SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY DA3304 APPLIED PROGRAMMING FOR DATA ANALYTICS PRACTICAL 2

Instructions:

Please read the instructions very carefully.

- 1. This is an **INDIVIDUAL WORK** unless specified otherwise. Students are not allowed to share their answers (actual coding) but are allowed to discuss with each other to solve the problems.
- 2. The tasks will be checked during the practical session itself therefore students will be assessed based on participation and their answers.
- 3. To start:
 - a. Create a new folder called **StudentID-P1**. Please change student id to your own personal ID and change the 1 to the correct practical number.
 - b. Create one .ipynb / .py file for each question with the naming convention question1.ipynb, question2.ipynb and so on.
 - c. The following information must be included in each file:
 - i. Student Name
 - ii. Student ID
 - iii. Module Code and Title
- 4. Please note that ALL FILE AND NAMING CONVENTIONS must be followed.
- 5. The GREEN coloured font in the sample output represents an input from the user.
- 6. The **BLUE** coloured font in the sample output represents a dynamic output.
- 7. Please note that the coloured fonts will vary on the values specified. In other words, they are just **SAMPLES** only.
- 8. All tasks must be completed within the session. Students are given enough time to complete the tasks listed.
- 9. Once completed, please create a zip file with the same name as your folder, and upload it to LMS before the end of the session. A submission link will be provided.
- 10. Students are encouraged to upload their work to their own GitHub account. Students are also encouraged to include the GitHub link in the submission.
- 11. Students are encouraged to ask questions during the practical if they encountered a problem.

Question 1:

Handling missing data on Class Grades Dataset:

a. Import class grades' csv and store data in DataFrames and provide a summary of the dataset

Sample Output:

Summary
Row count = 99
No.of Attributes = 6
Mean value of Final attributes = 70

Note: More information can be added to the summary such as highest and lowest value of each attribute.

Output all the rows:

Prefix	Assignment	Tutorial	Midterm	TakeHome	Final
5	57.14	34.09	64.38	51.48	52.5
8	95.05	105.49	67.5	99.07	68.33

Note: The title of attributes should be the index labels.

b. Identify missing values in the dataset

Sample Output:

Missing values in TakeHome = 2 missing values Missing values in Final= 1 missing value Total missing values = 3

Prefix	Assignment	Tutorial	Midterm	TakeHome	Final
7	72.85	86.85	60	na	56.11
8	63.4	86.21	63.12	72.78	na
6	90.74	89.64	61.25	90	na

c. Replace missing values with constant values

Sample Output:

Constant value use is: 60

Prefix	Assignment	Tutorial	Midterm	TakeHome	Final
7	72.85	86.85	60	60	56.11
8	63.4	86.21	63.12	72.78	60
6	90.74	89.64	61.25	90	60

Note: Constant value for each attribute can be different.

d. Replace missing values with mean, median and mode

Sample Output:

Mean value for TakeHome Attribute: 65

Mean value for Final Attribute: 60

Prefix	Assignment	Tutorial	Midterm	TakeHome	Final
7	72.85	86.85	60	65	56.11
8	63.4	86.21	63.12	72.78	60
6	90.74	89.64	61.25	90	60

Median value for TakeHome Attribute: 70

Median value for Final Attribute: 66

Prefix	Assignment	Tutorial	Midterm	TakeHome	Final
7	72.85	86.85	60	70	56.11
8	63.4	86.21	63.12	72.78	66
6	90.74	89.64	61.25	90	66

Mode value for TakeHome Attribute: 70

Mode value for Final Attribute: 70

Prefix	Assignment	Tutorial	Midterm	TakeHome	Final
7	72.85	86.85	60	70	56.11
8	63.4	86.21	63.12	72.78	70
6	90.74	89.64	61.25	90	70

Question 2:

Applying discretization and binning to Class Grades Dataset.

a. Create bins with the values of 20, 40, 60, 80, and 100. Only apply these bins on Final attribute.

Sample Output:

Prefix	Assignment	Tutorial	Midterm	TakeHome	Final	FinalR
5	57.14	34.09	64.38	51.48	52.5	60
8	95.05	105.49	67.5	99.07	68.33	60
8	95.9	99.99	95.62	105.56	102.22	100

Note: Add the bins to dataframe as new attribute

b. Add labels for each bin. The labels are as follows:

Bins	Labels
20	Ш
40	D
60	С
80	В
100	Α

Sample Output:

Prefix	Assignment	Tutorial	Midterm	TakeHome	Old_Final	Final	Labels
5	57.14	34.09	64.38	51.48	52.5	60	С
8	95.05	105.49	67.5	99.07	68.33	60	С
8	95.9	99.99	95.62	105.56	102.22	100	Α

Note: Add the labels to dataframe as new attribute.

Question 3 (Question 2 must be completed before proceeding):

Applying data transformation to Class Grades Dataset (Use data modified in Question 2).

a. Transform labels into new labels. The following table shows the new labels.

Labels	New_Labels
E	Fail
D	Pass
С	Merit
В	Merit
Α	Distinction

Sample Output:

Prefix	Assignment	Tutorial	Midterm	TakeHome	Final	Labels	NewLabels
5	57.14	34.09	64.38	51.48	60	С	Merit
8	95.05	105.49	67.5	99.07	60	С	Merit
8	95.9	99.99	95.62	105.56	100	Α	Distinction

Note: Add the labels to dataframe as new attribute.

b. Transform Assignment values into the range of 0 and 1.

Sample Output:

Prefix	Assignment
5	0.57
8	0.95
8	0.95

Hint: Divide assignment values with 100. Apply transform using map(lambda x: ...).

END OF FILE -