Disagreement Detection

Milestone 2

Connor Capitolo, Max Li, Morris Reeves, Jiahui Tang

Overview

- Problem statement and scope of work
- Data Exploration
- Audio Analysis
- Text Analysis
- Next Steps
- Q&A

What are we trying to achieve?

Generate insights about disagreement based on the Spotify English-Language 100k Podcast Dataset

Insights

Can we find disagreement clusters based on the transcripts?

Does a certain pitch mean a high likelihood of disagreement?

Why is disagreement detection in podcasts important & interesting?

- Better User Experience
 - Tailored recommendations

- Drive audience engagement
 - Improve style or moderation

- User happier + Creators Happier = Spotify Happier
- Expand platform ecosystem

How much has disagreement been explored in text and audio data?

- Literature Review: Some disagreement/stance detection on text data, but not much on audio
- Disagreement Detection on podcast audio data is super new
- F1 metric: Balance weight on precision and recall

Definition of Disagreement

- Generate disagreement labels that can be used for modeling
- Definition: a speaker is **directly applying a contradiction or rejection** of another person's idea where it is **immediately perceptible** by the listener
 - Rule of thumb: If you handed this podcast to your mother, she would know it's disagreement

Dog clip: a couple discussing what it means to have a dog when single

Data

105,360 episodes, 18,360 shows

- ~ 50k hours of audio
- > 600M words
- 23 genres
- Jan 1, 2019 to March 1, 2020
- English language specific
- Professional + amateur creators

Dataset statistics

	min	average	max
minutes	<1	31.6	305.0
words	11	5,728	43,504

Data - podcast genre

Data - episode duration

Sparsity of Disagreement

Dating + Food episode: 4 people discussing dating and restaurants in NYC

Scoping down to a 5-minute example...

Transcript Coverage

Audio - Librosa

- Librosa is a Python package for **music and audio** analysis
- WaveForm (envelope form)
 - Monophonic/Stereo
 - Harmonic + Percussive Components

Dog clip: a couple discussing what it means to have a dog when single

Audio Analysis - Data Augmentation

- Audio augmentation: higher speed, slower, and different tones, or add noises etc
- Features: add noise, change_tone, slow_down, speed; AddGaussianNoise,
 TimeStretch, PitchShift, Shift
- **Python Libraries**: Audiomentations and Pydiogment
- A simple demonstration of augmentation:
 https://share.streamlit.io/phrasenmaeher/audio-transformation-visualization/main/visualize-transformation.pv

Audio Features - Wavelet Transformation

- The Wavelet Transform (WT) is a technique for analyzing signals.
- The advantage that wavelet transform has over Fast Fourier transform (FFT) is that it can capture **spectral and temporal** information simultaneously. A signal is convolved with a set of wavelets at different scales and positions.
- Continuous Wavelet Transform (CWT)Discrete Wavelet Transform (DWT)
 - The DWT is only discrete in the scale domain, not in the time-domain.

Baseline Model

- Logistic Regression Model
- Input X: Original Waveform, Augmented Waveform, Variance of Aggregated
 Original Waveform, Approximate/Detailed Coefficient of DWT, each recorded
 at different timestamp with interval of 1 sec
- Label y: Disagreement/Non-disagreement

Baseline Model

Thoughts

- Inverse DWT will give back the original information, we should avoid using highly correlated features
- More data points and annotations are needed!
- Advanced models (i.e. LSTM, RNN)
- Consider using time lag in time series data as features

Text Transcript Modeling

Baseline model

Embedding model

Embedding stance model

- 1-dimensional features: count of negative lexicon words
- n-dimensional features: map text segments to (SBERT) embeddings capturing semantics
- map text segments to embeddings capturing semantics: project to "negative" subspace

Text Transcript: Baseline Model

Hypothesis: more "negation words" in transcript segment → higher probability of disagreement

Category	Words		
Analytic negation	no, not		
Contraction negation	ain't, aren't, didn't, shouldn't, etc.		
Synthetic negation	neither, never, nor, none, nobody, noone, no-one		
Other	disagree, incorrect, wrong, ridiculous, absurd		

Negation words (across text segments), by category

Text Transcript: Baseline Model

Model: prediction based on count of "negation words" > threshold

Lexicon counts

Prediction: count > threshold

Results

(Dog disagreement episode vs. test episode)

	Precision	Recall	F1	Predicted
"No/not"	1.00	0.50	0.67	3
Lexicon	1.00	0.33	0.50	2
"No/not"	0.27	0.29	0.28	15
Lexicon	0.33	0.14	0.20	6

Text Transcript: Embedding Model

Hypothesis: segments w/ embeddings near "No I disagree" → higher prob. of disagreement

Embeddings

Results

(Dog disagreement episode vs. test episode)

Precision	Recall	F1	Predicted
0.67	0.67	0.67	6
0.24	0.36	0.29	21

Text Transcript: Embedding Model

Next Steps

- Audio + text specific modeling
- Scaling with AWS (set up permissions/users, S3, Sagemaker)

Hypothesis: best results = audio + text

Thank You