MA204: Mathematical Statistics

Assignment 3

You have a total of 15 questions in Assignment 3.

Submit your solutions to 10 questions randomly chosen from Q3.1–Q3.19 in Exercise 3 on pages 156–161 of the Textbook "Mathematical Statistics", plus 5 questions chosen from the following six questions.

3.20 Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x; \sigma)$, where

$$f(x;\sigma) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right), \quad x > 0, \ \sigma > 0.$$

- (a) Show that $X_1^2 \sim \text{Exponential}(\beta)$ with $\beta = 1/(2\sigma^2)$.
- (b) Find the C-R lower bound of σ .
- (c) Find the C-R lower bound of σ^2 .
- **3.21** Let $X_1, X_2, X_3 \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$, where $\theta \in (0, 1)$.
 - (a) Find the pmf of $T = T(X_1, X_2, X_3) = X_1X_2 + X_3$.
 - (b) Show that T is not a sufficient statistic for θ .
- **3.22** Let $X_1, \ldots, X_n, X \stackrel{\text{iid}}{\sim} f(x; \theta)$, where X is the population random variable,

$$f(x; \theta) = \frac{\log \theta}{\theta - 1} \theta^x, \quad 0 \leqslant x \leqslant 1, \ \theta > 1.$$

- (a) Prove that $f(x;\theta)$ is a density function.
- (b) Show that $T = \sum_{i=1}^{n} X_i$ is sufficient for θ .

(c) Show that the moment generating function (mgf) of the population random variable X is

$$M_X(t) = \frac{(\theta e^t - 1) \log \theta}{(\theta - 1)(\log \theta + t)}.$$

(d) Based on the mgf of X, prove that

$$E(X) = \frac{\theta}{\theta - 1} - \frac{1}{\log \theta} \triangleq \tau(\theta),$$

$$E(X^2) = \frac{\theta(\log \theta)^2 - 2\theta(\log \theta - 1) - 2}{(\theta - 1)(\log \theta)^2},$$

$$Var(X) = \frac{(\theta - 1)^2 - \theta(\log \theta)^2}{(\theta - 1)^2(\log \theta)^2},$$

and prove that $\bar{X} = T/n$ is an unbiased estimator of $\tau(\theta)$.

(e) Show that the Fisher information $I_n(\theta)$ is given by

$$I_n(\theta) = nI(\theta) = n\frac{(\theta - 1)^2 - \theta(\log \theta)^2}{\theta^2(\theta - 1)^2(\log \theta)^2}.$$

- (f) Show that \bar{X} is the efficient estimator of $\tau(\theta)$.
- **3.23** A r.v. X is said to follow a Conway–Maxwell–Poisson (CoM-Poisson) distribution with parameters $\lambda > 0$ and $\nu \ge 0$, denoted by $X \sim \text{CoMP}(\lambda, \nu)$, if its pmf is

$$CoMP(x|\lambda,\nu) = \frac{1}{Z(\lambda,\nu)} \cdot \frac{\lambda^x}{(x!)^{\nu}}, \quad x = 0, 1, \dots, \infty,$$

where

$$Z(\lambda, \nu) = \sum_{j=0}^{\infty} \frac{\lambda^j}{(j!)^{\nu}}$$

is the normalized constant. Let $\{X_i\}_{i=1}^n \stackrel{\text{iid}}{\sim} \text{CoMP}(\lambda, \nu)$ and $Y_{\text{obs}} = \{x_i\}_{i=1}^n$ denote the observed counts. Show that $\{T_1, T_2\}$ are joint sufficient statistics for $\{\lambda, \nu\}$, where

$$T_1 \triangleq \sum_{i=1}^n X_i$$
 and $T_2 \triangleq \sum_{i=1}^n \log(X_i!)$.

3.24 Let X_1, \ldots, X_n be independent random variables and X_i have the following pdf

$$f_{x_i}(x;\theta) = \begin{cases} \frac{1}{2i\theta}, & -i(\theta-1) < x < i(\theta+1), \\ 0, & \text{otherwise,} \end{cases}$$

for i = 1, ..., n, where $\theta > 0$. Find a sufficient statistic of θ .

- **3.25** Let X_1, \ldots, X_n be a random sample from an unknown population with mean μ and variance $\sigma^2 < +\infty$.
 - (a) If $\sum_{i=1}^{n} a_i = 1$, show that the estimator $\varphi(\mathbf{x}) \triangleq \sum_{i=1}^{n} a_i X_i$ is an unbiased estimator of μ , where $\mathbf{x} = (X_1, \dots, X_n)^{\mathsf{T}}$, and $\{a_1, \dots, a_n\}$ are known constants.
 - (b) Among all unbiased estimators of this form (called *linear* unbiased estimators), find the one with minimum variance, and calculate the variance.