

Verklemmungen (Deadlocks)

Uwe Neuhaus

Überblick

- Was sind Verklemmungen?
- Betriebsmittel-Zuordnungsgraphen
- Bedingungen für Verklemmungen
- Umgang mit Verklemmungen
 - Unmöglich machen
 - Vermeiden
 - Erkennen und beseitigen
 - Ignorieren

Verklemmungen (deadlocks)

 Zwei oder mehr Prozesse hindern sich gegenseitig an der Ausführung.

Uwe Neuhaus

Graphische Modellierung einer Verklemmungssituation

Prozess fordert

Betriebsmittel an

Prozess belegt Betriebsmittel

Zyklus im Graph: Verklemmung!

Betriebsmittel-Zuordnungsgraph mit mehreren Exemplaren pro Ressource

Keine Verklemmung

Verklemmung

Zyklischer Betriebsmittel-Zuordnungsgraph ohne Verklemmung

Nur ein Exemplar pro Betriebsmittel: Zyklus [] Verklemmung

Mehrere Exemplare pro Betriebsmittel: Zyklus ☐ Verklemmung

Zyklus, aber keine Verklemmung!

Bedingungen für Verklemmungen

- Vier notwendige und hinreichende Bedingungen für das Auftreten von Verklemmungen (Coffman, 1971):
 - Wechselseitiger Ausschluss der Betriebsmittelnutzung (mutual exclusion)
 - Zusätzliche Betriebsmittelanforderungen möglich (hold and wait)
 - Keine vorzeitige Rückgabe (no preemption)
 - Zirkuläres Warten (circular wait)

Verklemmungen und wie man damit umgeht...

- Verklemmungen unmöglich machen
- Verklemmungen vermeiden
- Verklemmungen erkennen und beseitigen
- Verklemmungen ignorieren

Uwe Neuhaus

Verklemmungen unmöglich machen (I)

- Wechselseitigen Ausschluss verhindern
 - Z. B. Einrichten eines Druckerdaemonen
 - Probleme: nicht für alle Betriebsmittel geeignet, nur Verlagerung auf andere Betriebsmittel
- Zusätzliche Betriebsmittelanforderungen verbieten
 - Z. B. Anforderung aller benötigten Betriebsmittel zu Prozessbeginn
 - Probleme: Unnötig lange Belegung der Betriebsmittel, schlechte Betriebsmittelauslastung

Uwe Neuhaus

Verklemmungen unmöglich machen (II)

- Vorzeitige Betriebsmittelrückgabe erzwingbar machen
 - Z.B. Entzug nach einer bestimmten Zeit
 - Probleme: muss auf Programmebene berücksichtigt werden, bereits geleistete Arbeitsleistung geht verloren
- Zirkularität unterbinden
 - Z. B. lineare oder hirarchische Ordnung der Betriebsmittel, Anforderungen dann nur gemäß dieser Ordnung
 - Probleme: keine allgemein brauchbare Ordnung angebar, deshalb oft schlechte Auslastung

Uwe Neuhaus

Verklemmungen vermeiden

- Betrachtung der Betriebsmittelanforderungen als gleichzeitig auftretende Maximalforderungen
- Unterscheidung von
 - sicheren Zuständen (Verklemmung nicht möglich)
 - unsicheren Zuständen (Verklemmung nicht zwingend, bei ungünstiger Anforderungsreihenfolge aber möglich)
- Weitere Prozesse werden nur gestartet, wenn kein unsicherer Zustand entsteht (Bankers-Algorithmus)

Uwe Neuhaus

Sichere Zustände, unsichere Zustände, Verklemmungen

Verklemmungen

Unsichere Zustände

Sichere Zustände

Uwe Neuhaus

BS: Verklemmungen

12

Einige Definitionen

- E_r: Zahl der existierenden Exemplare des Betriebsmittels r
- B_{kr}: Zahl der Exemplare des Betriebsmittels r, die Prozess k bereits belegt hat
- Z_{kr}: Zahl der Exemplare des Betriebsmittels r, die Prozess k insgesamt zusätzlich belegen will
- F_r : Zahl der noch freien Exemplare des Betriebsmittels s. Es gilt $F_r = E_r \prod_k B_{kr}$

Uwe Neuhaus

- Alle Prozesse entmarkieren
- Suche unmarkierten Prozess k bei dem für alle Betriebsmittel gilt: $F_r \square Z_{kr}$
- Falls es einen solchen Prozess gibt, markiere ihn und setze $F_r = F_r + B_{kr}$ für alle r.
- Gibt es keinen solchen Prozess, halte an, ansonsten durchlaufe erneut Schritt 2 und 3

Genau dann wenn alle Prozesse markiert werden können, handelt es sich um einen sicheren Zustand.

Uwe Neuhaus

Sichere Betriebsmittelanforderung

Sei A_{kr} die Anzahl der Betriebsmittel r, die Prozess k gerade anfordert.

- Ist $A_{kr} > C_{kr}$ für wenigstens ein r
 - -> Fehler: Zu viele Ressourcen angefordert!
- Ist $A_{kr} \square F_r$ für alle r, gehe zu Schritt 3. Anderenfalls muss k warten, da nicht genug Betriebsmittel vorhanden sind.
- Überprüfe, ob der Zustand, in den man gelangte, wenn man die Anforderung von k gewähren würde, ein sicherer Zustand ist. Erfülle die Anforderung nur in diesem Fall.

Uwe Neuhaus

Beispiel

<u>Anza</u>	<u>ıl der</u>	verfügh	aren	<u> Retrieh</u>	smittel	$\Delta = 5$	B=1	3 C = 4	D = 3
						/	_	-, -, -	, – –

	Α	В	C	D
P_1	2	0	1	0
P ₂	0	1	0	2
P_3	1	0	2	0
P ₄	1	1	0	0
P_5	0	1	0	1

	 Á	В	С	D
P_1	1	0	2	1
P_2	1	0	1	0
P_3	1	1	0	2
P_4	4	0	2	1
P_5	0	2	4	0

bestehende Belegung max. zusätzliche Anforderungen Anforderungen: a) P₂ fordert ein C b) P₃ fordert ein A

Uwe Neuhaus

Verklemmungsvermeidung: Probleme

- I. A. Zahl der maximal benötigten Betriebsmittel unbekannt
- Ständig wechselnde Zahl von Prozessen
- Zahl der verfügbaren Betriebsmittel ebenfalls veränderlich
- Algorithmus ist laufzeit- und speicherintensiv

Uwe Neuhaus BS: Verklemmungen 17

Verklemmungen erkennen

- Analyse bei verdächtigen Symptomen:
 - viele Prozesse warten und der Prozessor ist unbeschäftigt
 - mindestens zwei Prozesse warten zu lange auf Betriebsmittel
- Bei Verdacht start eines Erkennungsalgorithmus
 - Z. B. Zyklen-Erkennung im Betriebsmittelgraphen

Uwe Neuhaus

Verklemmungen beseitigen

- Prozesse abbrechen
- Prozesse zurücksetzen
- Betriebsmittel entziehen

Probleme:

- Prozess-/Betriebsmittelauswahl
- Verlust bereits geleisteter Arbeit
- Mögliche Inkonsistenzen
- U. U. manueller Mehraufwand erforderlich

Uwe Neuhaus

Kriterien bei der Auswahl des abzubrechenden Prozesses

- Priorität des Prozesses
- Anzahl abzubrechender Prozesse
- Bisherige Laufzeit
- Noch verbleibende Laufzeit
- Belegte Betriebsmittel
- Noch fehlende Betriebsmittel
- Art des Prozesses (interaktiver Prozess oder Hintergrundprozess?)

Uwe Neuhaus

Verklemmungen ignorieren

- Erkennung von Verklemmungen aufwendig
- Beseitigung von Verklemmungen nicht unproblematisch
- Vermeidung bzw. Unmöglichmachen von Verklemmungen u. U. wenig effizient
- Verklemmungen sind in der Regel nicht das dringlichste Problem

Uwe Neuhaus BS: Verklemmungen 21