Theorem (2.4.42). The cardinality of $\mathbb{Z}^+ \times \mathbb{Z}^+$ is aleph null.

Proof. $\mathbb{Z}^+ \times \mathbb{Z}^+$ is defined as $\{\langle x,y \rangle | (x \in \mathbb{Z}^+) \land (y \in \mathbb{Z}^+) \}$. Since x and y are positive integers, for every ordered pair $\langle x,y \rangle$ in $\mathbb{Z}^+ \times \mathbb{Z}^+$, $\langle x,y \rangle$ exists if and only if the rational number $\frac{x}{y}$ exists. Thus, $\frac{x}{y}$ exists, and all elements in $\mathbb{Z}^+ \times \mathbb{Z}^+$ can be represented by the two dimensional list

The hypotheses in the biconditional converse statements for each list entry are the list elements in the proof for the countability of rational numbers. That means $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable if and only if the rational numbers are countable. We know the rational numbers are countable. Therefore the cardinality of $\mathbb{Z}^+ \times \mathbb{Z}^+$ is \aleph_0 .