

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual **Property Office.**

: 특허출원 2003년 제 0070060 호

Application Number

10-2003-0070060

: 2003년 10월 08일

Date of Application

OCT 08, 2003

Applicant(s)

: (주)프탈로스 Phthalos Co., Ltd

2004 년 11 월

허 **COMMISSIONER** 同能

[서지사항]

국허출원서 - 4 분 읍] 콕허 특허청장 발조번호) 0010 2003.10.08 11출일자) 국제특허분류] G03G 005/04

옥시티타늄 프탈로시아닌 전하발생물질의 제조 방법 및 이를 위한 장치 발명의 명칭》

Method for Preparing Oxytitanium Phthalocyanine Charge Generating Material and Apparatus for Preparing the same 발명의 영문명칭]

å원인] [명칭]

(주)프탈로스 [출원인코드] 1-2003-011872-1

8리인]

목허법 인 씨 엔 예 스 [명칭] 9-2003-100065-1 [대리인코드] 손원 .염승윤 【지정된변리사】 2003-048191-2 【포괄위임 등콕번호】

발명자]

【성명의 국문표기】 권종호 [성명의 영문표기] KWON, Jong Ho 690518-1120626 [주민등록번호]

[우편번호] 612-839

[주소] 부산광역시 해운대구 좌동 1412 동부아파트 106동 401호

[국적] KR

발명자]

【성명의 국문표기】 정기석 【성명의 영문표기】 JUNG,Gi Suck 740710-1122512 【주민등록번호】

【우핀번호】 608-811

【주소】 부산광역시 남구 대연1동 871-18 대동발라 4차 102호

[국적]

[사망념

- (성명의 국문표기) 손우호 (성명의 영문표기) SON, Was Ho 741008-1899815 (추민동콕변호) 608-811 【우핀번호】

【주소】 부산광역사 남구 대연1등 876-13 명진프라임빌 701호

KR (국적)

₽명자]

【성명의 국문표기】 박성수 【성명의 영문표기】 PARK, Sung Soo 560121-1100911 【주민등록번호】 [우편번호]

부산광역시 남구 용호통 176-30 엝지메트로시타 129동 302호 【주소】

[국적] KR

발명자]

【성명의 국문표기】 고진필 【성명의 영문표기】 GO, Jin Peel 【주민등콕번호】 761202-1919313 602-022 [우편번호]

[주소] 부산광역시 서구 남부민2동 428-239

[국적] KR

발명자]

【성명의 국문표기】 정현석 【성명의 영문표기】 JUNG, Hyun Suck 【주민등콕번호】 770914-1123111 612-741 【우핀번호】

【주소】 부산광역시 해운대구 우1동 경동아파트 101동 303호

【국적】 KR 실사청구] 청구 [[기공개] 신청

목허법 제42조의 규정에 의한 출원, 목허법 제60조의 규 정에 의한 심사청구 , 목허법 제64조의 규정에 의한 출원 공개를 신청합니다. 대리인 목허법인씨엔에스 (인) 4刀】 [교수4 20 면 29.000 원 【기본출원료】

【가산출원료】 17 면 17,000 원 0 월 0 건 20 항 [우선권주장료] 【심사청구료】 749,000 원

795.000 원 [합계] 【감면사유】 소기업 (70%감면) 238,500 원 【감면후 수수료】

1. 요약서·명세서(도면)_1콩 2.소기업임을 증명하는 서류_1콩 늴부서류]

-1약]

본 발명은 옥시티타늄 프탈로시아닌 전하발생품질의 제조 방법 및 이를 위한 장에 관한 것으로, 옥시티타늄 프탈로시아닌 크루드를 유기용때와 함께 균질하게 흔하면서 주파수 0.1 ~ 100 GHz, 출력 10 ~ 3,000째의 마이크로파와 1 ~ 1,000kHz, 10 5,000째의 초음파 에너지를 적용하고 30~100℃의 온도에서 0.5~5시간동안 반응시키 것을 특징으로 하는 옥시티타늄 프탈로시아닌 전하발생물질의 제조 방법 및 주파 0.1 ~ 100 GHz, 출력 10~3000째의 마크네트론(1)과 마이크로파 용기(2) 내의 마이로 파장을 균일하게 하기 위한 모드 교반기(3), 정확한 반응품의 온도 측정 및 조을 행하기 위한 PID 방식 온도제어기(8), 마이크로파 용기(2)의 상단면에서 세 개구명에 삽입된 마이크로파 차폐된 K형 열전대(4), 응축기(5), 교반봉(6), 마이크파 용기(2)의 하단면에 뚫린 한개의 구멍에 삽입된 초음파 팀(7), 반응물이 투입되파이렉스 용기(9) 및 용매 탱크(10)로 이루어진 옥시티타늄 프탈로시아닌 전하발물질을 합성하는 장치가 제공된다.

본 발명에 의하면, 열에 안정하며 우수한 결정안정성을 갖는 옥시티타늄 프탈로 아닌 전하발생물질을 효율적으로 제조할 수 있다.

引班压】

도 2

4인어)

시티타늄 프탈로시아닌, 마이크로파, 초음파, 전하발생물질

[명세서]

. 止명의 명칭]

옥시티타늄 프탈로시아닌 전하발생물질의 제조 방법 및 이를 위한 장치(Mathod Preparing Oxytitanium Phthalocyanine Charge Generating Material and Apparatus Preparing the same)

E면의 간단한 설명]

- 도 1- 실시예 1의 합성예 1에 의한 옥시티타늄 프탈로시아닌 크루드의 X-선 회 패턴
- 도 2- 실시예 1의 합성예 2에 의한 옥시티타늄 프탈로시아닌 크루드의 X-선 회 패턴
 - 도 3- 본 발명에 사용된 마이크로파 발생장치
 - 도 4- 실시예 2에 의한 옥시티타늄 프탈로시아닌의 X-선 회결 패턴
 - 도 5- 실시예 3에 의한 옥시티타늄 프탈로시아닌의 X-선 회결 패턴
 - 도 6- 실시예 4에 의한 옥시티타늄 프탈로시아닌의 X-선 회절 패턴
 - 도 7- 비교예 1에 의한 옥시티타늄 프탈로시아닌의 X-선 회걸 패턴(원내는
- 타-형 옥시티타늄 프탈로시아닌의 특성 피크)
- 도 9- 비교예 3에 의한 옥시티타늄 프탈로시아닌의 X-선 회절 패턴(원내는 베타 3 옥시티타늄 프탈로시아닌의 특성 피크)

도 10- 실시예 5에 의한 옥시티타늄 프탈로시아닌의 X-선 회걸 패턴

도 11- 비교예 4에 의한 옥시티타늄 프탈로시아닌의 X-선 회결 패턴

도 12- 실시예 6에 의한 옥시티타늄 프탈로시아닌의 X-선 회결 패턴

도 13- 실시예 7에 의한 옥시티타늄 프탈로시아닌의 X-선 회결 패턴

도 14~ 실시예 2에 의한 옥시티타늄 프탈로시아닌의 쿠사 전자현미경 사진

0,000배)

도 15- 비교예 2에 의한 옥시티타늄 프탈로시아닌의 쿠사 전자현미경 사진

0,000배)

도 16- 옥시티타늄 프탈로시아닌의 전기적 특성을 측정하기위해 본 발명에서 사

된 광전도체 드럼의 단면도

*도면의 주요 부호에 대한 설명

-- 마그네트론

2 -- 마이크로파 용기

-- 모드 교반기

4 -- K형 열건대

-- 응축기

6 -- 교반봉

-- 초음파 팁

8 -- PID 방식 온도제어기

-- 파이렉스 용기

10 -- 용매 탱크

11 -- 산화막처리된 알루미늄 드럼 12 -- 건하발생층

13 -- 전하수송층

발명의 상세한 설명]

. 날명의 목적]

발명이 속하는 기술분야 및 그 분야의 종래기술**)**

본 발명은 옥시티타늄 프탄로시아닌 전하발생품질의 제조 방법 및 이름 위한 장에 판한 것으로, 보다 상세하게는 마이크로파와 초음파를 이용하여 결정안정성이수한 고감도 옥시티타늄 프탈로시아닌 전하발생품질을 제조하는 방법 및 이를 위한 처에 판한 것이다.

가시광선영역에서 높은 김광성을 갖는 광천도체들은 복사기, 프린터 등에 광범하게 사용되고 있다. 이러한 광전도체로는 셀레늄, 산화아연, 황화카드뮴 및 다른기 전하발생물질을 구성분으로 하는 김광층을 전도성 지지체위에 도포한 것이 널리용되어왔다. 그러나, 이러한 무기 전하발생물질은 감광성, 열적 안정성, 내수성, 구성 및 복사기나 프린터용으로서 요구되는 다른 물성에 있어서 만족스럽지 못하였. 예를 들면, 황화카드뮴을 사용한 광전도체는 내구성 및 내구성에서 열등하였고 화아연을 사용한 광전도체는 내구성에 문제가 있었다. 또한 셀레늄 및 황화카드뮴 사용한 광전도체들은 이름의 제조 및 취급에 제한이 따르는 단점이 있다.

이러한 무기 전하발생물질의 문제점을 해결하기 위해 다양한 유기 전하발생물질 이 연구되고 있다. 여러 가지 유기 전하발생물질들 중에서 옥시티타늄 프탈로시아 이 높은 감광성, 우수한 내구성, 뛰어난 열적 안정성 등으로 인해 널리 사용되고 ⁴다.

옥시티타늄 프탈로시아닌은 여러 가지 결정형태가 존재하는데 그 중 대표적인 들은 알파-형(B-형 또는 11-형), 베타-형(A-형 또는 1-형), 메타-형(C-형 또는 I-형) 그리고 감마-형(D-형 또는 IV-형)등이 있다. 이 중 감마-형의 전자사진 특성 가장 우수하여 전하발생물질로 널리 사용되고 있다. 옥시티타늄 프탈로시아닌은 X-선 회절 패턴에 따라 건자사진특성이 달라지며 여러 회사에서 독자적인 X-선 회 패턴을 특허로써 보호받고 있다. 미국 특허 제5,132,197호에서는 브래그각 9.0, .2, 23.9 및 27.1에서 X-선 회절 특성 피크를 가진 옥시티타늄 프탈로시아닌을 개 하고 있으며, 미국 특허 제5.194.354호에서는 브래그각 7.2. 14.2. 24.0 및 27.2 는 7.4, 10.9 및 17.9 또는 7.6, 9.7, 12.7, 16.2 및 26.4 또는 8.5 와 10.2에서 선 회절 특성 피크로 지정하였고, 미국 특허 제5,298,353호에서는 브래그각 9.0, .2, 23.9 및 27.1 또는 7.4, 8.2, 10.4, 11.6, 13.0, 14.3, 15.0, 15.5, 23.4, .1, 26.2 및 27.2도를, 미국 특허 제5,593,805호에서는 브래그각 7.4, 10.2, 12.5. .0, 16.3, 18.3, 22.4, 24.2, 25.2 및 28.5도를, 미국 특허 제4.728.592호에서는 래그각 7.6, 10.2, 12.6, 13.2, 15.1, 16.2, 17.2, 18.3, 22.5, 24.2, 25.3, 28.6, .3 및 31.5도를, 미국 특허 제5,252,417호에서는 9.5, 14.3, 18.0, 24.0 및 27.2도 , 미국 특허 제5,567,559호에서는 브래그각 7.5, 9.3, 13.6, 14.3, 17.9, 24.0, .2 및 29.1도 또는 7.4, 9.5, 11.6, 13.6, 14.3, 17.9, 24.0, 27.2 및 29.1도를, 국 특허 제6,284,420호에서는 브래그각

3. 9.4, 14.0, 24.1, 25.7, 27.2 및 28.5도를, 미국 특허 제4.898.799호에서는 브 ^{*}그각 9.5, 11.7, 15.0, 23.5, 24.1 및 27.3도를, 미국 특허 제4,994,339호에서는 래그각 9.6. 11.7, 24.1 및 25.2도를, 미국 특허 제5.039.586호에서는 브래그각 8, 9.5, 11.5, 13.4, 18.0, 24.1 및 27.3도흡, 미국 특허 제4,664,997호에서는 브 그각 9.3, 10.6, 13.2, 15.1, 15.7, 16.1, 20.8, 23.3, 26.3 및 27.1도를, 미국 특 제5.213.929호에서는 브래그각 7.4, 22.3, 24.1, 25.3, 27.3 및 28.5도를, 미국 허 제5,972,551호에서는 브래그각 7.4, 9.4, 9.7 및 27.3도홀, 미국 특허 제 447.965호에서는 브래그각 7.3, 9.4, 9.6, 11.6, 13.3, 17.9, 24.1 및 27.2도를. 국 특허 제5.350.844호에서는 브래그각 6.8. 9.2. 10.4. 12.3. 13.1. 15.0. 15.6. .0, 20.6, 23.2, 25.3, 26.2, 26.5 및 27.1도를 특성 피크의 위치로 지정하고 다. 본 발명에 따라 제조된 옥시티타늄 프탈로시아닌 전하발생물질은 그 특성 피 의 위치가 브래그각 7.2, 9.6, 11.7, 12.7, 13.4, 14.1, 14.8, 18.0, 18.4, 22.3, .1 및 27.2도이며 X-선 회절 패턴의 특징은 브래그각 27.2도에서 가장 강한 피크가 ł타나며 브래그각 9.6도에서 그 다음으로 강한 피크가 나타나고 브래그각 9.6도 및 .1도의 피크는 단일 피크로 갈라짐이 없으며 브래그각 26도 및 28도 부근에 피크가 는 것을 특징으로 한다(이상 브래그각은 2Theta 값으로 +/-0.2도의 범위를 진다.).

옥시티타늄 프랄로시아닌은 주로 1,2-디시아노벤젠이나 1,3-디이미노이소인돌린 주원료로하고 티타늄원으로는 사염화티탄이나 테트라알콕시티탄을 사용하여

때템피름리돈이나 1-글로로나프람펜 혹은 위능린 용때하에서 160-200°c에서 6-12시 등안 반응시킨 후, 정제공정을 거쳐 합성되며 이렇게 합성된 상태를 크루드 상태라한다. 일본 록허 제62-256865호에서는 1.2-디시아노벤젠과 사업화리탄을 사용하는 }법을, 미국 목허 제4,871,877호에서는 1.3-디이미노이소인돌린과 테트라알콕시티을 사용하는 방법을, 일본 논문 Bull, Chem. Soc. Jpn., 68, 1001-1005, 1995에서 1.2-디시아노벤젠과 테트라부콕시티탄을 사용하는 방법을 기술하고 있다. 이렇게 어진 옥시티타늄 프탈로시아닌 크루드는 입자가 크며 전자사진 흑성 또한 나빠서하반생물질로서 사용될 수 없다. 따라서 적절한 후처리 가공공정을 거쳐야만 높은 광성을 갖는 전하발생물질로서 사용될 수 있다. 옥시티타늄 프탈로시아닌의 구조식다음의 화학식 1과 같다.

화학식 1]

옥시티타늄 프탈로시아닌의 대표적인 후처리 가공공정은 크게 진한 황산이나 과 로젠화카르복시산 등의 강산에 옥시티타늄 프탈로시아닌 크루드를 녹이고 난 뒤 물 나 여러 가지 유기 용제에서 재결정을 시킨 후 할로벤젠, 할로나프탈렌 등의 할로

화방향관 용제처리를 하여 옥시티타늄 프탈로시아닌 전하발생물질을 얻는 방법이 다. 미국 특허 제5,164,483호에서는 진한 왕산과 클로로삔젠을 사용하는 방법을, 국 특허 제5,252,417호에서는 트리플루오로아세트산과 클로로삔젠을 사용하는 방법 . 미국 특허 제5,786,121호에서는 멘타플루오로프로피온산과 플로로벤젠을 사용하 방법을, 미국 특허 제6,521,387호에서는 진한 황산과 1,2-디플로로에탄을 사용하 방법을, 미국 특허 제5,773,184호에서는 디플루오르아세트산 혹은 디플로로아세트 을 사용하는 방법을 기술하고 있다.

옥시티타늄 프탄로시아닌의 대표적인 후처리 가공공정증 다른 하나는 옥시티타 프탈로시아닌 크루드를 볼밀, 진동밀, 아트리터, 레드데빌 등과 같은 분쇄기에서 식분쇄한 후 유기용제 처리를 하는 방법이 있다. 미국 특허 제5,567,559호에서는 밀과 n-부틸에테르콥 사용한 방법을, 미국 특허 제5,059,355호에서는 페인트 웨이와 1,2-디클로로벤젠을 사용한 방법을 기술하고 있다.

이들 관련 문헌으로 얻어진 옥시티타늄 프탈로시아닌 전하발생물질들은 그 전자 진 특성이 우수하지만 테트라하이드로퓨란 등 여러 가지 유기용제에 대한 결정안정 이 때우 약해 전하발생충 코팅액을 제조한 후 저장안정성이 극도로 취약하여 보관 이 떨어지는 단점이 있다. 또한 산에 녹이거나 분쇄한 후 유기용제 처리 단계에서 도에 상당히 민감하여 유기용제 처리단계에서 온도조절에 상당한 주의를 기울여야 다는 단점이 있다. 이들 문제점들은 결정이 완전히 감마-형으로 전이되지 못하고 당의 베타-형 혹은 알파-형의 결정들이 남아 있음으로 인해 유기용제 속에서 혹은 온에서 이미 형성된 감마-형 결정들이 보다 안정한 때타-형 혹은 알파-형의 결정으 * 전이되는데 기인하는 것으로 사료된다.

보명이 이루고자 하는 기술적 과제]

본 발명에서는 상기한 문제점들인 취약한 결정안정성 및 온도 민감성으로 인한 정상의 번거로움을 해결하기 위해 마이크로파와 초음파를 이용하여 27.2 와 2 기에서만 피크가 존재하는 새로운 결정형의 옥시티타늄 프탈로시아닌 크루드를 합하고 이를 후처리 가공하여 결정안정성이 우수한 고품질의 옥시티타늄 프탈로시아 전하발생물질의 제조방법을 제공하고자 한다.

또한, 본 발명에서는 주파수 0.1 ~ 100 GHz, 출력 10~3000째의 마크네트론(1)과 이크로파 용기(2) 내의 마이크로 파장을 균일하게 하기 위한 모드 교반기(3), 정확 반응물의 온도 측정 및 조절을 행하기 위한 PID 방식 온도제어기(8), 마이크로파 기(2)의 상단면에서 세 개의 구멍에 삽입된 마이크로파 차폐된 K형 열천대(4), 용기(5), 교반봉(6), 마이크로파 용기(2)의 하단면에 뚫린 한개의 구멍에 삽입된 초파 립(7), 반응물이 투입되는 파이렉스 용기(9) 및 용매 탱크(10)로 이루어진 옥시타늄 프탈로시아닌 전하발생물질을 합성하는 장치를 제공하는 것이다.

또한, 본 발명에서는 상기 방법으로부터 제조된 고품질의 옥시티타늄 프달로시 닌 전하발생물질을 제공하는 것이다. 또한, 본 발명에서는 상기 옥시티타늄 프탈로시아닌 전하발생물질을 사용하여 *조된 광전도체를 제공하는 것이다.

止명의 구성 및 작용1

본 발명의 일견지에 의하면, 옥시티타늄 프랄로시아닌 크루드를 유기용매와 함 균질하게 혼합하면서 주파수 0.1 - 100 GHz, 출력 10 - 3,000%의 마이크로파와 1 1,000kHz, 10 - 5,000%의 초음파 에너지를 적용하고 30-100℃의 온도에서 0.5-5시 동안 반응시키는 것을 특징으로 하는 옥시티타늄 프탈로시아닌 전하발생물질의 제 방법이 제공된다.

본 발명의 다른 견지에 의하면, 주파수 0.1 ~ 100 GHz, 출력 100~3000W의 마크트론(1)과 마이크로파 용기(2) 내의 마이크로 파장을 균일하게 하기 위한 모드 교기(3). 정확한 반응물의 온도 측정 및 조절을 행하기 위한 PID 방식 온도제어기). 마이크로파 용기(2)의 상단면에서 세 개의 구멍에 삽입된 마이크로파 차폐된 K 열전대(4). 응축기(5). 교반봉(6). 마이크로파 용기(2)의 하단면에 뚫린 한개의 멍에 삽입된 초음파 럽(7). 반응물이 투입되는 파이렉스 용기(9) 및 용매 탱크(10)이루어지고, 파이렉스 용기(9)내에서 옥시티타늄 프탈로시아닌 크루드를 유기용와 함께 균질하게 혼합하면서 주파수 0.1 ~ 100 GHz, 출력 10 ~ 3,000W의 마이크로와 1 ~ 1,000kHz, 10 ~ 5,000W의 초음파 에너지를 적용하고 마이크로파 차폐된 K형 한건대(4) 및 PID 방식 온도제어기(8)를 이용하여 정밀하게 조절하면서 30~100℃의도에서 0.5~5시간동안 반응시켜 옥시티타늄 프탈로시아닌 전하발생물질을 합성하는을 특징으로 하는 장치가 제공된다.

본 발명의 또 다른 견지에 의하면. 상기 방법으로부터 제조된 옥시티타늄 프탈 *시아닌 전하반생물질이 제공된다.

본 발명의 또 다른 견지에 의하면, 상기 옥시티타늄 프탈로시아닌 전하발생물질 사용하여 제조된 광건도체가 제공된다.

이하에서 본 발명을 보다 상세하게 설명하면 다음과 같다.

본 발명은 마이크로파와 초음파를 이용하여 옥시티타늄 프탈로시아닌 전하발생 실을 제조한다.

옥시티타늄 프탈로시아닌 크루드를 유기용매와 함께 균질하게 혼합하면서 마이 로파를 적용하고 열을 가하여 반응시킨다.

본 발명에 사용되는 옥시티타늄 프탈로시아닌 크루드는 일반적으로 이 기술분야 알려진 방법에 의해 제조된 것일 수 있다. 그 중 미국 특히 제4.871.877호의 1.3-이미노이소인돌린과 테트라알콕시티탄을 사용하는 방법과 일본 논문 Bull. Chem. c. Jpn., 68, 1001-1005, 1995에서는 1.2-디시아노벤젠과 테트라부콕시티탄을 사용는 방법으로 두 종류의 옥시티타늄 프탈로시아닌 크루드를 합성할 수 있다. 전자의 3우는 일반적인 재래식 합성 장치를 사용하는 경우이며, 후자의 경우는 한국 특허 논원번호: 제10-2003-0030726호)에서 언급한 마이크로파와 초음파를 이용한 합성 장를 사용하여 옥시티타늄 프탈로시아닌 크루드를 합성하는 경우이다. 더욱 상세히, 2-디시아노벤젠이나 1.3-디이미노이소인돌린을 주원료로하고 티타늄원으로는 테트

알콕시티탄을 사용하여 M-메틸피톨리돈이나 1-클로로나프탈렌 혹은 퀴놀린 용때하. 서 160-200℃에서 0.1-12시간동안 재래식 혹은 마이크로파 합성 장치를 이용하여 응시킨 후, 정제공정을 거쳐 합성된 옥시티타늄 프탈로시아닌 크루드가 사용될 수

상기 옥시티타늄 프탈로시아닌 크루드는 상온이하의 온도에서 산에 녹인 후 재정된 것이나 혹은 건식 또는 습식 분쇄된 것을 사용하는 것이 바람직하다. 이때 산황산. 인산 또는 할로겐화카르복시산이 바람직하며, 재결정에 사용되는 용때로는 지방족 및 방향족 알코올. 케론. 에테르, 에스테르 또는 그 혼합용액이 바람직하 . 지방족 알코올로는 메탄올, 프로판을. 이소프로판을. 부단을. 이소부탄이 바람직하며, 방향족 알코올로는 벤질알코올이 바람직하며, 케른으로는 아세론. 밑에딜케론, N-메틸피롭리돈, 테트라하이드로퓨란이 바람직하며, 에테르모는 에틸테르, n-부틸에테르가 바람직하며, 에스테르모는 아세트산메틸 및 아세트산에밀이 람직하다.

유기용때는 할로젠화벤젠, 할로젠화나프란렌 또는 이들과 물의 혼합용액이 바람하다. 보다 바람직하게 상기 유기용때는 물과 할로젠화벤젠 또는 할로젠화나프탈렌 1:1 - 10:1로 혼합한 것이 사용된다. 이때 할로젠은 염소, 불소, 브름 또는 요오일 수 있으며 그 치환개수는 1-4가 바람직하다.

유기용매와 옥시티타늄 프탈로시아닌 크루드의 혼합비는 특별히 한정하지는 않 나 1:1 ~ 10:1의 비율로 혼합하는 것이 바람직하다.

마이크로파 적용시 주파수 0.1 ~ 100 GHz, 출력 10 ~ 3.000W으로 하는 것이

탑식하며, 만일 이러한 범위를 벗어나는 경우 정확한 온도 조절이 어려움 뿐만 아라 마이크로파의 특성인 균일가열 및 부피발열 특성이 격절히 격용되지 못하는 문가 발생할 수 있다. 이때 반응시 온도는 30-100℃로 하며, 이 온도범위를 벗어나는 5우, 결정이 완전히 감마-형으로 전이되지 못하고 소량의 베타-형 혹은 알파-형의 정들이 남아 있음으로 인해 유기용제 속에서 혹은 고온에서 이미 형성된 감마-형 정들이 보다 안정한 베타-형 혹은 알파-형의 결정으로 전이되는 문제가 발생할 수으며, 바람직한 온도는 50-70℃이다. 또한, 반응시간은 0.5-5시간이 바람직하며, 5시간미만인 경우 감마-형으로의 결정전이가 충분히 일어나지 못하며, 5시간을 넘경우 이미 형성된 감마-형의 결정들이 보다 안정한 베타-형 혹은 알파-형으로 다결정이 전이되는 문제가 발생할 수 있다. 바람직한 반응시간은 10분-5시간이다.

본 발명에 따라 옥시티타늄 프탈로시아닌 전하발생물질은 예를들어, 다음과 감 제조될 수 있다.

옥시티타늄 프탈로시아닌을 진한 황산에 녹인 후 2시간 동안 교반한다. 교반이 난 황산 용액을 얼음과 물의 혼합액에 부가하여 재결정시킨다. 재결정을 통해 얻어 옥시티타늄 프탈로시아닌은 여과를 통해 분리하며 여액의 pH가 중성이 될 때까지 로 세척한다. 세척이 끝난 옥시티타늄 프탈로시아닌 케이크를 물과 클로로벤젠의 합용액에 분산하여 마이크로파 발생장치에서 60℃에서 1시간 동안 처리한다.

본 발명에 따른 장치는 도 3에 도시되어 있는바, 주파수 2.45GHz, 출력 3000W의 크네트론(1)을 가진 합성 장치로서 마이크로파 용기(2) 내의 마이크로 파장을 균일 게 하기 위하여 모드 교반기(3)을 설치하였고, 정확한 반응물의 온도 측정 및 조절

행하기 위하여 스테인레스강으로 마이크로파 차페된 K형 열전대(4) 및 PID 방식 도제어기(8)를 설치하였다. 반응물의 열 효율을 높이기 위하여 분리형 삼구 파이렉 용기(9)를 유리 섬유로 단열 시킨 후, 마이크로파 용기(2)의 중앙에 놓이도록 하 다. 또한, 마이크로파 용기의 상단면에 지름이 1cm 정도인 구멍을 세 개름 끊어서 ∮ 열전대(4), 응축기(5) 및 교반봉(6)을 설치하였고, 하단면에 지름이 1cm 정도인 멍을 한 개 끊어서 초음파 탭(7)을 설치하였다. 용때탱크(10)에는 마이크로파에는 응을 하지 않고 초음파 에너지를 파이렉스 용기내의 반응물로 건달해줄 수 있는 물 인 데카린(decalin, decabydronaphthalene)을 채워든다.

본 발명에 따른 합성 장치로 옥시티타늄 프탈로시아닌 크루드를 파이랙스 용기)내에서 유기용매와 함께 균실하게 혼합하면서 주파수 0.1 ~ 100 GHz, 출력 10 ~ 000째의 마이크로파와 1 ~ 1,000kHz, 10 ~ 5,000째의 초음파 에너지를 격용하고 마이로파 차페된 K형 열천대(4) 및 PID 방식 온도제어기(8)를 이용하여 정밀하게 조절면서 30~100℃의 온도에서 0.5~5시간동안 반응시켜 옥시티타늄 프탈로시아닌 전하생물질을 합성한다. 마이크로파 처리가 완료되면 여과하고 메탄올로 세척한 후 건기에서 건조한다.

이렇게 마이크로파와 초음파 에너지를 이용해 합성된 옥시티타늄 프탈로시아닌 하발생물질의 X-선 회절 패턴을 보면 브래브 각(2Theta)이 26.1 와 2°의 위치에 피 가 전혀 없음을 알 수 있다(도 4~6 및 12 참조). 이는 결정이 모두 완전한 감마-으로 전이되었다는 것을 의미한다. 입자의 크기도 투사전자현미경사진을 통해 알 있듯이 마이크로파와 초음파를 사용한 경우가 현저히 작고 균일하므로 전하발생충

명액 제조 시 분산시간을 단축할 수 있도록 함으로써 생산성을 증대시킬 수 있다(
* 14. 15 참조).

이와 같이 본 발명의 방법으로 제조된 옥시티타늄 프탈로사이닌 전하발생물질은 래그각 7.2±0.2°, 9.6±0.2°, 11.7±0.2°, 12.7±0.2°, 13.4±0.2°, 14.1±0.2°, .8±0.2°, 18.0±0.2°, 18.4±0.2°, 22.3±0.2°, 23.4±0.2°, 24.1±0.2°, 24.5±2°및 27.2±0.2°에서 X-선 회절 특성 피크를 갖는다.

상기 옥시티타늄 프탈로시아닌 전하발생물질은 광전도체, 특히 유기광전도체를 조하는데 유용하게 사용될 수 있다.

이하에서 본 발명을 실시예와 비교예를 통하여 더욱 상세히 설명하나 본 발명이 들 예에 의하여 한정되는 것은 아니다.

실시예 1(옥시티타늄 프탈로시아닌 크루드의 합성)

합성예 1

본 발명의 합성 장치를 이용하여 파이렉스 용기(9)에 1.2-디시아노벤젠 51.268. 소 12.148. 테트라부득시티탄 34.388. 노나늘 1008을 넣고 마이크로파와 28kHz. 0㎡의 초음파 에너지를 적용하여 160-170℃에서 0.1-6시간 동안 반응물을 균일하게 반시켜 옥시티타늄 프탈로시아닌을 합성하였다. 반응 중 반응물의 온도 조절은 PID 식 온도제어기(8)로 ±℃의 오차 범위에서 정밀하게 조절하였고 이에 따라 마이크 파의 출력이 10-3000째의 범위에서 조절되며, 마이크로파와 초음파 에너지는 반응의

└기부터 함께 사용하였다. 이렇게 얻어진 옥시티타늄 프탈로시아닌 크루드의 X-선 결패턴을 [도 1]에 나타내었다.

∤성예 2

유래식 합성 장치를 이용하여 파이렉스 용기에 1.3-디이미노이소인들린 12.5g, 테트 부목시타탄 29.31g, 퀴놀린 100g을 넣고 170-180℃에서 0.1-6시간 동안 반응물을 일하게 교반시켜 옥시티타늄 프탈로시아닌을 합성하였다. 이렇게 얻어진 옥시티타 프탈로시아닌 크루드의 X-선 회절패턴을 [도 2]에 나타내었다.

실시예 2

비이커에 97%왕산 300g을 계량하여 담고 교반하였다. 왕산의 온도가 10℃이하가 1만 온도를 유지하면서 실시에 1의 합성에 2에 의해 얻어진 옥시티타늄 프탈로시아 크루드 10g을 서서히 녹인 후 2시간 동안 교반하였다. 교반이 완료된 황산용액을 음물에 서서히 부가하여 옥시티타늄 프탈로시아닌을 재결정시키고 여과하여 옥시티늄 프탈로시아닌을 분리하고 여액의 pH가 중성이 될 때까지 물로 세척하였다. 세척 완료된 옥시티타늄 프탈로시아닌 케이크를 클로로벤젠 100m1와 물 100m1(케이크에 붉유된 물 포함)의 혼합용액에 부가한 후 마이크로파 발생장치

범었다. 마이크로파 발생장치에서 PID온도 조절기를 이용하여 30분 동안 50℃로 열하고 50℃에서 1시간 동안 교반한 후 상온으로 식혔다. 상온으로 식힌 반응답을 과하여 옥시티타늄 프랑로시아닌을 분리하고 메탄을로 세척하였다. 세척이 완료된 시티타늄 프랑로시아닌을 건조기에서 건조하여 9.8m의 옥시티타늄 프랑로시아닌 전 발생물질을 얻었다. 이렇게 얻어진 옥시티타늄 프랑로시아닌의 X-선 회절패턴을 [4]에 나타내었다.

옥시티타늄 프탈로시아닌의 X-선 회절 패턴은 다음과 같은 조건하에서 측정하였

X-선 전구: Cu

Cu K-알파 파장(A): 1.54056

전압(kV): 40.0

전류(mA): 100.0

출발 각(*2Theta): 5.00

정지 각(*2Theta): 45.00

스테핑 각(*2Theta): 0.020

또한 본 발명에 따른 옥시티타늄 프탄로시아닌 전하발생물질의 전자 현미경 사(30,000배)은 [도 14]과 같다.

실시예 3

실시에 2에서 마이크로파 처리 온도를 60℃로 한 것 외에는 실시에 2와 동일하 실시하였다. 건조 후 9.8%의 옥시티타늄 프탈로시아닌을 얻었으며 그 X-선 회결패 용 (도 5)에 나타내었다.

실시예 4

실시에 2에서 마이크로파 처리 온도를 70℃로 한 것 외에는 실시에 2와 동임하실시하였다. 건조 후 9.8%의 옥시티타늄 프탈로시아닌을 얻었으며 그 X-선 회결패을 [도 6]에 나타내었다.

비교예 1

실시에 2에서 마이크로파를 사용하지않고 재래식 열원인 자석식 가열교반기를 용한 외에는 실시에 2와 동일하게 실시하였다. 건조 후 9.8%의 옥시티타늄 프탈로아닌을 얻었으며 그 X-선 회결패턴을 [도 7]에 나타내었다. 또한, 이렇게 얻어진시티타늄 프탈로시아닌 전하발생물질의 전자 현미경 사진(30,000때)은 [도 15]와다.

비교예 2

실시에 3에서 마이크로파를 사용하지않고 재래식 열원인 자석식 가열교반기를 용한 외에는 실시에 3과 동일하게 실시하였다. 건조 후 9.8%의 옥시티타늄 프탈로 아닌을 얻었으며 그 X-선 회결패턴을 [도 8]에 나타내었다.

비교예 3

실시에 4에서 마이크로파를 사용하지않고 재래식 열원인 자석식 가열교반기를 용한 외에는 실시에 4와 등일하게 실시하였다. 건조 후 9.8%의 옥시티타늄 프담로 아닌을 얻었으며 그 X-선 회결째턴을 [도 8]에 나타내었다.

실시예 5

실시에 3에서 얻어진 옥시티타늄 프탈로시아닌 5g을 20g의 테트라하이드로퓨란 분산시키고 5일간 방치한 후 여과하여 건조하였다. 건조된 옥시티타늄 프탈로시아 의 X-선 회절패턴을 [도 10]에 나타내었으며 여전히 감마-형의 결정형을 유지하고 몸을 알 수 있다.

비교예 4

비교에 2에서 얻어진 옥시티타늄 프탈로시아닌 5g을 20g의 테트라하이드로퓨란 분산시키고 5일간 방치한 후 여과하여 건조하였다. 건조된 옥시티타늄 프탈로시아 의 X-선 회결패턴을 [도 11]에 나타내었으며 모든 결정이 감마-형에서 베타-형으로 ½전히 전환되었음을 알 수 있다.

실시예 6

실시에 2에서 옥시티타늄 프탈로시아닌 크루드를 실시에 1의 합성에 1에서 얻어 것으로 사용한 것 외에는 실시에 2와 동일하게 실시하였다. 건조 후 9.8g의 옥시 타늄 프탈로시아닌을 얻었으며 그 X-선 회결패턴을 [도 12]에 나타내었다.

실시예 7

실시에 6에서 얻어진 옥시티타늄 프탈로시아닌 5g을 20g의 테트라하이드로퓨란 분산시키고 5일간 방치한 후 여과하여 건조하였다. 건조된 옥시티타늄 프탈로시아 의 X-선 회절패턴을 [도 13]에 나타내었으며 여전히 감마-형의 결정형을 유지하고 음을 알 수 있다.

X-선 회절패턴의 분석결과

본 발명 장치를 이용해 합성된 실시에 1의 합성에 1의 옥시티타늄 프탈로시아닌 투드의 X-선 회절 패턴을 보면 브래브 각(2Theta) 27.2 와 2°의 위치에서만 피크가 재하는 새로운 결정형의 크루드를 나타낸다(도 1참조). 반면 재래식 합성 장치를 용해 합성된 실시에 1의 합성에 2의 옥시티타늄 프탈로시아닌 크루드의 X-선 회절 턴은 건형적인 베타-형의 크루드를 나타낸다(도 2 참조). 이는 본 발명 장치를 이한 경우와 재래식 합성 장치를 이용한 경우 합성된 옥시티타늄 프탈로시아닌 크루가 서로 다른 결정형을 나타낸다는 것을 의미하며 본 발명 장치에 의해 합성된 옥티타늄 프탈로시아닌 크루드의 경우 감마-형의 특징을 나타내는 27.2 와 2°의 위치 서만 피크가 존재하므로 후치리 가공공정 후 베타-형의 피크를 전혀 가지지 않으므

결정안정성이 때우 우수하다. 또한, 본 발명 장치를 이용해 합성된 옥시티타늄 프 * 로시아닌 전히발생물질의 X-선 회절 패턴을 보면 브래브각(2Theta)이 26.1±0.2°의 시치에 피크가 건혀 없음을 알 수 있다(도 4 ~ 6 및 12 참조). 이는 결정이 모두 완 한 감마-형으로 전이되었다는 것을 의미한다. 반면에 재래식 방법으로 처리하여 만 어진 옥시티타늄 프탈로시아닌의 경우 브래브 각(2Theta)이 26.1±0.2°의 위치에 텻한 피크가 나타나는 것을 볼 수 있다(도 7 - 9 참조, 원내가 베타-형 특성 크). 이는 결정이 완전한 감마-형이 아니라 베타-형의 결정을 아직 가지고 있다는 을 알 수 있으며 베타-형 피크의 세기는 온도가 증가함에 따라 세지는 경향을 보인 . 따라서 재래식 열원으로 후처리 할 경우 온도에 상당히 민감하다는 것을 알 수 으며 더욱이 50도의 낮은 온도에서도 베타~형 피크가 나타나는 것을 알 수 있다. 면, 마이크로파를 이용한 경우 베타-형 특성피크가 전혀 없는 완전한 감마-형의 결 임을 알 수 있으며 온도에 영향이 거의 없다는 것을 알 수 있다. 또한 피크의 세 또한 재래식 열원을 사용한 경우보다 마이크로파를 사용한 경우가 현저히 세다는 을 알 수 있다. 베타-형 결정이 전혀 없는 완전한 감마-형의 결정형이므로 마이크 파를 사용한 옥시티타늄 프탈로시아닌은 유기용제에 대한 결정안정성 또한 우수하 . 재래식 열원을 사용한 옥시티타늄 프탈로시아닌은 베타-형 결정이 남아있으므로 기용제 및 온도에 따른 결정안정성이 떨어지며 보다 안정한 베타-형 결정으로 쉽게 이되게 된다.

광건도 드럼의 건사사진 특성의 측정 시험 1

실시에 2에서 얻어진 옥시티타늄 프탈로시아닌 2.0%을 좁리비닐부밀알 1.0%, 테 * 라하이드로쮸란 40%, 지름 1mm인 유리구 110%과 함께 도로분산기에서 5시간동안 문시킨 후 테트라하이드로쮸란 150%을 추가하여 10분간 추가 분산하여 전하발생충 코액을 준비하였다. 산화막처리된 알루미늄 드럼의 표면에 준비된 전하발생충 코팅액 0.2mm두제로 코링한 후 120℃의 건조기에서 5분간 건조하였다.

2008의 모노줌로로벤젠에 N.N'-비스(3-메릴페닐)-N.N'-디페닐벤지딘(화학식 2) 8과 끝리(4.4-시골로헥실리덴디페닐렌 카보네이트)(화학식 3) 258을 각각 녹여 전 수송층 코링액을 준비하였다.

화학식 2]

화학식 3]

준비된 전하수송층 코팅액은 전하수송층 코팅액은 전하밤생층이 코팅된 알루미 "드립에 다시 코팅하여 120 의 건조기에서 30분간 건조하여 20년 의 전하수송층이 형 되도록하여 광건도 드립을 제조하였다.

상기와 같이 준비된 광전도 드럼의 전사사진 특성들은 하기와 같은 항목들을 뿐기 PDT-2000 (Quality Engineering Associates Inc. USA)을 사용하여 측정하였으며 2 결과는 아래 [표 1]에 나타내었다.

1)초기표면전위 (VDDP)

광건도 드럼을 -6.0kV의 쿄로나 대전기를 이용하여 대전시켰을 때 광전도 드럼 면에 발생된 전위를 측정하였다.

2) 암감쇠 (DD5)

광건도 드럼의 표면을 -700V로 대전시킨 후 3초 후(DDS) 드럼 표면의 전위 변화 측정하고 초기표면전위에 대한 백분율로 표시하였다.

즉, DD5 = (3초 후 표면전위/초기표면전위) x 100 (%)

3) 감도 (E50%)

광건도 드럼의 표면을 -700V로 대전시킨 후 파장이 780nm인 단색광에 드럼 표면 노출 시켰을 때 드럼 표면의 전위가 초기 드럼 표면의 전위의 50%에 해당하는 전 로 되기위해 필요한 단색광의 세기를 측정하였다.

4) 최종전위 (VF)

드럼표면을 -700V로 대전시킨 후 파장이 780mm이고 세기가 13 J/cml인 단색광예 • 합시졌을 때 표면전위를 측정하였다.

실시예 3 ~ 7에서 얻어진 옥시티타늄 프탈로시아닌을 사용한 것 외에는 상기 시험 1 동일하게 실시하였으며 그 결과는 아래 [표 1]에 나타내었다.

∮건도 드럼의 건사사진 특성의 측정 시험 7 - 10

|교예 1 - 4에서 얻어진 옥시티타늄 프탈로시아닌을 사용한 것 외에는 적용 실시예 부 등임하게 실시하였으며 그 결과는 아래 [표 1]에 나타내었다.

E 1] 전자사진 특성 측정 결과

য়ে	전하밤생물질	VDDP (V)	005 (%)	E50#	[VF (V)
				(J/cat)	
	i				i l
1	실시에 2	-713	95.4	0.100	-48
	실시에 3	-718	95.6	0.102	-49
-		'''	30.0	0.102	"
3	실시에 4	-713	95.7	0.100	-44
4	실시에 5	-691	92.3	0.102	-50
•	2443	-031	32.3	0.102	-30
5	실시예 6	-750	96.8	0.086	-32
6	실시에 7	-721	95.1	0.095	-45
Ü	5.4.21	-72.	33.1	0.033	
7	비교에 !	-689	91.5	0.130	-56
8	माञ्चल 2	-691	91.5	0.125	-51
٠	111111	-031	31.5	0.125	-5:
9	비교예 3	-687	91.4	0.129	-68
10	비교예 4	-531	70.5	0.398	-53
	-,111			0.030	~
	l	L	L		└

발명의 효과]

* 이상에서 상습한 바와 같이 본 발명은 옥시티타늄 프탈로시아닌 전하발생윦질을 조하기 위해 27.2.40.2 *의 위치에서만 피크가 존재하는 새로운 결정형의 옥시티타 프탈로시아닌 크루드를 합성하고 이를 후처리 가공함에 있어서 마이크로파와 초음 를 격용함으로써 완전한 갑마-형 옥시티타늄 프탈로시아닌을 얻을 수 있도록 하여 기용제나 온도에 대한 결정안정성을 획기적으로 개선하고 따라서 기존의 옥시티타 프탈로시아닌 전하발생품질의 문제점인 전하발생충 코딩액 제조 후의 취약한 보판 문제를 해결할 수 있다. 또한 보다 작고 균일한 입자들을 얻을 수 있도록 하여 전반생충 코딩액 제조시 공정시간을 단축하여 향상된 생산성을 제공한다.

₹허청구범위]

성구함 1**)**

옥시티타늄 프탄로시아닌 크루드를 유기용때와 함께 균질하게 혼합하면서 주파 $0.1 \sim 100 \; \mathrm{GHz}$, 출력 $10 \sim 3.000$ 째의 마이크로파와 $1 \sim 1.000 \; \mathrm{GHz}$, 10 ~ 5.000째의 마이크로파와 $1 \sim 1.000 \; \mathrm{GHz}$, 10 ~ 5.000째의 음파 에너지를 격용하고 30~100℃의 온도에서 0.5~5시간등안 반응시키는 것을 특징로 하는 옥시티타늄 프탈로시아닌 전하발생물질의 제조 방법.

성구항 2]

제 1항에 있어서. 상기 옥시티타늄 프탈로시아닌 크루드는 상온이하의 온도에서 날에 녹인 후 재결정된 것이나 혹은 건식 또는 습식 분쇄된 것임을 특징으로 하는 법.

성구항 31

제 2항에 있어서, 상기 산은 황산, 인산 또는 할로겐화카르복시산인 것을 특징 로 하는 방법.

성구항 4]

제 2항에 있어서, 재결정에 사용되는 용매는 물, 지방족 알코올, 방향족 코올, 케론, 에테르, 에스테르 또는 그 혼합용액인 것을 특징으로 하는 방법,

성구항 5]

제 1항에 있어서, 상기 유기용때는 할로겐화변젠, 할로겐화나프탈렌 또는 이들 물의 혼합용액인 것을 특징으로 하는 방법.

성구함 6]

* 제 5항에 있어서, 할로겐으로는 염소, 품소, 보름 또는 요오드로 하고 그 치환 수는 1-4개인 것을 특징으로 하는 방법.

보구함 7**]**

제 1항에 있어서, 상기 반응은 50-70℃의 온도에서 행해짐을 특징으로 하는 방

성구항 8]

제 1항에 있어서, 상기 반응은 10분-5시간동안 행해짐을 특징으로 하는 방법.

성구항 9]

□ 1항에 있어서, 옥시티타늄 프랄로시아닌 크루드는 브래그각 27.2±0.2 에서만 X-회결 특성 피크를 갖는 것임을 특징으로 하는 방법.

성구항 10]

주파수 0.1 ~ 100 GHz, 출력 10~3.000짜의 마크네트론(1)과 마이크로파 용기(2)의 마이크로 파장을 균일하게 하기 위한 모드 교반기(3), 정확한 반응물의 온도 축 및 조절을 행하기 위한 PID 방식 온도제어기(8), 마이크로파 용기(2)의 상단면에세 개의 구멍에 삽입된 마이크로파 차폐된 K형 열전대(4), 응축기(5), 교반봉(6), 이크로파 용기(2)의 하단면에 뚫린 한개의 구멍에 삽입된 초음파 립(7), 반응물이입되는 파이렉스 용기(8) 및 용매 탱크(10)로 이루어지고, 파이렉스 용기(8)내에서시티타늄 프탈로시아닌 크루드를 유기용매와 함께 균실하게 혼합하면서 주파수 0.1

녀자를 적용하고 마이크로파 차페된 K형 연천대(4) 및 PID 방식 온도제어기(8)를 ** 용하여 정밀하게 조절하면서 30-100℃의 온도에서 0.5-5시간동안 반응시켜 옥시티 늄 프탈로시아닌 건하발생품질을 합성하는 것을 특징으로 하는 장치.

성구함 11]

제 10항에 있어서. 상기 옥시티타늄 프탈로시아닌 크루드는 상온이하의 온도에 산에 녹인 후 재결정된 것이나 혹은 건식 또는 습식 분쇄된 것임을 특징으로 하는 낫치.

성구항 12**]**

제 11항에 있어서, 상기 산은 황산, 인산 또는 함로겐화카르복시산인 것을 특징 로 하는 장치.

성구항 13]

제 11항에 있어서, 재결정에 사용되는 용매는 물, 지방족 알코올, 방향족 알코 . 케론, 에테르, 에스테르 또는 그 혼합용액인 것을 특징으로 하는 장치.

성구항 14]

제 10항에 있어서, 상기 유기용매는 할로겐화벤젠, 할로겐화나프탈렌 또는 이들 물의 혼합용액인 것을 특징으로 하는 장치.

성구항 15]

제 14항에 있어서, 할로겐으로는 염소, 불소, 보름 또는 요오드로 하고 그 치환 수는 1-4개인 것을 특징으로 하는 장치.

영구항 16]

* 제 10항에 있어서, 상기 반응은 50-70℃의 온도에서 행해짐을 특징으로 하는 장

성구항 17]

제 10항에 있어서, 상기 반응은 10분-5시간동안 행해짐을 특징으로 하는 장치.

성구항 18]

제 10항에 있어서, 옥시티타늄 프탈로시아닌 크루드는 브래그각 27.2 와,2°에서 X~선 회절 특성 피크를 갖는 것임을 특징으로 하는 장치.

보구항 19]

제 1항의 방법에 의해 제조되며, 브래브각 7.2.50.2°, 9.6.50.2°, 11.7.50.2°, 7.50.2°, 13.4.50.2°, 14.1.50.2°, 14.8.50.2°, 18.0.50.2°, 18.4.50.2°, 22.3±2°, 23.4.50.2°, 24.1.50.2°, 24.5.50.2° 및 27.2.50.2°에서 X-선 회절 특성 피크 갖는 것을 특징으로 하는 옥시티타늄 프탈로시아닌 전하발생물질.

성구항 20]

제 19항의 옥시티타늄 프탈로시아닌 전하발생물질을 사용하여 제조된 광전도체.

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/KR04/002561

International filing date: 07 October 2004 (07.10.2004)

Document type: Certified copy of priority document

Document details: Country/Office: KR

Number: 10-2003-0070060

Filing date: 08 October 2003 (08.10.2003)

Date of receipt at the International Bureau: 28 October 2004 (28.10.2004)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:				
☐ BLACK BORDERS				
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES				
☐ FADED TEXT OR DRAWING				
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING				
☐ SKEWED/SLANTED IMAGES				
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS				
☐ GRAY SCALE DOCUMENTS				
☐ LINES OR MARKS ON ORIGINAL DOCUMENT				
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY				
□ other:				

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.