

(12) UK Patent Application (19) GB (11) 2 305 088 (13) A

(43) Date of A Publication 26.03.1997

(21) Application No 9617695.3

(22) Date of Filing 23.08.1996

(30) Priority Data

(31) 07226536

(32) 04.09.1995

(33) JP

(71) Applicant(s)

Oki Electric Industry Co Ltd

(Incorporated in Japan)

7-12 Toranomon 1 chome, Minato-ku, Tokyo 105,
Japan

(72) Inventor(s)

Hiroshi Katsuregawa

Shigeru Ono

(74) Agent and/or Address for Service

Venner Shipley & Co

20 Little Britain, LONDON, EC1A 7DH,
United Kingdom

(51) INT CL⁶

H03M 13/00 , H04L 1/00

(52) UK CL (Edition O)

H4P PRV

(56) Documents Cited

EP 0448809 A2 EP 0152947 A2 WO 95/08888 A1

(58) Field of Search

UK CL (Edition O) H4P PAQ PEP PRV

INT CL⁶ H03M 13/00 13/12 , H04L 1/00 1/20 25/03

Online : WPI, INSPEC

(54) A coding communication system using Viterbi decoders

(57) A plurality of add, compare and select (ACS) circuits (10-1N) each sequentially determines metrics at a particular trellis tracing rate assigned thereto. The metrics are sequentially added in order to select the most probable path. An M break-up circuit (30) compares the path metrics of the most probable paths and breaks up unlikely paths over a plurality of circuits. The path metrics of probable paths are sequentially written to respective metric memories (20-2N) and again fed to the ACS circuits (10-1N) for trellis tracings. This is repeated until the M break-up circuit (30) selects M paths out of paths fed from N (N > M) ACS circuits (20-1N). The M paths are delivered to a decision circuit (50) while survivor paths are written to respective path memories (40-4N). The decision circuit (50) selects one of the M path metrics having the smallest value, reads the path out of the path memory (40-4N), traces it back, and then outputs decoded bits via an output terminal (70).

Further inventions use soft output Viterbi decoders with reliability information, Fig. 6, (not shown), or use the last stage of survivor paths, Fig. 10, (not shown), or use re-encoding with index computation, Fig. 14, (not shown).

Fig. 1

GB 2 305 088 A

Fig. 1

Fig. 2

Fig. 3

5/20

Fig. 4A

Fig. 4

Fig. 4B

Fig. 5A

Fig. 5

Fig. 5B

Fig. 6

$\frac{\delta}{20}$

Fig. 7

Fig. 8

120

Fig. 9A

Fig. 9

Fig. 9B

Fig. 10

Fig. 11

Fig. 12

20

Fig. 13A

Fig. 13

Fig. 13B

Fig. 14

Fig. 15

1/20

Fig. 16A

Fig. 16

Fig. 16A

Fig. 16B

Fig. 16B

Fig. 17

1

METHOD AND DEVICE FOR SIGNAL DECISION, RECEIVER AND
CHANNEL CONDITION ESTIMATING METHOD
FOR A CODING COMMUNICATION SYSTEM

5

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to a method and a device for signal decision, a receiver and a channel condition estimating method for a coding communication system. More Particularly, the present invention relates to a method and a device for signal decision, a receiver and a channel condition estimating method for a coding communication system and feasible for mobile communication using, e.g., a digital handy phone or mobile phone.

Description of the Background Art

Recently, due to the spreading mobile communication environment, digital handy phones and mobile phones promoting the efficient use of limited frequencies have been standardized in various countries. In USA, for example, a North American TDMA (Time Division Multiple Access) handy phone system (IS-54) and other TDMA handy phone systems have been standardized first, and then followed by a North American CDMA (Code Division Multiple Access) digital cellular system (IS-95) and other CDMA handy phone systems.

1 In the North American TDMA digital cellular system, a signal
 lying in the speech band is transformed to a code by a voice coding
 method called VSELP (Vector Sum Excited Linear Prediction). The
 code is converted to an error correcting code by, e.g., a
5 convolutional code, CRC (Cyclic Redundancy Check) code, and
 interslot interleave. A synchronizing signal and control signals are
 added to the error correcting code in the format of a TDMA slot.
 Particularly, a speech signal and an FACCH (Fast Associated Control
 Channel) signal included in the control signals and used to switch
10 cells are each encoded by a convolutional encoder having a
 particular code rate. For example, speech data and FACCH are
 encoded by a rate 1/2 and a rate 1/4 convolutional encoder,
 respectively. The resulting convolutional codes are selectively
 arranged in the data field of the same slot. The data constructed
15 into a slot are transformed to preselected symbols by a modulating
 section using a $\pi/4$ shift DQPSK (Differentially Encoded Quadrature
 Phase Shift Keying) or similar scheme. The symbols are modulated
 by orthogonal modulation or similar modulation, superposed on a
 carrier of preselected frequency, and then transmitted.

20

On receiving a signal from a mobile station, a base station
multiplexes it with slots received from other mobile stations at a
full rate over up to three channels. Then, the base station transmits
the multiplexed slots to the mobile stations as a frame signal.

25

Each mobile station removes the carrier from the received
signal and demodulates the channel assigned thereto by, e.g.,

1 orthogonal detection, thereby detecting received baseband symbols.
Noise contained in the received symbols due to fading and other
causes is cancelled by, e.g., an equalizer. Then, the original slot
signal is restored by differential logic decoding. The restored slots
5 each including the speech data or the control signals are
decomposed into independent signals. These signals are each
output to either a control section or voice decoding section. As a
result, the reproduction of the speech data, position control and
other functions assigned to the mobile station are executed.

10

On the other hand, in the North American CDMA digital cellular system, a signal lying in the speech band is encoded to speech data by, e.g., variable rate speech encoding called QCELP (Qualcomm Codebook Excited Linear Prediction). This speech coding scheme changes the transmission rate in accordance with the ratio of the duration of a speech. For example, for a 20 millisecond frame format, speech data are encoded at code rates of sixteen bits (0.8 kilobits per second or kbps), forty bits (2.0 kbps), eighty bits (4.0 kbps) and 172 bits (8.6 kbps). CRC codes are added only to the speech data encoded at the rates of 8.6 kbps and 4.0 kbps, thereby producing a 9.2 kbps code and a 4.4 kbps code. Further, tail bits are added to all the encoded speech data in order to cause them to converge to the same condition when decoded. As a result, there are produced 9.6 kbps, 4.8 kbps, 2.4 kbps and 1.2 kbps codes. The signals with the tail bits are each constructed into a symbol by convolutional coding and then caused to recur in accordance with the respective code rate. Consequently, the symbols are provided

1 with a uniform symbol rate, e.g., 19.2 kbps. Further, these signals
are subjected to interleave in order to form respective frames. The
frames are each subjected to spread coding by false noise and then
subjected to orthogonal transform using, e.g., a Walsh function. The
5 transformed signals are divided into two phases and subjected to
spectrum spread by OQPSK (Offset Quadrature Phase Shift Keying)
modulation using a short PN code or similar pilot false random
number sequence. The resulting signals are individually
superposed on a carrier and then transmitted.

10

A base station having received a signal from a mobile station
multiplexes it with signals received from other mobile stations in
the same frequency band over up to fifty-five channels.

15

On receiving the OQPSK signal from the base station, the
mobile station demodulates it to output a baseband signal. The
demodulated baseband signal is reconstructed into the original
signals by, e.g., a rake receiver circuit called a finger circuit and
effecting synchronization to the pilot false random number
20 sequence, frequency synchronization, and inverse spread. The
reconstructed symbols are deinterleaved and then decoded by
Viterbi decoding. At this instant, the signals each having a
particular rate are re-encoded and then compared with the original
received signal for a decision purpose. The signal coincident with
25 the original received signal is determined to have the rate of the
signal. This signal is subjected to error correction and transformed
to the original speech data by a voice decoder or vocoder.

1 The conventional systems described above have some issues
yet to be solved, as follows. In the North American TDMA digital
cellular system, information for distinguishing the speech data and
the control signals or FACCH signal is not added. This requires the
5 receiver side to determine whether a received signal is speech data
or whether it contains FACCH. Also, in the North American CDMA
digital cellular system using a variable rate vocoder, information for
identifying the code rate is not sent to the receiver side. The
receiver side therefore must identify the rate of a received signal.

10

In any case, the receiver side initially executes channel decoding (error correction) corresponding to the encoder of the channel with all the possible signals. Each decoder calculates the reliability of the respective result of decoding, i.e., estimates
15 channel conditions. Among a plurality of decoders included in the receiver side, the decoders not matching the encoder used at the transmitter side cannot decode the signal correctly. Indexes representative of channel conditions and output from the channel condition estimator of each decoder are expected to have a
20 distribution differing from the decoder matching the encoder to the decoder not matching it. The receiver estimates the signal encoded at the transmitter side by using the above difference.

Under these circumstances, signal decision executing the
25 above identification is significant with the receiver. Incorrect signal decision has critical influence on the performance of the entire

1 communication system. For accurate signal decision, an
implementation for estimating channel conditions which are the key
to the decision is essential. For example, a CRC code or similar error
correcting code or a known code sequence shared by the
5 transmitter and receiver constitutes an overhead against
information to be interchanged. For example, in the North
American CDMA digital cellular system, as for the 8.6 kbps and 4.0
kbps codes, a twelve-bit and an eight-bit CRC error detecting code
are added to an eighty-bit information source code. These two
10 error detecting bits can be used to estimate channel conditions.
However, the 2.0 kbps and 0.8 kbps codes are not provided with
any error detecting code. Moreover, because channel condition
estimation using any of the above schemes includes the
specifications of an encoder, it cannot be added to a communication
15 system whose specifications have already been established.

Technologies relating to the present invention are disclosed in
the following documents:

- (1) "TIA/EIA/IS-54B Cellular System Mobile Station - Base
20 Station Compatibility Standard", section 2.4.5.4.1.1 Bit Error Rate
(BER) Measurement Technique;
- (2) "TIA/EIA/IS-95 Mobile Station - Base Station
Compatibility Standard for Dual Mode Wideband Spread Spectrum
Cellular System", section 7.1.3.5.2 Forward Traffic Channel Structure;
- 25 (3) Hideki Imai "Code Theory", the Institute of
Electronics, Information and Communication Engineers
of Japan, section 5.3 Error Detection by Cyclic Code;

1 (4) "Q0256 K=7 Multi-code rate Viterbi decoder Technical data
sheet", Fig. 9, "Re-encode and compare circuit"; and

5 (5) "A Viterbi algorithm with soft-decision outputs and its
applications", J. Hagenauer, P. Hoeher, GLOBECOM-89, pp. 1680-
1686.

SUMMARY OF THE INVENTION

10 It is therefore an object of the present invention to provide a
method and a device for signal decision and a receiver for a coding
communication system and capable of reproducing signals each
having a particular code rate while distinguishing them accurately
without resorting to any change in the configuration of the
transmitter side.

15 It is another object of the present invention to provide a
signal deciding method and a channel condition estimating method
capable of reducing the error frequency of signal decision with
more accurate indexes for channel condition estimation than
conventional indexes implemented by CRC codes or similar error
20 correcting codes.

25 In accordance with the present invention, a signal decision
device for a coding communication system and for identifying the
code rate of a received signal encoded at any one of a plurality of
code rates including a convolutional code rate has a plurality of
Viterbi decoders for respectively performing trellis tracings with
the received signal in accordance with the plurality of code rates to

1 thereby output a plurality of decoded signals each having a particular rate. An M break-off circuit sequentially receives a plurality of path metrics sequentially detected by the plurality of Viterbi decoders during the trellis tracings, and sequentially breaks
5 off the trellis tracings of, among the plurality of paths, unlikely paths to thereby detect M most probable paths over at least two of the plurality of Viterbi decoders. A decision circuit performs the final decision with the path metrics of the M paths to thereby determine which of the decoded signals output from the plurality of
10 Viterbi decoders has a correct code rate.

In accordance with the present invention, a signal decision device for a coding communication system and for identifying the code rate of a received signal encoded at any one of a plurality of code rates including a convolutional code rate has a plurality of soft output Viterbi decoders for respectively performing trellis tracings with the received signal in accordance with the plurality of code rates to thereby decode the received signal to a plurality of signals each having a particular rate, and outputs together with the plurality of signals reliability information representative of the likelihood of the plurality of signals. A decision circuit determines, based on the reliability information received from the plurality of soft output Viterbi decoders, which of the plurality of signals is correct.

25

In accordance with the present invention, a signal decision device for a coding communication system and for identifying the

1 code rate of a received signal encoded at any one of a plurality of
code rates including a convolutional code rate has a plurality of
Viterbi decoders for respectively performing trellis tracings with
the received signal in accordance with the plurality of code rates to
5 thereby decode the received signal to a plurality of signals each
having a particular rate. A decision circuit receives path metrics of
the last stage of survivor paths surviving after the trellis tracings
performed by the plurality of Viterbi decoders, and estimates
channel conditions based on the path metrics to thereby determine
10 which of the plurality of signals output from the plurality of Viterbi
decoders is correct.

In accordance with the present invention, a signal decision
device for a coding communication system and for identifying the
15 code rate of a received signal encoded at any one of a plurality of
code rates including a convolutional code rate, has a plurality of
Viterbi decoders for respectively performing trellis tracings with
the received signal in accordance with the plurality of code rates to
thereby decode the received signal to a plurality of signals each
20 having a particular rate. A plurality of re-encoders for respectively
re-encoding the plurality of signals output from the plurality of
Viterbi decoders to corresponding convolutional codes. A plurality
of decision circuits respectively perform signal decisions based on
the convolutional codes output from the plurality of re-encoders
25 and the received signal. The plurality of decision circuits
respectively receive re-encoded symbol sequences from the
plurality of re-encoders and a received symbol sequence input to

1 the plurality of Viterbi decoders, multiply the re-encoded symbol
sequences by a constant to produce products, produce differences
between the products and the received symbol sequence, square
the differences to produce squares, totalize the squares to produce
5 totals, determine a smallest total, and estimate channel conditions
based on the smallest total to thereby determine which of the
plurality of signals output from the plurality of Viterbi decoders is
correct.

10 In accordance with the present invention, a signal deciding
method for a coding communication system and for identifying the
code rate of a received signal encoded at any one of a plurality of
code rates including a convolutional code rate has a step of (a)
performing trellis tracings with the received signal in accordance
15 with the plurality of code rates to thereby decode the received
signal to a plurality of signals each having a particular code rate.
The step (a) is followed by a step of (b) sequentially receiving a
plurality of path metrics sequentially detected by the trellis
tracings in the step (a), and sequentially breaking off the trellis
20 tracings of, among the plurality of paths, unlikely paths to thereby
detect M most probable paths over at least two of the trellis
tracings. The step (b) is followed by a step of (c) executing a final
decision with the path metrics of the M paths detected in the step
(b) to thereby identify the code rate of the received signal.

25

In accordance with the present invention, a signal deciding
method for a coding communication system and for identifying the

1 code rate of a received signal encoded at any one of a plurality of
code rates including a convolutional code rate has a step of (a)
executing trellis tracings each corresponding to one of the plurality
of code rates to thereby decode the received signal to a plurality of
5 signals each having a particular code rate, and outputting reliability
information each being representative of a probability of the signal.
The step (a) is followed by a step of (b) determining, based on the
reliability information, which of the signals output in the step (a) is
correct.

10

In accordance with the present invention, a channel condition estimating method for estimating, in the event of identification of the code rate of a received signal encoded at any one of a plurality of code rates including a convolutional code rate,
15 channel conditions for thereby performing a signal decision has a step of (a) executing trellis tracings each corresponding to one of the plurality of code rates to thereby decode the received signal to a plurality of signals each having a particular code rate. The step (a) is followed by a step of (b) detecting the path metrics of last
20 stages of paths surviving after the trellis tracings. The step (b) is followed by a step of (c) determining error probabilities of the plurality of signals output in the step (a) by using the path metrics as indexes to thereby estimate channel conditions.

25 In accordance with the present invention, a channel condition estimating method for estimating, in the event of identification of the code rate of a received signal encoded at any one of a plurality

1 of code rates including a convolutional code rate, channel conditions
for thereby executing a signal decision has a step of (a) executing
trellis tracings each corresponding to one of the plurality of code
rates to thereby decode the received signal to a plurality of signals
5 each having a particular rate. The step is followed by a step of (b)
re-encoding the plurality of signals produced in the step (a) to
output corresponding convolutional codes. The step (b) is followed
by a step of (c) executing a signal decision on the basis of the
convolutional codes produced in the step (b) and the received
10 signal. The step (c) consists in multiplying the symbol sequences of
the convolutional codes output in the step (b) by a constant to
produce products, producing differences between the products and
the symbol sequence of the received signal, squaring the
differences to produce squares, totalizing the squares to produce
15 totals, determining the smallest total, and determining error
probabilities of the convolutional codes on the basis of the smallest
total to thereby estimate channel conditions.

In accordance with the present invention, a receiver for a
20 coding communication and for identifying the code rate of a
received signal encoded at any one of a plurality of code rates
including a convolutional code rate has a plurality of Viterbi
decoders for respectively performing trellis tracings with the
received signal in accordance with the plurality of code rates to
25 thereby decode the received signal to a plurality of signals each
having a particular rate. An M break-off circuit sequentially
receives a plurality of path metrics sequentially detected by the

1 plurality of Viterbi decoders during the trellis tracings, and
sequentially breaks off the trellis tracings of, among the plurality of
paths, unlikely paths to thereby detect M most probable paths over
at least two of the plurality of Viterbi decoders. A decision circuit
5 executes the final decision with the path metrics of the M paths,
and traces back a path corresponding to the result of the final
decision to thereby output decoded bits.

In accordance with the present invention, a receiver for a
10 coding communication system and for identifying the code rate of a
received signal encoded at any one of a plurality of code rates
including a convolutional code rate has a plurality of soft output
Viterbi decoders for respectively performing trellis tracings with
the received signal in accordance with the plurality of code rates to
15 thereby decode the received signal to a plurality of signals each
having a particular rate, and outputs together with the plurality of
signals reliability information representative of the likelihood of the
plurality of signals. A decision circuit determines, based on the
reliability information received from the plurality of soft output
20 Viterbi decoders, which of the plurality of signals is correct. A
selecting circuit selects one of the plurality of signals on the basis of
the result of decision of the decision circuit.

In accordance with the present invention, a receiver for a
25 coding communication system and for identifying the code rate of a
received signal encoded at any one of a plurality of code rates
including a convolutional code rate has a plurality of Viterbi

1 decoders for respectively performing trellis tracings with the
received signal in accordance with the plurality of code rates to
thereby decode the received signal to a plurality of signals each
having a particular rate. A decision circuit receives path metrics of
5 the last stages of paths surviving after the trellis tracings
performed by the plurality of Viterbi decoders, and estimates
channel conditions based on the path metrics to thereby determine
which of the the plurality of signals output from the plurality of
Viterbi decoders is correct. A selecting circuit selects one of the
10 plurality of signals on the basis of a result of the decision of the
decision circuit.

In accordance with the present invention, a signal decision
device for a coding communication system and for identifying the
15 code rate of a received signal encoded at any one of a plurality of
code rates including a convolutional code rate has a plurality of
Viterbi decoders for respectively performing trellis tracings with
the received signal in accordance with the plurality of code rates to
thereby decode the received signal to a plurality of signals each
20 having a particular rate. A plurality of re-encoders respectively re-
encode the plurality of signals output from the plurality of Viterbi
decoders to corresponding convolutional codes. A plurality of
decision circuits for respectively performing signal decisions on the
basis of the convolutional codes output from the plurality of re-
25 encoders and the received signal. A selecting circuit selects one of
the plurality of signals output from the plurality of Viterbi decoders
on the basis of the results of decisions of the plurality of decision

1 circuits. The plurality of decision circuits respectively receive re-
 5 encoded symbol sequences from the respective re-encoders and a
 received symbol sequence input to the respective Viterbi decoders,
 multiply the re-encoded symbol sequences by a constant to produce
 products, produce differences between the products and the
 received symbol sequence, square the differences to produce squares,
 totalize the squares to produce totals, determine a smallest total,
 thereby determine which of the plurality of signals output from the
10 plurality of Viterbi decoders is correct.

BRIEF DESCRIPTION OF THE DRAWINGS

15 The objects and features of the present invention will become
 more apparent from the consideration of the following detailed
 description taken in conjunction with the accompanying drawings in
 which:

FIG. 1 is a block diagram schematically showing a signal decision device for a coding communication system and embodying the present invention;

20 FIG. 2 is a trellis chart demonstrating a specific Viterbi algorithm applicable to the embodiment;

FIG. 3 is a trellis chart demonstrating an M break-off algorithm also applicable to the embodiment;

FIG. 4 shows how FIGS. 4A and 4B are combined;

25 Figs. 4A and 4B are block diagrams schematically showing a receiver to which the embodiment is applied;

FIG. 5 shows how FIGS. 5A and 5B are combined;

- 1 FIGS. 5A and 5B are block diagrams schematically showing a transmitter for use with the receiver shown in FIGS. 4A and 4B;
- 5 FIG. 6 is a block diagram schematically showing an alternative embodiment of the present invention;
- 10 FIG. 7 is a block diagram schematically showing a specific configuration of a soft output Viterbi decoder included in the embodiment of FIG. 6;
- 15 FIG. 8 is a trellis chart demonstrating a signal decision procedure particular to the embodiment of FIG. 6;
- 20 FIG. 9 shows how FIGS. 9A and 9B are combined;
- 25 FIGS. 9A and 9B are block diagrams schematically showing a receiver to which the embodiment of FIG. 6 is applied;
- 30 FIG. 10 is a block diagram schematically showing another alternative embodiment of the present invention;
- 35 FIG. 11 is a block diagram schematically showing a specific configuration of a Viterbi decoder included in the embodiment of FIG. 10;
- 40 FIG. 12 is a trellis chart showing a specific path traced up to the last stage in the embodiment of FIG. 10;
- 45 FIG. 13 shows how FIGS. 13A and 13B are combined;
- 50 FIGS. 13A and 13B are block diagrams schematically showing a receiver to which the embodiment of FIG. 10 is applied;
- 55 FIG. 14 is a block diagram schematically showing a further alternative embodiment of the present invention;
- 60 FIG. 15 is a block diagram schematically showing a specific configuration of an index computing circuit included in the embodiment of FIG. 14;

1 FIG. 16 shows how FIGS. 16A and 16B are combined;
FIGS. 16A and 16B are block diagrams schematically showing
a receiver to which the embodiment of FIG. 14 is applied; and
5 FIG. 17 is a block diagram schematically showing another
configuration of a communication system including a receiver with
which a channel condition estimating method of the present
invention is practicable.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

10 Referring to FIG. 1 of the drawings, a signal decision device for
a coding communication system and embodying the present
invention is shown. The device to be described may
advantageously be applied to a receiver section built in a TDMA,
CDMA or similar digital handy phone. Particularly, the device is
15 suitable for a decoding circuit of the type receiving a signal encoded
by any one of codes each having a particular code rate and
including a convolutional code, identifying with a Viterbi algorithm
the code rate used for encoding the signal, and decoding the signal
with the valid code rate.

20 As shown in FIG. 1, the signal decision device has
a plurality of add, compare and select (ACS) circuits
10, 12, ..., 1N, a plurality of metric memories 20, 22,
..., 2N an M break-off circuit 30, a plurality of path
25 memories 40, 42, ..., 4N, and a decision circuit 50. M
and N represent natural numbers. The ACS circuit 10,
metric memory 20 and path memory 40 constitute Viterbi
decoding circuitry. Likewise, the ACS circuits 12-1N,

1 metric memories 22-2N and path memories 42-4N constitute
other Viterbi decoding circuitry in combination. In the
illustrative embodiment, all the ACS circuits 10-1N and
metric memories 20-2N are connected to the input side
5 of the M break-off circuit 30 while the path memories
40-4N are connected to the output side of the circuit 30.

Conventional Viterbi decoding circuits lack the M break-off
10 circuit 30. Specifically, it has been customary to connect the metric
memories 20-2N and path memories 40-4N to the outputs of the
ACS circuits 10-1N, thereby constituting a plurality of Viterbi
decoding circuitry which operate independently of each other. By
contrast, in the embodiment, the plurality of Viterbi decoding
15 circuitry operate in cooperation with each other via the M break-off
circuit 30. The output of the M break-off circuit 30 is connected to
the decision circuit 50, allowing it to perform decisions based on the
result of break-off.

All the ACS circuits 10-1N receive a signal having
20 come in through an input terminal 60 and having been
encoded by a convolutional or similar trellis encoding
scheme, i.e., a so-called symbol stream. In response,
the ACS circuits 10-1N operate in parallel, i.e., each
performs a trellis tracing with the time-varying states
25 of the input signal and delivers the resulting estimate
to the M break-off circuit 30. For this purpose, the
ACS circuits 10-1N each has a branch metric computing
section, an adding section, a comparing section, and a
selecting section. During the course of trellis
30 tracing, the branch metric computing section determines

1 the metrics of consecutive branches represented by
differences between the values which the coded signal may
take and the actual value of the received symbol, e.g.,
Hamming distances or Euclidean distances. The adding
5 section adds the metrics produced at the preceding branch
to the metrics produced at the current branch. The
comparing circuit compares the resulting path metrics.
The selecting circuit sequentially selects valid paths.
The trellis tracing procedure will be described with
10 reference to FIG. 2 which shows a rate 1/2 convolutional
code by way of example.

As shown in FIG. 2, the ACS circuits 10-1N each receives two
bits of the input signal as a single symbol and sequentially
15 estimates four different states which may be selectively
represented by the symbol. The received symbol takes any one of
four states S_{00} = "00", S_{10} = "10", S_{01} = "01" and S_{11} = "11" each
being capable of changing into only one of two alternative states.
Assuming that the symbol of the initial state is "00", then the
20 symbol which will be received at the first branch 1 is either "00" or
"11". As a result, a transition from the initial state S_{00} to the state
 S_{00} or the state S_{10} occurs. If the actual received symbol is "00",
then a branch metric "0" or "2" is produced at the state S_{00} or the
state S_{10} . In this case, the metric is represented by a Hamming
25 distance.

At the next branch 2, the state S_{00} again changes into either
the state S_{00} or the state S_{10} , and the state S_{10} has only a symbol
value "01" or "10". As a result, a transition to the state S_{01} or the

1 state S11 occurs. Therefore, when a symbol "10" is received at the
branch 2, branch metrics "1", "1", "2" and "0" are produced at the
states S00, S10, S01 and S11, respectively. The preceding branch
metrics are respectively added to the above branch metrics to
5 produce path metrics "1", "1", "4" and "2". At this stage of tracing,
all the paths and determined metrics are selected and output
without being compared.

Assume that the ACS circuits 10-1N have received a symbol
10 "00" at the branch 3. Then, at the state S00 where the transitions
from the states S00 and S01 of the branch 2 exist, the circuits 10-
1N each adds "0" to "1" to produce "1" as a path metric from the
state S00 and adds "2" to "4" to produce "6" as a path metric from
the state S01. The circuits 10-1N each compares the path metrics
15 "1" and "6" and then selects the former. Consequently, at the state
S00 of the branch 3, the path S00-S00-S00 is selected as a survivor
path.

Likewise, at the state S10 of the branch 3, the ACS circuits 10-
20 1N each produces a path metric "3" of the transition from the state
S00 of the branch 2 and a path metric "4" of the transition from the
state S01, compares them, and then selects a path S00-S00-S01.
Also, the ACS circuit selects a path S00-S10-S01 at the state S01 of
the branch 3 and selects a path S00-S10-S11 at the state S11. By
25 repeating the above procedure at a branch 4 and successive
branches, the ACS circuits 10-1N each produces branch metrics in
terms Hamming distances, adds them to the preceding path metrics,

1 compares the resulting sums, and then selects one path smaller in
path metric than the other path. While the above description has
concentrated on a rate 1/2 convolutional code, the ACS circuits 10-
1N of the embodiment are each assigned to a particular code rate
5 available with a convolutional encoder located at the transmitter
side.

Referring again to FIG. 1, the metric memories 20-2N are
respectively associated with the ACS circuits 10-1N. The metric
memories 20-2N each receives the path metrics from associated one
10 of the ACS circuits 10-1N via the M break-off circuit 30 and
sequentially updates them on a state-by-state basis. In practice,
the metric memories 20-2N may each be implemented by a
plurality of latch circuits for feeding, every time a received symbol
15 is input, the respective previous path metrics to the associated ACS
circuit branch by branch. Particularly, a conventional Viterbi
encoder sequentially writes all the path metrics selected by its
associated ACS circuit in the respective metric memory. By
contrast, the metric memories 20-2N of the embodiment each
20 updates only the path metrics sequentially narrowed down by the
M break-off circuit 30 during trellis tracing, while sequentially
feeding them to the associated ACS circuit. As a result, the number
of states and therefore the number of metric memories 20-2N is
sequentially reduced, so that only M memories operate for N ACS
25 circuits 10-1N.

1 The M break-off circuit 30 is implemented with an M
algorithm for detecting M most probable paths out of the paths
which are based on the path metrics received from the ACS circuits
10-1N. In the illustrative embodiment, the M break-off circuit 30
5 performs M break-off over at least each two of the ACS circuits 10-
1N. For example, in the trellis tracing shown in FIG. 2, none of the
transitions from the state S01 of the branch 2 can survive at the
following branch 3. Likewise, while one of the transitions from the
state S10 of the branch 3 survives at the branch 4, none of the
10 paths from the state S10 can survive at the branch 5. In this
manner, it is possible to break off less probable paths by comparing
the metrics of the paths surviving at each branch.

As shown in FIG. 3, the M break-off of the embodiment is
15 effected over at least two trellis tracings, i.e., at least two of the ACS
circuits 10-1N. In this condition, in some of the ACS circuits 10-1N
performing trellis tracings with rates different from the code rate of
the received symbol, the probability that the survivor paths will
remain is less than in the other ACS circuits performing trellis
20 tracings with the rate coincident with the code rate of the received
symbol. In this embodiment, the ACS circuits lost the survivor
paths due to M break-off are disabled. This promotes the rapid
and efficient operation of the ACS circuits 10-1N.

25 For example, in trellis tracing shown in FIG. 3, assume that
path metrics from branches enclosed by a phantom line are
received from two ACS circuits 1A and 1B. Then, it is possible to

1 narrow down eight different states AS00-BS11 to at least four to six
states by comparing the path metrics. At this instant, if the states
AS00-BS11 are narrowed down to either the states AS00-AS11 or
the states BS00-BS11, it is possible to disable one of the ACS
5 circuits 1A and 1B. It may occur that one or two paths survive at
the states AS00-AS11 or the states BS00-BS11 of the branches
enclosed by the phantom line. This, however, does not matter at all
because the states are further narrowed down over the two trellis
tracings at the next branch, thereby reducing the probability that
10 the paths of either one of the trellis tracings survive. In the case of
the 1/2 code rate, the states AS00-BS11 can be narrowed down to
either the states AS00-AS11 or the states BS00-BS11 if the above
procedure is repeated a few times.

15 Further, assume that M break-off is effected over the trellis
tracings of the ACS circuits 11-1N narrowed down. Then, it is
possible to sequentially reduce the number of active ACS circuits
11-1N, i.e., to narrow them down to M paths of the N trellis tracings
within a short interval. In the case of conventional Viterbi
20 decoding, each circuit has states the number of which is the power
of 2 for the constraint length of a symbol. As a result, a number of
steps several times as great as the number of the above states is
necessary for the paths to be narrowed down to one. Moreover, if N
circuits exist, then trellis tracing must be effected with $(2^{k_1} + 2^{k_2} + \dots + 2^{k_N})$ different states where k_1, k_2, \dots, k_N are constraint lengths,
25 outputting N different paths. It is difficult to effect decisions with
such a number of paths. The embodiment not only reduces the

1 number of steps by M break-off, but also narrows down the paths
to M paths far smaller in number than N paths. The resulting path
metrics and paths are sequentially applied to the decision circuit 50
and path memories 40-4N associated with the operating or active
5 ACS circuits 11-1N.

The paths memories 40-4N receive the paths selected by the
associated ACS circuits 10-1N as further narrowed paths via the M
break-off circuit 30 and sequentially updates existing data. While
10 the conventional Viterbi coding circuits each stores all the paths
selected by the respective ACS circuit in the respective path
memory, the embodiment stores only M paths via the M break-off
circuit 30 while sequentially updating them. It follows that the
path memories 40-4N of the embodiment are each operable with a
15 smaller capacity than the path memory of the conventional Viterbi
decoding circuit.

The decision circuit 50 receives M survivor paths from the M
break-off circuit 30 and detects the most probable path out of
20 them. The decision circuit 50 reads the most probable path out of
one of the path memories 40-4N storing it, and then traces back the
path so as to output decoded bits representative of the most
probable received symbols. In this sense, the decision circuit 50
plays the role of a decoding circuit. Because the embodiment causes
25 the M break-off circuit 30 to narrow down the paths to M paths
which can be identified, the decision circuit 50 can perform a

1 decision simply by comparing the path metrics of the last stage of
the M survivor paths.

In practice, the transmitter side adds tail bits converging to a
5 single state, over a plurality of steps as a code of the last stage. The
decision circuit 50 therefore can select a single path without fail by
determining the path metrics of the last stage. It has been
customary with the conventional Viterbi decoding scheme to
determine decoded bits from each of the N converged paths, re-
10 encode the decoded bits one by one, compare the re-encoded bits
with the original received symbols, produce an error probability by
the CRC or similar system, and then perform a decision. By contrast,
the embodiment is capable of performing a decision directly with
the results of Viterbi decoding.

15

The signal deciding method of the above embodiment will be
described together with the operation of the signal decision device.
First, received symbols input via the input terminal 60 are
sequentially applied to all the ACS circuits 10-1N each being
20 assigned to a particular code rate. The ACS circuits 10-1N each
sequentially produces branch metrics, adds them to the branch
metrics read out last, compares the resulting sums, and then selects
one of the paths having a smaller path metric than the other. The
paths and path metrics selected by the ACS circuits 10-1N are
25 sequentially fed to the M break-off circuit 30.

1 In response, the M break-off circuit 30 compares the path
metrics output from at least two of the ACS circuits 10-1N. Then,
the break-off circuit 30 discards the path metrics of unlikely paths
while delivering only the path metrics of the survivor paths to the
5 corresponding metric memories 20-2N. At the same time, the
break-off circuit 30 sequentially feeds the survivor paths to the
corresponding path memories 40-4N. Consequently, the path
metrics of the survivor paths are fed back from the metric
memories 20-2N to the trellis tracing at the next branch. This
10 allows the ACS circuits 10-1N to repeat trellis tracing at the next
branch.

The resulting paths and path metrics are also fed from the
ACS circuits 10-1N to the M break-off circuit 30 and used for M
15 break-off. When the above procedure is repeated a plurality of
times, the break-off circuit 30 detects the most probable M paths
out of the results of trellis tracings output from the N ACS circuits
10-1N. Among the N ACS circuits 10-1N, the circuits lost the
survivor paths are disabled. Only the ACS circuits having the
20 survivor paths perform another trellis tracing. This further
narrows down the active ACS circuits and thereby produces only
the paths surviving at the last stage. The survivor paths are
sequentially written to the corresponding path memories 40-4N in
place of the existing data while their path metrics are fed to the
25 decision circuit 50.

1 In response, the decision circuit 50 estimates an encoder used
at the transmitting station on the basis of the path metric which is
determined at the last trellis stage narrowed down by the M break-
off circuit 30. If a plurality of paths each relating to a particular
5 decoder survive at the last trellis stage, then the decision circuit 50
performs a decision by use of the metrics of the last stage. On the
other hand, if only a single path relating to a particular decoder
survives at the last trellis stage, the decision circuit 50 determines
that the signal has been received from an encoder corresponding to
10 the particular decoder including the survivor path.

Finally, the decision circuit 50 traces back one of the path
memories 40-4N corresponding to the above decoder, decodes at a
preselected rate the symbols read out of the path memory, and
15 then outputs decoded bits via an output 70. The decoded bits are
fed to, e.g., a voice decoder and decoded to a speech signal thereby.

As stated above, in the illustrative embodiment, the ACS
circuits 10-1N each performs a trellis tracing with a signal of
20 particular code rate. During trellis tracing, M break-off is effected
over at least two of the ACS circuits 10-1N so as to detect the most
probable M paths. The final decision is made on the basis of the
metrics of the detected M paths. Therefore, the paths surviving at
the end of the trellis tracing can be directly used for the decision,
25 and the result of the decision can be output as decoded bits. This
noticeably reduces the amount of computation necessary for trellis
tracing and thereby promotes the high-speed operation and power

1 saving of the circuitry. Moreover, the capacity required of each
memory or similar constituent device is reduced. In addition, it is
not necessary to re-encode the decoded bits and compare them
with the received signal as in the conventional Viterbi decoding
5 circuit, or to add a CRC or similar extra error correcting code. As a
result, a simple convolutional code or similar trellis code suffices for
signal decision.

FIGS. 4A and 4B show a receiver implemented with the signal
10 decision device described with reference to FIG. 1. The following
description will concentrate on a CDMA handy phone, e.g., a North
American CDMA handy phone by way of example. The receiver to
be described is capable of receiving a speech code having a rate
variable in accordance with the speech rate, effectively identifying
15 the code rate of the received signal without resorting to any change
in the specifications of the transmitter side, and then reproducing a
speech signal.

To better understand the receiver having the above
20 capability, a specific transmitter for use with the receiver will be
described with reference to FIGS. 5A and 5B. As shown, the
transmitter has a voice encoder or vocoder 100 to which a speech is
input. The vocoder 100 transforms the input speech to a code
having a rate of sixteen, forty, eighty or 172 bits for a single frame
25 (0.8, 2.0, 4.0 or 8.6 kbps) in accordance with the speech rate, i.e.,
the ratio of the duration of a speech. For the vocoder 100, use may

1 be made of an encoder of the type encoding speech data by the
previously mentioned variable rate speech encoding called QCELP.

A CRC add circuit 110 adds a CRC code having, e.g., twelve bits
5 to, among the speech codes of sixty bits to 172 bits, the speech
codes of 172 bits and eighty bits. The CRC add circuit 100 adds the
CRC code to the result of computation effected with a speech code
by use of a conventional scheme. The sixteen-bit, forty-bit,
seventy-bit and 172-bit speech codes are output from the CRC add
10 circuit 110 with rates of 0.8 kbps, 2.0 kbps, 4.4 kbps and 9.2 kbps,
respectively. A tail bit add circuit 120 adds to each of the speech
codes tail bits which may be eight all ZERO bits. As a result, the 0.8
kbps, 2.0 kbps, 4.4 kbps and 9.2 kbps speech codes input to the tail
bit add circuit 120 are output with rates of 1.2 kbps, 2.4 kbps, 4.8
15 kbps and 9.6 kbps, respectively.

A convolutional encoder 130 transforms the 1.2 kbps, 2.4
kbps, 4.8 kbps and 9.6 kbps speech codes to convolutional codes
having rates of 2.4 kilosymbols per second (ksps), 4.8 ksps, 9.6 ksps
20 and 19.2 ksps, respectively. In this specific arrangement, the
convolutional encoder 130 is a rate 1/2 encoder for transforming
each bit of the speech code to a two-bit one-symbol convolutional
code with a preselected algorithm. A repeat circuit 140 repeats the
2.4 ksps signal eight consecutive times. The repeat circuit 140
repeats the 4.8 ksps signal four consecutive times. Further, the
repeat circuit 140 repeats the 9.6 ksps signal twice. As a result, all
25 the signals of 2.4 ksps to 19.2 ksps are output from the repeat

1 circuit 140 with the common rate of 19.2 ksps. In this sense, the
repeat circuit 140 plays the role of a rate converting circuit. The
19.2 ksps signals are fed to an interleave or interleaver 150

5 The interleaver or signal convert circuit 150 rearranges the
encoded frames by block interleave and outputs the resulting
signal. The interleaved signal is subjected to spectrum spread by a
PN code or similar false noise and then output. Specifically, the
false noise is generated by a code generator 160, transformed to a
10 noise signal of the same rate as the encoded signal, i.e., 19.2 ksps by
a first code converter 170, and then applied to a first adder 180.
The first adder or signal mixer 180 adds the speech signal fed from
the interleaver 150 and the false noise and feeds its output to a
multiplexer 190. The output of the adder 180 is a signal subjected
15 to BPSK (Binary Phase Shift Keying) spread. The multiplexer or
selector 190 selectively outputs the signal fed from the adder 180
or a 800-bit power control signal. At this instant, the multiplexer
190 superposes on the power control signal 800 Hz false noise
received from a second code converter 175.

20

A second adder 200 adds a Walsh function to the signal
output from the multiplexer 190. A Walsh function circuit 210 is
an orthogonal transform circuit for transforming, e.g., a plurality of
symbols to Walsh symbols by orthogonal coding. The output of the
25 second adder 200, i.e., a signal subjected to orthogonal transform is
modulated by a modulator, not shown, using false noise and OQPSK

1 scheme. Then, a radio section, not shown, transmits the OQPSK
signal via its front end by superposing it on a carrier.

5 The receiver of the illustrative embodiment has a radio
section, not shown, for transforming the received baseband signal to
an IF (Intermediate Frequency) signal at its front end. As shown in
FIGS. 4A and 4B, the IF signal is applied to a demultiplexer 220.
Specifically, the front end removes the carrier from the received
10 signal and then inversely spreads the signal with the same false
noise as used at the transmitter side for the OPQSK modulation,
thereby producing a desired baseband signal. The demultiplexer
220 is a separator for separating the power control signal and main
signal from the received signal. The separated power control signal
is fed to a control section, not shown while the main signal is
15 applied to a first adder 230. The first adder 230 adds the main
signal and a Walsh function received from a Walsh function circuit
240, thereby outputting a signal subjected to inverse orthogonal
transform.

20 The Walsh function circuit 240 is an inverse orthogonal
transform circuit for generating the same Walsh function as
generated at the transmitter side. A second adder 250 inversely
spreads the signal undergone inverse orthogonal transform by use
of the same false noise as used at the transmitter side. A code
25 generator 260 generates the same PN code or similar false noise
signal as generated at the transmitter side. A code converter 270
converts the inversely spread signal to the same rate as the signal

1 (19.2 ksps) and feeds it to a second adder 250. The resulting output of the second adder 250 is restored to symbols and then applied to a deinterleave circuit or deinterleaver 290.

5 The deinterleaver or signal converter 290 rearranges the symbols received from the adder 250 in their original order. The signal output from the deinterleaver 290 is directly applied to a signal decision circuit 330 on the one hand and is applied to the circuit 330 by way of three rate restore circuits 300, 310 and 320 on the other hand. The rate restore circuits 300-320 respectively reconstruct the 9.6 ksps, 4.8 ksps and 2.4 ksps symbols recurred at the transmitting station out of the 19.2 ksps signal. Specifically, the code restore circuits 300-320 are adders for respectively restoring the original code rates by repeatedly adding the symbols twice, four times, and eight times.
10
15

The signal decision circuit 330 has the arrangement described with reference to FIG. 1. In the specific configuration, four Viterbi decoders are connected to a single M break-off circuit and respectively decode 19.2 ksps, 9.6 ksps, 4.8 ksps and 2 ksps symbols to 9.2 kbps, 4.4 kbps, 2.0 kbps and 0.8 kbps signals. Only the decoded bits whose rates have been determined by the decision circuit 330 are output. Assume that the symbols are decoded at the rate of 9.2 kbps or 4.4 kbps. Then, a CRC check circuit 340 or 350 executes error correction with the decoded symbols by using the CRC scheme. Subsequently, a CRC remove circuit or remover 360 or
20
25

1 370 removes the CRC bits from the symbols and then delivers the
symbols to a voice decoder, not shown, via a selecting circuit 380.

5 The selecting circuit 380 selects the decoded signal under the
control of a controller 390 and feeds it to the voice decoder. The
controller 390 controls the selecting circuit 380 on the basis of the
outputs of the signal decision circuit 330 and CRC check circuits 340
and 350.

10 In operation, the signal arrived at the receiver is demodulated
by the front end and then applied to the demultiplexer 220 as a
baseband signal. The demultiplexer 220 selects the power control
signal and main signal included in the input baseband signal. The
power control signal and main signal are applied to the control
section and first adder 230, respectively. In response, the first
15 adder 230 adds the main signal and the Walsh function fed from
the Walsh function circuit 240 and identical with the Walsh
function used at the transmitter side. As a result, the adder 230
outputs a signal subjected to inverse orthogonal transform. Further,
20 the second adder 230 adds the signal output from the adder 230
and the signal output from the code converter 270 which is derived
from the same false noise as used at the transmitter side and
generated by the code generator 260. Consequently, the adder 230
outputs an inversely spread signal. The deinterleave circuit 290
25 rearranges the symbols of the inversely spread signal and thereby
reconstructs the original signal in the form of a symbol sequence.

1 The signal output from the deinterleave circuit 290 is applied
to the signal decision circuit 330 both directly and by way of the
rate restore circuits 300, 310 and 320. The rate restore circuits
300, 310 and 320 restore the rates of the input signal. At this stage
5 of procedure, the code rate which the signal has is not yet known.
In any case, 2.4 kbps, 4.8 kbps, 9.6 kbps and 19.2 kbps signals are
produced from a single received signal by the rate restore circuits
300-320. These signals are also applied to the signal decision
circuit 330. The decision circuit 330 determines the code rate
10 which the signal has, and then outputs the decoded bits of the
determined code rate. At this instant, the decision circuit 330
narrows down the paths to probable paths by M break-off during
the trellis tracing of the individual signal. Finally, the decision
circuit 330 selects one of M survivor paths and decodes only the
15 path selected. As a result, the signal resulting from the signal
decision can be directly used as decoded bits. With a conventional
receiver, it is necessary to select four paths with four Viterbi
decoding circuits, reconvert them to convolutional codes, compare
the codes with received signals of corresponding rates, and then
make a decision with the signals.
20

25 The signal decoded by the decision circuit 330 is fed to the
select circuit 380 both directly and by way of the CRC remove
circuits 360 and 370. At the same time, the result of decision is fed
from the decision circuit 330 to the controller 390. In response, the
controller 390 so controls the select circuit 380 as to deliver the
decoded bits to the voice decoder. As a result, a speech is decoded

1 in accordance with the code rate and reproduced. As for the 9.2
kbps and 4.4 kbps signals, they are subjected to error correction by
the CRC check circuits 340 and 350, respectively, and then routed
through the select circuit 380 to the voice decoder with their CRC
5 bits removed. However, in the illustrative embodiment, the CRC
checking procedure is not essential because the decision circuit 330
executes error correction by Viterbi decoding.

As stated above, the receiver implemented with the circuitry
10 of FIG. 1 is capable of decoding a signal by signal decision which
does not need any error detecting code. This eliminates an
overhead relating to the communication channel. Further, in any of
communication systems recommended in the past, more accurate
15 signal decision is achievable without resorting to any change in the
specifications of a transmitter only if the results of decision using
an error correcting code particular to the system are combined.

While the embodiment has concentrated on the North
American CDMA system, the receiver of the present invention is
20 similarly applicable to, e.g., a North American TDMA or similar
TDMA handy phone. In such a case, a transmitter will transform a
speech signal and FACCH to a convolutional code at different rates
in the data field of the same slot. For example, the transmitter may
assign code rates of 1/2 and 1/4 to the speech signal and FACCH,
25 respectively. Therefore, two Viterbi decoders each having a
particular code rate for signal decision will be prepared and
operated in cooperation with each other via an M break-off circuit,

1 as in the illustrative embodiment. Of course, use will be made of
decoding circuits of the type executing TDMA demodulation.

5 Referring to FIG. 6, an alternative embodiment of the signal
decision device in accordance with the present invention will be
described. As shown, this embodiment differs from the previous
embodiment in that the M break-off circuit 30 is absent, and in that
the Viterbi decoding circuits are implemented as soft output Viterbi
decoders 410, 412, ..., 41N. These decoders 410-41N output paths
10 selected by trellis tracing and reliability information representative
of the degrees of reliability of the paths. The decision device selects
decoded bits on the basis of the reliability information.

15 As shown in FIG. 6, the decision device has a decision circuit
420 and a select circuit 430 in addition to the soft output Viterbi
decoders 410-41N. The decoded bit outputs of the decoders 410-
41N are connected to the select circuit 430. The reliability
information outputs of the decoders 410-41N are connected to the
decision circuit 420.

20

As shown in FIG. 7 in detail, the decoders 410-41N each has a
branch metric compute circuit 450, an ACS circuit 460, a metric
memory 470, a path memory 480, and a path update circuit 490. A
received symbol Y_k is input to the branch metric compute circuit
25 450. In response, the compute circuit 450 produces branch metrics
on the basis of the symbol Y_k and its estimate X_k . The ACS circuit
460 adds up branch metrics sequentially applied thereto from the

1 compute circuit 450, and compares the resulting path metrics so as
to sequentially select valid paths. Particularly, in the illustrative
embodiment, when the ACS circuit 460 has selected one of a
plurality of paths at each branch, it determines a difference
5 between the greatest metric and the smallest metric at the branch
and outputs it together with the path selected.

For example, as shown in FIG. 8, assume that the ACS circuit
460 has selected a metric $m = 1$ or $m = 2$ at a state S_k of a branch k .
10 Then, the ACS circuit 460 determines a difference between $m = 1$
and $m = 2$, i.e., $\Delta = 1$ and outputs it. Specifically, the ACS circuit of
the ordinary Viterbi decoding circuit selects only the path of
smallest metric, and then outputs only the path and path metric.
By contrast, in this embodiment, the ACS circuit 460 produces a
15 difference Δ between the greatest metric and the smallest metric at
each branch. The difference Δ is an index showing what kinds of
paths are compared and selected at each of the consecutive
branches. The difference or index Δ and path selected are fed to
the path update circuit 490 while the path metric of the path
20 selected is written to the metric memory 470.

The metric memory 470 may advantageously be implemented
by a plurality of latch circuits capable of sequentially updating the
path metrics selected by the ACS circuit 460, and feeding back the
25 updated path metrics to the ACS circuit 460 branch by branch, as in
the previous embodiment. The path memory 480 sequentially
updates the path selected by the ACS circuit 460. Particularly, in

1 this embodiment, the path memory 480 stores the reliability
information of the path together with the path.

5 The path update circuit 490 includes a memory control circuit
for controlling the writing of the path in the path memory 480.
Particularly, the circuit 490 includes a circuit for computing, when
the path selected is different from the previous path, reliability
information based on the difference between the metrics and fed
from the ACS circuit 460, and causing it to be written to the path
10 memory 480. Again, assume that one of the two paths shown in
FIG. 8 is selected at the state S_k of the branch k . Then, metrics M_m
derived from maximum likelihood decision taking account of
channel noise may be expressed as:

15
$$M_m = Es/No \sum (Y_{jn} - X_{jn})^2 \quad \text{Eq. (1)}$$

where Es/No denotes a signal-to-noise ratio, Y_{jn} denotes a received symbol, X_{jn} denotes an estimate, and a suffix jn shows that the symbol values X and Y are representative of a symbol at the state n of a branch j . It follows that the probability $\text{Prob}\{\text{path } m\}$ of a path
20 in a given interval m is produced by:

$$\text{Prob}\{\text{path } m\} \sim e^{-M_m} \quad \text{Eq. (2)}$$

25 Therefore, assuming that the metrics M_m are M_1 and M_2 at a given branch, then the probability P_j that the path having the metric M_2 will be selected is expressed as:

$$\begin{aligned}
 P_j &= e^{-M_2} / (e^{-M_1} + e^{-M_2}) \\
 &= 1/(1 + e^{M_2 - M_1}) \\
 &= 1/(1 + e^d) \quad \text{Eq. (3)}
 \end{aligned}$$

5 where $d = M_2 - M_1$.

Consequently, the reliability L_j of the path selected is produced by:

$$L_j = \log(1 - P_j)/P_j \quad \text{Eq. (4)}$$

Therefore, when the path u_j selected is different from the previous path u_k , the path update circuit 490 computes the reliability information L_j of the path u_j using the difference Δ between the metrics, as follows:

$$L_j \leftarrow f(L_j, \Delta) = (1/a)\log(1 + e^{(aL_j + d)}) / (e^d + d^a L_j) \quad \text{Eq. (5)}$$

where $a = 4D_{\text{free}}(\text{Es}/\text{No})$ where D_{free} denotes a given step interval of a symbol, the index d denotes the difference Δ between the metrics, and the symbol " \leftarrow " shows that the reliability information L_j to be stored is computed by $f(L_j, \Delta)$ and then stored in place of the previous L_j .

Referring again to FIG. 6, the decision circuit 420 receives the reliability information from the soft output Viterbi decoders 410-

1 41N and then selects the most reliable result of decoding. The
decision circuit 420 controls the select circuit 430 on the basis of
the most reliable result. The select circuit or output circuit 430 is
implemented by a selector or a switch having a plurality of inputs
5 and a single output.

The signal decision procedure of this embodiment will be
described together with the operation of the signal decision device.
Received symbols are sequentially applied to all the soft output
10 Viterbi decoders 410-41N each being assigned to a particular code
rate. The decoders 410-41N each performs a trellis tracing with the
input symbol at the respective code rate and then outputs the
result of tracing and reliability information. At this instant, the
individual metric compute circuit 450 sequentially produces branch
15 metrics while feeding them to the ACS circuit 460.

The ACS circuit 460 received the branch metrics adds them to
the previous branch metrics, compares the resulting sums or path
metrics, and then selects one path having a smaller path metric
20 than the other path. At the same time, the ACS circuit 460
produces a difference Δ between the greatest metric and the
smallest metric at each branch and delivers it to the path update
circuit 490. The path metrics are sequentially written to the metric
memory 470 for thereby updating the memory 470. When another
25 symbol is input to the metric compute circuit 450, the path metrics
are fed back from the metric memory 470 to the ACS circuit 460 at
the same time as the supply of new metrics.

1 The ACS circuit 460 repeats the above trellis tracing over a
given interval. As a result, as shown in FIG. 8 specifically, a single
path exists in the interval between a branch $k-\delta$ and a branch $k-\delta m$
preceding the branch k . The single path diverges into two paths in
5 the interval between the branch $k-\delta m$ and the branch k , and then
remerges at the branch k . On receiving the resulting path and the
difference Δ between the metrics, the path update circuit 490
computes the reliability information of the path selected on the
basis of the difference Δ and then updates the path memory 480
10 with the computed information and the path.

When the Viterbi decoders 410-41N each traces the metrics up to the final stage by repeating the above procedure, it determines a path matching the respective code rate. The 15 reliability information relating to the paths determined by all the decoders 410-41N are read out of the associated path memories 480 and applied to the decision circuit 420. In response, the decision circuit 420 compares the reliability information, selects one 20 of the decoders 410-41N output the most probable result, and then feeds a switching signal to the select circuit 430. The select circuit 430 selects one of the decoders 410-41N designated by the switching signal, so that the result of decoding of the decoder selected is output via an output terminal.

25 As stated above, in the illustrative embodiment, the Viterbi decoders 410-41N each being assigned to a particular code rate

1 determines the reliability information of a path selected during the
course of trellis tracing. The final signal decision is made on the
basis of the reliability information output from the decoders 410-
41N. The embodiment therefore performs reliable signal decision
5 and can directly output the result of decision as decoded bits.

The embodiment makes it needless to re-encode the decoded
bits and compare them with a received signal as in the conventional
signal decision using Viterbi coding circuits. Moreover, the
10 embodiment is practicable without adding a CRC or similar error
correcting code. Therefore, only a convolutional code or similar
trellis code suffices for sure signal decision.

FIGS. 9A and 9B show a receiver implemented with the signal
15 decision device shown in FIG. 6. This receiver, like the receiver
shown in FIGS. 4A and 4B, is assumed to be applied to a North
American CDMA handy phone by way of example. The receiver to
be described also receives a speech code having a code rate variable
with a speech rate, effectively determines the code rate of the
20 speech signal without resorting to any change in the specifications
of a transmitting station, and then reproduces a speech. It follows
that a transmitter applicable to the receiver also has the
configuration shown in FIGS. 5A and 5B and will not be described
specifically. In FIGS. 9A and 9B, the same or similar constituent
25 parts as or to the parts shown in FIGS. 4A and 4B are designated by
the same reference numerals and will not be described in order to
avoid redundancy.

1 The receiver shown in FIGS. 9A and 9B differs from the
 receiver shown in FIGS. 4A and 4B in that four soft output Viterbi
 decoders 410-416 are substituted for the Viterbi decoding circuits
 with the M break-off circuit 30. A select circuit 430 is operated on
5 the basis of a code rate derived from the reliability information
 output from the Viterbi decoders 410-416.

As shown in FIGS. 9A and 9B, the 19.2 kbps received signal output from the deinterleaver 290 is directly applied to the first 10 soft output Viterbi decoder 410. Also, the received signal is applied to the second, third and fourth soft output Viterbi decoders 412, 414 and 416 via the first, second and third rate restore circuits 300, 310 and 320, respectively. The rate restore circuit 300 transforms the 19.2 kbps signal to a 9.6 ksps signal and feeds it to the soft 15 output Viterbi decoder 412. Likewise, the rate restore circuit 310 transforms the input signal to a 4.8 ksps signal and feeds it to the soft output Viterbi decoder 414. Further, the rate restore 320 transforms the input signal to a 2.4 ksps signal and feeds it to the soft output Viterbi decoder 416. The Viterbi decoders 410-416 are 20 rate 1/2 decoders, and each performs a trellis tracing at a timing matching the respective code rate.

On receiving the 19.2 ksps symbol, the Viterbi decoder 410 performs a trellis tracing based on the Viterbi algorithm, 25 sequentially selects the most probable paths, and then outputs 9.2 kbps decoded bits. At this instant, the Viterbi decoder 410

1 sequentially computes the reliability information of the paths
selected while feeding them to the decision circuit 420. Likewise,
the Viterbi decoder 412 received the 9.6 ksps symbol outputs 4.4
kbps decoded bits, and feeds reliability information to the decision
5 circuit 420. Further, the Viterbi decoders 414 and 416 received the
4.8 ksps symbol and 2.4 ksps symbol, respectively, output 2.0 kbps
and 0.8 kbps decoded bits, and each feeds the respective reliability
information to the decision circuit 420.

10 The decision circuit 420 selects one of the results of decoding
output from the Viterbi decoders 410-416 and having the highest
reliability as represented by the the reliability information. Then,
the decision circuit 420 feeds a switching signal to the select circuit
430. In response, the select circuit 430 delivers the result of
15 decoding having the highest reliability to a voice decoder, not
shown.

The decoded bits output from the first and second Viterbi
decoders 410 and 412 are respectively subjected to error correction
20 by the CRC check circuits 340 and 350, respectively. When the
output of the Viterbi decoder 410 or 412 is selected, the CRC
remove circuit 360 or 370 associated with the decoder 410 or 412
removes CRC check bits from the decoded bits. At this instant, the
check circuits 340 and 350 each delivers the respective error
25 probability to the decision circuit 420. The decision circuit 420
selects decoded bits by referencing the error probabilities received
from the CRC check circuits 340 and 350 and the reliability

1 information. However, this CRC error correction is not essential
with the embodiment because the Viterbi decoders 410 and 412
execute error correction with the decoded bits by use of the Viterbi
algorithm.

5

As stated above, the receiver of the illustrative embodiment
has Viterbi decoders based on the soft output Viterbi algorithm.
Reliability information relating to the results of decoding are output
from such Viterbi decoders, so that signal decision can be made on
10 the basis of the reliability information. As a result, accurate signal
decision is enhanced to allow valid decoded bits to be produced.
Further, because the reliability information play the role of indexes,
it is not necessary to add, e.g., an extra error correcting code.
Therefore, the receiver does not constrain the performance of the
15 communication channel and does not require any change in the
specifications of the transmitter side.

While the receiver of the embodiment has been shown and
described in relation to the North American CDMA handy phone, it
20 is similarly applicable to, e.g., a North American TDMA or similar
TDMA handy phone. In such a case, two soft output Viterbi
decoders each having a particular decoding rate will be prepared to
allow the receiver to execute signal decision with reliability
information output from the decoders. A decoded speech signal and
25 control information will be fed to a voice decoder and a control
circuit, respectively. Of course, decoding circuits will be
implemented with the TDMA decoding system.

1 Referring to FIG. 10, another alternative embodiment of the
signal decision device in accordance with the present invention is
shown. This embodiment is similar to the embodiment shown in
FIG. 6 except for the following. As shown, the device includes a
5 plurality of Viterbi decoders 510, 512, ..., 51N for performing a
trellis tracing each. The device estimates channel conditions on the
basis of the metrics of the paths of the last stage output from the
Viterbi decoders 510-51N, thereby determining which of the
decoders 510-51N has output a correct result of decoding.
10 Particularly, as shown in FIG. 11, the Viterbi decoders 510-51N
each includes a memory controller 540 for detecting a survivor
path stored in a path memory 560, and reading the path metric of
the last stage out of a metric memory 550.

15 Specifically, the device shown in FIG. 10 has a decision circuit
520 and a select circuit 530 in addition to the Viterbi decoders 510-
51N. The Viterbi decoders 510-51N each performs a trellis tracing
based on the Viterbi algorithm and outputs decoded bits of the
respective code rate. At the same time, the decoders 510-51N each
reads the path metric of the last stage and delivers it to the decision
20 circuit 520. More specifically, as shown in FIG. 11 specifically, the
decoders 510-51N each has an ACS circuit 540 in addition to the
metric memory 550, path memory 560, and memory controller 570.
The ACS circuit 540 produces branch metrics in response to
25 received symbols, sequentially adds them, compares the resulting
path metrics, and then sequentially selects paths each having the

1 smallest path metric, as in the embodiment shown in FIG. 1. The
ACS circuit 540 sequentially delivers the path metrics of the paths
selected to the metric memory 550, while sequentially delivering
the paths selected to the path memory 560.

5

In the above condition, the path metrics stored in the metric
memory 550 contain channel noise, as represented by the Eq. (2)
stated in relation to the embodiment of FIG. 6. Stated another way,
path metrics are the sum of differences between received symbols
10 and their estimates produced at the consecutive branches.
Therefore, if channel noise is practically zero and if the code rate of
a given Viterbi decoder matches the code rate of a received signal,
then the path metrics of the decoder should finally converge to
zero. Further, all the Viterbi decoders 510-51N receive the same
15 signal. Hence, even taking account of channel noise, it is expected
that the final path metric output be smaller when the Viterbi
decoder matches the code rate than when the former does not
match the latter. Consequently, a path metric written to the metric
memory 550 at the final stage A of trellis tracing shown in FIG. 12
20 can be used as an index representative of the channel conditions of
the path surviving after the tracing. In this sense, the metric
memory 550 of this embodiment serves as an index storage for
storing the index representative of the channel conditions.

25 The path memory 560 is updated based on the paths
sequentially selected by the ACS circuit 540. In this embodiment,
the path memory 560 is indicative of the position of the final

1 branch of the survivor path. The memory controller 570 reads the
survivor path out of the path memory 560, traces it back, and then
outputs decoded bits via a terminal 580. In the illustrative
embodiment, the memory controller 570 locates the address of the
5 metric memory 550 storing the path metric of the final stage on the
basis of the position of the branch of the survivor path read out of
the path memory 560, and then reads the path metric out of the
determined address.

10 On the other hand, the decision circuit 520 receives the path
metrics of the final stage from the Viterbi decoders 510-51N,
estimates channel conditions on the basis of the individual path
metric, and then performs a signal decision. The result of signal
decision is fed from the decision circuit 520 to the select circuit 530.
15 In response, the select circuit 530 selects correct one of the outputs
of the Viterbi decoders 510-51N.

The operation of this embodiment will be described along
with a procedure for estimating channel conditions. First, received
20 symbols are sequentially applied to all the Viterbi decoders 510-
51N each being assigned to a particular code rate. The decoders
510-51N each performs a trellis tracing with the input symbols at
the code rate assigned thereto, and then outputs the resulting path
and the path metric of the final stage. During trellis tracing, the
25 ACS circuits 540 of the decoders 510-51N each sequentially
determines branch metrics based on the received symbol, adds
them to the previous metrics to produce path metrics, compares the

1 path metrics, and sequentially selects the path each having a
smaller path metric. The metric memory 550 is sequentially
updated by the path metrics. When another received symbol is
input to each ACS circuit 460, the latest path metrics are read out of
5 the metric memory 550 and fed back to the next trellis tracing.

The ACS circuit 540 repeats the trellis tracing with the path
metrics fed back thereto. On the arrival of the last symbol, the ACS
circuit 540 selects the path of the last stage, writes the path metric
10 of the path selected in the metric memory 550, and writes the final
survivor path in the path memory 560. Subsequently, the memory
controller 570 traces back the survivor path stored in the path
memory 560, thereby generating decoded bits. Also, the memory
controller 570 detects the position where the branch of the final
15 stage of the survivor path exists, and then generates the address of
the metric memory 550 storing the path metric of the above
branch. In this manner, all the Viterbi decoders 512-51N deliver
their path metrics of the final stage to the decision circuit 520.

20 In response, the decision circuit 520 estimates channel
conditions on the basis of the received path metrics and thereby
estimates the error probability of the received signal. Then, the
decision circuit 520 discards the results of decoding whose error
probabilities are greater than the estimated probability, while
25 selecting the result of decoding having the least error probability.
Subsequently, the decision circuit 520 feeds a switching signal to
the selecting circuit 530. In response, the selecting circuit 530

1 selects the most reliable decoded bits output from one of the
Viterbi decoders 510-51N.

5 As stated above, this embodiment uses the final metrics of the
final survivor paths as indexes for estimating the conditions of a
communication channel. This successfully enhances accurate
estimation without resorting to a special code for error detection.
The above indexes may be used alone or in combination with
conventional indexes in order to estimate a channel condition. As a
10 result, the accuracy of estimation is improved to lower, e.g., the
error frequency of signal decision.

15 FIGS. 13A and 13B show a receiver including the signal
decision device described with reference to FIG. 10. Again, assume
that the receiver is applied to a North American CDMA handy phone
by way of example. The receiver to be described receives a speech
code having a code rate variable with a speech rate, effectively
determines the code rate of the speech signal without resorting to
any change in the specifications of the transmitter side, and then
20 reproduces a speech, as in the previous embodiments. It follows
that a transmitter for use with the receiver also has the
configuration shown in FIGS. 5A and 5B and will not be described
specifically. In FIGS. 13A and 13B, the same or similar constituent
parts as or to the parts shown in FIGS. 4A, 4B, 9A and 9B are
25 designated by the same reference numerals and will not be
described in order to avoid redundancy.

1 The receiver of this embodiment differs from the previously
described receivers in that it causes each of four Viterbi decoders
510, 512, 514 and 516 to produce the respective path metric of the
last stage together with decoded bits, estimates channel conditions
5 by referencing the path metrics, determines a code rate matching
the channel conditions, and then switches the select circuit 530.

10 Specifically, the 19.2 kbps received signal output from the
deinterleaving circuit 290 is directly applied to the first output
Viterbi decoder 510. Also, the received signal is applied to the
second, third and fourth Viterbi decoders 512, 514 and 516 via the
first, second and third rate restore circuits 300, 310 and 320,
respectively. The rate restore circuit 300 transforms the 19.2 kbps
signal to a 9.6 ksps signal and feeds it to the Viterbi decoder 512.
15 Likewise, the rate restore 310 transforms the input signal to a 4.8
ksps signal and feeds it to the Viterbi decoder 514. Further, the
rate restore circuit 320 transforms the input signal to a 2.4 ksps
signal and feeds it to the Viterbi decoder 516. The Viterbi decoders
510-516 are rate 1/2 decoders, and each performs a trellis tracing
20 at a timing matching the respective code rate.

On receiving the 19.2 ksps symbols, the Viterbi decoder 510
performs a trellis tracing based on the Viterbi algorithm,
sequentially selects the most probable paths, and then outputs 9.2
25 kbps decoded bits. At this instant, the Viterbi decoder 510 reads
the path metric of the final stage of trellis tracing out of the metric
memory 550 and feeds it to the decision circuit 520. Likewise, the

1 Viterbi decoder 512 received the 9.6 ksps symbols outputs 4.4 kbps
decoded bits, and feeds the path metric of the final bit to the
decision circuit 520. Further, the Viterbi decoders 514 and 516
received the 4.8 ksps symbols and 2.4 ksps symbols, respectively,
5 output 2.0 kbps and 0.8 kbps decoded bits, and each feeds the
respective path metric of the final stage to the decision circuit 520.

The decision circuit 520 estimates channel conditions by
referencing the path metrics of the last stage received from the
10 Viterbi decoders 510-516, and selects a result of decoding matching
the channel conditions. Then, the decision circuit 520 feeds a
switching signal to the select circuit 530. In response, the select
circuit 530 delivers the result of decoding output from one of the
Viterbi decoders 510-516 selected to a voice decoder, not shown.
15

The decoded bits output from the first and second Viterbi
decoders 510 and 512 are respectively subjected to error correction
by the CRC check circuits 340 and 350, respectively, as in the
previous embodiments. When the output of the Viterbi decoder
20 510 or 512 is selected, the CRC remove circuit 360 or 370 associated
with the decoder 510 or 512 removes CRC bits from the decoded
bits. At this instant, the CRC circuits 340 and 350 each delivers the
respective error probability to the decision circuit 520. The
decision circuit 520 selects decoded bits by referencing the error
25 probabilities received from the CRC check circuits 340 and 350 and
the path metrics of the last stage. However, this CRC error
correction is not essential with the illustrative embodiment because

1 the Viterbi decoders 510 and 512 execute error correction with the
decoded bits by use of the Viterbi algorithm.

5 As stated above, the receiver of the illustrative embodiment
estimates channel conditions on the basis of the path metrics of the
last stage of the paths surviving after trellis tracing. As a result,
accurate signal decision is enhanced to allow valid decoded bits to
be produced. Further, because the path metrics of the last stage
play the role of indexes, it is not necessary to add, e.g., a special
10 error correcting code. Therefore, the receiver does not constrain
the performance of the communication channel and does not
require any change in the specifications of the transmitter side.

15 While the receiver of the embodiment, like the receivers of
the previous embodiments, has been shown and described in
relation to the North American CDMA system, it is similarly
applicable to, e.g., a North American TDMA or similar TDMA handy
phone. Although the Viterbi decoders 510-51N of the illustrative
embodiment each has the specific configuration shown in FIG. 11,
20 they may, of course, be provided with any other suitable
configuration using the Viterbi algorithm and capable of reading the
path metric of the last stage.

25 A further alternative embodiment of the signal decision
device in accordance with the present invention will be described
with reference to FIG. 14. This embodiment differs from the
previous embodiments in that it causes convolutional encoders 620,

1 622, ..., 62N to re-encode decoded bits output from Viterbi decoders
610, 612, ..., 61N, respectively, estimates channel conditions by
referencing the resulting symbol sequences and received symbols,
and thereby detects a correct result of decoding. Particularly, the
5 embodiment estimates channel conditions by a unique method
consisting in multiplying each re-encoded symbol sequence by a
constant, squaring a difference between the resulting product and a
received symbol sequence, and determining the smallest one of the
resulting values.

10

Specifically, as shown in FIG. 14, the signal decision device has
a plurality of index compute circuits 630, 632, ..., 63N, a decision
circuit 640, and a select circuit 650 in addition to the Viterbi
decoders 610-61N and convolutional encoders 620-62N. The
15 outputs of the Viterbi decoders 610-61N are connected to the select
circuit 650 and connected to the convolutional encoders 620-62N,
respectively. The outputs of the convolutional encoders 620-62N
are connected to the index compute circuits 630-63N, respectively.
A received input is fed not only to the Viterbi decoders 610-61N
20 but also to the index compute circuits 630-63N. The outputs of the
index compute circuits 630-63N are connected to the decision
circuit 640.

The Viterbi decoders 610-61N each has a particular decoding
25 rate matching a coding rate and has a conventional configuration
including an ACS circuit, a metric memory, and a path memory, as
in the previous embodiments. The convolutional encoders 620-62N

1 respectively transform decoded bits output from the Viterbi
decoders 610-61N to convolutional codes, and each has a coding
rate matching the decoding rate of the associated Viterbi decoder.
The convolutional encoders 620-62N, like convolutional encoders
5 included in a transmitter, are implemented by a plurality of shift
registers each being assigned to a particular code rate, Exclusive OR
gates or similar logic circuits, etc.

The index compute circuits 630-63N unique to this
10 embodiment receives estimated symbol sequences from the
convolutional encoders 620-62N and received symbols input to the
Viterbi decoders 610-61N, respectively. In response, the circuits
630-63N each produces an index for estimating channel conditions.
Assuming that a received symbol sequence and an estimated
15 symbol sequence are X_i and Y_i , respectively, then estimated noise
energy ENE is expressed as:

$$ENE = \sum (X_i - aY_i)^2 \quad \text{Eq. (6)}$$

20 where a denotes a suitable gain given to the estimated symbol Y_i .

Let the least noise energy of the estimated noise energy ENE
be labeled LNE. Then, the least noise energy LNE for the gain a is
produced from the Eq. (6) by:

25

$$LNE = \min_a (ENE) \quad \text{Eq. (7)}$$

1 By solving $d(\text{ENE})/da = 0$ for a , there is produced:

$$\text{LNE} = \text{E}_{XX} - \text{E}_{XY}^2 / \text{E}_{YY} \quad \text{Eq. (8)}$$

5 where $\text{E}_{XX} = \sum X_i^2$, $\text{E}_{XY} = \sum X_i \cdot Y_i$, and $\text{E}_{YY} = \sum Y_i^2$.

10 It may therefore be said that as the estimated least noise energy LNE decreases, the channel conditions grow better. For example, assume that the communication channel is practically free from noise, and that the received symbol and estimated symbol are identical except for the gain. Then, the estimated least noise energy LNE is zero. The illustrative embodiment estimates channel conditions by using the estimated least noise energy LNE produced by the Eq. (8) as an index.

15

As shown in FIG.15, the index compute circuits 630-63N each has a first input terminal 700, a second input terminal 710, a plurality of multipliers 720-726, a plurality of totalizers 730-734, a divider 736, a subtracter 738, and an output terminal 750. A received symbol sequence X_i and a re-encoded estimated symbol sequence Y_i are applied to the input terminals 700 and 710, respectively. The output of the subtracter 738, i.e., an index is fed out via the output terminal 750.

25 The first multiplier 720 sequentially squares received symbols X_i coming in through the first input terminal 710. Likewise, the second multiplier 722 sequentially squares estimated

1 symbols Y_i coming in through the second input terminal 712. The
third multiplier 724 produces a product of the symbols X_i and Y_i
input via the input terminals 710 and 712, respectively. The first
5 totalizer 730 totalizes the outputs of the multiplier 720 in order to
produce $E_{XX} = EX^2$ included in the Eq. (8). The second totalizer 732
totalizes the outputs of the multiplier 722 in order to produce $E_{YY} =$
 ΣY_i^2 . The third totalizer 734 totalizes the outputs of the multiplier
724 in order to produce $E_{XY} = \Sigma X_i \cdot Y_i$. The fourth multiplier 726
squares the output of the third totalizer 734 in order to produce
10 E_{XX^2} . The divider 736 divides the output of the multiplier 734 by
the output of the totalizer 732, thereby producing E_{XY^2}/E_{YY} . The
subtractor 738 subtracts the output of the divider 736 from the
output of the totalizer 730 in order to produce an index.

15 Referring again to FIG. 14, the decision circuit 640 estimates
channel conditions on the basis of the estimated least noise energy
LNE output from each of the index compute circuits 630-63N. The
decision circuit 640 determines, based on the estimated channel
conditions, which estimated symbols are correct, i.e., which re-
20 encoded symbols are accurate. Then, the decision circuit 640 feeds
a switching signal to the select circuit 650. In response, the select
circuit 650 selects decoded bits output from one of the Viterbi
decoders 610-61N designated by the switching signal.

25 The operation of the the illustrative embodiment will be
described along with the channel condition estimating method
particular thereto. First, received symbols are sequentially applied

1 to all the Viterbi decoders 610-61N each being assigned to a
particular code rate and the index compute circuits 630-63N. The
Viterbi decoders 610-61N each performs a trellis tracing with the
input symbols at the respective code rate, detects the most
5 probable path, and traces back the most probable path to produce
decoded bits. The decoded bits are fed to associated one of the
convolutional encoders 620-62N.

On receiving the decoded bits, the convolutional encoders
10 620-62N each transforms them to a convolutional code at the
respective coding rate and thereby generates re-encoded estimated
symbols. The estimated symbols are sequentially fed to associated
one of the index compute circuits 630-63N. The index compute
circuits 630-63N each produces an index for channel condition
15 estimation from the received symbols X_i and the estimated symbols
 Y_i output from associated one of the convolutional encoders 620-
62N.

Specifically, in each of the index compute circuits 630-63N,
20 the multiplier 720 and totalizer 730 cooperate to produce the total
 $\sum X_i^2 = E_{XX}$ of the squares of the received symbols X_i come in
through the first input terminal 710. Likewise, the multiplier 722
and totalizer 730 produce the total $\sum Y_i^2 = E_{YY}$ of the squares of the
estimated symbols Y_i come in through the input terminal 712. The
25 multipliers 724 and 726 and totalizers 734 cooperate to produce a
square $(\sum X_i \cdot Y_i)^2 = E_{XY}^2$ of the total of the products of the received
symbols X_i and estimated symbols Y_i . Subsequently, the divider

1 736 divides the output E_{XY}^2 of the multiplier 726 by the output
E_{YY} of the totalizer 732 to produce E_{XY}^2/E_{YY} . The subtracter 738
subtracts E_{XY}^2/E_{YY} from the output E_{XX} of the totalizer 730 and
produces the resulting difference on the output terminal 740. The
5 output of the subtracter 738 is representative of the least energy
LNE of the individual estimated noise, i.e., $LNE = E_{XX} - E_{XY}^2/E_{YY}$
and fed to the decision circuit 640 as an index.

10 The decision circuit 640 estimates channel conditions on the
basis of the indexes received from the index compute circuits 630-
63N, and then estimates an error probability of the received signal.
Subsequently, the decision circuit 640 discards the results of
decoding having error probabilities greater than the estimated
probability, selects the result of decoding lowest in error
15 probability, and then feeds a switching signal to the select circuit
650. In response, the select circuit 640 selects decoded bits output
from one of the Viterbi decoders 610-61N designated by the
switching signal.

20 As stated above, the embodiment uses a new index
representative of minimum estimated noise energy. This enhances
accurate estimation and thereby reduces, e.g., the error frequency
of signal decision without adding any error correcting code or by
combining the index with an error correcting code.

25

FIGS. 16A and 16B show a receiver including the signal
decision circuitry shown in FIG. 14. The receiver, like the previous

1 receivers, is applied to the North American CDMA handy phone by
way of example. A transmitter matching the receiver also has the
configuration shown in FIGS. 5A and 5B. The constituent parts of
the receiver identical with the parts of the previous embodiments
5 are designated by the identical reference numerals and will not be
described in order to avoid redundancy.

Briefly, the receiver of this embodiment differs from the
previous receivers in that it causes four convolutional decoders 620,
10 622, 622 and 624 to re-encode the outputs of the Viterbi decoders
610, 612, 614 and 616, respectively, computes new indexes by
using the resulting convolutional codes and symbols input to the
decoders 610-616, estimates channel conditions on the basis of the
indexes, and thereby executes a decision.

15

Specifically, as shown in FIGS. 16A and 16B, the 19.2 kbps
received symbols output from the deinterleaver 290 are directly
applied to the first output Viterbi decoder 610 and applied to the
first index compute circuit 630. Also, the received symbols are
20 applied to the first, second and third rate restore circuits 300, 310
and 320. The rate restore circuit 300 transforms the 19.2 kbps
symbols to 9.6 ksps symbols and feeds them to the Viterbi decoder
612 and the second index compute circuit 632. Likewise, the rate
restore circuit 310 transforms the input symbols to 4.8 ksps
25 symbols and feeds them to the Viterbi decoder 6 and third index
compute circuit 634. Further, the rate restore circuit 320

1 transforms the input symbols to 2.4 ksps symbols and feeds them
to the Viterbi decoder 616 and fourth index compute circuit 636.

The Viterbi decoders 610-616 are rate 1/2 decoders, and each
5 performs a trellis tracing at a timing matching the respective code
rate. On receiving the 19.2 ksps symbols, the Viterbi decoder 610
decodes them to output 9.2 kbps decoded bits. Likewise, the
Viterbi decoder 612 decodes the 9.6 ksps symbols to output 4.4
kbps decoded bits. Further, the Viterbi decoders 614 and 616
10 respectively decode the 4.8 ksps symbols and 2.4 ksps symbols to
output 2.0 kbps decoded bits and 0.8 kbps decoded bits. Tail bit
add circuits 710-716 respectively add tail bits for convolutional
coding to the decoded bits output from the Viterbi decoders 610-
616. As a result, 9.6 kbps, 4.8 kbps, 2.4 kbps and 1.2 kbps signals
15 are fed from the tail bit adding circuits 710-716 to the
convolutional encoders 620-626, respectively

The convolutional encoders 620-626 are rate 1/2 encoders
operable in the same manner as the convolutional encoders
20 included in the transmitter. Specifically, the encoder 620 re-
encodes the 9.6 kbps signal to output 19.2 ksps estimated symbols
while the encoder 622 re-encodes the 4.8 kbps signal to output 9.6
ksps symbols. Likewise, the encoders 624 and 626 respectively re-
encode the 2.4 kbps and 1.2 kbps signals to 4.8 ksps and 2.4 ksps
25 estimated symbols. The estimated symbols are respectively fed
from the encoders 620-626 to the index compute circuits 630-636.

1 The index compute circuits 630-636 each produces an index,
i.e., the estimated least noise energy LNE derived from the total of
the squares of the differences between the received symbols and
the re-encoded estimated symbols, as stated earlier. Specifically,
5 the circuit 630 outputs the estimated least noise energy LNE based
on the 19.2 ksps estimated symbols and received symbols.
Likewise, the circuit 632 outputs the estimated least noise energy
LNE based on the 9.6 ksps estimated symbols and received symbols.
The circuits 634 and 636 respectively output the estimated least
10 noise energy LNE based on the 4.8 ksps and 2.4 ksps estimated
symbols and received symbols. The noise energy LNE output from
each of the circuits 630-636 is fed to the decision circuit 640.

15 The decision circuit 640 estimates channel conditions by using
the estimated least noise energy LNE received from the index
computing circuits 630-636, and then selects a result of decoding
matching the estimated channel conditions. The decision circuit 640
causes the select circuit 650 to select a correct result of decoding
output from one of the Viterbi decoders 610-614. The correct
20 result of decoding is delivered to a voice decoder, not shown.

25 The decoded bits output from the first and second Viterbi
decoders 610 and 612 are respectively subjected to error correction
by the CRC check circuits 340 and 350, respectively, as in the
previous embodiments. When the output of the Viterbi decoder
610 or 612 is selected, the CRC remove circuit 360 or 370 associated
with the decoder 610 or 612 removes CRC check bits from the

1 decoded bits. At this instant, the CRC check circuits 340 and 350
each delivers the respective error probability to the decision circuit
520. The decision circuit 520 selects decoded bits by referencing
the error probabilities received from the CRC check circuits 340 and
5 350 and the path metrics of the last stage.

As stated above, the illustrative embodiment produces
estimated least noise energy from the total of squares of differences
between received symbols and re-encoded estimated symbols, and
10 then estimates channel conditions by using the least noise energy as
a new index. The embodiment is therefore capable of achieving
effective decoded bits by accurate signal decision. In addition,
because the embodiment does not have to add, e.g., an error
detecting code to the new index, it does not constrain the
15 performance of the communication channel and does not require
any change in the specifications of the transmitter side.

While the embodiment has concentrated on the North
American CDMA system, it is similarly applicable to a North
20 American TDMA or similar TDMA handy phone. The embodiment is
implemented as signal decision circuitry and a receiver capable of
determining a plurality of code rates. Alternatively, the channel
estimation procedure is practicable even when signals which are
interchanged at a single code rate, as shown in FIG. 7 specifically.
25 In FIG. 7, a transmitter has a convolutional encoder 800 for
generating a signal in the form of a convolutional code. The signal
is sent from the transmitter to a receiver over a suitable channel

1 900. The receiver has a Viterbi decoder 810 for decoding the
received convolutional code. The resulting decoded bits are re-
encoded by a convolutional encoder 820 identical in code rate with
the encoder 800. An index compute circuit 830 produces the
5 estimated least noise energy based on the estimated symbols
derived from the output of the encoder 820 and the received
symbols, thereby estimating the conditions of the channel 900. The
estimated channel conditions may be used to confirm the reliability
of the received signal or as an index for power control, as desired.

10

In summary, it will be seen that the present invention provides a method and a device for signal decision, a receiver, and a channel condition estimating method for a coding communication system and practicable without resorting to an error detecting code
15 for the estimation of channel conditions. This successfully obviates an overhead relating to a communication channel. In addition, even with any of communication systems recommended in the past, the present invention achieves more accurate signal decision without resorting to any change in the specifications of a transmitting station if it is combined with the result of signal decision using an
20 error correcting code particular to the communication system.

While the present invention has been described with reference to the particular illustrative embodiments, it is not to be restricted by the embodiments. It is to be appreciated that those skilled in the art can change or modify the embodiments without departing from the scope and spirit of the present invention.
25

CLAIMS

1 1. A signal decision device for a coding communication system
and for identifying a code rate of a received signal encoded at any
one of a plurality of code rates including a convolutional code rate,
CHARACTERIZED BY comprising:

5 a plurality of Viterbi decoding means (10-1N, 20-2N, 40-4N)
for respectively performing trellis tracings with the received signal
in accordance with the plurality of code rates to thereby output a
plurality of decoded signals each having a particular rate;

10 an M break-off means (30) for sequentially receiving a
plurality of path metrics sequentially detected by said plurality of
Viterbi decoding means (10-1N, 20-2N, 40-4N) during the trellis
tracings, and sequentially breaking off the trellis tracings of, among
said plurality of paths, unlikely paths to thereby detect M most
probable paths over at least two of said plurality of Viterbi
15 decoding means (10-1N, 20-2N, 40-4N); and

 a decision means (50) for performing a final decision with the
path metrics of said M paths to thereby determine which of said
decoded signals output from said plurality of Viterbi decoding
means (10-1N, 20-2N, 40-4N) has a correct code rate.

1 2. A device in accordance with claim 1, **CHARACTERIZED IN**
THAT said plurality of Viterbi decoding means (10-1N, 20-2N, 40-
4N) each comprises:

5 an adding, comparing and selecting (ACS) means (10-1N) for
sequentially determining branch metrics based on the received

signal branch by branch during the trellis tracing, sequentially adding said branch metrics to last branch metrics, comparing resulting path metrics, and sequentially selecting one path smaller in path metric than the other path;

10 a metric storing means (20-2N) for sequentially updating the path metrics of the path selected by said ACS means (10-1N) branch by branch, and feeding said path metrics to said ACS circuit (10-1N); and

15 a path storing means (40-4N) for sequentially updating a survivor path selected by said ACS means (10-1N);

said ACS means (10-1N) and said metric storing (20-2N) means are both connected to an input side of said M break-off means (30), said path storing means (40-4N) is connected to an output side of said M break-off means (30), and said M break-off means (30) compares the path metrics received from the said ACS means (10-1N) of said plurality of Viterbi decoding means, causes, among said path metrics, likely path metrics to be sequentially written to the respective metric storing means (20-2N), narrows down said paths to M paths by recursive path selection, causes said 20 M paths to be written to the respective path storing means (40-4N), and feeds the path metrics of said M paths to said decision means (50).

1 3. A device in accordance with claim 1, CHARACTERIZED IN THAT when said M break-off means (30) performs an M break-off over at least two of said plurality of Viterbi decoding means (10-

1N, 20-2N, 40-4N), said M break-off means (30) causes one of said
5 plurality of Viterbi decoding means (10-1N, 20-2N, 40-4N) lost a
survivor path to end the trellis tracing while causing the other
Viterbi decoding means having survivor paths to continue the
trellis tracings.

1 4. A device in accordance with claim 1, CHARACTERIZED IN
THAT the received signal is a signal encoded by any one of a
plurality of convolutional encoders each having a particular code
rate, said plurality of Viterbi decoding means (10-1N, 20-2N, 40-
5 4N) each decodes the received signal at a respective rate
corresponding to the code rate of one of said plurality of
convolutional encoders, and said decision means (50) determines
which of said decoded signals output from said plurality of Viterbi
decoding means (10-1N, 20-2N, 40-4N) is correct to thereby
10 identify the code rate.

1 5. A device in accordance with claim 1, CHARACTERIZED IN
THAT the received signal consists of a plurality of signals having
respective bit rates and transformed to corresponding convolutional
codes and then repeated to have a single symbol rate, said device
5 further comprises a plurality of rate restoring means (300, 310,
320) for restoring symbols having a plurality of symbol rates from
the received signal, said plurality of Viterbi decoding means (10-
1N, 20-2N, 40-4N) are respectively connected to said plurality of
rate restoring means (300, 310, 320) and respectively perform the

10 trellis tracings in accordance with said plurality of symbol rates to thereby decode the plurality of signals having the respective bit rates, and said decision means (50) determines which of the decoded signals output from said plurality of Viterbi decoding means (10-1N, 20-2N, 40-4N) is correct to thereby identify the bit
15 rate of the received signal.

1 6. A signal decision device for a coding communication system and for identifying a code rate of a received signal encoded at any one of a plurality of code rates including a convolutional code rate,
CHARACTERIZED BY comprising:

5 a plurality of soft output Viterbi decoding means (410-41N) for respectively performing trellis tracings with the received signal in accordance with the plurality of code rates to thereby decode the received signal to a plurality of signals each having a particular rate, and for outputting together with said plurality of signals
10 reliability information representative of likelihood of said plurality of signals; and

15 a decision means (420) for determining, based on said reliability information received from said plurality of soft output Viterbi decoding means (410-41N), which of said plurality of signals is correct.

1 7. A device in accordance with claim 6, **CHARACTERIZED IN THAT** said plurality of soft output Viterbi decoding means (410-41N) each comprises:

an ACS means (460) for sequentially determining, based on
5 the received signal, branch metrics branch by branch during the trellis tracing, sequentially adding said branch metrics to last branch metrics, comparing resulting path metrics, and sequentially selecting one path smaller in path metric than the other path, and for sequentially outputting differences between greatest path
10 metrics and smallest path metrics branch by branch;

a metric storing means (470) for sequentially updating the path metrics of the paths selected by said ACS means (460) branch by branch, and feeding said path metrics to said ACS means (460);
and

15 a path storing means (480) for sequentially updating survivor paths selected by said ACS means (460) and said reliability information based on a difference between the path metrics of said paths and representative of likelihood of said paths;

said path storing means (480) includes a path updating means
20 (490) for producing, when the paths to be updated include a path different from previous paths, said reliability information based on the difference between the greatest branch metric and the smallest branch metric at each branch and output from said ACS means (460).

1 8. A device in accordance with claim 7, CHARACTERIZED IN THAT the received signal is a signal encoded by any one of a plurality of convolutional encoders each having a particular code rate, said plurality of soft output Viterbi decoding means (410-41N)

5 each decodes the received signal at a respective rate corresponding
to the code rate of one of said plurality of convolutional encoders,
and said decision means (420) determines which of said plurality of
signals output from said plurality of Viterbi decoding means (410-
41N) is correct to thereby identify the code rate of the received
10 signal.

1 9. A device in accordance with claim 7, CHARACTERIZED IN
THAT the received signal consists of a plurality of signals having
respective bit rates and transformed to corresponding convolutional
codes and then repeated to have a single symbol rate, said device
5 further comprises a plurality of rate restoring means (300, 310,
320) for restoring symbols having a plurality of symbol rates from
the received signal, said plurality of soft output Viterbi decoding
means are respectively connected to said plurality of rate restoring
means (300, 310, 320) and respectively perform the trellis tracings
10 in accordance with said plurality of symbol rates to thereby decode
the plurality of signals having the respective bit rates, and said
decision means (420) determines which of the decoded signals
output from said plurality of soft output Viterbi decoding means
(410-41N) is correct to thereby identify the bit rate of the received
15 signal.

1 10. A signal decision device for a coding communication
system and for identifying a code rate of a received signal encoded

at any one of a plurality of code rates including a convolutional code rate, CHARACTERIZED BY comprising:

- 5 a plurality of Viterbi decoding means (510-51N) for respectively performing trellis tracings with the received signal in accordance with the plurality of code rates to thereby decode the received signal to a plurality of signals each having a particular rate; and
- 10 a decision means (520) for receiving path metrics of last stage of survivor paths surviving after the trellis tracings performed by said plurality of Viterbi decoding means (510-51N), and estimating channel conditions based on said path metrics to thereby determine which of said plurality of signals output from said plurality of 15 Viterbi decoding means (510-51N) is correct.

- 1 11. A device in accordance with claim 10, CHARACTERIZED IN THAT said plurality of Viterbi decoding means (510-51N) each comprises:

- 5 an ACS means (540) for sequentially determining, based on the received signal, branch metrics branch by branch during the trellis tracing, sequentially adding said branch metrics to last branch metrics, comparing resulting path metrics, and sequentially selecting one path smaller in path metric than the other path;
- 10 a metric storing means (550) for sequentially storing the path metrics selected by said ACS means (540) branch by branch, and sequentially feeding previous path metrics to said ACS means (540);

a path storing means (560) for sequentially updating the paths selected by said ACS means (540);

and a control means (570) for detecting a survivor path stored
15 in said path storing means (560), and for reading the path metric of the last stage of said survivor path out of said metric storing means (550).

1 12. A device in accordance with claim 10, CHARACTERIZED IN
THAT the received signal is a signal encoded by any one of a plurality of convolutional encoders each having a particular code rate, said plurality of Viterbi decoding means (510-51N) each
5 decodes the received signal at a respective rate corresponding to the code rate of one of said plurality of convolutional encoders, and said decision means (520) determines which of said plurality of signals output from said plurality of Viterbi decoding means (510-
51N) is correct to thereby identify the code rate of the received
10 signal.

1 13. A device in accordance with claim 10, CHARACTERIZED IN
THAT the received signal consists of a plurality of signals having respective bit rates and transformed to corresponding convolutional codes and then repeated to have a single symbol rate, said device
5 further comprises a plurality of rate restoring means (300, 310, 320) for restoring symbols having a plurality of symbol rates from the received signal, said plurality of Viterbi decoding means (510-
51N) are respectively connected to said plurality of rate restoring

means (300, 310, 320) and respectively perform the trellis tracings
10 in accordance with said plurality of symbol rates to thereby decode
the plurality of signals having the respective bit rates, and said
decision means (520) determines which of the decoded signals
output from said plurality of Viterbi decoding means (510-51N) is
correct to thereby identify the bit rate of the received signal.

1 14. A signal decision device for a coding communication
system and for identifying a code rate of a received signal encoded
at any one of a plurality of code rates including a convolutional code
rate, **CHARACTERIZED BY** comprising:

5 a plurality of Viterbi decoding means (610-61N) for
respectively performing trellis tracings with the received signal in
accordance with the plurality of code rates to thereby decode the
received signal to a plurality of signals each having a particular
rate;

10 a plurality of re-encoding means (620-62N) for respectively
re-encoding said plurality of signals output from said plurality of
Viterbi decoding means (610-61N) to corresponding convolutional
codes; and

15 a plurality of decision means (630-63N, 640) for respectively
performing signal decisions based on said convolutional codes
output from said plurality of re-encoding means (620-62N) and the
received signal;

 wherein said plurality of decision means (630-63N, 640)
respectively receive re-encoded symbol sequences from said

20 plurality of re-encoding means (620-62N) and a received symbol sequence input to said plurality of Viterbi decoding means (610-61N), multiply said re-encoded symbol sequences by a constant to produce products, produce differences between said products and the received symbol sequence, square said differences to produce squares, totalize said squares to produce totals, determine a smallest total, and estimate channel conditions based on said smallest total to thereby determine which of said plurality of signals output from said plurality of Viterbi decoding means (610-61N) is correct.

1 15. A device in accordance with claim 14, CHARACTERIZED IN THAT the received signal is a signal encoded by any one of a plurality of convolutional encoders each having a particular code rate, said plurality of Viterbi decoding means (610-61N) each decodes the received signal at a respective rate corresponding to the code rate of one of said plurality of convolutional encoders, and said plurality of decision means (630-63N, 640) determine which of said plurality of signals output from said plurality of Viterbi decoding means (610-61N) is correct to thereby identify the code rate of the received signal.

1 16. A device in accordance with claim 15, CHARACTERIZED IN THAT the received signal consists of a speech signal transformed to a first convolutional code at a first code rate, and a control signal transformed to a second convolutional code at a second code rate

5 different from said first code rate, the first and second convolutional codes are selectively located at a same position of a slot, said plurality of Viterbi decoding means (610-61N) include at least a first Viterbi decoding means for decoding the received signal at the first code rate, and a second Viterbi decoding means for 10 decoding the received signal at the second code rate, and said plurality of decision means (630-63N, 640) determine which of signals output from said first and second Viterbi decoding means is correct to thereby determine whether the received signal is the speech signal or the control signal.

1 17. A device in accordance with claim 14, CHARACTERIZED IN THAT the received signal consists of a plurality of signals having respective bit rates and transformed to corresponding convolutional codes and then repeated to have a single symbol rate, said device 5 further comprises a plurality of rate restoring means (300, 310, 320) for restoring symbols having a plurality of symbol rates from the received signal by addition, said plurality of Viterbi decoding means (610-61N) are respectively connected to said plurality of rate restoring means (300, 310, 320) and respectively perform the trellis tracings in accordance with said plurality of symbol rates to thereby decode the plurality of signals having the respective bit rates, and said plurality of decision means (630-63N, 640) decision means determine which of the decoded signals output from said 10 plurality of Viterbi decoding means (610-61N) is correct to thereby identify the bit rate of the received signal.

1 18. A signal deciding method for a coding communication
system and for identifying a code rate of a received signal encoded
at any one of a plurality of code rates including a convolutional code
rate, CHARACTERIZED BY comprising the steps of:

5 (a) performing trellis tracings with the received signal in
accordance with the plurality of code rates to thereby decode the
received signal to a plurality of signals each having a particular
code rate;

10 (b) sequentially receiving a plurality of path metrics
sequentially detected by the trellis tracings in step (a), and
sequentially breaking off the trellis tracings of, among said plurality
of paths, unlikely paths to thereby detect M most probable paths
over at least two of said trellis tracings; and

15 (c) executing a final decision with path metrics of said M paths
detected in step (b) to thereby identify the code rate of the
received signal.

1 19. A method in accordance with claim 18, CHARACTERIZED IN
THAT step (a) comprises:

5 (d) sequentially producing branch metrics of each trellis
tracing on the basis of the received signal;

5 (e) sequentially adding said branch metrics to branch metrics
produced at a previous branch to thereby output added branch
metrics;

 (f) comparing said added branch metrics;

(g) sequentially selecting paths having a smaller path metric;

10 and

(h) sequentially storing survivor paths selected in step (g) while updating said survivor paths; and

step (b) comprises:

(i) comparing the path metrics of the paths selected in step 15 (g), feeding, among said path metrics, probable path metrics to step (e), repeating step (g) to thereby narrow down the paths to M paths, storing said M paths in step (h), and feeding the path metrics of said M paths to step (c).

1 20. A method in accordance with claim 18, wherein step (b)
comprises (j) ending, in the event of an M break-off, the trellis
tracing lost a survivor path while continuing the trellis tracing
having a survivor path.

1 21. A method in accordance with claim 18, CHARACTERIZED IN
THAT the received signal is a signal encoded by one of a plurality of
convolutional encoders each having a particular convolution rate,
and step (a) is executed with the received signal at rates
5 corresponding to said plurality of convolutional encoders in parallel
to thereby determine which result is correct, whereby the code rate
of the received signal is identified.

1 22. A method in accordance with claim 18, CHARACTERIZED IN
THAT the received signal is a signal produced by transforming

signals having a plurality of bit rates and encoded by variable rate speech encoding to corresponding convolutional codes, and then
5 repeated to having a single rate, said method further comprises the step of (k) restoring code data having a plurality of rates from the received signal by addition, and step (a) comprises a plurality of steps for executing in parallel trellis tracings each corresponding to a respective bit rate restored in step (k) to thereby determine
10 which result is correct, whereby the bit rate of the received signal is identified.

1 23. A signal deciding method for a coding communication system and for identifying a code rate of a received signal encoded at any one of a plurality of code rates including a convolutional code rate, CHARACTERIZED BY comprising the steps of:

5 (a) executing trellis tracings each corresponding to one of the plurality of code rates to thereby decode the received signal to a plurality of signals each having a particular code rate, and outputting reliability information each being representative of a probability of the signal; and
10 (b) determining, based on said reliability information, which of said signals output in step (a) is correct.

1 24. A method in accordance with claim 23, CHARACTERIZED IN THAT step (a) comprises:

 (c) sequentially producing, based on the received signal, branch metrics of the trellis tracings branch by branch;

5 (d) sequentially adding said branch metrics to branch metrics produced at a previous branch to thereby output added branch metrics;

 (e) comparing said added branch metrics;

 (f) sequentially selecting paths having a smaller path metric;

10 (g) producing a difference between a greatest path metric and a smallest path metric at each of consecutive branches; and

 (h) sequentially storing said paths selected in step (f) and said reliability information on said paths while updating said paths and said reliability information; and

15 said step (h) comprises (i) determining, when the path to be updated is different from a previous path, the reliability information on said path on the basis of the difference between the greatest path metric and the smallest path metric produced in step (g), and storing said reliability information.

1 25. A method in accordance with claim 23, CHARACTERIZED IN THAT the received signal is a signal encoded by one of a plurality of convolutional encoders each having a particular convolution rate, and step (a) is executed with the received signal at rates

5 corresponding to said plurality of convolutional encoders in parallel to thereby determine which result is correct, whereby the code rate of the received signal is identified.

1 26. A method in accordance with claim 25, CHARACTERIZED IN THAT the received signal consists of a speech signal encoded to a

convolutional code at a first code rate, and a control signal encoded
to a convolutional code at a second code rate different from said
5 first code rate, the speech signal and the control signal are
selectively located at a single position of a slot to be transmitted,
and wherein step (a) comprises (j) executing trellis tracings with
the received signal at the first code rate, and (k) executing trellis
tracings with the received signal at the second code rate, and said
10 method determines which of results of steps (j) and (k) is correct to
thereby identify the speech signal or the control signal.

1 27. A method in accordance with claim 23, CHARACTERIZED IN
THAT the received signal is a signal produced by transforming
signals having a plurality of bit rates and encoded by variable rate
speech encoding to corresponding convolutional codes, and then
5 repeated to having a single rate, said method further comprises the
step of (k) restoring code data having a plurality of rates from the
received signal by addition, and step (a) comprises a plurality of
steps for executing in parallel trellis tracings each corresponding to
a respective bit rate restored in step (k) to thereby determine
10 which result is correct, whereby the bit rate of the received signal
is identified.

1 28. A channel condition estimating method for estimating, in
the event of identification of a code rate of a received signal
encoded at any one of a plurality of code rates including a

convolutional code rate, channel conditions for thereby performing
5 a signal decision, CHARACTERIZED BY comprising the steps of:

(a) executing trellis tracings each corresponding to one of the plurality of code rates to thereby decode the received signal to a plurality of signals each having a particular code rate;

10 (b) detecting path metrics of last stages of paths surviving after the trellis tracings; and

(c) determining error probabilities of said plurality of signals output in step (a) by using said path metrics as indexes to thereby estimate channel conditions.

1 29. A method in accordance with claim 28, CHARACTERIZED IN THAT the received signal is a signal encoded by one of a plurality of convolutional encoders each having a particular convolution code rate, and step (a) is executed with the received signal at rates 5 corresponding to said plurality of convolutional encoders in parallel to thereby determine which result is correct, whereby the code rate of the received signal is identified.

1 30. A method in accordance with claim 28, CHARACTERIZED IN THAT the received signal consists of a plurality of signals having respective bit rates and transformed to corresponding convolutional codes and then repeated to have a single symbol rate, said method 5 further comprises the step of (d) decoding the received signal to a plurality of coded data each having a particular rate by addition, and wherein step (a) comprises a plurality of parallel steps for

respectively performing the trellis tracings in accordance with bit rates of said plurality of coded data, and said method determines
10 which of results of said plurality of parallel steps is correct to thereby identify the bit rate of the received signal.

1 31. A channel condition estimating method for estimating, in the event of identification of a code rate of a received signal encoded at any one of a plurality of code rates including a convolutional code rate, channel conditions for thereby executing a
5 signal decision, CHARACTERIZED BY comprising the steps of:

 (a) executing trellis tracings each corresponding to one of the plurality of code rates to thereby decode the received signal to a plurality of signals each having a particular rate;

10 (b) re-encoding said plurality of signals produced in step (a) to output corresponding convolutional codes; and

 (c) executing a signal decision on the basis of said convolutional codes produced in step (b) and the received signal;

15 wherein step (c) comprises (d) multiplying symbol sequences of said convolutional codes output in step (b) by a constant to produce products, producing differences between said products and a symbol sequence of the received signal, squaring said differences to produce squares, totalizing said squares to produce totals, determining a smallest total, and determining error probabilities of said convolutional codes on the basis of said smallest total to thereby estimate channel conditions.
20

1 32. A method in accordance with claim 31, CHARACTERIZED IN
THAT the received signal is a signal encoded by one of a plurality of
convolutional encoders each having a particular convolution code
rate, and step (a) is executed with the received signal at rates
5 corresponding to said plurality of convolutional encoders in parallel
to thereby determine which result is correct, whereby channel
conditions are estimated.

1 33. A method in accordance with claim 32, CHARACTERIZED IN
THAT the received signal consists of a speech signal encoded to a
convolutional code at a first code rate, and a control signal encoded
to a convolutional code at a second code rate different from said
5 first code rate, the speech signal and the control signal are
selectively located at a single position of a slot to be transmitted,
and wherein step (a) comprises (e) executing trellis tracings at the
first rate, and (f) executing trellis tracings at the second code rate,
and said method determines which of results of steps (e) and (f) is
10 correct by estimating channel conditions to thereby identify the
speech signal or the control signal.

1 34. A method in accordance with claim 31, CHARACTERIZED IN
THAT the received signal consists of a plurality of signals having
respective bit rates and transformed to corresponding convolutional
codes and then repeated to have a single symbol rate, said method
5 further comprises the step of (d) decoding the received signal to a
plurality of coded data each having a particular rate by addition,

and wherein step (a) comprises a plurality of parallel steps for respectively performing the trellis tracings in accordance with bit rates of said plurality of coded data, and said method determines 10 which of results of said plurality of parallel steps is correct to thereby identify the bit rate of the received signal.

1 35. A receiver for a coding communication and for identifying a code rate of a received signal encoded at any one of a plurality of code rates including a convolutional code rate, CHARACTERIZED BY comprising:

5 a plurality of Viterbi decoding means (10-1N, 20-2N, 40-4N) for respectively performing trellis tracings with the received signal in accordance with the plurality of code rates to thereby decode the received signal to a plurality of signals each having a particular rate;

10 an M break-off means (30) for sequentially receiving a plurality of path metrics sequentially detected by said plurality of Viterbi decoding means (10-1N, 20-2N, 40-4N) during the trellis tracings, and sequentially breaking off the trellis tracings of, among said plurality of paths, unlikely paths to thereby detect M most probable paths over at least two of said plurality of Viterbi 15 decoding means (10- 1N, 20-2N, 40-4N); and

 a decision means (50) for executing a final decision with path metrics of said M paths, and tracing back a path corresponding to a result of said final decision to thereby output decoded bits.

1 36. A receiver in accordance with claim 35, CHARACTERIZED
IN THAT said plurality of Viterbi decoding means (10-1N, 20-2N,
40-4N) each comprises:

5 an ACS means (10-1N) for sequentially determining branch
metrics based on the received signal during the trellis tracing,
sequentially adding said branch metrics to last branch metrics
branch by branch, comparing resulting path metrics, and
sequentially selecting one path smaller in path metric than the
other path;

10 a metric storing means (20-2N) for sequentially updating the
path metrics of the paths selected by said ACS means (10-1N)
branch by branch, and feeding said path metrics to said ACS means
(10-1N); and

15 a path storing means (40-4N) for sequentially updating
survivor paths selected by said ACS means (10-1N);

20 said ACS means (10-1N) and said metric storing means (20-
2N) are both connected to an input side of said M break-off means
(30), said path storing means (40-4N) is connected to an output side
of said M break-off means (30), and said M break-off means (30)
compares the path metrics received from the said ACS means (10-
1N) of said plurality of Viterbi decoding means (10-1N, 20-2N, 40-
4N), causes, among said path metrics, likely path metrics to be
sequentially written to the respective metric storing means (20-
2N), narrows down said paths to M paths by recursive path
25 selection, causes said M paths to be written to the respective path

storing means (40-4N), and feeds path metrics of said M paths to said decision means (50); and

30 said decision means (50) performs a decision on the received signal on the basis of the path metrics of survivor paths received via said M break-off means (30), reads the signal corresponding to a result of said decision out of the associated path storing means (40-4N), and then outputs decoded bits resulting from trace-back.

1 37. A receiver in accordance with claim 35, CHARACTERIZED
IN THAT when said M break-off means (30) performs an M break-off over at least two of said plurality of Viterbi decoding means (10-1N, 20-2N, 40-4N), said M break-off means (30) causes one of
5 said plurality of Viterbi decoding means (10-1N, 20-2N, 40-4N) lost a survivor path to end the trellis tracing while causing the other Viterbi decoding means having a survivor path to continue the trellis tracing.

1 38. A receiver in accordance with claim 35, CHARACTERIZED
IN THAT the received signal is a signal encoded by any one of a plurality of convolutional encoders each having a particular code rate, said plurality of Viterbi decoding means (10-1N, 20-2N, 40-
5 4N) each decodes the received signal at a respective rate corresponding to the code rate of one of said plurality of convolutional encoders, and said decision means (50) determines which of signals output from said plurality of Viterbi decoding

means (10-1N, 20-2N, 40-4N) is correct, and then reproduces the
10 correct signal.

1 39. A receiver in accordance with claim 35, CHARACTERIZED
IN THAT the received signal consists of a plurality of signals having
respective bit rates and transformed to corresponding convolutional
codes and then repeated to have a single symbol rate, said device
5 further comprises a plurality of rate restoring means (300, 310,
320) for restoring a plurality of symbols each having a particular
rate from the received signal, said plurality of Viterbi decoding
means (10-1N, 20-2N, 40-4N) are respectively connected to said
plurality of rate restoring means (300, 310, 320) and respectively
10 perform the trellis tracings in accordance with symbol rates of said
plurality of symbols to thereby decode the signals having the
respective bit rates, said receiver further comprises a voice decoder
for decoding a speech in accordance with any one of the decoded
signals, and said voice decoder decodes the decoded data at one of
15 the bit rates decoded by said plurality of Viterbi decoding means
(10-1N, 20-2N, 40-4N) which is determined to be correct.

1 40. A receiver in accordance with claim 35, CHARACTERIZED
IN THAT the received signal includes a CRC (Cyclic Redundancy
Check) code, and said receiver further comprises checking means
(340, 350) for performing error correction with the decoded signals
5 by using the CRC code.

1 41. A receiver for a coding communication system and for identifying a code rate of a received signal encoded at any one of a plurality of code rates including a convolutional code rate,
CHARACTERIZED BY comprising:

5 a plurality of soft output Viterbi decoding means (410, 412, 414, 416) for respectively performing trellis tracings with the received signal in accordance with the plurality of code rates to thereby decode the received signal to a plurality of signals each having a particular rate, and for outputting together with said
10 plurality of signals reliability information representative of likelihood of said plurality of signals;

15 a decision means (420) for determining, based on said reliability information received from said plurality of soft output Viterbi decoding means (410, 412, 414, 416), which of said plurality of signals is correct; and

 a selecting means (430) for selecting one of said plurality of signals on the basis of a result of decision of said decision means.

1 42. A receiver in accordance with claim 41, CHARACTERIZED IN THAT said plurality of soft output Viterbi decoding means (410, 412, 414, 416) each comprises:

5 an ACS means (460) for sequentially determining branch metrics based on the received signal branch by branch during the trellis tracing, sequentially adding said branch metrics to last branch metrics, comparing resulting path metrics, and sequentially selecting one path smaller in path metric than the other path, and

for sequentially outputting a difference between a greatest path
10 metric and a smallest path metric branch by branch;

a metric storing means (470) for sequentially updating the path metrics of the paths selected by said ACS means (460) branch by branch, and feeding said path metrics to said ACS means (460); and

15 a path storing means (480) for sequentially updating survivor paths selected by said ACS means (460) and said reliability information based on a difference between path metrics of said paths and representative of likelihood of said paths; and

20 said path storing means (480) includes a path updating means (490) for producing, when the paths to be updated include a path different from previous paths, said reliability information based on the difference between the greatest branch metric and the smallest branch metric at each branch and output from said ACS means (460).

1 43. A receiver in accordance with claim 41, CHARACTERIZED
IN THAT the received signal is a signal encoded by any one of a plurality of convolutional encoders each having a particular code rate, said plurality of soft output Viterbi decoding means (410, 412, 5 414, 416) each decodes the received signal at a respective rate corresponding to the code rate of one of said plurality of convolutional encoders, and said decision means (420) determines which of signals output from said plurality of soft output Viterbi

decoding means (410, 412, 414, 416) is correct, and then
10 reproduces the correct signal.

1 44. A receiver in accordance with claim 41, CHARACTERIZED
IN THAT the received signal consists of a plurality of signals having
respective bit rates and transformed to corresponding convolutional
codes and then repeated to have a single symbol rate, said device
5 further comprises a plurality of rate restoring means (300, 310,
320) for restoring a plurality of symbols each having a particular
rate from the received signal, said plurality of soft output Viterbi
decoding means (410, 412, 414, 416) are respectively connected to
said plurality of rate restoring means (300, 310, 320) and
10 respectively perform the trellis tracings in accordance with symbol
rates of said plurality of symbols to thereby decode the signals
having the respective bit rates, said receiver further comprises a
voice decoder for decoding a speech in accordance with any one of
the decoded signals, and said voice decoder decodes the decoded
15 data at one of the bit rates decoded by said plurality of soft output
Viterbi decoding means (410-416) which is determined to be
correct.

1 45. A receiver in accordance with claim 41, CHARACTERIZED IN
THAT the received signal includes a CRC (Cyclic Redundancy Check)
code, and said receiver further comprises checking means (340,
350) for performing error correction with the decoded signals by
5 using the CRC code.

1 46. A receiver for a coding communication system and for identifying a code rate of a received signal encoded at any one of a plurality of code rates including a convolutional code rate,
CHARACTERIZED BY comprising:

5 a plurality of Viterbi decoding means (510, 512, 514, 516) for respectively performing trellis tracing with the received signal in accordance with the plurality of code rates to thereby decode the received signal to a plurality of signals each having a particular rate;

10 a decision means (520) for receiving path metrics of last stages of paths surviving after the trellis tracings performed by said plurality of Viterbi decoding means (510, 512, 514, 516), and estimating channel conditions based on said path metrics to thereby determine which of results of said plurality of signals output from
15 said plurality of Viterbi decoding means (510, 512, 514, 516) is correct; and

 a selecting means (530) for selecting one of said plurality of signals on the basis of a result of decision of said decision means (520).

1 47. A receiver in accordance with claim 46, CHARACTERIZED IN THAT said plurality of Viterbi decoding means (510, 512, 514, 516) each comprises:

5 an ACS means (540) for sequentially determining, based on the received signal, branch metrics branch by branch during the

trellis tracing, sequentially adding said branch metrics to last branch metrics, comparing resulting path metrics, and sequentially selecting one path smaller in path metric than the other path;

10 a metric storing means (550) for sequentially storing the path metrics selected by said ACS means (540) branch by branch, and sequentially feeding previous path metrics to said ACS means (540);

a path storing means (560) for sequentially updating the paths selected by said ACS means (540); and

15 a control means (570) for tracing back a survivor path stored in said path storing means (560) to thereby output decoded bits, and reading the path metric of the last stage of said survivor path out of said metric storing means (550).

1 48. A receiver in accordance with claim 46, CHARACTERIZED
IN THAT the received signal is a signal encoded by any one of a plurality of convolutional encoders each having a particular code rate, said plurality of Viterbi decoding means (510, 512, 514, 516)
5 each decodes the received signal at a respective rate corresponding to the code rate of one of said plurality of convolutional encoders, and wherein said decision means (520) determines which of signals output from said plurality of Viterbi decoding means (510, 512, 514, 516) is correct, and then reproduces the correct signal.

1 49. A receiver in accordance with claim 46, CHARACTERIZED
IN THAT the received signal consists of a plurality of signals having respective bit rates and transformed to corresponding convolutional

codes and then repeated to have a single symbol rate, said device
5 further comprises a plurality of rate restoring means (300, 310,
320) for restoring a plurality of symbols each having a particular
rate from the received signal, said plurality of Viterbi decoding
means (510, 512, 514, 516) are respectively connected to said
plurality of rate restoring means (300, 310, 320) and respectively
10 perform the trellis tracings in accordance with symbol rates of said
plurality of symbols to thereby decode the signals having the
respective bit rates, wherein said receiver further comprises a voice
decoder for decoding a speech in accordance with any one of the
decoded signals, and wherein said voice decoder decodes the
15 decoded data at one of the bit rates decoded by said plurality of
Viterbi decoding means (510, 512, 514, 516) which is determined
to be correct.

1 50. A receiver in accordance with claim 46, CHARACTERIZED
IN THAT the received signal includes a CRC (Cyclic Redundancy
Check) code, and wherein said receiver further comprises checking
means (340, 350) for performing error correction with the decoded
5 signals by using the CRC code.

1 51. A receiver for a coding communication system and for
identifying a code rate of a received signal encoded at any one of a
plurality of code rates including a convolutional code rate,
CHARACTERIZED BY comprising:

5 a plurality of Viterbi decoding means (610, 612, 614, 616) for respectively performing trellis tracings with the received signal in accordance with the plurality of code rates to thereby decode the received signal to a plurality of signals each having a particular rate;

10 a plurality of re-encoding means (620, 622, 624) for respectively re-encoding said plurality of signals output from said plurality of Viterbi decoding means (610-616) to corresponding convolutional codes;

15 a plurality of decision means (630, 632, 634, 636, 640) for respectively performing signal decisions on the basis of said convolutional codes output from said plurality of re-encoding means (620, 622, 624, 626) and the received signal; and

20 a selecting means (650) for selecting one of said plurality of signals output from said plurality of Viterbi decoding means (620, 622, 624, 626) on the basis of results of decisions of said plurality of decision means (630, 632, 634, 636, 640);

25 wherein said plurality of decision means (630, 632, 634, 636) respectively receive re-encoded symbol sequences from the respective re-encoding means (620, 622, 624, 626) and a received symbol sequence input to the respective Viterbi decoding means (610, 612, 614, 616), multiply said re-encoded symbol sequences by a constant to produce products, produce differences between said products and the received symbol sequence, square said differences to produce squares, totalize said squares to produce totals, determine a smallest total, and estimate channel conditions

based on said smallest total to thereby determine which of said plurality of signals output from said plurality of Viterbi decoding means (610, 612, 614, 616) is correct.

1 52. A receiver in accordance with claim 51, CHARACTERIZED
IN THAT the received signal is a signal encoded by any one of a plurality of convolutional encoders each having a particular code rate, said plurality of Viterbi decoding means (610, 612, 614, 616)
5 each decodes the received signal at a respective rate corresponding to the code rate of one of said plurality of convolutional encoders, and wherein said plurality of decision means (630, 632, 634, 636, 640) determine which of signals output from said plurality of Viterbi decoding means (610, 612, 614, 616) is correct, and then
10 reproduces the correct signal.

1 53. A receiver in accordance with claim 52, CHARACTERIZED
IN THAT the received signal consists of a speech signal transformed to a first convolutional code at a first code rate, and a control signal transformed to a second convolutional code at a second code rate different from said first code rate, the first and second convolutional codes are selectively located at a same position of a slot, said plurality of Viterbi decoding means (610, 612, 614, 616) include at least a first Viterbi decoding means for decoding the received signal at the first code rate, and a second Viterbi decoding means for decoding the received signal at the second code rate, said plurality of decision means (630, 632, 634, 636, 640) determine

which of signals output from said first and second Viterbi decoding means is correct to thereby determine whether the received signal is the speech signal or the control signal, and said receiver feeds the 15 decoded bits to a voice decoder if the received signal is a speech signal or feeds said decoded bits to a control section if the received signal is a control signal.

1 54. A receiver in accordance with claim 52, CHARACTERIZED
IN THAT the received signal is a convolutional encoded signal
modulated by a preselected time division modulation system, and
wherein said receiver further comprises a demodulating means for
5 demodulating said received signal.

1 55. A receiver in accordance with claim 51, CHARACTERIZED
IN THAT the received signal consists of a plurality of signals having
respective bit rates and transformed to corresponding convolutional
codes and then repeated to have a single symbol rate, said device
5 further comprises a plurality of rate restoring means (300, 310,
320) for restoring a plurality of symbols each having a particular
rate from the received signal, wherein said plurality of Viterbi
decoding means (610, 612, 614, 616) are respectively connected to
said plurality of rate restoring means (300, 310, 320) and
10 respectively perform the trellis tracings in accordance with symbol
rates of said plurality of symbols to thereby decode the signals
having the respective bit rates, said receiver further comprises a
voice decoder for decoding a speech in accordance with any one of

15 the decoded signals, and said voice decoder decodes the decoded
data at one of the bit rates decoded by said plurality of Viterbi
decoding means (610, 612, 614, 616) which is determined to be
correct.

1 56. A receiver in accordance with claim 55, CHARACTERIZED
IN THAT the received signal is a convolutional encoded signal
modulated by a preselected code division modulation system, and
said receiver further comprises a demodulating means for
5 demodulating said received signal.

1 57. A receiver in accordance with claim 51, CHARACTERIZED
IN THAT the received signal includes a CRC code, and said receiver
further comprises checking means (340, 350) for performing error
correction with the decoded signals by using the CRC code.

1 58. A signal decision device substantially as herein
described with reference to the accompanying drawings.

1 59. A signal deciding method substantially as herein
described with reference to the accompanying drawings.

1 60. A channel condition estimating method
substantially as herein described with reference to the
accompanying drawings.

1 61. A receiver substantially as herein described
with reference to the accompanying drawings.

Application No: GB 9617695.3
Claims searched: 1-5, 18-22, 35-40

Examiner: Keith Williams
Date of search: 13 November 1996

Patents Act 1977
Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK Cl (Ed.O): H4P (PAQ, PEP, PRV)

Int Cl (Ed.6): H03M 13/00, 13/12; H04L 1/00, 1/20, 25/03

Other: online WPI, INSPEC

Documents considered to be relevant:

Category	Identity of document and relevant passage		Relevant to claims
A	EP 0448809 A2	Motorola Inc. - see Fig. 3 (and equivalent US 5027374)	1,18,35
A	EP 0152947 A2	Fujitsu - see Fig. 4	1,18,35
A	WO 95/08888 A1	Qualcomm Inc. - see pages 19-26	1,18,35

98

- | | |
|---|--|
| X Document indicating lack of novelty or inventive step | A Document indicating technological background and/or state of the art. |
| Y Document indicating lack of inventive step if combined with one or more other documents of same category. | P Document published on or after the declared priority date but before the filing date of this invention. |
| & Member of the same patent family | E Patent document published on or after, but with priority date earlier than, the filing date of this application. |