统计中的计算方法 第三次作业

于慧倩 14300180118 2017 年 5 月 1 第一题

2

1 第一题

用两种方法产生以下分布,并进行数值试验:

$$PX = i = \frac{e^{-\lambda} \lambda^{i} / i!}{\sum_{j=0}^{k} e^{-\lambda} \lambda^{j} / j!}, i = 0, \dots, k$$

1.1 method 1: the inverse transform method

1.1.1 计算方法

生成在 [0,1] 均匀分布的随机数 U,继而生成:

$$X = \begin{cases} x_0 & \text{if } U < p_0 \\ x_1 & \text{if } p_0 \leq U < p_0 + p_1 \\ \dots & \dots \\ x_k & \text{if } \sum_{i=0}^{k-1} p_i \leq U < \sum_{i=0}^k p_i \end{cases}$$

通过下述方法生成 X

- 生成随机数 U
- 如果 $U < p_0$, $\diamondsuit X = x_0$, 停止。
- 否则,如果 $U < p_0 + p_1$, 令 $X = x_1$, 停止。
- ...
- 否则,如果 $U < \sum_{i=0}^{k-1}$, 令 $X = x_{k-1}$,停止。
- 否则, 令 $X = x_k$, 停止。

由于 $p_i=P\{x=i\}=e^{-\lambda}\frac{\lambda^i}{i!}/\sum_{j=0}^k e^{-\lambda}\frac{\lambda^j}{j!}$,我们有 $p_{i+1}=p_i\frac{\lambda}{i+1},i\geqslant 0$,所以实际上操作如下

- Step 1: 计算 $C = \sum_{i=0}^{k} e^{-\lambda} \frac{\lambda^{i}}{i!}$
- Step 2: 生成随机数 U
- Step 3: $i = 0, p = e^{-\lambda}/C, F = p$
- Step 4: 如果 $U \leq F$, 令 X = i, 停止
- Step 5: $i = i + 1; p = \lambda p/i; F = F + p;$
- Step 6: 重新回到 Step 4 继续判断

1 第一题 3

1.1.2 数值试验

取 $k=10, \lambda=5$ 为例进行数值试验,得到结果如下图所示。重复操作 20000 次得到长度为 20000 的分布如题干所示的随机数 X,且均值、方差 分别为 4.8859, 4.435303

1.2 method 2:the acceptance-rejection method

1.2.1 计算方法

取 Y 为平均分布,即其概率密度函数 $\{q_j=\frac{1}{k}\}, j\geqslant 0$,令 $c=\max(\frac{p_j}{q_j})$,计算可得 $c=\frac{k}{C}[\lambda-1]$ 。

通过下述方法生成 X

- Step 1: 生成随机数 U_1 , 令 $Y = [kU_1]$
- Step 2: 生成随机数 U₂
- Step 3: 如果 $U_2 \leq \frac{p_Y * k}{c}$, 令 X = Y, 停止。否则回到 Step 1.

1.2.2 数值试验

仍然取 $k = 10, \lambda = 5$ 为例进行数值试验,得到结果如下图所示。重复操作 10 万次得到长度为 24462 的分布如题干所示的随机数 X,且均值、方

2 第二题 4

差分别为 4.816205, 4.03032。并且 $\frac{1}{c}=0.02465762$,实际有效操作比例为 0.024462

Histogram of X

2 第二题

给出模拟下述分布的方法,并进行数值试验:

$$p_j = \begin{cases} 0.11 & \text{j is odd , and } 5 \leqslant j \leqslant 13\\ 0.09 & \text{j is even, and } 6 \leqslant j \leqslant 14 \end{cases}$$

2.1 method 1:the inverse transform method

2.1.1 计算方法

通过下述方法生成 X

- Step 1: 生成随机数 *U*
- Step 2: p = 0.11, 令 $x = x_0 = 5$, 如果 U < p, 令 X = x, 停止。
- Step 3: 否则, p = p + 0.09, x = x + 1, 如果 U < p, 令 X = x, 停止。
- Step 4: 否则, p = p + 0.11, x = x + 1, 如果 U < p, 令 X = x, 停止。
- Step 5: 否则, 回到 Step 3。

2 第二题 5

2.1.2 数值试验

进行数值试验,得到结果如下图所示。重复操作 2 万次得到长度为 2 万的分布如题干所示的随机数 *X*,且均值、方差分别为 9.45085 8.242596。

2.2 method 2:the acceptance-rejection method

2.2.1 计算方法

取 Y 为平均分布,即其概率密度函数 $\{q_j=\frac{1}{10}\}, j\geqslant 0$,令 $c=max(\frac{p_j}{q_j})=1.1$ 。

通过下述方法生成 X

- Step 1: 生成随机数 U_1 , 令 $Y = [10U_1] + 5$
- Step 2: 生成随机数 *U*₂
- Step 3: 如果 $U_2 \leqslant \frac{p_Y}{0.11}$,令 X = Y,停止。否则回到 Step 1.

2.2.2 数值试验

进行数值试验,得到结果如下图所示。重复操作 10 万次得到长度为 91020 的分布如题干所示的随机数 X,且均值、方差分别为 9.451362 8.221225。 并且 $\frac{1}{c}=0.9090909$,实际有效操作比例为 0.9102

3 第三题 6

3 第三题

给出具有如下概率密度函数的随机变量的产生方法,并进行数值验证:

$$f(x) = \begin{cases} e^{2x} & -\infty < x < 0 \\ e^{-2x} & 0 < x < \infty \end{cases}$$

3.1 the inverse transform algorithm

3.1.1 计算方法

因为 U 为 (0,1) 上均匀分布,当 x<0 时,有 $\int_{-\infty}^{x}e^{2t}\mathrm{d}t=U$,得到 $x=\frac{1}{2}\ln(2U)$ 。当 $x\geqslant0$ 时,有 $\int_{-\infty}^{0}e^{2t}\mathrm{d}t+\int_{0}^{x}e^{2t}\mathrm{d}t=U$,得到 $x=-\frac{1}{2}\ln(2(1-U))$,按照下述方法生成 X:

- Step 1: 生成 (0,1) 上均匀分布随机数 U₁
- Step 3: 生成 (0,1) 上均匀分布随机数 U₂
- Step 4: if $U_2 \leqslant \frac{1}{2}$, $\diamondsuit X = \frac{1}{2} \ln(2U_1)$, 否则 $X = -\frac{1}{2} \ln(2(1-U_1))$

3.1.2 数值试验

进行数值试验,得到结果如下图所示。

3 第三题 7

a) 重复操作 10 万次

得到长度为 10 万的分布如题干所示的随机数 X,且均值、方差分别为 0.001559111,0.2755747。

b) 重复操作 1 万次

得到长度为 1 万的分布如题干所示的随机数 X,且均值、方差分别为 -0.005648216, 0.2654377。

c) 重复操作 1 千次 得到长度为 1 千的分布如题干所示的随机数 X,且均值、方差分别为

4 第四题 8

0.006721561, 0.2410665.

Histogram of X

4 第四题

给出具有如下概率密度函数的随机变量的产生方法, 进行数值试验, 并讨论方法的运算效率: $f(x) = 30(x^2 - 2x^3 + x^4), 0 \le x \le 1$.

4.1 method 1: the acceptance-rejection method

4.1.1 计算方法

令 Y 为均匀分布,其概率密度函数 g(x)=1,0 < x < 1,这样有 $c=max(rac{f(x)}{g(x)})=rac{15}{8}$ 。

利用接受拒绝方法生成 X:

- Step 1: 生成 (0,1) 上的均匀分布随机数 U_1 , 令 $Y = U_1$
- Step 2: 生成 (0,1) 上的均匀分布随机数 U2
- Step 3: 如果 $U_2 \leq 16Y^2(Y-1)^2$, 令 X = Y, 否则返回 Step 1.

4.1.2 数值试验

得到结果如下图所示, 重复操作 10 万次, 得到长度为 53298 的分布如 题干所示的随机数 X, 且均值、方差分别为 0.4998224, 0.03593751。并且

4 第四题 9

 $\frac{1}{c} = 0.53333$,实际运算效率为 0.53298

Histogram of X

4.2 method 2: the inverse transform method

4.2.1 计算方法

令 Y 为均匀分布, 其概率密度函数 g(x)=-6x(x-1),0 < x < 1,这 样有 $c=max(\frac{f(x)}{g(x)})=\frac{5}{4}$ 。

利用接受拒绝方法生成 X:

- Step 1: 生成 (0,1) 上的均匀分布随机数 U_1
- Step 2: $\bar{\chi}$ $\cong 2Y^3 + 3Y^2 = U_1$, $\bar{\chi}$ $\cong Y$;
- Step 3: 生成 (0,1) 上的均匀分布随机数 U2
- Step 4: 如果 $U_2 \leq -4Y(Y-1)$, 令 X = Y, 否则返回 Step 1.

4.2.2 数值试验

得到结果如下图所示,重复操作 1 万次,得到长度为 8007 的分布如题干所示的随机数 X,且均值、方差分别为 0.4979851, 0.03592379。并且 $\frac{1}{c}=0.8$,实际运算效率为 0.8007

5 第五题 10

5 第五题

给出产生具有如下概率密度函数的随机变量的接受拒绝方法, $f(x)=\frac{1}{2}x^2e^{-x}, 0 \leq x < \infty$. 假设用指数分布来产生此分布,给出最优的参数 λ .

5.1 计算最优参数

令 Y 为指数分布,其概率密度函数为 $g(x)=\lambda e^{-\lambda x}$,令 $c(x,\lambda)=max(rac{f(x)}{g(x)}=rac{1}{2\lambda}x^2e^{-x+\lambda x})$ 。

对 $c(x,\lambda)$ 关于 x 求导:

$$[2x + (\lambda - 1)]e^{-x + \lambda x} = 0$$

得到

$$x = \frac{2}{1 - \lambda}$$

带入 $c(x,\lambda)$ 得到

$$c(\lambda) = \frac{1}{\lambda} \frac{2}{(1-\lambda)^2} e^{-2}$$

对 λ 求导令其为零,得到

$$\lambda = 1$$
, or $\lambda = \frac{1}{3}$

最终有 $\lambda=\frac{1}{3}$ 为最优参数,此时 $c=\frac{27}{2}e^{-2}$

5 第五题 11

5.2 计算方法

按照 the acceptance-rejection method 生成 X:

- Step 1: 生成指数分布 Y,其概率密度函数为 $g(x) = \frac{1}{3}e^{-\frac{1}{3}x}$ 。
- Step 2: 生成 (0,1) 上的均匀分布随机数, U
- Step 3: 如果 $U \leqslant \frac{1}{9}Y^2e^{2-\frac{2}{3}Y}$,令 X = Y,否则返回 Step 1.

其中利用 the inverse transform algorithm 生成指数分布 Y 步骤如下:

- Step 1: 生成 (0,1) 上均匀分布随机数 U
- Step 2: $\Rightarrow Y = -3\ln(1-U)$.

5.3 数值试验

得到结果如下图所示, 重复操作 10 万次, 得到长度为 18094 的分布 如题干所示的随机数 X, 且均值、方差分别为 3.007682, 2.975097。并且 $\frac{1}{6} = 0.5473375$, 实际有效操作比例为 0.54957

Histogram of X

