Notas de clase

Este material está sujeto a correcciones, comentarios y demostraciones adicionales durante el dictado de las clases, no se recomienda su uso a aquellos alumnos que no concurran a las mismas

Prof. Nora Arnesi

Variables aleatorias bidimensionales o de mayor dimensión

ε w un experimento aleatorio

 $S \Longrightarrow$ el espacio muestral asociado con ϵ

 $X: S \rightarrow R$ $Y: S \rightarrow R$ of superior of the signal of the superior of the superi

$$X=X(s)$$
, $Y=Y(s)$

(X,Y) variable aleatoria bidimensional (vector aleatorio)

Variable aleatoria n-dimensional

Si
$$X_1 = X_1(s), X_2 = X_2(s), ..., X_n = X_n(s)$$

son n funciones, cada una de las cuales asigna un número real a cada resultado $s \in S$

 $(X_1, X_2, ..., X_n)$ variable aleatoria n-dimensional (vector aleatorio n-dimensional)

Vector aleatorio puede ser discreto o continuo

Distribución de un vector aleatorio bidimensional

• (X,Y) \square Vector aleatorio discreto

$$p(x, y) = P(X = x, Y = y)$$
 Función de probabilidad conjunta

a)
$$p(x,y) \ge 0$$

$$b) \sum_{(x,y) \in R_{(X \times Y)}} p(x,y) = 1$$

c)
$$Si\ M \subset R_{(X \times Y)} \Rightarrow \sum_{(x,y) \in M} p(x,y)$$

Distribución de probabilidad conjunta de (X, Y)

$$\{(x, y, p(x, y))/(x, y) \in R_{X \times Y}\}$$

Función de distribución acumulada

$$F: \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \to F(x,y) = P(X \le x, Y \le y) = \sum_{\substack{u \le x \\ v \le y}} p(u,v)$$

Ejemplo

La entrada de un sistema de comunicación binario es una variable aleatoria X que toma los valores 0 y 1 con probabilidades ¾ y ¼ respectivamente. En algunas ocasiones, debido a errores causados por ruidos en el sistema, la salida Y difiere de la entrada X.

La distribución de probabilidad conjunta del vector (X,Y)

X	0	1	
0	21/32	2/ ₃₂	23/32
1	3/32	6/32	9/32
	24/32	8/ /32	1

Distribuciones marginales

- (X,Y) \longrightarrow v. a. bidimensional discreta con
- p(x,y) = función de probabilidad conjunta

$$p_{X}: R_{X} \to \mathbb{R}$$

$$p_{Y}: R_{Y} \to \mathbb{R}$$

$$x \to \sum_{y \in R_{Y}} p(x, y)$$

$$y \to \sum_{x \in R_{X}} p(x, y)$$

Volvamos al ejemplo.....

Y	0	1	$p_{\scriptscriptstyle Y}(y)$
0	$p(0,0) = \frac{21}{32}$	$p(1,0) = \frac{2}{32}$	$p_{Y}(0) = \frac{23}{32}$
1	$p(0,1) = \frac{3}{32}$	$p(1,1) = \frac{6}{32}$	$p_{Y}(1) = \frac{9}{32}$
$p_{X}(x)$	$p_X(0) = \frac{24}{32} = \frac{3}{4}$	$p_X(1) = \frac{8}{32} = \frac{1}{4}$	$\sum_{(x,y)\in R_{X\times Y}} p(x,y) = 1$

Pensemos.....

Y		1	$p_{\scriptscriptstyle Y}(y)$
0	$p(0,0) = \frac{21}{32}$	$p(1,0) = \frac{2}{32}$	$p_{Y}(0) = \frac{23}{32}$
1	$p(0,1) = \frac{3}{32}$	$p(1,1) = \frac{6}{32}$	$p_{Y}(1) = \frac{9}{32}$
$p_{X}(x)$	$p_X(0) = \frac{24}{32} = \frac{3}{4}$	$p_X(1) = \frac{8}{32} = \frac{1}{4}$	$\sum_{(x,y)\in R_{X\times Y}} p(x,y) = 1$

Qué probabilidad hay?....

$$P(Y=0/X=0)=?$$

$$P(Y=1/X=0)=?$$

Distribuciones condicionales

$$p_{X/Y=y}(x):R_X\to\mathbb{R}$$

$$p_{X/Y=y}(x) = P(X=x/Y=y)$$

$$P(X=x/Y=y) = \frac{p(x,y)}{p_Y(y)}$$
 $p_Y(y) > 0$

$$p_{Y/X=x}(y):R_{Y}\rightarrow\mathbb{R}$$

$$p_{Y/X=x}(y) = P(Y=y/X=x)$$

$$P(Y=y/X=x) = \frac{p(x,y)}{p_X(x)}$$
 $p_X(x) > 0$

Variables aleatorias independientes

(X,Y) un vector aleatorio discreto con función de probabilidad conjunta p(x,y)

X e Y son independientes si se cumple algunas de estas condiciones:

1.
$$p(x, y) = p_X(x) p_Y(y) \quad \forall (x, y) \in R_{(X \times Y)}$$

2.
$$p_{X/Y=y}(x) = p_X(x)$$
 $\forall (x, y) \in R_{(X \times Y)}$

3.
$$p_{y/X=x}(y) = p_Y(y)$$
 $\forall (x, y) \in R_{(X \times Y)}$

¿Qué pasa en el ejemplo?...

$$p(0,0) = \frac{21}{32}$$

$$p(0,1) = \frac{3}{32}$$

$$p(1,0) = \frac{2}{32}$$

$$p(1,1) = \frac{6}{32}$$

$$P(Y=0 | X=0) = \frac{21}{24}$$

 $P(Y=1 | X=0) = \frac{3}{24}$

$$p_X(0) = \frac{24}{32} = \frac{3}{4}$$

$$p_X(0) = \frac{24}{32} = \frac{3}{4}$$

$$p_{X}(1) = \frac{8}{32} = \frac{1}{4}$$
 $p_{Y}(0) = \frac{23}{32}$

$$p_{X}(1) = \frac{8}{32} = \frac{1}{4}$$
 $p_{Y}(1) = \frac{9}{32}$

$$p_{Y}(0) = \frac{23}{32}$$

$$\left(p_{Y}\left(1\right) = \frac{9}{32}\right)$$

$$p_{Y}(0) = \frac{23}{32}$$

$$p_{Y}(1) = \frac{9}{32}$$

$$P(X = 0 / Y = 0) = \frac{21}{23}$$

$$P(X=1/Y=0) = \frac{2}{23}$$

Ejercicio propuesto

En un anuncio luminoso hay tres lámparas en la primera fila y cuatro lámparas en la segunda fila .

X: número de lámparas de la primera fila que se funden en un instante de tiempo t

Y: número de lámparas de la segunda fila que se funden en el mismo instante de tiempo.

La función de probabilidad conjunta viene dada por

X	0	1	2	3	4
0	0.08	0.07	0.06	0.01	0.01
1	0.06	0.10	0.12	0.05	0.02
2	0.05	0.06	0.09	0.04	0.03
3	0.02	0.03	0.03	0.03	0.04

Encontrar....

$$p_{X}(x) \quad \forall x \in R_{X}$$

$$p_{Y}(y) \quad \forall y \in R_{Y}$$

$$P(X = 3 / Y = 2) = P(Y = 0 / X = 3) = 0$$

• ¿Son X e Y v.a. independientes?. Justifique

Distribución de un vector aleatorio

• (X,Y) Vector aleatorio continuo

Función de densidad conjunta

$$a) f(x,y) \ge 0$$

$$b) \iint_{R^2} f(x, y) dx dy = 1$$

c) Si
$$M \subset R_{(X \times Y)} \Rightarrow \iint_{M} f(x, y) dx dy$$

Función de densidad de probabilidad

A partir del caso discreto pensamos el caso continuo....

Caso discreto

$$F: \mathbb{R}^2 \to \mathbb{R}$$
$$(x, y) \to F(x, y) = P(X \le x, Y \le y) = \sum_{\substack{u \le x \\ v \le y}} p(u, v)$$

Caso continuo

$$F: \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \to F(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

$$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$$

Distribuciones marginales

• (X,Y) v. a. bidimensional discreta con función de probabilidad conjunta p(x,y),

$$p_{X}: R_{X} \to \mathbb{R}$$

$$p_{Y}: R_{Y} \to \mathbb{R}$$

$$y \to \sum_{y \in R_{X}} p(x, y)$$

$$y \to \sum_{x \in R_{X}} p(x, y)$$

• (X,Y) v. a. bidimensional continua con función de densidad conjunta f(x,y),

$$f_X : R_X \to \mathbb{R}$$
 $f_Y : R_Y \to \mathbb{R}$ $x \to f_X(x) = \int_{\mathbb{R}} f(x, y) dy$ $y \to f_Y(y) = \int_{\mathbb{R}} f(x, y) dx$

Distribuciones condicionales

Caso discreto

$$p_{X/Y=y}\left(x\right):R_{X}\to\mathbb{R}$$

$$p_{Y/X=x}\left(y\right):R_{Y}\to\mathbb{R}$$

$$p_{X/Y=y}\left(x\right)=\frac{p\left(x,y\right)}{p_{Y}\left(y\right)}$$

$$p_{Y}\left(y\right)>0$$

$$p_{Y/X=x}\left(y\right)=\frac{p\left(x,y\right)}{p_{X}\left(x\right)}$$

$$p_{X}\left(x\right)>0$$

Caso continuo

(X,Y) con $fdp\ f(x,y)\ y\ fdp\ marginales\ f_X(x)\ y\ f_Y(y)$. La función de densidad condicional de X para Y=y dada, se define:

$$f_{X/Y=y}(x) = \frac{f(x,y)}{f_Y(y)}, \quad f_Y(y) > 0 \qquad f_{Y/X=x}(y) = \frac{f(x,y)}{f_X(x)}, \quad f_X(x) > 0$$

Función de una variable aleatoria

 $Z = H(X_1, X_2, ..., X_n)$ H función real definida en $D \subseteq \mathbb{R}^n$

$$E(Z) = ?$$

Caso discreto:

$$E(Z) = \sum_{(x_1, x_2, ..., x_n) \in R(X_1 \times ... \times X_n)} H(x_1, x_2, ..., x_n) p(x_1, x_2, ..., x_n)$$

Caso continuo:

$$E(Z) = \int_{\mathbb{R}^n} H(x_1, x_2, ..., x_n) f(x_1, x_2, ..., x_n) dx_1 dx_n$$

V(Z)=:?

Caso discreto

$$V(Z) = \sum_{(x_1, x_2, ..., x_n) \in R(X_1 \times ... \times X_n)} \left[H(X_1, X_2, ..., X_n) - E(Z) \right]^2 p(x_1, x_2, ..., x_n)$$

Caso continuo

$$V(Z) = \int_{\mathbb{R}^n} \left[H(X_1, X_2, ..., X_n) - E(Z) \right]^2 f(x_1, x_2, ..., x_n) dx_1 dx_n$$

Suma de variables aleatorias

$$Z = a_1 X_1 + a_2 X_2 + \dots + a_n X_n \quad a_i \in \mathbb{R} \ \forall i = 1, \dots, n$$

$$E(Z) = \sum_{i=1}^{n} a_i E(X_i)$$

$$V(Z) \neq \sum_{i=1}^{n} a_i V(X_i)$$

Cuidado no vale la igualdad!!

A pensar!!!!

Si
$$n = 2$$
, $a_1 = a_2 = 1$
 $V(X_1 + X_2) = ?$

Covarianza

La covarianza de X_1 y X_2 está definida como:

$$Cov(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2)$$

Atención!!!

Si X_1 y X_2 son v.a. independientes \Rightarrow Cov $(X_1, X_2) = 0$

A trabajar!!! Demostrar para el caso discreto y continuo que vale ⇒

Importante!!

• Teorema: Si $X_1, X_2, ..., X_n$ variables aleatorias *independientes* dos a dos

$$(Cov(X_i, X_j) = 0 \forall i \neq j)$$
 entonces:

$$V(a_1X_1 + a_2X_2 + ... + a_nX_n) = \sum_{i=1}^{n} a_i^2V(X_i)$$

Coeficiente de correlación

• Sean X e Y dos variables aleatorias cualesquiera, llamamos coeficiente de correlación lineal:

$$\rho_{xy} = \frac{E\{ [X - E(X)][Y - E(Y)] \}}{\sqrt{V(X)V(Y)}}$$

Notar que:

- ✓ Es una medida adimensional
- ✓ Es la covarianza cambiada de escala. Es la cov de dos variables estandarizadas

Para recordar!!

• Si X e Y son independientes, entonces $\rho_{xy} = 0$

Sin embargo, el recíproco no es cierto!!!!!

Que el coeficiente de correlación sea 0, indica que las variables no está linealmente relacionadas, pero pueden presentar otro patrón de relación.

Propiedades

1.
$$|\rho_{XY}| \le 1$$

2.
$$\rho_{XY} = 1 \iff Y = aX + b \quad a \in \mathbb{R}_0^+$$

3.
$$\rho_{xy} = -1 \Leftrightarrow Y = aX + b \quad a \in \mathbb{R}^-$$

A trabajar!!!

Verificar 1, 2 y 3

Distribución de la suma de variable aleatorias

Propiedades reproductivas

> Distribución de Poisson

Sean:

$$X_i \sim P_0(\lambda_i)$$
 $i = 1,...,n$ independientes,

entonces

$$X_1 + X_2 + ... + X_n \sim P_0 \left(\sum_{i=1}^n \lambda_i \right)$$

Propiedades reproductivas

> Distribución Normal

Sean

$$X_i \sim N(\mu_i, \sigma_i)$$
 $i = 1,...,n$ independientes,

entonces

$$X_1 + X_2 + ... + X_n \sim N \left(\sum_{i=1}^n \mu_i, + \sqrt{\sum_{i=1}^n \sigma_i^2} \right)$$

Esta propiedad vale para cualquier combinación lineal Es decir, bajo las mismas condiciones se cumple:

$$a_1 X_1 + a_2 X_2 + \dots + a_n X_n \sim N \left(\left(\sum_{i=1}^n a_i \mu_i, + \sqrt{\sum_{i=1}^n a_i^2 \sigma_i^2} \right) \right)$$

Teorema central del Límite

Sean $X_1, X_2, ..., X_n$ variables aleatorias cualesquiera independientes con

$$E(X_i) = \mu_i$$
 y $V(X_i) = \sigma_i^2$ finitas $\forall i = 1, 2, ..., n$

Entonces:

Cuando $n \to \infty$, $X_1 + X_2 + ... + X_n$ tiene una distribución

aproximadamente normal, con parámetros $\sum_{i=1}^{n} \mu_i y_i \sqrt{\sum_{i=1}^{n} \sigma_i^2}$

T.C.L....

Sean $X_1, X_2, ..., X_n$ variables aleatorias cualesquiera independientes e idénticamente distribuídas, con

$$E(X_i) = \mu$$
 y $V(X_i) = \sigma^2$ finitas $\forall i = 1, 2, ..., n$

Entonces:

Cuando $n \to \infty$, $X_1 + X_2 + ... + X_n$ tiene una distribución aproximadamente normal, con parámetros $n\mu$ y $\sqrt{n\sigma^2}$

Aplicaciones

• Variable aleatoria binominal:

X: número de veces que ocurre A en las n repeticiones de la experiencia Bernoulli

$$X \sim B_i(n, p)$$
 $p=P(A)$

$$X_{i} \begin{cases} 1 & si \ ocurre \ A \ en \ la \ i-\acute{e}sima \ repetici\acute{o}n \\ 0 & en \ otro \ caso \end{cases}$$

$$X = \sum_{i=1}^{n} X_{i}$$
 donde las X_{i} son independientes

$$E(X_i) = p$$
 $V(X_i) = p(1-p)$

entonces....

∴ si $n \to \infty$ entonces la distribución de X se puede aproximar por una normal de parámetros

$$\mu = np$$
 $\sigma = \sqrt{np(1-p)}$

Para pensar.....

Sean $X_1, X_2, ..., X_n$ variables aleatorias cualesquiera independientes e idénticamente distribuídas, con

$$E(X_i) = \mu$$
 y $V(X_i) = \sigma^2$ finitas $\forall i = 1, 2, ..., n$

Entonces:

Cuando $n \to \infty$, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ tiene una distribución

aproximadamente normal, con parámetros:

$$E(\overline{X}) = \zeta$$
?

$$V(\bar{X}) =$$
?

Para pensar!!

Variable aleatoria de Pascal:

$$X \sim Pascal(r, p)$$

X: número de veces que se tiene que repetir la experiencia de Bernoulli hasta que ocurra A por r-ésima vez

 X_i : número de veces que se repite la experiencia de Bernoulli hasta que ocurra A

$$X_i \sim Ge(p)$$
 $i = 1,...,r$ $con X_i$ independientes

$$X = \sum_{i=1}^{r} X_{i} \sim ????$$

Para pensar!!

Variable aleatoria de Erlang

$$T_n \sim Erl(\lambda, n)$$

 T_n : tiempo transcurrido hasta el n-ésimo evento de Poisson

E_i: tiempo transcurrido entre el (i-1)-ésimo evento y el i- ésimo evento.

$$E_i \sim Exp(\lambda)$$
 $i = 1,...,n$ E_i son independientes

$$T_n = \sum_{i=1}^n E_i$$

 \therefore si $n \to \infty$, entonces T_n se distribuye aproximadamente normal con los siguientes parámetros......

Desigualdad de Chebyshev

• Sea X una variable aleatoria con $E(X)=\mu$ y sea c un número real cualquiera. Entonces, si $E(X-c)^2$ es finita $y \varepsilon$ es cualquier número positivo, se tiene:

$$P[|X-c| \ge \varepsilon] \le \frac{1}{\varepsilon^2} E(X-c)^2$$

Eligiendo $c = \mu y \ \varepsilon = k\sigma$, se obtiene:

$$P[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}$$

Ley de los grandes números

- Sea ε un experimento y A un suceso asociado con ε . Considerando n repeticiones independientes de ε , sea n_A el número de veces que ocurre A en las n repeticiones, y sea $f_A = n_A/n$. Sea P(A) = p (que se supone igual para todas las repeticiones)
- Luego para cualquier número positivo ε, se tiene:

$$P[|f_A - p| \ge \varepsilon] \le \frac{p(1-p)}{n\varepsilon^2}$$
, o equivalentemente

$$P[|f_A - p| < \varepsilon] \ge 1 - \frac{p(1-p)}{n\varepsilon^2}$$

Otra forma equivalente

$$\lim_{n\to\infty} P[|f_A - p| < \varepsilon] = 1 \quad \forall \varepsilon > 0$$