MINERAÇÃO DE DADOS

Thiago Marzagão¹

¹marzagao.1@osu.edu

MÁQUINAS DE SUPORTE VETORIAL

máquinas de suporte vetorial

 (Livro-texto faz distinção entre classificador de máxima margem, classificador de suporte vetorial e máquina de suporte vetorial.
Deixemos essas distinções de lado por ora.)

idéa básica: separar as classes linearmente

$\beta_0 + \beta_1 x_1 + \beta_2 x_2 = 0$

ponto azuis: $\beta_0 + \beta_1 x_1 + \beta_2 x_2 > 0$

(ISL, p. 345)

1/2016

5 / 27

ponto roxos: $\beta_0 + \beta_1 x_1 + \beta_2 x_2 < 0$

infinitos hiperplanos são possíveis; como escolher?

infinitos hiperplanos são possíveis; como escolher?

 R: escolhemos o hiperplano que fica o mais distante possível dos pontos mais próximos. Ou seja, escolhemos o hiperplano de máxima margem.

hiperplano de máxima margem

as margens são os vetores de suporte

o hiperplano só depende dos pontos sobre as margens

como encontrar o hiperplano de máxima margem?

 Além do escopo da aula. É um problema de otimização convexa. A solução envolve dualidade (Lagrange, Wolfe), condições de Karush-Kuhn-Tucker.

como encontrar o hiperplano de máxima margem?

e c/ mais de 2 dimensões?

•
$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_k x_k = 0$$

- Hiperplano deixa de ser uma reta.
- Mais difícil de representar graficamente.
- De resto, tudo igual.

dúvidas?

- Até aqui nós vimos o cenário mais simples: duas classes linearmente separáveis.
- É importante entendermos o que foi visto até aqui antes de prosseguirmos.

e se as classes não são separáveis?

solução: soft margin

soft margin

- Como funciona?
- ullet Penalizamos cada amostra classificada erroneamente: e_i
- ullet i-ésima amostra classificada corretamente e fora da margem: $e_i=0$
- i-ésima amostra classificada corretamente mas dentro da margem: $0 < e_i < 1$
- ullet i-ésima amostra classificada corretamente mas dentro da margem: $e_i>1$
- Criamos um parâmetro C que funciona como "orçamento": a soma de todos os e_i não pode ser superior a C. Quanto maior o C, maior a tolerância a violações das margens.
- Encontramos o hiperplano de máxima margem obedecida a restrição de que $\sum_{i=1}^{n} e_i \leq C$

soft margin

- Na prática é bom usar soft margin mesmo quando as classes são linearmente separáveis.
- Assim evitamos overfitting.
- hard margin = soft margin com C = 0
- Como encontramos C? R: validação cruzada.

e se as classes REALMENTE não são separáveis?

e se as classes REALMENTE não são separáveis?

"You're just not thinking fourth-dimensionally"

solução: adicionar dimensões

Figure 5: (Left) A dataset in \mathbb{R}^2 , not linearly separable. (Right) The same dataset transformed by the transformation: $[x_1, x_2] = [x_1, x_2, x_1^2 + x_2^2]$.

eric-kim.net/eric-kim-net/posts/1/kernel_trick.html

solução: adicionar dimensões

Figure 6: (Left) The decision boundary \vec{w} shown to be linear in \mathbb{R}^3 . (Right) The decision boundary \vec{w} , when transformed back to \mathbb{R}^2 , is nonlinear.

eric-kim.net/eric-kim-net/posts/1/kernel_trick.html

custo computacional

- Problema: adicionar dimensões aumenta o custo computacional.
- Dependendo de quantas dimensões forem necessárias o custo computacional pode ser inviável.

custo computacional

- O que fazer? R: Pegar um "atalho".
- Encontrar o hiperplano é um problema de otimização convexa.
- Mas a solução só depende apenas dos produtos escalares entre cada par de amostras.
- Existem funções capazes de computar esses produtos escalares implicitamente, i.e., sem usar diretamente x_1 , x_2 , x_3 , etc.
- Essas funções são chamadas de kernels (daí o nome kernel trick).
- Usando *kernels* podemos encontrar o hiperplano sem custo computacional extra *mesmo que existam infinitas dimensões*.
- Exitem vários kernels. Como escolher? R: validação cruzada.
- Detalhes sobre os kernels estão além do escopo desta aula.

soft margin ou kernel trick?

- R: ambos.
- Risco de usar kernel trick sem soft margin: overfitting (dimensões extras criadas p/ acomodar esse ou aquele outlier; modelo não generaliza).