避雷器在线监测装置 Modbus 通讯协议 V1.4

南京灵智通科技有限公司

版本号	说明	日期	备注
V1.1	1、增加泄露电流采集装置状态	2022.12.2	无
	2、修改寄存器内容		
V1.2	1、增加避雷器设备地址	2022.12.7	无
V1.3	1、增加温湿度数据	2023.1.8	无
V1.4	1、修改寄存器地址	2023.1.31	无

1、通讯参数配置

表1 通讯配置

参数	值
波特率	9600 (默认)
数据位	8
奇偶校验位	N
停止位	1

2、数据通讯格式

请求信息规定了要读的从机地址、功能代码、保持寄存器起始地址及保持寄存器的数量、 CRC 校验。保持寄存器寻址起始地址为 0000H。

表 2 读请求包

字节	参数	范围	含义
1	从机地址	1-247	*从机 ID 地址
2	功能代码	03	读保持寄存器的二进制数据
3	保持寄存器起始地址 Hi	0x00-0xFF	保持寄存器地址高字节
4	保持寄存器起始地址 Lo	0x00-0xFF	保持寄存器地址低字节
5	保持寄存器数 Hi	0	*保持寄存器数高字节
6	保持寄存器数 Lo	1-125	保持寄存器数低字节
7	CRC Lo	0x00-0xFF	CRC 低字节
8	CRC Hi	0x00-0xFF	CRC 高字节

响应信息中的寄存器数据为二进制数据,每个寄存器分别对应 2 个字节,第一个字节为高位数据,第二个字节为低位数据。

表 3 读响应包

字节号	参数	范围	含义
1	从机地址	1-247	从机 ID 地址
2	功能代码		返回保持寄存器的二进制数据
3	字节总数	2-255	*返回的数据字节数
4	DATA1 Hi	0x00-0xFF	第一个数据值 Hi 字节
5	DATA1 Lo	0x00-0xFF	第一个数据值 Lo 字节
6	DATA2 Hi	0x00-0xFF	第二个数据值 Hi 字节
7	DATA2 Lo	0x00-0xFF	第二个数据值 Lo 字节
•••			

2N+4	CRC Lo	0x00-0xFF	CRC 低字节
2N+5	CRC Hi	0x00-0xFF	CRC 高字节

表 4 寄存器列表

寄存器地址	参数	数据类型
0~1	系统频率	Float
2~3	A 相母线电压基波值	Float
4~5	A 相母线电压三次谐值	Float
6~7	A 相母线电压五次谐波值	Float
8~9	A 相母线电压七次谐波值	Float
10~11	A 相母线电压九次谐波值	Float
12~13	B 相母线电压基波值	Float
14~15	B相母线电压三次谐值	Float
16~17	B相母线电压五次谐波值	Float
18~19	B相母线电压七次谐波值	Float
20~21	B相母线电压九次谐波值	Float
22~23	C相母线电压基波值	Float
24~24	C相母线电压三次谐值	Float
26~27	C相母线电压五次谐波值	Float
28~29	C相母线电压七次谐波值	Float
30~31	C相母线电压九次谐波值	Float
32~33	第一组 A 相避雷器阻性电流	Float
34~35	第一组 A 相避雷器容性电流	Float
36~37	第一组 A 相避雷器阻容比	Float
38~39	第一组 A 相避雷器全电流	Float
40~41	第一组 A 相避雷器雷击次数	Float
42~43	第一组 A 相避雷器雷击时间 yy:mm:dd	Uint32
44~45	第一组 A 相避雷器雷击时间 hh:mm:ss	Uint32
46~47	第一组 A 相避雷器温度	Float
48~49	第一组 A 相避雷器湿度	Float
50	第一组 A 相避雷器状态	Uint16
51	第一组 A 相避雷器地址	Uint16
52~53	第一组 B 相避雷器阻性电流	Float
54~55	第一组 B 相避雷器容性电流	Float
56~57	第一组 B 相避雷器阻容比	Float
58~59	第一组 B 相避雷器全电流	Float
60~61	第一组 B 相避雷器雷击次数	Float
62~63	第一组 B 相避雷器雷击时间 yy:mm:dd	Uint32
64~65	第一组 B 相避雷器雷击时间 hh:mm:ss	Uint32
66~67	第一组 B 相避雷器温度	Float
68~69	第一组 B 相避雷器湿度	Float
70	第一组 B 相避雷器状态	Uint16
71	第一组 B 相避雷器地址	Uint16
72~73	第一组 C 相避雷器阻性电流	Float
74~75	第一组 C 相避雷器容性电流	Float

76~77	第一组 C 相避雷器阻容比	Float
78~79	第一组 C 相避雷器全电流	Float
80~81	第一组 C 相避雷器雷击次数	Float
82~83	第一组 C 相避雷器雷击时间 yy:mm:dd	Uint32
84~85	第一组 C 相避雷器雷击时间 hh:mm:ss	Uint32
86~87	第一组 C 相避雷器温度	Float
88~89	第一组 C 相避雷器湿度	Float
90	第一组 C 相避雷器雷状态	Uint16
91	第一组 C 相避雷器雷地址	Uint16
92~93	第二组 A 相避雷器阻性电流	Float
94~95	第二组 A 相避雷器容性电流	Float
96~97	第二组 A 相避雷器阻容比	Float
98~99	第二组 A 相避雷器全电流	Float
100~101	第二组 A 相避雷器雷击次数	Float
102~103	第二组 A 相避雷器雷击时间 yy:mm:dd	Uint32
104~105	第二组 A 相避雷器雷击时间 hh:mm:ss	Uint32
106~107	第二组 A 相避雷器温度	Float
108~109	第二组 A 相避雷器湿度	Float
110	第二组 A 相避雷器状态	Uint16
111	第二组 A 相避雷器地址	Uint16
112~113	第二组 B 相避雷器阻性电流	Float
114~115	第二组 B 相避雷器容性电流	Float
116~117	第二组 B 相避雷器阻容比	Float
118~119	第二组 B 相避雷器全电流	Float
120~121	第二组 B 相避雷器雷击次数	Float
122~123	第二组 B 相避雷器雷击时间 yy:mm:dd	Uint32
124~125	第二组 B 相避雷器雷击时间 hh:mm:ss	Uint32
126~127	第二组 B 相避雷器温度	Float
128~129	第二组 B 相避雷器湿度	Float
130	第二组 B 相避雷器雷状态	Uint16
131	第二组 B 相避雷器雷地址	Uint16
132~133	第二组 C 相避雷器阻性电流	Float
134~135	第二组 C 相避雷器容性电流	Float
136~137	第二组 C 相避雷器阻容比	Float
138~139	第二组 C 相避雷器全电流	Float
140~141	第二组 C 相避雷器雷击次数	Float
142~143	第二组 C 相避雷器雷击时间 yy:mm:dd	Uint32
144~145	第二组 C 相避雷器雷击时间 hh:mm:ss	Uint32
146~147	第二组 C 相避雷器温度	Float
148~149	第二组 C 相避雷器湿度	Float
150	第二组 C 相避雷器状态	Uint16
151	第二组 C 相避雷器地址	Uint16
152~153	第三组 A 相避雷器阻性电流	Float

154~155	第三组 A 相避雷器容性电流	Float
156~157	第三组 A 相避雷器阻容比	Float
158~159	第三组 A 相避雷器全电流	Float
160~161	第三组 A 相避雷器雷击次数	Float
162~163	第三组 A 相避雷器雷击时间 yy:mm:dd	Uint32
164~165	第三组A相避雷器雷击时间 hh:mm:ss	Uint32
166~167	第三组 A 相避雷器温度	Float
168~169	第三组 A 相避雷器湿度	Float
170	第三组 A 相避雷器状态	Uint16
171	第三组 A 相避雷器地址	Uint16
172~173	第三组 B 相避雷器阻性电流	Float
174~175	第三组 B 相避雷器容性电流	Float
176~177	第三组 B 相避雷器阻容比	Float
178~179	第三组 B 相避雷器全电流	Float
180~181	第三组 B 相避雷器雷击次数	Float
182~183	第三组 B 相避雷器雷击时间 yy:mm:dd	Uint32
184~185	第三组 B 相避雷器雷击时间 hh:mm:ss	Uint32
186~187	第三组 B 相避雷器温度	Float
188~189	第三组 B 相避雷器湿度	Float
190	第三组 B 相避雷器状态	Uint16
191	第三组 B 相避雷器地址	Uint16
192~193	第三组 C 相避雷器阻性电流	Float
194~195	第三组 C 相避雷器容性电流	Float
196~197	第三组 C 相避雷器阻容比	Float
198~199	第三组 C 相避雷器全电流	Float
200~201	第三组 C 相避雷器雷击次数	Float
202~203	第三组 C 相避雷器雷击时间 yy:mm:dd	Uint32
204~205	第三组 C 相避雷器雷击时间 hh:mm:ss	Uint32
206~207	第三组 C 相避雷器温度	Float
208~209	第三组 C 相避雷器湿度	Float
210	第三组 C 相避雷器状态	Uint16
211	第三组 C 相避雷器地址	Uint16
212~271	第四组避雷器数据	
272~331	第五组避雷器数据	
332~391	第六组避雷器数据	
392~451	第七组避雷器数据	
452~511	第八组避雷器数据	
512~571	第九组避雷器数据	
572~631	第十组避雷器数据	
632~591	第十一组避雷器数据	
592~651	第十二组避雷器数据	
652~711	第十三组避雷器数据	
712~771	第十四组避雷器数据	

772~831	第十五组避雷器数据	
832~891	第十六组避雷器数据	
892~951	第十七组避雷器数据	
952~1011	第十八组避雷器数据	
1012~1071	第十九组避雷器数据	
1072~1131	第二十组避雷器数据	

注:一组避雷器包含 A 相避雷器泄漏电流采集装置、B 避雷器泄漏电流采集装置、C 避雷器泄漏电流采集装置,表中二十组共60台。

示例 1:

Modbus 主机: 01 03 00 00 00 20 44 12

Modbus 从机: 01 03 40 3D 0A 48 42 85 EB 66 42 5C 8F 02 3F 52 B8 9E 3E 3D 0A 57 3E 0A D7 23 3C C3 F5 66 42 B8 1E 05 3F 0A D7 A3 3E AE 47 61 3E 0A D7 23 3C 00 00 67 42 14 AE 07 3F C3 F5

A8 3E 1F 85 6B 3E 0A D7 23 3C A2 6B

数据说明:

请求报文:

01 03 设备地址: 0x01 功能码 0x03

00 00 寄存器起始地址: 0x0000

00 20 寄存器数量: 0x0020 (32)

44 12 校验码

接收报文:

01 03 40 设备地址: 0x01 功能码 0x03,数据长度: 0x40(64)

3D 0A 48 42 系统频率 = 50.0099983HZ

85 EB 66 42 A 相基波电压 = 57.7299995V

5C 8F 02 3F A 相三次谐波电压 = 0.5099999V

52 B8 9E 3E A 相五次谐波电压 = 0.3100000V

3D 0A 57 3E A 相七次谐波电压 = 0.2099999V

OA D7 23 3C A 相九次谐波电压 = 0.0099999V

C3 F5 66 42 B 相基波电压 = 57.7400016V

B8 1E 05 3F B 相三次谐波电压 = 0.5199999V

OA D7 A3 3E B 相五次谐波电压 = 0.3199999V

AE 47 61 3E B 相七次谐波电压 = 0.2199999V

OA D7 23 3C B 相九次谐波电压 = 0.0099999V

00 00 67 42 C 相基波电压 = 57.7500000V

14 AE 07 3F C相三次谐波电压 = 0.5299999

C3 F5 A8 3E C 相五次谐波电压 = 0.3300000

1F 85 6B 3E C 相七次谐波电压 = 0.2300000

OA D7 23 3C C 相九次谐波电压 = 0.0099999V

A2 6B 校验码: A2 6B

示例 2:

Modbus 主机: 01 03 00 20 00 14 44 0F

Modbus 从机: 01 03 28 EB C9 5A 3D 56 52 80 3C 89 3D 5A 40 9C EE 27 3D 00 00 00 00 00 00 00

00 00 00 00 00 33 33 C3 41 00 00 30 41 00 00 01 00 D9 36

数据说明:

请求报文:

- 01 03 装置地址: 0x01,功能码: 0x03
- 00 20 寄存器起始地址: 0x0020
- 00 14 寄存器数量: 0x0014 (20)
- 44 OF CRC 校验码

接收报文:

- 01 03 28 装置地址: 0x01,功能码: 0x03,数据长度: 0x28(40)
- EB C9 5A 3D 第一组避雷器 A 相阻性电流 = 0.0534152mA
- 56 52 80 3C 第一组避雷器 A 相容性电流 = 0.0156642mA
- 89 3D 5A 40 第一组避雷器 A 相阻容比 = 3.4100058mA
- 9C EE 27 3D 第一组避雷器 A 相全电流 = 0.0409990mA
- 00 00 00 00 第一组避雷器 A 相雷击次数 =0
- 00 00 00 00 第一组避雷器 A 相雷击时间 无雷击事件
- 00 00 00 00 第一组避雷器 A 相雷击时间 无雷击事件
- 33 33 C3 41 第一组避雷器 A 相温度 24.3999996
- 00 00 30 41 第一组避雷器 A 相湿度 11.0000000
- 00 00 第一组避雷器 A 相状态: 0x00 表示正常, 0x00 预留
- 01 00 第一组避雷器 A 相设备地址: 0x01 地址为 1,0x00 预留
- D9 36 CRC 校验码

示例 3:

Modbus 主机: 01 03 00 48 00 14 C5 D3

Modbus 从机: 01 03 28 00 00 00 00 00 00 00 00 00 00 00 B0 37 28 3D 00 00 00 00 00 00 00

 $00\ 00\ 00\ 00\ 33\ 33\ C3\ 41\ 33\ 33\ 33\ 41\ 00\ 00\ 03\ 00\ 26\ 10$

数据说明:

请求报文:

- 01 03 装置地址: 0x01,功能码: 0x03
- 00 48 寄存器起始地址: 0x0048(72)
- 00 14 寄存器数量: 0x0014 (20)
- C5 D3 CRC 校验码

接收报文:

- 01 03 28 装置地址: 0x01,功能码: 0x03,数据长度: 0x28(40)
- 00 00 00 00 第三组避雷器 A 相阻性电流 = 0mA
- 00 00 00 00 第三组避雷器 A 相容性电流 = 0mA
- 00 00 00 00 第三组避雷器 A 相阻容比 = 0mA
- B0 37 28 3D 第三组避雷器 A 相全电流 = 0.0410687mA
- 00 00 00 00 第三组避雷器 A 相雷击次数 = 0
- 00 00 00 00 第三组避雷器 A 相雷击时间 无雷击事件
- 00 00 00 00 第三组避雷器 A 相雷击时间 无雷击事件
- 33 33 C3 41 第一组避雷器 A 相温度 24.3999996
- 33 33 33 41 第一组避雷器 A 相湿度 11.1999998
- 00 00 第三组避雷器 A 相状态: 0x00 表示正常常, 0x00 预留

03 00 第三组避雷器 A 相设备地址: 0x03 地址为 3,0X00 预留

26 10 CRC 校验码

0x40

```
附录:
CRC 校验算法:
const unsigned char auchCRCHi[] =
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
    0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
    0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
    0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81.
    0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
    0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
    0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
    0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
    0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
    0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
    0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
    0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
    0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
    0x40
};
const unsigned char auchCRCLo[] =
    0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
    0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
    0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
    0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
    0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
    0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
    0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
    0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
    0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
    0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
    0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
    0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
    0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
    0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
    0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
    0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
```

0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,

```
};
unsigned short CRC16(unsigned char *updata,unsigned short len)
    unsigned char uchCRCHi=0xff;
    unsigned char uchCRCLo=0xff;
    short uindex;
    while(len--)
    {
         uindex=uchCRCHi^*updata++;
         uchCRCHi=uchCRCLo^auchCRCHi[uindex];
         uchCRCLo=auchCRCLo[uindex];
    }
    return (uchCRCHi|uchCRCLo<<8);//高字节在前,低字节在后
}
unsigned short CRC16_HL(unsigned char *buf, unsigned int len)
{
    unsigned char uchCRCHi=0xff;
    unsigned char uchCRCLo=0xff;
    short uindex;
    while(len--)
         uindex=uchCRCHi^*buf++;
         uchCRCHi=uchCRCLo^auchCRCHi[uindex];
         uchCRCLo=auchCRCLo[uindex];
    }
    return ((uchCRCHi<<8)|uchCRCLo);</pre>
}
```