Homework 6

Due March 22, 2017

Let X_1, X_2, \ldots be random variables defined on a probability space (Ω, \mathcal{F}, P) and let Q be another probability measure on (Ω, \mathcal{F}) . Let $\mathcal{F}_n := \sigma\langle X_1, \ldots, X_n \rangle$, $\mathcal{F}_{\infty} := \sigma\langle X_n \colon n \in \mathbb{N} \rangle$ and

$$P_n = P\big|_{\mathcal{F}_n}$$
 and $Q_n = Q\big|_{\mathcal{F}_n}$

for all $n \in \mathbb{N} \cup \{\infty\}$. Let $Q_n = Q_n^a + Q_n^s$ be the Lebesque decomposition of Q_n with respect to P_n and

$$\ell_n := \frac{dQ_n^a}{dP_n} \text{ for all } n \in \mathbb{N} \cup \{\infty\}.$$

Exercise 1. Show that

$$Q_{\infty} \ll P_{\infty} \iff E(\ell_{\infty}) = 1;$$

 $Q_{\infty} \perp P_{\infty} \iff E(\ell_{\infty}) = 0$

Exercise 2. Show that the process $(\sqrt{\ell_n})_{n\in\mathbb{N}}$ is a supermartingale, is UI and

$$E(\sqrt{\ell_n}) \downarrow E(\sqrt{\ell_\infty})$$

as $n \to \infty$.

Exercise 3. Show that

$$Q_{\infty} \perp P_{\infty} \iff \lim_{n} E(\sqrt{\ell_{n}}) = 0$$
$$\iff \lim_{n} H(Q_{n}, P_{n}) = \sqrt{2}$$

where $H(\cdot,\cdot)$ is the Hellinger distance on probability measures defined as

$$H(Q_n, P_n) = \left[\int_{\Omega} (\sqrt{q_n} - \sqrt{p_n})^2 d\mu \right]^{1/2}$$

where $q_n = \frac{dQ_n}{d\mu}$, $p_n = \frac{dP_n}{d\mu}$ and μ is any measure such that $Q_n, P_n \ll \mu$ (H is invariant to which μ you choose). Hint: For the second iff show that $\int_{\Omega} \sqrt{q_n} \sqrt{p_n} d\mu = \int_{\Omega} \sqrt{\ell_n} dP_n$.

Exercise 4. Show that if $Q_{\infty} \ll P_{\infty}$ then $E(\ell_{\infty}|\mathcal{F}_n) \stackrel{a.e.}{=} \ell_n$.

Exercise 5. Show that

$$Q_{\infty} \ll P_{\infty}$$
 $\iff Q_n \ll P_n \text{ for all } n \in \mathbb{N} \text{ and the } \ell_n \text{ 's are } UI$
 $\iff Q_n \ll P_n \text{ for all } n \in \mathbb{N} \text{ and the } \sqrt{\ell_n} \text{ 's converge in } L_2$