# Gymnázium Evolution Jižní Město



# Jakýsi úvod do matematické analýzy

Áďula vod Klepáčů

9. ledna 2024

# Předmluva

Matematická analýza je věda o reálných číslech; tuším ovšem, že kolegové analytici mě za ono nedůstojně zjednodušující tvrzení rádi mít příliš nebudou. Snad mohou nicméně souhlasit, že v jejím jádru je pojem *nekonečna*. Nikoli nutně ve smyslu čísla, jež převyšuje všechna ostatní, ale spíše myšlenky, jež zaštiťuje přirozené jevy jako *okamžitá změna*, *blížení* či *kontinuum*.

O zrod matematické analýzy, jež zvláště v zámoří sluje též *kalkulus*, se bez pochyb podělili (nezávisle na sobě) Sir Isaac Newton a Gottfried Wilhelm Leibniz v 17. století po Kristu. Sir Isaac Newton se tou dobou zajímal o dráhy vesmírných těles a učinil dvě zásadní pozorování – zemská tíže působí na objekty zrychlením a zrychlení je *velikost okamžité změny* rychlosti. Potřeboval tedy metodu, jak onu velikost spočítat. Vynález takové metody po přirozeném zobecnění vede ihned na teorii tzv. *limit*, které právě tvoří srdce kalkulu. Pozoruhodné je, že Gottfried Leibniz, nejsa fyzik, dospěl ke stejným výsledkům zpytem geometrických vlastností křivek. V jistém přirozeném smyslu, který se zavazujeme rozkrýt, jsou totiž tečny *limitami* křivek. Ve sledu těchto rozdílů v přístupu obou vědců se v teoretické matematice dodnes, s mírnými úpravami, používá při studiu limit značení Leibnizovo, zatímco ve fyzice a diferenciální geometrii spíše Newtonovo.

Následující text je shrnutím – lingvistickým, vizuálním a didaktickým pozlacením – teorie limit. Hloubka i šíře této teorie ovšem přesáhla původní očekávání a kalkulus se stal součástí nespočtu matematických (samozřejmě i fyzikálních) odvětví bádání. První kapitola je věnována osvěžení nutných pojmů k pochopení textu. Pokračují pojednání o limitách posloupností a reálných číslech, limitách součtů, limitách funkcí a, konečně, derivacích. Tento sled není volen náhodně, nýbrž, kterak bude vidno, znalost předšedších kapitol je nutná k porozumění příchozích.

Jelikož se jedná o text průběžně doplňovaný a upravovaný, autor vyzývá čtenáře, by četli okem kritickým a myslí čistou, poskytovali připomínky a návrhy ke zlepšení.

# Obsah

| Ι | Reá | eálná čísla a limity               |    |  |  |
|---|-----|------------------------------------|----|--|--|
| 1 | Pos | loupnosti, limity a reálná čísla   | 9  |  |  |
|   | 1.1 | Definice limity posloupnosti       | 9  |  |  |
|   | 1.2 | Limity konvergentních posloupností | 12 |  |  |
|   |     | 1.2.1 Úplnost reálných čísel       | 15 |  |  |
|   | 1.3 | Poznatky o limitách posloupností   | 18 |  |  |
|   |     | 1.3.1 Rozšířená reálná osa         | 19 |  |  |
|   |     | 1.3.2 Bolzanova-Weierstraßova věta | 25 |  |  |
|   | 1.4 | Metody výpočtů limit               | 28 |  |  |

# Část I Reálná čísla a limity

# Kapitola 1

# Posloupnosti, limity a reálná čísla

Kritickým opěrným bodem při konstrukci reálných čísel i při jejich následném studiu je pojem *limity* (v češtině se tomuto slovu přiřazuje ženský rod). Limita je bod, k němuž se zvolená posloupnost čísel "blíží", ale nikdy jeho "nedosáhne", pokud takový existuje. Přidruženým pojmem je třeba *asymptota* reálné funkce, se kterou se čtenáři, očekáváme, setkali.

Samotná definice limity je zpočátku poněkud neintuitivní. Vlastně i samotná představa býti něčemu "nekonečně blízko" je do jisté míry cizí. Pokusíme se vhodnými obrázky a vysvětlivkami cestu k pochopení dláždit, avšak, jakož tomu bývá, intuice přichází, až člověk s ideou takřkouce sroste.

## 1.1 Definice limity posloupnosti

Koncept posloupnosti je, na rozdíl od limity, velmi triviální. Je to vlastně "očíslovaná množina čísel". Z každé množiny lze vyrobit posloupnost jejích prvků tím, že jim přiřkneme nějaké pořadí. Tento *přírok* se nejsnadněji definuje jako zobrazení z přirozených čísel – to totiž přesně na každý prvek kodomény zobrazí jeho pořadí.

#### **Definice 1.1.1** (Posloupnost)

Ať *X* je množina. *Posloupností* prvků z *X* nazveme libovolné zobrazení

$$a: \mathbb{N} \to X$$
.

Pro úsporu zápisu budeme psát  $a_n$  místo a(n) pro  $n \in \mathbb{N}$ . Navíc, je-li kodoména X zřejmá z kontextu, říkáme stručně, že  $(a_n)_{n=0}^{\infty}$  je posloupnost.

#### Poznámka 1.1.2

Vnímaví čtenáři sobě jistě povšimli, že jsme na  $\mathbb N$  nedefinovali žádné *uspořádání*. Ačkolivěk není tímto definice posloupnosti formálně nijak postižena, neodpovídá přirozenému vnímání, že prvek s číslem 1 stojí před prvkem s číslem 5 apod.

Naštěstí, naše konstruktivní definice přirozených čísel nabízí okamžité řešení. Využijeme toho, že každé přirozené číslo je podmnožinou svého následníka, a definujeme zkrátka uspořádání  $\leq$  na  $\mathbb N$  předpisem

$$a \le b \stackrel{\text{def}}{\iff} a \subseteq b.$$

Fakt, že ⊆ je uspořádání, okamžitě implikuje, že ≤ je rovněž uspořádání.

Rozmyslíme si nyní dva pojmy pevně spjaté s posloupnostmi – konvergence a limita. Brzo si též ukážeme, že tyto dva pojmy jsou záměnné, ale zatím je vnímáme odděleně. Navíc, budeme se odteď soustředit speciálně na posloupnosti racionálních čísel, tj. zobrazení  $\mathbb{N} \to \mathbb{Q}$ , neboť jsou oním klíčem k sestrojení své reálné bratří.

Ze všech posloupností  $\mathbb{N} \to \mathbb{Q}$  nás zajímá jeden konkrétní typ – posloupnosti, vzdálenosti mezi jejichž prvky se postupně zmenšují. Tyto posloupnosti, nazývané *konvergentní* (z lat. con-vergere, "ohýbat k sobě"), se totiž vždy blíží k nějakému konkrétnímu bodu – ke své *limitě*. Představa ze života může být například následující: říct, že se blížíme k nějakému místu, je totéž, co tvrdit, že se vzdálenost mezi námi a oním místem s každým dalším krokem zmenšuje. V moment, kdy své kroky směřujeme stále stejným směrem, posloupnost vzdáleností mezi námi a tím místem tvoří konvergentní posloupnost. Jestliže se pravidelně odkláníme, k místu nikdy nedorazíme a posloupnost vzdáleností je pak *divergentní* (tj. **ne**konvergentní).

Do jazyka matematiky se věta "vzdálenosti postupně zmenšují" překládá obtížně. Jeden ne příliš elegantní, ale výpočetně užitečný a celkově oblíbený způsob je následující: řekneme, že prvky posloupnosti jsou k sobě stále blíž, když pro jakoukoli vzdálenost vždy dokážeme najít krok, od kterého dál jsou již k sobě dva libovolné prvky u sebe blíž než tato daná vzdálenost. Důrazně vyzýváme čtenáře, aby předchozí větu přečítali tak dlouho, dokud jim nedává dobrý smysl. Podobné formulace se totiž vinou matematickou analýzou a jsou základem uvažování o nekonečnu.

#### **Definice 1.1.3** (Konvergentní posloupnost)

Řekneme, že posloupnost  $a: \mathbb{N} \to \mathbb{Q}$  je konvergentní, když platí výrok

$$\forall \varepsilon \in \mathbb{Q}, \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \geq n_0 : |a_m - a_n| < \varepsilon.$$



Obrázek 1.1: Konvergentní posloupnost. Zde pro  $\varepsilon=0.2$  lze volit například  $n_0=13$ . Vodorovná přímka procházející bodem  $a_{n_0}$  je vlastně "středem" pruhu o šíři  $2\varepsilon$ , ve kterém se nacházejí všechny členy posloupnosti s pořadím vyšším než 13.

#### Poznámka 1.1.4

Radíme, aby se čtenáři sžili s intuitivním (přesto velmi přesným) ponětím absolutní hodnoty |x-y| jako *vzdálenosti* mezi čísly x a y. V tomto smyslu je pak |x| = |x-0| vzdálenost čísla x od čísla 0, což cele odpovídá definici tohoto symbolu.

#### Poznámka 1.1.5

Aplikujeme intuitivní vysvětlení *zmenšování vzdálenosti* z odstavce nad definicí 1.1.3 na jeho skutečnou definici.

Výrok

$$\forall \varepsilon \in \mathbb{Q}, \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \geq n_0 : |a_m - a_n| < \varepsilon$$

říká, že pro jakoukoli vzdálenost ( $\varepsilon$ ) dokáži najít krok ( $n_0$ ) takový, že vzdálenost dvou prvků v libovolných dvou následujících krocích (m, n) už je menší než daná vzdálenost ( $|a_n - a_m| < \varepsilon$ ).

Slovo "krok" je třeba vnímat volně – myslíme pochopitelně *pořadí* či *indexy* prvků v posloupnosti. Pohled na racionální posloupnosti jako na "kroky" činěné v racionálních číslech může být ovšem užitečný.

#### Cvičení 1.1.6

Dokažte, že posloupnost  $a: \mathbb{N} \to \mathbb{Q}$  je konvergentní právě tehdy, když

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \geq n_0 : |a_m - a_n| < C\varepsilon$$

pro libovolnou **kladnou** konstantu  $C \in \mathbb{Q}$ .

Pojem *limity*, představuje jakýsi bod, k němuž se posloupnost s každým dalším krokem přibližuje, je vyjádřen výrazem podobného charakteru. Zde však přichází na řadu ona *děravost* racionálních čísel. Může se totiž stát, a příklady zde uvedeme, že limita racionální posloupnosti není racionální číslo.

Učiňmež tedy dočasný obchvat a před samotnou definicí limity vyrobme reálná čísla jednou z přehoušlí možných cest.

Ať  $C(\mathbb{Q})$  značí množinu všech **konvergentních** racionálních posloupností. Uvažme ekvivalenci  $\simeq$  na  $C(\mathbb{Q})$  danou

$$a \simeq b \iff \forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \; \forall n \geq n_0 : |a_n - b_n| < \varepsilon.$$

Přeloženo do člověčtiny,  $a \simeq b$ , právě když se rozdíl mezi prvky těchto posloupností se stejným pořadím neustále zmenšuje – řekli bychom, že se blíží k nule. V rámci (zatím intuitivní) představy, že konvergentní posloupnosti se blíží k nějakému bodu, dává smysl ztotožňovat posloupnosti, které se blíží k bodu stejnému – stav, který vyjadřujeme tak, že se jejich rozdíl blíží k nule.

Ve výsledku budeme definovat reálná čísla jako limity všech možných konvergentních racionálních posloupností. Pozbývajíce leč aparátu, bychom koncepty limity a konvergence stmelili v jeden, jsme nuceni učinit mezikrok.

#### Definice 1.1.7 (Reálná čísla)

Množinu *reálných čísel* tvoří všechny třídy ekvivalence konvergentních racionálních posloupností podle ≃. Symbolicky,

$$\mathbb{R} \coloneqq \{ [a]_{\simeq} \mid a \in C(\mathbb{Q}) \}.$$

Nyní definujeme pojem limity. Nemělo by snad být příliš překvapivé, že se od definice konvergence příliš neliší. Významný rozdíl odpočívá pouze v předpokladu existence *cílového bodu*.

## **Definice 1.1.8** (Limita posloupnosti)

Ať  $a: \mathbb{N} \to \mathbb{Q}$  je posloupnost. Řekneme, že a má limitu  $L \in \mathbb{R}$ , když

$$\forall \varepsilon \in \mathbb{O}, \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |a_n - L| < \varepsilon$$

neboli, když jsou prvky  $a_n$  bodu L s každým krokem stále blíž.

Fakt, že  $L \in \mathbb{R}$  je limitou a značíme jako lim a = L.



Obrázek 1.2: Posloupnost s limitou L. Zde pro  $\varepsilon = 0.4$  lze volit například  $n_0 = 10$ . Vodorovná přímka procházející bodem L je vlastně "středem" pruhu o šíři  $2\varepsilon$ , ve kterém se nacházejí všechny členy posloupnosti s pořadím vyšším než 10.

# 1.2 Limity konvergentních posloupností

V této sekci dokážeme, že konvergentní posloupnosti mají limitu. Opačná implikace, tj. že posloupnosti jmajíce limitu konvergují, je téměř triviální. K jejímu důkazu potřebujeme jen jednu vlastnost absolutní hodnoty.

## Lemma 1.2.1 (Trojúhelníková nerovnost)

 $At'x, y \in \mathbb{Q}$ . Pak

$$|x+y| \le |x| + |y|.$$

Důkaz. Absolutní hodnota |x+y| je rovna buď x+y (když  $x+y\geq 0$ ) nebo -x-y (když x+y<0). Zřejmě  $x\leq |x|$  а  $-x\leq |x|$ , podobně  $y\leq |y|$  а  $-y\leq |y|$ .

Pak je ale  $x + y \le |x| + |y|$  a též  $-x + (-y) \le |x| + |y|$ . Tím je důkaz hotov.

#### Poznámka 1.2.2

Název trojúhelníková obvykle přiřazovaný nerovnosti 1.2.1 vyplývá z její přirozené geometrické interpretace. Ať a,b,c jsou body v rovině. Dosazením x=a-b,y=b-c, dostává nerovnost 1.2.1 tvar

$$|a-c| \le |a-b| + |b-c|,$$

tj. vzdálenost a od c je nanejvýš rovna součtu vzdáleností a od b a b od c pro libovolný bod b. Vizte obrázek 1.3.



Obrázek 1.3: Trojúhelníková nerovnost

Trojúhelníková nerovnost poskytuje snadné důkazy mnoha užitečných dílčích tvrzení o posloupnostech. Příkladem je následující cvičení.

## Cvičení 1.2.3 (Jednoznačnost limity)

Dokažte, že každá posloupnost  $a:\mathbb{N}\to\mathbb{Q}$  má nejvýše jednu limitu. Hint: použijte trojúhelníkovou nerovnost.

Ježto bychom však rádi dokazovali všechna tvrzení již pro reálná čísla, ukažme si nejprve, jak se dají sčítat a násobit. Dokážeme rovněž, že  $\mathbb R$  – stejně jako  $\mathbb Q$  – tvoří těleso. Začneme tím, že se naučíme sčítat a násobit konvergentní posloupnosti.

Ať  $a,b \in C(\mathbb{Q})$  jsou dvě konvergentní racionální posloupností. Operace + a · na  $C(\mathbb{Q})$  definujeme velmi přirozeně. Zkrátka,  $(a+b)(n) \coloneqq a(n) + b(n)$  a  $(a \cdot b)(n) \coloneqq a(n) \cdot b(n)$ , tj. prvek na místě n posloupnosti a+b je součet prvků na místech n posloupností a a b. Abychom ovšem získali skutečně operace na  $C(\mathbb{Q})$ , musíme ověřit, že a+b i  $a \cdot b$  jsou konvergentní.

Nechť dáno jest  $\varepsilon > 0$ . Chceme ukázat, že umíme najít  $n_0 \in \mathbb{N}$ , aby

$$|(a_n+b_n)-(a_m+b_m)|<\varepsilon,$$

kdykoli  $m,n \geq n_0$ . Protože jak a tak b konverguje, již umíme pro libovolná  $\varepsilon_a, \varepsilon_b > 0$  najít  $n_a$  a  $n_b$  taková, že  $|a_n - a_m| < \varepsilon_a$ , kdykoli  $m,n \geq n_a$ , a podobně  $|b_n - b_m| < \varepsilon_b$ , kdykoli  $m,n \geq n_b$ . Položme tedy  $\varepsilon_a = \varepsilon_b \coloneqq \varepsilon/2$  a  $n_0 \coloneqq \max(n_a, n_b)$ . Potom můžeme užitím trojúhelníkové nerovnosti pro  $m,n \geq n_0$  odhadnout

$$|(a_n + b_n) - (a_m + b_m)| = |(a_n - a_m) + (b_n - b_m)| \le |a_n - a_m| + |b_n - b_m| < \varepsilon_a + \varepsilon_b = \varepsilon,$$

čili a + b konverguje.

Předchozí odstavec se může snadno zdát šílenou směsicí symbolů. Ve skutečnosti však formálně vykládá triviální úvahu. Máme najít pořadí, od kterého jsou prvky součtu a+b u sebe blíž než nějaká daná vzdálenost. Poněvadž a i b konvergují, stačí přeci vzít větší z pořadí, od kterých je jak rozdíl prvků a, tak rozdíl prvků b, menší než polovina dané vzdálenosti.

Velmi obdobnou manipulaci lze provést k důkazu konvergence  $a \cdot b$ . Ponecháváme jej čtenářům jako (ne zcela snadné) cvičení.

#### Cvičení 1.2.4

Dokažte, že jsou-li a,b konvergentní posloupnosti racionálních čísel, pak je posloupnost  $a \cdot b$  rovněž konvergentní. Kromě trojúhelníkové nerovnosti je zde třeba použít i zatím nedokázané lemma 1.2.10.

Racionální čísla jsou přirozeně součástí reálných prostřednictvím zobrazení

$$\xi: \mathbb{Q} \hookrightarrow \mathbb{R},$$

$$q \mapsto [(q)],$$

$$(1.1)$$

kde (q) značí posloupnost  $a: n \mapsto q$  pro všechna  $n \in \mathbb{N}$  a [(q)] její třídu ekvivalence podle  $\simeq$ .

#### Varování 1.2.5

Tvrdíme pouze, že  $\mathbb Q$  jsou součástí  $\mathbb R$ , kde slovu součást záměrně není dán rigorózní smysl. Racionální čísla totiž (aspoň po dobu naší dočasné definice reálných čísel) nejsou v žádném smyslu podmnožinou čísel reálných.

Matematici ale často ztotožňujeme doménu prostého zobrazení s jeho obrazem (neboť mezi těmito množinami vždy existuje bijekce). V tomto smyslu mohou být  $\mathbb Q$  vnímána jako podmnožina  $\mathbb R$ , ztotožníme-li racionální čísla s obrazem zobrazení  $\xi$  z (1.1). Toto ztotožnění znamená vnímat racionální číslo  $q \in \mathbb Q$  jako konvergentní posloupnost samých čísel q.

#### Cvičení 1.2.6

Dokažte, že zobrazení  $\xi$  z (1.1) je

- dobře definované tzn. že když p=q, pak  $\lceil (p) \rceil = \lceil (q) \rceil$  a
- prosté.

Jelikož  $\mathbb Q$  je těleso, speciálně tedy obsahuje 0 a 1,  $\mathbb R$  je (prostřednictvím  $\xi$  z (1.1)) obsahuje rovněž. Pro stručnost budeme číslem  $0 \in \mathbb R$  značit třídu ekvivalence posloupnosti samých nul a číslem  $1 \in \mathbb R$  třídu ekvivalence posloupnosti samých jednotek. Ověříme, že se skutečně jedná o neutrální prvky ke sčítání a násobení.

Je třeba si rozmyslet, že pro každou posloupnost  $a \in C(\mathbb{Q})$  platí a+0=a a  $a\cdot 1=a$ , kde, opět, čísla 0 a 1 ve skutečnosti znamenají nekonečné posloupnosti těchto čísel. Obě rovnosti jsou však zřejmé z definice, neboť  $(a+0)(n)=a_n+0=a_n=a(n)$  a  $(a\cdot 1)(n)=a_n\cdot 1=a_n=a(n)$  pro všechna  $n\in\mathbb{N}$ .

Konečně, rozšíříme rovněž – a  $^{-1}$  na  $\mathbb{R}$ . Pro libovolnou posloupnost  $x \in C(\mathbb{Q})$  definujeme zkrátka  $(-a)(n) \coloneqq -a(n)$ . S  $^{-1}$  je situace lehce komplikovanější. Totiž, pouze **nenulová** racionální čísla mají svůj inverz k násobení. Zde je třeba zpozorovat, že **konvergentní** posloupnost, která by však měla nekonečně mnoho prvků nulových, už musí mít od nějakého kroku **všechny** prvky nulové, jinak by totiž nemohla konvergovat. Vskutku, představme si, že a je posloupnost taková, že  $a_n = 0$  pro nekonečně mnoho přirozených čísel  $n \in \mathbb{N}$ . Pak ale ať zvolím  $n_0 \in \mathbb{N}$  jakkoliv, vždy existuje  $m \geq n_0$  takové, že  $a_m = 0$ . Vezměme  $n \geq n_0$  libovolné. Pokud  $a_n \neq 0$ , pak můžeme vzít třeba

 $\varepsilon\coloneqq |a_n|/2$  a bude platit, že  $|a_n-a_m|>\varepsilon$ , což je dokonalý zápor definice konvergence. Z toho plyne, že  $a_n$  musí být 0 pro  $n\ge n_0$  a odtud dále, že  $a\simeq 0$ . Čili, pouze posloupnosti ekvivalentní nulové posloupnosti nemají v  $\mathbb R$  inverz vzhledem k ·.

Právě provedená úvaha nám umožňuje definovat $^{-1}$  pro posloupnosti  $a\in C(\mathbb{Q})$ takové, že  $a\not=0$ , následovně:

$$(a^{-1})(n) := \begin{cases} a(n)^{-1}, & \text{když } a(n) \neq 0, \\ 0, & \text{když } a(n) = 0. \end{cases}$$

Je snadné uvidět, že -a je inverzem k a vzhledem k + a  $a^{-1}$  je inverzem k  $a \neq 0$  vzhledem k · . Vskutku, máme

$$(a + (-a))(n) = a_n + (-a_n) = 0,$$

tedy v tomto případě je (a + (-a)) přímo **rovna** nulové posloupnosti. V případě  $^{-1}$  dostáváme pro  $a \neq 0$ 

$$(a \cdot a^{-1})(n) = \begin{cases} a_n \cdot a_n^{-1} = 1, & \text{když } a_n \neq 0, \\ a_n \cdot 0 = 0, & \text{když } a_n = 0. \end{cases}$$

Ergo,  $a \cdot a^{-1}$  je rovna posloupnosti samých jedniček, až na konečně mnoho nul, protože, jak jsme si již rozmysleli, a nemůže mít nekonečně 0 a zároveň nebýt v relaci  $\simeq$  s nulovou posloupností, jinak by nebyla konvergentní. To však přesně znamená, že  $a \cdot a^{-1} \simeq 1$ , čili  $[a] \cdot [a^{-1}] = [1]$ .

Shrneme-li řád předchozích úvah, získáme oprávnění tvrdit, že

$$(\mathbb{R}, +, -, [(0)], \cdot, ^{-1}, [(1)])$$

je těleso. Tento fakt je do budoucna pochopitelně zásadní; teď se však můžeme těšit znalostí, že jsme přechodem od  $\mathbb{Q}$  k  $\mathbb{R}$  neztratili symetrické rysy původní množiny.

Přikročmež již však k důkazu existence limity každé konvergentní posloupnosti. Fakt, že existence limity implikuje konvergenci, plyne přímo z trojúhelníkové nerovnosti.

#### Lemma 1.2.7

Každá posloupnost majíc limitu je konvergentní.

Důκaz. Ať  $a: \mathbb{N} \to \mathbb{Q}$  je posloupnost s limitou L. Pak pro každé  $\varepsilon_L > 0$  existuje  $n_L \in \mathbb{N}$  takové, že  $|a_n - L| < \varepsilon_L$  pro všechna  $n \ge n_L$ .

Ať je dáno  $\varepsilon > 0$ . Chceme ukázat, že  $|a_m - a_n| < \varepsilon$  pro všechna m, n větší než vhodné  $n_0 \in \mathbb{N}$ . Položme tedy  $n_0 \coloneqq n_L$  a  $\varepsilon_L \coloneqq \varepsilon/2$ . Potom pro všechna  $m, n \ge n_0 = n_L$  máme

$$|a_m - a_n| = |a_m - a_n - L + L| = |(a_n - L) + (L - a_m)| \le |a_n - L| + |L - a_m| < \varepsilon_L + \varepsilon_L = \varepsilon$$

čili a konverguje.

#### 1.2.1 Úplnost reálných čísel

K důkazu existence limity každé konvergentní posloupnosti potřebujeme prozpytovat vztah racionálních a reálných čísel podrobněji. Konkrétně potřebujeme ukázat, že  $\mathbb Q$  jsou tzv. hustá v  $\mathbb R$ , tj.

že ke každému reálnému číslu existuje racionální číslo, které je mu nekonečně blízko. Zde jsme opět implicitně ztotožnili racionální čísla s třídami ekvivalence konstantních posloupností. Na základě toho budeme totiž moci tvrdit, že reálná čísla jsou tzv. *úplná*, což přesně znamená, že každá konvergentní posloupnost reálných čísel má reálnou limitu.

Nejprve si ovšem musíme rozmyslet, co vlastně míníme posloupností reálných čísel. Pochopitelně, zobrazení  $x: \mathbb{N} \to \mathbb{R}$  poskytuje validní definici, ale uvědomme sobě, že teď vlastně uvažujeme posloupnosti, jejichž prvky jsou třídy ekvivalence konvergentních racionálních posloupností.

Abychom směli hovořit o konvergentních reálných posloupnostech, rozšíříme absolutní hodnotu  $|\cdot|$  z  $\mathbb Q$  na  $\mathbb R$  zkrátka předpisem  $|[(x_n)]| \coloneqq [(|x_n|)]$  pro  $(x_n) \in C(\mathbb Q)$ . Napíšeme-li tedy  $|x| \le K$  pro reálná čísla  $x, K \in \mathbb R$ , pak tím doslova myslíme  $[(|x_n|)] \le [(K_n)]$ , což ale **neznamená**  $|x_n| \le K_n$  pro všechna  $n \in \mathbb N$ , kde  $x_n, K_n$  jsou nyní již čísla ryze rozumná čili racionální, anobrž  $|x_n| > K_n$  jen pro **konečně mnoho**  $n \in \mathbb N$ .

#### Varování 1.2.8

Důležitá myšlenka, již je dlužno snovat v srdci při práci s třídami ekvivalence konvergentních posloupností, je ta, že při porovnávání dvou tříd nás nezajímá libovolný **konečný počet** jejich prvních prvků.

Například, vztah x=y pro  $x,y\in\mathbb{R}$  znamená, že  $x_n=y_n$  pro každé  $n\in\mathbb{N}$  až na libovolný konečný počet prvních přirozených čísel. To se lépe vyjadřuje pomocí negace. Je snazší říct, že x=y, když  $x_n\neq y_n$  pro jenom konečně mnoho  $n\in\mathbb{N}$ .

Rozepíšeme-li si tedy podrobně, co znamená, že je posloupnost  $x: \mathbb{N} \to \mathbb{R}$  konvergentní, dostaneme pro dané  $\varepsilon > 0$ , vhodné  $n_0 \in \mathbb{N}$  a  $m, n \ge n_0$  nerovnost  $|x_n - x_m| < \varepsilon$ . Ovšem,  $x_n$  i  $x_m$  jsou samy o sobě třídy ekvivalence konvergentních **posloupností** racionálních čísel, tedy poslední nerovnost plně rozepsána dí

$$|[((x_n)_k - (x_m)_k)_{k=0}^{\infty}]| < \varepsilon,$$

což lze rovněž vyjádřit tak, že

$$|(x_n)_k - (x_m)_k| \ge \varepsilon$$

jen pro konečně mnoho  $k \in \mathbb{N}$ .

Nepřináší však žádný hmotný užitek nad konvergencí reálných posloupností uvažovat takto složitě. Čtenáři dobře učiní, uvědomí-li si plný význam předchozího odstavce, ovšem zůstanou-li věrni intuitivnímu vnímání výrazu |x-y| jako "vzdálenosti" čísel x a y.

#### **Definice 1.2.9** (Omezená posloupnost)

Řekneme, že posloupnost  $x : \mathbb{N} \to \mathbb{R}$  je *omezená*, když existuje  $K \in \mathbb{R}$  takové, že  $|x_n| \le K$  pro všechna  $n \in \mathbb{N}$ . Píšeme  $|x| \le K$ .

#### Lemma 1.2.10

*Každá konvergentní posloupnost x* :  $\mathbb{N} \to \mathbb{R}$  *je omezená.* 

Důκaz. Ať je  $\varepsilon>0$  dáno. Z definice konvergence nalezneme  $n_0\in\mathbb{N}$  takové, že pro každé  $m,n\geq n_0$  je  $|x_m-x_n|<\varepsilon$ . Speciálně tedy pro každé  $n\geq n_0$  platí

$$|x_n| = |x_n - x_{n_0} + x_{n_0}| \le |x_n - x_{n_0}| + |x_{n_0}| < \varepsilon + |x_{n_0}|,$$

tudíž všechny členy posloupnosti s pořadím větším než  $n_0$  jsou omezeny číslem  $\varepsilon + |x_{n_0}|$ . Ovšem, členů posloupnosti s pořadím menším než  $n_0$  je konečně mnoho, a tedy z nich můžeme vzít ten největší – nazvěme ho s. Položíme-li  $K := \max(s, \varepsilon + |x_{n_0}|)$ , pak  $|x_n| \le K$  pro každé  $n \in \mathbb{N}$ , čili x je omezená číslem K.

#### Tvrzení 1.2.11 (Hustota $\mathbb{Q} \vee \mathbb{R}$ )

Množina racionálních čísel  $\mathbb Q$  je hustá v  $\mathbb R$ , tj. ke každému  $x \in \mathbb R$  a každému  $\varepsilon > 0$  existuje  $r \in \mathbb Q$  takové, že  $|x - r| < \varepsilon$ .

Důkaz. Ať  $\varepsilon > 0$  je dáno a označme  $x \coloneqq [(x_n)], (x_n) \in C(\mathbb{Q})$ . Najdeme  $n_0 \in \mathbb{N}$  takové, že  $\forall m, n \ge n_0$  je  $|x_m - x_n| < \varepsilon$ . Zvolme  $r \coloneqq x_{n_0} \in \mathbb{Q}$ . Pak ovšem máme

$$|x_n - r| = |x_n - x_{n_0}| < \varepsilon$$

pro všechna  $n \ge n_0$ . To přesně znamená, že  $|x - r| < \varepsilon$ .

#### Lemma 1.2.12

 $Afa: \mathbb{N} \to \mathbb{Q}$  je konvergentní posloupnost racionálních čísel. Pak  $\lim a = [(a)]$ .

Důκaz. Položme x := [(a)]. Ať je dáno  $\varepsilon > 0$ . Protože a je konvergentní, nalezneme  $n_0 \in \mathbb{N}$ , že  $|a_m - a_n| < \varepsilon$  pro všechna  $m, n \ge n_0$ . Potom ale  $|a_n - x| < \varepsilon$  pro všechna  $n \ge n_0$ , což z definice znamená, že lim a = x.

#### Důsledek 1.2.13 (ℝ jsou úplná)

Každá konvergentní reálná posloupnost  $x : \mathbb{N} \to \mathbb{R}$  má limitu  $v \mathbb{R}$ .

Důκaz. Ať  $a: \mathbb{N} \to \mathbb{Q}$  je racionální posloupnost taková, že  $|x_n - a_n| < 1/n$  pro všechna  $n \in \mathbb{N}$ . Tu nalezneme opakovaným použitím tvrzení 1.2.11 pro  $\varepsilon \coloneqq 1/n$  a  $x \coloneqq x_n$ . Ukážeme nejprve, že a je konvergentní. Ať je dáno  $\varepsilon > 0$ . Zvolme  $n_1$  takové, že  $\forall m, n \ge n_1$  platí  $1/m + 1/n < \varepsilon$ . Dále, x je konvergentní z předpokladu. Čili, pro každé  $\varepsilon_x > 0$  nalezneme  $n_2 \in \mathbb{N}$  takové, že  $\forall m, n \ge n_2$  máme  $|x_n - x_m| < \varepsilon_x$ . Volme tedy speciálně

$$\varepsilon_x \coloneqq \varepsilon - \frac{1}{m} - \frac{1}{n}$$
.

a  $n_0 := \max(n_1, n_2)$ . Potom pro všechna  $m, n \ge n_0$  platí nerovnosti

$$|a_n - a_m| = |a_n - a_m - x_n + x_n| \le |a_n - x_n| + |x_n - a_m| = |a_n - x_n| + |x_n - a_m - x_m + x_m|$$

$$\le |a_n - x_n| + |x_n - x_m| + |x_m - a_m| < \frac{1}{n} + \varepsilon_x + \frac{1}{m} = \varepsilon,$$

tedy a konverguje.

Jistě platí  $\lim x - a = 0$ , neboť pro každé  $\varepsilon > 0$  lze najít  $n \in \mathbb{N}$  takové, že  $1/n < \varepsilon$ . Odtud plyne, že x má limitu právě tehdy, když a má limitu. Ovšem, podle lemmatu 1.2.12 má a limitu  $[(a)] \in \mathbb{R}$ . Tím je důkaz hotov.

#### Důsledek 1.2.14

Platí

$$\mathbb{R} \cong \{ \lim a \mid a \in C(\mathbb{Q}) \},\$$

čili reálná čísla jsou přesně limity všech konvergentních racionálních posloupností.

Důκaz. Zkonstruujeme bijekci  $f: \mathbb{R} \to \{\lim a \mid a \in C(\mathbb{Q})\}$ . Vezměme  $x \in \mathbb{R}$ . Pak z definice existuje konvergentní racionální posloupnost  $a \in C(\mathbb{Q})$  taková, že x = [a]. Podle lemmatu 1.2.12 má a limitu v  $\mathbb{R}$ . Definujme tedy  $f(x) := \lim a$ .

Ověříme, že je f dobře definované, prosté a na.

Nejprve musíme ukázat, že f(x) nezávisí na volbě konkrétní posloupnosti a z třídy ekvivalence [a]. Ať tedy  $b \simeq a$  a označme  $L_a \coloneqq \lim a$ ,  $L_b \coloneqq \lim b$ . Pak pro každé  $\varepsilon > 0$  existuje  $n_0 \in \mathbb{N}$  takové, že  $\forall n \ge n_0$  platí tři nerovnosti:

$$|a_n - b_n| < \varepsilon$$
,  $|a_n - L_a| < \varepsilon$ ,  $|b_n - L_b| < \varepsilon$ .

Velmi obdobnou úpravou jako v důkaze důsledku 1.2.13 dostaneme, že

$$|L_a - L_b| \le |L_a - a_n| + |a_n - b_n| + |b_n - L_b| < 3\varepsilon$$

odkud  $L_a = L_b$ , neboť  $L_a, L_b$  jsou třídy ekvivalence konvergentních posloupností. Společně s faktem, že každá konvergentní posloupnost má přesně jednu limitu (cvičení 1.2.3), plyne z předchozí úvahy, že f je dobře definováno.

Dokážeme, že f je prosté. To je snadné, neboť pokud [a] = [b], neboli  $a \simeq b$ , potom lim  $a = \lim b$ , což jsme již vlastně dokázali v odstavci výše.

Nakonec zbývá ověřit, že f je na. Ať tedy  $L \coloneqq \lim a$  pro nějakou  $a \in C(\mathbb{Q})$ . Potom ovšem  $[(a)] \in \mathbb{R}$  a podle lemmatu 1.2.12 platí  $\lim a = [(a)]$ . To ovšem přesně znamená, že f([(a)]) = L.

Tím je důkaz hotov.

# 1.3 Poznatky o limitách posloupností

Účelem této sekce je shrnout základní poznatky o limitách posloupností, jež umožní čtenářům limity konkrétních posloupností efektivně počítat a navíc široké jejich použití v následujících kapitolách.

Začneme technickým, ale nezbytným, konceptem *rozšířené reálné osy* a pokračovati budeme jedním z nejdůležitějších a dle našeho názoru též nejkrásnějších výsledků – tzv. Bolzanovou-Weierstraßovou větou. Ta tvrdí v podstatě toto: mám-li omezenou posloupnost, pak z ní již umím vybrat nekonečně mnoho prvků, které tvoří posloupnost *konvergentní*.

Ona krása takového tvrzení spočívá v principu, kterým se podrobně zabývá kombinatorická disciplína zvaná Ramseyho teorie; v principu, že v téměř libovolně chaotické struktuře lze nalézt řád,

jakmile jest tato dostatečně velká. Nejedná se jistě o čistě matematický princip, nýbrž dost možná o princip vzniku vesmíru a života, popsaný již starým Aristotelem ve výmluvném výroku, "Celek je více než součet svých částí." V mnoha zpytech se tomuto jevu přezdívá Emergent Behavior a představuje stav, kdy chování systému nelze plně popsat pouze studiem jeho jednotlivých prvků.

Pro důkaz Bolzanovy-Weierstraßovy věty potřebujeme jedné pomocné konstrukce, tzv. *systému vnořených intervalů*. Nejprve si však pořádně definujeme samotný pojem *intervalu*. K tomu se nám bude hodit rozšířit množinu reálných čísel o prvky  $-\infty$  a  $\infty$ .

#### 1.3.1 Rozšířená reálná osa

#### Definice 1.3.1 (Rozšířená reálná osa)

Definujme množinu  $\mathbb{R}^* := \mathbb{R} \cup \{-\infty, \infty\}$ , kde  $\infty$ , resp.  $-\infty$ , je z definice prvek takový, že  $\infty \ge x$ , resp.  $-\infty \le x$ , pro každé  $x \in \mathbb{R}$ . Množině  $\mathbb{R}^*$  budeme někdy říkat *rozšířená reálná osa*. Rozšíříme rovněž operace + a · na prvky  $\infty$  a  $-\infty$  následovně.

```
\infty + a = a + \infty = \infty, \quad \text{pro } a \in \mathbb{R} \cup \{\infty\},
-\infty + a = a + (-\infty) = -\infty, \quad \text{pro } a \in \mathbb{R} \cup \{-\infty\},
\infty \cdot a = a \cdot \infty = \infty, \quad \text{pro } a > 0 \text{ nebo } a = \infty,
\infty \cdot a = a \cdot \infty = -\infty, \quad \text{pro } a < 0 \text{ nebo } a = -\infty,
-\infty \cdot a = a \cdot (-\infty) = -\infty, \quad \text{pro } a > 0 \text{ nebo } a = \infty,
-\infty \cdot a = a \cdot (-\infty) = \infty, \quad \text{pro } a < 0 \text{ nebo } a = -\infty,
a \cdot \infty^{-1} = a \cdot (-\infty)^{-1} = 0, \quad \text{pro } a \in \mathbb{R}.
```

#### Varování 1.3.2

Definice 1.3.1 stručně řečeno říká, že se s prvky  $\infty$  a  $-\infty$  zachází podobně jako s ostatními reálnými čísly. Ovšem, následující operace zůstávají nedefinovány.

$$\infty + (-\infty), -\infty + \infty, \pm \infty \cdot 0, 0 \cdot (\pm \infty), (\pm \infty) \cdot (\pm \infty)^{-1}.$$

Čtenáři možná zpozorovali, že jsme při své definici limity nerozlišili mezi posloupnostmi, které nemají limitu, protože jejich prvky "skáčou sem a tam", a posloupnostmi, které ji nemají naopak pro to, že "stále klesají či stoupají". Pro další studium záhodno se tohoto nedostatku zlišit.

#### **Definice 1.3.3** (Limita v nekonečnu)

Ať  $x: \mathbb{N} \to \mathbb{R}$  je reálná posloupnost. Řekneme, že x má limitu  $\infty$ , resp.  $-\infty$ , když pro každé  $K>0, K\in \mathbb{R}$ , existuje  $n_0\in \mathbb{N}$  takové, že pro všechna  $n\geq n_0$  platí  $x_n>K$ , resp.  $x_n<-K$ . Píšeme  $\lim x=\infty$ , resp.  $\lim x=-\infty$ .

Na reálných číslech existuje uspořádání ≤, které zdědila z čísel přirozených, prostřednictvím čísel celých a konečně čísel racionálních. Protože, vděkem naší konstrukci, jsou celá čísla třídy ekvivalence dvojic čísel přirozených, čísla racionální třídy ekvivalence dvojic čísel celých a čísla reálná limity konvergentních racionálních posloupností, bylo by vskutku obtížné a neproduktivní vypsat konkrétní množinovou definici tohoto uspořádání na reálných číslech. Přidržíme se pročež

intuitivního pohledu na věc a důkaz, že  $\leq$  je skutečně uspořádání na reálných číslech, necháváme laskavému čtenáři k promyšlení.

Existence uspořádání umožňuje dívat se na podmnožiny  $\mathbb R$  z jistého "souvislého" pohledu. Nemusejí již být vňaty (jako tomu je u ostatních představených číselných okruhů) jako výčty jednotlivých prvků, ale oprávněně jako "provázky" či "úsečky". Úplnost reálných čísel zaručuje, že z každého reálného čísla mohu plynule dorazit do každého jiného reálného čísla aniž reálná čísla opustím.

Předchozí odstavec vágně motivuje definici *intervalu* – "souvislé" omezené podmnožiny reálných čísel. V souhlasu s definicí intervalu vzniká i pojem *otevřenosti* a *uzavřenosti* množiny – pojem, který je klíčem k definici *topologie* na obecné množině a tím pádem vlastně i základem tak zhruba poloviny celé moderní matematiky.

Směrem k definici intervalu učiňmež koliksi mezikroků.

#### **Definice 1.3.4** (Maximum a minimum)

Ať  $X\subseteq\mathbb{R}$  je množina. Řekneme, že prvek  $M\in X$ , resp.  $m\in X$ , je maximem, resp. minimem, množiny X, když pro každé  $x\in X$  platí  $x\leq M$ , resp.  $x\geq m$ . Píšeme  $M=\max X$ , resp.  $m=\min X$ .

## Definice 1.3.5 (Horní a dolní závora)

Ať  $X\subseteq\mathbb{R}$  je množina. Řekneme, že prvek  $Z\in\mathbb{R}^*$  resp.  $z\in\mathbb{R}^*$ , je horní, resp. dolní, závora množiny X, když pro každé  $x\in X$  platí  $x\leq Z$ , resp.  $x\geq z$ .

Má-li množina X horní, resp. dolní, závoru, **která leží v**  $\mathbb{R}$  (tedy není rovna  $\pm \infty$ ), říkáme, že je *shora*, resp. *zdola*, *omezená*. Je-li navíc X omezená shora i zdola, říkáme krátce, že je *omezená*.

#### **Definice 1.3.6** (Supremum a infimum)

Ať  $X \subseteq \mathbb{R}$  je množina. Řekneme, že prvek  $S \in \mathbb{R}^*$ , resp.  $i \in \mathbb{R}^*$ , je supremum, resp. infimum, množiny X, když je to její nejmenší horní závora, resp. největší dolní závora. Píšeme  $S = \sup X$ , resp.  $i = \inf X$ .

Vyjádřeno symbolicky, prvek  $S \in \mathbb{R}$  je supremem množiny X, když  $x \leq S$  pro všechna  $x \in X$ , a kdykoli  $x \leq Z$  pro nějaký prvek  $Z \in \mathbb{R}$  a všechna  $x \in X$ , pak  $S \leq Z$ . Prvek  $i \in \mathbb{R}$  je infimem množiny X, když  $x \geq i$  pro všechna  $x \in X$ , a kdykoli  $x \geq z$  pro nějaký prvek  $z \in \mathbb{R}$  a všechna  $x \in X$ , pak  $i \geq z$ .

#### Varování 1.3.7

Vřele radíme čtenářům, aby sobě bedlivě přečetli předchozí tři definice a uvědomili si – velmi zásadní, leč lehko přehlédnuté – jejich vzájemné rozdíly.

- Maximum a minimum množiny X je z definice vždy prvkem této množiny. Maximem množiny  $\{1, 2, 3\}$  je prvek 3 a jeho minimem je prvek 1.
- Horní, resp. dolní, závora množiny *X* je **libovolné rozšířené reálné číslo** (tedy klidně

i ±∞), které je větší, resp. menší, než všechny prvky X. Horní závorou množiny  $\{1, 2, 3\}$  je číslo 69, též ∞ a též číslo 3. Horní a dolní závora **může, ale nemusí**, být prvkem X.

• Supremum, resp. infimum, množiny X je rozšířené reálné číslo, které je větší, resp. menší, než všechny prvky X, ale zároveň menší, resp. větší, než každá jeho horní, resp. dolní, závora. Supremum a infimum může, ale nemusí, ležet v množině X. Touto vlastností se přesně rozlišují *uzavřené* a *otevřené* intervaly – interval je uzavřený, když jeho supremum v něm leží, kdežto otevřený, když nikoliževěk. Supremem množiny {1, 2, 3} je číslo 3 a jeho infimem je číslo 1.

Daná podmnožina  $X \subseteq \mathbb{R}$  nemusí nutně mít maximum a minimum, ale, a to si dokážeme, má vždy supremum, resp. infimum. Je-li navíc shora, resp. zdola, omezená, pak toto supremum, resp. infimum, leží v  $\mathbb{R}$ .

#### Cvičení 1.3.8

Určete z definice suprema a infima inf  $\emptyset$  a sup  $\emptyset$ .

#### Cvičení 1.3.9

Dokažte, že sup *X* a inf *X* jsou určeny jednoznačně.

#### Axiomatická definice reálných čísel

Přestože jsme konstrukci reálných čísel úspěšně dokončili použitím konvergentních racionálních posloupností, stojí snad za zmínku i jejich axiomatická definice, která se obvykle uvádí v úvodních učebnicích matematické analýzy.

Překvapivě není v principu tak odlišná od jejich konstrukce, kromě jednoho konkrétního axiomu, jenž právě zaručuje úplnost; není z něj však vůbec na první, v zásadě ani na druhý, pohled vidno, že takovou vlastnost skutečně implikuje.

## Definice 1.3.10 (Axiomatická definice reálných čísel)

Množina  $\mathbb{R}$  se v zásadě definuje jako nekonečné uspořádané těleso s vlastností úplnosti. Tedy,

• existují prvky 0, 1  $\in \mathbb{R}$  a operace +,  $\cdot: \mathbb{R}^2 \to \mathbb{R}$  s inverzy -,  $^{-1}: \mathbb{R} \to \mathbb{R}$  takové, že

$$(\mathbb{R}, +, -, 0, \cdot, ^{-1}, 1)$$

je nekonečné těleso;

- existuje uspořádání  $\leq$  na  $\mathbb{R}$ , které je lineární (každé dva prvky lze spolu porovnat);
- (axiom úplnosti) každá shora omezená podmnožina  $\mathbb R$  má supremum.

Je to právě on poslední axiom v předchozí definici, jehož použití jsme se chtěli vyhnout, bo dohlédnout jeho hloubky je obtížné a neintuitivní.

Dokážeme si zde ovšem, že naše definice reálných čísel odpovídá jejich axiomatické. Otázky neko-

nečnosti, podmínek tělesa i uspořádání jsme již zodpověděli. Zbývá dokázat axiom úplnosti. Pro stručnost vyjádření se nám bude hodit následující definice.

#### Definice 1.3.11 (Monotónní posloupnost)

O posloupnosti  $x : \mathbb{N} \to \mathbb{R}$  řekneme, že je

- rostoucí, když  $x_{n+1} > x_n \ \forall n \in \mathbb{N}$ ;
- $klesající, když x_{n+1} < x_n \ \forall n \in \mathbb{N};$
- neklesající, když  $x_{n+1} \ge x_n \ \forall n \in \mathbb{N}$ ;
- nerostoucí, když  $x_{n+1} \le x_n \ \forall n \in \mathbb{N}$ .

Ve všech těchto případech díme, že posloupnost x je monotónní.

#### Tvrzení 1.3.12 (Axiom úplnosti)

 $At'X \subseteq \mathbb{R}$  je shora omezená množina. Pak existuje sup X.

Důkaz. Ježto naše pojetí úplnosti se překládá do znění, "Každá konvergentní posloupnost má limitu", není snad nečekané, že se důkaz *axiomu úplnosti* o tuto vlastnost opírá.

Je-li X prázdná, pak má supremum podle cvičení 1.3.8. Ať je tedy X neprázdná a shora omezená a  $Z \in \mathbb{R}$  je libovolná horní závora X. Protože X je neprázdná, existuje  $q \in \mathbb{R}$  takové, že q < x pro nějaké  $x \in X$ . Definujeme posloupnosti  $Z_n$  a  $q_n$  podle následujících pravidel.

- Položme  $Z_0 = Z$  a  $q_0 = q$ .
- Uvažme číslo  $p_n := (Z_n + q_n)/2$ .
- Je-li  $p_n$  horní závorou X, položme  $Z_{n+1} \coloneqq p_n$  a  $q_{n+1} \coloneqq q_n$ .
- Není-li  $p_n$  horní závorou X, položme  $Z_{n+1} \coloneqq Z_n$  a  $q_{n+1} \coloneqq p_n$ .

Pak jsou posloupnosti  $Z_n$  a  $q_n$  konvergentní (**proč?**) a indukcí lze snadno dokázat (**dokažte!**), že  $q_n$  **není** horní závorou X a  $Z_n$  **je** horní závorou X pro všechna  $n \in \mathbb{N}$ . Navíc platí lim  $|Z_n - q_n| = 0$  (**proč?**), a tedy lim  $Z_n = \lim q_n$ .

Označme  $S \coloneqq \lim Z_n = \lim q_n$ . Dokážeme, že  $S = \sup X$ . Je třeba ukázat, že

- (1) S je horní závorou X;
- (2) *S* je nejmenší horní závorou.

Předpokládejme pro spor, že existuje  $x \in X$  takové, že x > S. To znamená, že existuje konstanta c > 0 taková, že x - S = c. Volme  $\varepsilon \coloneqq c/2$ . Pro toto  $\varepsilon$  z definice limity existuje  $n_0 \in \mathbb{N}$  takové, že pro všechna  $n \ge n_0$  platí  $|Z_n - \lim Z_n| = |Z_n - S| < \varepsilon$ . Jelikož  $(Z_n)$  je nerostoucí a  $S \le Z_n$  pro každé  $n \in \mathbb{N}$ , je absolutní hodnota v předchozím výrazu zbytečná a můžeme zkrátka psát  $Z_n - S < \varepsilon$ . Potom ale pro všechna  $n \ge n_0$  máme

$$x - Z_n = x + S - S - Z_n = (x - S) + (S - Z_n) > c - \varepsilon = \frac{c}{2}$$

čili speciálně  $x > Z_n$ , což je ve sporu s tím, že  $Z_n$  je horní závora X. To dokazuje (1).

Tvrzení (2) lze dokázat obdobně, akorát využitím posloupnosti  $(q_n)$  spíše než  $(Z_n)$ . Opět ať pro spor existuje  $Z \in \mathbb{R}$ , které je horní závorou X, a Z < S. Pak nalezneme konstantu c > 0 takovou, že S - Z = c. Opět z definice limity vezmeme  $\varepsilon := c/2$  a k němu  $n_0 \in \mathbb{N}$  takové, že  $\forall n \geq n_0$  platí  $S - q_n < \varepsilon$ , kde absolutní hodnotu jsme mohli vynechat, ježto jest posloupnost  $(q_n)$  neklesající a  $S \geq q_n$  pro každé  $n \in \mathbb{N}$ . Nyní pro  $n \geq n_0$  platí

$$q_n - Z = q_n - S + S - Z = (q_n - S) + (S - Z) > c - \varepsilon = \frac{c}{2}$$

čili speciálně  $q_n > Z$ , což je ve sporu s tím, že  $q_n$  není horní závora X pro žádné  $n \in \mathbb{N}$ , zatímco Z je.

Tím je důkaz dokončen.



Obrázek 1.4: Důkaz axiomu úplnosti

#### Cvičení 1.3.13

Dokažte všechna (proč?) a (dokažte!) v důkazu předchozího tvrzení.

Jako každé poctivé tvrzení, jmá i axiom úplnosti svých důsledkův. Tyto bychom pochopitelně dokázati uměli i bez něj, neboť axiom úplnosti z naší konstrukce reálných čísel přímo plyne. Nicméně, zcela jistě jej lze použít jako nástroj ke zkrácení některých důkazů.

Nejprve duální tvrzení.

#### Tvrzení 1.3.14

Každá zdola omezená podmnožina  $\mathbb R$  má infimum.

Důkaz. Cvičení. Doporučujeme čtenářům se zamyslet, jak tvrzení snadno plyne z axiomu úplnosti, aniž opakují konstrukci z jeho důkazu. ■

Jedno, jak bude časem vidno, mimořádně užitečné tvrzení dí, že shora omezené rostoucí či neklesající posloupnosti a zdola omezené klesající či nerostoucí posloupnosti mají vždy limitu. To je opět intuitivně zřejmý fakt (jistě?), ale, kterak čtenáři doufáme již pozřeli, tvrzení o věcech nekonečných řídce radno nechati pouze intuici.

#### Lemma 1.3.15 (Limita monotónní posloupnosti)

- (a) Každá rostoucí nebo neklesající shora omezená posloupnost je konvergentní.
- (b) Každá klesající nebo nerostoucí zdola omezená posloupnost je konvergentní.

Důkaz. Dokážeme pouze část (a), část (b) je ponechána jako cvičení.

Ať  $x:\mathbb{N}\to\mathbb{R}$  je neklesající posloupnost. Důkaz pro rostoucí posloupnost je téměř dokonale stejný, liše se akorát ostrými nerovnostmi v několika výrazech. Z předpokladu je x shora omezená, tudíž má množina jejích členů  $\{x_n\mid n\in\mathbb{N}\}$  horní závoru. Z axiomu úplnosti má tato množina též supremum; označíme je S.

Ukážeme, že  $\lim x = S$ . Ať je  $\varepsilon > 0$  dáno. Z definice suprema není  $S - \varepsilon$  horní závora množiny  $\{x_n \mid n \in \mathbb{N}\}$ . Tedy existuje  $n_0 \in \mathbb{N}$  takové, že  $x_{n_0} > S - \varepsilon$ . Protože x je neklesající – tj.  $x_n \geq x_{n_0}$ , kdykoli  $n \geq n_0$  – platí rovněž  $x_n > S - \varepsilon$  pro všechna  $n \geq n_0$ . Jelikož S je horní závora množiny členů x, platí  $S \geq x_n$  pro všechna  $n \in \mathbb{N}$ . To však znamená, že  $|x_n - S| = S - x_n$ , a tedy z nerovnosti  $x_n > S - \varepsilon$  po úpravě plyne, že  $\varepsilon > S - x_n = |x_n - S|$ , čili  $\lim x = S$ .

Posledním důsledkem axiomu úplnosti, který si uvedeme, je tzv. Archimédova vlastnost reálných čísel. Obecně, těleso se nazývá Archimédovo, když vágně řečeno neobsahuje žádné nekonečně velké ani nekonečně malé prvky **vzhledem ke zvolené absolutní hodnotě**. Ukazuje se, že na reálných číslech lze definovat jen dva typy funkcí absolutní hodnoty – jednu "obvyklou", též vyjádřitelnou vztahem  $|x| = \sqrt{x^2}$ , a pak tzv. p-adickou absolutní hodnotu pro p prvočíslo. Libovolná další konstrukce absolutní hodnoty (majíc přirozené vlastnosti) již je ekvivalentní absolutní hodnotě jednoho z těchto typů. Reálná čísla jsou Archimédova vzhledem k obvyklé absolutní hodnotě, ale nikoliv vzhledem k libovolné p-adické absolutní hodnotě.

#### Lemma 1.3.16 (Archimédova vlastnost reálných čísel)

Pro každé  $\varepsilon \in \mathbb{R}$ ,  $\varepsilon > 0$ , existuje  $n \in \mathbb{N}$  takové, že  $1/n < \varepsilon$ .

Důкаz. Stačí dokázat, že

$$\inf\left\{\frac{1}{n}\mid n\in\mathbb{N}\right\}=0,$$

neboť potom z definice infima pro každé  $\varepsilon > 0$  není  $0 + \varepsilon = \varepsilon$  dolní závorou  $\{1/n \mid n \in \mathbb{N}\}$ , čili existuje  $n \in \mathbb{N}$  takové, že  $1/n < \varepsilon$ .

Číslo 0 je zřejmě dolní závorou množiny  $\{1/n \mid n \in \mathbb{N}\}$ . Podle tvrzení 1.3.14 má tato množina infimum, označme je i. Pro spor af i > 0. Potom  $1/i \in \mathbb{R}$  a z nerovnosti  $1/n \ge i$  (i je dolní závora) plyne, že  $n \le 1/i$  pro všechna  $n \in \mathbb{N}$ . Potom je ovšem číslo 1/i horní závorou množiny  $\mathbb{N}$  a podle axiomu úplnosti má množina  $\mathbb{N}$  supremum; označme je S. Pro každé  $n \in \mathbb{N}$  tudíž platí  $n \le S$ . Ovšem, z definice přirozených čísel platí  $n + 1 \in \mathbb{N}$  pro každé  $n \in \mathbb{N}$ . Speciálně toto tedy znamená, že  $n + 1 \le S$  pro každé  $n \in \mathbb{N}$ . Pak je ovšem S - 1 horní závorou množiny  $\mathbb{N}$ , což je spor, neboť S bylo z předpokladu supremum  $\mathbb{N}$ .

Musí pročež platit i = 0, což bylo dokázati.

#### Poznámka 1.3.17

Lemma 1.3.16 v podstatě říká, že  $\lim_{n\to\infty} 1/n = 0$ .

Bedliví čtenáři si mohou pamatovat, že jsme ono lemma již v předchozím textu bez uvedení použili (například v důkaze důsledku 1.2.13). Jedná se však z naší strany o drzost pouze malou. Totiž, jeho platnost je téměř okamžitým důsledkem tvrzení 1.2.11, jak si čtenáři rádi ověří v následujícím cvičení.

#### Cvičení 1.3.18

Dokažte, že lemma 1.3.16 je důsledkem tvrzení 1.2.11.

#### 1.3.2 Bolzanova-Weierstraßova věta

Konečně kráčíme cestou definice intervalu a důkazu slibované Bolzanovy-Weierstraßovy věty. Vybaveni pojmy maxima (minima) a suprema (infima), můžeme intuitivní představě intervalu dát formální ráz. Vágně řečeno je interval *souvislá* podmnožina  $\mathbb{R}$ . Formálně je no ... vlastně totéž.

#### **Definice 1.3.19** (Interval)

Podmnožinu  $I \subseteq \mathbb{R}$  nazveme *intervalem*, pokud pro každé dva prvky  $x < y \in I$  a  $z \in \mathbb{R}$  platí

$$x < z < y \Rightarrow z \in I$$
.

Intervaly mohou být otevřené, uzavřené a polouzavřené (či polootevřené?). Tyto vlastnosti intervalů jsou definovány pomocí existence maxim a minim.

#### Definice 1.3.20 (Typy intervalů)

Ať  $I \subseteq \mathbb{R}$  je interval. Řekneme, že I je

- otevřený, když **nemá** maximum ani minimum;
- *uzavřený*, když **má** maximum i minimum;
- shora uzavřený, když má pouze maximum, ale nikoli minimum;
- zdola uzavřený, když má pouze minimum, ale nikoli maximum.

Otevřený interval I zapisujeme jako I = (a, b), kde  $a = \inf I$  a  $b = \sup I$ . Čísla a, b mohou být i  $\pm \infty$ , pokud I není shora či zdola omezený.

Uzavřený interval I zapisujeme jako I = [a, b], kde  $a = \min I$  a  $b = \max I$ . **Pozor!** Zde prvky a i b jsou striktně reálná čísla, tedy například  $[0, \infty]$  **není** interval, neboť se nejedná o podmnožinu  $\mathbb{R}$ .

#### Definice 1.3.21 (Délka intervalu)

Délkou intervalu  $I \subseteq \mathbb{R}$  s  $a \coloneqq \inf I$  a  $b \coloneqq \sup I$  myslíme číslo  $\lambda(I) \coloneqq b - a$ , je-li toto definováno.

#### Poznámka 1.3.22

Čtenáře snad mohlo zarazit značení  $\lambda(I)$  pro délku intervalu, oproti zvyku podlehnuvšímu |I|. Písmeno  $\lambda$  zde není spojeno s angl. slovem length, jak by se snad mohlo prve zdát, nýbrž pochází ze jména Lebesgue. Totiž, *délka* intervalu je jeho *objemem* či *velikostí* vzhledem k tzv. Lebesgueově míře – mnohem obecnější konstrukci umožňující měřit velikosti všemožných podmnožin reálných čísel.

#### Příklad 1.3.23 (Pár intervalů)

#### Množina

- I = (4,6) je otevřený interval. Zřejmě platí  $4 = \inf I$  a  $6 = \sup I$ . Ovšem, I nemá maximum ani minimum.
- I = [-5, 4] je uzavřený interval. Zřejmě platí  $-5 = \min I = \inf I$  a  $4 = \max I = \sup I$ .
- $I = [-2, \infty)$  je zdola uzavřený interval. Platí  $-2 = \min I = \inf I$  a  $\infty = \sup I$ .
- $\mathbb{R} = (-\infty, \infty)$  je otevřený interval. Platí  $-\infty = \inf \mathbb{R}$  a  $\infty = \sup \mathbb{R}$ .
- I=(4,4) je prázdná, neboť je to z definice množina čísel  $x\in\mathbb{R}$  takových, že 4< x<4.
- $I = [\exp(\tan(\log^3(\sqrt[7]{\pi/4}))), \exp(\tan(\log^3(\sqrt[7]{\pi/4})))]$  je rovna  $\{\exp(\tan(\log^3(\sqrt[7]{\pi/4})))\}$ , neboť je to z definice množina čísel  $x \in \mathbb{R}$  takových, že

$$\exp(\tan(\log^3(\sqrt[7]{\pi/4}))) \le x \le \exp(\tan(\log^3(\sqrt[7]{\pi/4}))).$$

K pojmu intervalu se víže jedna speciální konstrukce zvaná *systém vnořených intervalů*. Definujeme si ji a ihned poté si povíme, čím je speciální.

#### Definice 1.3.24 (Systém vnořených intervalů)

Systém vnořených intervalů je posloupnost  $(I_n)_{n=0}^{\infty}$  podmnožin  $\mathbb{R}$  (čili zobrazení  $\mathbb{N} \to 2^{\mathbb{R}}$ ) splňující následující podmínky:

- $I_n$  je **uzavřený** interval pro každé  $n \in \mathbb{N}$ ;
- $I_{n+1} \subseteq I_n$  pro každé  $n \in \mathbb{N}$ ;
- $\lim_{n\to\infty} \lambda(I_n) = 0$ .

Následující tvrzení je dalším ekvivalentem axiomu úplnosti a důsledku 1.2.13. V některých definicích reálných čísel se jím axiom úplnosti nahrazuje.

#### Tvrzení 1.3.25 (O vnořených intervalech)

 $Af(I_n)_{n=0}^{\infty}$  je systém vnořených intervalů. Pak # $(\bigcap_{n=0}^{\infty} I_n) = 1$ , čili v průniku všech intervalů  $I_n$  leží přesně jeden prvek.

Důκaz. Je třeba dokázat, že takový prvek existuje a že je právě jeden. Začněme jednoznačností.

Předpokládejme, že existují prvky  $x, y \in \bigcap_{n=0}^{\infty} I_n$  a  $x \neq y$ . Pak ale existuje konstanta c > 0 taková, že |x - y| = c. Protože však  $x, y \in I_n$  pro každé  $n \in \mathbb{N}$ , speciálně platí  $\lambda(I_n) \geq c$  pro každé  $n \in \mathbb{N}$ . To je spor s tím, že  $\lim_{n \to \infty} \lambda(I_n) = 0$ .

Dokážeme existenci. Označme  $I_n=[a_n,b_n]$ . Definujme posloupnost  $x:\mathbb{N}\to\mathbb{R}, x_n\coloneqq (a_n+b_n)/2$ . Na volbě čísla  $(a_n+b_n)/2$  není nic speciálního. Stačí volit jakékoliv  $x_n\in I_n$ . Ukážeme, že x konverguje. Ať je dáno  $\varepsilon>0$ . Protože  $\lim_{n\to\infty}\lambda(I_n)=0$ , nalezneme  $n_0\in\mathbb{N}$  takové, že  $\lambda(I_{n_0})<\varepsilon$ . Potom ale platí  $|x_n-x_m|<\varepsilon$  pro všechna  $m,n\geq n_0$ , neboť  $x_n,x_m\in I_{n_0}$ , což je zaručeno podmínkou  $I_n,I_m\subseteq I_{n_0}$ .

Podle důsledku 1.2.13 má x limitu, označme ji L. Chceme ukázat, že  $L \in \bigcap_{n=0}^{\infty} I_n$ . K tomu je třeba ověřit, že  $L \in I_n$  pro každé  $n \in \mathbb{N}$ . Ať pro spor existuje  $n_L \in \mathbb{N}$  takové, že  $L \notin I_{n_L}$ . Protože intervaly jsou vnořené, znamená toto, že  $L \notin I_n$  pro  $n \geq n_L$ . Volme libovolné  $\varepsilon > 0$ . K němu nalezneme  $n_I \in \mathbb{N}$  takové, že  $\lambda(I_n) < \varepsilon$  pro  $n \geq n_I$ . Ať  $n_0 \coloneqq \max(n_L, n_I)$ . Pak na jednu stranu pro  $n \geq n_0$  platí  $\lambda(I_n) < \varepsilon$  a na druhou stranu  $L \notin I_n$ . Sloučením obou vztahů dostaneme  $|x_n - L| \geq \varepsilon/2$  pro  $n \geq n_0$ , neboť  $x_n$  leží v polovině intervalu  $I_n$  a L mimo něj pro každé  $n \in \mathbb{N}$ . To je spor s tím, že lim x = L.

Důkaz je hotov.



Obrázek 1.5: Důkaz tvrzení 1.3.25.

#### **Definice 1.3.26** (Podposloupnost)

Řekneme, že  $y: \mathbb{N} \to \mathbb{R}$  je podposloupností posloupnosti  $x: \mathbb{N} \to \mathbb{R}$ , když pro každé  $n \in \mathbb{N}$  existuje  $m \in \mathbb{N}$  takové, že  $y_n = x_m$ . Jinak řečeno, každý prvek y je rovněž prvkem x.

Již máme všechny ingredience k formulaci a důkazu Bolzanovy-Weierstraßovy věty. Je stěžejním tvrzením pro matematickou analýzu a pro matematiku obecně. Jeho filosofický význam dlí v poznání, že v "příliš velkých" strukturách přirozeně vzniká řád.

#### Věta 1.3.27 (Bolzanova-Weierstraßova)

 $At'x: \mathbb{N} \to \mathbb{R}$  je **omezená** posloupnost. Pak existuje podposloupnost y posloupnosti x, která konverguje.

Důkaz. Z omezenosti x existují  $s, S \in \mathbb{R}$  taková, že  $s \le x_n \le S$  pro všechna  $n \in \mathbb{N}$ . Induktivně vyrobíme systém vnořených intervalů. Položme  $I_0 \coloneqq [s, S]$ . Za předpokladu, že  $I_n = [a_n, b_n]$ 

je dán, sestrojíme  $I_{n+1}$  následovně:

$$I_{n+1} \coloneqq \begin{cases} [a_n, (a_n + b_n)/2], & \text{pokud } x_k \in [a_n, (a_n + b_n)/2] \text{ pro nekonečně mnoho } k \in \mathbb{N}, \\ [(a_n + b_n)/2, b_n], & \text{jinak.} \end{cases}$$

(1.2)

Rozmyslíme si lehce neformálním použitím matematické indukce, že tato konstrukce je korektní. První interval  $I_0$  jistě obsahuje nekonečně mnoho prvků x, neboť obsahuje celou tuto posloupnost. Podobně, pokud  $I_n$  obsahuje nekonečně mnoho prvků x, pak aspoň jedna z jeho polovin musí rovněž obsahovat nekonečně mnoho prvků x. Z konstrukce (1.2) pak plyne, že rovněž  $I_{n+1}$  obsahuje nekonečně mnoho prvků x.

Ověříme, že  $(I_n)_{n=0}^{\infty}$  je systém vnořených intervalů podle definice 1.3.24.

- Zcela jistě je  $I_n$  uzavřený interval pro každé  $n \in \mathbb{N}$ .
- Rovněž zcela jistě  $I_{n+1}\subseteq I_n$  pro každé  $n\in\mathbb{N}$ , neboť  $I_{n+1}$  je jedna z polovin intervalu  $I_n$ .
- Délky intervalů  $I_n$  klesají k 0, neboť  $\lambda(I_{n+1}) = \lambda(I_n)/2$ , a tedy  $\lambda(I_n) = \lambda(I_0)/2^n$ . Zřejmě

$$\lim_{n\to\infty}\lambda(I_n)=\lim_{n\to\infty}\frac{\lambda(I_0)}{2^n}=0.$$

Vyberme nyní z x libovolnou podposloupnost  $y:\mathbb{N}\to\mathbb{R}$  takovou, že  $y_n\in I_n$ . To jistě lze, neboť každý z intervalů  $I_n$  obsahuje nekonečně mnoho prvků posloupnosti x. Pak ovšem podle tvrzení 1.3.25 existuje prvek  $L\in\bigcap_{n=0}^\infty I_n$  a podle důkazu téhož tvrzení platí lim y=L. To však znamená, se znalostí lemmatu 1.2.7, že y konverguje.



Obrázek 1.6: Důkaz Bolzanovy-Weierstraßovy věty.

# 1.4 Metody výpočtů limit

Tato sekce je veskrze výpočetní, věnována způsobům určování limit rozličných posloupností – primárně těch zadaných vzorcem pro n-tý člen. Obecně neexistuje algoritmus pro výpočet limity posloupnosti a například limity posloupností zadaných rekurentně (další člen je vypočten jako kombinace předchozích) je často obtížné určit. K jejich výpočtu bývá užito metod z lineární algebry a obecně metod teorie diskrétních systémů zcela mimo rozsah tohoto textu.

Přinejmenším v případě limit zadaných "hezkými" vzorci čítajícími podíly mnohočlenů a odmoc-

nin je obyčejně možné algebraickými úpravami dojít k výsledku. Uvedeme si pár stěžejních tvrzení sloužících tomuto účelu.

K důkazu prvního bude užitečná následující nerovnost, kterou přenecháváme čtenáři jako (snadné) cvičení.

#### Cvičení 1.4.1

Dokažte, že pro čísla  $x, y \in \mathbb{R}$  platí

$$||x| - |y|| \le |x - y|.$$

#### Věta 1.4.2 (Aritmetika limit)

 $Afa, b: \mathbb{N} \to \mathbb{R}$  jsou reálné posloupnosti mající limitu (ale klidně i nekonečnou). Pak

- (a)  $\lim(a+b) = \lim a + \lim b$ , je-li pravá strana definována;
- (b)  $\lim(a \cdot b) = \lim a \cdot \lim b$ , je-li pravá strana definována;
- (c)  $\lim(a/b) = \lim a/\lim b$ , platí-li  $b \neq 0$  a pravá strana je definována.

Důkaz této věty je ryze výpočetního charakteru a využívá vhodně zvolených odhadů. Vzhledem k tomu, že povolujeme i nekonečné limity, je třeba důkaz každého bodu rozložit na případy. Položme  $A := \lim a$ ,  $B := \lim b$ .

#### **P**řípad $A, B \in \mathbb{R}$ .

Nejprve budeme předpokládat, že  $A, B \in \mathbb{R}$ . Pro dané  $\varepsilon > 0$  existují  $n_a, n_b \in \mathbb{N}$  taková, že pro každé  $n \ge n_a$  platí  $|a_n - A| < \varepsilon$  a pro každé  $n \ge n_b$  zas  $|b_n - B| < \varepsilon$ . Zvolíme-li  $n_0 := \max(n_a, n_b)$ , pak pro  $n \ge n_0$  platí oba odhady zároveň. Potom ale, použitím trojúhelníkové nerovnosti, dostaneme

$$|(a_n + b_n) - (A + B)| = |(a_n - A) + (b_n - B)| \le |a_n - A| + |b_n - B| < \varepsilon + \varepsilon = 2\varepsilon,$$

čili  $\lim(a+b)=A+B$ . Pro důkaz vzorce pro součin a podíl, musíme navíc využít lemmatu 1.2.10, tedy faktu, že konvergentní posloupnosti jsou omezené. Pročež najdeme  $C_b \in \mathbb{R}$  takové, že od určitého indexu  $n_1 \in \mathbb{N}$  dále platí  $|b_n| \leq C_b$ . Volme nově  $n_0 \coloneqq \max(n_a, n_b, n_1)$  a pro  $n \geq n_0$  počítejme

$$\begin{aligned} |a_n \cdot b_n - A \cdot B| &= |a_n \cdot b_n - b_n \cdot A + b_n \cdot A - A \cdot B| = |b_n(a_n - A) + A(b_n - B)| \\ &\leq |b_n(a_n - A)| + |A(b_n - B)| = |b_n| \cdot |a_n - A| + |A| \cdot |b_n - B| \\ &< |C_b| \cdot \varepsilon + |A| \cdot \varepsilon = (|C_b| + |A|) \cdot \varepsilon. \end{aligned}$$

Protože  $|C_b|+|A|$  je kladná konstanta nezávislá na  $\varepsilon$ , dokazuje odhad výše, že lim $(a \cdot b) = A \cdot B$ . Konečně, v případě podílu volme  $\varepsilon_b = |B|/2$ . K tomuto  $\varepsilon_b$  nalezněme  $n_b' \in \mathbb{N}$  takové, že pro  $n \geq n_b'$  platí  $|b_n - B| < \varepsilon_b$ . Poslední nerovnost spolu s cvičením 1.4.1 znamená, že  $||b_n| - |B|| < \varepsilon$ . Tento vztah si rozepíšeme na

$$|B| - \varepsilon_b < |b_n| < |B| + \varepsilon_b.$$

Levá z těchto nerovností je pak ekvivalentní  $|b_n| > |B|/2$  neboli  $1/|b_n| < 2/|B|.$  Položme

 $n_0 := \max(n_a, n_b, n_b')$ . Potom pro  $n \ge n_0$  máme

$$\left| \frac{a_n}{b_n} - \frac{A}{B} \right| = \left| \frac{a_n B - b_n A}{b_n B} \right| = \left| \frac{a_n B - AB + AB - b_n A}{b_n B} \right| \le \left| \frac{B(a_n - A)}{b_n B} \right| + \left| \frac{A(B - b_n)}{b_n B} \right|$$

$$= \frac{1}{|b_n|} \left( |a_n - A| + \frac{|A|}{|B|} |B - b_n| \right) < \frac{2\varepsilon}{|B|} \left( 1 + \frac{|A|}{|B|} \right).$$

Protože |A| i |B| jsou konstanty nezávislé na  $\varepsilon$ , toto znamená, že  $\lim(a/b) = A/B$ .

#### **Případ** $A = \pm \infty, B \in \mathbb{R} \setminus \{0\}.$

Předpokládejme, že lim  $a=\infty$ ; případ lim  $a=-\infty$  se dokáže v zásadě identicky. Pak pro dané  $\varepsilon_a$  existuje  $n_a\in\mathbb{N}$  takové, že pro  $n\geq n_a$  platí  $a_n>\varepsilon_a$ . Podle lemmatu 1.2.10 je posloupnost b omezená, čili existuje  $C_b>0$  takové, že  $|b_n|\leq C_b$  pro všechna  $n\in\mathbb{N}$ . Potom pro  $n\geq n_a$  máme

$$a_n + b_n \ge a_n - C_b > \varepsilon_a - C_b$$
.

Jelikož  $C_b$  je konstantní, plyne z tohoto odhadu, že  $\lim(a+b)=\infty=A+B$ .

Pro důkaz součinu nejprve ať B>0. Pak existuje konstanta  $C_b>0$  a  $n_b\in\mathbb{N}$  takové, že pro  $n\geq n_b$  je  $b_n\geq C_b$ . Pročež, pro libovolné  $C_a>0$  a  $n\geq \max(n_a,n_b)$  dostaneme

$$a_n \cdot b_n \ge \varepsilon_a \cdot C_b$$
.

čili lim $(a \cdot b) = \infty = A \cdot B$ . Z omezenosti (plynoucí z konvergence) b pak zase existují  $n_b'$  a  $K_b > 0$  takové, že  $b_n \le K_b$ , čili též  $1/b_n \ge 1/K_b$ , pro  $n \ge n_b'$ . Pro  $n \ge \max(n_a, n_b')$  tedy

$$\frac{a_n}{b_n} \ge \frac{\varepsilon_a}{K_b}$$

což dokazuje  $\lim(a/b) = \infty = A/B$ . Velmi podobně se řeší případ B < 0.

Zdlouhavý důkaz zakončíme komentářem, že případ  $A \in \mathbb{R} \setminus \{0\}, B = \pm \infty$  je symetrický předchozímu a případy  $A = 0, B = \pm \infty$ , též  $A = \pm \infty, B = 0$  a konečně  $A = \pm \infty, B = \pm \infty$  jsou triviální.

Věta o aritmetice limit je zcela nejužitečnější tvrzení k jejich výpočtu, neboť umožňuje limitu výrazu rozdělit na mnoho menších "podlimit", jejichž výpočet je snadný. Další dvě lemmata jsou často též dobrými sluhy.

#### Lemma 1.4.3 (Limita odmocniny)

 $A t' a : \mathbb{N} \to [0, \infty)$  je posloupnost nezáporných čísel.  $A t' t e z' \lim a = A$  (speciálně tedy předpokládáme,  $z \in \lim a$  existuje). Potom

$$\lim_{n\to\infty} \sqrt[k]{a_n} = \sqrt[k]{A}$$

pro každé  $k \in \mathbb{N}$ .

Důkaz. Zdlouhavý a technický. Ambiciózní čtenáři jsou zváni, aby se o něj pokusili.

#### Lemma 1.4.4 (O dvou strážnících)

 $A f' a, b, c : \mathbb{N} \to \mathbb{R}$  jsou posloupnosti reálných čísel a  $L := \lim a = \lim c$ . Pokud existuje  $n_0 \in \mathbb{N}$  takové, že pro každé  $n \ge n_0$  platí  $a_n \le b_n \le c_n$ , pak  $\lim b = L$ .

DůκAz. Protože  $\lim a = L$  a též  $\lim c = L$ , nalezneme pro dané  $\varepsilon > 0$  index  $n_1 \in \mathbb{N}$  takový, že pro  $n \ge n_1$  platí dva odhady:

$$|a_n - L| < \varepsilon$$
 a  $|c_n - L| < \varepsilon$ .

Potom ovšem  $a_n > L - \varepsilon$  a  $c_n < L + \varepsilon$ . Z předpokladu existuje  $n_b \in \mathbb{N}$  takové, že  $a_n \le b_n \le c_n$  pro  $n \ge n_b$ . Zvolíme-li tedy  $n_0 := \max(n_1, n_b)$ , pak pro  $n \ge n_0$  platí

$$L - \varepsilon < a_n \le b_n \le c_n < L + \varepsilon$$
.

Sloučením obou nerovností dostaneme pro  $n \ge n_0$  odhad  $|b_n - L| < \varepsilon$ , čili  $\lim b = L$ .



Obrázek 1.7: Lemma o dvou strážnících.

Zbytek sekce je věnován výpočtům limit vybraných posloupností s účelem objasnit použití právě sepsaných tvrzení. Mnoho z nich je ponecháno čtenářům jako cvičení.

#### Úloha 1.4.5

Spočtěte

$$\lim_{n \to \infty} \frac{2n^2 + n - 3}{n^3 - 1}.$$

Řešení. Použijeme větu o aritmetice limit. Ta vyžaduje, aby výsledná strana rovnosti byla definována. Je tudíž možné (a žádoucí) limitu spočítat – často opakovaným použitím této věty – a teprve na konci výpočtu argumentovat, že její nasazení bylo oprávněné.

Dobrým prvním krokem při řešení limit zadaných zlomky je najít v čitateli i jmenovateli "nejrychleji rostoucí" člen. Spojením "nejrychleji rostoucí" zde míníme takový člen, velikost ostatních členů je pro velmi velká n vůči jehož zanedbatelná. V čitateli zlomku

$$\frac{2n^2+n-3}{n^3-1}$$

je nejrychleji rostoucí člen právě  $2n^2$ . Například, pro  $n=10^9$  je  $2n^2=2\cdot 10^{18}$  zatímco  $n=10^9$  zabírá méně než jednu miliardtinu  $2n^2$ . Ve jmenovateli je naopak jediným rostoucím členem  $n^3$ . Nejrychleji rostoucí členy (pro pohodlí bez koeficientů) z obou částí zlomku vytkneme.

Dostaneme

$$\frac{2n^2+n-3}{n^3-1}=\frac{n^2\left(2+\frac{1}{n}-\frac{3}{n^2}\right)}{n^3\left(1-\frac{1}{n^3}\right)}=\frac{1}{n}\cdot\frac{2+\frac{1}{n}-\frac{3}{n^2}}{1-\frac{1}{n^3}}.$$

Část (b) věty o aritmetice limit nyní dává

$$\lim_{n \to \infty} \frac{2n^2 + n - 3}{n^3 - 1} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \frac{2 + \frac{1}{n} - \frac{3}{n^2}}{1 - \frac{1}{n^3}},$$
 (\Delta)

#### za předpokladu, že součin na pravé straně je definován!

Již víme, že platí  $\lim_{n\to\infty}\frac{1}{n}=0$ . **Pozor!** Bylo by lákavé prohlásit, že výsledná limita je rovna 0, bo součin čehokoliv s 0 je též 0. To je pravda pro všechna čísla až na  $\pm\infty$ . Musíme se ujistit, že druhá limita v součinu na pravé straně ( $\Delta$ ) existuje a není nekonečná.

S použitím věty o aritmetice limit (c) počítáme

$$\lim_{n \to \infty} \frac{2 + \frac{1}{n} - \frac{3}{n^2}}{1 - \frac{1}{n^3}} = \frac{\lim_{n \to \infty} 2 + \frac{1}{n} - \frac{3}{n^2}}{\lim_{n \to \infty} 1 - \frac{1}{n^3}}.$$

Limity v čitateli a jmenovateli zlomku výše spočteme zvlášť. Z věty o aritmetice limit, části (a), plyne, že

$$\lim_{n \to \infty} 2 + \frac{1}{n} - \frac{3}{n^2} = \lim_{n \to \infty} 2 + \lim_{n \to \infty} \frac{1}{n} - \lim_{n \to \infty} \frac{3}{n^2} = 2 + 0 - 0 = 2.$$

Podle stejného tvrzení též

$$\lim_{n \to \infty} 1 - \frac{1}{n^3} = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n^3} = 1 - 0 = 1.$$

To znamená, že

$$\lim_{n \to \infty} \frac{2 + \frac{1}{n} - \frac{3}{n^2}}{1 - \frac{1}{n^3}} = \frac{2}{1} = 2.$$

Odtud pak

$$\lim_{n \to \infty} \frac{2n^2 + n - 3}{n^3 - 1} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \frac{2 + \frac{1}{n} - \frac{3}{n^2}}{1 - \frac{1}{n^3}} = 0 \cdot 2 = 0.$$

Protože všechny výrazy na konci výpočtů jsou reálná čísla (a tedy speciálně jsou dobře definované), bylo lze použít větu o aritmetice limit.

#### Poznámka 1.4.6

Právě vyřešená úloha 1.4.5 ukazuje, jak dlouhé se limitní úlohy stávají při pedantickém ověřování všech předpokladů. A to jsme navíc použili *jen jediné tvrzení* k jejímu výpočtu. Takový postup není, z pochopitelného důvodu, obvyklý. Opakovaná použití věty o aritmetice limit se často schovají pod jedno prohlášení a výpočet limity je pak mnohem stručnější. Názorně předvedeme.

Snadno úpravou zjistíme, že

$$\frac{2n^2+n-3}{n^3-1}=\frac{1}{n}\cdot\frac{2+\frac{1}{n}-\frac{3}{n^2}}{1-\frac{1}{n^3}}.$$

Potom z věty o aritmetice limit platí

$$\lim_{n \to \infty} \frac{2n^2 + n - 3}{n^3 - 1} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \frac{2 + \frac{1}{n} - \frac{3}{n^2}}{1 - \frac{1}{n^3}} = 0 \cdot \frac{2 + 0 + 0}{1 + 0} = 0.$$

Protože výsledný výraz je definovaný, byla věta o aritmetice limit použita korektně.

My rovněž hodláme v dalším textu bez varování řešit podobné limitní příklady tímto "zkráceným" způsobem.

#### Varování 1.4.7

Větou o aritmetice limit **nelze** dokazovat, že limita posloupnosti neexistuje, neboť předpokladem každé její části je *definovanost* výsledného výrazu. Zanedbání toho předpokladu může snadno vést ke lži. Uvažme následující triviální příklad.

Prohlásili-li bychom, že z věty o aritmetice limit platí výpočet

$$\lim_{n\to\infty}\frac{n}{n}=\frac{\lim_{n\to\infty}n}{\lim_{n\to\infty}n}=\frac{\infty}{\infty},$$

nabyli bychom práva tvrdit, že  $\lim_{n\to\infty} n/n$  neexistuje, přestože zřejmě platí  $\lim_{n\to\infty} n/n = \lim_{n\to\infty} 1 = 1$ . Věta o aritmetice limit je tudíž zcela prázdné tvrzení v případě nedefinovanosti výsledného výrazu.

## Úloha 1.4.8

Spočtěte limitu

$$\lim_{n \to \infty} \frac{(n+4)^{100} - (n+3)^{100}}{(n+2)^{100} - n^{100}}.$$

Řešení.