УДК 539.194

МЕТОД АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ ПЕРЕХОДОВ ВО ВРАЩАТЕЛЬНОМ СПЕКТРЕ МОЛЕКУЛЫ

 $B.\ A.\ A$ ндреев, $A.\ B.\ Буренин, <math>A.\ \Phi.\$ Крупнов и $C.\ M.\$ Щапин

Описывается метод автоматической идентификации переходов во вращательном спектре молекулы. В основу положен регулярный алгоритм последовательного лавинообразного отождествления переходов, который использует грубые начальные оценки модельных параметров с указанием их точности, непрерывную запись исследуемого спектра в широком диапазоне частот и один начальный идентифицированный переход. Дается способ поиска идентификации начального перехода. В качестве иллюстрации приводятся результаты применения метода к расшифровке непрерывной записи вращательного спектра CO_2 в диапазоне частот 260-370 ГГц.

Развитие молекулярной спектроскопии высокого разрешения позволило получать непрерывные записи спектров поглощения молекул, содержащие сотни и тысячи линий. Использование этих записей для решения широкого круга задач — определение параметров молекул, отыскание в наблюдаемом спектре переходов, не описываемых исходной моделью молекулы, проведение химического и изотопного анализа и т. д. — начинается с наиболее трудоемкого этапа идентификации спектра, т. е. определения квантовых чисел начального и конечного энергетических состояний для тех наблюдаемых переходов, которые описываются выбранной моделью молекулы. Большое количество экспериментальных данных, содержащееся в записи спектра, делает актуальной задачу построения достаточно общего и удобного для автоматизации метода идентификации. К настоящему времени наиболее далеко в этом отношении продвинуты методы, использующие диаграммы Лумиса—Вуда [1]. Однако их эффективность падает при переходе от спектров линейных молекул и молекул типа симметрического волчка к спектрам наиболее распространенных молекул типа асимметрического волчка. В настоящей работе излагается метод идентификации переходов во вращательном спектре молекулы любого из указанных выше типов. В основу положен легко автоматизируемый регулярный алгоритм, использующий грубые начальные оценки модельных параметров с указанием их точности, непрерывную запись вращательного спектра в достаточно широком диапазоне частот, позволяющую наблюдать его общую структуру, и один начальный идентифицированный переход. В сочетании со способом поиска идентификации начального перехода данный алгоритм полностью решает поставленную

1. Схема действия алгоритма лавинообразного отождествления переходов

Предположим, что: а) $x_1,y_1;\ x_2,\ y_2$. . . — набор экспериментально измеренных частот и интенсивностей наблюдаемых переходов, причем случайные величины x_i и y_i независимы и распределены по нормальному

закону; б) часть этих переходов описывается в рамках некоторой теоретической модели, характеризующейся набором s феноменологических параметров $(A_1, A_2 \dots A_s) = A;$ в) A^0 — исходная оценка параметров модели. Величины $A_1^0 \dots A_s^0$ независимы и распределены по нормальному закону; г) $\xi_1(A)$, $\eta_1(A)$; $\xi_2(A)$, $\eta_2(A)$. . . — теоретические значения частот и интенсирностей переходов частот и интенсивностей переходов.

Необходимо каждому описываемому в рамках теоретической модели переходу поставить в соответствие его теоретический аналог. Попытка использовать исходные оценки модельных параметров непосредственно при расчете спектра в прямой задаче и идентифицировать наблюдаемые переходы, сравнивая их частоты и интенсивности с частотами и интенсивностями теоретических переходов, не приведет, как правило, к успеху вследствие большой погрешности в предсказании всех теоретических частот. Таким образом, для проведения идентификации необходимы до-

полнительные условия.

В последней модификации метода, использующего построение диаграмм Лумиса-Вуда, частоты всех рассчитанных по параметрам $A^{\mathfrak o}$ переходов располагаются в соответствии с заранее заданным правилом изменения совокупности квантовых чисел $J,\ K_{-1},K_{+1}$ для начального (или конечного) энергетического состояния и разностей ΔJ , $\Delta K_{\pm 1}$, характеризующих переход. Данные числа называются в оригинале $[^1]$ «параметрами порядка». После упорядочивания переходов строится массив разностей между каждой расчетной частотой и ближайшими экспериментальными. Eсли параметры A^0 незначительно отличаются от правильных значений и правило изменения «параметров порядка» выбрано удачно, то ожидается, что отклонения экспериментальных частот от их теоретических аналогов будут иметь некоторую простую систематическую зависимость от «параметров порядка», что и приводит в ряде случаев к установлению правильной идентификации. Отметим, что выбор правила изменения «параметров порядка» и выделение в массиве разностей серий с достаточно простым законом изменения в общем случае далеко не тривиальны.

В настоящей работе в качестве дополнительного условия принимается, что известна идентификация хотя бы одного экспериментально наблюдаемого перехода. В этом случае, используя критерий максимального правдоподобия, можно сформулировать требование на модельные

параметры в виде [2]

$$\varphi(A) = \sigma^{2} \left\{ \sum_{i_{k}=1}^{n} \left[\frac{x_{i_{k}} - \xi_{i_{l}}(A)}{\sigma_{i_{k}}} \right]^{2} + \sum_{t=1}^{s} \left[\frac{A_{t}^{0} - A_{t}}{\sigma_{t}} \right]^{2} \right\} = \min.$$
 (1)

Здесь $\sigma_{i_k}^2$ и σ_t^2 — дисперсии случайных величин x_{i_k} и A^0 соответственно; сумма по индексу (i_k) берется только по идентифицированным переходам 1 и ξ_{i_l} — теоретический аналог экспериментально измеренной ча-

стоты
$$x_{ik}(i_k=f(i_l));$$
 $\sigma^2=1/\{\sum_{i_k=1}^n(1/\sigma_{i_k})^2+\sum_{i=1}^s(1/\sigma_t)^2\}$ — нормировочная константа; члены, пропорциональные $(y_{i_k}\cdot\eta_{i_l})^2,$ отсутствуют, так как точность измерения интенсивностей переходов во вращательном спектре

молекулы на 4-6 порядков уступает точности измерения частот.

При явной недостаточности частоты одного идентифицированного перехода, в этом случае, для уточнения всех модельных параметров хорошо фиксируется одна их линейная комбинация вида

$$g_i^{(1)}(A_i - A_i^0) = C_1,$$
 (2)

где g_1 — некоторый ортонормированный вектор в пространстве параметров $(|g_1|=1)$, а $\hat{C_1}$ — случайная нормально распределенная величина. Это соответствует выделению в пространстве параметров направ-

¹ При отсутствии идентифицированных переходов мы получаем тривиальное решение уравнения (1), а именно исходные оценки модельных параметров.

⁵ Оптика и спектроскопия, т. XXXIX, вып. 5

честве теоретической модели использовалась модель нежесткого асимметрического волчка, содержащая 9 параметров (3 вращательные и 6 центробежных констант). Начальными данными для решения обратной задачи на первом этапе были: вращательные постоянные, отличающиеся от истинных значений на относительную величину порядка 10^{-2} ; центробежные постоянные, равные нулю, и частота идентифицированного перехода $10_{1,9}-11_{2,10}$ в спектре основной изотопической разновидности молекулы $S^{32}O_2^{16}$ в основном колебательном состоянии, равная 323046.4 ± 0.2 МГц. 2 Расчет спектра в прямой задаче позволил выделить переходы $4_{1,3}-5_{2,4}$, $6_{1,5}-7_{2,6}$, $8_{1,7}-9_{2,8}$, $12_{1,11}-13_{2,12}$, $14_{1,13}-15_{2,14}$, принадлежащие

					,,	
Ндентификация перехода	Расчетная частота, МГЦ	-2 -1		o	1 2	
4 _{1,3} - 5 _{2,4}	240 873 ± 740			1 []		
6 _{1,5} - 7 _{2,6}	271079 ± 620		[2]	13	
8,7 - 92,8	298464±400	5	1	3] 5	3	
10,9-11,2,10	323026.4±0.2		11.	4 3		
12,,11 - 13,,12	344914±670	1	[1 ,	51 1	6 8	
14,13 - 152,14	364532±1700	[7	33	1	6	
		2 -1	Ö	1	$(v_3 - v_7)$	<u>,</u> гГц

Рис. 2. Диаграмма разностей между расчетными частотами ($\nu_{\mathbf{T}}$) и ближайшими к ним экспериментальными (ν_{∂}).

Скобками ограничены интервалы погрешностей ут. Цифрами обозначены относительные интенсивности наблюдаемых переходов. Простое систематическое изменение разностей (уэ — ут) и одинаковый порядок интенсивностей позволяют отождествить отмеченные (1—6) переходы с расчетными, приведенными слева.

к одному классу с начальным, поскольку их частоты определены с наибольшей точностью. На рис. 1 приведены участки записи спектра вблизи рассчитанных частот переходов данного класса. Можно уверенно отождествить экспериментальные переходы 298576.2 ± 0.2 и 271528.9 ± 0.2 МГц с расчетными $8_{1,7}-9_{2,8}$ ($\nu_T=298464\pm400$ МГц) и $6_{1,5}-7_{2,6}$ ($\nu_T=271079\pm620$ МГц), учитывая одинаковый порядок интенсивности. По результатам расчета для переходов данного можно построить диаграмму разностей между теоретическими и ближайшими к ним экспериментальными частотами, аналогичную [1], но с указанием погрешностей теоретических частот, дающих естественный критерий правильного отождествления (рис. 2).

Уменьшение точности предсказания частот переходов в данном классе происходит, разумеется, потому, что частоты их определяются все более отличными комбинациями параметров по сравнению с (2), т. е. направления, фиксируемые в пространстве параметров переходами одного класса, хотя и близки, но не совпадают. Именно поэтому после идентификации переходов класса и приписывания им уже экспериментальных значений

² Используемая программа для ЭВМ, реализующая решение обратной задачи, работала не с функционалом (1), а только с первой его частью, при этом вероятностные свойства начальных оценок параметров не учитывались. Смещения в подпространстве, ортогональном направлению, выделенному одной экспериментальной частотой, ограничивались не точностью начальных оценок параметров, а просто выбирались значительно большими, чем для выделенного направления (в данном конкретном случае на 4 порядка).

шие итерационные алгоритмы [6] поиска ортонормированной системы собственных векторов $\{|g_n\rangle\}$ и соответствующих им собственных значений $\{\lambda_n\}$. Решение уравнения (1. П) искалось в виде

$$|a\rangle = c_n |g_n\rangle. \tag{2. II}$$

Можно показать для коэффициентов разложения « c_n » следующее: а) $c_n = \langle t_n | y_n \rangle / \lambda_n \ (\lambda_n \neq 0);$ б) коэффициенты « c_n » являются нормально распределенными статистически независимыми величинами с дисперсиями σ^2/λ_n . Величина « c_n », соответствующая $\lambda_n \neq 0$, фиксирует некоторую линейную комбинацию модельных параметров. Действительно, из (2. П) следует

$$c_n = \langle g_n \mid a \rangle = g_p^{(n)} a_p. \tag{3. II}$$

Такие линейные комбинации модельных параметров будем называть «определимыми». В том случае, когда используется функционал типа (1), все $\lambda_n \neq 0$, т. е. все линейные комбинации являются определимыми. В результате мы получаем однозначный набор модельных параметров в виде (2. П). Поскольку в общем случае направления собственных векторов отнюдь не совпадают с направлениями координатных осей, то между случайными величинами « a_k » существует корреляционная связь

$$B = |a - \bar{a}\rangle\langle a - \bar{a}| = \sum_{n} (\sigma^2/\lambda_n) |g_n\rangle\langle g_n|.$$
 (4. П)

При решении прямой задачи важную роль играет оценка дисперсии определяемых характеристик спектра, связанная с ошибками в спределении модельных нараметров (особенно оценка дисперсии частот спектральных линий). Данная величина характеризует степень доверия к расчету. Можно показать, что

$$\overline{(\xi_i - \overline{\xi}_i)^2} = \langle \alpha^{(i)} | B | \alpha^{(i)} \rangle,$$

т. е. $(\Delta \xi_i)^2$ существенно зависит от недиагональных элементов матрицы

Литература

- 1] Т. N a k a g a w a. 3rd Colloquium on high resolution molec. spectr, Abstracts of papers, Tours, 1973; Т. К а k a g a w a, I. O v e r e n d. J. Molec. Spectr. 1975.

 [2] Ю. В. Линник. Метод наименьших квадратов и основы теории обработки и наблюдений. Физматгиз, М., 1962.

 [3] С. П. Белов, А. В. Буренин, Л. И. Герштейн, В. П. Казаков, Е. Н. Карякин, А. Ф. Крупнов. Письма в ЖЭТФ, 18, 285, 1973.

 [4] Ч. Таунс, А. Шавлов. Радиоспектроскопия. ИЛ, М., 1959.

 30В, радиофизика, 17, № 8, 1974.

 [6] Общие вопросы программирования, вып. 3. Алгоритмы, пол общей

- ощие вопросы программирования, вып. 3. ред. М. И. Агеева, ВЦ АН СССР, 1966. Алгоритмы, под

Поступило в Редакцию 6 июня 1974 г.

³ При практических применениях данного метода в целях уменьшения величины $\lambda_{\max}/\lambda_{\min}$ полезно так отнормировать параметры « a_k », чтобы диагональные элементы оператора V были одного порядка.