CIRCUITOS DIGITAIS

CIRCUITOS SEQUENCIAIS

Prof. Marcelo Grandi Mandelli

mgmandelli@unb.br

Contadores

Contadores Síncronos:

- Os Flip-Flops mudam de estado com o mesmo sincronismo
- O mesmo clock é ligado em todos os FFs
- Há um atraso entre as mudanças de estado de cada FF
- O atraso NÃO é propagado de acordo como número de FF

Contadores

Contadores Assíncronos:

- Os Flip-Flops NÃO mudam de estado com o mesmo sincronismo
- O clock é conectado apenas no primeiro FF (LSB)
- Há um pequeno atraso entre as mudanças de estado de cada FF
- O atraso é propagado de acordo com o número de FF conectados em cascata → último estágio do contador terá um atraso maior

- Chamados de Ripple Counters
- Usa-se principalmente flip-flop JK ou T

Flip-flop T com Preset e Clear

PRE	CLR	Q _{t+1}
0	0	FUNCIONAMENTO NORMAL
0	1	0
1	0	1
1	1	NÃO PERMITIDO

CLK	Т	Q _{t+1}
≠↑	X	Q _t
↑	0	Q _t
↑	1	$\overline{\mathbf{Q}_{t}}$

- □ Contador de n bits → n flip-flops
- maior número que um contador de n bits pode contar ->
 2ⁿ 1
- □ Exemplo : Contador de palavras de 2 bits → 2 FFs

Contador de palavras de 2 bits conta até $2^2 - 1 = 3$

- Passo 1 : sinal de clock do contador é conectado no flipflop que irá gerar o bit menos significativo (LSB) do valor contado
- Exemplo : Contador de palavras de 2 bits

- Passo 2 : a saída $\overline{\mathbf{Q}}$ de cada flip-flop deve ser conectada a entrada de clock dos flip-flops seguintes
- Exemplo : Contador de palavras de 2 bits

- Passo 3 : a entradas T de todos os flip-flops devem ser iguais a 1
- Exemplo : Contador de palavras de 2 bits

- Passo 4 : interligar as entradas CLEAR dos flip-flops para resetar o contador / PRESET fica desabilitado (0)
- Exemplo : Contador de palavras de 2 bits

- As saídas Q dos flip-flops apresentarão o valor contado
- Exemplo : Contador de palavras de 2 bits

A saída Q do flip-flop onde o clock (CLK) está conectado será o bit menos significativo (LSB) do valor contado

- Exemplo : Contador de palavras de 2 bits
- □ Antes da contagem → RESETAR o contador

- Exemplo : Contador de palavras de 2 bits
- 💶 PRESET e CLEAR iguais a 0 → operação normal

- Exemplo : Contador de palavras de 2 bits
- Tabela Verdade :

Pulso de Clock	Q_1	Q_0	
Valor inicial	0	0	
1°	0	1	
2°	1	0	
3°	1	1	
4º (reciclagem)	0	0	

DIVISOR DE FREQUENCIA

DIVISOR DE FREQUENCIA - EXEMPLO

- □ uma das aplicações do contador → dividir a frequência
- Após n estágios de flip-flops a frequencia de clock será dividida por 2n
- Exemplo:
 - Contador de palavras de 8 bits → 8 flip-flops
 - Na saída do último flip-flop (Q₇) a frequencia do clock de entrada será dividida por 2⁸ = 256

Divide a frequencia do CLK por:

□ Tabela Verdade:

Pulso de Clock	Q_3	Q_2	Q_1	Q_0
Valor inicial	0	0	0	0
1º	0	0	0	1
2°	0	0	1	0
3°	0	0	1	1
4 °	0	1	0	0
5°	0	1	0	1
6°	0	1	1	0
7°	0	1	1	1
8°	1	0	0	0
9°	1	0	0	1
10°	1	0	1	0
11°	1	0	1	1
12°	1	1	0	0
13°	1	1	0	1
14°	1	1	1	0
15°	1	1	1	1
16º (reciclagem)	0	0	0	0

□ Realiza a contagem de zero a nove → código BCD

Pulso de Clock	Q_3	Q_2	Q_1	Q_0	
Valor inicial	0	0	0	0	
1°	0	0	0	1	
2°	0	0	1	0	
3°	0	0	1	1	
4°	0	1	0	0	
5°	0	1	0	1	
6°	0	1	1	0	
7°	0	1	1	1	
8°	1	0	0	0	
9°	1	0	0	1	
10° (reciclagem)	0	0	0	0	

 No contador binário de 4 bits o 10º pulso de clock retornaria 1010 (10 em decimal)

- Utilizamos um contador binário assíncrono de 4 bits
- O contador é resetado quando chega ao valor 1010

Como resetar quando chegar a 1010?

- Utilizamos um contador binário assíncrono de 4 bits
- O contador é resetado quando chega ao valor 1010

Como resetar quando chegar a 1010?

→ Utilizar CLEAR

CONTADOR 0 até N

□ EXEMPLO → 0 até 8

Pulso de Clock	Q_3	Q_2	Q_1	Q_0	
Valor inicial	0	0	0	0	
1°	0	0	0	1	
2°	0	0	1	0	
3°	0	0	1	1	
4°	0	1	0	0	
5°	0	1	0	1	
6°	0	1	1	0	
7°	0	1	1	1	
8°	1	0	0	0	
9º (reciclagem)	0	0	0	0	/

 No contador binário de 4 bits o 9º pulso de clock retornaria 1001 (9 em decimal)

CONTADOR 0 até 8

Exemplo

CONTADOR DE 4 A 9

Pulso de Clock	Q_3	Q_2	Q_1	Q_0	
Valor inicial	0	1	0	0	
1°	0	1	0	1	
2°	0	1	1	0	
3°	0	1	1	1	
4º	1	0	0	0	
5°	1	0	0	1	
6º (reciclagem)	0	1	0	0	

COMO IMPLEMENTAR ESSE CONTADOR?

EXEMPLO: CONTADOR DE 4 A 9

EXEMPLO: CONTADOR DE 4 A 9

CONTADOR CRESCENTE DE X A Y

ALTERNATIVA 1

Utilizar as saídas negadas dos FF $\rightarrow \overline{q}$

ALTERNATIVA 1

■ Exemplo → Contador assíncrono binário de 2 bits

- □ Exemplo → Contador assíncrono binário de 2 bits
- Tabela Verdade :

Pulso de Clock	Q_1	Q_0	
Valor inicial	1	1	
1°	1	0	
2°	0	1	
3°	0	0	
4º (reciclagem)	1	1	

ALTERNATIVA 2

- Conectar a saída Q de cada flip-flop na entrada de clock do flip-flop seguinte
- RESET é conectado nos sinais de PRESET
- CLEAR fica desabilitado (CLEAR = 0)

ALTERNATIVA 2

■ Exemplo → Contador assíncrono binário de 2 bits

Exemplo : Contador de palavras de 2 bits

Exemplo : Contador de palavras de 2 bits

Exemplo : Contador de palavras de 2 bits

CONTADOR DECRESCENTE X ATÉ Y

Exemplo

CONTADOR DE 15 A 8

Pulso de Clock	Q_3	Q_2	Q_1	Q_0	
Valor inicial	1	1	1	1	
1º	1	1	1	0]
2°	1	1	0	1	
3°	1	1	0	0	
4º	1	0	1	1	
5°	1	0	1	0	
6°	1	0	0	1	
7°	1	0	0	0	
7º (reciclagem)	1	1	1	1	

COMO IMPLEMENTAR ESSE CONTADOR?

EXEMPLO: CONTADOR DE 15 A 8

Exemplo

CONTADOR DE 10 A 3

Pulso de Clock	Q_3	Q_2	Q_1	Q_0	
Valor inicial	1	0	1	0	
1°	1	0	0	1	
2°	1	0	0	0	
3°	0	1	1	1	
4º	0	1	1	0	
5°	0	1	0	1	
6°	0	1	0	0	
7°	0	0	1	1	
7º (reciclagem)	1	0	1	0	

COMO IMPLEMENTAR ESSE CONTADOR?

EXEMPLO: CONTADOR DE 10 A 3

EXEMPLO: CONTADOR DE 10 A 3

CONTADORES ASSÍNCRONOS

CRESCENTE

DECRESENTE

CONTADORES ASSÍNCRONOS

- O controle da contagem é feito pela entrada de seleção S do MUX:
 - **S** = **0** → a contagem é crescente
 - S = 1 → a contagem é decrescente

Utilizando FF T ativo por borda de descida

CRESCENTE

DECRESCENTE

