

Base de Datos

	Certamen # 1	
Nombre:		
Sección:		

1. (60 pts.) Desarrollo de un Modelado de Base de Datos.

Como diseñadores de Base de Datos, se nos solicita crear un Modelo Entidad Relación que diagrame la situación concerniente a la atención hospitalaria dentro de la Provincia. Se desea conocer los hospitales dentro de la provincia. Se sabe que cada hospital tiene varias salas y cada médico trabaja en un único hospital. A su vez cada hospital trabaja con muchos laboratorios, y un laboratorio presta servicios a muchos hospitales, la información de los laboratorios es el nombre, dirección y teléfono. Además, interesa conocer una descripción de cada servicio y su fecha. Un paciente puede estar internado en una única sala al mismo tiempo, se debe ingresar la fecha de ingreso. Cada paciente puede ser atendido por más de un médico, y a su vez cada médico atenderá varios pacientes, donde interesa conocer las fechas de las atenciones. Cada paciente puede tener varios diagnósticos. Cada diagnóstico tiene un tipo y las complicaciones. Además, interesa saber la fecha en que se realizó cada diagnóstico.

Se pide:

- a) (30 pts.) Crear el Modelo Entidad Relación (MER) para el dominio del vivero explicado previamente. No olvide claramente especificar entidades, relaciones y cardinalidad de estas.
- b) (6 pts.) Crear 2 reglas de negocio para el vivero, de su invención, que se reflejen en el modelo MER. Estas reglas son de creación individual.
- c) (24 pts.) Transformar el MER en un esquema relacional. Se pide mostrar la aplicación de las reglas de transformación vistas en clases, paso a paso. Cuando una regla no se aplique indicarlo explícitamente. Al final del proceso de transformación presentarel esquema final de la BD. No olvidar indicar en el esquema, claves primarias y foráneas.

Nota: si realiza cualquier supuesto para construir su modelo indíquelo.


```
Resultado

Laboratorio(Codigo[cp], Nombre, Telefono, Direccion)

Hospital(Codigo[cp], Nombre, Direccion)

Sala(Codigo[cp], CodigoHospital[cf])

Paciente(Rut[cp], Nombre, CodigoSala[cf])

Medico(Rut[cp], Nombre, CodigoHospital[cf])

Diagnostico(Codigo[cp], complicaciones, CodigoTipo[cf])

Tipo(Codigo[cp], Nombre)

Servicio((CodigoHospital[cf], CodigoLaboratorio[cf], fecha)[cp], descripcion)

Atenciones((rutMedico[cf], rutPaciente[cf], fecha)[cp])

tiene((CodigoDiagnostico[cf], RutPaciente[cf])[cp], fecha)
```

Esta_en((CodigoSala[cf], RutPaciente[cf], fecha)[cp])

2. Consultas a una en una Base de Datos.

Dado el siguiente esquema de una base de datos de un Acuario:

- especies(sno, nombre especie, alimento), sno clave principal
- estanques(tno, nombre tanque, color tanque, volumen), tno clave principal
- peces(<u>pno</u>, nombre peces, color peces, <u>tno</u>, <u>sno</u>) Donde, pno es la clave principal y los atributos tno y sno son claves foráneas que hacen referencia a las claves primarias de las relaciones tanques y especies respectivamente..
- *eventos*(*eno*, *pno*, *fecha*) Donde eno es la clave principal y pno es clave foránea y referencia al atributo pno de la tabla peces.

especies			
sno	nombre	alimento	
17	delfin	arenque	
22	tiburon	cualquier cosa	
74	olomina	gusano	
93	ballena	mantequilla de mani	
100	pez espada	gusano	
120	pez globo	gusano	

	estanques				
tno	nombre_tanque	color_tanque	volumen		
55	charco	verde	300		
42	letrina	azul	100		
35	laguna	rojo	400		
85	letrina	azul	100		
38	playa	azul	200		
44	laguna	verde	200		

	peces			
pno	nombre_peces	color_peces	tno	sno
164	charlie	naranjo	42	74
347	flipper	negro	35	17
228	killer	blanco	42	22
281	albert	rojo	55	17
119	bonnie	azul	42	22
388	cory	morado	35	93
700	maureen	blanco	44	100
800	beni	rojo	55	17
900	nemo	rojo	44	74
150	vicky	rojo	55	100
160	mati	amarillo	42	100
110	rafa	azul	85	100
222	jimmy	amarillo	38	100
144	bisho	rojo	42	93
125	chris	azul	38	93
183	sable	amarillo	44	93
241	taz	rojo	55	93
300	baltasar	azul	85	100
200	cash	azul	85	100
424	bandido	verde	35	100
454	romo	blanco	85	93

	eventos				
eno	pno	fecha			
3456	347	2010-01-26			
6653	164	2010-05-14			
5644	347	2010-05-15			
5645	347	2010-05-30			
6789	281	2010-04-30			
5211	228	2010-08-20			
6719	700	2010-10-22			
4555	164	2011-11-03			
9647	281	2011-12-06			
5347	281	2011-01-01			

- a) (24 pts.) Algebra Relacional.
- 1. Obtener el código, nombre de los peces de color amarillo o color azul que están en el estanque número 120.

 Π pno, nombre_peces ($\sigma_{color_peces='amarillo'}$ or color_peces='azul' and color_tanque='azul' tno=120 PECES)

2. Listar los nombres de los peces que durante el año 2011 participaron en algún evento.

 Π nombre_peces, nombre_tanque (σ (Peces.pno = Eventos.pno) and (fecha >='2011-01-01' and fecha >='2011-12-31') (PECES x EVENTOS))

3. Obtener el nombre de las especies que tienen peces en un estanque de color rojo y un volumen menor a 200 (utilice producto cartesiano ×).

$$\begin{split} TANQUE_R &<= (\sigma_{(Peces.tno\ =\ Tanques.tno\ and\ color_tanque\ =\ 'rojo'\ and\ volumen<200)}PECES\ x\\ TANQUES)\\ RESUL &<= \Pi_{\ nombre\ \ especie} (\sigma_{(Peces.sno\ =\ Especies\ sno)}TANQUE_R\ X\ ESPECIES) \end{split}$$

4. Listar el codigo, nombre y color de aquellos peces que encuentran en tanques de color verde o un volumen igual a 100 (utilice Join ▷⊲).

 $\Pi_{pno, nombre_peces, color_peces}$ ($\sigma_{(color_tanque='verde' OR \ volumen=100)}$ PECES $\triangleright \triangleleft$ TANQUES peces.tno=tanques.tno)

5. Listar el codigo y nombre de los tanques que tienen peces que comen gusanos o que comen arenque (usar operador U).

 $\begin{array}{l} \Pi_{tno,\;nombre_tanque} \left(\sigma_{(alimento='\;arenque')} \left(PECES^*\;ESPECIES\right)^*TANQUES\right) \cup \\ \Pi_{tno,\;nombre_tanque} \left(\sigma_{(alimento='gusano')} \left(PECES^*\;ESPECIES\right)^*TANQUES\right) \end{array}$

6. Listar el codigo y nombre de los tanques que solo tienen peces de color blanco.

$$\begin{split} & TanquesR_NoB <= \Pi_{tno}\left(\sigma_{(color_peces<)'blanco')}\left(PECES*TANQUES\right)\right) \\ & TanquesR_B <= \Pi_{tno}\left(\sigma_{(color_peces='blanco')}\left(PECES*TANQUES\right)\right) \\ & Resultado <= \Pi_{tno,\ nombre_tanques}\left(\left(TanquesR_A - TanquesNoB\right)*TANQUES\right) \end{split}$$

7. Obtener el nombre de cada tanque y la cantidad de peces que tiene cada uno.

 $\rho_{\,(tno_nombre,\,Total_Peces)}(\,_{tno}\,\,\mathfrak{I}\,\,CONTAR\,(PECES*TANQUES))$