In [36]: import numpy as np
 import pandas as pd
 import seaborn as sns
 import matplotlib.pyplot as plt
 from sklearn import preprocessing, svm
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LinearRegression

Out[37]:		date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	vie
	0	2014- 05-02 00:00:00	3.130000e+05	3.0	1.50	1340	7912	1.5	0	
	1	2014- 05-02 00:00:00	2.384000e+06	5.0	2.50	3650	9050	2.0	0	
	2	2014- 05-02 00:00:00	3.420000e+05	3.0	2.00	1930	11947	1.0	0	
	3	2014- 05-02 00:00:00	4.200000e+05	3.0	2.25	2000	8030	1.0	0	
	4	2014- 05-02 00:00:00	5.500000e+05	4.0	2.50	1940	10500	1.0	0	
	4595	2014- 07-09 00:00:00	3.081667e+05	3.0	1.75	1510	6360	1.0	0	
	4596	2014- 07-09 00:00:00	5.343333e+05	3.0	2.50	1460	7573	2.0	0	
	4597	2014- 07-09 00:00:00	4.169042e+05	3.0	2.50	3010	7014	2.0	0	
	4598	2014- 07-10 00:00:00	2.034000e+05	4.0	2.00	2090	6630	1.0	0	
	4599	2014- 07-10 00:00:00	2.206000e+05	3.0	2.50	1490	8102	2.0	0	
			_							

4600 rows × 18 columns

```
In [38]: dt=dt[['sqft_living','sqft_lot']]
dt.columns=['Liv','Lot']
```

In [39]: dt.head(10)

Out[39]:

	Liv	Lot
0	1340	7912
1	3650	9050
2	1930	11947
3	2000	8030
4	1940	10500
5	880	6380
6	1350	2560
7	2710	35868
8	2430	88426
9	1520	6200

```
In [40]: sns.lmplot(x='Liv',y='Lot',data=dt,order=2,ci=None)
```

Out[40]: <seaborn.axisgrid.FacetGrid at 0x28e4e82b5b0>

In [41]: dt.info()

```
In [42]: dt.describe()
Out[42]:
                         Liv
                                     Lot
                  4600.000000 4.600000e+03
           count
                  2139.346957 1.485252e+04
           mean
                   963.206916 3.588444e+04
             std
                   370.000000 6.380000e+02
            min
            25%
                  1460.000000 5.000750e+03
            50%
                  1980.000000 7.683000e+03
            75%
                  2620.000000 1.100125e+04
            max 13540.000000 1.074218e+06
In [43]: dt.fillna(method='ffill')
Out[43]:
                 Liv
                       Lot
             0 1340
                      7912
                3650
                      9050
                1930
                     11947
                2000
                      8030
                1940
                     10500
           4595 1510
                      6360
           4596 1460
                      7573
                      7014
           4597
                3010
           4598
                2090
                      6630
           4599 1490
                      8102
          4600 rows × 2 columns
In [44]:
          x=np.array(dt['Liv']).reshape(-1,1)
          y=np.array(dt['Lot']).reshape(-1,1)
In [45]: |dt.dropna(inplace=True)
          C:\Users\91903\AppData\Local\Temp\ipykernel_13088\735218168.py:1: SettingWith
          CopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame
          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
          table/user guide/indexing.html#returning-a-view-versus-a-copy (https://panda
          s.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ver
          sus-a-copy)
            dt.dropna(inplace=True)
```

```
In [46]: X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    reg=LinearRegression()
    reg.fit(X_train,y_train)
    print(reg.score(X_test,y_test))
```

0.0470503657560466

```
In [47]: y_pred=reg.predict(X_test)
    plt.scatter(X_test,y_test,color='b')
    plt.plot(X_test,y_pred,color='k')
    plt.show()
```



```
In [48]: dt500=dt[:][:500]
sns.lmplot(x="Liv",y="Lot",data=dt500,order=1,ci=None)
```

Out[48]: <seaborn.axisgrid.FacetGrid at 0x28e4ead0eb0>


```
In [49]: dt500.fillna(method='ffill',inplace=True)
    X=np.array(dt500['Liv']).reshape(-1,1)
    y=np.array(dt500['Lot']).reshape(-1,1)
    dt500.dropna(inplace=True)
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
    reg=LinearRegression()
    reg.fit(X_train,y_train)
    print("Regression:",reg.score(X_test,y_test))
    y_pred=reg.predict(X_test)
    plt.scatter(X_test,y_test,color="b")
    plt.plot(X_test,y_pred,color='k')
    plt.show()
```

Regression: 0.1176114702593889


```
In [50]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    mode1=LinearRegression()
    mode1.fit(X_train,y_train)
    y_pred=mode1.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: 0.1176114702593889

#conclusion: Linear regression is best fit for the model

In []: