Proof of Extended BC1

马浩博 518030910428

April 10, 2020

Theorem 1 If $\lim_{n\to\infty}A_n=0$ and $\sum_{n=1}^{\infty}P(A_n^c\cap A_{n+1})<\infty$, then $P(A_n\ i.o.)=0$

Proof. Let $G_m = \bigcup_{n>m} A_n$ and $G_m \downarrow G$, where $G := limsup A_n$ By the proof of BC1, we know that:

$$P(A_n i.o.) = P(G) \le \lim_{m \to \infty} P(G_m)$$

Because $\sum_{n=1}^{\infty} P(A_n^c \cap A_{n+1}) < \infty$, we know that $\lim_{m \to \infty} \sum_{m=1}^{\infty} P(A_n^c \cap A_{n+1}) = 0$. And by $\bigcup_{n \ge m} (A_n^c \cap A_{n+1}) = G_m/(A_m \cap A_{m+1})$, we can get that:

$$\lim_{m \to \infty} P(G_m) \le \lim_{m \to \infty} P(\bigcup_{n \ge m} (A_n^c \cap A_{n+1})) + \lim_{n \to \infty} A_n \le \lim_{m \to \infty} \sum_{m=0}^{\infty} P(A_n^c \cap A_{n+1}) = 0$$

So
$$P(A_n i.o.) = 0$$
.