Math 327 Homework 7

Sathvik Chinta

November 29th, 2022

1. **10**

We want to prove that if a function $f:(a,b)\in\mathbb{R}$ is uniformly continuous, then it is bounded.

By the $\epsilon - \delta$ definition of continuity, a function is continuous in the domain D provided that for every positive number ϵ there is a positive number δ for which

$$|f(x) - f(y)| < \epsilon$$
 if $|x - y| < \delta$

Let f be a function on (a, b) that is uniformly continuous.

We prove by contradiction. Let f be a function on (a,b) that is uniformly continuous but not bounded.

Then, for all M > 0, there exists $x \in (a, b)$ such that |f(x)| > M.

Then, f(x) > M or f(x) < -M. Then, let $M = \epsilon + f(y)$ where $|x - y| < \delta$.

Then, $f(x) > \epsilon + f(y)$ or $f(x) < -\epsilon - f(y)$. This is equivalent to saying that $f(x) - f(y) > \epsilon$ or $f(x) - f(y) < -\epsilon$. In other words:

$$|f(x) - f(y)| > \epsilon$$

However, this is a contradiction to the fact that f is uniformly continuous.

2. 7

We are given that $f:[0,1] \to \mathbb{R}$ is continuous, f(0) > 0 and f(1) = 0. We want to prove that there is a number $x_0 \in (0,1]$ such that $f(x_0) = 0$ and f(x) > 0 for $0 \le x < x_0$.

We prove by contradiction. Let $f:[0,1] \to \mathbb{R}$ be continuous, f(0)>0, f(1)=0, and $x_0\in(0,1]$. We say that there is no value x_0 for which $f(x_0)=0$ and f(x)>0 for $0\leq x< x_0$. Let $x_0=1$ and x=0. Then, $0\leq x< x_0$ with $x_0\in(0,1]$. However, $f(x_0)=0$ and f(x)>0 from our assumptions. This is a contradiction. Thus, there is a value $x_0\in(0,1]$ such that $f(x_0)=0$ and f(x)>0 for $0\leq x< x_0$.

3. 4

We are given that $f:[-1,1] \to \mathbb{R}$ is continuous, f(-1) > -1 and f(1) < 1. We want to prove that f has a fixed point where a fixed point is the point at which the line y = x intersects the graph of f.

Let's define another function $g:[-1,1]\to\mathbb{R}$ by g(x)=f(x)-x. Then, g is continuous since f is continuous and x is continuous. We also have that g(-1)=f(-1)-(-1)>0 and g(1)=f(1)-1<0.

In other words

$$g(1) < 0 < g(-1)$$

By the Intermediate Value Theorem, there is a number $x_0 \in (-1,1)$ such that $g(x_0) = 0$. Then, $f(x_0) = x_0$ since g(x) = f(x) - x.

Thus, f has a fixed point.

4. **1**

False. Let a function be defined as $f(x) = \frac{1}{x-0.5}$. Then, this function does not have a maximum on the interval [0, 1]

b

Yes, if a function is continuous on a closed interval, it must have a minimum. If it were to not have a minimum, then it cannot be continuous since it would approach infinty

c

No, if the function has it's maximum at x = 1, then the the interval (0, 1) does not contain the maximum.

d

No, the function itself is unbounded so its image cannot be bounded.

 \mathbf{e}

Yes, if the image is bounded below there must be some $x \in (0,1)$ such that f(x) = minimum.

2

 \mathbf{a}

x = 1 is the maximizer for this function.

b

x = 0 is the maximizer for this function

 \mathbf{c}

x = -1 is the maximizer for this function

5. **1**

а

No, let f(x) = 1 be our function. Then, $f(\mathbb{R}) = 1$.

 \mathbf{b}

No, if the function is unbounded then its image cannot be an interval

c

No, if the function is unbounded then its image cannot be an interval

d

Yes, since f(0) < f(x) < f(1) for all 0 < x < 1, the image is the interval [f(0), f(1)]

6. **3**

Let $f(x) = \frac{1}{\sqrt{x+x^2}} + x^2 - 2x$. Notice that f(1) < 0 and f(2) > 0. Thus, there must exist some $x \in (1,2)$ for which f(x) = 0 by the Intermediate Value Theorem.