[Lec 04]

Back-propagation and computation graphs

Matrix Gradients for simple Neural Net

Derivative with respect to weight matrix

$$\frac{\partial s}{\partial \boldsymbol{W}} = \boldsymbol{\delta}^T \quad \boldsymbol{x}^T$$
$$[n \times m] \quad [n \times 1][1 \times m]$$

Tips

- Carefully Define Variables
- Use Chain Rule and Shape Convention

Pitfall

- Always use pre-trained word vectors
- Fine-tune it only when size of data is large

Computation Graphs and Back propagation

→ Taking Derivatives using the chain rule

- + : distributes the upstream gradient
- · max: routes the upstream gradient
- *: switches the upstream gradient
- \rightarrow For efficiency, compute all gradients at once

Back-Prop in General Computation Graph

- Fprop: visit nodes in topological order
- Bprop: Recursively apply chain rule along computation graph
 - initialize output gradient = 1
 - visit nodes inreverse order

Regularization

→ prevents overfitting when having lots of features

Vectorization

- \rightarrow looping over word vectors verses concatenating them all into one large matrix and then multiplying soft-max weights
- → Matrices preferred

Nonlinearities

• sigmoid (logistic)

- tanh & hard tanh
 - → rescaled and shifted sigmoid (tanh)

[Lec 04] 2

- ReLU (Rectified Linear Unit)
 - → Best or building feed-forward deep network
 - → variants exist (Leaky Relu, Parametric Relu)

Initialization

- \rightarrow normally must initialize weights to small random values
- → biases
 - · hidden: Initialize to zero
 - Output: Initialize to optimal value if weights were 0

Optimizers

- → SGD works fine
 - But hand tune learning rate
- → Adaptive Optimizers
 - Adagrad, RMSprop, Adam

Learning Rate

→ start around 0.001

must be order of magnitude (powers of 10)

- \rightarrow Too Big: may diverge vs Too Small: May not be trained by deadline
- → Better to have decreasing learning rate while training

[Lec 04] 4