Car Pool System

Software Engineering Course Project Project Plan Document

Group 6

Aisha Mushtaq 2014-10-0142

Ali Raza 2014-10-0214

Mohsin Ali 2014-10-0148

Zuha Agha 2014-10-0103

Instructor

Dr. Hamid Abdul Basit

Session 2012-2013

Department of Computer Science

LahoreUniversity of Management Sciences

Lahore

Contents

Pr	oject Plan Document	3
	Project Type	3
	Process Model	3
	Project Deliverables	3
	Project Tasks	3
	Project Scheduling	5
	Timeline Chart	5
	Team Structure	6
	Task and Member Assignment Table	6
	Allocation of People to Activities	6
	Resource Allocation	7
	Project/Product Estimates	7
	Project Estimation by Function Point Analysis	7
	Project Estimation by Use Case Point Analysis	9
	Tools and Technology with reasoning	12
	Front End Tools	12
	Documentation Tools	12
	Modeling Tools	12
	Project Management Tools:	12
	Back End Tools	12

Project Plan Document

Project Type

Car Pool System is a Web Application designed to provide a car-sharing service to students commuting to and from LUMS. It will provide a platform where people with transport can optimize on cost of travel and help save resources by sharing it with those who are looking for a conveyance and are headed to the same route.

Process Model

Our software will follow rapid-prototyping model. We intend to build a basic working prototype of the system with all the essential functionalities by the end of this course. The prototype will then be forwarded to IST for testing and if approved, we will tailor our system according to their requirements in an iterative and incremental way to develop a fully functional Car Pool Software that can actually be employed for the LUMS community.

Project Deliverables

- 1. Requirements document
- 2. Project plan
- 3. System design document
- 4. Test reports
- 5. Final code
- 6. Software manuals e.g. user, installation

Project Tasks

Tasks to determine product statement

- 1. Identify needs and benefits
- 2. Meet with Instructor
- 3. Milestone: Project proposal defined

Tasks to determine functional specification

- 1. Define project purpose and scope
- 2. Identify user characteristics
- 3. Define desired input/output
- 4. Identify project constraints
- 5. Input functions/output functions
- 6. Review with team members
- 7. **Milestone:** requirements document

Tasks for scheduling

- 1. Division of responsibilities
- 2. Gantt charts
- 3. Resource Allocation graph
- 4. Milestone: scheduling accomplished

Tasks to determine estimation

- 1. Software model specified
- 2. Functional point Analysis
- 3. Use case point Analysis
- 4. Project based estimations
- 5. H/w and s/w cost estimations
- 6. Milestone: estimations calculated

Tasks for designing phase

- 1. Identifying Entity, Boundary and Control classes
- 2. Data flow diagrams for the proposed system
- 3. Database design
- 4. Entity relationship diagrams
- 5. Normalization of tables
- 6. Data dictionary
- 7. **Milestone**: final design

Tasks for coding/implementation

- 1. Designing the database
- 2. Designing forms
- 3. Connectivity handling
- 4. Coding of all modules and algorithms for lift-matching
- 5. Milestone: coding accomplished

Tasks for testing

- 1. Devising test cases
- 2. Test cases run
- 3. User acceptance activity
- 4. Milestone: system tested

Project Scheduling

The plan for the scheduling covers the entire life cycle of the project. It entails all the activities that must be performed before starting the development work. Scheduling estimation and staff requirement estimations are perhaps the most important activities after cost estimation. As there is a strong relationship between the project duration and the staff time (measured in staff -months) required for completing the project. Later this schedule can be used for monitoring the progress of the project.

Timeline Chart

Team Structure

Role	Responsibility	Person
Team Leader ,Technical	Organizing Team, dividing	Zuha Agha
Writer, Co-Designer	tasks, documentation,	
	estimation, diagramming,	
	interface designing	
Lead Programmer and	Handling back-end coding,	Mohsin Ali
Tester	implementation, testing and	
	debugging	
Technical Writer and	Handling coding,	Aisha Mushtaq
Programmer	implementation,	
	documentation, estimation,	
	diagramming	
Interface Designer	Interface and form design	Ali Raza
	using HTML	

Task and Member Assignment Table

Allocation of People to Activities

No.	Activities	Members
1	Tasks to determine product statement	Aisha Mushtaq, Zuha Agha
2	Tasks to determine functional specification	Zuha Agha, Mohsin Ali , Ali Raza
3	Tasks for scheduling	Aisha Mushtaq, Mohsin Ali, Zuha Agha, Ali Raza
4	Tasks to determine estimation	Zuha Agha, Aisha Mushtaq, Mohsin Ali
5	Tasks for designing phase	Zuha Agha, Ali Raza, Aisha Mushtaq
6	Tasks for coding/implementation	Mohsin Ali, Aisha Mushtaq, Ali Raza, Zuha Agha
7	Tasks for testing	Mohsin Ali, Ali Raza, Aisha Mushtaq

Resource Allocation

0	Resource Name	Work
	Entity relationship diagrams	8 hrs
	Milestone: final design / 509	1 hr
	Designing forms	16 hrs
	Implementing the database	24 hrs
	Instructor meeting	2 hrs
	Connectivity handling	24 hrs
	Milestone: coding accomplis	1 hr
	User acceptance activity	24 hrs
	Milestone: system tested	8 hrs
•	☐ Aisha Mushtaq	162 hrs
	Identify needs and benefits	2 hrs
	Milestone: Project Idea Defii	4 hrs
	Gantt charts	3 hrs
	Resource Allocation graph	2 hrs
	Milestone: scheduling accor	1 hr
	Use case point Analysis	4 hrs
	Milestone: estimations calcu	1 hr
	Identifying Entity, Boundary a	6 hrs
	Database design	8 hrs
	Normalization of tables	2 hrs
	Milestone: final design / 50%	1 hr
	Implementing the database	24 hrs
	Instructor meeting	1 hr
	Coding of all modules and a	40 hrs
	Milestone: coding accomplis	1 hr
	Test cases run	30 hrs
	User acceptance activity	24 hrs
	Milestone: system tested	8 hre

Details -					Mar 24, '13					Mar 31, '13							
Details	W	T	F	S	S	М	T	W	T	F	S	S	M	T	W	Т	F
Work							4h	4h									
Work													1h				
Work									4h	4h			4h	4h			
Work																	
Work																	2
Work																	
Work																	
Work																	
Work																	
Work	2h	4h	4h			6h	4h			2h			1h			2h	
Work																	
Work																	
Work																	
Work																	
Work						1h											
Work	2h	2h															
Work						1h											
Work		2h	4h														
Work						4h	4h										
Work										2h							
Work													1h				
Work																	
Work																	1
Work																	
Work																	
Work																2h	
Work																	
Marie .												•					

Project/Product Estimates

Project Estimation by Function Point Analysis

External Inputs

- Form for Initial System Registration (Average)
- User Login (Low)
- Selection from Main Menu Confirmation/Cancellation/New Ride (Low)
- Selection of role for new ride (Lift-provider/ Lift-taker) (Low)
- Forms for information about the ride from the user (schedule/route/fuel cost) (High)

External Outputs

- Message displayed if lift-match has been found or not (Low)
- If lift-match found, an automated email message is sent to the users with the trip information along with lift-provider's and lift-taker's profile information (High)
- Users notified again via email after confirmation/cancellation (Low)

External Inquiry

Search for lift-match (High)

Internal Logic Files

- Users profile database (High)
- Users current trip's information database (High)
- MySQL Wordpress forms (High)
- Users authentication database (Low)

External Interface Files

• Automated email management file (Low)

	Low	Average	High	Total
External Inputs	3x3 = 9	1x4 = 4	1x6 = 6	19
External Outputs	2x4 = 8	-	1x7 = 7	15
External Inquiry	-	-	1x6 = 6	6
Internal Logic Files	1x7 = 7	-	3x15 = 45	52
External Interface Files	1x5 = 5	-	-	5
Total Unadjusted Function Points				97

Value Adjustment Factor Calculation

- **0** Not present or no influence
- 1 Incidental influence
- **2** Moderate influence
- **3** Average influence
- 4 Significant influence
- **5** Strong influence throughout

1	Data communications	4
2	Distributed data processing	0
3	Performance	5
4	Heavily used configuration	1
5	Transaction rate	5

6	. On-Line data entry	5
7	End-user efficiency	4
8	On-Line update	5
9	. Complex processing	4
10	Reusability	4
11	. Installation ease	5
12	Operational ease	4
13	Multiple sites	1
14	Facilitate change	3
	TOTAL	50

VAF = 0.65 + (50/100) = 1.15

Total Unadjusted Function Points	97
Multiplied with VAF	97*1.15
Total Adjusted Function Points	111.55

Project Estimation by Use Case Point Analysis

Use Case Complexity

Use Case	Number of Transactions	Use Case Complexity
Initial Registration	13	Complex
User Login	7	Average
Selection from Main Menu (Confirmation/Cancellation/New Ride)	2	Simple
Select Role (Lift-Provider/Lift- Taker)	4	Average
Offer a Lift	11	Complex
Take a Lift	7	Average

Reconfirm a Lift	4	Average
Cancel a Lift	5	Average

Unadjusted Use Case Weight (UUCW)

Use case complexity	Weight	Number of use cases	Product
Simple	5	1	5
Average	10	5	50
Complexity	15	2	30
Total			85

Actor Complexity

Actor	Actor Type
Lift-Provider	Complex (interacts via a Graphical Interface)
Lift-Taker	Complex (interacts via a Graphical Interface)
Database Server	Simple (another system through an API)

Unadjusted Actor Weight (UAW)

Actor Type	Weight	Number of Actors	Product
Simple	1	1	1
Average	2	X	
Complexity	3	2	6
Total			7

UUCP = UUCW + UAW

= 85 + 7

= 92

Adjusting for Technical Complexity

Factor	Weight	Assessment	Impact
Distributed system	2	0	0
Performance objectives	2	5	10
End-user efficiency	1	5	5
Complex processing	1	4	4
Reusable code	1	4	4
Easy to install	0.5	5	2.5
Easy to use	0.5	5	2.5
Easy to change	2	5	10
Concurrent use	1	5	5
Security	1	3	3
Access for third parties	1	1	1
Training needs	1	0	0
Portable	2	5	10
Total			57

TCF = 0.6 + (0.01 x 57) = 1.17

Adjusting for Environmental Complexity

Factor	Weight	Assessment	Impact
Familiar with the development process	1.5	3	4.5
Application experience	0.5	2	1
Object-Oriented Experience	1	4	4
Lead analyst capability	0.5	4	4
Motivation	1	5	5
Stable requirements	2	3	6
Part-time staff	-1	0	0
Difficult programming language	-1	2	-2
Total			22.5

 $EF = 1.4 + (-0.03 \times 22.5)$

= 0.725

 $UCP = UUCP \times TCF \times EF$

= 92 x 1.17 x 0.725

= 78.039

Tools and Technology with reasoning

Front End Tools

Word Press, PHP and HTML, Photoshop

Reasons

Word Press is an easy to use tool for designing the interface of our web application. It is an open source software with readily available tutorials and forum help. HTML is necessary for integration with Word Press. PHP and Photoshop will be used to design forms, buttons and images for the interface of the website, as it is one of the best options available.

Documentation Tools

Microsoft Word, Microsoft Project

Reasons

Microsoft Word and Microsoft Project will be used for documentation and technical writing and compilation purposes. Some project schedules will be created in Project and then imported in Word.

Modeling Tools

Microsoft Visio

Reasons

All the UML design diagrams will be created in Microsoft Visio.

Project Management Tools

Microsoft Project, GitHub

Reasons

Microsoft Project will be used basically to track the progress of our project to see how it is going according to schedule. It helps to visually track and manage the ongoing project.

All the code will be maintained on GitHub, so the entire team can work on the project concurrently. The new code will be easily accessible by all.

Back End Tools

SQL Server or Oracle, J2EE

Reasons

The project deals with a huge amount of data of the users which include storing information about students, faculty and staff and their path information. We have a choice to use either SQL Server or Oracle.

Our application is requires implementing business logic at application level which can be efficiently implemented in java. Java is scalable, portable and secure. J2EE will help us set up our website so that users will not need to download any extra packages such as JRE which is not built in browsers any more.