Voglio dimostrare $Kc^*(RT)^{-\Delta n} = Kp$

Da PV=nRT n/V=P/RT dove n/V è una concentrazione

$$Kc^*(RT)^{\Delta n} = \frac{(P_C)^c * (P_D)^d}{(P_A)^a * (P_B)^b} = Kp$$
 (*)

Kx

Voglio dimostrare Kc=Kx $(P/RT)^{\Delta n}$ = Kp $(P)^{-\Delta n}$

Raccolgo P

$$(X_{C})^{c}(X_{D})^{d}$$
------ $P^{(c+d)-(a+b)} = Kp$
 $(X_{A})^{a}(X_{B})^{b}$

Sostituisco a Kp l'equivalenza tra Kp e Kc

Sostituisco a Kp l'equivalenza tra Kp e Kc
$$(X_C)^c (X_D)^d$$
 $Kx = ----- = P^{-\Delta n} Kc (RT)^{\Delta n} = Kc (RT/P)^{\Delta n}$ $(X_A)^a (X_B)^b | = Kp * P^{-\Delta n}$ Kn

Kn

Voglio dimostrare Kc=Kn (1/V)^{∆n}

Ricordo la definizione di Kc e che una concentrazione ha le dimensioni di un numero di moli su un volume []=mol/V

$$Kn V^{-\Delta n} = Kc \Rightarrow Kn = Kc V^{\Delta n}$$