

XLVII Olimpiada Matemática Española Primera Fase

Soluciones a los problemas propuestos

Problema 1.1. Los años recientes se han podido expresar como sumas, restas y multiplicaciones de números con un mismo y único dígito; por ejemplo:

$$2009 = 7 \times 7 \times 7 \times 7 - 7 \times 7 \times 7 - 7 \times 7,$$
 $2010 = 66 \times 6 \times 6 - 66 \times 6 + 6 \times 6 - 6$

¿Se puede hacer lo mismo con el 2011, sin repetir jamás sumandos iguales? Por ejemplo, no es admisible $2011=1+1+1+\dots$

Solución Problema 1.1 Si 2011 fuera expresable como sumas, restas y multiplicaciones de números con el mismo dígito a, como cada uno de estos números es divisible por a, se tiene que a es divisor de 2011. Ahora bien, 2011 es un número primo, por tanto a = 1.

Es sencillo observar que

$$1000 = 1111 - 111$$
$$2 = 111 - 11 \times 11 + 11 + 1$$

Multiplicando estas dos igualdades se tiene:

$$\begin{array}{l} 2000 = \\ 1111 \times 111 - 1111 \times 11 \times 11 + 1111 \times 11 + 1111 - 111 \times 111 + \\ +111 \times 11 \times 11 - 111 \times 11 - 111 \end{array}$$

Compruébese que todos los sumandos son distintos entre sí y distintos a 11. Por tanto, sumando 11 al número anterior se tiene una solución.

Existen infinidad de maneras distintas:

o bien

$$2011 = 1111 \times 1111 - 111 \times 11111 + 1111 - 111 + 11$$

Problema 1.2. Dos semirrectas tienen su común origen en el punto O. Se considera una circunferencia C_1 tangente a ambas semirrectas, cuyo centro está situado a distancia d_1 de O, y cuyo radio es r_1 . Se construyen sucesivamente las circunferencias C_n , de modo que C_n es tangente a las semirrectas, tangente exterior a C_{n-1} y tal que la distancia de su centro a O, d_n , es menor que d_{n-1} , para n > 1. Halla la suma de las áreas de los círculos limitados por las circunferencias C_n , para todo n, en función de r_1 y d_1 .

Solución Problema 1.2 Es claro de la figura que, por el Teorema de Thales, $\frac{r_n}{d_n} = \frac{r_1}{d_1}$ para todo n. Llamaremos

a este valor α . Además, se tiene que:

$$\frac{r_n}{r_{n+1}} = \frac{d_n}{d_{n+1}} = \frac{d_{n+1} + r_{n+1} + r_n}{d_{n+1}} = 1 + \alpha + \frac{r_n}{d_{n+1}} = 1 + \alpha + \frac{r_n}{r_{n+1}} \frac{r_{n+1}}{d_{n+1}} = 1 + \alpha + \frac{r_n}{r_{n+1}} \alpha.$$

Despejando se tiene $\frac{r_n}{r_{n+1}} = \frac{1+\alpha}{1-\alpha}$, que es constante, luego los radios de las circunferencias forman una progresión geométrica de razón

$$r = \frac{1 - \alpha}{1 + \alpha} = \frac{1 - r_1/d_1}{1 + r_1/d_1} = \frac{d_1 - r_1}{d_1 + r_1}.$$

La suma de áreas buscada es

$$S = \pi \sum_{n=1}^{\infty} r_n^2 = \pi \frac{r_1^2}{1 - (\frac{d_1 - r_1}{d_1 + r_1})^2} = \frac{\pi}{4} \frac{r_1 (d_1 + r_1)^2}{d_1}.$$

Problema 1.3. Saber cuál es la última cifra de 2009^{2011} es muy fácil, pero ¿cuántos ceros preceden a esa última cifra?

Solución Problema 1.3 Si $n \ge 1$,

$$2009^n = (2000 + 9)^n = 9^n + 2000k$$

Por tanto las 3 últimas cifras de 2009^n coinciden con las de 9^n . Por el desarrollo del binomio de Newton:

$$\begin{split} 9^{2011} &= (10-1)^{2011} = (-1)^{2011} + \left(\begin{array}{c} 2011 \\ 1 \end{array}\right) (-1)^{2010} \cdot 10 + \\ &+ \left(\begin{array}{c} 2011 \\ 2 \end{array}\right) (-1)^{2009} \cdot 10^2 + K \cdot 10^3 = -1 + 20110 - 2011 \cdot 1005 \cdot 100 + K \cdot 10^3 \\ &= -202085391 + K \cdot 10^3 = 609 + K' \cdot 10^3 \end{split}$$

Luego la respuesta es que 9 es la última cifra y le precede un único cero.

Problema 1.4. Calcula todos los números enteros a, b y c tales que $a^2 = 2b^2 + 3c^2$.

Solución Problema 1.4 Sea (a, b, c) una solución distinta de (0, 0, 0), con |a| + |b| + |c| mínimo. Tomando la igualdad módulo 3, tenemos $a^2 = 2b^2$ módulo 3. Como a^2 y b^2 sólo pueden ser congruentes con 1 o 0, se deduce

que a y b son múltiplos de 3. Por tanto, $3c^2$ es múltiplo de 9, así que c también es múltiplo de 3. Pero entonces, (a/3, b/3, c/3) sería otra solución con |a/3| + |b/3| + |c/3| < |a| + |b| + |c|, lo que contradice la hipótesis supuesta.

Problema 1.5. Dos esferas de radio r son tangentes exteriores. Otras tres esferas de radio R son tangentes exteriores entre sí, dos a dos. Cada una de estas tres esferas es, además, tangente exterior a las dos primeras. Encuentra la relación entre R y r.

Solución Problema 1.5 Los centros de las tres esferas de radio R, O_1 , O_2 y O_3 , son los vértices de un triángulo

equilátero de lado 2R. El punto de tangencia, T, de las dos esferas de radio r es el centro de ese triángulo y, por tanto, dista de los vértices dos tercios de la altura. La altura del triángulo es $h = \frac{2R\sqrt{3}}{2} = R\sqrt{3}$ y dos tercios de h es $\frac{2R}{6\pi}$.

h es $\frac{2R}{\sqrt{3}}$. Si llamamos Q_1,Q_2 a los centros de las circunferencias de radio r, el triángulo O_1TQ_1 es rectángulo en T y sus lados son: $\frac{2R}{\sqrt{3}}$, r y R+r. Aplicando el teorema de Pitágoras, se tiene:

$$\left(\frac{2R}{\sqrt{3}}\right)^2 + r^2 = (R+r)^2$$

y simplificando resulta: R = 6r.

Problema 1.6. Denotamos por $\mathbb{N} = \{1, 2, 3, \ldots\}$ el conjunto de números naturales excluido el cero y por $\mathbb{N}^* = \{0, 1, 2, 3, \ldots\}$ el conjunto de números naturales incluido el cero. Encontrar todas las funciones $f : \mathbb{N} \to \mathbb{N}^*$ que sean crecientes, es decir $f(n) \geq f(m)$ si n > m, y tales que f(nm) = f(n) + f(m), para todo $n, m \in \mathbb{N}$.

Solución Problema 1.6

- La función nula: f(n) = 0, para todo $n \in \mathbb{N}$ verifica evidentemente lo anterior.
- \blacksquare Sea f una función no nula verificando las condiciones del enunciado. Entonces
 - 1. f no es constante, ni está acotada. En efecto, si $f(a) \neq 0$ entonces $f(a^n) = nf(a) > f(a)$ para cada
 - 2. f no es estrictamente creciente:
 - Si f(2) = f(3) ya está.
 - Si f(2) = a < b = f(3), entonces $2^b \neq 3^a$, pero $f(2^b) = ab = f(3^a)$.

De los dos puntos anteriores se deduce que es posible encontrar un número natural m tal que k = f(m) = f(m+1) < f(m+2). Entonces

$$f[(m+1)^2] = 2k < f[m(m+2)]$$

Sin embargo $m(m+2) < (m+1)^2$, contradiciendo el carácter creciente de f.

En consecuencia la única función que verifica las condiciones del enunciado es la función nula.