Frederick Robinson Fall 2004

1 Let M be a connected smooth manifold. Construct the orientation cover M_0 .

- 1.1 Show that M_0 is a smooth manifold.
- 1.2 Show that M_0 is a 2:1 covering of M.
- 1.3 Show that M is orientable iff M_0 is the union of two disconnected components.
- 2 Let ω be a smooth nowhere vanishing 1-form on a smooth connected manifold M.
- 2.1 Show that $\ker \omega$ is a smooth codimension 1 distribution on M.
- 2.2 Show that $\ker \omega$ is integrable iff $d\omega$ vanishes on $\ker \omega$.
- 2.3 Find a codimension 1 distribution on \mathbb{R}^3 which is not integrable.
- 3 Show that $S^1 \times S^n$ is parallelizable, i.e., one can find (n+1) vector fields that are everywhere linearly independent. ($S^k \subset \mathbb{R}^{k+1}$ is the unit sphere.)
- 4 Let $\omega = \frac{-ydx + xdy}{(x^2 + y^2)^{\alpha}}$ and consider $\int_{\gamma} \omega$, where $\gamma : S^1 \to \mathbb{R}^2 \setminus \{0\}$.
- 4.1 For which α is $\int_{\gamma_0} \omega = \int_{\gamma_1} \omega$, whenever γ_0 and γ_1 are smoothly homotopic, i.e., there exists $F: S^1 \times [0,1] \to \mathbb{R}^2 \setminus \{0\}$ such that $\gamma_0(t) = F(t,0)$, $\gamma_1(t) = F(t,1)$?
- 4.2 What are the possible values for $\int_{\gamma} \omega$ when α is chosen as in part 4.1?
- 5 Show that a closed (compact without boundary) *n*-manifold cannot be immersed in \mathbb{R}^n .
- 6 Let \mathbb{C}^* be the set of all nonzero complex numbers with the induced topology from \mathbb{C} . It is a topological group with respect to the usual multiplication. Let f be a continuous homomorphism from \mathbb{C}^* to itself.
- **6.1** Find all possible $f|_{S^1}$, where $S^1 = \{z \mid |z| = 1, z \in \mathbb{C}^*\}$.
- 6.2 Classify such $f|_{S^1}$ up to homotopy.
- 7 Let $X_1 = S^1 \vee_{x_1 = x_2} S^2$ be the space obtained from the disjoint union of the circle S^1 and the S^2 by identifying a point $x_1 \in S^1$ with a point $x_2 \in S^2$. Define $X_2 = S^1 \vee_{x_1 = x_2} S^1$ similarly.
- **7.1** Find $\pi_1(X_1)$ and $\pi_1(X_2)$.
- 7.2 Find their universal coverings.
- 8 Let $f: S^2 \to T^2$ be a continuous map from 2-sphere to 2-torus T^2 . What is the induced map

$$f_*: H_*(S^2) \to H_*(T^2)$$

Frederick Robinson Fall 2004

on the homology groups?

9 Let X be a topological space, and define S(X) to be the quotient space of $X \times I$ by contracting $X \times \{0\}$ to a point and $X \times \{1\}$ to another point. Here I = [0, 1]. What is the relationship between $H_*(S(X))$ and $H_*(X)$?

- 10 Let K be a finite simplicial complex and K^n be the subcomplex consisting of all simplices in K of dimension less than or equal to n. Denote the underlying topological spaces of K and K^n by |K| and $|K^n|$.
- 10.1 What is the relative singular homology $H_*(|K|, |K^{n-1}|)$?
- 10.2 Write down the long exact sequence for the triple $(|K^n|, |K^{n-1}|, |K^{n-2}|)$, i.e., the long exact sequence relating the singular homology groups $H_*(|K^n|, |K^{n-1}|)$, $H_*(|K^{n-1}|, |K^{n-2}|)$ and $H_*(|K^n|, |K^{n-2}|)$.
- 10.3 Use 10.1 and 10.2 to show that singular homology of |K| is the same as the simplicial homology of |K|. (Hint: Identify the connecting boundary map in 10.2)