Hi-C analysis

Epigenomics Data Analysis
Jacques Serizay
Physalia 2023

Hi-C experimental workflow

Belton et al., Methods 2012

Open2C et al., Biorxiv 2023

Open2C et al., Biorxiv 2023

Hi-C pipeline

Assay-specific downstream analysis

Hi-C pipeline

Hi-C pipeline(s)

FASTQ files Read mapping Use an aligner that Trim read end to 25bp Pre-truncate read ends allows split mappings containing the ligation junction sequence Post-process mapping results to filter out Map using a short-read aligner (Bowtie, Bowtie2, BWA, BWA-sw) ambiguous pairs SAM/BAM (b) Read level filtering * 1.bam 🔻 * 2.bam List of all restriction sites Keep only uniquely mapped and high quality (MAPQ ≥ 30) reads (digested genome) Assign read end to the Keep only reads proximal to the nearest site (MAPQ ≤ 300) nearest restriction site (binary search) SAM/BAM (C) Read-pair level filtering *_1.bam + Apply distance filters Apply strand filters Intra-chromasomal contacts below a distance threshold Туре Strand Valid pairs e.g. self ligation e.g. valid pair (discarded) <20-25 kb <20-25 kb Remove all but one Possible of duplicate pairs artifacts Valid pairs Normalization Bin using fixed-size windows (e.g., 40kb) or meta-fragments (e.g., 10 REs) Explicit-factor correction Matrix balancing Joint correction Corrects explicitly for known Assures uniform visibility for all Simultaneously corrects factors such as GC content. for explicit factors and loci (i.e. equal row sum). Corrects for known and genomic distance between fragment length and potentially unknown biases mappability interacting loci

11

Servant et al., Genome Biol. 2015 Ay & Noble Genome Biol 2015

Hi-C pipeline(s) – 2015

Tool	Short-read aligner(s)	Mapping improvement	Read filtering	Read-pair filtering	Normalization	Visualization	Confidence estimation	Implementation language(s)
HiCUP [46]	Bowtie/Bowtie2	Pre-truncation	✓	✓	_	_	_	Perl, R
Hiclib [47]	Bowtie2	Iterative	\checkmark^a	\checkmark	Matrix balancing	✓	_	Python
HiC-inspector [131]	Bowtie	_	\checkmark	\checkmark	_	✓	_	Perl, R
HIPPIE [132]	STAR	√b	\checkmark	\checkmark	_	_	_	Python, Perl, R
HiC-Box [133]	Bowtie2	_	✓	\checkmark	Matrix balancing	✓	_	Python
HiCdat [122]	Subread	_c	✓	\checkmark	Three options ^d	\checkmark	_	C++, R
HiC-Pro [134]	Bowtie2	Trimming	✓	\checkmark	Matrix balancing	_	_	Python, R
TADbit [120]	GEM	Iterative	\checkmark	\checkmark	Matrix balancing	✓	_	Python
HOMER [62]	_	_	✓	\checkmark	Two options ^e	✓	\checkmark	Perl, R, Java
Hicpipe [54]	_	_	_	_	Explicit-factor	_	_	Perl, R, C++
HiBrowse [69]	_	_	_	_	_	✓	✓	Web-based
Hi-Corrector [57]	_	_	_	_	Matrix balancing	_	_	ANSI C
GOTHIC [135]	_	_	✓	\checkmark	_	_	\checkmark	R
HiTC [121]	_	_	_	_	Two options ^f	\checkmark	\checkmark	R
chromoR [59]	_	_	_	_	Variance stabilization	_	_	R
HiFive [136]	_	_	✓	\checkmark	Three options g	✓	_	Python
Fit-Hi-C [20]	_	_	_	_	_	✓	\checkmark	Python

^aHiclib keeps the reads with only one mapped end (single-sided reads) for use in coverage computations

Servant et al., Genome Biol. 2015 Ay & Noble Genome Biol 2015

^bHIPPIE states that it rescues chimeric reads. No details are given

^cHiCdat reports no substantial improvement in successfully aligned read pairs when iterative mapping in Hiclib is used for *Arabidopsis thaliana* Hi-C data

^dHiCdat provides three options for normalization: coverage and distance correction, HiCNorm and ICE

eHOMER provides two options for normalization: simpleNorm corrects for sequencing coverage only and norm corrects for coverage plus the genomic distance between loci fHiTC provides two options for normalization: normLGF implements HiCNorm and normICE implements ICE algorithm from Hiclib

⁹HiFive provides three options - Probability, Express, and Binning - for normalization. The Express and Binning algorithms correspond to matrix balancing and explicit-factor correction schemes, respectively