Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

КУРСОВАЯ РАБОТА

УПРАВЛЕНИЕ ИНФОРМАЦИОННЫМИ МОДЕЛЯМИ В ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ

Баканов Егор Сергеевич

Руководитель
канд. техн. наук, доцент
_____ А. В. Приступа
«____» ____ 2020 г.
Автор работы
Студент группы № 931907
_____ Е.С. Баканов

Реферат

Курсовая работа 14 стр., 1 рис., 20 источников.

Ключевые слова: информационное моделирование, виртуальная реальность, 3D визуализация, автоматизация, Unity.

Целью работы: разработка приложения визуализации и манипуляции информационными моделями в среде виртуальной реальности.

Методы проведения работ: анализ требований, проектирование системы, разработка приложения.

Полученные результаты: разработан прототип приложения, позволяющего визуализировать информационные модели, производить базовые манипуляции с трехмерным представлением модели в виртуальной реальности; частично автоматизирован процесс экспорта исходных данных информационного моделирования в формат, используемый разработанным приложением.

Содержание

	Глоссарий		3	
	Вве	едение	4	
1	Аналитика			
	1.1	Существующие решения	6	
	1.2	Требования к системе	7	
2	Про	ректирование	8	
	2.1	Описание предметной области	8	
	2.2	Описание структуры клиентской и серверной части	8	
	2.3	Оптимизационные подходы	8	
3	Реализация		9	
	3.1	Обзор инструментов	9	
	3.2	Серверная часть	10	
	3.3	Клиентская часть	11	
	Заключение		12	
Cı	Список литературы			

Глоссарий

Полигональная сетка или меш (англ. polygon mesh) — структура данных, содержащая набор вершин, ребер и граней, определяющих форму многогранного объекта.

Фреймворк (англ. framework) — переиспользуемая, "незавершенная" система, которая может использоваться для создания другой производной системы.[1; 2]

Шейдер (англ. shader) – разновидность компьютерных программ, запускаемых на графических процессорах, предназначенных для отрисовки изображений.

BIM (англ. Building Information Model) — цифровой проект здания или другого объекта инфраструктуры, сопровождаемый базой данных всех его физических и функциональных характеристик.[3]

HTC Vive — шлем виртуальной реальности, разрабатываемый компаниями HTC и Valve.

Unity – игровой фреймворк, используемый для трехмерной визуализации. [4]

Введение

ВІМ – понятие, под которым подразумевают цифровой проект здания или другого объекта инфраструктуры, которая связана с базой данных всех его физических и функциональных характеристик, содержащей подробную информацию обо всех элементах модели: элемент может содержать информацию о габаритах, поставщике и даже серийном номере. Изменения в любом элементе системы здания способны повлечь автоматические изменения параметров и объектов, вплоть до изменения чертежей, визуализаций, спецификаций, календарного графика и сметы. ВІМ – это общий ресурс знаний для получения информации об объекте, который служит надежной основой для принятия решений в течение всего жизненного цикла начиная с самой ранней концепции до сноса.[3] 11 июня 2016 года был утвержден список поручений Правительству Российской Федерации, направленный на развитие правовой базы использования информационного моделирования в сфере строительства.[5]

Информационное моделирование является комплексным процессом, требующим определенной компетенцией в этой области. Для использования ВІМ-методологии необходимы навыки использования специализированного программного обеспечения, которых может быть лишена значительная часть проектной команды. Для обычных людей крайне сложно воспринимать весь объем информации, закладываемой в ВІМ.

В связи с развитием технологий в последнее десятилетие произошел стремительный рост популярности технологии виртуальной реальности.[6] Как показывают многочисленные исследования, использование технологий виртуальной и дополненной реальности может улучшить производительность при валидации и верификации разрабатываемой модели. Применение технологии VR способно значительно повысить презентационные качества модели, что усилит вовлеченность в проект участников, не имеющих специальных профильных навыков.[7] Исходя из этого было принято решение о разработке приложения, способного визуализировать трехмерную репрезентацию информационной модели в VR-среде.

Цель работы – разработать прототип приложения, позволяющего инспектировать ВІМ модели в виртуальной реальности.

Задачи

- 1. реализовать извлечение атрибутивной информации модели;
- 2. реализовать серверную часть приложения, занимающуюся хостингом и предобработкой моделей;
- 3. автоматизировать перенос моделей из сред разработки в приложение.
- 4. реализовать модуль взаимодействия пользователя с моделью на клиентской части приложения;

Стоит отметить, что данный проект разрабатывается командой из нескольких человек, поэтому в ходе работы не будут представлены те части, в которых автор не принимал непосредственного участия при разработке.

На момент написания этого отчета разрабатываемый прототип не получил официального названия, которое могло бы использоваться при разработке или коммерческом продвижении. Поэтому вместо этого будет использоваться его неофициальное название – **BIMExplorer**.

Глава 1. Аналитика

Данный раздел содержит обзор существующих решений, направленных на визуализацию информационных моделей в виртуальной реальности. В ходе их анализа были выявлены функциональные и нефункциональные требования к реализации системы.

1.1 Существующие решения

В ходе изучения существующих решений был обнаружен ряд продуктов как в индустриальной, так и в академической среде. Ниже приведены несколько примеров, на основе которых были сформулированы требования к разрабатываемому прототипу.

Индустриальная среда

Unity Reflect – приложение разрабатываемое компанией Unity Technologies, на основе их игрового фреймворка Unity.[8] Reflect обладает интеграцией с несколькими программами информационного моделирования, такими как Revit, Rhino и Sketchup. Reflect способен синхронизировать изменения информационной модели с ее VR отображением в реальном времени, а также извлекать атрибутивную информацию. К сожалению на момент разработки нашего решения и написания этой статьи Unity Reflect был не завершенным продуктом, находящимся в активной разработке.

Prospect – аналогичное приложение от компании IrisVR, поддерживающее информационные модели из Navisworks, Revit, Rhino, Sketchup, а также 3D форматы FBX и OBJ.[9] Prospect способен извлекать атрибутивную информацию, имеет достаточно высокую производительность, а также возможность проведения многопользовательских сессий.

Enscape – ещё одно приложение с интеграцией с Revit, Sketchup, Rhino, ArchiCAD и Vectorworks.[10] Enscape может синхронизировать изменения информационной модели в реальном времени и извлекать атрибутивную информацию. Из особенностей Enscape стоит отметить широкий набор настроек и эффектов отображения информационной модели.

Академическая среда

В статье Джордана Дэвидсона и др. описана разработка прототипа приложения на основе Enscape расширения для Revit, описанного раннее.[11] Целью работы было расширение уже имеющихся возможностей Enscape для экспериментальной проверки пользовательского опыта при инспектировании модели. Приложение Дэвидсона отличается от предыдущих тем, что обладает обратной связью с отображаемой информационной моделью, позволяющей пользователю прямо внутри VR симуляции изменять окружение. В рамках прототипа эта особенность ограничивалась изменением внутреннего интерьера, мебели и характеристик окон. Как утверждает автор, данный подход

повышает вовлеченность клиента в проект на ранних стадиях разработки, повышает его осведомленность о решениях, принятых архитекторами, и снижает риск изменений в "последнюю минуту", повышающих стоимость реализации проекта.

Ещё одно возможное решение задачи описал в своей работе Фарзад Пур Рахимян и др.[12] Помимо частичной обратной связи, аналогичной той, что представлена в работе Джордана Дэвидсона, прототип Рахимяна уникален использованием в качестве целевого формата информационных моделей Industry Foundation Classes — открытый, международный и независимый от других производителей стандарт, разработанный buildingSMART.[13] В работе также описана клиент-серверная архитектура решения: на клиентской части приложения происходит интерактивная демонстрация модели в виртуальной или дополненной реальности; сервер же является промежуточным слоем между исходной информационной моделью и визуализацией, отслеживающим изменения и производящим синхронизацию данных.

1.2 Требования к системе

Далее приведен формализованный список требований к разрабатываемому прототипу.

Нефункциональные требования

- совместимость с форматом Revit, как наиболее распространенной системы информационного моделирования;
- разделение функциональности приложения на "серверную" и "клиентскую" для повышения гибкости системы к возможным дальнейшим расширениям;
- высокая производительность при инспектировании комплексных моделей;
- извлечение атрибутивной информации, закладываемой в модель.

Стоит отметить, что в рамках прототипа не производилась реализация полноценного сервера, а производилась эмуляция его работы локально.

Функциональные требования

- выбор BIM модели из уже загруженных на сервер;
- изменение масштаба отображения модели между натуральной величиной и размерами настольного макета;
- управление отображением различных слоев модели, созданных на основе извлеченной атрибутивной информации;

Особенности реализации пользовательского интерфейса и функциональности навигации в виртуальном пространстве будут опущены, так как реализовывались другими членами команды разработки прототипа.

Глава 2. Проектирование

Этот раздел содержит описание теоретических аспектов работы. В первую очередь здесь будет детально рассмотрена структура информационных моделей, используемых как источник исходных данных для визуализации. Далее идет описание клиентской и серверной части прототипа, описание проблем, которых это разделение призвано решить, а также описание функциональности, которую они будут предоставлять. Наконец, эта глава также содержит кратких обзор методик, используемых для повышения производительности визуализации.

2.1 Описание предметной области

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

2.2 Описание структуры клиентской и серверной части

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

2.3 Оптимизационные подходы

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Глава 3. Реализация

Данная глава содержит детали технической реализации прототипа. В первую очередь будет приведен перечень инструментов, используемых при реализации. Затем идет описание реализации серверной и клиентской части прототипа.

3.1 Обзор инструментов

Unity

В качестве фреймворка для выполнения проекта был выбран Unity. Unity – это фреймворк, предназначенный для разработки интерактивных графических приложений. [4] Первая версия фреймворка была выпущена в 2005 году и с тех пор продолжает активно развиваться. Для создания приложений Unity поддерживает более 20 платформ, включающих персональные компьютеры, мобильные устройства, игровые консоли и др. Фреймворк может быть использован для создания приложений с двумерной или трехмерной графикой, а также приложений в виртуальной или дополненной реальности.

Рис. 1: Интерфейс редактора Unity

Unity имеет встроенные модули для работы с графикой, пользовательским вво-

дом, физикой, пользовательским интерфейсом и сетевым взаимодействием. Компонентная архитектура фреймворка позволяет легко расширять уже существующую функциональность.

Основное направление использования Unity – это разработка игр, тем не менее Unity также успешно применяется в киноиндустрии,[14] архитектуре, автомобилестроении,[15] разработке виртуальных тренажеров, а также в обучении искусственного интеллекта.[16]

$\mathbf{C} \#$

С# — высокоуровневый мультипарадигменный язык общего назначения, разработанный компанией Microsoft в 1998-2001 годах в рамках платформы .NET Framework. С# относится к семье языков с С-подобным синтаксисом и используется для написания веб-приложений, приложений для персональных компьютеров и мобильных устройств. [17] С# является основным скриптовым языком фреймворка Unity, тем самым он используется для написания всей клиентской и серверной логики разрабатываемого прототипа.

SteamVR

SteamVR – это инструмент, унифицирующий работу с различными устройствами виртуальной реальности, разработанный компанией Valve Corporation.[18] SteamVR обладает плагинами для фреймворков Unity и Unreal Engine, что позволяет интегрировать его в разрабатываемый прототип.

HTC Vive

HTC Vive – это шлем виртуальной реальности, разрабатываемый компаниями HTC и Valve Corporation.[19] HTC Vive используется во время тестирования прототипа.

3ds Max

3ds Мах – профессиональное программное обеспечение для 3D-моделирования, разрабатываемое компанией Autodesk. 3ds Мах является расширяемым инструментом, что позволяет автоматизировать часть процессов через создание дополнительных плагинов.[20] 3ds Мах используется в процессе преобразования информационной модели из rvt-формата в формат fbx.

3.2 Серверная часть

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi.

Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

3.3 Клиентская часть

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Заключение

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Список литературы

- 1. Johnson R., Foote B. Designing Reusable Classes // Journal of Object-Oriented Programming. 1988. июнь. т. 1. с. 22—35.
- 2. Schmidt D. Applying Design Patterns and Frameworks to Develop Object-Oriented Communication Software. 2000. aπp.
- 3. National Institute of Building Sciences. Frequently asked questions about the National BIM Standart United States. URL: https://www.nationalbimstandard.org/faqs (дата обр. 01.02.2020).
- 4. Unity Technologies. Unity User Manual. URL: http://docs.unity3d.com (дата обр. 05.04.2020).
- 5. Путин В. Перечень поручений Президента Российской Федерации по итогам заседания Государственного совета Российской Федерации 17 мая 2016 г. Пр-1138 ГС. URL: https://tomsk.gov.ru/uploads/ckfinder//userfiles/files/%D0%9F%D1% 80-1138%D0%B3%D1%81.PDF (дата обр. 08.04.2020).
- 6. The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature / P. Cipresso [и др.] // Frontiers in Psychology.— 2018. нояб. т. 9.
- 7. Akpan I. J., Shanker M. A comparative evaluation of the effectiveness of virtual reality, 3D visualization and 2D visual interactive simulation: an exploratory meta-analysis // SIMULATION. 2018. февр. т. 95, N_2 2. с. 145—170.
- 8. Unity Technologies. Unity Reflect. URL: https://unity.com/products/reflect (дата обр. 15.02.2020).
- 9. *IrisVR*. VR for Architecture, Engineering, and Construction. URL: https://irisvr.com/ (дата οбр. 17.02.2020).
- 10. Enscape. Enscape Architectural Visualization Software for Revit, SketchUp, Rhino & ArchiCad. URL: https://enscape3d.com/ (дата обр. 17.02.2020).
- 11. Integration of VR with BIM to facilitate real-time creation of bill of quantities during the design phase: a proof of concept study / J. Davidson [и др.] // Frontiers of Engineering Management. 2019. июнь.
- 12. OpenBIM-Tango integrated virtual showroom for offsite manufactured production of self-build housing / F. P. Rahimian [и др.] // Automation in Construction. 2019. т. 102. с. 1—16. ISSN 0926-5805.
- 13. BuildingSmart. Industry Foundation Classes (IFC). URL: https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/ (дата οбр. 16.04.2020).

- 14. Liptak A. How Neill Blomkamp and Unity are shaping the future of filmmaking with Adam: The Mirror. URL: https://www.theverge.com/2017/10/4/16409734/unity-neill-blomkamp-oats-studios-mirror-cinemachine-short-film (дата обр. 15.04.2020).
- 15. Edelstein S. How gaming company Unity is driving automakers toward virtual reality.— URL: https://www.digitaltrends.com/cars/unity-automotive-virtual-reality-and-hmi/ (дата обр. 15.04.2020).
- 16. Captain S. How Google's DeepMind will train its AI inside Unity's video game worlds.— URL: https://www.fastcompany.com/90240010/deepminds-ai-will-learn-inside-unitys-video-game-worlds (дата обр. 15.04.2020).
- 17. Microsoft. C# documentation. URL: https://docs.microsoft.com/en-us/dotnet/csharp/ (дата обр. 07.03.2020).
- 18. Valve Corporation. SteamVR Unity Plugin. URL: https://valvesoftware.github.io/steamvr_unity_plugin/.
- 19. Wikipedia, the free encyclopedia. HTC Vive. URL: https://en.wikipedia.org/wiki/HTC_Vive.
- 20. Autodesk Inc. 3ds Max Learning Center. URL: https://help.autodesk.com/view/3DSMAX/2019/ENU/ (ματα οδρ. 07.03.2020).