	803465 Homework
1.1	$Pr(\mu \gamma) = Pr(\gamma,\mu) = P(\gamma \mu,\sigma)P(\mu) \propto P(\gamma \mu,\sigma)P(\mu)$ $Pr(\gamma) = P(\gamma)P(\gamma) \propto P(\gamma \mu,\sigma)P(\mu)$
likelih	cod= P(Y μ,σ)= [P(Y; μ,σ)
	$= (2\pi\sigma^2)^{-\frac{1}{2}} e \times p \left[-\frac{1}{2\sigma^2} \sum_{i=1}^{\frac{1}{2}} (y_i - \mu)^2 \right]$
	$\propto \sigma^{-\frac{1}{2}} \exp\left[\frac{1}{2\sigma^2} \sum_{i=1}^{\frac{1}{2}} (y_i - \mu)^2\right]$
prior:	$P(\mu) = (2\pi v^2)^{-1/2} \exp\left[-\frac{1}{2v^2}(M-s)^2\right]$
Posterior:	$P(\mu y) = (z_{1},\sigma^{2})^{-\frac{1}{2}}(2\pi v^{2})^{\frac{1}{2}} \exp\left[-\frac{1}{2\sigma^{2}}\sum_{i=1}^{\frac{1}{2}}(y_{i}-\mu)^{2}\right] \exp\left[-\frac{1}{2v^{2}}(\mu-s)^{2}\right]$
	$= (2\pi \sigma^{2})^{-\frac{1}{2}} (2\pi v^{2})^{-\frac{1}{2}} \exp \left[-\frac{1}{2} \left(\frac{1}{\sigma^{2}} \sum_{i=1}^{T} (Y_{i} - \mu)^{2} + \frac{1}{\sqrt{2}} (\mu - s)^{2}\right)\right]$
	$= (2\pi \sigma^{2})^{-\frac{1}{2}} (2\pi v^{2})^{-\frac{1}{2}} \exp\left[-\frac{1}{2} (\mu - S_{T})^{2}\right] \text{by } (2.11, 2.12) \text{ in Bayesian}$ where $S_{T} = \frac{1}{v^{2}} S + \frac{1}{\sigma^{2}} V$ Where $S_{T} = \frac{1}{v^{2}} S + \frac{1}{\sigma^{2}} V$
	by slide 69, Lec 1
	$V_{T} - \left(\frac{1}{v^{2}} + \frac{7}{\sigma^{2}}\right)^{-1}$ and (2.12) in B.D.A. $3^{td}ed$.
	50 M/Y ~ N(ST, VT)

1.2	$Y_i \sim Binomial(N, p)$ $P(Y P) = \overline{I}Bin(Y_i N_iP) = (\overline{I}_i(N_i))P^{Y_i}(1-P)$ $P \sim Beta(\alpha, \beta)$
	$P(P) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} P^{\alpha - 1} (1 - P)^{\beta - 1}$
	$\frac{P(PY) = P(YP)P(P)}{P(Y)} \propto P(YP)P(P)$
	$-\left[\frac{1}{1}\left(\frac{N}{\gamma_{i}}\right)P^{\gamma_{i}}(1-P)\right]\left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}P^{\alpha-1}\left(1-P\right)^{\beta-1}\right]$ $-\left[\frac{1}{1}\left(\frac{N}{\gamma_{i}}\right)P^{\gamma_{i}}(1-P)\right]\left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}P^{\alpha-1}\left(1-P\right)^{\beta-1}\right]$ $-\left[\frac{1}{1}\left(\frac{N}{\gamma_{i}}\right)P^{\gamma_{i}}(1-P)\right]\left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}P^{\alpha-1}\left(1-P\right)^{\beta-1}\right]$
	$\propto P^{TY} \frac{T(N-Y)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\alpha-1}{P} \frac{\beta-1}{(1-P)} \frac{-\binom{N}{2}}{(1-P)} \frac{\text{dues not depend}}{\text{on } p \text{ and } can \text{ thus}}$ be treated as a
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$= P \qquad (1-P)$ $= P \qquad (1-P)$
	So $P y \sim Beta(TX^*, B^*) \cap Where \alpha^* = TY + \alpha$ $P^* = T(N - \overline{Y}) + \overline{P}$