Data Visualization and Pre-processing Assignment -2

Assignment Date	26 September 2022
Team ID	PNT2022TMID07052
Project Name	AI BASED DISCOURSE FOR BANKING INDUSTRY
Student Name	ASWIN T
Student Roll Number	130719104010
Maximum Marks	2 Marks

Question-1.Download dataset

Solution:

owNumit	Customer Surname	Credit5corGeograph	Gender	Age	Tenure	ŧ	lalance	NumOfPro	HasCrCard is	ActiveM	Estimated Exi	ted.
1	15634602 Hargrave	619 France	Female		42	2	0	1	1	1	101348.9	1
2	15647311 Hill	608 Spain	Female		41	1	83807.86	1	0	1	112542.6	0
3	15619304 Onio	502 France	Female		42	8	159660.8	3	1	0	113931.6	1
4	15701354 Boni	699 France	Female		39	1	0	2	0	0	93826.63	0
5	15737888 Mitchell	850 Spain	Female		43	2	125510.8	1	1	1	79084.1	0
6	15574012 Chu	645 Spain	Male		44	8	113755.8	2	1	0	149756.7	1
7	15592531 Bartlett	822 France	Male		50	7	0	2	1	1	10062.8	0
8	15656148 Obinna	376 Germany	Female		29	4	115046.7	4	1	0	119346.9	1
9	15792365 He	501 France	Male		44	4	142051.1	2	0	1	74940.5	0
10	15592389 H?	684 France	Male		27	2	134603.9	1	1	1	71725.73	0
11	15767821 Bearce	528 France	Male		31	6	102016.7	2	0	0	80181.12	0
12	15737173 Andrews	497 Spain	Male		24	3	0	2	1	0	76390.01	0
13	15632264 Kay	476 France	Female		34 1	10	-0	2	1	0	26260.98	0
14	15691483 Chin	549 France	Female		25	5	0	2	0	0	190857.8	0
15	15600882 Scott	635 Spain	Female		35	7	0	2	1	1	65951.65	0
16	15643966 Goforth	616 Germany	Male		45	3	143129.4	2	0	1	64327.26	.0
17	15737452 Romeo	653 Germany	Male		58	1	132602.9	1	1	0	5097.67	1
18	15788218 Henderso	549 Spain	Female		24	9	0	2	1	1	14406.41	.0
19	15661507 Muldrow	587 Spain	Male		45	6	0	1	0	0	158684.8	0
20	15568982 Hao	726 France	Female		24	6	0	2	1	1	54724.03	0
21	15577657 McDonald	d 732 France	Male		41	8	0	2	1	1	170886.2	0
22	15597945 Dellucci	636 Spain	Female		32	8	0	2	1	0	138555.5	0
23	15699309 Gerasimo	510 Spain	Female		38	4	0	1	1	0	118913.5	1
24	15725737 Mosman	669 France	Male		46	3	0	2	0	1	8487.75	0
25	15625047 Yen	846 France	Female		38	5	0	1	1	1	187616.2	0
26	15738191 Maclean	577 France	Male		25	3	0	2	0	1	124508.3	0
27	15736816 Young	756 Germany	Male		36	2	136815.6	1	1	1	170042	0
28	15700772 Nebechi	571 France	Male		44	9	0	2	0	0	38433.35	0
29	15728693 McWillian	n 574 Germany	Female		43	3	141349.4	1	1	1	100187.4	0
30	15656300 Lucciano	411 France	Male		29	0	59697.17	2	1	1	53483.21	0
31	15589475 Azikiwe	591 Spain	Female		39	3	0	3	1	0	140469.4	1
32	15706552 Odinakac	533 France	Male		36	7	85311.7	1	0	1	156731.9	0
33	15750181 Sanderso	s 553 Germany	Male		41	9	110112.5	2	0	0	81898.81	0
34	15659428 Maggard	520 Spain	Female		42	6	0	2	1	1	34410.55	0
35	15732963 Clements	722 Spain	Female		29	9	.0	2	1	1	142033.1	0
36	15794171 Lombardo	475 France	Female		45	0	134264	1	1	0	27822.99	1
37	15788448 Watson	490 Spain	Male		31	3	145260.2	1	0	1	114066.8	0
38	15729599 Lorenzo	804 Spain	Male		33	7	76548.6	1	0	1	98453.45	0
39	15717426 Armstron	850 France	Male		36	7	0	1	1	1	40812.9	0
	15585768 Cameron	1	Male		41	6	70349.48		0	1	178074	0

Question-2.Load the dataset

Solution:

import numpy as np import pandas as pd
import seaborn as sns importmatplotlib.pyplot
as plt import sklearn data =
pd.read_csv(r'Churn_Modelling.csv') df.head

<bound< p=""></bound<>	method	NDFrame.h	ead o	f Row	Number Cu	sto	merId	Surname	CreditScore	Geography	Gender	A
0		1 1563	4602	Hargrave		19		Female				
1			7311	H111	6	86						
2		3 1561	9304	Onlo	5	02	France	Female	42			
3		4 1570	1354	Boni	6	99	France	Female	39			
4		5 1573	7888	Mitchell	8	50	Spain	Female	43			
+++			* * +	444		++	14.414	4.4.4	+ + +			
9995	999	96 1560	6229	Obijiaku	7	71	France	Male	39			
9996	999	97 1556	9892	Johnstone	5	16	France	Male	35			
9997	999	98 1558	4532	Liu	7	09	France	Female	36			
9998	999	99 1568	2355	Sabbatini	7	72	Germany	Male	42			
9999	100	1562	8319	Walker	7	92	France	Female	28			
	Tenure	Balance	Num	OfProducts	HasCrCard	1	sActiveMe	mber \				
0	2	0.00		1	1	5		1				
1	1	83807.86		1	0			1				
2	8	159660.88		3	1			0				
3	1	0.00		2	9			0				
4	2	125510.82		1	1			1				
***	***	111		***	***			***				
9995	5	9.00		2	1			0				
9996		57369.61		1	1 9			1				
9997		0.00		70.0				1				
9998	77.	75075.31		2	1			0				
9999	4	130142.79		1	1	2		9				
		edSalary i										
Ð		91348.88		1								
1		12542.58		9								
2		13931.57		1								
3		93826.63		9								
4	-	79084.10		3								
anne.		16270 64										
9995		96270.64		9								
9996		31699.77		9								
9997		42085.58		1								
9998		92888.52		1								
9999	- 9	38198.78	10	9								

Question-3.Perform Below Visualizations.

3.1 Univariate Analysis

Solution:

sns.displot(data['CreditScore'])

sns.histplot(data['CreditScore'])

sns.boxplot(x = data['CreditScore'])

sns.distplot(data['Age'])

sns.histplot(data['Age'])

sns.boxplot(data['Age'])

3.2 Bivariate Analysis

Solution:

plt.figure(figsize=(7,7))

sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')

plt.figure(figsize=(10,10))

sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')

$$\begin{split} &plt.figure(figsize=(10,10))\\ &sns.barplot(data = data, \ x = 'CreditScore', \ y = 'Tenure') \end{split}$$

plt.figure(figsize=(10,10))
sns.lineplot(data['Age'], data['EstimatedSalary'])

plt.figure(figsize=(17,17))
sns.barplot(data['Age'], data['EstimatedSalary'])

 $sns.scatterplot(data = data, \ x = 'CreditScore', \ y = 'Age')$

3.3 Multivariate Analysis

Solution:

sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

 $sns.scatterplot(data['Tenure'],\, data['CreditScore'],\, hue = data['Gender'])$

sns.scatterplot(data['Age'], data['Balance'], hue = data['Gender'])

Question-4.Perform descriptive statistics on the dataset.

Solution: data.mean(numeric_only

= True)

```
RowNumber 5.000500e+03
CustomerId 1.569094e+07
CreditScore 6.505288e+02
Age 3.892180e+01
Tenure 5.012800e+00
Balance 7.648589e+00
NumOfProducts 1.530200e+00
HasCrCard 7.055000e-01
IsActiveMember 5.151000e-01
EstimatedSalary 1.000902e+05
Exited 2.037000e-01
dtype: float64
```

data.median(numeric_only = True)

```
        RowNumber
        5.000500e+03

        CustomerId
        1.569074e+07

        CreditScore
        6.520000e+02

        Age
        3.700000e+01

        Tenure
        5.000000e+00

        Balance
        9.719854e+04

        NumOfProducts
        1.000000e+00

        HasCrCard
        1.000000e+00

        IsActiveMember
        1.000000e+00

        EstimatedSalary
        1.001939e+05

        Exited
        0.000000e+00

        dtype: float64
```

data['CreditScore'].mode()

```
0 850
dtype: int64
```

data['EstimatedSalary'].mode()

```
0 24924.92
dtype: float64
```

data['HasCrCard'].unique()

```
array([1, 0])
```

data['Tenure'].unique()

```
array([ 2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])
```

data.std(numeric_only=True)

RowNumber	2886,895680
CustomerId	71935,186123
CreditScore	96.653299
Age	10.487806
Tenure	2,892174
Balance	62397.485282
NumOfProducts	0.581654
HasCrCard	0.455840
IsActiveMember	8.499797
EstimatedSalary	57510.492818
Exited	8,482769
dtyne: float64	

data.describe()

	Rowkunber	CustomerId	Credit5core	Age	Tenure	Balance	MumOfProducts	HasErCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000-000000	10000.000000	10000.000000	10000.00000	10000.000000	10000-000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	35.921800	5.012800	76485,889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96 653299	10.487506	2.892174	62397.406202	0.581554	0.45584	0.499797	57510.492818	0.402769
min	1 00000	1.556570e+07	350 000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.900000	11.580000	0.00000
25%	2500.75000	1.562853e+07	584 000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.00000
50%	5000.50000	1.569074e+07	652,000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.00000
75%	7500 25000	1.575323e+07	716.000000	44.000000	7.000000	127644 240000	2.000000	1.00000	1.000000	149388.247500	0.00000
max	10000.00000	1.581569e+07	850.000000	92.000000	10:000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

data['Tenure'].value_counts()

Name: Tenure, dtype: int64

Question-5. Handle the Missing values.

Solution: data.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

Question-6.Find the outliers and replace the outliers

Solution:

 $fig, \, ax = plt.subplots(figsize = (5,3)) \, \#Outlier \, detection \, - \, Scatter \, plot \, ax.scatter(data['Balance'], \, data['Exited'])$

x-axis label
ax.set_xlabel('Balance')

y-axis label ax.set_ylabel('Exited')
plt.show()

sns.boxplot(x=data['Balance'])

from scipy import stats #Outlier detection - zscore zscore
= np.abs(stats.zscore(data['CreditScore'])) print(zscore)
print('No. of Outliers : ', np.shape(np.where(zscore>3)))

```
0
        0.332952
1
        0.447540
2
        1.551761
3
        0.500422
4
        2.073415
9995
        1.250458
9996
        1.405920
9997
        0.604594
9998
        1.260876
9999
        1.469219
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers : (1, 0)
```

q = data.quantile([0.75,0.25]) q

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0.75	7500.25	15753233.75	2238.25	718.0	1.0	1.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0
0.25	2500.75	15628528.25	773.75	584.0	0.0	0.0	32.0	3.0	0.00	1,0	0.0	0.0	51002.1100	0.0

iqr = q.iloc[0] - q.iloc[1]iqr

RowNumber	4999.5000
CustomerId	124705.5000
Surname	1464.5000
CreditScore	134.0000
Geography	1.0000
Gender	1.0000
Age	12.0000
Tenure	4.0000
Balance	127644.2400
NumOfProducts	1.0000
HasCrCard	1.0000
IsActiveMember	1.0000
EstimatedSalary	98386.1375
Exited	0.0000
dtype: float64	

u = q.iloc[0] + (1.5*iqr)

u

RowNumber	1.499950e+04
CustomerId	1.594029e+07
Surname	4.435000e+03
CreditScore	9.190000e+02
Geography	2.500000e+00
Sender	2.580000e+00
Age	6.200000e+01
Tenure	1.300000e+01
Balance	3.191106e+05
NumOfProducts	3.500000e+00
HasCrCard	2.500000e+00
IsActiveMember	2.500000e+00
EstimatedSalary	2.969675e+05
Exited	0.000000e+00
dtype: float64	

l = q.iloc[1] - (1.5*iqr)

1

RowNumber	-4.998500e+03
CustomerId	1.544147e+07
Surname	-1.423000e+03
CreditScore	3.830000e+02
Geography	-1.500000e+00
Gender	-1.500000e+00
Age	1.400000e+01
Tenure	-3.000000e+00
Balance	-1.914664e+05
NumOfProducts	-5.000000e-01
HasCrCard	-1.500000e+00
IsActiveMember	-1.500000e+00
EstimatedSalary	-9.657710e+04
Exited	0.000000e+00
dtype: float64	

```
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR Q3 = data['EstimatedSalary'].quantile(0.75) iqr = Q3 - Q1 print(iqr) upper=Q3 + 1.5 * iqr lower=Q1 - 1.5 * iqr count = np.size(np.where(data['EstimatedSalary'] > upper)) count = count + np.size(np.where(data['EstimatedSalary'] < lower)) print('No. of outliers: ', count) 98386.1375 No. of outliers: 0
```

data['CreditScore'] = np.where(np.logical_or(data['CreditScore']>900, data['CreditScore']<383), 65 0, data['CreditScore']) sns.boxplot(data['CreditScore'])

upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma lower = data.Age.mean() - (3 * data.Age.std()) columns = data[(data['Age'] > upper) | (data['Age'] < lower)] print('Upper range : ', upper) print('Lower range : ', lower) print('No. of Outliers : ', len(columns))</pre>

Upper range : 70.38521935511383 Lower range : 7.458380644886169 No. of Outliers : 133

columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', 'CreditScore'] #After outl ier removal

for i in columns:

```
\label{eq:quantilequantile} \begin{split} Q1 &= \text{data[i].quantile}(0.25) \quad Q3 = \\ \text{data[i].quantile}(0.75) \quad iqr &= Q3 - Q1 \quad upper = Q3 + \\ 1.5 * iqr \quad lower = Q1 - 1.5 * iqr \quad count = \\ \text{np.size}(\text{np.where}(\text{data[i]} > \text{upper})) \quad count = count + \\ \text{np.size}(\text{np.where}(\text{data[i]} < \text{lower})) \quad print('No. of outliers in ', i, ':', count) \end{split}
```

```
No. of outliers in EstimatedSalary : 0
No. of outliers in Age : 0
No. of outliers in Balance : 0
No. of outliers in NumOfProducts : 0
No. of outliers in Tenure : 0
No. of outliers in CreditScore : 0
```

Question-7. Check for Categorical columns and perform encoding

Solution:

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder le = LabelEncoder() oneh = OneHotEncoder() data['Surname'] = le.fit_transform(data['Surname']) data['Gender'] = le.fit_transform(data['Gender']) data['Geography'] = le.fit_transform(data['Geography']) data.head()
```

	RowNumber	CustomerId	Surnane	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	1115	619	0	0	42	2	0.00	1	.1	1	101348.88	- 6
1	2	15647311	1177	608	2	0	41	- 1	83807.86	1	0	1	112542.58	
2	3	15619304	2040	502	٥	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	

Question-8.Split the data into dependent and independent variables split the data in X and Y

Solution:

```
x # independent values (inputs) x = data.iloc[:, 0:13]
```

	RowNumber	CustomerId	Surnane	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88
1	2	15647311	1177	608	2	0	41	1	83807.86		0	1	112542.58
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63
4	5	15737888	1822	850	2	0	43	2	125510 82	- 1	1	1	79084.10
-104		-		36	-	***	-	-	-	-	-	-	95
9995	9996	15606229	1999	771	Ü	- 1	39	5	0.00	2	1	0	96270.64
9996	9997	15569692	1336	516	0	1	35	10	57369.61	1	1	t	101699.77
9997	9998	15584532	1570	709	0	.0	36	7	0.00		0	1	42085.58
9998	9999	15682355	2345	772	1	1	42	3	75075.31	2	1	0	92888.52
9999	10000	15628319	2751	792	0	0	28	- 4	130142.79		1	0	38190.78

10000 rows x 13 columns

```
# dependent values
(output) y = data['Exited']
 0
          1
 1
          0
 2
          1
 3
 4
 9995
 9996
 9997
          1
 9998
 9999
 Name: Exited, Length: 10000, dtype: int64
```

Question-9. Scale the independent variables

Solution:

from sklearn.preprocessing import StandardScaler, MinMaxScaler sc = StandardScaler() x_scaled = sc.fit_transform(x) x_scaled

```
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167, 0.97024255, 0.02188649],
[-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167, -1.03067011, 0.2406869],
...,
[1.73118479, -1.47928179, 0.07353887, ..., -1.54776799, 0.97024255, -1.00864308],
[1.7315312, -0.11935577, 0.98943914, ..., 0.64609167, -1.03067011, -0.12523071],
[1.73187761, -0.87055909, 1.4692527, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question-10.Split x and y into Training and Testing

Solution:

from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0) x_train

```
array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167, 0.97024255, -0.77021814],
[ 1.39655257, 0.71431365, -1.58808148, ..., 0.64609167, -1.03067011, -1.39576675],
[ -0.4532777, 0.96344969, -0.24082173, ..., -1.54776799, 0.97024255, -1.49965629], ...,
[ -0.60119484, -1.62052514, -0.36136603, ..., 0.64609167, -1.03067011, 1.41441489],
[ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167, 0.97024255, 0.84614739],
[ -0.78548505, -1.36411841, 1.3829808, ..., 0.64609167, -1.03067011, 0.32630495]])
```

x_train.shape

(7000, 13)

x_test

```
array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167, 0.97024255, 1.61304597],
[-1.42080128, -0.50381294, -0.78208925, ..., 0.64609167, -1.03067011, 0.49753166],
[-0.90118604, -0.7932923, 0.41271742, ..., 0.64609167, 0.97024255, -0.4235611],
...,
[ 1.49216178, -0.14646448, 0.6868966, ..., 0.64609167, 0.97024255, 1.17045451],
[ 1.1758893, -1.29228727, -1.38481071, ..., 0.64609167, 0.97024255, -0.50846777],
[ 0.08088677, -1.38538833, 1.11707427, ..., 0.64609167, 0.97024255, -1.15342685]])
```

```
x\_test.shape
 (3000, 13)
y_train
 7681
       1
 9031
      0
 3691
       0
 202
       1
 5625
 9225
       0
 4859
       0
 3264
       0
 9845
 2732
 Name: Exited, Length: 7000, dtype: int64
y_test
 9394
 898
         1
 2398
 5906
         0
 2343
         0
 4004
         0
 7375
 9307
         0
 8394
         0
 5233
         1
 Name: Exited, Length: 3000, dtype: int64
```