Equations Différentielles I

STEP, MINES ParisTech

9 décembre 2020 (#a46c5a3)

Question 1	Les solutions maximales de $\dot{x} = f(x)$ avec $f: \mathbb{R}^n \to \mathbb{R}^n$ continue
	t pour toute condition initiale $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^n$. finies sur \mathbb{R} .
□ sont so	it définies sur \mathbb{R} , soit divergent en temps fini.
$egin{aligned} \mathbf{Question} \ 2 \ \mathbb{R} imes \mathbb{R} \end{aligned}$	L'équation différentielle $\dot{x}=tx^2+t$ de condition initiale $(t_0,x_0)\in$
\square admet	une unique solution. une unique solution maximale définie sur \mathbb{R} . une unique solution maximale définie sur un intervalle ouvert borné
	Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ continue. Dire que les solutions de $\dot{x} = f(x)$ ûment par rapport à leur condition initiale sur leur intervalle de
□ vrai. □ vrai si □ aucun o	f est continûment différentiable par rapport à x . des deux.
Question 4 parce que	Le comportement d'un système chaotique est difficile à prédire
□ ses solu □ il est in tiale pe	et plusieurs solutions pour certaines conditions initiales. tions ne varient pas continûment par rapport à la condition initiale. mpossible d'assurer une précision suffisante sur la condition inipur obtenir une erreur raisonnable au delà d'un certain temps ristique.
Question 5	On peut dire que le système $\dot{x} = -ax + bx^2$ avec $a, b > 0$,
\square admet	un point d'équilibre instable.

□ admet un point d'équilibre globalement asymptotiquement stable.
Question 6
Le système
$\dot{x}_1 = x_1 - x_2$
$\dot{x}_2 = 4x_1 - 3x_2$
\square admet plusieurs points d'équilibre.
\Box admet 0 comme point d'équilibre localement asymptotiquement stable.
\square admet 0 comme point d'équilibre globalement asymptotiquement stable
\square a ses solutions de la forme $x(t) = (e^{-t}c_1, e^{-t}c_2)$, avec c_1, c_2 constantes.