Отчёт по лабораторной работе №4

Модель гармонических колебаний.

Волков Тимофей Евгеньевич

Содержание

1	Цель работы			5	
2	Задание				
	2.1 Вариант 17				
3	Выполнение лабораторной работы				
	3.1	Поста	новка задачи	7	
	3.2	оение фазового портрета гармонических колебаний	9		
		3.2.1	Колебания гармонического осциллятора без затуханий и без		
			действий внешней силы	9	
		3.2.2	Колебания гармонического осциллятора с затуханием и без		
			действий внешней силы	12	
		3.2.3	Колебания гармонического осциллятора с затуханием и под		
			действием внешней силы	14	
4 Выводы			17		

List of Tables

List of Figures

3.1	Код программы	11
3.2	Фазовый портрет гармонического осциллятора без затуханий, без	
	действия внешней силы	12
3.3	Код программы	13
	Фазовый портрет гармонического осциллятора с затуханием, без	
	действия внешней силы	14
3.5	Код программы	15
3.6	Фазовый портрет гармонического осциллятора с затуханием и под	
	действием внешней силы	16

1 Цель работы

Цель данной работы — рассмотреть модель линейного гармонического осциллятора.

2 Задание

2.1 Вариант 17

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы \mathbf{x} , \mathbf{y} + $12\mathbf{x}$ = 0
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы x ' + 11x' + 2x = 0
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы x'' + 2x' +2x = 2cos(2t)

На интервале $t \in [0;51]$ (шаг 0.05) с начальными условиями \mathbf{x}_0 = 0.5, \mathbf{y}_0 = 1

3 Выполнение лабораторной работы

3.1 Постановка задачи

Движение грузика на пружинке, маятника, заряда в электрическом контуре, а также эволюция во времени многих систем в физике, химии, биологии и других науках при определенных предположениях можно описать одним и тем же дифференциальным уравнением, которое в теории колебаний выступает в качестве основной модели. Эта модель называется линейным гармоническим осциллятором.

Уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$x'' + 2\gamma x' + \omega_0^2 x = 0$$

(1)

где x – переменная, описывающая состояние системы (смещение грузика, заряд конденсатора и т.д.), γ – параметр, характеризующий потери энергии (трение в механической системе, сопротивление в контуре), ω_0 – собственная частота колебаний, t – время. (Обозначения $x''=d^2x/dt^2, x'=dx/dt$)

Уравнение (1) есть линейное однородное дифференциальное уравнение второго порядка и оно является примером линейной динамической системы.

При отсутствии потерь в системе (γ = 0)вместо уравнения (1.1) получаем уравнение консервативного осциллятора энергия колебания которого сохраняется во времени.

$$x'' + \omega_0^2 x = 0$$

(2)

Для однозначной разрешимости уравнения второго порядка (2) необходимо задать два начальных условия вида

$$x(t_0) = x_0, x'(t_0) = y_0$$

(3)

Уравнение второго порядка (2) можно представить в виде системы двух уравнений первого порядка:

$$x' = y$$

$$y' = -\omega_0^2 x$$

(4)

Начальные условия (3) для системы (4) примут вид:

$$x(t_0) = x_0, y(t_0) = y_0$$

(5)

Независимые переменные x, y определяют пространство, в котором «движется» решение. Это фазовое пространство системы, поскольку оно двумерно будем называть его фазовой плоскостью.

Значение фазовых координат х, у в любой момент времени полностью определяет состояние системы. Решению уравнения движения как функции времени отвечает гладкая кривая в фазовой плоскости. Она называется фазовой траекторией. Если множество различных решений (соответствующих различным начальным условиям) изобразить на одной фазовой плоскости, возникает общая картина поведения системы. Такую картину, образованную набором фазовых

траекторий, называют фазовым портретом.

3.2 Построение фазового портрета гармонических колебаний

Уравнение колебания гармонического осциллятора будет иметь вид

$$x'' + q * x' + w * x = f(t)$$

(6)

где

 $g=2\gamma$ — затухание

 $w=\omega_0^2$ — частота

f(t) — действие внешней силы

Уравнение второго порядка (6) можно представить в виде системы двух уравнений первого порядка:

$$x' = y$$

$$y^{\prime}=-wx-gy-f(t)$$

На интервале $t \in [0;51]$ (шаг 0.05) с начальными условиями x~0 = 0.5, y~0 = 1

3.2.1 Колебания гармонического осциллятора без затуханий и без действий внешней силы

Дано:

$$x'' + 12x = 0$$

Тогда начальные условия:

$$g = 0$$

$$w = 12$$

$$f(t) = 0$$

$$x_0 = 0.5$$

$$y_0 = 1$$

$$t \in [0; 51]$$

Код программы в Python (fig. 3.1).

```
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import math
w = 12.0
g = 0.0
def f(t):
   f = 0
    return f
def dx(x, t):
    dx1 = x[1]
    dx2 = - w*x[0] - g*x[1] - f(t)
    return dx1, dx2
x0 = np.array([0.5, 1])
t = np.arange(0, 51, 0.05)
x = odeint(dx, x0, t)
y1 = x[:, 0]
y2 = x[:, 1]
plt.plot(y1, y2)
plt.grid('axis = "both"')
```

Figure 3.1: Код программы

Фазовый портрет(fig. 3.2).

Figure 3.2: Фазовый портрет гармонического осциллятора без затуханий, без действия внешней силы

3.2.2 Колебания гармонического осциллятора с затуханием и без действий внешней силы

Дано:

$$x'' + 11x' + 2x = 0$$

Тогда начальные условия:

g = 11

w = 2

f(t) = 0

 $x_0 = 0.5$

 $y_0 = 1$

 $t \in [0; 51]$

Код программы в Python (fig. 3.3).

```
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import math
W = 2.0
g = 11.0
def f(t):
    f = 0
    return f
def dx(x, t):
    dx1 = x[1]
    dx2 = - w*x[0] - g*x[1] - f(t)
    return dx1, dx2
x0 = np.array([0.5, 1])
t = np.arange(0, 51, 0.05)
x = odeint(dx, x0, t)
y1 = x[:, \theta]
y2 = x[:, 1]
plt.plot(y1, y2)
plt.grid('axis = "both"')
```

Figure 3.3: Код программы

Фазовый портрет(fig. 3.4).

Figure 3.4: Фазовый портрет гармонического осциллятора с затуханием, без действия внешней силы

3.2.3 Колебания гармонического осциллятора с затуханием и под действием внешней силы

Дано:

$$x'' + 2x' + 2x = 2\cos(2t)$$

Тогда начальные условия:

g = 2

w = 2

 $f(t) = 2\cos(2t)$

 $x_0 = 0.5$

 $y_0 = 1$

 $t \in [0; 51]$

Код программы в Python (fig. 3.5).

```
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import math
W = 2.0
g = 2.0
def f(t):
    f = 2*np.cos(2*t)
    return f
def dx(x, t):
    dx1 = x[1]
    dx2 = - w*x[0] - g*x[1] - f(t)
    return dx1, dx2
x0 = np.array([0.5, 1])
t = np.arange(0, 51, 0.05)
x = odeint(dx, x0, t)
y1 = x[:, 0]
y2 = x[:, 1]
plt.plot(y1, y2)
plt.grid('axis = "both"')
```

Figure 3.5: Код программы

Фазовый портрет(fig. 3.6).

Figure 3.6: Фазовый портрет гармонического осциллятора с затуханием и под действием внешней силы

4 Выводы

Рассмотрел модель линейного гармонического осциллятора.