Machine Learning: Adult Census Case Study

http://archive.ics.uci.edu/ml/datasets/Adult (http://archive.ics.uci.edu/ml/datasets/Adult)

In [26]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [27]:

```
url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/adult/'
cnames = [
    'age', 'workclass', 'fnlwgt',
    'education', 'education-num',
    'marital-status', 'occupation',
    'relationship', 'race', 'sex',
    'capital-gain', 'capital-loss',
    'hours-per-week', 'native-country',
    'income'
]
df = pd.read_csv(url + 'adult.data', names=cnames)
df.head()
```

Out[27]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black

```
In [28]:

X = df.drop('income', axis=1)
y = df['income']

X.shape, y.shape

Out[28]:
((32561, 14), (32561,))
```

Data Exploration

```
In [29]:
pd.Series(df['occupation'].unique())
Out[29]:
0
            Adm-clerical
1
         Exec-managerial
2
       Handlers-cleaners
3
          Prof-specialty
4
           Other-service
5
                    Sales
6
            Craft-repair
7
        Transport-moving
8
         Farming-fishing
9
       Machine-op-inspct
10
            Tech-support
11
12
         Protective-serv
13
            Armed-Forces
14
         Priv-house-serv
dtype: object
```

Data Preparation: Sketching

```
In [30]:
X = X.replace({' ?': np.nan})
X.isna().sum()
Out[30]:
age
                      0
workclass
                   1836
fnlwgt
                      0
education
                      0
education-num
                      0
marital-status
                      0
occupation
                   1843
relationship
                      0
race
                      0
                      0
sex
capital-gain
                      0
capital-loss
                      0
hours-per-week
                      0
native-country
                    583
dtype: int64
In [31]:
{c: X[c].dtype for c in X.columns}
Out[31]:
{ 'age': dtype('int64'),
 'workclass': dtype('0'),
 'fnlwgt': dtype('int64'),
 'education': dtype('0'),
 'education-num': dtype('int64'),
 'marital-status': dtype('0'),
 'occupation': dtype('0'),
 'relationship': dtype('0'),
 'race': dtype('0'),
 'sex': dtype('0'),
 'capital-gain': dtype('int64'),
 'capital-loss': dtype('int64'),
 'hours-per-week': dtype('int64'),
 'native-country': dtype('0')}
In [32]:
df.select_dtypes(include=['0']).columns
Out[32]:
Index(['workclass', 'education', 'marital-status', 'occupation',
       'relationship', 'race', 'sex', 'native-country', 'income'],
```

dtype='object')

```
In [33]:
```

```
from sklearn.preprocessing import LabelEncoder
unlabelled = df.select_dtypes(include=['O']).columns
encoders = { c: LabelEncoder().fit(df[c]) for c in unlabelled }
encoders
```

```
Out[33]:
{'workclass': LabelEncoder(),
  'education': LabelEncoder(),
  'marital-status': LabelEncoder(),
  'occupation': LabelEncoder(),
  'relationship': LabelEncoder(),
  'race': LabelEncoder(),
  'sex': LabelEncoder(),
  'native-country': LabelEncoder(),
  'income': LabelEncoder())
```

Data Preparation

Sketching: Encoders, NaNs, Splitting

```
In [34]:
```

```
from sklearn.model_selection import train_test_split

train_X, test_X, train_y, test_y = train_test_split(
    X,
    y,
    test_size = 0.3,
    random_state = 3
)
```

```
In [35]:
```

```
train_df = train_X.join(train_y).replace({' ?': np.nan}).dropna()
test_df = test_X.join(test_y).replace({' ?': np.nan}).dropna()
```

In [36]:

```
for c in encoders:
    train_df[c] = encoders[c].transform(train_df[c])
    test_df[c] = encoders[c].transform(test_df[c])

train_df.head()
```

Out[36]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	rac
21591	43	4	281138	11	9	5	7	1	
23500	31	4	241885	11	9	2	8	0	
20830	33	4	188352	12	14	4	10	1	
6345	42	5	369781	5	4	0	3	4	
32177	43	4	133584	15	10	2	7	0	

In [37]:

```
from scipy.stats import ttest_ind

pd.Series({ c: ttest_ind(train_df[c], test_df[c]).pvalue for c in train_df.colum
ns })
```

Out[37]:

age	0.991788			
workclass	0.096669			
fnlwgt	0.920012			
education	0.190251			
education-num	0.713303			
marital-status	0.017984			
occupation	0.327789			
relationship	0.634100			
race	0.582117			
sex	0.742670			
capital-gain	0.335890			
capital-loss	0.719606			
hours-per-week	0.160184			
native-country	0.363897			
income	0.208701			
dtype: float64				

Sketching: Scaler Features

In [38]:

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

pd.DataFrame(
    scaler.fit_transform(train_df.astype(float)),
    columns = train_df.columns
).sample(6)
```

Out[38]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relation
15921	0.725210	-0.081043	-0.385033	0.170470	-0.439582	1.612497	-0.984115	1.61
9911	0.042594	-0.081043	-0.236049	0.170470	-0.439582	-0.397637	-0.984115	-0.88
14079	-1.626022	-0.081043	-1.105565	-2.462375	-1.226102	0.942452	1.244258	0.98
5266	-0.564175	-0.081043	0.721292	-0.356099	1.133456	0.942452	1.244258	-0.26
3095	-0.943406	-0.081043	0.156173	0.170470	-0.439582	0.942452	-1.479309	0.98
4965	1.028595	0.795959	-1.028661	0.960324	1.919975	-0.397637	1.244258	-0.88

Feature Selection

In [39]:

```
plt.xticks(rotation=90)
sns.countplot(
   data = df,
   x = 'workclass',
   hue = 'income'
)
```

Out[39]:

<matplotlib.axes._subplots.AxesSubplot at 0x1b4c25f4be0>

In [40]:

```
plt.xticks(rotation=90)
sns.countplot(
   data = df,
   x = 'occupation',
   hue = 'income'
)
```

Out[40]:

<matplotlib.axes._subplots.AxesSubplot at 0x1b4c2660860>

In [41]:

```
plt.xticks(rotation=90)
sns.countplot(
   data = df,
   x = 'native-country',
   hue = 'income'
)
```

Out[41]:

<matplotlib.axes._subplots.AxesSubplot at 0x1b4c306b940>


```
In [42]:

X = X.drop(['workclass', 'occupation', 'native-country', 'capital-gain'], axis=1
)
```

Defining the Pipeline

```
In [43]:
```

```
from sklearn.base import TransformerMixin

class ToNaN(TransformerMixin):
    def fit(self, X): return self

def transform(self, X):
    return X.replace({' ?': np.nan})
```

In [44]:

```
class ToCleaned(TransformerMixin):
    def fit(self, X): return self

def transform(self, X):
    return X.dropna(axis=0)
```

In [45]:

```
class ToEncoded(TransformerMixin):
    def fit(self, X):
        labels = X.select_dtypes(include=['0']).columns
        self.encoders = { c: LabelEncoder().fit(X[c]) for c in labels }
    return self

def transform(self, X):
    for c in self.encoders:
        X[c] = self.encoders[c].transform(X[c])

    return X
```

In [46]:

```
class ToScaled(TransformerMixin):
    def fit(self, X):
        self.scaler = StandardScaler()
        self.scaler.fit(X.astype(float))

    return self

def transform(self, X):
    df = pd.DataFrame(
        self.scaler.transform(X),
        columns = X.columns
    )

    df['income'] = X['income']
    return df
```

In [47]:

```
class ToSelected(TransformerMixin):
    def fit(self, X): return self

    def transform(self, X):
        return X.drop(['workclass', 'occupation', 'native-country', 'capital-gai
n'], axis=1)
```

```
In [48]:
```

```
from sklearn.pipeline import Pipeline

adult_pipeline = Pipeline([
    ('SelectFeatures', ToSelected()),
    ('ReplaceNaN', ToNaN()),
    ('RemoveNaN', ToCleaned()),
    ('EncodeNumeric', ToEncoded()),
    ('ScaleNumeric', ToScaled())
])
```

Data Preparation

```
In [49]:
```

```
adult_df = adult_pipeline.fit_transform(df)
adult_df.sample(6)
```

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:10: DataConversionWarning: Data with input dtype int32, int64 were all c onverted to float64 by StandardScaler.

Remove the CWD from sys.path while we load stuff.

Out[49]:

	age	fnlwgt	education	education- num	marital- status	relationship	race	se
16769	-1.142331	0.243155	1.214869	-0.031360	0.921634	-0.277805	0.393668	0.70307
30977	0.397233	0.559911	-0.335437	1.134739	-1.734058	-0.277805	0.393668	0.70307
7084	0.397233	0.609840	0.439716	1.523438	-0.406212	-0.900181	0.393668	0.70307
25626	-1.215643	0.193150	1.214869	-0.031360	0.921634	-0.277805	0.393668	0.70307
4282	-0.555830	1.098204	1.214869	-0.031360	-0.406212	2.211698	-1.962621	-1.42233
2900	0.617171	3.636292	0.181332	-0.420060	-0.406212	-0.900181	0.393668	0.70307

```
In [50]:
```

```
X = adult_df.drop('income', axis=1)
y = adult_df['income']

train_X, test_X, train_y, test_y = train_test_split(
    X,
    y,
    test_size = 0.3,
    random_state = 2
)
```

Modelling

Prediction

splitter='best')

e=None,

```
In [198]:

predicted_y = model.predict(test_X)
predicted_y[:5]

Out[198]:
array([0, 0, 1, 0, 0])
```

Evaluation

[1089, 1320]])

```
In [23]:
from sklearn.metrics import confusion_matrix, classification_report
In [199]:
confusion_matrix(test_y, predicted_y)
Out[199]:
array([[6763, 597],
```

In [68]:

```
1 = adult_pipeline.steps[3][1].encoders['income'].classes_
print(classification_report(test_y, model.predict(test_X)))
```

	precision	recall	f1-score	support
(0.86	0.92	0.89	7360
:	0.69	0.54	0.61	2409
micro av	0.83	0.83	0.83	9769
macro av		0.73	0.75	9769
weighted av	0.82	0.83	0.82	9769

In [64]:

help(classification_report)

```
Help on function classification report in module sklearn.metrics.cla
ssification:
classification_report(y_true, y_pred, labels=None, target_names=Non
e, sample weight=None, digits=2, output dict=False)
    Build a text report showing the main classification metrics
    Read more in the :ref: `User Guide <classification report>`.
    Parameters
    ______
    y true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) target values.
    y pred : 1d array-like, or label indicator array / sparse matrix
        Estimated targets as returned by a classifier.
    labels : array, shape = [n labels]
        Optional list of label indices to include in the report.
    target_names : list of strings
        Optional display names matching the labels (same order).
    sample weight : array-like of shape = [n samples], optional
        Sample weights.
    digits : int
        Number of digits for formatting output floating point value
s.
        When ``output dict`` is ``True``, this will be ignored and t
he
        returned values will not be rounded.
    output dict : bool (default = False)
        If True, return output as dict
    Returns
    _____
    report : string / dict
        Text summary of the precision, recall, F1 score for each cla
SS.
        Dictionary returned if output dict is True. Dictionary has t
he
        following structure::
            {'label 1': {'precision':0.5,
                          'recall':1.0,
                         'f1-score':0.67,
                         'support':1},
             'label 2': { ... },
              . . .
            }
        The reported averages include micro average (averaging the
        total true positives, false negatives and false positives),
macro
        average (averaging the unweighted mean per label), weighted
average
        (averaging the support-weighted mean per label) and sample a
verage
        (only for multilabel classification). See also
```

```
:func:`precision recall fscore support` for more details on
averages.
        Note that in binary classification, recall of the positive c
lass
        is also known as "sensitivity"; recall of the negative class
is
        "specificity".
    Examples
    >>> from sklearn.metrics import classification report
    >>> y true = [0, 1, 2, 2, 2]
    >>> y pred = [0, 0, 2, 2, 1]
    >>> target_names = ['class 0', 'class 1', 'class 2']
    >>> print(classification report(y true, y pred, target names=tar
get_names))
                  precision
                               recall f1-score
                                                   support
    <BLANKLINE>
         class 0
                       0.50
                                 1.00
                                            0.67
                                                         1
         class 1
                       0.00
                                 0.00
                                            0.00
                                                         1
         class 2
                       1.00
                                 0.67
                                            0.80
                                                         3
    <BLANKLINE>
       micro avg
                       0.60
                                 0.60
                                            0.60
                                                         5
                                 0.56
                                            0.49
       macro avg
                       0.50
                                                         5
    weighted avg
                       0.70
                                 0.60
                                            0.61
                                                         5
    <BLANKLINE>
```

Improvements

In [204]:

```
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(
    max_depth = 7,
    n_estimators = 20,
    class_weight = {0:1, 1:1}
)

model.fit(train_X, train_y)
```

Out[204]:

```
print(classification report(test y, model.predict(test X)))
```

		precision	recall	f1-score	support
	0	0.84	0.94	0.89	7360
	1	0.73	0.46	0.57	2409
micro	ava	0.83	0.83	0.83	9769
macro	-	0.79	0.70	0.73	9769
weighted	avg	0.82	0.83	0.81	9769

In [211]:

/Users/mjburgess/anaconda3/lib/python3.7/site-packages/sklearn/model _selection/_split.py:2053: FutureWarning: You should specify a value for 'cv' instead of relying on the default value. The default value will change from 3 to 5 in version 0.22.

warnings.warn(CV WARNING, FutureWarning)

Out[211]:

In [212]:

print(classification report(test y, model.best estimator .predict(test X)))

		precision	recall	f1-score	support
	0	0.90	0.95	0.93	7360
	1	0.82	0.69	0.75	2409
micro	avq	0.89	0.89	0.89	9769
macro	_	0.86	0.82	0.84	9769
weighted	avg	0.88	0.89	0.88	9769