

Aerospace Vehicle Design And System Integration 3 AENG30013 (AVDASI3)

2019-2020

Constraint Diagrams

Dr. Daniel Poole

d.j.poole@bristol.ac.uk

Content

- Constraint diagrams
 - O What are they?
 - O How do we construct one?
 - O How do we use them to inform design?
- Coursework

Design Requirements?

- Requirement phase:
 - Substantial number of constraints placed on preliminary design
- Preliminary design phase:
 - Need to determine number of key wing and engine parameters
 - Aspect ratio, wing area, span, taper, aerofoils, control surfaces, etc.
- Typical to attempt to visualise constraints and allow some basic design parameters to be determined:
 - Wing loading, W/S
 - Thrust loading, T/W
 - Can be tightly coupled, e.g. take-off

• Construct equations for requirements that are of the form:

$$\frac{T_0}{W_{MTOW}} = f\left(\frac{W_{MTOW}}{S}\right)$$

• Use typical cruise-liner design drivers:

 $\frac{T}{W}$

- 1. Landing/stall speed
- 2. Take-off roll
- 3. n-G manoeuvre
- 4. Climb rate

1. Landing/stall speed

• Lift must maintain weight:

regulations
$$L=W=\frac{1}{2}\rho V_{min}^{2}SC_{L}^{max}$$

Given to us by

Since using MTOW, this is worse case scenario Can initially set using historical data – becomes a design parameter later

1. Landing/stall speed

• Rearrange:

$$\frac{W}{S} = \frac{1}{2}\rho V_{min}^2 C_L^{max}$$

2. Take-off Roll

- Perform simple analysis and assume worst case scenario no lift.
- Equate work done to change in KE:

$$(T - D_{TO} - \mu W)x = \frac{1}{2} \frac{W}{g} V_{TO}^{2}$$
F=mu*R, mu=0.03

• Rearrange:

$$\frac{T}{W} = \frac{V_{TO}^2}{2gx} + \frac{D_{TO}}{W} + \mu$$

$$C_D = C_{D_0} + \frac{C_L^2}{\pi A R e}$$

2. Take-off Roll

$$\frac{T}{W} = \frac{V_{TO}^2}{2gx} + \frac{1}{W/S} \left(\frac{1}{2} \rho V_{TO}^2 C_{D_0} + \frac{\frac{1}{2} \rho V_{TO}^2 C_{L_{TO}}^2}{\pi A R e} \right) + \mu$$

3. n-G manoeuvre

• To maintain speed, T=D:

$$T_h \approx T\sigma = \frac{1}{2}\rho_h V^2 SC_{D_0} + \frac{1}{2}\rho_h V^2 S\frac{C_L^2}{\pi ARe}$$

Engine performance deteriorates with altitude

L=nW so rearrange

to get Cl

3. <u>n-G manoeuvre</u>

$$\frac{T}{W} = \frac{\frac{1}{2}\rho V^2 C_{D_0}}{W/S} + \frac{n^2 W/S}{\frac{1}{2}\rho \sigma^2 V^2 \pi A R e}$$

4. Climb rate

Resolve forces and assume small angles:

$$\gamma \approx (T - D)/W$$

• Introduce climb ratio, and assume small angles:

$$G \approx \gamma$$

• Rearrange:

$$\frac{T_h}{W} = \frac{D}{W} + G$$

4. Climb rate

$$\frac{T}{W} = \frac{\frac{1}{2}\rho V^2 C_{D_0}}{W/S} + \frac{W/S}{\frac{1}{2}\rho\sigma^2 V^2 \pi ARe} + \frac{G}{\sigma}$$

• To construct whole diagram, clearly need some wing parameters such as Clmax and aspect ratio — initially base on historical data.

- Diagram **ONLY** gives method to visualise constraints
- Therefore gives **feasible region**
- Choice of W/S and T/W in feasible region driven by other factors
 - Cruise Cl and Cd
 - Span limits
 - Aspect ratio
 - High lift devices
 - Range, block time DOCs

Sensible to choose somewhere close to edge of feasible region

Summary

- Constraint diagram is a way to visualise initial spec. requirements
- Use simple physics to relate T/W to W/S for various constraints
- Allows visibility of feasible region
- Choose T/W (engine requirement) and W/S (aerodynamic requirement) close to edge of feasible region
 - Be careful of changes to constraint lines during design sensitivity

Coursework

- Work in pairs recommended that stick to same pairs as before
- Due 5pm Friday 20th March via BB
- Two parts:
 - 1. Steady-state aerodynamics
 - I. Given wing parameters, construct constraint diagram
 - II. Use XFLR5 to design wing
 - III. Consider performance on family of aircraft
 - 2. Flight mechanics

Coursework

- To get 50+ in the aerodynamics part, you must:
 - Construct the correct constraint diagram
 - Run XFLR5 to aid in the design of a wing
 - Report findings
- To get 60+ in the aerodynamics part, you must <u>also</u>:
 - Discuss design decisions and give logical justifications for those decisions
 - Write and present effectively
- To get 70+ in the aerodynamics part, you must <u>also</u>:
 - Provide critical analysis of the design process and final design
 - Write and present concisely

