Cálculo II Cálculo Integral e Aplicações

$$\int_{a}^{b} f(x) dx = \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(c_{i}) \Delta x_{i}$$

Prof. Reginaldo Demarque

Universidade Federal Fluminense Instituto de Humanidades e Saúde – RHS Departamento de Ciências da Natureza – RCN

Sumário

A Integral

2 Técnicas de integração

Aplicações da Integral

Sumário

A Integral

2 Técnicas de integração

Aplicações da Integral

A origem do Cálculo Integral

Na segunda metade do século XVII, Newton na Inglaterra e Leibniz na Alemanha mudaram o curso da matemática para sempre. Ele pegaram uma colcha de retalhos soltas de ideias sobre movimento e curvas e transformaram isso no cálculo.

Isaac Newton 1643-1727

Gottfried Wilhelm Leibniz 1646-1716

O Precursor do Cálculo

Muitos historiadores acreditam que o verdadeiro precursor do cálculo foi Arquimedes. Ele aperfeiçoou o método da exaustão de Eudoxus para encontrar áreas de figuras planas.

Arquimedes é considerado o maior matemático da antiguidade. Segundo a lenda, foi morto por um soldado romano durante a tomada da cidade enquanto estudava um diagrama geométrico na areia.

Arquimedes de Siracusa 287-212 BCE

Pint. Domenico Fetti (1620)

Em seu livro A Medida do Círculo ele mostrou que o valor exato do número π está entre 223/71 e 22/7, ou seja, estaria aproximadamente entre 3,1408 e 3,1429, aproximação que obteve inscrevendo e circunscrevendo o círculo em um polígono regular de 96 lados. Usando este método ele foi capaz de calcular o volume da esfera, o volume e a área do cone, o volume obtido por revolução de qualquer segmento de uma parábola ou hipérbole.

Divida o círculo em 8 fatias e reagrupe-as adequadamente.

Dobre o número de fatias.

Dobre novamente...

As fatias reagrupadas ficam cada mais próximas de um retângulo.

Podemos deduzir uma relação entre a área do círculo e a circunferência.

$$ext{Área} = rac{C}{2}r$$

Comece com um polígono de 6 lados.

Dobre sucessivamente o número de lados

Dobre sucessivamente o número de lados

Quanto mais lados, mais próximo da circunferência.

Círculo Unitário

Se m é o número de lados do polígono, então

$$C_r \approx m\ell_r = m\ell_1 r$$
.

Com isso, temos que

$$A_r = \frac{C_r}{2} r \approx \frac{m\ell_1}{2} r^2.$$

Deduzindo uma fórmula de recorrência no círculo unitário

Se na etapa n temos um polígono de lado $\ell_n \dots$

Deduzindo uma fórmula de recorrência no círculo unitário

...podemos deduzir o lado ℓ_{n+1} da etapa seguinte.

Fórmula de Recorrência

Usando-se o Teorema de Pitágoras, deduzimos as fórmulas

$$h_n = \sqrt{1 - \frac{\ell_n^2}{4}}, \quad \ell_{n+1} = \sqrt{\frac{\ell_n^2}{4} + (1 - h_n)^2}$$

Usando Python para calcular as aproximações

```
import sympy as sp
#dados iniciais
m=6 #começando com um hexágono regular
l=1 #lado do hexágono

#cálculo do períemtro do polígono de m lados inscritos no círculo
for n in range(4):
h=sp.sqrt(1-l**2/4) #altura de cada triângulo dado o lado
l=sp.sqrt(1**2/4+(1-h)**2) #lado do polígono da próxima iteração
```

m=2*m #número de lados do polígono seguinte p=m*1 #perímetro do polígono de m lados

c=p/2 #aproximação de pi

n+=1

n	lados	h_n	ℓ_n	π
1	12	0.866025403784439	0.517638090205041	3.10582854123025
2	24	0.965925826289068	0.261052384440103	3.13262861328124
3	48	0.991444861373810	0.130806258460286	3.13935020304687
4	96	0.997858923238603	0.0654381656435523	3.14103195089051
	•	'	•	'

Aproximação com 10 iterações

n	lados	ℓ_n	π	erro
1	12	0.517638090205041	3.10582854123025	0.0357641123595442
2	24	0.261052384440103	3.13262861328124	0.00896404030855535
3	48	0.130806258460286	3.13935020304687	0.00224245054292638
4	96	0.0654381656435523	3.14103195089051	0.000560702699283322
5	192	0.0327234632529736	3.14145247228546	0.000140181304330689
6	384	0.0163622792078743	3.14155760791186	3.50456779352193e-5
7	768	0.00818120805246958	3.14158389214832	8.76144147454738e-6
8	1536	0.00409061258232819	3.14159046322805	2.19036174264886e-6
9	3072	0.00204530736067661	3.14159210599927	5.47590521371433e-7
10	6144	0.00102265381402740	3.14159251669216	1.36897635449884e-7

Notação Sigma

A notação sigma permite expressar uma soma com muitos termos em uma forma compacta.

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n$$

- ullet O símbolo \sum é chamado de somatório. Ele é a letra grega sigma maiúscula correspondente ao nosso S significa.
- k é o índice do somatório.
- a_k é o termo geral da soma.
- ullet 1 é o índice inferior e n é o índice superior.

Exemplo

Somas usando python

Calcule a soma $\sum_{k=1}^{30} \frac{1}{k}$.

Para isso basta usar o comando sum(), que faz a soma dos elementos de uma lista.

A=[1/k for k in range(1,31)] # cria uma lista com as parecelas da soma sum(A) # soma os elementos de A

$$\sum_{k=1}^{30} \frac{1}{k} = 3.9949871309203906$$

ou simplesmente:

sum([1/k for k in range(1,31)])

Somas usando sympy

Uma outra alternativa quando estiver fazendo cálculos simbólicos é usar o sympy.

```
import sympy as sp
k=sp.symbols('k') #define k como um símbolo
soma=sp.summation(1/k,(k,1,30)) #executa a soma
nsoma=soma.evalf() #valor numérico da soma
```

$$\sum_{k=1}^{30} \frac{1}{k} = \frac{9304682830147}{2329089562800} = 3.99498713092039$$

Regras algébricas para somas finitas

$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

$$\sum_{k=1}^{n} c a_k = c \sum_{k=1}^{n} a_k$$

$$\sum_{k=1}^{n} 1 = \underbrace{1 + 1 + \dots + 1}_{n \text{ vezes}} = n$$

Mostre que

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

2 Pesquise a demonstração de que

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

3 Escreva em notação somatório:

$$\frac{1}{2 \cdot 3} + \frac{2}{3 \cdot 4} + \frac{3}{4 \cdot 5} + \frac{4}{5 \cdot 6} + \cdots$$

e use o python para calcular os 20 primeiros termos.

• Mostre que $\sum_{k=1}^{n} a^k = \frac{a-a^{n+1}}{1-a}$, quando $a \neq 1$.

Partições

Dado $\left[a,b\right]$ um intervalo fechado da reta, o seguinte conjunto

$$P = \{x_0, x_1, \dots, x_{n-1}, x_n\},\$$

onde $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$, é dito uma partição de [a, b].

Seja $\Delta x_i = (x_i - x_{i-1})$ o comprimento do intervalo $[x_{i-1}, x_i]$ para todo $i = 1, \ldots, n$.

Somas inferiores

- $f:[a,b] o \mathbb{R}$ contínua e $m_i = \min_{[x_{i-1},x_i]} f(x)$
- $s(f,P) = \sum_{i=1}^{n} m_i \Delta x_i$ somas inferiores de f em relação a P.

Somas Superiores

- $f:[a,b] \to \mathbb{R}$ contínua e $M_i = \max_{[x_{i-1},x_i]} f(x)$
- $S(f,P) = \sum_{i=1}^{n} M_i \Delta x_i$ as somas superiores de f em relação a P.

Partição com 5 subintervalos de mesmo comprimento.

$$s(f, P) = 240 \le A \le S(f, P) = 440$$

Partição com 10 subintervalos de mesmo comprimento.

$$s(f, P) = 285 \le A \le S(f, P) = 385$$

Partição com 50 subintervalos de mesmo comprimento.

$$s(f, P) = 323 \le A \le S(f, P) = 343$$

Partição com 1000 subintervalos de mesmo comprimento.

$$s(f,P) = 332.8335 \le A \le S(f,P) = 333.8335$$

Ä ☐ Para Casa 2

Mostre que para $f(x)=x^2$, com $x\in[0,10]$, se P é uma partição com n subintervalos de mesmo comprimento, isto é, $\Delta x_i=10/n$, para todo $i=1,2,\ldots,n$, então

$$s(f,P) = \frac{1000}{n^3} \sum_{i=1}^{n} (i-1)^2$$

e

$$S(f,P) = \frac{1000}{n^3} \sum_{i=1}^{n} i^2.$$

Aplique o limite quando $n \to +\infty$ e conclua que a área abaixo do gráfico de f é $\frac{1000}{2}$

Somas de Riemann

Seja $f:[a,b]\to\mathbb{R}$ uma função limitada e $P=\{x_0,x_1,\ldots,x_n\}$ uma partição qualquer de [a,b].

Um conjunto $\{c_1, c_2, \ldots, c_n\}$, onde $c_i \in [x_{i-1}, x_i]$ é dito um pontilhamento da partição P. Uma partição P a qual escolhemos um pontilhamento é dita uma partição pontilhada e é denotada por P^* .

Definimos a norma de uma partição P, denotada por $\|P\|$, como o maior dos Δx_i com $i=1,\ldots,n$.

Somas de Riemann

A soma

$$R(\mathbf{f}, P^*) = \sum_{i=1}^{n} \mathbf{f}(c_i) \Delta x_i,$$

é dita uma soma de Riemann para f no intervalo [a,b].

$$f(x)=x^2, \ x\in [a,b]$$
, partição uniforme com n intervalos: $\Delta x=\frac{b-a}{n}$

$$x_0 = a, \ x_1 = a + \Delta x, x_2 = a + 2\Delta x, \dots, x_n = a + n\Delta x.$$

Pontilhamentos:

- Extremo esquerdo: $\sum_{i=0}^{n-1} f(x_i) \Delta x$
- Extremo direito: $\sum_{i=1}^{n} f(x_i) \Delta x$
- Ponto médio: $c_i = \frac{x_{i+1} + x_i}{2}$, $\sum_{i=0}^{n-1} f(c_i) \Delta x$

Calculando Somas de Riemann Usando Python

$$f(x)=x^2, \ x \in [0,10]$$
, partição uniforme com 5 intervalos. $\Delta x=2.0$

partição: [0. 2. 4. 6. 8. 10.]

pontilhamento à esquerda: [0, 2, 4, 6, 8,]

pontilhamento à direita: [2. 4. 6. 8. 10.]

pontilhamento ponto médio: [1. 3. 5. 7. 9.]

Soma Riemann esquerda: 240.0

Soma Riemann direita: 440.0

Soma Riemann ponto médio: 330.0

20

Soma de Riemann Ponto Médio

100

Calculando Somas de Riemann Usando Python

 $f(x)=x^2, \ x\in [0,10]$, partição uniforme com 5 intervalos.

```
import numpy as np
f = lambda x : x**2 # definindo a função
a = 0; b = 10; N = 5; # intervalo e numero de retângulos
dx=(b-a)/N# comprimento da partição
P=np.arange(a,b+dx,dx) # partição
cl=P[:-1] #pontilhamento à esquerda
cr=P[1:] #pontilhamento à direita
cm=(cl+cr)/2 #pontilhamento ponto médio
R1=sum(f(c1)*dx) #soma pontilhamento esquerda
Rr=sum(f(cr)*dx) #soma pontilhamento direita
Rm=sum(f(cm)*dx) #soma pontilhamento ponto médio
```


Um outro exemplo

 $f(x) = \sin x, \ x \in [-\pi/2, \pi]$, partição uniforme com 10 intervalos.

```
import numpy as np
f = lambda x : np.sin(x) # definindo a função
a = -np.pi/2; b = np.pi; N = 10; # intervalo e numero de retângulos
dx=(b-a)/N# comprimento da partição
P=np.arange(a,b+dx,dx) # partição
cl=P[:-1] #pontilhamento à esquerda
cr=P[1:] #pontilhamento à direita
cm=(cl+cr)/2 #pontilhamento ponto médio
R1=sum(f(c1)*dx) #soma pontilhamento esquerda
Rr=sum(f(cr)*dx) #soma pontilhamento direita
Rm=sum(f(cm)*dx) #soma pontilhamento ponto médio
```


 $f(x) = \sin x, \ x \in [-\pi/2, \pi]$, partição uniforme com 10 intervalos.

 $\Delta x = \text{0.47123889803846897}$

Soma Riemann esquerda:

0.7458061878094138

Soma Riemann direita:

1.2170450858478827

Soma Riemann ponto médio:

1.009313036367135

 $f(x) = \sin x, \ x \in [-\pi/2, \pi]$, partição uniforme com 1000 intervalos.

 $\Delta x = 0.00471238898038469$

Soma Riemann esquerda:

0.9976419549583126

Soma Riemann direita:

1.0023321374109844

Soma Riemann ponto médio:

0.9999898219813499

្នាំ Tarefa Computacional

Use o script acima para calcular as somas de Riemann das funções abaixo, usando o pontilhamento com ponto médio e com N=5, 10 e 100.

- **1** $f(x) = \frac{1}{x}, x \in [1, 2]$
- **2** $f(x) = e^{-x^2}$, $x \in [0, 2]$.
- **3** $f(x) = \operatorname{sen}(x^2), x \in [0, 1].$

Definição 1

Dizemos que uma função $f:[a,b]\to\mathbb{R}$ limitada é integrável em [a,b]quando existe um número real I tal que

$$\lim_{\|P\| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i = I,$$

qualquer que seja a partição P^* . Em caso afirmativo dizemos que I é a integral de f em [a,b] e o denotamos por $\int_a^b f(x)dx$.

O símbolo ∫ de integral, que é um S alongado, foi introduzido por Leibniz em 1675. Leibniz não só tinha uma notável habilidade para construir notações; também criou termos como abscissa, ordenada, coordenada, eixo de coordenadas e função. Quem primeiro usou a palavra "integral" foi Jacob Bernoulli, em 1690.

Área

Pela construção, quando $f(x) \geq 0$ para todo $x \in [a,b]$, vimos que a área abaixo do gráfico da função e acima do eixo x é dada pela integral, isto é,

$$Area = \int_{a}^{b} f(x) \, dx$$

Distância percorrida

O gráfico da velocidade de um carro em aceleração a partir do repouso é mostrado abaixo. Como podemos estimar a distância percorrida?

Distância percorrida

O gráfico da velocidade de um carro em aceleração a partir do repouso é mostrado abaixo. Como podemos estimar a distância percorrida?

t(s)							
v(km/h)	30	52.5	67.5	82.5	97.5	105	112.5


```
import numpy as np

#vetor de velocidades
v=np.array([30,52.5,67.5,82.5,97.5,105,112.5])
vs=v/3600 #converter para km/s
dt=5 #intervalo de comprimento tempo

R=sum(vs*dt) #soma de Riemann
```

Novo vetor de velocidades em Km/s [0.00833333 0.01458333 0.01875 0.02291667 0.02708333 0.02916667 0.03125] A soma de Riemann nos dá que o carro percorreu aproximadamente:

0.7604166666666667 Km.

De uma forma geral, $v:[a,b]\longrightarrow \mathbb{R}$ representa a velocidade de um objeto ao longo do tempo, então a distância percorrida por ele é dada por:

$$\Delta d = \int_{a}^{b} v(t) \, dt$$

Em 7 de maio de 1992, o ônibus espacial *Endeavour* foi lançado na missão STS-49, cujo propósito era instalar o satélite de comunicação Intelsat. A tabela, fornecida pela NASA, mostra os dados da velocidade do ônibus entre o lançamento e a entrada em funcionamento dos foguetes auxiliares. use estes dados para estimar a altura acima da superfície da terra do *Endeavour* 62 segundos depois do lançamento.

Evento	Tempo(s)	Velocidade (m/s)	
Lançamento	0	0	
Começo da manobra de inclinação	10	56	
Fim da manobra de inclinação	15	97	
Regulador de pressão a 89%	20	136	
Regulador de pressão a 67%	32	226	
Regulador de pressão a 104%	59	404	
Pressão dinâmica máxima	62	440	
Separação dos foguetes auxiliares	125	1265	

Comprimento dos intervalos: [10 5 5 12 27 3 63]

Velocidade em cada intervalo: [0 56 97 136 226 404 440]

Soma inferior: 37431 metros

Comprimento dos intervalos: [10 5 5 12 27 3 63]

Velocidade em cada intervalo: [56 97 136 226 404 440 1265]

Soma Superior: 96360 metros

- Qual é a distância, percorrida por um objeto que se move velocidade $v(t)=2t-1,\ t\in[1,5]$, medida em m/s.
- 2 Calcule a integral $\int_0^1 \sqrt{1-x^2} dx$ interpretando-a em termos de área.

Propriedades da Integral

Sejam f e g funções integráveis no intervalo [a,b] e $k\in\mathbb{R}$ uma constante.

• Se
$$f \leq g$$
, então $\int_a^b f(x)dx \leq \int_a^b g(x)dx$

Teorema Fundamental do Cálculo

Teorema 2

Se $f:[a,b] \to \mathbb{R}$ é contínua e F é uma primitiva de f, então

$$\int_{a}^{b} f(x)dx = F(b) - F(a) \tag{1}$$

Usando Python

import sympy as sp

sp.integrate(f,(x,0,1)) #integral definida

$$\int_0^{\pi} \sin(x) \, dx = -\cos(x) \Big|_{x=0}^{x=\pi} = 2.$$

Determine área da região limitada que está acima do eixo x e abaixo do gráfico da função $y=x^3-x$.

Corolário 3

Se $f:[a,b] \to \mathbb{R}$ é contínua, então

$$\frac{d}{dt} \int_{a}^{t} f(x)dt = f(t), \forall t \in [a, b]. \tag{2}$$

Corolário 3

Se $f:[a,b] \to \mathbb{R}$ é contínua, então

$$\frac{d}{dt} \int_{a}^{t} f(x)dt = f(t), \forall t \in [a, b].$$
 (2)

"O Teorema Fundamental do Cálculo é inquestionavelmente o mais importante do cálculo e realmente é um dos grandes feitos da mente humana. Antes de sua descoberta, desde os tempos de Eudóxio e Arquimedes até os de Galileu e Fermat, os problemas de encontrar áreas, volumes e comprimentos de curvas eram tão difíceis que somente um gênio poderia fazer frente ao desafio. Agora, porém, armado com o método sistemático que Leibniz e Newton configuraram a partir do Teorema Fundamental, veremos nos capítulos a seguir que esses problemas desafiadores são acessíveis para todos nós."

J. Stewart, Cálculo Vol. 1.

Para Casa 5

Calcule as integrais

$$\int_1^3 \frac{1}{x^2} \, dx$$

$$\int_1^2 \frac{1}{x} \, dx$$

$$\int_{1}^{4} \frac{2x^3 + x^3\sqrt{x} - 1}{x^3} \, dx$$

Teorema 4

Se f for contínua em [a,b], ou tiver apenas um número finito de descontinuidades do tipo saltos, então f é integrável em [a,b].

A função de Dirichlet, definida no intervalo $\left[0,1\right]$ por

$$f(x) = \begin{cases} 1, \text{ quando } x \in \mathbb{Q} \\ 0, \text{ quando } x \notin \mathbb{Q}, \end{cases}$$

não é integrável.

Se aplicarmos o Teorema Fundamental do Cálculo em $\int_{-1}^{1} \frac{1}{x^2} dx$, obteremos a seguinte igualdade

$$\int_{-1}^{1} \frac{1}{x^2} dx = -\frac{1}{x} \Big|_{x=-1}^{1} = -2.$$

Como a função $f(x) = \frac{1}{x^2} > 0$, isto não faz sentido. O que está errado?

Integral indefinida

A integral indefinida de f em relação a x é o conjunto de todas as primitivas de uma função f e denotamos da seguinte forma

$$\int f(x)dx.$$

O símbolo \int é dito sinal de integração, f é dita integrando da integral e x é a variável de integração.

Integral indefinida

A integral indefinida de f em relação a x é o conjunto de todas as primitivas de uma função f e denotamos da seguinte forma

$$\int f(x)dx.$$

O símbolo \int é dito sinal de integração, f é dita integrando da integral e x é a variável de integração.

Encontre as integrais indefinidas

$$\int \frac{1}{x} dx, \quad \int e^x dx, \quad \int \frac{1}{1+x^2} dx, \quad \int \sec^2 dx.$$

Usando Python

```
import sympy as sp

x = sp.symbols('x') #variável
f=1/x #função
g=1/(1+x**2) #função
intf=sp.integrate(f,x) #integral indefinida
intg=sp.integrate(g,x) #integral indefinida
```

$$\int \frac{1}{x} dx = \log(x) + C.$$

$$\int \frac{1}{1+x^2} dx = \operatorname{atan}(x) + C.$$

Aplicações

Queda livre de corpos

Consideremos um corpo de massa m que é abandonado, a partir do repouso de uma altura h_0 . Desprezando-se a resistência do ar, determine uma função h=h(t) que descreve a altura do objeto em cada instante do tempo.

A regra da Substituição

Teorema 5

Se u=g(x) é uma função derivável cuja imagem é um intervalo I e f é contínua em I, então

$$\int f(g(x))g'(x)dx = \int f(u)du$$

A regra da Substituição

Teorema 5

Se u=g(x) é uma função derivável cuja imagem é um intervalo I e f é contínua em I, então

$$\int f(g(x))g'(x)dx = \int f(u)du$$

Calcule as integrais

$$\bullet \int \cos(x^2) 2x \ dx$$

Para Casa 6

Calcule as integrais

$$\int \sec(x) \, dx$$

$$\int \frac{x}{x^2 + 1} \, dx$$

Aplicações

Modelo Populacional Malthusiano

Este tipo de modelo é razoável para descrever populações que tem recurso ilimitados para crescimento e ausência de predadores.

- y(t): número de indivíduos de uma população no instante t.
- y'(t): taxa de crescimento de uma população no instante t.
- Supõe-se que a taxa de crescimento de uma população é proporcional à população presente

$$y'(t) = ky(t)$$

Supondo que a população no instante t=0 é y_0 , determine a função y=y(t). Em quanto tempo a população dobra de tamanho?

Decaimento Radioativo

Átomos instáveis podem emitir massa ou radiação espontaneamente, em um processo chamado decaimento radioativo. Isso pode resultar na formação de um novo elemento. Exemplos disso são o carbono-14 radioativo que decai em nitrogênio e o rádio que decai em chumbo

Meia-vida

A meia-vida de um elemento radioativo é o tempo necessário para que metade dos núcleos radioativos presentes em uma amostra decaiam. Por exemplo, sabe-se que a meia-vida do carbono-14 é 5730 anos, ou seja, que em 5730 anos metade do carbono-14 presente transformou-se em nitrogênio.

Experimentos têm mostrado que em um determinado momento, a taxa na qual um elemento radioativo decai é proporcional à quantidade de elemento presente.

Datação por Carbono-14

Uma ferramenta importante em pesquisa arqueológica é a datação por carbono-14 desenvolvida pelo químico estadunidense Willard F. Libby, que recebeu o prêmio Nobel de química em 1960 por este trabalho.

Em um organismo vivo, a proporção de carbono-14, permanece relativamente constante durante a vida do organismo. Quando ele morre a absorção de carbono-14 cessa e a partir de então o carbono-14 decai a uma taxa proporcional a quantidade presente.

Å⊐ Para Casa 7

Em um pedaço de madeira é encontrado 90% da quantidade original de carbono-14. Qual a idade deste pedaço de madeira?

Corolário 6

Se g^{\prime} é contínua em [a,b] e f é contínua em g([a,b]), então

$$\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$$

Corolário 6

Se g^{\prime} é contínua em [a,b] e f é contínua em g([a,b]), então

$$\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$$

Calcule
$$\int_{-1}^{1} 3x^2 \sqrt{x^3 + 1} \ dx$$

Proposição 7

Seja f contínua em [-a, a].

- **b** Se f é impar, então $\int_{-a}^{a} f(x)dx = 0$

Proposição 7

Seja f contínua em [-a, a].

- Se f é par, então $\int_a^a f(x)dx = 2 \int_a^a f(x)dx$
- **b** Se f é ímpar, então $\int_{-a}^{a} f(x)dx = 0$

$$\int_{-\pi/2}^{\pi/2} \cos x \ dx$$

Para Casa 8

Calcule as integrais

$$\int_0^{\pi/4} \operatorname{tg} x \ dx$$

$$\oint \frac{dx}{\sqrt{8x - x^2}}$$

Área entre curvas

Queremos determinar a área delimitada pelo gráfico de duas funções.

No caso em que $f(x) \ge g(x)$ em [a,b].

$$\operatorname{\acute{A}rea}(S) = \lim_{\|P\| \to 0} \sum_{k=1}^n (f(c_k) - g(c_k)) \Delta x_k = \int_a^b f(x) - g(x) dx$$

Área entre curvas

Definição 8

Sejam $f:[a,b]\to\mathbb{R}$ e $g:[a,b]\to\mathbb{R}$ funções integráveis. A área limitada pelas curvas y=f(x) e y=g(x) e pelas retas x=a e x=b é dada por:

$$\int_{a}^{b} |f(x) - g(x)| dx$$

Determine a área limitada pelas curvas $y = 2 - x^2$ e y = -x.

As vezes é mais conveniente integrar em relação ao eixo y a fim de determinar a área.

T Exemplo

Determine a área da região do primeiro quadrante que é limitada acima por $y = \sqrt{x}$ e abaixo pelo eixo x e pela reta y = x - 2.

🛱 Para Casa 9

- **1** Encontre a área da região limitada pelas curvas $y = \sin(x)$, $y = \cos(x), x = 0 \text{ e } x = \pi/2.$
- 2 Encontre a área da região limitada pela reta y = x 1 e pela parábola $y^2 = 2x + 6$.

Sumário

A Integral

2 Técnicas de integração

Aplicações da Integral

Integração por partes

Teorema 9

Se f e g têm derivadas contínuas, então

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx.$$
 (3)

Integração por partes

Teorema 9

Se f e g têm derivadas contínuas, então

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx.$$
 (3)

Tomando u=f(x) e v=g(x), então du=f'(x)dx e dv=g'(x)dx, assim a forma diferencial da equação (3) se torna

$$\int u \ dv = uv - \int v \ du$$

Calcule as integrais abaixo:

Calcule as integrais

Substituição Trigonométrica

Expressão	Identidade	Substituição
$\sqrt{1-x^2}$	$1 - \sin^2(\theta) = \cos^2(\theta)$	$x = \sin(\theta), \ -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
$\sqrt{1+x^2}$	$1 + \tan^2(\theta) = \sec^2(\theta)$	$x = \tan(\theta), \ -\frac{\pi}{2} < \theta < \frac{\pi}{2}$
$\sqrt{x^2-1}$	$\sec^2(\theta) - 1 = \tan^2(\theta)$	$x = \sec(\theta), \text{ou} \\ \pi \le \theta < \frac{\pi}{2}$

- ② Mostre que a área do círculo de raio r é πr^2 .

Ä □ Para Casa 11

Calcule

$$\int \frac{dx}{x\sqrt{9+x^2}}$$

Exercício

Obtenha a fórmula da área da elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, onde a, b > 0.

Integração de funções racionais

Como calcular a integral
$$\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} dx$$
 ?

Integração de funções racionais

Como calcular a integral
$$\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} dx$$
?

Note que fazendo a divisão dos polinômios obtemos que

$$\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} dx = \int 2x + \frac{5x - 3}{x^2 - 2x - 3} dx = x^2 + \int \frac{5x - 3}{x^2 - 2x - 3} dx.$$

E o problema se reduz a calcular a última integral.

Integração de funções racionais

Como calcular a integral
$$\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} dx$$
?

Note que fazendo a divisão dos polinômios obtemos que

$$\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} dx = \int 2x + \frac{5x - 3}{x^2 - 2x - 3} dx = x^2 + \int \frac{5x - 3}{x^2 - 2x - 3} dx.$$

E o problema se reduz a calcular a última integral.

Note que

$$\frac{5x-3}{x^2-2x-3} = \frac{2}{x+1} + \frac{3}{x-3}.$$

Portanto podemos calcular a integral!

Obviamente o python é capaz de calcular essa integral diretamente

$$\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} dx = x^2 + 3\log(x - 3) + 2\log(x + 1) + C$$

Entretanto, o comando apart do sympy, nos permite decompor o integrando para que possamos resolvê-lo com a técnica apresentada:

apart(
$$(2*x**3-4*x**2-x-3)/(x**2-2*x-3),x$$
)

$$\frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3}dx = 2x + \frac{2}{x+1} + \frac{3}{x-3}$$

Crescimento Populacional Logístico

Vimos que um modelo simples de crescimento populacional é aquele em que se supõe que a taxa de crescimento de uma população $\frac{dy}{dt}$ é proporcional à população presente y(t) naquele instante. O crescimento logístico, leva em conta que a população tem um valor máximo sustentável M. Quando a população se aproxima da capacidade máxima, os recursos tornam-se menos abundantes e a taxa de crescimento começa a diminuir. Uma relação simples que exibe esse comportamento é quando

$$\frac{dy}{dt} = \mathbf{k}y(\mathbf{M} - y)$$

Usando-se o método de frações parciais, pode-se mostrar que a população é modelada por:

$$y(t) = \frac{M}{1 + Ce^{-kMt}}, \ t \ge 0.$$

Em uma comunidade de 45.000 pessoas, a taxa de crescimento de uma epidemia de gripe é conjuntamente proporcional ao número de pessoas que a contraíram e ao número de pessoas que não a contraíram.

- Se 200 pessoas tiveram a gripe quando irrompeu a epidemia e 2.800 tiveram gripe 3 semanas depois, ache um modelo que descreva a epidemia.
- Qual o número estimado de pessoas terá a gripe após 5 semanas?
- Em quanto tempo a gripe atingirá metade da população?

Para Casa 12

Calcule

Exercício

Um dia em um campus universitário com 5 000 alunos, onde se esperava uma assembleia estudantil um aluno ouviu que certo estudante polêmico iria fazer, durante a assembleia, um discurso explosivo. Essa informação foi transmitida para amigos que, por sua vez, a transmitiram a outros. A taxa com que se espalhou essa informação é conjuntamente proporcional ao número de pessoas que a ouviram e ao número de pessoas que não a ouviram. Se após 10 min 144 pessoas ouviram a informação, ache o modelo matemático que escreve a divulgação da notícia. Em quanto tempo metade das pessoas terão ouvido a notícia?

Sumário

A Integral

2 Técnicas de integração

Aplicações da Integral

Volumes por fatiamento

Uma seção transversal de um sólido S é a região plana formada pela interseção entre S e um plano. Seja S um sólido limitado por dois planos perpendiculares a um eixo OX nos pontos a e b. Se $A:[a,b]\to\mathbb{R}$ é a função contínua que para cada $x\in[a,b]$ associa a área A(x) da seção transversal de S por um plano perpendicular a OX no ponto x, então podemos aproximar o volume do sólido S.

- $P = \{a = x_0, x_1, \dots, x_n = b\}$ uma partição de [a, b].
- S é divido em n "fatias" de largura Δx_k .
- $\{x_1^*, x_2^*, \cdots, x_n^*\}$ um pontilhamento da partição P

$$V_i \approx A(x_i^*) \Delta x_i$$
.

Portanto o volume V do sólido S é aproximadamente

$$V \approx \sum_{k=1}^{n} A(x_i^*) \Delta x_i.$$

Com isso, aplicando o limite quando $\|P\| \to 0$ temos que

$$V = \lim_{\|P\| \to 0} \sum_{k=1}^{n} A(x_i^*) \Delta x_i = \int_a^b A(x) dx.$$

Uma cunha curva foi obtida por meio do corte da metade de um cilindro de raio 4 por dois planos. Um deles é perpendicular ao eixo do cilindro. O segundo cruza o primeiro, formando um ângulo de 30° no centro do cilindro, determine o volume da cunha.

Sólidos de Revolução

Método dos Discos

No caso em que o eixo de rotação é paralelo ao eixo de coordenadas, podemos usar o chamado método dos discos.

$$V = \int_{a}^{b} \pi \left(f(x) \right)^{2} dx$$

Mostre que o volume da esfera de raio $r \in \frac{4}{3}\pi r^3$.

Usando o mesmo raciocínio, podemos resolver o seguinte tipo de problema:

$$V = \int_{a}^{b} \pi \left[(f(x))^{2} - (g(x))^{2} \right] dx$$

Volume por cascas cilíndricas

Sejam $f:[a,b]\to\mathbb{R}$ uma função contínua não negativa com a>0. Considere a região limitada pelo gráfico de f e o eixo OX. Ao girarmos essa região em torno do eixo OY geramos um sólido S.

- $P = \{a = x_0, \dots, x_n = b\}$ partição de [a, b]
- $C=\{\overline{x}_1,\overline{x}_2,\ldots,\overline{x}_n\}$ um pontilhamento de P, onde $\overline{x}_i=rac{x_{i-1}+x_i}{2}$

Com isso, o volume do sólido é dado por

$$V = 2\pi \int_{a}^{b} x f(x) dx$$

Exemplo

Calcule o volume do sólido obtido pela rotação em torno do eixo y da região limitada por $y=2x^2-x^3$ e y=0.

Å

Para Casa 13

• Encontre o volume do sólido obtido pela rotação em torno do exio x da região limitada pelas curvas y=x e $y=x^2$.

② Encontre o volume do sólido obtido pela rotação da região limitada por $y=x-x^2$ e y=0 em torno da reta x=2.

Imagine que se queira calcular o comprimento da curva do gráfico abaixo.

Uma aproximação seria o comprimento do seguimento ligando os extremos da curva.

Podemos melhorar a aproximação considerando o comprimento de uma poligonal.

Quanto mais divisões, melhor a aproximação!

Assim, seja $f:[a,b]\to\mathbb{R}$ uma função, a fim de calcular uma aproximação do comprimento da curva dada pelo gráfico de f subdividimos o intervalo [a,b] em vários subintervalos e calculamos o comprimento da poligonal, como abaixo.

$$L_i = \sqrt{\Delta x_i^2 + (f(x_i) - f(x_{i-1}))^2} = \sqrt{1 + \left(\frac{f(x_i) - f(x_{i-1})}{\Delta x_i}\right)^2} \Delta x_i$$

Pelo Teorema do Valor Médio, existe $c_i \in [x_{i-1}, x_i]$ tal que

$$\frac{f(x_i) - f(x_{i-1})}{\Delta x_i} = f'(c_i),$$

portanto,

$$L_i = \sqrt{1 + (f'(c_i))^2} \ \Delta x_i$$

Com isso, o comprimento L da curva é

$$L = \lim_{\|P\| \to 0} \sum_{i=1}^{n} \sqrt{1 + (f'(c_i))^2} \ \Delta x_i = \int_a^b \sqrt{1 + (f'(x))^2} \ dx.$$

- Calcule o comprimento de arco da curva $y = \sqrt{x^3}$ entre os pontos (1,1) e (4,8).
- 2 Mostre que o comprimento da circunferência de um círculo de raio r é $2\pi r$.

Integrais Impróprias: Intervalo Infinito

Vimos que a integral definida de uma função positiva representa a área abaixo de seu gráfico. Analisando o gráfico da função $\frac{1}{x^2}$ quando $x\in[1,+\infty)$ somos levados a pensar que a região sob o gráfico tem área "infinita".

Sabemos que

$$\int \frac{1}{x^2} dx = -\frac{1}{x} + c.$$

Porém não faz sentido aplicar o Teorema Fundamental do Cálculo.

Entretanto, para cada $t \in (0,1)$ podemos calcular

$$\int_{1}^{t} \frac{1}{x^2} dx = 1 - \frac{1}{t}.$$

Portanto faz sentido aplicar o limite quanto $t \to +\infty$ e podemos definir a área da região por

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{t \to +\infty} \int_{1}^{t} \frac{1}{x^{2}} dx = \lim_{t \to \infty} \left(1 - \frac{1}{t} \right) = 1.$$

Definição 10

• Se $\int_a^b f(x)dx$ existe para cada número $b \ge a$, então definimos

$$\int_{a}^{+\infty} f(x)dx := \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$

• Se $\int_{a}^{b} f(x)dx$ existe para cada número $a \le b$, então definimos

$$\int_{-\infty}^{b} f(x)dx := \lim_{a \to -\infty} \int_{a}^{b} f(x)dx.$$

As integrais acima são ditas impróprias. Se os limites existem dizemos que as integrais impróprias convergem e se os limites não existem dizemos que elas divergem.

Definição 11

Se $\int_{-\infty}^{b} f(x)dx$ e $\int_{b}^{+\infty} f(x)dx$ são convergentes, então definimos

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{b} f(x)dx + \int_{b}^{+\infty} f(x)dx$$

- Calcule $\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$

Para Casa 14

 $\textbf{ 0} \ \, \text{ Determine os valores de } p \in \mathbb{R} \ \, \text{para os quais a seguinte integral } \\ \text{ converge}$

$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx$$

② Calcule o volume do sólido de revolução gerado pela rotação da curva $y=\frac{1}{x}$, quando $1 \le x < +\infty$, em torno do eixo x, conhecido como Trombeta de Gabriel ou Trombeta de Torricelli

Integrais Impróprias: Integrando Descontínuo

Agora, suponha que queremos calcular a área abaixo do gráfico da função $f(x)=rac{1}{x^2}$ quando $x\in (0,1].$ Sabemos que

$$\int \frac{1}{x^2} dx = -\frac{1}{x} + c.$$

Porém não faz sentido aplicar o Teorema Fundamental do Cálculo, pois a função não está definida em x=0.

De modo análogo ao feito anteriormente, podemos definir a área da seguinte forma

$$\int_0^1 \frac{1}{x^2} dx = \lim_{t \to 0^+} \int_t^1 \frac{1}{x^2} dx = \lim_{t \to 0^+} \left(-1 + \frac{1}{t} \right) = +\infty.$$

Definição 12

3 Se f é contínua em (a, b] e descontínua em a, então definimos

$$\int_{a}^{b} f(x)dx := \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx.$$

• Se f é contínua em [a, b] e descontínua em b, então definimos

$$\int_{a}^{b} f(x)dx := \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx.$$

§ Se f é contínua em $[a, c) \cup (c, b]$ e descontínua em c, então definimos

$$\int_a^b f(x)dx := \int_a^c f(x)dx + \int_c^b f(x)dx.$$

Exemplo

Ä⊐ Para Casa 15

Calcule

$$\int_0^1 \log(x) \, dx.$$

Trombeta de Gabriel

Podemos encontrar em livros de cálculo que a área de uma superfície gerada pela rotação, em torno do eixo x, do gráfico de uma função f não-negativa definida em [a,b] é dada por

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^{2}} dx$$

Com isso temos que a área de superfície da Trombeta de Gabriel é dado pela integral

$$\int_1^{+\infty} 2\pi \frac{1}{x} \sqrt{1 + \frac{1}{x^4}} dx.$$

Note que $\sqrt{1+\frac{1}{x^4}}>1, \ \forall x>0.$ Com isso,

$$\int_{1}^{b} 2\pi \frac{1}{x} \sqrt{1 + \frac{1}{x^4}} dx \ge \int_{1}^{b} 2\pi \frac{1}{x} dx.$$

Aplicando o limite deduzimos que a primeira integral diverge. Assim, a trombeta do Anjo Gabriel tem volume finito porém área de superfície infinita, ou seja, O arcanjo poderia encher a trombeta com pouco mais de 3 unidades cúbicas de tinta, mas mesmo que usasse toda a tinta do universo, não poderia pintá-la!!!

Teste de comparação

Algumas vezes é impossível ou uma tarefa muito difícil calcular o valor exato de uma integral imprópria, mas ainda assim é importante saber se ela é convergente ou divergente

Teorema 13 (Teste de comparação)

Suponha que f e g sejam funções contínuas com $0 \le g(x) \le f(x)$ para $x \ge a$.

- Se $\int_a^b f(x)dx$ é convergente, então $\int_a^b g(x)dx$ também convergente.
- Se $\int_a^b g(x)dx$ é divergente, então $\int_a^b f(x)dx$ também divergente.

O teste também é válido quando um dos extremos do limite de integração é infinito.

Decida sobre a convergência das integrais.

$$\int_{1}^{\infty} e^{-x^{2}} dx$$

$$\int_{0}^{1} \frac{dx}{\sqrt{x+x^{3}}}$$

Teste de comparação no limite

Teorema 14

Sejam f e g funções positivas e contínuas em $[a,+\infty)$ tais que

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = L.$$

- Se L=0 e $\int_a^{+\infty}g(x)dx$ converge, então $\int_a^{+\infty}f(x)dx$ também converge.

Observação 15

- Se $\lim_{x \to +\infty} f(x) = +\infty$, então $\int_a^{+\infty} f(x) dx$ diverge.
- 2 Este teste também é válido para os outros tipos de integrais impróprias, mutatis mutandis.

Proposição 16

Seja f contínua em [a,b). Se $\int_a^b |f(x)| dx$ converge, então $\int_a^b f(x) dx$ também converge.

Proposição 16

Seja f contínua em [a,b). Se $\int_a^b |f(x)| dx$ converge, então $\int_a^b f(x) dx$ também converge.

Decida sobre a convergência da integrais.

$$\bullet \int_1^{+\infty} \frac{dx}{\sqrt{2x^2 + 5x^3}}$$

