

LVDS 接法详细说明

深圳硬件组

V1.0

2012-8-13

目前有些客户对 RK LVDS 两种接法不是很了解,下面对两种接法详细说明一下,并介绍一种快速选择的方法。

1. 显示系统框图

采用 LVDS 屏的整个显示系统构架如下:

LVDS 芯片是一种把 RGB 并行数据(24 位或者 18 位)转换为串口输出(4 通 道或 3 通道)的 IC,输入和输出的对应关系是固定的,无法重设。

下面三张图是一款 IC 的封装脚位图,功能方框图和时序图。我们可以看出:51Pin,52Pin,54Pin,55Pin,56Pin,3Pin 和 4Pin 所输入的数据按次在第一通道输出。RK Host 输出的 RGB 数据要在 TFT Panel 上正常显示,必须要求外面接的并行转串行的转换器(LVDS)和屏内部的串行转并行的转换器转换出来的数据一一对应。

Figure 2. LVDS Output Data Timing Diagram

图三

2. LVDS 屏数据格式

1》图四为每通道 8BIT 数据格式,主要适合于 24 位输入的 LCD,有四个数据通道(RINO~RIN3),时钟通道1个(CLKIN),RIN3通道为高位数据(B7 B6 G7 G6 R7 R6)。

图四 单通道 LVDS 8bit 数据格式 A

2》图五是单通道 8BIT 另外一种数据格式, 也是 24 位的数据输入, 有四个数

据通道(RIN0~RIN3), 时钟通道 1个(CLKIN), 和图 1不同之处在于 RIN3通道传输低位数据(B1B0G1G0R1R0)。此种数据格式的 LCD 在实际应用中比较少见。

图五 单通道 LVDS_8bit 数据格式 B(比较少见)

3》图六的数据格式是 6BIT 的,主要适合于 18 位输入的 LCD 屏,其数据通道为 3 通道(RIN0~RIN2),和图 2 中的数据格式仅相差一个通道,即低位数据(B1 B0 G1 G0 R1 R0)。

图六 单通道 LVDS_6bit 数据格式

3. 数据对应关系

表格 1 LVDS 转换芯片数据通道、数据位和 RGB 对应关系

LVDS	8bit 或 6bit				LVDS	8bit 或 6bit			
通道	数据位	图四	图五	图六	通道	数据位	图四	图五	图六
YO	TX0	RO	R2	R2	Y1	TX8	G1	G3	G3
	TX1	R1	R3	R3		TX9	G2	G4	G4
	TX2	R2	R4	R4		TX12	G3	G5	G5
	TX3	R3	R5	R5		TX13	G4	G6	G6
	TX4	R4	R6	R6		TX14	G5	G7	G7
	TX6	R5	R7	R7		TX15	ВО	B2	B2
	TX7	GO	G2	G2		TX18	B1	В3	В3
Y2	TX19	B2	B4	B4		TX27	R6	RO	GND
	TX20	В3	B5	B5		TX5	R7	R1	GND
	TX21	B4	B6	В6		TX10	G6	GO	GND
	TX22	B5	В7	B7		TX11	G7	G1	GND
	TX24	HSYNC	HSYNC	HSYN	Y3	TX16	В6	ВО	GND
				С	13				
	TX25	VSYNC	VSYNC	VSYN		TX17	В7	B1	GND
				С					
	TX26	ENABLE	ENABL	ENAB		TX23	RSVD	RSVD	GND
			Е	LE					

表格 2 主控 LCDC 控制器 24 位输出和 RGB 对应关系

LCDC 控制器	RGB 数据位	LCDC 控制器	RGB 数据位	LCDC 控制器	RGB 数据位
LCDC_D0	ВО	LCDC_D8	GO	LCDC_D16	RO
LCDC_D1	B1	LCDC_D9	G1	LCDC_D17	R1
LCDC_D2	B2	LCDC_D10	G2	LCDC_D18	R2
LCDC_D3	В3	LCDC_D11	G3	LCDC_D19	R3
LCDC_D4	B4	LCDC_D12	G4	LCDC_D20	R4
LCDC_D5	B5	LCDC_D13	G5	LCDC_D21	R5
LCDC_D6	B6	LCDC_D14	G6	LCDC_D22	R6
LCDC_D7	В7	LCDC_D15	G7	LCDC_D23	R7

4. LVDS 芯片和主控的两种连接方式

1》 FORMAT1, 主要适合于 24 位输入且满足图四所示数据格式的 LVDS 接口屏,即数据通道 4个(RIN0~RIN3),时钟通道 1个(CLKIN), RIN3 通道为高位数据(B7 B6 G7 G6 R7 R6)。

FORMAT 1 (note2)

2》FORMAT2,适用于 18 位的 LVDS 接口屏,即数据通道 3 个(RIN0~RIN2),时钟通道 1 个(CLKIN),同时也适合于 24 位且满足图五数据格式的 LVDS 接口的屏(此种屏比较少见),即数据通道 4 个(RIN0~RIN3),时钟通道 1 个(CLKIN),RIN3 通道为低位数据(B1 B0 G1 G0 R1 R0)。

2012-8-15 18:00:00

5. 快速选择 LVDS 芯片的接法

