

Armed Services Technical Information Agency

Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

AD 46099

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO

UNCLASSIFIED

AD No. 46 099
ASTIA FILE COPY

Technical Report No. 5

RESPONSE OF AN ELASTIC DISK TO IMPACT AND MOVING LOADS

By

A. Cemal Eringen

to

Office of Naval Research
Department of the Navy

Contract Nonr-1100(02)

Division of Engineering Sciences
Purdue University
Lafayette, Indiana

1 September 1954

DISTRIBUTION LISTI. Administrative, Reference and Liaison Activities of ONR

Chief of Naval Research Department of the Navy Washington 25, D.C.	Library of Congress Washington 25, D.C. Attn: Navy Research Section (2)
Attn: Code 438 (2) Code 432 (1) Code 466 (via Code 108) (1)	Office of Naval Research Branch Office The John Crerar Library Building Tenth Floor, 86 E. Randolph St. Chicago 1, Illinois (2)
Director, Naval Research Lab. Washington 25, D.C. Attn: Tech. Info. Officer (9) Technical Library (1) Mechanics Division (2)	

II. Department of Defense and other interested Government activities(A) GENERAL

Research and Development Board
Department of Defense
Pentagon Bldg.
Washington 25, D.C.
Attn: Library (Code 3D-1075)

(B) ARMY

Chief of Staff Department of the Army Research and Development Div. Washington 25, D.C.	
Attn: Chief of Res. and Dev. (1)	

Armed Forces Special Weapons
Project
P.O. Box 2610
Washington, D.C.
Attn: Col. G. F. Blunda

Office of the Chief of Engineers Assistant Chief for Works Department of the Army Bldg. T-7, Gravelly Point Washington 25, D.C.	
Attn: Structural Branch (R. L. Bloor) (1)	

Joint Task Force 3
12 St. and Const. Ave., N.W.
(Temp. U)
Washington 25, D.C.
Attn: Major B. D. Jones

Engineering Research and Develop- ment Laboratory	
(1) Fort Belvoir, Virginia	
Attn: Structures Branch (1)	

DISTRIBUTION LIST (continued)

2

Office of the Chief of Engineers Asst. Chief for Military Construction Department of the Army Bldg. T-3, Gravelly Point Washington 25, D.C. Attn: Structures Branch (M.F. Carey) Protective Construction Branch (I.O.Thorley)	(1)	(C) Navy Chief of Naval Operations Department of the Navy Washington 25, D.C. Attn: OP-31 (1) OP-363 (1)
Office of the Chief of Engineers Asst. Chief for Military Operations Department of the Army Bldg. T-7, Gravelly Point, Washington 25, D.C. Attn: Structures Development Branch (W.F.Woollard)	(1)	Chief of Bureau of Ships Department of the Navy Washington 25, D.C. Attn: Director of Research (2) Code 423 (1) Code 442 (1) Code 421 (1)
U.S. Army Waterways Experiment Station P. O. Box 631 Halls Ferry Road Vicksburg, Mississippi Attn: Col. H. J. Skidmore		Director, David Taylor Model Basin Department of the Navy Washington 7, D.C. Attn: Code 720, Structures Division (1) Code 740, Hi-Speed Dynamics Div., (1)
The Commanding General Sandia Base, P. O. Box 5100 Albuquerque, New Mexico Attn: Col. Canterbury	(1)	Commanding Officer, Underwater Explosion Research Div. Code 290 Norfolk Naval Shipyard Portsmouth, Virginia (1)
Operations Research Officer Department of the Army Ft. Lesley J. McNair Washington 25, D.C. Attn: Howard Brackney	(1)	Commander Portsmouth Naval Shipyard Portsmouth, N.H. Attn: Design Division (1)
Office of Chief of Ordnance Office of Ordnance Research Department of the Army The Pentagon Annex No. 2 Washington 25, D.C. Attn: ORDTB-PS	(1)	Director, Materials Laboratory New York Naval Shipyard Brooklyn 1, New York (1)
Ballistics Research Laboratory Aberdeen Proving Ground Aberdeen, Maryland Attn: Dr. C. W. Lampson	(1)	Chief of Bureau of Ordnance Department of the Navy Washington 25, D.C. Attn: Ad-3, Technical Library (1) Roc, P. H. Girouard (1)
		Naval Ordnance Laboratory White Oak, Maryland RFD 1, Silver Spring, Maryland Attn: Mechanics Division (1) Explosive Division (1) Mech. Evaluation Div. (1)

DISTRIBUTION LIST (continued)

3

(C) NAVY

Commander
 U.S. Naval Ordnance Test Station
 Inyokern, California
 Post Office- China Lake, Calif.
 Attn: Scientific Officer

Naval Ordnance Test Station
 Underwater Ordnance Division
 Pasadena, California
 Attn: Structures Division

Chief of the Bureau of Aeronautics
 Department of the Navy
 Washington 25, D.C.
 Attn: TD-41, Technical Library

Chief of Bureau of Ships
 Department of the Navy
 Washington 25, D.C.
 Attn: Code P-314
 Code C-313

Officer in Charge
 Naval Civil Engr. Research and
 Evaluation Laboratory
 Naval Station
 Port Hueneme, California

Superintendent
 U.S. Naval Post graduate School
 Annapolis, Maryland

(D) AIR FORCES

Commanding General
 U. S. Air Forces
 The Pentagon
 Washington 25, D.C.
 Attn. Res. & Dev. Div.

Deputy Chief of Staff, Operations
 Air Targets Division
 Headquarters, U.S. Air Forces
 Washington 25, D.C.
 Attn: AFONIN-T/PV

Flight Research Laboratory
 Wright-Patterson Air Force Base
 Dayton, Ohio
 Attn: Chief, Applied Mechanics
 Group

(E) OTHER GOVERNMENT AGENCIES

(1) U.S. Atomic Energy Commission
 Division of Research
 Washington, D.C.

Director, National Bureau of
 Standards
 (1) Washington, D.C.
 Attn: Dr. W. H. Ramberg

Forest Products Laboratory
 (1) Madison 5, Wisconsin

Supplementary Distribution List

Professor Lynn Beedle
 Fritz Engineering Laboratory
 Lehigh University
 Bethlehem, Pennsylvania

Professor G. F. Carrier
 Graduate Div. of Applied Mathematics
 Brown University
 (1) Providence, Rhode Island

Prof. R. L. Bisplinghoff
 Dept. Aeronautical Engineering
 Massachusetts Inst. of Tech.
 Cambridge 39, Massachusetts

Professor R. J. Dolan
 Dept. of Theoretical and Applied
 Mechanics
 (1) University of Illinois
 Urbana, Illinois

DISTRIBUTION LIST (continued)

4

Professor Hans Bleich
Dept. of Civil Engineering
Columbia University
Broadway at 117th St.
New York 27, New York (1)

Prof. B. A. Boley
Dept. Aeronautical Engineering
Ohio State University
Columbus, Ohio (1)

Professor Lloyd Donnell
Department of Mechanics
Illinois Institute of Technology
Technology Center
Chicago 16, Illinois (1)

Professor B. Fried
Dept. Mechanical Engineering
Washington State College
Pullman, Washington (1)

Mr. Martin Goland
Midwest Research Institute
4049 Pennsylvania Avenue
Kansas City 2, Missouri (1)

Dr. J. N. Goodier
School of Engineering
Stanford University
Stanford, California (1)

Professor M. Hetenyi
Walter P. Murphy Professor
Northwestern University
Evanston, Illinois (1)

Dr. N. J. Hoff, Head,
Dept. Aeronautical Engineering &
Applied Mechanics
Polytechnic Institute of Brooklyn
99 Livingston Street
Brooklyn 2, New York (1)

Dr. J. H. Hollomon
General Electric Research Laboratories
1 River Road
Schenectady, New York (1)

Professor L. S. Jacobsen
Dept. of Mechanical Engineering
Stanford, California (1)

Dr. W. H. Hopmann
Dept. of Applied Mechanics
Johns Hopkins University
Baltimore, Maryland (1)

Professor George Lee
Department of Mathematics
Rensselaer Polytechnic Institute
Troy, New York (1)

Professor Glen Murphy, Head
Dept. of Theoretical & Applied
Mechanics
Iowa State College
Ames, Iowa (1)

Prof. N. M. Newmark
Dept. of Civil Engineering
University of Illinois
Urbana, Illinois (1)

Professor Jesse Ormondroyd
University of Michigan
Ann Arbor, Michigan (1)

Sandia Corporation
Sandia Base
Albuquerque, New Mexico
Attn: Mr. E. F. Cox
Code 5110 (1)

Dr. A. Phillips
School of Engineering
Stanford University
Stanford, California (1)

Dr. W. Prager, Chairman
Graduate Division of Applied
Mathematics
Brown University
Providence 12, R. I. (1)

Dr. S. Raynor Armour Research Foundation Illinois Institute of Technology Chicago 16, Illinois	(1)	Professor E. Sternberg Illinois Institute of Technology Technology Center Chicago 16, Illinois	(1)
Professor E. Reiesner Dept. of Mathematics Massachusetts Institute of Tech. Cambridge 39, Massachusetts	(1)	Professor F. K. Teichmann Dept. of Aeronautical Engineering New York University University Heights, Bronx New York, N. Y.	(1)
Professor M. A. Sadowsky Illinois Institute of Technology Technology Center Chicago 16, Illinois	(1)	Professor C. T. Wang Dept. of Aeronautical Engineering New York University University Heights, Bronx New York, N. Y.	(1)
Professor Paul Lieber Dept. of Aeronautical Engineering Rensselaer Polytechnic Institute Troy, New York	(1)	Project File	(2)
Professor J. E. Stallmeyer Talbot Laboratory Dept. of Civil Engineering University of Illinois Urbana, Illinois	(1)	Project Staff	(5)
Dr. C. B. Smith College of Arts and Sciences Department of Mathematics Walker Hall University of Florida Gainesville, Florida	(1)	For possible future distribution by the University	(10)
Professor J. R. Anderson Towne School of Engineering University of Pennsylvania Philadelphia, Pennsylvania	(1)		
Commander U. S. Naval Proving Ground Dahlgren, Virginia	(1)		

RESPONSE OF AN ELASTIC DISK TO IMPACT AND MOVING LOADS

by

A. Camal Eringen *

Purdue University

ABSTRACT

With the use of Fourier transforms a class of elasto-dynamic problems concerning disks have been solved. The disk is subjected to various types of dynamic loadings at the rim. The case of impact and the moving loads are studied in detail.

(*) Associate Professor of Division of Engineering Sciences.

1. Introduction

Cylindrical roller bearings in high speed mechanism are subject to dynamic loadings. Yet the usual design procedure is based on Hertz formulae which are the result of elasto-static considerations. In many other instances, gears, rollers, or disks are subject to impact or moving loads. If we neglect the coriolis terms we can also bring the rolling disks on contact into the category of disks subject to moving loads. Thus the aim of the present paper is to obtain the solution to this class of elasto-dynamic problems concerning the disk. The dynamic load is applied to the rim of the disk. Two normal concentrated dynamic loads at the two ends of a diameter moving or otherwise are special cases.

Some solutions of free oscillation of cylinders are known since the time of Pochhammer [1], and later Pickett [2], J. Mindlin [3], T. Ghosh [4]. Similarly, the problem of rotating disks has attracted attention of many authors (see, for instance, Lamb and Southwell [5], Timoshenko and Goodier [6], Love [7]). It seems, however, that the forced oscillation problems concerning disks and cylinders have escaped the attention of authors, excepting a paper by J. Mindlin [8], which consists of generalities in a related problem to ours.

The present method is applicable to ring problems and to the plane elasto-dynamic problems concerning circular holes. These problems will be treated in later papers.

2. Formulation of the Problem

Equations of motion of plane homogeneous isotropic media in terms of plane polar coordinates r and θ and the time t are [7]: (See Fig. 1)

Fig. 1. Circular Disk

$$\begin{aligned} \gamma u_{,tt} &= (\lambda + 2\mu) \Delta_{,r} - 2\mu r^{-1} \omega_{,\theta} \\ \gamma v_{,tt} &= (\lambda + 2\mu) r^{-1} \Delta_{,\theta} + 2\mu \omega_{,r} \end{aligned} \quad (1)$$

where $u(r, \theta, t)$ and $v(r, \theta, t)$ are components of the displacement vector, λ and μ are the Lame' constants, and γ is the mass density per unit volume. Dilatation Δ and rotation ω are related to u, v by:

$$r \Delta = (r u)_{,r} + v_{,\theta}, \quad 2r\omega = (r v)_{,r} - u_{,\theta} \quad (2)$$

Subscripts after a comma represent differentiation, i.e., $u_{,\theta} = \partial u / \partial \theta$ etc.

Elimination of u and v among (1) and (2) leads to:

$$\alpha_1^2 r^2 \Delta_{tt} = r(r\Delta_{,r})_{,r} + \Delta_{,rr} , \quad \alpha_1^2 = \gamma / (\lambda + 2\mu) \quad (3)$$

$$\alpha_2^2 r^2 \omega_{tt} = r(r\omega_{,r})_{,r} + \omega_{,rr} , \quad \alpha_2^2 = \gamma / \mu$$

These are the equations of dilatational and rotational waves.

Components σ_{rr} , $\sigma_{r\theta}$, $\sigma_{\theta\theta}$ of the stress tensor are given by:

$$\begin{aligned} \sigma_{rr} &= \lambda \Delta + 2\mu u_{,r} , \quad \sigma_{r\theta} = \mu r^{-1} u_{,\theta} + \mu r(v/r)_{,r} \\ \sigma_{\theta\theta} &= \lambda \Delta + 2\mu r^{-1} (v_{,\theta} + u) \end{aligned} \quad (4)$$

The problem is to solve (1), (2) under a given σ_{rr} and $\sigma_{r\theta}$ at the rim $r = a$ of the disk:

$$\sigma_{rr}(a, \theta, t) = \sigma_0(\theta, t) , \quad \sigma_{r\theta}(a, \theta, t) = \tau_0(\theta, t) \quad (5)$$

subject to the condition that these surface tractions are in equilibrium at each instant.

3. The Solution

The periodic solution of (3) with respect to θ is obtained to be

$$\bar{\Delta} = \sum_{n=0}^{\infty} (A_{1n} \sin n\theta + A_{2n} \cos n\theta) Z_n(\rho_1) , \quad (6)$$

$$\bar{\omega} = \sum_{n=0}^{\infty} (B_{1n} \cos n\theta - B_{2n} \sin n\theta) Z_n(\rho_2) ,$$

$$Z_n(\rho_j) = C_{jn} J_n(\rho_j) + D_{jn} Y_n(\rho_j) , \quad \rho_j = \alpha_j \tau r , \quad (j = 1, 2)$$

where $Z_n(\rho)$ is the cylinder function $[g]$; A_{jn} , B_{jn} , C_{jn} and D_{jn} are

constants of integration; and the barred quantities represent the Fourier transforms, i.e.

$$\bar{F}(\tau) = \int_{-\infty}^{\infty} e^{i\tau t} F(t) dt, \quad i = \sqrt{-1} \quad (7)$$

The inversion formula for (7) is

$$F(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-it\tau} \bar{F}(\tau) d\tau \quad (8)$$

Substituting (6) into (2) after taking the Fourier transforms of (2) and solving the resulting partial differential equations we obtain:

$$\bar{u} = \sum_{n=0}^{\infty} U_{1n}(r) \sin n\theta + U_{2n}(r) \cos n\theta \quad (9)$$

$$\bar{v} = \sum_{n=0}^{\infty} V_{1n}(r) \cos n\theta - V_{2n}(r) \sin n\theta$$

where

$$-r^{-1} U_{jn}(r) = A_{jn} \rho_1^{-1} z'_n(\rho_1) + B_{jn} 2^n \rho_2^{-2} z_n(\rho_2) \quad (10)$$

$$-r^{-1} V_{jn}(r) = A_{jn} n \rho_1^{-2} z_n(\rho_1) + B_{jn} 2 \rho_2^{-1} z'_n(\rho_2)$$

where prime represents differentiation.

Combining (4), (6), and (9) we obtain

$$\begin{aligned} \bar{\sigma}_{rr}/2\mu &= \sum_{n=0}^{\infty} [A_{1n} N_{1n}(r\tau) + B_{1n} N_{2n}(r\tau)] \sin n\theta + [A_{2n} N_{1n}(r\tau) \\ &\quad + B_{2n} N_{2n}(r\tau)] \cos n\theta \\ \bar{\sigma}_{r\theta}/2\mu &= \sum_{n=0}^{\infty} [A_{1n} S_{1n}(r\tau) + B_{1n} S_{2n}(r\tau)] \cos n\theta - [A_{2n} S_{1n}(r\tau) \\ &\quad + B_{2n} S_{2n}(r\tau)] \sin n\theta \end{aligned} \quad (11)$$

(cont'd.)

(11, cont'd.)

$$\bar{\sigma}_{\theta\theta}/2\mu = \sum_{n=0}^{\infty} [A_{1n} T_{1n}(r\tau) + B_{1n} T_{2n}(r\tau)] \sin n\theta + [A_{2n} T_{1n}(r\tau) \\ + B_{2n} T_{2n}(r\tau)] \cos n\theta$$

where:

$$N_{1n}(r\tau) = (\lambda/2\mu) z_n(\rho_1) + (1 - n^2 \rho_1^{-2}) z_n(\rho_1) + \rho_1^{-1} z'_n(\rho_1)$$

$$N_{2n}(r\tau) = 2n \rho_2^{-2} z_n(\rho_2) - 2n \rho_2^{-1} z'_n(\rho_2)$$

$$S_{1n}(r\tau) = n \rho_1^{-2} z_n(\rho_1) - n \rho_1^{-1} z'_n(\rho_1) \quad (12)$$

$$S_{2n}(r\tau) = (1 - 2n^2 \rho_2^{-2}) z_n(\rho_2) + 2 \rho_2^{-1} z'_n(\rho_2)$$

$$T_{1n}(r\tau) = (\lambda/2\mu) z_n(\rho_1) + n^2 \rho_1^{-2} z_n(\rho_1) - \rho_1^{-1} z'_n(\rho_1)$$

$$T_{2n}(r\tau) = -N_{2n}(r\tau)$$

4. Dynamic tractions applied to the rim of a disk

In the case of a disk, the stress and deformation components must be finite at $r = 0$. Hence $D_{jn} = 0$. Without loss of generality we also take $C_{jn} = 1$. This means in all of our formulas we must replace Z_n by J_n .

We use boundary conditions (5) to determine the constants A_{jn} and B_{jn} . The Fourier's theorem thus leads to:

$$A_{1n} = [2\mu D_n(a\tau)^{-1} [S_{2n}(a\tau) \tilde{\sigma}_{os} - N_{2n}(a\tau) \tilde{\tau}_{oc}]$$

$$B_{1n} = [2\mu D_n(a\tau)^{-1} [-S_{1n}(a\tau) \tilde{\sigma}_{os} + N_{1n}(a\tau) \tilde{\tau}_{oc}]$$

$$A_{2n} = [2\mu D_n(a\tau)^{-1} [S_{2n}(a\tau) \tilde{\sigma}_{oc} + N_{2n}(a\tau) \tilde{\tau}_{os}]$$

(cont'd.)

$$B_{2n} = [2 \mu D_n(a\tau) j^{-1} \left[-S_{1n}(a\tau) \tilde{\sigma}_{oc} - N_{1n}(a\tau) \tilde{\tau}_{os} \right] ,$$

(n=1, 2, ...),

$$A_{j0} = \frac{1}{2} \left[A_{jn} \right]_{n=0}, \quad B_{j0} = \frac{1}{2} \left[B_{jn} \right]_{n=0}, \quad (13)$$

$$D_n(a\tau) = N_{1n}(a\tau) S_{2n}(a\tau) - N_{2n}(a\tau) S_{1n}(a\tau)$$

where:

$$\tilde{\sigma}_{oc} = \pi^{-1} \int_0^{2\pi} \bar{\sigma}_o(\theta, \tau) \cos n\theta d\theta$$

$$\tilde{\sigma}_{os} = \pi^{-1} \int_0^{2\pi} \bar{\sigma}_o(\theta, \tau) \sin n\theta d\theta$$

similarly $\tilde{\tau}_{oc}$ and $\tilde{\tau}_{os}$ are defined.

Various special cases are of interest:

$$(a) \underline{\text{Zero surface shear}}: \quad \tilde{\tau}_{oc} = \tilde{\tau}_{os} = 0 \quad (14)$$

$$(b) \underline{\text{Normal traction with central symmetry and (a)}}: \quad \tilde{\sigma}_{os} = 0 \quad (15)$$

(c) (b) with constant amplitude over $0 \leq \theta \leq \alpha$:

$$(15) \text{ and } \tilde{\sigma}_o(\theta, \tau) = \bar{\sigma}(\tau) \begin{cases} 0 \leq \theta \leq \alpha \\ \pi - \alpha \leq \theta \leq \pi \end{cases} \quad (16)$$

$$= 0 \quad \alpha < \theta \leq \pi - \alpha$$

Hence

$$\tilde{\sigma}_{oc} = 2 \bar{\sigma}_o(\tau) \cdot (\pi n)^{-1} \sin n\alpha \quad (17)$$

(d) Impact load and (c):

$$(16) \text{ and } \lim_{\alpha \rightarrow 0} 2 \bar{\sigma}_o(\tau) \alpha \propto = \bar{P}_o(\tau)$$

$$\bar{\sigma}_o \rightarrow \infty$$

Hence $\tilde{\sigma}_{oc} = \bar{P}_o(\tau) / \pi a$ (18)

(e) Impulsive concentrated load and (d):

(18) and $P_o(t) = P_o \delta(t)$, where $\delta(t)$ is the Dirac delta function defined by:

$$\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & t \neq 0 \end{cases}, \quad \int_{-\infty}^{\infty} \delta(t) dt = 1$$

In this case,

$$\bar{P}_o(\tau) = P_o, \quad \tilde{\sigma}_{oc} = P_o / \pi a \quad (19)$$

where P_o is the amplitude of the concentrated load.

5. Moving load

(a) Moving normal and tangential stresses:

Moving loads can be represented by

$$\sigma_o(\theta, t) = \sigma_o(\theta - \Omega t), \quad \tau_o(\theta, t) = \tau_o(\theta - \Omega_1 t) \quad (20)$$

Fourier Transforms of these are:

$$\bar{\sigma}_o(\theta, \tau) = 2 e^{i\tau\theta/\Omega} s_o(\tau/\Omega), \quad \bar{\tau}_o(\theta, \tau) = 2 e^{i\tau\theta/\Omega_1} s_1(\tau/\Omega_1) \quad (21)$$

$$s_o(\tau/\Omega) = \frac{1}{2\Omega} \int_{-\infty}^{\infty} \sigma_o(\phi) e^{-i\tau\phi/\Omega} d\phi \quad (\text{in general}) \quad (22)$$

$$= \frac{1}{\Omega} \int_0^{\infty} \sigma_o(\phi) \cos(\tau\phi/\Omega) d\phi \quad \text{when } \sigma_o(-\phi) = \sigma_o(\phi)$$

where $s_1(\tau/\Omega_1)$ follows from $s_o(\tau/\Omega)$ by replacing Ω and $\sigma_o(\phi)$

by Ω_1 and $\tau_o(\phi)$ respectively. Hence:

$$\tilde{\sigma}_{oc} = \left(2\tau/\pi\omega^2\right) \left[(\tau/\omega)^2 - n^2 \right]^{-1} e^{2\pi\tau i/\omega} s_o(\tau/\omega) \quad (23)$$

$$\tilde{\tau}_{os} = \left(2n/\pi\omega\right) \left[(\tau/\omega)^2 - n^2 \right]^{-1} e^{2\pi\tau i/\omega} s_o(\tau/\omega)$$

Quantities $\tilde{\sigma}_{oc}$ and $\tilde{\tau}_{os}$ are obtained from (23) by writing ω_1 and $s_1(\tau/\omega_1)$ in place of ω and $s_o(\tau/\omega)$ respectively.

(b) Moving periodic loads:

$$\sigma_o(\theta - \omega t) = (Q_o/na) \sum_{n=0}^{\infty} p_n \cos n(\theta - \omega t) + q_n \sin n(\theta - \omega t) \quad (24)$$

$$\tau_o(\theta - \omega_1 t) = (Q_o/na) \sum_{n=0}^{\infty} r_n \cos n(\theta - \omega_1 t) + s_n \sin n(\theta - \omega_1 t)$$

After taking Fourier transforms of σ_o and τ_o , we substitute into (13) to obtain $\tilde{\sigma}_{oc}$, ..., $\tilde{\tau}_{os}$. This gives:

$$\begin{aligned} a \tilde{\sigma}_{oc}/Q_o &= (p_n - iq_n) \delta(\omega_n - \tau) + (p_n + iq_n) \delta(-\omega_n - \tau) \\ a \tilde{\tau}_{os}/Q_o &= (ip_n + q_n) \delta(\omega_n - \tau) + (-ip_n + q_n) \delta(-\omega_n - \tau) \end{aligned} \quad (25)$$

Quantities $\tilde{\sigma}_{oc}$ and $\tilde{\tau}_{os}$ follow from (25) by writing r_n and s_n in place of p_n and q_n . In obtaining (25) we used the formal relation* $\int [1/\delta]$

$$2\pi \delta(u) = \int_{-\infty}^{\infty} e^{-itu} dt$$

Components of displacements and stress tensor can now be obtained by combining (9), (11), (13) and (25) and taking inverse Fourier transforms. Thus

* This is justified in the sense of a distribution function $\int [1/\delta]$.

$$-(2\pi a \mu/Q_0 r) u = \sum_{n=0}^{\infty} u_n^{(1)}(r\omega n) [-p_n \cos n(\theta - \omega t) + q_n \sin n(\theta - \omega t)] \\ + u_n^{(2)}(r\omega n) [-r_n \sin n(\theta - \omega_1 t) + s_n \cos n(\theta - \omega_1 t)]$$

$$-(2\pi a \mu/Q_0 r) v = \sum_{n=0}^{\infty} v_n^{(1)}(r\omega n) [-p_n \sin n(\theta - \omega t) + q_n \cos n(\theta - \omega t)] \\ + v_n^{(2)}(r\omega n) [-r_n \cos n(\theta - \omega_1 t) - s_n \sin n(\theta - \omega_1 t)]$$

$$(\pi a/Q_0) \sigma_{rr} = \sum_{n=0}^{\infty} \sigma_{1n}^{(1)}(r\omega n) [-p_n \cos n(\theta - \omega t) + q_n \sin n(\theta - \omega t)] \\ + \sigma_{1n}^{(2)}(r\omega_1 n) [-r_n \sin n(\theta - \omega_1 t) + s_n \cos n(\theta - \omega_1 t)] \quad (26)$$

$$(\pi a/Q_0) \sigma_{r\theta} = \sum_{n=0}^{\infty} \tau_n^{(1)}(r\omega n) [-p_n \sin n(\theta - \omega t) + q_n \cos n(\theta - \omega t)] \\ + \tau_n^{(2)}(r\omega n) [-r_n \cos n(\theta - \omega_1 t) - s_n \sin n(\theta - \omega_1 t)]$$

$$(\pi a/Q_0) \sigma_{\theta\theta} = \sum_{n=0}^{\infty} \sigma_{2n}^{(1)}(r\omega n) [-p_n \cos n(\theta - \omega t) + q_n \sin n(\theta - \omega t)] \\ + \sigma_{2n}^{(2)}(r\omega n) [-r_n \sin n(\theta - \omega_1 t) + s_n \cos n(\theta - \omega_1 t)]$$

where

$$\begin{aligned}
 u_n^{(1)}(r_{\alpha n}) &= \left[D_n(a_{\alpha n}) \right]^{-1} \left[(\alpha_1 r_{\alpha n})^{-1} J_n^1(\alpha_1 r_{\alpha n}) S_{2n}(a_{\alpha n}) \right. \\
 &\quad \left. - 2n(\alpha_2 r_{\alpha n})^{-2} J_n(\alpha_2 r_{\alpha n}) S_{1n}(a_{\alpha n}) \right] \\
 v_n^{(1)}(r_{\alpha n}) &= \left[D_n(a_{\alpha n}) \right]^{-1} \left[n(\alpha_1 r_{\alpha n})^{-2} J_n(\alpha_1 r_{\alpha n}) S_{2n}(a_{\alpha n}) \right. \\
 &\quad \left. - 2(\alpha_2 r_{\alpha n})^{-1} J_n^1(\alpha_2 r_{\alpha n}) S_{1n}(a_{\alpha n}) \right] \tag{27}
 \end{aligned}$$

$$\begin{aligned}
 \sigma_{1n}^{(1)}(r_{\alpha n}) &= \left[\bar{D}_n(a_{\alpha n}) \right]^{-1} \left[\bar{N}_{1n}(r_{\alpha n}) S_{2n}(a_{\alpha n}) - N_{2n}(r_{\alpha n}) S_{1n}(a_{\alpha n}) \right] \\
 \tau_n^{(1)}(r_{\alpha n}) &= \left[\bar{D}_n(a_{\alpha n}) \right]^{-1} \left[\bar{S}_{1n}(r_{\alpha n}) S_{2n}(a_{\alpha n}) - S_{2n}(r_{\alpha n}) S_{1n}(a_{\alpha n}) \right] \\
 \sigma_{2n}^{(1)}(r_{\alpha n}) &= \left[\bar{D}_n(a_{\alpha n}) \right]^{-1} \left[\bar{T}_{1n}(r_{\alpha n}) S_{2n}(a_{\alpha n}) - T_{2n}(r_{\alpha n}) S_{1n}(a_{\alpha n}) \right]
 \end{aligned}$$

where

$$D_n(a_{\alpha n}) = N_{1n}(a_{\alpha n}) S_{2n}(a_{\alpha n}) - N_{2n}(a_{\alpha n}) S_{1n}(a_{\alpha n}) \tag{28}$$

Functions $u_n^{(2)}$, $v_n^{(2)}$, $\sigma_{1n}^{(2)}$, $\tau_n^{(2)}$ and $\sigma_{2n}^{(2)}$ are obtained from the corresponding ones with superscripts (1) above by replacing α by α_1 and $S_{2n}(a_{\alpha n})$ and $S_{1n}(a_{\alpha n})$ by $N_{2n}(a_{\alpha_1 n})$ and $N_{1n}(a_{\alpha_1 n})$ respectively, except in $D_n(a_{\alpha n})$, where we replace α by α_1 .

(c) Two diametrically opposite, moving, concentrated loads

(Fig. 2).

This is a case of technical importance.

In this case we have

$$\tau_0 = 0 \text{ hence}$$

$r_n = s_n = 0$. The concentrated loads can formally be represented by

Fig. 2. Moving radial load.

$$\sigma_0(\theta - \omega t) = (Q_0/\pi a) [\delta(\theta - \omega t) + \delta(\pi - \theta + \omega t)] \quad (29)$$

$$= (Q_0/\pi a) \sum_{n=0}^{\infty} p_n \cos n(\theta - \omega t) + q_n \sin n(\theta - \omega t)$$

where Q_0 is the amplitude of each of the concentrated radial load.

From (29) Fourier coefficients p_n and q_n are calculated to be:

$$p_n = \begin{cases} 2/\pi & \text{for } n \text{ even} \\ 0 & \text{for } n \text{ odd} \end{cases}, \quad q_n = 0 \quad (30)$$

Hence (26) together with (29) and (30) and $r_n = s_n = 0$ gives the displacement and stress components. Below we give displacement components. The rest is obtained in an obvious manner.

$$-(\pi^2 a \mu / Q_0 r) u = \sum_{0,2,4,\dots} u_n^{(1)}(r \omega n) \cos n(\theta - \omega t) \quad (31)$$

$$(\pi^2 a \mu / Q_0 r) v = \sum_{0,2,4,\dots} v_n^{(1)}(r \omega n) \sin n(\theta - \omega t)$$

where $u_n^{(1)}$ and $v_n^{(1)}$ are given by (26).

Concentrated moving shear loads and other types of load combinations may easily be obtained from (24) and (26).

6. Computation and Discussion

Computations have been carried out to determine the roots of $D_n(a\omega n) = 0$ given by (28). The roots of this equation give the resonance speed for the concentrated load.

The ratio of the resonance speed $C_r = a\omega$ of the concentrated load to the dilatational wave velocity $C_1 = \alpha_1^{-1}$ has been solved from $D_n = 0$ for a steel cylinder with $E = 30 \times 10^6$ psi and $\nu = 0.3$. First four roots of $D_n = 0$ for $n = 1, 2, 3, 4$ are listed on the table given below*.

The computation is carried out on I.B.M. Card Program Calculator machine and are correct up to two decimal places.

The values of $n C_r/C_1 = n a \alpha \omega_1$ (obtained by calculating the roots of $D_n(a\omega n) = 0$). Steel: $E = 30 \times 10^6$, $\nu = 0.3$.

n	$D_1 = 0$	$D_2 = 0$	$D_3 = 0$	$D_4 = 0$
1	1.51	1.26	1.94	2.52
2	3.43	2.35	3.21	4.08
3	3.80	4.22	4.95	5.67
4	5.33	5.06	6.22	7.19

* For $n = 0$ we take the limit of the functions in (27) and find finite values.

From this table it is seen that the smallest C_r/C_1 is obtained for $n=2$. This value is $C_r/C_1 = 1.26/2 = .63$. We therefore expect a critical speed for the moving load in the neighborhood of $0.63 C_1$ which will create resonance in the disk.

The Rayleigh surface wave velocity for $\nu = .29$ is 0.9258 times the velocity of shear waves or .503 times the velocity of dilational waves. Thus $0.63 C_1$ represents a velocity between the Rayleigh surface wave velocity and the shear wave velocity. Further we notice that this velocity is minimum for $n=2$ rather than $n=1$. Examining (31) we found that we have only even terms. Hence diametrically opposite moving loads give a smaller critical speed than the case of a single load. In the former case the fundamental mode $n=0$ represents a uniform lateral extension which is not dependent on time. Thus it is static in nature and has no resonance frequency associated with it. The second mode is of $\cos 2\theta$ - type and gives the minimum critical speed mentioned above. It is interesting to know that the minimum critical speed in the case of a flat semi-infinite plate (the Rayleigh surface wave velocity) is less than that of the curved surface (the disk in the present case). With this point in mind perhaps one can classify the curved surfaces from the elasto-dynamic point of view. This process will, no doubt, present mathematical difficulties.

The present results, of course, must be accepted tentatively until experimental verification.

Armed Services Technical Information Agency

Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

AD 46099

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO

UNCLASSIFIED