Machine Learning & Data Mining @ NuIEEE

Tcharammmmm - Final session

Miguel Sandim & Paula Fortuna

Final session topics

- ML pipeline
- How to choose a family of algorithms?
- How to evaluate if an algorithm is working
- Overfitting & underfitting
- Validation Methods K-folds

Machine Learning Pipeline

Machine Learning Pipeline

Machine Learning Model - Algorithms

Learning Style

Supervised Learning Algorithms

Unsupervised Learning Algorithms

Machine Learning Model - Algorithms

Learning Style

Semi-supervised Learning Algorithms

Algorithms Grouped By Similarity and examples

Regression Algorithms

Linear Regression

Clustering Algorithms

K-Means

Emsemble Algorithms

Random Forests

Instance-based Algorithms

k-Nearest Neighbour (kNN)

Algorithms

Association Rule Algorithms

Apriori Algorithm

Feature Selection

Wrapper Models

Other

Regularization Algorithms

Ridge Regression

Decision Trees

C4.5

Bayesian Algorithms

Naive Bayes

Neural Networks

Deep Learning

Back-propagation

Artificial Neural Network

Deep Boltzmann Machine

SVM

Dimensionality Reduction

PCA

[2]

How to choose the right algorithm?

- Use Past Experience To Choose An Algorithm
- Start with the simplest approach
- Visualize data
- Use Trial And Error To Choose An Algorithm
 - use diverse algorithms
 - tuning the algorithm parameters
 - using ensemble methods
- Spot Check Algorithms in R process to automatically apply a set of algorithms

Variance and Bias

- **Bias** is a learner's tendency to consistently learn the wrong thing (difficulty in finding the "pattern" in the data);
 - Example: approximating a real-world problem by a simple linear regression model may lead to high bias.
- Variance is a learner's tendency to learn random things irrespective of the "real signal"
 (learning everything is a "pattern", including the "noise" in the data). Another interpretation is
 the sensitivity of the model to changes in the train set.
 - **Example**: decision trees learned on different training sets generated by the same phenomenon are often very different, when in fact they should be the same.

Overfitting and Underfitting

Overfitting is the major problem!

- How to solve?
 - Regularization include an additional term that penalizes highly complex models;
 - Cross-Validation choose the best model's parameters based on the error rate on a validation set. This set should be different from the training set (used to train the model) and the test set (used to assess the final model's accuracy).
 - Leave-One-Out Cross-Validation
 - k-Fold Cross-Validation

k-Fold Cross Validation

123		n
	1	
11 76 5		47
11 76 5		47
11 76 5		47
11 76 5		47
11 76 5		47
	$\mathbf{a} = k$	

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

References

[1] http://www.slideshare.net/jeykottalam/pipelines-ampcamp

[2] http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

[3]<u>http://machinelearningmastery.com/evaluate-machine-learning-algorithms-</u>with-r/

[4] Domingos, Pedro. "A few useful things to know about machine learning." *Communications of the ACM* 55.10 (2012): 78-87.

[5] James, Gareth, et al. An introduction to statistical learning. Vol. 112. New York: springer, 2013.