Measure Theory & Probability

Sebastian Müksch, v1, 2019/20

Basic Notions and Notation

Example 1.1.

Simplest σ -algebra:

- $\{\emptyset, \Omega\}$, contained in every σ -algebra on
- Family of all subsets of Ω , containing every σ -algebraon Ω .

Exercise 1.1.

Let \mathcal{F} be a σ -algebra. Then $A_n \in \mathcal{F}$ for every integer $n \geqslant 1 \Rightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$.

Proposition (Unknown).

Let $A, B \in \mathcal{F}$. Then $\mu(A \cap B) \leq \mu(A)$. *Hint:* σ -additivity and $A = (A \cap B) \cup (A \setminus B)$.

Proposition (Measure of Set Difference, I). Let $A, B \in \mathcal{F}$, then $\mu(A \setminus B) = \mu(A) - \mu(A \cap B)$.

Proposition (Measure of Set Difference, II). Let $A, B \in \mathcal{F}$ and $B \subseteq A$, then $\mu(A \setminus B) = \mu(A) - \mu(B).$

Expectation Integrals

Proposition (Unknown).

Let $A, B \subseteq \Omega$. Then the following equalities

- $\mathbf{1}_{A^C} = 1 \mathbf{1}_A$,
- 1_{A∩B} = 1_A1_B.
- $\mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B \mathbf{1}_{A \cap B}$.

Lemma 3.3.

Let X be a **non-negative** random variable. Then there exists a sequence of non-negative, simple random variables X_n converging to Xfor every $\omega \in \Omega$.

Hint: $h_n(x) = \min\{|2^n x|/2^n, n\}$ is non-negative, simple and increasing, approaching x. Consider $X_n := h(X) \to X$.

Lemma (Simple Function Integral Properties). Let $f, g: \Omega \to \overline{\mathbb{R}}$ be a **non-negative**, simple functions and $a, b \ge 0$. Then the following holds:

- $\int_{\Omega} f \, d\mu \geqslant 0$,
- $\int_{\Omega} (af + bg) d\mu = a \int_{\Omega} f + b \int_{\Omega} g d\mu$.

Corollary (Positive Integral over Set). Let $A\subseteq \Omega$ and $f:\Omega\to\overline{\mathbb{R}}$ a non-negative measurable function. Then $\int_A f d\mu \ge 0$.

Lemma 3.3 (General).

Let $f: \Omega \to \overline{\mathbb{R}}$ be a **non-negative**, measurable function. The there exists a sequence f_n of non-negative, simple functions such that:

$$\lim_{n \to \infty} f_n = f$$

Hint: Use h_n from Lemma 3.3's hint.

Exercise 3.5.

Let $A \in \mathcal{F}$ s.t. $\mu(A) = 0$. Then for any measurable function $f:\Omega\to\overline{\mathbb{R}}$:

$$\int_A f \, d\mu = 0.$$

Exercise 3.6.

Let $f: \Omega \to \mathbb{R}$ be a measurable function, then:

(i) For any $c \in \mathbb{R}$ and $A \in \mathcal{F}$:

$$\int_A cf \, d\mu = c \int_A f \, d\mu,$$

provided the integral exists.

(ii) For any $A, B \in \mathcal{F}$, such that $A \cap B = \emptyset$:

$$\int_{A\cup B}f\,d\mu=\int_{A}f\,d\mu+\int_{B}f\,d\mu,$$

Theorem 3.8 (Monotone Convergence). Let $(f_n)_{n=1}^{\infty}$ be increasing sequence of non-negative, measurable functions $f_n: \Omega \to \overline{\mathbb{R}}$, converging to some f. Then:

$$\int_{\Omega} \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu$$

Let ν be a measure that is absolutely continuous with respect to measure μ and density g, then $\mu(q < 0) = 0$. Moreover, ν is a probability measure $\Leftrightarrow g \geqslant 0$ μ -a.e. and $\int_{\Omega} g \, d\mu = 1$.

Proposition 3.16.

Let ν and μ be measures on σ -algebra \mathcal{F} such that ν is absolutely continuous with respect to μ and density g. Then for every \mathcal{F} -measurable function f the following holds:

$$\int_{\Omega} f \, d\nu = \int_{\Omega} f g \, d\mu,$$

whenever one of the integrals exists.

Proposition 3.18 (Markov-Chebyshev's

Let X be a **non-negative** R.V., then

$$P(X \geqslant \lambda) \leqslant \lambda^{-\alpha} E(X^{\alpha}) \quad \forall \lambda > 0, \alpha > 0.$$

Remark 3.3.

Let $(\Omega, \mathcal{F}, \mu)$ be measure space, $f: \Omega \to \overline{\mathbb{R}}$ $non-negative \mathcal{F}$ -measurable, then

$$\mu(f \geqslant \lambda) \leqslant \lambda^{-\alpha} \int_{\Omega} f^{\alpha} d\mu \quad \forall \lambda > 0, \alpha > 0.$$

Proposition (Restricted Expectation). Let X be a random variable and $A \in \mathcal{F}$, then:

$$E(X\mathbf{1}_A) = \int_A X \, dP.$$

Lemma 4.4 (Borel-Cantelli Lemma). Let $(A)_{n=1}^{\infty}$ be a sequence of sets $A_n \in \mathcal{F}$ such that $\sum_{n=1}^{\infty} \mu(A_n) < \infty$, i.e. the series of measures of A_n converges. Then for:

$$A := \limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k,$$

we have $\mu(A) = 0$.

Hint: Define $B_n := \bigcup_{k=n}^{\infty} A_k$, then $(B_n)_{n=1}^{\infty}$ is decreasing and so $\bigcap_{n=1}^{\infty} B_n = \lim_{n \to \infty} B_n$ and realize that $\sum_{n=1}^{\infty} \mu(A_n) < \infty \Rightarrow$ tail sums $\sum_{k=n}^{\infty} \mu(A_k) \to 0$ as $n \to \infty$.

Convergence of Measurable Functions

Definition 5.1 (μ -Almost Everywhere Convergence).

Let $(f_n)_{n=1}^{\infty}$ be \mathcal{F} -measurable functions. The f_n are said to converge μ -almost everywhere to a μ -a.e. finite $f: \Omega \to \overline{\mathbb{R}}$ as $n \to \infty$ if there exists an $A \in \mathcal{F}$ s.t. $\mu(A) = 0$ and

$$\lim_{n \to \infty} f_n(\omega) = f(\omega) \in \mathbb{R}, \quad \forall \omega \in A^C.$$

Notation: $\lim_{n\to\infty} f_n = f$ (μ -a.e.) or $f_n \to f$

Definition 5.1 (Almost Sure Convergence).

Let $(f_n)_{n=1}^{\infty}$ be \mathcal{F} -measurable functions. The f_n are said to converge almost surely to a μ -a.s. finite $f:\Omega\to\overline{\mathbb{R}}$ as $n\to\infty$ if there exists an $A \in \mathcal{F}$ s.t. P(A) = 0 and

$$\lim_{n \to \infty} f_n(\omega) = f(\omega) \in \mathbb{R}, \quad \forall \omega \in A^C.$$

Notation: $\lim_{n\to\infty} f_n = f$ (a.s.) or $f_n \to f$ (a.s.).

Definitions

In the following, Ω is a set, \mathcal{F} a σ -algebra on Ω . If used, then μ is a measure. Otherwise, the measure is the probability measure P.

Definition 1.1.

Let \mathcal{F} be a family of subsets of set Ω . \mathcal{F} is called a σ -algebra if:

- $\bullet \ \ Closed \ \ Under \ \ Complement:$ $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$,
- Closed Under Arbitrary Union: $A_n \in \mathcal{F}$ for integer $n \geqslant 1$ $\Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$,
- Contains Entire Set: $\Omega \in \mathcal{F}$

Definition 1.2. Let C be a family of subsets of Ω . There exists a σ -algebra which contains \mathcal{C} and which is contained in every σ -algebra that contains C (take intersection of all σ -algebras. Such σ -algebra is unique and called smallest σ -algebra containing C or σ -algebra generated by C, denoted by $\sigma(C)$. Simplest example, let $A \subseteq \Omega$:

$$\sigma(A) = \{\emptyset, A, A^c, \Omega\}.$$

Definition 2.1.1.

Let $A\subseteq \Omega$ and $\mathbf{1}_A$ be defined as follows:

$$\mathbf{1}_{A}(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}.$$

Then $\mathbf{1}_A$ is a R.V. and called the *indicator* (function) of (events) A.

Definition (Indicator Integral). Let $A \subseteq \Omega$, then:

$$\int_{\Omega} \mathbf{1}_A \, d\mu = \mu(A).$$

Definition (Simple Function).

Let $f: \Omega \to \mathbb{R}$ be a *simple function*, then ftakes finitely many values. Formally, if I is a finite index set, $(A_i)_{i \in I}$ a famility of **disjoint** subsets of Ω and $(c_i)_{i\in I}$ a family of real numbers, then:

$$f(\omega) = \sum_{i \in I} c_i \mathbf{1}_{A_i}(\omega).$$

Definition (Lebesgue Integral for Expectation).

Let X be a random variable. Then we write:

$$EX = \int_{\Omega} X dP.$$

Definition (Non-negative, Measurable Lebesgue Integral).

Let $f: \Omega \to \overline{\mathbb{R}}$ be a **non-negative**, measurable function and $(f_n)_{n=1}^{\infty}$ a sequence of non-negative, simple functions such that $\lim_{n\to\infty} f_n = f$. Then

$$\int_{\Omega} f \, d\mu = \lim_{n \to \infty} f_n \, d\mu.$$

Definition (Lebesgue Integral). Let $f: \Omega \to \overline{\mathbb{R}}$ be a measurable function. The Lebesgue Integral of f is defined as:

$$\int_{\Omega} f \, d\mu = \int_{\Omega} f^+ \, d\mu - \int_{\Omega} f^- \, d\mu,$$

where $f^{+} = \max\{f, 0\}$ and $f^{-} = \max\{-f, 0\}$, if at least one of the integrals on the right-hand side is finite. If both are infinite, then we say that the Lebesgue Integral of f does not exist.

Definition (Unknown).

Let $A \in \mathcal{F}$ and $f : \Omega \to \overline{\mathbb{R}}$ is a measurable function, then we define:

$$\int_A f \, d\mu = \int_\Omega {\bf 1}_A f \, d\mu,$$
 when the integral of ${\bf 1}_A f$ w.r.t μ exists.

Definition 3.7 (Absolute Continuity). Let μ and ν be measures on σ -algebra $\mathcal F$ such that for some \mathcal{F} -measureable $g: \Omega \to \mathbb{R}$:

$$\nu(A) = \int_{\Omega} \mathbf{1}_A g \, d\mu = \int_A g \mu(dx),$$

for all $A \in \mathcal{F}$. Then ν is called **absolutely** continuous with respect to μ and g is called the density or $Radon-Nikodym\ derivative$ (Notation: $g = \frac{d\nu}{d\mu}$).

Definition (μ -Almost Everywhere Finite). Let $f: \Omega \to \overline{\mathbb{R}}$ be \mathcal{F} -measurable, then f is said to be μ -almost everywhere (μ -a.e.) finite if $\mu(|f| = \infty) = 0.$

Definition (Almost Surely Finite).

Let $f: \Omega \to \overline{\mathbb{R}}$ be \mathcal{F} -measurable, then f is said to be almost surely (a.s.) finite if $P(|f| = \infty) = 0 \Leftrightarrow P(|f| < \infty) = 1.$

Definition (Unknown).

Let X be a random variable. Then X has finitesecond moment if $EX^2 < \infty$.

Tips and Tricks

Trick (μ -Almost Everywhere Finite).

If $f: \Omega \to \mathbb{R}$ is μ -a. e. finite, then note that if $A_n := \{|f| \ge n\}, \text{ then } (A_n)_{n=1}^{\infty} \text{ is a decreasing }$ sequence and so:

$$\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \mu\left(\lim_{n\to\infty} A_n\right) = \mu(|f| = \infty)$$

= 0.

Trick (Almost Surely Finite).

If $f: \Omega \to \mathbb{R}$ is a. s. finite, then note that if $A_n := \{|f| \ge n\}, \text{ then } (A_n)_{n=1}^{\infty} \text{ is a decreasing }$ sequence and so:

$$P\left(\bigcap_{n=1}^{\infty} A_n\right) = P\left(\lim_{n \to \infty} A_n\right) = P(|f| = \infty)$$

= 0.

Trick (Function As Integral).

Let $f: \Omega \to \overline{\mathbb{R}}$ be a *non-negative* measurable function, the obvserve that

$$f(\omega) = \int_{0}^{f(\omega)} dx = \int_{0}^{\infty} \mathbf{1}_{x \leqslant f(\omega)} dx$$