Теория вероятностей и математическая статистика, Коллоквиум IV

Версия от 09.06.2021 14:17

Содержание

1.	Выборка, оценка, статистика. Несмещенность, состоятельность, асимптотическая нормальность и эф-	
	фективность оценок. Пример отсутствия несмещенной оценки. Отсутсвие эффективной оценки в классе	
	всех оценок. Единственность эффективной оценки. Состоятельность асимптотической нормальной оценки.	6
	1.1. Выборка, оценка, статистика	6
	1.2. Несмещенность, состоятельность, асимптотическая нормальность и эффективность оценок	6
	1.3. Пример отсутствия несмещенной оценки	6
	1.4. Отсутсвие эффективной оценки в классе всех оценок	6
	1.5. Состоятельность асимптотической нормальной оценки	4
2.	Метод моментов и его состоятельность. Метод максимального правдоподобия. Энтропия и состоятель-	
	ность оценки максимального правдоподобия	6
3.	Информация Фишера и неравенство Рао-Крамера. Критерий равенства в неравенстве Рао-Крамера	6
4.	Доверительные интервалы. Различимые методы построения доверительных интервалов (с помощью	
	неравенств на вероятность больших уклонений, с помощью центральной статистики, с помощью асимп-	
	тотически нормальной оценки). Примеры	,
	4.1. Доверительные интервалы	4
	4.2. Различимые методы построения доверительных интер-валов (с помощью неравенств на веро-	
	ятность больших уклонений, с помощью цен-тральной статистики, с помощью асимптотически	
	нормальной оценки)	
5.	Построение точных доверительных интервалов для параметров нормального распределения	Ę
6.	Проверка гипотез. Ошибки 1-го и 2-го рода. Уровень значимости и мощность статистического критерия.	
	Пример построения критерия с помощью доверительного интеграла. Нижняя оценка суммы вероятно-	
	стей ошибок 1-го и 2-го рода.	ļ
7.	Теорема Неймана-Пирсона и пример её применения	ļ
	7.1. Теорема Неймана-Пирсона	Ę
	7.2. Пример применения теоремы Неймана-Пирсона	ļ
8	Эмпирическая функция распределения. Теорема Гливенко-Кантелли	6

- Выборка, оценка, статистика. Несмещенность, состоятельность, асимптотическая нормальность и эффективность оценок. Пример отсутствия несмещенной оценки. Отсутсвие эффективной оценки в классе всех оценок. Единственность эффективной оценки. Состоятельность асимптотической нормальной оценки.
- 1.1. Выборка, оценка, статистика.
- Несмещенность, состоятельность, асимптотическая нормальность и эффективность оценок. 1.2.
- Пример отсутствия несмещенной оценки. 1.3.
- 1.4. Отсутсвие эффективной оценки в классе всех оценок.
- Состоятельность асимптотической нормальной оценки.
- 2. Метод моментов и его состоятельность. Метод максимального правдоподобия. Энтропия и состоятельность оценки максимального правдоподобия.
- 3. Информация Фишера и неравенство Рао-Крамера. Критерий равенства в неравенстве Рао-Крамера.
- 4. Доверительные интервалы. Различимые методы построения доверительных интервалов (с помощью неравенств на вероятность больших уклонений, с помощью центральной статистики, с помощью асимптотически нормальной оценки). Примеры.

Доверительные интервалы

Знать, что оценка $\hat{\theta}_n(X)$ состоятельна (сходится по вероятности к θ) это, конечно, круто, но особо много информации о ней нам не даёт. Нам хотелось бы знать как быстро она куда-то там сходится – хотим для фиксированного $\alpha \in (0,1)$ и фиксированного $\varepsilon > 0$ знать такой номер n, что $P_{\theta}(|\hat{\theta}_n(X) - \theta| < \varepsilon) > 1 - \alpha$.

Определение. $(\hat{\theta}_1(X), \hat{\theta}_2(X))$ — доверительный интервал уровня доверия $1 - \alpha$, если

$$P_{\theta}(\theta \in (\hat{\theta}_1(X), \hat{\theta}_2(X))) \geqslant 1 - \alpha$$

$$P_{\theta}(\hat{\theta}_1(X) \leqslant \theta \leqslant \hat{\theta}_2(X)) \geqslant 1 - \alpha$$

Определение. Последовательность оценок $\hat{\theta}_1^n(X), \hat{\theta}_2^n(X)$ образует асимтотический доверительный интервал, если $\liminf P_{\theta}(\hat{\theta}_1^n(X) \leqslant \theta \leqslant \hat{\theta}_2^n(X)) \geqslant 1 - \alpha$

Пример. Пусть есть выборка из случайных величин с нормальным распределением $X_j \sim \mathcal{N}(\theta,1)$. Знаем, что $\overline{X}_n = \frac{X_1 + \dots + X_n}{n} \xrightarrow{P_{\theta}} \theta$ (ЗБЧ) — среднее хорошо приближает θ .

Посмотрим на разность эмпирического среднего и реальной θ : $\frac{X_1+\dots+X_n}{n}-\theta=\underbrace{\overbrace{(X_1-\theta)}^{\sim\mathcal{N}(0,1)}+\dots+\overbrace{(X_n-\theta)}^{\sim\mathcal{N}(0,1)}}_{n}\sim\mathcal{N}(0,\frac{1}{n})$ $\implies \sqrt{n}(\frac{X_1 + \dots + X_n}{n} - \theta) \sim \mathcal{N}(0, 1)$

Теперь по таблице значений функции распределения нормального закона найдём квантили $z_{\frac{\alpha}{2}}$ и $z_{1-\frac{\alpha}{2}}$: $\Phi(z_{\frac{\alpha}{2}})=$ $\frac{\alpha}{2}, \Phi(z_{1-\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}.$

$$\begin{split} P_{\theta}(z_{\frac{\alpha}{2}} \leqslant \sqrt{n}(\frac{X_1 + \dots + X_n}{n} - \theta) \leqslant z_{1 - \frac{\alpha}{2}}) &= \Phi(z_{1 - \frac{\alpha}{2}}) - \Phi(z_{\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - \alpha \\ P(\frac{z_{\frac{\alpha}{2}}}{\sqrt{n}} - \overline{X_n} \leqslant -\theta \leqslant \frac{z_{1 - \frac{\alpha}{2}}}{\sqrt{n}} - \overline{X_n}) &= 1 - \alpha \\ P(\overline{X_n} - \frac{z_{1 - \frac{\alpha}{2}}}{\sqrt{n}} \leqslant \theta \leqslant \overline{X_n} - \frac{z_{\frac{\alpha}{2}}}{\sqrt{n}}) &= 1 - \alpha \end{split}$$

Заметим, что мы взяли симметричный интервал: $z_{\frac{\alpha}{2}} = -z_{1-\frac{\alpha}{2}}$. В таком случае наш интервал принимает вид:

$$(\overline{X_n}-\frac{z_{1-\frac{\alpha}{2}}}{\sqrt{n}},\overline{X_n}+\frac{z_{1-\frac{\alpha}{2}}}{\sqrt{n}})$$
. В таком случае длина этого интервала равна $O(\frac{1}{\sqrt{n}})$

Но зачем мы решили взять симметричный интервал? Вспомним, что мы от него хотим: минимальной длины. А какой интервал на графике нормального распределения будет захватывать нужную площадь и при этом быть самым коротким среди всех? Правильно, симметричный с центром в пике колокола нормального распределения.

4.2. Различимые методы построения доверительных интер-валов (с помощью неравенств на вероятность больших уклонений, с помощью цен-тральной статистики, с помощью асимптотически нормальной оценки)

1. Неравенства Чебышёва или Чернова

$$X_1, \dots, X_n \sim \text{Bern}(\theta), P(X_j = 1) = \theta$$

Чебышёв:

$$P_{\theta}(|\overline{X_n} - \theta| \geqslant \varepsilon) \leqslant \frac{\mathbb{D}X_1}{n\varepsilon^2} = \frac{\theta(1 - \theta)}{n\varepsilon^2} \leqslant \frac{1}{4n\varepsilon^2} = \alpha \implies \varepsilon = \frac{1}{\sqrt{2n\alpha}} \implies P_{\theta}(\overline{X_n} - \frac{1}{\sqrt{2n\alpha}} < \theta < \overline{X_n} + \frac{1}{\sqrt{2n\alpha}}) \geqslant 1 - \alpha.$$

Чернов:
$$P_{\theta}(|\overline{X_n} - \theta| \geqslant \varepsilon) \leqslant 2e^{-\frac{n\varepsilon^2}{4}} = \alpha$$

$$-\frac{n\varepsilon^2}{4} = \ln\frac{\alpha}{2}$$

$$\varepsilon = 2\sqrt{-\frac{\ln\frac{\alpha}{2}}{n}}$$

$$\implies P_{\theta}(\overline{X_n} - 2\sqrt{-\frac{\ln\frac{\alpha}{2}}{n}} < \theta < \overline{X_n} + 2\sqrt{-\frac{\ln\frac{\alpha}{2}}{n}}) \geqslant 1 - \alpha$$

Заметим, что в обоих оценках мы получили, что длина интервала равна $O(\frac{1}{\sqrt{n}})$, но несложно заметить, что константа Чернова значительно лучше, чем у Чебышёва.

2. Метод центральной статистики

Определение. $V(X, \theta)$ называется центральной статистикой, если:

- (a) её распределение не зависит от θ : $P_{\theta}(V(X,\theta)\leqslant t)=F(t)$
- (b) $\forall X : \theta \mapsto V(X, \theta)$ монотонная

Пусть у нас есть такая статистика. Вопрос: как с её помощью строить доверительные интервалы? Предельно просто: подберём числа t_1 и t_2 таким образом, чтобы $P_{\theta}(t_1 \leqslant \mathrm{V}(X,\theta) \leqslant t_2) \geqslant 1-\alpha$. Мы можем так сделать, потому что распределение V не зависит от θ . Теперь поскольку при любом X наша функция монотонна, то данная оценка равносильна тому, что $P_{\theta}(\hat{\theta}_1(X) \leqslant \theta \leqslant \hat{\theta}_2(X)) \geqslant 1-\alpha$ — чисто из-за монотонности по θ .

 Π ример. $X_j \sim \mathcal{U}(0,\theta) \implies \theta^{-1}X_j \sim \mathcal{U}(0,1)$. Это уже центральная статистика, однако она зависит всего от одного элемента выборки. Рассмотрим $X_{(n)} = \max_{1\leqslant j\leqslant n} X_j$: $P_{\theta}(\theta^{-1}X_{(n)}\leqslant t) = P_{\theta}(\max_{1\leqslant j\leqslant n} \theta^{-1}X_j\leqslant t) = \prod_{j=1}^n P_{\theta}(\underbrace{\theta^{-1}X_j}_{\sim \mathcal{U}(0,1)}\leqslant t) = t^n$

Теперь грубо попробуем оценить, куда там наша статистика попадает:

$$P_{\theta}(\underbrace{t}_{t} \leqslant \theta^{-1}X_{(n)} \leqslant \underbrace{1}_{t_{\alpha}}) = 1 - t^{n} = 1 - \alpha \implies t = \alpha^{\frac{1}{n}}$$

Теперь попробуем вытащить отсюда θ :

$$\begin{split} &P_{\theta}(\alpha^{\frac{1}{n}} \leqslant \theta^{-1}X_{(n)} \leqslant 1) = 1 - \alpha \\ &P_{\theta}(\frac{\alpha^{\frac{1}{n}}}{X_{(n)}} \leqslant \theta^{-1} \leqslant \frac{1}{X_{(n)}}) = 1 - \alpha \\ &P_{\theta}(\underbrace{X_{(n)}}_{\hat{\theta}_{1}(X)} \leqslant \theta \leqslant \underbrace{\frac{X_{(n)}}{\alpha^{\frac{1}{n}}}}_{\hat{\theta}_{2}(X)}) = 1 - \alpha \end{split}$$

Теперь посмотрим на длину полученного доверительного интервала:

$$(\alpha^{-\frac{1}{n}} - 1)X_{(n)}$$

Что мы можем сказать про $\alpha^{-\frac{1}{n}} - 1$? Разложим это дело по Тейлору:

$$\alpha^{-\frac{1}{n}} - 1 \sim e^{-\frac{\ln \alpha}{n}} - 1 \sim \frac{-\ln \alpha}{n} = \underline{O}(\frac{1}{n}) \to \infty$$

Получается длина доверительного интервала с ростом количества элементов выборки стремится к нулю. Получается мы построили что-то более менее разумное.

Часто в роли центральной статистики можно взять следующую лабуду: $V(X,\theta) = -\sum_{j=1}^n \ln F_\theta(X_j)$ — это сумма независимых распределений, поэтому достаточно показать что одно не зависит от θ — тогда в силу независимости сумма тоже будет не зависеть от θ :

 $P_{\theta}(-\ln F_{\theta}(X_j) \leqslant) = P_{\theta}(F_{\theta}(X_j) \geqslant e^{-t}) = P_{\theta}(X_j \geqslant F_{\theta}^{-1}(e^{-t})) = 1 - F_{\theta}(F_{\theta}^{-1}(e^{-t})) = 1 - e^{-t}$, а это экспоненциальное распределение. Сумма экспоненциальных распределений это Гамма распределение $\Longrightarrow V(X, \theta) = \Gamma(n, 1)$

3. Построение асимптотических доверительных интервалов

Пусть у нас есть $\hat{\theta}_n(X)$ — асимптотически нормальная оценка θ с асимптотической дисперсией $\sigma^2(\theta)$. Это значит, что

$$\frac{\sqrt{n}(\hat{\theta}_n(X) - \theta)}{\sigma(\theta)} \xrightarrow{d_{\theta}} Z \sim \mathcal{N}(0, 1)$$

Теперь мы хотим получить доверительный интервал. Если бы у нас $\sigma(\theta)$ была константой, то мы могли бы уже привычно взять там квантили нормального распределения, туды сюды и получить интервал:

$$P_{\theta}(t_1 \leqslant \frac{\sqrt{n}(\hat{\theta}_n(X) - \theta)}{\sigma(\theta)} \leqslant t_2) \to \Phi(t_2) - \Phi(t_1) = 1 - \alpha.$$

Тогда мы могли бы просто взять такие $\Phi(t_2)=1-rac{lpha}{2}$ и $\Phi(t_1)=rac{lpha}{2}$ и получить, что

$$P_{\theta}(\hat{\theta}_n(X) - \frac{t_{1-\frac{\alpha}{2}}\sigma(\theta)}{\sqrt{n}} \leqslant \theta \leqslant \hat{\theta}_n(X) + \frac{t_{1-\frac{\alpha}{2}}\sigma(\theta)}{\sqrt{n}}) \to 1 - \alpha$$

Но тут есть проблема — у нас слева и справа есть $\sigma(\theta)$ в числителе, что совершенно ломает корректность статистики, мы ведь хотим чтобы штуки слева и спрва от θ в неравенстве не зависили от θ . Как это решать? Очень просто, перейти от $\sigma(\theta)$ к состоятельной оценке $\sigma(\theta)$. Возможны следующие случаи:

(a) σ — непрерывная функция

Тогда $\sigma(\hat{\theta}_n(X)) \xrightarrow{P_{\theta}} \sigma(\theta)$ и мы можем везде в наших рассуждениях заменить $\sigma(\theta)$ на $\sigma(\hat{\theta}_n(X))$ и сходимость сохранится:

$$P_{\theta}(\hat{\theta}_n(X) - \frac{t_{1-\frac{\alpha}{2}}\sigma(\hat{\theta}_n(X))}{\sqrt{n}} \leqslant \theta \leqslant \hat{\theta}_n(X) + \frac{t_{1-\frac{\alpha}{2}}\sigma(\hat{\theta}_n(X))}{\sqrt{n}}) \to 1 - \alpha$$

(b) Изначально было ЦПТ

$$\hat{\theta}_n(X) = \overline{X_n}, \sigma^2(\theta) = \mathbb{D}_{\theta}X$$

В таком случае мы можем использовать выборочную дисперсию в качестве состоятельной оценки дисперсии:

$$s^2=rac{1}{n-1}\sum_{j=1}^n(X_j-\overline{X_n})^2$$
 — выборочная дисперсия

(c) Можно поправить нашу асимптотическую дисперсию: подобрать такую функцию φ , что

$$\sqrt{n}(\varphi(\hat{\theta}_n(X)) - \varphi(\theta)) \to \underbrace{\mathcal{N}(0,1)}_{=\varphi'(\theta)\cdot\mathcal{N}(0,\sigma^2(\theta))} \implies \varphi'^2(\theta)\sigma^2(\theta) = 1$$

- 5. Построение точных доверительных интервалов для параметров нормального распределения.
- 6. Проверка гипотез. Ошибки 1-го и 2-го рода. Уровень значимости и мощность статистического критерия. Пример построения критерия с помощью доверительного интеграла. Нижняя оценка суммы вероятностей ошибок 1-го и 2-го рода.
- 7. Теорема Неймана-Пирсона и пример её применения.

7.1. Теорема Неймана-Пирсона.

Пусть гипотеза H_0 утверждает, что плотность выборки – это f_0 , а альтернативная гипотеза H_1 утверждает, что плотность выборки – это f_1 .

Предположим, что $\forall \alpha \in [0,1] \; \exists t := t(\alpha) : P_0(f_1(x) \geqslant t f_0(x)) = \alpha.$

Теорема (Неймана-Пирсона). В такой постановке наиболее мощный критерий уровня значимости α имеет вид $K_{t(\alpha)} := \{f_1(x) \ge t(\alpha)f_0(x)\}.$

Доказательство. Пусть S – тоже критерий уровня значимости α : $P_0(X \in S) \leqslant \alpha = P_0(X \in K_{t(\alpha)})$. Хотим сравнить $P_1(X \in K_{t(\alpha)}) - P_1(X \in S)$. Хотим, чтобы это было больше либо равно нуля. Это и будет означать, что у нас критерий наиболее мощный.

 $P_1(X \in K_{t(lpha)}) - P_1(X \in S) = \int\limits_{K_{t(lpha)}} f_1 dx - \int\limits_{S} f_1 dx = [$ можем выкинуть пересечение, так как на пересечении эти интегралы просто сократятся $] = \int\limits_{K_{t(lpha)}\setminus S} f_1 dx - \int\limits_{S\setminus K_{t(lpha)}} f_1 dx.$ Заметим, что на $S\setminus K_{t(lpha)}$ выполнено $f_1 < t(lpha)f_0$, так как это взято из дополнения к $K_{t(lpha)}$, где по условию выполняется f

Заметим, что на $S\backslash K_{t(\alpha)}$ выполнено $f_1 < t(\alpha)f_0$, так как это взято из дополнения к $K_{t(\alpha)}$, где по условию выполняется $f_1(x) \geqslant t(\alpha)f_0(x)$. Поэтому имеем: $\int\limits_{K_{t(\alpha)}\backslash S} f_1 dx - \int\limits_{S\backslash K_{t(\alpha)}} f_1 dx \geqslant t(\alpha) \int\limits_{K_{t(\alpha)}\backslash S} f_0 dx - t(\alpha) \int\limits_{S\backslash K_{t(\alpha)}} f_0 dx = [\text{снова добавим пересечение и вынесем } t(\alpha)] = t(\alpha) \cdot (\int\limits_{K_{t(\alpha)}} f_0 dx - \int\limits_{S} f_0 dx) = t(\alpha) \cdot (P_0(X \in K_{t(\alpha)}) - P_0(X \in S)) \geqslant 0$ из построения критерия S ($P_0(X \in S) \leqslant \alpha = P_0(X \in K_{t(\alpha)})$).

Получили: $P_1(X \in K_{t(\alpha)}) - P_1(X \in S) \ge 0$, что и требовалось доказать.

7.2. Пример применения теоремы Неймана-Пирсона.

Пример. Пусть у нас выборка из нормального закона $N(\theta,1)$. Пусть наша гипотеза H_0 говорит, что $\theta=\theta_0$, а альтернативная гипотеза H_1 говорит, что $\theta=\theta_1>\theta_0$.

$$f_1(X) = \frac{1}{\sqrt{2\pi^n}} \cdot \exp\left(-\frac{1}{2} \sum_{j=1}^n (X_j - \theta_1)^2\right)$$
$$f_0(X) = \frac{1}{\sqrt{2\pi^n}} \cdot \exp\left(-\frac{1}{2} \sum_{j=1}^n (X_j - \theta_0)^2\right)$$

Зададим критерий K_t из теоремы Неймана-Пирсона (ничего в 0 не обращается – сразу можем поделить):

$$K_t = \left\{ \frac{f_1}{f_0} \geqslant t \right\} = \left\{ exp\left(\frac{1}{2}\sum_{j=1}^n [(X_j - \theta_0)^2 - (X_j - \theta_1)^2]\right) \geqslant t \right\} = [\text{логарифмируем, расскрываем скобки, умножаем на}$$
 два]
$$= \left\{ \sum_{j=1}^n [2X_j(\theta_1 - \theta_0) + n(\theta_0^2 + \theta_1^2)] \geqslant 2\ln t \right\} = \left\{ (\theta_1 - \theta_0)\overline{X_n} \geqslant \frac{\ln t}{n} - \frac{(\theta_0^2 + \theta_1^2)}{2} \right\} = [\text{по условию } \theta_1 > \theta_0 \Rightarrow \text{поделим}]$$

$$= \left\{ \overline{X_n} \geqslant \frac{\ln t}{n} - \frac{(\theta_0^2 + \theta_1^2)}{2}}{\theta_1 - \theta_0} \right\}$$

Таким образом пришли к тому, что $K_t = \left\{ \frac{f_1}{f_0} \geqslant t \right\}$ равносильно множеству $\widetilde{K}_s = \left\{ \overline{X_n} \geqslant s \right\}$. Равносильно в том смысле, что для каждого t мы можем подобрать s(t), что множество K_t совпадает с $\widetilde{K}_{s(t)}$. Теперь будем искать критические множества именно в таком виде (для удобства).

Должно выполняться: $P_0(X \in K_t) = \alpha \Leftrightarrow P_0(X \in \widetilde{K}_{s(t)}) = \alpha$. А что это за вероятности? Это вероятность $P_{\theta_0}(\overline{X_n} \geqslant s) = \alpha$ То есть, $P_{\theta_0}(\sqrt{n}(\overline{X_n} - \theta_0) \geqslant \sqrt{n}(s - \theta_0)) = \alpha$, где $\sqrt{n}(\overline{X_n} - \theta_0) \sim N(0, 1)$, поэтому тут просто написано, что $1 - \Phi(\sqrt{n}(s - \theta_0)) = \alpha$.

Значит, выбираем квантиль нормального закона уровня $1-\alpha$: $Z_{1-\alpha}=\sqrt{n}(s-\theta_0)\Rightarrow s=\theta_0+\frac{Z_{1-\alpha}}{\sqrt{n}}.$ Выразили s.

Таким образом, наше критическое множество $\left\{\overline{X_n} \geqslant \theta_0 + \frac{Z_{1-\alpha}}{\sqrt{n}}\right\}$. Это критерий уровня значимости α .

Теперь посчитаем мощность (это же самый мощный критерий):

$$P_{\theta_1}\left(\overline{X_n} \geqslant \theta_0 + \frac{Z_{1-\alpha}}{\sqrt{n}}\right) = P_{\theta_1}\left(\sqrt{n}(\overline{X_n} - \theta_1) \geqslant \sqrt{n}(\theta_0 - \theta_1) + Z_{1-\alpha}\right) = 1 - \Phi(\sqrt{n}(\theta_0 - \theta_1) + Z_{1-\alpha}).$$

Заметим, что если объём выборки n устремить к бесконечности, то точка, в которой мы берём Φ стремится к минус бесконечности (так как $(\theta_0 - \theta_1) < 0$ по условию), поэтому мощность стремится к 1.

По теореме Неймана-Пирсона выписанная мощность максимальна.

8. Эмпирическая функция распределения. Теорема Гливенко-Кантелли.