Lecture-3

Sushrut Tadwalkar; 55554711

September 11, 2023

Quote of the day

"All is fair, if you pre-declare." - Prof. Lowen, 09/11/23

0.1 Interlude: Well ordering property of \mathbb{N}

Let $S \in \mathbb{N}$ such that $S \neq \varphi$, i.e., there exists $\hat{s} \in S$: $\hat{s} \leq s$ for all $s \in S$. We will often use $\min(S)$ instead of \hat{s} . This is the basis for the principle of mathematical induction.

Going back to countable sets, we have the following property:

Property 1. *Every subset of* \mathbb{N} *is finite or countable.*

Proof. Let $A \subseteq \mathbb{N}$. If A is finite, we are done; assume A is infinite.

Define $A_1 = A$; since A is infinite, $A \neq \phi$, so let $a_1 = \min(A_1)$. Note that $a_1 \geq 1$; define $\varphi(1) = a_1$.

Now \mathcal{A} is infinite, so $\mathcal{A}_2 := \mathcal{A} \setminus \{a_1\}$ is not empty. Let $a_2 = \min(\mathcal{A}_2)$; define $\varphi(2) = a_2$. Notice that $\varphi(2) = a_2 > a_1$, so $\varphi(s) \geq 2$. Continue with induction.

If step n has been done, giving $\varphi(n) = a_n$ with $\varphi(n) > n$, proceed as follows:

Set \mathcal{A} is infinite, so $\mathcal{A}_{n+1} = \mathcal{A} \setminus \{a_1, a_2, \dots, a_n\}$ is not empty. Let $a_{n+1} = \min \mathcal{A}_{n+1}$, $\varphi(n+1) = a_{n+1}$. Note that $\varphi(n+1) = a_{n+1} \ge n+1$.

Induction defines $\varphi: \mathbb{N} \to \mathcal{A}$. We can observe that φ in injective since for $m \neq n$ (assume WLOG that m < n) $\varphi(m) < \varphi(n)$ by construction. Similarly, we can observe that φ is surjective; notice that for any $a \in \mathcal{A}$, we have $\varphi(a) \geq a$, so $a = \varphi(k)$ must have occurred for some stage k, with $k \geq a$. Hence, we have shown that φ is a bijection, which by extension verifies the definition of " \mathcal{A} is countable".

Property 2. Every subset of any countable set is finite or countable.

Proof. Read his notes.

Theorem

Given a set A, either (a) or (b) below implies A is finite-or-countable:

- (a) There exists a countable set \mathcal{X} and an injective function $f: \mathcal{A} \to \mathcal{X}$.
- (b) There exists a countable set \mathcal{X} and a surjective function $g: \mathcal{X} \to \mathcal{A}$.