Math 141

Instructor: Dr. Assane Lo

University of Wollongong in Dubai

Eigenvalues and EigenVectors

Definition

Suppose that $A=(a_{ij})_{ij}$ is an $n\times n$ matrix with entries in \mathbb{R} . Suppose further that there exist a number $\lambda\in\mathbb{R}$ and a non-zero vector $\mathbf{v}\in\mathbb{R}^n$ such that

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Then we say that λ is an eigenvalue of the matrix A, and that \mathbf{v} is an eigenvector corresponding to the eigenvalue λ .

• Suppose that λ is an eigenvalue of the n \times n matrix A, and that \mathbf{v} is an eigenvector corresponding to the eigenvalue λ . Then

$$A\mathbf{v} = \lambda \mathbf{v} = \lambda I \mathbf{v}$$

where I is the $n \times n$ identity matrix, so that

$$(A-\lambda I)\mathbf{v}=0.$$

• Suppose that λ is an eigenvalue of the n \times n matrix A, and that \mathbf{v} is an eigenvector corresponding to the eigenvalue λ . Then

$$A\mathbf{v} = \lambda \mathbf{v} = \lambda I \mathbf{v}$$

where I is the $n \times n$ identity matrix, so that

$$(A - \lambda I)\mathbf{v} = 0.$$

ullet Since $oldsymbol{v} \in \mathbb{R}^n$ is non-zero, it follows that we must have

$$\det(A - \lambda I) = 0$$

• In other words, we must have

$$\det \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix} = 0.$$

• In other words, we must have

$$\det \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix} = 0.$$

• Note that $det(A - \lambda I) = 0$ is a polynomial equation in λ . Solving this equation gives the eigenvalues of the matrix A.

• In other words, we must have

$$\det \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix} = 0.$$

- Note that $det(A \lambda I) = 0$ is a polynomial equation in λ . Solving this equation gives the eigenvalues of the matrix A.
- ullet On the other hand, for any eigenvalue λ of the matrix A, the set

$$\{\mathbf{v} \in \mathbb{R}^n : (A - \lambda I)\mathbf{v} = \mathbf{0}\}\$$

is the nullspace of the matrix $A - \lambda I$, a subspace of \mathbb{R}^n .

Definition

The polynomial $P(\lambda) = \det(A - \lambda I)$ is called the characteristic polynomial of the matrix A. For any root λ of $P(\lambda)$, the space

$$\{\mathbf{v} \in \mathbb{R}^n : (A - \lambda I)\mathbf{v} = \mathbf{0}\}\$$

is called the eigenspace corresponding to the eigenvalue λ .

$$A = \left(\begin{array}{cc} 3 & 3 \\ 1 & 5 \end{array}\right)$$

$$A = \left(\begin{array}{cc} 3 & 3 \\ 1 & 5 \end{array}\right)$$

• has characteristic polynomial

$$A = \left(\begin{array}{cc} 3 & 3 \\ 1 & 5 \end{array}\right)$$

• has characteristic polynomial

•

$$(3 - \lambda)(5 - \lambda) - 3 = 0;$$

$$A = \left(\begin{array}{cc} 3 & 3 \\ 1 & 5 \end{array}\right)$$

has characteristic polynomial

•

$$(3-\lambda)(5-\lambda)-3=0;$$

• in other words,

$$\lambda^2 - 8\lambda + 12 = 0.$$

Hence the eigenvalues are

$$A = \left(\begin{array}{cc} 3 & 3 \\ 1 & 5 \end{array}\right)$$

has characteristic polynomial

0

$$(3-\lambda)(5-\lambda)-3=0;$$

• in other words,

$$\lambda^2 - 8\lambda + 12 = 0.$$

Hence the eigenvalues are

• $\lambda_1 = 2$ and $\lambda_2 = 6$, with corresponding eigenvectors

• Substituting $\lambda = 2$ into

$$(A-\lambda I)\mathbf{v}=0$$
,

• Substituting $\lambda = 2$ into

$$(A - \lambda I)\mathbf{v} = 0$$
,

we obtain

$$\begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$$
 $\mathbf{v} = \mathbf{0}$, with root $\mathbf{v}_1 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$.

• Substituting $\lambda = 6$ into

$$(A - \lambda I)\mathbf{v} = 0$$
,

$$\begin{pmatrix} -3 & 3 \\ 1 & -1 \end{pmatrix}$$
 $\mathbf{v} = \mathbf{0}$, with root $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

• Substituting $\lambda = 6$ into

$$(A-\lambda I)\mathbf{v}=0$$
,

$$\begin{pmatrix} -3 & 3 \\ 1 & -1 \end{pmatrix}$$
 $\mathbf{v} = \mathbf{0}$, with root $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

• The corresponding eigenvectors are

$$\mathbf{v}_1 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

respectively.

• The eigenspace corresponding to the eigenvalue 2 is

$$\left\{ \mathbf{v} \in \mathbb{R}^2 : \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix} \mathbf{v} = \mathbf{0} \right\} = \left\{ c \begin{pmatrix} 3 \\ -1 \end{pmatrix} : c \in \mathbb{R} \right\}.$$

• The eigenspace corresponding to the eigenvalue 2 is

$$\left\{\mathbf{v} \in \mathbb{R}^2 : \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix} \mathbf{v} = \mathbf{0} \right\} = \left\{c \begin{pmatrix} 3 \\ -1 \end{pmatrix} : c \in \mathbb{R} \right\}.$$

The eigenspace corresponding to the eigenvalue 6 is

$$\left\{\mathbf{v}\in\mathbb{R}^2:\begin{pmatrix}-3&3\\1&-1\end{pmatrix}\mathbf{v}=\mathbf{0}\right\}=\left\{c\begin{pmatrix}1\\1\end{pmatrix}:c\in\mathbb{R}\right\}.$$

Consider the matrix

$$A = \begin{pmatrix} -1 & 6 & -12 \\ 0 & -13 & 30 \\ 0 & -9 & 20 \end{pmatrix}.$$

Consider the matrix

$$A = \begin{pmatrix} -1 & 6 & -12 \\ 0 & -13 & 30 \\ 0 & -9 & 20 \end{pmatrix}.$$

• To find the eigenvalues of A, we need to find the roots of

$$\det \begin{pmatrix} -1 - \lambda & 6 & -12 \\ 0 & -13 - \lambda & 30 \\ 0 & -9 & 20 - \lambda \end{pmatrix} = 0;$$

• in other words,

$$(\lambda+1)(\lambda-2)(\lambda-5)=0.$$

• in other words,

$$(\lambda+1)(\lambda-2)(\lambda-5)=0.$$

• The eigenvalues are therefore $\lambda_1=-1, \lambda_2=2$ and $\lambda_3=5$.

in other words,

$$(\lambda+1)(\lambda-2)(\lambda-5)=0.$$

- The eigenvalues are therefore $\lambda_1=-1, \lambda_2=2$ and $\lambda_3=5$.
- ullet An eigenvector corresponding to the eigenvalue -1 is a solution of the system

in other words,

$$(\lambda+1)(\lambda-2)(\lambda-5)=0.$$

- ullet The eigenvalues are therefore $\lambda_1=-1$, $\lambda_2=2$ and $\lambda_3=5$.
- ullet An eigenvector corresponding to the eigenvalue -1 is a solution of the system

•

$$(A+I)\mathbf{v} = \begin{pmatrix} 0 & 6 & -12 \\ 0 & -12 & 30 \\ 0 & -9 & 21 \end{pmatrix} \mathbf{v} = \mathbf{0}, \quad \text{with root} \quad \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

 An eigenvector corresponding to the eigenvalue 2 is a solution of the system

$$(A - 2I)\mathbf{v} = \begin{pmatrix} -3 & 6 & -12 \\ 0 & -15 & 30 \\ 0 & -9 & 18 \end{pmatrix} \mathbf{v} = \mathbf{0}, \quad \text{with root} \quad \mathbf{v}_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$

 An eigenvector corresponding to the eigenvalue 2 is a solution of the system

$$(A - 2I)\mathbf{v} = \begin{pmatrix} -3 & 6 & -12 \\ 0 & -15 & 30 \\ 0 & -9 & 18 \end{pmatrix} \mathbf{v} = \mathbf{0}, \quad \text{with root} \quad \mathbf{v}_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$

• An eigenvector corresponding to the eigenvalue 5 is a solution of the system

$$(A - 5I)\mathbf{v} = \begin{pmatrix} -6 & 6 & -12 \\ 0 & -18 & 30 \\ 0 & -9 & 15 \end{pmatrix} \mathbf{v} = \mathbf{0}, \quad \text{with root} \quad \mathbf{v}_3 = \begin{pmatrix} 1 \\ -5 \\ -3 \end{pmatrix}.$$

• Example 8 Consider the matrix

$$A = \begin{pmatrix} 17 & -10 & -5 \\ 45 & -28 & -15 \\ -30 & 20 & 12 \end{pmatrix}.$$

• Example 8 Consider the matrix

$$A = \begin{pmatrix} 17 & -10 & -5 \\ 45 & -28 & -15 \\ -30 & 20 & 12 \end{pmatrix}.$$

• To find the eigenvalues of A, we need to find the roots of

$$\det \begin{pmatrix} 17 - \lambda & -10 & -5 \\ 45 & -28 - \lambda & -15 \\ -30 & 20 & 12 - \lambda \end{pmatrix} = 0;$$

• in other words,

$$(\lambda + 3)(\lambda - 2)^2 = 0.$$

• in other words,

$$(\lambda+3)(\lambda-2)^2=0.$$

• The eigenvalues are therefore $\lambda_1=-3$ and $\lambda_2=2$. An eigenvector corresponding to the eigenvalue -3 is a solution of the system

$$(A+3I)\mathbf{v} = \begin{pmatrix} 20 & -10 & -5 \\ 45 & -25 & -15 \\ -30 & 20 & 15 \end{pmatrix} \mathbf{v} = \mathbf{0}, \quad \text{with root} \quad \mathbf{v}_1 = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}.$$

 An eigenvector corresponding to the eigenvalue 2 is a solution of the system

$$(A-2I)\mathbf{v} = \begin{pmatrix} 15 & -10 & -5 \\ 45 & -30 & -15 \\ -30 & 20 & 10 \end{pmatrix} \mathbf{v} = \mathbf{0}, \quad \text{with roots} \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \quad \text{and} \quad \mathbf{v}_3 = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}.$$

 An eigenvector corresponding to the eigenvalue 2 is a solution of the system

$$(A-2I)\mathbf{v} = \begin{pmatrix} 15 & -10 & -5 \\ 45 & -30 & -15 \\ -30 & 20 & 10 \end{pmatrix} \mathbf{v} = \mathbf{0}, \quad \text{ with roots } \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \quad \text{ and } \quad \mathbf{v}_3 = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}.$$

• Note that the eigenspace corresponding to the eigenvalue -3 is a line through the origin, while the eigenspace corresponding to the eigenvalue 2 is a plane through the origin.

• Example 9 Consider the matrix

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

• Example 9 Consider the matrix

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

• To find the eigenvalues of A, we need to find the roots of

$$\det \begin{pmatrix} 2-\lambda & -1 & 0\\ 1 & 0-\lambda & 0\\ 0 & 0 & 3-\lambda \end{pmatrix} = 0;$$

• in other words,

$$(\lambda - 3)(\lambda - 1)^2 = 0.$$

$$(\lambda - 3)(\lambda - 1)^2 = 0.$$

• The eigenvalues are therefore $\lambda_1=3$ and $\lambda_2=1$.

$$(\lambda - 3)(\lambda - 1)^2 = 0.$$

- The eigenvalues are therefore $\lambda_1=3$ and $\lambda_2=1$.
- An eigenvector corresponding to the eigenvalue 3 is a solution of the system

$$(A-3I)\mathbf{v} = \begin{pmatrix} -1 & -1 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{v} = \mathbf{0}, \quad \text{with root} \quad \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

 An eigenvector corresponding to the eigenvalue 1 is a solution of the system

$$(A-I)\mathbf{v} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{v} = \mathbf{0}, \quad \text{with root} \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

 An eigenvector corresponding to the eigenvalue 1 is a solution of the system

$$(A-I)\mathbf{v} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{v} = \mathbf{0}, \quad \text{with root} \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

• Note that the eigenspace corresponding to the eigenvalue 3 is a line through the origin.

 An eigenvector corresponding to the eigenvalue 1 is a solution of the system

$$(A-I)\mathbf{v} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{v} = \mathbf{0}, \quad \text{with root} \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

- Note that the eigenspace corresponding to the eigenvalue 3 is a line through the origin.
- On the other hand, the matrix

$$\begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

• Example 9 Consider the matrix

$$A = \begin{pmatrix} 3 & -3 & 2 \\ 1 & -1 & 2 \\ 1 & -3 & 4 \end{pmatrix}.$$

• Example 9 Consider the matrix

$$A = \begin{pmatrix} 3 & -3 & 2 \\ 1 & -1 & 2 \\ 1 & -3 & 4 \end{pmatrix}.$$

• To find the eigenvalues of A, we need to find the roots of

$$\det \begin{pmatrix} 3-\lambda & -3 & 2\\ 1 & -1-\lambda & 2\\ 1 & -3 & 4-\lambda \end{pmatrix} = 0;$$

$$(\lambda - 2)^3 = 0.$$

$$(\lambda - 2)^3 = 0.$$

• The eigenvalue is therefore $\lambda=2$. An eigenvector corresponding to the eigenvalue 2 is a solution of the system

$$(A-2I)\mathbf{v} = \begin{pmatrix} 1 & -3 & 2 \\ 1 & -3 & 2 \\ 1 & -3 & 2 \end{pmatrix} \mathbf{v} = \mathbf{0}, \quad \text{with roots} \quad \mathbf{v}_1 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} \quad \text{and} \quad \mathbf{v}_2 = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}.$$

Remark

• Suppose that λ is an eigenvalue of a matrix A, with corresponding eigenvector \mathbf{v} . Then

$$A^2 \mathbf{v} = A(A\mathbf{v}) = A(\lambda \mathbf{v}) = \lambda(A\mathbf{v}) = \lambda(\lambda \mathbf{v}) = \lambda^2 \mathbf{v}.$$

Remark

• Suppose that λ is an eigenvalue of a matrix A, with corresponding eigenvector \mathbf{v} . Then

$$A^2 \mathbf{v} = A(A\mathbf{v}) = A(\lambda \mathbf{v}) = \lambda(A\mathbf{v}) = \lambda(\lambda \mathbf{v}) = \lambda^2 \mathbf{v}.$$

• Hence λ^2 is an eigenvalue of the matrix A^2 , with corresponding eigenvector \mathbf{v} .

Remark

• Suppose that λ is an eigenvalue of a matrix A, with corresponding eigenvector \mathbf{v} . Then

$$A^2\mathbf{v} = A(A\mathbf{v}) = A(\lambda\mathbf{v}) = \lambda(A\mathbf{v}) = \lambda(\lambda\mathbf{v}) = \lambda^2\mathbf{v}.$$

- Hence λ^2 is an eigenvalue of the matrix A^2 , with corresponding eigenvector \mathbf{v} .
- In fact, it can be proved by induction that for every natural number $k \in \mathbb{N}, \lambda^k$ is an eigenvalue of the matrix A^k , with corresponding eigenvector \mathbf{v} .