Devoir surveillé n° 5 : corrigé

SOLUTION 1.

1. Dans ce cas, on a $u_{n+1} = \frac{3}{4}u_n^2$ pour tout $n \in \mathbb{N}$.

a. Une récurrence évidente montre que (u_n) est constamment nulle.

b. Puisque $\lambda \neq 0$, $u_1 = \frac{3}{4}\lambda^2 > 0$. Supposons que $u_n > 0$ pour un certain $n \in \mathbb{N}^*$. Alors $u_{n+1} = \frac{3}{4}u_n^2 > 0$. Par récurrence, $u_n > 0$ pour tout $n \in \mathbb{N}^*$.

c. Pour tout $n \in \mathbb{N}^*$, on a donc

$$w_{n+1} = \ln(u_{n+1}) = \ln\frac{3}{4} + 2\ln(u_n) = 2w_n + \ln\frac{3}{4}$$

La suite (w_n) est donc arithmético-géométrique. On a tout simplement pour tout $n \in \mathbb{N}^*$

$$w_{n+1} + \ln \frac{3}{4} = 2\left(w_n + \ln \frac{3}{4}\right)$$

La suite $(w_n + \ln \frac{3}{3})_{n \in \mathbb{N}^*}$ est donc géométrique de raison 2. On en déduit que pour tout $n \in \mathbb{N}^*$

$$w_n + \ln \frac{3}{4} = 2^n \left(w_1 + \ln \frac{3}{4} \right)$$

ou encore

$$w_n=2^{n-1}\left(w_1+\ln\frac{3}{4}\right)-\ln\frac{3}{4}$$

Puisque $w_1 = \ln(\mathfrak{u}_1) = \ln\left(\frac{3}{4}\lambda^2\right)$, pour tout $\mathfrak{n} \in \mathbb{N}^*$

$$w_{n} = 2^{n-1} \ln \left(\left(\frac{3}{4} \lambda \right)^{2} \right) - \ln \frac{3}{4}$$

d. Pour tout $n \in \mathbb{N}^*$

$$u_n = e^{w_n} = \frac{4}{3} \exp\left(w_1 + \ln \frac{3}{4}\right)^{2^{n-1}} = \frac{4}{3} u_1^{2^{n-1}} \left(\frac{3}{4}\right)^{2^{n-1}}$$

Or $u_1 = \frac{3}{4}\lambda^2$ donc pour tout $n \in \mathbb{N}^*$

$$u_n = \frac{4}{3}\lambda^{2^n} \left(\frac{3}{4}\right)^{2^n} = \frac{4}{3} \left(\frac{3}{4}\lambda\right)^{2^n}$$

Remarque. Cette expression est encore valable lorsque n = 0 ou $\lambda = 0$.

e. Si $|\lambda| < \frac{4}{3}$, alors $\left|\frac{3}{4}\lambda\right| < 1$ et donc $(\mathfrak{u}_{\mathfrak{n}})$ converge vers 0. Si $|\lambda| > \frac{4}{3}$, alors $\left|\frac{3}{4}\lambda\right| > 1$. De plus, pour tout $\mathfrak{n} \in \mathbb{N}^*$,

$$u_n = \frac{4}{3} \left| \frac{3}{4} \lambda \right|^{2^n}$$

car 2^n est pair. On en déduit que (u_n) diverge vers $+\infty.$

Si $|\lambda| = \frac{4}{3}$, alors la dernière expression montre que la suite (\mathfrak{u}_n) est constante égale à $\frac{4}{3}$ à partir du rang 1. Elle converge donc vers $\frac{4}{3}$.

Remarque. On pouvait également utiliser la suite (w_n) dans le cas où $\lambda \neq 0$. En effet pour tout $n \in \mathbb{N}^*$,

$$w_n = 2^{n-1} \ln \left(\left(\frac{3}{4} \lambda \right)^2 \right) - \ln \frac{3}{4}$$

Si $|\lambda| < \frac{4}{3}$, alors $0 < \left(\frac{3}{4}\lambda\right)^2 < 1$ puis $\ln\left(\left(\frac{3}{4}\lambda\right)^2\right) < 0$ donc (w_n) diverge vers $-\infty$. Puisque $u_n = e^{w_n}$ pour tout $n \in \mathbb{N}^*$, (u_n) converge vers 0.

Si $|\lambda| > \frac{4}{3}$, alors $\left(\frac{3}{4}\lambda\right)^2 > 1$ puis $\ln\left(\left(\frac{3}{4}\lambda\right)^2\right) > 0$ donc (w_n) diverge vers $+\infty$. Puisque $u_n = e^{w_n}$ pour tout $n \in \mathbb{N}^*$, (u_n) converge vers $+\infty$.

Si $|\lambda| = \frac{4}{3}$, alors $\left(\frac{3}{4}\lambda\right)^2 = 1$ puis $\ln\left(\left(\frac{3}{4}\lambda\right)^2\right) = 0$ donc (w_n) est constante égale à $-\ln\frac{3}{4}$ et converge donc vers $-\ln\frac{3}{4}$. Puisque $u_n = e^{w_n}$ pour tout $n \in \mathbb{N}^*$, (u_n) converge vers $\frac{4}{3}$.

- **2.** Dans ce cas, on a donc $u_{n+1} = \frac{1}{4} (3u_n^2 8u_n + 12)$.
 - **a.** Pour tout $n \in \mathbb{N}$

$$u_{n+1} - u_n = \frac{1}{4} (3u_n^2 - 12u_n + 12) = \frac{3}{4} (u_n - 2)^2 \ge 0$$

La suite (u_n) est donc croissante.

- **b.** Supposons que (u_n) converge vers une limite l. Alors $\lim_{n\to+\infty} u_{n+1} u_n = 0$ et $\lim_{n\to+\infty} \frac{3}{4}(u_n 2)^2 = \frac{3}{4}(1-2)^2$. Par unicité de la limite, $\frac{3}{4}(1-2)^2 = 0$ et donc l = 2.
- c. Comme (u_n) est croissante, $u_n \ge \lambda$ pour tout $n \in \mathbb{N}$. Si (u_n) convergeait vers une certaine limite l, on aurait $l \ge \lambda > 2$ par passage à la limite. Ceci est impossible d'après la question **2.b**. Comme (u_n) est croissante, elle converge ou diverge vers $+\infty$ d'après le théorème de la limite monotone. Puisqu'elle ne peut converger, elle diverge vers $+\infty$.
- d. Il s'agit de résoudre une équation du second degré.

$$\begin{split} u_1 &= 2 \\ \iff \frac{1}{4} \left(3\lambda^2 - 8\lambda + 12 \right) = 2 \\ \iff 3\lambda^2 - 8\lambda + 4 = 0 \\ \iff (3\lambda - 2)(\lambda - 2) = 0 \\ \iff \lambda \in \left\{ \frac{2}{3}, 2 \right\} \end{split}$$

Les réels recherchés sont donc $\lambda_1 = \frac{2}{3}$ et $\lambda_2 = 2$.

e. Puisque (u_n) est croissante, on a clairement $u_n \ge \lambda \ge \lambda_1$ pour tout $n \in \mathbb{N}$.

On montre alors par récurrence que $u_n \leqslant \lambda_2 = 2$ pour tout $n \in \mathbb{N}$.

L'initialisation est claire.

Supposons $u_n \leqslant \lambda_2$ pour un certain $n \in \mathbb{N}$. D'après notre remarque préliminaire, on a même $\lambda_1 \leqslant u_n \leqslant \lambda_2$. Alors

$$u_{n+1} = \frac{1}{4} \left(3u_n^2 - 8u_n + 12 \right) = \frac{1}{4} \left((3u_n - 2)(u_n - 2) + 8 \right) = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2$$

 $\mathrm{car}\ u_n - \lambda_1 \geqslant 0 \ \mathrm{et}\ u_n - \lambda_2 \leqslant 0.$

Par récurrence, $u_n \leq 2$ pour tout $n \in \mathbb{N}$.

La suite (u_n) étant croissante et majorée, elle converge. D'après la question **2.b**, (u_n) converge vers 2.

f. On remarque que

$$u_1=\frac{3}{4}(3\lambda^2-8\lambda+12)=\frac{3}{4}(\lambda-\lambda_1)(\lambda-\lambda_2)+2>2$$

Il suffit alors de reprendre la preuve de la question **2.c**. Puisque (u_n) est croissante, $u_n \ge u_1$ pour tout $n \in \mathbb{N}^*$. Si (u_n) convergeait vers une limite l, on aurait $l \ge u_1 > 2$ ce qui est impossible d'après la question **2.b**. La suite (u_n) ne converge donc pas donc, étant croissante, elle diverge vers $+\infty$.

- **3.** a. On remarque que P(a) = (a-2)(a-b) > 0, P(b) = (b-2)(b-a) < 0 et P(2) = (2-a)(2-b) > 0.
 - **b.** Pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{1}{4}P(u_n) + u_n$$

Comme P est continue en L, on obtient par passage à la limite

$$L = \frac{1}{4}P(L) + L$$

et donc P(L) = 0. Ainsi L est une des deux racines de P.

Le signe de P(a), P(b) et P(2) et la continuité de P montre que P s'annule sur a, b et a, b via le théorème des valeurs intermédiaires. Puisque P possède au plus deux racines, c'est qu'il en possède exactement deux et qu'elles sont situés dans les intervalles a, b et a, b.

On en déduit que a < L < b ou b < L < 2.

SOLUTION 2.

- **1.** Soit $x \in [0, 1]$. Alors $\sqrt{x} \in [0, 1]$ donc $f(x) = 1 \sqrt{x} \in [0, 1]$.
- 2. On procède par récurrence. Tout d'abord, $u_0 \in [0,1]$. Supposons que $u_n \in [0,1]$ pour un certain $n \in \mathbb{N}$. Alors $u_{n+1} = f(u_n) \in [0,1]$ d'après la question précédente.
- 3. f est clairement décroissante sur [0,1] à valeurs dans [0,1]. On en déduit que $f \circ f$ est croissante sur [0,1].
- **4.** Pour $x \in [0, 1]$,

$$f(x) = x$$

$$\iff \qquad \sqrt{x} = 1 - x$$

$$\iff \qquad x = (1 - x)^2 \qquad \text{car les membres de l'égalité précédente sont positifs}$$

$$\iff \qquad x^2 - 3x + 1 = 0$$

Les racines du trinôme précédent sont $\frac{3-\sqrt{5}}{2}$ et $\frac{3+\sqrt{5}}{2}$. La première racine appartient à l'intervalle [0,1] puisque $1 \le \sqrt{5} \le 3$ mais la seconde racine n'appartient pas à l'intervalle [0,1] car $\sqrt{5} > 1$.

Finalement, l'unique point fixe de f sur [0, 1] est $\alpha = \frac{3-\sqrt{5}}{2}$.

- **5.** Puisque $20 \leqslant 25$, $5 \leqslant \frac{25}{4}$ puis $\sqrt{5} \leqslant \frac{5}{2}$ puis $\alpha = \frac{3-\sqrt{5}}{2} \geqslant \frac{1}{4} = u_0$.
- 6. On procède par récurrence. Tout d'abord, $u_0 \le \alpha$. Supposons $u_{2n} \le \alpha$ pour un certain $n \in \mathbb{N}$. Alors par croissance de $f \circ f$ sur [0,1],

$$f\circ f(u_{2n})\leqslant f\circ f(\alpha)$$

c'est-à-dire

$$u_{2n+2} \leqslant \alpha$$

On en déduit que $u_{2n} \leqslant \alpha$ pour tout $n \in \mathbb{N}$.

- 7. On a $u_0 = \frac{1}{4}$ puis $u_1 = \frac{1}{2}$ et enfin $u_2 = 1 \frac{1}{\sqrt{2}}$. Puisque $8 \leqslant 9$, $\frac{1}{2} \leqslant \frac{9}{16}$ puis $\frac{1}{\sqrt{2}} \leqslant \frac{3}{4}$ et enfin $u_2 = 1 \frac{1}{\sqrt{2}} \geqslant \frac{1}{4} = u_0$. Supposons maintenant que $u_{2n} \leqslant u_{2n+2}$ pour un certain $n \in \mathbb{N}$. Par croissance de $f \circ f$, $u_{2n+2} = f \circ f(u_{2n}) \leqslant f \circ f(u_{2n+2}) = u_{2n+4}$. Par récurrence, on a donc $u_{2n} \leqslant u_{2n+2}$ pour tout $n \in \mathbb{N}$. Ainsi (u_{2n}) est croissante. La suite (u_{2n}) est croissante et majorée par α donc elle converge.
- **8.** Soit $x \in [0, 1]$.

$$f \circ f(x) = x$$

$$\iff 1 - \sqrt{1 - \sqrt{x}} = x$$

$$\iff (1 - x)^2 = 1 - \sqrt{x} \quad \text{car les membres de l'égalité précédente sont positifs}$$

$$\iff \sqrt{x} = 1 - (1 - x)^2$$

$$\iff \sqrt{x} = x(2 - x)$$

$$\iff x = x^2(2 - x)^2 \quad \text{car les membres de l'égalité précédente sont positifs}$$

$$\iff x^2(2 - x)^2 - x = 0$$

$$\iff x(x(2 - x)^2 - 1) = 0$$

$$\iff x(x^3 - 4x^2 + 4x - 1) = 0$$

$$\iff x(x - 1)(x^2 - 3x + 1) = 0$$

Or on a vu précédemment que α est la seule racine du trinôme $x^2 - 3x + 1$ dans l'intervalle [0, 1]. On en déduit que les points fixes de $f \circ f$ sur [0,1] sont $0, \alpha$ et 1.

9. f est continue sur [0,1] à valeurs dans [0,1] donc $f \circ f$ est continue sur [0,1]. De plus, $\mathfrak{u}_{2n+2} = f \circ f(\mathfrak{u}_{2n})$ et $\mathfrak{u}_{2n} \in [0,1]$ pour tout $n \in \mathbb{N}$ donc la suite (\mathfrak{u}_{2n}) converge vers un point fixe de $f \circ f$ sur [0,1], à savoir $0, \alpha$ ou 1.

Or (u_{2n}) est croissante et majorée par α donc $u_0 \leq u_{2n} \leq \alpha$ pour tout $n \in \mathbb{N}$. Sa limite ℓ vérifie donc $u_0 \leq \ell \leq \alpha$. A fortiori, $0 < \ell \le \alpha$. Puisque ℓ est un point fixe de $f \circ f$, $\ell = \alpha$.

Enfin, $u_{2n+1} = f(u_{2n})$ pour tout $n \in \mathbb{N}$ et f est continue sur [0,1] donc (u_{2n+1}) converge vers $f(\alpha) = \alpha$.

Puisque les suites (u_{2n}) et (u_{2n+1}) convergent toutes les deux vers α , la suite (u_n) converge également vers α .

SOLUTION 3.

1. Posons $f: x \mapsto x + \tan x$. f est dérivable sur $\left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$ et

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \ f(x) = 2 + \tan^2 x > 0$$

f est donc strictement croissante sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$.

Par ailleurs, f est continue sur $]-\frac{\pi}{2},\frac{\dot{\pi}}{2}[.$ Enfin, f admet $-\infty$ pour limite en $-\frac{\pi}{2}$ et $+\infty$ pour limite en $+\infty[.$

D'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = n admet une unique solution sur $\left|-\frac{\pi}{2},\frac{\pi}{2}\right|$.

2. Soit $n \in \mathbb{N}$. Par définition de \mathfrak{u}_n ,

$$\tan u_n = n - u_n$$

 $\mathrm{Or}\ u_n\in \left]-\tfrac{\pi}{2},\tfrac{\pi}{2}\right[\ \mathrm{donc}\ u_n=\arctan(\tan u_n).\ \mathrm{Il}\ \mathrm{s'ensuit}\ \mathrm{que}\ u_n=\arctan(n-u_n).$

Pour tout $n \in \mathbb{N}$, $u_n < \frac{\pi}{2}$ donc $n - u_n > n - \frac{\pi}{2}$. Par théorème de minoration, $\lim_{n \to +\infty} n - u_n = +\infty$. Puisque $\operatorname{arctan\ admet\ pour\ limite} \stackrel{\frown}{\underline{\pi}} \ \operatorname{en} \ +\infty, \ \lim_{n \to +\infty} \stackrel{\frown}{\underline{\mathfrak{u}_n}} = \frac{\pi}{2}.$

3. Posons $g: x \in \mathbb{R}_+^* \mapsto \arctan x + \arctan \frac{1}{x}$. g est dérivable sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$

$$g'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} \frac{1}{1+\frac{1}{x^2}} = 0$$

Ainsi g est constante sur l'intervalle \mathbb{R}_+^* . Puisque $g(1) = \frac{\pi}{2}$, g est constante égale à $\frac{\pi}{2}$ sur cet intervalle. On en déduit le résultat demandé.

4. Puisque $u_n < \frac{\pi}{2} \leqslant 2$, $n-u_n > 0$ pour tout entier $n \geqslant 2$. D'après la question précédente,

$$u_n = \arctan(n - u_n) = \frac{\pi}{2} - \arctan\left(\frac{1}{n - u_n}\right)$$

Par opérations sur les limites, $\lim_{n\to+\infty}\frac{1}{n-u_n}=0$. Or $\arctan x \sim x$ donc $\arctan \left(\frac{1}{n-u_n}\right) \sim \frac{1}{n-u_n}$.

Puisque (u_n) est bornée, $n - u_n \underset{n \to +\infty}{\sim} n$ donc $\frac{1}{n - u_n} \underset{n \to +\infty}{\sim} \frac{1}{n}$. Ainsi

$$\arctan\left(\frac{1}{n-u_n}\right) \underset{n \to +\infty}{\sim} \frac{1}{n}$$

ou encore

$$\arctan\left(\frac{1}{n-u_n}\right) = \frac{1}{n-u_n} + o\left(\frac{1}{n}\right)$$

Il s'ensuit que

$$u_n = \frac{\pi}{2} - \frac{1}{n} + o\left(\frac{1}{n}\right)$$

5. Tout d'abord

$$\frac{1}{n-u_n} = \frac{1}{n} \cdot \frac{1}{1-\frac{u_n}{n}}$$

Puisque $\lim_{n\to+\infty}\frac{u_n}{n}=0$,

$$\frac{1}{1 - \frac{u_n}{n}} = 1 + \frac{u_n}{n} + \frac{u_n^2}{n^2} + o\left(\frac{u_n^2}{n^2}\right)$$

D'après la question précédente,

$$\frac{u_n}{n} = \frac{\pi}{n^{n \to +\infty}} \frac{\pi}{2n} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$$

puis

$$\frac{u_n^2}{n^2} \underset{n \to +\infty}{=} \frac{\pi^2}{n^2} + o\left(\frac{1}{n^2}\right)$$

On en déduit que

$$\frac{1}{1 - \frac{u_n}{n}} \, \underset{_{n \to +\infty}}{=} \, 1 + \frac{\pi}{2n} + \frac{\pi^2 - 4}{4n^2} + o\left(\frac{1}{n^2}\right)$$

Finalement,

$$\frac{1}{n-u_n} = \frac{1}{n} \cdot \frac{1}{1-\frac{u_n}{n}} = \frac{1}{n++\infty} \frac{1}{n} + \frac{\pi}{2n^2} + \frac{\pi^2-4}{4n^3} + o\left(\frac{1}{n^3}\right)$$

- **6.** On sait que $\frac{1}{1+x^2} = 1-x^2+o(x^2)$. Puisque arctan est la primitive de $x\mapsto \frac{1}{1+x^2}$ qui s'annule en 0, arctan $x=x\to 0$ $x - \frac{x^3}{3} + o(x^3)$.
- 7. On sait que $\arctan x = x \frac{x^3}{3} + o(x^3)$. On en déduit via la question précédente que

$$\begin{split} \arctan\left(\frac{1}{n-u_n}\right) &= \frac{1}{n \to +\infty} \frac{1}{n} + \frac{\pi}{2n^2} + \frac{\pi^2 - 4}{4n^3} - \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right) \\ &= \frac{1}{n \to +\infty} \frac{1}{n} + \frac{\pi}{2n^2} + \frac{3\pi^2 - 16}{12n^3} + o\left(\frac{1}{n^3}\right) \end{split}$$

Finalement

$$u_n = \prod_{n \to +\infty} \frac{\pi}{2} - \frac{1}{n} - \frac{\pi}{2n^2} - \frac{3\pi^2 - 16}{12n^3} + o\left(\frac{1}{n^3}\right)$$

Solution 4.

- 1. Récurrence évidente.
- $\textbf{2.} \ \mathrm{Si} \ u_n \geqslant 1, \ \mathrm{alors} \ u_n \leqslant u_n^2. \ \mathrm{De} \ \mathrm{plus}, \ n \geqslant 1 \ \mathrm{donc} \ 1 + u_n \leqslant n + u_n^2. \ \mathrm{Par} \ \mathrm{cons\acute{e}quent}, \ u_{n+1} \leqslant 1.$ Si $u_n \le 1$, alors $1 + u_n \le 2$. On a aussi $n + u_n^2 \ge n$ de manière évidente. Donc $u_{n+1} \le \frac{2}{n}$.
- **3.** Si $u_2 \ge 1$, alors $u_3 \le 1$. Si $u_2 \leqslant 1$, alors $u_3 \leqslant \frac{2}{2} = 1$.

Montrons par récurrence que pour $n \ge 3$, $u_n \le \frac{2}{n-1}$.

 $\begin{array}{l} \textbf{Initialisation:} \text{ On a vu que } u_3 \leqslant 1 \text{ donc l'hypothèse de récurrence est vraie au rang 3.} \\ \textbf{Hérédité:} \text{ Supposons que } u_n \leqslant \frac{2}{n-1} \text{ pour un certain } n \geqslant 3. \text{ On a donc } u_n \leqslant 1 \text{ et donc } u_{n+1} \leqslant \frac{2}{n} \text{ et l'hypothèse} \\ \vdots \\ \vdots \\ \vdots \\ \end{array}$ de récurrence est vraie au rang n+1.

Conclusion : L'hypothèse de récurrence est vraie pour tout $n \ge 3$.

- 4. Par le théorème des gendarmes, on conclut que (u_n) converge vers 0.
- 5. Pour $n\geqslant 2$, on $a:u_n=\frac{1+u_{n-1}}{n+u_{n-1}^2}$. Or $u_{n-1}=o(1)$ d'après la question précédente. Donc $1+u_{n-1}\sim 1$ et $n + u_n^2 \sim n$. On en déduit que $u_n \sim 1$
- **6.** Après un calcul laborieux, on trouve :

$$v_{n+1} = \frac{2n^2 + n^2v_n + n + nv_n - v_n^2 - 2v_n - 1}{n^3 + v_n^2 + 2v_n + 1}$$

7. On a $v_n = o(1)$. Par conséquent

$$2n^2 + n^2\nu_n + n + n\nu_n - \nu_n^2 - 2\nu_n - 1 \sim 2n^2$$

 $n^3 + \nu_n^2 + 2\nu_n + 1 \sim n^3$

Ainsi $v_{n+1} \sim \frac{2}{n}$ et $v_n \sim \frac{2}{n-1} \sim \frac{2}{n}$.

8. Comme $\nu_n=\frac{2}{n}+o\left(\frac{1}{n}\right)\!,$ on a :

$$u_n=\frac{1}{n}+\frac{\nu_n}{n}=\frac{1}{n}+\frac{2}{n^2}+o\left(\frac{1}{n^2}\right)$$