Средства и системы параллельного программирования

#8. MPI: collectives & non-blocking

Режимы передачи сообщений в МРІ

Communication Mode	Blocking Routines	Nonblocking Routines
Synchronous	MPI_Ssend	MPI_Issend
Buffered	MPI_Bsend	MPI_lbsend
Ready	MPI_Rsend	MPI_Irsend
Standard	MPI_Send	MPI_Isend
	MPI_Recv	MPI_Irecv
	MPI_Sendrecv	
	MPI_Sendrecv_replace	

Сетка с halo-областью

Blocking

Non-blocking

MPI Scatter

int MPI_Scatter(void* sendbuf, int
sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root,
MPI_Comm comm)

int MPI_Scatterv(void* sendbuf,
int *sendcounts, int *displs,
MPI_Datatype sendtype, void*
recvbuf, int recvcount,
MPI_Datatype recvtype, int root,
MPI_Comm comm)

MPI Gather

int MPI_Gather (void* sendbuf,
int sendcount, MPI_Datatype
sendtype,
void* recvbuf, int recvcount,
MPI_Datatype recvtype,
int root, MPI_Comm comm)

все процессы + sendbuf + sendbuf + sendbuf + sendbuf + sendcount + + sendcount + + sendcount + + recvcount + + re

int MPI_Gatherv(void* sendbuf,
int sendcount, MPI_Datatype
sendtype,
void* rbuf, int *recvcounts, int
*displs, MPI_Datatype recvtype,
int root, MPI_Comm comm)

Conway's Game of Life. Правила:

- 1. Живая клетка меньше чем с двумя живыми клетками-соседями умирает из-за малонаселённости
- Живая клетка с двумя или тремя живыми клетками-соседями остаётся жить на следующей итерации
- Живая клетка более чем с тремя живыми клетками-соседями умирает изза перенаселённости
- 4. Неживая клетка с тремя клетками-соседями оживает

Написать программу с использованием MPI, реализующую игру в жизнь.

- 1) Инициализировать начальное расположение живых клеток **с помощью** коллективных операций, метод инициализации произвольный. (например, можно сгененировать начальные точки структур-глайдеров)
- 2) Провести К итераций игры
- 3) Начиная с K-ой итерации, если на каком-либо процессе число живых клеток на i-ой и i+1-ой итерациях игры совпадает, остановить игру на всей клеточной области, вывести общее число живых клеток в конце. Коммуникацию в данном случае также вести с помощью коллективных операций.

Требования (прим. сетка = весь набор клеток)

- 1) Программу запускать на Polus, через mpisubmit.pl
- 2) Для обмена данными между процессами использовать **неблокирующие** операции MPI.
- 3) Допускается (но не обязательно) иметь циклическую сетку (т.е граничные точки сетки являются соседями друг для друга).
- 4) Хранить в памяти процесса только ту часть сетки, которая соответствует построенному разбиению
- 5) Разбиение сетки по процессам произвольное (можно использовать ленточное)
- 6) Составить *краткий* отчёт, нарисовать T(P), P = {1, 2, 4, 8, 16}.

Дедлайн: 25.11, 2.12