PCG Part 3: Silent VOLE and OT Protocols from LPN

Peter Scholl

26 January 2022, Bar-Ilan University Winter School

Based on joint work with:

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal

This week's talks

VOLE 1: introduction, basic protocols & applications

VOLE 2: application to efficient zero knowledge

PCG 1-2

PCG 3: PCGs from LPN: the gory details

PCG 4: PCFs from number-theoretic assumptions

Outline

Recap of OT extension (non-silent!)

- Blueprint for silent OT
 - ➤ Instantiate with LPN

- PCG setup protocol for silent OT/VOLE
 - ➤ Two-rounds, active security
- Conclusion & open problems

Secure Computation with Preprocessing

[Beaver '91]

Peter Scholl Peter Scholl

Secure Computation with Silent Preprocessing

[BCGI 18, BCGIKS 19]

-5

Pseudorandom Correlation Generators

[BCGI 18, BCGIKS 19]

- Target correlation: (R_0, R_1)
- Algorithms Gen, Expand:

Security:
$$(k_0, \tilde{R}_1) \approx (k_0, [R_1|R_0 = \text{Expand}(k_0)])$$

Peter Scholl Peter Scholl

Oblivious Transfer

OT requires public-key cryptography

OT extension: costly PK operations only in setup phase

(Batch of) Correlated Oblivious Transfers

(Equivalent to subfield VOLE, or information-theoretic MACs over \mathbb{F}_2)

From correlated OT to random OT

[IKNP 03]

$$m_i^{b_i} = H(y_i)$$

for
$$i = 1, ..., m$$

H: correlation robust hash function

$$m_i^0 = H(s_i)$$
$$m_i^1 = H(s_i \oplus \Delta)$$

IKNP OT Extension: Correlate, Transpose & Hash

[IKNP 03]

IKNP: correlate

IKNP: correlate

IKNP: correlate, transpose

IKNP: correlate, transpose

IKNP: correlate, transpose

IKNP: correlate, transpose and hash

Bottleneck:

- Long correlated OTs
- Cost: 128 bits per OT

IKNP OT Extension: Correlate, Transpose & Hash

[IKNP 03]

Much "smaller" correlation

Roles stay the same

Silent OT Extension: Correlate, Expand & Hash

[BCGIK**S** 19]

Silent OT Extension: Correlate, Expand & Hash

Silent expansion via homomorphic PRGs?

Suppose we have a PRG where

- Receiver can expand $\vec{b} \to G(\vec{b})$
 - \triangleright Parties expand s_i , y_i the same way
 - > Preserves OT relation
- *G* is totally insecure!
- Lattice-based PRGs are almost-homomorphic
 - ➤ Good enough for weaker form of silent OT [**S** 18]

Silent expansion via learning parity with noise

[BCGI 18]

Given $A \in \mathbb{Z}_p^{m \times n}$:

LWE

- p > 2
- $s \leftarrow Z_p^n$
- $||e||_{\infty}$ is small

LPN

- $p \ge 2$ (arithmetic generalization)
- $s \leftarrow \mathbb{Z}_p^n$
- HW(e) is small

Peter Scholl

20

"Linear-ish" PRGs from LPN

"Primal" construction "Dual" construction (s,e) — m e — (m-k) H e Evaluation is linear in (s,e)!

Limited to quadratic stretch

Arbitrary poly stretch (increase m, fix HW(e)) \Rightarrow best attack: $\exp(HW(e))$

Secret-sharing sparse vectors: core of PCGs from LPN

Goal: compress secret-shares of sparse vector

Main tool: puncturable PRF

FSS is overkill!

- PRF $F : \{0,1\}^{\lambda} \times \{1, ..., N\} \to \{0,1\}^{\lambda}$
- $k \leftarrow \text{Gen}(1^{\lambda})$
 - \triangleright Master key: allows evaluating F(k, x) for all x
- $k^* \leftarrow \operatorname{Punc}(k, \alpha)$
 - \triangleright Punctured key: can evaluate at all points except for $x = \alpha$
- Security: $F(k, \alpha)$ is pseudorandom, given k^*

Simple tree-based construction from a PRG: $|k| = \lambda$, $|k^*| = \lambda \cdot \log N$

[BW13], [BGI 13], [KPTZ 13]

24

Sharing sparse vectors from puncturable PRF

- Shares compressed from $\lambda \cdot N$ to $\approx \lambda \cdot \log N$ bits
- Can tweak to multiply by arbitrary $\Delta \in \mathbb{F}_{2^{\lambda}}$

From weight-1 vectors to weight-t vectors

Approach 1: addition

Weight e.g. t = 4

Expansion cost: $O(t \cdot N)$ (naïve) O(N) (cuckoo hashing [SGRR 19])

Approach 2: concatenation

$$O\left(t \cdot \frac{N}{t}\right) = O(N)$$

Note: regular error pattern

The missing pieces: plugging in LPN

- Use PPRF to share $\vec{e} \cdot \Delta$
- Primal: also share $\vec{s} \cdot \Delta$ via OT
- How to instantiate LPN matrix?

Matrix	Туре	Complexity	Security
Sparse	Primal	O(m)	Back to [Ale 03]

The missing piece: plugging in LPN

- Use PPRF to share $\vec{e} \cdot \Delta$
- Primal: also share $\vec{s} \cdot \Delta$ via OT
- How to instantiate LPN matrix?

Matrix	Туре	Complexity	Security
Sparse	Primal	O(m)	Back to [Ale 03]
Quasi-cyclic	Dual	$ ilde{O}(m)$	Same as NIST PQC

The missing piece: plugging in LPN

- Use PPRF to share $\vec{e} \cdot \Delta$
- Primal: also share $\vec{s} \cdot \Delta$ via OT
- How to instantiate LPN matrix?

Matrix	Туре	Complexity	Security
Sparse	Primal	O(m)	Back to [Ale 03]
Quasi-cyclic	Dual	$ ilde{O}(m)$	Same as NIST PQC
Structured LDPC	Dual	O(m)	[CRR 21]

The missing piece: plugging in LPN

- Use PPRF to share $\vec{e} \cdot \Delta$
- Primal: also share $\vec{s} \cdot \Delta$ via OT
- How to instantiate LPN matrix?

Matrix	Туре	Complexity	Security
Sparse	Primal	O(m)	Back to [Ale 03]
Quasi-cyclic	Dual	$ ilde{O}(m)$	Same as NIST PQC
Structured LDPC	Dual	O(m)	[CRR 21]
Cyclotomic ring-LPN (only for OLE)	Primal/dual	$ ilde{O}(m)$	[BCGIKS 20]

PCG setup protocol: some details

Setup protocol: inside the puncturable PRF

Setup protocol: inside the puncturable PRF

Setup Protocol for Silent OT/VOLE

- 2-round Silent OT setup from any 2-round OT
 - Total cost: $\approx t \log N$ "seed" OTs for LPN noise weight t
 - ➤ (VOLE: also need seed VOLE)
- Two-round OT extension on chosen inputs
 - ➤ Can convert from random → chosen in parallel with setup
 - First concretely efficient two-round OT extension (previously only [Beaver '95])

Active security Sender can easily cheat What can go wrong in setup? Left/right OT Recover

- Solution: consistency checks
 - >Still allows selective failure attacks sender can guess 1 bit of LPN error
 - ➤ Assume problem is hard with 1-bit leakage

Consistency check: hash the PPRF tree [BCGIKRS 19]

Collision-resistance ⇒ tree is consistent

Ensuring consistency among the trees

- What if sender uses different Δ 's?
 - ➤ Hash check doesn't catch this...

- Solution: another check!
 - ➤ Random linear combination (like MAC check)

- Ferret/Wolverine [YWLZW 20, WYKW 21]:
 - ➤ Linear combination instead of hash check
 - \triangleright Simpler, also ensures consistent Δ 's

Performance for n=10 million random OTs (LAN)

128-bit security

Protocol	One-time setup (kB)	Comms	Time (ms)	Primal/dual
IKNP	-	160 MB	~400	-
[BCGIKRS 19]	-	122 kB	~5000	Dual (quasi-cyclic)
Ferret [WYKY 20]	1130 kB	550 kB	~500	Primal
Silver [CRR 21]	_	122 kB	~300	Dual (structured LDPC)

Conclusion

- Silent OT and VOLE:
 - ➤ Linear structure of LPN
 - ➤ Sharing sparse vectors via PPRF
- Two-round setup protocols
 - > Actively secure
 - ➤ Give two-round OT extension
- Open problems:
 - ➤ More silent-friendly applications
 - \triangleright Optimize multi-point PPRF: $\lambda \log N \rightarrow \lambda + \log N$?
 - > Setup: can we do 1-round?
 - > Security of LPN variants
 - Especially structured LDPC, VD-LPN, ring-LPN...

Thank you!

Efficient Pseudorandom Correlation Generators: Silent OT Extension and More Boyle, Couteau, Gilboa, Ishai, Kohl, Scholl

https://ia.cr/2019/129

Two-Round OT Extension and Silent Non-Interactive Secure Computation BCGIKS + Rindal

https://ia.cr/2019/1159