii) When is a set of vectors $s=(v_1,\,v_2\dots v_k)$ in a vector space V said to be linearly dependent (or independent)?
- (b) (i) Determine whether the set of vectors in R^3 defined by $s = \{(1,2,3), (0,1,2), (-2,0)\}$ is linearly dependent or independent.
- (ii) Prove that if a vector space V has one basis with n vectors, then every basis for V has a vectors.
- (c) Using the above theorem explain why each of the following theorems is true
- (i) The set $s_1 = \{(3,2,1), (7,-1,4) \text{ is not a basis for } \mathbb{R}^3 \}$