DbC + Multiparty session types

Hernán Melgratti

ICC University of Buenos Aires-Conicet

27 February 2020 @ Pisa

▶ Extension of multiparty session types with assertions about communicated values

¹Laura Bocchi, Kohei Honda, Emilio Tuosto, Nobuko Yoshida: A Theory of Design-by-Contract for Distributed Multiparty Interactions. CONCUR 2010

Global Graph (Choreography)

Finite MST + Assertions

Syntax

- ▶ p, r, ... : participants (also roles)
- ▶ x, y, ...: communication channels
- ▶ /, ... : labels
- ▶ ˜: tuples
- ► A: Assertion on values

Coherence (a.k.a well-formedness)

Coherence

- ▶ G is coherent if it is linear and G↑p is well-defined for each p
- ► Coherent assertions

Example

$$p\rightarrow q: x(v:int)\{v>10\}.r\rightarrow q: x(w:int)\{w>v\}.end$$

Local types + Assertions

Syntax

Projection + Causal dependency on assertions

Definition

$$G = User \rightarrow Agent : x(c : Command) \{c \neq switch - off\}.$$

$$Agent \rightarrow Device : y(c' : int) \{c = c'\}....$$

$$G \upharpoonright Agent = y? \langle c' : \tilde{S} \rangle \{c' \neq switch - off\}.$$

Typing

Processes κ ; $\Gamma \vdash P \triangleright \Delta$ where κ is a constraint

$$\frac{\kappa \wedge A; \Gamma, \nu : \mathsf{S} \; \vdash \; P \; \triangleright \; \Delta, \tilde{s} : \mathsf{T}@p}{\kappa; \Gamma \; \vdash \; s_k?(\nu).P \; \triangleright \; \Delta, \tilde{s} : s_k?(\nu : \mathsf{S}) \{A\}.\mathsf{T}@p}$$

$$\frac{\kappa \models A\{e/v\} \qquad \Gamma \vdash \tilde{e} \, \triangleright \, \tilde{\mathsf{S}} \qquad \kappa; \Gamma \vdash P \, \triangleright \, \Delta, \tilde{y} : \mathsf{T} \, \mathfrak{Q} \, p}{\kappa; \Gamma \vdash s_k ! \, v : \tilde{e} \cdot P \, \triangleright \, \Delta, \tilde{s} : s_k ! \, \langle v : \tilde{\mathsf{S}} \rangle \{A\} \cdot \mathsf{T} \, \mathfrak{Q} \, p}$$

Property

Typing ensures that well-typed processes never violate assertions

Final words

- ▶ This is just the starting point!!! in a very active research area.
- Several works about
 - expressiveness
 - less restrictions on communication patterns (context-free, flexible merge, relaxed well-formed conditions, global graphs)
 - relaxing linearity (allowing races), shared resources
 - alternative communication models (broadcast, publish/subscribe), event notification, weak consistent logs
 - types with parameterised parties,
 - composition (open choreographies)
 - Interaction with other aspects of a language
 - ► Exceptions
 - Quantitative properties to reason about resource usages and complexity
 - Temporal properties
 - Probabilistic reasoning
 - Adaptability
 - Reversibility
 - ► Foundational aspects
 - relation with other well-known notions of programming languages (linearity, dependent types, effects)
 - Logical characterisation
 - Decomposition of Multiparty into Binary sessions
 - Synthesis (inference) of global types
 - Decidability aspects of typing/subtyping
 - Graduality
 - Monitoring

Final words

- Ensured properties
 - Type safety, Fidelity, Progress, Deadlock freedom, Lock-freedom.
 - Complete vs partial realizations
 - ► Security properties (e.g., information flow)
- Implementation in programming languages
 - http://groups.inf.ed.ac.uk/abcd/session-implementations.html (not up-to-date).
 - ► Typestates in Java and Join, Dependent types in Dotty (to name a few)
- New domains
 - ► Smart contracts