

- Prelegerea 15 - HMAC

Adela Georgescu, Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Revizuire - MAC

2. Hash MAC

▶ În prelegerile anterioare am vazut că putem construi MAC-uri sigure pe baza funcțiilor pseudoaleatoare (PRF);

- În prelegerile anterioare am vazut că putem construi MAC-uri sigure pe baza funcțiilor pseudoaleatoare (PRF);
- ▶ Pentru $F:\{0,1\}^n imes \{0,1\}^n o \{0,1\}^n$ o PRF, defineam un MAC astfel
 - $\blacktriangleright \operatorname{Mac}(k,m): t = F_k(m);$
 - ▶ Vrfy(k, m, t) = 1 dacă și numai dacă $t = F_k(m)$ (altfel întoarce 0).

- În prelegerile anterioare am vazut că putem construi MAC-uri sigure pe baza funcțiilor pseudoaleatoare (PRF);
- ▶ Pentru $F:\{0,1\}^n imes \{0,1\}^n o \{0,1\}^n$ o PRF, defineam un MAC astfel
 - $\operatorname{Mac}(k,m): t = F_k(m);$
 - ▶ Vrfy(k, m, t) = 1 dacă și numai dacă $t = F_k(m)$ (altfel întoarce 0).
- Această construcție este bună pentru mesaje de lungime mică, dar avem nevoie de construcții de MAC-uri pentru mesaje mult mai mari;

- ► Există două construcții de bază care se folosesc în practică:
 - ► CBC-MAC folosit pe larg în industria bancară

- Există două construcții de bază care se folosesc în practică:
 - CBC-MAC folosit pe larg în industria bancară
 - ► HMAC pentru protocoale pe Internet: SSL, IPsec, SSH...

- Există două construcții de bază care se folosesc în practică:
 - CBC-MAC folosit pe larg în industria bancară
 - ► HMAC pentru protocoale pe Internet: SSL, IPsec, SSH...
- Reamintim construcția CBC-MAC sigură pentru mesaje de lungime fixă:

- Există două construcții de bază care se folosesc în practică:
 - ► CBC-MAC folosit pe larg în industria bancară
 - ▶ HMAC pentru protocoale pe Internet: SSL, IPsec, SSH...
- Reamintim construcția CBC-MAC sigură pentru mesaje de lungime fixă:

▶ Însă pentru mesaje de lungime variabilă, putem reține această construcție ca fiind sigură:

▶ Însă pentru mesaje de lungime variabilă, putem reține această construcție ca fiind sigură:

Am studiat deja funcții hash şi transformarea Merkle-Damgård pentru a obține funcții hash (rezistente la coliziuni) cu intrarea de lungime variabilă pornind de la funcții de compresie cu intrarea de lungime fixă;

- Am studiat deja funcții hash şi transformarea Merkle-Damgård pentru a obține funcții hash (rezistente la coliziuni) cu intrarea de lungime variabilă pornind de la funcții de compresie cu intrarea de lungime fixă;
- Reamintim construcția Merkle-Damgård:

- Am studiat deja funcții hash şi transformarea Merkle-Damgård pentru a obține funcții hash (rezistente la coliziuni) cu intrarea de lungime variabilă pornind de la funcții de compresie cu intrarea de lungime fixă;
- Reamintim construcția Merkle-Damgård:

Încercăm să construim un MAC direct pornind de la H(·), unde H(·) este funcția hash obținută cu transformarea Merkle-Damgård;

- Încercăm să construim un MAC direct pornind de la H(·), unde H(·) este funcția hash obținută cu transformarea Merkle-Damgård;
- ▶ Definim Mac(k, m) astfel: t = H(k||m).

- Încercăm să construim un MAC direct pornind de la $H(\cdot)$, unde $H(\cdot)$ este funcția hash obținută cu transformarea Merkle-Damgård;
- ▶ Definim Mac(k, m) astfel: t = H(k||m).
- ▶ Întrebare: Este acesta un MAC sigur (nu poate fi falsificat printr-un atac cu mesaj clar ales)?

- Încercăm să construim un MAC direct pornind de la H(·), unde H(·) este funcția hash obținută cu transformarea Merkle-Damgård;
- ▶ Definim Mac(k, m) astfel: t = H(k||m).
- ▶ Întrebare: Este acesta un MAC sigur (nu poate fi falsificat printr-un atac cu mesaj clar ales)?
- ▶ Răspuns: NU! Un advesar poate calcula un tag t' pentru un mesaj nou care nu a mai fost autentificat: extinde mesajul anterior cu încă un bloc d, şi calculează:

$$H(k||m||d) = h(d||H(k||m))$$

Folosim metoda standardizată HMAC (Hash MAC):

- HMAC se definește astfel:
- ▶ Mac(k, m): $t = H((k \oplus opad) || H((k \oplus ipad) || m))$;
- $Vrfy(k, m, t) = 1 \iff t = Mac(k, m).$

Notații

- ipad și opad sunt două constante de lungimea unui bloc m_i
- ipad constă din byte-ul 0x5C repetat de atâtea ori cât e nevoie;
- opad constă din byte-ul 0x36 repetat de atâtea ori cât e nevoie;
- ▶ IV este o constantă fixată.

▶ Definim $G(k) = h(IV \mid\mid (k \oplus \text{opad})) \mid\mid h(IV \mid\mid (k \oplus \text{ipad}))$

- ▶ Definim $G(k) = h(IV || (k \oplus \text{opad})) || h(IV || (k \oplus \text{ipad}))$
- ▶ Privind secvența ca $G(k) = k_1 || k_2$, dacă G este PRG și $k \leftarrow^R \{0,1\}^n$, deși k_1, k_2 sunt dependente, acestea par alese în mod uniform și independent;

- ▶ Definim $G(k) = h(IV \mid\mid (k \oplus \text{opad})) \mid\mid h(IV \mid\mid (k \oplus \text{ipad}))$
- ▶ Privind secvența ca $G(k) = k_1 || k_2$, dacă G este PRG și $k \leftarrow^R \{0,1\}^n$, deși k_1, k_2 sunt dependente, acestea par alese în mod uniform și independent;
- ▶ Dacă G este PRG, atunci dăm următorul rezultat de securitate pentru HMAC :

- ▶ Definim $G(k) = h(IV \mid\mid (k \oplus \text{opad})) \mid\mid h(IV \mid\mid (k \oplus \text{ipad}))$
- ▶ Privind secvența ca $G(k) = k_1 || k_2$, dacă G este PRG și $k \leftarrow^R \{0,1\}^n$, deși k_1, k_2 sunt dependente, acestea par alese în mod uniform și independent;
- Dacă G este PRG, atunci dăm următorul rezultat de securitate pentru HMAC :

Teoremă

Dacă G este PRG, h prezintă rezistență la coliziuni și MAC-ul $h(k \mid\mid m)$ contruit be baza ei este sigur (pentru mesaje de lungime fixă), atunci HMAC este sigur (pentru mesaje de lungime arbitrară) - nu poate fi falsificat printr-un atac cu mesaj ales.

Important de reținut!

- ► HMAC este un MAC foarte popular folosit în multe protocoale practice precum TLS;
- ► Construcția lui se bazează pe funcții hash, de exemplu SHA-2 (SHA-256).