

Desktop DNS An open toolkit for turbomachinery aerodynamics

Andrew Wheeler
Whittle Laboratory
University of Cambridge
aw329@cam.ac.uk

ASME Turbo Expo 2023

2002

- LPT DNS at Re ~ 50,000
- 20 million solution points
- 1.5-3 months *

2023

- Same case ~ 4 hours on an Amazon Virtual Machine
- Around \$40USD **

^{*}V. Michelassi, W. Rodi, J. Wissink. "Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade with Incoming Wakes and Comparison with Experiments." *Flow, Turbulence and Combustion* Vol. 69 No. 4 (2002): pp. 295–330. DOI 10.1023/A:1027334303200.

^{** &#}x27;p4d.24xlarge' instance and current spot prices

2002

- LPT DNS at Re ~ 50,000
- 20 million solution points
- 1.5-3 months *

2023

- Same case ~ 4 hours on an Amazon Virtual Machine
- Around \$40USD **

Why don't we make more use of DNS?

Barriers / Enablers

Exploitation routes

Computer resources

Predictive accuracy

In-house training & know-how

Model improvements

Tools to process & exploit data

'DNS Mountain'

Discovery of physical mechanisms

Access to codes

Virtual experiments

How do we overcome the DNS Mountain?

How do we overcome the DNS Mountain?

Easily accessible

- Virtual Machine in the cloud
- Powerful gaming PC
- Single compute node

Direct simulation of Navier Stokes

- No turbulence modelling
- High fidelity

Desktop DNS open toolkit

New toolkit draws on more than 10 years of DNS research

Publicly available for turbomachinery aerodynamicists to explore DNS

Access to codes

Training & know-how

Tools to process & exploit data

Computer resources

3DNS

Compressible Navier-Stokes

High order

4th order DRP, 4-stage Runge Kutta, characteristic multi-block interfaces

Low dispersion and dissipation error

skew-split differencing, 8th order filter

3DNS-cpu

- Optimized for running on large computer systems (10⁴-10⁵ processors)
- For 'Desktop DNS' need something more accessible

1.4 billion point multi-block mesh (9-blocks)PRACE project PrcPA4748

3DNS-gpu

- Same high order algorithm as 3DNS-cpu
- MPI communication across GPUs and nodes
- Acceleration with OpenACC
- Multiple blocks on each GPU and/or multiple GPUs on each block
- Flexibility allows load-balancing of GPUs with large variations in block sizes

3DNS-gpu – inlet turbulence

- Filtered random number generators are expensive
- New way to generate turbulence using chaotic sequence

$$s_n = \sin(2 \pi s_{n-1})$$

Smoothing operation gives Gaussian correlation

3DNS-gpu – scaling performance

Strong scaling on 109M pt 9-block mesh

GPUs	Time per step (s)	Scaling Efficiency (%)
1	1.21	100
2	0.600	101
4	0.290	104

Weak scaling

GPUs	Mesh size (million points)	Time per step (s)	Scaling Efficiency (%)
1	109	1.21	100
4	436	1.16	104

Wilkes3 node 4 x NVIDIA A100 each with 80GB

3DNS-gpu – public release runs in Amazon AWS

• Around 500 Million points can be run in 5 days on Amazon Cloud instance

Access to codes

Training & know-how

Tools to process & exploit data

Computer resources

Desktop DNS toolkit

 Public release of 3DNS-gpu

Runs in the cloud

 Open toolkit for preand post-processing DNS

---->

Step-by-step guide open source Jupyter Notebooks

Desktop DNS toolkit

 Public release of 3DNS-gpu

Runs in the cloud

 Open toolkit for preand post-processing DNS

Step-by-step guide open source Jupyter Notebooks

- Public release limited to cascade geometries
- Some features disabled for public release available on request

Desktop DNS toolkit

4 Jupyter notebooks:

- 1. Meshing and initial 2D simulation
- 2. 3D simulation, inlet turbulence, statistical convergence
- 3. Mesh sensitivity, statistics gathering, entropy budget analysis
- 4. RANS modelling

3dns.org

Access to codes

Training & know-how

Tools to process & exploit data

Computer resources

Desktop DNS - compressor cascade test case

Industry standard Controlled Diffusion design*

s/c _{ax}	α_{in}	α_{exit}	Re _{in}	M _{in}	Tu _{in}
0.72	50.2°	25.2°	2.33×10 ⁵	0.2	0.4%

^{*}Profile provided by Alistair Senior (Whittle Lab)

Desktop DNS – meshing refinement

• Establishing flow on a coarse mesh and then successively interpolating to speed-up transients and determine mesh requirements

Desktop DNS – determining solution quality

'resolved' dissipation – i.e. due to computed velocity gradients

Desktop DNS – entropy generation rate

$$\rho \frac{Ds}{Dt} + \nabla \cdot \left(\frac{q}{T}\right) = \frac{\phi}{T} + \dot{S}_{N}$$

$$\rho \frac{Ds_{irr}}{Dt}$$

- Extracting the true loss mechanisms from the DNS
- Numerical dissipation (S_N) can be determined

651M point mesh

Desktop DNS – entropy rise

Entropy flux

$$\Sigma_{flux} = \int_{\Omega} \frac{Ds}{Dt} d\Omega$$

Resolved dissipation

$$\Sigma_{res}=\int_{\Omega}rac{\phi}{T}d\Omega$$

651M point mesh

Desktop DNS – quality checks using entropy budget

$$\Sigma_{flux} = \int_{\Omega} \frac{Ds}{Dt} d\Omega$$

Resolved dissipation

$$\Sigma_{res} = \int_{\Omega} rac{\phi}{T} d\Omega$$

integration to $x/c_{ax}=1.1$

- Loss (entropy flux) less sensitive than resolved dissipation
- Little advantage in increasing resolved dissipation above 90%

Desktop DNS – mesh sensitivity

• Mesh convergence achieved with 418M point mesh (90% resolved dissipation)

Desktop DNS – extracting eddy viscosity

Optimum eddy viscosity minimizes the error in the Reynolds stress tensor*

Desktop DNS – RANS modelling

Calibrated RANS captures effect of incidence

Desktop DNS – RANS modelling

Suction surface trailing-edge parameters

RANS

DNS

- Interpolating the eddy viscosity allows effects of incidence to be explored at low cost
- Possible to explore other parameters e.g. pitch-to-chord, diffusion style

Access to codes

Training & know-how

Tools to process & exploit data

Computer resources

Scaling with Reynolds number

For this case achievable Re scales with points^{0.57}

Running DNS in the cloud – how much does it cost today?

Achievable Reynolds number and costs for cascade simulations

Mesh points (x10 ⁶)	Reynolds number	Compute time (hrs)	Cost on AWS*
30	50,000	6	\$55
70	80,000	15	\$140
150	130,000	33	\$290
400	230,000	95	\$840
650	300,000	147	\$1300

Performing a DNS to de-risk a new design is now relatively affordable

^{*}approximate spot price on AWS p4d.24xlarge instance (8 x A100 GPUs) 600,000 iterations, span=10% axial chord

What might be possible in the next 5 years?

10 x increase in compute power every 5 years

Reynolds number	
50,000	
80,000	
130,000	
230,000	
300,000	

Compute time in 2028 (hrs)	Cost in 2028
0.6	\$5.5
1.5	\$14
3.3	\$29
9.5	\$84
14.7	\$130

- Over next 5 years many engine components will be accessible with DNS
- Designers need tools and training to exploit this

- Follow links at 3dns.org for non-commercial use
- Get in touch for commercial use