

### Digital Logic Design

- Basics
- Combinational Circuits
- Sequential Circuits

### Pu-Jen Cheng

Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design.



### Introduction to Digital Logic Basics

- Hardware consists of a few simple building blocks
  - These are called *logic gates* 
    - AND, OR, NOT, ...
    - NAND, NOR, XOR, ...
- Logic gates are built using transistors
  - NOT gate can be implemented by a single transistor
  - AND gate requires 3 transistors
- Transistors are the fundamental devices
  - Pentium consists of 3 million transistors
  - Compaq Alpha consists of 9 million transistors
  - Now we can build chips with more than 100 million transistors



### **Basic Concepts**

- Simple gates
  - > AND
  - > OR
  - NOT
- Functionality can be expressed by a truth table
  - A truth table lists output for each possible input combination
- Precedence
  - NOT > AND > OR

$$F = A \overline{B} + \overline{A} B$$
$$= (A (\overline{B})) + ((\overline{A}) B)$$



AND gate

| Α | В |   |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
|   |   |   |

D

| A | T |
|---|---|
| В |   |

OR gate

| A |  | – F |
|---|--|-----|
|---|--|-----|

NOT gate

| Α | В | F |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

| Α | F |
|---|---|
| 0 | 1 |
| 1 | 0 |

Logic symbol

Truth table



- Additional useful gates
  - NAND
  - NOR
  - XOR
- NAND = AND + NOT
- NOR = OR + NOT
- XOR implements exclusive-OR function
- NAND and NOR gates require only 2 transistors
  - AND and OR need 3 transistors!



NAND gate



NOR gate



XOR gate

Logic symbol

| Α | В | F |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

| A | В | F |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

| Α | В | F |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Truth table

- Number of functions
  - With N logical variables, we can define  $2^{2^N}$  functions
  - Some of them are useful
    - AND, NAND, NOR, XOR, ...
  - Some are not useful:
    - Output is always 1
    - Output is always 0
  - "Number of functions" definition is useful in proving completeness property

- Complete sets
  - A set of gates is complete
    - If we can implement any logical function using only the type of gates in the set
      - You can uses as many gates as you want
  - Some example complete sets
    - {AND, OR, NOT} ← Not a minimal complete set
    - {AND, NOT}
    - {OR, NOT}
    - {NAND}
    - {NOR}
  - Minimal complete set
    - A complete set with no redundant elements.

- Proving NAND gate is universal
- NAND gate is called universal gate



AND gate



NOT gate



OR gate

- Proving NOR gate is universal
- NOR gate is called universal gate



OR gate



NOT gate



AND gate



## **Logic Chips**



## Logic Chips (cont.)

- Integration levels
  - SSI (small scale integration)
    - Introduced in late 1960s
    - 1-10 gates (previous examples)
  - MSI (medium scale integration)
    - Introduced in late 1960s
    - 10-100 gates
  - LSI (large scale integration)
    - Introduced in early 1970s
    - 100-10,000 gates
  - VLSI (very large scale integration)
    - Introduced in late 1970s
    - More than 10,000 gates

# Logic Functions

- Logical functions can be expressed in several ways:
  - Truth table
  - Logical expressions
  - Graphical form
- Example:
  - Majority function
    - Output is 1 whenever majority of inputs is 1
    - We use 3-input majority function

# 4

## Logic Functions (cont.)

3-input majority function

| <b>A</b> | В | С | F |
|----------|---|---|---|
| 0        | 0 | 0 | 0 |
| 0        | 0 | 1 | 0 |
| 0        | 1 | 0 | 0 |
| 0        | 1 | 1 | 1 |
| 1        | 0 | 0 | 0 |
| 1        | 0 | 1 | 1 |
| 1        | 1 | 0 | 1 |
| 1        | 1 | 1 | 1 |

Logical expression form

$$F = AB + BC + AC$$



# Logical Equivalence

All three circuits implement F = A B function



### Logical Equivalence (cont.)

- Proving logical equivalence of two circuits
  - Derive the logical expression for the output of each circuit
  - Show that these two expressions are equivalent
    - Two ways:
      - You can use the truth table method
        - For every combination of inputs, if both expressions yield the same output, they are equivalent
        - Good for logical expressions with small number of variables
      - You can also use algebraic manipulation
        - Need Boolean identities

# 1

### Logical Equivalence (cont.)

- Derivation of logical expression from a circuit
  - Trace from the input to output
    - Write down intermediate logical expressions along the path



## Logical Equivalence (cont.)

Proving logical equivalence: Truth table method

| Α | В | <b>F1</b> = <b>A B</b> | $F3 = (A + B) (A + \overline{B}) (\overline{A} + B)$ |
|---|---|------------------------|------------------------------------------------------|
| 0 | 0 | 0                      | 0                                                    |
| 0 | 1 | 0                      | 0                                                    |
| 1 | 0 | 0                      | 0                                                    |
| 1 | 1 | 1                      | 1                                                    |
|   |   |                        |                                                      |



## Boolean Algebra

### Boolean identities

| Name         | AND version                                  | OR version             |
|--------------|----------------------------------------------|------------------------|
| Identity     | $x \cdot 1 = x$                              | x + 0 = x              |
| Complement   | $\mathbf{x} \cdot \overline{\mathbf{x}} = 0$ | $X + \overline{X} = 1$ |
| Commutative  | $x \cdot y = y \cdot x$                      | x + y = y + x          |
| Distribution | $x \cdot (y+z) = xy+xz$                      | $x + (y \cdot z) =$    |
|              |                                              | (x+y)(x+z)             |
| Idempotent   | $X \cdot X = X$                              | X + X = X              |
| Null         | $\mathbf{x} \cdot 0 = 0$                     | x + 1 = 1              |

# 4

## Boolean Algebra (cont.)

| Name        | AND version                                                                                         | OR version                                           |
|-------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Involution  | = $X = X$                                                                                           |                                                      |
| Absorption  | $x \cdot (x + y) = x$                                                                               | $x + (x \cdot y) = x$                                |
| Associative | $x \cdot (y \cdot z) = (x \cdot y) \cdot z$                                                         | x + (y + z) =                                        |
|             |                                                                                                     | (x+y)+z                                              |
| de Morgan   | $\overline{\mathbf{x}} \cdot \overline{\mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$ | $\overline{x + y} = \overline{x} \cdot \overline{y}$ |

### Boolean Algebra (cont.)

- Proving logical equivalence: Boolean algebra method
  - To prove that two logical functions F1 and F2 are equivalent
    - Start with one function and apply Boolean laws to derive the other function
    - Needs intuition as to which laws should be applied and when
      - Practice helps
    - Sometimes it may be convenient to reduce both functions to the same expression
  - Example: F1= A B and F3 are equivalent  $AB = (A + B) (A + \overline{B}) (\overline{A} + B)$



### Logic Circuit Design Process

- A simple logic design process involves
  - Problem specification
  - Truth table derivation
  - Derivation of logical expression
  - Simplification of logical expression
  - Implementation





### **Deriving Logical Expressions**

- Derivation of logical expressions from truth tables
  - sum-of-products (SOP) form
  - product-of-sums (POS) form

### SOP form

- Write an AND term for each input combination that produces a 1 output
  - Write the variable if its value is 1; complement otherwise
- OR the AND terms to get the final expression

### POS form

Dual of the SOP form

### Deriving Logical Expressions (cont.)

3-input majority function

| Α | В | C | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

- SOP logical expression
- Four product terms
  - Because there are 4 rowswith a 1 output

$$F = \overline{A} B \underline{C} + \overline{A} B C + A B C$$

$$A B C + A B C$$

# Deriving Logical Expressions (cont.)

3-input majority function

| В | C                          | F                                             |
|---|----------------------------|-----------------------------------------------|
| 0 | 0                          | 0                                             |
| 0 | 1                          | 0                                             |
| 1 | 0                          | 0                                             |
| 1 | 1                          | 1                                             |
| 0 | 0                          | 0                                             |
| 0 | 1                          | 1                                             |
| 1 | 0                          | 1                                             |
| 1 | 1                          | 1                                             |
|   | 0<br>0<br>1<br>1<br>0<br>0 | 0 0<br>0 1<br>1 0<br>1 1<br>0 0<br>0 1<br>1 0 |

- POS logical expression
- Four sum terms
  - Because there are 4 rows with a 0 output

$$F = (A + B + C) (A + B + C)$$
  
 $(A + B + C) (A + B + C)$ 

### Logical Expression Simplification

- Two basic methods
  - Algebraic manipulation
    - Use Boolean laws to simplify the expression
      - Difficult to use
      - Don't know if you have the simplified form
  - Karnaugh map (K-map) method
    - Graphical method
    - Easy to use
      - Can be used to simplify logical expressions with a few variables

### Algebraic Manipulation

Majority function example

$$\overline{A}BC + \overline{A}BC + \overline$$

We can now simplify this expression as

$$BC + AC + AB$$

A difficult method to use for complex expressions



## Karnaugh Map Method





### Simplification examples



(a) Majority function



(b) Even-parity function



First and last columns/rows are adjacent





### Minimal expression depends on groupings







### No redundant groupings

| AB | D<br>00 | 01 | 11 | 10 |
|----|---------|----|----|----|
| 00 | 0       | 0  | 1  | 0  |
| 01 | 1       | 1  | 1  | 0  |
| 11 | 0       |    | 1  | 1  |
| 10 | 0       |    | 0  | 0  |

| AB | D<br>00 | 01 | 11 | 10 |
|----|---------|----|----|----|
| 00 | 0       | 0  |    | 0  |
| 01 | 1       | 1  | 1  | 0  |
| 11 | 0       |    | 1  | 1  |
| 10 | 0       |    | 0  | 0  |

(a) Nonminimal simplification

(b) Minimal simplification

# -

### Karnaugh Map Method (cont.)

- Example
  - Seven-segment display
  - Need to select the right LEDs to display a digit





### Truth table for segment d

| No | $\mathbf{A}$ | В | C | D | Seg. | No | A | В | C | D | Seg.                                          |
|----|--------------|---|---|---|------|----|---|---|---|---|-----------------------------------------------|
| 0  | 0            | 0 | 0 | 0 | 1    | 8  | 1 | 0 | 0 | 0 | 1                                             |
| 1  | 0            | 0 | 0 | 1 | 0    | 9  | 1 | 0 | 0 | 1 | 1                                             |
| 2  | 0            | 0 | 1 | 0 | 1    | 10 | 1 | 0 | 1 | 0 | ?                                             |
| 3  | 0            | 0 | 1 | 1 | 1    | 11 | 1 | 0 | 1 | 1 | ?                                             |
| 4  | 0            | 1 | 0 | 0 | 0    | 12 | 1 | 1 | 0 | 0 | ?                                             |
| 5  | 0            | 1 | 0 | 1 | 1    | 13 | 1 | 1 | 0 | 1 | ?                                             |
| 6  | 0            | 1 | 1 | 0 | 1    | 14 | 1 | 1 | 1 | 0 | ?                                             |
| 7  | 0            | 1 | 1 | 1 | 0    | 15 | 1 | 1 | 1 | 1 | ?                                             |
|    | •            |   |   |   | '    | •  | • |   |   |   | <u>'                                     </u> |



### Don't cares simplify the expression a lot

| AB  | D<br>00 | 01 | 11 | 10 |
|-----|---------|----|----|----|
| 00_ | 1       | 0  | 1  |    |
| 01  | 0       | 1  | 0  | 1  |
| 11  | 0       | 0  | 0  | 0  |
| 10  | 1       | 1  | 0  | 0  |

| AB   | D<br>00 | 01 | 11 | 10 |
|------|---------|----|----|----|
| 00 _ | 1       | 0  | 1  | 1  |
| 01   | 0       |    | 0  | 1  |
| 11   | d       | d  | d  | d  |
| 10   | 1       | 1  | d  | d  |

(a) Simplification with no don't cares

(b) Simplification with don't cares

# 4

### Implementation Using NAND Gates

- Using NAND gates
  - Get an equivalent expression

$$AB + CD = \overline{AB + CD}$$

Using de Morgan's law

$$AB + CD = \overline{AB} \cdot \overline{CD}$$

- Can be generalized
  - Majority function

$$AB + BC + AC = AB \cdot BC \cdot AC$$

Idea: NAND Gates: Sum-of-Products, NOR Gates: Product-of-Sums



### Implementation Using NAND Gates (cont.)

Majority function





### **Introduction to Combinational Circuits**

- Combinational circuits
  - Output depends only on the current inputs
- Combinational circuits provide a higher level of abstraction
  - Help in reducing design complexity
  - Reduce chip count
- We look at some useful combinational circuits



#### Multiplexers

- Multiplexer
  - > 2<sup>n</sup> data inputs
  - n selection inputs
  - a single output
- Selection input determines the input that should be connected to the output

4-data input MUX



| $S_1$ | $S_0$ | O              |
|-------|-------|----------------|
| 0     | 0     | $I_0$          |
| 0     | 1     | $\mathbf{I}_1$ |
| 1     | 0     | $I_2$          |
| 1     | 1     | $I_3$          |



#### 4-data input MUX implementation





#### **MUX** implementations



Majority function

Even-parity function



#### Example chip: 8-to-1 MUX





(b) Logic symbol



#### Efficient implementation: Majority function

Original truth table

| A | В | С | $\overline{F_1}$ |
|---|---|---|------------------|
| 0 | 0 | 0 | 0                |
| 0 | 0 | 1 | 0                |
| 0 | 1 | 0 | 0                |
| 0 | 1 | 1 | 1                |
| 1 | 0 | 0 | 0                |
| 1 | 0 | 1 | 1                |
| 1 | 1 | 0 | 1                |
| 1 | 1 | 1 | 1                |

New truth table

| A | В | $\overline{F_1}$ |
|---|---|------------------|
| 0 | 0 | 0                |
|   |   |                  |
| 0 | 1 | C                |
|   |   |                  |
| 1 | 0 | C                |
|   |   |                  |
| 1 | 1 | 1                |
|   |   |                  |



# Demultiplexers (DeMUX)

- Demultiplexer
  - a single input
  - n selection inputs
  - > 2<sup>n</sup> outputs





# Decoders

Decoder selects one-out-of-N inputs









#### Decoders (cont.)

#### Logic function implementation

| В | C in                       | Sum                                    | C out                                                                                                                   |
|---|----------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 0 | 0                          | 0                                      | 0                                                                                                                       |
| 0 | 1                          | 1                                      | 0                                                                                                                       |
| 1 | 0                          | 1                                      | 0                                                                                                                       |
| 1 | 1                          | 0                                      | 1                                                                                                                       |
| 0 | 0                          | 1                                      | 0                                                                                                                       |
| 0 | 1                          | 0                                      | 1                                                                                                                       |
| 1 | 0                          | 0                                      | 1                                                                                                                       |
| 1 | 1                          | 1                                      | 1                                                                                                                       |
|   | 0<br>0<br>1<br>1<br>0<br>0 | 0 1<br>1 0<br>1 1<br>0 0<br>0 1<br>1 0 | 0     0       0     1       1     0       1     1       0     0       1     0       0     1       0     1       0     0 |



# Comparator

Used to implement comparison operators (= , > , < , ≥ , ≤)</p>





# Comparator (cont.)

A=B:  $O_x = I_x (x=A < B, A=B, \& A > B)$ 

#### 4-bit magnitude comparator chip



# 4

#### Comparator (cont.)

#### Serial construction of an 8-bit comparator



# 1-bit Comparator



|   | X | у | х>у | х=у | x <y< th=""></y<> |
|---|---|---|-----|-----|-------------------|
|   |   |   |     |     |                   |
| • |   |   |     |     |                   |
| • |   |   |     |     |                   |
| • |   |   |     |     |                   |

# 4

## 8-bit comparator





# Adders

- Half-adder
  - Adds two bits
    - Produces a sum and carry
  - Problem: Cannot use it to build larger inputs
- Full-adder
  - Adds three 1-bit values
    - Like half-adder, produces a sum and carry
  - Allows building N-bit adders
    - Simple technique
      - Connect C<sub>out</sub> of one adder to C<sub>in</sub> of the next
    - These are called ripple-carry adders



# Adders (cont.)

| Α  | В | Sum | Cout |
|----|---|-----|------|
| 0  | 0 | 0   | 0    |
| 0  | 1 | 1   | 0    |
| 1  | 0 | 1   | 0    |
| _1 | 1 | 0   | 1    |



(a) Half-adder truth table and implementation

| A | В | $C_{in}$ | Sum | Cout |
|---|---|----------|-----|------|
| 0 | 0 | 0        | 0   | 0    |
| 0 | 0 | 1        | 1   | 0    |
| 0 | 1 | 0        | 1   | 0    |
| 0 | 1 | 1        | 0   | 1    |
| 1 | 0 | 0        | 1   | 0    |
| 1 | 0 | 1        | 0   | 1    |
| 1 | 1 | 0        | 0   | 1    |
| 1 | 1 | 1        | 1   | 1    |



(b) Full-adder truth table and implementation



# Adders (cont.)

#### A 16-bit ripple-carry adder



### Adders (cont.)

- Ripple-carry adders can be slow
  - Delay proportional to number of bits
- Carry lookahead adders
  - Eliminate the delay of ripple-carry adders
  - Carry-ins are generated independently
    - $C_0 = A_0 B_0$
    - $C_1 = A_0 B_0 A_1 + A_0 B_0 B_1 + A_1 B_1$
    - **.** . . .
  - Requires complex circuits
  - Usually, a combination carry lookahead and ripple-carry techniques are used

# Programmable Logic Arrays

- PLAs
  - Implement sum-of-product expressions
    - No need to simplify the logical expressions
  - ➤ Take *N* inputs and produce *M* outputs
    - Each input represents a logical variable
    - Each output represents a logical function output
  - Internally uses
    - An AND array
      - Each AND gate receives 2N inputs
        - N inputs and their complements
    - An OR array



## Programmable Logic Arrays (cont.)

#### A blank PLA with 2 inputs and 2 outputs





## Programmable Logic Arrays (cont.)

#### Implementation examples





# Programmable Logic Arrays (cont.)

#### Simplified notation





### 1-bit Arithmetic and Logic Unit

#### Preliminary ALU design





#### 1-bit Arithmetic and Logic Unit (cont.)

#### Final design





# Arithmetic and Logic Unit (cont.)

#### 16-bit ALU





#### Arithmetic and Logic Unit (cont'd)

#### 4-bit ALU



(a) Connection diagram



(b) Active low operands



(c) Active high operands



#### Introduction to Sequential Circuits

- Output depends on current as well as past inputs
  - Depends on the history
  - Have "memory" property
- Sequential circuit consists of
  - Combinational circuit
  - Feedback circuit
  - Past input is encoded into a set of state variables
    - Uses feedback (to feed the state variables)
      - Simple feedback
      - Uses flip flops



#### Introduction (cont.)

#### Main components of a sequential circuit





# **Clock Signal**



# Clock Signal (cont.)

- Clock serves two distinct purposes
  - Synchronization point
    - Start of a cycle
    - End of a cycle
    - Intermediate point at which the clock signal changes levels
  - Timing information
    - Clock period, ON, and OFF periods
- Propagation delay
  - Time required for the output to react to changes in the inputs



# Clock Signal (cont.)



(a) Circuit diagram



(b) Timing diagram



#### **SR Latches**

- Can remember a bit
- Level-sensitive (not edge-sensitive)

#### A NOR gate implementation of SR latch



(a) Circuit diagram



(b) Logic symbol

| S | R | Q <sub>n+1</sub> |
|---|---|------------------|
| 0 | 0 | Qn               |
| 0 | 1 | 0                |
| 1 | 0 | 1                |
| 1 | 1 | 0                |
|   |   |                  |

(c) Truth table



#### SR Latches (cont.)

- SR latch outputs follow inputs
- In clocked SR latch, outputs respond at specific instances
  - Uses a clock signal



(a) Circuit diagram

(b) Logic symbol



#### **D** Latches

- D Latch
  - > Avoids the SR = 11 state



| (a) | Circuit | diagram |
|-----|---------|---------|
|-----|---------|---------|



(b) Logic symbol

| D | Q <sub>n+1</sub> |
|---|------------------|
| 0 | 0                |
| 1 | 1                |

(c) Truth table



### Positive Edge-Triggered D Flip-Flops

- Edge-sensitive devices
  - Changes occur either at positive or negative edges



(a) Circuit diagram



(b) Logic symbol



#### Notation for Latches & Flip-Flops

Not strictly followed in the literature



#### Example of Shift Register Using D Flip-Flops



(a) Connection diagram





### Memory Design Using D Flip-Flops

Require separate data in and out lines



# JK Flip-Flops

JK flip-flop (master-slave)

| J | K | $Q_{n+1}$                   |
|---|---|-----------------------------|
| 0 | 0 | Qn                          |
| 0 | 1 | 0                           |
| 1 | 0 | 1                           |
| 1 | 1 | $\overline{\mathbf{Q}}_{n}$ |



(c) Timing diagram



### Examples of D & JK Flip-Flops

### Two example chips

### D latches

### D 0 14 CP 2[ 13 D 3 [ 12 CP Vcc 4 11 GND D Q 5 [ 10 CP 6 L 9 D 8 CP (a) 7477

### JK flip-flops





### Example of Shift Register Using JK Flip-Flops

- Shift Registers
  - Can shift data left or right with each clock pulse

### A 4-bit shift register using JK flip-flops



# 4

### **Example of Counter Using JK Flip-Flops**

- Counters
  - Easy to build using JK flip-flops
    - Use the JK = 11 to toggle
  - Binary counters
    - Simple design
      - B bits can count from 0 to 2<sup>B</sup>-1
    - Ripple counter
      - Increased delay as in ripple-carry adders
      - Delay proportional to the number of bits
    - Synchronous counters
      - Output changes more or less simultaneously
      - Additional cost/complexity

### Modulo-8 Binary Ripple Counter Using JK Flip-Flops

(b) Timing diagram



### Synchronous Modulo-8 Counter

- Designed using the following simple rule
  - Change output if the preceding count bits are 1
    - Q1 changes whenever Q0 = 1
    - Q2 changes whenever Q1Q0 = 11



# **Example Counters**



(a) Connection diagram



(c) State diagram of 74161



(b) Logic symbol



(d) State diagram of 74160



- Sequential circuit consists of
  - A combinational circuit that produces output
  - A feedback circuit
    - We use JK flip-flops for the feedback circuit
- Simple counter examples using JK flip-flops
  - Provides alternative counter designs
  - We know the output
    - Need to know the input combination that produces this output
    - Use an excitation table
      - Built from the truth table

(a) JK flip-flop truth table

| J | K | $Q_n$ | $Q_{n+1}$ |
|---|---|-------|-----------|
| 0 | 0 | 0     | 0         |
| 0 | 0 | 1     | 1         |
| 0 | 1 | 0     | 0         |
| 0 | 1 | 1     | 0         |
| 1 | 0 | 0     | 1         |
| 1 | 0 | 1     | 1         |
| 1 | 1 | 0     | 1         |
| 1 | 1 | 1     | 0         |

(b) Excitation table for JK flip-flops

| $Q_n$ | $Q_{n+1}$ | J | K |
|-------|-----------|---|---|
| 0     | 0         | 0 | d |
| 0     | 1         | 1 | d |
| 1     | 0         | d | 1 |
| 1     | 1         | d | 0 |

- Build a design table that consists of
  - Current state output
  - Next state output
  - JK inputs for each flip-flop
- Binary counter example
  - 3-bit binary counter
  - 3 JK flip-flops are needed
  - Current state and next state outputs are 3 bits each
  - 3 pairs of JK inputs

### Design table for the binary counter example

| Pre | Present state |   | Ne | Next state |   | JK flip-flop inputs |                  |          |         |            |            |
|-----|---------------|---|----|------------|---|---------------------|------------------|----------|---------|------------|------------|
| A   | В             | С | A  | В          | С | $ m J_A$            | $K_{\mathbf{A}}$ | $ m J_B$ | $K_{B}$ | $ m J_{C}$ | $ m K_{C}$ |
| 0   | 0             | 0 | 0  | 0          | 1 | 0                   | d                | 0        | d       | 1          | d          |
| 0   | 0             | 1 | 0  | 1          | 0 | 0                   | d                | 1        | d       | d          | 1          |
| 0   | 1             | 0 | 0  | 1          | 1 | 0                   | d                | d        | 0       | 1          | d          |
| 0   | 1             | 1 | 1  | 0          | 0 | 1                   | d                | d        | 1       | d          | 1          |
| 1   | 0             | 0 | 1  | 0          | 1 | d                   | 0                | 0        | d       | 1          | d          |
| 1   | 0             | 1 | 1  | 1          | 0 | d                   | 0                | 1        | d       | d          | 1          |
| 1   | 1             | 0 | 1  | 1          | 1 | d                   | 0                | d        | 0       | 1          | d          |
| 1   | 1             | 1 | 0  | 0          | 0 | d                   | 1                | d        | 1       | d          | 1          |

Use Kmaps to simplify expression s for JK inputs

| AB | C 00 | 01 | 11 | 10 |
|----|------|----|----|----|
| o  | О    | О  | 1  | О  |
| 1  | d    | d  | d  | d  |

$$J_A = B C$$

| AB | C 00 | 01 | 11 | 10 |
|----|------|----|----|----|
| 0  | О    | 1  | d  | d  |
| 1  | 0    | 1  | d  | d  |

$$J_B = C$$

| AB | C 00 | 01 | 11 | 10 |
|----|------|----|----|----|
| o  | 1    | d  | d  | 1  |
| 1  | 1    | d  | d  | 1  |

$$\boldsymbol{J_C}=1$$

| AB | C 00 | 01 | 11 | 10 |
|----|------|----|----|----|
| 0  | d    | d  | d  | d  |
| 1  | 0    | 0  | 1  | 0  |

$$K_A = B C$$

| AB | C<br>00 | 01 | 11 | 10 |
|----|---------|----|----|----|
| 0  | đ       | d  | 1  | О  |
| 1  | d       | d  | 1  | 0  |

$$K_B = C$$



$$K_C = 1$$



- Final circuit for the binary counter example
  - Compare this design with the synchronous counter design



- A more general counter design
  - Does not step in sequence

$$0\rightarrow3\rightarrow5\rightarrow7\rightarrow6\rightarrow0$$

- Same design process
- One significant change
  - Missing states
    - 1, 2, and 4
    - Use don't cares for these states





Design table for the general counter example

| Pre | esent | state | Nε | ext st | ate |                 | JK      | flip-f   | lop inp          | outs       |                  |
|-----|-------|-------|----|--------|-----|-----------------|---------|----------|------------------|------------|------------------|
| A   | В     | C     | A  | В      | C   | $ ight]_{ m A}$ | $K_{A}$ | $ m J_B$ | $K_{\mathrm{B}}$ | $ m J_{C}$ | $K_{\mathrm{C}}$ |
| 0   | 0     | 0     | 0  | 1      | 1   | 0               | d       | 1        | d                | 1          | d                |
| 0   | 0     | 1     | _  | _      | _   | d               | d       | d        | d                | d          | d                |
| 0   | 1     | 0     | _  | _      | _   | d               | d       | d        | d                | d          | d                |
| 0   | 1     | 1     | 1  | 0      | 1   | 1               | d       | d        | 1                | d          | 0                |
| 1   | 0     | 0     | _  | _      | _   | d               | d       | d        | d                | d          | d                |
| 1   | 0     | 1     | 1  | 1      | 1   | d               | 0       | 1        | d                | d          | 0                |
| 1   | 1     | 0     | 0  | 0      | 0   | d               | 1       | d        | 1                | 0          | d                |
| 1   | 1     | 1     | 1  | 1      | 0   | d               | 0       | d        | 0                | d          | 1                |



K-maps to simplify JK input expressions

| AB | C 00 | 01 | 11 | 10 |
|----|------|----|----|----|
| 0  | О    | d  | 1  | d  |
| 1  | d    | d  | d  | d  |

$$J_A = B$$

| AB | C | 00 | 01 | 11 | 10 |
|----|---|----|----|----|----|
| 0  |   | 1  | d  | d  | d  |
| 1  |   | d  | 1  | d  | d  |

$$J_B = 1$$

| AB | C<br>00 | 01 | 11 | 10 |
|----|---------|----|----|----|
| 0  | 1       | d  | d  | d  |
| 1  | d       | d  | d  | 0  |

$$J_C = \overline{A}$$

$$K_A = \overline{C}$$

| AB | C<br>00 | 01 | 11 | 10 |   |
|----|---------|----|----|----|---|
| o  | d       | d  | 1  | d  | _ |
| 1_ | d       | d  | 0  | 1  | _ |

$$\mathbf{K_B} = \overline{\mathbf{A}} + \overline{\mathbf{C}}$$

| AB | C 00 | 01 | 11 | 10 |
|----|------|----|----|----|
| o  | d    | d  | 0  | d  |
| 1  | d    | 0  | 1  | d  |

$$K_C = A B$$

### Final circuit for the general counter example



### General Design Process

- FSM can be used to express the behavior of a sequential circuit
  - Counters are a special case
  - State transitions are indicated by arrows with labels X/Y
    - X: inputs that cause system state change
    - Y: output generated while moving to the next state
- Look at two examples
  - Even-parity checker
  - Pattern recognition



- Even-parity checker
  - > FSM needs to remember one of two facts
    - Number of 1's is odd or even
    - Need only two states
      - 0 input does not change the state
      - 1 input changes state
  - Simple example
    - Complete the design as an exercise



- Pattern recognition example
  - Outputs 1 whenever the input bit sequence has exactly two 0s in the last three input bits
  - FSM requires thee special states to during the initial phase
    - S0 S2
  - After that we need four states
    - S3: last two bits are 11
    - S4: last two bits are 01
    - S5: last two bits are 10
    - S6: last two bits are 00



- Steps in the design process
  - Derive FSM
  - 2. State assignment
    - Assign flip-flop states to the FSM states
      - Necessary to get an efficient design
  - 3. Design table derivation
    - Derive a design table corresponding to the assignment in the last step
  - 4. Logical expression derivation
    - Use K-maps as in our previous examples
  - 5. Implementation

- State assignment
  - Three heuristics
    - Assign adjacent states for
      - states that have the same next state
      - states that are the next states of the same state
      - States that have the same output for a given input
  - For our example
    - Heuristic 1 groupings: (S1, S3, S5)<sup>2</sup> (S2, S4, S6)<sup>2</sup>
    - Heuristic 2 groupings: (S1, S2) (S3, S4)<sup>3</sup> (S5, S6)<sup>3</sup>
    - Heuristic 1 groupings: (S4, S5)

State table for the pattern recognition example

|               | Next       | state      | Out   | tput  |
|---------------|------------|------------|-------|-------|
| Present state | X = 0      | X = 1      | X = 0 | X = 1 |
| SO            | S2         | <b>S</b> 1 | 0     | 0     |
| <b>S</b> 1    | S4         | <b>S</b> 3 | 0     | 0     |
| <b>S</b> 2    | <b>S</b> 6 | S5         | 0     | 0     |
| <b>S</b> 3    | S4         | <b>S</b> 3 | 0     | 0     |
| <b>S</b> 4    | <b>S</b> 6 | S5         | 1     | 0     |
| S5            | S4         | <b>S</b> 3 | 1     | 0     |
| S6            | <b>S</b> 6 | S5         | 0     | 1     |

### K-map for state assignment

| AB | C 00 | 01         | 11         | 10         |
|----|------|------------|------------|------------|
| 0  | S0   | <b>S</b> 3 | S5         | <b>S</b> 1 |
| 1  |      | S4         | <b>S</b> 6 | S2         |

### State assignment

|   | A     | В                                      | C                                                  |
|---|-------|----------------------------------------|----------------------------------------------------|
| = | 0     | 0                                      | 0                                                  |
| = | 0     | 1                                      | 0                                                  |
| = | 1     | 1                                      | 0                                                  |
| = | 0     | 0                                      | 1                                                  |
| = | 1     | 0                                      | 1                                                  |
| = | 0     | 1                                      | 1                                                  |
| = | 1     | 1                                      | 1                                                  |
|   | = = = | = 0<br>= 0<br>= 1<br>= 0<br>= 1<br>= 0 | = 0 0<br>= 0 1<br>= 1 1<br>= 0 0<br>= 1 0<br>= 0 1 |

Design table

|   | Pre<br>stat | sent |   | Present<br>state |   | Next |   | Present state |                  | JK      | flip-fl    | lop inp | uts        |                  |
|---|-------------|------|---|------------------|---|------|---|---------------|------------------|---------|------------|---------|------------|------------------|
|   | A           | В    | C | X                | A | В    | C | Y             | $J_{\mathbf{A}}$ | $K_{A}$ | $ m J_{B}$ | $K_{B}$ | $ m J_{C}$ | $K_{\mathbf{C}}$ |
| - | О           | О    | О | 0                | 1 | 1    | 0 | 0             | 1                | d       | 1          | d       | О          | d                |
|   | O           | 0    | O | 1                | 0 | 1    | O | 0             | О                | d       | 1          | d       | 0          | d                |
|   | O           | O    | 1 | О                | 1 | 0    | 1 | О             | 1                | d       | О          | d       | d          | O                |
|   | O           | 0    | 1 | 1                | 0 | 0    | 1 | 0             | О                | d       | О          | d       | d          | O                |
|   | 0           | 1    | O | 0                | 1 | 0    | 1 | 0             | 1                | d       | d          | 1       | 1          | d                |
|   | O           | 1    | O | 1                | 0 | 0    | 1 | 0             | О                | d       | d          | 1       | 1          | d                |
|   | O           | 1    | 1 | 0                | 1 | 0    | 1 | 1             | 1                | d       | d          | 1       | d          | O                |
|   | O           | 1    | 1 | 1                | 0 | O    | 1 | 0             | О                | d       | d          | 1       | d          | O                |
|   | 1           | 0    | 1 | 0                | 1 | 1    | 1 | 1             | d                | O       | 1          | d       | d          | O                |
|   | 1           | 0    | 1 | 1                | 0 | 1    | 1 | 0             | d                | 1       | 1          | d       | d          | O                |
|   | 1           | 1    | O | 0                | 1 | 1    | 1 | 0             | d                | O       | d          | O       | 1          | d                |
|   | 1           | 1    | O | 1                | 0 | 1    | 1 | 0             | d                | 1       | d          | O       | 1          | d                |
|   | 1           | 1    | 1 | О                | 1 | 1    | 1 | 0             | d                | O       | d          | O       | d          | O                |
|   | 1           | 1    | 1 | 1                | O | 1    | 1 | 1             | d                | 1       | d          | O       | d          | О                |



|     | $\mathbf{J_A} = \mathbf{X}$ |    |    |    |  |  |  |
|-----|-----------------------------|----|----|----|--|--|--|
| ABC | X 00                        | 01 | 11 | 10 |  |  |  |
| 00  | 1                           | 1  | О  | o  |  |  |  |
| 01  | d                           | d  | d  | d  |  |  |  |
| 11  | đ                           | d  | đ  | d  |  |  |  |
| 10  | d                           | d  | 1  | 1  |  |  |  |



| AB | X 00 | 01 | 11 | 10 |
|----|------|----|----|----|
| 00 | d    | d  | d  | d  |
| 01 | d    | d  | d  | d  |
| 11 | О    | 1  | 1  | О  |
| 10 | d    | d  | 1  | 0  |
|    |      | •  | •  |    |



|    | $\mathbf{K_B} = \overline{\mathbf{A}}$ |    |    |    |  |  |  |
|----|----------------------------------------|----|----|----|--|--|--|
| AB | X 00                                   | 01 | 11 | 10 |  |  |  |
| 00 | d                                      | d  | o  | О  |  |  |  |
| 01 | đ                                      | đ  | 0  | o  |  |  |  |
| 11 | d                                      | d  | 0  | О  |  |  |  |
| 10 | d                                      | d  | 0  | o  |  |  |  |
|    |                                        |    |    |    |  |  |  |

 $K_C = 0$ 

### K-maps for JK inputs

### K-map for the output



$$Y = \overline{A} B C \overline{X} + A B C X + A \overline{B} \overline{X}$$



### Final implementation

(a)

