CS601: Software Development for Scientific Computing

Autumn 2022

Week7: Motifs – Sparse Matrices (contd.), Fourier Transforms

Last week...

- Matrix Multiplication
 - ijk variants and recursive matmul
- Efficiency considerations
 - Storage (e.g. cache-oblivious data storage using Z-ordering)
 - Communication cost (data movement cost)
 - Special hardware (FMA, Vector units)
- Motif: Sparse Matrices
 - Triangular Matmul (as an e.g. that exploits structure to accelerate computation)
 - Storage scheme for sparse matrices (e.g. CSR)
 - Banded matrices (y=y+Ax with banded matrix and optimized storage)

y=y+Ax with Separable Matrices

Refer to (Section 1 only):

https://www.math.uci.edu/~chenlong/MathP KU/FMMsimple.pdf

Faster y=Ax: Discrete Fourier Transforms (DFT)

- Very widely used
 - Image compression (jpeg)
 - Signal processing
 - Solving Poisson's Equation
- Represent A with F, a *Fourier Matrix* that has the following (remarkable) properties:
 - F⁻¹ is easy to compute and consists of real numbers
 - Multiplications by F and F⁻¹ is fast.
- F has complex numbers in its entries.
 - Every entry is a power of a single number w such that wⁿ=1
 - Any entry of a Fourier matrix can be written using $f_{ij} = w^{ij}$ (row and col indices start from 0)

Example: Fourier Matrix

• **4x4**:
$$F_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & w & w^2 & w^3 \\ 1 & w^2 & w^4 & w^6 \\ 1 & w^3 & w^6 & w^9 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & w & w^2 & w^3 \\ 1 & w^2 & 1 & w^2 \\ 1 & w^3 & w^2 & w^1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & i^2 & i^4 & i^6 \\ 1 & i^3 & i^6 & i^9 \end{bmatrix}, i = \sqrt{-1}$$

- Here, w=i (also denoted as $w_4=i$). $w^4=1 \Rightarrow i$ is a root.

- 1 w³ w⁶ w⁹ w¹² w¹⁵ w¹⁸ w²¹ (sqrt of i)
 - 1 $W^4 W^8 W^{12} W^{16} W^{20} W^{24} W^{28}$
 - 1 $W^5 W^{10} W^{15} W^{20} W^{25} W^{30} W^{35}$
 - 1 $w^6 w^{12} w^{18} w^{24} w^{30} w^{36} w^{42}$
 - 1 w⁷ w¹⁴ w²¹ w²⁸ w³⁵ w⁴² w⁴⁹

- $1 w^3 w^6 w w^4 w^7 w^2 w^5$
 - 1 w4 1 w4 1 w4 1 w4
 - 1 $w^5 w^2 w^7 w^4 w^1 w^6 w^3$
 - 1 w⁶ w⁴ w² 1 w⁶ w⁴ w²
 - 1 $w^7 w^6 w^5 w^4 w^3 w^2 w^1$