EGTS : Système de taxiage électrique

Filière: MP

L'EGTS est un système développé par SAFRAN permettant le taxiage électrique. Le taxiage est une opération qui regroupe toutes les étapes de roulage de l'avion sur le tarmac (zone de stationnement des avions) avant le décollage et après l'atterrissage. Cette opération nécessite auparavant de laisser tourner les moteurs des avions en mode ralenti ou de faire appel à des tracteurs spéciaux pour la marche arrière (dite *push back*), ces manœuvres sont complexes et très consommatrices en carburant.

Le taxiage électrique (EGTS) consiste à placer des actionneurs au niveau des roues pour permettre à l'avion de se déplacer seul pendant le *push back* et le roulage, sans l'aide de ses moteurs ni des véhicules de traction des aéroports. Ces actionneurs sont entraînés grâce à l'énergie électrique fournie par le système auxiliaire de puissance (APU : Auxiliary Power Unit). Le pilote peut lui-même gérer les manœuvres au sol.

Le système EGTS doit permettre :

• Le déplacement de l'avion au sol à partir de son point de stationnement jusqu'à la piste en vue du décollage. Cette phase est appelée « taxi out ».

Prototype de l'EGTS monté sur un train d'atterrissage principal

• Le déplacement de l'avion à partir du moment où l'avion a quitté la piste après l'atterrissage et dès que les réacteurs ont été éteints jusqu'à atteindre le point de stationnement. Cette phase est appelée « Taxi In ».

En dehors de ces deux phases, le système EGTS est désactivé afin de ne pas entraver le bon déplacement de l'avion.

En évitant d'allumer les moteurs principaux de l'avion on obtient :

- Une économie de 3 à 4 % de carburant.
- Moins d'émission de CO₂.
- Moins de nuisances sonores dans et aux alentours des aéroports.
- Une maniabilité accrue des avions au sol (plus besoin d'aide au push-back).
- Plus de fluidité dans le trafic au sol et la diminution des risques au sol (réacteurs).
- Une meilleure durée de vie des réacteurs....

L'EGTS est implanté sur la version commerciale de l'Airbus A320, avion équipé :

• d'un train avant orientable ce qui permet au pilote de modifier la trajectoire de l'avion au sol lors du roulage,

Filière: MP

• de deux trains principaux au niveau des ailes, chacun portant deux roues.

Unité interface pilote :

Ce sous-système est une interface Homme-machine. Il permet au pilote d'activer (ou désactiver) le mode EGTS et de commander le mouvement désiré de l'avion (vitesse de déplacement et sens avant ou arrière).

Unité commande EGTS :

Ce sous-système reçoit les informations du pilote et les convertit en ordre pour l'électronique de puissance.

Unité contrôleur actionneur roue (WACU) :

Le WACU commande l'actionneur de roue (moteur électrique) en fonction de la commande du pilote délivrée par l'unité de commande EGTS.

Actionneur de roue EGTS:

Ce sous-système composé d'un moteur électrique, d'un réducteur et d'un embrayage, convertit l'énergie électrique issue du WACU en énergie mécanique transmise à la roue.

APU Générateur :

Il alimente en énergie l'avion et en particulier l'EGTS. L'APU (Auxiliary Power Unit ou groupe auxiliaire de puissance) présent sur les avions a dû être modifié pour générer la puissance supplémentaire nécessaire pour alimenter les EGTS.

On donne sur les pages 3 et 4 respectivement les diagrammes de définition des blocs et d'exigences de l'EGTS

 $\alpha = -0.86^{\circ}$

<u>Partie I:</u> L'Objectif de cette partie est le dimensionnement des moteurs des deux roues motrices dans le cas d'un mouvement de translation.

Filière: MP

Dans cette partie, on considère que l'avion se déplace en ligne droite dans une phase de montée sur une piste de pente maximale de 1,5% (figure 3).

L'avion étant initialement à l'arrêt, seules les deux roues motorisées des trains principaux permettent le déplacement, les réacteurs ne sont pas allumés.

Paramétrages, notations et hypothèses :

- Le repère $R_0(O, \vec{x}_0, \vec{y}_0, \vec{z}_0)$, lié à la Terre, est supposé galiléen.
- Le repère $R_p(O, \vec{x}_p, \vec{y}_p, \vec{z}_p)$ est lié à la piste avec $\vec{y}_p = \vec{y}_0$.
- Le repère $R_a\left(G,\vec{x}_a,\vec{y}_a,\vec{z}_a\right)$ est lié à l'avion avec $\left(\vec{x}_a,\vec{y}_a,\vec{z}_a\right) = \left(\vec{x}_p,\vec{y}_p,\vec{z}_p\right)$.

- Les roues arrière (trains principaux) sont en liaison pivot d'axe (C, \vec{y}_a) avec le châssis de l'avion (1) (figure 4).
- On note k le rapport de réduction du réducteur associé à chaque moteur. $k = \frac{\omega_{Roue}}{\omega_{Mot}}$.
- Le rayon des quatre roues des trains principaux est R.
- Le contact roues /piste se fait avec frottement, on note f le coefficient de frottement. On donne $f = tan(\varphi) = 0,3$.

 α

- Les liaisons autres que les liaisons roue/piste sont considérées comme parfaites.
- La masse totale de l'avion est m, son centre d'inertie est G avec $\overrightarrow{OG} = x(t).\vec{x}_a + h.\vec{z}_a$. On note $\vec{V}(G, avion/0) = v(t).\vec{x}_a = \dot{x}(t).\vec{x}_a$.
- L'inertie des roues et celles des moteurs sont négligées.
- Le problème est considéré comme un problème plan.

Q1. En exprimant la condition de roulement sans glissement en M, déterminer la relation entre v(t) et ω_{Mot} .

Filière: MP

Q2. Le torseur dynamique au point G de l'avion dans son mouvement par rapport au repère R_0 s'écrit $\{\mathcal{D}(\text{Avion/0})\}=\begin{bmatrix} m.\ddot{x}(t).\ddot{x}_a\\ \vec{0} \end{bmatrix}_G$. Justifier les expressions des éléments de réduction de ce torseur.

Modélisation des actions mécaniques :

- L'accélération de la pesanteur est $\vec{g} = -g \cdot \vec{z}_0$.
- Le contact des roues des trains principaux avec la piste est modélisé par le torseur suivant :

$$\left\{T\left(\textit{piste} \rightarrow \textit{TP}\right)\right\} = \begin{cases} \vec{R}\left(\textit{piste} \rightarrow \textit{TP}\right) = 2.T_{I}.\vec{x}_{a} + 4.N_{I}.\vec{z}_{a} \\ \vec{0} \end{cases}_{M}$$

• L'action de la piste sur le train avant est modélisée par le torseur suivant :

$$\left\{T\left(piste \to TA\right)\right\} = \begin{cases} \vec{R}\left(piste \to TA\right) = N_2.\vec{z}_a\\ \vec{0} \end{cases}_N.$$

- Les actions aérodynamiques sont négligées.
- Afin de prendre en compte la résistance au roulement des pneumatiques, on définit une action mécanique appliquée à l'avion, modélisée par un glisseur s'appliquant au niveau du sol en N, de résultante $\vec{R}_{RR} = -C_{RR} m \cdot \frac{\vec{V}(G,avion/0)}{|\vec{V}(G,avion/0)|}$ avec

 $\vec{V}(G, avion/0) = v(t).\vec{x}_a = \dot{x}(t).\vec{x}_a$. Le coefficient de résistance au roulement est C_{RR} .

- Chaque moteur fournit le même couple, noté C_M .
 - **Q3.** Ecrire les deux équations scalaires du théorème de la résultante dynamique appliqué à l'avion en projection dans la base $(\vec{x}_a, \vec{y}_a, \vec{z}_a)$.
 - **Q4.** Ecrire l'équation scalaire du théorème du moment dynamique appliqué à l'avion en projection dans la base $(\vec{x}_a, \vec{y}_a, \vec{z}_a)$ au point G.
 - **Q5.** Donner la relation entre T_1 et N_1 . Que devient cette relation à la limite de glissement. Justifier vote réponse.
 - **Q6.** En appliquant le théorème du moment dynamique à une roue motrice du train principal (figure 4), déterminer la relation entre $C_{\scriptscriptstyle M}$ et $T_{\scriptscriptstyle I}$.
 - **Q7.** Montrer que l'équation différentielle du mouvement de l'avion par rapport au repère R_0 peut s'écrire sous la forme $C_{M}(t) C_{R\acute{e}s}(t) = J_a \cdot \frac{d}{dt} \omega_{Mot}(t)$. Donner les expressions de $C_{R\acute{e}s}$ et J_a en fonction de R,k,g,m,α et C_{RR} .

<u>Partie II:</u> L'objectif de cette partie est le dimensionnement des moteurs des deux roues motrices permettant à l'avion d'effectuer un virage.

Filière: MP

On se place maintenant dans le cas où l'avion effectue un virage. Le mouvement de l'avion par rapport à la piste est un mouvement plan.

Paramétrages, notations et hypothèses :

- Le repère $R_0(O, \vec{x}_0, \vec{y}_0, \vec{z}_0)$, lié à la Terre, est supposé galiléen.
- Le repère $R_a(D, \vec{x}_a, \vec{y}_a, \vec{z}_a)$ est lié à l'avion avec $(\vec{x}_a, \vec{y}_a, \vec{z}_a) = (\vec{x}_p, \vec{y}_p, \vec{z}_p)$.
- Le repère $R_{Ta}\left(C,\vec{x}_{Ta},\vec{y}_{Ta},\vec{z}_{Ta}\right)$ est lié au train avant orientable de l'avion avec $\vec{z}_{Ta}=\vec{z}_a$. L'angle $\beta=\left(\vec{x}_a,\vec{x}_{Ta}\right)=\left(\vec{y}_a,\vec{y}_{Ta}\right)$ est l'angle de braquage des roues du train avant.

- Les roues motrices R_d et R_g des trains principaux sont en liaison pivot d'axes respectivement (C_1, \vec{y}_a) et (C_2, \vec{y}_a) avec le châssis de l'avion.
- Le repère $(C_1, \vec{x}_d, \vec{y}_a, \vec{z}_d)$ est lié à la roue R_d avec $\theta_d = (\vec{x}_a, \vec{x}_d) = (\vec{z}_a, \vec{z}_d)$.

- Le repère $(C_2, \vec{x}_g, \vec{y}_a, \vec{z}_g)$ est lié à la roue R_g avec $\theta_g = (\vec{x}_a, \vec{x}_g) = (\vec{z}_a, \vec{z}_g)$.
- Le rapport de réduction des réducteurs associés aux moteurs Mot_1 et Mot_2 est noté $k \operatorname{avec} k = \frac{\omega_{Roue}}{\omega_{Mi}}, \ (i=1,2).$

Filière: MP

- On définit le point I (appelé Centre Instantané de Rotation de l'avion/piste) tel que : $\vec{V}(I, avion/0) = \vec{0}$
- Soit D le point médian des deux trains principaux, le rayon moyen du virage est noté λ_M . $\left(\overrightarrow{ID} = \lambda_M . \vec{y}_a\right)$, la vitesse du point D appartenant à l'avion dans son mouvement par rapport à la piste : $\vec{V}\left(D, avion/0\right) = v(t).\vec{x}_a$. On définit $\overline{C_ID} = L_3.\vec{y}_a = \overline{DC_2}$
- Le mouvement de l'avion est définit par le torseur cinématique suivant : $\{V\left(avion/0\right)\} = \left\{\begin{matrix} \omega_{avion}.\vec{z}_a \\ v\left(t\right).\vec{x}_a \end{matrix}\right\}_D.$
- Les positions des points des contacts roues/piste sont définies par :

$$\overrightarrow{M_1D} = L_3.\vec{y}_a + R.\vec{z}_a \qquad \overrightarrow{M_2D} = -L_3.\vec{y}_a + R.\vec{z}_a \qquad \overrightarrow{DN} = \left(L_1 + L_2\right).\vec{x}_a - r.\vec{z}_a$$

- **Q8.** Déterminer le vecteur vitesse $\vec{V}(D,avion/0)$ en fonction deL_1,L_2,β et ω_{avion} .
- **Q9.** En considérant le roulement sans glissement en M_1 entre la roue motorisée R_d et la piste, déterminer l'expression de la vitesse de rotation ω_{MI} à imposer au moteur Mot_1 en fonction de $L_1, L_2, L_3, R, k, \beta$ et v(t).
- **Q10.** En considérant le roulement sans glissement enM_2 entre la roue motorisée R_g et la piste, donner l'expression de la vitesse de rotation ω_{M2} à imposer au moteur Mot_2 en fonction de $L_1, L_2, L_3, R, k, \beta$ et v(t).

Le cahier des charges fonctionnel impose un rayon moyen du virage minimal tel que $(\lambda_M)_{\min} = L_3$, c'est-à-dire que l'avion doit pouvoir tourner autour du point M_1 ou M_2 .

Ce fonctionnement correspond à l'utilisation d'un seul moteur.

Les figures 6_1 et 6_2 représentent la rotation de l'avion autour l'axe (M_1, \vec{z}_a) .

Modélisation des actions mécaniques :

- L'accélération de la pesanteur est $\vec{g} = -g \cdot \vec{z}_0$.
- Les actions aérodynamiques sont négligées.
- Les contacts des roues motorisées avec la piste sont modélisés par les torseurs Les contacts des roues motorisses suivant : $\left\{ T\left(piste \to Rd\right) \right\} = \begin{cases} \vec{R}\left(piste \to Rd\right) = T_{1d}.\vec{x}_a + 2.N_{1d}.\vec{z}_a \\ \vec{0} \end{cases}$ $\left\{T\left(piste \to Rg\right)\right\} = \begin{cases} \vec{R}\left(piste \to Rg\right) = T_{1g}.\vec{x}_a + 2.N_{1g}.\vec{z}_a \\ \vec{0} \end{cases}$

L'action de la piste sur le train avant est modélisée par le torseur suivant :

$$\left\{T\left(\textit{piste} \rightarrow \textit{TA}\right)\right\} = \left\{\begin{matrix} \vec{R}\left(\textit{piste} \rightarrow \textit{TA}\right) = N_2.\vec{z}_a \\ \vec{0} \end{matrix}\right\}_N$$

Afin de prendre en compte la résistance au roulement des pneumatiques, on définit une action mécanique appliquée à l'avion, modélisée par un glisseur s'appliquant au niveau du sol en N, de résultante $\vec{R}_{RR} = -C_{RR}.m.\frac{V(G,avion/0)}{\|\vec{V}(G,avion/0)\|}$. Le coefficient de résistance au roulement est C_{pp} .

Caractéristiques d'inertie de l'avion :

La masse totale de l'avion est m, son centre d'inertie est G avec $\overrightarrow{DG} = L_1 \cdot \vec{x}_a$. La matrice d'inertie de l'avion au point G dans la base $(\vec{x}_a, \vec{y}_a, \vec{z}_a)$ est

Filière: MP

$$I(G, avion) = \begin{pmatrix} A & 0 & -E \\ 0 & B & 0 \\ -E & 0 & C \end{pmatrix}_{\left(\vec{X}_a, \vec{y}_a, \vec{z}_a\right)}.$$

On rappelle que $\overline{M_ID} = L_3.\vec{y}_a + R.\vec{z}_a$ et que le point M_I est fixe par rapport à R_0 .

- **Q11.** Déterminer le torseur cinétique au point G de l'avion dans son mouvement par rapport au repère R_0 .
- **Q12.** Déterminer l'équation scalaire issue de l'application du théorème du moment dynamique à l'avion en M_1 en projection sur \vec{z}_0 .
- **Q13.** En supposant qu'il y a roulement sans glissement en M_2 entre le roue motorisée R_g et la piste, déterminer la relation entre la vitesse de rotation ω_{M2} du moteur Mot_2 et ψ .
- **Q14.** Montrer que l'équation différentielle du mouvement de l'avion par rapport au repère R_0 peut s'écrire sous la forme $C_{M2} = J.\frac{d\omega_{M2}}{dt} + C_r$. Donner les expressions de J et C_r en fonction de m, L_1, L_3, R, k et C.

Partie III : Cette partie est décomposée en trois sous parties.

<u>Objectifs de la partie</u> **III_1**: Détermination des efforts lors de la mise en rotation des roues des trains principaux en phase d'atterrissage et étude de l'embrayage implanté dans la chaîne de transmission de l'EGTS.

Hypothèses, notations et paramétrages :

- Les exigences lors des phases de décollage et d'atterrissage imposent que l'EGTS soit **désactivé** afin de ne pas perturber la rotation des roues du train principal.
- Lors de l'atterrissage, on suppose que l'avion a un mouvement de translation rectiligne **uniforme** par rapport à la piste pendant la mise en rotation des roues,
- Les quatre roues des trains principaux, modélisées par des solides indéformables, touchent la piste au même instant.
- Lors de l'atterrissage, la mise en rotation des roues des trains principaux par rapport à l'avion est modélisée par le profil de vitesse donné sur la figure 7.

- Le repère $R_a(C, \vec{x}_a, \vec{y}_a, \vec{z}_a)$ est lié à l'avion, est supposé galiléen.
- Les engrenages sont tous à denture droite. On note Z_i le nombre de dents.
- L'action mécanique de la roue dentée 5 (liée à la jante) sur le pignon 4b est modélisée par le torseur suivant :

$$\left\{T\left(Roue5 \rightarrow 4b\right)\right\} = \begin{cases} \vec{R}\left(Roue5 \rightarrow 4b\right) = -F.cos\left(20^{\circ}\right).\vec{x}_{a} + F.sin\left(20^{\circ}\right).\vec{z}_{a} \\ \vec{0} \end{cases} \text{Avec } \overrightarrow{O_{4}I} = -R_{4b}.\vec{z}_{a}$$

Filière: MP

Les rapports entre les vitesses sont notés :

$$r_{24} = \frac{\omega_2}{\omega_4}$$
, $r_{34} = \frac{\omega_3}{\omega_4}$ et $r_{54} = \frac{\omega_5}{\omega_4}$ avec $\vec{\Omega}(i/I) = \omega_i \cdot \vec{y}_a$. $(\omega_5 = \omega_{Roue})$

• Les solides en rotations sont supposés équilibrés dynamiquement.

Solides	Caractéristiques d'inertie et nombre de dents			
Axe moteur 2	J_2 : est le moment d'inertie de l'arbre moteur 2 (rotor et pignon) par rapport à son axe de rotation. $J_2 = 0.0152 \left(Kg m^2 \right)$. $Z_2 = 20$			
3	J_3 : est le moment d'inertie de l'arbre 3 par rapport à son axe de rotation.			
	$J_3 = 0.013 (Kg.m^2)$ $Z_{3a} = 79$, $Z_{3b} = 21$			
4	J_4 : est le moment d'inertie de l'arbre 4 par rapport à son axe de rotation.			
	$J_4 = 0.0561(Kg.m^2)$; $Z_{4a} = 71$, $Z_{4b} = 32$, $R_{4b} = 64mm$ $\overline{O_4I} = -R_{4b}.\overline{z}_a$			
5	$Z_5 = 127$ Rayon R5			

Q15. Déterminer l'énergie cinétique galiléenne de l'ensemble $\Sigma = \{2,3,4\}$ par rapport à 1. En déduire le moment d'inertie $J_{\acute{e}q}$ équivalent ramené à l'arbre 4 en fonction de J_2 , J_3 , J_4 , r_{24} et r_{34} .

Filière: MP

Q16. Appliquer le théorème de l'énergie cinétique à l'ensemble $\Sigma = \{2,3,4\}$ et en déduire l'expression de F en fonction de $J_{\acute{e}q}$, r_{54} , $\frac{d\omega_{Roue}}{dt}$, R_{4b} et $cos(20^\circ)$.

Q17. Calculer, en précisant toutes les étapes, la valeur de|F|.

On constate que l'effort dans l'engrenage GB3 est très important. De plus le CdCF impose de ne pas perturber la rotation de la roue lors des phases d'atterrissage et de décollage d'où l'utilisation d'un embrayage placé le plus près possible de la roue motorisée.

<u>Objectif de la partie</u> **III_2** : Détermination du couple transmissible au pignon 4b par l'embrayage.

L'embrayage est placé entre l'arbre de sortie du réducteur GB 12 et l'arbre d'entrée du réducteur GB 3. Un actionneur électromécanique (moteur + vis à billes) génère la translation de la pièce mobile liée à l'ensemble (A_m) . La commande de l'actionneur est élaborée à partir de la demande du pilote et de deux informations issues de la vitesse de rotation de la roue motorisée effectuée par un capteur à effet hall et de la vitesse de rotation du moteur.

Le modèle retenu pour cette étude est donné par les schémas de la figure 10.

On rappelle ci-dessous les fonctions d'un embrayage :

- la phase d'entraînement, pendant laquelle la puissance est transmise aux roues motrices:
- la phase de débrayage pendant laquelle la chaîne de transmission se rompt ;

Filière: MP

- la phase dite débrayée pendant laquelle la chaîne de transmission est rompue ;
- la phase d'embrayage pendant laquelle la chaîne de transmission se rétablit.

Données et hypothèses :

• L'ensemble (A_m) est en liaison pivot d'axe (A, \vec{y}_a) par rapport à 1.

Figure 11

- L'action mécanique exercée par l'ensemble l'ensemble (A_s) est (A_m) sur modélisée, chaque point M de la surface de contact, par la surfacique $\vec{f}_M A_m \rightarrow A_S = -P.\vec{y}_a + \vec{t}_M A_m \rightarrow A_S$.
- P: Pression normale de contact A_m/A_s supposée uniforme.
- Le contact A_m/A_s est avec frottement. Soit μ le coefficient de frottement.

Disque lié à l'ensemble (A_s)

- La surface de contact est modélisée géométriquement par un disque creux de rayon intérieur R_i et de rayon extérieur R_e .
- La base $\vec{u},\vec{y}_a,\vec{v}$ est une base orthonormée directe. $\theta=\vec{x}_a,\vec{u}=\vec{z}_a,\vec{v}$. On donne $\overrightarrow{AM} = r \cdot \overrightarrow{v}$.
- **Q18.** Déterminer la projection sur \vec{y}_a de l'effort global exercé par l'ensemble (A_m) sur l'ensemble (A_s) noté $F_e = \vec{y}_a \cdot \vec{R} \ A_m \rightarrow A_s$.
- **Q19.** Déterminer l'expression du couple transmissible C_{Am} ($C_{Am} = \vec{y}_a . \vec{M}_A (A_m \to A_S)$) à $l'ensemble(A_s) par l'ensemble(A_m)$.

La figure 12 représente la chaine de transmission de mouvement de l'embrayage.

<u>Objectif de la partie</u> **III_3** : Détermination de l'énergie dissipée et le temps de passage de la phase débrayée à la phase embrayée.

Filière: MP

Données et hypothèses :

- ω_{Am} : La vitesse angulaire de L'ensemble (A_m) , lié au moteur par l'intermédiaire du réducteur GB12. ω_{Am} est considérée constante.
- J_{Am} : Le moment d'inertie équivalent, par rapport à l'axe (A, \vec{x}_a) de L'ensemble A_m
- $\omega_{As}(t)$: La vitesse angulaire de l'ensemble (A_s) , lié à l'arbre d'entré du réducteur GB 3.
- J_{As} : Le moment d'inertie équivalent, par rapport à l'axe $\left(A,\vec{x}_{a}\right)$ de L'ensemble $\left(A_{s}\right)$.
- L'action de la pesanteur est négligée.
- C_r : Le module du couple résistant ramené à l'arbre d'entrée du réducteur GB 3.
- C_{Am} : Le module du couple à la sortie du réducteur GB 12 correspondant au couple transmissible à l'ensemble (A_s) .
- Les frottements dans les liaisons pivot sont négligés ;
- Dès le contact établi entre les plateaux liés à l'ensemble (A_m) et à l'ensemble (A_s) , le module du couple d'embrayage $C_{Am \to As}$ prend instantanément la valeur maximale C_{Am} , puis reste constant.
 - **Q21.** En exploitant la figure 13, donner l'équation différentielle régissant le mouvement de l'ensemble (A_s) issue de l'application du théorème du moment dynamique en projection sur l'axe (A, \vec{x}_a) .
 - **Q22.** Exprimer le temps te nécessaire à l'ensemble (A_s) pour passer d'une vitesse angulaire nulle, à l'instant initial t=0, à la vitesse angulaire ω_{Am} en fonction $de \omega_{Am}$, J_{As} , C_{Am} et C_r .

- **Q23.** Exprimer la puissance développée par les actions mutuelles entre l'ensemble (A_m) et à l'ensemble (A_s) en fonction $de \omega_{Am}$, C_{Am} et $\omega_{As}(t)$.
- **Q24.** En déduire l'expression littérale de l'énergie W, dissipée par frottement dans l'embrayage pendant le temps te en fonction $de\,\omega_{Am}$, $J_{As}\,C_{Am}\,etC_{r}$.

Afin de diminuer cette puissance dissipée la solution constructive mise en place pour désaccoupler ou accoupler l'arbre de sortie du réducteur GB12 avec l'arbre d'entrée du réducteur GB3 est un embrayage à crabot axial.

Partie IV : Etude de l'asservissement en vitesse :

Pour une vitesse de consigne $V_C(t)$ [m/s], les microcontrôleurs de pilotage génèrent une vitesse de rotation de consigne à appliquer à chaque moteur $\omega_{CMot}(t)$ [rad/s] qui est convertie en une tension de consigne $U_C(t)$ [V]. Un capteur de vitesse monté sur l'axe de chaque moteur fournit une tension mesurée $U_M(t)$ [V], image de la vitesse de rotation réelle $\omega_{Mot}(t)$. Un correcteur adapte le signal écart entre la tension de consigne et la tension mesurée, ce qui permet après amplification de définir la tension d'alimentation U(t) à appliquer aux moteurs. La vitesse réelle de l'avion $V_C(t)$ est déterminée à partir de $\Omega_{Mot}(t)$ en l'absence de glissement.

Figure 14 : Schéma bloc fonctionnel de l'asservissement en vitesse

La motorisation du train d'atterrissage principal de l'avion est assurée par une machine synchrone à aimants permanents. C'est une machine à courant alternatif pour laquelle la stratégie de pilotage à commande vectorielle, qui met en œuvre le modèle de Park, est particulièrement bien adaptée.

Ce type de commande permet de linéariser les équations de la machine afin d'obtenir un modèle de comportement dynamique similaire à celui d'une machine à courant continu.

Notations et données numériques :

Vitesse de rotation de la machine synchrone : $\omega_{Mot}(t) [rad/s]$	Force o	contre électromotrice : $e(t)[V]$	
Couple électromagnétique fourni par le moteur : $c_{\scriptscriptstyle Mot}(t) [{\it N.m}]$		Tension d'alimentation du moteur : $u(t)[V]$	
Courant absorbé par une phase de la machine synchrone : $i(t)[A]$		Inductance d'une phase de la machine : $L=3$ [mH]	
		Résistance d'une phase de la nachine : $R = 0.007 \left[\Omega\right]$	
Equation électrique : $u(t) = R.i(t) + L.\frac{d}{dt}i(t) + e(t)$ Equation mécanique : $c_{Mot}(t) - c_{R\acute{e}s}(t) = J_a.\frac{d}{dt}\omega_{Mot}(t)$		Rayon de la roue : $Rm = 0.55 [m]$	
Equations de couplage : $c_{Mot}(t) = k.i(t) (k = 0, 45 [N.m/A])$ $e(t) = k.\omega_{Mot}(t) (k = 0, 45 [V/rad.s^{-1}])$		Rapport de réduction : $\rho = \frac{1}{53}$	

L'asservissement de vitesse est décrit par le schéma fonctionnel de la figure 15_a. Le schéma fonctionnel du moteur électrique est représenté par la figure 15_b. La variable de Laplace est notée p, F(p) désigne la transformée de Laplace de la fonction f(t).

On donne ci-après le diagramme des exigences partiel de la commande de l'avion dans le cas d'un mouvement de translation rectiligne.

Les deux fonctions de transfert du moteur $H_{M}\left(p\right)$ et $H_{r}\left(p\right)$ sont notées :

$$H_M\left(p\right) = \frac{k_M}{1 + \frac{2.z}{\omega_n} \cdot p + \frac{p^2}{\omega_n^2}} \quad \text{et } H_R\left(p\right) = \frac{k_r \cdot \left(1 + \tau \cdot p\right)}{1 + \frac{2.z}{\omega_n} \cdot p + \frac{p^2}{\omega_n^2}} \quad \text{sous leurs formes canoniques.}$$

Q25. Déterminer les expressions des gains statiques k_M et k_r , de la constante de temps τ du facteur d'amortissement z et de la pulsation propre ω_n .

Q26. Déterminer l'expression du gain $K_{\scriptscriptstyle G}$ permettant d'obtenir un asservissement de V sur la consigne $V_{\scriptscriptstyle C}$.

<u>Etude du système non perturbé</u>: On suppose dans cette partie que $C_{Rés}(p) = 0$.

Le schéma fonctionnel du système, figure 15_a, peut être ramené à celui de la figure 16.

On donne:

$$H(p) = \frac{K}{1 + \frac{2 \cdot z}{\omega_n} \cdot p + \frac{p^2}{\omega_n^2}} \text{ et } C(p) = K_C$$

$$Figure 16$$

- **Q27.** Déterminer la fonction de transfert en boucle ouverte $H_{BO}(p) = \frac{V(p)}{\varepsilon(n)}$.
- **Q28.** Déterminer la fonction de transfert en boucle fermée $H_{BF}(p) = \frac{V(p)}{V_{*}(p)}$. Déterminer les paramètres canoniques K_{BF} , ξ et ω_0 .

document réponse DR1 représente les diagrammes de Bode de la fonction de transfert en boucle ouverte non corrigé ($K_C = 1$).

- **Q29.** Appuyer votre réponse par des tracés sur le document réponse **DR1**.
 - a-Déterminer graphiquement les valeurs numériques de K, z et ω_n .

 - b-Représenter les diagrammes asymptotiques de gain et de phase. c-Déterminer la valeur de K_C notée K_C MP45° permettant d'avoir une marge de phase $MP = 45^{\circ}$.
 - **Q30.** Déterminer la valeur deK_C notée $K_{C-tr}5\%$ permettant d'avoir un temps deréponse à 5% minimum.
 - **Q31.** Déterminer, en fonction de K_C , l'expression de l'erreur statique ε_{SC} pour un *échelon de vitesse d'amplitude* v_0 .

Etude du système perturbé:

La figure 17 représente le schéma l'asservissement bloc de vitesse en considérant $C_{R\acute{e}s}(p) \neq 0$

$$H_{R2}(p) = \frac{G.(1+\tau.p)}{1+\frac{2.z}{\omega_n}.p + \frac{p^2}{{\omega_n}^2}}$$

- **Q32.** Déterminer la fonction de transfert $H_{CR}(p) = \frac{V(p)}{C_{R\acute{e}s}(p)}\Big|_{V_{C}(p)=0}$.
- **Q33.** Déterminer, en fonction deK_C , l'expression de l'erreur \mathcal{E}_{S_Pert} engendrée par un couple résistant perturbateur constant C_0 .

Q34. Quelle influence aura le couple résistant perturbateur sur la stabilité du système ? Justifier votre réponse.

La figure 18 représente la réponse de l'asservissement à un échelon de vitesse d'amplitude $v_0 = 5 \ m/s$ et un couple résistant $C_0 = 90 \ N.m$ pour $K_C = K_C _tr5\%$.

Le document réponse **DR2** représente la réponse de l'asservissement à un échelon de vitesse d'amplitude $v_0 = 5 \ m/s$ et un couple résistant $C_0 = 90 \ N.m$ pour $K_C = K_C - MP45^\circ$.

Q35. Appuyer votre réponse par des tracés sur le document réponse **DR2**. Compléter le tableau T du document réponse **DR2**. Conclure quant à l'influence du gain K_C sur les performances de l'asservissement.

Afin d'améliorer les performances de l'asservissement, on implante un correcteur à action intégrale ayant pour fonction de transfert $C(p) = \frac{K_I}{p}$.

Q36. Justifier, <u>sans calcul</u>, les nouvelles valeurs des erreurs statiques $\varepsilon_{\scriptscriptstyle Cons}$ et $\varepsilon_{\scriptscriptstyle Pert}$.

Q37. Déterminer, par le critère de Routh, l'expression de K_{I_limite} correspondant à un système à la limite de stabilité.

Le document réponse $\textbf{\textit{DR 3}}$ représente les diagrammes de Bode de la fonction de transfert en boucle ouverte pour $K_I = K_{I\ limite}$.

Filière: MP

On pose $K_I = a.K_{I_limite}$. La fonction de transfert du correcteur devient $C(p) = a.\frac{K_{I_limite}}{p}$. Le coefficient multiplicateur a est à déterminer.

Q38. Déterminer la valeur de a permettant d'avoir une marge de phase $MP = 45^{\circ}$. Que devient la marge de gain. Appuyer votre réponse par des tracés sur le document réponse **DR3**.

La figure 19 représente la réponse de l'asservissement à un échelon de vitesse d'amplitude $v_0 = 5 \ m/s$ et un couple résistant $C_0 = 90 \ N.m$ pour $K_I = K_I - 45^\circ$.

Pour concilier la stabilité, la rapidité et la précision on utilise un correcteur Proportionnel Intégral de fonction de transfert $C(p) = \frac{K_I.(1+T_I.p)}{T_I.p}$. On souhaite régler le correcteur pour que le système asservi ait une fonction de transfert en boucle fermée d'ordre 2 de la forme : $H_{BF}(p) = \frac{K_{BF}}{1+\frac{2.\xi_{BF}}{\omega_{opp}}.p+\frac{p^2}{\omega_{opp}}}$

On choisit T_I de façon à compenser le "mode le plus lent". On pose $T_I = T_2$.

La F.T.BO. de l'asservissement devient $H_{BOC}(p) = K_I \cdot \frac{4,65}{p.(1+0,43.p)}$.

Q39. Déterminer la valeur de K_I notée K_I _tr5% permettant d'avoir le système le plus rapide. En déduire la valeur du dépassement D% .

Q40. Tracer, sur le document réponse **DR4**, les diagrammes de Bode de la F.T.B.O. Corrigée $pour K_I = 1$. L'exigence de stabilité est-elle respectée pour la valeur $K_I = tr5\%$? Justifier votre réponse.

FIN

Document réponse **DR1**

Détailler vos réponses sur vote copie en précisant le numéro de chaque question.

 $Q29_a$, $Q29_b$ et $Q29_c$.

Document réponse DR2

Q35.

conclure quant à l'influence du gain K_C sur les performances de l'asservissement.

Document réponse DR3

Q37.

Déterminer la valeur de a permettant d'avoir une	 •
marge de phase $MP=45^{\circ}$. Que devient la marge de	
gain	 a=
	 MG=

Document réponse **DR4**

L'exigence de stabilité est-elle respectée pour la valeur K_{I} _tr5% ? Justifier votre réponse :

Pulsation (rad/s)