N° 221. — Contribution à l'étude des phénomènes de condensation en chimie minérale. 11. - Constitution des solutions de tellurates,

par Mme Lourijsen-Teyssèdre.

(Laboratoire de Chimie PCB IV, Faculté des Sciences de Paris.) (Manuscrit reçu le 27.4.55.)

Les recherches précédentes sur le comportement-d'acides faibles solubles lors de la neutralisation (1), ont été étendues à l'acide

Hest blen établi actuellement que la constitution de cet acide correspond à TeO_8H_6 , ce qui le distingue nettement de ses homologues II est bien établi actuellement que la constitution de cet acide correspond à TeO_8H_6 , ce qui le distingue nettement de ses homologues dérivés de S et Se. Cependant, en milieu aqueux, 2 acidités seulement sont décelables, (quoique les autres puissent être mises en évidence de façon indirecte) (2), aussi désignerons-nous couramment l'acide sous la formule TeO_4H_2 . La région qui a retenu notre attention est celle comprise entre x=0 (acide libre) et x=1 (tellurate acide).

I. - Preuves de la condensation des ions telluriques. Résultats expérimentaux.

A. Cryoscopie.

Les courbes en pointillé de la figure 1 représentent les variations $\frac{N}{x} = f(x)$, lors du titrage cryoscopique de TeO_4H_2 par NaOH 10 N, au point de transition de $SO_4Na_2(*)$ Nous avons opéré à des concentrations c_de 0,125; 0,25; 0,5 et 1 (**).

Courbes obtenues par potentiométrie. Courbes cryoscopiques.

On remarque:

- 1. Que ${\rm TeO_4H_2}$ n'est pratiquement pas condensé
- 2. Que les tellurates sont condensés, puisque $\frac{N}{}$ décroît en fonction de x. En particulier, le sel TeO, HNa est condensé; ce résultat est assez inattendu, mais néanmoins certain, car il est vérifié (voir plus loin) par les mesures de pH en
- (*) Les précisions sont données dans l'étude sur l'acide borique (1). (**) Pour cette dernière, nous n'avons pu aller au delà de x=0.8 en raison de la formation de précipité.

fonction de la dilution, dont le principe est tout différent de celui de la cyroscopie

3. Pour une même valeur de x, $\frac{N}{c}$ est d'autant plus faible que c est plus élevé, ce qui est normal, car la proportion d'ions polytelluriques doit croître avec la concentration.

B. Mesures de coefficients de partage.

L'acide tellurique étant extrêmement peu soluble dans les alcools supérieurs, nous avons été obligée:

1º D'utiliser l'alcool butylique, comme liquide d'extraction.

Des essais approximatifs, effectués en ajoutant au milieu utilisé (SO₄Li₂ (*) 2 M) des doses croissantes d'alcool jusqu'à ce que la couche alcoolique persiste après agitation prolongée permettent d'établir que la solubilité de l'alcool butylique dans la solution de sulfate de lithium est inférieure à 4 %. Ce chiffre est suffisamment faible pour que l'on puisse admettre que le comportement de la solution étudiée soit voisin de ce qu'il serait en l'absence d'alcool.

2º D'effectuer les mesures de concentrations au polarographe après transformation du Te^{IV} en Te^{VI} car seul ce

dernier semble réductible au polarographe (3) Nos expériences se rapportent à des solutions d'acide tellurique de concentrations totales 0,25,0,5,1,1,5-M(**) en employant SO_4Li_2 2 M comme sel neutre, et à différents degrès de neutralisation (0 < x < 1); celle-ci se faisant par addition de lithing. L'astroction set effectivée à l'aide de addition de lithine. L'extraction est effectuée à l'aide de 10 à 50 cm³ d'alcool butylique normal; après un repos de 2 h environ, on prélève 2 à 40 cm³ de la couche alcoolique de 2 h environ, on prélève 2 à 40 cm³ de la couche alcoolique que l'on évapore à sec, au bain de sable. Le résidu, additionné de quelques cristaux de BrK est traité à plusieur reprises (4 ou 5) par ClH pur et concentré au bain de sable (on l'ajoute par fractions de 2 cm³ après chaque évaporation ce qui a pour effet de transformer l'acide tellurique en TeO₂ (ou plutôt en complexe bromhydrique de Te¹-rouge orangé, qui se détruit en milieu aqueux) avec libération du brome. Finalement, le mélange solide provenant de la dernière évaporation est repris par 25 cm³ de tampon ammoniacal (ammoniaque 0,3 M + NH₄Cl 0,4 M) dans lequel Te¹- donne une vague polarographique de hauteur lequel Terv- donne une vague polarographique de hauteur

particules telluriques ne sont pas assez faibles vis-à-vis des concen-trations du sel neutre.

inérale.

es à l'acide

homologues en évidence

différent de

plus faible

proportion centration.

oluble dans

le d'extrac-

at au milieu es d'alcool ès agitation de l'alcool im est inféle pour que la solution ice d'alcool

au polarocar seul ce

ons d'acide

1,5 —M(**)
à différents
e faisant par
à l'aide do
ès un repos
e alcoolique
ésidu, addià plusieus
cain de sable
évaporation
ellurique en
e de Tav
avec libérae provenant
de tampon
1,1 M) das

e de hautem

1 présence des
eraient,
aires, à caus
e en évident
ts relatifs aus
ns des diverses
pis des conces

aisèment mesurable et proportionnelle à la concentration, ainsi que l'ont montré Schwaer-Suchy (3). On réalise rétalonnage en opérant sur des solutions de concentrations connues en acide tellurique, non neutralisées et traitées selon le mode précédent. Il y a proportionnalité entre la concentration de l'acide dans la couche aqueuse et la

concentration dans la couche alcoolique, dans l'intervalle de concentrations 0,02-1 M; le coefficient de partage est de 367 en faveur de la couche aqueuse. Les résultats sont représentés figure 2. Ils prouvent que la

Fig. 3.

neutralisation de l'acide tellurique ne donne pas uniquement les ions ${\rm TeO_4H}$ - (dans ce dernier cas nous aurions $\frac{y}{c}$ =1 -x) mais il se forme intermédiairement des ions plus acides. Tous ces résultats seront commentés en détail dans la partie théorique

C. Courbes de titrage potentiométrique à diverses dilutions.

1. Mode opératoire.

L'acide, à la concentration c=0.5 a été titré par la lithine (tout autre cation donnerait lieu a des précipités) en présence de $\mathrm{SO_4Li_2}$ 2 M. Pour chaque valeur de x, nous mesurions le pH de la solution, puis ceux des solutions diluées de 2 en 2 par addition, chaque fois d'un égal volume de $\mathrm{SO_4Li_2}$. La solution la plus concentrée étant 0,5, et la plus diluée $\frac{0.125}{8}$. Nous avons porté sur la figure 3, le pH en fonction de log c pour diverses valeurs de x. Le coefficient angulaire des tangentes à ces courbes pour une valeur donnée de log c donne la dérivée $\frac{\mathrm{o}\ \mathrm{pH}}{\mathrm{o}\ \mathrm{log}\ c}$ à la valeur x considérée.

2. Utilisation.

a) Portons pour une valeur de log c donnée, la dérivée $\frac{\delta \ \mathrm{pH}}{\delta \log c}$ (évaluée comme précédemment indiqué) en fonction de x: c'est ce que nous avons fait figure 4 pour c=0,25 (log c=-0,6).

D'après la définition d'une intégrale définie, l'aire hachurée est égale à $\int_0^x \frac{\delta \ \mathrm{pH}}{\delta \log c} dx$, et nous savons par ailleurs (voir étude sur l'acide borique) que cette expression

est égale à $\frac{1}{c} \frac{\partial \mathbf{N}}{\partial x}$. On peut donc ainsi tracer $\frac{\mathbf{N}}{c} = f(x)$ à la concentration c envisagée (puisque $\frac{\mathbf{N}_0}{c} = 1$), en évaluant l'aire aux diverses valeurs de x.

b) Nous avons également opéré à d'autres concentrations c, ce qui nous a permis en définitive de tracer le réseau des courbes $\frac{N}{c}=f(x)$ à diverses concentrations.

3. Comparaison avec la cryoscopie.

On a porté figure 1 les résultats obtenus (courbes en traits pleins); l'accord avec les courbes cryoscopiques ne laisse aucun doute sur la condensation des tellurates. Aux fortes c, les courbes coïncident; aux c plus faibles, les

Aux fortes c, les courbes coïncident; aux c plus faibles, les valeurs données par les 2 méthodes ne coïncident pas exactement, à cause sans doute de la différence de milieu ($\mathrm{SO_4Li_2}$ dans un cas, $\mathrm{SO_4Na_2}$ dans l'autre), et surtout à la définition de c qui n'est pas le même dans les 2 cas: c est donné par litre de solution dans un cas, et par litre d'eau

pour la cryoscopie. Nous adopterons, dans les calculs ultérieurs, les valeurs N données par potentiométrie, les mesures de coefficients de partage ayant été faites dans les mêmes conditions.

II. - Étude des ions polytelluriques.

A. - L'ion tellurique acide.

Ainsi que Fouasson l'a montré (4), la courbe de neutralisation de l'acide tellurique présente un point d'équivalence pas très prononcé, mais net pour x = 1 caractérisant la formation d'un tellurate acide.

En réalité, si la neutralisation était aussi simple que le

suppose le mécanisme:

$${\rm TeO_4H_2} + {\rm OH^-} \rightarrow {\rm TeO_4H^-} + {\rm H_2O}$$

le pH ne varierait pas avec la concentration lors de la neutra le pri ne varierait pas avec la concentration fors de la neutra lisation; or ce n'est le cas, ainsi que le prouve le tableau I (neutralisation par la lithine en présence de SO₄Li₂.1 M) De même, l'abaissement cryoscopique diminue avec x, alors qu'il devrait rester constant (fig. 1).

TABLEAU 1.

	pH pour c =									
Х	1/2	1/4	1/8	1/16	1/32	1/64	pH ₀ extrapolé	рК —		
0 0,2 0,4 0,6 0,8 1,0	4,25 6,02 6,53 6,97 7,45 8,20	4,642 6,285 6,740 7,137 7,582 8,280	4,95 ₅ 6,49 6,90 7,28 7,68 8,37	5,242 6,645 7,050 7,395 7,780	5,52 6,72 7,13 ₅ 7,47 7,85 8,54 ₅	7,52 ₅ 7,90	6,86 7,29 7,62 8,02	7,46 7,46 7,45 7,42		

Condensation de l'ion tellurique acide.

Les faits que nous venons d'invoquer laissent prévoir Les faits que nous venons d'invoquer laissent prévoir la formation d'ions condensés par neutralisation de l'acide tellurique. Nous avons montré précédemment que cette formation est hors de doute, car elle a été prouvée par 2 méthodes aussi différentes que la cryoscopie et la potentiométrie. (mesures de pH en fonction de la dilution). Reportons-nous à la figure 1, obtenue à l'aide de ces techniques, donnant pour $x=1,\frac{N}{c}$ à diverses concentra-

tions. Puisque pour x=1 le formation de l'ion tellurique est sensiblement quantitative (point d'équivalence net sur la courbe de titrage potentiométrique) et que $\frac{N}{a}$ varie avec c,

il faut conclure que ${\rm TeO_4H^-}$ est en équilibre avec un produit de condensation que nous représenterons, en l'absence de toute hypothèse structurale par $({\rm TeO_4H^-})_n(*)$ selon l'équilibre

$$n \text{TeO}_4 \text{H}^- \Rightarrow (\text{TeO}_4 \text{H}^-)_n$$

qui obéit à la relation :

$$\frac{|\text{TeO}_4 H^{-|n|}}{|(\text{TeO}_4 H^{-})_n|} = K$$

$$K = \text{constante de dissociation}$$
(1)

bis

qu

àl

801

ver ter de

Il s'agit maintenant de préciser la valeur de n. Pour cela appelons α la proportion $(0 < \alpha < 1)$ d'atomes Te à l'état simple; la proportion à l'état condensé sera $1 - \alpha$. Appelons comme à l'ordinaire c la concentration totale rapportée en atomes de Te, et N la concentration totale des lons explotion il est évident que : en solution, il est évident que :

$$|\operatorname{TeO_4H^-}| = \alpha c$$

$$|(\operatorname{TeO_4H^-})n| = \frac{(1-\alpha)c}{n}$$

et
$$|\text{TeO}_4\text{H}^-| + |(\text{TeO}_4\text{H}^-)n| = N = \alpha c + c\frac{(1-\alpha)}{n}$$

d'où:

$$\alpha = \frac{\frac{N}{c} - \frac{1}{n}}{1 - \frac{1}{n}} \tag{2}$$

A l'aide de la valeur α (dans laquelle figure en particulier N qu'on a pu mesurer) on peut exprimer |TeO4H-| et $|({
m TeO_4H^-})_n|$ qu'on reporte dans l'équation (1) ce qui

$$\frac{\left(\frac{N}{c} - \frac{1}{n}\right)^{n}}{\left(\frac{1 - \frac{1}{n}}{n}\right)} C^{n-1} = \frac{K}{n}$$

$$1 - \frac{\frac{N}{c} - \frac{1}{n}}{1 - \frac{1}{n}}$$

ou encore

$$\frac{\left(\frac{N}{c} - \frac{1}{n}\right)^n}{1 - \frac{N}{c}} = \frac{K}{nc^{n-1}} \left(1 - \frac{1}{n}\right)^{n-1}$$

$$= \frac{K}{n} \left(1 - \frac{1}{n}\right)^{n-1} v^{n-1}$$

en posant $v = \frac{1}{c}$ égale à la dilution.

En élevant chaque membre à la puissance $\frac{1}{r}$ ceci donne

$$\frac{N}{c} = \frac{1}{n} = \left(\frac{K}{n}\right)^{\frac{1}{n}} \left(1 - \frac{1}{n}\right)^{\frac{n-1}{n}} \left(1 - \frac{N}{c}\right)^{\frac{1}{n}} \frac{n-1}{n}$$

$$= K' \left(1 - \frac{N}{c}\right)^{\frac{1}{n}}$$

en posant $K' = \left(\frac{K}{n}\right)^{\frac{1}{n}} \left(1 - \frac{1}{n}\right)^{\frac{n-1}{n}}$: c'est une constant puisque K et n sont des constantes.

Cette relation signifie qu'en portant $\frac{N}{c}$ en fonction d $\left(1-\frac{N}{c}\right)^{\frac{1}{n}}v^{\frac{n-1}{n}}$ on doit obtenir une droite d'ordonne à l'origine $\frac{1}{n}$.

^(*) Nous admettrons que ce produit de condensation est unique, autrement dit que n n'adopte qu'une seule valeur. Nous montre-rons plus loin la vraisemblance de cette hypothèse.

Pour cela, il faudrait connaître n; choisissons une valeur

- a) Si c'est la valeur exacte n, les points se placeront bien sur une droite d'ordonnée à l'origine 1.
- b) Si c'est une valeur inexacte n', les points ne se placeront plus sur une droite mais l'ordonnée à l'origine sera quand même la vraie valeur de $\frac{1}{n}$. Ceci provient du fait que le second membre est nul lorsque v=0, et cela quelle que soit la valeur de n figurant dans l'exposant de v.

 Il s'ensuit qu'en portant $\frac{N}{c}$ en fonction de

(1)

(2)

re en particulie er |TeO4H-

ion (1) ce m

- ceci donn

est une constan

en fonction

droite d'ordon

de n. Pour cel nes Te à l'étai

otale des ions

- α. Appelons tale rapporte

$$\left(1-\frac{N}{c}\right)^{\frac{1}{n'}}(v)^{\frac{n'-1}{n'}}$$

on obtient une courbe qui extrapolée, donne une ordonnée à l'origine égale à la vraie valeur de $\frac{1}{n}$, quelle que soit la valeur de n' choisie; mais la courbe devient réellement une droite lorsque n' est bien la valeur exacte de n.

Les valeurs de $\frac{N}{n}$ ontété obtenues à partir de la figure. 1.

2). Calcul de la Ire constante de dissociation de TeO4H2. D'après les précédents résultats, on doit s'attendre

qu'aux faibles concentrations, les ions telluriques ne soient plus condensés. Dans ces conditions la courbe de titrage

TABLEAU II.

P	$\frac{N}{c}$	$\left(1-\frac{N}{c}\right)^{\frac{1}{n}}$			$\frac{n-1}{q}$			$\left(1-\frac{N}{c}\right)^{\frac{1}{n}}\cdot e^{\frac{n-1}{n}}$		
2 4 8 16 32	0,35 0,41 0,52 0,65 0,81	n = 3 0,863 0,840 0,784 0,705 0,575	n = 4 0,898 0,877 0,832 0,770 0,660	0,930 0,910 0,883 0,839 0,754	1,59 2,52 4,00 6,31 10,00	1,68 2,82 4,74 7,95 13,30	$ \begin{array}{c} $	1,37 2,11 3,13 4,44 5,75	$ \begin{array}{c c} n = 4 \\ \hline 1,51 \\ 2,47 \\ 3,94 \\ 6,12 \\ 8,77 \end{array} $	n = 5 $1,60$ $2,71$ $4,53$ $7,40$ $11,40$

Les calculs sont représentés au tableau II. Sur la figure 5 sont représentées les valeurs de $\frac{N}{}$ en fonction de

$$\left(1-\frac{N}{c}\right)^{\frac{1}{n}}v^{\frac{n-1}{n}}$$

dans l'hyponese n = 3, 4, 5. Nous voyons que les courbes extrapolées (les points expérimentaux ne sont figurés, par souci de clarté que pour n=4) convergent toutes vers l'ordonnée à l'origine $\frac{1}{4}$, d'où : n=4. On a aussi représenté con le convergence comples

représenté sur la figure 5, les points vers lesquels ces courbes devraient converger si n=3 ou n=5. On remarquera de lus que la courbe n'est une droite que si n=4.

L'ion tellurique acide condensé doit se formuler.

$$(TeO_4H)^{\frac{1}{4}}=;$$

ailleurs il est probable que sa condensation doit s'effectuer par élimination de molécules d'eau.

Le coefficient angulaire de la droite figure 5, mesuré r cette figure est 0,066, ce qui représente la valeur de K

$${}^{0.066} = K' = \left(\frac{K}{n}\right)^{\frac{1}{n}} \left(1 - \frac{1}{n}\right)^{\frac{n-1}{n}} = \left(\frac{K}{4}\right)^{\frac{1}{4}} \times 0.75^{\frac{3}{4}}$$

toc. снім., 5° série, 1955. — Mémoires.

potentiométrique représentera le simple phénomène de neutralisation :

$$\text{TeO}_4\text{H}_2 + \text{OH}$$
 \Rightarrow TeO_4H + H_2O .

Ce sera une courbe de titrage d'acide faible, avec variation nulle de pH en fonction de la dilution. Pour obtenir les points d'une telle courbe pH = f(x), il suffit d'extrapoler, pour chaque valeur de x à c=0, les valeurs du pH (obtenu à partir du tableau I) en fonction de \sqrt{c} . L'opération a été représentée figure 6 et l'on obtient les valeurs extra polées pHo dans l'avant-dernière colonne du tableau I.

Hest facile d'en déduire pK = pH₀
$$-\log \frac{x}{1-x}$$
.

Les résultats figurent dans la dernière colonne du tableau I et sont voisins de la valeur pK = 7,45, peu différente du chiffre 7,55 obtenu par Foursson (4) à force ionique moins élevée que la nôtre et sans tenir compte des ions condensés.

- B. Existence d'un ion tellurique plus acide que TeO4H-.
- 1. Recherches physico-chimiques.

Si, dans le cours du titrage de ${\rm TeO_4H_2}$, la formation de ${\rm TeO_4H^-}$ ou de son polymere avait lieu uniquement, la

courbe donnant $\frac{y}{c}$ en fonction de x serait une droite telle

que celle de la figure 2 (droite 1 — 1). En réalité, et surtout aux fortes concentrations, la courbe $\frac{y}{x} = f(x)$ décroît beaucoup plus rapidement que l'on pourrait s'y attendre ce qui prouve la formation d'ions plus acides que TeO4H-.

Quoique la présence ou la constitution de tels ions en solution n'aient jamais été démontrées juqu'ici avec certitude, leur existence était rendu probable par la prépa-

ration de tellurates plus acides que ceux du type TeO₄HK(5).

La figure 2 représente $\frac{y}{c} = f(x)$ pour diverses valeurs de c. Lorsque c croît, nous remarquons que $\dfrac{y}{c}$ tend vers la droite 1 B coupant l'axe des abscisses au point 1/2.

Ceci est en faveur d'un ion dont la composition correspondrait à $x = \frac{1}{2}$ c'est-à-dire (Te₂O₇H⁻) ou à un multiple.

$$2\text{TeO}_4\text{H}_2 + \text{OH}^- \implies \text{Te}_2\text{O}_7\text{H}^- + 2\text{H}_2\text{O}.$$

Pour les faibles valeurs de x, cet ion est stabilisé par l'excès de TeO_4H_2 , ce qui explique qu'alors $\frac{y}{c}$ se confonde avec 1 - B.

Pour préciser la constitution de cet ion, nous allons combiner les mesures de y (obtenu par coefficient de par-

tage) (fig. 2) avec celles de $\frac{N}{c}$ (fig. 1).

Soit S la somme des concentrations de tous les ions en solution; N, concentration totale de toutes les particules telluriques, doit être égal à S+y (y= concentration en acide tellurique) N = y + S.

Ecrivons de plus que la concentration c totale (rapportée en atomes de Te) est égale à y plus la concentration (rapportée en atome de Te) des ions en solution. c = y + nS (n étant le degré moyen de condensation).

De ces deux relations on tire:

$$\frac{1}{n} = \frac{\frac{N}{c} - \frac{y}{c}}{1 - \frac{y}{c}}$$

Toutes les quantités du 2e membre étant connues diverses valeurs de c et de x, il est facile d'en tirer $\frac{1}{c}$.

La figure 7 représente $\frac{1}{n} = f(x)$ pour différentes valeurs de c. Nous voyons qu'en milieu acide (x < 0.4) où l'ion dont nous recherchons la structure est stable, $\frac{1}{n}$ tend vers donc n=2. Au delà de $x=0,4,\frac{1}{n}$ diminue, à cause de

l'apparition, dans ce domaine, des ions TeO₄H⁻ plus ou moins condensés, et d'autant plus fortement que la proportion de Te₄O₁₄ — est plus élevée. Il faut donc en déduire que l'ion tellurique qui apparaît en milieu acide est bicondensé ce qui, joint aux considérations précédentes conduit à lui attribuer la formule (Te₂O₇H⁻).

La formule du pyrotellurate acide avait été prévue par Berzelius (6) mais n'avait jamais été confirmée, non plus que les sels correspondants préparés par ce savant. L'équilibre de formation de Te₂O₇H- peut s'écrire:

sous la forme:

$$2\text{TeO}_4\text{H}_2 \implies \text{Te}_2\text{O}_7\text{H}^- + \text{H}^+ + \text{H}_2\text{O}$$

à laquelle correspond la constante:

$$K = \frac{|Te_2O_7H^-|(H^+)}{y^2}$$

qu'il s'agit de déterminer.

(H+) est obtenu par mesure de pH (tableau I) et y au moyen de la figure 2. Il s'agit d'évaluer [Te₂O₇H-]. Ecrivons tout d'abord que c est égal à la concentration totale (rapportée en atome de Te) des particules telluriques

$$c = 2 |\text{Te}_2\text{O}_7\text{H}^-| + (\text{TeO}_4\text{H}^-) + 4|(\text{Te}_4\text{O}_{14})^{==}| + y|$$

Ecrivons également l'équation de conservation des

$$cx = |\,\mathrm{Te_2O_7H^-}| \ + \ |\,\mathrm{TeO_4H^-}| + 4|(\mathrm{Te_4O_{14}})^{==}|$$

En retranchant ces 2 équations membre à membre en obtient:

$$|\text{Te}_2\text{O}_7\text{H}^-| = c(1-x)-y$$

qu'il suffit de porter dans l'équation donnant K pour

$$K = \frac{(1-x) - \frac{y}{c}}{y \cdot \frac{y}{c}} (H^+)$$

2, 114

solut ordin Pope prése trans artho

pond in év forte ne so No srema ellur aK, ussez que I

2 50

comn

entre dans 1 20 la qu de x done Dès 1 très v ours

parois Les fl

CONC

étant connues le d'en tirer 1 différentes valeus < 0,4) où l'ion don le, $\frac{1}{n}$ tend vers

iminue, à cause s TeO₄H - plus nent que la propo ut donc en déduit nilieu acide est ations précédent 7H-).

C-0.25 C-0.5

vait été prévue p confirmée, non pl

 $[+ + H_2 O]$

(tableau I) et y uer [Te₂O₇H-]. 0.2 l à la concentrali CONCENTRATION

 $(Te_4O_{14})==|+y|$

e conservation

 $-4|(Te_4O_{14})==|$

embre à membre

n donnant K P

(+I

Ainsi les résultats obtenus à c = 1/2 permettent d'écrire:

nit K voisin de 8.10-7

Mise en évidence du sel de potassium correspondant,

par neutralisation ménagée, à l'aide de KOH, d'une plution alcoolique d'acide allotellurique (l'acide ortho, ordinaire, insoluble dans l'alcool, ne permettrait pas l'opérer dans un tel milieu) Patray (7) obtint un seul présentant un rapport $\frac{T_{\rm e}}{K} = 2$. Etant donné que les bases

ransforment instantanément l'acide allo en sel de l'acide rtho, il ne semble pas douteux que le sel de Patry corresonde précisément à l'anion (Te₂O₇H-) que nous avons mis névidence. Cependant, comme PATRY l'a obtenu en milieu rtement alcoolique, on peut objecter que les conditions sont pas les mêmes.

Nous nous sommes alors proposé ici d'identifier les sels renant naissance lors de la neutralisation de l'acide lurique par KOH en milieu aqueux, et en présence de K, ce dernier ayant pour but de réaliser une force ionique ssez élevée pour nous mettre dans les mêmes conditions ue lors des essais physico-chimiques, et aussi de diminuer solubilité des sels prenant naissance par effet d'ion

par ce savant, a) Mode opératoire. Les diverses valeurs de x (comprises H- peut s'écrit plre 0 et 0,9) étaient réalisées à l'aide d'une série de flacons ans lesquels on introduisait les solutions correspondant 20 cm³ de TeO₆H₆ 0,5 M + ClK 1 M, additionnés de quantité de NaOH 1 N nécessaire pour réaliser la valeur ex désirée et complétés à 40 cm³. Ces solutions étaient onc 0,25 M en acide tellurique au départ et 0,5 M en ClK. es la première addition de base, il se forme un précipité es volumineux au début, mais qui, au bout de plusieurs pur dévient cristallin (la transformation est d'autant plus illeile que x est plus élevé) en adhérant partiellement aux rois des récipients, d'où ou le détache de temps à autre. s flacons sont fréquemment agités.

Au bout de 7 jours (1re série d'essai) ou de 45 jours Dout de 7 jours (112 serie d'essai) ou de 10 jours Série d'essais) on dose l'acide tellurique dans la liqueur nageante, par polarographie après transformation en la tellureux. Le détail du dosage a été donné à propos

des mesures de coefficient de partage. (Dans le cas actuel les prises d'essai varient de 1 à 5 cm3)

La potasse à l'état de tellurate est dosée par acidimétrie en présence d'helianthine (l'acide tellurique est en effet neutre à cet indicateur) à l'aide de SO₄H₂ N/10 sur 10 à 20 cm³ de prise d'essai. Pour x < 0.6, la teneur est très faible, ce qui prouve la grande insolubilité des tellurates qui prennent naissance dans ce milieu; pour x > 0.6 elle est un peu plus élevée mais reste néanmoins très faible (0,004 N).

b) Interprétation des résultats: Nous avons représenté la concentration de l'acide tellurique restant en solution en fonction de x (fig. 8).

Ire série d'essais (mesures effectuées au bout de 8 jours). Ces mesures ne sont pas très reproductibles et les points ne s'alignent, que d'une façon très approximative, sur une droite, qui coupe l'axe des abscisses pour x voisin de 0,66 qui correspond alors à ${\rm Te_3O_{10}K_2}$ (sel d'Hutchins).

 $2^{\rm e}$ série d'essais (mesures effectuées au bout de 45 jours). Pour x<0,5 les points se placent sensiblement sur une droite (s'ils s'en écartent au delà de x=0,4, c'est probable, ment en raison de la solubilité du sel, qui n'est pas nulle), preuve que le précipité est formé d'une substance unique. Cette droite coupe l'axe des abscisses pour x=0,5 correspondant stocchiométriquement à ${\rm Te_2O_7HK}$ lui aussi très peu soluble. Il est remarquable que la concentration en Te se remettre à croître après une zone (se situant à peu près entre x=0,5 et x=0,7) où les mesures manquent de reproductibilité, probablement à cause de la lenteur des équilibres entre les phases solides peu solubles, elle semble se fixer vers 0,03 M tandis que la concentration en KOH à l'état de tellurate reste voisine de 0,004 N. Ces 2 concentrations représentent approximativement les concentrations d'acide tellurique et potasse en équilibre avec les phases 2º série d'essais (mesures effectuées au bout de 45 jours).

d'acide tellurique et potasse en équilibre avec les phases solides Te₂O₇HK et TeO₄HK dans un tel milieu.

Les observations que nous venons de signaler jointes au fait que dans la première série d'essais, les solubilités sont toujours supérieures à celles mesurées dans la deuxième prouvent que l'équilibre de salubilité p'act atteint guice prouvent que l'équilibre de salubilité p'act atteint guice. prouvent que l'équilibre de solubilité n'est atteint qu'au bout d'un temps assez long, et que le sel Te₃O₁₀K₂ est vraisemblablement un mélange de Te₂O₇HK + TeO₄HK, qui, par titrage instantané se forment simultanément (et en proportions voisines de la composition Te₃O₁₀K₂) en raison de leurs solubilités très faibles et du même ordre. Ce n'est qu'après un repos assez long que s'établissit Ce n'est qu'après un repos assez long que s'établirait l'équilibre véritable.

III. - Représentation de l'état du système des ions telluriques.

Nous avons, dans notre travail, déterminé la nature des ions présents dans les solutions telluriques, pour les compositions comprises entre celles de l'acide et du tellurate acide.

Nous avons de plus déterminé les constantes de dissociation à la force ionique utilisé.

Il est intéressant de représenter, en fonction de x, les proportions des différents ions en solution.

- proportion d'acide tellurique c est obtenue
- b) La proportion d'ion (Te₂O₇H-) a été calculée dans le paragraphe précédent, soit $2\left[(1-x)-\frac{y}{c}\right]$.
- c) La concentration totale (T) d'ions telluriques acides TeO₄H- (condensés ou non) est égale à c diminué de la somme des concentrations (rapportées en atome de Te)

des 2 espèces précédentes. On obtient ainsi la concentration totale (T) de ces ions.

La proportion a de (T) à l'état d'ions simples TeO4Hs'obtient à l'aide du tableau II, en y remplaçant o par $\left(\frac{1}{T}\right)$

d'où α (T) la concentration des ions TeO4H- simple, « a(T) leur proportion (par rapport à la concentration totale c en Te). La proportion des ions condensés est évidem ment $\frac{(1-\alpha)}{(T)}$.

La figure 9 donne la proportion des principales espèces La figure 9 donne la propointillé sont relatifs à c = 4/6La proportion d'ions Te₂O₇H - devient pratiquement inexis. tante au-dessous de c = 0.1 et $\frac{y}{c}$ tend vers la diagonal

1-4 du carré. Au dessous de c=0.01, la proportion des ions condensés [TeO₄H-]₄ devient également négligeable et la proportion d'ions TeO₄H- simples tend vers l'autre diagonale du carré.

BIBLIOGRAPHIE.

Mme Lourijsen-Teyssedre, Bull. soc. chim. France.
Souchay et Hessaby, Bull. soc. chim. France, 1953, 20, 614.
Schwaer et Suchy, Coll. trav. chim. Tchécosl., 1935, 7, 26.
Fouasson, C. R., 1939, 208, 2077.
Hutchins, J. amer. chem. soc., 1905, 27, 1157.
Berzelius, Pogg. Ann., 1832, 28, 392; 1834, 32, 577.
Patry, C. R., 1935, 200, 1597.

Nº 222. — Ammoniums quaternaires à anions organiques (II). Série des pyridiniums à longue chaîne,

par Jean Albert Gautier, Eugène Leroi et Jean Renault (*).

(Faculté de Pharmacie de Paris, Chaire de Chimie analytique.) (Manuscrit reçu le 18.5.55.)

Préparation et description de sels de pyridiniums à longues chaînes substituantes, dont les anions appartiennent à diverses séries organiques: acides aliphatiques, aromatiques, hétérocycliques.

Dans une précédente publication (1), nous avons décrit la préparation et les caractères d'ammoniums quaternaires à anions organiques appartenant à la série des triméthyla anions organiques appartenant à la serie des trimethyl-alcoylammoniums à longue chaîne. Il nous a paru intéres-sant de compléter cette étude par l'isolement de composés similaires de la série des pyridiniums, dans le but de disposer de corps ayant des propriétés physico-chimiques sensiblement différentes et présentant un pouvoir bactériostatique éventuellement éloigné de celui des composés du triméthyl-ammonium. On a signalé également. Dray(guas (2)) que ammonium. On a signalé également, Dervichian (2), que dans les dérivés des bases hétérocycliques, la propriété bactériostatique est moins fortement inhibée par les protides sériques que dans le cas des autres ammoniums et on a rapporté cette différence à des particularités stériques qui les empêcheraient de se combiner aussi facilement avec ces protides, sans nuire pour autant à leur réaction avec les récepteurs vitaux des microorganismes.

Le présent mémoire a trait à la préparation des sels de pyridiniums à longues chaînes (C₁₂, C₁₄, C₁₆); comme dans notre précédent travail, les anions appartiennent à la série aliphatique (acides saturés et non saturés), à la série aromatique (acides substitués ou non dans le noyau), à la série des acides-alcools, des acides aminés, des acides à fonction éther-oxyde, enfin à la série hétérocyclique.

(*) Avec la collaboration technique de M110 Françoise Schlegel.

Leur synthèse est basée sur la transformation des bromures quaternaires, issus de la condensation de la pyridine avec les bromures d'alcoyles, en sels organiques par l'intermédiaire des carbonates correspondants, au moyen de CO₃Ag₂. Cette transformation se réalise facilement en solution by desales alles des la constant de l tion hydroalcoolique peu concentrée, mais elle est beaucoup plus délicate que pour les dérivés du triméthylammonium. En effet, dans la phase finale de concentration à sec à froid. dans le vide sulfurique ou phosphorique, la plupart de ces dérivés ont tendance à se décomposer spontanément en brunissant ou noircissant. Tout chauffage même léger doit être proscrit au cours de la préparation et le contait avec l'air doit être le plus possible réduit lors de la concentration, qui doit de plus être menée rapidement.

Les sels bruts se conservent asses mell les sels purifiés

Les sels bruts se conservent assez mal; les sels purilissont stables à froid. Les rendements en produits purs restent relativement faibles le conservent en produits purs restent relativement faibles; la concentration ultérieure des eaus mères ne permet de récupérer le plus souvent que de produits assez impurs. Ces phénomènes nous paraissent traduire la fragilité de la fonction pyridinium; on constien effet sa vulnérabilité aux oxydants et aux alcalis, que s'oppose à la stabilité supérieure des ammoniums proprement dits. Cette fragilité se manifeste la plus généralement. ment dits. Cette fragilité se manifeste le plus généralement par la décomposition spontanée des hydroxydes de pyridiniums en solution, ou même des pyridiniums dont lonction basique est salifiée par un acide médiocrement