APPENDIX A

"CLEAN" VERSION OF EACH PARAGRAPH/SECTION/CLAIM 37 C.F.R. § 1.121(b)(ii) AND (c)(i)

CLAIMS (with indication of amended or new):

(Amended) 8. The process as claimed in claim 1, where the metal is a noble metal, e.g. platinum, palladium, thodium and/or ruthenium.

(Amended) 9. The process as claimed in claim 1, where the metal is a base metal, in particular, copper and/or/nickel.

(Amended) 10. The process as claimed in claim 8, wherein the metal catalyst used is a monometal catalyst.

(Amended) 11. The process as claimed in claim 8, wherein the noble metal catalyst comprises platinum or a platinum alloy.

(Amended) 12. The process as claimed in claim-8, wherein the metal catalyst comprises at least two metals.

(Amended) 13. The process as claimed in claim 8, where the metal catalyst has at least one promoter metal.

(Amended) 14. The process as claimed in claim 1, wherein the nanoparticle-stabilizing polymer is added to the aqueous phase continuously or at suitable time intervals.

(Amended) 15. The process as claimed in claim 1, wherein the metal catalyst used is polymer-stabilized nanoparticles held in a membrane arrangement.

(Amended) 16. The process as claimed in claim 1, wherein the metal catalyst used is polymer-stabilized nanoparticles immobilized on a support material.

5

An arms and a second at a seco

00528203.1

(Amended) 18. The process as claimed in claim 1, where the products obtained during the oxidation are removed and obtained continuously from the reaction system by means of