DATA SCIENCE @ SCALE

VISUAL DESIGN WITH SERVERLESS SPARK ON KUBERNETES

Raj Bains CEO SimpleDataLabs raj.bains@simpledatalabs.com

For Modelers, Data Engineers & Analysts

Agenda

- 1. Data Science at Scale issue
- 2. POV Integrated Design & Execution
- 3. DEMO Data Science via Integration
- 4. Resolution
 - Data Science at scale
 - 2. ETL in the cloud
- 5. Building Solution on AWS/Kubernetes
 - 1. Technology choices
 - 2. Application Architecture
 - 3. Dynamic Clusters
- 6. Conclusion
 - 1. Skills
 - Business Value

Problem: ML model to market time

POV: Move beyond Data Lakes

Ancient History: Tools on EDW

- Visual Data Pipelines
- Data Catalog
- Lineage

- Interactive Exploration
- Star Schema
- Cube Definition

- Data Exploration
- Visual Analytics Pipelines

ETL BI ML

SQL EDW

Recent History: Scripts on Big Data

- Visual Data Pipelines
- Data Catalog
- Lineage

- Interactive Exploration
- Star Schema
- Cube Definition

- Data Exploration
- Visual Analytics Pipelines

ETL BI ML

APACHE SPARK

Future: Collaborative Designer

- Visual Data Pipelines
- Data Catalog
- Lineage

- Interactive Exploration
- Star Schema
- Cube Definition

- Data Exploration
- Visual Analytics Pipelines

ETL BI ML

APACHE SPARK

Features

DEMO TIME

BUILDING A SCIENCE/NOT-SCIENCE CLASSIFIER

20 Newsgroup Dataset

ADVANCED ANALYTICS MARKET

WHERE DOES A SOLUTION LIKE THIS FIT?

Solving ML model to market time

Market Fit: Simplicity & Scale

Market Fit: Simplicity & Scale

Gartner Magic Quadrant 2018

ABILITY TO EXECUTE

Visual Tools Struggle with Scale

KNIME

Performance and scalability: Reference customers reported issues with large-scale deployments and performance on large datasets. A KNIME Server deployment is currently limited to a single host.

Scalable Platforms Struggle with Usability

H₂0

- •Ease of use: **H20.ai's toolchain is primarily code-centric.** Although this typically increases flexibility and scalability, it impedes ease of use and reuse.
- •Data preparation and interactive visualization: These capabilities are problematic for all code-centric platforms, of which H2O.ai's is one. Nonetheless, H2O.ai's platform will prove challenging for clients expecting more interactivity and better, easier-to-use data ingestion, preparation and visualization capabilities. Capabilities for the entire early part of the data pipeline are far less developed than the quantitative parts of H2O.ai's offerings.

DATABRICKS

Debugging capabilities: Most customers use Databricks for "do it yourself" machine learning. In addition to the debugging capabilities that Databricks already offers, reference customers wish the vendor could provide debugging features better suited to the needs of data scientists. **Databricks would also benefit from an integrated development environment (IDE)** with comprehensive facilities for enterprise-grade debugging, development and version control, in addition to the currently offered IDE on GitHub that leaves many reference customers dissatisfied.

ETL MARKET

WHERE DOES A SOLUTION LIKE THIS FIT?

Solving ETL move to the cloud

PRODUCT DESIGN

ARCHITECTING THE APPLICATION

SDL App Structure

Google Kubernetes Orchestration

Whole Stack - Tightly Coupled Core

BUILDING ON KUBERNETES

Developing Serverless Spark

Kubernetes Architecture

Kubernetes Minimal Vocabulary

- Master, Node Node types in Cluster
- Pods Collections of Containers
- Deployment Pod Spec
- Persistent Volumes
- Secrets
- Jobs
 - CronJob
- DaemonSet / Sidecar
- Scheduling
 - Labels
 - Taints

Kubernetes Deployment Spec

```
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: spark-deployment
spec:
  replicas: 1
  template:
    metadata:
      name: spark-pod
      labels:
        component: spark-pod
    spec:
      containers:
        - name: sparkmaster
          image: {{ spark image repository uri }}
          ports:
            - containerPort: 8081
            - containerPort: 7077
            - containerPort: 6066
          command: ["/start-master.sh"]
          args: ["7077", "8081"]
```

```
- name: sparkworker1
  image: {{ spark image repository uri }}
 ports:
    - containerPort: 8082
    - containerPort: 7078
  command: ["/start-worker.sh"]
  args: ["spark://spark-master:7077", "8082"]
 volumeMounts:
    - mountPath: /app/session
      name: session-volume-session-1
  resources:
   requests:
      cpu: 700m
     memory: 2048Mi
```


Which technology to use?

Deployment Tools

Ansible and Terraform

Deployment Strategy

Dynamic or Static or Mix

Orchestration

Mesos or K8s or Managed K8s

Base Technology

VM or Containers

Setting up K8s on AWS

Setting up DNS and Pods - Ansible

Dynamic cluster spin-up

Spinning up New Clusters

Latency of Spark Cluster spin-up

Passing Credentials to Workflows

Logging, Monitoring

- Logging
 - Sidecar
- Monitoring
 - Prometheus
 - Separate for Spark

CONCLUSION

- SKILLS TO BUILD
- BUSINESS VALUE

Skills to build

Technology Direction

Business Value and Impact

QUESTIONS

