HILISIT

Logique, ensembles et raisonnements - Partie 2

Exercice 1.

Remplacer les pointillés par le symbole le plus adapté parmi \in , \notin , \subset , \supset .

1.
$$[3,5]$$
 $\{x \in \mathbb{R} \mid 2 \le x \le 7\}$

2. 2
$$.....$$
 $\{x \in \mathbb{R} \mid x^2 \ge 5\}$

3.
$$\pi = 3.14...$$
 $\mathbb{R} \setminus \mathbb{Q}$

4.
$$[1,9]$$
 $[1,4] \cup [5,9]$

5.
$$\{0\}$$
 \mathbb{R}_+

7.
$$[-7,5] \cap [-2,8]$$
 $[-1,1]$

Indications 1.

Rappels : ∈ "appartient à"; ∉ "n'appartient pas à" sont utilisés pour des éléments, ⊂ "est contenu dans", ⊃ "contient" sont utilisés pour des ensembles.

Correction 1.

1. $[3,5] \subset \{x \in \mathbb{R} \mid 2 \le x \le 7\}$ car on rappelle que $[3,5] = \{x \in \mathbb{R} \mid 3 \le x \le 5\}$.

2.
$$2 \notin \{x \in \mathbb{R} \mid x^2 \ge 5\}$$

3. $\pi \in \mathbb{R} \setminus \mathbb{Q}$

4. $[1,9] \supset [1,4] \cup [5,9]$

5. $\{0\} \subset \mathbb{R}_+$ (et pas " \in " car $\{0\}$ est un ensemble, ce n'est pas l'élément 0).

6. $0 \notin \mathbb{Z} \setminus \mathbb{N}$ ($0 \in \mathbb{N}$ donc on le retire ici de \mathbb{Z}).

7. $([-7,5] \cap [-2,8]) \supset [-1,1]$

Exercice 2.

Déterminer le domaine de définition de la fonction $x \mapsto f(x)$ dans chacun des cas suivants :

1.
$$f(x) = \sqrt{-x+3}$$

2.
$$f(x) = \frac{1}{x} + \frac{1}{x^2-1}$$

3.
$$f(x) = \exp(x^2 + 1)$$

4.
$$f(x) = \ln(5x + 8)$$

5.
$$f(x) = \ln((x-1)(x+2))$$

6.
$$f(x) = \sqrt{x^2 + 3x - 2}$$

Indications 2.

L'expression \sqrt{x} est définie pour $x \ge 0$. L'expression $\frac{1}{x}$ est définie pour $x \ne 0$. L'expression $\ln(x)$ est définie pour x > 0.

Correction 2.

On désigne par \mathcal{D}_f l'ensemble de définition de f .

- 1. $f(x) = \sqrt{-x+3}$. On doit avoir $-x+3 \ge 0$, c'est-à-dire $3 \ge x$, donc $\mathcal{D}_f =]-\infty, 3]$.
- 2. $f(x) = \frac{1}{x} + \frac{1}{x^2 1}$. Les dénominateurs ne doivent pas s'annuler. Les dénominateurs s'annulent lorsque x = 0 ou $x^2 1 = 0$, c'est-à-dire $x \in \{0, 1, -1\}$. Ainsi

$$\mathcal{D}_f = \mathbb{R} \setminus \{0, 1, -1\} =] - \infty, -1[\cup] - 1, 0[\cup]0, 1[\cup]1, +\infty[.$$

- 3. $f(x) = \exp(x^2 + 1)$. Cette expression est définie pour tout x réel : $\mathcal{D}_f = \mathbb{R}$.
- 4. $f(x) = \ln(5x + 8)$. On doit avoir 5x + 8 > 0, c'est-à-dire $x > -\frac{8}{5}$, donc $\mathcal{D}_f =] \frac{8}{5}, +\infty[$.
- 5. $f(x) = \ln((x-1)(x+2))$.

On étudie le signe de (x-1)(x+2) (tableau de signes immédiat plutôt que développement et étude du signe d'un trinôme selon ses racines), qui est strictement positif pour x>1 et aussi pour x<-2. Donc $\mathcal{D}_f=]-\infty,-2[\cup]1,+\infty[$.

6. $f(x) = \sqrt{x^2 + 3x - 2}$. On étudie le signe de $x^2 + 3x - 2$. Pour cela on cherche d'abord les solutions de $x^2 + 3x - 2 = 0$. Les racines sont $x_1 = \frac{-3 - \sqrt{17}}{2}$ et $x_2 = \frac{-3 + \sqrt{17}}{2}$. Le trinôme $x^2 + 3x - 2$ est positif à l'extérieur des racines, donc $\mathscr{D}_f =]-\infty, x_1] \cup [x_2, +\infty[$.

Exercice 3.

Soient $f, g : \mathbb{R} \to \mathbb{R}$ définies par f(x) = 2x + 1 et $g(x) = x^2 - 3x$.

- 1. Déterminer l'expression de la fonction $f \circ g$.
- 2. Déterminer l'expression de la fonction $g \circ f$.
- 3. Montrer que $(g \circ f)(\frac{-1}{2}) = 0$ et en déduire, pour $x \in \mathbb{R}$, la factorisation de l'expression $(g \circ f)(x)$.

Indications 3.

$$(f \circ g)(x) = f(g(x))$$
$$(g \circ f)(x) = g(f(x))$$

Si un polynôme P(X) s'annule en $X = \alpha$, alors il se factorise par $(X - \alpha)$.

Correction 3.

1.
$$f \circ g$$

$$(f \circ g)(x) = f(g(x)) = f(x^2 - 3x) = 2(x^2 - 3x) + 1 = 2x^2 - 6x + 1.$$

2. g o f

$$(g \circ f)(x) = g(f(x)) = g(2x+1) = (2x+1)^2 - 3(2x+1) = (4x^2 + 4x + 1) - (6x+3) = 4x^2 - 2x - 2$$

3. Calculons $(g \circ f)(\frac{-1}{2})$.

D'une part $f(-\frac{1}{2}) = 2(-\frac{1}{2}) + 1 = 0$. Donc $(g \circ f)(\frac{-1}{2}) = g(0) = 0^2 - 3 \times 0 = 0$.

D'autre part, on a calculé que $(g \circ f)(x) = 4x^2 - 2x - 2$. Donc on vient de prouver que $-\frac{1}{2}$ est une racine de $4x^2 - 2x - 2$. On en déduit $4x^2 - 2x - 2 = a(x + \frac{1}{2})(x - b)$. Par identification on trouve a = 4 et b = 1. Conclusion : $4x^2 - 2x - 2 = 4(x + \frac{1}{2})(x - 1)$.

Exercice 4.

On veut déterminer la bijection réciproque de la fonction f définie par :

$$f(x) = \frac{2x-1}{x-3}.$$

- 1. Déterminer le domaine de définition de f.
- 2. Résoudre l'équation y = f(x), c'est-à-dire déterminer x en fonction de y. Indication : exprimer x sous la forme $x = \frac{ay+b}{cy+d}$. Quelle valeur y_0 de y faut-il exclure?
- 3. On définit $g(y) = \frac{ay+b}{cy+d}$ (où a,b,c,d ont été déterminés à la question précédente). Montrer que g est la bijection réciproque de f, c'est-à-dire

$$(g \circ f)(x) = x$$
 pour tout $x \neq 3$

et

$$(f \circ g)(y) = y$$
 pour tout $y \neq y_0$.

Indications 4.

On calcule x en fonction de y. En isolant x, on doit trouver : $x = \frac{3y-1}{y-2}$.

Correction 4.

- 1. Le domaine de définition de $f(x) = \frac{2x-1}{x-3}$ est $\mathbb{R} \setminus \{3\}$.
- 2. Fixons y et résolvons l'équation y = f(x), avec $x \neq 3$, on a les équivalences :

$$y = f(x) \iff y = \frac{2x - 1}{x - 3} \iff (x - 3)y = 2x - 1$$
$$\iff xy - 2x = 3y - 1 \iff x(y - 2) = 3y - 1$$
$$\iff x = \frac{3y - 1}{y - 2} \quad \text{et } y \neq 2$$

Ces calculs sont valables pour $x \neq 3$ et $y \neq 2$. (On pourrait vérifier que l'équation f(x) = 2 n'a pas de solution.)

3. Définissons $g(y) = \frac{3y-1}{y-2}$ comme fonction définie sur $\mathbb{R} \setminus \{2\}$. Vérifions que g est la bijection réciproque de f.

D'une part, avec $x \neq 3$,

$$g \circ f(x) = g\left(\frac{2x-1}{x-3}\right) = \frac{3\frac{2x-1}{x-3}-1}{\frac{2x-1}{x-3}-2} = \frac{3(2x-1)-(x-3)}{2x-1-2(x-3)} = \frac{5x}{5} = x$$

D'autre part, avec $y \neq 2$,

$$f \circ g(y) = f\left(\frac{3y-1}{y-2}\right) = \frac{2\frac{3y-1}{y-2}-1}{\frac{3y-1}{y-2}-3} = \frac{2(3y-1)-(y-2)}{3y-1-3(y-2)} = \frac{5y}{5} = y$$

Cela prouve que $f: \mathbb{R} \setminus \{3\} \to \mathbb{R} \setminus \{2\}$ et $g: \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{3\}$ sont des bijections réciproques l'une de l'autre.

3