

Universidad Tecnológica de la Mixteca

Clave DGP:111628

Doctorado en Modelación Matemática

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
	Biología matemática

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	291702ED	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Estudiar y analizar los modelos clásicos en biomatemáticas usando como herramienta principal la teoría fundamental de las ecuaciones diferenciales ordinarias.

TEMAS Y SUBTEMAS

1. Modelos continuos para la población de una sola especie

- 1.1. Modelos de crecimiento exponencial y logístico.
- 1.2. El efecto Allee.
- 1.3. El modelo de Gompertz.
- 1.4. Modelo de brote de insectos: Spruce Budworn.
- 1.5. Modelo de cosecha para una población.
- 1.6. Simulaciones numéricas de los modelos.

2. Modelos continuos para la interacción de dos especies

- 2.1. Modelo Presa-Depredador.
- 2.2. Modelos de competencia: Principio de exclusión competitiva.
- 2.3. Mutualismo o simbiosis.
- 2.4. Simulaciones numéricas de los modelos.

3. Dinámica de enfermedades infecciosas

- 3.1. El modelo SI.
- 3.2. El modelo SIS.
- 3.3. El modelo SIR sin demografía.
- 3.4. El modelo SIR con demografía.
- 3.5. El modelo SIRS.
- 3.6. El modelo SEIR.
- 3.7. Simulaciones numéricas de los modelos.

4. Ciclos límite y oscilaciones

- 4.1. Las ecuaciones de Hodkin-Huxley.
- 4.2. El modelo de Fitzhugh-Nagumo.
- 4.3. Fisiología y ritmos circadianos.
- 4.4. Simulaciones numéricas de los modelos.

5. Modelos con varias especies y niveles tróficos

- 5.1. Dos depredadores alimentándose de la misma presa.
- 5.2. El modelo de la cadena alimenticia.
- 5.3. Un depredador alimentándose de dos presas.
- 5.4. Caos en ecología.
- 5.5. Simulaciones numéricas de los modelos.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por parte del profesor, poniendo énfasis entre la biología y la matemática que hay detrás del modelo. Los estudiantes acudirán a asesorías extra clase, resolverán proyectos en equipo para presentarlos como requisito para el examen final.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se aplican por lo menos tres exámenes parciales cuyo promedio equivale al 50% de la calificación final, el 50% restante se obtiene de un examen final. Otras actividades que se consideran para la evaluación son las participaciones en clase, asistencias a clases y el cumplimiento de tareas.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Mathematical Biology I. An Introduction, Murray, J. D., Springer-Verlag Heidelberg, 2002.
- 2. Mathematical models in biology, Edelstein-Keshet, Leah, Society for Industrial and Applied Mathematics,
- 3. Modeling infectious diseases in humans and animals, Keeling, Matt J., and Pejman Rohani, Princeton University Press, 2011.

Consulta:

- 1. Mathematical models in population biology and epidemiology, Brauer, Fred & Carlos Castillo-Chavez, New York: Springer, 2001.
- 2. Dynamical systems in neuroscience, Izhikevich, Eugene M., MIT press, 2007.
- 3. Mathematical methods of population biology, Hoppensteadt, Frank C., Cambridge University Press, 1982.

PERFIL PROFESIONAL DEL DOCENTE

Estudios de Doctorado en Matemáticas o en Matemáticas Aplicadas con conocimientos en Modelación.

Vo.Bo

DIVISION DE ESTUDIOS

Vo.BoDR. JOSÉ ANIBAL ARIAS AGUILAR

JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

AUTORIZÓ

DR. AGUSTÍN SANTIAGO ALVARADO

VICE-RECTOR ACADÉMICO