Zach Swain 11/5/19

MSEG608-HW8

1.

$$M=100~g~,~M_0=54~\frac{g}{mol}$$

$$\frac{(100~g)}{\left(54~\frac{g}{mol}\right)}=~1.85~mol$$

$$(1.85~mol)*\left(6.022E23~\frac{monomers}{mol}\right)=1.11E24~monomers$$

A crosslinked system will have all monomers covalently bonded together (networked) via their crosslinks

1.11E24 monomers covalently bonded

2.

 M_n : Number average molecular weight M_w : Weight or mass average molecular weight

M_z: Z-average molecular weight

Mz+1: Z+1-average molecular weight

M_v: Viscosity average: a from Mark-Houwink equation

 $[\eta] = KM^a$

[1]

 $M_w/M_n > 1$ is a measure of dispersity, D0.5 <-a<-0.8

$$M = \frac{\Sigma N_i M^{n+1}}{\Sigma N_i M_i^n} \begin{tabular}{ll} 1.00-1.10: very narrow; \\ 1.10-1.25: narrow; \\ 1.25-2.5: broad; \\ 2.5-10.0: very broad \\ \end{tabular}$$

where: n = 1 gives M = Mwn = 2 gives M = Mzn = 3 gives M = Mz+1

n=0 gives M=M_n

$$\left(\frac{\sum_{i} n_{i} M_{i}^{1+\sigma}}{\sum_{i} n_{i} M_{i}}\right)^{1/a}$$

Intrinsic viscosity

MW	#					
5.50E+03	1.09E+19					
2.00E+04	3.01E+18					
5.00E+04	1.20E+18					
1.00E+05	6.02E+17					
2.00E+05	3.01E+17					
4.00E+05	1.51E+17					
4.13E+05	1.46E+17					
5.00E+05	1.20E+17					
6.50E+05	9.26E+16					
7.00E+05	8.60E+16					
8.00E+05	7.53E+16					

Sum	1.67E+19

Mn	3.96E+04
Mw	3.49E+05
Mz	5.69E+05
Mz+1	6.40E+05
Mv	3.05E+05
Đ	8.82

n*M	n*M²	n*M³	n*M ⁴	n*M¹+a		
6.02E+22	3.31E+26	1.82E+30	1.00E+34	2.50E+25		
6.02E+22	1.20E+27	2.41E+31	4.82E+35	6.17E+25		
6.02E+22	3.01E+27	1.51E+32	7.53E+36	1.17E+26		
6.02E+22	6.02E+27	6.02E+32	6.02E+37	1.90E+26		
6.02E+22	1.20E+28	2.41E+33	4.82E+38	3.09E+26		
6.02E+22	2.41E+28	9.64E+33	3.85E+39	5.03E+26		
6.02E+22	2.49E+28	1.03E+34	4.24E+39	5.14E+26		
6.02E+22	3.01E+28	1.51E+34	7.53E+39	5.88E+26		
6.02E+22	3.91E+28	2.54E+34	1.65E+40	7.06E+26		
6.02E+22	4.22E+28	2.95E+34	2.07E+40	7.44E+26		
6.02E+22	4.82E+28	3.85E+34	3.08E+40	8.16E+26		

6.62E+23	2.31E+29	1.32E+35	8.42E+40	4.57E+27
----------	----------	----------	----------	----------

$$w_x = x(1-p)^2 p^{x-1}$$

FIG. 1. Statistically derived mole fraction for a step-growth polymerization is plotted as a function of x, and varied by extent of reaction.

FIG. 2. Statistically derived weight fraction for a step-growth polymerization is plotted as a function of x, varied by extent of reaction.

References

- [1] Korley, Wang. (2019). *MSEG608 Structures and Properties of Materials*. University of Delaware. Lecture 16, Slide 17.
- [2] Korley, Wang. (2019). MSEG608 Structures and Properties of Materials. University of Delaware. Lecture 17, Slide 23.

Supplementary

2. If there is question about the calculations used, the full excel file can be found here:

https://github.com/zswain/MSEG608 as "ZachSwain_MSEG608-HW8.xlsx"

3. These calculations were done in the same excel worksheet as detailed above.

Mol frac

P\X	0	5	10	25	50	75	100	150	200	300	400	500
0.9	1.11E-02	6.56E-03	3.87E-03	7.98E-04	5.73E-05	4.11E-06	2.95E-07	1.52E-09	7.84E-12	2.08E-16	5.53E-21	1.47E-25
0.925	6.08E-03	4.12E-03	2.79E-03	8.66E-04	1.23E-04	1.76E-05	2.50E-06	5.07E-08	1.03E-09	4.23E-13	1.74E-16	7.16E-20
0.95	2.63E-03	2.04E-03	1.58E-03	7.30E-04	2.02E-04	5.62E-05	1.56E-05	1.20E-06	9.22E-08	5.46E-10	3.23E-12	1.91E-14
0.98	4.08E-04	3.69E-04	3.33E-04	2.46E-04	1.49E-04	8.97E-05	5.41E-05	1.97E-05	7.18E-06	9.52E-07	1.26E-07	1.67E-08
0.99	1.01E-04	9.61E-05	9.14E-05	7.86E-05	6.11E-05	4.75E-05	3.70E-05	2.24E-05	1.35E-05	4.95E-06	1.81E-06	6.64E-07

Weight frac

P\X	0	5	10	25	50	75	100	150	200	300	400	500
0.9	0	3.28E-02	3.87E-02	1.99E-02	2.86E-03	3.08E-04	2.95E-05	2.28E-07	1.57E-09	6.25E-14	2.21E-18	7.34E-23
0.925	0	2.06E-02	2.79E-02	2.17E-02	6.17E-03	1.32E-03	2.50E-04	7.61E-06	2.06E-07	1.27E-10	6.96E-14	3.58E-17
0.95	0	1.02E-02	1.58E-02	1.82E-02	1.01E-02	4.21E-03	1.56E-03	1.80E-04	1.84E-05	1.64E-07	1.29E-09	9.57E-12
0.98	0	1.84E-03	3.33E-03	6.16E-03	7.43E-03	6.73E-03	5.41E-03	2.96E-03	1.44E-03	2.86E-04	5.05E-05	8.37E-06
0.99	0	4.80E-04	9.14E-04	1.96E-03	3.06E-03	3.57E-03	3.70E-03	3.36E-03	2.71E-03	1.49E-03	7.25E-04	3.32E-04

Mole Fraction

FIG. 3. Statistically derived mole fraction for a step-growth polymerization is plotted as a function of x, for P=0.9

FIG. 4. Statistically derived mole fraction for a step-growth polymerization is plotted as a function of x, for P=0.925

FIG. 5. Statistically derived mole fraction for a step-growth polymerization is plotted as a function of x, for P=0.95

FIG. 6. Statistically derived mole fraction for a step-growth polymerization is plotted as a function of x, for P=0.98

FIG. 7. Statistically derived mole fraction for a step-growth polymerization is plotted as a function of x, for P=0.99

Weight Fraction

FIG. 8. Statistically derived weight fraction for a step-growth polymerization is plotted as a function of x, for P=0.9

FIG. 9. Statistically derived weight fraction for a step-growth polymerization is plotted as a function of x, for P=0.925

FIG. 10. Statistically derived weight fraction for a step-growth polymerization is plotted as a function of x, for P=0.95

FIG. 11. Statistically derived weight fraction for a step-growth polymerization is plotted as a function of x, for P=0.98

FIG. 12. Statistically derived weight fraction for a step-growth polymerization is plotted as a function of x, for P=0.99