Indicare TUTTE le affermazioni corrette

Risposte tipo: 1AD - 2A - 3BC (ci possono essere più risposte corrette)

- 1) Il polinomio interpolatore di $f(x) = x^2 + bx + c$ su 20 nodi distinti:
 - A) ha grado 3
 - B) ha grado 20
 - C) ha grado 2
 - D) ha grado 19
- 2) La somma algebrica di numeri approssimati:
 - A) è sempre instabile
 - B) è stabile quando i numeri hanno segno opposto
 - C) è instabile quando i numeri hanno lo stesso segno
 - D) può essere instabile quando i numeri hanno segno opposto
- 3) Il metodo di Newton (tangenti) quando converge:
 - A) ha sempre convergenza quadratica
 - B) ha sempre convergenza lineare
 - C) può avere convergenza lineare
 - D) può avere convergenza cubica

Indicare TUTTE le affermazioni corrette

Risposte tipo: 1AD - 2A - 3BC (ci possono essere più risposte corrette)

- 1) La moltiplicazione tra numeri approssimati:
 - A) è sempre instabile
 - B) è instabile quando i numeri hanno lo stesso segno
 - C) è sempre stabile
 - D) è instabile quando i numeri hanno segno opposto
- 2) L'interpolazione cubica a tratti a passo costante h:
 - A) converge uniformemente con errore $O(h^4)$ per $f \in C^5[a,b]$
 - B) non converge uniformemente se $f \in C^k[a,b]$ con k < 5
 - C) converge uniformemente con errore $O(h^5)$ per $f \in C^3[a,b]$
 - D) converge uniformemente con errore $O(h^4)$ per $f \in C^2[a,b]$
- 3) La precisione di macchina in un sistema floating-point ${\cal F}(b,t,L,U)$ è:
 - A) il più piccolo reale-macchina positivo

dove b è base, t è una serie di cifre di mantissa,

e l'esponente è compreso tra L ed U

- **B**) $b^{L-t}/2$
- C) il massimo errore relativo di arrotondamento a t cifre di mantissa
- $\mathbf{D)} \ b^{L-U}$

Indicare TUTTE le affermazioni corrette

Risposte tipo: 1AD - 2A - 3BC (ci possono essere più risposte corrette)

- 1) La formula di derivazione numerica col rapporto incrementale simmetrico $\delta(h)$ per $f\in C^5$ ha un errore teorico:
 - **A)** $O(h^4)$
 - **B)** $O(h^3)$
 - C) $O(h^2)$
 - **D)** $O(h^5)$
- 2) Il costo computazionale del Metodo di Eliminazione Gaussiana applicato a una matrice invertibile é:
 - **A)** $\sim 5n^3/4$
 - $\mathbf{B)} \ O(n^3)$
 - **C)** $O(n^2)$
 - **D)** $\sim 2n^3/3$
- 3) Il metodo di Newton (tangenti) quando converge:
 - A) può avere convergenza lineare
 - B) ha sempre convergenza lineare
 - C) può avere convergenza quadratica
 - D) ha sempre convergenza quadratica

Indicare TUTTE le affermazioni corrette

Risposte tipo: 1AD - 2A - 3BC (ci possono essere più risposte corrette)

- 1) Il prodotto di numeri approssimati:
 - A) è sempre stabile
 - B) è instabile quando i numeri hanno segno opposto
 - C) è sempre instabile
 - D) è instabile quando i numeri hanno lo stesso segno
- 2) L'interpolazione lineare a tratti a passo costante
 - A) converge uniformemente con errore $O(h^4)$ per $f \in C^5[a,b]$
 - B) non converge uniformemente se $f \in C^k[a,b]$ con k < 4
 - C) converge uniformemente con errore $O(h^2)$ per $f \in C^2[a,b]$
 - D) converge uniformemente con errore $O(h^2)$ per $f \in C^3[a,b]$
- 3) Il polinomio interpolatore di $f(x) = x^3 + bx + c$ su 29 nodi distinti:
 - A) ha grado 30
 - B) ha grado 3
 - C) ha grado ≤ 28
 - D) ha grado 4

Indicare TUTTE le affermazioni corrette

Risposte tipo: 1AD - 2A - 3BC (ci possono essere più risposte corrette)

- 1) In un sistema floating-point ${\cal F}(b,t,L,U)$ il più piccolo reale-macchina positivo è:
 - A) la precisione di macchina
 - **B)** b^{-U}
 - (C) b^{L-1}
 - **D)** b^{L-U}
- 2) Il costo computazionale del Metodo di Eliminazione Gaussiana applicato a una matrice invertibile é:
 - **A)** $\sim 2n^4/3$
 - **B)** $\sim 2n^3/3$
 - **C)** $O(n^2)$
 - $\mathbf{D)} \, \sim n^3$
- 3) L'interpolazione spline cubica a passo costante h per $f \in C^4[a,b]$ ha un errore:
 - A) $O(h^5)$ su f
 - B) $O(h^3)$ su f'
 - C) $O(h^3)$ su f''
 - D) $O(h^4)$ su f

Indicare TUTTE le affermazioni corrette

Risposte tipo: 1AD - 2A - 3BC (ci possono essere più risposte corrette)

- 1) La divisione tra numeri approssimati:
 - A) è sempre stabile
 - B) può essere instabile
 - C) è instabile se i numeri hanno segno opposto
 - D) è stabile se i numeri hanno lo stesso segno
- 2) L'interpolazione spline cubica a passo costante:
 - A) converge uniformemente con errore $O(h^5)$ per $f \in C^5[a,b]$
 - B) converge uniformemente con errore $O(h^4)$ per $f \in C^4[a,b]$
 - C) converge uniformemente con errore $O(h^4)$ per $f \in C^6[a,b]$
 - D) non converge mai uniformemente
- 3) In un sostema floating-point F(b,t,L,U) il più piccolo realemacchina positivo è:
 - $\mathbf{A)} \ b^{L-U}$
 - **B)** $b^{1-t}/2$
 - C) b^{-U}
 - **D)** b^{L-1}

Indicare TUTTE le affermazioni corrette

Risposte tipo: 1AD - 2A - 3BC (ci possono essere più risposte corrette)

- 1) La divisione tra numeri approssimati:
 - A) è sempre stabile
 - B) è instabile quando i numeri hanno lo stesso segno
 - C) può essere instabile quando i numeri hanno segno opposto
 - D) è sempre instabile
- 2) L'interpolazione quadratica a tratti a passo costante
 - A) converge uniformemente con errore $O(h^4)$ per $f \in C^5[a,b]$
 - B) non converge uniformemente se $f \in C^k[a,b]$ con k < 6
 - C) converge uniformemente con errore $O(h^3)$ per $f \in C^5[a,b]$
 - D) converge uniformemente con errore $O(h^3)$ per $f \in C^3[a,b]$
- 3) La precisione di macchina in un sistema floating-point ${\cal F}(b,t,L,U)$ è:
 - A) il più piccolo reale-macchina positivo
 - **B)** $b^{1-t}/2$
 - C) il minimo reale-macchina positivo che sommato ad 1 dà un risultato > 1
 - **D**) b^{L-1}

Indicare TUTTE le affermazioni corrette

Risposte tipo: 1AD - 2A - 3BC (ci possono essere più risposte corrette)

- 1) L'indice di condizionamento di una matrice invertibile $A \in \mathbf{R^{n \times n}}$ è:
 - A) det(A)
 - B) l'autovalore di modulo massimo di A
 - C) l'autovalore di modulo minimo di A
 - **D)** $||A|| ||A^{-1}||$
- 2) Il costo computazionale del Metodo di Eliminazione Gaussiana applicato a una matrice invertibile é:
 - A) $O(n^3)$
 - B) $\sim n^3$
 - **C)** $O(n^2)$
 - D) $\sim n^4$
- 3) Le iterazioni di punto fisso per una contrazione:
 - A) hanno sempre convergenza quadratica
 - B) possono avere convergenza quadratica
 - C) possono non convergere
 - D) hanno sempre convergenza almeno lineare

Dalle dispense del

Prof. Marco Vianello

Syllabus Dimostrazioni Irrinunciabili

Università degli Studi di Padova

Dipartimento di Matematica

Corso di Laurea in Informatica

Anno accademico 2020 - 2021

Autori:

Marko ToldoDM

Premessa

Questa raccolta di appunti non intende essere un sostituto allo studio completo degli argomenti di calcolo numerico. Gli appunti sono stati scritti secondo quanto studiato e capito, di conseguenza potrebbe contenere errori/non essere esaustivo nella risposta agli argomenti del syllabus.

La repository contenente i sorgenti di questo documento si puo' trovare qui: https://github.com/ToldoDM/SyllabusCalcolo

Indice

1	<u>Precisione di macchina come max errore relativo di arrotondamento nel sistema</u>	
	floating-point	3
2	Analisi di stabilità di moltiplicazione, divisione, addizione e sottrazione con	
	numeri approssimati	4
	2.1 Moltiplicazione	4
	2.2 Divisione	4
	2.3 Somma Algebrica	5
3	Convergenza del metodo di bisezione	6
4	Stima dell'errore con residuo pesato (metodo bisezione)	7
5	Convergenza globale del metodo di Newton ("delle tangenti") in ipotesi di	
	convessità/concavità stretta	8
6	Velocità (ordine) di convergenza del metodo di Newton	10
7	Ordine di convergenza delle iterazioni di punto fisso	11
8	Esistenza e unicità dell'interpolazione polinomiale	12
9	Convergenza uniforme dell'interpolazione lineare a tratti	13
10	Stima delle equazioni normali per l'approssimazione polinomiale ai minimi	
	quadrati	14
11	Stime di condizionamento per un sistema lineare	16

1 Precisione di macchina come max errore relativo di arrotondamento nel sistema floating-point

Definiamo arrotondamento a t cifre di un numero reale scritto in notazione floating-point

$$x = sign(x)(0, d_1d_2 \dots d_t \dots) \cdot b^p$$

il numero

$$fl^t(x) = sign(x)(0, d_1d_2 \dots \tilde{d_t}) \cdot b^p$$

dove la mantissa è stata arrotondata alla t-esima cifra

$$\tilde{d}_t = \begin{cases} d_t & \text{se } d_{(t+1)} < \frac{b}{2} \\ d_t + 1 & \text{se } d_{(t+1)} \ge \frac{b}{2} \end{cases}$$

Definiamo:

Errore Relativo
$$\longleftarrow \underbrace{\overbrace{|x - fl^t(x)|}^{\text{Errore Assoluto}}}_{|x|} \quad \text{per} \quad x \neq 0$$

Stimiamo il numeratore

Errore di arrotondamento a t cifre dopo la virgola $\leq \frac{b^{-t}}{2}$ $|x - fl^{t}(x)| = b^{p} \cdot \overbrace{|(0, d_{1}d_{2} \dots d_{t} \dots) - (0, d_{1}d_{2} \dots \tilde{d}_{t})|}^{\text{Errore di arrotondamento a } t \text{ cifre dopo la virgola } \leq \frac{b^{-t}}{2}$ $\leq b^{p} \cdot \frac{b^{-t}}{2} = \frac{b^{p-t}}{2}$

Notiamo subito un aspetto: l'errore dipende da p, cioè dall'ordine di grandezza del numero (in base b).

Stimiamo da sopra $\frac{1}{|x|}$, ovvero da sotto |x|:

$$|x| = (0, d_1 d_2 \dots d_t \dots) \cdot b^p$$

Poiché $d_1 \neq 0, \, p$ fissato, il minimo valore della mantissa è $0, 100 \ldots = b^{-1}.$ Quindi:

$$|x| \ge b^{-1} \cdot b^p = b^{p-1} \iff \frac{1}{|x|} \le \frac{1}{b^{p-1}}$$

Otteniamo

$$\frac{|x - fl^{t}(x)|}{|x|} \le \frac{\frac{b^{p-t}}{2}}{b^{p-1}} = \frac{b^{p-t+1-p}}{2} = \frac{b^{1-t}}{2} = \varepsilon_{M}$$

Analisi di stabilità di moltiplicazione, divisione, addi-2 zione e sottrazione con numeri approssimati

Moltiplicazione 2.1

$$\varepsilon_{xy} = \frac{|xy - \tilde{x}\tilde{y}|}{|xy|}, \quad x, y \neq 0$$

Usiamo la stessa tecnica che si usa per dimostrare che il limite del prodotto di due successioni o funzioni è il prodotto dei limiti, aggiungendo e togliendo a numeratore ad esempio $\tilde{x}y$

$$\varepsilon_{xy} = \frac{|xy - \tilde{x}y + \tilde{x}y - \tilde{x}\tilde{y}|}{|y|}$$

$$= \frac{|y(x - \tilde{x}) + \tilde{x}(y - \tilde{y})|}{|xy|}$$

$$\leq \frac{|y(x - \tilde{x})| + |\tilde{x}(y - \tilde{y})|}{|xy|} \quad (*)$$

(*) Disuglia
glianza triangolare: || a | - | b || \leq |
 a + b | \leq | a | + | b |

Quindi otteniamo

$$\varepsilon_{xy} \le \frac{|y||x-\tilde{x}|}{|xy|} + \frac{|\tilde{x}||y-\tilde{y}|}{|xy|} = \varepsilon_x + \frac{|\tilde{x}|}{|x|}\varepsilon_y$$

Questo perché $\frac{|x-\tilde{x}|}{|x|} = \varepsilon_x$ e $\frac{|y-\tilde{y}|}{|y|} = \varepsilon_y$. Poiché $\tilde{x} \approx x \Rightarrow \frac{|\tilde{x}|}{|x|} \approx 1$ e possiamo quindi dire che la moltiplicazione è STABILE.

$$\varepsilon_{xy} \lesssim \varepsilon_x + \varepsilon_y$$

Però possiamo dare una stima più precisa di $\frac{|\tilde{x}|}{|x|}$

$$\frac{\left|\tilde{x}\right|}{\left|x\right|} = \underbrace{\frac{\left|\tilde{x}\right| + \left|\tilde{x} - x\right|}{\left|x\right|}}_{\text{Disuguaglianza Triangolare}} \leq \frac{\left|x\right| + \left|\tilde{x} - x\right|}{\left|x\right|} = 1 + \varepsilon_{x}$$

e quindi

$$\varepsilon_{xy} \le \varepsilon_x + (1 + \varepsilon_x) \, \varepsilon_y$$

Solitamente $\varepsilon_x \leq \varepsilon_M \approx 10^{-16} \Rightarrow 1 + \varepsilon_x$ è vicinissimo ad 1. Ma anche se $\varepsilon_x = 1$ (errore del 100%, molto grande) \Rightarrow $(1 + \varepsilon_x) = 2$ e la stabilità della moltiplicazione non cambia.

2.2Divisione

La divisione è la moltiplicazione per il reciproco $\frac{x}{y} = x \cdot \frac{1}{y}$. Analizzando quindi l'operazione di reciproco

$$\varepsilon_{\frac{1}{y}} = \frac{\left|\frac{1}{y} - \frac{1}{\tilde{y}}\right|}{\left|\frac{1}{y}\right|} = \frac{\frac{|\tilde{y} - y|}{|\tilde{y}y|}}{\left|\frac{1}{y}\right|} = \frac{|\tilde{y} - y|}{|y|} \cdot \frac{|y|}{|\tilde{y}|} \approx \varepsilon_y \qquad \left(\text{questo perchè } \frac{|\tilde{y} - y|}{|y|} = \varepsilon_y.\right)$$

Poiché $\frac{|y|}{|\tilde{y}|} \approx 1$ possiamo dedurre che il reciproco, e possiamo quindi la divisione, è STABILE. Però possiamo dare una stima più precisa di $\frac{|y|}{|\tilde{y}|}$

$$|\tilde{y}| = |y + \tilde{y} - y| = |y| \left| 1 + \frac{(\tilde{y} - y)}{y} \right|$$

usando la stima da sotto nella disuguaglianza triangolare

$$|a+b| \ge ||a|-|b||$$

$$a = 1 e b = \frac{(\tilde{y} - y)}{y}$$

$$\left|1 + \frac{(\tilde{y} - y)}{y}\right| \ge \left|1 - \frac{|\tilde{y} - y|}{|y|}\right| = |1 - \varepsilon_y| = 1 - \varepsilon_y \quad \text{(perchè } \varepsilon_y < 1\text{)}$$

da cui si ottiene

$$|\tilde{y}| \ge |y|(1-\varepsilon_y)$$

e quindi

$$\frac{\mid y \mid}{\mid \tilde{y} \mid} \leq \frac{\mid y \mid}{\mid y \mid (1 - \varepsilon_y)} = \frac{1 + \varepsilon_y}{(1 + \varepsilon_y)(1 - \varepsilon_y)} = \underbrace{\frac{1 + \varepsilon_y}{1 - \varepsilon_y^2} \approx 1 + \varepsilon_y}_{\text{Poiché } \varepsilon_y^2 \ll \varepsilon_y < 1}$$

Quindi

$$\varepsilon_{\frac{1}{y}} = \varepsilon_y \frac{|y|}{|\tilde{y}|} \lesssim \varepsilon_y (1 + \varepsilon_y) \approx \varepsilon_y \Rightarrow \varepsilon_{\frac{1}{y}} \lesssim \varepsilon_y$$

Infine abbiamo che per la divisione vale (usando la stima della moltiplicazione)

$$\varepsilon_{\frac{x}{y}} \lesssim \varepsilon_x + \varepsilon_y$$

2.3 Somma Algebrica

$$x + y = \begin{cases} ADDIZIONE & \text{se } sign(x) = sign(y) \\ SOTTRAZIONE & \text{se } sign(x) \neq sign(y) \end{cases}$$

Per la somma algebrica vale:

$$\varepsilon_{x+y} = \frac{|(x+y) - (\tilde{x} + \tilde{y})|}{|x+y|}, \quad x+y \neq 0$$

$$= \frac{|x-\tilde{x}+y-\tilde{y}|}{|x+y|}, \quad a = x-\tilde{x} \text{ e } b = y-\tilde{y}$$

$$\leq \frac{|x-\tilde{x}|}{|x+y|} + \frac{|y-\tilde{y}|}{|x+y|}, \quad \text{DISUGUAGLIANZA TRIANGOLARE}$$

$$= \frac{|x|}{|x+y|} \cdot \frac{|x-\tilde{x}|}{|x|} + \frac{|y|}{|x+y|} \cdot \frac{|y-\tilde{y}|}{|y|}$$

$$= w_1 \varepsilon_x + w_2 \varepsilon_y \quad \text{con } w_1 = \frac{|x|}{|x+y|}, w_2 = \frac{|y|}{|x+y|}$$

Addizione sign(x) = sign(y)

In questo caso $|x+y| \ge |x|$, $|y| \Rightarrow w_1, w_2 \le 1$. Quindi l'addizione è stabile $\varepsilon_{x+y} \lesssim \varepsilon_x + \varepsilon_y$

Sottrazione $sign(x) \neq sign(y)$

In questo caso $|x+y| \le |x|$ e/o $|x+y| \le |y| \Rightarrow max\{w_1, w_2\} > 1$. Quindi la sottrazione è potenzialmente instabile (se w_1, w_2 troppo grandi).

 $\overline{\text{Nel caso in cui}} |x|, |y|$ siano molto vicini in termini <u>relativi</u>, si ha

$$|x+y| \ll |x|, |y| \Rightarrow w_1, w_2 \gg 1$$

3 Convergenza del metodo di bisezione

Il metodo di bisezione si basa sull'applicazione iterativa del Teorema degli zeri di funzioni continue: Se $f(x) \in C[a,b]$ e f(a)f(b) < 0 (cioè f cambia segno) allora

$$\exists \xi : f(\xi) = 0, \ \xi \in (a, b)$$

Il procedimento consiste nel passare da $[a_n, b_n] \rightarrow [a_{n+1}, b_{n+1}]$ in cui uno degli estremi è diventato il punto medio

$$x_n = \frac{a_n + b_n}{2}$$

A meno che per qualche n non risulti $f(x_n) = 0$, si tratta di un processo infinito che ci permette di costruire tre successioni $\{a_n\}, \{b_n\}, \{x_n\}$ tali che:

- $|\xi a_n|, |\xi b_n| \le b_n a_n = \frac{b-a}{2^n}$
- $|\xi x_n| < \frac{b_n a_n}{2} = \frac{b a}{2^{n+1}}$

È semplice dimostrare che tutte e tre le successioni convergono ad uno zero $\xi \in (a,b)$

- $0 \le |\xi a_n|, |\xi b_n| < \frac{b-a}{2^n} \xrightarrow[n \to \infty]{} 0 \Longrightarrow_{\text{Teor. Carabinieri}} |\xi a_n|, |\xi b_n| \longrightarrow 0, n \to \infty$
- $0 \le |\xi x_n| < \frac{b-a}{2^{n+1}} \Longrightarrow |\xi x_n| \longrightarrow 0, \ n \to \infty$

4 Stima dell'errore con residuo pesato (metodo bisezione)

Vogliamo stimare l'errore di bisezione, applicato nelle seguenti ipotesi:

$$\begin{cases}
 f \in C^{1}[a, b] \\
 \{x_{n}\} \in [c, d] \subseteq [a, b] \\
 f'(x) \neq 0, \forall x \in [c, d]
\end{cases} \Rightarrow e_{n} = |x_{n} - \xi| = \frac{|f(x_{n})|}{|f'(z_{n})|}, \quad n \geq n_{0}, \quad z_{n} \in \begin{cases}
 (x_{n}, \xi) \\
 (\xi, x_{n})
\end{cases}$$

 C^1 indica derivabile 1 volta con derivata continua.

Dimostriamolo utilizzando il teorema del valor medio

Sia
$$f \in C[a,b]$$
 derivabile in $[a.b] \Rightarrow \exists z \in [a,b] : \frac{f(b) - f(a)}{b - a} = f'(z)$

Consideriamo il caso $\xi < x_n$ (se $x_n < \xi$ la dimostrazione è analoga)

$$f(x_n) - f(\xi) = f'(z_n)(x_n - \xi), \ z_n \in (\xi, x_n)$$

 $con f(\xi) = 0, cioè$

$$|f(x_n)| = |f'(z_n)||x_n - \xi|$$

che si può riscrivere come

$$e_n = |x_n - \xi| = \frac{|f(x_n)|}{|f'(z_n)|}$$

Osserviamo che:

Rif. residuo pesato: $w = (f(b) - f(a) / b-a)^{-1}$

- \bullet e_n è un "residuo pesato"
- $f'(x) \neq 0 \Rightarrow$ zero è semplice
- $\bullet \ e_n$ è una stima a posteriori (serve aver calcolato $x_n)$

Siccome non conosciamo z_n , diamo delle stime pratiche dell'errore:

- Se è noto che $|f'(x)| \ge k > 0 \Rightarrow e_n = \frac{|f(x_n)|}{|f'(z_n)|} \le \frac{|f(x_n)|}{k}$
- \bullet Se f' è nota, per n abbastanza grande si ha

$$\underbrace{f'(x_n) \approx f'(z_n)}_{\approx f'(\xi)} \Longrightarrow e_n \approx \frac{|f(x_n)|}{|f'(z_n)|}$$

• Se f' non è nota, si può approssimare con

$$f'(z_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$
, per *n* abbastanza grande

5 Convergenza globale del metodo di Newton ("delle tangenti") in ipotesi di convessità/concavità stretta

Metodo di Newton: Linearizzare iterativamente la funzione con la tangente nel punto

$$\begin{cases} y = 0 \\ y = f(x_n) + f'(x_n)(x - x_n) \end{cases} \Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Convergenza metodo di Newton:

$$\begin{cases} f \in C^2[a,b] \\ f(a)f(b) < 0 \\ f''(x) > 0 \quad \forall x \in [a,b] \\ x_0 : f(x_0)f''(x_0) > 0 \end{cases} \Rightarrow \text{Il metodo di Newton è ben definto (cioè } f'(x_n) \neq 0)$$

Dimostrazione

ci sono 4 casi possibili in base al segno di f'' ovvero

In questa dimostrazione di concentriamo sul caso 1)

- f(a) < 0, f(b) > 0
- $f''(x) > 0 \ \forall x \in [a, b]$
- $x_0 \in [a, b]$

Dimostriamo come prima cosa: $x_n \in (\xi, b] \Rightarrow x_{n+1} \in (\xi, b]$

f è esattamente convessa \Rightarrow La tangente sta "sotto al grafico" $\forall x \in [a,b]$ \Rightarrow La tangente in un punto $\in (\xi,b]$ interseca l'asse x "a destra" di ξ Dimostriamo quindi: $x_{n+1} < x_n$ (cioè $\{x_n\}$ è decrescente)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $\} > 0$

Poiché $x_n \in (\xi, b]$ si ha $f(x_n) > 0$. Inoltre $f'(x_n) > 0$ in $(\xi, b]$ altrimenti per avere uno zero f'' in $(\xi, b]$ dovrebbe cambiare segno.

Abbiamo quindi che $\{x_n\}$ è una successione decrescente, con $x_n > \xi \quad \forall n$. Allora

$$\exists \lim_{n \to \infty} x_n = \inf\{x_n\} = \eta \quad \text{con} \quad \eta \ge \xi$$

Infine

$$\eta = \lim x_{n+1} = \lim \left(x_n - \frac{f(x_n)}{f'(x_n)} \right) \\
= \lim x_n - \lim \frac{f(x_n)}{f'(x_n)} \\
= \lim x_n - \frac{\lim f(x_n)}{\lim f'(x_n)} \\
= \lim x_n - \frac{f(\lim x_n)}{f'(\lim x_n)} \leftarrow \lim x_n = \eta \\
= \eta - \frac{f(\eta)}{f'(\eta)}$$

Quindi

$$\eta = \eta - \frac{f(\eta)}{f'(\eta)} \quad \text{con } f'(\eta) \neq 0 \Rightarrow \frac{f(\eta)}{f'(\eta)} = 0 \Rightarrow f(\eta) = 0 \Rightarrow \eta = \xi$$

6 Velocità (ordine) di convergenza del metodo di Newton

Sia

$$\begin{cases} f \in C^{2}[a, b] \\ \xi \in [a, b] : f(\xi) = 0 \\ \{x_{n}\} \subset [c, d] \subseteq [a, b] \\ f'(x) \neq 0 \ \forall x \in [c, d] \end{cases} \Rightarrow e_{n+1} \leq c \ e_{n}^{2}, \quad n \geq 0, \quad c = \frac{1}{2} \cdot \frac{M_{2}}{m_{1}}$$

$$con \ M_{2} = \max_{x \in [c, d]} |f''(x)|, \quad m_{1} = \min_{x \in [c, d]} |f'(x)| > 0$$

Dimostrazione

Applichiamo la formula di Taylor centrata in x_n e calcolata in ξ , con resto del II ordine in forma di Lagrange

Applicando il teorema di Weierstrass (∃ di max, min assoluti in un intervallo chiuso e limitato)

$$|f''(z_n)| \le \max_{x \in [c,d]} |f''(x)| = M_2, \quad |f'(x_n)| = \min_{x \in [c,d]} |f'(x)| > m_1$$

7 Ordine di convergenza delle iterazioni di punto fisso

Sia ξ punto fisso di $\phi \in C(I)$ e I è un intervallo chiuso (non necessariamente limitato) di \mathbb{R} . Supponiamo di essere nelle ipotesi in cui:

$$x_{n+1} = \phi(x_n)$$
 converge a ξ $(\xi = \phi(\xi))$ con $x_0 \in I$

Allora:

- $\{x_n\}$ ha ordine esattamente $p=1 \iff 0 < |\phi'(\xi)| < 1$
- $\{x_n\}$ ha ordine esattamente $p>1\iff \phi^{(j)}(\xi)=0$ e $\phi^{(p)}(\xi)\neq 0$ con $1\leq j\leq p-1$

Dimostrazione

1) si dimostra subito visto che

 $e_{n+1} = |\phi'(z_n)| e_n \quad \text{con } z_n \in (\xi, x_n) \\ \downarrow \qquad \qquad \text{fattore (teta) < 1 in int. chiuso e limitato;} \\ \text{il teorema degli zeri afferma che f cambia segno agli estremi e il punto fisso esiste.} \\ \text{Essendo una contrazione, allora:} \\ e_-(n+1) = (\text{teta})e_-n \\ \text{ma in generale:} \\ e_n < (\text{teta})^n * e_0, n --> \text{inf,} \\ \text{(teta) tra 0 ed 1} \\ \end{cases}$

il punto fisso è contrazione (contra le distanze di un

per 2) utilizziamo la formula di Taylor di grado p-1 centrata in ξ e calcolata in x_n , con il resto p-esimo in forma di Lagrange.

$$x_{n+1} = \phi(x_n) = \phi(\xi) + \phi'(\xi)(x_n - \xi) + \dots + \frac{\phi^{(p-1)}(\xi)}{(p-1)!}(x_n - \xi)^{(p-1)} + \frac{\phi^{(p-1)}(\xi)}{(p-1)!} + \frac{\phi^{(p)}(u_n)}{p!}(x_n - \xi)^p$$

$$con \ u_n \in (\xi, x_n)$$

 $\bullet \ \ Dimostriamo \ `` \Leftarrow " \ (condizione \ sufficiente) \\$

Da Taylor resta solo

$$x_{n+1} - \xi = \frac{\phi^{(p)}(u_n)}{p!}(x_n - \xi)^p$$

e passando ai moduli

$$\frac{e_{n+1}}{e_n^p} = \frac{|\phi^{(p)}(u_n)|}{p!} \xrightarrow[n \to \infty]{} \frac{|\phi^{(p)}(\xi)|}{p!} \neq 0$$

 e_n^p ovvero per p, $\{x_n\}$ ha ordine esattamente p.

• Dimostriamo "⇒" (condizione necessaria)

Per ipotesi $\{x_n\}$ ha esattamente ordine p > 1.

Abbiamo per assurdo che $\exists j , prendiamo <math>k = \min\{j e dal polinomio di Taylor iniziale si avrebbe:$

$$\frac{e_{n+1}}{e_n^k} \underset{n \to \infty}{\to} \frac{|\phi^{(k)}(\xi)|}{k!} = L' \neq 0$$

ma allora

$$\frac{e_{n+1}}{e_n^p} = \frac{e_{n+1}}{e_n^k} \cdot e_n^{k-p}$$

$$\left(\frac{e_{n+1}}{e_n^k} \to L' \text{ ed } e_n^{k-p} \to \infty \text{ perchè } k-p < 0 \text{ ed } e_n \to 0\right)$$

cioè

$$\frac{e_{n+1}}{e_n^p} \to \infty, \quad n \to \infty$$

contraddicendo l'ipotesi che $\{x_n\}$ abbia ordine esattamente p.

8 Esistenza e unicità dell'interpolazione polinomiale

Unicità

Supponiamo che \exists due polinomi $p,q \in \mathbb{P}_n$ (polinomi di grado $\leq n$), $p \neq q$, che interpolano $p(x_i) = y_i = q(x_i)$, con $0 \leq i \leq n \rightarrow n+1$ modi di interpolare. Poiché \mathbb{P}_n è uno spazio vettoriale $\Rightarrow p-q \in \mathbb{R}_n$. Allora:

$$(p-q)(x_i) = p(x_i) - q(x_i) = 0, \quad \forall \ 0 \le i \le n$$

$$\downarrow p-q \text{ ha } n+1 \text{ zeri distinti}$$

Ma per il teorema fondamentale dell'algebra, p-q può avere al massimo n zeri distinti, a meno che non sia il polinomio nullo

Per completezza:

$$(p-q)(x) = 0 \quad \forall x \quad \Rightarrow \quad p(x) = q(x) \quad \forall x$$

Esistenza

Definiamo il "polinomio di Lagrange":

$$l_i(x) = \frac{N_i(x)}{N_i(x_i)}$$

dove

$$N_i(x) = \prod_{j=0, j \neq i}^n (x - x_j) = (x - x_0) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_n)$$

 $l_i(x) \in \mathbb{P}_n$ poiché $N_i(x) \in \mathbb{P}_n$ e $N_i(x_i)$ è un numero $\neq 0$.

Osserviamo che:

$$l_i(x_k) = \delta_{ik} = \begin{cases} 0 & i \neq k \\ 1 & i = k \end{cases}$$
 Questo a sinistra è Kronecker/delta di Kronecker (0/1)

Definiamo il "polinomio interpolatore di Lagrange":

$$f_n(x) = \prod_n (x) = \sum_{i=0}^n y_i l_i(x) \in \mathbb{P}_n$$

Verifichiamo che interpola

$$\prod_{n} (x_k) = \sum_{i=0}^{n} y_i l_i(x_k)$$

$$= \sum_{i=0}^{n} y_i \delta_{ik}$$

$$= y_k \delta_{kk} \longleftarrow \text{ perchè } \delta_{ik} = 0, i \neq k$$

$$= y_k, \quad 0 \leq k \leq n$$

Lagrange dimostra, con l'interpolazione di Lagrange, che il polinomio interpolatore esiste (nelle sue condizioni, Kronecker (0/1) e per tutti gli n+1 punti), ma è uno dei possibili metodi di calcolo; in altri contesti, come da noi visto, si usa ad esempio la matrice di Vandermonde nel sistema lineare Va = x.

Su particolari nodi (Chebyshev), si usa il massimo della funzione interpolante di Lagrange (Lebesgue), che è indice di stabilità dell'interpolazione

Per interpolazione si intende un metodo per individuare nuovi punti del piano cartesiano a partire da un insieme finito di punti dati, nell'ipotesi che tutti i punti si possano riferire ad una funzione.

Il teorema fondamentale dell'Algebra stabilisce che un qualsiasi polinomio a coefficienti reali o

complessi di grado n>=1 ammette almeno una radice complessa, da cui segue che un qualsiasi polinomio a coefficienti reali o complessi di

grado n ammette sempre n radici complesse

contate con le relative molteplicità.

L'interpolazione polinomiale è l'interpolazione di una serie di valori (ad esempio dei dati sperimentali) con una funzione polinomiale che passa per i punti dati. In particolare, un qualsiasi insieme di n+1 punti distinti può essere sempre interpolato da un polinomio di grado n che assume esattamente il valore dato in corrispondenza dei punti iniziali.

9 Convergenza uniforme dell'interpolazione lineare a tratti

Teorema

Convergenza uniforme dell'interpolazione polinomiale a tratti.

Siano $f \in C^{s+1}[a,b]$, $s \ge 0$ e $\{x_i\} \subset [a,b]$ n+1 nodi distinti con n multiplo di s. Allora

$$\exists k_s > 0 : dist(f, \prod_{s=0}^{c}) \leq k_s \cdot h^{s+1}, h = max \Delta x_i$$

Dimostrazione per s = 1.

Si ha che:

$$\begin{aligned} dist(f, \prod_{1}^{c}) &= \max_{x \in [a,b]} |f(x) - \prod_{1}^{c}(x)| \\ &= \max_{0 \leq i \leq n-1} \max_{x \in [x_{i}, x_{i+1}]} |f(x) - \prod_{1}^{c}(x)| \end{aligned}$$

Ricordiamo la stima dell'errore di interpolazione polinomiale a grado s:

$$\max_{x \in [\alpha, \beta]} |f(x) - \prod_{s}(x)| \le \max_{x \in [\alpha, \beta]} |f^{(s+1)}(x)| \cdot \frac{h^{s+1}}{4(s+1)} \quad con \quad h = \frac{\beta - \alpha}{s}$$

Applichiamo al nostro caso: s = 1, $[\alpha, \beta] = [x_{i-1}, x_i]$

$$\max_{x \in [x_{i-1}, x_i]} |f(x) - \prod_{1, i} (x)| \le \max_{x \in [x_{i-1}, x_i]} |f''(x)| \cdot \frac{h^2}{8} = M_{2, i} \frac{h^2}{8}$$

con $M_2 = \max_{x \in [x_{x_i-1}, x_i]} |f''(x)| e h = \Delta x_i.$

Da cui:

$$dist(f, \prod_{1}^{c}) \leq \frac{M_2}{8}h^2$$

 $\operatorname{con} M_2 = \max_{x \in [a,b]} |f''(x)|$

10 Stima delle equazioni normali per l'approssimazione polinomiale ai minimi quadrati

Dati N punti $\{(x_i, y_i)\}$: $y_i = f(x_i)$, $1 \le i \le N$ e m < N, il vettore $a \in \mathbb{R}^{m+1}$ minimizza $\phi(a) = \sum_{i=1}^{N} (y_i - \sum_{j=0}^{m} a_j \cdot x_i^j)^2 \iff$ risolve il sistema $V^t V a = V^t y$

Dimostrazione

Osserviamo le dimensioni degli elementi considerati

$$V \in \mathbb{R}^{N \times (m+1)}, \quad V^t \in \mathbb{R}^{(m+1) \times N}, \quad y \in \mathbb{R}^N, \quad a \in \mathbb{R}^{m+1}$$

Quindi per m=1 non importa quanti dati N ci siano, il sistema sarà sempre 2×2 poiché ci saranno 2 coefficienti.

Dire che $a \in \mathbb{R}^{m+1}$ è di minimo (assoluto) per $\phi(a)$ significa:

$$\phi(a+b) > \phi(a) \quad \forall b \in \mathbb{R}^{m+1}$$

Osserviamo che

$$\phi(a+b) = (y - V(a+b), y - V(a+b)) = (y - Va - Vb, y - Va - Vb) =$$

$$= (y - Va, y - Va) + (y - Va, -Vb) + (-Vb, y - Va) + (-Vb, -Vb) =$$

$$= \phi(a) + 2(Va - y, Vb) + (Vb, Vb) = \phi(a) + 2(V^{t}(Va - y), b) + (Vb, Vb)$$

dove abbiamo usato le seguenti proprietà del prodotto scalare in \mathbb{R}^m (per chiarezza indicato con $(u, v)_n$; ricordiamo che $(u, v)_n = u^t v$ interpretando i vettori come vettori-colonna):

- 1. $(u,v)_n = (v,u)_n$ $u,v,w \in \mathbb{R}^n$
- 2. $(\alpha u, v)_n = \alpha(u, v)_n \quad \alpha \in \mathbb{R}$
- 3. $(u+v,w)_n = (u,w)_n + (v,w)_n$
- 4. $(u, Az)_n = (A^t u, z)_k \quad u \in \mathbb{R}^n, \ z \in \mathbb{R}^k, \ A \in \mathbb{R}^{n \times k}$

Dimostriamo " \Leftarrow ": <-- = Condizione sufficiente Se $V^tVa = V^ty$ allora:

$$V^t V a - V^t y = 0 \quad \iff \quad V^t (V a - y) = 0$$

Ma allora

$$\phi(a+b) = \phi(a) + (Vb, Vb) \ge \phi(a) \quad b \in \mathbb{R}^{m+1}$$

$$\sum_{i=1}^{N} (Vb)_i^2 \ge 0$$

Dimostriamo "⇒": --> = Condizione necessaria

Assumiamo che

$$\phi(a+b) \ge \phi(a) \quad \forall b \in \mathbb{R}^{m+1}$$

Allora:

$$\phi(a+b) = \phi(a) + 2(V^t(Va - y), b) + (Vb, Vb) \ge \phi(a) \quad \forall b$$

Cioè:

$$2(V^t(Va - y), b) + (Vb, Vb) \ge 0 \quad \forall b$$

Prendiamo $b = \varepsilon v$, con v versore (cioè vettore di lunghezza 1, (v, v) = 1). Si ha:

$$2(V^{t}(Va - y), \varepsilon v) + (V(\varepsilon v), V(\varepsilon v))$$
$$= 2\varepsilon(V^{t}(Va - y), v) + \varepsilon^{2}(Vv, Vv) \ge 0 \quad \forall \varepsilon \ge 0 \text{ e } \forall v$$

Dividendo per $\varepsilon > 0$:

$$2(V^t(Va - y), v) + \varepsilon(Vv, Vv) > 0 \quad \forall \varepsilon \in \forall v$$

Per $\varepsilon \to 0$ si ha:

$$(V^t(Va - y), v) \ge 0 \quad \forall v$$

Ma se vale \forall versore, possiamo prendere -v:

$$(V^{t}(Va - y), -v) = -(V^{t}(Va - y), v) \ge 0 \quad \forall v$$

$$\downarrow V^{t}(Va - y), v) \le 0 \quad \forall v$$

Ma abbiamo che

$$0 \le (V^t(Va - y), v) \le 0 \iff (V^t(Va - y), v) = 0 \quad \forall v$$

L'unico vettore ortogonale a tutti i vettori è il vettore nullo. Quindi

$$V^t(Va - y) = 0 \iff V^tVa = V^tys$$

Ortogonale = Con direzione perpendicolare. Il prodotto di due vettori ortogonali è pari a 0 (quindi sono linearmente indipendenti).

11 Stime di condizionamento per un sistema lineare

- (i) $||Ax|| \le ||A|| \cdot ||x||$ (1° diseguaglianza fondamentale)
- (ii) $||AB|| \le ||A|| \cdot ||B||$ (2° diseguaglianza fondamentale)

Caso 1 perturbazione termine noto

Sia

- $A \in \mathbb{R}^{n \times n}$ non singolare Singolare = Determinante diverso da 0 (serve a capire se la mat. è invertibile)
- $x \in \mathbb{R}^n$ soluzione del sistema Ax = b con $b \neq 0$
- $\tilde{x} = x + \delta x$ soluzione del sistema $A\tilde{x} = \tilde{b}$ con $\tilde{b} = b + \delta b$ Tilda su un dato = Dato perturbato

Fissata una norma vettoriale $\|\cdot\|$ in \mathbb{R}^n , vale la seguente stima dell'errore relativo su x

$$\frac{\|\delta x\|}{\|x\|} \le K(A) \frac{\|\delta b\|}{\|b\|} \quad \text{con} \quad k(A) = \inf_{\substack{\text{indice di} \\ \text{condity}}} \|A\| \cdot \|A^{-1}\|$$

Dimostrazione

Osserviamo che $x=A^{-1}b\neq 0$ quindi ha senso studiare l'errore relativo (dividere per ||x||). Si ha

$$\begin{cases} \tilde{x} = x + \delta x \\ \tilde{x} = A^{-1}\tilde{b} = A^{-1}(b + \delta b) = \underbrace{A^{-1}b}_{=x} + A^{-1}\delta b \end{cases} \Rightarrow \|\delta x\| = \|A^{-1}\delta b\| \underset{1^{o}dis.fond.}{\leq} \|A^{-1}\| \cdot \|\delta b\|$$

Per stimare $\frac{1}{\|x\|}$ da sopra, cioè da sotto $\|x\|.$

$$||b|| = ||Ax|| \le ||A|| \cdot ||x||$$

da cui

$$||x|| \ge \frac{||b||}{||A||}$$

е

$$\frac{1}{\|x\|} \le \frac{\|A\|}{\|b\|}$$

perciò

$$\frac{\|\delta x\|}{\|x\|} \le \frac{\|A^{-1}\| \cdot \|\delta b\|}{\|x\|} \le \|A^{-1}\| \cdot \|A\| \cdot \frac{\|\delta b\|}{\|b\|} = k(A) \cdot \frac{\|\delta b\|}{\|b\|}$$

Caso 2 perturbazione matrice

Siano fatte le stesse ipotesi del caso 1, ma con $\tilde{A}\tilde{x}=b,\ \tilde{A}=A+\delta A.$

Vale la stima dell' "errore relativo" su x

$$\frac{\|\delta_x\|}{\|\tilde{x}\|} \le k(A) \cdot \frac{\|\delta A\|}{\|A\|}$$

Dimostrazione

$$\begin{cases} \tilde{A}\tilde{x} = (A + \delta A)(x + \delta x) \\ = Ax + A\delta x + \delta A\tilde{x} \\ = b + A\delta x + \delta A\tilde{x} \end{cases} \Rightarrow A\delta x + \delta A\tilde{x} = 0 \iff \delta x = -A^{-1}(\delta A\tilde{x})$$

$$\tilde{A}\tilde{x} = b$$

Per trovare gli autovalori, si deve costruire la matrice identità, trovare il determinante, costruire il polinomio caratteristico e i suoi valori di lambda (scalari) * i vettori (non nulli) a cui sono moltiplicati, danno gli autovalori (vale per le matrici quadrate di ordine n).

Sistema delle equazioni normali per approssimazione lineare

Sapendo che dati N punti {(x; y;)}, y;=f(x,), 1≤i≤N e m < N, sse il vertore $\alpha \in \mathbb{R}^{m+1}$ minimista $\phi(\alpha) = \sum_{i=1}^{n} (y_i - \sum_{i=1}^{n} \alpha_i \cdot x_i^*)^2$ allota risolve i sistema VIVa = VII, si posocno usare le proprietà di VIV por travara il sistema relativo alla retta dei minimi quadrati. V^tV è una matrica simmetrica e semidofinita positiva. Indita (Vv, Vv)=0 <=> Vv=0 e (Vv, Vv)=(VVv, V) quindi v = 0 se V ha zango max cice se ha almeno m+1 punti distinti tra i nodo di compionamento. Si ricova quindo una matrice V t.c. $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \dots & \times_{1}^{m} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \times_{1}^{2} & \dots & \times_{1}^{m} & \dots & \times_{1}^{m} \end{pmatrix}$ $V = \begin{pmatrix} 1 & \times_{1} & \dots & \times_{1}^{m} & \dots & \times_$ Questo evidenzia che, quindi, il rango dolla sottomostica e m+1 e che le intere adanne m+, du V sono linearmente indipendenti como vettori di IR. Quindo si possono calcalare gli elementi della motroce UTV e dal vettorce noto Vy, con m=1 $V^{\dagger}V = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} N & \sum_{i=1}^{N} x_{i} \\ \sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} x_{i}^{2} \end{pmatrix} \in \mathbb{R}^{2\times 2}$ $V^{\dagger} y = \begin{pmatrix} 1 & 1 & \cdots & \times N \\ \times_1 & \times_2 & \cdots & \times_N \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \end{pmatrix} = \begin{pmatrix} \Sigma_1 & y_1 \\ \Sigma_1 & x_1 & y_1 \end{pmatrix} \in \mathbb{R}^2$ quind il sistema è: $(\Sigma x, \Sigma x^2)(\alpha_0) = (\Sigma x_i)$

Errore formula trapezi

La farmula dei traperi utilizza l'interpolaziona linearea a tratti, imponendo S=1 l'integrale viene approssimento con la samma als aree als
traperi linearis. L'i-esimo traperio ha altegra $h=\frac{b-a}{w}$ e basi f(x,-1)e $f(x_i)$ con $1 \le i \le h$, si aurai quindi l'area $A=\frac{h}{2}\left(f(x_i-1)+f(x_i)\right)$ aquindi: $\frac{h}{2}\left(f(x_i-1)+f(x_i)\right) + \sum_{i=1}^{k} h \cdot f(x_i), \text{ ottenendo casi (a farmula dei traperi:} \\ l_n(f) = \sum_{i=0}^{k} w_i f(x_i) \text{ con } w_i = \begin{cases} h \\ \overline{2}, i=0, h \\ h, i=i \le h-1 \end{cases}$ $l^{trap}(f) = l\left(\prod_{i=0}^{k}\right) = \sum_{i=0}^{k} \left(\text{bise traperi linearis}\right)$

Por zicavore una stima dell'evacre possiamo usare la stima $|I(f)-I_n(f)|$ = $|I(f)-I(f_n)| \le |I(f-f_n)| \le (b-a)$ dist (f,f_n) . Se dist \to 0 allora ei sara convergenta, altrimenti potrebbero presentorsi problemi di divergenta. Por quanto ziguarda la formula di quactratura composte attenute come $I_n(f) = I(\pi_s^c)$, con h multiplo di s: $|I(f)-I_n(f)| \le (b-a)$ dist $(f,\pi_s^c) \le (b-a)K_s \cdot h^{s+1}$ se $f \in C^{s+1}[a,b]$ con $h=\max\Delta \times$. Quindi per qualziasi distribusione dei nodi per cui $h\to 0$ se $f \in C^{s+1}[a,b]$ le formula sono sempre convergenti con un exara proportionale a h^{s+1} , ma s=1 per i trapesi quindi per $f \in C^s$ sara convergente con un exara $O(h^2)$.

1.5.1 Esempio 1

Consideriamo $\mathbb{F}(10,4,L,U)$ (con L,U sufficienti per rappresentare i numeri che ci interessano) e

$$x = 0,10016$$

$$y = -0,10012$$

allora

$$\tilde{x} = fl^4(x) = 0,1002$$

 $\tilde{y} = fl^4(y) = -0,1001$

eseguendo l'operazione-macchina di somma algebrica (che è una sottrazione visto che x e y hanno segno opposto) si ottiene

$$x \oplus y = fl^{4}(fl^{4}(x) + fl^{4}(y))$$
$$= fl^{4}(0, 1002 - 0, 1001)$$
$$= 10^{-4}$$

scriveremo spesso i numeri in notazione standard per comodità) Invece

$$x + y = 4 \cdot 10^{-5}$$

quindi l'errore relativo nel risultato è

$$\frac{|(x+y) - (x+y)|}{|x+y|} = \frac{|4 \cdot 10^{-5} - 10^{-4}|}{4 \cdot 10^{-5}} = \frac{6 \cdot 10^{-5}}{4 \cdot 10^{-5}} = \frac{3}{2} = 150\%$$

Porché il rasidua non pasato può non essere una buana stima evrore?

In generale, non è vera che $|f(x_n)| \le E \Rightarrow e_n \le E$. Par avere una buona stima dell'occaze a postervara bisogna pasare il residue alla devivata.

Per capirne il motivo, si consideruno i seguenti grafica con |f(x)| = 0ESIDUO III primo è un asso du satostima (residua piccola, excare grande)

en (residua grande, excare piccola)

In particolare, il caso più posucolaso dei due è la sotostima, dato che potrebbe portare alla stop della iterazioni proma du travate un valore che rispetti i limiti ole tolleranza, mentra la sorastima campatta solamente di effettuare più iterazione dal necessorio, affinando il risultato al valore effettivamente corcato.

Nota: la domanda precedente si riferisce a "Perché il residuo pesato non può essere una buona stima dell'errore? Si ricavi una stima rigorosa (rispondendo con la dimostrazione della stima pesata sul residuo di bisezione)

Costo computazionale del metodo di eliminazione di Gauss

Il costo computazionale del meg è dato dall'analisi tra ciclo interno, composto da n moltiplicazioni ed n somme, scritto come segue:

$$c_n^{meg} \sim \sum_{i=1}^{n-1} \sum_{k=i+1}^{n} 2n$$

$$= 2n \sum_{i=1}^{n-1} (n-i)$$

$$= 2n \sum_{j=n-i}^{n-1} j$$

$$= 2n \cdot \frac{n(n-1)}{2}$$

$$= n^3 - n^2 + n^3 - n = 20$$

Vedendo però che le operazioni vettoriali non ha senso farle sui

$$\begin{array}{ll} \operatorname{Vedendo pero che le operazioni vettoriali non ha senso farle sui vettori riga, le facciamo solo sul segmento di vettori con indici da i + 1 ad n, verificando che otteniamo: \\ = 2n\sum_{i=1}^{n-1}(n-i) & \operatorname{Ottenendo infine:} \\ = 2n\sum_{j=n-i}^{n-1}j & \operatorname{Ottenendo infine:} \\ = 2n\cdot\frac{n(n-1)}{2} & = 2\sum_{i=1}^{n-1}(n-i)^2 & \frac{(n-1)^3}{3} < \sum_{j=1}^{n-1}j^2 < \frac{n^3}{3} - 1 \\ = 2\sum_{j=n-i}^{n-1}j^2 \sim \frac{2}{3}n^3 \end{array}$$

Fattorizzazione QR per la soluzione di sistemi lineari sovradeterminati

Sia
$$A \in \mathbb{R}^{m \times n}$$
, $m \ge n$ tale che $rango(A) = n$
Allora $\exists Q \in \mathbb{R}^{m \times n}$ ortogonale (cioè $Q^tQ = I$) e $\exists R \in \mathbb{R}^{n \times n}$ tringolare superiore con $det(R) \ne 0$ tali che
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = QR = \begin{pmatrix} q_{11} & \dots & q_{1n} \\ q_{21} & \dots & q_{2n} \\ \vdots & & & \vdots \\ q_{m1} & \dots & q_{mn} \end{pmatrix} \begin{pmatrix} r_{11} & \dots & r_{1n} \\ & \ddots & \vdots \\ 0 & & r_{nn} \end{pmatrix}$$

Q^t è ortogonale, cioè Q^tQ = I, in particolare Q^t ha per righe le colonne di Q, quindi:

Il prodotto riga-i x colonna-i = prodotto scalare = delta di Kronecker

Ciò implica che le colonne di Q, quindi sono vettori ortonormali di R^m.

Siccome R è invertibile → QRR⁻¹ = Q = AR⁻¹ e l'inversa di una matrice triangolare è triangolare dello stesso tipo.

Il prodotto di A per le colonne di R⁻¹ permette di ottenere come combinazione lineare delle prime *j* colonne di A e, grazie a Q ortogonale, le colonne si ortonormalizzano → Algoritmo di Gram-Schimdt.

Sia $A \in \mathbb{R}^{m \times n}$, $m \ge n$, rango(A) = n. Fattorizzando A = QR, si ha che

$$A^t A = (QR)^t QR = R^t Q^t QR = R^t IR = R^t R$$

e

$$A^t b = R^t Q^t b$$

quindi il sistema $A^tAx = A^tb$ diventa

$$R^t R x = R^t Q^t b$$

ma essendo R (e quindi R^t) invertibile

$$(R^t)^{-1}R^tRx = Rx = (R^t)^{-1}R^tQ^tb = Q^tb$$

cioè il sistema $A^tAx = A^tb$ equivale al sistema triang. sup.

$$Rx = d = Q^t b$$

che si può facilmente risolvere con la sostituzione all'indietro.

Computazionalmente parlando, è leggermente migliore LU; tuttavia, dal punto di vista della stabilità, QR è decisamente migliore.

Formule di quadratura composte

Per $f_n(x) = \prod_{s=0}^{c} f_n(x)$ cioè, la funzione polinomiale composta a tratti di grado locale $f_n(x)$ cioè, la funzione polinomiale composta a tratti di grado locale $f_n(x)$

si ottengono le *formule composte*. Nel caso delle formule, i nodi n = k * s sono a pacchetti di s+1 con nodo di raccordo. Ciascun valore di interpolazione locale y_i compare una volta tranne per i nodi di raccordo (dove compare due volte e i 2 pesi vanno sommati), quindi ottenendo:

$$I_n(f)=I(\prod_s^c)=\sum_{i=0}^n w_i\cdot y_i$$
 sommando a coppie i nodi: $w_i=w_{i,j}+w_{i,(j+1)}$

Per le formule di quadratura composte ci riconduciamo a due casi, facendo riferimento nel caso di calcolo di nodi equispaziati:

 Per s = 1 alla formula dei trapezi, in cui l'integrale viene approssimato alla somma delle aree dei trapezi lineari corrispondenti all'interpolazione lineare a tratti.

$$I_n^{trap}(f) = I(\prod_1^c)$$

$$= \int_a^b \prod_1^c(x) dx$$

$$= \sum (\text{aree trapezi})$$

$$= \frac{h}{2} \cdot (f(x_0) + f(x_1)) + \frac{h}{2} \cdot (f(x_1) + f(x_2)) + \dots + \frac{h}{2} \cdot (f(x_{n-2}) + f(x_{n-1})) + \frac{h}{2} \cdot (f(x_{n-1}) + f(x_n))$$

$$= \frac{h}{2} (f(x_0) + f(x_n)) + \sum_{i=1}^{n-1} h \cdot f(x_i)$$

$$I_n(f) = \sum_{i=0}^n w_i \cdot f(x_i), \text{ con } w_i = \begin{cases} \frac{h}{2}, & i = 0, n \\ h, & 1 \le i \le n-1 \end{cases}$$

$$= \frac{h}{2} (f(x_0) + f(x_n)) + \sum_{i=1}^{n-1} h \cdot f(x_i)$$

- Per s = 2, integrando la funzione quadratica a tratti, si ottiene la formula delle parabole:

$$\begin{split} I_n^{parab}(f) &= I\left(\prod_2^c\right) = \sum (\text{aree trapezi parabolici}) = \sum_{i=0}^n w_i \cdot f(x_i), \text{ con } w_i = \\ \begin{cases} h/3, & i=0, n \text{ pari} \\ 4h/3, & i \text{ dispari} \\ 2h/3, & i \text{ pari } 2 \leq i \leq n-2 \end{cases} \\ \int_\alpha^\beta \prod_2(x) dx &= \frac{h}{3} \cdot f(\alpha) + \frac{4}{3} \cdot h \cdot f\left(\frac{\alpha+\beta}{2}\right) + \frac{h}{3} \cdot f(\beta) \end{split}$$

Rapporto incrementale simmetrico

Assumiamo ora che $f \in C^3(I_r)$ e scriviamo la formula di Taylor "da destra" e "da sinistra" (centrandola sempre in x, con passo $0 < h \le r$).

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{3!}f'''(\xi)$$
$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{3!}f'''(\eta)$$

dove $\xi \in (x, x + h)$ e $\eta \in (x - h, x)$ da cui si ottiene, sottraendo membro a membro

$$f(x+h) - f(x-h) = 2hf'(x) + O(h^3)$$
 e anche
$$\delta(h) = \frac{f(x+h) - f(x-h)}{2h} = f'(x) + O(h^2)$$

(sottraendo si elidono i termini di grado pari in h), con

$$|f'(x) - \delta(h)| = \frac{1}{12} \cdot |f'''(\xi) + f'''(\eta)| \cdot h^2$$

$$\leq \frac{1}{12} (|f'''(\xi)| + |f'''(\eta)|) \cdot h^2$$

$$\leq d \cdot h^2$$

dove $d = \frac{1}{6} \max_{t \in I_r} |f'''(t)|$.

Questo mostra che l'errore è $O(h^2)$ per $f \in C^3$ (I_r). Dobbiamo, però, occuparci della risposta dell'algoritmo agli errori su f, assumendo $| f(t) - f(t) | \le \varepsilon$ Dobbiamo quindi stimare $| \delta(h) - \tilde{\delta}(h) |$, con

$$\tilde{\delta}(h) = \frac{\tilde{f}(x+h) - \tilde{f}(x-h)}{2h}$$

(rapporto incrementale simmetrico "perturbato"), vista la stima

$$|f'(x) - \tilde{\delta}(h)| = |f'(x) - \delta(h) + \delta(h) - \tilde{\delta}(h)|$$

$$\leq \underbrace{|f'(x) - \delta(h)|}_{\text{convergenza}} + \underbrace{|\delta(h) - \tilde{\delta}(h)|}_{\text{stabilità}}$$

Ora

$$\begin{split} |\delta(h) - \tilde{\delta}(h)| &= \frac{1}{2h} |f(x+h) - f(x-h)| - |\tilde{f}(x+h) - \tilde{f}(x-h)| \\ &= \frac{1}{2h} |(f(x+h) - \tilde{f}(x+h)) + (\tilde{f}(x-h) - f(x-h))| \\ &\leq \frac{1}{2h} (|f(x+h) - \tilde{f}(x+h)| + |\tilde{f}(x-h) - f(x-h)|) \\ &\leq \frac{1}{2h} (\varepsilon + \varepsilon) = \frac{2\varepsilon}{2h} = \frac{\varepsilon}{h} \end{split}$$

Otteniamo quindi

$$|f'(x) - \tilde{\delta}(h)| \le dh^2 + \frac{\varepsilon}{h} = E(h)$$

La stima è simile a prima, ma l'esponente di h è 2, pertanto per rendere piccolo dh^2 basta avere un passo più grande rispetto a quello che serve per ch.

Come prima, cerchiamo di minimizzare:

$$E(h) = dh^{2} + \frac{\varepsilon}{h}$$

$$= 2dh - \frac{\varepsilon}{h^{2}} = 0 \Rightarrow h^{3} = \frac{\varepsilon}{2d}$$

$$\Rightarrow h^{*} = h^{*}(\varepsilon) = \left(\frac{\varepsilon}{2d}\right)^{\frac{1}{3}}$$

Con E(h) convessa ed h* di minimo. D'altra parte:

$$E(h^*) = d(h^*)^2 + \frac{\varepsilon}{h^*} \qquad = d^{1/3} \cdot (2^{-2/3} + 2^{1/3}) \cdot \varepsilon^{2/3} \qquad \qquad h^* = O(\varepsilon^{1/3}) \quad \text{e} \quad E(h^*) = O(\varepsilon^{2/3})$$

Rispetto al rapporto incrementale standard, per ϵ piccolo, l'errore minimale $E_{+}(h^*)$ è $\epsilon^{2/3} << \epsilon^{1/2}$.

Derivazione numerica rapporto incrementale "classico" / Rapporto incrementale standard

Consideriamo il calcolo di f' in un intorno di valori campionati assumendo $f \in C^2(I_r)$ e usando il rapporto incrementale destro:

$$I_r = I_r(x) = [x - r, x + r]$$

$$\delta_+(h) = \frac{f(x+h) - f(x)}{h}, \quad 0 < h \le r \qquad \begin{array}{c} \text{Dalla definizione di of } \\ \lim_{h \to 0} \delta_+(h) = f'(x) \end{array}$$

Dalla definizione di derivabilità in x, è convergente:

$$\lim_{h\to 0} \delta_+(h) = f'(x)$$

La stima dell'errore, dunque, è data usando la formula di Taylor centrata in x e con incremento h:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(z)$$
 dove $z \in (x, x+h)$. Allora

$$f(x+h) - f(x) = hf'(x) + \frac{h^2}{2}f''(z)$$

cioè

$$\delta_{+}(h) = \frac{f(x+h) - f(x)}{h} = f'(x) + O(h)$$

nel senso che $\exists c > 0$ tale che

$$|\delta_{+}(h) - f'(x)| \le ch, \quad c = \frac{1}{2} \max_{t \in I_r} |f''(t)| \ge \frac{|f''(z)|}{2}$$

La convergenza del rapporto incrementale δ +(h) è lenta ma, per presenza di errori, vogliamo solo saper stimare i valori approssimati ~f(t) come segue:

$$|f(t) - \tilde{f}(t)| \le \varepsilon \ \forall t \in I_r$$

Chiamiamo allora $\tilde{\delta}_{+}(h)$ il rapporto incrementale "perturbato"

$$\tilde{\delta}_{+}(h) = \frac{\tilde{f}(x+h) - \tilde{f}(x)}{h}$$

Possiamo scrivere

$$|f'(x) - \tilde{\delta}_{+}(h)| = |f'(x) - \delta_{+}(h) + \delta_{+}(h) - \tilde{\delta}_{+}(h)|$$

$$\leq |f'(x) - \delta_{+}(h)| + |\delta_{+}(h) - \tilde{\delta}_{+}(h)| \quad \longleftarrow \text{diseg. triangolare}$$
convergenza stabilità

Per l'analisi della stabilità:

$$\begin{split} |\delta_{+}(h) - \tilde{\delta}_{+}(h)| &= \left| \frac{f(x+h) - f(x)}{h} - \frac{\tilde{f}(x+h) - \tilde{f}(x)}{h} \right| \\ &= \left| \frac{f(x+h) - \tilde{f}(x+h)}{h} + \frac{\tilde{f}(x) - f(x)}{h} \right| \\ &\leq \frac{1}{h} \left| f(x+h) - \tilde{f}(x+h) \right| + \frac{1}{h} \left| \tilde{f}(x) - f(x) \right| \quad \longleftarrow \text{diseg. triangolare} \\ &\leq \frac{1}{h} \varepsilon + \frac{1}{h} \varepsilon = \frac{2\varepsilon}{h} \end{split}$$

Da cui:
$$\left|f'(x)-\tilde{\delta}_+(h)\right| \leq ch + \frac{2\varepsilon}{h} = E_+(h)$$
 Si conclude che si hanno due esigenze contrastanti: - Serve h piccolo per la convergenza teorica

- Per ε fissato, prendere h \rightarrow 0 amplifica l'errore su f Questa, dunque, l'instabilità che si eredita dalla derivazione.