Neighborhoods Similarity between NYC and Chicago

Wansu Zhan 11/25/2018

Contents

Introduction	3
Data Description	3
Methodology	5
Neighborhood Exploration	5
Venues Exploration	6
Clustering	
Results	7
Using All Neighborhoods	7
Using Downtown Neighborhoods Only	8
Discussion	14
Conclusion	14
Appendix	15

Introduction

Chicago based firms, such as the one I am working for, are constantly hiring talents from all over the country. One common question they are asked by candidates graduated from universities that are based in New York, or are near New York (such as Columbia University, New York University, Cornell University, etc.), is that how Chicago is compared to New York. Those students, who get themselves quite familiar to the New York City and its lifestyle, want to know if they can fit well in Chicago. This project tries to answer such question from the neighborhood similarity perspective. We would like to utilize cluster analysis to help us determine (1) whether there are similarity at all between New York and Chicago neighborhoods (2) If there is, which neighborhoods between New York City and Chicago are similar to each other.

The report may be interesting to people who are considering moving from New York to Chicago, or the other way around. It would also help Chicago and New York based firms answer candidates' question regarding the similarity between the two cities.

Data Description

There are mainly two types of data that are used in this project.

- (1) The neighborhoods and their coordinates of New York City and Chicago.
 - For New York, the data is got from the Week3 Lab of the Coursera Course "Applied data Science Capstone".
 - For Chicago, we first use python to scrape the neighborhoods of Chicago from Wikipedia "https://en.wikipedia.org/wiki/List of neighborhoods in Chicago". Then we got the coordinates of each neighborhood from the combination of below two approaches
 - i. Use python to scrape the coordinates of each Chicago neighborhood from the Google Search link. For example, to look up the coordinates of the Neighborhood "Printer's Row", whose Community Area is "The Loop", we would use python to scrape the link https://www.google.com/search?ei=GTT3W6 kKY vjwTlg66oDQ&q=Printer%27s+ Row+The+Loop+chicago+coordinates. Generally, we would use the link https://www.google.com/search?ei=GTT3W6 kKY vjwTlg66oDQ&q={%s}+{%s} +chicago+coordinates, where the first "%s" would be replaced by the name of the neighborhood, and the second "%s" would be replaced by the name of the Community Area/Borough.
 - ♦ Note that we tried to use the package Nominatim of geopy as well, however it fails to get results for a lot of cases. Therefore, we switched to use the google search method.
 - ii. Manual correction. Most of the results got from above approach are correct. However, there are a few wrong coordinates that need to be manually corrected

- The total number of distinct neighborhoods we have for New York City is 302, while the total number of distinct neighborhoods we have for Chicago is 119.
- Below shows examples of neighborhoods data of New York and Chicago with their coordinates.

- (2) The venues for each neighborhood. This data is acquired from Foursquare API by using the "explore" functionality.
 - Foursquare is a technology company that built a massive dataset of location data. They crowd-sourced their data and had people use their app to build their dataset and add venues and complete any missing information they had in their dataset. Currently its location data is the most comprehensive out there, and quite accurate that it powers location data for many popular services like Apple Maps, Uber, Snapchat, Twitter and many others, and is currently being used by over 100,000 developers, and this number is only growing.
 - For our purpose, we use Foursquare API to grab nearby venues that are within 1 km of each neighborhood. The returned venue information include venue's coordinate, name, venue category, etc.
 - We can further determine the popular venue categories for each neighborhood, and utilize this data for our cluster analysis. The methodology session below will discuss detailed description of the approach.
 - Below shows examples of venue data returned by Foursquare API for each neighborhood, combined with Neighborhood coordinates, Borough and City information.

Methodology

Neighborhood Exploration

We first explore the neighborhood data we have by visualizing graphically for each neighborhood of New York and Chicago as below.

New York City

The graph on the left shows the neighborhood/Borough names of New York Manhattan¹, while the graph on the right shows the coordinates of each New York Neighborhood we choose to perform analysis for in this project.

Chicago

The graph on the left shows the neighborhood/Borough names of Chicago², while the graph on the right shows the coordinates of each Chicago Neighborhood we choose to perform analysis for in this project.

See https://www.pinterest.com/pin/302233824963969541/
See https://sk.wikipedia.org/wiki/S%C3%BAbor:Chicago community areas map.svg

Venues Exploration

For each neighborhood, we use Foursquare API to get the names and categories of the venues that are within 1km of the neighborhood coordinates. There are 462 and 355 unique venue categories for New York and Chicago respectively and 501 unique venue categories in total for both of them.

At this point, we combined New York and Chicago venues data, and used One-Hot-Encoding for all the venue categories. After this, we got a dataframe with each venue category being a column, and each venue of a neighborhood being a row entry. The value of the dataframe would be either 0 or 1, indicating whether the venue belongs to the venue category within 1km. We then aggregate the dataframe by Neighborhood, and calculate the mean of the Venue Categories, so that we get the portion of each venue category for each neighborhood. This will prepare us for performing clustering later.

In addition, we also get the top 10 common venue categories for each neighborhood for further cluster results examination. The data looks like below

Clustering

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). It is a main task of exploratory data mining, and a common technique for statistical data analysis, used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, bioinformatics, data compression, and computer graphics³. Clustering is suitable for our problem here, as it can help us to understand the similarity between neighborhoods by determining which neighborhoods belong to the same clusters.

One of the simplest models among clustering approaches is K means. In this project, we will use K means to perform cluster analysis. The feature we choose to use is the portion of each venue category for each neighborhood, as calculated in previous section.

We will first perform cluster analysis for all neighborhoods of New York and Chicago. Then we will perform cluster analysis for only the downtown area of New York and Chicago. Here for New York, a neighborhood belongs to "downtown" if its borough is Manhattan; while for Chicago, a neighborhood belongs to "downtown" if its borough is The Loop, Near North Side, Near South Side, or Near West Side⁴.

Results

Using All Neighborhoods

Using 5 clusters, below graphs show the clustering results for all neighborhoods of New York and Chicago neighborhoods, with each color representing a different cluster. New York is on the left while Chicago is on the right.

³ See https://en.wikipedia.org/wiki/Cluster_analysis

⁴ The east side of Chicago Loop is the Michigan Lake [©]

As shown from the graph, we see that there are indeed similarities between New York and Chicago neighborhoods, from the perspective of nearby venues. For example, as one might have guessed, Manhattan area is very similar to Chicago downtown area, as indicated by blue dots in the graphs. In addition, some New York neighborhoods in Bronx, Staten Island, Brooklyn and Queens are similar to neighborhoods in Chicago suburbs in the south and west, indicating by red dots and green dots. We also found that some neighborhoods in Staten Island at New York is not similar to any Chicago neighborhoods, as indicated by purple dots. Please see Appendix for more information of the cluster results. We also vary the number of clusters used, and the main results will not change much.

Using Downtown Neighborhoods Only

We then performed a similar but more detailed analysis to only downtown area for both cities, with the attempt to further classify these areas. Note that there are 40 New York neighborhoods and 22 Chicago neighborhoods belong to the downtown area we defined.

The clustered results using 5 clusters are as below, with New York on the left and Chicago on the right.

Below table summarizes the proportion of clusters that each Borough belong to for New York/Chicago downtown area, with color of each cluster corresponding to the color shown in the map.

Borough	City	#Neighborhoods	1	2	3	4	5
Manhattan	NYC	40	0.10	0.35	0.23	0.30	0.03
Near North Side	CHI	8	0.13	0.38	0.50	_	_
Near South Side	CHI	3	_	_	1.00	_	_
Near West Side	CHI	7	0.43	-	0.14	0.14	0.29
The Loop	CHI	4	_	_	1.00	_	_

Now let's examine each cluster further.

Cluster1 (red dots)

There are 8 neighborhoods in total belong to this cluster, as listed below.

- New York
 - Flatiron, Gramercy, Midtown South, Murray Hill
- Chicago
 - Fulton River District, Greektown, River North, West Loop

Below table shows the top 10 common venues for neighborhoods that belong to this cluster:

The venues that appear in the top 10 categories by frequency for this cluster are displayed as below, where venues like Italian Restaurant, Coffee Shop, New American Resaurant, Gym etc. show up.

[162]:		Counts	VenueCategory
	35	6	Italian Restaurant
	34	6	Coffee Shop
	33	5	New American Restaurant
	32	5	Gym
	31	4	Sandwich Place
	30	4	Pizza Place
	29	4	Bar
	26	3	Gym / Fitness Center
	25	3	American Restaurant
	28	3	Restaurant
	27	3	Mexican Restaurant
	19	2	Hotel
	24	2	Spa
	23	2	Park
	22	2	Mediterranean Restaurant
	21	2	Korean Restaurant
	20	2	Japanese Restaurant
	18	2	Grocery Store

Cluster2 (purple dots)

One can see from the graph that New York neighborhoods in lower Manhattan, such as Soho and Little Italy, as well as some neighborhoods in the middle of Manhattan, such as Lincoln Square and Upper East Side, are similar to Chicago neighborhoods in the near north, such as Magnificent Mile and Gold Coast, and they all belong to this purple cluster.

Below table shows the top 10 common venues for neighborhoods that belong to this cluster:

The venues that appear in the top 10 categories by frequency for this cluster are displayed as below, where venues like Italian Restaurant, Coffee Shop, American Resaurant, as well as Hotel, Gym, Men's Store etc. show up.

[151]:	df_v	renues1.so	rt_values('Counts', ascending=False)
[151]:		Counts	VenueCategory	
	52	15	Italian Restaurant	
	51	15	Coffee Shop	
	50	11	American Restaurant	
	49	8	French Restaurant	
	48	8	Bakery	
	47	7	Pizza Place	
	46	7	Hotel	
	45	6	Café	
	44	5	Gym / Fitness Center	
	43	5	Cocktail Bar	
	38	4	Men's Store	
	35	4	Chinese Restaurant	
	36	4	Gym	
	37	4	Ice Cream Shop	
	40	4	Shoe Store	
	39	4	Seafood Restaurant	
	41	4	Steakhouse	

Full list of the 17 neighborhoods belong to this cluster are as below:

- New York
 - Chelsea, Chinatown, Civic Center, Greenwich Village, Lenox Hill, Lincoln Square, Little Italy, Lower East Side, Noho, Soho, Sutton Place, Tribeca, Upper East Side, West Village
- Chicago
 - Gold Coast, Magnificent Mile, Near North Side

Cluster3 (blue dots)

There are 21 neighborhoods in total belong to this cluster, as listed below.

- New York
 - Battery Park City, Carnegie Hill, Central Harlem, Clinton, Financial District, Hudson Yards, Midtown, Tudor City, Turtle Bay
- Chicago
 - Cabrini-Green, Dearborn Park, Goose Island, Museum Campus, Near East Side, Near West Side, Old Town, Prairie Avenue Historic District, Printer's Row, South Loop, Streeterville, The Loop

Note that all neighborhoods of the two Chicago Boroughs, "Near South Side" and "The Loop",

belong to this cluster.

Below table shows the top 10 common venues for neighborhoods that belong to this cluster:

The venues that appear in the top 10 categories by frequency for this cluster are displayed as below, where venues like Coffee Shop, American Resaurant, Hotel, Pizza Place, Park etc. show up.

	Counts	VenueCategory
68	18	Coffee Shop
67	12	American Restaurant
66	11	Hotel
65	10	Pizza Place
64	10	Park
63	9	Gym / Fitness Center
62	8	Italian Restaurant
60	7	Gym
59	7	Burger Joint
61	7	Theater
58	6	Café
57	6	Bar
56	5	Grocery Store
55	5	Bakery
51	4	Seafood Restaurant
49	4	Breakfast Spot

Cluster4 (green dots)

There are 13 neighborhoods in total belong to this cluster, as listed below.

- New York
 - East Harlem, East Village, Hamilton Heights, Inwood, Manhattan Valley, Manhattanville, Morningside Heights, Roosevelt Island, Stuyvesant Town, Upper West Side, Washington Heights, Yorkville
- Chicago
 - Little Italy/University Village

Below table shows the top 10 common venues for neighborhoods that belong to this cluster:

The venues that appear in the top 10 categories by frequency for this cluster are displayed as below, where venues like Park, Pizza Place, Mexican Restaurant, Coffee Shop, Bar etc. show up.

	Counts	VenueCategory
44	10	Park
43	9	Pizza Place
42	9	Mexican Restaurant
41	9	Coffee Shop
40	9	Bar
39	8	Italian Restaurant
38	7	Café
37	5	Ice Cream Shop
36	5	Bakery
35	5	American Restaurant
33	4	Chinese Restaurant
34	4	Deli / Bodega
32	3	Wine Bar
31	3	Thai Restaurant
30	3	Seafood Restaurant
29	3	Latin American Restaurant
28	3	Cocktail Bar
27	2	Grocery Store

Cluster5 (orange dots)

There are only 3 neighborhoods in total belong to this cluster, as listed below.

- New York
 - Marble Hill
- Chicago
 - Illinois Medical District, Tri-Taylor

Below table shows the top 10 common venues for neighborhoods that belong to this cluster:

The venues that appear in the top 10 categories by frequency for this cluster are displayed as

below, where venues like Pizza Place, Sandwich Place, Park etc. show up.

	Counts	VenueCategory
22	3	Pizza Place
21	2	Sandwich Place
20	2	Park
19	2	Mexican Restaurant
18	2	Hot Dog Joint
17	2	Café
12	1	Spanish Restaurant
16	1	Train Station
15	1	Thai Restaurant
14	1	Supermarket
13	1	Sports Bar
0	1	Bar
1	1	Bike Rental / Bike Share

Discussion

From the clustering results, we can see that when using all neighborhoods data, we see that Manhattan area is very similar to Chicago downtown area. In addition, some New York neighborhoods in Bronx, Staten Island, Brooklyn and Queens are similar to neighborhoods in Chicago suburbs in the south and west. That being said, some New York neighborhoods, such as those in Staten Island, are not similar to any Chicago neighborhoods.

When using only downtown area data, we further understand the similarity between New York and Chicago neighborhoods. For example, New York neighborhoods in lower Manhattan, such as Soho and Little Italy, as well as some neighborhoods in the middle of Manhattan, such as Lincoln Square and Upper East Side, are similar to Chicago neighborhoods in the near north, such as Magnificent Mile and Gold Coast.

Note that the similarity in this analysis is all based on the proportion of nearby venues categories. If one has more time, we can further investigate the similarity between neighborhoods of the two cities from different angles. Using similar venue dataset, we can explore similarity using convenience score, or focusing on specific venues, like restaurants. Using different dataset, we can explore similarity of neighborhoods from other perspectives, such as weather, relative house prices, lifestyle of people, etc.

Conclusion

In this paper, we use K means to perform cluster analysis to help us understand the similarity of neighborhoods of New York and Chicago. The data shows that there are indeed similarities among neighborhoods of these two cities. When using all neighborhoods data, one can see that Manhattan is very similar to Chicago downtown area. In addition, some New York neighborhoods in Bronx, Staten Island, Brooklyn and Queens are similar to neighborhoods in Chicago suburbs in

the south and west. That being said, some New York neighborhoods, such as those in Staten Island, are not similar to any Chicago neighborhoods.

When using only downtown area data, we further identified the similarity between New York and Chicago neighborhoods. For example, New York neighborhoods in lower Manhattan, such as Soho and Little Italy, as well as some neighborhoods in the middle of Manhattan, such as Lincoln Square and Upper East Side, are similar to Chicago neighborhoods in the near north, such as Magnificent Mile and Gold Coast.

The paper should help interested readers to understand the neighborhood similarity between New York and Chicago from nearby venue categories perspective. Given more time, one can further explore the similarities from different perspectives, as mentioned in the Discussion section above.

Appendix

Below table shows the proportion of cluster each Borough of New York and Chicago belongs to. There are 70 boroughs in total for both cities. The columns 1 to 5 below represent the 5 clusters, and the colors correspond to the colors used in the map.

Borough	City	#Neighborhoods	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>
Albany Park	CHI	1	1.00	_	_	_	_
Archer Heights	CHI	1	_	_	_	1.00	_
Armour Square	CHI	3	0.67	_	0.33	_	_
Ashburn	CHI	1	_	_	_	1.00	_
Auburn Gresham	CHI	1	_	_	_	1.00	_
Austin	CHI	4	0.50	_	_	0.50	_
Austin, Humboldt Park	CHI	1	_	_	_	1.00	_
Avalon Park	CHI	1	_	_	_	1.00	_
Avondale	CHI	1	1.00	_	_	-	_
Belmont Cragin	CHI	1	1.00	_	_	-	_
Beverly	CHI	1	1.00	_	_	_	_
Bridgeport	CHI	1	1.00	_	_	-	_
Brighton Park	CHI	1	_	_	_	1.00	_
Bronx	NYC	52	0.60	0.06	0.06	0.27	0.02
Brooklyn	NYC	69	0.39	0.01	0.36	0.22	0.01
Burnside	CHI	1	_	_	_	1.00	_
Calumet Heights	CHI	1	_	_	_	1.00	_
Chatham	CHI	1	_	_	_	1.00	_
Chicago Lawn	CHI	1	_	_	_	1.00	_
Clearing	CHI	1	_	_	1.00	_	_
Douglas	CHI	7	0.14	_	0.14	0.71	_
Dunning	CHI	1	1.00	_	_	-	_
East Garfield Park	CHI	1	_	_	_	1.00	_

East Side	CHI	1	1. 00	_	_	_	_
Edgewater	CHI	1	_	_	1. 00	_	_
Edison Park	CHI	1	_	_	1. 00	_	_
Englewood	CHI	1	_	_	-	1.00	_
Forest Glen	CHI	1	_	_	1. 00	-	_
Fuller Park	CHI	1	_	_	-	1.00	_
Gage Park	CHI	1	_	_	_	1. 00	_
Garfield Ridge	CHI	1	1. 00	_	_	-	_
Grand Boulevard	CHI	1	_	_	_	1.00	_
Greater Grand Crossing	CHI	1	_	_	_	1. 00	_
Hegewisch	СНІ	1	1. 00	_	_	-	_
Hermosa	CHI	1	1. 00	_	_	_	_
Humboldt Park	CHI	1	_	_	_	1.00	_
Hyde Park	CHI	2	_	_	1. 00	-	_
Irving Park	CHI	1	1.00	_	-	_	_
Jefferson Park	CHI	1	-	_	1. 00	_	_
Kenwood	CHI	1	_	_	-	1. 00	_
Lake View	CHI	1	_	_	1. 00	-	_
Lincoln Park	СНІ	2	_	_	1. 00	_	_
Lincoln Square	CHI	1	_	_	1. 00	_	_
Logan Square	СНІ	1	_	_	1. 00	_	_
Lower West Side	CHI	1	_	_	1. 00	_	_
Manhattan	NYC	40	0.03	_	0. 98	_	_
McKinley Park	CHI	1	-	_	-	1.00	_
Montclare	СНІ	1	_	_	_	1. 00	_
Morgan Park	СНІ	1	_	_	_	1. 00	_
Mount Greenwood	СНІ	1	1. 00	_	_	-	_
Near North Side	СНІ	8	_	_	1.00	_	_
Near South Side	СНІ	3	_	_	1. 00	_	_
Near West Side	CHI	7	0. 14	_	0. 71	0.14	_
New City	СНІ	1	_	_	_	1. 00	_
North Center	СНІ	1	_	_	1.00	_	_
North Lawndale	CHI	1	_	_	_	1.00	_
North Park	CHI	1	1.00	_	_	_	_
Norwood Park	CHI	2	0. 50	_	_	0.50	_
O'Hare	СНІ	1	1. 00	_	_	-	_
Oakland	CHI	1	-	_	_	_	1.00
Portage Park	CHI	1	1.00	_	_	_	
Pullman	CHI	1	-	_	_	1.00	_
Queens	NYC	81	0. 53	0.04	0. 17	0. 15	0. 11
Riverdale	CHI	1	-	-	-	_	1. 00
Rogers Park	CHI	2	_	_	1.00	_	_
Roseland	CHI	1	_	_	_	1.00	_
South Chicago	СНІ	1	1.00	_	_	_	_
202011 01110000	0.11	•	1. 50				

South Deering	CHI	1	_	_	_	_	1.00
Staten Island	NYC	63	0.51	0.37	0.02	0.05	0.06
The Loop	CHI	4	_	_	1.00	_	_

1.