

# Classification Tree CART

### **Learning Objectives**

- What is Classification Technique?
- CHAID, CART, C4.5 Intro
- Gini Gain Computation
- Why are Classification Tree algorithms Recursive?
- What is pre-pruning and post-pruning in ClassificationTree?
- What is Loss?
- What is Validation? What is Cross-Validation?
- Why you should avoid over-fitting?
- Performance Measure

# **Analytics that are Actually Used**



Classification and regression trees / decision trees and Linear Regression are the most popular predictive analytics techniques used.

### What is Classification?

The action or process of classifying something according to shared qualities or characteristics.



### Defining Characteristics of each animal classification

- Mammals Mammals are vertebrates (backboned animals). Mammals are warm-blooded and have hair. Mammals are able to move around using limbs
- Birds Birds are warm-blooded vertebrates, having a body covered with feathers, forelimbs modified into wings, scaly legs, a beak, and no teeth, and bearing young ones in a hard-shelled egg
- Insects any of small invertebrate animals which typically have a well defined head, thorax, and abdomen, only three pairs of legs, and typically one or two pair of wings
- Amphibian any cold-blooded vertebrate that live on land but breed in water
- Reptiles class of cold-blooded air-breathing vertebrates with completely ossified skeleton and a body usually covered with scales or horny plates
- Fish A limbless cold-blooded vertebrate animal with gills and fins and living wholly in water

# Why Classify?

# To Explain (Profile)

Explaining in the classification world is called Profiling

or

To Predict (Classify)

Predicting the class of new records is called Classifying

### Win Back Campaign Classification Analysis



### Main issues of classification tree learning

- Choosing the splitting criterion
  - Impurity based criteria
  - Information gain
  - Statistical measures of association
- Binary or multiway splits
  - Multiway split
  - Binary split
- Finding the right sized tree
  - Pre-pruning
  - Post-pruning

### **Popular Classification Techniques**

- CHAID CHi-squared Automatic Interaction Detector. The "Chi-squared" part of the name arises because the technique essentially involves automatically constructing many cross-tabs, and working out statistical significance of the proportions. The most significant relationships are used to control the structure of a tree diagram
  - CHAID is a non-binary decision tree; Recursive Partitioning Algorithm
  - Continuous variables must be grouped into a finite number of bins to create categories.
- CLASSIFICATION AND REGRESSION TREES (CART) are binary decision trees, which split a single variable at each node.
  - The CART algorithm recursively goes though an exhaustive search of all variables and split values to find the optimal splitting rule for each node.
- C4.5 builds decision trees from a set of training data using the concept of information entropy



# **CART | Splitting Criteria**

- CART uses the Gini Index as measure of impurity
- Gini of a Node

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

(NOTE:  $p(j \mid t)$  is the relative frequency of class j at node t).

 Gini of Split Node is computed as Weighted Avg Gini of each Node at Split Node level

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

n<sub>i</sub> = number of records at childi,n = Total number of records in parent node

Gini Gain = Gini(t) – Gini(split)

### **Gini calculations**

| Cust_ID | Gender | Occupation | Age | Target |
|---------|--------|------------|-----|--------|
| 1       | M      | Sal        | 22  | 1      |
| 2       | M      | Sal        | 22  | 0      |
| 3       | М      | Self-Emp   | 23  | 1      |
| 4       | M      | Self-Emp   | 23  | 0      |
| 5       | М      | Self-Emp   | 24  | 1      |
| 6       | М      | Self-Emp   | 24  | 0      |
| 7       | F      | Sal        | 25  | 1      |
| 8       | F      | Sal        | 25  | 0      |
| 9       | F      | Sal        | 26  | 0      |
| 10      | F      | Self-Emp   | 26  | 0      |



| Node       | Gini Computation Formula         | Gini Index |
|------------|----------------------------------|------------|
| Overall    | = 1 - ( (4/10)^2 + (6/10)^2 )    | 0.48       |
| Gender = M | $= 1 - ((3/6)^2 + (3/6)^2)$      | 0.50       |
| Gender = F | $= 1 - ((1/4)^2 + (3/4)^2)$      | 0.375      |
| Gender     | = (6/10) * 0.5 + (4/10) * 0.375  | 0.45       |
| Gini Gain  | = Gini (Overall) - Gini (Gender) | 0.03       |

### **Gini calculations**

Root Node
N:10; T:4

Occupation

Sal
N: 5; T: 2

Self-Emp
N: 5; T:2

| Node               | Gini Computation Formula                | Gini<br>Index |
|--------------------|-----------------------------------------|---------------|
| Overall            | = 1 - ( (4/10)^2 + (6/10)^2 )           | 0.48          |
| Occ = Sal          | = 1 - ( (2/5)^2 + (3/5)^2)              | 0.48          |
| Occ = Self-<br>Emp | = 1 - ( (2/5)^2 + (3/5)^2)              | 0.48          |
| Occupation         | = (5/10) * 0.48 + (5/10) * 0.48         | 0.48          |
| Gini Gain          | = Gini (Overall) – Gini<br>(Occupation) | 0.0           |

| Age          | <=22 | <=23 | <=24 | <=25 |  |
|--------------|------|------|------|------|--|
| Gini (Left)  | 0.5  | 0.5  | 0.5  | 0.5  |  |
| Gini (Right) | 0.47 | 0.44 | 0.38 | 0    |  |
| Gini Split   | 0.48 | 0.47 | 0.45 | 0.40 |  |
| Gini Gain    | 0.0  | 0.01 | 0.03 | 0.08 |  |
|              |      |      |      |      |  |

### **Decision Tree control arguments**

- Min\_samples\_split: the minimum number of observations that must exist in a nodein order for a split to be attempted.
- Min\_samples\_leaf: the minimum number of observations in any terminal leaf node. If only one of min\_samples\_leaf or min\_samples\_split is specified, the code either sets min\_samples\_split to min\_samples\_leaf\*3 or min\_samples\_leaf to min\_samples\_split/3,as appropriate.
- max\_depth: The maximum depth of the tree.if NONE then nodes are expanded until all leaves are pure or until all leaves contains less than min\_samples\_split samples.
- **Criterion**: The function to measure the quality of the split. It can be "gini" for the gini impurity and "entropy" for the information gain.

#### Loss, Mis-Classification Error and Response Rate



- Loss is the number of cases misclassified in a given node
- Mis-Classification Error is the ratio of total number of cases misclassified to total number of cases
  - We are interested in misclassification error for the full tree
- Response Rate is the ratio of number of responders (Target = 1) to the total number of cases
  - We are interested in finding nodes where the response rate is very high

What is the mis-classification error for the above tree?

## Plotting the Classification Tree



# **Concepts | Greedy Algorithm**



Make 31 Paise using any combination of above coins

Optimal solution with few coins: 25 + 5 + 1

What if the 5 paise coin is not there?

Optimal solution with few coins: 10 \* 3 + 1

Greedy Algorithm solution: 25 + 1 \* 6

# **Concepts | Cross Validation**

| K FoldCV | P1    | P2    | P3    | P4    | P5    | P6    | P7    | P8    | P9    | P10   |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Fold 1   | Train | Test  |
| Fold 2   | Train | Test  | Train |
| Fold 3   | Train | Test  | Train | Train |
| Fold 4   | Train | Train | Train | Train | Train | Train | Test  | Train | Train | Train |
| Fold 5   | Train | Train | Train | Train | Train | Test  | Train | Train | Train | Train |
| Fold 6   | Train | Train | Train | Train | Test  | Train | Train | Train | Train | Train |
| Fold 7   | Train | Train | Train | Test  | Train | Train | Train | Train | Train | Train |
| Fold 8   | Train | Train | Test  | Train |
| Fold 9   | Train | Test  | Train |
| Fold 10  | Test  | Train |

 Cross Validation is part of the CART algorithm

 Method to see how well the model performs to unseen data

 Typically xval parameter for crossvalidation is set to 10

# **Concepts | Over-fitting**

- If you grow the tree too long you will run the risk of over-fitting
- Classification model may not work well on unseen data



### How do we avoid Over-fitting?

**Stopping Rule**: don't expand a node if the impurity reduction of the best split is below some threshold

**Pruning**: grow a very large tree and merge backnodes

#### Concepts | Parsimony Principle & Re-substitution Error

- Parsimony principle is basic to all science and tells us to choose the simplest scientific explanation that fits the evidence.
- Resubstitution Error: It measures what fraction of the cases in a node is classified incorrectly if we assign every case to the majority class in that node; It always favours large tree
- To counter balance the resubstitution error we need a penalty component that favours smaller tree



Re (prunded) = 113 / 530Re (leaves) = 107 / 530

# **Cost Component Pruning**

- "cost-complexity" a measure of avg. error reduced per leaf
- Calculate number of errors for each node if collapsed to leaf
- Compare to errors in leaves, taking into account more nodes used



Re (prunded) + 1 
$$\alpha$$
 = Re (leaves) + 3  $\alpha$  113/530 + 1  $\alpha$  =  $107/530+3$   $\alpha$   $\alpha$  =  $0.0056$ 

### **Pruning**

- Pruning is Basically the average cost complexity reduced per leaf in a Decision Tree.
- Generally It's a hit & try method to get the accuracy improved over the depth of tree getting reduced or average number of nodes reduced without over fitting.
- Practically, We creates a Tree structure which is getting refined on certain pre-assumptions for improving the performance and accuracy of a Decision Tree classifier

### **Pruned Classification Tree**



### **Model Evaluation**

Various measures to see the model performance

- Error Matrix
- Gini Coefficient
- AUC
- KS
- Lift Chart

Demo of Rattle interface to build model and generate various model evaluation measures



https://www.youtube.com/watch?v=OAl6eAyP-yo

### Confusion Matrix... ©©©

#### **Actual Values**

Positive (1) Negative (0)

**Predicted Values** 

Positive (1)

Negative (0)

| TP | FP |
|----|----|
| FN | TN |

| Classification Matrix |   | Predicted |   |  |
|-----------------------|---|-----------|---|--|
|                       |   | Y         | N |  |
| Actual Y              |   | а         | b |  |
|                       | N | С         | d |  |

Sensitivity = True Positive Rate
= True Positive / Total Positive
= a / (a + b)

Specificity = True Negative / TotalNegative = d / (c + d)

False Positive Rate = 1 - Specificity ison

