Yash Amin

Final Project

Title: GenAl NFT Minting DApp

Introduction:

The GenAl NFT Minting project aims to empower users to mint their own non-fungible tokens (NFTs) generated by artificial intelligence (AI) algorithms. Leveraging blockchain technology, specifically the Ethereum network, users can create unique digital assets directly from AI-generated content. This project explores the intersection of AI, blockchain, and digital art, providing a platform for users to participate in the emerging NFT market.

Key Features:

- 1. Al-Generated Content: The project integrates Al algorithms to generate unique digital content, such as images, artwork, or other media files.
- 2. Smart Contract Deployment: Smart contracts written in Solidity are deployed on the Ethereum blockchain to facilitate the minting and ownership of NFTs.
- 3. Decentralized Ownership: NFTs minted through the platform are stored on the Ethereum blockchain, ensuring decentralized ownership and immutable provenance.
- 4. IPFS Integration: InterPlanetary File System (IPFS) is used for decentralized storage of media files associated with NFTs, enhancing data availability and resilience.
- 5. Web3 Interaction: Web3.js is utilized for interaction with the Ethereum blockchain, enabling seamless integration with blockchain functionalities.
- 6. User Interface: A user-friendly web interface built with Django, JavaScript, HTML, and CSS allows users to interact with the platform, mint NFTs, and manage their digital assets.

Workflow:

Fig 2: Users input descriptions to generate Al-generated content.

Fig 3: Copy public address to mint NFT on

Fig 4: NFT Successfully Minted

Fig 5: NFTs stored on IPFS

Fig 6: Sample NFT on IPFS

Fig 7: NFT Smart Contract dashboard on Ethereum network.

Final Project Yash Amin Q Search by Address / Txn Hash / Block / Token / * ♦ ▶ Call Mint NFT Function by 0x78FC47bb...04Ef28f99 on 🖹 0x18C005E9...678dCE697 Ø 0x78FC47bb79cf42e26a303b2fBEc111404Ef28f99 (① Interacted With (To): ① ERC-721 Tokens Transferred: 0.000198697672664248 ETH (\$0.00) (1) Gas Price: 1.322385464 Gwei (0.000000001322385464 ETH) 151,436 | 150,257 (99.22%) ① Gas Limit & Usage by Txn: ① Other Attributes: Txn Type: 0 (Legacy) Nonce: 22 Position In Block: 39 # Name Type Usta

0 recipient address @x787647b079cf42c868383b2f8Ecil1404Ef28f99

1 tokenGRI string https://green-magic-skunk-117.mysimeta.clou Switch Back

Fig 8: Sample NFT transactions containing NFT's IPFS location.

Installation

1. Clone the repository:

git clone https://github.com/Sitanshuk/GenAI_NFT_Minting.git

2. Navigate to the project directory:

cd GenAI_NFT_Minting

3. Install dependencies:

pip install -r requirements.txt

4. Run migrations:

python manage.py migrate

5. Start the development server:

python manage.py runserver

6. Access the application in your web browser at http://localhost:8000

Final Project Yash Amin

Usage

- 1. Open the application in your web browser.
- 2. Enter a description in the provided input field.
- 3. Click the "Submit" button to generate an Al-generated image based on the description.
- 4. Review the generated image.
- 5. If satisfied, enter an Ethereum wallet address in the "Address to Mint NFT On" input field.
- 6. Click the "Mint NFT" button to upload the image to IPFS and mint the NFT.
- 7. Once the NFT is successfully minted, you will see a confirmation message.

Technologies Used

- Solidity: Smart Contracts
- IPFS (InterPlanetary File System)
- Web3 (Ethereum blockchain interaction)
- Python (Django)
- JavaScript (AJAX)
- HTML/CSS

Smart Contract

The NFT smart contract used in this project has been deployed on the Ethereum blockchain. You can find the source code for the smart contract in the Contracts directory of this repository.

Future Enhancements

- **Enhanced AI Algorithms**: Continuously improving AI algorithms to generate more diverse and high-quality digital content.
- **Customizable Metadata**: Providing users with options to customize metadata associated with their NFTs, such as descriptions, attributes, and provenance.
- **Community Marketplace:** Implementing a decentralized marketplace where users can buy, sell, and trade NFTs created on the platform.
- **Scalability:** Optimizing smart contracts and infrastructure for scalability to support a larger user base and increased transaction volume.
- **Integration with External Platforms**: Integrating with external platforms and services to expand the reach and functionality of the platform.

Contributors

Final Project

- Sitanshu Kushwaha
- Yash Amin

Useful Links:

https://sepolia.etherscan.io/address/0x18c005e964227f873a03ef89f14a7b5678dce697

 $\frac{\text{https://sepolia.etherscan.io/tx/0x465220be6418273b55df45b6867c3bc3979402eeb511f857e7a889}{4e2da39229}$

https://testnets.opensea.io/collection/genainft-57

https://github.com/Sitanshuk/GenAl_NFT_Minting/tree/master

References

https://web3py.readthedocs.io/en/v5/web3.eth.html

https://docs.alchemy.com/docs/how-to-create-an-nft

https://docs.pinata.cloud/api-reference/endpoint/pin-file-to-ipfs

https://medium.com/@muller.ismail/upload-to-pinata-with-python-603788af76b1

 $\frac{\text{https://metamask.zendesk.com/hc/en-us/articles/360015289632-How-to-export-an-account-s-private-key}{}$