Rev.A03

66-channel GPS Engine Board Antenna Module with MTK Chipset

MEDIATEK-3329

Rev.A03

History				
Date	Rev.	Description		
2009/07/10	A00	First Release		
2009/07/23	A01	Add RoHS Compliant		
2010/03/23	A02	Add Packing and Handling Section, plus SMT and soldering cautions		
2010/04/30	A03	Page 10: Reference design circuit Page 17: Modify for RMC Magnetic Variation data		

Rev.A03

Description

The MEDIATEK-3329 is an ultra-compact POT (Patch On Top) GPS Module. This POT GPS receiver provides a solution that is high in position and speed accuracy performances, with high sensitivity and tracking capabilities in urban conditions. The GPS chipset inside the module is powered by MediaTek Inc., the world's leading digital media solution provider and the largest fab-less IC company in Taiwan. The module can support up to 66 channels, and is designed for small-form-factor device. It is suitable for every GPS-related application, such as:

- 9 Fleet Management/Asset Tracking
- 9 LBS (location-base service) and AVL system
- 9 Security system
- 9 Hand-held device for personal positioning and travel navigation

Features

- MediaTek MT3329 Single Chip
- L1 Frequency, C/A code, 66 channels
- Support up 210 PRN channels
- Jammer detection and reduction
- Multi-path detection and compensation
- Dimension: 16mm x 16mm x 6mm
- Patch Antenna Size: 15mm x 15mm x 4mm
- High Sensitivity: Up to -165 dBm tracking, superior urban performances¹
- Position Accuracy: Without aid: 3m 2D-RMS

DGPS (RTM,SBAS(WAAS,EGNOS,MASA)):2.5m 2D-RMS

- Low Power Consumption: 48mA @ acquisition, 37mA @ tracking
- Low Shut-Down Power Consumption: 15uA, typical
- DGPS(WAAS/EGNOS/MSAS/GAGAN) support (Default: Enable)
- Max. Update Rate: up to 10Hz (Configurable by firmware)
- USB Interface support without extra bridge IC
- FCC E911 compliance and AGPS support (Offline mode : EPO valid up to 14 days)
- RoHS Compliant

Rev.A03

Mechanical

Unit: mm

Rev.A03

Recommend PCB Layout Pad

Rev.A03

Pin Configuration

Top View

Pin Definition

Pin	Name	I/O	Description	
1	vcc	PI	Main DC power input	
2	ENABLE	l	High active, or keep floating for normal working	
3	GND	Р	Ground	
4	VBACKUP	PI	Backup power input	
5	3D-FIX	0	3D-fix indicator	
6	DPLUS	I/O	USB port D+	
7	DMINUS	I/O	USB port D-	
8	GND	Р	Ground	
9	TXD	0	Serial data output of NMEA	
10	RXD	I	Serial data input for firmware update	

Rev.A03

Description of I/O Pin

VCC (Pin1)

The main DC power supply of the module, the voltage should be kept between from 3.2V to 5.0V. The Vcc ripple must be controlled under 50mV_{pp} (Typical: 3.3V)

ENABLE (Pin2)

Keep open or pull high to Power ON. Pull low to shutdown the module.

Enable (High): 1.8V<= V_{enable}<=VCC Disable (Low): 0V<= V_{enable}<=0.25V

GND (Pin3)

Ground

VBACKUP (Pin4)

This is the power for GPS chipset to keep RTC running when main power is removed. The voltage should be kept between 2.0V~4.3V. **(Typical: 3.0V)**

The pin must be connected for normal operation.

3D-FIX (Pin5)

The 3D-FIX was assigned as fix flag output. If not used, keep floating.

" Before 2D Fix

The pin should continuously output one-second high-level with one-second low-level signal.

" After 2D or 3D Fix

The pin should continuously output low-level signal.

Low

Rev.A03

DPLUS (Pin6)

USB Port DPLUS Signal

DMINUS (Pin7)

USB Port DMINUS Signal

GND (Pin8)

Ground

TXD (Pin9)

This is the UART transmitter of the module. It outputs the GPS information for application.

RXD (Pin10)

This is the UART receiver of the module. It is used to receive software commands and firmware update.

Rev.A03

Reference Design

USB Interface

UART Interface

Rev.A03

Specifications

General				
	MTK MT3329			
Chipset				
Frequency	L1, 1575.42MHz			
C/A Code	1.023 MHz			
Channels	66 channels			
SBAS	WAAS, EGNOS,MSAS ,GAGAN Supported(Default: Enable)			
Datum	WGS84(Default), Tokyo-M, Tokyo-A, User Define			
CPU	ARM7EJ-S			
Dimensions				
Length/Width/Height	16*16*6 mm			
Weight	6g			
Performance Charac	teristics			
Position Accuracy	Without aid: 3m 2D-RMS			
Position Accuracy	DGPS(RTM,SBAS(WAAS,EGNOS,MASA)):2.5m 2D-RMS			
Velocity Accuracy	Without aid:0.1 m/s			
Velocity Accuracy	DGPS (RTCM, SBAS):0.05m/s			
Acceleration Accuracy	Without aid:0.1 m/s²			
Acceleration Accuracy	DGPS (RTCM, SBAS):0.05m/s ²			
Timing Accuracy	100 ns RMS			
	Acquisition:-148dBm (Cold Start)			
Sensitivity ¹	Reacquisition:-160dBm			
	Tracking:-165dBm			
Update Rate	1Hz (Default)			
Acquisition (Open sk	xy, stationary)			
Reacquisition Time ¹	Less than 1 second			
Hot start ¹	1.0s (Typical)			
Warm start ¹	34s (Typical)			
Cold start ¹	35s (Typical)			

¹ Reference to GPS chipset specification

Rev.A03

Dynamic			
Altitude	Maximum 18,000m		
Velocity	Maximum 515m/s		
Acceleration	Maximum 4G		
I/O			
Signal Output	8 data bits, no parity, 1 stop bit		
	Default:9600bps		
Available Baud Rates	(4800/9600/38400/57600/115200 bps by customization)		
Protocols	NMEA 0183 v3.01 (Default: GGA,GSA,GSV,RMC,VTG)		
Protocois	MTK NMEA Command		
Data output Interface			
USB Interface	Logo certified USB 2.0 full-speed compatible		
UART Interface	TTL level serial port		
Environment			
Operating Temperature	-40 ℃ to 85 ℃		
Storage Temperature	-50 ℃ to 90 ℃		
Operating Humidity	5% to 95% (no condensing)		
Mounting	SMD Type ,10 Pin		

Rev.A03

DC Characteristics

Parameter	Condition	Min.	Тур.	Max.	Unit
Operation supply Voltage		3.2	3.3	5.0	V
Operation supply Ripple Voltage	_	_	_	50	mVpp
Backup Battery Voltage	_	2.0	3.0	4.3	V
RXATTL H Level	VCC=3.3V	2.1	_	2.8	V
RXA TTL L Level	VCC=3.3V	0	_	0.9	V
TXA TTL H Level	VCC=3.3V	2.1		2.8	V
TXA TTL L Level	VCC=3.3V	0	_	0.8	V
USB D+	VCC=5.0V				V
USB D-	VCC=5.0V				V
Power Consumption @ 3.3V	Acquisition	43	48	53	mA
Fower Consumption @ 3.3V	Tracking	32	37	42	mA
Backup Power Consumption@ 3.0V	25℃	_	10	_	uA
Shut-down Power Consumption	25℃	_	15	_	uA
(via enable pin)					

NMEA Output Sentence

Table-1 lists each of the NMEA output sentences specifically developed and defined by MTK for use within MTK products

NMEA Output Sentence Table-		
Option	Description	
GGA	Time, position and fix type data.	
GSA	GPS receiver operating mode, active satellites	
	used in the position solution, and DOP values.	
GSV	The number of GPS satellites in view satellite ID	
	numbers, elevation, azimuth, and SNR values.	
RMC	Time, date, position, course and speed data.	
	Recommended Minimum Navigation Information.	
VTG	Course and speed information relative to the	
	ground.	

Rev.A03

GGA—Global Positioning System Fixed Data. Time, Position and fix related data for a GPS receiver

Table-2 contains the values for the following example:

\$GPGGA,064951.000,2307.1256,N,12016.4438,E,1,8,0.95,39.9,M,17.8,M,,*65

GGA Data Format Table-2				
Name	Example	Units	Description	
Message ID	\$GPGGA		GGA protocol header	
UTC Time	064951.000		hhmmss.sss	
Latitude	2307.1256		ddmm.mmmm	
N/S Indicator	N		N=north or S=south	
Longitude	12016.4438		dddmm.mmmm	
E/W Indicator	E		E=east or W=west	
Position Fix	1		See Table-3	
Indicator				
Satellites Used	8		Range 0 to 14	
HDOP	0.95		Horizontal Dilution of	
			Precision	
MSL Altitude	39.9	meters	Antenna Altitude above/below	
			mean-sae-level	
Units	М	meters	Units of antenna altitude	
Geoidal	17.8	meters		
Separation				
Units	М	meters	Units of geoidal separation	
Age of Diff. Corr.		second	Null fields when DGPS is not	
			used	
Checksum	*65			
<cr> <lf></lf></cr>			End of message termination	

Position Fix Indicator		Table-3
Value	Description	
0	Fix not available	
1	GPS fix	
2	Differential GPS fix	

Rev.A03

GSA—GNSS DOP and Active Satellites

Table-4 contains the values for the following example:

 $\$\mathsf{GPGSA},\!A,\!3,\!29,\!21,\!26,\!15,\!18,\!09,\!06,\!10,\!,,,\!,2.32,\!0.95,\!2.11*00$

GSA Data Format	GSA Data Format Table-				
Name	Example	Units	Description		
Message ID	\$GPGSA		GSA protocol header		
Mode 1	A		See Table-5		
Mode 2	3		See Table-6		
Satellite Used	29		SV on Channel 1		
Satellite Used	21		SV on Channel 2		
Satellite Used			SV on Channel 12		
PDOP	2.32		Position Dilution of Precision		
HDOP	0.95		Horizontal Dilution of Precision		
VDOP	2.11		Vertical Dilution of Precision		
Checksum	*00				
<cr> <lf></lf></cr>			End of message termination		

Mode 1	Table-5
Value	Description
М	Manual—forced to operate in 2D or 3D mode
Α	2D Automatic—allowed to automatically switch 2D/3D

Mode 2		Table-6
Value	Description	
1	Fix not available	
2	2D (<4 SVs used)	
3	3D (≧4 SVs used)	

Rev.A03

GSV—GNSS Satellites in View

Table-7 contains the values for the following example: \$GPGSV,3,1,09,29,36,029,42,21,46,314,43,26,44,020,43,15,21,321,39*7D \$GPGSV,3,2,09,18,26,314,40,09,57,170,44,06,20,229,37,10,26,084,37*77 \$GPGSV,3,3,09,07,,,26*73

GSV Data Format Table-				
Name	Example	Units	Description	
Message ID	\$GPGSV		GSV protocol header	
Number of	3		Range 1 to 3	
Messages			(Depending on the number of	
			satellites tracked, multiple	
			messages of GSV data may be	
			required.)	
Message Number1	1		Range 1 to 3	
Satellites in View	09			
Satellite ID	29		Channel 1 (Range 1 to 32)	
Elevation	36	degrees	Channel 1 (Maximum 90)	
Azimuth	029	degrees	Channel 1 (True, Range 0 to	
			359)	
SNR (C/No)	42	dBHz	Range 0 to 99,	
			(null when not tracking)	
Satellite ID	15		Channel 4 (Range 1 to 32)	
Elevation	21	degrees	Channel 4 (Maximum 90)	
Azimuth	321	degrees	Channel 4 (True, Range 0 to	
			359)	
SNR (C/No)	39	dBHz	Range 0 to 99,	
			(null when not tracking)	
Checksum	*7D			
<cr> <lf></lf></cr>			End of message termination	

Rev.A03

RMC—Recommended Minimum Navigation Information

Table-8 contains the values for the following example:

\$GPRMC,064951.000,A,2307.1256,N,12016.4438,E,0.03,165.48,260406,3.05,W,A*2C

RMC Data Format Table-8				
Name	Example	Units	Description	
Message ID	\$GPRMC		RMC protocol header	
UTC Time	064951.000		hhmmss.sss	
Status	A		A=data valid or V=data not valid	
Latitude	2307.1256		ddmm.mmmm	
N/S Indicator	N		N=north or S=south	
Longitude	12016.4438		dddmm.mmmm	
E/W Indicator	E		E=east or W=west	
Speed Over	0.03	knots		
Ground				
Course Over	165.48	degrees	True	
Ground				
Date	260406		ddmmyy	
			E=east or W=west	
Magnetic Variation	3.05, W	degrees	(Need customization	
			service)	
Mode	А		A= Autonomous mode	
			D= Differential mode	
			E= Estimated mode	
Checksum	*2C			
<cr> <lf></lf></cr>			End of message termination	

Rev.A03

VTG—Course and speed information relative to the ground.

Table-9 contains the values for the following example:

\$GPVTG,165.48,T,,M,0.03,N,0.06,K,A*37

VTG Data Format			Table-9
Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course	165.48	degrees	Measured heading
Reference	Т		True
Course		degrees	Measured heading
Reference	M		Magnetic
			(Need customization
			service.)
Speed	0.03	knots	Measured horizontal speed
Units	N		Knots
Speed	0.06	km/hr	Measured horizontal speed
Units	K		Kilometers per hour
Mode	Α		A= Autonomous mode
			D= Differential mode
			E= Estimated mode
Checksum	*06		
<cr> <lf></lf></cr>			End of message termination

MTK NMEA Command Protocol

Packet Type:

103 PMTK_CMD_COLD_START

Packet Meaning:

Cold Start: Don't use Time, Position, Almanacs and Ephemeris data at re-start.

Example:

\$PMTK103*30<CR><LF>

Rev.A03

Manual Soldering:

Soldering iron:

Bit Temperature: Under 380℃ Time: Under 3 sec.

Notes:

1. Please do not directly touch the soldering pads on the surface of the PCB board, in order to prevent further oxidation

- The solder paste must be defrosted to room temperature before use so it can return to its optimal working temperature. The time required for this procedure is unique and dependent on the properties of the solder paste used.
- 3. The steel plate must be properly assessed before and after use, so its measurement stays strictly within the specification set by SOP.
- 4. Please watch out for the spacing between soldering joint, as excess solder may cause electrical shortage
- Please exercise with caution and do not use extensive amount of flux due to possible siphon effects on neighboring components, which may lead to electrical shortage.
- 6. Please do not use the heat gun for long periods of time when removing the shielding or inner components of the GPS module, as it is very likely to cause a shift to the inner components and will leads to electrical shortage.