Design, synthesis, and testing toward a 57-codon genome

Celine Chang and Archana Kikla

ABE 591

11/1/18

Objectives

- Create a virus-resistant biocontained bacterium for industrial applications
- Make over 60,000 genome changes to replace seven codons at once
- Create functional *E. coli* genome using only 57 codons instead of 64

Why?

- Phage resistance
- Virus resistance
- Basic Science Research
 - o Large-scale codon exchange
- Biocontainment

What?

	U	С	Α	G	
U	UUU Phe UUC UUA UUG Leu	UCU UCC UCA UCG	UAU Tyr UAC UAA Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	UCAG
С	CUU CUC CUA CUG	CCU CCC Pro CCA CCG	CAU His CAC CAA Gin CAG	CGU CGC Arg CGA CGG	UCAG
A	AUU IIe AUA AUG Met	ACU ACC Thr ACA ACG	AAU Asn AAC AAA Lys AAG Lys	AGU Ser AGC AGA AGG Arg	UCAG
G	GUU GUC Val GUA GUG	GCU GCC Ala GCA GCG	GAU Asp GAC GAA GIU GAG	GGU GGC GGA GGG	U C A G

How codons were selected for recoding

- UAG (stop)
 - Previously replaced genome-wide
- AGG and AGA
 - Rarest codons
- AGC, AGU, UUG, UUA
 - Anticodon is not recognized as a tRNA identity element by endogenous aminoacyl-tRNA synthetases upon codon reassignment

Codon Selection Criteria

- Minimize disruption of biological motifs (RBS, mRNA secondary structure)
- Conserve relative codon usage to meet translational demand
- If synonymous codon not found relax constraints until alternative found
 - Iterative process

Recoding Methods

Recoding Methods Cont.

- Single editing codon strategies
- Multiple alleles
 - MAGE
 - o Cas9
- Advantages
 - Modular process
 - Cost
- Limitations
 - Methylation machinery of E. coli MDS42 still intact, could influence gene expression

Reduced fitness in recoding genes

- Segment 21
 - Insufficient expression of recoded fatty acid biosynthesis operon rpmF-accC
 - Codon changes in upstream yceD disrupted operon promoter
- Segment 84
 - Three genes caused fitness impairment
 - Including recoded gene ytfP (large deletion)

Experimental Conclusions

- Successfully replaced 7 codons (62,214 instances) throughout genome
- Only found problems with 13 of 2,229 genes tested
- 90% of tested essential genes retained functionality with limited fitness effect
 - Currently tested 2/3 of genome
- Can change genome at cost of \$1 million