

Universidade Federal de Pernambuco Centro Acadêmico do Agreste Núcleo de Tecnologia Engenharia Civil

Primeira Prova

Dados de Identificação	
Disciplina:	Algebra Linear
Professor:	Fernando Contreras
Aluno(a):	

- 1. Seja $V = \{(x, y, z) \in \mathbb{R}^3 : z > 0\}$ o espaço vetorial com as operações: $(x, y, z) \oplus (a, b, c) = (x + a + 2, y + a + 2, y + a + b)$ $(b,zc), (x,y,z), (a,b,c) \in V; \alpha \odot (x,y,z) = (\alpha x + 2(\alpha - 1), \alpha y, z^{\alpha}), (x,y,z) \in V, \alpha \in \mathbb{R}.$
 - (a) **(0.5)** Calcule $3 \odot (-1,0,2) \oplus 2 \odot (2,-1,3)$
 - (b) (0.5) Determine o vetor nulo desse espaço vetorial.
 - (c) (0.5) Determine o simétrico ou posto de (x, y, z).
 - (d) (0.5) Verifique se $W = \{(x, y, z) : x = -2\}$ é um subespaço vetorial de V.
- 2. Seja $V = M_{2\times 2}(\mathbb{R})$ com as operações usuais e seja $W = \left\{ B \in V : B \text{ comuta com } A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \right\}$.
 - (a) (1.0) Mostre que se $B \in W$, então existem constantes reais $\alpha \in \beta$ tais que $B = \alpha A + \beta I$, onde I é a matriz identidade.
 - (b) (1.0) Por que W é um subespaço vetorial de V? Exiba uma base para W. Justifique adequadamente.
- 3. Uma transformação $T: E \longrightarrow F$, entre espaços vetoriais, chama-se afim quando se tem T((1-t)u+tv) =(1-t)T(u)+tT(u) para quaisquer $u,v\in E$ e $t\in \mathbb{R}$. Dada a transformação afim $T:E\longrightarrow F$, prove que:
 - (a) (1.0) Supondo ainda que T(0) = 0, a relação $T(\frac{1}{2}(u+v)) = \frac{1}{2}(T(u) + T(v))$, implica que $T(u+v) = \frac{1}{2}(T(u) + T(v))$ T(u) + T(v) para quaisquer $u, v \in E$.
 - (b) (1.0) Para todo $b \in F$, a transformação $S : E \longrightarrow F$, definida por S(v) = T(v) + b também é *afim*.
- 4. (2.0) O produto vetorial de dois vetores $v = (x_1, y_1, z_1)$ e $w = (x_2, y_2, z_2)$ em \mathbb{R}^3 é, por definição, o vetor $v \times$ $w = (y_1z_2 - z_1y_2, z_1x_2 - x_1z_2, x_1y_2 - y_1x_2)$. Fixado o vetor u = (a, b, c), determine a matriz, relativamente à base canônica, do operador $A: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, definido por $A(v) = v \times u$. Descreva geometricamente o núcleo desse operador e obtenha a equação da sua imagem.
- 5. (2.0) Considere \mathbb{R}^3 com as operações usuais e sejam $\alpha = \{(1,1,1), (1,1,0), (1,0,0)\}$ e

$$A = \left[\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{array} \right]$$

 $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix}.$ Determine a base $\beta = \{v^1, v^2, v^3\}$ de \mathbb{R}^3 tal que $A = [I]^{\alpha}_{\beta}$.