

AMENDMENTS TO THE DRAWINGS

The attached sheets of replacement formal drawings include changes to the Figures 2 to 6 as originally filed. Replacement Sheet 2/36, which includes Fig. 2A, replaces the originally filed Sheet 2/35 (previously designated as Figure 2). Replacement Sheet 3/36, which includes Fig. 2B, replaces the originally filed Sheet 3/35 (previously designated as Figure 2). Replacement Sheet 4/36, which includes Fig. 2C, replaces the originally filed Sheet 4/35 (previously designated as Figure 2). Replacement Sheet 5/36, which includes Fig. 3A, replaces the originally filed Sheet 5/35 (previously designated as Figure 3). Replacement Sheet 6/36, which includes Fig. 3B, replaces the originally filed Sheet 6/35 (previously designated as Figure 3). Replacement Sheet 7/36, which includes Fig. 3C, replaces the originally filed Sheet 7/35 (previously designated as Figure 3). Replacement Sheet 8/36, which includes Fig. 3D, replaces the originally filed Sheet 8/35 (previously designated as Figure 3). Replacement Sheet 9/36, which includes Fig. 4A, replaces the originally filed Sheet 9/35 (previously designated as Figure 4). Replacement Sheet 10/36, which includes Fig. 4B, replaces the originally filed Sheet 10/35 (previously designated as Figure 4). New Sheet 11/36 includes Fig. 4C (previously designated as Figure 4). Replacement Sheet 12/36, which includes Fig. 5A, replaces the originally filed Sheet 11/35 (previously designated as Figure 5). Replacement Sheet 12/36, which includes Figs. 5A and 5B, replaces the originally filed Sheet 11/35 (previously designated as Figure 5). Replacement Sheet 13/36, which includes Figs. 5C and 5D, replaces the originally filed Sheet 12/35 (previously designated as Figure 5). Replacement Sheet 14/36, which includes Figs. 5E and 5F, replaces the originally filed Sheet 13/35 (previously designated as Figure 5). Replacement Sheet 15/36, which includes Figs. 5G and 5H, replaces the originally filed Sheet 14/35 (previously designated as Figure 5).

AMENDMENTS TO THE DRAWINGS

The attached sheets of replacement formal drawings include changes to the Figures 2 to 6 as originally filed. Replacement Sheet 2/36, which includes Fig. 2A, replaces the originally filed Sheet 2/35 (previously designated as Figure 2). Replacement Sheet 3/36, which includes Fig. 2B, replaces the originally filed Sheet 3/35 (previously designated as Figure 2). Replacement Sheet 4/36, which includes Fig. 2C, replaces the originally filed Sheet 4/35 (previously designated as Figure 2). Replacement Sheet 5/36, which includes Fig. 3A, replaces the originally filed Sheet 5/35 (previously designated as Figure 3). Replacement Sheet 6/36, which includes Fig. 3B, replaces the originally filed Sheet 6/35 (previously designated as Figure 3). Replacement Sheet 7/36, which includes Fig. 3C, replaces the originally filed Sheet 7/35 (previously designated as Figure 3). Replacement Sheet 8/36, which includes Fig. 3D, replaces the originally filed Sheet 8/35 (previously designated as Figure 3). Replacement Sheet 9/36, which includes Fig. 4A, replaces the originally filed Sheet 9/35 (previously designated as Figure 4). Replacement Sheet 10/36, which includes Fig. 4B, replaces the originally filed Sheet 10/35 (previously designated as Figure 4). New Sheet 11/36 includes Fig. 4C (previously designated as Figure 4). Replacement Sheet 12/36, which includes Fig. 5A, replaces the originally filed Sheet 11/35 (previously designated as Figure 5). Replacement Sheet 12/36, which includes Figs. 5A and 5B, replaces the originally filed Sheet 11/35 (previously designated as Figure 5). Replacement Sheet 13/36, which includes Figs. 5C and 5D, replaces the originally filed Sheet 12/35 (previously designated as Figure 5). Replacement Sheet 14/36, which includes Figs. 5E and 5F, replaces the originally filed Sheet 13/35 (previously designated as Figure 5). Replacement Sheet 15/36, which includes Figs. 5G and 5H, replaces the originally filed Sheet 14/35 (previously designated as Figure 5).

Serial No.: 10/633,438

Filed: August 1, 2003

Replacement Sheet 16/36, which includes Figs. 5I and 5J, replaces the originally filed Sheet 15/35 (previously designated as Figure 5). Replacement Sheet 17/36, which includes Figs. 5K and 5L, replaces the originally filed Sheet 16/35 (previously designated as Figure 5). Replacement Sheet 18/36, which includes Figs. 5M and 5N, replaces the originally filed Sheet 17/35 (previously designated as Figure 5). Replacement Sheet 19/36, which includes Figs. 6A – 6C, replaces the originally filed Sheet 18/35 (previously designated as Figure 6). Replacement Sheet 20/36, which includes Figs. 6D – 6F, replaces the originally filed Sheet 19/35 (previously designated as Figure 6).

Attachments: Eighteen (18) replacement sheets formal drawings

One (1) new sheet of formal drawings

Eighteen (18) annotated sheets showing changes in red ink

REMARKS

Claims 1-35 are pending. Claims 1-35 stand rejected. No claims have been amended and the attached claim listing is provided for the convenience of the Examiner. Applicants have not dedicated or abandoned any unclaimed subject matter and moreover have not acquiesced to any rejections made by the Patent Office. Applicants reserve the right to pursue prosecution of any presently excluded claim embodiments in future continuation and/or divisional applications. Reconsideration of the claims in light of the following remarks is requested.

Specification/Drawings

The Examiner objected to the specification because it does not comply with 37 C.F.R. § 1.84(u)(1), which requires that partial views of a drawing which are intended to form a complete view, whether contained on one or several sheets, must be identified by the same number followed by a capital letter. Specifically, Figures 2-6 are presented on several separate sheets, but are not labeled "Figure 2A, Figure 2B, etc." Additionally, the Brief Description of the Drawings does not contain "Figure 2A, Figure 2B, etc." Therefore, the specification has been amended to correct this informality. Replacement sheets for Figures 2A-2C, 3A-3D, 4A-4B, 5A-5G, and 6A-6B, and New sheet for Figure 4C are also submitted with this response. Annotated sheets showing changes marked in red ink are provided for the Examiner's convenience. No new matter is introduced with these amendments. Applicants respectfully request withdrawal of this objection.

Claim Rejection Under 35 U.S.C. § 103(a)

Claims 1-35 are rejected under 35 U.S.C. §103(a) as allegedly obvious over the Bohn *et al.* patent (6,528,271 B1) (“Bohn”) in view of Gurevich *et al.* (J. Biol. Chem. 270(2):720-731, 12 Jan 1995) (“Gurevich”) and Hodgson (BIO/TECHNOLOGY 10; 973-877, 10 Sep. 1992 Publications) (“Hodgson”). Applicants respectfully traverse for the reasons that follow.

Applicants would like to provide the following brief summary to help distinguish the claimed invention from the cited art. The present claims are directed to methods of screening a composition for non-receptor-specific GPCR desensitization inhibitory activity. As noted in the Background section of the specification, a common limitation of GPCR-targeted drugs is a patient’s ability to gain tolerance or resistance to such drugs, which is attributed to GPCRs desensitization in response to constant drug exposure (see paragraph [0007]). One possible approach to overcoming GPCR-based drug tolerance is to inhibit GPCR desensitization with compositions having GPCR desensitization inhibitory activity. Because several hundred human GPCRs are known, and because it is estimated that a couple thousand GPCRs exist in the human genome, it would be desirable to provide a method of screening compositions for inhibitory effect on GPCR desensitization that is not receptor specific (paragraph [0008]). As explained below, the prior art does not teach or suggest methods of screening a composition for non-receptor-specific GPCR desensitization inhibitory activity.

When rejecting claims under 35 U.S.C. §103(a), the Patent Office bears the burden of establishing a *prima facie* conclusion of obviousness. In order to do so, the Patent Office must demonstrate three elements: (1) that the prior art provides a suggestion or

motivation to modify or combine the teachings of the references relied upon by the Office to reject the claims; (2) that the prior art provides one of skill in the art with a reasonable expectation that the suggested combination or modification would be successful; and (3) that the prior art, either alone or in combination, teaches each and every limitation of the rejected claims. The teaching or suggestion to make the claimed invention and the reasonable expectation of success must both be found in the prior art, not in Applicant's disclosure. *In re Vaeck*, 20 USPQ2d 1438 (Fed. Cir. 1991). These three elements are distinct. If any one is not established, *prima facie* obviousness is not established, and the Applicant is not required to show indicia of unobviousness, such as new or unanticipated results. *In re Grabiak*, 226 USPQ 870 (Fed. Cir. 1985).

The Patent Office alleges that Bohn teaches a method of identifying compounds that potentiate receptor agonist activity by inhibiting the binding of β -arrestin to phosphorylated receptor. The Patent Office states that Gurevich teaches that it was well know in the art that the response of GPCRs like that of Bohn to continuous agonist activation diminished with time as a consequence of receptor desensitization. The Office alleges that the method of Bohn is only distinguished from the claimed method in that it lacks a comparative step employing a different receptor. The Office then relies on Hodgson's statements, to allegedly cure the deficiency of Bohn, "[f]irst you need all the receptors that are the plus targets - so that you are providing all the sites to which active compounds might bind. And then you need all the minus targets - so that you have can design away any negative effects. Applicants respectfully traverse.

As described, above Office alleges that the method of Bohn is only distinguished from the claimed method in that it lacks a comparative step employing a different

receptor. Applicants respectfully assert that the claimed methods do not include a comparative step as asserted by the Examiner. In contrast, the pending claims include a combinative step with respect to different receptors. The methods of the present invention involve screening a test composition for an indication of GPCR desensitization inhibitory activity against two or more GPCRs that are different from each other. When there is an indication that a particular test composition has GPCR desensitization inhibitory activity with respect to each of the two or more GPCRs that are different from one another, then, according to the present invention, there is an indication that the test composition has non-receptor-specific GPCR desensitization inhibitory activity. Therefore, as described below, the claimed method requires indication from both the first receptor and an indication from the second receptor.

For example, Claim 1 provides in part:

(a) providing a first cell comprising a first GPCR [...]
(c) determining, [.....] whether or not the composition gives an indication of GPCR desensitization inhibitory activity with respect to the first GPCR;
(d) providing a second cell comprising a second GPCR different from the first GPCR [...]
(f) determining, [.....] whether or not the composition gives an indication of GPCR desensitization inhibitory activity with respect to the second GPCR;
wherein an indication of GPCR desensitization inhibitory activity for the test composition in both step (c) and step (f) being an indication that the test composition has non-receptor-specific GPCR desensitization inhibitory activity (emphasis added).

Independent Claims 1, 13, 19 and 26 are directed to screening a composition for non-receptor-specific G-protein coupled receptor (GPCR) desensitization inhibitory activity. Applicants respectfully assert that none of the cited references teach or suggest a method of screening a composition for non-receptor-specific GPCR desensitization inhibitory activity as in Claims 1-35.

Bohn, Gurevich, *or* Hodgson, alone or in combination, do not teach or suggest the determining step (c) with respect to a first GPCR and determining step (f) with respect to second GPCR, wherein an indication of GPCR desensitization inhibitory activity for the test composition in both step (c) and step (f) being an indication that the test composition has non-receptor-specific GPCR desensitization inhibitory activity as required by independent Claims 1 and 13.

Likewise Bohn, Gurevich, *or* Hodgson, alone or in combination, do not teach or suggest the step (e) determining whether or not the composition has GPCR desensitization inhibitory activity with respect to the second GPCR; wherein an indication that the test composition has GPCR desensitization inhibitory activity with respect to both the first GPCR and the second GPCR being an indication that the test composition has non-receptor-specific GPCR desensitization inhibitory activity as required by independent Claim 19.

Bohn, Gurevich, *or* Hodgson, alone or in combination, do not teach or suggest step (c) determining whether or not the composition has GPCR desensitization inhibitory activity with respect to the first GPCR and with respect to the second GPCR, wherein an indication that the test composition has GPCR desensitization inhibitory activity with respect to both the first GPCR and the second GPCR being an indication that the test

composition has non-receptor-specific GPCR desensitization inhibitory activity as required by independent Claim 26.

In addition, none of the cited references provides a suggestion or the motivation to combine or modify their teachings to reach the present invention. The Patent Office states that “because it was known that GPCRs have important roles mediating fundamental physiological process such as vision, olfaction, cardiovascular function, and pain perception” as disclosed in column 1 of the Bohn *et al.* patent, one of ordinary skill would have been motivated not only to identify compounds that inhibit desensitization or a target receptor for the purpose of enhancing agonists activity on that receptor, that artisan would have been further motivated to include other GPCRs in such an assay to identify those compounds that **only** inhibit the desensitization of a target receptor or a set of receptors, such as opioid receptor of Bohn *et al.* for use in controlling pain, without inhibiting agonists desensitization of those GPCRs involved in mediation other fundamental physiological processes such as vision, olfaction, cardiovascular function *etc.* (emphasis in original). Again the Patent Office relies on Hodgson, stated that it would have been *prima facie* obvious to have include “all the minus targets” in the assay of Bohn for the purpose of identifying compounds that specifically inhibit the agonists desensitization of a target GPCR without affecting the agonists desensitization of other physiological receptors. Applicants respectfully disagree.

As the Patent Office is aware, a “prior art reference must be considered in its entirety, *i.e.*, as a whole, including portions that would lead away from the claimed invention. W.L. Gore & Associates, Inc. v. Garlock, Inc., 721 F.2d 1540, 220 USPQ 303 (Fed. Cir. 1983) (M.P.E.P. §2141.02 VI.) Hodgson teaches away from the present

invention, in particular relating to the screening of compositions for non-receptor-specific GPCR desensitization inhibitory activity. Applicants respectfully submit that the Hodgson reference is directed to the screening of compositions for receptor specific activity. Hodgson states [w]hen we do find selective agents and they appear to have selective activity, we will want to know whether that selectively make them more effective drugs (Hodgson at page 978). To screen for selective agents Hodgson teaches receptor specific screening *i.e.* using receptors that are the plus targets and receptors that are the minus targets to design away from non-receptor-specific screening.

Therefore, Hodgson teaches receptor specific screening instead of non-receptor-specific screening. Therefore, as a whole Hodgson teaches away from the present invention. Hodgson cannot be properly combined with Bohn and/or Gurevich to form an obviousness rejection. Due the above reasons, Applicants believe that the Patent Office has not established a *prima facie* case of obviousness.

In view of the foregoing, Applicants respectfully requests that the rejection of independent Claim 1, 13, 19 and 29 under 35 U.S.C. § 103 (a) over Bohn, Gurevich, and Hodgson be withdrawn. All of the remaining claims ultimately depend from independent Claims 1, 13, 19 and 26, and are patentable for at least the same reasons.

Reconsideration and withdrawal of the rejection is respectfully requested.

CONCLUSION

Applicants respectfully submit that the claims are now in condition for allowance and early notification to that effect is respectfully requested. If the Examiner feels there are further unresolved issues, the Examiner is respectfully requested to phone the undersigned at (415) 781-1989.

Respectfully submitted,
DORSEY & WHITNEY LLP

Dated: May 23, 2006 By:
Customer No.: 32940
555 California Street, Suite 1000
San Francisco, CA 94104-1513
Telephone: (415) 781-1989
Facsimile: (415) 398-3249

Michael F. Kolman, Reg. No. 54,234 for
David J. Brezner, Reg. No. 24,774

FIG. 2A
FIG. 2

Human G Protein Coupled Receptor Family
(Receptors known as of January, 1999)

CLASS	LIGAND	NUMBER	TISSUE	PHYSIOLOGY	THERAPEUTICS
•Class I Rhodopsin like	•Amine •Acetylcholine (muscarinic & nicotinic) •Adrenoceptors	5	Brain, Nerves, Heart	Neurotransmitter	Acuity, Alzheimer's
	•Alpha Adrenoceptors •Beta Adrenoceptors	6	Brain, Kidney, Lung Kidney, Heart	Gluconeogenesis Muscle Contraction	Diabetes, Cardiovascular
	•Dopamine	3	Brain, Kidney, GI	Neurotransmitter	Cardiovascular, Respiratory
	•Histamine	5	Vascular, Heart, Brain	Vascular Permeability	Cardiovascular, Parkinson's
	•Serotonin (5-HT)	2	Most Tissues	Neurotransmitter	Anti-inflammatory, Ulcers
	•Peptide	16			Depression, Insomnia, Analgesic
	•Angiotensin	2	Vascular, Liver, Kidney	Vasoconstriction	Cardiovascular, Endocrine
	•Bradykinin	1	Liver, Blood	Vasodilation,	Anti-inflammatory, Asthma
	•C5a anaphylatoxin	1	Blood	Immune System	
	•Fmet-leu-phe	3	Blood	Chemoattractant	
	•Interleukin-8	1	Blood	Chemoattractant	
	•Chemokine	6	Blood	Chemoattractant	
	•Orexin	2	Brain	Fat Metabolism	Anti-inflammatory
	•Nociceptin	1	Brain	Bronchodilator, Pain	Obesity
	•CCK (Gastrin)	2	Gastrointestinal	Motility, Fat Absorption	Airway Diseases, Anesthetic
	•Endothelin	2	Heart, Bronchus, Brain	Muscle Contraction	Gastrointestinal, Obesity, Parkinson's
	•Melanocortin	5	Kidney, Brain	Metabolic Regulation	Cardiovascular, Respiratory
	•Neuropeptide Y	5	Nerves, Intestine, Blood	Neurotransmitter	Anti-inflammatory, Analgesics
	•Neurotensin	1	Brain,	CNS	Behavior, Memory, Cardiovascular
	•Opioid	3	Brain,	CNS	Cardiovascular, Analgesic
	•Somatostatin	5	Brain, Gastrointestinal	Depression, Analgesic	Depression, Analgesic
					Oncology, Alzheimer's

FIG. 2B (cont.)

• Tachykinin (Substance P, NKA,)	3	Brain Nerves	Neurohormone	Depression, Analgesic
• Thrombin	3	Platelets, Blood Vessels	Coagulation	Anti-coagulant, Anti-inflammatory
• Vasopressin-like	4	Arteries, Heart, Bladder	Water Balance	Anti-diuretic, Diabetic Complications
• Galanin	1	Brain, Pancreas	Neurotransmitter	Analgesics, Alzheimer's
• Hormone protein				
• Follicle stimulating hormone	1	Ovary, Testis	Endocrine	Infertility
• Lutropin-choriogonadotropin	1	Ovary, Testis	Endocrine	Infertility
• Thyrotropin	1	Thyroid	Endocrine	Thyroidism, Metabolism
• (Rhod)opsin				
• Opsin	5	Eye	Photoreception	Ophthalmic Diseases
• Olfactory	4 (~1000)	Nose	Smell	Olfactory Diseases
• Prostanoid				
• Prostaglandin	5	Arterial, Gastrointestinal	Vasodilation, Pain	Cardiovascular, Analgesic
• Lysophosphatidic Acid	2	Vessels, Heart, Lung	Inflammation	Cancer, Anti-Inflammatory
• Sphingosine-1-phosphate	2	Most Cells	Cell proliferation	Cancer
• Leukotriene	1	White Blood Cells,		
		Bronchus	Inflammation	Asthma, Rheumatoid Arthritis
			Platelet Regulation	Cardiovascular
			Vasoconstriction	Cardiovascular, Respiratory
• Prostacyclin	1	Arterial, Gastrointestinal	Multiple Effects	Cardiovascular, Respiratory
• Thromboxane	1	Arterial, Bronchus	Relaxes Muscle	Cardiovascular, Respiratory
• Nucleotide-like			Sensory Perception	Analgesics, Memory
• Adenosine	4	Vascular, Bronchus	Inflammation	Anti-inflammatory, Anti-asthmatic
• Purinoceptors	4	Vascular, Platelets		
• Cannabis	2	Brain		
• Platelet activating factor	1	Most Peripheral Tissues		
• Gonadotropin-releasing hormone like				
• Gonadotropin-releasing hormone	1	Reproductive Organs, Pituitary	Reproduction	Prostate Cancer, Endometriosis
• Thyrotropin-releasing hormone	1	Pituitary, Brain		Thyroid Regulation
• Growth hormone-inhibiting factor	1	Gastrointestinal		Neuroendocrine
• Melatonin	1	Brain, Eye, Pituitary		Neuroendocrine

FIG. 2c
FIG. 2 (cont.)

•Class II Secretin like	<ul style="list-style-type: none"> •Secretin •Calcitonin •Corticotropin releasing factor/urocortin •Gastric inhibitory peptide (GIP) •Glucagon •Glucagon-like Peptide 1 (GLP-1) •Growth hormone-releasing hormone •Parathyroid hormone •PACAP •Vasoactive intestinal polypeptide (VIP) 	<ul style="list-style-type: none"> 1 	<ul style="list-style-type: none"> Gastrointestinal, Heart Bone, Brain Adrenal, Vascular, Brain Adrenals, Fat Cells Liver, Fat Cells, Heart Pancreas, Stomach, Lung Brain Bone, Kidney Brain, Pancreas, Adrenals Gastrointestinal 	<ul style="list-style-type: none"> Digestion Calcium Resorption Neuroendocrine Sugar/Fat Metabolism Gluconeogenesis Gluconeogenesis Neuroendocrine Calcium Regulation Metabolism Motility 	<ul style="list-style-type: none"> Obesity, Gastrointestinal Osteoporosis Stress, Mood, Obesity Diabetes, Obesity Cardiovascular Cardiovascular, Diabetes, Obesity Growth Regulation Osteoporosis Metabolic Regulation Gastrointestinal
•Class III	<ul style="list-style-type: none"> •Metabotropic Glutamate •GABA_B •Extracellular Calcium Sensing 	<ul style="list-style-type: none"> 7 1 1 	<ul style="list-style-type: none"> Brain Brain Parathyroid, Kidney, GI Tract 	<ul style="list-style-type: none"> Sensory Perception Neurotransmitter Calcium Regulation 	<ul style="list-style-type: none"> Hearing, Vision Mood Disorders Cataracts, GI Tumors

FIGURE 3A
Figure 3

G protein-coupled receptors:

(Division into Class A

Or Class B)

1. **A1 adenosine receptor** [Homo sapiens]. ACCESSION AAB25533
NPIVYAF RIQKFRVTFL KIWNDHFRCQ PAPPIDEDLP EERPDD
Class A
2. **adrenergic, alpha -1B-, receptor** [Homo sapiens]. ACCESSION NP_000670
npiiyipc sskefkrafv rilgeqcrgr grrrrrrrrr lggcaytyrp wtrgsslers qsrkdsldds gsclsgsqrst lpsaspsspgy
lgrgapppv lcaspewkap gallspape ppgrrgrhds gplftfkllt epespgtdgg asnggceaaa dvangqpgfk
snmplapqgf
Class A
3. **adrenergic receptor alpha-2A** [Homo sapiens]. ACCESSION AAG00447
npviytifn hdfrrafkki lcrgdrkriv
Class A
4. **alpha-2B-adrenergic receptor** - human. ACCESSION A37223
npviytifn qdfrraftri lcrpwtqtaw
Class A
5. **alpha-2C-adrenergic receptor** - human. ACCESSION A31237
npviytifn qdfrrpsfkhi lfrrrrrgfr q
Class A
6. **beta-1-adrenergic receptor** [Homo sapiens]. ACCESSION NP_000675
npiiycrs pdfrkafqgl lccarraarr rhathgdpr asgclarpgp ppspgasdd ddddvvvgatp parllepwag
cnggaaadsd ssldepcrpg faseskv
Class A
7. **beta-2 adrenergic receptor**. ACCESSION P07550
npiiycrsp dfrifqfeli clrrsslkay gngyssngnt 361 geqsgyhveq ekenklced lpgtedfvgh qgtvpsdnid
sqgrncstnd sll
Class A
8. **dopamine receptor D1** [Homo sapiens]. ACCESSION NP_000785
npii yafnadfrka fstllgcyr1 cpatnnaiet vsinnngaam fsshheprgs iskecnlvyl iphavgssed lkkeeaagia
rpleklspal svildytdv slekiqpitq ngqhpt
Class A
9. **D(2) dopamine receptor**. ACCESSION P14416
npiiyttfn iefrkafkki lhc
Class A

FIG. 3B

Figure 3 (cont.)

10. **d3 dopamine receptor** - human. ACCESSION G01977
np viytfnief rkafkilksc
Class A
11. **dopamine receptor D4** - human. ACCESSION DYHUD4
npviytv fnaefrnvfr kalracc
Class A
12. **dopamine receptor D5** - human. ACCESSION DYHUD5
npviya fnadfqkvfa qllgcsfhcs rtpvetvnis nelisynqdi vfhkeiaaay ihmmpnavtp gnrevdndee
egpfdrmfqj yqtspdgdpv aesvweldce geisldkitp ftpngfh
Class A
13. **muscarinic acetylcholine receptor M1** [Homo sapiens]. ACCESSION NP_000729
npmcyal cnkafrdtfr lllcrwdkr rwrkipkrpg svhrtpsrqc
Class A
14. **muscarinic acetylcholine receptor M2** [Homo sapiens]. ACCESSION NP_000730
npacy alcnatfkkt fkhilmchyk nigatr
Class A
15. **muscarinic acetylcholine receptor M3** [Homo sapiens]. ACCESSION NP_000731
n pvcyalcnkt fittfkmll cqcdkkrrk qqyqqrqsvi fhkrapeqal
Class A
16. **muscarinic acetylcholine receptor M4** [Homo sapiens]. ACCESSION NP_000732
npa cyalcnatfk ktfrhllcq yrnigtar
Class A
17. **m5 muscarinic receptor**. locus HUMAHRM ACCESSION AAA51569
npicyalcnr tfrktfkml1 lcrwkkkkve eklywqgnsk lp
Class A
18. **5-hydroxytryptamine (serotonin) receptor 1A** [Homo sapiens]. ACCESSION BAA90449
npyiy ayfnkdfqna fkkiiikckf
Class A
19. **5-hydroxytryptamine (serotonin) receptor 1B** [Homo sapiens]. ACCESSION BAA94455
npiiyt msnedfkqaf hklirfkcts
Class A
20. **5-hydroxytryptamine (serotonin) receptor 1E** [Homo sapiens]. ACCESSION BAA94458
n plytsfned fklafkklir cre
Class A

FIG. 3 C
Figure 3 (cont.)

21. **OLFACTORY RECEPTOR 6A1.** ACCESSION O95222
npiiyclrnq evkralccil hlyqhqdpd kkgsrnv
Class A
22. **OLFACTORY RECEPTOR 2C1.** ACCESSION O95371
npliy tlrmmevkga lrlggkgre vg
Class A
23. **angiotensin receptor 1 [Homo sapiens].** ACCESSION NP_033611
npl fygflgkkfk ryflqllyi ppkakshsnl **sfkmsflsyr** psdnvssstk kpapcfeve
Class B
24. **angiotensin receptor 2 [Homo sapiens].** ACCESSION NP_000677
npflycf vgnrfqqkrl svfrvpitwl qgkresmscr **kssslremet** fvs
Class B
25. **interleukin 8 receptor beta (CXCR2) [Homo sapiens].** ACCESSION NM_001557
NPLIYAFIGQKFRHGLLKILAIHGLISKDSLPKDSRPSFVGSSSGHTSTTL
Class B
26. **cx3c chemokine receptor 1 (cx3cr1) (fractalkine receptor)**
ACCESSION P49238
np liyafagekf rrylyhlygk clavlcgrsv hvdfsssesq rsrhgsvlss nftyhtsdgd allll
Class B
27. **neurotensin receptor - human.** ACCESSION S29506
n pilynlvsan frhiflatla clcpvwrrrr krpafsrkad **svssnhflss** natretly
Class B
28. **SUBSTANCE-P RECEPTOR (SPR) (NK-1 RECEPTOR) (NK-1R).** ACCESSION P25103
npiiyccldn rfrlgfkhafrccpfisagd yeglemkstr ylqtqgsvyk vsrlettistvvgahheepe dgpkafpssl
dltsncssrs dsktmtesfs fssnvls
Class B
29. **vasopressin receptor type 2 [Homo sapiens].** ACCESSION AAD16444
npwiyasfss svsselrsll ccargrtpps lgpqdesctt **assslakdts** s
Class B
30. **thyrotropin-releasing hormone receptor - human.** ACCESSION JN0708
npyiy nlmsqkfraa frklcnckqk ptekpanysv alnysvikes dhfstelddi **tvttdtysat** kvsfddtcla sevsfsqs
Class B

FIG 3D
Figure 3 (cont.)

31. **oxytocin receptor - human.** ACCESSION A55493
 npwiymlftghlfhel vqrflccsas ylkgrrlget **sasksnssss** fvls

rsssq rscsqpsta
Class B

32. **neuromedin U receptor [Homo sapiens].** ACCESSION AAG24793
 npvlyslmssrfretfqealclgacchrlprhsshsrmtgstlcvgslgswvhplagndpeaqqetdps
Class B

33. **gastrin receptor.** ACCESSION AAC37528
 nplvy cfmhrrfrqa cletcarccp rpprarpal pdedpptpsi **aslsrlsytt** *isflgpg*
Class B

34. **galanin receptor 3 [Homo sapiens].** ACCESSION 10879541
 nplv yalarsrhfra rffrlwpcgr rrhrarral rrvpassgp pgcpgdarps grllagggqg pepregpvhg geaargpe
Class A

35. **edg-1 - human.** ACCESSION A35300
 npiiy tltnkemrra firimseckc psgdsagkfk rpiagmefs rsksdnsshp 361 qkdegdnpet imssgnvnss s
Class A

36. **central cannabinoid receptor [Homo sapiens].** ACCESSION NP_057167
 npiiyalr skdlrhafrs mfpscegtaq pldnsmgdsd clkhannaa svhraaesci kstvkiakvt msvstdtsae al
Class A

37. **delta opioid receptor - human.** ACCESSION I38532
 npvlyaf ldenfkrcfr qlcrkpcgrp dpssfsrp~~re~~ atarervtac tpsdgpgggr aa
Class A

38. **proteinase activated receptor 2 (PAR-2) human.** ACCESSION P55085
 dpfvyyfvshdfrdhaknallcrsvtvkqmqvs~~l~~tskkhsrksssysssttvktsy
Class A

39. **vasopressive intestinal peptide receptor (VIPR) rat.** ACCESSION NM_012685
 NGEVQAE~~RR~~KWRRWHLQGVLGWS~~S~~KSQHPWGGNGATCSTQV~~S~~MLTRVSPSARR
 SSSFQAEVSLV
Class B

FIG. 4A
FIGURE 4

The mutated amino acid at the second position of the DRY motif is underlined.

VASOPRESSIN V2 RECEPTOR - (Human)
 accession P30518

R137H

1 MLMASTTSAV PGHPSLPSLP SNSSQERPLD TRDPLLARAE LALLSIVFVA VALSNGLVIA
 61 ALARRGRRGH WAPIHVFIGH LCLADLAVAL FQVLPQLAWK ATDRFRGPDA LCRAVKYLQM
 121 VGYMYASSYMI LAMTLDHHRA ICRPMLAYRH GSGAHWNRPV LVAWAFSLLL SLPQLFIFAQ
 181 RNVEGGSGVT DCWACFAEPW GRTTYVTWIA LMVFVAPTLG IAACQVLIFR EIHASLVPGP
 241 SERPGGRRRG RRTGSPGEGA HVSAAVAKTV RMTLVIVVY VLCWAPFFLV QLWAADPPEA
 301 PLEGAPFVLL MLLASLNCT NPWIYASFSS SVSSELRSLL CCARGRTPPS LGPQDESCTT
 361 ASSSLAKDTS S
 (SEQ ID NO:40)

**ALPHA-1B ADRENERGIC RECEPTOR (ALPHA 1B-ADRENOCEPTOR).
 (Golden hamster)**

ACCESSION P18841

R143E

1 MNPDLLDTGHN TSAPAQWGEL KDANFTGPNQ TSSNSTLPQL DVTRAISVGL VLGAFILFAI
 61 VGNILVILSV ACNRHLRPT NYFIVNLAIA DLLLSFTVLP FSATLEVLY WVLGRIFCDI
 121 WAAVDVLCCT ASILSLCAIS IDYIGVRY S QYPTLVTRR KAILALLSVW VLSTVISIGP
 181 LLGWKEPAPN DDKECGVTEE PFYALFSSLG SFYIPLAVIL VMYCRVYIVA KRTTKNLEAG
 241 VMKEMNSNSKE LTLRIHSKNF HEDTLSSTKA KGHNPRESSIA VKLFKFSREK KAAKTLGIVV
 301 GMFILCWLPF FIALPLGSLF STLKPPDAVF KVVFWLGYFN SCLNPIIYPC SSKEFKRAFM
 361 RILGCQCRSG RRRRRRRRLG ACAYTYRPWT RGSSLERSQS RKDSLDDSGS CMSGSQRTLP
 421 SASPSPGYLG RGAQPPLELC AYPEWKSGAL LSLPEPPGRR GRLDSGPLFT FKLLGEPESP
 481 GTEGDASNGG CDATTDLANG QPGFKSNMPL APGHF
 (SEQ ID NO:41)

R143A

1 MNPDLLDTGHN TSAPAQWGEL KDANFTGPNQ TSSNSTLPQL DVTRAISVGL VLGAFILFAI
 61 VGNILVILSV ACNRHLRPT NYFIVNLAIA DLLLSFTVLP FSATLEVLY WVLGRIFCDI
 121 WAAVDVLCCT ASILSLCAIS IDAYIGVRY S QYPTLVTRR KAILALLSVW VLSTVISIGP
 181 LLGWKEPAPN DDKECGVTEE PFYALFSSLG SFYIPLAVIL VMYCRVYIVA KRTTKNLEAG
 241 VMKEMNSNSKE LTLRIHSKNF HEDTLSSTKA KGHNPRESSIA VKLFKFSREK KAAKTLGIVV
 301 GMFILCWLPF FIALPLGSLF STLKPPDAVF KVVFWLGYFN SCLNPIIYPC SSKEFKRAFM
 361 RILGCQCRSG RRRRRRRRLG ACAYTYRPWT RGSSLERSQS RKDSLDDSGS CMSGSQRTLP
 421 SASPSPGYLG RGAQPPLELC AYPEWKSGAL LSLPEPPGRR GRLDSGPLFT FKLLGEPESP
 481 GTEGDASNGG CDATTDLANG QPGFKSNMPL APGHF
 (SEQ ID NO:42)

~~FIG. 4B~~
FIG. 4 (cont.)

R143H

1 MNPDLDTGHN TSAPAQWGEL KDANFTGPNQ TSSNSTLPQL DVTRAISVGL VLGAFILFAI
 61 VGNILVILSV ACNRHLRPTP NYFIVNLIAIA DLLLSFTVLP FSATLEVLY WVLGRIFCDI
 121 WAAVDVLCCCT ASILSLCAIS ID~~NY~~YIGVRYSLQYPTLVTRR KAILALLSVW VLSTVISIGP
 181 LLGWKEPAPN DDKECGVTEE PFYALFSSLG SFYIPLAVIL VMYCRVYIVA KRTTKNLEAG
 241 VMKEMSNSKE LTLRIHSKNF HEDTLSSTKA KGHNPRSSIA VKLFKFSREK KAAKTLGIVV
 301 GMFILCWLPF FIALPLGSLF STLKPPDAVF KVVFWLGYFN SCLNPIIYPC SSKEFKRAFM
 361 RILGCQCRSG RRRRRRRRLG ACAYTYRPWT RGGSLERSQS RKDSLDDSGS CMSGSQRTLP
 421 SASPSPGYLG RGAQPPLELC AYPEWKSGAL LSLPEPPGRR GRLDSGPLFT FKLLGEPESP
 481 GTEGDASNGG CDATTDLANG QPGFKSNMPL APGHF

(SEQ ID NO:43)

R143N

1 MNPDLDTGHN TSAPAQWGEL KDANFTGPNQ TSSNSTLPQL DVTRAISVGL VLGAFILFAI
 61 VGNILVILSV ACNRHLRPTP NYFIVNLIAIA DLLLSFTVLP FSATLEVLY WVLGRIFCDI
 121 WAAVDVLCCCT ASILSLCAIS ID~~NY~~YIGVRYSLQYPTLVTRR KAILALLSVW VLSTVISIGP
 181 LLGWKEPAPN DDKECGVTEE PFYALFSSLG SFYIPLAVIL VMYCRVYIVA KRTTKNLEAG
 241 VMKEMSNSKE LTLRIHSKNF HEDTLSSTKA KGHNPRSSIA VKLFKFSREK KAAKTLGIVV
 301 GMFILCWLPF FIALPLGSLF STLKPPDAVF KVVFWLGYFN SCLNPIIYPC SSKEFKRAFM
 361 RILGCQCRSG RRRRRRRRLG ACAYTYRPWT RGGSLERSQS RKDSLDDSGS CMSGSQRTLP
 421 SASPSPGYLG RGAQPPLELC AYPEWKSGAL LSLPEPPGRR GRLDSGPLFT FKLLGEPESP
 481 GTEGDASNGG CDATTDLANG QPGFKSNMPL APGHF

(SEQ ID NO:44)

Angiotensin II Receptor, Type 1 (AT1A) [Rattus norvegicus].
 ACCESSION NP_112247

[MOVE
to FIG. 4C
page]

R126H

1 MALNSSAEDG IKRIQDD~~SPK~~ AGRHSYIFVM IPTLYSIIIFV VGIFGNLSVV IVIYFYMKLK
 61 TVASVFLNL ALADLCFLLT CP~~W~~AVYTAM EYRWPFGNHL CKIASASVTF NLYASVFLLT
 121 CLSID~~Y~~LAI VHPMKSRLRR TMLVAK~~TCI~~ IIWLMAGLAS LPAVIHRNRY FIENTNITVC
 181 AFHYESRNST LPIGLGLTKN ILGFLFPFLI ILTSYTLIWK ALKKAYEIQK NKPRNDDIFR
 241 IIMAIVLFFF FSWVPHQIFT FLDVLIQLGV IHDCKISDIV DTAMPITICI AYFNNCLNPL
 301 FYGFLGKKFK KYFLQLLKYI PPKAKSHSSL STKMSTLSYR PSDNMSSSAK KPASCFEVE

(SEQ ID NO:45)

FIG. 4C
FIG. 4 (cont.)

R143H

1 MNPDLDTGHN TSAPAQWHEL KDAFTGPNQ TSSNSTLPQL DVTRAISVGL VLGAFILFAI
 61 VGNILVILSV ACNRHLRTPT NYFIVNLAIA DLLLSFTVLP FSATLEVLGY WVLGRIFCDI
 121 WAAVDVLCCT ASILSLCAIS IDNYIGVRYS LQYPTLVTRR KAILALLSVW VLSTVISIGP
 181 LLGWKEPAPN DDKECGVTEE PFYALFSSLG SFYIPLAVIL VMYCRVYIVA KRTTKNLEAG
 241 VMKEMNSNSKE LTLRIHSKNF HEDTLSSTKA KGHNPRSSIA VKLFKFSREK KAAKTLGIVV
 301 GMFILCWLPF FIALPLGSLF STLKPPDAVF KVVFWLGYFN SCLNPIIYPC SSKEFKRAFM
 361 RILGCQCRSG RRRRRRRRLG ACAYTYRPWT RGGSLERSQS RKDSLDDSGS CMSGSORLTP
 421 SASPSPGYLG RGAQPPLELC AYPEWKSGAL LSLPEPPGRR GRLDSGPLFT FKLLGEPESP
 481 GTEGDASNGG CDATTDIANG QPGFKSNMPL APGHF

(SEQ ID NO:43)

[move
to
FIG 4B]
page

R143N

1 MNPDLDTGHN TSAPAQWHEL KDAFTGPNQ TSSNSTLPQL DVTRAISVGL VLGAFILFAI
 61 VGNILVILSV ACNRHLRTPT NYFIVNLAIA DLLLSFTVLP FSATLEVLGY WVLGRIFCDI
 121 WAAVDVLCCT ASILSLCAIS IDNYIGVRYS LQYPTLVTRR KAILALLSVW VLSTVISIGP
 181 LLGWKEPAPN DDKECGVTEE PFYALFSSLG SFYIPLAVIL VMYCRVYIVA KRTTKNLEAG
 241 VMKEMNSNSKE LTLRIHSKNF HEDTLSSTKA KGHNPRSSIA VKLFKFSREK KAAKTLGIVV
 301 GMFILCWLPF FIALPLGSLF STLKPPDAVF KVVFWLGYFN SCLNPIIYPC SSKEFKRAFM
 361 RILGCQCRSG RRRRRRRRLG ACAYTYRPWT RGGSLERSQS RKDSLDDSGS CMSGSORLTP
 421 SASPSPGYLG RGAQPPLELC AYPEWKSGAL LSLPEPPGRR GRLDSGPLFT FKLLGEPESP
 481 GTÉGDASNGG CDATTDIANG QPGFKSNMPL APGHF

(SEQ ID NO:44)

Angiotensin II Receptor, Type 1 (AT1A) [Rattus norvegicus].
 ACCESSION NP_112247

R126H

1 MALNSSAEDG IKRIQDDCPK AGRHSYIFVM IPTLYSIIIFV VGIFGNSLVV IVIYFYMKLK
 61 TVASVFLLNL ALADLCFLLT CPLWAVYTAM EYRWPFGNHL CKIASASVTF NLYASVFLLT
 121 CLSIDYLAI VHPMKSRLRR TMLVAKVTCI IIWLMAGLAS LPAVIHRNVY FIENTNITVC
 181 AFHYESRNST LPIGLGLTKN ILGFLFPFLI ILTSYTLIWK ALKKAYEIQK NKPRNDDIFR
 241 IIMAIVLFFF FSWVPHQIFT FLDVLIQLGV IHDCKISDIV DTAMPITICI AYFNNCLNPL
 301 FYGFLGKKFK KYFLQLLKYYI PPKAKSHSSL STKMSTLSYR PSDNMSSSAK KPASCFEVE

(SEQ ID NO:45)

FIGS 5A - 5B

Figure 5

A. Amino Acid sequence of the hGPR3- Enhanced Receptor

MMWGAGSPLAWSAGSGNVNVSSVGPAAEGPTGPAAPLPSPKAWDVVLCI SGT LVSCENA
 LVVAI IVGTPAFRAPMFLLVGSLAVADLLAGLGLVLHFAAVFCIGSAEMSLVLGVVLAM
 AFTASIGSLLAI TVDRYLSLYNALTYYSETTVTRTYVMLALVWGGALGLGLLPVLA
 LDGLTTCGVYVPLSKNHLVVLIAIAFFMVFGIMLQLYAQICRIVCRHAQQIALQRHLLPA
 SHYVATRKGIATLAVVLGAFaacWLPFTVCLLGDahSPPLYTYLTLLPATYNSMINPI
 IYAFRNQDVQKVLWAVCCCCAARGRTPPSLGPQDESCTTASSSLAKDTSS
 (SEQ ID No: 46)

B. Nucleotide sequence of the hGPR3- Enhanced Receptor

ATGA TGTGGGGTGCAGGCAGCCCTCTGGCCTGGCTCTCAGCTGGCTCAGGCAACGTGAA
 TGTAAGCAGCGTGGGCCAGCAGAGGGGCCACAGGTCCAGCCGACCACTGCCCTCGC
 CTAAGGCCTGGGATGTGGTCTGCATCTCAGGCACCCCTGGTGTCCCTGCGAGAAATGCG
 CTAGTGGTGGCCATCATCGTGGCACTCCTGCCTCCGTGCCCCCATGTTCTGCTGGT
 GGGCAGCCTGGCGTGGCAGACCTGCTGGCAGGCCTGGCCTGGTCTGCACTTGCTG
 CTGTCTCTGCATCGGCTCAGCGGAGATGAGCCTGGTGTGGTTGGCGTGTGGCAATG
 GCCTTTACYGCCAGCATGGCAGTCTACTGGCATTCACTGTCGACCGCTACCTTCTCT
 GTACAATGCCCTCACCTACTATTCAAGAGACAACAGTGACACGGACCTATGTGATGCTGG
 CCTTAGTGTGGGGAGGTGCCCTGGGCTGGGCTGCTGCCTGTGCTGGCCTGGAACTGC
 CTGGATGGCCTGACCACATGTGGCGTGGTTATCCACTCTCCAAGAACCATCTGGTAGT
 TCTGGCCATTGCCTTCTTCATGGTGTGGCATCATGCTGCACTACGCCAAATCT
 GCCGCATCGTCTGCCGCATGCCAGCAGATTGCCCTCAGCGGCACCTGCTGCCCTGCC
 TCCCACATGTGGCCACCGCAAGGGCATTGCCACACTGGCGTGGTGTGGAGCCTT
 TGCCGCCTGCTGGTTGCCCTTCACTGTCTACTGCCCTGCTGGGTGATGCCCACTCTCCAC
 CTCTCTACACCTATCTTACCTTGCTCCCTGCCACCTACAACCTGATCAACCCATAC
 ATCTACGCCCTCCGCAACCAGGATGTGAGAAAGTGTGGCTGTCTGCTGCTGCTG
 TGCGGCCGCACGGGGACGCACCCACCCAGCCTGGTCCCCAAGATGAGTCCTGCACCA
 CCGCCAGcTCCTCCCTGGCCAAGGACACTTCATCGTGA
 (SEQ ID No: 47)

FIGS. 5C - 5D

Figure 5 (continued)

C. Amino Acid sequence of the hGPR6- Enhanced Receptor

MNASAASLNDSQVVVVAEGAAAAATAAGGPDTGEWGPPAAAALGAGGGANGSLELSQ
 LSAGPPGLLPAVNPDVLLCVSGTVIAGENALVVALIASTPALRTPMFVLVGSLATAD
 LLAGCGLILHFVFQYLVSETVSLTVGLVVASFAASVSSLLAITVDRYLSLYNALTYY
 SRRTLLGVHLLAATWTVSLGLLPLVGNCLAERAACSVVRPLARSHVALLSAAFM
 VFGIMLHLYVRICQVWRHAHQIALQQHCLAPPHLAATRKVGVTLAVVLGTFGASWLPF
 AIYCVVGSHEDPAVYTATLLPATYNSMINPIIYAFRNQEIQRALWLLCGCAAARGRT
 PPSLGPQDESCTTASSSLAKDTSS
 (SEQ ID No: 48)

D. Nucleotide sequence of the hGPR6- Enhanced Receptor

ATGAACGCGAGCGCCGCCCTCGCTCAACGACTCCCAGGTGGTAGTGGCGGCCGAAGG
 AGCGGCCGGCGGCCACAGCAGCAGGGGGCCGGACACGGCGAATGGGGACCCCCCTG
 CTGCGGCCGGCTCTAGGAGCCGGCGGAGCTAATGGGTCTCTGGAGCTGTCTCGCAG
 CTGTCGGCTGGGCCACCGGGACTCCTGCTGCCAGCGGTGAATCCGTGGGACGTGCTCCT
 GTGCGTGTGGGGACAGTGATCGCTGGAGAAAACCGCCTGGTGGCGCTATCGCGT
 CCACTCCGGCCCTGCGCACGCCATGTTCGTGTGGTAGGCAGCCTGGCACCGCTGAC
 CTGTTGGCGGCGTGTGGCCTCATCTTGCACTTGTGTTCCAGTACTTGGTGCCCTCGGA
 GACTGTGAGTCTGCTCACGGTGGCTTCCTCGTGGCCTCTCGCCCTCTGTAGCA
 GCCTGCTGGCCATTACGGTGGACCGCTACCTGTCCTGTATAACGCGCTCACCTATTAC
 TCGGCCGGACCTGTTGGCGTGCACCTCCTGCTTGCCTGGCACCTGGACCGTGTCCCT
 AGGCCTGGGCTGCTGCCGTGCTGGCTGGAACTGCCTGGCAGAGCGCGCCCTGCA
 GCGTGGTGCGCCGCTGGCGCGAGCCACGTGGCTCTGCTCTCCGCCCTTCTTCATG
 GTCTTCGGCATCATGCTGCACCTGTACGTGCGCATCTGCCAGGTGGTCTGGCGCCACGC
 GCACCCAGATCCGGCTGCAGCAGCACTGCCCTGGGCCACCCATCTGCTGCCACCAAGAA
 AGGGTGTGGGTACACTGGCTGTGGTCTGGCACCTTCGGCGCCAGCTGGCTGCCCTTC
 GCCATCTATTGCGTGGTGGGCAGCCATGAGGACCCGGCGGTCTACACTACGCCACCC
 GCTGCCCGCCACCTACAACCTGATCAATCCCATCATCTATGCCCTCCGCAACCAGG
 AGATCCAGCGCCGCTGTGGCTCTGCTGTGGCTGTGCGGCCAGCGGGACGCACC
 CCACCCAGCCTGGTCCCCAAGATGAGTCCTGCACCACCGCCAGCTCCCTGGCCAA
 GGACACTTCATCGTGA
 (SEQ ID No: 49)

FIGS. 5E-5F
Figure 5 (continued)

E. Amino Acid sequence of the hGPR12- Enhanced Receptor

MNEDLKVNLSQLPRDYLDAAAENISAAVSSRVPAVEPEPELVLNPWDIVLCTSGTLIS
 CENAIIVLIIIFHNPSLIRAPMFLIGSLALADLLAGIGLITNFVFAYLLQSEATKLVTIG
 LIVASFSAVCSLLAITVDRYLSLYYALTYHSERTVTFTYVMLVMLWGTSLICLGLLPVM
 GWNCLRDESTCSVVRPLTKNAAILSVSFLFMFALMLQLYIQICKIVMRRAHQIALQHH
 FLATSHYVTTRKGVSTLAIILGTFAACWMPFTLYSLIADYTYPSIYTATLLPATYNSI
 INPVIYAFRNQEIQKALCLICCGCAAARGRTPPSLGPQDESCTTASSSLAKDTSS
 (SEQ ID No: 50)

F. Nucleotide sequence of the hGPR12- Enhanced Receptor

ATGAATGAAGACCTGAAGGTCAATTAAAGCGGGCTGCCTCGGATTATTTAGATGCCGC
 TGCTCGGGAGAACATCTCGGCTGCTGTCCTCCTCCGGGTTCCCTGCCGTAGAGCCAGAGC
 CTGAGCTCGTAGTCACCCCTGGGACATTGTCTTGTACCTCGGAAACCCCATCTCC
 TGTGAAAATGCCATTGTGGCCTTATCATCTTCCACAACCCCTGCGAGCACCCAT
 GTTCCCTGCTAATAGGCAGCCTGGCTCTTGAGACCTGCTGGCCGGATTGGACTCATCA
 CCAATTGGTTTGCTTACCTGCTTCAGTCAGAAGCCACCAAGCTGGTCACGATCGGC
 CTCATTGTCGCCTCTTCTCTGCCTCTGCTCTGAGCTTGTGGCTATCACTGTTGACCG
 CTACCTCTCACTGTACTACGCTCTGACGTACCATCGGAGAGGACGGTCACGTTACCT
 ATGTCATGCTCGTCATGCTCTGGGGACCTCCATCTGCCTGGGCTGCTGCCGTATG
 GGCTGGAAGTCGCTCCGAGACGAGTCACCTGCAGCGTGGTCAGACCGCTACCAAGAA
 CAACCGGCCATCCTCTCGGTGTCCTCTTCATGTTGCGCTCATGCTTCAGCTCT
 ACATCCAGATCTGTAAGATTGTGATGAGGGACGCCATCAGATAGCCCTGCAGCACCA
 TTCCCTGGCACGTCGCACTATGTGACCACCCGGAAAGGGGCTCCACCCCTGGCTATCAT
 CCTGGGGACGTTGCTGCTGGATGCCCTTACCCCTATTCCTTGATAGCGGATT
 ACACCTACCCCTCCATCTACCTACGCCACCCCTGCCACCTACAAATTCCATC
 ATCAACCCCTGTCATATGCTTCAGAAACCAAGAGATCCAGAAAGCGCTTGTCTCAT
 TTGCTGCGGCTGCGCGCCACGGGACGCACCCACCCAGCCTGGTCCCCAGATG
 AGTCCTGCACCACCGCCAGCTCCCTGGCCAAGGACACTTCATCGTGA
 (SEQ ID No: 51)

FIGS. 5G-5H
Figure 5 (continued)

G. Amino Acid sequence of the hSREB3- Enhanced Receptor

MANTTGEPEEVSGALSPPSASAYVKLVLLGLIMCVSLAGNAILSLLVLKERALHKAPYY
 FLLDLCLADGIRSAVCFPVLA SVRHGSSWTF SALSCKIVAFMAVLFCFHAAFCMLFCIS
 VTRYMAIAHHRFYAKRMTLWTCAAVICMAWTL SVAMAFPPVFDVGTYKFI REEDQCIFE
 HRYFKANDTLGFMLMLAVLMAA THAVY GKL LLFEYRHRKMKPVQM VPAISQNWTFHGP
 ATGQAAANWIAGFGRGPMPP TLLGIRQNGHAASRRLLGMDEVKGEKQLGRMFYAITLLF
 LLLWSPYIVACYW RVFVKACAVPHRYLATAVWMSFAQAAVNPIVCFLNKDLKKCLRTH
 APCAAARGRTPPSLGPQDESCTTASSSLAKDTSS
 (SEQ ID No: 52)

H. Nucleotide sequence of the hSREB3- Enhanced Receptor

ATGGCCAACACTACCGGAGAGCCTGAGGAGGTGAGCGGCCTCTGTCCCCACCGTCCGC
 ATCAGCTTATGTGAAGCTGGTACTGCTGGACTGATTATGTGCGTGAGCCTGGCGGGTA
 ACGCCATCTTGTCCCTGCTGGTGCCTCAAGGAGCGTGCCCTGCACAAGGCTCCTTACTAC
 TTCCCTGCTGGACCTGTGCCTGGCGATGGCATA CGCTCTGCCGTCTGCTTCCCCTTGT
 GCTGGCTTCTGTGCGCACGGCTCTTCATGGACCTTCAGTGCACTCAGCTGCAAGATTTG
 TGGCCTTATGGCCGTGCTCTTGCTTCCATGGCCCTTATGCTGTTCTGCATCAGC
 GTCACCCGCTACATGGCCATGCCACCACCGCTCTACGCCAAGCGCATGACACTCTG
 GACATGCGCGGCTGTCATCTGCATGGCCTGGACCTGTCTGTGGCATGGCCTTCCAC
 CTGCTTTGACGTGGCACCTACAAGTTATTGCGGAGGAGGACAGTGCATCTTGAG
 CATCGCTACTTCAAGGCCATGACACGCTGGCTTCA TGCTTATGTTGGCTGTGCTCAT
 GGCAGCTACCCATGCTGTCTACGGCAAGCTGCTCCTCTCGAGTATCGTCAACCGCAAGA
 TGAAGCCAGTGCAGATGGTGCCAGCCATGCCAGAACTGGACATTCCATGGTCCCGGG
 GCCACCGGCCAGGCTGCTGCCACTGGATGCCGGCTTGGCCGTGGCCCATGCCACC
 AACCCCTGCTGGGTATCCGGCAGAATGGGATGCAGCCAGCCGGCTACTGGGATGG
 ACGAGGTCAAGGGTGAAGCAGCTGGGCCATGTTCTACCGCAGTACACTGCTCTT
 CTGCTCCTCTGGTACCCCTACATCGTGGCCTGCTACTGGCAGTGTGAAAGCCTG
 TGCTGTGCCCAACCGCTACCTGCCACTGCTGTTGGATGAGCTGCCAGGCTGCCG
 TCAACCCAATTGTCTGCTTCTGCTCAACAAGGACCTCAAGAAGTGCCTGAGGACTCAC
 GCCCCCTGCGCGGCCGACGGGACGCACCCACCCAGCCTGGTCCCAAGATGAGTC
 CTGCACCACCGCCAGCTCCTCCCTGCCAAGGACACTTCATCGTGA
 (SEQ ID No: 53)

FIGS. S1 - S5

Figure 5 (continued)**I. Amino Acid sequence of the hSREB2- Enhanced Receptor**

MANYSHAADNLQNLSPLTAFLKLTSLGFIIGVSVVGNNLLISILLVKDKTLHRAPYYFL
 LDLCCSDILRSAICFPVFNSVKNGSTWTYGTLCVIAFLGVLSFCHTAFMLFCISVT
 RYLAIAHHRFYTKRLTFWTCLAVICMVWTLSVAMAFPPVLDVGTYSFIREEDQCTFQHR
 SFRANDSLGFMLLLALILLATQLVYKLIFVHDDRKMKPQFVAAVSQNWTFHGP GAS
 GQAAANWLAGFGRGPTPPTLLGIRQNANTGRRRLVLDEFKMEKRISRMFYIMTFLFL
 TLWGPYLVACYWRVFARGPVVPGGFLAAVWMSFAQAGINPFVCIFSNRELRRCFSTTL
 LYCAAARGRTPPSLGPQDESCTTASSSLAKDTSS
 (SEQ ID No: 54)

J. Nucleotide sequence of the hSREB2- Enhanced Receptor

ATGGCGAACTATAGCCATGCAGCTGACAACATTTGCAAAATCTCTGCCTCTAACAGC
 CTTTCTGAAACTGACTTCCTGGTTTCATAATAGGAGTCAGCGTGGTGGCAACCTCC
 TGATCTCCATTGGCTAGTGAAGATAAGACCTGCAAGAGCACCTTACTACTTCCTG
 TTGGATCTTGCTGTTAGATATCCTCAGATCTGCAATTGTTCCATTGGTGTCAA
 CTCTGTAAAAATGGCTTACCTGGACTTATGGGACTCTGACTTGCAAAGTGATTGCCT
 TTCTGGGGTTTGTCTGTTCCACACTGCTTCTGCTTCTGCACTCAGTGTCA
 AGATACTTAGCTATGCCCATACCGCTTCTATACAAAGAGGCTGACCTTTGGACGTG
 TCTGGCTGTGATCTGTATGGTGTGGACTCTGCTGTGGCATGGCATTTCCCCGGTT
 TAGACGTGGGACTTACTCATTAGGGAGGAAGATCAATGCACCTCCAACACCGC
 TCCTTCAGGGCTAATGATTCTAGGATTATGCTGCTTCTGCTCTCATCCTCCTAGC
 CACACAGCTTGTCTACCTCAAGCTGATATTTCTGTCACGATCGAAGAAAATGAAGC
 CAGTCCAGTTGTAGCAGCAGTCAGCCAGAACTGGACTTTCACTGGCCTGGAGCCAGT
 GGCCAGGCAGCTGCCAATTGGCTAGCAGGATTGGAAAGGGTCCCACACCACCCACCTT
 GCTGGCATTAGGCAAAATGCAAACACCAACAGGCAGAAGAAGGCTATTGGCTTAGACG
 AGTTCAAAATGGAGAAAAGAATCAGCAGAATGTTCTATATAATGACTTTCTGTTCTA
 ACCTTGTTGGGGCCCTACCTGGTGGCCTGTTATTGGAGAGTTTGCAAGAGGGCCTGT
 AGTACCAAGGGGATTCTAACAGCTGCTGTGGATGAGTTTGCCCAAGCAGGAATCA
 ATCCTTTGTCGCATTTCTCAAACAGGGAGCTGAGGCCTGTTCAAGCACAACCTT
 CTTTACTGCGCGGCCGACGGGACGCACCCACCCAGCCTGGTCCCCAAGATGAGTC
 CTGCACCAACGCCAGCTCCTCCCTGGCCAAGGACACTTCATCGTGA
 (SEQ ID No: 55)

FIGS. 5K-5L
Figure 5 (continued)

K. Amino Acid sequence of the hGPR8- Enhanced Receptor

MQAAGHPEPLDSRGFSLPTMGANVSQDNGTGHNATFSEPLPFLYVLLPAVYSGICAVG
 LTGNTAVILVILRAPKMKTVTNFILNLAVADGLFTLVPVNIAEHLQYWPFGEELLCK
 LVLAVDHYNIFSSIYFLAVMSVDRLVVLATVRSRHMWPRTYRGAKVASLCVWLGVTLV
 VLPFFSFAGVYSNELQVPSCGLSFPWPVERWFKAASRVYTLVLFVLPVCTICVLYTDLL
 RRLRAVRLRGAKALGKARRKVTVLVVLAVCLLCWTPFHLASVALTTDLPQTPLVI
 SMSYVITSLSYANSCLNPFLYAFLDDNFRKNFRSILRCAAARGRTPPSLGPQDESCTTA
 SSSLAKDTSS
 (SEQ ID No: 56)

L. Nucleotide sequence of the hGPR8- Enhanced Receptor

ATGCAGGCCGCTGGGCACCCAGAGCCCCTTGACAGCAGGGCTCCTCTCCCTCCCCAC
 GATGGGTGCCAACGTCTCTCAGGACAATGGCACTGGCCACAATGCCACCTCTCCGAGC
 CACTGCCGTTCTCTATGTGCTCTGCCCGCGTGTACTCCGGATCTGTGCTGTGGGG
 CTGACTGGCAACACGGCGTCATCCTGTAATCCTAAGGGGCCAAGATGAAGACGGT
 GACCAACGTGTTCATCCTGAACCTGGCCGTCGCCGACGGGCTTACGCTGGTACTGC
 CCGTCAACATCGCGGAGCACCTGCTGCAGTACTGCCCTCGGGGAGCTGCTCTGCAAG
 CTGGTGTGGCGTGCACCCTACAACATCTTCTCCAGCATCTACTTCCTAGCCGTGAT
 GAGCGTGGACCGATACTGGTGGTGTGCCACCGTGAGGTCCGCCACATGCCCTGGC
 GCACCTACCGGGGGCGAACGGTCGCCAGCTGTGTCTGGCTGGCGTCACGGTCCTG
 GTTCTGCCCTTCTCTTCGCTGGCGTCTACAGCAACGAGCTGCAGGTCCAAGCTG
 TGGGCTGAGCTCCGTTGGCCCGAGCGGGCTGGTTCAAGGCCAGCCGTGTACACTT
 TGGTCCTGGGCTTCGTGCTGCCGTGTGCACCATCTGTGTGCTCTACACAGACCTCCTG
 CGCAGGCTGCCGCGTCGCCGCTCCGCTCTGGAGGCCAAGGCTCTAGGCAAGGCCAGGG
 GAAGGTGACCGTCTGGCTCTCGTGTGTGGCCCTGACCGACGGACCTGCCAGACCCACTGGTCATC
 TCCACCTGCCCTCTGCGTGGCCCTGACCGACGGACCTGCCAGACCCACTGGTCATC
 AGTATGTCCTACGTACCACTACGCTCAGCTACGCCAACTCGTGCCTGAACCCCTTCCT
 CTACGCCCTTAGATGACAACCTCCGGAAGAACCTCCGCAAGCATATTGCGGTGCGCGG
 CCGCACGGGGACGCACCCACCCAGCCTGGTCCCCAAGATGAGTCCTGCACCAACGCC
 AGCTCCTCCCTGGCAAGGACACTTCATCGTGA
 (SEQ ID No: 57)

FIGS 5M-5N
Figure 5 (continued)

M. Amino Acid sequence of the hGPR22-Enhanced Receptor

MCFSPILEINMQSESNI TVRDDIDDDINTNMYQPLSYPLSFQVSLTGFLMLEIVLGLGSN
 LTVLVLYCMKSNLINSVSN I TMNLHVLVDI ICVGCIPLTIVILLLSLESNTALICCFH
 EACVSFASVSTAINVFAITLDYDI SVKPANRILTMGRAVMLMISIWIFSFFSFLIPFI
 EVNFFSLQSGNTWENKTLVCSTNEYYTTELGMYYHLLVQIPIFFFFVVVMLITYTKIQL
 ALNIRIGTRFSTGQKKKARKKKTISLTTQHEATDMSQSSGRNVVFGVRTSVS VII ALR
 RAVKRHRERRERQKRVFRMSLLIISTFLLCWTPISVLNTTILCLGPDSDLVVKLRLCFLV
 MAYGTTIFHPLLYAFTRQKFQKVLSKMKR VVCAAARGRTPPSLGPQDESCTTASSSL
 AKDTSS
 (SEQ ID No: 58)

N. Nucleotide sequence of the hGPR22-Enhanced Receptor

ATGTGTTTTCTCCcaTTCTGGAAATCAACATGCAGTCTGAATCTAACATTACAGTGCG
 AGATGACATTGATGACATCAACACCAATATGTACCAACCCTATCATATCCGTTAACGCT
 TTCAAGTGTCTCACCAGATTCTTATGTTAGAAATTGTGTTGGACTTGGCAGCAAC
 CTCACTGTATTGGTACTTTACTGCATGAAATCCAACCTTAATCAACTCTGTCACTAACAT
 TATTACAATGAATCTTATGTACTTGATGTAATAATTGTGTTGGATGTATTCCCTCTAA
 CTATAGTTATCCTTCTGCTTCACTGGAGAGTAACACTGCTCTCATTTGCTGTTCCAT
 GAGGCTTGTGTATCTTGCAAGTGTCTAACAGCAATCAACGTTTGCTATCACTTT
 GGACAGATATGACATCTGTAAAACCTGCAAACCGAATTCTGACAATGGGAGAGCTG
 TAATGTTAATGATATCCATTGGATTTCTTTCTCTTCTGATTCCCTGATTCCCTTTATT
 GAGGTTAAATTTTCAGTCTCAAAGTGGAAATACCTGGGAAAACAAGACACTTTATG
 TGTCACTACAAATGAATACTACACTGAACTGGGAATGTATTATCACCTGTTAGTACAGA
 TCCCAATATTCTTTCACTGTTAGTAATGTTAATCACATACACCAAAATACTTCAG
 GCTCTTAATATTGAATAGGCACAAGATTCAACAGGGCAGAAGAAGAAAGCAAGAAA
 GAAAAAGACAATTCTAACCACACAACTGAGGCTACAGACATGTCACAAAGCAGTG
 GTGGGAGAAATGTAGTCTTGGTGTAGAAACTTCAGTTCTGTAATAATTGCCCTCCGG
 CGAGCTGTGAAACGACACCGTGAACGACGGAGAAAGACAAAAGAGAGTCTCAGGATGTC
 TTTATTGATTATTCTACATTCTCTGCTGGACACCAATTCTGTTAAATACCA
 CCATTCTATGTTAGGCCAAGTGACCTTTAGTAAATTAAGATTGTGTTTTAGTC
 ATGGCTTATGGAACAATATTCAACCTCTATTATATGCATTCACTAGACAAAATT
 TCAAAAGGTCTGAAAAGTAAATGAAAAGCGAGTTGTGCGGGCGCACGGGAC
 GCACCCCCACCCAGCCTGGTCCCCAAGATGAGTCCTGCACCAACGCCAGCTCCTCCCTG
 GCCAAGGGACACTTCATCGTGA
 (SEQ ID No: 59)

FIG. 6A - 6C
FIGURE 6

A. Amino acid sequence of the β_2 AR-V2R chimera

MGQPGNGSAFL LAPNRSHAPDHDTQQRDEVVVGMGIVMSLIVLAI VFGNVLVITAI
 AKFERLQTVTNYFITS LACADLVMGLAVV PFGAAHILMKMWTFGNFWCEFWT\$IDVLC
 VTASIETLCVIAVDRYFAITSPFKYQSLLTKNARVII LMVVIVSGLTSFLPIQMHWYRAT
 HQEA INCYANETCCDFFTQNQAYAIASSIVSFYVPLVIMVVFVYSRVQEAKRQLQKIDKSE
 GRFHVQNLSQLSQVEQDGRTGHGLRRSSKFC LKEH KALKTLGIIMGTFTLCWLPFFIVNIVHV
 IQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQELLCAR GRTPPSLGPQDESCTT
 ASSSLAKDTSS
 (Seq. ID No. 60)

B. Amino acid sequence of the MOR-V2R chimera

MDSSTGPGNTSDCSDPLAQASCSPAPGSWLNLSHVDGNQSDPCGLNR TGLGGNDLCP
 QTGSPSMVTAITIMALYSIVCVVGLFGNFLV MYVIVRYTKMKTATN IYIFNLALADALAT
 STLPFQS VNYLMGTWPF GTI LCKIVISIDYYNMFTSIFTLC TMSVDRYIAVCHPVKA LDFR
 TPRNAKIVNVCNWLSSAIGLPVFMATT K YRQGSIDC TLTF SHPTWY WENLLKICVFIF
 AFIMPILII TVCYGLMILRLKS VRMLSGSKEKDRN LRRITRMV L VVVA V FIVCWTPIH IYVI
 IKALITIPETTFQTVSWHFCIALGYTN SCLNPVLYAFLDENFKRCFREFCAAARGRTPPSL
 GPQDESCTTASSSLAKDTSS
 (Seq. ID No. 61)

C. Amino acid sequence of the D1AR-V2R chimera

MAPNTSTMDEAGLPAERDFSFRILTACFLSLLILSTLLGNTLVCAA VIRFRHLRSKVTNFF
 VISLA VSDLLVAVLVMPWKAVAEIAGFW PFGSFCNIWVAFDIMCSTASILNLCVISVDRY
 WAISSPFQYERKMTPKAA FILISVAW TLSVLISFIPVQLSWHKAKPTWPLDG NFTSLEDTE
 DDNC DTRL SRTYAISSSLISFYIPV AIMIVT YTSIYRIAQKQIRRISALERA AVHAKNCQTT
 AGNGNPVECAQSESSFKMSFKRET KVLKTL SVIMGVFVCCWLPFFISNCMVPFCGSEET
 QPFCIDSITFDVFVWFGWANSSLNPITYAFNADFQKAFSTLLGCYRLCAAARGRTPPSLGP
 QDESCTTASSSLAKDTSS
 (Seq. ID No. 62)

FIGS. 6D - 6F
Figure 6 (cont.)

D. Amino acid sequence of the 5HT1AR-V2R chimera

MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQVITSLLLGTIFCAVLGNACVVAA
 IALERSLQNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNKWTLGQVTCDLFIALDVL
 CCTSSILHLCAIALDRYWAITDPIDYVNKRTPRRAAALISLTWLIGFLISIPPMLGWRTPED
 RSDPDACTISKDHGYTIYSTFGAFYIPLLMLVYGRIFRAARFRIRKTVKKVEKTGADT
 RHGASPAPQPKSVNGESGSRNWRLGVESKAGGALCANGAVRQGDDGAALEVIEVHR
 VGNNSKEHLPLPSEAGPTCAPASFERKNERNAEAKRMALARERKTVKTLGIIMGTFILC
 WLPFFIVALVLPFCESSCHMPTLLGAIINWLGYSNSLLNPVIYAYFNKDFQNAFKKIIKCN
 FCAAARGRTPPSLGPQDESCTTASSSLAKDTSS
 (Seq. ID No. 63)

E. Amino acid sequence of the β 3AR-V2R chimera

MAPWPHENSSLAPWPDLPTLAPNTANTSGLPVPWEAALAGALLALAVLATVGGNLLV
 IVALAWTPRLQTMTNVFTSLAAADLVMGLLVVPPAATLALTGHWPLGATGCELWTSV
 DVLCVTASIETLCALAVDRYLAUTNPLRYGALVTKRCARTAVVLVWVVAASFAPIM
 SQWWVRVGADAEAQRCHSNPRCCAFASNMPYVLLSSVSFYLPLLVMFLFVYARVFVVA
 TRQLRLRGEGRFPPEESPPAPSRSLAPAVGTCAPPEGVPACGRRPARLLPLREHRALC
 TLGLIMGTFTLCWLPFFLANVRLALGGPSLVPGPAAFLALNWLGYANSAFNPLIYCRSPDF
 RSAFRRLLCRCAAARGRTPPSLGPQDESCTTASSSLAKDTSS
 (Seq. ID No. 64)

F. Amino acid sequence of the Edg1R-V2R chimera

MGPTSVPLVKAHRSSVSDYVNYDIIVRHYNYTGKLNISADKENSIKLTSVVFILICCFIILE
 NIFVLLTIWTKKFHRPMYYFIGNLALS DLLAGVAYTANLLSGATTYKLT PAQWFLRE
 GSMFVALSASVFSLLAIAJERYITMLKMKLHNGSNNFRLFLISACWVVISLILGGLPIMGW
 NCISALSSCSTVLPFLYHKHYILFCTTVFTLLL SIVILYCRIVSLVTRRSRRLTFRKNISKAS
 RSSEKSLALLKTVIIVLSVFIACWAPLFILLLDVGCKVKTCDILFRAEYFLVLAVLNSGT
 NPIIYTLTNKEMRRAFIRIMSCCKCAAARGRTPPSLGPQDESCTTASSSLAKDTSS
 (Seq. ID No. 65)