Energy Storage For Azores

19.10.2023

Why Azores?

- 9 Islands
- It's devided into three main groups
- Energy Systems on the islands depend mostly on fossil fuels
- The Energy has to be transported to the islands

Problems with the isolation of the islands

 Each island has its own independent energy system

High Costs of transportation

 Problems related with the transportation of energy

Integration of Energy Storage

- Three islands: Faial, Flores and S. Miguel
- Different energy mixes
- Energy Storage System will be used to store energy during periods of high electricity production
- Reduce the energy production based on non-renewable sources
- Main goal: Energy independence of each island

Overview

- 1. Electrical Energy
- 2. Electrochemical Energy Storage
- 3. Thermal Energy
- 4. Thermal Energy Storage
- 5. Data Analysis

State of arts: Electrical Energy

Electrical energy is the potential ability to perform work using electric current. It is measured in watt-hours or joules.

E - electrical energy (Wh); P - stands for power (W); t denotes time (h)

State of arts: Electrochemical Energy Storage

Lithium-ion Battery

Lithium Ion (Li-Ion) Battery System is an energy storage system based on electrochemical charge/discharge reactions that occur between a positive electrode (cathode) that contains some lithiated metal oxide and a negative electrode (anode) that is made of carbon material or intercalation compounds.

https://www.nature.com/articles/s41928-018-0048-6

Why Lithium-ion Battery?

Power range	1kW to 50 MW
Energy range	Up to 10 MWh
Discharge time	10min to 4h
Cycle life	2,000 - 10,000 cycles
Life duration	15 - 20 years
Reaction time	Some millisec
Efficiency	90 - 98 % [*]
Energy (power) density	120 - 180 Wh/kg
CAPEX: energy	700 - 1,300 €/kWh
CAPEX: power	150 - 1,000 €/kW

https://ease-storage.eu/energy-storage/technologies/

State of arts: Thermal Energy

The energy required "E" to heat a volume "V" of a substance from a temperature "T1" to a temperature "T2" is given by (Dincer, Rosen; 2011):

$$E = mC(T2 - T1) = \rho VC(T2 - T1)$$
, where:

m-mass; C-specific heat capacity; T2-T1-temperature difference; ρ-density; V-volume

State of arts: Thermal Energy

State of arts: Thermal Energy Storage

SH

Sensible Heat Energy

- Graphite
- Ceramics, silica and sand
- Molten Salts
- Concrete
- Rocks
- Steel
- Underground water
- Water

LH

Latent Heat Storage

- Microencapsulated metals
- Inorganic salts and eutectic mixtures
- Sodium
- Other liquid metals
- Molten aluminium alloy
- Paraffin waxes, fatty acids
- Salt hydrates
- Salt-water mixtures
- lce lce
- Liquid air

TCS

Thermochemical Heat Storage

- Chemical Reaction Storage (f.e. ammonia)
- Absorption
- Adsorption

Molten Salts - Advantages

Wide Operating Temperature Range

Molten salts, such as nitrate salts have lower freezing points (reducing the risk of freezing) and higher maximum temperature limits (exceeding 600°C) as opposed to different heat transfer fluids.

Low Vapor Pressure

Molten salts experience minimal vapor pressure even at high temperatures, reducing the need for costly high-pressure equipment.

Efficiency

Molten salts offer good thermal stability and efficient heat transfer, resulting in eco-friendly and cost-effective operation.

Ammonia, as a Thermochemical Material

- Advantages

$$2NH_3 + \Delta H \stackrel{catalyst}{\rightleftharpoons} N_2 + 3H_2$$

Controlled and Reversible Reaction of ammonia dissociation

Efficient Energy Storage

"Industrial Expertise"

Wide Range of Operating Temperature

Decoupled Temperature Control

There is no chance of occuring unwanted side reactions, making the system highly manageable.

Operating above the ambient temperature saturation pressure of ammonia allows most of it to remain in a liquid state, simplifying phase separation.

Benefit from over a century of industrial experience with the well-established 'Haber-Bosch' process. The system can operate at a big temperature range, from several hundred degrees to over 1,000°C, offering flexibility for various applications.

The dissociation process and heat recovery are decoupled. This flexibility enables efficient power production and can act as a chemical heat pump.

Data Analysis

2 Models

Current Situation

100% Renewable Solution

Energy Production Mix

São Miguel

Faial

Share of Renewables

São Miguel

Faial

Production vs Demand

São Miguel

Faial

Data Analysis:

Storage Data

3 commercially used batteries

	Capacity [kWh]
Battery 1	13.8
Battery 2	2.56
Battery 3	1.28

2 Theoretical storage systems:

	Molten Salts	Ammonia System
Storage Capacity/ Energy Density	110 kWh/ton	4.3 kWh/L

Our Model

Demand Profile

Climate Data

Average conditions throughout a day

São Miguel

	BAT1	BAT2	BAT3	Molten Salts (ton)	Amonia (L)
8	821	4424	8847	102.95	2633.58

Fuel Imports in May 2022 for energy production:

2 566 465,28 L

Faial

(a) Faial

Production of energy by Renewable Sources vs Demand - April

Production of energy by Renewable Sources vs

Flores

Ammount to store: 833.025 kWh

	Battery 1	Battery 2	Battery 3	Molten Salts (ton)	Amonia (L)
0	60	325	651	7.57	193.73

100% Renewable Solution

Wind turbines and PV panels sizing - São Miguel

	Renewable [kWh]	Demand [kWh]	Highest difference
June	15986398	53649730	37663332

Number of Wind turbines and PV panels

• Model: E44/900

Rated power: 900 kW

• Rotor diameter: 44 m

Adding Storage

Optimization Problem

São Miguel

Nº PVs	№ Wind Turbines
10000	183

Faial

100% Renewable Storage

São Miguel

Faial

Ammount to store	9 5	524440,6 kWh	Ammount to stor	e 9	4002,48 kWh	Ammount to sto	ore	10635,17	kWh
BAT1	BAT2	BAT3	BAT1	BAT2	BAT3	BAT1	BAT2	BAT	3
190015	20486	409719	34059	36720	73439	3853	4154	8309	9
Molten Salts 1	00%	4767,642024 ton	Molten Salts 100%	777,6	5 ton	Molten Salts	100%	96,683	ton
Amonia 121962,9 L		Amonia	21861,04	4276 L	Amonia		2473,296487	L	

Thank you for attention!

Pedro Teixeira, Pedro Manuel, António Lobo Vilela, Gabriela Boroń, Julia Grochowska

Bibliography

- https://www.nature.com/articles/s41928-018-0048-6 04.10.2023
- https://ease-storage.eu/energy-storage/technologies/ 16.10.2023
- Dincer I., Rosen M. A., 2011: Thermal Energy Storage Systems and Applications, second edition. John Wiley & Sons, Ltd.
- https://conceptgroupllc.com/glossary/what-is-conductive-heat-transfer/ 14.10.2023
- EASE 2023, Thermal Energy Storage
- https://www.wattco.com/2021/09/molten-salts-applications-advantages/ 15.10.2023
- Dunn R. I., 2016: Receiver Geometries for Solar Dish Concentrators, Australian National University
- https://openstax.org/books/fizyka-dla-szk%C3%B3%C5%82-wy%C5%BCszych-tom-2/pages/9-5-energia-i-moc-elektryczna 17.10.2023
- https://www.onlinewebfonts.com/icon/535487 18.10.2023