Contents

Temporal Selection Gradients	1
Does 'Year' significantly improve models of selection?	3
Accounting for random effect uncertainty	5
Calculate selection gradients	5
Plots	.0
Correlations	.3
Aggression and Activity	.4
Aggression and Docility	5
Activity and Docility	.5
Summary Stats	.6
Ignoring random effect uncertainty	.7
Calculate selection gradients	.7
Plot	21
Correlations	22
Aggression and Activity	24
Aggression and Docility	24
Activity and Docility	25
Summary Statistics	25
Compare Analytical Frameworks	26
Table	26
Aggression plot	27
Activity Plot	28
Docility Plot	28

Temporal Selection Gradients

```
library(MASS) # MASS clashes with dplyr... so always load first
library(pander) # pander clashes with dplyr... so always load first

##
## Attaching package: 'pander'
##
## The following object is masked from 'package:knitr':
##
## pandoc
```

```
set.alignment('right', row.names = 'left')
library(MCMCglmm)
## Loading required package: Matrix
## Loading required package: coda
## Loading required package: lattice
## Loading required package: ape
library(arm)
## Loading required package: lme4
## Loading required package: Rcpp
## arm (Version 1.7-07, built: 2014-8-27)
## Working directory is /home/ryan/projects/2014-female-selection
##
##
## Attaching package: 'arm'
## The following object is masked from 'package:ape':
##
##
       balance
## The following object is masked from 'package:coda':
##
##
       traceplot
library(dplyr)
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
##
       select
##
## The following objects are masked from 'package:stats':
##
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(grid)
# Load Data
load("data/analyses_data/fit_raneff_data.RData")
fit_raneff_data$Year <- as.character(fit_raneff_data$Year)</pre>
```

Does 'Year' significantly improve models of selection?

The significance of interaction terms between Year and the behavioral traits on fitness.

```
# GLMMs to test whether selection fluctuates across years.
library(lme4)
# Models with interactions between year and the behavioral traits
fit_raneff_data_blup <- filter(fit_raneff_data, type == "blup")</pre>
fit_raneff_data_blup %>%
 group_by(Grid, Year, add = FALSE) %>%
  summarise(n(), var(ars_all))
## Source: local data frame [16 x 4]
## Groups: Grid
##
      Grid Year n() var(ars_all)
##
## 1
                         0.0000
       KL 2003
                4
## 2
       KL 2004
                8
                         0.7857
## 3
       KL 2005 19
                         1.6550
## 4
       KL 2006 24
                         0.4275
       KL 2007 21
## 5
                         1.1000
## 6
       KL 2008 29
                         0.5369
## 7
       KL 2009 24
                         0.7373
## 8
       KL 2010 22
                         1.2121
## 9
       SU 2003 14
                         1.3022
       SU 2004 18
                         0.8007
## 10
## 11
       SU 2005 31
                         1.9828
## 12
       SU 2006 24
                         0.3025
## 13
       SU 2007 19
                         1.0526
## 14
       SU 2008 16
                         0.0000
## 15
       SU 2009 11
                         0.8727
## 16
       SU 2010 12
                         2.4470
# grid_years with no variation in fitness need to be removed
fit_raneff_data_blup <- filter(fit_raneff_data_blup,</pre>
  !(grid_year %in% c("KL2003", "SU2008")))
# Need to also remove Grid Years with very low sample sizes.
fit_raneff_data_blup %>%
 group_by(Grid, Year, add = FALSE) %>%
 summarise(n(), var(ars_all))
## Source: local data frame [14 x 4]
## Groups: Grid
##
##
      Grid Year n() var(ars_all)
## 1
       KL 2004 8
                         0.7857
## 2
       KL 2005 19
                         1.6550
## 3
       KL 2006 24
                         0.4275
## 4
       KL 2007 21
                         1.1000
```

```
## 5
       KL 2008 29
                          0.5369
## 6
       KL 2009 24
                          0.7373
## 7
       KL 2010 22
                          1.2121
## 8
       SU 2003 14
                         1.3022
## 9 SU 2004 18
                         0.8007
## 10 SU 2005 31
                         1.9828
       SU 2006 24
## 11
                          0.3025
       SU 2007 19
## 12
                          1.0526
## 13
       SU 2009 11
                          0.8727
## 14 SU 2010 12
                          2.4470
fit_raneff_data_blup <- filter(fit_raneff_data_blup,</pre>
  !(grid_year %in% c("KL2004")))
fit_raneff_data_blup$oID <- 1:nrow(fit_raneff_data_blup)</pre>
fit_raneff_data_blup <- droplevels(fit_raneff_data_blup)</pre>
ars_year <- glmer(ars_all ~ Year + Grid + activity_s + activity_s:Year +
  aggression_s + aggression_s:Year + docility_s + docility_s:Year +
  (1|ID) + (1|oID), data = fit_raneff_data_blup, family = poisson,
  control=glmerControl(optimizer="bobyqa"))
## Warning: maxfun < 10 * length(par)^2 is not recommended.
save(ars_year, file = "data/analyses_data/ars_year.RData")
load("data/analyses_data/ars_year.RData")
# Test fit of models. Does the addition of year:traits improve the fit?
library(car)
##
## Attaching package: 'car'
## The following object is masked from 'package:arm':
##
##
       logit
library(lme4)
aod <- Anova(ars_year, type = 2)</pre>
aod <- data.frame(aod)</pre>
aod$Chisq <- round(aod$Chisq ,digits = 2)</pre>
\# Function to convert small p-values into 'P < X'
p.format <- function(x){</pre>
    out <- signif(x, digits = 2)</pre>
  out[x < 0.005] <- "< 0.005"
    out[x < 0.001] <- "< 0.001"
    out[x < 0.0001] <- "< 0.0001"
    return(out)
}
```

```
# Format p values
aod[,3] <- p.format(aod[,3])
row.names(aod) <- c("Year", "Grid", "Activity", "Aggression", "Docility",
    "Year x Activity", "Year x Aggression", "Year x Docility")
pandoc.table(aod, caption =
    "The effect of year on selection for female behavioral traits through annual
reproductive success. Significance was calculated with Wald chisq tests from
a type II analysis of deviance. GLMMs were fitted with identity as a random
effect and assumed a Poisson error distribution.")</pre>
```

	Chisq	Df	PrChisq.
Year	38.1	7	< 0.0001
Grid	1.07	1	0.3
Activity	0.34	1	0.56
Aggression	0.34	1	0.56
Docility	0.98	1	0.32
Year x Activity	22.92	7	< 0.005
Year x Aggression	22.84	7	< 0.005
Year x Docility	10.33	7	0.17

Table 1: The effect of year on selection for female behavioral traits through annual reproductive success. Significance was calculated with Wald chisq tests from a type II analysis of deviance. GLMMs were fitted with identity as a random effect and assumed a Poisson error distribution.

Accounting for random effect uncertainty

Calculate selection gradients

Calculate selection coefficients for each of the 1000 samples of the posterior distribution of random effects.

```
# Function to get posterior distribution of selection gradients
x <- fit_raneff_data %>% filter(type == "raneff" & Year == 2003 & itt == 1)
seCoefMCMC <- function(x){
  mod <- lm(rel_ars ~ aggression + activity + docility, data = x)
  mod_sd <- lm(rel_ars ~ aggression_sy + activity_sy + docility_sy, data = x)
  res <- c(as.list(coef(mod)[-1]), as.list(coef(mod_sd)[-1]))
  res$Year <- x$Year[1]
  res$itt <- x$itt[1]
  return(data.frame(res, stringsAsFactors = FALSE))
}
start_time <- Sys.time()
sel_grads_mcmc_post <- fit_raneff_data %>%
```

```
filter(type == "raneff") %>%
  group_by(itt, Year, add = FALSE) %>%
 do(seCoefMCMC(.))
print(paste("Approx. run time: ", format(Sys.time() - start_time)))
## [1] "Approx. run time: 57.5 secs"
save(sel_grads_mcmc_post,
 file = "data/analyses_data/sel_grads_mcmc_post.RData")
load("data/analyses_data/sel_grads_mcmc_post.RData")
x <- sel_grads_mcmc_post %>% filter(Year == "2003")
getCred <- function(x, sig = 0.05){</pre>
 require(MCMCglmm)
 mcmc_data <- x %>% ungroup() %>% select(aggression, activity, docility, aggression_sy, activity_sy
 pm <- posterior.mode(mcmc_data)</pre>
  int <- HPDinterval(mcmc_data, prob = 1 - sig)</pre>
 tbl_df(data.frame(
              = x$Year[1],
    variable = c("Aggression", "Activity", "Docility", "Aggression",
    "Activity", "Docility"),
     standardization = c("None", "None", "None", "SD", "SD", "SD"),
   post_mode = pm,
             = int[ ,"lower"],
   lower
              = int[ ,"upper"],
    stringsAsFactors = FALSE
   ))
}
getCred(sel_grads_mcmc_post %>% filter(Year == "2004"))
## Source: local data frame [6 x 6]
##
##
                       variable standardization post_mode
                 Year
                                                               lower
## aggression
                 2004 Aggression
                                            None -0.30391 -0.76486 0.14086
## activity
                 2004
                                             None 0.03346 -0.31909 0.66905
                       Activity
## docility
                 2004
                        Docility
                                             None 0.05488 -0.06433 0.11222
## aggression_sy 2004 Aggression
                                               SD -0.24452 -0.80615 0.07615
## activity_sy
                 2004
                        Activity
                                               SD
                                                   0.01654 -0.35851 0.62341
## docility_sy
                 2004
                        Docility
                                               SD
                                                  0.20932 -0.25839 0.51523
sel_grads_mcmc <- sel_grads_mcmc_post %>%
  group_by(Year, add = FALSE) %>%
 do(getCred(x = ., sig = 0.05))
sel_grads_mcmc$upper_sig_star <- ""</pre>
sel_grads_mcmc$lower_sig_star <- ""</pre>
sel_grads_mcmc$upper_sig_star[sel_grads_mcmc$post_mode > 0 &
  sel_grads_mcmc$lower > 0] <- "*"
sel_grads_mcmc$lower_sig_star[sel_grads_mcmc$post_mode < 0 &</pre>
```

```
sel_grads_mcmc$upper < 0] <- "*"</pre>
save(sel_grads_mcmc, sel_grads_mcmc_post, getCred,
 file = "data/analyses_data/sel_grads_mcmc.RData")
load("data/analyses_data/sel_grads_mcmc.RData")
N <- fit_raneff_data %>%
 filter(type == "blup") %>%
 group_by(Year, add = FALSE) %>%
 summarise(n(), doc_mean = mean(docility, na.rm = TRUE))
# Format for table
sgt <- sel_grads_mcmc</pre>
sgt$sig_star <- ""
sgt$sig_star[sgt$post_mode > 0 & sgt$lower > 0] <- "*"</pre>
sgt$sig_star[sgt$post_mode < 0 & sgt$upper < 0] <- "*"</pre>
sgt$post_mode <- format(round(sgt$post_mode, digits = 2), digits = 1,</pre>
 nsmall = 2)
sgt$lower
            <- format(round(sgt$lower,</pre>
                                             digits = 2), digits = 1,
 nsmall = 2)
              <- format(round(sgt$upper,</pre>
                                             digits = 2), digits = 1,
sgt$upper
 nsmall = 2)
              <- paste(sgt$post_mode, " (", sgt$lower, " to ", sgt$upper,")",</pre>
sgt$coef
 sgt$sig_star, sep = '')
sgt_agg <- filter(sgt, variable == "Aggression", standardization == "None")</pre>
sgt_act <- filter(sgt, variable == "Activity", standardization == "None")</pre>
sgt_doc <- filter(sgt, variable == "Docility", standardization == "None")</pre>
sgt_agg_sd <- filter(sgt, variable == "Aggression", standardization == "SD")</pre>
sgt_act_sd <- filter(sgt, variable == "Activity", standardization == "SD")</pre>
sgt_doc_sd <- filter(sgt, variable == "Docility", standardization == "SD")</pre>
doc_post_mode <- sel_grads_mcmc %>% filter(standardization == "None" & variable == "Docility")
doc_post_mode$post_mode_m <- doc_post_mode$post_mode * N$doc_mean</pre>
doc_post_mode$post_mode_m <- format(round(doc_post_mode$post_mode_m, digits = 2), digits = 1, nsmall</pre>
pandoc.table(
 data.frame(Year = N$Year, N = N[ ,2], Aggression = sgt_agg$coef,
   Acitivity = sgt_act$coef, Docility = sgt_doc$coef
 ),
  caption = "Non-standardized selection gradients (accounting for behavioural uncertainty)."
  )
```

		Acitivity
(-0	0.45	(-0.17 to 1.32)
(-0	0.03	(-0.32 to 0.67)

Year	N	Aggression	Acitivity
2005	50	-0.18 (-0.45 to 0.10)	0.13 (-0.16 to 0.40)
2006	48	0.39 (-0.04 to 0.79)	0.08 (-0.39 to 0.45)
2007	40	$0.00 \ (-0.35 \ \text{to} \ 0.36)$	0.11 (-0.22 to 0.42)
2008	45	0.44 (-0.12 to 0.95)	-0.26 (-0.75 to 0.40)
2009	35	0.12 (-0.33 to 0.58)	-0.58 (-0.93 to -0.02)*
2010	34	$0.06 \ (-0.30 \ \text{to} \ 0.35)$	0.03 (-0.26 to 0.30)

Table 2: Non-standardized selection gradients (accounting for behavioural uncertainty). (continued below)

Docility
-0.08 (-0.26 to 0.06)
$0.05 \ (-0.06 \ \text{to} \ 0.11)$
0.03 (-0.02 to 0.07)
-0.04 (-0.12 to 0.00)
$0.00 \ (-0.05 \ \text{to} \ 0.05)$
-0.02 (-0.08 to 0.05)
-0.06 (-0.11 to -0.01)*
-0.05 (-0.08 to -0.02)*

```
pandoc.table(
  data.frame(Year = N$Year, N = N[ ,2], Aggression = sgt_agg_sd$coef,
    Acitivity = sgt_act_sd$coef, Docility = sgt_doc_sd$coef
),
  caption = "SD-standardized selection gradients (accounting for behavioural uncertainty)."
)
```

Year	N	Aggression	Acitivity
2003	18	0.03 (-0.76 to 0.71)	0.79 (-0.24 to 1.38)
2004	26	-0.24 (-0.81 to 0.08)	0.02 (-0.36 to 0.62)
2005	50	-0.19 (-0.47 to 0.07)	0.16 (-0.12 to 0.41)
2006	48	0.39 (-0.04 to 0.72)	0.08 (-0.37 to 0.44)
2007	40	-0.01 (-0.32 to 0.34)	0.09 (-0.23 to 0.42)
2008	45	$0.46 \ (-0.06 \ \text{to} \ 0.95)$	-0.18 (-0.72 to 0.40)
2009	35	$0.16 \ (-0.29 \ \text{to} \ 0.59)$	-0.55 (-0.92 to 0.01)
2010	34	-0.04 (-0.27 to 0.32)	0.04 (-0.25 to 0.30)

Year N Aggression Acitivity

Table 4: SD-standardized selection gradients (accounting for behavioural uncertainty). (continued below)

Docility
-0.38 (-1.12 to 0.31)
$0.21 \ (-0.26 \ \text{to} \ 0.52)$
$0.10 \ (-0.09 \ \text{to} \ 0.34)$
-0.25 (-0.58 to -0.03)*
0.01 (-0.23 to 0.23)
-0.08 (-0.37 to 0.25)
$-0.30 (-0.53 \text{ to } -0.05)^*$
-0.23 (-0.35 to -0.10)*

```
pandoc.table(
  data.frame(Year = N$Year, N = N[ ,2], mean_trait = N$doc_mean, Docility = doc_post_mode$post_mode_
),
  caption = "Mean standardized selection gradients (accounting for behavioural uncertainty)."
)
```

Year	N	mean_trait	Docility
2003	18	17.29	-1.46
2004	26	17.31	0.95
2005	50	17.25	0.55
2006	48	16.77	-0.70
2007	40	16.77	0.05
2008	45	16.9	-0.27
2009	35	16.79	-0.97
2010	34	17.19	-0.87

Table 6: Mean standardized selection gradients (accounting for behavioural uncertainty).

Plots

```
load("data/analyses_data/sel_grads_mcmc_post.RData")
library(ggplot2)
library(dplyr)
sel_grads_mcmc <- sel_grads_mcmc_post %>%
  group_by(Year, add = FALSE) %>% do(getCred(x = ., sig = 0.05))
sel_grads_mcmc$upper_sig_star <- ""</pre>
sel_grads_mcmc$lower_sig_star <- ""</pre>
sel_grads_mcmc$upper_sig_star[sel_grads_mcmc$post_mode > 0 &
  sel_grads_mcmc$lower > 0] <- "*"</pre>
sel_grads_mcmc$lower_sig_star[sel_grads_mcmc$post_mode < 0 &</pre>
  sel_grads_mcmc$upper < 0] <- "*"
p <- ggplot(data = filter(sel_grads_mcmc, standardization == "SD"),</pre>
  aes(x = Year, y = post_mode, group = variable))
p <- p + geom_hline(yintercept = 0, size = 0.25) # Line at y = 0
p <- p + geom_errorbar(aes(ymax = upper, ymin = lower),</pre>
  position = position_dodge(width = 0.5), width = 0.4, size = 0.4)
# Houle data percentiles
p \leftarrow p + geom_hline(yintercept = c(0.2975, -0.2975), linetype = 2, size = 0.4)
p <- p + geom_point(aes(shape = variable, fill = variable),</pre>
  position = position_dodge(width = 0.5), size = 3)
p <- p + scale_shape_manual(name = "B", values = c(24, 21, 22))
p <- p + scale_fill_manual(name = "B", values = c("white", "black", "white"))</pre>
p <- p + scale_color_manual(name = "B", values = c("black", "black", "black"))</pre>
p <- p + xlab("Year")</pre>
p <- p + ylab("Posterior Mode ± 0.95 Credible Interval")</pre>
p <- p + theme_bw(base_size = 10)</pre>
p \leftarrow p + theme(legend.position = c(0.92, 0.86),
  legend.background = element_blank(), legend.key.size = unit(0.4, "cm"))
p <- p + theme(legend.title = element_text(family = "Helvetica",</pre>
                                   face = "plain", size = 18))
p <- p + theme(legend.key = element_blank())</pre>
p <- p + theme(strip.background = element_blank())</pre>
p <- p + theme(panel.grid.minor = element_blank(),</pre>
  panel.grid.major = element_blank())
p <- p + theme(panel.border = element_blank())</pre>
p <- p + theme(axis.line = element_line(color = "black"))</pre>
p <- p + geom_text(aes(x = Year, y = upper, group = variable,</pre>
  label = upper_sig_star), vjust = -0.3,
  position = position_dodge(width = 0.5), size = 5)
p <- p + geom_text(aes(x = Year, y = lower, group = variable,</pre>
  label = lower_sig_star), vjust = 1.3,
  position = position_dodge(width = 0.5), size = 5)
p_sel_grad_MCMC \leftarrow p + ylim(c(-1.1,1.4))
pdf(file = "figure/04_sg_mcmc_SD_print.pdf", width = 4.33, height = 3)
p_sel_grad_MCMC
```

```
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## Warning: Removed 4 rows containing missing values (geom_path).
## Warning: Removed 1 rows containing missing values (geom_text).

dev.off()

## pdf
## 2

p_sel_grad_MCMC

## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## warning: Removed 4 rows containing missing values (geom_path).
## Warning: Removed 1 rows containing missing values (geom_text).
```


Figure 1: SD Standardized Selection Gradients

```
load("data/analyses_data/sel_grads_mcmc_post.RData")
library(ggplot2)
library(dplyr)
sel_grads_mcmc <- sel_grads_mcmc_post %>%
  group_by(Year, add = FALSE) %>% do(getCred(x = ., sig = 0.05))
sel_grads_mcmc$upper_sig_star <- ""</pre>
sel_grads_mcmc$lower_sig_star <- ""</pre>
sel_grads_mcmc$upper_sig_star[sel_grads_mcmc$post_mode > 0 &
  sel_grads_mcmc$lower > 0] <- "*"
sel_grads_mcmc$lower_sig_star[sel_grads_mcmc$post_mode < 0 &</pre>
  sel_grads_mcmc$upper < 0] <- "*"</pre>
p <- ggplot(data = filter(sel_grads_mcmc, standardization == "None"),</pre>
  aes(x = Year, y = post_mode, group = variable)
p \leftarrow p + geom\_hline(yintercept = 0, size = 0.25) # Line at y = 0
p <- p + geom_errorbar(aes(ymax = upper, ymin = lower),
  position = position_dodge(width = 0.5), width = 0.4, size = 0.4)
# Houle data percentiles
p \leftarrow p + geom_hline(yintercept = c(0.2975, -0.2975), linetype = 2, size = 0.4)
p <- p + geom_point(aes(shape = variable, fill = variable),</pre>
  position = position_dodge(width = 0.5), size = 3)
p \leftarrow p + scale\_shape\_manual(name = "B", values = c(24, 21, 22))
p <- p + scale_fill_manual(name = "B", values = c("white", "black", "white"))
p <- p + scale color manual(name = "B", values = c("black", "black", "black"))</pre>
p <- p + xlab("Year")</pre>
p <- p + ylab("Posterior Mode ± 0.95 Credible Interval")</pre>
p <- p + theme_bw(base_size = 10)</pre>
p \leftarrow p + theme(legend.position = c(0.92, 0.86),
  legend.background = element_blank(), legend.key.size = unit(0.4, "cm"))
p <- p + theme(legend.title = element_text(family = "Helvetica",</pre>
                                   face = "plain", size = 18))
p <- p + theme(legend.key = element_blank())</pre>
p <- p + theme(strip.background = element_blank())</pre>
p <- p + theme(panel.grid.minor = element_blank(),</pre>
  panel.grid.major = element_blank())
p <- p + theme(panel.border = element_blank())</pre>
p <- p + theme(axis.line = element_line(color = "black"))</pre>
p <- p + geom_text(aes(x = Year, y = upper, group = variable,</pre>
  label = upper_sig_star), vjust = -0.3,
  position = position_dodge(width = 0.5), size = 5)
p <- p + geom_text(aes(x = Year, y = lower, group = variable,</pre>
  label = lower_sig_star), vjust = 1.3,
  position = position_dodge(width = 0.5), size = 5)
p_sel_grad_MCMC \leftarrow p + ylim(c(-1.1,1.4))
pdf(file = "figure/04_sg_mcmc_NS_print.pdf", width = 4.33, height = 3)
p_sel_grad_MCMC
## ymax not defined: adjusting position using y instead
```

```
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead

dev.off()

## pdf
## 2

p_sel_grad_MCMC

## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
```


Figure 2: Non-standardized Selection Gradients

Correlations

```
sel_grads_mcmc_flat <- data.frame(
   Aggression = filter(sel_grads_mcmc, standardization == "SD",
   variable == "Aggression")$post_mode,
   Agg_upper = filter(sel_grads_mcmc, standardization == "SD",
   variable == "Aggression")$upper,</pre>
```

```
Agg_lower = filter(sel_grads_mcmc, standardization == "SD",
   variable == "Aggression")$lower,
  Activity = filter(sel_grads_mcmc, standardization == "SD",
   variable == "Activity")$post_mode,
  Act_upper = filter(sel_grads_mcmc, standardization == "SD",
   variable == "Activity")$upper,
  Act_lower = filter(sel_grads_mcmc, standardization == "SD",
   variable == "Activity")$lower,
  Docility = filter(sel_grads_mcmc, standardization == "SD",
   variable == "Docility")$post_mode,
  Doc_upper = filter(sel_grads_mcmc, standardization == "SD",
  variable == "Docility")$upper,
  Doc_lower = filter(sel_grads_mcmc, standardization == "SD",
   variable == "Docility")$lower
cor.behav <- function(x, y){</pre>
  ct <- cor.test(x, y)
  out <- data.frame(est = ct$estimate, lower = ct$conf.int[1],
    upper = ct$conf.int[2], stringsAsFactors = FALSE)
  out <- round(out, digits = 2)</pre>
  out$print <- paste(out$est, " (", out$lower, ", ", out$upper, ")", sep = "")</pre>
}
cor_agg_act <- cor.behav(sel_grads_mcmc_flat$Aggression,</pre>
  sel_grads_mcmc_flat$Activity)
cor agg doc <- cor.behav(sel grads mcmc flat$Aggression,</pre>
  sel_grads_mcmc_flat$Docility)
cor_doc_act <- cor.behav(sel_grads_mcmc_flat$Docility,</pre>
  sel_grads_mcmc_flat$Activity)
Aggression and Activity
p <- ggplot(data = sel_grads_mcmc_flat, aes(x = Activity, y = Aggression))</pre>
p <- p + geom_point()</pre>
p <- p + ylab("Aggression")</pre>
p <- p + xlab("Activity")</pre>
p <- p + theme_bw(base_size = 10)</pre>
p <- p + theme(panel.grid.major = element_blank(),</pre>
  panel.grid.minor = element_blank(), panel.background = element_blank(),
  strip.background = element_blank(), strip.text = element_blank(),
  panel.border = element_rect(linetype = "solid", colour = "black"))
p <- p + geom_errorbarh(aes(xmin = Act_lower, xmax = Act_upper),</pre>
  height = 0.07, size = 0.2)
p <- p + geom_errorbar(aes(ymin = Agg_lower, ymax = Agg_upper),</pre>
  width = 0.07, size = 0.2)
p \leftarrow p + annotate(geom = "text", size = 2.5, x = 0.25, y = 1.2,
  label = paste("r = ", cor_agg_act, sep = ''))
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))
```


Aggression and Docility

```
p <- ggplot(data = sel_grads_mcmc_flat, aes(y = Aggression, x = Docility))</pre>
p <- p + geom_point()</pre>
p <- p + ylab("Aggression")</pre>
p <- p + xlab("Docility")</pre>
p <- p + theme_bw(base_size = 10)</pre>
p <- p + theme(panel.grid.major = element_blank(),</pre>
  panel.grid.minor = element_blank(), panel.background = element_blank(),
  strip.background = element_blank(), strip.text = element_blank(),
  panel.border = element_rect(linetype = "solid", colour = "black"))
p <- p + geom_errorbarh(aes(xmin = Doc_lower, xmax = Doc_upper),</pre>
  height = 0.07, size = 0.2)
p <- p + geom_errorbar(aes(ymin = Agg_lower, ymax = Agg_upper),</pre>
  width = 0.03, size = 0.2)
p \leftarrow p + annotate(geom = "text", size = 2.5, x = -0.3, y = 1.2,
  label = paste("r = ", cor_agg_doc, sep = ''))
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))
```


Activity and Docility

```
p <- ggplot(data = sel_grads_mcmc_flat, aes(x = Activity, y = Docility))
p <- p + geom_point()</pre>
```

```
p <- p + xlab("Activity")
p <- p + ylab("Docility")
p <- p + theme_bw(base_size = 10)
p <- p + theme(panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(), panel.background = element_blank(),
    strip.background = element_blank(), strip.text = element_blank(),
    panel.border = element_rect(linetype = "solid", colour = "black"))
p <- p + geom_errorbar(aes(ymin = Doc_lower, ymax = Doc_upper),
    width = 0.07, size = 0.2)
p <- p + geom_errorbarh(aes(xmin = Act_lower, xmax = Act_upper),
    height = 0.03, size = 0.2)
p <- p + annotate(geom = "text", size = 2.5, x = 0, y = 0.6,
    label = paste("r = ", cor_doc_act, sep = ''))
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))</pre>
```


Summary Stats

```
library(dplyr)
sign_change <- function(x){</pre>
  # sign changes calculated as the number of changes in direction between
  # successive years relative to n-1
  s \leftarrow sign(x)
  sum(s[1:(length(s)-1)] != s[-1])/(length(s)-1)
}
se <- function(lower, upper){</pre>
  (upper - lower) / 3.92
sum_stats_mcmc <- sel_grads_mcmc %>%
filter(standardization == "SD") %>%
group_by(variable, add = FALSE) %>%
summarise(
 mean_abs_b = mean(abs(post_mode)),
 abs_mean_b = abs(mean(post_mode)),
 sd_b = sd(post_mode),
 mean_se_b = mean(se(lower, upper)),
 freq_sign = sign_change(post_mode),
```

```
mean_cv = mean(se(lower, upper) / abs(post_mode))
)
sum_stats_mcmc[ ,2:6] <- round(sum_stats_mcmc[ ,2:6], 2)
pandoc.table(sum_stats_mcmc)</pre>
```

variable	$mean_abs_b$	abs_mean_b	sd_b	mean_se_b
Activity	0.24	0.05	0.37	0.23
Aggression	0.19	0.07	0.25	0.22
Docility	0.2	0.12	0.21	0.16

Table 7: Table continues below

freq_sign	mean_cv
0.29	3.307
0.71	4.002
0.57	1.845

Ignoring random effect uncertainty

Calculate selection gradients from BLUPs, estimate SE using jackknifing.

Calculate selection gradients

```
# Calculate standardized selection gradients
seCoeffLmer <- function(x){</pre>
 model <- lm(rel_ars ~ aggression + activity + docility, data = x)</pre>
 model_sy <- lm(rel_ars ~ aggression_sy + activity_sy + docility_sy, data = x)</pre>
 mod_coefs <- c(coef(model)[-1], coef(model_sy)[-1])</pre>
 sim_coefs <- data.frame(coef(sim(model))[ ,-1], coef(sim(model_sy))[ ,-1]) ## Simulated coefficien
 names(sim_coefs) <- names(mod_coefs)</pre>
 sim_CI <- apply(sim_coefs, 2, quantile, prob = c(0.025, 0.975)) #0.95 conf. int.
docil_mean_coef <- mod_coefs["docility"] * mean(x$docility, na.rm = TRUE)</pre>
 out <- data.frame(</pre>
    standardization = c("None","None","None","SD","SD","SD","Mean"),
    Year = as.numeric(rep(as.character(x$Year[1]), 7)),
    variable = c("Aggression", "Activity", "Docility", "Aggression",
      "Activity", "Docility", "Docility"),
    coefficients = c(mod_coefs, docil_mean_coef),
    lower = c(sim_CI[1, ], 0),
    upper = c(sim_CI[2, ],0)
    return(out)
```

```
}
sel_grads_blup <- fit_raneff_data %>%
 filter(type == "blup") %>%
 group_by(Year, add = FALSE) %>%
 do(seCoeffLmer(.))
sel_grads_blup$variable <- as.character(sel_grads_blup$variable)</pre>
sel_grads_blup$Year <- as.character(sel_grads_blup$Year)</pre>
sel_grads_blup <- tbl_df(sel_grads_blup)</pre>
save(sel_grads_blup, file = "data/analyses_data/sel_grads_blup.RData")
load("data/analyses_data/sel_grads_blup.RData")
# Format for table
sgt <- sel_grads_blup</pre>
sgt$sig_star <- ""
sgt$sig_star[sgt$coefficients > 0 & sgt$lower > 0] <- "*"</pre>
sgt$sig_star[sgt$coefficients < 0 & sgt$upper < 0] <- "*"</pre>
sgt$coefficients <- format(round(sgt$coefficients, digits = 2),</pre>
 digits = 1, nsmall = 2)
sgt$lower <- format(round(sgt$lower, digits = 2),</pre>
 digits = 1, nsmall = 2)
sgt$upper <- format(round(sgt$upper, digits = 2),</pre>
 digits = 1, nsmall = 2)
sgt$prb <- NA
sgt$coef <- paste(sgt$coefficients,</pre>
  " (", sgt$lower, " to ", sgt$upper,")", sgt$sig_star, sep = '')
sgt_agg <- filter(sgt, standardization == "None" & variable == "Aggression")</pre>
sgt_act <- filter(sgt, standardization == "None" & variable == "Activity")</pre>
sgt_doc <- filter(sgt, standardization == "None" & variable == "Docility")</pre>
sgt_agg_sd <- filter(sgt, standardization == "SD" & variable == "Aggression")</pre>
sgt_act_sd <- filter(sgt, standardization == "SD" & variable == "Activity")</pre>
sgt_doc_sd <- filter(sgt, standardization == "SD" & variable == "Docility")</pre>
sgt_doc_ms <- filter(sgt, standardization == "Mean" & variable == "Docility")</pre>
N <- fit_raneff_data %>%
 filter(type == "blup") %>%
 group_by(Year, add = FALSE) %>%
  summarise(n = n(), t_kprod = sum(kprod), t_ars = sum(ars_all), mean_docil = mean(docility, na.rm =
pandoc.table(
 data.frame(
    Year = N$Year,
    Aggression = sgt_agg$coef,
    Activity = sgt_act$coef,
    Docility = sgt doc$coef
 ),
  caption ="Traditional selection gradients (ignoring behavioural uncertainty). Not standardized."
```

Year	Aggression	Activity
2003	-0.26 (-1.66 to 0.61)	0.90 (-0.25 to 1.76)
2004	-0.75 (-1.36 to -0.05)*	0.57 (-0.18 to 1.35)
2005	-0.56 (-1.02 to -0.06)*	$0.46 \ (-0.08 \ \text{to} \ 0.98)$
2006	$0.98 (0.20 \text{ to } 1.86)^*$	-0.33 (-1.11 to 0.48)
2007	-0.09 (-0.92 to 0.49)	0.19 (-0.53 to 0.88)
2008	1.11 (-0.36 to 2.30)	-0.60 (-1.46 to 0.94)
2009	0.75 (-0.09 to 1.39)	$-1.38 (-2.11 \text{ to } -0.60)^*$
2010	-0.03 (-0.74 to 0.67)	0.12 (-0.54 to 0.77)

Table 9: Traditional selection gradients (ignoring behavioural uncertainty). Not standardized. (continued below)

Docility		
-0.11 (-0.36 to 0.10)		
0.07 (-0.13 to 0.24)		
$0.05 \ (-0.04 \ \text{to} \ 0.16)$		
-0.10 (-0.22 to 0.04)		
0.01 (-0.11 to 0.13)		
-0.04 (-0.21 to 0.13)		
-0.12 (-0.23 to 0.00)*		
-0.05 (-0.12 to 0.04)		

```
pandoc.table(
  data.frame(
    Year = N$Year,
    Aggression = sgt_agg_sd$coef,
    Activity = sgt_act_sd$coef,
    Docility = sgt_doc_sd$coef
),
  caption ="Traditional selection gradients (ignoring behavioural uncertainty). SD-standardized."
)
```

Year	Aggression	Activity
2003	-0.17 (-1.25 to 0.57)	0.86 (-0.20 to 1.96)
2004	-0.62 (-1.17 to 0.22)	0.49 (-0.37 to 1.29)
2005	-0.41 (-0.71 to -0.04)*	0.34 (-0.10 to 0.76)
2006	$0.66 (0.13 \text{ to } 1.19)^*$	-0.23 (-0.96 to 0.35)

Year	Aggression	Activity
2007	-0.07 (-0.57 to 0.48)	0.15 (-0.44 to 0.63)
2008	$0.78 \ (\ 0.20 \ \text{to}\ 1.54)^*$	-0.44 (-1.64 to 0.39)
2009	$0.56 \ (\ 0.05 \ \text{to} \ 1.20)^*$	-1.01 (-1.84 to -0.47)*
2010	-0.02 (-0.43 to 0.56)	$0.10 \ (-0.34 \ \text{to} \ 0.50)$

Table 11: Traditional selection gradients (ignoring behavioural uncertainty). SD-standardized. (continued below)

Docility		
-0.40 (-1.22 to 0.61)		
$0.26 \ (-0.29 \ \text{to} \ 1.01)$		
0.19 (-0.11 to 0.54)		
-0.41 (-0.92 to 0.17)		
$0.03 \ (-0.47 \ \text{to} \ 0.52)$		
-0.17 (-0.81 to 0.45)		
$-0.56 (-1.07 \text{ to } -0.06)^*$		
-0.21 (-0.47 to 0.16)		

```
pandoc.table(
  data.frame(
    Year = N$Year,
    Docility = sgt_doc_ms$coefficients,
    mean = N$mean_docil
),
  caption ="Traditional selection gradients (ignoring behavioural uncertainty). Mean-standardized."
)
```

Year	Docility	mean
2003	-1.86	17.29
2004	1.25	17.31
2005	0.88	17.25
2006	-1.72	16.77
2007	0.12	16.77
2008	-0.63	16.9
2009	-2.04	16.79
2010	-0.79	17.19

Table 13: Traditional selection gradients (ignoring behavioural uncertainty). Mean-standardized.

Plot

Female Linear Selection Gradients ARS

Linear selection gradients \pm 95% credible intervals for female behavioral traits on annual reproductive success.

```
load("data/analyses_data/sel_grads_blup.RData")
sel_grads_blup$post_mode <- sel_grads_blup$coefficients</pre>
sel_grads_blup$upper_sig_star <- ""</pre>
sel_grads_blup$lower_sig_star <- ""</pre>
sel_grads_blup$upper_sig_star[sel_grads_blup$coefficients > 0 &
  sel_grads_blup$lower > 0] <- "*"
sel_grads_blup$lower_sig_star[sel_grads_blup$coefficients < 0 &</pre>
  sel_grads_blup$upper < 0] <- "*"
sel_grads_blup$upper_sig_01_star <- ""</pre>
sel_grads_blup$lower_sig_01_star <- ""</pre>
sel_grads_blup$upper_sig_01_star[sel_grads_blup$coefficients > 0
 & sel_grads_blup$lower_1 > 0] <- "."
sel_grads_blup$lower_sig_01_star[sel_grads_blup$coefficients < 0
 & sel_grads_blup$upper_1 < 0] <- "."
sel_grads_blup$upper_sig_01_star[sel_grads_blup$coefficients > 0
 & sel_grads_blup$lower > 0] <- ""
sel_grads_blup$lower_sig_01_star[sel_grads_blup$coefficients < 0</pre>
 & sel grads blup$upper < 0] <- ""
pdf(file = "figure/04_sg_blup_SD_print.pdf", width = 4.33, height = 3)
p <- p_sel_grad_MCMC %+% filter(sel_grads_blup, standardization == "SD")</pre>
p <- p + ylab("Coefficient ± 0.95 Confidence Interval")</pre>
p <- p + geom_text(aes(x = Year, y = upper, group = variable,</pre>
 label = upper_sig_01_star), vjust = -0.3,
 position = position_dodge(width = 0.5), size = 7)
p <- p + geom_text(aes(x = Year, y = lower, group = variable,</pre>
 label = lower_sig_01_star), vjust = 0.5,
 position = position_dodge(width = 0.5), size = 7)
p <- p + geom_text(aes(x = Year, y = upper, group = variable,
 label = upper_sig_star), vjust = -0.3,
 position = position_dodge(width = 0.5), size = 5)
p <- p + geom_text(aes(x = Year, y = lower, group = variable,
 label = lower_sig_star), vjust = 1.3,
 position = position_dodge(width = 0.5), size = 5)
p \leftarrow p + ylim(c(-2, 2))
```

Scale for 'y' is already present. Adding another scale for 'y', which will replace the existing scale.

```
p \leftarrow p + scale\_shape\_manual(name = "A", values = c(24, 21, 22))
## Scale for 'shape' is already present. Adding another scale for 'shape', which will replace the existing
p <- p + scale_fill_manual(name = "A", values = c("white", "black", "white"))
## Scale for 'fill' is already present. Adding another scale for 'fill', which will replace the existing s
p <- p + scale_color_manual(name = "A", values = c("black", "black", "black"))</pre>
## Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the exist.
p
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
dev.off()
## pdf
## 2
р
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
## ymax not defined: adjusting position using y instead
\#\# ymax not defined: adjusting position using y instead
Correlations
load("data/analyses_data/sel_grads_blup.RData")
sel_grads_blup_flat <- data.frame(</pre>
  Aggression = filter(sel_grads_blup, standardization == "SD" &
   variable == "Aggression")$coefficients,
  Agg_upper = filter(sel_grads_blup, standardization == "SD" &
   variable == "Aggression")$upper,
  Agg_lower = filter(sel_grads_blup, standardization == "SD" &
   variable == "Aggression")$lower,
```



```
= filter(sel_grads_blup, standardization == "SD" &
   variable == "Activity")$coefficients,
 Act_upper = filter(sel_grads_blup, standardization == "SD" &
  variable == "Activity")$upper,
 Act_lower = filter(sel_grads_blup, standardization == "SD" &
  variable == "Activity")$lower,
           = filter(sel_grads_blup, standardization == "SD" &
 Docility
   variable == "Docility")$coefficients,
 Doc_upper = filter(sel_grads_blup, standardization == "SD" &
   variable == "Docility")$upper,
 Doc_lower = filter(sel_grads_blup, standardization == "SD" &
   variable == "Docility")$lower
cor.behav <- function(x, y){</pre>
 ct <- cor.test(x, y)
 out <- data.frame(est = ct$estimate, lower = ct$conf.int[1],</pre>
    upper = ct$conf.int[2], stringsAsFactors = FALSE)
 out <- round(out, digits = 2)</pre>
  out$print <- paste(out$est, " (", out$lower, ", ", out$upper, ")", sep = "")
cor_blup_agg_act <- cor.behav(sel_grads_blup_flat$Aggression,</pre>
  sel_grads_blup_flat$Activity)
cor_blup_agg_doc <- cor.behav(sel_grads_blup_flat$Aggression,</pre>
  sel_grads_blup_flat$Docility)
```

```
cor_blup_doc_act <- cor.behav(sel_grads_blup_flat$Docility,
    sel_grads_blup_flat$Activity)</pre>
```

Aggression and Activity

```
p <- ggplot(data = sel_grads_blup_flat, aes(x = Activity, y = Aggression))
p <- p + geom_point()</pre>
p <- p + ylab("Aggression")</pre>
p <- p + xlab("Activity")</pre>
p <- p + theme_bw(base_size = 10)</pre>
p <- p + theme(panel.grid.major = element_blank(),</pre>
  panel.grid.minor = element_blank(), panel.background = element_blank(),
  strip.background = element_blank(), strip.text = element_blank(),
  panel.border = element_rect(linetype = "solid", colour = "black"))
p <- p + geom_errorbarh(aes(xmin = Act_lower, xmax = Act_upper),</pre>
  height = 0.07, size = 0.2)
p <- p + geom_errorbar(aes(ymin = Agg_lower, ymax = Agg_upper),</pre>
  width = 0.07, size = 0.2)
p \leftarrow p + annotate(geom = "text", size = 2.5, x = 0.1, y = 1.7,
  label = paste("r = ", cor_blup_agg_act, sep = ''))
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))
```


Aggression and Docility

```
p <- ggplot(data = sel_grads_blup_flat, aes(y = Aggression, x = Docility))
p <- p + geom_point()
p <- p + ylab("Aggression")
p <- p + xlab("Docility")
p <- p + theme_bw(base_size = 10)
p <- p + theme(panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(), panel.background = element_blank(),
    strip.background = element_blank(), strip.text = element_blank(),
    panel.border = element_rect(linetype = "solid", colour = "black"))
p <- p + geom_errorbarh(aes(xmin = Doc_lower, xmax = Doc_upper),
    height = 0.07, size = 0.2)
p <- p + geom_errorbar(aes(ymin = Agg_lower, ymax = Agg_upper),</pre>
```

```
width = 0.03, size = 0.2)
p <- p + annotate(geom = "text", size = 2.5, x = -0.1, y = 1.7,
    label = paste("r = ", cor_blup_agg_doc, sep = ''))
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))</pre>
```


Activity and Docility

```
p <- ggplot(data = sel_grads_blup_flat, aes(x = Activity, y = Docility))</pre>
p <- p + geom_point()</pre>
p <- p + xlab("Activity")</pre>
p <- p + ylab("Docility")</pre>
p <- p + theme_bw(base_size = 10)</pre>
p <- p + theme(panel.grid.major = element_blank(),</pre>
  panel.grid.minor = element_blank(), panel.background = element_blank(),
  strip.background = element_blank(), strip.text = element_blank(),
  panel.border = element_rect(linetype = "solid", colour = "black"))
p <- p + geom_errorbar(aes(ymin = Doc_lower, ymax = Doc_upper),</pre>
  width = 0.07, size = 0.2)
p <- p + geom_errorbarh(aes(xmin = Act_lower, xmax = Act_upper),</pre>
  height = 0.03, size = 0.2)
p \leftarrow p + annotate(geom = "text", size = 2.5, x = 0, y = 1.2,
  label = paste("r = ", cor_blup_doc_act, sep = ''))
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))
```

Summary Statistics

```
library(dplyr)
sign_change <- function(x){
    # sign changes calculated as the number of changes in direction between
    # successive years relative to n-1
    s <- sign(x)
    sum(s[1:(length(s)-1)] != s[-1])/(length(s)-1)
}
se <- function(lower, upper){
    (upper - lower) / 3.92</pre>
```



```
sum_stats_blup <- sel_grads_blup %>%
filter(standardization == "SD") %>%
group_by(variable, add = FALSE) %>%
summarise(
   mean_abs_b = mean(abs(coefficients)),
   abs_mean_b = abs(mean(coefficients)),
   sd_b = sd(coefficients),
   mean_se_b = mean(se(lower, upper)),
   freq_sign = sign_change(coefficients),
   mean_cv = mean(se(lower, upper) / abs(coefficients))
   )
sum_stats_blup[ ,2:6] <- round(sum_stats_blup[ ,2:6], 2)
pandoc.table(sum_stats_blup)</pre>
```

variable	mean_abs_b	abs_mean_b	sd_b	mean_se_b
Activity	0.45	0.03	0.58	0.36
Aggression	0.41	0.09	0.52	0.3
Docility	0.28	0.16	0.3	0.28

Table 14: Table continues below

freq_sign	mean_cv
0.57	1.138
0.57	2.701
0.57	1.912

Compare Analytical Frameworks

Table

}

```
load("data/analyses_data/sel_grads_blup.RDat26")
load("data/analyses_data/sel_grads_mcmc.RData")

sg_blups <- sel_grads_blup %>% filter(standardization == "SD")

sg_mcmc <- sel_grads_mcmc %>% filter(standardization == "SD")

compare_grads <- left_join(select(sg_blups, Year, variable,
    blup_coef = coefficients, blup_upper = upper, blup_lower = lower),
    select(sg_mcmc, Year, variable, mcmc_pm = post_mode,
    mcmc_upper = upper, mcmc_lower = lower), by = c("variable", "Year"))</pre>
```

```
ct <- cor.test(x,y)
  est <- format(ct$estimate, digits = 2)
  ci <- format(ct$conf.int, digits = 2)
  ct <- format(ct, digits = 2)
  paste(est, " (", ci[1], ", ", ci[2], ")", sep = '')
}

c_table <- compare_grads %>%
  group_by(variable) %>%
  summarise(cor = cor(blup_coef, mcmc_pm),
    abs_diff = mean((abs(blup_coef - mcmc_pm))),
    mean_mcmc = mean(abs(mcmc_pm)), mean_blup = mean(abs(blup_coef)),
    prop_diff = mean_blup / mean_mcmc, cor_test = ct_print(blup_coef, mcmc_pm),
    lmerGreater = sum(abs(blup_coef) > abs(mcmc_pm))
)

pandoc.table(c_table)
```

variable	cor	abs_diff	mean_mcmc	mean_blup
Activity	0.8931	0.2345	0.2374	0.4527
Aggression	0.9599	0.2312	0.1904	0.4096
Docility	0.9489	0.08657	0.1957	0.2766

Table 16: Table continues below

prop_diff	cor_test	lmerGreater
1.907	0.89 (0.51, 0.98)	8
2.152	$0.96\ (0.79,\ 0.99)$	7
1.413	$0.95\ (0.74,\ 0.99)$	7

Aggression plot

```
p <- ggplot(filter(compare_grads, variable == "Aggression"),
    aes(x = blup_coef, y = mcmc_pm))
p <- p + geom_point()
p <- p + geom_errorbarh(aes(xmin = blup_lower, xmax = blup_upper),
    height = 0.04, size = 0.2)
p <- p + geom_errorbar(aes(ymin = mcmc_lower, ymax = mcmc_upper),
    width = 0.07, size = 0.2)
p <- p + theme_bw(base_size = 10)
p <- p + theme(plot.title = element_text(size = 10),
    panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
    panel.background = element_blank(), strip.background = element_blank(),
    strip.text = element_blank(),
    panel.border = element_rect(linetype = "solid", colour = "black"))</pre>
```

```
p <- p + annotate(geom = "text", size = 2.5, x = 0.1, y = 1.1,
    label = paste("r = ", filter(c_table, variable == "Aggression") %>%
    select(cor_test), sep = ''))
p <- p + ylab("Posterior Modes")
p <- p + xlab("Selection Gradients")
p <- p + ggtitle("Aggression")
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))</pre>
```


Activity Plot

aes(x = blup_coef, y = mcmc_pm))

```
p <- ggplot(filter(compare_grads, variable == "Activity"),</pre>
  aes(x = blup_coef, y = mcmc_pm))
p <- p + geom_point()</pre>
p <- p + geom_errorbarh(aes(xmin = blup_lower, xmax = blup_upper),</pre>
  height = 0.04, size = 0.2)
p <- p + geom_errorbar(aes(ymin = mcmc_lower, ymax = mcmc_upper),</pre>
  width = 0.07, size = 0.2)
p <- p + theme_bw(base_size = 10)</pre>
p <- p + theme(plot.title = element_text(size = 10),</pre>
  panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
  panel.background = element_blank(), strip.background = element_blank(),
  strip.text = element_blank(),
  panel.border = element_rect(linetype = "solid", colour = "black"))
p \leftarrow p + annotate(geom = "text", size = 2.5, x = 0, y = 1.5,
  label = paste("r = ", filter(c_table, variable == "Activity") %>%
  select(cor_test), sep = ''))
p <- p + ylab("Posterior Modes")</pre>
p <- p + xlab("Selection Gradients")</pre>
p <- p + ggtitle("Activity")</pre>
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))
Docility Plot
p <- ggplot(filter(compare_grads, variable == "Docility"),</pre>
```



```
p <- p + geom_point()</pre>
p <- p + geom_errorbarh(aes(xmin = blup_lower, xmax = blup_upper),</pre>
  height = 0.04, size = 0.2)
p <- p + geom_errorbar(aes(ymin = mcmc_lower, ymax = mcmc_upper),</pre>
  width = 0.07, size = 0.2)
p <- p + theme_bw(base_size = 10)</pre>
p <- p + theme(plot.title = element_text(size = 10),</pre>
  panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
  panel.background = element_blank(), strip.background = element_blank(),
  strip.text = element_blank(),
  panel.border = element_rect(linetype = "solid", colour = "black"))
p <- p + ylab("Posterior Modes")</pre>
p <- p + xlab("Selection Gradients")</pre>
p \leftarrow p + annotate(geom = "text", size = 2.5, x = 0, y = 0.7,
  label = paste("r = ", filter(c_table, variable == "Docility") %>%
  select(cor_test), sep = ''))
p <- p + ggtitle("Docility")</pre>
p + theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm"))
```

