НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО"

Методи чисельної оптимізації

29 вересня 2025 р.

ПР 2: Одновимірний градієнтний спуск

«Найважча частина роботи – зважитися приступити до неї.» — Габріель Лауб

Завдання

Мета: дослідити чисельний пошук мінімуму одновимірної цільової функції методом градієнтного спуску та оцінити вплив початкового наближення x_0 і параметра кроку α на збіжність алгоритму.

Умова задачі. Нехай задана одновимірна диференційована функція $f: \mathbb{R} \supset D \to \mathbb{R}$ та інтервал (область визначення) D = [a,b]. Необхідно:

- 1. Реалізувати чисельний алгоритм градієнтного спуску для пошуку локального мінімуму функції f(x) на відрізку D.
- 2. Провести експерименти та дослідити вплив початкового наближення $x_0 \in D$ та параметра кроку $\alpha > 0$ на збіжність алгоритму.
- 3. Порівняти швидкість та точність знаходження мінімуму для різних функцій f(x) (обрати принаймні 3 різні типи функцій: квадратична, поліном вищого порядку, функція з тригонометричною домішкою, логарифмічна або експоненційна).
- 4. Побудувати графіки функцій f(x) на заданих відрізках та проілюструвати на них процес збіжності градієнтного спуску до мінімуму.
- 5. Підготувати звіт та зробити висновки щодо ефективності градієнтного спуску на різних типах функцій (квадратичні, поліноміальні вищих порядків, тригонометричні, експоненційні, логарифмічні), а також зробити висновки щодо впливу параметрів алгоритму (x_0 та α) на його збіжність.

Варіант	Цільова функція $f(x)$	Область визначення x
1	$f(x) = (x+1)^2 + 1$	[-3,1]
2	$f(x) = (x-2)^2 + 1$	[0,4]
3	$f(x) = x^3 - 3x^2 + 2$	[0,4]
4	$f(x) = \sin(x) + x^2/10$	[-4, 4]
5	$f(x) = \cos(x) + x^2/5$	[-3,3]
6	$f(x) = e^{-x^2} + x^2$	[-3, 3]
7	$f(x) = x^4 - 4x^3 + 4x^2$	[-0.5, 3]
8	$f(x) = \ln(x^2 + 1) + x^2/2$	[-5, 5]
9	$f(x) = x \cdot \sin(x) + x^2/10$	[-6, 6]
10	$f(x) = x^3 - 6x^2 + 9x + 1$	[1,4]
11	$f(x) = e^x - 2x$	[-2,3]
12	$f(x) = x^4 - 8x^2 + 16$	[-4, 4]

Оцінювання

Максимальна оцінка за виконання завдання – 10 балів.

Здача завдання

Підготовлений звіт <u>Прізвище Ім'я_Група.docx</u> відправляєте на перевірку СЮДИ. У звіті повинна бути подана програмна реалізація завдання разом із візуалізацією результатів та висновками.

Дедлайн: 12 жовтня 2025 року о 23:59