Intelligent Systems Programming

Lecture 7: Constraint Programming I

Today's Program

- [10:00-10:55]
 - Constraint Satisfaction Problems (CSPs)
 - Constraint Propagation
- [11:05-12:00]
 - Backtracking
 - Forward Checking
 - Maintaining arc consistency (MAC) algorithm

Constraint Satisfaction Problems (CSPs)

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
1			5		1		3		

Constraint Satisfaction Problems (CSPs)

Definition of CSPs

A CSP is a triple <*X*,*D*,*C*>, where:

 $X = \{X_1, ..., X_n\}$ is a finite set of variables.

 $D = \{D_1, ..., D_n\}$ is a set of domains of possible values for each variable, where $D_i = \{v_1, ..., v_{ki}\}$

 $C = \{C_1, ..., C_m\}$ is a set of constraints, where $C_i = \langle \text{scope}, \text{ relation} \rangle$

e.g. $X_1 \in \{A, B\}, X_2 \in \{A, B\}$

Implicit constraint representation: $\langle (X_1, X_2), X_1 \neq X_2 \rangle$

Explicit constraint representation: $\langle (X_1, X_2), [(A,B), (B,A)] \rangle$

Typical short notation: $X_1 \neq X_2$

CSP Solutions

- Partial Assignment: Values assigned to only some of the variables.
- Complete Assignment : Each variable has a value assigned.
- Consistent Assignment: Each constraint, where all variables in its scope are assigned, is satisfied.
- Solution: Complete consistent assignment.

Types of Constraints

Different Arity

Unary constraints involve a single variable.

$$-$$
 e.g. *X* ≠ 12

Binary constraints involve pairs of variables.

$$-$$
 e.g. $X > Y$, $P = MIB \implies C = Black$

- Global constraints involve arbitrary number of variables.
 - e.g. AllDifferent

Today we assume constraints to be unary or binary!

CSP Example: Map Coloring

- Domains: D_i = {red, green, blue}
- Constraints: adjacent regions must have different colors.

CSP Example: Map Coloring

Solutions are assignments satisfying all constraints, e.g.

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

Constraint Graph Representation of CSP

- Nodes are variables
- Edges are binary constraints

Constraint Propagation (Rule Inference)

CSPs are solved combining search and constraint propagation

Constraint Propagation

• Node consistency: for every value v_i of variable X, all unary constraints of X are satisfied.

```
Example SA a freed are
```

```
SA \in \{red, green, blue\}, SA \neq \{green\}

SA \in \{red, blue\}
```

• Arc consistency: for every $X \rightarrow Y$ arc, every value v_i in X has a support value u_i in Y.

Arc Consistency Examples

- 1) $SA \in \{red, green, blue\}, NT \in \{blue\}, SA \neq NT \\ SA \rightarrow NT \text{ arc-consistent: } SA \in \{red, green\}$
- 2) $X,Y \in \{0,1,...,9\}, Y=X^2$

 $X \to Y \text{ arc-consistent} : X \in \{0, 1, 2, 3\}, Y \in \{0, 1, ..., 9\}$

 $Y \to X$ arc-consistent: $X \in \{0, 1, ..., 9\}$, $Y \in \{0, 1, 4, 9\}$

3) $SA \in \{red, green, blue\}$, $WA \in \{red, green, blue\}$, $SA \neq WA$ $SA \rightarrow WA / WA \rightarrow SA$ arc-consistent: can we prune any values?

Arc Consistency Algorithm AC-3

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary CSP with components (X, D, C)
  local variables: queue, a queue of arcs, initially all the arcs in csp
  while queue is not empty do
                                                                 Obs: two arcs for
     (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)
                                                                 each binary
    if REVISE(csp, X_i, X_j) then
                                                                 constraint!
       if size of D_i = 0 then return false
       for each X_k in X_i. NEIGHBORS - \{X_i\} do
         add (X_k, X_i) to queue
  return true
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
  revised \leftarrow false
  for each x in D_i do
```

if no value y in D_i allows (x,y) to satisfy the constraint between X_i and X_j then

delete x from D_i revised \leftarrow true

return revised

Complexity of AC-3

Assume

- n variables,
- at most d values in domains
- *c* binary constraints

Observations

- An arc can at most be added d times
- An arc can be revised in d^2
- Thus, worst case runtime is $O(cd^3)$

CSP Solving

Search in CSP

- Inference is not enough
- Apply depth-first search:
 - State: Partial assignment
 - Action: var = value
- Complexity
 - Branching factor b at the top level is nd
 - -b = (n-l)d at depth l, hence $n!d^n$ leaves
 - But only dⁿ complete assignments?!

Backtracking Search

• Insight:

- If we assign the first *k* variables to values, it does not matter in what order we did it in.
- Thus, after choosing which variable to assign in a node, do not change it.

Backtracking Algorithm:

- Choose values for one variable at the time.
- Backtrack when a variable has no legal values left.

Backtracking Algorithm

```
function BACKTRACKING-SEARCH(csp) returns a solution, or failure
  return BACKTRACK(\{\}, csp)
function BACKTRACK(assignment, csp) returns a solution, or failure
  if assignment is complete then return assignment
  var \leftarrow SELECT-UNASSIGNED-VARIABLE(csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
     if value is consistent with assignment then
         add \{var = value\} to assignment
         inferences \leftarrow Inference(csp, var, value)
         if inferences \neq failure then
           add inferences to assignment
           result \leftarrow BACKTRACK(assignment, csp)
           if result \neq failure then
              return result
     remove \{var = value\} and inferences from assignment
  return failure
```

Improving Backtracking Efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 (SELECT-UNASSIGNED-VARIABLE)
 - In what order should its values be tried?
 (ORDER-DOMAIN-VALUES)
 - What inferences can be performed (INFERENCE)

Selecting Variable

- Minimum remaining values (MRV)
- Rule: choose variable with the fewest legal values

Selecting Variable

- Degree heuristic
- Rule: select variable that is involved in the largest number of constraints on other unassigned variables.
- Degree heuristic is very useful as a tie breaker

Selecting Value

- Least constraining value heuristic
- Rule: given a variable choose the least constraining value i.e., the one that leaves the maximum flexibility for subsequent variable assignments.

- Forward checking: Whenever a value v is assigned to a variable X_i , make all variables consistent with this assignment.
- Terminates search when any variable has no legal values.

- Forward checking: Whenever a value v is assigned to a variable X_i , make all variables consistent with this assignment.
- Terminates search when any variable has no legal values.

- Forward checking: Whenever a value v is assigned to a variable X_i , make all variables consistent with this assignment.
- Terminates search when any variable has no legal values.

- Forward checking: Whenever a value v is assigned to a variable X_i , make all variables consistent with this assignment.
- Terminates search when any variable has no legal values.

Forward Checking Algorithm

function FORWARD-CHECKING-SEARCH(*csp*) **returns** a solution or failure **return** RECURSIVE-FORWARD-CHECKING({ },csp) **function** RECURSIVE-FORWARD-CHECKING(assignment,csp) **returns** a solution or failure **if** assigment is complete **then return** assigment $var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignent, csp)$ for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do if value is consistent with assignment do add{*var=value*} to *assigment inferences* ← remove all domain values of remaining variables inconsistent with {var = value} **if** *inferences* ≠ *failure* **then** add inferences to assigment and update csp result←RECURSIVE-FORWARD-CHECKING(assigment, csp) if result#failure then result result remove {var=value} and inferences from assignment and csp return failure

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

NT and SA cannot both be blue!

Arc Consistency

• $X \rightarrow Y$ is consistent iff for every value u_i of X there is some allowed v_i value in Y

Arc Consistency

X → Y is consistent iff for every value u_i of X there is some allowed v_i value in Y

Arc Consistency

- $X \rightarrow Y$ is consistent iff for every value u_i of X there is some allowed v_i value in Y.
- Arc consistency detects failure earlier than FC

MAC

```
function MAC-SEARCH(csp) returns a solution or failure
 run AC-3(csp)
 return RECURSIVE-MAC({},csp)
function RECURSIVE-MAC(assignment, csp) returns a solution or failure
 if assigment is complete then return assigment
  var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignent, csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
   if value is consisten with assignment do
    add{var=value} to assigment
    inferences \leftarrow AC-3(csp)
    if inferences+failure then
     add inferences to assignent and update csp
     result←RECURSIVE-MAC(assigment, csp)
     if result#failure then
      result result
     remove {var=value} and inferences from assignment and csp
 return failure
```