Antennas

17/07/14

Exercise 1

- a) Define gain and directivity and comment their importance.
- b) Define the radar cross section of an electromagnetic scatterer (a target).
- c) Obtain and explain the Friis transmission equation.
- d) Obtain and explain the radar range equation for a monostatic radar.
- e) Obtain and explain the radar range equation for a bistatic radar.

Antennas

17/07/14

	т					
1	v	a	n	n	Δ	۰
1	N	\boldsymbol{a}	ш	u	L	_

Exercise 2

- a) Write a mathematical expression for the current distribution along a half-wavelength dipole and plot the current as a function of the position on the dipole. Justify this expression.
- b) Starting from the knowledge of the far-field of a short dipole (having length dz)

$$E_{\theta} = j\eta \frac{\beta}{4\pi} I_0 dz \frac{e^{-j\beta r}}{r} \sin \theta$$

$$H_{\varphi} = j \frac{\beta}{4\pi} I_0 dz \frac{e^{-j\beta r}}{r} \sin \theta$$

show how the far-field of the half-wavelength antenna can be calculated (the explicit solution of the final integrals is <u>not</u> required).

- c) What is the value of the input impedance of a half-wavelength dipole at the working frequency?
- d) Plot qualitatively the input resistance of a wire antenna as a function of its length.
- e) Plot qualitatively the input reactance of a wire antenna as a function of its length.

Antennas

17/07/14

Name:			

Exercise 3

Let us consider a uniform array composed of 4 isotropic antennas; the main lobe of the radiation pattern is oriented at an angle of 60° with respect to the alignment direction of the array and the alignment direction (0°) is one of the two null directions bounding the main lobe.

- a) Calculate the phase delay and the distance between two adjacent elements of the array.
- b) Calculate the directions of the main lobes and the null directions.
- c) Plot the radiation pattern.