

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Jueves 11 de noviembre de 2010 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- · Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.

							,		
0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
٢		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
т		5 B 10,81	13 AI 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es (254)
	•			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
~				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
riódica				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
Tabla periódica				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
	atómico	ento tómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
	Número atómico	Elemento Masa atómica		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
			l	22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	÷	++
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

1.	El análisis de un compuesto cuya masa molar es igual a 60 g mol ⁻¹ , determinó que contiene 12 g de
	carbono, 2 g de hidrógeno y 16 g de oxígeno. ¿Cuál es la fórmula molecular del compuesto?

- A. CH₂O
- B. CH₄O
- $C. C_2H_4O$
- $D. \quad C_2H_4O_2$
- 2. Se añade 300 cm³ de agua a 200 cm³ de una solución 0,5 mol dm⁻³ de cloruro de sodio. ¿Cuál es la concentración de cloruro de sodio en la nueva solución?
 - A. 0.05 mol dm^{-3}
 - B. 0.1 mol dm^{-3}
 - C. $0,2 \text{ mol dm}^{-3}$
 - D. 0.3 mol dm^{-3}

3. La siguiente gráfica representa la relación entre dos variables para una cantidad fija de gas.

¿Qué variable podría representar cada eje?

	eje x	eje y		
A.	presión	temperatura		
B.	volumen	temperatura		
C.	presión	volumen		
D.	temperatura	volumen		

- **4.** ¿Qué enunciado sobre las especies ⁶³Cu²⁺ y ⁶⁵Cu⁺ es correcto?
 - A. Ambas especies tienen el mismo número de protones.
 - B. Ambas especies tienen el mismo número de electrones.
 - C. Ambas especies tienen el mismo número de neutrones.
 - D. Ambas especies tienen la misma configuración electrónica.

- -5-
- 5. La siguiente gráfica muestra las cuatro primeras energías de ionización de cuatro elementos A, B, C y D (las letras no son sus símbolos químicos). ¿Qué elemento es el magnesio?

- **6.** ¿Qué enunciados sobre la tabla periódica son correctos?
 - I. Los elementos Mg, Ca y Sr tienen propiedades químicas similares.
 - II. Los elementos del mismo período tienen el mismo número de niveles energéticos principales.
 - III. Los óxidos de Na, Mg y P son básicos.
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III

7. El eje x de la siguiente gráfica representa el número atómico de los elementos del período 3.

¿Qué variable podría representar el eje *y*?

- A. Punto de fusión
- B. Electronegatividad
- C. Radio iónico
- D. Radio atómico
- **8.** ¿En qué complejos el hierro presenta número de oxidación +3?
 - I. $[Fe(H_2O)_6]^{3+}$
 - II. $[Fe(H_2O)_5(CN)]^{2+}$
 - III. $[Fe(CN)_6]^{3-}$
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III

9. A continuación se da la electronegatividad de cuatro elementos diferentes (las letras no son sus símbolos químicos).

Elemento	W	X	Y	Z
Electronegatividad	0,9	1,2	3,4	4,0

Basándose en esta información ¿qué enunciado es correcto?

- A. Wes un no metal.
- B. W y X forman un compuesto iónico.
- C. Y es un metal.
- D. Y y Z forman un compuesto covalente.
- 10. ¿Qué especies contienen un enlace covalente dativo?
 - I. HCHO
 - II. CO
 - III. H_3O^+
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- 11. ¿Qué sustancia está formada por una red de iones positivos y electrones que se mueven libremente?
 - A. Grafito
 - B. Cloruro de sodio
 - C. Azufre
 - D. Sodio

12. ¿Qué molécula tiene forma octaédrica?

- A. SF₆
- B. PCl₅
- C. XeF₄
- D. BF₃

13. ¿Qué especies tienen electrones deslocalizados?

H C W

- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

-9 -

¿Qué enunciado es correcto?

- A. La temperatura máxima en A será mayor que en B.
- B. La temperatura máxima será igual en A y en B.
- C. No es posible predecir si A o B tendrá la mayor temperatura máxima.
- D. La temperatura en A y en B aumentará a la misma velocidad.

15. Considere las siguientes ecuaciones.

$$\begin{aligned} \mathrm{CH_4(g)} + \mathrm{O_2(g)} &\to \mathrm{HCHO(l)} + \mathrm{H_2O(l)} \\ \mathrm{HCHO(l)} + \tfrac{1}{2}\mathrm{O_2(g)} &\to \mathrm{HCOOH(l)} \\ \end{aligned} \qquad \Delta H^\ominus = x \\ 2\mathrm{HCOOH(l)} + \tfrac{1}{2}\mathrm{O_2(g)} &\to \mathrm{HCOOH(l)} \\ \Delta H^\ominus = y \\ 2\mathrm{HCOOH(l)} + \tfrac{1}{2}\mathrm{O_2(g)} &\to \mathrm{(COOH)_2(s)} + \mathrm{H_2O(l)} \\ \end{aligned}$$

¿Cuál es la variación de entalpía de la siguiente reacción?

$$2CH_4(g) + 3\frac{1}{2}O_2(g) \rightarrow (COOH)_2(s) + 3H_2O(l)$$

A.
$$x + y + z$$

B.
$$2x + y + z$$

$$C. \quad 2x + 2y + z$$

$$D. \quad 2x + 2y + 2z$$

16. Dada la variación de entalpía para la siguiente reacción:

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(1)$$
 $\Delta H^{\oplus} = -572 \text{ kJ}$

¿qué enunciado es correcto?

- A. La variación de entalpía estándar de combustión del $H_2(g)$ es -286 kJ mol⁻¹.
- B. La variación de entalpía estándar de combustión del $H_2(g)$ es +286 kJ mol⁻¹.
- C. La variación de entalpía estándar de formación del H₂O(l) es -572 kJ mol⁻¹.
- D. La variación de entalpía estándar de formación del H₂O(l) es +572 kJ mol⁻¹.
- 17. ¿Qué definición de entalpía de red es correcta?
 - A. Es la variación de entalpía que se produce cuando se extrae un electrón de 1 mol de átomos gaseosos.
 - B. Es la variación de entalpía que se produce cuando se forma 1 mol de un compuesto a partir de sus elementos.
 - C. Es la variación de entalpía que se produce cuando 1 mol de de un cristal sólido se convierte en líquido.
 - D. Es la variación de entalpía que se produce cuando se forma 1 mol de un cristal sólido a partir de sus iones gaseosos.
- **18.** ¿Qué reacción tiene el aumento mayor de entropía?
 - A. $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$
 - B. $Al(OH)_3(s) + NaOH(aq) \rightarrow Al(OH)_4^-(aq) + Na^+(aq)$
 - C. $\operatorname{Na_2CO_3}(s) + 2\operatorname{HCl}(aq) \rightarrow 2\operatorname{NaCl}(aq) + \operatorname{CO_2}(g) + \operatorname{H_2O}(l)$
 - D. $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$

$$C_4H_{10}(g) + Cl_2(g) \rightarrow C_4H_9Cl(l) + HCl(g)$$

-11-

- I. Aumento de presión
- II. Aumento de temperatura
- III. Extracción de HCl(g)
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III
- 20. Considere la siguiente reacción.

$$2P + Q \rightarrow R + S$$

Esta reacción transcurre de acuerdo con el siguiente mecanismo.

$$P+Q \rightarrow X$$
 lenta
 $P+X \rightarrow R+S$ rápida

¿Cuál es la expresión de velocidad?

- A. velocidad = k[P]
- B. velocidad = k[P][X]
- C. velocidad = k[P][Q]
- D. velocidad = $k [P]^2 [Q]$
- 21. ¿Qué sucede cuando la temperatura de una reacción aumenta?
 - A. La energía de activación aumenta.
 - B. La constante de velocidad aumenta.
 - C. La variación de entalpía aumenta.
 - D. El orden de la reacción aumenta.

22. ¿Cuál es el efecto de un aumento de temperatura sobre el rendimiento y la constante de equilibrio de la siguiente reacción?

$$2H_2(g) + CO(g) \rightleftharpoons CH_3OH(l)$$
 $\Delta H^{\ominus} = -128 \text{ kJ}$

	Rendimiento	Constante de equilibrio
A.	Aumenta	Aumenta
B.	Aumenta	Disminuye
C.	Disminuye	Aumenta
D.	Disminuye	Disminuye

- **23.** ¿Qué enunciados sobre un líquido son correctos?
 - I. Cuando la temperatura de un líquido en un recipiente cerrado aumenta, su presión de vapor aumenta.
 - II. Cuando la presión sobre un líquido aumenta, su punto de ebullición aumenta.
 - III. Cuando la presión sobre un líquido aumenta, su presión de vapor aumenta.
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- **24.** ¿Cuál es la base conjugada del H₂CO₃ de acuerdo con la teoría de Brønsted-Lowry?
 - A. CO₃²⁻
 - B. HCO₃
 - C. H₃CO₃⁺
 - D. CO₂

- **25.** El pH de una solución del ácido A es igual a 1 y el pH de una solución del ácido B es igual a 2. ¿Qué enunciado **debe** ser correcto?
 - A. El ácido A es más fuerte que el ácido B
 - $B. \quad [A] > [B]$
 - C. La concentración de iones H⁺ en A es mayor que en B
 - D. La concentración de iones H⁺ en B es el doble de la concentración de iones H⁺ en A
- **26.** ¿Qué mezclas actúan como soluciones tampón (buffer)?
 - I. 100 cm³ de ácido etanoico 0,1 mol dm⁻³ y 100 cm³ de etanoato de sodio 0,1 mol dm⁻³
 - II. 100 cm³ de ácido etanoico 0,1 mol dm⁻³ y 50 cm³ de hidróxido de sodio 0,1 mol dm⁻³
 - III. 100 cm³ de ácido etanoico 0,1 mol dm⁻³ y 100 cm³ de hidróxido de sodio 0,5 mol dm⁻³
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- 27. ¿Qué soluciones tienen pH menor que 7?
 - I. $Na_2CO_3(aq)$
 - II. $[Fe(H_2O)_6]Cl_3(aq)$
 - III. $(NH_4)_2SO_4(aq)$
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III

- **28.** Volúmenes iguales de ácido clorhídrico y ácido etanoico de la misma concentración se titulan con soluciones de hidróxido de sodio de la misma concentración. ¿Qué enunciado es correcto?
 - A. El valor del pH inicial de ambos ácidos es el mismo.
 - B. En los puntos de equivalencia, las soluciones de ambas titulaciones tienen un pH igual a 7.
 - C. Se necesita el mismo volumen de hidróxido de sodio para alcanzar el punto de equivalencia.
 - D. El valor de pH de ambos ácidos aumenta de igual forma hasta alcanzar los puntos de equivalencia.
- **29.** El azul de bromofenol cambia de amarillo a azul en el rango de pH comprendido entre 3,0 y 4,6. ¿Qué enunciado es correcto?
 - A. Las moléculas de azul de bromofenol, HIn, son azules.
 - B. A pH < 3,0, una solución de azul de bromofenol contiene más iones, In-, que moléculas, HIn.
 - C. El p K_a del azul de bromofenol está comprendido entre 3,0 y 4,6.
 - D. El azul de bromofenol es un indicador adecuado para titular ácido etanoico con solución de hidróxido de potasio.
- **30.** Considere la siguiente reacción.

$$MnO_4^-(aq) + 8H^+(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(1)$$

¿Qué enunciado es correcto?

- A. El MnO_4^- es el agente oxidante y pierde electrones.
- B. El MnO₄ es el agente reductor y pierde electrones.
- C. El MnO₄ es el agente oxidante y gana electrones.
- D. El MnO_4^- es el agente reductor y gana electrones.

$$Fe(s) + NiCl_2(aq) \rightarrow FeCl_2(aq) + Ni(s)$$

$$Zn(s) + FeCl_2(aq) \rightarrow ZnCl_2(aq) + Fe(s)$$

$$Ni(s) + PbCl_2(aq) \rightarrow NiCl_2(aq) + Pb(s)$$

¿Cuál es el orden creciente de reactividad de los metales?

- A. Fe < Ni < Zn < Pb
- B. Pb < Ni < Fe < Zn
- C. Ni < Zn < Pb < Fe
- D. Zn < Fe < Ni < Pb
- **32.** Se fabrica una pila voltaica conectando las dos semipilas representadas por las siguientes semiecuaciones.

$$Mn^{2+}(aq) + 2e^{-} \rightarrow Mn(s)$$
 $E^{\Theta} = -1.19 \text{ V}$

$$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$$
 $E^{\Theta} = -0.13 \text{ V}$

¿Qué enunciado es correcto sobre esta pila voltaica?

- A. El Mn se oxida y el voltaje de la pila es de 1,06 V.
- B. El Pb se oxida y el voltaje de la pila es de 1,06 V.
- C. El Mn se oxida y el voltaje de la pila es de 1,32 V.
- D. El Pb se oxida y el voltaje de la pila es de 1,32 V.
- 33. Para la electrólisis de sulfato de cobre(II) acuoso, ¿cuál de los siguientes enunciados es correcto?
 - A. Se produce Cu y O_2 en relación molar 1:1
 - B. Se produce H_2 y O_2 en relación molar 1:1
 - C. Se produce Cu y O₂ en relación molar 2:1
 - D. Se produce H_2 y O_2 en relación molar 2:1

34.	Cuáles	de las	siguientes	sustancias	son isómeros	estructurales	entre sí?
(, - 0.001		517011010	D OF D COLL T G T COLD	DOLL IDOLLIATOR		

- I. $CH_3(CH_2)_3CH_3$
- II. (CH₃)₂CHCH₃
- III. CH₃CH(CH₃)CH₂CH₃
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

35. ¿Cuál ruta de reacción describe la formación de etanol?

- A. eteno <u>adición</u> cloroetano <u>eliminación</u> etanol
- B. etano <u>sustitución</u> cloroetano <u>sustitución nucleófila</u> etanol
- C. eteno <u>sustitución</u> etanol
- D. etano <u>adición</u> → etanol

36. ¿Por medio de qué reactivos y tipo de reacción se puede producir etilamina (aminoetano)?

	Reactivos	Tipo de reacción		
A.	$CH_3Br + NH_3$	Sustitución nucleófila		
B.	$CH_3CH_2Br + NH_3$	Reducción		
C.	$CH_3CN + H_2$	Sustitución nucleófila		
D.	$CH_3CN + H_2$	Reducción		

- **37.** ¿Qué compuesto es una amida?
 - A. CH₃COOCH₃
 - B. CH₃CONH₂
 - C. CH₃NH₂
 - D. CH₂(NH₂)COOH
- **38.** ¿Qué proceso puede producir un poliéster?
 - A. Polimerización por adición de un ácido dicarboxílico
 - B. Polimerización por condensación de un diol y un ácido dicarboxílico
 - C. Polimerización por adición de un diol y un ácido dicarboxílico
 - D. Polimerización por condensación de un ácido dicarboxílico
- **39.** ¿Qué enunciado sobre los estereoisómeros es correcto?
 - A. El 1,2-dicloroetano tiene dos isómeros geométricos.
 - B. El 1,2-dicloroetano tiene dos isómeros ópticos.
 - C. El 1,2-dicloroeteno tiene dos isómeros geométricos.
 - D. El 1,2-dicloroeteno tiene dos isómeros ópticos.
- 40. La densidad se puede calcular dividiendo la masa por el volumen. El volumen de $0,20\pm0,02$ g de un metal es de $0,050\pm0,005$ cm³. ¿Cómo se debería expresar su densidad usando estos datos?
 - A. $4.0 \pm 0.025 \text{ g cm}^{-3}$
 - B. $4.0 \pm 0.8 \text{ g cm}^{-3}$
 - C. $4,00 \pm 0,025 \text{ g cm}^{-3}$
 - D. $4,00 \pm 0.8 \text{ g cm}^{-3}$