Ch2. Mathematical Toolbox ST4240, 2016/2017 Version 0.1

Alexandre Thiéry

Department of Statistics and Applied Probability

Outline

- 1 Linear Algebra
- 2 Multivariate Gaussian Distribution
- 3 Multivariate Calculus
- 4 Optimization
- 5 (Stochastic) Gradient Descent in Machine Learning

Linear algebra: why do we care?

- For linear models!
- We will be doing multivariate calculus.
- Will need to understand calculus in high-dimensions
- Gaussian random variables in high-dimensions

Scalar product

lacksquare For $u,v\in\mathbb{R}^d$ the scalar product is defined as

$$\langle u, v \rangle = \sum_{i=1}^{d} u_i \, v_i = u^{\top} \, v$$

■ For $u, v \in \mathbb{R}^d$ and matrix $A \in \mathbb{R}^{d \times d}$

$$\langle u, A v \rangle = \sum_{1 \le i, j \le d} A_{i,j} u_i v_j = u^\top A v$$

■ For $u \in \mathbb{R}^p$, $v \in \mathbb{R}^q$, and matrix $A \in \mathbb{R}^{p \times q}$

$$\langle u, Av \rangle = \langle A^{\top}u, v \rangle$$

Inverse

 \blacksquare For two matrices A, B we have

$$(A B)^{\top} = B^{\top} A^{\top}$$
 and $(A B)^{-1} = B^{-1} A^{-1}$

■ [Exercise] transpose and inverse interact as follows

$$\left(A^{\top}\right)^{-1} = \left(A^{-1}\right)^{\top}$$

Determinant

■ The determinant satisfies the identity

$$\det(A B) = \det(A) \det(B)$$
 and $\det(A^{-1}) = (\det(A))^{-1}$.

■ The determinant of a **triangular matrix** is the product of the elements on the diagonal

$$\det \begin{pmatrix} 2 \\ 6 & 1 \\ -8 & 5 & 3 \end{pmatrix} = 2 \times 1 \times 3 = 6$$

Orthogonal matrices

- A matrix $O \in \mathbb{R}^{d \times d}$ is called orthogonal if $O O^{\top} = I$.
- Equivalently, a matrix $O \in \mathbb{R}^{d \times d}$ is orthogonal if $O^{-1} = O^{\top}$.
- Equivalently, a matrix $O \in \mathbb{R}^{d \times d}$ is orthogonal if it rows (or column) have norm 1 and are perpendicular.
- lacksquare If O is orthogonal, for any vector v we have

$$||Ov|| = ||v||.$$

■ [Exercise] prove that the following is orthogonal

$$O = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Symmetric matrices

- A matrix $S \in \mathbb{R}^{d \times d}$ is called **symmetric** if $M_{i,j} = M_{j,i}$ for all $1 \leq i, j \leq d$.
- lacktriangle A symmetric matrix M is diagonalizable in an orthogonal basis,

$$M = O D O^{\top}$$

for an orthogonal matrix O and a diagonal matrix

$$D = \operatorname{Diag}(\lambda_1, \dots, \lambda_d).$$

The $\{\lambda_i\}_{i=1}^d$ are the **eigenvalues** of M.

Positive Symmetric matrices

■ A symmetric matrix $S \in \mathbb{R}^{d \times d}$ is positive semi-definite if for any vector $v \in \mathbb{R}^d$ we have

$$\langle x, Sx \rangle \ge 0.$$

Caution: elements of S do not need to be non-negative.

- [Exercise] a covariance matrix is positive semi-definite.
- [Exercise] the sum of two positive definite matrices is positive definite
- A symmetric matrix $S \in \mathbb{R}^{d \times d}$ is positive definite if for any vector $v \neq 0$ we have

$$\langle x, Sx \rangle > 0.$$

■ Symmetric matrix S is positive definite if $\lambda_i > 0$ for all i.

Example

■ [Exercise] is the matrix

$$M = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

positive definite? Is it positive semi-definite?

Cholesky Decomposition

lacksquare A symmetric positive definite matrix S can always be decomposed as

$$S = L \, L^\top$$

where L is a lower triangular matrix. This is the Cholesky decomposition of S.

■ For example,

$$S = \begin{pmatrix} 4 & 12 & -16 \\ 12 & 37 & -43 \\ -16 & -43 & 98 \end{pmatrix} = \begin{pmatrix} 2 & & \\ 6 & 1 & \\ -8 & 5 & 3 \end{pmatrix} \begin{pmatrix} 2 & 6 & -8 \\ & 1 & 5 \\ & & 3 \end{pmatrix}$$

■ [Exercise] compute the determinant of S.

Outline

- 1 Linear Algebra
- 2 Multivariate Gaussian Distribution
- 3 Multivariate Calculus
- 4 Optimization
- 5 (Stochastic) Gradient Descent in Machine Learning

Multivariate Gaussian Distribution: why do we care?

- A very good model in many situations
- The simplest distribution in high-dimension
- Tractable computations
- The basis of many more advanced models

Multivariate Gaussian Density

■ A Gaussian distribution in \mathbb{R}^d with mean $\mu \in \mathbb{R}^d$ and covariance $\Gamma \in \mathbb{R}^{d \times d}$ has density, if Γ is invertible, given by

$$\frac{1}{(2\,\pi)^{d/2}\,\det(\Gamma)^{1/2}}\times\exp\left\{-\frac{1}{2}\,\left\langle[x-\mu],\Gamma^{-1}\,[x-\mu]\right\rangle\right\}$$

Multivariate Gaussian Density

■ If ξ is a Gaussian random variable in \mathbb{R}^d with mean $\mu \in \mathbb{R}^d$ and covariance $\Gamma \in \mathbb{R}^{d \times d}$ then for a matrix $A \in \mathbb{R}^{n \times d}$ and vector $b \in \mathbb{R}^n$ the random variable $Y = A \xi + b$ has means

$$Mean(Y) = A \mu + b$$

and covariance

$$\mathsf{Cov}(Y) = A \, \Gamma \, A^{\top}$$

Gaussian simulation

■ Let $\Gamma \in \mathbb{R}^{d \times d}$ be a covariance matrix and $\mu \in \mathbb{R}^d$. Consider the Cholesky decomposition

$$\Gamma = L L^{\top}$$
.

■ [Exercise] the random variable $\boldsymbol{\xi} = \boldsymbol{L}\,\boldsymbol{\zeta} + \boldsymbol{\mu}$, with $\boldsymbol{\zeta} = \mathbf{N}\,(0,I_d)$ is a Gaussian random variable with mean $\boldsymbol{\mu}$ and covariance Γ .

Outline

- 1 Linear Algebra
- 2 Multivariate Gaussian Distribution
- 3 Multivariate Calculus
- 4 Optimization
- 5 (Stochastic) Gradient Descent in Machine Learning

Multivariate Calculus: why do we care?

- Data Mining is all about exploring high-dimensional data
- We need to understand how to describe functions in high-dimensional spaces
- Most importantly: we will need to optimize high-dimensional functions:

$$F: \mathbb{R}^d \to \mathbb{R}$$

Gradient

lacksquare Consider a function $f:\mathbb{R}^d o \mathbb{R}.$ The gradient is defined as

$$\nabla f(x) = (\partial_{x_1} f(x), \dots, \partial_{x_d} f(x))$$

- Intuitively: $f(x + \varepsilon) \approx f(x) + \langle \nabla f(x), \varepsilon \rangle$
- Example: $f(x) = -\frac{1}{2} (x_1^2 + \ldots + x_d^2)$.

Gradient: important examples

Exercise] Let $v \in \mathbb{R}^d$ and $f(x) = \langle v, x \rangle$,

$$\nabla f(x) = \dots$$

lacksquare [Exercise] Let $M \in \mathbb{R}^{d \times d}$ and $g(x) = \frac{1}{2} \ \langle x, Mx \rangle$,

$$\nabla g(x) = \dots$$

Hessian matrix

- Let $f: \mathbb{R}^d \to \mathbb{R}$ be a function
- The Hessian of f at x is the symmetric matrix $\operatorname{Hess}(x) \in \mathbb{R}^{d \times d}$ defined as

$$\operatorname{Hess}(x)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}(x)$$

- Intuitively: $f(x+\varepsilon) \approx f(x) + \langle \nabla f(x), \varepsilon \rangle + \frac{1}{2} \ \langle \varepsilon, \operatorname{Hess}(x) \varepsilon \rangle$
- [Exercise] what is the Hessian of $f(x) = \langle v, x \rangle$?
- [Exercise] what is the Hessian of $g(x) = \frac{1}{2} \langle x, Mx \rangle$?

Outline

- 1 Linear Algebra
- 2 Multivariate Gaussian Distribution
- 3 Multivariate Calculus
- 4 Optimization
- 5 (Stochastic) Gradient Descent in Machine Learning

Optimization: why do we care?

- Data Mining is a mix of data visualization, building appropriate models and efficiently fit them to (large) datasets
- Fitting statistical models to data can be formulated, in many cases, as an optimization problem.

Convex function

■ A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if for any $x,y \in \mathbb{R}^d$ and $0 < \lambda < 1$ we have

$$f(\lambda x + (1 - \lambda) y) \leq \lambda f(x) + (1 - \lambda) f(y)$$
.

Strict Convexity

■ A function $f: \mathbb{R}^d \to \mathbb{R}$ is strictly convex if for any $x \neq y \in \mathbb{R}^d$ and $0 < \lambda < 1$ we have

$$f(\lambda x + (1 - \lambda) y) < \lambda f(x) + (1 - \lambda) f(y)$$
.

Convex function: second derivative criterion

- Consider a function $f: \mathbb{R}^d \to \mathbb{R}$.
- If the Hessian matrix $\operatorname{Hess}(x)$ is positive semi-definite for every $x \in \mathbb{R}^d$ then the function is convex.
- If the Hessian matrix $\operatorname{Hess}(x)$ is positive definite for every $x \in \mathbb{R}^d$ then the function is strictly convex.

■ [Exercise] the sum of two convex functions is convex

Optimization and Convexity

■ If a strictly convex function has a local minimum, this minimum is the unique global minimum.

- lacksquare Consider $f:\mathbb{R}^d o \mathbb{R}$ a function to minimize.
- For a learning rate $\eta > 0$ (or step-size) the gradient descent algorithm is as follows,

$$x_{n+1} = x_n - \eta \, \nabla f(x_n)$$

Gradient descent can get stuck!

This cannot happen when optimizing a convex function!

On the Learning Rate

- Gradient descent reads $x_{n+1} = x_n \eta \nabla f(x_n)$.
- [Exercise] Gradient descent for $f(x) = \frac{1}{2}x^2$: influence of η ?

- We would like to solve the equation A x = b for a positive definite matrix $A \in \mathbb{R}^d$.
- Consider the

$$f(x) = \frac{1}{2} \langle Ax - b, A^{-1}(Ax - b) \rangle$$

- \blacksquare [Exercise] prove that the function f is strictly convex.
- **Exercise**] prove that the solution x^* of Ax = b is the unique global minimum of f.
- [Exercise] write the gradient descent algorithm for minimizing the function f.

Outline

- 1 Linear Algebra
- 2 Multivariate Gaussian Distribution
- 3 Multivariate Calculus
- 4 Optimization
- 5 (Stochastic) Gradient Descent in Machine Learning

Performance and Loss function

lacktriangle Performance of a parameter heta can be quantified by

$$F(\theta) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{Loss}(\theta, x_i, y_i) + \Omega(\theta)$$

where

- **Loss**(\cdot) quantifies the fit to the data
- $\{x_i, y_i\}_{i=1}^N$ are training examples
- lacksquare $\Omega(\theta)$ is a regularisation term
- \blacksquare One would to minimise the function F,

$$\widehat{\theta} = \mathbf{argmin} \ F(\theta)$$

Regularized Linear Regression

 \blacksquare In linear regression, the least square estimate $\widehat{\beta}$ minimises the function

$$F(\beta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \langle x_i, \beta \rangle)^2.$$

Note that there is no regularisation term.

lacksquare For ridge regression, the estimate $\widehat{\beta}_{\mathrm{ridge}}$ minimises

$$F_{\text{ridge}}(\beta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \langle x_i, \beta \rangle)^2 + \lambda \sum_{i=1}^{d} \beta_i^2$$

[**Exercise**] find $\nabla F_{\text{ridge}}(\beta)$.

lacksquare For LASSO regression, the estimate \widehat{eta}_{lasso} minimises

$$F_{\text{ridge}}(\beta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \langle x_i, \beta \rangle)^2 + \lambda \sum_{i=1}^{d} |\beta_i|$$

Regularized Logistic Regression

- Training examples: $\{x_i, y_i\}_{i=1}^N$ with $x_i \in \mathbb{R}^d$
- $y_i \in \{+1, -1\}$
- Regularized logistic regression: $\widehat{\beta} \in \mathbb{R}^d$ minimises

$$F(\beta) = \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{-y_i \langle x_i, \beta \rangle} \right) + \lambda \sum_{i=1}^{d} \beta_i^2$$

- [Exercise] write down the gradient descent update for fitting a regularized logistic regression.
- [Exercise] the function $\beta \mapsto F(\beta)$ is convex.

Stochastic Gradient Descent

■ If $N \gg 1$, computing the gradient of F can be expensive,

$$\nabla F(\beta) = \frac{1}{N} \sum_{i=1}^{N} \nabla \mathsf{Loss}(\beta, x_i, y_i) + \nabla \Omega(\beta)$$

■ stochastic gradient: replace $\frac{1}{N}\sum_{i=1}^{N}$ by $\frac{1}{n}\sum_{i=1}^{n}$ for $n \ll N$,

$$\widetilde{\nabla F}(\beta) = \frac{1}{n} \sum_{i \in I_n} \nabla \mathsf{Loss}(\beta, x_i, y_i) + \nabla \Omega(\beta)$$

where I_n is a (random) subset with n elements.

Stochastic Gradient descent (SGD)

■ For a learning rate $\eta > 0$ the SGD algorithm is as follows,

$$x_{n+1} = x_n - \eta \, \widetilde{\nabla F}(x_n)$$

