Food Delivery Time Prediction

Objective

The goal is to predict whether food delivery will be fast or delayed based on features like customer location, restaurant location, weather conditions, traffic conditions, and more. This task is a **binary classification problem** where the model will predict delivery status: "Fast" or "Delayed."

Phase 1: Data Preprocessing

- Data Import and Cleaning:
 - Load the dataset (Food_Delivery_Time_Prediction.csv).
 - o Handle missing values through imputation.
 - o Encode categorical features (e.g., weather, traffic, and vehicle type) using LabelEncoder.
 - Normalize continuous features such as distance and delivery time.
- Feature Engineering:
 - Calculate the geographic distance between the customer and restaurant using latitude and longitude (Haversine formula).
 - o Create binary categories based on delivery time (e.g., 1 for delayed and ∅ for fast).

Phase 2: Classification using Naive Bayes, K-Nearest Neighbors, and Decision Tree

- 1. Naive Bayes Classifier:
 - Apply the Gaussian Naive Bayes classifier, which is suitable for continuous features, to predict the binary class of delivery status (fast or delayed).
 - Evaluation Metrics: Accuracy, Confusion Matrix, Precision, Recall, F1-score.
- 2. K-Nearest Neighbors (KNN):
 - Use the KNN classifier for the binary classification of fast vs. delayed deliveries.
 - Hyperparameter Tuning: Find the optimal value for the number of neighbors (K) using cross-validation.
 - Evaluation Metrics: Accuracy, Confusion Matrix, Precision, Recall, F1-score.
- 3. **Decision Tree**:
 - Train a **Decision Tree classifier** to model the classification of delivery times.
 - Hyperparameter Tuning: Prune the tree to avoid overfitting using max_depth and min_samples_split.
 - Evaluation Metrics: Accuracy, Confusion Matrix, Precision, Recall, F1-score.

Phase 3: Reporting and Insights

- Model Comparison:
 - Compare the performance of Naive Bayes, KNN, and Decision Tree classifiers using metrics such as accuracy, precision, recall, and F1-score.
 - Visualize the confusion matrix and ROC curves to analyze the classification results.
- Actionable Insights:
 - o Identify the strengths and weaknesses of each model.
 - Recommend the best classifier based on the task requirements (e.g., accuracy, interpretability).

Final Deliverables

- 1. Jupyter Notebook (.ipynb) containing the entire code and analysis.
- 2. **Data Visualizations** in image format or embedded in the notebook.
- 3. Final Report summarizing key findings, model evaluations, and actionable recommendations.