Matière: Physique-Chimie

Unité : Mécanique Niveau : 2BAC-SM-PC

Établissement : $Lyc\acute{e}e$ SKHOR qualifiant Professeur : Zakaria Haouzan

Heure: 6H

Leçon N°3: Les mouvements plans Durée 7h00

Fiche Pédagogique

Prérequis

- Cinématique du point matériel (position, vitesse, accélération)
- Dynamique du point matériel (lois de Newton, forces)
- Champ de pesanteur
- Notions de base sur les champs électriques et magnétiques
- Trigonométrie et vecteurs

Compétences visées

- Caractériser les différents types de mouvements plans
- Établir et exploiter les équations horaires d'un mouvement dans un plan
- Déterminer les caractéristiques d'un mouvement de projectile dans le champ de pesanteur
- Analyser le mouvement d'une particule chargée dans un champ électrique uniforme
- Analyser le mouvement d'une particule chargée dans un champ magnétique uniforme
- Appliquer ces connaissances à des situations concrètes (spectromètre de masse, cyclotron)

Savoir et savoir-faire

- Déterminer les équations du mouvement d'un solide sur un plan horizontal et sur un plan incliné
- Établir et exploiter les équations du mouvement d'un projectile dans le champ de pesanteur
- Calculer la portée et la hauteur maximale d'un projectile
- Décrire l'action d'un champ magnétique sur une particule chargée en mouvement
- Caractériser la force de Lorentz et ses effets sur la trajectoire d'une particule chargée
- Appliquer ces connaissances à l'étude du spectromètre de masse et du cyclotron

Outils didactiques

- Ordinateur et logiciels de simulation
- Vidéoprojecteur
- Tube de Crookes
- Bobines d'Helmholtz
- Maquette de plan incliné
- Rail avec électroaimant pour l'étude du mouvement des projectiles
- Maquettes ou animations de spectromètre de masse et de cyclotron

Situation-problème

Un joueur de basketball tire un ballon vers le panier. Le ballon suit une trajectoire dans l'air avant d'atteindre (ou non) sa cible.

- 1. Comment peut-on décrire mathématiquement la trajectoire du ballon?
- 2. Quels sont les facteurs qui influencent la réussite du tir?
- 3. Comment déterminer l'angle optimal pour marquer un panier?

Déroulement détaillé

I. Introduction aux mouvements plans

- Définir ce qu'est un mouvement plan (mouvement dont la trajectoire est située dans un plan)
- Présenter les différents types de mouvements plans qui seront étudiés:
 - Mouvement sur un plan horizontal et sur un plan incliné
 - Mouvement d'un projectile dans le champ de pesanteur
 - Mouvement d'une particule chargée dans un champ électrique uniforme
 - Mouvement d'une particule chargée dans un champ magnétique uniforme
- Discuter les applications pratiques de l'étude des mouvements plans (balistique, technologies, sports, etc.)

II. Mouvement d'un solide sur un plan horizontal et sur un plan incliné (Rappel)

- Rappeler les équations du mouvement rectiligne uniformément varié
- Analyser les forces en jeu sur un plan horizontal (poids, réaction normale, frottements)
- Analyser les forces en jeu sur un plan incliné (composantes du poids, réaction normale, frottements)
- Établir les équations du mouvement dans chaque cas

Éléments du cours	Activités didactiques de l'enseignant	Activités didactiques de l'apprenant	Évaluation
I. Introduction aux mouvements plans	• Présenter la situation- problème	• Analyser la situation et formuler des hypothèses	Évaluation diagnos-tique
	• Demander aux apprenants de proposer des hypothèses pour répondre aux questions	 Proposer des explications sur la trajectoire du ballon Identifier les paramètres 	
	Collecter et discuter les hypothèses proposées	qui peuvent influencer le tir	
II. Mouvement d'un solide sur un plan horizontal et sur un plan incliné (Rappel)	• Rappeler les équations du mouvement sur un plan horizontal	• Identifier les forces agissant sur un solide sur un plan horizontal	Évaluation forma- tive
	• Présenter le cas du plan incliné	• Analyser les forces sur un plan incliné	
	• Poser des questions sur les forces en jeu	• Établir les équations du mouvement	
III. Mouvement d'un projectile dans le champ de pesanteur	• Réaliser l'expérience avec une bille lancée	Observer la trajectoire parabolique	Évaluation forma- tive
	depuis un rail • Demander d'observer et	• Appliquer la 2ème loi de Newton	
	 de décrire la trajectoire Guider l'établissement des équations du mouve- 	• Établir les équations horaires du mouvement	
IV. Mouvement	ment	Déterminer l'équation de la trajectoire	Évaluation
d'une particule chargée dans un champ électrique	• Présenter le dispositif expérimental	• Identifier la force électrique	forma- tive
uniforme	• Expliquer l'action d'un champ électrique sur une	• Appliquer la 2ème loi de Newton	
	particule chargée • Guider l'établissement	• Établir les équations du mouvement	
	des équations du mouve- ment	• Caractériser la trajectoire	
V. Mouvement d'une particule chargée dans un champ magnétique	• Réaliser l'expérience avec un tube de Crookes	Observer la déviation des électrons	Évaluation forma- tive
uniforme	• Expliquer la force de Lorentz	• Caractériser la force magnétique	
	Guider l'analyse du mouvement	Démontrer que le mouvement est circulaire uniforme	
	• Démontrer que le mou-		

III. Mouvement d'un projectile dans le champ de pesanteur

- Réaliser l'expérience de la bille lancée depuis un rail
- Observer et caractériser la trajectoire parabolique
- Établir le bilan des forces (poids uniquement si on néglige les frottements de l'air)
- Appliquer la 2ème loi de Newton pour établir les équations du mouvement:

$$\begin{cases} a_x = 0 \\ a_y = -g \end{cases}$$

• Intégrer ces équations pour obtenir les composantes de la vitesse:

$$\begin{cases} v_x = v_0 \cos \alpha \\ v_y = -gt + v_0 \sin \alpha \end{cases}$$

• Intégrer à nouveau pour obtenir les équations horaires:

$$\begin{cases} x = v_0 \cos \alpha \cdot t \\ y = -\frac{1}{2}gt^2 + v_0 \sin \alpha \cdot t \end{cases}$$

• Éliminer le paramètre t pour obtenir l'équation de la trajectoire:

$$y = -\frac{g}{2v_0^2 \cos^2 \alpha} x^2 + x \tan \alpha$$

• Déterminer les coordonnées du sommet S de la trajectoire:

$$x_S = \frac{v_0^2 \sin(2\alpha)}{2g}$$
$$y_S = \frac{v_0^2 \sin^2 \alpha}{2g}$$

• Calculer la portée du projectile:

$$x_P = \frac{v_0^2 \sin(2\alpha)}{q}$$

• Déterminer l'angle optimal pour une portée maximale: $\alpha = \frac{\pi}{4}$

IV. Mouvement d'une particule chargée dans un champ électrique uniforme

- Définir le champ électrique uniforme
- Établir les équations du mouvement en appliquant la 2ème loi de Newton
- Montrer que le mouvement est uniformément accéléré
- Établir l'analogie avec la chute libre dans le champ de pesanteur

V. Mouvement d'une particule chargée dans un champ magnétique uniforme

- Définir le champ magnétique uniforme
- Présenter l'expérience du tube de Crookes
- Observer la déviation des électrons dans différentes configurations
- Caractériser la force magnétique (force de Lorentz): $\vec{F} = q\vec{v} \wedge \vec{B}$
- Analyser les caractéristiques de cette force:
 - Direction: perpendiculaire au plan (\vec{v}, \vec{B})
 - Sens: selon la règle de la main droite
 - Intensité: $F = |q|vB\sin(\vec{v}, \vec{B})$
- Démontrer que le mouvement est uniforme:
 - La force de Lorentz est perpendiculaire à la vitesse
 - Son travail est nul: $W(\vec{F}) = 0$
 - L'énergie cinétique reste constante: $\Delta E_c = 0$
 - La vitesse est constante: v = cte
- Démontrer que le mouvement est plan:
 - L'accélération tangentielle est nulle: $a_t = \frac{dv}{dt} = 0$
 - L'accélération est normale
 - Le mouvement se fait dans un plan perpendiculaire à \vec{B}
- Démontrer que le mouvement est circulaire:
 - En appliquant la 2ème loi de Newton: $q\vec{v}\wedge\vec{B}=m\vec{a}$
 - En utilisant le repère de Frenet: $|q|vB=m\frac{v^2}{R}$
 - Calculer le rayon de la trajectoire: $R = \frac{mv}{|q|B}$
- Analyser la déviation magnétique:
 - Établir la relation: $D_m = \frac{l \cdot D \cdot |q| \cdot B}{m \cdot v_0}$

VI. Applications: Spectromètre de masse et cyclotron

- Présenter le principe du spectromètre de masse:
 - Description des différentes parties (chambre d'ionisation, d'accélération, de séparation)
 - Principe de séparation des isotopes
 - Calcul du diamètre de la trajectoire: $D = 2R = \frac{2mv_0}{|q|B}$
- Expliquer le fonctionnement du cyclotron:
 - Description du dispositif (dees, champ magnétique, oscillateur)
 - Principe d'accélération des particules
 - Synchronisation du champ électrique alternatif

VII. Conclusion et évaluation

- Synthétiser les concepts clés des mouvements plans étudiés
- Revenir sur la situation-problème initiale:
 - Trajectoire parabolique du ballon de basketball
 - Facteurs influençant la réussite du tir (vitesse initiale, angle, hauteur de lancer)
 - Détermination de l'angle optimal
- Proposer des exercices d'application pour chaque type de mouvement étudié
- Évaluer la compréhension des concepts par les apprenants