Qualifying Exam in Analysis August 1999

FIEGAWhich fails the Notation: N denotes the natural numbers, $\mathbb Q$ the rational numbers, $\mathbb R$ denotes the real numbers, and λ Lebesgue measure on \mathbb{R} .

Note: All problems except number 9 are worth 10 points each

If A is a subset of [a,b], then there exists a measurable set $E \subset A$ such that if F is measurable and $F \subset A$, then $\lambda(F \setminus E) = 0$.

Is the result still true if we only assume that $A \subset \mathbb{R}$?

Suppose that for each $n \in \mathbb{N}$, F_n is a nondecreasing absolutely continuous functions on [a, b] such that

(1) $F_n(a) = 0$ for each n, and

(2) the sequence $\{F'_n(x)\}$ is decreasing for a.e. x.

Prove that

(a) $\{F_n(x)\}\$ is decreasing for each x, and

(b) If $F(x) = \lim_{n \to \infty} F_n(x)$, then F(x) is absolutely continuous.

3. Suppose $\{E_n\}$ is a sequence of measurable subset of \mathbb{R} such that for every interval I, $\lim_{n\to\infty} \lambda(E_n\cap I) = \alpha\lambda(I)$, where α is a constant with $\alpha\in[0,1]$. If f is Lebesgue integrable, prove that

$$\lim_{n\to\infty}\int_{E_n}f\,d\lambda=\alpha\int_{\mathbb{R}}f\,d\lambda.$$

4. Let $\{p_n\}$ be a sequence of 2π -periodic measurable functions on $\mathbb R$ satisfying

(a) $p_n(t) \ge 0$ for all n and t,

(b) $\int_{-\pi}^{\pi} p_n(t) dt = 1$,

(c) For each $\delta > 0$, $\lim_{n \to \infty} \int_{\delta \le |t| \le \pi} p_n(t) dt = 0$.

For f continuous and 2π -periodic on \mathbb{R} , set

$$f_n(x) = \int_{-\pi}^{\pi} p_n(x-t)f(t)dt.$$

Prove that $\lim_{n\to\infty} f_n(x) = f(x)$ uniformly on \mathbb{R} .

5. Let $\{g_n\}$ be a sequence in $L^q([0,1],\lambda)$, $1 < q < \infty$, such that $\|g_n\|_q \leq M$ for some M > 0 and all n. Suppose also that

$$\lim_{n\to\infty}\int_0^1 fg_n d\lambda$$

exists for every $f \in L^{\infty}([0,1],\lambda)$. Prove that

(a) if $f \in L^p([0,1],\lambda)$, where $\frac{1}{p} + \frac{1}{q} = 1$, then $\lim_{n \to \infty} \int_0^1 fg_n d\lambda$ exists, and

(b) there exists $g \in L^q([0,1],\lambda)$ with $||g||_q \leq M$ and

$$\lim_{n\to\infty}\int_0^1 fg_n d\lambda = \int_0^1 fg\,d\lambda.$$

6. Let f be analytic in B(0,1) and let γ be a closed path in B(0,1). For any $z_0 \in B(0,1), z_0 \notin \gamma$, prove that

$$\int_{\gamma} \frac{f'(\zeta)}{\zeta - z_o} d\zeta = \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_o)^2} d\zeta$$

- 7. Prove that $\int_0^\pi e^{\cos\theta}\cos(\sin\theta)d\theta=\pi$. (Hint: Consider $\int_{\gamma}(e^z/z)dz$ where γ is the unit circle)
- 8. a. For each positive integer n, show that $F_n(z) = \int_{1/n}^1 e^{-t} t^{(z-1)} dt$ is analytic in Re z > 0, where $t^z = e^{z \ln t}$. (Hint: Consider Morera's theorem.)
 - b. Show that for every $\delta > 0$, $F_n(z)$ converges uniformly to an analytic function F(z) on $\text{Re } z \geq \delta$.
- 9. (20) True or False! If the result is true, prove it; if the result is false, provide a counterexample.
 - a. If f is monotone increasing on [a, b] and continuous with f'(x) = 0 a.e. on [a, b], then f is constant on [a, b].
 - b. If f is continuous on [0,1] and absolutely continuous on [c,1] for every c>0, then f is absolutely continuous on [0,1].
 - c. If f is differentiable on (a, b), then f' is continuous on (a, b).
 - d. The set of functions $f \in L^1([0,1],\lambda)$ with $||f||_1 = 1$ is sequentially compact in the norm topology of L^1 .
 - e. If f is analytic in \mathbb{C} satisfying $|f(z)| \leq M|z|^n$ for some constant M and all z sufficiently large, then f is a polynomial of degree less than or equal to N.