

FORMATO DE SYLLABUS Código: AA-FR-003 Macroproceso: Direccionamiento Estratégico Versión: 01

SIGUD Steams Integrated dis Cleritin

Proceso: Autoevaluación y Acreditación Fecha de Aprobación: 27/07/2023

FACULTAD:	ACULTAD: Tecnológica											
PROYECTO CURRICULAR:		Tecnología en Electrónica Industrial			CÓDIGO PLAN DE ESTUDIOS:							
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO												
NOMBRE DEL ESPACIO ACADÉMICO: PENSAMIENTO CIENTÍFICO												
Código del espacio académico:			7336	Número de créditos académicos:			2					
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	2				
Tipo de espacio académico:			Asignatura	х	Cátedra							
NATURALEZA DEL ESPACIO ACADÉMICO:												
Obligatorio Básico		Obligatorio Complementario			Electivo Intrínseco	х	Electivo Extrínseco					
	CARÁCTER DEL ESPACIO ACADÉMICO:											
Teórico		Práctico		Teórico-Práctico	х	Otros:		Cuál:				
	MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:											
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:				
	II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS											

El estudiante debe contar con conocimientos básicos en matemáticas aplicadas, física general, fundamentos de programación, estadística descriptiva, y nociones básicas de simulación. También se recomienda haber cursado cursos relacionados con instrumentación, control de procesos o fundamentos de investigación.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

El pensamiento científico es una competencia esencial en la era de la Industria 4.0, donde la toma de decisiones basada en datos, la simulación de procesos y la validación de modelos son parte fundamental de la ingeniería moderna. Esta asignatura fortalece la capacidad del estudiante para analizar sistemáticamente situaciones reales a través del rigor científico, integrando herramientas como estadística computacional, modelado de sistemas, simulación digital y análisis predictivo, con el fin de generar conocimiento aplicable a la solución de problemas industriales complejos y dinámicos.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Desarrollar la capacidad de análisis riguroso de problemas reales mediante herramientas científicas, estadísticas y computacionales, para plantear, validar y evaluar modelos en contextos tecnológicos y de automatización.

Objetivos Específicos:

Formular preguntas científicas que permitan abordar problemas desde una perspectiva estructurada. Emplear herramientas de análisis estadístico y computacional para validar hipótesis y construir modelos. Aplicar métodos de simulación y visualización para analizar la relación entre variables. Comunicar de forma rigurosa los resultados obtenidos mediante informes y visualizaciones científicas.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de Formación:

Fomentar la investigación aplicada y el uso de evidencia científica para la toma de decisiones en entornos industriales.

Potenciar habilidades en la estructuración de problemas, análisis de datos y validación de modelos.

Promover el pensamiento crítico, ético y sistémico en el análisis de situaciones reales.

Articular la investigación con herramientas tecnológicas de simulación, machine learning y sistemas ciberfísicos.

Resultados de Aprendizaje:

Aborda situaciones reales mediante la formulación de preguntas científicas y estructuración lógica del problema.

Utiliza herramientas de modelado y simulación para validar teorías en contextos de automatización.

Evalúa el impacto de soluciones basadas en evidencia, considerando aspectos técnicos, sociales y ambientales.

Aplica el aprendizaje autónomo y crítico para la generación de conocimiento desde el análisis de datos.

Lidera procesos investigativos interdisciplinarios con responsabilidad ética y compromiso profesional.

VI. CONTENIDOS TEMÁTICOS

Naturaleza del pensamiento científico en la ingeniería.

Formulación de preguntas y delimitación de problemas reales.

Método científico aplicado a sistemas tecnológicos.

2. Medición, error y análisis estadístico (Semanas 4-6)

Tipos de errores en sistemas de medición.

Estadística descriptiva e inferencial aplicada a datos experimentales.

Distribuciones, dispersión, correlación y pruebas de hipótesis.

3. Simulación, visualización y análisis de datos (Semanas 7-9)

Introducción a la simulación computacional (Python, MATLAB o Scilab).

Representación gráfica de datos: escalas, tendencias, ajuste de curvas.

Interpolación, extrapolación y validación experimental de modelos.

4. Modelado científico y aplicaciones en Industria 4.0 (Semanas 10-12)

Modelos matemáticos de sistemas físicos y ciberfísicos.

 $Introducci\'on\ a\ modelos\ predictivos\ y\ machine\ learning\ aplicados\ a\ ingenier\'ia.$

Casos de estudio: predicción de fallas, análisis energético, control de procesos.

5. Proyecto integrador de investigación aplicada (Semanas 13-16)

Planteamiento, simulación y análisis de un caso real (individual o por grupos).

Construcción de informe científico y artículo de divulgación.

Socialización, sustentación y retroalimentación de los resultados obtenidos.

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

Se implementarán estrategias de aprendizaje basado en proyectos (ABP) y aprendizaje activo. El estudiante asumirá un rol protagónico en la formulación, análisis, modelado y validación de situaciones reales, apoyado por el uso de software estadístico, herramientas de simulación y escritura científica. Se promoverá la participación en seminarios, clubes de ciencia y actividades de divulgación académica.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con laboratorio de cómputo, software de simulación (Python, MATLAB, R, Excel avanzado), sensores o plataformas virtuales de datos abiertos (Kaggle, UCI, OpenML). Uso de herramientas colaborativas (Google Colab, Overleaf, Jupyter).

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

En caso de viabilidad, se propondrán visitas a plantas industriales o centros de innovación para observar variables reales susceptibles de ser analizadas científicamente. También se fomentará la vinculación con semilleros de investigación para dar continuidad al proyecto.

XI. BIBLIOGRAFÍA

Gilbert, J.K. & Boulter, C. Models in Explanations: Part I, Int. J. Sci. Educ.

Díaz Chávez, L. A., Rosado Vega, J. R. Tratamiento estadístico de datos con aplicaciones.

Ruiz, R. Historia y evolución del pensamiento científico, México, 2006.

Arevalillo, J. M., Navarro, H. Problemas resueltos de iniciación al análisis estadístico.

Montgomery, D. C., Runger, G. C. Estadística aplicada e inferencial para ingenieros. Wiley.

Provost, F. & Fawcett, T. Data Science for Business. O'Reilly.

McKinney, W. Python for Data Analysis. O'Reilly.

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS

Fecha revisión por Consejo Curricular:		
Fecha aprobación por Consejo Curricular:	Número de acta:	