A scheme to detect anyons in cold atoms

Tommaso Comparin January 27th, 2020 - GdT MaCon

PHYSICAL REVIEW LETTERS 120, 230403 (2018)

Time-of-Flight Measurements as a Possible Method to Observe Anyonic Statistics

R. O. Umucalılar, ¹ E. Macaluso, ² T. Comparin, ² and I. Carusotto ²

PHYSICAL REVIEW LETTERS 123, 266801 (2019)

Fusion Channels of Non-Abelian Anyons from Angular-Momentum and Density-Profile Measurements

E. Macalusoo, T. Comparino, L. Mazza, and I. Carusottoo

Charge and statistics of lattice quasiholes from density measurements: a Tree Tensor Network study

E. Macaluso, ¹ T. Comparin, ^{1, 2} R. O. Umucalılar, ³ M. Gerster, ⁴ S. Montangero, ⁵ M. Rizzi, ^{6, 7} and I. Carusotto ¹

Anyons?

Exchange and braiding of quantum particles

Exchange (left) and braiding (right)

Two indistinguishable particles in two dimensions:

- $\Psi(\mathbf{r}_2, \mathbf{r}_1) = +\Psi(\mathbf{r}_1, \mathbf{r}_2) \longleftrightarrow \mathsf{bosons}$
- $\bullet \ \ \Psi(\textbf{r}_2,\textbf{r}_1) = -\Psi(\textbf{r}_1,\textbf{r}_2) \longleftrightarrow \text{fermions}$
- $\Psi(\mathbf{r}_2,\mathbf{r}_1)=\mathrm{e}^{\mathrm{i} arphi_{\mathrm{st}}} \Psi(\mathbf{r}_1,\mathbf{r}_2) \longleftrightarrow$ anyons, with $arphi_{\mathrm{st}} \in [0,2\pi)$

Exchange and braiding of quantum particles

Exchange (left) and braiding (right)

Two indistinguishable particles in two dimensions:

- $\Psi(\mathbf{r}_2, \mathbf{r}_1) = +\Psi(\mathbf{r}_1, \mathbf{r}_2) \longleftrightarrow \mathsf{bosons}$
- $\Psi(\mathbf{r}_2, \mathbf{r}_1) = -\Psi(\mathbf{r}_1, \mathbf{r}_2) \longleftrightarrow \text{fermions}$
- $\Psi(\mathbf{r}_2,\mathbf{r}_1)=\mathrm{e}^{\mathrm{i} arphi_{\mathrm{st}}} \Psi(\mathbf{r}_1,\mathbf{r}_2) \longleftrightarrow$ anyons, with $arphi_{\mathrm{st}} \in [0,2\pi)$

Statistical phase $\varphi_{\rm st}$ (0 for bosons, π for fermions).

Braiding phase $\varphi_{\rm br}=2\varphi_{\rm st}$ (two exchanges + translations).

Anyons in condensed matter

Quantum Hall states:

- 2D electrons in transverse magnetic field (25-100 mK, 10 T).
- Topological properties (quantization of resistivity, chiral edge modes, Chern number, robustness against disorder..).

Anyons in condensed matter

Quantum Hall states:

- 2D electrons in transverse magnetic field (25-100 mK, 10 T).
- Topological properties (quantization of resistivity, chiral edge modes, Chern number, robustness against disorder..).
- They should host anyonic quasiparticle excitations¹.
- How to detect anyonic statistics? Mainly interference schemes (see talk by Aurélien Grabsch). No unambiguous results yet.

¹The system is made of fermions, the anyons are the excitations.

Artificial quantum Hall states

- On-going work on engineered systems of ultracold atomic gases¹, superconducting qubits², photons³.
- Common features: "clean&tunable", several accessible observables (notably density profiles).

¹Bloch, "Quantum simulations come of age", Nat. Phys. 14, 1159 (2018).

 $^{^2}$ Roushan et al., "Chiral ground-state currents of interacting photons in a synthetic magnetic field", Nat. Phys. 13, 146 (2017).

³Clark et al., "Observation of Laughlin states made of light", arXiv:1907.05872.

Artificial quantum Hall states

- On-going work on engineered systems of ultracold atomic gases¹, superconducting qubits², photons³.
- Common features: "clean&tunable", several accessible observables (notably density profiles).
- Examples: quantum gas microscope and synthetic gauge fields.

Bloch, "Quantum simulations come of age", Nat. Phys. 14, 1159 (2018).

²Roushan et al., "Chiral ground-state currents of interacting photons in a synthetic magnetic field", Nat. Phys. 13, 146 (2017).

³Clark et al., "Observation of Laughlin states made of light", arXiv:1907.05872.

Question: Given a quantum Hall state in these platforms, how to generate and detect anyonic excitations? (especially their braiding phase $\varphi_{\rm br}$)

Question: Given a quantum Hall state in these platforms, how to generate and detect anyonic excitations? (especially their braiding phase $\varphi_{\rm br}$)

- Generation of anyons is under control (in theory).
- Early works on detection: we need adiabatic time evolution.
- This work: we only need static density-profile measurements.

Laughlin state &

Braiding through rotations

Laughlin state

$$\Psi_{
m L}(\{z_j\}) \propto \prod_{j=1}^{N} \, e^{-|z_j|^2/4l_{
m B}^2} \, \prod_{k < j} (z_j - z_k)^M$$

- Ansatz for N particles in 2D (coordinates: $z_k = x_k + iy_k$).
- Defined in lowest Landau level (transverse magnetic field B, magnetic length $I_{\rm B} \propto 1/\sqrt{B}$).
- ullet Quantum Hall state at magnetic filling $u=N/N_\phi=1/M.$

Laughlin state

$$\Psi_{
m L}(\{z_j\}) \propto \prod_{j=1}^{N} \, e^{-|z_j|^2/4l_{
m B}^2} \, \prod_{k < j} (z_j - z_k)^M$$

- Ansatz for N particles in 2D (coordinates: $z_k = x_k + iy_k$).
- Defined in lowest Landau level (transverse magnetic field B, magnetic length $I_{\rm B} \propto 1/\sqrt{B}$).
- Quantum Hall state at magnetic filling $\nu = N/N_\phi = 1/M$.
- *M* odd: approximate ground state for 2D electrons.
- M=2: exact ground state for 2D bosons with short-range repulsion (filling $\nu=1/2$).

Quasihole Laughlin state

$$\Psi_{ ext{QH}}(\{z_j\};\{\eta_{\mu}\}) \propto \Psi_{ ext{L}}(\{z_j\}) imes \prod_{j=1}^N \prod_{\mu} (z_j - \eta_{\mu})$$

- Quasiholes⁴: excitations localized at $z = \eta_1, \eta_2, ...$
- Fractional charge (1/M).
- Anyonic statistics ($\varphi_{\rm br}=2\pi/M$).

⁴Today: Quasiholes = Anyons.

Quasihole Laughlin state

$$\Psi_{ ext{QH}}(\{z_j\};\{\eta_{\mu}\}) \propto \Psi_{ ext{L}}(\{z_j\}) imes \prod_{j=1}^N \prod_{\mu} (z_j - \eta_{\mu})$$

- Quasiholes⁴: excitations localized at $z = \eta_1, \eta_2, ...$
- Fractional charge (1/M).
- Anyonic statistics ($\varphi_{\rm br}=2\pi/M$).

How to stabilize quasiholes? Ψ_{QH} becomes the ground state in the presence of (external) repulsive potentials at $\eta_1,\eta_2,...$

⁴Today: Quasiholes = Anyons.

How do these states look like?

Density profile n(z) of $\Psi_{\rm QH}$, for N=150 bosons (M=2).

Left: one quasihole at $\eta_1=0$.

Right: two quasiholes at $\eta_1 = \eta_2 = 0$.

Braiding through rigid rotations -1/2

- Braiding via quasihole dynamics: $\eta_{\mu} = \eta_{\mu}(t)$ for $0 \leq t \leq T$ (adiabaticity \rightarrow large T).
- Replace braiding with rigid rotations of anyons.

Braiding through rigid rotations - 2/2

• Time-dependent wave function:

$$\Psi_t(\{z_j\}) \equiv \Psi(\{z_j\}; \{\eta_\mu(t)\})$$

• In general⁵, at final time T:

$$\Psi_{\mathsf{T}}(\{z_j\}) = e^{i\alpha}\Psi_{\mathsf{0}}(\{z_j\})$$

 $^{^5}$ Assume: closed path of $\eta_{\mu}(t)$, Abelian anyons.

Braiding through rigid rotations -2/2

Time-dependent wave function:

$$\Psi_t(\{z_j\}) \equiv \Psi(\{z_j\}; \{\eta_\mu(t)\})$$

• In general⁵, at final time T:

$$\Psi_{\mathsf{T}}(\{z_j\}) = e^{i\alpha}\Psi_{\mathsf{0}}(\{z_j\})$$

• For rotations:

$$lpha = rac{2\pi}{\hbar} \langle \Psi_0 | \hat{\mathcal{L}}_z | \Psi_0 \rangle + (\text{dynamical phase})$$

Important: only static (t = 0) observables!

⁵Assume: closed path of $\eta_{\mu}(t)$, Abelian anyons.

Extracting braiding phase

- Phase α has topological and non-topological contributions.
- Remove non-topological part by subtracting a non-braiding case.

$$\varphi_{\rm br} = \frac{2\pi}{\hbar} \left[\langle \hat{L}_z \rangle_{\eta_2 = -\eta_1} - \langle \hat{L}_z \rangle_{\eta_2 = \eta_1} \right]$$

Connection with the density profile

For states in the lowest Landau level, angular momentum corresponds to average squared radius⁶,

$$\frac{\langle \hat{\mathbf{L}}_{\mathbf{z}} \rangle}{N\hbar} = \frac{\langle r^2 \rangle}{2l_{\mathrm{B}}^2} - 1,$$

and then to density profile:

$$\langle r^2 \rangle \propto \int_{\mathbb{C}} dz \, n(z) \, |z|^2.$$

⁶Ho&Mueller, "Rotating Spin-1 Bose Clusters", Phys. Rev. Lett. 89, 050401 (2002).

From global to local observables

Last braiding phase expression:

$$\varphi_{\rm br} = \frac{N\pi}{\hbar l_{\rm B}^2} \left[\langle r^2 \rangle_{\eta_2 = -\eta_1} - \langle r^2 \rangle_{\eta_2 = \eta_1} \right]$$

 \rightarrow highly sensitive to noise (statistical, in η_{μ} , thermal).

But $\eta_1=\pm\eta_2$ profiles only differ in small regions..

From global to local observables

Last braiding phase expression:

$$\varphi_{\rm br} = \frac{N\pi}{\hbar l_{\rm B}^2} \left[\langle r^2 \rangle_{\eta_2 = -\eta_1} - \langle r^2 \rangle_{\eta_2 = \eta_1} \right]$$

ightarrow highly sensitive to noise (statistical, in η_{μ} , thermal).

But $\eta_1=\pm\eta_2$ profiles only differ in small regions..

After some algebra:

$$\left[arphi_{
m br} = rac{\pi}{l_{
m B}^2} \int_{|
ho| < R_{
m max}} d
ho \, |
ho|^2 \left[d_{
m 2QH}(
ho) - 2 d_{
m 1QH}(
ho)
ight]
ight]$$

[$d_{k\mathrm{QH}}(
ho) = n_{\mathrm{bulk}} - n_{k\mathrm{QH}}(\eta +
ho)$: density depletion for k quasiholes at η]

⇒ We only need the depletion profiles for one/two quasiholes!

Example of results

Example of results

It works!

(i.e. we can measure $arphi_{
m br}$)

This was	all for a spe	cific Ansatz	z (Laughlin	state).
Does it hold for	the ground	state of an	interesting	Hamiltonian?

Harper-Hofstadter model

Harper-Hofstadter model for lattice bosons

$$H = -t \sum_{\langle i,j \rangle} e^{i heta_{ij}} \, \hat{a}_i^{\dagger} \hat{a}_j + \sum_i V_i \hat{n}_i + rac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1)$$

- N bosons on a $L \times L$ lattice.
- Complex nearest-neighbor hopping \leftrightarrow magnetic flux ϕ per plaquette.
- External potentials.
- On-site repulsion: $U = \infty$.

Harper-Hofstadter model for lattice bosons

$$H=-t\sum_{\langle i,j
angle}e^{i heta_{ij}}\,\hat{a}_{i}^{\dagger}\hat{a}_{j}^{}+\sum_{i}V_{i}\hat{n}_{i}^{}+rac{U}{2}\sum_{i}\hat{n}_{i}^{}(\hat{n}_{i}^{}-1)$$

- N bosons on a $L \times L$ lattice.
- Complex nearest-neighbor hopping \leftrightarrow magnetic flux ϕ per plaquette.
- External potentials.
- On-site repulsion: $U = \infty$.

Realistic model for artificial quantum systems.

Ground state: superfluid, charge-density wave, Laughlin (M = 2).

How to find the ground state?

- Tree Tensor Network Ansatz⁷.
- Accuracy controlled via bond dimension D.
- Only works for small N.

¹Gerster *et al.*, "Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks", Phys. Rev. B 96, 195123 (2017).

How to find the ground state?

- Tree Tensor Network Ansatz⁷.
- Accuracy controlled via bond dimension D.
- Only works for small N.

Two finite-size cases (N = 12, 18), with D up to 500.

 V_i potentials: harmonic trapping and localized repulsive potentials.

¹Gerster *et al.*, "Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks", Phys. Rev. B 96, 195123 (2017).

Density profiles n(x, y)

Rows: cases 1 and 2. Columns: 0/1/2 quasiholes.

Braiding phase of quasiholes

- ullet Discretize expression for $arphi_{
 m br}$ through depletions.
- Warning: $\langle \hat{L}_z \rangle$ is not well defined!

⁸Details in [Macaluso *et al.*, Phys. Rev. Research (in press), arXiv 1910.05222].

Braiding phase of quasiholes

- ullet Discretize expression for $arphi_{
 m br}$ through depletions.
- Warning: $\langle \hat{L}_z \rangle$ is not well defined!
- Depletion curves are similar to discretized Laughlin.
- $\varphi_{\rm br}$ detection scheme "works" (caveat: finite size effects!).

⁸Details in [Macaluso et al., Phys. Rev. Research (in press), arXiv 1910.05222].

Summary

Summary

Detecting anyons in continuum

- Braiding phase linked to density profile (via $\langle \hat{L}_z \rangle$ and $\langle r^2 \rangle$).
- Abelian quasiholes of Laughlin state⁹.
- Not shown: Non-Abelian quasiholes of Moore-Read state¹⁰.

⁹Umucalilar *el al.*, Phys. Rev. Lett. 120, 230403 (2018).

¹⁰Macaluso *el al.*, Phys. Rev. Lett. 123, 266801 (2019).

¹¹Macaluso et al., Phys. Rev. Research (in press), arXiv 1910.05222.

Summary

Detecting anyons in continuum

- Braiding phase linked to density profile (via $\langle \hat{L}_z \rangle$ and $\langle r^2 \rangle$).
- Abelian quasiholes of Laughlin state⁹.
- Not shown: Non-Abelian quasiholes of Moore-Read state¹⁰.

Harper-Hofstadter lattice model¹¹

- Accurate ground states via Tree Tensor Networks.
- We can stabilize single/double quasiholes.
- ullet $arphi_{
 m br}$ expression: not justified but numerically (almost) valid.

⁹Umucalilar *el al.*, Phys. Rev. Lett. 120, 230403 (2018).

¹⁰Macaluso *el al.*, Phys. Rev. Lett. 123, 266801 (2019).

¹¹Macaluso et al., Phys. Rev. Research (in press), arXiv 1910.05222.