Partie IV

I- Fonctions
Hyperboliqu
es

- Définitions des fonctions hyperboliques (sinus, cosinus tangente et cotangente hyperboliques)
- Variations des fonctions hyperboliques

II-Trigonométrie hyperbolique

- Formules d'addition
- Formules de multiplication

III- Fonctions hyperboliques réciproques

- Argument sinus hyperbolique
- Argument cosinus hyperbolique
- Argument tangente hyperbolique

<u>Définition des fonctions</u> <u>hyperboliques :</u>

Introduction:

$$f:]-\alpha, +\alpha[\rightarrow \mathbb{R}$$

$$\begin{cases} f(x) = P(x) + Q(x) \\ f(-x) = P(x) - Q(x) \end{cases}$$

$$\begin{cases} P(x) = \frac{f(x) + f(-x)}{2} \\ Q(x) = \frac{f(x) - f(-x)}{2} \end{cases}$$

Définition:

On appelle cosinus hyperbolique de x et sinus hyperbolique de x et on note respectivement cosh(x) et sinh(x) les parties paire et impaire de e^x

$$cosh(x) = \frac{e^x + e^{-x}}{2}$$

$$sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$cosh(x) - 1 = \frac{e^x + e^{-x}}{2} - 1$$
$$= \frac{e^x - 2 + e^{-x}}{2} = \frac{\left(e^{\frac{x}{2}} - e^{-\frac{x}{2}}\right)^2}{2} \ge 0$$

Il vient que pour tout $x \in \mathbb{R}^*$; cosh(x) > 1 avec cosh(0) = 1

Et du fait que

$$sinh(x) = \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - 1}{2e^x}$$

Il vient que sinh(x) est du signe de x quel que soit $x \neq 0$ avec sinh(0) = 0.

Définition:

On appelle tangente hyperbolique de x et cotangente hyperbolique de x respectivement tanh(x) et cotanh(x) les fonctions

$$tanh(x) = \frac{sinh(x)}{cosh(x)}$$
$$cotanh(x) = \frac{cosh(x)}{sinh(x)}$$

Ou encore sous la forme

$$tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$
$$cotanh(x) = \frac{e^{2x} + 1}{e^{2x} - 1}$$

Remarque:

- Il est courant d'utiliser pour alléger l'écriture les notations suivantes : ch xau lieu de cosh(x), sh xau lieu de sinh(x), th xau lieu de tanh(x) et coth x au lieu de cotanh(x).
- Pour les fonctions hyperboliques la variable est appelée argument.

Propriété:

(Relation entre fonctions hyperboliques de même argument)

Pour tout $x \in \mathbb{R}$ on a

$$ch x + sh x = e^x$$
, $ch x - sh x = e^{-x}$

$$ch^2 x - sh^2 x = 1$$

$$ch \ x = \frac{1}{\sqrt{1 - th^2 \ x}} \quad , sh \ x = \frac{th \ x}{\sqrt{1 - th^2 \ x}}$$

Preuve:

$$(ch x + sh x) \cdot (ch x - sh x) = e^{x}e^{-x} = 1$$

$$ch^{2} x - sh^{2} x = 1$$

$$1 - th^{2} x = \frac{1}{ch^{2} x}$$

Et en tenant compte du fait que ch x > 0et que $sh x = ch x \cdot th x$ il vient que

$$ch \ x = \frac{1}{\sqrt{1 - th^2 x}} \quad , \qquad sh \ x = \frac{th \ x}{\sqrt{1 - th^2 x}}$$

Variation des fonctions hyperboliques:

Tenant compte de la parité des fonctions hyperboliques nous nous limiterons à l'intervalle $[0, +\infty[$

Dérivées. Sens de variation:

$$(ch x)' = \left(\frac{e^x + e^{-x}}{2}\right)' = \frac{e^x - e^{-x}}{2} = sh x$$

$$(sh x)' = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{e^x + e^{-x}}{2} = chx$$

$$(th x)' = \frac{1}{ch^2 x} = 1 - th^2 x$$

$$(coth x)' = -\frac{1}{sh^2 x} = 1 - coth^2 x$$

De plus

$$\lim_{x \to +\infty} ch \, x = \lim_{x \to +\infty} \frac{e^x + e^{-x}}{2} = +\infty$$

$$\lim_{x \to +\infty} sh \ x = \lim_{x \to +\infty} \frac{e^x - e^{-x}}{2} = +\infty$$

$$\lim_{x \to +\infty} th \ x = \lim_{x \to +\infty} \frac{e^{2x} - 1}{e^{2x} + 1} = +1$$

$$\lim_{x \to +\infty} \coth x = \lim_{x \to +\infty} \frac{e^{2x} + 1}{e^{2x} - 1} = +1$$

$$\lim_{\substack{x \to 0 \\ x \to 0}} \coth x = \lim_{\substack{x \to 0 \\ x \to 0}} \frac{ch x}{sh x} = +\infty$$

x	$-\infty0 + \infty$	
(ch)'x = sh x	-0+	
ch x	+∞ -	
(sh)'x = ch x	+	-
sh x		
$(th)'x = 1/ch^2x$	+	
th x	→ 0 −1	
$(coth)'x = -1/sh^2x$	-	_
$coth \ x$	-1	+0 +1

Représentation graphique:

$$\lim_{x \to +\infty} \frac{sh x}{x} = +\infty \text{ et } \lim_{x \to +\infty} \frac{ch x}{x} = +\infty$$

Et de plus on a

$$sh x - \frac{e^x}{2} = -\frac{e^{-x}}{2}$$
 $ch x - \frac{e^x}{2} = \frac{e^{-x}}{2}$

comme $\lim_{x \to +\infty} \frac{e^{-x}}{x} = 0^+$, la courbe de ch et la courbe de sh se rapprochent, pour $x \to +\infty$, de la courbe de $x \mapsto \frac{e^x}{2}$, qui est donc une courbe asymptote à ces deux courbes

Trigonométrie hyperboliques:

Formules d'addition:

Pour calculer ch(a+b) et sh(a+b) connaissant ch(a,sh(a,ch(b),sh(b)), il suffit de remplacer dans les formules

$$ch(a + b) = ch a \cdot ch b + sh a \cdot sh b$$

 $sh(a + b) = sh a \cdot ch b + ch a \cdot sh b$

$$ch (a - b) = ch a \cdot ch b - sh a \cdot sh b$$

$$sh (a - b) = sh a \cdot ch b - ch a \cdot sh b$$

$$th (a + b) = \frac{th a + th b}{1 + th a \cdot th b}$$

$$th (a - b) = \frac{th a - th b}{1 - th a \cdot th b}$$

$$ch (a + b) + ch (a - b) = 2 ch a \cdot ch b$$

$$ch (a + b) - ch (a - b) = 2 sh a \cdot sh b$$

$$sh (a + b) + sh (a - b) = 2 sh a \cdot ch b$$

$$ch p + ch q = 2 ch \frac{p + q}{2} \cdot ch \frac{p - q}{2}$$

$$ch p - ch q = 2 sh \frac{p + q}{2} \cdot sh \frac{p - q}{2}$$

$$sh p + sh q = 2 sh \frac{p + q}{2} \cdot ch \frac{p - q}{2}$$

$$sh p - sh q = 2 sh \frac{p - q}{2} \cdot ch \frac{p + q}{2}$$

Formules de multiplication :

Multiplication par 2:

$$ch \ 2 \ a = ch^{2}a + sh^{2}a \qquad sh \ 2 \ a$$

$$= 2 \ sh \ a \ ch \ a$$

$$th \ 2a = \frac{2 \ th \ a}{1 + th^{2}a}$$

$$ch \ 2a + 1 = 2 \ ch^{2}a \qquad ch \ 2a - 1 = 2 \ sh^{2}a$$

$$ch \ 2a = \frac{1 + th^{2}a}{1 - th^{2}a} \qquad sh \ 2a = \frac{2 \ th \ a}{1 - th^{2}a}$$

On poset =
$$th \ a/2$$

$$ch \ a = \frac{1+t^2}{1-t^2}$$

$$sh \ a = \frac{2t}{1-t^2}$$

$$th \ a = \frac{2t}{1+t^2}$$
Ou pour $u = e^a$

$$ch \ a = \frac{1}{2} \left(u + \frac{1}{u} \right)$$

$$sh \ a = \frac{1}{2} \left(u - \frac{1}{u} \right)$$

$$th \ a = \frac{u^2 - 1}{u^3 + 1}$$

Multiplication par un entier naturel $\underline{quelconque}_{m}$:

Ecrivons

$$(ch a + sh a)^{m} = e^{ma}$$

$$(ch a - sh a)^{m} = e^{-ma}$$

$$(ch a + sh a)^{m} = ch ma + sh ma$$

$$(ch a - sh a)^{m} = ch ma - sh ma$$

$$2 ch ma = (ch a + sh a)^{m} + (ch a - sh a)^{m}$$

$$2 sh ma = (ch a + sh a)^{m} - (ch a - sh a)^{m}$$

$$th \ ma = \frac{(1 + tha)^m - (1 - tha)^m}{(1 + tha)^m - (1 - tha)^m}$$
$$= \frac{C_m^1 th \ a + C_m^3 th^3 a + \cdots}{1 + C_m^2 th^2 \ a + C_m^4 th^4 a + \cdots}$$

Pour
$$m = 3$$
:
 $ch \ 3a = ch^3 a + 3 \ ch \ a \ sh^2 a$
 $sh \ 3a = 3 \ ch^2 a \ sh \ a + sh^3 a$
 $th \ 3a = \frac{3 \ th \ a + th^3 a}{1 + 3 \ th^2 a}$

ďoù

$$ch 3a = 4ch^3 a - 3ch a$$

$$sh 3a = 3 sh a + 4 sh^3 a$$

et

$$ch^{3}a = \frac{ch \ 3a}{4} + \frac{3}{4}ch \ a$$
$$sh^{3}a = \frac{sh \ 3a}{4} - \frac{3}{4}sh \ a$$

Fonctions hyperboliques inverses:

Inversion du sinus hyperbolique:

Définition:

La fonction sinus hyperbolique est une application continue et strictement croissante de \mathbb{R} sur \mathbb{R} . On peut donc définir la fonction réciproque, application continue et strictement croissante de \mathbb{R} sur \mathbb{R} . Cette fonction réciproque est appelée argument sinus hyperbolique ; on le désigne par le symbole Argsh caractérisée par

$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R}$$
$$y = sh \ x \iff x = Argsh \ y$$

Propriétés:

- La fonction argument sinus hyperbolique est une fonction impaire
- $\lim_{x \to +\infty} Argsh \ x = +\infty$ $\lim_{x \to -\infty} Argsh \ x = -\infty$
- La fonction argument sinus hyperbolique est dérivable partout dans \mathbb{R} et de plus Pour tout $y \in \mathbb{R}$ tel que y = sh x

$$(Argsh)'y = \frac{1}{sh'x} = \frac{1}{ch x} = \frac{1}{ch(Argsh y)}$$

or vue que
$$\frac{ch^2x - sh^2x = 1}{ch \ x = \sqrt{1 + sh^2x}}$$

 $\frac{ch(Argsh \ y)}{1} = \frac{1}{\sqrt{1 + y^2}}$
 $\frac{(Argsh)'y}{\sqrt{1 + y^2}} = \frac{1}{\sqrt{1 + y^2}}$

Tableau de variation de Argsh:

x	$-\infty0+\infty$
$(Argsh)'(x) = \frac{1}{\sqrt{1+x^2}}$	+
argsh x	0 ∞

Expression logarithmique de ar gsh:

Nous avons que pour tout x dans \mathbb{R}

$$y = sh x$$
 et $ch x = \sqrt{1 + y^2}$

Par addition il vient que $e^x = y + \sqrt{1 + y^2}$ donc

$$x = \arg sh \ y = \ln \left(y + \sqrt{1 + y^2} \right)$$

D'où en déduit que la fonction Argument sinus hyperbolique peut être exprimée en fonction du logarithme comme suite

$$\forall x \in \mathbb{R}$$
; $Argsh x = ln(x + \sqrt{1 + x^2})$

Inversion du cosinus hyperbolique:

Définition:

La restriction à $[0, +\infty[$ de la fonction cosinus hyperbolique est une application continue et strictement croissante de $[0, +\infty[$ sur $[1, +\infty[$. On peut donc définir la fonction réciproque, application continue et strictement croissante de $[1, +\infty[$ sur $[0, +\infty[$. Cette fonction réciproque est appelée argument cosinus hyperbolique ; on le désigne par le symbole Argch caractérisée par

$$\forall x \in [0, +\infty[\ \forall y \in [1, +\infty[\ y = ch \ x \\ \Leftrightarrow x = Argch \ y$$

Propriétés:

La fonction argument cosinus hyperbolique vérifie que

- $\lim_{x \to +\infty} Argch(x = +\infty) \quad Argch(1) = 0$
- La fonction argument cosinus hyperbolique est dérivable partout dans]1, +∞[et de plus

Pour tout $y \in]1, +\infty[$ tel que y = ch x avec

$$(Argch)'y = \frac{1}{ch'x} = \frac{1}{sh x} = \frac{1}{sh(Argch y)}$$

or vue que $ch^2x - sh^2x = 1$

donc $sh^2x = ch^2x - 1$ et $sh x = \sqrt{ch^2x - 1}$ il vient que

$$sh(Argch y) = \sqrt{y^2 - 1}$$

$$(Argch)'y = \sqrt{y^2 - 1}$$

Tableau de variation de Argch:

Expression logarithmique de ar gch:

Nous avons que pour tout x dans $[0, +\infty[$

$$y = ch xet$$
 $sh x = \sqrt{y^2 - 1}$

Par addition il vient que $e^x = y + \sqrt{y^2 - 1}$ donc

$$x = \arg ch \ y = \ln \left(y + \sqrt{y^2 - 1} \right)$$

D'où en déduit que la fonction Argument cosinus hyperbolique peut être exprimée en fonction du logarithme comme suite

$$\forall x \in [1, +\infty[;$$

$$Argch \ x = ln \left(x + \sqrt{x^2 - 1} \right)$$

<u>Inversion de la tangente</u> <u>hyperbolique :</u>

Définition:

La fonction tangente hyperbolique est une application continue et strictement croissante de \mathbb{R} sur]-1,+1[. On peut donc définir la fonction réciproque, application continue et strictement croissante de]-1,+1[sur \mathbb{R} . Cette fonction réciproque est appelée argument tangente hyperbolique ; on la désigne par le symbole Argth caractérisée par

$$\forall x \in \mathbb{R}, \forall y \in]-1, +1[;$$

 $y = th \ x \iff x = Argth \ y$

Propriétés:

- La fonction argument tangente hyperbolique est une fonction impaire
- Elle vérifie que $\lim_{x\to 1-} Argth \ x = +\infty \quad \lim_{x\to -1+} Argth \ x = -\infty$
- La fonction argument tangente hyperbolique est dérivable partout dans]-1,+1[et de plus Pour tout $y \in]-1,+1[$ tel que y=th x $(Argth)'y=\frac{1}{th'x}=\frac{1}{1-th^2x}=\frac{1}{1-y^2}$

Tableau de variation de Argth:

x	-10+1	
$(Argth)'(x) = \frac{1}{1-x^2}$	+	
argth x	+8 0 -8	

Expression logarithmique de ar gth:

Nous avons que pour tout x dans \mathbb{R}

$$x = Argth \ y \iff y = th \ x \iff y = \frac{e^{2x} - 1}{e^{2x} + 1}$$
$$\iff e^{2x} = \frac{1 + y}{1 - y} \iff x = \frac{1}{2} ln \left(\frac{1 + y}{1 - y} \right)$$

D'où en déduit que la fonction Argument tangente hyperbolique peut être exprimée en fonction du logarithme comme suite

$$\forall x \in]-1,+1[;$$

$$Argth \ x = \frac{1}{2} ln \left(\frac{1+x}{1-x} \right) = ln \sqrt{\frac{1+x}{1-x}}$$

