Euclidean Geometry

Bur Oak Math Club • November 6th 2024

01

Useful Formulas

•
$$A_{\text{Rectangle}} = l \times w$$

• $A_{\text{Triangle}} = \frac{1}{2}(b \times h)$

• $A_{\text{Trapezoid}} = \frac{1}{2}(a+b)h$

• $A_{\text{Circle}} = \pi r^2$

Note: The perimeter of a circle is $2\pi r$.

- The area of an equilateral triangle of side length s is $\frac{\sqrt{3}s^2}{4}$.
- Heron's formula The area of a triangle with side lengths a, b, and c is $\sqrt{s(s-a)(s-b)(s-c)}$ where $s = \frac{a+b+c}{2}$.

Volume

•
$$V_{\text{Pyramid}} = \frac{1}{3} A_{\text{Base}} \times h$$

•
$$V_{\text{Cylinder}} = \pi r^2 h$$

•
$$V_{\text{Cone}} = \frac{1}{3}\pi r^2 \times h$$

02

Circle Properties

Circle Properties

- The area of the sector formed by a central angle of θ° is given by $A_{\rm sector} = \frac{\theta}{360}\pi r^2$, where r is the radius of the circle. The arc formed has length $s = \frac{\theta}{360}2\pi r$.
- The angle inscribed in a semicircle is a right angle.

• When an arc subtends an inscribed angle and a central angle, the measure of the central angle is twice the measure of the inscribed angle.

Angles subtended by the same arc are equal.

 \bullet A tangent to a circle and the radius drawn to the point of tangency meet at 90°.

Cyclic quadrilateral

Properties

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.

• Tangent segments from an external point to a circle are equal.

02

Questions

Questions

1. In the diagram, a sector of a circle with centre O, a radius of 5 and $\angle AOB = 72^{\circ}$ is shown. What is the perimeter of the sector?

Questions

2. In the diagram, AB and BC are chords of the circle with AB < BC. If D is the point on the circle such that AD is perpendicular to BC and E is the point on the circle such that DE is parallel to BC, prove that ∠EAC + ∠ABC = 90°.

Questions

3. In the isosceles trapezoid ABCD, AB = CD = x. The area of the trapezoid is 80. A circle with centre O is drawn inside the trapezoid such that it is tangent to all four sides of the trapezoid. Given that the radius of the circle is 4, determine the value of x.

