登录 | 注册

RSS 订阅

关闭

Fate_fjh的博客

2018/1/4 上午11:28 第1页 共7页

// scale and shift

卷积神经网络CNN (4) ——	(12337)
卷积神经网络CNN (2) ——	(10868)
卷积神经网络CNN (3) ——	(10331)
卷积神经网络CNN (5) ——	(4682)
Ubuntu 16 ORB_SLAM2使用Ki	(4160)
卷积神经网络CNN (6) ——	(3726)
opencv 车道线检测(一)	(3171)
卷积神经网络CNN (8) ——	(1667)
ROS RVIZ 点云图相关实现	(1464)

评论排行	
卷积神经网络CNN (4) ——	(30)
卷积神经网络CNN (1) ——	(20)
卷积神经网络CNN (2) ——	(11)
卷积神经网络CNN (3) ——	(9)
卷积神经网络CNN (7) ——	(5)
卷积神经网络CNN (6) ——	(4)
opencv 车道线检测(一)	(4)
opencv 车道线检测(三)	(3)
Ubuntu 16 ORB_SLAM2使用Ki	(3)
卷积神经网络CNN (5) ——	(2)

卷积神经网络CNN (7) —— 限速交通标...

nusit_305 : @Fate_fjh:谢谢博主的分享!

卷积神经网络CNN (2) —— BN(Batch N...

东西北 : @Fate_fjh:在训练的正向传播中, 只有当v=标准差,β=均值的时候才不会改变 输出,说明BN有容...

卷积神经网络CNN(1)——图像卷积与...

Fate_fjh : @gl930628:按上面的full卷积定义 ,1是卷积核大小,4是图像大小,所以时1+

卷积神经网络CNN (1) ——图像卷积与...

烛泪1228:博主你好,请问新增反卷积那部 分,每个像素的卷积后大小为 1+4-1=4是怎

卷积神经网络CNN (7) —— 限速交通标...

Fate_fjh : @lilai619:yolo的anchor可以修改 新的anchor, 为了检测小物体, 多使用冗余

卷积神经网络CNN(2) ---- BN(Batch N... Fate_fjh : @z397164725:请指出错误地方, **Input:** Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

输入:输入数据x1..xm(这些数据是准备进入激活函数的数据)

计算过程中可以看到,

1.求数据均值;

2.求数据方差;

3.数据进行标准化(个人认为称作正态化也可以)

 $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$

4.训练参数γ,β

5.输出y通过y与β的线性变换得到原来的数值

在训练的正向传播中,不会改变当前输出,只记录下y与 β 。

在反向传播的时候,根据求得的γ与β通过链式求导方式,求出学习速率以至改变权值

$$\begin{split} &\frac{\partial \ell}{\partial \widehat{x}_i} = \frac{\partial \ell}{\partial y_i} \cdot \gamma \\ &\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} = \sum_{i=1}^m \frac{\partial \ell}{\partial \widehat{x}_i} \cdot \left(x_i - \mu_{\mathcal{B}} \right) \cdot \frac{-1}{2} \left(\sigma_{\mathcal{B}}^2 + \epsilon \right)^{-3/2} \\ &\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^m \frac{\partial \ell}{\partial \widehat{x}_i} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} \cdot \frac{\sum_{i=1}^m -2(x_i - \mu_{\mathcal{B}})}{m} \\ &\frac{\partial \ell}{\partial x_i} = \frac{\partial \ell}{\partial \widehat{x}_i} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} \cdot \frac{2(x_i - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m} \\ &\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^m \frac{\partial \ell}{\partial y_i} \cdot \widehat{x}_i \\ &\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^m \frac{\partial \ell}{\partial y_i} \end{split}$$

Why is BN

解决的问题是梯度消失与梯度爆炸。

关于梯度消失,以sigmoid函数为例子,sigmoid函数使得输出在[0,1]之间。

关闭

我看了那文章,感觉没太多区别

卷积神经网络CNN (4) —— SegNet

Fate_fjh : @qq_35095425:对的, segnet卷 积部分不改变大小

卷积神经网络CNN (4) —— SegNet

Fate_fjh : @Nishinoli:只要样本足够, segne t表现还是可以的

卷积神经网络CNN (3) —— FCN(Fully C...

Fate_fjh : @XIAOYINGLUO:没有固定是1/2 , 可以通过参数设定, 只是fcn里的是减少1/

卷积神经网络CNN (4) —— SegNet

Nishinoli :请问 对于弯道以及遮挡情况的车 道线检测效果怎么样呢?

事实上x到了一定大小,经过sigmoid函数的输出范围就很小了,参考下图

如果输入很大,其对应的斜率就很小,我们知道,其斜率(梯度)在反向传播中走权但子习速 率。所以就会出现如下的问题,

Vanishing Gradient Problem

在深度网络中,如果网络的激活输出很大,其梯度就很小,学习速率就很慢。假设每层学习梯 度都小于最大值0.25,网络有n层,因为链式求导的原因,第一层的梯度小于0.25的n次方,所 以学习速率就慢,对于最后一层只需对自身求导1次,梯度就大,学习速率就快。

这会造成的影响是在一个很大的深度网络中,浅层基本不学习,权值变化小,后面几层一直在 学习,结果就是,后面几层基本可以表示整个网络,失去了深度的意义。

关闭

关于梯度爆炸,根据链式求导法,

第一层偏移量的梯度=激活层斜率1x权值1x激活层斜率2x...激活层斜率(n-1)x权值(n-1)x激活层 斜率n

假如激活层斜率均为最大值0.25,所有层的权值为100,这样梯度就会指数增加。

How to use BN

先解释一下对于图片卷积是如何使用BN层。

第3页 共7页

1,	1 _{×0}	1,	0	0
0,0	1,	1 _{×0}	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Image

Convolved **Feature**

这是文章卷积神经网络CNN(1)中5x5的图片通过valid卷积得到的3x3特征图(...-,。 持 征图里的值,作为BN的输入,也就是这9个数值通过BN计算并保存 γ 与 β ,通过 γ 与 β 使得输出 与输入不变。假设输入的batch_size为m,那就有m*9个数值,计算这m*9个数据的y与 β 并保 存。正向传播过程如上述,对于反向传播就是根据求得的γ与β计算梯度。

这里需要着重说明2个细节:

- 1.网络训练中以batch_size为最小单位不断迭代,很显然,新的batch_size进入网络,机会有新 的y与β,因此,在BN层中,有总图片数/batch_size组y与β被保存下来。
- 2.图像卷积的过程中,通常是使用多个卷积核,得到多张特征图,对于多个的卷积核需要保存 多个的γ与β。

结合论文中给出的使用过程进行解释

关闭

第4页 共7页

Input: Network N with trainable parameters Θ ; subset of activations $\{x^{(k)}\}_{k=1}^{K}$

Output: Batch-normalized network for inference, $N_{\rm BN}^{\rm inf}$

- 1: $N_{\mathrm{BN}}^{\mathrm{tr}} \leftarrow N$ // Training BN network
- 2: **for** k = 1 ... K **do**
- 3: Add transformation $y^{(k)} = \text{BN}_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to $N_{\text{BN}}^{\text{tr}}$ (Alg. \square)
- 4: Modify each layer in $N_{\rm BN}^{\rm tr}$ with input $x^{(k)}$ to take $y^{(k)}$ instead
- 5: end for
- 6: Train $N_{\rm BN}^{\rm tr}$ to optimize the parameters $\Theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^K$
- 7: $N_{\mathrm{BN}}^{\mathrm{inf}} \leftarrow N_{\mathrm{BN}}^{\mathrm{tr}}$ // Inference BN network with frozen // parameters
- 8: for $k = 1 \dots K$ do
- 9: // For clarity, $x \equiv x^{(k)}, \gamma \equiv \gamma^{(k)}, \mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc.
- 10: Process multiple training mini-batches \mathcal{B} , each of size m, and average over them:

$$\begin{aligned} \mathbf{E}[x] \leftarrow \mathbf{E}_{\mathcal{B}}[\mu_{\mathcal{B}}] \\ \mathbf{Var}[x] \leftarrow \frac{m}{m-1} \mathbf{E}_{\mathcal{B}}[\sigma_{\mathcal{B}}^2] \end{aligned}$$

11: In $N_{\mathrm{BN}}^{\mathrm{inf}}$, replace the transform $y = \mathrm{BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{\mathrm{Var}[x] + \epsilon}} \cdot x + \left(\beta - \frac{\gamma \, \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}}\right)$

12: end for

Algorithm 2: Training a Batch-Normalized Network

输入:待进入激活函数的变量

输出:

1.对于K维的输入,假设每一维包含m个变量,所以需要K个循环。每个循环中按照上面所介绍的方法计算 γ 与 β 。这里的K维,在卷积网络中可以看作是卷积核个数,如网络中第n层有64个卷积核,就需要计算64次。

需要注意,在正向传播时,会使用γ与β使得BN层输出与输入一样。

- 2.在反向传播时利用y与β求得梯度从而改变训练权值(变量)。
- 3.通过不断迭代直到训练结束,求得关于不同层的γ与β。如网络有n个BN层,每层根据 batch_size决定有多少个变量,设定为m,这里的mini-batcherB指的是*特征图大*

*小*batch_size*,即*m=特征图大小*batch_size*,因此,对于batch_size为1,这里的m就是每层 特征图的大小。

4.不断遍历训练集中的图片,取出每个batch_size中的y

关闭

除以图片数量得到平均直,并对其做无偏估计直作为每一层的E[x]与Var[x]。

5.在预测的正向传播时,对测试数据求取y与 β ,并使用该层的E[x]与Var[x],通过图中11:所表示的公式计算BN层输出。

注意,在预测时,BN层的输出已经被改变,所以BN层在预测的作用体现在此处

至此,BN层的原理与使用过程就解释完毕,给出的解释都是本人觉得值得注意或这不容易了解的部分,如有錯漏,请指正。

顶

- 上一篇 Ubuntu 16 ORB_SLAM2使用KinectV2在ROS上运行总结
- 卷积神经网络CNN (3) —— FCN(Fully Convolutional Networks)要点解释

相关文章推荐

- cs231n学习笔记-激活函数-BN-参数优化
- MySQL在微信支付下的高可用运营--莫晓东
- BN层 LN层 WN层作用介绍
- 容器技术在58同城的实践--姚远
- 卷积神经网络CNN (4) —— SegNet
- SDCC 2017之容器技术实战线上峰会 • Batch Normalization 神经网络加速算法
- SDCC 2017之数据库技术实战线上峰会

- 深度学习之卷积神经网络CNN及ten
- 腾讯云容器服务架构实现介绍--董晓
- 深度学习(二十九)Batch Normaliza
- 微博热点事件背后的数据库运维心得--张冬洪
- 解读Batch Normalization
- 关于Batch Normalization在Caffe中的使用
- [深度学习] Batch Normalization算法介绍
- CNN和RNN中如何引入BatchNorm

查看评论

东西北

博主应该理解错了,推荐看这个http://blog.csdn.net/myarrow/article/ details/51848285

fate Fate_fjh

回复东西北:请指出错误地方,我看了那文章,感觉没太 多区别

Re: 2017-12-25 15:54发表

6楼 2017-11-27 10:56发表

东西北

回复Fate_fjh:在训练的正向传播中,只有当y=标准差 ,β=均值的时候才不会改变输出,说明BN有容纳原始 数据模型的能力。但一般情况下输出是会改变的,将B N层的输出做为激活输入

Re: 2017-12-26 15:50发表

hang_ning

看完之后有一个问题想问,就是训练时确定了 bn的参数gama ,测试的时候是不是一定要给与测试时相同batch_size的数据? 如果 改变测试的batch,或者直接一个一个测是不是会出问题

 $fate Fate_{fjh}$

 $^{\mathrm{fjl}_{\!+}}$ 回复 $^{\mathrm{hang_ning}}$:测试数据进入网络需要配合记录下来的 $^{\mathrm{g}}$ amma与beta做一次无偏估计,不是将测试数据一个个重 新计算

Re: 2017-10-11 15:40发表

5楼 2017-09-30 11:23发表

angleboy8

"需要注意,在正向传播时,会使用γ与β使得BN层输出与输入一样。"

4楼 2017-07-24 11:20发表

关闭

请问输出与输入一样,指的是数值一样还是...,应该不是数值一样, 应该是数值范围一样吧。我的理解。

fate Fate_fjh

fjlip 回复angleboy8:在正向传播过程中不会改变feature map 的权重,简单可以理解为训练时的正向传播有无BN的输 出是一样的

Re: 2017-07-24 18:53发表

feynman233

个人感觉博主对gama和贝塔的理解有误。1.正向传播的时候如果只 是记录下这两个值,而不用这两个值去改变输出的话,那与不用bn有 什么区别呢,况且,这样还怎么反向传播。2.测试的时候需要的是x 的均值和方差啊,要伽马和贝塔的均值干啥,这论文里不是说的很清 楚吗,这一点博主搞错了吧

3楼 2017-07-22 16:39发表

 $fate \ ^{\text{Fate_fjh}}$

fjh 回复feynman233:1.按BN论文里说的,训练时确实只记 录下每个batch所对应的均值与方差,但是在运行框架例 如caffe中,训练时通过加权平均(滑动系数)的方式对参 数进行归一化,与论文有差异。2.测试的时候是通过所用 的batch记录下来的均值、方差求取新的gama与beta,同 时使用均值与方差的无偏估计,测试时进入BN层就是通 过新的gama与beta调整输入参数,然后输出。 希望对你 理解有帮助,欢迎相互交流。

Re: 2017-07-25 0

qq_35554109

必须赞一个

2楼 2017-07-07 09:44发表

qq_27114609

1楼 2017-05-16 19:51发表

很棒,谢谢博主,解决了我很多问题,比之前很多人写的要更清楚!

您还没有登录,请[登录]或[注册]

*以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

公司简介 | 招贤纳士 | 广告服务 | 联系方式 | 版权声明 | 法律顾问 | 问题报告 | 合作伙伴 | 论坛反馈

网站客服 杂志客服 微博客服 webmaster@csdn.net 400-660-0108 | 北京创新乐知信息技术有限公司 版权所有 | 江苏知之为计算机有限公司 |

江苏乐知网络技术有限公司

关闭

京 ICP 证 09002463 号 | Copyright © 1999-2017, CSDN.NET, All Rights Reserved

