16. Recommender Systems

The movie prediction system simply try to predict the values of these missing values (with "?") .. like what rating would the user have given to those films

CONTENT BASED RECOMMENDER SYSTEM:

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	$\left egin{array}{c} rac{v}{x_1} \ ext{(romance)} \end{array} ight.$	$\stackrel{\checkmark}{x_2}$
X S Love at last 1	5	5	0	0	→ 0.9	-70
Romance forever 2	5	?	?	0	→ 1.0	→ 0.01
Cute puppies of love	?	4	0	?	→ 0.99	→ 0
Nonstop car chases 4	0	0	5	4	→ 0.1	→ 1.0
Swords vs. karate S	0	0	5	(?)	→ 0	→ 0.9

 x_1 = degree to which a movie is a romantic movie

 x_2 = degree to which a movie is an action movie

n = 2 = no of features, not counting the extra feature $(x_0 \rightarrow always = 1)$

 $X^{(1)}$ = feature values vector for movie 1

Θ⁽¹⁾ = parameters vector learned for a particular user

For each user j, learn a parameter $\underline{\theta^{(j)} \in \mathbb{R}^3}$. Predict user j as rating movie i with $(\theta^{(j)})^T x^{(i)}$ stars. $\underline{\qquad} \subseteq \underline{\theta^{(j)}} \in \mathbb{R}^{n+1}$

$$\chi^{(3)} = \begin{bmatrix} \frac{1}{0.99} \\ \frac{1}{0} \end{bmatrix} \longrightarrow \begin{array}{c} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{5}{0} \end{bmatrix} \quad \begin{pmatrix} 0^{(1)} \end{pmatrix}^{T} \chi^{(3)} = 5 \times 0.99$$

$$= 4.95$$

Procedure:

Problem formulation

- $\Rightarrow r(i,j) = 1$ if user j has rated movie i (0 otherwise)
- $\rightarrow y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}$
- $\Rightarrow \theta^{(j)}$ = parameter vector for user j
- $\Rightarrow x^{(i)}$ = feature vector for movie i
- \Rightarrow For user j, movie i, predicted rating: $\underbrace{(\theta^{(j)})^T(x^{(i)})}_{} = \underbrace{(\theta^{(j)})^T(x^{(i)})}_{} = \underbrace{(\theta^{(j)})^T(x^{(i)})}_{$
- $\rightarrow \underline{m^{(j)}}$ = no. of movies rated by user j To learn $\theta^{(j)}$:

$$\min_{(i,j)} \frac{1}{2^{\log 2}} \sum_{(i,i,j)=1}^{(i,j)} \frac{((Q_{(i)})_{i}(X_{(i)}) - A_{(i,i)})_{5}}{((Q_{(i)})_{i}(X_{(i)}) - A_{(i,i)})_{5}} + \frac{5 \log_{3}}{7} \sum_{k=1}^{k} (Q_{(i)}^{k})_{5}$$

Minimizing the sum over all i such that r(i, j) ==1

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

But we need to do this for all users:

To learn
$$\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$$
:
$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

We get a separate parameter vector for each user, Θ^(j)

Optimization algorithm:

$$\min_{\theta^{(1)},\dots,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$
radient descent undate:

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \ \underline{(\text{for } k = 0)}$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} \underline{((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)}} \right) \ \underline{(\text{for } k \neq 0)}$$

$$\underline{\frac{\partial}{\partial \theta_k^{(j)}}} \ \underline{\zeta} \left(\underline{\theta}_{j,\ldots,j}^{(n_{\text{old}})} \right)$$

Not all movies can be rated based on their content, or it's just very difficult \rightarrow so, collaborative learning comes to our rescue

feature learning → algo **COLLABORATIVE FILTERING:** automatically learns what features to use If we have no idea how to rate a movie..

Problem motivation x_1 Movie Alice (1) Dave (4) Bob (2) Carol (3) x_2 00 00 60) (romance) (action) ? Love at last 5 5 0 0 ? Romance forever ? 🔩 5 0 Cute puppies of ? ? 4 0 love ? Nonstop car 0 0 5 chases ? Swords vs. karate 0 0 5

Let's say, our users have told us the values of their own parameters Θ :

$$\theta^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \, \theta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \, \theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}, \, \theta^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$$

We try to rate the movies automatically:

We try to infer what should the **vector X**⁽¹⁾ be so that:

$$(O^{(2)})^{T} \times^{(1)} \times \mathcal{I}$$

$$(O^{(2)})^{T} \times^{(1)} \times \mathcal{I}$$

$$(O^{(2)})^{T} \times^{(1)} \times \mathcal{I}$$

$$(O^{(2)})^{T} \times^{(1)} \times \mathcal{I}$$

$$(O^{(2)})^{T} \times^{(1)} \times \mathcal{I}$$
Andrew Ng

Optimization algorithm

Given $\underline{\theta^{(1)}, \dots, \theta^{(n_u)}}$, to learn $\underline{x^{(i)}}$:

$$\implies \min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Given $\theta^{(1)}, \ldots, \theta^{(n_u)}$, to learn $\underline{x^{(1)}, \ldots, x^{(n_m)}}$:

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

For each movie i:

For each user j:

If j has rated that movie:

We minimize the diff b/w predicted rating (0 to 5) and its actual rating

For each movie i:

For each feature k:

We also try to minimize the values of parameters, so as to achieve regularization.

Diff b/w content based recommender vs Collaborative filtering:

In content-based recommender:

Given
$$\underline{x^{(1)}, \dots, x^{(n_m)}}$$
 (and movie ratings), can estimate $\underline{\theta^{(1)}, \dots, \theta^{(n_u)}}$

In collaborative filtering:

Given
$$\underline{\theta^{(1)},\ldots,\theta^{(n_u)}}$$
, can estimate $x^{(1)},\ldots,x^{(n_m)}$

So, what we can do to train the model is that:

We can guess an initial Θ and obtain X from that Use that to obtain better fitting parameters (Θ) Use that to obtain better set of features (X) And so on ...

This actually works, as eventually this will converge to a reasonable set of features and a reasonable set of parameters for each user

This algo is called collaborative filtering as each user is collaborating to advance the algo a little bit, i.e., they are helping the algo little bit

Combining Collaborative filtering and content-based recommender:

In content-based recommender:

Given
$$x^{(1)}, \dots, x^{(n_m)}$$
, estimate $\theta^{(1)}, \dots, \theta^{(n_u)}$:
$$\prod_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

In collab. Featuring:

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, estimate $x^{(1)}, \dots, x^{(n_m)}$:

$$\sum_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Combing both:

Minimizing $x^{(1)}, \ldots, x^{(n_m)}$ and $\theta^{(1)}, \ldots, \theta^{(n_u)}$ simultaneously:

$$\underline{J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})} = \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1\\ x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})}} J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_$$

Here, if we keep $X \rightarrow$ constant \rightarrow it's minimized over Θ (contentbased recommender)

If we keep $\Theta \rightarrow$ constant \rightarrow it's minimized over X (collaborative filtering)

Here: we don't need x0 =1 and also don't need OO → because since our algo is learning its own features, we don't need to hardcode any features, it will learn x1==1 by itself (since we don't give x0)

Procedure:

- Procedure:

 Collaborative filtering algorithm

 1. Initialize $x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}$ to small random values.

 2. Minimize $J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})$ using gradient domain advanced optimization algorithm). E.g. for every $j=1,\ldots,n_u, i=1,\ldots,n_m$:

$$x_{k}^{(i)} := x_{k}^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^{T} x^{(i)} - y^{(i,j)}) \theta_{k}^{(j)} + \lambda x_{k}^{(i)} \right)$$

$$\theta_{k}^{(j)} := \theta_{\underline{k}}^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^{T} x^{(i)} - y^{(i,j)}) x_{k}^{(i)} + \lambda \theta_{k}^{(j)} \right)$$

$$\frac{\partial}{\partial x_{k}^{(i)}}$$

$$\frac{\partial}{\partial x_{k}^{(i)}}$$

For a user with parameters θ and a movie with (learned) features \underline{x} , predict a star rating of $\underline{\theta^T x}$.

$$\left(\bigcirc_{(i)}^{(i)} \right)_{\perp} \times$$

VECTORIZATION: LOW RANK FACTORIZATION ALGORITHM:

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?
	\uparrow	1	1	1

Collaborative filtering

$$(\bigcirc_{\partial_j})_{\underline{A}}(\times_{(i,j)})$$

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix} \qquad \begin{bmatrix} (\theta^{(1)})^T(x^{(1)}) & (\theta^{(2)})^T(x^{(1)}) & \dots & (\theta^{(n_u)})^T(x^{(1)}) \\ (\theta^{(1)})^T(x^{(2)}) & (\theta^{(2)})^T(x^{(2)}) & \dots & (\theta^{(n_u)})^T(x^{(2)}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\theta^{(1)})^T(x^{(n_m)}) & (\theta^{(2)})^T(x^{(n_m)}) & \dots & (\theta^{(n_u)})^T(x^{(n_m)}) \end{bmatrix}$$

We can create an X vector which contains features of all examples row-wise

And we can also create a Θ vector which contains parameters of all examples row-wise

So, we can obtain the predicted rating matrix as:

This is a low rank matrix (→ a property of linear algebra)

Application:

Finding related movies

For each product i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$.

How to find movies
$$j$$
 related to movie i ?

 $||x^{(i)} - x^{(j)}|| \rightarrow \text{movie } \hat{j} \text{ and } i \text{ cre "similar"}$

5 most similar movies to movie *i*: \rightarrow Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

MEAN NORMALIZATION:

Users who have not rated any movie

osers who have not rated any movies						1								
	Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)		- -			•	٦٦		
_	Love at last	5	5	0	0	(3)		$\frac{5}{2}$	5	0	0	?		
	Romance forever	5	?	?	0	? (5	?	?	0	•	
	Cute puppies of love	?	4	0	?	?	Y =	?	4	0	?	?		
	Nonstop car chases	0	0	5	4	?			0	0	4	1 2		
	Swords vs. karate	0	0	5	?	\ ?(Γ_{Ω}	U	9	U	۱,		

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 \\ \frac{\lambda}{2} \left[\Theta_1^{(s)} \right]^2 + \left[\Theta_2^{(s)} \right]^2 + \left[\Theta_2^{(s)} \right]^2 \right] \in \mathbb{R}^2$$

In such case, the last regularization term will give a 0 vector for $\Theta^{(5)}$ (parameter vector for Eve). This will cause all predicted ratings of Eve to be 0.

$$\left(\mathbb{Q}_{(2)}\right)_{\perp} \times_{(1)} = 0$$

But that's not useful, as all the movies will be equally likely for Eve

Mean Normalization: it can be used as a data pre-processing step: First, we find the mean rating of each movie by different users

Mean Normalization:

Then we Subtract the mean from each user's ratings

$$Y = \begin{bmatrix} 2.5 & 2.5 & -2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

Now, we use this matrix to learn our parameters for each user and feature-values of each movie.

Also, we add the calculated mean to our predicted ratings at the end of prediction

For user j, on movie i predict:

This way we have:

User 5 (Eve):

So, the user who has not rated any movie will get an average rating for each movie.

Mean normalization can also be used in case when a movie has no rating from any user, by modifying the algo a little bit.