CEL PROJEKTU

Celem projektu jest symulacja nieustalonego przepływu ciepła w zadanych danych początkowych z wykorzystaniem metody elementów skończonych. Stworzono siatkę gdzie pojedynczy element ma zadane cztery węzły a równania rozwiązaliśmy za pomocą eliminacji Gaussa.

Wstęp teoretyczny

Równanie Fouriera dla procesu niestacjonarnego (nieustalonego) ma postać:

$$div(k(t)grad(t)) + Q = c\rho \frac{\partial t}{\partial \tau}$$
,

albo w przypadku anizotropowych własności cieplnych:

$$\frac{\partial}{\partial x}\left(k_x(t)\frac{\partial t}{\partial x}\right) + \frac{\partial}{\partial y}\left(k_y(t)\frac{\partial t}{\partial y}\right) + \frac{\partial}{\partial z}\left(k_z(t)\frac{\partial t}{\partial z}\right) + \left(Q - c\rho\frac{\partial t}{\partial \tau}\right) = 0.$$

wyznaczanie temperatury t1

$$\left(\left[H \right] + \frac{\left[C \right]}{\Delta \tau} \right) \left\{ t_1 \right\} - \left(\frac{\left[C \right]}{\Delta \tau} \right) \left\{ t_0 \right\} + \left\{ P \right\} = 0 \ .$$

W takim przypadku wyznaczenie $\{t_1\}$ wymaga rozwiązania układu równań Zgodnie z otrzymanymi wzorami można zapisać macierz [C]:

macierz sztywności H

$$[H] = \int_{V} k \left\{ \left\{ \frac{\partial \{N\}}{\partial x} \right\} \left\{ \frac{\partial \{N\}}{\partial x} \right\}^{T} + \left\{ \frac{\partial \{N\}}{\partial y} \right\} \left\{ \frac{\partial \{N\}}{\partial y} \right\}^{T} \right\} dV + \int_{S} \alpha \{N\} \{N\}^{T} dS,$$

macierz C

$$[C] = \int_{V} c\rho \{N\} \{N\}^{T} dV.$$

wektor P

$${P} = -\int_{S} \alpha {N} t_{\infty} dS,$$

Dane początkowe

- •100 initial temperature (temperatura początkowa w węzłach)
- 500 simulation time [s], (czas działania programu)
- 50 simulation step time [s], (krok czasowy)
- 1200 ambient temperature [C], (temperatura otoczenia)
- 300 alfa [W/m2K], (współczynnik alfa)
- 0.100 H [m], (wysokość elementu)
- 0.100 W [m], (szerokość elementu)
- 4 N H, (liczba węzłów w wysokości)
- 4 N W, (liczba węzłów na szerokość)
- 700 specific heat [J/(kgC)], (wartość ciepła właściwego materiału)
- 25 conductivity [W/(mC)], (przewodność)
- 7800 density [kg/m3]. (gęstość)

Wyniki

Niżej sporządzono wyniki [H]+[C]/dt oraz wektora {P} dla pierwszej i ostatniej iteracji pętli i porównano z danymi testowymi.

Pierwsza iteracja dt = 50s

Ostatnia iteracja dt=500

```
36.815 4.241 0.000 0.000 4.241 -4.963 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00
```

Temperatury

krok dt=50s	temperatura minimalna	temperatura maksymalna
1. 50s	110.04	365.82
2. 100s	168.84	502.59
3. 150s	242.80	587.37
4. 200s	318.61	649.39
5. 250s	391.26	700.07
6. 300s	459.04	744.06
7. 350s	521.59	783.38
8. 400s	579.03	818.99
9. 450s	631.69	851.43
10. 500s	679.91	881.06

Porównanie z przykładowymi wynikami niżej:

Max and min temperature in each step

Time[s]	MinTemp[s]	MaxTemp[s]
50	110.038	365.815
100	168.837	502.592
150	242.801	587.373
200	318.615	649.387
250	391.256	700.068
300	459.037	744.063
350	521.586	783.383
400	579.034	818.992
450	631.689	851.431
500	679.908	881.058

Wyniki są prawie identyczne z przykładowymi zarówno w pierwszej jak i ostatniej iteracji. Gdzie w ostatnim kroku maksymalna temperatura 881.058 == 881.06, minimalna 679.908 == 679.91. Tak samo wyniki macierzy H i wektora P. Wyniki programu są w znacznym stopniu zbliżone do przykładowych wyników w udostępnionych przypadkach testowych. Błędy całkowania i błędy zaokrągleń będą wpływają na wynik końcowy.