Formula Sheet

Not for use on Final Exam, Use for Review Purposes only

Basics

$$\bar{x} = \frac{\sum x_i}{n}$$

$$s^2 = \frac{\sum (x_i - x)^2}{n - 1}$$

$$z = \frac{x - \bar{x}}{\sigma}$$

Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= P(A) + P(B) \text{ If A and B are mutually exclusive}$$

$$P(A \cap B) = P(A) \cdot P(B) \text{ If A and B are independent}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A|B) = P(A) \text{ If A and B are independent}$$

$$\binom{N}{n} = \frac{N!}{n!(N-n)!}$$

Discrete Random Variables

$$\mu = \sum xp(x)$$

$$\sigma = \sqrt{\sum (x-\mu)^2 p(x)}$$

Binomial Random Variables

$$\mu = np$$

$$\sigma = \sqrt{npq}$$

Confidence Intervals and Test of Hypothesis

Rejection Region	$ z > z_{\alpha/2}$	$ t > t_{\alpha/2} , (n-1) df$	$ z >z_{\alpha/2}$	$\chi^2 < \chi^2_{1-\alpha/2} \text{ or } \chi^2 > \chi^2_{\alpha/2}, (n-1) \text{df}$	$ z >z_{lpha/2}$	$ t > t_{\alpha/2}$, $(n_1 + n_2 - 2)$ df		
Test Statistic	$\frac{u-x}{\sqrt{-x}}=z$	$t = \frac{x - \mu}{s / \sqrt{n}}$	$z = \frac{\hat{p} - p_0}{\sqrt{p_0 q_0/n}}$	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$z = rac{(ar{x_1} - ar{x_2}) - (\mu_1 - \mu_2)}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}}$	$t = \frac{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$		$S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$
CI	$ar{x} = \pm (z_{lpha/2}) rac{\sigma}{\sqrt{n}}$	$\bar{x} = \pm (t_{\alpha/2}) \frac{\sigma}{\sqrt{n}}$	$\hat{p} \pm z_{lpha/2} \sqrt{rac{\hat{p}\hat{q}}{n}}$	$\frac{(n-1)s^2}{\chi_{\alpha/2}^2} \le \sigma^2 \le \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}, (n-1) \text{ df}$	$\bar{x_1} - \bar{x_2} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$(\bar{x_1} - \bar{x_2}) \pm t_{\alpha/2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$	$(\hat{p}_1 - \hat{p}_2) \pm \hat{z}_{\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$	
CI for	η	η	d	σ^2	$\mu_1-\mu_2$	$\mu_1-\mu_2$	$p_1 - p_2$	