Skewness Kurtosis

	sl_no	ssc_p	hsc_p	degree_p	etest_p	mba_p	salary
kurtosis	-1.2	-0.60751	0.086901	-0.09749	-1.08858	-0.470723	-0.239837
skew	0.0	-0.132649	0.162611	0.204164	0.282308	0.313576	0.8067

Skewness

ssc_p: -0.60751

Contains the negative values falls under the **Mean<Median<Mode** so it's (**Negative**)

hsc_p: 0.086901

Contains the positive values falls under the **Mean = Median = Mode** so it's **(Positive)**

degree_p:-0.09749

Contains the negative values falls under the **Mean<Median<Mode** so it's **(Negative)** etest_p:-1.08858

Contains the negative values falls under the **Mean<Median<Mode** so it's **(Negative)** mba_p:-0.470723

Contains the negative values falls under the **Mean<Median<Mode** so it's **(Negative)** salary:-0.239837

Contains the negative values falls under the **Mean<Median<Mode** so it's (**Negative**)

Kurtosis

ssc_p: -0.132649

Contains the negative values **falls under < 3** so it's (**Platykurtic**)

hsc_p: 0.162611

Contains the positive value **falls under = 3** so it's (**Mesokurtic**)

degree_p: 0.204164

Contains the positive value falls under = 3 so it's (Mesokurtic)

etest_p: 0.282308

Contains the positive value **falls under = 3** so it's (**Mesokurtic**)

mba_p: 0.313576

Contains the positive value falls under > 3 so it's (Leptokurtic)

salary: 0.8067

Contains the positive value **falls under > 3** so it's (**Leptokurtic**)