Physics-based Parameterizations of Air-sea Fluxes at High Winds Extension of CBLAST

Tetsu Hara

Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882 phone: (401) 874-6509 fax: (401) 874-6728 email: thara.uri.edu

Isaac Ginis

Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882 phone: (401) 874-6509 fax: (401) 874-6728 email: iginis@gso.uri.edu

Stephen E. Belcher

Department of Meteorology, University of Reading, Reading, RG6 6BB, UK phone: (44) 118-931-6646 fax: (44) 118-931-8905 email: s.e.belcher@reading.ac.uk

Grant Number: N00014-06-10729 http://www.po.gso.uri.edu/airsea

LONG-TERM GOALS

The long term goal of this project is to provide a new set of parameterizations of air-sea fluxes, which can be used as boundary conditions for high-resolution numerical models of ocean, atmosphere, and coupled ocean/atmosphere systems. The new parameterizations will be constructed based on physical processes of the exchange of mass, momentum, heat, moisture, energy at the interface between the ocean and the atmosphere, and will be valid for the whole range of wind speeds.

OBJECTIVES

We will extend the ongoing CBLAST studies by focusing on the following two areas:

- * We will continue the basic study of the wave boundary layer. We will complete the inclusion of surface wave breaking effects on airflow. Specifically, two new physical processes will be included in the model:
- momentum and energy flux into breaking waves due to the form drag of breaking crests
- effect of spatial sheltering of shorter waves due to flow separation behind longer breaking waves. We will investigate how different surface wave fields affect air-sea momentum flux and scalar (heat, humidity) fluxes across the wave boundary layer.
- * We will validate our coupled WBL/WW3 model by simulating the wave field under hurricanes observed during the CBLAST field programs and comparing the model results and available observational data. We will compare the directional surface wave spectrum from our model against direct SRA observations. We will compare the drag coefficient from our model against direct observations from aircraft.

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comment arters Services, Directorate for Inf	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
. REPORT DATE 30 SEP 2006 2. REPORT TYPE			3. DATES COVERED 00-00-2006 to 00-00-2006			
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Physics-based Parameterizations of Air-sea Fluxes at High Winds Extension of CBLAST				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Rhode Island, Graduate School of Oceanography, Narragansett, RI,02882				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO	OTES					
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	4		

Report Documentation Page

Form Approved OMB No. 0704-0188

APPROACH

The purpose of the new wave boundary layer (WBL) model is to predict the neutral drag coefficient for given 10-meter wind speed vector, surface wave spectrum, and breaking wave statistics. We have developed such a model without including the breaking wave effects (Hara and Belcher, 2004; Moon et al., 2004). Here, the model will be extended to include the effect of enhanced form drag by breaking waves as well as the effect of airflow separation due to breaking waves. If the breaking wave effects are set to be zero in the new model, it becomes identical to the existing nonbreaking model. The new wave boundary layer model will be constructed based on the following three components: (1) spatial sheltering due to air flow separation behind breaking wave crests, (2) conservation of momentum inside the wave boundary layer, (3) conservation of energy inside the wave boundary layer.

Coupling between the new WBL model and the WAVEWATCH III (WW3) model is made as described by Moon et al. (2004). Specifically, the spectrum near the peak is explicitly calculated using the WW3 model and the high frequency (tail) part is parameterized using the equilibrium wave spectrum model as described in 3.1. The resulting complete wave spectrum is then used to estimate the roughness length and the neutral drag coefficient.

We will investigate the wave spectrum and the roughness length (or neutral drag coefficient) under five Hurricanes - Fabian (2003), Isabel (2003), Frances (2004), Ivan (2004), and Jeanne (2004) - investigated during the CBLAST experiment and validate our model results against observations. In order to create more realistic wind forcing for the WBL/WW3 coupled model, we will also develop a new method of generating wind fields in hurricanes by blending the HRD winds and the message-based wind fields.

These tasks will be carried out by a graduate student under the supervision of the three PIs.

WORK COMPLETED

We have made progress in developing the new wave boundary layer model including the breaking wave effects. As a first step we examined a limiting condition where the wind input to breaking waves is much larger than the input to nonbreaking waves. A coupled model of breaking wave statistics, wind stress, and mean wind profile was developed under such conditions. A manuscript based on this model has been submitted for publication in Journal of Physical Oceanography (Kukulka et al., 2006).

RESULTS

Coupled equations are derived governing the turbulent stress, wind speed, and the breaking wave distribution (total breaking crest length per unit surface area as a function of wave number), based on the assumption that in the equilibrium range of surface wave spectra the wind stress is dominated by the form drag of breaking waves. It is assumed that smaller scale breaking waves are sheltered from wind forcing if they are in airflow separation regions of longer breaking waves (spatial sheltering effect). Without this spatial sheltering, exact analytic solutions are obtained; with spatial sheltering asymptotic solutions for small and large scale breakers are derived. In both cases, the breaking wave distribution approaches a constant value for large wave numbers (small-scale breakers). For low wave numbers, the breaking distribution strongly increases with wind forcing. If the equilibrium range model is extended to the spectral peak, the model yields the normalized roughness length (Charnock

coefficient) of growing seas, which increases with wave age and is roughly consistent with earlier laboratory observations (Figure 1). Model results suggest that the wind stress over fully developed seas is not dominated by the form drag of breaking waves.

Figure 1: Nondimensional roughness length (Charnock coefficient) versus wave age. Pink area is the range of results with breaking waves only (THIS STUDY). Red area is the range of results with nonbreaking waves only. Red lines are results with wind speed 10, 20, 30, 40, 50 m/s from top to bottom (from Moon et al 2004). Dashed line and dash dot line are empirical estimates by Toba et al. (1990) and Drennan et al. (2003), respectively. Green crosses are data compiled by Toba and Ebuchi (1991). Blue circles are field data from Drennan et al. (2003). Blue squares are laboratory data from Donelan et al. (2004).

IMPACT/APPLICATIONS

This program of work promises a one dimensional (1d) model of the atmospheric and oceanic boundary layers in the vicinity of the air-sea interface that accounts for both breaking and non-breaking waves. The model will, given the ten meter wind speed, temperature and humidity and surface wave parameters, produce wave breaking statistics, wind and current profiles, fluxes and flux profiles and the turbulent kinetic energy budgets through the 1d air and water wave boundary layers. These results may be used as a basis for any future modeling efforts of ocean-atmosphere interaction processes.

RELATED PROJECTS

TH has a NSF(OCE) project (2005-2008) to validate and improve the new wave boundary layer model including breaking wave effects against laboratory observations performed at University of Miami.

New knowledge gained from our study is being incorporated in coupled atmosphere-wave-ocean numerical models under a NSF(ATM) project (2004-2007) by IG and TH. Current numerical wave models are not capable of predicting accurately short wind waves at frequencies much higher than the spectral peak. Instead they patch a parameterized form of spectra. More accurate information about short wind wave spectra and their breaking statistics resulting from this study will improve the accuracy of the numerical wave prediction and will thus enhance the performance of coupled numerical models.

REFERENCES

Donelan, M.A., B.K. Haus, N. Reul, W.J. Plant, M. Stiassne, H.C. Graber, O.B. Brown, E.S. Saltzman, 2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophysical Research Letters, 31, L18306.

Drennan, W. M., G. C. Graber, D. Hauser, and C. Quentin, 2003. On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062, doi:10.1029/2000JC000715.

Hara, T. and S. E. Belcher, 2004. Wind profile and drag coefficient over mature ocean surface wave spectra. J. Phys. Oceanogr., 34, 2345-2358.

Moon I.-J., T. Hara, I. Ginis, S. E. Belcher, and H. Tolman, 2004. Effect of surface waves on air-sea momentum exchange: I. Effect of mature and growing seas. J. Atoms. Sci., 61, 2321-2333.

Toba, Y., N. Iida, H. Kawamura, N. Ebuchi and I. S. F. Jones, 1990. The wave dependence of seasurface wind stress. J. Phys. Oceanogr., 20, 705-721.

PUBLICATIONS

Kukulka, T., T. Hara, and S. E. Belcher, 2006. A model of the air-sea momentum flux and breaking wave distribution for young, strongly forced wind-waves, J. Phys. Oceanogr. [refereed].