Seeing Into Darkness: Scotopic Visual Recognition

By Bo Chen and Pietro Perona

Yash Sanghvi ML Reading Group October 30th, 2019

Scotopic: Vision in the Dark

PPP: Photons Per Pixel

PPP a Exposure Time

What's Different from Photopic Vision?

Some Mathematical Formulation

 $X_{1:t}$: Stream of Photons incident on sensors

Photons incident on pixel 'i' during time bin 't'

$$P(\overrightarrow{X_{t,i}} = k) = Poisson(k|\lambda_i t)$$

Classification with Scotopic Vision

Sequential Probability Ratio Test

Compute
$$c^* = \arg\max_{c=1,2,...,} S_C(X_{1:t})$$
 if $S_{c^*} > au$: report $\hat{C} = c^*$ otherwise increase exposure time t

WaldNet

- Standard ConvNets not applicable
- Instead work with High Exposure Time 'T'
- Working with partial observations $N_t = \sum\limits_{t=1}^t X_{t'}$
- Uncounted Photons $\Delta N = \sum\limits_{t'=t+1}^{r} X_{t'}$

Gamma Prior on photon emission rate: $Gam(\mu_i t_0, t_0)$

First "Convolutional" Layer
$$S^{H}(N_{t}) = \sum_{AN} (W(N_{t} + \Delta N) + b^{H}) P(\Delta N | N_{t}) \approx \alpha(t) W N_{t} + \beta(t) \qquad (4)$$

$$\alpha(t) \stackrel{\triangle}{=} \frac{T + t_{0}}{t + t_{0}} \qquad \beta_{j}(t) \stackrel{\triangle}{=} \frac{t_{0}(T - t)}{t + t_{0}} \sum_{i} W_{ij} \mu_{i} + b_{j}$$

Learning

Two Stage Learning

- (I) Learning ConvNet/Waldnet
- (II) Threshold Learning

Threshold Learning

Bayes Risk at time t

$$R_t^{(n)} = \eta \Delta + q_t^{(n)} e_t^{(n)} + (1 - q_t^{(n)}) R_{t+1}^{(n)}$$

Bayes Risk: $R=E_{(n)}[R_0^{(n)}]$

Results - Interrogation Regime

Results - Free Response Regime

Risk Reduction with Threshold Learning

Conclusion

 WaldNet for Scotopic Vision, Designed to process images as they hit the photoreceptors

Provide a transform to convert stream of photons to "time invariant features"

$$S^{H}(N_{t}) = \sum_{\Delta N} (W(N_{t} + \Delta N) + b^{H}) P(\Delta N | N_{t}) \approx \alpha(t) W N_{t} + \beta(t)$$
 (4)

Allows tradeoff between computational time vs. accuracy.

*Did not talk about Sensor noise and Spiking Implementation in this presentation