

트랜스포머 NAS

성명 신익수

소속 한국전자통신연구원

SUBJECT

인공지능 기술의 대중화 (Al Democratization)를 위한 TANGO 커뮤니티 3회 컨퍼런스

01

2 연구 문제 설정

07

3 신규 NAS 기술

13

Classic NAS

Generation N

Generation N+1

OneShot NAS

Once-for-all Style OneShot NAS

Once-for-all Style Classic NAS OneShot NAS OneShot NAS Search Once Search Once Search Once **Train Once Train Twice** Train Many

Classic NAS

OneShot NAS

Once-for-all Style
OneShot NAS

다양한 구조 생성 가능

블록 단위 구조

연산의 크기만 조절

OneShot NAS

구조 다양성

고속 탐색

Input

각 레이어마다 연산자 선택권

Output

고속 탐색의 비결은 연산자들 간의 가중치 공유 구조

: extra part 1

: extra part 2

 $O_{small} \subset O_{bigger}$

Filter Size

The number of channels

The number of layers

다른 종류의 연산자들 간에는 가중치 공유 구조 불가

Naïve Approach

Approach 1. Convex Combination

$$\alpha * y_{conv}(x) + (1 - \alpha) * y_{att}(x)$$

where $\alpha \in (0, 1)$, trainable

Approach 2. Random Sampling

 $\alpha \sim Uniform Distribution$

Naïve Approach

Approach 1. Convex Combination

α * α의 수렴 실패

where $\alpha \in (0,1)$, trainable

Approach 2. Random Sampling

신규 NAS 기술

<u>매 스텝마다 연산자 가중 샘플링</u> (Weighted Samling)

<u>샘플링 확률 실시간 업데이트</u>

$$x_{n} = \begin{cases} (\alpha + T) \cdot F(x_{n-1}) & \text{if } s=1 \\ T: 1 - \alpha. detach() & \\ (\beta + T) \cdot G(x_{n-1}) & \text{if } s=0 \\ T: 1 - \beta. detach() & \\ s \sim \text{Bernoulli}(\alpha) & \end{cases}$$

 α : Convolution 샘플링 확률

 $\alpha + \beta = 1$, $\alpha, \beta \in (0,1)$

β: Transformer 샘플링 확률

신규 NAS 기술

$$\alpha \cdot F(x_{n-1}) + (1-\alpha) \cdot G(x_{n-1})$$

$$(\alpha + T) \cdot F(x_{n-1})$$

T: $1 - \alpha$. detach()

forward:

$$x_n = (\alpha + (1 - \alpha)) * ops(x_{n-1})$$
$$= ops(x_{n-1})$$

backward:

$$\frac{\partial x_n}{\partial \alpha} = \text{ops}(x_{n-1}) + 0 - 0$$
$$= \text{ops}(x_{n-1})$$

신규 NAS 기술

실험 결과

Conv+Transformer (proposed)

