Review: Calculus I

Section 4.9: Antiderivatives

Objective: In this lesson, you learn

 \square how to find antiderivatives of functions.

I. Antiderivatives

Definition

Remark: If two functions have identical derivatives on an interval, then by the Mean Value Theorem, they must differ by a constant.

Thus, if F and G are any two antiderivatives of f, then F'(x) = f(x) = G'(x). So

$$G(x) = F(x) + C.$$

Example 1: Find an antiderivative of f of the following functions f

a.
$$f(x) = x^2$$

$$F_{i(x)} = \frac{1}{3} \times^3$$

$$f_1(x) = \frac{1}{3} \times^3 + 4$$

$$F_3(x) = \frac{1}{3}x^3 - 2$$

b.
$$f(x) = \frac{1}{x}$$

$$F_{1}(x) = LNX$$

$$F_{2}(x) = LNX + 1$$

$$F_{3}(x) = LNX - 3$$

Theorem

If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I

$$F(x) + C$$

where C is an arbitrary constant.

II. Antidifferentiation

The following table lists some of Antiderivative Formulas. (Assume F'=f and G'=g.)

Some of Antiderivative/derivative Formulas

		,		
→ + (x) = 3	Antiderivative	Function	Derivative	$\sqrt{2\times 1}$
f/10=0	F(x) + C	f(x)	f'(x)	V
F(x)=3×+C	$F(x) \pm G(x) + C$	$f(x) \pm g(x)$	$f'(x) \pm g'(x)$	P(X) = 1 *2 2 (2x4)
3 FA) = X4 ()	kx + C	$\underline{\underline{k}}$, k -constant	Ò	chain =
f (x) = 4 2 3	$\frac{x^{n+1}}{n+1} + C$	$x^n \left(n \neq -1 \right)$	nx^{n-1}	150/6 / 2041
F(x) = x + C 3	$\frac{2x^{3/2}}{3} + C$	$\sqrt{x} = \chi^{\frac{1}{2}}$	$\frac{1}{2\sqrt{x}} \begin{array}{c} \frac{\frac{1}{2} - 1}{\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \frac{1}{2}} \\ \frac{1}{2\sqrt{x}} & \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \frac{1}{2\sqrt{x}} \end{array}$	$f(x) = \sqrt{g(x)}$ $f'(x) = \frac{g(x)}{z\sqrt{g(x)}}$
	$\frac{b^x}{\ln b} + C$	b^x	$b^x \ln b$	f(x) = g(x) $f(x) = g(x)$
(9)	$e^x + C$	e^x	e^x	f(x) = g(x) eg(,,
	$\ln x + C / \checkmark \downarrow 0$	$\frac{1}{x} = \sqrt{1} \times 10^{-1}$	$\frac{-1}{x^2} \begin{array}{c} + (x) = x \\ -1 \\ \hline + (x) = 1 \\ \hline \end{array}$	f(x) = 2x2 f(x) = 2xe
\	$-\cos x + C$	$\sin x$	$\cos x$	P(x) = 2xe
(m.g) +g, h	$\sin x + C$	$\cos x$	$-\sin x$	B fix= Ln(96x)
= h,g, +g, k	$\tan x + C$	$\sec^2 x$	$2\sec^2 x \tan x$	F(x)= 9(x)
P(x) = secx tomx	$-\cot x + C$	$\csc^2 x$	$-2\csc^2 x \cot x$	(x) x (0)
+(x) = 50x 1,900	$\sec x + C$	$\sec x \tan x$	$\sec x \left(\sec^2 x + \tan^2 x\right)$	f(n= Ln(-x), x <0
Pla) - SPEX SECX + M	$ \cot x + C $	$-\csc x \cot x$	$\csc x \left(\csc^2 x + \cot^2 x\right)$	\$(x) = -x = x
P(x) = Secx tomx P(x) = Secx secx + tom x secx tomx = secx(secx+tom)x	$\int_{\tan^{-1}x + C}$	$\frac{1}{1+x^2}$	$\frac{-2x}{(1+x^2)^2}$	(6) f(x) = \frac{1}{9}x1
= 38000	$\sin^{-1} x + C$	$\frac{1}{\sqrt{1-x^2}}$	$\frac{x}{(1-x^2)^{(5/2)}}$	$f(x) = \frac{-g(x)}{(g(x))^2}$

 $f(n) = SeCx = (SeCx)^{2}$ f(n) = 2(SeCx) * SeCx tamx = 2 SeCx tamx $\frac{3h}{x} = x^{3h} + 3 = \frac{3h}{2}$ $= x^{3h} + 3 = \frac{3h}{2}$

$$\frac{3h}{x} = x^{3h} + 3 = 3h$$

$$= x^{3h} + 3 = 3h$$

$$= x^{3h} + 3 = 3h$$

$$= x^{3h} + 3 = 3h$$

Example 2: Find all anti-derivative of

$$f(x) = x^{3} + 3\sqrt{x} + \frac{4}{x} + 2$$

$$F(x) = \frac{3+1}{2+1} + 2 \cdot \frac{3/2}{3} + 4 \cdot \ln|x| + 2x + C$$

$$= \frac{1}{4} \times 4 + 2 \times \frac{3}{2} + 4 \cdot \ln|x| + 2x + C$$

$$= \frac{1}{4} \times 4 + 2 \times \frac{3}{2} + 4 \cdot \ln|x| + 2x + C$$

Example 3:

a. Find f if $f'(t) = 2\cos(t) + 3e^t$

b. Which of the functions in part (a) satisfies
$$f(0) = 0$$
?
$$0 = f(0) = 2 \sin(0) + 3 e + C$$

$$0 = 3 + C$$

$$C = -3$$

$$f(x) = 2 \sin(0) + 3 e + C$$