Solution of Digital Logic Theory Assignment 4

Edited from the submission of an anonymous brilliant student

1. Function Table:

S_1	S_0	D_3	D_2	D_1	D_0	Operation
0	0	Q_3	Q_2	Q_1	Q_0	No Change
0	1	Q_3'	Q_2'	Q_1'	Q_0'	Complement the four outputs
1	0	0	0	0	0	Clear register to 0
1	1	M_3	M_2	M_1	M_0	Load parallel data

Logic Diagram:

Assume data are passed as M_3 , M_2 , M_1 and M_0 , where M_3 is MSB.

2.

Because there are 7 possible states, and $7 \le 2^n - 1$ with n = 3, we start with 3 flip-flops.

\overline{Z}	Q_2	Q_1	Q_0
0	1	0	1
1	0	1	0
1	1	0	1
1	1	1	0
1	1	1	1
0	1	1	1
1	0	1	1

However, there are identical states with different outputs. We can add another flip-flop to make the circuit work.

Z	Q_3	Q_2	Q_1	Q_0
0	1	0	1	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0
0	1	1	1	1
1	0	1	1	1

Now there are no identical states with different outputs.

Karnaugh Maps:

$$Z = Q_0' + Q_1' + Q_3'$$

Logic Diagram:

3. State Table:

C	urren	t Sta	te	Next State				
$\overline{Q_3}$	Q_2	Q_1	Q_0	$\overline{Q_3^+}$	Q_2^+	Q_1^+	Q_0^+	
0	0	0	0	0	0	1	0	
0	0	0	1	0	0	1	0	
0	0	1	0	0	1	1	0	
0	0	1	1	0	0	1	0	
0	1	0	0	0	0	1	0	
0	1	0	1	0	0	1	0	
0	1	1	0	1	0	0	1	
0	1	1	1	0	0	1	0	
1	0	0	0	1	1	0	0	
1	0	0	1	1	0	0	0	
1	0	1	0	0	0	1	0	
1	0	1	1	0	0	1	0	
1	1	0	0	1	1	0	1	
1	1	0	1	0	0	1	0	
1	1	1	0	0	0	1	0	
_ 1	1	1	1	0	0	1	0	

Karnaugh Maps:

00	§ 00	01	11	10
00	0	0	0	0
01	0	0	0	1
11	1	0	0	0
10	1	1	0	0

00 00 00	§ 00	01	11	10
00	0	0	0	1
01	0	0	0	0
11	1	0	0	0
10	1	0	0	0

 D_3

Γ
1)

00 00 00	§ 00	01	11	10
00	0	0	0	0
01	0	0	0	1
11	1	0	0	0
10	0	0	0	0

 D_1

 D_0

$$\begin{split} D_3 = & Q_3 Q_1' Q_0' + Q_3 Q_2' Q_1' + Q_3' Q_2 Q_1 Q_0' \\ D_2 = & Q_3 Q_1' Q_0' + Q_3' Q_2' Q_1 Q_0' \\ D_1 = & Q_3' Q_2' + Q_3' Q_1' + Q_2 Q_0 + Q_3 Q_1 \\ D_0 = & Q_3 Q_2 Q_1' Q_0' + Q_3' Q_2 Q_1 Q_0' \end{split}$$

Logic Diagram:

4.

With Don't Cares

State Table with TFF Inputs:

Current State			Nε	ext Sta	ate	TFF Inputs		
$\overline{Q_2}$	Q_1	Q_0	$\overline{Q_2^+}$	Q_1^+	Q_0^+	$\overline{T_2}$	T_1	T_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	X	X	X	X	X	X
0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	0
1	0	1	X	X	X	X	X	X
1	1	0	1	0	0	0	1	0
1	1	1	1	1	0	0	0	1

Karnaugh Maps:

 T_2

 T_1

 T_0

$$T_2 = Q_2'Q_1 + Q_2Q_1'$$

$$T_1 = Q_1'Q_0 + Q_1Q_0'$$

$$T_0 = Q_2'Q_0' + Q_2Q_0$$

In this case, the actual state table is:

Cur	Current State			ext St	ate	TFF Inputs		
$\overline{Q_2}$	Q_1	Q_0	$\overline{Q_2^+}$	Q_1^+	Q_0^+	$\overline{T_2}$	T_1	T_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	1	0	1	1	1	1
0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	0
1	0	1	0	1	0	1	1	1
1	1	0	1	0	0	0	1	0
1	1	1	1	1	0	0	0	1

As shown in the state table, the states with don't cares form a loop. Thus, the counter may not work properly.

Unused States Redirection

To address the problem, we can redirect all unused states to valid states. For example, we can redirect 010 and 101 to 000 at next clock pulse. This is not the only correct answer, you can redirect unused states to any valid state as you want! State Table with TFF Inputs:

Current State			Ne	ext Sta	ate	TFF Inputs		
$\overline{Q_2}$	Q_1	Q_0	$\overline{Q_2^+}$	Q_1^+	Q_0^+	$\overline{T_2}$	T_1	$\overline{T_0}$
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	0	0	0	0	1	0
0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	0
1	0	1	0	0	0	1	0	1
1	1	0	1	0	0	0	1	0
1	1	1	1	1	0	0	0	1

Karnaugh Maps:

 T_2

 T_1

 T_0

$$T_2 = Q_2 Q_1' + Q_2' Q_1 Q_0$$

$$T_1 = Q_1 Q_0' + Q_2' Q_1' Q_0$$

$$T_0 = Q_2 Q_0 + Q_2' Q_1' Q_0'$$