Mining Sequence Data

Hazim Fitri

2024-12-22

Contents

ETL	
$EDA \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
Convert data into sequence format	
Plot jujukan kekerapan	17
Plot taburan keadaan	18
Entropi	20
Transversal Entropy	21
sub jujukan	21

Categorical sequence data analysis. This type of data refers to observation of a particular individuals or entities over some period of time.

Objective:

- Analyze the behavior of sequence of states for a particular individuals or entities.
 - What are the characteristics of a sequence data?
 - What are the indicators that can be used to measure sequence data?
 - What are the appropriate plots to visualize a sequence data?
 - How can we compare the similarity between several sequence data?

Example:

- DNA sequence
- Life trajectory (occupation history, patient level history, cohabitation life course)
- Domain (biology, QC, text data, log-web data)

Sequential analysis technique

- Statistical summary indicators
 - Mean time spend in each state
 - Mean time spent in each state by groups
 - Number of transitions
 - Transition rates
 - Time varying transition states
- Visualization
 - Sequence index plot
 - Sequence frequency plot
 - State distribution plot

- Modal state plot
- Grouping
- Comparing sequences.

Types of sequence data :

- State-Sequence (STS)
- State-Permanence-Sequence (SPS) format
- Time-Stamped-Event (TSE) format
- SPELL format

Sequence characteristics by Entropy

- Visualization
 - Transversal Entropies
- Event sequence
- Categorizing patterns
 - State distribution
 - Sequence frequencies
 - Modal state
 - Discriminating transitions
- Sequence analysis
 - Other approaches
 - \ast Correspondence analysis of the states
 - * Markov modeling
 - * Event sequence analysis
 - * Survival analysis
 - * Longitudinal analysis
 - * Discrete panel data analysis

Case Study

•

Code	Examp	ole											
	ld	18	19	20	21	22	23	24	25	26	27		П
STS	101	S	S	S	M	M	MC	MC	MC	MC	D		
	102	S	S	S	MC	MC	MC	MC	MC	MC	MC		
SPS (1)	ld	State 1		State 2		State 3 State		ate 4	State	5			\neg
	101	(S,3)		(M,2)		(MC,4)	(D,1)					
	102	(S,3)		(MC,7)									
SPS (2)	ld	State 1		State 2		State 3	te 3 State 4		State	5			П
	101	S/3		M,	/2	MC/4	-	D/1					
	102	S/3		MC/7									
DSS	ld	State	e 1	State 2		State 3	St	State 4		5			П
	101	S		M		MC		D					
	102	S		MC									
TSE	id	time	e/	event									
	101	21		/larriage									
	101	23		hild									
	101	27		ivorce									
	102	21		larriag	ge .								
	102	21		hild									
	id	index		rom	to	status							
SPELL	101	1		18	20	Single							
	101	2		21	22	Married							
	101	3		23	26	Married	w Ch	nildren					
	101	4		27		Divorce	d						
	102	1		18	20	Single							
	102	2		21	27	Married	l w Cl	nildren					

\mathbf{ETL}

EDA

str(mvad)

'data.frame': 712 obs. of 86 variables: ## \$ id : int 1 2 3 4 5 6 7 8 9 10 ...

\$ weight : num 0.33 0.57 1.59 1.59 0.57 1.59 0.57 2.75 2 3.6 ...
\$ male : Factor w/ 2 levels "no","yes": 1 1 2 1 2 2 2 1 1 ...
\$ catholic : Factor w/ 2 levels "no","yes": 1 1 2 1 1 2 2 2 1 1 ...

library(TraMineR)

```
## Warning: package 'TraMineR' was built under R version 4.4.2
##
## TraMineR stable version 2.2-11 (Built: 2025-02-20)
## Website: http://traminer.unige.ch
## Please type 'citation("TraMineR")' for citation information.

data("mvad")
class(mvad)
## [1] "data.frame"

class(mvad)
## [1] "data.frame"
```

```
$ Belfast : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
##
   $ N.Eastern: Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
    $ Southern : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 1 ...
    $ S.Eastern: Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 2 2 ...
##
##
    $ Western : Factor w/ 2 levels "no","yes": 2 2 2 2 2 2 2 1 1 ...
##
    $ Grammar
               : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 2 1 1 ...
##
    $ funemp
                : Factor w/ 2 levels "no", "yes": 1 1 1 1 2 1 1 1 1 1 ...
##
    $ gcse5eq
               : Factor w/ 2 levels "no", "yes": 1 2 1 1 1 1 1 1 1 1 ...
##
                : Factor w/ 2 levels "no", "yes": 2 1 1 1 1 1 2 1 1 ...
    $ fmpr
##
    $ livboth
               : Factor w/ 2 levels "no", "yes": 2 2 2 2 2 1 1 2 1 2 ...
                : Factor w/ 6 levels "school", "FE", ...: 4 5 5 4 5 5 5 3 5 3 ....
##
    $ Jul.93
##
    $ Aug.93
                : Factor w/ 6 levels "school", "FE", ...: 4 5 5 4 5 5 5 3 5 3 ...
##
               : Factor w/ 6 levels "school", "FE",..: 3 2 4 4 2 5 2 2 4 1 ...
    $ Sep.93
##
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
    $ Oct.93
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
##
    $ Nov.93
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
##
    $ Dec.93
##
    $ Jan.94
               : Factor w/ 6 levels "school", "FE", ...: 4 2 4 4 2 4 2 2 4 1 ...
##
   $ Feb.94
               : Factor w/ 6 levels "school", "FE", ...: 4 2 4 4 2 4 2 2 4 1 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
##
    $ Mar.94
##
    $ Apr.94
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
##
    $ May.94
##
   $ Jun.94
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 1 ...
##
    $ Jul.94
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 5 ...
##
    $ Aug.94
               : Factor w/ 6 levels "school", "FE",..: 3 2 4 4 2 4 2 2 4 5 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
##
   $ Sep.94
##
    $ Oct.94
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
##
    $ Nov.94
##
    $ Dec.94
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
##
    $ Jan.95
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
##
    $ Feb.95
##
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
    $ Mar.95
##
               : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
    $ Apr.95
##
    $ May.95
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 4 3 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 2 3 3 ...
##
    $ Jun.95
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 3 3 3 ...
##
    $ Jul.95
                : Factor w/ 6 levels "school", "FE", ...: 3 2 4 4 2 4 2 3 3 3 ...
##
    $ Aug.95
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 2 4 2 3 3 3 ...
##
   $ Sep.95
                : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 2 3 3 3 ...
##
   $ Oct.95
##
    $ Nov.95
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 2 3 3 3 ...
##
   $ Dec.95
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 2 3 3 3 ...
##
    $ Jan.96
                : Factor w/ 6 levels "school", "FE",..: 3 2 2 4 6 4 2 3 3 3 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 2 3 3 3 ...
##
    $ Feb.96
##
    $ Mar.96
                : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 3 3 3 3 ...
##
    $ Apr.96
                : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 3 3 3 3 ...
##
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 4 3 3 3 3 ...
    $ May.96
               : Factor w/ 6 levels "school", "FE",..: 3 2 2 4 6 4 3 3 3 3 ...
##
    $ Jun.96
               : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 3 3 3 3 3 ...
##
    $ Jul.96
##
                : Factor w/ 6 levels "school", "FE", ...: 3 2 2 4 6 3 3 3 3 3 ...
    $ Aug.96
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
##
    $ Sep.96
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
##
    $ Oct.96
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
##
    $ Nov.96
##
   $ Dec.96
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
##
   $ Jan.97
               : Factor w/ 6 levels "school", "FE",..: 3 6 2 4 6 3 3 3 3 3 ...
##
    $ Feb.97
##
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
   $ Mar.97
##
    $ Apr.97
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
                : Factor w/ 6 levels "school", "FE",...: 3 6 2 4 6 3 3 3 3 3 ...
##
    $ May.97
##
    $ Jun.97
                : Factor w/ 6 levels "school", "FE",..: 3 6 2 4 6 3 3 3 3 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 4 6 3 3 3 3 3 ...
##
   $ Jul.97
##
    $ Aug.97
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
##
    $ Sep.97
##
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
    $ Oct.97
##
    $ Nov.97
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
                : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
##
    $ Dec.97
```

```
$ Jan.98
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
##
   $ Feb.98
              : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 ...
              : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 ...
##
   $ Mar.98
              : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
##
   $ Apr.98
##
   $ May.98
               : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 3 ...
   $ Jun.98
              : Factor w/ 6 levels "school", "FE", ...: 3 6 2 3 6 3 3 3 3 ...
##
##
  $ Jul.98
              : Factor w/ 6 levels "school", "FE", ...: 3 6 3 3 6 3 3 3 5 ...
               : Factor w/ 6 levels "school", "FE", ...: 3 6 3 3 6 3 3 3 5 ...
##
   $ Aug.98
              : Factor w/ 6 levels "school", "FE", ...: 3 6 3 3 6 3 3 3 5 ...
##
   $ Sep.98
              : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 5 ...
##
  $ Oct.98
##
   $ Nov.98
              : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 3 5 ...
##
   $ Dec.98
               : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 5 ...
##
   $ Jan.99
              : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 3 5 ...
## $ Feb.99
               : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 3 5 ...
               : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 3 5 ...
## $ Mar.99
   $ Apr.99
              : Factor w/ 6 levels "school", "FE", ...: 3 6 3 5 6 3 3 3 3 5 ...
##
              : Factor w/ 6 levels "school", "FE", ...: 3 6 5 5 6 3 3 3 3 5 ...
## $ May.99
  $ Jun.99
               : Factor w/ 6 levels "school", "FE", ...: 3 6 5 5 6 3 3 3 3 5 ...
```

Column 1 - 14 is demography information and not sequence data

Sequence data is column 15 - 86

Convert data into sequence format

Define label and code for each state

```
unique (mvad$Jul.93)
## [1] training
                   joblessness employment school
## Levels: school FE employment training joblessness HE
mvad.labels=c('bekerja', 'sambung belajar', 'pengjian tinggi', 'penganggur',
              'sekolah', 'latihan')
mvad.scode = c('EM', 'FE', 'HE', 'JL', 'SC', 'TR')
mvad.seq = seqdef(mvad, 15:86, states=mvad.scode, labels = mvad.labels, xstep = 6)
    [>] state coding:
##
          [alphabet]
                      [label]
                                [long label]
        1 employment
                                bekerja
        2 FE
##
                       FΕ
                                sambung belajar
        3 HE
                       ΗE
                                pengjian tinggi
           joblessness JL
                                penganggur
        5 school
                       SC
                                sekolah
        6 training
                       TR
                                latihan
    [>] 712 sequences in the data set
##
    [>] min/max sequence length: 72/72
```

```
# xstep = 6 :
mvad.seq
```

```
##
         Sequence
## 1
        ##
   2
         ##
   3
         ## 4
        \mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR
## 5
         ## 6
         ##
   7
         ## 8
        ##
   9
         ## 10
        ##
         11
##
   12
        ## 13
         ## 14
##
   15
        ##
   16
## 17
         ##
   18
         ##
   19
        ## 20
        ## 21
        ## 22
        ## 23
         ##
   24
        ##
   25
         ##
   26
        ##
   27
##
   28
        ##
   29
        ##
   30
        ##
   31
##
   32
         ##
   33
        ##
   34
        ##
   35
        ## 36
        ##
   37
## 38
        ##
   39
         ##
        40
##
   41
        \mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR
##
   42
        ##
   43
        ## 44
        ##
   45
        ##
   46
        ##
   47
        ##
   48
        ##
   49
##
   50
        ## 51
## 52
        ## 53
        ## 54
        ## 55
        ##
   56
        ##
   57
        ## 58
## 59
```

```
##
    61
            ##
    62
            ##
    63
##
    64
            ##
    65
##
    66
            ##
     67
            ##
            68
##
     69
            ##
    70
            ##
    71
            ##
    72
            ##
            73
##
            74
            ##
     75
            ##
    76
##
    77
            ##
    78
            ##
    79
            ##
    80
##
    81
            ##
    82
            83
            ##
            \mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR
##
     84
##
    85
            ##
    86
            ##
    87
            ##
    88
            ##
    89
            90
            ##
            91
##
##
    92
            ## 93
            \mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR
            ##
    94
            ##
    95
##
    96
            ##
    97
            ##
    98
            EM-EM-SC-SC-SC-SC-SC-SC-SC-SC-JL-JL-JL-JL-FE-FE-FE-FE-FE-FE-FE-FE-FE-JL-JL-FE-FE-FE-FE-FE-FE-FE-FE-FE-FE-FE-FE
##
    99
            ##
    100
           \mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR}-\mathtt{TR
##
     101
    102
           104
     105
           ##
    ##
##
    120
```

```
##
JL-JL-FE-JL-JL-JL-JL-JL-JL-JL-JL-JL-JL-JL-FE-FE-FE-FE-FE-JL-JL-JL-JL-JL-FE-FE-FE-FE-FE-TR-TR-TR-TR-TR-TR-TR-TR
```

```
192 EM-EM-FE-FE-FE-FE-FE-FE-FE-EM-EM-EM-EM-EM-EM-FE-FE-FE-FE-FE-FE-EM-EM-EM-EM-EM-FE-FE-FE-FE-FE-FE-FE-FE-FE-FE
199
##
207 EM-EM-FE-FE-FE-FE-FE-FE-FE-FE-EM-EM-SC-SC-SC-SC-SC-SC-SC-SC-SC-SC-SC-SC-EM-HE-HE-HE-HE-HE-HE-HE-HE-HE
##
##
##
##
##
##
##
##
##
##
248
```

```
##
##
##
##
##
##
##
##
##
##
```

```
##
##
##
##
377 EM-EM-JL-JL-JL-JL-JL-JL-JL-JL-JL-JL-EM-EM-JL-JL-JL-JL-JL-JL-JL-JL-JL-JL-JL-EM-EM-FE-FE-FE-FE-FE-FE-FE-FE-FE
```

```
##
##
387
##
##
##
JL-JL-TR-TR-TR-TR-TR-TR-TR-TR-TR-TR-TL-JL-JL-TR-TR-TR-TR-TR-TR-TR-TR-TR-FE-FE-FE-FE-FE-FE-FE-FE-FE-FE-FE-FE-FE
## 411 JL-JL-JL-JL-JL-JL-JL-JL-JL-JL-JL-JL-EM-EM-SC-SC-SC-SC-SC-SC-SC-SC-SC-SC-SC-SC-HE-HE-HE-HE-HE-HE-HE-HE-HE
##
425
##
##
440
```

```
462 JL-JL-FE-FE-FE-FE-FE-FE-FE-FE-EM-EM-EM-EM-EF-FE-FE-FE-FE-FE-FE-FE-FE-FE-FE-FE-HE-HE-HE-HE-HE-HE-HE-HE-HE-HE
##
##
##
##
##
##
```

```
515
##
##
##
##
```

```
579
```

```
##
658
659
681
```

mean time spent on a state seqmeant(mvad.seq)

```
## Mean
## EM 32.2
## FE 11.7
## HE 8.4
## JL 6.2
## SC 6.1
## TR 7.4
```

Plot jujukan kekerapan

20 jujukan yang paling kerap berlaku

```
seqfplot(mvad.seq, idxs=1:10)
```


Plot taburan keadaan

```
# sequence density plot
seqdplot(mvad.seq, border=NA, main='Plot taburan keadaan')
```

Plot taburan keadaan

Plot ini memaparkan keadaan dalam rentas masa

mode of sequence based on certain time period
sequence modal state plot
seqmsplot(mvad.seq)

Modal state sequence (0 occurrences, freq=0%)

bekerja

pengjian tinggi sambung belajar

penganggur

sekolah latihan

Entropi

$$h(p_1, \dots, p_a) = -\sum_{i=1}^a p_i \log(p_i)$$

entropi rentas lintang

Transversal Entropy

```
# mean time spent on a certain sequence
mvad.seqe = seqecreate(mvad.seq)
```

sub jujukan

```
fsubseq = seqefsub(mvad.seqe, pmin.support=0.05)
```

15 sub jujukan paling kerap berlaku

```
plot(fsubseq[1:15], col='yellow')
```


Clustering

##

##

##

##

##

##

```
library(cluster)
# sequence substituation cost matrix
submat = seqsubm(mvad.seq, method='TRATE')
    [>] creating substitution-cost matrix using transition rates ...
    [>] computing transition probabilities for states EM/FE/HE/JL/SC/TR ...
# sequence distance computation
dist.om = seqdist(mvad.seq, method='OM', sm=submat)
    [>] 712 sequences with 6 distinct states
    [>] checking 'sm' (size and triangle inequality)
    [>] 557 distinct sequences
    [>] min/max sequence lengths: 72/72
    [>] computing distances using the OM metric
    [>] elapsed time: 2.12 secs
dapatkan kelompok dalam data
clusterward = agnes(dist.om, diss='T', method='ward')
plot(clusterward); abline(h=800)
```

Banner of agnes(x = dist.om, diss = "T", method = "ward")

Dendrogram of

1000

500

misalkan k=4 kelompok adalah signifikan

```
cl.4 = cutree(clusterward, k=4)
cl.4fac = factor(cl.4, labels=paste('Kumpulan', 1:4))
head(cl.4fac)
```

```
## [1] Kumpulan 1 Kumpulan 2 Kumpulan 3 Kumpulan 4 Kumpulan 2 Kumpulan 4 ## Levels: Kumpulan 1 Kumpulan 2 Kumpulan 3 Kumpulan 4
```

Jalankan analisis lanjutan terhadap setiap group.

Setiap individu dalam kumpulan yang sama akan mempunyai ciri yang hampir sama.

Plot kekerapan jujukan, 10 jujukan yang paling kerap berlaku.

10 Jujukan yang paling kerap berlaku – Kumpula 10 Jujukan yang paling kerap berlaku – Kumpula

10 Jujukan yang paling kerap berlaku – Kumpula 10 Jujukan yang paling kerap berlaku – Kumpula

Plot taburan keadaan

seqdplot(mvad.seq, group=cl.4fac, border=NA, main='Plot taburan keadaan')

Transversal Entropy - Kumpulan 1

Transversal Entropy - Kumpulan 2

Transversal Entropy - Kumpulan 3

Transversal Entropy – Kumpulan 4

Sub jujukan

disc = seqecmpgroup(fsubseq, group=cl.4fac)
plot(disc[1:6])

Kumpulan 2

Kumpulan 3

Kumpulan 4

Color by sign and significance of Pearson's residual

■ Negative 0.01 □ Negative 0.05 □ neutral □ Positive 0.05 □ Positive 0.01