

R Seminar Lincoln University Session 5: Basic plotting

Samuel Brown & Marona Rovira (07/10/2014)

Aims:

- Get to know the syntax for programming in R
- Be able to create different plots (histograms, bar plots, boxplots, scatterplots)
- Explore different ways to modify a default plot
- Export the plots

1. Plot ()

It plots different types of plots (scatterplot, boxplot, bar plots or histograms) depending on the class of the object being plotted.

Three options for the syntax:

```
##x, y form (default)
plot(iris$Sepal.Length, iris$Sepal.Width)

##Model from (response ~ dependant)
plot(iris$Sepal.Length ~ iris$Sepal.Width)

##Model from with separate data parameter
plot(Sepal.Length ~ Petal.Width, data=iris)
```

Modify the default plot

Example 1: Change the symbols, their colour and their background colour.

```
plot(Sepal.Length ~ Petal.Width, data=iris, pch=19, bg=11)
plot(Sepal.Length ~ Sepal.Width, data=iris, col="red", pch=24, bg="blue")
```

Example 2: Add labels to the plot.

```
plot(Sepal.Length ~ Sepal.Width, data=iris, col="red", pch=11, bg=11,
main= "Sepal length vs width", xlab="Sepal width (cm)", ylab="Sepal length (cm)")
```

Example 3: Change the size of the text and the symbols of the plot.

```
plot(Sepal.Length ~ Sepal.Width, data=iris, col="red", pch=21, bg=11,
main= "Sepal length vs width", xlab="Sepal width (cm)", ylab="Sepal length (cm)", cex = 0.5)
```

Example 4: Add a 3rd dimension to the plot.

- ✓ To make the symbol bigger.
- ✓ To apply a different symbol and colour.
- ✓ Plot the width and length of the petal.
- ✓ Change the labels of the new plot.

2. Add a legend

Will help us to better understand the plot.

Example 4: Define the position of the legend.

```
locator(1)

$x
[1] 3.85448

$y
[1] 7.106233

legend(3.8, 7.1, legend = unique (iris$Species),
col=as.numeric(unique(iris$Species)), pch=as.numeric(unique(iris$Species))*21)
Try
```

✓ To define the position using 'bottomright' 'bottom' 'bottomleft' 'left' 'topleft' 'top' 'topright' 'right' or 'center'. And adjust the distance to the margins with 'inset' parameter.

3. Add a regression line

Add a regression line $(y \sim x) \rightarrow abline(lm(y\sim x), col =)$

Example 5: Add a regression line

```
?abline
abline(lm(Sepal.Length ~ Petal.Width, data = iris), lty = 5, lwd = 2, col = "grey")
```

4. hist ()

To make density plots (histograms).

```
?hist
hist(iris$Sepal.Length)
```

Example 6: Determine the breaks for the histogram.

```
hist(iris$Sepal.Length, breaks=5)
```

Example 7: Modify the axis of the plot.

```
axis(1, at = seq(4, 8, by = 0.5), labels = seq(4, 8, by = 0.5))
```

5. barplot ()

```
barplot(iris$Sepal.Width)

Example 8: Change the bars' orientation.

barplot(iris$Sepal.Width, horiz=TRUE)
```

Example 9: Incorporate another variable to the plot.

To incorporate another variable we need to create a table inside the barplot function (see ?barplot).

```
barplot(table(iris$Sepal.Width, iris$Species))
```

We can also create categories inside of the variables to make the plot more informative.

```
barplot(table(iris$Sepal.Width>3, iris$Species))
```

Example 10: Change the stacked bar plot to a grouped bar plot.

The new plot will show a different column for each width category.

```
barplot(table(iris$Sepal.Width>3, iris$Species), beside=TRUE)
```

6. <u>boxplot ()</u>

This type of plot underlay the statistical distribution of numerical data through their quartiles.

```
boxplot(iris$Sepal.Length)
```

Example 11: Split the values of the numeric vector according to a categorical variable.

```
boxplot(iris$Sepal.Length ~ iris$Species)
boxplot(iris$Sepal.Length, iris$Sepal.Width, iris$Petal.Width)
```

7. Multiple plots

We can plot multiple plots on the same screen.

```
m <- matrix(c(1:3), ncol = 1, byrow = TRUE)
layout (m)
hist(iris$Sepal.Length, breaks=5)
axis(1, at = seq(4, 8, by = 0.5), labels = seq(4, 8, by = 0.5))
barplot(table(iris$Sepal.Width>3, iris$Species), beside=TRUE)
boxplot(iris$Sepal.Length)
```

Try

✓ To have a 4 plots matrix on the screen with 2 columns and 2 rows of plots.

8. Export the plot

We can export the plot on different formats such as pdf, png, jpeg, etc. You need:

Example 12: Export the plot as pdf.

```
pdf(file="Iris.pdf")
plot(Sepal.Length ~ Sepal.Width, data=iris, col=as.numeric(Species), pch=as.numeric(Species)*21,
bg=11, main= "Sepal length vs width", xlab="Sepal width (cm)", ylab="Sepal length (cm)")
abline(lm(Sepal.Length ~ Petal.Width, data = iris), lty = 5, lwd = 2, col = "grey")
legend('topright', inset=.05, legend=unique(iris$Species), col=as.numeric(unique(iris$Species)),
pch=as.numeric(unique(iris$Species))*21)
dev.off()
Try
```

✓ To export the plot as png format (use ?png for help).

9. Exercise

Create a pdf containing the same plots that the file **aa_Seminar5_plot_examples.pdf** using what you have learned today.