Homework 3 Solutions

Problem 1

Write a Matlab function which computes the total interest (intr) and payment amount (pmt) for loans with monthly interest accrual and payments. The first line of the function should be:

```
function [intr, pmt] = f1(price, down, rate, years)
```

where price is the commodity price, down is the down payment, rate is the annual interest rate as a percent, and years is the loan duration.

Solution

We start by calculating the principal amount of the loan:

$$principal = price - down$$

Next, we compute the monthly interest rate:

$$\alpha = \frac{\mathrm{rate}}{1200}$$

The number of payments is:

$$N = \text{years} \times 12$$

Using the formula derived from the lecture notes:

$$P = \frac{\alpha (1 + \alpha)^N \times \text{principal}}{(1 + \alpha)^N - 1}$$

In MATLAB, the function would be implemented as:

```
function [intr, pmt] = f1(price, down, rate, years)
    principal = price - down;
    alpha = rate / 1200;
    N = years * 12;
    pmt = (alpha * (1 + alpha)^N * principal) / ((1 + alpha)^N - 1);
    pmt = ceil(pmt * 100) / 100;
    total_paid = pmt * N;
    intr = total_paid - principal;
    intr = round(intr * 100) / 100;
end
```

Problem 2

The price of a car is \$55000. You make a down payment of 10% and finance the rest with a seven-year loan at a 2.9% annual interest rate. Use your f1 function to compute the total interest and the monthly payment.

Solution

Given:

price = 55000, down = $55000 \times 0.10 = 5500$, rate = 2.9, years = 7

We call the function:

$$[intr, pmt] = f1(55000, 5500, 2.9, 7)$$

The principal is:

$$principal = 55000 - 5500 = 49500$$

Monthly interest rate:

$$\alpha = \frac{2.9}{1200} = 0.00241667$$

Number of payments:

$$N = 7 \times 12 = 84$$

Monthly payment P:

$$P = \frac{0.00241667 \times (1 + 0.00241667)^{84} \times 49500}{(1 + 0.00241667)^{84} - 1} \approx 652.52$$

Thus, the total paid over the loan period is:

total paid =
$$652.52 \times 84 = 54774.68$$

Total interest:

$$intr = 54774.68 - 49500 = 5274.68$$

Problem 3

Write a Matlab function to compute the total interest (intr) and the loan duration in months (dur) for credit card loans with monthly interest accrual and payments. The function should be:

where chg is the amount charged to the card and extra is any voluntary additional payment above the minimum required.

Solution

We simulate the loan repayment process month by month until the balance is paid off. The MATLAB function is as follows:

```
function [intr, dur] = f2(chg, extra)
  balance = chg;
  alpha = 0.02;
  dur = 0;
  intr = 0;
  while balance > 0
     interest = balance * alpha;
     interest = round(interest * 100) / 100;
     intr = intr + interest;
     min_payment = max(15, ceil(balance * 0.03 * 100) / 100);
     payment = min_payment + extra;
     payment = min(payment, balance + interest);
```

```
payment = ceil(payment * 100) / 100;
balance = balance + interest - payment;
balance = max(balance, 0);
balance = round(balance * 100) / 100;
dur = dur + 1;
end
intr = round(intr * 100) / 100;
end
```

Problem 4

You charge \$5000 on a new credit card and make the minimum payment each month. Use your f2 function to compute the total interest and duration of the loan.

Solution

Given:

$$chg = 5000, \quad extra = 0$$

We call the function:

$$[intr, dur] = f2(5000, 0)$$

The results are:

$$intr = 5276.74$$
, $dur = 469$ months

Problem 5

- (a) Repeat problem 4 when you pay an extra \$10 each month. How much do you save in interest and duration?
 - (b) Repeat when you pay an extra \$20 each month.

Solution

For (a), with an extra \$10:

$$[intr, dur] = f2(5000, 10)$$

The results are:

$$intr=2273.78,\quad dur=161$$

Savings:

interest saved =
$$5276.74 - 2273.78 = 3002.96$$
, duration saved = $469 - 161 = 308$

For (b), with an extra \$20:

$$[intr, dur] = f2(5000, 20)$$

The results are:

$$intr = 1442.04$$
, $dur = 104$

Savings:

interest saved = 5276.74 - 1442.04 = 3834.70, duration saved = 469 - 104 = 365

Problem 6

Let

$$\beta(N) = \frac{\alpha(1+\alpha)^N}{(1+\alpha)^N - 1}$$

- (a) Prove analytically that β is a monotonically decreasing function of N.
- (b) What is the limit as $N \to \infty$?

Solution

(a) To show $\beta(N)$ is monotonically decreasing, we compute its derivative. Let $A=1+\alpha$, then:

$$f(N) = \frac{A^N}{A^N - 1}$$

The derivative of f(N) is:

$$f'(N) = -\frac{A^{2N} \ln A}{(A^N - 1)^2}$$

Since A > 1 and $\ln A > 0$, f'(N) < 0, so $\beta(N)$ is decreasing.

(b) As $N \to \infty$, we have:

$$\lim_{N \to \infty} \beta(N) = \alpha$$

Problem 7

Prove analytically that the principal balance y(n) is a monotonically decreasing function of n.

Solution

Given:

$$y(n) = \left(C - \frac{P}{\alpha}\right)(1+\alpha)^{n+1} + \frac{P}{\alpha}$$

We calculate y(n+1) - y(n):

$$y(n+1) - y(n) = \left(C - \frac{P}{\alpha}\right) (1+\alpha)^{n+1} \alpha$$

Since $C - \frac{P}{\alpha} < 0$, we conclude that y(n+1) - y(n) < 0, thus y(n) is a monotonically decreasing function of n.

问题6

\$

$$\beta(N) = \frac{\alpha(1+\alpha)^N}{(1+\alpha)^N - 1}$$

其中 N = 12T,而 T 和 α 已在讲义中定义。

- (a) 证明 $\beta(N)$ 是 N 的单调递减函数。
- (b) 求 $N \to \infty$ 时的极限。

解答

(a) 证明 $\beta(N)$ 单调递减:

要证明 $\beta(N)$ 递减,我们需要证明其对 N 的导数是负的。 首先,将 $\beta(N)$ 写为:

$$\beta(N) = \alpha \left(1 + \frac{1}{(1+\alpha)^N - 1} \right)$$

我们可以考虑函数:

$$f(N) = \frac{(1+\alpha)^N}{(1+\alpha)^N - 1}$$

那么 $\beta(N) = \alpha f(N)$ 。

计算 f(N) 的导数 f'(N): 设 $A = 1 + \alpha$, 因此 A > 1。

$$f(N) = \frac{A^N}{A^N - 1}$$

计算 f'(N):

$$f'(N) = \frac{A^N \ln A (A^N - 1) - A^N (A^N \ln A)}{(A^N - 1)^2} = \frac{A^N \ln A (A^N - 1 - A^N)}{(A^N - 1)^2} = -\frac{A^{2N} \ln A}{(A^N - 1)^2}$$

由于 A > 1 且 $\ln A > 0$, 分子为负, 分母为正。

因此, f'(N) < 0。

由此可知,f(N) 是递减的,因此 $\beta(N)$ 随 N 单调递减。

(b) 当 $N \to \infty$ 时的极限:

计算:

$$\lim_{N\to\infty}\beta(N)=\lim_{N\to\infty}\frac{\alpha(1+\alpha)^N}{(1+\alpha)^N-1}=\alpha\lim_{N\to\infty}\frac{(1+\alpha)^N}{(1+\alpha)^N-1}$$

当 $N \to \infty$ 时, $(1+\alpha)^N \to \infty$,因此:

$$\lim_{N \to \infty} \beta(N) = \alpha \cdot 1 = \alpha$$

所以 $\lim_{N\to\infty}\beta(N)=\alpha$ 。

问题7

证明贷款余额 y(n) 是 n 的单调递减函数。

解答

已知 y(n) 的公式为:

$$y(n) = \left(C - \frac{P}{\alpha}\right) (1 + \alpha)^{n+1} + \frac{P}{\alpha}$$

其中 $P = \frac{\alpha(1+\alpha)^N C}{(1+\alpha)^N - 1}$,且 N = 12T,所以 P 是正的。

考虑 y(n+1) - y(n) 的差值:

$$\Delta y = y(n+1) - y(n)$$

计算 y(n+1) 和 y(n):

$$y(n+1) = \left(C - \frac{P}{\alpha}\right) (1+\alpha)^{n+2} + \frac{P}{\alpha}$$
$$y(n) = \left(C - \frac{P}{\alpha}\right) (1+\alpha)^{n+1} + \frac{P}{\alpha}$$

两者相减得到:

$$\Delta y = \left(C - \frac{P}{\alpha}\right) \left[(1 + \alpha)^{n+2} - (1 + \alpha)^{n+1} \right]$$

简化表达式:

$$\Delta y = \left(C - \frac{P}{\alpha}\right) (1 + \alpha)^{n+1} \left[(1 + \alpha) - 1 \right] = \left(C - \frac{P}{\alpha}\right) (1 + \alpha)^{n+1} \alpha$$

注意 $(1+\alpha)-1=\alpha$ 。 由于 $(1+\alpha)^{n+1}>0$ 且 $\alpha>0$,所以 Δy 的符号取决于 $\left(C-\frac{P}{\alpha}\right)$ 。

根据贷款月供公式, 我们有:

$$P = \frac{\alpha (1+\alpha)^N C}{(1+\alpha)^N - 1}$$

重写 $\frac{P}{\alpha}$:

$$\frac{P}{\alpha} = \frac{(1+\alpha)^N C}{(1+\alpha)^N - 1}$$

因此:

$$C - \frac{P}{\alpha} = C - \frac{(1+\alpha)^N C}{(1+\alpha)^N - 1} = C\left(1 - \frac{(1+\alpha)^N}{(1+\alpha)^N - 1}\right) = -\frac{C}{(1+\alpha)^N - 1}$$

由于 $(1+\alpha)^N-1>0$,分母为正,所以 $C-\frac{P}{\alpha}<0$ 。 因此, $\Delta y<0$,即 y(n+1)-y(n)<0。 由此证明,y(n) 是 n 的单调递减函数。