ශීූ ලංකා විභාග දෙපාර්තමේන්තුව

අධායන පොදු සහතික පතු(උසස් පෙළ),2013 අගෝස්තු

සංයුක්ත ගණිතය I

පැය තුනයි.

<u>B කොටස</u>

- 11)(a). $f(x)=ax^3+bx^2-11x+6$ යැයි ගනිමු. මෙහි $a,b\in\mathbb{R}$ වේ. (x-1) යන්න f(x) හි සාධකයක් වේ නම් හා f(x) යන්න (x-4) න් බෙදු විට ලැබෙන ශේෂය -6 නම්, a හා b වල අගයන් සොයන්න. f(x) හි අනෙක් ඒකජ සාධක දෙකත් සොයන්න.
- (b). α හා β යනු $x^2+bx+c=0$ මූල යැයි ද , γ හා δ යනු $x^2+mx+n=0$ සමීකරණයේ මූල යැයි ද <mark>ගනිමු.</mark> මෙහි a,b,m,n $\in \mathbb{R}$ වේ.
 - I. b හා c ඇසුරෙන් $(\alpha-\beta)^2$ සොයා , එනයින් ,m හා n ඇසුරෙන් $(\gamma-\delta)^2$ ලියා දක්වන්න. $\alpha+\gamma=\beta+\delta$ නම් $b^2-4c=m^2-4n$ බව අපෝහනය කරන්න.
 - II. $(\alpha \gamma)(\alpha \delta)(\beta \gamma)(\beta \delta) = (c n)^2 + (b m)(bn cm)$ බව මෙන්වන්න.
 - $x^2 + bx + c = 0$ හා $x^2 + mx + n = 0$ යන සමීකරණ වලට පොදු මූලයක් ඇත්තේ $(c-n)^2 = (m-b)(bn-cm)$ ම නම් පමණක් බව අපෝහණය කරන්න.
 - $x^2 + 10x + k = 0$ හ $x^2 + kx + 10 = 0$ සමීකරණ වලට පොදු මූලයක් ඇත. මෙහි k යනු තාත්වික නියතයකි . එහි අගය සොයන්න.
- 12)(a). සිසුන් 15 ක ශිෂා සභාවක විදාා සිසුන් 3 දෙනෙකුගෙන්, කලා සිසුන් 5 දෙනෙකුගෙන් හා වාණිජ සිසුන් 7 දෙනෙකුගෙන් සමන්විතය. වාහපෘතියක වැඩ කිරීම සදහා මෙම ශිෂා සභාවෙන් සිසුන් 6 දෙනෙකු තෝරා ගැනීමට අවශාව ඇත.
 - I. සිසුන් 15 දෙනාම තෝරා ගැනීම සදහා සුදුසු නම්,
 - II. කිසියම් සිසුන් දෙදෙනෙකුට එකට වැඩ කිරීම සදහා අවසර නොමැති නම්,
 - III. එක් එක් විෂය ධාරාවෙන් සිසුන් දෙදෙනෙකු බැගින් තේරීමට අවශා නම්,

මෙය සිදු කළ හැකි වෙනස් ආකාර ගණන සොයන්න.

ඉහත III යටතේ තෝරාගත් කණ්ඩායමක් , එම කණ්ඩායමෙහි විදහා විෂය ධාරාවෙන් වූ සිසුන් දෙදෙනාට එක ලහ වාඩි වීමට අවසර නොමැති නම් , වෘත්තාකාර මේසයක වාඩි කළ හැකි වෙනස් ආකාර ගණන සොයන්න.

(b). $\mathbf{r} \in \mathbb{Z}^+$ සඳහා $u_r = \frac{3(6r+1)}{(3r-1)^2(3r+2)^2}$ හා $\mathbf{n} \in \mathbb{Z}^+$ සඳහා $s_n = \sum_{r=1}^n u_r$ යැයි ගනිමු.

 $\mathbf{r} \in \mathbb{Z}^+$ සඳහා $u_r = \frac{A}{(3r-1)^2} + \frac{B}{(3r+2)^2}$ වන පරිදි $\mathbf{r} \in \mathbb{Z}^+$ සඳහා \mathbf{A} හා \mathbf{B} නියක වල අගයන් මසායන්න.

එ නයින්, $\mathbf{n} \in \mathbb{Z}^+$ සඳහා $s_n = \frac{1}{4} - \frac{1}{(3n+2)^2}$ බව පෙන්වන්න.

 $\sum_{r=1}^\infty u_r$ අපරිමිත ශේණිය අභිසාරී වේද? ඔබගේ පිළිතුර සනාථ කරන්න.

 $\left|s_n-rac{1}{4}
ight|<10^{-6}$ වන පරිදි වූ $\mathrm{n}\in\mathbb{Z}^+$ හි කුඩාතම අගය සොයන්න.

13)(a).
$$Q = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
 යැයි ගනිමු.

 $Q^TQ=\lambda I$ වන පරිදි වු $\lambda\in\mathbb{R}$ හි අගය සොයන්න; මෙහි Q^T යනු Q නාහසයෙහි පෙරළුම වන අතර I යනු 2×2 ඒකක නාහසය වේ.

එනයින් ,
$$P=egin{pmatrix} rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} \\ rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \end{pmatrix}$$
නාහසයෙහි පුත්ලෝමය සොයන්න.

 $^{\text{V}^2}$ $^{\text{V}^2}$ / $^{\text{V}^2}$ / $^{\text{V}^2}$ $^$

(b). z=x+iy යනු සංකීර්ණ සංඛ්‍යාවක් යැයි ගනිමු; මෙහි $x,y\in\mathbb{R}$ $|z|^2=zar{z}$ හා $z-ar{z}=2iImz$ බව පෙන්වන්න.

එනයින්, $|z-3i|^2=|z|^2-6Imz+9$ හා $|1+3iz|^2=9|z|^2-6Imz+1$ බව ලපන්වන්න.

|z-3i|>|1+3iz| වන්නේ |z|<1 නම් පමණක් බව අපෝහනය කරන්න.

|z-3i|>|1+3iz| හා ${
m Arg}z={\pi\over 4}$ අවශානා සපුරාලන පරිදි වූ z සංකීර්ණ සංඛාහ නිරූපණය කරන ලක්ෂා ආගන්ඩ් සටහනෙහි අඳින්න.

14).(a).
$$x \neq 1$$
 සඳහා $f(x) = \frac{x^2}{x^3 - 1}$ යැයි ගනිමු.

$$x \neq 1$$
 සඳහා $f'(x) = -\frac{x(x^3+2)}{(x^3-1)^2}$ බව පෙන්වා , $y = f(x)$ පුස්තාරයට $(0,0)$ හා $\left(-2^{1/3}, \frac{-4}{3}^{1/3}\right)$ හි දී හැරුම් ලක්ෂා හා ස්පර්ශෝනමුබ දක්වමින්, $y = f(x)$ පුස්තාරයෙහි දළ සටහනක් අදින්න.

(b). මායිම් ඍජුකෝණික ලෙස හමු වන සරළ රේඛා ඛණ්ඩ අටකින් සමන්විත ගෙවත්තක් රූප සටහනේ දැක්වේ.ගෙවත්තේ මාන මීටර වලින් එහි දක්වා ඇත.

ගෙවත්තේ ව.එ $800\mathrm{m}^2$ බව දී ඇත.x ඇසුරෙන් yපුකාශ කර , මීටර වලින් මනින ලද ගෙවත්තේ පරිමිතිය P යන්න $p=rac{800}{x}+10x$ මගින් දෙනු ලබන බව ද,පරිමිතිය සඳහා වන මෙම සුතුය වලංගු වන්නේ 0 < x < 10 සදහා <mark>පම</mark>ණක් බවද පෙත්වත්ත.

එ නයින් , ගෙවත්ත<mark>ේ පරිමිති</mark>යෙහි අවම අගය සොයන්න.

Maths [©]

- 15).(a). කොටස් වශයෙන් අනුකලනය භාවිතයෙන් $\int x^2 \sin^{-1} x \ dx$ සොයන්න.
- (b). හින්න භාග භාවිත්යෙන් $\int \frac{x^2 + 3x + 4}{(x^2 1)(x + 1)^2} dx$ සොයන්න.

(c).
$$a^2 + b^2 > 1$$
 වන පරිදි $a,b \in \mathbb{R}$ යැයි ද,
$$I = \int_0^{\frac{\pi}{2}} \frac{a + \cos x}{a^2 + b^2 + a \cos x + b \sin x} dx \text{ හා } J = \int_0^{\frac{\pi}{2}} \frac{b + \sin x}{a^2 + b^2 + a \cos x + b \sin x} dx$$
 යැයි ද

 $aI + bJ = \frac{\pi}{2}$ බව පෙන්වන්න.

bI - aI සැළකීමෙන් I හා J හි අගයන් සොයන්න.

 ${f 16}$). ${f x}^2+{f y}^2$ - $2{f x}$ - $2{f y}$ + 1 = 0 සමීකරණය මහිනි දෙනු ලබන ${f S}$ වෘත්තයෙහි කේන්දුයේ ඛණ්ඩාංක හා අරය සොයා, xy තලය මත S වෘත්තයේ දළ සටහන අදින්න.

P යනු S වෘත්තය මත O මූලයෙහි සිට ඇතින්ම පිහිටි ලක්ෂාය යැයි ගනිමු. P හි ඛණ්ඩාංක ලියා දක්වා S වෘත්තයට P ලක්ෂාගෙහිදී වූ ස්ප්ර්ශක රේඛාව වන L හි සමීකරණය $x+y=2+\sqrt{2}$ මහින් දෙනු ලබන බව පෙන්වන්න.

 ${
m L}$ රේඛාව ස්පරශ කරන s'වෘත්තයක් , ${
m S}$ වෘත්තය ${
m P}$ ගෙන් පුහින්න ලක්ෂයක දී බාහිරව ස්පර්ශ කරයි. (h,k) යනු s' වෘත්තයෙහි කේන්දුයේ ඛණ්ඩාංක යැයි ගනිමු. L රේඛාව අනුහද්ධයෙන් O හි හා s' හි කේන්දුයේ පිහිටීම සලකා බැලීමෙන් , $h+k<2+\sqrt{2}$ බව පෙන්වන්න.

S' හි කේන්දුයේ ඛණඩාංකය h^2 - $2hk+k^2+4\sqrt{2}(h+k)=8(1+\sqrt{2})$ සමීකරණය සපුරාලනබව තවදුරටත් පෙන්වන්න.

17)(a).
$$\cos\alpha + \cos\beta - \cos\gamma - \cos(\alpha + \beta + \gamma) \equiv$$
 $4\cos\frac{1}{2}(\alpha + \beta)\sin\frac{1}{2}(\beta + \gamma)\sin\frac{1}{2}(\gamma + \alpha)$ සර්වසාමා සාධනය කරන්න.

- (b). $f(x)=2sin^2\frac{x}{2}+2\sqrt{3}sin\frac{x}{2}cos\frac{x}{2}+4cos^2\frac{x}{2}$ යැයි ගනිමු. f(x) යන්න $a\sin(x+\theta)+b$ ආකාරයට පුකාශ කරන්න; මෙහි a(>0), b හා $\theta\left(0<\theta<\frac{\pi}{2}\right)$ නීර්ණය කළ යුතු නියන වේ.
- $1 \le f(x) \le 5$ බව අපෝහනය කරන්න.

$$-\frac{\pi}{6} \le x \le \frac{11\pi}{6}$$
 සඳහා $y = f(x)$ හි පුස්ථාරයෙහි දළ සටහනක් අදින්න.

(c). p > 2q > 0 යැයි ගනිමු.

 ABC තුකෝණයක $\operatorname{BC,CA}$ හා AB පාදවල දිග පිළිවෙලින් p+q,p හා p-q වේ.

sinA-2sinB+sinc=0 බව පෙන්වා $cos{A-C\over 2}=2cos{A+C\over 2}$ බව අපෝහනය කරන්න.