Contents

1	First-order ODEs			
	1.1	Separable ODEs	1	
	1.2	Linear Equations	1	

1 First-order ODEs

• Form: IVP

$$\frac{dy}{dx} = f(x, y)$$
$$y(x_0) = y_0$$

Test: f(x,y) and $\partial f/\partial y$ are continuous over I **Property:** A unique solution is guaranteed over I

1.1 Separable ODEs

• Form:

$$\frac{dy}{dx} = g(x)h(y)$$

Solution: Divide by h(y) then with respect to x.

$$\frac{dy}{dx} = g(x)h(y)$$

$$\frac{1}{h(y)}\frac{dy}{dx} = g(x)$$

$$\int \frac{1}{h(y)}\frac{dy}{dx} dx = \int g(x) dx$$

$$\int \frac{1}{h(y)} dy = \int g(x) dx$$

$$H(y) = G(x) + c$$

1.2 Linear Equations

• Form:

$$\frac{dy}{dx} + P(x)y = f(x)$$

Solution:

- 1. Determine the integrating factor $e^{\int P(x) dx}$
- 2. Multiply by the integrating factor

- 3. Recognise that the left hand side of the equation is the derivative of the product of the integrating factor and y
- 4. Integrate both sides of the equation
- 5. Solve for y