- Algebra for L2-

— February Camp, 2022 — Basic Inequalities —

WARM-UP.

- $x^2 > 0$ for each $x \in \mathbb{R}$
- $x^2 < x$ if and only if 0 < x < 1
- if a > 0 and x > y > 0, then $\frac{a}{x} < \frac{a}{y}$ and $\frac{x}{a} > \frac{y}{a}$
- several useful identities (every \pm should be replaced with the same sign):

$$(1\pm x)(1\pm y) = 1\pm x\pm y + xy$$
, $(x\pm y)^2 = x^2 \pm 2xy + y^2$.

1. Prove that if real numbers $x, y \in \mathbb{R}$ satisfy $x^2 + x \le y$, then $y^2 + y \ge x$.

SOLUTION. By $y^2 \ge 0$, the given assumption, and $x^2 \ge 0$, we have

$$y^2 + y \ge 0 + y = y \ge x^2 + x \ge 0 + x = x.$$

2. Prove that if a, b, c are positive real numbers, then

$$\frac{a}{\sqrt{a+b}} + \frac{b}{\sqrt{b+c}} + \frac{c}{\sqrt{c+a}} > \sqrt{a+b+c}.$$

SOLUTION. We have $\sqrt{a+b} < \sqrt{a+b+c}$ and similarly for $\sqrt{b+c}$ and $\sqrt{c+a}$. By increasing the denominator, we decrease the fraction:

$$\frac{a}{\sqrt{a+b}} + \frac{b}{\sqrt{b+c}} + \frac{c}{\sqrt{c+a}} > \frac{a}{\sqrt{a+b+c}} + \frac{b}{\sqrt{a+b+c}} + \frac{c}{\sqrt{a+b+c}} = \frac{a+b+c}{\sqrt{a+b+c}} = \sqrt{a+b+c}.$$

3. Prove that if a, b, c are positive real numbers, then

$$\frac{a}{a+1} + \frac{b}{(a+1)(b+1)} + \frac{c}{(a+1)(b+1)(c+1)} < 1.$$

SOLUTION. When we expand the left-hand side and put eccrything as a single fraction, we'll see that the numerator is precisely 1 less than the denominator (and both are positive). The other way to see this is to add $\frac{1}{(a+1)(b+1)(c+1)}$ to the left-hand side:

$$\frac{a}{a+1} + \frac{b}{(a+1)(b+1)} + \frac{c}{(a+1)(b+1)(c+1)} < \frac{a}{a+1} + \frac{b}{(a+1)(b+1)} + \frac{c+1}{(a+1)(b+1)(c+1)}$$

$$= \frac{a}{a+1} + \frac{b}{(a+1)(b+1)} + \frac{1}{(a+1)(b+1)}$$

$$= \frac{a}{a+1} + \frac{b+1}{(a+1)(b+1)}$$

$$= \frac{a}{a+1} + \frac{1}{a+1} = 1.$$

4. Real numbers a, b, c, d satisfy a+b=cd and c+d=ab. Prove that $(a+1)(b+1)(c+1)(d+1) \ge 0$.

Solution. In the assumptions it's seen that the pairs of variables a, b and c, d come together. Let us try to group them like this in our hypothesis, too:

$$(a+1)(b+1)(c+1)(d+1) = (ab+a+b+1)(cd+c+d+1) = (a+b+c+d+1)^2.$$

We conclude the solution with the observation that squares are always non-negative.

5. Given are real numbers $a, b \in (0,1)$. Prove that

$$a\sqrt{b} + b\sqrt{a} + 1 > 3ab$$
.

Solution. Note that if $a \in (0,1)$, then $\sqrt{a} > a$ (because $a > a^2$) and similarly $\sqrt{b} > b$. Moreover, $1 = 1 \cdot 1 > a \cdot b$, so

$$a\sqrt{b} + b\sqrt{a} + 1 > a \cdot b + b \cdot a + a \cdot b = 3ab.$$

6. Given are real numbers $x, y \in (0,1)$. Prove that

$$x(1-y)^2 + y(1-x)^2 < (1-xy)^2$$
.

SOLUTION. Expanding the squares on both sides, we can rewrite the desired inequality as follows:

$$\begin{split} x - 2xy + xy^2 + y - 2xy + yx^2 &< 1 - 2xy + x^2y^2, \\ x + y + xy(x+y) &< 1 + 2xy + x^2y^2, \\ (1 + xy)(x+y) &< (1 + xy)^2. \end{split}$$

Because 1+xy>0, the last inequality is equivalent to

$$x+y<1+xy \iff 0<1-x-y+xy \iff 0<(1-x)(1-y).$$

The last inequality is true because 1-x and 1-y are positive (by the problem's assumption).

- **7.** Positive numbers a, b, c satisfy $a \le 1, b \le 2, c \le 3$. Prove that $a+b+c \ge abc$.
- **8.** Distinct positive numbers a, b satisfy a+b=1. Prove that

$$\left|\frac{a-b}{\sqrt{1-a^2}-\sqrt{1-b^2}}\right|<\sqrt{3}.$$