Real and Complex Analysis

MTL122/ MTL503/ MTL506

Lecturer: A. Dasgupta

aparajita.dasgupta@gmail.com

- (1) Verify that the following functions u are harmonic, and in each case give a conjugate harmonic function v.
 - (a) $u(x,y) = 3x^2y + 2x^2 y^3 2y^2$,
 - (b) $u(x,y) = \ln(x^2 + y^2)$.
- (2) Find the contour integral $\int_{\gamma} \bar{z} dz$ for
 - (a) γ is the triangle ABC oriented counterclockwise, where A=0, B=1+i and C=-2:
 - (b) γ is the circle |z i| = 2 oriented clockwise.
- (3) Evaluate the following integrals.
 - (a) $\int_C \frac{2dz}{z^2-1}$, where C is the circle with radius 1/2 centre 1, positively oriented.
 - (b) $\int_C \left(e^z + \frac{1}{z}\right) dz$, where C is the lower half of the circle with radius 1. centre 0 clockwise oriented.
 - (c) $\int_C ze^z dz$, where C is any contour.
 - (d) $\int_C \cosh z dz$, where C is any contour.
- (4) Let C_R be the circle with radius R, centre 0, counterclockwise. Show that

$$\lim_{R \to \infty} \int_{C_R} \frac{z^2 + 4z + 7}{(z^2 + 4)(z^2 + 2z + 2)} dz = 0$$

Use this fact to prove that

$$\int_C \frac{z^2 + 4z + 7}{(z^2 + 4)(z^2 + 2z + 2)} dz = 0$$

where C is a circle with radius 5, centre 2, positively oriented.

- (5) Find the value of the integral g(z) around the circle |z i| = 2 oriented counterclockwise when
 - (a) $g(z) = \frac{1}{z^2 + 4}$
 - (b) $g(z) = \frac{1}{z(z^2+4)}$.
- (6) Let C_R be the circle |z| = R(R > 1) oriented counterclockwise. Show that

$$\left| \int_{C_R} \frac{\log(z^2)}{z^2} dz \right| < 4\pi \left(\frac{\pi + \ln R}{R} \right)$$

and then

$$\lim_{R\to\infty}\int_{C_R}\frac{\log\left(z^2\right)}{z^2}dz=0$$

(7) Without evaluating the integral, show that

$$\left| \int_C \frac{dz}{\bar{z}^2 + \bar{z} + 1} \right| \le \frac{9\pi}{16}$$

1

where C is the arc of the circle |z| = 3 from z = 3 to z = 3i lying in the first quadrant.

(8) Find where

$$\arctan(z) = \frac{i}{2} \log \frac{i+z}{i-z}$$

is analytic?