1. Oblicz wartości poniższych wyrażeń dla n = 1 000 000 i porównaj je z wartością liczby π :

(a)
$$4\sum_{j=1}^{n} \frac{(-1)^{j+1}}{2j-1}$$
 (b) $2\prod_{j=1}^{n} \frac{4j^2}{4j^2-1}$ (c) $\sqrt{8\sum_{j=1}^{n} \frac{1}{(2j-1)^2}}$

2. Archimedes wyznaczył przybliżoną wartość liczby π na podstawie długości obwodów wielokątów foremnych wpisanych i opisanych na kole promieniu 1. Rozpoczął od sześciokąta i kolejno podwajał liczbę boków wielokąta. Pomysł ten prowadzi do wzoru rekurencyjnego., który można zapisać w dwóch matematycznie równoważnych postaciach:

$$t_0 = \frac{1}{\sqrt{3}}, \qquad t_{i+1} = \frac{\sqrt{t_i^2 + 1} - 1}{t_i}, \qquad \pi \approx 6 \times 2^i \times t_i, \qquad i = 0, 1, \dots,$$

(b)
$$t_0 = \frac{1}{\sqrt{3}}, \qquad t_{i+1} = \frac{t_i}{\sqrt{t_i^2 + 1} + 1}, \qquad \pi \approx 6 \times 2^i \times t_i, \qquad i = 0, 1, \dots,$$

Sprawdź, jakie każda z tych metod daje przybliżenie liczby π dla i = 0, 1,..., 30. Czy błąd metody zawsze maleje wraz z i?

3. (a) Wyznacz sumy

$$down(N) = 1/1 + 1/2 + 1/3 + ... + 1/N$$

oraz

$$up(N) = 1/N + 1/(N-1) + ... + 1/1$$

dla N = 100, 100 000 i 100 000 000, wykonując obliczenia za pomocą typu double. Porównaj wyniki dla tych samych N, wyświetlając różnicę up(N) - down(N).

(b) Powtórz powyższe, używając zmiennych typu float. Czy lepiej sumować szeregi liczbowe od liczby najmniejszej do największej, czy odwrotnie, czy nie ma to znaczenia?

Zadania do rozwiązania "przy tablicy" (proszę nie przysyłać ich rozwiązań)

1. Pomóż Bajtkowi znaleźć i usunąć błędy w programie, który ma obliczać sumę odwrotności kwadratów miliona kolejnych liczb całkowitych (tj. od 1 do 10⁶).

```
#include <iostream>
      int main()
      {
        const int N = 1 000'000;
        auto suma = 0;
        for (int k = 1, k <= N, ++k)
          suma += 1/k*k;
        cout << suma << "\n";</pre>
   2. Oblicz (bez komputera) wartości następujących wyrażeń:
      a) 0xa - 012
      b) 13 % 3
      c) 3,14 - 3
      d) 1234 ^ 1234
      e) 1 << 3
      f) 0xF & 0xA
      g) 3 > 2 > 1
      h) 12345 + ~12345
      i) 1 + 1e-40 - 1
      j) 1 + 1e-10f - 1
      k) 3 == 3 == 3
      1) 1/4
      m) 16 >> 1
      n) 0xff ^ 0xf0
      o) ~(-1)
      p) 0xff | 0xaa
      q) 1234567 & 1
      r) 1234567 | 1
      s) 1234567 ^ 1
      t) 1 < 2 ? 1 : 2
      u) 1, 2, 3, 4
      v) 3 < 2 & 1 < 2
      w) (3 < 2) & (1 < 2)
      x) 1 < 2 && 2 < 1
      y) 1 < 2 \mid \mid 2 > 1
      z) 0b1111
      aa) -1 > 1u
      ab) 0 - 1u > 0
Wskazówka: Odpowiedź możesz sprawdzić np. taką instrukcją:
std::cout << (3,14 - 3) << "\n";
   3. Niech
      int x = 1;
      int y = x++;
```

int
$$z = --y + x$$
;
int $v = z += 2$;

Jaką wartość mają teraz zmienne x, y, v i z?

- 4. Czy w C++ reszta z dzielenia dwóch liczb całkowitych (m % n) może być ujemna?
 - a) Podaj przykład m i n takich, że m % n < 0.
 - b) Znajdź w dokumentacji https://en.cppreference.com/w/cpp/language/operator-arithmetic fragment standardu języka, który definiuje sposób obliczania wartości wyrażeń typu m % n, gdy m lub n jest ujemne.