

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

Code of Federal Regulations 47 Part 15 – Radio Frequency Devices

Subpart C – Intentional Radiators
Section 15.225
Operation within the band 13.110 – 14.010 MHz

THE FOLLOWING **MEETS** THE ABOVE TEST SPECIFICATION

FCC ID: 2ACRH-110025

Formal Name: Dabir Surfaces Gen II Controller

Kind of Equipment: Pneumatic controller with a therapeutic surface / 13.56 MHz RFID

Frequency Range: 13.56 MHz

Test Configuration: Table Top, Three orthogonal axis

Model Number(s): C2-1001

Model(s) Tested: C2-1001

Serial Number(s): 11190100016F

Date of Tests: February 11-12, 2019

Test Conducted For: Dabir Surfaces

447 W. Wilson Ave

Harwood Heights, IL, 60706, USA

NOTICE: "This test report relates only to the items tested and must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Description of Test Sample" page listed inside of this report.

© Copyright 1983 - 2019 D.L.S. Electronic Systems, Inc.

COPYRIGHT NOTICE

This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems, Inc.

Report Number: 24318 Project Number: 10097

SIGNATURE PAGE

Tested By:

Craig Brandt

Senior Test Engineer

Crarg Branott

Reviewed By:

William Stumpf

OATS Manager

Approved By:

Brian Mattson General Manager

Company: **Dabir Surfaces** Model Tested: Report Number:

Project Number:

C2-1001 24318 10097

Table of Contents

i.	Cover Page	1
ii.	Signature Page	2
iii.	Table of Contents	3
iv.	NVLAP Certificates of Accreditation	4
1.0	Summary of Test Report	5
2.0	Introduction	5
3.0	Test Facilities	6
4.0	Description of Test Sample	6
5.0	Test Equipment	7
6.0	Test Arrangements	9
7.0	Test Conditions	10
8.0	Modifications Made To EUT For Compliance	10
9.0	Additional Descriptions	10
10.0	FCC 15.31 (e) Supply Voltage Requirement statement	11
11.0	FCC 15.203 Antenna Requirement statement	11
12.0	Results	
13.0	Conclusion	12
Sectio	on A – Test Photos	13
Sectio	on B – Measurement Data	23
B1.		
B2.	0 Radiated Emissions	25
B2.	1 Emissions Mask	26
B2.	2 Radiated, 9 kHz – 30 MHz	27
B2.	3 Radiated, 30 – 1000 MHz	30
B3.	0 Frequency Stability	36
B4.	0 AC Line Conducted Emissions	38
Sectio	on C – Measurement Uncertainty	51

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 100276-0

D.L.S. Electronic Systems, Inc.

Wheeling, IL

Is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2018-09-19 through 2019-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program

ELECTROMAGNETIC COMPATIBILITY & TELECOMMUNICATIONS

NVLAP LAB CODE 100276-0

Emissions

Designation

Description

Off-site test location

D.L.S. Electronics performs radiated emissions testing at an additional location, 166 South Carter Street, Genoa City, WI 53128.

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

1.0 Summary of Test Report

It was determined that the Dabir Surfaces Gen II Controller, Model C2-1001 complies with the requirements of CFR 47 Part 15 Subpart C Section 15.225.

Subpart C Section 15.225 Applicable Technical Requirements Tested:

Section	Description	Procedure	Note	Compliant?
FCC 15.215(c)	20 dB Emission Bandwidth	ANSI C63.10-2013 Section 6.9.2	1	Yes
FCC 15.225 & 15.209	Radiated Emissions	ANSI C63.4-2014 & ANSI C63.10-2013	1	Yes
FCC 15.225(e)	Frequency Stability	ANSI C63.10-2013 Section 6.8	3	Yes
FCC 15.207	AC Line Conducted Emissions	ANSI C63.4-2014, ANSI C63.10-2013	2	Yes
FCC 15.31(e)	Supply Voltage Statement	N/A		Yes
15.203	Antenna Requirement Statement	N/A		Yes

Note 1: Radiated emission measurement.

Note 2: AC Line Conducted emission measurement. Note 3: Tested using Near Field Probe as test fixture.

2.0 Introduction

During February 11-12, 2019 the Dabir Surfaces Gen II Controller, Model C2-1001, as provided from Dabir Surfaces was tested to the requirements of CFR 47 Part 15 Subpart C Section 15.225. To meet these requirements, the procedures contained within this report were performed by personnel of D.L.S Electronic Systems, Inc.

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

3.0 Test Facilities

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, ISED Canada, and VCCI.

Wisconsin Test Facility:

D.L.S. Electronic Systems, Inc. 166 S. Carter Street Genoa City, Wisconsin 53128

FCC Registration #90531

Wheeling Test Facility:

D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, IL 60090

4.0 Description of Test Sample

Description:

Dabir Surfaces system helps in preventing a creation of pressure ulcers for patients in hospitals and other healthcare facilities. The controller contains an air pump that delivers alternating inflation pressure to 2-zone therapeutic surface. An electronic circuit board controls the pump operation, surface pressure, and provides a user interface.

Software versions used: main PCB 255.01.44, UI PCB 0.2.12.

Type of Equipment / Frequency Range:

RFID / 13.56 MHz

Physical Dimensions of Equipment Under Test:

13 in. L x 5.5 in. W x 4 in. H

Power Source:

120 V 60 Hz AC mains.

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

4.0 Description of Test Sample (continued)

Internal Frequencies:

Power supply: PFC 70 - 130 kHz, PWM 50 - 80 kHz

48 MHz, 27.12 MHz, 8 MHz, 32.768 kHz

Transmit / Receive Frequencies Used For Test Purpose:

13.56 MHz

Type of Modulation(s) / Antenna Type:

100% ASK, subcarrier load modulation / 51.6 Ohm PCB loop antenna

Description of Circuit Board(s) / Part Number:

Main controller PCBA	R02-0002-00021-D
User Interface PCBA	P33800X4Z

5.0 Test Equipment

A list of the equipment used can be found in the table below. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

D.L.S. Wisconsin – AC Line Conducted (Screen Room)

Description	Manufacturer	Model	Serial	Frequency Range	Cal	Cal Due
		Number	Number		Dates	Dates
Receiver	Narda	9010F	020WW40102	10 Hz - 50 MHz	4-12-18	4-12-19
LISN	Com-Power	LI-220A	192036	9 kHz – 30 MHz	8-23-18	8-23-19
Filter- High-	Solar	7930-120	090702	120 kHz – 30 MHz	10-16-18	10-16-19
Pass	Electronics					
Limiter	Electro-Metrics	EM-7600	705	9 kHz – 30 MHz	10-16-18	10-16-19
Cable	Beldin	9914	CBL-043	9 kHz – 30 MHz	4-9-18	4-9-19
Cable	Manhattan/CDT	RG223/U	CBL-045	9 kHz – 30 MHz	4-9-18	4-9-19
Test Software	Narda	PMM Emission	V2.1.7	N/A	N/A	N/A
		Suite				

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

5.0 Test Equipment (continued)

RADIATED EMISSIONS TEST 9 kHz – 30 MHz (Site 2)

Description	Manufacturer	Manufacturer Model		Frequency Range	Cal	Cal Due
		Number	Number		Dates	Dates
Receiver	Rohde & Schwarz	ESI 40	837808/006	20 Hz – 40 GHz	4-11-18	4-11-19
Loop	Electro-Metrics	6502	1027	9 kHz – 30 MHz	8-22-17	8-22-19
Antenna						
Cable	Beldin	9914	CBL-004	9 kHz – 1 GHz	11-8-18	11-8-19
Cable	Beldin	9273	CBL-028	9 kHz – 1 GHz	11-8-18	11-8-19
Cable	Manhattan/CDT	RG-223/U	CBL-051	9 kHz – 1 GHz	11-8-18	11-8-19
Test Software	Rohde & Schwarz	ESK-1	V1.7.1	N/A	N/A	N/A

RADIATED EMISSIONS TEST 30 – 1000 MHz (Site 2)

Description	Manufacturer Model		Serial	Frequency Range	Cal	Cal Due
		Number	Number		Dates	Dates
Receiver	Rohde &	ESI 40	837808/006	20 Hz – 40 GHz	4-11-18	4-11-19
	Schwarz					
Preamplifier	Rohde &	TS-PR10	032001/004	9 kHz – 1 GHz	11-8-18	11-8-19
	Schwarz					
Antenna	EMCO	3104C	9701-4785	20 MHz – 200 MHz	3-1-18	3-1-20
Antenna	Electro-Metrics	LPA-25	1205	200 MHz – 1 GHz	4-9-18	4-9-20
Cable	Beldin	9914	CBL-005	9 kHz – 1 GHz	11-8-18	11-8-19
Cable	Beldin	9273	CBL-028	9 kHz – 1 GHz	11-8-18	11-8-19
Cable	Manhattan/CDT	RG-223/U	CBL-051	9 kHz – 1 GHz	11-8-18	11-8-19
Test Software	ware Rohde & ESK-1		V1.7.1	N/A	N/A	N/A
	Schwarz					

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

5.0 Test Equipment (continued)

Frequency Stability

Description	Manufacturer Model		Serial	Range	Cal	Cal Due
		Number	Number		Dates	Dates
Receiver	Rohde & Schwarz	ESI 40	837808/005	20 Hz – 40 GHz	4-12-18	4-12-19
Near Field Probe	EMCO	7405	9711-4024 9 kHz – 1 GHz		N/A	N/A
Temperature Chamber	Test Equity	1007C	R035716	-73° C to +175° C	N/A	N/A
Multimeter	Fluke	87V	98560141	N/A	7-6-18	7-6-19
Digital Thermometer	Tenma	72-2060	723662	-50 to + 130 deg C	1-9-19	1-9-20
Cable	Manhattan/CDT	RG-223/U	CBL-064	9 kHz – 1 GHz	5-7-18	5-7-19

6.0 Test Arrangements

Emissions Measurement Arrangement:

All radiated emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to ANSI C63.10-2013 and ANSI C63.4-2014 unless otherwise noted. Description of procedures and measurements can be found in Section B – Measurement Data. See Section A for additional photos of the test set up. See Section C for Measurement Uncertainty.

Unless otherwise noted, the bandwidth of the measuring receiver / analyzer used during testing is shown below.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

7.0 Test Conditions

Normal Test Conditions:

Temperature and Humidity: 20° C at 25% R.H. or as noted on test data

Voltage: 120 Volts, 60 Hz

Extreme Test Conditions

Temperature range tested: -20° C to $+50^{\circ}$ C

Voltages: 102 Volts, 138 Volts

8.0 Modifications Made To EUT For Compliance

None

9.0 Additional Descriptions

The EUT was in operational mode with an RFID tag in place. The was continuously transmitting during testing.

For radiated emissions, the EUT was tested in three orthogonal axis of rotation. Worst-case data is reported.

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

10.0 FCC 15.31 (e) Supply Voltage Requirement statement

FCC 15.31 (e) - For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Compliance Statement: This device complies with the requirements of Part 15.31(e):
☐ This device is battery operated. All tests were performed using a new (or fully charged) battery.
This device provides a constant regulated voltage to the RF circuitry regardless of supply voltage (see schematic diagrams).
☐ This device does not provide a constant regulated voltage to the RF circuitry regardless of supply voltage. Data has been supplied in this test report that supports compliance. Details:
11.0 FCC 15.203 Antenna Requirement statement
SECTION 15.203 ANTENNA REQUIREMENT
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221.
Statement: This wireless device (Intentional Radiator) meets the requirements of FCC Part 15.203:
☐ The antenna is permanently attached.
☐ The antenna has a unique coupling to the intentional radiator. Description of coupling:
☐ This intentional radiator is professionally installed.
☐ This intentional radiator, in accordance with Section 15.31(d), must be measured at the installation site.

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

12.0 Results

Measurements were performed in accordance with ANSI C63.10-2013 and ANSI C63.4-2014. Graphical and tabular data can be found in Section B at the end of this report. Measurement Uncertainty can be found in Section C.

13.0 Conclusion

The Dabir Surfaces Gen II Controller, Model C2-1001, as provided from Dabir Surfaces tested during February 11-12, 2019 **meets** the requirements of CFR 47 Part 15 Subpart C Section 15.225.

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

Section A – Test Photos

Photo Information and Test Setup:

Item 0: Dabir Surfaces Gen II Controller

Item 1: AC power cord; 4.5 meters long; unshielded

Item 2: 18" x 18" therapeutic surface (with RFID tag); Model: D2-101818-05-1L

Radiated Emissions – 30 MHz to 1000 MHz – Position 1 – Front

Report Number: 24318
Project Number: 10097

Section A

Radiated Emissions – 30 MHz to 1000 MHz – Position 1 – Back

Company: Dabir Surfaces
Model Tested: C2-1001
Report Number: 24318

Report Number: 24318 Project Number: 10097

Section A

Radiated Emissions – 30 MHz to 1000 MHz – Position 2

Report Number: 24318
Project Number: 10097

Section A

Radiated Emissions – 30 MHz to 1000 MHz – Position 3 – Front

Report Number: 24318 Project Number: 10097

Section A

Radiated Emissions – 9 kHz to 30 MHz – Position 1

Report Number: 24318 Project Number: 10097

Section A

Radiated Emissions – 9 kHz to 30 MHz – Position 2

Report Number: 24318 Project Number: 10097

Section A

Radiated Emissions – 9 kHz to 30 MHz – Position 3

Section A

Dabir Surfaces

Company: Model Tested: C2-1001 Report Number: Project Number: 24318 10097

AC line conducted – Front

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

Section A

AC line Conducted Emissions – Back

Report Number: 24318 Project Number: 10097

Section A

Frequency Stability - In Temperature Chamber

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

Section B – Measurement Data

B1.0 20 dB Emission Bandwidth

Rule Part: FCC 15.215(c)

Test Procedure: ANSI C63.10:2013 Section 6.9.2

Limits: 20 dB bandwidth must be contained within the 13.110 - 14.010 MHz band

Results: Compliant

Sample Equations: N/A

Notes: The EUT was set to transmit continuously with an RFID tag (located in

Air Pad connector) in place.

166 South Carter, Genoa City, WI 53128

Company: Dabir Surfaces

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

Test Date: 02-11-2019 Company: Dabir Surfaces

EUT: Dabir Patient Support System REV 2 Design

Test: 20 dB Bandwidth

Operator: Craig B

Comment: Frequency: 13.56 MHz

Test distance: 10 meters

20 dB Bandwidth = 37.6 kHz

NOTE: The RBW setting was 10 kHz because a value between 1% and 3% of OBW could not be achieved due to the carrier being more than 20 dB above the modulation products.

Date: 11.FEB.2019 09:14:16

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

Section B

B2.0 Radiated Emissions

Rule Part: FCC Part 15.225 and FCC Part 15.209

Test Procedure: ANSI C63.10-2013

Limits: $15,848 \,\mu\text{V/m}$ at 30 meters: $13.553-13.567 \,\text{MHz}$

334 μ V/m at 30 meters: 13.410-13.553 & 13.567-13.710 MHz 106 μ V/m at 30 meters: 13.110-13.410 & 13.710-14.010 MHz 15.209 general emission limits: outside 13.110-14.010 MHz

Results: Compliant

Sample Equations: Limit at 10 meters:

Fundamental limit at 30 meters = $15,848 \mu V/m$ 20 Log (15,848) = $84 dB\mu V/m$ at 30 meters

Using a 40 dB/decade distance extrapolation factor as per Part 15.31(f)(2):

40 Log (30 m / 10 m) = 19.08 dB

 $84 \text{ dB}\mu\text{V/m} + 19.08 \text{ dB} = 103.08 \text{ dB}\mu\text{V/m}$ at 10 meter distance

Notes: The EUT was set to transmit continuously with an RFID tag (located in

Air Pad connector) in place.

Field Strength measurements were taken at a distance of 10 meters from 9 kHz to 30 MHz, and a distance of 3 meters from 30 MHz to 1000 MHz.

166 South Carter, Genoa City, WI 53128

Company: Dabir Surfaces

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

B2.1 Emissions Mask

Test Date: 02-11-2019 Company: Dabir Surfaces

EUT: Dabir Patient Support System REV 2 Design

Test: Emission Mask – Radiated; Peak

Operator: Craig B

Comment: Frequency: 13.56 MHz

Test distance: 10 meters

FCC Part 15.225 / 15.209

Electric Field Strength

EUT: Dabir Patient Support System REV 2 Design

Manufacturer: Dabir Surfaces
Operating Condition: 64 deg F ; 25% R.H.
Test Site: D.L.S. O.F. Site 2
Operator: Craig B #10097
Test Specification: Radiated emissions

Comment: Continuous Transmit at 13.56 MHz

Date: 02-11-2019

TEXT: "E-Field 10 meters"

Short Description: E-Field

Test Set-up: EUT Measured at 10 Meters with Active Loop Antenna

Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

Margin(dB) = Limit(dB μ V/m) - Total Level(dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "A211a_FE_Final"

2	/11	/2019	9:57AM

2, 11, 20	, _ , , ,	, , , , ,									
Freq	quency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
			Factor	Loss	Level			Ant.	Angle	Detector	
	MHz	dΒμV	dBμV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
0.5	512000	31.40	10.10	0.1	41.6	52.5	10.9	1.00	0	QUASI-PEAK	noise floor
27.1	20000	3.32	8.46	1.3	13.1	48.6	35.5	1.00	0	QUASI-PEAK	noise floor
0.0	52000	31.41	11.18	0.0	42.6	92.4	49.8	1.00	0	QUASI-PEAK	noise floor
0.1	24800	24.33	10.25	0.1	34.6	84.8	50.1	1.00	0	QUASI-PEAK	noise floor
13.5	60000	34.14	10.50	1.0	45.7	103.1	57.4	1.00	0	QUASI-PEAK	Fundamental

FCC Part 15.225 / 15.209

Electric Field Strength

EUT: Dabir Patient Support System REV 2 Design

Manufacturer: Dabir Surfaces
Operating Condition: 68 deg F; 25% R.H.
Test Site: D.L.S. O.F. Site 2
Operator: Craig B #10097
Test Specification: Radiated emissions

Comment: Continuous Transmit at 13.56 MHz

Date: 02-11-2019

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "A211b_F1V_Final"

2/11/2019 1:	39PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dB	dBµV/m	dBμV/m	dВ	m	deg		
63.090000	53.95	9.46	-23.9	39.5	40.0	0.5	1.00	135	QUASI-PEAK	Charging bat
800.030000	38.07	22.00	-19.0	41.0	46.0	5.0	1.00	225	QUASI-PEAK	None
38.990000	45.19	11.70	-24.3	32.6	40.0	7.4	1.00	315	QUASI-PEAK	Charging bat
447.470000	42.37	17.10	-21.3	38.2	46.0	7.8	1.25	270	QUASI-PEAK	None
772.910000	35.55	21.70	-19.4	37.9	46.0	8.1	1.00	225	QUASI-PEAK	None
62.640000	45.58	9.57	-23.9	31.2	40.0	8.8	1.00	135	QUASI-PEAK	None
256.010000	46.04	12.50	-22.2	36.4	46.0	9.6	1.83	280	QUASI-PEAK	None
596.630000	36.99	19.50	-20.4	36.1	46.0	9.9	1.00	345	QUASI-PEAK	None
786.470000	33.41	21.80	-19.2	36.0	46.0	10.0	1.00	225	QUASI-PEAK	None
424.670000	40.86	16.47	-21.5	35.9	46.0	10.1	1.20	75	QUASI-PEAK	None
357.200000	41.45	15.02	-21.7	34.7	46.0	11.3	1.64	90	QUASI-PEAK	None
474.590000	37.10	17.66	-21.1	33.6	46.0	12.4	1.10	300	QUASI-PEAK	None
86.000000	43.72	7.40	-23.6	27.5	40.0	12.5	1.00	350	QUASI-PEAK	None
528.830000	35.91	18.30	-20.8	33.4	46.0	12.6	1.00	110	QUASI-PEAK	None
718.670000	31.68	21.20	-19.8	33.1	46.0	12.9	1.00	200	QUASI-PEAK	None
113.990000	41.32	12.40	-23.2	30.5	43.5	13.0	1.00	0	QUASI-PEAK	None
38.950000	39.48	11.70	-24.3	26.9	40.0	13.1	1.00	225	QUASI-PEAK	None
332.990000	39.15	15.00	-21.7	32.4	46.0	13.6	1.61	270	QUASI-PEAK	None
138.760000	39.45	12.12	-23.1	28.5	43.5	15.0	1.00	120	QUASI-PEAK	Charging bat
141.850000	38.63	12.02	-23.0	27.6	43.5	15.9	1.00	225	QUASI-PEAK	None
116.320000	38.14	12.53	-23.2	27.5	43.5	16.0	1.00	180	QUASI-PEAK	None
114.020000	38.26	12.40	-23.2	27.5	43.5	16.0	1.00	330	QUASI-PEAK	None
195.480000	31.26	17.20	-22.5	26.0	43.5	17.5	1.00	135	QUASI-PEAK	None
137.090000	36.56	12.20	-23.1	25.7	43.5	17.8	1.00	180	QUASI-PEAK	None
1000.000000	27.72	24.40	-16.5	35.6	54.0	18.4	1.00	350	QUASI-PEAK	None

FCC Part 15.225 / 15.209

Electric Field Strength

EUT: Dabir Patient Support System REV 2 Design

Manufacturer: Dabir Surfaces
Operating Condition: 68 deg F; 25% R.H.
Test Site: D.L.S. O.F. Site 2
Operator: Craig B #10097
Test Specification: Radiated emissions

Comment: Continuous Transmit at 13.56 MHz

Date: 02-11-2019

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "A211b_F1H_Final"

2/11/2019 2:12PM										
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dΒμV/m	dВ	dBµV/m	dBμV/m	dВ	m	deg		
800.015000	41.61	22.00	-19.0	44.6	46.0	1.4	1.05	90	QUASI-PEAK	None
772.895000	39.28	21.70	-19.4	41.6	46.0	4.4	1.08	90	QUASI-PEAK	None
248.225000	51.40	12.32	-22.2	41.5	46.0	4.5	1.18	90	QUASI-PEAK	None
257.735000	50.72	12.60	-22.2	41.1	46.0	4.9	1.18	80	QUASI-PEAK	None
959.990000	33.61	23.90	-17.4	40.1	46.0	5.9	1.08	30	QUASI-PEAK	None
786.470000	36.49	21.80	-19.2	39.1	46.0	6.9	1.06	90	QUASI-PEAK	None
959.975000	32.09	23.90	-17.4	38.6	46.0	7.4	1.00	255	QUASI-PEAK	None
248.225000	48.06	12.32	-22.2	38.2	46.0	7.8	2.03	90	QUASI-PEAK	None
939.995000	30.85	23.70	-17.7	36.9	46.0	9.1	1.00	250	QUASI-PEAK	None
447.470000	40.95	17.10	-21.3	36.8	46.0	9.2	2.03	80	QUASI-PEAK	None
827.135000	33.32	22.20	-18.9	36.6	46.0	9.4	1.03	80	QUASI-PEAK	None
718.670000	34.93	21.20	-19.8	36.3	46.0	9.7	1.19	80	QUASI-PEAK	None
596.630000	36.87	19.50	-20.4	36.0	46.0	10.0	1.33	135	QUASI-PEAK	None
80.650000	46.97	6.23	-23.7	29.5	40.0	10.5	2.47	225	QUASI-PEAK	Charging bat
813.575000	31.11	22.10	-19.0	34.2	46.0	11.8	1.06	80	QUASI-PEAK	None
323.480000	40.80	15.00	-21.8	34.0	46.0	12.0	1.00	225	QUASI-PEAK	None
427.685000	38.42	16.50	-21.4	33.5	46.0	12.5	1.00	135	QUASI-PEAK	None
355.910000	40.17	15.00	-21.7	33.4	46.0	12.6	1.00	180	QUASI-PEAK	None
528.830000	35.44	18.30	-20.8	33.0	46.0	13.0	1.57	100	QUASI-PEAK	None
444.125000	36.76	17.00	-21.3	32.5	46.0	13.5	1.92	45	OUASI-PEAK	None
85.990000	41.58	7.40	-23.6	25.4	40.0	14.6	2.16	270	QUASI-PEAK	None
132.690000	39.11	12.50	-23.1	28.5	43.5	15.0	3.61	270	QUASI-PEAK	Charging bat
169.970000	36.76	14.40	-22.7	28.4	43.5	15.1	1.87	225	OUASI-PEAK	None
366.710000	37.41	15.10	-21.7	30.8	46.0	15.2	2.75	75	QUASI-PEAK	None
643.055000	30.41	20.10	-20.3	30.2	46.0	15.8	1.00	0	OUASI-PEAK	None
115.610000	38.21	12.50	-23.2	27.5	43.5	16.0	2.81	100	OUASI-PEAK	Charging bat
1000.000000	30.04	24.40	-16.5	37.9	54.0	16.1	1.85	225	OUASI-PEAK	None
170.810000	35.27	14.56	-22.7	27.1	43.5	16.4	1.97	290	OUASI-PEAK	None
114.000000	37.34	12.40	-23.2	26.6	43.5	16.9	2.59	270	OUASI-PEAK	None
135.360000	35.58	12.36	-23.1	24.9	43.5	18.6	2.36	270	QUASI-PEAK	None
195.460000	27.97	17.20	-22.5	22.7	43.5	20.8	1.68	100	OUASI-PEAK	None
			•						~	

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

Section B

B3.0 Frequency Stability

Rule Part: FCC Part 15.225(e)

Test Procedure: ANSI C63.10:2013 Section 6.8

Limits: 0.01% of the center frequency

Limit = ± -1.356 kHz (0.01% of 13.56 MHz)

Results: Compliant

Sample Equations: N/A

.

Notes: The EUT was coupled to a spectrum analyzer using a near-field probe.

The supply voltage was varied from 102 Volts to 138 Volts. Carrier frequency measurements were performed and recorded at nominal

temperature.

The temperature was varied from -20 °C to + 50 °C in increments of 10 degrees. Carrier frequency measurements were performed and recorded at transmitter startup, and at 2 minutes, 5 minutes, and 10 minutes after

startup. No significant drifting was observed.

Company: Dabir Surfaces

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

DLS Electronic Systems, Inc.

Company: Dabir Surfaces

Operator: Craig B

Date of test: 02-12-2019

Model: Dabir Patient Support System REV 2 Design

Limit = $\pm -0.01\%$ (± -1.356 Hz)

Frequency Stability FCC Part 15.225

	110 guildy State Inty 1 00 1 at 101220											
Time after turn ON	Nominal	Measured Fre	quency (at 120 V)									
	Frequency											
	(MHz)	+50 deg. C	Error (Hz)	+40 deg. C	Error (Hz)	+30 deg. C	Error (Hz)	+20 deg. C	Error (Hz)	+10 deg. C	Error (Hz)	
immediate	13.560	13.559713	-286.570	13.559729	-270.540	13.559762	-238.480	13.559782	-218.440	13.559806	-194.390	
2 min.	13.560	13.559709	-290.580	13.559721	-278.560	13.559750	-250.500	13.559774	-226.450	13.559802	-198.400	
5 min.	13.560	13.559709	-290.580	13.559721	-278.560	13.559745	-254.510	13.559770	-230.460	13.559798	-202.400	
10 min.	13.560	13.559709	-290.580	13.559713	-286.570	13.559737	-262.530	13.559770	-230.460	13.559798	-202.400	

Frequency Stability FCC Part 15.225

Time after turn ON	Nominal	Measured Fre	equency (at 120 V)						
	Frequency								
	(MHz)	0 deg. C	Error (Hz)	-10 deg. C	Error (Hz)	-20 deg. C	Error (Hz)		
immediate	13.560	13.559814	-186.370	13.559798	-202.400	13.559758	-242.480		
2 min.	13.560	13.559814	-186.370	13.559806	-194.390	13.559778	-222.440		
5 min.	13.560	13.559810	-190.380	13.559810	-190.380	13.559782	-218.440		
10 min.	13.560	13.559810	-190.380	13.559810	-190.380	13.559786	-214.430		

Frequency Stability FCC Part 15.225

Nominal	Measured Frequency (at 20 deg. C)									
Frequency										
(MHz)	102 V	Error (Hz)	120 V	Error (Hz)	138 V	Error (Hz)				
13.560	13.559782	-218.440	13.559786	-214.430	13.559782	-218.440				

Company: Dabir Surfaces
Model Tested: C2-1001

Report Number: 24318 Project Number: 10097

Section B

B4.0 AC Line Conducted Emissions

Rule Part: FCC Part 15.207

Test Procedure: ANSI C63.10-2013, Section 6.2

Limit: 15.207(a)

Results: Compliant

Notes: This was an AC Conducted emissions measurement.

The EUT was set to transmit continuously with the antenna connected and an

RFID tag (located in Air Pad connector) in place.

PMM NARDA REPORT: 10097 Dabir Surfaces - with ant - L1_000

Report issuing date : 02-11-2019

Standard : FCC Part 15.207

Test Type : Voltage Mains Test

Test Site : DLS Screen Room

Temperature : 70 °F Humidity : 23 %

Test Specs : Line 1; Quasi-Peak detector

Operator : Craig B
DLS Project # : 10097
Result : Pass

EUT

Manufacturer : Dabir Surfaces

Model : Dabir Patient Support System REV 2 Design
Product : Air Pad for medical beds to prevent bed sores

Notes : 120 V 60 Hz

Comments : Turned ON; Continuous transmit at 13.56 MHz

: With antenna connected

Testing Company : DLS Electronic Systems

Tel./Fax : 262-279-0210

Web site : http://www.dlsemc.com

Receiver Details

Model : PMM 9010F Brand : Narda S/N : 020WW40102 Last Calibration : 04/17/2018

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.

10097 Dabir Surfaces - with ant - L1_000 11/02/2019 15:11:26

Rel. SW 2.22 (August 2015)

Rel. FW 1.82 03/12/18

Margin: 100 dB

	Frequency	QPeak	Limit Class B V	Delta	Factor	Factor Cables 43	Factor DLS #507	Factor DLS #592
	[MHz]	[dBµV]	[dBµV]	[dB]	[dB]	[dB]	[dB]	[dB]
1	0.15	34.82	66.00	-31.18	0.10	0.21	9.74	2.23
2	0.15409	31.72	65.78	-34.06	0.10	0.19	9.75	2.18
3	0.21953	48.27	62.84	-14.57	0.08	0.14	9.79	1.66
4	0.25225	38.85	61.68	-22.83	0.08	0.23	9.75	1.48
5	0.368815	48.79	58.53	-9.74	0.07	0.25	9.72	1.14
6	0.499695	48.32	56.01	-7.69	0.07	0.31	9.73	0.83
7	0.507875	49.67	56.00	-6.33	0.07	0.32	9.73	0.82
8	0.802355	44.45	56.00	-11.55	0.07	0.38	9.73	0.54
9	10.55905	23.81	60.00	-36.19	0.07	0.78	9.78	0.11
10	13.56111	43.75	60.00	-16.25	0.07	0.91	9.75	0.18
11	16.606115	44.43	60.00	-15.57	0.06	0.99	9.82	0.22

PMM NARDA REPORT: 10097 Dabir Surfaces - with ant - L1_001

Report issuing date : 02-11-2019

Standard : FCC Part 15.207

Test Type : Voltage Mains Test

Test Site : DLS Screen Room

Temperature : 70 °F Humidity : 23 %

Test Specs : Line 1; AVERAGE detector

Operator : Craig B
DLS Project # : 10097
Result : Pass

EUT

Manufacturer : Dabir Surfaces

Model : Dabir Patient Support System REV 2 Design
Product : Air Pad for medical beds to prevent bed sores

Notes : 120 V 60 Hz

Comments : Turned ON; Continuous transmit at 13.56 MHz

: With antenna connected

Testing Company : DLS Electronic Systems

Tel./Fax : 262-279-0210

Web site : http://www.dlsemc.com

Receiver Details

Model : PMM 9010F Brand : Narda S/N : 020WW40102 Last Calibration : 04/17/2018

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.

10097 Dabir Surfaces - with ant - L1_001 11/02/2019 15:13:51

Rel. SW 2.22 (August 2015)

Rel. FW 1.82 03/12/18

Margin: 100 dB

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 0.15 29.63 56.00 -26.37 0.10 0.21 9.74 2.2 2 0.21953 47.49 52.84 -5.35 0.08 0.14 9.79 1.6 3 0.250205 30.49 51.75 -21.26 0.08 0.22 9.76 1.5	92
2 0.21953 47.49 52.84 -5.35 0.08 0.14 9.79 1.6 3 0.250205 30.49 51.75 -21.26 0.08 0.22 9.76 1.5	
2 0.21953 47.49 52.84 -5.35 0.08 0.14 9.79 1.6 3 0.250205 30.49 51.75 -21.26 0.08 0.22 9.76 1.5	
3 0.250205 30.49 51.75 -21.26 0.08 0.22 9.76 1.5	3
	6
4 0.35041 39.78 48.95 -9.17 0.07 0.25 9.72 1.2	0
	0
5 0.36677 46.11 48.57 -2.46 0.07 0.25 9.72 1.1	5
6 0.454705 35.26 46.79 -11.53 0.07 0.29 9.73 0.9	2
7 0.499695 38.29 46.01 -7.72 0.07 0.31 9.73 0.8	3
8 0.51401 42.50 46.00 -3.50 0.07 0.32 9.73 0.8	1
9 0.57127 32.81 46.00 -13.19 0.07 0.34 9.73 0.7	3
10 0.630575 33.33 46.00 -12.67 0.07 0.35 9.73 0.6	7
11 0.663295 36.48 46.00 -9.52 0.07 0.36 9.73 0.6	6
12 0.761455 31.14 46.00 -14.86 0.07 0.37 9.73 0.5	8
13 0.80031 34.73 46.00 -11.27 0.07 0.37 9.73 0.5	5
14 13.403645 16.99 50.00 -33.01 0.07 0.89 9.75 0.1	7
15 13.56111 43.53 50.00 -6.47 0.07 0.91 9.75 0.1	8
16 16.618385 38.22 50.00 -11.78 0.06 0.99 9.82 0.2	2

PMM NARDA REPORT: 10097 Dabir Surfaces - with ant - L2_000

Report issuing date : 02-11-2019

Standard : FCC Part 15.207

Test Type : Voltage Mains Test

Test Site : DLS Screen Room

Temperature : 70 °F Humidity : 23 %

Test Specs : Line 2; Quasi-Peak detector

Operator : Craig B
DLS Project # : 10097
Result : Pass

EUT

Manufacturer : Dabir Surfaces

Model : Dabir Patient Support System REV 2 Design
Product : Air Pad for medical beds to prevent bed sores

Notes : 120 V 60 Hz

Comments : Turned ON; Continuous transmit at 13.56 MHz

: With antenna connected

Testing Company : DLS Electronic Systems

Tel./Fax : 262-279-0210

Receiver Details

Model : PMM 9010F
Brand : Narda
S/N : 020WW40102
Last Calibration : 04/17/2018

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.

10097 Dabir Surfaces - with ant - L2_000 11/02/2019 15:18:19

Rel. SW 2.22 (August 2015)

Rel. FW 1.82 03/12/18

Margin: 100 dB

	Frequency	QPeak	Limit	Delta	Factor	Factor	Factor	Factor
			Class B V		LISN DLS#	Cables 43	DLS #507	DLS #592
	[MHz]	[dBµV]	[dBµV]	[dB]	[dB]	[dB]	[dB]	[dB]
1	0.15	35.70	66.00	-30.30	0.10	0.21	9.74	2.23
2	0.15409	32.80	65.78	-32.98	0.10	0.19	9.75	2.18
3	0.22362	47.95	62.68	-14.73	0.08	0.13	9.81	1.64
4	0.34223	40.60	59.15	-18.55	0.07	0.25	9.72	1.22
5	0.372905	49.32	58.44	-9.12	0.07	0.25	9.72	1.13
6	0.44448	46.70	56.98	-10.28	0.07	0.28	9.73	0.94
7	0.511965	49.67	56.00	-6.33	0.07	0.32	9.73	0.81
8	0.802355	44.57	56.00	-11.43	0.07	0.38	9.73	0.54
9	0.949595	37.85	56.00	-18.15	0.07	0.39	9.73	0.46
10	1.09888	34.76	56.00	-21.24	0.07	0.37	9.73	0.41
11	1.260435	33.22	56.00	-22.78	0.07	0.37	9.72	0.34
12	1.395405	32.70	56.00	-23.30	0.07	0.40	9.71	0.30
13	10.55905	24.43	60.00	-35.57	0.07	0.78	9.78	0.11
14	13.56111	47.29	60.00	-12.71	0.07	0.91	9.75	0.18
15	16.675645	43.74	60.00	-16.26	0.06	0.99	9.82	0.22

pag. 3 Report #24318 47 of 52

PMM NARDA REPORT: 10097 Dabir Surfaces - with ant - L2_001

Report issuing date : 02-11-2019

Standard : FCC Part 15.207

Test Type : Voltage Mains Test

Test Site : DLS Screen Room

Temperature : 70 °F Humidity : 23 %

Test Specs : Line 2; AVERAGE detector

Operator : Craig B
DLS Project # : 10097
Result : Pass

EUT

Manufacturer : Dabir Surfaces

Model : Dabir Patient Support System REV 2 Design
Product : Air Pad for medical beds to prevent bed sores

Notes : 120 V 60 Hz

Comments : Turned ON; Continuous transmit at 13.56 MHz

: With antenna connected

Testing Company : DLS Electronic Systems

Tel./Fax : 262-279-0210

Web site : http://www.dlsemc.com

Receiver Details

Model : PMM 9010F
Brand : Narda
S/N : 020WW40102
Last Calibration : 04/17/2018

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.

10097 Dabir Surfaces - with ant - L2_001 11/02/2019 15:20:22

Rel. SW 2.22 (August 2015)

Rel. FW 1.82 03/12/18

Margin: 100 dB

	Frequency	C-Avg	Limit	Delta	Factor	Factor	Factor	Factor
			Class B V		LISN DLS#	Cables 43	DLS #507	DLS #592
	[MHz]	[dBµV]	[dBµV]	[dB]	[dB]	[dB]	[dB]	[dB]
1	0.15	30.25	56.00	-25.75	0.10	0.21	9.74	2.23
2	0.221575	47.17	52.76	-5.59	0.08	0.14	9.80	1.65
3	0.295195	28.95	50.38	-21.43	0.07	0.26	9.73	1.32
4	0.34223	32.18	49.15	-16.97	0.07	0.25	9.72	1.22
5	0.368815	46.67	48.53	-1.86	0.07	0.25	9.72	1.14
6	0.454705	35.90	46.79	-10.89	0.07	0.29	9.73	0.92
7	0.5181	42.90	46.00	-3.10	0.07	0.32	9.73	0.80
8	0.569225	33.19	46.00	-12.81	0.07	0.34	9.73	0.73
9	0.667385	37.09	46.00	-8.91	0.07	0.36	9.73	0.66
10	0.720555	27.20	46.00	-18.80	0.07	0.37	9.73	0.62
11	0.802355	33.77	46.00	-12.23	0.07	0.38	9.73	0.54
12	0.96391	28.79	46.00	-17.21	0.07	0.39	9.73	0.45
13	10.557005	17.13	50.00	-32.87	0.07	0.78	9.78	0.11
14	13.56111	47.04	50.00	-2.96	0.07	0.91	9.75	0.18
15	16.602025	37.66	50.00	-12.34	0.06	0.99	9.82	0.22

Company: Dabir Surfaces

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

Section C – Measurement Uncertainty

Compliance with the limits in this standard are based on the results of the compliance measurement. Our calculated measurement uncertainty including the measurement instrumentation, associated connections between the various instruments in the measurement chain, and other contributions, are provided in this section of the test report.

Radiated	Emission Uncertainty below 30MHz	Uncertainty (± dB)
Contribution	Probability Distribution	below 30 MHz
Combined Standard Uncertainty	Normal	1.60
Expanded Uncertainty	Normal (k=2)	3.19

	Radiated Emission Uncertainty above 30MHz									
		(± dB)								
Contribution	Probability Distribution	3M	3M	3M	3M	3M	3M	10M	10M	10M
		30-100	100-700	700-1000	1- 4.5	4.5 - 7	7 - 18	30-100	100-700	700-1000
		MHz	MHz	MHz	GHz	GHz	GHz	MHz	MHz	MHz
Combined Standard Uncertainty	Normal	1.70	1.62	1.66	2.13	2.48	2.85	1.64	1.58	1.66
Expanded Uncertainty	Normal (k=2)	3.40	3.23	3.33	4.26	4.95	5.69	3.29	3.16	3.31

I	Power Line Conducted	Uncertainty (±dB)
Contribution	Probability Distribution	150 kHz - 30 MHz
Combined Standard Uncertainty	Normal	1.05
Expanded Uncertainty	Normal (k=2)	2.10

Company: Dabir Surfaces

Model Tested: C2-1001 Report Number: 24318 Project Number: 10097

END OF REPORT

Revision #	Date	Comments	By
1.0	02-14-2019	Preliminary release	СВ
1.1	02-18-2019	Entered product information from Part A form	CB
1.2	02-19-2019	Convert to .pdf and add .pdf test data	CB
1.3	04-12-2019	Corrected a misspelling on page 1	CB