Package 'volesti'

August 9, 2018

Type Package

License GPL (>= 2)				
Fitle Volume approximation using VolEsti and CV algorithms.				
Description Package provides C++ code and a Rcpp interface for volume approxiation. The main function takes as input a H-polytope or a V-polytope and apply VolEsti or CV algorithm.				
Maintainer Fisikopoulos Vissarion <pre><vissarion.fysikopoulos@oracle.com< pre="">, Chalkis Aposto- los <tolis.chal@gmail.com< pre=""></tolis.chal@gmail.com<></vissarion.fysikopoulos@oracle.com<></pre>				
Version 1.0				
Date 2018-08-08				
BugReports https://github.com/vissarion/volume_approximation/issues				
SystemRequirements C++11				
Depends Rcpp (>= 0.12.17), RcppEigen, lpSolveAPI, BH				
Imports Rcpp (>= 0.12.17)				
LinkingTo Rcpp, RcppEigen, BH				
RoxygenNote 6.0.1				
Author Fisikopoulos Vissarion [cph, cre, aut], Chalkis Apostolos [cph, ctb, aut] (Contribution and development, as part of Google Summer of Code 2018 program)				
R topics documented:				
CheBall demoSampling demoVolume ineToMatrix modifyMat sample_points volume				
Index				

2 demoSampling

CheBall

Compute the Chebychev ball of a H-polytope.

Description

For a H-polytope described by a $m \times d$ matrix A and a d-dimensional vector b, s.t.: $Ax \leq b$, this function computes the largest inscribed ball of that polytope by solving the corresponding linear program.

Usage

```
CheBall(A, b)
```

Arguments

A the matrix of the H-polytope.

b The d-dimensional vector b that containes the constants of the facets.

Value

A d+1-dimensional vector that containes the chebychev ball. The first d coordinates corresponds to the center and the last one to the radius of the chebychev ball.

Examples

```
#compute the Chebychev ball of a 2d unit simplex A = matrix(c(-1,0,0,-1,1,1), ncol=2, nrow=3, byrow=TRUE) b = c(0,0,1) ball_vec = CheBall(A,b)
```

demoSampling

Run some sampling experiments.

Description

Use uniform or spherical gaussian to sample from some convex H-polytopes, i.e. cubes, simplices, skinny_cubes, cross polytopes, birkhoff polytopes. We use the default values, i.e. walklength = |10 + dimension/10|, N = 100, Cordinate Directions HnR, variance = 1.

Usage

```
demoSampling(distribution)
```

Arguments

uniform The string "uniform" to choose uniform as the target distribution.

gaussian The string "gaussian" to choose spherical gaussian as the target distribution.

demoVolume 3

Value

Print the computed volumes and the error. If the test fails a message is printed.

Examples

```
#choose uniform distribution
demoSampling("uniform")
#choose spherical gaussian distribution
demoSampling("gaussian")
```

demoVolume

Run some volume approxiamtion experiments.

Description

Run volesti or CV algorithm to approximate the volume of some cubes, simplices, skinny_cubes, cross polytopes, birkhoff polytopes. We run 10 experiments for volesti and 20 for CV. We demand error=0.1. For all the other parameters use the default values for both algorithms.

Usage

```
demoVolume(algo)
```

Arguments

CV The string "CV" to choose CV algorithm.

volesti The string "volesti" to choose volesti algorithm.

Value

Print the computed volumes and the error. If the test fails a message is printed.

Examples

```
#test volesti
demoVolume("volesti")
#test CV
demoVolume("CV")
```

4 modifyMat

ineToMatrix

function to get a ine file and returns a numerical matrix A.

Description

This function takes an ine file as a string (using read.csv()) and returns a numerical matrix A in ine format for function volume (see *volume* function examples).

Usage

```
ineToMatrix(P)
```

Arguments

Ρ

It is in format, read.cs('path/to/file.ine'). The ine file desrcibes a H-polytope.

Value

The numerical matrix in ine format.

Examples

```
#give the path to cube40.ine
A = ineToMatrix(read.csv('path/to/data/cube40.ine'))
```

modifyMat

Takes a numerical matrix in ine format and returns the matrix A and the vector b.

Description

This function can be used to extract from a numerical matrix in ine format (see example), that describes a H-polytope, the $m \times d$ matrix A and the d-dimensional vector b, s.t.: $Ax \leq b$.

Usage

```
modifyMat(A)
```

Arguments

Α

The numerical matrix in ine format (see example) of the H-polytope.

Value

A list that contains the numerical $m \times d$ matrix A and the numerical d-dimensional vector b, defining H-polytope P, s.t.: $Ax \leq b$.

sample_points 5

Examples

```
# a 2d unit simplex in H-representation using numerical matrix in ine format A = matrix(c(3,3,0,0,-1,0,0,0,-1,1,1,1), ncol=3, nrow=4, byrow=TRUE) list_of_matrix_and_vector = modifyMat(A)
```

|--|

Description

Sample N points from a H or a V-polytope with uniform or spherical gaussian target distribution.

Usage

```
sample_points(Inputs)
```

Arguments

ξ	guments	
	list("argument"	'=value)
		A list that includes parameters for the chosen target distribution and the random walk algorithm.
	path	The path to an ine or ext file that describes the H or V polytope respectively. If path is given then "matrix" and "vector" inputs are not needed.
	matrix	The matrix A of a H-polytope or the matrix V that contains all the vertices of a V polytope row-wise. If it is in ine format, only for H-polytopes, then the input "vector" is not needed.
	vector	Only for H-polytopes. The d-dimensional vector b that containes the constants of the facets.
	walk_length	Optional. The number of the steps for the random walk, default is $\lfloor 10 + d/10 \rfloor$.
	internal_point	Optional. A d-dimensional vector that containes an internal point of the polytope.
	gaussian	Optional. A boolean parameter to sample with gaussian target distribution. Default value is false.
	variance	Optional. The variance for the spherical gaussian. Default value is 1.
	N	The number of points that the function is going to sample from the convex polytope. Default value is 100 .
	ball_walk	Optional. Boolean parameter to use ball walk for the sampling. Default value is false.
	delta	Optional. The radius for the ball walk.
	verbose	Optional. A boolean parameter for printing. Default is false.
	vpoly	A boolean parameter, has to be true when a V-polytope is given as input. Default value is false.
	coordinate	Optional. A boolean parameter for the hit-and-run. True for Coordinate Direc-

tions HnR, false for Random Directions HnR. Default value is true.

6 volume

Value

A $d \times N$ matrix that contains, column-wise, the sampled points from the convex polytope.

Examples

volume

The main R function for volume approximation of a convex H or V Polytope

Description

For the volume approximation can be used two algorithms. Either volesti or CV. A H-polytope with m facets is described by a $m \times d$ matrix A and a d-dimensional vector b, s.t.: $Ax \leq b$. A V-polytope is described as a set of d-dimensional points.

Usage

```
volume(Inputs)
```

Arguments

path

list("argument"=value)

A list that includes parameters for the chosen algorithm

The path to an ine or ext file that describes the H or V polytope respectively. If

path is given then "matrix" and "vector" inputs are not needed.

matrix The matrix of the H polytope or the matrix that contains all the vertices of a

V polytope row-wise. If the matrix is in ine file, for H-polytopes only (see

examples), then the "vector" input is not needed.

vector Only for H-polytopes. The d-dimensional vector b that containes the constants

of the facets.

walk_length Optional. The number of the steps for the random walk, default is |10 + d/10|.

error Optional. Declare the goal for the approximation error. Default is 1 for volesti

and 0.2 for CV.

Chebychev Optional. A d+1 vector that containes the chebychev center. The first d coordi-

nates corresponds to the center and the last one to the radius of the chebychev

ball.

volume 7

annealing	Optional. A boolean parameter to use CV algorithm. Default value is false.
win_len	Optional. The size of the window for the ratios' approximation in CV algorithm. Default value is $4\ dimension^2+500$.
С	Optional. a constant for the lower boud of $variance/mean^2$ in schedule annealing.
N	optional. The number of points we sample in each step of schedule annealing in CV algorithm. Default value is $500C+dimension^2/2$.
ratio	Optional. parameter of schedule annealing, larger ratio means larger steps in schedule annealing. Default value is $1-1/dimension$.
frac	Optional. the fraction of the total error to spend in the first gaussian. Default value is 0.1 .
ball_walk	Optional. Boolean parameter to use ball walk, only for CV algorithm .Default value is false.
delta	Optional. The radius for the ball walk.
verbose	Optional. A boolean parameter for printing. Default is false.
vpoly	A boolean parameter, has to be true when a V-polytope is given as input. Default value is false.
coordinate	Optional. A boolean parameter for the hit-and-run. True for Coordinate Directions HnR, false for Random Directions HnR. Default value is true.
rounding	Optional. A boolean parameter to activate the rounding option. Default value is false.

Value

The approximation of the volume of a convex H or V polytope.

References

I.Z.Emiris and V. Fisikopoulos, "Practical polytope volume approximation," ACM Trans. Math. Soft., 2014.,

B. Cousins and S. Vempala, "A practical volume algorithm," Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society, 2015.

Examples

Index

```
CheBall, 2
demoSampling, 2
demoVolume, 3
ineToMatrix, 4
modifyMat, 4
sample_points, 5
volume, 6
```