

N 9 3 - 2 6 9 7 7

SPACE PROPULSION TECHNOLOGY DIVISION

NEP TECHNOLOGY - FY 92 MILESTONES
(NASA LERC)

THRUSTERS

- o ESTABLISH 100 H TEST CAPABILITY FOR 100 KW MPD THRUSTERS
- o DEMO LIGHTWEIGHT 20-KW KRYPTON ION THRUSTER
- o OPTIMIZE THE DESIGN OF LOW-MASS POWER PROCESSOR TRANSFORMERS

NEP FACILITIES

- o COMPLETE EPL'S TANK 5 CRYOPUMP UPGRADE

Presented by: Jim Sovey
NASA Lewis Research Center

SPACE PROPULSION TECHNOLOGY DIVISION

NEP TECHNOLOGY - FY92 RESOURCES
(NASA LERC)

THRUSTERS

- o \$129K, MPD THRUSTER TECHNOLOGY
- o \$18K, TANK 5 CONSUMABLES
- o \$23K, ION OPTICS
- o \$30K, WITH \$35K (BASE R&T) FOR PPU MAGNETICS, UNIVERSITY OF WISCONSIN

NEP FACILITIES

- o \$40K, TANK 5 CRYOPUMP UPGRADE

NEP - ION THRUSTER TECHNOLOGY
(NASA LERC)

ACCOMPLISHMENTS.....THRUSTER

- o PERFORMANCE OF VIBRATION WORTHY 50-CM DIAMETER THRUSTER DESIGN COMPARABLE TO SOA DESIGNS
- o LIGHTWEIGHT 30-CM THRUSTER ASSEMBLED UNDER BASE R&T PROGRAM
- o 16 PAIRS OF DISHED ACCELERATOR GRIDS ARE NOW BEING FABRICATED.....TESTING SCHEDULED FOR FEBRUARY 1993.

POWER PROCESSOR

- o ANALYSIS OF FULL-BRIDGE, LOW VOLTAGE DC/DC CONVERTER COMPLETE
- o DETAILED ANALYSIS, TRADE-OFFS, AND DESIGN OF TRANSFORMERS COMPLETE
- o FOLLOW-ON WILL PROVIDE CONVERTER HARDWARE

SPACE PROPULSION TECHNOLOGY DIVISION

50 CM DIAMETER ION THRUSTER

993

NEP: Technology

50 CM DIAMETER ION THRUSTER PERFORMANCE

VIBRATION WORTHY CONICAL DIACHARGE
CHAMBER DESIGN HAS PERFORMANCE
COMPARABLE TO SOA CYLINDRICAL DESIGN

**LERC/JPL COORDINATED ION PROPULSION PROGRAM
SUPPORTED UNDER BASE R&T STARTING FY93**

LERC/JPL COORDINATED ION PROPULSION TECHNOLOGY PROGRAM

	FY93	FY94	FY95	AGENT (L: LERC, J: JPL)
1. THRUSTER DEVELOPMENT <ul style="list-style-type: none">o LIGHTWEIGHT 30 CMo POWER CONSOLE DEL.o SEG. THR. SYS. EVAL.o 5 KW SEG. THRUSTEIIo LIGHTWEIGHT 50 CMo DOWNSLECT THR. FOR SEP OR NEP	DOEING ^ AEROSP. ^ VIB, WFAIT ^ BOEING ^ AEROSP. ^ CSTAR ^ COMPLETE EXP EVAL ^ 1-SEGWEAR ^ 5-KW WEAR ^ HI-IMP, 25 KW ^ FAB COMPL.			L L J J L L, J
2. CATHODE DEVELOPMENT <ul style="list-style-type: none">o PROTOCOLSo DIAGNOSTICS/MODELS	DEFINE ^ THERMAL ^ PLASMA		^ LIFE	L (SSF) L (W, MPD)
3. GRIQ DEVELOPMENT <ul style="list-style-type: none">o CARBON-CARRONo 30 & 50 CM MOLYo DOWNSLECTo LASER DIAGNOSTICSo CHANGE EXCH. STUDY	^ 15 CM ^ HI PERV. CONTOURS ^ PRELIM MODEL	LOW WEAR	^ 30 CM EVAL ^ EVAL. HOLOGR. ^ IMPROVED MODEL LIFE PRED.	J L L, J L, J
4. POWER PROCESSOR <ul style="list-style-type: none">o COMPONENT TECH.o SIMPLIFIED PPUo PACKAGED PPU	LITE MAG. LAB DEMO	^ HV INVERTER LV BBS ^ DO DCMO SOW	^ HI POWER ^ COMPL. INTEL. ^ ATP	L L L J
5. BB FEED SYSTEM LIFE				
6. DIAGNOSTICS <ul style="list-style-type: none">o THRUST STANDo BEAM DIAGNOSTICS		^ COMPLETE ^ CIG. STATE	^ T-VICION ^ S/C EFF	L, J L, J

NEP - MPD THRUSTER TECHNOLOGY

FY 92 Milestone: Establish 100 hr test capability at 100 kW

Background:

- Base Technology Program supported extensive testing of
 - argon MPD thrusters to 240 kW
 - hydrogen thrusters to 100 kW
- Extensive performance data base established

Applied-Field MPD thruster schematic
Anode and cathode lengths of 7.6 cm. Cathode radius = 0.64 cm, anode radii of 2.54, 3.81, and 5.1 cm. Thrust exit plane was even with solenoid exit plane.

SPACE PROPULSION TECHNOLOGY DIVISION

AEROSPACE TECHNOLOGY DIRECTORATE

High Power Electric Propulsion MPD Thruster Technology

- New facility established
 - Helium cryopumping
 - 350 kW power
 - Plume diagnostics
 - Electrode power diagnostics
- MPD thruster tested to 240 kW

CD-92-01486

SPACE PROPULSION TECHNOLOGY DIVISION

AEROSPACE TECHNOLOGY DIRECTORATE

MPD Thruster Lifetime Cathode Erosion

Backplate
location

- Low purity Argon (99.995%)
- No vacuum purge

- High purity Argon (99.999%)
- With vacuum purge

Major cause of cathode erosion eliminated

CD-92-01459
NPP: Technology

Applied-Field MPD Thruster Geometry/Operation Point Selection

Cathode

- Testing showed hollow cathode temperature was ~ 1000 K below rod cathode

Boron Nitride Backplate

- Increasing cathode-to-backplate separation improved insulator life

Anode

- 5.1 cm radius, 15 cm long anode to reduce power density

Operating point

60 kW: 1400 amps, 47 volts
0.14 g/s argon

AEROSPACE TECHNOLOGY DIRECTORATE

SPACE PROPULSION TECHNOLOGY DIVISION

MPD Thruster Lifetime Anode Erosion

Extended test conducted to identify first-order degradation limit

Sputtering by argon propellant identified as major cause of erosion
fundamental limit for Isp's of interest

Program emphasis shifted toward light propellants
and refractory metal anodes

Reference: J. Propulsion and Power, Vol. 2, No. 2, April 1986, pp. 111-114.