This problem set has 10 questions, for a total of 100 points. Answer the questions below and mark your answers in the spaces provided. For all questions you **must** show your work, providing details on how your answer was calculated.

| 37 37      |  |  |  |
|------------|--|--|--|
| Your Name: |  |  |  |

1. [5 points] For the following dataset, draw a Decision Tree of *minimum depth* that is consistent with the data.

| $x_1$ | $x_2$ | y   |
|-------|-------|-----|
| 0     | 0     | No  |
| 0     | 1     | No  |
| 1     | 0     | Yes |
| 1     | 1     | Yes |

2. Given the following dataset  $\mathcal{D}$ :

| Midterm | dterm Project Attendar |      | y    |
|---------|------------------------|------|------|
| High    | High Yes               |      | Pass |
| Medium  | Yes                    | High | Pass |
| Low     | Yes                    | High | Pass |
| High    | No                     | High | Pass |
| Low     | Yes                    | Low  | Fail |
| Medium  | Yes                    | Low  | Fail |
| Medium  | No                     | Low  | Fail |
| Low     | No                     | Low  | Fail |

| (a) | [5 points] What is the $Entropy$ of $\mathcal{D}$                                                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     | [10 points] Assuming the DT algorithm covered in lectures, what is the attribute picked as the root of the decision tree? Show the <i>information gain</i> of each attribute. |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
| ( ) |                                                                                                                                                                               |
| (c) | [10 points] Assuming the DT algorithm covered in lectures, draw the final DT                                                                                                  |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |

3. Let  $\mathcal{X} = \{0,1\}^d$ ,  $\mathcal{Y} = \{A,B,C,D,E\}$ , and  $\mathcal{D}$  a dataset with 2000 instances equally distributed over all classes. Assume that the first feature is  $\vec{x}_1 = 0$  for all instances labeled  $\{A,B,C\}$ , and  $\vec{x}_1 = 1$  for all instances labeled  $\{D,E\}$ . You split the data into  $\mathcal{D}_{train}$  (75%) and  $\mathcal{D}_{test}$  (25%), preserving class distributions. Now consider the use of the following classifier:

$$f(\vec{x}) = \begin{cases} y & \text{if } \vec{x} \in \mathcal{D}_{train} \\ A & \text{if } \vec{x} \notin \mathcal{D}_{train} \text{ and } \vec{x}_1 = 0 \\ D & \text{if } \vec{x} \notin \mathcal{D}_{train} \text{ and } \vec{x}_1 = 1 \end{cases}$$

(a) [5 points] What is the 0/1 loss for the training set?

(b) [5 points] What is the 0/1 loss for the test set?



4. [5 points] The figure below shows a general trend of how the training and test errors change as we increase the training set size. Which curve best represents the training error? Justify your answer.



| 1 |  |  |
|---|--|--|

5. [10 points] Considering the dataset below and the use of Euclidean distance:



What value of k minimizes the Leave-One-Out Cross-Validation (LOOCV) error for a k-NN classifier?

| I . |  |  |
|-----|--|--|
| l . |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| I . |  |  |
| 1   |  |  |
| 1   |  |  |
|     |  |  |
|     |  |  |

| 6. | [5 p | oints] | Mark each of the following as T if the statement is $true$ and F if the statement is $false$                              |
|----|------|--------|---------------------------------------------------------------------------------------------------------------------------|
|    | (a)  |        | Overfitting will be more likely when we reduce the size of the training set while keeping the                             |
|    |      | same   | e model complexity                                                                                                        |
|    | (b)  |        | Overfitting is more likely for more complex hypothesis spaces                                                             |
|    | (c)  |        | Using k-fold cross-validation during training will guarantee the model does not overfit                                   |
|    | (d)  |        | LOOCV generally gives more accurate estimates of the test error than 10-fold cross validation                             |
|    | (e)  |        | Cross-validation will guarantee that our model does not overfit                                                           |
| 7. | [5 p | oints] | Mark each of the following as T if the statement is $\mathit{true}$ and F if the statement is $\mathit{false}$            |
|    | (a)  |        | A 3-NN classifier is more robust to outliers than a 1-NN classifier                                                       |
|    | (b)  |        | kd-trees are used to reduce inference time by searching for approximate nearest neighbors                                 |
|    | (c)  |        | Making a decision tree deeper will likely reduce training error and increase test error                                   |
|    | (d)  |        | When pruning an already trained decision tree, we usually achieve better generalization                                   |
|    | (e)  |        | If a decision tree performs badly on both training and test sets, it is possible that the tree is                         |
|    | ` ,  |        | hallow.                                                                                                                   |
|    |      |        |                                                                                                                           |
| 9. | Wit  | hin th | ne context of bias-variance decomposition:                                                                                |
|    | (a)  |        | pints] When you increase the number of neighbors $k$ of a k-nn classifier, explain whether the bias increase or decrease. |
|    |      |        |                                                                                                                           |
|    |      |        |                                                                                                                           |

| (b)         | [5 points] When you prune a decision tree, explain whether the variance will       | increase or decrease.     |
|-------------|------------------------------------------------------------------------------------|---------------------------|
|             |                                                                                    |                           |
|             |                                                                                    |                           |
|             |                                                                                    |                           |
|             |                                                                                    |                           |
|             |                                                                                    |                           |
|             |                                                                                    |                           |
|             |                                                                                    |                           |
| ,<br>10 Agg | uning the following confusion matrix (rows are for predicted and columns for       | actual values).           |
| IU. ASSU    | uming the following confusion matrix (rows are for predicted and columns for       | actual values):           |
|             | A B   A 35 10                                                                      |                           |
|             | B 25 180                                                                           |                           |
| (a)         | [5 points] What is the <i>precision</i> of this model with respect to class A?     |                           |
|             |                                                                                    | (a)                       |
| (b)         | [5 points] What is the <i>recall</i> of this model with respect to class A?        |                           |
|             |                                                                                    | (b)                       |
| (c)         | [5 points] What is the overall accuracy of this model?                             |                           |
|             |                                                                                    | (c)                       |
| (d)         | [5 points] Alice can't tolerate A instances classified as B and Bob can't tolera   | te B instances classified |
|             | as A. Using the precision and recall values you calculated before, which use more? | r will prefer this model  |
|             |                                                                                    |                           |
|             |                                                                                    |                           |
|             |                                                                                    |                           |
|             |                                                                                    |                           |
|             |                                                                                    |                           |
|             |                                                                                    |                           |
|             |                                                                                    |                           |