UNIVERSITE DE THIES UFR SET DPT. INFORMATIQUE

Licence Génie Informatique 2^{éme} année

Année universitaire 2019-2020

TRAVAUX DIRIGES N°2

Responsable du cours : Pr. Cheikh SARR

Chargé de TD: Dr. Cheikh CISSÉ

Exercice 0:

- 1. Qu'est-ce que l'ISO?
- 2. Que signifie OSI?
- 3. Combien de couches comporte ce modèle. Donner le nom et la fonction de chacune des couches.
- 4. Qu'est-ce qu'un "PDU" ?
- 5. Comment se nomme les PDU des couches Transport, Réseau et Liaison de donnée.
- 6. Comment se nomme le modèle utilisé par l'Internet ? En déduire chacune des couches de ce modèle ?
- 7. Quelle est la différence principale entre TCP et UDP?
- 8. Expliquer la différence entre un protocole orienté connexion et un autre non orienté connexion ?
- 9. Quelles couches OSI s'occupent habituellement du matériel et lesquelles sont concernées par le logiciel ? le modèle OSI s'applique-t-il aux réseaux locaux ou aux réseaux étendus ou aux deux ?

Exercice1:

- 1. Que signifient une communication *broadcast* et *unicast*?
- 2. Définir c'est quoi un domaine de collision.
- 3. Comment se déroule la réception d'une trame Ethernet ?
- 4. Décrire le phénomène de l'encapsulation dans TCP/IP. Faites une illustration en prenant comme exemple une connexion sur la page https://www.facebook.com/login
- 5. A quelles couches correspondent les services suivants?
 - a. Le transporteur
 - b. Le traducteur
 - c. Centre de tri
 - d. L'écrivain

Exercice 2:

Définissez à quelle(s) couche(s) fonctionnent les protocoles ou périphériques suivants :

Protocoles/Périphérique	Physique	Liaison	Réseau	Transport	session	Présentation	Application
		de					
		données					
Une fibre optique							
Une carte réseau							

Un répéteur				
IP				
Un routeur				
Un commutateur				
MAC				
FTP				
Un concentrateur				
Un pont				
ICMP				
Un câble RJ45				
TCP				

Exercice 3:

- 1. Quelles informations sont ajoutées lors de l'encapsulation se produisant au niveau de la couche 3 du modèle OSI ?
 - a. Les adresses MAC de la source et de la destination
 - b. Le protocole application de la source et de la destination
 - c. Le numéro du port de la source et de la destination
 - d. Les adresses IP de la source et de la destination
- **2.** Dans un système non orienté connexion, quelle affirmation parmi les suivantes est exacte ?
 - a. La destination est contactée avant l'envoi d'un paquet
 - b. La destination n'est pas contactée avant l'envoi d'un paquet
 - c. La destination envoi un accusé de réception à la source, indiquant que le paquet a bien été recu.
 - d. La destination envoi un accusé de réception à la source pour demander l'envoi d'un paquet suivant
- 3. Quelle est la fonction principale des paramètres du CRC ajoutés par le processus d'encapsulation de la couche liaison de donnée ?
 - a. Ils prennent en charge la détection des erreurs
 - b. Ils garantissent l'arrivée des données dans le bon ordre
 - c. Ils garantissent un transfert à la destination adéquate
 - d. Ils permettent d'identifier les périphériques sur le réseau local
- 4. Quelles couches du modèle OSI possèdent les mêmes fonctions que la couche d'accès réseau du modèle TCP/IP ?
 - a. Réseau
 - b. Transport
 - c. Physique
 - d. Liaison de données

e. Session

Exercice 4:

1. Relier chaque terme avec sa définition

2. Relier les termes placés à gauche et portant sur les réseaux vers la couche qui leur correspond à droite.

Exercice 5:

Répondez aux questions suivantes sur l'encapsulation des couches OSI:

- 1. Quelle couche produite des paquets durant l'encapsulation?
- 2. Quel type d'encapsulation produit la couche 6 ?
- 3. Sur quelle couche retrouve-t-on les bits?
- 4. Dans quelle encapsulation retrouve-t-on les adresses MAC?
- 5. Quel est le résultat de l'encapsulation de couche 4?
- 6. Donnez dans l'ordre les encapsulations de la couche la plus haute à la couche la plus basse.

Exercice 6:

Un utilisateur veut transférer des données de taille 6400 Octets vers une machine du même réseau local de MTU égal à 1800 Octets ; les entêtes sont de taille 20 Octets.

Donnez le nombre et la taille de chaque ségment.

POUR LES CURIEUX ...

ENTRAINEMENT 1:

On considère les paramètres suivants pour un réseau à commutation :

- − N : nombre de liaisons séparant deux stations données,
- − D : débit des liaisons (en bit/s),
- -tp: temps de propagation sur une liaison (en secondes),
- -L: longueur de l'information que souhaite envoyer l'usager,
- -l: longueur maximum du champ de données d'un paquet ou d'un datagramme (en bits),
- − EM : longueur de l'en-tête d'un message (en bits),
- -EP: longueur de l'en-tête d'un paquet (en bits),
- -te: délai d'établissement d'un circuit ou d'un circuit virtuel (en secondes),
- -tr: délai de décision du routage (en secondes).

On néglige le temps de traitement (hors routage) des nœuds.

- 1. Calculer le délai moyen de transfert d'un message de l'usager (délai aller-simple), pour
 - a. un réseau à commutation de circuits,
 - b. un réseau à commutation de messages,
 - c. un réseau à commutation de paquets en mode circuit virtuel,
 - d. un réseau à commutation de paquets en mode datagramme (on ne tiendra pas compte du délai éventuel de re-séquencement).

Appli. Numérique:

$$N = 4$$
, $D = 96000$, $tp = 0$, 001 , $L = 3200$, $l = 1024$, $EM = 160$, $EP = 24$, $ED = 160$, $te = 0$, 2 , $tr = 0$, 01

ENTRAINEMENT 2:

Soit deux serveurs A et B connectés l'un à l'autre au moyen d'une seule liaison à R bits/s. Supposez que les deux serveurs soient séparés par une distance de m mètres et supposez que la vitesse de propagation le long de la liaison est de v m/s. Le serveur A envoie un paquet de L bits à l'hôte B.

- a. Exprimez le temps de propagation d_{prop} en fonction de m et v.
- b. Déterminez le temps de transmission du paquet d_{trans} en fonction de L et R.
- c. Supposez que le serveur A commence à transmettre le paquet au temps t=0. Où se trouve le dernier bit du paquet à l'instant $t=d_{trans}$?
- d. Soit d_{prop} supérieur à d_{trans} . A l'instant t = dtrans où est le premier bit du paquet ?

e.	Soit d _{prop} inférieur à d _{trans} . A l'instant t= d _{trans} où est le premier bit du paquet ?