Renewable_Energy_Technical_Potential

April 24, 2018

1 Dashboard of Renewable Energy in the U.S

```
In [1]: import pandas as pd
    import numpy as np
    import folium
    import os
    from branca.utilities import split_six
    state_geo = os.path.join('data', 'us-states.json')
    import matplotlib.pyplot as plt
    %matplotlib inline
    from IPython.display import Image
    from IPython.display import display_html
    from IPython.display import display
```

1.1 Import Data

- Data Source: https://catalog.data.gov/dataset/united-states-renewable-energy-technical-potential
- Reference: https://openei.org/doe-opendata/dataset/5346c5c2-be26-4be7-9663-b5a98cbb7527/resource/01fe78a8-77b6-4c59-bc36-cae177ee86c3/download/usretechpotential.pdf
- Goal: Create dashboard to visualize the data of renewable energy technical potential in the US.

```
In [2]: inputDF = pd.read_csv('usretechnicalpotential.csv')
In [3]: inputDF = inputDF.rename(columns = {'Unnamed: 0':'state'})
        # replacing NaN values with O
        inputDF.fillna(0, inplace=True)
In [4]: inputDF.head()
Out[4]:
                state urbanUtilityScalePV_GWh urbanUtilityScalePV_GW \
       0
             Alabama
                                         35850
                                                                     20
        1
               Alaska
                                           166
                                                                     0
        2
             Arizona
                                        121305
                                                                    52
            Arkansas
                                         28960
                                                                     15
        4 California
                                        246008
                                                                   111
```

```
urbanUtilityScalePV_km2 ruralUtilityScalePV_GWh ruralUtilityScalePV_GW \
0
                                               3706838
                        426
                                                                            2114
1
                          2
                                               8282976
                                                                            9005
2
                       1096
                                              11867693
                                                                            5147
3
                        332
                                               4986388
                                                                            2747
4
                       2320
                                               8855917
                                                                            4010
   ruralUtilityScalePV_km2
                             rooftopPV_GWh rooftopPV_GW
                                                              CSP GWh
0
                      44058
                                    15475.0
                                                                    0
1
                     187608
                                        0.0
                                                          1
                                                                    0
                                                         14
2
                     107230
                                    22736.0
                                                             12544333
3
                                                          6
                      57239
                                     8484.0
                                                                    0
4
                                                         75
                      83549
                                   106411.0
                                                              8490916
                              biopowerGaseous_GWh biopowerGaseous_GW
0
                                              1533
                                                                       0
1
                                                                       0
                                                61
2
                                               837
                                                                       0
3
                                              1063
                                                                       0
4
                                             15510
                                 geothermalHydrothermal_GWh
   biopowerGaseous_Tonnes-CH4
0
                        326186
1
                         13156
                                                        15437
2
                        178188
                                                         8329
3
                        226178
                                                            0
4
                                                       130921
                       3300211
   geothermalHydrothermal_GW
                                EGSGeothermal_GWh EGSGeothermal_GW \
0
                                         535489.0
                                                                 67.0
1
                             1
                                               0.0
                                                                  0.0
2
                             1
                                        1239147.0
                                                                157.0
3
                             0
                                         628621.0
                                                                 79.0
4
                           16
                                        1344179.0
                                                                170.0
   hydropower_GWh hydropower_GW
                                    hydropower_countOfSites
0
             4102
                                                         2435
            23675
                                 5
1
                                                         3053
2
             1303
                                 0
                                                         1958
3
             6093
                                                         3268
                                 1
4
            30023
                                 6
                                                         9692
```

[5 rows x 31 columns]

In [5]: inputDF.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50

```
Data columns (total 31 columns):
state
                               51 non-null object
urbanUtilityScalePV_GWh
                               51 non-null int64
urbanUtilityScalePV_GW
                               51 non-null int64
urbanUtilityScalePV_km2
                               51 non-null int64
ruralUtilityScalePV_GWh
                               51 non-null int64
ruralUtilityScalePV_GW
                               51 non-null int64
{\tt ruralUtilityScalePV\_km2}
                               51 non-null int64
rooftopPV_GWh
                               51 non-null float64
rooftopPV_GW
                               51 non-null int64
CSP_GWh
                               51 non-null int64
CSP_GW
                               51 non-null int64
                               51 non-null int64
CSP_km2
onshoreWind_GWh
                               51 non-null int64
onshoreWind_GW
                               51 non-null int64
                               51 non-null int64
onshoreWind_km2
offshoreWind_GWh
                               51 non-null float64
                               51 non-null float64
offshoreWind_GW
offshoreWind_km2
                               51 non-null float64
biopowerSolid_GWh
                               51 non-null int64
biopowerSolid_GW
                               51 non-null int64
biopowerSolid_BDT
                               51 non-null int64
biopowerGaseous_GWh
                               51 non-null int64
biopowerGaseous_GW
                               51 non-null int64
biopowerGaseous_Tonnes-CH4
                               51 non-null int64
geothermalHydrothermal_GWh
                               51 non-null int64
geothermalHydrothermal_GW
                               51 non-null int64
EGSGeothermal_GWh
                               51 non-null float64
EGSGeothermal_GW
                               51 non-null float64
hydropower_GWh
                               51 non-null int64
                               51 non-null int64
hydropower_GW
hydropower_countOfSites
                               51 non-null int64
dtypes: float64(6), int64(24), object(1)
memory usage: 12.4+ KB
```

1.2 Organize data

1.2.1 1. Utility-Scale Photovoltaics (Urban)

- Definition: large-scale photovoltaics(PV) deployed within urban boundaries on urban open space.
- State technical potential generation is expressed as:

```
StateMWh = State \Sigma [UrbanOpenSapce(km^2)*PowerDensity(48\frac{MW}{km^2})*StateCapacityFactor(\%)*8760(Housewith State State
```

```
In [6]: urbanUtilityScalePV_DF = inputDF[['state','urbanUtilityScalePV_GWh','urbanUtilityScalePU_urbanUtilityScalePV_sumDF = pd.DataFrame([['U.S Total',\]
```

```
urbanUtilityScalePV_DF['urbanUtilityScalePV urbanUtilityScalePV_DF['urbanUtilityScalePV urbanUtilityScalePV_DF['urbanUtilityScalePV columns=['state','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh','urbanUtilityScalePV_GWh'
```

The total estimated annual technical potential in the United States for urban utility-scale PV

Choropleth map of estimated technical potential for urban utility-scale photovoltaics in the U.S.:

```
In [8]: threshold_scale = split_six(urbanUtilityScalePV_DF['urbanUtilityScalePV_GWh'])
        m = folium.Map(location=[48, -102], zoom_start=3)
        m.choropleth(
            geo_data=state_geo,
            name='choropleth',
            data=urbanUtilityScalePV_DF,
            columns=['state', 'urbanUtilityScalePV_GWh'],
            key_on='feature.properties.name',
            fill_color='YlGn',
            fill_opacity=0.7,
            line_opacity=0.2,
            legend_name='Urban Utility Scale PV (Gigawatt Hours)',
            threshold_scale=threshold_scale,
            reset=True
        )
        folium.LayerControl().add_to(m)
        m.save(os.path.join('choroplethMap', 'urbanUtilityScalePV.html'))
        m
Out[8]: <folium.folium.Map at 0x1119fb8d0>
```

Note: GitHub preview cannot load the choropleth map directly, so I saved the map in html and screenshot the result for better visualization on GitHub preview.

```
In [9]: display(Image("choroplethMap/urbanUtilityScalePV.png", width=1000))
```


Table of estimated technical potential for urban utility-scale photovoltaics by state: Texas and California have the highest estimated technical potential, a result of a combination of good solar resource and large population

In [10]: urbanUtilityScalePV_DF.append(urbanUtilityScalePV_sumDF)

Out[10]:	state	urbanUtilityScalePV_GWh	urbanUtilityScalePV GW	\
		-		`
0	Alabama	35850	20	
1	Alaska	166	0	
2	Arizona	121305	52	
3	Arkansas	28960	15	
4	California	246008	111	
5	Colorado	43470	19	
6	Connecticut	7716	4	
7	Delaware	14856	9	
8	District of Columbia	8	0	
9	Florida	72787	39	
10	Georgia	43166	24	
11	Hawaii	3725	1	
12	Idaho	23194	12	
13	Illinois	103551	63	
14	Indiana	98815	61	
15	Iowa	27091	15	
16	Kansas	31705	15	
17	Kentucky	26514	16	

18	Louisiana	55669	32
19	Maine	3216	1
20	Maryland	28551	18
21	Massachusetts	17469	10
22	Michigan	50845	33
23	Minnesota	33370	20
24	Mississippi	26366	15
25	Missouri	30549	18
26	Montana	11370	6
27	Nebraska	12954	6
28	Nevada	24893	10
29	New Hampshire	3790	2
30	New Jersey	44307	25
31	New Mexico	71356	30
32	New York	52803	32
33	North Carolina	68346	37
34	North Dakota	4871	2
35	Ohio	86495	57
36	Oklahoma	50040	25
37	Oregon	25783	12
38	Pennsylvania	56161	36
39	Rhode Island	1787	1
40	South Carolina	33834	19
41	South Dakota	4573	2
42	Tennessee	50243	28
43	Texas	294684	154
44	Utah	30492	14
45	Vermont	1632	1
46	Virginia	27451	15
47	Washington	33690	19
48	West Virginia	3023	2
49	Wisconsin	54938	34
50	Wyoming	7232	3
0	U.S Total	2231670	1195

urbanUtilityScalePV_km2

	<u> </u>
0	426
1	2
2	1096
3	332
4	2320
5	399
6	100
7	189
8	0
9	830
10	505
11	34

12	251
13	1324
14	1274
15	324
16	317
17	338
18	674
19	40
20	378
21	228
22	699
23	419
24	317
25	376
26	127
27	141
28	224
29	48
30	527
31	645
32	682
33	789
34	57
35	1190
36	533
37	270
38	754
39	24
40	397
41	50
42	595
43	3213
44	292
45	22
46	326
47	402
48	41
49	727
50	75
0	25343

1.2.2 2. Utility-Scale Photovoltaics (Rural)

- Definition: large-scale PV deployed outside urban boundaries (the complement of urban utility-scale PV).

 • State technical potential generation is expressed as:

The total estimated annual technical potential in the United States for rural utility-scale PV

Choropleth map of estimated technical potential for rural utility-scale photovoltaics in the U.S.:

```
In [13]: threshold_scale = split_six(ruralUtilityScalePV_DF['ruralUtilityScalePV_GWh'])
         m = folium.Map(location=[48, -102], zoom_start=3)
         m.choropleth(
             geo_data=state_geo,
             name='choropleth',
             data=ruralUtilityScalePV DF,
             columns=['state', 'ruralUtilityScalePV_GWh'],
             key_on='feature.properties.name',
             fill_color='YlGn',
             fill_opacity=0.7,
             line_opacity=0.2,
             legend_name='Rural Utility Scale PV (Gigawatt Hours)',
             threshold_scale=threshold_scale,
             reset=True
         )
         folium.LayerControl().add_to(m)
         m.save(os.path.join('choroplethMap', 'ruralUtilityScalePV.html'))
         \mathbf{m}
Out[13]: <folium.folium.Map at 0x1119fb4a8>
In [14]: display(Image("choroplethMap/ruralUtilityScalePV.png", width=1000))
```


Table of estimated technical potential for rural utility-scale photovoltaics by state:

In [15]: ruralUtilityScalePV_DF.append(ruralUtilityScalePV_sumDF)

Out[15]:	state	${\tt ruralUtilityScalePV_GWh}$	${\tt ruralUtilityScalePV_GW}$	\
0	Alabama	3706838	2114	
1	Alaska	8282976	9005	
2	Arizona	11867693	5147	
3	Arkansas	4986388	2747	
4	California	8855917	4010	
5	Colorado	10238083	4514	
6	Connecticut	19627	12	
7	Delaware	272332	167	
8	District of Columbia	0	0	
9	Florida	5137346	2812	
10	Georgia	5492183	3088	
11	Hawaii	38032	20	
12	Idaho	3936847	2045	
13	Illinois	8090985	4969	
14	Indiana	4876185	3018	
15	Iowa	6994159	4020	
16	Kansas	14500149	6959	
17	Kentucky	1823976	1119	
18	Louisiana	4114605	2394	
19	Maine	1100327	658	
20	Maryland	585949	373	

21	Massachusetts	82204	51
22	Michigan	5215639	3443
23	Minnesota	10792814	6510
24	Mississippi	4981252	2879
25	Missouri	5335268	3156
26	Montana	8187341	4402
27	Nebraska	9266756	4869
28	Nevada	8614454	3732
29		57363	35
30	New Hampshire	439773	251
	New Jersey		
31	New Mexico	16318543	7087
32	New York	1492566	926
33	North Carolina	4232789	2346
34	North Dakota	9734447	5482
35	Ohio	3626181	2395
36	Oklahoma	9341920	4782
37	Oregon	3740478	1884
38	Pennsylvania	553356	356
39	Rhode Island	13636	8
40	South Carolina	2754973	1555
41	South Dakota	10008873	5344
42	Tennessee	2225989	1266
43	Texas	38993581	20411
44	Utah	5184878	2390
45	Vermont	54727	35
46	Virginia	1882467	1074
47	Washington	1738150	996
48	West Virginia	52693	35
49	Wisconsin	5042258	3205
50	Wyoming	5727224	2854
0	U.S Total	280613190	152950
U	0.5 10tal	200013190	152950

ruralUtilityScalePV_km2

	rararourity board v_imiz
0	44058
1	187608
2	107230
3	57239
4	83549
5	94046
6	256
7	3482
8	0
9	58596
10	64343
11	430
12	42612
13	103524
14	62890

15	83762
16	144995
17	23319
18	49876
19	13722
20	7772
21	1074
22	71740
23	135627
24	59996
25	65766
26	91724
27	101456
28	77751
29	741
30	5231
31	147652
32	19294
33	48892
34	114227
35	49908
36	99640
37	39266
38	7429
39	184
40	32398
41	111350
42	26395
43	425230
44	49797
45	739
46	22377
47	20758
48	729
49	66788
50	59463
0	3186931

1.2.3 3. Rooftop Photovoltaics

• Definition: We obtained rooftop PV estimates from Denholm and Margolis (2008b), who obtained floor space estimates for commercial and residential buildings from McGraw-Hill and scaled these to estimate a building footprint based on the number of floors.

The total estimated annual technical potential in the United States for Rooftop Photovoltaics

Choropleth map of estimated technical potential for rooftop photovoltaics in the U.S.:

```
In [18]: threshold_scale = split_six(rooftopPV_DF['rooftopPV_GWh'])
         m = folium.Map(location=[48, -102], zoom_start=3)
         m.choropleth(
             geo_data=state_geo,
             name='choropleth',
             data=rooftopPV_DF,
             columns=['state', 'rooftopPV_GWh'],
             key_on='feature.properties.name',
             fill_color='YlGn',
             fill_opacity=0.7,
             line_opacity=0.2,
             legend_name='Rooftop PV (Gigawatt Hours)',
             threshold_scale=threshold_scale,
             reset=True
         )
         folium.LayerControl().add_to(m)
         m.save(os.path.join('choroplethMap', 'rooftopPV.html'))
         m
Out[18]: <folium.folium.Map at 0x111c4fa90>
In [19]: display(Image("choroplethMap/rooftopPV.png", width=1000))
```


Table of estimated technical potential for rooftop photovoltaics by state: States with the largest technical potential typically have the largest populations. California has the highest technical potential of 106 TWh due to its mix of high population and relatively good solar resource.

In [20]: rooftopPV_DF.append(rooftopPV_sumDF)

Out[20]:	state	rooftopPV_GWh	rooftopPV_GW
0	Alabama	15475.0	12
1	Alaska	0.0	1
2	Arizona	22736.0	14
3	Arkansas	8484.0	6
4	California	106411.0	75
5	Colorado	16162.0	11
6	Connecticut	6616.0	5
7	Delaware	2185.0	1
8	District of Columbia	2490.0	2
9	Florida	63986.0	49
10	Georgia	31116.0	24
11	Hawaii	0.0	2
12	Idaho	4051.0	3
13	Illinois	30086.0	26
14	Indiana	17151.0	14
15	Iowa	8646.0	7
16	Kansas	8962.0	6
17	Kentucky	12312.0	10

18	Louisiana	14368.0	11
19	Maine	2443.0	2
20	Maryland	14849.0	12
21	Massachusetts	11722.0	10
22	Michigan	23527.0	21
23	Minnesota	14321.0	12
24	Mississippi	8614.0	6
25	Missouri	16159.0	13
26	Montana	2194.0	1
27	Nebraska	5336.0	4
28	Nevada	10767.0	7
29	New Hampshire	2298.0	2
30	New Jersey	15767.0	13
31	New Mexico	6513.0	4
32	New York	28779.0	25
33	North Carolina	28419.0	23
34	North Dakota	1916.0	1
35	Ohio	30064.0	27
36	Oklahoma	12442.0	9
37	Oregon	8322.0	7
38	Pennsylvania	22215.0	19
39	Rhode Island	1710.0	1
40	South Carolina	14412.0	11
41	South Dakota	2082.0	1
42	Tennessee	19685.0	16
43	Texas	78716.0	60
44	Utah	7513.0	5
45	Vermont	1115.0	1
46	Virginia	22266.0	18
47	Washington	13599.0	13
48	West Virginia	4220.0	3
49	Wisconsin	13939.0	12
50	Wyoming	1550.0	1
0	U.S Total	818711.0	639

1.2.4 4. Concentrating Solar Power (CSP)

- Definition: power from a utility-scale solar power facility in which the solar heat energy is collected in a central location.
- State technical potential generation is expressed as:

CSP_DF['CSP_GW'].sum(),\

```
CSP_DF['CSP_km2'].sum()]], \
columns=['state','CSP_GWh','CSP_GW','CSP_km2
```

The total estimated annual technical potential in the United States for Concentrating Solar Power

Choropleth map of estimated technical potential for Concentrating Solar Power in the U.S.:

```
In [23]: threshold_scale = split_six(CSP_DF['CSP_GWh'])
         m = folium.Map(location=[48, -102], zoom_start=3)
         m.choropleth(
             geo_data=state_geo,
             name='choropleth',
             data=CSP_DF,
             columns=['state', 'CSP_GWh'],
             key_on='feature.properties.name',
             fill_color='YlGn',
             fill_opacity=0.7,
             line_opacity=0.2,
             legend_name='Concentrating Solar Power (Gigawatt Hours)',
             threshold_scale=threshold_scale,
             reset=True
         )
         folium.LayerControl().add_to(m)
         m.save(os.path.join('choroplethMap', 'CSP.html'))
         m
Out[23]: <folium.folium.Map at 0x111c4fc18>
In [24]: display(Image("choroplethMap/CSP.png", width=1000))
```


Table of estimated technical potential for Concentrating Solar Power by state: Technical potential for CSP exists predominately in the Southwest.

In [25]: CSP_DF.append(CSP_sumDF)

Out[25]:	state	CSP_GWh	CSP_GW	CSP_km2
0	Alabama	0	0	0
1	Alaska	0	0	0
2	Arizona	12544333	3527	107238
3	Arkansas	0	0	0
4	California	8490916	2725	82859
5	Colorado	9154524	3097	94173
6	Connecticut	0	0	0
7	Delaware	0	0	0
8	District of Columbia	0	0	0
9	Florida	358	0	3
10	Georgia	0	0	0
11	Hawaii	15369	5	168
12	Idaho	3502877	1267	38523
13	Illinois	0	0	0
14	Indiana	0	0	0
15	Iowa	0	0	0
16	Kansas	7974255	2884	87697
17	Kentucky	0	0	0
18	Louisiana	0	0	0

19	Maine	0	0	0
20	Maryland	0	0	0
21	Massachusetts	0	0	0
22	Michigan	0	0	0
23	Minnesota	0	0	0
24	Mississippi	0	0	0
25	Missouri	0	0	0
26	Montana	1540287	557	16939
27	Nebraska	4846929	1753	53304
28	Nevada	8295752	2557	77759
29	New Hampshire	0	0	0
30	New Jersey	0	0	0
31	New Mexico	16812349	4860	147747
32	New York	0	0	0
33	North Carolina	0	0	0
34	North Dakota	36049	13	396
35	Ohio	0	0	0
36	Oklahoma	5068036	1812	55113
37	Oregon	2812126	1017	30926
38	Pennsylvania	0	0	0
39	Rhode Island	0	0	0
40	South Carolina	0	0	0
41	South Dakota	1629659	589	17922
42	Tennessee	0	0	0
43	Texas	22786749	7743	235398
44	Utah	5067546	1638	49799
45	Vermont	0	0	0
46	Virginia	0	0	0
47	Washington	161713	58	1778
48	West Virginia	0	0	0
49	Wisconsin	0	0	0
50	Wyoming	5406407	1955	59457
0	U.S Total	116146234	38057	1157199

1.2.5 5. Onshore Wind Power

- Definition: wind resource at 80 meters(m) height above surface that results in an annual average gross capacity factor of 30% (net capacity factor of 25.5%), using typical utility-scale wind turbine power curves.
- We estimate annual generation by assuming a power density of 5 MW/km²(DOE EERE 2008)10 and 15% energy losses to calculate net capacity factor.

The total estimated annual technical potential in the United States for Onshore Wind Power

Choropleth map of estimated technical potential for Onshore Wind Power in the U.S.:

```
In [28]: threshold_scale = split_six(onshoreWind_DF['onshoreWind_GWh'])
         m = folium.Map(location=[48, -102], zoom start=3)
         m.choropleth(
             geo_data=state_geo,
             name='choropleth',
             data=onshoreWind_DF,
             columns=['state', 'onshoreWind_GWh'],
             key_on='feature.properties.name',
             fill_color='YlGn',
             fill_opacity=0.7,
             line_opacity=0.2,
             legend_name='Onshore Wind Power (Gigawatt Hours)',
             threshold_scale=threshold_scale,
             reset=True
         )
         folium.LayerControl().add_to(m)
         m.save(os.path.join('choroplethMap', 'onshoreWind.html'))
         m
Out[28]: <folium.folium.Map at 0x111d45b38>
In [29]: display(Image("choroplethMap/onshoreWind.png", width=1000))
```


Table of estimated technical potential for Onshore Wind Power by state: Technical potential for onshore wind power is largest in the central Great Plains and lowest in the southeastern United States.

In [30]: onshoreWind_DF.append(onshoreWind_sumDF)

Out[30]:	state	onshoreWind_GWh	onshoreWind_GW	onshoreWind_km2
0	Alabama	283	0	23
1	Alaska	1373433	493	98669
2	Arizona	26036	10	2180
3	Arkansas	22892	9	1840
4	California	89862	34	6822
5	Colorado	1096035	387	77443
6	Connecticut	61	0	5
7	Delaware	21	0	1
8	District of Columbia	0	0	0
9	Florida	0	0	0
10	Georgia	322	0	26
11	Hawaii	7786	2	493
12	! Idaho	44319	18	3615
13	Illinois	649467	249	49976
14	Indiana	377603	148	29645
15	Iowa	1723587	570	114142
16	Kansas	3101575	952	190474
17	. Kentucky	147	0	12

18	Louisiana	934	0	81
19	Maine	28742	11	2250
20	Maryland	3631	1	296
21	Massachusetts	2827	1	205
22	Michigan	143907	59	11808
23	Minnesota	1428524	489	97854
24	Mississippi	0	0	0
25	Missouri	689519	274	54871
26	Montana	2746271	944	188800
27	Nebraska	3011252	917	183599
28	Nevada	17709	7	1449
29	New Hampshire	5706	2	427
30	New Jersey	317	0	26
31	New Mexico	1399156	492	98416
32	New York	63565	25	5156
33	North Carolina	2037	0	161
34	North Dakota	2537824	770	154039
35	Ohio	129142	54	10983
36	Oklahoma	1521651	516	103364
37	Oregon	68766	27	5420
38	Pennsylvania	8230	3	661
39	Rhode Island	129	0	9
40	South Carolina	427	0	37
41	South Dakota	2901858	882	176482
42	Tennessee	765	0	61
43	Texas	5552399	1901	380305
44	Utah	31552	13	2620
45	Vermont	7795	2	589
46	Virginia	4589	1	358
47	Washington	47249	18	3695
48	West Virginia	4951	1	376
49	Wisconsin	255266	103	20751
50	Wyoming	1653856	552	110414
0	U.S Total	32783975	10937	2190929

1.2.6 6. Offshore Wind Power

- Definition: annual average wind speed greater than or equal to 6.4 meters per second (m/s) at 90 m height above surface.
- Our annual generation estimates assume a power density of 5 MW/km² and capacity factors based on wind speed interval and depth-based wind farm configurations to account for anchoring and stabilization for the turbines as developed by NREL analysts for use in the ReEDS model (Musial and Ram 2010).

```
offshoreWind_DF['offshoreWind_km2'].sum()];
columns=['state','offshoreWind_GWh','offshore
```

The total estimated annual technical potential in the United States for Offshore Wind Power

Choropleth map of estimated technical potential for Offshore Wind Power in the U.S.:

```
In [33]: threshold_scale = split_six(offshoreWind_DF['offshoreWind_GWh'])
         m = folium.Map(location=[48, -102], zoom_start=3)
         m.choropleth(
             geo_data=state_geo,
             name='choropleth',
             data=offshoreWind_DF,
             columns=['state', 'offshoreWind_GWh'],
             key_on='feature.properties.name',
             fill_color='YlGn',
             fill_opacity=0.7,
             line_opacity=0.2,
             legend_name='Offshore Wind Power (Gigawatt Hours)',
             threshold_scale=threshold_scale,
             reset=True
         )
         folium.LayerControl().add_to(m)
         m.save(os.path.join('choroplethMap', 'offshoreWind.html'))
         m
Out[33]: <folium.folium.Map at 0x111fc6c50>
In [34]: display(Image("choroplethMap/offshoreWind.png", width=1000))
```


Table of estimated technical potential for Offshore Wind Power by state: Technical potential for offshore wind power is present in significant quantities in all offshore regions of the United States.

In [35]: offshoreWind_DF.append(offshoreWind_sumDF)

Out[35]:	state	offshoreWind_GWh	offshoreWind_GW	offshoreWind_km2
0	Alabama	0.0	0.0	0.0
1	Alaska	0.0	0.0	0.0
2	Arizona	0.0	0.0	0.0
3	Arkansas	0.0	0.0	0.0
4	California	2662579.0	654.0	130966.0
5	Colorado	0.0	0.0	0.0
6	Connecticut	26545.0	7.0	1434.0
7	Delaware	60654.0	15.0	3007.0
8	District of Columbia	0.0	0.0	0.0
9	Florida	34684.0	9.0	1929.0
10	Georgia	220807.0	58.0	11725.0
11	Hawaii	2836735.0	736.0	147389.0
12	Idaho	0.0	0.0	0.0
13	Illinois	66070.0	15.0	3174.0
14	Indiana	165.0	0.0	9.0
15	Iowa	0.0	0.0	0.0
16	Kansas	0.0	0.0	0.0
17	Kentucky	0.0	0.0	0.0

18	Louisiana	1200698.0	340.0	68122.0
19	Maine	631960.0	147.0	29483.0
20	Maryland	200852.0	51.0	10381.0
21	Massachusetts	799344.0	184.0	36815.0
22	Michigan	1739800.0	422.0	84515.0
23	Minnesota	100454.0	29.0	5842.0
24	Mississippi	10172.0	3.0	642.0
25	Missouri	0.0	0.0	0.0
26	Montana	0.0	0.0	0.0
27	Nebraska	0.0	0.0	0.0
28	Nevada	0.0	0.0	0.0
29	New Hampshire	14477.0	3.0	691.0
30	New Jersey	429807.0	101.0	20386.0
31	New Mexico	0.0	0.0	0.0
32	New York	614279.0	146.0	29215.0
33	North Carolina	1269626.0	306.0	61204.0
34	North Dakota	0.0	0.0	0.0
35	Ohio	170561.0	41.0	8360.0
36	Oklahoma	0.0	0.0	0.0
37	Oregon	962722.0	225.0	45001.0
38	Pennsylvania	23571.0	5.0	1134.0
39	Rhode Island	89114.0	20.0	4193.0
40	South Carolina	542218.0	133.0	26643.0
41	South Dakota	0.0	0.0	0.0
42	Tennessee	0.0	0.0	0.0
43	Texas	1101062.0	271.0	54288.0
44	Utah	0.0	0.0	0.0
45	Vermont	0.0	0.0	0.0
46	Virginia	361053.0	89.0	17814.0
47	Washington	488025.0	120.0	24192.0
48	West Virginia	0.0	0.0	0.0
49	Wisconsin	317754.0	80.0	16134.0
50	Wyoming	0.0	0.0	0.0
0	U.S Total	16975788.0	4210.0	844688.0

1.2.7 7. Biopower (Solid and Gaseous)

• Definition: We obtained county-level estimates of solid biomass resource for crop, forest, primary/secondary mill residues, and urban wood waste from Milbrandt (2005, updated in 2008) who reported the estimates in bone-dry tonnes (BDT) per year.

7.a. Biopower of Solid

• We calculate technical potential energy generation assuming 1.1 MWh/BDT, which represents an average solid biomass system output with an industry-average conversion efficiency of 20%, and a higher heating value (HHV) of 8,500 BTU/lb.

```
In [36]: biopowerSolid_DF = inputDF[['state','biopowerSolid_GWh','biopowerSolid_GW','biopowerSolid_sumDF = pd.DataFrame([['U.S Total',\]
```

```
biopowerSolid_DF['biopowerSolid_GWh'].sum(
biopowerSolid_DF['biopowerSolid_GW'].sum()
biopowerSolid_DF['biopowerSolid_BDT'].sum(
columns=['state','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh','biopowerSolid_GWh'].
```

The total estimated annual technical potential in the United States for Biopower of Solid

Choropleth map of estimated technical potential for Biopower of Solid in the U.S.:

```
In [38]: threshold_scale = split_six(biopowerSolid_DF['biopowerSolid_GWh'])
         m = folium.Map(location=[48, -102], zoom_start=3)
         m.choropleth(
             geo_data=state_geo,
             name='choropleth',
             data=biopowerSolid_DF,
             columns=['state', 'biopowerSolid_GWh'],
             key_on='feature.properties.name',
             fill_color='YlGn',
             fill_opacity=0.7,
             line_opacity=0.2,
             legend_name='Biopower of Solid (Gigawatt Hours)',
             threshold_scale=threshold_scale,
             reset=True
         )
         folium.LayerControl().add_to(m)
         m.save(os.path.join('choroplethMap', 'biopowerSolid.html'))
         m
Out[38]: <folium.folium.Map at 0x1120a9400>
In [39]: display(Image("choroplethMap/biopowerSolid.png", width=1000))
```


Table of estimated technical potential for Biopower of Solid by state:

In [40]: biopowerSolid_DF.append(biopowerSolid_sumDF)

Out[40]:	state	biopowerSolid_GWh	biopowerSolid_GW	\
0	Alabama	11193	1	
1	Alaska	513	0	
2	Arizona	1087	0	
3	Arkansas	14381	1	
4	California	12408	1	
5	Colorado	2913	0	
6	Connecticut	494	0	
7	Delaware	512	0	
8	District of Columbia	61	0	
9	Florida	9664	1	
10	Georgia	14682	1	
11	Hawaii	524	0	
12	Idaho	5775	0	
13	Illinois	27738	3	
14	Indiana	14941	1	
15	Iowa	27502	3	
16	Kansas	12104	1	
17	Kentucky	7048	0	
18	Louisiana	14016	1	
19	Maine	4273	0	

20	Maryland	2102	0
21	Massachusetts	1045	0
22	Michigan	9358	1
23	Minnesota	20361	2
24	Mississippi	14209	1
25	Missouri	11837	1
26	Montana	4924	0
27	Nebraska	16271	2
28	Nevada	288	0
29	New Hampshire	953	0
30	New Jersey	1212	0
31	New Mexico	595	0
32	New York	5558	0
33	North Carolina	12869	1
34	North Dakota	8186	1
35	Ohio	11009	1
36	Oklahoma	4128	0
37	Oregon	13793	1
38	Pennsylvania	6313	0
39	Rhode Island	143	0
40	South Carolina	6984	0
41	South Dakota	8380	1
42	Tennessee	6095	0
43	Texas	16077	2
44	Utah	433	0
45	Vermont	491	0
46	Virginia	7866	0
47	Washington	12311	1
48	West Virginia	2406	0
49	Wisconsin	11221	1
50	Wyoming	503	0
0	U.S Total	399750	30

biopowerSolid_BDT

DIOPOWOIDOIIU_DDI
10175869
466797
988705
13074040
11280245
2648462
449775
465802
56180
8785824
13347586
476459
5250560
25216443

```
14
              13583318
15
              25002253
16
              11004052
17
               6407337
18
              12741856
19
               3884583
20
               1911045
21
                950308
22
               8507307
23
              18510689
24
              12918114
25
              10761509
26
               4477082
27
              14792723
28
                262613
29
                867153
30
               1101910
31
                541274
32
               5053081
33
              11699887
34
               7441887
35
              10008282
36
               3753137
37
              12539176
38
               5739609
39
                130452
40
               6349820
41
               7618309
42
               5541359
43
              14615951
44
                394530
45
                447268
46
               7151120
47
              11192456
48
               2188057
49
              10201440
50
                457298
             363430992
```

7.b. Biopower of Gaseous

• We obtained county-level estimates of gaseous biomass (methane emissions), from animal manure, domestic wastewater treatment plants, and landfills; all estimates were reported in tonnes of methane (CH4) per year.

```
biopowerGaseous_DF['biopowerGaseous_GW'].s
biopowerGaseous_DF['biopowerGaseous_Tonnes
columns=['state','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','biopowerGaseous_GWh','b
```

The total estimated annual technical potential in the United States for Biopower of Gaseous

Choropleth map of estimated technical potential for Biopower of Gaseous in the U.S.:

```
In [43]: threshold_scale = split_six(biopowerGaseous_DF['biopowerGaseous_GWh'])
         m = folium.Map(location=[48, -102], zoom_start=3)
         m.choropleth(
             geo_data=state_geo,
             name='choropleth',
             data=biopowerGaseous_DF,
             columns=['state', 'biopowerGaseous_GWh'],
             key_on='feature.properties.name',
             fill_color='YlGn',
             fill_opacity=0.7,
             line_opacity=0.2,
             legend_name='Biopower of Gaseous (Gigawatt Hours)',
             threshold_scale=threshold_scale,
             reset=True
         )
         folium.LayerControl().add_to(m)
         m.save(os.path.join('choroplethMap', 'biopowerGaseous.html'))
         m
Out[43]: <folium.folium.Map at 0x107e18a90>
In [44]: display(Image("choroplethMap/biopowerGaseous.png", width=1000))
```


Table of estimated technical potential for Biopower of Gaseous by state:

In [45]: biopowerGaseous_DF.append(biopowerGaseous_sumDF)

Out[45]:	state	biopowerGaseous_GWh	biopowerGaseous_GW	\
0	Alabama	1533	0	
1	Alaska	61	0	
2	Arizona	837	0	
3	Arkansas	1063	0	
4	California	15510	1	
5	Colorado	1224	0	
6	Connecticut	414	0	
7	Delaware	385	0	
8	District of Columbia	4	0	
9	Florida	3693	0	
10	Georgia	2220	0	
11	Hawaii	200	0	
12	Idaho	182	0	
13	Illinois	4222	0	
14	Indiana	2978	0	
15	Iowa	1425	0	
16	Kansas	753	0	
17	Kentucky	1273	0	
18	Louisiana	857	0	
19	Maine	124	0	
20	Maryland	1226	0	

21	Massachusetts	1103	0
22	Michigan	2539	0
23	Minnesota	1029	0
24	Mississippi	1076	0
25	Missouri	2147	0
26	Montana	147	0
27	Nebraska	750	0
28	Nevada	325	0
29	New Hampshire	389	0
30	New Jersey	2310	0
31	New Mexico	353	0
32	New York	2950	0
33	North Carolina	3780	0
34	North Dakota	30	0
35	Ohio	3363	0
36	Oklahoma	965	0
37	Oregon	890	0
38	Pennsylvania	7132	0
39	Rhode Island	474	0
40	South Carolina	1430	0
41	South Dakota	235	0
42	Tennessee	1984	0
43	Texas	5898	0
44	Utah	427	0
45	Vermont	203	0
46	Virginia	2498	0
47	Washington	1514	0
48	West Virginia	281	0
49	Wisconsin	2072	0
50	Wyoming	50	0
0	U.S Total	88528	1

biopowerGaseous_Tonnes-CH4

	 _
0	326186
1	13156
2	178188
3	226178
4	3300211
5	260470
6	88227
7	82013
8	977
9	785787
10	472546
11	42602
12	38830
13	898345
14	633660

15	303277
16	160219
17	271052
18	182404
19	26542
20	260965
21	234811
22	540282
23	219074
24	229076
25	456990
26	31324
27	159729
28	69248
29	82889
30	491691
31	75228
32	627734
33	804301
34	6383
35	715603
36	205359
37	189571
38	1517540
39	100888
40	304312
41	50072
42	422220
43	1254999
44	91018
45	43248
46	531592
47	322155
48	59811
49	441053
50	10670
0	18840706

1.2.8 8. Hydrothermal Power Systems (Geothermal Energy Technologies)

- Definition: For identified hydrothermal and undiscovered hydrothermal, we used estimates from Williams et al. (2008), who estimated electric power generation potential of conventional geothermal resources (hydrothermal), both identified and unidentified in the western United States, Alaska, and Hawaii.
- In all cases, exclusions included public lands, such as national parks, that are not available for resource development.

In [46]: geothermalHydrothermal_DF = inputDF[['state', 'geothermalHydrothermal_GWh', 'geothermal

The total estimated annual technical potential in the United States for Hydrothermal Power Systems

Choropleth map of estimated technical potential for Hydrothermal Power Systems in the U.S.:

```
In [48]: threshold_scale = split_six(geothermalHydrothermal_DF['geothermalHydrothermal_GWh'])
         m = folium.Map(location=[48, -102], zoom_start=3)
         m.choropleth(
             geo_data=state_geo,
             name='choropleth',
             data=geothermalHydrothermal_DF,
             columns=['state', 'geothermalHydrothermal_GWh'],
             key_on='feature.properties.name',
             fill_color='YlGn',
             fill_opacity=0.7,
             line_opacity=0.2,
             legend_name='Hydrothermal Power Systems (Gigawatt Hours)',
             threshold_scale=threshold_scale,
             reset=True
         )
         folium.LayerControl().add_to(m)
         m.save(os.path.join('choroplethMap', 'geothermalHydrothermal.html'))
         m
Out[48]: <folium.folium.Map at 0x105b53f98>
In [49]: display(Image("choroplethMap/geothermalHydrothermal.png", width=1000))
```


Table of estimated technical potential for Hydrothermal Power Systems by state:

In [50]: geothermalHydrothermal_DF.append(geothermalHydrothermal_sumDF)

Out [50]:	state	geothermalHydrothermal_GWh	\
0	Alabama	0	`
1	Alaska	15437	
2	Arizona	8329	
3	Arkansas	0	
4	California	130921	
5	Colorado	8953	
6	Connecticut	0	
7	Delaware	0	
8	District of Columbia	0	
9	Florida	0	
10	Georgia	0	
11	Hawaii	20632	
12	Idaho	17205	
13	Illinois	0	
14	Indiana	0	
15	Iowa	0	
16	Kansas	0	
17	Kentucky	0	
18	Louisiana	0	
19	Maine	0	
20	Maryland	0	

21	Massachusetts	0	
22	Michigan	0	
23	Minnesota	0	
24	Mississippi	0	
25	Missouri	0	
26	Montana	6547	
27	Nebraska	0	
28	Nevada	45320	
29	New Hampshire	0	
30	New Jersey	0	
31	New Mexico	12933	
32	New York	0	
33	North Carolina	0	
34	North Dakota	0	
35	Ohio	0	
36	Oklahoma	0	
37	Oregon	18199	
38	Pennsylvania	0	
39	Rhode Island	0	
40	South Carolina	0	
41	South Dakota	0	
42	Tennessee	0	
43	Texas	0	
44	Utah	12981	
45	Vermont	0	
46	Virginia	0	
47	Washington	2546	
48	West Virginia	0	
49	Wisconsin	0	
50	Wyoming	1373	
0	U.S Total	301376	
	geothermalHydrotherma	l_GW	
0		0	
1		1	
2		1	
3		0	
4		16	
5		1	
6		0	
7		0	

8 9

15	0
16	0
17	0
18	0
19	0
20	0
21	0
22	0
23	0
24	0
25	0
26	0
27	0
28	5
29	0
30	0
31	1
32	0
33	0
34	0
35	0
36	0
37	2
38	0
39	0
40	0
41	0
42	0
43	0
44	1
45	0
46	0
47	0
48	0
49	0
50	0
0	32

1.2.9 9. Enhanced Geothermal Systems

- Definition: We derive technical potential estimates for enhanced geothermal systems (EGS) from temperature at depth data obtained from the Southern Methodist University's (SMU) Geothermal Laboratory
- Electric generation potential calculations summarize the technical potential (MW) at all depth intervals, electric generation potential (GWh) at all depth intervals with a 90% capacity factor, and annual electric generation potential (GWh) only at optimum depth.

```
In [51]: EGSGeothermal_DF = inputDF[['state', 'EGSGeothermal_GWh', 'EGSGeothermal_GW']]
```

The total estimated annual technical potential in the United States for Enhanced Geothermal Systems

Choropleth map of estimated technical potential for Enhanced Geothermal Systems in the U.S.:

```
In [53]: threshold_scale = split_six(EGSGeothermal_DF['EGSGeothermal_GWh'])
         m = folium.Map(location=[48, -102], zoom_start=3)
         m.choropleth(
             geo_data=state_geo,
             name='choropleth',
             data=EGSGeothermal_DF,
             columns=['state', 'EGSGeothermal_GWh'],
             key_on='feature.properties.name',
             fill_color='YlGn',
             fill_opacity=0.7,
             line_opacity=0.2,
             legend_name='Enhanced Geothermal Systems (Gigawatt Hours)',
             threshold_scale=threshold_scale,
             reset=True
         )
         folium.LayerControl().add_to(m)
         m.save(os.path.join('choroplethMap', 'EGSGeothermal.html'))
         m
Out[53]: <folium.folium.Map at 0x105c1c4e0>
In [54]: display(Image("choroplethMap/EGSGeothermal.png", width=1000))
```


Table of estimated technical potential for Enhanced Geothermal Systems by state: The vast majority of the geothermal potential for EGS(31,344 TWh) within the contiguous United States is located in the westernmost portion of the country.

In [55]: EGSGeothermal_DF.append(EGSGeothermal_sumDF)

Out[55]:	state	EGSGeothermal_GWh	EGSGeothermal_GW
0	Alabama	535489.0	67.0
1	Alaska	0.0	0.0
2	Arizona	1239147.0	157.0
3	Arkansas	628621.0	79.0
4	California	1344179.0	170.0
5	Colorado	1251657.0	158.0
6	Connecticut	56078.0	7.0
7	Delaware	22813.0	2.0
8	District of Columbia	697.0	0.0
9	Florida	374161.0	47.0
10	Georgia	353206.0	44.0
11	Hawaii	0.0	0.0
12	Idaho	993257.0	125.0
13	Illinois	676055.0	85.0
14	Indiana	434258.0	55.0
15	Iowa	606390.0	76.0
16	Kansas	989675.0	125.0
17	Kentucky	484658.0	61.0

18	Louisiana	484271.0	61.0
19	Maine	377075.0	47.0
20	Maryland	86649.0	10.0
21	Massachusetts	92227.0	11.0
22	Michigan	457850.0	58.0
23	Minnesota	369784.0	46.0
24	Mississippi	559056.0	70.0
25	Missouri	835444.0	105.0
26	Montana	1647303.0	208.0
27	Nebraska	927996.0	117.0
28	Nevada	1262174.0	160.0
29	New Hampshire	104314.0	13.0
30	New Jersey	35230.0	4.0
31	New Mexico	1417978.0	179.0
32	New York	375400.0	47.0
33	North Carolina	420741.0	53.0
34	North Dakota	820226.0	104.0
35	Ohio	495921.0	62.0
36	Oklahoma	779667.0	98.0
37	Oregon	914105.0	115.0
38	Pennsylvania	327340.0	41.0
39	Rhode Island	11491.0	1.0
40	South Carolina	364104.0	46.0
41	South Dakota	921972.0	116.0
42	Tennessee	428380.0	54.0
43	Texas	3030250.0	384.0
44	Utah	939380.0	119.0
45	Vermont	35616.0	4.0
46	Virginia	290736.0	36.0
47	Washington	563023.0	71.0
48	West Virginia	261376.0	33.0
49	Wisconsin	647173.0	82.0
50	Wyoming	1070078.0	135.0
0	U.S Total	31344671.0	3948.0

1.2.10 10. Hydropower

- Definition: Source point locations of hydropower estimates were provided by the Idaho National Laboratory and were taken from Hall et al. (2006).
- The feasibility study included additional economic potential criteria such as site accessibility, load or transmission proximity, along with technical potential exclusions of land use or environmental sensitivity.

```
hydropower_DF['hydropower_countOfSites'].scolumns=['state','hydropower_GWh','hydropower
```

The total estimated annual technical potential in the United States for Hydropower

Choropleth map of estimated technical potential for Hydropower in the U.S.:

```
In [58]: threshold_scale = split_six(hydropower_DF['hydropower_GWh'])
         m = folium.Map(location=[48, -102], zoom_start=3)
         m.choropleth(
             geo_data=state_geo,
             name='choropleth',
             data=hydropower_DF,
             columns=['state', 'hydropower_GWh'],
             key_on='feature.properties.name',
             fill_color='YlGn',
             fill_opacity=0.7,
             line_opacity=0.2,
             legend_name=' Hydropower (Gigawatt Hours)',
             threshold_scale=threshold_scale,
             reset=True
         )
         folium.LayerControl().add_to(m)
         m.save(os.path.join('choroplethMap', 'hydropower.html'))
Out[58]: <folium.folium.Map at 0x112185c50>
In [59]: display(Image("choroplethMap/hydropower.png", width=1000))
```


Table of estimated technical potential for Enhanced Geothermal Systems by state: Technical potential for hydropower exists predominately in the Northwest and Alaska.

In [60]: hydropower_DF.append(hydropower_sumDF)

Out[60]:	state	hydropower_GWh	hydropower_GW	\
0	Alabama	4102	0	
1	Alaska	23675	5	
2	Arizona	1303	0	
3	Arkansas	6093	1	
4	California	30023	6	
5	Colorado	7789	1	
6	Connecticut	922	0	
7	Delaware	30	0	
8	District of Columbia	0	0	
9	Florida	682	0	
10	Georgia	1988	0	
11	Hawaii	2602	0	
12	Idaho	18757	4	
13	Illinois	4882	1	
14	Indiana	2394	0	
15	Iowa	2818	0	
16	Kansas	2507	0	
17	Kentucky	4255	0	
18	Louisiana	2423	0	

19	Maine	3916	0
20	Maryland	814	0
21	Massachusetts	1196	0
22	Michigan	1180	0
23	Minnesota	1254	0
24	Mississippi	2211	0
25	Missouri	7198	1
26	Montana	14546	3
27	Nebraska	3142	0
28	Nevada	845	0
29	New Hampshire	1740	0
30	New Jersey	549	0
31	New Mexico	1362	0
32	New York	6711	1
33	North Carolina	3036	0
34	North Dakota	347	0
35	Ohio	3045	0
36	Oklahoma	3015	0
37	Oregon	18184	4
38	Pennsylvania	8368	1
39	Rhode Island	59	0
40	South Carolina	1888	0
41	South Dakota	1047	0
42	Tennessee	5744	1
43	Texas	3006	0
44	Utah	3528	0
45	Vermont	1710	0
46	Virginia	3656	0
47	Washington	27248	6
48	West Virginia	4408	1
49	Wisconsin	2286	1
50	Wyoming	4445	1
0	U.S Total	258929	38

hydropower_countOfSites

0	2435
1	3053
2	1958
3	3268
4	9692
5	5060
6	659
7	25
8	2
9	493
10	2100
11	437
12	6706

```
13
                         1330
14
                         1142
15
                         2398
16
                         3201
17
                         1394
18
                          934
19
                         1373
                           491
20
21
                          560
22
                         1942
23
                         1391
24
                         1536
25
                         5089
                         6859
26
27
                         2880
                         1489
28
29
                          810
30
                          402
31
                         1810
32
                         4839
33
                         2131
34
                           572
                         1791
35
                         2824
36
37
                         7993
                         4466
38
39
                            86
40
                          889
                         1712
41
42
                         2610
43
                         4366
44
                         3394
45
                         1207
46
                         2601
47
                         7310
                         1711
48
49
                         1863
50
                         2842
                       128126
0
```

1.3 Visualizing distribution of renewable energy in each state

```
energy_dist['ruralUtilityScalePV'] = row['ruralUtilityScalePV_GWh']
             energy_dist['rooftopPV'] = row['rooftopPV_GWh']
             energy_dist['CSP'] = row['CSP_GWh']
             energy_dist['onshoreWind'] = row['onshoreWind_GWh']
             energy_dist['offshoreWind'] = row['offshoreWind_GWh']
             energy_dist['biopowerSolid'] = row['biopowerSolid_GWh']
             energy_dist['biopowerGaseous'] = row['biopowerGaseous_GWh']
             energy_dist['geothermalHydrothermal'] = row['geothermalHydrothermal_GWh']
             energy_dist['EGSGeothermal'] = row['EGSGeothermal_GWh']
             energy_dist['hydropower'] = row['hydropower_GWh']
             energy_list.append(energy_dist)
In [62]: energy_df = pd.DataFrame.from_dict(energy_list[0], orient='index').sort_values(by=0)
         for i in range(1,len(state)):
             energy_df_tmp = pd.DataFrame.from_dict(energy_list[i], orient='index').sort_value
             energy_df = pd.concat([energy_df, energy_df_tmp], axis=1)
         energy_df.columns = state
In [63]: energy_df
Out [63]:
                                    Alabama
                                                Alaska
                                                           Arizona
                                                                      Arkansas \
         CSP
                                        0.0
                                                   0.0 12544333.0
                                                                           0.0
         EGSGeothermal
                                   535489.0
                                                   0.0
                                                         1239147.0
                                                                      628621.0
         biopowerGaseous
                                     1533.0
                                                  61.0
                                                             837.0
                                                                        1063.0
         biopowerSolid
                                    11193.0
                                                 513.0
                                                             1087.0
                                                                       14381.0
         geothermalHydrothermal
                                        0.0
                                               15437.0
                                                            8329.0
                                                                           0.0
         hydropower
                                     4102.0
                                               23675.0
                                                             1303.0
                                                                        6093.0
         offshoreWind
                                                               0.0
                                                                           0.0
                                        0.0
                                                   0.0
         onshoreWind
                                      283.0 1373433.0
                                                           26036.0
                                                                       22892.0
         rooftopPV
                                    15475.0
                                                           22736.0
                                                                        8484.0
                                                   0.0
         ruralUtilityScalePV
                                  3706838.0 8282976.0 11867693.0 4986388.0
         urbanUtilityScalePV
                                    35850.0
                                                 166.0
                                                          121305.0
                                                                       28960.0
                                  California
                                                Colorado
                                                          Connecticut
                                                                       Delaware \
         CSP
                                   8490916.0
                                               9154524.0
                                                                   0.0
                                                                             0.0
         EGSGeothermal
                                   1344179.0
                                               1251657.0
                                                              56078.0
                                                                         22813.0
         biopowerGaseous
                                     15510.0
                                                  1224.0
                                                                414.0
                                                                           385.0
         biopowerSolid
                                     12408.0
                                                  2913.0
                                                                494.0
                                                                           512.0
         geothermalHydrothermal
                                    130921.0
                                                  8953.0
                                                                   0.0
                                                                             0.0
                                                                922.0
         hydropower
                                     30023.0
                                                  7789.0
                                                                            30.0
         offshoreWind
                                                               26545.0
                                                                         60654.0
                                   2662579.0
                                                     0.0
         onshoreWind
                                     89862.0
                                               1096035.0
                                                                  61.0
                                                                            21.0
         rooftopPV
                                                 16162.0
                                                                6616.0
                                                                          2185.0
                                    106411.0
         ruralUtilityScalePV
                                   8855917.0
                                              10238083.0
                                                               19627.0 272332.0
         urbanUtilityScalePV
                                    246008.0
                                                 43470.0
                                                               7716.0
                                                                         14856.0
```

District of Columbia

Florida

CSP EGSGeothermal biopowerGaseous biopowerSolid geothermalHydrothermal hydropower offshoreWind onshoreWind rooftopPV ruralUtilityScalePV			0.0 697.0 4.0 61.0 0.0 0.0 0.0 2490.0	37	358.0 74161.0 3693.0 9664.0 0.0 682.0 34684.0 0.0 63986.0 37346.0			
urbanUtilityScalePV			8.0		72787.0		••	
CSP EGSGeothermal biopowerGaseous biopowerSolid geothermalHydrothermal hydropower offshoreWind onshoreWind rooftopPV ruralUtilityScalePV urbanUtilityScalePV	290185 208 1000887	59.0 72.0 85.0 80.0 0.0 17.0 0.0 58.0	42838 198 609 574	0.0 0.0 4.0 5.0 0.0 4.0 0.0 5.0 5.0	2278674 303025 589 1607	50.0 98.0 77.0 0.0 96.0 99.0 16.0 31.0	Utah 5067546.0 939380.0 427.0 433.0 12981.0 3528.0 0.0 31552.0 7513.0 5184878.0 30492.0	
CSP EGSGeothermal biopowerGaseous biopowerSolid geothermalHydrothermal hydropower offshoreWind onshoreWind rooftopPV ruralUtilityScalePV urbanUtilityScalePV	Vermont 0.0 35616.0 203.0 491.0 0.0 1710.0 0.0 7795.0 1115.0 54727.0 1632.0	290 2 7 3 361 4 22 1882	7ginia 0.0 0736.0 2498.0 7866.0 0.0 3656.0 0.053.0 1589.0 2266.0 2467.0	16: 563 1: 27 488 4: 13	ington 1713.0 3023.0 1514.0 2311.0 2546.0 7248.0 8025.0 7249.0 3599.0 8150.0 3690.0	West	Virginia 0.0 261376.0 281.0 2406.0 0.0 4408.0 0.0 4951.0 4220.0 52693.0 3023.0	\
CSP EGSGeothermal biopowerGaseous biopowerSolid geothermalHydrothermal hydropower offshoreWind onshoreWind rooftopPV	Wisconsin 0.0 647173.0 2072.0 11221.0 0.0 2286.0 317754.0 255266.0 13939.0	54) 10)))))))	Wyoming 106407.0 170078.0 50.0 503.0 1373.0 4445.0 0.0 553856.0					

```
5042258.0 5727224.0
         ruralUtilityScalePV
         urbanUtilityScalePV
                                   54938.0
                                               7232.0
         [11 rows x 51 columns]
In [64]: energy_df.plot.pie(
                          figsize=(15,200),
                          fontsize = 10, autopct='%1.1f%%',
                          legend = True,
                          subplots=True,
                          layout=(26, 2),
                          title = state)
Out[64]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x112644e48>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x1126d8748>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x108e11630>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112848d68>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x112886748>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112886780>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x1128fa278>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x11291acf8>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x112957748>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112995128>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x1129c3c88>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x1129ec940>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x112a24ef0>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112a61dd8>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x112a9ccc0>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112ad1b38>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x112b09400>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112b412e8>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x112b780f0>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112ba7f98>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x112bdee10>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112c12c18>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x112c4ab00>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112c80a58>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x112cbda20>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112c55860>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x111f3b320>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112d00588>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x112d430f0>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112d6eeb8>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x112d894a8>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112de14a8>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x112e17400>,
                 <matplotlib.axes._subplots.AxesSubplot object at 0x112e2d588>],
                [<matplotlib.axes._subplots.AxesSubplot object at 0x112e8b240>,
```

```
<matplotlib.axes._subplots.AxesSubplot object at 0x112eb0ba8>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x112ed35c0>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x112f269e8>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x112f5f7f0>,
 <matplotlib.axes. subplots.AxesSubplot object at 0x112f76710>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x112fc2da0>,
 <matplotlib.axes. subplots.AxesSubplot object at 0x112ffbcf8>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x113037c50>,
 <matplotlib.axes. subplots.AxesSubplot object at 0x113070b38>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x1130a3550>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x1130b8f28>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x113115390>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x113150208>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x113166320>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x1131b26d8>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x1131ec630>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x1132027f0>]],
dtype=object)
```


1.4 Plotting the technical potential based on state

Out[65]: Text(0,0.5,'Total Renewable Energy Technical Potential')

1.4.1 Conclusion

- Texas has the highest total estimated technical potential
- The biggest proportion of estimated technical potential in most state is Utility-Scale Photovoltaics which relats to the solar resource and population.
- Technical potential for offshore wind power is present in significant quantities in all offshore regions of the United States such as Hawaii, Massachusetts and Rhode Island.

• The vast majority of the geothermal potential for EGS within the contiguous United S is located in the westernmost portion of the country.				