ECOLE POLYTECHNIQUE DE MONTREAL

INF4710 – Introduction aux technologies multimédia

Laboratoire 1 Compression d'images fixes Hiver 2016

Chand Christine – 1572129

Mougamadou Javid - 1809167

Travail demandé

D –
Taux de compression avec RLE

Image	Longueur	Longueur	Taux de
	signal entrée	signal sortie	compression
1	307200	2160*2	71
2	114002	675*2	84
3	116535	10170*2	5,5
4	921600	6259*2	73
5	441045	2805*2	78
6	282375	7492*2	18
7	110010	4467*2	12

Taux de compression avec Freeman

Image	Longueur	Longueur	Taux de
	signal entrée	signal sortie	compression
1	307200	5553	55,3
2	114002	10869	10,5
3	116535	10805	10,78
4	921600	12621	73
5	441045	4240	104
6	282375	9639	29
7	110010	17118	6

Pour l'image 2, RLE est plus efficace que Freeman car nous avons une image horizontale contrairement à l'image 3 qui est verticale avec un taux très faible pour RLE.

Pour l'image 4, le taux de compression pour les deux codages est similaire car nous avons une image composée de plusieurs blocs de couleurs distinctes.

Pour l'image 5, Freeman est plus performant car il détecte seulement les contours (on a des cercles) contrairement à RLE qui parcourt l'image horizontalement et sera segmenté par les cercles.

Pour l'image 6, Freeman est plus efficace car nous avons des formes en « éclair » et donc la détection des contours sera mieux.

Pour l'image 7, Freeman est inefficace car l'image est composée d'un très grand nombre de petits motifs. Cela rend la détection des contours plus difficile et inappropriée dans ce contexte. RLE est également inefficace pour ce genre de situation.

Questions

- 1. La compression des images par RLE pourrait être meilleure si celles-ci étaient lues colonne par colonne si les pixels qui se trouvent sur la colonne sont les mêmes. Par exemple, elle serait plus efficace pour l'image test3.png.
- 2. On doit fournir les chaînes d'entiers en format RRRRGGGGBBBB plutôt que RGBRGBRGBRGB pour l'encodage RLE car on aura plus de chance d'avoir des R, des G ou des B consécutifs ayant la même valeur que des RGB consécutifs. Ceci est dû au regroupement des pixels par moyenne. De cette façon, l'encodage RLE sera moins couteux.

3.

Avantages RLE VS Freeman	Désavantages RLE VS Freeman	
- Efficace si l'image contient		
une ou des surfaces de couleurs identiques réparties de tel sorte à ce qu'on ait une séquence de symboles identiques	des contours ou des formes pleines uniquement	
-	- Moins efficace sur les petites formes	

Avantages contours VS formes pleines	Désavantages contours VS formes
	pleines
- Plus pratique pour le décodage des formes en utilisant la fonction cv::fillPoly	- Possibilité de pertes
	- Si les contours sont complexes (par exemple si il y a plusieurs pixels qui se trouvent autour du pixel courants)
	- Moins efficace pour les petites formes

4. Nous avons obtenu des pertes sur les images test1.png et test6.png. Nous avons constaté que les pertes se situaient surtout au niveau des coins en pointes (très présents dans l'image test6).

Il serait possible de régler ce problème en essayant d'obtenir des contours très fin et en « diagonale » (voir la forme du haut de la figure 1) au lieu d'avoir des contours possédant des coins comme celui présenté sur la forme de la figure 1.

Figure 1