Lycée Jean Perrin PCSI - Colle de Chimie

Planche 1

Questions de cours

Question T1 : Énoncer la loi des gaz parfaits et définir la pression partielle dans un mélange de gaz parfaits.

Question T2: Définir l'activité chimique d'une espèce gazeuse, liquide (solvant et soluté) et solide.

Exercice: Équilibre en phase gazeuse

On introduit 12,5 mmol de tétraoxyde de diazote N_2O_4 dans un récipient de volume V=1 L, à la température T=298 K.

Il se produit une dissociation partielle selon la réaction d'équation :

$$\mathrm{N_2O_4(g)} = 2\,\mathrm{NO_2(g)}$$

- 1. Dresser le tableau d'avancement de la réaction.
- 2. Sachant que la pression finale P_f dans le récipient est égale à 0,39 bar, calculer l'avancement ξ_{eq} de la réaction.
- 3. En déduire les quantités de matière de chaque gaz à l'équilibre.
- 4. Calculer les fractions molaires de chaque gaz à l'équilibre.
- 5. En déduire les pressions partielles de chaque gaz à l'équilibre.
- 6. Calculer la constante d'équilibre $K^o(T)$ à 298 K.
- 7. Calculer le taux d'avancement final τ . La réaction est-elle quantitative, équilibrée ou peu avancée ?
- 8. On ajoute maintenant 5,0 mmol de NO_2 supplémentaire dans le récipient à volume et température constants. Dans quel sens évolue le système? Justifier sans calcul supplémentaire.

Données : constante des gaz parfaits $R = 8,314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 bar = 10^5 Pa