Mixed Effects Project Revisited - Formulas

The goal is to find the marginal effect of random-effect regressor $Z_p\left(QB, Team, Opponent\right)$ on passing efficiency (EPA_{pass}) while controlling for remaining random effects. The effects will be quantified by estimating random-effect coefficients and transforming them into parameters: θ_p . Random-effect coefficients are "parameterized" as the relative Cholesky factors of each random effect term Z_p . X_p is any fixed-effect(s) with coefficient(s) β_p . Coefficients will be estimated using OLS.

Formulas

Example: Finding marginal effect (θ_1) on passing efficiency (EPA_{pass}) when there's a change in QB (ΔQB) ; dependent on Team and Opponent

$$\begin{split} EPA_{pass} &= \beta_{p,i}X_{p,i} + \theta_1QB_i + \theta_2Team_i + \theta_3Team_iQB_i + \\ & \theta_4Opponent_i + \theta_5Opponent_iQB_i + \in_i \\ & \frac{EPA_{pass}}{\Delta QB} = \theta_1 + \theta_3Team_i + \theta_5Opponent_i \end{split}$$

Equation: Finding θ_p on EPA_{pass} when ΔZ_p ; dependent on remaining random-effects.

$$\begin{split} EPA_{pass} = \beta_{p,i}X_{p,i} + \theta_1QB_i + \theta_2Team_i + \theta_3Team_iQB_i + \theta_4Opponent_i + \\ \theta_5Opponent_iQB_i + \theta_6Opponent_iTeam_i + \in_i \end{split}$$

I should be able to estimate the coefficients $\theta_1,\theta_2,\theta_4$

$$\frac{EPA_{pass}}{\Delta QB} = \theta_1 + \theta_3 Team_i + \theta_5 Opponent_i$$

$$\frac{EPA_{pass}}{\Delta Team} = \theta_2 + \theta_3 QB_i + \theta_6 Opponent_i$$

$$\frac{EPA_{pass}}{\Delta Opponent} = \theta_4 + \theta_5 QB_i + \theta_6 Team_i$$

The coefficients $\theta_1, \theta_2, \theta_4$ should be able to tell us the relative impact that QB, Team, and Opponent have on Passing Efficiency.