2018 School Year

Graduate School Entrance Examination Problem Booklet

Mathematics

Examination Time:

10:00 to 12:30

This English translation is supplemental and provided for convenience of applicants. The Japanese version is the official one.

Instructions

- 1. Do not open this problem booklet until the start of the examination is announced.
- 2. If you find missing, misplaced, and/or unclearly printed pages in the problem booklet, ask the examiner.
- 3. Answer all of three problems appearing in this booklet, in Japanese or English.
- 4. You are given three answer sheets. You must use a separate answer sheet for each problem. You may use the back of the sheet if necessary.
- 5. Fill the designated blanks at the top of each answer sheet with your examinee's number and the problem number you are to answer.
- 6. Do not separate the draft papers from this problem booklet.
- 7. Any answer sheet including marks, symbols and/or words unrelated to your answer will be invalid.
- 8. Do not take either the answer sheets or the problem booklet out of the examination room.

Examinee's number	No.

Fill this box with your examinee's number.

(draft paper)

Problem 1

Consider to solve the following simultaneous linear equation:

$$Ax = b$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ are a constant matrix and a vector, and $x \in \mathbb{R}^n$ is an unknown vector. Answer the following questions.

(1) An $m \times (n+1)$ matrix $\overline{A} = (A \mid b)$ is made by adding a column vector after the last column of matrix A. In the case of $A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$,

column of matrix
$$A$$
. In the case of $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$,
$$\overline{A} = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 1 & 1 & 0 & 4 \\ 0 & 1 & 1 & 2 \end{pmatrix}$$
 is obtained. Let the i -th column vector of the matrix \overline{A} be a_i $(i = 1, 2, 3, 4)$.

- (i) Find the maximum number of linearly independent vectors among a_1 , a_2 and a_3 .
- (ii) Show that a_4 can be represented as a linear sum of a_1 , a_2 and a_3 , by obtaining scalars x_1 and x_2 that satisfy $a_4 = x_1a_1 + x_2a_2 + a_3$.
- (iii) Find the maximum number of linearly independent vectors among a_1 , a_2 , a_3 and a_4 .
- (2) Show that the solution of the simultaneous linear equation exists when rank $\overline{A} = \operatorname{rank} A$, for arbitrary m, n, A and b.
- (3) There is no solution when rank $\overline{A} > \operatorname{rank} A$. When m > n, rank A = n and rank $\overline{A} > n$ rank A, obtain x that minimizes the squared norm of the difference between the left hand side and the right hand side of the simultaneous linear equation, namely $\|b - Ax\|^2$.
- (4) When m < n and rank A = m, there exist multiple solutions for the simultaneous linear equation for arbitrary b. Obtain x that minimizes $||x||^2$ among them, by adopting the method of Lagrange multipliers and using the simultaneous linear equation as the constraint condition.
- (5) Show that there exists a unique $P \in \mathbb{R}^{n \times m}$ that satisfies the following four equations for arbitrary m, n and A.

$$APA = A$$

$$PAP = P$$

$$(AP)^{T} = AP$$

$$(PA)^{T} = PA$$

(6) Show that both x obtained in (3) and x obtained in (4) are represented in the form of x = Pb.

Problem 2

Let f_1 be a positive constant function on [0,1] with $f_1(x) = c$, and let p and q be positive real numbers with 1/p + 1/q = 1. Moreover, let $\{f_n\}$ be the sequence of functions on [0,1] defined by

$$f_{n+1}(x) = p \int_0^x (f_n(t))^{1/q} dt$$
 $(n = 1, 2, ...).$

Answer the following questions.

(1) Let $\{a_n\}$ and $\{c_n\}$ be the sequences of real numbers defined by $a_1=0, c_1=c$ and

$$a_{n+1} = q^{-1}a_n + 1$$
 $(n = 1, 2, ...),$
 $c_{n+1} = \frac{p(c_n)^{1/q}}{a_{n+1}}$ $(n = 1, 2, ...).$

Show that $f_n(x) = c_n x^{a_n}$.

- (2) Let g_n be the function on [0,1] defined by $g_n(x) = x^{a_n} x^p$ for $n \geq 2$. Noting that $a_n \geq 1$ holds true for $n \geq 2$, show that g_n attains its maximum at a point $x = x_n$, and find the value of x_n .
- (3) Show that $\lim_{n\to\infty} g_n(x) = 0$ for any $x \in [0,1]$.
- (4) Let d_n be defined by $d_n = (c_n)^{q^n}$. Show that d_{n+1}/d_n converges to a finite positive value as $n \to \infty$. You may use the fact that $\lim_{t \to \infty} (1 1/t)^t = 1/e$.
- (5) Find the value of $\lim_{n\to\infty} c_n$.
- (6) Show that $\lim_{n\to\infty} f_n(x) = x^p$ for any $x \in [0,1]$.

Problem 3

Let z_n and w_n (n = 0, 1, 2, ...) be complex numbers. Consider a bag that contains two red cards and one white card. First, take one card from the bag and return it to the bag. z_{k+1} (k = 0, 1, 2, ...) is generated in the following manner based on the color of the card taken.

$$z_{k+1} = \left\{ \begin{array}{ll} iz_k & \text{if a red card was taken,} \\ -iz_k & \text{if a white card was taken.} \end{array} \right.$$

Next, take one card from the bag again and return it to the bag. w_{k+1} is generated in the following manner based on the color of the card taken.

$$w_{k+1} = \begin{cases} -iw_k & \text{if a red card was taken,} \\ iw_k & \text{if a white card was taken.} \end{cases}$$

Here, each card is independently taken with equal probability. The initial state is $z_0 = 1$ and $w_0 = 1$. Thus, z_n, w_n are the values after repeating the series of the above two operations n times starting from the state of $z_0 = 1$ and $w_0 = 1$. Here, i is the imaginary unit.

Answer the following questions.

- (1) Show that $Re(z_n) = 0$ if n is odd, and that $Im(z_n) = 0$ if n is even. Here, Re(z) and Im(z) represent the real part and the imaginary part of z respectively.
- (2) Let P_n be the probability of $z_n = 1$, and Q_n be the probability of $z_n = i$. Find recurrence equations for P_n and Q_n .
- (3) Find the probabilities of $z_n = 1$, $z_n = i$, $z_n = -1$, and $z_n = -i$ respectively.
- (4) Show that the expected value of z_n is $(i/3)^n$.
- (5) Find the probability of $z_n = w_n$.
- (6) Find the expected value of $z_n + w_n$.
- (7) Find the expected value of $z_n w_n$.

(draft paper)

(draft paper)