Standard deviation =
$$\sqrt{\frac{\sum (x-x_1)^2}{n-1}}$$

Permutation =
$$\frac{n!}{(n-r)!}$$

Combination =
$$\frac{n!}{r!(n-r)!}$$

Conditional probability = $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Multiplicity of law of probability = $P(A \cap B) = p(A) \cdot P(B A) P(B) \cdot (P A B)$

Addition rule = $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Bayes Theorem = $P(AB) = \frac{(P(AB)P(B))}{P(A)}$

Discrete random variables $E[y] = y \in Y \Sigma$ y p(y) =

Variance = $V[y] = E[(y - \mu)^2]$

Standard deviation = $\sqrt{V[y]}$

Binomial distribution = $p(Y) =_{v}^{n} p^{y} q^{n-y}$

Geometric distribution = $q^{y-1}P$

Hyper Geometric distribution = ${n \choose y} \cdot {n-R \choose n-y}$

Variance = $n\left(\frac{r}{N}\right)\left(\frac{(N-r)}{N}\right)$

Poisson distribution = $\frac{\lambda^y}{v!^e} - \lambda$

Variance = λ

TChebysheff's theorem = $P(|y - \mu| \ge k\sigma) \le \frac{1}{k^2}$

Expect values for continuous variables = $E(Y) = \int_{-\infty}^{\infty} y f(y) dy$

Variance values for continuous variables $=E(Y) = \int_{-\infty}^{\infty} y^2 f(y) dy$

The uniform probability Distribution = $\prod_{0}^{\frac{1}{b-a}} b \le y \le a$

Expected = $\int_a^b x f(x) dx$

Variance = $\int_a^b \frac{x^2}{b-a} dx$

The normal distribution = $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(y-\mu)^2}{(2\sigma)^2}}$

Expected $=\mu$

Variance = σ^2

The Gama Distribution = $\frac{y^{\alpha-1}e^{-\frac{y}{\beta}}}{\beta^{\alpha}\Gamma(\alpha)}$ $0 \le y < \infty$

Expected $=\alpha\beta$

Variance = $\alpha \beta^2$

The beta probability distribution = $\frac{y^{\alpha-1}(1-y)^{\beta-1}}{\beta(a,\beta)}$ $0 \le y \le 1$

Expected = $\frac{\alpha}{\alpha + \beta}$

Variance = $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Multivariable probability distribution = $p(y1 = y1) \cap (y2 = y2)$

Marginal = $\sum p(x, y)$

Conditional = $\frac{P(x,y)}{P2(y)}$