

Unidad VI

Lenguajes de Consulta de Bases de Datos Relacionales

INF-239, ILI-239 Bases de Datos
Profesora Cecilia Reyes Covarrubias – Casa Central
Diapositivas realizadas con la colaboración Prof. J.Luis Martí – Campus San Joaquín

TEMARIO UNIDAD VI

- 6.1 Lenguaje de Consulta (DML)
- 6.2 Algebra Relacional
 - 6.2.1. Operaciones Tradicionales
 - 6.2.2. Operaciones Especiales

6.1 LENGUAJE DE CONSULTA

LENGUAJE DE CONSULTA (DML)

- Data Manipulation Language
- Es un lenguaje proporcionado por los DBMS para recuperar datos (leer) y mantener una base de datos al día (insertar, borrar, modificar).
- Las aplicaciones que utilizan bases de datos pueden ser desarrolladas en algún lenguaje de programación (PHP, Java, C, COBOL,...) insertando en el código fuente sentencias de DML. A estos lenguajes se les denomina "host-language".
- Los DML pueden ser procedurales teniendo sentencias de control de flujo como bucles o condicionales; o declarativos, cuyo foco está en qué datos se desean no en cómo buscarlos.

LENGUAJE DE CONSULTA (DML)

- La manipulación de datos se puede hacer de dos formas en un RDBMS:
 - De manera procedural, donde se indica el procedimiento (o algoritmo) para obtener los datos requeridos. Ej.: Álgebra Relacional.
 - De una forma declarativa, en donde se establecen las condiciones que deben cumplir las relaciones o tablas involucradas en la obtención del resultado, pero sin señalar cómo hacerlo. Ejs.: Cálculo Relacional, SQL (Structured Query Language).

6.2 ALGEBRA RELACIONAL

ALGEBRA RELACIONAL

- Es un conjunto básico de operaciones del modelo relacional.
- Las operaciones permiten especificar las consultas de recuperación básica sobre el contenido de una base de datos.
- Una secuencia de operaciones del álgebra relacional es una expresión de la misma, generando una nueva relación o tabla.
- Tiene dos grupos de operaciones:
 - Tradicionales: Unión, Intersección, Diferencia (MINUS), Producto Cartesiano (TIMES).
 - Especiales: Selección, Proyección, Join, División.

- La unión de dos tablas, A y B, se define como la tabla que agrupa todos las tuplas de A y todas las tuplas de B.
- Es necesario que ambas tablas sean del tipo unión-compatibles, es decir que posean la misma cantidad de atributos y que sean compatibles entre sí, posición a posición.

- Símbolo \cup : A \cup B
- Palabra Reservada UNION: A UNION B

TABLA B

Código Alumno	Nombre Alumno	Carrera	Código Alumno		Carrera
100	José Carvajal	Computación	150	Juan Carrasco	Contabilidad
200	Ana González	Diseño	200	Ana González	Diseño
300	Paola Nuñez	Contabilidad	250	Pedro Gamboa	Computación

A UNION B

Código Alumno	Nombre Alumno	Carrera
100	José Carvajal	Computación
150	Juan Carrasco	Contabilidad
200	Ana González	Diseño
250	Pedro Gamboa	Computación
300	Paola Nuñez	Contabilidad

ALGEBRA RELACIONAL - INTERSECT

- La intersección de dos tablas, A y B, es la relación que contiene todas las tuplas que, simultáneamente, se encuentran en A y en B.
- También es necesario que ambas tablas sean del tipo unión-compatibles.

- Símbolo \cap : A \cap B
- Palabra Reservada INTERSECT: A INTERSECT B

Código Alumno	Nombre Alumno	Carrera	Código Alumno		Carrera
100	José Carvajal	Computación	150	Juan Carrasco	Contabilidad
200	Ana González	Diseño	200	Ana González	Diseño
300	Paola Nuñez	Contabilidad	250	Pedro Gamboa	Computación

A INTERSECT B

Código Alumno	Nombre Alumno	Carrera
200	Ana González	Diseño

- La diferencia de dos tablas, A y B, se define como la tabla que contiene las tuplas de A que no están en B.
- Es necesario, nuevamente, que ambas tablas sean del tipo unión-compatibles.

- Símbolo : A B
- Palabra Reservada MINUS: A MINUS B

TABLA A	TABLA B

Código Alumno	Nombre Alumno	Carrera	Código Alumno		Carrera
100	José Carvajal	Computación	150	Juan Carrasco	Contabilidad
200	Ana González	Diseño	200	Ana González	Diseño
300	Paola Nuñez	Contabilidad	250	Pedro Gamboa	Computación

A MINUS B

Código Alumno	Nombre Alumno	Carrera
100	José Carvajal	Computación
300	Paola Núñez	Contabilidad

ALGEBRA RELACIONAL - TIMES

 El producto cartesiano entre dos tablas, A y B, es la relación que resulta de concatenar cada tupla de A con cada tupla de B.

- Símbolo * : A * B
- Palabra Reservada TIMES: A TIMES B

TABLA A TABLA C

Código	Nombre	Carrera	Código	Dirección
Alumno	Alumno		Alumno	Alumno
100	José Carvajal	Computación	100	Blanco 1353 Freire 1453 Portales 974
200	Ana González	Diseño	200	
300	Paola Nuñez	Contabilidad	300	

Código Alumno (A)	Nombre Alumno	Carrera	Código Alumno (C)	Dirección
100	José Carvajal	Computación	100	Blanco 1353
100	José Carvajal	Computación	200	Freire 1453
100	José Carvajal	Computación	300	Portales 974
200	Ana González	Diseño	100	Blanco 1353
200	Ana González	Diseño	200	Freire 1453
200	Ana González	Diseño	300	Portales 974
300	Paola Nuñez	Contabilidad	100	Blanco 1353
300	Paola Nuñez	Contabilidad	200	Freire 1453
300	Paola Nuñez	Contabilidad	300	Portales 974

ALGEBRA RELACIONAL - SELECT

- La selección retorna un subconjunto de las tuplas de una relación o tabla, las que satisfacen una condición de selección.
- Es una operación unaria y conmutativa.
- En general, se asocia con las condiciones que se incluyen en la cláusula Where de una consulta SQL.
- Se denomina selectividad de la selección a la fracción de las tuplas seleccionadas por una condición de selección.

- Símbolo Sigma: σ
- Palabra Reservada: SELECT

ALGEBRA RELACIONAL - SELECT

- Ej. 1: Buscar los empleados que tengan más de 30 años de edad.
- Ej. 2: Buscar los empleados que tengan más de 30 años de edad y que trabajen en el Depto Nro.80.
 - Mediante el símbolo Sigma: σ
 σedad > 30 (EMPLEADO)
 σedad > 30 and #depto = 80(EMPLEADO)
 - Usando la palabra clave SELECT
 SELECT empleado WHERE edad > 30
 SELECT empleado WHERE edad > 30 and #depto = 80

Tabla A

Código Alumno	Nombre Alumno	Carrera
100	José Carvajal	Computación
200	Ana González	Diseño
300	Paola Núñez	Contabilidad

SELECT A WHERE Codigo_Alumno <> 200

Código	Nombre	Carrera
Alumno	Alumno	
100	José Carvajal	Computación
300	Paola Núñez	Contabilidad

ALGEBRA RELACIONAL - PROJECT

- La proyección selecciona ciertas columnas de la tabla y desecha las demás.
- Es una operación unaria.
- Se aplica a cada tupla, individualmente.
- Elimina las filas duplicadas.

- Símbolo Pi: π
- Palabra Reservada: PROJECT

ALGEBRA RELACIONAL - PROJECT

- Ej. 1: Mostrar la edad de todos los empleados de la empresa.
- Ej. 2: Mostrar la edad y el #depto. de todos los empleados de la empresa.
 - Mediante el símbolo Pi: π

πedad (EMPLEADO)

Tedad, #depto (EMPLEADO)

Usando la palabra clave PROJECT

PROJECT empleado OVER edad

PROJECT empleado OVER edad, #depto

Tabla A

Código Alumno	Nombre Alumno	Carrera
100	José Carvajal	Computación
200	Ana González	Diseño
300	Paola Núñez	Contabilidad

PROJECT A OVER Codigo_Alumno, Nombre_Alumno

Código Alumno	Nombre Alumno
100	José Carvajal
200	Ana González
300	Paola Núñez

 JOIN: es una operación que se obtiene al comparar atributos de dos distintas tablas de datos.

Notación:

- Símbolo X: A X B
- Palabra Reservada: JOIN

JOIN a AND b OVER {atributo_en_común}

Tabla A	Tabla C
	iabia

Código Alumno	Nombre Alumno	Carrera		Código Alumno	Dirección Alumno
100 200 300	José Carvajal Ana González Paola Nuñez		-	100 200 300	Blanco 1353 Freire 1453 Portales 974

JOIN A and C over Codigo_Alumno

Código Alumno	Nombre Alumno	Carrera	Dirección
100	las á Camusial		Dlamas 4070
100	José Carvajal	Computación	Blanco 1373
200	Ana González	Diseño	Freire 1453
300	Paola Núñez	Contabilidad	Portales 974

EquiJoin: Join cuya condición de comparación es de igualdad.

JOIN A AND B OVER A.x = B.y

NonEquiJoin: Join cuya condición de comparación es de desigualdad.

JOIN A AND B OVER A.x > B.y

AutoJoin: Join aplicado sobre atributos de la misma tabla

JOIN Empleado AND Empleado AS jefe OVER rut-jefe = jefe.rut

 Join Externo Izquierdo: ocurre cuando todas las filas de la relación o tabla externa (izquierda del join) aparecen en el resultado, incluso si no tienen una fila de la tabla derecha asociada.

- Mediante el símbolo:]X|
- Mediante las palabras reservadas: LEFT OUTER JOIN

 Join Externo Derecho: se presenta cuando todas las filas de la relación o tabla interna (derecha del join) aparecen en el resultado, incluso si no tienen una fila de la tabla izquierda asociada.

- Mediante el símbolo |X[
- Mediante las palabras reservadas: RIGHT OUTER JOIN

Join Externo: es el resultado del join que contempla todas las filas de las relaciones externa e interna, independiente de si cumplen o no la condición del join.

- Mediante el símbolo]X[
- Mediante las palabras reservadas: OUTER JOIN

ALGEBRA RELACIONAL - EJEMPLOS JOIN

Considerando las siguientes tablas de ejemplo:

Tabla A

RUT	Nombre	Edad	Sueldo
11.111.111-1	Juan	34	300.000
12.121.212-1	Carolina	27	250.000
13.131.313-1	Guillermo	39	320.000

Tabla B

RUT	Nombre	Sueldo	Teléfono
12.121.212-1	Carolina	250.000	2910091
13.131.313-1	Guillermo	320.000	2940094
14.141.414-1	María	340.000	2980098

LEFT OUTER JOIN A AND B OVER Rut:

Rut	Nombre	Edad	Sueldo	Teléfono
11.111.111-1	Juan	34	300.000	
12.121.212-1	Carolina	27	250.000	2910091
13.131.313-1	Guillermo	39	320.000	2940094

RIGHT OUTER JOIN A AND B OVER Rut:

Rut	Nombre	Edad	Sueldo	Teléfono
12.121.212-1	Carolina	27	250.000	2910091
13.131.313-1	Guillermo	39	320.000	2940094
14.141.414-1	María		340.000	2980098

FULL OUTER JOIN A AND B OVER Rut.

Rut	Nombre	Edad	Sueldo	Teléfono
11.111.111-1	Juan	34	300.000	
12.121.212-1	Carolina	27	250.000	2910091
13.131.313-1	Guillermo	39	320.000	2940094
14.141.414-1	María		340.000	2980098

ALGEBRA RELACIONAL - DIVIDE

La división produce una relación R(X) que incluye todas las tuplas t[X] en S(Z) que aparecen en S, en combinación con todas las tuplas de T(Y), donde Z = X U Y.

- Símbolo: ÷
- Palabra Reservada: DIVIDE BY

ALGEBRA RELACIONAL — DIVIDE BY

Considerando la siguiente tabla S con atributos a y b:

а	b
a1	b1
a2	b1
a3	b1
a4	b1
a1	b2
a3	b2
a2	b3
a3	b3
a4	b3
a1	b4
a2	b4
a3	b4

