

齿轮传动

- 1 轮齿的失效形式和设计计算准则
- 2 齿轮材料及力学性能
- 3 直齿圆柱齿轮传动的强度计算

机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和方法。

齿轮传动

- 1 轮齿的失效形式和设计计算准则
- 2 齿轮材料及力学性能
- 3 直齿圆柱齿轮传动的强度计算

机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和方法。

一、轮齿的失效形式

齿轮传动的失效主要发生在轮齿部分,常见失效形式有五种:

- 轮齿折断
- 齿面点蚀
- 齿面胶合
- 齿面磨损
- 齿面塑性变形

齿轮其他部分(如齿圈、轮辐、轮毂等)失效很少发生,通常按经验设计。

1. 轮齿折断

现象——轮齿局部或整体折断

原因——

- 齿根部受较大的交变弯曲应力
- 齿根圆角及切削刀痕产生应力集中
- 轮齿受到短期过载或冲击载荷的作用

措施——

增大齿根过渡圆角半径;提高齿轮制造精度和安装精度;采用表面强化 处理(如喷丸、碾压)等

2. 齿面点蚀

现象——齿面金属剥落形成麻点状凹坑。首先出现在齿面节圆偏齿根侧。

原因──节圆附近齿面相对滑动速度小,油膜不宜形成,摩擦力较大; 且节圆处同时参与啮合的轮齿对数少,接触应力大。接触疲劳产生小裂 纹⇒扩展⇒脱落⇒凹坑。

措施——提高齿面硬度,降低齿面粗糙度值,合理选择润滑油的黏度 等

3. 齿面胶合

现象——两齿面黏结,随相对运动被撕

落而形成沟纹

原因——高速重载齿轮传动,因齿面间压力大、相对滑动速度高,在啮合处摩擦发热多,产生瞬间高温,使油膜破裂,造成齿面金属直接接触并相互黏结,而后随齿面相对运动,又将黏结金属撕落,使齿面形成条状沟痕,产生齿面胶合。低速重载齿轮传动,齿面间的润滑油膜不易形成,也易产生胶合破坏。

措施——减小模数及降低齿高以减小滑动速度,提高齿面硬度,降低 齿面粗糙度值,采用抗胶合能力强的齿轮材料,在润滑油中加入抗胶合 添加剂等。

4. 齿面磨损

现象——齿面过度磨损,齿廓严重失真

原因一

- > 粗糙齿面的摩擦
- 砂粒、金属屑等落入齿面之间,成为磨料
- > 磨损引起齿廓变形和齿厚减薄,产生振动和噪声,甚至因轮齿 过薄而断裂

措施——

采用闭式齿轮传动,提高齿面硬度,降低齿面粗糙度值,注意保持润 滑油清洁等

5. 齿面塑性变形

现象——齿面局部塑性变形,使

原因——用较软齿面材料制造的齿轮,在承受重载的传动中,由于摩擦力的作用,齿面表层材料沿摩擦力的方向发生塑性变形。主动轮齿面节线处产生凹坑,从动轮齿面节线处产生凸起

措施——提高齿面硬度和润滑油黏度

二、齿轮设计计算准则

设计齿轮传动时,应根据实际工况条件,分析主要失效形式,确定相应的设计准则,进行设计计算。

闭式齿轮传动

主要失效形式——齿面疲劳点蚀、弯曲疲劳折断及胶合设计计算准则——必须计算轮齿弯曲疲劳强度和齿面接触疲劳强度。对于高速重载齿轮传动,还须计算其抗胶合能力。

开式齿轮传动

主要失效形式——磨损及弯曲疲劳折断 设计计算准则——目前对磨损尚无成熟的设计计算方法,故 通常按齿根弯曲疲劳强度进行设计计算,并将设计所得模数 增大10%~15%,以考虑磨损的影响。

齿轮传动

- 1 轮齿的失效形式和设计计算准则
- 2 齿轮材料及力学性能
- 3 直齿圆柱齿轮传动的强度计算

机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和方法。

齿轮材料及力学性能

齿轮材料对齿轮的承载能力和结构尺寸影响很大,合理选择齿轮材料是设计重要内容之一。选择齿轮材料应考虑如下要求:

- 齿面应有足够的硬度,保证齿面抗点蚀、抗磨损、抗胶合和抗 塑性变形的能力;
- 应具有良好的机械加工和热处理工艺性;
- > 经济性。

常用齿轮材料:

- 各种牌号的优质碳钢、合金结构钢、铸钢和铸铁等,一般多采用锻件或轧制钢材。
- ▶ 当齿轮较大(例如直径大于400~600mm)而轮坯不易锻造时, 可采用铸钢;
- 开式低速传动可采用灰铸铁;球墨铸铁有时可代替铸钢。

表 11-1 常用的齿轮材料及其力学性能

材料牌号	热处理方式	硬度	接触疲劳极限 $\sigma_{\scriptscriptstyle ext{H lim}}/ ext{MPa}$	弯曲疲劳极限 σ _{FE} /MPa
45	正火	156~217 HBW	350~400	280~340
	调质	197~286 HBW	550 ~ 620	410~480
	表面淬火	40~50 HRC	1 120~1 150	680~700
40Cr	调质	217~286 HBW	650 ~ 750	560~620
	表面淬火	48~55 HRC	1 150~1 210	700~740
40CrMnMo	调质	229~363 HBW	680~710	580 ~ 690
	表面淬火	45~50 HRC	1 130~1 150	690 ~ 700
35SiMn	调质	207~286 HBW	650 ~ 760	550~610
	表面淬火	45~50 HRC	1 130~1 150	690 ~ 700
40MnB	调质	241~286 HBW	680 ~ 760	580~610
	表面淬火	45~55 HRC	1 130~1 210	690 ~ 720
38SiMnMo	调质	241~286 HBW	680 ~ 760	580~610
	表面淬火	45~55 HRC	1 130~1 210	690 ~ 720
	氮碳共渗	57~63 HRC	880 ~ 950	790
38CrMoAlA	调质	255 ~ 321 HBW	710~790	600 ~ 640
	渗氮	>850 HV	1 000	720
			<u> </u>	

材料牌号	热处理方式	硬度	接触疲劳极限 $\sigma_{\scriptscriptstyle \mathrm{H lim}}/\mathrm{MPa}$	弯曲疲劳极限 σ _{FE} /MPa
20CrMnTi	渗氮	>850 HV	1 000	715
	渗碳淬火,回火	56~62 HRC	1 500	850
20Cr	渗碳淬火,回火	56~62 HRC	1 500	850
ZG310-570	正火	163~197 HBW	280~330	210~250
ZG340-640	正火	179~207 HBW	310~340	240~270
ZG35SiMn	调质	241~269 HBW	590 ~ 640	500 ~ 520
	表面淬火	45~53 HRC	1 130~1 190	690 ~ 720
HT300	时效	187~255 HBW	330~390	100~150
QT500-7	正火	170~230 HBW	450 ~ 540	260~300
QT600-3	正火	190~270 HBW	490 ~ 580	280~310

注: $\sigma_{\text{H min}}$ 、 σ_{FE} 值与材料硬度呈线性正相关。表中的 $\sigma_{\text{H lim}}$ 、 σ_{FE} 数值,是根据 GB/T 3480—1997 提供的线图,依材料的硬度值查得,它适用于材质和热处理质量达到中等要求时。

齿轮传动

- 1 轮齿的失效形式和设计计算准则
- 2 齿轮材料及力学性能
- 3 直齿圆柱齿轮传动的强度计算

机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和方法。

直齿圆柱齿轮传动的作用力及计算载荷

一、轮齿上的作用力

圆周力
$$F_t = \frac{2T_1}{d_1}$$
 与转向关系:主反从同

径向力 $F_r = F_t \tan \alpha$ 指向转动轴线

法向力
$$F_n = \frac{F_t}{\cos \alpha}$$

转矩
$$T_1 = 9.55 \times 10^6 \frac{P(\text{kW})}{n_1(\text{r/min})} (\text{N} \cdot \text{mm})$$

主动轮、从动轮上各力的方向?

直齿圆柱齿轮传动的作用力及计算载荷

二、计算载荷

名义载荷:用齿轮传递的名义转矩求得的各力

载荷系数K: 考虑原动机及工作机的性能、齿轮制造及安装误差、

齿轮及其支撑件变形等因素对实际作用于齿轮上的载荷的影响而引

入的系数

计算载荷: 名义载荷与载荷系数/的乘积

载荷系数K

原动机	工作机械的载荷特性						
床 幼 VL	均匀	中等冲击	大的冲击				
电动机	1~1.2	1.2~1.6	1.6~1.8				
多缸内燃机	1.2~1.6	1.6~1.8	1.9~2.1				
单缸内燃机	1.6~1.8	1.8~2.0	2.2~2.4				

注:斜齿、圆周速度低、精度高、齿宽系数小时取小值,直齿、圆周速度高、精度低、齿宽系数大时取大值。齿轮在两轴承之间对称布置时取小值,齿轮在两轴承之间不对称布置及悬臂布置时取大值。

直齿圆柱齿轮传动的齿面接触强度计算

计算目标——保证在预定寿命内齿轮不发生点蚀失效

计算准则—— $\sigma_H \leq [\sigma_H]$

计算位置——由于直齿轮在节点附近往往是单对齿啮合区, 轮齿受力较大,实验表明,齿根部分靠近节线处最易发生点 蚀,故取节点处的接触应力为计算依据。

直齿圆柱齿轮传动的齿面接触强度计算

将赫兹(H. Hertz)公式用于计算节点处的接触应力,编号约定:1为小齿轮,2为大齿轮

$$\sigma_{H} = \sqrt{\frac{F_{n}}{\pi b} \cdot \frac{\frac{1}{\rho_{1}} \pm \frac{1}{\rho_{2}}}{\frac{1 - \mu_{1}^{2}}{E_{1}} + \frac{1 - \mu_{2}^{2}}{E_{2}}}}$$

 σ_{H} 一最大接触应力; b 一接触长度; "十"号用于外接触,"一"号用于内接触; E_{1} 、 E_{2} 一分别为两圆柱体材料的弹性模量; μ_{1} 、 μ_{2} 一分别为两圆柱体材料的泊松比。

圆柱齿轮材料和参数的选取与计算方法

一、材料及其力学性能

- 转矩不大时,可试选用碳素结构钢,若计算出的齿轮直径 太大,则可选用合金结构钢。
- 轮齿表面热处理可提高接触疲劳强度,使装置较紧凑。若表面热处理后硬化层较深,轮齿会变形,则要进行磨齿。表面渗氮齿形变化小,不用磨齿,但氮化层较薄。
- 尺寸较大的齿轮可用铸钢,但生产批量小时锻造较经济。
- 选定材料及其热处理方式后,轮齿的接触疲劳极限和弯曲疲劳极限可由表11-1查出,一般可取表中硬度的平均值和相应的疲劳极限进行强度计算。

圆柱齿轮材料和参数的选取与计算方法

二、主要参数

1. 齿数比

为了避免齿轮传动的尺寸过大,齿数比u(大轮齿数与小轮齿数之比)不宜过大,一般取u \leq 7。当要求传动比大时,可以采用两级或多级齿轮传动。

2. 齿数

标准齿轮 $z_{min} \ge 17$,若允许轻微根切或采用变位齿轮, z_{min} 可以少到14或更少。配对齿轮的齿数以互质数为好,至 少不要成整数比,以使所有齿轮磨损均匀并有利于减小振动。

圆柱齿轮材料和参数的选取与计算方法

三、设计计算方法

> 闭式软齿面齿轮传动

主要失效形式——齿面疲劳点蚀

设计计算准则——先按齿面接触疲劳强度进行设计,然后进行齿 根弯曲疲劳强度校核

> 闭式硬齿面齿轮传动

主要失效形式——<mark>轮齿弯曲疲劳折断</mark> 设计计算准则——先按齿根弯曲疲劳强度进行设计,然后进行齿 面接触疲劳强度校核

> 开式齿轮传动

主要失效形式——轮齿弯曲疲劳折断及磨损 设计计算准则——按齿根弯曲疲劳强度进行设计,并将模数增大 10%~15%,以考虑磨损的影响。

当双向受载(弯曲)时,表11-1中: σ_{FF} × 0.7