Optimization in Finance

Maximum Entropy Distribution of an Asset Inferrred from Option Prices

Bertrand Le Nezet

Numerical implementation steps

- 1. Option prices snap from Google Finance API
- 2. Data cleaning:
 - · Calculate mid from bid / ask
 - Keep only relevant option prices (put-call parity/liquidity)
- 3. Apply the Cross Entropy Minimization algorithm
- 4. Compute option prices from asset distribution
- 5. Convert option prices into Black-Scholes Implied Volatility

GOOG.OQ Option quotes

Google Inc (NASDAQ:GOOG)

GOOG 555.17 -3.61

View options by expiration Mar 27, 2015 ▼

Calls

Price Change Bid Ask Volume Open Int Strike Price Change Bid Ask Volume Open Int

Calls							Puts					
Price	Change	Bid	Ask	Volume	Open Int	Strike	Price	Change	Bid	Ask	Volume	Open Int
36.90	0.00	19.20	21.50	-	15	535.00	0.05	0.00	0.05	0.10	127	219
18.97	-1.93	16.60	18.80	2	17	537.50	0.11	+0.03	0.05	0.10	37	267
14.20	-13.34	14.50	16.30	10	35	540.00	0.12	-0.13	0.05	0.15	463	306
13.60	-3.45	12.20	13.90	2	73	542.50	0.16	+0.08	0.15	0.25	335	139
8.80	-6.50	9.80	11.60	13	108	545.00	0.30	-0.20	0.20	0.40	379	645
9.40	-6.40	7.60	9.30	5	72	547.50	0.51	-0.09	0.45	0.60	255	193
6.10	-6.00	5.50	6.90	220	161	550.00	1.00	0.00	0.85	1.00	687	385
5.00	-6.20	4.00	4.70	1649	339	552.50	1.69	+0.23	1.50	1.90	607	211
2.85	-3.65	2.60	3.10	975	142	555.00	2.65	+0.65	2.40	2.95	2406	573
1.70	-3.30	1.55	1.80	924	204	557.50	4.03	+1.02	3.30	4.30	417	877
0.90	-2.70	0.80	1.10	2165	872	560.00	5.70	+1.50	5.40	6.10	451	983
0.50	-2.00	0.50	0.60	872	1241	562.50	7.30	+2.01	7.40	8.30	211	809
0.35	-1.15	0.20	0.30	627	2160	565.00	11.25	+4.32	9.00	10.50	77	1106
0.10	-0.89	0.05	0.15	375	960	567.50	12.00	+3.00	11.40	12.90	31	2231
0.05	-0.55	0.05	0.10	716	1812	570.00	14.47	+3.47	13.80	15.40	72	1104
0.05	-0.35	0.05	0.10	471	1631	572.50	18.80	+5.10	16.30	17.80	8	984
0.02	-0.18	0.05	0.05	160	930	575.00	20.10	+6.80	18.80	20.50	12	110
0.05	-0.22	0.05	0.05	27	203	577.50	11.80	0.00	21.30	23.10	-	19

Volatility smile - Put-Call parity

$$C(t) + K \cdot B(t,T) = P(t) + S(t)$$

Cross Entropy Minimization algorithm

Minimize
$$S(p,q) = \int_{-\infty}^{\infty} p(x) \log \Big[rac{p(x)}{q(x)}\Big] dx$$

Subject to:

$$\int_0^\infty p(x)dx = 1$$

$$egin{array}{ll} \cdot & orall i=1,2, \ldots m \; \mathbb{E}[c_i(X)]=\int_0^\infty p(x) \; c_i(x) dx=ci \end{array}$$

- 1. A uniform distribution is used as a prior (non-informed prior)
- 2. Integrability constraint
- 3. The option prices used as constraints should be linearly independent
- 4. Forward is also used as a constraint
- 5. Choice of asset step for the discretisation / boundaries
- 6. The Lagrangian function is minimized using an optimization routine (Limited-memory Broyden-Fletcher-Goldfarb-Shanno)

GOOG.OQ Asset distribution (1m/2m/3m/6m)

Asset distribution with constant volatility (25%)

GOOG.OQ Volatility smile (from Asset distribution)

$$c(K) = D(T) \int_0^\infty p(x) \left(x - K\right)^+ dx$$

$$p(K) = D(T) \int_0^\infty p(x) \left(K - x\right)^+ dx$$

Volatility smile (from Quotes)

Conclusion

- 1. We have observed that assets distribution inferred from options prices are not log-normal (i.e. Volatility is not constant)
- 2. Principle of Minimum Cross-Entropy can be used to estimate the distribution of an asset without any assumption (non-parametric approach)
- 3. The algorithm is stable and fast
- 4. This method can be used to perform implied volatility interpolation/extrapolation from only few quotes

Appendix

Kullback-Leibler Relative entropy

- 1. In Information Theory, Shannon defines the entropy as a measure of unpredictability of information content
- 2. the KL relative entropy (or KL divergence) is a non-suymetric mesure of the difference between two probability distribution P and Q.

3.
$$D_{KL}(P\|Q)=\int_{-\infty}^{\infty}p(x)\lnrac{p(x)}{q(x)}\,dx$$

- 4. Properties:
- 5. KL is equal to zero if P and Q are identical
- 6. KL relative entropy is always positive

Calculation of Relative Entropy

Formulating the Optimization problem

We have one prior probability density function q(x)

We have m price constraints: $orall i=1,2,\ldots m\ d_i=D(T)\mathbb{E}_{\mathbb{Q}}[c_i(X_T)]$ where

- $\cdot \ D(T) = e^{-(r-q)T}$ represents the discount factor
- \cdot $c_i(X_t)$ denotes the ith option pay-off function at expiry dependent only on the asset value at expiry
- $\cdot \,\, d_i$ is the corresponding option price
- $\cdot r$ risk-free rate for T
- $\cdot \; q$ dividend yield

Formulating the Optimization problem (2)

Minimize
$$S(p,q) = \int_{-\infty}^{\infty} p(x) \log \left[rac{p(x)}{q(x)}
ight] dx$$

Subject to 2 constraints:

1.
$$\int_{0}^{\infty} p(x) dx = 1$$

2.
$$orall i=1,2,\ldots m \; \mathbb{E}[c_i(X)]=\int_0^\infty p(x) \; c_i(x) dx=ci$$

This is a standard constrained optimization problem which solved by using the method of Lagrange which transforms a problem in n variable and m constraints into an unconstrainted optimization with n+m variables.

Objective function

$$H(p) = -\int_0^\infty p(x) \log \Bigl[rac{p(x)}{q(x)}\Bigr] dx + (1+\lambda_0) \int_0^\infty p(x) dx + \sum_{i=1}^m \lambda_i \int_0^\infty p(x) \; c_i(x) dx$$

From standard calculus, we know that the minimum $\lambda^* = (\lambda_0^*, \dots, \lambda_M^*)$ is reached when:

- · the gradient (vector of derivatives) δH is equal to zero: $\delta H(\lambda^*)=\int_0^\infty \left[-\log\left[rac{p(x)}{q(x)}
 ight]+\lambda_0+\sum_{i=1}^m\lambda_i c_i(x)
 ight]\delta p(x)dx=0$ (necessary condition)
- · the hessian (matrix of second derivatives) is positive definite (sufficient condition)

Objective function solution

This leads immediately to the following explicit representation of the MED:

$$p(x)=rac{q(x)}{\mu}\expig(\sum_{i=1}^m\lambda_ic_i(x)ig)$$
, $\mu=\int_0^\infty q(x)\expig(\sum_{i=1}^m\lambda_ic_i(x)ig)dx$

Impact of constraints on MXED

