LA homework Nov.19

name: 王林 皓 id: 2075330寸

§ 4.10 (Page 492)

- **4.** Let $T_1(x_1, x_2, x_3) = (4x_1, -2x_1 + x_2, -x_1 3x_2)$ and $T_2(x_1, x_2, x_3) = (x_1 + 2x_2, -x_3, 4x_1 x_3)$.
 - (a) Find the standard matrices for T_1 and T_2 .
 - (b) Find the standard matrices for $T_2 \circ T_1$ and $T_1 \circ T_2$.
 - (c) Use the matrices obtained in part (b) to find formulas for $T_1(T_2(x_1, x_2, x_3))$ and $T_2(T_1(x_1, x_2, x_3))$.

(C)
$$T_1 (T_2 (X_1, X_2, X_3)) = (4X_1 + 8X_2, -2X_1 + 4X_2 - X_3, -X_1 - 2X_2 + 3X_3)$$
 = $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
6. Find the standard matrix for the stated composition in \mathbb{R}^2 .

- (a) A rotation of 60°, followed by an orthogonal projection on the x-axis, followed by a reflection about the line y = x.
- (b) A dilation with factor k = 2, followed by a rotation of 45°, followed by a reflection about the y-axis.
- (c) A rotation of 15°, followed by a rotation of 105°, followed by a rotation of 60°.

(a)
$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix}$$

- (a) $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ is the orthogonal projection on the x-axis, and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ is the orthogonal projection on the y-axis.
- (b) $T_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is the rotation through an angle θ_1 , and $T_2: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is the rotation through an angle θ_2 .
- (c) $T_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is the orthogonal projection on the x-axis, and $T_2: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is the rotation through an angle

$$(a) T_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} T_{2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{1} \circ T_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{1} \circ T_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} \circ T_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} \circ T_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} \circ T_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} \circ T_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} \circ T_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} \circ T_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} \circ T_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} \circ T_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} \circ T_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} \circ T_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} T_{2} \circ T_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sigma_{1} \circ \sigma_{1} = \begin{bmatrix} 0 &$$

14. Determine whether the matrix operator $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ defined by the equations is one-to-one; if so, find the standard matrix for the inverse operator, and find $T^{-1}(w_1, w_2, w_3)$.

(a)
$$w_1 = x_1 - 2x_2 + 2x_3$$
 $\begin{bmatrix} 1 & -2 & 1 \\ w_2 = 2x_1 + x_2 + x_3 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 1 \\ 3 & x_1 + x_2 \end{bmatrix}$ one-to-one $\begin{bmatrix} 7 & 1 \\ 7 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 1 \\ 7 & 1 \end{bmatrix}$

 $(W_1, W_2, W_3) = (W_1 - 2W_2 + 4W_3 - W_1 + 2W_2 - 3W_3 - W_1 + 3W_2 - 5W_3)$ **22.** Find the standard matrix for the given matrix operator.

- - (a) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ reflects a vector about the xz-plane and then contracts that vector by a factor of $\frac{1}{5}$.
 - (b) $T \cdot \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ projects a vector orthogonally onto the xz-plane and then projects that vector orthogonally onto the xy-plane.
 - (c) $T: \mathbb{R}^3 \to \mathbb{R}^3$ reflects a vector about the xy-plane, then reflects that vector about the xz-plane, and then reflects that vector about the *yz*-plane.

- (a) What can you say about the range of the matrix T? Give an example that illustrates your conclusion.
- (b) What can you say about the number of vectors that T maps into $\mathbf{0}$?

(a) the range of
$$TA$$
 is R^{m} $(m < n)$.
(b) the number of vectors $\in N$.

30. Prove: If the matrix transformation $T_A: \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one, then A is invertible.

Since the matrix transformation TA: R"-) R" is one-to-one the rank (A) = n. So A II invertable

In Exercises 1–8, determine whether the function is a linear transformation. Justify your answer.

1. $T: V \longrightarrow R$, where V is an inner product space, and $T(\mathbf{u}) = \|\mathbf{u}\|$.

Not a linear transformation Descurse T (0) + 3

2. $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, where \mathbf{v}_0 is a fixed vector in \mathbb{R}^3 and $T(\mathbf{u}) = \mathbf{u} \times \mathbf{v}_0$.

a linear transformation

6. $T: M_{22} \rightarrow R$, where

(a) $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = 3a - 4b + c - d$ | Incor

(b) $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a^2 + b^2$ $\int \int pear$

7. $T: P_2 \rightarrow P_2$, where

(a) $T(a_0 + a_1x + a_2x^2) = a_0 + a_1(x+1) + a_2(x+1)^2$

(b) $T(a_0 + a_1x + a_2x^2) = (a_0 + 1) + (a_1 + 1)x + (a_2 + 1)x^2$

(a) linear

- (b) nonlinear Tio) \$\pi\$
- 8. $T: F(-\infty, \infty) \to F(-\infty, \infty)$, where (a) T(f(x)) = 1 + f(x) | in ear
 - (a) T(f(x)) = f(x+1) Integral