The LNM Institute of Information Technology Jaipur, Rajsthan

MATH-I ■ Assignment #2

(Sequences Cont.)

- Q1. Investigate the convergence/divergence of the following sequences:
 - (a) $x_n = \frac{n^s}{(1+p)^n}$ for some s > 0 and p > 0(b) $x_n = \frac{2^n}{n!}$
- Q.2 Is the sequence $a_n = 1 + (-1)^n$ a cauchy sequence?
- Q.3 Is the sequence $a_n = \frac{1}{n}$ a cauchy sequence?
- Q4. Suppose that $0 < \alpha < 1$ and that (x_n) is a sequence which satisfies one of the following conditions:
 - (a) $|x_{n+1} x_n| \le \alpha^n$, $n = 1, 2, 3, \dots$
 - (b) $|x_{n+2} x_{n+1}| \le \alpha |x_{n+1} x_n|, \quad n = 1, 2, 3, \dots$

Then prove that (x_n) satisfies the Cauchy criterion. Whenever you use this result, you have to show that the number α that you get, satisfies $0 < \alpha < 1$. The condition $|x_{n+2}-x_{n+1}| \leq |x_{n+1}-x_n|$ does not guarantee the convergence of (x_n) . Give examples.

Q5. Let $x_1 \in \mathbb{R}$ and let $x_{n+1} = \frac{1}{7}(x_n^3 + 2)$ for $n \in \mathbb{N}$. Show that (x_n) converges for $0 < x_1 < 1$. Also conclude that it converges to a root of $x^3 - 7x + 2$ lying between 0 and 1. Does the sequence converge for any starting value of $x_1 > 1$.