2.7. Examen 7

SEÑALES Y SISTEMAS

Primer Parcial, curso 2013-14

Grado en Ingeniería Multimedia

Fecha: 29 de Octubre de 2013

 $\mathrm{D}_{uraci\acute{o}_n:\, l: \emptyset_{\mathring{h}}}$

Problema 1. (5,5 PUNTOS) Sea la secuencia

$$x[n] = 2 + 3\cos\left(\frac{3\pi n}{2} - \frac{\pi}{3}\right) + \sin\left(\frac{11\pi n}{4}\right) + \frac{1}{2}\cos\left(\frac{7\pi n}{4} + \frac{\pi}{4}\right)$$

- a) (1 P) Calcula el periodo N_0 .
- b) (3,5 P) Calcula los coeficientes c_k de su desarrollo en serie de Fourier discreto.
- c) (1 P) Representa el espectro de amplitud y de fase de los coeficientes c_k en función de la frecuencia discreta.

Problema 2. (4,5 PUNTOS) Se dispone de un cuantificador de 5 bits cuya zona granular está comprendida entre los valores $x_{max} = 0,5$ y $x_{min} = -0,5$ voltios. La función característica del cuantificador Q(x) es la siguiente:

$$x_q = Q(x) = \left\{ egin{array}{ll} \left(E\left[rac{|x|}{\Delta}
ight] + rac{1}{2}
ight) \cdot \Delta \cdot ext{sign}(x), & |x| < x_{max}, \ & & \ rac{L-1}{2} \cdot \Delta \cdot ext{sign}(x), & |x| \geq x_{max}. \end{array}
ight.$$

Donde L es el número de niveles y Δ es el escalón de cuantificación. A cada valor de x_q se le asigna una palabra de código binaria de acuerdo con una codificación signo-magnitud, con el bit de signo 1 para valores de tensión negativos y viceversa.

a) (3 P) Considera la muestra $x_1=0.35$ V que se ha obtenido muestreando la señal $x(t)=0.5\cos(0.4\pi t-\frac{\pi}{3})$, y la muestra $x_2=-0.53$ V. Calcula su valor cuantificado, su palabra de código y el error relativo de cuantificación en tanto por ciento.

b) (1 p) Considera ahora estos dos otros cuantificadores uniformes, cuyas características son $2X_m = 1$. $2) \quad bits = 4,$

 $2X_m = 2.$ 3) bits = 6,

bits = 0, bitsEntre las ucos que financia mejor la señal x(t) ajustándose a sus características? Justifica tu elección.

c) (0,5 p) Suponiendo que el margen dinámico del cuantificador sea $2X_m = 6\sigma_x$, es decir 6 veces (0.5 P) Suportion (0.5de niveles que asegura este requerimiento? Emplea la siguiente fórmula de la relación señal a ruido de cuantificación:

$$\left(\frac{S}{N}\right)_q = 6,02 \cdot (b-1) + 10,8 - 20 \cdot \log\left(\frac{2X_m}{2\sigma_x}\right)$$
 dB.

SEÑALES Y SISTEMAS

Primer Parcial, curso 2013-14

Grado en Ingeniería Multimedia

Fecha: 29 de Octubre de 2013

Duración: 1:00 h

SOLUCIÓN

Problema 1. (5,5 PUNTOS)

a) La señal x[n] es la suma de tres sinusoides más la componente continua. Hay que calcular y averiguar las frecuencias de las tres sinusoides. Para la primera de ellas:

$$\omega_{d1}=rac{3\pi}{2}$$
 rad/utd, $f_{d1}=rac{\omega_{d1}}{2\pi}=rac{3}{4}$ 1/utd.

Como la frecuencia es racional, la primera sinusoide es periódica y su periodo es

$$N_{01} = \min\{\frac{k}{f_{d1}}\} = \min\{\frac{k}{\frac{3}{4}}\} = 4 \text{ utd.}$$

Para la segunda sinusoide:

$$\omega_{d2}=rac{11\pi}{4}$$
 rad/utd, $f_{d2}=rac{\omega_{d2}}{2\pi}=rac{11}{8}$ 1/utd.

Como la frecuencia también es racional, la segunda sinusoide es periódica y su periodo es

$$N_{02} = \min\{\frac{k}{f_{d2}}\} = \min\{\frac{k}{\frac{11}{8}}\} = 8$$
 utd.

Para la tercera:

$$\omega_{d3}=\frac{7\pi}{4}$$
 rad/utd, $f_{d2}=\frac{\omega_{d2}}{2\pi}=\frac{7}{8}$ 1/utd.

Como la frecuencia también es racional la tercera sinusoide es periódica y su periodo es

$$N_{03} = \min\{\frac{k}{f_{d3}}\} = \min\{\frac{k}{\frac{7}{8}}\} = 8 \text{ utd.}$$

La señal x[n] es por tanto periódica de periodo:

$$N_0 = M.C.M.\{N_{01}, N_{02}, N_{03}\} = 8$$
 utd.

b) Para calcular los coeficientes del desarrollo en serie de Fourier (DSF) discreto de x[n] es más cómodo transformar su expresión hasta obtener una suma de sinusoides complejas. La señal x[n] es una suma de señales coseno:

$$x[n] = 2 + 3\cos\left(\frac{3\pi n}{2} - \frac{\pi}{3}\right) + \cos\left(\frac{11\pi n}{4} - \frac{\pi}{2}\right) + \frac{1}{2}\cos\left(\frac{7\pi n}{4} + \frac{\pi}{4}\right).$$

Expresamos ahora cada señal coseno como suma de sinusoides complejas:

$$x[n] = 2 + \frac{3}{2}e^{j\left(\frac{3\pi n}{2} - \frac{\pi}{3}\right)} + \frac{3}{2}e^{-j\left(\frac{3\pi n}{2} - \frac{\pi}{3}\right)} + \frac{1}{2}e^{j\left(\frac{11\pi n}{4} - \frac{\pi}{2}\right)} + \frac{1}{2}e^{-j\left(\frac{11\pi n}{8} - \frac{\pi}{2}\right)} + \frac{1}{4}e^{j\left(\frac{7\pi n}{4} + \frac{\pi}{4}\right)} + \frac{1}{4}e^{-j\left(\frac{7\pi n}{4} + \frac{\pi}{4}\right)}.$$

El DSF de x[n] es de la forma

$$x[n] = \sum_{k=0}^{N_0 - 1} c_k e^{j\frac{2\pi kn}{N_0}} = \sum_{k=0}^{7} c_k e^{j\frac{\pi kn}{4}}.$$

Comparando ambas expresiones de x[n] se obtienen los coeficientes c_k :

$$c_{0} = 2,$$

$$\frac{3}{2}e^{j\left(\frac{3\pi n}{2} - \frac{\pi}{3}\right)} = c_{k}e^{j\frac{\pi k n}{4}} \Leftrightarrow k = 6; c_{6} = \frac{3}{2}e^{-j\frac{\pi}{3}},$$

$$\frac{3}{2}e^{-j\left(\frac{3\pi n}{2} - \frac{\pi}{3}\right)} = c_{k}e^{j\frac{\pi k n}{4}} \Leftrightarrow k = -6; k' = k + N_{0} = -6 + 8 = 2; c_{2} = \frac{3}{2}e^{j\frac{\pi}{3}}$$

$$\frac{1}{2}e^{j\left(\frac{11\pi n}{4} - \frac{\pi}{2}\right)} = c_{k}e^{j\frac{\pi k n}{4}} \Leftrightarrow k = 11; k'' = k - N_{0} = 11 - 8 = 3; c_{3} = \frac{1}{2}e^{-j\frac{\pi}{2}},$$

$$\frac{1}{2}e^{-j\left(\frac{11\pi n}{4} - \frac{\pi}{2}\right)} = c_{k}e^{j\frac{\pi k n}{4}} \Leftrightarrow k = -11; k' = k + 2N_{0} = -11 + 16 = 5; c_{5} = \frac{1}{2}e^{j\frac{\pi}{2}},$$

$$\frac{1}{4}e^{j\left(\frac{7\pi n}{4} + \frac{\pi}{4}\right)} = c_{k}e^{j\frac{\pi k n}{4}} \Leftrightarrow k = 7; c_{7} = \frac{1}{4}e^{j\frac{\pi}{4}},$$

$$\frac{1}{4}e^{-j\left(\frac{7\pi n}{4} + \frac{\pi}{4}\right)} = c_{k}e^{j\frac{\pi k n}{4}} \Leftrightarrow k = -7; k' = k + N_{0} = -7 + 8 = 1; c_{1} = \frac{1}{4}e^{-j\frac{\pi}{4}}.$$

El resto de coeficientes son cero.

c) Los respectivos espectros de amplitud y fase de los coeficiente c_k en función de la frecuencia discreta se representan en la figura 2.15.

Problema 2. (4,5 PUNTOS)

a) Como los valores que limitan la zona normal de funcionamiento del cuantificador son $x_{min} = -0.5 \text{ V}$ y $x_{max} = 0.5 \text{ V}$; las muestras x_1 y x_2 caen la primera en la zona granular y la segunda en zona de saturación. El número de niveles de cuantificación viene determinado por el número de bits:

Figura 2.15. Espectros de amplitud y fase de los coeficiente c_k en función de la frecuencia discreta.

$$L = 2^b = 2^5 = 32$$
 niveles.

Para calcular los valores cuantificados x_{q1} y x_{q2} necesitamos saber el tamaño del escalón de cuantificación:

$$\Delta = \frac{x_{max} - x_{min}}{L} = \frac{1}{32} = 0.03125 \text{ V}.$$

La palabra de código que corresponde a cada muestra será la concatenación del bit de signo (bit de más peso) y un valor N expresado en binario con 4 bits. Es sencillo comprobar que el valor de la magnitud N viene dado en este caso por:

$$N = \left(E\left[\frac{|x|}{\Delta}\right]\right).$$

Para la primera muestra:

$$x_{q1} = Q(x_1) = \left(E\left[rac{|x_1|}{\Delta}
ight] + rac{1}{2}
ight) \cdot \Delta \cdot ext{sign}(x_1) = \left(E\left[rac{|0,35|}{0,03125}
ight] + rac{1}{2}
ight) rac{1}{32} = \left(11 + rac{1}{2}
ight) rac{1}{32} ext{ V,} \ x_{q1} = 0,35937 ext{ V.}$$

El error de cuantificación relativo cometido en tanto por ciento es:

$$e_{qr1} = \frac{|x_{q1} - x_1|}{|x_1|} 100 = \frac{|0,35937 - 0,35|}{|0,35|} 100 = 2,7 \%.$$

Para la palabra de código tenemos que el bit de signo es 0 y la magnitud

$$N1 = \left(E\left[\frac{|x_1|}{\Delta}\right]\right) = \left(E\left[\frac{|0,35|}{0,03125}\right]\right) = 11.$$

Por lo que le corresponde a esta muestra la palabra de código: 01011. Para la segunda muestra:

$$x_{q2} = Q(x_2) = \frac{L-1}{2} \cdot \Delta \cdot \operatorname{sign}(x) = (\frac{(32-1)}{2}) \frac{1}{32} (-1) = \frac{-31}{64} = -0,48437 \text{ V}.$$

El error de cuantificación relativo cometido en tanto por ciento es:

$$e_{qr2} = \frac{|x_{q2} - x_2|}{|x_2|} 100 = \frac{|-0.48437 + 0.53|}{|-0.53|} 100 = 8.6\%.$$

Para la palabra de código tenemos que el bit de signo es 1 y la magnitud el máximo nivel posible N2=-15. Así que a la segunda muestra le corresponde la secuencia de bits: 11111.

- b) El escalón de cuantificación de cada cuantificador es: $\Delta_1 = \frac{1}{32} = 0.03125 \, V$, $\Delta_2 = \frac{1}{16} = 0.0625 \, V$, $\Delta_3 = \frac{1}{32} = 0.03125 \, V$. Sin embargo el margen dinámico del tercer cuantificador varía entre -1 y 1 V. Por lo tanto la meior opción es la primera, va que se ajusta meior a los correctorísticos de la primera.
 - la mejor opción es la primera, ya que se ajusta mejor a las características de la señal x(t) $(2X_m=1)$.
- c) Aplicando la formula

$$\left(\frac{S}{N}\right)_q = 6,02\cdot(b-1) + 10,8 - 20\cdot\log\left(\frac{2X_m}{2\sigma_x}\right) > 70\,\mathrm{dB},$$

y teniendo en cuenta que b=5 y $2X_m=6\sigma_x$, obtenemos

$$b > 12,4 = 13,$$
 $2^b = 2^{13} = 8192$ niveles.