

STM32 Microcontrollers Course

Winter&Summer 2016

STM32F103RBT6

- General Purpose
- Performance Line
- 72 MHz maximum frequency, 1.25 DMIPS/MHz
 - DMIPS/Mhz = 10^6 / (1757 * Number of Processor Clocks per Dhrystone loop)
 - MIPS = Million Instruction per second
- Single-cycle multiplication and hardware division
- 2.0 to 3.6 V application supply and I/Os
 - 5Volt Tolerant GPIOs
- 4-to-16 MHz crystal oscillator
- PLL for CPU clock
- Internal 8 MHz factory-trimmed RC
- Internal 40 kHz RC
- 7-channel DMA controller

STM32F103RBT6

——	 		+	+
Timers	General-purpose	4		
	Advanced-control	2		
	Basic	2		
Comm	SPI(I ² S) ⁽³⁾	3(2)		
	I ² C	2		
	USART	5		
	USB	1		
	CAN	1		
	SDIO	1		
GPIOs		51	80	112
12-bit ADC		3	3	3
Number of channels		16	16	21
12-bit DAC		2		
Number of channels		2		
CPU frequency		72 MHz		
Operating voltage		2.0 to 3.6 V		

xxx = programmed parts

TR = tape and real

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

Device Overview

STM32 Official Shopping Centers

- For IC:
 - JavanElec.com
 - kavirelectronic.ir/eshop
- For Boards:
 - http://shop.aftabrayaneh.com
 - http://eshop.eca.ir

- GPIO Modes :
 - Reset State (Input Float)
 - GPIO Output
 - Push-Pull
 - Open-Drain (AND Functionality)
 - When we have to use Push/Pull or Open Drain
 - GPIO Input
 - Float
 - Pull-Up
 - Pull-Down
 - Alternative
 - Push-Pull
 - Open Drain

- GPIO Modes :
 - GPIO Analog
 - ADC vs Analog
 - Analog : Put GPIO in low power mode
 - » By turning off pull-up/down resistor and Schmitt triggers
 - ADC : Analog + Conversion capability
 - Alternative Function
 - SPI, I2C, Timer I/O, UART
 - EventOut
 - SEV Assembly

```
PA8
Reset_State
RCC_MCO
TIM1_CH1
USART1_CK
GPIO_Input
GPIO_Output
GPIO_Analog
EVENTOUT
GPIO_EXTI8
```


Schmitt Triggers

 a electronic circuit in which the output increases to a steady maximum when the input rises above a certain threshold, and decreases almost to zero when the input voltage falls below another threshold. Schmitt triggers tend to remove noise especially mechanical bounces on input pins.

U : Input Signal

A: Comparator

B: Schmitt Trigger

I/O Different Configurations

- Input Configuration
- Output Configuration

ai14781

ai14781

GPIO Speed

Low Speed 2Mhz

Medium Speed 10Mhz

High Speed 50Mhz

Software I/O Remapping

GPIO Input Debouncing

Bouncing showcase

GPIO Input Debouncing Using RC

Figure 2: An RC debouncer

GPIO Input Debouncing Using Software Solutions

```
while (1)
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
   if((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_11) == 1))
       //Do something
/* USER CODE END 3 */
/* USER CODE BEGIN 3 */
    if((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_11) == 1))
        HAL Delay(100);
         if((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN 11) == 1))
             //Do something
             while(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_11) == 1){}
} /* while( 1 ) */
/* USER CODE END 3 */
```

```
/* USER CODE BEGIN 3 */
   if((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_11) == 1))
   {
      HAL_Delay(100);
      if((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_11) == 1))
      {
            //Do something
      }
   }
}
```

More Advanced Methods?

STM32 HAL GPIO Functions

- GPIO Read Pin Reading a input or output pin state
 - GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
- GPIO Write Pin Writing a value on output Pin
 - void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState
 PinState)
- GPIO Toggle Pin Toggle an output Pin
 - void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState
 PinState)
- GPIO Lock Pin Lock a pin until next reset
 - HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

