Machine Learning

Introduction

Prof. Chang-Chieh Cheng
Information Technology Service Center
National Chiao Tung University

What is AI?

- Al, artificial intelligence, is an area of computer science that emphasizes the creation of intelligent machines that work and react like humans.
 - For example, an AI machine is designed for
 - Speech recognition
 - Learning
 - Planning
 - Problem solving
- Two primary subareas of Al
 - Machine learning
 - Artificial neural networks

Artificial Intelligence Fundamentals

• Three primary fundamentals:

What is Machine Learning?

 A computer program can learn something from experiences, observations, or historic data instances to predict an event, make a decision, or improve a behavior.

Learning model

• A learning algorithm, a computer program

Prediction Model

A trained learning model

Training data and Test Data

- experiences, observations, or historic data instances
- Training data
 - It is used to train a learning model

Test data

 It is used to verify the accuracy and performance of a learning model

Data Mining vs. Machine Learning

Data Mining

- A cross-disciplinary field that focuses on discovering properties of data sets.
- Example:
 - Costco analyzed their point-of-sale data with data mining techniques they would be able to determine sales trends, develop marketing campaigns, and customer loyalty.

Machine Learning

- Designing algorithms that can learn and make predictions from the data.
- Example:
 - Costco analyzed their point-of-sale data with a machine learning model to predict the sales of next season, new product, and new location.

A Simple Machine Learning Model

Learning Types

- Supervised learning
 - Learning from labeled training data
 - The targets of training data <u>are known</u>
- Unsupervised learning
 - Learning from unlabeled training data
 - The targets of training data are unknown
- Reinforcement learning
 - How a machine ought to take actions in an environment so as to maximize some notion of cumulative reward.
 - Alpha GO not bac decision but not garentee that you can win the game

Machine Learning Models

- Decision tree
- K-nearest neighbors KD tree Linear regression
- Logistic classifier
- SVM, support vector machine
- Naive Bayes classifier

Applications of Machine Learning

- Human activities classification
 - 6 G-sensor (MPU6050)
 - 3-axis accelerometer and gyroscope
 - 32 features including 3-axis linear accelerations and 3-axis angular velocities.
 - Using SVM to classify 8 activities

• standing, sitting, lying, walking, running, going upstairs, drinking

water, and dumbbelling.

 Estimating the importance of each G-sensor to reduce the number of G-sensors.

- Two sensors directly relate the movement of whole foot.
 - 1. Ankle
 - 2. Thigh

Applications of Machine Learning

- Handwritten signature verification
 - Using a single G-sensor to gather a period of pen movement signal.
 - Verifying a signature by the SVM classifier.
 - Accuracy:

• True positive: 95%

True negative: 92%

Application of Neural Network

- Lung nodule detection from low-dose CT
 - Ali, Issa et al. "Lung Nodule Detection via Deep Reinforcement Learning." Frontiers in Oncology 8 (2018): 108. PMC. Web. 23 Aug. 2018.

Reference Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow - Concepts, Tools, and Techniques to Build Intelligent Systems
 - Aurélien Géron
 - O'Reilly Media
 - 2017

Reference Books

- Fundamentals of Machine Learning for Predictive Data Analytics - Algorithms, Worked Examples, and Case Studies
 - John D. Kelleher, Brian Mac Namee, and Aoife D'Arcy
 - MIT Press
 - 2015

Reference Books

- Deep Learning
 - Ian Goodfellow, Yoshua Bengio, and Aaron Courville
 - MIT Press
 - 2016

Machine Learning with Python

scikit-learn

- A python library for data mining and data analysis
- Built on NumPy, SciPy, and matplotlib

TensorFlow

- An open-source library for artificial intelligence applications including mathematics, machine learning, and artificial neural network.
- Developed by Google Brain Team
- API: Python (the most complete and the easiest to use), C++, JAVA, and Go.
- It supports GPU (CUDA)

Online Resource

Kaggle

- https://www.kaggle.com/
- An open platform for machine learning
- Open datasets
- Open software and source code
- Google Cloud team

Popular Datasets for Research

MNIST

- A simple computer vision dataset.
- It consists of images of handwritten digits
- Each image has 28 x 28 = 784 pixels
- Each pixel has a single value in [0, 1]
- Each image has a labels. For example, the labels for the above images are 5, 0, 4, and 1.

Popular Datasets for Research

• IRIS

- A data set that consists of 50 samples from each of three species of Iris (setosa, versicolor and virginica).
- Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters.
- It introduced by the British statistician and biologist Ronald Fisher in 1936.

versicolor

virginica

setosa

Training and validation

- Data
 - Training dataset
 - Test dataset (validation dataset)

Validation

• K-ford cross validation 容度意思

Black rectangles indicate test data, and white spaces indicate training data.

Validation

• Leave-one-out cross validation

Validation

- €0 bootstrap process
 - **bootstrapping**: a self-starting process
 - k iterations
 - Each iteration randomly select *m* instances as training set

Black rectangles indicate test data, and white spaces indicate training data.

• Basic evaluation

$$misclassification\ rate = \frac{number\ incorrect\ predictions}{total\ predictions}$$

- Four possible outcomes
 - True Positive (TP)
 - True Negative (TN)
 - False Positive (FP)
 - False Negative(FN)

Confusion matrix

		Prediction positive negative		
Torgot	positive	TP	FN	
Target	negative	FP	TN	

Confusion matrix

• Example: spam/harmful email classification

ID	Target	Pred.	Outcome		ID	Target	Pred.	Outcome
1	spam	ham	FN	-	11	ham	ham	TN
2	spam	ham	FN		12	spam	ham	FN
3	ham	ham	TN		13	ham	ham	TN
4	spam	spam	TP		14	ham	ham	TN
5	ham	ham	TN		15	ham	ham	TN
6	spam	spam	TP		16	ham	ham	TN
7	ham	ham	TN		17	ham	spam	FP
8	spam	spam	TP		18	spam	spam	TP
9	spam	spam	TP		19	ham	ham	TN
10	spam	spam	TP		20	ham	spam	FP

		Prediction	
		'spam'	'ham'
Target	'spam'	6	3
Target	'ham'	2	9

Misclassification accuracy

$$\frac{(FP+FN)}{(TP+TN+FP+FN)}$$

$$\frac{(2+3)}{(6+9+2+3)} = 0.25$$

Classification accuracy

$$\frac{(\mathit{TP}+\mathit{TN})}{(\mathit{TP}+\mathit{TN}+\mathit{FP}+\mathit{FN})}$$

$$\frac{(6+9)}{(6+9+2+3)} = 0.75$$

• TP rate (TPR)
$$\frac{TP}{(TP + FN)}$$

• TN rate (TNR)
$$\frac{TN}{(TN + FP)}$$

• FP rate (FPR)
$$\frac{FP}{(TN + FP)}$$

• FN rate (FNR)
$$\frac{FN}{(TP + FN)}$$

For example

		Predi	ction			
		'spam'	'ham'			
Target	'spam'	6	3	-	TP	FN
Target	'ham'	2	9		FP	TN

TPR =
$$\frac{6}{(6+3)}$$
 = 0.667
TNR = $\frac{9}{(9+2)}$ = 0.818
FPR = $\frac{2}{(9+2)}$ = 0.182
FNR = $\frac{3}{(6+3)}$ = 0.333

• Precision

$$\frac{\mathit{TP}}{(\mathit{TP}+\mathit{FP})}$$

Recall

$$\frac{\mathit{TP}}{(\mathit{TP}+\mathit{FN})}$$

For example

precision =
$$\frac{6}{(6+2)} = 0.75$$

recall = $\frac{6}{(6+3)} = 0.667$

 A confusion matrix for a k-NN model trained on a churn prediction problem.

		Prediction		
		'non-churn' 'churn'		
Target	'non-churn'	90	0	
	'churn'	9	1	

$$Recall_{nc} = \frac{90}{90+0} = 1.0$$

$$Recall_c = \frac{1}{9+1} = 0.1$$

 A confusion matrix for a naive Bayes model trained on a churn prediction problem.

		Prediction 'non-churn'		
Torgot	'non-churn'	70	20	
Target	'churn'	2	8	

$$Recall_{nc} = \frac{70}{70 + 20} = 0.778$$

$$Recall_c = \frac{8}{2+8} = 0.8$$