データ構造とアルゴリズム 01 アルゴリズムとは?データ構造とは?

宮本 裕一郎 miyamoto あっと sophia.ac.jp

上智大学 理工学部 情報理工学科

目次

アルゴリズムとは?データ構造とは?

言葉による説明

例 1: 総当り戦スケジュール表の作成

例 2: 安定マッチング

例 3: アル・フアリズミー (Al Khwarizmi) と乗算

アルゴリズムとデータ構造を学ぶ目的や意義

この講義の狙い

演習問題

文献紹介

言葉による説明

例1: 総当り戦スケジュール表の作成

例 2: 安定マッチング

例 3: アル・フアリズミー (Al Khwarizmi) と乗算

アルゴリズムとデータ構造を学ぶ目的や意義

この講義の狙い

演習問題

文献紹介

アルゴリズムとは?

アルゴリズム 【algorithm; algorism】

(アラビアの数学者アル=フワリズミーの名に因む)

- 1. アラビア記数法
- 2. 問題を解決する定型的な手法・技法 . コンピューターなどで,演算手続きを支持する規則. 算法.

「広辞苑 (第六版)」より

- ▶ 他にも, Wikipedia などに説明がある.
- ▶ しかし,少ない言葉の説明だけでわかるものでもない.
- ▶ たくさんの例を見るのが理解への早道である.

言葉による説明

例 1: 総当り戦スケジュール表の作成

例 2: 安定マッチング

例 3: アル・フアリズミー (Al Khwarizmi) と乗算

アルゴリズムとデータ構造を学ぶ目的や意義

この講義の狙い

演習問題

文献紹介

総当り戦スケジュール表の作成

9日で全試合が完了するスケジュール表を作成せよ!

6チームの場合

- ► このままでは2日目のチームEとFの 対戦相手が......
- ▶ 「てきとうに作ればうまくいく」というわけではないらしい。

実際に作ってみましょう!

В

D E F

Circle method¹

 $^{^{1}}$ この circle method は , 1847 年にはすでに存在していたことが確認されている .

データ構造とは?

計算モデル	データの表現
	紙上の図
コンピューター	コンピューター内部

Circle Method の図

0 1 2 3 4 5 A B C D E F

配列を 利用した データ構造

作成途中の総当り戦スケジュール表再び

					日					
		1	2		4	5	6	7	8	9
	Α	В	D	F	Н	J				
	В	Α	C	Ε	G	ı				
	C	D	В	J	F	Н				
チ	D	C	Α	G	ı	Ε				
-	Ε	F	Н	В	J	D				
ム	F	E	ı	Α	C	G				
	G	Н	J	D	В	F				
	Н	G	Ε	- 1	Α	C				
	I	J	F		D	В				
	J	ı	G	C	Ε	Α				

- ► この表の続きを埋めて も表の作成は不可能で ある。
- ▶ 不可能性の確認には,グラフ理論を利用するとわかりやすい.
- ► Circle Method の正当性 の厳密な確認には群論 を用いる。

言葉による説明

例 1: 総当り戦スケジュール表の作成

例 2: 安定マッチング

例 3: アル・フアリズミー (Al Khwarizmi) と乗算

アルゴリズムとデータ構造を学ぶ目的や意義

この講義の狙い

演習問題

文献紹介

安定マッチング

- 4人の男性,有葉(α),米太(β),元馬(γ),出る太(δ)と4人の女性,英子(A),美依子(B),椎子(C),泥子(D)の合計8人がいる.
- ▶ それぞれ,異性に対して以下の表のような嗜好を持っている.

人	好き	₹ ←		嗜好	,	⇒嫌い		
α	Α	>	В	>	C	>	D	
β	Α	>	D	>	C	>	В	
γ	В	>	Α	>	C	>	D	
δ	D	>	В	>	C	>	Α	
Α	δ	>	γ	>	α	>	β	
В	β	>	δ	>	γ	>	α	
C	δ	>	α	>	β	>	γ	
D	γ	>	β	>	α	>	δ	

▶ 男女ペアを4組作りたいのだが,後々面倒なことにならないようにできるだろうか?

ブロッキングペアと安定マッチング

- ► ここでは男女ペアの集合のうち,どの男性女性もちょうど1度だけ出現するものを完全マッチング(perfect matching)とよぶことにする.
- ► 例えば , {(\alpha, A), (\beta, B), (\gamma, C), (\delta, D)} という完全マッチングを作るとする .
- ▶ このとき, β は現在の相手 B よりも D の方が好きであり,D もまた 現在の相手 δ よりも β の方が好きである.
- ▶ これだと,いつ浮気されてもおかしくない!
- ► このように「お互いに,現在の相手よりも好きなもの同士」をブロッキングペアという。
- ► そして「ブロッキングペアを含まないペアの集合」を安定マッチング (stable matching) という.
- ▶ 一般に,同数の男性女性と異性に対する完全なる嗜好が与えられたとき,安定マッチングを見つける簡単な方法はあるだろうか?

Gale-Shapley アルゴリズム

- Step 1 すべての男女をフリーとする.
- Step 2 フリーでかつまだ全ての女性にはプロポーズしていない男性がいる間,以下を繰り返す.
 - Step 2-1 フリーな男性を一人選び,その男性が,まだプロポーズ していない女性の中で最も好きな人にプロポーズする.
 - Step 2-2 もしプロポーズされた女性がフリーならば,2人は婚約する.
 - Step 2-3 もしプロポーズされた女性が婚約中ならば,女性は好きな方を婚約者にする(どちらかの男性はフリーに戻る.)
- Step 3 婚約しているペアの集合を出力する.

このように問題の答えを見つける手続きを,一般に,<mark>アルゴリズム</mark>という.

Gale-Shapley アルゴリズムの例

人	好る	₹ ←	嗜好	\Rightarrow 3	嫌い
α	С		Α	>	В
β	В	>	C	>	Α
γ	C	>	В	>	Α
Α	γ	>	α	>	β
В	α	>	γ	>	β
C	α	>	β	>	γ

▶ ところで,この男女の集合と異性への嗜好は,コンピューター内部ではどのように表現すればよいであろうか?

Ranking Matrix で表現

▶ Gale-Shapley アルゴリズムを実行する際のデータ構造として,以下の様な行列(以下 Ranking Matrix とよぶ)が考えられる [Gale and Shapley, 1962].

この行列は,行が男性,列が女性に対応している.そして行列のi行j列成分の第1要素は男性iの女性jに対する好きな順位,第2要素は女性jの男性iに対する好きな順位である.

この Ranking Matrix を用いて,再び Gale-Shapley アルゴリズムを実行してみよう.

せっかくなので安定マッチングについてもう少し

- ▶ 安定マッチングは必ず存在する.これは次回扱う.
- ▶ 安定マッチングは唯一とは限らない.以下の Ranking Matrix を考えれば明らかである.

$$egin{array}{c|ccc} & A & B \\ \hline α & 1,2 & 2,1 \\ β & 2,1 & 1,2 \\ \hline \end{array}$$

- ▶ アルゴリズムにおいて,フリーな男性を選ぶ順番は任意である.
 - それでも同じ安定マッチングが得られる。
 - ▶ 証明は省略する.
- ▶ 1962 年に Gale と Shapley が問題と解法を提案した.
- ▶ アメリカ合衆国では研修医の病院配属に採用されている.
- ▶ 近年,日本でも採用されている.
 - ► 日本医師臨床研修マッチング協議会(2004年~) http://www.jrmp.jp/
 - ▶ 歯科医師臨床研修マッチング協議会(2006年~)http://www.drmp.jp/

さらにもう少し

- ▶ 安定マッチングは,ゲーム理論における戦略形ゲームのナッシュ均衡と解釈できる。
- ▶ 問題設定の対称性から、女性からプロポーズするアルゴリズムも同様に考えられる。
- ▶ このとき
 - ▶ 男性からプロポーズすると男性にとって望ましい安定マッチング,
 - ▶ 女性からプロポーズすると女性にとって望ましい安定マッチング が得られる。

言葉による説明

例1: 総当り戦スケジュール表の作成

例 2: 安定マッチング

例 3: アル・フアリズミー (Al Khwarizmi) と乗算

アルゴリズムとデータ構造を学ぶ目的や意義

この講義の狙い

演習問題

文献紹介

アル・フアリズミー (Al Khwarizmi)と乗算

	1	1	11		13		
×	1	3	5	,	26		
	3	3	2	<u> </u>	52	(削除)
1	1		1	. :	104		
1	4	3			143	(答)

アル・フアリズミーの乗算のアルゴリズム

入力: 自然数 x, y 出力: 自然数 $x \times y$

Step 1 x_1 に x を代入し, y_1 に y を代入する.

Step 2 *i* に 1 を代入する.

Step 3 $x_i > 1$ の間,以下を繰り返す.

Step 3-1 x_{i+1} に, x_i を 2 で割った商を代入する.

Step 3-2 y_{i+1} に , y_i の 2 倍の値を代入する .

Step 3-3 *i* を 1 増やす.

Step 4 x_i が奇数の i に関して, y_i の合計を計算し出力する.

宮本裕一郎 (上智大学)

言葉による説明

例1: 総当り戦スケジュール表の作成

例 2: 安定マッチング

例 3: アル・フアリズミー (Al Khwarizmi) と乗算

アルゴリズムとデータ構造を学ぶ目的や意義

この講義の狙い

演習問題

文献紹介

アルゴリズムとデータ構造を学ぶ目的や意義

- アルゴリズムやデータ構造を使えるようになる。
 - ▶ どのようなアルゴリズムやデータ構造があるか知る.
 - ▶ そして
 - ▶ 使える計算モデル(コンピューター),
 - ▶ 要求される性能(スピード,使用メモリ,計算精度) など場面に応じて使い分ける。
- ▶ アルゴリズムやデータ構造を作れるようになる . そのためには
 - どのように作られているか知る,
 - 実際に作ってみる,
 - ことが有効である.
- ▶ 知的好奇心を満たす.

言葉による説明

例1: 総当り戦スケジュール表の作成

例 2: 安定マッチング

例 3: アル・フアリズミー (Al Khwarizmi) と乗算

アルゴリズムとデータ構造を学ぶ目的や意義

この講義の狙い

演習問題

文献紹介

この講義の狙い

- ▶ アルゴリズムとデータ構造の例をカテゴリ分けして紹介する.
 - ⇒ どのようなアルゴリズムやデータ構造があるか知る.
- ▶ アルゴリズムの性能(スピード,計算精度)を評価する.
 - ⇒ 場面に応じて使い分けられるようになる.
- ▶ アルゴリズムの正しさを確認する.
 - ⇒ どのように作られているかを知り,自ら構築できるようにする.
- ▶ 知的好奇心を満たす。

この講義では扱わないこと

- ▶ 「普通の」コンピューター以外の計算モデルは扱わない。
 - ▶ しかし「普通でない」コンピューターを用いる場合にも、 「普通の」コンピューターを用いる場合の考え方が基礎となる(はず)
- ▶ 実際のプログラミングは扱わない.
 - 座学なので、
 - ▶ そして,特定のデバイスやプログラミング言語に依存してほしくない.

言葉による説明

例 1: 総当り戦スケジュール表の作成

例 2: 安定マッチング

例 3: アル・フアリズミー (Al Khwarizmi) と乗算

アルゴリズムとデータ構造を学ぶ目的や意義

この講義の狙い

演習問題

文献紹介

総当り戦スケジュール表作成の演習問題

問題 チーム数が8の場合の総当り戦スケジュール表を作ってみよう!解答例 解答例として,以下に総当り戦スケジュール表と対応する circle を図示する.

	日							
		1	2	3	4	5	6	7
	Α	Н	F	D	В	G	Ε	С
	В	G	Ε	C	Α	F	D	Н
	C	F	D	В	G	Ε	Н	Α
チ	D	Ε	F E D C B	Α	F	Н	В	G
	Ε	D	В	G	Н	C	Α	F
ム	F	C	Α	Н	D	В	G	Ε
	G	В	Н	Ε	C	Α	F	D
	Н	Α	H G	F	Ε	D	C	В

安定マッチングの演習問題

- 問題 先述の α , β , γ , δ , A , B , C , D の嗜好が与えられた場合の安定マッチングを見つけてみよう!
- 解答例 Ranking matrix を用いて,安定マッチングが作られていく様子を $Stage\ 1$ から $Stage\ 6$ の順に次ページ以降に示す.緑字は前の $Stage\ から変わらないペア,赤字は新たに作られたペアを表す.$

表: Stage 1

		В		
α	1,3	2,4	3,2	4,3
β	1,4	4,1	3,3	2,2
γ	2,2	1,3	3,4	4,1
δ	4,1	2,4 4,1 1,3 2,2	3,1	1,4

表: Stage 2

		В		
α	1,3	2,4	3,2	4,3
β	1,4	4,1	3,3	2,2
γ	2,2	2,4 4,1 1,3	3,4	4,1
δ	4,1	2,2	3,1	1,4

表: Stage 3

	Α	В	C	D
α	1,3 1,4 2,2 4,1	2,4	3,2	4,3
β	1,4	4,1	3,3	2,2
γ	2,2	1,3	3,4	4,1
δ	4.1	2.2	3.1	1.4

表: Stage 4

	Α	В	С	D
α	1,3	2,4	3,2	4,3
β	1,4	4,1	3,3	2,2
γ	2,2	2,4 4,1 1,3	3,4	4, 1
δ	4,1	2,2	3,1	1,4

表: Stage 5

	Α	В	C	
α	1,3	2,4	3,2	4,3
β	1,4	4,1	3,3	2,2
γ	2,2	2,4 4,1 1,3 2,2	3,4	4,1
δ	4,1	2,2	3,1	1,4

表: Stage 6

	Α		C	
α	1,3 1,4 2,2	2,4	3,2	4,3
β	1,4	4,1	3,3	2,2
γ	2,2	1,3	3,4	4, 1
δ	4,1	2,2	3,1	1,4

アル・フアリズミーの乗算の演習問題

問題 12 × 34 をアル・フアリズミーの乗算のアルゴリズムで計算して みよう!

解答例 筆算を以下に図示する.

```
12 34 (削除)
6 68 (削除)
3 136
1 272
408 (答)
```

安定マッチングの演習問題(2016年度期末試験問題より)

問題 安定マッチング問題の入力として,以下の ranking matrix が与えられた.

	Α	В	C	D
α	4,3	3,2	1,4	2,4
β	4,3 3,4	4, 4	2,2	1,1
γ	4,2	3, 1	1,3	2,3
ϵ	2,1	1,3	4,1	3,2

なお, ranking matrix は, 行が男性, 列が女性に対応している. そして行列の i 行 j 列成分の 第 1 要素は男性 i の女性 j に対する好きな順位 j 第 j 要素は女性 j の男性 j に対する好きな順 位である、以下の空欄を埋めよ、

2. 男性からプロポーズするタイプの Gale-Shapley アルゴリズムを実行したとき,男性が

プロポーズする総数は 回である、女性からプロポーズするタイプの

Gale-Shapley アルゴリズムを実行したとき,女性がプロポーズする総数は

言葉による説明

例1: 総当り戦スケジュール表の作成

例 2: 安定マッチング

例 3: アル・フアリズミー (Al Khwarizmi) と乗算

アルゴリズムとデータ構造を学ぶ目的や意義

この講義の狙い

演習問題

文献紹介

さらなる勉強のために

- ▶ Circle method および作成途中の 10 チームの対戦表は [宮代隆平, 2007] より引用した.
- ▶ 安定マッチングは [Gale and Shapley, 1962] で初めて扱われ,解法 (Gale-Shapley アルゴリズム)と問題の性質などが論じられた.
 - ▶ 他の前提知識を必要としないので,初めて論文を読む方にもおすすめできる.
 - ▶ 有葉,米太,元馬,出る太,英子,美依子,椎子,泥子の嗜好もこの 文献からの引用である。
- ▶ Gale-Shapley アルゴリズムが初めて提案されたのはもちろん [Gale and Shapley, 1962] だが,このスライドのアルゴリズムの記述は [Kleinberg and Tardos, 2005] に近い. [Gale and Shapley, 1962]では,かなりざっくりと書かれている.
- ▶ Al Khwarizmi と乗算に関しては, [Dasgupta et al., 2006] からの引用である.

参考文献

[Dasgupta et al., 2006] Dasgupta, S., Papadimitriou, C., and Vazirani, U. (2006).

Algorithms.

McGraw-Hill Science/Engineering/Math.

[Gale and Shapley, 1962] Gale, G. and Shapley, L. S. (1962).

College admissions and the stability of marriage.

American Mathematical Monthly, 69:9–15.

[Kleinberg and Tardos, 2005] Kleinberg, J. and Tardos, E. (2005).

Algorithm Design.

Addison-Wesley.

[宮代隆平, 2007] 宮代隆平 (2007).

総当リリーグ戦とグラフ理論.

オペレーションズ・リサーチ, 52:547-550.

不可能性の説明

