TÍN HIỆU VÀ HỆ THỐNG

Chương 3: Biểu diễn hệ thống tuyến tính bất biến trong miền tần số

Phần 4: ĐỊNH LÝ LẤY MẪU

Trần Thị Thúy Quỳnh

QUÁ TRÌNH LẤY MẪU TÍN HIỆU TRONG MIỀN THỜI GIAN

$$p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT) \stackrel{F.T.}{\longleftrightarrow} \frac{2\pi}{T} \sum_{k = -\infty}^{\infty} \delta(\omega - \frac{2\pi k}{T}) = P(j\omega)$$

$$x_p(t) = x(t)p(t)$$

$$X_p(j\omega) = \frac{1}{2\pi}X(j\omega) * P(j\omega)$$

$$X_{p}(j\omega) = \frac{1}{2\pi}X(j\omega) * P(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta)P(j(\omega - \theta))d\theta$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta) \left[\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - \theta - \frac{2\pi k}{T}) \right] d\theta$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} \left[\int_{-\infty}^{\infty} X(j\theta)\delta(\omega - \theta - \frac{2\pi k}{T})d\theta \right]$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(j(\omega - \frac{2\pi k}{T})\right).$$

$$P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{T}),$$

ĐỊNH LÝ LẤY MẪU

$$\omega_s = 2W$$
.

$$\omega_s > 2W$$
.

VÍ DỤ

Suppose there is a signal with maximum frequency 40kHz. What is the minimum sampling rate?

VÍ DỤ

KHÔI PHỤC TÍN HIỆU GỐC TỪ TÍN HIỆU LẤY MẪU

KHÔI PHỤC TÍN HIỆU GỐC TỪ TÍN HIỆU LẤY MẪU

