Recommendation System Applied Data Analysis - Final Project

Cnet ID: krishnaveni UCID: 12374512

Problem Space: The Information Age

- Internet brings the Age of Information Explosion
- Increasing brand rivalry
- Increasing need to build customer loyalty
- Information Overload
- Over Choice
- Need for marketing strategies to increase sales and revenue

"Customers seek brands which align with their personal values and beliefs"

Solution and its Advancements

- Customized products
- Targeted Marketing
- Acknowledge customer behaviours and personalities
- Build solutions which are at the crux of Personality Psychology and Economics

"Better access to more product options has made brand loyalty less secure"

TYPES OF RECOMMENDATION SYSTEMS

Recommendation Systems

Evolution of Models:

- Item Hierarchy
- Attribute Based
- Statistical Models
 - Matrix Factorization
 - Formulae Based
 - Model implemented:
 - Content Based System
- Model Based Recommendation Systems
 - Model implemented:
 - Collaborative Filtering

Implementation Details.....

- Dataset
 - Curse of Dimensionality
- Models
 - Content-Based Filtering
 - Model description
 - Performance
 - Challenges
 - Collaborative Filtering
 - Model description
 - Data Augmentation
 - Performance
 - Challenges
- Platform Support
- Resources & References

Dataset Details

- Movie Lens 20M dataset
- Data:
 - Movies
 - Users
 - Ratings
 - Timestamp
 - Genres
 - Year of Release
- Data Augmentation: The Why?
- Used: 7M data points
- Tested on: 14k users


```
movie ids = ratings['movieId'].unique()
user test movie list = zip(test ratings['userId'], test ratings['movieId'])
# The set is used only for faster lookup. There are no duplicates here
user test movie set = set(user test movie list)
# Create 99 negative interaction points for each user to create the 100 count sample
for (u, i) in tqdm(user test movie set):
   for in range(99):
        negative item = np.random.choice(movie ids)
        while ((u, negative_item) in user_test_movie_set) or ((u, negative_item) in user_movie_set):
            negative item = np.random.choice(movie ids)
        users.append(u)
        items.append(negative item)
```

| 14315/14315 [00:23<00:00, 600.14it/s]

100%

Content Based Recommendation System

- Item-Item similarity
 - Thematically linked items
 - Meta-data of the items
- Cosine similarity
- Use of rating to measure relevance
- Statistical Model
- Results:


```
# I have built Content-based filtering as a purely mathematical model using similarity of its genres

def get_recommendations(movie_title, n=20):
    movie_id = content[content['title'] == movie_title].index[0]
    movie_of_interest = movie_genres.loc[movie_id]

    result = movie_genres.dot(movie_of_interest)

    recommendations_index = result.sort_values(ascending=False)[:n].index
    recommendations = content.loc[recommendations_index]
    return recommendations
```

```
# Getting results/recommendations for `Toy Story`
result = get_recommendations('Toy Story')
print(result['title'])
```

80158	Cartoon All-Stars to the Rescue
131248	Brother Bear 2
78499	Toy Story 3
1	Toy Story
26340	Twelve Tasks of Asterix, The
4886	Monsters, Inc.
3114	Toy Story 2
108932	The Lego Movie
4306	Shrek
4016	Emperor's New Groove, The
2987	Who Framed Roger Rabbit?
56152	Enchanted
114552	Boxtrolls, The
114240	Aladdin
33463	DuckTales: The Movie - Treasure of the Lost Lamp
115875	Toy Story Toons: Hawaiian Vacation

Collaborative Filtering Model

- Based on user-item interactions
 - Ratings
- Neural Collaborative Filtering model
 - Implicit Feedback
 - Tower structure
 - Activation: Relu
 - Optimizer: Adam
 - Loss function: Log Loss
 - Improvements: Diversity regularizer
 - Metric: Hit Ratio@10
 - Result:

Neural Collaborative Filtering


```
# PyTorch Lightning is an open-source Python library that provides a high-level interface for PyTorch
class CollaborativeFiltering(pl.LightningModule):
 def init (self, train ratings, dataloader):
   super(). init ()
   self.train ratings = train ratings
   self.dataloader = dataloader
   # Tried with len() first, it fails when the IDs are not in order or exceed length
   # This is because embedding is just a lookup table we are building for n items
   self.number of users = train ratings['userId'].max() + 1
   self.number of items = train ratings['movieId'].max() + 1
   # Longer embedding vectors don't add more valuable information and smaller ones don't represent the semantics well enough
   # The rule of thumb for determining the embedding size is the cardinality size divided by 2, but no bigger than 50
   # I have chosen 16 here, as the cardinality is too huge
   self.user embedding = nn.Embedding(num embeddings=self.number of users, embedding dim=16)
   self.item embedding = nn.Embedding(num embeddings=self.number of items, embedding dim=16)
   # Tower pattern is implemented, where the bottom layer is the widest and each successive layer has a smaller number of neurons
   # The reference paper halves the neurons by half each time, but I have tried a more generalized model
   self.layer1 = nn.Linear(in features=32, out features=64)
   self.layer2 = nn.Linear(in features=64, out features=32)
   self.layer3 = nn.Linear(in features=32, out features=16)
   self.layer4 = nn.Linear(in features=16, out features=8)
   # Reference: https://stats.stackexchange.com/questions/207049/neural-network-for-binary-classification-use-1-or-2-output-neurons
   self.output layer = nn.Linear(in features=8, out features=1)
```

```
dense user = self.user embedding(user input)
  dense_item = self.item_embedding(item_input)
  vector = torch.cat([dense user, dense item], dim=-1)
  # Results from various posts and research papers
  # The sigmoid function restricts each neuron to be in (0,1), which may limit the model's performance; and it is known to suffer from saturation, where neurons stop le
  # Even though tanh is a better choice and has been widely adopted it only alleviates the issues of sigmoid to a certain extent, since it can be seen as a rescaled ver
  # ReLU, which is more plausible and proven to be non-saturated, it encourage's sparse activations, making the model less likely to be overfitting.
  vector = nn.ReLU()(self.layer1(vector))
  vector = nn.ReLU()(self.layer2(vector))
  vector = nn.ReLU()(self.layer3(vector))
  # sigmoid is the same as softmax. The better choice for the binary classification is to use one output unit with sigmoid instead of softmax with two output units, bec
  pred = nn.Sigmoid()(self.output layer(vector))
  return pred
trainer.fit(model)
trainer.save_checkpoint('/content/drive/MyDrive/small_dataset/checkpoint_3layer_regularizer.ckpt')
INFO:pytorch lightning.utilities.rank zero:You are using a CUDA device ('NVIDIA A100-SXM4-40GB') that has Tensor Cores. To properly utilize them, you should set `torch.set flo
INFO:pytorch lightning.accelerators.cuda:LOCAL RANK: 0 - CUDA VISIBLE DEVICES: [0]
INFO:pytorch lightning.callbacks.model summary:
                    Type
   user embedding | Embedding | 1.1 M
   item embedding
                     Embedding | 1.1 M
                                  544
2 | layer1
                      Linear
   layer2
                      Linear
                                  528
4 | laver3
                      Linear
   output_layer
                     Linear
2.2 M
          Trainable params
          Non-trainable params
2.2 M
          Total params
          Total estimated model params size (MB)
8.636
/usr/local/lib/python3.8/dist-packages/pytorch lightning/trainer/connectors/data connector.py:224: PossibleUserWarning: The dataloader, train dataloader, does not have many we
 rank zero warn(
```

3496/3496 [02:01<00:00, 28.85it/s, loss=0.0092, v num=16]

def forward(self, user input, item input):

Epoch 19: 100%

```
def diversity loss(self, y true, y pred, movie ids):
 # Adding the diversity loss as a regularizer to the log loss function
 # This has been added to enhance diversity of the model predictions
 alpha = 10**-3
 movie ids list = np.squeeze(movie ids).tolist()
 indexes = np.argsort(np.squeeze(y_pred).tolist())[::-1][:10]
  positives = [movie ids list[index] for index in indexes]
 batch_grid = self.genre_grid.loc[positives]
 similarity = batch grid.corr()
 diversity regularizer = (similarity.sum()).sum()
 # Alpha here is multiplied to soften impact of the size of loss
 return alpha * diversity regularizer
def training step(self, batch, batch idx):
 user_input, item_input, labels = batch
 predicted labels = self(user input, item input)
 # Binary Cross-Entropy/Log Loss
 bce loss obj = nn.BCELoss()
 loss = bce loss obj(predicted labels, labels.view(-1, 1).float())
 # Adding similarity as diversity regularizer
 diversity regularizer = self.diversity loss(labels.view(-1, 1).float(), predicted labels, item input)
 return loss + diversity regularizer
```

```
test user item set = set(zip(test ratings['userId'], test ratings['movieId']))
test dataset = pd.read csv('/content/drive/MyDrive/small dataset/augmented test dataset.csv')
hits = []
user ids = test dataset['userId'].unique()
for user id in tqdm(user ids):
    test item = test ratings[test ratings['userId']==user id]['movieId'].iloc[0]
   user df = test dataset[test dataset['userId'] == user id].reset index()
   data loader = DataLoader(TestingData(user df), batch size=100, num workers=4, shuffle=False)
   # Returns a list of dictionaries, one for each provided dataloader containing their respective predictions
    predictions = model(torch.tensor(user df['userId']), torch.tensor(user df['movieId']))
   # To convert to numpy array and solve issue: Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead
   predictions = predictions.detach().numpy()
   # To solve : Buffer has wrong number of dimensions (expected 1, got 2) because dimensions of predictions are (100, 1)
   # Reference: https://deeplizard.com/learn/video/fCVuiW9AFzY
    predictions = np.squeeze(predictions)
   # Since we need the movieId,
    top 10 = set(user df.iloc[np.argsort(predictions)[::-1][:10]]['movieId'])
   hits.append(1) if test item in top 10 else hits.append(0)
print(f'Hit Ratio @ 10 is {np.average(hits)}')
```

| 14315/14315 [01:10<00:00, 202.85it/s]Hit Ratio @ 10 is 0.593223891023402

100%

Results...

- Without Regularization
 - 3 hidden layers: 0.524
 - 4 hidden layers: 0.593
 - Benchmark from Research Paper: 0.67
- With Regularization
 - 3 hidden layers with regularization: 0.57
- Improvements:
 - More Data
 - Resources
 - Compute
 - Memory
 - Time Taken for each epoch
 - Optimization of Custom loss

Challenges and Future Scope

<u>Challenges</u>

- Changing user preferences
- Choosing an architecture
- Curse of Dimensionality
- Platform availability
- Tuning of Hyperparameters
- Space and Time Constraints

<u>Future Scope</u>

- Deep Learning model for Content-Based Filtering
- Tune hyper parameters
- Improve diversity regularization
- Implement the NeuMF model
- Session-based recommendations

Neural Matrix Factorization

Learning Journey...

- Understanding of Recommendation Systems:
 The secret sauce
- Know-how of various advancements
- Deep learning fundamentals
- Data Augmentation
- Model development
- Pytorch and Pytorch-lightning
- Trade-offs between activation functions and optimizers
- Troubleshooting
- Experimentation

THANK YOU!