We can write a real number in [0,1) into decimals (in base 10). For example:

$$1/3 = 0.333333...$$

The process goes as follows: let $0 \le a < 1$, define

$$x_0 = a, n_0 = 0$$

Now for any positive integer k,

$$n_k = |10x_{k-1}|, x_k = 10x_{k-1} - n_k$$

Here $\lfloor b \rfloor$ is the largest integer no more than b. Now we call the **decimal expansion** of 1/3 as

$$n_0.n_1n_2n_3...$$

Example 1. To find decimal expansion of 1/3, we have:

$$x_0 = 1/3, n_0 = 0$$

$$x_1 = 1/3, n_1 = 3$$

$$x_2 = 1/3, n_2 = 3$$

. . .

Hence 1/3 = 0.3333...

If we replace "10" with 2 we have **binary** (base 2) expansion of real numbers.

Example 2. For 1/3, we now get:

$$x_0 = 1/3, n_0 = 0$$

$$x_1 = 2/3, n_1 = 0$$

$$x_2 = 1/3, n_2 = 1$$

$$x_3 = 2/3, n_3 = 0$$

. . .

Hence $(1/3)_2 = 0.01010101010101..._2$.

We can also replace "10" with something which is not an integer, e.g. 5/3.

Example 3. To find 5/3 expansion of 1/3, we have

$$x_0 = 1/3, n_0 = 0$$

$$x_1 = 5/9, n_1 = 0$$

$$x_2 = 25/27, n_2 = 0$$

$$x_3 = 44/81, n_3 = 1$$

 $x_4 = 220/243, n_4 = 0$
 $x_5 = 371/729, n_5 = 1$

. . .

 $So\ (1/3)_{5/3} = 0.00101010100010001000.._{5/3}$

Question 4. Write down 1/2 in base 5/3, up to six digits. How about 2/3?

Answer:

$$(1/2)_{5/3} = 0.01010000100000010.._{5/3}$$

 $(2/3)_{5/3} = 0.10000101000101001010.._{5/3}$

Question 5. Can you write down some number in [0,1) where the 5/3 expansion is periodic?

Answer: There are many. For example, $(9/16)_{5/3} = (0.01010101...)_{5/3}$.

Question 6. What is the relationship between the 5/3 expansion of $a \in [0,1)$ and of 5a/3 - |5a/3|?

Answer: The latter is the former shifted by one to the left.

Question 7. Suppose $0 \le x < y < 1$. What is the relationship between the 5/3-expansion of x and y?

Answer: The 5/3 expansion of y is larger under lexicographic order.

Question 8. Can you show that there can not have three successive 1 in the 5/3 expansion of any number in [0,1)?

Answer: A more direct proof is that all x_k are between 0 and 1, hence $n_k = 1$ means $x_{k+1} < 2/3$. If $n_{k+1} = 1$, then $x_{k+1} < 1/9$, hence $n_{k+2} = 0$. Alternatively one can use the answer to the following question.

Question 9. Can you describe all the possible sequences of 0 and 1 that can be the 5/3-expansion of some number in [0,1)?

Answer: $\lim_{x\to 1^-} (x)_{5/3} = 0.110000101000101001010...$ A sequence $0.s_1s_2...$ is a 5/3 expansion iff after deleting any prefix it is always lexicographically smaller than $\lim_{x\to 1^-} (x)_{5/3}$.

We can replace 5/3 with some other number, e.g. the golden ratio $\phi = \frac{\sqrt{5}+1}{2}$.

Question 10. What is $\lim_{x\to 1^-} (x)_{\phi}$?

Answer: It is 0.1010101010101010....

As a consequence, the sequences that may be ϕ expansions, must correspond to paths on the directed graph with 2 vertices labeled as 0 and 1, and where there is an arrow from 0 to 0 and 1, and an arrow from 1 to 0.