UNIVERSIDAD NACIONAL DE CORDOBA FACULTAD DE CIENCIAS EXACTAS FISICAS Y NATURALES ELECRONICA DIGITAL I

Grupo Nº 09

Trabajo Práctico Nº 3

CIRCUITOS SECUENCIALES SINCRONOS

Profesor

• Ing. Ruben VRECH

Alumnos

•	Ferraris Domingo Jesus	36656566	ΙE
•	Collante Grardo	39022782	IC

Fecha

09/05/2017

OBJETIVOS

Diseñar e implementar una alarma con 4 bits de entrada. Al encenderse la alarma debe iniciarse en estado de "desactivada" y permanecer en el mismo hasta que se ingrese la "secuencia de activación", la que llevará al estado "activada" (encender un LED amarillo). La alarma puede "desactivarse" con una "secuencia de desactivación".

Si por alguna razón no se digita el número correcto de la "secuencia de desactivación" y después de digitar la cuarta cifra, se encenderá un LED rojo indicando que esta esta disparada. Este permanecerá encendido hasta que se ingrese la "secuencia de desactivación" correctamente.

DESARROLLO

Todo el sistema contara de 6 bloques, los cuales son:

INGRESO DE DATOS

Al ser el grupo № 9, nos interesan las combinaciones de activación 0909 y de desactivación 9090.

Dada la consigna del problema y aprovechando la simetría de las secuencias de activación y desactivación, nos surge la duda:

¿Es posible controlar si una secuencia de dos bits 09 o 90 se ingresó correctamente?, En vez de preguntar por cada bit agregando estados al problema, ¿Podemos preguntar de a dos bits, y mandar la respuesta a una única variable X?

PARA LA SOLOCION NOS VALEMOS DE UNA RELACION ENTRE FLIP-FLOPS DATA Y TOGGLE: Donde el FF-T es el encargado de poner el alto ("setear") el dato y el FF-D es encargado de "pasar" el dato.

Cuya tabla de verdad se cumple, en este caso, solo para la combinación 09:

Bit1	Bit2	Х
0	0	0
0	9	1
9	0	0
9	9	0

La única combinación de acciones que hará aparecer un alto en la salida es que primero se ponga el dato en alto y luego se pase el dato a la variable X.

Circuito implementable con solo un integrado de 2 Flip-Flops.

Consultando el manual TTL decidimos usar el IC 74LS109 con 2 FF-JK activados por flanco de subida.

MAQUINA DE ESTADOS Y DECODIFICACION

Ahora que sabemos cómo censar el ingreso de datos armamos el diagrama de estados con solo 6 estados:

Armamos la correspondiente tabla según el ciclo de los estados para obtener las expresiones de entrada para los Flip-Flops:

		X	Q0	Q1	Q2	Q0+	Q1+	Q2+	J0	K0	J1	K 1	J2	K2
Е	0	0	0	0	0	0	0	0	0	Х	0	X	0	X
Ε	1	0	0	0	1	0	0	0	0	X	0	X	X	1
Ε	2	0	0	1	0	1	0	0	1	Х	Х	1	0	X
Ε	S	0	0	1	1	1	0	1	1	X	X	1	X	0
Ε	4	0	1	0	0	1	0	1	X	0	0	X	1	X
Ε	5	0	1	0	1	1	0	1	X	0	0	X	X	0
Ε	0	1	0	0	0	0	0	1	0	X	0	X	1	X
Ε	1	1	0	0	1	0	1	0	0	X	1	X	X	1
Ε	2	1	0	1	0	0	1	1	0	X	X	0	1	X
Ε	S	1	0	1	1	0	0	0	0	X	X	1	X	1
Е	4	1	1	0	0	1	0	1	Х	0	0	Х	1	Х
Ε	5	1	1	0	1	0	1	1	X	1	1	X	X	0

De sus correspondientes mapas de Karnaugh y posterior simplificación por el teorema de DeMorgan se obtienen las siguientes expresiones para los FF-JK:

$$J0 = \overline{\overline{Q1} + X}$$

$$K0 = \overline{\overline{Q2} + \overline{X}}$$

$$J1 = \overline{\overline{Q2} + \overline{X}} = K0$$

$$K1 = \overline{\overline{Q2}X}$$

$$J2 = \overline{\overline{Q0} \, \overline{X}}$$

$$K2 = \overline{\overline{\overline{(Q1} + X)}} + Q0 = \overline{J0 + Q0}$$

Además haremos uso de un decodificador para obtener los estados finales.

Quedando la máquina de estados:

Que implementamos con 3 compuertas NOR, 3 NAND, 3 FF-JK y un decodificador 74LS138.

COMBINACIONAL DE SELECCION

La pregunta que sigue ahora es:

Según el estado en el que está la alarma, ¿Qué combinación de números es válida, la de activación o la de desactivación?

Es decir, según el estado actual, ¿Quién pone el dato el alto y quien lo pasa, la tecla 0 o la 9?

Debemos hacer un combinacional que, si se está en la secuencia de activación, la tecla 0 "setee" el dato y la 9 lo "pase" a X. Mientras que si se está en la secuencia de desactivación, la tecla 9 "setee" y 0 "pase" el dato a la variable X.

Según el diagrama de estados, la alarma se estará activando en los estados E0 o E1, y se estará desactivando toda vez que no esté en los estados EO o E1.

Así que armamos las siguientes ecuaciones lógicas:

Condicion de activacion (CA) =
$$E0 + E1 = \overline{E0} \overline{E1}$$

Condicion de desactivacion (CD) =
$$\overline{E0 + E1} = \overline{CA}$$

$$SET = CA \ 0 + CD \ 9 = \overline{(\overline{CA \ 0}) \ (\overline{CD \ 9})}$$

$$PASAR = CA 9 + CD 0 = \overline{(\overline{CA 9})(\overline{CD 0})}$$

Las que nos dicen que la tecla 0 "seteara" el dato y la 9 lo "pasara" únicamente si estamos en la secuencia de activación de la alarma, en caso contrario se invertirán los roles.

Fácilmente Implementable con 8 compuertas NAND.

ELIMINADOR DE REBOTES

Cada tecla deberá ir con eliminadores de rebote para evitar problemas de sensibilidad. Serán simples Flip-Flops RS hechos con 2 compuertas NOR y

RETARDO CLOCK/RESET

Añadiremos una tecla de entrada de datos que tendrá dos funciones:

- 1- Mandar un flanco de bajada a los relojes para que avance la máquina de estados.
- 2- Blanquear los datos guardados en los FF de entrada, para que estén listos para los próximos datos.

Evidentemente debe haber un retardo entre una acción y la otra, puesto que sino la máquina de estados no alcanzaría a leer la variable X y no pasaría nunca de estados.

Para este circuito haremos uso de 2 transistores MOSFET canal N con una VGS (on) = 3V, y un circuito de retardo sencillo para que uno de los transistores se active luego de cierto tiempo.

Donde la llave será un pulsador que si no está oprimido pone en alto el clock y los resets de entrada, luego cuando se pulsa pone inmediatamente en bajo el clock haciendo que el autómata avance y luego de un pequeño tiempo blanquea los datos guardados en los FF de entrada dejándolos listos para la próxima combinación de números. Lo implementaremos con un par de transistores MOSFET 2N7000, unas resistencias y un capacitor electrolítico.

INDICADORES DE SALIDA

Si se ingresa correctamente la secuencia de activación 0909 se encenderá un **LED amarillo** indicando que la alarma esta activada, esto solo podrá pasar si la alarma esta activada y por tanto para apagarla vale la secuencia de desactivación, **ósea si esta activa la condición de desactivación CD.**

Si estando activada se ingresa incorrectamente la secuencia de desactivación 9090 se encenderá un **LED rojo** indicando que la alarma esta disparada, esto podrá ocurrir solo si se llega al estado E5 y no está disparada ya la alarma.

En resumen el LED amarillo estará prendido si la condición de desactivación está activa y una vez disparada la alarma, la única forma de apagar el LED rojo es desactivándola, ósea llegando al estado EO.

Por tanto:

$$ACT = CD$$

 $DISP = ES \overline{R} = \overline{ES} + R$

Debemos utilizar un FF-T para guardar el estado del LED rojo.

Si la alarma se dispara se manda un flanco de bajada al FF haciendo que se encienda el LED rojo, pero esto solo pasa si el LED amarillo esta encendido y además el LED rojo anteriormente no lo estaba.

Una vez disparada si se llega al desactivar la alarma, se pone en cero el Reset del FF apagando el LED rojo, y como ya no vale la condición de activación se apagara también el LED amarillo.

Que implementaremos fácilmente con 2 compuertas NOR, un FF-JK en modo Toggle, LED's y resistencias.

Uniendo los 6 bloques de circuitos descriptos hasta ahora, armamos el diagrama de bloques final del proyecto:

Consultando el manual TTL decidimos que para los Flip-Flops de las etapas de **INGRESO DE DATOS** y de **INDICADORES DE SALIDA** utilizaremos el 74LS109 provisto de 2 Flip-Flops JK disparados por flanco de reloj positivo.

Para la etapa de **MAQUINA DE ESTADOS Y DECODIFICACION** usaremos el 74LS78 para los Flip-Flops, ya que posee 2 FF JK disparados por flanco descendente con la entrada de reloj compartida, el 74LS138 como decodificador de 3Bit de entrada a 8 salidas, que trabaja en lógica negativa.

Para el circuito **RETARDO CLOCK/RESET** usaremos 2 MOSFET de enriquecimiento 2N7000. Y utilizaremos los integrados 74LS00 para compuertas NAND y 74LS02 para compuertas NOR.

LISTA DE MATERIALES

IC 74LS78 Dual-JK Flip-Flop CLKC —	2
IC 74LS109 Dual-JK Flip-Flop ———	2
IC 74LS138 3 Bit Decoder ————	1
IC 74ALS00 Quad NAND-2 Input —	3
IC 74LS02 Quad NOR-2 Input	3
2N7000 MOSFET canal N	2
Pulsadores SPDT ———————	3
Resistencia 330Ω a ¼ W	2
Resistencia 10K a ¼ W	1
Resistencia 1K a ¼ W —————	2
Capacitor Electrolítico 100μF/25V —	1
LED Rojo	1
LED Amarillo	1

DATASHEETS

■BLOCK DIAGRAM(⅓)

■RECOMMENDED OPERATING CONDITIONS

	ltem	Symbol	min	typ	max	Unit
Clock f	requency	felick	0	_	30	MHz
Pulse	Clock High		20	_	-	ns
width	Preset Low Clear	łu:	25	_	_	ns
Setup	"H"Data		201	_		ns
time	"L"Data	tau •	201	_	-	ns
Hold tir	ne	ts	01	_	-	ns

Note) ‡; The arrow indicates the falling edge.

■TIMING METHOD

■PIN ARRANGEMENT

EFUNCTION TABLE

		Out	puts			
Preset	Clear	Clock	j	K	Q	Q
L	Н	×	×	×	Н	L
Н	L	×	×	×	L	Н
L.	Ĺ	×	×	×	H*	н.
Н	Н	1	L	L	Qο	Qυ
Н	Н	↓	Н	L	Н	L
Н	Н	1	L	H	L	Н
Н	Н	↓ I	Н	Н	Toggle	
Н	Н	н	×	×	Q,	$\overline{\mathbf{Q}}_0$

Notes) H; high level, L; low level, X; irrelevant

- 1; transition from high to low level
- Qa; level of Q before the indicated steady-state input conditions were established.
- Qo; complement of Qo or level of Q before the indicated steady-state input conditions were established.
- Toggle; each output changes to the complement of its previous level on each active transition indicated by 4.
- *; This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high)

ELECTRICAL CHARACTERISTICS ($T_a = -20 \sim +75 ^{\circ}\text{C}$)

Item		Symbol	Test Conditions		min	typ*	max	Unit
T i li		VtH			2.0	_	_	v
Input voltage		V_{II}				_	0.8	v
		Voн	$V_{CC} = 4.75 \text{V}, V_{IH} = 2.7 \text{V}, V_{IL} = 0.8 \text{V}.$	$I_{OH} = -400 \mu A$	2.7	-	-	v
Output voltage		17.	$V_{CC} = 4.75 \text{V}, V_{IH} = 2 \text{V}$	Io L = 8m A	_	-	0.5	v
		Vol	$V_{IL}=0.8V$	IoL = 4mA	_	_	0.4	v
	J, K				-	_	20	
	Clear	I _{IH}	$V_{CC} = 5.25 \text{V}, V_I = 2.7 \text{V}$			_	120	
	Preset	1 ""	VCC = 5.25 V, VI = 2.7 V	VI = 2.1 V			60	μA
	Clock				- 1		160	
	J, K						-0.4	
Input current	Clear	II. **	$Vcc = 5.25V, V_1 = 0.4V$			_	-1.6	mA
input current	Preset] ""			_		-0.8	
	Clock					-1.6		
	J, K					_	0.1	
	Clear	ı,	$V_{CC} = 5.25 \text{V}, V_I = 7 \text{V}$			_	0.6	1
	Preset	111	VCC - 0.20 V, VI = I V	ĺ			0.3	mΑ
	Clock				- 1	_	0.8	
Short circuit output current		Ios	$V_{CC}=5.25V$		- 20		-100	mA
Supply current ***		l cc	$V_{CC} = 5.25 \text{V}$			4	6	mA
Input clamp voltage		Vik	$V_{CC} = 4.75 \text{V}, I_{IN} = -18 \text{mA}$		- 1		-1.5	v

 $VCC = 5V, Ta = 25^{\circ}C$

IIL should not be measured when preset and clear inputs are low at same time.

With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is grounded.

ESWITCHING CHARACTERISTICS ($V_{CC} = 5V$, $T_a = 25^{\circ}C$)

Item	Symbol	Inputs	Outputs	Test Conditions	min	typ	max	Unit
Maximum clock frequency	∫mor				30	45		MHz
	tplH	Clear	0 5	$C_L = 15 \text{pF}, R_L = 2 \text{k}\Omega$	-	15	20	ns
Propagation delay time	tphl.	Preset Clock	Q. Q			15	20	ns

TESTING METHOD

- 1) Test Circuit
- 1.1) f=++, tPLH, tPHL (Clock→Q,Q)

Notes) 1. Test is put into the each flip-flop

- 2. All diodes are 1S2074 (1).
- 3. C_L includes probe and jig capacitance.

Note) Clock input pulse; $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, pRR = 1MHz, duty cycle=50% and: for f_{max} , $t_{TLH} = t_{THL} \le 2.5$ ns.

1.2) teht, tell (Clear, Preset →Q,Q)

Notes) 1. Test is put into the each flip-flop

- 2. All diodes are 1S2074 (B).
- 3. C_L includes probe and jig capacitance.

Note) Clear and preset input pulse; $t_{TLH} \le 15 \text{ ns}$, $t_{THL} \le 6 \text{ns}$, PRR = 1 MHz

Hitachi Code	DP-14
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.97 g

Weight (reference value)

0.23 g

*Dimension including the plating thickness
Base material dimension

EIAJ

Weight (reference value)

Conforms

0.13 g

*Pd plating

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HTACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

http:semiconductor.hitachi.com/

NorthAmerica URL Europe Asia (Singapore)

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead

Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218

Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

PRECOMMENDED OPERATING CONDITIONS

Ite	em	Symbol	min	typ	max	Unit	
Clock frequency		felock	0		25	MHz	
D.1. (b)	Clock High		25				
Pulse width	Preset Low	t=	25		-	ns	
6	"H"Data		201				
Setup time	"L"Data	tru .	20↑		-	ns	
Hold time	-	l h	5↑	-		ns	

Note) † : The arrow indicates the rising edge.

IFUNCTION TABLE

		Out	puts			
Preset	Clear	Clock	J	K	Q	Q
L	Н	×	×	×	Н	L
Н	L	×	×	×	L	Н
L	L	×	×	×	Н•	н
н	Н	1	L	L	L	Н
Н	Н	1	Н	L	To	ggle
H	Н	1	L	Н	Qo	$\overline{\mathbb{Q}}_0$
Н	Н	1	Н	Н	Н	L
H	Н	L	×	×	Qo	Qσ

Notes) H; high level, L; low level, X; irrelevant

t; transition from low to high level

 Q_0 ; level of Q before the indicated steady-state conditions were established.

 \overline{Q}_o ; complement of Q_o or level of \overline{Q} before the indicated steady-state input conditions were established.

*; This configuration is nonstable, that is, it will not persist where preset and clear inputs return to their inactive (high) level.

■PIN ARRANGEMENT

ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim +75^{\circ}$ C)

Ite	Item		Test Condition	ns	min	typ*	max	Unit
v		VtH			2.0	-	-	V
Input voltage		VIL			-	_	0.8	v
			$V_{CC} = 4.75 \text{V}, V_{IH} = 2 \text{V}, V_{IL} = 0.8$	$V. I_{OH} = -400 \mu A$	2.7	_		v
Output voltage		Vo.	$V_{CC}=4.75V$, $V_{IH}=2V$,	Io L = 8 m A			0.5	
			$V_{IL}=0.8V$	IoL = 4mA	-		0.4	V
	J. K. CK		$V_{CC} = 5.25$ V. $V_{I} = 2.7$ V				20	
	CLR, PR	ItH	VCC 3.25V, VI 2.1V		_	_	40	μA
•	J, K, CK		17 5 0537 17 0 437			-	0.4	
Input current	CLR, PR	IIL	$V_{CC} = 5.25 \text{V}, V_I = 0.4 \text{V}$				0.8	mΑ
	J, K, CK		.,		_	-	0.1	
	CLR, PR	Iı .	$V_{CC}=5.25$ V, $V_I=7$ V			-	0,2	m A
Short-circuit output current		los	$V_{CC} = 5.25 \text{V}$		- 20	_	- 100	mА
Supply current **		I cc	$V_{CC} = 5.25 \text{V}$			4	8	mА
Input clamp voltage		Vik	$V_{CC} = 4.75 \text{V}, I_{IN} = -18 \text{m}.$	A		-	1.5	V

^{*} VCC=5V, Ta=25°C

^{**} With all outputs open, I_{CC} is measured with the Q and $\bar{\mathbb{Q}}$ outputs high in turn. At the time of measurement, the clock input is grounded.

ESWITCHING CHARACTERISTICS (Vcc=5V, $Ta=25^{\circ}C$)

Item	Symbol	Inputs	Outputs	Test Conditions	min	typ	max	Unit
Maximum clock frequency	fnex				25	33	_	MHz
Propagation delay time	tplh	Clear		$C_L = 15 \text{pF}$, $R_L = 2 \text{k}\Omega$		13	25	ns
	tPHL	Preset Clock	Q, Q		_	25	40	ns

IIITESTING METHOD

1) Test Circuit

1.1) fmax, tPLH, tPHL (Clock→Q,Q)

Notes) 1. Test is put into the each flip-flop.

- 2. All diodes are 1S2074 (B).
- 3. C_L includes probe and jig capacitance.

1.2) t_{PHL} , t_{PLH} (Clear, Preset $\rightarrow \mathbf{Q}, \overline{\mathbf{Q}}$)

- - 2. All diodes are 1S2074 (1).
 - 3. C_L includes probe and jig capacitance.

Waveform

Clock input pulse: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, PRR = 1MHz, duty cycle=50% and: for f_{max} , $t_{TLH} = t_{THL} \le 2.5$ ns. Note)

Note) Clear and preset input pulse: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, PRR=1MHz.

Unit: mm 19.20 20.00 Max 16 7.40 Max 6.30 1.3 1.11 Max 7.62 5.06 Max 2.54 Min 0.51 Min $0.25^{+0.13}_{-0.05}$ 0.48 ± 0.10 2.54 ± 0.25 $0^{\circ} - 15^{\circ}$ Hitachi Code DP-16 **JEDEC** Conforms EIAJ Conforms Weight (reference value) 1.07 g

*Dimension	including	the	plating	thickness
Ra	ea mataria	al di	mancia	n

Hitachi Code	FP-16DA
JEDEC	_
EIAJ	Conforms
Weight (reference value)	0.24 g

*Dimension including the plating thickness
Base material dimension

Hitachi Code	FP-16DN
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.15 g

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HTACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

http:semiconductor.hitachi.com/

NorthAmerica URL Europe Asia (Singapore)

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead

Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218

Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

August 1986 Revised March 2000

DM74LS138 • DM74LS139 Decoder/Demultiplexer

General Description

These Schottky-clamped circuits are designed to be used in high-performance memory-decoding or data-routing applications, requiring very short propagation delay times. In high-performance memory systems these decoders can be used to minimize the effects of system decoding. When used with high-speed memories, the delay times of these decoders are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

The DM74LS138 decodes one-of-eight lines, based upon the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented with no external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

The DM74LS139 comprises two separate two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications

All of these decoders/demultiplexers feature fully buffered inputs, presenting only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and simplify system design.

Features

- Designed specifically for high speed: Memory decoders
 - Data transmission systems
- DM74LS138 3-to-8-line decoders incorporates 3 enable inputs to simplify cascading and/or data reception
- DM74LS139 contains two fully independent 2-to-4-line decoders/demultiplexers
- Schottky clamped for high performance
- Typical propagation delay (3 levels of logic)

DM74LS138 21 ns DM74LS139 21 ns

■ Typical power dissipation

DM74LS138 32 mW

DM74LS139 34 mW

Ordering Code:

Order Number	Package Number	Package Description
DM74LS138M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS138SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS138N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
DM74LS139M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS139SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS139N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

Function Tables

DM74LS138

	Inputs			Outputs								
	Enable	S	ele	ct				out	Juis			
G1	G2 (Note 1)	С	В	Α	YO	Y1	Y2	Υ3	Y4	Y5	Y6	Y7
Х	Н	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
L	X	Χ	Χ	Х	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

DM74LS139

	Inputs			Outputs				
Enabl	le Se	lect	Outputs					
G	В	Α	Y0	Y1	Y2	Y3		
Н	Х	Χ	Н	Н	Н	Н		
L	L	L	L	Н	Н	Н		
L	L	Н	Н	L	Н	Н		
L	Н	L	Н	Н	L	Н		
L	Н	Н	Н	Н	Н	L		

H = HIGH Level

L = LOW Level X = Don't Care

Note 1: G2 = G2A + G2B

Logic Diagrams

Absolute Maximum Ratings(Note 2)

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range $0^{\circ}\text{C to } +70^{\circ}\text{C}$

Storage Temperature Range -65°C to +150°C

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM74LS138 Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{OH}	HIGH Level Output Current			-0.4	mA
I _{OL}	LOW Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

DM74LS138 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 3)	Max	Units
V _I	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_{OH} = Max, V_{IL} = Max, V_{IH} = Min$	2.7	3.4		V
V _{OL}	LOW Level	$V_{CC} = Min, I_{OL} = Max, V_{IL} = Max, V_{IH} = Min$		0.35	0.5	V
	Output Voltage	I _{OL} = 4 mA, V _{CC} = Min		0.25	0.4	V
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max$, $V_I = 2.7V$			20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.36	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 4)	-20		-100	mA
I _{CC}	Supply Current	V _{CC} = Max (Note 5)		6.3	10	mA

Note 3: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 5: I_{CC} is measured with all outputs enabled and OPEN.

DM74LS138 Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

		From (Input)	Levels	$R_L = 2 k\Omega$				
Symbol	Parameter	To (Output)	of Delay	C _L =	C _L = 15 pF		Units	
				Min	Max	Min	Max	Ì
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Select to Output	2		18		27	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Select to Output	2		27		40	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Select to Output	3		18		27	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Select to Output	3		27		40	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Output	2		18		27	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Output	2		24		40	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Output	3		18		27	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Output	3		28		40	ns

DM74LS139 Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
Гон	HIGH Level Output Current			-0.4	mA
I _{OL}	LOW Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

DM74LS139 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 6)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	HIGH Level	$V_{CC} = Min, I_{OH} = Max,$	2.7	3.4		V
	Output Voltage	$V_{IL} = Max$, $V_{IH} = Min$	2.1	3.4		V
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max		0.35	0.5	
	Output Voltage	$V_{IL} = Max$, $V_{IH} = Min$		0.33	0.0	V
		I _{OL} = 4 mA, V _{CC} = Min		0.25	0.4	
II	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.36	mA
Ios	Short Circuit Output Current	V _{CC} = Max (Note 7)	-20		-100	mA
Icc	Supply Current	V _{CC} = Max (Note 8)		6.8	11	mA

Note 6: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 7: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 8: $I_{\mbox{\footnotesize CC}}$ is measured with all outputs enabled and OPEN.

DM74LS139 Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

		From (Input)	$R_L = 2 k\Omega$				
Symbol	Parameter	To (Output)	C _L = 15 pF		Units		
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Select to Output		18		27	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Select to Output		27		40	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Output		18		27	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Output		24		40	ns

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.780 0.090 (18.80 - 19.81)(2.286) **16 15 14 13 12 11 10 9** 16 15 INDEX ARFA 0.250 ± 0.010 $\overline{(6.350 \pm 0.254)}$ PIN NO. 1 PIN NO. 1 1 2 3 4 5 6 7 8 1 2 _ IDENT OPTION 01 OPTION 02 $\frac{0.065}{(1.651)}$ $\frac{0.130 \pm 0.005}{(3.302 \pm 0.127)}$ $\frac{0.060}{(1.524)}$ TYP 4º TYP OPTIONAL 0.300 - 0.320 (7.620 - 8.128)0.145 - 0.200 $\overline{(3.683 - 5.080)}$ 95° ± 5° $\frac{0.008 - 0.016}{(0.203 - 0.406)} \text{ TYP}$ 0.020 $\frac{0.280}{(7.112)}$ (0.508)0.125 - 0.150 (3.175 - 3.810) 0.030 ± 0.015 (0.762 ± 0.381) 0.014 - 0.023 0.100 ± 0.010 (0.325 +0.040 -0.015 (0.356 - 0.584) (2.540 ± 0.254) 0.050 ± 0.010 N16E (REV F) (1.270 ± 0.254)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

September 1986 Revised February 2000

DM74ALS00A Quad 2-Input NAND Gate

General Description

This device contains four independent gates, each of which performs the logic NAND function.

Features

- Switching specifications at 50 pF
- \blacksquare Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL
- Functionally and pin for pin compatible with Schottky and low power Schottky TTL counterpart
- Improved AC performance over Schottky and low power Schottky counterparts

Ordering Code:

Order Number	Package Number	Package Description
DM74ALS00AM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74ALS00ASJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74ALS00AN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

 $Y = \overline{AB}$

Inp	Inputs		
Α	В	Y	
L	L	Н	
L	Н	Н	
Н	L	Н	
Н	Н	L	

H = HIGH Logic Level L = LOW Logic Level

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 7V

Operating Free Air Temperature Range 0°C to +70°C

-65°C to +150°C Storage Temperature Range

Typical θ_{JA}

N Package 86.5°C/W 116.0°C/W for actual device operation. M Package

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{OH}	HIGH Level Output Current			-0.4	mA
I _{OL}	LOW Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level	$I_{OH} = -0.4 \text{ mA}$ $V_{CC} = 4.5 \text{V to } 5.5 \text{V}$		V 2			V
	Output Voltage			V _{CC} – 2			V
V _{OL}	LOW Level	V _{CC} = 4.5V			0.35	0.5	V
	Output Voltage	VCC - 4.3V	IOL - O IIIA		0.33	0.5	v
II	Input Current at Maximum	V _{CC} = 5.5V, V _{IH} = 7V				0.1	mA
	Input Voltage	VCC - 3.3 V, VIH - 7 V				0.1	ША
I _{IH}	HIGH Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$				20	μА
I _{IL}	LOW Level Input Current	$V_{CC} = 5.5V, V_{IL} = 0.4V$				-0.1	mA
Io	Output Drive Current	V _{CC} = 5.5V	$V_0 = 2.25V$	-30		-112	mA
I _{CC}	Supply Current	V _{CC} = 5.5V	Outputs HIGH		0.43	0.85	mA
			Outputs LOW		1.62	3	mA

Switching Characteristics

Symbol	Parameter	Conditions	Min	Max	Units
t _{PLH}	Propagation Delay Time	V _{CC} = 4.5V to 5.5V	2	11	no
	LOW-to-HIGH Level Output	$R_L = 500\Omega$	3	"	ns
t _{PHL}	Propagation Delay Time	C _L = 50 pF	٠		
	HIGH-to-LOW Level Output		2	8	ns

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow Package Number M14A

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

May 1986 Revised March 2000

DM74LS02 Quad 2-Input NOR Gate

General Description

This device contains four independent gates each of which performs the logic NOR function.

Ordering Code:

Order Number	Package Number	Package Description
DM74LS02M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
DM74LS02SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS02N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

	Y = A + B	
Inp	uts	Output
Α	В	Y
L	L	Н
L	Н	L
Н	L	L
Н	Н	L

H = HIGH Logic Level L = LOW Logic Level

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range $0^{\circ}\text{C to } + 70^{\circ}\text{C}$ Storage Temperature Range $-65^{\circ}\text{C to } + 150^{\circ}\text{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{OH}	HIGH Level Output Current			-0.4	mA
I _{OL}	LOW Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_{OH} = Max,$ $V_{IL} = Max$	2.7	3.4		V
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_{OL} = Max,$ $V_{IH} = Min$		0.35	0.5	V
		I _{OL} = 4 mA, V _{CC} = Min		0.25	0.4	
II	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.40	mA
Ios	Short Circuit Output Current	V _{CC} = Max (Note 3)	-20		-100	mA
I _{CCH}	Supply Current with Outputs HIGH	V _{CC} = Max		1.6	3.2	mA
I _{CCL}	Supply Current with Outputs LOW	V _{CC} = Max		2.8	5.4	mA

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25$ °C

			Units			
Symbol Parameter		C _L = 15 pF		C _L = 50 pF		
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time		13		18	ns
	LOW-to-HIGH Level Output		13		10	115
t _{PHL}	Propagation Delay Time		10		15	ns
	HIGH-to-LOW Level Output		10		15	115

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

2N7000 / 2N7002 / NDS7002A N-Channel Enhancement Mode Field Effect Transistor

General Description

These N-Channel enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 400mA DC and can deliver pulsed currents up to 2A. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.

Features

- High density cell design for low R_{DS(ON)}.
- Voltage controlled small signal switch.
- Rugged and reliable.
- High saturation current capability.

Absolute Maximum Ratings T = 25°C unless otherwise noted

Symbol	Parameter	2N7000	2N7002	NDS7002A	Units	
V _{DSS}	Drain-Source Voltage		60		V	
V_{DGR}	Drain-Gate Voltage ($R_{GS} \le 1 M\Omega$)		60		V	
V_{GSS}	Gate-Source Voltage - Continuous		±20		V	
	- Non Repetitive (tp < 50μs)		7			
I _D	Maximum Drain Current - Continuous	200	115	280	mA	
	- Pulsed	500	800	1500		
P _D	Maximum Power Dissipation	400	200	300	mW	
	Derated above 25°C	3.2	1.6	2.4	mW/°C	
T _J ,T _{STG}	Operating and Storage Temperature Range	-55	to 150	-65 to 150	°C	
T _L	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds	300				
THERMA	L CHARACTERISTICS				•	
R _{0JA}	Thermal Resistance, Junction-to-Ambient	312.5	625	417	°C/W	

Symbol	Parameter	Conditions	Type	Min	Тур	Max	Units	
OFF CHA	RACTERISTICS							
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 10 \mu\text{A}$		All	60			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$	2N7000			1	μΑ	
			T _J =125°C				1	mA
		$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$		2N7002			1	μΑ
			T _J =125°C	NDS7002A			0.5	mA
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 15 \text{ V}, V_{DS} = 0 \text{ V}$		2N7000			10	nA
		$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$		2N7002 NDS7002A			100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{GS} = -15 \text{ V}, V_{DS} = 0 \text{ V}$		2N7000			-10	nA
		$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$		2N7002 NDS7002A			-100	nA
ON CHAF	RACTERISTICS (Note 1)							
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	2N7000	0.8	2.1	3	V	
		$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		2N7002 NDS7002A	1	2.1	2.5	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_{D} = 500 \text{ mA}$		2N7000		1.2	5	Ω
			T _J =125°C			1.9	9	
		$V_{GS} = 4.5 \text{ V}, I_{D} = 75 \text{ mA}$				1.8	5.3	
		$V_{GS} = 10 \text{ V}, I_{D} = 500 \text{ mA}$		2N7002		1.2	7.5	
			T _J =100°C			1.7	13.5	
		$V_{GS} = 5.0 \text{ V}, I_{D} = 50 \text{ mA}$				1.7	7.5	
			T _J =100C			2.4	13.5	
		$V_{GS} = 10 \text{ V}, I_{D} = 500 \text{ mA}$		NDS7002A		1.2	2	
			T _J =125°C			2	3.5	
		$V_{GS} = 5.0 \text{ V}, I_{D} = 50 \text{ mA}$				1.7	3	
			T _J =125°C			2.8	5	
/ _{DS(ON)}	Drain-Source On-Voltage	$V_{GS} = 10 \text{ V}, I_{D} = 500 \text{ mA}$		2N7000		0.6	2.5	V
		$V_{GS} = 4.5 \text{ V}, I_{D} = 75 \text{ mA}$				0.14	0.4	
		$V_{GS} = 10 \text{ V}, I_{D} = 500 \text{mA}$		2N7002		0.6	3.75	
		$V_{GS} = 5.0 \text{ V}, I_D = 50 \text{ mA}$			0.09	1.5		
		$V_{GS} = 10 \text{ V}, I_{D} = 500 \text{mA}$	NDS7002A		0.6	1		
		$V_{GS} = 5.0 \text{ V}, I_{D} = 50 \text{ mA}$			0.09	0.15		

Symbol	Parameter	Туре	Min	Тур	Max	Units	
ON CHAP	RACTERISTICS Continued (Note 1)		<u> </u>				•
I _{D(ON)}	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, \ V_{DS} = 10 \text{ V}$	2N7000	75	600		mA
		$V_{GS} = 10 \text{ V}, V_{DS} \ge 2 V_{DS(on)}$	2N7002	500	2700		
		$V_{GS} = 10 \text{ V}, V_{DS} \ge 2 V_{DS(on)}$	NDS7002A	500	2700		
g _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 200 mA	2N7000	100	320		mS
		$V_{DS} \ge 2 V_{DS(on)}$, $I_D = 200 \text{ mA}$	2N7002	80	320		
		$V_{DS} \ge 2 V_{DS(on)}$, $I_D = 200 \text{ mA}$	NDS7002A	80	320		
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}, \ V_{GS} = 0 \text{ V}, $ f = 1.0 MHz	All		20	50	pF
C _{oss}	Output Capacitance	f = 1.0 MHz	All		11	25	pF
C _{rss}	Reverse Transfer Capacitance		All		4	5	pF
t _{on} Turn-Or	Turn-On Time	$V_{DD} = 15 \text{ V}, R_{L} = 25 \Omega,$ $I_{D} = 500 \text{ mA}, V_{GS} = 10 \text{ V},$ $R_{GEN} = 25$	2N7000			10	ns
		$\begin{split} &V_{DD} = 30 \; V, \; R_{L} = 150 \; \Omega, \\ &I_{D} = 200 \; mA, \; V_{GS} = 10 \; V, \\ &R_{GEN} = 25 \; \Omega \end{split}$	2N700 NDS7002A			20	
t _{off}	Turn-Off Time	$V_{DD} = 15 \text{ V}, R_{L} = 25 \Omega,$ $I_{D} = 500 \text{ mA}, V_{GS} = 10 \text{ V},$ $R_{GEN} = 25$	2N7000			10	ns
		$\begin{split} & V_{\text{DD}} = 30 \text{ V}, \text{ R}_{\text{L}} = 150 \Omega, \\ & I_{\text{D}} = 200 \text{ mA}, \text{ V}_{\text{GS}} = 10 \text{ V}, \\ & R_{\text{GEN}} = 25 \Omega \end{split}$	2N700 NDS7002A			20	
DRAIN-S	OURCE DIODE CHARACTERISTICS	AND MAXIMUM RATINGS					
I _s	Maximum Continuous Drain-Sour	ce Diode Forward Current	2N7002			115	mA
			NDS7002A			280	
I _{SM}	Maximum Pulsed Drain-Source D	iode Forward Current	2N7002			0.8	Α
			NDS7002A			1.5	
V _{SD}	Drain-Source Diode Forward	V _{GS} = 0 V, I _S = 115 mA (Note 1)	2N7002		0.88	1.5	V
	Voltage	V _{GS} = 0 V, I _S = 400 mA (Note 1)	NDS7002A		0.88	1.2	

Note: 1. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2.0%.

Typical Electrical Characteristics

2N7000 / 2N7002 / NDS7002A

Figure 1. On-Region Characteristics

Figure 2. On-Resistance Variation with Gate Voltage and Drain Current

Figure 3. On-Resistance Variation with Temperature

Figure 4. On-Resistance Variation with Drain Current and Temperature

Figure 5. Transfer Characteristics

Figure 6. Gate Threshold Variation with Temperature

Typical Electrical Characteristics (continued)

2N7000 / 2N7002 /NDS7002A

Figure 7. Breakdown Voltage Variation with Temperature

Figure 8. Body Diode Forward Voltage Variation with Current and Temperature

Figure 9. Capacitance Characteristics

Figure 10. Gate Charge Characteristics

Figure 11. Switching Test Circuit

Figure 12. Switching Waveforms

TO-92 Tape and Reel Data and Package Dimensions, continued

TO-92 Reeling Style Configuration: Figure 2.0

Machine Option "A" (H)

Style "A", D26Z, D70Z (s/h)

Machine Option "E" (J)

Style "E", D27Z, D71Z (s/h)

TO-92 Radial Ammo Packaging Configuration: Figure 3.0

TO-92 Tape and Reel Data and Package Dimensions TO-92 (FS PKG Code 92, 94, 96) Scale 1:1 on letter size paper Dimensions shown below are in: inches [millimeters] Part Weight per unit (gram): 0.1977 0.185 4.70 0.170 4.32 TO-92 (92,94,96) 96 94 В В 0.76 В G Ε Ø0.060 [Ø1.52] 0.010 [0.254] DEEP В S С 0.615 0.570 5.0°TYP.

January 2000, Rev. B

SOT-23 Tape and Reel Data and Package Dimensions, continued

SOT-23 Embossed Carrier Tape

Configuration: Figure 3.0

User Direction of Feed	

Dimensions are in millimeter														
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	т	Wc	Тс
SOT-23 (8mm)	3.15 +/-0.10	2.77 +/-0.10	8.0 +/-0.3	1.55 +/-0.05	1.125 +/-0.125	1.75 +/-0.10	6.25 min	3.50 +/-0.05	4.0 +/-0.1	4.0 +/-0.1	1.30 +/-0.10	0.228 +/-0.013	5.2 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

Sketch A (Side or Front Sectional View)
Component Rotation

Sketch B (Top View)
Component Rotation

Sketch C (Top View)

Component lateral movement

SOT-23 Reel Configuration: Figure 4.0

	Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)	
8mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	2.165 55	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9	
8mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 100	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9	

SOT-23 Tape and Reel Data and Package Dimensions, continued

SOT-23 (FS PKG Code 49)

Scale 1:1 on letter size paper Dimensions shown below are in: inches [millimeters]

Part Weight per unit (gram): 0.0082

NOTE: UNLESS OTHERWISE SPECIFIED

- 1. STANDARD LEAD FINISH 150 MICROINCHES / 3.81 MICROMETERS MINIMUM TIN / LEAD (SOLDER) ON ALLOY 42
- 2. REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE G, DATED JUL 1993

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT™ QFET™ FACT Quiet Series™ QS™

 $\begin{array}{lll} \mathsf{FAST}^{\circledast} & \mathsf{Quiet}\,\mathsf{Series^{\mathsf{TM}}} \\ \mathsf{FASTr^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}3} \\ \mathsf{GTO^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}6} \\ \mathsf{HiSeC^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}8} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.