FIXED LENGTH HASH FUNCTION CONCEPTS

Overview

Hash functions are simply functions that take inputs of some length and compress them into short, fixed-length outputs.

At the most basic level, a hash function H provides a way to deterministically map a long input string to a shorter output string sometimes called a digest.

A collision occurs when two elements end up being stored in the same cell, increasing the lookup time

DEFINITION 6.2 A hash function $\mathcal{H} = (\mathsf{Gen}, H)$ is collision resistant if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that

$$\Pr\left[\mathsf{Hash\text{-}coll}_{\mathcal{A},\mathcal{H}}(n)=1\right] \leq \mathsf{negl}(n).$$

A hash function is collision-resistant if it is infeasible for any probabilistic polynomial-time algorithm to find a collision in the given function.

Formally this is defined below:

DEFINITION 6.1 A hash function (with output length $\ell(n)$) is a pair of probabilistic polynomial-time algorithms (Gen, H) satisfying the following:

- Gen is a probabilistic algorithm that takes as input a security parameter 1^n and outputs a key s. We assume that n is implicit in s.
- H is a deterministic algorithm that takes as input a key s and a string $x \in \{0,1\}^*$ and outputs a string $H^s(x) \in \{0,1\}^{\ell(n)}$ (where n is the value of the security parameter implicit in s).

If H^s is defined only for inputs x of length $\ell'(n) > \ell(n)$, then we say that (Gen, H) is a fixed-length hash function for inputs of length $\ell'(n)$. In this case, we also call H a compression function.

In the fixed-length case we require that I' be greater than I. This ensures that H s compresses its input. In the general case, the function takes as input strings of arbitrary length; thus, it also compresses (albeit only inputs of length greater than I(n)). Note that without compression, collision resistance

is trivial (since one can just take the identity function $H^{s}(x) = x$).

Code construction:

Let \mathcal{G} be a polynomial-time algorithm that on input 1^n outputs a cyclic group \mathbb{G} of prime order q (with n = ||q||) and generator g. Define a fixed-length hash function (Gen, H) as follows:

- Gen: On input 1^n , run $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) and then select $h \leftarrow \mathbb{G}$. Output $s := \langle \mathbb{G}, q, g, h \rangle$.
- H: given a key $s = \langle \mathbb{G}, q, g, h \rangle$ and input $(x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q$, output $H^s(x_1, x_2) := g^{x_1} h^{x_2}$.

PROOF:

Theorem 8.79. If the discrete logarithm problem is hard relative to \mathcal{G} , the Constuction 8.78 is a fixed-length collision-resistant hash function.

Proof. Let $\Pi = (Gen, H)$ as in Construction 8.78, and let A be a PPT algorithm with

$$\epsilon \stackrel{\mathrm{def}}{=} \mathsf{Pr}[\mathsf{Hash\text{-}coll}_{\mathcal{A},\Pi}(n) = 1]$$

We show how A can be used by an algorithm A' to solve the discrete logarithm problem with success probability ϵ .

Recall the discrete logarithm problem:

The discrete logarithm experiment $Dlog_{A,G}(n)$:

- 1. Run $\mathcal{G}(1^n)$ to obtain ((G), q, g), where \mathbb{G} is a cyclic group of order q (with ||q|| = n), and g is a generator of \mathbb{G} .
- 2. Choose $h \leftarrow \mathbb{G}$. (This can be done by choosing $x' \leftarrow \mathbb{Z}_q$ and set $h := g^{x'}$).
- 3. A is given \mathbb{G}, q, g, h , and outputs $x \in \mathbb{Z}_q$.
- 4. The output of the experiment is defined to be 1, if $g^x = h$, and 0 otherwise.

Definition 7.59 We say that the discrete logarithm problem is hard relative to \mathcal{G} if for all probabilistic polynomial-time algorithms \mathcal{A} there exists a negligible function negl such that

$$\Pr[\mathsf{Dlog}_{\mathcal{A},\mathcal{G}}(n) = 1] \leq \mathsf{negl}(n).$$

Back to the proof of 8.79

Algorithm A':

The algorithm is given \mathbb{G} , q, g, h as input.

- 1. Let $s := \angle \mathbb{G}, q, g, h \rangle$. Run $\mathcal{A}(s)$ and obtain output x and x'.
- 2. If $x \neq x'$ and $H^s(x) = H^s(x')$ then:
 - 2.1 If h = 1 return 0.
 - 2.2 Otherwise, parse x as (x_1, x_2) and parse x' as (x'_1, x'_2) . Return $(x_1 x'_1), (x_2 x'_2)^{-1} \mod q$.

Clearly, \mathcal{A}' runs in polynomial time. Furthermore, the input s given to \mathcal{A} when run as a subroutine by \mathcal{A}' is distributed exactly as in experiment Hash-coll $_{\mathcal{A},\Pi}$. So with probability precisely $\epsilon(n)$ there is a *collision*.

We claim that whenever there is a collision, \mathcal{A}' returns the correct answer $\log_g h$.

$Collision \Rightarrow \log_g h$

If h=1, then $log_g h=0$ which is previously what \mathcal{A}' returns.

Otherwise, the collision implies

$$H^{s}(x_{1}, x_{2}) = H^{s}(x'_{1}, x'_{2}) \Rightarrow g^{x_{1}}h^{x_{2}} = g^{x'_{1}}h^{x'_{2}}$$

 $\Rightarrow g^{x_{1}-x'_{1}} = h^{x'_{2}-x_{2}}.$

If $x_2' - x_2 = 0 \mod q$, then $g^{x_1 - x_1'} = h^{x_2' - x_2} = h^0 = 1$ and $x_1 - x_1' = 0 \mod q$. But then $x = (x_1, x_2) = (x_1', x_2') = x'$ in contradiction. Thus, $x_2' - x_2 \neq 0 \mod q$ and has an inverse.

$$g^{(x_1-x_1')\cdot[(x_2'-x_2)^{-1}\mod q]}=\left(h^{(x_2'-x_2)}\right)^{[(x_2'-x_2)^{-1}\mod q]}=h^1=h,$$

and so

$$\log_g h = [(x_1 - x_1'), \cdot (x_2 - x_2')^{-1} \mod q]$$