H9: Fourier calculus and distributions		
9.1 Fourier transforms		
Fourier series	on the Hilbert space $L^2(I)$ with $I=[0,L]$ or $I=[-L/2,L/2]$ (doesn't matter which) > we have discussed the Fourier series of a function $f \in L^2(I)$:	
	$\widehat{f}_k = \langle \varphi_k, f \rangle = \frac{1}{\sqrt{L}} \int_I f(x) e^{-i\frac{2\pi}{L}kx} \qquad \iff \qquad f(x) = \sum_{k \in \mathbb{Z}} \widehat{f}_k \varphi_k = \frac{1}{\sqrt{L}} \sum_{k \in \mathbb{Z}} \widehat{f}_k e^{+i\frac{2\pi}{L}kx}$	
	where the set of Fourier modes $\{\phi_K\}$ is a countable orthonormal basis And $L^2(\mathbb{R})$ is a separable Hilbert space > admits a countable orthonormal basis	
expansion into infinity	take L $\to\infty$, define k/L $\to\xi\in\mathbb{R}$ and $\hat{f}_k\to \frac{1}{\sqrt{L}}\hat{f}(\xi)$ we obtain:	
	$\widehat{f}(\xi) = \int_{-L/2}^{+L/2} f(x) e^{-i2\pi\xi x} dx \to \int_{-\infty}^{+\infty} f(x) e^{-i2\pi\xi x} dx$	
	$\iff f(x) = \sum_{k \in \mathbb{Z}} \frac{1}{L} \widehat{f}(k/L) e^{+i2\pi(k/L)x} \to \int_{-\infty}^{+\infty} \widehat{f}(\xi) e^{+i2\pi\xi x} d\xi.$	
	>> this isn't defined mathematically > namely: every new value of L gives rise to an independent Hilbert space L²([-L/2,L/2]) > isn't a converging series	
	> however, its intuitive construction is sufficient for physics	
def: Fourier transform	For a function $f \in L^1(\mathbb{R})$ an absolutely integrable function $f: \mathbb{R} \to \mathbb{F}$	
	> then the Fourier transform ^f is defined as:	
	$\widehat{f}(\xi) = \int_{-\infty}^{+\infty} f(x) e^{-i2\pi \xi x} dx.$	
def: inverse Fourier transform	When $^f\in L^1(\mathbb{R})$, define the inverse as:	
	$\check{f}(x) = \int_{-\infty}^{+\infty} \widehat{f}(\xi) e^{+i2\pi\xi x} d\xi.$	
Fourier in time and nD	Fourier transform in time:	
	$\widetilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t) e^{+i\omega t} dt \text{and} \check{f}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widetilde{f}(\omega) e^{-i\omega t} d\omega.$	
	Fourier transform in higher dimensions	
	$\widetilde{f}(\mathbf{k}) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} f(\mathbf{x}) e^{-i\mathbf{k}\cdot\mathbf{x}} d^d \mathbf{x} \text{and} \widetilde{f}(\mathbf{x}) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \widetilde{f}(\mathbf{k}) e^{-i\mathbf{k}\cdot\mathbf{x}} d^d \mathbf{k}.$	
9.1.1 elementary properties		
prop: properties of Fourier	The map form a function $f \in L^1([0,L])$ to its Fourier transform $^{F} \in C_b(\mathbb{R})$ has the properties: 1. Linearity:	
	$h(x) = af(x) + bg(x) \implies \widehat{h}(\xi) = a\widehat{f}(\xi) + b\widehat{g}(\xi), \forall f, g \in L^1(\mathbb{R}), \forall a, b \in \mathbb{C} $ (9.9)	
	2. Translation (shift in space/time):	
	$h(x) = f(x - x_0) \implies \widehat{h}(\xi) = e^{-i2\pi\xi x_0} \widehat{f}(\xi), \forall f \in L^1(\mathbb{R}), \forall x_0 \in \mathbb{R} $ (9.10)	
	3. Modulation (shift in frequency):	
	$h(x) = f(x)e^{i2\pi\xi_0 x} \implies \widehat{h}(\xi) = \widehat{f}(\xi - \xi_0), \forall f \in L^1(\mathbb{R}), \forall \xi_0 \in \mathbb{R} $ (9.11)	
	4. Conjugation: $h(x) = \overline{f(x)} \implies \widehat{h}(\xi) = \overline{\widehat{f}(-\xi)}, \forall f \in L^1(\mathbb{R}) $ (9.12)	
	5. Timelfrequency reversal:	
	$h(x) = f(-x) \implies \widehat{h}(\xi) = \widehat{f}(-\xi), \forall f \in L^1(\mathbb{R})$ (9.13)	
	6. Scaling:	
	$h(x) = f(sx) \implies \widehat{h}(\xi) = \frac{1}{s}\widehat{f}(\xi/s) \forall f \in L^1(\mathbb{R}), \forall s \in \mathbb{R}_{>0} $ (9.14)	
	The last two properties could be combined in $h(x) = f(sx) \implies \widehat{h}(\xi) = \frac{1}{ s } \widehat{f}(\xi/s), \forall s \in \mathbb{R}$.	

th: properties of ^f	for any function $f \in L^1(\mathbb{R})$, the Fourier transform $^f(\xi)$ is:
	• continuous: $\widehat{f}(\xi) \in C^0(\mathbb{R})$;
	• bounded: $\ \widehat{f}\ _{\infty} = \sup_{\xi} \widehat{f}(\xi) \le \ f\ _1;$
	• vanishing at infinity: $\lim_{\xi \to \pm \infty} \left \widehat{f}(\xi) \right = 0$ (known as the Riemann-Lebesgue lemma).
	This is written as $\widehat{f} \in C_0^0(\mathbb{R})$, the space of continuous functions that vanish at infinity.
def: convolution f*g	For two functions $f,g\in L^1(\mathbb{R})$
	> the convolution $h=f^*g\in L^1(\mathbb{R})$ is defined as
	$h(x) = (f * g)(x) = \int_{-\infty}^{+\infty} f(x - y)g(y) dy = \int_{-\infty}^{+\infty} f(y)g(x - y) dy = (g * f)(x).$
th: convolution and Fourier	For For two functions $f,g\in L^1(\mathbb{R})$ and $h=f^*g$, we find:
	$\widehat{h}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi).$
prop: Fourier of derivative	For a continuous differentiable function f
	For a piecewise continuous derivative g of f such that g=f' For $f, g = f' \in L^1(\mathbb{R})$ and $\lim_{x \to \pm \infty} f(x) = 0$,
	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\int_{-\infty}^{\infty} f(x) } = 0,$
	> it holds: $\widehat{g}(\xi)=\mathrm{i}2\pi\xi\widehat{f}(\xi)$
	>> this can be logically extended for higher order derivatives
9.1.2 Fourier transform as a u	nitary transformation
lemma: ^f and L ²	For a continuous function f supported on a compact interval I⊆ℝ > it holds that:
	> it holds that: $ f _2 = \widehat{f} _2$ and thus $\widehat{f} \in L^2(\mathbb{R})$.
> ^F and L ²	due to the last lemma, the Fourier transform ^F is an operator on $L^2(\mathbb{R})$ with domain:
	${\mathcal D}_{\hat F}=C_{ m c}({\mathbb R})$ ie: the space of compactly supported continuous functions
	>> furthermore ^F is bounded and thus continuous
def: Plancherel-Fourier	For functions $f \in L^2(\mathbb{R})$
transform	> construct a sequence $(f_n)_{n\in\mathbb{N}_0}$ of compactly supported continuous functions that converge to f ie: $\lim_{n\to\infty} \ f_n - f\ _2 = 0$,
	> then define: $\widehat{f} = \widehat{F}(f) = \lim_{n \to \infty} \widehat{f}_n,$
	where \widehat{f}_n is the Fourier transform of $f_n \in L^1(\mathbb{R})$, as given in Eq. (9.2).
th: Plancherel's theorem	For all $f \in L^2(\mathbb{R})$ it holds that: $ f _2 = \hat{F}(f) _2 = \hat{f} _2$
th: Parseval's theorem	For all f,g \in L ² (\mathbb{R}), it holds that: $\langle f,g\rangle=\left\langle \hat{F}(f),\hat{F}(g)\right\rangle=\left\langle \hat{f},\widehat{g}\right\rangle$
th: weak Perseval's relation	For all f,g \in L ² (\mathbb{R}), it holds that: $\int_{-\infty}^{+\infty} f(x)\widehat{g}(x) \mathrm{d}x = \int_{-\infty}^{+\infty} \widehat{f}(x)g(x) \mathrm{d}x$
> prop: adjoint of ^F	The adjoint of \hat{F} is given by $\hat{F}^{\dagger}(f) = \overline{\hat{F}(\overline{f})}$, or thus, by
	$(\hat{F}^{\dagger}f)(x) = \lim_{n \to \infty} \int_{-n}^{+n} f(\xi) e^{+i2\pi \xi x} d\xi.$
^F [†] on f	for a function $\widehat{f} \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ it holds that $\widehat{F}^\dagger \widehat{f} = \widecheck{f}$
L	

th: unitary transformation ^F	The Plancherel-Fourier operator ^F is unitary transformation form $L^2(\mathbb{R})$ onto itself $f \in L^2(\mathbb{R})$ and $\widehat{f} = \widehat{F}(f)$, we have the relations
	$\lim_{n \to \infty} \left\ \widehat{f}(\xi) - \int_{-n}^{+n} f(x) e^{-i2\pi \xi x} dx \right\ _2 = 0$ $\lim_{n \to \infty} \left\ f(x) - \int_{-n}^{+n} f(x) e^{+i2\pi \xi x} dx \right\ _2 = 0$
	if f is absolutely integrable, the ^f is continuous > the first relation holds pointwise
	if $f \in C_0(\mathbb{R})$, then ^f is absolutely integrable > the second relation holds pointwise
9.1.3 Application: Gaussian dis	stribution and central limit theorem
Fourier of Gaussian	The Gaussian distribution is given by:
	$f_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \mathrm{e}^{-\frac{x^2}{2\sigma^2}}.$
	We have $\widehat{f}_\sigma(\xi)=\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}{\rm e}^{-\frac{x^2}{2\sigma^2}-{\rm i}2\pi\xi x}{\rm d}x$
	and thus $\frac{\mathrm{d}\widehat{f}_\sigma}{\mathrm{d}\xi}(\xi) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} (-\mathrm{i}2\pi x) \mathrm{e}^{-\frac{x^2}{2\sigma^2} - \mathrm{i}2\pi\xi x} \mathrm{d}x.$
	>> further application see p332 in notesversion8
	9.2 distributions
9.2.2 test functions	
def: vector spaces of test	For a given domain $\Omega \subseteq \mathbb{R}^d$, we identify three possible vector spaces of test functions $\Omega \to \mathbb{F}$:
functions	• $\mathcal{E}(\Omega) = C^{\infty}(\Omega)$: the space of infinitely differentiable (a.k.a. smooth) functions from Ω to \mathbb{R} or \mathbb{C} .
	• $\mathcal{D}(\Omega) = C_c^{\infty}(\Omega)$: the space of infinitely differentiable and compactly supported functions from Ω to \mathbb{R} or \mathbb{C} . Remember that a function φ is compactly supported if there exists some compact subset $K \subseteq \Omega$ such that $\varphi(x) = 0$ for all $x \in \Omega \setminus K$.
	• $\mathcal{S}(\Omega)$: the Schwarz space , containing infinitely differentiable and rapidly decreasing functions. In particular, $\varphi \in \mathcal{S}(\mathbb{R}^d)$ if and only if $\varphi \in \mathcal{E}(\mathbb{R}^d)$ and furthermore
	$\sup_{\boldsymbol{x}\in\mathbb{R}^d}\left x_1^{k_1}\cdots x_d^{k_d}\frac{\partial^{l_1}}{\partial x_1^{l_1}}\cdots \frac{\partial^{l_d}}{\partial x_d^{l_d}}\varphi(\boldsymbol{x})\right <\infty \tag{9.35}$
	for all $k_1, \ldots, k_d, l_1, \ldots, l_d \in \mathbb{N}$.
	with subspace relation $\mathcal{D}(\Omega) \preccurlyeq \mathcal{S}(\Omega) \preccurlyeq \mathcal{E}(\Omega)$,
prop: Fourier of test functions	For test functions $\phi \in S(\mathbb{R})$, the Fourier transform satisfies $\widehat{\phi} \in \mathcal{S}(\mathbb{R})$.
def: convergence of test func	A sequence of test functions $(\varphi_n)_{n\in\mathbb{N}_0}$ converges in $D(\Omega)$ to a limit $\varphi=\lim_{n\to\infty}\varphi_n\in\mathcal{D}(\Omega)$ if

1. there is a compact set $K \subseteq \Omega$ such that $supp(\varphi_n) \subseteq K$ for all $n \in \mathbb{N}_0$, and thus also

 $\lim_{n\to\infty}\sup_{x\in\Omega}\left|\varphi_n^{(p)}(x)-\varphi^{(p)}(x)\right|=\lim_{n\to\infty}\sup_{x\in K}\left|\varphi_n^{(p)}(x)-\varphi^{(p)}(x)\right|=0.$

(9.37)

2. $\forall p \in \mathbb{N}$, the pth order derivate converges uniformly:

 $supp(\varphi) \subseteq K$;

def: distribution	Define the space $D^*(\Omega)$ of distributions on Ω , as the continuous linear functionals on $>$ is a mep T: $D(\Omega) \rightarrow \mathbb{F}$ that satisfies:	D(Ω)
	• linearity: for all test functions $\varphi, \psi \in \mathcal{D}(\Omega)$ and all $a, b \in \mathbb{F}$	
	$T[aarphi+b\psi]=aT[arphi]+bT[\psi];$	(9.38)
	• continuity: for any sequence of test functions $(\varphi_n)_{n\in\mathbb{N}_0}$ that converges in a (according to Definition 9.6)	$\mathcal{D}(\Omega)$
	$\lim_{n o \infty} T[arphi_n] = T[\lim_{n o \infty} arphi_n].$	(9.39)
def: locally integrable function	A function $f: \Omega \to \mathbb{F}$ is locally integrable, if for any compact subset not.: $f \in L^1_{loc}(\Omega)$ $K \subseteq \Omega$, $\int_K f(x) \ \mathrm{d}x$ exists and in	s finite.
prop: regular distribution	Any function $f \in L^1_{loc}(\Omega)$ defines a regular distribution T_f using the prescription:	
property and a second second	$T_f[\varphi] = \int_{\Omega} f(x) \varphi(x) \mathrm{d}x.$	
def: singular distribution	= distributions that cannot be associated to a locally integrable function	
def: Dirac's delta distribution	= singular distribution in D*($\mathbb R$) given by: $\delta[\varphi]=\varphi(0)$	
	or more generally, for some $a \in \mathbb{R}$, as	
	$\delta_a[\varphi]=arphi(a).$	
	>> linear and continuous	
ex: Heaviside distribution	= the distribution $T_H \in D^*(\mathbb{R})$ given by:	
	$T_H[\varphi] = \int_0^{+\infty} \varphi(x) \mathrm{d}x$	
	which is the distribution associated with Heaviside step function H:	
	$H(x) = \theta(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}.$	
9.2.4 elementary operations		
def: translation and scaling operator	For functions f on \mathbb{R}^d For parameters $\mathbf{a} \in \mathbb{R}^d$ and $\mathbf{s} \in \mathbb{R}$	
	> the translation operator $^{\mbox{$ \tau_a$}}$ and scaling operator $^{\mbox{$ \sigma_s$}}$ are defined as:	
	$(\hat{\tau}_a f)(x) = f(x - a), \qquad (\hat{\sigma}_s f)(x) = f(sx).$	
def: translated and scaled	For distributions $T \in D^*(\mathbb{R}^d)$	
distribution	> the translated $^{\tau_a}T$ and scaled $^{\sigma_s}T$ distribution are defined via their action on test $\phi \in D(\mathbb{R})$:	functions
	$(\hat{\tau}_a T)[\varphi] = T[\hat{\tau}_{-a} \varphi],$	(6
	$(\hat{\sigma}_s T)[arphi] = rac{1}{\left s ight ^d} T[\hat{\sigma}_{1/s} arphi].$	(è
	Remark 9.28. Indeed, with this definitions, we obtain	
	$(\hat{\tau}_a T_f)[\varphi] = T_f [\hat{\tau}_{-a} \varphi] = \int_{\mathbb{R}^d} f(x) \varphi(x+a) d^d x = \int_{\mathbb{R}^d} f(y-a) \varphi(y) d^d y,$	
	$(\hat{\sigma}_s T_f)[\varphi] = rac{1}{ s ^d} T_f \left[\hat{\sigma}_{1/s} \varphi ight] = rac{1}{ s }^d \int_{\mathbb{R}^d} f(x) \varphi(x/s) \mathrm{d}^d x = \int_{\mathbb{R}^d} f(s y) \varphi(y) \mathrm{d}^d y$,
	and thus $\hat{\tau}_a T_f = T_{\hat{\tau}_a f}$ and $\hat{\sigma}_s T_f = T_{\hat{\sigma}_s f}$, as we would expect for regular distribution	ns.

def: product of distribution and function	The product of a distribution $T \in D^*(\mathbb{R}^d)$ and a smooth function ψ is defined via its action on test functions $\phi \in D(\mathbb{R}^d)$ as:
	$(\psi T)[arphi] = T[\psi arphi]$
	and thus, for the regular distribution associated with $f \in L^1_{\mathrm{loc}}(\mathbb{R}^d)$
	$(\psi T_f)[\varphi] = \int_{\mathbb{R}^d} f(\mathbf{x}) \psi(\mathbf{x}) \varphi(\mathbf{x}) d^d \mathbf{x} = T_{\psi f}[\varphi].$
def: distributional derivative	For a distribution $T \in D^*(\mathbb{R}^d)$ this is defined by its action on test functions $\phi \in D(\mathbb{R}^d)$ as:
	T'[arphi] = -T[arphi']
	and, by extension to a higher order $p \in \mathbb{N}$, as
	$T^{(p)}[arphi] = (-1)^p T[arphi^{(p)}].$
property of T'_f and $T_{f'}$	For $f \in L^1_{loc}(\mathbb{R})$ that's differentiable with $f' \in L^1_{loc}(\mathbb{R})$:
	$T'_f[\varphi] = -T_f[\varphi'] = -\int f(x)\varphi'(x) dx = \int_{-\infty}^{+\infty} f'(x)\varphi(x) dx = T_{f'}[\varphi]$
weak derivative	if T' $_f$ is some regular distribution T $_g$ for some $g \in L^1_{loc}(\mathbb{R})$ > then g is the weak derivative of f
prop: Leibniz rule	The product of a smooth function ψ and a distribution T satisfied the Leibniz rule:
	$(\psi T)' = \psi' T + \psi T'.$
9.2.5 Cauchy principle value	
construction Cauchy principle value	consider $f(x) = \log x $ on \mathbb{R} > - locally integrable, with divergence on 0 - normal derivative exists, except for 0, given by $1/x$ > isn't locally integrable, thus cant define a regular distribution
	consider the distributional derivative of f as:
	$T_f'[\varphi] = -\int_{-\infty}^{+\infty} \log x \varphi'(x) \mathrm{d}x = \lim_{\epsilon \to 0^+} \int_{ x > \epsilon} \log x \varphi'(x) \mathrm{d}x.$
	> limit is guaranteed to exist, because of Lebesgue's dominated convergence theorem
	use partial integration for the two integrals over intervals $(-\infty, -\varepsilon)$ and (∞, ε) to find:
	$T_f'[\varphi] = \lim_{\epsilon \to 0^+} \left[-\log(\epsilon)\varphi(-\epsilon) + \log(\epsilon)\varphi(+\epsilon) + \int_{-\infty}^{-\epsilon} \frac{\varphi(x)}{x} \mathrm{d}x + \int_{+\epsilon}^{+\infty} \frac{\varphi(x)}{x} \mathrm{d}x \right]$
	since φ is smooth, the intermediate value theorem guarantees there's some $\mathbf{x} \in [-\varepsilon, +\varepsilon]$ such that $ \varphi(\varepsilon) - \varphi(-\varepsilon) = \varphi'(x)(2\varepsilon) $ and thus: $ \varphi(\varepsilon) - \varphi(-\varepsilon) \leq 2\varepsilon \sup_{\mathbf{x}} \varphi'(x) . $
	from which follows $\lim_{\epsilon \to 0} \log(\epsilon) \left(\varphi(\epsilon) - \varphi(-\epsilon) \right) = 0$ and thus
	$T_f'[\varphi] = \lim_{\epsilon \to 0^+} \left(\int_{-\infty}^{-\epsilon} \frac{\varphi(x)}{x} \mathrm{d}x + \int_{+\epsilon}^{+\infty} \frac{\varphi(x)}{x} \mathrm{d}x \right) = \lim_{\epsilon \to 0^+} \int_{\epsilon}^{+\infty} \frac{\varphi(x) - \varphi(-x)}{x} \mathrm{d}x$
	> this limit exists and is finite, even when $\phi(0)!=0$ because via L'Hôptital:
	$\lim_{x\to 0}\frac{\varphi(x)-\varphi(-x)}{x}=2\varphi'(0).$

def: Cauchy principle value	For g(x) on interval I=[a,c] that has a first order pole at x=b
	ie: $g(x) = \frac{\varphi(x)}{x-b}$ where $\varphi(x)$ is smooth for $x \in I$.
	> the Cauchy principle value corresponds to the symmetric limit:
	$\operatorname{Pv} \int_{a}^{c} g(x) \mathrm{d}x = \lim_{\epsilon \to 0^{+}} \left[\int_{a}^{b-\epsilon} g(x) \mathrm{d}x + \int_{b+\epsilon}^{c} g(x) \mathrm{d}x \right]$
9.2.6 coordinate transforms	
def: coordinate transform	For a distribution $T \in D^*(\mathbb{R}^d)$
	> we can define an associated distribution for a coordinate transform $\mathbf{g}: \mathbb{R}^d \to \mathbb{R}^d$, given by:
	$(T\circ \mathcal{g})[arphi]=T[arphi_{\mathcal{g}}]$
	where the test function φ_g is given by
	$arphi_{oldsymbol{g}}(oldsymbol{x}) = rac{1}{\left \det J_{oldsymbol{g}}(oldsymbol{g}^{-1}(oldsymbol{x})) ight } arphi(oldsymbol{g}^{-1}(oldsymbol{x})).$
9.2.7 convergence of sequence	es of distributions
def: convergence of	A sequence of distributions $(T_n)_{n\in\mathbb{N}_0}$ converges to $T\in D^*(\mathbb{R})$
sequences of distributions	if and only if for all $\varphi \in D(\mathbb{R})$: $\lim_{n \to \infty} T_n[n] = T[n]$
	for all $\varphi \in D(\mathbb{R})$: $\lim_{n \to \infty} T_n[\varphi] = T[\varphi].$
prop: limit of converging sequences	For a converging sequence of distributions $(T_n)_{n\in\mathbb{N}_0}$ in $D^*(\mathbb{R})$ For a smooth function $\psi\in C^\infty(\mathbb{R})$
sequences	
	> it holds that:
	$\lim_{n \to \infty} T_n' = T',$ $\lim_{n \to \infty} \psi T_n = \psi T.$
th: Sokhotski-Plemelj theorem	the distributional limit of $\frac{1}{x \pm is}$ for $s \to 0^+$ is given by
	$\lim_{s\to 0^+} \frac{1}{x\pm is} = \operatorname{Pv} \frac{1}{x} \mp i\pi \delta(x).$
9.2.8 Dirac sequences	
def: Dirac sequence	A sequence of locally integrable functions $(f_n)_{n\in\mathbb{N}_0}$ in $L^1_{loc}(\mathbb{R}^d)$ that satisfies:
	$\lim_{n o\infty}T_{f_n}=\delta$
prop: f(x) a Dirac sequence	For $f \in L^1(\mathbb{R}^d)$ a nonnegative function with:
	$\int_{\mathbb{R}^d} f(x) \mathrm{d}^d x = 1.$
	Then $f_n = n^d \hat{\sigma}_n f$ or thus $f_n(x) = n^d f(nx)$ defines a Dirac sequence, i.e.
	$\lim_{n o\infty}T_{f_n}[arphi]=\lim_{n o\infty}\int_{\mathbb{R}^d}n^df(nx)arphi(x)\mathrm{d}^dx=arphi(0),orallarphi\in\mathcal{D}(\mathbb{R}^d).$
physical rework of this f(x)	In physics we write the previous as: $\lim_{n \to \infty} n^d f(n \mathbf{x}) = \delta(\mathbf{x}).$
	and use continuous parameter s>0 that goes to zero:
	$\lim_{s\to 0^+} \frac{1}{s^d} f(x/s) = \delta(x).$
	5→0" 5"

throwback: Dirac and Fourier	The standard regularisation for the inverse Fourier transform was given by:	
	$\lim_{n \to \infty} \int_{-n}^{+n} \widehat{f}(\xi) e^{+i2\pi\xi x} d\xi = \lim_{n \to \infty} \int_{-\infty}^{+\infty} f(y) \left[\int_{-n}^{+n} e^{+i2\pi\xi(x-y)} d\xi \right] dy \qquad (9.8)$	84)
	The expression in the square brackets can be evaluated to be	
	$\int_{-n}^{+n} e^{+i2\pi\xi(x-y)} d\xi = \frac{e^{+i2\pi n(x-y)} - e^{-i2\pi n(x-y)}}{2\pi i(x-y)} = \frac{\sin\left[2\pi n(x-y)\right]}{\pi(x-y)}$	
	so that we would like to recognise $f_n(x) = n \frac{\sin(2\pi nx)}{\pi nx}$ as a Dirac sequence $(\lim_{n\to\infty} f_n(x))$ associated with the function	=
	$f(x) = \frac{\sin(2\pi x)}{\pi x}. (9.8)$	85)
prop: sinc Dirac sequence	The sequence of functions:	
	$f_n(x) = \frac{1}{\pi} \frac{\sin(nx)}{x} = \frac{n}{\pi} \operatorname{sinc}(nx)$	
	with $\operatorname{sinc}(x) = \sin(x)/x$ is a Dirac sequence, i.e. $\lim_{n\to\infty} T_{f_n} = \delta$.	
> remark: Dirac and Fourier	<i>Remark</i> 9.36. Since $\lim_{n\to\infty} \frac{\sin(nx)}{\pi x} = \delta(x)$, it holds that for all $s > 0$,	
	$\lim_{n\to\infty}\frac{\sin(nsx)}{\pi x}=s\lim_{n\to\infty}\frac{\sin(nsx)}{\pi sx}=s\delta(sx)=\delta(x).$	
	In particular, we thus find	
	$\lim_{n\to\infty}\int_{-n}^{+n}\mathrm{e}^{\mathrm{i}2\pi\xi x}\mathrm{d}\xi=\lim_{n\to\infty}\frac{\sin(2\pi nx)}{\pi x}=\delta(x).$	
9.2.9 series of distributions		
Dirac comb distribution > combination of series and distributions	consider the partial sum of a Fourier series: $f_n(x) = \lim_{n \to \infty} \frac{1}{\sqrt{L}} \sum_{k=1}^{+n} \widehat{f_k} \mathrm{e}^{\mathrm{i} \frac{2\pi}{L} k x}.$	
นเรนามนนเบาเร	we know from 7.4: $\sum_{k \in \mathbb{Z}} \left \widehat{f}_k \right ^2 < \infty$, requires that for large $ k $, the Fourier coefficients satisfy	
	$\left \widehat{f}_{k}\right <1/\left k\right ^{1/2+\epsilon} ext{ for some }\epsilon>0.$	
	if the series converges absolutely, then the convergence is uniform > resulting f is continuous	
	> absolute convergence corresponds to $\sum_{k\in\mathbb{Z}}\left \widehat{f_k}\right <\infty$ and thus for large $ \mathbf{k} $: $\left \widehat{f_k}\right <1/\left k\right ^{1+\epsilon}$ for some $\epsilon>0$.	
	Set L=2 π for simplicity and start from f(x)=x- π on [0,2 π], or thus its periodic extension: $f(x) = x - \pi - 2\pi \left \frac{x}{2\pi} \right $	
	$= x - \pi - 2\pi n \text{ if } x \in [2\pi n, 2\pi(n+1)) \text{ with } n \in \mathbb{Z}$	
	$=x-\pi-2\pi n \text{ if } x\in[2\pi n,2\pi(n+1)) \text{ with } n\in\mathbb{Z}$ $=(x-\pi)+\sum_{n=-\infty}^{0}2\pi H(2\pi n-x)-\sum_{n=1}^{+\infty}2\pi H(x-2\pi n)$ which is the sawtooth function	
	$= x - \pi - 2\pi n \text{ if } x \in [2\pi n, 2\pi(n+1)) \text{ with } n \in \mathbb{Z}$ $= (x - \pi) + \sum_{n = -\infty}^{0} 2\pi H(2\pi n - x) - \sum_{n = 1}^{+\infty} 2\pi H(x - 2\pi n)$	
	$=x-\pi-2\pi n \text{ if } x\in[2\pi n,2\pi(n+1)) \text{ with } n\in\mathbb{Z}$ $=(x-\pi)+\sum_{n=-\infty}^{0}2\pi H(2\pi n-x)-\sum_{n=1}^{+\infty}2\pi H(x-2\pi n)$ which is the sawtooth function > Fourier coeff. are fiven by ^f_0=0 and: $\widehat{f_k}=\frac{1}{\sqrt{2\pi}}\int_0^{2\pi}(x-\pi)\mathrm{e}^{-\mathrm{i}kx}\mathrm{d}x=\frac{1}{\sqrt{2\pi}}\left(\left[\frac{x\mathrm{e}^{-\mathrm{i}kx}}{-\mathrm{i}k}\right]_0^{2\pi}+\frac{1}{\mathrm{i}k}\int_0^{2\pi}\mathrm{e}^{-\mathrm{i}kx}\mathrm{d}x\right)=-\frac{1}{\sqrt{2\pi}}\frac{2\pi}{\mathrm{i}k}.$ the sawtooth is square integrable over a period > Fourier coeff. are square summable	
	$=x-\pi-2\pi n \text{ if } x\in[2\pi n,2\pi(n+1)) \text{ with } n\in\mathbb{Z}$ $=(x-\pi)+\sum_{n=-\infty}^{0}2\pi H(2\pi n-x)-\sum_{n=1}^{+\infty}2\pi H(x-2\pi n)$ which is the sawtooth function > Fourier coeff. are fiven by ^f_0=0 and: $\widehat{f}_k=\frac{1}{\sqrt{2\pi}}\int_0^{2\pi}(x-\pi)\mathrm{e}^{-\mathrm{i}kx}\mathrm{d}x=\frac{1}{\sqrt{2\pi}}\left(\left[\frac{x\mathrm{e}^{-\mathrm{i}kx}}{-\mathrm{i}k}\right]_0^{2\pi}+\frac{1}{\mathrm{i}k}\int_0^{2\pi}\mathrm{e}^{-\mathrm{i}kx}\mathrm{d}x\right)=-\frac{1}{\sqrt{2\pi}}\frac{2\pi}{\mathrm{i}k}.$ the sawtooth is square integrable over a period > Fourier coeff. are square summable > resulting Fourier series is given by:	
	$=x-\pi-2\pi n \text{ if } x\in[2\pi n,2\pi(n+1)) \text{ with } n\in\mathbb{Z}$ $=(x-\pi)+\sum_{n=-\infty}^{0}2\pi H(2\pi n-x)-\sum_{n=1}^{+\infty}2\pi H(x-2\pi n)$ which is the sawtooth function > Fourier coeff. are fiven by ^f_0=0 and: $\widehat{f_k}=\frac{1}{\sqrt{2\pi}}\int_0^{2\pi}(x-\pi)\mathrm{e}^{-\mathrm{i}kx}\mathrm{d}x=\frac{1}{\sqrt{2\pi}}\left(\left[\frac{x\mathrm{e}^{-\mathrm{i}kx}}{-\mathrm{i}k}\right]_0^{2\pi}+\frac{1}{\mathrm{i}k}\int_0^{2\pi}\mathrm{e}^{-\mathrm{i}kx}\mathrm{d}x\right)=-\frac{1}{\sqrt{2\pi}}\frac{2\pi}{\mathrm{i}k}.$ the sawtooth is square integrable over a period > Fourier coeff. are square summable	

which converges in 2-norm, but not absolutely > namely, due to discontinuity fir $x=n2\pi$ the series suffers form the Gibss phenomenon

Dirac comb distribution	the antiderivative of f can be chosen as: $F(x) = \int_{\pi}^{x} f(x) \mathrm{d}x = \frac{1}{2} \left(x - \pi - 2\pi \left\lfloor \frac{x}{2\pi} \right\rfloor \right)^2 = 2 \sum_{k=1}^{+\infty} \frac{\cos(kx)}{k^2}$
	so that it is now a continuous periodic function > is continuous and exhibits a uniformly converging Fourier series
	f(x) is locally integrable and thus defines a distribution T_f > its derivative is f'(x)=1 everywhere, except at x_n = $2n\pi$ where there's jump of -2π at each x_n > distribution derivative is given by: $f'(x) = 1 - \sum_{n \in \mathbb{Z}} 2\pi \delta(x - n2\pi)$
	$n \in \mathbb{Z}$ equating this result with the Fourier series leads to:
	$f'(x) = 1 - \sum_{n \in \mathbb{Z}} 2\pi \delta(x - n2\pi) = -\sum_{\substack{k = -\infty \\ k \neq 0}}^{+\infty} e^{ikx}$
	or thus: $2\pi\sum_{n\in\mathbb{Z}}\delta(x-n2\pi)=\sum_{k=-\infty}^{+\infty}\mathrm{e}^{\mathrm{i}kx}$
9.2.10 Fourier transforms and	I tempered distributions
combination of Fourier transform and distribution	We expect for a regular distribution $T_{\rm f}$, the Fourier transform of the distr. will satisfy or thus:
	$\widehat{T}_f[\varphi] = T_{\widehat{f}}[\varphi] = \int_{-\infty}^{+\infty} \widehat{f}(x)\varphi(x) \mathrm{d}x = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(y) \mathrm{e}^{-\mathrm{i}2\pi xy} \varphi(x) \mathrm{d}x \mathrm{d}y$
	$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(y)\widehat{\varphi}(y) \mathrm{d}y = T_f[\widehat{\varphi}]$
	to generalise this def. to arbitrary distributions, look at the space in which $^{\phi}$ belongs > Fourier transform of $\phi \in D(\mathbb{R})$ that is compact and smooth will be an analytic function > it cannot be compactly supported > $^{\phi}$ is not necessarily a member of $D(\mathbb{R})$
	> we cannot take $^T[\phi] = T[^\phi]$ as a general definition for all $T \in D^*(\mathbb{R})$
	However, if we start form $\phi \in S(\mathbb{R})$ then $^{\bullet}\phi \in S(\mathbb{R})$
def: convergence in $S(\mathbb{R})$	A sequence of test functions $(\phi_n \in S(\mathbb{R}))_{n \in \mathbb{N}_0}$ converges in $S(\mathbb{R})$ to limit ϕ > if for all $k,l \in \mathbb{N}$ the functions $x^k \phi_n^{(l)}(x)$ converge uniformly to $x^k \phi_n^{(l)}(x)$:
	$\lim_{n\to\infty} \sup_{x\in\mathbb{R}} \left x^k \frac{\mathrm{d}^l}{\mathrm{d}x^l} (\varphi_n(x) - \varphi(x)) \right = 0.$
def: tempered distributions	= the space of continuous linear functionals on $S(\mathbb{R})$
S*(ℝ)	> tempered distribution is a linear functional T: $S(\mathbb{R}) \rightarrow \mathbb{F}$ which satisfies:
	$\lim_{n\to\infty} T[\varphi_n] = T[\lim_{n\to\infty} \varphi_n]$
def: property of tempered distributions	For T \in S*(\mathbb{R}) a tempered distribution For $\psi\colon\mathbb{R}\to\mathbb{F}$ a smooth function For all $\psi\varphi\in$ S(\mathbb{R}) for all $\varphi\in$ S(\mathbb{R}) > this restricts ψ to be a polynomial
	> it then holds: $(\psi T)[arphi] = T[\psi arphi]$
def: Fourier transform of a tempered distribution	For T∈S*(ℝ) a tempered distribution
	> the Fourier transform of T is defined as: $\ \widehat{T}[arphi] = T[\widehat{arphi}].$
	and ^T∈S*(ℝ)
th: Poisson summation formula	For a function $\phi \in S(\mathbb{R})$ (smooth and decaying faster than any polynomial)
	> it holds: $\sum_{n\in\mathbb{Z}} arphi(n) = \sum_{k\in\mathbb{Z}} \widehat{arphi}(k).$

	9.3 Fourier analysis revisited	
9.3.1 the four Fourier transfo	9.3.1 the four Fourier transforms	
Fourier transforms till now	We have thus far defined the following types of Fourier analysis: • Discrete Fourier transform for functions on a discrete bounded domain.	
	 Fourier series for functions on a continuous bounded (actually, compact)¹¹ domain. 	
	$ullet$ Fourier transform for functions on a continuous non-compact domain ${\mathbb R}.$	
	>> however: how do we define Fourier analysis on discrete infinite domain $\ensuremath{\mathbb{Z}}$	
Fourier transform on \mathbb{Z} > discrete time Fourier transform	inspiration: both discrete and continuous Fourier transform have property that the transformed object ^f is a function of the same domain > however: Fourier series relates a function $f(x)$ on $\mathbb{T}^1_L = \mathbb{R}/(L\mathbb{Z})$ with Fourier coefficients $\widehat{f_k}$ where ^f_k are functions on \mathbb{Z}	
	>> reverse the roles of forward and inverse transform gives representation of functions on $\mathbb Z$ > resulting discrete-time Fourier transform is given by:	
	$\widehat{f}(\xi) = \sum_{j \in \mathbb{Z}} f_j e^{-i2\pi\xi j} \leftrightarrow f_j = \int_0^1 \widehat{f}(\xi) e^{+i2\pi\xi j}$	
	when using a Fourier variable $\xi \in [0,1]$ that acts as a frequency, or given by	
	$\widehat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \sum_{j \in \mathbb{Z}} f_j e^{-i\omega j} \leftrightarrow f_j = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \widehat{f}(\omega) e^{+i\omega j}$	
	when using an angular frequency $\omega=2\pi\xi\in[0,2\pi)$	
All types of Fourier:	$dom(f) ext{ Forward transform } ext{ Inverse transform } ext{ } dom(\widehat{f})$ $\mathbb{Z}/(N\mathbb{Z}) ext{ } \widehat{f}_k = \frac{1}{\sqrt{N}} \sum_{i \in \mathbb{Z}_N} f_i e^{-i\frac{2\pi}{N}kj} ext{ } f_i = \frac{1}{\sqrt{N}} \sum_{k \in \mathbb{Z}_N} \widehat{f}_k e^{+i\frac{2\pi}{N}kj} ext{ } \mathbb{Z}/(N\mathbb{Z})$	
	$\mathbb{Z}/(N\mathbb{Z}) \widehat{f}_{k} = \frac{1}{\sqrt{N}} \sum_{j \in \mathbb{Z}_{N}} f_{j} e^{-i\frac{2\pi}{N}kj} \qquad f_{j} = \frac{1}{\sqrt{N}} \sum_{k \in \mathbb{Z}_{N}} \widehat{f}_{k} e^{+i\frac{2\pi}{N}kj} \qquad \mathbb{Z}/(N\mathbb{Z})$ $\mathbb{R}/(L\mathbb{Z}) \widehat{f}_{k} = \frac{1}{\sqrt{L}} \int_{\mathbb{T}_{L}} f(x) e^{-i\frac{2\pi}{L}kx} dx f(x) = \frac{1}{\sqrt{L}} \sum_{k \in \mathbb{Z}} \widehat{f}_{k} e^{+i\frac{2\pi}{L}kx} \mathbb{Z}$	
	$\mathbb{Z} \qquad \widehat{f}(\xi) = \sum_{j \in \mathbb{Z}} f_j e^{-i2\pi\xi j} \qquad f_j = \int_{\mathbb{T}_1} \widehat{f}(\xi) e^{+i2\pi\xi j} \mathrm{d}\xi \qquad \mathbb{R}/\mathbb{Z}$	
	$\mathbb{R} \qquad \widehat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-i2\pi\xi x} dx \qquad f(x) = \int_{\mathbb{R}} \widehat{f}(\xi) e^{+i2\pi\xi x} d\xi \mathbb{R}$	
9.3.2 relating Fourier transfo	rms	
relating f on $\mathbb{R}/(L\mathbb{Z})$ to \mathbb{R}	For a function f on a finite continuous domain $[0,L)\cong \mathbb{R}/(L\mathbb{Z})$ > this can be extended to a full real line in two ways:	
	1: trivially setting it to 0 for $x \notin [0, L)$, > call this function $f^{(triv)}$:	
	$f^{ ext{(triv)}}(x) = egin{cases} f(x), & x \in [0,L] \ 0, & x otin [0,L] \end{cases} \; \Rightarrow \widehat{f_k} = rac{1}{\sqrt{L}} \widehat{f}^{ ext{(triv)}}(k/L) ext{voor alle} k \in \mathbb{Z}.$	
	2: periodically extending it to: $f^{(per)}(x) = f(x \mod L)$ > this function isn't integrable > we can use a distribution:	
	$\widehat{f}^{(\text{per})}(\xi) = \frac{1}{\sqrt{L}} \sum_{k \in \mathbb{Z}} \widehat{f}_k \int_{-\infty}^{+\infty} e^{-i2\pi \left(\xi - \frac{k}{L}\right)x} \mathrm{d}x$	
	$= \frac{1}{\sqrt{L}} \sum_{k \in \mathbb{Z}} \widehat{f}_k \delta\left(\xi - \frac{k}{L}\right) = \frac{1}{L} \sum_{k \in \mathbb{Z}} \widehat{f}^{(\text{triv})}(k/L) \delta\left(\xi - \frac{k}{L}\right)$	
relating f on $\mathbb{Z}/(N\mathbb{Z})$ to \mathbb{Z}	We can do the same for discrete function f on $\mathbb{Z}/(N\mathbb{Z})$	
	1: trivially extending f: $\widehat{f}_k = \frac{1}{\sqrt{N}}\widehat{f}^{(\mathrm{triv})}(k/N), \forall k \in \mathbb{Z}_N.$	
	2: periodic extension: $\widehat{f}^{(\text{per})}(\xi) = \sum_{j \in \mathbb{Z}} \left(\frac{1}{\sqrt{N}} \sum_{k \in \mathbb{Z}_N} \widehat{f_k} e^{+i\frac{2\pi}{N}kj} \right) e^{-i2\pi\xi j}$	
	for which: $\widehat{f}^{(\mathrm{per})}(\xi) = \frac{1}{\sqrt{N}} \sum_{k \in \mathbb{Z}_N} \widehat{f}_k \sum_{j \in \mathbb{Z}} \mathrm{e}^{-\mathrm{i}2\pi \left(\xi - \frac{k}{N}\right)j} = \frac{1}{\sqrt{N}} \sum_{k \in \mathbb{Z}_N} \widehat{f}_k \sum_{m \in \mathbb{Z}} \delta\left(\xi - \frac{k}{N} - m\right)$	
	$= \frac{1}{N} \sum_{k \in \mathbb{Z}_N} \widehat{f}^{(\mathrm{triv})}(k/N) \sum_{n \in \mathbb{Z}} \delta\left(\xi - \frac{k}{N} - n\right)$	

9.3.3 sampling and the Shanno	on-Nyquist theorem
for situations where the original function is in a continuous domain > but we only have access to function values on a discrete subset	
We have already done this for	F on [0,L), but now we consider $\mathbb R$
prop: Fourier via discrete samples	For samples $F_j=f(x_j)$ of the function f on $\mathbb R$ For all $x_j=j\epsilon$ with $j\in\mathbb Z$ and ϵ a sampling period
	> the discrete-time Fourier transform of samples $F=(F_j)_{j\in\mathbb{Z}}$ is related to the Fourier transf. of f as
	$\widehat{F}(\chi) = \sum_{n \in \mathbb{Z}} \frac{1}{\epsilon} \widehat{f}\left(\frac{\chi}{\epsilon} - \frac{n}{\epsilon}\right).$
def: bandwidth limited	A function f on $\mathbb R$ is bandwidth limited with frequency Ξ > if its Fourier transform has compact support with $\operatorname{supp}(\widehat{f}) \subseteq [-\Xi, +\Xi]$.
> prop: Nyquist rate	When the function f is limited with frequency Ξ > by choosing a sampling rate $1/\epsilon > 2\Xi$ the Nyquist rate
	>> then the Fourier transform f of f can be perfectly reconstructed form the discrete-time Fourier transform F of the samples F_j =f(j ϵ), namely as:
	$\widehat{f}(\xi) = egin{cases} \widehat{\epsilon}\widehat{F}(\epsilon\xi), & \xi \leq rac{1}{2\epsilon} \ 0, & \xi > rac{1}{2\epsilon} \end{cases}$
prop: Whittaker-Shannon interpolation formula	For a function f on $\mathbb R$ and samples $F_j{=}f(j\epsilon)$ with sampling period ϵ
interpolation formula	> define a reconstruction of f from its samples via the W-S interpolation formula:
	$f^{(rec)}(x) = \sum_{j \in \mathbb{Z}} F_j \operatorname{sinc}\left(\pi \frac{x - j\epsilon}{\epsilon}\right)$
	with $sinc(x) = sin(x)/x$. It follows that
	$\widehat{f}^{(rec)}(\xi) = H\left(rac{1}{2\epsilon} - \xi ight) \sum_{n \in \mathbb{Z}} \widehat{f}\left(\xi - rac{n}{\epsilon} ight)$
	and, if f is bandwidth limited with $\Xi < \frac{1}{2\epsilon}$, then $f(x) = f^{(rec)}(x)$ for all $x \in \mathbb{R}$.