Tarefa 04: Busca de Custo Uniforme x A*

Objetivos de aprendizagem

- compreender o que é solução ótima
- compreender a diferença entre busca cega (custo uniforme) e busca informada (A*)
- compreender o que é heurística admissível e consistente

Método

Equipe

Até 2 pessoas

Objetivo da tarefa

A partir do ambiente Labirinto e do agente construídos nas tarefas anteriores, implemente dois algoritmos: (i) **busca de custo uniforme** e (ii) A^* . O agente tem por objetivo encontrar <u>um caminho ótimo</u> (de menor custo) que defina uma sequência de ações de uma posição inicial (S₀) até uma posição destino = objetivo (posição S_g) desviando das paredes. Este plano deve ser construído automaticamente pelos dois algoritmos. As paredes serão colocadas conforme desenho abaixo. Seguem os parâmetros:

- LINHAS=COLUNAS=9
- S₀ = posição do agente (8, 0) // (linha, coluna)
- Sg = posição objetivo (2, 8)
- ações(S) é um subconjunto de {N, NE, L, SE, S, SO, O, NO}
- custo(S, a, S') = 1 se $a \in \{N, L, S, O\}$ = 1,5 se $a \in \{NE, SE, SO, NO\}$
- heurísticas para A*: crie duas heurísticas h1 e h2 admissíveis e consistentes

	0	1	2	3	4	5	6	7	8
0	XXX	XXX	 	 		XXX	XXX	XXX +	+ +
1	XXX		 			 	 	XXX	
2	 +	l		XXX	XXX	XXX		, , +	G
3	 +	 +				XXX		XXX	 +
4	 +	 + – – – -	 		 +			 +	, +
5			XXX 					XXX	 +
6	İ	XXX			XXX	XXX		XXX ++	 +
7		XXX +			XXX +			XXX	 +
8	A +	XXX +	XXX +		 +	 +	 	 +	 +

Fazer e entregar

- Código fonte: implementação que permita escolher entre uma das seguintes estratégias:
 - o custo-uniforme;
 - A* com h1;

- A* com h2;
- É OBRIGATÓRIO implementar a árvore de busca com alocação dinâmica de nós (ver classe treeNode)
- É OBRIGATÓRIO implementar a fronteira ordenada de acordo com a estratégia de busca em uso (A* pelo f(n); custo-uniforme pelo g(n))
- Uma tabela comparativa dos três algoritmos contendo os seguintes elementos:

Complexidade temporal

Número de nós gerados: insira <u>todos os nós na árvore</u> mesmo que não sejam incluídos na fronteira por já terem sido <u>explorados</u> ou porque já estão na <u>fronteira</u> com custo melhor. Ao substituir um nó que está na fronteira por um melhor, não o retire da árvore (apenas retire-o da fronteira).

- Conte todos os nós <u>não inseridos</u> na fronteira por já terem sido explorados em ct ja explorados;
- Conte todos os nós não inseridos na fronteira porque já há um melhor na fronteira em ct_descartados_front;
- Conte todos os nós substituídos na fronteira porque um melhor foi encontrado em ct_descartados_front.

Complexidade espacial

Considere cada uma das iterações, ao final mostre o valor máximo obtido dentre todas as iterações para as variáveis abaixo:

- Número de nós armazenados na árvore de busca na iteração
- ct_ja_explorados
- ct_descartados_front
- o A solução encontrada
- o O custo da solução encontrada

A cada ciclo, o agente deve:

- se <u>primeiro ciclo</u> então
 - o executar algoritmo de busca com base na formulação do problema
 - o armazenar solução
 - o imprimir solução
- imprimir o estado do mundo (e não as crenças do agente acerca do mundo!)
- retirar a próxima ação do plano
- imprimi-la
- executar a ação

Referências

- slides 011a-Busca-Cega.pdf
- slides 012a-Busca-Informada-ou-Heuristica.pdf
- cap. 3 Russel & Norvig 3ed.