• Example: Measure the radius of 100 cells and obtain a sample mean radius of $M_{100}=5.10\,\mu\text{m}$. From prior studies, we know the standard deviation is $\sigma=0.53\,\mu\text{m}$.

> Find a confidence interval for the mean with confidence level 0.95.

Since variance is known, $[M_n - \epsilon, M_n + \epsilon]$ with $\epsilon = \frac{\sigma}{J_n} Q^{-1}(\frac{\omega}{2})$ is a confidence interval for the mean with confidence level $1-\omega$.

Solve for $\frac{4}{2}$: $1-\alpha=0.95 \Rightarrow \alpha=0.05 \Rightarrow \frac{4}{2}=0.025$

Lookup $Q^{-1}(\frac{1}{2})$: MATLAB $Q^{-1}(\frac{1}{2}) = qfuncinv(\frac{1}{2})$ $Q^{-1}(0.025) = qfuncinv(0.025) = 1.46$

Solve for $E: E = \frac{0.53 \, \mu m}{\sqrt{100}} \cdot 1.96 = 0.10 \, \mu m$

Either format is OK.

[5.10 μ m ± 0.10 μ m] = [5.00 μ m, 5.20 μ m] is a confidence interval for the mean with confidence level 0.95.

• Example: Measure the radius of 100 cells and obtain a sample mean radius of $M_{100} = 5.10 \mu m$ and a sample variance of $V_{100} = 0.80 \mu m^2$.

> Find a confidence interval for the mean with confidence level 0.95.

Since the variance is unknown, $[M_n - \epsilon, M_n + \epsilon]$ with $\epsilon = -\frac{\sqrt{V_n}}{\sqrt{n}} F_{n-1}^{-1} \left(\frac{\alpha}{2}\right)$ is a confidence interval for the mean with confidence level $1-\alpha$.

Solve for $\frac{4}{2}$: $1-\alpha=0.95 \Rightarrow \frac{4}{2}=0.025$

Lookup 두-1(살): MATLAB 두-1(살) = tinv(쏲, n-1)

 $n = 100 \Rightarrow n-1=99$ $F_{T_{qq}}^{-1}(0.025) = t_{inv}(0.025, 99) = -1.98$

Solve for ϵ : $\epsilon = -\frac{\sqrt{0.80 \mu m^2}}{\sqrt{100}} (-1.48) = 0.18 \mu m$

[5.10µm \pm 0.18µm] = [4.92µm, 5.28µm] is a confidence interval for the mean with confidence level 0.95.

• Example: Measure the radius of 100 cells and obtain a sample mean radius of $M_{100} = 5.10 \mu m$ and a sample variance of $V_{100} = 0.80 \mu m^2$.

> Find a confidence interval for the variance with confidence level 0.95.

$$[\beta_1 V_n, \beta_2 V_n]$$
 with $\beta_1 = \frac{n-1}{F_{n-1}^{-1}(1-\frac{\omega}{2})}$ and $\beta_2 = \frac{n-1}{F_{n-1}^{-1}(\frac{\omega}{2})}$ is a confidence

interval for the variance with confidence level 1-x.

Lookup
$$F_{2n-1}^{-1}(z)$$
: MATLAB $F_{2n-1}^{-1}(z) = \text{chilinu}(z, n-1)$

$$F_{\chi_{00}^{-1}}^{-1}(0.975) = \text{chilinu}(0.975, 99) = 128.42$$

$$F_{22}^{-1}(0.025) = chilinu(0.025, 99) = 73.36$$

Solve for
$$\beta_1$$
, β_2 : $\beta_1 = \frac{99}{128.42} = 0.77$ $\beta_2 = \frac{99}{73.36} = 1.35$

$$[0.77 \cdot 0.80 \mu m^2, 1.35 \cdot 0.80 \mu m^2] = [0.62 \mu m^2, 1.08 \mu m^2]$$
 is a

confidence interval for the variance with confidence level 0.95.