Scientific Visualization Part 3: Vectors/Directions

John Keyser

Vector Data (2D/3D)

- It is common for scientific data to have measurements of velocity
 - e.g. Fluid Dynamics
 - e.g. Weather Data
 - e.g. Signal Propagation (brain)
- Need to understand the overall flow of velocity data
- Note: can also have vectors of other values; here we focus on flow, where vectors are velocity measurements

The Three Aspects of a Vector

Magnitude ____(speed) ____

Orientation

Direction (usually)

Vector Visualization Tasks

- Judging speed, orientation, direction at an arbitrary point
- Identifying critical points (0 velocity)
 - Of various types (next slide)
- Judging advection trajectory
- Perceiving patterns of high/low speed
- Perceiving patterns of high/low vorticity
 - (as opposed to laminar flow)
- Perceiving patterns of high/low turbulence

Critical Points (in 2D Vector Field)

- Critical Points are 0 velocity points
 - And streamlines are not parallel
- Defines local topology
- Global topology from connecting critical points
- Types are defined by eigenvalues of Jacobian of velocity field

Common Visualization Approaches

- Draw lines, glyphs, etc. that show the orientation/magnitude/direction
 - But not always all three
- Perceptual issue: Glyphs in rows/columns
 - Tends to create artificial patterns
 - Random or jitter reduce effect

From: https://www.geogebra.org/m/QPE4PaDZ

https://www.wolfram.com/mathematica/newin7/content/VectorAndFieldVisualization/PlotFieldVectorsAtRandomPositions.html

2D vs. 3D

- 2D vector field visualizations have common features
 - Visual contours (lines connecting flow in one place to another location)
- 3D vector fields have two complications
 - Vectors themselves are in 3D
 - Vectors are arranged spatially in 3D
 - Thus we face occlusion issues as seen earlier in visualizing geometry
 - Stronger need to reduce clutter, overdrawing, etc.

Perceptual Effects: Orientation

- Visual contour lines should be extended along flow orientation
- If there are individual segments, should be able to visually connect them into contours

Perceptual Effects: Magnitude

- Higher perceptual response can be used to indicate greater magnitude
 - Longer
 - Wider
 - Higher Contrast
 - Higher motion (if animated)

Perceptual Effects: Direction

- Neural response: endpoints of segments are noticed
 - Contour ending in visual field
 - Strength determined by level of contrast
- For direction, something needs to be added to give asymmetry.
 - Head should be more distinct than tail
 - Higher luminance contrast vs. lower

Visualization Methods

Glyphs (Hedgehog plots)

- Basic idea: draw a symbol/shape at points where velocity is known.
 - Line Segment,
 - Arrow,
 - Triangle / Cone,
 - Streamlet,
 - etc.
- Each glyph encodes orientation, and often magnitude and direction
 - Sometimes are drawn curved

Data Visualization: Scientific Visualization

Glyphs

From:

Glyphs

- Can also use color, shape, pattern of glyphs to encode information
- Glyphs cannot be interpolated the same way as color/scalar fields
- Research has identified much more complex glyphs, that encode more information
 - Less intuitive, but can provide more information

Arrow glyphs on grid (very dense)

From:

Reducing clutter by sparser representation

From:

Random placement of glyphs breaks up patterns

From:

Drawing with line segment glyphs instead

From:

Particle Advection

- Place particles into vector field
- Trace path they would follow through the field

Simulate for a fixed period of time

 Visualize the path followed by the particle

From: https://www.researchgate.net/figure/Particle-advection-where-particles-are-moved-from-their-initial-location-white-to_fig1_262987292

https://www.nist.gov/image/fluids-suspensions-emulsions-project

Line Integral Convolution

- Creates a smooth image of flow orientation
 - Usually not direction, magnitude
- Convolving a noise function with the stream direction over the whole vector field
 - Convolution: Take one function (kernel) and place at values of another function, then add up
- Depending on size of convolution kernel and exact noise function, different results will be obtained
 - Size determines scale of flow lines shown

Line Interval Convolution

This example: direction and color = magnitude

From: https://arxiv.org/pdf/1503.07137.pdf

Streamlines

- Streamlines are curves that would give the vector field we have
 - Can be defined as solution of a differential equation that can be integrated to solve for the streamline
- Do not show magnitude (typically); sometimes show direction
- Stream tube is generalization (with width showing amount)

Streamlines

Data Visualization: Scientific Visualization

Streamlines in 3D

From: https://github.com/ladybug-tools/butterfly/issues/276

Other Approaches

- Can map vector properties to scalars
 - Magnitude of the vector is a scalar
 - Can be mapped, e.g. with color
 - Orientation is a single scalar value
 - Could also be mapped with
 - But, less obvious mapping, since it is cyclic
 - Direction can be incorporated here
- Note: can also map other properties of vector fields
 - Divergence
 - Vorticity

Example: Visualizing Divergence

From:

Example: Visualizing Vorticity

From: https://tsi.com/discover-tsi/events/seminars/piv-course-application-of-particle-image-velocimetry-theory-and-practice/

References

- Ware, Information Visualization: Perception For Design, 4th Edition, Elsevier, pp. 197-205.
- https://www.cs.auckland.ac.nz/compsci716 s2t/lectures/716Handout6_VectorIcons_4u p.pdf
- https://courses.engr.illinois.edu/cs519/fa20 17/Lecture%206%20-%20Vector%20Field%20Visualization%20I .pdf