# L651\_GPS\_API And. AT instruction

**Ver.**1.0



## Version.

| 版本  | 日期        | 作者 | 修订点                  |
|-----|-----------|----|----------------------|
| 1.0 | 2019/6/24 | 李勇 | The initial version. |
|     |           |    |                      |
|     |           |    |                      |
|     |           |    |                      |
|     |           |    |                      |
|     |           |    |                      |

# Index

## **Table of Contents**

|    | Vers         | ion                                    | . 2 |
|----|--------------|----------------------------------------|-----|
| 1. |              | Overview                               |     |
|    | 1. 1.        | Purpose and scope                      | 4   |
|    | 1. 2.        | Defined                                | 4   |
|    | 1. 3.        | Refer to the documentation             | 4   |
| 2. | P            | API Interface                          | 5   |
|    | 2. 1.        | GPS Initialization.                    | 5   |
|    | 2. 2.        | Launch a positioning                   | 5   |
|    | 2. 3.        | End positioning                        | 6   |
|    | 2. 4.        | Exit                                   | 6   |
|    | 2. 5.        | Set the startup mode                   | 6   |
|    | 2.6.         | Set up the positioning system          | 6   |
|    | 2. 7.        | Set the positioning frequency          | 6   |
|    | 2.8.         | Get. FW Version information.           |     |
|    | 2.9.         | Set the Baud rate                      | 6   |
|    | 2. 10.       | Set the message output frequency       |     |
|    | 2. 11.       | Get secondary data                     | 7   |
|    | 2. 12.       | Set debug mode                         |     |
| 3. | R            | Pelewant AT instructions and functions |     |
|    | 3. 1.        | at+gps= "0N"                           |     |
|    | <b>3. 2.</b> | at+gps= "START", start_mode            |     |
|    | 3. 3.        | at+gps= "FWINFO"                       | 8   |
|    | 3. 4.        | at+gps= "POSMODE", pos_mode            |     |
|    | 3. 5.        | at+gps= "ASSIST"                       | 8   |
|    | <b>3. 6.</b> | at+gps= "ASSIST", fix_freq             | 8   |
|    | 3. 7.        | at+gps= "BAUD", baud_rate              | 8   |
|    | 3. 8.        | at+gps="NMEA", type, flag, freq        | 8   |
|    | 3. 9.        | at+gps= "DEBUG"                        | 8   |
|    | 3. 10.       | at+gps="STOP"                          | 8   |
|    | 3, 11,       | at+gps="OFF"                           | 8   |

## 1. Overview.

## 1.1. Purpose and scope.

This article describes the current GPS-related API interfaces and AT instructions.

### 1. 2. **Defined.**

Table 1-1 Terminology

| Term | Definition                                            |
|------|-------------------------------------------------------|
| GPS  | Global Positioning System (GPS) of the United States. |
| BDS  | China Beidou Navigation Satellite System.             |
| GNSS | GlobalNavigationSatelliteSystem                       |
| BAUD | Baud rate                                             |
| CR   | Carriage Return                                       |
| LF   | Line Feed                                             |

## 1. 3. Refer to the documentation.

| Title                             | Location |
|-----------------------------------|----------|
| NMEA-0183protocol                 |          |
| GNSS The data interface protocol. |          |

#### **2.1.** GPS Initialization.

```
The function interface is as follows.:
int um gps init(GpsCallbacks* callbacks)
The main task of this function is to register the callback function and
initialize the drive, after which the chip enters a low-power state. The
parameter "callbacks" are callback function pointers, and the corresponding
data structure is as follows:
typedef struct {
     /** set to sizeof(GpsCallbacks) */
             size;
size t
gps_location_callbacklocation_cb;
gps_status_callbackstatus_cb;
gnss sv status callbackgnss sv status cb;
gps nmea callbacknmea cb;
} GpsCallbacks;
/**
*Position callback function.
typedef void (* gps_location_callback) (GpsLocation* location);
 * The state callback function.
typedef void (* gps_status_callback) (GpsStatus* status);
 st Satellite status information callback function.
typedef void (* gnss_sv_status_callback) (GnssSvStatus* sv info);
 * NMEA Statement callback function,
typedef void (* gps_nmea_callback) (GpsUtcTime timestamp, const char* nmea,
int length);
When used, the callback function is implemented to obtain the data of interest, including the
location of the positioning, the state of the chip, and satellite information.
and NMEA data.
```

## 2. 2. Launch a positioning.

```
The function interface is as follows.:
int um_gps_start()
```

#### 2. 3. End positioning.

The function interface is as follows.:

```
int gps_stop()
```

After positioning is completed, the system enters a low-power state.

#### 2.4. Exit.

The function interface is as follows:

int um gps cleanup()

This function frees up the resources requested at initialization and powers down the chip.

#### 2.5. Set the startup mode.

```
The function interface is as follows:
```

void um gps set start mode (uint16 t mode)

This function is used to set cold start, hot start or warm start.

#### 2.6. Set up the positioning system.

The function interface is as follows:

int um gps set position mode (uint16 t mode)

The system used to set the chip positioning can be set to single GPS, single Beidou or hybrid mode (BD-GPS) positioning.

#### 2.7. Set the positioning frequency.

The function interface is as follows:

int um\_gps\_set\_freq(U8freq)

This function mainly sets the frequency of escalation chip positioning and can set values of 1Hz, 2Hz, 5Hz.

#### 2.8. Get. FW Version information.

The function interface is as follows:

void um\_gps\_fw\_info()

After the command is successful, the chip outputs the following information:

\$PDTINFO, N/A, G1B1, VN/A, R3. 2. OBui1d3558M, N/A, N/A-6E

The six parameters mean the following:

Product name, product configuration options, hardware version number, firmware version number, product ID, serial number focus on firmware version number, such as R3.2.0Build3558M.

#### 2.9. Set the Baud rate.

The function interface is as follows.:

void um\_gps\_set\_baud(uint32\_t baud)

Set the Baud rate for chip escalation data, which is currently supported as follows:

9600

14400

19200

33600

38400

57600

115200

230400

#### 2.10. Set the message output frequency.

The function interface is as follows.:

void um gps set nmea output(U8 type, U8 flag, U8 freq)

Type: Message category, 0 - NMEA message 1 - Navigation message

For NMEA messages, the flag parameter participates in the ID column in the table below.

| 消息名       | 类别   | ID | 频度设置范<br>围 |
|-----------|------|----|------------|
| NMEA Mess | sage |    |            |
| GGA       | 0    | 0  | 0~5        |
| GLL       | 0    | 1  | 0~5        |
| GSA       | 0    | 2  | 0~5        |
| GSV       | 0    | 3  | 0~5        |
| RMC       | 0    | 4  | 0~5        |
| VTG       | 0    | 5  | 0~5        |
| ZDA       | 0    | 6  | 0~5        |

For navigation messages, the flag parameter participates in the ID column in the table below.

| 消息名        | 类别         | ID   | 频度设置范<br>围 |
|------------|------------|------|------------|
| Navigation | Result Mes | sage |            |
| POS        | 1          | 0    | 0~5        |
| VEL        | 1          | 1    | 0~5        |
| TIME       | 1          | 2    | 0~5        |
| ACC        | 1          | 3    | 0~5        |

Freq's value range is 0-5,0 to indicate that the corresponding message is not output, 1 to 5 for 1 to 5s output once.

## 2.11. Get secondary data.

The function interface is as follows: void um\_gps\_req\_assist(U8 type)

Requesting secondary data from the network currently only supports real-time astration information, valid for 2-4 hours.

It is recommended to increase the serial port rate to 115200beforeuse, otherwise the star calendar will take longer to download to the chip.

## 2.12. Set debug mode.

The function interface is as follows: void um gps start debug()

Primarily used for debugging problems, Firmware outputs more debugging information and needs to set the Baud rate to 115200.

## 3. Relevant AT instructions and functions.

#### 3.1. at+gps="ON"

Initialize the GPS chip.

#### 3.2.at+gps="START",start\_mode

start mode for positioning mode parameter

- 0 hot start, default mode.
- 1. Cold start.
- 2. Warm start.

#### 3.3.at+gps="FWINFO"

Print product information as detailed in 1.8.

#### 3.4.at+gps="POSMODE",pos\_mode

pos\_mode The system used for positioning.

- 1 GPS
- 2 BDS
- 3 BD + GPS

#### 3.5.at+gps="ASSIST"

Requesting secondary data currently only supports downloading real-time astrations.

#### 3.6.at+gps="ASSIST",fix\_freq

The parameter fix\_freq is the positioning frequency, and the supported values include 1000ms, 500ms, 200ms, corresponding to 1Hz, 2Hz, 5Hz.

## 3.7.at+gps="BAUD",baud\_rate

The parameter baud\_rate is the set baud rate. See section 1.9 for the supported baud rate . The default baud rate is 9600

### 3.8.at+gps="NMEA", type, flag, freq

The value range of the parameter is exactly the same as that of API

 $um\_gps\_set\_nmea\_output$  in section 3.10 . If you need to set all messages of a certain category at once, you can set the flag parameter to 8 .

```
such as: at+gps= "NMEA", 0, 8, 2
```

- Change the output frequency of all NMEA messages to once every 3 seconds, corresponding to 0.5 Hz..

### 3.9. at+gps="DEBUG"

Open debugging mode, FW will output more information, mainly for debugging. Before sending the command, you need to set the baud rate to 115200.

## 3.10.at+gps="STOP"

Stop positioning and enter sleep mode

### 3.11.at+gps="OFF"

Turn off GPS and release resources