

Low Power Gas Sensor based on tungsten trioxide nanoparticles

The internet of things field knows an exponential growth and the application are numerous, especially in public health-care. The development of high sensitivity and accuracy sensors are a huge interest for gas pollution detection. This sensor was developed using the INSA Toulouse AIME (Atelier Interuniversitaire de Micro-nano Electronique) facilities and based on the Jeremie Grisolia's work. It is composed of silicon rods and WO3 nanoparticles sensitive to gas and a heating resistor.

General features

- Low power consumption
- Easy-to-use
- Small size
- Low Cost
- Short response time
- Detection of NH3
- Detection of C2H6O
- Temperature sensor included
- 2 Integrated gas sensors
- Heater included (resistor)

Pin description

Pin Number	Uasge
1/6	Temperature sensor (Aluminium resistor)
2/4	Gas sensor(WO3 nanoparticles integrated on aluminium interdigital combs)
3/8	Heater resister (Polysilicon resistor)
7/9	Gas sensor(WO3 nanoparticles integrated on aluminium interdigital combs)
5	Not connected
10	Not connected

Specifications

Туре	Nanoparticle based sensor
Materials	• Silicon
	 N-doped poly-silicon (heater)
	 Aluminum (temperature measurement)
	 Nanoparticles of tungsten trioxide (WO3)
Sensor type	Active (power supply required)
Gas measurement	Resistive measure
Temperature measurement	Resistive measure
Detectable gaz	Ammonia (NH3)
	Ethanol (C2H6O)
Package	10-Lead TO-5 metal
Diameter	9.5mm
Mountig	Through hole fixed
Time response	• Ethanol <30s
	Ammonia <15s

Standard use condition

Temperature	°C	20±5
Humidity	%	60±5
Air quality	$%N_2/O_2$	80/20

Electronical characterisation

	Unit	Min	Typical	Max
Gas sensor resistance	МΩ	0.01	1	100
Temperature sensor resistance	Ω	150	151	350
Heater resistance	Ω	70	86	100
Gas sensor voltage	V	-	3.3	-
Temperature sensor	V	3.3	5	-
Heater	V	10	15	20

1. Sensor resistor Aluminium

2. Sensor resistor Polysilicium

3. Sensibility

 $R_S \approx 333 M\Omega$

I-V polysilicium	I-V Aluminium	I-V Sensor before depositon	I-V Sensor	Gas Ammoniac NH3	I-V Ethanol C2H6O
R _{poly} =105Ω	R _{alu} = 92Ω		R_s =333 $M\Omega$ (de 5 à 20 V)	T=200°C	T=200°C

Gas sensor characteristics

The gas sensor characteristic is determined by measuring the resistance evolution in presence of different gases. A resistance drop reveals gas presence and the gap is proportionnal to the concetration. The shape of the evolution (time response) permits to determine the nature of the gas.

BIG TABLE TO FILL AT THE END OF THE DOC

1. Resistance dynamic in presence of Amonia

2. Resistance dynamic in presence of Ethano

DIMENSIONS

The package is a 10-Lead TO-5 metal :

^{*}LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND THE SEATING PLANE

^{**}FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS $\frac{.016 - .024}{(0.406 - 0.610)}$