

CS 211 - Digital Logic Design الرقمي 211 عال ـ تصميم المنطق الرقمي

First Term - 1439/1440 Lecture #5

Dr. Hazem Ibrahim Shehata

Assistant Professor

College of Computing and Information Technology

Administrivia

- >Assignment #1:
 - Released on Sunday.
 - Due: Sunday, October 7, 2018.

Website: http://hshehata.github.io/courses/su/cs211

Chapter 2: Logic Gates

Logic Gates/Circuits

➤ Logic Gate: electronic device implementing a basic logical operation on 1⁺ binary input and producing 1 binary output.

• Examples:

- Logic Circuit: electronic circuit built out of logic gates!
 - Each wire carries a single bit represented in terms of voltage level.
 - High voltage level (e.g., 5v) → logical 1.
 - Low voltage level (e.g., 0v) → logical 0.
 - Example:

Inverter (or NOT Gate)

- > Performs operation called inversion or complementation.
 - Takes 1 (single-bit) input, and produces 1 (single-bit) output.
 - Output value equals the inverse of input value.
- >Symbols:

Operation of Inverter

- Possible scenarios:
 - Low voltage applied to input
 High voltage produced at output
 - High voltage applied to input > Low voltage produced at output
- ➤ Operation can be represented as a Truth Table, that lists all input combinations with the corresponding outputs!

Input	Output
Low (0)	High (1)
High (1)	Low (0)

CS 211 - DIGITAL LOGIC DESIGN

DR. HAZEM SHEHATA

Logic Expression of Inverter

- ➤ Boolean Algebra: is a type of mathematics that uses variables and operators to describe logic circuits.
- \triangleright Boolean expression that describes inverter is: $X = \bar{A}$

- \circ If A=0, then $X=\overline{0}=1$
- \circ If A=1, then $X=\overline{1}=0$
- \triangleright Complemented variable \bar{A} is read as: "A bar" or "not A".

Timing Diagram of Inverter

- Timing Diagram: represents how signals of a logic circuit change over time.
 - X-axis → time.
 - Y-axis → signals values. Either High (1) or Low (0).

> Example:

Application of Inverter

- Inverters can be used to calculate 1's complement of binary numbers.
- Example: Circuit to produce 1's comp. of an 8-bit number.

AND Gate

- > Performs operation called logical multiplication.
 - Takes 2⁺ inputs, and produces 1 output.
 - Output value is High (1) if and only if all inputs are High (1).
 - Output value is Low (0) if and only if 1⁺ inputs are Low (0).
- >Symbols:

AND Gate Truth Table

For a 2-input AND Gate:

Inputs		Output
A	В	X
0	0	0
0	1	0
1	0	0
1	1	1

Note: Number of possible binary input combinations to an n-input gate is: $2^n \rightarrow T$ ruth table must have 2^n rows!

Example: Truth Table for 3-input AND Gate

$$n = 3 \rightarrow N = 2^3 = 8$$

	Inputs		Output
A	B	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Logic Expression of AND Gate

- ➤In Boolean algebra, AND gate is represented using Boolean multiplication operator → "•"
 - Boolean multiplication is similar to binary multiplication:

$$0 \cdot 0 = 0, 0 \cdot 1 = 0, 1 \cdot 0 = 0, 1 \cdot 1 = 1$$

➤ Boolean expression for 2-input AND gate is:

$$\circ X = A \cdot B$$
, or $X = AB$

➤ Boolean expression for 3-input AND gate is:

$$\circ X = A \cdot B \cdot C$$
, or $X = ABC$

DR. HAZEM SHEHATA

Timing Diagram of AND Gate

Example: 2-input AND Gate

DR. HAZEM SHEHATA

Application of AND Gate

Example: Seat Belt Alarm System

OR Gate

- > Performs operation called logical addition.
 - Takes 2⁺ inputs, and produces 1 output.
 - Output value is High (1) if and only if 1⁺ inputs are High (1).
 - Output value is Low (0) if and only if all inputs are Low (0).
- >Symbols:

$$A \longrightarrow X$$

OR Gate Truth Table

For a 2-input OR Gate:

Inputs		Output
\boldsymbol{A}	В	\ddot{X}
0	0	0
0	1	1
1	0	1
1	1	1

Example: Truth Table for 3-input OR Gate

$$n = 3 \rightarrow N = 2^3 = 8$$

Inputs		Output	
A	B	C	X
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Logic Expression of OR Gate

- ➤In Boolean algebra, OR gate is represented using Boolean addition operator → " + "
 - Boolean addition differs from binary addition in one case (1+1=?):

$$0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 1$$

➤ Boolean expression for 2-input AND gate is:

$$\circ X = A + B$$

DR. HAZEM SHEHATA

➤ Boolean expression for 3-input AND gate is:

$$\circ X = A + B + C$$

$$\frac{A}{B}$$

Timing Diagram of OR Gate

Example: 2-input OR Gate

Application of OR Gate

Example: Simplified Intrusion Detection System

Open door/window sensors HIGH = OpenLOW = Closed**HIGH** activates alarm. Alarm circuit

NAND Gate

- Contraction of NOT-AND AND with an inverted output.
 - Takes 2⁺ inputs, and produces 1 output.
 - Output value is Low (0) if and only if all inputs are High (1).
 - Output value is High (1) if and only if 1⁺ inputs are Low (0).
- >Symbols:

NAND Gate Truth Table

For a 2-input NAND Gate:

Inputs		Output
A	B	\ddot{X}
0	0	1
0	1	1
1	0	1
1	1	0

➤ Note: NAND Gate is equivalent to Negative-OR Gate.

Logic Expression of NAND Gate

- ➤In Boolean algebra, NAND gate is represented by multiplication combined with complementation → "¬"
- ➤ Boolean expression for 2-input NAND gate is:

$$\begin{array}{ccc}
0 & \overline{1 \cdot 0} &= \overline{0} &= 1 \\
1 & \overline{1 \cdot 1} &= \overline{1} &= 0
\end{array}$$

➤ Boolean expression for 3-input NAND gate is:

$$\circ X = \overline{A \cdot B \cdot C}$$
, or $X = \overline{ABC}$

Timing Diagram of NAND Gate

Example: 2-input NAND Gate

NOR Gate

- Contraction of NOT-OR → OR with an inverted output.
 - Takes 2⁺ inputs, and produces 1 output.
 - Output value is Low (0) if and only if 1⁺ inputs are High (1).
 - Output value is High (1) if and only if all inputs are Low (0).
- >Symbols:

DR. HAZEM SHEHATA

 $A \longrightarrow X$ $B \longrightarrow X$

> Equivalent to:

NOR Gate Truth Table

For a 2-input NOR Gate:

Inputs		Output
A	B	X
0	0	1
0	1	0
1	0	0
1	1	0

➤ Note: NOR Gate is equivalent to Negative-AND Gate.

Logic Expression of NOR Gate

- \triangleright In Boolean algebra, NOR gate is represented by addition combined with complementation \Rightarrow " \mp "
- ➤ Boolean expression for 2-input NOR gate is:

➤ Boolean expression for 3-input NOR gate is:

$$\circ X = \overline{A + B + C}$$

Timing Diagram of NOR Gate

Example: 2-input NOR Gate

Reading Material

- Floyd, Chapter 3:
 - Pages XX XX

