Programming language	Description
Ruby on Rails	Ruby—created in the mid-1990s by Yukihiro Matsumoto—is an open-source, object-oriented programming language with a simple syntax that's similar to Perl and Python. Ruby on Rails combines the scripting language Ruby with the Rails web application framework developed by 37Signals. Their book, <i>Getting Real</i> (available free at gettingreal .37signals.com/toc.php), is a must read for web developers. Many Ruby on Rails developers have reported productivity gains over other languages when developing database-intensive web applications. Ruby on Rails was used to build Twitter's user interface.
Scala	Scala (www.scala-lang.org/node/273)—short for "scalable language"—was designed by Martin Odersky, a professor at École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. Released in 2003, Scala uses both the object-oriented programming and functional programming paradigms and is designed to integrate with Java. Programming in Scala can reduce the amount of code in your applications significantly. Twitter and Foursquare use Scala.

Fig. 1.5 Some other programming languages. (Part 3 of 3.)

1.8 Introduction to Object Technology

Building software quickly, correctly and economically remains an elusive goal at a time when demands for new and more powerful software are soaring. *Objects*, or more precisely—as we'll see in Chapter 3—the *classes* objects come from, are essentially *reusable* software components. There are date objects, time objects, audio objects, video objects, automobile objects, people objects, etc. Almost any *noun* can be reasonably represented as a software object in terms of *attributes* (e.g., name, color and size) and *behaviors* (e.g., calculating, moving and communicating). Software developers have discovered that using a modular, object-oriented design-and-implementation approach can make software-development groups much more productive than was possible with earlier techniques—object-oriented programs are often easier to understand, correct and modify.

The Automobile as an Object

Let's begin with a simple analogy. Suppose you want to *drive a car and make it go faster by pressing its accelerator pedal*. What must happen before you can do this? Well, before you can drive a car, someone has to *design* it. A car typically begins as engineering drawings, similar to the *blueprints* that describe the design of a house. These drawings include the design for an accelerator pedal. The pedal *hides* from the driver the complex mechanisms that actually make the car go faster, just as the brake pedal hides the mechanisms that slow the car, and the steering wheel *hides* the mechanisms that turn the car. This enables people with little or no knowledge of how engines, braking and steering mechanisms work to drive a car easily.

Before you can drive a car, it must be *built* from the engineering drawings that describe it. A completed car has an *actual* accelerator pedal to make the car go faster, but even that's not enough—the car won't accelerate on its own (hopefully!), so the driver must *press* the pedal to accelerate the car.

Member Functions and Classes

Let's use our car example to introduce some key object-oriented programming concepts. Performing a task in a program requires a member function. The member function houses the program statements that actually perform its task. It hides these statements from its user, just as the accelerator pedal of a car hides from the driver the mechanisms of making the car go faster. In C++, we create a program unit called a class to house the set of member functions that perform the class's tasks. For example, a class that represents a bank account might contain one member function to *deposit* money to an account, another to *withdraw* money from an account and a third to *inquire* what the account's current balance is. A class is similar in concept to a car's engineering drawings, which house the design of an accelerator pedal, steering wheel, and so on.

Instantiation

Just as someone has to *build a car* from its engineering drawings before you can actually drive a car, you must *build an object* from a class before a program can perform the tasks that the class's methods define. The process of doing this is called *instantiation*. An object is then referred to as an *instance* of its class.

Reuse

Just as a car's engineering drawings can be *reused* many times to build many cars, you can *reuse* a class many times to build many objects. Reuse of existing classes when building new classes and programs saves time and effort. Reuse also helps you build more reliable and effective systems, because existing classes and components often have gone through extensive *testing*, *debugging* and *performance tuning*. Just as the notion of *interchangeable parts* was crucial to the Industrial Revolution, reusable classes are crucial to the software revolution that has been spurred by object technology.

Messages and Member Function Calls

When you drive a car, pressing its gas pedal sends a *message* to the car to perform a task—that is, to go faster. Similarly, you *send messages to an object*. Each message is implemented as a **member function call** that tells a member function of the object to perform its task. For example, a program might call a particular bank account object's *deposit* member function to increase the account's balance.

Attributes and Data Members

A car, besides having capabilities to accomplish tasks, also has *attributes*, such as its color, its number of doors, the amount of gas in its tank, its current speed and its record of total miles driven (i.e., its odometer reading). Like its capabilities, the car's attributes are represented as part of its design in its engineering diagrams (which, for example, include an odometer and a fuel gauge). As you drive an actual car, these attributes are carried along with the car. Every car maintains its *own* attributes. For example, each car knows how much gas is in its own gas tank, but *not* how much is in the tanks of *other* cars.

An object, similarly, has attributes that it carries along as it's used in a program. These attributes are specified as part of the object's class. For example, a bank account object has a balance attribute that represents the amount of money in the account. Each bank account object knows the balance in the account it represents, but not the balances of the other accounts in the bank. Attributes are specified by the class's data members.

Encapsulation

Classes encapsulate (i.e., wrap) attributes and member functions into objects—an object's attributes and member functions are intimately related. Objects may communicate with one another, but they're normally not allowed to know how other objects are implemented—implementation details are *hidden* within the objects themselves. This information hiding, as we'll see, is crucial to good software engineering.

Inheritance

A new class of objects can be created quickly and conveniently by inheritance—the new class absorbs the characteristics of an existing class, possibly customizing them and adding unique characteristics of its own. In our car analogy, an object of class "convertible" certainly is an object of the more general class "automobile," but more specifically, the roof can be raised or lowered.

Object-Oriented Analysis and Design (OOAD)

Soon you'll be writing programs in C++. How will you create the code (i.e., the program instructions) for your programs? Perhaps, like many programmers, you'll simply turn on your computer and start typing. This approach may work for small programs (like the ones we present in the early chapters of the book), but what if you were asked to create a software system to control thousands of automated teller machines for a major bank? Or suppose you were asked to work on a team of thousands of software developers building the next U.S. air traffic control system? For projects so large and complex, you should not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for determining your project's requirements (i.e., defining what the system is supposed to do) and developing a design that satisfies them (i.e., deciding *how* the system should do it). Ideally, you'd go through this process and carefully review the design (and have your design reviewed by other software professionals) before writing any code. If this process involves analyzing and designing your system from an object-oriented point of view, it's called an object-oriented analysis and design (OOAD) process. Languages like C++ are object oriented. Programming in such a language, called object-oriented programming (OOP), allows you to implement an object-oriented design as a working system.

The UML (Unified Modeling Language)

Although many different OOAD processes exist, a single graphical language for communicating the results of any OOAD process has come into wide use. This language, known as the Unified Modeling Language (UML), is now the most widely used graphical scheme for modeling object-oriented systems. We present our first UML diagrams in Chapters 3 and 4, then use them in our deeper treatment of object-oriented programming through Chapter 12. In our optional ATM Software Engineering Case Study in Chapters 25–26 we present a simple subset of the UML's features as we guide you through an object-oriented design experience.