## SUMMARY OUTPUT

| Regression Statistics |           |  |  |  |
|-----------------------|-----------|--|--|--|
| Multiple R            | 0.7991    |  |  |  |
| R Square              | 0.6386    |  |  |  |
| Adjusted R Square     | 0.6371    |  |  |  |
| Standard Error        | 5540.2574 |  |  |  |
| Observations          | 506       |  |  |  |

## ANOVA

|            | df  | SS          | MS         | F        | Significance F |
|------------|-----|-------------|------------|----------|----------------|
| Regression | 2   | 27276986214 | 1.3638E+10 | 444.3309 | 7.0085E-112    |
| Residual   | 503 | 15439309201 | 30694451.7 |          |                |
| Total      | 505 | 42716295415 |            |          |                |

|           | Coefficients | Standard Error | t Stat | P-value  | Lower 95% | Upper 95% | ower 95.0% | pper 95.0% |
|-----------|--------------|----------------|--------|----------|-----------|-----------|------------|------------|
| Intercept | -1358.27     | 3172.83        | -0.43  | 0.67     | -7591.90  | 4875.35   | -7591.90   | 4875.35    |
| AVG_ROOM  | 5094.79      | 444.47         | 11.46  | 3.47E-27 | 4221.55   | 5968.03   | 4221.55    | 5968.03    |
| LSTAT     | -642.36      | 43.73          | -14.69 | 6.67E-41 | -728.28   | -556.44   | -728.28    | -556.44    |

## **RESIDUAL OUTPUT**

| Observation | Predicted AVG_PRICE | Residuals    |
|-------------|---------------------|--------------|
| 1           | 28941.01368         | -4941.013681 |
| 2           | 25484.20566         | -3884.205661 |
| 3           | 32659.07477         | 2040.925231  |
| 4           | 32406.52            | 993.4800002  |
| 5           | 31630.40699         | 4569.593009  |
| 6           | 28054.52701         | 645.472994   |
| 7           | 21287.07846         | 1612.921545  |
| 8           | 17785.59653         | 9314.403473  |
| 9           | 8104.693384         | 8395.306616  |
| 10          | 18246.50673         | 653.4932695  |
| 11          | 17994.96223         | -2994.962229 |
| 12          | 20732.21309         | -1832.213091 |
| 13          | 18553.4842          | 3146.515803  |
| 14          | 23644.74107         | -3244.741066 |
| 15          | 23108.95823         | -4908.958231 |
| 16          | 22923.9452          | -3023.945198 |
| 17          | 24652.57604         | -1552.576036 |
| 18          | 19736.11045         | -2236.110451 |
| 19          | 18929.7215          | 1270.278497  |
| 20          | 20573.77596         | -2373.775964 |
| 21          | 13517.32408         | 82.67592493  |
| 22          | 20148.32175         | -548.3217521 |
| 23          | 17908.96697         | -2708.966971 |
| 24          | 15487.64606         | -987.6460563 |
| 25          | 18352.81036         | -2752.810359 |
| 26          | 16562.10901         | -2662.109014 |
| 27          | 18744.40281         | -2144.402811 |
| 28          | 18349.95811         | -3549.958114 |
| 29          | 23510.18847         | -5110.188468 |
|             |                     |              |





**6(a)**. The regression equaition for the model is

Y = 5094.76X1 - 642.36X2 - 1358.27

where X1 is the value of AVG\_ROOM and X2 is the value of LSTAT If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT,

**AVG\_PRICE** = 5094.79(7) - 642.36(20) - 1358.27

= 35,663.53 - 12,847.2 - 1358.27

= \$ 21,458.06

As per the comparison, the company is charging \$21400 to the house with an average of 7 rooms with LSTAT of 12. The lower lower LSTAT value should increase the price of the house. The company is slightly overcharging.

**6(b)**. Yes, the performance of this model is better than the previous model. Since we have included two significant variables in this model, this model is able to explain 63% variation of the Price where as the previous model was able to explain only 54% of the variation.