Характер группоида

А. А. Владимиров

27.04.2022

3aдача. Дан функтор $\varkappa=(\varkappa_1,\varkappa_2): \mathbf{Cat}(\Gamma) \to \mathbf{Vec}$. Найти $\varkappa_2: (f:\Gamma_1 \to \Gamma_2) \mapsto (A_f:\varkappa_1(\Gamma_1) \to \varkappa_1(\Gamma_2))$, если известно, что $\varkappa_1:\Gamma \mapsto V$, где V – пространство характеров, т.е. $V=\{\chi: \operatorname{Hom}\Gamma \to \mathbb{C}: \chi(\psi \circ \varphi)=\chi(\psi)+\chi(\varphi)\}$.

Таким образом задача сводится к нахождению линейного оператора A_f на коммутативной диаграмме

$$\Gamma_{1} \xrightarrow{\varkappa} V_{1}$$

$$\downarrow_{f} \qquad \downarrow_{A_{f}}$$

$$\Gamma_{2} \xrightarrow{\varkappa} V_{2}$$

$$(1)$$

Решение. Для начала отметим следующие три утверждения: если в группоиде Г известны

- (a) $f: a \to b$, hom(a, a), то посредством изоморфизма $\psi: hom(a, a) \to hom(b, b)$, а именно $\psi: h \mapsto fhf^{-1}$ однозначно определено hom(b, b);
- (b) $f: a \to b$, hom(a,a), то однозначно определено hom(a,b), так как для любого $g \in hom(a,b)$ существует $h \in hom(a,a)$, такое что fh = g, а именно $g = f\underbrace{f^{-1}g} = fh;$
- (c) $f: a \to b, g: a \to c$, то можно задать некоторое $h: b \to c$, а именно $h = gf^{-1}$.

Таким образом, если в связном группоиде Γ известны группа петель $\hom(a,a)$ некоторой вершины a и по одной стрелке $f:a\to b,\ g:a\to c,...$ из a в каждую из остальных вершин b,c,... то посредством утверджений (a)–(c) однозначно восстанавливается весь группоид Γ , что иллюстрирует диаграмма (??)

$$b@-->[ddrr]^h=g\circ f^{-1}a@(l,d)[]_{\hom(a,a)}[uu]^f[rr]_gc \eqno(2)$$

Рассмотрим теперь некоторый характер $\chi: \operatorname{Hom} \Gamma \to \mathbb{C}$. Благодаря свойству $\chi(\psi \circ \varphi) = \chi(\psi) + \chi(\varphi)$ все вышесказанное в определенном смысле переносится и на характер χ . Так, если χ задано на

- (a') $f: a \to b$, hom(a, a), то изоморфизм ψ "один в один" переносит харакатер на hom(b, b): если $\chi(h) = \alpha$, то $\chi(\psi(h)) = \chi(fhf^{-1}) = \chi(f) + \chi(h) \chi(f) = \chi(h)$, и характер однозначно определен на hom(b, b).
- (b') $f: a \to b$, hom(a, a), то харктер однозначно продолжается на hom(a, b), так как для любого $g \in hom(a, b)$ существует $h \in hom(a, a)$, такое что fh = g, и следовательно $\chi(g) = \chi(f) + \chi(h)$.
- (c') $f: a \to b, g: a \to c$, то автоматически можно задать характер на некотором $h: b \to c$, а именно $h = gf^{-1}$, и $\chi(h) = \chi(g) \chi(f)$.

Таким образом, если в связном группоиде Γ определить характер на группе петель $\hom(a,a)$ некоторой вершины a и на стрелках $f:a\to b,\ g:a\to c,...$ из a (по одной в каждую из остальных вершин b,c,...), то характер однозначно продолжается на все $\mathop{\rm Hom}\nolimits \Gamma$. То есть, характер определяется своим действием на группе петель произвольной вершины a^1 и вектором значений $s\in\mathbb{C}^{n-1}$ на стрелках из a (здесь $n=|\mathop{\rm Obj}\nolimits(\Gamma)|$).

$$b@-->[ddrr]\chi(h)=\chi(g)-\chi(f)_{a@(l,d)[]\chi|_{\text{hom}(a,a)}}[uu]\chi(f)_{[rr]\chi(g)}c \qquad \eqno(??')$$

Проясним как определяется характер на фундментальной группе. Для этого остановимся на задании характера на некоторой группе G.

Как известно 2 разрешимая группа G раскладывается в прямую сумму

$$G \simeq G/G' \oplus \ldots \oplus G^{(n-1)}/G^{(n)},$$
 (3)

где $G^{(k+1)} = (G^{(k)})'$ — коммутант группы $G^{(k)}$.

Для конечно порожденной абелевой группы A справедливо разложение 3

$$A \simeq \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n} \oplus \operatorname{Tor} A = \mathbb{Z}^{n} \oplus \operatorname{Tor} A,$$
 (4)

где $\operatorname{Tor} A \doteqdot \{a \in A : ma = 0 \text{ для некоторого } m \in \mathbb{Z}, m \neq 0\} - nodгруппа кручения, причем$

$$\operatorname{Tor} A \simeq \mathbb{Z}_{p_1} \oplus \ldots \oplus \mathbb{Z}_{p_s}, \tag{5}$$

где \mathbb{Z}_p — циклическая группа порядка p.

Определение. Назовем группу G конечно разрешимой, если она разрешима и каждое слагаемое разложения (??) суть есть конечно порожденная абелева группа.

¹или на фундаментальной группе, что суть одно и то же,

²см. [?] гл.10 §2

³см.[?] гл.9 §1

Таким образом, из соотношений (??) – (??) следует, что если G конечно разрешимая группа, то

$$G \simeq A_0 \oplus \ldots \oplus A_{n-1} \simeq$$

$$\simeq \mathbb{Z}^m \oplus \operatorname{Tor} A_0 \oplus \ldots \oplus \operatorname{Tor} A_{n-1} \simeq$$

$$\simeq \mathbb{Z}^m \oplus \mathbb{Z}_{p_1} \oplus \ldots \oplus \mathbb{Z}_{p_k},$$

т.е. разложима в сумму конечных и бесконечных циклических групп, а значит

$$G = \{x_1 e_1 + \ldots + x_m e_m + x_{m+1} f_1 + \ldots + x_{m+k} f_k \mid x_i \in \mathbb{Z}\},\tag{6}$$

где $\{e_i\}_{i=1}^m$ – базис свободной группы \mathbb{Z}^m , $\{f_i\}_{i=1}^k$ – порождающие соответствующих циклических групп \mathbb{Z}_{p_i} . Попутно введем обозначение $|\dim G| = m$.

Пусть теперь задан характер $\chi:G\to\mathbb{C},$ тогда для любого $g\in G,$ с учетом (\ref{G}) верно

$$\chi(g) = \chi(x_1 e_1 + \ldots + x_m e_m + x_{m+1} f_1 + \ldots + x_{m+k} f_k) =$$

$$= x_1 \chi(e_1) + \ldots + x_m \chi(e_m) + x_{m+1} \chi(f_1) + \ldots + x_{m+k} \chi(f_k),$$

но, так как порядок каждого элемента f_i конечен, то $\chi(f_i)=0$ для всех i=1,...,k, и

$$\chi(g) = x_1 \chi(e_1) + \ldots + x_m \chi(e_m). \tag{7}$$

Так, характер конечно разрешимой группы G определяется $m = \lfloor \dim G \rfloor$ числами — значениями характера на базисе свободной подгруппы.

Вернемся к характеру группоида Γ . Как было показано ранее, он определен $(\mathrm{Obj}\,\Gamma)-1$ числами и своим действием на фундаментальной группе группоида Fund Γ . Теперь, с учетом $(\ref{thm:equal})$, ясно: характер χ : Нот $\Gamma \to \mathbb{C}$ связного группоида Γ , фундаментальная группа которого конечно разрешима, определяется своими значениями на $n-1=|\mathrm{Obj}\,\Gamma|-1$ стрелках, исходящих из некоторой вершины во все прочие и $m=\lfloor\dim\mathrm{Fund}\,\Gamma\rfloor$ значениями на базисе свободной подгруппы фундаментальной группы. То есть, вектором $h(\chi)\in\mathbb{C}^{m+n-1}$.

Теперь, после того как мы можем взаимооднозначно сопоставить любому характеру вектор пространства соответствующей размерности, приходим к очевидному выводу:

$$V \doteqdot \{\chi : \operatorname{Hom} \Gamma \to \mathbb{C}\} \simeq \mathbb{C}^{\lfloor \dim \operatorname{Fund} \Gamma \rfloor + |\operatorname{Obj} \Gamma| - 1}, \tag{8}$$

где Γ — группоид, такой что $|\operatorname{Obj}\Gamma| < \infty$ и Fund Γ конечно разрешима.

Наконец, возвращаясь к коммутативной диаграмме (??), используя полученный результат, мы можем дополнить ее следующим образом

$$\Gamma_{1} \xrightarrow{\varkappa} V_{1} \simeq \mathbb{C}^{m_{1}+n_{1}-1}$$

$$\downarrow f \qquad \qquad \downarrow A_{f}$$

$$\Gamma_{2} \xrightarrow{\varkappa} V_{2} \simeq \mathbb{C}^{m_{2}+n_{2}-1}$$

$$(9)$$

где $n = |\operatorname{Obj} \Gamma|, m = |\operatorname{dim} \operatorname{Fund} \Gamma|$, а функтор \varkappa рассматривается лишь на подкатегории $\operatorname{\mathbf{Cat}}(\Gamma)$ связных группоидов с конечным числом объектов и конечно разрешимой фундаментальной группой.

Поскольку все конечномерные векторные пространства изоморфны, можно считать, что функтор \varkappa данному $f: \Gamma_1 \to \Gamma_2$ ставит в соответствие оператор $\varkappa(f) = A_f$, который, не ограничивая общности, суть есть

- проектор пространства размерности $m_1 + n_1 1$ на пространство размерности $m_2 + n_2 1$, при $m_1 + n_1 > m_2 + n_2$;
- опрератор вложения пространства размерности m_1+n_1-1 в пространство $m_2+n_2-1,$ при $m_1+n_1< m_2+n_2;$
- изоморфизм, при $m_1 + n_1 = m_2 + n_2$.

Список литературы

- [1] Маклейн С. «Категории для работающего математика». Изд-во ФизМатЛит, Москва, 2004.
- [2] Винберг Э. Б. «Курс алгебры». Изд-во МЦНМО, Москва, 2014.