Obliczenia trakcyjne pojazdu Renault Twingo 1 generacji

Michał Łukaszewicz (297696)

Spis treści

1	\mathbf{Wstep}	3
2	Dane pojazdu	3
3	o shezenia	5
	3.1 Siła i moc oporów ruchu w funkcji prędkości	5
	3.2 Charakterystyka trakcyjna	7
	3.3 Bilans mocy	8
	3.4 Charakterystyka dynamiczna	9
	3.5 Charakterystyka przyśpieszeń	9
	3.6 Charakterystyka rozpędzania	11
4	Wnioski końcowe	12
5	Oświadczenie o samodzielności wykonania	13

1 Wstęp

Do obliczeń wybrano samochód Renault Twingo I 1.2 16v (kod silnika: D4F), rocznik 2001. Auto wyposażono w cztero-cylindrowy silnik rzędowy ustawiony poprzecznie o zapłonie iskorwym, pojemności 1149 cm^3 , mocy 55 kW przy 5500 obr/min. Silnik napędza koła przednie poprzez 5 biegową, manualną skrzynię biegów.

2 Dane pojazdu

Dane pojazdu zostały pozyskane ze strony internetowej automobile-catalog.com

Masa własna: $m_0 = 850kg$

Dopuszczalna masa całkowita m = 1260kg

Poweirzchnia czołowa pojazdu:

 $A = 1.93m^2$

Współczynnik oporów powietrza:

 $c_x = 0.35$

Współczynnik oporów toczenia

 $f_0 = 0.01$

Przełożenia skrzyni biegów:

 $i_1 = 3.37$

 $i_2 = 1.86$

 $i_3 = 1.32$

 $i_4 = 0.97$

 $i_5 = 0.76$

Przełożenie przekładni głównej:

 $i_q = 4.06$

Sprawność układów mechanicznych:

 $\eta_{M} = 0.9$

Moc silnika maksymalna:

 $P_s = 55 \text{ kW dla } n_P = 5542 \text{ obr/min}$

Moment silnika maksymalny:

 $M_s = 105 \text{ Nm dla } n_M = 3648 \text{ obr/min}$

Parametry opon

d = 155

profil = 65

R = 14 in. = 356 mm

 $r_d = 0.97 \cdot (d \cdot profil + R/2) = 270 \text{ mm}^1$

¹J. Warczek, Metoda pomiaru proemienia dynamicznego koła samochodowego, 2010

Rys. 1: Renault Twingo I - ${\rm wymiary^2}$

Rys. 2: Charakterystyka silnika D4F

Dane do charakterystyki silnika zostały pozyskane ze strony internetowej automobile-catalog.coma następnie zdigitalizowane za pomocą programu $GetData\ Graph\ Digitizer$

 $^{^2}$ https://www.autocentrum.pl/dane-techniczne/renault/twingo/i/

3 Obliczenia

Obliczenia zostały wykonane za pomocą języka Python w środowisku obliczeniowym Ju-pyter

3.1 Siła i moc oporów ruchu w funkcji prędkości

Siła oporów toczenia

$$F_t = mgf_t [N]$$

Współczynnnik oporów toczenia

$$f_t = f_0(1 + k_v v^2)$$
 gdzie $k_v = 5 * 10^{-5}$

Rys. 3: Siła oporów toczenia w funkcji prędkości jazdy

Siła oporów powietrza w funkcji prędkości

$$F_p = 0.047 \cdot Ac_x v^2 \text{ [N]}$$

Siła oporów ruchu

$$F_{op} = F_t + F_p$$

Moc oporów ruchu

$$P_{op} = F_{op} \cdot \frac{v}{3600} \text{ [kW]}$$

Rys. 4: Siła oporów powietrza w funkcji prędkości jazdy

Rys. 5: Siła oporów ruchu i moc oporów ruchu w funkcji prędkości jazdy

3.2 Charakterystyka trakcyjna

Siła napędowa: $F_n = \frac{M_s i_g i_b \eta_m}{r_d}$

Prędkość jazdy: $v = \frac{r_d n_s}{2.65 i_b i_g}$

Wartości ${\cal M}_s$ i n_s z charakterystyki silnika

Rys. 6: Wykres trakcyjny

3.3 Bilans mocy

Moc na kołach: $P_k = P_s \eta_m$

Rys. 7: Bilans mocy

3.4 Charakterystyka dynamiczna

Wskaźnik dynamiczny: $D = \frac{F_n - F_p}{mg}$

Rys. 8: Charakterystyka dynamiczna

3.5 Charakterystyka przyśpieszeń

Wykres przyśpieszeń uzyskujemy z zależności:

$$a = \frac{g}{\delta_b} (\nu D - f_t)$$
gdzie:

$$\nu = 0.95$$

Współczynnik mas wiurjących, uwzględniający wpółczynniki: δ_s - mas wirujących silnika, δ_k - mas wirujących kół.

$$\delta_b = 1 + \delta_s i_b^2 + \delta_k$$

Obliczenia współczynników wykonujemy dobierając z charakterystyk momenty bezwładności części wirujących silnika (J_s) i kół (J_k) (Rys. 8)

Rys. 9: Krzywe doboru momentów bezwładności

Po dobraniu wartości:

 $J_s = 0.1$ $J_k = 0.4$

Obliczamy współczynniki: $\delta_s = \frac{J_s i_g^2 \eta_M}{m r_d^2}$ $\delta_k = k \frac{J_k}{m r_d^2} \text{ gdzie k - liczba kół}$

Rys. 10: Charakterystyka przyśpieszeń

3.6 Charakterystyka rozpędzania

Do obliczeń przyjęto czas zmiany biegu $dt_b=0.5~\mathrm{s}$

Rys. 11: Prędkość w funkcji czasu dla rozpędzania

Z charakterystyki rozpędzania (Rys. 11) możemy określić czas przyśpieszenia do 50km/h i 100km/h jako kolejno 5.5s i 15.78 s, są to wartości większe od spodziewanych jednakże wynika to z zastosowania dopuszczalnej masy całkowitej pojazdu do obliczeń, gdzie w warunkach normalnych pojazd jest zwykle o około 200 kg lżejszy.

Po podstawieniu do obliczeń masy: $m_0 + m_{paliwa} + m_{kierowcy}$, zakładając pełny bak (40 l benzyny bezołowiowej 95, $\rho = 720kg/m^3$) i maskę kierowcy 75 kg, otrzymujemy charakterystykę rozpędzania bliższą mierzonej empirycznie (Rys. 12). Pojazd rozpędza się do 100 km/h w około 12.3 s co jest bliskie parametrom podawanym przez producenta (11.1 s).

Rys. 12: Predkość w funkcji czasu dla rozpędzania, dla masy z 40 l paliwa i kierowca

4 Wnioski końcowe

- 1. Obliczone charakterystyki mają nieznacznie gorsze wartości niż charakterystyki dostarczone przez producenta, co może być spowodowane wykonaniem obliczeń dla dopuszczalnej masy całkowitej pojazdu oraz niedokładnością graficznego pobrania danych z charakterystyki silnika.
- 2. Na podstawie charakterystyki trakcyjnej i bilansu mocy możemy określić prędkość maksymalną pojazdu na około 156 km/h, jest wartość zaniżona wobec danych producenta, co ponownie może być spowodowane obliczeniami wykonywanymi dla dopuszczalnej masy całokwitej.

5 Oświadczenie o samodzielności wykonania

Oświadczam że powyższa praca stanowiąca podstawę oceny osiągnięcia efektów uczenia z przedmiotu Pojazdy została przeze mnie wykonana samodzielnie.

Michał Łukaszewicz 297696

Literatura

[1] S. Arczyński, *Mechanika Ruchu Samochodu*. Wydawnictwa Naukowo-Techniczne, Warszawa 1994.