Colley Chapter 2.3. $\{33,\ 38,\ 42\},\ 2.4.\{16,\ 22,\ 29a\}$

2.3.33 Find the matrix $D\mathbf{f}(\mathbf{a})$ of partial derivatives where \mathbf{f} and \mathbf{a} are as indicated:

$$\mathbf{f}(s,t) = (s^2, st, t^2), \mathbf{a} = (-1,1)$$

1

2.3.38 Find an equation for the plane tangent to the graph of $z = 4 \cos xy$ at the point $(\pi/3, 1, 2)$.

2

2.3.42 Suppose that you have the following information concerning a differentiable function f:

$$f(2,3) = 12, f(1.98,3) = 12.1, f(2,3.01 = 12.2)$$

- (a) Give an approximate equation for the plane tangent to the graph of f at (2,3,12).
- (b) Use the result of part (a) to estimate f(1.98, 2.98).

2.4.16 Determine all second-order partial derivatives (including mixed partials).

$$f(x,y) = \ln\left(\frac{x}{y}\right)$$

- **2.4.22** Consider the function $F(x, y, z) = 2x^3y + xz^2 + y^3z^5 7xyz$.
- (a) Find F_{xx} , F_{yy} , and F_{zz} .
- (b) Calculate the mixed second-order partials F_{xy} , F_{yx} , F_{xz} , F_{zx} , F_{yz} , and F_{zy} , and verify Theorem 4.3.

5

2.4.29a The three-dimensional **heat equation** is the partial differential equation

$$k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right) = \frac{\partial T}{\partial t}$$

where k is a positive constant. It models the temperature T(x,y,z,t) at the point (x,y,z) and time t of a body in space.

(a) We examine a simplified version of the heat equation. Consider a straight wire "coordinatized" by x. Then the temperature T(x,t) at time t and position x along the wire is modeled by the one-dimensional heat equation

$$k\frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}.$$

Show that the function $T(x,t) = e^{-kt}\cos x$ satisfies this equation. Note that if t is held constant at value t_0 , then $T(x,t_0)$ shows how the temperature varies along the wire at time t_0 . Graph the curves $z = T(x,t_0)$ for $t_0 = 0,1,10$, and use them to understand the graph of the surface z = T(x,t) for $t \ge 0$. Explain what happens to the temperature of the wire after a long period of time.