Ondes mécaniques

I - Ondes mécaniques progressives

1) Définition

Une onde mécanique est une perturbation qui se propage dans un milieu élastique sans transport de matière. Seule l'énergie est transportée d'un point à un autre!

Exemples: onde sur une corde de guitare, onde à la surface de l'eau, ondes sonores, ...

2) Ondes transversales et longitudinales

Une onde est **transversale** lorsque la perturbation du milieu de propagation est **perpendiculaire** à la direction de propagation.

Exemples: vagues, cordes, ...

Une onde est **longitudinale** lorsque la perturbation du milieu de propagation est **parallèle** à la direction de propagation.

Exemples: son, ...

3) Ondes planes et sphériques

Un front d'onde est un surface qui contient les points qui ont le même temps de parcours depuis la source.

Onde plane: les fronts d'ondes sont des plans.

Onde sphérique : les fronts d'ondes sont des sphères.

4) Célérité d'une onde

La célérité (ou vitesse) d'un onde progressive est donnée par la relation :

$$c = \frac{d}{t} \quad (\mathbf{m} \cdot \mathbf{s}^{-1})$$

- d est la distance parcourue par l'onde en m.
- t est la durée du parcours en s.

II - Ondes mécaniques progressives sinusoïdales

1) Définition

La perturbation de l'onde est sinusoïdale d'amplitude A et de période T telle que :

$$y(x,t) = A \cdot \sin\left[\frac{2\pi}{T}(t - \frac{x}{c})\right]$$

- L'onde se propage dans le sens des x positifs.
- La perturbation est fonction du temps t mais aussi de la position x!

2) Période temporelle et période spatiale

Pendant la durée T (période temporelle), l'onde se propage d'une distance λ (période spatiale) tel que :

3) Dispersion

Un **milieu est dispersif** lorsque les différentes fréquences composant une onde ne se propagent pas à la même vitesse.

Exemple: vagues, son,

4) Puissance moyenne transportée par une onde

La **puissance moyenne par unité de surface** transportée par un onde progressive sinusoïdale est donnée par la relation :

 $P = \frac{A^2}{2Z} \quad (W \cdot m^{-2})$

- A est la surpression acoustique en Pa
- Z est l'impédance acoustique du milieu en kg·m $^{-2}$ ·s $^{-2}$

III - Ondes sonores et ultrasonores

1) Définition

Une onde sonore est un **onde mécanique** due à la **compression** et à la **dilatation** d'un milieu. C'est donc une **onde longitudinale**.

2) Caractéristiques d'une onde sonore

Plage de fréquence :

Hauteur: La hauteur d'un son est fonction de sa **fréquence** (grave à aigu).

Timbre: Le timbre d'un son dépend de sa **composition spectrale** (fondamental et présence d'harmoniques). Deux sons de même fréquence (fondamental) et de timbre différent (harmonique) ne sont pas ressentis de la même manière!

3) Applications

Télémètre

Mesure d'une distance par reflexion d'une onde ultrasonore sur un objet fixe (vu en TP).

$$d = c \times \Delta t$$

Effet Doppler

Mesure d'une vitesse toujours par réflexion d'une onde sur un objet en mouvement.

$$\Delta f = f_r - f_s = f_s \frac{v_s}{c - v_s}$$