DOUBLEROOT

Cheat Sheet – Quadratic Equations

Roots of $ax^2 + bx + c = 0$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Nature of Roots of $ax^2 + bx + c = 0$

Real & Distinct

$$b^2 - 4ac > 0$$

Real & Equal

$$b^2 - 4ac = 0$$

Complex / Imaginary

$$b^2 - 4ac < 0$$

Rational

a, b, c
$$\in$$
 Q; $b^2 - 4ac \rightarrow perfect square$

Integers

a = 1; b, c
$$\in$$
 Z; b² – 4ac \rightarrow perfect square

Relation between roots and coefficients

Sum of the roots: $\alpha + \beta = -b/a$ Product of the roots: $\alpha\beta = c/a$

Common Roots

Equations:
$$ax^2 + bx + c = 0 & px^2 + qx + r = 0$$

One root common

$$\frac{\alpha^2}{br - cq} = \frac{\alpha}{cp - ar} = \frac{1}{aq - bp}$$
where α is the common root

Both roots common

$$a/p = b/q = c/r$$

Range of a quadratic function: $ax^2 + bx + c$

Condition	Range
a > 0	[- D/4a, ∞)
a < 0	(– ∞, – D/4a]

Sign of a quadratic function: $ax^2 + bx + c$

Condition Sign

$$a > 0$$
, $D > 0$ $> 0 \forall x \in (-\infty, \alpha) \cup (\beta, \infty)$; $< 0 \forall x \in (\alpha, \beta)$

$$a > 0$$
, $D = 0 \ge 0 \forall x \in R$

$$a > 0$$
, $D < 0 > 0 \forall x \in R$

$$a < 0, D > 0 > 0 \forall x \in (\alpha, \beta); < 0 \forall x \in (-\infty, \alpha) \cup (\beta, \infty)$$

$$a < 0$$
, $D = 0 \le 0 \forall x \in R$

$$a < 0, D < 0 < 0 \forall x \in R$$

Graph of a quadratic function $f(x) = ax^2 + bx + c$

$$a > 0$$
; $D = 0$

Location of Roots of $f(x) = ax^2 + bx + c$

Both roots positive

$$D \ge 0$$
; a.f(0) > 0; -b/2a > 0

Both roots negative

$$D \ge 0$$
; a.f(0) > 0; -b/2a < 0

Opposite signs

Equal and opposite signs

$$D > 0$$
: $b = 0$

'k' lies between the roots

Both roots greater than 'k'

$$D \ge 0$$
; a.f(k) > 0; - b/2a > k

Both roots less than 'k'

$$D \ge 0$$
; a.f(k) > 0; - b/2a < k

Both roots lie inside the interval (k_1, k_2)

$$D \ge 0$$
; a.f(k₁) > 0; a.f(k₂) > 0; k₁ < -b/2a < k₂

Exactly one root lies in the interval (k_1, k_2) if

$$f(k_1).f(k_2) < 0$$

One root smaller than 'k₁', other greater than 'k₂'

$$a.f(k_1) < 0$$
; $a.f(k_2) < 0$