CS6190: Probabilistic Modeling Homework 0

Gopal Menon

13 January, 2018

1. Let X and Y be continuous real-valued random variables. Prove the following:

(a)
$$E[E[X|Y]] = E[X]$$

$$E[E[X|Y]] = \int_{-\infty}^{\infty} E[X|Y = y] p_Y(y) dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x p_{X|Y=y}(x) dx p_Y(y) dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x p_{X|Y=y}(x) p_Y(y) dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x p_{XY}(x, y) dx dy$$

$$= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} p_{XY}(x, y) dy dx$$

$$= \int_{-\infty}^{\infty} x p_X(x) dx$$

$$= E[X]$$

Here $p_X(x)$, $p_Y(y)$ and $p_{X|Y=y}(x)$ are the probability density functions for X, Y, and the conditional probability of X given the value of Y. $p_{XY}(x,y)$ is the joint probability distribution function of X and Y. I needed to look up the proof [1] as I was not aware that the first step shown above could be done and due to this, I was getting an extra y in the final result. The result I got before I looked up the proof was yE[X].

(b)
$$Var(X) = E[Var(X|Y)] + Var(E[X|Y])$$

$$\begin{split} E\left[Var(X|Y)\right] + Var(E\left[X|Y\right]) &= E\left[E\left[X^{2}|Y\right] - E\left[X|Y\right]E\left[X|Y\right]\right] \\ &+ E\left[E\left[X|Y\right]E\left[X|Y\right]\right] - E\left[E\left[X|Y\right]\right]E\left[E\left[X|Y\right]\right] \\ &= E\left[E\left[X^{2}|Y\right]\right] - E\left[E\left[X|Y\right]E\left[X|Y\right]\right] \\ &+ E\left[E\left[X|Y\right]E\left[X|Y\right]\right] - E\left[X\right]E\left[X\right] \\ &= E\left[X^{2}\right] - E\left[X\right]E\left[X\right] \\ &= Var(X) \end{split}$$

Before I worked out the solution above, I was using the definition $Var(X) = E[X^2] - \mu_X^2$ and that did not help. After I realized that $\mu_X = E[X]$, the solution fell in place.

2.

References

[1] Conditional Expectation, www.statlect.com/fundamentals-of-probability/conditional-expectation.