

Zakład Podstaw Konstrukcji

Projektowanie

mgr inż. Grzegorz Kamiński grzegorz.kaminski@pw.edu.pl

6 października 2022 Wersja 1.22

Główne wymiary chwytaka

Umożliwienie chwycenia
Politechnika przedmiotu
Warszawska

Skok siłownika większy od zakresu ruchu

Siła docisku przedmiotu

* d_{max} — maksymalna średnica obiektu,

^k Q — ciężar przenoszonego obiektu,

* μ — współczynnik tarcia (http://www.tribology-abc.com/abc/cof.htm),

* n = 2 - współczynnik przeciążenia chwytaka,

2γ – kąt nachylenia szczęk chwytaka.

Siła docisku przedmiotu

Wyznaczenie siły chwytu

$$F_{ch} = 2 \cdot \mathbf{N} \cdot \cos(90^{\circ} - \gamma)$$

$$N = rac{F_{ch}}{2 \cdot \cos(90^{\circ} - \gamma)}$$
 $T = \mu \cdot N$

Prawidłowy transport

$$4 \cdot T = \frac{2 \cdot \mu \cdot F_{ch}}{\sin(\gamma)} \ge Q \cdot n$$

$$F_{ch} \geq rac{Q \cdot n \cdot \sin(\gamma)}{2 \cdot \mu}$$

Minimalny wymiar szczęki

Politechnika Warszawska

$$e>e_{min}=rac{d_{max}}{2\cdot tg(\gamma)}$$

Wyznaczenie charakterystyk chwytaka określenie zakresu ruchu siłownika, dobór siłownika, wyznaczenie sił w przegubach. Politechnika Warszawska

Montaż chwytaka

Warszawska

Specyfikacja siłownika ADN

Version	Туре	Piston Ø	Stroke				
		[mm]	[mm]				
Basic version							
	ADN	12	5, 10, 15, 20, 25, 30, 40	1 300			
		16	5, 10, 15, 20, 25, 30, 40, 50	1 300			
		20, 25	5, 10, 15, 20, 25, 30, 40, 50, 60	1 300			
		32, 40, 50	5, 10, 15, 20, 25, 30, 40, 50, 60, 80	1 400			
		63	10, 15, 20, 25, 30, 40, 50, 60, 80	1 400			
		80, 100	10, 15, 20, 25, 30, 40, 50, 60, 80	1 500			
		125	-	1 500			

Politechnika Warszawska

Parametry siłownika ADN

Forces (N)										
Piston Ø	20	25	32	40	50	63	80	100		
Theoretical force at 6 bar, advancing	188	295	483	754	1178	1870	3016	4712		
Theoretical force at 6 bar, retracting	141	247	415	686	1057	1750	2827	4524		
Static holding force	250	500			2000		5000			

Permissible impact velocity:

$$v_{perm.} = \sqrt{\frac{2 \times E_{perm.}}{m_{dead} + m_{load}}}$$

Permissible impact velocity Vperm.

Max. impact energy Eperm.

Moving load (drive) Moving work load

$$m_{load} \ = \frac{2 \ x \ E_{perm.}}{v^2} \ - \ m_{dead}$$

Max. lateral force Fg as a function of the projection x

Politechnika Warszawska

Nazewnictwo siłownika ADN

Captive rating plate Low temperature

Nazewnictwo siłownika ADN-EL

P<mark>olit</mark>echnika Warszawska

Dobór materiałów

Rodzaj obciążenia	Symbol	Stale, staliwa	Stopy miedzi	Stopy aluminium
Rozciąganie i ściskanie	Z_{rj} Z_{rc}	$(0.55 \div 0.6) \cdot R_m$ $(0.28 \div 0.4) \cdot R_m$	$0.5 \cdot R_m$ $0.28 \cdot R_m$	$0,48 \cdot R_m \\ 0,25 \cdot R_m$
1 SCISKAITIE	Z_{cj}	$(0.55 \div 0.6) \cdot R_m$	$0.5 \cdot R_m$	$0.48 \cdot R_m$
Zginanie	Z_{gj}	$\begin{array}{c} (0.66 \div 0.75) \cdot R_m \\ 0.45 \cdot R_m \end{array}$	$0.63 \cdot R_m$ $0.35 \cdot R_m$	$0.61 \cdot R_m$ $0.34 \cdot R_m$
Skręcanie	Z_{sj}	$(0.46 \div 0.5) \cdot R_{m}$	$0.345 \cdot R_m$	$0.324 \cdot R_m$
i ścinanie	Z_{so}	$(0,22 \div 0,25) \cdot \mathbf{R}_{m}$	$0.2 \cdot R_m$	$0.19 \cdot R_m$

Dobór materiałów

Gatunek	Stan			ężenia d	lopuszo	zalne	
stali	Stall	Z_{rj}	Z_{gj}	Z_{sj}	Z_{rc}	Z_{go}	Z_{so}
S235JR	S	230	315	210	130	175	105
A275JR	S	260	350	230	143	193	115
E295	S	310	420	275	170	232	197
E335	S	360	430	285	200	272	162
E360	S	425	480	310	235	320	190
C10	N,H	215	280	190	120	160	96
C15	N,H	240	325	215	133	180	106
C20	N,H	260	360	235	146	195	116
C25	T	290	395	260	163	220	130
C35	T	340	460	300	190	255	152
C45	T	410	555	365	230	310	183
C55	T	450	620	405	255	340	205
C60	T	480	650	430	270	360	215
15Cr2	Н	400	500	350	200	300	180
20Cr4	Н	450	560	400	260	340	210
18CrMo4	Н	440	600	420	240	380	220
15CrNi6	Н	480	620	460	260	400	240
28Mn6	T	360	480	340	210	300	170
37MnSi4	T	480	600	440	280	380	220

P<mark>olite</mark>chnika Warszawska

Dobór materiałów

Gatunek	Stan		Napre	lopusz	ouszczalne		
stali	Stan	Z_{rj}	Z_{gj}	Z_{sj}	Z_{rc}	Z_{go}	Z_{so}
36CrNiMo4	T	540	670	420	320	410	240
30H	Tm	650	740	600	400	540	240
41Cr4	T	700	800	650	420	600	320
200-400	N	170	200	140	110	130	90
230-450	N	210	260	160	130	150	100
270-480	N	240	320	200	150	180	120
EN-GJL-150	nîn.	60	100	70	40	60	50
EN-GJL-200	6	70	140	90	50	80	70
EN-GJL-250		90	180	110	60	110	80
EN-GJL-300		110	200	120	70	130	90
EN-GJL-350	0	115	220	150	80	140	110
EN-GJL-400-10	(III)	160	240	200	100	180	140
EN-GJL-400-15		140	220	180	90	160	120
CuZn38Mn2Pb2	odlew	120	150	90	70	90	40
CuZn38Al2Mn1Fe	odlew	220	240	150	120	160	70
CuAl10Fe3Mn2	kuty	250	240	200	160	180	100
CuAl10Fe3Mn2	odlew	160	180	120	90	120	60
CuSn10Pb10	odlew	70	90	50	40	50	25

P<mark>olite</mark>chnika Warszawska

Stal konstrukcyjna S355J2 (daw. 18G2A) (1.0562)

Zastosowanie:

konstrukcje spawane i zgrzewane, mosty, siatki i pręty do zbrojenia betonu, zbiorniki i rury ciśnieniowe, elementy pracujące w obniżonych temperaturach.

Procesy:

- * spawanie TAK,
- * kucie TAK,
- * walcowanie TAK,
- * azotowanie NIE,
- hartowanie NIE,
- * odp<mark>us</mark>zczanie <mark>–</mark> NIE.

Stal konstrukcyjna C45 (1.0503)

Zastosowanie:

na średnio obciążone elementy maszyn i urządzeń jak: wrzeciona, osie, wały, niehartowane koła zębate, wały silników elektrycznych, tarcze, śruby, dźwignie, noże zwykłe, korkociągi, piasty do kół, drążki, walce, wirniki pomp. Wyroby mogą być hartowane powierzchniowo uzyskując twardość do 50-60 HRC.

Procesy:

- * spawanie UTRUDNIONE,
- * kucie TAK,
- * walcowanie TAK,
- * azotowanie NIE,
- * hartowanie TAK,
- * odp<mark>us</mark>zczanie TAK.

Politechnika

Stop EN AW-2017A (Pa6)

Zastosowanie:

Wysokoodporne części (także dla lotnictwa i obrony), śruby, sworznie, formy do odlewów tworzywowych.

Właściwości:

stosunkowo dużą twardość, świetne właściwości mechaniczne i doskonałą odporność na zużycie materiału. Charakteryzuje się dobrą obrabialnością. Jest podatny na tłoczenie oraz na zginanie. Jest jednak słabo spawalny i nieodporny na korozję. Podczas obróbki powstają dość długie wióry dlatego też nie jest zalecany do tokarek automatycznych.

Stop EN AW-6082 (Pa4)

Zastosowanie:

elementy nośne, elementy zbiorników, urządzeń hydraulicznych oraz szerokie zastosowanie w przemyśle stoczniowym.

Właściwości

śr<mark>ed</mark>nią twar<mark>d</mark>ość; odp<mark>or</mark>ny jest n<mark>a</mark> korozję; <mark>da</mark>je się ob<mark>ra</mark>biać skrawaniem; podatny na polerowanie, nie nadaje się jednak do anodowania dekoracyjnego. Posiada bardzo dobrą przewodność cieplną. Daje się tłoczyć i zginać. Stop spawalny.

Stop EN AW-7075 (Pa9)

Zastosowanie:

elementy nośne mostów, pojazdów ciężarowych, przyczep, naczep autobusów, statków, dźwigów, wagonów kolejowych. Stosowany również na elementy zbiorników, urządzeń górniczych, układów hydraulicznych oraz w przemyśle stoczniowym.

Właściwości:

wysokie właściwości wytrzymałościowe, bardzo dobra przewodność cieplna i słaba odporność na korozję. Daje się obrabiać skrawaniem. Posiada wysoką twardość. Podatny do polerowania, jednak nie nadaje się do anodowania. Doskonały do obróbki elektroerozyjnej. Średnio podatny do obróbki galwanicznej.

Stop EN AW-5754 (Pa11)

Zastosowanie:

przemysł stoczniowy, chemiczny, spożywczy, jądrowy, do produkcji AGD, architektura i budownictwo oraz przemysł samochodowy. Jest stosowany na elementy środków transportu, na konstrukcje spawane, zbiorniki ciśnieniowe, elementy rurociągów, przewody pneumatyczne oraz hydrauliczne, na słupy i oznaczenia drogowe.

Właściwości:

średnia wytrzymałość na rozciąganie. Jest wysokoodporny na korozję w atmosferze przemysłowej oraz warunkach morskich. Cechuje się wysoką wytrzymałością zmęczeniową, jest podatny do spawania oraz anodowania.

Stop EN AW-5083 (Pa13)

Zastosowanie:

przemysł meblarski oraz stoczniowy. Używany do budowy form do odlewów tworzywowych.

Właściwości

słaba twardość. ale jest idealny do spawania. Podatny do anodowania. Z powodu niskiej zawartości miedzi, wykazuje dobrą odporność na korozję. Charakteryzuje się wysoką wytrzymałością zmęczeniową.

Politechnika Warszawska

Stop EN AW-6060 (Pa38)

Zastosowanie:

produkcja prętów i profili, wysoka podatność do tłoczenia pozwala uzyskiwać profile o skomplikowanych kształtach. Znajduje zastosowanie w produkcji elementów architektonicznych: profili okiennych, profili drzwiowych, elementów ścian, drabin, ogrodzeń, balustrad, radiatorów, wyposażenia samochodów, elementów przyczep.

Właściwości:

średnia wytrzymałość na rozciąganie i średnia wytrzymałość zmęczeniowa. Jest podatny do anodowania dekoracyjnego oraz do spawania.

Bibliografia

A. Dziurski, E. Mazanek, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Łożyska, sprzęgła i hamulce, przekładnie mechaniczne. tom 2. WNT, 2015. isbn: 9788393491360.

L. W. Kurmaz and O. L. Kurmaz. Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania. Samodzielna Sekcja "Wydawnictwo Politechniki Świetokrzyskiei". 2011. isbn: 9788388906343.

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe.
tom 1. WNT, 2005. isbn: 9788320435528.

W. Starego. Poradnik konstruktora przekładni pasowych.

