COEP Technological University

CT 23004 Discrete Structures

Time: 60 min

Max marks: 20

Instructions

4	1		33		
d.	Allist	ACL.	SHIT	quest	lons.

2. Show all necessary working.

[1 mark each]

		abbrohu	ate option		
(1)	How m N - Q.	any of the fo	ollowing sets Z, R - O	are countably	infinite?
	(a) 0	(b) 1	(c) 2	(d) 3	

(2)	Which of	the following functions from R to R is not one-one?
	(a) $\frac{2x-1}{x-2}$	(b) $x^3 - 1$ (c) $x^3 - 3x^2 + 3x - 1$ (d) $x^3 - 4x^2 - 3x - 2$

- (4) Which of the following statements is true for the given relation?
 a and b are people, aRb if a speaks a language that b speaks.
 (a) It is not symmetric
 (b) It is not reflexive
 (c) It is not transitive
 (d) It is an equivalence relation
- (5) Which of the following is not a function from the set $\{1,2,3\}$ to \mathbb{R} ?
 (a) $\{(1,2),(2,4),(3,6)\}$ (b) $\{(1,1),(3,4),(2,4)\}$ (c) $\{(1,2),(1,4),(2,5)\}$ (d) $\{(1,1),(2,2),(3,3)\}$

Section B: Solve any 5

[3 marks each]

State the biggest domain and codomain which are subsets of \mathbb{R} for which the following relations are functions and the functions are onto:

(a) $y = \log(2x + 1)$ (b) $y = \sqrt{3 - x^2}$ (c) $y = \frac{1}{x+4}$

- 2. Show that any 2 distinct equivalence classes are disjoint i.e. if R is relation from A to B and X and Y are equivalence classes of R, then either X=Y or $X\cap Y=\wp$.
- 3. Give examples such that

 $A \subset B$. A is countable but B is uncountable. [0.5 mark]

 $A \subset B$. A is countable and B is also countable. [0.5 mark]

- (c) Function from \mathbb{R} to \mathbb{R} such that f is one-one but not onto. (Show that function is not onto) [1 mark]
- (d) Function from \mathbb{R} to \mathbb{R} such that f is onto but not one-one. (Show that function is not one-one) [1 mark]

4. Show that there exists a bijection between set of multiples of 2 and set of multiples of 3. Prove that the function is a bijection.

Prove by mathematical induction: for all natural numbers $n \ge 4$, $2^n \le n!$

6. Show that the relation defined on $\mathbb R$ as aRb if b-a is an integer is an equivalence relation. Also find equivalence class 5 and $\sqrt{2}$.