Feature Selection

Feature Selection

Goal: Remove irrelevant or redundant features to make models simpler, faster, and more accurate.

1. Filter Methods (Based on Statistics)

- Chi-Square
- Variance Threshold
- Correlation

Chi-Square Test

Purpose: To test the dependence between two categorical features.

- Example: "Passed Exam?" vs. "Studied?" Are they related?
- If not related, one of the features might be dropped.

Steps:

- 1. Create a contingency table.
- 2. Apply the Chi-Square formula or use a library function.
- 3. Check the **p-value**:
 - If p < 0.05, features are related.
 - If $p \ge 0.05$, they may be considered independent.

Python Example:

```
from sklearn.feature_selection import SelectKBest, chi2

# X: features (categorical, encoded as integers), y: target
selector = SelectKBest(score_func=chi2, k=2)
X_new = selector.fit_transform(X, y)
```

Variance Threshold

Purpose: Identify and remove features with very low variance.

• If a feature has almost the same value for all samples, it carries little information.

Steps:

- 1. Compute variance of each feature.
- 2. Drop features below a threshold.

Python Example:

```
from sklearn.feature_selection import VarianceThreshold

# Threshold of 0 means remove features with the same value in all
    samples
selector = VarianceThreshold(threshold=0.01)
X_new = selector.fit_transform(X)
```

Correlation

Purpose: Find highly correlated features that may be redundant. **Steps:**

- 1. Compute the Pearson correlation coefficient (r) between each feature pair.
- 2. If |r| is close to 1, consider dropping one of the features.

Python Example: