KERNEL METHODS - PRACTICAL SESSION № 1

AMMI 2020 18/05/2020

Linear Algebra Recap

Exercise 1

Let $A \in \mathbb{R}^{m \times n}$ be a real matrix. For each function f, specify its codomain and compute ∇f

(a) f:
$$\begin{cases} \mathbb{R} \to ? \\ x \to Tr(Ax) \end{cases}$$

(b) f:
$$\begin{cases} \mathbb{R}^n \to ? \\ \mathbf{x} \to A\mathbf{x} \end{cases}$$

(c) f:
$$\begin{cases} \mathbb{R}^{m \times n} \to ? \\ X \to Tr(A^T X) \end{cases}$$

Exercise 2

Reminder: Singular Value Decomposition

Let $A \in \mathbb{R}^{m \times n}$. There exists two orthogonal matrices $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ such that $A = U^T \Sigma V$

Let
$$X \in \mathbb{R}^{n \times p}$$
, $\lambda > 0$.

Prove that $M = X^T X + \lambda I_p$ is invertible.

Hint: Prove that the eigenvalues of M are larger than λ

Linear Regression

Using notations from the slides:

- $Y = (y_1, ..., y_n)^T \in \mathbb{R}^n$ the vector of outcomes
- $X=(x_1,...,x_n)^T\in\mathbb{R}^{n imes p}$ the matrix (n rows=samples, p columns=features)
- $\beta \in \mathbb{R}^p$ the linear model's parameters

Practical Session № 1 Page 1

Exercise 3

- (a) State the loss function for ordinary least squares (OLS)
- (b) Formulate OLS as a minimization problem
- (c) Compute the solution $\hat{\beta}^{OLS}$
- (d) What happens if X^TX is singular (not invertible)?

Exercise 4 - Bias and Variance of OLS

slide 16

Exercise 5 - Optimality of OLS

slide 17

Ridge Regression

Exercise 6 - Bias and Variance

slide 33

Exercise 7 - Performance

slide 34

Ridge Logistic Regression

Exercise 8

slide 46

Practical Session № 1 Page 2