Markov Chain Monte Carlo for Inverse Problems

David Ochsner

April 24, 2020

Contents

1	Theory			2
	1.1	Papers		2
		1.1.1	Stuart et al: Inverse Problems: A Bayesian Perspec-	
			tive [3]	2
		1.1.2	Cotter et al: MCMC for functions [1]	2
		1.1.3	Schneider et al: Earth System Modeling 2.0 [2]	2
	1.2	Small	results	3
		1.2.1	Bayes' Theorem & Radon-Nikodym Derivative	3
		1.2.2	Acceptance Probabilities for different MCMC Proposers	3
		1.2.3	Different formulations of multivariate Gaussians	3
	_	_		
2	Implementation			3
	2.1	Frame	ework/Package Structure	3
		2.1.1	Densities	3
		2.1.2	Accepters	3
		2.1.3	Proposers	3
		2.1.4	Sampler	3
	2.2	Result	ts	3
		2.2.1	Analytic sampling from a bimodal Gaussian	3
		2.2.2	Bayesian inverse problem for $\mathcal{G}(u) = \langle g, u \rangle \dots \dots$	3
		2.2.3	Bayesian inverse problem for $\mathcal{G}(u) = g(u + \beta u^3)$	3
		2.2.4	Geophysics example	3

1 Theory

1.1 Papers

1.1.1 Stuart et al: Inverse Problems: A Bayesian Perspective [3]

Theoretical Background

1.1.2 Cotter et al: MCMC for functions [1]

Implementation, MCMC in infinite dimensions

1.1.3 Schneider et al: Earth System Modeling 2.0 [2]

Example for MCMC on ODE

- 1.2 Small results
- 1.2.1 Bayes' Theorem & Radon-Nikodym Derivative
- 1.2.2 Acceptance Probabilities for different MCMC Proposers
- 1.2.3 Different formulations of multivariate Gaussians

2 Implementation

- 2.1 Framework/Package Structure
- 2.1.1 Densities
- 2.1.2 Accepters
- 2.1.3 Proposers
- 2.1.4 Sampler
- 2.2 Results
- 2.2.1 Analytic sampling from a bimodal Gaussian
- **2.2.2** Bayesian inverse problem for $\mathcal{G}\left(u\right)=\left\langle g,u\right\rangle$
- **2.2.3** Bayesian inverse problem for $G(u) = g(u + \beta u^3)$
- 2.2.4 Geophysics example

References

- [1] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster. Statistical Science, 28(3):424–446, August 2013. Publisher: Institute of Mathematical Statistics.
- [2] Tapio Schneider, Shiwei Lan, Andrew Stuart, and João Teixeira. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations. *Geophysical Research Letters*, 44(24):12,396–12,417, 2017. _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017GL076101.
- [3] A. M. Stuart. Inverse problems: A Bayesian perspective. *Acta Numerica*, 19:451–559, May 2010.