HIGH POWER SWITCHING USE

APPLICATION

AC drive inverters & Servo controls, etc

HIGH POWER SWITCHING USE

ABSOLUTE MAXIMUM RATINGS (Tj = 25°C)

Symbol	Parameter	Conditions	Ratings	Unit	
VCES	Collector-emitter voltage	G-E Short		1200	V
VGES	Gate-emitter voltage	C-E Short		±20	V
Ic	Collector current	DC, $Tc = 80^{\circ}C^{*1}$	100	Α	
Ісм	Collector current	Pulse	(Note 2)	200	Α
IE (Note 1)	Emitter current			100	Α
IEM (Note 1)	Emilier current	Pulse	(Note 2)	200	Α
PC (Note 3)	Maximum collector dissipation	Tc = 25°C		620	W
Tj	Junction temperature			−40 ~ +150	°C
Tstg	Storage temperature			− 40 ~ + 125	°C
Viso	Isolation voltage	Main Terminal to base plate, AC 1 min.		2500	V
_	Toward atransath	Main Terminal M5		2.5 ~ 3.5	N•m
_	Torque strength	Mounting holes M5		2.5 ~ 3.5	N•m
_	Weight	Typical value		350	g

ELECTRICAL CHARACTERISTICS (Tj = 25°C)

Symbol	Parameter	Test conditions		Limits			
				Min.	Тур.	Max.	Unit
ICES	Collector cutoff current	VCE = VCES, VGE = 0V		_	_	1	mA
VGE(th)	Gate-emitter threshold voltage	IC = 10mA, VCE = 10V		6	7	8	V
IGES	Gate leakage current	VGE = VGES, VCE = 0V		_	_	0.5	μΑ
VCE(sat)	Collector-emitter saturation voltage	IC = 100A, VGE = 15V	Tj = 25°C	_	2.1	3.0	V
			Tj = 125°C	_	2.4	_	
Cies	Input capacitance	VCE = 10V VGE = 0V		_	_	17.5	nF
Coes	Output capacitance			_	_	1.5	nF
Cres	Reverse transfer capacitance			_	_	0.34	nF
QG	Total gate charge	Vcc = 600V, Ic = 100A, VGE = 15V		_	500	_	nC
td(on)	Turn-on delay time	$Vcc = 600V, \ lc = 100A \\ VGE1 = VGE2 = 15V \\ RG = 3.1\Omega, \ lnductive \ load \ switching \ operation \\ lE = 100A$		_	_	100	ns
tr	Turn-on rise time			_	_	70	ns
td(off)	Turn-off delay time			_	_	300	ns
tf	Turn-off fall time			_	_	350	ns
trr (Note 1)	Reverse recovery time			_	_	150	ns
Qrr (Note 1)	Reverse recovery charge			_	4.8	_	μС
VEC(Note 1)	Emitter-collector voltage	IE = 100A, VGE = 0V		_	_	3.8	V
Rth(j-c)Q		IGBT part (1/6 module)*1		_	_	0.20	°C/W
Rth(j-c)R	Thermal resistance	FWDi part (1/6 module)*1		_	_	0.28	°C/W
Rth(c-f)	Contact thermal resistance	Case to fin, Thermal compound Applied (1/6 module)*2		_	0.085	_	°C/W
RG	External gate resistance			3.1	_	42	Ω

*1 : Tc measured point is just under the chips.

If you use this value, Rth(f-a) should be measured just under the chips.
*2 : Typical value is measured by using Shin-etsu Silicone "G-746".

Note 1. IE, VEC, trr & Qrr represent characteristics of the anti-parallel, emitter to collector free-wheel diode (FWDi).

- 2. Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed T_{jmax} rating.

 3. Junction temperature (Tj) should not increase beyond 150°C.

 4. Pulse width and repetition rate should be such as to cause neglible temperature rise.

HIGH POWER SWITCHING USE

PERFORMANCE CURVES

HIGH POWER SWITCHING USE

OF FREE-WHEEL DIODE (TYPICAL) REVERSE RECOVERY CURRENT In (A) 10³ REVERSE RECOVERY TIME trr (ns) 7 5 3 2 10² trr Conditions: 5 Vcc = 600V $VGE = \pm 15V$ 3

2

101 L 101

2 3

REVERSE RECOVERY CHARACTERISTICS

EMITTER CURRENT IE (A)

5 7 102

 $RG = 3.1\Omega$

Tj = 25°C

Inductive load

2 3 5 7 103

TRANSIENT THERMAL **IMPEDANCE CHARACTERISTICS** (IGBT part & FWDi part)

TIME (s)

COLLECTOR CURRENT Ic (A)

SWITCHING LOSS vs. **GATE RESISTANCE** (TYPICAL)

GATE RESISTANCE RG (Ω)

RECOVERY LOSS vs. IE (TYPICAL)

RECOVERY LOSS vs. **GATE RESISTANCE**

HIGH POWER SWITCHING USE

