|--|

SLR-VB – 335

Seat	
No.	

B.E. (Electrical) (Part – I) Examination, 2017 Elective – I: EXTRA HIGH VOLTAGE AC TRANSMISSION

Day and Date: Monday, 8-5-2017 Max. Marks: 100

Time: 3.00 p.m. to 6.00 p.m.

Instructions: 1) **All** questions **compulsory**.

- 2) **Assume** suitable data if necessary and mention it clearly.
- 3) Figures to the **right** indicate **full** marks.
- 4) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 5) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 20

I. Choose the correct answers:

 $(20 \times 1 = 20)$

- 1) Third mode of propagation is called as
 - a) Line to ground

b) Phase to phase

c) Homopolar

- d) Inter-phase
- 2) Operating 750 KV line gives AN at a level of
 - a) 50 dB
- b) 55.4 dB
- c) 52 dB
- d) 58.5 dB
- 3) In general method of Laplace transform the series and shunt impedance operator per unit length of line is
 - a) z(s) = r + l(s)

b) y(s) = g + c(s)

c) both a) and b)

- d) none of the above
- 4) Find out the wrong relationship
 - a) $[Q] = 2 \pi \epsilon [M] [V]$
- b) $[V] = [P] \left| \frac{Q}{2\pi\epsilon} \right|$
- c) $\left[\frac{Q}{2\pi\epsilon}\right] = [P][V]$
- d) All equations are correct
- 5) Refraction coefficient of current (J_T) is given by

 - a) $\frac{2zo}{zo + zt}$ b) $\frac{zo zt}{zo + zt}$ c) $\frac{2zt}{zo + zt}$ d) $\frac{zt zo}{zo + zt}$
- 6) In lossless transmission line theoretically have
 - a) r = l = 0
- b) l = q = 0
- c) q = c = 0 d) r = q = 0

P.T.O.

7)	a) Pulse type	gives interference to radio broadcast ? b) Pulse less type
	c) Glow corona	d) None of the above
8)		rough a cable of relative permittivity is c. c) 10 ⁸ m/sec. d) None of these
9)	Draining of trapped charge of line a) Main breakerc) Air circuit breaker	e is done by b) Auxiliary breaker d) Shunt reactors
10)	The crest time of pulse properties a) 20 ns b) 30 ns	s for positive cycle is c) 40 ns d) 50 ns
11)	For Aeolian vibration the frequence Hz and the amplitude a) 20 Hz, 2.5 cm c) 50 Hz, 2.5 cm	cy of vibration is usually limited to es less than cm. b) 25 Hz, 2.5 cm d) 50 Hz, 3.5 cm
12)	The function of steel wire in an ACa) compensate for skin effect c) provide additional mechanical	b) take care of surges
13)	The high voltage recognised in Inca) IS 2022 b) IS 2024	
14)	line is	per phase in ohms 1 km in 750 transmission c) 0.722 d) none of these
15)	The measurement of electrostational Dipole c) Parallel plate	,
16)	Which of the following is protective a) Rod gap b) Surge absort	ve device against lightning over voltages ? ber c) Horn gap d) All above
17)	The dimensions of constants B an a) Ohm, Siemen c) Both are dimensionless	nd C are respectively and b) Mho, Siemen d) Siemen, Ohm
18)	For 100% series compensation, real Power frequency c) 40% of power frequency	b) 50% of power frequency
19)	Refraction coefficient of voltage (la) + 2 b) 1	K_T) for open ended line c) -1 d) 0
20)	· · · · · · · · · · · · · · · · · · ·	0 kV transmission line is nearly equal to c) 0.78 d) 2.5
		Set F

Seat	
No.	

B.E. (Electrical) (Part – I) Examination, 2017 Elective – I: EXTRA HIGH VOLTAGE AC TRANSMISSION

Day and Date: Monday, 8-5-2017 Marks: 80

Time: 3.00 p.m. to 6.00 p.m.

Instructions: 1) All questions compulsory.

- 2) **Assume** suitable data if necessary and mention it clearly.
- 3) Figures to the **right** indicate **full** marks.

SECTION-I

II. Solve any four: (4×5=20)

- a) Explain in detail the advantages and disadvantages of high voltages.
- b) What are the different mechanical considerations in EHV line performance?
- c) What are the properties of Bundled conductors in EHV-AC lines?
- d) Explain Reflection and refraction of travelling waves.
- e) Lightning stroke mechanism.
- f) Brief the charge potential relations of the multi conductor lines.

III. Solve any two:

 $(2 \times 10 = 20)$

- a) A tower has 40 ohms footing resistance and two ground wires with Zg = 500 ohms. The lightening stroke surge impedance Zs = 400 ohms. For Is = 50 KA crest, calculate the tower top potential:
 - i) Considering all impedances
 - ii) Neglecting the ground wire and stroke surge impedances.
 - iii) Considering only one ground wire and stroke surge impedance.
- b) Explain in detail the sequence inductance and capacitance.
- c) Explain the relation between the temperature rise and current carrying capacity of EHV-AC line.

SECTION - II

IV. Solve any four:

 $(4 \times 5 = 20)$

- a) Power circle diagram and its use.
- b) Enlist sources of over voltage and explain Ferro resonance voltages.
- c) Reduction of switching surge over voltages.
- d) Construction and characteristics of ZnO gapless arrester.
- e) Explain static reactive compensating system.
- f) Expression for generalized constants.

V. Solve any two:

 $(2\times10=20)$

- a) Explain in brief the sinusoidal excitation-lumped parameter circuits.
- b) What are the factors under steady state in design of EHV lines?
- c) Explain sub-synchronous resonance in series capacitors compensated lines.
