Skrivtid: 8.00 - 13.00. Tillåtna hjälpmedel: Bara pennor, radergummi, linjal och papper (det sistnämnda tillhandahålles). För godkänd kurs krävs att alla explicita kursmål är godkända samt att tentamenspoängen är minst 18 (inklusive ev bonuspoäng). För betyg 4 eller 5 krävs dessutom att tentamenspoängen är minst 25 resp minst 32. För varje uppgift anges vilket/vilka explicita kursmål som uppgiften berör.

Uppgifterna 1-5 behandlar satslogik. I dessa uppgifter används den satslogiska signaturen $\sigma = \{A, B, C\}$.

- **1.** [Mål 1, 3, 4]. Låt $\sigma = \{A, B, C\}$ vara en satslogisk signatur.
 - (a) Redogör för hur formler i LP(σ) byggs upp.
 - (b) Förklara vad som menas med en σ -struktur.
 - (c) Låt φ vara en formel i LP(σ). Vad menas med att φ är en tautologi?
 - (d) Låt $\{\psi_1, \psi_2, \dots, \psi_n\}$ vara en mängd av formler och låt φ vara en formel i LP(σ). Vad menas med att $\{\psi_1, \psi_2, \dots, \psi_n\} \models \varphi$? (4)
- **2.** [Mål 5.] Skriv följande sats på konjunktiv normalform (KNF), och på disjunktiv normalform (DNF). Förklara hur du kommit fram till ditt svar!

$$(\neg (A \lor B) \longrightarrow C) \longrightarrow (A \land \neg B) \tag{4}$$

3. [Mål 2.] Konstruera formella bevis i naturlig deduktion för följande påståenden.

(a)
$$A \longrightarrow B \vdash \neg (A \land \neg B)$$

(b) $A, B \lor C \vdash (A \land B) \lor (A \land C)$ (4)

4. [Mål 4.] Avgör om följande slutledningar på formen $\Gamma \models \sigma$ är giltiga. För varje slutledning som inte är giltig, ange en σ -struktur som är motexempel. För varje slutledning som är giltig, konstruera att bevis i naturlig deduktion som vittnar om att $\Gamma \vdash \sigma$.

(a)
$$A \longrightarrow (B \lor C) \models (A \longrightarrow B) \land C$$

(b) $(A \longrightarrow B) \lor C \models A \longrightarrow (B \lor C)$ (4)

5. [Mål 6.] Avgör om följande påståenden på formen $\Gamma \vdash \tau$ gäller, dvs om τ är bevisbar i naturlig deduktion från premisserna i Γ .

(a)
$$A \lor B \vdash (B \longrightarrow A) \lor (A \longrightarrow B)$$
.
(b) $\neg (A \lor B) \longrightarrow C$, $\neg A \land \neg B \vdash \neg ((A \land B) \longrightarrow C)$.

Motivera dina svar noggrant!

(4)

FLER UPPGIFTER PÅ NÄSTA SIDA!

Uppgifterna 6-11 behandlar predikatlogik, dvs första ordningens logik.

- **6.** [Mål 7, 9, 10.] Låt $\sigma = \langle \overline{c}; \overline{F}; \overline{P} \rangle$ vara signatur med ställigheterna $\langle 0; 1; 2 \rangle$.
 - (a) Ange alla slutna termer i språket $LR(\sigma)$.
 - (b) Ange alla slutna atomära formler i språket $LR(\sigma)$.
 - (c) Låt τ vara formeln $\overline{P}(\overline{c}, \overline{F}(\overline{c})) \wedge \exists x \forall y (x \doteq y \vee \overline{P}(x, y))$. Ange två σ -strukturer \mathcal{A} och \mathcal{B} så att $\mathcal{A} \models \tau$ och $\mathcal{B} \not\models \tau$.
- 7. [Mål 8.] Låt $\sigma = \langle ; \overline{F}; \overline{P}, \overline{Q} \rangle$ vara signatur med ställigheterna $\langle ; 2 ; 1, 2 \rangle$. Betrakta σ strukturen $\mathcal{N} = \langle \mathbf{N}, F, P, Q \rangle$, där F(n,m) = n + m, $P(n) \iff n$ är ett primtal, och $Q(n,m) \iff n < m$. Översätt följande till predikatlogiska slutna formler i språket $LR(\sigma)$.
 - (a) Varje primtal är summan av två olika naturliga tal som båda är mindre än primtalet.
 - (b) Det finns inget största primtal. (2
- **8.** [Mål 12.] Låt $\sigma = \langle ; ; \overline{P}, \overline{Q}, \overline{R} \rangle$ vara signatur med ställigheterna $\langle ; ; 1, 1, 1 \rangle$. Konstruera formella bevis i naturlig deduktion för följande påståenden.

(a)
$$\forall x (\overline{P}(x) \longrightarrow \overline{R}(x)), \forall x (\overline{P}(x) \longrightarrow \neg \overline{Q}(x)), \exists x \overline{P}(x) \vdash \exists x (\overline{R}(x) \land \neg \overline{Q}(x))$$

(b)
$$\exists x (\overline{P}(x) \land \neg \overline{Q}(x)), \forall x (\overline{R}(x) \longrightarrow \overline{Q}(x)), \forall x \forall y (\neg \overline{R}(x) \longrightarrow \overline{P}(y)) \vdash \forall y \overline{P}(y)$$
 (4)

9. [Mål 11, 12.] Låt $\sigma = \langle \ \overline{c} \ ; \ \overline{P}, \overline{Q} \ \rangle$ vara signatur med ställigheterna $\langle \ 0; \ ; 1, \ 1 \rangle$. Avgör om följande slutledningar på formen $\Gamma \models \sigma$ är giltiga. För varje slutledning som inte är giltig, ange en σ -struktur som är motexempel. För varje slutledning som är giltig, konstruera att bevis i naturlig deduktion som vittnar om att $\Gamma \vdash \sigma$.

(a)
$$\models (\forall x \overline{P}(x) \longrightarrow \forall x \overline{Q}(x)) \longleftrightarrow \forall x (\overline{P}(x) \longrightarrow \overline{Q}(x))$$

(b)
$$\models \exists x (\overline{P}(x) \land \overline{Q}(\overline{c})) \longleftrightarrow \exists x \overline{P}(x) \land \overline{Q}(\overline{c})$$
 (4)

10. [Mål 9, 14.] Låt $\sigma = \langle ; ; \overline{R} \rangle$ av ställigheter $\langle ; ; 2 \rangle$. Låt $\Gamma = \{ \varphi_1, \varphi_2, \varphi_3 \}$, där

$$\varphi_{1} = \forall x \overline{R}(x, x)
\varphi_{2} = \forall x \forall y \forall z (\overline{R}(x, y) \land \overline{R}(y, z) \longrightarrow \overline{R}(x, z))
\varphi_{3} = \forall x \forall y (\overline{R}(x, y) \land \overline{R}(y, x) \longrightarrow x \stackrel{.}{=} y)$$

- (a) Ange en modell för Γ .
- (b) Visa att Γ är oberoende, dvs visa att ingen av formlerna i Γ kan bevisas i naturlig deduktion från de övriga två formlerna. (4)
- 11. [Mål 13.] Formulera sundhetssatsen och fullständighetssatsen för första ordningens logik samt förklara i ord vad de innebär. Ange gärna exempel på var i tentauppgifterna du har använt dig av någon av satserna, eller hur man skulle kunna använda dem. (2)