

Exact Solutions > Nonlinear Partial Differential Equations > Other Second-Order Partial Differential Equations > Nonhomogeneous Monge—Ampère Equation (Monge—Ampère Equation)

$$3. \quad \left(\frac{\partial^2 w}{\partial x \partial y}\right)^2 - \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} = F(x,y).$$

Nonhomogeneous Monge-Ampere equation (Monge-Ampère equation).

- 1°. Particular cases:
- for F(x, y) = 0 see homogeneous Monge–Ampere equation;
- for F(x, y) = A see nonhomogeneous Monge–Ampere equation (special case).
- 2° . Table 1 presents all other nonhomogeneous Monge–Ampere equations whose exact solutions are outlined in *Handbook of Nonlinear Partial Differential Equations* by Polyanin & Zaitsev. The number of the equation sought is indicated in the last column; f(x), g(x), and h(x) are arbitrary functions; a, b, c, k, s, α , β , and λ are arbitrary constants.

TABLE 1 Nonhomogeneous Monge–Ampere equations of the form $w_{xy}^2 - w_{xx}w_{yy} = F(x,y)$ whose exact solutions are outlined in *Handbook of Nonlinear Partial Differential Equations*

No.	Function $F(x,y)$	Equation
1	f(x)	7.2.2.3
2	f(x)y	7.2.2.4
3	$f(x)y^2$	7.2.2.5
4	$f(x)y^2 + g(x)y + h(x)$	7.2.2.6
5	$f(x)y^k$	7.2.2.7
6	$f(x)y^{2k+2} + g(x)y^k$	7.2.2.8
7	$f(x)e^{\lambda y}$	7.2.2.9
8	$f(x)e^{2\lambda y} + g(x)e^{\lambda y}$	7.2.2.10
9	$f(x)g(y) + a^2$	7.2.2.11
10	f(ax+by)	7.2.2.12
11	$x^k f(ax + by)$	7.2.2.13
12	$x^{2k+2}f(ax+by) + x^kg(ax+by)$	7.2.2.14
13	$e^{\lambda x}f(ax+by)$	7.2.2.15
14	$e^{2\lambda x}f(ax+by) + e^{\lambda x}g(ax+by)$	7.2.2.16
15	$x^{-4}f(y/x)$	7.2.2.17
16	$x^{\alpha}f(x^{\beta}y)$	7.2.2.18

TABLE 1 (Continued)

Nonhomogeneous Monge-Ampere equations of the form $w_{xy}^2 - w_{xx}w_{yy} = F(x,y)$ whose exact solutions are outlined in *Handbook of Nonlinear Partial Differential Equations*

No.	Function $F(x,y)$	Equation
17	$f(ax-by^2)$	7.2.2.19
18	$f(ax^2 + bxy + cy^2)$	7.2.2.20
19	$f(ax^2 + bxy + cy^2 + kx + sy)$	7.2.2.21
20	$e^{\alpha x}f(e^{\beta x}y)$	7.2.2.22
20	$e^{ky/x}f(x)$	7.2.2.23
21	$x^{\alpha}f(x^{\beta}y)$	7.2.2.24
22	$y^{-4} \exp(\alpha y^{-1}) f(xy^{-1} + \beta y^{-2})$	7.2.2.25

References

Rozhdestvenskii, B. L. and Yanenko, N. N., Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Amer. Math. Society, Providence, 1983.

Khabirov, S. V., Nonisentropic one-dimensional gas motions obtained with the help of the contact group of the nonhomogeneous Monge–Ampere equation, [in Russian], *Mat. Sbornik*, Vol. 181, No. 12, pp. 1607–1622, 1990.

Ibragimov, N. H. (Editor), CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1, Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, 1994.

Polyanin, A. D. and Zaitsev, V. F., *Handbook of Nonlinear Partial Differential Equations*, Chapman & Hall/CRC, Boca Raton, 2004.

Nonhomogeneous Monge-Ampere Equation

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/npde/npde4203.pdf