Lecture 15: Learning to Rank (with GBDTs)

Why Machine learned relevance?

- We used to rank with traditional ranking functions using a very small number of features; possible to tune weighting coefficient by hand.
- But modern (web) systems use a great number of features.

Using classification for ad hoc IR

- Collect a training corpus of (q, d, r) triples
 - -r: relevance. binary
 - -q and d: query and document
 - * Represent the two with a feature vector (α, ω) : α is cosine similarity, ω is minimum query window size (the shortest text span that includes *all* query words)
- A linear score function is $Score(d, q) = Score(\alpha, \omega) = a\alpha + b\omega + c$.
- This problem setup could be extended to other linear classifiers.

An SVM classifier for information retrieval (Nallapati 2004)

- Features are *not* word presence features, but scores like the summed log tf of all query terms
- Unbalanced data is dealt with by *undersampling* nonrelevant documents during training
- Linear kernel normally best or almost as good as quadratic kernel
- At best the results are about equal to Lemur
- Paper claims that it's easy to add more features (?)

Learning to rank?

- Rather than posing adhoc IR as a classification problem, let's consider it instead as an *ordinal regression* problem.
 - Classification: Mapping to an unordered set of classes
 - Ordinal regression: Mapping to an *ordered* set of classes
- Advantages:
 - Relations between relevance levels are modeled.
 - Documents don't possess some absolute scale of their goodness. Instead, their goodness are judged against other documents in the collection (for a query.)
- Assume a number of categories C of relevance exist
 - These are ordered: $c_1 < c_2 < \cdots < c_i$
- Assume training data is available consisting of
 - Documents query pairs (d,q) represented as feature vectors x_i
 - Relevance ranking c_i