I. DETAILED MODEL POTENTIAL

TABLE I: Detailed Model Parameters

Symbol	Value	Source / Description
R_{OH}	0.9572Å	Gas-phase geometry
HOH	104.52°	
q_{H}	0.605 e	Gas-phase charge moments
R_{OM}	0.2667Å	
ω	$0.6287 \; E_h/\hbar$	
m	$0.3656 \; m_e$	Gas-phase polarization and dispersion responses
\mathbf{q}_d	-1.1973 e	
σ_d	0.1 a ₀	Conscion aborgo widths for druden
σ_c	1.2 a ₀	Gaussian charge widths for drudon, tether-point (center), H-atom and M-site - damp Coulomb force at short range
$\sigma_{ m H}$	$0.1 a_0$	
$\sigma_{ m M}$	$0.1 a_0$	
κ_1	$2.5~E_h$	
λ_1	$1.171802 \ a_0^{-1}$	0.01
κ_2	6000 E_h	O-O repulsion parameters
λ_2	$2.820276 \ a_0^{-1}$	

A. Coulomb potential with Gaussian charge width

For a Gaussian distribution with width σ , the enclosed volume as a function of radius is the error function:

$$\rho(r) = q \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{r^2}{2\sigma^2}\right),$$

$$\nabla^2 \phi = \rho \Longrightarrow$$

$$\phi(r) = \frac{q \operatorname{erf}(r/\sqrt{2}\sigma)}{r}.$$

For two Gaussian distributions interacting, we can use the fact that variances of independent variables add:

$$\begin{split} & \sigma_{12}^2 \ \to \ \sigma_1^2 + \sigma_2^2, \\ & \phi(r) \ = \ \frac{q_1 q_2 \, \text{erf} \big(r / \sqrt{2} \, \sigma_{12} \big)}{r}. \end{split}$$

B. Exponential repulsive potential

This model adds a repulsion potential between the O-atoms, with two exponential terms:

$$\phi(r) = \kappa_1 \exp(-\lambda_1 r) + \kappa_2 \exp(-\lambda_2 r).$$

Note that κ_i and λ_i are not related to the dispersion scaling parameter κ nor the polarizability scaling parameter λ mentioned in the text.