Periodic Trends

CLUE: Chemistry, Life, the Universe & Everything

Periodic Table

- Originally developed by Mendeleev
- On basis of experimental behavior and repeating (periodic) patterns)
- He left spaces for undiscovered elements
- Originally on basis of increasing atomic mass - then on atomic number
- Really electron organization explains repeating patterns

What is the electron configuration of O?

- $A. 1s^2$
- B. 2s² 2p⁴
- C. 1s² 2s² 2p⁴
- D. 1s² 2p⁴

What is the core/valence electron configuration of S?

- [Ne] 3s2 3p4
- [Ar] 3s2 3p4
- [Ne] 3s2 3p2
- [Ar] 3s2 3p2

CLUE: Chemistry, Life, the Universe & Everything

Which of the following correctly illustrates the valence electron configuration of sulfur?

b)

c)

d)

reaction Checkens and Checkens

Periodic Trends

- · Depend on
 - # Valence electrons
 - Effective nuclear charge

CLUE: Chemistry, Life, the Universe & Everything

Core and Valence Electrons

- Core electrons are those in filled shells
 strongly attracted to the nucleus, take
 no part in reactions
- Valence electrons in outer (unfilled shells)
- How many core/valence electrons do
- Na, Mg, Al, Si, P, Cl, Ar have?

Ionization Energies

- $M(g) --> M^+(g) + e^-$
- Energy required to remove outermost valence electron (in the gas phase)

reaction electrons

2nd Ionization Energy

- $M^+(g) --> M^{2+}(g) + e-$
- Third IE
- $M^{2+}(g) --> M^{3+}(g) +e-$

Which ionization energy is larger?

A. First IE: $Mg_{(g)} \rightarrow Mg_{(g)}^+ + e^-$

B. Second IE: $Mg_{(g)}^+ \rightarrow Mg_{(g)}^{2+} + e^-$

C. Third IE: $Mg_{(g)}^{2+} \rightarrow Mg_{(g)}^{3+} + e^{-}$

CLUE: Chemistry, Life, the Universe & Everything

Which ionization energy is larger?

A. First IE: $Mg_{(g)} \rightarrow Mg_{(g)}^{+} + e^{-}$

• 738 kJ/mol

B. Second IE: $Mg_{(q)}^+ \rightarrow Mg_{(q)}^{2+} + e^-$

• 1450 kJ/mol

C. Third IE: $Mg_{(q)}^{2+} \to Mg_{(q)}^{3+} + e^{-}$

7730 kJ/mol

Why?

- What factors affect removing the electron?
- Charge (q1, q2)
- r
- What happens to the radius of the atom (ion) when an electron is removed?

CLUE: Chemistry, Life, the Universe & Everything

Formation of cations

• Which has a larger radius? (why)

A.Li

B.Li⁺

C.same

Formation of anions

• Which has the largest radius? Why?

A.F

B.F-

C.same

Ionization energies are affected by

- Size of atom/ion (smaller size higher IE)
- Size of charges (larger charge larger IE)
- The shell that the electron is removed from

