Statistics II: Introduction to Inference

Module 10: Interval Estimation

Sometimes providing a point estimate, or testing a hypothesis is not the ideal method of inference. Rather, one may be interested in an interval (or a set), which efficiently captures the underlying parameter. For example, in a diagnostic test for a particular disease, one requires an interval (range) of the possible test results, with efficiently detects the occurrence or non-occurrence of a particular disease. In other words we require a random set which captures the underlying parameter with high probability (rather than a random point which is close to the underlying parameter in appropriate sense). This type of estimates are called interval estimates.

Definition 1. An interval estimate for a real valued parameter θ is a pair of functions of sample observations $L(\mathbf{x}) = L(x_1, \dots, x_n)$, $U(\mathbf{x}) = U(x_1, \dots, x_n)$ that satisfy $L(\mathbf{x}) \leq U(\mathbf{x})$ for each \mathbf{x} . If realization of \mathbf{X} is \mathbf{x} , then we infer that the interval $[L(\mathbf{x}), U(\mathbf{x})]$ contains θ with high probability. The random interval $[L(\mathbf{X}), U(\mathbf{X})]$ is called a interval estimator of θ .

Note: For some particular examples, $L(\mathbf{x})$ can be $-\infty$, or $U(\mathbf{x})$ can be ∞ . In such cases we obtain a one sided interval estimate. Further, instead of closed interval, one may obtain an open, or a semi-closed interval estimate as well.

Definition 2 (Interval Estimate). The confidence coefficient of an interval estimator $[L(\mathbf{x}), U(\mathbf{x})]$ of a parameter θ , usually denoted by $(1-\alpha)$, is highest probability with which the random interval captures the true parameter θ , for any $\theta \in \Theta$. Notationally, the confidence coefficient is $(1-\alpha)$ satisfying

$$\inf_{\alpha} P_{\theta \in \Theta} \left([L(\mathbf{x}), U(\mathbf{x})] \ni \theta \right) = (1 - \alpha), \quad \text{so that,} \quad P_{\theta \in \Theta} \left([L(\mathbf{x}), U(\mathbf{x})] \ni \theta \right) \ge (1 - \alpha), \quad \text{for all } \theta \in \Theta.$$

Interval estimators together with confidence coefficient are called confidence intervals.

Note: We can generalize the idea of confidence intervals to *confidence sets*. A random set $S(\mathbf{X})$ is said to be a confidence set for a parameter vector $\boldsymbol{\theta} \in \boldsymbol{\Theta} \subseteq \mathbb{R}^k$, with confidence coefficient $(1 - \alpha)$, if $\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} P_{\boldsymbol{\theta}}(S(\mathbf{X}) \ni \boldsymbol{\theta}) = (1 - \alpha)$.

A confidence interval can be interpreted as a special type of confidence set, where $S(\mathbf{X})$ is an interval.

Interpretation of Confidence Sets: A confidence set $S(\mathbf{X})$ with confidence coefficient $(1-\alpha)$ can be interpreted as follows: If repeated random samples, that is, repeated realizations of \mathbf{X} , are taken for a large (theoretically, infinite) number of times, then in about $(1-\alpha)100\%$ cases, the realization of the confidence set, $S(\mathbf{x})$, will contain the true parameter $\boldsymbol{\theta}$.

Example 1. Let X_1, \ldots, X_n be a random sample from $\mathtt{Normal}(\mu, \sigma^2)$ distribution. Consider the interval estimate $[\bar{X}_n - c, \bar{X}_n + c]$ of μ for some constant $c \geq 0$. Find c such that the confidence coefficient is $(1 - \alpha)$.

When σ^2 is known, then it can be seen that $c = \sigma \tau_{\alpha/2}/\sqrt{n}$ where $\tau_{\alpha/2}$ is the upper $\alpha/2$ -th point of the standard normal distribution.

- **Remark** 1. One could also choose an interval estimate of the type $[\bar{X}_n c_1, \bar{X}_n + c_2]$ where $c_1, c_2 \geq 0$. Then any c_1, c_2 , satisfying $\Phi(c_1\sqrt{n}/\sigma) - \Phi(-c_2\sqrt{n}/\sigma) = (1-\alpha)$ would provide a valid confidence interval with confidence coefficient $(1-\alpha)$.
- **Remark** 2. When σ^2 is unknown then one can use the fact that $\sqrt{n}(\bar{X}_n \mu)/S_n^* \sim t_{(n-1)}$ to obtain find c_1, c_2 , where S_n^* $^2 = (n-1)^{-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$.

Figure 1: Figure contains 100 realizations of the 95% confidence intervals from normal mean μ (left) and variance σ^2 (right) as obtained in Examples 1 and 2. The realizations of the interval estimates which captures (does not capture) the true parameter are indicated in green (red). Observe that, in about 95% cases, the realization of the interval contains the true parameter.

Example 2 Let X_1, \ldots, X_n be a random sample from $\text{Normal}(\mu, \sigma^2)$ distribution. Consider the interval estimate $[c_1S_n^{\star 2}, c_2S_n^{\star 2}]$ of σ^2 for some constants $0 < c_1 \le c_2$, where $S_n^{\star 2} = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$. Find c_1, c_2 such that the confidence coefficient is $(1-\alpha)$. Using the result that $(n-1)\sigma^{-2}S_n^{\star 2} \sim \chi_{(n-1)}^2$, one can show that any c_1, c_2 satisfying

$$P\left(\frac{(n-1)}{c_2} < W \le \frac{(n-1)}{c_1} \mid W \sim \chi^2_{(n-1)}\right) = (1-\alpha),$$

leads to a valid confidence interval.

In particular, one may choose c_1, c_2 such that

$$P\left(W \ge \frac{(n-1)}{c_1} \mid W \sim \chi^2_{(n-1)}\right) = P\left(W \le \frac{(n-1)}{c_2} \mid W \sim \chi^2_{(n-1)}\right) = \frac{\alpha}{2},$$

which leads to the interval $\left[(n-1)S_n^{\star 2}/\chi_{(n-1),1-\alpha/2}^2, (n-1)S_n^{\star 2}/\chi_{(n-1),\alpha/2}^2 \right]$.

1 Method of Finding Confidence Interval

1.1 Method of Pivots

Definition 3 (Pivot). Let $\mathbf{X} \sim f_{\mathbf{X}}(\cdot; \theta)$. A random variable $T(\mathbf{X}; \theta)$ is called a pivot if the distribution of $T(\mathbf{X}; \theta)$ does not depend on θ .

Example 3. Let X_1, \dots, X_n be a random sample from a location family with location parameter θ , i.e., $X_i = W_i + \theta$ where W_i , $i = 1, \dots, n$ are iid from a distribution free of θ . Then any function of $X_i - \theta$; $i = 1, \dots, n$ is a pivot.

Example 4. Let X_1, \dots, X_n be a random sample from a scale family with scale parameter θ , i.e., $X_i = \theta W_i$ where W_i , $i = 1, \dots, n$ are iid from a distribution free of θ . Then any function of X_i/θ ; $i = 1, \dots, n$ is a pivot.

Example 5. If X is distribution as a continuous distribution, then the distribution function $F_X(\cdot;\theta)$ has a Uniform(0,1) distribution. When n i.i.d. samples X_1,\ldots,X_n are available, then one may take $T(\mathbf{X};\theta) = -\sum_{i=1}^n \log F_X(X_i;\theta)$ as a pivot. It can be shown that $T(\mathbf{X};\theta)$ distributed as a Gamma(n,1) distribution.

A pivot may yield a confidence interval when supported with some additional features. The following theorem provides a set of sufficient conditions for a pivot to yield a confidence interval.

Theorem 1. Let $T(\mathbf{X}; \theta)$ be a pivot such that for each θ , $T(\mathbf{X}; \theta)$ is a statistic and as a function of θ , $T(\mathbf{X}; \theta)$ is strictly monotone at each $\mathbf{x} \in \mathbb{R}^n$. Let $\Lambda \in \mathbb{R}$ be the range of $T(\mathbf{X}; \theta)$, and for each λ and $\mathbf{x} \in \mathbb{R}$ the equation $\lambda = T(\mathbf{x}; \theta)$ is solvable with respect to θ . Then one can construct a confidence interval for θ at any level.

Procedure of obtaining confidence interval from a pivot. Suppose we are interested in finding a confidence interval for the parameter of interest θ .

- 1. First find a pivot $T(\mathbf{X}, \theta)$ such that $T(\mathbf{X}, \theta)$ is a function of θ and a good statistic of θ .
- 2. Find constants a, b such that $P(a \le T(\mathbf{X}, \theta) \le b) = (1 \alpha)$. Note that, as the distribution of $T(\mathbf{X}, \theta)$ is completely known, the constants (a, b) are also known (does not depend on θ).
- 3. Next, solve the equations $T(\mathbf{X}, \theta) = a$ and $T(\mathbf{X}, \theta) = b$ with respect to θ . Let $\widehat{\theta}_n(a)$ and $\widehat{\theta}_n(b)$ be the solutions, i.e., $T(\mathbf{X}, \widehat{\theta}_n(a)) = a$ and $T(\mathbf{X}, \widehat{\theta}_n(b)) = b$. Note that, $(\widehat{\theta}_n(a), \widehat{\theta}_n(b))$ are functions of \mathbf{X} and (a, b) only. Thus, they are pair of statistics.
- 4. Let $T(\mathbf{X}, \theta)$ be strictly monotonically increasing function of θ . Then

$$\left\{ a \leq T(\mathbf{X}, \theta) \leq b \right\} \quad \Longleftrightarrow \quad \left\{ \widehat{\theta}_n(a) \leq \theta \leq \widehat{\theta}_n(b) \right\},$$

so that $P_{\theta}\left(\widehat{\theta}_n(a) \leq \theta \leq \widehat{\theta}_n(b)\right) = (1 - \alpha)$ for all $\theta \in \Theta$. Thus, $[\widehat{\theta}_n(a), \widehat{\theta}_n(b)]$ is a confidence interval with confidence coefficient $(1 - \alpha)$.

Further, let $T(\mathbf{X}, \theta)$ be strictly monotonically decreasing function of θ . Then

$$\left\{ a \leq T(\mathbf{X}, \theta) \leq b \right\} \quad \Longleftrightarrow \quad \left\{ \widehat{\theta}_n(b) \leq \theta \leq \widehat{\theta}_n(a) \right\},$$

so that $P_{\theta}\left(\widehat{\theta}_n(b) \leq \theta \leq \widehat{\theta}_n(a)\right) = (1 - \alpha)$ for all $\theta \in \Theta$. Thus, $[\widehat{\theta}_n(b), \widehat{\theta}_n(a)]$ is a confidence interval with confidence coefficient $(1 - \alpha)$.

- **Remark** 3. A sufficient condition for the equation $\lambda = T(\mathbf{x}; \theta)$ to be solvable is T is continuous and strictly monotone w.r.t. θ .
- **Remark** 4. The monotonicity assumption in the above theorem ensures that the confidence set obtained from the pivot T is of interval type. In case all the other assumptions in Theorem 1 are satisfied, except the monotonicity assumption, then one would still obtain a confidence set, but it may not be of interval type.
- **Example** 6. Let X_1, \dots, X_n be a random sample from location exponential distribution, with location parameter θ and scale parameter 1. Then obtain a (1α) confidence interval based on the complete sufficient statistic $X_{(1)}$ of θ .

Example 7. Revisit Examples 1,2.

1.2 Test Inversion

There is a strong correspondence between testing of a hypothesis and interval estimation. From a test one can obtain a confidence set, and conversely, from a confidence interval one can obtain a test. We will see this with an example first.

Figure 2: The figure shows PDFs of \bar{X}_n under 3 possible values of μ_0 , viz., $\{-0.5, 0, 0.5\}$, and the corresponding acceptance regions $[\mu_0 - \tau_{\alpha/2}/\sqrt{n}, \mu_0 + \tau_{\alpha/2}/\sqrt{n}]$ shown in green, red and blue, respectively. The thick black cross indicates a realization \bar{x}_n . Observe that, \bar{x}_n falls inside the acceptance regions of $\mu_0 = 0, 0.5$, but falls outside that of $\mu_0 = -0.5$. In fact, the thick black interval contains all possible values of μ_0 whose corresponding acceptance regions contains \bar{x}_n , and hence provides a realization of the test-inverted confidence interval.

Example 8. Consider the problem of testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ for a Normal $(\mu, 1)$ population at level α , based on a random sample of size n. Recall the test function of the form

$$\phi(\mathbf{x}) = \begin{cases} 1 & \text{if } |T(\mathbf{x})| > c \\ 0 & \text{otherwise} \end{cases}, \text{ where } T(\mathbf{x}) = \sqrt{n}(\bar{X}_n - \mu_0),$$

and

$$P_{H_0}(|T(\mathbf{X})| > c) = \alpha.$$

As $T(\mathbf{X}) \sim N(0,1)$ under H_0 , we have the choice $c = \tau_{\alpha/2}$, where $\tau_{\alpha/2}$ is the upper $\alpha/2$ point of N(0,1) distribution. This together implies that

$$P_{\mu_0} \left(-\tau_{\alpha/2} \le \sqrt{n} (\bar{X}_n - \mu_0) \le \tau_{\alpha/2} \right) = P_{\mu_0} \left(\bar{X}_n - \frac{\tau_{\alpha/2}}{\sqrt{n}} \le \mu_0 \le \bar{X}_n + \frac{\tau_{\alpha/2}}{\sqrt{n}} \right) = (1 - \alpha).$$

However, observe that the above probability statement is true for any choice of μ_0 . Thus we can rewrite the above statement as

$$P_{\mu}\left(\bar{X}_n - \frac{\tau_{\alpha/2}}{\sqrt{n}} \le \mu \le \bar{X}_n + \frac{\tau_{\alpha/2}}{\sqrt{n}}\right) = (1 - \alpha),$$

which yields a confidence interval for μ .

- **Remark** 5. In the above example, we are crucially using the fact that, when θ takes a particular value θ_0 and the samples are generated from f_{θ_0} , then the probability that the test statistic $T(\mathbf{X})$ lies in the acceptance region, say $A(\theta_0)$, is at least $(1-\alpha)$.
- **Remark** 6. If we fix a realization \mathbf{x} , then (given $\theta = \theta_0$), the test statistic $T(\mathbf{x})$ either falls inside or outside of the acceptance region. However, we keep \mathbf{x} fixed and vary θ , then the acceptance region varies.
- **Remark** 7. Now, consider the set of possible values of θ such that a particular realization \mathbf{x} belongs to the $A(\theta)$. In the above example, it is the set of μ values such that $\sqrt{n}(\bar{x}_n \mu) \in [-\tau_{\alpha/2}, \tau_{\alpha/2}]$, i.e., $\mu \in [\bar{x}_n \tau_{\alpha/2}/\sqrt{n}, \bar{x}_n + \tau_{\alpha/2}/\sqrt{n}]$.

Note that, this set does not depend on a particular θ , but on \mathbf{x} only. Let us call this $C(\mathbf{x})$. One can interpret $C(\mathbf{x})$ as $A^{-1}(\mathbf{x})$. Thus $C(\mathbf{X})$ is a random set, based on \mathbf{X} only. The following theorem states that this set $C(\mathbf{X})$ forms a valid confidence set with confidence coefficient $(1-\alpha)$.

Theorem 2. For each $\theta_0 \in \Theta$, let $A(\theta_0)$ be the acceptance region of a level- α test of $H_0 : \theta = \theta_0$. For each \mathbf{x} , define $C(\mathbf{x}) \subseteq \Theta$ such that $C(\mathbf{x}) = \{\theta : \mathbf{x} \in A(\theta)\}$. Then the random set $C(\mathbf{X})$ is a $(1 - \alpha)$ confidence set.

- **Remark** 8. As we have seen in testing of hypothesis, the alternative hypothesis plays a crucial role in determining the acceptance region of an UMP test. Consequently, the form of the confidence set obtained from the acceptance region of a test is also determined by the type of alternative hypothesis.
- **Remark** 9. The above procedure does not guarantee in general that the confidence set obtained by inverting an acceptance region would be interval type.
- **Example** 9. Let X_1, \ldots, X_n be a random sample from $\mathtt{Uniform}(0, \theta)$ distribution. A UMP level α test for testing $H_0: \theta = \theta_0$ against $H_1: \theta > \theta_0$ has the form

$$\phi(\mathbf{x}) = \begin{cases} 1 & \text{if } x_{(n)} > c \\ 0 & \text{otherwise.} \end{cases}, \text{ where } P_{\theta_0}(X_{(n)} > c) = \alpha.$$

From the size α condition, we get $c = \theta_0 (1 - \alpha)^{1/n}$. Now, if we fix **x**, then

$$c(\mathbf{x}) = \{\theta : x_{(n)} \le \theta (1 - \alpha)^{1/n}\} = \left[(1 - \alpha)^{-1/n} x_{(n)}, \infty \right].$$

Therefore, by the above theorem, $[(1-\alpha)^{-1/n}X_{(n)},\infty]$ is a $(1-\alpha)$ confidence interval.