THỰC HÀNH NHẬP MÔN MẠCH SỐ - LỚP PH002.N14.2 BÀI THỰC HÀNH 2: THIẾT KẾ MẠCH SỐ THEO HÀM LUẬN LÝ

Giảng viên hướng dẫn	Đỗ Trí Nhựt	ÐIĒM	
Sinh viên thực hiện 1	Lại Quan Thiên	22521385	
Sinh viên thực hiện 2			
Sinh viên thực hiện 3			
Sinh viên thực hiện 4			

1. Mục tiêu

- Hiểu được cách thức hoạt động của một Mạch số.
- Kết nối các cổng luận lý thành một Mạch số có chức năng mong muốn.

2. Nội dung

a. Thực hành trên lớp (làm theo nhóm)

Câu 1: Thiết kế mạch số theo hàm luận lý: F1(A, B, C, D) = AB + A'CD + AB'

- Sử dụng đại số bool để hoàn thành F1 (lý thuyết) trong bảng sau: □

A	В	C	D	F1 (lý thuyết)	F1 (mô phỏng)	F1 (thực nghiệm)
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	1	1	1
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	0	1	1	1	1
1	0	1	0	1	1	1
1	0	1	1	1	1	1
1	1	0	0	1	1	1
1	1	0	1	1	1	1
1	1	1	0	1	1	1
1	1	1	1	1	1	1

- Vẽ sơ đồ mạch trên Logisim: □

- Đóng gói và mô phỏng trên Logisim và điền kết quả vào F1 (mô phỏng) vào bảng trên: \Box

Signal Name	Signal Value	μς 220.0 μς	240.0 μs 260.0 μs	280.0 µs	300.0 μs 32	20.0 μs 340.0 μs	360.0 µs 380.	0 μs 400.0 μs	420.0 μs 440.0 μs
□ A	0	O	1	0		1	0	1	0
□ B	1	0 1	0 1	0	1	0 1	0	1 0	1 0
□ C	1	0 1 0	1 0 1 0	1 0	$\int 1$ 0 1	1 0 1 0	1 0 1	0 1 0	1 0 1 0
□ D	0		1 0 1 0 1 0 1 0	$1 \ 0 \ 1 \ 0$	1 0 1 0 1 0	$0 \int 1 \setminus 0 \int 1 \setminus 0 \int 1 \setminus 0$	$\int 1 \setminus 0 \int 1 \setminus 0 \int 1 \setminus 0$	1 0 1 0 1 0 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
₽ F1	0	0 10	1	0	1 0	1	0	1 0 1	0

- [Tùy chọn] Nạp thiết kế xuống DE2 KIT và điền kết quả F1 (thực nghiệm) vào bảng trên: □
- [Tùy chọn] Nhận xét về giá trị của F1 (lý thuyết), F1 (mô phỏng) và F1 (thực nghiệm): □
 -> Giá trị của F1 ở lý thuyết, mô phỏng, thực nghiệm là như nhau .

Câu 2: Thực nghiệm kết quả rút gọn hàm luận lý F1 ở câu 1

điền giá trị của F1 vào cột F1
(rút gọn, lý thuyết): □
F1(A, B, C, D) = AB + A'CD + AB'
= A + CD

Rút gọn hàm F1 ở câu 1 sau đó

A	В	С	D	F1 (rút gọn, lý thuyết)	F1 (rút gọn, mô phỏng)	F1 (rút gọn, thực nghiệm)
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	1	1	1
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	0	1	1	1	1
1	0	1	0	1	1	1
1	0	1	1	1	1	1
1	1	0	0	1	1	1
1	1	0	1	1	1	1
1	1	1	0	1	1	1
1	1	1	1	1	1	1

- Vẽ sơ đồ mạch trên Logisim: □

Đóng gói, mô phỏng trên Logisim và điền kết quả vào F1 (rút gon, mô phỏng) ở bảng trên: □ Α D 140.0 μs 160.0 μs 180.0 μs 200.0 μs 220.0 μs 240.0 μs 260.0 µs 280.0 μs Signal Name | Signal Value <u></u> A 0 0 <u></u> C <u></u> D 0 □ F1 0

Nhận xét về giá trị của F1 (rút gọn, lý thuyết) và F1 (lý thuyết) ở câu 1: 🗆

- Mach gon hon
- Dễ đánh giá hơn
- Kết quả cho ra trước và sau khi rút gọn là như nhau -> mạch rút rút gọn đúng và tiện hơn

Nhận xét về giá trị của F1 (rút gọn, mô phỏng) và F1 (mô phỏng) ở câu 1: 🛭

- Mạch gọn hơn
- Dễ đánh giá hơn
- Kết quả mô phỏng cho ra trước và sau khi rút gọn là như nhau -> cho thấy mạch rút gọn đúng, tiện cho việc xử lý, đánh giá,....
- [Tùy chọn] Nạp thiết kế xuống DE2 KIT và điền kết quả F1 (rút gọn, thực nghiệm) vào bảng trên: □
- [Tùy chọn] Nhận xét về giá trị của F1 (rút gọn, thực nghiệm) và F1 (thực nghiệm) ở câu 1: □
 - + Mạch sau khi rút gọn được gọn gàng và dễ nhìn hơn.
 - + Không còn khó khăn trong việc đánh giá, xử lý số liệu.
 - + Kết quả thực nghiệm cho ra trước và sau khi rút gọn là như nhau -> cho thấy mạch rút gọn đúng, tiện cho việc xử lý, đánh giá,....