Package 'gkmSVM'

August 20, 2023

Type Package
Title Gapped-Kmer Support Vector Machine
Version 0.83.0
Date 2023-08-20
Author Mahmoud Ghandi
Maintainer Mike Beer <mbeer@jhu.edu></mbeer@jhu.edu>
Description Imports the 'gkmSVM' v2.0 functionalities into R https://www.beerlab.org/gkmsvm/ It also uses the 'kernlab' library (separate R package by different authors) for various SVM algorithms. Users should note that the suggested packages 'rtracklayer', 'GenomicRanges', 'BSgenome', 'BiocGenerics', 'Biostrings', 'GenomeInfoDb', 'IRanges', and 'S4Vectors' are all BioConductor packages https://bioconductor.org .
License GPL (>= 2)
Imports kernlab, seqinr, utils, ROCR, Rcpp, grDevices, graphics, stats
Suggests rtracklayer, GenomicRanges, BSgenome, BSgenome.Hsapiens.UCSC.hg18.masked, BSgenome.Hsapiens.UCSC.hg19.masked, BiocGenerics, Biostrings, GenomeInfoDb, IRanges, S4Vectors
LinkingTo Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-08-20 17:12:32 UTC
R topics documented:
gkmSVM-package genNullSeqs

2 gkmSVM-package

	gkmsvm_	_kernel .								 								 	10
	gkmsvm_	_train								 								 	11
	gkmsvm_	_trainCV																 	12
Index																			14

gkmSVM-package

Gapped-Kmer Support Vector Machine

Description

Imports the 'gkmSVM' v2.0 functionalities into R http://www.beerlab.org/gkmsvm/ . It also uses the 'kernlab' library (separate R package by different authors) for various SVM algorithms.

Details

The gkm-SVM provides implementation of a new SVM kernel method using gapped k-mers as features for DNA or Protein sequences.

There are three main functions in the gkmSVM package:

gkmsvm_kernel: computes the kernel matrix

gkmsvm_train: computes the SVM coefficients

gkmsvm_classify: scores new sequences using the SVM model

Tutorial

We introduce the users to the basic workflow of our gkmSVM step-by-step. Please refer to help messages for more detailed information of each function.

1) making a kernel matrix

First of all, we should calculate a full kernel matrix before training SVM classifiers. In this tutorial, we are going to use test_positives.fa as a positive set, and test_negatives.fa as a negative set.

#Input file names:

posfn= 'test_positives.fa' #positive set (FASTA format)

negfn= 'test_negatives.fa' #negative set (FASTA format)

testfn= 'test_testset.fa' #test set (FASTA format)

Alternatively if the negative set is not available, and positive set is provided as a bed file, gen-NullSeqs function could be used to generate the negative set and positive set sequences.

#Output file names:

kernelfn= 'test_kernel.txt' #kernel matrix

svmfnprfx= 'test_svmtrain' #SVM files

outfn = 'output.txt' #output scores for sequences in the test set

gkmsvm_kernel(posfn, negfn, kernelfn); #computes kernel

2) training SVM

gkmSVM-package 3

We can now train a SVM classifier using the kernel matrix generated above. For that we use gkmsvm_train function It takes four arguments; kernel file, positive sequences file, negative sequences file, and prefix of output file names for the svm model.

```
gkmsvm_train(kernelfn, posfn, negfn, svmfnprfx); #trains SVM
```

It will generate two files, test_svmtrain_svalpha.out and test_svmtrain_svseq.fa, which will then be used for classification/scoring of test sequences as described below.

3) classification using SVM

gkmsvm_classify can be used to score any set of sequences. Here, we will score the test sequences which are given in test_testset.fa. Note that the same set of parameters used in the gkmsvm_kernel should always be specified for optimal classification (here we used default parameters).

```
gkmsvm_classify(testfn, svmfnprfx, outfn); #scores test sequences
```

In a more advanced example, we set the word length L=18, and the number of non-gapped positions K=7, and maximum number of mismatches maxnmm=4:

```
gkmsvm_kernel(posfn, negfn, kernelfn, L=18, K=7, maxnmm=4); #computes kernel
```

```
gkmsvm_train(kernelfn,posfn, negfn, svmfnprfx); #trains SVM
```

gkmsvm_classify(testfn, svmfnprfx, outfn, L=18, K=7, maxnmm=4); #scores test sequences

In another example, we run a 5-fold cross validation to plot the ROC curves:

```
gkmsvm_kernel(posfn, negfn, kernelfn); #computes kernel
```

cvres = gkmsvm_trainCV(kernelfn, posfn, negfn, svmfnprfx, outputPDFfn='ROC.pdf', outputCVpredfn='cvpred.out'); #trains SVM, plots ROC and PRC curves, and outputs model predictions.

Author(s)

Mahmoud Ghandi

Maintainer: Mike Beer <mbeer@jhu.edu>

References

Ghandi M, Lee D, Mohammad-Noori M, Beer MA. 2014. Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features. PLoS Comput Biol 10: e1003711.

Ghandi M, Mohammad-Noori M, Ghareghani N, Lee D, Garraway LA, and Beer MA. 2016. gkmSVM an R package for gapped-kmer SVM, Bioinformatics 32 (14), 2205-2207.

```
#Input file names:
posfn= 'test_positives.fa'  #positive set (FASTA format)
negfn= 'test_negatives.fa'  #negative set (FASTA format)
testfn= 'test_testset.fa'  #test set (FASTA format)

#Output file names:
kernelfn= 'test_kernel.txt'  #kernel matrix
svmfnprfx= 'test_svmtrain'  #SVM files
outfn = 'output.txt'  #output scores for sequences in the test set
```

4 genNullSeqs

```
# gkmsvm_kernel(posfn, negfn, kernelfn);  #computes kernel
# gkmsvm_train(kernelfn, posfn, negfn, svmfnprfx);  #trains SVM
# gkmsvm_classify(testfn, svmfnprfx, outfn);  #scores test sequences

# using L=18, K=7, maxnmm=4

# gkmsvm_kernel(posfn, negfn, kernelfn, L=18, K=7, maxnmm=4);  #computes kernel
# gkmsvm_train(kernelfn, posfn, negfn, svmfnprfx);  #trains SVM
# gkmsvm_classify(testfn, svmfnprfx, outfn, L=18, K=7, maxnmm=4); #scores test sequences
```

genNullSeqs

Generating GC/repeat matched randomly selected genomic sequences for the negative set

Description

Generates null sequences (negative set) with matching repeat and GC content as the input bed file for positive set regions.

Usage

```
genNullSeqs(
  inputBedFN,
  genomeVersion='hg19',
  outputBedFN = 'negSet.bed',
  outputPosFastaFN = 'posSet.fa',
  outputNegFastaFN = 'negSet.fa',
  xfold = 1,
  repeat_match_tol = 0.02,
  GC_match_tol = 0.02,
  length_match_tol = 0.02,
  batchsize = 5000,
  nMaxTrials = 20,
  genome = NULL)
```

Arguments

```
inputBedFN positive set regions
genomeVersion genome version: 'hg19' and 'hg18' are supported. Default='hg19'. For other genomes, provide the BSgenome object using parameter 'genome'

outputBedFN output file name for the null sequences genomic regions. Default='negSet.bed'
outputPosFastaFN output file name for the positive set sequences. Default='posSet.fa'
outputNegFastaFN output file name for the negative set sequences. Default='negSet.fa'
```

genNullSeqs 5

controls the desired number of sequences in the negative set. Default=1 (same xfold number as in positive set) repeat_match_tol tolerance for difference in repeat ratio. Default=0.02 (repeat content difference of 0.02 or less is acceptable) tolerance for difference in GC content. Default=0.02 GC_match_tol length_match_tol tolerance for difference in relative sequence length. Default=0.02 batchsize number of candidate random sequences tested in each trial. Default=5000 nMaxTrials maximum number of trials. Default=20. BSgenome object. Default=NULL. If this parameter is used, parameter genomeVgenome

Value

Writes the null sequences to files with the provided filenames. Outputs the filename for the output negative sequences file.

Author(s)

Mahmoud Ghandi

ersion is ignored.

```
# Example 1:
# genNullSeqs('ctcfpos.bed' );
#Example 2:
# genNullSeqs('ctcfpos.bed', nMaxTrials=3, xfold=2, genomeVersion = 'hg18' );
# genNullSeqs('ctcfpos.bed', xfold=2, genomeVersion = 'hg18', outputBedFN = 'ctcf_negSet.bed',
# outputPosFastaFN = 'ctcf_posSet.fa',outputNegFastaFN = 'ctcf_negSet.fa' );
#Example 4:
# Input file names:
 posBedFN = 'test_positives.bed' # positive set genomic ranges (bed format)
 genomeVer = 'hg19' #genome version
 testfn= 'test_testset.fa'
                              #test set (FASTA format)
# output file names:
 posfn= 'test_positives.fa'
                              #positive set (FASTA format)
 negfn= 'test_negatives.fa'
                              #negative set (FASTA format)
 kernelfn= 'test_kernel.txt' #kernel matrix
 svmfnprfx= 'test_svmtrain' #SVM files
 outfn =
          'output.txt'
                             #output scores for sequences in the test set
# genNullSeqs(posBedFN, genomeVersion = genomeVer,
```

gkmsvm_classify

```
# outputPosFastaFN = posfn, outputNegFastaFN = negfn );

# gkmsvm_kernel(posfn, negfn, kernelfn);  #computes kernel

# gkmsvm_train(kernelfn, posfn, negfn, svmfnprfx);  #trains SVM

# gkmsvm_classify(testfn, svmfnprfx, outfn);  #scores test sequences

# using L=18, K=7, maxnmm=4

# gkmsvm_kernel(posfn, negfn, kernelfn, L=18, K=7, maxnmm=4);  #computes kernel

# gkmsvm_train(kernelfn, posfn, negfn, svmfnprfx);  #trains SVM

# gkmsvm_classify(testfn, svmfnprfx, outfn, L=18, K=7, maxnmm=4); #scores test sequences
```

gkmsvm_classify

Classifying(/scoring) new sequences using the gkmSVM model

Description

Given support vectors SVs and corresponding coefficients alphas and a set of sequences, calculates the SVM scores for the sequences.

Usage

```
gkmsvm_classify(seqfile, svmfnprfx, outfile, L=10, K=6, maxnmm=3,
maxseqlen=10000, maxnumseq=1000000, useTgkm=1, alg=0, addRC=TRUE, usePseudocnt=FALSE,
batchSize=100000, wildcardLambda=1.0, wildcardMismatchM=2, alphabetFN="NULL",
svseqfile=NA, alphafile=NA)
```

Arguments

segfile input sequences file name (FASTA format)

svmfnprfx SVM model file name prefix

outfile output file name

L word length, default=10

K number of informative columns, default=6

maxnmm maximum number of mismatches to consider, default=3

maxseqlen maximum sequence length in the sequence files, default=10000

maxnumseq maximum number of sequences in the sequence files, default=1000000

useTgkm filter type: 0(use full filter), 1(use truncated filter: this gaurantees non-negative

counts for all L-mers), 2(use h[m], gkm count vector), 3(wildcard), 4(mismatch),

default=1

algorithm type: 0(auto), 1(XOR Hashtable), 2(tree), default=0

addRC adds reverse complement sequences, default=TRUE usePseudocnt adds a constant to count estimates, default=FALSE

gkmsvm_delta 7

batchSize		number of sequences to compute scores for in batch, default=100000
wildcardLa	ambda	lambda for wildcard kernel, defaul=0.9
wildcardMi	ismato	chM
		max mismatch for Mismatch kernel or wildcard kernel, default=2
alphabetFN	N	alphabets file name, if not specified, it is assumed the inputs are DNA sequences
svseqfile		SVM support vectors sequence file name (not needed if svmfnprfx is provided)
alphafile		SVM support vectors weights file name (not needed if symfnprfx is provided)

Details

classification using SVM: gkmsvm_classify can be used to score any set of sequences. Note that the same set of parameters (L, K, maxnmm) used in the gkmsvm_kernel should be specified for optimal classification.

gkmsvm_classify(testfn, svmfnprfx, outfn); #scores test sequences

Author(s)

Mahmoud Ghandi

Examples

```
#Input file names:
 posfn= 'test_positives.fa'
                              #positive set (FASTA format)
 negfn= 'test_negatives.fa'
                              #negative set (FASTA format)
 testfn= 'test_testset.fa'
                              #test set (FASTA format)
 #Output file names:
 kernelfn= 'test_kernel.txt' #kernel matrix
 svmfnprfx= 'test_svmtrain' #SVM files
 outfn = 'output.txt'
                             #output scores for sequences in the test set
 gkmsvm_kernel(posfn, negfn, kernelfn);
                                                        #computes kernel
 gkmsvm_train(kernelfn,posfn, negfn, svmfnprfx);
                                                        #trains SVM
# gkmsvm_classify(testfn, svmfnprfx, outfn);
                                                        #scores test sequences
```

gkmsvm_delta

Calculating deltaSVM scores

Description

Given support vectors SVs and corresponding coefficients alphas and a pair of file test sequence files (one for reference allele, and one for alternate allele), calculates the deltaSVM scores for the sequences.

8 gkmsvm_delta

Usage

```
gkmsvm_delta(seqfile_allele1, seqfile_allele2, svmfnprfx, outfile, L = 10,
K = 6, maxnmm = 3, maxseqlen = 10000, maxnumseq = 1e+06, useTgkm = 1, alg = 2,
addRC = TRUE, usePseudocnt = FALSE, batchSize = 1e+05, wildcardLambda = 1,
wildcardMismatchM = 2, alphabetFN = "NULL", svseqfile = NA,alphafile = NA,
outfile_allele1 = NA, outfile_allele2 = NA)
```

Arguments

seqfile_allele1

fasta file containing the test sequences (reference allele)

seqfile_allele2

fasta file containing the test sequences (alternate allele). The sequences in this

file should be in the exact same order as in seqfile_allele1.

svmfnprfx SVM model file name prefix

outfile output file name

L word length, default=10

K number of informative columns, default=6

maximum number of mismatches to consider, default=3

maxseqlen maximum sequence length in the sequence files, default=10000

maxnumseq maximum number of sequences in the sequence files, default=1000000

useTgkm filter type: 0(use full filter), 1(use truncated filter: this gaurantees non-negative

counts for all L-mers), 2(use h[m], gkm count vector), 3(wildcard), 4(mismatch),

default=1

alg algorithm type: 0(auto), 1(XOR Hashtable), 2(tree), default=0

addRC adds reverse complement sequences, default=TRUE usePseudocnt adds a constant to count estimates, default=FALSE

batchSize number of sequences to compute scores for in batch, default=100000

wildcardLambda lambda for wildcard kernel, defaul=0.9

wildcardMismatchM

max mismatch for Mismatch kernel or wildcard kernel, default=2

alphabetFN alphabets file name, if not specified, it is assumed the inputs are DNA sequences svseqfile SVM support vectors sequence file name (not needed if svmfnprfx is provided) alphafile SVM support vectors weights file name (not needed if svmfnprfx is provided)

outfile_allele1

output filename for gkmSVM scores for the reference sequences (optional)

outfile_allele2

output filename for gkmSVM scores for the alternate sequences (optional)

gkmsvm_delta 9

Details

predicting the effect of variants using gkmSVM model: gkmsvm_delta can be used to predict the effect of sequence variants. The sequences corresponding to reference allele and alternate alleles are given in two separate files. gkmSVM is used to score each set of sequences, and the difference in the gkmSVM score for the reference and alternate allele is reported. Note that the same set of parameters (L, K, maxnmm) used in the gkmsvm_kernel should be specified for optimal scoring.

gkmsvm_kernel(seqfile_allele1, seqfile_allele2, svmfnprfx, outfn); #scores test sequences

Value

deltaSVM scores

Author(s)

Mahmoud Ghandi

References

Ghandi M, Mohammad-Noori M, Ghareghani N, Lee D, Garraway LA, and Beer MA. gkmSVM: an R package for gapped-kmer SVM, Bioinformatics 2016.

Ghandi M, Lee D, Mohammad-Noori M, Beer MA. 2014. Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features. PLoS Comput Biol 10: e1003711.

Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion AS, and Beer MA. A method to predict the impact of regulatory variants from DNA sequence. Nature Genetics 2015.

```
#Input file names:
 posfn= 'test_positives.fa'
                              #positive set (FASTA format)
 negfn= 'test_negatives.fa' #negative set (FASTA format)
 testfn_ref= 'test_testsetRef.fa'
                                    #test set (reference allele) (FASTA format)
 testfn_alt= 'test_testsetAlt.fa'
                                     #test set (alternate allele) (FASTA format)
 #Output file names:
 kernelfn= 'test_kernel.txt' #kernel matrix
 svmfnprfx= 'test_svmtrain' #SVM files
 outfn =
          'output.txt'
                             #output delta svm scores for sequences in the test set
 gkmsvm_kernel(posfn, negfn, kernelfn);
                                                        #computes kernel
 gkmsvm_train(kernelfn,posfn, negfn, svmfnprfx);
                                                        #trains SVM
# gkmsvm_delta(testfn_ref,testfn_alt, svmfnprfx, outfn);
                                                                 #scores test sequences
```

10 gkmsvm_kernel

gkmsvm_kernel	Computing the kernel matrix

Description

Generates a lower triangle of kernel matrix (i.e. pairwise similarities) between the sequences.

Usage

```
gkmsvm_kernel(posfile, negfile, outfile, L=10, K=6, maxnmm=3, maxseqlen=10000,
maxnumseq=1000000, useTgkm=1, alg=0, addRC=TRUE, usePseudocnt=FALSE, wildcardLambda=1.0,
wildcardMismatchM=2, alphabetFN="NULL")
```

Arguments

posfile	positive sequences file name (FASTA format)
negfile	negative sequences file name (FASTA format)
outfile	output file name
L	word length, default=10
K	number of informative columns, default=6
maxnmm	maximum number of mismatches to consider, default=3
maxseqlen	maximum sequence length in the sequence files, default=10000
maxnumseq	maximum number of sequences in the sequence files, default=1000000
useTgkm	filter type: 0(use full filter), 1(use truncated filter: this gaurantees non-negative counts for all L-mers), 2(use h[m], gkm count vector), 3(wildcard), 4(mismatch), default=1
alg	algorithm type: 0(auto), 1(XOR Hashtable), 2(tree), default=0
addRC	adds reverse complement sequences, default=TRUE
usePseudocnt	adds a constant to count estimates, default=FALSE
wildcardLamb	oda lambda for wildcard kernel, defaul=0.9
wildcardMism	matchM
	max mismatch for Mismatch kernel or wildcard kernel, default=2
alphabetFN	alphabets file name, if not specified, it is assumed the inputs are DNA sequences

Details

It calculates the full kernel matrix that can be then used to train an SVM classifier. gkmsvm_kernel(posfn, negfn, kernelfn);

Author(s)

Mahmoud Ghandi

gkmsvm_train 11

Examples

```
#Input file names:
 posfn= 'test_positives.fa'
                              #positive set (FASTA format)
 negfn= 'test_negatives.fa'
                              #negative set (FASTA format)
 testfn= 'test_testset.fa'
                              #test set (FASTA format)
 #Output file names:
 kernelfn= 'test_kernel.txt' #kernel matrix
 svmfnprfx= 'test_svmtrain' #SVM files
 outfn = 'output.txt'
                             #output scores for sequences in the test set
# gkmsvm_kernel(posfn, negfn, kernelfn);
                                                        #computes kernel
# gkmsvm_train(kernelfn,posfn, negfn, svmfnprfx);
                                                        #trains SVM
# gkmsvm_classify(testfn, svmfnprfx, outfn);
                                                        #scores test sequences
```

gkmsvm_train

Training the SVM model

Description

Using the kernel matrix created by 'gkmsvm_kernel', this function trains the SVM classifier. Here we rely on the 'kernlab' package, and merely provide a wrapper function.

Usage

```
gkmsvm_train(kernelfn, posfn, negfn, svmfnprfx, Type="C-svc", C=1, shrinking=FALSE, ...)
```

Arguments

kernelfn	kernel matrix file name
posfn	positive sequences file name
negfn	negative sequences file name
svmfnprfx	output SVM model file name prefix
Туре	optional: SVM type (default='C-svc'), see 'kernlab' documentation for more details.
С	optional: SVM parameter C (default=1), see 'kernlab' documentation for more details.
shrinking	optional: shrinking parameter for kernlab (default=FALSE), see 'kernlab' documentation for more details.
	optional: additional SVM parameters, see 'kernlab' documentation for more details.

Details

Trains SVM classifier and generates two files: [svmfnprfx]_svalpha.out for SVM alphas and the other for the corresponding SV sequences ([svmfnprfx]_svseq.fa)

12 gkmsvm_trainCV

Author(s)

Mahmoud Ghandi

Examples

```
#Input file names:
 posfn= 'test_positives.fa' #positive set (FASTA format)
 negfn= 'test_negatives.fa'
                              #negative set (FASTA format)
 testfn= 'test_testset.fa'
                              #test set (FASTA format)
 #Output file names:
 kernelfn= 'test_kernel.txt' #kernel matrix
 svmfnprfx= 'test_svmtrain' #SVM files
 outfn = 'output.txt'
                             #output scores for sequences in the test set
# gkmsvm_kernel(posfn, negfn, kernelfn);
                                                        #computes kernel
  gkmsvm_train(kernelfn,posfn, negfn, svmfnprfx);
                                                        #trains SVM
  gkmsvm_classify(testfn, svmfnprfx, outfn);
                                                        #scores test sequences
```

gkmsvm_trainCV

Training the SVM model, using repeated CV to tune parameter C and plot ROC curves

Description

Using the kernel matrix created by 'gkmsvm_kernel', this function trains the SVM classifier. It uses repeated CV to find optimum SVM parameter C. Also generates ROC and PRC curves.

Usage

```
gkmsvm_trainCV(kernelfn, posfn, negfn, svmfnprfx=NA,
   nCV=5, nrepeat=1, cv=NA, Type="C-svc", C=1, shrinking=FALSE,
   showPlots=TRUE, outputPDFfn=NA, outputCVpredfn=NA, outputROCfn=NA, ...)
```

Arguments

kernelfn kernel matrix file name
posfn positive sequences file name
negfn negative sequences file name

symfnprfx (optional) output SVM model file name prefix

nCV (optional) number of CV folds nrepeat (optional) number of repeated CVs

cv (optional) CV group label. An array of length (npos+nneg), containing CV

group number (between 1 an nCV) for each sequence

Type (optional) SVM type (default='C-svc'), see 'kernlab' documentation for more

details.

gkmsvm_trainCV 13

С	(optional)a vector of all values of C (SVM parameter) to be tested. (default=1), see 'kernlab' documentation for more details.
shrinking	optional: shrinking parameter for kernlab (default=FALSE), see 'kernlab' documentation for more details.
showPlots	generate plots (default==TRUE)
outputPDFfn	filename for output PDF, default=NA (no PDF output)
output CV predfn	filename for output cvpred (predicted CV values), default=NA (no output)
outputROCfn	filename for output auROC (Area Under an ROC Curve) and auPRC (Area Under the Precision Recall Curve) values, default=NA (no output)
	optional: additional SVM parameters, see 'kernlab' documentation for more details.

Details

Trains SVM classifier and generates two files: [svmfnprfx]_svalpha.out for SVM alphas and the other for the corresponding SV sequences ([svmfnprfx]_svseq.fa)

Author(s)

Mahmoud Ghandi

```
#Input file names:
 posfn= 'test_positives.fa'
                              #positive set (FASTA format)
                              #negative set (FASTA format)
 negfn= 'test_negatives.fa'
 testfn= 'test_testset.fa'
                              #test set (FASTA format)
 #Output file names:
 kernelfn= 'test_kernel.txt' #kernel matrix
 svmfnprfx= 'test_svmtrain' #SVM files
 outfn = 'output.txt'
                             #output scores for sequences in the test set
 gkmsvm_kernel(posfn, negfn, kernelfn);
                                                        #computes kernel
  cvres = gkmsvm_trainCV(kernelfn,posfn, negfn, svmfnprfx,
      outputPDFfn='ROC.pdf', outputCVpredfn='cvpred.out');
#
      #trains SVM, plots ROC and PRC curves, and outputs model predictions.
# gkmsvm_classify(testfn, svmfnprfx, outfn);
                                                        #scores test sequences
```

Index

```
* SVM
     {\sf gkmSVM-package}, \textcolor{red}{2}
* gkmSVM
     gkmSVM-package, 2
* kernel
     gkmSVM-package, 2
* mutation impact
     {\tt gkmsvm\_delta, 7}
* package
     {\sf gkmSVM-package}, \textcolor{red}{2}
* variant impact
     {\tt gkmsvm\_delta, 7}
genNullSeqs, 4
gkmSVM(gkmSVM-package), 2
gkmSVM-package, 2
gkmsvm\_classify, 6
gkmsvm_delta, 7
{\tt gkmsvm\_kernel},\, {\color{red}10}
gkmsvm_train, 11
{\tt gkmsvm\_trainCV}, \\ 12
```