Lista 4 - Programação Linear e Inteira

João Lucas Duim Raphael Felberg Levy 2 de Abril de 2022

Obs.: Os arquivos computacionais estão nomeados como L4-Qx.R.

Questão 10

Graph the following integer program: Maximize $z = x_1 + 5x_2$, subject to:

$$-4x_1 + 3x_2 \le 6,$$

$$3x_1 + 2x_2 \le 18,$$

$$x_1 \ge 0,$$

$$x_2 \ge 0,$$

$$\{x_1, x_2\} \in \mathbb{Z}.$$

Apply the branch-and-bound procedure, graphically solving each linear-programming problem encountered. Interpret the branch-and-bound procedure graphically as well.

Solução:

Para a questão 10, nós usamos o Solver lp
Solve para o R, e de forma similar a problemas anteriormente feitos nas listas da disciplina, elaboramos um código que recebe uma matriz de coeficientes e uma de restrições para encontrar o valor máximo para z. A diferença é que, dessa vez, repetimos esse processo 11 vezes, uma para a construção original do problema, e mais uma para cada nó elaborado seguindo o método de branch-and-bound. Assim, encontramos uma solução $z^*=23$, com $x_1^*=3$ e $x_2^*=4$.

Para garantir a otimalidade, ao final do código incluimos um "Node 0^* ", onde garantimos x_1 e x_2 inteiros, e de forma direta obtemos os mesmos valores para z, x_1 e x_2 .

Questão 12

Use branch-and-bound to solve the mixed-integer program: Maximize $z=-5x_1-x_2-2x_3+5,$ subject to:

$$-2x_1 + x_2 - x_3 + x_4 = \frac{7}{2},$$

$$2x_1 + x_2 + x_3 + x_5 = 2,$$

$$x_j \ge 0 \ (j = 1, 2, ..., 5),$$

$$\{x_3, x_5\} \in \mathbb{Z}.$$

Solução:

Para a questão 12, como nossa função objetivo é composta inteiramente de variáveis negativas, com a adição de um valor 5, e todas as nossas variáveis x_j devem ser maiores ou iguais a 0, para maximizarmos a função objetivo, os valores de x_1 , x_2 e x_3 devem ser 0, logo $z^* = 0 + 5 = 5$, com $x_4 = 3.5$ e $x_5 = 2$. Esse resultado já é válido, visto que x_3 e x_5 são inteiros maiores ou iguais a 0.

Ainda, enquanto estávamos tentando resolver o problema, adicionamos +5 na função que encontra o "Final value" e "Variables final values". Isso acabou quebrando a resolução, que encontrava valores para z próximos de 20 ou 30, o que não condiz com a solução esperada.

Questão 13

Solve the mixed-integer programming knapsack problem: Maximize $z = 6x_1 + 4x_2 + 4x_3 + x_4 + x_5$, subject to:

$$2x_1 + 2x_2 + 3x_3 + x_4 + 2x_5 = 7,$$

$$x_j \ge 0 \ (j = 1, 2, ..., 5),$$

$$\{x_1, x_2\} \in \mathbb{Z}.$$

Solução:

Para a questão 13, fizemos duas soluções: uma utilizando variáveis binárias, como seria comum para o problema da mochila, e uma utilizando apenas as variáveis x_1 e x_2 inteiras. Assumindo as variáveis binárias, temos $z^* = 14$, enquanto $x_1 = x_2 = x_3 = 1$, e $x_4 = x_5 = 0$.

Usando variáveis não-binárias, temos $z^* = 19.3333333$, $x_1 = 3$, $x_2 = 0$, $x_3 = 0.333333$, $x_4 = 0$, $x_5 = 0$. Como $x_1, x_2 \in \mathbb{Z}$ e $x_j \ge 0$ (j = 1, 2, ..., 5), essa solução também é válida, já que se trata de um problema mixed-integer.

Ainda, buscando uma solução com todos os valores inteiros, se restringirmos $x_3 \ge 1$, teremos $z^* = 16$, $x_1 = 2$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = 0$. Já que x_1 , $x_2 \in \mathbb{Z}$ e todas as variáveis têm valor maior ou igual a 0, essa é a solução ótima se quisermos uma solução inteira para o problema.

