Is Sharing Caring?

Elucidating the Effects of the Presence of CRISPR-Cas Systems on Rates of Horizontal Gene Transfer Using Network Analysis

Siddharth Reed MolBiol 4C12 Thesis

> Golding Lab, Biology Department, McMaster University

April 1, 2019

Table of Contents

- 1. CRISPR-Cas systems
- 2. Horizontal Gene Transfer
- 3. Phylogenomic Networks
- 4. Do CRRISPR Systems Affect Horizontal Gene Transfer?
- 5. My Project
- 6. Results

CRISPR-Cas systems

 Adaptive Bacterial Immune System

(Rath et al., 2015)

- Adaptive Bacterial Immune System
- Protects against foreign DNA

(Rath et al., 2015)

- Adaptive Bacterial Immune System
- Protects against foreign DNA
- Requires Cas proteins and CRISPR loci

(Rath et al., 2015)

 45% of bacteria have CRISPR loci (n = 6782) (GRissa, I. and Drevet, C. and Couvin, D., 2017)

(Makarova et al., 2011)

- 45% of bacteria have CRISPR loci (n = 6782) (GRissa, I. and Drevet, C. and Couvin, D., 2017)
- 3 Main Types, multiple subtypes (Bondy-Denomy and Davidson, 2014)

(Makarova et al., 2011)

- 45% of bacteria have CRISPR loci (n = 6782) (GRissa, I. and Drevet, C. and Couvin, D., 2017)
- 3 Main Types, multiple subtypes (Bondy-Denomy and Davidson, 2014)
- CRISPR arrays represent unique life history of an organism

(Makarova et al., 2011)

- 45% of bacteria have CRISPR loci (n = 6782) (GRissa, I. and Drevet, C. and Couvin, D., 2017)
- 3 Main Types, multiple subtypes (Bondy-Denomy and Davidson, 2014)
- CRISPR arrays represent unique life history of an organism
- 11% 28% are false or orphaned CRISPR loci (Zhang and Ye, 2017)

(Makarova et al., 2011)

Biotech Application

Biotech Application

(Rath et al., 2015)

Horizontal Gene Transfer

 Conjugation: Transfer of DNA through cell-cell connections (Popa and Dagan, 2011)

- Conjugation: Transfer of DNA through cell-cell connections (Popa and Dagan, 2011)
- Transformation: Incorportaion of free-floating DNA into the genome (Popa and Dagan, 2011)

- Conjugation: Transfer of DNA through cell-cell connections (Popa and Dagan, 2011)
- Transformation: Incorportaion of free-floating DNA into the genome (Popa and Dagan, 2011)
- Transduction: Transfer of DNA through phage (Popa and Dagan, 2011)

(Popa and Dagan, 2011)

- Conjugation: Transfer of DNA through cell-cell connections (Popa and Dagan, 2011)
- Transformation: Incorportaion of free-floating DNA into the genome (Popa and Dagan, 2011)
- Transduction: Transfer of DNA through phage (Popa and Dagan, 2011)
- CRISPR-Cas directly affects HGT (Popa and Dagan, 2011)

Pan-Genomes

Pan-Genomes

(Guimaraes et al., 2015)

Pan-Genomes

(Guimaraes et al., 2015)

(Rasko et al., 2008)

• Amount of exogenous DNA/cell density/phage density

- Amount of exogenous DNA/cell density/phage density
- Selective pressures

- Amount of exogenous DNA/cell density/phage density
- Selective pressures
- Metabolic costs

- Amount of exogenous DNA/cell density/phage density
- Selective pressures
- Metabolic costs
- Sequence compatibility

Applications

Applications

(Berglund, 2015)

Phylogenomic Networks

 Useful mathematical abstraction of real world system

- Useful mathematical abstraction of real world system
- Nodes can have attributes

- Useful mathematical abstraction of real world system
- Nodes can have attributes
- Directed or Undirected Edges

- Useful mathematical abstraction of real world system
- Nodes can have attributes
- Directed or Undirected Edges
- Weighted or Unweighted Edges

Prokaryotic "Net of Life"

Prokaryotic "Net of Life"

(Kunin et al., 2005)

Construction

(Ravenhall et al., 2015)

Do CRRISPR Systems Affect Horizontal Gene Transfer?

Yes

• Cost tradeoff factors:

- Cost tradeoff factors:
 - o Metabolic maintenace (Rath et al., 2015)

- Cost tradeoff factors:
 - Metabolic maintenace (Rath et al., 2015)
 - o Environmental pressures (Dzidic and Bedeković, 2003)

- Cost tradeoff factors:
 - Metabolic maintenace (Rath et al., 2015)
 - Environmental pressures (Dzidic and Bedeković, 2003)
 - o Off-target effects (autoimmune) (Stern et al., 2010)

- Cost tradeoff factors:
 - Metabolic maintenace (Rath et al., 2015)
 - Environmental pressures (Dzidic and Bedeković, 2003)
 - Off-target effects (autoimmune) (Stern et al., 2010)
 - o Anti-CRISPR systems (Bondy-Denomy and Davidson, 2014)

- Cost tradeoff factors:
 - Metabolic maintenace (Rath et al., 2015)
 - Environmental pressures (Dzidic and Bedeković, 2003)
 - Off-target effects (autoimmune) (Stern et al., 2010)
 - Anti-CRISPR systems (Bondy-Denomy and Davidson, 2014)
 - Phage virulence/density (Bondy-Denomy and Davidson, 2014)

- Cost tradeoff factors:
 - Metabolic maintenace (Rath et al., 2015)
 - Environmental pressures (Dzidic and Bedeković, 2003)
 - Off-target effects (autoimmune) (Stern et al., 2010)
 - Anti-CRISPR systems (Bondy-Denomy and Davidson, 2014)
 - Phage virulence/density (Bondy-Denomy and Davidson, 2014)
 - Prophage abundance (Watson, Staals, and Fineran, 2018)

 CRISPRs themselves can be transfered ⇒ population level immunity (Godde and Bickerton, 2006)

- CRISPRs themselves can be transfered ⇒ population level immunity (Godde and Bickerton, 2006)
- Selective CRISPR inactivation (Rath et al., 2015)

- CRISPRs themselves can be transfered ⇒ population level immunity (Godde and Bickerton, 2006)
- Selective CRISPR inactivation (Rath et al., 2015)
- CRISPR can enhance transduction-mediated HGT (Watson, Staals, and Fineran, 2018)

 Gophna et al. (2015) found no realtion between the presence of CRISPR systems and HGT over short evolutionary timescales

- Gophna et al. (2015) found no realtion between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arrose from HGT

- Gophna et al. (2015) found no realtion between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arrose from HGT
 - Used GC% to identify HGT

- Gophna et al. (2015) found no realtion between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arrose from HGT
 - Used GC% to identify HGT
- Contradicted by a former underdraduate thesis student

- Gophna et al. (2015) found no realtion between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arrose from HGT
 - Used GC% to identify HGT
- Contradicted by a former underdraduate thesis student
 - Can see inhibitory effects of CRIPSR on HGT over short evolutionary time scales

- Gophna et al. (2015) found no realtion between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arrose from HGT
 - Used GC% to identify HGT
- Contradicted by a former underdraduate thesis student
 - Can see inhibitory effects of CRIPSR on HGT over short evolutionary time scales
 - Higher gene indel rates for CRISPR containing genera than non-CRISPR containing outgroups

My Project

Hypothesis

Null Hypothesis

Bacterial strains or genera with known CRISPR systems will show no significant differences in network statistics compared to those strains or genera without known CRISPR systems.

Hypothesis

Null Hypothesis

Bacterial strains or genera with known CRISPR systems will show no significant differences in network statistics compared to those strains or genera without known CRISPR systems

Alternative Hypothesis

Bacterial strains or genera with known CRISPR systems will show a significant difference in at least 1 network statistic compared to those strains or genera without known CRISPR systems.

Objectives

Objectives

Within Network Comparisons

For genera with CRISPR conatining strains, compare the node statistics of CRIPSR-containing strain to non-CRISPR-containing strains.

Objectives

Within Network Comparisons

For genera with CRISPR conatining strains, compare the node statistics of CRIPSR-containing strain to non-CRISPR-containing strains.

Gene Indel Rates vs. Network Statistics

Compare gene InDel rates to node/network statistics for CRISPR-containing and non-CRISPR-containing strains/genera.

• Average Node Degree: $\frac{1}{|N_u|} \sum_{uv}^{N_u} w_{uv}$ where N_u is the set of nodes incidenent to u

- Average Node Degree: $\frac{1}{|N_u|} \sum_{uv}^{N_u} w_{uv}$ where N_u is the set of nodes incidenent to u
- Average Edge Weight: $\frac{1}{N_c} \sum_i w_i$, The average edge weight for all nodes with CRISPR or without CRISPR

- Average Node Degree: $\frac{1}{|N_u|} \sum_{uv}^{N_u} w_{uv}$ where N_u is the set of nodes incidenent to u
- Average Edge Weight: $\frac{1}{N_c} \sum_i w_i$, The average edge weight for all nodes with CRISPR or without CRISPR
- Node Clustering Coefficient: $\frac{1}{k_u(k_u-1)} \sum_{vw}^{T(u)} (\hat{w}_{uw} \hat{w}_{vw} \hat{w}_{uv})^{\frac{1}{3}}$ where T(u) is the set of traingles containing u (Onnela et al., 2005)

- Average Node Degree: $\frac{1}{|N_u|} \sum_{uv}^{N_u} w_{uv}$ where N_u is the set of nodes incidenent to u
- Average Edge Weight: $\frac{1}{N_c} \sum_i w_i$, The average edge weight for all nodes with CRISPR or without CRISPR
- Node Clustering Coefficient: $\frac{1}{k_u(k_u-1)} \sum_{vw}^{T(u)} (\hat{w}_{uw} \hat{w}_{vw} \hat{w}_{uv})^{\frac{1}{3}}$ where T(u) is the set of traingles containing u (Onnela et al., 2005)
- Node Assortativity: $A = \frac{Tr(M) ||M^2||}{1 ||M^2||}$ Where M is the mixing matrix of a given attribute and ||M|| is the sum of all elements of M. $A \in [-1,1]$. (Newman, 2002)

- Average Node Degree: $\frac{1}{|N_u|} \sum_{uv}^{N_u} w_{uv}$ where N_u is the set of nodes incidenent to u
- Average Edge Weight: $\frac{1}{N_c} \sum_i w_i$, The average edge weight for all nodes with CRISPR or without CRISPR
- Node Clustering Coefficient: $\frac{1}{k_u(k_u-1)} \sum_{vw}^{T(u)} (\hat{w}_{uw} \hat{w}_{vw} \hat{w}_{uv})^{\frac{1}{3}}$ where T(u) is the set of traingles containing u (Onnela et al., 2005)
- Node Assortativity: $A = \frac{Tr(M) ||M^2||}{1 ||M^2||}$ Where M is the mixing matrix of a given attribute and ||M|| is the sum of all elements of M. $A \in [-1, 1]$. (Newman, 2002)
- Network Modularity: $Q = \frac{1}{2m} \sum_{uv}^{W} [W_{uv} \frac{k_u k_v}{2m}] \delta(u, v)$ where m is the total weight of alledges, k_u is the degree of u and $\delta(u, v)$ is 1 if u and v both have or do not have CRISPR systems and 0 otherwise. $Q \in [-1, 1]$ (Newman, 2004)

Results

Example "Consensus" Network

Mean Node Degree

Gene Indel Rates

Gene Indel Rates

Gene Indel Rate Difference Vs. Fraction CRISPR Species

Mean Node Weighted Clustering Coefficient

Modularity Distributions

Assortativity Distributions

Conclusion

• **Ignored Singletons**: Genes that did not cluster into any families were ingnored from future steps, but may have still represented horiznotally transferred genes

- **Ignored Singletons**: Genes that did not cluster into any families were ingnored from future steps, but may have still represented horiznotally transferred genes
- **Ignored Some Gene Families**: For time considerations, only 1500 gene trees were generated for each genus

- Ignored Singletons: Genes that did not cluster into any families were ingnored from future steps, but may have still represented horiznotally transferred genes
- **Ignored Some Gene Families**: For time considerations, only 1500 gene trees were generated for each genus
- **Signifigance Testing**: Samples are not necessairily independant in a network, further node statistics can only be tested for genera with > 20 CRISPR and non-CRISPR OTUs.

- Ignored Singletons: Genes that did not cluster into any families were ingnored from future steps, but may have still represented horiznotally transferred genes
- **Ignored Some Gene Families**: For time considerations, only 1500 gene trees were generated for each genus
- **Signifigance Testing**: Samples are not necessairily independant in a network, further node statistics can only be tested for genera with > 20 CRISPR and non-CRISPR OTUs.
- Taxonomic Mistakes: Inconsistencies in taxonomic labelling can result in ignored or misplaced OTUs.

- Ignored Singletons: Genes that did not cluster into any families were ingnored from future steps, but may have still represented horiznotally transferred genes
- **Ignored Some Gene Families**: For time considerations, only 1500 gene trees were generated for each genus
- **Signifigance Testing**: Samples are not necessairily independant in a network, further node statistics can only be tested for genera with > 20 CRISPR and non-CRISPR OTUs.
- Taxonomic Mistakes: Inconsistencies in taxonomic labelling can result in ignored or misplaced OTUs.
- Multifurcation Error: Some species trees contained multifurcations, which were resolved randomly to generate a bifurcating tree. Estimating this error by examining variance over different resolutions is possible.

• **Inferring direction**: Directed networks have a host of available analytic tools undirected networks do not

- Inferring direction: Directed networks have a host of available analytic tools undirected networks do not
- Gene function analysis: Considering the transfer dynamics of different functional classes of genes

- Inferring direction: Directed networks have a host of available analytic tools undirected networks do not
- Gene function analysis: Considering the transfer dynamics of different functional classes of genes
- Studying movement of CRISPR systems: Studying how frequently CRISPR systems themselves are transferred from arrays, Cas genes

- Inferring direction: Directed networks have a host of available analytic tools undirected networks do not
- Gene function analysis: Considering the transfer dynamics of different functional classes of genes
- Studying movement of CRISPR systems: Studying how frequently CRISPR systems themselves are transferred from arrays, Cas genes
- Intergenic comparisons: Combine any set of fasta files from OTUs for analyzing transfer dynamics

- Inferring direction: Directed networks have a host of available analytic tools undirected networks do not
- Gene function analysis: Considering the transfer dynamics of different functional classes of genes
- Studying movement of CRISPR systems: Studying how frequently CRISPR systems themselves are transferred from arrays, Cas genes
- Intergenic comparisons: Combine any set of fasta files from OTUs for analyzing transfer dynamics
- Continuous CRISPR activity: Labelling nodes by estimated CRISPR activity (array length, transciptomic data, etc.)

- **Inferring direction**: Directed networks have a host of available analytic tools undirected networks do not
- Gene function analysis: Considering the transfer dynamics of different functional classes of genes
- Studying movement of CRISPR systems: Studying how frequently CRISPR systems themselves are transferred from arrays, Cas genes
- Intergenic comparisons: Combine any set of fasta files from OTUs for analyzing transfer dynamics
- Continuous CRISPR activity: Labelling nodes by estimated CRISPR activity (array length, transciptomic data, etc.)
- Considering bacterial ecology and environments: Consider geographically close OTUs or differences between networks due to environmental factors

Thanks

Thank you to

- Dr. G. Brian Golding
- Dr. Ben Evans
- The Golding lab
 - Caitlin Simopoulos
 - Daniella Lato
 - Zachery Dickson
 - Sam Long
 - Geoge Long
 - Lucy Zhang
 - Brianne Laverty
 - Nicole Zhang
- Everyone here for listening

All code used for this project is available at https://github.com/DJSiddharthVader/thesis_SidReed

References (1)

- Rath, Devashish et al. (2015). "The CRISPR-Cas immune system: Biology, mechanisms and applications". In: *Biochimie* 117. Special Issue: Regulatory RNAs, pp. 119–128. ISSN: 0300-9084.
 - GRissa, I. and Drevet, C. and Couvin, D. (2017). *CRISPRdb*. http://crispr.i2bc.paris-saclay.fr/. Online; accessed 22 October 2018.
 - Bondy-Denomy, J. and A. R. Davidson (2014). "To Acquire Or Resist:The Complex Biological Effects Of CRISPR-Cas systems". In: *Trends Microbio*. 22.4, pp. 218–25.
 - Zhang, Quan and Yuzhen Ye (Feb. 2017). "Not all predicted CRISPR–Cas systems are equal: isolated cas genes and classes of CRISPR like elements". In: *BMC Bioinformatics* 18.1, p. 92. ISSN: 1471–2105.

References (2)

- Makarova, K. S. et al. (2011). "Evolution and classification of the CRISPR-Cas systems". In: *Nat. Rev. Microbiol.* 9.6, pp. 467–477.
 - Popa, Ovidiu and Tal Dagan (2011). "Trends and barriers to lateral gene transfer in prokaryotes". In: *Current Opinion in Microbiology* 14.5. Antimicrobials/Genomics, pp. 615–623. ISSN: 1369-5274.
 - Guimaraes, L. C. et al. (2015). "Inside the Pan-genome Methods and Software Overview". In: *Curr. Genomics* 16.4, pp. 245–252.
 - Rasko, David A. et al. (2008). "The Pangenome Structure of Escherichia coli: Comparative Genomic Analysis of E. coli Commensal and Pathogenic Isolates". In: *Journal of Bacteriology* 190.20, pp. 6881–6893. ISSN: 0021-9193.
 - Berglund, Björn (2015). "Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics". In: *Infection Ecology & Epidemiology* 5.1, p. 28564.

References (3)

- Bondy, J. A. and U. S. R. Murty (2002). *Graph theory with applications*. Wiley.
 - Kunin, V. et al. (2005). "The net of life: reconstructing the microbial phylogenetic network". In: *Genome Res.* 15.7, pp. 954–959.
 - Ravenhall, Matt et al. (May 2015). "Inferring Horizontal Gene Transfer". In: *PLOS Computational Biology* 11.5, pp. 1–16.
 - Dzidic, Senka and Vladimir Bedeković (2003). "Horizontal gene transfer-emerging multidrug resistance in hospital bacteria". In: *Acta pharmacologica Sinica* 24.6, pp. 519–526.
 - Stern, Adi et al. (2010). "Self-targeting by CRISPR: gene regulation or autoimmunity?" In: *Trends in Genetics* 26.8, pp. 335–340. ISSN: 0168-9525.

References (4)

- Watson, Bridget N. J., Raymond H. J. Staals, and Peter C. Fineran (2018). "CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction". In: *mBio* 9.1. Ed. by Joseph Bondy-Denomy and Michael S. Gilmore.
 - Godde, James S. and Amanda Bickerton (June 2006). "The Repetitive DNA Elements Called CRISPRs and Their Associated Genes: Evidence of Horizontal Transfer Among Prokaryotes". In: *Journal of Molecular Evolution* 62.6, pp. 718–729. ISSN: 1432-1432.
 - Onnela, J. P. et al. (2005). "Intensity and coherence of motifs in weighted complex networks". In: *Phys Rev E Stat Nonlin Soft Matter Phys* 71.6 Pt 2, p. 065103.
 - Newman, M. E. (2002). "Assortative mixing in networks". In: *Phys. Rev. Lett.* 89.20, p. 208701.
 - (2004). "Analysis of weighted networks". In: Phys Rev E Stat Nonlin Soft Matter Phys 70.5 Pt 2, p. 056131.