Определение 1. Пусть V — трехмерное векторное пространство над \mathbb{R} с базисом i, j, k. Алгеброй $\kappa 6a$ -mephuoho 6 называется векторное пространство $\mathbb{H} := \mathbb{R} \oplus V$ с ассоциативным умножением, определямым правилом $i^2 = j^2 = k^2 = ijk = -1$.

Задача 1. Составьте таблицу умножения базисных элементов 1, i, j, k.

Задача 2*. Проверьте, что умножение, задаваемое таблицей из предыдущей задачи, действительно ассоциативно.

Утверждением этой задачи можно далее пользоваться без доказательства.

Определение 2. Нормой кватерниона q = a + bi + cj + dk называется действительное число $N(q) = a^2 + b^2 + c^2 + d^2$. Сорпяженным к кватерниону q = a + v называется кватернион $\bar{q} := a - v$.

Задача 3. а) $N(q)=q\bar{q}=\bar{q}q;$ б) $N(q_1q_2)=N(q_1)N(q_2).$

Задача 4. а) Если два целых числа представимы в виде суммы четырех квадратов, то и их произведение представимо в виде суммы четырех квадратов.

б) Аналогичное утверждение для сумм трех квадратов неверно.

Задача 5. Кватернионы образуют mело: для них выполнены все аксиомы поля, за исключением коммутативности умножения.

Задача 6. Выразите $(q_1q_2)^{-1}$ через q_1^{-1} и q_2^{-1} .

Определение 3. Векторным произведением двух векторов u и v в \mathbb{R}^3 называется вектор [u,v], перпендикулярный плоскости векторов u и v и имеющий длину $|u| \cdot |v| \cdot \sin \varphi$.

Задача 7. Если u и v два вектора, то uv = -(u,v) + [u,v], где (-,-) — скалярное произведение, а [-,-] — векторное произведение.

Задача 8. Высните, в какие тождества для скалярного и векторного произведения превращается ассоциативность кватернионного умножения (uv)w = u(vw) и докажите тождество Якоби, [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0.

Задача 9. а) Если v — вектор единичной длины, то $v^2 = -1$.

б) Если u и v два ортогональных вектора, то uv = -vu.

Задача 10. Отображение $\mathrm{Ad}_q: v \mapsto qvq^{-1}$ **a)** переводит вектора в вектора; **б)** является движением.

Задача 11. Найдите матрицу оператора Ad_q для **a)** q=i; **б)** $q=\cos\varphi+i\sin\varphi;$ что это за движение?

Задача 12. а) Любой поворот вокруг оси можно представить в виде Ad_q для некоторого кватерниона q единичной нормы.

б) Сколькими способами это можно сделать?

Задача 13. а) Композиция сохраняющих начало координат вращений трехмерного пространства — вращение.

б) Движение пространства, сохраняющее ориентацию и имеющее неподвижную точку, является поворотом вокруг некоторой оси.

1	2	3 a	3 6	4 a	4 6	5	6	7	8	9 a	9 6	10 a	10 б	11 a	11 б	12 a	12 6	13 a	13 6

Листок №GEO-1

Задача 14. а) Пусть r — поворот на угол $\frac{\pi}{2}$ вокруг оси (1,0,0), а t — на угол $\frac{2\pi}{3}$ вокруг оси (1,1,1). Найдите ось и угол поворота s=rt.

б) Сколько всего вращений можно получить, компонуя преобразования r и t?

Задача 15. Рассмотрим кватернионы как двумерное комплексное векторное пространство: $\mathbb{H} = \mathbb{C} \oplus j\mathbb{C}$.

- а) Найдите матрицы (левого) умножения на элементы $1,\,i,\,j,\,k.$
- **б**) Алгебра кватернионов изоморфна алгебре комплексных матриц 1 2 × 2 вида $\begin{pmatrix} z & w \\ -\bar{w} & \bar{z} \end{pmatrix}$.

Задача 16. Убедитесь, что отображение Ad задает сюръективный гомоморфизм $Sp_1 \to SO_3$ и найдите его ядро.

Задача 17. а) Найдите группу вращений тетраэдра.

б) Опишите явно прообраз 2T этой группы при гомоморфизме $Sp_1 \to SO_3$.

(Совет: тетраэдр удобно взять вписанным в стандартный единичный куб.)

 \mathbf{B})* Выпуклая оболочка точек из 2T образует правильный 4-мерный многогранник (какие у него гиперграни и сколько их?).

Задача 18. а) Найдите группу вращений куба (или октаэдра).

б) Опишите явно прообраз этой группы при гомоморфизме $Sp_1 \to SO_3$.

Предупреждение: выпуклая оболочка этих точек правильного многогранника не образует.

Задача 19*. а) Группа вращений додекаэдра (или икосаэдра) изоморфна группе A_5 .

- **б)** Опишите явно прообраз 2I этой группы при гомоморфизме $Sp_1 \to SO_3$.
- в) Выпуклая оболочка точек из 2I образует правильный 4-мерный многогранник (какие у него гиперграни и сколько их?).

Задача 20. Если q — кватернион единичной нормы, то отображение $\mathbb{H} \to \mathbb{H}, v \mapsto -q\bar{v}q$ является отражением 4-мерного пространства относительно 3-мерного подпространства с нормалью q.

Задача 21. а) Если l и r — кватернионы единичной нормы, то $m_{l,r} \colon \mathbb{H} \to \mathbb{H}, v \mapsto lvr^{-1}$ — движение 4-мерного пространства.

- **б**) Отображение $m: Sp_1 \times Sp_1 \to SO_4$ является сюръективным гомоморфизмом.
- в) Найдите ядро этого гомоморфизма.

14 a	14 б	15 a	15 б	16	17 a	17 б	17 B	18 a	18 б	19 a	19 б	19 B	20	21 a	21 б	21 B

 $^{^{1}}$ Отсюда следует, в частности, ассоциативность кватернионного умножения.