Анализ влияния дихотомических признаков на дожитие: конечно-геометрический и информационный подходы

Смирнов Иван Борисович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н. Алексеева Н.П. Рецензент: м.н.с. Грачева П.В.

> Санкт-Петербург 2009 г.

Постановка задачи

Дожитие

- ullet au случайное время до наступления отказа
- Цензурирование: вместо τ_i наблюдается $(\tilde{\tau}_i, c_i)$ $c_i = 0$, если $\tilde{\tau}_i = \tau_i$; $c_i = 1$, если $\tilde{\tau}_i > \tau_i$
- ullet Кривая дожития: $S(t) = P(au > t), \ S(t) = 1 F(t)$

Задача: исследование влияния признаков на дожитие

Значимое отличие между группами X = 0 и X = 1 p = 0.0001

Основные методы

Регрессионная модель Кокса (Cox, 1972)

• Puck:
$$h(t) = \lim_{\Delta \to 0} \frac{P(t < \tau < t + \Delta | \tau > t)}{\Delta}$$

• Модель:
$$h(t|z) = h_0(t) exp(\beta^T z)$$

• Функция правдоподобия:

$$L(\beta) = \prod_{i=1}^{n} \left(\frac{\exp(\beta^{T} z_{i})}{\sum\limits_{j \in R_{t_{i}}} \exp(\beta^{T} z_{j})} \right)^{c_{i}}$$

$$R_{t_{i}} = \{ j : t_{i} > t_{i} \}$$

Проблемы в использовании

- Модель
- Пропуски
- Интерпретация

Пошаговый алгоритм разбиения (Gordon, Olshen, 1985)

- Объём выборки
- Пошаговая процедура разбиения

Конечно-геометрический подход: симптомы

$$X = (X_1, \dots, X_n)^{\mathsf{T}}$$
 – вектор дихотомических признаков

Определение 1

Симптом: $X_{\tau}=A_{\tau}X \pmod{2}$ $\tau\subset\{1,\ldots,n\},\ A_{\tau}=(a_1,\ldots,a_n),\$ где $a_i=\mathsf{I}(i\in\tau)$

 $\begin{array}{cc} X_1 &= 0 \\ X_2 &= 1 \end{array}$

$$\begin{array}{cc} X_1 &= 1 \\ X_2 &= 0 \end{array}$$

 $X_1 = 1 \\ X_2 = 1$

Конечно-геометрический подход: симптомы

$$X = (X_1, \dots, X_n)^{\mathsf{T}}$$
 – вектор дихотомических признаков

Определение 1

Симптом:
$$X_{\tau}=A_{\tau}X \pmod 2$$
 $au\subset\{1,\ldots,n\},\ A_{\tau}=(a_1,\ldots,a_n),\$ где $a_i=\mathsf{I}(i\in\tau)$

Новый признак характеризует взаимодействие исходных, является дихотомическим, и может пониматься как «непропорциональность».

Конечно-геометрический подход: синдромы и обобщённые симптомы

Определение 2.1

Синдром $\Delta_k=\{eta_0X_{ au_0}+\ldots+eta_kX_{ au_k}\}$, где $X_{ au_0},\ldots,X_{ au_k}$ – базовые симптомы

$$\begin{array}{l} \Omega_k = (X_{\tau_0}, \dots, X_{\tau_k}), \ |\Omega_k| = 2^{k+1} \\ \Omega_k = B(X_{\tau_i} = 0) \ \bigsqcup \ B(X_{\tau_i} = 1) \end{array}$$

Определение 2.2

 X_Z — обобщённый симптом $\Omega_k = B(X_Z = 0) \ \bigsqcup \ B(X_Z = 1), \ |B(X_Z = 0)| = |B(X_Z = 1)|$

Применение в статистике, теорема о рангах синдрома

Распределение синдрома Δ_k — совместное распределение базовых симптомов $(X_{\tau_0},\dots,X_{\tau_k})$. Не зависит от их выбора.

Определение 3.1

Ранг симптома $|X_{ au}| = | au|$

Определение 3.2

m-ранг синдрома $|\Delta_k|_m = \min\{|X_{ au_0}|+\ldots+|X_{ au_{m-1}}|\}$

Теорема

$$|\Delta_k|_m \leq \frac{2^k nm}{2^{k+1} - 1}$$

Практическое значение – исключение дублирующих вычислений

Идея доказательства в частном случае

$$\Delta_2 = (X_{\tau_1}, X_{\tau_2}, X_{\tau_3}, X_{\tau_1 \tau_2}, X_{\tau_1 \tau_3}, X_{\tau_2 \tau_3}, X_{\tau_1 \tau_2 \tau_3})$$

$$\begin{array}{rcl} |X_{\tau_1}| & = & A_1 + A_{12} + A_{13} + A_{123} \\ |X_{\tau_2}| & = & A_2 + A_{12} + A_{23} + A_{123} \\ |X_{\tau_3}| & = & A_3 + A_{13} + A_{23} + A_{123} \\ |X_{\tau_1\tau_2}| & = & A_1 + A_2 + A_{13} + A_{23} \\ |X_{\tau_1\tau_3}| & = & A_1 + A_3 + A_{12} + A_{23} \\ |X_{\tau_2\tau_3}| & = & A_2 + A_3 + A_{12} + A_{13} \\ |X_{\tau_1\tau_2\tau_3}| & = & A_1 + A_2 + A_3 + A_{123} \end{array}$$

$$X = BA$$
, $(BA)_i \ge |\Delta_2|_1$, $e^T A = n$

- $|\Delta_2|_1 \leq \frac{4}{7}n$
- $|\Delta_2|_m \leq \frac{4}{7}mn$
- $|\Delta_k|_m \leq \frac{2^k}{2^{k+1}-1} mn$

Применение

Данные о послеоперационном дожитии 272 пацинетов с глиомой (Военно-медицинская академия, кафедра нейрохирургии):

9 дихотомических признаков, возраст, индекс Карновского, размеры опухоли, тип операции

$$\Delta_2 = (X_{36}, X_{1457}, X_{128}), Z_{0135}$$
 и Z_{0123}

Группа 4

Больший возраст (p=0,007)Худшее состояние (p=0,001)

Группа 1

Лучшее состояние (p < 0,001) Меньше опухоль (p = 0,002)

Группы 2 и 3

Тип операции (p=0,018)

Кластерный анализ

Меры сходства и различия

ullet A, B – группы наблюдений, X – признак, $X \in \overline{1,s}$

$$|A| = n = n_1 + \ldots + n_s, \ n_i = |\{a \in A | X(a) = i\}|$$

Информационное разнообразие: $I_X=n\ln n-\sum n_i\ln n_i,\ I=\sum I_{X_i}$

Информационный выигрыш от объединения:

$$\Delta I(A,B) = I(A \bigcup B) - I(A) - I(B)$$
 – мера различия

 Выделенные на первом шаге кластеры объединяем, используя в качестве меры сходства р-значение критерия Вилкоксона-Гехана

Идентификация кластеров

Коэффициент неопределённости: $R_{\xi} = rac{H(\eta) - H(\eta|\xi)}{H(\eta)}$

Сравнение методов, выводы

Пошаговый алгоритм разбиения

Кластерный анализ

Совпадение результатов

Группа 3: 95,9%, Группа 0: 89,3%, Группа 1 и Группа 2: 87,5%

Выводы

- Много наблюдений: алгоритм пошагового выбора
- Мало наблюдений: симптомный анализ
- Много признаков: кластерный анализ

Приложение

BOA Statistique

Boîte à Outils pour Analyse Statistique

© 2009 5mirnov Ivan

— Результаты						
Старт Пауза						
	First	Second	Third	Chi-square	ď	p-value 🔺
۰	X1 X2 X4	X1 X2 X3 X5	X2 X3 X6	34,37498214	7	0,00001465
	X1 X2 X3 X4	X2 X5	X1 X2 X3 X6	32,21408114	6	0,00001485
	X1 X2 X3 X4	X2 X5	X3 X6	29,79420306	5	0,00001619
	X1 X2 X4	X2 X5	X1 X2 X6	32.01286139	6	0.00001623
	X1 X2 X4	X5	X1 X6	29.49678708	5	0.00001852
	X1 X2 X4	X2 X5	X3 X6	28.56321877	5	0.00002824
	364	X2 X5	X1 X2 X6	28.40563233	5	0.00003032
	X1 X2 X3 X4	X5	X1 X6	28,37112707	5	0,00003080
	X1 X2 X3	X4	X2 X5 X6	32,35000214	7	0,00003497
	X3 X4	X2 X5	X3 X6	30,25491390	6	0,00003516
	X1 X2	X3 X4	X1 X5 X6	32,25482388	7	0,00003643
	X1 X2 X3	X5	X1 X6	30,13446580	6	0,00003706
	X1	X2	X5 X6	27,90592009	5	0,00003797
	X1	X2 X3 X5	X2 X3 X6	30.05408066	6	0,00003839
	X1 X2 X3 X4	X5	X1 X3 X6	27.87218682	5	0.00003855
	X3 X4	X1 X2 X3 X5	X2 X3 X6	32.11581865	7	0.00003866
	X2 X4	X1 X2 X3 X5	X1 X2 X3 X6	32.08282153	7	0.00003920
	X1	X2 X3 X4	X5 X6	29 97879301	6	0.00003968

Результаты

- Предложены два дополнительных метода для выявления факторов, влияющих на дожитие
- Сформулирована и доказана теорема, позволяющая существенно сократить время вычислений
- Создано приложение, позволяющее выполнять все необходимые статистические процедуры
- Выполнено биометрическое исследование реальных данных с использованием предложенных методов