# COMP 3111 SOFTWARE ENGINEERING

# TUTORIAL: PROJECT MANAGEMENT USING SCRUM



#### PROJECT MANAGEMENT

#### Managing software development projects is not easy!

- It requires:
  - good organization → divide and conquer approach
    - divide work into smaller pieces (tasks)
    - assign appropriate people (or teams) to tasks
  - good communication → both formal and informal
    - regular meetings
    - tracking progress

Poor project organization and/or communication can be *fatal* to a software development project!



#### PROJECT ORGANIZATION: COMPONENTS

A software development project consists of four inter-related parts.

- Participants → People who do the work.
  - A person participating in the project.
- Tasks → Things that need to be done.
  - The work to be performed by a participant.
- Work Products → Things that get produced.
  - An item (artifact) produced by a task (e.g., models, code, etc.—some are *deliverables*).
- Schedule → Who does what and in what order.
  - Tasks need to be prioritized, ordered and assigned to participants.
  - Some tasks can be done in parallel, others must be sequenced.



#### PROJECT ORGANIZATION: PARTICIPANTS

- Participants can work as one big team or be organized into smaller project teams → there may be many project teams.
- An individual or a project team carries out some well-defined task in the project.
- Each participant plays a certain role (e.g., management, development, cross-functional (liaison), consultant).
- Management roles (see tutorial notes for duties and responsibilities):
  - project manager: manages a project.
  - team leader/person in charge (PIC): manages a project team.



#### PROJECT COMMUNICATION

- Planned Communication
  - Problem inspection
  - Client review
  - Project review
  - Peer review
  - Status review → The focus of COMP 3111 meetings!
  - Brainstorming
  - Releases
  - Postmortem review

- Unplanned Communication
  - Request for clarification
  - Request for change
  - Issue resolution



#### PROJECT MANAGEMENT USING SCRUM

- Scrum is an agile software development process that mainly specifies what you should do to develop a software product.
- No specific software engineering practices are prescribed for developing the product; the team needs to decide how to do it.
- The requirements are captured as items in a "product backlog";
   the product owner (client) sets the priorities for the items.
- The software product is developed in a series of iterations called "sprints".
- Teams self-organize to determine the best way to deliver the product.



# **SCRUM: WORKFLOW**



COPYRIGHT @ 2005, MOUNTAIN GOAT SOFT



#### **SCRUM: SPRINT**

- A scrum project make progress in a series of iterations called "sprints".
- The typical duration of a sprint is 2–4 weeks or a calendar month at most.
- The software product is designed, coded and tested during the sprints.
- The requirements are not allowed to change during a sprint.
  - For the COMP 3111 project: There are three sprints.



# **COURSE PROJECT SPRINTS**





# **SCRUM: FRAMEWORK**

#### Roles

- Product owner
- ScrumMaster
- Team

#### Meetings

- Sprint planning
- Daily scrum meeting
- Sprint review
- Sprint retrospective

#### Artifacts

- Product backlog
- Sprint backlog
- Burndown charts



# **SCRUM: PRODUCT OWNER (AKA CLIENT)**

Is the <u>key stakeholder</u> (represents users, client)



- Defines the requirements of the product.
- Prioritizes the requirements.
- Adjusts requirements and priority every iteration, as needed.
- Decides on the release date and content.
- Accepts or rejects work results.



# SCRUM: SCRUM MASTER (aka PROJECT MANAGER)

Is the <u>project team leader/person in charge (PIC)</u>.



- Is responsible for enacting Scrum values and practices.
- Ensures that the team is fully functional and productive.
- Enables close cooperation across all roles and functions.
- Removes impediments to progress.
- Shields the team from external interferences.

#### **COMP 3111: TEAM REQUIREMENT**

- Form your project team now.
  - Each team should have <u>exactly 4 members</u>.
- Arrange an initial project team meeting.
- Select a name and a leader (project manager) for your project team.

#### **Submit**

- Your project team name.
- The project team leader's name.
- Your project members' names and student numbers.

**DEADLINE:** Thursday, March 31 in the lecture.



# SCRUM: FRAMEWORK

#### Roles

- Product owner
- ScrumMaster
- · Team

# Meetings

- Sprint planning
- Daily scrum meeting
- Sprint review
- Sprint retrospective

#### Artifacts

- Product backlog
- Sprint backlog
- Burndown charts



# **SCRUM:** THE DAILY SCRUM

A team meeting in which everyone answers three questions:



# **COMP 3111: MEETING REQUIREMENT**

 Hold a <u>weekly team (scrum) meeting</u> in which everyone answers three questions:

What did you do in the past week?



What will you do in the coming week?

Is anything hindering your progress?



**NOTE:** Only a <u>weekly</u> team (scrum) meeting is required.



# **COMP 3111: MEETING REQUIREMENT**

Your weekly team (scrum) meeting needs to have a:

meeting chair who organizes and runs the meeting (usually the project manager).

minute recorder who records the meeting minutes.

- Your team meeting minutes should record:
  - 1. The meeting location, date, time, present participants and absent participants.
  - 2. For each team member:
    - What he/she did since the last meeting (i.e., in the past week);
    - What he/she plans to do from now until the next meeting (i.e., in the coming week);
    - What impediments/problems hindered progress, if any;
  - 3. The date, time and place of the next meeting.



# **COMP 3111: MEETING REQUIREMENT**

- Keep minutes of <u>all</u> your weekly team meetings.
- Distribute minutes to all team members soon after a meeting.

#### **Submit**

All meeting minutes for the previous week.

DEADLINE: Weekly on Thursday in the lecture. (starting on Thursday, April 7).

There is a <u>required format</u> for the meeting minutes available for download from the Project Resources course web page.



#### **COMP 3111: FIRST TEAM MEETING**

#### In your first team meeting you should:

- establish a common meeting time
- identify a meeting venue
- assign responsibility for taking minutes
- discuss areas of expertise
- construct a sprint backlog and burndown chart for Sprint 2

Hold your first team meeting before Thursday, April 7.



# SCRUM: FRAMEWORK

#### Roles

- · Product owner
- ScrumMaster
- · Team

#### Meetings

- Sprint planning
- · Daily scrum meeting
- Sprint review
- Sprint retrospective

#### Artifacts

- Product backlog
- Sprint backlog
- Burndown charts



#### **SCRUM: PRODUCT BACKLOG**

- The product backlog represents the requirements of the system (i.e., a list of all desired functionality of the system).
- It is ideally expressed such that each item has value to the users or customers of the product.
- Items in the backlog are prioritized by the product owner (client).
- Items in the backlog are reprioritized at the start of each sprint.



# **SCRUM: SPRINT BACKLOG**

- Items are selected from the product backlog and moved to the sprint backlog.
- Selection is usually based on item priority and on how much the team thinks they can do in a sprint.
- A product backlog item may be expanded into several sprint backlog tasks.
- Team members select the sprint backlog items to work on during the sprint.

#### For the COMP 3111 course project:

The product backlog items for Sprint 2 are <u>all</u> the course project requirements not implemented in Sprint 1.



# **SCRUM: ESTIMATING**

- Estimate the time for sprint backlog items in hours using four discrete values (1 day = 8 hours)
  - 1, 2, 4, 8 hours
- Round up in between estimates to the next highest discrete value.
- For the COMP 3111 course project:

  Use Sprint 1 experience to make estimates for Sprint 2 tasks.

  Also use multiples of 8 hours (i.e., 8 x number of days) for estimating.



#### **SCRUM: BURNDOWN CHART**

- Represents the amount of work (in hours) remaining in a sprint.
- For each task in the sprint backlog, the time required to complete it is estimated and summed.
- The chart is updated daily by estimating the work (hours) remaining.
- Allows the team to track progress and identify problems early.

# **SCRUM: EXAMPLE BURNDOWN CHART**

| Tasks                   | Mon | Tue | Wed | Thu | Fri |
|-------------------------|-----|-----|-----|-----|-----|
| Code the user interface | 8   | 4   | 4   |     |     |
| Code the middle tier    | 8   | 4   | 8   | 4   |     |
| Test the middle tier    | 8   | 4   | 2   | 4   | 2   |
| Write online help       | 4   |     | 2   |     |     |

The hours remaining for each sprint task can be kept in a spreadsheet where each cell estimates the remaining hours to complete the task.



The burndown chart graphically shows the total hours remaining each day to complete the sprint.



#### **Step 1**: Determine tasks in the sprint.

Let's assume a 4 week sprint.

| Sprint Tasks     | Week 1 | Week 2 | Week 3 | Week 4 |
|------------------|--------|--------|--------|--------|
| Design database  |        |        |        |        |
| Design web pages |        |        |        |        |
| Code web pages   |        |        |        |        |
| Test system      |        |        |        |        |

# **Step 2**: Determine initial estimate of hours required to complete each task and sum.

Let's assume we estimate in hours.

| Sprint Tasks     | Week 1 | Week 2 | Week 3 | Week 4 |
|------------------|--------|--------|--------|--------|
| Design database  | 2      |        |        |        |
| Design web pages | 4      |        |        |        |
| Code web pages   | 8      |        |        |        |
| Test system      | 12     |        |        |        |
| Total hours      | 26     |        |        |        |

Try to be accurate, but don't worry about it.
You will get better the more you do it!

#### **Step 3**: Construct burndown chart.

The sum of hours for all tasks is the <u>initial point</u> on the chart and represents the <u>total time</u> that is estimated to be required to complete the <u>entire sprint</u> at the start of Week 1.





#### Step 4: Revise task estimates at the beginning of each week.

Revised sprint backlog at the beginning of Week 2.

| Sprint Tasks     | Week 1 | Week 2 | Week 3 | Week 4 |
|------------------|--------|--------|--------|--------|
| Design database  | 2      |        |        |        |
| Design web pages | 4      | 1      |        |        |
| Code web pages   | 8      | 4      |        |        |
| Test system      | 12     | 8      |        |        |
| Total hours      | 26     | 13     |        |        |

Estimate of how many hours are still required to complete each task at the beginning of week 2.

#### Step 4: Revise burndown chart at the beginning of each week.

Revised burndown chart at the beginning of Week 2.





#### Step 4: Revise task estimates at the beginning of each week.

Revised sprint backlog at the beginning of Week 3.

| Sprint Tasks     | Week 1 | Week 2 | Week 3 | Week 4 |
|------------------|--------|--------|--------|--------|
| Design database  | 2      |        | 1      |        |
| Design web pages | 4      | 1      | 2      |        |
| Code web pages   | 8      | 4      | 4      |        |
| Test system      | 12     | 8      | 8      |        |
| Total hours      | 26     | 13     | 15     |        |

Estimate of how many hours are still required to complete each task at the beginning of week 3.



#### Step 4: Revise burndown chart at the beginning of each week.

Revised burndown chart at the beginning of Week 3.





#### Step 4: Revise task estimates at the beginning of each week.

Revised sprint backlog at the beginning of Week 4.

| Sprint Tasks     | Week 1 | Week 2 | Week 3 | Week 4 |
|------------------|--------|--------|--------|--------|
| Design database  | 2      |        | 1      |        |
| Design web pages | 4      | 1      | 2      |        |
| Code web pages   | 8      | 4      | 4      | 2      |
| Test system      | 12     | 8      | 8      | 4      |
| Total hours      | 26     | 13     | 15     | 6      |

Estimate of how many hours are still required to complete each task at the beginning of week 4.



#### Step 4: Revise burndown chart at the beginning of each week.

Revised burndown chart at the beginning of Week 4.





# WHAT TO HAND IN EACH WEEK

#### **Sprint Backlog and Burndown Chart**

| Sprint Tasks     | Week 1 | Week 2 | Week 3 | Week 4 |
|------------------|--------|--------|--------|--------|
| Design database  | 2      |        | 1      |        |
| Design web pages | 4      | 1      | 2      |        |
| Code web pages   | 8      | 4      | 4      | 2      |
| Test system      | 12     | 8      | 8      | 4      |
| Total hours      | 26     | 13     | 15     | 6      |



For the course project you only need to construct and hand in a *weekly* burndown chart.



# COMP 3111: SPRINT BACKLOG & BURNDOWN CHART

- For the course project,
  - From the product backlog, create a sprint backlog for Sprint 2.
  - Create and maintain a weekly burndown chart for Sprint 2.
- Revise the sprint backlog and the burndown chart <u>weekly</u>.

#### **Submit**

- initial sprint backlog and burndown chart on <u>Thursday</u>, <u>March 31</u>.
- revised sprint backlog and burndown chart weekly.

**DEADLINE:** Thursday in the lecture.

There is a <u>required format</u> for the sprint backlog and burndown chart available for download from the Project Resources web page.

