

Jiatong

Machine Learning for Classification

- Quick fix: apply a function to the output of regression that gives desired value
- Logistic function
 - Outputs between 0 and 1
 - Scaling parameter alpha
 - Most outputs are close to 1 or 0

•
$$g(x) = \frac{1}{1 + e^{-\alpha x}}$$

Logistic Function

$$g_{\alpha}(x) = \frac{1}{1 + e^{-\alpha x}}$$

• We can combine the logistic function and our regression model

•
$$g(w^T \cdot x_i) = \frac{1}{1 + e^{-w^T \cdot x_i}}$$

- Notice that: as $w^T \cdot x_i$ becomes
 - Large, output closer to 1
 - Small, output closer to 0

- We want to model the probability of a label given the example
- Conditional Likelihood p(y|x)
- Consider
 - We could maximize the joint p(x,y)
 - Which can be factored as p(x|y)p(y)
 - However, the best label y is the same under both
 - $\arg \max_{y=0,1} p(x|y)p(y) = \overline{argmax_{y=0,1}}p(y|x)$
 - Because x is fixed/given

Probabilistic View

- We can now write the distribution as $p_w(y=1|x)=\frac{1}{1+e^{-w^Tx}}$
- Which implies that $p_w(y = 0|x) = \frac{e^{-w^T x}}{1 + e^{-w^T x}}$
- The odds of the event is then

$$\bullet \ \frac{p_w(y=1|x)}{p_w(y=0|x)} = e^{w^T x}$$

- The log odds is
 - $log \frac{p_w(y=1|x)}{p_w(y=0|x)} = w^T x$

• Given parameters w, how do we make decisions

•
$$p_w(y=1|x) = \frac{1}{1+e^{-w^T x}}$$

- If output > 0.5 predict 1 else 0
- In addition to prediction, we have confidence in prediction
 - Confidence is the probability of the prediction

- Conditional Data likelihood
- $p(Y|X,w) = \prod_{i=1}^n p(y_i|x_i,w)$
- $l(Y, \overline{X}, w) = \log p(Y|X, w) = \sum_{i=1}^{n} \log p(y_i|X_i, w)$

•
$$p_w(y=1|x) = \frac{1}{1+e^{-w^Tx}}$$

•
$$p_w(y = 1|x) = \frac{1}{1 + e^{-w^T x}}$$

• $p_w(y = 0|x) = \frac{e^{-w^T x}}{1 + e^{-w^T x}}$

Gradient Descent

Derivatives

Objective: Objective: conditional log likelihood $\ell(Y, X, w) = \log p(Y \mid X, w) = \sum_{i=1}^{n} \log p(y_i \mid X_i, w)$

Given the sigmoid as
$$h_w(x) = \frac{1}{1 + e^{-w^T \cdot x}}$$

We can rewrite compactly $p(y \mid x) = (h_w(x))^y (1 - h_w(x))^{1-y}$

New objective
$$\ell(Y,X,w) = \sum_{i=1}^{N} \log\{(h_w(x))^y (1-h_w(x))^{1-y}\}$$
 Derivative
$$\frac{\partial \ell(Y,X,w)}{\partial w} = \sum_{i=1}^{N} (y_i - h_w(x_i))x_i$$

$$\frac{\partial \ell(Y, X, w)}{\partial w} = \sum_{i=1}^{N} (y_i - h_w(x_i)) x_i$$

- The derivative is 0 when y_i = p(y_i|x_i,w)
- Maximizing likelihood = minimize logistic error

Gradient Descent Solution

$$\mathbf{w}^{(t+1)} = \mathbf{w}^t + \gamma \frac{\partial \ell(\mathbf{Y}, \mathbf{X}, \mathbf{w})}{\partial \mathbf{w}}$$

$$w^{t+1} = w^t + \gamma \sum_{i=1}^{N} (y_i - h_w(x_i)) x_i$$

Stochastic Updates vs. Batch Updates

Stochastic Updates vs. Batch Updates

0/1 Loss Function

If we are wrong, loss of 1

If we are correct loss of 0

Implication:

Only make a change when we make a mistake

- $w^{i+1} = w^i + \eta y_i x_i$
- $(w^{i+1} \cdot x_i) \cdot y_i = w^i \cdot x_i \cdot y_i + \eta(x_i y_i)(x_i y_i)$
- $\bullet = w^i \cdot x_i \cdot y_i + \eta y_i y_i (x_i x_i)$
- = $w^i \cdot x_i \cdot y_i + \eta ||x_i||^2$
- $> (w^i \cdot x_i)y_i$
- Our prediction has improved
 - This says nothing about seeing the example in the future
 - The prediction may still be incorrect
 - We are just moving in the right direction

- Previously, we forced prediction by thresholding output
- Now: output either -1 or 1 directly
- Classification boundary represented by w
 - W is a vector that is orthogonal to the decision boundary
- Prediction
 - The sign of the prediction indicates which side of the boundary
 - Assume decision boundary passes through origin

Margin

Functional Margin vs. Geometric Margin

- Functional Margin
- Prediction and y should agree to get large margin
- $\gamma^i = y_i(w^Tx + b)$
- Geometric Margin
- $\gamma^i = y_i \left(\left(\frac{w}{||w||} \right)^T x + \frac{b}{||w||} \right)$ where $\frac{w}{||w||}$ is a unit length vector pointing in the direction of w

• Maximum Geometric Margin

•
$$\max_{\gamma,w,b} \frac{\gamma}{||w||}$$

•
$$s.t.y_i(w^Tx_i + b) > \gamma, i = 1, ..., N$$

- Since γ can represent by w, for optimization problem,
- we can set it as 1

- $\min_{\gamma, w, b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$
- $s.t.y_i(w^Tx_i + b) + \xi_i > 1$, and $\xi_i \ge 0$, i = 1, ..., N
- We can always satisfy the margin using ξ_i
 - We want these to be small
 - Trade off parameter C (similar to lambda before)
 - They are called slack variables

- Assuming a two dimensional vector x=[x(1), x(2)]
 - X(i) is the ith position of x
- Let's apply a feature mapping function: 2nd order polynomial function
- $\phi([x_1, x_2]) = (x_1^2, \sqrt{2} \cdot x_1 x_2, x_2^2)$
- Why is it useful
 - If the boundary is $\phi_1 + 2\phi_3 < 3$
 - Not linear in x, but linear in $\phi([x_1, x_2])$

• Replace x with a feature mapping function

•
$$\min_{\gamma,w,b} \frac{1}{2} ||w||^2$$

•
$$s.t.y_i(w^T\phi(x_i)) > \gamma, i = 1, ..., N$$

- The dot product is now taken over a higher dimensional feature space
- If ϕ is quadratic then the feature space is a quadratic space in terms of the inputs

• We can reformat the SVM into dual format

•
$$\max_{\alpha} \sum \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j \alpha_i \alpha_j (x_i x_j^T)$$

•
$$s.t.\alpha_i \ge 0$$
 and $\sum \alpha_i y_i = 0$

 (we skip a lot here, the derivation is complex, so I will leave it as after-class material)

- $\max_{\alpha} \sum \alpha_i \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j \alpha_i \alpha_j (\phi \cdot \phi^T)$
- $s.t.\alpha_i \ge 0$ and $\sum \alpha_i y_i = 0$
- There is no modeling constraint that prevents us from making phi very large
- Alphas do not grow in the size of phi

Polynomial Kernel

$$K(x, x') = \left(1 + (x^T x')\right)^p$$

Q&A