Subject

2

Numerical ID of the subject carrying the smartphone

Activity

18

String describing the activity the subject was performing when the measurements took place. Should equal to one of the following values:

Walking

Walking Upstairs Walking Downstairs

Sitting Standing Laying

tBodyAcc.mean.X

Mean of the acceleration of the body on the ${\tt X}$ axis. Measurement taken on the time domain.

tBodyAcc.mean.Y

Mean of the acceleration of the body on the Y axis. Measurement taken on the time domain.

tBodyAcc.mean.Z

Mean of the acceleration of the body on the ${\tt Z}$ axis. Measurement taken on the time domain.

tBodyAcc.std.X

Standard deviation of the acceleration of the body on the ${\tt X}$ axis. Measurement taken on the time domain.

tBodyAcc.std.Y

Standard deviation of the acceleration of the body on the Y axis. Measurement taken on the time domain.

tBodyAcc.std.Z

Standard deviation of the acceleration of the body on the ${\tt Z}$ axis. Measurement taken on the time domain.

tGravityAcc.mean.X

Mean of the acceleration of the gravity on the X axis. Measurement taken on the time domain.

tGravityAcc.mean.Y

Mean of the acceleration of the gravity on the Y axis. Measurement taken on the time domain.

tGravityAcc.mean.Z

Mean of the acceleration of the gravity on the ${\tt Z}$ axis. Measurement taken on the time domain.

tGravityAcc.std.X

Standard deviation of the acceleration of the gravity on the ${\tt X}$ axis. Measurement taken on the time domain.

tGravityAcc.std.Y

Standard deviation of the acceleration of the gravity on the Y axis. Measurement taken on the time domain.

tGravityAcc.std.Z

Standard deviation of the acceleration of the gravity on the ${\tt Z}$ axis. Measurement taken on the time domain.

tBodyAccJerk.mean.X

Mean of the acceleration jerk of the body on the ${\tt X}$ axis. Measurement taken on the time domain.

tBodyAccJerk.mean.Y

Mean of the acceleration jerk of the body on the Y axis. Measurement taken on the time domain.

tBodyAccJerk.mean.Z

Mean of the acceleration jerk of the body on the ${\tt Z}$ axis. Measurement taken on the time domain.

tBodyAccJerk.std.X

Standard deviation of the acceleration jerk of the body on the X axis. Measurement taken on the time domain.

tBodyAccJerk.std.Y

Standard deviation of the acceleration jerk of the body on the Y axis. Measurement taken on the time domain.

tBodyAccJerk.std.Z

Standard deviation of the acceleration jerk of the body on the ${\tt Z}$ axis. Measurement taken on the time domain.

tBodyGyro.mean.X

Mean of the signal given by the gyroscope on the ${\tt X}$ axis. Measurement taken on the time domain.

tBodyGyro.mean.Y

Mean of the signal given by the gyroscope on the Y axis. Measurement taken on the time domain.

tBodyGyro.mean.Z

Mean of the signal given by the gyroscope on the ${\tt Z}$ axis. Measurement taken on the time domain.

tBodyGyro.std.X

Standard deviation of the signal given by the gyroscope on the ${\tt X}$ axis. Measurement taken on the time domain.

tBodyGyro.std.Y

Standard deviation of the signal given by the gyroscope on the Y axis. Measurement taken on the time domain.

tBodyGyro.std.Z

Standard deviation of the signal given by the gyroscope on the ${\tt Z}$ axis. Measurement taken on the time domain.

tBodyGyroJerk.mean.X

Mean of the jerk signal given by the gyroscope on the ${\tt X}$ axis. Measurement taken on the time domain.

tBodyGyroJerk.mean.Y

Mean of the jerk signal given by the gyroscope on the Y axis. Measurement taken on the time domain.

tBodyGyroJerk.mean.Z

Mean of the jerk signal given by the gyroscope on the Z axis. Measurement taken on the time domain.

tBodyGyroJerk.std.X

Standard deviation of the jerk signal given by the gyroscope on the ${\tt X}$ axis.

Measurement taken on the time domain.

tBodyGyroJerk.std.Y

Standard deviation of the jerk signal given by the gyroscope on the ${\tt Y}$ axis.

Measurement taken on the time domain.

tBodyGyroJerk.std.Z

Standard deviation of the jerk signal given by the gyroscope on the Z axis.

Measurement taken on the time domain.

tBodyAccMag.mean

Mean of the magnitude of the acceleration of the body. Measurement taken on the time domain.

tBodyAccMag.std

Standard deviation of the magnitude of the acceleration of the body. Measurement taken on the time domain.

tGravityAccMag.mean

Mean of the magnitude of the acceleration of the gravity. Measurement taken on the time domain.

tGravityAccMag.std

Standard deviation of the magnitude of the acceleration of the gravity. Measurement taken on the time domain.

tBodyAccJerkMag.mean

Mean of the magnitude of the acceleration jerk of the body. Measurement taken on the time domain.

tBodyAccJerkMag.std

Standard deviation of the magnitude of the acceleration jerk of the body. Measurement taken on the time domain.

tBodyGyroMag.mean

Mean of the magnitude of the signal measured by the gyroscope. Measurement taken on the time domain.

tBodyGyroMag.std

Standard deviation of the magnitude of the signal measured by the gyroscope.

Measurement taken on the time domain.

tBodyGyroJerkMag.mean

Mean of the magnitude of the signal jerk measured by the gyroscope. Measurement taken on the time domain.

tBodyGyroJerkMag.std

Standard deviation of the magnitude of the signal measured by the gyroscope.

Measurement taken on the time domain.

fBodyAcc.mean.X

Mean of the acceleration of the body on the ${\tt X}$ axis. Measurement taken on the frequency domain.

fBodyAcc.mean.Y

Mean of the acceleration of the body on the Y axis. Measurement taken on the frequency domain.

fBodyAcc.mean.Z

Mean of the acceleration of the body on the Z axis. Measurement taken on the frequency domain.

fBodyAcc.std.X

Standard deviation of the acceleration of the body on the X axis. Measurement taken on the frequency domain.

fBodyAcc.std.Y

Standard deviation of the acceleration of the body on the Y axis. Measurement taken on the frequency domain.

fBodyAcc.std.Z

Standard deviation of the acceleration of the body on the ${\tt Z}$ axis. Measurement taken on the frequency domain.

fBodyAccJerk.mean.X

Mean of the acceleration jerk of the body on the X axis. Measurement taken on the frequency domain.

fBodyAccJerk.mean.Y

Mean of the acceleration jerk of the body on the Y axis. Measurement taken on the frequency domain.

fBodyAccJerk.mean.Z

Mean of the acceleration jerk of the body on the ${\tt Z}$ axis. Measurement taken on the frequency domain.

fBodyAccJerk.std.X

Standard deviation of the acceleration jerk of the body on the X axis. Measurement taken on the frequency domain.

fBodyAccJerk.std.Y

Standard deviation of the acceleration jerk of the body on the Y axis. Measurement taken on the frequency domain.

fBodyAccJerk.std.Z

Standard deviation of the acceleration jerk of the body on the ${\tt Z}$ axis. Measurement taken on the frequency domain.

fBodyGyro.mean.X

Mean of the signal measured by the gyroscope on the ${\tt X}$ axis. Measurement taken on the frequency domain.

fBodyGyro.mean.Y

Mean of the signal measured by the gyroscope on the Y axis. Measurement taken on the frequency domain.

fBodyGyro.mean.Z

Mean of the signal measured by the gyroscope on the ${\tt Z}$ axis. Measurement taken on the frequency domain.

fBodyGyro.std.X

Standard deviation of the signal measured by the gyroscope on the ${\tt X}$ axis. Measurement taken on the frequency domain.

fBodyGyro.std.Y

Standard deviation of the signal measured by the gyroscope on the Y axis. Measurement taken on the frequency domain.

fBodyGyro.std.Z

Standard deviation of the signal measured by the gyroscope on the ${\tt Z}$ axis. Measurement taken on the frequency domain.

fBodyAccMag.mean

Mean of the magnitude of the acceleration of the body. Measurement taken on the frequency domain.

fBodyAccMaq.std

Standard deviation of the magnitude of the acceleration of the body. Measurement taken on the frequency domain.

fBodyBodyAccJerkMag.mean

Mean of the magnitude of the acceleration jerk of the body. Measurement taken on the frequency domain.

fBodyBodyAccJerkMag.std

Standard deviation of the magnitude of the acceleration jerk of the body. Measurement taken on the frequency domain.

fBodyBodyGyroMag.mean

Mean of the magnitude of the signal measured by the gyroscope. Measurement taken on the frequency domain.

fBodyBodyGyroMag.std

Standard deviation of the magnitude of the signal measured by the $\ensuremath{\mathsf{gyroscope}}$.

Measurement taken on the frequency domain.

fBodyBodyGyroJerkMag.mean

Mean of the magnitude jerk of the signal measured by the gyroscope. Measurement taken on the frequency domain.

fBodyBodyGyroJerkMag.std

Standard deviation of the magnitude jerk of the signal measured by the gyroscope.

Measurement taken on the frequency domain.