ESTUDO ELETROENCEFALOGRÁFICO DURANTE IMAGINAÇÃO DE MOVIMENTOS

Denis Fernando Mendes de Souza¹, Maria Claudia Ferrari de Castro. Centro Universitário da FEI denisfmsouza@hotmail.com, mclaudia@fei.edu.br

Resumo: O trabalho visa caracterizar e classificar padrões de potenciais elétricos cerebrais através de eletroencefalografia, submetendo os dados a modelos matemáticos e estatísticos como AR (Modelo Auto-Regressivo), LDA (Análise de Discriminantes Lineares) e SVM (Máquina de Suporte Vetorial). Com auxílio do software Matlab estes dados foram classificados em relação à imaginação de movimentos de alguns membros específicos do corpo para futuramente exercer algum controle sobre dispositivos externos.

1. Introdução

Uma Interface Cérebro Computador, da sigla BCI, em inglês, Brain Computer Interface, é uma abordagem nova para restaurar a comunicação entre o cérebro e um dispositivo externo, principalmente quando utilizada por pessoas com desordens motoras graves, como acidente vascular cerebral, entre outros tipos de limitações. [1]

Dentre as formas de se ter acesso às informações cerebrais, a mais comum é a Eletroencefalografia (EEG), entendida como a medida de potenciais elétricos cerebrais. As alterações que ocorrem no sinal devido à imaginação de movimentos podem ser utilizadas como forma de identificar a intensão do sujeito.

2. Metodologia

Os dados de eletroencefalografia foram coletados de três candidatos sem experiência anterior, utilizando o mesmo procedimento para todos, com montagem no padrão 10-20. Foram utilizados oito canais de EEG, sendo eles F3, F4, C3, C4, P3, P4, O1 e O2, tendo como referência os eletrodos centrais, Fz, Cz, Pz e Oz para cada um de seus respectivos pares conforme figura 1.

Figura 1 - Posição dos eletrodos para aquisição do EEG durante este experimento. [2]

Os sinais foram captados durante a imaginação de movimentos das mãos e dos braços. Cada usuário fez 39 repetições para cada um dos quatros movimentos imaginados, flexionar braço direito, flexionar braço esquerdo, fechar mão direita e fechar mão esquerda, gerando um total de 156 repetições. Os sinais de cada repetição foram captados durante 2,5 s e uma amostra foi retirada a cada 1 ms, de forma que, para cada usuário foi obtida uma sequência de 2500 valores de potencial

de cada eletrodo a cada repetição, com um total de 20000 amostras de potencial por repetição.

Neste trabalho foram extraídas as características do modelo AR, com ordens 4, 6, 9 e 11, Média móvel do sinal, com 21 janelas de 500 amostras, e Variância, também com 21 janelas de 500 amostras.

A classificação foi feita através de dois algoritmos diferentes, LDA e SVM e também utilizando o algoritmo PCA (Análise de Componentes Principais) em ambos os casos.

3. Resultados

O classificador SVM obteve um desempenho melhor em todas as comparações quando utilizado o modelo AR, com melhores índices de acerto de um dos voluntários em 94% para classificação entre braço esquerdo e mão esquerda com os eletrodos F3 e F4, e 89% de acerto para discriminar entre braço e mão também a partir de F3 e F4, como visto na figura 2.

Figura 2 - Melhores resultados obtidos com o classificador SVM e modelo AR em relação aos eletrodos utilizados e ao movimento analisado.

4. Conclusões

Os resultados obtidos demonstraram pequena variação em relação aos diferentes algoritmos utilizados, porém maior variabilidade de acordo com os eletrodos utilizados, demonstrando a importância da localização destes. O método de caracterização AR de ordem 6 geralmente obteve os melhores resultados.

5. Referências

[1] Tavares, M.C. EEG e Potenciais Evocados – Uma Introdução. Contronic Sistemas Automáticos Ltda, 2011 [2] Caracillo, R. C., Castro, M. C. F. Classification of Executed Upper Limb Movements by Means of EEG. 4th IEEE Biosignals and Biorobotics Conference, 2013.

Agradecimentos

À instituição Centro Universitário da FEI pelo apoio e financiamento.

¹Aluno de IC com bolsa PBIC 051/13