Course Code	Course Title	L	Т	Р	С
PMCA507P	Machine Learning Lab	0	0	2	1
Pre-requisite	NIL	Syllabus version			
		1.0			

Course Objectives:

- 1. To implement and differentiate regression, classification and clustering techniques and their algorithms.
- 2. To analyze the performance of various machine learning techniques and to select appropriate features for training machine learning algorithms.

Course Outcomes:

- 1. Provide solution for classification and regression approaches in real-world applications
- 2. Gain knowledge to combine machine learning models to achieve better results
- 3. Choose an appropriate clustering technique to solve real world problems
- 4. Realize methods to reduce the dimension of the dataset used in machine learning algorithms
- 5. Choose a suitable machine learning model, implement and examine the performance of the chosen model for a given real world problems

Exploration of Various Datasets					
Indicative Experiments					
1.	Simple Linear Regression – Multiple Linear Regression	4 Hours			
2	Decision Tree Classification Algorithm – Entropy – Gini Index	2 Hours			
3.	Naive Bayes Classification – Maximum Likelihood	2 Hours			
4.	Classification and Regression Trees – Regression Trees	4 Hours			
5.	Support Vector Machines – Linear Kernel Functions – Non Linear	4 Hours			
	Kernel Functions				
6.	K-Nearest neighbor Classification Algorithm	4 Hours			
7.	Bagging – Boosting – Random Forest Classification	4 Hours			
8.	K-Means Clustering	2 Hours			
9.	Hierarchical – Agglomerative - Divisive Clustering	2 Hours			
10.	K-Armed Bandit - Model Based Learning	2 Hours			
Total Laboratory Hours					
Text Book(s)					

Alpaydin, Ethem, "Introduction to Machine Learning", 2020, 4th Edition, MIT

Reference Books

- 1. Mitchell, Tom M., "Machine Learning", 2007, Vol. 1, McGraw-Hill, New York.
- 2. Marsland, Stephen, "Machine Learning: an Algorithmic Perspective", 2015, 2nd Edition, Chapman and Hall/CRC.
- 3. Mohri, Mehryar, AfshinRostamizadeh, and Ameet Talwalkar, "Foundations of Machine Learning", 2018, 2nd Edition, MIT press.
- 4. Doane, David P., and Lori E. Seward, "Applied Statistics in Business and Economics", 2016, 5th Edition, Mcgraw-Hill.

	3					
Mode of assessment: CAT, Exercises, FAT						
Recommended by Board of Studies	04-05-2023					
Approved by Academic Council	No.70	Date	24-06-2023			