Inhaltsverzeichnis

1	Zug	und Druck in Stäben				
	1.1	Spanning				
	1.2	Dehnung				
	1.3	Stoffgesetz				
	1.4	Einzelstab				
	1.5	Statisch bestimmte Stabsysteme				
	1.6	Statisch unbestimmte Stabsysteme				
	1.7	Zusammenfassung				
2	Spar	nnungszustand				
	2.1	Spannungvektor und Spannungtensor				
	2.2	Ebener Spannungszustand				
		2.2.1 Koordinatentransformation				
		2.2.2 Hauptspannungen				
	2.3	Mohrscher Spannungkreis				
		2.3.1 Dünnwandiger Kessel				
	2.4	Gleichgewichtsbedingungen				
	2.5	Zusammenfassung				
3	Verz	Verzerrungszustand, Elastizitätsgesetze				
	3.1	Verzerrungszustand				
	3.2	Elastizitätsgesetz				
	3.3	Festigkeitshypothesen				
	3.4	Zusammenfassung				
4	Ball	kenbiegung 1				
	4.1	Einführung 1				
	4.2	Flächenträgheitsmomente				
		4.2.1 Definition				
		4.2.2 Parallelverschiebung der Bezugsachsen				
		4.2.3 Drehung des Bezugssystems, Hauptträgheitsmomente 12				
	4.3	Grundgleichungen der geraden Biegung				
	4.4	Normalspannungen				
	4.5	Biegelinie				
		4.5.1 Differentialgleichung der Biegelinie				
		4.5.2 Einfeldbalken				

		4.5.3 Balken mit mehreren Feldern	15
		4.5.4 Superposition	15
	4.6	Einfluss des Schubes	15
		4.6.1 Schubspannungen	15
		4.6.2 Durchbiegung infolge Schub	15
	4.7	Schiefe Biegung	16
	4.8	Biegung und Zug/Druck	16
	4.9	Kern des Querschnitts	17
	4.10	Temperaturbelastung	17
	4.11	Zusammenfassung	18
5	Tors	sion	18
	5.1	Einführung	18
	5.2	Die kreiszylindrische Welle	18
	5.3	Dünnwandige geschlossene Profile	19
	5.4	Dünnwandige offene Profile	20
	5.5	Zusammenfassung	21
6	Der	Arbeitsbegriff in der Elastostatik	21
•	6.1	Einleitung	21
	6.2	Arbeitssatz und Formänderungsenergie	21
	6.3	Das Prinzip der virtuellen Kräfte	21
	6.4	Einflusszahlen und Vertauschungssätze	21
	6.5	Anwendung des Arbeitssatzes auf statisch unbestimmte Systeme	21
	6.6	Zusammenfassung	21
7	Kni	ckung	21
•	7.1	Verzweigung einer Gleichgewichtslage	21
	7.2	Der Euler-Stab	21
	7.3	Zusammenfassung	21
8	Von	oundquerschnitte	21
9	8.1	Einleitung	21
	8.2	Zug und Druck in Stäben	21
	8.3	Reine Biegung	21
	8.4	Biegung und Zug/Druck	21
	8.5	Zusammenfassung	21
	0.0		∠ ⊥

1 Zug und Druck in Stäben

1.1 Spannung

$$\underbrace{\sigma}_{\text{Spannung}\left[\frac{N}{mm^2}\right]} = \underbrace{\frac{N}{N}}_{\text{Fläche}[mm^2]}$$
(1.1)

$$\underbrace{\sigma}_{\text{Spannung}\left[\frac{N}{mm^2}\right]} = \underbrace{\frac{F}{F}}_{\text{Fläche}[mm^2]}$$
(1.2)

Normalspannung in einem Schnitt
Senkrecht zur Stabachse
$$\sigma = \frac{\sigma_0}{2} (1 + \cos 2\varphi), \tau = \frac{\sigma_0}{2} (\sin 2\varphi)$$
(1.3)

$$\sigma(x) = \frac{N(x)}{A(x)} \tag{1.4}$$

$$A_{\rm erf} = \frac{|N|}{\sigma_{\rm zul}} \tag{1.5}$$

1.2 Dehnung

$$\underbrace{\varepsilon}_{\text{Dehnung}[1]} = \underbrace{\frac{\Delta \ell}{\ell_0}}_{\substack{\text{Ursprüngliche} \\ \text{Länge } [m]}} = \frac{\ell - \ell_0}{\ell_0}$$
(1.6)

Örtliche (lokale Dehnung)

$$\varepsilon(x) = \frac{\mathrm{d}u}{\mathrm{d}x} \tag{1.7}$$

1.3 Stoffgesetz

Hooke'sches Gesetz

$$\underbrace{E}_{\text{Elastizitätsmodul}} = \underbrace{\frac{\sigma}{\sigma}}_{\text{Dehnung}[1]} \tag{1.8}$$

Umgestellt nach Sigma, übliche Form:

$$\sigma = E\varepsilon = \frac{\Delta\ell}{\ell_0}E$$

$$\underbrace{\varepsilon}_{\text{Dehnung}[1]} = \frac{\sigma}{E} \tag{1.9}$$

$$\underbrace{\varepsilon_{T}}_{\text{Wärmedehnung}[1]} = \underbrace{\alpha}_{\text{Thermischer Aus-}\atop \text{dehnungskoeffizient}} \cdot \underbrace{\Delta T}_{\text{Temperaturänderung}[\,^{\circ}\text{C}]}$$

$$\underbrace{(\text{Wärmeausdehnugnskoeffizient})}_{[1/\,^{\circ}\text{C}]}$$

$$(1.10)$$

$$\varepsilon = \frac{\sigma}{E} + \alpha_T \Delta T \tag{1.11}$$

$$\sigma = E\left(\varepsilon - \alpha_T \Delta T\right) \tag{1.12}$$

1.4 Einzelstab

$$\frac{\mathrm{d}N}{\mathrm{d}x} + \underbrace{n}_{\text{Linienkraft}} = 0 \tag{1.13}$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{N}{EA} + \alpha_T \Delta T \tag{1.14}$$

$$\Delta \ell = u(l) - u(0) = \int_0^\ell \varepsilon dx$$
 (1.15)

$$\Delta \ell = \int_0^\ell \left(\frac{N}{EA} + \alpha_T \Delta T \right) dx$$
 (1.16)

$$\Delta \ell = \frac{F\ell}{EA} + \alpha_T \Delta T \ell$$
 (1.17)

Für $\Delta T = 0$

$$\Delta \ell = \frac{F\ell}{EA} \tag{1.18}$$

Oder F = 0

$$\Delta \ell = \alpha_T \Delta T \ell \tag{1.19}$$

$$(EAu')' = -n + (EA\alpha_t \Delta T)'$$
(1.20a)

Sei in 1.20a EA = const und $\Delta T = const$

$$\boxed{EAu'' = -n} \tag{1.20b}$$

1.5 Statisch bestimmte Stabsysteme

$$u = |\Delta \ell_1| = \frac{F\ell}{EA} \frac{1}{\tan \alpha},$$

$$v = \frac{\Delta \ell_2}{\sin \alpha} + \frac{u}{\tan \alpha} = \frac{F\ell}{EA} \frac{1 + \cos^3 \alpha}{\sin^2 \alpha \cos \alpha}$$
(1.21)

1.6 Statisch unbestimmte Stabsysteme

1.7 Zusammenfassung

2 Spannungszustand

2.1 Spannungvektor und Spannungtensor

$$t = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} = \frac{\mathrm{d}F}{\mathrm{d}A}$$
 (2.1)

$$t = \tau_{yx} e_x + \sigma_y e_y + \tau_{yz} e_z$$
 (2.2)

$$\tau_{xy} = \tau_{yx}, \tau_{xz} = \tau_{zx}, \tau_{yz} = \tau_{zy}$$
 (2.3)

2.2 Ebener Spannungszustand

2.2.1 Koordinatentransformation

$$\sigma_{\xi} = \sigma_{x} \cos^{2} \varphi + \sigma_{y} \sin^{2} \varphi + 2\tau_{xy} \sin \varphi \cos \varphi$$

$$\tau_{\xi\eta} = -(\sigma_{x} - \sigma_{y}) \sin \varphi \cos \varphi + \tau_{xy} (\cos^{2} \varphi - \sin^{2} \varphi)$$
(2.5a)

$$\sigma_{\eta} = \sigma_x \sin^2 \varphi + \sigma_y \cos^2 \varphi - 2\tau_{xy} \cos \varphi \sin \varphi$$
 (2.5b)

$$\sigma_{\xi} = \frac{1}{2}(\sigma_x + \sigma_y) + \frac{1}{2}(\sigma_x - \sigma_y)\cos 2\varphi + \tau_{xy}\sin 2\varphi,$$

$$\sigma_{\eta} = \frac{1}{2}(\sigma_x + \sigma_y) - \frac{1}{2}(\sigma_x - \sigma_y)\cos 2\varphi + \tau_{xy}\sin 2\varphi,$$

$$\tau_{\xi\eta} = - \frac{1}{2}(\sigma_x - \sigma_y)\sin 2\varphi + \tau_{xy}\cos 2\varphi,$$
(2.6)

$$\sigma_{\xi} + \sigma_{\eta} = \sigma_x + \sigma_y \tag{2.7}$$

2.2.2 Hauptspannungen

$$\tan 2\varphi^* = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} \tag{2.8}$$

$$\cos 2\varphi^* = \frac{1}{\sqrt{1 + \tan^2 2\varphi^*}} = \frac{\sigma_x - \sigma_y}{\sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2}}
\sin 2\varphi^* = \frac{\tan 2\varphi^*}{\sqrt{1 + \tan^2 2\varphi^*}} = \frac{2\tau_{xy}}{\sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2}}$$
(2.9)

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
 (2.10)

$$\tan 2\varphi^{**} = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}}$$
 (2.11)

$$\tau_{\text{max}} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
 (2.12a)

$$\tau_{\text{max}} = \pm \frac{1}{2} (\sigma_1 - \sigma_2)$$
 (2.12b)

$$\sigma_M = \frac{1}{2}(\sigma_x + \sigma_y) = \frac{1}{2}(\sigma_1 + \sigma_2)$$
(2.13)

2.3 Mohrscher Spannungkreis

$$\sigma_{\xi} - \frac{1}{2}(\sigma_x + \sigma_y) = \frac{1}{2}(\sigma_x - \sigma_y)\cos 2\varphi + \tau_{xy}\cos 2\varphi$$

$$\tau_{\xi\eta} = -\frac{1}{2}(\sigma_x - \sigma_y)\sin 2\varphi + \tau_{xy}\cos 2\varphi$$
(2.14)

$$\left| \left[\sigma_{\xi} - \frac{1}{2} (\sigma_x + \sigma_y) \right]^2 + \tau_{\xi\eta}^2 = \left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2 \right|$$
 (2.15)

$$\left(\sigma - \sigma_M\right)^2 + \tau^2 = r^2 \tag{2.16}$$

$$r^{2} = \frac{1}{4} \left[(\sigma_{x} + \sigma_{y})^{2} - 4(\sigma_{x}\sigma_{y} - \tau_{xy}^{2}) \right]$$
 (2.17)

2.3.1 Dünnwandiger Kessel

$$\sigma_x = \frac{1}{2} p \frac{r}{t} \tag{2.18}$$

$$\sigma_{\varphi} = p \frac{r}{t} \tag{2.19}$$

$$\sigma_t = \sigma_\varphi = \frac{1}{2} p \frac{r}{t} \tag{2.20}$$

2.4 Gleichgewichtsbedingungen

$$\left| \frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + f_x = 0 \right| \tag{2.21a}$$

$$\boxed{\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + f_y = 0}$$
 (2.21b)

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + f_x = 0$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + f_y = 0$$

$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + f_z = 0$$
(2.22)

2.5 Zusammenfassung

3 Verzerrungszustand, Elastizitätsgesetze

3.1 Verzerrungszustand

$$\varepsilon_x = \frac{\partial u}{\partial x}, \quad \varepsilon_y = \frac{\partial v}{\partial y}$$
(3.1)

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$
 (3.2)

$$\tan 2\varphi^* = \frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y} \tag{3.4}$$

da bin ich jetzt zu faul
$$(3.5)$$

3.2 Elastizitätsgesetz

$$\left|\varepsilon_y = -\nu\varepsilon_x\right| \tag{3.8}$$

$$\varepsilon_x = \frac{1}{E} (\sigma_x - \nu \sigma_y), \varepsilon_y = \frac{1}{E} (\sigma_y - \nu \sigma_x)$$
(3.9)

$$\tau_{xy} = G\gamma_{xy} \tag{3.10}$$

$$G = \frac{E}{2(1+\eta)} \tag{3.11}$$

$$\varepsilon_{x} = \frac{1}{E} (\sigma_{x} - \eta \sigma_{x}),$$

$$\varepsilon_{y} = \frac{1}{E} (\sigma_{y} - \eta \sigma_{x}),$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}$$
(3.12a)

3.3 Festigkeitshypothesen

3.4 Zusammenfassung

4 Balkenbiegung

4.1 Einführung

$$M = \int z\sigma \, \mathrm{d}A \tag{4.2}$$

4.2 Flächenträgheitsmomente

4.2.1 Definition

$$S_y = \int z dA, \quad S_z = \int y dA$$
(4.5)

$$I_y = \int z^2 dA, \quad I_z = \int y^2 dA$$
 (4.6a)

$$I_{yz} = I_{zy} = -\int yz \, \mathrm{d}A \,$$
 (4.6b)

$$I_p = \int r^2 dA = \int (z^2 + y^2) dA = I_y + I_z$$
 (4.6c)

$$i = seltsameWurzel;$$
da bin ich jetzt zu faul (4.7)

4.2.2 Parallelverschiebung der Bezugsachsen

$$I_{\bar{y}} = I_y + \bar{z}_s^2 A
 I_{\bar{z}} = I_z + \bar{y}_s^2 A
 I_{\bar{y}\bar{z}} = I_{yz} - \bar{y}_s \bar{z}_s A$$
(4.13)

4.2.3 Drehung des Bezugssystems, Hauptträgheitsmomente

$$I_{\eta} = \frac{1}{2} (I_{y} + I_{z}) + \frac{1}{2} (I_{y} - I_{z}) \cos 2\varphi + I_{yz} \sin 2\varphi$$

$$I_{\zeta} = \frac{1}{2} (I_{y} - I_{z}) - \frac{1}{2} (I_{y} - I_{z}) \cos 2\varphi - I_{yz} \sin 2\varphi$$

$$I_{\eta\zeta} = -\frac{1}{2} (I_{y} - I_{z}) \sin 2\varphi + I_{yz} \cos 2\varphi$$

$$(4.14)$$

$$\boxed{I_{\eta} + I_{\zeta} = I_y + I_z = I_p} \tag{4.15}$$

$$\tan 2\varphi^* = \frac{2I_{yz}}{I_y - I_z} \tag{4.16}$$

$$I_{1,2} = \frac{I_y + I_z}{2} \pm \sqrt{\left(\frac{I_y - I_z}{2}\right)^2 + I_{yz}^2}$$
 (4.17)

4.3 Grundgleichungen der geraden Biegung

$$\frac{\mathrm{d}Q}{\mathrm{d}x} = -q, \quad \frac{\mathrm{d}M}{\mathrm{d}x} = Q \tag{4.18}$$

$$M = \int z\sigma \,\mathrm{d}A \tag{4.19a}$$

$$Q = \int \tau \, \mathrm{d}A \tag{4.19b}$$

$$N = \int \sigma \, \mathrm{d}A \tag{4.19c}$$

$$\varepsilon = \frac{\partial u}{\partial x} \tag{4.20}$$

$$\sigma = E \,\varepsilon, \quad \tau = G \,\gamma \tag{4.21}$$

$$\omega = \omega(x) \tag{4.22a}$$

$$u(x,z) = \psi(x)z$$
 (4.22b)

$$\sigma = E \frac{\partial u}{\partial x} = E \psi' z$$
 (4.23a)

$$\tau = G\left(\frac{\partial \omega}{\partial x} + \frac{\partial u}{\partial z}\right) = G(\omega' + \psi)$$
(4.23b)

$$M = EI\psi'$$
 (4.24)

$$Q = \varkappa GA(\omega' + \psi)$$
 (4.25)

4.4 Normalspannungen

$$\sigma = \frac{M}{I}z \tag{4.26}$$

$$W = \frac{I}{|z|_{\text{max}}} \tag{4.27}$$

Aber hier mit subscript, also $W_{\text{Achse}} = \frac{I_{\text{Achse}}}{|\text{andere Achse}|_{\text{max}}}$

$$\sigma_{\text{max}} = \frac{|M|}{W} \tag{4.28}$$

4.5 Biegelinie

4.5.1 Differentialgleichung der Biegelinie

$$\omega' + \psi = 0 \tag{4.29}$$

$$Q' = -q, \quad M' = Q, \quad \psi' = \frac{M}{EI}, \quad \omega' = -\psi$$

$$(4.30)$$

$$\omega'' = -\frac{M}{EI} \tag{4.31}$$

$$\varkappa_B = \frac{\omega''}{(1 + \omega'^2)^{3/2}} \tag{4.32a}$$

$$\varkappa_B \approx \omega''$$
(4.32b)

$$Q = -(EI\omega'')'$$
 (4.33)

$$(EI\omega'')'' = q \tag{4.34a}$$

$$\boxed{EI\omega^{IV} = q} \tag{4.34b}$$

4.5.2 Einfeldbalken

4.5.3 Balken mit mehreren Feldern

4.5.4 Superposition

4.6 Einfluss des Schubes

4.6.1 Schubspannungen

$$\boxed{\frac{\partial \sigma}{\partial x} = \frac{Q}{I} \zeta} \tag{4.35}$$

4.6.2 Durchbiegung infolge Schub

4.7 Schiefe Biegung

	S	8	
		da bin ich jetzt zu faul	(4.45)
		da bin ich jetzt zu faul	(4.46)
		da bin ich jetzt zu faul	(4.47)
		da bin ich jetzt zu faul	(4.48)
		da bin ich jetzt zu faul	(4.49)
		da bin ich jetzt zu faul	(4.50)
		da bin ich jetzt zu faul	(4.51)
		da bin ich jetzt zu faul	(4.52)
		da bin ich jetzt zu faul	(4.53a)
		da bin ich jetzt zu faul	(4.53b)
4.8	Biegung und Z	Zug/Druck	
		1- 1: :-1 :-4-4 f1	(4 54-)

da bin ich jetzt zu faul (4.54a)

da bin ich jetzt zu faul (4.54b)

4.9 Kern des Querschnitts

	da bin ich jetzt zu faul	(4.55)			
	da bin ich jetzt zu faul	(4.56)			
	da bin ich jetzt zu faul	(4.57)			
<u>e</u>]	elastung				
	da bin ich jetzt zu faul	(4.58)			
	da bin ich jetzt zu faul	(4.59)			

4.10

Temperaturbelastung			
	da bin ich jetzt zu faul	(4.58)	
	da bin ich jetzt zu faul	(4.59)	
	da bin ich jetzt zu faul	(4.60)	
	da bin ich jetzt zu faul	(4.61)	
	da bin ich jetzt zu faul	(4.62)	
	da bin ich jetzt zu faul	(4.63)	
	da bin ich jetzt zu faul	(4.64)	

da bin ich jetzt zu faul

(4.65)

Joshua

4.11 Zusammenfassung

5 Torsion

5.1 Einführung

19. November 2019

5.2 Die kreiszvlindrische Welle

5.2	Die kreiszylindrische Welle		
		da bin ich jetzt zu faul	(5.1)
		da bin ich jetzt zu faul	(5.2)
		da bin ich jetzt zu faul	(5.3)
		da bin ich jetzt zu faul	(5.4)
		da bin ich jetzt zu faul	(5.5)
		da bin ich jetzt zu faul	(5.6)
		da bin ich jetzt zu faul	(5.7)
		da bin ich jetzt zu faul	(5.8)
		da bin ich jetzt zu faul	(5.9)
		da bin ich jetzt zu faul	(5.10)
		da bin ich jetzt zu faul	(5.11)
		da bin ich jetzt zu faul	(5.12)
		da bin ich jetzt zu faul	(5.13)
		da bin ich jetzt zu faul	(5.14)
	7 1 2010		

5.3 Dünnwandige geschlossene Profile

da bin ich jetzt zu faul	(5.15)
da bin ich jetzt zu faul	(5.16)
da bin ich jetzt zu faul	(5.17)
da bin ich jetzt zu faul	(5.18)
da bin ich jetzt zu faul	(5.19)
da bin ich jetzt zu faul	(5.20)
da bin ich jetzt zu faul	(5.21)
da bin ich jetzt zu faul	(5.22)
da bin ich jetzt zu faul	(5.23)
da bin ich jetzt zu faul	(5.24)
da bin ich jetzt zu faul	(5.25)
da bin ich jetzt zu faul	(5.26)
da bin ich jetzt zu faul	(5.27)
da bin ich jetzt zu faul	(5.28)
	,

5.4 Dünnwandige offene Profile

da bin ich jetzt zu faul	(5.29)
da bin ich jetzt zu faul	(5.30)
da bin ich jetzt zu faul	(5.31)
da bin ich jetzt zu faul	(5.32)
da bin ich jetzt zu faul	(5.33)
da bin ich jetzt zu faul	(5.34)

- 5.5 Zusammenfassung
- 6 Der Arbeitsbegriff in der Elastostatik
- 6.1 Einleitung
- 6.2 Arbeitssatz und Formänderungsenergie
- 6.3 Das Prinzip der virtuellen Kräfte
- 6.4 Einflusszahlen und Vertauschungssätze
- 6.5 Anwendung des Arbeitssatzes auf statisch unbestimmte Systeme
- 6.6 Zusammenfassung
- 7 Knickung
- 7.1 Verzweigung einer Gleichgewichtslage
- 7.2 Der Euler-Stab
- 7.3 Zusammenfassung
- 8 Verbundquerschnitte
- 8.1 Einleitung
- 8.2 Zug und Druck in Stäben
- 8.3 Reine Biegung
- 8.4 Biegung und Zug/Druck
- 8.5 Zusammenfassung