15-8-2014

Primer Taller Algebra Abstracta. Mate-2101 II semestre 2014.

Solucionar los siguientes problemas. Cada uno vale 5 puntos excepto el n. 15 que vale 10 puntos. Justificar las respuestas. Las soluciones que no sean presentada de manera ordenada y clara no van a ser calificadas. De los ejercicios en la lista, se le van a calificar solamente 10, de los cuales 5 los eligen ustedes y 5 los elige el calificador de forma casual (entre los escogidos de forma casual no va a entrar el n. 15).

1.

Averiguar que el conjunto $G = \{(a, b) \in \mathbb{R}^2 | a \neq 0\}$, con la operación binaria definida por $(a, b) \cdot (c, d) = (ac, ad + b)$ es un grupo con elemento identidad (1, 0). Es G un grupo abeliano?

2.

Demostrar que el siguiente conjunto de 8 matrices complejas con la operación de multiplicación entre matrices es un grupo y calcular su tabla de multiplicación:

$$Q_8 = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}; \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \pm \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \right\}.$$

El grupo se le llama el grupo de los cuaterniones y sus elementos se denotan usualmente por $\{\pm 1; \pm i; \pm j; \pm k\}$, en el orden de arriba.

3.

Demostrar que el subconjunto $H = \{ \sigma \in \Sigma_n | \sigma(1) = 1 \}$, del grupo simétrico en n letras Σ_n , es un subgrupo.

4.

En el grupo simétrico Σ_8 , consideramos las permutaciones:

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 1 & 2 & 4 & 8 & 6 & 3 & 7 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 6 & 3 & 5 & 8 & 4 & 7 \end{pmatrix},$$
$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix}.$$

Escribir estas permutaciones como un producto de ciclos separados y como producto de transposiciones. Determinar sus signos. Calcular los productos $\alpha\beta\gamma$ y $\beta\alpha\gamma$ y sus ordenes.

5.

- I.) Sea G un grupo, $a \in G$ y $m, n \in \mathbb{Z}$ relativamente primos. Si $a^m = 1$, demostrar que existe $b \in G$ tal que $a = b^n$ (sugerencia: existen enteros s y t tales que 1 = sm + tn).
- II.) Sea G un grupo finito y $m \in \mathbb{Z}$ tal que (|G|, m) = 1. Demostrar que la ecuación $x^m = a$ tiene una unica solución en G.

6.

Demostrar que $M = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in \mathbb{R} \right\}$ con la operación de multiplicación de matrices es un grupo isomorfo a \mathbb{R} con la operación de suma.

7.

- I.) Demostrar que, si ϕ : $G \to G'$ es un isomorfismo de grupos, entonces, por cada elemento $g \in G$ de orden finito, el orden de g es igual al orden de $\phi(g)$.
- II.) Determinar todos los isomorfismos entre dos grupos cíclicos G y G' de orden n.

8.

Sea a un elemento fijado de un grupo G y se defina la aplicación $\gamma_a \colon G \to G$ por $\gamma_a(x) = axa^{-1}$ (conjugación por a).

- I.) Demostrar que γ_a es un isomorfismo.
- II.) Si $a, b \in G$, demostrar que $\gamma_a \circ \gamma_b = \gamma_{ab}$.

9.

- I.) Demostrar que, en un grupo G, la relación $x \sim y$, si existe $g \in G$ tal que $x = gyg^{-1}$ (en este caso decimos que x es un conjugado de y), es una relación de equivalencia.
- II.) Hallar las clases de equivalencia por esta relación (se le llama clases de conjugación) en el grupo Q_8 introducido en el ejercicio 2 y en el grupo S_3 .

10.

- I.) Si $a, b \in G$ conmutan y $a^m = 1 = b^n$, entonces $(ab)^k = 1$, donde k es el minimo común multiplo de m, n (pero el orden de ab puede ser mas pequeño, por ejemplo, tomen $b = a^{-1}$). concludir que si a y b conmutan y tienen orden finito, también ab tiene orden finito.
- II.) Sea $G = GL_2(\mathbb{Q})$ y sean $A, B \in G$ dadas por

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{y} \quad B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}.$$

Demostrar que $A^4 = I = B^3$, pero AB tiene orden infinito.

11.

Por A, B subconjuntos no vacío de un grupo G definimos los subconjuntos: $AB := \{ab | a \in A, b \in B\}$ y $A^{-1} := \{a^{-1} | a \in A\}$. Demostrar que por un subconjunto no vacio H de G es cierto:

- I.) $H < G \iff HH^{-1} \subseteq H$.
- II.) $H < G \iff \forall a \in H : Ha = H$.

12.

Sea G un grupo y H, K dos subgrupos de G.

- I.) Demostrar que $H \cup K$ es un subgrupo de G si y solo si H < K o K < H.
- II.) Demostrar que un subgrupo no puede ser la reunión de dos subgrupos distintos.

13.

Demostrar que los únicos subgrupos de \mathbb{Z} tienen la forma $n\mathbb{Z}$, donde n es un entero.

14.

Si n > 2, entonces el grupo alterno A_n está generado por todos los 3-cíclos. (Sugerencia: es cierto (ij)(jk) = (ijk) y (ij)(kl) = (ijk)(jkl).)

15. *

Demostrar que los cíclos de longitud n generan a S_n , si n es par, y A_n si n es impar.

16.

Sea $Q_8 = \{\pm 1; \pm i; \pm j; \pm k\}$ el grupo de los cuaterniones introducido en el ejercicio 2. Encontrar las clases laterales derechas y izquierdas del subgrupo $H = \{\pm 1\}$. Comparar las dos particiones de Q_8 obtenidas.

17.

Demostrar que un subgrupo H de G de indice 2 es normal.

18.

Sea $H \triangleleft G$, sea $\pi \colon G \to G/H$ la aplicación natural y sea $X \subset G$ un subconjunto tal que $\pi(X)$ genera G/H. Demostrar que $G = \langle H \cup X \rangle$.

19.

- I.) Demostrar que el 4-grupo $V = \{1; (12)(34); (13)(24); (14)(23)\}$ es un subgrupo normal de S_4 .
- II.) Sea $K = \langle (12)(34) \rangle$, demostrar que $K \triangleleft V$ y pero K no es un subgrupo normal de S_4 . Concluir que la propiedad de ser un subgrupo normal no es transitiva contrariamente a la de ser un subgrupo.

20.

- I.) Sean $H, K \leq G$ subgrupos finitos con (|H|, |K|) = 1, entonces $H \cap K = \{1\}$.
- II.) Sea G un grupo finito y sea H un subgrupo normal tal que ([G:H], |H|) = 1. Demostrar que H es el unico subgrupo de orden |H| en G. (Sugerencia: mirar a la imagen de otro subgrupo de orden |H| en el grupo cociente G/H.)