Electric Circuits Exercises

 $GitHub: \ https://github.com/klaids$

Last Update on: 18/05/2021

Indice

	CIRCUIT	1
1.1	DC-01	1
1.2	DC-02	1
1.3	DC-03	2
1.4	DC-04	3
1.5	DC-05	3
1.6	DC-06	4
1.7	DC-07	5
1.8	DC-08	5
1.9	DC-09	6

1 DC CIRCUIT

1.1 DC-01

Solution:

 $\begin{array}{l} I_{\rm R3}{=}8~A,~I_{\rm E3}{=}28~A,~I_{\rm R4}{=}25~A,~U_{\rm J4}{=}25~V\\ I_{\rm R1}{=}20~A,~U_{\rm C1}{=}40~V,~E_{\rm 2}{=}25~V,~U_{\rm J1}{=}85~V\\ P_{\rm R3}{=}320~W,~P_{\rm R4}{=}625~W,~P_{\rm E3}{=}1120~W,~P_{\rm J4}{=}125~W\\ W_{\rm C1}{=}0.16~J,~W_{\rm L1}{=}2~J,~P_{\rm J1}{=}1700~W \end{array}$

1.2 DC-02

$$R_1 = 1.5 \ \Omega$$
 $R_2 = 2.5 \ \Omega$ $R_3 = 4 \ \Omega$ $R_4 = 5 \ \Omega$ $R_5 = 8 \ \Omega$ $R_6 = 3.5 \ \Omega$ $J_1 = 5 \ A$ $E_3 = 100 \ V$ $E_4 = 50 \ V$ $P_{\rm J1} = 100 \ W$

Solution:

 $\rm U_{J1}=20~V,~U_{AD}=0~V,~J_{6}=-55~A,~U_{J6}=-392.5~V,~P_{R3}=2500~W$ $\rm I_{E4}=-30~A,~P_{R4}=4500~W,~P_{J6}=21587.5~W,~U_{BC}=-200~V$

1.3 DC-03

$$R_1 = 20~\Omega$$
 $R_2 = 40~\Omega$ $R_3 = 50~\Omega$ $R_4 = 20~\Omega$ $L = 10~mH$ $C = 20~\mu F$ $E_2 = -900~V$ $E_4 = 100~V$ $E_5 = 800~V$ $J_6 = 25~A$

Assuming $V_A = 0$, determine:

- V_B,V_C,V_D potentials.
- ullet The values of the stored energies W_L and W_C respectively from the inductor and capacitor.
- The value of the power P_{R_3} absorbed by resistor R_3 .

Solution:

$$J_{2} = \frac{E_{2}}{R_{2}} = -22,5 \ A \qquad G_{2} = \frac{1}{R_{2}} = 1/40 \ S$$

$$J_{4} = \frac{E_{4}}{R_{4}} = 5 \ A \qquad G_{4} = \frac{1}{R_{4}} = 1/20 \ S$$

$$\begin{cases}
J_{6} + J_{2} = V_{B} (G_{1} + G_{2}) - V_{C}G_{2} \\
I_{E_{5}} - J_{2} = -V_{B}G_{2} + V_{C} (G_{2} + G_{3}) - V_{D}G_{3} \\
-J_{4} - J_{2} = -V_{C}G_{3} + V_{D} (G_{3} + G_{4}) \\
V_{C} - V_{A} = E_{5}
\end{cases}$$

$$\begin{cases}
V_{B} = \frac{J_{2} + J_{6} + E_{5}G_{2}}{G_{1} + G_{2}} = 300 \ V \\
V_{C} = E_{5} = 800 \ V \\
V_{D} = \frac{-J_{4} - J_{6} + E_{5}G_{3}}{G_{3} + G_{4}} = -200 \ V \\
I_{E_{5}} = J_{2} - V_{B}G_{2} + V_{C}(G_{2} + G_{3}) - V_{D}G_{3} = 10 \ A
\end{cases}$$

$$U_{C} = E_{2} + (V_{C} - V_{B}) = -400 \ V$$

$$W_{C} = \frac{1}{2}CU_{C}^{2} = 1, 6 \ J$$

$$W_{L} = \frac{1}{2}LI_{L}^{2} = \frac{1}{2}LI_{E_{5}}^{2} = 0, 5 \ J$$

$$P_{R_{3}} = (V_{C} - V_{D})^{2} \ G_{3} = 20 \ \text{kW}$$

1.4 DC-04

Determine:

- \bullet E_1 .
- P_{J1}, P_{E2}.
- $\bullet \ P_{R8}, \, P_{R9}.$

Solution:

$$\overline{E_{1} = 3 \text{ V}}, P_{J1} = 3510 \text{ W}, P_{E2} = 270 \text{ W}, P_{R8} 54 \text{ W}, P_{R9} = 36 \text{ W}$$

1.5 DC-05

$$R_1 = 2 \Omega$$
 $R_2 = 2 \Omega$ $R_3 = 5 \Omega$ $R_4 = 1 \Omega$ $R_5 = 2 \Omega$ $R_6 = 1 \Omega$ $E_3 = 80 V$ $J_1 = 40 A$ $J_4 = 10 A$ $P_{R2} = 0 W$

Determine:

- \bullet P_{R3} , P_{R4}
- P_{E3}, P_{J4}.
- \bullet E₂.
- \bullet P_{J1}.

Solution:

 $P_{R3} = 1280 \ W, \, P_{R4} = 2500 \ W, \, P_{E3} = 4480 \ W, \, P_{J4} = 500 \ W, \, E_2 = 50 \ V, \, P_{J1} = 6800 \ W$

1.6 DC-06

$$R_1 = 20~\Omega$$
 $R_2 = 30~\Omega$ $R_3 = 30~\Omega$ $R_4 = 30~\Omega$ $R_5 = 20~\Omega$ $R_6 = 12~\Omega$ $J_2 = 17.5~A$ $J_4 = 4~A$ $E_3 = 120~V$ $E_6 = -168~V$

Assuming $V_O = 0 V$, determine:

- $\bullet~V_{\rm A},\!V_{\rm B},\!V_{\rm C}$ potentials.
- $\bullet \ P_{J2}, \, P_{E3}, \, P_{J4}, \, P_{E6}.$

Solution:

 $V_{\rm A} =$ -90 V, $V_{\rm B} = 120$ V, $V_{\rm C} = 150$ V, $P_{\rm J2} = 1575$ W, $P_{\rm E3} = 3120$ W, $P_{\rm J4} =$ -480 W $P_{\rm E6} = 1932$ W.

1.7 DC-07

$$I_A = 20~A~~P_{\mathrm{R2}} = 5120~W~~R_2 = 20~\Omega~R_3 = R_5 = R_1~~R_4 = R_6 = R_7 = 2R_1$$

 $\rm I_A$ when S1 open and S2 close. $\rm P_{R2}$ when S1 close and S2 open, $\bf determine:$

- \bullet R₁.
- $\bullet~U_{\rm J}$ when both switches are open.
- \bullet $P_{R3}^{'}$ and $U_{j}^{'}$ when S1 close and S2 open.

Solution:

$$\overline{R_1 = 30} \,\Omega$$
, $U_J = -1600 \,V$, $P'_{R3} = 7680 \,W$, $U'_j = -800 \,V$.

1.8 DC-08

$$E_1 = 120 \ V$$
 $J_3 = 4 \ A$ $R_1 = 10 \ \Omega$
 $R_2 = 10 \ \Omega$ $R_3 = 20 \ \Omega$ $U_V = 60 \ V$

 U_V measured when S_1 opened. **Determine**:

- \bullet E₂.
- P_{E_1} , P_{E_2} and P_{J_3} when S_1 opened.
- U'_V when S_1 closed.
- P'_{E_1} , P'_{E_2} and P'_{J_3} when S_1 closed.

Solution:

$$\frac{\text{Solution:}}{E_2 = 100 \text{ V}, P_{\text{E}_1} = 240 \text{ W}, P_{\text{E}_2} = 200 \text{ W}, P_{\text{J}_3} = -240 \text{ W}, U_V^{'} = 40 \text{ V}, P_{E_1}^{'} = 240 \text{ W}}$$

$$P_{E_2}^{'} = 400 \text{ W}, P_{J_3}^{'} = -160 \text{ W}.$$

1.9 DC-09

The circuit is in steady state when S is in 1. The capacitor C_1 is charged to voltage V_{10} . Then the switch is switched to the position 2. **Determine**:

- The energy W_0 stored overall by the circuit.
- The voltage $V_2^{'}$ at the ends of C_1 when S is in position 2.
- The electric work \mathcal{L}_{R5} absorbed by resistor R_5 when S switched from 1 to 2.

Solution:

$$\overline{W_0 = 4.25} \ J, \ V_2' = -60 \ V, \ \mathcal{L}_{R5} = 2.43 \ J.$$