Al 2002 Artificial Intelligence

Unsupervised Learning

Unsupervised Learning

- In unsupervised learning, the agent learns patterns in the input even though no explicit feedback is supplied.
- Unsupervised learning occurs when no classifications are given and the learner must discover categories and regularities in the data.
- The most general example of unsupervised learning task is clustering:
 - potentially useful clusters developed from the input examples.
- For example, a taxi agent might gradually develop a concept of "good traffic days" and "bad traffic days".

Clustering

K-means Clustering

- K-means is a partitioning clustering algorithm
- ▶ Let the set of data points (or instances) *D* be

$$\{x_1, x_2, ..., x_n\},\$$

where

- $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{ir})$ is a vector in a real-valued space $X \subseteq R^r$, and
- r is the number of attributes (dimensions) in the data.
- ▶ The k-means algorithm partitions the given data into k clusters.
 - Each cluster has a cluster center, called centroid.
 - *k* is specified by the user

K-means Clustering

Basic Algorithm:

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Stopping/Convergence Criterion

- No (or minimum) re-assignments of data points to different clusters,
- 2. No (or minimum) change of centroids, or
- 3. Minimum decrease in the sum of squared error (SSE),

$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$

° C_j is the j^{th} cluster, \mathbf{m}_j is the centroid of cluster C_j (the mean vector of all the data points in C_j), and $dist(\mathbf{x}, \mathbf{m}_j)$ is the distance between data point \mathbf{x} and centroid \mathbf{m}_j .

K-means Clustering--- Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'

K-means Clustering Example

K-means Clustering

k = 3

- Initialize
 - pick k cluster centers arbitrary
 - assign each example to closest center

compute sample means for each cluster

reassign all samples to the closest mean

4. if clusters changed at step 3, go to step 2

K-means Clustering

- Pre-processing
 - Normalize the data
 - Eliminate outliers
- Post-processing
 - Eliminate small clusters that may represent outliers
 - Split 'loose' clusters, i.e., clusters with relatively high SSE
 - Merge clusters that are 'close' and that have relatively low SSE

Distance Function

- Most commonly used functions are
 - Euclidean distance and
 - Manhattan (city block) distance
- We denote distance with: $dist(\mathbf{x}_i, \mathbf{x}_j)$, where \mathbf{x}_i and \mathbf{x}_j are data points (vectors)
- They are special cases of Minkowski distance. q is positive integer.

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + \dots + |x_{ip} - x_{jp}|^q}$$

$$\downarrow_{\text{1st dimension}} + |x_{i2} - x_{j2}|^q + \dots + |x_{ip} - x_{jp}|^q$$

Distance (dissimilarity) Measures

Euclidean distance

$$d(x_i, x_j) = \sqrt{\sum_{k=1}^{d} (x_i^{(k)} - x_j^{(k)})^2}$$

translation invariant

Manhattan (city block) distance

$$d(x_{i}, x_{j}) = \sum_{k=1}^{d} |x_{i}^{(k)} - x_{j}^{(k)}|$$

 approximation to Euclidean distance, cheaper to compute

Chebyshev distance

$$d(x_i, x_j) = \max_{1 \le k \le d} |x_i^{(k)} - x_j^{(k)}|$$

 approximation to Euclidean distance, cheapest to compute

K-means Clustering

Time complexity for K-means clustering is

$$O(n \times K \times I \times d)$$

- n = number of points,
- K = number of clusters,
- I = number of iterations,
- d = number of attributes
- The storage required is

$$O((n+K)d)$$

- n = number of points,
- K = number of clusters,
- d = number of attributes

The Value of K

 One way to select K for the K-means algorithm is to try different values of K, plot the K-means objective versus K, and look at the "elbow-point" in the plot

• For the above plot, K = 2 is the elbow point

The Value of K

Limitations in K-means Clustering

- K-means has problems when the data contains outliers
- The K-means algorithm is very sensitive to the initial seeds.

- K-means has problems when clusters are of different
 - Sizes
 - Densities
 - Non-globular shapes

K-means has problems when the data contains outliers

(A): Undesirable clusters

(B): Ideal clusters

The algorithm is sensitive to initial seeds

(A). Random selection of seeds (centroids)

(B). Iteration 1

(C). Iteration 2

The algorithm is sensitive to initial seeds

(A). Random selection of k seeds (centroids)

(C). Iteration 2

The *k*-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres).

(A): Two natural clusters

(B): k-means clusters

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data.

K-Medoids:

Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.

Find representative objects, called medoids, in the clusters

PAM (Partitioning Around Medoids, 1987)

- starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
- PAM works effectively for small data sets, but does not scale well for large data sets

Arbitrary choose k object as initial medoids

Assign each remaining object to nearest medoids

Randomly select a

K=2

Do loop

Until no change

 $\begin{array}{c} Swapping \ O \\ and \ O_{ramdom} \end{array}$

If quality is improved.

Total Cost = 26

Compute total cost of swapping

- Use real object to represent the cluster
 - 1. Select k representative objects arbitrarily
 - For each pair of non-selected object h and selected object
 i, calculate the total swapping cost TC_{ih}
 - 3. For each pair of i and h,
 - If $TC_{ih} < 0$, \boldsymbol{i} is replaced by \boldsymbol{h}
 - Then assign each non-selected object to the most similar representative object
 - 4. repeat steps 2-3 until there is no change

Data Objects

	A ₁	A_2
01	2	6
02	3	4
O_3	3	8
O_4	4	7
O_5	6	2
O_6	6	4
07	7	3
08	7	4
O_9	8	5
O ₁₀	7	6

Goal: create two clusters

Choose randmly two medoids

$$O_2 = (3,4)$$

 $O_8 = (7,4)$

28

Data Objects

	A_1	A_2
01	2	6
02	3	4
O_3	3	8
O_4	4	7
O_5	6	2
O_6	6	4
O ₇	7	3
08	7	4
O_9	8	5
O ₁₀	7	6

- →Assign each object to the closest representative object
- →Using L1 Metric (Manhattan), we form the following clusters

Cluster1 =
$$\{O_1, O_2, O_3, O_4\}$$

Cluster2 =
$$\{O_5, O_6, O_7, O_8, O_9, O_{10}\}$$

Data Objects

	A_1	A_2
01	2	6
02	3	4
O_3	3	8
O_4	4	7
O ₅	6	2
O_6	6	4
O ₇	7	3
08	7	4
O _o	8	5

O₁₀

→Compute the absolute error criterion [for the set of Medoids (O2,O8)]

$$\begin{split} E = & \sum_{i=1}^{k} \sum_{p \in C_i} p - o_i \mid = \mid o_1 - o_2 \mid + \mid o_3 - o_2 \mid + \mid o_4 - o_2 \mid \\ & + \mid o_5 - o_8 \mid + \mid o_6 - o_8 \mid + \mid o_7 - o_8 \mid + \mid o_9 - o_8 \mid + \mid o_{10} - o_8 \mid \end{split}$$

Data Objects

	A ₁	A_2
01	2	6
02	3	4
O_3	3	8
O_4	4	7
O ₅	6	2
O_6	6	4
O ₇	7	3
O ₈	7	4
O_9	8	5

→The absolute error criterion [for the set of Medoids (O2,O8)]

$$E = (3+4+4)+(3+1+1+2+2) = 20$$

Data Objects

	A ₁	A_2
01	2	6
02	3	4
O_3	3	8
O_4	4	7
O_5	6	2
O_6	6	4
O ₇	7	3
O ₈	7	4
O_9	8	5

- →Choose a random object O₇
- →Swap O8 and O7
- →Compute the absolute error criterion [for the set of Medoids (O2,O7)]

$$E = (3+4+4)+(2+2+1+3+3)=22$$

Data Objects

	A_1	A_2
01	2	6
02	3	4
O_3	3	8
O_4	4	7
O ₅	6	2
O_6	6	4
O ₇	7	3
08	7	4
O_9	8	5
O ₁₀	7	6

→Compute the cost function

Absolute error [for O_2, O_7] – Absolute error $[O_2, O_8]$

$$S = 22 - 20$$

 $S>0 \Rightarrow it is a bad idea to replace <math>O_8$ by O_7

- PAM is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- PAM works efficiently for small data sets but does not scale well for large data sets.
- $O(k(n-k)^2)$ for each iteration
 - where n is # of data points,
 - k is # of clusters