United States Patent Application for

METHOD OF IMPLANTING AN INTERVERTEBRAL SPACER

TO THE COMMISSIONER OF PATENTS AND TRADEMARKS:

Your petitioners, PETER PAL VARGA, M.D. and JAMES W. OGILVIE, M.D., citizens of the United States, whose post office addresses are 1126 Budapest, Kiralyhago utca 1-3, Hungary, and Department of Orthopaedic Surgery, Box 492, 420 Delaware Street S.E., Minneapolis, Minnesota 55455, respectively, pray that letters patent may be granted to them as the joint inventors of a METHOD OF IMPLANTING AN INTERVERTEBRAL SPACER as set forth in the following specification.

METHOD OF IMPLANTING AN INTERVERTEBRAL SPACER CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of co-pending U.S. Patent Application Serial No. 10/055,783, filed January 22, 2002, 5 entitled "METHOD OF IMPLANTING AN INTERVERTEBRAL SPACER," which is a division of U.S. Patent Application Serial No. 09/592,072, filed June 12, 2000, entitled "INTERVERTEBRAL SPACER, " now U.S. Patent No. 6,579,318, which applications are hereby incorporated by reference herein in their entireties, 10 including but not limited to those portions that specifically appear hereinafter, the incorporation by reference being made with the following exception: In the event that any portion of the above-referenced applications is inconsistent with this application, this application supercedes said above-referenced 15 applications.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable.

BACKGROUND OF THE INVENTION

1. The Field of the Invention.

The present invention relates generally to an intervertebral spacer, and more particularly, but not necessarily entirely, to a interbody spacing system for

accomplishing enhanced intervertebral fusion between adjacent vertebral bodies of a human spine.

2. Description of Related Art.

The human spine is a complex, sophisticated mechanical system. The vertebrate spine operates as a structural member, providing structural support for the other body parts. A normal human spine is segmented with seven cervical, twelve thoracic and five lumbar segments. The lumbar portion of the spine resides on the sacrum, which is attached to the pelvis. The pelvis is supported by the hips and leg bones. The bony vertebral bodies of the spine are separated by intervertebral discs, which reside sandwiched between the vertebral bodies and operate as joints allowing known degrees of flexion, extension, lateral bending and axial rotation.

The intervertebral disc primarily serves as a mechanical cushion between adjacent vertebral bodies, and permits controlled motions within vertebral segments of the axial skeleton. The disc is a multi-element system, having three basic components: the nucleus pulposus ("nucleus"), the anulus fibrosus ("anulus") and two vertebral end plates. The end plates are made of thin cartilage overlying a thin layer of hard, cortical bone that attaches to the spongy, richly vascular, cancellous bone of the vertebral body. The plates

Clayton, Howarth & Cannon, P.C. P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

5

10

15

thereby operate to attach adjacent vertebrae to the disc. In other words, a transitional zone is created by the end plates between the malleable disc and the bony vertebrae.

The anulus of the disc forms the disc perimeter, and is a tough, outer fibrous ring that binds adjacent vertebrae together. The fiber layers of the anulus include fifteen to twenty overlapping plies, which are inserted into the superior and inferior vertebral bodies at roughly a 40 degree angle in both directions. This causes bi-directional torsional resistance, as about half of the angulated fibers will tighten when the vertebrae rotate in either direction.

It is common practice to remove a spinal disc in cases of spinal disc deterioration, disease or spinal injury. The discs sometimes become diseased or damaged such that the intervertebral separation is reduced. Such events cause the height of the disc nucleus to decrease, which in turn causes the anulus to buckle in areas where the laminated plies are As the overlapping laminated plies of the loosely bonded. anulus begin to buckle and separate, either circumferential or radial anular tears may occur. Such disruption to the natural intervertebral separation produces pain, which can alleviated by removal of the disc and maintenance of the natural separation distance. In cases of chronic back pain

Clayton, Howarth & Cannon, P.C P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

5

10

15

resulting from a degenerated or herniated disc, removal of the disc becomes medically necessary.

In some cases, the damaged disc may be replaced with a disc prosthesis intended to duplicate the function of the natural spinal disc. U.S. Patent No. 4,863,477 (granted September 5, 1989 to Monson) discloses a resilient spinal disc prosthesis intended to replace the resiliency of a natural human spinal disc. U.S. Patent No. 5,192,326 (granted March 9, 1993 to Bao et al.) teaches a prosthetic nucleus for replacing just the nucleus portion of a human spinal disc.

In other cases it is desired to fuse the adjacent vertebrae together after removal of the disc, sometimes referred to as "intervertebral fusion" or "interbody fusion."

In cases of intervertebral fusion, it is known to position a spacer centrally within the space where the spinal disc once resided, or to position multiple spacers within that space. Such practices are characterized by certain disadvantages, including a disruption in the natural curvature of the spine. For example, the vertebrae in the lower "lumbar" region of the spine reside in an arch referred to in the medical field as having a sagittal alignment. The sagittal alignment is compromised when adjacent vertebral bodies that were once angled toward each other on their

Clayton, Howarth & Cannon, P.C. P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

5

10

15

posterior side become fused in a different, less angled orientation relative to one another.

Another disadvantage of known spacing techniques and intervertebral spacers the additional surgical are complications that arise in the use of multiple spacers in a single disc space. In such cases, surgeons will often first perform a posterior surgery to remove the affected disc and affix posterior instrumentation to the posterior side of the vertebrae to hold the posterior portions of the vertebrae in a desired position. Placement of the multiple spacers is often too difficult to accomplish from the posterior side of the patient, at least without causing with undue trauma to the patient, because a surgeon would need to retract the dura nerve as well as the anterior longitudinal ligament, thereby increasing damage, pain and morbidity to the patient. Surgeons have therefore often chosen to turn the patient over after completing the posterior surgical portion, to perform an anterior operative procedure, through the patient's belly, in order to insert multiple spacers between the vertebrae from the anterior side instead of from the posterior side.

U.S. Patent No. 5,961,554 (granted October 5, 1999 to Janson et al.) illustrates a spacer having a high degree of porosity throughout, for enhanced tissue ingrowth

Clayton, Howarth & Cannon, P.C. P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

5

10

15

characteristics. This patent does not address the problem of

compromising the sagittal alignment, or of increased pain and

trauma to the patient by implantation of multiple spacers in

a single disk space.

5 The prior art is thus characterized by several

disadvantages that are addressed by the present invention.

The present invention minimizes, and in some aspects

eliminates, the above-mentioned failures, and other problems,

by utilizing the methods and structural features described

10 herein.

BRIEF SUMMARY AND OBJECTS OF THE INVENTION

It is therefore an object of the present invention to

provide an intervertebral spacing system that does not require

an additional, anterior surgical procedure.

It is another object of the present invention, in

accordance with one aspect thereof, to provide such an

intervertebral spacing system by which sagittal alignment of

the spine is restored.

5

10

15

20

It is a further object of the present invention, in

accordance with one aspect thereof, to provide such an

intervertebral spacing system that can accommodate a larger

host-graft interface between adjacent vertebral bodies.

It is an additional object of the present invention, in

accordance with one aspect thereof, to provide such an

intervertebral spacing system in which bone grafting material

is loaded in compression between adjacent vertebral bodies of

the spine.

It is yet another object of the present invention, in

accordance with one aspect thereof, to provide such an

intervertebral spacing system that does not require retraction

of the dural nerve, or of the anterior or posterior

longitudinal ligaments, for implantation of the spacer.

The above objects and others not specifically recited are

realized in a specific illustrative embodiment of an

intervertebral spacer adapted for implanting between adjacent

vertebral bodies of a human spine as a load-bearing

replacement for a spinal disc. The spacing member includes an

external, non-porous, concavo-convex contour with respect to

one dimension of said spacing member. The spacing member is

preferably constructed from a rigid, non-resilient load-

bearing material that is incapable of elastic deformation.

The spacing member is inserted with the aid of a sheathed

trocar device that is releasably attached to the spacer, to

enable implantation and selective positioning of the spacer by

the surgeon from the posterior side of the spine, without the

need to retract the dural nerve or the posterior longitudinal

ligament.

5

10

15 Additional objects and advantages of the invention will

be set forth in the description which follows, and in part

will be apparent from the description, or may be learned by

the practice of the invention without undue experimentation.

The objects and advantages of the invention may be realized

and obtained by means of the instruments and combinations

particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Clayton, Howarth & Cannon, P.C. P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

The above and other objects, features and advantages of the invention will become apparent from a consideration of the subsequent detailed description presented in connection with the accompanying drawings in which:

- FIG. 1 is a perspective view of an intervertebral spacer, made in accordance with the principles of the present invention;
 - FIG. 2 is a plan view of the intervertebral spacer of FIG. 1;
- FIG. 3 is a frontal view of the intervertebral spacer of FIGS. 1 and 2;
 - FIG. 4 is a side view of the intervertebral spacer of FIGS. 1, 2 and 3;
- FIG. 5 is side view of a pair of adjacent vertebral bodies from the lumbar region of a human spine;
 - FIG. 6 is a schematic view of a sheathed trocar device releasably attached to a trial spacer shaped similarly to the intervertebral spacer of FIG. 1, in accordance with the principles of the present invention;
- FIG. 7 is a schematic view of a sheathed trocar device releasably attached to the intervertebral spacer of FIG. 1, in accordance with the principles of the present invention;

FIGS. 8A-8D illustrate a schematic progression of the placement of the intervertebral spacer of FIG. 1 between vertebral bodies of a human spine; and

FIG. 9 illustrates posterior instrumentation by which compression is applied to the posterior sides of a pair of adjacent vertebral bodies of a human spine.

DETAILED DESCRIPTION OF THE INVENTION

For the purposes of promoting an understanding of the

principles in accordance with the invention, reference will

now be made to the embodiments illustrated in the drawings and

specific language will be used to describe the same. It will

nevertheless be understood that no limitation of the scope of

the invention is thereby intended. Any alterations and

further modifications of the inventive features illustrated

herein, and any additional applications of the principles of

the invention as illustrated herein, which would normally

occur to one skilled in the relevant art and having possession

of this disclosure, are to be considered within the scope of

the invention claimed.

Before the apparatus and methods of the present invention

are described further, it is to be understood that the

invention is not limited to the particular configurations,

process steps, and materials disclosed herein as such

configurations, process steps, and materials may vary

somewhat. It is also to be understood that the terminology

employed herein is used for the purpose of describing

particular embodiments of the invention only, and is not

intended to be limiting since the scope of the present

Clayton, Howarth & Cannon, P.C. P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

5

10

15

invention will be limited only by the appended claims and

equivalents thereof.

5

10

15

20

invention.

The publications and other reference materials referred to herein to describe the background of the invention and to provide additional detail regarding its practice are hereby incorporated by reference. The references discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as a suggestion or admission that the inventors are not entitled to antedate such disclosure by virtue of prior

In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.

As used herein, "comprising," "including," "containing," "characterized by," and grammatical equivalents thereof are inclusive or open-ended terms that do not exclude additional, unrecited elements or method steps.

Applicants have discovered that several of the disadvantages of the prior art spinal disc replacement systems can be minimized, or even eliminated, by the use of a cashewshaped interbody spacer having a tapered external shape, placing it is far anteriorly as possible between adjacent

vertebral bodies, filling in the remaining posterior space with bone graft material, and applying compression to posterior portions of the vertebral bodies to load the bone graft in compression and restore sagittal alignment.

Referring now to FIGS. 1-4, there is shown a spacing member, referred to also herein as an intervertebral spacer or an interbody spacer, designated generally at 10.

Briefly stated, the spacer 10 is utilized, along with autogenous bone grafting material, to replace a diseased or damaged spinal disc. Referring now to FIGS. 5-7, the procedure is implemented by making an incision 32 in the anulus 34 connecting adjacent vertebral bodies 31. The spinal disc (not shown) is surgically removed from the incision 32, after which the spacer 10 is placed through the incision 32 into position between the vertebral bodies 31. The spacer is preferably placed with its convex, anterior sidewall 12 facing anteriorly, and with its concave, posterior sidewall 14 facing posteriorly. Bone grafting material is placed through the incision 32 to reside behind the spacer 10, after which posterior instrumentation is attached to pedicle areas 34 to force the vertebral bodies 31 together in compression, as illustrated schematically in FIG. 8D and more particularly in FIG. 9.

Clayton, Howarth & Cannon, P.C. P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

5

10

15

The unique aspects and procedures relating to the spacer 10 will now be explained in more detail. Some of the key features of the invention comprise the size, shape and placement of spacer 10. The spacer 10 is preferably made of titanium, thus having a non-porous quality with a preferably smooth finish. The spacer 10 could also be made of ceramic, or any other suitable material that is inert and biologically compatible. The spacer 10 is thus constructed from a rigid, non-resilient load-bearing material, one that is preferably incapable of elastic deformation. The spacer 10, by its anterior, convex sidewall 12 and its posterior, concave sidewall 14, has thereby a concavo-convex contour with respect to one dimension.

It is to be understood that the concept of an object having a concavo-convex contour with respect to one dimension of the object, as referred to herein, shall not require the concave and convex sides of the object to be parallel to one another, although such is preferred. The concept does however refer to a dimension in which the concave and convex sides of the object are at least partially facing the direction of that dimension, as indicated by the dimension 16 of FIG. 1 in relation to the spacer 10. It is also to be understood that the concept of an object being concavo-convex in a single

Clayton, Howarth & Cannon, P.C. P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

5

10

15

dimension shall thereby include an object that has concave and convex sides 14 and 12 in a horizontal dimension 16, even though those very same sides are linear in a vertical dimension 20 at all points, such as in the case of the spacer 10 shown in FIG. 1. For example, the spacer 10 is concavo-convex in the anterior-posterior direction 16, though not in a medial-lateral direction 18 or vertical direction 20.

The upper surface 22 of the spacer 10 is preferably a planer, discontinuous surface having a plurality of spacedapart elongate recesses 24, with preferably a corner point 28 whereby one side 26 of the spacer 10 begins tapering in the medial-lateral direction 18, as shown most clearly in FIG. 3. The primary taper of the spacer 10 occurs in the anterio-toposterior direction 16, in that the spacer 10 narrows in thickness in a continuous manner along substantially the entire spacer 10 as shown most clearly in FIG. 4. The upper surface 22 and lower surface 30 form an acute angle relative to a horizontal plane 23, the angle being with a range of preferably two to eight degrees, most preferably four degrees. The entire taper is therefore most preferably an eight degree total taper, with four degrees of taper resulting from the upper surface 22 and the other four degrees of taper resulting from the lower surface 30.

Clayton, Howarth & Cannon, P.C. P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

5

10

15

As shown most clearly in FIG. 2, the spacer 10 has an

arc-length AL that is preferably 1.218 inches, a width W that

is preferably 0.320 inches, a depth D that is preferably 0.532

inches, an inner radius R_2 that is 0.271 inches, an outer

radius R₁ that is preferably 0.591 inches, and side radii R₃

and R_4 that are each preferably 0.160 inches.

The anterior, convex sidewall 12 and the posterior,

concave sidewall 14 of the spacer 10 are each preferably

linear in the vertical dimension 20, and are most preferably

10 parallel relative to one another.

The primary goal in intervertebral fusion are

immobilization of the affected vertebrae, restoration of the

spinal disc space and sagittal alignment, and to provide an

environment for bony fusion between vertebral bodies.

Applicants have discovered that these goals are most

effectively accomplished by the mechanical principle of a

cantilever. Using the spacer 10 as a compression point, a

cantilever is constructed within the disc space as shown most

clearly in FIG. 8D. The procedure for accomplishing this is

20 as follows.

5

15

FIG. 8A is a schematic side, internal view of the

vertebral bodies 31 indicated in FIG. 5. The spinal disc 33

resides between the vertebral bodies 31, all of which reside

between the anterior longitudinal ligament (ALL) 36 and the posterior longitudinal ligament (PLL) 38. The dural nerve (Dura) 40 resides posteriorly to the vertebral bodies 31 and the PLL 38.

Referring now to FIG. 8B and FIG. 9, posterior access to the spine of the patient (not shown) is accomplished. Posterior instrumentation, preferably pedicle screws 42 (FIG. 9), are affixed to posterior pedicle portions 34 of the vertebral bodies 31. The associated rods 44 and structure 10 interconnecting the rods 44 with the pedicle screws 42 are not affixed until later on in the procedure. A posterior portion of the lower vertebral body involved in the fusion, namely, the left inferior articular facet, is removed and saved for future autogenous bone grafting. A lamina spreader (not 15 shown, but indicated in FIGS. 8B and 8C), is placed between the spinous processes 35 (shown in FIG 5), and is operated to spread the adjacent vertebral bodies 31 apart. The anterior longitudinal ligament 36 and posterior longitudinal ligament 38 are left intact and need not be retracted.

After coagulation of the veins (not shown), the incision 32 (FIG. 5) is made, preferably with a #15 scalpel, or any suitable surgical instrument, in a side section of the anulus The disc 33 is then detached from the vertebral end

Clayton, Howarth & Cannon, P.C. P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

20

plates (not shown) with the proper surgical instrumentation, and is removed through the incision 32. Care is taken not to violate the bony vertebral end plate, which would cause excessive bleeding and compromise the resistance to axial load when the spacer 10 is inserted.

When as much disc material has been removed as can safely be accomplished, a trial spacer 50 is used to determine the correct spacer size. The trial spacer 50 preferably has the same shape as the spacer 10, both of which are part of a set having various sizes, except that the trial spacer 50 does not include the recesses 24. The trial spacer 50 is inserted into the incision 32 with a sheathed trocar device 52. The main purpose of trial spacer 50 is to evaluate a snugness of fit of said trial spacer 50 as it resides between the adjacent vertebral bodies 31, which enables the surgeon to determine a spacer size thereby. The trial spacer 50 may also have sharp edging, and is useable to clear away any remaining unwanted tissue.

When the spacer size has been determined, a bone graft is prepared, preferably autogenous bone graft material 54 as shown in FIG. 8C. Care is taken to remove all soft tissue from the autogenous bone, which will facilitate successful osseointegration of the graft. Additional bone can also be

Clayton, Howarth & Cannon, P.C. P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

5

10

15

harvested from the spinous processes 35. The harvested autogenous bone is then passed through a bone mill (not shown) to form suitable bone grafting material as known and

understood to those having ordinary skill in the art.

The spacer 10 is inserted through the incision 32 with the sheathed trocar device 52. The sheathed trocar device 52 includes a trocar rod 56 preferably slidably disposed within a hollow sheath 58. The trocar rod 56 and the hollow sheath 58 may moveably engaged with each other in any suitable

10 manner.

5

15

20

Both the trial spacer 50 and the spacer 10 preferably include a female-threaded opening 50a and 10a formed therein, respectively, in which a male-threaded portion 57 of the trocar rod 56 may be releasably inserted. The trocar rod 56 may of course be releasably attached to the trial spacer 50 and spacer 10 in any other suitable manner. The trocar rod 56 has a longer length than the sheath member 58, such that a proximal portion 60 of the trocar rod 56 protrudes from the sheath member 58 when the trocar rod 56 is attached to the trial spacer 50 or the spacer 10.

The sheathed trocar device 52 accordingly provides an efficiently stabilized, releasable connection with the spacer 10. With the trocar rod 56 being attached directly to the

spacer 10, the sheath member 58 provides additional support by

abutting up against the spacer and contactably circumscribing

the point of the attachment of the trocar rod 56 with the

spacer 10, thereby providing additional stability and control

over the positioning of the spacer 10.

The surgeon then selectively positions the spacer 10

within the space residing between the adjacent vertebral

bodies 31, preferably as far anteriorly as possible and most

preferably such that the spacer 10 resides in contact with the

10 anterior longitudinal ligament 36.

With the spacer 10 in place, the bone grafting material

54 is placed through the incision 32 and into position between

the adjacent vertebral bodies 31, such that said bone grafting

material 54 resides posteriorly to the concave sidewall 14 of

the spacer 10, and thus between the sidewall 14 and the

posterior longitudinal ligament 38. A bone funnel (not shown)

as known to those having ordinary skill in the field may be

used to funnel morselized bone grafting material into the

incision 32.

It is noted that the concavo-convex shape of the spacer

10, and the method of implantation with the spacer 10 residing

as far anteriorly as possible, operates to provide a larger

bone-graft interface between the adjacent vertebral bodies 31.

Clayton, Howarth & Cannon, P.C. P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

5

Referring now to FIG. 8D and FIG. 9, the lamina spreader is removed and the pedicle screws 42 are interconnected with the rods 44 as known in the field. Mild compression is applied by a compression instrument 46 to thereby slide rods 44 downwardly, after which the pedicle screws 42 are tightened to hold the rods 44 in place and maintain the compression. Further compression is applied as desired, with the result being illustrated schematically in FIG. 8D. The bone grafting material 54 thereby loaded is in compression by the posteriorly compressed adjacent vertebral bodies 31 as shown. After final inspection of the placement of the bone grafting material 54, routine closure of the wound is completed. use of drains may be made at the discretion of the surgeon.

The spacer 10 thus operates to cause the adjacent vertebral bodies 31 to be suspended in the manner of a cantilever. The posterior compression provided by the pedicle screws 42 and rods 44, which may alternatively be provided by any other suitable holding structure, causes the adjacent vertebral bodies 31 to be brought closer together on their posterior side than on their anterior side, consistent with the natural sagittal alignment in which they were originally positioned, as understood by those having ordinary skill in the field.

Clayton, Howarth & Cannon, P.C. P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

5

10

15

It will be appreciated that the structure and apparatus

of the trocar rod 56 and sheath 58 constitute a positioning

means for enabling a surgeon to adjust a position of the

spacer 10 when the spacer 10 resides between the adjacent

intervertebral bodies 31. That structure is merely one

example of a means for positioning the spacer 10, and it

should be appreciated that any structure, apparatus or system

for positioning which performs functions that are the same as,

or equivalent to, those disclosed herein are intended to fall

within the scope of a means for positioning, including those

structures, apparatus or systems for positioning which are

presently known, or which may become available in the future.

Anything which functions the same as, or equivalently to, a

means for positioning falls within the scope of this element.

In accordance with the features and combinations

described above, a preferred method of implanting an

artificial intervertebral disc includes:

(a) making an incision in an anulus of a human spinal

column between adjacent vertebral bodies of said spinal column

to thereby expose a space residing between said adjacent

vertebral bodies;

(b) inserting a spacing member through the incision and

into position between the adjacent vertebral bodies, and

Clayton, Howarth & Cannon, P.C. P.O. Box 1909 Sandy, Utah 84091-1909 Phone: (801) 255-5335 Fax: (801) 255-5338

5

10

15

positioning said spacing member at an anterior location with respect to the spinal column such that more intervertebral space resides posteriorly to said spacing member than

anteriorly thereto;

5

10

15

20

(c) applying compression to posterior portions of the

adjacent vertebral bodies.

It is to be understood that the above-described

arrangements are only illustrative of the application of the

principles of the present invention. Numerous modifications

and alternative arrangements may be devised by those skilled

in the art without departing from the spirit and scope of the

present invention and the appended are intended to cover such

modifications and arrangements. Thus, while the present

invention has been shown in the drawings and fully described

above with particularity and detail in connection with what is

presently deemed to be the most practical and preferred

embodiment(s) of the invention, it will be apparent to those

of ordinary skill in the art that numerous modifications,

including, but not limited to, variations in size, materials,

shape, form, function and manner of operation, assembly and

use may be made without departing from the principles and

concepts set forth herein.