Student Information

Full Name: Ahmet Dara VEFA

Id Number: 2237899

Answer 1

a.

Lets denote every number the set of rational numbers inside the open interval (-1,0) contains as $n = \frac{a}{b}$. The elements of this set is:

$a \setminus b$	1	2	3	4	
$\overline{-1}$	$-\frac{1}{1}$	$-\frac{1}{2}$	$-\frac{1}{3}$	$-\frac{1}{4}$	
-2	$-\frac{2}{1}$	$-\frac{\overline{2}}{2}$	$-\frac{2}{3}$	$-\frac{2}{4}$	
-3	$-\frac{3}{1}$	$-\frac{3}{2}$	$-\frac{3}{3}$	$-\frac{3}{4}$	
-4	$-\frac{4}{1}$	$-\frac{7}{2}$	$-\frac{4}{3}$	$-\frac{4}{4}$	
				•••	

In the table, first row infinite elements of set \mathbb{N} except 0, starting from 1 and the first column contains the countably infinite elements of set Z^- except 0. The entries in the upper triangular half of this table (above the diagonal, diagonal is exclusive) shows the numbers $n = \frac{a}{b}$ that is in this set.

These can be counted reverse diagonally starting with $-\frac{1}{2}$ (i.e. 1st element: $-\frac{1}{2}$, 2nd element: $-\frac{1}{3}$, 3rd element $-\frac{2}{3}$, 4th element: $-\frac{1}{4}$, 5th element: $-\frac{1}{5}$, 6th element: $-\frac{2}{4}$, 7th element: $-\frac{3}{4}$, 8th element: $-\frac{2}{5}$, 9th element: $-\frac{1}{6}$ and so on). With this way of counting we will eventually get all elements in the set, which we can index them with unique numbers from \mathbb{N} as $0 \implies -\frac{1}{2}$, $1 \implies -\frac{1}{3}$, $2 \implies -\frac{2}{3}$, $3 \implies -\frac{1}{4}$...

With this mapping we can get the one-to-one correspondence between the set of rational numbers inside the open interval (-1,0) and \mathbb{N} .

Since we get one to one correspondence with the set of rational numbers this set is countably infinite.

b.

The set D is empty set, therefore it is finite and countable, because any finite language L is regular, L^* is regular and their concatenation is LL^* is regular. Since $L^+ = LL^*$ L^+ is also regular. So L^+ cannot be regular and nonregular. So $D = \{\}$.

c.

We know that a language is regular iff it is accepted by a FA, and set of nonregular languages over an alphabet of size 2 or more is uncountable. Since the set of all languages on the binary alphabet

 $\sum = \{a,b\}$ which can't be recognized by a FA is the set of all nonregular languages on the binary alphabet of size 2, this set is uncountably infinite.

Answer 2

a.

b.

 $\mathbf{c}.$

Answer 3

a.

We cant reach to the end-state q_5 with this word so w_1 is not in the language. (Also there is no word that ends with b in this language since there is no empty input or b input coming in to q_5)

b.

We can reach to the end-state q_5 by following the path $q_0 \implies q_1 \implies q_3 \implies q_3 \implies q_5 \implies q_1 \implies q_3 \implies q_5 \implies q_5$.

So we can read the word ababa in this language, therefore this word is in the language.

Answer 4

a.

A generalized finite autoamaton (GFA) has one starting state with no incoming transitions; one final state with no outgoing transitions.

Therefore our GFA is of the form:

b.

Continuing from the first state given in 4.a:

Eleminate q_0 :

Eleminate q_2 :

Eleminate q_3 :

Eleminate q_1 and simplify:

Answer 5

$$\begin{split} N &= \{k, \sum, \Delta, s, F\} \\ M &= \{k', \sum, \Delta, s', F'\} \end{split}$$

a.

The algorithm is like this: 1- Create a start state of the DFA by taking E(q): (the set of states of N that can be reached from q without reading any symbol from the input tape) with parameter q_0 (stand state).

So
$$s' = E(q_0) = \{q_0, q_1, q_2\}$$

- 2- Each time a new state is generated repeat these:
- 2.1- Create new states reachable frin tge new states by reading one symbol.
- 2.2- Apply E() to the new states, possibly resulting in a new state.
- 3- Finish states of M are those which contain any of the finish states of N(i.e any state that contains q_3)

Applying second step we get:

$$E(q_0) = \{q_0, q_1, q_2\} = s'$$

$$E(q_1) = \{q_1\}$$

$$E(q_2) = \{q_2\}$$

$$E(q_3) = \{q_1, q_3\}$$

$$\delta(E(q_0), a) = E(q_1)UE(q_3) = \{q_1, q_3\}$$

$$\delta(E(q_0), b) = E(q_2) = \{q_2\}$$

$$\delta(E(q_1), a) = \{\}$$

$$\delta(E(q_1), b) = \{\}$$

$$\delta(E(q_2), a) = E(q_3) = \{q_1, q_3\}$$

$$\delta(E(q_2), b) = \{\}$$

$$\delta(E(q_3), a) = \{\}$$

$$\delta(E(q_3), b) = \{\}$$

So M =

b.

We can get the complement of a DFA just by swapping end-states and non-end-states. Since N=M, L=L(N)=L(M)

If we take the complement of L we get :

Which is $eU(baUa)((baUbb)(aUb)^*)U(baUa)a(aUb)^*)UbUbb(aUb)^*$ as a RE. So $\bar{L} = \sum^* -L$ or $\bar{L} = \{w|w \in \sum^* \land w \not\in L\}$

Answer 6

$$L_{1} - L_{2} = L_{1} \cap \bar{L}_{2}$$
Let $L_{1} = \{Q_{1}, \sum, \delta_{1}, q_{1}, F_{1}\}$

$$L_{2} = \{Q_{2}, \sum, \delta_{2}, q_{2}, F_{2}\}$$
so $\bar{L}_{2} = \{Q_{2}, \sum, \delta_{2}, q_{2}, Q_{2} - F_{2}\}$ (From Question 5.b)

We can assume that alphabets of the L_1 and \bar{L}_2 are the same i.e \sum is the union of the alphabets of L_1 and L_2 .

We can assume that both automata are deterministic since we can convert NFA to DFA (from question 5.a)

Now we should construct an automata $L=L_1 \cap \bar{L_2}$ that simulates both L_1 and $\bar{L_2}$.

States of L are pairs of states (p,q) p coming from L_1 , q coming from $\bar{L_2}$.

If p goes to s upon reading input s and q goes to t upon reading input s then in our automata L (p,q) will go to (s,t) upon reading input s.

Our start state is pair of start states (q_1, q_2) .

Our end-states are pairs that are end-states in their respective automatas i.e (p,q) s.t $p \in F_1, q \in (Q_2 - F_2)$

So our new automata $L = (Q_1 \times Q_2, \sum, \delta, (q_1, q_2), F_1 \times (Q_2 - F_2))$ where $\delta((p, q), a) = (\delta_1(p, q), \delta_2(q, a))$

Answer 7

a.

Assume L is regular

If it is regular there exists some number p which is the pumping length.

$$w = a^{p^2} b^* \in L \quad |w| > p^2 > p$$

Partition w into xyz i.e w=xyz with $|xy| \le p$ and y shouldn't be empty.

For each different way of partitioning we should show that $xy^iz \notin L$ for some $i \geq 0$

$$|xy| \le p^2$$
 and y is nonempty

choose
$$x = a^l$$
 $y = a^m$ $t = a^{p^2 - l - m}$ where $l + m \le p$ and $m > 0$

choose i=2. We get
$$xy^2z = a^{p^2+m}$$

 $p^2 + m$ is not a perfect square since $0 > m \le p$ and difference between p^2 adn next square is always greater than p for all natural numbers.

 $xy^2z \notin L$ so our assumption is wrong and L is not regular.