Лекция 7. Про слабоперемешивающие системы

1 Построение слабоперемешивающей, но не перемешивающией системы

Хотим построить слабо-перемешивающую, но не перемешивающую систему. Рассмотрим следующий процесс преобразования слов и будем его анализировать. $w_0 = 0, w_1 = 0010, \ldots, w_{n+1} = w_n w_n 1 w_n$.

Определим эмпирическое распределение: $p(u\|w_\infty)=\lim_{n\to\infty}p(u\|w_n)$, где $p(u\|v)=\frac{\#\{\text{вхождений и в }v\}}{|v|-|u|+1}.$

Лемма. Меры $\mu_n(u) = p(u||w_\infty), |u| = n$ согласованы, то есть если по большей мере рассмотреть маленькое слово, то получится то же, что по меньшей мере (или, что существует мера μ , проекцией которой являются все данные меры). Таким образом имеется динамическая система на пространстве ($\mathbb{A}^{\mathbb{Z}}, \mathcal{B}, \mu$) с оператором Купмана $T: (x_i) \mapsto (x_{i+1})$.

Теорема 1.

- T эргодическое;
- $\hat{T}^{h_n} \xrightarrow{u} \frac{\hat{T}+1}{2}$;
- $T \in WMix, T \notin Mix$.

Процесс можно представить так: имеем слово w, записанное в башню снизу вверх. За 1 шаг мы должны скопировать w, получив три башни рядом. Далее на среднюю башню нужно дописать 1 и склеить все в один столбик.

Определение 1. $T \in Rang(1)$, если $\exists \xi_n = \{B_n, TB_n, \dots, T^{h_n-1}B_n, \varepsilon_n\} \to \varepsilon$, то есть $\forall A \exists \xi_n$ — измеримая на A и $\mu(A \triangle A_n) \to 0$.

Рассмотрим
$$\left\langle \hat{T}^{-h_n}f,g\right\rangle =\int\limits_X\hat{T}^{h_n}f(x)g(x)d\mu=\frac{1}{2}\left\langle f,g\right\rangle +\frac{1}{2}\left\langle \hat{T}f,g\right\rangle$$
. То есть второй пункт доказан.

Этюд: характеризация полиномов, таких, что $\lim \hat{T}^{-mh_n} = P_m(\hat{T})$. Можно получить, что $P_{3m} = P_m$ и выразить P_{3m+1}, P_{3m+2} через $P_m = P_{3m}$ и $P_{m+1} = P3m + 3$ и изобразить их как результат случайного блуждания на графе Шреера $BS(1,3)/\langle t \rangle$, где $BS(1,3) = \langle a,t \mid tat^{-1} = a^3 \rangle$ (стандартное действие $a: x \mapsto x+1, t: x \mapsto 3x$).

Теорема 2. Для эргодических Т следующие утверждения эквивалентны:

- $T \in WMix$;
- $\sigma_T = \sigma_s + \sigma_{ac}(\nexists \varphi : \hat{T}\varphi = \lambda \varphi, \lambda \neq 1);$
- Джойнинг $\mu \times \mu$ эргодичен относительно $T \times T$;

• (H. Buhep) $\forall \varepsilon > 0 \to \mathcal{F} = \{t: |\langle \hat{T}^t f, g \rangle| > \varepsilon\}$ имеет нулевую плотность: $\frac{\mathcal{F} \cap [1,N]}{N} \to 0$.