Forms of Dynamic Equations

Chandramouli P

Indian Institute of Technology Madras

August 30, 2023

- Newton-Euler Form
 - Open Chain vs. Closed Chain Systems

- Virtual Work
 - Force Elements
 - Workless Constraints
 - Statics
 - Dynamics
 - Lagrange's Equations

Newton-Euler Equations

- Consider a body in unconstrained planar motion
- The motion can be described by three independent co-ordinates
 - lacktriangle Two translations R_x^i and R_y^i of a reference point
 - lacktriangle Rotation $heta^i$ of body with respect to a reference co-ordinate system
- The body is acted on by various forces/moments
- Reference point as centre of mass of body → Dynamic
 - $\qquad \qquad m^i \ddot{R}^i_x = F^i_x; \, m^i \ddot{R}^i_y = F^i_y; \, J^i \ddot{\theta}^i = M^i$
 - $lackbox{ }F_x^i$ and F_y^i are resultant force components at centre of mass
 - Mⁱ is the resultant moment

Example

- Block 1 has specified sliding motion z(t)
- Body 2 slender rod with mass m^2 and mass moment of inertia J^2
 - ▶ Subject to moment M²
- Connected to Block 1 by revolute joint at O
- We now derive the Newton-Euler equations

Courtesy: A. A. Shabana, 2010, Computational Dynamics, Third Edition, John Wiley & Sons.

Free-body Diagram of Rod

•
$$m^2 \ddot{R}_x^2 = F_x^{12}$$

$$J^{2}\ddot{\theta}^{2} = M^{2} + F_{x}^{12} \frac{1}{2} \sin \theta^{2} - F_{y}^{12} \frac{1}{2} \cos \theta^{2}$$

• Since block 1 motion specified only one degree-of-freedom θ^2

Courtesy: A. A. Shabana, 2010, Computational Dynamics, Third Edition, John Wiley & Sons.

Acceleration Expressions

$$R_x^2 = z(t) + \frac{l}{2}\cos\theta^2$$

$$R_y^2 = \frac{l}{2}\sin\theta^2$$

$$\ddot{R}_y^2 = -(\dot{\theta}^2)^2 \frac{l}{2} \sin \theta^2 + \ddot{\theta}^2 \frac{l}{2} \cos \theta^2$$

$$\ddot{R}_x^2 = \ddot{z}(t) - (\dot{\theta}^2)^2 \frac{l}{2} \cos \theta^2 - \ddot{\theta}^2 \frac{l}{2} \sin \theta^2$$

Courtesy: A. A. Shabana, 2010, *Computational Dynamics*, Third Edition, John Wiley & Sons.

Substitution & Elimination

•
$$m^2 \left(\ddot{z}(t) - (\dot{\theta}^2)^2 \frac{l}{2} \cos \theta^2 - \ddot{\theta}^2 \frac{l}{2} \sin \theta^2 \right) = F_x^{12}$$

•
$$m^2 \left(g - (\dot{\theta}^2)^2 \frac{l}{2} \sin \theta^2 + \ddot{\theta}^2 \frac{l}{2} \cos \theta^2 \right) = F_y^{12}$$

Substitute the two in Euler equation

$$\[J^2 + m^2 (\frac{l}{2})^2 \] \ddot{\theta}^2 = M^2 - m^2 g \frac{l}{2} \cos \theta^2 + m^2 \ddot{z}(t) \frac{l}{2} \sin \theta^2$$

- Note that joint forces do not exist in the above equation
 - ► This is then an embedded formulation

System of Particles

- Rigid body i considered as system of particles
- A particle has mass $ho^i dV^i$ with dV^i representing infinitesimal volume and ho^i density of body material
- The inertia force of this particle is then $ho^i dV^i\ddot{\mathbf{r}}^i$
- Total inertia force $\mathbf{F}^{i} = \int_{V^{i}} \rho^{i} \ddot{\mathbf{r}}^{i} dV^{i}$

Courtesy: A. A. Shabana, 2010, Computational Dynamics, Third Edition, John Wiley & Sons.

Choosing the Reference Point

- The reference point for the body coordinate system can be at any point
 - $\qquad \qquad \ddot{\mathbf{r}}^i = \ddot{\mathbf{R}}^i + \ddot{\theta}^i \mathbf{A}_{\theta}^i \bar{\mathbf{u}}^i (\dot{\theta}^i)^2 \mathbf{A}^i \bar{\mathbf{u}}^i$
- If reference point is chosen as centre of mass of body then
 - $\int_{V^i} \rho^i \mathbf{A}^i \bar{\mathbf{u}}^i dV^i = \mathbf{A}^i \int_{V^i} \rho^i \bar{\mathbf{u}}^i dV^i = 0$
- Then the inertia force is given by
 - $\qquad \qquad \mathbf{F}^i = \int_{V^i} \rho^i \ddot{\mathbf{R}}^i \, dv^i = m^i \ddot{\mathbf{R}}^i$
- This is the advantage of choosing the centre of mass as reference point

Euler Equation

- Use D'Alembert principle for moment equilibrium
 - lacktriangle Replace all the forces by the inertia force ${f F}^i$

- We can break LHS into three integrals

 - First zero by definition of centre of mass and second due to cross product of parallel vectors being zero
 - Third term is

$$\star \int_{V^i} \rho^i \mathbf{u}^i \times (\boldsymbol{\alpha}^i \times \mathbf{u}^i) \, dV^i = \int_{V^i} \rho^i \tilde{\mathbf{u}}^i \tilde{\boldsymbol{\alpha}}^i \mathbf{u}^i \, dV^i$$

▶ This yields the following equation

$$\star \ \ \left| \ddot{\theta}^{i} \int_{V^{i}} \rho^{i} ({x^{i}}^{2} + {y^{i}}^{2}) \, dV^{i} = \ddot{\theta}^{i} \int_{V^{i}} \rho^{i} \left\{ (\bar{x}^{i})^{2} + (\bar{y}^{i})^{2} \right\} dV^{i} = M^{i} \right.$$

$$\star \quad J^i \ddot{\theta}^i = M^i$$

Constrained Dynamics

- We use a simple example to understand number of constraint forces equals number of dependent coordinates RodDisc
- From the free-body diagrams one can write for body 2 FBDRodDisc

$$m^{2}\ddot{R}_{x}^{2} = F_{x}^{12} - F_{x}^{23}$$

$$m^{2}\ddot{R}_{y}^{2} = F_{y}^{12} - F_{y}^{23} - m^{2}g$$

$$J^{2}\ddot{\theta}^{2} = M^{2} + F_{x}^{12}\frac{l}{2}\sin\theta^{2} - F_{y}^{12}\frac{l}{2}\cos\theta^{2}$$

$$+ F_{x}^{23}\frac{l}{2}\sin\theta^{2} - F_{y}^{23}\frac{l}{2}\cos\theta^{2}$$

Constrained Dynamics 2

From free-body diagrams one can write for body 3 ►FBDRodDisc

$$\begin{bmatrix} m^{3} \ddot{R}_{x}^{3} = F_{x}^{23} \\ m^{3} \ddot{R}_{y}^{3} = F_{y}^{23} - m^{3}g \\ J^{3} \ddot{\theta}^{3} = M^{3} \end{bmatrix}$$

- We have 6 equations in 10 unknowns
- Note that the number of independent co-ordinates is 2
 - Number of dependent co-ordinates is equal to the number of constraints
- The general form of the Newton-Euler equations
 - $\mathbf{M}\ddot{\mathbf{q}} = \mathbf{Q}_e + \mathbf{Q}_c$
 - ullet ${f Q}_c$ external force and ${f Q}_c$ constraint force vector

Augmented Formulation

 We augment the 6 Newton-Euler equations with second derivative of constraint equations Constraints

$$\mathbf{C}_{\mathbf{q}}\ddot{\mathbf{q}}=\mathbf{Q}_d$$
 Jacobian

This leads to a form

$$\begin{bmatrix} \mathbf{M} & \mathbf{C}_{\mathbf{q}}^{\mathrm{T}} \\ \mathbf{C}_{\mathbf{q}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{q}} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{e} \\ \mathbf{Q}_{d} \end{bmatrix}; \quad \boldsymbol{\lambda} = \begin{bmatrix} F_{x}^{12} \\ F_{y}^{12} \\ F_{x}^{23} \\ F_{y}^{23} \end{bmatrix}$$

- We then have $\mathbf{Q}_c = -\mathbf{C}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\lambda}$
- \bullet λ is the vector of Lagrange Multipliers

Embedded Formulation

- Eliminate the dependent degrees-of-freedom
- Rewrite the constraint equations as

$$\qquad \qquad \left[\mathbf{C}_{\mathbf{q}_i} \quad \mathbf{C}_{\mathbf{q}_d} \right] \left\{ \begin{matrix} \ddot{\mathbf{q}}_i \\ \ddot{\mathbf{q}}_d \end{matrix} \right\} = \mathbf{Q}_d$$

$$\ddot{\mathbf{q}}_d = -(\mathbf{C}_{\mathbf{q}_d})^{-1}\mathbf{C}_{\mathbf{q}_i}\ddot{\mathbf{q}}_i + (\mathbf{C}_{\mathbf{q}_d})^{-1}\mathbf{Q}_d$$

We now define the following relation

$$\mathbf{B}_i = \begin{bmatrix} \mathbf{I} & -(\mathbf{C}_{\mathbf{q}_d})^{-1}\mathbf{C}_{\mathbf{q}_i} \end{bmatrix}^{\mathrm{T}}; \, \boldsymbol{\gamma}_i = \begin{bmatrix} \mathbf{0} & (\mathbf{C}_{\mathbf{q}_d})^{-1}\mathbf{Q}_d \end{bmatrix}^{\mathrm{T}}$$

Embedded Form 2

- Now we use the new relation in the Newton-Euler equations
 - $\mathbf{M}\ddot{\mathbf{q}} = \mathbf{Q}_e + \mathbf{Q}_c$
 - $\mathbf{M}\mathbf{B}_i\ddot{\mathbf{q}}_i=\mathbf{Q}_e+\mathbf{Q}_c-\mathbf{M}oldsymbol{\gamma}_i$
- ullet Make it symmetric by multiplying equation with ${f B}_i^{
 m T}$
 - ullet $\mathbf{B}_i^{\mathrm{T}}\mathbf{M}\mathbf{B}_i\ddot{\mathbf{q}}_i = \mathbf{B}_i^{\mathrm{T}}\mathbf{Q}_e \mathbf{B}_i^{\mathrm{T}}\mathbf{M}oldsymbol{\gamma}_i$
- $oldsymbol{oldsymbol{\Theta}}$ Note that $\mathbf{B}_i^{\mathrm{T}}\mathbf{Q}_c=\mathbf{0}$ which means no constraint forces in the above equation
 - Left as an exercise to prove
- This is the embedded formulation

Open Chain Systems

- One of the advantages of augmented formulation is that both open and closed chain systems can be treated alike
- For other methods special attention required for closed kinematic chains
- We look at two different modelling approaches to open loop chains first
 - First method where each body dynamics is developed
 - Involves all the reactions
 - Second method involves cuts at specific joints with dynamics for selected sub-systems

Method I

- We revisit the 2-link manipulator
- The free-body diagrams of each link is done
- From these the Newton-Euler equations for body 2 are

$$F_x^{12} - F_x^{23} = m^2 \ddot{R}_x^2$$

$$F_y^{12} - m^2 g - F_y^{23} = m^2 \ddot{R}_y^2$$

$$F_x^{12} l_O^2 \sin \theta^2 - F_y^{12} l_O^2 \cos \theta^2 + M^2 +$$

$$F_x^{23} l_A^2 \sin \theta^2 - F_y^{23} l_A^2 \cos \theta^2 = J^2 \ddot{\theta}^2$$

Method I ...

- The free-body diagram for link 3 ►FBD2Link
- From these the Newton-Euler equations for body 3 are

$$F_x^{23} = m^3 \ddot{R}_x^3$$

$$F_y^{23} - m^3 g = m^3 \ddot{R}_y^3$$

$$F_x^{23} l_A^3 \sin \theta^3 - F_y^{23} l_A^3 \cos \theta^3 + M^3 = J^3 \ddot{\theta}^3$$

- We look at inverse dynamics to show difference between open and closed chains
 - Kinematic quantities are known
- Inverse dynamics form FinalForm
 - ightharpoonup Of the form Ax = b with x the reaction forces and external moments and b the accelerations

Method I ...

 Invert the inverse dynamics equation to get the reaction forces and external moments

$$F_x^{12} = m^2 \ddot{R}_x^2 + m^3 \ddot{R}_x^3$$

$$F_y^{12} = m^2 \ddot{R}_y^2 + m^2 g + m^3 \ddot{R}_y^3 + m^3 g$$

$$F_x^{23} = m^3 \ddot{R}_x^3$$

$$F_y^{23} = m^3 \ddot{R}_y^3 + m^3 g$$

$$M^2 = J^2 \ddot{\theta}^2 - A_{51} m^2 \ddot{R}_x^2 - A_{52} (m^2 \ddot{R}_y^2 + m^2 g)$$

$$- (A_{51} + A_{53}) m^3 \ddot{R}_x^3 - (A_{51} + A_{53}) (m^3 \ddot{R}_y^3 + m^3 g)$$

$$M^3 = J^3 \ddot{\theta}^3 - A_{63} m^3 \ddot{R}_x^3 - A_{64} (m^3 \ddot{R}_y^3 + m^3 g)$$

• Last 2 equations do not involve the reaction forces

A elements

• The elements of the matrix A in the previous slide

$$A_{51} = l_O^2 \sin \theta^2; \qquad A_{52} = -l_O^2 \cos \theta^2$$

$$A_{53} = l_A^2 \sin \theta^2; \qquad A_{54} = -l_A^2 \cos \theta^2$$

$$A_{63} = l_A^3 \sin \theta^2; \qquad A_{64} = -l_A^3 \cos \theta^2$$

- l_O^2 and l_A^2 are the distances of joints at O and A from centre of mass of link 2
- ullet l_A^3 is the distance of joints at A from centre of mass of link 3

Method II

- For open chains the last two equations can be done without finding reactions
- Let us take the first sub-system FBD ▶ SubsysFBD
- We take moments about point A for link 3
 - $M_e = M^3 m^3 g l_A^3 \cos \theta^3$
 - ★ Moments due to external forces/moments
 - $M_i = -m^3 \ddot{R}_x^3 l_A^3 \sin \theta^3 + m^3 \ddot{R}_y^3 l_A^3 \cos \theta^3 + J^3 \theta^3$
 - ★ Moments due to inertia forces/moments
- ullet From D'Alembert's principle we have $M_e=M_i$
- $M^3 = J^3 \ddot{\theta}^3 + (m^3 g + m^3 \ddot{R}_y^3) l_A^3 \cos \theta^3 m^3 \ddot{R}_x^3 l_A^3 \sin \theta^3$

Method II ...

- Second FBD of sub-system → SubsysFBD
- Moments are now taken about joint at O

•
$$M_e = M^2 + M^3 - m^2 g l_O^2 \cos \theta^2 - m^3 g (l^2 + l_A^3 \cos \theta^3)$$

Moments of the external forces/moments

$$M_i = J^2 \ddot{\theta}^2 + J^3 \ddot{\theta}^3 - m^2 \ddot{R}_x^2 l_O^2 \sin \theta^2 + m^2 \ddot{R}_y^2 l_O^2 \cos \theta^2 - m^3 \ddot{R}_x^3 (l^2 \sin \theta^2 + l_A^3 \sin \theta^3) + m^3 \ddot{R}_y^3 (l^2 \cos \theta^2 + l_A^3 \cos \theta^3)$$

- Moments of the inertia forces/moments
- ullet One can equate the two and get an expression for M^2+M^3
- ullet Subtract earlier expression for M^3 from this to get M^2
 - Forms the foundation of the recursive methods

Closed Chain Analysis

- We now look at 4-bar mechanism dynamics ► 4BarMech
 - Closed loop chain example
- First the dynamics is derived using individual free-body diagrams

 4BarFBDR1
- The equations for body 2 are

$$F_x^{12} - F_x^{23} = m^2 \ddot{R}_x^2$$

$$F_y^{12} - m^2 g - F_y^{23} = m^2 \ddot{R}_y^2$$

$$F_x^{12} l_O^2 \sin \theta^2 - F_y^{12} l_O^2 \cos \theta^2 + M^2$$

$$+ F_x^{23} l_A^2 \sin \theta^2 - F_y^{23} l_A^2 \cos \theta^2 = J^2 \ddot{\theta}^2$$

Closed Chain: Method I

- First the dynamics is derived using individual free-body diagrams

 4BarFBDR2
- The equations for body 3 are

$$F_x^{23} + F_x^3 - F_x^{34} = m^3 \ddot{R}_x^3$$

$$F_y^{23} - m^3 g + F_y^3 - F_y^{34} = m^3 \ddot{R}_y^3$$

$$F_x^{23} l_A^3 \sin \theta^3 - F_y^{23} l_A^3 \cos \theta^3 +$$

$$F_x^{34} l_B^3 \sin \theta^3 - F_y^{34} l_B^3 \cos \theta^3 = J^3 \ddot{\theta}^3$$

Closed Chain: Method I ...

- First the dynamics is derived using individual free-body diagrams
- The equations for body 4 are

$$F_x^{34} - F_x^{41} = m^4 \ddot{R}_x^4$$

$$F_y^{41} - m^4 g - F_y^{41} = m^4 \ddot{R}_y^4$$

$$F_x^{34} l_B^4 \sin \theta^4 - F_y^{34} l_B^4 \cos \theta^4 + M^4$$

$$+ F_x^{41} l_C^4 \sin \theta^4 - F_y^{41} l_C^4 \cos \theta^4 = J^4 \ddot{\theta}^4$$

- We have 9 equations for the inverse dynamics which can be solved for 9 unknowns
 - 8 of them are the reactions at the revolute joints
 - ▶ Only one of M^2 , F_x^3 , F_y^3 and M^4 can be unknown

Closed Chain: Method II

- ullet We can now write the equations in the form $\mathbf{A}\mathbf{x}=\mathbf{b}$
 - f x contains the 8 unknown reaction forces and M^4
- Next get reduced set of equations from sub-system approach
- One equation from moments about point A [14BarBody1]

$$F_x^{12}l^2\sin\theta^2 - F_y^{12}l^2\cos\theta^2 + M^2 + m^2gl_A^2\cos\theta^2 = J^2\ddot{\theta}^2 + m^2\ddot{R}_x^2l_A^2\sin\theta^2 - m^2\ddot{R}_y^2l_A^2\cos\theta^2$$

Second equation from moments about point B • 4Bar2Bodies

$$\begin{split} F_x^{12}(l^2\sin\theta^2 + l^3\sin\theta^3) - F_y^{12}(l^2\cos\theta^2 + l^3\cos\theta^3) + M^2 + \\ m^2g(l_A^2\cos\theta^2 + l^3\cos\theta^3) + (m^3g - F_y^3)l_B^3\cos\theta^3 + F_x^3l_B^3\sin\theta^3 = \\ J^2\ddot{\theta}^2 + m^2\ddot{R}_x^2(l_A^2\sin\theta^2 + l^3\sin\theta^3) - m^2\ddot{R}_y^2(l_A^2\cos\theta^2 + l^3\sin\theta^3) + \\ J^3\ddot{\theta}^3 + m^3\ddot{R}_x^3l_B^3\sin\theta^3 - m^3\ddot{R}_y^3l_B^3\cos\theta^3 \end{split}$$

Reducing the Equation for Two Bodies

 The second equation can be reduced using first equation to a form

$$\begin{array}{lll} F_x^{12} l^3 \sin \theta^3 - F_y^{12} l^3 \cos \theta^3 + m^2 g l^3 \cos \theta^3 + (m^3 g - F_y^3) l_B^3 \cos \theta^3 + F_x^3 l_B^3 \sin \theta^3 & = m^2 \ddot{R}_x^2 l^3 \sin \theta^3 - m^2 \ddot{R}_y^2 l^3 \sin \theta^3 + J^3 \ddot{\theta}^3 + m^3 \ddot{R}_x^3 l_B^3 \sin \theta^3 - m^3 \ddot{R}_y^3 l_B^3 \cos \theta^3 \end{array}$$

- We can derive a moment equation using 3 bodies 4Bar3Bodies
 - ▶ The moment equation is first written about point C

Moment from 3 Bodies FBD

$$\begin{split} -F_y^{12}l^1 + m^2g(l_A^2\cos\theta^2 + l^3\cos\theta^3 + l^4\cos\theta^4) + \\ F_x^3(l_B^3\sin\theta^3 + l^4\sin\theta^4) + (m^3g - F_y^3)(l_B^3\cos\theta^3 + l^4\cos\theta^4) + \\ M^4 + m^4gl_C^4\cos\theta^4 = \\ J^2\ddot{\theta}^2 + m^2\ddot{R}_x^2(l_A^2\sin\theta^2 + l^3\sin\theta^3 + l^4\sin\theta^4) \\ -m^2\ddot{R}_y^2(l_A^2\cos\theta^2 + l^3\cos\theta^3 + l^4\cos\theta^4) + J^3\ddot{\theta}^3 + \\ m^3\ddot{R}_x^3(l_B^3\sin\theta^3 + l^4\sin\theta^4) - m^3\ddot{R}_y^3(l_B^3\cos\theta^3 + l^4\cos\theta^4) + \\ J^4\ddot{\theta}^4 + m^4\ddot{R}_x^4l_C^4\sin\theta^4 - m^4\ddot{R}_y^4l_C^4\cos\theta^4 \end{split}$$

- $l^1 = l^2 \cos \theta^2 + l^3 \cos \theta^3 + l^4 \cos \theta^4$
- Use moment equations about A & B to reduce this equation

Moment from 3 Bodies FBD

$$F_x^{12}l^4\sin\theta^4 + (m^2g - F_y^{12})l^4\cos\theta^4 + F_x^3l^4\sin\theta^4 + (m^3g - F_y^3)l^4\cos\theta^4 + M^4 + m^4gl_C^4\cos\theta^4 = +(m^2\ddot{R}_x^2 + m^3\ddot{R}_x^3)l^4\sin\theta^4 - (m^2\ddot{R}_y^2 + m^3\ddot{R}_y^3)l^4\cos\theta^4 + J^4\ddot{\theta}^4 + m^4\ddot{R}_x^4l_C^4\sin\theta^4 - m^4\ddot{R}_y^4l_C^4\cos\theta^4$$

- ullet Clearly these 3 equations can be solved to get F_x^{12} , F_y^{12} and M^4
- Another set of reduced equations can provide F_x^{23} , F_y^{23} and M^4 or F_x^{34} , F_y^{34} and M^4

Closed Chain Dynamics

- In closed chains reduced equations always will contain reactions
 - Unlike the open chain equations
- These reaction forces can be eliminated by further manipulation
- So one way is to systematically make the closed chain an open chain by cuts at secondary joints
 - Develop the dynamic equations using the open chain
 - At joints write connectivity conditions
 - Leads to a system of differential-algebraic equations

Introduction to Virtual Work

- Unlike Newton-Euler method virtual work principle does not consider the constraint forces
- Requires only a scalar quantity to define static or dynamic equations
- Principle of virtual work leads to number of equations equal to number of independent co-ordinates
 - Systematic procedure for embedding formulation
- One can also derive Lagrange's equations from principle of virtual work

Virtual Displacements

- Generalized Co-ordinates is a term used to describe any set of coordinates describing system configuration
- A virtual displacement is an infinitesimal displacement consistent with kinematic constraints imposed on motion of system
- They are imaginary as time is held fixed when they occur
- Let us go back to the unconstrained body PosVec

$$\mathbf{r}_P^i = \mathbf{R}^i + \mathbf{u}_P^i = \mathbf{R}^i + \mathbf{A}^i \bar{\mathbf{u}}_P^i$$

ullet A virtual change in the position vector of P^i

Kinematic Constraints

• We can write the virtual displacement as

$$\qquad \qquad \boldsymbol{\delta}\mathbf{r}_P^i = \begin{bmatrix} \mathbf{I} & \mathbf{A}_{\theta}^i \bar{\mathbf{u}}_P^i \end{bmatrix} \delta \mathbf{q}^i \text{; } \delta \mathbf{q}^i = \begin{bmatrix} \delta \mathbf{R}^i & \delta \theta^i \end{bmatrix}^\mathrm{T}$$

- If system not kinematically driven then
 - \blacktriangleright Number of constraint equations n_c will be less than degrees-of-freedom n
 - ▶ There will be n_c dependent co-ordinates \mathbf{q}_d and $n-n_c$ independent co-ordinates \mathbf{q}_i
- Slider-crank mechanism constraints

$$l^2 \cos \theta^2 + l^3 \cos \theta^3 = R_x^4; \ l^2 \sin \theta^2 + l^3 \sin \theta^3 = 0$$

- Virtual displacements will lead to form
 - $-l^2 \sin \theta^2 \delta \theta^2 l^3 \sin \theta^3 \delta \theta^3 \delta R_x^4 = 0$
 - $l^2 \cos \theta^2 \delta \theta^2 + l^3 \cos \theta^3 \delta \theta^3 = 0$

Dependent and Independent Co-ordinates

- The slider-crank mechanism has one independent co-ordinate
 - We select say θ^2
- Then $\mathbf{q}_d = \begin{bmatrix} \theta^3 & R_x^4 \end{bmatrix}^\mathrm{T}$
- The virtual displacement equations can be re-written as

$$\begin{bmatrix} -l^3 \sin \theta^3 & -1 \\ l^3 \cos \theta^3 & 0 \end{bmatrix} \begin{Bmatrix} \delta \theta^3 \\ \delta R_x^4 \end{Bmatrix} = \delta \theta^2 \begin{Bmatrix} l^2 \sin \theta^2 \\ -l^2 \cos \theta^2 \end{Bmatrix}$$

This can be written in the form

$$\begin{cases} \delta\theta^3 \\ \delta R_x^4 \end{cases} = \frac{1}{l^3 \cos \theta^3} \begin{cases} -l^2 \cos \theta^2 \\ l^2 l^3 \sin(\theta^3 - \theta^2) \end{cases} \delta\theta^2$$

• If $\theta^3=rac{\pi}{2}$ or $rac{3\pi}{2}$ one cannot find \mathbf{q}_d

General Form

- The general form of the constraint equations
 - $\mathbf{C}(\mathbf{q},t)=\mathbf{0}$
- If we apply virtual displacements then we have
 - $\mathbf{C_q}\delta\mathbf{q}=\mathbf{0}$; $\mathbf{C_q}$ is Jacobian matrix
- Jacobian matrix can be partitioned as

$$\qquad \left[\mathbf{C}_{\mathbf{q}_d} \quad \mathbf{C}_{\mathbf{q}_i} \right] \left\{ \begin{matrix} \delta \mathbf{q}_d \\ \delta \mathbf{q}_i \end{matrix} \right\} = \mathbf{0} \ ; \quad \frac{\delta \mathbf{q}_d = -\mathbf{C}_{\mathbf{q}_d}^{-1} \mathbf{C}_{\mathbf{q}_i} \delta \mathbf{q}_i}{\mathbf{q}_i \mathbf{q}_i} \right\}$$

ullet We can then write $egin{aligned} \delta \mathbf{q} &= \mathbf{B}_i \delta \mathbf{q}_i \end{aligned}$ with $\mathbf{B}_i = \begin{bmatrix} -\mathbf{C}_{\mathbf{q}_d}^{-1} \mathbf{C}_{\mathbf{q}_i} & \mathbf{I} \end{bmatrix}^\mathrm{T}$

Virtual Work

- \bullet The rigid body i acted on by moment M^i and force ${\bf F}^i$ at point P^i
- Virtual work for this system of forces

• This can be rewritten as

$$\delta W^{i} = \mathbf{F}^{i^{\mathrm{T}}} \delta \mathbf{R}^{i} + (\mathbf{F}^{i^{\mathrm{T}}} \mathbf{A}_{\theta}^{i} \bar{\mathbf{u}}_{p}^{i} + M^{i}) \delta \theta^{i}$$

$$\delta W^i = \mathbf{Q}_B^{i \ T} \delta \mathbf{R}^i + Q_\theta^i \delta \theta^i$$

ullet \mathbf{Q}_R^i and $Q_{ heta}^i$ are generalized forces

Force Elements

- We now look at the generalized forces commonly encountered in multi-body dynamics
- Gravity
 - ▶ The virtual work is $\delta W^i = -m^i g \delta y^i$
 - If the reference point same as centre of mass $\delta y^i = \delta R^i_y$
 - $\qquad \qquad \mathbf{f} \text{ not } \mathbf{y}^i = R^i_y + \bar{u}^i_x \sin \theta^i + \bar{u}^i_y \cos \theta^i$
 - \star Then $\delta y^i = \delta R^i_y + (\bar{u}^i_x \cos \theta^i \bar{u}^i_y \sin \theta^i) \delta \theta^i$
 - $\qquad \delta W^i = Q^i_y \delta R^i_y + Q^i_\theta \delta \theta^i = -m^i g \delta R^i_y m^i_g (\bar{u}^i_x \cos \theta^i \bar{u}^i_y \sin \theta^i) \delta \theta^i$

Spring-Damper-Actuator Element

- Two bodies connected by a spring-damper-actuator ► SpDaAc
- The force $f_s = k(l l_0) + c\dot{l} + f_a$
 - lacksquare Spring assumed linear with stiffness k
 - ▶ Damper force proportional to relative velocity between points P^i and P^j
 - l₀ is undeformed length of spring
- The virtual work can be written as $\delta W = -f_s \delta l$
 - lacktriangleright δl is the virtual change in the distance between P^i and P^j
 - f_a could be a non-linear function of time/ body co-ordinates and velocities

Spring-Damper ...

ullet The distance ${f r}_P^{ij}$ between P^i and P^j is

$$\mathbf{r}_P^{ij} = \mathbf{R}^i + \mathbf{A}^i \bar{\mathbf{u}}_P^i - \mathbf{R}^j - \mathbf{A}^j \bar{\mathbf{u}}_P^j; \ l = \sqrt{\mathbf{r}_P^{ij}^T \mathbf{r}_P^{ij}}$$

- ullet The virtual change $\delta l = rac{\partial l}{\partial {f q}} \delta {f q}$
 - $\mathbf{q} = \begin{bmatrix} \mathbf{R}^i & \theta^i & \mathbf{R}^j & \theta^j \end{bmatrix}^{\mathrm{T}}$
- ullet We have the following form for δl

$$\delta l = \frac{1}{\sqrt{\mathbf{r}_{P}^{ij^{T}}\mathbf{r}_{P}^{ij}}} \mathbf{r}_{P}^{ij^{T}} \frac{\partial \mathbf{r}_{P}^{ij}}{\partial \mathbf{q}} = \mathbf{I}_{P}^{T} \begin{bmatrix} \frac{\partial \mathbf{r}_{P}^{ij}}{\partial \mathbf{q}^{i}} & \frac{\partial \mathbf{r}_{P}^{ij}}{\partial \mathbf{q}^{j}} \end{bmatrix} \begin{cases} \delta \mathbf{q}^{i} \\ \delta \mathbf{q}^{j} \end{cases}$$

- $lackbox{I}_P$ is the unit vector along P^iP^j
- $\qquad \qquad \bullet \ \, \frac{\partial \mathbf{r}_P^{ij}}{\partial \mathbf{q}^i} = \begin{bmatrix} \mathbf{I} & \mathbf{A}_\theta^i \bar{\mathbf{u}}_P^i \end{bmatrix} \; ; \; \frac{\partial \mathbf{r}_P^{ij}}{\partial \mathbf{q}^j} = \begin{bmatrix} -\mathbf{I} & -\mathbf{A}_\theta^j \bar{\mathbf{u}}_P^j \end{bmatrix} \;$

Rotational Spring-Damper

ullet The velocity \dot{l} is given by

$$\dot{l} = \frac{\partial l}{\partial \mathbf{q}} \dot{\mathbf{q}} = \mathbf{I}_P^T \frac{\partial \mathbf{r}_P^{ij}}{\partial \mathbf{q}} \dot{\mathbf{q}}$$

Rotational Spring-Damper

$$M_s = k_r(\theta - \theta_0) + c_r\dot{\theta}; \ \theta = \theta^i - \theta^j$$

• Virtual work done by this combination is

$$\delta W = -\{k_r(\theta - \theta_0) + c_r \dot{\theta}\}(\delta \theta^i - \delta \theta^j)$$

Workless Constraints

- Internal reaction forces between particles of a rigid body do no work
- ullet Distance between two particles i and j remains constant

$$(\mathbf{r}^i - \mathbf{r}^j)^{\mathrm{T}}(\mathbf{r}^i - \mathbf{r}^j) = c_1$$

For a virtual change in the position of these particles

$$(\mathbf{r}^i - \mathbf{r}^j)^{\mathrm{T}} (\delta \mathbf{r}^i - \delta \mathbf{r}^j) = 0$$

- If \mathbf{F}_c^{ij} is constraint force acting on i then force on j is $\mathbf{F}_c^{ji} = -\mathbf{F}_c^{ij}$
- ullet These forces act along the line joining i and j

$$\mathbf{F}_c^{ij} = c_2(\mathbf{r}^i - \mathbf{r}^j)$$

Virtual Work of Constraint Forces

- The virtual work due to the constraint forces
- ullet Since the force acts along ij line we have
 - $\delta W = c_2(\mathbf{r}^i \mathbf{r}^j)^{\mathrm{T}}(\delta \mathbf{r}^i \delta \mathbf{r}^j) = 0$
- Similar comments apply to other friction free conenctions
- For the revolute joint between body i and body j RevJoint

 - Net virtual work $\delta W = 0$
- Used to eliminate constraint forces in dynamic equations
 - Leads to number of equations equal to number of independent co-ordinates

Statics: Equipollent System

- Let a force \mathbf{F}^i act at a point P^i in a rigid body i
- The virtual work done is $\delta W = \mathbf{F}^{i^{\mathrm{T}}} \delta \mathbf{r}_{P}^{i}$
- With respect to the reference point

$$\qquad \qquad \boldsymbol{\delta \mathbf{r}_P^i} = \delta \mathbf{R}^i + \mathbf{A}_\theta^i \bar{\mathbf{u}}_P^i \delta \theta^i$$

- $\bullet \ \ \mathsf{Then} \ \ \delta W^i = \mathbf{F}^{i^{\mathrm{T}}} \delta \mathbf{R}^i + \mathbf{F}^{i^{\mathrm{T}}} \mathbf{A}^i_\theta \bar{\mathbf{u}}^i_P \delta \theta^i$
- Force \mathbf{F}^i at P^i equipollent to force \mathbf{F}^i at reference point and moment $\mathbf{M}^i\hat{\mathbf{k}} = \mathbf{u}_P \times \mathbf{F}^i = \bar{\mathbf{u}}_P^{\mathrm{iT}} \mathbf{A}_{\theta}^{i\mathrm{T}} \mathbf{F}^i \hat{\mathbf{k}}$
- The virtual work is $\delta W_r^i = \mathbf{F}^i \delta \mathbf{R}^i + M^i \delta \theta^i = \mathbf{F}^i \delta \mathbf{R}^i + \bar{\mathbf{u}}_P^{i^{\mathrm{T}}} \mathbf{A}_{\theta}^{i^{\mathrm{T}}} \mathbf{F}^i \delta \theta^i$
- $\bullet \ \ {\rm Comparison \ shows} \ \ \delta W^i = \delta W^i_r$

Virtual Work

- Virtual work done

$$\delta W^{i} = \mathbf{F}_{1}^{i^{T}} \delta \mathbf{r}_{1}^{i} + \mathbf{F}_{2}^{i^{T}} \delta \mathbf{r}_{2}^{i} + \ldots + \mathbf{F}_{n_{f}}^{i^{T}} \delta \mathbf{r}_{n_{f}}^{i} + (M_{1}^{i} + M_{2}^{i} + \ldots + M_{n_{m}}^{i}) \delta \theta^{i}$$

- $\bullet \ \ \mathsf{Compact} \ \ \mathsf{notation} \ \ \frac{\delta W^i = \sum_{j=1}^{n_f} \mathbf{F}_j^{i^T} \delta \mathbf{r}_j^i + \Big(\sum_{k=1}^{n_m} M_k^i \Big) \delta \theta^i }{}$
- The virtual work of the equipollent system VWStatics

 - $oldsymbol{\mathbf{r}}_e^i$ is the position vector of point of application of \mathbf{F}_e^i
- \bullet From our previous discussion $\boxed{\delta W^i = \delta W^i_r}$

Virtual Work: Statics

- If body i is in static equilibrium
 - ▶ $\mathbf{F}_e = \mathbf{0}; M_e = 0$

$$\sum_{j=1}^{n_f} \mathbf{F}_j^{i^T} \delta \mathbf{r}_j^i + (\sum_{k=1}^{n_m} M_k^i) \delta \theta^i = 0$$

- The above equation is the principle of virtual work in statics
 - ► For a body in static equilibrium the virtual work of all the forces and moments that act on this body must be equal to zero

System of Connected Bodies

- The virtual work can be split into

 - ullet δW_e^i is the virtual work of the external forces and moments
 - δW_c^i is the virtual work of the constraint forces and moments
- ullet If there are n_b bodies one can sum the virtual work

- Joint constraint forces equal in magnitude but opposite in direction on the connected bodies
 - $\sum_{i=1}^{n_b} \delta W_c^i = 0$
- For multi-body system the principle of virtual work becomes

Generalized Forces

- ullet Let n_f forces act on the multi-body system as well as n_m moments
- Then one can write

• Now one can express \mathbf{r}_j and θ_j in terms of the independent co-ordinates \mathbf{q}_i

•
$$\delta W_e = \left(\sum_{j=1}^{n_f} \mathbf{F}_j \frac{\partial \mathbf{r}_j}{\partial \mathbf{q}_i} + \sum_{j=1}^{n_m} M_j \frac{\partial \theta_j}{\partial \mathbf{q}_i}\right) \delta \mathbf{q}_i = \mathbf{Q}_e^T \delta \mathbf{q}_i$$

ullet For a system in static equilibrium ${f Q}_e={f 0}$

Example

- Let us consider the slider-crank mechanism in static equilibrium
- ullet Crank external moment M^2 and slider external force F^4
- We now look at each individual link starting with crank

$$\delta W^2 = \mathbf{F}^{12^{\mathrm{T}}} \delta \mathbf{r}_O^2 - \mathbf{F}^{23^{\mathrm{T}}} \delta \mathbf{r}_A^2 - m^2 g \delta R_y^2 + M^2 \delta \theta^2 = 0$$

For the connecting rod

• For the piston we have

Example Slide 2

- $\delta {f r}_O^2={f 0}$ as pivot is fixed and $\delta {f r}_A^2=\delta {f r}_A^3$ as well as $\delta {f r}_B^3=\delta {f r}_B^4$
- Also $\delta R_u^4 = 0$ as slider constrained to move horizontally
- Adding the three virtual work equations

$$-m^2 g \delta R_y^2 - m^3 g \delta R_y^3 + M^2 \delta \theta^2 + F^4 \delta R_x^4 = 0$$

- We have the following relations
 - $\delta R_y^2 = l_O^2 \cos \theta^2 \delta \theta^2; \ \delta R_y^3 = l^2 \cos \theta^2 \delta \theta^2 + l_A^3 \cos \theta^3 \delta \theta^3$
 - $\delta R_x^4 = -l^2 \sin \theta^2 \delta \theta^2 l^3 \sin \theta^3 \delta \theta^3$
- From the fact that $\sin \theta^3 = -\frac{l_2}{l_3} \sin \theta^2$ we have

Example Continued

- The virtual displacements become

 - $\delta R_y^3 = l^2 \cos \theta^2 \left(1 \frac{l_A^3}{l^3}\right) \delta \theta^2$
- \bullet From this the generalized force Q_e is

$$Q_e = -m^2 g l_O^2 \cos \theta^2 - m^3 g l^2 \cos \theta^2 (1 - \frac{l_A^3}{l^3}) + M^2 + F^4 l^2 (-\sin \theta^2 + \cos \theta^2 \tan \theta^3) = 0$$

Virtual Work: Dynamics

- For a rigid body i in motion we have
 - $\mathbf{F}^i m^i \mathbf{a}^i = \mathbf{0}; \ M^i J^i \ddot{\theta}^i = 0$
 - $ightharpoonup {f F}^i$ is the resultant of all forces and M^i sum of all moments about centre of mass
- ullet We multiply the first equation by $\delta {f R}^i$ and second by $\delta heta^i$

$$(\mathbf{F}^i - m^i \mathbf{a}^i)^T \delta \mathbf{R}^i = 0; (M^i - J^i \ddot{\theta}^i) \delta \theta^i = 0$$

- Adding the two we have
 - $(\mathbf{F}^i m^i \mathbf{a}^i)^T \delta \mathbf{R}^i + (M^i J^i \ddot{\theta}^i) \delta \theta^i = 0$
 - $\mathbf{F}^{i^T} \delta \mathbf{R}^i + M^i \delta \theta^i m^i \mathbf{a}^{i^T} \delta \mathbf{R}^i J^i \ddot{\theta}^i \delta \theta^i = \delta W^i \delta W_i^i = 0$
- ullet The principal of virtual work in dynamics for a body i

Multi-body System

- ullet For n_b connected bodies the virtual work can be written as
 - $\sum_{i=1}^{n_b} (\delta W_e^i + \delta W_c^i \delta W_i^i) = 0$
- As before we have $\sum_{i=1}^{n_b} \delta W_c^i = 0$
 - Joint constraint forces acting on two adjacent bodies are equal in magnitude and opposite in direction
- We then have the principle of virtual work in dynamics

$$\sum_{i=1}^{n_b} (\delta W_e^i - \delta W_i^i) = \delta W_e - \delta W_i = 0$$

- In terms of the independent co-ordinates q_i we have
- Hence we have $(\mathbf{Q}_e^{\mathrm{T}} \mathbf{Q}_i^{\mathrm{T}})\delta\mathbf{q}_i = 0$
 - lackbox This implies $\mathbf{Q}_e = \mathbf{Q}_i$ as \mathbf{q}_i are independent

Example Revisited

- We re-visit slider-crank mechanism with inertia forces OSCDyn
- Crank external moment M^2 and slider external force F^4
- ullet Recall the generalized external force Q_e

$$Q_e = -m^2 g l_O^2 \cos \theta^2 - m^3 g l^2 \cos \theta^2 (1 - \frac{l_A^3}{l^3}) + M^2 + F^4 l^2 (-\sin \theta^2 + \cos \theta^2 \tan \theta^3)$$

The virtual work due to inertia forces

$$\delta W_i = m^2 \ddot{R}_x^2 \delta R_x^2 + m^2 \ddot{R}_y^2 \delta R_y^2 + J^2 \ddot{\theta}^2 \delta \theta^2 + m^3 \ddot{R}_x^3 \delta R_x^3 + m^3 \ddot{R}_y^3 \delta R_y^3 + J^3 \ddot{\theta}^3 \delta \theta^3 + m^4 \ddot{R}_x^4 \delta R_x^4$$

Example Continued

- $\delta R_r^2 = -l_Q^2 \sin \theta^2 \delta \theta^2$; $\delta R_u^2 = l_Q^2 \cos \theta^2 \delta \theta^2$
- $\delta R_x^3 = -l^2 \left(\sin \theta^2 \frac{l_A^3}{l^3} \cos \theta^2 \tan \theta^3\right) \delta \theta^2$
- $\delta R_y^3 = l^2 \cos \theta^2 \left(1 \frac{l_A^3}{l^3}\right) \delta \theta^2$; $\delta \theta^3 = -\frac{l^2}{l^3} \frac{\cos \theta^2}{\cos \theta^3} \delta \theta^2$
- $\delta R_y^4 = l^2 \left(-\sin\theta^2 + \cos\theta^2 \tan\theta^3 \right) \delta\theta^2$
- Final expression for the generalized inertia force Q_i GenlierForc

Lagrange's Equations

ullet The virtual work done by inertia forces in body i

$$\qquad \delta W_i^i = \int_{V^i} \rho \ddot{\mathbf{r}}^{i^{\mathrm{T}}} \delta \mathbf{r}^i \, dV^i$$

• Now we can write $\frac{\delta \mathbf{r}^i = \frac{\partial \mathbf{r}^i}{\partial \mathbf{q}} \delta \mathbf{q}}{\delta \mathbf{q}}$ and from $\frac{\delta W^i_i = \mathbf{Q}^i_i \delta \mathbf{q}}{\delta \mathbf{q}}$

$$\mathbf{Q}_i^i = \int_{V^i} \rho \big(\frac{\partial \mathbf{r}^i}{\partial \mathbf{q}} \big)^{\mathrm{T}} \ddot{\mathbf{r}}^i \, dV^i$$

- ullet Now the velocity of a particle in body i
 - $\qquad \qquad \dot{\mathbf{r}}^i = \frac{\partial \mathbf{r}^i}{\partial \mathbf{q}} \dot{\mathbf{q}} + \frac{\partial \mathbf{r}^i}{\partial t} \text{ which implies } \frac{\partial \dot{\mathbf{r}}^i}{\partial \dot{\mathbf{q}}} = \frac{\partial \mathbf{r}^i}{\partial \mathbf{q}}$
- Using a similar argument we can show $\frac{\partial \ddot{\mathbf{r}}^i}{\partial \ddot{\mathbf{q}}} = \frac{\partial \dot{\mathbf{r}}^i}{\partial \dot{\mathbf{q}}} = \frac{\partial \mathbf{r}^i}{\partial \mathbf{q}}$

Lagrange's Equations 2

From the relations one can re-write

$$\mathbf{Q}_{i}^{i} = \int_{V^{i}} \rho \left(\frac{\partial \dot{\mathbf{r}}^{i}}{\partial \dot{\mathbf{q}}} \right)^{\mathrm{T}} \ddot{\mathbf{r}}^{i} \, dV^{i}$$

Now we have

$$\qquad \frac{d}{dt} \left\{ \left(\frac{\partial \dot{\mathbf{r}}^i}{\partial \dot{\mathbf{q}}} \right)^{\mathrm{T}} \dot{\mathbf{r}}^i \right\} = \frac{d}{dt} \left\{ \left(\frac{\partial \dot{\mathbf{r}}^i}{\partial \dot{\mathbf{q}}} \right)^{\mathrm{T}} \right\} \dot{\mathbf{r}}^i + \left(\frac{\partial \dot{\mathbf{r}}^i}{\partial \dot{\mathbf{q}}} \right)^{\mathrm{T}} \ddot{\mathbf{r}}^i$$

• This can be brought into a form

$$\qquad \qquad \left(\frac{\partial \dot{\mathbf{r}}^i}{\partial \dot{\mathbf{q}}} \right)^{\mathrm{T}} \ddot{\mathbf{r}}^i = \frac{d}{dt} \left\{ \frac{\partial}{\partial \dot{\mathbf{q}}} \left(\frac{1}{2} \dot{\mathbf{r}}^{i^{\mathrm{T}}} \dot{\mathbf{r}}^i \right) \right\} - \frac{\partial}{\partial \mathbf{q}} \left(\frac{1}{2} \dot{\mathbf{r}}^{i^{\mathrm{T}}} \dot{\mathbf{r}}^i \right)$$

ullet The kinetic energy $T^i = rac{1}{2} \int_{V^i}
ho \, \dot{f r}^{i^{
m T}} \dot{f r}^i \, dV^i$

Lagrange's Equations Finally

• So we finally have the generalized inertia force as

$$\mathbf{Q}_{i}^{i} = \frac{d}{dt} \left(\frac{\partial T^{i}}{\partial \dot{\mathbf{q}}} \right)^{\mathrm{T}} - \left(\frac{\partial T^{i}}{\partial \mathbf{q}} \right)^{\mathrm{T}}$$

• For a system with n_b bodies we have

$$\mathbf{Q}_{i} = \sum_{i=1}^{n_{b}} \left\{ \frac{d}{dt} \left(\frac{\partial T^{i}}{\partial \dot{\mathbf{q}}} \right)^{\mathrm{T}} - \left(\frac{\partial T^{i}}{\partial \mathbf{q}} \right)^{\mathrm{T}} \right\} = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\mathbf{q}}} \right)^{\mathrm{T}} - \left(\frac{\partial T}{\partial \mathbf{q}} \right)^{\mathrm{T}}$$

• From the principle of virtual work in dynamics we have

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_{ej}; j = 1, 2, \dots, n$$

 $ightharpoonup q_i$ are the independent co-ordinates

Example for Lagrange's Equation

- Rod has mass m^2 and J^2 is mass moment of inertia
- Length l with bottom block having specified z(t)
- Independent co-ordinate is θ^2
- Kinetic energy

$$T = \frac{1}{2}m\{(\dot{R}_x^2)^2 + (\dot{R}_y^2)^2\} + \frac{1}{2}J^2(\dot{\theta}^2)^2$$

Courtesy: A. A. Shabana, 2010, Computational Dynamics, Third Edition, John Wiley & Sons.

Example 2

- We have $R_x^2 = z(t) + \frac{l}{2}\cos\theta^2$ and $R_y^2 = \frac{l}{2}\sin\theta^2$
- $\dot{R}_{x}^{2} = \dot{z}(t) \frac{l}{2}\sin\theta^{2}\dot{\theta}^{2}; \ \dot{R}_{y}^{2} = \frac{l}{2}\cos\theta^{2}\dot{\theta}^{2}$
- The kinetic energy then is

$$T = \frac{1}{2}m^2\{\dot{z}^2 - l\sin\theta^2\dot{z}\dot{\theta}^2 + \frac{l^2}{4}(\dot{\theta}^2)^2\} + \frac{1}{2}J^2(\dot{\theta}^2)^2$$

The virtual work due to external forces

$$\delta W_e = -m^2 g \delta R_y^2 + M^2 \delta \theta^2 = (-\frac{1}{2} m^2 g l \cos \theta^2 + M^2) \delta \theta^2$$

- Lagrange's equation of motion

Final Equation

$$\bullet \quad \frac{\partial T}{\partial \dot{\theta}^2} = (J^2 + \frac{1}{4}m^2l^2)\dot{\theta}^2 - \frac{1}{2}m^2l\sin\theta^2\dot{z}$$

$$\bullet \quad \frac{\partial T}{\partial \theta^2} = -\frac{1}{2}m^2l\cos\theta^2\dot{z}\dot{\theta}^2$$

•
$$\frac{d}{dt}(\frac{\partial T}{\partial \dot{\theta}^2}) = (J^2 + \frac{1}{4}m^2l^2)\ddot{\theta}^2 - \frac{1}{2}m^2l\sin\theta^2\ddot{z} - \frac{1}{2}m^2l\cos\theta^2\dot{z}\dot{\theta}^2$$

• Hence the final form of the equation is

$$J_O = J^2 + \frac{1}{4}m^2l^2$$

Free-Body Diagram

Courtesy: A. A. Shabana, 2010, Computational Dynamics, Third Edition, John Wiley & Sons.

∢ Return

Rod Attached to Disc

Courtesy: A. A. Shabana, 2010, Computational Dynamics, Third Edition, John Wiley & Sons.

Free-Body Diagram

Courtesy: A. A. Shabana, 2010, Computational Dynamics, Third Edition, John Wiley & Sons.

◆ Return

◀ Return2

Constraint Equations for Rod-Disc Problem

$$R_x^2 - \frac{l}{2}\cos\theta^2 = 0$$

$$R_y^2 - \frac{l}{2}\sin\theta^2 = 0$$

$$R_x^2 + \frac{l}{2}\cos\theta^2 - R_x^3 = 0$$

$$R_y^2 + \frac{l}{2}\sin\theta^2 - R_y^3 = 0$$

- We have eliminated the degrees-of-freedom of fixed body 1
- $\bullet \ \mbox{Assumed} \ R^1_x = R^1_y = \theta^1 = 0$

Constraint Jacobian for Rod-Disc Problem

$$\mathbf{C_q} = \begin{bmatrix} 1 & 0 & \frac{l}{2}\sin\theta^2 & 0 & 0 & 0\\ 0 & 1 & -\frac{l}{2}\cos\theta^2 & 0 & 0 & 0\\ 1 & 0 & -\frac{l}{2}\sin\theta^2 & -1 & 0 & 0\\ 0 & 1 & \frac{l}{2}\cos\theta^2 & 0 & -1 & 0 \end{bmatrix}$$

Return

Method I: FBD

Courtesy: A. A. Shabana, 2010, Computational Dynamics, Third Edition, John Wiley & Sons.

◆ Back2

Inverse Dynamics Form

$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 1 0	-1 0 1	0 -1 0		0 0 0	$\int_{0}^{g} F_{x}^{23}$	$ \begin{pmatrix} m^2 \ddot{R}_x^2 \\ m^2 \ddot{R}_y^2 \\ m^3 \ddot{R}_x^3 \\ m^3 \ddot{R}_z^2 \end{pmatrix} $	
$\begin{bmatrix} l_O^2 \sin \theta^2 \\ 0 \end{bmatrix}$	$-l_O^2 \cos \theta^2$ 0	$l_A^2 \sin \theta^2$ $l_A^3 \sin \theta^2$	$-l_A^2 \cos \theta^2$ $l_A^3 \sin \theta^2$	1 0		$\begin{bmatrix} F_y^{23} \\ M^2 \\ M^3 \end{bmatrix}$	$\begin{pmatrix} m^2 G_y \\ J^2 \ddot{\theta}^2 \\ J^3 \ddot{\theta}^3 \end{pmatrix}$	

◆ Return

Method II: FBD

Courtesy: A. A. Shabana, 2010, Computational Dynamics, Third Edition, John Wiley & Sons.

Closed Chain Dynamics Example

Courtesy: A. A. Shabana, 2010, Computational Dynamics, Third Edition, John Wiley & Sons.

Closed Chain Dynamics: FBD I

Courtesy: A. A. Shabana, 2010, Computational Dynamics, 3^{rd} Edition, John Wiley & Sons.

Closed Chain Dynamics: Two Bodies

Courtesy: A. A. Shabana, 2010, Computational Dynamics, 3rd Edition, John Wiley & Sons.

Closed Chain Dynamics: Three Bodies

Courtesy: A. A. Shabana, 2010, Computational Dynamics, 3rd Edition, John Wiley & Sons.

Return

Position Vector: Unconstrained Body

Kinematically Constrained Bodies

Courtesy: A. A. Shabana, 2010, Computational Dynamics, 3^{rd} Edition, John Wiley & Sons.

Spring-Damper-Acutuator Element

Virtual Work: Revolute Joint

Return

Virtual Work in Statics

Courtesy: A. A. Shabana, 2010, $\it Computational Dynamics$, $\it 3^{rd}$ Edition, John Wiley & Sons.

Example Case

Courtesy: A. A. Shabana, 2010, $\it Computational Dynamics, 3^{rd}$ Edition, John Wiley & Sons.

Generalized Inertia Force

$$Q_{i} = -m^{2} \ddot{R}_{x}^{2} l_{O}^{2} \sin \theta^{2} + m^{2} \ddot{R}_{y}^{2} l_{O}^{2} \cos \theta^{2} + J^{2} \ddot{\theta}^{2} - m^{3} \ddot{R}_{x}^{3} l^{2} \left(\sin \theta^{2} - \frac{l_{A}^{3}}{l^{3}} \cos \theta^{2} \tan \theta^{3} \right) + m^{3} \ddot{R}_{y}^{3} l^{2} \cos \theta^{2} \left(1 - \frac{l_{A}^{3}}{l^{3}} \right) - J^{3} \ddot{\theta}^{3} \frac{l^{2} \cos \theta^{2}}{l^{3} \cos \theta^{3}} + m^{4} \ddot{R}_{x}^{4} l^{2} \left(-\sin \theta^{2} + \cos \theta^{2} \tan \theta^{3} \right)$$

◀ GoBack