ریاضی عمومی ۲

ارائه دهنده: دکتر داریوش کیانی

دانشکدهٔ ریاضی و علوم کامپیوتر دانشگاه صنعتی امیرکبیر

اطرح درس

- ۹ کاربردهای مشتقات جزئی
 - ۱۰ انتگرال دوگانه
 - انتگرال سهگانه
- 🚻 انتگرال روی خم (یا انتگرال خط)
 - ۱۳ انتگرال روی سطح
 - 🚻 قضایای دیورژانس و استوکس
 - ۱۵ مقدمهای بر جبرخطی

- \mathbb{R}^3 یادآوری هندسه تحلیلی در \mathbb{R}^2 و \mathbb{R}^3
- 🛛 توابع برداری و خمها (منحنیها)
 - 🛛 معرفی توابع چندمتغیره
- مان جزئی مشتق پذیری می است مشتق چهتاله ا
 - - ٨ توابع ضمني

توابع برداری و خمها (منحنیها)-بخش دوم

طول قوس

فرض کنید $r:[a,b] o \mathbb{R}^n$ یک منحنی است و $P:a=t_0 < t_1 < \dots < t_{n-1} < t_n = b, \quad r_i=r(t_i), \; i=0,1,\dots,n$

در این صورت، مجموع طولهای پارهخطهای شکل بالا، بهصورت زیر بهدست میآید:

$$S_P = \sum_{i=1}^{n} |r_i - r_{i-1}|$$

اگر فاصلهٔ هر دو نقطهٔ متوالی در P به صفر میل کند، انتظار داریم که S_P به طول قوس r میل ...

قضيه

فرض کنید $r:[a,b] o \mathbb{R}^n$ یک تابع مشتقپذیر باشد که مشتق آن پیوسته است. آنگاه داریم

$$r$$
 طول قوس $S=\int_a^b |r'(t)| \; \mathrm{d}t$

نتيجه 1

فرض کنید $f:[a,b] o \mathbb{R}$ تابعی مشتقپذیر با مشتق پیوسته باشد. در این صورت، داریم

$$b$$
 لا از a از a از a تا اول قوس نمودار a از a تا

اثبات:

پارامتری سازی زیر از نمودار f را در نظر می گیریم:

$$\gamma: [a,b] \to \mathbb{R}^2, \quad \gamma(t) = (t,f(t))$$

در این صورت، بنابر قضیهٔ قبل داریم

$$f$$
 طول قوس $\int_a^b |\gamma'(t)| \, dt = \int_a^b |(1, f'(t))| \, dt = \int_a^b \sqrt{1 + f'(t)^2} \, dt$

74/8

نتيجه 2

 $g: [lpha, eta] o \mathbb{R}$ نمایش قطبی یک خم در صفحه باشد، طوری که r=g(heta) نمشتق پیوسته است. در این صورت، داریم

$$eta$$
 تا ما از $lpha$ تا $lpha$ طول قوس از $lpha$ تا $S=\int_lpha^eta\sqrt{g(heta)^2+g'(heta)^2}\;\mathrm{d} heta$

اثبات: نمایش پارامتری زیر را برای منحنی قطبی $r=g(\theta)$ در نظر میگیریم:

$$\gamma : [\alpha, \beta] \to \mathbb{R}^2, \quad \gamma(\theta) = (g(\theta)\cos(\theta), g(\theta)\sin(\theta))$$

در این صورت، γ مشتقپذیر با مشتق پیوسته است. بنابر قضیهٔ قبل، داریم:

$$S = \int_{\alpha}^{\beta} |\gamma'(\theta)| \, d\theta$$

74 / Y

ادامهٔ اثبات نتیجه 2

داريم:

$$\gamma'(\theta) = (g'(\theta)\cos(\theta) - g(\theta)\sin(\theta), g'(\theta)\sin(\theta) + g(\theta)\cos(\theta)).$$

پس، مىتوان نوشت:

$$|\gamma'(\theta)|^2 = (g'(\theta)\cos(\theta) - g(\theta)\sin(\theta))^2 + (g'(\theta)\sin(\theta) + g(\theta)\cos(\theta))^2$$
$$= (\cos^2(\theta) + \sin^2(\theta))(g'(\theta))^2 + (\cos^2(\theta) + \sin^2(\theta))(g(\theta))^2$$
$$= (g'(\theta))^2 + (g(\theta))^2$$

بنابراین، داریم:

$$S = \int^{\beta} \sqrt{(g'(\theta))^2 + (g(\theta))^2} d\theta$$

پارامتریسازی بر حسب طول قوس

قرارداد: از اینجا به بعد، فرض میکنیم که همهٔ منحنیهای مورد بحث، هموار هستند. منحنی $\gamma:[a,b] \to \mathbb{R}^n$ منحنی

$$b$$
 از a از a از a تا b از a تا b

در این صورت، میتوان تابع زیر را در نظر گرفت:

$$s:[a,b]
ightarrow [0,L], \quad s(t)=t$$
 از a تا $a
ightarrow = \int_a^t |\gamma'(u)| \; \mathrm{d} u.$

بنابراین، داریم $\frac{1}{\gamma'(t)} = \frac{|\gamma'(t)| > 0}{\gamma}$ ، که نتیجه می دهد s تابعی اکیداً صعودی است. از این رو، γ هموار است

s تابعی یکبهیک است. همچنین، از آنجا که s(a)=0 و s(b)=1 و s تابعی پیوسته است، نتیجه میشود که s پوشا نیز هست.

بنابراین، s تابعی وارونیذیر است و اگر α وارون s باشد، آنگاه داریم

$$lpha:[0,L] o[a,b],\quad lpha(s)=t,\quad lpha'(s)=rac{\mathrm{d}t}{\mathrm{d}s}$$
حال، منحنی زیر را پارامتریسازی γ بر حسب طول قوس مینامیم:

$$\widetilde{\gamma}:[0,L]\to\mathbb{R}^n,\quad \widetilde{\gamma}(s)=\gamma(\alpha(s))$$

توحه کنید که

$$|\widetilde{\gamma}'(s)| = |(\gamma(\alpha(s)))'| = |\alpha'(s)\gamma'(\alpha(s))| = |\alpha'(s)||\gamma'(\alpha(s))|$$
$$= \left|\frac{\mathrm{d}t}{\mathrm{d}s}\right||\gamma'(t)| = \left|\frac{\mathrm{d}t}{\mathrm{d}s}\right|\left|\frac{\mathrm{d}s}{\mathrm{d}t}\right| = \left|\frac{\mathrm{d}t}{\mathrm{d}s}\frac{\mathrm{d}s}{\mathrm{d}t}\right| = 1$$

بنابراین، نکتهٔ زیر را ثابت کردیم:

. $|\gamma'|=1$ اگر خم γ بر حسب طول قوس پارامتری شده باشد، آنگاه داریم $^{-}$

همچنین اگر $|\gamma'|=1$ طوری باشد که $\gamma:[0,L] o\mathbb{R}^n$ آنگاه داریم

$$s(t) = \int_0^t |\gamma'(u)| du = \int_0^t du = t$$

بنابراین، γ خودبهخود بر حسب طول قوس پارامتری شده است.

پس، نکتهٔ زیر را داریم:

 $|\gamma'|=1$ خم \mathbb{R}^n خم $\gamma:[0,L] \to \mathbb{R}^n$ بر حسب طول قوس پارامتری شده است اگر و تنها اگر $\gamma:[0,L] \to \mathbb{R}^n$ توجه: در بعضی از منابع، بعد از اینکه یک منحنی مثل $\gamma(t)$ بر حسب طول قوس پارامتری شد، منحنی حاصل به جای $\gamma(s)$ با $\gamma(s)$ با زمایش داده می شود.

YY/ \\ Kiani-Saeedi Madani-Saki

مثال

فرض کنید a,b>0 مارپیچ مستدیر a,b>0 مستدیر فرض کنید. a,b>0 مارپیچ مستدیر قوس از نقطهٔ a,b>0 و در جهت افزایش a,b>0 پارامتری کنید.

پاسخ:

ادامهٔ مثال

$$\gamma'(t) = (-a\sin(t), a\cos(t), b) \implies$$

$$|\gamma'(t)|^2 = (-a\sin(t))^2 + (a\cos(t))^2 + b^2$$

$$= a^2 \left((\sin(t))^2 + (\cos(t))^2 \right) + b^2 = a^2 + b^2$$

پس با توجه به اینکه
$$\gamma(0)=(a,0,0)$$
 میتوان نوشت:

$$s(t)=\int_0^t |\gamma'(u)| \;\mathrm{d}u = \int_0^t \sqrt{a^2+b^2} \;\mathrm{d}u = t\sqrt{a^2+b^2}$$
 : بنابراین، داریم $\widetilde{\gamma}(s)=\gamma(\frac{s}{\sqrt{a^2+b^2}})$ و لذا $t=\frac{s}{\sqrt{a^2+b^2}}$ که نتیجه می دهد
$$\left\{ \begin{array}{l} \widetilde{\gamma}(s)=\left(a\cos\left(\frac{s}{\sqrt{a^2+b^2}}\right),a\sin\left(\frac{s}{\sqrt{a^2+b^2}}\right),\frac{bs}{\sqrt{a^2+b^2}}\right) \\ \widetilde{\gamma}:[0,\infty) \to \mathbb{R}^3 \end{array} \right.$$

بردار مماس یکه

فرض کنید \mathbb{R}^3 فرض کنید $\gamma:[a,b] \to \mathbb{R}^3$ یک منحنی است. در این صورت، بهازای هر $\gamma:[a,b] \to \mathbb{R}^3$ بر تصویر γ در γ مماس است. بنابراین، بردار یکهٔ زیر جهت حرکت را نشان میدهد:

$$T(t) = \frac{\gamma'(t)}{|\gamma'(t)|}$$

از اینجا به بعد، همهٔ منحنیهایی که در نظر گرفته میشوند، سهبار مشتقپذیر با مشتق سوم پیوسته هستند. همچنین، وقتی مینویسیم $\gamma(s)$ ، منظور این است که γ بر حسب طول قوس یارامتری شده است.

- توجه میکنیم که اگر γ بر حسب طول قوس پارامتری شده باشد، آنگاه $1=|\gamma'|$ ، و از Γ $T(s) = \gamma'(s) = \mathrm{v}(s)$ اینرو بهازای هر s داریم
 - توجه کنید که T یک بردار یکه است، لذا |T|=1، که نتیجه می دهد:

$$1 = |T(s)|^2 = T(s).T(s) \implies 0 = 2T'(s).T(s)$$

بنابراین، T(s) و T'(s) بهازای هر s بر هم عمودند.

Kiani-Saeedi Madani-Saki

انحنا

فرض کنید $\mathbb{R}^3 o [0,L] o \gamma$ یک منحنی است. انحنای γ در هر $s \in [0,L] o s$ بهصورت زیر تعریف می شود:

$$\kappa(s) = \left| \frac{d}{ds} T(s) \right|$$

همچنین، شعاع انحنای γ به صورت زیر تعریف می شود:

$$ho(s)=rac{1}{\kappa(s)}, \quad \kappa(s)
eq 0$$
 و اگر $ho(s)=\infty$ آنگاہ تعریف میکنیم $ho(s)=0$ و اگر

قضيه

فرض کنید $\mathbb{R}^3 \to [0,L] \to \mathbb{R}^3$ یک منحنی است. در این صورت، انحنا نمایانگر میزان چرخش مماس یکه است؛ یعنی

$$\kappa(s) = \lim_{\Delta s \to 0} \left| \frac{\Delta \theta}{\Delta s} \right| = \left| \frac{\mathrm{d}}{\mathrm{d}s} \theta(s) \right|$$

اثبات:

T(s)

داریم
$$rac{|\Delta T|}{2}=\sin\left(rac{\Delta heta}{2}
ight)$$
یس وقتی $\Delta s o 0$ داریم $\Delta s o 0$ داریم

بنابراین، داریم:

$$\kappa(s) = \lim_{\Delta s \to 0} \frac{|\Delta T|}{|\Delta s|} = \lim_{\Delta s \to 0} \frac{\left| 2 \sin\left(\frac{\Delta \theta}{2}\right)\right|}{|\Delta s|} = \lim_{\Delta s \to 0} \frac{2\left| \frac{\sin\left(\frac{\Delta \theta}{2}\right)}{\frac{\Delta \theta}{2}}\right| \frac{|\Delta \theta|}{2}}{|\Delta s|}$$

$$= \lim_{\Delta s \to 0} \left| \frac{\sin\left(\frac{\Delta \theta}{2}\right)}{\frac{\Delta \theta}{2}} \right| \lim_{\Delta s \to 0} \left| \frac{\Delta \theta}{\Delta s} \right| = \lim_{\Delta s \to 0} \left| \frac{\Delta \theta}{\Delta s} \right| = \left| \frac{\mathrm{d}}{\mathrm{d}s} \theta(s) \right|$$

بردار قائم یکهٔ اصلی

فرض کنید $\gamma:[0,L] \to \mathbb{R}^3$ یک منحنی است. در این صورت، بردار قائم یکهٔ اصلی γ را با نماد N، بهصورت زیر تعریف میکنیم:

$$N(s) = \frac{T'(s)}{|T'(s)|} = \frac{1}{\kappa(s)}T'(s) = \rho(s)T'(s)$$

توجه کنید که N(s) جهت تقعر تصویر منحنی را در $\gamma(s)$ نشان میدهد و N(s) و T(s) بر هم عمودند؛ زیرا قبلاً نشان دادیم که T(s) بر T(s) عمود است.

بنابر شکل، ΔT بهازای Δs کوچک همان جهت T'(s) را نشان می دهد که هم جهت با N(s) است.

بردار قائم يكهٔ دوم

فرض کنید که \mathbb{R}^3 فرض کنید که $\gamma:[0,L] o \mathbb{R}^3$ یک منحنی است. در این صورت، بردار قائم یکهٔ دوم γ با نماد را بهصورت زیر تعریف میکنیم: B

$$B(s) = T(s) \times N(s)$$

كنج فرنه

فرض کنید که $\mathbb{R}^3 o \gamma: [0,L] o \gamma$ یک منحنی است. در این صورت، سه تایی (T,N,B) را کنج فرنه برای γ مینامیم.

ست. \mathbb{R}^3 بهازای هر (T(s),N(s),B(s)) به ستایی $s\in[0,L]$ بهازای هر

اگر $\mathbb{R}^2 \to \mathbb{R}^2$ یک منحنی باشد، آنگاه میتوانیم با برابر 0 قرار دادن مؤلفهٔ سوم $\gamma:[0,L] \to \mathbb{R}^2$ یک منحنی در \mathbb{R}^3 داشته باشیم. پس، بردارهای مماس یکه، قائم یکهٔ اصلی، انحنا و شعاع انحنا برای γ قابل تعریف خواهند بود.

فرض کنید $\gamma:[0,L] o \mathbb{R}^2$ یک خم است. در این صورت:

- . دوتایی (T,N) را کنج فرنه برای γ مینامیم \blacksquare
- ست. \mathbb{R}^2 بهازای هر T(s),N(s) بیک پایه برای $s\in[0,L]$ است.

YY / YY Kiani-Saeedi Madani-Saki

مثال

فرض کنید a>0 و خم C با نمایش پارامتری a>0 به ازای مرض کنید a>0 داده شده است. منحنی a>0 را بر حسب طول قوس پارامتری کنید، و انحنا، a>0 داده شده است. منحنی a>0 را بر حسب طول قوس پارامتری کنید، و انحنا، شعاع انحنا و بردارهای یکهٔ مماس و قائم اصلی را در یک نقطه روی a>0 به دست آورید.

پاسخ: داریم $r'(t) = -a\sin(t)i + a\cos(t)j$ و از اینرو:

$$|r'(t)| = \sqrt{(-a\sin(t))^2 + (a\cos(t))^2} = a, \quad s(t) = \int_0^t a \, du = at.$$

پس، $\frac{s}{a}=t$ ، و بنابراین r به صورت زیر بر حسب طول قوس پارامتری می شود:

$$\tilde{r}(s) = r\left(\frac{s}{a}\right) = a\cos\left(\frac{s}{a}\right)i + a\sin\left(\frac{s}{a}\right)j$$

حال، بردارهای یکهٔ مماس و قائم اصلی را بهدست می آوریم:

$$T(s) = \tilde{r}'(s) = -\sin\left(\frac{s}{a}\right)i + \cos\left(\frac{s}{a}\right)j$$

$$T'(s) = -\frac{\cos\left(\frac{s}{a}\right)}{a}i - \frac{\sin\left(\frac{s}{a}\right)}{a}j, \quad \kappa(s) = |T'(s)| = \frac{1}{a}, \quad \rho(s) = a$$

$$N(s) = \frac{1}{\kappa(s)}T'(s) = -\cos\left(\frac{s}{a}\right)i - \sin\left(\frac{s}{a}\right)j = -\frac{1}{a}\tilde{r}(s)$$

