技术规范

3rd Generation Partnership Project;

无线接入网技术规范组;

NR;

5G 用户设备(UE)无线发送和接收;第三部分范围1和范围2与其他无线的互通操作

(Release 15)

版权声明

本文档英文原版出自 3GPP 官方,由 5G 哥 原创翻译。

只能在公众号 5G 通信 发布,除非 5G 哥 授权,否则不得在任何公开媒体传播,分享到朋友圈不需要授权。

©2018, 翻译: 5G 哥(微信私号: iam5gge 获取授权请联系),版权所有。

扫码关注"5G通信"随时跟进5G产业和技术,不落任!

放是5G哥

私人微信: iam5gge

内容目录

前言	8	
1	范围	<u>6</u>
2	参考	C
3	定义,符号和缩写	
3. 1	定义	
3. 2	符号 缩略语	
3. 3		
4	一般性描述	
4.1	最低要求与测试要求之间的关系	
4.2	最低要求的适用性	
4.3	规范后缀信息	10
5	操作频段和信道安排	11
5. 1	一般性描述	11
5.2	操作频段	
5.2A	CA 的操作频段	11
5.2A.	1 FR1 和 FR2 之间的带间 CA	1.1
5.2B	DC 的工作频段	12
5.2B.	DC 的工作频段	12
5.2B.	2 带内连续的 EN-DC	12
5.2B.	2.1 EN-DC(两个频段)	12
5.2B.	3 带内非连续的 EN-DC	12
5.2B.	3. 1 EN-DC(两个频段)	13
5.2B.	3. 2 EN-DC (音频段)	13
5. 2B.		
5. 2B.	2. 2. 3. 4. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	
5. 2B.	e de tre t	
5. 2B.	1 · · · · · · · · · · · · · · · · · · ·	
5. 2B.	1 22 1/2 4	
5. 2B.	· · · · · · · · · · · · · · · · · · ·	
5. 2B.		
5. 2B.	1 * 1 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 *	24
5. 2B.5. 2B.		
5. 2B.		
5. 3	UE 信道带宽	
5. 3A	UE CA 的信道带宽	
5. 3A.		
5. 3B	UE EN-DC 的信道带宽	
5. 3B.		
5. 3B.		
5.3B.	1.2 BCS 用于带内连续 EN-DC	28

5. 3B. 1. 3 BCS 用于带内非连续 EN-DC	29
5.4 信道安排	29
5. 4A CA 的信道安排	29
5. 4B DC 的信道安排	29
5. 4B. 1 带内 EN-DC 载波的信道间隔	29
5.5 配置	30
5. 5A CA 的配置	30
5. 5A. 1 FR1 和 FR2 之间的带间 CA 配置	30
5.5B DC 的配置	
5.5B.1 一般性描述	30
5. 5B. 2 带内连续的 EN-DC	30
5. 5B. 3 带内非连续的 EN-DC	31
5. 5B. 4 FR1 内的带间 EN-DC	32
5.5B.4.1	32
5.5B.4.2	35
5.5B.4.3	40
5.5B.4.4	45
5.5B.4.5	48
5. 5B. 5 带间 EN-DC 包括 FR2	48
5.5B.5.1	49
5.5B.5.2	53
5. 5B. 5. 3	58
5.5B.5.4	59
5.5B.5.5	61
5. 5B. 6 带间 EN-DC 包括 FR1 和 FR2	<u> </u>
5.5B.6.1	62
5.5B.6.2	63
5. 5B. 5. 5	66
6.1 一般性描述	
6.2 发射端功率	
6. 2A CA 的发射端功率	
6. 2A. 1 UE CA 的最大输出功率	
6. 2A. 2 UE CA 的最大输出功率降低	
6. 2A. 2. 1 FR1 和 FR2 之间的带间 CA	
6. 2A. 3 UE 为 CA 增加了最大输出功率	
6. 2A. 4 为 CA 配置输出功率	
6. 2A. 4. 1 配置输出功率电平	
6. 2A. 4. 2 CA的AT _{IB. C}	
6. 2A. 4. 2. 1 FR1 和 FR2 之间的带间 CA 的 Δ T _{IB. C}	
6. 2B DC 的发射器功率	
6. 2B. 1 UE EN-DC 的最大输出功率	
6. 2B. 1. 1	
6. 2B. 1. 2	
6. 2B. 1. 3 FR1 内的带间 EN-DC	
6. 2B. 1. 4	
6. 2B. 1. 5	
6. 2B. 2 UE 最大输出功率降低和 EN-DC	
6. 2B. 2. 1	
6. 2B. 2. 2	
6. 2B. 2. 3 FR1 内的带间 EN-DC	
6. 2B. 2. 4	
6. 2B. 2. 5	
6. 2B. 3 对于 EN-DC, UE 额外的最大输出功率降低	

6. 2B. 3. 1	
6.2B.3.1.1 DC_ (n) 71B 的 A-MPR	
6. 2B. 3. 1. 2 NS_04 的 A-MPR	
6.2B.3.1.2.1 用于 NS_04 的 A-MPR _™ 满足-13 dBm / 1MHz	
6.2B.3.1.2.2 NS_04的 A-MPR 满足-25 dBm / 1MHz	74
6. 2B. 3. 2	74
6. 2B. 3. 2. 1 NS_04 的 A-MPR	75
6. 2B. 3. 3 FR1 内的带间 EN-DC	76
6. 2B. 3. 4	76
6. 2B. 3. 5	76
6. 2B. 4 配置 EN-DC 的输出功率	76
6.2B.4.1 配置输出功率电平	76
6.2B.4.1.1 带内连续的 EN-DC	76
6. 2B. 4. 1. 2 带内非连续的 EN-DC	
6. 2B. 4. 1. 3 FR1 内的带间 EN-DC	
6. 2B. 4. 1. 4	
6. 2B. 4. 1. 5	76
6. 2B. 4. 2 EN-DC 的 Δ T _{IB. C}	
6. 2B. 4. 2. 1 带内连续的 EN-DC	
6. 2B. 4. 2. 2	
6. 2B. 4. 2. 3 FR1 内的带间 EN-DC	
6. 2B. 4. 2. 3. 1 Δ T _{IB. C} 用于 EN-DC 两个波段	
6. 2B. 4. 2. 3. 2 Δ T _R _S 用于 EN-DC 三个波段	8(
6. 2B. 4. 2. 3. 3 6. 2B. 4. 2. 3. 4 6. 2B. 4. 2. 3. 5 6. 2B. 4. 2. 3. 5 6. 2B. 4. 2. 4 6. 2B. 4. 2. 4 6. 2B. 4. 2. 4 7 T _{IB. c} 用于 EN-DC 五个波段	
6. 2B. 4. 2. 3. 4	n^{58}
6. 2B. 4. 2. 3. 5	92
6. 2B. 4. 2. 4	92
6. 2B. 4. 2. 4. 1 对于 EN-DC 两个频带,AFIR	92
6. 2B. 4. 2. 4. 2	99
6. 2B. 4. 2. 4. 3	
6. 2B. 4. 2. 4. 4	
6. 2B. 4. 2. 4. 5 对于 EN-DC 六个波段, Δ T _{IB. C}	
6. 2B. 4. 2. 5	
6. 2B. 4. 2. 5. 1	
6.3 输出功率动态	
6. 3B DC 的输出功率动态	
6. 3B. 1 从 UE 的角度看, EN-DC 的输出功率动态与 UL 共享	
6. 3B. 1. 1 E-UTRA 和 NR 切换时间掩模,用于从 UE 角度进行基于 TDM 的 UL 共享.	
6. 3B. 2 用于带内非连续切换时间的输出功率动态	
6.4 传输信号质量	
6. 4B	100
6. 4B. 2 传输 EN-DC 的调制质量	
6. 4B. 2. 1	
6.48.2.1.1 误差矢量幅度	
6.4B.2.1.2 载波漏损	
6.4B.2.1.3 带内发射	
6.5 输出 RF 频谱发射	
6.5A 输出 CA 的 RF 频谱发射	
6.5A.1 CA的占用带宽	
6. 5A. 2 CA 的告用常见	
6. 5A. 3 CA 的杂散发射	
6. 5A. 3. 1 FR1 和 FR2 之间的带间 CA	
6.5B 输出 DC 的 RF 频谱发射	
6.5B.1 EN-DC 的占用带宽	
6.5B.2 EN-DC 的带外发射	102

6.5B.2.1 带内连	E续的 EN-DC	102
6.5B.2.1.1 频记	普发射掩模	. 102
6.5B.2.1.2 附加	π频谱发射掩模	. 102
6.5B.2.1.2.1	网络信号值"NS_35"的要求	102
6.5B.2.1.2.2	网络信号值"NS_04"的要求	103
	邻信道漏损率	
	普发射掩模	
	加频谱发射掩模	
	###	
	的带间 EN-DC	
	N-DC 包括 FR2	
	N-DC 包括 FR1 和 FR2	
	条散发射	
	E续的 EN-DC	
	股性描述杂散发射	
	故 医抽 起 示 散 及 别 ·································	
	E连续的 EN-DC	
	- 注	
	数发射带 UE 共存	
	N-DC 包括 FR2	
	数发射带 UE 共存	
6.5B.3.5 带间 E	N-DC 包括 FR1 和 FR2	118
6.5B.3.5.1 杂情	敦 久 射 守 UE	. 118
6.5B.4 额外的杂	散友射	120
6.5B.4.1 一般性		120
6.5B.4.1.1 最低要	表來(网络信号值"NS_04″)	120
7 接收端特性	一通信(公)。	121
7 接收端特性 7.1 一般性描述	5G通信 (公)(Y	121 . 121
7 接收端特性 7.1 一般性描述 7.2 多样性特征	数发射带 UE 共存	121 . 121 . 121
7.2 多样性特征	海17.	. 121
7.2 多样性特征 7.3 参考灵敏度	(新D) (1)	. 121 . 121
7.2 多样性特征 7.3 参考灵敏度 7.3A CA 的参考灵经	<u>瀬</u> 度	. 121 . 121 . 121
7.2 多样性特征 7.3 参考灵敏度 7.3A CA 的参考灵畅 7.3A.1 一般性描述	· 班 · · · · · · · · · · · · · · · · · ·	. 121 . 121 . 121 . 121
7.2 多样性特征. 7.3 参考灵敏度. 7.3A CA 的参考灵统 7.3A.1 一般性描述 7.3A.2 CA 的参考		. 121 . 121 . 121 . 121 121
7.2 多样性特征 7.3 参考灵敏度 7.3A CA 的参考灵统 7.3A.1 一般性描 7.3A.2 CA 的参考 7.3A.3 CA 的 Δ R _{II}	歌度	. 121 . 121 . 121 121 121 121
7.2 多样性特征 7.3 参考灵敏度 7.3A CA 的参考灵锰 7.3A.1 一般性描 7.3A.2 CA 的参考 7.3A.3 CA 的 Δ R _{IB} . α 7.3A.3 Δ R _{IB} . α	・ ・ ・ で で ・ で ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	. 121 . 121 . 121 . 121 121 121 121
7.2 多样性特征. 7.3 参考灵敏度 7.3A CA 的参考灵籍 7.3A.1 一般性描 7.3A.2 CA 的参考 7.3A.3 CA 的 Δ R _{IB} 7.3A.3 LA Δ R _{IB} . α 7.3A.4 由于 UL 的	歌度	. 121 . 121 . 121 121 121 121 122
7.2 多样性特征 7.3 参考灵敏度 7.3A CA 的参考灵籍 7.3A.1 一般性描述 7.3A.2 CA 的参考 7.3A.3 CA 的 Δ R _{IB.C} 7.3A.3.1 Δ R _{IB.C} 17.3A.4 由于 UL 的 7.3B DC 的参考灵籍	敢度	. 121 . 121 . 121 . 121 . 121 . 121 . 121 . 122
7.2 多样性特征 7.3 参考灵敏度 7.3A CA 的参考灵锰 7.3A.1 一般性描 7.3A.2 CA 的参考 7.3A.3 CA 的 Δ R _{IB} . α 7.3A.3.1 Δ R _{IB} . α 7.3A.4 由于 UL 的 7.3B DC 的参考灵锰 7.3B.1 一般性描	敢度	. 121 . 121 . 121 121 121 121 122 . 122
7.2 多样性特征 7.3 参考灵敏度 7.3A CA 的参考灵籍 7.3A.1 一般性描 7.3A.2 CA 的参考 7.3A.3 CA 的 6 R _{IB} CA 的 7.3A.3 LA CA	歌度	. 121 . 121 . 121 121 121 121 122 122 122
7.2 多样性特征. 7.3 参考灵敏度 7.3A. 1 一般性描: 7.3A. 2 CA 的参考 7.3A. 3 CA 的参考 7.3A. 3 CA 的 Δ R _{IB} . α 7.3A. 3 DC 的参考灵经 7.3B. 1 — 般性描: 7.3B. 2 EN-DC 的参 7.3B. 2 带内连	歌度	. 121 . 121 . 121 121 121 121 122 122 122
7. 2 多样性特征. 7. 3	歌度	. 121 . 121 . 121 . 121 . 121 . 121 . 121 . 122 . 122 . 122 . 122 . 123
7. 2 多样性特征. 7. 3	歌度	. 121 . 121 . 121 . 121 . 121 . 121 . 121 . 122 . 122 . 122 . 123 . 123
7. 2 多样性特征. 7. 3	数度	. 121 . 121 . 121 . 121 . 121 . 121 . 122 . 122 . 122 . 122 . 123 . 123
7. 2 多样性特征. 7. 3	数度	. 121 . 121 . 121 . 121 . 121 . 121 . 122 . 122 . 122 . 123 . 123 . 123
7. 2 多样性特化 7. 3	数度 一 一 一 一 一 一 一 一 一 一 一 一 一	. 121 . 121 . 121 . 121 . 121 . 121 . 121 . 122 . 122 . 122 . 123 . 123 . 123 . 125 . 127
7. 2 多样性特征. 7. 3	政度 述	. 121 . 121 . 121 . 121 . 121 . 121 . 121 . 121 . 122 . 122 . 122 . 123 . 123 . 123 . 125 . 127
7. 2 多样性特化. 7. 3	数度	. 121 . 121 . 121 . 121 . 121 . 121 . 121 . 121 . 122 . 122 . 122 . 123 . 123 . 123 . 125 . 127
7. 2 多样性特化. 7. 3	歌度	. 121 . 121 . 121 . 121 . 121 . 121 . 121 . 122 . 122 . 122 . 123 . 123 . 123 . 125 . 127
7. 2 多样性特化. 7. 3	数度	. 121 . 121 . 121 . 121 . 121 . 121 . 121 . 122 . 122 . 122 . 123 . 123 . 123 . 125 . 127
7. 2 多样性特化 7. 3	政度	. 121 . 121 . 121 . 121 . 121 . 121 . 121 . 122 . 122 . 122 . 122 . 123 . 123 . 125 . 127 . 127 . 128
7. 2 多样性特化 7. 3	政度	. 121 . 121 . 121 . 121 . 121 . 121 . 121 . 121 . 122 . 122 . 122 . 123 . 123 . 123 . 125 . 127 . 128 129 131

7. 3B. 2. 4. 1 NR FR2 中 EN-DC 的 UL 谐波干扰引起的参考灵敏度异常	138
7. 3B. 2. 5	138
7. 3B. 2. 5. 1 EN-DC 的 UL 谐波干扰引起的参考灵敏度异常,包括 FR1 和 FR2	138
7.3B.3 EN-DC 的 Δ R _{IB. C} , Δ R _{ibne}	138
7. 3B. 3. 1 带内连续的 EN-DC	139
7. 3B. 3. 2 带内非连续的 EN-DC	
7.3B.3.3 FR1 内的带间 EN-DC	141
7. 3B. 3. 3. 1 两个波段的 EN-DC 的 Δ R _{IB. C}	141
7. 3B. 3. 3. 2 对于 EN-DC 三个波段, Δ R _{IB. C}	143
7.3B.3.3.3 Δ R _{IB, C} 用于 EN-DC 四个频段	147
7. 3B. 3. 3. 4 对于 EN-DC 五个波段, Δ R _{IB. C}	150
7. 3B. 3. 3. 5 Δ R _{IB, C} 用于 EN-DC 六个波段	151
7. 3B. 3. 4	151
7. 3B. 3. 4. 1 两个波段的 EN-DC 的 Δ R _{IB. C}	151
7.3B.3.4.2 ΔR _{IB.C} 用于 EN-DC 三个波段	
7.3B.3.4.3 Δ R _{ib.c} 用于 EN-DC 四个频段	153
7.3B.3.4.4 对于 EN-DC 五个波段, Δ R _{IB. C}	
7. 3B. 3. 4. 5 Δ RIB,c 表示 EN-DC 六频段	
7. 3B. 3. 5	155
7. 3B. 3. 5. 2 Δ R _{IB. C} 用于 EN-DC 三个波段	155
附件 A (规范性): 双上行干扰	
附件 B (资料性附录) • 更新 CRB	157
附件B(资料性附录): 更新 CRB	in ^{5g)}
rc通信(公众与·	
力型译· 5000	
叶 入下	

前言

该技术规范由第三代合作伙伴计划(3GPP)制作。

本文件的内容需要在 TSG 内继续开展工作,并且可能在 TSG 正式批准后发生变化。 如果 TSG 修改了本文件的内容,TSG 将重新发布该文件,其中发布日期的标识更改和版本号的增加如下:

版本 xvz

where:

- x 第一个数字:
 - 1 提交给 TSG 以获取信息;
 - 2 提交给 TSG 批准;
 - 3 或更高表示 TSG 批准的文件受变更控制。
- y 对于所有实质变化,即技术改进,更正,更新等,第二个数字会递增。
- z 当仅编辑性更改已包含在文档中时,第三个数字会递增。

中文翻译: 5G通信(公众号: tongxin5g)

1 范围

本文件规定了NR用户设备(UE)与其他无线电互通操作的最低RF特性和最低性能要求。这包括但不限于范围1和范围2之间的载波聚合的附加要求以及由于具有E-UTRA的NR非独立(NSA)操作模式的附加要求。

2 参考

以下文件载有通过本文中的参考构成本文件条款的规定。

- 参考文献是特定的(由出版日期,版本号,版本号等标识)或非参考文献- 具体。
- 具体参考,后续修订不适用。
- 对于非特定参考,最新版本适用。 在参考 3GPP 文档(包括 GSM 文档)情况下,非特定参考隐含地指代与本文档相同的版本中的该文档的最新版本。
- [1] 3GPP TR 21.905: "3GPP 规范的词汇表"。
- [2] 3GPP TS 38.101-1: "NR; 用户设备(UE)无线发送和接收; 第1部分: 范围1独立"
- [3] 3GPP TS 38.101-2: "NR; 用户设备(UE)无线发送和接收; 第1部分: 范围1独立"
- [4] 3GPP TS 36.101: "Evolved Universal Terrestrial 无线 接入(E-UTRA);用户设备(UE)无线传输和接收"
- [5] 3GPP TS 38.521-3: "NR; 用户设备(UE)一致性规范; 无线传输和接收; 第3部分: 范围1和范围2与其他无线电的互通操作"
- [6] ITU-R M. 1545 建议书: 测量不确定性,因为它适用于国际移动通信-2000 地面部分的测试限值"

3 定义,符号和缩写

3.1 定义

出于解释本文的目的,3GPP TR 21.905 [1]中给出的术语和定义适用。 在 3GPP TR 21.905 [1]中,本文件中定义的术语优先于相同术语的定义(如果有的话)。

〈定义的术语〉:〈定义〉。

3.2 符号

就本文件而言,以下符号适用:

〈符号〉 〈说明〉

3.3 缩略语

出于本文件的目的,3GPP TR 21.905 [1]中给出的缩写适用以下内容。 在 3GPP TR 21.905 [1]中,本文档中定义的缩写优先于相同缩写的定义(如果有的话)。

NSA 非独立组网模式

SUL 补充上行链路

ULSUP 从 UE 角度, 上行链路分享

4 一般性描述

4.1 最低要求与测试要求之间的关系

本文档是 NR UE 的互配规范,涵盖了 RF 特性和最低性能要求。 通过满足一致性规范 3GPP TS 38.521-3 [5] 中规定的测试要求来证明符合本规范。

本规范中给出的最低要求不允许测量不确定度。 测试规范 TS 38.521-3 [5]定义了测试容差。 每个测试单独计算这些测试范围。 测试范围用于放宽本规范中的最低要求以创建测试要求。 对于某些要求,包括法规要求,测试容差设置为零。

测试系统返回的测量结果 - 无需任何修改 - 与共享风险原则定义的测试要求进行比较。

共享风险原则在 ITU 建议书中定义- R M. 1545 [6]。

4.2 最低要求的适用性

- a) 在本规范中,最低要求被指定为一般性描述要求和附加要求。 如果要求被指定为一般性描述要求,则 要求在所有情况下都要求满足要求
- b) 对于指定附加要求的特定方案,除满足一般性描述要求外,UE 还必须满足其他要求。
- c) 杂散发射功率要求是功率的长期平均值。 为了降低测量不确定性,可以在一段足以降低由于信号统计性质引起的不确定性的时间内平均测量功率。

4.3 规范后缀信息

除非另有说明,否则以下后缀用于表示2nd级别的子条款,如表4.3-1所示。

 后缀
 变量

 None
 单承载

 A
 载波聚合 (CA)

 B
 有和没有 SUL 的双连接 (DC)包括从 UE 角度看的 UL 共享

 C
 D

 UL MIMO

表 4.3-1: 后缀的定义

5 操作频段和信道安排

5.1 一般性描述

本节中介绍的信道安排基于当前版本规范中定义的工作频段和信道带宽。

注意: 在将来的版本中可以考虑其他工作频段和信道带宽。

对于不同的频率范围(FR),在许多情况下,整个 RF 规范的要求是分开定义的。 NR 可根据此版本规范运行 的频率范围如表 5.1-1 所述。

表 5.1-1: 频率范围的定义

频率范围指定	相应的频率范围		
FR1	450 MHz - 6000 MHz		
FR2	24250 MHz - 52600 MHz		

本说明书涵盖了包括的频带组合

- 至少一个 FR1 工作频段和一个 FR2 工作频段,用于载波聚合和双连接操作;
- 用于双连接操作的至少一个 E-UTRA 操作频带。

5. 2 操作频段

NR 设计用于 TS 38.101-1 [2]中定义的 FR1 工作频段和 TS 38.101-2 [3]中定义的 FR2 工作频段。 E-UTRA 设 计用于 TS 36.101 [4]中定义的工作频段。

编者注:特定 NR 工作频段和频段组合的列表保留在 TR 38.817-01 中,并将在未来版本中合并到 TS 38.101-3 中。

5. 2A

5. 2A. 1

表 5.2A.1-1: NR CA 的频带组合

NR CA Band		NR 频段	
CA_ N8 - n258		n8, n258	
CA_n71-n257 ¹		n71, n257	
CA_n77-n257 ¹		n77, n257	
CA_n78-n257 ¹		n78, n257	
	CA_n79-n257 ¹	n79, n257	
注1:	适用于支持带间载波聚合的 UE,	具有强制性的同时 Rx / Tx 功	

DC 的工作频段 5. 2B

5.2B.1 一般性描述

操作频段指定用于配置 EN-DC 或 NGEN-DC 的操作。 频带组合包括至少一个 E-UTRA 操作频带。

对于本节表格中"允许单上行链路"列(例如, TS38.306 中定义的有问题的频段组合)所指示的 EN-DC 配 置, UE 可能指示由于可能的互调干扰而不支持同时双重和三重上行链路操作的能力如果两个工作频带低于 1 GHz 或介于 1695 MHz - 2690 MHz 之间,如果互调序是 2,或者当组合的互调序为 3 时,则为其自己的下行链 路频带。 对于本节表中列出的 EN-DC 配置, 其中由双重和三重上行链路操作引起的互调产物落入重定频带但 不干扰附件 A 中定义的自身下行链路传输,UE 是要求在双上行链路和三上行链路模式下运行。 对于某些频段组合,也允许单上行链路,其中互调或反向互调产物可能难以满足发射要求。

5.2B.2 带内连续的 EN-DC

〈编者注:进行了要求〉

5.2B.2.1 EN-DC (两个频段)

表 5.2B.2.1-1: EN-DC 的频段组合 (两个频段)

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_ (N) 71	71	n71	否³
DC_ (N) 41	41	n41	是「

注 1: 由于潜在的排放问题而允许单个 UL, 而不是自干扰。

注2: 最低要求适用于 SCGNA15 kHz 子载波间隔。

注 3: 对于支持动态功率共享的 UE,必须进行双同时 UL。 对于不支持动态功率共享的 UE(s),允许单个 UL。

5.2B.3 带内非连续的 EN-DC

〈编者注:进行了要求〉

5.2B.3.1 EN-DC (两个频段)

ペペノ 表 5. 2B. 3.1-1: 频帯组合 EN-DC (两个频段)

EN-DC 频段上行链路组合	E-UTRA 频段	NR 频段	允许单一 UL
DC 3 N3	3	n3	是「
DC 41 41	41	n41	是
注 1: Rel. 15 仅支持单个交	换 UL		

5.2B.3.2 EN-DC (三频段)

表 5.2B.3.2-1: 频带组合 EN-DC (三频段)

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_ 41 41 41	CA- 41, 41	n41	没有

5. 2B. 4 FR1 内的带间 EN-DC

〈编者注:进行了要求〉

5.2B.4.1 EN-DC (两个频段)

表 5. 2B. 4. 1-1: EN-DC 的频段组合 (两个频段)

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_1_n28	1	n28	No
DC_1_n40	1	n40	No
DC_1_n51	1	n51	No
DC_1_n773	1	n77	DC_1_n77
DC_1_n78 ³	1	n78	No
DC_1_n793	1	n79	No
DC_2_n5	2	n5	No
DC_2_n66	2	n66	No
DC_2_n71	2	n71	No
DC_2_n78	2	n78	No
DC_3_n7	3	n7	No
DC_3_n28	3	n28	No
DC_3_n40	3	n40	No
DC_3_n51	3	n51	No
DC_3_n773	3	n77	DC_3_n77
DC_3_n78 ³	3	n78	DC_3_n78
DC_3_n79 ³	3	n79	-in5810
DC_5_n40	5	n40 + 0118	No
DC_5_n66	5	n66	No
DC_5_n78 ³	、高信(7	n78	No
DC_7_n28	5G四11	n28	No
DC_7_n5 I	7	n51	No
DC_7_n78 ³	7	n78	No
DC_8_n40	8	n40	No
DC_8_n773	8	n77	No
DC_8_n78 ³	8	n78	No
DC_8_n79 ³	8	n79	No
DC_11_n77 ³	11	n77	No
DC_11_n78 ³	11	n78	No
DC_11_n79 ³	11	n79	No
DC_12_n5	12	n5	No
DC_12_n66	12	n66	No
DC_18_n77³	18	n77	No
DC_18_n78 ³	18	n78	No
DC_18_n79 ³	18	n79	No
DC_19_n77³	19	n77	No
DC_19_n78 ³	19	n78	No
DC_19_n79 ³	19	n79	No
DC_20_n8	20	n8	No
DC_20_n28 ⁴	20	n28	No
DC_20_n51	20	n51	No
DC_20_n77	20	n77	No
DC_20_n78 ³	20	n78	No

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_21_n77³	21	n77	No
DC_21_n78 ³	21	n78	No
DC_21_n79 ³	21	n79	No
DC_25_n41	25	n41	No
DC_26_n41 ³	26	n41	No
DC_26_n773	26	n77	No
DC_26_n78 ³	26	n78	No
DC_26_n79 ³	26	n79	No
DC_28_n51	28	n51	No
DC_28_n773	28	n77	No
DC_28_n78 ³	28	n78	No
DC_28_n79 ³	28	n79	No
DC_30_n5	30	n5	No
DC_30_n66	30	n66	No
DC_38_n78	38	n78	No
DC_39_n78 ^{1,3}	39	n78	No
DC_39_n79 ³	39	n79	No
DC_40_n77	40	n77	No
DC_41_n77	41	n77	No
DC_41_n78	41	n78	No
DC_41_n79 ²	41	n79	XIII 910
DC_42_n51	42	NEn51	No
DC_42_n77	42 (1	n77	No
DC_42_n78	5公里2日	n78	No
DC_42_n79	42	n79	No
DC_66_n71	66	n71	No
DC_66_n5	66	n5	No
DC_66_n78	66	n78	No

注 1: Band n78 的频率范围高于 3600MHz, 不在此组合中使用。

注 2: Band 41 的频率范围低于 2545MHz, 不在此组合中使用。

注3: 适用于支持带间载波聚合的UE, 具有强制性的同时Rx/Tx功能。

注 4: 对于该频带组合,频带 28 中的频率范围被限制为 UL 的 703-733 MHz 和 DL 的 758-788 MHz。

5.2B.4.2 EN-DC (三频段)

表 5.2B.4.2-1: 频带组合 EN-DC (三频段)

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_1-3_n28	CA_1-3	n28	No
DC_1-3_n77 ²	CA_1-3	n77	DC_1_n77, DC_3_n77
DC_1-3_n78 ²	CA_1-3	n78	DC_3_n78
DC_1-3_n79 ²	CA_1-3	n79	No
DC_1-5_n78 ²	CA_1-5	n78	No
DC_1-5_n78 ²	CA_1-5	n78	No
DC_1-7_n28 ²	CA_1-7	n28	No
DC_1-7_n78 ²	CA_1-7	n78	No
DC_1-7-7_n78 ²	CA_1-7-7	n78	No
DC_1-8_n78 ²	CA_1-8	n78	No
DC_1-18_n77 ²	CA_1-18	n77	No
DC_1-18_n78 ²	CA_1-18	n78	No
DC_1-18_n79	CA_1-18	n79	No
DC_1-19_n77 ²	CA_1-19	n77	DC_1_n77
DC_1-19_n78 ²	CA_1-19	n78	No
DC_1-19_n79 ²	CA_1-19	n79	No
DC_1-20_n28 ³	CA_1-20	n28	in5 No
DC_1=20_n78 ²	CA_1-20	n78 + 0118	No
DC_1=21_n77 ²	CA_1-21	177 En77	DC_1_n77
DC_1-21_n78 ²	CA_I=21	n78	No
DC_1-21_n79 ²	CA_1-21	n79	No
DC_1-282n772	CA_1-28	n77	No
DC_1-28_n78 ²	CA_1-28	n78	No
DC_1-28_n79	CA_1-28	n79	No
DC_1_n28-n78 ²	1	CA_n28-n78	No
DC_1_n77-n79	1	CA_n77-n79	No
DC_1_n78-n79	1	CA_n78-n79	No
DC_1-41_n77	CA_1-41	n77	No
DC_1-41_n78	CA_1-41	n78	No
DC_1-41_n79	CA_1-41	n79	No
DC_1-42_n77	CA_1-42	n77	DC_1_n77
DC_1-42_n78	CA_1-42	n78	No
DC_1-42_n79	CA_1-42	n79	No
DC_1_SUL_n78-n84 ²	1	SUL_n78-n84	No
DC_2-5_n66	CA_2-5	n66	No
DC_2-12_n66	CA_2-12	n66	No
DC_2-30_n66	CA_2-30	n66	No
DC_2-(n) 71	CA_2-71	n71	No
DC_2-66_n71	CA_2-66	n71	No
DC_3_n3-n77	3	CA_n3 -n 77	DC_3_n3
DC_3_n3-n78	3	CA_n3 -n 78	DC_3_n3
DC_1-28_n77	CA_1-28	n77	No
DC_3-5_n78 ²	CA_3-5	n78	DC_3_n78

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_3-7_n28	CA_3-7	n28	No
DC_3-7_n78 ²	CA_3-7	n78	DC_3_n78
DC_3-7-7_n78 ²	CA_3-7-7	n78	DC_3_n78
DC_3-19_n77 ²	CA_3-19	n77	No
DC_3-19_n78 ²	CA_3-19	n78	No
DC_3-19_n79 ²	CA_3-19	n79	No
DC_3-20_n28 ^{2, 3}	CA_3-20	n28	No
DC_3-20_n78 ²	CA_3-20	n78	No
DC_3-21_n77 ²	CA_3-21	n77	No
DC_3-21_n78 ²	CA_3-21	n78	No
DC_3-21_n79 ²	CA_3-21	n79	No
DC_3-28_n78 ²	CA_3-28	n78	No
DC_3_n28-n78 ²	3	CA_n28-n78	DC_3_n78
DC_3-38_n78	CA_3-38	n78	DC_3_n78
DC_3-41_n78	CA_3-41	n78	DC_3_n78
DC_3-42_n77	CA_3-42	n77	DC_3_n77
DC_3-42_n78	CA_3-42	n78	DC_3_n78
DC_3-42_n79	CA_3-42	n79	No
DC_3_n77-n79	3	CA_n77-n79	No
DC_3_n78-n79	3	CA_n78-n79	No
DC_3_SUL_n78-n80 ²	3	SUL_n78-n80	X 1 DC_3_n78
DC_3_SUL_n78-n82 ²	3	SUL_n78-n82 ¹	DC_3_n78
DC_3_SUL_n79-n80 ²	3 ()	SUL_n79-n80	No
DC_5-7-7_n78	CA_5-7-7	n78	No
DC_5-7_n78	CA_5-7	n78	No
DC_5-30_n66	CA_5-30	n66	No
DC_7-7_n78	CA_7-7	n78	No
DC_7-20_n28 ³	CA_7-20	n28	No
DC_7-20_n78 ²	CA_7-20	n78	No
DC_7-28_n78 ²	CA_7-28	n78	No
DC_7_n28-n78 ²	7	CA_n28-n78	No
DC_7_n78 ²	CA_7	n78	No
DC_7-46_n78	CA_7-46	n78	No
DC_8_SUL_n78-n81 ²	8	SUL_n78-n81	No
DC_8_SUL_n79-n81 ²	8	SUL_n79-n81	No
DC_12-30_n66	CA_12-30	n66	No
DC_18-28_n77 ²	CA_18-28	n77	No
DC_18-28_n78 ²	CA_18-28	n78	No
DC_18-28_n79 ²	CA_18-28	n79	No
DC_19-21_n77 ²	CA_19-21	n77	No
DC_19-21_n78 ²	CA_19-21	n78	No
DC_19-21_n79 ²	CA_19-21	n79	No
DC_19-42_n77	CA_19-42	n77	No
DC_19-42_n78	CA_19-42	n78	No
DC_19-42_n79	CA_19-42	n79	No
DC_19_n77-n79	19	CA_n77-n79	No

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_19_n78-n79	19	CA_n78-n79	No
DC_20_n8-n75	20	CA_n8-n75	DC_20_n8
DC_20_n28-n75 ³	20	CA_n28-n75	No
DC_20_n28-n78 ^{2, 3}	20	CA_n28-n78	No
DC_20_n75-n78 ²	20	CA_n75-n78	No
DC_20_n76-n78 ²	20	CA_n76-n78	No
DC_20_SUL_n78-n82 ²	20	SUL_n78-n82	No
DC_20_SUL_n78-n83 ²	20	SUL_n78-n831	No
DC_21-42_n77	CA_21-42	n77	No
DC_21-42_n78	CA_21-42	n78	No
DC_21-42_n79	CA_21-42	n79	No
DC_21_n77-n79	21	CA_n77-n79	No
DC_21_n78-n79	21	CA_n78-n79	No
DC_28-42_n77	CA_28-42	n77	No
DC_28-42_n78	CA_28-42	n78	No
DC_28-42_n79	CA_28-42	n79	No
DC_41-42_n77	CA_41-42	n77	No
DC_41-42_n78	CA_41-42	n78	No
DC_41-42_n79	CA_41-42	n79	No
DC_41_n77	CA_41	n77	No No
DC_41_n78	CA_41	n78	XIII No
DC_41_n79	CA_41	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No
DC_42_n77	CA_42	n77	No
DC_28_SUL_n78-n83 ²	5分里20日	SUL_n78-n83	No
DC_42_n77	CA_42	n77	No
DC_42_n78	CA_42	n78	No
DC_42_n79	CA_42	n79	No
DC_66_(n)71	CA_66-71	n71	No
DC_66_SUL_n78-n86 ²	20	SUL_n78-n86	DC_66_n78

注1: 如果 UE 在小区中配置了 NR UL 和 NR SUL 载波,则 NR UL 载波和 NR SUL 载波之间的切换时间最长可达 140us。

注 2: 适用于支持带间载波聚合的 UE, 具有强制性的同时 Rx / Tx 功能

注 3: 对于该频带组合,频带 28 中的频率范围被限制为 UL 的 703-733MHz 和 DL 的 758-788MHz。

5.2B.4.3 EN-DC (四个频段)

表 5.2B.4.3-1: 频带组合 EN-DC (四频段)

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_1-3-5_n78 ¹	CA_1-3-5	n78	DC_3_n78
DC_1-3-7_n28	CA_1-3-7	n28	No
DC_1-3-7-7_n78 ¹	CA_1-3-7-7	n78	DC_3_n78
DC_1-3-7_n78 ¹	CA_1-3-7	n78	DC_3_n78
DC_1-3-8_n78 ¹	CA_1-3-8	n78	No
DC_1-3-28_n77 ¹	CA_1-3-28	n77	No
DC_1-3-28_n78 ¹	CA_1-3-28	n78	No
DC_1-3_n28-n78 ¹	CA_1-3	CA_n28-n78	DC_3_n78
DC_1-3-28_n79 ¹	CA_1-3-28	n79	No
DC_1-3-19_n77 ¹	CA_1-3-19	n77	DC_1_n77, DC_3_n77
DC_1-3-19_n78 ¹	CA_1-3-19	n78	DC_3_n78
DC_1-3-19_n79 ¹	CA_1-3-19	n79	No
DC_1-3-20_n28 ²	CA_1-3-20	n28	No
DC_1-3-20_n78 ¹	CA_1-3-20	n78	DC_3_n78
DC_1-3-21_n77 ¹	CA_1-3-21	n77	DC_1_n77, DC_3_n77
DC_1-3-21_n78 ¹	CA_1-3-21	n78	DC_3_n78
DC_1-3-21_n79 ¹	CA_1-3-21	n79	· n 5 eNo
DC_1-3-42_n77	CA_1-3-42	n77 tong	DC_1_n77
DC_1-3-42_n78	CA_1-3-42	n78	No
DC_1-3-42_n79	CA_1-3-42	n79	No
DC_1-5-7_n78	CA_1-5-7	n78	No
DC_1-5-7-7_n78	CA_1-5-7-7	n78	No
DC_1-7-20_n28 ²	CA_1-7-20	n28	No
DC_1-7-20_n78 ¹	CA_1-7-20	n78	No
DC_1-7_n28-n78 ¹	CA_1-7	CA_n28-n78	No
DC_1-18-28_n77	CA_1-18-28	n77	No
DC_1-18-28_n78	CA_1-18-28	n78	No
DC_1-18-28_n79 ¹	CA_1-18-28	n79	No
DC_1-19-42_n77	CA_1-19-42	n77	DC_1_n77
DC_1-19-42_n78	CA_1-19-42	n78	No
DC_1-19-42_n79	CA_1-19-42	n79	No
DC_1-20_n28-n78 ^{1,2}	CA_1-20	CA_n28-n78	No
DC_1-21-28_n77 ¹	CA_1-21-28	n77	No
DC_1-21-28_n78 ¹	CA_1-21-28	n78	No
DC_1-21-28_n79 ¹	CA_1-21-28	n79	No
DC_1-21-42_n77	CA_1-21-42	n77	DC_1_n77
DC_1-21-42_n78	CA_1-21-42	n78	No
DC_1-21-42_n79	CA_1-21-42	n79	No
DC_1-28-42_n77	CA_1-28-42	n77	No
DC_1-28-42_n78	 CA_1-28-42	n78	No
DC_1-28-42_n79	CA_1-28-42	n79	No
DC_1-41-42_n77		. 77	NI-
	CA_1-41-42	n77	No

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_1-41-42-n79	CA_1-41-42	n79	No
DC_2-66-(n)71	CA_2-66-71	n71	
DC_3-5-7-7_n78	CA_3-5-7-7	n78	DC_3_n78
DC_3-7_n28-n78 ¹	CA_3-7	CA_n28-n78	DC_3_n78
DC_3-20_n28-n78 ^{1,2}	CA_3-20	CA_n28-n78	DC_3_n78
DC_3-21-42_n77	DC_3-21-42	n77	DC_3_n77
DC_3-21-42_n78	DC_3-21-42	n78	DC_3_n78
DC_3-21-42_n79	DC_3-21-42	n79	No
DC_19-21-42_n77	CA_19-21-42	n77	No
DC_19-21-42_n78	CA_19-21-42	n78	No
DC_19-21-42_n79	CA_19-21-42	n79	No
DC_3-5-7_n78	CA_3-5-7	n78	DC_3_n78
DC_3-7-20_n28 ²	CA_3-7-20	n28	No
DC_3-7-28_n78 ¹	CA_3-7-28	n78	No
DC_3-7-20_n78 ¹	CA_3-7-20	n78	DC_3_n78
DC_3-19-21_n77 ¹	CA_3-19-21	n77	DC_3_n77
DC_3-19-21_n78 ¹	CA_3-19-21	n78	DC_3_n78
DC_3-19-21_n79 ¹	CA_3-19-21	n79	No
DC_3-19-42_n77	CA_3-19-42	n77	No
DC_3-19-42_n78	CA_3-19-42	n78	. 5 NO
DC_3-19-42_n79 ¹	CA_3-19-42	n79	X1III No
DC_3-28-42_n77	CA_3-28-42	人号n77 10112	No
DC_3-28-42_n78	CA_3-28-42	n78	No
DC_3-28-42_n79	CA_3-28-42	n79	No
DC_7-20_n28-n78 ^{1,2}	CA_7-20	CA_n28-n78	No
DC_21-28-42_n77	CA_21-28-42	n77	No
DC_21-28-42_n78	CA_21-28-42	n78	No
DC_21-28-42_n79	CA_21-28-42	n79	No

DC_21-28-42_n79
 CA_21-28-42
 n79

 注 1:
 适用于支持带间载波聚合的 UE,具有强制性的同时 Rx / Tx 功能

注 2: 对于该频带组合,频带 28 中的频率范围被限制为 UL 的 703-733 MHz 和 DL 的 758-788 MHz。

5.2B.4.4 EN-DC (五个频段)

表 5.2B.4.4-1: 频带组合 EN-DC (五频段)

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_1-3-5-7_n78	CA_1-3-5-7	n78	DC_3_n78
DC_1-3-5-7-7_n78	CA_1-3-5-7-7	n78	DC_3_n78
DC_1-3-7-20_n28 ²	CA_1-3-7-20	n28	No
DC_1-3-7-20_n78 ¹	CA_1-3-7-20	n78	DC_3_n78
DC_1-3-7_n28-n78 ¹	CA_1-3-7	CA_n28-n78	DC_3_n78
DC_1-3-19-21_n77 ¹	CA_1-3-19-21	n77	DC_1_n77, DC_3_n77
DC_1-3-19-21_n78 ¹	CA_1-3-19-21	n78	DC_3_n78
DC_1-3-19-21_n79 ¹	CA_1-3-19-21	n79	No
DC_1-3-19-42_n77	CA_1-3-19-42	n77	DC_1_n77, DC_3_n77
DC_1-3-19-42_n78	CA_1-3-19-42	n78	DC_3_n78
DC_1-3-19-42_n79	CA_1-3-19-42	n79	No
DC_1-3-20_n28-n78 ^{1,2}	CA_1-3-20	CA_n28-n78	DC_3_n78
DC_1-3-21-42_n77	CA_1-3-21-42	n77	DC_1_n77, DC_3_n77
DC_1-3-21-42_n78	CA_1-3-21-42	n78	DC_3_n78
DC_1-3-21-42_n79	CA_1-3-21-42	n79	No
DC_1-7-20_n28-n78 ^{1,2}	CA_1-7-20	CA_n28-n78	No
DC_1-19-21-42_n77	DC_1-19-21-42	n77	DC_1_n77
DC_1-19-21-42_n78	DC_1-19-21-42	n78 + 01	No No
DC_1-19-21-42_n79	DC_1-19-21-42	n79	No
DC_3-7-20_n28-n78 ^{1,2}	CA_3-7-20	CA_n28-n78	DC_3_n78
DC_1-3-5-7_n78	5 CA_1-3-5-7	n78	DC_3_n78
DC_1-3-7-20_n28	CA_1-3-7-20	n28	No
DC_1-3-28-42_n77	CA_1-3-28-42	n77	DC_1_n77, DC_3_n77
DC_1-3-28-42_n78	CA_1-3-28-42	n78	DC_3_n78
DC_1-3-28-42_n79	CA_1-3-28-42	n79	No
DC_1-21-28-42_n77	CA_1-21-28-42	n77	DC_1_n77
DC_1-21-28-42_n78	CA_1-21-28-42	n78	No
DC_1-21-28-42_n79	CA_1-21-28-42	n79	No
注 1: 适用于支持带间载波聚合	的 UE, 具有强制性的同时	Rx / Tx 功能	

注 1: 适用于支持带间载波聚合的 UE, 具有强制性的同时 Rx / Tx 功能

注 2: 对于该频带组合,频带 28 中的频率范围被限制为 UL 的 703-733MHz 和 DL 的 758-788MHz

5.2B.4.5 EN-DC (六频段)

表 5.2B.4.5-1: 频带组合 EN-DC (六频段)

	EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL	
	DC_1-3-7-20_n28-N78 ^{1, 2}	CA_ 1—3—7—20	CA_ N28 - N78	DC_ 3 _ N78	
注 1:	注 1: 适用于支持带间载波聚合的 UE, 具有强制性的同时 Rx / Tx 功能				
注 2.	注 2· 对于该频带组合,频带 28 中的频率范围被限制为 III 的 703-733MIz 和 DI 的 758-788MIz				

5. 2B. 5 带间 EN-DC 包括 FR2

〈编者注: OTA 要求〉

中文翻译: 5G通信(公众号: tongxin5g)

5.2B.5.1 EN-DC (两个频段)

表 5.2B.5.1-1: EN-DC 的频段组合(两个频段)

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_1_n257	1	n257	No
DC_2-2_n257	CA_2-2	n257	No
DC_2_n257	CA_2	n257	No
DC_2_n260	2	n260	No
DC_2_n260	CA_2	n260	No
DC_2-2_n260	CA_2-2	n260	No
DC_3_n257	3	n257	No
DC_3_n258	3	n258	No
DC_5-5_n257	CA_5-5	n257	No
DC_5-5_n260	CA_5-5	n260	No
DC_5_n257	5	n257	No
DC_5_n260	5	n260	No
DC_5_n261	5	n261	No
DC_7-7_n257	CA_7-7	n257	No
DC_7_n257	7	n257	No
DC_7_n258	7	n258	No
DC_8_n257	8	n257	: n590
DC_8_n258	8	n258 + 0119	No
DC_11_n257	11	n257	No
DC_12_n260	12章(7	n260	No
DC_18_n257	5G7481	n257	No
DC_19_n257	19	n257	No
DC_20_n258	20	n258	No
DC_21_n257	21	n257	No
DC_26_n257	26	n257	No
DC_28_n257	28	n257	No
DC_28_n258	28	n258	No
DC_30_n260	30	n260	No
DC_39_n258	39	n258	No
DC_41_n257	41	n257	No
DC_41_n258	41	n258	No
DC_42_n257	42	n257	No
DC_48-48_n257	CA_48-48	n257	No
DC_48_n257	CA_48	n257	No
DC_48-48_n260	C_48-48	n260	No
DC_48_n260	CA_48	n260	No
DC_66-66_n257	CA_66-66	n257	No
DC_66_n257	66	n257	No
DC_66-66_n260	C_66-66	n260	No
DC_66_n260	66	n260	No
DC_66_n261	66	n261	No
注 1: 适用于支持带间载	说聚合的 UE,具有针对所	有上述组合的强制性同时	Rx / Tx 功能

5.2B.5.2 EN-DC (三频段)

表 5.2B.5.2-1: 频带组合 EN-DC (三频段)

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_1-3_n257 ¹	CA_1-3	n257	No
DC_1-3_n257 ¹	CA_1-3	n257	No
DC_1-5_n2571	CA_1-5	n257	No
DC_1-7_n2571	CA_1-7	n257	No
DC_1-7-7_n257 ¹	CA_1-7-7	n257	No
DC_1-8_n257	CA_1-8	n257	No
DC_1-18_n257 ¹	CA_1-18	n257	No
DC_1-19_n257 ¹	CA_1-19	n257	No
DC_1-21_n257 ¹	CA_1-21	n257	No
DC_1-28_n257 ¹	CA_1-28	n257	No
DC_1-41_n257	CA_1-41	n257	No
DC_1-42_n257	CA_1-42	n257	No
DC_2-5_n2571	CA_2-5	n257	No
DC_2-5_n260	CA_2-5	n260	No
DC_2-12_n260	CA_2-12	n260	No
DC_2-13_n257 ¹	CA_2-13	n257	No
DC_2-30_n260	CA_2-30	n260	: n5 No
DC_2-66_n257 ¹	CA_2-66	n257 + 011	g X I No
DC_2-66_n260	CA_2-66	n260	No
DC_2-13_n260 ¹	CA_2-13	n260	No
DC_3-5_n257 ¹	5 CA_3-5	n257	No
DC_3-7_n257	CA_3-7	n257	No
DC_3-7-7_n257 ¹	CA_3-7-7	n257	No
DC_3-19_n257 ¹	CA_3-19	n257	No
DC_3-21_n257 ¹	CA_3-21	n257	No
DC_3-28_n257 ¹	CA_3-28	n257	No
DC_3-41_n257	CA_3-41	n257	No
DC_3-42_n257 ¹	CA_3-42	n257	No
DC_5-7-7_n257 ¹	CA_5-7-7	n257	No
DC_5-7_n257 ¹	CA_5-7	n257	No
DC_5-30_n260	CA_5-30	n260	No
DC_5-66_n260	CA_5-66	n260	No
DC_12-30_n260	CA_12-30	n260	No
DC_12-66_n260	CA_12-66	n260	No
DC_13-66_n257 ¹	CA_13-66	n257	No
DC_13-66_n260 ¹	CA_13-66	n260	No
DC_18-28_n257 ¹	CA_18-28	n257	No
DC_19-21_n257 ¹	CA_19-21	n257	No
DC_19-42_n257 ¹	CA_19-42	n257	No
DC_21-42_n257 ¹	CA_21-42	n257	No
DC_21-28_n257 ¹	CA_21-28	n257	No
DC_28-42_n257 ¹	CA_28-42	n257	No
DC_30-66_n260	CA_30-66	n260	No

Е	N-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC	_41-42_n257	CA_41-42	n257	No
注 1: 适用于支持带间载波聚合的 UE, 具有强制性的同时 Rx / Tx 功能				

5.2B.5.3 EN-DC (四个频段)

表 5.2B.5.3-1: 频带组合 EN-DC (四频段)

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_1-3-5_n257 ¹	CA_1-3-5	n257	No
DC_1-3-7_n257 ¹	CA_1-3-7	n257	No
DC_1-3-7-7_n257	CA_1-3-7-7	n257	No
DC_1-3-19_n257 ¹	CA_1-3-19	n257	No
DC_1-3-21_n257 ¹	CA_1-3-21	n257	No
DC_1-3-28_n257 ¹	CA_1-3-28	n257	No
DC_1-3-42_n257	CA_1-3-42	n257	No
DC_1-5-7_n257 ¹	CA_1-5-7	n257	No
DC_1-5-7-7_n257	CA_1-5-7-7	n257	No
DC_1-18-28_n257 ¹	CA_1-18-28	n257	No
DC_1-19-42_n257	CA_1-19-42	n257	No
DC_1-21-28_n257 ¹	CA_1-21-28	n257	: n5gNo
DC_1-21-42_n257	CA_1-21-42	n257 + 019	No
DC_1-28-42_n257	CA_1-28-42	n257	No
DC_1-41-42_n257	CA_1-41-42	n257	No
DC_3-5-7-7_n257	CA_3-5-7-7	n257	No
DC_3-5-7_n257	CA_3-5-7	n257	No
DC_3-19-21_n257 ¹	CA_3-19-21	n257	No
DC_3-19-42_n257	CA_3-19-42	n257	No
DC_3-21-42_n257	DC_3-21-42	n257	No
DC_3-28-42_n257	CA_3-28-42	n257	No
DC_19-21-42_n257 ¹	CA_19-21-42	n257	No
DC_21-28-42_n257 ¹	CA_21-28-42	n257	No
注 1: 适用于支持带间载	浓聚合的 UE,具有强制性	的同时 Rx / Tx 功能	

5.2B.5.4 EN-DC (五个频段)

表 5.2B.5.4-1: 频段组合 EN-DC (五频段)

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL	
DC_1-3-5-7_n257 ¹	CA_1-3-5-7	n257	No	
DC_1-3-5-7-7_n257 ¹	CA_1-3-5-7-7	n257	No	
DC_1-3-19-21_n257 ¹	CA_1-3-19-21	n257	No	
DC_1-3-19-42_n257	CA_1-3-19-42	n257	No	
DC_1-3-21-42_n257	CA_1-3-21-42	n257	No	
DC_1-3-28-42_n257	CA_1-3-28-42	n257	No	
DC_1-19-21-42_n257	DC_1-19-21-42	n257	No	
DC_1-21-28-42_n257	DC_1-21-28-42	n257	No	
DC_3-5-7-7_n257	CA_3-5-7-7	n257	No	
DC_1-3-28-42_n257	CA_1-3-28-42	n257	No	
DC_1-21-28-42_n257	CA_1-21-28-42	n257	No	
注 1: 适用于支持带间载波聚合的 UE, 具有强制性的同时 Rx / Tx 功能				

5. 2B. 6 带间 EN-DC 包括 FR1 和 FR2

〈编者注: OTA 要求〉

5.2B.6.1 EN-DC (两个频段)

本节为 N / A.

EN-DC智生频段)
5G通信(公众号:tongxin5g) 5. 2B. 6. 2

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_1_n77-n257	1	CA_n77-n257	No
DC_1_n78-n257	1	CA_n78-n257	No
DC_1_n79-n257	1	CA_n79-n257	No
DC_3_n77-n257	3	CA_n77-n257	No
DC_3_n78-n257	3	CA_n78-n257	No
DC_3_n79-n257	3	CA_n79-n257	No
DC_5_n78-n257 ¹	5	CA_n78-n257	No
DC_7-7_n78-n257	CA_7-7	CA_n78-n257	No
DC_7_n78-n257	7	CA_n78-n257	No
DC_19_n77-n257	19	CA_n77-n257	No
DC_19_n78-n257	19	CA_n78-n257	No
DC_19_n79-n257	19	CA_n79-n257	No
DC_21_n77-n257	21	CA_n77-n257	No
DC_21_n78-n257	21	CA_n78-n257	No
DC_21_n79-n257	21	CA_n79-n257	No
注 1: 适用于支持带间载	说波聚合的 UE, 具有强制	生的同时 Rx / Tx 功能	

5.2B.6.3 EN-DC (四个频段)

表 5.2B.6.3-1: 频带组合 EN-DC (四频段)

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_1-3_n78-n257	CA_1-3	CA_n78-n257	No
DC_1-5_n78-n257	CA_1-5	CA_n78-n257	No
DC_1-7-7_n78-n257	CA_1-7-7	CA_n78-n257	No
DC_1-7_n78-n257	CA_1-7	CA_n78-n257	No
DC_3-5_n78-n257	CA_3-5	CA_n78-n257	No
DC_3-7-7_n78-n257	CA_3-7-7	CA_n78-n257	No
DC_3-7_n78-n257	CA_3-7	CA_n78-n257	No
DC_5-7-7_n78-n257	CA_5-7-7	CA_n78-n257	No
DC_5-7_n78-n257	CA_5-7	CA_n78-n257	No

5.2B.6.4 EN-DC (五个频段)

表 5.2B.6.4-1: 频带组合 EN-DC (五频段)

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL
DC_1-3-5_n78-n257	CA_1-3-5	CA_n78-n257	No
DC_1-3-7-7_n78-n257	CA_1-3-7-7	CA_n78-n257	vin 2810
DC_1-3-7_n78-n257	CA_1-3-7	CA_n78-n257	No
DC_1-5-7-7_n78-n257	CA_1-5-7-7	CA_n78-n257	No
DC_1-5-7_n78-n257	CA 1-5-7	CA_n78-n257	No
DC_3-5-7-7_n78-n257	CA_3-5-7-7	CA_n78-n257	No
DC_3-5-7_n78-n257	CA_3-5-7	CA_n78-n257	No
4			

5.2B.6.5 EN-DC (六频段)

表 5.2B.6.5-1: 频带组合 EN-DC (六频段)

EN-DC 频段	E-UTRA 频段	NR 频段	允许单一 UL	
DC_1-3-5-7_n78-n257	OC_1-3-5-7_n78-n257		No	
注 1: 适用于支持带间载波聚合的 UE, 具有强制性的同时 Rx / Tx 功能				

UE 信道带宽 5.3

- UE CA 的信道带宽 5. 3A
- FR1和FR2之间的带间CA. 5. 3A. 1

UE EN-DC 的信道带宽 5.3B

对于带内连续的 EN-DC, 聚合信道带宽是各个 NR 和 E-UTRA 信道带宽的总和, 假设具有 0kHz 偏移间隔的标称 EN-DCchannel, 如 5.4 中规定的那样。

$$ENBW = BW_{NR Channel} + BW_{E-UTRA Channel}$$

在 NR 子块和/或 E-UTRA 子块本身由带内连续 CA 载波组成的情况下, EN-DC 聚合信道带宽是 NR 和 E 的聚合信 道带宽的总和。 -UTRA 子块假设 NR 子块和 E-UTRA 子块之间的标称 EN-DC 信道间隔。

 $ENBW = BW_{NR Channel CA} + BW_{E-UTRA Channel CA}$

5.3B.1 FR1 中的带内 EN-DC

5. 3B. 1. 1 一般性描述

对于每个EN-DC配置,为带宽组合集中包含的所有带宽组合指定要求,该组合在UE 无线 接入功能中按照支持 的频带组合表示。UE可以指示每个频带组合支持几个带宽组合集。

除非在表5.3B.1-1中另有说明,否则给定EN-DC配置的DL分量载波组合应相对于信道中心对称。

BCS 用于带内连续 EN-DC 5. 3B. 1. 2

对于带内连续的EN-DC, EN-DC配置是支持载波聚合带宽等级的单个工作频带。

对于表5.3B.1.2-1中规定的EN-DC配置和带宽组合集,定义了带内连续载波聚合 的要求。

表 5. 3B. 1. 2-1: 为带内连续 EN-DC 定义的 EN-DC 配置和带宽组合集

		E-UTRA - NR 配置/带宽组合设置				
		分量载液	皮按载波频率增加	的顺序		
下行 EN-DC 配置	上行链路 EN-DC 配置	LTE 载波的信 道带宽(MHz)	载波的信道带 宽 NR(MHz)	LTE 载波的信 道带宽 (MHz)	最大聚合 带宽(MHz)	带宽组合设 置

DC (n)4144	DC (n)/1144	20	40, 60, 80,100		120	0
DC_(n)41AA	DC_(n)41AA		40, 60, 80,100	20	120	0
DC (n)41CA	DC_(n)41AA ¹ ,	20+20	40, 60, 80,100		140	0
DC_(n)41CA	DC_41A_n41A ²		40, 60, 80,100	20+20	140	0
DC_(n)41DA	DC_(n)41AA ¹ ,	20+20+20	40, 60, 80,100		160	0
DC_(II)41DA	DC_41A_n41A ²		40, 60, 80,100	20+20+20	100	U
		15	5			
			5, 10			
DC (n)71P	DO (5)74D	5	5, 10, 15		20	0
DC_(n)71B	DC_(II)/ IB		5	15	20	U
			5, 10	10		
			5, 10, 15	5		

注 1: 应适用连续的带内 EN-DC 上行链路要求。

5. 3B. 1. 3 BCS 用于带内非连续 EN-DC

对于带内非连续EN-DC, EN-DC配置是支持EN-DC带宽等级的单个操作频带。

对于EN-DC配置和表5.3B.1.3-1中规定的带宽组合集,定义了带内非连续EN-DC的要求。

表 5. 3B. 1. 3-1: 为带内非连续 EN-DC 定义的 EN-DC 配置和带宽组合集

		E-UTRA - NR 配置/带宽组合设置				
		分量载池	分量载波按载波频率增加的顺序			
下行 EN-DC 配置	上行链路 EN-DC 配置	LTE 载波的信 道带宽(MHz)	载波的信道带 宽 NR(MHz)	LTE 载波的信 道带宽 (MHz)	最大聚合 带宽(MHz)	带宽组合设 置
	中人町		5, 10, 15, 20, 25, 30	5, 10, 15, 20	50	0
DC_(n)41AA	DC_(n)41AA	20	40, 60, 80, 100		120	0
			40, 60, 80, 100	20		
		20+20	40, 60, 80, 100		140	0
DC (=)44CA	DC_(n)41AA ¹ ,		40, 60, 80, 100	20+20	140	0
DC_(n)41CA	DC_41A_n41A ²	20+20+20	40, 60, 80, 100		160	0
		40, 60, 80, 100	20+20+20	100	U	
注 1: Rel. 15	仅支持单个交换 UL					

5.4 信道安排

5.4A CA 的信道安排

FR1 和 FR2 中 CA 操作的信道安排,分别如 38.101-1 和 38.101-2 中所述。

注 2: 应适用 LTE 和 NR ACLR 要求和非连续带内 EN-DC 上行链路要求。

28

DC 的信道安排 5. 4B

FR1 中用于带内 EN-DC 操作的信道安排在 TS 38. 101-1 的 5. 4B. 1 子条款中规定。

带内 EN-DC 载波的信道间隔 5, 4B, 1

载波之间的间隔取决于部署方案,可用频率块的大小和信道带宽。 用于带内连续 EN-DC 的 E-UTRA 载波和相邻 NR 载波之间的标称信道间隔定义如下:

标称信道间距=
$$(BW_{LTE_Channel} + BW_{NR_Channel})$$
 / 2 + { - 5kHz, 0kHz, 5kHz}

其中 BW_{LTE_Channel} 和 BW_{NR_Channel} 是 E-UTRA 和 NR 载波的信道带宽。 可以根据信道栅格调整信道间距,以优化特定部 署方案中的性能。

对于带内非连续 EN-DC, E-UTRA 和 NR 载波之间的信道间隔应大于本子条款中定义的标称信道间隔。

配置 5. 5

CA 的配置 5. 5A

5. 5A. 1 FR1和FR2之间的带间CA配置

表 5. 5A. 1-1: 带间 CA 配置(两个频段)				
NR CA. 配置	上行链路 NR CA. 配置	FRI 的 NR 配置	FR2 的 NR 配置	
CA_n8A-n258A	CA_n8A-n258A	n8A	n258A	
CA_n71A-n257A	译: 50000	n71A	n257A	
中又即	11			

CA_n77C-n257F		n77C	n257F
CA_n78A-n257A		n78A	n257A
CA_n78A-n257D		n78A	n257D
CA_n78A-n257E		n78A	n257E
CA_n78A-n257F	CA_n78A-n257A	n78A	n257F
CA_n78C-n257A		n78C	n257A
CA_n78C-n257D		n78C	n257D
CA_n78C-n257E		n78C	n257E
CA_n78C-n257F		n78C	n257F
CA_n79A-n257A		n79A	n257A
CA_n79A-n257D		n79A	n257D
CA_n79A-n257E		n79A	n257E
CA_n79A-n257F	CA n79A-n257A	n79A	n257F
 CA_n79C-n257A		n78C	n257A
 CA_n79C-n257D	1	n78C 20X	n257D
CA_n79C-n257E		n78C toll8	n257E
CA n79C-n257F	-	n78C	n257F

中文翻译: 5.5B DC 的配置

5.5B.1 一般性描述

信道带宽和带宽类别指定用于配置 EN-DC 或 NGEN-DC 的操作。

5.5B.2 带内连续的 EN-DC

E-UTRA 工作频带的支持信道带宽在[4]中定义,在 TS 38.101-1 中定义为 NR 工作频带。

表 5.5B.2-1: 带内连续 EN-DC 配置

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置	
DC_(n)41AA	DC_(n)41AA	41A	n41A	
DC_(n)41CA	DC_(n)41AA, DC_41A_n41A	41C	n41A	
DC_(n)41DA	DC_(n)41AA, DC_41A_n41A	41D	n41A	
DC_(n)71B	DC_(n)71B	71A	n71A	
注 1: 上行链路 CA 配置是当前版本规范支持的配置。				

5.5B.3 带内非连续的 EN-DC

E-UTRA 工作频带的支持信道带宽在 TS 36.101 中定义, 在 TS 38.101-1 中用于 NR 工作频带。

表 5.5B.3-1: 带内非连续 EN-DC 配置

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
DC_3A_n3A	DC_3A_n3A ²	3	n3A
DC_41A_n41A	DC_41A_n41A	41A	n41A
DC_41C_n41A	DC_41A_n41A	410	n41A
DC_41D_n41A	DC_41A_n41A	41D	n41A

注 1: 上行链路 CA 配置是当前版本规范支持的配置。

注 2: Rel. 15 仅支持单个交换 UL

中文翻译: 5G通信(公众号: tongxin5g)

5.5B.4 FR1 内的带间 EN-DC

5.5B.4.1 带间 EN-DC 配置 (两个频段)

表 5.5B.4.1-1: 带间 EN-DC 配置 (两个频段)

DV DG	上行链路 EN-DC		
EN-DC 配置	配置	E-UTRA 配置	NR 配置
	(注1)		
DC_1A_n28A	DC_1A_n28A	1	n28A
DC_1A_n40A	DC_1A_n40A	1A	n40A
DC_1A_n51A	DC_1A_n51A	1A	n51A
DC_1A_n77A DC 1A n77C	DC_1A_n77A	1A	n77A CA n77C
DC_1A_n78A DC_1A_n78C	DC_1A_n78A	1A	n78A CA_n78C
DC_1A_n79A DC_1A_n79C	DC_1A_n79A	1A	n79A CA n79C
DC_2A_n5A	DC_2A_n5A	2A	n5A
DC_2A_n66A	DC_2A_n66A	2A	n66A
DC_2A_n71A	DC_2A_n71A	2	n71A
DC_2A_n78A	DC_2A_n78A	2A	n78A
DC_3A_n7A	DC_3A_n7A	3	n7A
DC_3A_n28A	DC_3A_n28A	3	50 n28A
DC_3A_n40A	DC_3A_n40A	3A 20X	1138 n40A
DC_3A_n51A	DC_3A_n51A	3A tongX1	n51A
DC_3A_n77A DC_3A_n77C	DC_3A_n77A	3A	n77A CA_n77C
DC_3A_n78A DC_3A_n78C	DC_3A_n78A	3A	n78A CA n78C
DC_3A_n79A	VT	2.4	n79A
DC_3A_n79C	DC_3A_n79A	3A	CA_n79C
DC_3C_n78A	DC_3A_n78A	CA_3C	n78A
DC_5A_n40A	DC_5A_n40A	5A	n40A
DC_5A_n66A	DC_5A_n66A	5A	n66A
DC_5A_n78A	DC_5A_n78A	5	n78A
DC_7A-7A_n78A	DC_7A_n78A	CA_7A-7A	n78A
DC_7A_n28A	DC_7A_n28A	7	n28A
DC_7A_n51A	DC_7A_n51A	7A	n51A
DC_7A_n78A	DC_7A_n78A	7	n78A
DC_7C_n78A	DC_7C_n78A	CA_7C	n78A
DC_8A_n40A	DC_8A_n40A	8A	n40 A
DC_8A_n77A	DC_8A_n77A	8	n 77A
DC_8A_n78A	DC_8A_n78A	8	n78A
DC_11A_n77A	DC_11A_n77A	11	n77A
DC_11A_n78A	DC_11A_n78A	11	n78A
DC_11A_n79A	DC_11A_n79A	11	n79A
DC_12A_n5A	DC_12A_n5A	12A	n5A
DC_12A_n66A	DC_12A_n66A	12A	n66A
DC_18A_n77A	DC_18A_n77A	18	n77A
DC_18A_n78A	DC_18A_n78A	18	n78A
DC_18A_n79A	DC_18A_n79A	18	n79A

EN-DC 配置	上行链路 EN-DC 配置	E-UTRA 配置	NR 配置
DC_19A_n77A	(注1) DC_19A_n77A	19A	n77A
DC_19A_n77C DC_19A_n78A			CA_n77C n78A
DC_19A_n78C	DC_19A_n78A	19A	CA_n78C
DC_19A_n79A DC_19A_n79C	DC_19A_n79A	19A	n79A CA n79C
DC_20A_n8A	DC_20A_n8A	20A	n8A
DC_20A_n28A	DC_20A_n28A	20	n28A
DC_20A_n51A	DC_20A_n51A	20A	n51A
DC_20A_n77A	DC_20A_n77A	20A	n77A
DC_20A_n78A	DC_20A_n78A	20A	n78A
DC_21A_n77A DC_21A_n77C	DC_21A_n77A	21A	n77A CA_n77C
DC_21A_n78A DC_21A_n78C	DC_21A_n78A	21A	n78A CA_n78C
DC_21A_n79A DC_21A_n79C	DC_21A_n79A	21A	n79A CA n79C
DC_25A_n41A	DC_25A_n41A	25	n41A
DC_26A_n41A	DC_26A_n41A	26A	n41A
DC_26A_n77A	DC_26A_n77A	26	n77A
DC_26A_n78A	DC_26A_n78A	26	n78A
DC_26A_n79A	DC_26A_n79A	26	50 n79A
DC_28A n51A	DC_28A_n51A	28A ng X 1	n51A
DC_28A_n77A DC_28A_n77C	DC_28A_n77A	人介号28A 10118	n77A CA_n77C
DC_28A_n78A DC_28A_n78C	DC_28A_n78A	28A	n78A CA_n78C
DC_28A_n79A DC_28A_n79C	DC_28A_n79A	28A	n79A CA_n79C
DC_30A_n5A	DC_30A_n5A	30	n5A
DC_30A_n66A	DC_30A_n66A	30A	n66A
DC_38A_n78A	N/A	38	n78A
DC_39A_n78A	DC_39A_n78A	39	n78A
DC_39A_n79A	DC_39A_n79A	39	n79A
DC_40A_n77A	N/A	40A	n77A
DC_41A_n77A	DC_41A_n77A	41A	n77A
DC_41A_n78A	DC_41A_n78A	41A	n78A
DC_41A_n79A	DC_41A_n79A	41	n79A
DC_41C_n77A	DC_41C_n77A	CA_41C	n77A
DC_41C_n78A	DC_41C_n78A	CA_41C	n78A
DC_41C_n79A	DC_41C_n79A	CA_41C	n79A
DC_42A_n51A	DC_42A_n51A	42A	n51A
DC_42A_n77A DC_42A_n77C	N/A	42A	n77A CA_n77C
DC_42A_n78A DC_42A_n78C	N/A	42A	n78A CA_n78C
DC_42A_n79A DC_42A_n79C	N/A	42A	n79A CA_n79C
DC_42C_n77A	N/A	CA_42C	n77A
DC_42C_n78A	N/A	 CA_42C	n78A
DC_42C_n79A	N/A	 CA_42C	n79A
DC_42C_n79A	N/A	CA_42C	n79A

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
DC_42C_n77C	N/A	CA_42C	CA n77C
DC_42C_n78C	N/A	CA_42C	CA n78C
DC_42C_n79C	N/A	CA_42C	CA n79C
DC_42D_n77A	N/A	42	n77A
DC_42D_n78A	N/A	42	n78A
DC_42D_n79A	N/A	42	n79A
DC_42E_n77A	N/A	42	n77A
DC_42E_n78A	N/A	42	n78A
DC_42E_n79A	N/A	42	n79A
DC_46D_n78A ²			
DC_46E_n78A ²			
DC_66A_n5A	DC_66A_n5A	66A	n5A
DC_66A_n71A	DC_66A_n71A	66	n71A
DC_66A_n78A	DC_66A_n78A	66A	n78A

注 1: 上行链路 CA 配置是当前版本规范支持的配置。

注 2: 配置带间载波聚合时,限制为 E-UTRA 操作。 频带 46 的下行链路工作频带与支持配置的 Pcell 的载波聚合配置的上行链路工作频带(外部 E-UTRA 频带)配对。

中文翻译: 5G通信(公众号: tongxin5g)

表 5.5B.4.2-1: 带间 EN-DC 配置 (三个频段)

EN-DC 配置	上行链路 EN-DC 配置	E-UTRA 配置	NR 配置
DC_1A-3A_n28A	(注1) DC_1A_n28A DC_3A_n28A	CA_1A-3A	n28A
DC_1A-3A_n77A DC_1A-3A_n77C	DC_1A_n77A DC_3A_n77A	CA_1A-3A	n77A
DC_1A-3A_n78A DC_1A-3A_n78C	DC_1A_n78A DC_3A_n78A	CA_1A-3A	n78A
DC_1A-3A_n79A DC_1A-3A_n79C	DC_1A_n79A DC_3A_n79A	CA_1A-3A	n79A
DC_1A-3C_n78A	DC_1A_n78A DC_3A_n78A	CA_1A-3C	n78A
DC_1A-5A_n78A	DC_1A_n78A DC_5A_n78A	CA_1A-5A	n78A
DC_1A-7A_n28A	DC_1A_n28A DC_7A_n28A	CA_1A-7A	n28A
DC_1A-7A_n78A	DC_1A_n78A DC_7A_n78A	CA_1A-7A	n78A
DC_1A-7A-7A_n78A	DC_1A_n78A DC_7A_n78A DC_1A_n78A	CA_1A-7A-7A	n78A
DC_1A-8A_n78A	DC_1A_1178A DC_8A_n78A DC_1A_n77A	CA_1A-8A	n78A
DC_1A-18A_n77A	DC_18A_n77A DC_18A_n77A DC_1A_n78A	CA_1A-18A	g) n77A
DC_1A-18A_n78A DC_1A-19A_n77A	DC_18A_n78A DC_1A_n77A	CA_1A-18A	n78A n77A
DC_1A-19A_n77C DC_1A-19A_n78A	DC 19A n77A DC 1A h78A	CA_1A-19A	CA_n77C n78A
DC_1A-19A_n78C DC_1A-19A_n79A	DC_19A_n78A DC_1A_n79A	CA_1A-19A	CA_n78C n79A
DC_1A-19A_n79C	DC_19A_n79A DC_1A_n77A	CA_1A-19A	CA_n79C
DC_1A-19A_n77A	DC 19A_n77A DC_1A_n78A	CA_1A-19A	n77A
DC_1A-19A_n78A	DC_19A_n78A DC_1A_n79A	CA_1A-19A	n78A
DC_1A-19A_n79A	DC_19A_n79A DC_1A_n28A	CA_1A-19A	n79A
DC_1A-20A_n28A	DC_20A_n28A DC_1A_n78A	CA_1A-20A	N28A
DC_1A-20A_n78A DC 1A-21A n77A	DC_20A_n78A DC_1A_n77A	CA_1A-20A	n78A n77A
DC_1A-21A_n77C DC_1A-21A_n78A	DC_21A_n77A DC_1A_n78A	CA_1A-21A	CA_n77C n78A
DC_1A-21A_n78C DC_1A-21A_n79A	DC_21A_n78A DC_1A_n79A	CA_1A-21A	CA_n78C n79A
DC_1A-21A_n79C	DC_21A_n79A DC_1A_n77A	CA_1A-21A	CA_n79C
DC_1A-21A_n77A	DC_21A_n77A DC_1A_n78A	CA_1A-21A	n77A
DC_1A-21A_n78A	DC_21A_n78A DC_1A_n79A	CA_1A-21A	n78A
DC_1A-21A_n79A	DC_21A_n79A DC_1A_n77A	CA_1A-21A	n79A
DC_1A-41A_n77A DC_1A-41C_n77A	DC_41A_n77A DC_41C_n77A	CA_1A-41A CA_1A-41C	n77
DC_1A-41A_n78A DC_1A-41C_n78A	DC_1A_n78A DC_41A_n78A DC_41C_n78A	CA_1A-41A CA_1A-41C	n78

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
DC_1A-41C_n79A	DC_1A_n79A DC 41C n79A	CA_1A-41C	n79
DC_1A-28A_n77A DC_1A-28A_n77C	DC_1A_n77A DC_28A_n77A	CA_1A-28A	n77A CA_n77C
DC_1A-28A_n78A DC_1A-28A_n78C	DC_1A_n78A DC_28A_n78A	CA_1A-28A	n78A CA_n78C
DC_1A-28A_n79A DC_1A-28A_n79C	DC_1A_n79A DC_28A_n79A	CA_1A-28A	n79A CA_n79C
DC_1A_n28A-n78A	DC_1A_n28A, DC_1A_n78A	1A	CA_n28A-n78A
DC_1A-42A_n77A DC_1A-42A_n77C	DC_1A_n77A	CA_1A-42A	n77A CA_n77C
DC_1A-42A_n78A DC_1A-42A_n78C	DC_1An78A	CA_1A-42A	n78A CA_n78C
DC_1A-42A_n79A DC_1A-42A_n79C	DC_1A_n79A	CA_1A-42A	n79A CA_n79C
DC_1A-42C_n77A	DC_1A_n77A	CA_1A-42C	n77A
DC_1A-42C_n78A	DC_1A_n78A	CA_1A-42C	n78A
DC_1A-42C_n79A	DC_1A_n79A	CA_1A-42C	n79A
DC_1A-42D_n77A	DC_1A_n77A	 CA_1A-42C	n77A
DC_1A-42D_n78A	DC 1A n78A	CA 1A-42C	n78A
DC_1A-42D_n79A	DC 1A n79A	 CA_1A-42C	n79A
DC_1A-42E_n77A	DC_1A_n77A	CA 1A-42E	n77A
DC_1A-42E_n78A	DC 1A n78A	CA 1A-42E	n78A
DC_1A-42E_n79A	DC 1A n79A	CA 1A-42E	n79A
	DC 1A n77A	J • 	
DC_1A_n77A-n79A	DC 1A n79A	1A	CA_n77A-n79A
DC_1A_n78A-n79A	DC_1A_n78A DC_1A_n79A	1A	CA_n78A-n79A
DC_1A_SUL_n78A-n84A	DC_1A_n78A, DC_1A_n84A_ULSUP-TDM_n78A, DC_1A_n84A_ULSUP-FDM_n78A	1	SUL_n78A-n84A
DC_2A-5A_n66A	DC_2A_n66A DC_5A_n66A	CA_2A-5A	n66
DC_2A-12A_n66A	DC_2A_n66A DC_12A_n66A	CA_2A-12A	n66
DC_2A-30A_n66A	DC_2A_n66A DC_30A_n66A	CA_2A-30A	n66
DC_2A-66A_n71 <u>A</u>	DC_2A_n71A DC_66A_n71A	CA_2A-66A	n71
DC_2A-(n)71B	DC_2A_n71A DC_(n)71B	CA_2A-71A	n71A
DC_3A_n3A-n77A	DC_3A_n77A	3A	CA_n3A-n77A
DC_3A_n3A-n78A	DC_3A_n78A	3A	CA_n3A-n78A
DC_3A-5A_n78A	DC_3A_n78A DC_5A_n78A	CA_3A-5A	n78A
DC_3A-7A-7A_n78A	DC_3A_n78A DC_7A_n78A	CA_3A-7A-7A	n78A
DC_3A-7A_n28A	DC_3A_n28A DC_7A_n28A	CA_3A-7A	n28A
DC_3A-7A_n78A	DC_3A_n78A DC_7A_n78A	CA_3A-7A	n78A
DC_3A-7C_n78A	DC_3A_n78A DC_7C_n78A	CA_3A-7C	n78A
DC_3C-7C_n78A	DC_3A_n78A DC_7C_n78A	CA_3C-7C	n78A
DC_3C-7A_n78A	DC_3A_n78A DC_7A_n78A	CA_3C-7A	n78A

EN-DC	上行链路 EN-DC		
配置	配置	E-UTRA 配置	NR 配置
FL.E.	(注1)		
DC 24 94 p794	DC_3A_n78A	CA 2A 8A	n70 A
DC_3A-8A_n78A	DC_8A_n78A	CA_3A-8A	n78A
DC 3A-19A n77A	DC_3A_n77A	CA 2A 10A	n77A
DC 3A-19A n77C	DC 19A n77A	CA_3A-19A	CA n77C
DC 3A-19A n78A	DC_3A_n78A	04 04 404	n78A
DC 3A-19A n78C	DC 19A n78A	CA_3A-19A	CA n78C
DC 3A-19A n79A	DC 3A n79A	04.04.404	n79A
DC 3A-19A n79C	DC_19A_n79A	CA_3A-19A	CA_n79C
	DC 3A n28A	04 04 004	_
DC_3A-20A_n28A	DC 20A n28A	CA_3A-20A	n28A
DO 04 004 704	DC 3A n78A	04 04 004	704
DC_3A-20A_n78A	DC_20A_n78A	CA_3A-20A	n78A
DC 3C-20A n78A	DC 3A n78A	CA 3C-20A	n78A
	DC_20A_n78A		
DC 3A-21A n77A	DC_3A_n77A	04 04 044	n77A
DC_3A-21A_n77C	DC_21A_n77A	CA_3A-21A	CA_n77C
DC 3A-21A n78A	DC 3A n78A	04 04 044	n78A
DC 3A-21A n78C	DC_21A_n78A	CA_3A-21A	CA n78C
DC 3A-21A n79A	DC 3A n79A	2. 2. 2.	n79A
DC 3A-21A n79C	DC_21A_n79A	CA_3A-21A	CA_n79C
DC 3A-28A n77A	DC 3A n77A		n77A
DC_3A-28A_n77C	DC_28A_n77A	CA_3A-28A	CA n77C
DC 3A-28A n78A	DC_3A_n78A		n78A
DC 3A-28A n78C	DC 28A n78A	CA_3A-28A	CA n78C
DC_3A-28A_n79A	DC_3A_n79A		n79A
DC 3A-28A n79C	DC_28A_n79A	CA_3A-28A	CA_n79C
	DC 3A n28A,	in	1)5/
DC_3A_n28A-n78A	DC_3A_n78A	+ 3AgXIII	CA_n28A-n78A
	DC_38A_n78A	±. 0000	
DC_3A-38A_n78A	DC_3A_n78A	CA_3A-38A	n78A
	DC 3A n78A		n78A
DC_3A-41A_n78A	DC 41A n78A	CA_3A-41A	CA n78C
DC 3A-42A n77A			n77A
DC_3A-42A_n77C	DC_3A_n77A	CA_3A-42C	CA_n77C
DC 3A-42A n78A			n78A
DC_3A-42A_n78C	DC_3A_n78A	CA_3A-42A	CA n78C
DC 3A-42A n79A			n79A
DC 3A-42A n79C	DC_3A_n79A	CA_3A-42A	CA_n79C
DC_3A-42C_n77A	DC 3A n77A	CA 3A-42C	
	DC_3A_n77A	CA_3A-42C	n77A
DC_3A-42C_n78A	DC_3A_n78A	CA_3A-42C	n78A
DC_3A-42C_n79A	DC_3A_n79A	CA_3A-42C	n79A
		<u> </u>	
DC_3A-42D_n77A	DC_3A_n77A	CA_3A-42A	n77A
DC_3A-42D_n78A	DC_3A_n78A	CA_3A-42A	n78A
DC 3A-42D n79A	DC_3A_n79A	CA 3A-42A	n79A
		<u> </u>	
DC_3A-42E_n77A	DC_3A_n77A	CA_3A-42E	n77A
DC_3A-42E_n78A	DC_3A_n78A	CA 3A-42E	n78A
	DC_3A_n79A		
DC_3A-42E_n79A		CA_1A-42E	n79A
DC_3A_n77A-n79A	DC_3A_n77A	3A	CA_n77A-n79A
	DC_3A_n79A		
DC_3A_n78A-n79A	DC_3A_n78A	3A	CA_n78A-n79A
	DC_3A_n79A		
	DC_3A_n78A		
DC_3A_SUL_n78A-n80A	DC_3A_n80A_ULSUP-TDM_n78A	3	SUL_n78-n80
	DC_3A_n80A_ULSUP-FDM_n78A		
DC_3A_SUL_n78A-n82A	DC_3A_n78A	3	SUL_n78A-n82A
	DC_3A_n82A	ن 	30L_II/0A-II02A
	DC_3A_n79A,		
DC_3A_SUL_n79A-n80A	DC_3A_n80A_ULSUP-TDM_n79A,	3	SUL_n79A-n80A
	DC_3A_n80A_ULSUP-FDM_n79A		

		,	
EN-DC 配置	上行链路 EN-DC 配置	E-UTRA 配置	NR 配置
DC_5A-7A-7A_n78A	(注1) DC_5A_n78A DC_7A_n78A	CA_5A-7A-7A	n78A
DC_5A-7A_n78A	DC_5A_n78A DC_7A_n78A	CA_5A-7A	n78A
DC_5A-30A_n66A	DC_5A_n66A DC_30A_n66A	CA_5A-30A	n66A
DC_7A-20A_n28A	DC_7A_n28A DC_20A_n28A	CA_7A-20A	n28A
DC_7A-20A_n78A	DC_7A_n78A DC_20A_n78A	CA_7A-20A	n78A
DC_7A-28A_n78A	DC_7A_n78A DC_28A_n78A	CA_7A-28A	n78A
DC_7A_n28A-n78A	DC_7A_n28A, DC_7A_n78A	7A	CA_n28A-n78A
DC_7C-28A_n78A	DC_7C_n78A DC_28A_n78A	CA_7C-28A	n78A
DC_7A-46A_n78A	DC_7A_n78A DC_46A_n78A	CA_7A-46A	n78A
DC_7A-46C_n78A	DC_7A_n78A DC_46C_n78A	CA_7A-46C	n78A
DC_7A-46D_n78A	DC_7A_n78A	CA_7A-46D	n78
DC_7A-46E_n78A	DC_7A_n78A	CA_7A-46E	n78
DC_8A_SUL_n78A-n81A	DC_8A_n78A, DC_8A_n81A_ULSUP-TDM_n78A, DC_8A_n81A_ULSUP-FDM_n78A	8	SUL_n78A-n81A
DC_8A_SUL_n79A-n81A	DC_8A_n79A, DC_8A_n81A_ULSUP-TDM_n79A, DC_8A_n81A_ULSUP-FDM_n79A	tongxin	SUL_n79A-n81A
DC_12A-30A_n66A	DC_12A_n66A DC_30A_n66A	CA_12A-30A	n66A
DC_18A-28A_n77A	DC_18A_n77A DC_28A_n77A	CA_18A-28A	n77A
DC_18A-28A_n78A	DC_18A_n78A DC_28A_n78A	CA_18A-28A	n78A
DC_18A-28A_n79A	DC_18A_n79A DC_28A_n79A	CA_18A-28A	n79A
DC_19A-42A_n77A DC_19A-42A_n77C	DC_19A_n77A	CA_19A-42A	n77A CA_n77C
DC_19A-42A_n78A DC_19A-42A_n78C	DC_19A_n78A	CA_19A-42A	n78A CA_n78C
DC_19A-42A_n79A DC_19A-42A_n79C	DC_19A_n79A	CA_19A-42A	n79A CA_n79C
DC_19A-21A_n78A DC_19A-21A_n78C	DC_19A_n78A DC_21A_n78A	CA_19A-21A	n78A CA_n78C
DC_19A-21A_n79A DC_19A-21A_n79C	DC_19A_n79A DC_21A_n79A	CA_19A-21A	n79A CA_n79C
DC_19A-21A_n77A DC_19A-21A_n77C	DC_19A_n77A DC_21A_n77A	CA_19A-21A	n77A CA_n77C
DC_19A-42C_n77A	DC_19A_n77A	CA_19A-42C	n77A
DC_19A-42C_n78A	DC_19A_n78A	CA_19A-42C	n78A
DC_19A-42C_n79A	DC_19A_n79A	CA_19A-42C	n79A
DC_19A_n77A-n79A	DC_19A_n77A DC_19A_n79A	19A	CA_n77A-n79A
DC_19A_n78A-n79A	DC_19A_n78A DC_19A_n79A	19A	CA_n78A-n79A
DC_20A_n8A-n75A	DC_20A_n8A	20A	CA_n8A-n75A
DC_20A_n28A-n75A	DC_20A_n28A	20A	CA_n28A-n75A
DC_20A_n28A-n78A	DC_20A_n28A DC_20A_n78A	20A	CA_n28A-n78A
DC_20A_n75A-n78A	DC_20A_n78A	20A	CA_n75A-n78A

	上行链路 EN-DC		
EN-DC 配置	配置 (注1)	E-UTRA 配置	NR 配置
DC_20A_n76A-n78A	DC_20A_n78A	20A	CA_n76A-n78A
DC_20A_SUL_n78A-n82A	DC_20A_n78A, DC_20A_n82A_ULSUP-TDM_n78A, DC_20A_n82A_ULSUP-FDM_n78A	20	SUL_n78A-n82A
DC_20A_SUL_n78A-n83A	DC_20A_n78A DC_20A_n83A	20	SUL_n78A-n83A
DC_21A-42A_n77A DC_21A-42A_n77C	DC_21A_n77A	CA_21A-42A	n77A CA_n77C
DC_21A-42A_n78A DC_21A-42A_n78C	DC_21A_n78A	CA_21A-42A	n78A CA_n78C
DC_21A-42A_n79A DC_21A-42A_n79C	DC_21A_n79A	CA_21A-42A	n79A CA_n79C
DC_21A-42C_n77A	DC_21A_n77A	CA_21A-42C	n77A
DC_21A-42C_n78A	DC_21A_n78A	CA_21A-42C	n78A
DC_21A-42C_n79A	DC_21A_n79A	CA_21A-42C	n79A
DC_21A_n77A-n79A	DC_21A_n77A DC_21A_n79A	21A	CA_n77A-n79A
DC_21A_n78A-n79A	DC_21A_n78A DC_21A_n79A	21A	CA_n78A-n79A
DC_28A_SUL_n78A-n83A	DC_28A_n78A, DC_28A_n83A_ULSUP-TDM_n78A, DC_28A_n83A_ULSUP-FDM_n78A	28	SUL_n78A-n83A
DC_28A-42A_n77A DC_28A-42A_n77C	DC_28A_n77A	CA_28A-42A	n77A
DC_28A-42A_n78A DC_28A-42A_n78C	DC_28A_n78A	CA_28A-42A 1 1	08 / n78A
DC_28A-42A_n79A DC_28A-42A_n79C	DC_28A_n79A	CA_28A-42A	n79A
DC_28A-42C_n77A	DC_28A_n77A	CA_28A-42C	n77A
DC_28A-42C_n78A	DC_28A_n78A	CA_28A-42C	n78A
DC_28A-42C_n79A	DC_28A_n79A	CA_28A-42C	n79A
DC_41A-42A_n77A	DC_41A_n77A	CA_41A-42A	n77A
DC_41C-42C_n77A	DC_41A_n77A	CA_41C-42C	n77A
DC_41A-42C_n77A	DC_41A_n77A	CA_41A-42C	n77A
DC_41C-42A_n77A	DC_41C_n77A	CA_41C-42A	n77A
DC_41A-42A_n78A	DC_41A_n78A	CA_41A-42A	n78A
DC_41C-42A_n78A	DC_41C_n78A	CA_41C-42A	n78A
DC_41C-42C_n78A	DC_41A_n78A	CA_41C-42C	n78A
DC_41A-42C_n78A	DC_41A_n78A	CA_41A-42C	n78A
DC_41A-42A_n79A DC_41A-42C_n79A	DC_41A_n79A	CA_41A-42A CA_41A-42C	n79A
DC_41C-42C_n79A	DC_41A_n79A	CA_41C-42C	n79
DC_41C-42A_n79A	DC_41C_n79A	CA_41C-42A	n79A
DC_66A_(n)71B	DC_66A_71A DC_(n)71B	CA_66A_71A	n71A
DC_66A_SUL_n78A-n86A	DC_66A_n78A, DC_66A_n86A_ULSUP-TDM_n78A, DC_66A_n86A_ULSUP-FDM_n78A	66	SUL_n78A-n86A
注 1: 上行链路 CA 配置	是当前版本规范支持的配置。		

5.5B.4.3 带间 EN-DC 配置 (四个频段)

表 5.5B.4.3-1: 带间 EN-DC 配置 (四个频段)

	LATER DATE DO		
EN-DC	上行链路 EN-DC		
配置	配置	E-UTRA 配置	NR 配置
FL.E.	(注1)		
	DC_1A_n78A		
DC 1A-3A-5A n78A	DC 3A n78A	CA_1A-3A-5A	n78A
	DC_5A_n78A	_	
	DC 1A n28A		
DC_1A-3A-7A_n28A	DC 3A n28A	CA_1A-3A-7A	n28A
	DC_7A_n28A	0,1_1,10,11,1	1120/1
	DC 1A n78A		
DC_1A-3A-7A_n78A	DC_1A_1176A DC_3A_n78A	CA 1A-3A-7A	n78A
DO_IA-SA-IA_IIIOA	DC_3A_1176A DC_7A_n78A	CA_IA-3A-IA	11704
DC 14 2C 74 2794	DC_1A_n78A	CA 1A 2C 7A	n70 A
DC_1A-3C-7A_n78A	DC_3A_n78A	CA_1A-3C-7A	n78A
	DC_7A_n78A		
50 44 04 74 74 704	DC_1A_n78A	0.4.0.7.7.	
DC_1A-3A-7A-7A_n78A	DC_3A_n78A	CA_1A-3A-7A-7A	n78A
	DC_7A_n78A		
	DC_1A_n28A		
DC_1A-3A-8A_n28A	DC_3A_n28A	CA_1A-3A-8A	n28A
	DC_8A_n28A		
	DC_1A_n78A		
DC_1A-3A-8A_n78A	DC 3A n78A	CA_1A-3A-8A	n78A
	DC_8A_n78A	_	
	DC 1A n28A	in	(2)
DC_1A-3A-20A_n28A	DC_3A_n28A	CA_1A-3A-20A	n28A
=	DC 20A n28A	1. 7.0118	
	DC_1A_n78A	1:	
DC_1A-3A-20A_n78A	DC_3A_n78A	CA_1A-3A-20A	n78A
BO_1/(0/(20/(_1// 0/(DC 20A h78A	0/12// 0// 20/	1170/
	DC 1A n77A		
DC_1A-3A-28A_n77A	DC_3A_n77A	CA 1A 3A 38A	n77A
DC_IA-3A-20A-III/A		CA_1A-3A-28A	IIIIA
47	DC_28A_n77A		
DO 44 04 004 -704	DC_1A_n78A	04 44 04 004	- 70 A
DC_1A-3A-28A_n78A	DC_3A_n78A	CA_1A-3A-28A	n78A
	DC_28A_n78A		
50 44 04 004 704	DC_1A_n79A	0.4.4.0.4.00.4	
DC_1A-3A-28A_n79A	DC_3A_n79A	CA_1A-3A-28A	n79A
	DC_28A_n79A		
	DC_1A_n28A		
DC_1A-3A_n28A-n78A	DC_1A_n78A	CA_1A-3A	CA_n28A-n78A
DO_1A-0A_1120A-1170A	DC_3A_n28A	07_17-27	JA_1120A-1110A
	DC_3A_n78A		
	DC_1A_n77A		
DC_1A-3A-19A_n77A	DC_3A_n77A	CA_1A-3A-19A	n77A
_	DC_19A_n77A		
	DC 1A n78A		
DC_1A-3A-19A_n78A	DC_3A_n78A	CA 1A-3A-19A	n78A
	DC 19A n78A		
	DC 1A n79A		
DC 1A-3A-19A n79A	DC_3A_n79A	CA 1A-3A-19A	n79A
55_1/10/110/11/0/	DC_3A_1179A DC_19A_n79A	5/1/ 0//-10/A	117.57.1
	DC_19A_1179A DC_1A_n77A		
DC 1A-3A-21A n77A	DC_1A_1177A DC_3A_n77A	CA 1A-3A-21A	n77A
DO_1A-3A-21A_11/1A	DC_3A_1177A DC_21A_n77A	UA_1A-3A-21A	1177
DC 44 24 244 -704	DC_1A_n78A	CA 4A 0A 04A	n70 ^
DC_1A-3A-21A_n78A	DC_3A_n78A	CA_1A-3A-21A	n78A
	DC_21A_n78A		
	DC_1A_n79A		
DC_1A-3A-21A_n79A	DC_3A_n79A	CA_1A-3A-21A	n79A
	DC_21A_n79A		
DC_1A-3A-42C_n77A	DC_1A_n77A	CA 1A-3A-42C	n77A
		1	1

			1
EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
	DC_3A_n77A		
DC_1A-3A-42C_n78A	DC_1A_n78A DC_3A_n78A	CA_1A-3A-42C	n78A
DC_1A-3A-42C_n79A	DC_1A_n79A DC_3A_n79A	CA_1A-3A-42C	n79A
DC_1A-3A-42C_n77C	DC_1A_n77A DC_3A_n77A	CA_1A-3A-42C	n77A
DC_1A-3A-42C_n78C	DC_1A_n78A DC_3A_n78A	CA_1A-3A-42C	n78A
DC_1A-3A-42C_n79C	DC_1A_n79A DC_3A_n79A	CA_1A-3A-42C	n79A
DC_1A-5A-7A_n78A	DC_1A_n78A DC_5A_n78A DC_7A_n78A	CA_1A-5A-7A	n78A
DC_1A-5A-7A-7A_n78A	DC_1A_n78A DC_5A_n78A DC_7A_n78A	CA_1A-5A-7A-7A	n78A
DC_1A-7A-20A_n28A	DC_1A_n28A DC_7A_n28A DC_20A_n28A	CA_1A-7A-20A	n28A
DC_1A-7A-20A_n78A	DC_1A_n78A DC_7A_n78A DC_20A_n78A	CA_1A-7A-20A	n78A
DC_1A-7A_n28A-n78A	DC_1A_n28A DC_1A_n78A DC_7A_n28A DC_7A_n78A	CA_1A-7A	CA n28A-n78A
DC_1A-18A-28A_n77A	DC_1A_n77A DC_18A_n77A DC_28A_n77A	CA_1A-18A-28A	n77A
DC_1A-18A-28A_n78A	DC_1A_n78A DC_18A_n78A DC_28A_n78A	CA_1A-18A-28A	n78A
DC_1A-18A-28A_n79A	DC_1A_n79A DC_18A_n79A DC_28A_n79A	CA_1A-18A-28A	n79A
DC_1A-19A-42A_n77A	DC_1A_n77A DC_19A_n77A	CA_1A-19A-42A	n77A
DC_1A-19A-42A_n78A	DC_1A_n78A DC_19A_n78A	CA_1A-19A-42A	n78A
DC_1A-19A-42A_n79A	DC_1A_n79A DC_19A_n79A	CA_1A-19A-42A	n79A
DC_1A-19A-42C_n77A	DC_1A_n77A DC_19A_n77A DC_1A_n78A	CA_1A-19A-42C	n77A
DC_1A-19A-42C_n78A	DC_1A_1176A DC_19A_n78A DC_1A_n79A	CA_1A-19A-42C	n78A
DC_1A-19A-42C_n79A	DC_1A_n79A DC_19A_n77A	CA_1A-19A-42C	n79A
DC_1A-19A-42C_n77C	DC_19A_n77A DC_1A_n78A	CA_1A-19A-42C	n77A
DC_1A-19A-42C_n78C	DC_19A_n78A	CA_1A-19A-42C	n78A
DC_1A-19A-42C_n79C	DC_1A_n79A DC_19A_n79A	CA_1A-19A-42C	n79A
DC_1A-20A_n28A-n78A	DC_1A_n28A DC_1A_n78A DC_20A_n28A DC_20A_n78A	CA_1A-20A	CA_n28A-n78A
DC_1A-21A-28A_n77A	DC_1A_n77A DC_21A_n77A DC_28A_n77A	CA_1A-21A-28A	n77A
DC_1A-21A-28A_n78A	DC_1A_n78A DC_21A_n78A	CA_1A-21A-28A	n78A

EN-DC 配置	上行链路 EN-DC 配置	E-UTRA 配置	NR 配置
	(注1) DC_28A_n78A		
DC_1A-21A-28A_n79A	DC_1A_n79A DC_21A_n79A DC_28A_n79A	CA_1A-21A-28A	n79A
DC_1A-21A-42A_n77A	DC_1A_n77A DC_21A_n77A	CA_1A-21A-42A	n77A
DC_1A-21A-42A_n78A	DC_1A_n78A DC_21A_n78A	CA_1A-21A-42A	n78A
DC_1A-21A-42A_n79A	DC_1A_n79A DC_21A_n79A	CA_1A-21A-42A	n79A
DC_1A-21A-42C_n77A	DC_1A_n77A DC_21A_n77A	CA_1A-21A-42C	n77A
DC_1A-21A-42C_n78A	DC_1A_n78A DC_21A_n78A	CA_1A-21A-42C	n78A
DC_1A-21A-42C_n79A	DC_1A_n79A DC_21A_n79A	CA_1A-21A-42C	n79A
DC_1A-21A-42C_n77C	DC_1A_n77A DC_21A_n77A	CA_1A-21A-42C	n77A
DC_1A-21A-42C_n78C	DC_1A_n78A DC_21A_n78A	CA_1A-21A-42C	n78A
DC_1A-21A-42C_n79C	DC_1A_n79A DC_21A_n79A	CA_1A-21A-42C	n79A
DC_1A-28A-42A_n77A	DC_1A_n77A DC_28A_n77A	CA_1A-28A-42A	n77A
DC_1A-28A-42A_n78A	DC_1A_n78A DC_28A_n78A	CA_1A-28A-42A	n78A
DC_1A-28A-42A_n79A	DC_1A_n79A DC_28A_n79A	CA_1A-28A-42A	n79A
DC_1A-28A-42C_n77A	DC_1A_n77A DC_28A_n77A	CA_1A-28A-42A	n77A
DC_1A-28A-42C_n78A	DC_1A_n78A DC_28A_n78A	CA_1A-28A-42A	n78A
DC_1A-28A-42C_n79A	DC_1A_n79A DC_28A_n79A	CA_1A-28A-42A	n79A
DC_1A-41A-42A_n77A	DC_1A_n77A DC_41A_n77A	CA_1A-41A-42A	n77A
DC_1A-41A-42C_n77A	DC_1A_n77A DC_41A_n77A	CA_1A-41A-42C	n77A
DC_1A-41C-42A_n77A	DC_1A_n77A DC_41A_n77A	CA_1A-41C-42A	n77A
DC_1A-41A-42A_n78A	DC_1A_n78A DC_41A_n78A	CA_1A-41A-42A	n78A
DC_1A-41A-42C_n78A	DC_1A_n78A DC_41A_n78A	CA_1A-41A-42C	n78A
DC_1A-41C-42A_n78A	DC_1A_n78A DC_41A_n78A	CA_1A-41C-42A	n78A
DC_1A-41A-42A_n79A	DC_1A_n79A DC_41A_n79A	CA_1A-41A-42A	n79A
DC_1A-41A-42C_n79A	DC_1A_n79A DC_41A_n79A	CA_1A-41A-42C	n79A
DC_1A-41C-42A_n79A	DC_1A_n79A DC_41A_n79A	CA_1A-41C-42A	n79A
DC_1A-41C-42C_n77A	DC_1A_n77A DC_41A_n77A	CA_1A-41C-42C	n77A
DC_1A-41C-42C_n78A	DC_1A_n78A DC_41A_n78A	CA_1A-41C-42C	n78A
DC_1A-41C-42C_n79A	DC_1A_n79A DC_41A_n79A	CA_1A-41C-42C	n79A
DC_2A-66A-(n)71B	DC_2A_n71A DC_66A_n71A DC_(n)71B	CA_2A-66A-71A	n71A
DC_3A-5A-7A-7A_n78A	DC_3A_n78A DC_5A_n78A	CA_3A-5A-7A-7A	n78A

	上行链路 EN-DC		
EN-DC 配置	配置 (注1)	E-UTRA 配置	NR 配置
	DC_7A_n78A		
	DC 3A n78A		
DC 3A-5A-7A n78A	DC_5A_176A DC_5A_n78A	CA_3A-5A-7A	n78A
DO_5A-5A-1A_IIIOA	DC_7A_n78A	OA_5A-5A-1A	IIIOA
	DC 3A n28A		
DC_3A-7A-20A_n28A	DC_7A_n28A	CA_3A-7A-20A	n28A
Bo_o/(//(20/(_1)20/(DC_20A_n28A	0/(_0/(//(20/(112071
DC 3A-7A-20A n78A	DC_3A_n78A		
	DC 28A n78A	CA 3A-7A-20A	n78A
	DC_7A_n78A		
	DC_3A-7A_n78A		
DC_3A-7A-28A_n78A	DC_3A-28A_n78A	CA_3A-7A-28A	n78A
	DC_7A-28A_n78A	_	
	DC_3A_n78A		
DC 3A-7C-28A n78A	DC_7A_n78A	CA_3A-7C-28A	n78A
	DC_28A_n78A	_	
	DC 3A n28A		
DC 34 74 2394 2794	DC_3A_n78A	CA 2A 7A	CA 204 2704
DC_3A-7A_n28A-n78A	DC 7A n28A	CA_3A-7A	CA_n28A-n78A
	DC_7A_n78A		
	DC 3A n77A		
DC_3A-19A-21A_n77A	DC_19A_n77A	CA_3A-19A-21A	n77A
	DC 21A n77A	_	
	DC 3A n78A		
DC_3A-19A-21A_n78A	DC 19A n78A	CA_3A-19A-21A	n78A
	DC_21A_n78A	_	to)
	DC 3A n79A	- 0X 1 M	18
DC_3A-19A-21A_n79A	DC_19A_n79A	CA_3A-19A-21A	n79A
	DC 21A n79A		
DO 04 404 404 .774	DC_3A_n77A	04 04 104 104	77.4
DC_3A-19A-42A_n77A	DG 19A n77A	CA_3A-19A-42A	n77A
DC 24 104 42C p774	DC_3A_n77A	CA 2A 10A 42C	n77A
DC_3A-19A-42C_n77A	DC_19A_n77A	CA_3A-19A-42C	IIIIA
DC_3A-19A-42C_n77C	DC_3A_n77A	CA 3A-19A-42C	n77A
DC_3A-19A-426_11/1C	DC_19A_n77A	CA_3A-19A-42C	IIIIA
DC_3A-19A-42A_n78A	DC_3A_n78A	CA_3A-19A-42A	n78A
DO_3A-13A-42A_1116A	DC_19A_n78A	OA_5A-15A-42A	IIIOA
DC_3A-19A-42C_n78A	DC_3A_n78A	CA_3A-19A-42C	n78A
DO_3A-19A-42O_1176A	DC_19A_n78A	0A_9A-19A-420	IIIOA
DC_3A-19A-42C_n78C	DC_3A_n78A	CA_3A-19A-42C	n78A
B0_6/(16/(120_11/66	DC_19A_n78A	67(<u>6</u> 7(167(126	117 07 1
DC_3A-19A-42A_n79A	DC_3A_n79A	CA_3A-19A-42A	n79A
20_0/1/0/1/12/12/1/0/1	DC_19A_n79A	67 (_67 (167 (127 (117071
DC 3A-19A-42C n79A	DC_3A_n79A	CA_3A-19A-42C	n79A
	DC_19A_n79A	21 - 27 1 1 1 1 2 2	
DC_3A-19A-42C_n79C	DC_3A_n79A	CA 3A-19A-42C	n79A
	DC_19A_n79A		
	DC_3A_n28A		
DC_3A-20A_n28A-n78A	DC_3A_n78A	CA 3A-20A	CA_n28A-n78A
	DC_20A_n28A		
	DC_20A_n78A		
DC_3A-21A-42C_n77A	DC_3A_n77A	CA_3A-21A-42C	n77A
	DC_21A_n77A	_	
DC_3A-21A-42C_n78A	DC_3A_n78A	CA_3A-21A-42C	n78A
	DC_21A_n78A	_	
DC_3A-21A-42C_n79A	DC_3A_n79A	CA_3A-21A-42C	n79A
	DC_21A_n79A	_	+
DC_3A-21A-42C_n77C	DC_3A_n77A	CA_3A-21A-42C	n77A
	DC_21A_n77A	_	
DC_3A-21A-42C_n78C	DC_3A_n78A	CA_3A-21A-42C	n78A
	DC_21A_n78A	_	1
DC_3A-21A-42C_n79C	DC_3A_n79A	CA_3A-21A-42C	n79A
	DC_21A_n79A	<u> </u>	

EN-DC	上行链路 EN-DC	D 1100 A 37 W	VD 357 III
配置	配置 (注 1)	E-UTRA 配置	NR 配置
DC_3A-28A-42A_n77A	DC_3A_n77A DC_28A_n77A	CA_3A-28A-42A	n77A
DC_3A-28A-42A_n78A	DC_3A_n78A DC_28A_n78A	CA_3A-28A-42A	n78A
DC_3A-28A-42A_n79A	DC_3A_n79A DC_28A_n79A	CA_3A-28A-42A	n79A
DC_3A-28A-42C_n77A	DC_3A_n77A DC_28A_n77A	CA_3A-28A-42A	n77A
DC_3A-28A-42C_n78A	DC_3A_n78A DC_28A_n78A	CA_3A-28A-42A	n78A
DC_3A-28A-42C_n79A	DC_3A_n79A DC_28A_n79A	CA_3A-28A-42A	n79A
DC_7A-20A_n28A-n78A	DC_7A_n28A DC_7A_n78A DC_20A_n28A DC_20A_n78A	CA_7A-20A	CA_n28A-n78A
DC_19A-21A-42A_n77A	DC_19A_n77A DC_21A_n77A	CA_19A-21A-42A	n77A
DC_19A-21A-42A_n78A	DC_19A_n78A DC_21A_n78A	CA_19A-21A-42A	n78A
DC_19A-21A-42A_n79A	DC_19A_n79A DC_21A_n79A	CA_19A-21A-42A	n79A
DC_19A-21A-42C_n77A	DC_19A_n77A DC_21A_n77A	CA_19A-21A-42C	n77A
DC_19A-21A-42C_n78A	DC_19A_n78A DC_21A_n78A	CA_19A-21A-42C	n78A
DC_19A-21A-42C_n79A	DC_19A_n79A DC_21A_n79A	CA_19A-21A-42C	n79A
DC_19A-21A-42C_n77C	DC_19A_n77A DC_21A_n77A	CA_19A-21A-42C	n77A
DC_19A-21A-42C_n78C	DC_19A_n78A DC_21A_n78A	CA_19A-21A-42C	n78A
DC_19A-21A-42C_n79C	DC_19A_n79A DC_21A_n79A	CA_19A-21A-42C	n79A
DC_21A-28A-42A_n77A	DC_21A_n77A DC_28A_n77A	CA_21A-28A-42A	n77A
DC_21A-28A-42A_n78A	DC_21A_n78A DC_28A_n78A	CA_21A-28A-42A	n78A
DC_21A-28A-42A_n79A	DC_21A_n79A DC_28A_n79A	CA_21A-28A-42A	n79A
DC_21A-28A-42C_n77A	DC_21A_n77A DC_28A_n77A	CA_21A-28A-42A	n77A
DC_21A-28A-42C_n78A	DC_21A_n78A DC_28A_n78A	CA_21A-28A-42A	n78A
DC_21A-28A-42C_n79A	DC_21A_n79A DC_28A_n79A	CA_21A-28A-42A	n79A
注 1: 上行链路 CA 配	置是当前版本规范支持的配置。		

5.5B.4.4 带间 EN-DC 配置 (五个频段)

表 5.5B.4.4-1: 带间 EN-DC 配置 (五个频段)

	1 4- 44-14 py p.a.		T
EN-DC	上行链路 EN-DC		
	配置	E-UTRA 配置	NR 配置
HU <u>.B.</u>	(注1)		
	DC_1A_n78A		
DC 44 24 54 74 ~704	DC_3A_n78A	CA 4A 2A 5A 7A	-70A
DC_1A-3A-5A-7A_n78A	DC 5A n78A	CA_1A-3A-5A-7A	n78A
	DC 7A n78A		
	DC 1A n28A		
	DC_3A_n28A		
DC_1A-3A-7A-20A_n28A	DC_7A_n28A		
	DC 20A n28A		
	DC 1A n78A		
	DC 3A n78A		
DC_1A-3A-5A-7A-7A_n78A	DC_5A_176A DC_5A_n78A		
	DC 7A n78A		
	DC_1A_n78A		
DC_1A-3A-7A-20A_n78A	DC_3A_n78A		
	DC_7A_n78A		
	DC_20A_n78A		
	DC_1A_n28A		
	DC_1A_n78A		
DC_1A-3A-7A_n28A-n78A	DC_3A_n28A		
50_1/\ 0/\ //_1120/\-1110/\	DC_3A_n78A		
	DC_7A_n28A		
	DC_7A_n78A	• 1	nhg)
	DC_1A_n77A	众号: tongxi	Hoo
DC 44 24 404 244 ~774	DC_3A_n77A	t0118	
DC_1A-3A-19A-21A_n77A	DC 19A n77A	介 写:	
	DC_21A_n77A		
	DC 1A n77A		
5	DC_3A_n77A		
DC_1A-3A-19A-21A_n77C	DC 19A n77A		
出又節"	DC 21A n77A		
# /	DC 1A n78A		
	DC 3A n78A		
DC_1A-3A-19A-21A_n78A	DC 19A n78A		
	DC_19A_1176A DC_21A_n78A		
	DC_21A_1176A DC_1A_n78A		
DC_1A-3A-19A-21A_n78C	DC_3A_n78A		
	DC_19A_n78A		
	DC_21A_n78A		
	DC_1A_n79A		
DC 1A-3A-19A-21A n79A	DC_3A_n79A		
20	DC_19A_n79A		
	DC_21A_n79A		
	DC_1A_n79A		
DC 1A-3A-19A-21A n79C	DC_3A_n79A		
DO_1A-3A-13A-21A_11/3C	DC_19A_n79A		
	DC_21A_n79A		
	DC_1A_n77A		
DC 1A-3A-19A-42A n77A	DC 3A n77A		
	DC_19A_n77A		
	DC_1A_n77A		
DC 1A-3A-19A-42A n77C	DC 3A n77A		
	DC_19A_n77A		
	DC_19A_1177A		
DC_1A-3A-19A-42C_n77A	DC_1A_1177A DC_3A_n77A		
DO_1A-3A-13A-42O_11/1A	DC_3A_1177A DC_19A_n77A		
DC 44 24 404 400 =770	DC_1A_n77A		
DC_1A-3A-19A-42C_n77C	DC_3A_n77A		
	DC_19A_n77A		
DC_1A-3A-19A-42A_n78A	DC_1A_n78A		
= = = : : : : : : : : : : : : : : : : :	DC_3A_n78A		

EN-DC	上行链路 EN-DC		at 1111
配置	配置 (注 1)	E-UTRA 配置	NR 配置
	DC 19A n78A		
	DC 1A n78A		
DC_1A-3A-19A-42A_n78C	DC_3A_n78A		
	DC_19A_n78		
DC_1A-3A-19A-42C_n78A	DC_1A_n78A DC_3A_n78A		
DC_1A-3A-19A-42C_1176A	DC_3A_1178A DC_19A_n78A		
	DC_1A_n78A		
DC_1A-3A-19A-42C_n78C	DC_3A_n78A DC 19A n78A		
	DC_19A_1176A DC_1A_n79A		
DC_1A-3A-19A-42A_n79A	DC_3A_n79A		
	DC_19A_n79A		
DC_1A-3A-19A-42A_n79C	DC_1A_n79A DC_3A_n79A		
20_1/(0/(10/(12/(11/00	DC_19A_n79A		
DO 44 04 404 400 704	DC_1A_n79A		
DC_1A-3A-19A-42C_n79A	DC_3A_n79A DC_19A_n79A		
	DC 1A n79A		
DC_1A-3A-19A-42C_n79C	DC_3A_n79A		
	DC_19A_n79A DC_1A_n28A		
	DC_1A_1126A DC_1A_1126A		
DC_1A-3A-20A_n28A-n78A	DC_3A_n28A		
BO_171	DC_3A_n78A	-1	n5g)
	DC_20A_n28A DC 20A n78A	tongXI	1100
	DC_1A_n77A	众号: tongxi	
DC_1A-3A-21A-42C_n77A	DC_3A_n77A DC_21A_n77A		
5	J DC_1A_n77A		
DC_1A-3A-21A-42C_n77C	DC_3A_n77A		
TI X Mar	DC_21A_n77A DC_1A_n78A		
DC_1A-3A-21A-42C_n78A	DC_3A_n78A		
	DC_21A_n78A		
DC_1A-3A-21A-42C_n78C	DC_1A_n78A DC 3A n78A		
	DC_21A_n78A		
DC 44 34 344 43C 5704	DC_1A_n79A		
DC_1A-3A-21A-42C_n79A	DC_3A_n79A DC_19A_n79A		
	DC_1A_n79A		
DC_1A-3A-21A-42C_n79C	DC_3A_n79A		
	DC_19A_n79A DC_1A_n77A		
DC_1A-3A-28A-42A_n77A	DC_3A_n77A		
	DC_28A_n77A		
DC 1A-3A-28A-42A n78A	DC_1A_n78A DC_3A_n78A		
55_1/(0/(20/(42/11 0//	DC_28A_n78A		
B0 44 04 001 101	DC_1A_n79A		
DC_1A-3A-28A-42A_n79A	DC_3A_n79A DC_28A_n79A		
	DC_28A_1179A DC_1A_n77A		
DC_1A-3A-28A-42C_n77A	DC_3A_n77A		
	DC_28A_n77A		
DC 1A-3A-28A-42C n78A	DC_1A_n78A DC 3A n78A		
	DC_28A_n78A		
DC 1A 2A 29A 42C ~70A	DC_1A_n79A		
DC_1A-3A-28A-42C_n79A	DC_3A_n79A DC 28A n79A		

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
DC_1A-7A-20A_n28A-n78A	DC_1A_n28A DC_1A_n78A DC_7A_n28A DC_7A_n78A DC_20A_n28A DC_20A_n78A		
DC_1A-19A-21A-42A_n77A	DC_1A_n77A DC_19A_n77A DC_21A_n77A		
DC_1A-19A-21A-42A_n78A	DC_1A_n78A DC_19A_n78A DC_21A_n78A		
DC_1A-19A-21A-42A_n79A	DC_1A_n79A DC_19A_n79A DC_21A_n79A		
DC_1A-19A-21A-42A_n77C	DC_1A_n77A DC_19A_n77A DC_21A_n77A		
DC_1A-19A-21A-42A_n78C	DC_1A_n78A DC_19A_n78A DC_21A_n78A		
DC_1A-19A-21A-42A_n79C	DC_1A_n79A DC_19A_n79A DC_21A_n79A		
DC_1A-19A-21A-42C_n77A	DC_1A_n77A DC_19A_n77A DC_21A_n77A		n5g)
DC_1A-19A-21A-42C_n77C	DC_1A_n77A DC_19A_n77A DC_21A_n77A	众号: tongxi	
DC_1A-19A-21A-42C_n78A	DC_1A_n78A DC_19A_n78A DC_21A_n78A	, / /	
DC_1A-19A-21A-42C_n78C	DC_1A_n78A DC_19A_n78A DC_21A_n78A		
DC_1A-19A-21A-42C_n79A	DC_1A_n79A DC_19A_n79A DC_21A_n79A		
DC_1A-19A-21A-42C_n79C	DC_1A_n79A DC_19A_n79A DC_21A_n79A		
DC_1A-21A-28A-42A_n77A	DC_1A_n77A DC_21A_n77A DC_28A_n77A		
DC_1A-21A-28A-42A_n78A	DC_1A_n78A DC_21A_n78A DC_28A_n78A		
DC_1A-21A-28A-42A_n79A	DC_1A_n79A DC_21A_n79A DC_28A_n79A		
DC_1A-21A-28A-42C_n77A	DC_1A_n77A DC_21A_n77A DC_28A_n77A		
DC_1A-21A-28A-42C_n78A	DC_1A_n78A DC_21A_n78A DC_28A_n78A		
DC_1A-21A-28A-42C_n79A	DC_1A_n79A DC_21A_n79A DC_28A_n79A		
DC_3A-7A-20A_n28A-n78A	DC_3A_n28A DC_3A_n78A DC_7A_n28A DC_7A_n78A		

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
	DC_20A_n28A		
	DC_20A_n78A		
注 1: 上行链路 CA 配置是当前版本规范支持的配置。			

5.5B.4.5 带间 EN-DC 配置 (六个频段)

表 5.5B.4.5-1: 带间 EN-DC 配置 (六个频段)

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置	
DC_1A-3A-7A-20A_n28A-n78A	DC_1A_n28A DC_1A_n78A DC_3A_n28A DC_3A_n78A DC_7A_n28A DC_7A_n78A DC_20A_n28A DC_20A_n78A	CA_1A-3A-7A-20A	CA_n28A-n78A	
注 1: 上行链路 CA 配置是当前版本规范支持的配置。				

5. 5B. 5 带间 EN-DC 包括 FR2
E-UTRA 工作频段和 CA 配置的支持信道带宽在 TS 36.101 中定义,在 TS 38.101-1, TS 38.101-2 和 TS 38. 101-3 中用于 NR 工作频带和 CA 配置。通信

5.5B.5.1 带间 EN-DC 配置 (两个频段)

表 5.5B.5.1-1: 带间 EN-DC 配置 (两个频段)

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
DC_1A_n257A DC_1A_n257D DC_1A_n257E DC_1A_n257F	DC_1A_n257A	1A	n257A CA_n257D CA_n257E CA_n257F
DC_2A_n257A DC_2A_n257(2A)	DC_2A_n257A	2A	n257A CA_n257(2A)
DC_2A-2A_n257A	DC_2A-2A_n257A	CA_2A-2A	n257A
DC_2A_n257A	DC_2A_n257A	2	n257A
DC_2C_n257A	DC_2C_n257A	CA_2C	n257A
DC_2A_n260 DC_2A_n260(2A)	DC_2A_n260A	2A	n260A CA_n260(2A)
DC_2A-2A_n260A	DC_2A_n260A	CA_2A-2A	n260A
DC_2C_n260A	DC_2C_n260A	CA_2C	n260A
DC_3A_n257A DC_3A_n257D DC_3A_n257E DC_3A_n257F	DC_3A_n257A	3A	n257A CA_n257D CA_n257E CA_n257F
DC_3A_n258A	DC_3A_n258A	3	n258A
DC_5A-5A_n257A	DC_5A_n257A	CA_5A-5A	n257A
DC_5A-5A_n260A	DC_5A_n260A	CA_5A-5A_0 8 X	n260A
DC_5A_n257A	DC_5A_n257A	人号:5	n257A
DC_5A_n260A DC_5A_n260B DC_5A_n260C DC_5A_n260D DC_5A_n260E DC_5A_n260E DC_5A_n260E DC_5A_n260H DC_5A_n260I DC_5A_n260I DC_5A_n260I DC_5A_n260L DC_5A_n260L DC_5A_n260L DC_5A_n260C DC_5A_n260C DC_5A_n260C DC_5A_n260C DC_5A_n260C DC_5A_n260C DC_5A_n260(2A) DC_5A_n260(2A) DC_5A_n260(2A) DC_5A_n260(1A)	5G通信 DC_5A_n260A	5	n260A CA_n260B CA_n260C CA_n260D CA_n260E CA_n260F CA_n260G CA_n260H CA_n260I CA_n260J CA_n260K CA_n260K CA_n260C CA_n260M CA_n260C CA_n260P CA_n260P CA_n260Q CA_n260(D-CA_n260(D-G) CA_n260(D-G) CA_n260(D-G) CA_n260(D-G) CA_n260(D-CA_n2
DC_5A_n261A DC_5A_n261B DC_5A_n261C DC_5A_n261D DC_5A_n261E DC_5A_n261F DC_5A_n261G	DC_5A_n261A	5	n261A CA_n261B CA_n261C CA_n261D CA_n261E CA_n261F CA_n261G

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
DC 5A n261H	(11.1)		CA n261H
DC_5A_n261I			CA n261I
DC_5A_n261J			CA n261J
DC_5A_n261K			CA_n261K
DC_5A_n261L			CA_n261L
DC_5A_n261M			CA_n261M
DC_5A_n261O			CA_n261O
DC_5A_n261P			CA_n261P
DC_5A_n261Q DC_5A-n261(2A)			CA_n261Q CA_n261(2A)
DC_5A-n261(2A)			CA_11261(2A) CA_11261(3A)
DC 5A-n261(4A)			CA n261(4A)
DC 5A-n261(D-G)			CA n261(D-G)
DC_5A-n261(D-H)			CA_n261(D-H)
DC_5A-n261(D-I)			CA_n261(D-I)
DC_5A-n261(D-O)			CA_n261(D-O)
DC_5A-n261(D-P)			CA_n261(D-P)
DC_5A-n261(D-Q)			CA_n261(D-Q)
DC_5A-n261(E-O) DC_5A-n261(E-P)			CA_n261(E-O) CA_n261(E-P)
DC_5A-n261(E-P)			CA_11261(E-P) CA_1261(E-Q)
DC_5B_n257A	DC_5B_n257A	CA_5B	n257A
DC_5B_n260A	DC_5B_n260A	CA_5B	n260A
DC_7A-7A_n257A	DC_7A_n257A	CA_7A-7A	n257A
DC_7A_n257A	DC_7A_n257A	7	n257A
DC_7A_n258A	DC_7A_n258A	7 LongX	110 n258A
DC_8A_n257A	DC_8A_n257A	人号·8 tons	n257A
DC_8A_n258A	DC_8A_n258A	8	n258A
DC_11A_n257A	DC_11A_n257A	11	n257A
DC_12A_n260A	DC_12A_n260A	12A	n260A
DC_13A_n257A	DC_13A_n257A	13	n257A
DC_13A_n260A	DC_13A_n260A	13	n260A
DC_18A_n257A	DC_18A_n257A	18	n257A
DC_19A_n257A DC 19A n257D			n257A CA n257D
DC_19A_1257D DC_19A_n257E	DC_19A_n257A	19A	CA_11257D CA_11257E
DC_19A_n257F			CA n257F
DC 20A n258A	DC 20A n258A	20A	n258A
DC 21A n257A			n257A
DC 21A n257D	DO 0440574	04.4	CA n257D
DC_21A_n257E	DC_21A_n257A	21A	CA_n257E
DC_21A_n257F			CA_n257F
DC_26A_n257A	DC_26A_n257A	26	n257A
DC_28A_n257A			n257A
DC_28A_n257D	DC 28A n257A	28A	CA_n257D
DC_28A_n257E			CA_n257E CA_n257F
DC_28A_n257F	DC 204 ~2504	00	_
DC_28A_n258A	DC_28A_n258A	28	n258A
DC_30A_n260A DC_41A_n257A	DC_30A_n260A	30A	CA_n260A
DC_41C_n257A	DC_41A_n257A	41	n257A
DC_41A_n258A	DC_41A_n258A	41A	CA_n258A
DC_41C_n257A	DC_41C_n257A	CA_41C	n257A
DC_42A_n257A			n257A
DC_42C_n257A	DC_42A_n257A	42	CA_n257D
DC_42A_n257D DC_42A_n257E			CA_n257E CA_n257F
DO_42A_11237E			UA_IIZO/F

EN-DC 配置	上行链路 EN-DC 配置	E-UTRA 配置	NR 配置
	(注1)		
DC_42A_n257F		0	
DC_42D_n257A	DC_42C_n257A	CA_42C	n257A
DC_42E_n257A	DC_42A_n257A	42	n257A
DC_48A-48A_n257A	DC_48A_n257A	CA_48A-48A	n257A
DC_48A-48A_n260A	DC_48A_n260A	CA_48A-48A	n260A
DC_48A_n257A	DC_48A_n257A	48	n257A
DC_48C_n257A	DC_48C_n257A	CA_48C	n257A
DC_48C_n260A	DC_48C_n260A	CA_48C	n260A
DC_48A_n260A	DC_48A_n260A	48	n260A
DC_66A-66A_n257A	DC_66A_n257A	CA_66A-66A	n257A
DC_66A-66A_n260A	DC_66A_n260A	CA_66A-66A	n260A
DC_66A_n257A DC_66A_n257(2A) DC_66A_n257G DC_66A_n257H DC_66A_n257I DC_66A_n257J DC_66A_n257K DC_66A_n257L DC_66A_n257L DC_66A_n257M	DC_66A_n257A	66	n257A CA_n257(2A) CA_n257G CA_n257H CA_n257I CA_n257J CA_n257K CA_n257L CA_n257L CA_n257M
DC_66A_n260A DC_66A_n260D DC_66A_n260E DC_66A_n260F DC_66A_n260G DC_66A_n260H DC_66A_n260I DC_66A_n260I DC_66A_n260I DC_66A_n260I DC_66A_n260I DC_66A_n260U DC_66A_n260O DC_66A_n260O DC_66A_n260O DC_66A_n260O DC_66A_n260(2A) DC_66A_n260(3A) DC_66A_n260(4A)	5G通信(公 DC_66A_n260A	众号: tongx	CA_n260L CA_n260M CA_n260O CA_n260P CA_n260Q CA_n260(2A) CA_n260(3A) CA_n260(4A)
DC_66A-n260(D-G) DC_66A-n260(D-H) DC_66A-n260(D-I) DC_66A-n260(D-O) DC_66A-n260(D-P) DC_66A-n260(D-Q) DC_66A-n260(E-O) DC_66A-n260(E-P) DC_66A-n260(E-Q) DC_66C_n257A	DC_66C_n257A	CA_66C	CA_n260(D-G) CA_n260(D-H) CA_n260(D-I) CA_n260(D-O) CA_n260(D-P) CA_n260(D-Q) CA_n260(E-O) CA_n260(E-P) CA_n260(E-Q) n257A
DC_66C_fi257A DC_66A_n261A	DO_000_11207A	CA_00C	n261A
DC_66A_n261D DC_66A_n261E DC_66A_n261F DC_66A_n261F DC_66A_n261H DC_66A_n261I DC_66A_n261J DC_66A_n261K DC_66A_n261L DC_66A_n261L DC_66A_n261M DC_66A_n261O DC_66A_n261P	DC_66A_n261A	66A	CA_n261D CA_n261E CA_n261F CA_n261G CA_n261H CA_n261I CA_n261J CA_n261L CA_n261L CA_n261M CA_n261O CA_n261P

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
DC_66A_n261Q			CA_n261Q
DC_66A-n261(2A)			CA_n261(2A)
DC_66A-n261(3A)			CA_n261(3A)
DC_66A-n261(4A)			CA_n261(4A)
DC_66A-n261(D-G)			CA_n261(D-G)
DC_66A-n261(D-H)			CA_n261(D-H)
DC_66A-n261(D-I)			CA_n261(D-I)
DC_66A-n261(D-O)			CA_n261(D-O)
DC_66A-n261(D-P)			CA_n261(D-P)
DC_66A-n261(D-Q)			CA_n261(D-Q)
DC_66A-n261(E-O)			CA_n261(E-O)
DC_66A-n261(E-P)			CA_n261(E-P)
DC_66A-n261(E-Q)			CA_n261(E-Q)
注 1: 上行链路 CA 配置是:	当前版本规范支持的配置。		

中文翻译: 5G通信(公众号: tongxin5g)

5.5B.5.2 带间 EN-DC 配置 (三个频段)

表 5.5B.5.2-1: 带间 EN-DC 配置 (三个频段)

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
DC_1A-3A_n257A DC_1A-3A_n257D DC_1A-3A_n257E DC_1A-3A_n257F	DC_1A_n257A DC_3A_n257A	CA_1A-3A	n257A CA_n257D CA_n257E CA_n257F
DC_1A-5A_n257A	DC_1A_n257A DC_5A_n257A	CA_1A-5A	n257A
DC_1A-7A_n257A	DC_1A_n257A DC_7A_n257A	CA_1A-7A	n257A
DC_1A-7A-7A_n257A	DC_1A_n257A DC_7A-7A_n257A	CA_1A-7A-7A	n257A
DC_1A-8A_n257A	DC_1A-257A DC_8A_n257A	CA_1A-8A	n257A
DC_1A-18A_n257A	DC_1A-257A DC_18A_n257A	CA_1A-18A	n257A
DC_1A-19A_n257A DC_1A-19A_n257D DC_1A-19A_n257E DC_1A-19A_n257F	DC_1A-257A DC_19A_n257A	CA_1A-19A	n257A CA_n257D CA_n257E CA_n257F
DC_1A-21A_n257A DC_1A-21A_n257D DC_1A-21A_n257E DC_1A-21A_n257F	DC_1A_n257A DC_21A_n257A	CA_1A-21A	n257A CA_n257D CA_n257E CA_n257F
DC_1A-28A_n257A DC_1A-28A_n257D DC_1A-28A_n257E DC_1A-28A_n257F	DC_1A_n257A DC_28A_n257A	CA: 1A-28A	n257A CA_n257D CA_n257E CA_n257F
DC_1A-41A_n257A	DC_1A_n257A DC_41A_n257A	CA_1A-41A	n257A
DC_1A-41C_n257A	DC_1A_n257A DC_41C_n257A	CA_1A-41C	n257A
DC_1A-42A_n257A DC_1A-42A_n257D DC_1A-42A_n257E DC_1A-42A_n257F	DC_1A_n257A DC_42A_n257A	CA_1A-42A	n257A CA_n257D CA_n257E CA_n257F
DC_1A-42C_n257A	DC_1A_n257A DC_42A_n257A	CA_1A-42C	n257A
DC_1A-42D_n257A	DC_1A_n257A DC_42A_n257A	CA_1A-42C	n257A
DC_1A-42E_n257A	DC_1A_n257A DC_42A_n257A	CA_1A-42E	n257A
DC_2A-13A_n260A	DC_2A_n260A DC_13A_n260A	CA_2A-13A	n260A
DC_2A-5A_n257A	DC_2A_n257A DC_5A_n257A	CA_2A-5A	n257A
DC_2A-5A_n260A	DC_2A_n260A DC_5A_n260A	CA_2A-5A	n260A
DC_2A-12A_n260A	DC_2A_n260A DC_12A_n260A	CA_2A-12A	n260A
DC_2A-13A_n257A	DC_2A_n257A DC_13A_n257A	CA_2A-13A	n257A
DC_2A-30A_n260A	DC_2A_n260A DC_30A_n260A	CA_2A-30A	n260A
DC_2A-66A_n257A	DC_2A_n257A DC_66A_n257A	CA_2A-66A	n257A
DC_2A-66A_n260A	DC_2A_n260A DC_66A_n260A	CA_2A-66A	n260A
DC_3A-5A_n257A	DC_3A_n257A DC_5A_n257A	CA_3A-5A	n257A
DC_3A-7A-7A_n257A	DC_3A_n257A	CA_3A-7A-7A	n257A

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
	DC 7A n257A		
DC_3A-7A_n257A	DC_3A_n257A DC_7A_n257A	CA_3A-7A	n257A
DC 3A-19A n257A	DO_TA_N23TA		n257A
	DC 24 p2574		-
DC_3A-19A_n257D	DC_3A_n257A	CA 3A-19A	CA_n257D
DC_3A-19A_n257E	DC_19A_n257A	_	CA_n257E
DC_3A-19A_n257F			CA_n257F
DC_3A-21A_n257A			n257A
DC_3A-21A_n257D	DC_3A_n257A	CA 2A 21A	CA_n257D
DC 3A-21A n257E	DC 21A n257A	CA_3A-21A	CA n257E
DC_3A-21A_n257F			CA n257F
DC 3A-28A n257A			n257A
	DC 34 ~2E74		-
DC_3A-28A_n257D	DC_3A_n257A	CA 3A-28A	CA_n257D
DC_3A-28A_n257E	DC_28A_n257A		CA_n257E
DC_3A-28A_n257F			CA_n257F
DO 04 444 0574	DC 3A n257A	04 04 444	0574
DC_3A-41A_n257A	DC 41A n257A	CA_3A-41A	n257A
DC 3A-42A n257A			n257A
	DC 24 x2574		CA n257D
DC_3A-42A_n257D	DC_3A_n257A	CA 3A-42A	_
DC_3A-42A_n257E	DC_42A_n257A		CA_n257E
DC_3A-42A_n257F			CA_n257F
DC 24 42C ~2574	DC_3A_n257A	CA 3A 43C	n057A
DC_3A-42C_n257A	DC 42A n257A	CA_3A-42C	n257A
	DC 3A n257A		
DC_3A-42D_n257A	DC 42A n257A	CA_3A-42A	n257A
DC 3A-42E n257A	DC_3A_n257A	CA 3A-42E	√ 0n257A
	DC_42A_n257A	_	TITOD,
DC_5A-30A_n260A	DC_5A_n260A	CA_5A-30A	n260A
B0_0/100/1_1200/1	DC_30A_n260A		112007 (
DC_5A-66A_n257A	DC_5A_n257A DC_66A_n257A	CA_5A-66A	n257A
DC_5A-66A_n260A	DC_5A_n260A DC_66A_n260A	CA_5A-66A	n260A
DC_5A-7A-7A_n257A	DC_5A_n257A DC_7A_n257A	CA_5A-7A-7A	n257A
DC_5A-7A_n257A	DC_5A_n257A DC_7A_n257A	CA_5A-7A	n257A
DC 5A n78A-n257A	DC_5A_n78A	5A	CA n78A-n257A
	DC_5A_n257A		<u> </u>
DC_5B_n260A	DC_5B_n260A	CA_5B	n260A
DC_7A-7A_n257A	DC_7A_n257A	CA_7A-7A	n257A
DC 74 ~704 ~0574	DC_7A_n78A	7.4	CA 2704 20574
DC_7A_n78A-n257A	DC 7A n257A	7A	CA_n78A-n257A
	DC_12A_n260A		
DC_12A-30A_n260A		CA_12A-30A	n260A
	DC_30A_n260A		
DC 12A-66A n260A	DC_12A_n260A	CA 12A-66A	n260A
	DC_66A_n260A		,
DC_13A-66A_n257A	DC_13A_n257A	CA_13A-66A	n257A
	DC_66A_n257A	J. 10A-00A	IIZUI A
DC 134 664 -2004	DC_13A_n260A	CA 124 CCA	2000
DC_13A-66A_n260A	DC_66A_n260A	CA_13A-66A	n260A
	DC 18A n257A		
DC_18A-28A-n257A	DC_28A_n257A	CA_18A-28A	n257A
DC 104 424 52574	DO_20A_11237A		n257A
DC_19A-42A_n257A	DO 404 (0574		n257A
DC_19A-42A_n257D	DC_19A_n257A	CA 19A-42A	CA_n257D
DC_19A-42A_n257E	DC_42A_n257A	5,1_10,112,1	CA_n257E
DC_19A-42A_n257F			CA_n257F
DC 19A-21A n257A			n257A
DC_19A-21A_n257D	DC 19A n257A		CA_n257D
DC_19A-21A_11257B DC_19A-21A_n257E	DC_21A_n257A	CA_19A-21A	CA_n257E
	DO_21A_11237A		
DC_19A-21A_n257F			CA_n257F

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
DC_19A-42C_n257A	DC_19A_n257A DC_42A_n257A	CA_19A-42C	n257
DC_21A-28A_n257A DC_21A-28A_n257D DC_21A-28A_n257E DC_21A-28A_n257F	DC_21A_n257A DC_28A_n257A	CA_21A-28A	n257A CA_n257D CA_n257E CA_n257F
DC_21A-42A_n257A DC_21A-42A_n257D DC_21A-42A_n257E DC_21A-42A_n257F	DC_21A_n257A DC_42A_n257A	CA_21A-42A	n257A CA_n257D CA_n257E CA_n257F
DC_21A-42C_n257A	DC_21A_n257A DC_42A_n257A	CA_21A-42C	n257A
DC_21A_n77A-n257A	DC_21A_n77A DC_21A_n257A	21A	CA_n77A-n257A
DC_21A_n78A-n257A	DC_21A_n78A DC_21A_n257A	21A	CA_n78A-n257A
DC_21A_n79A-n257A	DC_21A_n79A DC_21A_n257A	21A	CA_n79A-n257A
DC_28A-42C_n257A	DC_28A_n257A DC_42A_n257A	CA_28A-42C	n257
DC_28A-42A_n257A	DC_28A_n257A DC_42A_n257A	CA_28A-42A	n257
DC_30A-66A_n260A	DC_30A_n260A DC_66A_n260A	CA_30A-66A	n260A
DC_41A-42A_n257A	DC_41A_n257A DC_42A_n257A	CA_41A-42A	n257A
DC_41A-42C_n257A	DC_41A_n257A DC_42C_n257A	CA_41A-42C_gX	n257A
DC_41C-42A_n257A	DC_41C_n257A DC_42A_n257A	CA_41C-42A	n257A
DC_41C-42C_n257A	DC_41A_n257A DC_42A_n257A	CA_41C-42C	n257A
DC_42C_n257A DC_42C_n257D DC_42C_n257E DC_42C_n257F	DC_42C_n257A	CA_42C	n257A CA_n257D CA_n257E CA_n257F
注 1: 上行链路 CA 配置是当前版本规范支持的配置。			

5.5B.5.3 带间 EN-DC 配置 (四个频段)

表 5.5B.5.3-1: 带间 EN-DC 配置 (四个频段)

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
DC_1A-3A-5A_n257A	DC_1A_n257A DC_3A_n257A DC_5A_n257A	CA_1A-3A-5A	n257A
DC_1A-3A-7A- 7A_n257A	DC_1A_n257A DC_3A_n257A DC_7A_n257A	CA_1A-3A-7A-7A	n257A
DC_1A-3A-7A_n257A	DC_1A_n257A DC_3A_n257A DC_7A_n257A	CA_1A-3A-7A	n257A
DC_1A-3A-19A_n257A	DC_1A_n257A DC_3A_n257A DC_19A_n257A	CA_1A-3A-19A	n257A
DC_1A-3A-21A_n257A	DC_1A_n257A DC_3A_n257A DC_21A_n257A	CA_1A-3A-21A	n257A

DC_1A-3A-28A_n257A	DC_1A_n257A DC_3A_n257A DC_28A_n257A	CA_1A-3A-28A	n257A
DC_1A-3A-42C_n257A	DC_1A_n257A DC_3A_n257A DC_42A_n257A	CA_1A-3A-42C	n257A
DC_1A-3A-42C_n257D	DC_1A_n257A DC_3A_n257A DC_42A_n257A	CA_1A-3A-42C	n257A
DC_1A-3A-42C_n257E	DC_1A_n257A DC_3A_n257A DC_42A_n257A	CA_1A-3A-42C	n257A
DC_1A-3A-42C_n257F	DC_1A_n257A DC_3A_n257A DC_42A_n257A	CA_1A-3A-42C	n257A
DC_1A-3A_n78A-n257A	DC_1A_n78A DC_1A_n257A DC_3A_n78A DC_3A_n257A	CA_1A-3A	CA_n78A-n257A
DC_1A-5A-7A- 7A_n257A	DC_1A_n257A DC_5A_n257A DC_7A_n257A	CA_1A-5A-7A-7A	n257A
DC_1A-5A-7A_n257A	DC_1A_n257A DC_5A_n257A DC_7A_n257A	CA_1A-5A-7A	n257A
DC_1A-5A_n78A-n257A	DC_1A_n78A DC_1A_n257A, DC_5A_n78A DC_5A_n257A,	CA_1A-5A	CA_n78A-n257A
DC_1A-7A-7A_n78A- n257A	DC_1A_n78A DC_1A_n257A, DC_7A_n78A DC_7A_n257A,	CA_1A-7A-7A 8X	CA_n78A-n257A
DC_1A-7A_n78A-n257A	DC_1A_n78A DC_1A_n257A, DC_7A_n78A DC_7A_n257A,	CA_1A-7A	CA_n78A-n257A
DC_1A-18A-28A_n257A	DC_1A_n257A DC_18A_n257A DC_28A_n257A	CA_1A-18A-28A	n257A
DC_1A-19A-42A_n257A	DC_1A_n257A DC_19A_n257A DC_42A_n257A	CA_1A-19A-42A	n257A
DC_1A-19A-42C_n257A	DC_1A_n257A DC_19A_n257A DC_42A_n257A	CA_1A-19A-42C	n257A
DC_1A-19A-42C_n257D	DC_1A_n257A DC_19A_n257A DC_42A_n257A	CA_1A-19A-42A	n257A
DC_1A-19A-42C_n257E	DC_1A_n257A DC_19A_n257A DC_42A_n257A	CA_1A-19A-42A	n257A
DC_1A-19A-42C_n257F	DC_1A_n257A DC_19A_n257A DC_42A_n257A	CA_1A-19A-42A	n257A
DC_1A-21A-28A_n257A	DC_1A_n257A DC_21A_n257A DC_28A_n257A	CA_1A-21A-28A	n257
DC_1A-21A-42A_n257A	DC_1A_n257A DC_21A_n257A DC_42A_n257A	CA_1A-21A-42A	n257A
DC_1A-21A-42C_n257A	DC_1A_n257A DC_21A_n257A DC_42A_n257A	CA_1A-21A-42C	n257A
DC_1A-21A-42C_n257D	DC_1A_n257A DC_21A_n257A DC_42A_n257A	CA_1A-21A-42C	n257A

DC_1A-21A-42C_n257E	DC_1A_n257A DC_21A_n257A DC_42A_n257A	CA_1A-21A-42C	n257A
DC_1A-21A-42C_n257F	DC_1A_n257A DC_21A_n257A DC_42A_n257A	CA_1A-21A-42C	n257A
DC_1A-28A-42A_n257A	DC_1A_n257A DC_28A_n257A DC_42A_n257A	CA_1A-28A-42A	n257
DC_1A-28A-42C_n257A	DC_1A_n257A DC_28A_n257A DC_42A_n257A	CA_1A-28A-42A	n257
DC_1A-41A-42A_n257A	DC_1A_n257A DC_41A_n257A DC_42A_n257A	CA_1A-41A-42A	n257
DC_1A-41A-42C_n257A	DC_1A_n257A DC_41A_n257A DC_42A_n257A	CA_1A-41A-42C	n257A
DC_1A-41C-42A_n257A	DC_1A_n257A DC_41A_n257A DC_42A_n257A	CA_1A-41C-42A	n257A
DC_1A-41C-42C_n257A	DC_1A_n257A DC_41A_n257A DC_42A_n257A	CA_1A-41C-42C	n257A
DC_3A-5A-7A- 7A_n257A	DC_3A_n257A DC_5A_n257A DC_7A_n257A	CA_3A-5A-7A-7A	n257A
DC_3A-5A-7A_n257A	DC_3A_n257A DC_5A_n257A DC_7A_n257A	CA_3A-5A-7A	n257A
DC_3A-5A_n78A-n257A	DC_3A_n78A DC_3A_n257A, DC_5A_n78A DC_5A_n257A;	大号CA_3A-5A	CA_n78A-n257A
DC_3A-7A-7A_n78A- n257A	DC_3A_n78A DC_3A_n257A DC_7A_n78A DC_7A_n257A	CA_3A-7A-7A	CA_n78A-n257A
DC_3A-7A_n78A-n257A	DC_3A_n78A DC_3A_n257A, DC_7A_n78A DC_7A_n257A,	CA_3A-7A	CA_n78A-n257A
DC_3A-19A-21A_n257A	DC_3A_n257A DC_19A_n257A DC_21A_n257A	CA_3A-19A-21A	n257A
DC_3A-19A-42A_n257A	DC_3A_n257A DC_19A_n257A DC_42A_n257A	CA_3A-19A-42A	n257A
DC_3A-19A-42C_n257A	DC_3A_n257A DC_19A_n257A DC_42A_n257A	CA_3A-19A-42C	n257A
DC_3A-19A-42C_n257D	DC_3A_n257A DC_19A_n257A DC_42A_n257A	CA_3A-19A-42C	n257A
DC_3A-19A-42C_n257E	DC_3A_n257A DC_19A_n257A DC_42A_n257A	CA_3A-19A-42C	n257A
DC_3A-19A-42C_n257F	DC_3A_n257A DC_19A_n257A DC_42A_n257A	CA_3A-19A-42C	n257A
DC_3A-21A-42C_n257A	DC_3A_n257A DC_21A_n257A DC_42A_n257A	CA_3A-21A-42C	n257A
DC_3A-21A-42C_n257D	DC_3A_n257A DC_21A_n257A DC_42A_n257A	CA_3A-21A-42C	n257A

DC_3A-21A-42C_n257E	DC_3A_n257A DC_21A_n257A DC_42A_n257A	CA_3A-21A-42C	n257A
DC_3A-21A-42C_n257F	DC_3A_n257A DC_21A_n257A DC_42A_n257A	CA_3A-21A-42C	n257A
DC_3A-28A-42A_n257A	DC_3A_n257A DC_28A_n257A DC_42A_n257A	CA_3A-28A-42A	n257A
DC_3A-28A-42C_n257A	DC_3A_n257A DC_28A_n257A DC_42A_n257A	CA_3A-28A-42A	n257A
DC_5A-7A-7A_n78A- n257A	DC_5A_n78A DC_5A_n257A DC_7A_n78A DC_7A_n257A	CA_5A-7A-7A	CA_n78A-n257A
DC_5A-7A_n78A-n257A	DC_5A_n78A DC_5A_n257A DC_7A_n78A DC_7A_n257A	CA_5A-7A	CA_n78A-n257A
DC_19A-21A- 42A_n257A	DC_19A_n257A DC_21A_n257A DC_42A_n257A	CA_19A-21A-42A	n257A
DC_19A-21A- 42C_n257D	DC_19A_n257A DC_21A_n257A DC_42A_n257A	CA_19A-21A-42C	n257A
DC_19A-21A- 42C_n257E	DC_19A_n257A DC_21A_n257A DC_42A_n257A	CA_19A-21A-42C	n257A
DC_19A-21A- 42C_n257F	DC_19A_n257A DC_21A_n257A DC_42A_n257A	CA_19A-21A-42G X	1115g) n257A
DC_19A-21A- 42C_n257A	DC_19A_n257A DC_21A_n257A DC_42A_n257A	CA_19A-21A-42C	n257A
DC_21A-28A- 42A_n257A	DC_21A_n257A DC_28A_n257A DC_42A_n257A	CA_21A-28A-42A	n257A
DC_21A-28A- 42C_n257A	DC_21A_n257A DC_28A_n257A DC_42A_n257A	CA_21A-28A-42A	n257A
注 1: 上行链路 CA 配	置是当前版本规范支持的配置。		

5.5B.5.4 带间 EN-DC 配置 (五个频段)

表 5.5B.5.4-1: 带间 EN-DC 配置 (五个频段)

	L 仁 bt tbt pu po	I	
EN-DC	上行链路 EN-DC		
配置	配置	E-UTRA 配置	NR 配置
HUEL	(注1)		
	DC_1A_n257A		
DC 44 24 54 74 2574	DC_3A_n257A	CA 4A 2A 5A 7A	-0F7A
DC_1A-3A-5A-7A_n257A	DC 5A n257A	CA_1A-3A-5A-7A	n257A
	DC 7A n257A		
	DC 1A n257A		
DO 44 04 54 74 74 0574	DC_3A_n257A	0	0.574
DC_1A-3A-5A-7A-7A_n257A	DC_5A_n257A	CA_1A-3A-5A-7A-7A	n257A
	DC 7A n257A		
DC_1A-3A-5A_n78A-n257A	DC_1A_n78A	CA_1A-3A-5A	CA n78A-n257A
	DC_1A_n257A,		07
	DC 3A n78A		
	DC 3A n257A,		
	DC_5A_n78A		
	DC_5A_n257A,		
DC_1A-3A-7A-7A_n78A-n257A	DC 1A n78A	CA 1A-3A-7A-7A	CA n78A-n257A
B0_1/(0/(//(//(_1// 0/(1120//(DC_1A_n257A,		0/(_11/0/(1120//(
	DC_3A_n78A		
	DC_3A_n257A,		
	DC 7A n78A		
	DC 7A n257A,		
DC_1A-3A-7A_n78A-n257A	DC 1A n78A	CA 1A-3A-7A	CA_n78A-n257A
DO_IA-SA-TA_III GA-IIZSTA	DC_1A_170A DC_1A_n257A,	CA_TA-3A-7A 大号: tongxi	50)
	DC 3A n78A	CV 11	V08
	DC_3A_170A DC_3A_n257A,	tong^	
	DC_7A_n78A	NE:	
	DC_7A_n257A,		
	DC 1A n257A		
50	DC 3A n257A		
DC_1A-3A-19A-21A_n257A	DC_3A_1257A DC_19A_n257A	CA_1A-3A-19A-21A	n257A
DC_1A-3A-19A-21A_n257A	DC_19A_11257A DC_21A_n257A		
42'	DC_1A_n257A		
	DC_1A_11257A DC_3A_n257A		
DC_1A-3A-19A-21A_n257D	DC_3A_1257A DC_19A_n257A	CA_1A-3A-19A-21A	n257A
	DC_19A_11257A DC_21A_n257A		
	DC_1A_n257A		
	DC_1A_11257A		
DC_1A-3A-19A-21A_n257E	DC_3A_1257A DC_19A_n257A	CA_1A-3A-19A-21A	n257A
	DC_21A_n257A DC_1A_n257A		+
	DC_1A_11237A		
DC_1A-3A-19A-21A_n257F	DC_3A_n257A	CA_1A-3A-19A-21A	n257A
_	DC_19A_n257A		
	DC_21A_n257A		
	DC_1A_n257A		
DC_1A-3A-19A-42A_n257A	DC_3A_n257A	CA_1A-3A-19A-42A	n257A
_	DC_19A_n257A		
	DC_42A_n257A		-
	DC_1A_n257A		
DC_1A-3A-19A-42A_n257D	DC_3A_n257A	CA_1A-3A-19A-42A	n257A
	DC_19A_n257A	_	
	DC_42A_n257A		
	DC_1A_n257A		
DC_1A-3A-19A-42A_n257E	DC_3A_n257A	CA_1A-3A-19A-42A	n257A
	DC_19A_n257A	_	
	DC_42A_n257A		-
	DC_1A_n257A		
DC_1A-3A-19A-42A_n257F	DC_3A_n257A	CA_1A-3A-19A-42A	n257A
	DC_19A_n257A		
	DC_42A_n257A		
DC_1A-3A-19A-42C_n257A	DC_1A_n257A	CA_1A-3A-19A-42C	n257A
	DC_3A_n257A		

	L 行体吸 EN DC		
EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
	DC_19A_n257A DC 42A n257A		
DC_1A-3A-19A-42C_n257D	DC_1A_n257A DC_3A_n257A DC_19A_n257A DC_19A_n257A DC_42A_n257A	CA_1A-3A-19A-42C	n257D
DC_1A-3A-19A-42C_n257E	DC_1A_n257A DC_3A_n257A DC_19A_n257A DC_42A_n257A	CA_1A-3A-19A-42C	n257E
DC_1A-3A-19A-42C_n257F	DC_1A_n257A DC_3A_n257A DC_19A_n257A DC_42A_n257A	CA_1A-3A-19A-42C	n257F
DC_1A-3A-21A-42C_n257A	DC_1A_n257A DC_3A_n257A DC_19A_n257A DC_42A_n257A	CA_1A-3A-21A-42C	n257A
DC_1A-3A-21A-42C_n257D	DC_1A_n257A DC_3A_n257A DC_19A_n257A DC_42A_n257A	CA_1A-3A-21A-42C	n257D
DC_1A-3A-21A-42C_n257E	DC_1A_n257A DC_3A_n257A DC_19A_n257A DC_42A_n257A	CA_1A-3A-21A-42C	n257E
DC_1A-3A-21A-42C_n257F	DC_1A_n257A DC_3A_n257A DC_19A_n257A DC_42A_n257A	CA_1A-3A-21A-42C	n257F
DC_1A-3A-28A-42A_n257A_5G	DC_1A_n257A DC_3A_n257A DC_28A_n257A DC_42A_n257A	CA_1A-3A-21A-42A	n257A
DC_1A-3A-28A-42C_n257A	DC_1A_n257A DC_3A_n257A DC_28A_n257A DC_42A_n257A	CA_1A-3A-28A-42C	n257A
DC_1A-5A-7A-7A_n78A-n257A	DC_1A_n78A DC_1A_n257A, DC_5A_n78A DC_5A_n257A, DC_7A_n78A DC_7A_n257A,	CA_1A-5A-7A-7A	CA_n78A-n257A
DC_1A-5A-7A_n78A-n257A	DC_1A_n78A DC_1A_n257A, DC_5A_n78A DC_5A_n257A, DC_7A_n78A DC_7A_n257A,	CA_1A-5A-7A	CA_n78A-n257A
DC_1A-19A-21A-42A_n257A	DC_1A_n257A DC_19A_n257A DC_21A_n257A DC_42A_n257A	CA_1A-19A-21A-42A	n257A
DC_1A-19A-21A-42A_n257D	DC_1A_n257A DC_19A_n257A DC_21A_n257A DC_42A_n257A	CA_1A-19A-21A-42A	n257A
DC_1A-19A-21A-42A_n257E	DC_1A_n257A DC_19A_n257A DC_21A_n257A DC_42A_n257A	CA_1A-19A-21A-42A	n257A
DC_1A-19A-21A-42A_n257F	DC_1A_n257A DC_19A_n257A	CA_1A-19A-21A-42A	n257A

EN-DC	上行链路 EN-DC			
配置	配置	E-UTRA 配置	NR 配置	
HL.E.	(注1)			
	DC_21A_n257A			
	DC 42A n257A			
	DC 1A n257A			
	DC 19A n257A			
DC_1A-19A-21A-42C_n257A	DC 21A n257A	CA_1A-19A-21A-42C	n257A	
	DC 42A n257A			
	DC 1A n257A			
	DC_19A_n257A			
DC_1A-19A-21A-42C_n257D	DC 21A n257A	CA_1A-19A-21A-42C	n257D	
	DC 42A n257A			
	DC 1A n257A			
	DC_19A_n257A			
DC_1A-19A-21A-42C_n257E	DC 21A n257A	CA_1A-19A-21A-42C	n257E	
	DC 42A n257A			
	DC 1A n257A			
	DC 19A n257A			
DC_1A-19A-21A-42C_n257F	DC 21A n257A	CA_1A-19A-21A-42C	n257F	
	DC 42A n257A			
	DC 1A n257A			
	DC 19A n257A			
DC_1A-19A-28A-42C_n257A	DC 28A n257A	CA_1A-19A-28A-42C	n257A	
	DC 42A n257A			
	DC_1A_n257A			
	DC 21A n257A			
DC_1A-21A-28A-42A_n257A	DC_28A_n257A	CA_1A-21A-28A-42A	n257A	
	DC 42A n257A			
DC 3A-5A-7A-7A n78A-n257A	DC 3A n78A	CA_3A-5A-7A-7A	CA_n78A-n257A	
	DC 3A n257A,	CA_3A-5A-7A-7A tongX1	16.00	
	DC 5A n78A	tons		
	DC 5A n257A,	个写。		
	DC 7A n78A			
	DC 7A n257A,			
DC_3A-5A-7A_n78A-n257A	DC 3A n78A	CA 3A-5A-7A	CA n78A-n257A	
	DC 3A n257A,			
中人門	DC_5A_n78A			
1 2	DC 5A n257A,			
	DC 7A n78A			
	DC 7A n257A,			
注 1: 上行链路 CA 配置是当前版本		1	1	

5.5B.5.5 带间 EN-DC 配置 (六个频段)

表 5.5B.5.5-1: 带间 EN-DC 配置 (六个频段)

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置	
DC_1A-3A-5A-7A_n78A-n257A	DC_1A_n78A DC_1A_n257A, DC_3A_n78A DC_3A_n257A, DC_5A_n78A DC_5A_n257A, DC_5A_n257A, DC_7A_n78A DC_7A_n257A,	CA_1A-3A-5A-7A	CA_n78A-n257A	
注 1: 上行链路 CA 配置是当前版本规范支持的配置。				

5.5B.6 带间 EN-DC 包括 FR1 和 FR2

E-UTRA 工作频段和 CA 配置的支持信道带宽在 TS 36.101 中定义,在 TS 38.101-1,TS 38.101-2 和 TS 38.101-3 中用于 NR 工作频带和 CA 配置。

5.5B.6.1 带间 EN-DC 配置 (两个频段)

本节为 N / A.

中文翻译: 5G通信(公众号: tongxin5g)

5.5B.6.2 带间 EN-DC 配置 (三个频段)

表 5.5B.6.2-1: 带间 EN-DC 配置 (三个频段)

62

	上行链路 EN-DC		
EN-DC	配置	 E-UTRA 配置	NR 配置
配置	11.1 (注 1)		
DO 44 774 0574	DC_1A_n77A	4.0	04 774 0574
DC_1A_n77A-n257A	DC_1A_n257A	1A	CA_n77A-n257A
	DC_1A_n77A-n257A		
DO 44 .774 .057D	DC_1A_n77A	4.6	04 .774 .0570
DC_1A_n77A-n257D	DC_1A-n257A	1A	CA_n77A-n257D
	DC_1A_n77A-n257A		
DO 44 .774 .0575	DC_1A_n77A	4.6	04 .774 .0575
DC_1A_n77A-n257E	DC_1A_n257A	1A	CA_n77A-n257E
	DC_1A_n77A-n257A		
DO 44 .774 .0575	DC_1A_n77A	4.6	04 .774 .0575
DC_1A_n77A-n257F	DC_1A_n257A	1A	CA_n77A-n257F
	DC_1A_n77A-n257A		
	DC_1A_n77A		
DC_1A_n77C-n257A	DC_1A_n257A	1A	CA_n77C-n257A
	DC_1A_n77A-n257A		
	DC_1A_n77A		
DC_1A_n77C-n257D	DC_1A_n257A	1A	CA_n77C-n257D
	DC_1A_n77A-n257A		
	DC_1A_n77A		
DC_1A_n77C-n257E	DC_1A_n257A	1A	CA_n77C-n257E
	DC_1A_n77A-n257A		
	DC_1A_n77A	===	in 198/
DC_1A_n77C-n257F	DC_1A_n257A	1A tongX	CA_n77C-n257F
	DC_1A_n77A-n257A	10120	
	DC_1A_n78A	(大)	
DC_1A_n78A-n257A	DC_1A_n257A	1A	CA_n78A-n257A
	DC_1A_n78A-n257A		
	DC_1A_n78A		
DC_1A_n78A-n257D	DC_1A-n257A	1A	CA_n78A-n257D
甲人門	DC_1A_n78A-n257A		
,	DC_1A_n78A		
DC_1A_n78A-n257E	DC_1A_n257A	1A	CA_n78A-n257E
	DC_1A_n78A-n257A		
	DC_1A_n78A		
DC_1A_n78A-n257F	DC_1A_n257A	1A	CA_n78A-n257F
	DC_1A_n78A-n257A		
	DC_1A_n78A		
DC_1A_n78C-n257A	DC_1A_n257A	1A	CA_n78C-n257A
	DC_1A_n78A-n257A		
	DC_1A_n78A		
DC_1A_n78C-n257D	DC_1A_n257A	1A	CA_n78C-n257D
	DC_1A_n78A-n257A		
	DC_1A_n78A		
DC_1A_n78C-n257E	DC_1A_n257A	1A	CA_n78C-n257E
	DC_1A_n78A-n257A		
	DC_1A_n78A		
DC_1A_n78C-n257F	DC_1A_n257A	1A	CA_n78C-n257F
	DC_1A_n78A-n257A		
	DC_1A_n79A		
DC_1A_n79A-n257A	DC_1A_n257A	1A	
	DC_1A_n79A-n257A		
<u></u>	DC_1A_n79A		
DC_1A_n79A-n257D	DC_1A-n257A	1A	
= -	DC_1A_n79A-n257A		
	DC_1A_n79A		
DC_1A_n79A-n257E	DC_1A_n257A	1A	
_ = =	DC_1A_n79A-n257A		
DC 14 5704 50575	DC_1A_n79A	4.6	
DC_1A_n79A-n257F	DC_1A_n257A	1A	
		•	

63

	上行链路 EN-DC		
EN-DC	配置	E-UTRA 配置	NR 配置
配置	(注 1)	L OTHER FILE	IN ALE
	DC 1A n79A-n257A		
	DC 1A n79A		
DC_1A_n79C-n257A	DC_1A_n257A	1A	
B0_1/\(\frac{1}{2}\)	DC_1A_n79A-n257A	.,,	
	DC 1A n79A		
DC_1A_n79C-n257D	DC 1A n257A	1A	
B	DC_1A_n79A-n257A		
	DC 1A n79A		
DC_1A_n79C-n257E	DC_1A_n257A	1A	
	DC 1A n79A-n257A		
	DC_1A_n79A		
DC_1A_n79C-n257F	DC_1A_n257A	1A	
	DC_1A_n79A-n257A		
	DC_3A_n77A		
DC_3A_n77A-n257A	DC_3A_n257A	3A	CA n77A-n257A
	DC 3A n77A-n257A		
	DC 3A n77A		
DC_3A_n77A-n257D	DC_3A_n257A	3A	CA_n77A-n257D
	DC_3A_n77A-n257A		
	DC 3A n77A		
DC_3A_n77A-n257E	DC 3A n257A	3A	CA n77A-n257E
	DC_3A_n77A-n257A		_
	DC_3A_n77A		
DC_3A_n77A-n257F	DC 3A n257A	3A	CA_n77A-n257F
	DC_3A_n77A-n257A	-	_
	DC_3A_n77A		
DC_3A_n77C-n257A	DC_3A_n257A	3A	CA_n77C-n257A
	DC_3A_n77A-n257A	JA + ongX	111 =
	DC 3A n77A	V =: (01)	
DC_3A_n77C-n257D	DC 3A n257A / /	3A	CA_n77C-n257D
	DC_3A_n77A-n257A		_
	DC 3A n77A		
DC_3A_n77C-n257E	DC_3A_n257A	3A	CA_n77C-n257E
4. 艾郁	DC_3A_n77A-n257A		
开入.	DC_3A_n77A		
DC_3A_n77C-n257F	DC_3A_n257A	3A	CA_n77C-n257F
	DC_3A_n77A-n257A		
	DC_3A_n78A		
DC_3A_n78A-n257A	DC_3A_n257A	3A	CA_n78A-n257A
	DC_3A_n78A-n257A		
	DC_3A_n78A		
DC_3A_n78A-n257D	DC_3A_n257A	3A	CA_n78A-n257D
	DC_3A_n78A-n257A		
DO 04	DC_3A_n78A		00.
DC_3A_n78A-n257E	DC_3A_n257A	3A	CA_n78A-n257E
	DC_3A_n78A-n257A		
DO 04 704 077	DC_3A_n78A		04 - 504 - 5
DC_3A_n78A-n257F	DC_3A_n257A	3A	CA_n78A-n257F
	DC_3A_n78A-n257A		
DO 04 700 055:	DC_3A_n78A	24	04 700 05-74
DC_3A_n78C-n257A	DC_3A_n257A	3A	CA_n78C-n257A
	DC_3A_n78A-n257A		
DC 24 5790 50570	DC_3A_n78A	2.4	CA 570C 50E7D
DC_3A_n78C-n257D	DC_3A_n257A	3A	CA_n78C-n257D
	DC_3A_n78A-n257A		
DC 34 570C 52575	DC_3A_n78A	2 /	CA p70C p2E7E
DC_3A_n78C-n257E	DC_3A_n257A	3A	CA_n78C-n257E
	DC_3A_n78A-n257A		
DC 34 579C 53575	DC_3A_n78A	3A CA_n7	CA p70C p2575
DC_3A_n78C-n257F	DC_3A_n257A		CA_n78C-n257F
	DC_3A_n78A-n257A DC_3A_n79A		
DC_3A_n79A-n257A	DC_3A_1179A DC_3A_1257A	3A CA_n79	CA_n79A-n257A
DO_2V_III.8V-II521.H	DC_3A_n257A DC_3A_n79A-n257A		OA_11/8A-1123/A
	DO_0A_III		<u> </u>

	1 1- 141.00		
EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置
DC_3A_n79A-n257D	DC_3A_n79A DC_3A_n257A DC_3A_n79A-n257A	3A	CA_n79A-n257D
	DC_3A_n257A DC_3A_n79A-n257A		
DC_3A_n79A-n257E	DC_3A_n79A DC_3A_n257A DC_3A_n79A-n257A	3A	CA_n79A-n257E
DC_3A_n79A-n257F	DC_3A_n79A DC_3A_n257A DC_3A_n79A-n257A	3A	CA_n79A-n257F
DC_3A_n79C-n257A	DC_3A_n79A DC_3A_n257A DC_3A_n79A-n257A	3A	CA_n79C-n257A
DC_3A_n79C-n257D	DC_3A_n79A DC_3A_n257A DC_3A_n79A-n257A	3A	CA_n79C-n257D
DC_3A_n79C-n257E	DC_3A_n79A DC_3A_n257A DC_3A_n79A-n257A	3A	CA_n79C-n257E
DC_3A_n79C-n257F	DC_3A_n79A DC_3A_n257A DC_3A_n79A-n257A	3A	CA_n79C-n257F
DC_7A-7A_n78-n257A	DC_7A_n78A DC_7A_n257A DC_7A_n78A-n257A	CA_7A-7A	CA_n78A-n257A
DC_19A_n77A-n257A	DC_19A_n77A DC_19A_n257A DC_19A_n77A-n257A	19A tongX	CA_n77A-n257A
DC_19A_n77A-n257D	DC_19A_n77A DC_19A_n257A DC_19A_n77A-n257A	19A	CA_n77A-n257D
DC_19A_n77A-n257E	DC_19A_n77A DC_19A_n257A DC_19A_n77A-n257A	19A	CA_n77A-n257E
DC_19A_n77A-n257F	DC_19A_n77A DC_19A_n257A DC_19A_n77A-n257A	19A	CA_n77A-n257F
DC_19A_n77C-n257A	DC_19A_n77A DC_19A_n257A DC_19A_n77A-n257A	19A	CA_n77C-n257A
DC_19A_n77C-n257D	DC_19A_n77A DC_19A_n257A DC_19A_n77A-n257A	19A	CA_n77C-n257D
DC_19A_n77C-n257E	DC_19A_n77A DC_19A_n257A DC_19A_n77A-n257A	19A	CA_n77C-n257E
DC_19A_n77C-n257F	DC_19A_n77A DC_19A_n257A DC_19A_n77A-n257A	19A	CA_n77C-n257F
DC_19A_n78A-n257A	DC_19A_n78A DC_19A_n257A DC_19A_n78A-n257A	19A	
DC_19A_n78A-n257D	DC_19A_n78A DC_19A_n257A DC_19A_n78A-n257A	19A	
DC_19A_n78A-n257E	DC_19A_n78A DC_19A_n257A DC_19A_n78A-n257A	19A	
DC_19A_n78A-n257F	DC_19A_n78A DC_19A_n257A DC_19A_n78A-n257A	19A	
DC_19A_n78C-n257A	DC_19A_n78A DC_19A_n257A	19A	

EN-DC 配置	上行链路 EN-DC 配置 (注 1)	E-UTRA 配置	NR 配置	
DC_19A_n78C-n257D	DC_19A_n78A DC_19A_n257A DC_19A_n78A-n257A	19A		
	DC_19A_n78A-n257A			
DC_19A_n78C-n257E	DC_19A_n78A DC_19A_n257A DC_19A_n78A-n257A	19A		
DC_19A_n78C-n257F	DC_19A_n78A DC_19A_n257A DC_19A_n78A-n257A	19A		
DC_19A_n79A-n257A	DC_19A_n79A DC_19A_n257A DC_19A_n79A-n257A	19A	CA_n79A-n257A	
DC_19A_n79A-n257D	DC_19A_n79A DC_19A_n257A DC_19A_n79A-n257A	19A	CA_n79A-n257D	
DC_19A_n79A-n257E	DC_19A_n79A DC_19A_n257A DC_19A_n79A-n257A	19A	CA_n79A-n257E	
DC_19A_n79A-n257F	DC_19A_n79A DC_19A_n257A DC_19A_n79A-n257A	19A	CA_n79A-n257F	
DC_19A_n79C-n257A	DC_19A_n79A DC_19A_n257A DC_19A_n79A-n257A	19A	CA_n79C-n257A	
DC_19A_n79C-n257D	DC_19A_n79A DC_19A_n257A DC_19A_n79A-n257A	19At ongX	CA_n79C-n257D	
DC_19A_n79C-n257E	DC_19A_n79A DC_19A_n257A DC_19A_n79A-n257A	19A	CA_n79C-n257E	
DC_19A_n79C-n257F	DC_19A_n79A DC_19A_n257A DC_19A_n79A-n257A	19A	CA_n79C-n257F	
注 1: 上行链路 CA 配置是当前版本规范支持的配置。				

6 发射端特性

6.1 一般性描述

子条款的详细结构是 TBD。

除非另有说明,否则发射器特性在 UE 的天线连接器处规定,用于在频率范围 1 上工作的频带,在 UE 的空中用于在频率范围 2 上工作的频带。频率范围 1 和频率的要求范围 2 可以单独验证。 对于频率范围为 1 的载波,可以通过禁用 NR FR2 链路来验证要求。 对于频率范围为 2 的载波,可以在 OTA 模式下验证要求,其中 LTE 通过 OTA 连接到网络而无需校准。

- 发射端功率 6. 2
- CA 的发射端功率 6. 2A
- 6. 2A. 1 UE CA 的最大输出功率
- 6, 2A, 1, 1 FR1和FR2之间的带间CA.

〈编者注:要更新的错误。>

对于 FR1 中的带间 NR CA, 表 6.2A.1.1-1 中的 UE 功率类定义了聚合信道带宽内任何传输带宽的最大输出功 率。 最大输出功率测量为每个 UE 天线连接器的最大输出功率之和。 测量周期至少应为一个子帧(1ms)。 应在不同频段的所有分量载波上测量 UE 最大输出功率。 如果每个频段都有独立的天线连接器,则最大输出功 率测量为每个UE天线连接器的最大输出功率之和。

表 6.2A.1.1-1: 带间 NR CA 的最大输出功率

CA 配置	功率等级 3 (DBM)	范围 (dB)

〈编者注:要更新的章节号。〉

号: tongxin5g) 对于 FR1 和 FR2 组合的带间 NR CA, UE 应独立满足 TS 38.101-1 第 6.2.1 条和条款 6.2.1 TS 38.101-2 中规定 的每个发射端功率要求。

- UE CA的最大输出功率降低 6. 2A. 2
- 6, 2A, 2, 1 FR1和FR2之间的带间CA.
- 6.2A.3 UE 为 CA 增加了最大输出功率
- 6.2A.4 为 CA 配置输出功率
- 6. 2A. 4. 1 配置输出功率电平

〈编者注: 6.2A.4.1 的标题将由后来的 RAN4 决定更新〉

- 6. 2A. 4. 2 CA 的 Δ T_{IB, C}
- ΔT_{IB. C}用于 FR1 和 FR2 之间的带间 CA. 6. 2A. 4. 2. 1

NR CA 的 Δ T_{IB, C}对于支持带间 NR CA 配置的 UE, 下表中的 Δ T_{IB, C}适用。 除非另有说明, Δ T_{IB, C}设定为零。

表 6.2A.4.2-1: 由于 NR CA (两个波段) 引起的 Δ TIB, c

带间 EN-DC 配置	NR 频段	Δ T _{IB, C} (dB)

6.2B DC 的发射器功率

6.2B.1 UE EN-DC 的最大输出功率

6.2B.1.1 带内连续的 EN-DC

〈进行要求〉

以下 UE 电源类定义了配置的 CG 的任何传输带宽的总最大输出功率。

最大输出功率测量为 UE 天线连接器 NA 总最大输出功率。 测量周期应至少为一个子帧。

表 6.2B. 1.1-1: EN-DC 的最大输出功率(连续子块)

DC 配置	功率等级 2	范围	功率等级3	范围
	(DBM)	(dB)	(DBM)	(dB)
DC_(n)71B			23	+2/-3
DC_(n)41AA	26	+2/-2 ¹	23 1108	+2/-2 ¹

注 1: 如果所有分量载波 NA 所有发送资源块都被限制在 FUL_low 和 FUL_low + 4 MHz 或 和 FUL_high - 4 MHz 和 FUL_high 内,则通过将容差下限降低 1.5 dB 来放宽最大输出功率要求

6. 2B. 1. 2 带内非连续的 EN-DC

表 6.2B.1.2-1: EN-DC 的最大输出功率(非连续子块)

DC 配置	功率等级 2 (DBM)	范围 (dB)	功率等级 3 (DBM)	范围 (dB)
DC_3A_n3A ⁽²⁾			23	+2/-3
DC 41A n41A	26	+2/-2 ¹	23	+2/-21

注 1: 如果所有分量载波 NA 所有发送资源块都被限制在 FUL_low 和 FUL_low + 4 MHz 或/和 FUL_high - 4 MHz 和 FUL_high 内,则通过将容差下限降低 1.5 dB 来放宽最大输出功率要求

注 2: Rel. 15 仅支持单个交换 UL

6.2B.1.3 FR1 内的带间 EN-DC

〈讲行要求〉

对于 LTE 的带间 EN-DC 和 FR1 中的 NR,以下 UE 功率类定义了聚合信道带宽内任何传输带宽的最大输出功率。最大输出功率测量为每个 UE 天线连接器的最大输出功率之和。测量周期至少应为一个子帧(1ms)。应在不同频段的所有分量载波上测量 UE 最大输出功率。如果每个频段都有独立的天线连接器,则最大输出功率测量为每个 UE 天线连接器的最大输出功率之和。

表 6.2B. 1.3-1: 带间 EN-DC 的最大输出功率 (两个频段)

DC 配置	功率等级3	范围
DC_1A_n28A	(DBM) 23	(dB) +2/-3
DC_1A_1128A DC_1A_1128A	23	+2/-3
DC_1A_n51A	23	+2/-3
	23	+2/-3
DC_1A_n77A DC_1A_n78A	23	+2/-3
DC_1A_n84A_ULSUP- TDM_n78A DC_1A_n84A_ULSUP- FDM_n78A	23	+2/-3
DC 1A n79A	23	+2/-3
DC 2A n5A	23	+2/-3
DC 2A n66A	23	+2/-3
DC 2A n71A	23	+2/-3
DC 2A n78A	23	+2/-3
DC 3A n7A	23	+2/-3
DC 3A n28A	23	+2/-3
DC 3A n40A	23	+2/-3
DC_3A_n51A	23	+2/-3
DC 3A n77A	23	+2/-3
DC_3A_n78A DC_3A_n80A_ULSUP- TDM_n78A, DC_3A_n80A_ULSUP- FDM_n78A	23 公号	tongxinbg
DC_3A_n79A DC_3A_n80A_ULSUP- TDM_n79A, DC_3A_n80A_ULSUP- FDM_n79A	23	+2/-3
DC_3A_n82A	23	+2/-3
DC_5A_n40A	23	+2/-3
DC_5A_n66A	23	+2/-3
DC_5A_n78A	23	+2/-3
DC_7A_n28A	23	+2/-3
DC_7A_n51A	23	+2/-3
DC_7A_n78A	23	+2/-3
DC 8A n40A	23	+2/-3
DC 8A n77A	23	+2/-3
DC_8A_n78A DC_8A_n81A_ULSUP- TDM_n78A, DC_8A_n81A_ULSUP- FDM_n78A	23	+2/-3
DC_8A_n79A DC_8A_n81A_ULSUP- TDM_n79A, DC_8A_n81A_ULSUP- FDM_n79A	23	+2/-3
DC_11A_n77A	23	+2/-3
DC_11A_n78A	23	+2/-3
DC_11A_n79A	23	+2/-3
DC_12A_n5A	23	+2/-3

	DC 配置	功率等级3	范围
	DC 12A n66A	(DBM) 23	(dB) +2/-3
	DC_12A_1100A DC_18A_n77A	23	+2/-3
	DC_18A_1177A DC_18A_n78A	23	+2/-3
	DC_18A_1178A DC_18A_n79A	23	+2/-3
		23	+2/-3
	DC_19A_n77A		
	DC_19A_n78A	23	+2/-3
	DC_19A_n79A	23	+2/-3
	DC_20A_n8A DC_20A_n28A	23	+2/-3
	DC_20A_n20A DC_20A_n83A	23	+2/-3
	DC_20A_n51A	23	+2/-3
	DC_20A_n77A	23	+2/-3
	DC_20A_n78A DC_20A_n82A_ULSUP -TDM_n78A, DC_20A_n82A_ULSUP -FDM_n78A	23	+2/-3
	DC_21A_n77A	23	+2/-3
ĺ	DC_21A_n78A	23	+2/-3
İ	DC_21A_n79A	23	+2/-3
	DC_25A_n41A	23	+2/-3
	DC_26A_n41A	23	+2/-3 1 1 3 8
	DC_26A_n77A	23	t 0]+2/-3
	DC_26A_n78A	23 15	+2/-3
	DC_26A_n79A	信 23	+2/-3
	DC_28A n51A	23	+2/-3
H	DC_28A_n77A	23	+2/-3
+	DC_28A_n78A DC_28A_n83A_ULSUP -TDM_n78A, DC_28A_n83A_ULSUP -FDM_n78A	23	+2/-3
	DC_28A_n79A	23	+2/-3
	DC_30A_n5A	23	+2/-3
	DC_30A_n66A	23	+2/-3
	DC_38A_n78A	N/A	N/A
	DC_39A_n78A	23	+2/-3
	DC_39A_n79A	23	+2/-3
	DC_40A_n77A	N/A	N/A
	DC_41A_n77A	23	+2/-3
	DC_41A_n78A	23	+2/-3
	DC_41A_n79A	23	+2/-3
	DC_42A_n51A	23	+2/-3
	DC_42A_n77A	N/A	N/A
	DC_42A_n78A	N/A	N/A
	DC_42A_n79A	N/A	N/A
	DC_66A_n5A	23	+2/-3
	DC_66A_n71A	23	+2/-3
	DC_66A_n78A, DC_66A_n86A_ULSUP	23	+2/-3

DC 配置	功率等级3 (DBM)	范围 (dB)
-TDM_n78A,		
DC_66A_n86A_ULSUP -FDM_n78A		

带间 EN-DC 包括 FR2 6. 2B. 1. 4

<0TA 要求>

〈编者注:要更新的章节号。〉

对于 LTE 的带间 EN-DC 和 FR2 中的 NR, UE 应独立地满足 TS 36.101 的条款 6.2.2 和条款 6.2.1 TS 38.101-2 中规定的每个发射端功率要求。

带间 EN-DC 包括 FR1 和 FR2 6. 2B. 1. 5

<0TA 要求>

〈编者注:要更新的章节号。〉

对于 FR1 和 FR2 中的 LTE 和 NR 的带间 EN-DC, UE 应满足 TS 38.101-3 第 6.2B.1.3 节中规定的 FR1 中 LTE 和 NR 的带间 EN-DC 的每个发射端功率要求。 TS 38.101-2 的 FR2 第 6.2.1 条中的 NR 独立使用。

UE 最大输出功率降低和 EN-DC 6, 2B, 2

5G通信(公众号: tongxin5g) 6. 2B. 2. 1 带内连续的 EN-DC

带内非连续的 EN-DC 6. 2B. 2. 2

FR1 内的带间 EN-DC 6. 2B. 2. 3

〈进行要求〉

6, 2B, 2, 4 带间 EN-DC 包括 FR2

<OTA 要求>

6, 2B, 2, 5 带间 EN-DC 包括 FR1 和 FR2

<0TA 要求>

对于 EN-DC, UE 额外的最大输出功率降低 6, 2B, 3

6. 2B. 3. 1 带内连续的 EN-DC

对于具有附加要求的 EN-DC 频带组合,表 6.2B.3.1-1 中规定了允许的 A-MPR,用于 E-UTRA 和 NR 小区组中指 示的网络信令值的组合。 除非另有说明,否则下面允许的 A-MPR 是对第 6.2B.2 条规定的 MPR 要求的补充。

表 6.2B. 3.1-1: EN-DC 允许的功率降低

DC 配置	要求(子条款)	E-UTRA 网络信令 值	NR 网络信令值	在多平面重建 (子条款)
DC_(n)71B	6.5B.2.1.2.1	NS_35	NS_35	6.2B.3.1.1
DC_(n)41AA ¹	6.5B.2.1.2.2	NS_04	NS_04	6.2B.3.1.2

注 1: 仅适用于支持此 EN-DC 组合的双 UL 传输的 UE。

NR 的网络信令值映射到[4]中指定的已配置 FBI 和 Additional Specrum Emission 值。 注2:

DC (n)71B的 A-MPR 6. 2B. 3. 1. 1

对于具有根据表 6.2B.3.1.1-1 配置的网络信令值的 DC (n) 71B, 允许的 A-MPR 由以下定义:

- 对于UE,表示支持UE-MRDC-Capability IE 中的 dynamicPowerSharing

$$AMPR_{DC} = CEIL\{M_{A,DC}(A), 0.5\}$$

其中 A-MPR_{nc} 是允许的总功率降低(dB),

- 用于 OFDM:

$$M_{A, DC} = 10.00 - 11.67*A;$$
 $0.00 < A \le 0.30$

$$0.00 < A \leq 0.30$$

$$0.30 < A \leq 0.80$$

$$1.80 < A \leq 1.00$$

- 对于 DFT-S-OFDM:

5. 50; $0.80 < A \le 1.00 \text{ n} 58$ tongx to

中文翻译: 7. 60 - 3. 33*A;

 $0.30 < A \leq 0.60$

5.00;

 $0.60 < A \leq 1.00$

where

$$A = \frac{L_{CRB,LTE} + L_{CRB,NR}}{N_{RB,LTE} + N_{RB,NR}}$$

用 L_{GB} 和 N_{RB} 分配 PRB 的数量和各个 CG 的传输带宽,

- 对于UE,不表示支持 dynamicPowerSharing

$$AMPR_{LTE} = CEIL\{M_{ALTE}, 0.5\}$$

$$AMPR_{NR} = CEIL\{M_{A,NR}, 0.5\}$$

其中 A-MPR 是每个 CG 允许的总功率降低

$$\begin{split} M_{A,LTE} &= M_{A,DC}(A_{LTE,wc}) - \Delta_{LTE} \\ M_{A,NR} &= M_{A,DC}(A_{NR,wc}) - \Delta_{NR} \\ A_{LTE,wc} &= \frac{L_{CRB,LTE} + 1}{N_{RB,LTE} + \tilde{N}_{RB,NR}} \\ A_{NR,wc} &= \frac{1 + L_{CRB,NR}}{N_{RB,LTE} + N_{RB,NR}} \\ \Delta_{LTE} &= 10 \log_{10} \frac{L_{CRB,LTE}}{L_{CRB,LTE} + \tilde{N}_{RB,NR}} \end{split}$$

$$\Delta_{NR} = 10 \log_{10} rac{L_{CRB,NR}}{N_{RB,LTE} + L_{CRB,NR}}$$

其中Ñm 是 SCS 信道的传输带宽配置, SCS = 15 kHz。

6. 2B. 3. 1. 2 NS 04的A-MPR

当 UE 配置为 B41 / n41 带内连续 EN-DC 并且它接收 IE NS 04 时, UE 确定本子条款中规定的总允许最大输出 功率降低。

UE 确定信道配置情况和 A-MPR_{IM} 的值如下:

如果 F_{IM3, low block, low}<2490.5 MHz

信道配置案例 B. A-MPR_{M3}在 6.2B. 3.1.2.1 中定义

其他

信道配置情况 A. A-MPR_{M3}在 6.2B.3.1.2.2 中定义

where

- F_{IM3, low block, low} = (2 * F_{low channel, low edge}) F_{high channel, high edge}
- Flow channel, low edge 是较低传输带宽配置的最低频率。

UE 确定允许的最大输出功率总减少量如下:

对于不支持动态功率共享的 UE,具有独立应用的退避,从号: A-MPR_{LTE}= MAX(A-MPR、

 $A-MPR_{NR} = MAX (A-MPR_{single, NR}, A-MPR_{IM3})$

对于支持动态功率共享的 UE, 回退同等地应用于 LTE 和 NR

 $A-MPR = MAX (A-MPR_{single,LTE}, A-MPR_{single,NR}, A-MPR_{IM3})$

where

- A-MPR_{single-LTE} 是[4] 中为 LTE 传输定义的 A-MPR
- A-MPR_{single, NR}是在[2]中为 NR 传输定义的 A-MPR

用于 NS_04 的 A-MPR_{M3}满足-13 dBm / 1MHz 6.2B.3.1.2.1

对于 UE 配置了信道配置情况 A 或情况 C, 应用于 MCG 上传输的 IM3 和具有非连续资源分配的 SCG 的允许最大 输出功率降低定义如下:

 $A-MPR_{IM3}=I_3=M_A$

其中M。定义如下

 $M_A = 14 : 0 \le A < 0.5$

9; $0.5 \le A < 1.0$

7; $1.0 \le A < 2.0$

5 : 2.0 < A

where:

对于支持动态功率共享的 UE,

$$A = N_{\text{RB_alloc, LTE}} * 12 * \text{SCS}_{\text{LTE}} + N_{\text{RB_alloc, NR}} * 12 * \text{SCS}_{\text{NR}}$$

对于不支持动态功率共享的 UE,

对于LTE

$$A = N_{RB \text{ alloc, LTE}} * 12 * SCS_{LTE} + 12 * SCS_{NR}$$

对于NR

$$A = 12 * SCS_{LTE} + N_{RB_alloc, NR} * 12 * SCS_{NR}$$

NS 04的A-MPR满足-25 dBm / 1MHz 6.2B.3.1.2.2

对于 UE 配置了信道配置情况 B 或情况 D, 应用于 MCG 上传输的 IM3 和具有非连续资源分配的 SCG 的允许最大 输出功率降低定义如下:

$$A-MPR_{IM3.-13}=M_A$$

其中M。定义如下

... v ≤ A < 2.0 12; 2.0 ≤ A < 5.0. tongxin5g) 5.0 × A 5.0 × A

where:

对于支持动态功率共享的 UE,

$$A = N_{\text{RB_alloc, LTE}} * 12 * \text{SCS}_{\text{LTE}} + N_{\text{RB_alloc, NR}} * 12 * \text{SCS}_{\text{NR}}$$

对于不支持动态功率共享的 UE,

对于LTE

$$A = N_{RB_alloc, LTE} * 12 * SCS_{LTE} + 12 * SCS_{NR}$$

对于NR

$$A = 12 * SCS_{LTE} + N_{RB_alloc, NR} * 12 * SCS_{NR}$$

〈省略任何中间子条款〉

对于具有附加要求的带内 EN-DC 频带组合,表 6.2B.3.1-1 中规定了允许的 A-MPR,用于 E-UTRA 和 NR 小区组 中指示的网络信令值的组合。 除非另有说明,否则下面允许的 A-MPR 是对第 6.2B.2 条规定的 MPR 要求的补 充。

表 6.2B.3.1-1: EN-DC 允许的功率降低

DC 配置	要求(子条款)	E-UTRA 网络信令 值	NR 网络信令值	A-MPR (子条款)
DC_41A_n41 ¹	6.6.3.3.19 and 6.6.2.2.2 of [4] and 6.5.2.3.2 and 6.5.3.3.1 of [2]	NS_04	NS_04	6.2B.3.2.2
注 1: 仅适用于支持此 EN-DC 组合的双 UL 传输的 UE。				

NS 04的A-MPR 6. 2B. 3. 2. 1

当 UE 配置为 B41 / n41 带内非连续 EN-DC 并且它接收 IE NS_04 时, UE 确定本子条款中规定的总允许最大输 出功率降低。

UE 确定信道配置情况和 A-MPR_{IM3} 的值如下:

如果 AND $(F_{IM3, low_block, high} \langle F_{filter, low}, MAX (SEM_{13, high}, F_{IM3, high_block, low}) \rangle F_{filter, high})$

信道配置案例 C. A-MPR_{IM} 在 6. 2B. 3. 1. 2. 1 中定义

其他

信道配置案例 D. A-MPR_{IM3}在 6.2B.3.1.2.2 中定义

where

- F_{IM3. low_block. high}= (2 * F_{low_channel. high_edge}) - F_{high_channel. fow_edge}
- F_{IM3. high_block. low}= (2 * F_{high_channel. fow_edge})

- $F_{low_channel, \ low_edge}$ 是较低传输带宽配置的最低频率。

- F_{low_channel, high_edge} 是较低传输带宽配置的最高频率。

- F_{high channel, low edge} 是上传输带宽配置的最低频率。

- Fhigh channel, high edge 是上传输带宽配置的最高频率。

- $F_{\text{filter, low}} = 2480 \text{MHz}$

- F_{filter, high}= 2750MHz

- SEM_13_bigh=阈值频率,其中上部信道的上部光谱发射掩模从-13 dBm / 1MHz 下降到-25 dBm / 1MHz,如 6.5B.2.1.2.2 中所述。

UE 确定 A-MPR_{aclroverlap}的值如下:

$$A\text{-MPR}_{\text{aclroverlap}}\text{=}~4~dB$$

其他

where

- Wgap = Fhigh_channel, low_edge -Flow_channel, high_edge

UE 确定允许的最大输出功率总减少量如下:

对于不支持动态功率共享的 UE, 具有独立应用的退避

 $A-MPR_{LTE} = MAX (A-MPR_{single, LTE}, A-MPR_{IM3}, A-MPR_{aclroverlap})$

A-MPR_{NR}= MAX (A-MPR_{single,NR}, A-MPR_{IM3}, A-MPR_{aclroverlap})

对于支持动态功率共享的 UE, 回退同等地应用于 LTE 和 NR

 $A-MPR = MAX \ (A-MPR_{\text{single}, LTE}, \ A-MPR_{\text{single}, NR}, \ A-MPR_{\text{IM3}}, \ A-MPR_{\text{actroverlap}})$

where

- A-MPR_{single, LTE} 是在[4]中为 LTE 传输定义的 A-MPR。
- A-MPR_{single NR}是在[2]中为 NR 传输定义的 A-MPR。
- FR1 内的带间 EN-DC 6. 2B. 3. 3
- 带间 EN-DC 包括 FR2 6, 2B, 3, 4
- 6. 2B. 3. 5 带间 EN-DC 包括 FR1 和 FR2

#L直输出功率电平 <編者注: 6.2B.4.1的标题将由后来的 RANA決定更新〉

6.2B.4.1.1

〈Pcmax 的等式〉

6. 2B. 4. 1. 2 带内非连续的 EN-DC

〈Pcmax 的等式〉

6. 2B. 4. 1. 3 FR1 内的带间 EN-DC

〈Pcmax 的等式〉

带间 EN-DC 包括 FR2 6.2B.4.1.4

〈Pcmax 的等式〉

6. 2B. 4. 1. 5 带间 EN-DC 包括 FR1 和 FR2

〈Pcmax 的等式〉

EN-DC 的 A T_{IB. C} 6. 2B. 4. 2

对于支持带间 EN-DC 配置的 UE, 下表中的 Δ T_{IB. G}适用于除非另有说明,相同的 Δ T_{IB. G}适用于具有相同 NR 操作 的 DC 配置的 NR 频段部分频段组合。 除非另有说明, Δ T_{IR. C}设置为零。

3GPP

6. 2B. 4. 2. 1 带内连续的 EN-DC

6. 2B. 4. 2. 3 FR1 内的带间 EN-DC

6.2B.4.2.3.1 Δ T_{IB. C}用于 EN-DC 两个波段

表 6.2B.4.2.3.1-1: 由 EN-DC 引起的 Δ T_{IB, C} (两个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{IB, C}$ (dB)
	1	0.3
DC_1_n28	n28	0.6
50110	1	0.5
DC_1_n40	n40	0.5
	1	0.6
DC_1_n51	n51	0.6
	1	0.6
DC_1_n77	n77	0.8
	1	0.3
DC_1_n78	n78	0.8
	2	0.3
DC_2_n5	n5	0.3
	2	0.5
DC_2_n66	n66	0.5
	2	0.3 = 0
DC_2_n71	n71	0.3 9
	2	+ 0N8 ^X 0.6
DC_2A_n78A	n78	0.8
		0.5
DC_3_n7	3(人) () 图信 n7	0.5
	- C 15H H 1	0.3
DC_3_n28	10/2	
一大数件。	n28	0.3
DC_3_n40	3	0.5
, – –	n40	0.5
DC_3_n51	3	0.3
	n51	0.3
DC_3_n77	3	0.6
	n77	0.8
DC_3_n78	3	0.6
	n78	0.8
DC_5A_n40A	5	0.3
	n40	0.3
DC_5A_n66A	5	0.3
2 220 2.000.1	n66	0.3
DC_5_n78	5	0.6
2 0 _ 0 0	n78	0.8
DC_7_n28	7	0.3
20_7_1.20	n28	0.3
DC_7_n51	7	0.3
20	n51	0.3
DC_7_n78	7	0.5
50_7_1170	n78	0.8
DC_8_n40	8	0.3
20_0_1170	n40	0.3
DC_8_n77	8	0.6
50_0_1177	n77	0.8
DC_8_n78	8	0.6
DC_0_1176	n77	0.8
DC 11 ~77	11	0.4
DC_11_n77	n77	0.8
DO 11	11	0.4
DC_11_n78	n78	0.8
	21.0	3.0

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{IB, C}$ (dB)
DC_12A_n5A	12	0.4
DC_12A_1I3A	n5	0.8
DC_12A_n66A	12	0.8
	n66	0.3
DC_18_n77	18 n77	0.3
	18	0.8
DC_18_n78	n78	0.8
50.40.77	19	0.3
DC_19_n77	n77	0.8
DC 10 p79	19	0.3
DC_19_n78	n78	0.8
DC_20_n8	20	0.4
50_20_110	n8	0.4
DC_20_n28	20	0.5
	n28 20	0.5 0.5
DC_20_n51	n51	0.5
	20	0.6
DC_20_n77	n77	0.8
DO 00 T0	20	0.6
DC_20_n78	n78	0.8
DC 24 x77	21	0.4
DC_21_n77	n77	0.8
	21	0.4
DC_21_n78	n78	0.8
	n77	0.8
	25	0.559
DC_25_n41	n41	t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	, H	0.82
DC_26_n41	26 n41	0.3
	三二直	0.3
DC_26A_n77A	n77	0.8
Do of #WITE	26	0.3
DC_26_n78	n78	0.8
DC_28_n51	28	0.5
DC_26_1131	n51	0.5
DC_28_n77	28	0.5
23_23	n77	0.8
DC_28_n78	28	0.5
	n78	0.8
DC_30A_n5A	30 n5	0.3
	30	0.5
DC_30A_n66A	n66	0.8
DC_38_n78	n78	0.5
	39	0.3
DC_39_n78	n78	0.8
DC_39_n79	39	0.3
	n79	0.8
DC_40_n77	n77	0.5
DC_41_n77	41	0.3
	n77	0.8
DC_41_n78	41 n78	0.3 0.8
	41	0.8
DC_41_n79	n79	0.8
	42	0.6
DC_42_n51	·	
50_12_1101	n51	0.8
	n51 66	0.8
DC_66_n5		
DC_66_n5	66 n5 66	0.3 0.3 0.3
	66 n5	0.3 0.3

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{\text{IB, c}}$ (dB)
DC 66 n78	66	0.6
DC_00_11/8	n78	0.8
注 1: 该要求适用于 2545-2690MHz 频率范围内的 UE 发射。		
注 2: 该要求适用于 2496-2545MHz 频率范围内的 UE 发射。		

中文翻译: 5G通信(公众号: tongxin5g)

6. 2B. 4. 2. 3. 2 Δ T_{IB. C}用于 EN-DC 三个波段

表 6.2B.4.2.3.2-1: 由 EN-DC 引起的 Δ T_{IB, C} (三个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{\text{IB, C}}$ (dB)
·	1	0.3
DC_1-3_n28	3	0.3
	n28	0.6
	1	0.6
DC_1-3_n77	3	0.6
	n77	0.8
	1	0.6
DC_1-3_n78	3	0.6
	n78	0.8
DC_1-3_n79	1	0.3
	3	0.3 0.3
DC_1-5_n78	5	0.6
DC_1-5_1176	n78	0.8
	1	0.5
DC_1-7_n28	7	0.6
50_1 /_1126	n28	0.6
	1	0.6
DC_1-7_n78	7	0.6
	n78	0.8
	1	0.6
DC_1-7-7_n78	7	0.6
	n78	0.8
	1	0.3708
DC_1-8_n78	8	ton8 > 0.6
	n78	0.8
	1 / /	0.3
DC_1-1A_n77	18	0.3
	5G7 n77	0.8
10000000000000000000000000000000000000	1	0.3
DC_1-18_n78	18	0.3
1 / 2	n78	0.8
DC 1 10 p77	1 19	0.3 0.3
DC_1-19_n77	n77	0.8
	1	0.3
DC_1-19_n78	19	0.3
DO_1 10_11/0	n78	0.8
	1	0.3
DC_1-19_n79	19	0.3
	1	0.3
DC_1-20_n28	20	0.6
	N28	0.6
	1	0.3
DC_1-20_n78	20	0.3
	n78	0.8
	1	0.3
DC_1-21_n77	21	0.3
	n77	0.8
DO 101 ==	1	0.6
DC_1-21_n78	21	0.4
	n78	0.8
DC_1-21_n79	1	0.3
	21	0.3
DC 1 41 p77	1 41	0.5 0.5
DC_1-41_n77	n77	0.8
	1	0.6
DC_1-41_n78	41	0.5
20_1 41_1170	n78	0.8
	1110	0.0

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{\text{IB, C}}$ (dB)
	1	0.5
DC_1-41_n79	41	0.5
	1	0.3
DC_1-28_n77	28	0.6
	n77	0.8
DO 4.00 = 70	1	0.3
DC_1-28_n78	28	0.6
	n78 1	0.8 0.3
DC_1_n28-n78	n28	0.6
DO_1_1120-1170	n78	0.8
	1	0.3
DC_1_n28-n79	28	0.3
	1	0.6
DC_1-42_n77	42	0.8
	n77	0.8
	1	0.3
DC_1-42_n78	42	0.8
	n78	0.8
DC_1-42_n79	1	0.3
	42 1	0.8 0.3
DC_1_SUL_n78-n84	n78	0.8
DC_1_30L_1176-1164	n84	0.3
	1	0.6
DC_1_n77-n79	n77	0.8
	n79	0
	1	0.3,59
DC_1_n78-n79	n78	100 X 0.8
	n79	0.5
	2	0.3
DC_2-(n)71B	ライン 71 / A / 71 / F	0.3
· · · · · · · · · · · · · · · · · · ·	2	0.5
DC_2-5_n66	5	0.3
H X F	n66	0.5
	2	0.5
DC_2-30_n66	30	0.3
	n66 2	0.5
DC_2-66_n71	66	0.5 0.5
DC_2-00_117 1	 n71	0.3
	3	0.6
DC_3_n3-n77	n3	0.6
	n77	0.8
	3	0.6
DC_3_n3-n78	n3	0.6
	n78	0.8
	3	0.6
DC_3-5_n78	5	0.6
	n78	0.8
DC 3.7 n20	7	0.5 0.5
DC_3-7_n28	<i>τ</i> n28	0.3
	3	0.6
DC_3-7_n78, DC_3-7-	7	0.6
7_n78	n78	0.8
	3	0.6
DC_3-8_n78	8	0.6
	n78	0.8
	3	0.6
DC_3-19_n77	19	0.3
	n77	0.8
DC_3-19_n78	3	0.6

# 带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{IB, C}$ (dB)
It led DV DO HOTE	19	0.3
	n78	0.8
50.040.70	3	0.3
DC_3-19_n79	19	0.3
	3	0.3
DC_3-20_n28	20	0.5
	n28	0.5
	3	0.5
DC_3-20_n78	20	0.3
	n78	0.8
	3	0.8
DC_3-21_n77	21	0.9
	n77	0.8
	3	0.8
DC_3-21_n78	21	0.9
	n78	0.8
DC_3-21_n79	3	0.8
	21	0.9
DO 0 00 .70	3	0.5
DC_3-28_n78	28	0.3
	n78	0.8
DC 34 x20 x70	3 n28	0.5 0.3
DC_3A_n28-n78	n78	0.8
	3	0.6
DC_3-38_n78	n78	0.8
	3	0.6
		0.3 ¹ 5 g
DC_3-41_n78	41	10 X 0.8 ²
	n78	10118 10.8
	3 / 1	0.6
DC_3-42_n77	42 1	0.8
	こ (計) 下h787	0.8
and to	3	0.6
DC 3-42 n78	42	0.8
中人	n78	0.8
DC_3-42_n79	3	0.6
DC_3-42_1179	42	0.8
	3	0.6
DC_3_n77-n79	n77	0.8
	n79	0
	3	0.6
DC_3_n78-n79	n78	0.8
	n79	0.5
DO 0 0111 === ==	3	0.6
DC_3_SUL_n78-n80	n78	0.8
	n80	0.6
DC_3A_SUL_n78A-	3	0.5
n82A	n78	0.8
	n82	0.3
DC_5-7_n78, DC_5-7-	5	0.6
7_n78	7	0.6
	n78	0.8 0.3
DC_5_30_n66	5	U.3
	20	
DC_5_30_n66	30 n66	0.3
	n66	0.3 0.5
DC_5_30_n66 DC_7-7_n78	n66 7	0.3 0.5 0.5
	n66 7 n78	0.3 0.5 0.5 0.8
DC_7-7_n78	n66 7 n78 7	0.3 0.5 0.5 0.8 0.3
	n66 7 n78 7 20	0.3 0.5 0.5 0.8 0.3 0.6
DC_7-7_n78	n66 7 n78 7 20 n28	0.3 0.5 0.5 0.8 0.3 0.6 0.6
DC_7-7_n78 DC_7-20_n28	n66 7 n78 7 20 n28 7	0.3 0.5 0.5 0.8 0.3 0.6 0.6 0.3
DC_7-7_n78	n66 7 n78 7 20 n28	0.3 0.5 0.5 0.8 0.3 0.6 0.6

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{\text{\tiny IB, C}}$ (dB)
	7	0.3
DC_7-28_n78	28	0.3
	n78	0.8 0.3
DC_7_n28-n78	7 n28	0.3
50_7_1120 1170	n78	0.8
DC 7.40 =70	7	0.5
DC_7-46_n78	n78	0.8
	8	0.6
DC_8_SUL_n78- n81	n78	0.8
	n81	0.6
DC_18-28_n77	18 28	0.5 0.5
00_10-20_1177	n77	0.8
	18	0.5
DC_18-28_n78	28	0.5
	n78	0.8
DC_18-28_n79	18	0.5
B0_10 20_1170	28	0.5
DO 40 04 37	19	0.3
DC_19-21_n77	21 p77	0.4 0.8
	n77 19	0.8
DC_19-21_n78	21	0.3
50_10 21_1110	n78	0.8
DC 40 04 =70	19	0.3
DC_19-21_n79	21	0.4
	19	0.3,59
DC_19-42_n77	42	t 070 8 0.8 1
	n77	0.8
DC_19-42_n78	19 42	0.3 0.8
DC_19-42_1176	下	0.8
	19	0.3
DC_19-42_n79	42	0.8
H X M	19	0.3
DC_19_n77-n79	n77	0.8
	n79	0
DC 40 =70 =70	19	0.3
DC_19_n78-n79	n78 n79	0.8 0.5
	20	0.4
DC_20_n8-n75	n8	0.4
DC 20 x29 x75	20	0.5
DC_20_n28-n75	n28	0.7
	20	0.6
DC_20_n28-n78	n28	0.6
	n78 20	0.8 0.5
DC_20_n75-n78	n78	0.8
DO 00	20	0.5
DC_20_n76-n78	n78	0.8
DC 204 CH 5794	20	0.6
DC_20A_SUL_n78A- n82A	n78	0.8
IIOZ/ (n82	0.6
DC_20A_SUL_n78A-	20	0.8
n83A	n78 n83	0.8 0.8
	21	0.8
DC_21-42_n77	42	0.8
=, , ,	n77	0.8
	21	0.4
DC_21-42_n78	42	0.8
	n78	0.8

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{\text{IB, C}}$ (dB)
DC_21-42_n79	21	0.4
	42	0.8
	21	0.4
DC_21_n77-n79	n77	0.8
	n79	0
	21	0.4
DC_21_n78-n79	n78	0.8
	n79	0.5
	28	0.5
DC_28-42_n77	42	0.8
	n77	0.8
	28	0.5
DC_28-42_n78	42	0.8
	n78	0.8
DO 00 10 TO	28	0.5
DC_28-42_n79	42	0.8
	28	0.5
DC_28_SUL_n78-n83	n78	0.8
	n83	0.5
	41	0.5
DC_41-42_n77	42	0.8
	n77	0.8
	41	0.5
DC_41-42_n78	42	0.8
	n78	0.8
DO 44 40 .70	41	0.
DC_41-42_n79	42	0.8
DO 44 .77	41	0.3,59
DC_41_n77	n77	no X 0.8
DO 44 .70	41	0.3
DC_41_n78	n78	0.8
DO 44 .70	41 57	0.3
DC_41_n79	-C-1H-1-n79	0.8
en it.	66	0.3
DC_66_(n)71	71	0.3
中大	n71	0.3
· · · · · · · · · · · · · · · · · · ·	66	0.6
DC_66_SUL_n78-n86	n78	0.8
DO 00 30L 11/0-1100	1170	0.0

注 1: 该要求适用于 2545-2690MHz 频率范围内的 UE 发射。

注 2: 该要求适用于 2496-2545MHz 频率范围内的 UE 发射。

6. 2B. 4. 2. 3. 3 Δ T_{IB. C}用于 EN-DC 四个频段

表 6.2B.4.2.3.3-1: EN-DC 引起的 Δ T_{IB, C} (四个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{\text{IB, c}}$ (dB)
	1	0.6
DC 4 2 F = 70	3	0.6
DC_1-3-5_n78	5	0.3
	n78	0.8
	1	0.6
DC 4 2 7 ~20	3	0.6
DC_1-3-7_n28	7	0.6
	n28	0.6
	1	0.7
DC_1-3-7_n78	3	0.7
DC_1-3-7-7_n78	7	0.7
	n78	0.8
	1	0.6
DO 4 0 0 70	3	0.6
DC_1-3-8_n78	8	0.6
	n78	0.8
	1	0.6
DO 4 0 00 .77	3	0.6
DC_1-3-28_n77	28	0.6
	n77	0.8
	1	0.6
DO 4 0 00 TO	3	0.6
DC_1-3-28_n78	28	0.6
	n78	8.0
	1	t 018 0.6
	3	0.6
DC_1-3_n28-n78	n28	0.6
	N名信 n78	0.8
	50001	0.6
DC_1-3-28_n79	3	0.6
	28	0.6
HX	1	0.6
· ·	3	0.6
DC_1-3-19_n78	19	0.3
	n78	0.8
	1	0.3
DC_1-3-19_n79	3	0.3
	19	0.3
	1	0.3
	3	0.3
DC_1-3-20_n28	20	0.6
	n28	0.6
	1	0.6
	3	0.6
DC_1-3-20_n78	20	0.3
	n78	0.8
	1	0.6
	3	0.8
DC_1-3-21_n77	21	0.9
	n77	0.8
	1	0.6
	3	0.8
DC_1-3-21_n78	21	0.8
	n78	0.8
	1	0.8
DC_1-3-21_n79	3	0.8
00_1-3-21_11/9	21	0.8
		0.6
DC 1342 577	3	0.6
DC_1-3-42_n77	42	
	42	0.8

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{\text{IB, C}}$ (dB)
	n77	0.8
	1	0.6
DC_1-3-42_n78	3	0.6
BO_1 0 42_1170	42	0.8
	n78	0.8
	1	0.6
DC_1-3-42_n79	3	0.6
	42	0.8
50 45	1	0.6
DC_1-5-7_n78	5	0.6
DC_1-5-7-7_n78	7	0.6
	n78	0.8 0.5
	7	0.6
DC_1-7-20_n28	20	0.6
	n28	0.6
	1	0.6
	7	0.7
DC_1-7-20_n78	20	0.4
	n78	0.8
	1	0.6
DO 4 7	7	0.6
DC_1-7_n28-n78	n28	0.6
	n78	0.8
	1	0.3
DO 4 40 00 . 77	18	0.5
DC_1-18-28_n77	28	0.5
	n77	0,8 5 9
	1	ng X 0.3
DC 1 10 20 n70	18	0.5
DC_1-18-28_n78	28	0.5
	元 / n78 / L / / /	0.8
	1311	
4	501月1日1	0.3
DC_1-18-28_n79	56通行 1	0.3 0.5
DC_1-18-28_n79	5G)用 1 18 28	0.3 0.5 0.5
DC_1-18-28_n79	5G 1 1 18 28 1	0.3 0.5 0.5 0.6
中文的	18 28 1 19	0.3 0.5 0.5 0.6 0.3
DC_1-18-28_n79 DC_1-19-42_n77	18 28 1 19 42	0.3 0.5 0.5 0.6 0.3 0.8
中文的	18 28 1 19 42 n77	0.3 0.5 0.5 0.6 0.3 0.8 0.8
中文的	18 28 1 19 42 n77	0.3 0.5 0.5 0.6 0.3 0.8 0.8 0.3
中文的	18 28 1 19 42 n77 1 19	0.3 0.5 0.5 0.6 0.3 0.8 0.8 0.3 0.3
DC_1-19-42_n77	18 28 1 19 42 n77 1 19 42	0.3 0.5 0.5 0.6 0.3 0.8 0.8 0.3 0.3 0.3
DC_1-19-42_n77	18 28 1 19 42 n77 1 19 42 n78	0.3 0.5 0.5 0.6 0.3 0.8 0.8 0.3 0.3 0.3 0.8
DC_1-19-42_n77 DC_1-19-42_n78	18 28 1 19 42 n77 1 19 42 n78	0.3 0.5 0.5 0.6 0.3 0.8 0.8 0.3 0.3 0.8 0.3
DC_1-19-42_n77	1 18 28 1 19 42 n77 1 19 42 n78 1 19	0.3 0.5 0.5 0.6 0.3 0.8 0.3 0.3 0.8 0.8 0.3 0.8
DC_1-19-42_n77 DC_1-19-42_n78	18 28 1 19 42 n77 1 19 42 n78 1 19 42 19 42	0.3 0.5 0.5 0.6 0.3 0.8 0.8 0.3 0.3 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79	18 28 1 19 42 n77 1 19 42 n78 1 19 42 1 19 42 1	0.3 0.5 0.5 0.6 0.8 0.8 0.3 0.3 0.8 0.8 0.3 0.8 0.8 0.8 0.8 0.3 0.3 0.3 0.3 0.3 0.3
DC_1-19-42_n77 DC_1-19-42_n78	18 28 1 19 42 n77 1 19 42 n78 1 19 42 1 20	0.3 0.5 0.5 0.6 0.8 0.8 0.3 0.3 0.8 0.3 0.3 0.8 0.8 0.8 0.8 0.3 0.3 0.3 0.6
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79	18 28 1 19 42 n77 1 19 42 n78 1 19 42 n78 1 19 20 n28	0.3 0.5 0.5 0.6 0.8 0.8 0.3 0.3 0.8 0.8 0.3 0.8 0.8 0.8 0.8 0.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79	18 28 1 19 42 n77 1 19 42 n78 1 19 42 1 20	0.3 0.5 0.5 0.6 0.8 0.8 0.3 0.3 0.8 0.8 0.3 0.3 0.8 0.8 0.8 0.3 0.3 0.6 0.6 0.6
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79 DC_1-20_n28-n78	18 28 1 19 42 n77 1 19 42 n78 1 19 42 n78 1 20 n28 n78	0.3 0.5 0.5 0.6 0.8 0.8 0.3 0.3 0.8 0.8 0.3 0.8 0.8 0.8 0.8 0.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79	18 28 1 19 42 n77 1 19 42 n78 1 19 42 n78 1 20 n28 n78 1	0.3 0.5 0.5 0.6 0.8 0.8 0.3 0.8 0.8 0.3 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79 DC_1-20_n28-n78	1 18 28 1 1 19 42 1 1 19 42 1 1 19 42 1 1 20 n28 n78 1 1 21 21	0.3 0.5 0.5 0.6 0.8 0.3 0.3 0.8 0.3 0.8 0.3 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79 DC_1-20_n28-n78	1 18 28 1 1 19 42 1 1 19 42 1 1 20 n28 n78 1 1 21 28 n77 1 28 n77 1 1	0.3
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79 DC_1-20_n28-n78 DC_1-21-28_n77	1 18 28 1 1 19 42 1 1 19 42 1 1 20 n28 n78 1 1 21 28 n77 1 1 21 21 21 21 21 21 21 21 21 21 21 21	0.3
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79 DC_1-20_n28-n78	1 18 28 1 1 19 42 1 1 19 42 1 1 20 n28 n78 1 1 21 28 n77 1 1 21 28	0.3
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79 DC_1-20_n28-n78 DC_1-21-28_n77	1 18 28 1 1 19 42 1 1 19 42 1 1 20 n28 n78 1 1 21 28 n77 1 1 21 21 21 21 21 21 21 21 21 21 21 21	0.3
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79 DC_1-20_n28-n78 DC_1-21-28_n77	18 28 1 19 42 n77 1 19 42 n78 1 19 42 n78 1 19 20 n28 n78 1 20 n28 n77 1 21 221 28 n77 1 21 28 n77	0.3 0.5 0.5 0.6 0.3 0.8 0.8 0.3 0.8 0.8 0.3 0.8 0.8 0.3 0.8 0.3 0.6 0.6 0.6 0.6 0.6 0.6 0.8 0.6 0.6 0.8 0.6 0.4 0.6 0.8 0.3 0.3 0.4 0.6 0.8 0.3 0.3
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79 DC_1-20_n28-n78 DC_1-21-28_n77	1 18 28 1 1 19 42 1 1 19 42 1 1 19 42 1 28	0.3
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79 DC_1-20_n28-n78 DC_1-21-28_n77	18 28 1 19 42 n77 1 19 42 n78 1 19 42 n78 1 19 20 n28 n78 1 21 20 n28 n78 1 21 21 28 n77	0.3 0.5 0.5 0.6 0.3 0.8 0.8 0.3 0.8 0.8 0.3 0.8 0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.8 0.6 0.6 0.8 0.7 0.6 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79 DC_1-20_n28-n78 DC_1-21-28_n77 DC_1-21-28_n79	18 28 1 19 42 n77 1 19 42 n78 1 19 42 n78 1 19 20 n28 n78 1 21 20 n28 n78 1 21 21 28 n77 1 21 21 28 n78 1	0.3 0.5 0.5 0.6 0.3 0.8 0.8 0.3 0.8 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.8 0.8 0.3 0.6 0.6 0.6 0.8 0.8 0.3 0.6 0.6 0.6 0.8 0.8 0.3 0.6 0.6 0.6 0.8 0.8 0.3 0.6 0.6 0.6 0.8 0.8 0.3 0.6 0.6 0.6 0.8 0.8 0.3 0.6 0.6 0.6 0.6 0.8 0.8 0.3 0.6 0.6 0.6 0.8 0.8 0.3 0.4 0.6 0.6 0.8 0.8 0.3 0.4 0.6 0.8 0.8 0.3 0.4 0.6 0.8
DC_1-19-42_n77 DC_1-19-42_n78 DC_1-19-42_n79 DC_1-20_n28-n78 DC_1-21-28_n77	18 28 1 19 42 n77 1 19 42 n78 1 19 42 n78 1 19 20 n28 n78 1 21 20 n28 n78 1 21 21 28 n77	0.3 0.5 0.5 0.6 0.3 0.8 0.8 0.3 0.8 0.8 0.3 0.8 0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.8 0.6 0.6 0.8 0.7 0.6 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{IB, C}$ (dB)
MAI A TON TO HOTTE	n77	0.8
	1	0.3
DC 1 21 42 p79	21	0.4
DC_1-21-42_n78	42	0.8
	n78	0.8
	1	0.3
DC_1-21-42_n79	21	0.4
	42	0.8
	1	0.6
DC_1-28-42_n77	28	0.6
]	42	0.8
	n77	0.8
	1	0.3
DC_1-28-42_n78	28	0.6
	42 n78	0.8
	1	0.3
DC_1-28-42_n79	28	0.6
DC_1-20-42_11/9	42	0.8
	1	0.5
	41	0.5
DC_1-41-42_n77	42	0.8
	n77	0.8
	1	0.5
	41	0.5
DC_1-41-42_n78	42	0.8
	n78	0.8
	1	0,5 5 9
DC_1-41-42_n79	41	n 0 × 0.5
	42	0.8
	2	0.5
DC_2-66-(n)71B	4 / 66 / 7	0.5
DC_2-00-(II)/ IB	5Cj用/日 71	0.3
ENTE:	n71	
一十寸部件	3	0.6
DC_3-5-7_n78, DC_3-5-	5	0.6
7-7_n78A	7	0.6
	n78	0.8
	3	0.5
DC_3-7-20_n28	7	0.5
	20 n28	0.6 0.5
	3	0.6
	7	0.6
DC_3-7-20_n78	20	0.3
	n78	0.8
	3	0.6
B0 5 - 55	7	0.6
DC_3-7-28_n78	28	0.6
	n78	0.8
	3	0.6
DC 2.7 n20 n70	7	0.6
DC_3-7_n28-n78	n28	0.6
	n78	0.8
	3	0.8
DC_3-19-21_n77	19	0.3
00_3-18-21_1111	21	0.9
		0.0
	n77	0.8
	3	0.8
DC 3-19-21 p78	3 19	0.8 0.3
DC_3-19-21_n78	3 19 21	0.8 0.3 0.9
DC_3-19-21_n78	3 19 21 n78	0.8 0.3 0.9 0.8
DC_3-19-21_n78 DC_3-19-21_n79	3 19 21	0.8 0.3 0.9

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{\text{IB, C}}$ (dB)
	21	0.9
	3	0.6
DC_3-19-42_n77	19	0.3
] = ===	42	0.8
	n77	0.8
	3 19	0.6 0.3
DC_3-19-42_n78	42	0.8
	n78	0.8
	3	0.6
DC_3-19-42_n79	19	0.3
	42	0.8
	3	0.6
DC_3-20_n28-n78	20	0.6
2 3_0 2320 0	n28	0.6
	n78 3	0.8
	28	0.6
DC_3-28-42_n77	42	0.8
	n77	0.8
	3	0.6
DO 0.00 40 .70	28	0.5
DC_3-28-42_n78	42	0.8
	n78	0.8
	3	0.6
DC_3-28-42_n79	28	0.5
	42	0.8
	3	0.8 5 9
DC_3-21-42_n77	21	t 011 g X 0.9
	42	0.8
	n77	0.8
	三八里 21	0.9
DC_3-21-42_n78	42	0.8
して翻作・	n78	0.8
H X M	3	0.8
DC_3-21-42_n79	21	0.9
	42	0.8
	7	0.3
DC_7-20_n28-n78	20	0.6
	n28	0.6
	n78 19	0.8
	21	0.3
DC_19-21-42_n77	42	0.8
	n77	0.8
	19	0.3
DC 10 21 42 579	21	0.4
DC_19-21-42_n78	42	0.8
	n78	0.8
DO 40 04 40	19	0.3
DC_19-21-42_n79	21	0.4
	42 21	0.8 0.4
	28	0.4
DC_21-28-42_n77	42	0.8
	n77	0.8
	21	0.4
DC 04 00 40 770	28	0.5
DC_21-28-42_n78	42	0.8
	n78	0.8
	21	0.4
DC_21-28-42_n79	28	0.5
	42	0.8

中文翻译: 5G通信(公众号: tongxin5g)

6.2B.4.2.3.4 Δ T_{IB. C}用于 EN-DC 五个频段

表 6.2B.4.2.3.4-1: EN-DC 引起的 ΔT_{IB, C} (五个频段)

	带间 EN-DC 配置	E-UTRA 或 NR 频段	Δ T _{IB, C} (dB)	
		1	0.6	
		3	0.6	
	DC_1-3-5-7_n78,	5	0.6	
	DC_1-3-5-7-7_n78	7	0.6	
		n78	0.8	
		1	0.6	
		3	0.6	
	DC_1-3-7-20_n28	7	0.6	
	20_10120_1.20	20	0.6	
		n28	0.6	
		1	0.6	
		3	0.6	
	DC_1-3-7-20_n78	7	0.6	
	20_10120_110	20	0.6	
		n78	0.6	
		1	0.7	
		3	0.7	
	DC 1-3-7 n28-n78	7	0.7	
	DC_1-5-7_1120-1176	n28	0.6	
		n78	0.8	
		1	0.6	g
		-3 t.O	180.8	
	DC 131021 p77	19	0.3	
	DC_1-3-19-21_n77			
	56通信(21	0.9	
	- SZ SGIETE	n77	0.8	
>	· 翻译:	3	0.6	
\rangle	DC 1 2 10 21 p79	19	0.8	
	DC_1-3-19-21_n78	21	0.3	
			0.9	
		n78	0.8	
		3	0.3	
	DC_1-3-19-21_n79	19	0.8	
		21	0.3	
		1		
			0.6	
	DC 121042 p77	3 19	0.8	
	DC_1-3-19-42_n77	42	0.3	
			0.8	
		n77	0.6	
		3	0.6	
	DC 121042 p79	19	0.8	
	DC_1-3-19-42_n78			
		42	0.8	
		n78	0.8	
		1	0.6	
	DC_1-3-19-42_n79	3	0.6	
		19	0.3	
		42	0.8	
		1	0.6	
	DC 1 2 20 -20 -70	3	0.6	
	DC_1-3-20_n28-n78	20	0.6	
		n28	0.6	
		n78	8.0	

	带间 EN-DC 配置	E-UTRA 或 NR 频段	Δ T _{IB, C} (dB)
		1	0.6
		3	0.8
	DC_1-3-21-42C_n77	21	0.9
	B0_1021 120_1111	42	0.8
		n77	0.6
		1	0.6
		3	0.8
	DC 1 2 21 42C p70		
	DC_1-3-21-42C_n78	21	0.9
		42	0.8
		n78	0.6
		1	0.6
		3	0.8
	DC_1-3-21-42C_n79	21	0.9
		42	0.8
		n79	0
		1	0.6
		3	0.6
	DC_1-3-28-42_n77	28	0.6
		42	8.0
		n77	0.8
		1	0.6
		3	0.6
	DC_1-3-28-42_n78	28	0.6
		42	0.8
		n78	0.8
		d t.0	0.6
	50 40 00 40 50	13	0.6
	DC_1-3-28-42_n/9	28	0.6
	DC_1-3-28-42_n79	42	0.8
	上翻译:	1	0.6
47	广徽沙广	7	0.7
41	DC_1-7-20_n28-n78	20	0.6
		n28	0.6
		n78	0.8
		1	0.3
		19	0.3
	DC_1-19-21-42_n77	21	0.4
		42	0.8
		n77	0.8
		1	0.3
		19	0.3
	DC_1-19-21-42_n78	21	0.4
	50_1 10 21 12_1110	42	0.8
		n78	0.8
		1	0.3
		19	0.3
	DC_1-19-21-42_n79	21	0.3
		42	0.4
		1	0.6
		21	0.4
	DC_1-21-28-42_n77	28	0.4
	B0_12120 12_1111	40	
	50_1 21 20 12_1111	42	0.8
	56_1 21 26 12_1111	n77	0.8
	56_1212612_111	n77 1	0.8
	DC_1-21-28-42_n78	n77 1 21	0.8 0.3 0.4
		n77 1	0.8

带间 EN-DC 配置	E-UTRA 或 NR 频段	Δ T _{IB, C} (dB)
	n78	0.8
	1	0.3
DC 1 21 29 12 570	21	0.4
DC_1-21-28-42_n79	28	0.6
	42	0.8
DC_3-7-20_n28-n78	3	0.6
	7	0.6
	20	0.6
	n28	0.6
	n78	0.8

6.2B.4.2.3.5 Δ T_{IB. C}用于 EN-DC 六频段

表 6.2B.4.2.3.5-1: 由 EN-DC 引起的 Δ T_{IB, C} (六个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	Δ T _{IB, C}	
,	,,,,,,	(dB)	
	1	0.7	
	3	0.7	
DC 1 2 7 20 n20 n70	7	0.7	
DC_1-3-7-20_n28-n78	20	0.6	
	n28	0.6	
	n78	0.8	~)
n78			0

带间 EN-DC 包括 FR2 6. 2B. 4. 2. 4

6.2B.4.2.4.1

带间 EN-DC 配置	E-UTRA 或 NR 频段	AT (JD)
THE ENDUCTED	E-UIKA 및 NK 娛权	ΔI _{IB, C} (ub)

6. 2B. 4. 2. 4. 2 Δ T_{IB. C}用于 EN-DC 三个频段

表 6.2B.4.2.4.2-1: 由 EN-DC 引起的 Δ T_{IB, C} (三个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	ΔT _{IB, C} (dB)
	1	0.3
DC_1-3_n257	3	0.3
DC_1-7-7_n257	1	0.5
	7	0.6
DC_1-8_n257	1 8	0.3 0.3
DO 4 40 057	1	0.3
DC_1-18_n257	18	0.3
DC_1-19_n257	1	0.3
BO_1 10_11201	19	0.3
DC_1-21_n257	1 21	0.3 0.3
	1	0.3
DC_1-28_n257	28	0.6
DC_1-41_n257	1	0.5
DC_1-41_11257	41	0.5
DC_1-42_n257	1	0.3
	42	0.8 0.6
DC_1_n77-n257	1 n77	0.8
DO 4 70 057	1	0.3
DC_1_n78-n257	n78	0.8
DC_1_n79-n257	1	0 = 0
B0_1_11/3 1123/	n79	8Cn0i XX
DC_2-5_n257	2	tong > 0.3
	5 2 / 1	0.3
DC_2-5_n260	通信5	0.3
DC 2.12 x260 d	56世 2	0.3
DC_2-12_n260	12	0.3
DC_2-13_n257	2	0.3
, 1>	13	0.3 0.3
DC_2-13_n260	13	0.3
DO 0.00 000	2	0.5
DC_2-30_n260	30	0.5
DC_2-66_n257	2	0.5
56_2 55_1.257	66	0.5
DC_2-66_n260	66	0.5 0.5
	3	0.3
DC_3-19_n257	19	0.3
DC_3-21_n257	3	0.8
DO_0-2 1_11201	21	0.9
DC_3-28_n257	3 28	0.3
	3	0.3 0.5
DC_3-41_n257	41	0.3 ¹ /0.8 ²
DC 2.40 =257	3	0.6
DC_3-42_n257	42	0.8
DC_3_n77-n257	3	0.6
	n77	0.8
DC_3_n78-n257	3 n78	0.6 0.8
	3	0.8
DC_3_n79-n257	n79	0
DC_5-30_n260	5	0.5
DO_0-30_11200	30	0.5
DC_5-66_n257	5	0.3 0.3
		1) 2

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{IB, C}$ (dB)
DC_5-66_n260	5	0.3
DC_5-00_11200	66	0.3
	5	0.6
DC_5_n78-n257	n78	0.8
	n257	0
	7	0.5
DC_7_n78-n257	n78	0.8
	n257	0
DC 12.20 x260	12	0.5
DC_12-30_n260	30	0.5
DC 42.66 =260	12	0.3
DC_12-66_n260	66	0.3
DC 12 CC =200	13	0.3
DC 13-66_n260	66	0.3
DO 40.00 -057	18	0.5
DC_18-28_n257	28	0.5
	19	0.3
DC_19-21_n257	21	0.4
	42	0.8
DO 40 40 -057	19	0.3
DC_19-42_n257	42	0.8
DC 10 -77 -257	19	0.3
DC_19_n77-n257	n77	0.8
DC 10 =70 =257	19	0.3
DC_19_n78-n257	n78	0.8
DC 10 =70 =257	19	0
DC_19_n79-n257	n79	0
DC 24 20 =257	21	0.459
DC_21-28_n257	28	ng X 0.3
DC 21 42 x257	21	0.4
DC_21-42_n257	42	0.8
DC 21 n77 n257	五片21(人)	0.4
DC_21_n77-n257	こ (1用 1 円 n 7 7	0.8
DC_21_n78-n257	21	0.4
DC_ZI_III O NZOV	n78	0.8
DC_21_n79-n257	21	0
DC_21_II/9-II23/	n79	0
DC 20 42 ~257	28	0.5
DC_28-42_n257	42	0.8
DC 41 42 x257	41	0.5
DC_41-42_n257	42	0.8

注 1: 该要求适用于 2545-2690MHz 频率范围内的 UE 发射。 注 2: 该要求适用于 2496-2545MHz 频率范围内的 UE 发射。

6. 2B. 4. 2. 4. 3 Δ T_{IB. C}用于 EN-DC 四个频段

表 6.2B.4.2.4.3-1: EN-DC 引起的 Δ T_{IB, C} (四个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{\text{\tiny IB, C}}$ (dB)
NA LA DA HELE.	1	0.6
DC_1A-3A-7A-7A_n257A	3	0.6
BO_17(0)(17(7)(_1120))(7	0.6
	1	0.3
DC_1-3-19_n257	3	0.3
BO_1 0 10_11207	19	0.3
	1	0.3
DC_1-3-21_n257	3	0.8
50_1 0 21_1201	21	0.9
	1	0.6
DC_1-3-28_n257	3	0.6
BO_1 0 20_11207	28	0.6
	1	0.6
DC_1-3-42_n257	3	0.6
BO_1 0 42_11201	42	0.8
	1	0.6
DC_1-3_n78-n257	3	0.6
DC_1-3_1176-11237		0.8
	n78	
DC 4577 p257	1	0.5
DC_1-5-7-7_n257	5 7	0.3
		0.6
DO 4.5 .70 .057	1	0.3
DC_1-5_n78-n257	5	0.6
	n78	0.8 0.8
DO 4.7 .70 .057	1	tong > 0.6
DC_1-7_n78-n257	7	0.6
	n78	0.8
	一個信1	0.3
DC_1-18-28_n257	567111118	0.5
一种手	28	0.5
中人無力	1	0.3
DC_1-19-42_n257	19	0.3
	42	0.8
	1	0.3
DC_1-21-28_n257	21	0.4
	28	0.6
	1	0.3
DC_1-21-42_n257	21	0.4
	42	0.8
	1	0.3
DC_1-28-42_n257	28	0.6
	42	0.8
	1	0.5
DC_1-41-42_n257	41	0.5
	42	0.8
	19	0.3
DC_19-21-42_n257	21	0.4
	42	0.8
	3	0.6
DC_3-5_n78-n257	5	0.6
	n78	0.8
	3	0.6
DC_3-7_n78-n257	7	0.6
	n78	0.8
	3	0.8
DC_3-19-21_n257	19	0.3
	21	0.9
	3	0.6
DC_3-19-42_n257	19	0.3
	42	0.8
1	<u> </u>	

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta T_{IB, c}$ (dB)
	3	0.8
DC_3-21-42_n257	21	0.9
	42	0.8
	3	0.6
DC_3-28-42_n257	28	0.5
	42	0.8
	5	0.6
DC_5-7_n78-n257	7	0.6
	n78	0.8
DC_7-7_n78-n257	7	0.5
DC_1-1_1176-11257	n78	0.8
	21	0.4
DC_21-28-42_n257	28	0.5
	42	0.8

中文翻译: 5G通信(公众号: tongxin5g)

6. 2B. 4. 2. 4. 4 Δ T_{IB. C}用于 EN-DC 五个波段

表 6.2B.4.2.4.4-1: EN-DC 引起的 ΔT_{IB, C} (五个频段)

			A /D	
	带间 EN-DC 配置	E-UTRA 或 NR 频段	Δ T _{IB, C}	
			(dB)	
		1	0.6	
	DC_1-3-5-7-7_n257	3	0.6	
	DC_1-3-5-7-7_11257	5	0.3	
		7	0.6	
		1	0.6	
	DC_1-3-5_n78-n257	3	0.6	
	DO_1 0 0_11/0 1120/	5	0.6	
		n78	8.0	
		1	0.7	
	DC_1-3-7_n78-n257	3	0.7	
	DC_1-3-7_1176-11257	7	0.7	
		n78	8.0	
		1	0.3	
	DO 4 0 40 04 = 057	3	0.8	
	DC_1-3-19-21_n257	19	0.3	
		21	0.9	
		1	0.6	
		3	0.6	
	DC_1-3-19-42_n257	19	0.3	
		42	0.8	
		1	0.6	
		3	0.8	
	DC_1-3-21-42C_n257	21	0.0	g)
		42 + 01	0.8	
		· A H: to	0.6	
		3	0.6	
	DC_1-3-28-42_n257	28	0.6	
	この間1日	42	0.8	
	onlike.	1	0.6	
47	广番沙7年•	5	0.6	
H)	DC_1-5-7_n78-n257	7	0.6	
,		n78		
		1	0.8	
	DC_1-7-7_n78-n257	7	0.6	
	DC_1-7-7_1176-11257	n78	0.8	
		1		
			0.3	
	DC 1-19-21-42 n257	19	0.3	
		21	0.4	
		42	0.8	
		1	0.3	
	DC_1-21-28-42_n257	21	0.4	
		28	0.6	
		42	0.8	
		3	0.6	
	DC_3-5-7_n78-n257	5	0.6	
		7	0.6	
		n78	0.8	
		3	0.6	
	DC_3-7-7_n78-n257	7	0.6	
		n78	0.8	
		5	0.6	
DC_5-7-7_n78-n257	7	0.6		
		n78	8.0	

6.2B.4.2.4.5 Δ T_{IB. C}用于 EN-DC 六个波段

表 6.2B.4.2.4.5-1: 由 EN-DC 引起的 Δ T_{IB, C} (六个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	Δ T _{IB, C}
		(dB)
	1	0.6
	3	0.6
DC_1-3-5-7_n78-n257	5	0.6
	7	0.6
	n78	0.8
	1	0.7
DC 1277 n70 n257	3	0.7
DC_1-3-7-7_n78-n257	7	0.7
	n78	0.8
	1	0.6
DC_1-5-7 - 7_n78-n257	5	0.6
DC_1-5-7=7_1176-11257	7	0.6
	n78	0.8
	3	0.6
DC_3-5-7 - 7_n78-n257	5	0.6
DC_3-3-1-1_11/6-11257	7	0.6
	n78	0.8

6. 2B. 4. 2. 5. 1 Δ T_{IB. C}用于 EN-DC 三个频段

表 6. 2B. 4. 2. 5. 1-1; 由 EN-DC 引起的 $\Delta T_{\text{IB, C}}$ (三个频段)

	通信 人	
带间 EN-DC 配置	B-UTRA 或 NR 频段	$\Delta T_{\text{IB, C}}$ (dB)
DC_1_n77-n257	1	0.6
DC I III III III	n77	0.8
DC 1 n79 n357	1	0.3
DC_1_n78-n257	n78	0.8
DC 3 n77-n257	3	0.6
DC_3_1177-11257	n77	0.8
DC 3 n78-n257	3	0.6
DC_3_1176-11257	n78	0.8
DC 10 p77 p257	19	0.3
DC_19_n77-n257	n77	0.8
DC_19_n78-n257	19	0.3
DC_19_1176-11257	n78	0.8

6.3 输出功率动态

FR1 和 FR2 中 CA 操作的输出功率动态分别如 38.101-1 和 38.101-2 中所述。

FR1 和 FR2 中 EN-DC 操作的输出功率动态分别如 38. 101-1 和 38. 101-2 中所述。 E-UTRA,如 36. 101 所述。 对于 FR1 中的带内连续 EN-DC 操作,38. 101-1 的 6. 3. 1 条款和 36. 101 的 6. 3. 2 子条款规定的最小输出功率要求仅适用于所有 NR 和 E-UTRA 的功率载体设置为最小值。 同样,38. 101-1 的 6. 3. 2 条款和 36. 101 的 6. 3. 3 条款规定的 0FF 功率要求仅适用于所有 NR 和 E-UTRA 载波的功率均为 0FF 的情况。 只有当所有 NR 和 E-UTRA 载波的功率均为 0FF 的情况。 只有当所有 NR 和 E-UTRA 载波都关闭时,38. 101-1 的 6. 3. 3 和 36. 101 的 6. 3. 4 规定的发送 0N / 0FF 时间掩模要求中的 0FF 功率条件才适用。 如果 E-UTRA 和 NR 同时在 0N 和 0FF 状态之间转换,则较长的瞬态时间应适用于两者。 如果 E-UTRA 或 NR 为 0FF 且另一个载波从 0FF 转换为 0N,则应用与该载波相关的转换时间。

- 6.3B DC的输出功率动态
- 6.3B.1 从 UE 的角度看, EN-DC 的输出功率动态与 UL 共享
- 6. 3B. 1. 1 E-UTRA 和 NR 切换时间掩模,用于从 UE 角度进行基于 TDM 的 UL 共享

E-UTRA 和 NR 切换时间掩码仅适用于 E-UTRA 和 NR 之间在基于 TDM 的 UL 共享中的非同时传输,从 UE 的角度来看,在载波的共享带宽上。

E-UTRA 和 NR 切换时间掩码定义了 E-UTRA 子帧和 NR 时隙/迷你时隙边界之间的观察周期。 E-UTRA 子帧和 NR 时隙/迷你时隙都具有 ON 功率传输。 ON 功率定义为符号持续时间内的平均功率,不包括任何瞬态周期。 对于具有 OFF 功率传输的 E-UTRA 子帧或 NR 时隙/迷你时隙,应适用 E-UTRA 或 NR 的一般性描述时间掩码。

对于报告类型 1 的 E-UTRA 和 NR 切换时间能力且切换时间<0.5 us 的 UE,应适用图 6.3B.1.1-1 和图 6.3B.1.1-1 2 中的时间掩模。 对于报告类型 2 的 E-UTRA 和 NR 切换时间能力且切换时间<20 us 的 UE,应适用图 6.3B.1.1-1 3 和图 6.3B.1.1-4 中的时间掩模。

图 6. 3B. 1. 1-1: 从 UE 角度看, 用于基于 TDM 的 UL 共享的类型 1 的 E-UTRA 到 NR 切换时间掩码

图 6.3B.1.1-2: 从 UE 角度看, 基于 TDM 的 UL 共享的类型 1 的 NR 到 E-UTRA 切换时间掩码

图 6.3B.1.1-3: 从 UE 角度看,基于 TDM 的 UL 共享的类型 2 的 E-UTRA 到 NR 切换时间掩码

图 6.3B.1.1-4: UE 至 E-UTRA 切换时间模板,用于从 UE 角度进行基于 TDM 的 UL 共享的类型 2

6.3B.2 用于带内非连续切换时间的输出功率动态

对于 Re1.15 中的 DC 3A n3A 单切换 UL 操作,最大 UL 切换时间被定义为 120us,并且在 UL 切换期间允许 DL 接收中断。

6.4 传输信号质量

按照 38. 101-1 和 38. 101-2 中的规定, 分别在 FR1 和 FR2 中传输 CA 操作的信号质量。

按照 38. 101-1 和 38. 101-2 中的规定,分别在 FR1 和 FR2 中传输 EN-DC 操作的信号质量。 E-UTRA,如 36. 101 所述。

6.4B 传输 DC 的信号质量

6.4B.2 传输 EN-DC 的调制质量

6.4B.2.1 带内连续的 EN-DC

6.4B.2.1.1 误差矢量幅度

对于每个 CG 具有一个分量载波的带内连续 EN-DC, EVM 要求适用于在未分配的 CG 和另一个 CG 之一中的 PRB 分配。

每个 CG 的 EVM 要求根据[4]的第 5 节 (MCG) 和第 2 节的 6.4.2 (SCG) 和 EN-DC 配置。

载波漏损 6. 4B. 2. 1. 2

每个 CG 的载波漏损要求根据[4]的条款 6.5.2 和[2]的 6.4.2, 用于配置了 EN-DC 的 SCG。

6. 4B. 2. 1. 3 带内发射

对于 MCG, [6.5]中表 6.5.2A.3.1-1 和 6.5.2A.3.1-2 中的带内发射要求的要求适用于 EN-DC 带宽的聚合传输 带宽配置与两者的载波 CGs 有效并且单个连续的 PRB 分配带宽 L_{CRB} 在所述聚合传输带宽配置的边缘处的 MCG

对于 SCG, [6.5]中表 6.5.2A.3.1-1 和 6.5.2A.3.1-2 中的带内发射要求的要求适用于 EN-DC 带宽的聚合传输 带宽配置和两者的载波 CGs 有效并且单个连续的 PRB 分配带宽 L_{CRB} 在聚合传输带宽配置边缘的 SCG 内。

输出 RF 频谱发射 6. 5

6. 5A 输出 CA 的 RF 频谱发射

〈编者注:波段 FR1 和 FR2 的载波聚合〉

- 6.5A.1 CA的占用带宽
- 6.5A.2 CA 的带外发射
- 6.5A.3 CA的杂散发射

通信(公众号: tongxin5g) FR1 和 FR2 之间的带间 CA. 6. 5A. 3. 1

子条款的详细结构是 TBD。

表 6.5AXX-1: 上行链路带间 CA (两个频段) 要求

		,	杂散	发射			
NR CA 配置	受保护的频段	频率范	围	(MHz)	最高等级 (dBm)	MBW (MHz)	注意
CA_n8A-n258A	E-UTRA Band 1,8, 20, 28, 34, 39, 40,65	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 3, 7,41,42,n78,n79	F_{DL_low}	ı	F _{DL_high}	-50	1	2
	E-UTRA Band 11, 21	F_{DL_low}	-	F _{DL_high}	-50	1	6
	Frequency range	860	-	890	-40	1	5, 6
	Frequency range	1884.5	-	1915.7	-41	0.3	4
CA_n77A-n257A	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 39, 40, 41, 65	F_{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	4
CA_n78A-n257A	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 39, 40, 41, 65	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	4
CA_n79A-n257A	E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 26, 21, 28, 34, 39, 40, 41, 42, 65	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	4

注1: FDL_low和FDL_high指的是TS 38. 101-1 / 2中表5. 2-1中规定的每个频段或TS 36. 101中的表5. 5

作为例外情况,对于测量中使用的每个指定 NR 载波,由于 2^{nd} , 3^{nd} , 4 (允许的话),允许测量的电平高达 TS 注2: 38. 101-1 中表 6. 5. 3. 1-2 中定义的适用要求。 TF11188) 或 5 [□]谐波杂散发射。 由于谐波发射的扩散,在谐波 发射两侧的谐波发射之外的第一个 1MHz 频率范围也允许例外。 这导致整体异常间隔以(2MHz + N×L_{CRB}× 180kHz) 谐波发射为中心, 其中 N 为 2, 3, 4, 5 (2) nd, 3ND, 4 (TF11193) 或 5 [□]谐波。 如果测量带宽 (MBW) 完全或部分地与整个异常间隔重叠,则允许例外。

注3: 当注释中提到 RB 时, 假设 15KHz SCS。

注 4: 适用于与 1884. 5 -1915. 7MHz 运行的 PHS 系统共存

注5: 这些要求也适用于信道带宽边缘的表 6.5.3.1-1 和 TS 38.101-1 中表 6.5A.3.1-1 中小于 Foos (MHz) 频率范围。

此要求仅适用于以下情况: - 当载波中心频率 (Fc) 在 902.5MHz ≤ Fc < 907.5 MHz 范围内且上行链路传输带宽 注6: 小于或等于 20 RB 时,对于 5 MHz 信道带宽的载波 - 当载波中心频率 (Fc) 在 907.5MHz ≪Fc ≪ 912.5MHz 的范 围内时,5MHz 信道带宽的载波对上行链路传输带宽没有任何限制。 - 当载波中心频率(Fc)为 Fc = 910MHz 且上行链路传输带宽小于或等于 32RB 且 RBstart> 3 时,对于 10MHz 信道带宽的载波。

注意: 为了简化上表,列出了仅为 E-UTRA 操作或 E-UTRA 和 NR 操作指定的频带的 E-UTRA 频带号。 NR 频段编号列出了仅为 NR 操作指定的频段。

输出 DC 的 RF 频谱发射 6. 5B

6.5B.1 EN-DC的占用带宽

对于带内连续的 EN-DC, 占用带宽是带宽的度量, 其包含发射频谱的总集成功率的 99%。 OBW 应小于 EN-DC 的聚合信道带宽,在5.3B中表示为ENBW。

6.5B.2 EN-DC 的带外发射

6. 5B. 2. 1 带内连续的 EN-DC

除非另有说明,否则本子条款中为 DC 组合规定的 00BE 限值将取代为相应 TS [4]和[2]中为每个子块指定的任 这些要求适用于所有天线连接器的传输总和。 6.5B.2.1.1 频谱发射掩槽

表 6.5B.2.1.1-1规定了带内连续 EN-DC 的一般性描述频谱发射。

表 6.5B.2.1.1-1。 用于带内连续 EN-DC 的通用频谱发射掩模

ΔF _{OOB} (MHz)	频谱发射限值(dBm)	测量带宽
± 0 - 1	Max(Round(10*log(0.15/ENBW)),-24)	30kHz
± 1 - 5	-10	1MHz
± 5 - ENBW	-13	1MHz
±ENBW - (ENBW + 5)	-25	1MHz
注意: ENBW 是	指 5.3B 中定义的以 MHz 为单位的聚合信道带宽。	

附加频谱发射掩模 6. 5B. 2. 1. 2

网络信号值"NS_35"的要求 6.5B.2.1.2.1

当在 MCG 中指示 NS 35 并且在 SCG 中指示 NS 35 时,表 6.5B.2.1.2.1-1 中的要求适用于 DC 的 EN-DC 配置的 聚合子块紧邻和外部的频率范围 (n) 71B。

表 6.5B.2.1.2.1-1: 附加要求

Δ F _{00B} (MHz)	测量 filter 中心频率的频率偏 移,f_offset	最低要求 (DBM)	测量带宽
0 MHz ((f <0.1 MHz	0.015 MHz (f_offset <0.085 MHz	-13	30kHz
0.1 MHz ((f <enbw< td=""><td>0.15 MHz (f_offset <enbw -<br="">0.05 MHz</enbw></td><td>-13</td><td>100kHz</td></enbw<>	0.15 MHz (f_offset <enbw -<br="">0.05 MHz</enbw>	-13	100kHz
ENBW ((f <enbw +="" 5="" mhz<="" td=""><td>ENBW + 0.5 MHz (f_offset <enbw +="" 4.5="" mhz<="" td=""><td>-25</td><td>1MHz</td></enbw></td></enbw>	ENBW + 0.5 MHz (f_offset <enbw +="" 4.5="" mhz<="" td=""><td>-25</td><td>1MHz</td></enbw>	-25	1MHz
注 1. FNRW 是 F-IITRA 子は	和相邻 NR 子快的聚合带宽。在所述子	・ 中之间没有 50 東京 日本 中央 1 日本 1 日	快带宽包括任何内部保护带

网络信号值"NS 04"的要求 6.5B.2.1.2.2

网络用信号通知附加的频谱发射要求,以指示 UE 应满足特定部署方案的附加要求,作为小区切换/广播消息的 一部分。

从-13 dBm / MHz 到-25 dBm / MHz 的频带 41 / n41 SEM 转换点基于发射带宽。 发射带宽定义为两点之间的 信号宽度,一个低于载波中心频率,一个高于载波中心频率,在此之外所有发射都衰减至少比发射端功率低 26 dB。 由于 26 dB 发射带宽取决于实现,因此 RB 占用的传输带宽用于 SEM。 LTE 载波的发射带宽 CRB 在 36.101 [4]中,NR 载波的发射带宽 CRB 在 38.101-1 [2]中。 连续带内 EN-DC 的总发射带宽是每个 CC 的发射 带宽加上连续CC之间的保护带的总和。

当在小区中指示"NS_04"时,任何 UE 发射的功率不得超过表 6.5B.2.1.2.2-1 中规定的水平。

	表 6. 5B. 2	2. 1. 2. 2-	1: n41 S	SEM 与 NS	04 tong	xin)g)
	频谱发射限值 (dBm)/测量带宽 对于每个信道带宽						
Df00B	5 (10H)	15	20	40	50	> 50	测量
MHz	MHz	MHz	MHz	MHz	MHz	MHz	带宽
± 0 - 1- HIJ	-18	-20	-21	-24		25	30kHz
± 1 - 5			-	10			
± 5 - X			-	13			1MHz
±X - (BWChannel + 5 MHz)				25			
注意: X 被定义为分量载波的发射带	宽加上连约	_{卖 CC} 之 间 i	的保护带的	り り り り れ の し れ の し の し の り り り り り り り り り り り り り り り			

6. 5B. 2. 1. 3 相邻信道漏损率

对于紧邻 NR 子块的 E-UTRA 子块的 EN-DC 操作, ACLR 定义为以聚合子块带宽 ENBW 为中心的滤波平均功率与以 中心为中心的滤波平均功率的比率。标称信道间隔的相同大小 ENBW 的相邻带宽。 UE 应满足表 6.5B.2.1.3-1 中规定的 ACLR 最低要求 EN-DC 级, 其中 ENBW 是子块带宽的总和。

指定的信道功率和相邻信道功率使用矩形 filter 测量,测量带宽在 6.5B.2.1.3-1 中规定。

表 6.5B.2.1.3-1: 带内 EN-DC 的 ACLR (连续子块)

参数	单元	值
EN-DC _{ACLR}	dBc 的	30
EN-DC 信道的测量带宽		1.00*ENBW
相邻信道的测量带宽		0.95*ENBW
相邻信道的频率偏移		ENBW
		/
		-开
注 1: ENBW 是子条款 5.3B 中:	定义的以 MHz 为单位的	聚合带宽。
注2: 频率偏移是测量filter	r 的中心频率之间的频	率偏移

6, 5B, 2, 2 带内非连续的 EN-DC

6. 5B. 2. 2. 1 频谱发射掩模

用于带内非连续 EN-DC 的频谱发射掩模是每个 CC 的发射掩模的合成,其中电平设置为每个掩模的最大值,用 于任一载波的传输带宽之外的每个频率。 复合频谱发射掩模是各个 CC 频谱发射掩模的组合。 在两个掩模重 叠的情况下,使用最宽松的限制。

6. 5B. 2. 2. 2 附加频谱发射掩模

当应用额外的光谱发射掩模或掩模时,应使用附加的 SEM 来计算 6.5B.2.2.1 中描述的复合 SEM。 tongxin5g

6. 5B. 2. 2. 3 相邻信道漏损率

对于带内非连续 EN-DC, 当所有 UL 子块由一个分量载波组成时, EN-DC 相邻信道漏损功率比(EN-DC ac) 是以 中心过滤的平均功率之和的比率在指定的子块频率上,滤波的平均功率以标称信道间隔的相邻信道频率为中 心。 在子块 gap 带宽 Wgap 小开子块带宽而不是该子块的情况下,不为 gap 设置 EN-DCACLR 要求。 在子块 gap 带宽 Wgap 小于子块带宽中的任何一个的情况下,则不为 gap 设置 EN-DC (x要求。 分配的 EN-DC 子块功率 和相邻信道功率使用矩形 filter 测量,测量带宽在[4]中为 E-UTRA 子块指定,[2],[3]用于 NR 子块。 如果 测量的相邻信道功率大于-50dBm,则 EN-DC 家应高于 E-UTRA AGR 和 NR AGR 中规定的值。

FR1 内的带间 EN-DC 6. 5B. 2. 3

除非另有说明,否则[4]第 6.6.2.1 条规定的 00BE 要求,[2]的第 6.5.2.2 小节以及[4]的第 6.6.2.2 和[2]的 6.5.2.3 中的附加要求申请每个分量载体。

这些要求适用于每个天线连接器。

- 带间 EN-DC 包括 FR2 6. 5B. 2. 4
- 6, 5B, 2, 5 带间 EN-DC 包括 FR1 和 FR2

6.5B.3 EN-DC 的杂散发射

6, 5B, 3, 1 带内连续的 EN-DC

[4] 第 6. 6. 3. 1 节和 [2] 第 6. 5. 3. 1 小节规定的一般杂散发射要求适用于 6. 5. 2 条款中带外发射要求适用的任何 频率。

6.5B.3.1.1 一般杂散发射

[4]的第 6.6.3.1节和[2]的第 6.5.3.1小节中规定的一般杂散发射要求适用于 6.5B.2.1 中的带外发射要求的任何频率。应用。

6. 5B. 3. 1. 2 杂散发射带 UE 共存

表 6.5B.3.1.2-1中的要求适用于每个分量载波,所有分量载波均有效。

表 6.5B.3.1-1: 带内载波聚合的要求

DM DC #ET	杂散发射										
EN-DC 配 置	受保护的频段	频率范	围	(MHz)	最高等级 (dBm)	MBW (MHz)	注意				
•••											
DC_ (n)	E-UTRA 频段	F _{1ow_DL}	_	F _{DL_high}	-50	1					
71B	4, 5, 12, 13, 14, 17, 24, 26, 30, 48, 66										
	E-UTRA 频段 2, 25, 41, 70	F _{1ow_DL}	-	F _{DL_high}	-50	1	2				
	E-UTRA 频段 29	F _{1ow_DL} F _{1ow_}	_	$F_{DL_high}F_{DL_h}$	-38	1	3				
		DL	-	i gh							
	E-UTRA 频段 71	F_{1ow_DL}	_	F _{DL_high}	-50	1	3				
•••											
注 1:	FDL_low 和 FDL_high 指的是表 5.5-1 中规		UTR.	A 频段							
注 2:	作为例外情况,由于 2 nd , 3 RD , 4 ^H 或 2 ^H 或	(2) [□] 或 5 [□]	谐波	皮杂散发射。	由于谐波发射	的扩散,在	谐波发射				
	两侧的谐波发射之外的第一个 1MHz 频率范	围也允许例	外。	这导致整6	体异常间隔以 ($2MHz + N \times$	LCDDX				

注 2: 作为例外情况,由于 2^{nd} , 3^{nv} , $4^{\text{ H}}$ 或 $2^{\text{ H}}$ 或 $(2)^{\text{ H}}$ 或 $5^{\text{ H}}$ 谐波杂散发射。 由于谐波发射的扩散,在谐波发射两侧的谐波发射之外的第一个 1MHz 频率范围也允许例外。 这导致整体异常间隔以(2MHz + $N\times L_{\text{CBB}}\times 180\text{kHz}$)谐波发射为中心,其中 N 为 2, 3, 4, 5 (2) 1^{nd} , 3^{nv} ,4 (1^{F} 11426) 或 $5^{\text{ H}}$ 谐波。如果测量带宽(MBW)完全或部分地与整个异常间隔重叠,则允许例外

注3: 这些要求也适用于来自信道带宽边缘的表 6.6.3.1-1 和表 6.6.3.1A-1 [4] 中小于 FOOB (MHz) 频率范围。

6. 5B. 3. 2 带内非连续的 EN-DC

6.5B.3.3 FR1 内的带间 EN-DC

〈进行要求〉

〈编者注:要更新的章节编号〉

[4]的第6.6.3.1条,[2]和[3]的第6.5.3.1小节中规定的一般性描述杂散发射要求适用于每个分量载波。

6. 5B. 3. 3. 1 杂散发射带 UE 共存

〈编者注:要更新的章节编号〉

本节规定了与受保护频带共存的指定 EN-DC 的要求。 表 6. 5B. 3. 3. 1-1 中的要求适用于每个分量载波,所有分量载波均有效。

表 6.5B.3.3.1-1: 要求

		杂散发射										
EN-DC 配置	受保护的频段	频率范围(MHz)			最高等级 (dBm)	MBW (MHz)	注意					
DC_ 1A _ n28a	E-UTRA 频段 18, 19, 27, 31, 32, 72 NR 频段 n5, n7, n8, n20, n26, n38, n40, n41, n50, n51, n74	F _{1 ow_DL}	_	$F_{ ext{DL_high}}$	-50	1						
	E-UTRA Band 42, 43 NR 频段 n78, n75, n76	F _{1 ow_DL}	-	$F_{\text{DL_high}}$	-50	1	2					
	NR 频段 n3, n34	F _{1 ow_ DL}	-	F_{DL_high}	-50	1	5					

1	P. HTDA KT KL 11 01	Б	İ	P	F0	1	10 10
	E-UTRA 频段 11, 21	F _{1 ow_DL}	_	F _{DL_high}	-50 -50	1	10, 12
	E-UTRA 频段 65	F _{1 ow_DL}	_	$F_{ exttt{DL_high}}$	-50	1	10, 11
	NR 频段 n1	1 low_DL		1 DL_high			
	频率范围	470	-	694	-42	8	5, 18
	频率范围	470	-	710	-26. 2	6	15
	频率范围	758	-	773	-32	1	5
	频率范围	773	_	803	-50	1	
	频率范围	662	_	694	-26. 2	6	5
	频率范围	1880	_	1895	-40	1	5, 17
	频率范围	1895	-	1915	-15. 5	5	5, 7, 17
	频率范围	1915	-	1920	+1.6	5	5, 7, 17
	频率范围	1839. 9	_	1879. 9	-50	1	5
	频率范围	1884. 5	_	1915. 7	-41	0. 3	10, 16
DC_ 1A _ n40a	频 段	1001.0		1013		0,0	10, 10
bo_ IN _ IIIoa	1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 2 8, 31, 32, 38, 40, 41, 42, 43, 44, 45, 50, 5 1, 52, 65, 67, 68, 69, 72, 73, 74, 75, 76	F _{1 ow_DL}	-	F_{DL_bigh}	-50	1	_
	频段 3, 34	F _{1 ov_ DL}	_	F _{DL_high}	-50	1	5
	频率范围	1880		1895	-40	1 =====================================	5, 17
	频率范围	1895		1915	-15. 5	5	5, 7, 17
DO 11 51	频率范围 E-UTRA 频 段	1915		1920	+1.6	5	5, 7, 17
DC_ 1A _ n51a	7, 12, 13, 17, 20, 22, 27, 28, 29, 31, 38, 4 4, 48, 67, 68, 69, 72, 73	F_{dl_low}	-	F_{dl_high}	-50	1	
	E-UTRA 频段 3, 34	$F_{1 \text{ ow}_DL}$	_	F _{DL_high}	-50	1	5, 2
	频率范围	1880	-	1895	-40	1 -	5, 17
	频率范围	1895	-	1915	-15. 5	5	5, 7, 17
	频率范围	1915	-	1920	+1.6	5	5, 7, 17
	E-UTRA 頻 段 5, 6, 8, 26, 30, 40, 41, 42, 43, 46 NR Band n77, n78, n79,	F _{dl_low}	- <u>-</u>	F _{dl_high} t(ng 30 in	1	2
DC_ 1A _ n77a	E-UTRA 頻 段 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34 , 39, 40, 41, 65	F _{1ow_DL}		F_{DL_high}	-50	1	
	NR 频段 n257	26500	-	29500	-5	100	
L	频率范围	1880	-	1895	-40	1	5, 9
H	频率范围	1895	-	1915	-15. 5	5	5, 7, 9
,	频率范围	1915	-	1920	+1.6	5	5, 7, 9
DC_ 1A _ n78a DC_ 1A _ n84a _ ulsup - TDM _	E-UTRA 频 段 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34 , 40, 41, 65	$F_{1\text{ow}_\text{DL}}$	-	F_{DL_high}	-50	1	
n78a	NR 频段 n257	26500	-	29500	-5	100	
DC_ 1A _ n84a _	频率范围	1880	_	1895	-40	1	5, 9
ulsup n78a	频率范围	1895	_	1915	-15. 5	5	5, 7, 9
FDM		1915	-	1920	+1.6	5	5, 7, 9
DC_ 1A _ n79a	E-UTRA 频 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 40 , 41, 42, 65	$F_{1\text{cm}_\text{DL}}$	-	$F_{ exttt{DL_high}}$	-50	1	
	NR 频段 n257	26500	-	29500	-5	100	
	频率范围	1880	-	1895	-40	1	5, 9
	频率范围	1895	_	1915	-15. 5	5	5, 7, 9
	频率范围	1915	L-	1920	+1.6	5	5, 7, 9
DC_ 2A _ N5A	频 段 4, 5, 10, 12, 13, 14, 17, 24, 28, 29, 30, 42 , 48, 50, 51, 66, 70, 71, n71, 74, 85, n257	F_{dl_low}	_	$F_{\rm dl_high}$	-50	1	
	频段 2, 25, 48	F_{d1_low}	-	F _{dl_high}	-50	1	2
	E-UTRA 频段 26	859	-	869	-27	1	
	E-UTRA 频段 41, 43	F _{low_DL}	-	F _{DL_high}	-50	1	
DC_ 2A _ n66a	频 段 4, 5, 10, 12, 13, 14, 17, 24, 26, 27, 28, 29 , 30, 41, 50, 51, 66, 70, 71 , n71, 74, 85, n257	$F_{\rm dl_low}$	-	$F_{\rm dl_high}$	-50	1	
	频段 2, 25	F _{1 ow_DL}	-	F _{DL_high}	-50	1	5
	频段 42, 48	F_{dl_low}	-	F _{dl_high}	-50	1	2

DC_ 2A _ n71a	E-UTRA Band 4, 5, 12, 13, 14, 17,	D.		D.	50	1	
	24, 26, 29, 30, 48, 66	F_{dl_low}	_	F _{dl_high}	-50	1	
	E-UTRA 频段 2, 25, 41, 70	$F_{\rm dl_low}$	-	F _{dl_high}	-50	1	2
	NR 频段 n71	F _{dl_low}	_		-50	1	5
DG 04 70		1 dl_low		F _{dl_high}	30	1	0
DC_ 2A _ n78a		ъ				,	
	4, 5, 10, 12, 13, 14, 17, 24, 26, 27, 28, 29	$F_{1 \text{ ow}_DL}$	-	F _{DL_high}	-50	1	
	, 30, 41, 42, 48, 50, 51, 66, 70, 71, 74, 85						
	E-UTRA 频段 2, 25	$F_{1\text{cm}_\text{DL}}$	-	$F_{\text{DL_high}}$	-50	1	2
	NR 频段 78	F _{1 ov_DL}	-	F _{DL high}	-50	1	5
	NR 频段 n257	26500	_	29500	-5	100	
DC_ 3A _ n7a	E-UTRA 频 段	20000		25000		100	
DC_ SA _ IIIa	1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 4						
		ъ				,	
	0, 43, 44, 50, 51, 65, 67, 72, 74, 75, 76	$F_{1\text{ow}_\text{DL}}$	-	F _{DL_high}	-50	1	
	NR Band n1, n5, n7, n8, n20,						
	n28, n50, n51, n74, n75, n76						
	E-UTRA 频段 3	$F_{1\text{ow}_\text{DL}}$	-	F_{DL_high}	-50	1	5
	E-UTRA 频段 22, 42	F _{1 ow_ DL}	_	F _{DL_high}	-50	1	2
	频率范围	2570	_	2575	+1.6	5	5, 6, 7
	频率范围	2575	-	2595	-15. 5	5	5, 6, 7
	频率范围	2595	-	2620	-40	1	5, 6
DC_ 3A _ n28a	E-UTRA 频段 42, 43, 65						
	NR 频带 n1, n50, n51, n74, n75,	$F_{1 \text{ ow}_DL}$	-	F _{DL_high}	-50	1	2
	n76, n78	<u>-</u>					
	NR 频段 n1	F _{1 ow_ DL}	-	F _{DL_high}	-50	1	10, 11
	NR 频段 n3				-50		· · · · · · · · · · · · · · · · · · ·
		F _{1 ow_DL}	-	F _{DL_high}	-50	1	5
	E-UTRA 频段 27, 31, 72						
	NR 频段 n5, n7, n8, n20, n26,	$F_{1 \text{ ow}_DL}$	-	F _{DL_high}	-50	1	
	n34, n38, n40, n41						
	E-UTRA 频段 11, 18, 19, 21	$F_{1\text{ow}_\text{DL}}$	-	F_{DL_high}	-50	~ <u>)</u>	14
	频率范围	1884. 5	_	1915. 7	-4h ne	0.3	14
	频率范围	470		710 + (26. 2	6	15
			_		11-0		
	频率范围	758	<u>-</u> -	773	-32	1	5
	频率范围	773	/ 🔟	803	-50	1	
	频率范围	1884. 5	-	1915. 7	-41	0.3	3, 10
DC 3A n40a		1884. 5	-	1915. 7			3, 10
DC_ 3A _ n40a	频		-		-41	0.3	3, 10
DC_ 3A _ n40a	频 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 3	1884. 5 F _{dl_low}	-	1915. 7			3, 10
DC_ 3A _ n40a	频 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 3 8, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 6		_		-41	0.3	3, 10
DC_ 3A _ n40a	類 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 3 8, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 6 9, 72 , 73, 75, 76	$F_{\rm dl_low}$	-	$F_{\rm dl_high}$	-41 -50	0.3	
DC_ 3A _ n40a	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 频段3	$F_{ m dl_low}$	-	$F_{ m dl_high}$ $F_{ m dl_high}$	-41 -50	0.3	5
DC_ 3A _ n40a	類 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 3 8, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 6 9, 72 , 73, 75, 76	$F_{ m dl_low}$	-	$F_{ m dl_high}$ $F_{ m dl_high}$	-41 -50	0.3	5 2
DC_ 3A _ n40a	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 频段3	$F_{\rm dl_low}$	- - -	$F_{\rm dl_high}$	-41 -50	0.3	5
Ħ	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 频段3 频段22,42,52 频率范围	$F_{ m dl_low}$ $F_{ m dl_low}$ $F_{ m dl_low}$ 1884. 5	-	$F_{\text{dl_high}}$ $F_{\text{dl_high}}$ $F_{\text{dl_high}}$ $1915. \ 7$	-41 -50 -50 -50 -41	0. 3 1 1 1 1 0. 3	5 2
DC_ 3A _ n40a DC_ 3A _ n51a	類 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 3 8, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 6 9, 72, 73, 75, 76 频段 3 频段 22, 42, 52 频率范围 E-UTRA 频 段	$F_{ m dl_low}$ $F_{ m dl_low}$ $F_{ m dl_low}$	-	$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$	-41 -50 -50 -50	0.3 1 1 1	5 2
Ħ	類 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 3 8, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 6 9, 72, 73, 75, 76 频段 3 频段 22, 42, 52 频率范围 E-UTRA	$F_{ m dl_low}$ $F_{ m dl_low}$ $F_{ m dl_low}$ 1884. 5	-	$F_{\text{dl_high}}$ $F_{\text{dl_high}}$ $F_{\text{dl_high}}$ $1915. \ 7$	-41 -50 -50 -50 -41	0. 3 1 1 1 1 0. 3	5 2
Ħ	類 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 3 8, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 6 9, 72, 73, 75, 76 频段 3 频段 22, 42, 52 频率范围 E-UTRA 频 段 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48 , 67, 68, 69, 72, 73	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL}$	-	$F_{\text{dl_high}}$ $F_{\text{dl_high}}$ $F_{\text{dl_high}}$ $1915. \ 7$ $F_{\text{Dl_high}}$	-41 -50 -50 -50 -41 -50	0. 3 1 1 1 0. 3 1	5 2 3
Ħ	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 頻率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48 ,67,68,69,72,73 E-UTRA 頻段3	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL} \\ F_{\rm low_DL}$	-	$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $1915. \ 7$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$	-41 -50 -50 -50 -41 -50	0. 3 1 1 1 0. 3 1 1 1 1 1 1 1 1	5 2 3
Ħ	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 頻率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻段3	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL}$	-	$F_{\text{dl_high}}$ $F_{\text{dl_high}}$ $F_{\text{dl_high}}$ $1915. \ 7$ $F_{\text{Dl_high}}$	-41 -50 -50 -50 -41 -50	0. 3 1 1 1 0. 3 1	5 2 3
Ħ	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 頻率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48 ,67,68,69,72,73 E-UTRA 頻段3	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL} \\ F_{\rm low_DL}$	-	$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $1915. \ 7$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$	-41 -50 -50 -50 -41 -50	0. 3 1 1 1 0. 3 1 1 1 1 1 1 1 1	5 2 3
Ħ	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 頻率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻段3	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL} \\ F_{\rm low_DL}$	-	$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $1915. \ 7$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$	-41 -50 -50 -50 -41 -50	0. 3 1 1 1 0. 3 1 1 1 1 1 1 1 1	5 2 3
DC_ 3A _ n51a	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 頻率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻段3 E-UTRA 頻段3 E-UTRA 頻段3 E-UTRA 頻段3 E-UTRA 頻段3 44,46,65,71	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL} \\ F_{\rm low_DL}$	-	$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $1915. \ 7$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$	-41 -50 -50 -50 -41 -50	0. 3 1 1 1 0. 3 1 1 1 1 1 1 1 1	5 2 3
Ħ	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 频率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻段3 E-UTRA 頻段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL} \\ F_{\rm low_DL} \\ F_{\rm low_DL}$	-	$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $1915. \ 7$ $F_{\rm 0t_high}$ $F_{\rm tt_high}$ $F_{\rm tt_high}$	-41 -50 -50 -50 -41 -50 -50 -41 -50	0. 3 1 1 1 0. 3 1 1 1 1 1 1	5 2 3
DC_ 3A _ n51a	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 频率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻段3 E-UTRA 頻段3 E-UTRA 頻段1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段1,3,5,7,8,11,18,19,20,21,26,28,34	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL} \\ F_{\rm low_DL}$	-	$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $1915. \ 7$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$	-41 -50 -50 -50 -41 -50	0. 3 1 1 1 0. 3 1 1 1 1 1 1 1 1	5 2 3
DC_ 3A _ n51a	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 频段3 频段22,42,52 频率范围 E-UTRA 频 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 频段3 E-UTRA 频 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 频 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65	$F_{\rm dl_low}$ $F_{\rm dl_low}$ $F_{\rm dl_low}$ 1884.5 $F_{\rm low_DL}$ $F_{\rm low_DL}$ $F_{\rm low_DL}$	-	$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $1915. 7$ $F_{\rm 0l_high}$ $F_{\rm 0l_high}$ $F_{\rm 0l_high}$ $F_{\rm 0l_high}$ $F_{\rm 0l_high}$	-41 -50 -50 -50 -41 -50 -50 -50 -50 -50	0.3 1 1 1 0.3 1 1 1 1 1	5 2 3 3
DC_ 3A _ n51a	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 频率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻段3 E-UTRA 頻段3 E-UTRA 頻段1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围	F _{dl_low} F _{dl_low} 1884. 5 F _{low_DL} F _{low_DL} F _{low_DL}		$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $1915. 7$ $F_{\rm 0t_high}$ $F_{\rm 0t_high}$ $F_{\rm 0t_high}$ $F_{\rm 0t_high}$ $1915. 7$	-41 -50 -50 -50 -41 -50 -50 -50 -50 -41	0. 3 1 1 1 0. 3 1 1 1 1 1 0. 3	5 2 3
DC_ 3A _ n51a DC_ 3A _ n77a	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段 22,42,52 頻率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257	$F_{\rm dl_low}$ $F_{\rm dl_low}$ $F_{\rm dl_low}$ 1884.5 $F_{\rm low_DL}$ $F_{\rm low_DL}$ $F_{\rm low_DL}$	-	$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $1915. 7$ $F_{\rm 0l_high}$ $F_{\rm 0l_high}$ $F_{\rm 0l_high}$ $F_{\rm 0l_high}$ $F_{\rm 0l_high}$	-41 -50 -50 -50 -41 -50 -50 -50 -50 -50	0.3 1 1 1 0.3 1 1 1 1 1	5 2 3 3
DC_ 3A _ n51a	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 频率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻段3 E-UTRA 頻段3 E-UTRA 頻段1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围	F _{dl_low} F _{dl_low} 1884. 5 F _{low_DL} F _{low_DL} F _{low_DL}		$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $1915. 7$ $F_{\rm 0t_high}$ $F_{\rm 0t_high}$ $F_{\rm 0t_high}$ $F_{\rm 0t_high}$ $1915. 7$	-41 -50 -50 -50 -41 -50 -50 -50 -50 -41	0. 3 1 1 1 0. 3 1 1 1 1 1 0. 3	5 2 3 3
DC_ 3A _ n51a DC_ 3A _ n77a DC_ 3A _ n78a	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段 22,42,52 頻率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257	F _{dl_low} F _{dl_low} 1884. 5 F _{low_DL} F _{low_DL} F _{low_DL}		$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $1915. 7$ $F_{\rm 0t_high}$ $F_{\rm 0t_high}$ $F_{\rm 0t_high}$ $F_{\rm 0t_high}$ $1915. 7$	-41 -50 -50 -50 -41 -50 -50 -50 -50 -41	0. 3 1 1 1 0. 3 1 1 1 1 1 0. 3	5 2 3 3
DC_ 3A _ n51a DC_ 3A _ n77a DC_ 3A _ n78a DC_3A_n80A_ULSU	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 頻率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻段3 E-UTRA 頻段3 E-UTRA 頻段1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257 E-UTRA 頻 段	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL} \\ F_{\rm low_DL} \\ F_{\rm low_DL} \\ \\ F_{\rm low_DL} \\ \\ E_{\rm low_DL} \\ \\ F_{\rm low_DL} \\ \\ E_{\rm $		$F_{\rm dl_high} \\ F_{\rm dl_high} \\ F_{\rm dl_high} \\ 1915. 7 \\ F_{\rm Dl_high} \\ F_$	-41 -50 -50 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -51	0. 3 1 1 1 0. 3 1 1 1 0. 3 1 1 1 0. 3 100	5 2 3 3
DC_ 3A _ n51a DC_ 3A _ n77a DC_ 3A _ n78a DC_3A_n80A_ULSU P-TDM_n78A,	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段 3 頻段 22,42,52 頻率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段 3 E-UTRA 頻段 3 E-UTRA 頻 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL} \\ F_{\rm low_D$		$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $1915. 7$ $F_{\rm Dl_high}$	-41 -50 -50 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50	0. 3 1 1 1 0. 3 1 1 1 1 1 1 1 1 1 1 1 1 1	5 2 3 5 2
DC_ 3A _ n51a DC_ 3A _ n77a DC_ 3A _ n78a DC_3A_n80A_ULSU P-TDM_n78A, DC_ 3A _ N80A _	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 頻率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL} \\ F_{\rm low_DL} \\ F_{\rm low_DL} \\ \\ F_{\rm low_DL} \\ \\ E_{\rm low_DL} \\ \\ F_{\rm low_DL} \\ \\ E_{\rm $		$F_{\rm dl_high} \\ F_{\rm dl_high} \\ F_{\rm dl_high} \\ 1915. 7 \\ F_{\rm Dl_high} \\ F_$	-41 -50 -50 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -51	0. 3 1 1 1 0. 3 1 1 1 0. 3 1 1 1 0. 3 100	5 2 3 3
DC_ 3A _ n51a DC_ 3A _ n77a DC_ 3A _ n78a DC_3A_n80A_ULSU P-TDM_n78A,	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段 22, 42,52 频率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段 3 E-UTRA 頻 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL} \\ F_{\rm low_DL} \\ F_{\rm low_DL} \\ \\ F_{\rm low_DL} \\ 1884.5 \\ 26500 \\ F_{\rm low_DL} \\ \\ 1884.5 \\ 2884.5 \\ \\ 1884$		$F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ 1915. 7 \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ 1915. 7 \\ 29500 \\ F_{0l_high} \\ 1915. 7$	-41 -50 -50 -50 -50 -41 -50 -50 -50 -50 -50 -41 -5 -50 -41 -5 -50 -41	0. 3 1 1 1 0. 3 1 1 1 1 0. 3 100 1 0. 3	5 2 3 5 2
DC_ 3A _ n51a DC_ 3A _ n77a DC_ 3A _ n78a DC_3A_n80A_ULSU P-TDM_n78A, DC_ 3A _ N80A _ u1sup n78a	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段 3 頻段 22,42,52 頻率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段 3 E-UTRA 頻段 3 E-UTRA 頻 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL} \\ F_{\rm low_D$		$F_{\rm dl_high}$ $F_{\rm dl_high}$ $F_{\rm dl_high}$ $1915. 7$ $F_{\rm Dl_high}$	-41 -50 -50 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50	0. 3 1 1 1 0. 3 1 1 1 1 1 1 1 1 1 1 1 1 1	5 2 3 5 2
DC_ 3A _ n51a DC_ 3A _ n77a DC_ 3A _ n78a DC_3A_n80A_ULSU P-TDM_n78A, DC_ 3A _ N80A _ ulsup n78a FDM	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 频率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL} \\ F_{\rm low_DL} \\ F_{\rm low_DL} \\ \\ F_{\rm low_DL} \\ 1884.5 \\ 26500 \\ F_{\rm low_DL} \\ \\ 1884.5 \\ 2884.5 \\ \\ 1884$		$F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ 1915. 7 \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ 1915. 7 \\ 29500 \\ F_{0l_high} \\ 1915. 7$	-41 -50 -50 -50 -50 -41 -50 -50 -50 -50 -50 -41 -5 -50 -41 -5 -50 -41	0. 3 1 1 1 0. 3 1 1 1 1 0. 3 100 1 0. 3	5 2 3 5 2
DC_ 3A _ n51a DC_ 3A _ n77a DC_ 3A _ n77a DC_ 3A _ n78a DC_3A_n80A_ULSU P-TDM_n78A, DC_ 3A _ N80A _ ulsup n78a FDM DC_ 3A _ n79a	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段 22, 73,75,76 頻段 22,42,52 频率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段 3 E-UTRA 頻 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围	$F_{\rm dl_low}$ $F_{\rm dl_low}$ $1884. 5$ $F_{\rm low_DL}$ $F_{\rm low_DL}$ $F_{\rm low_DL}$ $I_{\rm low_DL}$		$F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ 1915. 7 \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ 1915. 7 \\ 29500 \\ F_{0l_high} \\ 1915. 7 \\ 29500 \\$	-41 -50 -50 -50 -50 -41 -50 -50 -50 -50 -50 -50 -41 -5 -50 -50 -41 -5	0. 3 1 1 1 0. 3 1 1 1 0. 3 1 1 0. 3 100 1 0. 3	5 2 3 5 2
DC_ 3A _ n51a DC_ 3A _ n77a DC_ 3A _ n78a DC_3A_n80A_ULSU P-TDM_n78A, DC_ 3A _ N80A _ ulsup n78a FDM	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段 3 頻段 22,42,52 频率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段 3 E-UTRA 頻 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围	$F_{\rm dl_low} \\ F_{\rm dl_low} \\ F_{\rm dl_low} \\ 1884.5 \\ F_{\rm low_DL} \\ F_{\rm low_DL} \\ F_{\rm low_DL} \\ \\ F_{\rm low_DL} \\ 1884.5 \\ 26500 \\ F_{\rm low_DL} \\ \\ 1884.5 \\ 2884.5 \\ \\ 1884$		$F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ 1915. 7 \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ 1915. 7 \\ 29500 \\ F_{0l_high} \\ 1915. 7$	-41 -50 -50 -50 -50 -41 -50 -50 -50 -50 -50 -41 -5 -50 -41 -5 -50 -41	0. 3 1 1 1 0. 3 1 1 1 1 0. 3 100 1 0. 3	5 2 3 5 2
DC_ 3A _ n51a DC_ 3A _ n77a DC_ 3A _ n77a DC_ 3A _ n78a DC_3A_n80A_ULSU P-TDM_n78A, DC_ 3A _ N80A _ ulsup n78a FDM DC_ 3A _ n79a	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 頻率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65	$F_{\rm dl_low}$ $F_{\rm dl_low}$ $I884. 5$ $F_{\rm low_DL}$ $F_{\rm low_DL}$ $F_{\rm low_DL}$ $I884. 5$ 26500 $F_{\rm low_DL}$ $1884. 5$ 26500 $F_{\rm low_DL}$ $I884. 5$		$F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ 1915. 7 \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ 1915. 7 \\ 29500 \\ F_{0l_high} \\ 1915. 7 \\ 29500 \\ F_{ll_high} \\ F_{ll_high$	-41 -50 -50 -50 -50 -41 -50 -50 -50 -50 -50 -50 -41 -5 -50 -50 -41 -5 -50 -50	0. 3 1 1 1 0. 3 1 1 1 0. 3 1 1 0. 3 100 1 0. 3	5 2 3 5 2
DC_ 3A _ n51a DC_ 3A _ n78a DC_3A_n80A_ULSU P-TDM_n78A, DC_ 3A _ N80A _ u1sup n78a FDM DC_ 3A _ n79a DC_3A_n79A DC_3A_n80A_ULSU	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段 3 頻段 22,42,52 频率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段 3 E-UTRA 頻 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围	$F_{\rm dl_low}$ $F_{\rm dl_low}$ $1884. 5$ $F_{\rm low_DL}$ $F_{\rm low_DL}$ $F_{\rm low_DL}$ $I_{\rm low_DL}$		$F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ 1915. 7 \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ 1915. 7 \\ 29500 \\ F_{0l_high} \\ 1915. 7 \\ 29500 \\$	-41 -50 -50 -50 -50 -41 -50 -50 -50 -50 -50 -50 -41 -5 -50 -50 -41 -5	0. 3 1 1 1 0. 3 1 1 1 0. 3 1 1 0. 3 100 1 0. 3	5 2 3 5 2
DC_ 3A _ n51a DC_ 3A _ n78a DC_3A_n80A_ULSU P-TDM_n78A, DC_ 3A _ N80A _ ulsup n78a FDM DC_ 3A _ n79a DC_3A_n79A DC_3A_n80A_ULSU P-TDM_n79A,	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段3 頻段22,42,52 頻率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段3 E-UTRA 頻 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65	$F_{\rm dl_low}$ $F_{\rm dl_low}$ $I884. 5$ $F_{\rm low_DL}$ $F_{\rm low_DL}$ $F_{\rm low_DL}$ $I884. 5$ 26500 $F_{\rm low_DL}$ $1884. 5$ 26500 $F_{\rm low_DL}$ $I884. 5$		$F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ 1915. 7 \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ 1915. 7 \\ 29500 \\ F_{0l_high} \\ 1915. 7 \\ 29500 \\ F_{ll_high} \\ F_{ll_high$	-41 -50 -50 -50 -50 -41 -50 -50 -50 -50 -50 -50 -41 -5 -50 -50 -41 -5 -50 -50	0. 3 1 1 1 0. 3 1 1 1 0. 3 100 1 1 1 1 1 1 1 1 1 1 1	5 2 3 5 2
DC_ 3A _ n51a DC_ 3A _ n78a DC_3A_n80A_ULSU P-TDM_n78A, DC_ 3A _ N80A _ ulsup n78a FDM DC_ 3A _ n79a DC_3A_n80A_ULSU P-TDM_n79A, DC_3A_N80A_ULSU P-TDM_n79A, DC_ 3A _ N80A _	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 频段3 频段22,42,52 频率范围 E-UTRA	$F_{\text{dl_low}}$ $F_{\text{dl_low}}$ $1884. 5$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $I884. 5$ 26500 $F_{\text{low_DL}}$ $1884. 5$ 26500 $F_{\text{low_DL}}$ $1884. 5$		$F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ 1915. 7 \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ I915. 7 \\ 29500 \\ F_{0l_high} \\ I915. 7 \\ 29500 \\ F_{0l_high} \\ I915. 7 \\ 29500 \\ F_{0l_high} \\ I915. 7 \\ I9$	-41 -50 -50 -50 -50 -41 -50 -50 -50 -50 -50 -50 -50 -41 -5 -50 -50 -41 -5 -50 -50 -41	0.3 1 1 1 0.3 1 1 1 0.3 100 1 1 0.3 100 1 1 0.3	5 2 3 5 2
DC_ 3A _ n51a DC_ 3A _ n78a DC_3A_n80A_ULSU P-TDM_n78A, DC_ 3A _ N80A _ ulsup n78a FDM DC_ 3A _ n79a DC_3A_n79A DC_3A_n80A_ULSU P-TDM_n79A,	類 1,5,7,8,20,26,27,28,31,32,33,34,3 8,39,41,43,44,45,50,51,65,67,68,6 9,72,73,75,76 頻段 3 頻段 22,42,52 频率范围 E-UTRA 頻 段 7,8,12,13,17,20,27,28,31,33,38,48,67,68,69,72,73 E-UTRA 頻段 3 E-UTRA 頻 段 1,5,6,22,26,30,34,36,40,41,42,43,44,46,65,71 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围 NR 頻段 n257 E-UTRA 頻 段 1,3,5,7,8,11,18,19,20,21,26,28,34,39,40,41,65 頻率范围	$F_{\text{dl_low}}$ $F_{\text{dl_low}}$ $1884. 5$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $1884. 5$ 26500 $F_{\text{low_DL}}$ $1884. 5$ 26500 $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$		$F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ 1915. 7 \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ F_{0l_high} \\ 1915. 7 \\ 29500 \\ F_{0l_high} \\ 1915. 7 \\ 29500 \\ F_{nl_high} \\ F_{nl_high$	-41 -50 -50 -50 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	0.3 1 1 1 0.3 1 1 1 0.3 100 1 1 1 1 1 1 1 1 1 1 1	5 2 3 5 2

FDM							
	der						
DC_ 3A _ n82a	E-UTRA 頻 段	_		_			
	1, 3, 7, 8, 20, 22, 31, 32, 33, 34, 38, 40, 4	$F_{1 \text{ ow}_DL}$	_	F _{DL_high}	-50	1	
	3, 50, 51, 65, 67, 68, 69, 72, 74, 75, 76						
	E-UTRA 频段 42	$F_{1 \text{ ow}_DL}$	-	F_{DL_high}	-50	1	2
_ 5ADC_ n40a	带						
	1, 3, 5, 7, 8, 28, 31, 34, 38, 42, 43, 45, 65	$F_{1 \text{ ow}_DL}$	_	F _{DL_high}	-50	1	
	, 73						
	频段 26	859	_	869	-27	1	
	频段 41, 52	$F_{1 ow_DL}$	-	F _{DL_high}	-50	1	
	频率范围	1884. 5	1	1915. 7	-41	0.3	3
_ 5ADC_ n66a	频 段						
	1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 17, 24	E	_	E G	-50	1	
	, 25, 28, 29, 30, 34, 38, 40, 43, 45, 50, 51	F_{dl_low}		F _{dl_high}	30	1	
	, 65, 66, 70, 71, n71, 85, n257						
	E-UTRA 频段 26	859	-	869	-27	1	
	频段 41, 42, 48, 52	F_{dl_low}	-	F _{dl_high}	-50	1	2
	E-UTRA 频段 18, 19	$F_{1\text{ow}_\text{DL}}$	_	F _{DL_high}	-40	1	
	E-UTRA 频段 11, 21	F _{1 ow_ DL}	_	F _{DL_high}	-50	1	
	频率范围	1884. 5	-	1915. 7	-41	0.3	3
_ 5ADC_ n78a	E-UTRA 頻 段	· · · · ·					
	1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 24, 2	_			F.0		
	5, 28, 29, 30, 31, 34, 38, 40, 42, 43	F_{dl_low}	-	F _{dl_high}	-50	1	
	45, 48, 65, 66, 70						
	频率范围	3800	-	3805	+1.6	5	5, 7, 8
	频率范围	3805	-	3825	-15. 5	5	5, 7, 8
	频率范围	3825	_	3850	-40	1	5, 8
	频率范围	3850	_	4200	-50	1	-, -
	E-UTRA 频段 26	859	_	869	-27	(i)	
	频率范围	945	_	960		18 1	
	频率范围	1884. 5	_	1915. 7 + (118-41	0.3	3, 4
	频率范围	2545	<u> </u>	2575	-50	1	3, 1
	频率范围	2595		2645	-50	1	
	E-UTRA 频段 41	F _{dl_low}	_	F _{dl_high}	-50	1	7
	E-UTRA 频段 18, 19	F _{dl_low}	_	F _{dl_high}	-40	1	4
	E-UTRA 频段 11, 21	F _{dl_low}		F _{dl_high}	-50		
						l I	I 4
DC 7A n28a		- d1_10W		- ui_nign	30	1	4
DC_ 7A _ n28a	E-UTRA 频段 27, 31, 72		-		-50	1	4
DC_ 7A _ n28a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20,	F _{1 ow_DL}	-	F _{DL_high}			4
DC_ 7A _ n28a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40		1				4
DC_ 7A _ n28a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65	F _{1 ow_ DL}	1	$F_{\text{DL_high}}$	-50	1	
DC_ 7A _ n28a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74,		-				2
DC_ 7A _ n28a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78	$F_{1_{0M_DL}}$ $F_{1_{0M_DL}}$	-	$F_{ ext{DL_high}}$ $F_{ ext{DL_high}}$	-50	1	2
DC_ 7A _ n28a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74,	F _{1 ow_ DL}	-	$F_{\text{DL_high}}$	-50 -50	1	
DC_ 7A _ n28a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1	F_{1ow_DL} F_{1ow_DL}	-	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ $F_{\text{DL_high}}$	-50 -50 -50	1 1	2 10, 11
DC_ 7A _ n28a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758	1 1	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ $F_{\text{DL_high}}$ 773	-50 -50 -50 -32	1 1 1	2 10, 11 5
DC_ 7A _ n28a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773	1 1 1	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ $F_{\text{DL_high}}$ 773 803	-50 -50 -50 -32 -50	1 1 1 1	2 10, 11 5 5, 6, 7
DC_ 7A _ n28a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773 2570 2575	1 1 1	F _{DL_high} F _{DL_high} 773 803 2575 2595	-50 -50 -50 -32 -50 +1.6	1 1 1 1 1 5 5	2 10, 11 5 5, 6, 7 5, 6, 7
	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773 2570 2575 2595	-	F _{DL_high} F _{DL_high} F _{DL_high} 773 803 2575 2595 2620	-50 -50 -50 -32 -50 +1.6 -15.5 -40	1 1 1 1 1 5 5	2 10, 11 5 5, 6, 7
DC_ 7A _ n28a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773 2570 2575	-	F _{DL_high} F _{DL_high} 773 803 2575 2595	-50 -50 -50 -32 -50 +1.6 -15.5	1 1 1 1 1 5 5	2 10, 11 5 5, 6, 7 5, 6, 7
	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773 2570 2575 2595	-	F _{DL_high} F _{DL_high} F _{DL_high} 773 803 2575 2595 2620	-50 -50 -50 -32 -50 +1.6 -15.5 -40	1 1 1 1 1 5 5	2 10, 11 5 5, 6, 7 5, 6, 7
	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 频率范围	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773 2570 2575 2595	-	F _{DL_high} F _{DL_high} F _{DL_high} 773 803 2575 2595 2620	-50 -50 -50 -32 -50 +1.6 -15.5 -40	1 1 1 1 1 5 5	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6
	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773 2570 2575 2595 $F_{\text{low_DL}}$	-	$F_{\text{DL_high}} \\ F_{\text{DL_high}} \\ F_{\text{DL_high}} \\ 773 \\ 803 \\ 2575 \\ 2595 \\ 2620 \\ F_{\text{DL_high}} \\ F_{\text{DL_high}}$	-50 -50 -50 -32 -50 +1.6 -15.5 -40 -50	1 1 1 1 5 5 5 1	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6, 7 5, 6
	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 频率范围	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773 2570 2575 2595 $F_{\text{low_DL}}$ 2570	-	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ $F_{\text{DL_high}}$ 773 803 2575 2595 2620 $F_{\text{DL_high}}$ 2575	-50 -50 -50 -32 -50 +1.6 -15.5 -40 -50 +1.6	1 1 1 1 5 5 1	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6 5, 7, 17 5, 7, 17
	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773 2570 2575 2595 $F_{\text{low_DL}}$ 2570 2575	- - - - - -	F _{DL_high} F _{DL_high} 773 803 2575 2595 2620 F _{DL_high} 2575 2595	-50 -50 -50 -32 -50 +1.6 -15.5 -40 -50 +1.6 -15.5	1 1 1 1 1 5 5 1 1 5 5 5 5 5 5 6 6 7 7 7 7 8 7 8 7 8 7 8 7 8 8 8 8 8 8	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6, 7 5, 6
	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围	$F_{1\text{ow_DL}}$ $F_{1\text{ow_DL}}$ 758 773 2570 2575 2595 $F_{1\text{ow_DL}}$ 2570 2575 2595	- - - - - -	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ 773 803 2575 2595 2620 $F_{\text{DL_high}}$ 2575 2620 2575 2620	-50 -50 -50 -32 -50 +1.6 -15.5 -40 -50 +1.6 -15.5 -40	1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6 5, 7, 17 5, 7, 17 5, 7, 17 5, 21
	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 更平范围 频率范围 E-UTRA 频 段 2, 3, 5, 8, 26, 30, 31, 32, 33, 34, 40, 48, 7 2 频率范围 频率范围	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773 2570 2575 2595 $F_{\text{low_DL}}$ 2570 2575	- - - - - -	F _{DL_high} F _{DL_high} 773 803 2575 2595 2620 F _{DL_high} 2575 2595	-50 -50 -50 -32 -50 +1.6 -15.5 -40 -50 +1.6 -15.5	1 1 1 1 1 5 5 1 1 5 5 5 5 5 5 6 6 7 7 7 7 8 7 8 7 8 7 8 7 8 8 8 8 8 8	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6 5, 7, 17 5, 7, 17
	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围	$F_{1\text{ow_DL}}$ $F_{1\text{ow_DL}}$ 758 773 2570 2575 2595 $F_{1\text{ow_DL}}$ 2570 2575 2595	- - - - - -	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ 773 803 2575 2595 2620 $F_{\text{DL_high}}$ 2575 2620 2575 2620	-50 -50 -50 -32 -50 +1.6 -15.5 -40 -50 +1.6 -15.5 -40	1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6 5, 7, 17 5, 7, 17 5, 7, 17 5, 21
DC_ 7A _ n51a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 频率范围 医-UTRA 频 段 2, 3, 5, 8, 26, 30, 31, 32, 33, 34, 40, 48, 7 2 频率范围 频率范围 频率范围	$F_{1\text{ow_DL}}$ $F_{1\text{ow_DL}}$ 758 773 2570 2575 2595 $F_{1\text{ow_DL}}$ 2570 2575 2595	- - - - - -	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ 773 803 2575 2595 2620 $F_{\text{DL_high}}$ 2575 2620 2575 2620	-50 -50 -50 -32 -50 +1.6 -15.5 -40 -50 +1.6 -15.5 -40	1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6 5, 7, 17 5, 7, 17 5, 7, 17 5, 21
	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 频率范围 更平范围 频率范围 E-UTRA 频 段 2, 3, 5, 8, 26, 30, 31, 32, 33, 34, 40, 48, 7 2 频率范围 频率范围 频率范围 频率范围	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773 2570 2575 2595 $F_{\text{low_DL}}$ 2570 2575 2595 $F_{\text{low_DL}}$	- - - - - -	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ $F_{\text{DL_high}}$ 773 803 2575 2595 2620 $F_{\text{DL_high}}$ 2575 2595 2620 $F_{\text{DL_high}}$ $F_{\text{dl_high}}$	-50 -50 -50 -32 -50 +1.6 -15.5 -40 -50 +1.6 -15.5 -40 -50	1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6 5, 7, 17 5, 7, 17 5, 7, 17 5, 21
DC_ 7A _ n51a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 频率范围 E-UTRA 频 段 2, 3, 5, 8, 26, 30, 31, 32, 33, 34, 40, 48, 7 2 频率范围 频率范围 频率范围 频率范围 KP 型形	$F_{1\text{ow_DL}}$ $F_{1\text{ow_DL}}$ 758 773 2570 2575 2595 $F_{1\text{ow_DL}}$ 2570 2575 2595	- - - - - -	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ 773 803 2575 2595 2620 $F_{\text{DL_high}}$ 2575 2620 2575 2620	-50 -50 -50 -32 -50 +1.6 -15.5 -40 -50 +1.6 -15.5 -40	1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6 5, 7, 17 5, 7, 17 5, 7, 17 5, 21
DC_ 7A _ n51a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 医-UTRA 频 段 2, 3, 5, 8, 26, 30, 31, 32, 33, 34, 40, 48, 7 2 频率范围 频率范围 反-UTRA 频 段 2, 4, 5, 7, 8, 14, 17, 20, 22, 23, 27, 28, 29, 42, 43, 44, 46, 65, 66, 67, 68 NR Band n77, n78, n79, E-UTRA 频 段 1, 2, 3, 4, 5, 7, 8, 10, 11, 18, 19, 20, 21, 2	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773 2570 2575 2595 $F_{\text{low_DL}}$ 2570 2575 2595 $F_{\text{low_DL}}$	- - - - - -	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ $F_{\text{DL_high}}$ 773 803 2575 2595 2620 $F_{\text{DL_high}}$ 2575 2595 2620 $F_{\text{DL_high}}$ $F_{\text{dl_high}}$	-50 -50 -50 -32 -50 +1.6 -15.5 -40 -50 +1.6 -15.5 -40 -50	1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6 5, 7, 17 5, 7, 17 5, 7, 17 5, 21
DC_ 7A _ n51a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 医-UTRA 频 段 2, 3, 5, 8, 26, 30, 31, 32, 33, 34, 40, 48, 7 2 频率范围 频率范围 频率范围 F-UTRA 频 段 2, 3, 5, 8, 26, 30, 31, 32, 33, 34, 40, 48, 7 2 频率范围 医-UTRA 频 段 1, 4, 10, 12, 13, 14, 17, 20, 22, 23, 27, 28, 29, 42, 43, 44, 46, 65, 66, 67, 68 NR Band n77, n78, n79, E-UTRA 频 段 1, 2, 3, 4, 5, 7, 8, 10, 11, 18, 19, 20, 21, 2 6, 27, 28, 31, 32, 33, 34, 40, 50, 51	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773 2570 2575 2595 $F_{\text{low_DL}}$ 2570 2575 2595 $F_{\text{low_DL}}$	- - - - - -	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ $F_{\text{DL_high}}$ 773 803 2575 2595 2620 $F_{\text{DL_high}}$ 2575 2595 2620 $F_{\text{DL_high}}$ $F_{\text{dl_high}}$	-50 -50 -50 -32 -50 +1.6 -15.5 -40 -50 +1.6 -15.5 -40 -50	1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6 5, 7, 17 5, 7, 17 5, 7, 17 5, 21
DC_ 7A _ n51a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 医-UTRA 频 段 2, 3, 5, 8, 26, 30, 31, 32, 33, 34, 40, 48, 7 2 频率范围 频率范围 医-UTRA 频 段 1, 4, 10, 12, 13, 14, 17, 20, 22, 23, 27, 28, 29, 42, 43, 44, 46, 65, 66, 67, 68 NR Band n77, n78, n79, E-UTRA 频 段 1, 2, 3, 4, 5, 7, 8, 10, 11, 18, 19, 20, 21, 26, 27, 28, 31, 32, 33, 34, 40, 50, 51, 65, 66, 67, 68, 72, 74, 75, 76	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 758 773 2570 2575 2595 $F_{\text{low_DL}}$ 2570 2575 $F_{\text{low_DL}}$ $F_{\text{low_DL}}$	- - - - - - - - - -	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ $F_{\text{DL_high}}$ 773 803 2575 2595 2620 $F_{\text{DL_high}}$ 2575 2595 2620 $F_{\text{dL_high}}$ $F_{\text{DL_high}}$	-50 -50 -50 -32 -50 +1.6 -15.5 -40 -50 +1.6 -15.5 -40 -50	1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6 5, 7, 17 5, 7, 17 5, 21 2
DC_ 7A _ n51a	E-UTRA 频段 27, 31, 72 NR 频段 n2, n3, n5, n7, n8, n20, n26, n34, n40 E-UTRA 频段 4, 10, 42, 43, 65 NR 频带 n1, n50, n51, n66, n74, n75, n76, n78 NR 频段 n1 频率范围 频率范围 频率范围 频率范围 医-UTRA 频 段 2, 3, 5, 8, 26, 30, 31, 32, 33, 34, 40, 48, 7 2 频率范围 频率范围 医-UTRA 频 段 1, 4, 10, 12, 13, 14, 17, 20, 22, 23, 27, 28, 29, 42, 43, 44, 46, 65, 66, 67, 68 NR Band n77, n78, n79, E-UTRA 频 段 1, 2, 3, 4, 5, 7, 8, 10, 11, 18, 19, 20, 21, 2 6, 27, 28, 31, 32, 33, 34, 40, 50, 51, 65, 66, 67, 68, 72, 74, 75, 76	$F_{1\text{osc_DL}}$ $F_{1\text{osc_DL}}$ $F_{1\text{osc_DL}}$ 758 773 2570 2575 2595 $F_{1\text{osc_DL}}$ 2570 2575 $F_{1\text{osc_DL}}$ $F_{1\text{osc_DL}}$ $F_{1\text{osc_DL}}$ 2570	- - - - - - - - - - - - - - - - - - -	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ $F_{\text{DL_high}}$ 773 803 2575 2595 2620 $F_{\text{DL_high}}$ 2575 2595 2620 $F_{\text{dl_high}}$ $F_{\text{DL_high}}$	-50 -50 -50 -32 -50 +1.6 -15.5 -40 -50 +1.6 -15.5 -40 -50 -50 +1.6 -15.6 -40 -50	1 1 1 1 1 5 5 1 1 1 1 5 5 1 1 5 5 5 1 5 5 1 5 5 5 5 5 6 7 7 7 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8	2 10, 11 5 5, 6, 7 5, 6, 7 5, 6 5, 7, 17 5, 7, 17 5, 21 2 5, 6, 7

	频率范围	3805	-	3825	-15. 5	5	5, 7, 8
	频率范围	3825	-	3850	-40	1	5, 8
	频率范围	3850	-	4200	-50	1	
DC_ 8A _ n40a	Band 1, 20, 28, 31, 32, 33, 34, 38, 39, 40, 45, 50, 51, 65, 67,	F _{1 ow_DL}	-	F _{DL_high}	-50	1	
	68, 69, 72, 73, 74, 75, 76	Б		D		1	0
	頻段 3, 7, 22, 41, 42, 43, 52 頻段 8	F _{1 ow_DL}	_	F _{DL_high}	-50 -50	1	5
	频段 11, 21	F _{low_DL}	-	F _{DL_high}	-50 -50	1	13
	频率范围	F _{1 ow_ DL} 860	-	FDL_high 890	-40	1	5, 13
	频率范围	1884. 5	_	1915. 7	-41	0.3	3, 13
DC_ 8A _ n77a	E-UTRA 頻 段 1, 20, 28, 31, 32, 33, 34, 38, 39, 40, 44, 4 5, 50, 51, 65, 67, 68, 69, 72, 73, 74, 75, 7 6	$F_{1_{\text{cm}}_\text{DL}}$	-	$F_{ ext{DL_high}}$	-50	1	
	E-UTRA 频段 3, 7, 22, 41	F _{1 ow_DL}	-	F _{DL_high}	-50	1	2
	E-UTRA 频段 8	F _{1 ow_DL}	-	F _{DL_high}	-50	1	5
	E-UTRA 频段 11, 21	F _{1 ow_DL}	-	F _{DL_high}	-50	1	13
	频率范围	860	-	890	-40	1	5, 13
	频率范围	1884. 5	-	1915. 7	-41	0.3	3, 13
DC 94 79	NR 頻段 n257	26500	-	29500	-5 50	100	
DC_ 8A _ n78a	E-UTRA 频段 1, 8, 20, 28, 34, 39, 40, 65	F _{1 ow_DL}	_	F _{DL_high}	-50 -50	1	2
DC_8A_n81A_ULSU	E-UTRA 频段 3, 7, 41	F _{1 ow_DL}	-	F _{DL_high}	-50 -50		13
P-TDM_n78A,	E-UTRA 频段 11, 21 频率范围	F _{1 ow_ DL} 860	-	FDL_high 890	-50 -40	1	5, 13
DC_ 8A _ n81a _	频率范围	1884. 5	_	1915. 7	-41	0.3	3, 13
ulsup n78a	NR 频段 n257	26500	_	29500	-5	100	3, 13
FDM	NR 频段 n258	24250	_	27500	-5	100	
DC_ 8A _ n79a	E-UTRA 频段 1, 8, 28, 34, 39, 40, 65	F _{1 ow_ DL}	_	F _{DL_high}	-50	(0 1)	
DC_8A_n81A_ULSU	E-UTRA 频段 3, 41, 42	F _{1 ow_DL}	_	F _{DL_high}	-50	$\frac{9}{6}\frac{7}{1}$	2
P-TDM_n79A,	E-UTRA 频段 11, 21	F _{1 ow_DL}		FDL_high	118-50	1	13
DC_ 8A _ n81a _	频率范围	860	-	890	-40	1	5, 13
ulsup n79a	频率范围	1884. 5		1915. 7	-41	0.3	3
FDM	NR 频段 n257	26500	-	29500	-5	100	
1 1/11	NR 频段 n258	24250	-	27500	-5	100	
DC_ 11a _ n77a	E-UTRA 频段 1, 3, 18, 19, 28, 34, 65	$F_{1 \text{ ow}_DL}$	-	F _{DL_high}	-50	1	
F	频率范围	945	-	960	-50	1	
,	频率范围	1884. 5	-	1915. 7	-41	0.3	3
	频率范围	2545	-	2575	-50	1	
	频率范围	2595	-	2645	-50	1	
	NR 频段 n257	26500	-	29500	-5	100	
DC_ 11a _ n78a	E-UTRA 频段 1, 3, 18, 19, 28, 34, 65	F _{1 ow_DL}	-	F _{DL_high}	-50	1	
	频率范围	945	-	960	-50	1	
	频率范围	1884. 5	_	1915. 7	-41	0.3	3
	频率范围	2545	-	2575	-50	1	
	频率范围 NP 極郎 - 257	2595	-	2645	-50	100	
DC 1170-	NR 频段 n257 E-UTRA 频段 1, 3, 18, 19, 28, 34, 42, 65	26500	_	29500	-5 -50	100	
DC_ 11a _ n79a	频率范围	F _{1 ow_ DL} 945	-	F _{DL_high} 960	-50 -50	1 1	
	频率范围	1884. 5	_	1915. 7	-41	0.3	3
		2545	_	2575	-50	1	9
	频率范围	2595	_	2645	-50	1	
	NR 频段 n257	26500	_	29500	-5	100	
DC_ 12A _ N5A	频 2, 5, 12, 13, 14, 17, 24, 25, 30, 42, 43, 50	F _{dl_low}	_	F _{dl_high}	-50	1	
	, 51, 71, n71, 74, n257 転码 4 10 11 48 66 70	Б		E	-50	1	9
	频段 4, 10, 11, 48, 66, 70 频段 26	F _{dl_low} 859	-	F _{dl_high} 869	-50 -27	1 1	2
	频段 12, 85	F _{1 ow_ DL}	-		-2 <i>1</i> -50	1	
DC_ 12A _ n66a DC_ 12A _ N5A	频 段 2, 4, 5, 13, 14, 17, 24, 25, 26, 27, 29, 30, 41, 50, 51, 70, 71, n71, 74, n257	F _{dl_low}	_	$F_{\text{DL_high}}$ $F_{\text{dl_high}}$	-50	1	
	频段 4, 10, 48	$F_{dl_{2low}}$	-	F _{dl_high}	-50	1	2
	频段 12, 85	F _{dl_low}	-	F _{dl_high}	-50	1	5
	频 2, 5, 12, 13, 14, 17, 24, 25, 30, 42, 43, 50	F _{dl_low}	_	F _{dl_high}	-50	1	

1	E1 71 -71 74 -9E7						
DC 77 104	, 51, 71, n71, 74, n257 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65	D.		E	-50	1	
DC n77a 18A		F _{1 ow_ DL}		F _{DL_high}		1	
	频率范围	945	_	960	-50	1	0
	频率范围	1884. 5	-	1915. 7	-41	0.3	3
	频率范围	2545	-	2575	-50	1	
	频率范围	2595	-	2645	-50	1	
	NR 频段 n257	26500	_	29500	-5	100	
DC n78a 18A	E-UTRA 频段 1, 3, 11, 21, 28, 34, 65	F _{1 ow_DL}	_	F _{DL_high}	-50	1	
	频率范围	945	-	960	-50	1	_
	频率范围	1884. 5	_	1915. 7	-41	0.3	3
	频率范围	2545	_	2575	-50	1	
	频率范围	2595	_	2645	-50	1	
	NR 频段 n257	26500	_	29500	-5	100	
DC n79a 18A	E-UTRA 频段 1, 3, 11, 21, 28, 34, 42, 65	$F_{1 \text{ ow}_DL}$	_	F _{DL_high}	-50	1	
	频率范围	945	_	960	-50	1	
	频率范围	1884. 5	_	1915. 7	-41	0.3	3
	频率范围	2545	_	2575	-50	1	
	频率范围	2595	_	2645	-50	1	
	NR 频段 n257	26500	_	29500	-5	100	
第十九_ n77aDC_	E-UTRA 频段 1, 3, 11, 21, 28, 34, 65	$F_{1 \text{ ow}_DL}$	_	F _{DL_high}	-50	1	
	频率范围	945	-	960	-50	1	
	频率范围	1884. 5	-	1915. 7	-41	0.3	3
	频率范围	2545	-	2575	-50	1	
	频率范围	2595	-	2645	-50	1	
	NR 频段 n257	26500	-	29500	-5	100	
第十九_ n78aDC_	E-UTRA 频段 1, 3, 11, 21, 28, 34, 65	F _{1 ow_DL}	-	F _{DL_high}	-50	1	
	频率范围	945	_	960	-50	1	
	频率范围	1884. 5	_	1915. 7	-41	0,3	3
	频率范围	2545	_	2575	-50	(0)	-
	频率范围	2595	_	2645	n 0 =501 11	15	
	NR 频段 n257	26500		29500	118-5	100	
第十九_ n79aDC_	E-UTRA 频段 1, 3, 11, 21, 28, 34, 42, 65	Frag Di	-	F _{DL_high}	-50	1	
M /L III Jabe_	频率范围	945	_	960	-50	1	
	频率范围	1884. 5	-	1915. 7	-41	0.3	3
	频率范围	2545	-	2575			J
					-50 -50	1	
d	频率范围	2595	-	2645	-50	1	
DC 204 p2c	频率范围 NR 频段 n257						
DC_ 20A _ n8a	频率范围 NR 频段 n257 E-UTRA 频 段	2595 26500	-	2645 29500	-50 -5	1 100	
DC_ 20A _ n8a	频率范围 NR 频段 n257 E-UTRA	2595	-	2645	-50	1	
	频率范围 NR 频段 n257 E-UTRA	2595 26500	-	2645 29500	-50 -5	1 100	
	频率范围 NR 频段 n257 E-UTRA	2595 26500	-	2645 29500	-50 -5	1 100	
DC_ 20A _ n28a	频率范围 NR 频段 n257 E-UTRA	2595 26500	-	2645 29500	-50 -5	1 100	
	「頻率范围	2595 26500 F _{1om_DL}	-	2645 29500 F _{DL_high}	-50 -5 -50	1 100 1	
DC_ 20A _ n28a	「 「 「 「 東	2595 26500 F _{1om_DL}	-	2645 29500 F _{DL_high}	-50 -5 -50	1 100 1	
DC_ 20A _ n28a DC_ 20A _ n83a	「	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1_{\text{ow}_} \text{DL}} \\ \\ F_{1_{\text{ow}_} \text{DL}} \end{array}$	-	2645 29500 F _{DL_high} F _{DL_high}	-50 -5 -50	1 100 1	
DC_ 20A _ n28a DC_ 20A _ n83a	頻率范围	$2595 \\ 26500$ $F_{1_{\text{ow}_DL}}$ $F_{1_{\text{ow}_DL}}$ $F_{1_{\text{ow}_DL}}$	-	2645 29500 F _{DL_high} F _{DL_high}	-50 -5 -50 -50	1 100 1 1	
DC_ 20A _ n28a DC_ 20A _ n83a	頻率范围	$2595 \\ 26500$ $F_{1_{\text{ow}_DL}}$ $F_{1_{\text{ow}_DL}}$ $F_{1_{\text{ow}_DL}}$	-	2645 29500 F _{DL_high} F _{DL_high}	-50 -5 -50 -50 -50	1 100 1	5
DC_ 20A _ n28a DC_ 20A _ n83a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1_{\text{ow}_} \text{DL}} \\ \\ F_{1_{\text{ow}_} \text{DL}} \end{array}$	-	2645 29500 F _{DL_high} F _{DL_high}	-50 -5 -50 -50	1 100 1 1	5
DC_ 20A _ n28a DC_ 20A _ n83a	頻率范围	2595 26500 $F_{1_{OM_{\perp}} DL}$ $F_{1_{OM_{\perp}} DL}$ $F_{1_{OM_{\perp}} DL}$ $F_{1_{OM_{\perp}} DL}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \end{array}$	-50 -5 -50 -50 -50	1 100 1 1 1	5
DC_ 20A _ n28a DC_ 20A _ n83a	「	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ \hline \\ F_{1\text{ow}_DL} \\ \\ \hline \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \hline \\ 788 \\ \end{array}$	-50 -50 -50 -50 -50 -50	1 100 1 1 1 1	
DC_ 20A _ n28a DC_ 20A _ n83a	頻率范围	2595 26500 $F_{1_{OM_{\perp}} DL}$ $F_{1_{OM_{\perp}} DL}$ $F_{1_{OM_{\perp}} DL}$ $F_{1_{OM_{\perp}} DL}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \end{array}$	-50 -5 -50 -50 -50	1 100 1 1 1	5
DC_ 20A _ n28a DC_ 20A _ n83a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ \hline \\ F_{1\text{ow}_DL} \\ \\ \hline \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \hline \\ 788 \\ \end{array}$	-50 -50 -50 -50 -50 -50	1 100 1 1 1 1	
DC_ 20A _ n28a DC_ 20A _ n83a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ \hline \\ F_{1\text{ow}_DL} \\ \\ \hline \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \hline \\ 788 \\ \end{array}$	-50 -50 -50 -50 -50 -50	1 100 1 1 1 1	
DC_ 20A _ n28a DC_ 20A _ n83a DC_ 20A _ n51a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ \hline \\ F_{1\text{ow}_DL} \\ \\ \hline \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \hline \\ 788 \\ \end{array}$	-50 -50 -50 -50 -50 -50	1 100 1 1 1 1	
DC_ 20A _ n28a DC_ 20A _ n83a DC_ 20A _ n51a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ \hline \\ F_{1\text{ow}_DL} \\ \\ \hline \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \hline \\ 788 \\ \end{array}$	-50 -50 -50 -50 -50 -50	1 100 1 1 1 1	
DC_ 20A _ n28a DC_ 20A _ n83a DC_ 20A _ n51a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ \hline \\ F_{1\text{ow}_DL} \\ \\ \hline \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \hline \\ 788 \\ \end{array}$	-50 -50 -50 -50 -50 -50	1 100 1 1 1 1	
DC_ 20A _ n28a DC_ 20A _ n83a DC_ 20A _ n51a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1cm_DL} \\ \\ F_{1cm_DL} \\ \\ F_{1cm_DL} \\ \\ \hline \\ 758 \\ \\ F_{dl_low} \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ 788 \\ \\ F_{dL_high} \\ \end{array}$	-50 -50 -50 -50 -50 -50 -50	1 100 1 1 1 1	2
DC_ 20A _ n28a DC_ 20A _ n83a DC_ 20A _ n51a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ \hline \\ F_{1\text{ow}_DL} \\ \\ \hline \\ F_{d\text{d}_1\text{ow}} \\ \\ \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \end{array}$	-50 -50 -50 -50 -50 -50 -50	1 100 1 1 1 1 1	2
DC_ 20A _ n28a DC_ 20A _ n83a DC_ 20A _ n51a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1ow_DL} \\ \\ F_{1ow_DL} \\ \\ F_{1ow_DL} \\ \\ \hline \\ F_{1ow_DL} \\ \\ \hline \\ F_{1ow_DL} \\ \\ \\ \hline \\ F_{1ow_DL} \\ \\ \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ 788 \\ \\ F_{dL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \end{array}$	-50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 100 1 1 1 1 1 1	2
DC_ 20A _ n28a DC_ 20A _ n83a DC_ 20A _ n51a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ F_{1\text{ow}_DL} \\ \\ \hline \\ F_{1\text{ow}_DL} \\ \\ \hline \\ F_{d\text{d}_1\text{ow}} \\ \\ \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \end{array}$	-50 -50 -50 -50 -50 -50 -50	1 100 1 1 1 1 1	2
DC_ 20A _ n28a DC_ 20A _ n83a DC_ 20A _ n51a DC_ 20A _ n77a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1ow_DL} \\ \\ F_{1ow_DL} \\ \\ F_{1ow_DL} \\ \\ \hline \\ F_{1ow_DL} \\ \\ \hline \\ F_{1ow_DL} \\ \\ \\ \hline \\ F_{1ow_DL} \\ \\ \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ 788 \\ \\ F_{dL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \end{array}$	-50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 100 1 1 1 1 1 1	2
DC_ 20A _ n28a DC_ 20A _ n83a DC_ 20A _ n51a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1ow_DL} \\ \\ F_{1ow_DL} \\ \\ F_{1ow_DL} \\ \\ \hline \\ F_{1ow_DL} \\ \\ \hline \\ F_{1ow_DL} \\ \\ \\ \hline \\ F_{1ow_DL} \\ \\ \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ 788 \\ \\ F_{dL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \end{array}$	-50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 100 1 1 1 1 1 1	2
DC_ 20A _ n28a DC_ 20A _ n83a DC_ 20A _ n51a DC_ 20A _ n77a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1ow_DL} \\ \\ F_{1ow_DL} \\ \\ F_{1ow_DL} \\ \\ \hline \\ F_{1ow_DL} \\ \\ \hline \\ F_{1ow_DL} \\ \\ \\ \hline \\ F_{1ow_DL} \\ \\ \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ 788 \\ \\ F_{dL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \end{array}$	-50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 100 1 1 1 1 1 1	2
DC_ 20A _ n28a DC_ 20A _ n83a DC_ 20A _ n51a DC_ 20A _ n77a DC_ 20A _ n78a	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1cw_DL} \\ \\ F_{1cw_DL} \\ \\ \hline \\ F_{1cw_DL} \\ \hline \\ 758 \\ \\ F_{dl_low} \\ \\ \hline \\ F_{1cw_DL} \\ \\ \hline \\ F_{1cw_DL} \\ \\ \\ \hline \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ 788 \\ \\ F_{dL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \end{array}$	-50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 100 1 1 1 1 1 1	2 5 2
DC_ 20A _ n28a DC_ 20A _ n83a DC_ 20A _ n51a DC_ 20A _ n77a DC_ 20A _ n78a DC_ 20A _ n78a DC_ 20A _ n78a DC_20A_n82A_ULS	頻率范围	$\begin{array}{c} 2595 \\ 26500 \\ \\ F_{1ow_DL} \\ \\ F_{1ow_DL} \\ \\ F_{1ow_DL} \\ \\ \hline \\ F_{1ow_DL} \\ \\ \hline \\ F_{1ow_DL} \\ \\ \\ \hline \\ F_{1ow_DL} \\ \\ \end{array}$	-	$\begin{array}{c} 2645 \\ 29500 \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ 788 \\ \\ F_{dL_high} \\ \\ F_{DL_high} \\ \\ F_{DL_high} \\ \\ \end{array}$	-50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 100 1 1 1 1 1 1	2

_ ulsup							
n78a FDM							
DC 21A n77A	E-UTRA 频段 1, 3, 18, 19, 21, 28, 34, 65	F _{1 ow_ DL}	_	F _{DL_high}	-50	1	
BO_2 / (/ / /)	频率范围	945	_	960	-50	1	
	频率范围						0
		1884. 5	_	1915. 7	-41	0.3	3
	频率范围	2545	_	2575	-50	1	
	频率范围	2595	_	2645	-50	1	
	NR 频段 n257	26500	_	29500	-5	100	
DC_21A_n78A	E-UTRA 频段 1, 3, 18, 19, 21, 28, 34, 65	$F_{1\text{ow}_\text{DL}}$	_	F _{DL_high}	-50	1	
	频率范围	945	_	960	-50	1	
	频率范围	1884. 5	_	1915. 7	-41	0.3	3
	频率范围	2545	_	2575	-50	1	3
	频率范围	2595	-	2645	-50	1	
	NR 频段 n257	26500	_	29500	-5	100	
DC_21A_n79A	E-UTRA 频 段	E	l _	F _{DL high}	-50	1	
	1, 3, 18, 19, 21, 28, 34, 42, 65	F _{1 ow_DL}		1 DL_high] 50	1	
	频率范围	945	_	960	-50	1	
	频率范围	1884. 5	_	1915. 7	-41	0.3	3
	频率范围	2545	_	2575	-50	1	-
	频率范围	2595		2645	-50	1	
			<u> </u>			_	
	NR 频段 n257	26500	_	29500	-5	100	
DC_25A_n41A	NR 频段 n5, n28, n66, n71						
	E-UTRA / NR 頻 段	F _{1 ow_ DL}	l _	F _{DL_high}	-50	1	
	4, 10, 12, 13, 14, 17, 24, 26, 27, 29, 30, 4	1 1 ow_ DL		* DL_high] 50	1	
	2, 45, 48, 70						
	NR 频段 n2					_	_
	E-UTRA / NR 频段 25	$F_{1 \text{ ow}_DL}$	_	F _{DL_high}	-50	1	5
	EUTRA / NR 频段 43	F _{1 ow_ DL}	_	F _{DL_high}	-50	-1	2
DC 26A n41A	E-UTRA / NR 频 段	I'low_DL		1 DL_high	ng-50 int	3	2
DC_26A_1141A	, , , , , , , , , , , , , , , , , , , ,				Ting	18/	
	1, 2, 3, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26	$F_{1 \text{ ow}_DL}$	_	FDL_high +	ng-50	1	
	, 28, 29, 30, 31, 34, 39, 40, 42, 43		T	1: 1)110		
	48, 50, 51, 65, 66, 70, 71, 74	1		J -			
	E-UTRA 频段 9, 11, 18, 19, 21	Flow_DL	_	F _{DL_high}	-50	1	20
	频率范围 一〇十目 1日	1884. 5			4.1	0.3	2 00
	数学范围 一〇十四 一〇	1004. 0		1915. 7	-41	J 0.5	3, 20
		703	_	799	-41 -50	1	3, 20
	频率范围	703		799	-50	1	,
H	频率范围、频率范围、	703 799	_ 	799 803	-50 -40	1 1	5
DO 2004 17774	频率范围 频率范围 频率范围	703 799 945	-	799 803 960	-50 -40 -50	1 1 1	,
DC_26A_n77A_	频率范围 频率范围 频率范围 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65	703 799 945 F _{1 cm_DL}		799 803 960 F _{DL_high}	-50 -40 -50 -50	1 1 1 1	,
DC_26A_n77A_	频率范围 频率范围 频率范围 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围	703 799 945 $F_{1 \text{ cm}_DL}$ 945	- - -	799 803 960 F _{DL_high} 960	-50 -40 -50 -50 -50	1 1 1 1	5
DC_26A_n77A_	频率范围 频率范围 频率范围 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ \hline F_{\text{low_DL}} \\ 945 \\ \hline 1884.5 \\ \end{array}$	- - - -	799 803 960 F _{DL_high} 960 1915. 7	-50 -40 -50 -50 -50 -41	1 1 1 1	,
DC_26A_n77A_	频率范围 频率范围 频率范围 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围	703 799 945 $F_{1 \text{ cm}_DL}$ 945	- - -	799 803 960 F _{DL_high} 960	-50 -40 -50 -50 -50	1 1 1 1	5
DC_26A_n77A_	频率范围 频率范围 频率范围 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ \hline F_{\text{low_DL}} \\ 945 \\ \hline 1884.5 \\ \end{array}$	- - - -	799 803 960 F _{DL_high} 960 1915. 7	-50 -40 -50 -50 -50 -41	1 1 1 1 1 0.3	5
DC_26A_n77A_	频率范围 频率范围 频率范围 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围 频率范围	$703 \\ 799 \\ 945 \\ F_{10w_{2}} 01 \\ 945 \\ 1884.5 \\ 2545$	- - - -	799 803 960 F _{0L,high} 960 1915. 7 2575	-50 -40 -50 -50 -50 -41 -50	1 1 1 1 1 0.3	5
	频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ \hline F_{10w_{-}01} \\ 945 \\ \hline 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ \end{array}$	- - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{\text{DL_high}} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -41 -50 -50 -50	1 1 1 1 1 0.3 1	5
DC_26A_n77A_ DC_26A_n78A	频率范围 频率范围 频率范围 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围 频率范围 频率范围 列率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{10w_{\perp} DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{10w_{\perp} DL} \end{array}$	- - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_h igh} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_h igh} \end{array}$	-50 -40 -50 -50 -50 -50 -50 -41 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 1 100	5
	频率范围 频率范围 频率范围 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围 频率范围 所率范围 NR 频段 n257 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{10w_{\perp} DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{10w_{\perp} DL} \\ 945 \\ \end{array}$	- - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_h i gb} \\ 960 \\ 1915.\ 7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_h i gb} \\ 960 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 1 100 1	3
	频率范围 频率范围 频率范围 医-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围 频率范围 NR 频段 n257 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{10w_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{10w_DL} \\ 945 \\ 1884.5 \end{array}$	- - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_bligh} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_bligh} \\ 960 \\ 1915.7 \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -51 -50 -50 -51 -50 -51 -50 -51	1 1 1 1 0.3 1 1 100 1 1 0.3	5
	频率范围 频率范围 频率范围 医-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围 频率范围 NR 频段 n257 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{10w_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{10w_DL} \\ 945 \\ 1884.5 \\ 2545 \\ \end{array}$	- - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_h i gb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_h i gb} \\ 960 \\ 1915.7 \\ 2575 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -41 -50 -50 -50 -50 -41 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 1 100 1 1 0.3	3
	频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \end{array}$	- - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 1 0.3	3
DC_26A_n78A	频率范围 频率范围 频率范围 频率范围 医-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 MR 频段 n257 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围 频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ \hline F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ \end{array}$	- - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 1 100 1 1 0.3	3
	频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \end{array}$	- - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 1 0.3	3
DC_26A_n78A	频率范围 频率范围 频率范围 频率范围 医-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 MR 频段 n257 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围 频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ \hline F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ \end{array}$	- - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 0.3 1 1 0.3 1	3
DC_26A_n78A	频率范围 频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ \end{array}$	- - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 1 100 1 1 0.3 1 1 100 1 1 100 1	3
DC_26A_n78A	频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 345$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 1 100 1 1 0.3 1 1 100 1 1 0.3	3
DC_26A_n78A	频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{1\text{osc}} \text{ D1} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{osc}} \text{ D1} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{osc}} \text{ D2} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ \hline \end{array}$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 1 0.3 1 1 100 1 1 0.3 1 1 0.3	3
DC_26A_n78A	频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ \hline F_{1 \infty_{-} 0.t} \\ 945 \\ \hline 1884.5 \\ 2595 \\ 26500 \\ \hline F_{1 \infty_{-} 0.t} \\ 945 \\ \hline 1884.5 \\ 2545 \\ 26500 \\ \hline F_{1 \infty_{-} 0.t} \\ 945 \\ \hline 26500 \\ \hline F_{1 \infty_{-} 0.t} \\ 945 \\ \hline 26500 \\ \hline F_{1 \infty_{-} 0.t} \\ 945 \\ \hline 2545 \\ \hline 2595 \\ \hline 26500 \\ \hline \end{array}$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 1 0.3 1 1 100 1 1 0.3 1 1 0.3 1 1 0.3 1 1 1 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3
DC_26A_n78A DC_26A_n79A	频率范围 频率范围 野率范围 频率范围 频率范围 频率范围 频率范围 频率范围 形R 频段 n257 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ \hline F_{1ow_0L} \\ 945 \\ \hline 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ \hline F_{1ow_0L} \\ 945 \\ \hline 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ \hline F_{1ow_0L} \\ 945 \\ \hline 2545 \\ 2595 \\ 26500 \\ \hline F_{2ow_0L} \\ 945 \\ \hline 1884.5 \\ 2545 \\ 26500 \\ \hline \end{array}$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 1 0.3 1 1 100 1 1 0.3 1 1 100 1 1 100 1 1 100 1 1 100 100 1 100 1 100 1 100 1 100 1 100 1 100 10	3
DC_26A_n78A	频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ \hline F_{1 \infty_{-} 0.t} \\ 945 \\ \hline 1884.5 \\ 2595 \\ 26500 \\ \hline F_{1 \infty_{-} 0.t} \\ 945 \\ \hline 1884.5 \\ 2545 \\ 26500 \\ \hline F_{1 \infty_{-} 0.t} \\ 945 \\ \hline 26500 \\ \hline F_{1 \infty_{-} 0.t} \\ 945 \\ \hline 26500 \\ \hline F_{1 \infty_{-} 0.t} \\ 945 \\ \hline 2545 \\ \hline 2595 \\ \hline 26500 \\ \hline \end{array}$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 1 0.3 1 1 100 1 1 0.3 1 1 0.3 1 1 0.3 1 1 1 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3
DC_26A_n78A DC_26A_n79A	频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ \hline F_{1ow_0L} \\ 945 \\ \hline 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ \hline F_{1ow_0L} \\ 945 \\ \hline 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ \hline F_{1ow_0L} \\ 945 \\ \hline 2545 \\ 2595 \\ 26500 \\ \hline F_{2ow_0L} \\ 945 \\ \hline 1884.5 \\ 2545 \\ 26500 \\ \hline \end{array}$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 1 0.3 1 1 100 1 1 0.3 1 1 100 1 1 100 1 1 100 1 1 100 100 1 100 1 100 1 100 1 100 1 100 1 100 10	3
DC_26A_n78A DC_26A_n79A	频率范围 频率范围 野率范围 频率范围 频率范围 频率范围 频率范围 频率范围 MR 频段 n257 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{1\text{ow}_DL} \\ 010 \\ 01$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 1 0.3 1 1 100 1 1 0.3 1 1 100 1 1 100 1 1 100 1 1 100 100 1 100 1 100 1 100 1 100 1 100 1 100 10	3
DC_26A_n78A DC_26A_n79A	频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{1\text{ow}_DL} \\ 010 \\ 01$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 1 0.3 1 1 100 1 1 0.3 1 1 100 1 1 100 1 1 100 1 1 100 100 1 100 1 100 1 100 1 100 1 100 1 100 10	3
DC_26A_n78A DC_26A_n79A	频率范围 频率范围 野率范围 频率范围 频率范围 频率范围 频率范围 频率范围 MR 频段 n257 E-UTRA 频段 1, 3, 11, 21, 28, 34, 65 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围 频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ \hline F_{1ow_0L} \\ 945 \\ \hline 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ \hline F_{1ow_0L} \\ 945 \\ \hline 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ \hline F_{1ow_0L} \\ 945 \\ \hline 2545 \\ 2595 \\ 26500 \\ \hline F_{2ow_0L} \\ 945 \\ \hline 1884.5 \\ 2545 \\ 26500 \\ \hline \end{array}$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 1 100 1 1 0.3 1 1 100 1 1 100 1 1 100 1 1 100 1 1 100 1 1 100 100 10	3
DC_26A_n78A DC_26A_n79A	频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{1\text{ow}_DL} \\ 010 \\ 01$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 1 100 1 1 0.3 1 1 100 1 1 100 1 1 100 1 1 100 1 1 100 1 1 100 100 10	3
DC_26A_n78A DC_26A_n79A	频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{1\text{ow}_DL} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{1\text{ow}_DL} \\ 010 \\ 01$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{\text{DL}_b igb} \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -51 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 1 100 1 1 0.3 1 1 100 1 1 100 1 1 100 1 1 100 1 1 100 1 1 100 100 10	3
DC_26A_n78A DC_26A_n79A	频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{1\text{ow}_\text{DL}} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_\text{DL}} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{1\text{ow}_\text{DL}} \\ 945 \\ 1884.5 \\ 2595 \\ 26500 \\ F_{1\text{ow}_\text{DL}} \\ \end{array}$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -50 -51 -50 -50 -50 -51 -50 -50 -50 -51 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 1 0.3 1 1 100 1 1 100 1 1 100 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 3
DC_26A_n78A DC_26A_n79A	频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{10w_0L} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{10w_0L} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{10w_0L} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{10w_0L} \\ 010 \\ 1884.5 \\ 1884.5 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{10w_0L} \\ 010 \\$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ \\ F_{0L_high} \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -50 -51 -50 -50 -50 -51 -50 -50 -51 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 1 0.3 1 1 100 1 1 100 1 1 1 100 1 1 1 1 1 1	3 3 3 2 2 2 2, 10, 11
DC_26A_n78A DC_26A_n79A	频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{10w_{\perp} DL} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{10w_{\perp} DL} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{10w_{\perp} DL} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{10w_{\perp} DL} \\ \\ \end{array}$		$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ F_{0L_high} \\ 694 \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -50 -51 -50 -50 -50 -51 -50 -50 -51 -50 -50 -51 -50 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 1 0.3 1 100 1 1 100 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 3 3 2 2, 10, 11 5, 18
DC_26A_n78A DC_26A_n79A	频率范围	$\begin{array}{c} 703 \\ 799 \\ 945 \\ F_{10w_0L} \\ 945 \\ 1884.5 \\ 2545 \\ 2595 \\ 26500 \\ F_{10w_0L} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{10w_0L} \\ 945 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{10w_0L} \\ 010 \\ 1884.5 \\ 1884.5 \\ 1884.5 \\ 2545 \\ 26500 \\ F_{10w_0L} \\ 010 \\$	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 799 \\ 803 \\ 960 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ 960 \\ 1915.7 \\ 2575 \\ 2645 \\ 29500 \\ F_{0L_high} \\ \\ F_{0L_high} \\ \end{array}$	-50 -40 -50 -50 -50 -50 -50 -50 -51 -50 -50 -50 -51 -50 -50 -51 -50 -50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1 1 1 1 0.3 1 100 1 1 0.3 1 1 100 1 1 100 1 1 1 100 1 1 1 1 1 1	3 3 3 2 2 2 2, 10, 11

	频率范围	758	-	773	-32	1	5
	频率范围	773	_	803	-50	1	
DC 28A n77A	E-UTRA 頻 段				30	-	
DC_20A_III I A		$F_{1 \text{ ow}_DL}$	-	FDL_high	-50	1	
	3, 5, 7, 8, 18, 19, 20, 26, 34, 39, 40, 41						_
	E-UTRA 频段 1, 65	$F_{1\text{cw}_\text{DL}}$	-	FDL_high	-50	1	2
	E-UTRA 频段 1	$F_{1\text{ow}_\text{DL}}$	_	F_{DL_high}	-50	1	10, 11
	E-UTRA 频段 11, 21	$F_{1\text{ow}_\text{DL}}$	-	$F_{\text{DL_high}}$	-50	1	10, 12
	频率范围	758	_	773	-32	1	·
	频率范围	773		803	-50	1	
							0
	频率范围	1884. 5	_	1915. 7	-41	0.3	3
	NR 频段 n257	26500	_	29500	-5	100	
DC 28A n78A	E-UTRA 频 段	1		E.	F0	,	
DC 28A n83A	3, 5, 7, 8, 18, 19, 20, 26, 34, 39, 40, 41	$F_{1 \text{ ow_ DL}}$	_	F_{DL_high}	-50	1	
ULSUP-	E-UTRA 频段 1, 65	F _{1 ow_DL}	_	F _{DL_high}	-50	1	2
TDM n78A,					-50		
	E-UTRA 频段 1	$F_{1 \text{ ow}_DL}$	-	F _{DL_high}		1	10, 11
DC_28A_n83A_	E-UTRA 频段 11, 21	$F_{1\text{ow}_\text{DL}}$	_	FDL_high	-50	1	10, 12
ULSUP-	频率范围	758	-	773	-32	1	
FDM_n78A	频率范围	773	-	803	-50	1	
	频率范围	1884. 5	_	1915. 7	-41	0.3	3
			-	29500	-5		-
DO 004 -01		26500	-	∠ 3 500	- ₀	100	
DC_28A_n79A	E-UTRA 频 段	$F_{1 \text{ ow}_DL}$	_	F _{DL high}	-50	1	
	3, 5, 8, 18, 19, 34, 39, 40, 41, 42	* 1 ow_ DL	L	* UL_high			
	E-UTRA 频段 1, 65	$F_{1 \text{ ow}_DL}$	-	FDL_high	-50	1	2
	E-UTRA 频段 1	F _{1 ow_DL}	_	F _{DL_high}	-50	1	10, 11
	E-UTRA 频段 11, 21		-		-50		10, 12
		F _{1 ow_ DL}	-	F _{DL_high}		1	10, 12
	频率范围	758	_	773	-32	1	
	频率范围	773	-	803	-50	1	
	频率范围	1884. 5	_	1915. 7	-41	0, 3	3
	NR 频段 n257	26500	-	29500	-5.	O 100	
DC_30A_n5A	频 段	20000		20000	CV The		
DC_30A_IISA	_ ···			F _{dl_high}	ngx		
	1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 24, 2	F _{dl_low}		Fin Sin 1	-50	1	
	5, 28, 29, 30, 31, 34, 38, 40, 42, 43, 45, 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	ur_urgu		-	
	8 , 50, 51, 65, 66, 70, 71, 73, 74, 85	(//S)					
	频段26	859	_	869	-27	1	
	 	F., ,	_	F.,	-50	1	2
	频段 41, 48, 52	F _{dl_low}	-	F _{dl_high}	-50 40	1	2
1	E-UTRA 频段 18, 19	$F_{1\text{cm}_\text{DL}}$	-	F _{DL_high}	-40	1	2
F	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21	$F_{1 \text{ ow_ DL}}$ $F_{1 \text{ ow_ DL}}$	- -	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$	-40 -50	1 1	
Ħ	E-UTRA 频段 18, 19	$F_{1\text{cm}_\text{DL}}$	- - -	F _{DL_high}	-40	1	3
DC 30A n66A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21	$F_{1 \text{ ow_ DL}}$ $F_{1 \text{ ow_ DL}}$		$F_{\text{DL_high}}$ $F_{\text{DL_high}}$	-40 -50	1 1	
DC_30A_n66A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频	F _{1 ow_ DL} F _{1 ow_ DL} 1884. 5		$F_{\text{DL_high}} $ $F_{\text{DL_high}} $ $1915. 7$	-40 -50 -41	1 1 0.3	
DC_30A_n66A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27,	$F_{1 \text{ ow_ DL}}$ $F_{1 \text{ ow_ DL}}$		$F_{\text{DL_high}}$ $F_{\text{DL_high}}$	-40 -50	1 1	
DC_30A_n66A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257	$F_{1 om_DL}$ $F_{1 om_DL}$ 1884. 5	-	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ 1915.7 $F_{\text{dl_high}}$	-40 -50 -41 -50	1 1 0.3	3
	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27,	F _{1 ow_ DL} F _{1 ow_ DL} 1884. 5	-	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ $1915. \ 7$ $F_{\text{dl_high}}$ $F_{\text{dl_high}}$	-40 -50 -41	1 1 0.3	
DC_38A_n78A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48	$F_{1 om_DL}$ $F_{1 om_DL}$ 1884. 5	-	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ $1915. \ 7$ $F_{\text{dl_high}}$ $F_{\text{dl_high}}$	-40 -50 -41 -50	1 1 0.3	3
	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257	$F_{10w_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$	-	F_{0l_high} F_{0l_high} $1915. \ 7$ F_{dl_high} F_{dl_high} A	-40 -50 -41 -50 -50	1 1 0.3	3
DC_38A_n78A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48	$F_{1 om_DL}$ $F_{1 om_DL}$ 1884. 5	-	$F_{\text{DL_high}}$ $F_{\text{DL_high}}$ $1915. \ 7$ $F_{\text{dl_high}}$ $F_{\text{dl_high}}$	-40 -50 -41 -50	1 1 0.3	3
DC_38A_n78A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79	$F_{10w_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$	-	F_{0l_high} F_{0l_high} $1915. \ 7$ F_{dl_high} F_{dl_high} A	-40 -50 -41 -50 -50	1 1 0.3	3
DC_38A_n78A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围	$F_{10w_{\perp}DL} \\ F_{10w_{\perp}DL} \\ 1884.5 \\ F_{dl_{\perp}10w} \\ F_{dl_{\perp}10w} \\ F_{dl_{\perp}10w} \\ 1805$	-	$F_{0L_high} \\ F_{0L_high} \\ 1915. 7 \\ F_{dL_high} \\ F_{dL_high} \\ F_{dL_high} \\ A \\ F_{dL_high} \\ 1855$	-40 -50 -41 -50 -50 -50 -40	1 1 0.3 1 1	2
DC_38A_n78A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围	$\begin{array}{c c} F_{1\text{ow}} & \text{DL} \\ \hline F_{1\text{ow}} & \text{DL} \\ \hline 1884.5 \\ \hline \\ F_{\text{dl}_1\text{ow}} \\ \hline \\ F_{\text{dl}_1\text{ow}} \\ \hline \\ F_{\text{dl}_1\text{ow}} \\ \hline \\ 1805 \\ 1855 \\ \end{array}$	-	$F_{0l_high} \\ F_{0l_high} \\ 1915. \ 7 \\ F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ A \\ F_{dl_high} \\ 1855 \\ 1880 \\$	-40 -50 -41 -50 -50 -50 -40 -15. 5	1 0.3 1 1 1 1 5	2
DC_38A_n78A DC_39A_n78A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258	$F_{10w_{\perp}DL} \\ F_{10w_{\perp}DL} \\ 1884.5 \\ F_{dl_{\perp}10w} \\ F_{dl_{\perp}10w} \\ F_{dl_{\perp}10w} \\ 1805$	-	$F_{0L_high} \\ F_{0L_high} \\ 1915. 7 \\ F_{dL_high} \\ F_{dL_high} \\ F_{dL_high} \\ A \\ F_{dL_high} \\ 1855$	-40 -50 -41 -50 -50 -50 -40	1 1 0.3 1 1	2
DC_38A_n78A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 1884.5 $F_{\text{dl_low}}$ $F_{\text{dl_low}}$ $F_{\text{dl_low}}$ 1805 1855 $F_{\text{dl_low}}$	-	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline F_{0L_high} \\ \hline 1915. \ 7 \\ \\ F_{dL_high} \\ \hline F_{dL_high} \\ \hline A \\ F_{dL_high} \\ \hline F_{dL_high} \\ \hline F_{dL_high} \\ \hline \\ 1855 \\ \hline 1880 \\ \hline F_{dL_high} \\ \\ \hline \end{array}$	-40 -50 -41 -50 -50 -50 -40 -15, 5 -5	1 0.3 1 1 1 1 5 100	2
DC_38A_n78A DC_39A_n78A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258	$\begin{array}{c c} F_{1\text{ow}} & \text{DL} \\ \hline F_{1\text{ow}} & \text{DL} \\ \hline 1884.5 \\ \hline \\ F_{\text{dl}_1\text{ow}} \\ \hline \\ F_{\text{dl}_1\text{ow}} \\ \hline \\ F_{\text{dl}_1\text{ow}} \\ \hline \\ 1805 \\ 1855 \\ \end{array}$	-	$F_{0l_high} \\ F_{0l_high} \\ 1915. \ 7 \\ F_{dl_high} \\ F_{dl_high} \\ F_{dl_high} \\ A \\ F_{dl_high} \\ 1855 \\ 1880 \\$	-40 -50 -41 -50 -50 -50 -40 -15. 5	1 0.3 1 1 1 1 5	2
DC_38A_n78A DC_39A_n78A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或	$F_{\text{low_DL}}$ $F_{\text{low_DL}}$ 1884.5 $F_{\text{dl_low}}$ $F_{\text{dl_low}}$ $F_{\text{dl_low}}$ 1805 1855 $F_{\text{dl_low}}$	-	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline F_{0L_high} \\ \hline 1915. \ 7 \\ \\ F_{dL_high} \\ \hline F_{dL_high} \\ \hline A \\ F_{dL_high} \\ \hline F_{dL_high} \\ \hline F_{dL_high} \\ \hline \\ 1855 \\ \hline 1880 \\ \hline F_{dL_high} \\ \\ \hline \end{array}$	-40 -50 -41 -50 -50 -50 -40 -15, 5 -5	1 0.3 1 1 1 1 5 100	2
DC_38A_n78A DC_39A_n78A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78	$\begin{array}{c c} F_{1\text{ow}} & \text{DL} \\ \hline F_{1\text{ow}} & \text{DL} \\ \hline 1884.5 \\ \hline \\ F_{d1_1\text{ow}} \\ \hline \\ F_{d1_1\text{ow}} \\ \hline \\ F_{d1_1\text{ow}} \\ \hline \\ 1805 \\ \hline F_{d1_1\text{ow}} \\ \hline \\ F_{1\text{ow}} & \text{DL} \\ \hline \\ 1805 \\ \hline \end{array}$	-	$F_{0l_high} \\ F_{0l_high} \\ 1915. 7 \\ F_{dl_high} \\ F_{dl_high} \\ A \\ F_{dl_high} \\ 1855 \\ 1880 \\ F_{dl_high} \\ F_{0l_high} \\ F_{0l_high} \\ 1855 \\$	-40 -50 -41 -50 -50 -50 -50 -50 -50 -40 -15. 5 -5 -50 -40	1 1 0.3 1 1 1 5 100 1	3 2 19 19
DC_38A_n78A DC_39A_n78A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围	$\begin{array}{c c} F_{1\text{ow}} & \text{DL} \\ \hline F_{1\text{ow}} & \text{DL} \\ \hline \end{array}$	- N/	$F_{0l_high} \\ F_{0l_high} \\ 1915. 7 \\ F_{dl_high} \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ F_{dl_high} \\ 1855 \\ 1880 \\ F_{dl_high} \\ F_{0l_high} \\ F_{0l_high} \\ A \\ A \\ A \\ A \\ A \\ A \\ A \\ A \\ A \\ $	-40 -50 -41 -50 -50 -50 -50 -50 -50 -40 -15. 5 -40 -15. 5	1 1 0.3 1 1 1 1 5 100 1 1 5	2 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78	$\begin{array}{c c} F_{1\text{ow}} & \text{DL} \\ \hline F_{1\text{ow}} & \text{DL} \\ \hline 1884.5 \\ \hline \\ F_{d1_1\text{ow}} \\ \hline \\ F_{d1_1\text{ow}} \\ \hline \\ F_{d1_1\text{ow}} \\ \hline \\ 1805 \\ \hline F_{d1_1\text{ow}} \\ \hline \\ F_{1\text{ow}} & \text{DL} \\ \hline \\ 1805 \\ \hline \end{array}$	- N/	$F_{0l_high} \\ F_{0l_high} \\ 1915. 7 \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ B \\ B \\ B \\ B \\ B \\ B \\ B \\ B \\ B$	-40 -50 -41 -50 -50 -50 -50 -50 -50 -40 -15. 5 -5 -50 -40	1 1 0.3 1 1 1 5 100 1	3 2 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围	$\begin{array}{c c} F_{1\text{ow}} & \text{DL} \\ \hline F_{1\text{ow}} & \text{DL} \\ \hline \end{array}$	- N/	$F_{0l_high} \\ F_{0l_high} \\ 1915. 7 \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ B \\ B \\ B \\ B \\ B \\ B \\ B \\ B \\ B$	-40 -50 -41 -50 -50 -50 -50 -50 -50 -40 -15. 5 -40 -15. 5	1 1 0.3 1 1 1 1 5 100 1 1 5	3 2 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围	$\begin{array}{c c} F_{1\text{ow}} & \text{DL} \\ \hline F_{1\text{ow}} & \text{DL} \\ \hline \end{array}$	- N/	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline 1915. \ 7 \\ \\ F_{dL_high} \\ A \\ \\ F_{dL_high} \\ \hline 1855 \\ 1880 \\ F_{dL_high} \\ \hline 1855 \\ 1880 \\ F_{0L_high} \\ \hline 1850 \\ \hline 180 \\ \hline 1850 \\ \hline 180 \\ \hline 1$	-40 -50 -41 -50 -50 -50 -50 -50 -40 -15. 5 -50 -40 -15. 5 -5	1 1 0.3 1 1 1 1 5 100 1 1 5 100	3 2 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围	$\begin{array}{c c} F_{1\text{ow}} & \text{DL} \\ \hline F_{1\text{ow}} & \text{DL} \\ \hline \end{array}$	- N/	$F_{0l_high} \\ F_{0l_high} \\ 1915. 7 \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ B \\ B \\ B \\ B \\ B \\ B \\ B \\ B \\ B$	-40 -50 -41 -50 -50 -50 -50 -50 -50 -40 -15. 5 -40 -15. 5	1 1 0.3 1 1 1 1 5 100 1 1 5	3 2 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围	$\begin{array}{c c} F_{1\text{ow}} & \text{DL} \\ \hline F_{1\text{ow}} & \text{DL} \\ \hline \end{array}$	- N/	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline 1915. \ 7 \\ \\ F_{dL_high} \\ A \\ \\ F_{dL_high} \\ \hline 1855 \\ 1880 \\ F_{dL_high} \\ \hline 1855 \\ 1880 \\ F_{0L_high} \\ \hline 1850 \\ \hline 180 \\ \hline 1850 \\ \hline 180 \\ \hline 1$	-40 -50 -41 -50 -50 -50 -50 -50 -40 -15. 5 -50 -40 -15. 5 -5	1 1 0.3 1 1 1 1 5 100 1 1 5 100	3 2 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 2, 8, 34, 40, 41, 44, 45 或 NR 频段 n258	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- N/	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline F_{0L_high} \\ \hline 1915. \ 7 \\ \\ F_{dL_high} \\ \hline A \\ F_{dL_high} \\ \hline A \\ F_{dL_high} \\ \hline A \\ \hline B55 \\ 1880 \\ F_{dL_high} \\ \hline F_{0L_high} \\ \hline A \\ \hline A \\ F_{0L_high} \\ \hline A \\ \hline A \\ \hline A \\ \hline B \\ F_{0L_high} \\ \hline A \\ \hline A \\ \hline A \\ \hline A \\ \hline A \\ \hline A \\ \hline A \\ \hline B \\ C \\ C \\ C \\ C \\ C \\ C \\ C \\ C \\ C \\$	-40 -50 -41 -50 -50 -50 -50 -50 -40 -15. 5 -50 -40 -15. 5 -5	1 1 0.3 1 1 1 1 5 100 1 5 100	3 2 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- N/	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline 1915. \ 7 \\ \\ F_{dL_high} \\ A \\ \\ F_{dL_high} \\ A \\ F_{dL_high} \\ A \\ F_{dL_high} \\ \hline 1855 \\ 1880 \\ F_{0L_high} \\ \hline 1855 \\ 1880 \\ F_{0L_high} \\ A \\ \\ F_{0L_high} \\ \\ A \\ \\ F_{DL_high} \\ \\ \end{array}$	-40 -50 -41 -50 -50 -50 -50 -50 -40 -15. 5 -5 -50 -40 -15. 5 -5 -5 -50 -50 -50	1 1 0.3 1 1 1 1 5 100 1 5 100	3 2 19 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- N/	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline 1915. \ 7 \\ \\ F_{dl_high} \\ A \\ \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ F_{0L_high} \\ F_{0L_high} \\ A \\ F_{0L_high} \\ A \\ F_{0L_high} \\ A \\ F_{nL_high} \\ A \\ F_{$	-40 -50 -41 -50 -50 -50 -50 -50 -50 -40 -15. 5 -5 -50 -40 -15. 5 -5 -5 -50 -41	1 1 0.3 1 1 1 1 1 5 100 1 1 5 100	3 2 19 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A DC_41A_n77A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围 频率范围 频率范围 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- N/	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline 1915. \ 7 \\ \\ F_{dL_high} \\ A \\ \\ F_{dL_high} \\ A \\ F_{dL_high} \\ A \\ F_{dL_high} \\ \hline 1855 \\ 1880 \\ F_{0L_high} \\ \hline 1855 \\ 1880 \\ F_{0L_high} \\ A \\ \\ F_{0L_high} \\ \\ A \\ \\ F_{DL_high} \\ \\ \end{array}$	-40 -50 -41 -50 -50 -50 -50 -50 -40 -15. 5 -5 -50 -40 -15. 5 -5 -5 -50 -50 -50	1 1 0.3 1 1 1 1 5 100 1 5 100	3 2 19 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45, 7 3, 74 E-UTRA 频段 9, 11, 18, 19, 21 频率范围 NR 频段 n257 E-UTRA 频 段 1, 3, 8, 34, 39, 40, 44, 45	$\begin{array}{c c} F_{1\text{ow}} & \text{DL} \\ \hline F_{1\text{ow}} & \text{DL} \\ \hline F_{2\text{ow}} & \text{DL} \\ \hline \end{array}$	- N/	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline F_{0L_high} \\ \hline 1915. \ 7 \\ \\ F_{dl_high} \\ \hline F_{dl_high} \\ \hline F_{dl_high} \\ \hline A \\ \hline F_{dl_high} \\ \hline A \\ \hline F_{dl_high} \\ \hline F_{dl_high} \\ \hline F_{0L_high} \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline C \\ \hline C \\ C \\ C \\ C \\ C \\ C \\ C \\ C$	-40 -50 -41 -50 -50 -50 -50 -50 -50 -40 -15. 5 -5 -50 -40 -15. 5 -5 -5 -50 -41 -5	1 1 0.3 1 1 1 1 5 100 1 1 5 100	3 2 19 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A DC_41A_n77A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围 频率范围 频率范围 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- N/	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline 1915. \ 7 \\ \\ F_{dl_high} \\ A \\ \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ A \\ F_{dl_high} \\ F_{0L_high} \\ F_{0L_high} \\ A \\ F_{0L_high} \\ A \\ F_{0L_high} \\ A \\ F_{nL_high} \\ A \\ F_{$	-40 -50 -41 -50 -50 -50 -50 -50 -50 -40 -15. 5 -5 -50 -40 -15. 5 -5 -5 -50 -41	1 1 0.3 1 1 1 1 1 5 100 1 1 5 100	3 2 19 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A DC_41A_n77A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围 频率范围 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45, 7 3, 74 E-UTRA 频段 9, 11, 18, 19, 21 频率范围 NR 频段 n257 E-UTRA 频段 1, 3, 8, 34, 39, 40, 44, 45 或 NR 频段 n257 E-UTRA 频段 1, 3, 8, 34, 39, 40, 44, 45 或 NR 频段 n257	F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL	- N/	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline F_{0L_high} \\ \hline 1915. \ 7 \\ \\ F_{dL_high} \\ A \\ \\ F_{dL_high} \\ A \\ F_{dL_high} \\ \hline 1855 \\ 1880 \\ F_{0L_high} \\ \hline 1855 \\ 1880 \\ \hline F_{0L_high} \\ \\ A \\ \hline F_{0L_high} \\ \\ A \\ \hline F_{0L_high} \\ \\ A \\ \hline F_{0L_high} \\ \\ F_{0L_high} \\ \\ F_{0L_high} \\ \\ \hline F_{0L_high} \\ \\ F_{0L_high} \\ \\ \hline F_{0L_high} \\ \\ F_{0L_high} \\ \\ \hline F_{0L_high} \\ \\ \hline F_{0L_high} \\ \\ \\ \hline F_{0L_high} \\ \\ \\ F_{0L_high} \\ \\ \\ F_{0L_high} \\ \\ \\ F_{0L_high} \\ \\ \\ F$	-40 -50 -41 -50 -50 -50 -50 -50 -50 -40 -15. 5 -5 -50 -40 -15. 5 -5 -5 -50 -50 -50 -50 -50 -50 -50 -50	1 1 0.3 1 1 1 1 5 100 1 5 100 1 1 0.3 100 1	3 2 19 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A DC_41A_n77A DC_41A_n78A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频 0, 1, 18, 19, 21 频率范围 NR 频段 n257 E-UTRA 频 0, 11, 18, 19, 21 频率范围 NR 频段 n257 E-UTRA 频 0, 13, 8, 34, 39, 40, 44, 45 或 NR 频段 n1, n8, n34, n40, n79 频率范围	$\begin{array}{c c} F_{1\text{ow}} & \text{DL} \\ \hline F_{1\text{ow}} & \text{DL} \\ \hline F_{2\text{ow}} & \text{DL} \\ \hline \end{array}$	- N/	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline F_{0L_high} \\ \hline 1915. \ 7 \\ \\ F_{dl_high} \\ \hline F_{dl_high} \\ \hline F_{dl_high} \\ \hline A \\ \hline F_{dl_high} \\ \hline A \\ \hline F_{dl_high} \\ \hline F_{dl_high} \\ \hline F_{0L_high} \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline F_{0L_high} \\ \hline A \\ \hline C \\ \hline C \\ C \\ C \\ C \\ C \\ C \\ C \\ C$	-40 -50 -41 -50 -50 -50 -50 -50 -50 -40 -15. 5 -5 -50 -40 -15. 5 -5 -5 -50 -41 -5	1 1 0.3 1 1 1 1 5 100 1 1 5 100	3 2 19 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A DC_41A_n77A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频 段 1, 3, 4, 40, 41, 44, 45, 7 3, 74 E-UTRA 频段 9, 11, 18, 19, 21 频率范围 NR 频段 n257 E-UTRA 频 段 1, 3, 8, 34, 39, 40, 44, 45 或 NR 频段 n257 E-UTRA 频 段 1, 3, 8, 34, 39, 40, 44, 45 或 NR 频段 n1, n8, n34, n40, n79 频率范围	F1 ow_ DL F1 ow_ DL F1 ow_ DL F2 ow_ DL F3 ow_ DL F4 ow_ DL F4 ow_ DL F4 ow_ DL F4 ow_ DL F5 ow_ DL F5 ow_ DL F6 ow_	- N/	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline F_{0L_high} \\ \hline 1915. 7 \\ \\ F_{dL_high} \\ \hline \\ F_{dL_high} \\ \hline \\ A \\ F_{dL_high} \\ \hline \\ F_{0L_high} \\ \hline$	-40 -50 -41 -50 -50 -50 -50 -50 -40 -15. 5 -5 -50 -40 -15. 5 -5 -50 -50 -50 -50 -50 -50 -51 -50 -50 -51 -50 -51 -50 -51 -50 -51	1 1 0.3 1 1 1 1 5 100 1 1 5 100 1 1 0.3 100 1 1 100	3 2 19 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A DC_41A_n77A DC_41A_n78A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频 1, n8, n34, n40, n41, n78 频率范围 NR 频段 n257 E-UTRA 频 段 1, 3, 8, 34, 39, 40, 44, 45, 7 3, 74 E-UTRA 频段 1, 18, 19, 21 频率范围 NR 频段 n257 E-UTRA 频段 1, 3, 8, 34, 39, 40, 44, 45 或 NR 频段 n1, n8, n34, n40, n79 频率范围 E-UTRA 频 段 1, 3, 8, 34, 39, 40, 44, 45 或 NR 频段 n1, n8, n34, n40, n79	F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL F1000_DL	- N/	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline F_{0L_high} \\ \hline 1915. \ 7 \\ \\ F_{dL_high} \\ A \\ \\ F_{dL_high} \\ A \\ F_{dL_high} \\ \hline 1855 \\ 1880 \\ F_{0L_high} \\ \hline 1855 \\ 1880 \\ \hline F_{0L_high} \\ \\ A \\ \hline F_{0L_high} \\ \\ A \\ \hline F_{0L_high} \\ \\ A \\ \hline F_{0L_high} \\ \\ F_{0L_high} \\ \\ F_{0L_high} \\ \\ \hline F_{0L_high} \\ \\ F_{0L_high} \\ \\ \hline F_{0L_high} \\ \\ F_{0L_high} \\ \\ \hline F_{0L_high} \\ \\ \hline F_{0L_high} \\ \\ \\ \hline F_{0L_high} \\ \\ \\ F_{0L_high} \\ \\ \\ F_{0L_high} \\ \\ \\ F_{0L_high} \\ \\ \\ F$	-40 -50 -41 -50 -50 -50 -50 -50 -50 -40 -15. 5 -5 -50 -40 -15. 5 -5 -5 -50 -50 -50 -50 -50 -50 -50 -50	1 1 0.3 1 1 1 1 5 100 1 5 100 1 1 0.3 100 1	3 2 19 19 19
DC_38A_n78A DC_39A_n78A DC_39A_n79A DC_40A_n77A DC_41A_n77A	E-UTRA 频段 18, 19 E-UTRA 频段 11, 21 频率范围 频 段 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71, n71, n257 频段 48 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n79 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n1, n8, n34, n40, n41, n78 频率范围 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频段 1, 8, 34, 40, 41, 44, 45 或 NR 频段 n258 E-UTRA 频 段 1, 3, 4, 40, 41, 44, 45, 7 3, 74 E-UTRA 频段 9, 11, 18, 19, 21 频率范围 NR 频段 n257 E-UTRA 频 段 1, 3, 8, 34, 39, 40, 44, 45 或 NR 频段 n257 E-UTRA 频 段 1, 3, 8, 34, 39, 40, 44, 45 或 NR 频段 n1, n8, n34, n40, n79 频率范围	F1 ow_ DL F1 ow_ DL F1 ow_ DL F2 ow_ DL F3 ow_ DL F4 ow_ DL F4 ow_ DL F4 ow_ DL F4 ow_ DL F5 ow_ DL F5 ow_ DL F6 ow_	- N/	$\begin{array}{c} F_{0L_high} \\ F_{0L_high} \\ \hline F_{0L_high} \\ \hline 1915. 7 \\ \\ F_{dL_high} \\ \hline \\ F_{dL_high} \\ \hline \\ A \\ F_{dL_high} \\ \hline \\ F_{0L_high} \\ \hline$	-40 -50 -41 -50 -50 -50 -50 -50 -40 -15. 5 -5 -50 -40 -15. 5 -5 -50 -50 -50 -50 -50 -50 -51 -50 -50 -51 -50 -51 -50 -51 -50 -51	1 1 0.3 1 1 1 1 5 100 1 1 5 100 1 1 0.3 100 1 1 100	3 2 19 19 19

	45, 48, 50, 51, 65, 66, 70, 71, 73, 74		ĺ				
	E-UTRA 频段 9, 11, 18, 19, 21	F _{1 ow_DL}	_	FDL 高_	-50	1	20
	频率范围	1884. 5		1915. 7	-41	0. 3	3, 20
DC_41A_n41A	E-UTRA 頻 段	1004.5		1313.1	41	0. 5	3, 20
DC_41A_II41A	1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 24, 25,						
	26, 27, 28, 29, 30, 34, 39, 40, 42, 44	$F_{1 \text{ ow}_DL}$	-	FDL 高_	-50	1	
	45, 48, 50, 51, 65, 66, 70, 71, 73, 74						
	E-UTRA 频段 9, 11, 18, 19, 21	F _{1 ow_DL}	_	FDL 高_	-50	1	20
	频率范围	1884.5	_	1915. 7	-41	0.3	3, 20
	E-UTRA 频 段	1001.0		1010.1	11	0.0	0, 20
DC_41A_n79A	1, 3, 5, 8, 9, 11, 18, 19, 21, 28, 34, 40, 42						
DO_+1/\(\frac{1}{2}\)1/3/\(\frac{1}{2}\)	1, 6, 6, 6, 5, 11, 16, 12, 21, 26, 61, 16, 12 , 44, 45, 65 或 NR 频段 n1, n3, n8,	$F_{1 \text{ ow}_DL}$	-	FDL_high	-50	1	
	n28, n34, n40, n77, n78						
	频率范围	1884. 5	_	1915. 7	-41	0. 3	3
	NR 频段 n257, n258	F _{1 ow_ DL}		F _{DL high}	-5	100	0
DC 42A n51A	E-UTRA 频 段	* 1 ow_ Nf	-		-		
50_12/_1101A	3, 8, 20, 25, 30, 31, 34, 39, 41, 73	$F_{1 \text{ ow}_DL}$	-	$F_{\text{DL_high}}$	-50	1	
	E-UTRA 频 段						2
	1, 2, 4, 5, 6, 7, 10, 12, 13, 14, 17, 23, 24,						_
	26, 27, 28, 29, 32, 38, 40, 44, 46, 65	$F_{1 \text{ ow}_DL}$	_	F _{DL_high}	-50	1	
	66, 67, 68, 70, 71						
DC 42A n77A	, , , ,	I	N/	'A			
DC 42A n78A			N/	'A			
DC 42A n79A			N/	'A			
DC_66A_n5A	频段						
	1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 17, 24	E.		T.	-50	1	
	, 25, 28, 29, 30, 34, 38, 40, 43, 45, 50, 51	F_{dl_low}		F_{dl_high}	-50	1	
	, 65, 66, 70, 71, n71, 85, n257						
	E-UTRA 频段 26	859	-	869	-27	()	
	频段 41, 42, 48, 52	F_{dl_low}	_	F_{dl_high}	-50, 10) 6 1	2
	E-UTRA 频段 18, 19	$F_{1 \text{cw}_DL}$	_	FDL_high +	118-40	1	
	E-UTRA 频段 11, 21	F _{1 ow_ DL}	<u>-</u> - <u>F</u>	FDL_high	-50	1	
	频率范围	1884. 5	/	1915. 7	-41	0.3	3
DC_66A_n71A	E-UTRA 频 A A A A A A A A A A A A A A A A A A						
	4, 5, 7, 10, 13, 14, 17, 22, 24, 26, 27, 29,	$F_{1 \text{ ow}_DL}$	-	F _{DL_high}	-50	1	
	30, 43, 50, 51, 66, 74						
t	E-UTRA 頻段 2, 25, 41, 42, 48, 70	F _{1 ow_ DL}	-	FDL_high	-50	1	2
7	E-UTRA 频段 71	F _{1 ow_DL}	_	F _{DL_high}	-50	1	5
DC_66_n78	E-UTRA 頻 段	F _{1 ow DL}	_	F _{DL high}	-50	1	
DO 004 704	1, 3, 5, 7, 8, 20, 26, 28, 34, 39, 40, 41, 65	104_ 01.		n			
DC_66A_n78A,							
DC_66A_n86A_							
ULSUP- TDM n78A,	E-UTRA 頻 段	F _{1 ow DL}	_	$F_{ exttt{DL_high}}$	-50	1	
DC_66A_n86A_	1, 3, 5, 7, 8, 20, 26, 28, 34, 39, 40, 41, 65	I'low_ DL		1 DL_high	30	1	
ULSUP-							
0-001 -							
FDM n78A							

- 注1: FDL low和FDL high指的是表5.5-1中规定的每个E-UTRA频段
- 注 2: 作为例外,由于 2^{nd} , 3^{80} , 4° 可或者由于 2^{nd} , 3^{80} , 4° 可或者由于 2^{nd} , 3^{80} , 4° 可或者由于 2^{nd} , 3^{80} , 4° 可或者则量中使用的每个指定的 E-UTRA 载波,允许的测量水平高达表 6.6.3.1-2.5 谐波杂散发射。 由于谐波发射的扩散,在谐波发射两侧的谐波发射之外的第一个 1MHz 频率范围也允许例外。 这导致整体异常间隔以($2MHz + N \times L_{CBB} \times 180 kHz$)谐波发射为中心,其中 N 为 2,3,4,5(2)nd , 3^{80} ,4(1 TF14183)或 1 证据波。 如果测量带宽(1 MBW)完全或部分地与整个异常间隔重叠,则允许例外。
- 注3: 适用于与 1884. 5 -1915. 7MHz 运行的 PHS 系统共存
- 注 4: 仅适用于指定的 E-UTRA 载波限制在 824 MHz 和 849 MHz 范围内的 UE 类别 M1, M2 和 UE 类别 NB1 和 NB2。
- 注5: 这些要求也适用于表 6. 6. 3. 1-1 中的小于 Foos (MHz) 频率范围和来自信道带宽边缘的表 6. 6. 3. 1A-1。
- 注 6: 此要求适用于 2500 2570 MHz 范围内的任何信道带宽,但有以下限制:对于载波中心频率在 2560.5 2562.5 MHz 范围内的 15 MHz 带宽载波,以及载波中心频率为 20 MHz 带宽的载波在 2552-2560MHz 范围内,该要求仅适用于小于或等于 54RB 的上行链路传输带宽。
- 注 7: 对于这些相邻频段,发射限值可能意味着对受保护工作频段内运行的 UE 产生有害干扰的风险。
- 注8: 此要求适用于 3300 3800 MHz 范围内的任何信道带宽,但有以下限制:对于载波中心频率在 TBD-3792.5 MHz 范围内的 15 MHz 带宽载波,以及载波中心频率为 20 MHz 带宽的载波在 TBD-3790MHz 范围内,该要求仅适用于小于或等于 TBD RB 的上行链路传输带宽。
- 注 9: 此要求适用于 1920 1980 MHz 范围内的任何信道带宽,但有以下限制:对于载波中心频率在 1927.5 1929.5 MHz 范围内的 15 MHz 带宽载波,以及载波中心频率为 20 MHz 带宽的载波在 1930-1938MHz 范围内,该

要求仅适用于上行链路

- 当分配的 E-UTRA 载波限制在 718 MHz 和 748 MHz 范围内以及使用的信道带宽为 5 或 10 MHz 时适用。 注 10:
- 注11: 作为例外情况,由于二次谐波杂散发射,测量中使用的每个指定 E-UTRA 载波允许测量水平高达-36 dBm / MHz 的适用要求。 如果传输带宽内至少有一个单独的 RB(见图 5.6-1),则二次谐波与测量带宽(MBW)完全或部 分重叠,则允许例外。
- 注 12: 作为例外,对于由于三次谐波杂散发射而在测量中使用的每个指定的 E-UTRA 载波,允许具有高达适用的-38dBm / MHz 要求的电平的测量。 如果在传输带宽内至少有一个单独的 RB(见图 5.6-1),则允许例外,其中三次谐 波与测量带宽 (MBW) 完全或部分重叠。
- 此要求仅适用于以下情况: 当载波中心频率 (Fc) 在 902.5MHz ≤ Fc < 907.5 MHz 范围内且上行链路传输带宽 注 13: 小于或等于 20 RB 时,对于 5 MHz 信道带宽的载波 - 当载波中心频率 (Fc) 在 907.5MHz ≤ Fc ≤ 912.5MHz 的范 围内时,5MHz 信道带宽的载波对上行链路传输带宽没有任何限制。 - 当载波中心频率(Fc)为Fc = 910MHz 且上行链路传输带宽小于或等于 32RB 且 RBstart> 3 时,对于 10MHz 信道带宽的载波。
- 注 14: 该要求适用于在 1744.9MHz 和 1784.9MHz 内分配的 5, 10, 15 和 20MHz E-UTRA 信道带宽。
- 注 15: 该要求适用于在 718-728MHz 内分配的 5 和 10 MHz E-UTRA 信道带宽。 对于 10 MHz 带宽的载波,此要求适用于 小于或等于 30 RB 的上行链路传输带宽, RBstart > 1 且 RBstart < 48。
- 当网络发信号通知 6.6.3.3.1 节中的 NS_05 时适用。 注 16:
- 此要求适用于 1920 1980 MHz 范围内的任何信道带宽,但有以下限制:对于载波中心频率在 1927.5 -注17: 1929. 5 MHz 范围内的 15 MHz 带宽载波,以及载波中心频率为 20 MHz 带宽的载波在 1930-1938MHz 范围内,该 要求仅适用于小于或等于 54RB 的上行链路传输带宽。
- 该要求适用于限制在 703 MHz 和 733 MHz 范围内的 10 MHz E-UTRA 载波,否则需要-25 dBm,测量带宽为 8 注 18:
- 注 19: 此要求仅适用于带宽限制在 1885-1920 MHz 范围内的 E-UTRA 载波 (未规定对 1880 - 1885 MHz 内至少 1RB 限制 的载波的要求)。 当载波中心频率在 1892. 5-1894. 5 MHz 范围内时,此要求适用于 15 MHz 带宽的 E-UTRA 载波 小于或等于 54 RB 的上行链路传输带宽: 对于载波中心频率为 20 MHz 带宽的 E-UTRA 载波, 此要求适用在 1895-1903 MHz 范围内。
- 当 E-UTRA 和 NR 载波限制在 2545-2575MHz 或 2595-2645MHz 且信道带宽为 10 或 20 MHz 时,此要求适用 注20:

6. 5B. 3. 4

(OTA 要求)

〈编者注:要更新的章节编号〉

[4]的第6.6.3.1条,[2]和[3]的第6.5.3.1小节中规定的一般性描述杂散发射要求适用于每个分量载波。

杂散发射带UE共存 6. 5B. 3. 4. 1

〈编者注:要更新的章节编号〉

本节规定了与受保护频带共存的指定 EN-DC 的要求。 表 6.5B.3.4.1-1 中的要求分别适用于每个组件载体。

表 6.5B.3.4.1-1: 要求

		ž	杂散	发射			
EN-DC 配置	受保护的频段	频率范	围	(MHz)	最高等级	MBW	注意
EN DO HETE					(dBm)	(MHz	
)	
DC_1A_n257A	E-UTRA 頻 段						
	1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 40	$F_{1 \text{ ow}_DL}$	-	F _{DL_high}	-50	1	
	, 41, 42, 65, n77, n78, n79						
	- 频率范围	1880	-	1895	-40	1	5, 9
	频率范围	1895	-	1915	-15. 5	5	5, 7, 9
	频率范围	1915	-	1920	+1.6	5	5, 7, 9
DC_2A_n257A	频 段						
	4, 5, 10, 12, 13, 14, 17, 24, 26, 27, 28, 29	F _{1 ow_ DL}	_	E	-50	1	
	, 30, 41, 42, 48, 50, 51, 66, 70, 71, 74, 74	I low_ DL		F _{DL_high}	30	1	
	, n77, n78						
	频段 2, 25	$F_{1 \text{ ow}_DL}$	-	F _{DL_high}	-50	1	表 6. 5. 3. 2-1
	频段 43	$F_{1 \text{ ow}_DL}$	-	F_{DL_high}	-50	1	5

	杂散发射									
EN-DC 配置	受保护的频段	频率范			最高等级 (dBm)	MBW (MHz)	注意			
DC_2A_n260A	频 段									
5 0_2/\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)	4, 5, 12, 13, 14, 17, 24, 26, 29, 30, 41, 42, 48, 66, 70, 71, n71, n257	$F_{\rm dl_low}$	-	F _{dl_high}	-50	1				
	频段 48	$F_{ m dl_low}$	-	F _{dl_high}	-50	1	2			
DC_3A_n257A	E-UTRA 頻 段 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 39	F _{1 ow_DL}	_	F_{DL_high}	-50	1				
	, 40, 41, 65, n79 E-UTRA 频段 42, n77, n78	F _{1 ow_DL}	_	$F_{\text{DL_high}}$	-50	1	2			
	频率范围	1884.5	-	1915. 7	-41	0.3	3			
DC_3A_n258A	E-UTRA 頻 段 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 39 , 40, 41, 65, n79	$F_{1\text{ow}_\text{DL}}$	_	$F_{ exttt{DL_high}}$	-50	1				
	E-UTRA 频段 42, n77, n78	$F_{1\text{ow}_\text{DL}}$	-	F_{DL_high}	-50	1	2			
	频率范围	1884. 5	-	1915. 7	-41	0. 3	3			
DC_5A_n257A	E-UTRA 頻 段 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 24, 2 5, 28, 29, 30, 31, 34, 38, 40, 42, 43 45, 48, 50, 51, 65, 66, 70, 71, 74	$F_{\rm dl_low}$	_	$F_{\rm dl_high}$	-50	1				
	E-UTRA 频段 26	859	_	869	-27	1				
	频率范围	1884. 5	-	1915. 7	-41	0. 3	3, 4			
	E-UTRA 频段 41	F _{dl_low}	-	F _{dl_high}	-50	1	2			
	E-UTRA 频段 18, 19	F _{dl_low}	-	F _{dl_high}	-40	1	4			
	E-UTRA 频段 11, 21	F _{dl_low}	_	F _{dl_high}	-50	1	4			
DC_5A_n260A	频 段 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 24, 2 5, 28, 29, 30, 31, 34, 38, 40, 42, 43, 45, 4 8, 50, 51, 65, 66, 70, 71, 74, n77,	$F_{1 \text{ow}_DL}$	_		ng _{zo} int	g)				
	n78			一 •						
	频段 26	Flam DC	_	F_{DL_high}	-27	1				
	频段45万字。5G通信	$F_{1\text{ow}_\text{DL}}$	-	$F_{ ext{DL_high}}$	-50	1	表 6.5.3.2-1			
DC_5A_n261A	類 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 24, 2 5, 28, 29, 30, 31, 34, 38, 40, 42, 43, 45, 4 8 , 50, 51, 65, 66, 70, 71, 74, n77, n78	$F_{1\sigma w_DL}$	-	$F_{ ext{DL_high}}$	-50	1				
	26	$F_{1\text{ow}_\text{DL}}$	-	F _{DL_high}	-27	1				
	41	$F_{1 \text{ ow}_DL}$	-	F _{DL_high}	-50	1	表 6. 5. 3. 2-1			
	频率范围	2570	_	2575	+1.6	5	5, 7, 17			
	频率范围	2575	-	2595	-15. 5	5	5, 7, 17			
	频率范围	2595	_	2620	-40	1	5, 21			
	E-UTRA 頻段 1, 4, 10, 12, 13, 14, 17, 20, 22, 23, 27, 28 , 29, 42, 43, 44, 46, 65, 66, 67, 68 NR Band n77, n78, n79,	$F_{\rm dl_low}$	_	F_{dl_bigh}	-50	1	2			
DC_7A_n257A	E-UTRA 频段 1, 3, 5, 7, 8, 26, 28, n78	F _{1 ow_DL}	_	F _{DL_high}	-50	1				
	频率范围	2570	=	2575	+1.6	5				
	频率范围	2575	Ŀ	2595	-15. 5	5				
	频率范围	2595	_	2620	-40	1				
DC_7A_n258A	E-UTRA 频段 1, 3, 5, 7, 8, 26, 28, n78	$F_{1\text{ow}_\text{DL}}$	-	F _{DL_high}	-50	1				
	频率范围	2570	-	2575	+1.6	5				
	频率范围	2575	_	2595	-15. 5	5				
DC_8A_n257A	频率范围 E-UTRA Band 1, 28, 34, 38, 69, 74 ,	2595 F _{1 on_ DL}	_	2620	-40 -50	1				
	n77, n78, n79			F _{DL_high}						
	E-UTRA 频段 3, 7, 41, 42, 43	F _{1 ow_DL}	-	FDL_high	-50	1	2			
	E-UTRA 频段 8	F _{1 ow_DL}	_	FDL_high	-50	1	5			
	E-UTRA 频段 11, 21	F _{1 ow_DL}	-	F _{DL_high}	-50	1	13			
	频率范围	860	-	890	-40	1	5, 13			
	频率范围	1884.5	-	1915. 7	-41	0.3	3, 13			
DC_8A_n258A	E-UTRA 频段 1, 8, 20, 28, 34, 39, 40, 65	F_{low_DL}	<u> </u>	F_{DL_high}	-50	1				

			杂散				
EN-DC 配置	受保护的频段	频率范			最高等级 (dBm)	MBW (MHz	注意
	E-UTRA Band 3, 7, 41, 42, n78, n79	F _{1 ow DL}	-	F _{DL_high}	-50	1	2
	E-UTRA 频段 11, 21	F _{1 ow_DL}	-	F _{DL_high}	-50	1	13
	频率范围	860	_	890	-40	1	5, 13
	频率范围	1884. 5	-	1915. 7	-41	0.3	3
DC 11A p2E7A	E-UTRA 频 段	1004. J		1915.7	41	0. 5	3
DC_11A_n257A	1, 3, 18, 19, 28, 34, 42, 65, n77, n78, n79	$F_{1\text{ow_DL}}$	-	F _{DL_high}	-50	1	
	频率范围	945	_	960	-50	1	
	频率范围	1884. 5	-	1915. 7	-41	0.3	3
	频率范围	2545	-	2575	-50	1	
	<u> </u>	2595	_		-50		
DO 404 .0004		∠595		2645	-50	1	
DC_12A_n260A	E-UTRA 頻 段 2, 5, 13, 14, 17, 24, 25, 26, 30, 41, 48, 71	F _{d1_1ow}	_	F _{d1_high}	-50	1	
	E-UTRA 频段 4, 66, 70	F_{d1_1ow}	_	F _{d1_high}	-50	1	2
DC_13A_n257A	频 2, 4, 5, 10, 12, 13, 17, 25, 26, 27, 29, 41, 48, 50, 51, 66, 70, 71, 74, n77, n78	$F_{1\text{ow_DL}}$	_	$F_{ ext{DL_high}}$	-50	1	
	频段 14	$F_{1\text{ow}_\text{DL}}$	=	F _{DL_high}	-50	1	5
	頻段 24, 30	F _{1 ow_DL}	-	F _{DL_high}	-50	1	表 6. 5. 3. 2-1
DC_18A_n257A	E-UTRA 頻 段 1, 3, 11, 21, 28, 34, 42, 65, n77, n78, n79	F _{1 ow_ DL}	-	F _{DL_high}	-50	1	
	频率范围	945	-	960	-50	1	
	频率范围	1884. 5	-	1915. 7	-41	0.3	3
	频率范围	2545	_			21	3
				2575	-50		
50 (01 055)	频率范围	2595	_	2645	ng=50111	1	
DC_19A_n257A	E-UTRA 頻 段 1, 3, 11, 21, 28, 34, 42, 65, n77, n78, n79	From 11	人	$\mathbf{F}_{\mathtt{DL_high}}$	-50	1	
	频率范围 二〇十十一	945	-	960	-50	1	
	频率范围	1884. 5	-	1915. 7	-41	0.3	3
1.	频率范围	2545	-	2575	-50	1	
F	频率范围	2595	-	2645	-50	1	
DC_20A_n258A	E-UTRA 頻 段 1, 3, 7, 8, 22, 31, 32, 33, 34, 40, 43, 50, 5 1, 65, 67, 68, 72, 74, 75, 76	$F_{1\text{ow}_\text{DL}}$	-	$F_{ ext{DL_high}}$	-50	1	
	E-UTRA 频段 20	$F_{1\text{cw}_\text{DL}}$		F _{DL_high}	-50	1	
	E-UTRA 频段 38, 42, 52, 69	F _{1 ow_DL}	-	F_{DL_high}	-50	1	2
	频率范围	758	_	788	-50	1	
DC_21A_n257A	E-UTRA 頻 段 1, 3, 18, 19, 21, 28, 34, 42, 65, n77, n78, n79	F _{1 ow_ DL}	-	$F_{ exttt{DL_high}}$	-50	1	
	频率范围	945	_	960	-50	1	
	频率范围	1884. 5	L -	1915. 7	-41	0.3	3
	频率范围	2545	-	2575	-50	1	
	频率范围	2595	-	2645	-50	1	
DC_26A_n257A	E-UTRA 頻 段 1, 3, 11, 21, 28, 34, 42, 65, n77, n78, n79	$F_{1 ow_ DL}$	_	$F_{ exttt{DL}_ ext{high}}$	-50	1	
	频率范围	945	-	960	-50	1	
	频率范围	1884. 5	-	1915. 7	-41	0.3	3
	频率范围	2545	-	2575	-50	1	
	频率范围	2595	_	2645	-50	1	
DC_28A_n257A	E-UTRA 频 段 3, 5, 8, 18, 19, 34, 39, 40, 41	F _{1 ow_DL}	_	F _{DL_high}	-50	1	
	E-UTRA 频段 1, 65	$F_{1 \text{ ow}_DL}$	L -	F _{DL_high}	-50	1	2
	E-UTRA 频段 1	F _{1 ow_DL}	-	F _{DL_high}	-50	1	10, 11
	E-UTRA 频段 11, 21	F _{1 ow_DL}	-	F _{DL_high}	-50	1	10, 12
	频率范围	758	-	773	-32	1	· · · · · · · · · · · · · · · · · · ·
	频率范围	773	 	803	-50	1	
	频率范围	1884. 5	-	1915. 7	-41	0.3	3
	[2X T 15 P]	1004.9	I	1010.1	1 11	U. U	ا ا

			杂散				
EN-DC 配置	受保护的频段	频率范			最高等级 (dBm)	MBW (MHz	注意
DC_28A_n258A	E-UTRA 頻 段 3, 5, 8, 18, 19, 34, 39, 40, 41	F _{1 ow_DL}	-	$F_{\text{DL_high}}$	-50	1	
	E-UTRA 频段 1, 65	F _{1 ow_ DL}	-	F _{DL_high}	-50	1	2
	E-UTRA 频段 1	F _{1 ow_DL}	-	F _{DL_high}	-50	1	10, 11
	E-UTRA 频段 11, 21	F _{1 ow_DL}	_	F _{DL_high}	-50	1	10, 12
	频率范围	758	_	773	-32	1	,
	频率范围	773	_	803	-50	1	
	频率范围	1884. 5	_	1915. 7	-41	0.3	3
DC_30A_n260A	E-UTRA 頻 段 2, 4, 5, 12, 13, 14, 17, 24, 25, 26, 29, 41, 48, 66, 70, 71	$F_{\rm dl_low}$	-	F_{d1_high}	-50	1	
DC_39A_n258A	带 1, 8, 34, 40, 41, 44, 45 或 NR 带 n1, n8, n34, n40, n41, n78, n79	$F_{1\text{ow_DL}}$	-	F _{DL_high}	-50	1	
	频率范围	1805	-	1855	-40	1	19
	频率范围	1855	_	1880	-15. 5	5	19
DC_41A_n257A	E-UTRA 頻 段 1, 3, 5, 8, 9, 11, 18, 19, 21, 26, 28, 33, 34 , 39, 40, 44, 45, 50, 51, 65, 74	$F_{1\text{ow_DL}}$	-	$F_{ ext{DL_high}}$	-50	1	
	频率范围	1839. 9		1879. 9	-50	1	
	频率范围	1884. 5		1915. 7	-41	0.3	3
DC_41A_n258A	E-UTRA 频段 1, 3, 8, 34, 39, 40, 44, 45	$F_{\rm dl_low}$	_	F _{dl_high}	-50	1	
	NR 频段 n78, n79	$F_{\rm dl_{-low}}$	-	F _{dl_high}	-50	1	
DC_42A_n257A	E-UTRA 頻 段 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 4 1, 65	$F_{1\text{ow_DL}}$	_	$F_{ ext{DL_high}}$	-50	g)	
DC_48A_n257A	频 2, 4, 5, 12, 13, 14, 17, 24, 25, 26, 29, 30, 41, 50, 51, 66, 70, 71, 74	F _{1 ow_DL}	<u>-</u> <u>-</u> <u>-</u> <u>-</u>	E _{DL_high} t	ng ₋₅₀	1	
DC_48A_n260A	频 2, 4, 5, 12, 13, 14, 17, 24, 25, 26, 29, 30, 41, 50, 51, 66, 70, 71, 74	F _{1 ow_DL}	-	$F_{ ext{DL_high}}$	-50	1	
DC_66A_n257A	段 2, 4, 5, 7, 10, 12, 13, 14, 17, 24, 25, 26, 2 7, 28, 29, 30, 38, 41, 43, 50, 51, 66, 70, 7 1, 74	$F_{1\text{ow}_\text{DL}}$	-	$F_{ extsf{DL_high}}$	-50	1	
	频段 42, 48	$F_{1\text{ow_DL}}$	_	$F_{\text{DL_high}}$	-50	1	TS38. 101 的表 6. 5. 3. 2-1
DC_66A_n260A	频 段 2, 4, 5, 12, 13, 14, 17, 24, 25, 26, 29, 30, 41, 48, 66, 70, 71, n71, n257	$F_{\scriptscriptstyle dl_low}$	_	$F_{\rm dl_high}$	-50	1	
	 频段 48	F_{d1_low}	-	F_{dl_high}	-50	1	3
DC_66A_n261A	频 段 2, 4, 5, 7, 10, 12, 13, 14, 17, 24, 25, 26, 2 7, 28, 29, 30, 38, 41, 43, 50, 51, 66, 70, 7 1, 74	$F_{ m dl_low}$	-	F_{dl_bigh}	-50	1	
	E-UTRA 频段 42, 48	$F_{\rm dl_low}$	_	$F_{\rm dl_high}$	-50	1	TS38. 101 的表 6. 5. 3. 2-1

- 注1: FDL low和FDL high指的是表5.5-1中规定的每个E-UTRA频段
- 注 2: 作为例外情况,由于 2nd, 3nD, 4 ^H或者由于 2nd, 3nD, 4 ^H或者测量中使用的每个指定 E-UTRA 载波,允许测量水平 达到表 6.6.3.1-2 中定义的适用要求。 5 ^H谐波杂散发射。 由于谐波发射的扩散,在谐波发射两侧的谐波发射 之外的第一个 1MHz 频率范围也允许例外。 这导致整体异常间隔以(2MHz + N×L_{CRB}×180kHz)谐波发射为中 心,其中 N 为 2, 3, 4, 5(2)nd, 3nD, 4(TF15159)或 5 ^H谐波。 如果测量带宽(MBW)完全或部分地与整个异常间隔重叠,则允许例外。
- 注3: 适用于与 1884. 5 -1915. 7MHz 运行的 PHS 系统共存
- 注5: 这些要求也适用于来自信道带宽边缘的表 6.6.3.1-1 和表 6.6.3.1A-1 中小于 Foot (MHz) 频率范围。
- 注 6: 此要求适用于 2500-2570~MHz 范围内的任何信道带宽,但有以下限制:对于载波中心频率在 2560.5~62.5~MHz 范围内的 15~MHz 带宽载波,以及载波中心频率为 20~MHz 带宽的载波在 2552-2560MHz 范围内,该要求仅适用于小于或等于 54RB 的上行链路传输带宽。
- 注7: 对于这些相邻频段,发射限值可能意味着对受保护工作频段内运行的 UE 产生有害干扰的风险。

		杂散发射			
EN-DC 配置	受保护的频段	频率范围(MHz)	最高等级 (dBm)	MBW (MHz	注意
)	

- 注8: 此要求适用于 3300 3800 MHz 范围内的任何信道带宽,但有以下限制:对于载波中心频率在 TBD-3792.5 MHz 范围内的 15 MHz 带宽载波,以及载波中心频率为 20 MHz 带宽的载波在 TBD-3790MHz 范围内,该要求仅适用于小于或等于 TBD RB 的上行链路传输带宽。
- 注9: 此要求适用于 1920 1980 MHz 范围内的任何信道带宽,但有以下限制:对于载波中心频率在 1927.5 1929.5 MHz 范围内的 15 MHz 带宽载波,以及载波中心频率为 20 MHz 带宽的载波在 1930-1938MHz 范围内,该要求仅适用于上行链路
- 注 10: 当分配的 E-UTRA 载波限制在 718 MHz 和 748 MHz 范围内以及使用的信道带宽为 5 或 10 MHz 时适用。
- 注 11: 作为例外情况,由于二次谐波杂散发射,测量中使用的每个指定 E-UTRA 载波允许测量水平高达-36 dBm / MHz 的适用要求。 如果传输带宽内至少有一个单独的 RB(见图 5.6-1),则二次谐波与测量带宽(MBW)完全或部分重叠,则允许例外。
- 注 12: 作为例外,对于由于三次谐波杂散发射而在测量中使用的每个指定的 E-UTRA 载波,允许具有高达适用的-38dBm / MHz 要求的电平的测量。 如果在传输带宽内至少有一个单独的 RB(见图 5.6-1),则允许例外,其中三次谐波与测量带宽(MBW)完全或部分重叠。
- 注 13: 此要求仅适用于以下情况: 当载波中心频率 (Fc) 在 902.5MHz ≤ Fc < 907.5 MHz 范围内且上行链路传输带宽小于或等于 20 RB 时,对于 5 MHz 信道带宽的载波 当载波中心频率 (Fc) 在 907.5MHz ≤ Fc ≤ 912.5MHz 的范围内时,5MHz 信道带宽的载波对上行链路传输带宽没有任何限制。 当载波中心频率 (Fc) 为 Fc = 910MHz 且上行链路传输带宽小于或等于 32RB 且 RBstart > 3 时,对于 10MHz 信道带宽的载波。
- 注 14: 该要求适用于在 1744. 9MHz 和 1784. 9MHz 内分配的 5, 10, 15 和 20MHz E-UTRA 信道带宽。
- 注 15: 该要求适用于在 718-728MHz 内分配的 5 和 10 MHz E-UTRA 信道带宽。 对于 10 MHz 带宽的载波,此要求适用于小于或等于 30 RB 的上行链路传输带宽,RBstart > 1 且 RBstart < 48。
- 注 16: 当网络发信号通知 6.6.3.3.1 节中的 NS 05 时适用。
- 注 17: 此要求适用于 1920 1980 MHz 范围内的任何信道带宽,但有以下限制:对于载波中心频率在 1927.5 1929.5 MHz 范围内的 15 MHz 带宽载波,以及载波中心频率为 20 MHz 带宽的载波在 1930—1938MHz 范围内,该要求仅适用于小于或等于 54RB 的上行链路传输带宽。
- 注 18: 该要求适用于限制在 703 MHz 和 733 MHz 范围内的 10 MHz B-UTRA 载波, 否则需要-25 dBm, 测量带宽为 8 MHz。
- 注 19: 此要求仅适用于带宽限制在 1885-1920 MHz 范围内的 E-UTRA 载波(未规定对 1880 1885 MHz 内至少 1RB 限制的载波的要求)。 当载波中心频率在 1892. 5-1894. 5 MHz 范围内时,此要求适用于 15 MHz 带宽的 E-UTRA 载波小于或等于 54 RB 的上行链路传输带宽;对于载波中心频率为 20 MHz 带宽的 E-UTRA 载波,此要求适用在 1895-1903 MHz 范围内。

6.5B.3.5 带间 EN-DC 包括 FR1 和 FR2

<0TA 要求>

〈编者注:要更新的章节编号〉

[4]的第6.6.3.1条,[2]和[3]的第6.5.3.1小节中规定的一般性描述杂散发射要求适用于每个分量载波。

6. 5B. 3. 5. 1 杂散发射带 UE 共存

〈编者注:要更新的章节编号〉

本节规定了与受保护频带共存的指定 EN-DC 的要求。 表 6. 5B. 3. 4. 1-1 中的要求适用于每个分量载波,所有分量载波均有效。

表 6.5B.3.5.1-1:要求

	杂散发射								
E-UTRA 和 NR DC	受保护的频段	频率范围(MHz)	最高等级	MBW	注意				
配置			(dBm)	(MHz					
)					

		ż	è散				
E-UTRA 和 NR DC 配置	受保护的频段	频率范			最高等级 (dBm)	MBW (MHz	注意
DC_1A_n77A- n257A	E-UTRA 频段 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 39 , 40, 41, 65	F _{low_DL}	-	F _{DL_high}	-50	1	
	频率范围	1880	-	1895	-40	1	5, 9
	频率范围	1895	-	1915	-15. 5	5	5, 7, 9
DO 14 . 704	频率范围	1915	-	1920	+1.6	5	5, 7, 9
DC_1A_n78A- n257	E-UTRA 頻段 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 40 , 41, 65	F_{low_DL}	_	FDL_high	-50	1	
	频率范围	1880	-	1895	-40	1	5, 9
	频率范围	1895	-	1915	-15. 5	5	5, 7, 9
	频率范围	1915	-	1920	+1.6	5	5, 7, 9
DC_1A_n79A- n257A	E-UTRA 频段 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 40 , 41, 42, 65	F _{low_DL}	_	$F_{ ext{DL_high}}$	-50	1	
	频率范围	1880	-	1895	-40	1	5, 9
	频率范围	1895	_	1915	-15. 5	5	5, 7, 9
	频率范围	1915	_	1920	+1.6	5	5, 7, 9
DC_3A_n77A- n257	E-UTRA 频段 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 39 , 40, 41, 65	F _{low_DL}	-	F _{DL_high}	-50	1	
	频率范围	1884. 5	-	1915. 7	-41	0.3	3
DC_3A_n78A- n257A	E-UTRA 频段 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 39 , 40, 41, 65	F _{low_DL}	-	F _{DL_high}	-50		
	频率范围	1884. 5	-	1915. 7	no XII The	0.3	3
DC_3A_n79A- n257A	E-UTRA 频段 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 4 1, 65	F _{10x_0L}	与	F _{DL_high}	-50	1	
	E-UTRA 频段 42	F_{low_DL}	-	FDL_high	-50	1	2
DO 101 771	频率范围	1884. 5	-	1915. 7	-41	0.3	3
DC_19A_n77A- n257A	E-UTRA 频段 1, 3, 11, 21, 28, 34, 65	F _{low_DL}	_	F _{DL_high} 960	-50	1	
	频率范围	945		300	-50	1	
	频率范围	1884. 5	-	1915. 7	-41	0.3	3
	 频率范围	2545	-	2575	-50	1	
	频率范围	2595	-	2645	-50	1	
DC_19A_n78A- n257A	E-UTRA 频段 1, 3, 11, 21, 28, 34, 65	F _{low_DL}	-	F _{DL_high}	-50	1	
	频率范围	945	_	960 1915. 7	-50	1	
	频率范围	1884. 5	_	2575	-41	0.3	3
	频率范围	2545			-50	1	
DC_19A_n79A-	频率范围	2595	_	2645	-50	1	
n257A	E-UTRA 频段 1, 3, 11, 21, 28, 34, 42, 65	F _{low_DL}	_	F _{DL_high} 960	-50	1	
	频率范围	945			-50	1	
	频率范围	1884. 5	_	1915. 7 2575	-41	0.3	3
	频率范围	2545	_	2645	-50	1	
	 频率范围	2595		2010	-50	1	

 頻率范围
 2595

 注1: FDL_low和FDL_high指的是表5.5-1中规定的每个E-UTRA频段

注 2: 作为例外情况,由于 2^{nd} $, 3^{\text{8D}}$ $, 4^{\text{H}}$ 或者由于 2^{8D} $, 3^{\text{8D}}$ $, 4^{\text{H}}$ 或者测量中使用的每个指定 E-UTRA 载波,允许测

	杂散发射								
E-UTRA 和 NR DC 配置	受保护的频段	频率范围(MHz)	最高等级 (dBm)	MBW (MHz	注意				
)					

量水平达到表 6.6.3.1-2 中定义的适用要求。 5^{-1} 谐波杂散发射。 由于谐波发射的扩散,在谐波发射两侧的谐波发射之外的第一个 1MHz 频率范围也允许例外。 这导致整体异常间隔以($2MHz + N \times L_{CBB} \times 180 kHz$)谐波发射为中心,其中 N 为 2, 3, 4, 5(2) 1d , 3^{RD} , 4(TF15473)或 5^{-1} 谐波。 如果测量带宽(MBW)完全或部分地与整个异常间隔重叠,则允许例外。

- 注3: 适用于与 1884.5 -1915.7MHz 运行的 PHS 系统共存
- 注 4: 仅适用于指定的 E-UTRA 载波限制在 824 MHz 和 849 MHz 范围内的 UE 类别 M1, M2 和 UE 类别 NB1 和 NB2。
- 注 5: 这些要求也适用于表 6.6.3.1-1 中的小于 F_{oot} (MHz) 频率范围和来自信道带宽边缘的表 6.6.3.1A-1。
- 注 6: 此要求适用于 2500 2570 MHz 范围内的任何信道带宽,但有以下限制:对于载波中心频率在 2560.5 2562.5 MHz 范围内的 15 MHz 带宽载波,以及载波中心频率为 20 MHz 带宽的载波在 2552-2560MHz 范围内,该要求仅适用于小于或等于 54RB 的上行链路传输带宽。
- 注 7: 对于这些相邻频段,发射限值可能意味着对受保护工作频段内运行的 UE 产生有害干扰的风险。
- 注8: 此要求适用于 3300 3800 MHz 范围内的任何信道带宽,但有以下限制:对于载波中心频率在 TBD-3792.5 MHz 范围内的 15 MHz 带宽载波,以及载波中心频率为 20 MHz 带宽的载波在 TBD-3790MHz 范围内,该要求仅适用于小于或等于 TBD RB 的上行链路传输带宽。
- 注 9: 此要求适用于 1920 1980 MHz 范围内的任何信道带宽,但有以下限制:对于载波中心频率在 1927.5 1929.5 MHz 范围内的 15 MHz 带宽载波,以及载波中心频率为 20 MHz 带宽的载波在 1930-1938MHz 范围内,该要求仅适用于上行链路
- 注 10: 当分配的 E-UTRA 载波限制在 718 MHz 和 748 MHz 范围内以及使用的信道带宽为 5 或 10 MHz 时适用。
- 注 11: 作为例外情况,由于二次谐波杂散发射,测量中使用的每个指定 E-UTRA 载波允许测量水平高达-36 dBm / MHz 的适用要求。 如果传输带宽内至少有一个单独的 RB(见图 5.6-1),则二次谐波与测量带宽(MBW)完全或部分重叠,则允许例外。
- 注 12: 作为例外,对于由于三次谐波杂散发射而在测量中使用的每个指定的 E-UTRA 载波,允许具有高达适用的-38d Bm / MHz 要求的电平的测量。 如果在传输带宽内至少有一个单独的 RB(见图 5.6-1),则允许例外,其中三次谐波与测量带宽(MBW)完全或部分重叠。
- 注 13: 此要求仅适用于以下情况: 当载波中心频率(Fc)在 902.5MHz ≤ Fc < 907.5 MHz 范围内且上行链路传输带宽小于或等于 20 RB 时,对于 5 MHz 信道带宽的载波 当载波中心频率(Fc)在 907.5MHz ≤ Fc ≤ 912.5MHz 的范围内时,5MHz 信道带宽的载波对上行链路传输带宽没有任何限制。 当载波中心频率(Fc)为 Fc = 910MHz 且上行链路传输带宽小于或等于 32RB且 RBstart > 3 时,对于 10MHz 信道带宽的载波。
- 注 14: 该要求适用于在 1744.9MIz 和 1784.9MHz 内分配的 5, 10, 15 和 20MHz E-UTRA 信道带宽。
- 注 15: 该要求适用于在 718-728MHz 内分配的 5 和 10 MHz E-UTRA 信道带宽。 对于 10 MHz 带宽的载波,此要求适用于小于或等于 30 RB 的上行链路传输带宽,RBstart > 1 且 RBstart < 48。
- 注 16: 当网络发信号通知 6.6.3.3.1 节中的 NS_05 时适用。
- 注 17: 此要求适用于 1920 1980 MHz 范围内的任何信道带宽,但有以下限制:对于载波中心频率在 1927.5 1929.5 MHz 范围内的 15 MHz 带宽载波,以及载波中心频率为 20 MHz 带宽的载波在 1930-1938MHz 范围内,该要求仅适用于小于或等于 54RB 的上行链路传输带宽。
- 注 18: 该要求适用于限制在 703 MHz 和 733 MHz 范围内的 10 MHz E-UTRA 载波,否则需要-25 dBm,测量带宽为 8 MHz
- 注 19: 此要求仅适用于带宽限制在 1885-1920 MHz 范围内的 E-UTRA 载波(未规定对 1880 1885 MHz 内至少 1RB 限制的载波的要求)。 当载波中心频率在 1892. 5-1894. 5 MHz 范围内时,此要求适用于 15 MHz 带宽的 E-UTRA 载波小于或等于 54 RB 的上行链路传输带宽;对于载波中心频率为 20 MHz 带宽的 E-UTRA 载波,此要求适用在 1895-1903 MHz 范围内。

6.5B.4 额外的杂散发射

6.5B.4.1 一般性描述

这些要求是根据额外的频谱发射要求规定的。 网络发信号通知额外的杂散发射要求,以指示UE应满足特定部署方案的附加要求,作为小区切换/广播消息的一部分。

注意: 对于每个频率范围边缘的测量条件,每个频率范围内测量位置的最低频率应设置在频率范围的最低边界加上 MBW / 2。 每个频率范围内测量位置的最高频率应设置在频率范围的最高边界减去 MBW / 2。 MBW 表示为受保护频带定义的测量带宽。

6.5B.4.1.1 最低要求 (网络信号值"NS 04")

当小区中显示"NS 04"时,任何UE发射的功率不得超过表6.5B.4.1.1-1中规定的水平。 此要求也适用于表6.6.3.1-1中距离信道带宽边缘小于 F_{08} (MHz)频率范围。

频带 (MHz)
 信道帯宽/频谱发射限值 (dBm)
 2495 ≤ f < 2496
 -13
 1%的信道帯宽,连续帯宽高达 100 MHz, 1 MHz 用于连续 BW> 100 MHz
 2490.5 ≤ f < -13
 2495
 0 < f < 2490.5
 -25
 1MHz

表 6.5B.4.1.1-1: 附加要求

7 接收端特性

7.1 一般性描述

除非另有说明,否则接收端特性在 UE 的天线连接器处规定,用于在频率范围 1 上工作的频带,在 UE 的空中用于在频率范围 2 上工作的频带。频率范围 1 和频率的要求范围 2 可以单独验证。对于频率范围为 1 的载波,可以通过禁用 NR FR2 链路来验证要求。对于频率范围为 2 的载波,可以在 OTA 模式下验证要求,其中 LTE 通过 OTA 连接到网络而无需校准。

与[2]和[3]中定义的单载波要求相比,本节中定义的要求是额外要求。

除非另有说明,否则 出和 加参考测量信道与[2]和[3]中指定的配置相同。

7.2 多样性特征

7.3 参考灵敏度

7.3A CA的参考灵敏度

7.3A.1 一般性描述

〈编者注:要更新的表号〉

对于 NR CA 操作, [2]和[3]中定义的 NR 单载波 REFSENS 要求适用于表 5. 2. 2. 1-1 中列出的 NR CA 配置的所有下行链路频带部分,除非根据第 7. 3A 节的规定允许灵敏度降低。

7.3A.2 CA的参考灵敏度功率级别

7. 3A. 3 CA 的 Δ R_{IB. C}

〈编者注:要更新的章节号〉

对于支持带间 NR CA 配置的 UE,TS 36. 101 中表 7. 3. 1–1 和表 7. 3. 1–1a 中的参考灵敏度的最低要求,TS 38. 101–1 和表 7. 3. 1 中的表 7. 3–1 TS 38. 101–2 中的–1 应增加下表中 Δ R_{IB. c} 中给出的量。 除非另有说明, Δ R_{IB. c} 设置为零。

7. 3A. 3. 1 Δ R_{IB. C}用于 FR1 和 FR2 之间的带间 CA.

表 7.3A.3.1-1: 由 NR CA 引起的 Δ RIB, c (两个波段)

带间 EN-DC 配置	NR 频段	$\Delta R_{\text{IB, C}}$ (dB)

7. 3A. 4 由于 UL 的谐波干扰引起的参考灵敏度异常

如果受到来自相同 CA 配置的频率范围 1 中的频带的 UL 谐波干扰的影响,则频率范围 2 中的频带允许灵敏度降级。 表 7.3A.4-1 中规定了参考灵敏度异常,其中上行链路配置在表 7.3A.4-2 中规定。

表 7. 3A. 4-1: FR1 + FR2 的 NR CA 的 UL 谐波引起的参考灵敏度异常

UL 频段	DL 频段	50MHz (DBM)	100MHz (DBM)	200MHz (DBM)	400MHz (DBM)
X	Y				

表 7.3A.2-2: 由于 FR1 + FR2 的 NR CA 的 UL 谐波干扰引起的参考灵敏度异常的上行链路配置

Ţ	JL 频段	DL 频段	5MHz (DBM)	10MHz (DBM	15MHz (DBM	20MHz (DBM	25MHz (DBM)	40MHz (DBM)	50MHz (DBM)	60MHz (DBM)	80MHz (DBM)	90MHz (DBM)	100MH z (DBM)
	X	Y	1 人用加										

7.3B DC的参考灵敏度水平

7.3B.1 一般性描述

〈编者注:要更新的表号〉

对于 EN-DC,[2],[3]和[4]中定义的 E-UTRA 和 NR 单载波 REFSENS 要求适用于表 TBD 中列出的所有 EN-DC 配置的下行链路频带,除非允许按照第 7. 3 节的规定进行灵敏度降低. 2. 1 和 7. 3. 2. 2。

7.3B.2 EN-DC 的参考灵敏度

7. 3B. 2. 1 带内连续的 EN-DC

对于带内连续 EN-DC 配置,参考灵敏度功率电平 REFSENS 是应用于每个 UE 天线端口的最小平均功率,在该端口处 E-UTRA 和 NR CG 的载波的吞吐量应满足或超过指定的 E-UTRA 和 NR 参考测量信道的要求。

对于每个 CG,参考灵敏度被指定为参考灵敏度水平的最大允许退化 MSD,如针对 E-UTRA CG 的[4]和针对 NR CG 的[2]所适用的载波带宽所规定的。

对于 DC 带宽等级 B 的 DC 配置,每个 CG 的吞吐量应 \geq TBD 中规定的相应参考测量信道的最大吞吐量的 \geq 95%,其参数在表 7. 3B. 2. 1-1 中规定。

表 7.3B.2.1-1: 带内 DC 带宽等级的参考灵敏度 (MSD)

			MSD / DC 带宽	等级 B.			
DC 配置	E-UTRA / NR 频段	F _c (UL) (MHz)	信道带宽 (MHz)	UL 分配(LCRB)	F _c (DL) (MHz)	MSD (dB)	双工模 式
DC (n)71B	71	665.5	5	5 (RB _{end} = 24)	619.5	0	
DC_(II)/ IB	n71	675.5	15	$15 (RB_{start} = 0)$	629.5	1.8	
DC_(n)71B	71	670. 5	15	15 (RB _{end} = 74)	624.5	0	
DC_(II)/ IB	n71	680.5	5	$5 (RB_{start} = 0)$	634.5	1.6	FDD
DC (n)71P	71	668	10	$10 (RB_{end} = 49)$	622	0	רעע
DC_(n)71B	n71	678	10	$10 (RB_{start} = 0)$	632	1. 7	
DC (n)71P	71	668	10	10 (RB _{end} = 0)	622	17. 2	
DC_(n)71B	n71	678	10	$10 (RB_{start} = 51)$	632	29. 4	

带内非连续的 EN-DC 7. 3B. 2. 2

对于 DC 3A n3A 带内非连续 EN-DC 组合, rel. 15 中仅支持单个交换 UL, 不需要 MSD。

FR1 内的带间 EN-DC 7. 3B. 2. 3

当仅在攻击者频带中存在上行链路传输时,为该条件指定参考灵敏度异常。

〈编者注: FFS 如何澄清 1Tx 的问题也可能存在于 2Tx 模式,例如谐波等。〉

7. 3B. 2. 3. 1

NR FR1 中 EN-DC 的 UL 谐波干扰引起的参考灵敏度异常 DC 配置的另一频带部分地址 如果受到来自相同 DC 配置的另一频带部分的 UL 谐波干扰的影响,则允许频带的灵敏度降级。 表 7. 3B. 2. 3. 1-1 中规定了参考灵敏度异常,其中上行链路配置在表 7. 3B. 2. 3. 1-2 中规定。 中文翻译

表 7.3B.2.3.1-1: NR FR1 中 EN-DC 的 UL 谐波引起的 MSD

UL 频段	DL 频段	5MHz (dB	10MH z (dB)	15MH z (dB)	20MH z (dB)	25MH z (dB)	30 MHz (dB)	40MHz (DBM)	50MHz (DBM)	60MHz (DBM)	80MHz (DBM)	90MHz (DBM)	100MH z (DBM)
1, 3	n77 ^{1, 2}	27. 1	23.9	22. 1	20.9			17. 9					
1, 3	n77³	1. 9	1. 1	0.8	0.3								
2	n78 ^{1, 2}	27. 1	23.9	22. 1	20.9			17. 9					
	n78³	1. 9	1. 1	0.8	0.3								
3	n78 ^{1, 2}	27. 1	23.9	22. 1	20.9			17. 9					
J	n78³	1. 9	1. 1	0.8	0.3								
8	n77 ^{6, 7} n78 ^{6, 7}	NA	10.8	9. 1	8	5. 1	4. 2	3.5	2. 3	1. 4			
8	n79 ^{4, 5}							6.8	6. 2	5.6	4. 9		4. 4
18, 19	n77 ^{4, 5}		10. 4	8.9	7.8			4. 7	3. 7	3	1. 7		0.7
28	n77 ^{4, 5} n78 ^{4,}		10. 4	8.9	7.8			4. 7	3. 7	3	1. 7	1. 2	0.7
20	n77 ^{6, 7} n78 ^{6, 7}		10.8	9. 1	8			6					
26	n41	NA	10.3	8.4	7.4			5	4.3	3.9	3.1	2.7	
26	n77 ^{6, 7} n78 ^{6, 7}		10.8	9. 1	8			6			_ `		
26	n77 ^{4, 5}		10.4	8.9	7.8			4. 7	3.7		\2187		0.7
20	18,9,10	10.2	7. 6	6.2	5.3			口。	ton	8VI			
n28	n75 ^{1, 2}	28. 1	25.3	24.0	22.8	(八个	广与:					
n71	211	4.6	1.0	0.7	0.6								
	212	1. 7	17.0	0.70	0.6								
66	n78 ^{1, 2}	丁勸	23. 9	22. 1	20.9			17. 9					
00	n78³		1. 1	0.8	0.3								

- 注 2: 应针对侵略者(下)带(上标 LB)UL EARFCN 或 NR ARFCN 验证要求,以便 $f_{UL}^{LB} = \left| f_{DL}^{HB} / 0.2 \right| 0.1$ 以 MHz 和 $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ 载波频率在受害者(较高)频带中以 MHz 为单位,信道带宽在较低频带中配置。
- 注 3: 这些要求仅适用于载波频率为的信道带宽 $\pm \left(20 + BW_{Channel}^{HB} / 2\right)$ MHz 的偏移量 $2f_{UL}^{LB}$ 在受害者(更高的频段)与 $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_high}^{LB} BW_{Channel}^{LB} / 2$,whereand $BW_{Channel}^{HB}$ 是分别在 MHz 中的入侵者(较低)和受害者(较高)频带中配置的信道带宽。
- 注 4: 当在 5^{-1} 发射端谐波在受害(较高)频带的下行链路传输带宽内的干扰源(较低)频带的上行链路传输带宽内存在至少一个单独的 RE 时,这些要求适用。
- 注 5: 对于侵略者(下)带(上标 LB)UL EARFCN,应该验证要求 $f_{UL}^{LB} = \left[f_{DL}^{HB} / 0.5 \right] 0.1$ 以 MHz 和 $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ 载波频率在受害者(较高)频带中以 MHz 为单位,信道带宽在较低频带中配置。
- 注 6: 当在 4^{-1} 发射端谐波在受害(较高)频带的下行链路传输带宽内的干扰源(较低)频带的上行链路传输带宽内存在至少一个单独的 RE 时,这些要求适用。
- 注 7: 对于侵略者(下)带(上标 LB)UL EARFCN,应该验证要求 $f_{UL}^{LB} = \left[f_{DL}^{HB} / 0.4 \right] 0.1$ 以 MHz 和 $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ 载波频率在受害者(较高)频带中以 MHz 为单位,信道带宽在较低频带中配置。
- 注 8: 当在第三发射端谐波在高频带的下行链路传输带宽内的低频带的上行链路传输带宽内存在至少一个单独的 RE 时,应用这些要求。
- 注 9 应针对低频带(上标 LB)UL EARFCN 验证要求,以 MHz 和 $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ 具有以 MHz 为单位的高频带的载波频率和在低频带中配置的信道带宽。

- 注 10: 适用于配置了载波聚合的频段支持 2 或 4 个天线端口的操作。
- 注 11: 当频带 71 中的 5MHz 上行链路信道的下边缘频率位于或低于 668MHz 并且频带 2 中的下行链路信道位于其上边缘为 1990MHz 时,这些要求适用。

注 12: 当频带 71 中的 10 MHz, 15 MHz 或 20 MHz 上行链路信道的下边缘频率位于或低于 668 MHz 且频带 2 中的下行链路信道位于其上边缘为 1990 MHz 时,这些要求适用。

表 7. 3B. 2. 3. 1-2: NR FR1 中 EN-DC 的 UL 谐波干扰引起的参考灵敏度异常的上行链路配置

					高频	段的 E-U	ΓRA 或 NR ;		学 第 宽				
UL 频段	DL 频段	5 MHz	10MHz	15MHz	20MHz	25MHz	30MHz	40MHz	50MHz	60MHz	80MHz	90MHz	100MHz
1	n77	12	25	36	50			100					
2	n78	12	26	39	53 ¹ 100 ²								
3	n77	12	25	36	50			50					
3	n78	12	25	36	50			50					
8	n77 n78		16	25	25			25	25	25	25	25	25
8	n79							25	25	25	25		25
18	n77	8	16	25	25 ¹ , 25 ²								
19	n77		16	25	25			25	25	25	25		25
20	n77	8	16	25	25 ¹ , 25 ²						g)		
20	n78		12	18	20			20	ong	xinə	0		
26	n77 n78	8	16	25	25 ¹ , 25 ²	\ ()	公介"	号:	0110				
n28	1	8	16	25	C 251	自							
n28	n75	12	25	£ 36 C	50								
28	n77 n78	中了	厂都 ^V	-15	20			25	25	25	25	25	25
66	n78		26	39	53			100					
n71	2	25 ⁴ 8 ⁵	25 ⁴ 8 ⁵	20 ⁴ 8 ⁵	20 ⁴ 8 ⁵								

- 注 1: 该配置用于测量 20MHz 的 NR 信道带宽的 MSD。
- 注 2: 该配置用于测量 40MHz 的 NR 信道带宽的 MSD。
- 注3: RB 分配位于 UL 频带的最低信道的下边缘。
- 注 4: 当频带 71 中的 5MHz 上行链路信道的下边缘频率位于或低于 668MHz 并且频带 2 中的下行链路信道位于其上边缘为 1990MHz 时,这些要求适用。
- 注 5: 当频带 71 中的 10 MHz, 15 MHz 或 20 MHz 上行链路信道的下边缘频率位于或低于 668 MHz 且频带 2 中的下行链路信道位于其上边缘为 1990 MHz 时,这些要求适用。

7. 3B. 2. 3. 2 由于 NR FR1 中 EN-DC 的接收端谐波混频导致的 MSD

如果由于相同 DC 配置的另一个频带部分而受到接收端谐波混合的影响,则允许频带的灵敏度降级。 表 7. 3B. 2. 3. 2-1 中规定了参考灵敏度异常,其中上行链路配置在表 7. 3B. 2. 3. 2-2 中规定。

表 7. 3B. 2. 3. 2-1: 由于 NR FR1 中 EN-DC 的接收端谐波混频引起的参考灵敏度异常

UL 頻	DL频	5	10MHz	15MHz	20MHz	25MHz	40MHz	50MHz	60MHz	80MHz	90MHz	100MHz
段	段	MHz	(DBM									
		(DBM))))))))
)										
2	n71 ⁴	26.8	23.6	21.2	15. 6							
26	n41 ⁴	24.3	24.3	22.5	N/A							
41	n77 ⁷	N/A	8.3	8. 0	6. 9	N/A	3.9	3	2.3	1. 2	0.4	
41	n78 ⁷	N/A	8.3	8. 0	6. 9	N/A	3.9	3	2.3	1. 2	0.4	
n71	2 ⁵	4.6	1	0. 7	0.6							
117.1	26	1. 7	1	0. 7	0.6							
n77	41^{8}	10.4	10.4	10.4	10. 4	N/A	N/A	N/A	N/A	N/A	N/A	
n77	28 ²	28	25	23.2	22							
n78	41^{8}	10.4	10.4	10.4	10. 4	N/A	N/A	N/A	N/A	N/A	N/A	
n79	19 ²	29.5	26.5	24. 7								
n79	21^{3}	39.3	36.3	34.5								
n79	26²	27	24	22. 2	N/A	N/A	N/A	N/A	N/A	N/A		N/A

- 当在干扰源(较高)频带的上行链路传输带宽内存在至少一个单独的RE时,这些要求适用于由于受害者(较 注 1:
- 低)频带 LO 的谐波与干扰源(较高)频带的漏损在下行链路内的混频产物。受害者(较低)频带的传输带宽。对于受害者(下)带(上标 LB)DL EARFCN,应验证要求 $f_{DL}^{LB} = \int_{UL}^{HB}/0.5$ 0.1以 MHz 和 注 2: $F_{DL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{DL}^{LB} \le F_{DL_high}^{LB} - BW_{Channel}^{LB} / 2$ 同 f_{DL}^{LB} 受害者(较低)频带中的载波频率(MHz)和较低
- 对于受害者(下)带(上标 LB)DL EARFCN,应验证要求 $f_{DL}^{LB} = \int_{UL}^{HB}/0.4 \, 0.1 \, \text{以 MLZ}$ 和 注 3: $F_{DL_low}^{LB} + BW_{Channel}^{LB}$ /2 $\leq f_{DL_high}^{LB} - BW_{Channel}^{LB}$ /2 同 $f_{DL_S}^{LB}$ 要害者(较低)频带中的载波频率(MHz)和较低频带中配置的信道带宽。
- 注 4: 应针对侵略者(更高)频带(上标 HB)UL EARFON 验证要求,以便 $f_{DL}^{LB} = \left[f_{UL}^{HB} / 0.3 \right] 0.1$ 以 MHz 和 $F_{UL_low}^{LB} + BW_{Channel}^{LB}$ $/2 \le f_{UL_high}^{LB} - BW_{Channel}^{LB}$ / 2 具有受害者(较低)频带中的载波频率和配置在较高频带中
- 注5: 当频带 n71 中的 5MHz 上行链路信道的下边缘频率位于或低于 668MHz 并且频带 2 中的下行链路信道位于其上边 缘为1990MHz时,这些要求适用。
- 当频带 n71 中的 10 MHz, 15 MHz 或 20 MHz 上行链路信道的下边缘频率位于 668 MHz 或低于 668 MHz 且频段 2 注 6: 中的下行链路信道位于其上边缘为 1990 MHz 时,这些要求适用。
- 对于侵略者(下)带(上标 LB)UL EARFCN,应该验证要求 $f_{vL}^{LB} = \left[f_{DL}^{HB} / 0.15 \right] 0.1$ 以 MHz 和 $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} - BW_{Channel}^{LB} / 2$ 载波频率在受害者(较高)频带中以 MHz 为单位,信道带 宽在较低频带中配置。
- 对于侵略者(更高)频带(上标 HB)UL EARFCN,应该验证这些要求 $f_{UL}^{LB} = \begin{bmatrix} 15 * f_{DL}^{HB} \end{bmatrix}$ 0.1 以 MHz 和 注8: $F_{UL_low}^{HB} + BW_{Channel}^{HB}$ / $2 \le f_{UL_high}^{HB} - BW_{Channel}^{HB}$ / 2 同 f_{DL}^{LB} 受害者(较低)频段的载波频率,以 MHz 和 MHz 为单位 $BW_{Channel}^{LB}$ 在较高频段配置的信道带宽。

50

50

50

n78

n79 n79

n79

41

19

21

30

15

15

15

N/A

25

25

50

50

50

50

50

75

75

75

南海 UL频 DL 频 5MHz 10MHz15MHz 20MHz 25MHz 40MHz50MHz 60MHz 80MHz 90MHz100MH 段 段 (kHz z) 2 n71 15 25 50 50 50 26 15 25 50 75 n41 n77 15 25 25 25 41 25 N/A N/A N/A N/A N/A N/A 41 n78 15 25 25 25 25 N/A N/A N/A N/A N/A N/A n77 28 15 25 50 75 100 30 N/A 50 50 n77 41 50 N/A 50 50 50 50 50

N/A

50

表 7. 3B. 2. 3. 2-2: 由于 NR FR1 中 EN-DC 的接收端谐波混频引起的参考灵敏度异常的上行链路配置

50

注 2: 对于侵略者(更高)频带(上标 HB)UL EARFCN,应该验证这些要求 $f_{DL}^{LB} = \left\lfloor f_{UL}^{HB} / 0.3 \right\rfloor 0.1$ 以 MHz 和 $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_high}^{LB} - BW_{Channel}^{LB} / 2$ 具有受害者(较低)频带中的载波频率和配置在较高频带中的信道带宽。

7. 3B. 2. 3. 3 由于 NR FR1 中 EN-DC 的频带非常接近而引起的参考灵敏度异常

如果频带受到相同 DC 配置的另一个频带部分的 UL 的紧密接近的影响,则允许频带的灵敏度降级。 表 7. 3B. 2. 3. 3-1 中规定了参考灵敏度异常,其中上行链路配置在表 7. 3B. 2. 3. 3-2 中规定。

表 7.3B.23 3-1: 由于 NR FR1 中 EN-DC 的频带非常接近而引起的参考灵敏度异常

			-									
UL 频	DL频	5MHz	10MHz	15MHz	20MHz	25MHz	40MHz	50MHz	60MHz	80MHz	90MHz	100MHz
段	段	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM
)))))))))))
X	Y											

表 7.3B.2.3-2: 由于 NR FR1 中 EN-DC 的频带非常接近而引起的参考灵敏度异常的上行链路配置

ſ	UL 频	DL 频	5MHz	10MHz	15MHz	20MHz	25MHz	40MHz	50MHz	60MHz	80MHz	90MHz	100MHz
	段	段	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM
)))))))))))
	X	Y											

7. 3B. 2. 3. 4 由于 NR FR1 中 EN-DC 的交叉频带隔离引起的参考灵敏度异常

如果由于交叉频带隔离问题而受到相同 DC 配置的另一个频带部分的 UL 的影响,则允许频带的灵敏度降级。表 7. 3B. 2. 3. 4-1 中规定了参考灵敏度异常,其中上行链路配置在表 7. 3B. 2. 3. 4-2 中规定。

注 1: 当在受害者(较低)频带的下行链路传输带宽内存在至少一个个体 RE 时,这些要求适用,其中第三谐波在上行链路传输带宽内或上行链路相邻信道的干扰源(较高)频带的传输带宽内。

表 7. 3B. 2. 3. 4-1: 由于 NR FR1 中 EN-DC 的交叉频带隔离引起的参考灵敏度异常

UL 频段	DL 频段	5MHz	10MHz	15MHz	20MHz	25MHz	40MHz	50MHz	60MHz	80MHz	90MHz	100MHz
		(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM	(DBM)
))))))))))	
n77	411	-93.5	-90.5	-88. 7	-87.5							
n78	411	-93.5	-90.5	-88. 7	-87.5							
				注 1: 仅	适用于未见	並用此组合	·的谐波混合	含MSD时。				

表 7. 3B. 2. 3. 4-2: 由于 NR FR1 中 EN-DC 的交叉频带隔离引起的参考灵敏度异常的上行链路配置

UL 频段	DL 频段	5MHz (DBM	10MHz (DBM	15MHz (DBM	20MHz (DBM	25MHz (DBM	40MHz (DBM	50MHz (DBM	60MHz (DBM	80MHz (DBM	90MHz (DBM	100MHz (DBM)
))))))))))	
n77	41	30	273	273	273	273	N/A	N/A	N/A	N/A	N/A	N/A
n78	41	30	273	273	273	273	N/A	N/A	N/A	N/A	N/A	N/A

7. 3B. 2. 3. 5 由于 NR FR1 中 EN-DC 的双上行链路操作引起的互调干扰的参考灵敏度异常

对于 NR FR1 中的 EN-DC 配置, UE 可能指示不支持同时双上行链路操作的能力,因为可能的互调干扰在频率上与其自身的下行链路传输重叠

- 互调顺 序为 2;
- 当配置的工作频带限制在 1 GHz 以下或者限制在 1695 MHz 2690 MHz 的频率范围内时,互调顺序为 3。

在 NR FR1 配置中的 EN-DC 的情况下,由双上行链路操作引起的互调产物不干扰附件-A 中定义的自己的下行链路传输,UE 被强制在双上行链路模式下操作。

对于 NR FR1 中的 EN-DC,上行链路和下行链路分配给表 7. 3B. 2. 3. 5-1 中给出的 E-UTRA 和 NR FR1 频段,参考灵敏度仅针对表 7. 3B 中规定的特定上行链路和下行链路测试点进行定义. 2. 3. 5-1。 对于这些测试点,相应信道带宽或[4]第 7. 3. 1 节中[4]中第 7. 3. 1 节和[2]中 7. 3. 2. 1 中规定的参考灵敏度水平由参数 MSD 放宽。见表 7. 3B. 2. 3. 5-1。

每个 CG 的吞吐量应≥各个参考测量信道的最大吞吐量的≥95%,如表 7.3B.2.3.5-1 中规定的参数所规定的,除非另有说明,双 UL 传输在时间上重叠。

对于具有 UL / DL 信道分配的表 7. 3B. 2. 3. 5-1 中的 EN-DC 配置,允许单 UL,MSD 要求通过两个 CGNA 非同时上 行链路传输进行验证,仅用于表示支持 Single UL。

7. 3B. 2. 3. 5. 1 由于涉及两个频段的 NR FR1 中 EN-DC 的双上行链路操作引起的互调干扰的参考灵敏度 异常

表 7. 3B. 2. 3. 5. 1-1: 由于 NR FR1 (两个频段) 中 EN-DC 的双上行链路操作引起的参考灵敏度异常

		NR Ē	或 E-UTRA 🤅	频带/信道	i带宽/ N _{rs} /	MSD			
EN-DC 配置	EUTRA 或 NR 频段	UL F _c	UL/DL BW (MHz	UL L _{CRB}	DL F _c (MHz)	MSD (dB)	双工模 式	IMD order	允许单 一 UL
DC_1A_n77A	1	1950	5	25	2140	29. 8 32. 5 ⁴	FDD	IMD2 ³	
	n77	4090	10	25	4090	N/A	TDD	N/A	
DC_1A_n77A	1	1950	5	25	2140	8. 0 10. 7 ⁴	FDD	IMD4³	
	n77	3710	10	25	3710	N/A	TDD	N/A	
DC_1A_n78A, DC_1A_SUL_n78A-	1	1950	5	25	2140	8. 0 10. 7 ⁴	FDD	${ m IMD4}^3$	
n84A	n78	3710	10	25	3710	N/A	TDD		
DC_2A_n66A	2	1855	5	25	1935	20	FDD	IMD3	
50_£1_1100A	n66	1775	5	25	2175	N/A	TDD	N/A	
DC_2A_n66A	2	1883.3	5	25	1963.3	N/A	FDD	N/A	
	n66	1750	5	25	2150	4	TDD	IMD5	
DC_2A_n78A	2	1855	5	25	1940	26 +28,718 X	11505	IMD2³	
	n78	3795	10	25	3795	N/A	TDD	N/A	
DC_2A_n78A	2	1885	通信	25	1955	8. 0 10. 7 ⁴	FDD	${ m IMD4}^3$	
	n78	3700	10	25	3700	N/A	TDD	N/A	
DC_3A_n7A	艾鹤1	1730	5	25	1825	N/A	FDD	N/A	
B0_0/_11/_	n7	2535	10	52	2655	10. 2 ⁵	FDD	IMD4	
DC_3A_n77A DC_3A_n78A	3	1740	5	25	1835	26 28. 7 ⁴	FDD	IMD2³	
	n77, n78	3575	10	25	3575	N/A	TDD	N/A	
DC_3A_n77A DC_3A_n78A	3	1765	5	25	1860	8. 0 10. 7 ⁴	FDD	${ m IMD4}^3$	
	n77, n78	3435	10	25	3435	N/A	TDD	N/A	
	3	1712.5	5	25	1807.5	TBD⁵	FDD	IMD2	是
DC_3A_n78A	n78	3515	10	50	3515	N/A	TDD	N/A	
	3	1762.5	5	25	1857.5	N/A	FDD	N/A	没有
	n78	3465	10	50	3465	N/A	TDD	N/A	Ħ
DC_3A-SUL_n78A- n80A, DC 66A-	3, 66	1740	5	25	1835	26 28. 7 ⁴	FDD	IMD2³	是是
SUL_n78A-n86A	n78	3575	10	25	3575	N/A	TDD	N/A	是
DC_3A_SUL_n78A- n80A, DC_66A-	3, 66	1765	5	25	1860	8. 0 10. 7 ⁴	FDD	IMD4 ³	没有 没有
SUL n78A-n86A	n78	3435	10	25	3435	N/A	TDD	N/A	没有
	3	1740	5	25	1835	$\frac{26}{28.7^5}$	FDD	IMD2 ⁴	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
DC_3C_n78A	n78	3575	10	25	3575	N/A	TDD	N/A	
	n78	3710	10	25	3710	N/A N/A	TDD	N/A	
DC_3C_n78A	3	1765	5	25	1860	8. 0 10. 7 ⁵	FDD	IMD4 ⁴	
	n78	3435	10	25	3435	N/A	TDD	N/A	
DC_5A_n66A	5	838	5	25	883	30	FDD	IMD2 ³	

4	\sim
7	-7u

	n66	1721	5	25	2121	N/A		N/A	
DC 54 ~704	5	844	5	25	889	8.3	FDD	IMD4	
DC_5A_n78A	n78	3421	10	52	3421	N/A	TDD	N/A	
DC_8A_n77A	8	897.5	5	25	942.5	8.3	FDD	IMD4	
DC_8A_n78A DC_8A-SUL_n78A- n81A	n77, n78	3635	10	52	3635	N/A	TDD	H4	
DC_8A_n79A	8	897.5	5	25	942.5	4. 8	FDD	IMD5	
DC_8Ā-SŪL_n79A- n81A	n79	4532.5	40	216	4532.5	N/A	TDD	N/A	
DC_20A_n8A	20	849.5	5	25	808.5	21	FDD	IMD3	是
DO_20A_110A	n8	892.5	5	25	937.5	21	FDD	IMD3	
	20	850	5	25	810	11	FDD	IMD4	
DC 20A n77A	n77	3360	10	50	3360	N/A	TDD	N/A	
DO_20A_11/1A	20	840	5	25	800	6.5	FDD	IMD5	
	n77	4160	10	50	4150	N/A	TDD	N/A	
DC_20A_n78A,	20	850	5	25	810	21. 7	FDD	IMD4 ⁴	
DC_20A- SUL_n78A-n82A	n78	3360	10	50	3360	N/A	TDD	N/A	
DC 21A n79A	21	1457.5	5	25	1505.5	18. 4	FDD	IMD3	
DO_21A_1173A	n79	4420.5	40	216	4420.5	N/A	TDD	N/A	
DC_26A_n41A	26	839	5	25	884	15.6	FDD	IMD3	
	n41	2562	10	52	2562	N/A	TDD	N/A	
DC 28A n51A	28	725.5	20	25	765.5	5	FDD	IMD 4, 5	是
DO_26/_1101/\	n51	1429. 5	5	25	1429.5	5	TDD	IMD 4, 5	
DC_26A_n77A	26	836.5	5	25	881.5	LHAGX	FDD	IMD4	
DC_26A_n78A	n77, n78	3390	10	50	3390	N/A	TDD	N/A	
CA_28A_n77A,	28	705.5	5	(25)	760.5	5.5	FDD	IMD5	
CA_28A_n78A, DC_28A- SUL_n78A-n83A	n77, n78	3582.5	通信	25	3582.5	N/A	TDD	N/A	
DC_66A_n5A	丁亩57	838	5	25	883	30	FDD	IMD2 ³	
DC_00A_IIOA	66	1721	5	25	2121	N/A		N/A	
DC 664 x744	66	1750	5	25	2150	5	FDD	IMD4	
DC_66A_n71A	n71	675	5	25	629	N/A		N/A	
	66	1740	5	25	1835	26 28. 7 ⁴	FDD	IMD2³	
DC 664 n784	n78	3575	10	25	3575	N/A	TDD	N/A	
DC_66A_n78A	66	1765	5	25	1860	8. 0 10. 7 ⁴	FDD	IMD4 ³	
	n78	3435	10	25	3435	N/A	TDD	N/A	

n78
 3435
 10
 25
 3435
 N/A
 TDD
 N/A

 注 1:
 两个发射端应按照子条款 6. 2. 5A 的规定设置为最小值(+20 dBm, P_{CMAX,L,c})。 如果允许单 UL 并且 UE 仅表示支持"单 UL",则有效 UL 的输出功率应设置为 P_{CMAX,L,c}或根据 UE 功率缩放功能设置为最大输出功率。

注 2: RB_{start}= 0

注3: 该频段受 IMD5 的约束,也未指定 MSD。

注 4: 仅适用于配置了载波聚合的频段支持 4 个天线端口的操作。

注 5: 对于仅指示支持单 UL 的 UE, 通过 E-UTRA 和 NR CGNA 非同时上行链路传输来验证该要求

7. 3B. 2. 3. 5. 2 NR FR1 中涉及三个频段的 EN-DC 双上行链路操作引起的互调干扰的参考灵敏度异常

表 7. 3B. 2. 3. 5. 2-1: 由于 NR FR1 中的 EN-DC 双上行链路操作引起的参考灵敏度异常(三个频段)

		NR 或 E-	UTRA 频带	/信道带宽	/ N _{rb} / MSD				
			UL/DL			MSD		IMD	允许卓
EN-DC 配置	EUTRA / NR	$UL F_c$	B₩	UL	DL F _c (MHz)	MSD	双工模	order	— UI
EN DO HET	频段	(MHz)	(MHz	L_{crb}	DL r _c (MHZ))	式		
)			,			
	1	1975	5	25	2165	N/A	FDD	N/A	
DC_1A-3A_n28A	n28	710.5	5	25	765.5	N/A	FDD	N/A	
	3	1723.5	5	25	1818.5	4.0	FDD	IMD5	
	3	1780	5	25	1875	N/A	FDD	N/A	
DC_1A-3A_n28A	n28	710.5	5	25	765.5	N/A	FDD	N/A	
	1	1949	5	25	2139	11.0	FDD	IMD4	
	1	1935	5	25	2125	N/A	FDD	N/A	
DC_1A-7A_n28A	n28	718	5	25	773	N/A	FDD	N/A	
	7	2533	10	52	2653	30.0	FDD	IMD2	
	1	1950	5	25	2140	N/A		N/A	
	3	1712.5	5	25	1807.5	31.5	FDD	IMD2	
	n77	3757.5	10	52	3757.5	N/A	TDD	N/A	
	1	1950	5	25	2140	N/A		N/A	
DC_1A-3A_n77A	3	1775	5	25	1870	8.5	FDD	IMD4	
B0_1/10/1_11/71	n77	3980	10	52	3980	N/A	TDD	N/A	
	1	1950	5	25	2140	31.0		IMD2	
	3	1775	5	25	1870	N/A	FDD	N/A	
	n77	3915	10	52	3915	N/A]	TDD	N/A	
	1177	3313	10	32	1 +01	BACT	טטו	IMD4	
	1 1	1930	5	25	2120	8.3	FDD	f _{B78} -	
	-		12 (15/	- - : - •			3*f _{B1}	
	3	1775	15	25	1870	N/A		N/A	
	n78	3670	10	52	3670	N/A	TDD	N/A	
H	一个都件	1950	5	25	2140	N/A		N/A	
DC 14 24 p704	X						FDD	IMD2	
DC_1A-3A_n78Å \ DC_1A-3C_n78A	3	1712.5	5	25	1807.5	31.2	טט ו	f _{B78} -	
DO_1A-3O_1170A								f _{B1}	
	n78	3757.5	10	52	3757.5	N/A	TDD	N/A	
	,		_					IMD5	
	1	1935	5	25	2125	2.8	FDD	2*f _{B78} -	
	2	1775	5	25	1070	NI/A		3*f _{B3}	
	3	1775		25	1870	N/A	TDD	N/A	
	n78	3725	10	52	3725	N/A	TDD	N/A	
	1	1930	5	25	2120	8.3	FDD	IMD4 f _{B78} -	
	'	1000			2120	0.0	י טט	3*f _{B1}	
	5	844	5	25	889	N/A	FDD	N/A	
	n78	3670	10	52	3670	N/A	TDD	N/A	
	1	1950	5	25	2140	N/A	FDD	N/A	
			_			1		IMD4	
	5	844	5	25	889	8.3	FDD	f _{B78} -	
								3*f _{B5}	
DC_1A-5A_n78A	n78	3421	10	52	3421	N/A	TDD	N/A	
								IMD3	
	1	1932	5	25	2122	18.1	FDD	f _{B78} -	
								2*f _{B5}	
	5	829	5	25	874	N/A	FDD	N/A	
	n78	3780	10	52	3780	N/A	TDD	N/A	
	1	1975	5	25	2165	N/A	FDD	N/A	
-								IMD5	
	5	840	5	25	885	3.1	FDD	2*f _{B78} -	

		NR 或 E-	UTRA 频带	/信道带宽	/ N _{rb} / MSD				
EN-DC 配置	EUTRA / NR 频段	UL F _c	UL/DL BW (MHz	UL L _{CRB}	DL F _c (MHz)	MSD (dB)	双工模式	IMD order	允许单 一 UL
	n78	3405	10	52	3405	N/A	TDD	N/A	
	1	1930	5	25	2120	8.3	FDD	IMD4 f _{B78} - 3*f _{B1}	
	7	2550	5	25	2670	N/A	FDD	N/A	
	n78	3670	10	52	3670	N/A	TDD	N/A	
	1	1977.5	5	25	2167.5	N/A	FDD	N/A	
DC_1A-7A_n78A	7	2507.5	5	25	2627.5	9.1	FDD	IMD4 f _{B78} - 3*f _{B1}	
	n78	3305	10	52	3305	N/A	TDD	N/A	
	1	1950	5	25	2140	8.7	FDD	IMD4 2*f _{B78} - 2*f _{B7}	
	7	2510	10	50	2630	N/A	FDD	N/A	
	n78	3310	10	52	3310	N/A	TDD	N/A	
	1	1950	5	25	2140	3.6	FDD	IMD5	
DC_1A-3A_n79A	3	1750	5	25	1845	N/A		N/A	
	n79	4860	40	216	4860	N/A	TDD	N/A	
	1	1930	5	25	2120	16.4	FDD	IMD3	
DC_1A-18A_n77A	18	825	5	25	870	N/A		N/A	
	n77	3770	10	52	3770	N/A	TDD)	N/A	
	1	1930	5	25	2120	16.4	FDD	IMD3	
DC_1A-18A_n78A	18	819	5	25	864 01	N/A		N/A	
	n78	3758	10	52	3758	N/A	TDD	N/A	
	1	1935	5 5	25	2125	N/A	FDD	N/A	
	18 n79	822.5 4782.5	40	25 216	867.5 4782.5	18.3 N/A	FDD TDD	IMD3 N/A	
H	文都汗	1930	5	25	2120	N/A	FDD	N/A	
DC_1A-18A_n79A	18	820	5	25	865	8.9	FDD	IMD4	
DO_1/(10/(_1/10/(n79	4925	40	216	4925	N/A	TDD	N/A	
	1	1935	5	25	2125	8.1	FDD	IMD4	
	18	822.5	5	25	867.5	N/A	FDD	N/A	
	n79	4782.5	40	216	4782.5	N/A	TDD	N/A	
	1	1940	5	25	2130	17.8		IMD3	
DC_1A-19A_n77A	19	832.5	5	25	877.5	N/A	FDD	N/A	
DC_1A-19A_n78A	n77, n78	3795	10	52	3795	N/A	TDD	N/A	
	1	1950	5	25	2140	N/A	EDD	N/A	
	19	837.5	5	25	882.5	18.3	FDD	IMD3	
DC_1A-19A_n79A	n79	4782.5	40	216	4782.5	N/A	TDD	N/A	
50_1/(10/(_II/0/(1	1950	5	25	2140	8.1	FDD	IMD4	
	19	837.5	5	25	882.5	N/A		N/A	
	n79	4652.5	40	216	4652.5	N/A	TDD	N/A	
DC_1A-20A_n78A	1	1930	5	25	2120	20.3	FDD	IMD3	
	20	835	5	25	794	N/A	FDD	N/A	
	n78	3790	10	52	3790	N/A	TDD	N/A	
DC_1A-20A_n78A	1	1950	5	25	2140	N/A	FDD	N/A	
= -	20	851	5	25	810	3.0	FDD	IMD5	
	n78	3330	10	52	3330	N/A	TDD	N/A	
	1 21	1964.6	5	25	2154.6	30.6	FDD	IMD2	
DC 14 244 -774		1450.4	5	25 52	1498.4	N/A	TDD	N/A	
DC_1A-21A_n77A DC_1A-21A_n78A	n77, n78 1	3605 1950	10 5	52 25	3605 2140	N/A N/A	TDD	N/A N/A	
50_1/3-21A_11/0A	21	1452	5	25	1500	2.9	FDD	IMD5	
	n77, n78	3675	10	52	3675	2.9 N/A	TDD	N/A	
	1177,1170	3073	10	52	3073	14/74	טטו	11/74	

		NR 或 E-	UTRA 频带	/信道带宽	/ N _{RB} / MSD				
			UL/DL			MCD		IMD	允许单
EN-DC 配置	EUTRA / NR	UL F.	B₩	UL	DL F _c (MHz)	MSD (dB	双工模	order	— UL
и во нам.	频段	(MHz)	(MHz)	L_{crb}	22 1 ((()))	式		
50.01.001.175	66	1750	5	25	2150	5.0	FDD	IMD4	
DC_2A-66A-(n)71B	n71	675	5	25	629	N/A		N/A	
	1	1960	5	25	2150	15.8	FDD	IMD3	
DC_1A-28A_n77A	28	740	5	25	795	N/A		N/A	
	n77	3630	10	52	3630	N/A	TDD	N/A	
DO 44 004 .774	1	1960	5	25	2150	N/A	FDD	N/A	
DC_1A-28A_n77A	28	725	5 10	25 52	780	4.3	TDD	IMD5	
	n77	3330 1960	5	25	3330 2150	N/A 15.7	FDD	N/A IMD3	
DC_1A-28A_n78A	28	740	5	25	795	N/A	ו טט	N/A	
DO_1A-20A_1110A	n78	3630	10	52	3630	N/A	TDD	N/A	
	1	1970	5	25	2160	N/A	FDD	N/A	
DC 1A-28A n78A	28	739	5	25	794	4.2	_ = =	IMD5	
	n78	3352	10	52	3352	N/A	TDD	N/A	
	1	1950	5	25	2140	N/A	FDD	N/A	
	n28	733	5	25	788	N/A		N/A	
DO 44 =004 =704	n78	3416	10	52	3416	15.7	TDD	IMD3	
DC_1A_n28A-n78A	1	1950	5	25	2140	N/A	FDD	N/A	
	n78	3320	10	52	3320	N/A	TDD	N/A	
	n28	735	5	25	790	3.3	FDD	IMD5	
	1	1930	5	25	2120	N/A	r FDD	N/A	
	28	733	5	25	788	25.2	FDD	IMD3	
	n79	4648	40	216	4648	N/A	TDD	N/A	
	1	1925	5 (25	2115	N/A	FDD	N/A	
	28	740	15	25	795	10.0	FDD	IMD4	
DC_1A-28A_n79A	n79	4980	40	216	4980	N/A	TDD	N/A	
<u> </u>	文翻件	1977.5	5	25	2167.5	1.2	FDD	IMD4	
H	28 n79	745.5 4420	5 40	25 216	800.5 4420	N/A N/A	FDD TDD	N/A N/A	
	1	1935	5	25	2125	4.5	FDD	IMD5	
	28	718	5	25	773	N/A	FDD	N/A	
	n79	4807	40	216	4807	N/A	TDD	N/A	
	1	1970	5	25	2160	N/A	FDD		
	n77	3400	10	52	3400		TDD	N/A	
DO 44 444	41	2510	5	25	2510	11.0	TDD	IMD4	
DC_1A-41A_n77A	1	1930	5	25	2120	N/A	FDD	N/A	
	n77	4150	10	52	4150		TDD	IN/A	
	41	2510	5	25	2510	3.6	TDD	IMD5	
	1	1975	5	25	2165	N/A	FDD	N/A	
DC_1A-41A_n78A	41		5	25	2515	12	TDD	IMD4	
	n78	3410	10	52	3410	N/A	TDD	N/A	
	1 70	1970	5	25	2160	N/A	FDD	N/A	
	n79 41	4500 2530	40 5	216 25	4500 2530	29.4	TDD TDD	IMD2	
DC_1A-41A_n79A	1	1922.5	5 5	25	2112.5	29.4 N/A	FDD	N/A	
	n79	4980	40	216	4980	1 11/71	TDD	13/73	
	41	2687.5	5	25	2687.5	0.0	TDD	IMD5	
	1	1977.5	5	25	2167.5	N/A	FDD	N/A	
	n79	4420	40	216	4420		TDD		
DO 44 404 - 704	42	3490	5	25	3490	4.8	TDD	IMD5	
DC_1A-42A_n79A	42	3402.5	5	25	3402.5	N/A	TDD	N/A	
	n79	4640	40	216	4640		TDD		
	1	1975	5	25	2165	15.5	FDD	IMD3	

		NR 或 E-	UTRA 频带	/信道带宽	/ N _{rb} / MSD				
EN-DC 配置	EUTRA / NR 频段	UL F _c	UL/DL BW (MHz	UL	DL F _c (MHz)	MSD (dB	双工模 式	IMD order	允许单 一 UL
	一级权	(MIIZ))	L_{crb})	Ц		
	42	3450	5	25	3450	N/A	TDD	N/A	
	n79	4520	40	216	4520		TDD		
	1	1950	5	25	2140	9.3	FDD	IMD4	
	1	1950	5	25	2140	N/A	FDD	N/A	
	n78	3410	10	52	3410	N/A	TDD	N/A	
DC 44 704 704	n79	4870	40	216	4870	15.9	TDD	IMD3	
DC_1A_n78A-n79A	1	1950	5	25	2140	N/A	FDD	N/A	
	n79	4670	40	216	4670	N/A	TDD	N/A	
	n78	3490	10	52	3490	4.6	TDD	IMD5	
DC 24 664 p714	66	1750	5	25	2150	<u>5.0</u>	FDD	IMD4	
DC_2A-66A_n71 <u>A</u>	n71	675	<u>5</u>	25	629	N/A		N/A	
	3	1730	5	25	1825	N/A	FDD	N/A	
	5	844	5	25	889	8.3	FDD	IMD4 f _{B78} - 3*f _{B5} ⁴	
	n78	3421	10	52	3421	N/A	TDD	N/A	
	3	1740	5	25	1835	26.0	FDD	IMD2 f _{B78} - f _{B3}	
DC_3A-5A_n78A						28.75		.651	
	5	840	5	25	885	N/A	FDD	N/A	
	n78	3575	10	25	3575	N/A	() IDD	N/A	
	n78	3710	10	25	3710 01	N/A	TDD	N/A	
	3	1770	声 5(25	1865	8.0	FDD	IMD4 f _{B78} - 3*f _{B3} ⁴	
		56世	. 11			10.7 ⁵			
Y	一到件	1712.5	5	25	1807.5	N/A	FDD	N/A	
中	n28	743	5	25	798	N/A	FDD	N/A	
DC_3A-7A_n28A	7	2562	10	52	2682	16.9	FDD	IMD3	
	7	2543	10	52	2663	N/A	FDD	N/A	
	n28	710.5	5	25	765.5	N/A	FDD	N/A	
	3	1737.5	5	25	1832.5	26.0	FDD	IMD2	
	3	1725	5	25	1820	17.6	FDD	IMD3 f _{B78} - 2*f _{B7}	
	7	2565	5	25	2685	N/A	FDD	N/A	
DC_3C-7C_n78A	n78	3310	10	52	3310	N/A	TDD	N/A	
20_00	3	1725	5	25	1820	8.6	FDD	IMD4 2*f _{B78} - 2*f _{B7}	
	7	2565	5	25	2685	N/A	FDD	N/A	
	n78	3475	10	52	3475	N/A	TDD	N/A	
DC_3A-20A_n28A	20	852	5	25	811	N/A	FDD	N/A	
DO_0/4-20/A_1120/A	n28	738	5	25	793	N/A	FDD	N/A	
	3	1723	5	25	1818	9.4	FDD	IMD4	
	3	1712.5	5	25	1807.5	N/A	FDD	N/A	
	28	715	5	25	770	15.3	FDD	IMD3	
DC_3A-28A_n77A	n77	4195	10	52	4195	N/A	TDD	N/A	
_	3 28	1755 735	5 5	25 25	1850 790	17.0 N/A	FDD FDD	IMD3 N/A	
	28 n77	3320	10	52 52	3320	N/A N/A	TDD	N/A N/A	
	117.7						FDD	IMD2	
	2	1750	h	- 75	וואאוי				
DC_3A-28A_n78A	3 28	1750 760	5 5	25 25	1850 760	26.0 N/A	רטט	N/A	

		NR 或 E-	UTRA 频带	7/信道带宽	S/ N _{rb} / MSD				
			UL/DL		ND.	Man		IMD	允许单
nu n a ≡∃ ⊞	EUTRA / NR	UL F _c	ВW	UL	n. n. (151)	MSD	双工模	order	— UL
EN-DC 配置	频段	(MHz)	(MHz	L _{CRB}	DL F _c (MHz)	(dB	式		
)	OKB)			
	3	1775	5	25	1870	17.3	FDD	IMD3	
	28	740	5	25	760	N/A		N/A	
	n78	3350	10	25	3350	N/A	TDD	N/A	
	3	1775	5	25	1845	8.0	FDD	IMD4	
	28	740	5	25	760	N/A		N/A	
	n78	3480	10	25	3480	N/A	TDD	N/A	
	3	1775	5	25	1875	8.0	FDD	IMD5	
	28	740	5	25	760.5	N/A		N/A	
	n78	3600	10	25	3600	N/A	TDD	N/A	
	3	1775	5	25	1870	N/A	FDD	N/A	
	28	705	5	25	780	8.3		IMD5	
	n78	3600	10	25	3600	N/A	TDD	N/A	
	3	1770	5	25	1865	N/A	FDD	N/A	
	28	725	5	25	780	10.3	FDD	IMD4	
DC 34 304 ~704	n79	4530	40	216	4530	N/A	TDD	N/A	
DC_3A-28A_n79A	3	1775	5	25	1870	5.7	FDD	IMD5	
	28	725	5	25	780	N/A	FDD	N/A	
	n79	4770	40	216	4770	N/A	TDD	N/A	
	3	1750	5	25	1845	N/A	FDD	N/A	
DC_3A_n28A-n78A	n28	743	5	25	798	N/A		N/A	
	n78	3764	10	52	3764	4.5	~ FDD	IMD5	
	3	1770	5	25	1865	2N/A	FDD	N/A	
	n78	3340	10	52	3340	N/A	TDD	N/A	
	n79	4910	40 (//216	4910	16.3	TDD	IMD3	
DC_3A_n78A-n79A	3	1770	信	25	1865	N/A	FDD	N/A	
	n79 🙏	4510	40	216	4510	N/A	TDD	N/A	
	178 T	3710	10	52	3710	4.2	TDD	IMD5	
	413.0	3/10	10	32	3/10	4.2	טטו	IMD3	
	3	1725	5	25	1820	17.6	FDD	f _{B78} -	
DC_3A-7A_n78A								2*f _{B7}	
DC_3C-7A_n78A	7	2565	5	25	2685	N/A	FDD	N/A	
	n78	3310	10	52	3310	N/A	TDD	N/A	
								IMD4	
DC_3A-7A_n78A	3	1725	5	25	1820	8.6	FDD	2*f _{B78} -	
DC_3C-7A_n78A	7	0505	_	0.5	0005	N1/A		2*f _{B7}	
	7	2565	5	25	2685	N/A	FDD	N/A	
	n78	3475	10	52	3475	N/A	TDD	N/A	
	5	840	5	25	885	N/A	FDD TDD	N/A	
	n78	3445 4435	10 40	52 216	3445 4435	N/A N/A	TDD	N/A N/A	
DC_3A-19A_n79A	n79						טטו		
	3	1782.5	5	25	1877.5	0.2	FDD	IMD4	
	19	842.5	5	25	887.5	N/A	TDD	N/A	
	n79	4420	40	216	4420	N/A	TDD	N/A IMD3	
	3	1725	5	25	1820	17.3	FDD		
DC_3A-20A_n78A		. 1 20		20	1020	. 7 .0	טט .	2*f _{B20}	
DC_3C-20A_n78A	20	845	5	25	804	N/A	FDD	N/A	
	n78	3510	10	52	3510	N/A	TDD	N/A	
	3	1767.5	5	25	1862.5	N/A		N/A	
DC_3A-21A_n77A	21	1459.5	5	25	1507.5	8.8	FDD	IMD4	
DC_3A-21A_n78A	n77, n78	3795	10	52	3795	N/A	TDD	N/A	
	3	1771.6	5	25	1866.6	3.4		IMD5	
DC_3A-21A_n77A	21	1450.4	5	25	1498.4	N/A	FDD	N/A	
	n77	3935	10	52	3935	N/A	TDD	N/A	
		3000			. 5555	. 1// 1		. 1// 1	l

		NR 或 E-	UTRA 頻帯	/信道带宽	/ N _{rb} / MSD				
		111. A L	UL/DL	, III /C III /L	, 1487 HDD			IMD	允许单
	EUTRA / NR	UL F _c	BW	UL		MSD	双工模	order	一见
EN-DC 配置	频段	(MHz)	(MHz		DL F _c (MHz)	(dB	式	oruer	UL
	须纹	(MIIZ))	L _{CRB})	14		
	3	1774.2	5	25	1869.2	17.8		IMD3	
DC_3A-21A_n79A	21	1450.4	5	25	1498.4	N/A	FDD	N/A	
DO_3A-21A_11/3A	n79	4770	40	216	4770	N/A	TDD	N/A	
	1179	4770	40	210	4770	IN/A	טטו	IMD4	
	5	844	5	25	889	8.3	FDD	f _{B78} -	
		044	3	25	003	0.5	ו טט	3*f _{B5}	
	7	2550	5	25	2670	N/A	FDD	N/A	
	n78	3421	10	52	3421	N/A	TDD	N/A	
	5	844	5	25	889	N/A	FDD	N/A	
	7	2525	5	25	2645	30.1	FDD	N/A	
	n78	3489	10	52	3489	N/A	TDD	N/A	
	1170	3409	10	32	3409	111/7	טטו	IMD2	
DC_5A-7A_n78A	5	834	5	25	879	30.2	FDD	f _{B78} -	
		001	Ŭ		0.0	00.2	. 55	f _{B7}	
	7	2550	5	25	2670	N/A	FDD	N/A	
	n78	3429	10	52	3429	N/A	TDD	N/A	
		·	• • •				- -	IMD5	
	5	830	5	25	875	3.3	FDD	2*f _{B78} -	
								3f _{B7}	
	7	2525	5	25	2645	N/A	FDD	N/A	
	n78	3350	10	52	3350	N/A	TDD	N/A	
	5	860	5	25	885	30.2	EDD	IMD2	
	41	2615	5	25	2615	N/A\	TDD	N/A	
50 54 444 504	n78	3500	10	52	3500,01	N/A	TDD	N/A	
DC_5A_41A_n78A	5	856.5	5	25	881.5	3.1	FDD	IMD5	
	41	2620.5	1 5	25	2620.5	N/A	TDD	N/A	
	n78	3490	110	52	3490	N/A	TDD	N/A	
	201	852	5	25	811	N/A	FDD	N/A	
DC_7A-20A_n28A	n28	738	5	25	793	N/A	FDD	N/A	
DO_17(20/(_1120/)	7	2550	10	52	2670	5.9	FDD	IMD5	
	7	2560	5	25	2680	N/A	FDD	N/A	
	,	2300	3	23	2000	111/7	טט ו	IMD2	
DC 7A-20A n78A	20	851	5	25	810	30.5	FDD	f _{B78} -	
		001	Ŭ		0.0	00.0	. 55	f _{B7}	
	n78	3370	10	52	3370	N/A	TDD	N/A	
	7	2560	5	25	2680	N/A	FDD	N/A	
			-					IMD5	
DC_7A-20A_n78A	20	851	5	25	810	3.0	FDD	2*f _{B78} -	
								3*f _{B7}	
	n78	3435	10	52	3435	N/A	TDD	N/A	
								IMD2	
	7	2555	5	25	2675	30.8	FDD	f _{B78} -	
DC_7A-20A_n78A						N • • • •		f _{B20}	
	20	845	5	25	804	N/A	FDD	N/A	
	n78	3520	10	52	3520	N/A	TDD	N/A	
	7	2570	5	25	2670	N/A	FDD	N/A	
	28	720	5	25	780	8.3		IMD2	
	n78	3350	10	52	3421	N/A	TDD	N/A	
	7	2570	5	25	2670	N/A	FDD	N/A	
DC_7A-28A_n78A	28	720	5	25	790	3.0		IMD5	
	n78	3460	10	52	3421	N/A	TDD	N/A	
	7	2570	5	25	2650	30.5	FDD	IMD2	
	28	740	5	25	768	N/A		N/A	
	n78	3390	10	52	3421	N/A	TDD	N/A	
DO 74 001	7	2565	5	25	2685	N/A	FDD	N/A	
DC_7A_n28A-n78A	n28	745	5	25	800	N/A		N/A	
			•	~				1	l

NR 或 E-UTRA 频带/信道带宽/ N _{RB} / MSD EN-DC 配置 EUTRA / NR UL F。 BW UL (MHz) (MHz) LCRB DL F。(MHz) (dB) X工模 orde	允许单
EN-DC 配置 EUTRA / NR UL F。 BW UL DL F。(MHz) (dB 双工模 orde	
EN-DC 配直 頻段 (MHz) (MHz L _{CRB} DL F _c (MHz) (dB 式	
n78 3310 10 52 3310 29.7 TDD IMD	
7 2565 5 25 2685 N/A FDD N/A	
n78 3365 10 52 3365 N/A TDD N/A	
n28 745 5 25 800 28.8 FDD IMD:	
7 N/A N/A N/A N/A FDD N/A	
IMD	.
DC_7A-46A_1176A° 46 N/A N/A N/A N/A N/A 1DD _{IMD}	
n78 N/A N/A N/A N/A TDD N/A	
18 820 5 25 865 N/A FDD N/A	
DC_18A-28A_n77A 28 723 5 25 778 4.4 IMD	1
n77 4058 10 52 4058 N/A TDD N/A	
18 820 5 25 865 3.9 FDD IMD	1
DC_18A-28A_n77A 28 723 5 25 778 N/A N/A	
n77 3757 10 52 3757 N/A TDD N/A	
18 819 5 25 864 3.8 FDD IMD)
DC_18A-28A_n78A 28 723 5 25 778 N/A N/A	
n78 3756 10 52 3756 N/A TDD N/A	
DC 404 244 7774 19 837.5 5 25 882.5 18.7 EDD IMD	5
DC_19A-21A_n77A DC_19A-21A_n78A 21 1450.4 5 25 1498.4 N/A FDD N/A	
n77, n78 3783.3 10 52 3783.3 N/A TDD N/A	
19 837.5 5 25 882.5 N/A FRED N/A	
DC_19A-21A_n77A 21 1454.5 5 25 1502.5 9.0 IMD	
n77 4015 10 52 4015 N/A TDD N/A	
19 837.5 5 25 882.2 N/A FDD N/A	
DC_19A-21A_n79A 21 1452 5 25 1500 3.8 FDD IMD	
n79 4850 40 216 4850 N/A TDD N/A	
21 1452 5 25 1500 N/A FDD N/A	
28 730.5 5 25 785.5 16.9 FDD IMD	
n77 3689.5 10 52 3689.5 N/A TDD N/A	
DC_21A-28A_n77A 21 1450.5 5 25 1498.5 9.9 FDD IMD-	
28 730.5 5 25 785.5 N/A FDD N/A	
n77 3690 10 52 3690 N/A TDD N/A	
21 1450 5 25 1498 5.2 FDD IMD	
DC_28A-42A_n79A 28 730.5 5 25 785.5 N/A TDD N/A	
n79 4420 40 216 4420 N/A TDD N/A	
66 1750 5 25 2150 5 FDD IMD	
DC_66A_(n)71B 10 N/A	
171 678 10 (RB _{start} 632 N/A N/A	
=0)	
19 835 5 25 880 N/A FDD N/A	
n78 3680 10 52 3680 N/A TDD N/A	
DC_19A_n78A-n79A	
19 835 5 25 880 N/A FDD N/A	
n79 4550 40 216 4550 N/A TDD N/A	
n78 3715 10 52 3715 28.8 TDD IMD	
20 857 5 25 816 N/A FDD N/A	
n28 743 5 25 798 N/A FDD N/A	
DC_20A_n28A-n78A	
DC_20A_1128A-1178A 20 837 5 25 796 N/A FDD N/A	
n78 3310 10 52 3310 N/A TDD N/A	
n28 744 5 25 799 9.4 FDD IMD	
DC_21A_n78A-n79A 21 1453 5 25 1501 N/A FDD N/A	

	NR 或 E-UTRA 频带/信道带宽/ Ngg/ MSD											
EN-DC 配置	EUTRA / NR 频段	UL F _c	UL/DL BW (MHz	UL L _{CRB}	DL F _c (MHz)	MSD (dB)	双工模式	IMD order	允许单 一 UL			
	n79	4873	40	216	4873	30.1	TDD	IMD2				
	21	1453	5	25	1501	N/A	FDD	N/A				
	n79	4940	40	216	4940	N/A	TDD	N/A				
	n78	3487	10	52	3487	29.8	TDD	IMD2				

注 1: 两个发射端应设置为最小值(+20 dBm, $P_{\text{CMAX_L, c}}$),如 6.2.5A 中所定义。 如果允许单 UL 并且 UE 仅表示支持"单 UL",则有效 UL 的输出功率应设置为 $P_{\text{CMAX_L, c}}$ 或根据 UE 功率缩放功能设置为最大输出功率。

注 2: RB_{start}= 0

注 3: 对于仅指示支持单 UL 的 UE,通过 E-UTRA 和 NR CGNA 非同时上行链路传输来验证该要求。

注 4: 该频段受 IMD5 的约束,也未指定 MSD。

注 5: 仅适用于配置了载波聚合的频段支持 4 个天线端口的操作。

注 6: 当双上行链路产生的互调内至少有一个单独的 RE 在频带 46 的下行链路传输带宽内时,不应用任何要求。只有在不是这种情况时才应验证参考灵敏度(指定频带 46 的要求)在 36. 101 第 7. 3. 1 条 CA_7A-46A 中适用)。

7. 3B. 2. 3. 5. 3 由于 Tx 漏损问题导致的 MSD 异常

表 7. 3B. 2. 3. 5. 3-1: 由于 Tx 漏损问题导致的 MSD 异常 (三个频段)

由于 DL 频带的 Tx 漏损问题导致的 MSD											
EUTRA 和 NRDC 配置	E-UTRA 和 NR 频段	UL Fc (MHz)	UL / DL BW (MHz)	UL C _{l.r.b}	DL F _c	MSD (dB)	双工模 式				
	71	665.5	5	5 (RB _{end} = 24)	619.5	0					
	n71	675.5	15/	$15 (RB_{start} = 0)$	629.5	1.8					
	71	670.5	信15人	15 (RB _{end} = 74)	624.5	0					
DC_2A-66A-	n71	680.5	5	$5 (RB_{start} = 0)$	634.5	1.6	FDD				
(n) 71B	一到几年	668	10	$10 (RB_{end} = 49)$	622	0	עעיז				
中)	一	678	10	$10 (RB_{start} = 0)$	632	1. 7					
	71	668	10	$10 (RB_{start} = 0)$	622	17.2					
	n71	678	10	$10 (RB_{end} = 51)$	632	29. 4					

7. 3B. 2. 4. 1 NR FR2 中 EN-DC 的 UL 谐波干扰引起的参考灵敏度异常

当仅在攻击者频带中存在上行链路传输时,为该条件指定参考灵敏度异常。

如果受到来自相同 DC 配置的频率范围 1 中的频带的 UL 谐波干扰的影响,则频率范围 2 中的频带允许灵敏度降级。 表 7. 3B. 2. 4. 1-1 中规定了参考灵敏度异常,其中上行链路配置在表 7. 3B. 2. 4. 1-2 中规定。

表 7. 3B. 2. 4. 1-1: NR FR2 中 EN-DC 的 UL 谐波引起的参考灵敏度异常

UL 频段	DL 频段	50MHz (DBM)	100MHz (DBM)	200MHz (DBM)	400MHz (DBM)
X	Y				

表 7. 3B. 2. 4. 1-2: 由于 UL 谐波干扰引起的参考灵敏度异常的上行链路配置

UL 频 段	DL 频 段	5MHz (DBM)	10MHz (DBM)	15MHz (DBM)	20MHz (DBM)	25MHz (DBM)	40MHz (DBM)	50MHz (DBM)	60MHz (DBM)	80MHz (DBM)	90MHz (DBM)	100MH z (DBM)
X	Y											

7. 3B. 2. 5. 1 EN-DC 的 UL 谐波干扰引起的参考灵敏度异常,包括 FR1 和 FR2

对于 FR1 和 FR2 中的 LTE 和 NR 的带间 EN-DC,允许 UE 应用条款 7. 3B. 2. 3 TS 38. 101-3 中规定的 FR1 中的 EN-DC 和包括 FR2 的 EN-DC 的每个灵敏度降级 TS 38. 101-3 第 7. 3B. 2. 3 条中单独规定的。

7. 3B. 3 EN-DC 的 $\Delta R_{IR.C}$, ΔR_{ibno}

〈编者注:要更新的表号〉

表 7.3B.3.2-1: 具有一个上行链路配置的带内非连续 EN-DC, 用于参考灵敏度

DC 配置	聚合信道带宽(LTE + NR)	W _{gap} / (MHz)	UL LTE分配	ΔR_{ibnc} (dB)	双工模式
	EMILE L'EMILE	45.0 ⟨W _{gap} ≤65.0	12¹	4.7	
	5MHz+ 5MHz	0.0 ⟨W _{gap} ≤45.0	25¹	0	
	7.01 · 10.01	40.0 ⟨W _{gap} ≪60.0	12¹	3.8	
	5MHz + 10MHz	0.0 ⟨W _{gap} ≤40.0	25¹	0	
	E101 - 4E101	35.0 ⟨₩ _{gap} ≤55.0	12¹	3.6	
	5MHz + 15MHz	0.0 ⟨W _{gap} ≤35.0	25¹	0	
	5181 · 00181	$30.0 \le 50.0$ 12^1 3.4	3.4		
	5MHz + 20MHz	0.0 ⟨W _{gap} ≤30.0	25¹	0	
	5MHz + 25MHz	25.0 ⟨₩ _{gap} ≤45.0	12¹	3.2	
		0.0 ⟨W _{gap} ≤25.0	25¹	0	
	5181 · 00181	20.0 ⟨₩ _{gap} ≤40.0	12¹	3.0	
	5MHz + 30MHz	0.0 ⟨W _{gap} ≤20.0	25¹	0	
		30.0 ⟨₩ _{gap} ≪60.0	12^{5}	5.1	
	10MHz + 5MHz	0.0 ⟨W _{gap} ≤30.0	32 ¹	0	
		25.0 ⟨₩ _{gap} ≤55.0	12^{5}	4.3	
	10MHz 10MHz +	0.0 ⟨W _{gap} ≤25.0	32 ¹	0	
		$20.0 \langle W_{\text{gap}} \leq 50.0$	12^{5}	3.8	
	10MHz 15MHz +	$0.0 < W_{gap} \le 20.0$	32 ¹	1008	
		$15.0 < W_{\rm gap} \le 45.0$	+ 12118	3.5	
	10MHz 20MHz +	0.0 (W _{gap} \$15.0	32 ¹	0	
		$10.0 \text{ W}_{\text{gap}} \leq 40.0$	12 ⁵	3.2	
D	10MHz 25MHz +	0.0 ⟨W _{gap} ≤ 10.0	32 ¹	0	44年 600
DC_ 3A _ n3a	Table 1 and	5.0 ⟨W _{gap} ≤35.0	125	2.8	· 对于 FDD
出艾	10MHz 30MHz +	0.0 ⟨₩ _{gap} ≤5.0	32^{1}	0	
4.	15MII- 5MII- I	25.0 ⟨₩ _{gap} ≤55.0	12^{6}	6.0	
	15MHz 5MHz +	0.0 ⟨W _{gap} ≤25.0	321	0	
	17MI 10MI	20.0 ⟨W _{gap} ≤50.0	12^{6}	4.7	
	15MHz 10MHz +	0.0 ⟨W _{gap} ≤20.0	321	0	
	15MI 15MI	15.0 ⟨W _{gap} ≤45.0	$12^{^{6}}$	4.2	1
	15MHz 15MHz +	0.0 ⟨W _{gap} ≤15.0	32 ¹	0	
	15MI COMI	10.0 ⟨₩ _{gap} ≤40.0	12^{6}	3.8	
	15MHz 20MHz +	0.0 ⟨W _{gap} ≤10.0	32 ¹	0	
	1EMIL OFMIL .	5.0 ⟨W _{gap} ≪35.0	12^{6}	3.5	
	15MHz 25MHz +	0.0 ⟨₩ _{gap} ≤5.0	32 ¹	0	
	15MHz 30MHz +	0.0 < W _{gap} < 30.0	12 ⁶	3.3	
		15.0 ⟨₩ _{gap} ≤50.0	16^7	6.5	
	20MHz 5MHz +	0.0 ⟨W _{gap} ≤15.0	321	0	†
		10.0 ⟨W _{gap} ≤45.0	16 ⁷	5.1	
	20MHz 10MHz +	$0.0 < W_{\text{gap}} \le 10.0$	32 ¹	0	
		5.0 ⟨W _{gap} ≤40.0	16^7	4.5	
	20MHz 15MHz +	$0.0 < W_{\text{gap}} \leq 5.0$	32 ¹	0	
	20MHz 20MHz +	0.0 ⟨W _{gap} ≤ 35.0	16 ⁷	4.1	
	20MHz 25MHz +	$0.0 < W_{\text{gap}} \leq 30.0$	16 ⁷	3.8	
	20MHz 30MHz +	$0.0 < W_{\text{gap}} \leq 30.0$ $0.0 < W_{\text{gap}} \leq 25.0$	16 ⁷	3.6	
注 1. 上担 III		0.0 \mathred man		0.0	

注 1: 指 UL 资源块应尽可能靠近下行链路工作频带但限制在传输范围内。

注 2: W_{gap}是两个子块之间的子块 gap。

注3: UL工作频带中的 PCC 的载波中心频率被配置为更接近 DL工作频带。

注 4: 表 5.3B.1.3-1 中定义的所有信道带宽组合。

注 5: ⁵指的是 UL 资源块应位于 RB_{start}= 25。

注 6: "指的是 UL 资源块应位于 RB_{start}= 35。

3GPP TS 38.101-3 V15.2.0(2018-6)

版本: R15 📮	『文翻译:	5G 通信
-----------	-------	-------

140

DC 配置		聚合信道带宽(LTE + NR)	W _{gap} / (MHz)	UL LTE 分配	ΔR_{ibnc} (dB)	双工模式
注 7: ⁷ 指的是 UL 资源块应位于 RB _{start}		= 50.				

中文翻译: 5G通信(公众号: tongxin5g)

7. 3B. 3. 3 FR1 内的带间 EN-DC

7. 3B. 3. 3. 1 两个波段的 EN-DC 的 Δ R_{IB-C}

表 7. 3B. 3. 3. 1-1: EN-DC 引起的 Δ R_{IB, C} (两个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{\text{IB, C}}$ (dB)
DC_1_n28	n28	0.2
DC_1_n51	n51	0. 1
DO 4 -77	1	0.2
DC_1_n77	n77	0.5
DC_1_n78	n78	0.5
	2	0.3
DC_2_n66	n66	0.3
DC 2 -70	2	0.2
DC_2_n78	n78	0.5
DC 2 -54	3	0.2
DC_3_n51	n51	0.2
DC 2 -77	3	0.2
DC_3_n77	n77	0.5
DO 0 -70	3	0.2
DC_3_n78	n78	0.5
DO 5 70	5	0.2
DC_5_n78	n78	0.5
DC_7_n51	n51	0.2
DC_7_n77	n78	0.19.08
DC_7_n78	n78	+ ON8 0.5
	3 1 5 5	0.2
DC_8_n77	n77	0.5
	上门前 1 3	0.2
DC_8_n78	n78	0.5
DC 11 n77	n77	0.5
DC_11_n78	n78	0.5
	12	0.3
DC_12A_n5A	n5	0.5
DC_12A_n66A	12	0.5
DC_18_n77	n77	0.5
DC 19 n77	n77	0.5
DC_19_n78	n78	0.5
DC_20_n51	n51	0.2
DC_20_n77	n77	0.5
DC_20_n78	n78	0.5
DC_21_n77	n77	0.5
DC_21_n78	n78	0.5
DC 25 -44	41	$0^{\rm f}$
DC_25_n41	n41	0.52
DC_26A_n77A	n77	0. 5
DC_26_n78	n78	0. 5
DC_28A_n51	n51	0. 2
DC 20 x77	28	0. 2
DC_28_n77	n77	0.5
DC 20 ×70	28	0. 2
DC_28_n78	n78	0.5
DC 20 =00	30	0.5
DC_30_n66	n66	0.4
DO 00 -70	38	0.4
DC_38_n78	n78	0.5
DC_39_n78	n78	0.5
DO_09_11/0	1110	υ, υ

DC_39_n79	n79	0.5		
DC_40_n77	40	0.4		
	n77	0. 5		
DC_41_n77	n77	0.5		
DC_41_n78	n78	0.5		
DC_41_n79	n79	0. 5		
DC_42_n51	n51	0.2		
DC_66A_n78A	66	0.2		
DC_00A_1176A	n78	0. 5		
注 1. 这要求话用于 25.45-26Q0MHg 频家范围内的 HE 发射				

注 1: 该要求适用于 2545-2690MHz 频率范围内的 UE 发射。 注 2: 该要求适用于 2496-2545MHz 频率范围内的 UE 发射。

中文翻译: 5G通信(公众号: tongxin5g)

7. 3B. 3. 3. 2 $\Delta R_{\text{\tiny IB, C}}$ 用于 EN-DC 三个频段

表 7. 3B. 3. 3. 2-1: 由 EN-DC 引起的 $\Delta R_{\scriptscriptstyle \mathrm{IB},\; \scriptscriptstyle C}$ (三个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{\text{IB, C}}$ (dB)
DC_1-3_n28	n28	0. 2
	1	0.2
DC_1-3_n77	3	0.2
	n77	0. 5
	1	0.2
DC_1-3_n78	3	0. 2
	n78	0. 5
	1	0.2
DC_1-5_n78	5	0.2
	n78	0. 5
DC_1-7_n28	n28	0. 2
DC_1-7_n78	1	0. 2
DC_1-7-7_n78	7	0. 2
	n78	0.5
DC_1-8_n78	8	0.2
	n78	0.5
DC_1-18_n77	n77	0.5
DC_1-18_n78	n78	0. 5
DC_1-19_n77	n77	0. 5
DC_1-19_n78	n78	0.5
DC_1-19_n79	1	0.35g)
	19	tongX0.3
DO 400 00	1	0.0
DC_1-20_n28	20	0.2
DO 400 TO	n28	0.2
DC_1-20_n78	n78	0.5
DC_1-21_n77	n77	0.5
DC_1-21_n78	1	0.2
	n78	0. 5 0. 2
DC_1-28_n77	28	
	n77 28	0. 5 0. 2
DC_1-28_n78	n78	0. 5
	1	0.5
DC_1_n28-n78	n28	0.2
DO_1_1120-1170	n78	0.5
	1	0.3
DC_1_n28-n79	28	0.3
	1	0.2
DC_1-42_n77	42	0.5
55 ' <u>L</u> ''''	n77	0.5
DC_1-41_n77	n77	0.5
DC_1-41_n78	n78	0.5
20_1 11_1110	1	0. 2
DC_1-42_n78	42	0.5
<u>=_</u> o	n78	0.5
DC_1-42_n79	42	0.5
	1	0. 2
DC_1_n77-n79	n77	0.5
	n79	0.0
	1	0.0
DC_1_n78-n79	n78	0. 5
_ <u></u> o o	n79	0.0
	111.0	0.0

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{\text{IB, C}}$ (dB)
DC_1-SUL_n78-n84	n78	0. 5
	2	0.3
DC_2_5_n66	n66	0. 3
	2	0. 4
DC_2_30_n66	30	0. 5
	n66	0.4
DC_2-66_n71B	2	0.3
DC_2-00_11/1B	66	0.3
	3	0.2
DC_3_n3-n77	n3	0. 2
	n77	0. 5
5000 70	3	0.2
DC_3_n3-n78	n3	0.2
	n78	0.5
DC 2.5 ~70	3	0.2
DC_3-5_n78	5	0. 2
	n78	0. 5 0. 2
DC_3-7_n78, DC_3-7-	7	0.2
7_n78	n78	0. 5
	3	0. 2
DC_3-8_n78	8	0. 2
	n78	0. 5
DO 0.40 77	3	0. 2
DC_3-19_n77	n77	0.5,59
DC 2.40 =70	3	tongx0.2
DC_3-19_n78	n78	0.5
DC_3-20_n28	20(0. 1
DO_3-20_1120	n28	0. 1
attit.	5676	
DC_3-19_n79		
中人	0	0.0
DC_3-20_n78	3	0.2
	n78	0. 5 0. 3
DC_3-21_n77	21	0. 5
00_0-21_11/1	n77	0.5
	3	0.3
DC_3-21_n78	21	0. 5
	n78	0. 5
DC 2.21 570	3	0.3
DC_3-21_n79	21	0.5
DC_3-28_n78	3	0. 2
50_0-20_1170	n78	0. 5
	3	0. 2
DC_3_n28-n78	n28	0
	n78	0.5
DO 0.00 -70	3	0. 2
DC_3-38_n78	38	0.4
	n78	0. 5 0. 2
	3	0. 2 0¹
DC_3-41_n78	41	0.5^{2}
	n78	0.5
	3	0. 2
	ا ن	
DC 3-42 n77	42	
DC_3-42_n77		0. 5 0. 5

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{\text{IB, C}}$ (dB)
IN INDICATE TO THE THE	3	0. 2
DC_3-42_n78	42	0. 5
· ·	n78	0. 5
DO 0 10 TO	3	0. 2
DC_3-42_n79	42	0.5
	3	0.2
DC_3_n77-n79	n77	0.5
	n79	0.0
	3	0.2
DC_3_n78-n79	n78	0.5
	n79	0.0
	3	0. 2
DC_3-SUL_n78-n80	n78	0.5
	n80	0.2
DC_3-SUL_n78-n82	3	0.2
2 6 2 6 6 2 2 111 6 116 2	n78	0. 5
	5	0. 2
DC_5-7_n78	7	0. 2
	n78	0.5
DC_5_30_n66	30	0.5
	n66	0.4
DC_7-7_n78	7	0.0
	n78	0.5
DC_7-20_n28	20	0.2
DC 7 20 p70	n28	0.25g
DC_7-20_n78 DC_7-28_n78	n78 n78	0.5
DC_7-28_1178 DC_7_n28-n78	N / F	0.5
DC_7_1120-1176	n78 / n78	0.5
DC_7-46_1176		
	56712 8	0.2
DC_7-46_1178 DC_8A-SUL_n78-n81	8 n78	0. 2 0. 2
DC_8A-SUL_h78-n81	8 n78 n81	0. 2 0. 2 0. 2
DC_8A-SUL_n78-n81	8 n78 n81 n77	0. 2 0. 2 0. 2 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78	8 n78 n81 n77 n78	0. 2 0. 2 0. 2 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77	8 n78 n81 n77	0. 2 0. 2 0. 2 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78	8 n78 n81 n77 n78 n77	0. 2 0. 2 0. 2 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77	8 n78 n81 n77 n78 n77	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77	8 n78 n81 n77 n78 n77 n78 42	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78	8 n78 n81 n77 n78 n77 n78 42 n77	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77	8 n78 n81 n77 n78 n78 n77 n78 42 n78 42 n78 42	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79	8 n78 n81 n77 n78 n78 n77 n78 n77 n78 42 n77 42 n78 42 n78 42 19	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78	8 n78 n81 n77 n78 n77 n78 n77 n78 42 n77 42 n78 42 n77 42 n78 42 n77	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79	8 n78 n81 n77 n78 n77 n78 n77 n78 42 n77 42 n78 42 n77 19 n78	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79 DC_19_n77-n79	8 n78 n81 n77 n78 n77 n78 n77 n78 42 n78 42 n78 42 n77 19	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79	8 n78 n81 n77 n78 n78 n77 n78 n78 42 n77 42 n78 42 n78 42 19 n77 n79 19 n78	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79 DC_19_n77-n79	8 n78 n81 n77 n78 n78 n77 n78 n77 n78 42 n77 42 n78 42 n77 42 n78 42 19 n77 n79 19 n78 n78	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79 DC_19_n77-n79 DC_19_n78-n79	8 n78 n81 n77 n78 n78 n77 n78 n77 n78 42 n77 42 n78 42 n77 19 19 n77 n79 19 n78 n79 20	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79 DC_19_n77-n79	8 n78 n81 n77 n78 n77 n78 n77 n78 42 n77 42 n78 42 n77 19 n78 20 n8	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79 DC_19_n77-n79 DC_19_n78-n79	8 n78 n81 n77 n78 n77 n78 n77 n78 42 n77 42 n78 42 n77 19 n77 n79 19 n78 n79 20 n8 n75	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79 DC_19_n77-n79 DC_19_n78-n79 DC_20_n8-n75	8 n78 n81 n77 n78 n77 n78 n77 n78 42 n77 42 n78 42 n78 42 19 n77 n79 19 n78 n79 20 n8 n75 20	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79 DC_19_n77-n79 DC_19_n78-n79	8 n78 n81 n77 n78 n78 n77 n78 n77 n78 42 n77 42 n78 42 n77 42 n78 42 19 n77 n79 19 n79 20 n8 n79 20 n8 n75 20 n28	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79 DC_19_n77-n79 DC_19_n78-n79 DC_20_n8-n75	8 n78 n81 n77 n78 n78 n77 n78 n77 n78 42 n77 42 n78 42 n77 42 n78 42 n78 42 19 n77 n79 19 n77 n79 20 n8 n79 20 n8 n75 20 n28	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79 DC_19_n77-n79 DC_19_n78-n79 DC_20_n8-n75	8 n78 n81 n77 n78 n78 n77 n78 n77 n78 42 n77 42 n78 42 n78 42 19 n77 n79 19 n79 20 n8 n79 20 n8 n75 20 n28 n75	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79 DC_19_n77-n79 DC_19_n78-n79 DC_20_n8-n75	8 n78 n81 n77 n78 n77 n78 n77 n78 42 n77 42 n78 42 n77 42 n78 42 19 n77 n79 19 n79 20 n8 n75 20 n28 n75 20 n28	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
DC_8A-SUL_n78-n81 DC_18-28_n77 DC_18-28_n78 DC_19-21_n77 DC_19-21_n78 DC_19-42_n77 DC_19-42_n78 DC_19-42_n79 DC_19_n77-n79 DC_19_n78-n79 DC_20_n8-n75	8 n78 n81 n77 n78 n78 n77 n78 n77 n78 42 n77 42 n78 42 n78 42 19 n77 n79 19 n79 20 n8 n79 20 n8 n75 20 n28 n75	0. 2 0. 2 0. 2 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{\text{IB, C}}$ (dB)
	n75	0.0
	n78	0.5
	20	0.0
DC_20_n76-n78	n76	0.0
	n78	0.5
DC_20-SUL_n78-n82	n78	0.5
	20	0.2
DC_20-SUL_n78-n83	n78	0.5
	n83	0.2
DC 21 42 p77	42	0.5
DC_21-42_n77	n77	0.5
DC 24 42 p70	42	0.5
DC_21-42_n78	n78	0.5
DC_21-42_n79	42	0.5
	21	0.0
DC_21_n77-n79	n77	0.5
	n79	0.0
	21	0.0
DC_21_n78-n79	n78	0.5
	n79	0.0
	28	0.2
DC_28-SUL_n78-n83	n78	0.5
	n83	0.2
	28	0.2
DC_28-42_n77	42	0.559
	n77	tongX0.5
	28	0.2
DC_28-42_n78	42(//	0.5
	0.通信n78	0.5
DC_28-42_n79	28	0.2
DC_20-42-11/9	42	0.5
DC_41-42_n77	42	0.5
DG_41-42_11/1	n77	0.5
DC_41-42_n78	42	0.5
DO_41-42_II/0	n78	0.5
DC_41-42_n79	42	0.5
DC_41_n77	n77	0.5
DC_41_n78	n78	0. 5
DC_41_n79	n79	0. 5
	66	0.2
DC_66-SUL_n78-n86	n78	0.5
	n86 45-2690MHz	0.2

该要求适用于2545-2690MHz频率范围内的UE发射。 该要求适用于 2496-2545MHz 频率范围内的 UE 发射。 注1:

注2:

7. 3B. 3. 3. 3 Δ R_{IB. C}用于 EN-DC 四个波段

表 7.3B.3.3-1: EN-DC 引起的 $\Delta R_{\text{\tiny IB, C}}$ (四个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{\text{IB, C}}$ (dB)
	1	0. 2
DC_1-3-5_n78	3	0. 2
	n78	0. 5
DC_1-3-7_n28	n28	0. 2
	1	0.3
DC_1-3-7_n78	3	0.3
DC_1-3-7-7_n78	7	0.3
	n78	0.5
	1	0. 2
DC_1-3-8_n78	3	0. 2
	8	0. 2
	n78	0.5
	<u>1</u> 3	0.2
DC_1-3-28_n77		0.2
+	28	0.2 0.5
	n77	0. 2
DC 4 3 30 =70	1 3	0.2
DC_1-3-28_n78 DC_1-3_n28-n78	28 或 n28	0.2
50_1 0_1120 1170	n78	0.5
	1	0.259
DC_1-3-28_n79	3	0.735 0.2
BO_1 0 20_11/0	28	0.2
	1//	0.2
DC_1-3-19_n78	小角信3	0. 2
2 3 3 . 3 3	5G 1178	0.5
近 和洋:	20	0.2
DC_1-3-20_n28	n28	0.2
	1	0.2
DC_1-3-20_n78	3	0.2
	n78	0.5
	1	0.2
DC_1-3-21_n77	3	0.3
DC_1-3-21_11/1	21	0.5
	n77	0.5
	1	0. 2
DC_1-3-21_n78	3	0. 3
	21	0. 5
	n78	0.5
DC_1-3-21_n79	3	0.3
	21	0.5
	1	0.2
DC_1-3-42_n77	3	0. 2
	42	0.5
	n77	0.5
	1	0.2
DC_1-3-42_n78	3	0.2
_	42	0.5
	n78	0.5
DC 1 2 42 570	1 3	0.2
DC_1-3-42_n79	42	0. 2 0. 5
DC_1-5-7_n78	1	0. 5 0. 2
DC_1-0-1_II10	1	υ. Δ

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{\text{IB, C}}$ (dB)
DC_1-5-7-7_n78	5	0. 2
	7	0. 2
	n78	0.5
DC 4.7.20 p20	20	0.2
DC_1-7-20_n28	n28	0.2
	1	0. 2
DC_1-7-20_n78	7	0. 2
	20	0.2
	n78	0. 5
	1	0.2
DC_1-7_n28-n78	7	0.2
	n28 n78	0. 2
DC_1-18-28_n77		0.5
DC_1-18-28_n78	n77 n78	0.5
DO_1-10-20_1170	1	0.2
DC_1-19-42_n77	42	0.5
	n77	0.5
DO 4 10 10 ==	42	0. 5
DC_1-19-42_n78	n78	0.5
DC_1-19-42_n79	42	0.5
	1	0.0
DC_1-20_n28-n78	20	0.2
DC_1-20_1120-1170	n28	0.2
	n78	9.5,59
	1	tongx 0.2
DC_1-21-42_n77	42	0.5
	n77	0.5
DC_1-21-42_n78	561 42	0.5
DC_1-21-42_n79	n78 42	0. 5 0. 5
DC_1-21-42_M/3*1	1	0. 2
	28	0. 2
DC_1-28-42_n77	42	0.5
	n77	0.5
	28	0.2
DC_1-28-42_n78	42	0.5
	n78	0. 5
DC_1-28-42_n79	28	0.2
	42	0.5
DC_1-41-42_n77	42	0.5
_ _ _	n77	0.5
DC_1-41-42_n78	42	0.5
DC_1-41-42_n79	n78 42	0. 5 0. 5
DC_1-41-42_n79 DC_1-41-42_n79	42	0.5
	2	0.3
DC_2-66-(n)71B	66	0.3
	3	0.2
DC_3-5-7_n78, DC_3-5-		0. 2
7-7_n78	7	0.2
	n78	0.5
	3	0.2
DC_3-7-7_n78	7	0.2
	n78	0. 5
DC_3-7-20_n28	20	0.2
55_5 . 25_1,25	n28	0. 1

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{IB, C}$ (dB)
	3	0. 2
DC_3-7-20_n78	7	0.2
	n78	0.5
	3	0.2
DC_3-7-28_n78	7	0.2
DC_3-7_n28-n78	28 或 n28	0.2
	n78	0.5
	3	0.3
DC_3-19-21_n77	21	0. 5
	n77	0. 5
	3	0.3
DC_3-19-21_n78	21	0. 5
	n78	0. 5
DC_3-19-21_n79	3	0.3
DC_3-19-21_1179	21	0. 5
	3	0.2
DC_3-19-42_n77	42	0. 5
	n77	0. 5
	0.2	0.2
DC_3-19-42_n78	0.5	0. 5
	0.5	0. 5
DC_3-19-42_n79	3	0. 2
DC_5-19-42_1179	42	0. 5
	3	0.2
DC_3-20_n28-n78	20	0.259
DC_5-20_1120-1170	n28	t on g × 0. 2
	n78	0.5
	3 ()	0.3
DC_3-21-42_n77	一个通信21	0. 5
50_5-21-42_117	50,000 42	0. 5
上一大 数7年。	n77	0. 5
甲人間	3	0.3
DC_3-21-42_n78	21	0. 5
50_0 21 12_1170	42	0. 5
	n78	0. 5
	3	0.3
DC_3-21-42_n79	21	0. 5
	42	0. 5
	3	0. 2
DC_3-28-42_n77	28	0. 2
	42	0. 5
	n77	0.5
	3	0.2
DC_3-28-42_n78	28	0.2
	42	0.5
	n78	0.5
B0 0 00 15 ==	3	0.2
DC_3-28-42_n79	28	0.2
	42	0.5
DO 5 7 7 7 7	5	0.2
DC_5-7-7_n78	7	0. 2
	n78	0.5
	7	0.0
DC_7-20_n28-n78	20	0.2
_ _	n28	0.2
DO 40.04.40.77	n78	0.5
DC_19-21-42_n77	42	0. 5

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{\text{IB, c}}$ (dB)
	n77	0. 5
DC_19-21-42_n78	42	0. 5
DC_19-21-42_1176	n78	0.5
DC_19-21-42_n79	42	0. 5
	28	0. 2
DC_21-28-42_n77	42	0. 5
	n77	0.5
	28	0. 2
DC_21-28-42_n78	42	0. 5
	n78	0.5
DC 21 28 42 p70	28	0. 2
DC_21-28-42_n79	42	0.5

中文翻译: 5G通信(公众号: tongxin5g)

7. 3B. 3. 3. 4 对于 EN-DC 五个波段, ΔR_{IB. C}

表 7. 3B. 3. 3. 4-1: EN-DC 引起的 $\Delta R_{\scriptscriptstyle IB, \, C}$ (五个波段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{IB, C}$ (dB)
	1	0.2
DG 1 0 5 5 50	3	0.2
DC_1-3-5-7_n78,	5	0.2
DC_ 1 - 3 - 5 - 7 - 7 _ n78	7	0.2
	n78	0.5
	20	0.2
DC_ 1 - 3 - 7 - 20 _ n28	n28	0.2
	1	0.2
	3	0.2
DC_ 1 - 3 - 7 - 20 _ n78	7	0.2
	n78	0. 5
	1	0. 2
	3	0.2
DC_ 1 - 3 - 7 n28 n78	7	0.2
	n28	0.2
	n78	0. 5
	1	0.3
	3	0.2
DC_ 1 - 3 - 19 - 21 _ n77	21	0.5
	n77	0.5
	1 +0	15-
DC_ 1 - 3 - 19 - 21 _ n78	10	0.3
- 12	21	0.5
一点信	n78	0.5
DC_1-3-19-21_n79	3	0.3
	21	0.5
	1	0. 2
DC_ 1 - 3 - 19 42 _ n77	3	0.2
	42	0.5
	n77	0.5
	1	0.2
DC_ 1 - 3 - 19 42 _ n78	3	0.2
	42	0.5
	n78	0.5
	1	0.2
DC_ 1 - 3 - 19 42 _ n79	3	0.2
	42	0.5
	1	0.2
	3	0.2
DC_ 1 - 3 - 28 - 42 _ n77	28	0.2
	42	0.5
	n77	0.5
	1	0.2
	3	0.2
DC_ 1 - 3 - 28 - 42 _ n78	28	0.2
	42	0.5
	n78	0.5
	1	0.2
DO 1 0 00 10 70	3	0.2
DC_ 1 - 3 - 28 - 42 _ n79	28	0.2
	42	0.5

	带间 EN-DC 配置	E-UTRA 或 NR 频段	Δ R _{IB, C} (dB)	
		3	0. 2	
		20	0.2	
		n28	0.2	
		n78	0.5	
		1	0.2	
		3	0.3	
	DC_ 1 - 3 - 21 - 42 _ n77	21	0.5	
		42	0.5	
		n77	0.2	
		1	0.2	
		3	0.3	
	DC_ 1 - 3 - 21 - 42 _ n78	21	0.5	
		42	0.5	
		n78	0.2	
		1	0.2	
	DC_ 1 - 3 - 21 - 42 _ n79	3	0.3	
	DC_ 1 - 3 - 21 - 42 _ 1179	21	0.5	
		42	0.5	
		1	0.2	
		7	0.2	
	DC_ 1 7 20 _ n28 - n78	20	0.2	
		n28	0.2	
		n78	0.5	
		1	0.2	g)
	DC_ 1 - 19 - 21 - 42 _ n77	42	ng 0.5-11	
		n77	0.5	
	DC 1 - 19 - 21 - 42 (2n78)	42	0.5	
	DC_ 1 - 19 - 21 - 42 - n78	n78	0.5	
	DC_ 1 - 19 - 21 - 42 _ n79	42	0.5	
4	「番別で手・	1	0.2	
甲)	DC_ 1 21 28 42 _ n77	28	0.2	
,		42	0.5	
		n77	0.5	
		28	0.2	
	DC_ 1 21 28 42 _ n78	42	0.5	
		n78	0.5	
	DC_ 1 21 28 42 _ n79	28	0.2	
	20_ 1 21 20 12 _ 110	42	0.5	
		3	0.2	
	DC_ 3 7 20 _ n28 - n78	7	0.2	
		20	0.2	
		n28	0.2	

7. 3B. 3. 3. 5 对于 EN-DC 六个波段, Δ R_{IB, C}

表 7. 3B. 3. 3. 5-1: 由 EN-DC 引起的 $\Delta R_{\text{IB, C}}$ (六个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	Δ R _{IB, C} (dB)
	1	0.2
	3	0.2
DC 1 2 7 20 22 27	7	0.2
DC_ 1 - 3 - 7 - 20 n28 n78	20	0.2
	n28	0.2
	n78	0.5

- 7. 3B. 3. 4. 1 两个波段的 EN-DC 的 Δ R_{IB. C}

表 7. 3B. 3. 4. 1-1: 由 EN-DC 引起的 $\Delta R_{\text{\tiny IB, c}}$ (两个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{IB, C}$ (dB)
中文翻译:	5G通信(公众号	tongxin5g)

表 7. 3B. 3. 4. 2-1: 由 EN-DC 引起的 $\Delta R_{\text{IB, c}}$ (三个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{IB, C}$ (dB)
DC_1-18_n257	1	0. 3
	18	0.3
DC_1-28_n257	28	0.2
DC_1-41_n257	1	0. 5
	41	0. 5
DC_1-42_n257	1	0
	42	0. 5
DC_1-77_n257	1	0.2
	n77	0.5
DC_1-78_n257	1	0
	n78	0.5
DC_1-79_n257	1	0.0
	n79	0.0
DC_2-66_n257	2	0.3
	66	0.3
DC_3-21_n257	3	0.3
	21	0.5
DC_3-28_n257	n257	0.5
DC_3-41_n257	41	$0^1/0.5^2$
DC_3-42_n257	3	0.2
– –	42	0.559
DC_3-77_n257	3	+ ong X d-2
	n77	0.5
DC_3-78_n257	3 ()	0.2
	n78	0.5
DC_3-79_n257	DG 3	0.0
- 大型 W	n79	0.0
DC_5_n78-n257	5	0.2
	n78	0.5
DC_7_n78-n257	7	0
	n78	0.5
DC_13-66_n260	13	0.3
DC 40 40 ~057	66	0.3
DC_19-42_n257	42	0.5
DC_19-77_n257	19	0.0
	n77	0.5
DC_19-78_n257		
	n78	0.5
DC_19-79_n257	19	0.0
DC_21-42_n257	n79 42	0.0
DO_21-42_11201	21	0. 5 0. 0
DC_21-77_n257		0.0
	n77	0.0
DC_21-78_n257		0.0
	n78	0.0
DC_21-79_n257		
	n79	0.0
DC_28-42_n257	28	0.2
DC 41-42 n257	42 42	0.5 0.5
	4/	u n

表 7. 3B. 3. 4. 3-1: EN-DC 引起的 $\Delta R_{\scriptscriptstyle IB, \, C}$ (四个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{\text{IB, C}}$ (dB)
DC_1-3-21_n257	3	0. 3
	21	0. 5
	1	0. 2
DC_1-3-28_n257	3	0.2
	28	0.2
	1	0.2
DC_1-3-42_n257	3	0. 2
	42	0.5
DO 40 TO 057	1	0. 2
DC_1-3_n78-n257	3	0.2
	n78	0.5
DC 4.5 = 70 = 057	1	0.2
DC_1-5_n78-n257	5	0.2
	n78	0.5
DC_1-7_n78-n257	7	0.2
DC_1-7_1176-11257	n78	0.2 0.5
DC_1-19-42_n257	42	0.5
DC_1-19-42_1257 DC_1-21-28_n257	28	0.2
DC_1-21-42_n257	42	0.5,59
DC_1-28-42_n257	28	nox0.2
DC_1-41-42_n257	42	0.5
	3 ()	0. 2
DC_3-5_n78-n257	小面信 5	0.2
	n78	0.5
,一翻译:	3	0.2
DC_3-7_n78-n257	7	0.2
7	n78	0.5
DC_19-21-42_n257	42	0.5
	3	0.3
DC_3-19-21_n257	21	0. 5
DC_3-19-42_n257	3	0.2
DO_0-10-42_11201	42	0.5
	3	0.3
DC_3-21-42_n257	21	0.5
	42	0. 5
	3	0. 2
DC_3-28-42_n257	28	0. 2
	42	0.5
Do 5 7	5	0. 2
DC_5-7_n78-n257	7	0. 2
DO 7.7 -70 -057	n78	0.5
DC_7-7_n78-n257	n78	0.5
DC_21-28-42_n257	28	0.2
	42	0. 5

7. 3B. 3. 4. 4 对于 EN-DC 五个波段, ΔR_{IB. C}

表 7. 3B. 3. 4. 4-1: EN-DC 引起的 $\Delta R_{\text{IB, C}}$ (五个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{IB, C}$ (dB)
	1	0.2
DC 425 n70 n257	3	0.2
DC_1-3-5_n78-n257	5	0.2
	n78	0.5
	1	0.3
DC 127 n70 n257	3	0.3
DC_1-3-7_n78-n257	7	0.3
	n78	0.5
DC 121021 p257	3	0.3
DC_1-3-19-21_n257	21	0.5
	1	0.2
DC_1-3-19-42_n257	3	0.2
	42	0.5
	1	0.2
DO 4.0.04.40 =057	3	0.3
DC_1-3-21-42_n257	21	0.5
	42	0.5
	1	0.2
	3	0.2
DC_1-3-28-42_n257	28	0.2
	42	000.5-11
	, I. to	0.2
	12 33	0.2
DC_1A-3A-28A-42C_n257A	28	0.2
5G通信	42	0.5
- 彩泽:	1	0.2
_ 笛灯 * *	5	0.2
DC_1-5-7_n78-n257	7	0. 2
	n78	0.5
	1	0.2
DC 1-7-7 n78-n257	7	0.2
20_11101.201	n78	0.5
DC 1-19-21-42 n257	42	0.5
	28	0.2
DC_1-21-28-42_n257	42	0.5
	3	0.2
	5	0.2
DC_3-5-7_n78-n257	7	0.2
	n78	0.5
	3	0.3
DC_3-7-7_n78-n257	7	0.2
DO_0-1-1_1110-11201	n78	0. 2
	5	0.3
DC_5-7-7_n78-n257	7	
DC_0-1-1_1110-11201		0.2
	n78	0.5

157

ΔRIB, c表示EN-DC 六频段 7. 3B. 3. 4. 5

表 7.3B.3.4.5-1: 由 EN-DC 引起的 Δ RIB, c (六个频段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	ΔR _{IB, C}
		(dB)
	1	0.2
	3	0.2
DC_1-3-5-7_n78-n257	5	0.2
	7	0.2
	n78	0.5
	1	0.3
DC_1-3-7-7_n78-n257	3	0.3
DC_1-3-7-7_1176-11237	7	0.3
	n78	0.5
	1	0.2
DC_1-5-7-7_n78-n257	5	0.2
DC_1-5-7-7_1176-11257	7	0.2
	n78	0.5
	3	0.2
DC_3-5-7-7_n78-n257	5	0.2
00_3-3-7-7_1176-11237	7	0.2
	n78	0.5

ΔR_{IB, C}用于EN-DC 三个波段 7. 3B. 3. 5. 2

(公众号: tongxin5g) 表 7. 3B. 3. 5. 2-1: EN-DC 引起的 Δ R_{IB, c} (三个波段)

带间 EN-DC 配置	E-UTRA 或 NR 频段	$\Delta R_{\text{IB, C}}$ (dB)
DC_1_n77-n257	1	0.2
	n77	0.5
DC_1_n78-n257	n78	0. 5
DC 3 n77-n257	3	0. 2
DC_3_1177-11237	n77	0. 5
DC_3_n78-n257	3	0.2
	n78	0.5
DC_19_n77-n257	n77	0.5
DC_19_n78-n257	n78	0.5

附件 A (规范性): 双上行干扰

如果由双上行链路操作引起的互调产物不干扰自己的下行链路,则 UE 被要求支持在表 7.3.2.1.5-1 中列出的 FR1 的 EN-DC 配置中的双上行链路模式下的操作。传输。

用于确定具有双上行链路操作的 NR FR1 配置中的 EN-DC 是否干扰自己的下行链路接收的公式。

干扰带宽: IBW = | a | * CBW1 + | b | * CBW2

- | A | + | b | = 2 (或 3)
- CBW1 和 CBW2 是 UL 信道的传输带宽配置

IBW 的中心频率: fIBW = | a * f1 + b * f2 |

- f1 和 f2 是每个 UL 信道的传输带宽配置的中心频率

IMD 2 (或 3) 范围: [fIBW - IBW / 2, fIBW + IBW / 2]

注1: UE 应能够在传输带宽上应用由 RRC 重配置和相应的 HARQ 定时配置的操作。

对于识别的困难频带组合,在两个相邻的 RRC 重配置期间,传输带宽的改变不应引入 IM2 和 注 2: IM3, 这将导致 UE 从 2Tx 变为 1Tx。 否则, 未指定 UE 行为。

附件 B(资料性附录): 更新 CRB

更新 CRB							
日期	会议	TDoc	CR	Rev	Cat	主题/评论	新版本
2017-08	RAN4#84					初始框架	0. 0. 1
2017-11	RAN4# 84Bis	R4-1711980				来自编辑的编号 TP	0. 1. 0
2017-12	RAN4#85	R4-1713807				批准的 TPs 在 RAN4 # 85 中 R4-1714444, CA BW classes, TP, Ericsson R4-1714170, 如何将 DC 配置列入 TS 38. 101-3, 诺基亚 R4-1714530, TP 推出用于 NR-LTE DC 的工作频段, 包括 38. 101-3 中的 SUL 频段组合, Qualcomm R4-1714098, TP 至 TS 38. 101-3: 非独立 SUL 的 UE RF 要求, 华为 R4-1713206, TP 为 38. 101-3 NR 互通的通用部件, 爱立信 R4-1714443, TP 到 TS 38. 101-3: 在 NR FR1 和单上行链路中用于 EN-DC 的双上行链路操作, 诺基亚 R4-1714450, TP 至 38. 101-3: 爱立信 EN-DC 的最大输出功率和无用 发射 R4-1714346, TP 至 38. 101-3: 用于带内 EN-DC 的 REFSENS, 爱立信 R4-1714345, TP 为 TS 36. 101-3: 第 7 条接收机要求, 华为 根据 R4-1714542 的频段列表, 将于 2017 年 12 月引入 RAN4 NR 核心要求的频段和频段组合列表, RAN4 主席	0. 2. 0
2017-12	RAN4#85	R4-1714571				电子邮件审核后的进一步更正	0. 3. 0
2017-12	RAN#78	RP-172477				v1.0.0 提交全体会员批准。 内容与 0.3.0 相同	1. 0. 0
2017-12	RAN#78					全体会议批准 - 在变更控制下的 Rel-15 规范	15. 0. 0
2018-03	RAN#79	RP-180264	0005	5G†	f 直	实施认可的 CR 至 38. 101-3 赞同草案 CR F: R4-1801267, UE CR 草案,关于华为 TS 38. 101-3 中 SUL 的 RF 要求 B: R4-1801111, CR 草案,用于 TS 38. 101-3,NTT DOCOMO,INC 的 完成的 LTE 1C C+NR 1 频带。 B: R4-1800716,草案 CR,用于将完成的波段组合从 37. 863-03-01 引入爱立信 38. 101-3 B: R4-1800063,草案 CR 用于完成 LTE 4CC 的 EN-DC+NR 1 频段用 于 TS 38. 101-3,诺基亚 B: R4-1800717,草案 CR,用于将完整的波段组合从 37. 865-01-01 引入爱立信 38. 101-3 F: R4-180049,TS38. 101-3,CATT 的修改 F: R4-1800287,38. 101-3 DC_(n)71B草案 CR用于 6. 2. 4. 1节- 用于带内 EN-DC-NS 值的 A-MPR,T-Mobile USA Inc. F: R4-1800288,38. 101-3 DC_(n)71B草案 CR的 7. 3. 3节DC_ (n)71B的参考灵敏度-MSD 值,T-Mobile USA Inc. F: R4-1801139草案 CR至 38. 101-3:用于带问 EN-DC 的 MSD,爱立信	15. 1. 0
2018-06	RAN#80	RP-181374	0013	1	F	CR 至 TS 38. 101-3: 从 RAN4 # 87 实施认可的草案 CR CR 实施期间增加了背书草案 CR (R4-1807235) 中缺失的数字 (图 6. 3B. 1. 1-1, 图 6. 3B. 1. 1-2, 图 6. 3B. 1. 1-3 和图 6. 3B. 1. 1-4) 。	15. 2. 0