Challenges in the Formal Verification of Attested TLS

Muhammad Usama Sardar¹, Arto Niemi², Hannes Tschofenig³,
Thomas Fossati⁴

¹TU Dresden, Germany

²Huawei Technologies, Helsinki, Finland

³University of Applied Sciences Bonn-Rhein-Sieg and Siemens, Germany

⁴Linaro, Lausanne, Switzerland

May 16, 2024

Agenda

- Intro
- 2 Attested TLS
- Goal and Contributions
- 4 Approach and Tool
- 5 Validation of TLS 1.3 (Quick overview)
- 6 Summary

Don't be scared of maths!¹

 Writing is nature's way of letting you know how sloppy your thinking is. (Guindon)

¹https://www.microsoft.com/en-us/research/publication/2018/05/book-02-08-08.pdf

Don't be scared of maths!¹

- Writing is nature's way of letting you know how sloppy your thinking is. (Guindon)
- Mathematics is nature's way of letting you know how sloppy your writing is. (Leslie Lamport)

¹https://www.microsoft.com/en-us/research/publication/2018/05/book-02-08-08.pdf

Don't be scared of maths!¹

- Writing is nature's way of letting you know how sloppy your thinking is. (Guindon)
- Mathematics is nature's way of letting you know how sloppy your writing is. (Leslie Lamport)
- Formal mathematics is nature's way of letting you know how sloppy your mathematics is. (Leslie Lamport)

¹ https://www.microsoft.com/en-us/research/publication/2018/05/book-02-08-08.pdf

Outline

- Intro
- 2 Attested TLS
- Goal and Contributions
- Approach and Tool
- 5 Validation of TLS 1.3 (Quick overview)
 - Key Schedule
 - Validation of Key Schedule
- 6 Summary

Attested TLS

Attested TLS

• Widely used pre-HS attestation protocol, e.g., in

²Knauth, Steiner, Chakrabarti, Lei, Xing, and Vij, Integrating Remote Attestation with Transport Layer Security, 2018.

- Widely used pre-HS attestation protocol, e.g., in
 - Gramine

²Knauth, Steiner, Chakrabarti, Lei, Xing, and Vij, *Integrating Remote Attestation with Transport Layer Security*, 2018.

- Widely used pre-HS attestation protocol, e.g., in
 - Gramine
 - RATS-TLS

²Knauth, Steiner, Chakrabarti, Lei, Xing, and Vij, Integrating Remote Attestation with Transport Layer Security, 2018.

- Widely used pre-HS attestation protocol, e.g., in
 - Gramine
 - RATS-TLS
 - Open Enclave Attested TLS

²Knauth, Steiner, Chakrabarti, Lei, Xing, and Vij, Integrating Remote Attestation with Transport Layer Security, 2018.

- Widely used pre-HS attestation protocol, e.g., in
 - Gramine
 - RATS-TLS
 - Open Enclave Attested TLS
 - SGX SDK Attested TLS

²Knauth, Steiner, Chakrabarti, Lei, Xing, and Vij, *Integrating Remote Attestation with Transport Layer Security*, 2018.

Outline

- Intro
- 2 Attested TLS
- Goal and Contributions
- Approach and Tool
- 5 Validation of TLS 1.3 (Quick overview
 - Key Schedule
 - Validation of Key Schedule
- 6 Summary

Goal

Formally analyze the security of Intel's RA-TLS

Contributions

 First formal analysis of attested TLS for TEEs (happy to discuss in Hackathon)

³https://github.com/Inria-Prosecco/reftls

Contributions

- First formal analysis of attested TLS for TEEs (happy to discuss in Hackathon)
- Validation of formal model³ of TLS 1.3 Key Schedule, revealing 3 major issues

³https://github.com/Inria-Prosecco/reftls

Outline

- Intro
- 2 Attested TLS
- Goal and Contributions
- Approach and Tool
- 5 Validation of TLS 1.3 (Quick overview)
 - Key Schedule
 - Validation of Key Schedule
- 6 Summary

Analysis Approach and Tool

Approach: Symbolic⁴

 $^{^4} Barbosa, \, Barthe, \, Karthik \, Bhargavan, \, Blanchet, \, Cremers, \, Liao, \, and \, Parno, \, "SoK: \, Computer-Aided \, Cryptography", \, 2021.$

⁵Blanchet, Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022.

Analysis Approach and Tool

Approach: Symbolic⁴

• Tool used: ProVerif⁵

 $^{^4\}mathsf{Barbosa},\,\mathsf{Barthe},\,\mathsf{Karthik}\,\,\mathsf{Bhargavan},\,\,\mathsf{Blanchet},\,\,\mathsf{Cremers},\,\,\mathsf{Liao},\,\,\mathsf{and}\,\,\,\mathsf{Parno},\,\,\text{``SoK}:\,\,\mathsf{Computer-Aided}\,\,\,\mathsf{Cryptography''}\,,\,\,2021.$

⁵Blanchet, Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022.

Approach - Simplified

Challenge in Specification of Intel's RA-TLS⁶

- Incomplete and outdated specs for RA-TLS
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model

Figure 1: Remote Attestation Example. The challenger is off-platform with respect to the attester.

⁶Knauth, Steiner, Chakrabarti, Lei, Xing, and Vij, Integrating Remote Attestation with Transport Layer Security, 2018.

Challenge in Specification of Intel's RA-TLS⁶

- Incomplete and outdated specs for RA-TLS
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model

Figure 1: Remote Attestation Example. The challenger is off-platform with respect to the attester.

Figure 2: TLS 1.2 Handshake Messages.

⁶Knauth, Steiner, Chakrabarti, Lei, Xing, and Vij, Integrating Remote Attestation with Transport Layer Security, 2018.

Very few comments in Inria's TLS formal model⁷

⁷https://github.com/Inria-Prosecco/reftls/tree/master/pv

 $^{^{8} \}verb|https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/|$

- Very few comments in Inria's TLS formal model⁷
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!

⁷https://github.com/Inria-Prosecco/reftls/tree/master/pv

 $^{^8}$ https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Very few comments in Inria's TLS formal model⁷
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
 - Fix: Added extensive comments for future extensions

⁷https://github.com/Inria-Prosecco/reftls/tree/master/pv

 $^{^8}$ https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Very few comments in Inria's TLS formal model⁷
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
 - Fix: Added extensive comments for future extensions
- Incomplete validation of draft 20 artifacts⁸

⁷https://github.com/Inria-Prosecco/reftls/tree/master/pv

 $^{^8}$ https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Very few comments in Inria's TLS formal model⁷
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
 - Fix: Added extensive comments for future extensions
- Incomplete validation of draft 20 artifacts⁸
 - Fix: Designed an automated validation framework for key schedule

⁷https://github.com/Inria-Prosecco/reftls/tree/master/pv

 $^{^8 {\}tt https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/}$

- Very few comments in Inria's TLS formal model⁷
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
 - Fix: Added extensive comments for future extensions
- Incomplete validation of draft 20 artifacts⁸
 - Fix: Designed an automated validation framework for key schedule
- A simple extension made the artifacts running for 1 month on high-end server (icelake)

⁷https://github.com/Inria-Prosecco/reftls/tree/master/pv

 $^{^8}$ https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Very few comments in Inria's TLS formal model⁷
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
 - Fix: Added extensive comments for future extensions
- Incomplete validation of draft 20 artifacts⁸
 - Fix: Designed an automated validation framework for key schedule
- A simple extension made the artifacts running for 1 month on high-end server (icelake)
 - Submitted to ProVerif developers for analysis

⁷https://github.com/Inria-Prosecco/reftls/tree/master/pv

 $^{^8}$ https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Very few comments in Inria's TLS formal model⁷
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
 - Fix: Added extensive comments for future extensions
- Incomplete validation of draft 20 artifacts⁸
 - Fix: Designed an automated validation framework for key schedule
- A simple extension made the artifacts running for 1 month on high-end server (icelake)
 - Submitted to ProVerif developers for analysis
 - Fix: Formal model from scratch

⁷https://github.com/Inria-Prosecco/reftls/tree/master/pv

 $^{^8}$ https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

Approach

Outline

- Intro
- 2 Attested TLS
- Goal and Contributions
- Approach and Tool
- 5 Validation of TLS 1.3 (Quick overview)
 - Key Schedule
 - Validation of Key Schedule
- 6 Summary

Agenda

- 5 Validation of TLS 1.3 (Quick overview)
 - Key Schedule
 - Validation of Key Schedule

Key Schedule - Overview

Key Schedule⁹

```
PSK -> HKDF-Extract = Early Secret
          +----> Derive-Secret(., "ext binder" | "res binder", "")
                               = binder_key
          +----> Derive-Secret(., "c e traffic", ClientHello)
                               = client_early_traffic_secret
         +----> Derive-Secret(,, "e exp master", ClientHello)
                               = early exporter master secret
   Derive-Secret(., "derived", "")
(EC)DHE -> HKDF-Extract = Handshake Secret
          +----> Derive-Secret(.. "c hs traffic".
                               ClientHello...ServerHello)
                               = client handshake traffic secret
          +----> Derive-Secret(., "s hs traffic",
                               ClientHello...ServerHello)
                               = server_handshake_traffic_secret
   Derive-Secret(., "derived", "")
0 -> HKDF-Extract = Master Secret
          +----> Derive-Secret(., "c ap traffic",
                               ClientHello...server Finished)
                               = client_application_traffic_secret_0
          +----> Derive-Secret(., "s ap traffic",
                               ClientHello...server Finished)
                               = server application traffic secret 0
          +----> Derive-Secret(., "exp master",
                               ClientHello...server Finished)
                               = exporter_master_secret
          +----> Derive-Secret(., "res master",
                               ClientHello...client Finished)
                               = resumption master secret
```

⁹https://datatracker.ietf.org/doc/html/rfc8446#section-7.1

Key Schedule with 2nd Stage

Agenda

- 5 Validation of TLS 1.3 (Quick overview)
 - Key Schedule
 - Validation of Key Schedule

Validation Framework

Validation Result

Example Issue: Master Secret¹⁰

Figure: TLS 1.3 Specs

Figure: Inria artifacts

¹⁰https://github.com/Inria-Prosecco/reftls/issues/6

Ruling out Abstractions

Ubuntu 20.04 LTS on an Intel Core i7-11800H processor with 64 GB of RAM

Code	ProVerif 2.04	ProVerif 2.05
Original	6 min 06.634 s	6 min 02.256 s
With issue 1 fixed	5 min 51.682 s	6 min 03.335 s
With issue 2 fixed	7 min 04.472 s	6 min 14.954 s
With issue 3 fixed	7 min 11.434 s	6 min 41.872 s
With all 3 issues fixed	6 min 40.010 s	6 min 31.887 s

Paper authors¹¹

¹¹Karthikeyan Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate". 2017.

¹² https://github.com/lurk-t/proverif

¹³https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

 $^{^{14}} https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar_Formal_RA-TLS.pdf$

¹⁵https://wiki.ietf.org/meeting/119/hackathon

 $^{^{16} \}texttt{https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00}$

- Paper authors¹¹
 - Bruno Blanchet

25/29

¹¹Karthikeyan Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate", 2017.

¹²https://github.com/lurk-t/proverif

¹³https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

 $^{^{14} \}verb|https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar_Formal_RA-TLS.pdf$

 $^{^{15} {\}tt https://wiki.ietf.org/meeting/119/hackathon}$

 $^{^{16}} https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00$

- Paper authors¹¹
 - Bruno Blanchet
 - Karthikeyan Bhargavan

¹¹Karthikeyan Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate", 2017.

¹²https://github.com/lurk-t/proverif

¹³https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

 $^{^{14} \}verb|https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar_Formal_RA-TLS.pdf$

¹⁵https://wiki.ietf.org/meeting/119/hackathon

 $^{^{16} \}texttt{https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00}$

- Paper authors¹¹
 - Bruno Blanchet
 - Karthikeyan Bhargavan
 - Nadim Kobeissi

¹¹Karthikeyan Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate", 2017.

 $^{^{12} {\}tt https://github.com/lurk-t/proverif}$

¹³https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

 $^{^{14} \}verb|https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar_Formal_RA-TLS.pdf$

¹⁵https://wiki.ietf.org/meeting/119/hackathon

 $^{^{16} \}texttt{https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00}$

- Paper authors¹¹
 - Bruno Blanchet
 - Karthikeyan Bhargavan
 - Nadim Kobeissi
- LURK authors¹²

¹¹Karthikeyan Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate", 2017.

¹²https://github.com/lurk-t/proverif

¹³https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

 $^{^{14} \}texttt{https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar_Formal_RA-TLS.pdf}$

¹⁵https://wiki.ietf.org/meeting/119/hackathon

 $^{^{16} \}texttt{https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00}$

- Paper authors¹¹
 - Bruno Blanchet
 - Karthikeyan Bhargavan
 - Nadim Kobeissi
- LURK authors¹²
- IFTF TIS WG¹³

¹¹Karthikeyan Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate". 2017.

 $^{^{12} {\}tt https://github.com/lurk-t/proverif}$

¹³https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

 $^{^{14} \}texttt{https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar_Formal_RA-TLS.pdf}$

¹⁵https://wiki.ietf.org/meeting/119/hackathon

 $^{^{16} \}texttt{https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00}$

- Paper authors¹¹
 - Bruno Blanchet
 - Karthikeyan Bhargavan
 - Nadim Kobeissi
- LURK authors¹²
- IETF TI S WG¹³
- IRTF UFMRG chairs

¹¹Karthikeyan Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate". 2017.

¹²https://github.com/lurk-t/proverif

¹³https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

 $^{^{14} \}texttt{https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar_Formal_RA-TLS.pdf}$

¹⁵https://wiki.ietf.org/meeting/119/hackathon

 $^{^{16} \}texttt{https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00}$

- Paper authors¹¹
 - Bruno Blanchet
 - Karthikeyan Bhargavan
 - Nadim Kobeissi
- LURK authors¹²
- IFTF TIS WG¹³
- IRTE UFMRG chairs
- CCC attestation SIG¹⁴

¹¹Karthikeyan Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate". 2017.

¹²https://github.com/lurk-t/proverif

¹³https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

 $^{^{14} \}texttt{https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar_Formal_RA-TLS.pdf}$

¹⁵https://wiki.ietf.org/meeting/119/hackathon

 $^{^{16}}$ https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00

- Paper authors¹¹
 - Bruno Blanchet
 - Karthikeyan Bhargavan
 - Nadim Kobeissi
- LURK authors¹²
- IFTF TIS WG¹³
- IRTF UFMRG chairs
- CCC attestation SIG¹⁴
- ...

¹¹Karthikeyan Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate". 2017.

¹²https://github.com/lurk-t/proverif

¹³https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

 $^{^{14} \}texttt{https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar_Formal_RA-TLS.pdf}$

¹⁵https://wiki.ietf.org/meeting/119/hackathon

 $^{^{16} \}texttt{https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00}$

- Paper authors¹¹
 - Bruno Blanchet
 - Karthikeyan Bhargavan
 - Nadim Kobeissi
- LURK authors¹²
- IFTF TIS WG¹³
- IRTF UFMRG chairs
- CCC attestation SIG¹⁴
- ..
- IFTF 119 Hackathon¹⁵

¹¹Karthikeyan Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate", 2017.

¹²https://github.com/lurk-t/proverif

¹³https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

 $^{^{14} \}texttt{https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar_Formal_RA-TLS.pdf}$

¹⁵https://wiki.ietf.org/meeting/119/hackathon

 $^{^{16} \}texttt{https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00}$

- Paper authors¹¹
 - Bruno Blanchet
 - Karthikeyan Bhargavan
 - Nadim Kobeissi
- LURK authors¹²
- IFTF TI S WG¹³
- IRTE UFMRG chairs
- CCC attestation SIG¹⁴
- IETF 119 Hackathon¹⁵
- IRTF Crypto Forum RG @ IETF 119¹⁶

 $^{^{11}}$ Karthikeyan Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate", 2017.

¹²https://github.com/lurk-t/proverif

¹³https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

¹⁴ https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar Formal RA-TLS.pdf

¹⁵https://wiki.ietf.org/meeting/119/hackathon

¹⁶https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00 Muhammad Usama Sardar (TUD)

- Paper authors¹¹
 - Bruno Blanchet
 - Karthikeyan Bhargavan
 - Nadim Kobeissi
- LURK authors¹²
- IFTF TI S WG¹³
- IRTE UFMRG chairs
- CCC attestation SIG¹⁴
- IETF 119 Hackathon¹⁵
- IRTF Crypto Forum RG @ IETF 119¹⁶
- Tool session @ GT MFS'24

25/29

¹¹Karthikeyan Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate", 2017.

¹²https://github.com/lurk-t/proverif

¹³https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

 $^{^{14} \}texttt{https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar_Formal_RA-TLS.pdf}$

¹⁵https://wiki.ietf.org/meeting/119/hackathon

¹⁶ https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00

Outline

- Intro
- 2 Attested TLS
- Goal and Contributions
- Approach and Tool
- 5 Validation of TLS 1.3 (Quick overview
 - Key Schedule
 - Validation of Key Schedule
- 6 Summary

Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!

¹⁷Tschofenig, Sheffer, Howard, Mihalcea, Deshpande, Niemi, and Fossati, *Using Attestation in Transport Layer Security (TLS)* and Datagram Transport Layer Security (DTLS), 2024.

- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
 - Validation of formal model is crucial!

¹⁷Tschofenig, Sheffer, Howard, Mihalcea, Deshpande, Niemi, and Fossati, *Using Attestation in Transport Layer Security (TLS)* and Datagram Transport Layer Security (DTLS), 2024.

- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
 - Validation of formal model is crucial!
- Intel's RA-TLS is potentially vulnerable to replay attacks (happy to share paper and discuss in Hackathon)

¹⁷Tschofenig, Sheffer, Howard, Mihalcea, Deshpande, Niemi, and Fossati, *Using Attestation in Transport Layer Security (TLS)* and Datagram Transport Layer Security (DTLS), 2024.

- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
 - Validation of formal model is crucial!
- Intel's RA-TLS is potentially vulnerable to replay attacks (happy to share paper and discuss in Hackathon)
 - Need for standardized and formally verified attested TLS

¹⁷Tschofenig, Sheffer, Howard, Mihalcea, Deshpande, Niemi, and Fossati, *Using Attestation in Transport Layer Security (TLS)* and Datagram Transport Layer Security (DTLS), 2024.

- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
 - Validation of formal model is crucial!
- Intel's RA-TLS is potentially vulnerable to replay attacks (happy to share paper and discuss in Hackathon)
 - Need for standardized and formally verified attested TLS
- Open Questions

¹⁷Tschofenig, Sheffer, Howard, Mihalcea, Deshpande, Niemi, and Fossati, *Using Attestation in Transport Layer Security (TLS)* and Datagram Transport Layer Security (DTLS), 2024.

- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
 - Validation of formal model is crucial!
- Intel's RA-TLS is potentially vulnerable to replay attacks (happy to share paper and discuss in Hackathon)
 - Need for standardized and formally verified attested TLS
- Open Questions
 - Whether a fix for RA-TLS is possible?

¹⁷Tschofenig, Sheffer, Howard, Mihalcea, Deshpande, Niemi, and Fossati, *Using Attestation in Transport Layer Security (TLS)* and Datagram Transport Layer Security (DTLS), 2024.

- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
 - Validation of formal model is crucial!
- Intel's RA-TLS is potentially vulnerable to replay attacks (happy to share paper and discuss in Hackathon)
 - Need for standardized and formally verified attested TLS
- Open Questions
 - Whether a fix for RA-TLS is possible?
 - Security of IETF draft¹⁷

¹⁷Tschofenig, Sheffer, Howard, Mihalcea, Deshpande, Niemi, and Fossati, *Using Attestation in Transport Layer Security (TLS)* and Datagram Transport Layer Security (DTLS), 2024.

Key References

Barbosa, Manuel, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno. "SoK: Computer-Aided Cryptography". In: 42nd IEEE Symposium on Security and Privacy. 2021. URL: https://eprint.iacr.org/2019/1393.pdf.

Bhargavan, Karthikeyan, Bruno Blanchet, and Nadim Kobeissi. "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate". In: 2017 IEEE Symposium on Security and Privacy (SP). 2017, pp. 483–502. DOI: 10.1109/SP.2017.26.

Blanchet, Bruno, Vincent Cheval, and Véronique Cortier. "ProVerif with lemmas, induction, fast subsumption, and much more". In: IEEE Symposium on Security and Privacy (S&P'22). Los Alamitos, CA, USA: IEEE Computer Society, May 2022, pp. 205–222. DOI: 10.1109/SP46214.2022.00013.

Knauth, T., M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and M. Vij. Integrating Remote Attestation with Transport Layer Security. Tech. rep. Intel Labs, 2018. URL: https://arxiv.org/abs/1801.05863.

Tschofenig, Hannes, Yaron Sheffer, Paul Howard, Ionuţ Mihalcea, Yogesh Deshpande, Arto Niemi, and Thomas Fossati. Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS). Internet-Draft draft-fossati-tls-attestation-06. Work in Progress. Internet Engineering Task Force, Mar. 2024. 34 pp. URL: https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/06/.

ACK

- Ionut Mihalcea (Arm)
- Yaron Sheffer (Intuit)
- Yogesh Deshpande (Arm)
- Anonymous HCVS reviewer # 3