GRUPO RECURSOS PARA MATEMÁTICA

Prova Modelo de Exame Nacional de Matemática A Prova 635 | Ensino Secundário | Junho de 2020

12º Ano de Escolaridade

Prova 635

Duração da Prova: 150 minutos. | Tolerância: 30 minutos.

9 Páginas

- Utilize apenas caneta ou esferográfica de tinta azul ou preta.
- Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.
- É permitido o uso de régua, compasso, esquadro e transferidor.
- Apresente apenas uma resposta para cada item.
- As cotações dos itens encontram-se no final da prova.

- A prova inclui um formulário.
- Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.
- Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as
 justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente
 sempre o valor exato.
- Itens cujas respostas contribuem obrigatoriamente para a classificação final:

 $\mathbf{2.1},\,\mathbf{2.2},\,\mathbf{5}\;\mathrm{e}\;\mathbf{6}$

Estes itens estão assinalados no enunciado através de uma moldura que os rodeia.

• Dos restantes 14 itens da prova, apenas contribuem para a classificação final os 8 itens cujas respostas obtenham melhor pontuação.

Formulário

Geometria

Comprimento de um arco de circunferência:

 αr (α - amplitude, em radianos, do ângulo ao centro; r - raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

$$\frac{\alpha r^2}{2}$$
 (α - amplitude, em radianos, do ângulo ao centro; r - raio)

Área lateral de um cone: πrg (r- raio da base; g - geratriz)

Área de uma superfície esférica: $4\pi r^2$ (r- raio)

Volume de uma pirâmide: $\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$

Volume de um cone: $\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$

Volume de uma esfera: $\frac{4}{3}\pi r^3$ (r- raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$\operatorname{sen}(a+b) = \operatorname{sen}a\cos b + \operatorname{sen}b\cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Complexos

$$\left(\rho e^{i\theta}\right)^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho e^{i\theta}} = \sqrt[n]{\rho} e^{i\frac{\theta+2k\pi}{n}} \quad \left(k \in \{0,\ldots,n-1\} \text{ e } n \in \mathbb{N}\right)$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^n)' = nu^{n-1}u' \ (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u'e^u$$

$$(a^u)' = u'a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad \left(n \in \mathbb{N}\right)$$

$$\lim_{x\to 0}\frac{\operatorname{sen} x}{x}=1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{r^p} = +\infty \quad (p \in \mathbb{R})$$

1. (Carla Pacheco e Susana Freitas)

Sejam k e b números reais.

Relativamente ao desenvolvimento do binómio $(x^3 + e^{k-b})^n$, $x \neq 0$, $n \in \mathbb{N}$, sabe-se que:

- tem 8 termos;
- um dos termos do desenvolvimento é igual a $70\sqrt{e^{6k}} \times x^9$.

O valor de k é:

(A)
$$\ln\left(2e^{4b}\right)$$

(B)
$$\ln\left(2\times e^{5b}\right)$$

(C)
$$\ln\left(\frac{10}{3} + 5b\right)$$

 \boldsymbol{E}

(B)
$$\ln(2 \times e^{5b})$$
 (C) $\ln(\frac{10}{3} + 5b)$ **(D)** $\ln(\sqrt[3]{10 \times e^{6b}})$

G

D

2. (Antero Neves)

Na figura está representado, em referencial o.n. Oxyz, um cubo [ABCODEFG] de onde foi retirada uma pirâmide quadrangular regular [DEFGQ].

Sabe-se que:

- o ponto A tem coordenadas $(4\sqrt{6},0,0)$;
- o ângulo formado pelo semieixo positivo das ordenadas e a semirreta OC tem 30° de amplitude;
- o ponto *M* é o ponto médio de [*AC*];
- a face [OCGD] está contida no plano yOz;
- a reta *r* contém a altura da pirâmide;
- **2.1.** Mostre que uma equação da reta r pode ser:

$$r:(x,y,z)=\left(2\sqrt{6},3\sqrt{2},\sqrt{6}\right)+k\left(0,-\sqrt{3},3\right),\quad k\in\mathbb{R}$$

2.2. Determine as coordenadas de Q sabendo que o plano BQC é um plano paralelo a xOy.

3. (Manuel Goncalves)

A combinação de um determinado modelo de cofre é formada por seis dígitos: dois pares de algarismos e, entre eles, um par de letras (considera-se o alfabeto com 26 letras).

Uma combinação possível será 11AB34.

Quantas são as combinações que satisfazem simultaneamente as 3 condições:

- terminam em número ímpar superior a 15;
- contêm apenas uma das letras da palavra MATEMÁTICA;
- o seu primeiro dígito é um número primo.
- (A) 403200
- **(B)** 201600
- **(C)** 302400
- **(D)** 384000

4. (Paulo Conde e José Carlos Pereira)

Uma caixa tem bolas brancas, azuis e pretas, todas numeradas com números distintos.

- **4.1.** Sabe-se que:
 - 62,5% das bolas são pretas;
 - entre as pretas, três em cada cinco estão numeradas com um número par;
 - $\frac{1}{3}$ das pares não são pretas.

Escolhendo uma bola ao acaso, qual é a probabilidade de estar numerada com um número ímpar?

Apresente o resultado na forma de percentagem.

4.2. Considere que na caixa estão cinco bolas brancas, uma azul e algumas pretas e considere também a experiência aleatória que consiste em extrair, sucessivamente e sem reposição, todas as bolas da caixa.

Sejam X e Y os acontecimentos:

X: «as bolas brancas são extraídas consecutivamente»

Y: «as bolas da mesma cor são extraídas consecutivamente»

Sabendo que $P(Y|X) = \frac{1}{22}$, determine o número de bolas que estão na caixa.

Resolva o problema sem recorrer à fórmula da probabilidade condicionada, começando por interpretar P(Y|X) no contexto da situação descrita.

5. (Roberto Oliveira)

Na figura ao lado estão representadas, em referencial o.n. xOy:

- parte do gráfico da função f de domínio $\left]0, \frac{\pi}{2}\right]$, definida por $f(x) = \frac{\sin(x-3)}{3x-x^2} + 2$;
- parte do gráfico da função g de domínio $\left]0, \frac{\pi}{2}\right]$, definida por $g(x) = \cos x$;
- o triângulo [OPQ], sendo P um ponto do gráfico da função f e Q um ponto do gráfico da função g, ambos com a mesma abcissa.

Seja a a abcissa comum dos pontos P e Q, com a > 0.

Recorrendo à calculadora gráfica, determine o valor de a para o qual a área do triângulo [OPQ] é igual a 0,4, sabendo que esse valor existe e é único.

Na sua resposta:

- apresente um equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) que lhe permitem resolver a equação;
- apresente o valor de *a* arredondado às centésimas; nas coordenadas de pontos, considere, pelo menos, duas casas decimais.

6. (Manuel Gonçalves e José Carlos Pereira)

Sejam (u_n) e (v_n) duas sucessões tais que:

- (u_n) é progressão aritmética, $u_8 1 = (u_7)^2$;
- a soma de todos os termos de (u_n) entre o terceiro e o décimo segundo, incluindo-os, é 35;
- (v_n) é uma progressão geométrica estritamente decrescente;
- u_7 e u_9 são os dois primeiros termos de (v_n) .

Mostre que $v_n = 2^{5-2n}$.

7. (Ricardo Calinas)

No plano complexo, os afixos de $z_1=e^{i\frac{\pi}{24}}$ e $z_2=e^{i\frac{13\pi}{24}}$ são dois vértices não consecutivos de um polígono regular centrado na origem.

O número de lados desse polígono pode ser:

8. (Joana Machado e José Carlos Pereira)

Em
$$\mathbb{C}$$
, conjunto dos números complexos, considere $z_1 = \frac{i^{3-4k} + 3 + 2i}{2-i}$, com $k \in \mathbb{N}$, e $z_2 = \cos\left(\frac{9\pi}{8}\right) + \frac{\sin\left(\frac{\pi}{8}\right)}{i}$.

Determine o menor valor natural para n de modo a que $\frac{\left(z_1\right)^n}{\left(\overline{z_2}\right)^2}$ seja um número real positivo.

9. (José Carlos Pereira)

Na figura estão representados, em referencial o.n. xOy, o triângulo equilátero [ABC] e a circunferência inscrita nesse triângulo.

Sabe-se que:

- o lado [BC] é paralelo ao eixo Ox;
- uma equação da circunferência é $x^2 2x + y^2 8y + 13 = 0$.

Qual das seguintes equações define a mediatriz do segmento de reta [AB]?

(A)
$$y + \sqrt{3}x = 6 + \sqrt{3}$$

(B)
$$3y + \sqrt{3}x = 6 + \sqrt{3}$$

(C)
$$3y + \sqrt{3}x = 12 + \sqrt{3}$$

(D)
$$y + \sqrt{3}x = 2 + \sqrt{3}$$

10. (João Ferreira)

Na figura está parte da representação gráfica de um função f, cujo domínio é $\mathbb{R} \setminus \{2,6\}$.

As retas de equações x = 2 e x = 6 são as únicas assíntotas verticais do gráfico de f.

Considere a sucessão (u_n) de termo geral $u_n = n \cdot \ln \left(\frac{n+4}{n+2} \right)$. Qual das afirmações seguintes é verdadeira?

(A)
$$\lim f(u_n) = -\infty$$

(B)
$$\lim f(u_n) = +\infty$$

(C)
$$\lim f(u_n) = 2$$

(**D**) Não existe
$$\lim f(u_n)$$

11. (Maria de Fátima Serrano)

Para um certo valor de a e para um certo valor de b, é contínua no ponto x=-2 a função g definida por:

$$g(x) = \begin{cases} \frac{e^{x+2} + x + 1}{x+2} & \text{se } x < -2 \\ a & \text{se } x = -2 \\ b + \frac{\ln(x+3)}{x+2} & \text{se } x > -2 \end{cases}$$

Quais os valores de a e de b?

(A)
$$a = 2 e b = 2$$

(B)
$$a = 2 e b = 1$$
 (C) $a = 1 e b = 2$ **(D)** $a = 1 e b = 1$

(C)
$$a = 1 e b = 2$$

(D)
$$a = 1 e b = 1$$

12. (José Carlos Pereira)

Seja g uma função de domínio \mathbb{R}^+ tal que a reta de equação y=-3x+2 é assíntota do seu gráfico.

Qual é o valor de $\lim_{x \to +\infty} \frac{(g(x))^2 + 3xg(x)}{\ln x - g(x)}$?

(B)
$$-2$$

13. (Márcia Eiras e José Carlos Pereira)

Seja f uma função de domínio \mathbb{R} , sabe-se que a sua derivada f', também de domínio \mathbb{R} , é definida por:

$$f'(x) = (x+1)^2 e^{2x+1}$$

13.1. Qual é o valor de $\lim_{x \to 1} \frac{f(x) - f(1)}{x - \sqrt{x}}$?

(A)
$$2e^2$$

$$(\mathbf{B}) \ 2e^{2}$$

(C)
$$8e^{2}$$

(D)
$$8e^3$$

13.2. Seja *r* a reta tangente ao gráfico de *f* com declive máximo no intervalo $]-\infty,-1]$. Determine o declive da reta r.

Item extra: Determine o conjunto solução da inequação $\ln(f'(x)) - 1 \ge \ln(3x^2 + x) + 2x$.

14. (Paulo Conde e José Carlos Pereira)

Considere a função g, de domínio $[-\pi, +\infty[\setminus \{0\}, definida por:$

$$g(x) = \begin{cases} \frac{\sin x (1 - \cos x)}{x^3} & \text{se } -\pi \le x < 0 \\ xe^{\frac{2}{x}} & \text{se } x > 0 \end{cases}$$

- **14.1.** Verifique se existe $\lim_{x\to 0} g(x)$.
- **14.2.** Considere a função f, de domínio $[-\pi, +\infty[\setminus \{0\}, \text{ definida por } f(x) = x^3 g(x).$ Estude a função f quanto à monotonia e à existência de extremos relativos.

FIM

Cotações

1.		16 pontos
2.		
	2.1.	20 pontos
	2.2.	16 pontos
3.		16 pontos
4.		
	4.1.	16 pontos
	4.2.	16 pontos
5.		16 pontos
6.		20 pontos
7.		16 pontos
		-
		_
		•
		-
		-
12.		16 pontos
13.		
	13.1.	16 pontos
	13.2.	16 pontos
14.		
-	14.1.	16 pontos
	14.2.	16 pontos

Soluções

- 1. A
- 2.

2.2.
$$Q(2\sqrt{6}, 2\sqrt{2}, 2\sqrt{6})$$

- **3.** A
- 4.
- **4.1.** 43,75%
- 4.2. Estão 16 bolas dentro da caixa.
- **5.** $a \approx 0.88$.
- **7.** C
- **8.** n = 7.
- **9.** C
- **10.** B
- **11.** B

- **12.** B
- 13.
 - **13.1.** D
 - **13.2.** O declive é e^{-3} .

Item Extra:
$$S = \left[-\frac{1}{2}, -\frac{1}{3} \right[\cup \left] 0, 1 \right]$$

- 14.
 - **14.1.** Não existe $\lim_{x\to 0} g(x)$.
 - **14.2.** f é decrecente em $\left[-\pi, -\frac{2\pi}{3}\right]$ e em $\left]0, \frac{1}{2}\right]$, é crescente em $\left[-\frac{2\pi}{3}, 0\right[$ e em $\left[\frac{1}{2}, +\infty\right[$.

Tem mínimo relativo em $x = -\frac{2\pi}{3}$ e em $x = \frac{1}{2}$ e tem máximo relativo em $x = -\pi$.

$Coordena \\ ç\~ao$

José Carlos Pereira

Paginação

Antero Neves

Verificação de resultados

Ana Paula Jardim, Antero Neves, Carlos Frias, José Carlos Pereira, José Sacramento, Manuel Gonçalves, Márcia Eiras, Nuno Godinho, Patrícia Oliveira, Rafael Saraiva, Sandra Rodrigues.