Chapter 5 INVERSE FUNCTIONS

Section 5.1. Inverse Functions

example of inverse functions:

In this section, we study the properties of inverse functions.

• One—to—one function: A function f is one—to—one if

if
$$x_1 \neq x_2$$
, then $f(x_1) \neq f(x_2)$

1. Inverse Functions

Solve $\chi^2 = S$ for x > 0 $\chi = \sqrt{x^2} = \sqrt{S}$ I dea of a niver $x \neq S$ $x = \sqrt{x^2} = \sqrt{S}$ I dea of a niver $x \neq S$ $x = \sqrt{x^2} = \sqrt{S}$ I dea of a niver $x \neq S$

How does the graph of a one-to-one function look like? Let's graph the following function and decide whether they are one-to-one or not.

1.
$$f(x) = x^2$$

2. $g(x) = x^3 - 1$

one-to-one

There are different ways to show that a function is one-to-one.

- From the graph of the function: A function is one-to-one if and only if no horizontal line intersects the graph more than once.
- Notice that a one-to-one function is either always decreasing or always increasing on its domain, which means f' does not change sign on its domain, then f is one-to-one.
- Inverse Function: Let f be a one-to-one function with domain A and range B. Then f has an inverse function f^{-1} such that

$$y = f^{-1}(x)$$
 is equivalent to $f(y) = x$

as for example, $f^{-1}(3) = 5$ is equivalent to f(5) = 3

Properties of Inverse Functions.

Domain of f^{-1} = Range of f. Range of $f^{-1} = \text{Domain of } f$. Range of f^{-1} = Domain of f. $f^{-1}(f(x)) = x$ for every x in A. $f(f^{-1}(x)) = x$ for every x in B.

The graphs of f and f^{-1} are symmetric with respect to the line y = x.

A $f = \begin{cases} g \\ g \\ f \end{cases}$ $f = \begin{cases} f f \end{cases}$

$$x \leftrightarrow y = f(x) + f(x) = x$$
 $(f(x)) = x$
 $(x > 0 \sqrt{x^2} = x)$

Examples:

1. If
$$f(2) = 3$$
, then $f^{-1}(3) = 2$

2. If
$$f^{-1}(5) = 0$$
, then $f(0) = 5$

- 3. Let $y = x^2 + 5$ for $x \le 0$
 - a) State the range of $y : [5, \infty)$
 - b) Is y one-to-one? Why or why not?

$$f'(x) = 2x$$
, $f'(x) \le 0$ when $x \in 0$
fis one-to-one

c) Write an expression for f^{-1} the inverse function of y.

d) Sketch the graphs of f and f^{-1} on the same set of axes.

• Calculus of Inverse Functions.

- 1. **Theorem:** If f is a one-to-one continuous function defined on an interval, then its inverse function f^{-1} is also continuous.
- 2. Derivative of an inverse function at a point a. Let's look at the following example:
 - Let $f(x) = x^5 x^3 + 2x$. Find $(f^{-1})'(2)$.

How do we solve $y = x^5 - x^3 + 2x$ for x to find $f^{-1}(x)$? The following theorem will help.

3. **Theorem:** If f is a one-to-one function with inverse function f^{-1} , and $f'(f^{-1}(a)) \neq 0$, then the inverse function is differentiable at a and

$$(f^{-1}(a))' = \frac{1}{f'(f^{-1}(a))}$$

A simple proof will be given using Implicit differentiation.

Definition of an inverse tenchion. If fis one-to-one

$$\frac{d}{dx}y = \frac{d}{dx}f^{-1}(x)$$
 is equivalent to $x = f(y)$

$$\frac{d}{dx}x = \frac{d}{dx}f(y)$$

$$\frac{d}{dx}x = \frac{d}{dx}f(y)$$

$$l = f'(y) \cdot \frac{dy}{dx}$$

Example
$$\frac{dy}{dx} = \frac{1}{f'(y)} = \frac{1}{f'(x)}$$

, f(x)= x5-x3+2x

$$(f^{-1}(2))' = \frac{1}{f'(f^{-1}(2))} = \frac{1}{f'(1)} = \frac{1}{4}$$

5

$$f'(x) = 5x^4 - 3x^4 + 2$$

$$63f^{-1}(2)=5$$
 or $f(5)=2$
 $63-5^{3}+25=2$
Solve Lyins pertion

$$(f^{-1}(a))'=\frac{1}{f'(f^{-1}(a))}$$

Examples:

1. Let $f(x) = 5x + \cos 2x$. Find $(f^{-1}(1))'$.

$$(f^{-1}(1))' = \frac{1}{f'(f^{-1}(1))} = \frac{1}{f'(0)} = \frac{1}{5}$$

$$f^{-1}(1) = 5 \quad \text{or} \quad f(5) = 1 = 0$$

$$f^{-1}(1) = 0$$

$$f^{-1}(1) = 0$$

$$f^{-1}(1) = 0$$

$$f^{-1}(1) = 5$$

- 2. Let $f(x) = \sqrt{x-4}$. Find $(f^{-1}(3))'$ in 2 different ways.
 - (a) By first finding $f^{-1}(x)$ explicitly.

$$y = \sqrt{x-4}$$
. Solve for $x = y^2 = x-4$
 $x = y^2 + 4$
interchange $x \notin y : f^{-1}(x) = x^2 + 4$
 $(f^{-1}(x)) = 2x$
 $(f^{-1}(3)) = 6$

(b) By using the theorem.
$$(f^{-1}(3)) = \frac{1}{f'(f^{-1}(3))}$$

 $f^{-1}(3) = b = 0$ $f(5) = 3$
 $(f^{-1}(3))' = \frac{1}{f'(13)}$
 $f'(x) = \frac{1}{f'(13)} = \frac{1}{f'(13)}$
 $f'(x) = \frac{1}{f'(13)} = \frac{1}{f'(13)$