Teorie množin

Ladislav Láska

16. června 2010

Obsah

1	For	mální jazyk				
	1.1	Základní součásti jazyka				
	1.2	Formule				
2	Axiomy teorie množin					
	2.1	Průnik a rozdíl množin				
	2.2	Disjunkní množina				
	2.3	Russelův paradox				
	2.4	Axiom dvojice				
		2.4.1 Rovnost množin				
		2.4.2 Uspořádaná dvojce, k-tice				
	2.5	Axiom sumy				
		2.5.1 Neuspořádané k-tice				
		2.5.2 Průnik				
	2.6	Schéma axiomu nahrazení				
		2.6.1 Binární relace				
		2.6.2 Funkce				
	2.7	Uspořádání				
3	Ord	Ordinály 1				
•	3.1	Věta o ordinálech				
	3.2	Neexistence množiny všech ordinálů				
	3.3	Lemma o tranzitivitě a ordinalitě				
	3.4					
	3.5					
	3.6					
	3.7	Množina všech přirozených čísel				
1	Kar	rdinály				
_	4.1	Sčítání a násobení				
	4.2	Axiom potence				
5	Tří	dy a rekurze				
•	5.1	Princip maximality				
	5.1	Princip dobrého uspořádání				
	5.2 5.3	Ekvivalence axiomu výběru, p. maximality a dobrého uspořádání				
		v · · · · · · · · · · · · · · · · · · ·				
	5.4					
	5.5	Α				
	5.6	Δ-systém				
	5.7	Věta o A-systému				

6	Stacionární množiny		
	6.1	Stacionární množina	31
	6.2	Fodorova věta (Pressing-down lemma)	33

1 Formální jazyk

1.1 Základní součásti jazyka

- 1. proměnné
- 2. binární predikátový symbol \in
- 3. binární predikátový symbol =
- 4. logické spojky $\neg \land \lor \Rightarrow \Leftrightarrow$
- 5. kvantifikátory $(\forall x)$, $(\exists x)$
- 6. pomocné symboly závorky

1.2 **Formule**

- 1. Nechť x, y jsou prvky množiny, pak $(x \in y)$ a (x = y) jsou atomické formule.
- 2. Nechť výrazy φ, ψ jsou formule, potom: $\neg \varphi, \varphi \land \psi, \varphi \lor \psi, \varphi \Rightarrow \psi, \varphi \Leftrightarrow \psi$ jsou formule.

Tedy toho hodne chybi

2 Axiomy teorie množin

2.1 Průnik a rozdíl množin

Definice Pro množiny a,b po řadě průnikem a rozdílem nazýváme množinu:

$$a \cup b = \{x : x \in a \land x \in b\} \tag{1}$$

$$a \setminus b = \{x : x \in a \land x \notin b\} \tag{2}$$

Existuje množina a (Axiom existence), podle vydělení pro formuli $x \neq x$ existuje a podle extenzoinality je jediná množina $\{x \in a : a \neq x\}$.

Definice Ø je jediná množina y splňující:

$$(\forall x)(x \notin y) \tag{3}$$

A nazýváme jí **prázdná množina**.

2.2 Disjunkní množina

Definice Říkáme, že množina a,b jsou disjunkní, že je-li $a \cup b = \emptyset$.

Lemma

- 1. $\neg(\exists y)(y \in \emptyset)$
- 2. $(\forall x)(\emptyset \subset x)$
- 3. $x \subset \emptyset \Leftrightarrow x = \emptyset$

Lemma

$$(\forall a)a = \{x : x \in a \land x = x\} \tag{1}$$

2.3 Russelův paradox

Věta

$$\neg(\exists z)(\forall x)(x \in z) \tag{1}$$

Důkaz Sporem: nechť z je taková množina. Pak mějme formuli $\varphi(x)$ $x \neq x$. Potom podle axiomu vydělení pro tuto formuli máme $t = \{x \in z : x \notin x\}$, tedy t je množina. Protože t je množina a z je množina všech množin. Protože $t \in z$, $t \in t \Leftrightarrow t \notin t$. Tedy neexistuje množina všech množin.

2.4 Axiom dvojice

$$(\forall a)(\forall b)(\exists z)(\forall x)(x \in z \Leftrightarrow (x = a \lor x = b)) \tag{1}$$

Definice Jsou-li a, b množiny, pak množinu se stávající z prvků a, b nazveme **neuspořádanou dvojcí** množin a, b a značíme $\{a, b\}$. Pro $a \neq b$ říkáme, že $\{a, b\}$ dvouprvková, jinak jednoprvková.

2.4.1 Rovnost množin

Lemma

- 1. $\{x\} = \{y\} \Leftrightarrow x = y$
- 2. $\{x\} = \{x, y\} \Leftrightarrow x = y$
- 3. $\{x,y\} = \{u,v\} \Leftrightarrow (x = u \land y = v) \lor (x = v \land y = u)$

2.4.2 Uspořádaná dvojce, k-tice

Uspořádaná dvojce množina,b je množina, která má prvky $\{\{a\},\{a,b\}\}$. Značíme jí < a,b>.

Lemma

$$\langle x, y \rangle = \langle u, v \rangle \Leftrightarrow (x = u \land y = v)$$
 (1)

Definice Jsou-li dány množiny $a_1, a_2, ..., a_k$, pak uspořádanou k - tici definujeme jako:

$$\langle a_1 \rangle = a_1$$
, a dál indukcí (2)

$$\langle a_1, a_2, ..., a_k \rangle = \langle \langle a_1, ..., a_{k-1} \rangle, a_k \rangle$$
 (3)

Lemma

$$\langle a_1, ..., a_k \rangle = \langle b_1, ..., b_k \rangle$$
 (4)

$$\Leftrightarrow$$
 (5)

$$(a_1 = b_1) \wedge \dots \wedge (a_k = b_k) \tag{6}$$

2.5 Axiom sumy

$$(\forall a)(\exists z)(\forall x)(x \in z \Leftrightarrow (\exists y)(x \in y \land y \in a)) \tag{1}$$

Značení

$$\bigcup a = \{x : (\exists y)(y \in a \land x \in y)\}$$
 (2)

Značení Nechť $a = \{b, c\}$. Pak $\bigcup a = b \cup c$

2.5.1 Neuspořádané k-tice

Značení Neuspořádaná k-tice je:

$$\{a, b, c\} = \{a, b\} \cup \{c\} \tag{1}$$

2.5.2 Průnik

Definice Pro neprázdnou množinu a lze analogicky definovat

$$\bigcap a = \{x : (\forall y)(y \in a \Rightarrow x \in y)\}$$
 (1)

Pro neprázdnou a existuje $\bigcap a$:

$$a \neq \emptyset \quad (\exists x)x \in a, \quad x = x_0$$
 (2)

$$a = \emptyset \quad \bigcap a$$
 není definovaný (3)

2.6 Schéma axiomu nahrazení

Je-li $\psi(u,v)$ formule, která neobsahuje volně proměnné z,w, potom formule:

$$(\forall u)(\forall v)(\forall w)(\psi(u,v) \land \psi(u,w) \Rightarrow v = w) \Rightarrow \tag{1}$$

$$(\forall a)(\exists z)(\forall v)(v \in z \Leftrightarrow (\exists u)(u \in a \land \psi(u, v))) \tag{2}$$

je axiom teorie množin.

Pozorování Pro jedno $u, \psi(u, v)$ platí pro nejvýše jedno v. To je analogie k funkci.

Definice Nechť a, b jsou množiny. **Kartézský součin** $a \times b$ je množina:

$$a \times b = \{ \langle x, y \rangle : x \in a \land y \in b \}$$
 (3)

Důkaz $a \times b$ je množina. Zvolme a zafixujme $y \in b$ a nechť $\psi(x,v)$ je formule v = < x,y>. Je-li:

$$\psi(x,v) \land \psi(x,w) \Rightarrow v = \langle x,y \rangle \land w = \langle x,y \rangle \Rightarrow v = w \tag{4}$$

Tedy je splněn předpoklad axiomu nahrazení (1) pro formuli ψ .

$$M_y = \{ \langle x, y \rangle : x \in a \} \tag{5}$$

je množina podle nahrazení pro ψ pro každé y.

Nechť navíc $\overline{\psi}(y,v)$ je formule $v=M_{\nu}$. Je-li:

$$\overline{\psi}(y,v) \wedge \overline{\psi}(y,w) \Rightarrow v = M_y \wedge w = M_y \Rightarrow v = w \tag{6}$$

Tedy je splněn předpoklad axiomu nahrazení (1) pro formuli $\overline{\psi}$. Navíc tedy

$$D = \{M_y : y \in b\} \text{ je množina} \tag{7}$$

$$\bigcup D = \{ \langle x, y \rangle : x \in a, y \in b \} = a \times b \tag{8}$$

2.6.1 Binární relace

Definice Binární relace je množina R, jejímiž prvky jsou uspořádané dvojce.

$$dom(R) = \{x : (\exists y) < x, y > \in R\} \text{ je definiční obor}$$
 (1)

$$rng(R) = \{ y : (\exists x) < x, y > \in R \} \text{ je obor hodnot}$$
 (2)

Protože R je množina, dom(R) i rng(R) jsou množiny.

Definice Je-li R relace, definujeme:

$$R^{-1} = \{ \langle x, y \rangle : \langle y, x \rangle \in R \}$$
 (3)

Pro každou relaci R, R^{-1} je relace a $(R^{-1})^{-1} = R$.

Definice Jsou-li R, S relace, pak

$$R \circ S = \{ \langle x, z \rangle : (\exists y) \langle x, y \rangle \in R \land \langle y, z \rangle \in S \}$$

$$\tag{4}$$

Definice Jsou-li R, S, T relace, pak

$$(T \circ S) \circ R = T \circ (S \circ R) \tag{5}$$

2.6.2 Funkce

Množina f se nazývá **funkce**, pokud f je relace a platí:

$$(\forall x \in \text{dom}(f))((y \in \text{rng}(f) \land y' \in \text{rng}(f) \land \langle x, y \rangle \in f \land \langle x, y' \rangle \in f) \Rightarrow y = y') \quad (1)$$

Značení $f: A \to B$ znamená: f je funkce, $A = \text{dom}(f), B \supset \text{rng}(f)$. Je-li $C \subseteq A$, pak $f \upharpoonright C = f \cap (C \times B)$ nazýváme x zůžením funkce f na množinu C.

$$f'C = \operatorname{rng}(f \upharpoonright C) = \{f(x) : x \in C\}$$
 (2)

Funkce $f: A \to B$ se nazývá **prostá**, pokud f^{-1} je funkce.

Funkce $f: A \to B$ se nazývá **surjektivní** ("na"), jestliže $B = \operatorname{rng}(f)$

Funkce f se nazývá **bijekce** je-li **surjektivní** a současně **prostá**.

2.7 Uspořádání

Definice Ostře uspořádaná množina je uspořádaná dvojce $\langle a, r \rangle$, kde a je množina a r je relace, $r \subseteq a \times a$. Přičemž r splňuje:

$$\forall x, y, z \in a: \langle x, y \rangle \in r \land \langle y, z \rangle \in r \Rightarrow \langle x, z \rangle \in r \text{ tranzitivita}$$
 (1)

$$\forall x \in a: \langle x, x \rangle \notin r$$
 antireflexivita (2)

Pro zjednodušení místo $\langle x, y \rangle \in r$ píšeme xry.

Definice Ostré uspořádání r nazveme **lineárním**, pokud

$$\forall x, y \in a: \quad x = y \lor xry \lor yrx \tag{3}$$

Definice Jsou-li R, S relace a a, b množiny, pak řekneme, že < a, R > je izomorfní s < b, S >, pokud existuje bijekce $f: a \to b$ taková, že

$$\forall x, y \in a: \langle x, y \rangle \in \mathbb{R} \Leftrightarrow \langle f(x), f(y) \rangle \in S \tag{4}$$

a zobrazení f se nazývá **izomorfismus**.

Definice Mějme uspořádanou množinu < a, r >. Je-li $m \subset a$, pak řekneme, že $x \in a$ je **r-nejmenší** prvek množiny m, jestliže platí:

$$x \in m \land (\forall Y)(y \in m \Rightarrow (xry \lor y = x)) \tag{5}$$

Je-li $m \subseteq a, x \in a$, řekneme, že x je **minimální** prvek množiny m, jestliže platí

$$x \in m \land (\forall y)(y \in m \Rightarrow \neg(yrx)) \tag{6}$$

Definice Řekneme, že uspořádání r na množině a je **dobré** (množina < a, r > je dobře uspořádaná) jesltiže r je ostré uspořádání množiny a a každá neprázdná podmnožina a má r-nejmenší prvek.

Pozorování Je-li < a, r > dobře uspořádaná, pak je r lineární uspořádání. $x, y \in a \{x,y\} \subseteq a \ a \{x,y\}$ má r-nejmenší prvek. Je-li to x, pak $xry \lor x = y$. Pokud je to y, pak $yrx \lor y = x$.

Značení Nechť $\langle a, r \rangle$ je uspořádaná množina a $x \in a$. Označme $\langle (\leftarrow, x), r \rangle$ jako:

$$(\leftarrow, x) = \{ y \in a : yrx \} \tag{7}$$

Lemma 1 Je-li < a, r > dobře uspořádaná množina, pak pro každé $x \in a < a, r >$ není izomorfní s $< (\leftarrow, x), r >$

Důkaz Sporem: Předpokládejme, že existuje izomorfismus $f: \langle a, r \rangle \rightarrow \langle (\leftarrow, x), r \rangle$. Definujme $m = \{y \in a : f(y) \neq y\}$. $x \neq (\leftarrow, x)$, tedy $f(x) \neq x \Rightarrow m \neq \emptyset$. $\langle a, r \rangle$ je tedy dobře uspořádaná, tedy musí existovat t r-nejmenší prvek množiny m. Máme pro všechna zrt, platí že f(z) = z.

- 1. f(t)rt: ale máme $f(t) \neq t$, f(f(t)) = f(t), spor: f není prosté.
- 2. trf(t): kdykoliv $zrt \Rightarrow f(z)rt$, protože f(z) = z. Navíc kdykoliv $trz \Rightarrow f(t)rf(z)$ protože f je izomorfismus. Tedy trf(t), $t \in (\leftarrow, x) \Rightarrow t \neq rng(f)$, tedy f není zobrazení **na**, což je **spor**.

Lemma 2 Jsou-li < a, r>, < b, s> dvě dobře uspořádané množiny, které jsou izomorfní, pak mezi nimi existuje **jediný** izomorfismus.

Důkaz Sporem: Nechť $f,g:a\to b$ jsou dva různé izomorfismy. Tedy existuje nějaké $x\in a: f(x)\neq g(x)$. Tedy množina $m=\{t\in a: f(t)\neq g(t)\}$ je neprázdná (obsahuje x) a < a,r> je dobře uspořádaná, tedy existuje nejmenší prvek t množiny m. Zřejmě platí, že kdykoliv yrt, pak f(y)=g(y).

- 1. f(t)sg(t). Pokud trz, protože g je izomorfismus, musí platit, že g(t)sg(z). Pokud zrt, pak $f(z) = g(z) \Rightarrow f(z)sf(t) \Rightarrow g(z)sf(t) \Rightarrow g(t) \neq f(t)$. Tedy $f(t) \notin rng(g)$, tedy není **na**.
- 2. g(t)sf(t) analogicky.

Věta Nechť < a, R > a < b, S > dvě dobře uspořádané množiny. Potom nastává právě jedna z následujícíh možností:

- 1. $\langle a, R \rangle \cong \langle b, S \rangle$ (je izomorfní)
- 2. $\exists y \in b : \langle a, R \rangle \cong \langle (\leftarrow, y), S \rangle$
- 3. $\exists x \in a : \langle (\leftarrow, x), R \rangle \cong \langle b, S \rangle$

Důkaz Položme

$$f = \{ \langle v, w \rangle : v \in a \land w \in b \land \langle (\leftarrow, v), R \rangle \cong \langle (\leftarrow, w), S \rangle \}$$
 (8)

1. f je zobrazení: nechť $\langle v, w \rangle \in f, \langle v, w_1 \rangle \in f$. Máme:

$$<(\leftarrow, w), S) \cong <(\leftarrow, v), R> \cong <(\leftarrow, w_1), S>$$
 (9)

tedy

$$\langle (\leftarrow, w), S \rangle \cong \langle (\leftarrow, w_1), S \rangle$$
 (10)

a podle Lemma 1 $w = w_1$.

2. f je prosté:

$$\langle v, w \rangle \in f, \langle v_1, w \rangle \in f$$
 (11)

$$<(\leftarrow, v)R>\cong<(\leftarrow, w), S>\cong<(\leftarrow, v_1), R>$$
 (12)

a podle Lemma 1 $v = v_1$

3. f zachovává uspořádání:

$$< v, w > \in f, < v_1, w_1 > \in f$$
 (13)

Nechť vRv_1 . Máme $<(\leftarrow, v_1), R>\cong<(\leftarrow, w_1), S>$. Nechť $g:<(\leftarrow, v_1), R>\to<(\leftarrow, w_1), S>$ je izomorfismus. Je $vRv_1, g(v)$ protože g je izomorfismus:

$$<(\leftarrow, v), R> \cong <(\leftarrow, g(v)), S>$$
 (14)

z definice f. Podle Lemma 2 existuje izomorfismus jediný, tedy $w = g(v)Sw_1$. Analogicky: pokud wSw_1 , potom vRv_1 .

Zřejmě platí, že pokud $< v, w > \in f$, pak $f \upharpoonright (\leftarrow, v)$ je izomorfismus mezi $< (\leftarrow, v), R >$ a $< (\leftarrow, w), S >$.

Položme:

$$m = \{ v \in a : \forall w \in b \quad \langle v, w \rangle \notin f \}$$
 (15)

$$o = \{ w \in b : \forall v \in a \quad \langle v, w \rangle \in f \}$$
 (16)

Můžou nastat případy:

- (a) $m = o = \emptyset$. Nastal případ, že $\langle a, R \rangle \cong \langle b, S \rangle$ podle f.
- (b) $m = \emptyset \neq o$. Množina < b, S > je dobře uspořádaná, tedy existuje $y \in b$, y je S-nejmenší prvek množiny o. V tom případě f je izomorfismus mezi < a, R > a $< (\leftarrow, y), S >$.
- (c) $m \neq \emptyset = o$. Existuje x R-nejmenší prvek množiny m a $<(\leftarrow, x), R>\cong(b, S)$ a f je hledaný izomorfismus.
- (d) $m \neq \emptyset \neq o$, což je ale ve sporu s definicemi o a m.

3 Ordinály

Definice Množina x se nazývá **tranzitivní**, pokud platí

$$\forall y : y \in x \Rightarrow y \subseteq x \tag{1}$$

Definice Množina x je **ordinál**, pokud x je tranzitivní a dobře uspořádaná relací \in .

Příklad 0 je ordinál

- $\{0, \{0\}, \{\{0\}\}\}\$ je tranzitivní, ale náležení neuspořádává není ordinál.
- $\{0, \{0\}, \{0, \{0\}, \{0, \{0\}\}\}\}\}\$ je ordinál, obvykle se značí 4.

3.1 Věta o ordinálech

- 1. Je-li x ordinál a $y \in x$, pak y je ordinál a současně $y = <(\leftarrow, y), \in>$.
- 2. Jsou-li x, y ordinály, pak $x \cong y$ právě když x = y
- 3. Jsou-li x, y ordinály, pak platí právě jedna z možností: $x = y, x \in y, y \in x$.
- 4. Jsou-li x, y, z ordinály, $x \in y \land y \in z \Rightarrow x \in z$.
- 5. Je-li C neprázdná množina ordinálů, potom $\exists x \in C : \forall y \in C : y = x \lor x \in y$

Důkaz

1. Je-li x ordinála a $y \in x$, pak y je ordinál a $y = <(\leftarrow, y), \in > \in x$. y je tranzitivní množina: zvolme $t \in y, u \in t$. Víme, že: x je ordinál, x je tranzitivní množina, $t \in y, y \in x$. Tedy $t \in x$. x je tranzitivní množina, $t \in x, u \in t$, tedy $u \in x$. V množině x máme $u, t, y \in x$, x je uspořádané relací náležení a máme $u \in t, t \in y$. Tedy $u \in y$. y je tedy tranzitivní množina.

y je relací náležení uspořádaná: Nechť $u,v,w\in y,\,u\in v\wedge v\in w.\,y\in x,$ protože x je tranzitivní množina, $u,v,w\in x.$ Přitom $u\in v\wedge v\in w,\,x$ je relací náležení uspořádaná, tedy $u\in w.\,y$ je tedy relací náležení uspořádaná dobře. Nechť $m\subset y$ je neprázdná množina, kdykoliv $t\in m,$ pak $t\in y,\,x$ je tranzitivní, tedy $m\subseteq x,m\neq\emptyset.$ Protože x je dobře uspořádaná, existuje $z\in m$ nejmenší prvek množiny m v x. Ale $m\subseteq y,$ tedy z je nejmenší prvek i v y. Tedy y je ordinál

Zbývá dokázat, že $y = <(\leftarrow, y), \in> v$ x: $t \in y$, protože $y \in x$, je $t \in x$ a $t \in y$. Tedy $t \in (\leftarrow, y)$. A naopak: $t \in (\leftarrow, y)$ v x. Množina x je uspořádaná operací náležení, tedy $t \in y$. Dostáváme, že $(\leftarrow, y) \subseteq y$.

2. Jsou-li x,y ordinály, a platí $x\cong y$ pak x=y. Nechť $h:(x,\in)\to (y,\in)$ je izomorfismus. Položme $m=\{z\in x:h(z)\neq z\}$. Pokud $m=\emptyset$, jsme hotovi. Pro spor předokládejme, že $m\neq\emptyset$. V tom případě existuje $t\in m$, t nejmenší prvek množiny m. Protože h je izomorfismus, platí pro $c,d\in x$:

$$c \in d \Leftrightarrow h(c) \in h(d) \tag{1}$$

Tedy speciálně

$$z \in t \Leftrightarrow h(z) \in h(t) \tag{2}$$

Máme (t nejmenší prvek množiny m)

$$z \in t \Leftrightarrow z \in h(t) \tag{3}$$

t = h(t), spor s předpokladem $t \in m$.

- 3. Jsou-li x,y ordinály, pak platí právě jedna z následujících možností: $x=y, x\in y,$ $y\in x$. Podle věty o izomorfismu dobrých uspořádání buď $x\cong y$ a ale podle 2. $\Rightarrow x=y$, nebo $x\cong (\leftarrow,z)$ a $x\cong z\in y$, nebo $y\cong (\leftarrow,t)$, tedy $x\in y\in x$.
- 4. Jsou-li x, y, z ordinály, $x \in y$ a $y \in z$, potom $x \in z$. Protože z je tranzitivní množina.
- 5. Je-li C neprázdná množina ordinálů, pak existuje $x \in C$ tak, že

$$(\forall y \in C)(x = y) \lor (x \in y) \tag{4}$$

 $C \neq \emptyset$, tedy můžeme zvolit $t \in C$. Pokud $(\forall y \in C)t = y \lor t \in y$, pak t je nejmenší prvek množiny C a jsme hotovi. V opačném případě existuje $y \in C$, že $y \in t$. Tedy $D = \{y \in C : y \in t\} \neq \emptyset$. t je ordinál: $D \neq \emptyset$, $D \subseteq t$, tedy existuje $x \in D$ nejmenší prvek množiny D. Nechť tedy $y \in t$, tedy $x = y \lor x \in y$; nebo y = t, tedy $x \in t$; nebo $t \in y$, pak $x \in t$, $t \in y$ dává $x \in y$. Tedy x je nejmenší prvek množiny C.

3.2 Neexistence množiny všech ordinálů

Věta Neexistuje množina všech ordinálů:

$$\neg(\exists z)(\forall x)(x \text{ je ordinál } \Rightarrow x \in z) \tag{1}$$

Sporem: Nech množina z existuje. Podle vydělení pro formuli "x je ordinál existuje $m = \{x : x \text{ je ordinál }\}$. Podle věty o ordinálch je m: tranzitivní, ostře uspořádaná relací náležení a to uspořádání je dobré. Podle definice m je ordinál, máme $m \in m$. Což je spor s bodem 3. věty o ordinálech.

3.3 Lemma o tranzitivitě a ordinalitě

Lemma Je-li *a* tranzitivní množina ordinálů, pak *a* je ordinál.

Důkaz Stačí ukázat:

- 1. náležení je dobré uspořádání na množině a. Mějme $x, y, z \in a$: $x \in y, y \in z$. Ale x, y, z jsou ordinály: podle věty o ordinálech (bod 4.) $x \in z$.
- 2. uspořádání je lineární (bod 3.)
- 3. uspořádání je dobré (bod 5.)

3.4

Věta Je-li < A,R> dobře uspořádaná množina. Pak existuje právě jeden ordinál c tak, že < $A,R>\cong < c,\in >$.

Důkaz

- 1. Unicita: Nechť $< A, R> \cong < d, \in >$. Dostáváme, že $c\cong d$ a podle věty o ordinálech c=d.
- 2. Existence: Položme $B=\{a\in A:<(\leftarrow,R>\cong x>\text{pro nějaký ordinál x }\}$. Nechť navíc f je funkce dom(f)=B a splňuje

$$(\forall a \in B) f(a)$$
 je ordinál takový, že $< (\leftarrow, a), R > \cong < f(a), \in >$ (1)

Položme $c = \operatorname{rng}(f)$: c je množina (nahrazení pro formuli " $< (\leftarrow, a, R > \cong x$ "). Podle předchozího lemmatu je c ordinál. Tedy f je izomorfismus $B \to c$. Pokud B = A, jsme hotovi. Jinak existuje $b \in A : B = (\leftarrow, b)$ a tedy f je izomorfismus mezi < B, R > a $< c, \in >$. Tedy i f(b) je definováno, ačkoli $b \notin B$, což je spor.

3.5

Definice Je-li < A, R > dobře uspořádaná množina, pak typ < A, R > je jediný ordinál c, pro který $< A, R > \cong c$.

Příklad $A = \{\sqrt{2}, \pi, 6, 7\} \cong 4$

Značení Malá řecká písmena $\alpha, \beta, \gamma, \dots$ je ordinál. Přičemž nahradíme:

$$\alpha < \beta \text{ za } \alpha \in \beta \tag{1}$$

$$\alpha < \beta \text{ za } (\alpha \in \beta) \lor (\alpha = \beta)$$
 (2)

Definice Je-li X množina ordinálů, označme:

$$\sup(X) = \bigcup X \tag{3}$$

$$\operatorname{pro} X \neq \emptyset \text{ označme } \min(X) = \bigcap X \tag{4}$$

Lemma

1. Pro ordinály α, β platí

$$\alpha \le \beta \Leftrightarrow \alpha \subseteq \beta \tag{5}$$

2. Je-li X množina ordinálů, prvek $\sup(X)$ je nejmenší ordinál, který je větší nebo roven všem prvkům z X pokud $X \neq \emptyset$. Prvek $\min(X)$ je nejmenší ordinál v množině X.

Důkaz

1.

- 2. Podle axiomu sumy X je množina, tedy $\bigcup X$ je množina. $\bigcup X$ je ordinál:
 - (a) je-li $x \in \bigcup X$, $y \in x$, musí podle axiomu sumy existovat $t \in X : x \in t$. Máme $x \in t$, $y \in x$, t je ordinál: $y \in t$. Znova podle axiomu sumy $y \in \bigcup X$. Tedy $\bigcup X$ je tranzitivní množina, je to množina ordinálů podle minulého lemmatu.
 - (b) $\forall x \in X: x \leq \bigcup X$ Nechť $x \in X$ libovolné, podle věty o ordinálech nastává právě jedna z možností

$$x \in \bigcup X, x = \bigcup X, \bigcup X \in x \tag{6}$$

Pokud $\bigcup X \in x$, máme x = X, pak $x \in \bigcup X$, tedy $\bigcup x \bigcup X$, spor s ordinalitou $\bigcup X$.

(c) $\bigcup X$ je nejmenší mez. Buď $t < \bigcup X$, tedy $t \in \bigcup X$. Stačí ukázat, že t není horní mezí množiny X. Protože $t \in \bigcup X$, existuje $y \in X$, že $t \in y$. Pro toto y platí t < y, tedy t není horní mezí množiny X.

Nechť $X \neq \emptyset$ máme dokázat, že $\min(X) = \bigcap X$ je ordinál a je nejmenší ze všech ordinálů v X. $\bigcap X$ je množina je-li $t \in \bigcap X$ a je-li $y \in t$, můžeme zvolit libovolné $x \in X$, je $t \in x, y \in t$, x ordinál, tedy $y \in x$. Tedy $\bigcap X$ je tranzitivní množina, podle předchozího lemmatu je $\bigcap X$ ordinál.

Zbývá dokázat, že $\bigcap X \in X$. X je neprázdná množina ordinálů, podle věty o ordinálech (bod 5) existuje nejmenší prvek množiny $x \in X$. Pro takové x platí, že kdykoliv $y \in x$, pak x = y nebo $x \in y$.

$$x = \{t : t \in x\} \subseteq y \text{ pro každé } y \in X$$
 (7)

$$x \le \bigcap X \tag{8}$$

Opačná rovnost $x \ge \bigcap X$ je zřejmá, nebo $\bigcap X \subseteq$ platí pro všechna $y \in X$.

3.6

Definice Pro ordinál α je jeho **ordinální následník** $s(\alpha) = \alpha \cup \{\alpha\}$.

Lemma Pro ordinál α je $s(\alpha)$ též ordinál, $\alpha < s(\alpha)$ a

$$(\forall \beta)(\beta \text{ ordinál } \Rightarrow (\beta < s(\alpha) \Leftrightarrow \beta \le \alpha)) \tag{1}$$

Důkaz Je-li $x \in s(\alpha)$, pak buď $x \in \alpha$ nebo $x \in \{\alpha\}$ z definice. Což je po řadě $x < \alpha$ a $x = \alpha$.

Definice Ordinál α se nazývá **izolovaný**, jestliže $\alpha = \emptyset$ nebo $\exists \beta$ ordinál a $\alpha = s(\beta)$.

Definice Ordinál α se nazývá **limitní**, jestliže $\alpha \neq \emptyset$ a není izolovaný.

Definice 1 = s(0), 2 = s(1), 3 = s(2), ...

Definice Ordinál α je přirozené číslo, jestliže platí

$$(\forall \beta)(\beta \le \alpha \Rightarrow \beta \text{ je izolovaný ordinál}) \tag{2}$$

3.7 Množina všech přirozených čísel

Tvrzení Podle axiomu nekonečna:

$$(\exists x)(\emptyset \in x \land (\forall y)(y \in x \Rightarrow s(y) \in x)) \tag{1}$$

Pozorování Množina x, zaručená axiomem nekonečna, obsahuje všechna přirozená čísla.

Důkaz Sporem: $\exists n$ přirozené číslo takové, že $n \notin x$. Určitě $n \neq 0$ podle axiomu nekonečna. Tedy $\exists m : n = s(m)$. Je $m \in x$? Ne, kdyby bylo $m \in x$, pak i n = s(m) splňuje $m \in x$, což je ve sporu s předpokladem. n je tedy přirozené číslo, tedy ordinál. Množina $x \setminus n$ je neprázdná, nebo $m \in x \setminus n$. Protože n je dobře uspořádaná a $x \setminus n$ je neprázdná, existuje nejmenší prvek $\tilde{n} \in x \setminus n$.

- 1. $\tilde{n} = 0$ spor s axiomem nekonečna.
- 2. $\tilde{n} \neq 0$, $\exists \tilde{m} \quad \tilde{n} = s(\tilde{m})$. Protože $\tilde{n} > \tilde{m}$ musí být $\tilde{m} \in x$. Podle axiomu nekonečna $s(\tilde{m}) = \tilde{n} \in x$. Což je spor.

Definice ω je množina všech přirozených čísel. ω je ordinál (podle Lemma 3). Všechny menší ordinály než ω jsou izolované, ω sama je limitní (a to dokonce nejmenší).

Poznámka Existuje, axiom nekonečna a vydělení pro formuli "n je přirozené číslo".

Věta (Peanovy axiomy)

- 1. $0 \in \omega$
- 2. $(\forall n \in \omega)(s(n) \in \omega)$
- 3. $(\forall n, m \in \omega)(n \neq m \Rightarrow s(n) \neq s(m))$
- 4. (indukce) $\forall X \subseteq \omega$

$$((0 \in X \land (\forall n \in X)(s(n) \in X)) \Rightarrow X = \omega). \tag{2}$$

Důkaz Plyne z věty o ordinálech. Ve 4 předpokládeme ke sporu, že $X \neq \omega$, tedy $\omega \setminus X$ je neprázdná množina ordinálů. Tedy má nejmenší prvek n. Pokud n=0 - spor, jinak $n \neq 0$, tedy $n=s(m), m \in X$ - spor.

Definice Nechť α , β jsou ordinály.

$$\alpha + \beta = typ < \alpha \times \{0\} \cup \beta \times \{1\}, R > \tag{3}$$

kde

$$R = \{ \langle \xi, 0 \rangle, \langle \nu, 0 \rangle : \xi \langle \nu \langle \alpha \} \cup$$
 (4)

$$\{ << \xi, 1>, <\nu, 1>>: \xi < \nu < \beta \} \cup$$
 (5)

$$\{((\alpha \times \{0\}) : (\beta \times \{1\})\}\tag{6}$$

Věta Pro libovolné ordinály α, β, γ

1.
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

$$2. \ \alpha + 0 = \alpha$$

3.
$$\alpha + 1 = s(\alpha)$$

4.
$$\alpha + s(\beta) = s(\alpha + \beta)$$

5. Je-li β je limitní ordinál, pak $\alpha+\beta=\sup\{\alpha+\xi:\xi<\beta\}$

Důkaz Triviální z definice.

Poznámka Pozor, ordinální sčítání není obecně komutativní.

Definice Pro ordinály $\alpha, \beta : \alpha \cdot \beta = typ < \beta \times \alpha, R >$, kde R je lexikografické uspořádání součinu $\beta \times \alpha$, tedy:

$$<<\xi, \nu>, <\xi', \nu'>> \in R \Leftrightarrow (\xi < \xi') \lor (\xi = \xi' \land \nu < \nu')$$
 (7)

Věta Pro libovolné ordinály α, β, γ platí:

1.
$$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$

$$2. \ \alpha \cdot 0 = 0$$

3.
$$\alpha \cdot 1 = \alpha$$

4.
$$\alpha \cdot s(\beta) = \alpha \cdot \beta + \alpha$$

5. Je-li β limitní ordinál, pak $\alpha \cdot \beta = \sup\{\alpha \cdot \xi : \xi < \beta\}$

6.
$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

Poznámka Pozor:

$$\omega \cdot 2 = \omega + \omega \tag{8}$$

$$2 \cdot \omega = \omega \tag{9}$$

4 Kardinály

Definice Nechť a, b jsou množiny.

- 1. Rekneme, že mohutnost množiny a je **menší nebo rovna** mohutnosti množiny b (značíme $a \leq b$), jestliže existuje zobrazení $f: a \rightarrow b$.
- 2. Řekneme, že mohutnost množiny a je **rovna** mohutnosti množiny b (značíme $a \approx b$) pokud existuje bijekce $f: a \to b$.
- 3. Řekneme, že mohutnost množiny a je **ostře menší** mohutnosti množiny b (značíme $a \prec b$) právě když $a \leq b \land (a \approx b)$.

Věta

- 1. $x \approx x$
- 2. $x \approx y \Rightarrow y \approx x$
- 3. $(x \approx y \land y \approx z) \Rightarrow x \approx z$
- $4. x \prec x$
- 5. $(x \leq y \land y \leq z) \Rightarrow x \leq z$

Věta (Cantor-Bernstein) Pro množiny a, b

$$(a \le b \land b \le a) \Rightarrow a \approx b \tag{1}$$

Značení $g''b = g[b] = \{g(x) : x \in b\}$

Důkaz Mějme $f: a \to b$ prosté zobrazení a $g: b \to a$ prosté zobrazení. Pokud f nebo g bijekce, je věta dokázána - nadále tedy předpokládejme, že $f''a \neq b \land f''b \neq a$. (sem vlozit obrazek dvou funkci)

Pro všechna přirozená čísla definujeme indukcí $a_0 = a$, $b_0 = b$. $a_{n+1} = g''b_n$, $b_{n+1} = f''a_n$. Tedy $a_1 = g''b_0 = g''b \subsetneq a = a_0$. Analogicky $b_1 = f''a_0 = f''a \subsetneq b = b_0$. Označme

$$a_{\omega} = \bigcap \{a_n : n \in \omega\} b_{\omega} = \bigcap \{b_n : n \in \omega\}$$
 (2)

Zobrazení $h: a \to b$ definujme předpisem

h(x)=f(x) pro $x\in\bigcup_{n\in\omega}a_{2n}\setminus a_{2n+1}\cup a_{\omega}$ h(x)=t,kde $t\in b$ a g(t)=x pro $x\in\bigcup_{n\in\omega}a_{2n+1}\setminus a_{2n+2}$

 $h: a \to b$ je hledaná bijekce. Je zřejmé, že h je funkce a dom(h) = a.

1. h je prosté: Nechť $x \neq y$, x,y in a. Pokud

$$x, y \in \bigcup_{n \in \omega} a_{2n} \setminus a_{2n+1} \cup a_{\omega} \tag{3}$$

mějme h(x) = f(x), h(y) = f(y), a f je prostá tedy $f(x) \neq f(y)$.

Pokud $x, y \in \bigcup_{n \in \omega} a_{2n+1} \setminus a_{2n+2}$ $h(x) = g^{-1}(x), h(y) = g^{-1}, g$ je zobrazení, tedy $h(x) \neq h(y)$.

 $x \in \bigcup_{n \in \omega} a_{2n} \setminus a_{2n+1}, y \in \bigcup n \in \omega a_{2n+1} \setminus a_{2n+2}$

$$\exists n \quad x \in a_{2n} \setminus a_{2n+1} : h(x) = b_{2n+1} \setminus b_{2n+2}$$
 (4)

$$\exists m \ y \in a_{2m+1} \setminus a_{2m+2} : h(y) = b_{2m} \setminus b_{2m+1}$$
 (5)

$$\emptyset = (b_{2n+1} \setminus b_{2n+2}) \cap (b_{2m} \setminus b_{2m+1}) \tag{6}$$

$$x \in a_{\omega} \quad \lor \quad h(x) \in b_{\omega}$$
 (7)

2. h je surjektivní: $t \in b$.

$$t \in b_{2m} \setminus b_{2n+1} \tag{8}$$

Pak $g(t) \in a_{2n+1} \setminus a_{2n+2}$. Pro x = g(t) máme h(x) = t. Nebo:

$$t \in b_{2n+1} \setminus b_{2n+2} \tag{9}$$

Pak $b_{2n+1} = f''a_{2n}$ a $\exists x \in a_{2n}f(x) = t, h(x) = t$). Nebo:

$$t \in b_{\omega} \subseteq b_0 = f''a \tag{10}$$

Existuje takové x, že f(x) = t. Pro toto x je $x \in a_{\omega}$. h(x) = t.

Definice Nechť A je množina. Pokud na A existuje dobré uspořádání, pak položme |A| =nejmenší ordinál α , pro který $A \approx \alpha$.

Definice Ordinál α se nazývá **kardinál** pokud $\alpha = |\alpha|$. Ekvidalentně ordinál α je kardinál, právě když

$$(\forall \beta)(\beta < \alpha \Rightarrow (\beta \approx \alpha)) \tag{11}$$

Pozorování ω je kardinál. $\omega + k$ není kardinál (všechny jsou ostře větší než omega a mezi nimi a omegou existuje bijekce).

Lemma Je-li $|\alpha| \le \beta \le \alpha$, pak $|\beta| = |\alpha|$.

Důkaz $\beta \subseteq \alpha$, tedy existuje prosté zobrazení β do α . Máme $\beta \preceq \alpha$. $\alpha \approx |\alpha|$, konečně $|\alpha| \subseteq \beta$, tedy $|\alpha| \preceq \beta$. Aplikuji Cantorovu větu.

Lemma Je-li n přirozené číslo, potom:

- 1. $n \not\approx n+1$
- 2. $(\forall \alpha)(\alpha \approx n \Rightarrow \alpha = n)$

Důkaz

1. Indukcí: $0 \not\approx 1$. Pokud existuje taková n, že $n \approx n+1$, pak $n \neq 0$ a tedy pro nějaké m, n = m+1. Tedy:

$$n = \{0, 1, 2, ..., n\} \tag{12}$$

$$n+1 = \{0, 1, 2, ..., m, m+1\}$$
(13)

Je-li b bijekce $b: n \to n+1$, pak existuje $i \in n: b(i) = m+1$. Definujme $b': m \to m+1$: Pro j < i: b'(j) = b(j), pro j > i: b'(j) = b(j-1). Tedy b' je bijekce $m \to m+1$, což je spor s minimalitou n. (ten předpis je asi špatně, chce to promakat)

Důsledek Všechna přirozená čísla jsou kardinály a ω je kardinál.

Definice Množina A je **konečná** pokud $|A| < \omega$. Množina A je **spočetná**, pokud $|A| \le \omega$. Množina A se nazývá nespočetná, pokud není spočetná (tj. je velká, nebo jí nelze dobře uspořádat).

4.1 Sčítání a násobení

Definice Jsou-li κ , λ kardinály, pak:

- 1. $\kappa \oplus \lambda = |\kappa \times \{0\} \cup \lambda \times \{1\}|$
- 2. $\kappa \otimes \lambda = |\kappa \times \lambda|$

Poznámka Oproti ordinálnímu sčítání a násobení jsou kardinální operace komutativní.

Lemma Pro $n, m \in \omega$:

$$n \oplus m = n + m < \omega n \otimes m = n \cdot m < \omega \tag{1}$$

Důkaz Stačí ukázat, že $n+m<\omega$ a že $n\cdot m<\omega$. Zbytek je aplikace posledního lemmatu. Indukcí pro sčítání:

1.
$$n + 0 = n < \omega$$

2.
$$n + s(m) = s(\underbrace{n+m}_{<\omega}) < \omega$$

Stejnětak pro násobení:

1.
$$n \times 0 = 0 < \omega$$

2.
$$n \times s(m) = \underbrace{n \cdot m}_{<\omega} + n < \omega$$

Věta Každý nekonečný kardinál je limitní ordinál.

Důkaz Sporem: buď κ kardinál a $\kappa = \alpha + 1$. Jenomže $\alpha \ge \omega$, tedy $1 + \alpha = \alpha$. Tedy $\kappa = |\kappa| = |1 + \alpha| = |\alpha| < \kappa$, což je spor.

Věta je-li κ nekonečný kardinál, pak $\kappa \otimes \kappa = \kappa$

Důkaz Dokažme pro $\kappa = \omega$. položme $f: \omega \to \omega \times \omega$, $f(n) = \langle n, 0 \rangle$, f je prosté, tedy $\omega \leq \omega \times \omega$, položme $g: \omega \times \omega \to \omega$, $g(n,k) = 2^n(2k+1)$, g prosté, tedy $\omega \times \omega \leq \omega$, z Cantorovy-Bernsteinovy věty $\omega \cong \omega \times \omega$.

Předpokládejme, že kdykoliv λ kardinál, takový, že $\omega \leq \lambda < \lambda$, pak $\lambda \otimes \lambda = \lambda$. Ukážeme, že potom $\kappa \times \kappa \cong \kappa$. Definujme na $\kappa \times \kappa$ maximo-lexikografické uspořádání $<_{MLEX}$ předpisem $<\alpha,\beta><_{MLEX}<\gamma,\delta>$ jestliže

- $\max\{\alpha,\beta\} < \max\{\gamma,\delta\}$ nebo
- $\max\{\alpha,\beta\} = \max\{\gamma,\delta\} \land \alpha < \gamma$ nebo
- $\max\{\alpha, \beta\} = \max\{\gamma, \delta\} \land \beta < \delta$

 $<_{MLEX}$ je dobré uspořádání $\kappa \times \kappa$.

Ukážeme, že $typ(\kappa \times \kappa, <_{MLEX}) \leq \kappa$. Ke sporu předpokládejeme, že $typ(\kappa \times \kappa, <_{MLEX}) > \kappa$, tedy existuje $< \alpha, \beta > \in \kappa \times \kappa$ takové, že $\kappa \cong (\leftarrow, < \alpha, \beta >, <_{MLEX})$. κ kardinál, $\alpha, \beta < \kappa$, $|\alpha|, |\beta| < \kappa$. Nechť $\gamma = \max\{\alpha, \beta\}, |\gamma| < \kappa$. Pak podle předpokladu $|\gamma| \otimes |\gamma| < \kappa$, což je spor ???!!!!.

Nyní předpokládejme, že když $\kappa > \omega$ takový kardinál, že pro nějaký kardinál $\kappa, \omega \leq \lambda < \kappa$ je $\lambda \otimes \lambda > \kappa$. Z věty o ordinálech (5) existuje taové λ nejmenší, že kdykoliv $\lambda \neq \omega$, potom $\omega \cong \omega \times \omega$ a $\lambda > \omega$ pro včechny kardinality ν takové, že $\omega \leq \nu < \lambda$ platí $\nu \otimes \nu = \nu$. Potom stejně jako v předchozím důkazu $\kappa \otimes \kappa = \kappa$.

Důsledek Jestliže jsou κ, λ nekonečné kardinály, pak

$$\kappa \oplus \lambda = \kappa \otimes \lambda = \max\{\kappa, \lambda\}$$

Důkaz Předpokládejme, že $\kappa > \lambda$, pak $\kappa \oplus \lambda = |\kappa \times \{0\} \cup \lambda \times \{1\}|$, zřejmě

$$\kappa \times \{0\} \cup \lambda \times \{1\} \hookrightarrow \kappa \times \lambda \subset \kappa \times \kappa$$

a proto

$$\kappa \times \kappa \le \kappa \le \kappa \times \{0\} \cup \lambda \times \{1\} \le \kappa \times \kappa$$

tedy platí \cong

4.2 Axiom potence

$$(\forall a)(\exists z)(\forall x)(x \subset a \Rightarrow x \in z)$$

Definice Potenční množina množiny a je

$$\mathcal{P}(a) = \{x : x \subset a\}$$

 $\mathcal{P}(a)/($ je množina (potence, vydělení)

Věta (Cantor) Pro každou množinu x platí $x < \mathcal{P}(x)$

Důkaz Definujme $f: x- > \mathcal{P}(x)$ předpisem f(t) = t pro $t \in x$, pak f je prosté a plati \leq . Dále ukážeme, že $\neg(x \cong \mathcal{P}(x))$. Mějme $g: x \to \mathcal{P}(x)$ prosté zobrazení, ukážeme že je surjektivní. Nechť $m = \{t \in x, t \notin g(t)\}$, ukážeme $m \notin \text{rng } g$. Buď $t \in x$. V případě, že $t \notin g(t)$, pak $t \in m$, tedy $m \neq g(t)$ jinak $t \in g(t)$, pak $t \in m$ a $m \neq g(t)$. (Diagonální princip)

Věta

$$(\forall \alpha)(\alpha \text{ ordinál} \Rightarrow (\exists \kappa)(\kappa > \alpha \land \kappa \text{ je ordinál}))$$

Je li α přirozené, $\kappa = \omega$, je li $\alpha > \omega$, pak položme $W = \{R \in \mathcal{P}(\alpha \times \alpha); R \text{ je dobré uspořádání } \alpha\}$. W je množina (kart. součin, potence, vydělení). Buď $S = \{typ(\alpha.R); R \in W\}$. S je také množina podle axiomu nahrazení pro $\psi(R,\xi)$ " $\psi = typ(\alpha,R)$ ". S je množina ordinálů, $\sup(S)$ je ordinál, $\sup(S) + 1$ je také ordinál. Nechť $|\sup(S) + 1| \leq \alpha$. Existuje R dobré uspořádání množiny α , $typ(\alpha,R) = \sup(S) + 1 \notin S$ spor, tedy $|\sup(S) + 1| > \alpha$

Definice Buď α ordinál, **kardinální následník** ordinálu α je nejmenší kardinál, který je větší neř α . Značí se α^+ .

5 Třídy a rekurze

Je-li ϕ formule základního jazyka teorie množin, a množina, $z = \{x \in a; \phi(x)\}$ je množina. Ovšem $\{x; \phi(x)\}$ nemusí být množina, konkrétně $\{x; x = x\}$ nebo $\{x; x$ je ordinál $\}$ nejsou množiny.

Neformálně je-li ϕ formule jazyka teorie množin, pak každý soubor tvaru $\{x;\phi(x)\}$ budeme nazývat třídou. Vlastní třída je třída, která není množina.

Formálně třídy neexistují a formule, ve kterých se vyskytují třídové termy považujeme pouze za zkrácený zápis formulí. Tedy například $On \subset V$ slouží jako zkratka za

$$(\forall x)(x \text{ je ordinál } \Rightarrow x = x)$$

Třídové termy lze vždy eliminovat.

Buď te ϕ , χ formule jazyka množin, $X = \{x; \phi(x)\}$ $Y = \{y; \chi(y)\}$ třídní termy, pak je

- X = Y zkratka za $(\forall x)(\phi(x) \leftrightarrow \chi(x))$
- $z \in X$ zkratka za $\phi(z)$
- z = X zkratka za $(\forall t)(t \in z \leftrightarrow \phi(t))$
- $X \in Y$ zkratka za $(\exists u)(u \in Y \land (\forall t)(t \in u \leftrightarrow \phi(t)))$
- X = Y zkratka za $(\exists u)(\psi(u) \land (\forall v)(v \in u \leftrightarrow \phi(v)))$

třídy nelze kvantifikovat.

Můžeme tedy pouužívat neormálně třídové termy, formálně není rozdíl mezi formulí a třídou, rozdíl pouze v neformálním vyjadřování.

Věta (Transfinitní indukce na třídě On) Je-li $C \subset On$ a $C \neq \emptyset$, pak C má nejmenší prvek.

Důkaz Stejně jako bod (5) věty o ordinálech, buď $\alpha \in C$, buď to je α nejmenší prvek třídy C, pak jsme hotovi, nebo α není nejmenší, položme $c = C \cup \alpha$, $\alpha \cup C = \{\beta \in \alpha; \phi(\beta)\}$ je množina a tedy podle věty o ordinálech existuje nejmenší prvek α_0 množiny c, to je i nejmenší prvek C

Použití Důkaz transfinitní indukcí dokazuje věty typu $(\forall \alpha)\psi(\alpha)$ tím, že dokáže $\psi(0)$ a pro všechna α

$$((\forall \beta)(\beta < \alpha \Rightarrow \psi(\beta))) \Rightarrow \psi(\alpha)$$

Věta (O transfinitní rekurzi) Je-li $F: V \to V$ pak existuje jediné $G: On \to V$

$$(\forall \alpha)(G(\alpha) = F(G \upharpoonright \alpha))$$

Důkaz Unicita: Nechť G_1, G_2 obě splňují tvrzení. Ukážeme, že potom $(\forall \alpha)(G_1(\alpha) = g_2(\alpha))$. Pomocí věty o transfinitní indukci máme $G_1 \upharpoonright 0 = 0 = G_2 \upharpoonright 0$. $G_1(0) = F(G(\cap 0)) = F(0) = F(G_2 \cap 0) = G_2(0)$. Předpokládejme $\alpha > 0$ ordinál a $(\forall \beta)(\beta < \alpha \Rightarrow G_1(\beta)) = G_2(\beta)$. Z formule pro $G_1, G_2: G_1(\alpha) = F(G_1 \cap \alpha) = F(G_2 \cap \alpha) = G_1(\alpha)$. Podle věty o transfinitní indukci $(\forall \alpha)(G_1(\alpha)) = g_2(\alpha)$

TADY NECO CHYBI - konkretne prednaska 7.

Definice Buď a je množina, \leq uspořádání na množině a. Množina $c \subseteq a$ se nazývá řetězcem, jestliže (c, \leq) je uspořádána lineárně.

Definice Buď (a, \leq) uspořádaná množina, $b \subseteq a$. Prvek $x \in a$ se nazývá horní mezí množiny b, jestliže

$$(\forall y \in b)y \le x \tag{2}$$

a maximálním prvkem množiny b, jestliže

$$(x \in b) \land ((\forall y \in b) \neg y > x) \tag{3}$$

5.1 Princip maximality

(také Zornovo lemma, Zorn-Kuratowského lemma)

Věta Nechť (a, \leq) je uspořádaná množina a nechť každý řetězec v a má horní mez. Pak:

$$\forall x \in a \exists m \in a : \quad m \text{ je maximálním prvkem } a \land m \ge x \tag{1}$$

Důsledek Nechť platí princip maximality. Jsou-li M a N libovolné množiny, pak buď $M \lesssim N$ nebo $N \lesssim M$

Důkaz důsledku Uvážíme $a = \{f : f \text{ je prosté zobrazení, dom } f \subseteq M, \operatorname{rng} f \subseteq N\}$. Uspořádáme (a, \subseteq) . Je-li $c \subseteq a$ řetězec, potom $\bigcup c$ je opět prostá funkce, přičemž je to horní mez řetězec c. Tedy existuje maximální prvek g množiny (a, \subseteq) . Platí buď $\operatorname{dom}(g) = M$ nebo $\operatorname{rng}(g) = N$ (protože pokud existuje $x \in M \setminus \operatorname{dom}(g)$ a současně $y \in N \setminus \operatorname{rng}(g)$, potom $g \cup \langle x, y \rangle$ je prostá funkce a obsahuje g, což je spor s maximalitou). Je-li $\operatorname{dom}(g) = M$, pak $M \preceq N$, neboť g je prosté zobrazení $M \to N$. Pokud $\operatorname{rng}(g) = N$, potom $N \preceq M$, $g^{-1} : N \to M$ je prosté.

5.2 Princip dobrého uspořádání

Tvrzení Pro každou množinu a existuje $R \subseteq a \times a$, takové, že (a, R) je dobré uspořádání.

5.3 Ekvivalence axiomu výběru, p. maximality a dobrého uspořádání

Věta Následující výroky jsou ekvivalentní:

- 1. axiom výběru
- 2. princip maximality
- 3. princip dobrého uspořádání

Důkaz

- 1. $(1. \Rightarrow 3.)$ Nechť $a \neq 0$. Podle axiomu výběru na $g(a) \setminus \{0\}$ existuje selektor výběru f. Trans. indukcí definujeme zobrazení $g: Or \to a$ následujícím způsobem: g(0) = f(a). Je-li $\alpha \in Or$ a $(\forall \beta < \alpha)g(\beta)$ je definováno, definujeme $\xi = a \setminus \{g(\beta): \beta < \alpha\}$. Pokud je tato množina neprázdná, definujeme $g(\alpha) = f(\xi)$ a indukce končí. Pokud je prázdná, pak $g: \alpha \to a$ je prosté zobrazení na a tedy definuje dobré uspořádání a. Zbývá ukázat, že indukce skončí: pokud by se nezastavila, získáme prosté zobrazení $g: Or \to a$, rng(g) je množina (protože a je množina). Ordinály jsou vlastní třídaspor.
- 2. (3. \Rightarrow 2.) Máme (a, \leq) , každý řetězec v a má horní mez a $x \in a$. Podle 3. existuje dobré uspořádání a. Nechť $c \subset a$ je řetězec. Budeme říkat, že c splňuje (*), jestliže:

$$x \in c \land (\forall t \in c)t > x \tag{1}$$

$$\wedge (\forall y)(y \in c \land x < y), \text{ pak } y \tag{2}$$

je
$$\prec$$
 nejmenší horní mez rětězce $\{t \in c : t < y\}$ (3)

Víme, že existuje alespoň jeden řetězec splňující (*), totiž řetězec $\{x\}$. Položme $b = \bigcup\{c: c \subseteq a \text{ je řetězec splňující } (*) \}$. b **je řetězec**: pro spor předpokládejme, že existují $z,t \in c$ takové, že nejsou porovnatelné. Tedy existuje $y_0 \in b$ je \prec -nejmenší prvek splňující $(\exists w \in b)y_0aw$ jsou \leq -neporovnatelné. Existuje tedy $y_1 \in b$, že y_1 je \prec -nejmenší prvek řetězce b, že y_0 a y_1 jsou \leq -neporovnatelné. Protože y_0 a $y_1 \in b$ existují řetězce c_0 a c_1 , splňující (*), že $y_0 \in c_0$ a $y_1 \in c_1$. Nechť $z \in c_1$, $z < y_1$. Pokud x < z, pak $z \prec y_1: c_1$ splňuje (*), z je \prec -nejmenší horní mez množiny $\{t: t \text{ je horní mezí } \{v \in c: x \leq v \leq z\}\}$. Tvrdím, že $z < y_0$: $z = y_0$ není možné, oba jsou v řetězci c_1 a tedy porovnatelné, ale y_0 a y_1 nejsou. Pokud by $z > y_0$, pak $y_0 < z < y$, ale y_0 a y_1 jsou \leq -neporovnatelné. Pokud z, y_0 jsou \leq -neporovnatelné: $z \prec y_1$ (víme - z i y_1 jsou horními mezemi $\{t \in c_1: x \leq t \leq z\}$), tedy ale z a y_0 musí být porovnatelné spor. Dostáváme: $\{t: x \leq t < y\} = \{t: x \leq t < y_0\}$. Protože $y_0 \prec y_1$, c_1 nesplňuje (*), což je spor. Tedy b je řetězec.

Podle předpokladu principu maximality existuje m horní mez b. Musí platit, že $m \in b$. Kdyby to neplatilo: vezmeme celé b a $M = \{t : t \text{ je ostrá horní mez}b\}$, která je neprázdná (obsahuje alespoň m). Taková množina má nejmenší prvek $z \in M$. $b \cup \{z\}$ je opět řetězec splňující (*) a $b \cup \{z\} \subseteq b = \bigcup \{c: c \text{ je řetězec splňující (*) }\}$, což je

spor $(z \notin b)$. Tedy m je největší prvek b a kdykoliv $y \in a$ tak buď $y \leq m$ nebo jsou neporovnatelné.

3. (2. \Rightarrow 1.) Nechť m je množina, na které hledáme selektor. Nechť a je množina $\{f: \operatorname{dom}(f) \to \cup m: \operatorname{dom}(f) \subseteq m, kdykolivx \in \operatorname{dom}(f), x \neq 0, pakf(x) \in x\}$. Uspořádáme (a,\subseteq) . Je-li $c\subseteq a$ řetězec. $\bigcup c$ je funkce, $\forall f\in c, f\subseteq \bigcup c$. (a,\subseteq) splňuje předpoklady principu maximality a podle 2. existuje v a maximální prvek g. Tvrdím, že g je hledaný selektor: kdyby existovalo $x\in m, x\notin \operatorname{dom}(g), x\neq 0$, zvolme: $t\in x, g\cup < x, t>\neq g$ - spor s maximalitou.

Důsledky

- 1. (AC) \Rightarrow pro každou množinu a, |a| existuje. (plyne ihned z principu dobrého uspořádání)
- 2. Pro každou nekonečnou množinu a, $A \approx A \times A \approx A \times \{0,1\}$.
- 3. Každou nekonečnou množinu lze rozdělit na nekonečně mnoho nekonečných částí. Podle axiomu výběru víme, že $|A| = \kappa \ge \omega$ a $\kappa \approx \kappa \times \kappa$.
- 4. Je-li $\kappa \geq \omega$ a pro každé $\alpha \in \kappa$ je X_{α} množina, $|X_{\alpha}| \leq \kappa,$ pak

$$\left| \bigcup_{\alpha \in \kappa} X_{\alpha} \right| \le \kappa \tag{4}$$

5. Jsou-li X, Y množiny a existuje $f: X \to Y$ surjektivní zobrazení, pak $|Y| \le |X|$. Dk: kartézský součin $X \times Y \subseteq \{ < y, x >: y = f(x) \} = r$. Je-li $g \subseteq r$ funkce, pak $\text{dom}(g) = Y, g: Y \to X$ prostě, protože f je funkce.

5.4

Definice Bud'te A a B množiny. ${}^{A}B = \{f : f \text{ je funkce}, f : A \rightarrow B\}$

Lemma Jsou-li B, C disjunktní množiny a A množina, pak:

$$^{(B\cup C)}A \approx {}^{B}A \times {}^{C}A \tag{1}$$

$${}^{C}({}^{B}A) \approx {}^{C \times B}A \tag{2}$$

Důkaz Máme-li $f: B \cup C \to A$. Definujme $F(f) = \langle f \mid B, f \mid C \rangle$ F je prosté zobrazení. $G: {}^BA \times {}^CA \to {}^{B \cup C}A$ $G(\langle f_1, f_2 \rangle) = f_1 \cup f_2$ $G = F^{-1}$

Je-li $f \in {}^{C}({}^{B}A)$, f je funkce, $f: C \to {}^{B}A$. Tedy pro každé $t \in c$ je f(t) funkce z $B \to A$, pro každé $t \in C$, $v \in Bf(t)(v) \in A$. Položme $F: {}^{C}({}^{B}A) \to {}^{C \times B}A$ pro funkce F(f) = g, kde $g \in {}^{C \times B}A$ a je definována předpisem g(< t, v >) = f(t)(v). F je bijekce.

5.5

Definice Jsou-li κ a λ kardinály, potom $\kappa^{\lambda} = |{}^{\lambda}\kappa|$.

Lemma Jsou-li κ a λ kardinály, $\kappa \geq 2$ a $\lambda \geq \omega$, $\kappa \leq \lambda$ pak $2^{\lambda} = \kappa^{\lambda} = |\mathcal{P}(\lambda)|$

Důkaz

$$\Phi:^{\lambda} 2 \to \mathcal{P}(\lambda)\Phi(f) = \{\xi < \lambda : f(\xi) = 1\}$$
 (1)

$$\Phi^{-1}: \mathcal{P} \to^{\lambda} 2\Phi^{-1}(x) = \chi x \tag{2}$$

$$\chi_x(\xi) = \{ \xi \in x : 1, \xi \notin x : 0$$
 (3)

(4)

Zřejmě Φ je bijekce:

$$^{\lambda}2 \approx \mathcal{P}(\lambda)$$
 (5)

$$^{\lambda}2 \subseteq^{\lambda} \kappa \subseteq \mathcal{P}(\lambda \times \lambda \approx \mathcal{P}(\lambda)) =^{\lambda} 2$$
 (6)

Lemma Jsou-li κ , λ kardinály, pak

$$\kappa^{\lambda \oplus \mu} = \kappa^{\lambda} \otimes \kappa^{\mu} \tag{7}$$

$$(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \times \mu} \tag{8}$$

(bez dukazu)

Definice Jsou-li α, β ordinály a $f : \alpha \to \beta$, řekneme, že f zobrazuje α do β **kofinálně** je-li $\operatorname{rng}(f)$ neomezená množina v β .

Definice Kofinalita ordinálu β je nejmenší ordinál α takový, že existuje konfinální zobrazení z α do β . Značíme $\alpha=cf(b)$

Pozorování Určitě víme, že

$$cf(\beta) \le \beta \tag{9}$$

protože existuje identita. Také víme, že pokud β je ordinální následník: $cf(\beta) = 1$. (kofinální zobrazení $f: 1 \to \alpha + 1$ je definované $f(0) = \alpha$

Lemma Pokud je β limitní, pak existuje konfinální zobrazení $f: cf(\beta) \to \beta$, které je ostře rostoucí.

Důkaz Buď g je kofinální zobrazení z $cf(\beta) \to \beta$. Definujme indukcí f(0) = g(0) a je-li $\alpha < \beta$ a z náme $f(\gamma) \forall \gamma < \alpha$, položme $f(\alpha) = \sup\{g(\gamma) : \gamma \leq \alpha\} \cup \{f(\gamma : \gamma < \alpha\}$. Přímo z definice plyne, že f je ostře rostoucí a přitom $f \geq g$ a tedy kofinální.

Lemma Je-li α limitní ordinál a $f: \alpha \to \beta$ ostře rostoucí kofinální zobrazení, potom $cf(\alpha) = cf(\beta)$.

Důkaz $f: \alpha \to \beta$ je ostře rostoucí. $h: cf(\alpha) \to \alpha$ zvolme kofinální a ostře rostoucí (podle předchozího lemma) a máme

$$g = f \circ h$$
 $g: cf(\alpha) \to \beta$ (10)

a přitom je kofinální: Je-li $\gamma < \beta$, určitě existuje $\Delta < \alpha$, že $f(\Delta) \geq \gamma$. Ale h je také kofinální: $\exists \eta < cf(\alpha)$: $h(\eta) \geq f(\Delta)$ a f je ostře rostoucí: $f(h(\eta) \geq \gamma)$. Potom

$$cf(\beta) \le cf(\alpha) \tag{11}$$

Nechť $g:cf(\beta)\to\beta$ je kofinální a ostře rostoucí zobrazení. Definujme $h:cf(\beta)\to\alpha$ předpisem $h(\xi)=$ minimální $\gamma\in\alpha$ takové, že $f(\gamma)>g(\gamma)$. Všimněme si, že $f:cf(\beta)\to\gamma$ a protože f je ostře rostoucí, pak h je kofinální zobrazení. Tedy

$$cf(\alpha) \le cf(\beta) \tag{12}$$

Poznámka Kofinalita reální přímky je ω , protože každý reálné číslo je menší než nějaké celé.

Důsledek Kofinalita ordinálu $cf(cf(\beta)) = cf(\beta)$.

Definice Ordinál β je regulární pokud β je limitní ordinál a $\beta = cf(\beta)$.

Lemma Je-li ordinál β regulární, pak β je kardinál.

Důkaz Sporem: Nechť β není kardinál. Tedy $|\beta| < \beta$. Avšak máme bijekci $b : |\beta| \to \beta$, což je kofinální zobrazení (z regularity). Tedy $cf(\beta) \le |\beta| < \beta$, což je ve sporu s regularitou β .

Lemma ω je regulární kardinál.

Důkaz (bez důkazu)

Lemma Je-li κ kardinál, pak κ^+ je regulární.

Důkaz Sporem: Buď $\alpha < \kappa^+, f : \alpha \to \kappa^+$ kofinální zobrazení. Víme, že $|\alpha| \le \kappa$. Kdykoliv $\xi < \alpha$, pak $f(\xi) < \kappa^+$, tedy $|f(\xi)| \le \kappa$. Tedy:

$$\kappa^{+} = \bigcup \{ f(\xi) : \xi < \alpha \} \tag{13}$$

$$|\cup \{f(\xi : \xi < \alpha\}| < \kappa \oplus \kappa = \kappa \tag{14}$$

což je spor.

Lemma Je-li α limitní ordinál, pak $cf(\omega_{\alpha}) = cf(\alpha)$.

Důkaz

$$\omega_{\alpha} = \sup\{\omega_{\beta} : \beta < \alpha\} \tag{15}$$

Ihned plyne z jednoho z předchozích lemmat.

Lemma (Königovo) Předpokládejme axiom výberu. Je-li κ nekonečný kardinál a $cf(\kappa) \leq \lambda$, $cf(\kappa) > 1$, pak $\kappa^{\lambda} > \kappa$.

Důkaz Stačí dokázat pro $\lambda = cf(\kappa)$. Nechť $g: \kappa \to^{\lambda} \kappa$. Máme ukázat, že g není surjektivní. Zvolme kofinální zobrazení $f: \lambda \to \kappa$. Definujme h: $\lambda \to \kappa$ takto:

$$h(0) = 0 \tag{16}$$

pro
$$\alpha < \lambda h(\alpha) = \min \left(\kappa \setminus \{ g(\mu)(\alpha) : \mu < f(\alpha) \} \right)$$
 (17)

Pro takto definovou funkci $h, h \notin \operatorname{rng}(g)$. Kdyby $h = g(\mu)$ pro nějaké $\mu < \kappa$, pak existuje nějaké $\alpha < \lambda$, takže $f(\alpha) > \mu$. Tedy funkce $h(\alpha) \notin \{g(\mu)(\alpha) : \mu < f(\alpha)\}$.

Důsledek Předpokládáme axiom výběru. Je-li $\lambda \geq \omega$, pak $cf(2^{\lambda}) > \lambda$. Položme $\kappa = 2^{\lambda}$. Máme $\kappa^{\lambda} = (2^{\lambda})^{\lambda} = 2^{\lambda \otimes \lambda} = 2^{\kappa} = \kappa$. Kdyby $cf(\kappa) \leq \lambda$, podle Königova lemmatu by platilo, že $\kappa^{\lambda} > \kappa$.

Definice Zobecněná hypotéza kontinua (GCH) je tvrzení, že

$$(\forall \alpha) 2^{\aleph_{\alpha}} = \aleph_{\alpha+1} \tag{18}$$

Ekvivalentně pro každý nekonečný kardinál κ , $2^{\kappa} = \kappa^{+}$. Hypotéza kontinua (CH) je tvrzení, že $2^{\omega} = \omega_{1}$.

Lemma Předpokládejme zobecněnou hypotézu kontinua. Nechť $\kappa, \lambda \geq 2$ jsou kardinály a alespoň jeden z nich je nekonečný. Pak platí:

- 1. $\kappa \leq \lambda \Rightarrow \kappa^{\lambda} = \lambda^{+}$
- 2. $\kappa > \lambda \ge cf(\kappa) \Rightarrow \kappa^{\lambda} = \kappa^{+}$
- 3. $\lambda < cf(\kappa) \Rightarrow \kappa^{\lambda} = \kappa$

Pozorování $\kappa \leq \lambda$ pak $2^{\lambda} \approx \kappa^{\lambda} \approx \mathcal{P}(\lambda)$.

Důkaz

- 1. Z pozorování a GCH: $\kappa < \lambda$ $\kappa^{\lambda} = 2^{\lambda} = {}^{GCH} \lambda^{+}$
- 2. Nechť $\kappa > \lambda \geq cf(\kappa)$. Podle Königova lemmatu $\kappa^{\lambda} > \kappa$. $\kappa > \lambda$ $\kappa^{\lambda} = 2^{\kappa} = \kappa^{+}$. Tedy pro všechna $\lambda, \, cf(\kappa) \leq \lambda \leq \kappa$ platí $\kappa^{\lambda} = \kappa^{+}$.
- 3. $\lambda < cf(\kappa)$: ${}^{\lambda}\kappa = \bigcup \{ {}^{\lambda}\alpha : \lambda < \kappa \}$ protože pro každou $f : \lambda \to \kappa$ existuje $\alpha < \kappa$ že $\operatorname{rng}(f) \subseteq \alpha$. f nemůže být kofinální zobrazení. Kdykoliv $\alpha < \kappa$, pak

$$|{}^{\lambda}\alpha| \le |\max\{alpha, \lambda\}, \max\{\alpha, \lambda\}| \le^{GCH} \max\{\alpha, \lambda\}^{+} \le \kappa$$
 (19)

Tedy $\kappa \leq |{}^{\lambda}\kappa| \leq \kappa \otimes \kappa = \kappa$.

Věta (Hausdorffova formule) Předpokládáme axiom výběru. Jsou-li κ, λ nekonečné kardinály, potom $(\kappa^+)^{\lambda} = \kappa^+ \otimes \kappa^{\lambda}$.

Důkaz Zřejmě $\kappa^+ \otimes \kappa^\lambda \leq (\kappa^+)^\lambda \otimes \kappa^\lambda \leq (\kappa^+)^\lambda \otimes (\kappa^+)^\lambda = (\kappa^+)^\lambda$. Zbývá dokázat nerovnost $(\kappa^+)^\lambda \leq \kappa^+ \otimes \kappa^\lambda$.

- 1. $\lambda \ge \kappa^+ : (\kappa^+)^{\lambda} \le \kappa^{\lambda} = 2^{\lambda} = \kappa^{\lambda} = \kappa^{\lambda} \otimes \kappa^=$
- 2. $\lambda < \kappa^+$: protože κ^+ je regulární kardinál, potom pro každou $f: \lambda \to \kappa^+$ existuje nějaké $\alpha < \kappa^+$, že $\mathrm{rng}(f) \subseteq \alpha$. Tedy

$$(\kappa^{+})^{\lambda} = |{}^{\lambda}\kappa^{+}| = |\cup\{{}^{\lambda}\alpha : \alpha < \kappa^{+}\}| \tag{20}$$

$$\leq \kappa^{+} \otimes |^{\lambda} \kappa| = \kappa^{+} \otimes \kappa^{\lambda} \tag{21}$$

Definice Předpokládejme axiom výběru. Nechť $I \neq \emptyset$ a $\forall i \in I$ buď κ_i kardinální číslo. Definujme

$$\sum_{i \in I} \kappa_i = \left| \bigcup \{ \kappa_i \times \{i\} : i \in I \} \right| \tag{22}$$

$$\prod_{i \in I} \kappa_i = \left| \prod_{i \in I} \{ \kappa_i : i \in I \} \right| \tag{23}$$

Věta (Königova nerovnost) Předpokládejme axiom výběru. Je-li $I \neq \emptyset$, pro každé $i \in I, \kappa_i, \lambda_i$ jsou kardinální čísla, přičemž $\kappa_i < \lambda_i$, pak

$$\sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i \tag{24}$$

Důkaz Z lemmatu a obrázkem (dopsat!)

TADY ZASE NECO CHYBI =============

5.6 Δ -systém

Definice Soubor \mathcal{A} množin se nazývá Δ -systém, pokud existuje množina K (jádro systému), takže:

$$(\forall A \in \mathcal{A})K \subseteq A \tag{1}$$

$$\{A \setminus K : A \in \mathcal{A}\}$$
 je disjunktní systém (2)

5.7 Věta o Δ -systému

Věta Nechť $\kappa > \omega$ regulérní kardinál. Je-li $< A_{\alpha} : a \in \kappa >$ systém konečných množin, pak existuje $I \subseteq \kappa$: |I| = K, tak, že $< A_{\alpha} : \alpha \in I >$ tvoří Δ -systém.

Důkaz Protože všechny množiny A_{α} jsou konečné, a κ nespočetný regulérní, tak existuje $n \in \omega$... (chybí) Indukcí podle **n**.

1. n = 1: $\forall \alpha \in I_0 \quad A_\alpha = \{x_\alpha\}$.

$$\exists x \in \bigcup_{\alpha \in I_0} A_\alpha \text{ tak, } \check{z}e \mid \{\alpha \in I_0 : x = x_\alpha\} \mid = \kappa$$
 (1)

$$I = \{ \alpha \in I_0 : x = x_\alpha \} \tag{2}$$

a $\{\{x_{\alpha}\}: x \in I\}$ tvoří Δ -systém. Druhá možnost: (chybí)

2. Indukční krok: předpokládejme platnost pro $|A_{\alpha}| = n$. Dokážeme

$$\forall \alpha \in I_0 \quad |A_{\alpha}| = n + 1 \tag{3}$$

Pro každé $\alpha \in I_0$ zvolme bod $x_0 \in A_\alpha$ a zvolíme $B_\alpha = A_\alpha \setminus \{x_\alpha\}$ množinu menší mohutnosti. Podle předpoklu indukce víme, že existuje $I_1 \subset I_0$, $|I_1| = \kappa$, tak, že $\{B_\alpha : \alpha \in I_1\}$ tvoří Δ -systém s jádrem K. Zbávající body $x_\alpha : \alpha \in I_1$. Dvě možnosti:

- (a) $\exists x \quad x_{\alpha} = x \text{ pro } \kappa \text{ indexů z množiny I. Položíme } I = \{\alpha \in I_1 : x_{\alpha} = x\}, \text{ v tomto případě} < A_{\alpha} : \alpha \in I > \text{tvoří } \Delta\text{-systém s jádrem } K \cup \{x\}.$
- (b) $I \subseteq I_1: |I_1| = \kappa$, tak pro $\alpha, \beta \in I, \alpha \neq \beta$ je $x_\alpha \neq \alpha, \beta. < A_\alpha: \alpha \in I >$ je Δ -systém s jádrem K.

Důsledek Uvažujme $\mathcal{F} =$ všechny funkce, které mají konečný definiční obor $\subseteq \omega_1$ a obor hodnot $\subseteq \omega$. Kdykoliv $M \subseteq \mathcal{F}$, $|M| = \omega_1$, pak existuje $\varphi, \psi \subseteq M$, pak $\varphi \cup \psi$ je opět funkce.

Důkaz $\{\operatorname{dom}(\varphi) : \varphi \in M\}$ jsou konečné podmnožiny a je jich ω_1 , tedy obsahují nespočetný Δ -systém s jádrem K. Na takovéto množině je však pouze spočetně mnoho funkcí (protože obor hodnot jsou přirozená čísla) - tedy se některé funkce na jádře K shodují a můžeme je sjednotit.

6 Stacionární množiny

Definice Nechť δ je limitní ordinál.

- 1. Říkáme, že množina $A\subseteq \delta$ je neomezená (v δ), pokud pro každé $\alpha<\delta$ existuje $\beta\in A:\alpha<\beta.$
- 2. Říkáme, že množina $A\subseteq \delta$ je uzavřená (v δ), jestliže pro každé limitní $\alpha<\delta$ platí, že sup $A\cap\alpha=\alpha\Rightarrow\alpha\in A$
- 3. Říkáme, že množina $A \subseteq \delta$ je uzavřená neomezená (v δ) je-li A uzavřená a neomezená.

Lemma Nechť δ je limitní ordinál a $cf(\delta) > \omega$. Pak je-li $\tau < cf(\delta)$ a $\{C_{\xi} : \xi \in \tau\}$ soubor uzavřených neomezených množin v δ , pak

$$\bigcap \{C_{\xi} : \xi < \tau\} \tag{1}$$

je uzavřené neomezené v δ .

Důkaz Položme

$$C = \bigcap \{ C_{\xi} : \xi < \tau \} \tag{2}$$

- 1. C je uzavřená v δ : Nechť $\alpha < \delta$ je limitní ordinál, pro který platí, že $\alpha = \sup(C \cap \alpha)$. Pro každé $\xi \in \tau : C_{\xi} \supseteq C$. Tedy $C_{\xi} \cap \alpha \supseteq C \cap \alpha$ a tedy $\sup(C_{\xi} \cap \alpha) = \alpha$. $C_x i$ je uzavřená. Proto $\alpha \in C_{\xi}$. Tedy $\alpha \in \bigcap_{\xi < \tau} C_{\xi} = C$.
- 2. C je neomezená: Zvolme libovolné $\alpha < \delta$. Položme $\alpha_0 = \alpha$. Pak $\forall \xi < \tau : C_{\xi}$ neomezená, tedy existuje nějaké $\beta_{\xi} \in C_{\xi}$, že $\beta_x i < \alpha_0$ a máme množinu $\{\beta_x i : \xi < \tau\}$, což má horní mez α_1 , protože $cf(\delta) >$ jejich počet. Dál indukcí známe $\alpha_0 < \alpha_1 < \ldots < \alpha_n$. C_{ξ} neomezená v δ , existuje $\beta_{\xi}^n \in C_{\xi}$, $\alpha_n < \beta_{\xi}^n$. Ale $\{\beta_{\xi}^n : \xi < \tau\}$ není kofinální v δ , tedy existuje $\alpha_{n+1} > \beta_{\xi}^n$, protože $\xi < \tau$. (a tady se to nějak okecá s obrázkem)

6.1 Stacionární množina

Definice Nechť δ je ordinál a $cf(\delta) > \omega$. $S \subseteq \delta$. Říkáme, že množina S je **stacionární** v δ , jestliže pro každou uzavřenou, neomezenou množinu C je $S \cap C \neq 0$.

Příklad

- 1. Všechny uzavřené a neomezené množiny jsou stacionární.
- 2. $\{\alpha < \omega_2 : cf(\alpha) = \omega\}$ je stacionární množina v ω_2 , která není uzavřená.

Definice Nechť κ je kardinál a $< A_{\alpha} : \alpha \in \kappa >$ je soubor podmnožin kardinálu κ . Následující množina

$$\triangle_{\alpha \in \kappa} A_{\alpha} = \{ \gamma \in \kappa : (\forall \alpha \in \gamma) \gamma \in A_{\alpha} \}$$
 (1)

se nazývá diagonálním průnikem množin $A_{\alpha}\alpha \in \kappa$.

Lemma

$$\triangle A_{\alpha} = \bigcap \{ A_{\alpha} \cap (\alpha + 1) : \alpha < \kappa \} \tag{2}$$

Důkaz Buď $\gamma \in \triangle A_{\alpha}$. Kdykoliv $\alpha < \gamma$, pak $\gamma \in A_{\alpha} \subseteq A_{\alpha} \cup (\alpha + 1)$. Kdykoliv $\alpha \ge \gamma$, pak $\gamma \in \alpha + 1 \subseteq A_{\alpha} \cup (\alpha + 1)$. Tedy $\gamma \in \bigcap_{\alpha \in \kappa} A_{\alpha}(\alpha + 1)$ Buď $\gamma \in \bigcap A_{\alpha} \cap (\alpha + 1)$.

- 1. Je-li $\gamma \leq \alpha$, pak $\gamma \in \alpha + 1$
- 2. Je-li $\gamma > \alpha$, pak $\gamma \in A_{\alpha}$

Tedy $\gamma \in \triangle_{\alpha \in \kappa} A_{\alpha}$

Lemma Nechť $\kappa > \omega$ je regulární kardinál. $< A_{\alpha} : \alpha \in \kappa >$ je soubor uzavřených neomezených podmnožin. Pak $\triangle_{\alpha \in \kappa} A_{\alpha}$ je uzavřená neomezená.

Důkaz Položme

$$C = \triangle_{\alpha \in \kappa} A_{\alpha} \tag{3}$$

- 1. C je uzavřená: Buď $\gamma \in \kappa$, γ limitní, $\gamma = \sup(C \cap \gamma)$. Potom pro všechny $\alpha \in \kappa$ máme $\gamma = \sup((A_{\alpha} \cup (\alpha+1)) \cap \gamma)$. A_{α} uzavřená a neomezená v κ . $A_{\alpha} \cup (\alpha+1)$ je uzavřená a neomezená také. Tedy $\gamma \in A_{\alpha} \cup (\alpha+1)$ pro všechna $\alpha \in \kappa$. Tedy $\gamma \in C$ a C je uzavřená.
- 2. C je neomezená: Buď $\xi_0 < \kappa$ libovolný ordinál.

$$\bigcap_{\alpha \leq \xi_0} A_{\alpha} \text{ je uzavřená neomezená podmnožina} \kappa \text{ podle minulého lemma} \tag{4}$$

Tedy existuje $\xi_1 > \xi_0, \xi_1 \in \bigcap_{\alpha \leq \xi_0} A_\alpha$. Dál indukcí: známe $\xi_0 < \xi_1 < \ldots < \xi_n$. $\xi_n < \kappa$ - podíváme na $\bigcap_{\alpha \leq \xi_m} A_\alpha$, tedy máme $\xi = \sup\{\xi_n : n \in \omega\} \in \kappa$. Buď $\alpha < \xi$ libovolný ordinál. Pak určitě existuje nějaké $n \in \omega$, kde $\alpha < \xi_n$. Z definice $\xi_{n+1}, \xi_{n+2}, \ldots$ dostáváme, že $\xi_{n+1}, \xi_{n+2}, \ldots \in A_\alpha$. A_α je uzavřená. Tedy $\{\xi_i : n+1 \leq i < \omega\} \subseteq A_\alpha$. $\xi \in A_\alpha$ pro všechna $\alpha < \xi$. Tedy $\xi \in \Delta_{\alpha \in \kappa} A_\alpha$.

Definice Buď A je množina ordinálních čísel a funkce $f:A\to Or$ se nazývá regresivní na množině A, jestliže

$$(\forall \alpha \in A)(\alpha > 0 \Rightarrow f(\alpha) < \alpha) \tag{5}$$

6.2 Fodorova věta (Pressing-down lemma)

Věta Nechť $\kappa > \omega$ je regulární kardinál. Nechť $E \subseteq \kappa$. Pak následující podmínky jsou ekvivalentní:

- 1. E je stacionární
- 2. Je-li $f:E\to \kappa$ regresivní, pak existuje $\alpha<\kappa,$ že f^{-1} neomezená v $\kappa.$
- 3. Je-li $f:E \to \kappa$ regresivní, pak existuje $\alpha < \kappa$ tak, že $f^{-1}(\{\alpha\})$ je stacionární v κ .