UNIDAD No.

Raíces de Ecuaciones No Lineales

MÉTODO SECANTE

El método secante permite encontrar una solución numérica de una ecuación de la forma f(x) = 0. El método usa dos puntos en la vecindad de la solución para determinar una nueva estimación para la solución. Se utilizan los dos puntos (marcados como x1 y x2 en la figura) para definir una línea recta (línea secante) y el punto donde la línea intersectas el eje x (marcado como x3 en la figura) es la nueva estimación para el solución. Como se muestra, los dos puntos pueden estar en un lado de la solución

Método de la Secante

Método SECANTE

o la solución puede estar entre los dos puntos.

La pendiente de la línea secante viene dada por:

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{f(x_2) - 0}{x_2 - x_3}$$

$$x_3 = x_2 - \frac{f(x_2)(x_1 - x_2)}{f(x_1) - f(x_2)}$$

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Newton - Raphsor

La derivada se puede aproximar mediante una diferencia finita dividida hacia atrás,

$$f'(x_i) \cong \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

Que al sustituir en la Ecuación de Newton –Raphson:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{\frac{f(x_{i-1}) - f(x_i)}{(x_{i-1} - x_i)}}$$

Se obtiene la ecuación del método de la SECANTE.

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Interpretación:

Ejemplo: Método SECANTE

Utilice el Método de la secante para localizar la raíz de f(x)=e-x-x

Utilizar el método de Punto Fijo con un valor inicial: xi-1 = 0; x1 = 1

[k,x2,v1,error_a]= secante(f,0,1)

M?todo de SECANTE

vv = 0.56714

Valor para epsilon: 0.0001

valor para n?mero maximo de iteraciones: 20

k x Everdadero Eaprox(%)

0 1.000000000 0.432856710 0.000000000

1 0.612699837 0.045556546 63.212055883

2 0.563838389 0.003304901 8.665860388

3 0.567170358 0.000027068 0.587472390

4 0.567143307 0.000000016 0.004769838

k = 4

x2 = 0.56714

v1 = 0.00000016195

 $error_a = 0.0047698$

Ejemplo: Método SECANTE

Encuentre una aproximación a una raíz real de la ecuación:

Considere $x \cos(x) + 1 = 0$

Usando el método secante con x1 = 1 y x2 = 1.5, calcule x3 y x4 de la secuencia que eventualmente converge a la raíz.

Encuentre la raíz ejecutando la función con ε = 10–4 y un máximo de 20 iteraciones.

Ejemplo: Método SECANTE

[k,x2,v1,error_a]= secante(g,1.5,1) M?todo de SECANTE

x2 = 2.0739 v1 = 5.1563e-12 $error_a = 0.0000074714$