NOIP提高组模拟赛

李佳蔚

题目名称	最长上升子串	中值滤波	约会
可执行文件名	lis	median	date
输入文件	lis.in	median.in	date.in
输出文件	lis.out	median.out	date.out
每个测试点时限	2s	2s	2s
内存限制	64M	128M	256M
测试点数目	20	20	20
每个测试点分值	5	5	5
结果比较方式	忽略多余的空格和文件尾的空行		
题目类型	传统	传统	传统

注意事项:

- 1. 比赛时间3.5小时
- 2. 评测在Linux下进行
- 3. 评测时忽略多余的空格和制表符
- 4. 评测时不开任何优化开关
- 5. 数据范围表格中的数字为对应变量的最大值,不是准确值
- 6. 认真读题,题面可能有疏漏之处,如有疑问应及时向监考老师询问
- 7. 提交时提交一个以自己学校和姓名为名字的文件夹,只提交源代码即可
- 8. 题目为标准NOIP提高组 day1 难度,请放心食用!

最长上升子串 lis

问题描述

给定一个长度为n的正整数序列a

定义一个序列的子串为 $a_i, a_{i+1}...a_j (1 \le i \le j \le n)$, j-i+1 为这个子串的长度。

你的任务是:在最多改变序列中的一个值(可以改成任何整数)的条件下, 找到一个最长的严格上升子串

输入格式

第一行一个整数 n 。

接下来一行 n 个正整数,表示序列 $a_1, a_2...a_n$

输出格式

输出一行一个整数,表示最长严格上升子串的长度

样例输入

6

7 2 3 1 5 6

样例输出

5

样例解释

把 a4 改成 4

数据范围及约定

存在 70% 的数据 $n \le 1000$

对于 100% 的数据, $n \leq 300000, a_i \leq 10000000000$

中值滤波 median

问题描述

Evensgn 最近在学习"中值滤波"这一在科学与工程中常用的算法,为了更好地理解,他决定实践一下

最简单的中值滤波是对一个序列 $a_1, a_2, ..., a_n$,转换为一个新的序列 $b_1, b_2, ..., b_n$,规则如下:

- $b_1 = a_1, b_n = a_n$, 即第一个和最后一个元素不变
- $b_i(1 < i < n)$ 为 a_{i-1}, a_i, a_{i+1} 的中位数

为了让情形更加简单,a 序列只包含 0 或 1

在进行了一次实践之后, Evensgn 突然想到, 假如把这个算法再次操作一遍, 又能得到一个新的序列。 Evensgn 又实验了好几次后发现, 有些序列经过这个算法后, 并没有改变, 称这类序列为"稳定的"

现在 Evensgn 想让你求对于一个序列 a ,它经过几次操作会变成"稳定的",或者这个序列永远也稳定不了。

输入格式

第一行一个整数 n ,表示序列的长度

接下来一行 n 个整数 $a_1, a_2, ..., a_n$,表示原序列

输出格式

假如该序列永远不会稳定,则输出"-1"

否则输出一行一个整数,表示需要多少次操作原序列才会稳定,并在下一 行输出最终稳定的序列

样例输入

3

0 1 0

样例输出

1

0 0 0

样例解释

经过一次操作后,序列变成000,变成了稳定的序列

数据范围及约定

对于 25% 的数据, $n \le 10$

对于 50% 的数据, $n \le 1000$

对于 100% 的数据, $n \le 500000$

约会 date

问题描述

Vincent 和他的大学 GF 不在同一个院系中,但他们每天都要约在校园中的同一个地方见面。

THU 的地图可以抽象为一个 n 个节点的一棵树,即有 n 个地点,n-1 条 无向边,每条边的长度为 1 ,任意两个地点之间是联通的。

由于每天的课程不同,他们每天所在的位置也不同,第 i 天,Vincent 在地点 x_i ,他的 GF 在地点 y_i 。

由于不能让某一方走的路程过多,所以他们约会的地点有个要求,必须与两人的位置之间的距离相等,距离指在树上的最短路径

请你帮 Vincent 算算每天他们有多少种可选的约会地点

输入格式

第一行一个整数 n

接下来 n-1 行,每行两个整数 u 和 v,表示树上有一条 u 和 v 之间的边接下来一行一个整数 m ,表示他们有 m 天要约会见面

接下来 m 行,每行两个整数 x_i, y_i ,表示第 i 天,他们各自的位置。

输出格式

对于每一天,输出一行一个整数,表示第 i 天可行的约会地点有多少个

样例输入

4

1 2

1 3

2 4

1

2 3

样例输出

1

样例解释

约会地点 1 是可行的

数据范围及约定

对于 25% 的数据, $n, m \le 100$

对于 50% 的数据, $n, m \le 1000$

另外存在 20% 的数据, 树是一条链

另外存在 15% 的数据, 树是随机生成的

对于 100% 的数据, $n, m \le 100000$