ORIE 4741: Linear Algebra and Gradient Descent

Chengrun Yang

September 30, 2019

Full rank matrices

Pseudoinverse

Full rank matrices

Pseudoinverse

Full rank matrices

Claim: The followings are equivalent for any matrix $A \in \mathbb{R}^{m \times n}$:

- 1. $(Ax = 0 \Leftrightarrow x = 0)$
- 2. A has full column rank
- 3. $A^{\top}A$ is invertible

Full rank matrices

Claim: The followings are equivalent for any matrix $A \in \mathbb{R}^{m \times n}$:

- 1. $(Ax = 0 \Leftrightarrow x = 0)$
- 2. A has full column rank
- 3. $A^{\top}A$ is invertible

Equivalence of 1 and 2:

Proof.

Write A as the concatenation of column vectors (a_1, a_2, \cdots, a_n) . Ax = 0 can then be written as $\sum_{i=1}^{n} a_i x_i = 0$. Thus $(Ax = 0 \Leftrightarrow x = 0)$ is equivalent to the columns of A being linearly independent, i.e. A has full column rank.

Full rank matrices

Claim: The followings are equivalent for any matrix $A \in \mathbb{R}^{m \times n}$:

- 1. $(Ax = 0 \Leftrightarrow x = 0)$
- 2. A has full column rank
- 3. $A^{\top}A$ is invertible

Equivalence of 1 and 2:

Proof.

Write A as the concatenation of column vectors (a_1, a_2, \dots, a_n) . Ax = 0 can then be written as $\sum_{i=1}^{n} a_i x_i = 0$. Thus $(Ax = 0 \Leftrightarrow x = 0)$ is equivalent to the columns of A being linearly independent, i.e. A has full column rank.

Question: equivalence of 1, 2 and 3?

Full rank matrices

Pseudoinverse

Pseudoinverse

Definition: for any matrix $A \in \mathbb{R}^{m \times n}$, a pseudoinverse of A is defined as a matrix $A^{\dagger} \in \mathbb{R}^{n \times m}$ if it satisfies all the following:

- $AA^{\dagger}A = A$
- $A^{\dagger}AA^{\dagger} = A^{\dagger}$
- $(AA^{\dagger})^{\top} = AA^{\dagger}$
- $(A^{\dagger}A)^{\top} = A^{\dagger}A$

Pseudoinverse

Definition: for any matrix $A \in \mathbb{R}^{m \times n}$, a pseudoinverse of A is defined as a matrix $A^{\dagger} \in \mathbb{R}^{n \times m}$ if it satisfies all the following:

- $AA^{\dagger}A = A$
- $A^{\dagger}AA^{\dagger} = A^{\dagger}$
- $(AA^{\dagger})^{\top} = AA^{\dagger}$
- $(A^{\dagger}A)^{\top} = A^{\dagger}A$

If A has full column rank, $A^{\dagger} = (A^{\top}A)^{-1}A^{\top}$. Thus:

- $A^{\dagger}A = I_n$
- $ightharpoonup AA^\dagger
 eq I_m$ (not necessarily equal)

But ...

Pseudoinverse

Definition: for any matrix $A \in \mathbb{R}^{m \times n}$, a pseudoinverse of A is defined as a matrix $A^{\dagger} \in \mathbb{R}^{n \times m}$ if it satisfies all the following:

- $AA^{\dagger}A = A$
- $A^{\dagger}AA^{\dagger} = A^{\dagger}$
- $(AA^{\dagger})^{\top} = AA^{\dagger}$
- $(A^{\dagger}A)^{\top} = A^{\dagger}A$

If A has full column rank, $A^{\dagger} = (A^{\top}A)^{-1}A^{\top}$. Thus:

- $A^{\dagger}A = I_n$
- $ightharpoonup AA^\dagger
 eq I_m ext{ (not necessarily equal)}$

But ...

Claim: If $y \in \text{range}(A)$, then $AA^{\dagger}y = y$.

Full rank matrices

Pseudoinverse

Convexity

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}$ being convex if the domain of f (denoted as $\operatorname{dom}(f)$) is a convex set and $\forall x, y \in \operatorname{dom}(f)$ and $\theta \in [0,1]$, $f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y)$.

Convexity

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}$ being convex if the domain of f (denoted as $\operatorname{dom}(f)$) is a convex set and $\forall x, y \in \operatorname{dom}(f)$ and $\theta \in [0, 1]$, $f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$.

Equivalent definitions:

- ▶ (First-order Convexity Condition) Suppose a function $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable in $\operatorname{dom}(f)$. Then f is convex if and only if $\operatorname{dom}(f)$ is convex and $\forall x, y \in \operatorname{dom}(f)$, $f(y) \geq f(x) + \nabla f(x)^T (y x)$.
- ▶ (Second-order Convexity Condition) Suppose a function $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable in $\operatorname{dom}(f)$. Then f is convex if and only if $\operatorname{dom}(f)$ is convex, $\forall x \in \operatorname{dom}(f)$, $\nabla^2 f \succeq 0$ (positive semi-definite).

Convergence rate of smooth functions

A function f is smooth if and only if $\forall x, y \in \mathbf{dom}(f)$, $f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||x - y||^2$.

Convergence rate of smooth functions

A function f is smooth if and only if $\forall x, y \in \mathbf{dom}(f)$, $f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||x - y||^2$.

Theorem: Under the following conditions:

- 1. $f: \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable with $\mathbf{dom}(f) = \mathbb{R}^n$
- 2. f is smooth with parameter $\beta > 0$
- 3. Optimal value $p^* = \inf_x f(x)$ is finite and is attained at x^*

If we perform gradient descent updates $x^{(k+1)} = x - t \nabla f(x^{(k)})$ on f with a constant step size t that satisfies $0 < t \le \frac{1}{\beta}$, the number of steps taken to achieve $f(x^{(k)}) - p^* \le \epsilon$ is $O(\frac{1}{\epsilon})$.

Convergence on least squares problem

Our problem: minimize $||y - Xw||^2$

First and second-order derivatives:

$$\nabla_{w}||y - Xw||^{2} = 2X^{\top}(Xw - y)$$

 $\nabla_{w}^{2}||y - Xw||^{2} = 2X^{\top}X$

Properties of the least squares problem:

- Convexity: $\nabla_w^2 ||y Xw||^2 \succeq 0$
- Smoothness:

$$||\nabla_w||y - Xw_1||^2 - \nabla_w||y - Xw_2||^2|| \le 2||X^\top X||_{\text{op}}||w_1 - w_2||_2$$

Thus if step size t satisfies $0 \le t \le \frac{1}{2||X^\top X||_{op}}$, we can get a convergence rate of $O(\frac{1}{k})$ with respect to the number of steps k.