Lecture: Modular Arithmetic

Lonline teot.

Introduction

°/o ⇒ Modulo operator

a/.b \Remainder when b divides a

Range of a
$$\%$$
 b \Rightarrow [0, b-1]

a $\%$ 21 \Rightarrow [0, 1... 20]

Qu. My do we need %. ?

Limit the range of clata

Properties of %

$$| \rangle \quad (a + b) \% m \Rightarrow (a \% m + b \% m) \% m.$$

Example:
$$\alpha = 3$$

$$b = 4$$

$$m = 5$$

$$LH8: (3+4)\%, 5 \Rightarrow 7\%, 5 \Rightarrow 2$$

$$RH8: (3\%, 5 + 4\%, 5)\%, 5 \Rightarrow 2.$$

$$2 \rightarrow (a * b) \% m \Rightarrow (a \% m * b\% m) \% m$$

$$3 > (a+m) \% m \Rightarrow (a \% m + m \% m) \% m$$

$$\Rightarrow (a \% m + 0) \% m$$

$$\Rightarrow (a \% m) \% m$$

$$\Rightarrow (a \% m) \% m$$

$$\Rightarrow a \% m.$$

4>
$$(a-b)$$
 %, $m \Rightarrow (a \% m - b \% m) \% m$ [Wrong]

Frample $a = 17$
 $b = 8$
 $m = 5$

LH&: $(17 \% 5 - 8 \% 5) \% 5$
 $(2-3) \% 5$
 $-1\% 5$
 $-1 + 5 = \boxed{4} = LH\&$

(a-b) %, $m \Rightarrow (a \% m - b \% m + m) \% m$

5>> $a\% m \Rightarrow (a \% m) \% m \% \% m$

EY: $a = 7$
 $b = 3$
 $m = 3$
 $LH\&$: $(7^3) \% 3 \Rightarrow 343\% 3 = \boxed{1}$

RH&: $(7\% 3) \% 3$
 $3 \% 3 = \boxed{1}$

<u>Ou</u> Calculate the value of a n % m.

Constraints
$$| \langle = a \langle = 10^{9}$$

$$| \langle = n \langle = 10^{5}$$

$$| \langle = m \langle = 10^{9} + 7 \rangle$$

Iterative approach

int solve (int a, int n, int m) {

long

int ans=1;

ans =
$$a^n$$
 $\Rightarrow (10^q)^{10^5}$
 $\Rightarrow (10^q)^{10^5}$

Recursive approach

```
int power (int a. int n, int m) {

if (n == 0) {

return 1;

}

int &a = power (a. n-1. m);

long int an = &a * a; X (&a'/.m * a'/.m) //.m

return (int) an '/. m;

}

TC: O(n)

SC: O(n)

Stack space.
```

Quiz
$$(37^{103} - 1)$$
 % 12 \Rightarrow

$$(37^{103} / 12 - 1 / 12 + 12) / 12$$

$$0 / m = (0 / m) / m$$

$$(37 / 12)^{103} / 12 - 1 + 12) / 12$$

$$(37 / 12)^{103} / 12 - 1 + 12) / 12$$

Optimised approach

```
int power (int a, int n, int m) {
        1 \text{ if } (n == 0) 
              return I,
       2 int sa = power(a, \frac{n}{2}, m);
       3 if ( n 1.2 == 0) {
        long int and = sa * sa; x (8a y.m * sa; m) y. m
                 return ans 1. m;
     4 ) else {
             int and = sa * sa * a; X
                             (8a%m *8a%m *a/m) %m \\
\[
\begin{pmatrix}
\left\{ \text{8a%m} & \text{10} \\ \text{10} & \text{10} \\ \text{10} & \text{10} & \text{27} \end{pmatrix}
             long temp = (8a /·m * 8a /·m) // m
             long ans = (temp /.m * a /.m) /.m
              return ans 1. m;
                       (int)
            TC: O(logn)
             SC: O(logn)
```

<u>Qu</u> Count pairs whose sum % m ==0.

Note: i!=j and pais(i,j) is same as (j,i).

Example: $A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 6 & 2 & 4 \end{bmatrix}$ m = 5. $\begin{pmatrix} 0 \cdot 2 \\ & & & \\$

Brute force: TC: O(n2)

sc: 0(1)

Intuition

True V

$$(11 + 49) \% 5 = 0$$
 true $\sqrt{}$

$$(131 + 434) \% 5 = 0$$
 true false

Generalication for m=5

٥	1	2	3	4	5	6	٦	8	9	10	11	12	13	14
2	3	4	8	6	15	5	12	17	7	18	10	9	16	21
m=6 After doing 1.6														
0	1	2	3	4	5	6	٦	8	9	10	11	12	13	19
2	3	4	2	0	3	5	0	5	1	0	4	3	4	3
Remainders: 0 , 1 , 2 , 3 , 4 , 5 $ \begin{array}{c} 3 & 1 & 2 & 4 & 3 & 2 \\ 10 & & & & \\ 2 & & & & & \\ 16 & & & & & \\ 1/.6 & = 2 & & & & \\ \end{array} $														

Dry run: 1.5 m = 6After doing mod with 6, we get -5 6 7 8 9 11 12 13

All possible pairs —

where
$$s = 1$$
 and $s = 5$ = $s = 1$ | $s = 2$ | $s = 3$ | $s = 4$ | $s = 4$ | $s = 4$ | $s = 6$ | $s =$

```
Algorithm
      int count pairs (int () arr, int m)
               Map(Integer. Integer) map = new HashMash(7();
              for (int el: arr) {
                     int rem = el / m;
                     if (map. containskey (rem)) (
                          int freq = map. get (rem);
                          map put ( rem, freq +1);
                    } else l
                         maf. put (rem, 1);
           // if rem = 0. handle it alone.
            int freqo = map containskey (o) ? map get(o) : 0;
           int ans = freqo * (freq-1);
           int 1 =1
           int \gamma = m-1;
          while(128) {
             int freq! = map containskey (1)? map get(1):0;
              int freq R map containskey (r)? map get(r): 0;
             and = and + (freq! * freqR);
             1++1
             r--;
        i+( & == 8) {
             int freq! = map containskey (1)? map get(1): 0;
                ans + = freq! * (frel-1);
         return ons:
                           TC: 0(n)
                           SC: 0 (m)
                      Break: 8:39: 8:50
```

Inverse Modulo

*
$$\frac{a}{b}$$
%, $m = \left(\frac{a\%m}{b\%m}\right)\%$, m . [Wrong]

Eg:
$$\alpha = 16$$

$$b = 4$$

$$m = 5$$

$$\frac{16}{4}$$
 $\frac{16}{5}$ $\frac{1}{5}$ = 4

RH8:
$$\left(\frac{16\%5}{4\%5}\right)\%5 = \left(\frac{1}{4}\right)\%5 = 0\%5 = 0$$

Correct formula

$$\frac{a}{b} \% m \Rightarrow (a * b^{-1}) \% m$$

$$\Rightarrow (a \% m * b^{-1} \% m) \% m$$

How do we find
$$b^{-1}/.m$$
?

Anverse modulo.

The value of $b^{-1}/.m$ only exist if $gcd(b.m) = 1$

($proof$ is not needed)

$$\Rightarrow b^{-1}/.m \longrightarrow To find$$

$$\Rightarrow b * b^{-1} = 1$$

Take $1.m$ both aider

($b*b^{-1}/.m = 1.m$

($b..m * b^{-1}/.m) / m = 1$

Therate from 1 to $m-1$, and check if cond' holds true.

 $b=10 \quad m=7 \quad b^{-1}/.m = 5 \quad Anv$

iferate $1-6$

i=1 ($10... 1 + 1... 1 +$

i=5 (101.7 *5) 1.7 = 1 = RH&

* fermat little theorem

① Given b &
$$m - b^{-1}$$
 /. m exists only if $g(cd(b, m) =)$

(2) if m is prime

$$b^{m-1}/, m = 1$$
 $b = 3$
 $m = 29$
 $3^{28}/.29 = 1$