PAC Learning

- 1. H_1 is consistent with a set of training examples (D) if an only if $H_1(x) = C(x)$ for training examples (x, c(x)) in D. It is given that, H_1 is identical to the set of all possible target concepts C, hence H_1 is consistent.
- 2. Given 20 parameters, $|H_1| = 2^{2^{20}}$
- 3. The number of training examples required to learn would be given by:

$$m \geq \frac{1}{\epsilon} \Big(ln |H| + ln(\frac{1}{\delta}) \Big)$$

Given:
$$\epsilon = 0.01, 1 - \delta = 0.95$$

 $m \ge 72,682,050$

- 4. No, the given Hypothesis H_2 is not consistent as this is not identical to C for all the training examples as in H_2 (x_a, x_b) map to X whereas in C which is identical to H_1 , X as a vector maps to Y.
- 5. Given that there are 20 x_a and x_b , $|H_2| = (n * (n-1)/2) * 16 = 3,040$
- 6. The minimum number of training examples can be calculated as above: $m \geq 1,102$
- 7. Hypothesis H_2 has a higher bias since it has a lower number of features as compared to $|H_2|$.