Mall Customers Dataset

This dataset contains information about people visiting the mall. The dataset has gender, customer id, age, annual income, and spending score

Customer Segmentation is the process of division of customer base into several groups of individuals that share a similarity in different ways that are relevant to marketing such as gender, age, interests, and miscellaneous spending habits.

The technique of customer segmentation is dependent on several key differentiators that divide customers into groups to be targeted. Data related to demographics, geography, economic status as well as behavioral patterns play a crucial role in determining the company direction towards addressing the various segments.

Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify the several segments of customers allowing them to target the potential user base. In this machine learning project, we will make use of K-means clustering which is the essential algorithm for clustering unlabeled dataset.

The dataset is from https://www.kaggle.com/shwetabh123/mall-customers

IMPORTING THE LIBRARIES

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:1
9: FutureWarning: pandas.util.testing is deprecated. Use the functions
in the public API at pandas.testing instead.
 import pandas.util.testing as tm

UPLOADING THE DATA TO GOOGLE DRIVE

In [2]: from google.colab import files
uploaded=files.upload()

Choose Files No file chosen

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving mall.csv to mall.csv

LOADING THE DATA

```
In [3]: import io
data = pd.read_csv(io.BytesIO(uploaded['mall.csv']))
```

EDA

View top few rows

In [6]: data.head()

Out[6]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

Columns of the dataset

```
In [7]: data.columns
```

Statistical info about the data

In [8]: data.describe()

Out[8]:

_		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
	count	200.000000	200.000000	200.000000	200.000000
	mean	100.500000	38.850000	60.560000	50.200000
	std	57.879185	13.969007	26.264721	25.823522
	min	1.000000	18.000000	15.000000	1.000000
	25%	50.750000	28.750000	41.500000	34.750000
	50%	100.500000	36.000000	61.500000	50.000000
	75%	150.250000	49.000000	78.000000	73.000000
	max	200.000000	70.000000	137.000000	99.000000

Datatype of the features

```
In [9]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 5 columns):
              Column
                                       Non-Null Count Dtype
              -----
          0
              CustomerID
                                       200 non-null
                                                        int64
          1
                                                        object
              Genre
                                       200 non-null
              Age
                                       200 non-null
                                                        int64
              Annual Income (k$)
                                       200 non-null
                                                        int64
              Spending Score (1-100) 200 non-null
                                                        int64
         dtypes: int64(4), object(1)
         memory usage: 7.9+ KB
         Size of the data set
In [11]: data.shape
Out[11]: (200, 5)
         Check for null values
In [12]: data.isnull().sum()
Out[12]: CustomerID
                                    0
         Genre
         Age
         Annual Income (k$)
         Spending Score (1-100)
         dtype: int64
         No missing data
         Number of male and female
```

```
In [13]: data['Genre'].value_counts()
Out[13]: Female    112
    Male    88
    Name: Genre, dtype: int64
```

PLOTTING FEW GRAPHS

Plots male vs female

```
In [16]: sns.countplot(x='Genre',data=data)
```

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff522ca8d68>

Correlation matrix

Out[17]:

	Customerib	Age	Annual Income (K\$)	Spending Score (1-100)
CustomerID	1.00	-0.03	0.98	0.01
Age	-0.03	1.00	-0.01	-0.33
Annual Income (k\$)	0.98	-0.01	1.00	0.01
Spending Score (1-100)	0.01	-0.33	0.01	1.00

For the anylsis the CustomerID is not an important feature so we would remove this from the

dataset In [18]: data=data.drop('CustomerID',axis=1) In [19]: corr=data.corr() corr.style.background gradient(cmap='coolwarm').set precision(2) Out[19]: Age Annual Income (k\$) Spending Score (1-100) Age 1.00 -0.01 -0.33 Annual Income (k\$) -0.01 1.00 0.01 Spending Score (1-100) -0.33 0.01 1.00 Rename the coulmns data.columns=['gender','age','annual income','spending score'] In [24]: In [25]: data.head() Out[25]: gender age annual_income spending_score 19 15 39 Male Male 21 15 81 2 Female 20 16 6 23 16 77 3 Female **4** Female 31 17 40 LABEL ENCODING In [27]: from sklearn.preprocessing import LabelEncoder

```
label_encoder=LabelEncoder()

data['gender']=label_encoder.fit_transform(data['gender'])
```

In [28]: data

Out[28]:

	gender	age	annual_income	spending_score
0	1	19	15	39
1	1	21	15	81
2	0	20	16	6
3	0	23	16	77
4	0	31	17	40
195	0	35	120	79
196	0	45	126	28
197	1	32	126	74
198	1	32	137	18
199	1	30	137	83

200 rows × 4 columns

K-Means Algorithm

K-means clustering is one of the simplest and popular unsupervised machine learning algorithms.

Every data point is allocated to each of the clusters through reducing the in-cluster sum of squares. In other words, the K-means algorithm identifies k number of centroids, and then

allocates every data point to the nearest cluster, while keeping the centroids as small as possible. In here we used elbow Method.

```
In [20]: from sklearn.cluster import KMeans
```

FINDING THE OPTIMAL VALUE FOR NUMBER OF CLUSTERS

```
In [30]: wcss=[]
    for i in range (1,11):
        kmeans=KMeans(n_clusters=i,init='k-means++',random_state=42)
        kmeans.fit(data)
        wcss.append(kmeans.inertia_)
        plt.plot(range(1,11),wcss)
        plt.title("The Elbow Method")
        plt.xlabel('Number of clusters')
        plt.ylabel('WCSS (Within Cluster Sum of Squares)')
        plt.show()
```


We find that a value of 5 would be optimal for the Clustering algorithm

Fittig the given data with 5 clusters and prediciting to which cluster they belong

```
In [52]: X=data
                        kmeans=KMeans(n clusters=5,init='k-means++',random_state=42)
                         y kmeans = kmeans.fit predict(data)
In [68]: y kmeans
Out[68]: array([4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4,
                         2,
                                            4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4,
                         2,
                                           1,
                                           1,
                                           1,
                                           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 0, 3, 1, 3, 0, 3, 0,
                         3,
                                           0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 1, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0,
                         3,
                                           0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0,
                         3,
                                           0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0,
                         3,
                                           0, 3], dtype=int32)
                         Plotting the prediction clusters
In [69]: plt.scatter(X[y kmeans ==0]['age'], X[y kmeans ==0]['spending score'],
                         s=100, c='red',label = 'Cluster 1')
                         plt.scatter(X[y kmeans ==1]['age'], X[y kmeans ==1]['spending score'],
                         s=100, c='black', label = 'Cluster 2')
                         plt.scatter(X[y kmeans ==2]['age'], X[y kmeans ==2]['spending score'],
```

```
s=100, c='blue', label = 'Cluster 3')
plt.scatter(X[y_kmeans ==3]['age'], X[y_kmeans ==3]['spending_score'], s
=100, c='cyan', label = 'Cluster 4')

plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```


Plotting an dendogram

```
In [70]: import scipy.cluster.hierarchy as sch
    from sklearn.cluster import AgglomerativeClustering

In [71]: # create dendrogram
    dendrogram = sch.dendrogram(sch.linkage(X, method='ward'))
    # create clusters
    hc = AgglomerativeClustering(n_clusters=4, affinity = 'euclidean', linkage = 'ward')
```

