

Open-source software

Carlos Castillo Passi

What is open-source software

 Open-source software is distributed with its source code, making it available for use, modification, and distribution with its original rights.

History of open-source software

Timeline of Open Source Software

1970's Software industries begain closing their software source.

1985: Richard Stallman created GNU project and Free Software Foundation.

1990's Open source software begain deveoloping in isolated groups.

Late 1990's Linux and Open Source Software gained public acceptance.

Today Lmux, Mozila and Android are most popular open

Richard Stallman

- GNU project
- GNU General Public License

collective/example.p4p5 is licensed under the

GNU General Public License v2.0

The GNU GPL is the most widely used free software license and has a strong copyleft requirement. When distributing derived works, the source code of the work must be made available under the same license. There are multiple variants of the GNU GPL, each with different requirements.

Permissions

- ✓ Commercial use
- Modification
- Distribution
- Private use

Limitations

- × Liability
- × Warranty

Conditions

- (i) License and copyright notice
- State changes
- (i) Disclose source
- (i) Same license

Replication crisis

		Data	
		Same	Different
Analysis	Same	Reproducible	Replicable
	Different	Robust	Generalisable

Python (1991)

The designer of
Python, Guido van
Rossum, at OSCON 2006

JEMRIS (2010)

Julia programming language (2012)

Stefan Karpinski, Viral B. Shah, Jeff Bezanson, and Alan Edelman

BART (2014)


```
void iter2_admm(iter_conf* conf,
    const struct operator_s* normaleq,
    unsigned int D,
    const struct operator_p_s* prox[D],
    const struct linop_s* ops[D],
    const struct biases[D],
    const float*
```

BART: Computational Magnetic Resonance Imaging

Quick Links: Home, Download & Installation, Tutorials, Webinars, List of Features, References & Reproducibility

Figure: Simulated MRI images.

The Berkeley Advanced Reconstruction Toolbox (BART) toolbox is a free and open-source image-reconstruction framework for **Computational Magnetic Resonance Imaging** developed by the research groups of <u>Martin Uecker</u> (Graz University of Technology), <u>Jon</u> Tamir (UT Austin), and <u>Michael Lusting</u> (UC Berkelev). It consists of a programming library and a toolbox of command-line programs. The

Martin Uecker (Graz University of Technology), Jon Tamir (UT Austin), and Michael Lustig (UC Berkeley)

Jupyter notebooks (2015)

Open-source standard

Blocks

Open-source standard

• ISMRMRD (2017)

ISMRMRD Dataset

XML Header

```
<pre
```

ISMR datas

Souheil J

David C.

First puk

</encoding>
</ismrmrdHeader>

```
<encoding>
 <encodedSpace>
    <matrixSize>
      <x>512</x><y>256</y><z>1</z>
   </matrixSize>
   <fieldOfView mm>
      <x>600</x><y>300</y><z>6</z>
   </fieldOfView_mm>
 </encodedSpace>
 <reconSpace>
    <matrixSize>
      <x>256</x><y>256</y><z>1</z>
   </matrixSize>
    <fieldOfView mm>
      <x>300</x><y>300</y><z>6</z>
   </fieldOfView_mm>
 </reconSpace>
 <encodingLimits>
   <kspace encoding step 1>
      <minimum>0</minimum>
      <maximum>255</maximum>
      <center>128</center>
   </kspace_encoding_step_1>
    <repetition>
      <minimum>0</minimum>
      <maximum>1</maximum>
      <center>0</center>
   </repetition>
 </encodingLimits>
 <trajectory>cartesian</trajectory>
```

Raw Data

MR-Hub (2019)

Many members of the ISMRM community develop customized software tools to solve problems in various

Categories:

All Categories (44)

Sort by name

Sort by date added

Sort by date last updated

Search MR-Hub

Sort by citations

DIPY

DIPY

Scientific computing software and community-driven medical imaging organization

Category: Multipurpose

Principal developers: Eleftherios Garyfallidis, Matthew Brett, Bagrat Amirbekian, Ariel Rokem, Stefan van der Walt, Maxime Descoteaux, Ian Nimmo-Smith and DIPY Contributors

Keywords: DTI, DKI, dMRI, diffusion MRI, neuroimaging, tractography, Diffusion Imaging

Date added to MR-Hub: 2020-01-27

Date software last updated: 2023-10-19

No. of citations: 868

(main associated paper on Semantic Scholar)

n and data processing. The MR-Hub offers a platform with the rest of the community - hopefully making to solve their own problems more rapidly by building he ISMRM community to follow the spirit of behind their publications available to share.

Study Group of the ISMRM - and we encourage ents to get involved. The GitHub repository for \(\frac{1}{3}\)ismrm/mrhub - where you can also find instructions to the repository.

id-sourced information related to open science and

to coincide with ISMRM 2019 in Montreal.

Pluto.jl (2020)

Each notebook also contains the package versions used

MRIReco.jl (2021)

ISMRM REPRODUCIBLE RESEARCH (2021)

Reproducible Research STUDY GROUP

Open-source MRI pipeline (2022)

KomaMRI.jl (2023)

Your Contribution (202X)

• Be a part of the MRI open-source software history!