Group Meeting

Yunlong Pan

Outline

- Tlm/sterodynamics
 - Methodology
- Kopp14/verticallandmoti on
 - Dataset(constant rate)
- NeuralGCM (Flooding)
- https://coast.noaa.gov/slr /

- <<The Framework for Assessing Changes To Sea-level (FACTS) v1.0: a platform for characterizing parametric and structural uncertainty in future global, relative, and extreme sea-level change>>
 - https://gmd.copernicus.org/articles/16/7461/2023/
 - 21 Dec 2023
- Dataset, Code: https://zenodo.org/records/6419954

Workflow	GrIS	AIS	Glaciers	Land water	Sterodynamic	VLM		
Medium-confidence workflows								
1e	emulandice	emulandice	emulandice	ssp	tlm	kopp14		
1f	FittedISMIP	ipccar5	ipccar5(GMIP2)	ssp	tlm	kopp14		
2e	emulandice	larmip	emulandice	ssp	tlm	kopp14		
2f	FittedISMIP	larmip	ipccar5 (GMIP2)	ssp	tlm	kopp14		
		Low-	confidence workflows					
3e	emulandice	deconto21	emulandice	ssp	tlm	kopp14		
3f	FittedISMIP	deconto21	ipccar5(GMIP2)	ssp	tlm	kopp14		
4	bamber19	bamber19	ipccar5 (GMIP2)	ssp	tlm	kopp14		

Tlm/sterodynamics: Methodology

Result Review:

Ex:oceandynamics_ssp370

https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool

			sea_level_change
quantiles	years	locations	
0.0	2020	1	-143.0
		2	-123.0
		3	-139.0
		5	-142.0
		7	-118.0
•••	•••		
1.0	2300	1018003550	NaN
		1018003560	NaN
		1018003570	NaN
		1018003580	NaN
		1018003590	NaN

205387570 rows × 1 columns

Methodology:

- 1.Simulation
- 2. Find μ and σ to get the t-distribution
- 3. z, σ , k, y, s, r, t
- 4. multi-model

We al-Gare	GrIS	AIC	Clasians	I and makes	Ctara damania	NI M	
Workflow	GHS	AIS	Glaciers	Land water	Sterodynamic	VLM	
1e	emulandice	emulandice	emulandice	ssp	tlm	kopp14	
1f	FittedISMIP	ipccar5	ipccar5(GMIP2)	ssp	tlm	kopp14	
2e	emulandice	larmip	emulandice	ssp	tlm	kopp14	
2f	FittedISMIP	larmip	ipccar5 (GMIP2)	ssp	tlm	kopp14	
Low-confidence workflows							
3e	emulandice	deconto21	emulandice	ssp	tlm	kopp14	
3f	FittedISMIP	deconto21	ipccar5(GMIP2)	ssp	tlm	kopp14	
4	bamber19	bamber19	ipccar5(GMIP2)	ssp	tlm	kopp14	

Methodology:

1. Simulation

Given a time and location,

the sea level change value ~ t-

distribution

Ex:t-distribution

			sea_level_change
quantiles	years	locations	
0.0	2020	1	-143.0
		2	-123.0
		3	-139.0
		5	-142.0
		7	-118.0
•••	•••		
1.0	2300	1018003550	NaN
		1018003560	NaN
		1018003570	NaN
		1018003580	NaN
		1018003590	NaN

205387570 rows × 1 columns

Methodology:

2. Find μand σ to get the t-distribution:

$$\overline{z_t}(r) + \sigma_t(r) k_t(r) \frac{y_t - \overline{y_t}}{s_t}$$

$$\sigma_t(r)\mathbf{1} - k_t(r)^2,$$

			sea_level_change
quantiles	years	locations	
0.0	2020	1	-143.0
		2	-123.0
		3	-139.0
		5	-142.0
		7	-118.0
•••	•••	•••	
1.0	2300	1018003550	NaN
		1018003560	NaN
		1018003570	NaN
		1018003580	NaN
		1018003590	NaN

205387570 rows x 1 columns

https://gmd.copernicus.org/articles/16/7461/2023/

Methodology:

3. z, σ , k, y, s, r, t

 $\overline{Z_t}(r) + \sigma_t(r)k_t(r) \underbrace{v_t - \overline{y_t}}_{S_t}$

time $\frac{t}{t}$ and location $\frac{r}{t}$

 $z_t(r)$ is the multi-model mean ocean dynamic sea level at time t and location r,

Note: z is independent of temperature

 $\overline{y_t}$ is the multi-model mean of global mean thermosteric sea-level rise

Note: y is associate with temperature

Methodology:

4. multi-model

Table A3 CMIP6 models used for calibrating the thermal expansion coefficients of <u>Fox-Kemper</u> et al. (2021a) (TE, left column) and for projecting ocean dynamic sea-level change and the IB effect (zos+psl, right column) in the tlm/sterodynamics module.

Model	TE	zos+psl
ACCESS-CM2	x	х
ACCESS-ESM1-5	x	X
BCC-CSM2-MR		X
BCC-ESM1		X
CAMS-CSM1-0		X
CanESM5	x	X
CanESM5-CanOE		X
CAS-ESM2-0		X
CESM2		X
CESM2-FV2		X
CESM2-WACCM		X
CESM2-WACCM-FV2		X
CIESM		X
CMCC-CM2-SR5		X
CNRM-CM6-1	X	X
CNRM-CM6-1-HR	x	X
CNRM-ESM2-1	X	X
EC-Earth3	x	X
EC-Earth3-Veg	X	X
EC-Earth3-Veg-LR		X
FIO-ESM-2-0		X
GISS-E2-1-G		X
GISS-E2-1-G-CC		X
HadGEM3-GC31-LL	x	X
HadGEM3-GC31-MM		X
INM-CM4-8		X
INM-CM5-0	X	X
IPSL-CM6A-LR	X	X
MIROC6	X	X
MIROC-ES2L		X
MPI-ESM-1-2-HAM		X
MPI-ESM1-2-HR	X	X
MPI-ESM1-2-LR	X	X
MRI-ESM2-0	X	X
NorCPM1		X
NorESM2-LM	x	X
NorESM2-MM	x	X
UKESM1-0-LL	X	

Methodology:

3. z, σ , $\frac{k}{s}$, y, s, r, t

$$\overline{z_t}(r) + \sigma_t(r) k_t(r) \frac{\gamma_t - \overline{y_t}}{s_t}$$

 $k_t(r)$ is the correlation between global mean thermosteric sea-level rise and $z_t(r)$

The commonality is the assumption that the distribution of ocean dynamic sea level at a given point may be constrained by information about global mean thermosteric sea-level rise ("may" is an operative word here – it is also possible for the scaling factor or correlation coefficient to be zero).

Methodology:

- 1.Simulation
- 2. Find μ and σ to get the t-distribution
- 3. z, σ , k, y, s, r, t
- 4. multi-model

Workflow	GrIS	AIS	Glaciers	Land water	Sterodynamic	VLM	
		Mediu	m-confidence workflows	3			
1e	emulandice	emulandice	emulandice	ssp	tlm	kopp14	
1f	FittedISMIP	ipccar5	ipccar5(GMIP2)	ssp	tlm	kopp14	
2e	emulandice	larmip	emulandice	ssp	tlm	kopp14	
2f	FittedISMIP	larmip	ipccar5(GMIP2)	ssp	tlm	kopp14	
Low-confidence workflows							
3e	emulandice	deconto21	emulandice	ssp	tlm	kopp14	
3f	FittedISMIP	deconto21	ipccar5(GMIP2)	ssp	tlm	kopp14	
4	bamber19	bamber19	ipccar5(GMIP2)	ssp	tlm	kopp14	

<< Probabilistic 21st and 22nd century sealevel projections at a global network of tidegauge sites>>

https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2014EF0002

	~ ~~		~		~ .		
Workflow	GrIS	AIS	Glaciers	Land water	Sterodynam	e VLM	
Medium-confidence workflows							
1e	emulandice	emulandice	emulandice	ssp	tlm	kopp14	
1f	FittedISMIP	ipccar5	ipccar5(GMIP2)	ssp	tlm	kopp14	
2e	emulandice	larmip	emulandice	ssp	tlm	kopp14	
2f	FittedISMIP	larmip	ipccar5(GMIP2)	ssp	tlm	kopp14	
Low-confidence workflows							
3e	emulandice	deconto21	emulandice	ssp	tlm	kopp14	
3f	FittedISMIP	deconto21	ipccar5(GMIP2)	ssp	tlm	kopp14	
4	bamber19	bamber19	ipccar5(GMIP2)	ssp	tlm	kopp14	

Dataset:

https://zenodo.org/records/6419954

kopp14

verticallandmotion

bkgdrate-190924.tsv

bkgdrate-210306.tsv

data

bkgdrate.tsv

Dataset:

https://zenodo.org/records/6419954

14

Dataset:

https://zenodo.org/records/6419954

65160 rows x 6 columns

Summary

- Fair/temperature
- Emulandice/AIS, GrIS, glaciers
- Tlm/sterodynamics
- Kopp14/verticallandmoti on

Workflow	GrIS	AIS	Glaciers	Land water	Sterodynamic	VLM
		Mediur				
1e	emulandice	emulandice	emulandice	ssp	tlm	kopp14
1f	FittedISMIP	1pccar5	ipccar5 (GMIP2)	ssp	tlm	kopp14
2e	emulandice	larmip	emulandice	ssp	tlm	kopp14
2f	FittedISMIP	larmip	ipccar5 (GMIP2)	ssp	tlm	kopp14
		confidence workflows				
3e	emulandice	deconto21	emulandice	ssp	tlm	kopp14
3f	FittedISMIP	deconto21	ipccar5(GMIP2)	ssp	tlm	kopp14
4	bamber19	bamber19	ipccar5 (GMIP2)	ssp	tlm	kopp14

NeuralGCM (flooding)

- <<Neural general circulation models for weather and climate>>
- 22 July 2024
- http://research.google/blog/fast-accurate-climate-modelingwith-neuralgcm/
- https://www.nature.com/articles/s41586-024-07744-y
- https://github.com/google-research/neuralgcm

NeuralGCM

- Tropical Storm prediction (Earth's atmosphere)
- Open source
- fast

NeuralGCM predicted tropical cyclone tracks across the globe for 2020. The predicted storms matched the number and intensity of actual cyclones from that year as seen in the ECMWF reanalysis v5 (ERA5) dataset.

Sea Level Rise Viewer tool

- US
- Keep updated

- Data source
- Projection method

Discussion