Chapter 6: CPU Scheduling

Chapter 6: CPU Scheduling

- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
- Thread Scheduling
- Multiple-Processor Scheduling
- Real-Time CPU Scheduling
- Operating Systems Examples
- Algorithm Evaluation

Objectives

- To introduce CPU scheduling, which is the basis for multiprogrammed operating systems
- To describe various CPU-scheduling algorithms
- To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system
- To examine the scheduling algorithms of several operating systems

Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU-I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait
- CPU burst followed by I/O burst
- CPU burst distribution is of main concern

Histogram of CPU-burst Times

CPU Scheduler

- Short-term scheduler selects from among the processes in ready queue, and allocates the CPU to one of them
 - Queue may be ordered in various ways
- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates
- Scheduling under 1 and 4 is nonpreemptive
- All other scheduling is preemptive
 - Consider access to shared data
 - Consider preemption while in kernel mode
 - Consider interrupts occurring during crucial OS activities

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- Dispatch latency time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria

- **CPU utilization** keep the CPU as busy as possible
- **Throughput** # of processes that complete their execution per time unit
- **Turnaround time** amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- **Response time** amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

Scheduling Algorithm Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time

First-Come, First-Served (FCFS) Scheduling

<u>Process</u>	Burst Time
P_{I}	24
P_2	3
P_3	3

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

	P ₁	P ₂	P ₃
0	24	2	7 30

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

$$P_2$$
, P_3 , P_1

The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process
 - Consider one CPU-bound and many I/O-bound processes

Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst
 - Use these lengths to schedule the process with the shortest time
- SJF is optimal gives minimum average waiting time for a given set of processes
 - The difficulty is knowing the length of the next CPU request
 - Could ask the user

Example of SJF

<u>Process</u>	Burst Time
P_{I}	6
P_2	8
P_3	7
P_4	3

■ SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Determining Length of Next CPU Burst

- Can only estimate the length should be similar to the previous one
 - Then pick process with shortest predicted next CPU burst
- Can be done by using the length of previous CPU bursts, using exponential averaging
 - 1. $t_n = \text{actual length of } n^{th} \text{ CPU burst}$
 - 2. τ_{n+1} = predicted value for the next CPU burst
 - 3. α , $0 \le \alpha \le 1$
 - 4. Define: $\tau_{n=1} = \alpha t_n + (1-\alpha)\tau_n$.
- Commonly, α set to ½
- Preemptive version called shortest-remaining-time-first

Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

- $\alpha = 0$
 - \bullet $\tau_{n+1} = \tau_n$
 - Recent history does not count
- $\alpha = 1$
 - $\bullet \quad \tau_{n+1} = \alpha \ t_n$
 - Only the actual last CPU burst counts
- If we expand the formula, we get:

$$\tau_{n+1} = \alpha t_n + (1 - \alpha)\alpha t_{n-1} + \dots + (1 - \alpha)^j \alpha t_{n-j} + \dots + (1 - \alpha)^{n+1} \tau_0$$

Since both α and $(1 - \alpha)$ are less than or equal to 1, each successive term has less weight than its predecessor

Example of Shortest-remaining-time-first

Now we add the concepts of varying arrival times and preemption to the analysis

<u>Process</u>	Arrival Time	Burst Time
P_{I}	0	8
P_2	1	4
P_3	2	9
P_4	3	5

■ *Preemptive* SJF Gantt Chart

Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

Priority Scheduling

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer = highest priority)
 - Preemptive
 - Nonpreemptive
- SJF is priority scheduling where priority is the inverse of predicted next
 CPU burst time
- $\mathbf{Problem} \equiv \mathbf{Starvation} \text{low priority processes may never execute}$
- Solution \equiv Aging as time progresses increase the priority of the process

Example of Priority Scheduling

<u>Process</u> <u>Burst Time</u> <u>Priority</u>	
P_1 10 3	
P_2 1 1	
P_3 2 4	
P_4 1 5	
P_5 5 2	

Priority scheduling Gantt Chart

■ Average waiting time = 8.2 msec

Round Robin (RR)

- Each process gets a small unit of CPU time (time quantum q), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.
- Timer interrupts every quantum to schedule next process
- Performance
 - $q \text{ large} \Rightarrow \text{FIFO}$
 - $q \text{ small} \Rightarrow q \text{ must be large with respect to context switch, otherwise overhead is too high}$

Example of RR with Time Quantum = 4

<u>Process</u>	Burst Time
P_{I}	24
P_2	3
$P_{\mathfrak{Z}}$	3

■ The **Gantt chart** is:

- Typically, higher average turnaround than SJF, but better *response*
- q should be large compared to context switch time
- q usually 10ms to 100ms, context switch < 10 usec

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

80% of CPU bursts should be shorter than q

Multilevel Queue

- Ready queue is partitioned into separate queues, eg:
 - foreground (interactive)
 - background (batch)
- Process permanently in a given queue
- Each queue has its own scheduling algorithm:
 - foreground RR
 - background FCFS
- Scheduling must be done between the queues:
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 - 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

- A process can move between the various queues; aging can be implemented this way
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

Three queues:

- Q₀ RR with time quantum 8 milliseconds
- Q₁ RR time quantum 16 milliseconds
- $Q_2 FCFS$

Scheduling

- A new job enters queue Q₀
 - When it gains CPU, job receives 8 milliseconds
 - If it does not finish in 8 milliseconds, job is moved to queue Q₁
- At Q₁ job is again receives 16 additional milliseconds
 - If it still does not complete, it is preempted and moved to queue Q₂

Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available
- Homogeneous processors within a multiprocessor
- **Asymmetric multiprocessing** only one processor accesses the system data structures, alleviating the need for data sharing
- Symmetric multiprocessing (SMP) each processor is self-scheduling, all processes in common ready queue, or each has its own private queue of ready processes
 - Currently, most common
- **Processor affinity** process has affinity for processor on which it is currently running
 - soft affinity
 - hard affinity
 - Variations including processor sets

Multiple-Processor Scheduling – Load Balancing

- If SMP, need to keep all CPUs loaded for efficiency
- Load balancing attempts to keep workload evenly distributed
- Push migration periodic task checks load on each processor, and if found pushes task from overloaded CPU to other CPUs
- Pull migration idle processors pulls waiting task from busy processor

Multicore Processors

- Recent trend to place multiple processor cores on same physical chip
- Faster and consumes less power
- Multiple threads per core also growing
 - Takes advantage of memory stall to make progress on another thread while memory retrieve happens

Multithreaded Multicore System

Real-Time CPU Scheduling

- Can present obvious challenges
- **Soft real-time systems** no guarantee as to when critical real-time process will be scheduled
- **Hard real-time systems** task must be serviced by its deadline
- Two types of latencies affect performance
 - **1. Interrupt latency** time from arrival of interrupt to start of routine that services interrupt
 - 2. **Dispatch latency** time for schedule to take current process off CPU and switch to another

Priority-based Scheduling

- For real-time scheduling, scheduler must support preemptive, prioritybased scheduling
 - But only guarantees soft real-time
- For hard real-time must also provide ability to meet deadlines
- Processes have new characteristics: periodic ones require CPU at constant intervals
 - Has processing time t, deadline d, period p
 - $0 \le t \le d \le p$
 - Rate of periodic task is 1/p

Rate Montonic Scheduling

- A priority is assigned based on the inverse of its period
- Shorter periods = higher priority;
- Longer periods = lower priority

Missed Deadlines with Rate Monotonic Scheduling

Earliest Deadline First Scheduling (EDF)

■ Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority; the later the deadline, the lower the priority

Proportional Share Scheduling

- T shares are allocated among all processes in the system
- An application receives N shares where N < T</p>
- This ensures each application will receive *N* / *T* of the total processor time

End of Chapter 6