Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică Etapa finală, Oradea, 18 aprilie 2011

CLASA a IX-a - BAREMURI

Problema 1. Fie n un număr natural nenul și fie numerele reale a_1,a_2,\ldots,a_n astfel încât $a_m+a_{m+1}+\cdots+a_n\geq m+(m+1)+\cdots+n,$ oricare ar fi $m=1,2,\ldots,n.$ Să se arate că $a_1^2+\cdots+a_n^2\geq \frac{n(n+1)(2n+1)}{6}.$

Soluție. Notăm $b_k = a_k - k, \forall k = 1, 2, \dots, n$. Avem

 $b_m + b_{m+1} + \dots + b_n \ge 0$, pentru orice $m = 1, 2, \dots, n$.

Rezultă că

$$\sum_{i=1}^{n} a_i^2 = \sum_{i=1}^{n} b_i^2 + \sum_{i=1}^{n} 2ib_i + \sum_{i=1}^{n} i^2 \ge$$

...... 2 puncte

$$\geq \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6},$$

deoarece 1 punct

$$\sum_{i=1}^{n} ib_i = (b_1 + \dots + b_n) + (b_2 + \dots + b_n) + \dots + b_n \ge 0.$$

Problema 2. Fie n un număr natural nenul. Să se arate că orice număr natural nenul, mai mic sau egal cu n!, este suma a cel mult n divizori distincți ai numărului n!.

Soluție. Demonstrăm prin inducție după n. Cazul n=1 este evident. Presupunând că afirmația este adevărată pentru n, fie $m \leq (n+1)!$.

Există $q,r\in\mathbb{N}$ cu $m=(n+1)q+r,\,0\leq r\leq n.$

Din inducție, q se scrie ca suma a (cel mult) n divizori ai lui n! – fie aceștia $d_1, \ldots, d_k, k \leq n$.

Atunci (n+1)q se scrie $(n+1)d_1 + (n+1)d_2 + \cdots + (n+1)d_k$, unde $(n+1)d_i$ este un divizor al lui (n+1)!.

Dacă r = 0, problema este rezolvată;

dacă r > 0, cum r divide (n + 1)! şi $r < n + 1 \le (n + 1)d_i$, rezultă că m se scrie ca suma a k + 1 divizori distincți ai lui (n + 1)!, unde $k + 1 \le n + 1$, ceea ce trebuia demonstrat.

......1 punct

Problema 3.

Fie ABC un triunghi şi fie I_a centrul cercului exînscris corespunzător lui A. Fie P şi Q punctele de tangență a cercului exînscris cu dreptele AB şi AC. Dreapta PQ intersectează dreptele I_aB şi I_aC în punctele D, respectiv E. Notăm cu A_1 punctul de intersecție a dreptelor DC şi BE şi definim analog punctele B_1 şi C_1 . Să se arate că AA_1 , BB_1 , CC_1 sunt concurente.

Soluţie. Vom arăta că A_1 este ortocentrul triunghiului I_aBC .

Pentru aceasta, vom demonstra că $\angle PEI_a = \angle PBI_a$. Într-adevăr, $\angle PEI_a = 180^\circ - \angle PQA - \angle ECQ = 180^\circ - (90^\circ - \frac{1}{2}A) - (90^\circ - \frac{1}{2}C) = \frac{1}{2}(A+C) = 90^\circ - \frac{1}{2}B = \angle PBI_a$.

Rezultă că BEI_aP este patrulater inscriptibil, și cum $\angle BPI_a=90^\circ$, avem $BE\bot CI_a$.

Deducem că $BA_1 \parallel CI$, unde I este centrul cercului înscris în triunghiul ABC. Raționând analog rezultă că $BICA_1$ este paralelogram.

Analog AIRC, este paralelogram, deci și AC, A₁C este paralelogram

Analog $AIBC_1$ este paralelogram, deci şi AC_1A_1C este paralelogram, adică segmentele AA_1 şi CC_1 se înjumătățesc. Similar, segmentul BB_1 are acelaşi mijloc cu AA_1 şi CC_1 , de unde rezultă cerința.

......2 puncte

Problema 4. Fie n un număr natural nenul. Să se demonstreze că cel puțin unul dintre numerele $\left[2^{n}\sqrt{2}\right]$, $\left[2^{n+1}\sqrt{2}\right]$, ..., $\left[2^{2n}\sqrt{2}\right]$ este par.

([a]înseamnă partea întreagă a numărului real a.)

Soluție. Să presupunem prin absurd că toate numerele sunt impare. Atunci există $a\in\mathbb{N}^*$ cu proprietatea că

$$2a - 1 < 2^n \sqrt{2} < 2a.$$

Înmulțind cu 2 obține
m $4a-2<2^{n+1}\sqrt{2}<4a;$ cum $\left[2^{n+1}\sqrt{2}\right]$ este număr impar, deducem că
 $4a-1<2^{n+1}\sqrt{2}<4a.$

de unde $a-2^{n-1}\sqrt{2}<\frac{1}{2^{n+1}}.$

De aici rezultă $\frac{a^2-2^{2n-1}}{a+2^{n-1}\sqrt{2}}<\frac{1}{2^{n+1}}.$

 $a + 2^{n-1}\sqrt{2} \qquad 2^{n+1}$ 1 punct