Overview of Operating Systems

BLG 312E 2014-2015 Spring

Operating System

- · software for using the hardware
- · computer resources
 - controls
 - shares
- program development environment
- kernel = operating system

Computer System

application programs

compilers editors command interpreter

operating system

machine code programs

microprograms (in ROM)

hardware

Operating System

- · direct access to hardware not allowed
- · user mode x kernel mode
- · hides difficulties of using hardware
- · interface between user and hardware
 - system calls

System Calls

- · for user programs to
 - interact with operating system
 - get operating system to perform a task for them
- · a library routine for every system call
- user program uses library routine

Operating System Responsibilities

- · resource sharing
- virtual machine

sharing among users security isolate users shared resources: CPU memory I/O components data

objectives: to maximize resource utilization to maximize resource availability

Provided services: - define user interface - system calls - sharing and usage control of resources in multi-use systems - prevent race for resources - mutual exclusion - allow users to share data (shared memory) - resource scheduling - I/O scheduling - error handling

• as if single user - resource sharing transparent to user • virtual machine may be different from actual physical machine: - I/O - memory - file system - protection and error handling - program interaction - program control

I/O
 requires hardware dependent programming
 device drivers

• memory - different memory capacity in virtual machine • use disk as secondary memory • share among users - each user sees part of memory allocated to her

Virtual Machine

- · file system
 - for longterm storage of program and data
 - on disk
 - use symbols to acces info instead of physical addresses
 - naming
 - all accessed as files in UNIX

Virtual Machine

- · protection and error handling
 - isolate users in multi-user systems

Virtual Machine

- program interaction
 - in runtime
 - for example one program may use output of another program as input

Virtual Machine

- · program control
 - provide user with high-level command set
 - · shell commands
 - shell: command interpreter
 - shell not part of operating system
 - but shell uses system calls heavily

Types of Operating Systems

- · mainframe operating systems
- · server operating systems
- · multi-processor operating systems
- · PC operating systems
- · real-time operating systems
- · embedded operating systems
- · smartcard operating systems

Mainframe Operating Systems

- for heavily I/O bound tasks
- · three main services:
 - batch mode
 - non-interactive, routine tasks
 - e.g. preparing employee paychecks
 - transaction processing
 - · e.g. airline reservation systems
 - time-sharing
 - multiple remote users running tasks
 - e.g. database
 - e.g.: OS/390

Server Operating Systems

- · on servers
 - PCs with high resource capacities
 - workstations
 - mainframe systems
- · services for multi-users over a network
 - hardware and software sharing
 - e.g: printer services, file sharing, web access
- e.g.: UNIX, Windows 2000

Multi-Processor Operating Systems

- · for multi-processor systems
- · to increase computing power
- based on interconnection between processors:
 - parallel systems
 - networked computers
 - multi-processor computers
- · special operating system features required
 - design objectives similar to server operating systems
 - extra features for interconnection and communication between processors

PC Operating Systems

- · efficient and easy to use interface
- · office applications
- ea.
 - Windows 98, 2000, XP
 - Macintosh
 - Linux

Real-Time Operating Systems

- · time constraints important
- industrial control systems
 - feedback
- two types:
 - hard real-time
 - time constraints compulsory
 - e.g. robots in car production line
 - soft-real-time
 - possible not to obey some constraints
 - e.g. multimedia systems
- örnek: VxWorks ve QNX

Embedded Operating Systems

- · palm computers and embedded systems
- · limited operation
- · special purpose
- · e.g.: TV, microwave oven, cell phones, ...
- · in some systems, size, memory and power consumption constraints
- · e.g.: PalmOS, Windows CE

Smart-Card Operating Systems

- · smallest operating system
- · on credit card sized cards with processor
- · strict memory and CPU constraints
- · some are dedicated e.g. elektronic payments
- some may have several functionalities
- usually special purpose operating systems developed by card companies
- some Java based
 - possible to load and execute small JAVA programs (applet)
 - some may execute more than one applet
 - · multi-programming, scheduling, resource sharing and protection

Main Kernel Architectures

- · monolithic
- · layered
- · virtual machine
- · exo-kernel
- · server-client model
- · modular

Monolithic

- no general structure
- · all services and functionalities included in operating system
- · all functional procedures
 - at the same level
 - may interact with each other
- large

Modular

- · minimal kernel
- · services added to kernel at runtime as they are needed
 - e.g. device drivers
- · small kernel size
- slower

Layered

0

- · layered structure
 - hierarchical
- e.g.: THE operating system

5	operator	
4	user programs	• la
3	I/O control	•
2	operator – process interaction	Ea lay
1	memory and disk control	e.g

CPU sharing and multi-programming

- ayer 0: processor ayer 1: memory management
- ach layer independent of operations of
- ers below. g.: for layer 2 operations, data may be

Exo-Kernel

- developed at MIT
- · similar to the virtual machine concept
 - · copy of system
 - difference: each virtual machine gets subset of system resources
- · external kernel
 - controls that virtual machines do not exceed thir allocated resources
- each virtual machine may have different operating systems

Server-Client Model

- · minimal kernel micro-kernel
- · most of operating system in user mode
- · server and client processes
 - e.g. file read operation
 - · client process asks from server process
 - · server carries out operation
 - · gives reply to client
- kernel coordinates communication and interaction between servers and clients

Server-Client Model

- · servers in user mode
 - file server
 - process server
 - terminal server
 - memory server
- operating system consists of many smaller sub-units:
 - easy to manage
 - error in one does not affect others (units do not access hardware directly)
 - implementation problems: not possible to implement especially some I/O device drivers at user mode
- · suitable for distributed systems