

Index

Ur	nit – 4 ↔ Graph Theory – I	2
	,	
1)	Method 1 → Basic Terminologies	2
2)	Method 2 → First and Second Theorem of Graph Theory	5
3)	Method 3 → Special Types of Graphs	14
4)	Method 4 → Graph Isomorphism	21
5)	Method 5 → Connectivity	26
6)	Method 6 → Matrix Representation of Graphs	31
7)	Method 7 → Warshall's Algorithm	42

Unit - 4 ---> Graph Theory - I

Method 1 *** Basic Terminologies

A Define the following terms with example:

Graph

Vertex

Edge

Self – Loop

Adjacent Vertices

Incident Edge Isolated Vertex

Parallel Edges

Null Graph

Directed Edge

Directed Graph

Undirected Edge

Undirected Graph

Mixed Graph

Answer: Refer Theory

A | 2 | Draw the undirected graph $G = (V, E, \phi)$, where $V = \{1, 2, 3, 4, 5\}$,

 $E = \{ e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8 \}$ and the incidence relation φ is given as:

$$e_1 = (1, 2), e_2 = (2, 3), e_3 = (3, 4), e_4 = (4, 5), e_5 = (5, 1), e_6 = (2, 4),$$

 $e_7 = (1, 4), e_8 = (5, 2)$. From the graph, answer the following equations:

- (1) Is there any loop in G? If yes, then mention it.
- (2) Are there any parallel edges in G? If yes, then mention it.

- (1) There is no loop in G.
- (2) There is no parallel edge in G.

B | 3 | Draw the undirected graph $G = (V, E, \phi)$, where $V = \{a, b, c, d, e\}$,

 $E=\{\,e_1,e_2,e_3,e_4,e_5,e_6,e_7,e_8\,\}$ and the incidence relation φ is given as:

$$e_1 = (a, d), e_2 = (a, b), e_3 = (a, b), e_4 = (a, d), e_5 = (b, e), e_6 = (d, e),$$

 $e_7 = (b, c), e_8 = (c, e)$. From the graph, answer the following equations:

- (1) Is there any loop in G? If yes, then mention it.
- (2) Are there any parallel edges in G? If yes, then mention it.

- (1) There is no loop in G.
- (2) Yes, edges e_1 and e_4 , e_2 and e_3 are parallel.

Draw the directed graph $G = \langle V, E \rangle$, where $V = \{1, 2, 3, 4, 5, 6\}$, $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\} \text{ and the incidence relation is given as:}$ $e_1 = \langle 1, 2 \rangle, e_2 = \langle 2, 3 \rangle, e_3 = \langle 4, 2 \rangle, e_4 = \langle 3, 4 \rangle, e_5 = \langle 3, 6 \rangle, e_6 = \langle 4, 6 \rangle,$ $e_7 = \langle 5, 6 \rangle.$

Answer:

C Draw the mixed graph G, where the vertex set $V = \{a, b, c, d, e, f, g\}$, edge set $E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$ and the incidence relation is given as: $e_1 = (a, b), e_2 = \langle a, d \rangle, e_3 = \langle b, d \rangle, e_4 = \langle b, c \rangle, e_5 = (e, c), e_6 = (g, g).$

Method 2 ---> First and Second Theorem of Graph Theory

	Г			
A	1	Define the following terms:		
		Order of a Graph	Isolated Vertex	
		Size of a Graph	Pendent Vertex	
		Degree of a Vertex	Out – Degree of a Vertex	
		Odd Vertex	In – Degree of a Vertex	
		Even Vertex	Total Degree of a Vertex	
		Answer: Refer Theory		
Α	2	Find size, order and degre	ee of each vertex of the given graph.	
			$\mathbf{v_2}$	
		,	\mathbf{v}_1 \mathbf{v}_3	
		\mathbf{v}_{6} \mathbf{v}_{4}		
		\mathbf{v}_{5}		
		G		
		An or or W(C)	E(C) 0 4() 2 4() 2	
			$ E(G) = 8,$ $d(v_1) = 3,$ $d(v_2) = 2,$	
			$d(v_4) = 3,$ $d(v_5) = 2,$ $d(v_6) = 3$	
Α	3	State First and Second the	eorem of Graph Theory.	
		Answer: Refer Theory		
A	4		ecessary to construct a graph with exactly 6 edges	
		in which all vertices have degree 2?		
		// //	0	
		Answer: 6		

A 5 Determine even vertices, odd vertices, isolated vertices and pendent vertices of given graph.

Answer: Even Vertices $\rightsquigarrow v_1, v_4, v_5, v_6,$ Odd Vertices $\rightsquigarrow v_2, v_3$

Pendent Vertices wy v₃, Isolated Vertices wy v₆

A 6 Use the First or Second theorem of Graph Theory to answer the following statements:

(1) Does there exists a graph in which 3 vertices of degree 5? Justify.

(2) Does there exists a graph in which 2 vertices of degree 4? Justify

Answer: (1) No, because number of odd vertices must be even.

(2) Yes, from second theorem of Graph Theory

A 7 Find in – degree, out – degree and total degree of each vertex for the following graph:

Answer:

In - degree	Out - degree	Total degree
$\mathbf{d}^-(\mathbf{v_1}) = 1$	$\mathbf{d}^+(\mathbf{v}_1) = 1$	$\mathbf{d}(\mathbf{v_1}) = 2$
$\mathbf{d}^-(\mathbf{v}_2) = 1$	$\mathbf{d}^+(\mathbf{v}_2) = 2$	$\mathbf{d}(\mathbf{v}_2) = 3$
$\mathbf{d}^-(\mathbf{v}_3) = 2$	$\mathbf{d}^+(\mathbf{v}_3) = 1$	$\mathbf{d}(\mathbf{v}_3) = 3$
$\mathbf{d}^-(\mathbf{v_4}) = 1$	$\mathbf{d}^+(\mathbf{v}_4) = 1$	$d(v_4)=2$
$\mathbf{d}^-(\mathbf{v}_5) = 1$	$\mathbf{d}^+(\mathbf{v}_5) = 2$	$\mathbf{d}(\mathbf{v}_5) = 3$
$\mathbf{d}^-(\mathbf{v}_6) = 2$	$\mathbf{d}^+(\mathbf{v}_6) = 0$	$\mathbf{d}(\mathbf{v}_6) = 2$
$\mathbf{d}^-(\mathbf{v}_7) = 1$	$\mathbf{d}^+(\mathbf{v}_7) = 1$	$\mathbf{d}(\mathbf{v}_7) = 2$
$\mathbf{d}^{-}(\mathbf{v_8}) = 0$	$\mathbf{d}^+(\mathbf{v}_8) = 1$	$\mathbf{d}(\mathbf{v_8}) = 1$

B Can we construct a graph with 13 vertices such that all vertices have degree 3? Justify.

Answer: No because number of odd vertices must be even.

B 8 Determine even vertices, odd vertices, isolated vertices and pendent vertices of given graph.

Answer: Even Vertices $\rightsquigarrow v_1, v_3, v_4, v_6,$ Odd Vertices $\rightsquigarrow v_2, v_5$

Pendent Vertices $\rightsquigarrow v_5$, Isolated Vertices $\rightsquigarrow v_6$

B Determine size, order and degree of each vertex of the given graph. Also classify vertices into even vertices, odd vertices, isolated vertices and pendent vertices.

Answer: |V(G)| = 9, |E(G)| = 9, d(1) = 3, d(2) = 2,

d(3) = 3, d(4) = 2, d(5) = 3, d(6) = 2,

d(7) = 2, d(8) = 0, d(9) = 1

B 10 Find indegree, outdegree and total degree of each vertex for the following graph. Also, verify the degree sum formula.

In - degree	Out - degree	Total degree
$\mathbf{d}^{-}(\mathbf{a}) = 3$	$\mathbf{d}^+(\mathbf{a}) = 2$	d(a) = 5
$d^{-}(b) = 2$	$d^+(b)=2$	d (b) = 4
$\mathbf{d}^{-}(\mathbf{c}) = 2$	$d^+(c)=1$	d (c) = 3
$\mathbf{d}^{-}(\mathbf{d}) = 0$	$\mathbf{d}^+(\mathbf{d}) = 3$	d(d) = 3
$d^{-}(e) = 1$	$d^+(e) = 0$	d(e) = 1
$d^-(f) = 0$	$\mathbf{d}^+(\mathbf{f}) = 0$	d(f) = 0

Verify Handshaking theorem for the following graph. В 11 m Verify First and Second theorem of Graph Theory for the following graph. В 12 G

C 14 Find indegree, outdegree and total degree of each vertex for the following graph. Also, verify the degree sum formula.

Answer:

In - degree	Out - degree	Total degree
$\mathbf{d}^-(\mathbf{v_1})=4$	$\mathbf{d}^+(\mathbf{v}_1^{})=3$	$\mathbf{d}(\mathbf{v}_1) = 7$
$\mathbf{d}^-(\mathbf{v}_2) = 2$	$\mathbf{d}^+(\mathbf{v}_2) = 3$	$d(v_2) = 5$
$\mathbf{d}^-(\mathbf{v}_3) = 2$	$\mathbf{d}^+(\mathbf{v}_3) = 3$	$\mathbf{d}(\mathbf{v}_3) = 5$
$\mathbf{d}^-(\mathbf{v_4}) = 3$	$d^+(v_4)=2$	$d(v_4) = 5$

C Determine the number of edges in a graph with 6 vertices, 2 of degree 4 and 4 of degree 2. Draw one such graph.

 $Answer: edegs\ e=8$

C 16 Construct a simple graph with 6 vertices which has degree 4, 3, 2, 2, 1, 0. **Answer**: $\mathbf{v_6}$ v_4 G C 17 Draw at least three graphs having four vertices of degree 1, 1, 3 and 3. **Answer**: $\mathbf{v_1}$ \mathbf{v}_2 \mathbf{v}_3 G_1 G_2 \mathbf{v}_2 G_3 G_4

Method 3 → Special Types of Graphs

A	1	Define the following terms with example:	
		Undirected Multigraph	Cycle Graph
		Directed Multigraph	Bipartite Graph
		Simple Graph	Complete Bipartite Graph
		Regular Graph	Subgraph
		Complete Graph	Vertex and Edge Deleted Subgraph
		Answer: Refer Theory	
A	2	Answer the following que	estions for the undirected graph G:
		(1). Check whether the gr	aph is simple or not. Justify it.
		(2). Check whether the gr	aph is multigraph or not. Justify it.
		(3). Check whether the graph is mixed or not. Justify it.	
		v ₁ v ₂ v ₃ G	
		Answer: (1) Graph G is	
		(2) Graph G is	not multigraph.

(3) Graph G is not mixed graph.

Answer the following questions for the directed graph G: A (1). Check whether the graph is simple or not. Justify it. (2). Check whether the graph is multigraph or not. Justify it. (3). Check whether the graph is mixed or not. Justify it. $\mathbf{e_2}$ $\mathbf{v_3}$ G Answer: (1) Graph G is not simple graph. (2) Graph G is multigraph. (3) Graph G is not mixed graph. Draw a 3 – regular graph having 6 vertices, if possible. Α **Answer**: \mathbf{v}_5 G Determine the total number of edges of the following graphs: Α $(3). K_{12,11}$ $(1). C_{15}$ (2). K_{23} **Answer**: (1) **15 (2) 253** (3) 132

Draw the graph G \ { v_6 }, G \ { v_6,v_2 } and G \ { e_6,e_7 } for the following 8 A graph G: $\mathbf{v_1}$ \mathbf{v}_2 **e**₇ $\mathbf{e_5}$ $\mathbf{e_1}$ $\mathbf{e_8}$ \mathbf{v}_{5} G **Answer:** $\mathbf{e_8}$ $\mathbf{e_1}$ $\mathbf{e_3}$ $\mathbf{v_3}$ \mathbf{v}_{5} $\mathbf{v_3}$ $\textbf{G}-\{v_6\}$ $\textbf{G}-\{v_6,v_2\}$ $\mathbf{v_1}$ $\mathbf{e_1}$ e_8 $\mathbf{v_3}$ $\mathbf{v}_{\mathbf{5}}$ $\textbf{G} - \{e_6, e_7\}$

Draw a complete graph K₈ and answer the following questions:

(1). Check whether K₈ is regular graph or not. Justify it.

(2). Find the total number of edges of K₈.

(3). Find the total number of subgraphs of K₈.

Answer:

V1

V2

V4

K8

(1) K8 is 7 – regular graph

(2) 28

(3) 2³⁵

В	10	Draw a complete bipartite graph $K_{1,6}$ and answer the following questions:		
	10	(1). Check whether $K_{1,6}$ is regular graph or not. Justify it.		
		(2). Find the total number of edges of $K_{1,6}$		
		(3). Find the total number of subgraphs of $K_{1,6}$.		
		Answer:		
		$\overset{\mathrm{v}_{1}}{\bullet}$		
		v_6 v_2 v_7		
		$\mathbf{v_5}$ $\mathbf{v_4}$		
		K _{1,6}		
		(1) $K_{1,6}$ is not regular graph (2) 6 (3) 2^{12}		
В	11	Is it possible to draw a 5 – regular graph having 17 vertices?		
	4.0	Answer: Not possible		
В	12	Check whether the given graph is complete or not? Justify.		
		$\mathbf{v_1}$ $\mathbf{v_2}$		
		v_5 v_4 v_3		
		G		
		Answer: Not a complete graph		

Method 4 ---> Graph Isomorphism

A	1	Define Isomorphism of Directed and Undirected graph.
		Answer: Refer Theory
A	2	Check whether the following graphs G & H are isomorphic or not?
		e b 5 d d G H
		Answer: G ≅ H
A	3	Check whether the following graphs $G_1 \& G_2$ are isomorphic or not?
		v_1 v_2 v_3 v_4 v_3 v_4 v_3 v_4 v_3 v_4 v_3 v_4 v_4 v_5 v_6 v_7 v_8 v_8 v_9
		Answer: $G_1 \ncong G_2$

A Check whether the following graphs G & H are isomorphic or not? $\mathbf{v_1}$ $\mathbf{u_1}$ $\mathbf{u_5}$ G Н Answer: G ≇ H 5 Check whether the following graphs G & H are isomorphic or not? A $\mathbf{u_1}$ $\mathbf{u_3}$ G Н Answer: $G \cong H$

В Check whether the following graphs G & H are isomorphic or not? G Η Answer: $G \cong H$ Check whether the following graphs $\mathrm{H}_1\ \&\ \mathrm{H}_2$ are isomorphic or not? В 8 H_1 H_2 $Answer : H_1 \cong H_2$

Trail

Method 5 → Connectivity

A | 1 | Define the following terms with example:

Path of Graph Strongly Connected Graph

Simple Path Unilaterally Connected Graph

Elementary Path Weakly Connected Graph

Circuit Strongly Connected Components

Elementary Cycle Unilaterally Connected Components

Weakly Connected Components

Maximal Connected Component

Answer: Refer Theory

Connected Graph

A | 2 | Give six elementary paths for the following graph:

Answer: $P_1 = v_1 e_1 v_2$

 $P_4 = v_1 e_9 v_7 e_8 v_2 e_2 v_3$

 $P_5 = v_1 e_7 v_7 e_8 v_2 e_2 v_3 e_3 v_4$

 $P_7 = v_1 e_7 v_7 e_8 v_2 e_2 v_3 e_3 v_4 e_5 v_6 e_6 v_5 \\$

 $P_2 = v_4 e_5 v_6 e_6 v_5$

 $P_3 = v_7 e_9 v_1 e_1 v_2 e_3 v_6$

A Determine whether the following graph is Strongly Connected, Unilaterally Connected or Weakly Connected. Also, find its components.

Answer: G is weakly connected graph

 $SCC: \{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}$

 $UCC:\{\,a,\,b,\,c,\,d,\,e,\,f\,\},\,\,\{\,g\,\}$

WCC : $\{a, b, c, d, e, f, g\}$

- B 4 From the given directed graph determine
 - (1) path of length 3, 4, 5 and 6
 - (2) closed path of length 3
 - (3) an elementary path of length 6
 - (4) a simple but not elementary path of length 6

Answer: (1) $P_3 = u_5 e_8 u_6 e_9 u_9 e_3 u_1$, $P_4 = u_9 e_{10} u_7 e_{11} u_8 e_{12} u_9 e_5 u_4$,

 $P_5 = u_2 e_2 u_9 e_{10} u_7 e_{11} u_8 e_{12} u_9 e_5 u_4$

 $P_6 = u_5 e_8 u_6 e_9 u_9 e_{10} u_7 e_{11} u_8 e_{12} u_9 e_5 u_4$

- $(2)\ P_3=u_9e_{10}u_7e_{11}u_8e_{12}u_9$
- (3) There does not exist an elementary path of length 6
- $(4)\ P_6=u_5e_8u_6e_9u_9e_{10}u_7e_{11}u_8e_{12}u_9e_5u_4$

Answer: G is strongly connected graph

SCC & UCC & WCC : $\{v_1, v_2, v_3, v_4, v_5\}$

H is unilaterally connected graph

 $SCC : \{c, d, e\}, \{a\}, \{b\}$

UCC & WCC : { a, b, c, d, e }

B 6 Determine whether the following graph is Strongly Connected, Unilaterally Connected or Weakly Connected. Also, find its components.

Answer: G is unilaterally connected graph

 $SCC : \{ v_1, v_2, v_4, v_5 \}, \{ v_3 \}$

UCC & WCC : { a, b, c, d, e }

C 7 From the given directed graph determine

- (1) circuit of length 3, 4, 7
- (2) elementary cycle length 4
- (3) trail of length 4
- (4) an elementary as well as simple cycle
- (5) simple but not elementary cycle
- (6) neither elementary nor simple cycle

 $Answer: (1) \ \ C_3 = v_1e_5v_3e_3v_4e_4v_1, \qquad C_4 = v_5e_{10}v_8e_9v_7e_8v_6e_7v_5,$

 $\textbf{C}_7 = \textbf{v}_5 \textbf{e}_{10} \textbf{v}_8 \textbf{e}_9 \textbf{v}_7 \textbf{e}_8 \textbf{v}_6 \textbf{e}_7 \textbf{v}_5 \textbf{e}_{11} \textbf{v}_7 \textbf{e}_8 \textbf{v}_6 \textbf{e}_7 \textbf{v}_5$

- $(2) \ C_4 = v_5 e_{10} v_8 e_9 v_7 e_8 v_6 e_7 v_5$
- $(3) \ C_4 = v_5 e_{10} v_8 e_9 v_7 e_8 v_6 e_7 v_5$
- (4) $C_4 = v_5 e_{11} v_7 e_8 v_6 e_7 v_5$
- (5) There is no such cycle in given graph.
- $\textbf{(6)} \ \ \textbf{C}_7 = \textbf{v}_5 \textbf{e}_{10} \textbf{v}_8 \textbf{e}_9 \textbf{v}_7 \textbf{e}_8 \textbf{v}_6 \textbf{e}_7 \textbf{v}_5 \textbf{e}_{11} \textbf{v}_7 \textbf{e}_8 \textbf{v}_6 \textbf{e}_7 \textbf{v}_5$

Method 6 → Matrix Representation of Graphs

T		
Α	1	Define the following terms with example:
		(1) Adjacency Matrix for Undirected Graph
		(2) Adjacency Matrix for Directed Graph
		(3) Incidence Matrix for Undirected Graph
		(4) Incidence Matrix for Directed Graph
		(5) Path Matrix for Directed Graph
		Anguan, Dafar Thaarr
A	2	Answer: Refer Theory Determine the adjacency matrix for the following graph
A		Determine the adjacency matrix for the following graph.
		a b
		e d c
		f • g
		G
		Answer:
		a b c d e f g
		$\begin{bmatrix} a & 0 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$
		b 1 0 1 1 0 0 0
		c 0 1 0 0 0 0 1
		e 1 0 0 0 1 0
		f 0 0 0 0 1 0 1
		$\begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$
		8[0 0 1 1 0 1 0]

A 3 Determine the adjacency matrix for the following graph.

$$A = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 0 & 0 & 1 \\ v_2 & 1 & 1 & 0 & 1 \\ v_3 & 0 & 1 & 0 & 0 \\ v_4 & 1 & 0 & 1 & 0 \end{bmatrix}$$

A 5 Determine the path matrix for the following digraph:

Answer:

$$P = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

B 6 Determine the path matrix for the following digraph:

B 7 Determine the adjacency matrix for the following graph:

$$A = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 1 & 1 & 1 & 1 \\ v_2 & 0 & 0 & 1 & 0 \\ v_3 & 0 & 1 & 1 & 1 \\ v_4 & 1 & 2 & 0 & 0 \end{bmatrix}$$

B | 8 | Determine the adjacency matrix for the following graph:

Draw the digraph having adjacency matrix as follows: C V_5 V₁ Γ 0 0 0 1 0] $v_2 | 1 0 0 0$ 0 $A = V_3 \begin{vmatrix} 1 & 0 & 0 & 0 \end{vmatrix}$ 0 $v_4 | 0 0 0 0$ 1 $v_5 L_1$ 0 0 ₁ J **Answer**: $\mathbf{v_4}$ \mathbf{v}_2 \mathbf{v}_3 G

G

B 11 Determine the incidence matrix for the following digraph.:

$$M = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 & e_8 \\ v_1 & -1 & 0 & 0 & 1 & -1 & 0 & 0 & 1 \\ v_2 & 1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ v_3 & 0 & 1 & -1 & 0 & 1 & 0 & 1 & 0 \\ v_4 & 0 & 0 & 1 & -1 & 0 & -1 & -1 & -1 \end{bmatrix}$$

B | 12 | Determine the path matrix for the following digraph:

Answer:

$$P = \begin{bmatrix} a & b & c & d \\ a & 1 & 1 & 1 & 1 \\ b & 1 & 1 & 1 & 1 \\ c & 1 & 1 & 1 & 1 \\ d & 1 & 1 & 1 & 1 \end{bmatrix}$$

C 13 Draw the undirected graph having incidence matrix as follows:

$$\mathbf{M} = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 \\ & 1 & 1 & 1 & 0 & 0 \\ & 1 & 0 & 0 & 1 & 0 \\ & 0 & 0 & 1 & 0 & 1 \\ & d & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

C | 14 | Draw the directed graph having incidence matrix as follows:

$$\mathsf{M} = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ & 1 & 0 & 0 & 1 & -1 & 0 \\ & 0 & 0 & 1 & -1 & 1 & 0 \\ & & 0 & 1 & -1 & 0 & 0 & -1 \\ & & & -1 & -1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Method 7 ---> Warshall's Algorithm

A Produce a path matrix of a following graph by using Warshall's algorithm:

Answer: P =
$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

A 2 Apply Warshall's algorithm to produce a path matrix for the given graph.

B 3 Apply Warshall's algorithm to produce a path matrix for the given graph.

C 4 Produce a path matrix of a following graph by using Warshall's algorithm:

Answer:
$$P = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

C | 5 | Produce a path matrix of a following graph by using Warshall's algorithm:

Answer: P =
$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$