Tableau des liaisons parfaites Niveau intermédiaire

	Nom de la liaison	Schématisation spatiale et plane	Torseur cinématique	Torseur des actions mécaniques	DDL
Liaison à direction	Glissière de direction \vec{x}	\vec{x}	$\mathcal{V}(2/1) = {}_{p} \left\{ \begin{matrix} \vec{0} \\ v_{xP21}\vec{x} \end{matrix} \right.$	$\mathcal{F}(1 \to 2) = {}_{p} \left\{ \begin{matrix} Y_{12} \vec{y} + Z_{12} \vec{z} \\ L_{12} \vec{x} + M_{12} \vec{y} + N_{12} \vec{z} \end{matrix} \right.$	1
	Plane de normale \vec{z}	\vec{z}	$\text{V}(2/1) = {}_{p} \left\{ \begin{matrix} \omega_{z21} \vec{z} \\ v_{xP21} \vec{x} + v_{yP21} \vec{y} \end{matrix} \right.$	$\mathcal{F}(1 \to 2) = {}_{p} \left\{ \begin{matrix} Z_{12}\vec{z} \\ L_{12}\vec{x} + M_{12}\vec{y} \end{matrix} \right.$	3
Liaison à axe	Pivot d'axe (A, \vec{x})	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\text{U}(2/1) = {}_{A} \left\{ \begin{matrix} \omega_{x21} \vec{x} \\ \vec{0} \end{matrix} \right.$	$\mathcal{F}(1 \to 2) = {}_{A} \left\{ \begin{matrix} X_{12}\vec{x} + Y_{12}\vec{y} + Z_{12}\vec{z} \\ M_{12}\vec{y} + N_{12}\vec{z} \end{matrix} \right.$	1
	Hélicoïdale d'axe (A, \vec{x}) et de pas p	\vec{x} A \vec{x}	$ \text{ $\mathbb{O}(2/1)$} = \underset{A}{\left\{ \begin{array}{l} \omega_{x21}\vec{x} \\ v_{xA21}\vec{x} \end{array} \right. } $ $ \text{avec } v_{xA21} = \pm \frac{p}{2\pi} \omega_{x21} $	$\begin{split} \mathcal{F}(1 \to 2) &= \mathop{A} \begin{cases} X_{12} \vec{x} + Y_{12} \vec{y} + Z_{12} \vec{z} \\ L_{12} \vec{x} + M_{12} \vec{y} + N_{12} \vec{z} \end{cases} \\ avec L_{12} &= \mp \frac{p}{2\pi} X_{12} \end{split}$	1
	Pivot glissant d'axe (A, \vec{x})	$\vec{x} \vec{A} \vec{x}$	$\text{V}(2/1) = \underset{A}{\left\{ \begin{array}{l} \omega_{x21} \vec{x} \\ v_{xA21} \vec{x} \end{array} \right.}$	$\mathcal{F}(1 \to 2) = {}_{A} \left\{ \begin{matrix} Y_{12} \vec{y} + Z_{12} \vec{z} \\ M_{12} \vec{y} + N_{12} \vec{z} \end{matrix} \right.$	2
	Cylindre-plan d'axe (A, \vec{x}) et de normale \vec{z}	\vec{z} \vec{z} \vec{A} \vec{x}	$\mathcal{V}(2/1) = {}_{A} \begin{cases} \omega_{x21} \vec{x} + \omega_{z21} \vec{z} \\ v_{xA21} \vec{x} + v_{yA21} \vec{y} \end{cases}$	$\mathcal{F}(1 \to 2) = {}_{A} \left\{ \begin{matrix} Z_{12}\vec{z} \\ M_{12}\vec{y} \end{matrix} \right.$	4
Liaison à centre	Sphérique à doigt de centre C , d'axe (C, \vec{x}) et de normale \vec{y}	\vec{x} \vec{y}	$\mathcal{V}(2/1) = {C \begin{cases} \omega_{x21}\vec{x} + \omega_{y21}\vec{y} \\ \vec{0} \end{cases}}$	$\mathcal{F}(1 \to 2) = C \begin{cases} X_{12}\vec{x} + Y_{12}\vec{y} + Z_{12}\vec{z} \\ N_{12}\vec{z} \end{cases}$	2
	Sphérique de centre <i>C</i>	c		$\mathcal{F}(1 \to 2) = {}_{C} \left\{ \begin{matrix} X_{12}\vec{x} + Y_{12}\vec{y} + Z_{12}\vec{z} \\ \vec{0} \end{matrix} \right.$	3
	Sphère-cylindre de centre C et de direction \vec{x}	\vec{x}	$ \begin{array}{l} \mathbb{V}(2/1) = \\ c \begin{cases} \omega_{x21} \vec{x} + \omega_{y21} \vec{y} + \omega_{z21} \vec{z} \\ v_{xC21} \vec{x} \end{cases} $	$\mathcal{F}(1 \to 2) = c \begin{cases} Y_{12}\vec{y} + Z_{12}\vec{z} \\ \vec{0} \end{cases}$	4
	Sphère-plan de centre $\mathcal C$ et de normale $\vec z$	\vec{z}		$\mathcal{F}(1 \to 2) = {C \choose \vec{0}}^{Z_{12}\vec{z}}$	5

Tableau des liaisons parfaites Niveau avancé

	Nom de la liaison	Schématisation spatiale et plane	Torseur cinématique	Torseur des actions mécaniques	DDL
Liaison à direction	Glissière de direction \vec{x}	\vec{x}	$\vec{V}_{2/1} = {}_{p} \left\{ \begin{matrix} \vec{0} \\ v_{x,P,2/1} \vec{x} \end{matrix} \right.$	$\vec{M}_{1\to 2} = p \left\{ \begin{aligned} Y_{1\to 2} \vec{y} + Z_{1\to 2} \vec{z} \\ L_{1\to 2} \vec{x} + M_{1\to 2} \vec{y} + N_{1\to 2} \vec{z} \end{aligned} \right.$	1
	Plane de normale \vec{z}	\vec{z}	$\vec{V}_{2/1} = P \begin{cases} \omega_{z,2/1} \vec{z} \\ v_{x,P,2/1} \vec{x} + v_{y,P,2/1} \vec{y} \end{cases}$	$\vec{M}_{1\to 2} = p \left\{ \begin{aligned} Z_{1\to 2} \vec{z} \\ L_{1\to 2} \vec{x} + M_{1\to 2} \vec{y} \end{aligned} \right.$	3
Liaison à axe	Pivot d'axe (A, \vec{x})	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec{V}_{2/1} = {A egin{array}{c} \{\omega_{x,2/1}ec{x} \ ec{0} \ \end{array}}$	$\vec{M}_{1\to 2} = {}_{A} \left\{ \begin{matrix} X_{1\to 2} \vec{x} + Y_{1\to 2} \vec{y} + Z_{1\to 2} \vec{z} \\ M_{1\to 2} \vec{y} + N_{1\to 2} \vec{z} \end{matrix} \right.$	1
	Hélicoïdale d'axe (A, \vec{x}) et de pas p	\vec{x} A \vec{x}	$\vec{V}_{2/1} = \frac{1}{A} \begin{cases} \omega_{x,2/1} \vec{x} \\ v_{x,A,2/1} \vec{x} \end{cases}$ avec $v_{x,A,2/1} = p\omega_{x,2/1}$ avec p positif pour un pas à droite	$\begin{split} \vec{M}_{1\rightarrow 2} &= \underset{A}{\underbrace{\begin{cases}X_{1\rightarrow 2}\vec{x} + Y_{1\rightarrow 2}\vec{y} + Z_{1\rightarrow 2}\vec{z}\\L_{1\rightarrow 2}\vec{x} + M_{1\rightarrow 2}\vec{y} + N_{1\rightarrow 2}\vec{z}\end{cases}}} \\ avec \ L_{1\rightarrow 2} &= -pX_{1\rightarrow 2} \\ avec \ p \ positif \ pour \ un \ pas \ à \ droite \end{split}}$	1
	Pivot glissant d'axe (A, \vec{x})	$\vec{x} = \vec{x}$	$\vec{V}_{2/1} = \frac{1}{A} \begin{cases} \omega_{x,2/1} \vec{x} \\ v_{x,A,2/1} \vec{x} \end{cases}$	$\vec{M}_{1\to 2} = {}_{A} \left\{ \begin{matrix} Y_{1\to 2} \vec{y} + Z_{1\to 2} \vec{z} \\ M_{1\to 2} \vec{y} + N_{1\to 2} \vec{z} \end{matrix} \right.$	2
	Cylindre-plan d'axe (A_2, \vec{x}_2) et de normale \vec{z}_1	\vec{z}_1 \vec{z}_1 \vec{z}_2 \vec{z}_1 \vec{z}_2 \vec{z}_1 \vec{z}_2 \vec{z}_3 \vec{z}_4 \vec{z}_5	$\vec{V}_{2/1} = {}_{A} \left\{ \begin{matrix} \omega_{x,2/1} \vec{x}_2 + \omega_{z,2/1} \vec{z}_1 \\ v_{x,A,2/1} \vec{x}_1 + v_{y,A,2/1} \vec{y}_1 \end{matrix} \right.$	$\vec{M}_{1\rightarrow 2} = {}_{A} \left\{ \begin{matrix} Z_{1\rightarrow 2} \vec{z}_1 \\ M_{1\rightarrow 2} \vec{z}_1 \wedge \vec{x}_2 \end{matrix} \right.$	4
Liaison à centre	Sphérique à doigt de centre \mathcal{C} , d'axe (\mathcal{C}, \vec{x}_2) et de normale \vec{y}_1	\vec{x}_2 \vec{y}_1	$\vec{V}_{2/1} = {C \choose C} \begin{cases} \omega_{x,2/1} \vec{x}_2 + \omega_{y,2/1} \vec{y}_1 \\ \vec{0} \end{cases}$	$\vec{M}_{1 \to 2} = C \begin{cases} X_{1 \to 2} \vec{x} + Y_{1 \to 2} \vec{y} + Z_{1 \to 2} \vec{z} \\ N_{1 \to 2} \vec{x}_2 \wedge \vec{y}_1 \end{cases}$	2
	Sphérique de centre <i>C</i>	c	$\vec{V}_{2/1} = {C \begin{cases} \omega_{x,2/1} \vec{x} + \omega_{y,2/1} \vec{y} + \omega_{z,2/1} \vec{z} \\ \vec{0} \end{cases}}$	$\vec{M}_{1\to 2} = {C} \begin{cases} X_{1\to 2} \vec{x} + Y_{1\to 2} \vec{y} + Z_{1\to 2} \vec{z} \\ \vec{0} \end{cases}$	3
	Sphère-cylindre de centre C_2 et de direction \vec{x}_1	\vec{x}_1 \vec{c} \vec{x}_1	$\vec{V}_{2/1} = \frac{1}{C} \begin{cases} \omega_{x,2/1} \vec{x} + \omega_{y,2/1} \vec{y} + \omega_{z,2/1} \vec{z} \\ v_{x,C,2/1} \vec{x}_1 \end{cases}$	$\vec{M}_{1\to 2} = {C \atop C} \begin{cases} Y_{1\to 2} \vec{y}_1 + Z_{1\to 2} \vec{z}_1 \\ \vec{0} \end{cases}$	4
	Sphère-plan de centre \mathcal{C}_2 et de normale \vec{z}_1	\vec{z}_1 \vec{z}_1 \vec{z}_1 \vec{c}	$\vec{V}_{2/1} = \frac{1}{C} \begin{cases} \omega_{x,2/1} \vec{x} + \omega_{y,2/1} \vec{y} + \omega_{z,2/1} \vec{z} \\ v_{x,C,2/1} \vec{x}_1 + v_{y,C,2/1} \vec{y}_1 \end{cases}$	$\vec{M}_{1\rightarrow 2} = {C \atop C} \begin{cases} Z_{1\rightarrow 2} \vec{z}_1 \\ \vec{0} \end{cases}$	5