2 Fonction polynomiale du second degré

Définition 2. Une fonction polynomiale du second degré est une fonction f définie sur les réels qui à tout nombre x associe un réel f(x) de la forme :

$$ax^2 + bx + c$$

où a, b et c sont des réels avec $a \neq 0$.

Remarque. L'hypothèse $a \neq 0$ est essentielle, sinon la fonction est polynomiale de degré au plus 1.

On trace la courbe représentative de deux fonctions polynomiales du second degré : une avec a>0 et une avec a<0.

Définition 3. Soit f une fonction polynomiale de degré 2. Sa courbe représentative est appelée une **parabole**.

Proposition 5. Soit f une fonction polynomiale de degré 2. telle que $f(x) = ax^2 + bx + c$. Alors :

- Si a > 0, il existe une valeur de x, notée x_m telle que f est décroissante sur $[\infty; x_m]$ et croissante sur $[x_m; +\infty[$
- Si a < 0, il existe une valeur de x, notée x telle que f est croissante sur $] \infty; x$] et décroissante sur $[x ; +\infty[$

Remarque.

- Dans le cas a>0, les « branches de la paraboles sont tournées vers le haut ». Dans le cas contraire (a<0), elles sont « tournées vers le bas ».
- Dans le cas a > 0, f admet un unique minimum, et ce minimum est atteint en x_m . Dans le cas contraire (a < 0), f admet un maximum, et ce maximum est atteint en x.

4

3 Recherche de l'extremum

3.1 Forme canonique

Proposition 6. Soit f une fonction polynomiale du second degré telle que $f(x) = ax^2 + bx + c$. Alors il existe et β tel que

$$f(x) = a(x \qquad)^2 + \beta$$

Remarque. Dans ce cas, $=\frac{b}{2a}$ et $\beta = f(\)$.

Exemple. Soit l'expression polynomiale du second degré $x^2 + 2x$ 5. Déterminer sa forme canonique.

Méthode 2 (Par identification).

Méthode 3 (En utilisant une identité remarquable « limitée »).