EPITA / InfoS1		Novembre 2023
NOM:	Prénom :	Groupe :

Examen Electronique - CORRIGE

Outils d'analyse de circuits : Définitions, Lois et Théorèmes [SI-S1-ELEC-1-OAC] Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (3,5 points – pas de points négatifs pour le QCM)

Choisissez la bonne réponse :

- Q1. Qu'est-ce qu'une tension?
 - (a) Une différence de potentiels
 - b- Un déplacement ordonné de charges électriques
- c- Un déplacement de charges électriques
- d- Une dissipation de chaleur

- Q2. La résistance d'un dipôle est :
 - a- Sa durabilité
 - b- Sa force
 - © Sa capacité à s'opposer au passage du courant
- Q3. Quelle est l'unité de l'intensité d'un courant électrique ?
 - a- Des Volt (V)

c- Des Ohms (Ω)

 \bigcirc Des Ampères (A)

d- Des Watts (W)

- **Q4.** Quelle est la résistance vue entre A et B?
 - a. 14R

 $\bigcirc 2R$

b. $\frac{20R}{9}$

d. $\frac{20R}{8}$

Q5. Soit le circuit ci-contre Que peut-on dire de R_2 et R_3 ?

a-
$$R_2 < R_3$$

b
$$R_2 = R_3$$

c- $R_2 > R_3$

d- On ne peut rien dire

EPITA / InfoS1 Novembre 2023

<u>Exercice 2.</u> Lois fondamentales (5 points)

Soit le circuit ci-contre.

On donne:
$$E=12V$$
, $U_{AB}=V_A-V_B=4V$, $I_1=10mA$, $R_1=470\Omega$ et $R_2=1k\Omega$.

- 1. Flécher les différentes tensions sur le schéma en respectant les conventions. On notera U_i , la tension aux bornes de la résistance R_i (c'est-à-dire U_1 , la tension aux bornes de R_1 , U_2 , la tension aux bornes de R_2 ...)
- 2. Quelle est l'intensité du courant qui traverse R_5 ?

Comme le courant qui entre dans un dipôle est le même que celui qui en ressort le courant qui traverse R_5 est le courant I_1 , d'intensité égale à $10 \, mA$.

3. L'intensité du courant qui traverse R_4 vaut 6mA. Calculer l'intensité du courant qui traverse R_2 .

1ère méthode:

La tension aux bornes de R_2 est la différence de potentiels entre les points A et B, c'est-à-dire la tension U_{AB} . De plus, on connaît la valeur de R_2 . D'après la loi d'Ohm, on aura donc :

$$I_2 = \frac{U_{AB}}{R_2} = \frac{4}{10^3} = 4 \ mA$$

2^{ème} méthode:

Comme le courant qui entre dans un dipôle est le même que celui qui en ressort le courant qui traverse R_4 est le courant I_3 . Donc, en appliquant la loi des nœuds au point A, on obtient :

$$I_1 = I_2 + I_3 \implies I_2 = I_1 - I_3 = 10 - 6 = 4mA$$

4. Donner l'expression de la tension aux bornes de R_5 puis donner sa valeur.

D'après la loi des mailles, on a :

$$E - U_1 - U_2 - U_5 = 0 \implies U_5 = E - U_1 - U_2$$

De plus, on a : $\begin{cases} U_1 = R_1.\,I_1 \\ U_2 = U_{AB} \end{cases} \text{, ce qui donne donc :}$

$$U_5 = E - R_1 \cdot I_1 - U_{AB}$$

Application Numérique : $U_5 = 12 - 470 \times 10.10^{-3} - 4 = 3.3 V$

5. Etablir l'expression de la tension U_3 aux bornes R_3 en fonction des tensions U_2 et de U_4 . Sachant que la tension aux bornes de R_4 vaut 1,2V, donner la valeur de la tension aux bornes de R_3 .

D'après la loi des mailles, on a :

$$U_2 - U_3 - U_4 = 0 \implies U_3 = U_2 - U_4 = U_{AB} - U_4$$

Application Numérique : $U_3 = 4 - 1.2 = 2.8 V$

Exercice 3. Equivalences Thévenin/Norton (11,5 points)

1. Soient les 2 circuits ci-dessous.

- a. Dans le circuit de gauche, combien y-a-t-il de :
 - a. Nœuds?
- 2
- b. Branches?

- c. Mailles 6
- b. Déterminer les expressions de \mathcal{E}_{th} et de \mathcal{R}_{th} pour que les 2 circuits ci-dessus soient équivalents.

En utilisant les équivalences Thévenin/Norton, on obtient :

EPITA / InfoS1 Novembre 2023

c. En déduire l'expression de la tension U aux bornes de la résistance 2R en fonction de E, I et R.

En utilisant le schéma simplifié et, d'après la formule du pont diviseur de tension, on a :

$$U = \frac{2R}{R + 2R} \times (R.I + E) = \frac{2}{3}(R.I + E)$$

2. Soit le circuit ci-contre. Déterminer l'expression de la tension U en fonction de E, I et R. Vous pourrez utiliser les équivalences Thévenin/Norton.

En utilisant les équivalences Thévenin/Norton, on obtient : $\frac{2E}{6R} = \frac{E}{3R}$ 6R R 2R U

EPITA / InfoS1 Novembre 2023

$$U = \frac{2R}{2R + 4R} \times (E + 4R.I) = \frac{E + 4R.I}{3}$$

