Waze User Churn Analysis

25 May, 2025

Problem Overview

Objective:

Predict monthly user churn in the Waze app based on behavioral data.

Approach:

- Exploratory Data Analysis (EDA)
- Statistical testing
- Machine Learning modeling
- Actionable insights and recommendations

Dataset Summary

Source: Simulated Waze app usage data

Size: 5,000 users, 3 months

Key features:

- activity_days, driving_distance, user_type, car_type
- monthly_churn (target)
- Limitations:
- Missing churn labels
- Sparse feature detail
- Potential outliers

EDA Insights

Insights:

- Churn rate ~33% (after cleaning)
- Users who churn drive more per day but use the app fewer days
- Clear behavioral divide between retained and churned users
- Visuals:
- Include 2 plots:
- Boxplot: driving_distance vs monthly_churn
- Histogram: activity_days by churn status

Count of Labels

Statistical Testing

- Tests Performed:
- Independent t-tests
- Pearson correlation
- Key Results:
- activity_days and monthly_churn: Strong negative correlation
- driving_distance: Higher for churned users
- user_type, car_type: No significant impact on churn

Machine Learning Models

Models Tested:

- Logistic Regression
 - Random Forest Classifier
 - XGBoost Classifier
 - Results:
 - Best model: Logistic Regression
 - Accuracy: ~66%, Precision: 72%, Recall: 9%
 - Interpretation:
 - Models struggled to generalize due to limited features
 - Most churners were not captured by models

Machine Learning Models

```
def get_test_scores(model_name:str, preds, y_test_data):
Generate a table of test scores.
In:
    model name (string): Your choice: how the model will be named in the output table
    preds: numpy array of test predictions
    y_test_data: numpy array of y_test data
Out:
    table: a pandas df of precision, recall, f1, and accuracy scores for your model
accuracy = accuracy score(y test data, preds)
precision = precision score(y test data, preds)
recall = recall_score(y_test_data, preds)
f1 = f1 score(y test data, preds)
table = pd.DataFrame({'model': [model_name],
                       'precision': [precision],
                       'recall': [recall],
                       'F1': [f1],
                       'accuracy': [accuracy]
return table
```


- The efficacy of a binomial logistic regression model is determined by accuracy, precision, and recall scores; in particular, recall is essential to this model as it shows the number of churned users.
- The model has mediocre precision (53% of its positive predictions are correct) but very low recall, with only 9% of churned users identified. This means the model makes a lot of false negative predictions and fails to capture users who will churn.
- Activity_days was by far the most important feature in the model. It had a negative correlation with user churn.

Key Feature Importance

Top Predictors:

- activity_days
- driving_distance
- Observation:
- More active users are far less likely to churn
- Visuals:
- Bar chart: Feature importance from XGBoost or Random Forest

Thank You

- 587-893-7400
- kevin.amayav@outlook.com
- https://www.linkedin.com/in/kevin-amayav/

