Twierdzenie Pitagorasa

Wierdzenie Pitagorasa – jest twierdzeniem geometrii euklidesowej, które w naszym (zachodnio-europejskim) kręgu kulturowym przypisywane jest żyjącemu w VI wieku p.n.e.greckiemu matematykowi i filozofowi Pitagorasowi, chociaż niemal pewne jest, że znali je przed nim starożytni Egipcjanie. Wiadomo też, że jeszcze przed Pitagorasem znano je w starożytnych Chinach, Indiach i Babilonii.

1 Teza

 W dowolnym trójkącie prostokątnym, suma pól kwadratów zbudowanych na przyprostokątnych trójkąta prostokątnego równa jest polu kwadratu zbudowanego na przeciwprostokątnej tego trójkąta.

lub

W trójkącie prostokątnym suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej tego trójkąta.

2 Interpretacja

Rysunek 1: Interpretacja twierdzenia Pitagorasa

Oto interpretacja geometryczna: jeżeli na bokach trójkąta prostokątnego zbudujemy kwadraty, to suma pól kwadratów zbudowanych na przyprostokątnych tego trójkąta jest równa polu kwadratu zbudowanego na przeciwprostokątnej.

3 Dowody

Liczba różnych dowodów twierdzenia Pitagorasa jest przytłaczająca, według niektórych źródeł przekracza 350. Euklides w Elementach podaje ich osiem, kolejne pojawiały się na przestrzeni wieków i pojawiają aż po dni dzisiejsze. Niektóre z dowodów są czysto algebraiczne (jak dowód z podobieństwa trójkątów), inne mają formę układanek geometrycznych (prawdopodobny dowód Pitagorasa), jeszcze inne oparte są o równości pól pewnych figur. Zaprezentuje tu jedynie dwa wybrane, najbardziej popularne dowody:

- 1. Dowód układanka
- 2. Dowód przez podobieństwo

3.1 Dowód układanka

Dany jest trójkąt prostokątny o bokach długości a,b i c jak rysunku z lewej. Konstruujemy kwadrat o boku długości a+b w sposób ukazany na rysunku z lewej, a następnie z prawej. Z jednej strony pole kwadratu równe jest sumie pól czterech trójkątów prostokątnych i kwadratu zbudowanego na ich przeciwprostokątnych, z drugiej zaś równe jest ono sumie pól tych samych czterech trójkątów i dwóch mniejszych kwadratów zbudowanych na ich przyprostokątnych. Stąd wniosek, że pole kwadratu zbudowanego na przeciwprostokątnej jest równe sumie pól kwadratów zbudowanych na przyprostokątnych.

Rysunek 2: Dowód twierdzenia Pitagorasa

Szczepan Jeleński w książce Śladami Pitagorasa przypuszcza, że w ten sposób mógł udowodnić swoje twierdzenie sam Pitagoras.

Powyższy dowód (Rys.2), choć prosty, nie jest elementarny w tym sensie, że jego poprawność wymaga uprzedniego uzasadnienia, że pole kwadratu złożonego z trójkątów i mniejszych kwadratów jest równe sumie pól tych figur. Może się to wydawać oczywiste, jednak dowód tego faktu wymaga uprzedniego zdefiniowania pola, na przykład poprzez konstrukcję miary Jordana.

3.2 Dowód przez podobieństwo

Rysunek 3: Dowód twierdzenia Pitagorasa przez podobieństwo

Jest to jeden z dowodów podanych przez Euklidesa, wykorzystuje on podobieństwo trójkątów. Zauważmy, że na rysunku obok trójkąty: duży - ΔABC , różowy - ΔADC i niebieski - ΔDBC są podobne. Niech |AB| = c, |BC| = a i |AC| = b. Można napisać proporcje:

$$\frac{|DB|}{a} = \frac{a}{c}$$
$$\frac{|AD|}{b} = \frac{b}{c}$$

Stad:

$$\mathbf{a}^2 = c \cdot |DB|$$

 $\mathbf{b}^2 = c \cdot |AD|$

I po dodaniu stronami:

$$a^{2} + b^{2} = c \cdot |DB| + c \cdot |AD| = c(|DB| \cdot |AD|) = c^{2}$$

4 Twierdzenie odwrotne

4.1 Teza

Rysunek 4: Odwrotne twierdzenie Pitagorasa

Jeśli dane są trzy dodatnie liczby a,b i c takie, że $a^2 + b^2 = c^2$, to istnieje trójkąt o bokach długości a,b i c, a kąt między bokami o długości a i b jest prosty.

Najprawdopodobniej twierdzenie to wykorzystywane było w wielu starożytnych kulturach Azji (Chinach, Indiach, Babilonii) i Egipcie do praktycznego wyznaczania kąta prostego. Wystarczy bowiem zbudować trójkąt o bokach długości 3, 4 i 5 jednostek, aby uzyskać kąt prosty między bokami o długościach 3 i 4.

4.2 Dowód

Twierdzenie to można udowodnić na przykład metodą sprowadzenia do sprzeczności lub przy pomocy twierdzenia cosinusów.

5 Uogólnienia

Pewne uogólnienia twierdzenia Pitagorasa zostały podane już przez Euklidesa w jego elementach: jeśli zbuduje się figury podobne na bokach trójkąta prostokątnego, to suma pól powierzchni dwóch mniejszych będzie równa polu powierzchni największej figury.

5.1 Twierdzenie cosinusów

Uogólnienie twierdzenia Pitagorasa na dowolne, niekoniecznie prostokątne, trójkąty nosi nazwę twierdzenia cosinusów (1) i znane było już w starożytności: Jeśli w trójkącie o bokach długości a,b i c oznaczyć przez γ miarę kąta leżącego naprzeciw boku c, to prawdziwa jest równość:

$$a^2 + b^2 - 2ab\cos\gamma = c^2 \tag{1}$$

5.2 Twierdzenie Dijkstry o trójkątach

Trywialny wniosek z twierdzenia cosinusów zgrabnie sformułował Edsger Dijkstra:

Jeżeli w dowolnym trójkącie naprzeciw boków długości a,b i c znajdują się odpowiednio kąty α, β, γ , to zachodzi równość:

$$sgn(\alpha + \beta - \gamma) = sgn(a^2 + b^2 - c^2)$$

gdzie sgn oznacza funkcje signum.

6 Bibliografia

 ${\bf W}$ poniższej tabeli (1) znajdują się autorzy i prace wykorzystane w tym tekście.

Tablica 1: Bibliografia

Autor	Tytuł
Szczepan Jeleński	Śladami Pitagorasa
Marek Piasecki	Wzór Pitagorasa