

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMY RESEARCH LABORATORY

Algorithmically identifying strategies in multi-agent game-theoretic environments

Erin Zaroukian

Cognitive Scientist

Social Terrain Modeling Team, Multilingual Computing and Analytics Branch, Computational and Information Sciences Directorate

DISTRIBUTION UNLIMITED

- Computational agents should support their human teammates by adapting their behavior to the humans' strategy for a given task in order to facilitate mutually-adaptive behavior within the team.
- While there are situations where human strategies are top-down, explicit, and easy to understand, human strategies are often implicit and ad hoc.

- Our goal: Identify and label the implicit human strategies
 - → Facilitate transparency, promote trust, and provide a better understanding of how humans work together and how computational teammates can be trained to fit into a human-human dynamic.

STRATEGIES IN MOVEMENT DATA

- Strategies aren't observable! Infer through measurements of behaviors toward a goal.
- Existing methods for identifying strategies often require:
 - Verbal reports of strategy
 - A priori set of strategies to recognize
 - e.g., RElative MOtion
 - A priori chunking / atomic units of movement data (usually in highly constrained environments)
 - e.g., Context Free Grammars, Linear Temporal Logic
 - Repetition
 - e.g., ALCAMP

We use timeseries techniques

- Univariate measure of group configuration polygon area
- Identify strategies through Change Point Detection (CPD) and Dynamic Time Warping (DTW)

METHOD – PREDATOR-PREY PURSUIT ENVIRONMENT

METHOD – PREDATOR-PREY PURSUIT "STRATEGIES"

METHOD - TIMESERIES

Polygon area

Timeseries

- Test episodes were creating by interleaving different strategies, i.e., *ground truth segments*

EXAMPLE – EPISODE 2

METHOD – STRATEGY IDENTIFICATION

Change Point Detection (CPD)

- Combination of various cost functions (mean, variance, covariance, rank, density, etc.) from different distributions of data was utilized to determine change points in the timeseries
 - Divide data into CPD fragments, which can be compared to ground truth segments

Dynamic Time Warping (DTW)

Compare similarities between pairs of timeseries (CPD fragments).

Hausdorff

distance (/500)

235 (47%)

40 (8%)

20 (4%)

25 (5%)

Rand index

0.97

0.94

0.95

0.94

CPD

Metrics comparing ground truth to CPD breakpoints

DTW

 Similarity scores between same-strategy CPD fragments (median = 0.96) > different-strategy CPD fragments (median = 0.90, Mann-Whitney U = 675, n = 58, p < 0.001, r = 0.55).

DISCUSSION

- Our goal: Identify and label the implicit human strategies → Facilitate transparency, promote trust, and provide a better understanding of how humans work together and how computational teammates can be trained to fit into a human-human dynamic.
 - Using timeseries techniques, multi-agent predator-prey pursuit task and policy as ground truth
 - Represent group configuration as polygon area
 - Segment with CPD
 - Classify with DTW

Fragment	2	3	4	5	6	7
1	DT	W _S				
2		S	Imil	a _{rit} ,	, .	
3				7	SC	Pres
4						
5						
6						

DISCUSSION

Limitations

- How well will this method work
 - When obstacles are introduced to the predator-prey environment?
 - When human teammates are introduced?
- What information goes into the timeseries
 - Polygon area looses information, try dynamic factor analysis
 - May depend on strategies
- CPD
 - Cost
 - Sampling rate / quantity of data
- DTW
 - High similarity for different strategies!
- If strategies are unobservable, how useful is comparison to "ground truth" (policies)?

Extensions

- t-distributed stochastic neighbor embedding (TSNE)
 - How specific behaviors are linked to the activations of the network → Do strategy/policy changes map to changes in NN activation?
- Information Theoretic Disentanglement
 - Can strategy be disentangled via deep NN?

SLIDE TITLE GOES HERE

• Thanks to Sebastian S. Rodriguez, Sean L. Barton, James A. Schaffer, Brandon Perelman, Nicholas R. Waytowich, Blaine Hoffman, Derrik E. Asher, and Jonathan Z. Bakdash

DTW DISTANCE AND SIMILARITY SCORES

Episode 1 Fragment	2	3
1	0.19 (0.81)	0.14 (0.87)
2		0.07 (0.93)

Episode 2 Fragment	2	3	4	5	6	7
1	0.07 (0.93)	0.04 (0.97)	0.14 (0.86)	0.04 (0.96)	0.02 (0.98)	0.05 (0.95)
2		0.14 (0.86)	0.08 (0.92)	0.09 (0.91)	0.10 (0.90)	0.03 (0.97)
3			0.21 (0.79)	0.06 (0.94)	0.01 (0.99)	0.13 (0.87)
4				0.14 (0.86)	0.16 (0.84)	0.08 (0.93)
5					0.04 (0.97)	0.08 (0.92)
6						0.09 (0.91)

Episode 3 Fragment	2	3	4
1	0.09 (0.91)	0.05 (0.95)	0.10 (0.90)
2		0.08 (0.92)	0.01 (0.99)
3			0.09 (0.91)

Episode 4 Fragment	2	3	4	5	6	7	8
1	0.18 (0.82)	0.03 (0.97)	0.12 (0.88)	0.03 (0.97)	0.11 (0.89)	0.02 (0.98)	0.05 (0.95)
2		0.24 (0.76)	0.08 (0.92)	0.18 (0.82)	0.07 (0.93)	0.195 (0.81)	0.12 (0.88)
3			0.18 (0.82)	0.02 (0.98)	0.21 (0.79)	0.02 (0.98)	0.09 (0.91)
4				0.11 (0.89)	0.03 (0.97)	0.14 (0.86)	0.05 (0.95)
5					0.18 (0.82)	0.02 (0.98)	0.06 (0.94)
6						0.17 (0.83)	0.07 (0.93)
7							0.04 (0.96)