Estimando a prevalência de uma doença a partir de um teste diagnóstico

Lucas Emanuel Resck Domingues, Lucas Machado Moschen, Vitor Bitarães

Introdução

Suponha que desejamos estimar a proporção $\theta \in (0,1)$ de indivíduos infectados com um determinado patógeno em uma população. Suponha ainda que dispomos de um teste laboratorial, que produz o resultados $r = \{-, +\}$ indicando se o indivíduo (y_i) é livre (0) ou infectado (1). Se o teste fosse perfeito, poderíamos escrever a probabilidade de observar $y = \sum_{i=1}^{n} y_i$ testes positivos em n testes realizados como¹

$$\Pr(y \mid \theta, n) = \binom{n}{y} \theta^y (1 - \theta)^{n - y}. \tag{1}$$

Infelizmente, o teste não é perfeito, acertando o diagnóstico com probabilidades fixas da seguinte forma²

$$\Pr(r = + | y_i = 0) := 1 - u, \tag{2}$$

$$\Pr(r = - \mid y_i = 1) := 1 - v, \tag{3}$$

de modo que agora, assumindo u + v > 1, escrevemos³

$$\Pr(r = + \mid \theta, u, v) := \theta(1 - v) + (1 - \theta)u, \tag{4}$$

e podemos reescrever a probabilidade em~(1):

$$\Pr(y \mid \theta, n, u, v) = \binom{n}{y} \left[u + \theta (1 - (u + v)) \right]^y \left[1 - u - \theta (1 - (u + v)) \right]^{n-y}. \tag{5}$$

Problema(s)

- a) Escolha e justifique uma distribuição a priori para θ lembre-se que neste exercício u e vsão fixos;
 - Resposta:
- b) Derive $Pr(\theta \mid y, n, u, v)$;

Resposta:

- c) Suponha que y=4 e n=5000. Qual a média a posteriori de θ ? Produza intervalos de credibilidade de $80,\,90$ e 95% para θ . **Resposta:**
- d) Bônus. Que melhorias você faria neste modelo? Que outras fontes de incerteza estão sendo ignoradas? Resposta:

¹Porquê?

²Naturalmente, $u, v \in (0,1) \times (0,1)$, levando em conta a restrição u+v>1.

 $^{^3{\}rm Exercício}$ bônus: mostre porquê.