Bayesian nonparametrics

Dr. Jarad Niemi

STAT 615 - Iowa State University

December 5, 2017

Outline

- Stochastic kinetic models
- Approximate Bayesian computation

Stochastic kinetic models

Imagine a well-mixed system in thermal equilibrium with

- N species: S_1, \ldots, S_N with
- number of molecules X_1, \ldots, X_N with elements $X_i \in \mathbb{Z}^+$
- ullet which change according to M reactions: R_1,\ldots,R_M with
- propensities $a_1(x), \ldots, a_M(x)$.
- The propensities are given by $a_j(x) = \theta_j h_j(x)$
- where $h_i(x)$ is a known function of the system state.
- ullet If reaction j occurs, the state is updated by the stoichiometry ν_j with
- elements $\nu_{ij} \in \{-2, -1, 0, 1, 2\}$, i.e. reaction orders 0,1, and 2.

Michaelis-Menton System

The Michaelis-Menton system has N=4 species:

- Substrate (S),
- Enzyme (E),
- Substrate-Enzyme Complex (SE), and
- Product (P).

The M=3 reactions as well as their propensities and stoichiometries are

			Stoichiometry			
Reaction		Propensity	S	Ε	SE	Р
S + E	\longrightarrow SE	$\theta_1 X_S X_E$	-1	-1	1	
SE	$\longrightarrow S + E$	$\theta_2 X_{SE}$	1	1	-1	
SE	$\longrightarrow P{+}E$	$\theta_3 X_{SE}$		1	-1	1

where $\theta = (\theta_1, \theta_2, \theta_3)$ is the parameter of interest.

Michaelis-Menton snapshot

Gillespie algorithm

ullet If reaction $j \in \{1, \dots, M\}$ has the following probability

$$\lim_{dt\to 0} P(\text{reaction } j \text{ within the interval } (t,t+dt)|X_t) = a_j(X_t)dt,$$

then this defines a continuous-time Markov jump process.

- Then a realization from this model can be obtained using the Gillespie algorithm:
 - 1. For $j \in \{1, \dots, M\}$, calculate $a_j(X_t)$.
 - 2. Calculate $a_0(X_t) = \sum_{i=1}^{M} a_i(X_t)$.
 - 3. Simulate a reaction time $\tau \sim Exp(a_0(X_t))$
 - 4. Simulate a reaction id $k \in \{1, \dots, M\}$ with probability $a_k(X_t)/a_0(X_t)$
 - 5. Update X according to v_k and time by τ .

Michaelis-Menton Gillespie Simulation

Complete observations

Suppose you observe all system transitions:

- ullet n reactions occur in the interval [0,T]
- t_1, \ldots, t_n are the reaction times
- r_1, \ldots, r_n are the reaction indicators, $r_i \in \{1, \ldots, M\}$

Then inference can be performed based on the likelihood

$$L(\theta) \propto \prod_{j=1}^{M} \theta_j^{n_j} \exp(-\theta_j I_j)$$

where

$$n_j = \sum_{i=1}^n \mathrm{I}(r_i = j) \# \text{ of } j \text{ reactions}$$

$$I_j = \int_0^T h_j(X_t)dt = \sum_{i=1}^n h_j(X_{t_{i-1}})(t_i - t_{i-1}) + h_j(X_{t_n})[T - t_n]$$

Inference

Maximum likelihood estimation

$$\hat{\theta}_j = \frac{n_j}{I_j}$$

Conjugate Bayesian inference

$$p(\theta) = \prod_{j=1}^{M} Ga(\theta_j; \alpha_j, \beta_j)$$

$$p(\theta|X) = \prod_{j=1}^{M} Ga(\theta_j; \alpha_j + n_j, \beta_j + I_j)$$

$$E[\theta_j|X] = \frac{\alpha_j + n_j}{\beta_i + I_i}$$

Michaelis-Menton Complete Data Inference

Discrete observations

Suppose you only observe the system at discrete-times:

- For simplicity, observe the system at times $t = 1, 2, \dots, T$.
- At these times, we observe $y_t = X_t$ the system state.
- But do not observe the system between these times.

Michaelis-Mention discrete observations

Inference

Inference is still performed based on the likelihood

$$L(\theta) = p(y|\theta) = p(t,y)$$

but this is the solution to the chemical master equation

$$\frac{\partial}{\partial t}p(t,y) = \sum_{j=1}^{M} \left(a_j(y - v_m)p(t,y - v_m) - a_j(y)p(t,y)\right)$$

For constitutive production $h(X_t) = 1$ and $a(X_t) = \theta$, we still have

$$L(\theta) \propto \theta^n \exp(-\theta I)$$

with

$$n = y_T - y_0$$
 $I = \int_0^T 1 dt = T$

Reversible isomerization

- How many reactions occurred in the interval [30, 31]?
- What is $\int_{30}^{31} X_{SE} dt$?

Summary

 With complete observations and independent gamma priors, the posterior is

$$p(\theta|X) = \prod_{j=1}^{M} Ga(\theta_j; \alpha_j + n_j, \beta_j + I_j)$$

where

$$n_j = \sum_{i=1}^n I(r_i = j)$$

$$I_j = \int_0^T h_j(X_t) dt = \sum_{i=1}^n h_j(X_{t_{i-1}})(t_i - t_{i-1}) + h_j(X_{t_n})[T - t_n]$$

• For discrete observations, the likelihood is analytically intractable and therefore no closed form exists for the posterior (or MLEs).

The idea

- But we can simulate from the model using the Gillespie algorithm!!
- Intuitively, if we
 - 1. pick a set of parameters,
 - 2. simulate a realization using these parameters,
 - 3. and it matches our data,
 - 4. then these parameters should be reasonable.

Our goal is to formalize this through

- 1. Rejection sampling
- 2. Gibbs sampling

Simulations from the prior

Rejection sampling

Our objective is samples from the posterior

$$p(\theta|y) = \int p(\theta, X|y)dX \propto \int p(y|X)p(X|\theta)p(\theta)dX$$

=
$$\int \prod_{t=1}^{n} I(y_t = X_t)p(X|\theta)p(\theta)dX$$

A rejection sampling procedure is

- 1. Sample $\theta \sim p(\theta)$.
- 2. Sample $X \sim p(X|\theta)$ a.k.a. Gillespie
- 3. If $y_t = X_t$ for t = 1, 2, ..., T, then
- 4. θ is a sample from $p(\theta|y)$ and
- 5. θ, X is a sample from $p(\theta, X|y)$.

Gibbs sampling

Our objective is samples from the posterior

$$p(\theta|y) = \int p(\theta, X|y)dX \propto \int p(y|X)p(X|\theta)p(\theta)dX$$

A Gibbs sampling procedure is

- 1. Start with $\theta^{(0)}, X^{(0)}$
- 2. For k = 1, ..., K,
 - a. Sample $\theta^{(k)} \sim p(\theta|X^{(k-1)})$
 - b. Sample $X^{(k)} \sim p(X|\theta^{(k)},y)$ a.k.a. rejection sampling
- $\theta^{(k)}, X^{(k)}$ converge to samples from $p(\theta, X|y)$

An approximate posterior

- Intuitively, if we
 - 1. pick a set of parameters,
 - 2. simulate a realization using these parameters,
 - 3. and it is similar to our data,
 - 4. then these parameters should be reasonable.
- We can formalize this using
 - Approximate Bayesian computation

Approximate Bayesian computation (ABC)

Our approximate objective is samples from the posterior

$$p(\theta|y) = \int p(\theta, X|\rho \le \epsilon) dX \propto \int \mathrm{I}(\rho \le \epsilon) p(X|\theta) p(\theta) dX$$

where $\rho = \rho(y,X)$ is a measure of the difference between your data y and simulations X.

- ullet Choice of ϵ reflects tension between computability and accuracy.
 - As $\epsilon \to \infty$.
 - $p(\theta|\rho \le \epsilon) \stackrel{d}{\to} p(\theta)$
 - acceptance probability converges to 1
 - As $\epsilon \to 0$.
 - $p(\theta|\rho \le \epsilon) \stackrel{d}{\to} p(\theta|y)$
 - acceptance probability decreases

ABC rejection sampling

Let
$$\rho = \sum_{t=1}^{n} |y_t - X_t|$$
 and $\epsilon = n$,

An ABC rejection sampling procedure is

- 1. Sample $\theta \sim p(\theta)$
- 2. Sample $X \sim p(X|\theta)$ a.k.a. Gillespie
- 3. If $\rho(y, X) \leq \epsilon$, then
- 4. θ is a sample from $p(\theta|\rho \leq \epsilon)$ and
- 5. θ, X is a sample from $p(\theta, X | \rho \leq \epsilon)$.

ABC Gibbs sampling

Let
$$\rho = \sum_{t=1}^{n} |y_t - X_t|$$
 and $\epsilon = n$,

A Gibbs sampling procedure is

- 1. Start with $\theta^{(0)}, X^{(0)}$
- 2. For k = 1, ..., K,
 - a. Sample $\theta^{(k)} \sim p(\theta|X^{(k-1)})$
 - b. Sample $X^{(k)} \sim p(X|\theta^{(k)}, \rho \leq \epsilon)$ a.k.a. rejection sampling
- $\theta^{(k)}, X^{(k)}$ converge to samples from $p(\theta, X | \rho \leq \epsilon)$

Michaelis-Menton system

$$E + S \xrightarrow{\theta_1} ES \xrightarrow{\theta_3} E + P$$

Table: Measurements taken from a simulated Michaelis-Mention system with parameters $\theta_1=0.001$, $\theta_2=0.2$, and $\theta_3=0.1$.

Time	0	10	20	30	40	50	60	70	80	90	100
E	120	71	76	81	80	90	90	104	103	109	109
S	301	219	180	150	108	86	61	52	35	29	22

With $\epsilon=0$ (i.e. draws from $p(\theta|y)$),

Since rejection sampling is inherently parallel, run this algorithm on a graphical processing unit:

Summary

- Bayesian inference in discretely observed SCKMs
 - Goal: $p(\theta|y) \propto p(y|\theta)p(\theta)$
 - Likelihood, $L(\theta) = p(y|\theta)$, is analytically intractable
 - Sampling methods are required, e.g. rejection and/or Gibbs
 - Acceptance rate can be unacceptably low
- Approximate Bayesian computation (ABC) in SCKMs
 - Goal: $p(\theta|\rho \le \epsilon) \propto p(\rho \le \epsilon|\theta)p(\theta)$
 - $m{\bullet}$ ho=
 ho(y,X) measures the difference between data and a simulation
 - \bullet ϵ balances computability with accuracy
 - ullet Readily accommodates bounded errors, e.g. $y_t = X_t \pm \epsilon$
- ABC generally
 - More general than SKMs, e.g. phylogenetic trees
 - Building ρ is an art, often use sufficient statistics of the data
 - Not useful for unbounded errors, e.g. $y_t = X_t + \epsilon_t, \epsilon_t \sim N(0, \sigma^2)$
 - Current debate about usefulness for model selection