

Digital VLSI Design Tutorial 1 - NGSPICE

Course Instructor: Dr. Zia Abbas

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY

24 Jan, 2024

About NGSPICE, download and install

- SPICE : Simulation Program with Integrated Circuit Emphasis
- NGSPICE is an open source mixed-signal circuit simulator which can be used to perform different analysis on a circuit
- For SPICE, any circuit is described as an interconnection of various active, passive elements. This interconnection of elements is also called Net-List
- Parameters to capture physical behaviour of active devices can be included as Model File. For example BSIM1 to BSIM6 are SPICE models for various types of transistors developed by UC Berkley (Berkeley Short-channel IGFET Model)
- DC, transient, AC, pole-zero, noise, PSS analysis can be performed using NGSPICE
- Result plots can be viewed and saved
- Download NGSPICE from following path and install: <u>http://ngspice.sourceforge.net/download.html</u>
- NGSPICE manual can be also downloaded from the same site

General structure of a Net-List

- Models used to describe circuit elements may be included
- Circuit description
- Type of analysis to be done on the circuit
- Control commands to run the simulation and plot/save the results

Note: Commands in NGSPICE are case insensitive

Quick keys I

- To launch NGSPICE ngspice: It will take you to ngspice shell ngspice file_name.<cir or sp>: It will execute the specified net-list
- Type quit or exit to end the ngspice shell
- To execute a net-list in ngspice shell ngspice —> source filename
- To edit in ngspice shell ngspice —> edit file_name; :wq! to save and quit editing
- To run an analysis specified in net-list in ngspice shell ngspice —> run
- To plot in ngspice shell use 'plot' command

Quick keys II

- To plot voltagesngspice —> plot v(node_name)Ex. plot v(out) v(in)
- To plot branch currents
 plot voltage_source_name#btranch Ex. plot VDS#branch
 -Note that direction of current is entering into the positive terminal of a voltage source
 -If required a dummy 0 V DC source can be inserted in the net-list to plot branch current
- To save plots as ps hardcopy file_name.eps variables_to_plotEx. hardcopy inv_transient_resp.eps v(x) v(y)
- To change background colour of saved plot set hcopypscolor = 1 *White background

Quick keys III

- To change background colour plot window set color0=white ** color0 is used to set the background of the plot (manual sec:17.7)) set color1=black ** color1 is used to set the grid color of the plot (manual sec:17.7))
- Specifying pulse vin in+ in- pulse V_{Low} V_{High} delay rise-time fall-time on-period time-period vin in 0 pulse 0 5 0ns 100ns 100ns 10us 20us
- Specifying sinusoidal signal
 SIN(VO VA FREQ TD THETA PHASE)
 Ex. vin a 0 sin(.849 0.25 50Meg 0 0)
- DC analysis .dc voltage_to_be_swept V_{initial} V_{final} step_size

Quick keys IV

- Transient analysis .tran step_size stop_time < start_time > Ex: .tran 10n 60u
- AC analysis.ac lin number_of_points start stop.ac lin 100 1 100Hz
- Measure statement example (sec 15.4.5): .measure tran tpdf
 - + TRIG v(1) VAL='SUPPLY/2' RISE=1
 - + TARG v(2) VAL='SUPPLY/2' Fall=1 measures the time difference between v(1) reaching 'SUPPLY/2' V for the first time on its first rising slope (TRIG) versus v(2) reaching 'SUPPLY/2' V for the first time on its first falling slope (TARG), i.e. it measures the fall time delay between v(1) and v(2).
- Refer NGSPICE manual for more details

Example to illustrate NGSPICE usage

Net list of simple RC circuit

Simple RC low pass configuration

- * First line is the title. '*' used for comments
- *Circuit discription

R1 in out 1k

- * input pulse
- vin in 0 pulse 0 5 0ns 100ns 100ns 10us 20us
- * Type of analysis is transient .tran 10n 60u

.control run plot v(in) v(out)

* Saving plots to ps file hardcopy rc_ckt_tr_out_1.eps v(in) v(out) endc

Example to illustrate DC analysis

MOS I_{DS}-V_{GS} curve

```
Netlist to evaluate MOS ID-VGS characteristics
.include TSMC 180nm.txt
.param SUPPLY=1.8
.param LAMBDA=0.09u
.param width_N={20*LAMBDA}
.global gnd vdd
VGS G and 'SUPPLY'
VDS D gnd 1V
M1 D G gnd gnd CMOSN W={width N} L={2*LAMBDA} +
AS={5*width N*LAMBDA} PS={10*LAMBDA+2*width N}
AD={5*width N*LAMBDA}
PD = \{10*LAMBDA + 2*width N\}
dc VGS 0 1 8 0 05
control
run
plot -VDS#branch
set hcopypscolor = 1 *White background
hardcopy mos id vg.eps -VDS#branch
.endc
```


Figure: IDS Vs VGS

Example to illustrate Transient analysis

CMOS Inverter transient analysis

```
CMOS inverter transient response
.include TSMC 180nm.txt
.param SUPPLY=1.8
.param LAMBDA=0.09u
.param width P=20*LAMBDA
.param width N=10*LAMBDA
.global gnd vdd
Vdd vdd gnd 'SUPPLY'
vin x gnd pulse 0 1.8 0ns 1ns 1ns 10ns 20ns
M1 v x gnd gnd CMOSN W={width N} L={2*LAMBDA} +
AS={5*width N*LAMBDA} PS={10*LAMBDA+2*width N}
AD={5*width N*LAMBDA} PD={10*LAMBDA+2*width N}
M2 v x vdd vdd CMOSP W={width P} L={2*LAMBDA} +
AS={5*width P*LAMBDA} PS={10*LAMBDA+2*width P}
AD={5*width P*LAMBDA} PD={10*LAMBDA+2*width P}
Cout v gnd 100f
.tran 0.1n 200n .control
nın
plot v(y) v(x)
set hcopypscolor = 1
hardcopy inv_transient_resp.eps v(x) v(y)
```


Figure: Transient response of CMOS Inverter

Example to illustrate .SUBCKT usage

Describing CMOS inverter using subckt

```
CMOS inverter transient response
include TSMC 180nm.txt
.param SUPPLY=1.8
param LAMBDA=0.09u
global and vdd.
Vdd vdd gnd 'SUPPLY'
vin a gnd pulse 0 1.8 0ns 1ns 1ns 10ns 20ns
subckt inv v x vdd gnd width P=20*LAMBDA
width N=10*LAMBDA
.param width P=20*LAMBDA
.param width N=10*LAMBDA
M1 v x gnd gnd CMOSN W={width N} L={2*LAMBDA} +
AS={5*width N*LAMBDA} PS={10*LAMBDA+2*width N}
AD={5*width N*LAMBDA} PD={10*LAMBDA+2*width N}
M2 v x vdd vdd CMOSP W={width P} L={2*LAMBDA} +
AS={5*width P*LAMBDA} PS={10*LAMBDA+2*width P}
AD={5*width P*LAMBDA} PD={10*LAMBDA+2*width P}
ends inv
x1 b a vdd gnd inv width P=20*LAMBDA width N=10*LAMBDA
Cout b gnd 100f
.tran 0.1n 200n .control
run
plot v(b) v(a)
set hcopypscolor = 1
hardcopy inv_transient_resp_subckt.eps v(b) v(a)
```

