

INTRODUCTION TO DATA SCIENCE SESSION # 1 : INTRODUCTION

SANKARA NAYAKI K

sankaranayaki@wilp.bits-pilani.ac.in

The instructor is gratefully acknowledging the authors who made their course materials freely available online.

References:

- Introducing Data Science by Cielen, Meysman and Ali
- Storytelling with Data by Cole Nussbaumer Knaflic; Wiley
- Introduction to Data Mining by Tan, Steinbach and Vipin Kumar
- The Art of Data Science by Roger D Peng and Elizabeth Matsui
- Python Data Science Handbook: Essential tools for working with data by Jake VanderPlas

TABLE OF CONTENTS

- Course Handout
- 2 EVALUATION COMPONENTS
- DATA SCIENCE

Course Handout

- M1 Introduction to Data Science
- M2 Data Analytics
- M3 Data Science Process
- M4 Data Science Teams
- M5 Data and Data Models
- M6 Data wrangling and Feature Engineering
- M7 Data visualization
- M8 Storytelling with Data
- M9 Ethics for Data Science

Lab Sessions

The Lab capsules has to be practised. Details will be posted soon in Impartus.

- L1 17-Oct-20
- L2 16-Jan-21

PLATFORMS / TOOLS

Python

DATASET

Iris dataset

Any other dataset can be used.

TABLE OF CONTENTS

- Course Handout
- **2** EVALUATION COMPONENTS
- B DATA SCIENCE

EVALUATION COMPONENTS

Component	Weightage	Deadline
Quiz-I (Pre-Mid)	5 %	TBA
Quiz-II (Post-Mid)	5 %	TBA
Assignment	20 %	TBA
Mid-Semester Exam	30 %	Per Schedule
Comprehensive Exam	40 %	Per Schedule

Further announcements will be posted in Canvas.

TABLE OF CONTENTS

- Course Handout
- **2** EVALUATION COMPONENTS
- DATA SCIENCE

DATA SCIENCE

- Data Science is a study of data.
- Data Science is an art of uncovering insights and trends that are hiding behind the data.
- Data Science is the process of using data to understand different things.
- Data Science helps to translate data into a story. The story telling helps in uncovering insights. The insights help in matking decision or strategic choices.

Data Science – Multiple Disciplines

NEED OF DATA SCIENCE

- Data deluge, tons of data.
- Powerful algorithms.
- Open software and tools.
- Computational speed, accuracy and cost.
- Data storage in terms of capacity and cost.

Use cases of Data Science

APPLICATIONS OF DATA SCIENCE

DataFlair

APPLICATIONS OF DATA SCIENCE

Role of a Data Scientist

- Reframe business challenges as analytics challenges. This is a skill to diagnose the problem, consider the core of a given problem, and determine which kinds of candidate analysis analytical method can be applied to solve it.
- Design, implement and deploy statistical models and data mining technique on data. This activity is mainly the role of data scientist, applying complex or advanced analytical methods to a variety of business problem using data.
- Develop insights that lead to actionable recommendations.
 Learn how to draw insights out of data and communicate them effectively.

Skills required for a Data Scientist

Tools available to a Data Scientist

ALGORITHMS FOR A DATA SCIENTIST

Data Science vs. Business Intelligence

Data Science vs. Business Intelligence

	Data Science	Business Intelligence
Perspective	Looking forward	Looking backward
Analysis	Predictive	Descriptive
	Explorative	Comparative
Data	Same data,	New Data,
	New analysis	Same analysis
	Listens to data	Speaks for data
	Distributed	Warehoused
Scope	Specific to buisness	Unlimited
	question	
Expertise	Data scientist	Business analyst
Deliverable	Insight or story	Table

Data Scientist vs. Business Analyst

Area	BI Analyst	Data Scientist
Focus	Reports, KPIs, trends	Patterns, correlations, models
Process	Static, comparative	Exploratory, experimentation, visual
Data sources	Pre-planned, added slowly	On the fly, as-needed
Transform	Up front, carefully planned	In-database, on-demand, enrichment
Data quality	Single version of truth	"Good enough", probabilities
Data model	Schema on load	Schema on query
Analysis	Retrospective, Descriptive	Predictive, Prescriptive

EMC²

DATA SCIENCE VS. STATISTICS

	Data Science	Statistics
Type of	Semi structured or un-	Well structured
problem	structured	
Analysis	Need not be well formed	Well formed objective
Objective		
Type of	Explorative	Confirmative
Analysis		
Data col-	Data collection is not	Data collected based on
lection	linked to the objective	the objective
Size of	Large	Small
dataset	Heterogeneous	Homogeneous
Paradigm Theory and heuristic		Theory based
	(deductive & inductive)	(deductive)

SOFTWARE ENGINEERING FOR DATA SCIENCE

- For data scientists, software is the generalization of a specific aspect of a data analysis. Software allows for the systematizing and the standardizing of a procedure, so that different people can use it and understand what it's doing, at any given time. Software is the encompasses all required tools into a specific module or procedure that can be repeatedly applied in a variety of settings
- Software will have an interface, or a set of inputs and a set of outputs that are well understood.
 - 3 Levels of S/W: Code, Write Function S/W Package or API
- Application of Skill Sets differ in Methodologies, Objectives, Approaches Tools.

DATA SCIENCE CHALLENGES

- Complexity of Data Reality
- Identifying the problem
- Access to right data Data quantity
- Data Cleansing Data quality Data Security
- Granularity, Consistency Availability of Data
- Lack of domain expertise
- Cognitive Bias Content Bias

THANK YOU