gunote LATEX 笔记模板

2024年2月22日

Gemini Usagi, School of Geodesy and Geodetic, Wuhan University

目录

	章节测试	1
1.1	字体测试	1
	1.1.1 英文字体	1
	1.1.2 数学字体	2
	1.1.3 中文字体	2
	1.1.4 日文字体	3
	颜色测试	
1.3	自定义环境测试	4
	1.3.1 定理类环境	4
	1.3.2 代码环境	7

第一章 章节测试

1.1 字体测试

gunote 模板为自用模板, 基于 fontspec 宏包、unicode-math 宏包和 ctex 宏包进行了自定义的字体设置。

1.1.1 英文字体

英文字体设置,罗马字族设置为 TeX Gyre Pagella,该字体大多数 TeXLive 发行版的用户应该都有,在命令行中输入

```
1 fc-match -v 'TeX Gyre Pagella'
```

可以查看自己是否拥有字体, 以及字体所在的路径。

```
1 \setmainfont{TeX Gyre Pagella}
```

由于 TeX Gyre Pagella 字体具有-regular、-bold、-italic 和-bolditalic 的设计, 因此使用命令

```
1 \textbf{some text}
2 \textit{some text}
3 {\bfseries\itshape some text}
```

可以分别得到如下的效果: some text some text some text.

无衬线字族设置为 Gill Sans MT, 打字机字族设置为 JetBrains Mono, 前者为 Windows 平台下的默认字体, 后者为 JetBrains 公司开发的免费开源字体¹。

1.1.2 数学字体

通过 unicode-math 宏包提供的\setmathfont 命令可以很方便地设置数学字体,本模板使用的数学字体为 TeX Gyre Pagella Math, 效果如下:

$$p_{r,j}^{s} = \rho_{r}^{s} + c(dt_{r} - dt^{s}) + T_{r}^{s} + I_{r,j}^{s} + e_{r,j}^{s},$$
(1.1.1)

$$\varphi_{\mathbf{r},j}^{s} = \rho_{\mathbf{r}}^{s} + c(dt_{\mathbf{r}} - dt^{s}) + T_{\mathbf{r}}^{s} - I_{\mathbf{r},j}^{s} + \lambda_{j} N_{\mathbf{r},j}^{s} + \varepsilon_{\mathbf{r},j}^{s}.$$
(1.1.2)

在矩阵和向量的表示上,作者所在的专业往往采用加粗的方式。得益于 unicode-math 宏包对数学字体的处理机制,推荐使用\symbfit 命令得到粗斜数学字体。

$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{\Phi}_{k|k-1}\hat{\mathbf{x}}_{k-1},\tag{1.1.3}$$

$$\hat{P}_{k|k-1} = \Phi_{k|k-1} \hat{P}_{k-1} \Phi_{k|k-1}^{\mathsf{T}} + Q_k. \tag{1.1.4}$$

有时习惯采用直立而非倾斜的数学字体,推荐使用\symbfup命令

$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{\Phi}_{k|k-1}\hat{\mathbf{x}}_{k-1},\tag{1.1.5}$$

$$\hat{\mathbf{P}}_{k|k-1} = \mathbf{\Phi}_{k|k-1} \hat{\mathbf{P}}_{k-1} \mathbf{\Phi}_{k|k-1}^{\top} + \mathbf{Q}_k. \tag{1.1.6}$$

特别地, 对于数学书法体 (caligraphy), 模板单独采用 Latin Modern Math 字体:

$$\mathcal{P}_{HMI} = \mathcal{P}\left(|x - \hat{x}| > PL, |q| < T\right). \tag{1.1.7}$$

1.1.3 中文字体

中文字体通过 ctex 宏包对 xeCJK 宏包内容的调用,以及预定义的一些命令,实现自定义中文字体。通过输入

1 \LoadClass[fontset=none]{ctexrep}

实现对 ctex 宏包的调用,同时声明自定义字体。中文默认宋体字族为思源宋体 Source Han Serif CN, 黑体字族为苹方字体 .PingFang SC, 楷体字族为系统默认楷体 KaiTi.

文中的很多场合需要用到加粗的文字来表示强调, 此时推荐使用

¹下载网址: https://www.jetbrains.com/zh-cn/lp/mono/

1 \textbf{强调文字}

来实现,效果:强调文字。此时使用的是思源宋体的 Bold 样式。如果习惯于 Word 那样黑体加粗的格式,可以使用

- 1 {\bfseries\sffamily 黑体加粗}
- 2 % 或者
- 3 \textbf{\heiti 黑体加粗}

来实现,效果: 黑体加粗。此时使用的是苹方字体的 Medium 样式。

1.1.4 日文字体

作者并不了解 LATEX 日文排版或是多语言混合排版的相关领域,暂且只将平假名和片假名罗列至此。

ん行	わ行	ら行	や行	ま行	は行	な行	た行	さ行	か行	あ行	
ん	わ	ら	や	ま	は	な	た	さ	か	あ	あ段
		þ		み	Ŋ	に	ち	l	き	٧٧	い段
		る	ゆ	む	Š	ぬ	つ	す	<	う	う段
		れ		め	^	ね	て	せ	け	え	え段
	を	ろ	ょ	ŧ	ほ	の	と	そ	٢	お	お段

表 1.1.1: 平假名一览

1.2 颜色测试

作者基于 xcolor 宏包,参考 Onimai Character²设计了部分颜色,并定义了一些颜色命令,如果你希望在文档中使用这些颜色,请参照表1.2.1,将角色的假名部分罗马音和名称叠加,就可以拿到预览效果中的颜色,或者直接根据 RGB 值进行颜色的自定义。部分颜色被有机地穿插进了文档的各个元素中。

²https://onimai.jp/character/

ン行ワ行 ラ行 ヤ行 マ行 ハ行 ナ行 タ行 サ行 カ行 ア行 ン ワ ラ ヤ 7 *>*\ ナ タ サ 力 ア ア段 イ段 IJ 3 チ シ キ Ł イ ル ユ Δ フ ヌ ツ ス ク ウ ウ段 エ段 X ケ ヌ テ セ 工 オ段 ヲ } ソ オ 口 \exists モ ホ コ

表 1.1.2: 片假名一览

1.3 自定义环境测试

1.3.1 定理类环境

模板基于 tcolorbox 宏包定义了 Example, Definition, Theorem, Proposition, Lemma, Corollary 这 些常用的定理类环境。使用方法如下:

代码中的 env abbr 指的是环境的缩写,参考表 1.3.1 . 这样一来,你不需要自行定义 label,只需要像下面这样使用:

```
1 \begin{Theorem}{泰勒定理}{Taylor}
2 ...
3 \end{Theorem}
4 ...
```

表 1.2.1: 预定义颜色

取材角色	名称	预览	RGB 值	取材角色	名称	预览	RGB 值
	light		228,243,248				
	gray		133,149,174		gold		245,195,134
緒山まひろ	pink1		234,157,169	緒山みはり	purple		221,157,240
	pink2		234,212,207		red		234,140,156
	dark		125,134,156				
悪月もみじ	brown		151,119,128	穂月かえで	pink		241,172,184
他力もみし	blue		152,213,238	徳月かんで	blue		103,210,231
 桜花あさひ	brown		188,153,134	室崎みよ	purple		185,133,145
1女1七の00	green		119,147,109	王峒のよ	yellow		254,234,153

表 1.3.1: 环境名称和缩写对应表

环境名称	环境缩写	环境名称	环境缩写
Example	eg	Definition	def
Theorem	thm	Proposition	pro
Lemma	lma	Corollary	col

5 上述定理\ref{thm:Taylor}说明...

下面是这些自定义定理类环境的样式展示。

例 1.3.1: 单位复数群

第一个李群的例子,是最便于可视化的,在复数乘法下的单位复数。单位复数有着 $z = \cos \theta + i \sin \theta$ 的形式。

如图所示的 S^1 流形是一个复平面 \mathbb{C} 上的单位圆,流形上存在着单位复数 $z^*z=1$. 李代数 $\mathfrak{s}^1=T_{\mathcal{E}}S^1$ 是虚轴 $i\mathbb{R}$ (标红),任何切空间 TS^1 都是直线 \mathbb{R} 的同构。切向量(红色部分)所包围的流形对应了一段圆弧(蓝色部分)。

定义 1.3.1: 数域

设 \mathbb{K} 是复数集 \mathbb{C} 的子集且至少有两个不同的元素, 如果 \mathbb{K} 中任意两个数的加法、减法、乘法和除法 (除数不为零) 仍属于 \mathbb{K} ,则称 \mathbb{K} 是一个数域。

定理 1.3.1

任一数域必包含有理数域 ℚ.

命题 1.3.1

零向量是唯一的。

引理 1.3.1

设 A, B 是 V 中两组向量, A 含有 r 个向量, B 含有 s 个向量, 且 A 中每个向量均可用 B 中向量线性表示。如果 A 中向量线性无关,则 $r \le s$.

推论 1.3.1

n 维线性空间 V 中任一超过 n 个向量的向量组必线性相关。

此外,模板还定义了 Proof, Solve 环境,它们不是由 tcolorbox 定义得到的,而是由下面的定义得到:

```
1 \newcommand{\QEDsymbol}{\hfill$\square$}
2 \newenvironment{Proof}{\textbf{证:}}{\QEDsymbol} % Proof env
3 \newenvironment{Solve}{\textbf{解:}}{} % Solve env
```

因此这些环境不进行换行。除此之外,模板还提供了 \QEDsymbol 命令表示证毕符号。样例如下:

证:由上面知道, 1 必属于任一数域。将 1 连加 n 次,则 n 也应属于该属于,因此任一正整数属于该数域。又 0-n=-n,因此 -n 也应在此数域中。因而整数全体都必须在这个数域之中。最后,若 $m\neq 0, m, n$ 为整数,则由除法封闭性可知 $\frac{n}{m}$ 也应属于该数域,即任一有理数都应在此数域中。

解: 设 $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$, 则从 $\{e_1,e_2,e_3\}$ 到 $\{f_1,f_2,f_3\}$ 的过渡矩阵为

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix},$$

从 $\{e_1, e_2, e_3\}$ 到 $\{g_1, g_2, g_3\}$ 的过渡矩阵为

$$\mathbf{B} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix},$$

则从 $\{f_1,f_2,f_3\}$ 到 $\{g_1,g_2,g_3\}$ 的过渡矩阵为 $A^{-1}B$. 可以求得该矩阵为

$$P = \begin{pmatrix} 0 & 1 & 1 \\ -1 & -3 & -2 \\ 2 & 4 & 4 \end{pmatrix}.$$

1.3.2 代码环境

模板基于 tcolorbox 宏包和 minted 宏包定义了下面的代码环境 Code, 效果如下:

```
代码 1.3.2: test.tex
```

- 1 {tikzpicture}
- 2 \node (A) at (0,0) {};
- 3 \draw[red] (A) -- (1,0);
- 4 \end{tikzpicture}

该环境包含一个必须参数和一个可选参数,其中必须参数为标题,可选参数为编程语言。此外,模板还单独定义了 Code* 环境,该环境不进行编号,也不输出标题,因此只有一个可选参数。

```
1 #include <iostream>
2 using namespace std;
3
4 int main() {
5 cout << "测试" << endl;
6 }</pre>
```