VAPOR GROWTH APPARATUS

Patent number:

JP5047666

Publication date:

1993-02-26

Inventor:

MATSUMIYA YASUO; others: 02

Applicant:

FUJITSU LTD

Classification:

- international:

H01L21/205

- european:

Application number:

JP19910202082 19910813

Priority number(s):

Abstract of JP5047666

PURPOSE: To alternately perform an ALE and a VPE without exposing a substrate with the atmosphere and without cooling it to the ambient temperature by narrowing between an inner wall of a reaction tube and the substrate on an ALP executing region, extending it on a VPE executing region, and optimizing material gas flowing speeds

on the regions.

CONSTITUTION:One reaction tube 1 is defined on an ALF optimized region and a VPE optimized region, a substrate 8 is moved to the regions by a susceptor 7, and a compound semiconductor layer of a molecular layer and an atomic layer by a crystalline growth of VPE and an ALF is formed. In this case, the flowing speed of the material gas in the tube 1 is set to a limit value or more for exhibiting a self-limiting effect on the ALE optimized region and to a limit value or less on the VPE optimized region. Thus, a sectional area of the tube 1 is reduced on the ALE optimized region and increased on the VPE optimized region. In this manner, the ALE and the VPE are alternately executed.

Data supplied from the esp@cenet database - Worldwide

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-47666

(43)公開日 平成5年(1993)2月26日

(51) Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 1 L 21/205

7454-4M

審査請求 未請求 請求項の数3(全 7 頁)

(21)出願番号

特願平3-202082

(22)出願日

平成3年(1991)8月13日

(71)出願人 000005223

富士通株式会社

神奈川県川崎市中原区上小田中1015番地

(72)発明者 松宮 康夫

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 佐久間 芳樹

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 尾関 雅志

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(74)代理人 弁理士 井桁 貞一

(54)【発明の名称】 気相成長装置

(57)【要約】

【目的】 少なくとも陽イオン成分を含有する有機金属から成る原料ガスを用いて化合物半導体結晶を成長させるための気相成長装置に関し、陽イオン成分を含有する原料ガスを交互に供給するいわゆる原子層エピタキシ(ALE) とこれらの原料ガスを同時に供給する化学気相成長(VPE)とを実施可能な装置を提供することを目的とする。

【構成】 一つの反応管の軸上にALE を実施する領域と VPE を実施する領域とを画定し、その内部における原料 ガスの流速が、ALE 実施領域においてはセルフリミティ ング効果が現れる限界値以上になるように、一方、VPE 実施領域においては上記限界値以下となるようにする。 このために、反応管の断面積を、ALE 実施領域において は小さく、VPE 実施領域においては大きくする。結晶成 長が行われる基板は、両領域の間を往復移動可能に支持 され、かつ、それぞれの領域において所定温度に保持可 能にされる。

1

【特許請求の範囲】

【請求項1】 少なくとも陽イオン成分を含有する原料ガスが有機金属から成り陰イオン成分を含有する原料ガスと該有機金属原料ガスとを反応管中に導入して該反応管中に設置された基板上に該陽イオン成分と陰イオン成分から成る化合物の単結晶層を成長させる気相成長装置であって、その内壁と前記基板との間が狭隘にされている第1の領域とその内壁と該基板との間が拡張されている第2の領域とを有する前記反応管と、前記反応管の内部において前記基板を前記第1の領域と第2の領域との10間に移動させる手段と、前記第1および第2の領域のそれぞれにおいて該基板を所定温度に加熱するための手段とを備えたことを特徴とする気相成長装置。

【請求項2】 前配第1の領域における前記有機金属ガスの流速は、該有機金属ガス分子がその分解に要する時間内に拡散によって通過可能な厚さの境界層を前記基板表面近傍に生じる流速であり且つ前記第2の領域における前記有機金属ガスの流速が前記流速以下であることを特徴とする請求項1記載の気相成長装置。

【請求項3】 前記基板を加熱するための手段は該基板 20 の移動に並行して移動可能なヒータであることを特徴とする請求項1記載の気相成長装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、基板上に有機金属から成る原料ガスを用いて半導体層をエピタキシャル成長させるための装置に関する。

[0002]

【従来の技術】半導体装置の製造において、シリコンまたは化合物半導体を構成する成分を含有する原料ガスの 30 熱分解や複数種の原料ガス間の反応によって、所望の半導体層を基板上に成長させる気相成長方法(CVD:chemical vapor depositionまたはVPE:vapor phase epitaxi)が実用されている。また、基板と有機金属ガスの表面反応を利用して化合物半導体層を一分子層ずつ成長させる、いわゆる原子層エピタキシ(ALE:atomic layer epi-taxi)の実用化が進められている。この方法によれば、原子層オーダの半導体層から成るpn接合やヘテロ接合を制御性よく形成でき、また、ヘテロバイポーラトランジスタ(HBT)におけるベース層のような1×10²0′cm³程度の超 40高濃度の不純物のドーピングを制御性よく実施できる。

[0003]

【発明が解決しようとする課題】しかしながら、ALE LYPEのTV 方を関係できる。 現場、 個イオン成分を含有する有機金属ガスと陰イオン成分を含有する原料ガスとを交互に反応管中に導入する切り替えが必要であるために、 半導体層の成長速度がYPEに比べて低い。 したがって、 一つの半導体装置において、 比較的層厚の大きな半導体層の形成にはYPEを適用することが経済的に有利であるが、 現在のところ、ALE LYPEのTV 方を実施できる気相成長状間が実用ルされ

ていない。このために、基板を、例えばALE専用の気相成長装置からVPE専用の別の気相成長装置に移し変える必要があった。その結果、成長した半導体層が大気中に触れて汚染される問題があった。また、上記気相成長装置間の移し変え時に基板温度を一旦室温まで冷却する必要があるため、すでに成長した半導体層が比較的大きな熱サイクルを経ることが避けられず、この上にさらに成長した半導体層との界面の結晶性が劣化する問題があった。上記のような二種の気相成長装置を、真空排気可能

【0004】本発明は、基板を大気中に取り出す必要なしに、また、室温に冷却する必要もなしにALEとVPEとを交互に実施可能とする気相成長装置を提供することを目的とする。このVPEとしては、ALEと同じ種類の気体状の有機金属化合物を原料ガスとして用いるMOVPE (metal or ganic VPE)を適用する。

なロードロック装置により接続しても、基本的な問題は

[0005]

解決できない。

【課題を解決するための手段】上記目的は、少なくとも 陽イオン成分を含有する原料ガスが有機金属から成り陰 イオン成分を含有する原料ガスと該有機金属原料ガスと を反応管中に導入して該反応管中に設置された基板上に 該陽イオン成分と陰イオン成分から成る化合物の単結晶 層を成長させる気相成長装置であって、その内壁と前記 基板との間が狭隘にされている第1の領域とその内壁と 該基板との間が拡張されている第2の領域とを有する前 記反応管と、前記反応管の内部において前記基板を前記 第1の領域と第2の領域との間に移動させる手段と、前 記第1および第2の領域のそれぞれにおいて該基板を所 定温度に加熱するための手段とを備えたことを特徴とす る本発明に係る気相成長装置によって達成される。

[0006]

【作用】ALEにおいては、陽イオン成分を含有する有機 金属から成る原料ガスと陰イオン成分を含有する原料ガ スとを反応管内部に交互に導入するごとに単分子層の化 合物半導体結晶が成長する、いわゆるセルフリミティン グ効果を利用するのである。

【0007】上記のようなセルフリミティング効果が現れるためには、原料ガスを基板に高速で吹き付けることが必要である。これは、反応管内に導入された原料ガスを、気相中で熱分解しない間に基板に吸着させることが必要であるためと考えられる。すなわち、高速で流れる原料ガスと接触する基板表面近傍には、流速の低い境界層が形成される。したがって、基板に対する原料ガスの供給は、この境界層中の拡散によって律速される。この境界層の厚さは流速に反比例するので、流速を高くして境界層を薄くすることによって、原料ガスが速やかに境界層を拡散可能にする。

適用することが経済的に有利であるが、現在のところ、 【0008】ガリウムの原料ガスとしてトリメチルガリ ALEとVPEの双方を実施できる気相成長装置が実用化され 50 ウム(TMG)のような有機金属化合物を用いてALEによりガ

.3

リウム砒素(GAAs)を成長させる場合を例にとると、上記のようにして熱分解せずに基板表面に到達したTNG分子は、基板表面に吸着し、表面層を形成する。この表面層にはTMGが吸着し難く、また、熱分解も起こし難いこれが前記セルフリミティング効果の原因である。

【0009】上記の表面層は、陰イオン成分の原料ガスである、例えばアルシン(AsHa)が導入されるとこれと反応してGaAsの単分子層が生成する。余分のAsHaは排出されてしまう。この過程を繰り返すことにより、所望の層厚のGaAs結晶が成長する。

【0010】上記のように、ALEを可能とする境界層の厚さには、原料ガスの熱分解時間(所定温度に加熱されてから熱分解を始めるまでの誘導期間)および拡散速度とによって決まる上限がある。この厚さの境界層を実現するために、流速を大きくするのである。

【0011】一方、MOVPEにおいては、気相中における 原料ガスの熱分解生成物が基板に拡散して堆積する過程 を主として利用する。したがって、MOVPEにおける流速 は、ALEにおいて要求される流速、すなわち、セルフリ ミティング効果が現れる厚さの境界層を生じる流速、よ 20 りも低くなければならない。

【0012】本発明においては、上記のように、反応管の内壁と基板との間を、ALBを実施する領域では狭隘にし、一方、MOVPBを実施する領域では拡張することにより、それぞれの領域における流速を最適化する。上記の狭隘化および拡張は、反応管の断面積を前記それぞれの領域において変えることによって実現される。

ALE 最適化領域

断面積(cm²)

5.0

距離(cm) 0.5

まず、基板 8 をMOVPE最適化領域に移動しておく。反応 管 1 の内部を真空排気したのち、ポンペ 3 からAs Ib を導入しながら、サセプタ 7 を、例えばこれに内蔵されている抵抗加熱型のヒータまたは反応管 1 の外部に設置された誘導加熱コイルによって加熱し、基板 8 を700℃に保持する。なお、誘導加熱コイルを用いる場合には、サセプタ 7 の移動とともに、誘導加熱コイルも移動するようにしてもよいことは言うまでもない。

【0016】AsHs の導入を続けながら、パプラ2から反応管1内部にTMGを導入する。このとき、TMGおよびAsHs の流量をそれぞれ10SCCMおよび500SCCMに設定し、また反応管1内の全圧が20Torrとなるように排気速度を調節する。この状態ではMOVPE最適化領域におけるTMGの流速は前記セルフリミティング効果を生じるには到らず、これらの原料ガスが気相中で熱分解して基板8表面に拡散する。すなわち、MOVEPによる結晶成長が行われる。このようにして、基板8上に厚さ約1 μ mのGaAs結晶を成長させる。

【0017】次いで、パプラ2からのTMGの導入を停止 ング効果を生し し、ポンペ3からのAsHaの導入を暫時続け、この間に基 *50* Gaが成長する。

* [0.013]

【実施例】図1は本発明を適用した横型の気相成長装置の構成を示す模式的断面図であって、例えば透明石英から成る角形の断面を有する反応管1は、その管軸がほぼ水平になるように設置されている。反応管1は、その管軸に垂直な断面積が小さくされた第1の領域(MOYPE最適化領域)と、断面積が大きくされた第2の領域(MOYPE最適化領域)とが設けられている。反応管1の一方の端部5には、例えば、陽イオン成分を供給するための有機金属化合物から成る原料ガス源としてTMGのパブラ2とトリメチルアルミニウム(TMA)のパブラ4、および、陰イオン成分を供給するための原料ガス源としてAsH。のボンベ3のそれぞれが、マスフローコントローラ6を介して接続されている。反応管1は、その他方の端部に接続された図示しない排気装置によって真空排気可能にされている。

【0014】反応管1の内部には、例えばグラファィトから成るサセプタ7が設置されており、この上に、例えばGaAs結晶から成る基板8が載置されている。サセプタ7は、例えば反応管1の軸方向に延在する棒状の移動機構9に接続されており、移動機構9を、手動またはモータによって矢印A方向に駆動することによって、前記ALE最適化領域およびMOYPE最適化領域に移動される。なお、反応管1の断面積およびその上部内壁面と基板8との間の距離は、例えば次のごとくである。

[0015]

MOVPE 最適化領域

50

5.0

板8をALE最適化領域に移動するとともに、基板8が500 ℃になるようにサセプタ7の温度を調節したのち、As H3の導入を停止する。

【0018】次いで、パプラ4から反応管1内にTMAを 導入する。このときのTMAの流量を20SCCMに設定し、反 応管1内の圧力が20Torrとなるように排気速度を調節す る。この状態では、ALE最適化領域におけるTMAの流速は 前記セルフリミティング効果を生じる値となり、基板8 表面には二原子層のAIが成長する。

【0019】次いで、上記パプラ4からのTMAの導入を停止するとともに、反応管1内部にボンベ3からのAsHaを導入する。これにより、基板8表面にはAlAsの二分子層が成長する。

【0020】次いで、パブラ4からのTMAの導入を停止するとともに、パブラ2からTMGを導入する。このときのTMGの流量を20SCCMに設定し、反応管1内の圧力が20Torrとなるように排気速度を調節する。この状態では、ALE最適化領域におけるTMGの流速は前配セルフリミティング効果を生じる値となり、基板8表面には一原子層のGaが成長する。

【0021】次いで、上記パプラ2からのTMGの導入を 停止するとともに、反応管1内部にポンペ3からAsLaを 導入する。これにより、基板8表面にはGaAsの単分子層 が成長する。

【0022】上記ALEによるAlAsとGaAsの成長を繰り返 して行って所望の厚さの歪み超格子層を形成する。この 工程の最後のポンペ3からのAsHaの導入を続ける間に、 基板8を再びMOVPE最適化領域に移動するとともに、700 ℃に保持されるようにセプタ7の温度を調節する。その のち、反応管1内部にパプラ2からTMGを導入する。こ 10 れにより、基板8上に、キャップ層として厚さ100nmのG aAs結晶を成長させる。

【0023】図2は本発明を、いわゆるチムニー型の気 相成長装置、とくにパルスジェット法を実施可能な気相 成長装置に適用した場合の例を示す模式的断面図であ る。例えば透明石英から成る円筒状の反応管11は、その 中心軸が鉛直方向を向くように設置されている。反応管 11は、その中心軸に垂直な断面が小さくされた第1の領 域(ALE最適化領域)と、断面積が大きくされた第2の領*

> ALE 最適化領域 断面積(cm²)

距離(cm)

50

まず、図2(b)に示すように、基板17をMOVPE最適化領域 に移動しておく。反応管11の内部を真空排気したのち、 原料ガス導入管13の一つを通じて反応管11内部にAsHaを 導入しながら、サセプタ14を、例えばこれに内蔵されて いる抵抗加熱型のヒータまたは反応管11の外部に設置さ れた誘導加熱コイルによって加熱し、基板17を700℃に 保持する。なお、誘導加熱コイルを用いる場合には、サ セプタ14の移動とともに、誘導加熱コイルも移動するよ 30 長する。 うにしてもよいことは言うまでもない。

【0026】AsHaの導入を続けながら、別の原料ガス導 入管13を通じて反応管11内部にTMGを導入する。このと きにTMGおよびAsH。の流量をそれぞれ20SCCMおよび500SC CMに設定し、また反応管11内の全圧が10Torrとなるよう に排気速度を調節する。この状態では、MOVPE最適化領 域におけるTMGの流速は前記セルフリミティング効果を 生じるには到らず、これら原料ガスが気相中で熱分解し て基板17表面に拡散する。すなわち、MOVEPによる結晶 成長が行われる。このようにして、基板17上に厚さ500n mのGaAs結晶を成長させる。

【0027】次いで、原料ガス導入管13からのTMGの導 入を停止し、AsEaの導入を暫時続け、この間に、図2 (a)に示すように、基板17をALE最適化領域に移動すると ともに、基板17が500℃になるようにサセプタ14の温度 を調節したのち、原料ガス導入管13からのAsH3の導入を 停止する。

【0028】次いで、端部12から反応管1内にTMAを導 入する。このときのTMAの流量を20SCCMに設定し,反応 管11内の圧力が10Torrとなるように排気速度を調節す 50

*域(MOVPE最適化領域)とが設けられている。反応管11の 一方の端部12には、前記実施例と同様に、陽イオン成分 を供給するための有機金属化合物の原料ガス源およびAL Eにおいて用いられるその他の原料ガス源が接続されて いる。また反応管11は、その他方の端部に接続された図 示しない排気装置によってその内部が真空排気可能にさ れている。また、ALE最適化領域とMOVPE最適化領域との 境界付近には、反応管11を貫通して原料ガス導入管13が 設けられている。

【0024】反応管11の内部には、例えばグラファィト から成る円柱状のサセプタ14が、棒状の移動機構15によ って保持されている。サセプタ14には、例えばGaAs結晶 から成る基板17が、端部12に対向するようにして固定さ れている。サセプタ14は、移動機構15を、手動またはモ ータによって矢印A、A2方向に駆動することによって、 それぞれ、前記ALE最適化領域およびMOVPE最適化領域に 移動される。なお、反応管11の断面積およびその内壁面 と基板17との間の距離は、例えば次のごとくである。

[0025]

MOVPE 最適化領域

530

10

る。この状態では、基板17表面にTMA分子が未分解の状 態で衝突する。すなわち、このときのTMAの流速は前記 セルフリミティング効果を生じる値となり、基板17表面 には二原子層のAIが成長する。

【0029】次いで,端部12からのTMAの導入を停止す るとともに、端部12を通じて反応管11内部にAsEs を導入 する。これにより、基板17表面には二分子層のAlAsが成

【0030】次いで、AsHaのの導入を停止するととも に、端部12からTMGを導入する。このときのTMGの流量を 20SCCMに設定し、反応管1内の圧力が10Torrとなるよう に排気速度を調節する。この状態では、ALE最適化領域 におけるTMAの流速は前記セルフリミティング効果を生 じる値となり、基板8表面には単原子層のGaが成長す

【0031】次いで、TMGの導入を停止し、端部12から 反応管 1 内部にAsHs を導入する。これにより,基板17表 面には単分子層のGaAsが成長する。上記ALEによるAIAs とGaAsの成長を繰り返して行って所望の厚さの歪み超格 子層を形成する。そののち、図2(b)に示すように、基 板17を再びMOVPE最適化領域に移動するとともに、700℃ に保持されるようにセプタ14の温度を調節する。そし て、端部12からのAsHaの導入を停止するとともに、原料 ガス導入管13から反応管11内部にTMGおよびAsHaを導入 する。これにより、基板17上に、キャップ層として厚さ 100mmのGaAs結晶を成長させる。

【0032】上記実施例においては,GaAsから成る基板 上にGaAs結晶およびGaAsとAlAsから成る歪み超格子を形

40

7

成する場合を示したが、その他の基板上に、上記以外の化合物半導体を成長させる場合、これらに所定の導電型を付与するための不純物元素を含有する原料ガスを導入する場合にも本発明が適用可能であることは言うまでもない。また、現在のところ、ALEと併用するVPEは、共通の原料ガスを利用可能であるとの理由から、有機金属化合物から成る原料ガスを用いるMOVPEが有利であるが、本発明の原理から見れば、有機金属化合物以外の原料ガスを用いる気相成長法(VPEまたはCVD)をALEと併用してもしても差支えないことは明らかである。

[0033]

【発明の効果】本発明によれば、基板を大気中に取り出す必要も、また、室温に冷却する必要もなしにALEとVPEを交互に実施可能となり、原子層オーダの制御を必要とする厚さの化合物半導体結晶を利用した電子装置の性能

向上および信頼性ならびに製造歩留まりの向上に寄与する効果がある。

【図面の簡単な説明】

【図1】 本発明の第1の実施例説明図

【図2】 本発明の第2の実施例説明図

【符号の説明】

- 1, 11 反応管
- 2, 4 パプラ
- 3 ポンペ
- 10 5, 12 端部
 - 6 マスフローコントローラ
 - 7, 14 サセプタ
 - 8. 17 基板
 - 9, 15 移動機構
 - 13 原料ガス導入管

本帝明0第一0家楚例説明区

本発明的第20実拖例說明図

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] Material gas and this organic metal material gas with which material gas which contains a cation component at least consists of an organic metal, and contains an anion component are introduced into a coil. The 2nd field where between the 1st field where it is vapor growth equipment into which a single crystal layer of a compound which consists of this cation component and an anion component on a substrate installed into this coil is grown up, and between the wall and said substrate is made narrow, its wall, and these substrates is extended Vapor growth equipment characterized by having said coil which it has, a means to move said substrate between said 1st field and 2nd field in the interior of said coil, and a means for heating this substrate to predetermined temperature in each of said 1st and 2nd fields.

[Claim 2] The rate of flow of said organic metal gas in said 1st field is vapor growth equipment according to claim 1 characterized by being the rate of flow from which this organic metal gas molecule produces a boundary layer of thickness which can be passed by diffusion in time amount which the decomposition takes near [said] the substrate surface, and the rate of flow of said organic metal gas in said 2nd field being said below rate of flow.

[Claim 3] A means for heating said substrate is vapor growth equipment according to claim 1 characterized by being a movable heater in parallel to migration of this substrate.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] This invention relates to the equipment for carrying out epitaxial growth of the semiconductor layer using the material gas which consists of an organic metal on a substrate.

[0002]

[Description of the Prior Art] In manufacture of a semiconductor device, the vapor growth method (CVD:chemical vapor deposition or VPE:vapor phase epitaxi) of growing up a desired semiconductor layer on a substrate is used by the pyrolysis of the material gas containing the component which constitutes silicon or a compound semiconductor, or the reaction between two or more sorts of material gas. Moreover, utilization of the so-called atomic layer epitaxy (ALE:atomic layer epi-taxi) into which a compound semiconductor layer is grown up a monomolecular layer every using the surface reaction of a substrate and organic metal gas is advanced. According to this method, the pn junction and the heterojunction which consist of the semiconductor layer of atomic layer order can be formed with a sufficient controllability, and the about three 1x1020-/cm [like the base layer in a hetero-bipolar transistor (HBT)] impurity of super-high concentration can be doped with a sufficient controllability.

[Problem(s) to be Solved by the Invention] However, since the change which usually introduces the organic metal gas containing a cation component and the material gas containing an anion component into a coil by turns is required for ALE, its growth rate of a semiconductor layer is low compared with VPE. Therefore, in one semiconductor device, although it is economically advantageous to formation of a semiconductor layer with comparatively big thickness to apply VPE, now, the vapor growth equipment which can carry out the both sides of ALE and VPE is not put in practical use. For this reason, the substrate needed to be moved and changed into another vapor growth equipment only for VPE(s) from the vapor growth equipment for example, only for ALE. Consequently, there was a problem with which the grown-up semiconductor layer touches and is polluted in atmospheric air. Moreover, since it was sometimes necessary to move between the above-mentioned vapor growth equipment, to change, and to once cool substrate temperature to a room temperature, passing through a heat cycle with the comparatively big semiconductor layer which already grew was not avoided, but there was a problem on which the crystallinity of an interface with the semiconductor layer which grew further on this deteriorates. A fundamental problem is unsolvable even if it connects two sorts of above vapor growth equipments with the load lock equipment in which evacuation is possible.

[0004] This invention also aims the necessity of cooling to a room temperature without the necessity of taking out a substrate in atmospheric air at offering the vapor growth equipment which enables operation of ALE and VPE by turns nothing. As this VPE, MOVPE (metal organic VPE) using the organometallic compound of the shape of a gas of the same class as ALE as material gas is applied.

[0005]

[Means for Solving the Problem] The above-mentioned purpose introduces into a coil material gas and this organic metal material gas with which material gas which contains a cation component at least consists of an organic metal, and contains an anion component. The 2nd field where between the 1st field where it is vapor growth equipment into which a single crystal layer of a compound which consists of this cation component and an anion component on a substrate installed into this coil is grown up, and between the wall and said substrate is made narrow, its wall, and these substrates is extended Said coil which it has, and a means to move said substrate between said 1st field and 2nd field in the interior of said coil, It is attained by vapor growth equipment concerning this invention characterized by having a means for heating this substrate to predetermined temperature in each of said 1st and 2nd fields.

[0006]

[Function] In ALE, whenever it introduces into the interior of a coil by turns the material gas which consists of the organic metal containing a cation component, and the material gas containing an anion component, the so-called self RIMITINGU effect that the compound semiconductor crystal of a monomolecular layer grows is used.

[0007] In order for the above self RIMITINGU effects to show up, it is required to spray material gas on a substrate at high speed. This is considered because it is required to make it stick to a substrate while not pyrolyzing the material gas introduced in the coil in a gaseous phase. That is, near the substrate surface in contact with the material gas which flows at high speed, the low boundary layer of the rate of flow is formed. Therefore, rate-limiting [of the supply of the material gas to a substrate] is carried out by the diffusion in this boundary layer. Since this boundary layer thickness is in inverse proportion to the rate of flow, material gas enables

diffusion of a boundary layer promptly by making the rate of flow high and making a boundary layer thin.

[0008] If the case where gallium arsenide (GaAs) is grown up by ALE using an organometallic compound like trimethylgallium (TMG) as material gas of a gallium is taken for an example, the TMG molecule which arrived at the substrate surface, without pyrolyzing as mentioned above will stick to the substrate surface, and will form a surface layer. This which TMG cannot stick to this surface layer easily, and cannot cause a pyrolysis easily, either caused said self RIMITINGU effect.

[0009] If the arsine (AsH3) which is material gas of an anion component is introduced, the above-mentioned surface layer will react with this, and the monomolecular layer of GaAs will generate it. Excessive AsH3 will be discharged. The GaAs crystal of desired

thickness grows by repeating this process.

[0010] As mentioned above, there is a maximum decided by the pyrolysis time amount (induction period after being heated by the predetermined temperature until it begins a pyrolysis) and the diffusion rate of material gas in the boundary layer thickness which makes ALE possible. In order to realize the boundary layer of this thickness, the rate of flow is enlarged.

[0011] On the other hand, it sets to MOVPE and the process which the pyrolysate of the material gas in a gaseous phase diffuses and deposits on a substrate is mainly used. Therefore, the rate of flow demanded in ALE, i.e., the rate of flow which produces the boundary layer of the thickness in which the self RIMITINGU effect shows up, and the twist of the rate of flow in MOVPE must also be low

[0012] In this invention, the rate of flow in each field is optimized by making between the wall of a coil, and substrates narrow as mentioned above in the field which carries out ALE, and on the other hand extending in the field which carries out MOVPE. Above-mentioned narrow-izing and an above-mentioned escape are realized by changing the cross section of a coil in said each field.

[0013

[Example] Drawing 1 is the typical cross section showing the configuration of the vapor growth equipment of the horizontal type which applied this invention, for example, the coil 1 which has the cross section of the square shape which consists of a transparence quartz is installed so that the tube axis may become almost level. The 1st field (ALE optimization field) where the cross section with a coil 1 perpendicular to the tube axis was made small, and the 2nd field (MOVPE optimization field) where the cross section was enlarged are prepared, as the source of material gas for supplying the bubbler 2 of TMG, the bubbler 4 of trimethylaluminum (TMA), and an anion component to one edge 5 of a coil 1 as a source of material gas which consists of the organometallic compound for supplying for example, a cation component -- the bomb 3 of AsH3 -- it connects through the massflow controller 6, respectively. Evacuation of a coil 1 is made possible by the exhaust which was connected to the other-end section and which is not illustrated. [0014] The susceptor 7 which consists of GURAFAITO is installed in the interior of a coil 1, and the substrate 8 which consists of a GaAs crystal is laid on this. It connects with the migration device 9 of the shape of a rod which extends in the shaft orientations of a coil 1, and a susceptor 7 is moved to said ALE optimization field and a MOVPE optimization field by driving the migration device 9 in the direction of arrow head A by hand control or the motor. In addition, the cross section of a coil 1 and the distance between the up internal surface and substrate 8 are as following.

[0015] ALE Optimization field MOVPE Optimization field Cross section (cm2) 5.0 50 Distance (cm) 0.5 5.0 The substrate 8 is first moved to the MOVPE optimization field. Introducing AsH3 from a bomb 3, after carrying out evacuation of the interior of a coil 1, a susceptor 7 is heated with the induction-heating coil installed in the heater of the resistance heating mold built in this, or the exterior of a coil 1, and a substrate 8 is held at 700 degrees C. In addition, when using an induction-heating coil, it cannot be overemphasized that you may make it an induction-heating coil also move with migration of a susceptor 7.

[0016] TMG is introduced into the coil 1 interior from a bubbler 2, continuing installation of AsH3. At this time, exhaust velocity is adjusted so that the flow rate of TMG and AsH3 may be set as 10SCCM(s) and 500SCCM(s), respectively and the total pressure in a coil 1 may serve as 20Torr(s). In this condition, the rate of flow of TMG in a MOVPE optimization field does not come to produce said self RIMITINGU effect, and these material gas pyrolyzes it in a gaseous phase, and diffuses it on the substrate 8 surface. That is, crystal growth by MOVEP is performed. Thus, a GaAs crystal with a thickness of about 1 micrometer is grown up on a substrate 8

[0017] Subsequently, installation of TMG from a bubbler 2 is suspended, and after adjusting the temperature of a susceptor 7 so that a substrate 8 may become 500 degrees C while continuing installation of AsH3 from a bomb 3 for a time and moving a substrate 8 to

an ALE optimization field in the meantime, installation of AsH3 is suspended.

[0018] Subsequently, TMA is introduced in a coil 1 from a bubbler 4. The flow rate of TMA at this time is set as 20SCCM(s), and exhaust velocity is adjusted so that the pressure in a coil 1 may serve as 20Torr(s). In this condition, the rate of flow of TMA in an ALE optimization field serves as a value which produces said self RIMITINGU effect, and aluminum of two atomic layers grows up to be the substrate 8 surface.

[0019] Subsequently, while suspending installation of TMA from the above-mentioned bubbler 4, AsH3 from a bomb 3 is introduced

into the coil 1 interior. Thereby, the bilayer of AlAs grows up to be the substrate 8 surface.

[0020] Subsequently, while suspending installation of TMA from a bubbler 4, TMG is introduced from a bubbler 2. The flow rate of TMG at this time is set as 20SCCM(s), and exhaust velocity is adjusted so that the pressure in a coil 1 may serve as 20Torr(s). In this condition, the rate of flow of TMG in an ALE optimization field serves as a value which produces said self RIMITINGU effect, and Ga of one atomic layer grows up to be the substrate 8 surface.

[0021] Subsequently, while suspending installation of TMG from the above-mentioned bubbler 2, AsH3 is introduced into the coil 1

interior from a bomb 3. Thereby, the monomolecular layer of GaAs grows up to be the substrate 8 surface.

[0022] It carries out by repeating growth of AlAs by Above ALE, and GaAs, and the distortion super-latticed layer of desired thickness is formed. While continuing installation of AsH3 from the bomb 3 of the last of this production process and moving a

substrate 8 to a MOVPE optimization field again, the temperature of SEPUTA 7 is adjusted so that it may be held at 700 degrees C. TMG is introduced into the coil 1 interior from a bubbler 2 after it. Thereby, a GaAs crystal with a thickness of 100nm is grown up as a cap layer on a substrate 8.

[0023] <u>Drawing 2</u> is the typical cross section showing the example at the time of applying this invention to the so-called chimney type of vapor growth equipment, and the vapor growth equipment which can enforce the aeropulse method especially. For example, the coil 11 of the shape of a cylinder which consists of a transparence quartz is installed so that the medial axis may turn to the direction of a vertical. The 1st field (ALE optimization field) where the cross section where a coil 11 is perpendicular to the medial axis was made small, and the 2nd field (MOVPE optimization field) where the cross section was enlarged are prepared. The source of material gas of others which are used like said example in the source of material gas and ALE of an organometallic compound for supplying a cation component is connected to one edge 12 of a coil 11. Moreover, the coil 11 is made possible [evacuation] for the interior by the exhaust which was connected to the other-end section and which is not illustrated. Moreover, it is near the boundary of an ALE optimization field and a MOVPE optimization field, A coil 11 is penetrated and the material gas installation pipe 13 is formed.

[0024] Inside the coil 11, the susceptor 14 of the shape of a cylinder which consists of GURAFAITO is held according to the rod-like migration device 15. As the substrate 17 which consists of a GaAs crystal counters an edge 12, it is being fixed to the susceptor 14. A susceptor 14 is moved to said ALE optimization field and a MOVPE optimization field, respectively by driving the migration device 15 to an arrow head A1 and A 2-way by hand control or the motor. In addition, the cross section of a coil 11 and the distance between the internal surface and substrate 17 are as following.

ALE Optimization field MOVPE Optimization field Cross section (cm2) 50 530 Distance (cm) 1 10 First, as shown in drawing 2 (b), the substrate 17 is moved to the MOVPE optimization field. Introducing AsH3 into the coil 11 interior through one of the material gas installation pipes 13, after carrying out evacuation of the interior of a coil 11, a susceptor 14 is heated with the induction-heating coil installed in the heater of the resistance heating mold built in this, or the exterior of a coil 11, and a substrate 17 is held at 700 degrees C. In addition, when using an induction-heating coil, it cannot be overemphasized that you may make it an induction-heating coil also move with migration of a susceptor 14.

[0026] TMG is introduced into the coil 11 interior through another material gas installation pipe 13, continuing installation of AsH3. Exhaust velocity is adjusted so that the flow rate of TMG and AsH3 may be set as 20SCCM(s) and 500SCCM(s), respectively at this time and the total pressure in a coil 11 may serve as 10Torr(s). In this condition, the rate of flow of TMG in a MOVPE optimization field does not come to produce said self RIMITINGU effect, and these material gas pyrolyzes it in a gaseous phase, and diffuses it on the substrate 17 surface. That is, crystal growth by MOVEP is performed. Thus, a GaAs crystal with a thickness of 500nm is grown up on a substrate 17.

[0027] Subsequently, installation of TMG from the material gas installation pipe 13 is suspended, and after continuing installation of AsH3 for a time, and adjusting the temperature of a susceptor 14 so that a substrate 17 may become 500 degrees C while moving a substrate 17 to an ALE optimization field in the meantime, as shown in drawing 2 (a), installation of AsH3 from the material gas installation pipe 13 is suspended.

[0028] Subsequently, TMA is introduced in a coil 1 from an edge 12. The flow rate of TMA at this time is set as 20SCCM(s), and exhaust velocity is adjusted so that the pressure in a coil 11 may serve as 10Torr(s). In this condition, it collides in the state of undisassembling a TMA molecule into the substrate 17 surface. That is, the rate of flow of TMA at this time serves as a value which produces said self RIMITINGU effect, and aluminum of two atomic layers grows up to be the substrate 17 surface.

[0029] Subsequently, while suspending installation of TMA from an edge 12, AsH3 is introduced into the coil 11 interior through an edge 12. Thereby, AlAs of a bilayer grows up to be the substrate 17 surface.

[0030] Subsequently, while suspending installation of AsH3 **, TMG is introduced from an edge 12. The flow rate of TMG at this time is set as 20SCCM(s), and exhaust velocity is adjusted so that the pressure in a coil 1 may serve as 10Torr(s). In this condition, the rate of flow of TMA in an ALE optimization field serves as a value which produces said self RIMITINGU effect, and Ga of a monoatomic layer grows up to be the substrate 8 surface.

[0031] Subsequently, installation of TMG is suspended and AsH3 is introduced into the coil 1 interior from an edge 12. Thereby, GaAs of a monomolecular layer grows up to be the substrate 17 surface. It carries out by repeating growth of AlAs by Above ALE, and GaAs, and the distortion super-latticed layer of desired thickness is formed. As shown in drawing 2 (b) after it, while moving a substrate 17 to a MOVPE optimization field again, the temperature of SEPUTA 14 is adjusted so that it may be held at 700 degrees C. And while suspending installation of AsH3 from an edge 12, TMG and AsH3 are introduced into the coil 11 interior from the material gas installation pipe 13. Thereby, a GaAs crystal with a thickness of 100nm is grown up as a cap layer on a substrate 17. [0032] Although the case where the strained super lattice which consists of a GaAs crystal and GaAs, and AlAs was formed in the above-mentioned example on the substrate which consists of GaAs was shown, also when introducing the material gas containing the impurity element for giving a predetermined conductivity type at these when growing up compound semiconductors other than the above on other substrates, it cannot be overemphasized that this invention can be applied. Moreover, although VPE now used together with ALE has advantageous MOVPE using the material gas which consists of an organometallic compound since it is available, if common material gas is seen from the principle of this invention, interfere [even if it uses together the vapor growth (VPE or CVD) using material gas other than an organometallic compound with ALE and carries out] is clear.

[Effect of the Invention] According to this invention, operation also of the necessity of taking out a substrate in atmospheric air, and the necessity of cooling to a room temperature is attained by turns in ALE and VPE nothing, and they have the effect which

contributes to improvement in the improvement in the engine performance of an electronic instrument using the compound semiconductor crystal of the thickness which needs control of atomic layer order, reliability, and the manufacture yield.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] 1st example explanatory drawing of this invention

[Drawing 2] 2nd example explanatory drawing of this invention

[Description of Notations]

1 11 Coil

2 4 Bubbler

3 Bomb

5 12 Edge

6 Massflow Controller

7 14 Susceptor

8 17 Substrate

9 15 Migration device

13 Material Gas Installation Pipe

[Translation done.]