МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ КАФЕДРА АЛГОРИТМИЧЕСКИХ ЯЗЫКОВ

Краткий отчёт студента о выполнении задания преддипломной практики

Ушивец Никита Алексеевич Группа 424

> Научный руководитель Большакова Е.И.

Задание преддипломной практики:

Создать программное средство обработки словосочетаний с существующими в русском языке именами числительных. На основе терминологии имён числительных, представленной в виде совокупности правил склонения с различного рода существительными русского языка, найти алгоритм обработки вводимых словосочетаний. Используя имеющиеся данные реализовать алгоритм, позволяющий автоматизировано склонять получаемые словосочетания. Так же с помощью обработки различного рода текстов исправлять неправильные словосочетания в них.

Путь решения

Выполнение задания преддипломной практики было разделено на три основные взаимосвязанные части: поиск и изучения необходимого теоретического материала, построение алгоритма относительно созданных правил, доработка и тестирование алгоритмов.

Теоретический материал из различных источников позволив выявить и разделить характерные черты склонения существительных с разными группами имен числительных русского языка, что и легло в основу разработки базы правил. Основной задачей на этапе программной реализации алгоритмов было правильное перенесения словесного описания базы правил в структурированный вид, который можно использовать в коде и с легкостью обновлять или модифицировать.

Вводимые данные

Для решения поставленной задачи необходимо было реализовать программу, которая принимала бы численное значение (ограниченное квинтиллионом) и словосочетание с обязательными параметром в виде существительного. Для работы я решил использовать язык программирование Python, с открытой библиотекой рутогру2. Если коротко описывать интерфейс - он содержит простой и понятный дизайн, необходимы были поля ввода текста и поле вывода массива с полученными после выполнения программы предложениями.

Этап реализации

Данная программа представляет с собой поэтапный разбор вводимых данных, а именно:

1. Перевод численного значения в строку

На вход программа получает любое число, ограниченное каким-то максимальным значением. Для начала определятся группа данного числительного (порядковый, количественный, собирательный), после чего вызывается отвечающая данной группе функция. При вызове первым делом идёт разбор числа на единицы, десятки, тысячи с помощью

написанных разделительных функций. Каждый разбор записывается в массив с котором и будет идти дальнейшая работа.

2. Удаление лишних символов

При работе с массивом разделенных значений остаются как ненужные символы, так и нужными по типу знака перед числом или запятой, ограничивающей целую часть числа. На данном этапе проходит глобальная отчистка, после чего стилистически корректный массив передается в работу со словарями.

3. Использование словарей

При посимвольном проходе массива ищется соответствующие значения в заранее определенных словарях. Существует несколько типов словарей, отвечающих группе числительного. Это может быть как окончание для порядковых чисел, так и список склоняемых групп. При нахождении значения в словаре, происходит замена изначального массива на строчные величины.

4. Обработка числительного

Однако массив состоит из взаимно несвязанных элементов. При очередном проходе устанавливается связь групп единиц, десятков, тысяч, которая изменяет строчный значения на правильные. Так учитывается род числительного, его месторасположение в массиве, изначально заданную группу (порядковое, количественное).

5. Соответствие с существительным

На данном этапе по средствам подключенной библиотеки pymorphy2, в частности используемого размеченного корпуса OpenCorpora, находится нужная информация о роде и числе существительного. Дополнительно проходя по массиву чисел, учитываются полученные данные и выдается конечная строка.

6. Склонение по падежам (есть трудности с порядковыми числительными)

Дополнительная функция работы с выданной строки состоит в том, что после сегментации - разделение на слова, происходит склонение каждого элемента по падежам. Полученные данные записываются в массив при нужном формате, который и выводится на экран.

7. Поиск слов в заданном тексте (есть трудности в работе)

С помощью библиотеки pymorphy2, по средству используемого tag'a и проверки на существование в тексте необычных нормальных форм слов, происходит выделение из всего текста слов представояющих собой численные значения. Этот массив строк приводится к нормальной форме для дальнейшего упрощения работы с ним. Далее, применяется

словарь наиболее распространённых имён числительных, по которому мы формируем массив чисел, закрепленных относительного своего места в тексте.

8. Проверка на правильность использования словосочетаний (в разработке)

Сложные случаи

При тестирование программной реализации алгоритмов были замечены сложные случаи словосочетаний, которые уступают ручному проведению операции:

• Существительное, не имеющее единственного числа (до сих поресть трудности)

Когда существительное не имеет формы единственного числа (ножницы, сутки и др.), часто сложно образовать форму числительного, более 20, которое бы правильно согласовалось с таким числительным: (сорок трое суток, сорок три суток), правильный вариант: сорок три дня. С такими существительными сочетаются только числительные, оканчивающиеся на единицу или пятерку: двадцать одни сутки. Для того, чтобы обозначить количество других собирательных существительных (например, ножниц, трусов, глаз), употребляется слово «штука» или «пара»: сорок восемь пар глаз, двадцать две пары трусов, семь штук ножниц.

- Случаи, в которых употребляются собирательные существительные (до сих пор есть трудности)
 - С существительными люди, дети и названиями детёнышей животных: семеро козлят, двое котят, пятеро детей.
 - С существительными, означающими название лиц мужского пола: четверо братьев, трое друзей.

Вывод

В ходе работы были реализованы алгоритмы с помощью, которых решается часть поставленной задачи. Несмотря на то, что данная работа не может обработать идеально все случаи, она обрабатывает самые популярные из них, давая представлении о структуре подобных программ и тех сложностей, с которыми можно столкнуться. Итоговые результаты и оценки позволяют наметить дальнейшее усовершенствование и уточнение алгоритмов, а также закончить полноценный, заранее предусмотренный функционал.