STANDARD SEQUENTIAL MODULES

- REGISTERS
- SHIFT REGISTERS
- SYNCHRONOUS COUNTERS
- FOR EACH MODULE WE SHOW:
 - SPECIFICATION
 - IMPLEMENTATION WITH FFs AND GATES
 - BASIC USES
 - HOW TO IMPLEMENT LARGER MODULES

Figure 11.1: *n*-BIT REGISTER MODULE

REGISTER: HIGH-LEVEL SPECIFICATION

INPUTS: $\underline{x} = (x_{n-1}, \dots, x_0), x_i \in \{0, 1\}$

 $LD, CLR \in \{0,1\}$

OUTPUTS: $\underline{z} = (z_{n-1}, \dots, z_0), z_i \in \{0, 1\}$

STATE: $\underline{s} = (s_{n-1}, \dots, s_0), \quad s_i \in \{0, 1\}$

FUNCTION: STATE TRANSITION AND OUTPUT FUNCTIONS

$$\underline{s}(t+1) = \begin{cases} \underline{x}(t) & \text{if} \quad LD(t) = 1 \text{ and} \quad CLR(t) = 0 \\ \underline{s}(t) & \text{if} \quad LD(t) = 0 \text{ and} \quad CLR(t) = 0 \\ \textbf{(0...0)} & \text{if} \quad CLR(t) = 1 \end{cases}$$

$$\underline{z}(t) = \underline{s}(t)$$

Figure 11.2: IMPLEMENTATION OF 4-BIT REGISTER.

Figure 11.3: TIME-BEHAVIOR OF REGISTER.

USES OF REGISTERS: Example 11.1

INPUT: $x \in \{0, 1\}$

OUTPUT: $(z_1, z_0), z_i \in \{0, 1\}$

STATE: $(s_1, s_0), s_i \in \{0, 1\}$

INITIAL STATE: $(s_1, s_0) = (0, 0)$

FUNCTION: STATE TRANSITION AND OUTPUT FUNCTIONS:

\overline{PS}	Input			
	x = 0	x = 1		
00	00	01		
01	01	11		
11	11	10		
10	10	00		
	NS			

$$z(t) = s(t)$$

 $\label{eq:Figure 11.4: NETWORKS FOR Example 11.1: a) NETWORK WITH STATE CELLS;}$

Figure 11.4: NETWORKS for Example 11.1: b) NETWORK WITH STANDARD REGISTER MODULE

Figure 11.5: SHIFT REGISTER

Figure 11.6: PARALLEL-IN/PARALLEL-OUT BIDIRECTIONAL SHIFT REGISTER

INPUTS:
$$\underline{x} = (x_{n-1}, \dots, x_0), x_i \in \{0, 1\}$$

 $x_l, x_r \in \{0, 1\}$

 $CTRL \in \{LOAD, LEFT, RIGHT, NONE\}$

STATE: $\underline{s} = (s_{n-1}, \dots, s_o), s_i \in \{0, 1\}$

OUTPUT: $\underline{z} = (z_{n-1}, \dots, z_0), z_i \in \{0, 1\}$

FUNCTIONS: STATE TRANSITION AND OUTPUT FUNCTIONS:

$$\underline{s}(t+1) = \begin{cases} \underline{s}(t) & \text{if} \quad CTRL = NONE \\ \underline{x}(t) & \text{if} \quad CTRL = LOAD \\ (s_{n-2}, \dots, s_0, x_l) & \text{if} \quad CTRL = LEFT \\ (x_r, s_{n-1}, \dots, s_1) & \text{if} \quad CTRL = RIGHT \end{cases}$$

$$\underline{z} = \underline{s}$$

Control		s(t+1) = z(t+1)
\overline{NONE}		0101
LOAD		1110
LEFT	$x_l = 0$	1010
LEFT	$x_l = 1$	1011
RIGHT	$x_r = 0$	0010
RIGHT	$x_r = 1$	1010

\overline{CTRL}	c_1	c_0
\overline{NONE}	0	0
LEFT	0	1
RIGHT	1	0
LOAD	1	1

Figure 11.7: IMPLEMENTATION OF A 4-BIT BIDIRECTIONAL SHIFT REGISTER WITH D FLIP-FLOPS.

$$z(t) = x(t - n)$$

Figure 11.8: COMMON UNIDIRECTIONAL SHIFT REGISTERS: a) SERIAL-IN/SERIAL-OUT

Figure 11.8: COMMON UNIDIRECTIONAL SHIFT REGISTERS: b) PARALLEL-IN/SERIAL-OUT

Figure 11.8: COMMON UNIDIRECTIONAL SHIFT REGISTERS: c) SERIAL-IN/PARALLEL-OUT

 $\label{eq:figure 11.8: COMMON UNIDIRECTIONAL SHIFT REGISTERS: a) SERIAL-IN/SERIAL-OUT; b) PARALLEL-IN/SERIAL-OUT; c) \\ SERIAL-IN/PARALLEL-OUT$

SERIAL INTERCONNECTION OF SYSTEMS

Figure 11.9: SERIAL INTERCONNECTION OF SYSTEMS USING SHIFT REGISTERS

• BIT-SERIAL OPERATIONS

Figure 11.10: BIT-SERIAL ADDER.

$$s_{n-1}(t+1) = x(t)$$

 $s_i(t+1) = s_{i+1}(t)$ for $i = n-2, ..., 0$

FINITE-MEMORY SEQUENTIAL SYSTEM

$$s_{7}(t+1) = x(t)$$

$$s_{i}(t+1) = s_{i+1}(t) \text{ for } i = 6, \dots, 0$$

$$z(t) = x(t)s_{0}(t)$$

$$x(t)$$
8-bit SHIFT REGISTER
$$x(t-8)$$

Figure 11.11: IMPLEMENTATION OF NETWORK IN Example 11.2

$$z(t) = \begin{cases} 1 & \text{if } \underline{s}(t) = 01101110 \text{ and } x(t) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Figure 11.12: IMPLEMENTATION OF NETWORK IN Example 11.3

Figure 11.13: NETWORK OF SERIAL-INPUT/SERIAL-OUTPUT SHIFT REGISTER MODULES

ullet MODULO-p COUNTER

$$s(t+1) = (s(t) + x) \bmod p$$

Figure 11.14: STATE DIAGRAM OF A MODULO-p COUNTER

INPUT: $x \in \{0, 1\}$

OUTPUTS: $z \in \{0, 1, ..., p - 1\}$

 $TC \in \{0, 1\}$

STATE: $s \in \{0, 1, \dots, p-1\}$

FUNCTION: STATE TRANSITION AND OUTPUT FUNCTIONS

$$s(t+1) = (s(t) + x) \bmod p$$

$$z(t) = s(t)$$

$$TC(t) = \begin{cases} 1 & \text{if } s(t) = p - 1 \text{ and } x(t) = 1 \\ 0 & \text{otherwise} \end{cases}$$

• UP or DOWN COUNTERS

State	Binary	BCD	Excess-3	Gray	Ring	Twisted Tail
0	000	0000	0011	000	0000001	0000
1	001	0001	0100	001	00000010	0001
2	010	0010	0101	011	00000100	0011
3	011	0011	0110	010	00001000	0111
4	100	0100	0111	110	00010000	1111
5	101	0101	1000	111	00100000	1110
6	110	0110	1001	101	01000000	1100
7	111	0111	1010	100	10000000	1000
8		1000	1011			
9		1001	1100			

Figure 11.15: a) MODULO-4 RING COUNTER; b) MODULO-8 TWISTED-TAIL COUNTER

INPUTS:
$$\underline{I} = (I_3, \dots, I_0), I_j \in \{0, 1\}, I \in \{0, 1..., 15\}$$
 $CLR, LD, CNT \in \{0, 1\}$
STATE: $\underline{s} = (s_3, \dots, s_0), s_j \in \{0, 1\}, s \in \{0, 1, ..., 15\}$
 $\underline{s} = (s_3, \dots, s_0), s_j \in \{0, 1\}, s \in \{0, 1, ..., 15\}$
 $TC \in \{0, 1\}$

FUNCTION: STATE-TRANSITION AND OUTPUT FUNCTIONS

$$s(t+1) = \begin{cases} 0 & \text{if} \quad CLR = 1\\ I & \text{if} \quad LD = 1\\ (s(t)+1) \bmod 16 & \text{if} \quad CNT = 1 \text{ and} \quad LD = 0\\ s(t) & \text{otherwise} \end{cases}$$

$$TC = \begin{cases} 1 & \text{if } s(t) = 15 \text{ and } CNT = 1 \\ 0 & \text{otherwise} \end{cases}$$

Figure 11.16: A MODULO-16 BINARY COUNTER WITH PARALLEL INPUT

$$CNT = x$$

$$LD = \begin{cases} 1 & \text{if } (s = k - 1) \text{ and } (x = 1) \\ 0 & \text{otherwise} \end{cases}$$

$$I = 0$$

$$TC = LD$$

Figure 11.17: a) STATE DIAGRAM OF MODULO-k COUNTER $(1 \le k \le 16)$; b) MODULO-12 COUNTER AND ITS TIME BEHAVIOR (x = 1)

$$CNT = x$$

$$LD = \begin{cases} 1 & \text{if } (s = b) \text{ and } (x = 1) \\ 0 & \text{otherwise} \end{cases}$$

$$I = a$$

Figure 11.18: a) STATE DIAGRAM OF a-to-b COUNTER; b) A 1-to-12 COUNTER

$$CNT = x$$

$$LD = \begin{cases} 1 & \text{if } TC = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$I = 16 - k$$

$$z = TC$$

Figure 11.19: a) STATE DIAGRAM OF MODULO-k FREQUENCY DIVIDER; b) MODULO-9 FREQUENCY DIVIDER AND ITS TIME BEHAVIOR (x=1)

• COUNT THE NUMBER OF TIMES THAT A CERTAIN EVENT TAKES PLACE;

• CONTROL A FIXED SEQUENCE OF ACTIONS

GENERATE TIMING SIGNALS

• GENERATE CLOCKS OF DIFFERENT FREQUENCIES

• STATE REGISTER

Figure 11.20: a) EXAMPLE OF EVENT COUNTER; b) EXAMPLE OF CONTROLLER.

Figure 11.21: EXAMPLES OF NETWORKS FOR GENERATING a) TIMING SIGNALS; b) CLOCKS WITH DIFFERENT FREQUENCIES.

Counting
$$s(t+1)=(s(t)+1) \bmod p$$

No change $s(t+1)=s(t)$
Arbitrary $s(t+1) \neq (s(t)+1) \bmod p$ and $s(t+1) \neq s(t)$

Figure 11.22: IMPLEMENTATION OF SEQUENTIAL SYSTEM WITH COUNTER AND COMBINATIONAL NETWORKS.

$$CNT = \begin{cases} 1 & if \ s(t+1) = (s(t)+1) \ \text{mod} \ p \ and \ x = 1 \\ 0 & \textbf{otherwise} \end{cases}$$

$$LD = \begin{cases} 1 & if \ s(t+1) \neq s(t) \ and \\ s(t+1) \neq (s(t)+1) \ \text{mod} \ p \ and \ x = 1 \\ 0 & \textbf{otherwise} \end{cases}$$

$$I = \begin{cases} s(t+1) & \textbf{if} \ LD = 1 \\ - & \textbf{otherwise} \end{cases}$$

Figure 11.23: STATE DIAGRAM for Example 11.4

$$CNT = S_0a + S_1 + S_2 + S_3b + S_4c' + S_5$$

$$LD = CNT'$$

$$(I_3, I_2, I_1, I_0) = \begin{cases} (0, 0, 0, 0) & \text{if } S_0a' + S_6b \\ (0, 0, 0, 1) & \text{if } S_4c + S_6b' \\ (0, 0, 1, 1) & \text{if } S_3b' \end{cases}$$

SWITCHING EXPRESSIONS FOR PARALLEL INPUTS

$$I_3 = 0$$
 $I_2 = 0$
 $I_1 = Q_0$
 $I_0 = Q_0 + Q_2Q'_1 + Q_2b'$

OUTPUT z

$$z = Q_1 Q_0 b'$$

Figure 11.24: SEQUENTIAL NETWORK FOR Example 11.4

CASCADE COUNTERS

$$TC = \begin{cases} 1 & \text{if } (s = p - 1) \text{ and } (CNT = 1) \\ 0 & \text{otherwise} \end{cases}$$

• FOR THE *i*-th MODULE

$$CNT^{i} = \begin{cases} 1 & \text{if } (s^{(j)} = p - 1) \text{ and } (x = 1) \\ & (\text{ for all } j < i) \\ 0 & \text{otherwise} \end{cases}$$

where $s^{(j)}$ is the state of counter j.

Figure 11.26: CASCADE IMPLEMENTATION OF A MODULO- p^k COUNTER

• THE WORST-CASE DELAY

$$T_{\text{worst-case}} = (k-1)t_{tc} + t_{su} + t_p$$

• THE MAXIMUM CLOCK FREQUENCY POSSIBLE

$$f_{max} = 1/[(k-1)t_{tc} + t_{su} + t_p]$$

$$t_{su}=4.5[ns]$$
 (including the delay of the gates used to produce the inputs to the cells) $t_p=2[ns]$ $t_{tc}=3.5[ns]$

MIN CLOCK PERIOD:

with one module T=6.5[ns] (153[MHz]) with 8 modules T=31[ns] (32[MHz])

• INTRODUCE CEF (Count Enable First)

$$s(t+1) = \begin{cases} (s(t)+1) \bmod p & \text{if} \quad CEF = 1 \text{ and } CNT = 1 \\ s(t) & \text{otherwise} \end{cases}$$

• TC SIGNAL NOT INFLUENCED BY CEF,

$$TC = \begin{cases} 1 & \text{if } (s(t) = p - 1) \text{ and } (CNT = 1) \\ 0 & \text{otherwise} \end{cases}$$

Figure 11.27: A FASTER VERSION OF A CASCADE COUNTER

$$T_{\text{worst-case}} = (k-2)t_{tc} + t_{su} + t_p$$

⇒ SMALL REDUCTION IN THE DELAY

* Note: propagation of TC can span several clock cycles

CONSEQUENTLY, IF T IS THE CLOCK PERIOD,

$$pT \ge (k-2)t_{tc} + t_{su} + t_p$$

$$T \ge t_{tc} + t_{su} + t_p$$

COMBINING

$$T \ge \max(t_{tc} + t_{su} + t_p, ((k-2)t_{tc} + t_{su} + t_p)/p)$$

Figure 11.28: TIMING RELATIONS: a) Without CEF; b) With CEF

Modulo-504 counter: $7 \times 8 \times 9$ states

 $000, 111, 222, 333, 444, 555, 666, 077, 108, 210, 321, 432, \dots$

Figure 11.29: PARALLEL IMPLEMENTATION OF MODULO-(7 \times 8 \times 9) COUNTER.

• Complex sequential system \Rightarrow several interacting sequential subsystems

Example 11.6: BLOCK PATTERN RECOGNIZER

- INPUT SEQUENCE: blocks of k symbols
- FUNCTION: check for pattern P in each block
- IMPLEMENTATION: counter + recognizer
- OUTPUT OF THE COUNTER:

$$TC(t) = \begin{cases} 1 & \text{if} \quad t \mod k = k - 1 \text{ and } \text{CHECK} = 1 \\ 0 & \text{otherwise} \end{cases}$$

ullet OUTPUT OF THE SYSTEM: $z(t) = p(t) \cdot TC(t)$

Figure 11.30: BLOCK PATTERN RECOGNIZER

t	0	1	2	3	4	5	6	7	8	9	10	11
\overline{x}	5	3	7	4	1	0	3	7	4	3	7	4
TC	0	0	1	0	0	1	0	0	1	0	0	1
p	0	0	0	1	0	0	0	0	1	0	0	1
$x \\ TC \\ p \\ z$	0	0	0	0	0	0	0	0	1	0	0	1

ullet count the number of instances of pattern P in blocks of k symbols

Figure 11.30: BLOCK PATTERN RECOGNIZER.