Work and Energy Equations

Equation	Definition
Gravitational Constant	$g = 10 \frac{m}{s^2}$
Work	W = Fd
Kinetic Energy	$g = 10 \frac{m}{s^2}$ $W = Fd$ $KE = \frac{1}{2} mv^2$
Gravitational Potential Energy	$PE_g = mgh$
Power	$PE_g = mgh$ $P = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$
Conservation Of Mech. Energy	$KE_i + PE_i = KE_f + PE_f$
Mechanical Efficiency	$e = \frac{W_{\text{out}}}{W_{\text{in}}} \times 100\%$ $MA = \frac{F_{\text{out}}}{F_{\text{in}}} = \frac{d_{\text{in}}}{d_{\text{out}}}$
Mechanical Advantage	$MA = rac{F_{ m out}}{F_{ m in}} = rac{d_{ m in}}{d_{ m out}}$