Automate à pile simple : exemple introductif

•
$$(0+1)*(2+1)$$

$$\bullet$$
 * + 0 1 + 2 1

- * + b | b + | | b | b
- Grammaire de ces expressions

$$G: \left\{ \begin{array}{l} S \to +SS \ / \ *SS \ / \ | \ T \ / \ b \\ T \to | \ T \ / \ b \end{array} \right.$$

Quiz - le mot + b | b + | | b | b est engendré par G vrai faux

Analyseur descendant procédural

on a une chaîne de caractères à analyser de gauche à droite

- variable lu (renvoie le prochain caractère sans avancer, ce peut être EOF)
- procédure lire (avance sur le prochain caractère et met à jour la variable lu)
- fonction fin-de-chaîne? (teste lu = =EOF)
- procédure erreur(n) (signale une erreur et arrête l'analyse)
- une procédure par non-terminal
 - 2 procédures S et T (la procédure W avance dans la chaîne d'un mot f tel que W →*f)
- l'analyseur est un programme (déterministe ?)
 - debut lire; S; si fin-de-chaîne? alors OK sinon PAS-OK fin

Analyse de 3 exemples

On va gérer à la main la pile des appels récursifs en empilant ce qui « reste à faire »

- * + | b b \rightarrow succès
- * + | b b
 → échec mot vide, pile non vide
- * + | b b b b → échec mot non vide, pile vide

On va généraliser ce procédé en introduisant les

Automates à pile simples

• Un automate à pile simple est un quadruplet

$$a = \langle X, Y, y_0, \lambda \rangle = 0$$

- X est un alphabet, dit alphabet d'entrée
- Y est un alphabet, dit alphabet de pile
- $-y_0 \in Y$ est le symbole initial de pile
- $\lambda: X \times Y \to P_f(Y^*)$ est la fonction de transition de l'automate $\lambda(x, y)$ est un ensemble **fini** de mots de Y^*

• on peut voir λ comme une partie finie de $(X \times Y) \times Y^*$

Exemple d'a.p.s.

•
$$X = \{ \mid, b, *, + \}$$
 $Y = \{ S, T \}$ $y_0 = S$
 $\lambda : *, S \rightarrow \{ SS \}$
 $+, S \rightarrow \{ SS \}$
 $\mid, S \rightarrow \{ T \}$
 $b, S \rightarrow \{ \epsilon \}$
 $\mid, T \rightarrow \{ T \}$
 $b, T \rightarrow \{ \epsilon \}$ (ne pas noter) $\lambda (*, T) = \lambda (+, T) = \emptyset$

Transition entre deux configurations

si $x \in X$, $y \in Y$ et $h \in \lambda (x, y)$

 Calcul valide = suite de configurations c₁, ... c_n avec des transitions de c_i à c_{i+1}

Langage reconnu par un a.p.s (définition 1)

• L(\mathbf{a}) = { f \in X*, il existe un calcul valide menant de la configuration (f, y_o) à la configuration (11_X, 11_Y) }

Exemple de langage reconnu par a.p.s.

•
$$X = \{a, b\} \quad Y = \{y_0, y_1\}$$

$$\lambda: a, y_0 \rightarrow \{y_0 y_1\}$$

$$b, y_0 \rightarrow \{\mathcal{E}\}$$

$$b, y_1 \rightarrow \{\mathcal{E}\}$$

 $a, y_1 \rightarrow \emptyset$ (pas de règle)

• on simule un calcul valide à partir de la configuration (a²b³, y_o)

Quiz - l'automate reconnaît $\{a^n b^{n+1}, n \ge 0\}$ $\{a^n b^{n+1}, n \ge 1\}$

Exemple (bis)

(on confond les précédents symboles y₀ et y₁)

$$\lambda_1$$
: $a, y_0 \rightarrow y_0 y_0$

$$b, y_0 \rightarrow \varepsilon$$

Quiz - l'automate reconnaît $\{a^n b^{n+1}, n \ge 0\}$ vrai faux

 on simule une suite de transitions à partir de la configuration (aba²b³, y₀)

Extension de l'application λ

• Soit $\lambda: X \times Y \to P_f(Y^*)$, on l'étend par induction en une application $\lambda: X^* \times P_f(Y^*) \to P_f(Y^*)$

de la façon suivante :

$$\hat{\lambda}(\mathcal{E}, L) = L$$

et pour $x \in X$, $m \in X^*$, $L \in P_f(Y^*)$,

$$\hat{\lambda}(x.m, L) = \hat{\lambda}(m, \bigcup_{y \in Y \text{ et } y.w \in L} \lambda(x,y).\{w\})$$

(remarquer que $\lambda(x,y)$.{w} est le produit de 2 langages finis)

Propriétés de $\hat{\lambda}$

- $\hat{\lambda}(x, \{y\}) = \hat{\lambda}(\mathcal{E}, \lambda(x,y).\{\mathcal{E}\}) = \lambda(x,y)$ car y. \mathcal{E} est le seul mot de $\{y\}$
- $\hat{\lambda}(x, \{y.w\}) = \lambda(x,y).\{w\}$
- $\hat{\lambda}(m_1m_2, L) = \hat{\lambda}(m_2, \hat{\lambda}(m_1, L))$

- $\hat{\lambda}(f, L)$ est l'ensemble des contenus de pile auxquels on peut arriver en partant d'un quelconque contenu g de L (g est un mot de Y*) après avoir lu successivement les lettres de f ($f \in X^*$).
- $\hat{\lambda}$ (f, {y₀}) est l'ensemble des contenus de pile auxquels on peut arriver en lisant f depuis le contenu y₀

Langage reconnu par un aps (définition 2)

•
$$L(a) = \{ f \in X^*, 1|_{Y} \in \hat{\lambda}(f, \{y_0\}) \}$$

rappel de la définition 1 :

 $L(\mathbf{a}) = \{ f \in X^*, il existe un calcul valide menant de la configuration <math>(f, y_0)$ à la configuration $(1|_X, 1|_Y) \}$

Forme normale de Greibach

- Une grammaire algébrique G = < X , V , S , P > est sous F N G si P ⊂ V × X V*
 - rappel grammaire algébrique quelconque : P ⊆ V × (X ∪ V)*
- Exemple:

$$G: \left\{ \begin{array}{l} S \rightarrow +SS \ / \ *SS \ / \ | \ T \ / \ b \end{array} \right.$$

$$T \rightarrow | \ T \ / \ b$$

est sous FNG.

Quiz - une grammaire sous FNG peut engendrer le mot vide vrai

Arbre de dérivation correspondant à une dérivation gauche, dans une grammaire sous FNG

• en vert : le dernier non-terminal auquel on a appliqué une règle

Équivalence grammaire sous FNG / automate à pile simple.

- def : un langage est propre s'il ne contient pas le mot vide
- on admet : tout langage algébrique propre possède une grammaire sous FNG (cf poly)

• Un langage propre L est algébrique si et seulement si il existe un automate à pile simple qui le reconnaît.

sens: "seulement si"

Montrons que si un langage propre L est algébrique, alors il existe un automate à pile simple qui le reconnaît.

Soit L un langage algébrique propre et $G = \langle X, V, S, P \rangle$ sous FNG telle que $L_G(S) = L$,

posons
$$\mathbf{a} = \langle X, V, S, \lambda \rangle$$
 avec $(x, T, w) \in \lambda$ si et seulement si $T \to x w \in P$ (on a ici $w \in V^*$)

on devra montrer (plus loin) que $L(\mathbf{a}) = L_G(S)$

- sens $L_G(S) \subseteq L(a)$
- sens $L(\mathbf{a}) \subseteq L_G(S)$

Rappel de l'exemple

(transformation grammaire \rightarrow automate)

• par la construction $(x, T, w) \in \lambda$ ssi $T \to xw \in P$, la grammaire :

$$G: \left\{ \begin{array}{l} S \rightarrow +SS \ / \ *SS \ / \ | \ T \ / \ b \\ T \rightarrow | \ T \ / \ b \end{array} \right.$$

conduit à l'automate :

$$X = \{ |, b, *, + \}, Y = \{ S, T \},\$$

$$+,S \rightarrow SS$$

*,
$$S \rightarrow SS$$

$$|,S \rightarrow T$$

$$b, S \rightarrow \epsilon$$

$$\mathsf{I} \cdot \mathsf{T} \to \mathsf{T}$$

$$b, T \rightarrow \mathbf{\xi}$$

On le reconnaît bien.

sens $L_G(S) \subseteq L(a)$

• Soit $f \in L_G(S)$, $f = a_1 a_2 ... a_n$, où les $a_i \in X$

 $S \to_G^* f$ peut s'écrire (dérivation gauche) $S \to_G u_1 \to_G u_2 ... \to_G u_n = f$ avec, pour tout i, $1 \le i \le n$, $u_i = a_1 ... a_i u'_i$, $u'_i \in V^*$ car la grammaire est de Greibach.

On montre par induction sur i que pour tout i, $1 \le i \le n$, $u_i' \in \lambda(a_1...a_i, \{S\})$

i.e. on trouve dans la pile ce qui reste à dériver pour produire a_{i+1}...a_n.

On montre par induction sur i que pour tout i, $1 \le i \le n$, $u_i' \in \lambda(a_1...a_i, \{S\})$

On vérifie facilement le cas i = 1 sur le dessin :

$$\hat{\lambda}(a_1, \{S\}) = S_1...S_k = u'_1 \text{ car } S \to_G a_1S_1...S_k$$

pour le cas i = n, on aura
$$u'_n \in \lambda(a_1...a_n, \{S\})$$

c'est à dire
$$11_Y \in \hat{\lambda}(f, \{S\})$$
 i.e. f est reconnu par a

donc
$$L_G(S) \subseteq L(a)$$
.

sens $L(a) \subseteq L_G(s)$

• Soit $f \in L(a)$, $f = a_1 a_2 ... a_n$, $a_i \in X$

il existe un calcul valide

$$(f \;,\; S = w_0) \to (a_2...a_n\;,\; w_1) \to ...(a_{i+1}...a_n\;,\; w_i) \to ...(a_n\;,\; w_{n-1}) \to (1\!\!1_X,\; 1\!\!1_Y)$$

où wi désigne le contenu de la pile au ième pas de ce calcul.

On montre par induction sur i que pour tout i, $0 \le i \le n-1$,

 $w_i \rightarrow_G^* a_{i+1}...a_n$ (l'induction se fait en décroissant)

i.e. on trouve dans la pile ce qui reste à dériver pour produire $a_{i+1}...a_n$.

on veut si (f , S = w_0) \rightarrow ...(a_{i+1} ... a_n , w_i)... \rightarrow (11 , 11), alors $w_i \rightarrow_G^* a_{i+1}$... a_n

On vérifie facilement le dernier cas i = n-1

On a finalement pour
$$i=0$$
 :
$$S=w_0 \to_G^* a_1...a_n=f$$
 et donc $f\in L_G(S).$

d'où
$$L(\mathbf{a}) \subseteq L_{G}(S)$$

sens: "si"

Montrons que si un langage L est reconnu par un automate à pile simple, alors il est algébrique (et propre).

Soit **a** = < X , Y, y₀ , λ > un a.p.s. reconnaissant L,
 posons G = < X , Y, y₀ , P > avec

 $y \rightarrow x w \in P$ si et seulement si $(x, y, w) \in \lambda$,

on montre que $L(\mathbf{a}) = L_{G}(S)$

C'est exactement la même preuve que précédemment.

Exemple (transformation automate \rightarrow grammaire)

• l'automate :

$$\begin{array}{l} a\;,\,y_0\to y_0y_1\\\\ b\;,\,y_0\to E\\\\ b\;,\,y_1\to E \end{array}\qquad \begin{array}{l} \text{reconnaît}\;\{a^nb^{n+1},\,n\ge 0\} \end{array}$$

 par la construction « y → x w ∈ P ssi (x, y, w) ∈ λ », il conduit à la grammaire :

$$G=<\{a\ ,\,b\},\,\{y_0\,,\,y_1\},\,y_0\,,\,P>$$
 avec pour $P:$
$$y_0\to a\,y_0\,y_1$$

$$y_0\to b$$

$$y_1\to b \qquad \text{que l'on peut transformer en :}$$

 $S \rightarrow aSb / b$