Московский Физико-Технический Институт

Кафедра Общей физики Лабораторная работа №5.5.1

Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергии

Маршрут VII

19 сентября 2019 г. 26 сентября 2019 г. Работу выполнил Ринат Валиев, 715 гр.

Под руководством А.И. Миланича

Постановка эксперимента

Цель работы: с помощью сцинтилляционного счётчика измерить линейные коэффициенты ослабления потока γ -лучей в свинце, железе и алюминии; по их величине определить энергию γ -квантов.

Оборудование: источник γ -излучения, сцинтилляционный счетчик, секундомер.

Теория

Гамма-лучи возникают при переходе возбуждённых ядер в более низкое энергетическое состояние. Энергия γ -квантов обычно порядка $10 \div 1000$ кэВ. Заряд и масса γ -кванта равны нулю. Проходя через вещество, пучок γ -квантов ослабляется по закону:

$$I = I_0 e^{-\mu l} \quad \Leftrightarrow \quad I = I_0 e^{-\mu' m_1},\tag{1}$$

где I, I_0 - интенсивности прошедшего и падающего излучений, l – длина пути, пройденного пучком γ -лучей, m_1 – масса пройденного вещества на единицу площади, μ и μ' – константы, зависящие от среды ($[\mu] = \text{см}^{-1}, \ [\mu'] = \text{см}^2/\Gamma$). μ' , в отличие от μ , не зависит от плотности среды. Ослабление потока γ -лучей в веществе связано с тремя эффектами: фотоэлектрическим поглощением, комптоновским рассеянием и генерацией электрон-позитронных пар.

Фотоэлектричекое поглощение

При столкновении γ -квантов с электронами внутренних атомных оболочек может происходить поглощение квантов. Свободные (наружные) электроны не могут поглощать кванты. Вероятность dP_{Φ} фотоэлектрического поглощения γ -квантов:

$$dP_{\Phi} = \sigma_{\Phi} n_1 dl$$
,

где dl — длина пути, n_1 — плотность внутренних электронов, σ_{Φ} — поперечное сечение фотоэлектрического поглощения.

$$\mu_{\Phi} = \sigma_{\Phi} n_1,$$

 μ_{Φ} — коэффициент поглощения для фотоэффекта μ из уравнения (1). Фотоэффект является доминирующим механизмом поглощения γ -квантов при не очень высоких энергиях. Его вероятность зависит от энергии лучей и заряда ядер.

Рис. 1: Зависимость сечения фотоэффекта от энергии γ -квантов.

Комптоновское рассеяние

Комптоновское рассеяние — упругое столкновение γ -кванта с электроном. Оно может происходить на свободных/слабосвязанных электронах. Эффект Комптона становится существенным, когда энергия квантов становится много больше энергии связи электронов в атоме. В этом случае сечение комптон-эффекта:

$$\sigma_K = \pi r^2 \frac{mc^2}{\hbar \omega} \left(\ln \frac{2\hbar \omega}{mc^2} + \frac{1}{2} \right),$$

где $r\simeq 2.8\cdot 10^{-13}$ см — классический радиус электрона, m — его масса. Эффект Комптона приводит не к поглощению, а к рассеянию γ -квантов и уменьшению их энергии.

Образование пар

При энергиях γ -лучей больше 1.02 МэВ становится возможным поглощение лучей, связанное с образованием электрон-позитронных пар. Оно возникает в электрическом поле ядер. Вероятность этого процесса приблизительно пропорциональна Z^2 .

Полный коэффициент ослабления потока γ -лучей

Полный коэффициент ослабления потока лучей равен сумме коэффициентов для трёх рассмотренных процессов.

Рис. 2: Полные коэффициенты ослабления потока γ -лучей в алюминии, железе и свинце.

Полный коэффициент ослабления:

$$\mu = \frac{1}{l} \ln \frac{N_0}{N}$$

В работе определяются толщина образца l, число падающих частиц N_0 и число прошедших частиц N.

Экспериментальная установка

Схема установки, используемой в работе, показана на рисунке 3. Свинцовый коллиматор выделяет узкий почти параллельный пучок γ -квантов, проходящий через набор поглотителей. Сигналы от счетчика усиливаются и регистрируются пересчетным прибором. Высоковольтный выпрямитель обеспечивает питание сцинтилляционного счетчика.

Рис. 3: Блок-схема установки, используемой для измерения коэффициентов ослабления потока γ -лучей; Рb — свинцовый контейнер с коллиматорным каналом; П — набор поглотителей, ПП — пересчётный прибор; С — сцинтиллятор (кристалл NaI(Tl)); ВВ — высоковольтный выпрямитель, Ф — формирователь-выпрямитель; И — источник γ -лучей

Рис. 4: Схема рассеяния γ -квантов в поглотителе

Выполнение работы

1. Посмотрим на излучение при открытом и закрытом источниках в течение 5 с. Точность измерений счетчиком везде примем равной 0.3%.

N(открыт)	39000	38000	38000
N(закрыт)	95	85	95

Таблица 1: Время измерения t = 5 с.

2. Получим зависимость поглащения γ -лучей в алюминии, железе и свинце. Измерения проведем за время t=20 с. Для каждого случая l – длина препятствия.

l, cm	0.0	2.0	4.0	6.0	8.0	10.0	12.0	14.0
N, шт	149727	97197	65068	43321	28403	18834	12633	8774

Таблица 2: Алюминий. Погрешность измерения $l: \varepsilon = 0.8\%$.

l, cm	0.0	1.0	2.0	3.0	4.0	5.0
N, шт	148843	87834	47679	26980	15891	8877
l, cm	6.0	7.0	8.0	9.0	10.0	11.0
N, IIIT	5438	3238	2008	1384	987	710

Таблица 3: Железо. Погрешность измерения $l: \varepsilon = 0.9\%$.

l, cm	0.0	0.5	1.0	1.5	2.0	2.5
N, шт	152572	84759	50209	28060	16262	9812
l, cm	3.0	3.5	4.0	4.5	5.0	5.5
N, шт	6023	3687	2370	1613	1175	977

Таблица 4: Свинец. Погрешность измерения $l: \varepsilon = 1.3\%$.

3. Посмотрим на излучение рядом с источником в течение 10 с, а также на показания счетчика при закрытом источнике в зависимости от времени.

<i>N</i> (рядом)	1027491	986199	973175
t, c	100	200	300
<i>N</i> (закрыт)	1780	3663	5464

Таблица 5: Измерение фона.

4. Построим графики зависимостей логарифма числа прошедших частиц от толщины образца для каждого материала. Также не забудем учесть фоновые излучения, отнимем из числа срабатывания счетчика $N_{\rm фон}=364$.

Рис. 5: Алюминий.

Рис. 6: Железо.

Рис. 7: Свинец.

5. Из графиков находим:

$$\mu_{\rm Al} = (0.206 \pm 0.001) \ {\rm cm}^{-1} \ \mu_{\rm Fe} = (0.551 \pm 0.003) \ {\rm cm}^{-1} \ \mu_{\rm Pb} = (1.025 \pm 0.007) \ {\rm cm}^{-1}$$

6. Используя найденные коэффициенты ослабления и табличные данные, определили среднюю энергию γ -лучей, испускаемых источником:

$$E_{\gamma} \sim 0.5 \div 0.6 \text{ M} \cdot \text{B}$$

Итоги

Исследовали поглощение γ -лучей в алюминии, железе и свинце. Получили линейные зависимости логарифма прошедших частиц от толщины образцов и по ним определили линейные коэффициенты ослабления μ , а также среднюю энергию γ -лучей, испускаемых источником.