Introduction to EV Chargers

Arjun M, ECS2

What are we discussing?

Contents

- 1. Introduction to Electric Vehicles and Chargers
- 2. Types & Levels of Chargers
- 3. Components of Chargers
- 4. Front End Power Factor Correction Circuits
- 5. Resonant DC-DC Converters (based on time availability)
- 6. QA session

Introduction

Quick Facts & Figures

- Nearly one in Five cars sold in 2023 are Evs
- Electric car sales neared 14 million in 2023, 95% of which were in China, Europe and the **United States**
- Second-hand markets for electric cars are on the rise
- Strong electric car sales in the first quarter of 2024 surpass the annual total from just four years ago

United States

Rest of the world

Introduction

Block Diagram Representation

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6280677

Introduction Types of Electric Vehicles

MG ZS, TATA Nexon, TATA Tigor, Mahindra E20 plus, Hyundai Kona, Mahindra Verito Porsche Cayenne S E-Hybrid, BMW 330e, Porsche Panamera S E-hybrid, Chevy Volt, Chrysler Pacifica, Ford C-Max Energi, Mercedes C350e, Mercedes S550e, Mercedes GLE550e, Mini Cooper SE Countryman, Ford Fusion Energi, Audi A3 E-Tron, BMW i8, BMW X5 xdrive40e, Fiat 500e, Hyundai Sonata, Kia Optima, Volvo XC90 T8.

Toyota Mirai, Riversimple Rasa, Hyundai Tucson FCEV, Honda Clarity Fuel Cell, Hyundai Nexo.

https://e-amrit.niti.gov.in/types-of-electric-vehicles

Chargers Types & Levels

AC Level 1*	AC Level 2*	DC Fast Charger*	Wireless Charger [‡]
Basic home	Home and public	Public and commercial	Home and public installation
installation	installation	installation	
(Mode 1 or Mode 2)**	(Mode 3)**	(Mode 4)**	
Voltage 120 V AC, 1-phase 250 V AC, 1-phase 480 V AC, 3-phase	Voltage 208 V-240 V AC, 1-phase 250 V AC, 1-phase 480 V AC, 3-phase	Voltage 380 V–600 V AC, 3-phase	Power levels WPT1 - 3.7 kW WPT2 - 7.7 kW WPT3 - 11 kW
Current rating	Current rating	Current rating	Grid to battery efficiency
12 A-16 A (32 A for 3-phase)	12 A–80 A	DC output (up to 400 A)	94% at a 10" ground clearance
Charging time	Charging time	Charging time	Vehicle ground clearance
8–12 hours***	4–6 hours***	15–30 mins***	100-250 mm (3.9" to 9.8")

https://chargedevs.com/whitepapers/designing-dc-fast-chargers-for-next-gen-evs/

Chargers Types & Levels

80 kW Performance vehicles Above 50 kw - DC Truck Charging 50 kW DC FC 20 kW Low End DC FC 20 kW Max. L2 AC Charging 6.6 kW L2 AC Charging ON 3.3 kW On-Board Charging

https://electronicsmaker.com/taking-charge-of-electric-vehicle-battery-charging

Chargers Types & Levels

Power Level Types	Charger Location	Typical Use	Energy Supply Interface	Expected Power Level	Charging Time	Vehicle Technology
Level 1 (Opportunity) 120 Vac (US) 230 Vac (EU)	On-board 1-phase	Charging at home or office	Convenience outlet	1.4kW (12A) 1.9kW (20A)	4–11 hours 11–36 hours	PHEVs (5-15kWh) EVs (16-50kWh)
Level 2 (Primary) 240 Vac (US) 400 Vac (EU)	On-board 1- or 3- phase	Charging at private or public outlets	Dedicated EVSE	4kW (17A) 8kW (32 A) 19.2kW (80A)	1–4 hours 2–6 hours 2–3 hours	PHEVs (5-15 kWh) EVs (16-30kWh) EVs (3-50kWh)
Level 3 (Fast) (208-600 Vac or Vdc)	Off-board 3-phase	Commercial, analogous to a filling station	Dedicated EVSE	50kW 100kW	0.4–1 hour 0.2–0.5 hour	EVs (20-50kWh)

	Battery Type	All-	Connector	Connector Level		Level	Level 2 Charging		DC Fast Charging	
	and Energy	Electric Range	Type	Demand	Charge Time	Demand	Charge Time	Demand	Charge Time	
Toyota Prius PHEV(2012)	Li-Ion 4.4kWh	14 miles	SAE J1772	1.4kW (120V)	3 hours	3.8kW (240V)	2.5 hours	N/A	N/A	
Chevrolet Volt PHEV	Li-Ion 16kWh	40 miles	SAE J1772	0.96–1.4 kW	5–8 hours	3.8kW	2–3 hours	N/A	N/A	
Mitsubishi i-MiEV EV	Li-Ion 16kWh	96 miles	SAE J1772 JARI/TEPCO	1.5kW	7 hours	3kW	14 hours	50kW	30 minutes	
Nissan Leaf EV	Li-Ion 24kWh	100 miles	SAE J1772 JARI/TEPCO	1.8kW	12-16 hours	3.3kW	6–8 hours	50 + kW	15-30 minutes	
Tesla Roadster EV	Li-Ion 53kWh	245 miles	SAE J1772	1.8kW	30 + hours	9.6–16.8 kW	4–12 hours	N/A	N/A	

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6280677

Chargers On-Board Chargers

Components:

- 1. Rectifier + Front End PFCs
- 2. Isolated DC-DC

Chargers Front End PFCs

Front End Power Factor Correction Circuits Diode Rectifier

- Diode rectifiers play a crucial role in PFCs, converting alternating current (AC) to direct current (DC) by allowing current flow unidirectional.
- The capacitor is connected to the terminals to smoothen the ripples.

Front End Power Factor Correction Circuits Effect of Capacitor on Power Supplies

N (Harmonic Number)	3	5	7	9	11	13	15	17
THD %	87	80	78	70	63	50	41	30

- Harmonic Components from Capacitor
- Harmonic Resonance
- High Peak Current Magnitude
- Mismatched Components
- Switching Transients

Diode Rectifiers with Capacitive Filters

$$C = \frac{1}{2fR\frac{V_o}{V_o}}$$

V _m (Peak)	Frequency (f)	Load Current (I _R)	Output Ripple (%)	Output Voltage
325 V	50 Hz	1 A	10	325 V

Diode Rectifiers with Capacitive Filters

Input and Output Waveforms for Diode Rectifier with capacitive filter with C=307.69uF

FFT of the AC Line Current with C = 307.69uF

Effect of capacitance on Output Ripple and Peak AC Line Currents

Diode Rectifiers with Capacitive Filters

Capacitance Value	153.84uF	307.69uF	615.38uF
Output Ripple (Expected)	20%	10%	5%
Output Ripple (Simulated)	19.54%	9.5%	4.85%
THD %	154.67	193.2	237.47

Table showing effect of capacitance value on Output ripple and THD values

Diode Rectifiers with LC Filters

- Re-writing in standard form, the resonant frequency (ω) is and quality factor (Q) is.
- It is desired to keep f = <<100 Hz. Hence, choosing f=50 Hz and C=1000uF, L is found to be 10mH.

Diode Rectifiers with LC Filters

Bode Plot for L=2.5mH and C=1000uF

Output Voltage and Input Current for L=2.5mH and C=1000uF

Diode Rectifiers with LC Filters

FFT Spectrum of Output Voltage for L=2.5mH and C=1000uF

FFT Spectrum of AC Line Current for L=2.5mH and C=1000uF

Active Power Factor Correction

• Active Power Factor Correction (PFC) is a crucial approach employed in power supplies to enhance the power factor and efficiency of electrical systems. Active PFC circuits actively correct and adjust the power factor, typically aiming to achieve a near-unity power factor of 1.

Feedback Loop in APFC

- The feedback loop acts as a critical element, enabling the system to actively correct the power factor by continuously monitoring and adjusting the input current waveform.
- This closed-loop control system ensures that the PFC circuit responds dynamically to changes in load and input conditions, providing efficient power factor correction and contributing to the overall effectiveness and reliability of the power supply.

Design

$$D = 1 - \frac{V_m}{V_o} = 0.1875.$$

$$L = \frac{V_m D}{f_{sw} \Delta i_L} = 990.2 \mu H$$

$$C = \frac{D}{Rf_{SW}\frac{\Delta V_o}{V_o}} = 2.343 \mu F$$

Parameter	Vm (Peak)	Line- frequency	Switching frequency (fsw)	_	Current Ripple %	Voltage Ripple %	Load Current (Io)
Value	325 V	50 Hz	100 kHz	400 V	10	1	5 A

Controller Design

The control technique of a PFC is very similar to that of the average current control except that the fact that the current reference generated by the outer loop is not constant, but its shape is that of |sin(ωt)|, and that the voltage loop has very low bandwidth, much lesser than 100 Hz.

Controller Design

$$T_i = R_f G_{ci} \frac{1}{V_M} G_{id}$$

•
$$G_{id}(s) = \frac{2V_0}{R(1-D)^2} \frac{1 + \frac{s}{w_{zi}}}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

$$G_{vc}(s) = \frac{1}{R_f} \frac{G_{vd}}{G_{id}} \frac{T_i}{1 + T_i}$$

$$T_v = HG_{cv}G_{vc}$$

Parameter	VM	Н	IRI	LRADOWINGTO OF	Bandwidth of inner loop
Value	4	3/400	0.25	10kHz	10 Hz

Bode Plot for Transfer function of Control to Current Gid(s) and Tiu(s)

Bode Plot for Transfer function of Control to Current Gid(s), Tiu(s) and Gci(s)

Bode Plot for Transfer function of compensated current loop gain.

Step Response of the inner current Loop

Bode Plot for Transfer function of compensated voltage loop gain

Grid Voltage and Current along with output voltage waveforms for CBC

FFT spectrum of AC Line Current for Resistance R=80 Ohms and Vref = 360 V

Response of PFC for step change in Load from R to 83% of R $_{\hbox{\scriptsize Internal\,|\,MS/EHB4-PS\,|\,2024-10-14}}$

