Homework 5

Due Date: 07/05/2024

- Please submit your answers as a single consolidated PDF file, and upload the file to Canvas.
- You may submit multiple times, but only the last submission made before the due date will be considered for grading.
- Make sure you submit the right file to Canvas. Wrong file submissions will not be graded.
- Note: Inquiries about homework must be sent to the TAs or instructor within 3 days after grades are published.
- 10 Bonus points if you create your document in LaTeX and submit the compiled result in .pdf.

Functions

- 1. Fill in each blank with the word most or least.
 - a. A function F is one-to-one if, and only if, each element in the co-domain of F is the image of at _____ one element in the domain of F.
 - b. A function F is onto if, and only if, each element in the co-domain of F is the image of at _____ one element in the domain of F.
- 2. When asked to state the definition of one-to-one, a student replies, "A function f is one-to-one if, and only if, every element of X is sent by f to exactly one element of Y." Give a counterexample to show that the student's reply is incorrect.
- 3. Let $X = \{1, 5, 9\}$ and $Y = \{3, 4, 7\}$.
 - (a) Define $f: X \to Y$ by specifying that

$$f(1) = 4$$
,

$$f(5) = 7,$$

$$f(9) = 4$$
.

Is f one-to-one? Is f onto? Explain your answers.

(b) Define $g: X \to Y$ by specifying that

$$g(1) = 7,$$

$$g(5) = 3,$$

$$g(9) = 4.$$

Is g one-to-one? Is g onto? Explain your answers.

4. Let $X = \{a, b, c, d\}$ and $Y = \{e, f, g\}$. Define functions F and G by the arrow diagrams below.

Domain of F Co-domain of F

Domain of G Co-domain of G

- (a) Is F one-to-one? Why or why not? Is it onto? Why or why not?
- (b) Is G one-to-one? Why or why not? Is it onto? Why or why not?
- 5. Let $X = \{a, b, c\}$ and $Y = \{w, x, y, z\}$. Define functions H and K by the arrow diagrams below.

Domain of H Co-domain of H

Domain of K Co-domain of K

- (a) Is H one-to-one? Why or why not? Is it onto? Why or why not?
- (b) Is K one-to-one? Why or why not? Is it onto? Why or why not?
- 6. Let $X = \{1, 2, 3\}, Y = \{1, 2, 3, 4\}, \text{ and } Z = \{1, 2\}.$
 - (a) Define a function Let $f: X \to Y$ that is one-to-one but not onto.
 - (b) Define a function $g: X \to Z$ that is onto but not one-to-one.
 - (c) Define a function $h: X \to X$ that is neither one-to-one nor onto.
 - (d) Define a function $k: X \to X$ that is one-to-one and onto but is not the identity function on X.
- 7. (a) Define $g: \mathbf{Z} \to \mathbf{Z}$ by the rule g(n) = 4n 5, for all integers n.
 - i. Is g one-to-one? Prove or give a counterexample.
 - ii. Is g onto? Prove or give a counterexample.
 - (b) Define $G: \mathbf{R} \to \mathbf{R}$ by the rule G(x) = 4x 5 for all real numbers x. Is G onto? Prove or give a counterexample.
- 8. (a) Define $H: \mathbf{R} \to \mathbf{R}$ by the rule $H(x) = x^2$, for all real numbers x.
 - i. Is H one-to-one? Prove or give a counterexample.
 - ii. Is ${\cal H}$ onto? Prove or give a counterexample.
 - (b) Define $K: \mathbf{R}^{nonneg} \to \mathbf{R}^{nonneg}$ by the rule $K(x) = x^2$, for all nonnegative real numbers x. Is K onto? Prove or give a counterexample.

In each of the following a function f is defined on a set of real numbers. Determine whether or not f is one-to-one and justify your answer.

- 9. $f(x) = \frac{x+1}{x}$, for all real numbers $x \neq 0$
- 10. $f(x) = \frac{x}{x^2 + 1}$, for all real numbers x