### MIT 코스웨어

# C10 | 프로그램의 효율성 (PT1)

#### 프로그램의 효율성 대두

커지는 데이터 input에 맞는 효율성 측정 필요 프로그램 간의 성능 측정의 비교 기준이 절실해짐 이러한 비교 기준은 시간 효율성과 공간 효율성으로 나뉨

# 프로그램의 측정 방법 (Big-0)

타이머 (import time)나 직접 세는 거 의외에, "최악의 케이스"를 고려하는 Big-O Notation을 사용 Big-O는 프로그램의 upper bound를 측정하는 것

#### 측정의 세부사항

Big-0는 기본적으로 dominant terms를 사용 즉, 가장 변화가 큰 차수를 우선적으로 고려 Big-0는 그 효율성을 순서로,

0(1) = constant
0(n) = linear
0(n^2) = Quadratic
0(logn) = Logarithmic
0(n log n)
o(2^n) = exponential



#### Law of addition

sequential statement인 알고리즘인 경우, 같은 indent level 상에 있으면 두 알고리즘을 <mark>합한다</mark>.

#### Law of multiplication

nested statement/loop인 알고리즘인 경우, 다른 indent level 상에 있으면 두 big-0를 <mark>곱한다.</mark>

### 참조 테크닉 (파이썬)

파이썬에서는 접근(access)은 상수항의 Big-0를 갖는다. 파이선의 데이터는 starting point를 기준, 하나씩 건너갈 때마다 4bytes를 곱하는 형식으로 참조



만약 list가 다차원 리스트일 경우에는 실제 data가 include되지 않고 이를 참조한 pointer만!

