Geometrie WS 19/20

Dozent: Prof. Dr. ULRICH KRÄHMER

30. Oktober 2019

In halts verzeichnis

I G	ruppen	2
1	Wiederholung	2
2	Nebenklassen, Normalteiler, Isomorphiesätze	6
3	Morphismen	7
4	Normalteiler	8
5	Einfache Gruppen	12
Anhang		18
Index		18

Vorwort

Kapitel I

Gruppen

1. Wiederholung

Definition 1.1 (Halbgruppe, Monoid, Gruppe)

Eine Halbgruppe ist eine Menge G mit einem assoziativen Produkt

$$\cdot: G \times G \to G$$
.

Ein Monoid ist eine Halbgruppe, in der ein Element $1 \in G$ existiert mit

$$1 \cdot x = x \cdot 1 = x \quad \forall x \in G.$$

Eine Gruppe ist ein Monoid, in dem für jedes $x \in G$ ein $y \in G$ existiert mit

$$xy = yx = 1$$
.

▶ Bemerkung 1.2

1 ist eindeutig, wenn es existiert. y ist durch x eindeutig bestimmt: $x^{-1} = y$.

Definition 1.3 (Morphismus)

Ein Morphismus zwischen zwei Gruppen G und H ist eine Abbildung

$$f: G \to H$$
 mit $f(xy) = f(x)f(y) \quad \forall x, y \in G$.

Satz 1.4

Ist $f: G \to H$ ein Morphismus von Gruppen, so gilt

- f(1) = 1 und
- $f(x^{-1}) = f(x)^{-1} \ \forall x \in G.$

Beweis. Für alle $x \in G$ gilt

$$f(x) = f(1 \cdot x) = f(1)f(x).$$

Gilt in einer beliebigen Gruppe jedoch ab=b für zwei Elemente a,b, so folgt

$$(ab) \cdot b^{-1} = a(bb^{-1}) = a \cdot 1 = a \text{ mit } bb^{-1} = 1.$$

Ferner gilt

$$f(x) \cdot f(x^{-1}) = f(x \cdot x^{-1}) = f(1) = 1$$

wie schon gezeigt (und analog $f(x^{-1})f(x) = 1$). Also ist $f(x^{-1}) = f(x)^{-1}$).

1. Wiederholung Kapitel I: Gruppen

■ Beispiel 1.5

- 1) Sei X eine beliebige Menge. $S_X = \{f \colon X \to X \mid f \text{ bijektiv}\}$ ist eine Gruppe bezüglich Komposition mit $1 = \mathrm{id}_X$. Insbesondere ist $S_n = S_{\{1,\ldots,n\}}$ die symmetrische Gruppe und ein Element $f \in S_n$ ist eine Permutation.
- 2) $GL(V) = \{ f \in S_V \mid f \text{ linear} \}$, wobei V ein R-Modul ist mit kommutativen assoziativen Ring mit 1.
- 3) \mathbb{Z}, \mathbb{Z}_n unter Addition

$$U_n = \mathbb{Z}_n^{\times} = \{ m \in \{0, \dots, n-1\} \mid ggT(m, n) = 1 \}$$

Beide Gruppen sind abelsch, d.h.

$$\forall x, y \in G : xy = yx.$$

- 4) $G = U(1) = \{z \in C \mid |z| = 1\} = \{e^{it} \mid t \in [0, 2\pi]\}$
- 5) $G = U(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$, die Eichgruppe im Standardmodell der Elementarteilchen

Definition 1.6 (Ordnung)

Ist G endlich, so nennt man |G| die Ordnung von G.

■ Beispiel 1.7

$$|S_n| = n!$$

Definition 1.8 (p-Gruppe)

Ist $|G|=p^n$ für eine Primzahl p und ein $n\in\mathbb{N}$, so nennt man G eine p-Gruppe

Definition 1.9 (Untergruppe)

Sei G Gruppe. Eine Teilmenge $H \leq G$ ist eine Untergruppe H < G, wenn

- (i) Für alle $x, y \in H$: $xy \in H$
- (ii) $1 \in H$
- (iii) Für alle $x \in H$: $x^{-1} \in H$

Satz 1.10

Ist $|G| < \infty$, so folgen Definitionen 1.9 (ii) und 1.9 (iii) bereits aus Definition 1.9 (i) und $H \neq \emptyset$.

Beweis. Sei $x \in H$ ein beliebiges Element. Aus 1.9 (i) folgt $x^n \in H$ für alle $n \in \mathbb{N}_+$. Da $|G| < \infty$ existiert $n \neq m$ mit $x^n = x^m$. O.E. sei n > m

$$\Rightarrow x^{n-m}x^m = x^n$$

$$\Rightarrow x^{n-m} = 1$$

Ferner impliziert die Existenz der inversen Elemente, dass die Linkstranslation

$$t_x \colon G \to G, y \mapsto xy \quad (x \in G \text{ fest})$$

injektiv ist, denn $(t_x)^{-1} = t_{x^{-1}}$. Ist $x \in H$, so heißt 1.9 (i) gerade $t_x(H) \subseteq H$, sprich t_x kann zu $t_x|_H : H \to H$

eingeschränkt werden. Die Einschränkung einer injektiven Abbildung ist injektiv. Da $|H| \leq |G| < \infty$, folgt $t_x|_H \colon H \to H$ ist surjektiv. Also existiert $y \in H$ mit $t_x(y) = 1$. Eindeutigkeit von x^{-1} heißt $y = x^{-1} \in H$. \square

Definition 1.11 (Erzeugendensystem)

Ist $X \subseteq G$, so ist

$$\langle X \rangle = \bigcap_{\substack{H < G \\ X \subset H}} H$$

die von X erzeugte Untergruppe. Ist $\langle X \rangle = G$, nennen wir X ein Erzeugendensystem.

Definition 1.12 (Konjugation)

Ist H < G und $x \in G$, so ist

$$x^{-1}Hx = \{x^{-1}Hx \mid y \in H\}$$

eine Untergruppe (" $x^{-1}yx$ " y ist konjugiert mit x). Wir nennen diese zu H konjugiert.

Definition 1.13 (Konjugationsklasse)

Die Menge $\{x^{-1}yx \mid x \in G\}$ ist i.A. <u>keine</u> Untergruppe und diese nennt man <u>Konjugationsklassen</u> von y.

Definition 1.14 (Zentralisator, Zentrum)

Der Zentralisator von $y \in G$ ist

$$\{x \in G \mid xy = yx\} =: Z_G(y).$$

Das Zentrum von G ist

$$Z(G) = \bigcap_{y \in G} Z_G(y) = \{ x \in G \mid \forall y \in Gxy = yx \}.$$

■ Beispiel 1.15

Sei $G = S_n \ni f$ Permutation, z.B.

$$S_6 \in \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 6 & 1 & 2 & 3 \end{pmatrix} = (1524)(36)$$

letzteres nennt man Zykelnotation. 1-Zykeln, d.h. $i \in \{1, ..., n\}$ mit f(i) = i werden meist nicht notiert, z.B.:

$$S_4 \in \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} = (12)$$

▶ Bemerkung 1.16

Ein k-Zykel ist ein Produkt von k-1 Transpositionen (2-Zykel), z.B.

$$(12345) = (15)(14)(13)(12)$$

1. Wiederholung Kapitel I: Gruppen

ist das Produkt in S_5 , d.h. Komposition! Also erzeugt $\{(i,j)\}$ die S_n . Jede Permutation kann also als Produkt von Transpositionen geschrieben werden. Diese Darstellung ist nicht eindeutig! (z.B. (12)(23)(12) = (23)(12)(23)) ("Braid relation") und (12)(12) = (). Allerdings kommen in jeder solcher Darstellungen entweder eine gerade oder ungerade Anzahl von Transpositionen vor (\rightarrow Fehlstände). Insbesondere bilden gerade Permutationen (gerade Anzahl an Fehlständen \Leftrightarrow Produkte von zu Transpositionen) eine Untergruppe $A_n < S_n$, die sogenannte alternierende Gruppe.

■ Beispiel 1.17

Sei G = GL(n, R) die invertierbare Matrizen mit Einträgen in R (nur endliche, wenn $R^{\times}endlich!$). Untergruppen sind

- $SL(n,R) = \{g \in GL(n,R) \mid \det g = 1\}$
- $O(n,R) = \left\{g \in G \mid gg^T = g^Tg = 1\right\}$ mit dem Skalarprodukt $\langle gv, gw \rangle = \langle v, w \rangle \quad \forall v, w \in R^n$
- $SO(n,R) = SL(n,R) \cap O(n,R)$.

Ist R Ring mit Involuten (z.B. $R = \mathbb{C}, z = \bar{z}$)

- $U(n,R) = \{g \in GL(n,R) \mid gg^* = g^*g = 1\}$
- $SU(n,R) = SL(n,R) \cap U(n,R)$

■ Beispiel 1.18

Sei D_n definiert durch

$$D_n = \{ f : \mathbb{R}^2 \to \mathbb{R}^2 \text{ linear, bjektiv } | f(P_n) = P_n \},$$

wobei $P_n \subset \mathbb{R}^2$ das regulär n-gen ist, z.B. das Hexagon P_6 . Alternativ ist $D_n \subseteq S_n$, wobei $\{1, \ldots, n\}$ mit der Menge der Ecken von P_n identifiziert wird und man erhält alle Permutationen, die benachbarte Ecken auf benachbarte abbilden:

- r: Rotation um $2\pi/n$ im mathematische positiven Sinn
- s: eine beliebige Spiegelung in D_n

Also hat man

$$\langle \{s,r\} \rangle = D_n = \{s^i r^j \mid i = 0, 1, j = 0, \dots, n-1\}$$

und der Mächtigkeit $|D_n| = 2n$.

Für die erzeugenden Elemente $D_n = \langle \{s, r\} \rangle$ gilt:

- $srs = r^{n-1}$,
- $r^{n-1} = r^{-1}$,
- $r^n = 1$,
- $s^2 = 1$.

Im unendlichen Fall $D_{\infty} \subset S_{\mathbb{Z}}$ gilt z.B. r(z) = z + 1, s(z) = -z, wobei $r, s : \mathbb{Z} \to \mathbb{Z}$ sind und D_{∞}

erzeugen: $D_{\infty} = \langle \{r, s\} \rangle$.

2. Nebenklassen, Normalteiler, Isomorphiesätze

Definition 2.1

 $A,B\subseteq G$ Teilmengen (nicht unbedingt Untergruppen!), dann:

- $AB = \{xy \in G \mid x \in A, y \in B\}$
- $A^{-1} = \{x^{-1} \in G \mid x \in A\}$

▶ Bemerkung 2.2

 $\varnothing \neq H \subseteq G$ ist Untergruppe $\Leftrightarrow HH = H, H^{-1} = H$

Definition 2.3

Ist $x \in G$, so nennen wir

$$f_x \colon G \to G \text{ mit } y \mapsto x^{-1}yx$$

den durch x definierten inneren Automorphismus. Ist H < G, so nennen wir $f(H) = x^{-1}Hx$ eine zu H konjugierte Untergruppe.

Satz 2.4

- f_x ist ein Endomorphismus von G (d.h. ein Morphismus $G \to G$)
- Das Bild Im feines beliebigen Gruppenmorphismus $f\colon K\to L$ ist eine Untergruppe: Im f< L

Beweis.

- $f_x(yz) = x^{-1}yzx = x^{-1}y(xx^{-1})zx = (x^{-1}yx)(x^{-1}zx) = f_x(y)f_x(z) \ \forall y, z \in G$
- Wir untersuchen die drei Eigenschaften:
 - Im f ist abgeschlossen: seien $f(y), f(z) \in \text{Im } f$. Dann gilt:

$$f(y)f(z) = f(yz) \in \operatorname{Im} f$$

$$- f(1) = 1 \implies 1 \in \text{Im } f$$

 $- f(x)^{-1} = f(x^{-1}) \implies (\text{Im } f)^{-1} = \text{Im } f$

Definition 2.5

Ist $H < G, x \in G$, so nennt man

$$G\supseteq xH=\{x\}H=\{xy\in G\mid y\in H\}$$
 linke Nebenklasse
$$G\supseteq Hx=\{yx\in G\mid y\in H\}$$
 rec
hte Nebenklasse

■ Beispiel 2.6

Sei G=V Vektorraum über Körper K mit + als Gruppenstruktur, dann ist H=W< V ein Untervektorraum und $xH=x+W\subseteq V$ affiner Unterraum, Element von V/W

Dies verallgemeinert sich zu

Definition 2.7

Sei $H < G, G/H = \{xH \mid x \in G\} \subseteq \mathcal{P}(G)$

▶ Bemerkung 2.8

 $xH = yH \Leftrightarrow x \sim y$ definiert eine Äquivalenzrelation und das ist äquivalent zu

$$\exists h \in H : x = yh \Leftrightarrow y^{-1}y \in H.$$

Beachte dabei G/H = G/N ist die Menge aller Äquivalenzklassen xH = [x]. Desweiteren gibt es die kanonische Projektion $\pi \colon G \to G/H, x \mapsto xH$.

Insbesondere ist G die disjunkte Vereinigung aller Äquivalenzklassen. Speziell ist für jedes $x \in G$ definiert:

$$t_x \colon G \to G, y \mapsto xy$$
 eine Bijektion, $H = 1H = [x] \to xH = [x]$.

Alle xH haben also die gleiche Kardinalität und wir erhalten:

Satz 2.9 (Lagrange, Klausur!)

Sei $|G| < \infty$ und H < G. Dann gilt $|G| = |G/H| \cdot |H|$. Insbesondere ist |G| durch |H| teilbar.

Beweis. Beweisskizze: Äquivalenzrelation und Bijektion $xH \cong yH$.

Let H < G a subgroup of G and $xH := \{xy \mid y \in H\} \le G$ the coset of H in G. Then we have $G/H = \{xH \mid x \in G\} \subseteq \mathcal{P}(G)$. Then

$$xH = \tilde{x}H \Leftrightarrow \exists y \in H \quad x = \tilde{x}y \Leftrightarrow \tilde{x}^{-1}x \in H$$

$$G = \bigcup_{xH \in G/H} xH \implies |G| = |G/H| \cdot |H|$$

$$|xH| = |H| \quad \forall x \in G.$$

Folgerung 2.10

Sei $|G| < \infty$, dann gilt $|x| \mid |G|$ für alle $x \in G$. Dabei ist $|x| = |\langle \{x\} \rangle| = \min\{n \mid x^n = 1\}$. Also z.B. $\langle \{x\} \rangle \cong (\mathbb{Z}_{|x|}, +)$. Insbesondere gilt für alle $x \in G$: $x^{|G|} = 1$

Folgerung 2.11 (Eulers Theorem)

 $|U_n| = \varphi(n) = |\{m \in \{1, \dots, n\} \mid \operatorname{ggT}(n, m) = 1\}| = |\{(\mathbb{Z}_n^{\times}, \cdot) \mid \operatorname{ggT}(n, m) = 1\}| \text{ mit } n \in \mathbb{N}. \text{ Also ist } m^{\varphi(n)} = 1 \mod n.$

Definition 2.12 (Index)

Sei H < G, dann ist [G : H] := |G/H| der Index von H in G.

Folgerung 2.13

Sei K < H < G und $|G| < \infty$, dann

$$[G:K] = |G/K| = \frac{|G|}{|H|} \cdot \frac{|H|}{|K|} = [G:H][H:K].$$

3. Morphismen

Definition 3.1

Ein injektiver Morphismus $f \colon G \to H$ wird auch Einbettung genannt. Ein Isomorphismus ist ein bijektiver Morphismus.

▶ Bemerkung

Ein injektiver Morphismus wird auch Monomorphismus genannt und ein surjektiver Morphismus Epimorphismus.

■ Beispiel 3.2

1) Betrachte die Determinate det: $GL(n,R) \to R^{\times}$, diese ist ein surjektiver Morphismus von Gruppen mit

$$\det(gh) = \det(g)\det(h)$$

2) Die Wahl einer Basis B in einem endlich erzeugten freien Modul V ist ein Isomorphismus von Moduln $s_B \colon R^{|B|} \to V$. Dieser induziert einen Gruppenisomorphismus

$$GL(n,R) \to GL(V), g \mapsto s_B \circ M_g \circ s_B^{-1}$$

3) Die Linkstranslation $t: G \to S_G$ mit $x \mapsto t_x$ (mit $t_x(y) = xy$) ist ein injektiver Gruppenhomomorphismus

$$(t_x \circ t_z)(y) = t_x(t_z(y)) = t_x(zy) = xzy = t_{xz}(y)$$

also

$$t_x \circ t_y = t_{xy} \quad \forall x, y \in G$$

Ist $t_x = t_z$, so gilt $t_x(1) = t_z(1)$ und daraus x1 = z1, also x = z

Also kann jede endliche Gruppe als Untergruppe der S_n verstanden werden (n = |G|)!

■ Beispiel 3.3

1) $y\mapsto f_{x^{-1}}\colon G\to G,\, y\mapsto xyx^{-1}$ ist ein Morphismus $G\to \operatorname{Aut} G$ mit

$$f_x(y) = x^{-1}yx$$
, $f_z(f_x(y)) = z^{-1}(x^{-1}yx)z = (xz)^{-1}y(xz) = f_{xz}$,

und ist i.A. nicht injektiv! Denke an G abelsch $\Leftrightarrow f_x = \mathrm{id}_G \ \forall x \in G$

2) sgn:
$$S_n \to \mathbb{Z}_2 = \{-1, 1\}$$

4. Normalteiler

Definition 4.1 (normale Untergruppe)

Eine Untergruppe H < G ist normal $\Leftrightarrow \forall x \in G : xH = Hx$.

Satz 4.2

$$H < G$$
 ist normal $\Leftrightarrow \forall x \in Gx^{-1}Hx = H \Leftrightarrow AH = HA \quad \forall A \subseteq G$

Beweis. Sei H normal und $x \in G$. Dann gilt $xH = Hx \implies x^{-1}xH = x^{-1}Hx$. Hier verwende $A, B \subseteq G, AB = \{ab \mid a \in A, b \in B\}$ definiert ein assoziatives Produkt $u \in \mathcal{P}(G)$, angewendet auf $A(BH) = (AB)H, A = \{x^{-1}\}, B = \{x\}$. Umgekehrt genauso $xH = Hx \implies x^{-1}xH = x^{-1}Hx$. Weiter gilt:

$$AH = \bigcup_{x \in A} xH, \quad HA = \bigcup_{x \in A} Hx$$

Also
$$xH = Hx \quad \forall x \in G \implies AH = HA \forall A \subseteq G$$
. Umgekehrt: Nimm $A = \{x\}$.

Warum relevant?

Weil G/H eine Gruppenstruktur von G erbt $\Leftrightarrow H \triangleleft G$

Satz 4.3

Sei $H \triangleleft G$. Dann definiert

$$xH \cdot yH = (xy)H$$

eine Gruppenstruktur auf G/H und $\pi:G\to G$ mit $x\mapsto xH$ ist eine surjektiver Morphismus von Gruppen.

Beweis. $xH \cdot yH$ kann ich in $\mathcal{P}(G)$ immer bilden. Ist $H \triangleleft G$, gilt xH = Hx, also $xH \cdot yH = HxyH = xyHH = xyH$. (oder $A = \{x\}, B = \{y\}, C, D = H$). Anders gedacht: $H \triangleleft G$ heißt: $H \in Z(\mathcal{P}(G))$. Sprich: $G/H \subseteq \mathcal{P}(G)$ ist eine Unterhalbgruppe, d.h. abgeschlossen unter \cdot . Ferner gilt: H = 1H ist ein Einselement (xH)H = x(HH) = xH, H(xH) = (Hx)H = xH = (Hx)H = (xH)H. Ausserdem ist G/H Gruppe

$$xH \cdot x^{-1}H = Hx \cdot x^{-1}H = H1H = HH = H$$

und genauso $x^{-1}HxH = H$. Sei $\pi: G \to G/H$ mit $x \mapsto xH$ also $\pi(xy) = \pi(x)\pi(y)$ mit $xyH = xH \cdot yH$.

Definition 4.4 (Kern einer Gruppe)

Ist $f: G \to K$ ein Morphismus von Gruppen, so definieren wir den Kern ker $f = \{x \in G \mid f(x) = 1_K\}$

▶ Bemerkung

Ist K eine abelsche Gruppe, so schreibt man die Gruppenoperation oft als + und 1 oft als 0.

Satz 4.5

Es gilt $\ker(f) \triangleleft G$.

Beweis. 1. Sind $x, y \in \ker f$, so gilt f(x)f(y) = f(xy) (und 11 = 1), also ist $\ker f$ abgeschlossen unter \cdot .

2. Ferner f(1) = 1, da f Morphismus $\implies G \ni 1 \in \ker f$.

3. Zuletzt: $f(x)^{-1} = f(x^{-1})$, dann

$$x \in \ker f \implies f(x) = 1 \implies f(x^{-1}) = f(x)^{-1} \implies x^{-1} \in \ker f$$

4. Ferner gilt für $x \in G, y \in \ker f$:

$$f(x^{-1}yx) = f(x^{-1}f(y)f(x)) = f(x^{-1}) \cdot 1 \\ f(x) = f(x^{-1}x) = f(1) = 1 \text{ also}$$
$$x^{-1} \in \ker f \subseteq \ker f \text{ also}$$
$$(x^{-1})^{-1} \ker f(x^{-1}) \subseteq \ker f \implies \ker f \subseteq x^{-1} \ker fx$$

5. $\ker f \triangleleft G$.

also 1. 2. 3. :
$$\ker f < G$$
.

► Bemerkung

Ist $H \triangleleft G$, so gilt: $H = \ker \pi$ mit $\pi : G \rightarrow G/H$. (denn $\pi(x) = xH$, also $\ker \pi = \{x \mid xH = H\} = H$). Normalerteiler sind also die Kerne von Morphismen.

Satz 4.6 (1. Isomorphiesatz, Klausur)

Ein Morphismus $f:G\to K$ von Gruppen induziert einen Isomorphismus:

$$\bar{f}: G/\ker f \to \operatorname{Im} f \text{ mit } [x] = x \ker f \mapsto f(x)$$

Beweis. Der einzig schwere Teil ist \bar{f} ist wohldefiniert. $f(xH) := f(x) \in \text{Im } f$, also landet \bar{f} in Im f. Ferner gilt: Ist $x \ker f = y \ker f$, so ist $y^{-1}x \in \ker f$ (allgemein: $xH = yH \Leftrightarrow y^{-1}xH$) $\Leftrightarrow f(y^{-1}x) = 1 \Leftrightarrow f(y^{-1})f(x) = 1 \Leftrightarrow f(y)^{-1}f(x) = 1 \Leftrightarrow f(x) = f(y)$. Also ist \bar{f} wohldefiniert und injektiv. Surjektiv ist \bar{f} per Definition. Letzter Schritt: $\bar{f}(x \ker f \cdot y \ker f) = \bar{f}(xy \cdot \ker f)$ (???). $\bar{f}(x \ker f)\bar{f}(y \ker f) = f(x)f(y) = f(xy)$. Also ist \bar{f} ein Morphismus von Gruppen.

■ Beispiel 4.7

Sei $G = (\mathbb{R}, +)$, $K = (\mathbb{C} \setminus \{0\}, \cdot)$ und $f(t) = \exp(2\pi i t)$, dann $f(x + y) = \exp(x) + \exp(y)$ also ein Gruppenmorphismus $G \to K$. Dann Im $f = U(1) = S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ und ker $f = \mathbb{Z}$. Also ist $\mathbb{R}/\mathbb{Z} \cong S^1$ ($\mathbb{R}^2/\mathbb{Z}^2 \cong T$ ist dann der Torus $T, U(n) = \{A \in \operatorname{Mat}(n, \mathbb{C}) \mid AA^T = 1\}$ unitäre Gruppe)

Definition 4.8 (einfache Gruppe)

Eine Gruppe G ist einfach, wenn $H \triangleleft G \implies H = G$ und $H = \{1\}$.

▶ Bemerkung

D.h.: Ist $f:G\to K$ irgendein Morphismus, so ist $G\cong \mathrm{Im}\, f$ (ker $f=\{1\}$) oder $\mathrm{Im}\, f=\{1\}$ (ker f=G).

Die endlichen einfachen Gruppen sind klassifiziert!

■ Beispiel 4.9

- 1. Sei $G = \mathbb{Z}_p, p$ prim hat nach LAGRANGE (Satz 2.9) noch nicht mal irgendeine <u>echte</u> Untergruppe, ist also einfach.
- 2. $SL(n, \mathbb{Z}_p)/Z(SL(n, \mathbb{Z}_p)) = PSL(n, \mathbb{Z}_p)$ (projective linear group)

Satz 4.10 (Korrespondenztheorem)

Ist $H \triangleleft G$, so induziert (definiert) $\pi: G \to G/H$ einen Isomorphismus von teilgeordneten Mengen (partial ordered sets)

$$\{L < G \mid H < L\} \rightarrow \{K < G/H\} \text{ mit } L \mapsto \pi(L)$$

Dieser erhält und reflektiert Normalität und auch Unterquotienten.

Satz 4.11 (2. Isomorphiesatz, Klausur)

Let $H < G, K \triangleleft G \implies H \cap K \triangleleft H, K \triangleleft H, K < G$ und

$$H/H \cap K \to HK/K$$
 with $x(H \cap K) \mapsto xK$

ist ein Isomorphismus.

- Beweis. 1. Durchschnitte von Untergruppen sind Untergruppen, also $H \cap K < H$. Ist ferner $x \in H$ und $y \in H \cap K$, so gilt $xyx^{-1} \in H$ (da H Untergruppe) und $xyx^{-1} \in K$, da $x \in G$ und $y \in K$ und auch $K \triangleleft G$. Also gilt $xyx^{-1} \in H \cap K$.
 - 2. Auch klar, da (HK)(HK) = H(KH)K = H(HK)K = (HH)(KK) = HK (wobei $K \triangleleft G$), Bemerkung: $H, K \triangleleft G$ reicht nicht, HK ist i.A. keine Untergruppe von G. Klar das $1 = 1 \cdot 1 \in HK, 1 \in H, 1 \in K$ (da $H, K \triangleleft G$).

$$x \in H, y \in K$$
 $(xy)^{-1} = y^{-1}x^{-1} \implies (HK)^{-1} = K^{-1}H^{-1} = KH = KH, \text{ da } K \triangleleft G.$

Also gilt HK < G. $K \triangleleft HK$, wie im ersten Punkt des Beweises.

3.

$$\varphi: H/H \cap K \to HK/K \text{ mit } (H \cap K) \mapsto xK$$

wohldefiniert? Natürlich: Ist $x(H \cap K) = y(H \cap K)$ $x, y \in H$, so folgt x = yz mit $z \in H \cap K$, also yK = xK, da 2. eben insbesondere in K ist. Gruppenhomomorphismus auch klar, da

$$\varphi(x(H \cap K) \cdot y(H \cap K)) = \varphi(xy(H \cap K)) = xyK$$
$$\varphi(x(H \cap K))\varphi(y(H \cap K)) = xKyK$$

Lemma 4.12

 $\varphi: G \to H$ ist injektiv genau, dann wenn $\ker \varphi = \{1\}.$

Beweis. Auf diesen Fall angewendet:

$$\ker \varphi = \{ x(H \cap K) \subset H/H \cap K \mid xK = K \}$$

xK = K heisst aber nichts anderes als $x \in K$, d.h.

$$\ker \varphi = \{x(H \cap K) \mid x \in H \cap K\} = H \cap K = 1$$

(in der Gruppe $H/H \cap K$) und surjektiv ist klar, da xyK = xK für $x \in H, y \in K$.

Satz 4.13 (3. Isomorphiesatz)

Sei $H \triangleleft G, K \triangleleft G, K < H$ impliziert $H/K \triangleleft G/H$ und es gilt

$$G/K \to H/H/H/K \text{ mit } xK \mapsto (xH) \cdot H/K$$

ist ein Isomorphismus.

5. Einfache Gruppen

Definition 5.1

G ist einfach, genau dann wenn $\{1\}, G$ sind die einzigen Normalteiler.

$$\varphi:G\to H \text{ mit } \operatorname{Im}\varphi=G/G/\ker\varphi$$

$$\operatorname{Im}\varphi\cong G \text{ oder } \operatorname{Im}\varphi=\{1\}$$

■ Beispiel

 $G = \mathbb{Z}_p, p \text{ prim.}$

Satz 5.2

 A_n ist einfach für n > 4.

▶ Bemerkung

 $A_4 \triangleright \{(), (12)(34), (13)(24), (14)(23)\}, \text{ d.h. } A_4 \text{ ist nicht einfach.}$

Lemma 5.3

1.
$$S_n = \langle (ii+1) \rangle$$
 für $i = 1, ..., n-1$

2.
$$A_n = \langle (ijk) \rangle$$

Beweis. 1. Betrachte (23)(12)(23) = (13) und (34)(13)(34) = (14), per Induktion folgt

$$(1i) \in \langle (ii+1) \rangle$$
 und $(1i)(1j)(1i) = (ij)$ $(i \neq j) \Longrightarrow (ij) = \langle (rr+1) \rangle$ $r = 1, \dots n-1$

damit folgt 1.

2.

$$(ij)(jk) = (ijk)$$
 und $(ij)(kr) = (ijk)(jkr)$

also folgt 2. \Box

Beweis (Satz 5.2). Sei $N \neq \{1\}$ Normalteiler von $A_n, n > 4$

1. Ist $(yk) \in N$, so gilt $(abc) \in N$ für alle a, b, c. Ist $\sigma \in S_n$, so gilt $\sigma(ijk)\sigma^{-1} = (\sigma(i)\sigma(j)\sigma(k))$ (siehe ÜA 5, 1. Blatt) Sei $\sigma \in S_n$ so, dass $\sigma(i) = a$, $\sigma(j) = b$ und natürlich $\sigma(k) = c$. Ist $\sigma \in A_n$ so folgt (da $N \triangleleft A_n$, $(abc) \in N$). Wenn nicht wähle r, s ungleich und setze $\tilde{\sigma} := \sigma(rs) \in A_n$. Dann ist $\tilde{\sigma}(ijk)\tilde{\sigma}^{-1} = s$

$$\sigma(rs)(ijk)(rs)\sigma^{-1} = (abc).$$

2. Bleibt zu zeigen: $\exists (ijk) \in N$. Sei

$$1 \neq \sigma = \gamma_1 \gamma_2 \dots \gamma_r \in N$$
 beliebig,

wobei γ_i Zykel ist und die Länge der Zykel γ_i nicht wachse also $l(\gamma_i) \ge l(\gamma_{i+1})$. Fallunterscheidung: (Ziel ist in jedem Fall gibt es ein $(ijk) \in N$.)

(a) $l(\gamma_i) \geq 4$:

Sei
$$\gamma_1 = (i_1, \dots, i_k)$$
 und $\pi(i_1 i_2 i_3)$

$$\implies \pi_{\gamma_j} = \gamma_j \pi \quad \forall j > 1 \sigma^{-1} \underbrace{\pi^{-1} \sigma \pi}_{\in N, \text{ da } N \triangleleft A_n} = (i_1 i_2 i_4) \subset N$$

also einfach Nachrechnen.

(b) $l(\gamma_1) - l(\gamma_2) = 3$:

Sei
$$\gamma_1 = (ijk), \gamma_2 = (pqs)$$
. Nimm $\pi = (kpq)$ und daraus folgt $\sigma^{-1}\pi^{-1}\sigma\pi = (isk)$

(c) $l(\gamma_1) = 3, l(\gamma_2) = 2$:

$$\gamma_1 = (ijk) \implies \sigma^2 = (ikj)$$

(d) $l(\gamma_1) = l(\gamma_2) = 2, r = 2$:

Sei
$$\gamma_1 = (ij), \ \gamma_2 = (kl) \ n \ge 5 \implies \exists m \notin \{i, j, k, l\} \ \text{und} \ \pi = (ijm)$$

$$\sigma \pi^{-1} \sigma \pi = (imj) \in N$$

(e) $l(\gamma_i) = 2 \forall i, r > 2$:

$$\sigma \in A_n$$
, $\gamma_1 = (ij)$, $\gamma_2 = (kl)$, sowie $\gamma_3 = (pq)$, $\gamma_4 = (st)$, setze $\pi = (ip)(jk)$ und $\sigma\pi\sigma\pi = (ipl)(jkq)$ und benutze Fall 2.

Definition 5.4

Eine kurze Sequence von Gruppen ist ein Paar von Morphismen $f: H \to G$ mit $g: G \to K$ und dann

- 1. f ist injectiv
- 2. g ist surjektiv
- 3. Im $f = \ker q$

Man schreibt auch:

$$\{1\} \longrightarrow H \stackrel{f}{\longrightarrow} G \stackrel{g}{\longrightarrow} K \longrightarrow \{1\}$$

Sprich: H ist (isomorph zu einer) normalen Untergruppe von G und K ist (isomorph zu) G/H Allgemeiner: exakte Folgen:

$$\dots \xrightarrow{f_i} G_{i-1} \xrightarrow{f_{i-1}} G_{i-2} \longrightarrow \dots \quad \operatorname{Im} f_i = \ker f_{i-1}$$

Einfachster Fall (\implies langweiliger) Fall: Direkte Produkte

Definition 5.5 (äußeres direktes Produkt)

Seien H,K Gruppen. Auf der Menge $G:=H\times K$ (Wenn sowas im Buch steht ist es direktes Produkt gemeint) erhalten von einer Gruppenstruktur durch

$$(a,b)(x,y) := (ax,by) \text{ mit } a,b \in H, x,y \in K$$

Definition 5.6 (inneres direktes Produkt)

Sei G Gruppe und $H, K \triangleleft G$ mit

- 1. $H \cap K = \{1\}$
- 2. HK = G

Dann nennen wir G das innere direkte Produkt von H und K.

Satz 5.7

Ist G das innere direkte Produkt von $H, K \triangleleft G$, so gilt

$$G\cong H\times K$$

als Gruppe.

Beweis. Wir zeigen, dass $\varphi: H \times K \to G$ mit $(a,b) \mapsto ab$ ein Isomorphismus von Gruppen ist. Es gilt für alle $a,x \in H, b,y \in K$.

$$\varphi((a,b)) \cdot \varphi((x,y)) = abxy = axx^{-1}bxb^{-1}by = axby = \varphi((ax,by))$$

denn der Kommutator $x^{-1}bxb^{-1}$ liegt in $H \cap K = \{1\}$. (denn $x^{-1}bx \in K$, da $K \triangleleft G$, also $x^{-1}bxb^{-1} \in K$, genauso $bxb^{-1} \in H$, da $H \triangleleft G$, also $x^{-1}bxb^{-1} \in H$) Nach Annahme 1. ist φ surjektiv. Die Abbildung ist injektiv, denn

$$ab = xy \implies x^{-1}a = yb^{-1} \in G \cap K = \{1\} \implies x = a, y = b \quad \forall y, x \in H, b, y \in K.$$

▶ Bemerkung

In diesem Fall ist $G/H \cong K, G/K \cong H$

$$1 \longrightarrow H \longrightarrow G \longrightarrow K \longrightarrow 1$$

$$1 \longrightarrow K \longrightarrow G \longrightarrow H \longrightarrow 1$$

■ Beispiel

Sei $G = D_6$, also die Sachen, die man mit einem Hexagon machen kann.

$$H = \{1, r^3\} \cong \mathbb{Z}_2 \text{ und } K = \{s^j r^{2i} \mid i = 0, 1, 2, j = 0, 1\} \cong D_3$$
$$D_6 \cong \mathbb{Z}_2 \times D_3$$

Kompositionsreihen und JORDAN-HÖLDER.

Definition 5.8 (Kette, Subnormale Reihe, einfache Kompositionsreihe)

Eine Reihe in G ist eine Kette von Untergruppen

$$G = G_0 > G_1 > G_2 > \dots > G_d = \{1\} \text{ mit } G_{i+1} \neq G,$$

Eine subnormale Reihe ist eine in der $G_{i+1} \triangleleft G_i$ gilt $(G_i \triangleleft G$ für alle $i \Leftrightarrow$ "normale Reihe"). Eine Kompositionsreihe ist eine solche mit G_i/G_{i+1} einfach.

▶ Bemerkung

Nach dem Korrespondenztheorem heisst G_i/G_{i+1} einfach genau, dass $G_{i+1} \triangleleft G_i$ eine maximale normale Untergruppe ist.

$$\{L < G_i \mid G_{i+1} < L\} \xrightarrow{\pi} \{P < G_i/G_{i+1}\}$$

■ Beispiel 5.9

Sei $G = G_0 = S_4, G_1 = A_4, S_4/A_4 \cong \mathbb{Z}_2$ (nach 1. Isomorphiesatz, $A_4 = \ker \operatorname{sgn} \operatorname{mit} \operatorname{sgn} : S_4 \to \mathbb{Z}_2$). Und die $G_2 = N = \{(12)(34), (13)(24), (14)(23), 1\}$ KLEINsche Vierergruppe. Dann

$$|A_4/N| = \frac{|A_4|}{|N|} = \frac{12}{4} = 3$$
 Lagrange Theorem
$$\implies A_4/N \cong \mathbb{Z}_3 = \mathbb{Z}/3\mathbb{Z} \text{ einfach.}$$

$$G_3 := \{1\}$$

 $\{1\} \triangleleft H \triangleleft A_4 \triangleleft S_4$ ist Kompositionsreihe

$$\{1\} \longrightarrow N \longrightarrow A_4 \longrightarrow \mathbb{Z}_3 \longrightarrow \{1\}$$

$$\{1\} \longrightarrow A_4 \longrightarrow S_4 \longrightarrow \mathbb{Z}_2 \longrightarrow \{1\}$$

wobei $N, \mathbb{Z}_3, \mathbb{Z}_2$ einfach ist und A_4 gerade gebaut.

Satz 5.10

Ist G endliche Gruppe, so besitzt G eine Kompositionsreihe.

Beweis. Induktion nach |G|. Also $G = G_0$ gegeben

- 1. G einfach, dann $G_1 = \{1\}$ und $\checkmark G = G_0 \triangleright \{1\} = G_1$, also $G_0/G_1 = G$
- 2. G nicht einfach dann G_1 maximale normale Untergruppe, gibts da $|G| < \infty$. Dann $|G_1| < |G|$, also existiert nach Induktion Kompositionsreihe

$$G_1 \triangleright G_2 \triangleright G_3 \triangleright \cdots \triangleright G_d \triangleright \{1\}$$

Also
$$G_0 \triangleright G_1 \triangleright \dots$$
 "tuts".

■ Beispiel

 $G = \mathbb{Z}$ hat keine Kompositionsreihe, denn

$$\mathbb{Z} = G_0 \triangleright G_1 \implies G_1 \cong \mathbb{Z}$$

Satz 5.11 (Jordan-Hölder)

Sei G endliche Gruppe und seien $\{H_i\}_{i=0,\dots,p}$ und $\{G_j\}_{j=0,\dots,n}$ zwei Kompositionsreihe der Länge p. Dann gilt p=n und ex existiert $\sigma\in S_{0,\dots,n-1}$ mit

$$G_i/G_{i+1} \cong H_{\sigma(i)}/H_{\sigma(i)+1}$$

Beweis.

$$G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_n = \{1\}$$

$$G = H_0 \triangleright H_1 \triangleright \cdots \triangleright H_p = \{1\}$$

Beweis erfolgt durch Induktion nach $m = \min(n, p)$

Beweise zuerst folgende Behauptung:

Ist $G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_1 = 1$ Kompositionsreihe und $N \triangleleft G$, so ist $N = N \cap G_0 \triangleright N \cap N_1 \triangleright \ldots, \triangleright N \cap 1 = 1$ Kompositionsreihe (gegebenenfalls nach Auslassen von $N \cap G_1 = N B cap G_{i+1}$)

Beweis.

$$N \cap G_i/N \cap G_{i+1} = N \cap G_i/(N \cap G_i) \cap G_{i+1} \text{ mit } (G_{i+1} < G_1!)$$

$$\cong (N \cap G_1)G_{i+1}/G_{i+1} \triangleleft G_i/G_{i+1} \text{ einfach} \qquad \cong \text{ da 2. Isomorphiesatz}$$

Also
$$N \cap G_i/N \cap G_{i+1} \cong G_i/G_{i+1}$$
 oder $N \cap G_i/N \cap G_{i+1} \Leftrightarrow N \cap G_i = N \cap G_{i+1}$.

1. Fall 1: $G_1 = H_1$ folgt mit Induktion

$$G_i = H_1 \triangleright G_2 \triangleright \ldots \triangleright G_n = \{1\}$$

$$G_i = H_1 \triangleright G_2 \triangleright \ldots \triangleright H_p = \{1\}$$

2. Fall 2: $G_1 \neq H_1$. Dann ist $G \cap H_1 \triangleleft G_1$ (nicht gleich!). Beachte Nach Korrespondenztheorem ist $H_1 \leq \dots \Box$

Index

p-Gruppe, 3	Kette, 14
	Konjugationsklassen, 4
alternierende Gruppe, 5	25
D: 1. D. 11. 10	Monoid, 2
Direkte Produkte, 13	Ordnung, 3
einfache Kompositionsreihe, 14	Permutation, 3
Gruppe, 2	Subnormale Reihe, 14
Gruppeeinfach, 10	symmetrische Gruppe, 3
GruppeKern, 9	symmetricene Grappe,
Gruppenormal, 8	Untergruppe, 3
Halbgruppe, 2	Zentralisator, 4
	Zentrum, 4
inneres direktes Produkt, 14	Zykelnotation, 4