BUSINESS UNDERSTANDING

The main goal is to analyze and predict the risks associated with purchasing and operating airplanes for both commercial and private enterprises, as part of my company's new diversification strategy.

PROBLEM STATEMENT

The goal of this analysis is to examine the AviationData dataset to identify key factors influencing the viability of a project focused on aircraft operations. Specifically, I will assess the risks associated with airplane accidents and the survival rates following such incidents.

OBJECTIVES

- 1. Investigate the relationship between engine type and the frequency of accidents.
- 2.Examine the correlation between the number of engines per aircraft and the recorded number of accidents.
- 3.Identify and analyze key factors that contribute to aircraft accidents, such as weather conditions and amateur-built aircraft.
- 4.Develop visualizations to effectively communicate the insights and findings derived from the analysis.

REASEARCH QUESTIONS

- 1.What are the key aircraft characteristics that impact the likelihood of an accident?
- 2.Does the country of operation play a significant role in determining the probability of an airplane accident?
- 3.How does the phase of flight affect the survival rate in the event of an aircraft accident?

#Importing essential libraries for data analysis and visualization
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

DATA UNDERSTANDING

#Loading the aviation dataset from a CSV file into a pandas DataFrame and checking the top columns
import csv
Aviation_data = pd.read_csv('AviationData.csv', encoding='ISO-8859-1')
Aviation_data.head()

₹		Event.Id	Investigation.Type	Accident.Number	Event.Date	Location	Country	Latitude	Longitude	Airport.Code	Airport.N
	0	20001218X45444	Accident	SEA87LA080	1948-10-24	MOOSE CREEK, ID	United States	NaN	NaN	NaN	1
	1	20001218X45447	Accident	LAX94LA336	1962-07-19	BRIDGEPORT, CA	United States	NaN	NaN	NaN	1
	2	20061025X01555	Accident	NYC07LA005	1974-08-30	Saltville, VA	United States	36.922223	-81.878056	NaN	1
	3	20001218X45448	Accident	LAX96LA321	1977-06-19	EUREKA, CA	United States	NaN	NaN	NaN	1
	4	20041105X01764	Accident	CHI79FA064	1979-08-02	Canton, OH	United States	NaN	NaN	NaN	1
	5 rc	ows × 31 columns									
	4										>

#Check the last 5 Columns
Aviation_data.tail()

To get the summary information about the dataset Aviation_data.info()

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 88889 entries, 0 to 88888
Data columns (total 31 columns):

υaτa #	Columns (total 31 column	Dtymo					
#		Non-Null Count	Dtype 				
0	Event.Id	88889 non-null	object				
1	Investigation.Type	88889 non-null	object				
2	Accident.Number	88889 non-null	object				
3	Event.Date	88889 non-null	object				
4	Location	88837 non-null	object				
5	Country	88663 non-null	object				
6	Latitude	34382 non-null	object				
7	Longitude	34373 non-null	object				
8	Airport.Code	50132 non-null	object				
9	Airport.Name	52704 non-null	object				
10	Injury.Severity	87889 non-null	object				
11	Aircraft.damage	85695 non-null	object				
12	Aircraft.Category	32287 non-null	object				
13	Registration.Number	87507 non-null	object				
14	Make	88826 non-null	object				
15	Model	88797 non-null	object				
16	Amateur.Built	88787 non-null	object				
17	Number.of.Engines	82805 non-null	float64				
18	Engine.Type	81793 non-null	object				
19	FAR.Description	32023 non-null	object				
20	Schedule	12582 non-null	object				
21	Purpose.of.flight	82697 non-null	object				
22	Air.carrier	16648 non-null	object				
23	Total.Fatal.Injuries	77488 non-null	float64				
24	Total.Serious.Injuries	76379 non-null	float64				
25	Total.Minor.Injuries	76956 non-null	float64				
26	Total.Uninjured	82977 non-null	float64				
27	Weather.Condition	84397 non-null	object				
28	Broad.phase.of.flight	61724 non-null	object				
29	Report.Status	82505 non-null	object				
30	Publication.Date	75118 non-null	object				
dtypes: float64(5), object(26)							
memory usage: 21.0+ MB							

#To get statistics for the numerical columns in the dataset Aviation_data.describe()

₹

	Number.of.Engines	Total.Fatal.Injuries	Total.Serious.Injuries	Total.Minor.Injuries	Total.Uninjured
count	82805.000000	77488.000000	76379.000000	76956.000000	82977.000000
mean	1.146585	0.647855	0.279881	0.357061	5.325440
std	0.446510	5.485960	1.544084	2.235625	27.913634
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.000000	0.000000	0.000000	0.000000	0.000000
50%	1.000000	0.000000	0.000000	0.000000	1.000000
75%	1.000000	0.000000	0.000000	0.000000	2.000000
max	8.000000	349.000000	161.000000	380.000000	699.000000

```
#To get the Column names
print(list(Aviation_data.columns))
 🚁 ['Event.Id', 'Investigation.Type', 'Accident.Number', 'Event.Date', 'Location', 'Country', 'Latitude', 'Longitude', 'Airport.Code', 'Air
MISSING DATA
# Check for missing values in the 'Aviation_data' DataFrame
# identify which columns have missing data and how many missing values each column has.
Aviation_data.isna().sum()
 0
         Investigation.Type
                                                              0
         Accident.Number
                                                               0
         Event.Date
                                                              0
         Location
                                                             52
         Country
                                                           226
         Latitude
                                                        54507
                                                       54516
         Longitude
         Airport.Code
                                                       38757
         Airport.Name
                                                        36185
         Injury.Severity
                                                         1000
         Aircraft.damage
                                                         3194
         Aircraft.Category
                                                        56602
         Registration.Number
                                                         1382
         Make
                                                             63
         Model
                                                            92
         Amateur.Built
                                                           102
         Number.of.Engines
                                                         6084
         Engine.Type
                                                         7096
         FAR.Description
                                                       56866
         Schedule
                                                        76307
         Purpose.of.flight
                                                         6192
         Air.carrier
                                                       72241
         Total.Fatal.Injuries
                                                       11401
         Total.Serious.Injuries
                                                       12510
         Total.Minor.Injuries
                                                       11933
         Total.Uninjured
                                                         5912
         Weather.Condition
                                                         4492
         Broad.phase.of.flight
                                                       27165
         Report.Status
                                                         6384
         Publication.Date
                                                       13771
         dtype: int64
# Fill missing values (NaN) in specific columns of the 'Aviation_data' DataFrame
# Set missing values to 0
Aviation_data = Aviation_data.fillna({'Total.Fatal.Injuries': 0, 'Total.Serious.Injuries':0, 'Total.Minor.Injuries':0, 'Total.Uninjured':0,
#Replacing missing values in the Aircraft damage/Phase of flight column
Aviation_data = Aviation_data.fillna({'Aircraft.damage': 'Unknown', 'Broad.phase.of.flight': 'Unknown'})
#Additional replacement of missing values
Aviation_data = Aviation_data.fillna({'Country': 'Undefined', 'Location': 'Unknown', 'Injury.Severity': 'Unknown', 'Model': 0, 'Make': 'Unkn
#Additional replacement of missing values
Aviation_data = Aviation_data.fillna({'Country': 'Undefined', 'Location': 'Unknown', 'Injury.Severity': 'Unknown', 'Model': 0, 'Make': 'Unknown', 'Injury.Severity': 'Unknown', 'Injury.Severity': 'Unknown', 'Model': 0, 'Make': 'Unknown', 'Injury.Severity': 'Unknown', 'Injury.Severity': 'Unknown', 'Injury.Severity': 'Unknown', 'Model': 0, 'Make': 'Unknown', 'Injury.Severity': 'Unknown', 'Injury.Severity': 'Unknown', 'Model': 0, 'Make': 'Unknown', 'Injury.Severity': 'Unknown', 'Injury.Severity': 'Unknown', 'Injury.Severity': 'Unknown', 'Model': 0, 'Make': 'Unknown', 'Injury.Severity': 'Unknown', 'Unkno
# Check the column names before dropping
print("Original Columns:", Aviation_data.columns)
# Dropping unnecessary columns with missing data, while ignoring errors for non-existent columns
Aviation_data = Aviation_data.drop(
       ['Aircraft.Category', 'Latitude', 'Longitude', 'Airport.Code', 'FAR.Description', 'Air.carrier', 'Schedule'],
       axis=1,
       errors='ignore'
)
# Display the remaining columns after dropping
print("Updated Columns:", Aviation_data.columns)
 Type', 'Accident.Number', 'Event.Id', 'Investigation.Type', 'Accident.Number', 'Event.Date',
                      'Location', 'Country', 'Latitude', 'Longitude', 'Airport.Code',
                      'Airport.Name', 'Injury.Severity', 'Aircraft.damage',
```

```
'Aircraft.Category', 'Registration.Number', 'Make', 'Model',
'Amateur.Built', 'Number.of.Engines', 'Engine.Type', 'FAR.Description',
'Schedule', 'Purpose.of.flight', 'Air.carrier', 'Total.Fatal.Injuries',
'Total.Serious.Injuries', 'Total.Minor.Injuries', 'Total.Uninjured',
'Weather.Condition', 'Broad.phase.of.flight', 'Report.Status',
'Publication.Date'],
dtype='object')

Updated Columns: Index(['Event.Id', 'Investigation.Type', 'Accident.Number', 'Event.Date',
'Location', 'Country', 'Airport.Name', 'Injury.Severity',
'Aircraft.damage', 'Registration.Number', 'Make', 'Model',
'Amateur.Built', 'Number.of.Engines', 'Engine.Type',
'Purpose.of.flight', 'Total.Fatal.Injuries', 'Total.Serious.Injuries',
'Total.Minor.Injuries', 'Total.Uninjured', 'Weather.Condition',
'Broad.phase.of.flight', 'Report.Status', 'Publication.Date'],
dtype='object')
```

Aviation_data.isna().sum()

HANDLING MISSING DATA

#Check if we have duplicated data
Aviation_data.duplicated().sum()

→ 0

#Check the shape of the data
Aviation_data.shape

→ (88889, 24)

DATA ANALYSIS

#Get asummary table showing the count of rows (accidents or events) for each engine type
Summary_data1 = Aviation_data.pivot_table(aggfunc='size', index='Engine.Type', fill_value=0)
print(Summary_data1)

```
→ Engine.Type
    Electric
                          10
    Geared Turbofan
                          12
    Hybrid Rocket
    ΙR
                           2
    NONE
    Reciprocating
                       69530
    Turbo Fan
                        2481
                         703
    Turbo Jet
    Turbo Prop
                        3391
    Turbo Shaft
                        3609
    UNK
                           1
    Unknown
                        2051
    dtype: int64
```

1. Engine vs Accidents

This is to comapare the relationship between the engine type and the occurance of an accident

```
Aviation_data['Engine.Type'].value_counts().plot(kind='bar')
plt.title('Count of Accidents Occured')
plt.xlabel('Engine.Type')
plt.ylabel('Count')
plt.show()
```


Reciprocating engines have the most accidents. This answers our first objective of checking the relationship between the engine types and the accidents occurance

2. ACCIDENTS FREQUENCY VS WEATHER`

This checks the Overal perfomance of all the aircrafts in diffrent weather Conditions

```
Aviation_data['Weather.Condition'].value_counts().plot(kind='bar')
plt.title('Accidents frequency Vs Weather')
plt.xlabel('weather.Type')
plt.ylabel('Count')
plt.show()
```


From the Visualization its clear that the VMC weather condition records the most accidents . The UNK condition records the least accidents

3. INJURIES VISUALIZATION

This is to give a visual on the extend of injuries on the people in the aircrafts

```
#Get total counts for fatal injuries, uninjured passengers, serious injuries, and minor injuries across all records.

Aviation_data_selected = Aviation_data[['Total.Fatal.Injuries', 'Total.Uninjured', 'Total.Serious.Injuries', 'Total.Minor.Injuries']].sum()

Aviation_data_selected.plot(kind='pie', autopct='%1.1f%%', figsize=(8, 8), title="Sum of Values")

plt.ylabel('')  # Hide the y label

plt.show()
```

₹

Sum of Values

81.7 % of the passengers and crew remain uninjured. Out of the 19.7% who are injured,9.3% are fatal

4. ACCIDENTS PER YEAR TRENDS

To give a general overview of the frequency of accidents occurance from 1990 to 2022

```
# Compare the incidents Year to year from 1990 to 2022 in a bar chart
Aviation_data['Publication.Date'] = pd.to_datetime(Aviation_data['Publication.Date'], errors='coerce')
# Extract the year from the 'Event.Date' column
Aviation_data['Year'] = Aviation_data['Publication.Date'].dt.year
# Filter the data to only include incidents from 1990 to 2022
Aviation_data_filtered = Aviation_data[(Aviation_data['Year'] >= 1990) & (Aviation_data['Year'] <= 2022)]
# Group the data by year and count the number of incidents per year
Grouped_by_Year = Aviation_data_filtered.groupby('Year').size()
# Plot the incidents per year as a line chart
Grouped_by_Year.plot(kind='line', color='skyblue', marker='o', figsize=(10, 6))
# Generating Visuals
plt.title('Number of Aviation Accidents per Year', fontsize=14)
plt.xlabel('Year', fontsize=12)
plt.ylabel('Number of Accidents', fontsize=12)
# Show the plot
plt.show()
```


From the year 1990 to 2022. General decline in occurance however in 2020 there was a sharp rise followed by a decline.

• Majority of the accidents then happened under the VMC weather conditions

DATA LIMITATION

Reporting StandardS Variations