Part I

Zero

Definition 0.1 — Topology and Topological Space.

Let X be a nonempty set. A set \mathcal{T} of subsets of X is said to be a topology on X if

- 1. X and the empty set \emptyset belong to \mathcal{T}
- 2. the union of arbitary many number of sets in \mathcal{T} belong to \mathcal{T}
- 3. the intersection of any two sets in \mathcal{T} belongs to \mathcal{T}

The pair (X, \mathcal{T}) is called a topological space.

Definition 0.2 — Discrete Topology.

Let X be any nonemoty set and \mathcal{T} be the collection of all subsets of X. Then \mathcal{T} is called the discrete topology on the set X. The topological space (X, \mathcal{T}) is called a discrete space.

Definition 0.3 — Indiscrete Topology.

Let X be any nonempty set and $\mathcal{T} = \{\mathcal{T}, \emptyset\}$. Then \mathcal{T} is called the indiscrete topology and (X, \mathcal{T}) is said to be an indiscrete space.

Proposition 1. If (X, \mathcal{T}) is a topological space such that for every $x \in X$ the singleton set $\{x\}$ is in \mathcal{T} then \mathcal{T} is the discrete topology.

Definition 0.4 — .

Let (X,\mathcal{T}) be any topological space. Then the members of \mathcal{T} are said to be open sets.

Proposition 2. If (X, \mathcal{T}) is any topological space, then

- 1. X and \emptyset are open sets.
- 2. The union of arbitary many number of open sets is an open set.
- 3. The intersection of finitely many number of open sets is an open set.

Definition 0.5 — .

Let (X, \mathcal{T}) be a topological space. A subset S of X is said to be a closed set in (X, \mathcal{T}) if its complment in X, namely X - S is open in (X, \mathcal{T}) .

Proposition 3. If (X, \mathcal{T}) is any topological space, then

- 1. \emptyset and X are closed set.
- 2. The intersection of arbitary many number of closed sets is a closed set.
- 3. The union of finitely many number of closed sets is a closed set.

Definition 0.6 — .

A subset S of a topological space (X, \mathcal{T}) is said to be clopen if it is both open and closed in (X, \mathcal{T}) .

Definition 0.7 — .

Let X be any nonempty set. A topology \mathcal{T} on X is called the finite-closed topology or the cofinite topology if the closed subsets of X are X and all finite subsets of X; that is, the open sets are \emptyset and all subsets of X which have finite complments.

Definition 0.8 — Euclidean Topology.

A subset S of \mathbb{R} is said to be open in the euclidean topology on \mathbb{R} if for each $x \in S$, there exist $a, b \in \mathbb{R}$, with a < b, such that $x \in (a, b) \subseteq S$.

Proposition 4. A subset S of \mathbb{R} is open if and only if it is a union of open intervals.

Definition 0.9 — Basis for a Topology.

Let (X, \mathcal{T}) be a topological space. A collection \mathcal{B} of open subsets of X is said to be a basis for the topology \mathcal{T} if every open set is a union of members in \mathcal{B} .

Example 0.10. Let $\mathcal{B} = \{ (a, b) \mid a, b \in \mathbb{R}, a < b \}$. Then \mathcal{B} is a basis for the euclidean topology on \mathbb{R} .

Example 0.11. Let (X, \mathcal{T}) be a discrete space and \mathcal{B} the family of all singleton subsets of X; that is, $\mathcal{B} = \{\{x\} \mid x \in X\}$.

Example 0.12. Let $X = \{a, b, c, d, e, f\}$ and

$$\mathcal{T}_1 = \{ X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e, f\} \}$$
 (1)

Then $\mathcal{B} = \{a, c, d, b, c, d, e, f\}$ is a basis for \mathcal{T}_1 as $\mathcal{B} \subseteq \mathcal{T}_1$ and every member of \mathcal{T}_1 can be expressed as a union of members of \mathcal{B} . Note that \mathcal{T}_1 itself is also a basis for \mathcal{T}_1 .

Proposition 5. Let X be a nonempty set and let \mathcal{B} be a collection of subsets of X. Then \mathcal{B} is a basis for a topology on X if and only if \mathcal{B} has the following properties:

- 1. $X = \bigcup_{B \in \mathcal{B}} B$
- 2. for any $B_1, B_2 \in \mathcal{B}$ the set $B_1 \cap B_2$ is a union of members of \mathcal{B}

Proposition 6. Let (X, \mathcal{T}) be a topological space. A family \mathcal{B} of open subsets of X is a basis for \mathcal{T} if and only if for any point x belonging to any open set U there is a $B \in \mathcal{B}$ such that $x \in B \subseteq U$

Proposition 7. Let \mathcal{B} be a basis for a topology \mathcal{T} on a set X. Then a subset U of X is open if and only if for each $x \in U$ there exists a $B \in \mathcal{B}$ such that $x \in B \subseteq U$.

Proposition 8. Let \mathcal{B}_1 and \mathcal{B}_2 be bases for topologies \mathcal{T}_1 and \mathcal{T}_2 respectively, on a nonempty set X. Then $\mathcal{T}_1 = \mathcal{T}_2$ if and only if

- 1. for each $B \in \mathcal{B}_1$ and each $x \in \mathcal{B}$, there exists a $B' \in \mathcal{B}_2$ such that $x \in B' \subseteq B$
- 2. for each $B \in \mathcal{B}_2$ and each $x \in \mathcal{B}$, there exists a $B' \in \mathcal{B}_1$ such that $x \in B' \subseteq B$

Part II Commutative Rings

Definition 0.13 — Ring.

A ring is a set R equipped with two binary operations + (addition) and · (multiplication) satisfying the following three sets of axioms, called the ring axioms.

- 1. (R, +) is an abelian group.
- 2. (R, \cdot) is a semigroup.
- 3. Multiplication is distributive with respect to addition, meaning that
 - $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in R$ (left distributivity).
 - $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ for all $a, b, c \in R$ (right distributivity).

A ring is called unitary if it contains the multiplicative identity and commutative if multiplication is commutative

Definition 0.14 — Ideal.

Definition 0.15 — Ideal Arithmetic.

Definition 0.16 — Prime Ideal.

Definition 0.17 — Maximal Ideal.

Definition 0.18 — Quotient Ring.

Given a ring A and two-sided ideal $\mathfrak a$ in A, we may define an congruence relation \sim on A as follows:

$$x \sim y : \iff x - y \in \mathfrak{a}. \tag{2}$$

The equivalence class of the element x in A is given by

$$[x] = x + \mathfrak{a} := \{ x + a \mid a \in \mathfrak{a} \}$$
 (3)

and the set of all such equivalence classes is denoted by A/\mathfrak{a} ; it becomes a ring, the factor ring or the quotient ring of A modulo \mathfrak{a} , if one defines

- 1. $(a + \mathfrak{a}) + (b + \mathfrak{a}) = (a + b) + \mathfrak{a}$
- 2. $(a + \mathfrak{a})(b + \mathfrak{a}) = (ab) + \mathfrak{a}$

The map $\pi: R \longrightarrow A/\mathfrak{a}$, $x \mapsto \pi(x) := x + \mathfrak{a}$ is a surjective ring homomorphism and is sometimes called the natural quotient map or the canonical homomorphism.

Proposition 9 (Universal Property). Let A and B be rings, \mathfrak{a} an ideal, and $f: A \longrightarrow B$ a ring homomorphism with $\mathfrak{a} \subseteq \operatorname{Ker}(f)$. Then there exists a unique ring homomorphism $\tilde{f}: A/\mathfrak{a} \longrightarrow B$ such that $f = \tilde{f} \circ \pi$.

Definition 0.19 — Integral Domain.

Theorem 0.20. • prime ideal, quotient is integral domain

- same as above, but if prime maximal, then quotient is a fields
- Maximal ideals are prime ideals.
- ullet There is a 1:1 correspondence

$$\{ \text{ Ideals in } A/\mathfrak{a} \} \longleftrightarrow \{ \mathfrak{b}/\mathfrak{a} \mid \mathfrak{a} \subseteq \mathfrak{b} \subseteq A \}$$
 (4)

Chapter 1

Spectrum

Definition 1.1 — Spectrum.

Let R be a ring. We denote the set of all prime ideals of R by $\operatorname{Spec}(R)$ and the set of all maximal ideals of R by $\operatorname{Spm}(R)$.

Definition 1.2 — Variety.

Let R be a ring and \mathfrak{a} an ideal in R. Let $\mathbf{V}(\mathfrak{a})$ denote the subset of $\operatorname{Spec}(R)$ consisting of those primes that contain \mathfrak{a} , i.e.

$$\mathbf{V}(\mathfrak{a}) := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{a} \subseteq \mathfrak{p} \}. \tag{1.1}$$

We call $\mathbf{V}(\mathfrak{a})$ the variety of \mathfrak{a} .

Proposition 10. Let R be a ring, and \mathfrak{a} and \mathfrak{b} two ideals in R.

- 1. If $\mathfrak{a} \subset \mathfrak{b}$, then $\mathbf{V}(b) \subset \mathbf{V}(a)$.
- 2. If $\mathbf{V}(b) \subset \mathbf{V}(a)$, then $\mathfrak{a} \subset \sqrt{\mathfrak{b}}$.
- 3. $\mathbf{V}(\mathfrak{a}) = \mathbf{V}(\mathfrak{b})$ if and only if $\sqrt{\mathfrak{a}} = \sqrt{\mathfrak{b}}$.
- 4. $\mathbf{V}(\mathfrak{a}) \cup \mathbf{V}(\mathfrak{b}) = \mathbf{V}(\mathfrak{a} \cap \mathfrak{b}) = \mathbf{V}(\mathfrak{a}\mathfrak{b}).$
- 5. For any index set I, it is $\bigcap_{i \in I} \mathbf{V}(\mathfrak{a}_i) = \mathbf{V}(\sum_{i \in I} \mathfrak{a}_i)$.
- 6. $V(R) = \emptyset$.
- 7. $\mathbf{V}(\langle 0 \rangle) = \operatorname{Spec}(R)$.

Definition 1.3 — Zariski Topology.

Let $\mathfrak{a} \subseteq A$ be an ideal. Declaring the sets

$$Z(\mathfrak{a}) := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{a} \subseteq \mathfrak{p} \}$$
(1.2)

to be closed induces a topology on $\operatorname{Spec}(A),$ the Zariski Topology.

Given an element $f \in \mathbb{R}$, we call the open set

$$D(f) := \operatorname{Spec}(R) - \mathbf{V}(\langle f \rangle) \tag{1.3}$$

a principal open set. These sets form a basis for the topology of $\operatorname{Spec}(R)$; indeed, given any prime $\mathfrak{a} \not\subset \mathfrak{p}$

1.1 Proofs

Proposition 11. The Zariski topology is indeed a topology.

1.2 Exercises

Exercise 1.4. Let R be a ring and $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec}(R)$. Show:

1. The closure $\{\mathfrak{p}\}$ of \mathfrak{p} is equal to $\mathbf{V}(\mathfrak{p})$; that is, $\mathfrak{q} \in \{\mathfrak{p}\}$ if and only if $\mathfrak{p} \subseteq \mathfrak{q}$.