LightGBM

A Highly Efficient Gradient Boosting Decision Tree

2019/05/04 論文発表 高橋 彰

目次

概要

9 導入

3 アルゴリズムの説明

4 実験

LightGBMの概要

どんなもの?

決定木のアンサンブル学習シリーズ。Gradient Boosting Decision Tree (GBDT)は精度が出るが、データサイズや、次元が大きい場合時間がかかりすぎて効率的ではなかった。

(GOSS)と(EFB)という手法を使って、問題を解決したら従来のGBDTの約20倍の スピードアップが示せた。

どうやって有効だと検証した?

5つのデータセットを使い、分類問題 4 つランク付け問題 1 つを比較。 Xgboost、lgb_baseline、EFB_lgb、SGB_lgb、full_lgb等複数のモデル を使用してAUCとNDCG(ランク付け問題の時の評価)について比較。 全てのデータセットで、**精度を落とすことなく**スピードアップが示せた。 また、GOSS、EFBについても個別で有効性を示せた。

技術の手法や肝は?

GOSS(Gradient-based One-Side Sampling)

勾配が大きい物のみを使用して、ダウンサンプリングすることで、 ただランダムサンプリングするより正確に利得推定??することが出来る。 EFB(Exclusive Feature Bundling)

疎な特徴量同士をマージさせることで、特徴量の数を減らすことが出来る。 例)ワンホットエンコーディングを元に戻すイメージ

議論はある?

無い。

先行研究と比べて何がすごい?

早み

XGBoostは精度がかなり高いがそこと比べても精度を落とさずに比べてめちゃめちゃ早い。

次に読むべき論文は?

Greedy function approximation: A gradient boosting machine.
(Jerome H.Friedman)
Stochastic Gradient Boosting(Jerome H.Friedman)
XGBoost(Tianqi Chen, Carlos Guestrin)

https://pdfs.semanticscholar.org/ab2a/5df5c6db9c8fc55117ff71c44f27ba82a087.pdf

Gradient Boosting Decision Tree (GBDT) 勾配ブースティング決定木

アンサンブル学習

複数の弱学習器を組み合わせて、強い予測モデルを作ろうというもの。 様々な手法があり、上記の他にはスタッキングなども含まれる。 ブースティングは前の弱学習器の結果を次の学習器に反映させるという特徴がある。

勾配ブースティング(Gradient Boosting)

ブースティングも種類があり他には他にはAdaBoost等ある。 前回の学習器を反映させる際に、勾配ブースティングの工夫がある。

前回の学習器の推定結果と、真値との誤差(勾配)を訓練データとして次の学習器の訓練を行う。

GBDTのアルゴリズム

pre-sorted algorithm VS histogram-based algorithm

学習過程で決定木は分岐点を探す時にとても時間がかかる。 分岐点の探し方で2つのアルゴリズムがある。

pre-sorted algorithm

事前のソートされた値の中で全てのありえる分岐点を探し出す。

→連続値の特徴に対して最適な分岐点はみつかるが時間、コストがかかる。

histogram-based algorithm

連続値を個別のビンにまとめてヒストグラムを作成する。

→**連続値から、離散値になる**ので効率がよく、スピードが早い。

XGBoostや、LightBoostではこちらを採用!

GBDTの問題点

データサイズが大きいときや、次元が多かった場合に時間がかかる。 Efficiencyやscalabilityがunsatisfactory

なんとか解決していきたい!

各手法の解説

使われている手法

Gradient-based One-Side Sampling (GOSS)

データ学習の際に勾配が大きいサンプル(誤差が大きい)は全て使用、勾配が小さいデータはランダムにサンプリングする。 勾配が大きいデータはinformation gainの獲得に大きく貢献することを利用し、普通にランダムサンプリングするよりも効率的に学習を進めていくことが出来る。

→データセットの数を減らすことが出来る

Exclusive Feature Bundling (EFB)

多くの分析では、特徴量がとても多い割にその特徴量は疎なデータ(ほぼ0)で有ることが多い。 排他的な特徴量同士(同時に1を取らない値)を $\overline{\mathbf{v}}$ ですることで特徴量をかなりへらすことが出来る。

→特徴量の数を減らすことが出来る。

Gradient-based One-Side Sampling (GOSS)

Algorithm 2: Gradient-based One-Side Sampling

```
Input: I: training data, d: iterations
Input: a: sampling ratio of large gradient data
Input: b: sampling ratio of small gradient data
Input: loss: loss function, L: weak learner
models \leftarrow \{\}, fact \leftarrow \frac{1-a}{b}
topN \leftarrow a \times len(I), randN \leftarrow b \times len(I)
for i = 1 to d do
    preds \leftarrow models.predict(I)
    g \leftarrow loss(I, preds), w \leftarrow \{1,1,...\}
    sorted \leftarrow GetSortedIndices(abs(g))
    topSet \leftarrow sorted[1:topN]
    randSet \leftarrow RandomPick(sorted[topN:len(I)])
    randN)
    usedSet \leftarrow topSet + randSet
    w[randSet] \times = fact \triangleright Assign weight fact to the
    small gradient data.
    newModel \leftarrow L(I[usedSet], -g[usedSet],
    w[usedSet])
    models.append(newModel)
```

学習方法

- 1. 定数a,bを設定する。(それぞれ割合)
- 2. 弱学習器で予測して、loss(勾配)を出す。
- 3. 勾配の絶対値でソートする。
- 4. 上位a割をtopSetとして格納
- 5. 残ったデータのb割をrandSetとして格納
- 6. データの分布が変わらない様にrandSetに(1-a)/bだけ重み付けする。
- 7. 再度学習

Gradient-based One-Side Sampling (GOSS)

Definition 3.1 Let O be the training dataset on a fixed node of the decision tree. The variance gain of splitting feature j at point d for this node is defined as

$$V_{j|O}(d) = \frac{1}{n_O} \left(\frac{\left(\sum_{\{x_i \in O: x_{ij} \le d\}} g_i \right)^2}{n_{l|O}^j(d)} + \frac{\left(\sum_{\{x_i \in O: x_{ij} > d\}} g_i \right)^2}{n_{r|O}^j(d)} \right),$$

where $n_O = \sum I[x_i \in O]$, $n^j_{l|O}(d) = \sum I[x_i \in O : x_{ij} \leq d]$ and $n^j_{r|O}(d) = \sum I[x_i \in O : x_{ij} > d]$.

$$\tilde{V}_{j}(d) = \frac{1}{n} \left(\frac{\left(\sum_{x_{i} \in A_{l}} g_{i} + \frac{1-a}{b} \sum_{x_{i} \in B_{l}} g_{i} \right)^{2}}{n_{l}^{j}(d)} + \frac{\left(\sum_{x_{i} \in A_{r}} g_{i} + \frac{1-a}{b} \sum_{x_{i} \in B_{r}} g_{i} \right)^{2}}{n_{r}^{j}(d)} \right), \tag{1}$$

where $A_l = \{x_i \in A : x_{ij} \leq d\}, A_r = \{x_i \in A : x_{ij} > d\}, B_l = \{x_i \in B : x_{ij} \leq d\}, B_r = \{x_i \in B : x_{ij} > d\},$ and the coefficient $\frac{1-a}{b}$ is used to normalize the sum of the gradients over B back to the size of A^c .

Information gain

決定木において、information gainは 分割後の分散を計算することで得る。

Exclusive Feature Bundling (EFB)

特徴量を一つにまとめる問題点

- 1. どの特徴量をまとめるか
- 2. どの様にまとめていくか

どの特徴量をまとめるか。

どの特徴量をまとめるか。

問題の最適化

NP困難な問題になるので各特徴を頂点とした時に排他的でない特徴について、エッジを引くという問題にすり替える。

少しのコンフリクトを許容してくれれば、更に特徴量をへらすことができますよ。

Exclusive Feature Bundling (EFB)

Algorithm 3: Greedy Bundling

```
Input: F: features, K: max conflict count

Construct graph G

searchOrder \leftarrow G.sortByDegree()

bundles \leftarrow \{\}, bundlesConflict \leftarrow \{\}

for i in searchOrder do

needNew \leftarrow True

for j=1 to len(bundles) do

cnt \leftarrow ConflictCnt(bundles[j],F[i])

if cnt + bundlesConflict[i] \leq K then

bundles[j].add(F[i]), needNew \leftarrow False

break

if needNew then

Add F[i] as a new bundle to bundles

Output: bundles
```

どの特徴量をまとめるか

グラフ理論的な何かだと思いますが、理解不可 とりあえず複数の特徴量をまとめる為にグループ分けをしている。

Algorithm 4: Merge Exclusive Features

```
Input: numData: number of data
Input: F: One bundle of exclusive features
binRanges \leftarrow \{0\}, totalBin \leftarrow 0
for f in F do

totalBin += f.numBin
binRanges.append(totalBin)

newBin \leftarrow new Bin(numData)
for i=1 to numData do

newBin[i] \leftarrow 0
for j=1 to len(F) do

if F[j].bin[i] \neq 0 then

newBin[i] \leftarrow F[j].bin[i] + binRanges[j]
```

Output: newBin, binRanges

どの様に特徴量をまとめるか

histogram-based algorithmを採用しているので、異なる特徴量を異なるbin に入れる

実験

実験

Table 1: Datasets used in the experiments.

Name	#data	#feature	Description	Task	Metric
Allstate	12 M	4228	Sparse	Binary classification	AUC
Flight Delay	10 M	700	Sparse	Binary classification	AUC
LETOR	2M	136	Dense	Ranking	NDCG [4]
KDD10	19M	29M	Sparse	Binary classification	AUC
KDD12	119M	54M	Sparse	Binary classification	AUC

データセット達

4つの分類問題と、1つの順位付け問題。

それぞれAUCとNDCG(順位付け問題系の評価値)を使って評価。

LETORには30kある検索クエリが含まれていてかなり密なデータ。

それぞれワンホットエンコードされた特徴があったり、KDDのデータは疎な特徴と、密な特徴を両方含む。 実社会での作業に近い。

実験

使用手法

- xgb_eta(XGBoost + Pre-ssorted algorithm)
- xgb_his(XGBoost + Histogram-based algorithm)
- Igb_baseline(LGBMのGOSSとEFBを使わなかったもの)
- lgb_baseline + EFB
- LightGBM (LGBMの全て使ったもの)

全体的な比較

•	 	
$\overline{}$		

	xgb_exa	xgb_his	lgb_baseline	EFB_only	LightGBM
Allstate	10.85	2.63	6.07	0.71	0.28
Flight Delay	5.94	1.05	1.39	0.27	0.22
LETOR	5.55	0.63	0.49	0.46	0.31
KDD10	108.27	OOM	39.85	6.33	2.85
KDD12	191.99	OOM	168.26	20.23	12.67

1回の学習辺りにかかる時間

とても早い。圧勝。

Xgb_his等はもはやメモリが足りなくて計算できないモデルもある中、LightGBMは圧勝。

全体的な比較

	xgb_exa	xgb_his	lgb_baseline	SGB	LightGBM
Allstate	0.6070	0.6089	0.6093	$0.6064 \pm 7e-4$	$0.6093 \pm 9e-5$
Flight Delay	0.7601	0.7840	0.7847	$0.7780 \pm 8e-4$	$0.7846 \pm 4e-5$
LETOR	0.4977	0.4982	0.5277	$0.5239 \pm 6e-4$	$0.5275 \pm 5\text{e-4}$
KDD10	0.7796	OOM	0.78735	$0.7759 \pm 3e-4$	0.78732 ± 1e-4
KDD12	0.7029	OOM	0.7049	$0.6989 \pm 8e-4$	$0.7051 \pm 5\text{e-}5$

精度(AUCとNDCG)

LightGBMはほぼ変わらず。

むしろ何故か上がっている傾向すら見られる。

全体的な比較

Figure 1: Time-AUC curve on Flight Delay.

Figure 2: Time-NDCG curve on LETOR.

学習過程

圧勝

GOSSの評価

·					
	xgb_exa	xgb_his	lgb_baseline	EFB_only	LightGBM
Allstate	10.85	2.63	6.07	0.71	0.28
Flight Delay	5.94	1.05	1.39	0.27	0.22
LETOR	5.55	0.63	0.49	0.46	0.31
KDD10	108.27	OOM	39.85	6.33	2.85
KDD12	191.99	OOM	168.26	20.23	12.67

EFB_onlyとLightGBMを比較

スピードアップは見られるが計算の過程で、サンプリングされたデータセットだけでなくフルデータに対する計算もいくつか残っているために、サンプリングの割合と線形な関係ではない。 でも早くはなる。

GOSSの評価

Sampling ratio	0.1	0.15	0.2	0.25	0.3	0.35	0.4
SGB	0.5182	0.5216	0.5239	0.5249	0.5252	0.5263	0.5267
GOSS	0.5224	0.5256	0.5275	0.5284	0.5289	0.5293	0.5296

SGB(確率的勾配ブースト)とGOSSを比較

サンプリングの比率をそれぞれ調整して精度を確認してみたが、全体を通してGOSSが勝利

EFBの評価

	xgb_exa	xgb_his	lgb_baseline	EFB_only	LightGBM
Allstate	10.85	2.63	6.07	0.71	0.28
Flight Delay	5.94	1.05	1.39	0.27	0.22
LETOR	5.55	0.63	0.49	0.46	0.31
KDD10	108.27	OOM	39.85	6.33	2.85

Lgb_baselineとEFB_onlyを比較

OOM

168.26

えげつないスピードアップ。

KDD12

LETORは元々密なデータなので、あまり関係ない。

191.99

EFBはやはり疎なデータに特化してとてもスピードアップに貢献する。

元々は同じ種類の特徴量がまとめられることが多いため、空間的局所性を高めることができてキャッシュヒット率を高めることができて、効率アップ

12.67

20.23

ちなみに

```
Init signature:

lgb.LGBMClassifier(
    ["boosting_type='gbdt"", 'num_leaves=31', 'max_depth=-1', 'learning_rate=0.1', 'n_estimators=100', 'subsample_for_bin=200000', 'objective=None', 'class_weight=None', 'min_split_gain=0.0', 'min_child_weight=0.001', 'min_child_samples=20', 'subsample=1.0', 'subsample_freq=0', 'colsample_bytree=1.0', 'reg_alpha=0.0', 'reg_lambda=0.0', 'random_state=None', 'n_jobs=-1', 'silent=True', "importance_type='split'", '**kwargs'],

Docstring:
LightGBM classifier.
Init docstring:
Construct a gradient boosting model.

Parameters
------

boosting_type: string, optional (default='gbdt')
    'gbdt', traditional Gradient Boosting Decision Tree.
    'dart', Dropouts meet Multiple Additive Regression Trees.
    'goss', Gradient-based One-Side Sampling.
    'ff', Random Forest.
```

LightGBMのデフォルトのパラメータ

なぜかデフォルトではGOSSではなく普通のGBDTになっている。。。 ここをGOSSにすれば更にスピードアップが見込めるのか。。。

終わり

とにかくひたすら速さにこだわってる。

精度を犠牲にしないで早くしたい感がすごい出てる。

参考にしたサイト等

アンサンブル学習 https://www.codexa.net/lightgbm-beginner/

勾配ブースト https://qiita.com/Quasi-quant2010/items/10f7ad4ed2e11004990f

エントロピー、情報量 https://ja.wikipedia.org/wiki/%E6%83%85%E5%A0%B1%E9%87%8F

情報利得 https://ja.wikipedia.org/wiki/相互情報量

NP困難 https://ja.wikipedia.org/wiki/NP%E5%9B%B0%E9%9B%A3