Практична робота 1 Оцінка потенційно-можливої небезпеки і шкідливості виробничих процесів студента групи ПА-19-2 Ільяшенко Єгора Варіант 7

Мета роботи: засвоїти методику кількісної та якісної оцінки небезпеки і шкідливості виробничих процесів.

Порядок виконання роботи

- 1. Уважно вивчити теоретичні положення і методику виконання розрахунку.
- 2. Вибрати варіант завдання по таблиці. Номер варіанта відповідає порядковому номеру студента в журналі.
- 3. Виписати вихідні дані.
- 4. Виконати розрахунки потенційної небезпеки і зробити висновки.

Варіант	t_1^n , год	t_2^n , год	m_1	m_2	n_1 ,	n_2 ,	T_{3M} ,	N_1 ,	N, чол
	1 /				1/год	1/год	год	чол	
7	$5 \cdot 10^{-2}$	$3,5 \cdot 10^{-2}$	12	28	3	6	8	56	128

Завдання 1

Дати кількісну оцінку потенційної небезпеки виробничого процесу, що має технологічні переходи в зоні дії автодороги і залізничної колії. Час перебування працюючих в зоні дії автодороги t_1^n (год) і залізничної колії t_2^n (год). Кількість переходів одним робітником: автодороги m_1 , залізничної колії m_2 . Інтенсивність руху: автомашин n_1 , (1/год), залізничних складів n_2 (1/год). Тривалість робочої зміни T_{3M} (год). Загальна кількість працюючих N (чол.), з них N_1 (чол.) виконують небезпечні операції. Вихідні дані в табл. 2.

Виконання завдання 1 розглянуто на прикладі згідно вихідних даних табл.1:

$$P_{1}^{m} = \frac{L_{1}^{n} \cdot m_{1}}{T_{3m}} = \frac{5 \cdot 10^{-2} \cdot 12}{8} = 7.5 \cdot 10^{2}$$

$$P_{2}^{m} = \frac{L_{2}^{n} \cdot m_{2}}{T_{3m}} = \frac{3.5 \cdot 10^{-2} \cdot 28}{8} = 12.25 \cdot 10^{-2}$$

$$P_{1}^{n} = \frac{L_{1}^{n} \cdot h_{1} \cdot T_{3m}}{T_{3m}} = 5 \cdot 10^{-2} \cdot 3 = 15 \cdot 10^{2}$$

$$P_{2}^{n} = L_{2}^{n} \cdot h_{2} = 3.5 \cdot 10^{-2} \cdot 6 = 21 \cdot 10^{2}$$

$$P_{n_{1}} = P_{1}^{n} \cdot P_{1}^{n} = 15 \cdot 7.5 \cdot 10^{-4} = 112.5 \cdot 10^{-4}$$

$$P_{n_{2}} = P_{2}^{n} \cdot P_{2}^{n} = 21 \cdot 12.25 \cdot 10^{-4} = 257.25 \cdot 10^{-4}$$

$$P_{1}^{n} = P_{1}^{n} \cdot P_{1}^{n} - P_{1}^{n} \cdot P_{1}^{n} = 2.5725 \cdot 10^{-4} = 2.5725 \cdot 10^{-4}$$

$$P_{1}^{n} = \frac{N_{2}P_{n}(2)}{N} = \frac{56 \cdot 3.6686 \cdot 10^{-2}}{128} = 1.605 \cdot 10^{-2}$$

Завдання 2

Дати кількісну оцінку потенційної шкідливості виробничого процесу, при якому в повітря робочої зони виділяються бензол, оксид вуглецю і аерозоль алюмінію. Тривалість робочої зміни T_{3M} , год. Час дії шкідливого фактору t_j^s , год. Час перебування людини в зоні дії шкідливого фактору протягом робочої зміни t_j^r . Фактичний зміст j-ої шкідливої речовини c_j , (мг/м³). Граничний вміст j-ої шкідливої речовини C_j (мг/м³). Кількість працюючих в зоні дії шкідливих факторів N_1 (чол). Кількість працюючих, що не піддаються дії шкідливих факторів N_m (чол). Загальна чисельність працюючих N (чол), вихідні данні в табл. 3.

Вихідні да	7	
t_1^s , год	бензол	1,9
t_1^r , год		1,6
c_1 , M Γ /M 3		10
C_1 , мг/м ³		17
N_1 , чол		15
t_2^s , год	оксид вуглецю	1,4
t_2^r , год	Вуглецю	1,0
c_2 , M Γ /M ³		35
C_2 , M Γ /M ³		38
N_2 , чол		40
t_3^s , год	алюміній	3,3
t_3^r , год		3,0
c_3 , M Γ /M ³		6,0
C_3 , M Γ /M 3		8,0
N_3 , чол		10
N_S , чол		55
$T_{\it 3M}$, год		8

$$P_{1}^{63} = \frac{10}{17} = 0.588 \quad P_{1}^{5} = \frac{1.9}{8} = 0.2375 \quad P_{1}^{7} = \frac{1.6}{8} = 0.177$$

$$P_{2}^{63} = \frac{35}{38} = 0.921 \quad P_{2}^{5} = \frac{1.4}{8} = 0.175 \quad P_{3}^{7} = \frac{1}{8} = 0.125$$

$$P_{3}^{63} = \frac{6}{8} = 0.75 \quad P_{3}^{5} = \frac{3.3}{8} = 0.4125 \quad P_{3}^{7} = \frac{3}{8} = 0.375$$

$$P_{S_{1}} = 0.538 \cdot 0.237 \cdot 0.177 = 0.02466$$

$$P_{S_{2}} = 0.921 \cdot 0.175 \cdot 0.125 = 0.020146$$

$$P_{S_{3}} = 0.75 \cdot 0.4125 \cdot 0.375 = 0.11602$$

$$P_{S_{3}} = 0.75 \cdot 0.4125 \cdot 0.375 = 0.11602$$

$$P_{S_{1}} = \frac{15 \cdot 0.024 + 40 \cdot 0.0201 + |0 \cdot 0.116|}{65} = \frac{0.36 + 0.8 + 1.16}{65} = 0.0356$$

Клас небезпеки: Бензол:г, канцероген

OKCHA BATVERDE: A MCIDOHOLIDALVEHA BIS

Rig DHHATOGGIA (E: WIHIMONA

- $1.^{\circ}$ Визначити втрати від дії небезпечних факторів за час «життя» виробничого процесу Q_{nn} за формулою (15).
- $2.^{\circ}$ Визначити втрати від дії шкідливих факторів за час «життя» виробничого процесу Q_{ns} за формулою (16).
 - 3. Визначити сумарні втрати за формулою (14) або (17).
 - 4.°Зробити висновки.

	Вхідні данні							
Варіант	Q_{n1} , тис. грн. (автодорога)	Q_{n2} , тис. грн. (з/дорога)	Q_{s1} , тис. грн. (бензол)	Q_{s2} , тис. грн. (оксид вуглецю)		<i>T</i> , років		
7	70	80	60	20	40	20		

$$Q_{hn} = 20 \cdot (70 + 80) = 3000$$

$$Q_{ns} = 20 \cdot (60 + 20 + 40) = 2400$$

$$Q_{hz} = Q_{hn} + Q_{ns} = 3000 + 2400 = 5400$$

Контрольні питання

- 1.Що розуміється під небезпекою?
- 2. Джерела формування небезпек.
- 3.Як поділяються небезпеки за часом прояву, локалізації, збитку, характеру впливу? Сфери прояву небезпек.
- 5. Номенклатура, квантифікація, ідентифікація небезпек.
- 6.Причини та наслідки небезпек.
- 7. Аксіома про потенційну небезпеку.
- 8.Завдання БЖД як наукової дисципліни.
- 9.Об'єкт аналізу небезпек.
- 10. Методи аналізу небезпек.
- 11. Шкідливий і небезпечний виробничий фактор.
- 12.Характеристика технологічних процесів з точки зору шкідливості і небезпеки.
- 13.Потенційна небезпека і шкідливість виробничих факторів.
- 14.Що дозволяє оцінити потенційна небезпека і шкідливість виробничих процесів?
- 15. Імовірність наявності небезпечного фактору.
- 16. Імовірність дії небезпечного фактору.
- 17. Імовірність знаходження працюючого в зоні дії небезпечного фактору.
- 18. Імовірність дії на працюючих і-го небезпечного фактору.
- 19. Імовірність дії декількох небезпечних факторів.
- 20.Небезпека виробничого процесу.
- 21. Імовірність дії ј-го шкідливого фактору.
- 22. Імовірність наявності в робочій зоні ј-го шкідливого фактору.
- 23. Імовірність знаходження людини в зоні дії ј-го шкідливого фактору.
- 24.Вражаюча здатність ј-го шкідливого фактору.
- 25. Імовірність шкідливого впливу т шкідливих факторів.
- 26. Шкідливість виробничого процесу.
- 27.Втрати, зумовлені дією небезпечних факторів.
- 28.Втрати від дії п небезпечних факторів за час «життя» виробничого процесу.
- 29. Втрати від дії m шкідливих факторів за час «життя» виробничого процесу.
- 30. Економічна оцінка потенційної небезпеки і шкідливості виробничих процесів (сумарні втрати).

Відповіді

1. Джерело чи ситуація, що потенційно може призвести до травмування, погіршення здоров'я чи смерті людини, завдавати шкоду майну, довкіллю, чи їх комбінація.

2.

- 2.1. Техногенно-виробничі небезпеки, які обумовлені господарською діяльністю людини, техногенно-виробничі небезпеки також називають антропогенними небезпеками;
- 2.2. Природно-екологічні небезпеки, які обумовлені причинами природного характеру;
- 2.3. Соціально-економічні небезпеки, які обумовлені причинами соціального, економічного і психологічного характеру;
- 2.4. Військові небезпеки, які обумовлені військовими діями, роботою військовопромислового комплексу, терористичними актами.

3.

- 3.1. За моментом виникнення небезпеки є: прогнозовані, спонтанні.
- 3.2. За розмірами зони впливу: локальні, регіональні, міжрегіональні, глобальні.
- 3.3. За об'єктами негативного впливу: діючі на людину, діючі на природне середовище, діючі на матеріальні ресурси, комплексного впливу.
- 3.4. За характером впливу на людину: механічні, фізичні, хімічні, біологічні, психофізіологічні.
- 3.5. Виділяють сфери прояву небезпек: побутова, виробнича, культурна, наукова, спортивна, дорожньо-транспортна, військова та ін.
- 4. Під ідентифікацією небезпек розуміється процес виявлення і встановлення кількісних, тимчасових, просторових і інших характеристик, необхідних і достатніх для розробки профілактичних і оперативних заходів, спрямованих на забезпечення життєдіяльності. У процесі ідентифікації виявляються: номенклатура небезпек, ймовірність їх прояву, просторова локалізація, можливий збиток і інші параметри, необхідні для вирішення конкретного завдання. Під квантифікацією небезпек розуміється введення кількісних характеристик для оцінки складних, якісно визначених понять. Використовуються чисельні, бальні та інші прийоми квантифікації. Поширеною оцінкою небезпеки є ризик.
- 5. Виділяють сфери прояву небезпек: побутова, виробнича, культурна, наукова, спортивна, дорожньо-транспортна, військова та ін.
- 6. Умови, при яких реалізуються потенційні небезпеки, називаються причинами. Тріада «небезпека причини небажані наслідки» це логічний процес розвитку, який реалізує потенційну небезпеку в реальний збиток (наслідок).
- 7. життєдіяльність людини потенційно небезпечна.
- 8. В процесі життєдіяльності людину постійно супроводжують ті чи інші небезпеки, тому вивчення їх особливостей, умов прояву, наслідків впливу одне з основних завдань безпеки життєдіяльності.
- 9. Об'єктом аналізу небезпек є система «людина машина навколишнє середовище», в яку об'єднані технічні об'єкти, люди і навколишнє середовище, взаємодіють один з одним.

10.

- а) аналіз пошкоджень та викликаного ними ефекту (АПВЕ);
- b) аналіз дерева помилок (АДП);
- с) аналіз ризику помилок (АРП);
- d) прорахунки менеджменту та дерево ризику (ПМДР);
- е) аналіз потоків та перешкод енергії (АППЕ);
- f) аналіз поетапного наближення (АПН);
- g) програмний аналіз небезпек (ПрАН);
- h) аналіз загальних причин поломки (АЗПП);
- і) причинно-наслідковий аналіз (ПНА);
- ј) аналіз дерева подій (АДП).

- 11. Шкідливий фактор негативний вплив на людину, який призводить до погіршення самопочуття або захворювання. Небезпечний фактор – негативний вплив на людину, який призводить до травми або смерті.
- 12. Так як потенційна небезпека і шкідливість є, не що інше, як імовірна міра можливості двох подій (травми і професійного захворювання), то їх кількісну оцінку доцільно визначати, через імовірність.
- 13. Потенційна небезпека і шкідливість виробничих процесів дозволяє оцінити економічні втрати підприємства, які могли мати місце, якби не було системи захисту. Використання поняття «потенційна небезпека і шкідливість виробничих процесів» в інженерних розрахунках передбачає наявність її кількісної оцінки.
- 14. можливості двох подій (травми і професійного захворювання)
- 15. Імовірність наявності і-го небезпечного фактору може бути визначена за формулою: $P_i = P_i^n * P_i^r$

16.
$$P_i^n = \frac{t_i^n}{T_{av}}$$

17.
$$P_i^r = \frac{t_i^r}{T_{3M}}$$

18.
$$P_i = \frac{t_i^n * t_i^r}{T_{out}^2}$$

19.
$$P_n(k) = P_{n_k} + P_{n_{k+1}} - P_{n_k} * P_n$$

19.
$$P_n(k) = P_{n_k} + P_{n_{k-1}} - P_{n_k} * P_{n_{k-1}}$$

20. $P_{nn} = \frac{N_1 P_n(1) + N_2 P_n(2) + \dots + N_n P_n(n)}{N}$

21.
$$P_{s_i} = P_j^s * P_j^r i P_j^{e3}$$

22.
$$P_{j}^{s} = \frac{t_{j}^{s}}{T_{3M}}$$

23.
$$P_{j}^{r} = \frac{t_{j}^{r}}{T_{sm}}$$

24.
$$P_{j}^{63} = \frac{c_{j}}{C_{i}}$$

25.
$$P_s(m) = 1 - \prod_{i=1}^{m} (1 - P_{s_i})$$

26.
$$P_{nn}^{s} = \frac{N_1 P_s(1) + N_2 P_s(2) + ... + N_n P_s(m)}{N}$$

27.
$$Q_{nn} = \frac{T}{T_{2m}} \sum_{i=1}^{n} N_{i}^{n} P_{n}(i) Q_{n_{i}}$$

28.
$$Q_{nn} = \frac{T}{T_{3M}} \sum_{i=1}^{n} N_{i}^{n} P_{n}(i) Q_{n_{i}}$$

29.
$$Q_{ns} = \frac{T}{T_{3M}} \sum_{j=1}^{m} N_{j}^{s} P_{s}(j) Q_{s_{j}}$$

$$30.Q_{nz} = Q_{nn} + Q_{ns}$$