МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Вятский государственный университет» Факультет автоматики и вычислительной техники Кафедра ЭВМ

Отчёт Лабораторная работа № 1 по дисциплине «Организация памяти ЭВМ»

Вариант 4

Выполнил студент группы ИВТб-3301	/ Колесников Р.К./
Проверил преподаватель	/ Мельцов В. Ю./

1. Задание

1.1. Исследовать работу стеков типа LIFO и FIFO в режимах загрузки и чтения стека.

LIFO:

- Начальный адрес ячейки ОЗУ, с которой начинается стек, 4;
- Глубина стека 8;
- УС указывает на занятую ячейку с прединкрементом.

FIFO:

- Начальный адрес ячейки ОЗУ, с которой начинается стек, 3;
- Глубина стека 10;
- УС записи указывает на занятую ячейку с прединкрементом;
- УС чтения указывает на свободную ячейку с прединкрементом.
- 1.2. Составить подмикропрограммы операций загрузки данных в стек и извлечения из стека для заданного варианта.
- 1.3. Для каждого стека выполнить последовательность следующих операций:
 - Запись 4-х чисел;
 - Чтение 2-х чисел;
 - Запись 2-х чисел;
 - Чтение 3-х чисел;
 - Запись пока стек не будет полон;
 - Запись пока стек не будет пуст.

2. Cтек LIFO

2.1. Функциональная схема

Управляющие сигналы:

- CRI вход сигнала записи с MD в RgI по срезу сигнала синхронизации;
 - ~RD сигнал чтения данных из ОЗУ;
 - ~WR сигнал записи данных в ОЗУ;

- SP-, SP+ сигналы изменения указателя стека LIFO;
- у0 запись в SP и установка T1 в единицу;
- у1 сброс SP;
- у2 разрешение выдачи на шину из RgO.

Функциональная схема представлена на рисунке 1.

Рисунок 1 - Функциональная схема LIFO

2.2. Граф-схема алгоритма записи и чтения

Граф-схема алгоритмов записи в стек и чтения из стека представлены на рисунках 2 и 3.

Рисунок 2 - Запись в стек LIFO

Рисунок 3 - Чтение из стека LIFO

2.3. Текст микропрограммы

Текст микропрограммы представлен на рисунках 4-7.

02 00000010	1	1	1	1	0	RgDI:=010;SP++
03 00000000	0	1	0	0	0	Перезапись в стек

Рисунок 4 - Микропрограмма записи в стек LIFO

08 000000000	1	0	0	0	1			Считать; SP	

Рисунок 5 - Микропрограмма чтения из стека LIFO

Ν²	Данные	~WR	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментарии	
00	00000001	1	1	1	1	0						RgDI:=001;SP++	^
01	00000000	0	1	0	0	0						Перезапись в стек	
02	00000010	1	1	1	1	0						RgDI:=010;SP++	
03	00000000	0	1	0	0	0						Перезапись в стек	
04	00000011	1	1	1	1	0						RgDI:=011;SP++	
05	00000000	0	1	0	0	0						Перезапись в стек	
06	00000100	1	1	1	1	0						RgDI:=100;SP++	
07	00000000	0	1	0	0	0						Перезапись в стек	
08	00000000	1	0	0	0	1						Считать; SP	
09	00000000	1	0	0	0	1						Считать; SP	
0A	00000101	1	1	1	1	0						RgDI:=101;SP++	
0B	00000000	0	1	0	0	0						Перезапись в стек	
0C	00000110	1	1	1	1	0						RgDI:=110;SP++	
0D	00000000	0	1	0	0	0						Перезапись в стек	
0E	00000000	1	0	0	0	1						Считать; SP	
OF	00000000	1	0	0	0	1						Считать; SP	
10	00000000	1	0	0	0	1						Считать; SP	
11	00000001	1	1	1	1	0						RgDI:=001;SP++	
12	00000000	0	1	0	0	0						Перезапись в стек	
13	00000001	1	1	1	1	0						RgDI:=001;SP++	
14	00000000	0	1	0	0	0						Перезапись в стек	
15	00000001	1	1	1	1	0						RgDI:=001;SP++	
16	00000000	0	1	0	0	0						Перезапись в стек	
17	00000001	1	1	1	1	0						RgDI:=001;SP++	~

Рисунок 6 - Микропрограмма работы со стеком LIFO

Nº	Данные	~WR	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментарии	
18	00000000	0	1	0	0	0						Перезапись в стек	^
19	00000001	1	1	1	1	0						RgDI:=001;SP++	
1A	00000000	0	1	0	0	0						Перезапись в стек	
18	00000001	1	1	1	1	0						RgDI:=001;SP++	
10	00000000	0	1	0	0	0						Перезапись в стек	
1D	00000001	1	1	1	1	0						RgDI:=001;SP++	
1E	00000000	0	1	0	0	0						Перезапись в стек	
1F	00000000	1	0	0	0	1						Считать; SP	
20	00000000	1	0	0	0	1						Считать; SP	
21	00000000	1	0	0	0	1						Считать; SP	
22	00000000	1	0	0	0	1						Считать; SP	
23	00000000	1	0	0	0	1						Считать; SP	
24	00000000	1	0	0	0	1						Считать; SP	
25	00000000	1	0	0	0	1						Считать; SP	
26	00000000	1	0	0	0	1						Считать; SP	

Рисунок 7 - Микропрограмма работы со стеком LIFO

2.4. Экранные формы

Экранные формы микропрограммы представлены на рисунках 8 и 9.

Рисунок 8 - Стек LIFO полон

Рисунок 9 - Стек LIFO пуст

3. Стек FIFO

3.1. Функциональная схема

Управляющие сигналы:

CRI - вход сигнала записи с MD в RgI по срезу сигнала синхронизации;

~RD - сигнал чтения данных из ОЗУ;

~WR - сигнал записи данных в ОЗУ;

WR+, RD+ - сигналы изменения указателей стека FIFO;

у0 - запись в SPrd, SPwr, запись единицы в Т1;

y1 - сброс SPrd и SPwr;

у2 - разрешение на выдачу из RgO.

Функциональная схема представлен на рисунке 10.

Рисунок 10 - Функциональная схема стека FIFO

3.2. Граф-схема алгоритма записи и чтения

Граф-схема алгоритма записи и чтения представлены на рисунках 11 и 12.

Рисунок 11 - Запись в стек FIFO

Рисунок 12 - Чтение из стека FIFO

3.3. Текст микропрограммы

Текст микропрограммы представлен на рисунках 13-15.

06 00000100	1	1	1	1	0	RgDI:=100; SPwr++
07 00000000	0	1	0	0	0	Перезапись в стек

Рисунок 13 - Микропрограмма записи в стек FIFO

0A	00000000		1	1	0	0	1	SPrd++
0B	00000000		1	0	0	0	0	Считать из стека

Рисунок 14 - Микропрограмма чтения из стека FIFO

Nº	Данные	~WR	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментарии
00	00000001						1	1	1	1	0	RgDI:=001; SPwr++ ^
01	00000000						0	1	0	0	0	Перезапись в стек
02	00000010						1	1	1	1	0	RgDI:=010; SPwr++
03	00000000						0	1	0	0	0	Перезапись в стек
04	00000011						1	1	1	1	0	RgDI:=011; SPwr++
05	00000000						0	1	0	0	0	Перезапись в стек
06	00000100						1	1	1	1	0	RgDI:=100; SPwr++
07	00000000						0	1	0	0	0	Перезапись в стек
08	00000000						1	1	0	0	1	SPrd++
09	00000000						1	0	0	0	0	Считать из стека
0A	00000000						1	1	0	0	1	SPrd++
0B	00000000						1	0	0	0	0	Считать из стека
0C	00000101						1	1	1	1	0	RgDI:=101; SPwr++
0D	00000000						0	1	0	0	0	Перезапись в стек
0E	00000110						1	1	1	1	0	RgDI:=110; SPwr++
0F	00000000						0	1	0	0	0	Перезапись в стек
10	00000000						1	1	0	0	1	SPrd++
11	00000000						1	0	0	0	0	Считать из стека
12	00000000						1	1	0	0	1	SPrd++
13	00000000						1	0	0	0	0	Считать из стека
14	00000000						1	1	0	0	1	SPrd++
15	00000000						1	0	0	0	0	Считать из стека
16	00000001						1	1	1	1	0	RgDI:=001; SPwr++
17	00000000						0	1	0	0	0	Перезапись в стек 🗸

Nº	Данные	~WR	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментарии	
18	00000001						1	1	1	1	0	RgDI:=001; SPwr++	^
19	00000000						0	1	0	0	0	Перезапись в стек	
1A	00000001						1	1	1	1	0	RgDI:=001; SPwr++	
18	00000000						0	1	0	0	0	Перезапись в стек	
1C	00000001						1	1	1	1	0	RgDI:=001; SPwr++	
1D	00000000						0	1	0	0	0	Перезапись в стек	
1E	00000001						1	1	1	1	0	RgDI:=001; SPwr++	
1F	00000000						0	1	0	0	0	Перезапись в стек	
20	00000001						1	1	1	1	0	RgDI:=001; SPwr++	$ \square$
21	00000000						0	1	0	0	0	Перезапись в стек	
22	00000001						1	1	1	1	0	RgDI:=001; SPwr++	
23	00000000						0	1	0	0	0	Перезапись в стек	
24	00000001						1	1	1	1	0	RgDI:=001; SPwr++	
25	00000000						0	1	0	0	0	Перезапись в стек	
26	00000001						1	1	1	1	0	RgDI:=001; SPwr++	
27	00000000						0	1	0	0	0	Перезапись в стек	
28	00000000						1	1	0	0	1	SPrd++	
29	00000000						1	0	0	0	0	Считать из стека	
2A	00000000						1	1	0	0	1	SPrd++	
2B	00000000						1	0	0	0	0	Считать из стека	
2C	00000000						1	1	0	0	1	SPrd++	
2D	00000000						1	0	0	0	0	Считать из стека	
2E	00000000						1	1	0	0	1	SPrd++	
2F	00000000						1	0	0	0	0	Считать из стека	~

Рисунок 15 - Микропрограмма работы со стеком FIFO

3.4. Экранные формы

Рисунок 16 - Стек FIFO полон

Рисунок 17 - Стек FIFO пуст

Вывод: в процессе выполнения данной лабораторной работы были изучены основные принципы работы стеков LIFO и FIFO. Были разработаны микропрограммы для стеков LIFO и FIFO, которые включали в себя подмикропрограммы записи в стек и чтения из стека. Знания, полученные в процессе выполнения данной лабораторной работы, будут полезны в будущем.