CS 581 – ADVANCED ARTIFICIAL INTELLIGENCE

TOPIC: NEURAL NETWORKS

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

NEURON

By Quasar Jarosz at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7616130

NEURON

- Neurons can have multiple dendrites and at most one axon
- Typical connections are from an axon of a neuron to dendrites of other neurons
- Synaptic signals are received through dendrites and somas;
 signals are transmitted through axons
- Signals can excite or inhibit the receiving neuron
- A neuron fires when the excitement is above a threshold
- Note: these are general statements and simplifications, and there are many exceptions!

ARTIFICIAL NEURAL NETWORKS

- Artificial neural networks are *inspired* by real neurons
- 1943 One of the first neural computational models was proposed by McCulloch and Pits
- 1958 Rosenblatt proposed perceptron
- 1969 A paper by Minsky and Papert almost killed the entire field
 - Perceptrons are incapable of representing XOR
 - Computational resources are too great
- 1975 Backpropagation algorithm renewed interest in neural networks
- 1980s parallel architectures were popular
- Late 1990s and 2000s other methods, such as support vector machines, became more popular
- 2010s neural networks of several hidden layers are back with the new name "deep learning"

PERCEPTRON

$$y = sign(w_0 + \sum w_i x_i)$$

5

WHAT AN ARTIFICIAL NEURON DOES

- Takes a weighted sum of its inputs
 - $w_0 + \sum_{i=1}^k w_i x_i$
 - Assume that there is always a constant input 1, that is, $x_0 = 1$. Then,
 - $\sum_{i=0}^k w_i x_i$
- Passes this sum through its activation function
 - $f(\sum_{i=0}^k w_i x_i)$

EXAMPLES

- Logical AND
- Logical OR
- Logical XOR
- See OneNote and Notebook

SIMPLE MULTILAYER NETWORK FOR XOR

- $\bullet XOR(A,B) = (A \land \neg B) \lor (\neg A \land B)$
- One perceptron for $(A \land \neg B)$
- One perceptron for $(\neg A \land B)$
- One perceptron for combining the outputs, through OR, of the two previous perceptrons
- See Notebook

VARIOUS ACTIVATION FUNCTIONS

- Identity function
- Bipolar step function
- Binary sigmoid
- Bipolar sigmoid
- Hyperbolic tangent

BIPOLAR STEP FUNCTION

- $of(\sum_{i=0}^k w_i x_i) = sign(\sum_{i=0}^k w_i x_i)$
- Returns either +1 or -1 (except right on the decision boundary)
- Useful for both hidden layers and output layer
- However, its discontinuous and it is problematic for learning algorithms that require taking its derivative

IDENTITY FUNCTION

- $of(\sum_{i=0}^k w_i x_i) = \sum_{i=0}^k w_i x_i$
- Typically used for the output neurons, when the task is regression
- The identity function should not be used in the hidden layers
 - Linear combination of linear functions is another linear function, and hence using the identity function in the hidden layers do not increase representative power of the neural network

BINARY SIGMOID

- This is the logistic function that we used
 - Except, notice the minus sign in front of the sum
 - This is only a convention and does not change much
- The output of the binary sigmoid is between 0 and 1
 - Useful for output layer when the task is classification
 - The output can be interpreted as a probability

HYPERBOLIC TANGENT

$$\frac{e^5 - e^5}{e^5 + e^{-5}}$$

$$f\left(\sum_{i=0}^{k} w_i x_i\right) = \frac{e^{\sum_{i=0}^{k} w_i x_i - e^{-\sum_{i=0}^{k} w_i x_i}}}{e^{\sum_{i=0}^{k} w_i x_i + e^{-\sum_{i=0}^{k} w_i x_i}}}$$

- The output of tanh is between -1 and +1
 - Useful for output layer when the task is classification
 - Useful for both hidden and output layers

RELU

- - 0 otherwise
- Typically used for hidden layers, especially for computer vision tasks

BIPOLAR SIGMOID

- This is a rescaled version of the binary sigmoid
- The output of the bipolar sigmoid is between -1 and +1
 - Useful for output layer when the task is classification
 - Useful for both hidden and output layers

ACTIVATION FUNCTION PLOTS

DEEP LEARNING

- Several hidden layers
 - Millions of parameters
- Big data, big computation
- o If a neural network with a single hidden layer is a universal approximator, why go deep?
 - "Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review" https://arxiv.org/abs/1611.00740

EXAMPLE NETWORK ARCHITECTURES

- Convolutional neural networks (CNN)
- Recurrent neural networks (RNN)
- Long Short-Term Memory networks (LSTM)

CONVOLUTIONAL NEURAL NETWORKS

https://commons.wikimedia.org/wiki/File:Typical cnn.png

CONVOLUTION

Figure 21.4 An example of a one-dimensional convolution operation with a kernel of size l=3 and a stride s=2. The peak response is centered on the darker (lower intensity) input pixel. The results would usually be fed through a nonlinear activation function (not shown) before going to the next hidden layer.

Figure from http://aima.cs.berkeley.edu/figures.pdf

POOLING

- Aggregates a set of adjacent units
- Like convolution, has a kernel size and a stride size
- Unlike convolution, weights are fixed (not learned)
- Examples
 - Average pooling
 - Max pooling

RECURRENT NEURAL NETWORKS

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

LONG SHORT-TERM MEMORY (LSTM)

- A specialized RNN
- Works better than vanilla RNN for "remembering" long sequences
- Has additional units
 - Cell, forget gate, input gate, output gate

https://commons.wikimedia.org/wiki/File:Long Short-Term Memory.svg

OTHER NETWORKS/CONCEPTS

x decor

- Autoencoder
 - Input and output are the same
- Deep autoregressive model
 - Predict an element of the data using the other elements
- Generative adversarial networks (GAN)
 - A pair of generator and discriminator networks

LEARNING THE WEIGHTS

- Define an error (loss) function
- Take its derivative with respect to the weights
- Perform gradient descent

SOME ERROR/LOSS FUNCTIONS

- Classification: log-loss, cross entropy, negative CLL
 - $-(1-t) \times ln(1-y) t \times ln(y)$
 - *t*: the true target value (0/1)
 - y: probability of class 1
- Regression: squared error
 - $\frac{1}{2}(t-y)^2$
 - *t*: the true target value
 - *y*: the predicted value

BACKPROPAGATION ALGORITHM

• See OneNote

DERIVATIVES OF THE ACTIVATION FUNCTIONS

- \circ f is the activation function, h is the weighted sum of the incoming signals
- \circ $f(h(x)) \equiv \text{binary sigmoid}$

•
$$\frac{\partial f(h(x))}{\partial x} = f(h(x)) \times (1 - f(h(x))) \times \frac{\partial h(x)}{\partial x}$$

 \circ $f(h(x)) \equiv \tanh$

•
$$\frac{\partial f(h(x))}{\partial x} = (1 + f(h(x))) \times (1 - f(h(x))) \times \frac{\partial h(x)}{\partial x}$$

See OneNote

OVERFITTING

- Neural networks are powerful tools
- Even with a single hidden layer, they are "universal approximators", i.e., they can approximate arbitrary functions arbitrarily close
- Therefore, it is very easy to overfit them
- To prevent overfitting, utilize
 - Domain knowledge
 - Shared parameters
 - Validation data
 - Regularization
 - Dropout

SOME LIBRARIES

Scikit-learn

- https://scikit-learn.org/stable/modules/neural_networks_supervised.h
 tml
- Only MLP; no GPU support

Keras

https://keras.io/

Tensorflow

https://www.tensorflow.org/

PyTorch

https://pytorch.org/