Reading Notes of Pattern Classification and Machine Learning

Tianyi Cui

August 12, 2012

1 Introduction

Different kinds of tasks of machine learning:

- supervised learning: known input and target vectors
- classification: output is one of a finite number of discrete categories
 - regression: output is one or more continuous variables
- unsupervised learning: no corresponding target values
 - clustering: discover groups of similar examples within the data
 - density estimation: determine the distribution of data within the input space
 - dimension reduction
- reinforcement learning: finding suitable actions to take in a given situation in order to maximize a reward

1.1 Example: Polynomial Curve Fitting

In regression problems, we can use a polynomial function

$$y(x, \mathbf{w}) = w_0 + w_1 + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$
 (1.1)

to fit the underlying function.

We need to minimize the error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$
 (1.2)

in which unique solution \mathbf{w}^* can be found in closed form.

The root-mean-square (RMS) is error defined by

$$E_{RMS} = \sqrt{2E(\mathbf{w}^*)/\mathbf{N}} \tag{1.3}$$

When M is large, over-fitting occurs, i.e. E_{RMS} against test data becomes large. One technique to control over-fitting is regularization, by adding a penalty term to the error function (1.2) in order to discourage the coefficients from reaching large values:

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$
 (1.4)

1.2 Probability Theory

Equations for probability:

Sum rule

$$p(X) = \sum_{Y} p(X, Y) \tag{1.5}$$

Product rule

$$p(X,Y) = p(Y|X)p(X)$$
(1.6)

Bayes' theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)} \tag{1.7}$$

The denominator in (1.7) can be expressed in terms of the quantities appearing in the numerator

$$p(X) = \sum_{Y} p(X|Y)p(Y) \tag{1.8}$$

We can view the denominator in Bayes' theorem as being the normalization constant required to ensure that the sum of the conditional probability on the left-hand side of (1.7) over all values of Y equals 1.

Before any observation, we have a probability of a certain event Y, this is called prior probability p(Y), after some observation X, the probability of event Y becomes the posterior probability p(Y|X).

X and Y are said to be independent if p(X,Y) = p(X)p(Y), which is equivaent to P(Y|X) = p(Y).

1.2.1 Probability densities

If the probability that x will lie in (a, b) is given by

$$p(x \in (a,b)) = \int_a^b p(x) dx \tag{1.9}$$

then p(x) is called the *probability density* over x.

Apparently $p(x) \ge 0$ and $\int_{-\infty}^{\infty} p(x) dx = 1$.

Under a nonlinear change of variable, a probability density transforms differently from a simple function, due to the Jacobian factor. If x = g(y), since $p_x(x)dx = p_y(y)dy$, hence

$$p_{y}(y) = p_{x}(x) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$$
$$= p_{x}(g(y)) \left| g'(y) \right| \tag{1.10}$$

The cuculative distribution function

$$P(z) = \int_{-\infty}^{z} p(x) dx \tag{1.11}$$

For several continuous variables x_1, \ldots, x_D , denoted collectively by the vector \mathbf{x} , then we can define a joint probability density $p(\mathbf{x})$ such that $p(\mathbf{x} \in (\mathbf{x}_0, \mathbf{x}_0 + \delta \mathbf{x})) = p(\mathbf{x}_0)\delta \mathbf{x}$.

1.2.2 Expectations and covariances

The average value of some function f(x) under a probability distribution p(x) is called the *expectation* of f(x) and denoted by $\mathbb{E}[f]$. For a describe distribution,

$$\mathbb{E}[f] = \sum_{x} p(x)f(x) \tag{1.12}$$

For continuous variables,

$$\mathbb{E}[f] = \int p(x)f(x)dx \tag{1.13}$$

In either case, the expectation can be approximated given N samples,

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n) \tag{1.14}$$

When considering expectations of functions of several variables, we use subscript to indicate which variable is being averaged over, e.g. $\mathbb{E}_x[f(x,y)]$ is a function of y.

We can also consider conditional expectation

$$\mathbb{E}_x[f|y] = \sum_x p(x|y)f(x) \tag{1.15}$$

The variance of f(x) is defined by

$$var[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right]^{2}\right]$$
(1.16)

$$= \mathbb{E}\left[f(x)^2\right] - \mathbb{E}\left[f(x)\right]^2 \tag{1.17}$$

The covariance of two random variable x and y is defined by

$$cov[x, y] = \mathbb{E}_{x,y} [\{x - \mathbb{E}[x]\}\{y - \mathbb{E}[y]\}]$$
$$= \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$
(1.18)

which expresses the extent to which x and y vary together. If they are independent, then thei covariance vanishes.

In the case of two vectors of random variables \mathbf{x} and \mathbf{y} , the covariance is a matrix

$$cov[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{x,y} \left[\left\{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \right\} \left\{ \mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \right\} \right]$$
$$= \mathbb{E}_{x,y} \left[\mathbf{x} \mathbf{y}^{\mathrm{T}} \right] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{y}^{\mathrm{T}}]$$
(1.19)