The Impossibility of Polynomial Approximations in Some de Branges-Rovnyak Spaces

Pierre-Olivier Parisé (Université Laval) Advisor, T. Ransford

> AMS/CMS Winter meeting 2018 Vancouver

> 7th-10th, December, 2018

Spaces of continuous functions

Theorem (1885, Weierstrass)

Let $f \in C[a, b]$ be a continuous function on the closed interval [a, b]. Then, there exists a sequence of polynomials (p_n) such that

$$||f-p_n||_{\infty} \xrightarrow[n \to +\infty]{} 0.$$

Spaces of continuous functions

Theorem (1885, Weierstrass)

Let $f \in C[a, b]$ be a continuous function on the closed interval [a, b]. Then, there exists a sequence of polynomials (p_n) such that

$$||f-p_n||_{\infty} \xrightarrow[n \to +\infty]{} 0.$$

Theorem (1912, Berstein)

If
$$f \in \mathcal{C}[0,1]$$
 and $p_n(x) := \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$, then
$$\|f-p_n\|_{\infty} \xrightarrow[n \to +\infty]{} 0.$$

2/20

Hardy space: Definition

Let
$$\operatorname{Hol}(\mathbb{D}):=\{\sum_{n=0}^\infty a_n z^n : a_n \in \mathbb{C} \ \forall n \geq 0\} \ \text{where} \ \mathbb{D}:=\{|z|<1\}.$$

Definition

$$H^2:=\left\{f\sim \sum_{n\geq 0}a_nz^n\,:\,\sum_{n=0}^\infty|a_n|^2<+\infty
ight\}.$$
 We define:

- A norm: $||f||_2^2 := \sum_{n=0}^{\infty} |a_n|^2$;
- The partial sums: $s_n(f)(z) := \sum_{k=0}^n a_k z^k$.

Hardy space: Definition

Let
$$\operatorname{Hol}(\mathbb{D}):=\{\sum_{n=0}^\infty a_n z^n : a_n \in \mathbb{C} \ \forall n \geq 0\} \ \text{where} \ \mathbb{D}:=\{|z|<1\}.$$

Definition

$$H^2:=\Big\{f\sim \sum_{n\geq 0}a_nz^n\,:\,\sum_{n=0}^\infty|a_n|^2<+\infty\Big\}.$$
 We define:

- A norm: $||f||_2^2 := \sum_{n=0}^{\infty} |a_n|^2$;
- The partial sums: $s_n(f)(z) := \sum_{k=0}^n a_k z^k$.

Theorem

If $f \in H^2$, then $||f - s_n(f)||_2 \to 0$ when $n \to +\infty$.

Disk Algebra: Definition

Definition

 $\mathcal{A}(\mathbb{D}) := \operatorname{Hol}(\mathbb{D}) \cap \mathcal{C}(\overline{\mathbb{D}})$. For $f \in \mathcal{A}(\mathbb{D})$, we define

• the supremum norm:

$$||f||_{\infty} := \sup_{z \in \mathbb{D}} |f(z)|.$$

• the Cesáro mean:

$$\sigma_n(f) := \frac{\sum_{k=0}^n s_k(f)}{n+1}.$$

Disk Algebra: Definition

Definition

 $\mathcal{A}(\mathbb{D}) := \operatorname{Hol}(\mathbb{D}) \cap \mathcal{C}(\overline{\mathbb{D}})$. For $f \in \mathcal{A}(\mathbb{D})$, we define

• the supremum norm:

$$||f||_{\infty} := \sup_{z \in \mathbb{D}} |f(z)|.$$

• the Cesáro mean:

$$\sigma_n(f) := \frac{\sum_{k=0}^n s_k(f)}{n+1}.$$

A suprising fact (du Bois Reymond):

$$\exists f \in \mathcal{A}(\mathbb{D}) \text{ s.t. } \sup_{n>0} \|s_n f\|_{\infty} = +\infty.$$

Theorem

If $f \in \mathcal{A}(\mathbb{D})$, then $\|\sigma_n(f) - f\|_{\infty} \to 0$ as $n \to +\infty$.

Theorem

If $f \in \mathcal{A}(\mathbb{D})$, then $\|\sigma_n(f) - f\|_{\infty} \to 0$ as $n \to +\infty$.

Proof.

 $g:=f|_{\partial\mathbb{D}}$ is continuous. So, from Fejér theorem, the Cesàro means $\sigma_n(f):=rac{\sum_{k=0}^n s_k(f)}{n+1}$ converge to g uniformly. $\sigma_n(f)$ is the restriction of a polynomial to $\partial\mathbb{D}$ and

$$\|\sigma_n(f)-f\|_{\infty}=\sup_{z\in\partial\mathbb{D}}|\sigma_n(f)(z)-g(z)|\underset{n\to+\infty}{\longrightarrow}0.$$

Let
$$H^{\infty} := \{ f \in \operatorname{Hol}(\mathbb{D}) : ||f||_{\infty} < +\infty \}.$$

Let
$$H^{\infty} := \{ f \in \operatorname{Hol}(\mathbb{D}) : ||f||_{\infty} < +\infty \}.$$

Definition

We define $\mathcal{H}(b) := A_b H^2$ where A_b is a certain operator depending on b.

Let
$$H^{\infty} := \{ f \in \operatorname{Hol}(\mathbb{D}) : \|f\|_{\infty} < +\infty \}.$$

Definition

We define $\mathcal{H}(b) := A_b H^2$ where A_b is a certain operator depending on b.

Example

Let
$$b_0(z):=rac{ au z}{1- au^2 z}$$
 where $au:=rac{\sqrt{5}-1}{2}.$ If $f\in \mathcal{H}(b_0)$, then

$$||f_r - f||_{b_0} \to 0$$

as $r \to 1^-$ where $f_r(z) := f(rz)$.

Example

Let $b := b_0 B$ where B is a Blaschke product with zeros at $w_n := 1 - 4^{-n}$ for $n \ge 1$.

Example

Let $b := b_0 B$ where B is a Blaschke product with zeros at $w_n := 1 - 4^{-n}$ for $n \ge 1$. If we let

$$f(z) := \sum_{n\geq 1} \frac{2^{-n}}{1-w_n z},$$

then it is possible to show that $f \in \mathcal{H}(b)$, but

Example

Let $b := b_0 B$ where B is a Blaschke product with zeros at $w_n := 1 - 4^{-n}$ for $n \ge 1$. If we let

$$f(z) := \sum_{n\geq 1} \frac{2^{-n}}{1-w_n z},$$

then it is possible to show that $f \in \mathcal{H}(b)$, but

- $\lim_{r\to 1^-} \|f_r\|_b = +\infty$;
- $\limsup_{n\to\infty} \|s_n(f)\|_b = +\infty$;
- $\limsup_{n\to\infty} \|\sigma_n(f)\|_b = +\infty$.

However, polynomial approximants is obtained by another technic:

Toeplitz operators approximations.

7/20

Let \mathcal{P}_+ is the set of analytic polynomials $\sum_{k=0}^n c_k \chi_k$ where

$$\chi_k(\theta) := e^{\mathbf{i}k\theta}.$$

Example

If b is a special outer function in H^{∞} , then

$$\mathcal{P}_+ \cap \mathcal{H}(b) = \{0\}$$
.

There exists two different situations:

- 1 b's where polynomial are dense;
- b's where polynomial are not dense.

There exists two different situations:

- b's where polynomial are dense;
- 2) b's where polynomial are not dense.

Question: Is there a condition on b that characterized this dichotomy?

definition

 H^2 is identified with $f \in L^2$ such that $\hat{f}(n) = 0$ for all n < 0.

definition

 H^2 is identified with $f \in L^2$ such that $\hat{f}(n) = 0$ for all n < 0.

Definition

Let $\varphi \in L^{\infty}$. The Toeplitz operator $T_{\varphi}: H^2 \to H^2$ is the operator

$$T_{\varphi}f:=P_{+}(\varphi f)$$

where $P_+:L^2\to H^2$.

definition

 H^2 is identified with $f \in L^2$ such that $\hat{f}(n) = 0$ for all n < 0.

Definition

Let $\varphi \in L^{\infty}$. The Toeplitz operator $T_{\varphi}: H^2 \to H^2$ is the operator

$$T_{\varphi}f:=P_{+}(\varphi f)$$

where $P_+:L^2\to H^2$.

Remark:

- The operator P_+ is the orthogonal projection of L^2 onto H^2 .
- $\bullet \|T_{\varphi}\| = \|\varphi\|_{\infty}.$
- $T_{\varphi}^* = T_{\overline{\varphi}}$
- $\bullet \ \ \text{If} \ \psi \in \mathit{L}^{\infty} \text{, then} \ \mathit{T}_{\overline{\psi}}\mathit{T}_{\varphi} = \mathit{T}_{\overline{\psi}\varphi}.$

Definition

Definition (Sarason [4])

Let $b \in H^{\infty}$ such that $\|b\|_{\infty} \leq 1$. The space $\mathcal{H}(b)$ is defined as $\mathcal{H}(b) := (I - T_b T_{\overline{b}})^{1/2} H^2$ with the scalar product

$$\left\langle (I - T_b T_{\overline{b}})^{1/2} f, (I - T_b T_{\overline{b}})^{1/2} g \right\rangle_b := \left\langle f, g \right\rangle_2$$

where $f, g \in H^2 \ominus \ker(I - T_b T_{\overline{b}})^{1/2}$.

Definition

Definition (Sarason [4])

Let $b \in H^{\infty}$ such that $||b||_{\infty} \leq 1$. The space $\mathcal{H}(b)$ is defined as $\mathcal{H}(b) := (I - T_b T_{\overline{b}})^{1/2} H^2$ with the scalar product

$$\left\langle (I - T_b T_{\overline{b}})^{1/2} f, (I - T_b T_{\overline{b}})^{1/2} g \right\rangle_b := \left\langle f, g \right\rangle_2$$

where $f, g \in H^2 \ominus \ker(I - T_b T_{\overline{b}})^{1/2}$.

Remark:

• $\mathcal{H}(\overline{b})$ is defined from the operator $(I - T_{\overline{b}}T_b)^{1/2}$. We have

$$\mathcal{H}(\overline{b}) \subset \mathcal{H}(b)$$
.

• $h \in \mathcal{H}(b)$ if and only if $T_{\overline{b}}h \in \mathcal{H}(\overline{b})$.

Main Theorem

It is possible to prove that $b \in H^{\infty}$ is extreme if and only if

$$\int_{\mathbb{T}} \log 1 - |b|^2 \, dm = -\infty.$$

Main Theorem

It is possible to prove that $b \in H^{\infty}$ is extreme if and only if

$$\int_{\mathbb{T}} \log 1 - |b|^2 \, dm = -\infty.$$

Theorem

Let $b \in H^{\infty}$ such that $||b||_{\infty} \leq 1$. Then,

 $\mathcal{P}_+ \subset \mathcal{H}(b) \iff b \text{ is nonextreme.}$

We need a non-trivial fact about $\mathcal{H}(b)$.

Theorem

Let b be a extreme point of the unit ball of H^{∞} . If $h \in \mathcal{H}(b) \cap \operatorname{Hol}(\operatorname{clos}(\mathbb{D}))$, then $h \in \ker T_{\overline{b}}$ and h is a rational functions.

We need a non-trivial fact about $\mathcal{H}(b)$.

Theorem

Let b be a extreme point of the unit ball of H^{∞} . If $h \in \mathcal{H}(b) \cap \operatorname{Hol}(\operatorname{clos}(\mathbb{D}))$, then $h \in \ker T_{\overline{b}}$ and h is a rational functions.

Remarks:

- For the space $\mathcal{H}(\overline{b})$, the conclusion is that h=0.
- This tells us the set $\operatorname{Hol}(\operatorname{clos}(\mathbb{D})) \cap \mathcal{H}(b)$ is not a big set.

We also need the following Lemma.

Lemma

Let b be a nonextreme point of the unit ball of H^{∞} . Then, there exists an outer function $a \in H^{\infty}$ such that a(0) > 0 and $|a|^2 + |b|^2 = 1$ a.e. on \mathbb{T} .

We also need the following Lemma.

Lemma

Let b be a nonextreme point of the unit ball of H^{∞} . Then, there exists an outer function $a \in H^{\infty}$ such that a(0) > 0 and $|a|^2 + |b|^2 = 1$ a.e. on \mathbb{T} .

This gives another representation for $\mathcal{H}(\overline{b})$.

Theorem

Let b be a nonextreme point of the unit ball of H^{∞} . Then,

- $T_{\overline{a}}H^2 = \mathcal{H}(\overline{b}).$
- $f \in \mathcal{H}(b)$ if and only if $T_{\overline{b}}f = T_{\overline{a}}f_+$ for a unique $f^+ \in H^2$.

1 Suppose that b is nonextreme. Then, $\overline{a}H^2=\mathcal{H}(\overline{b})\subset\mathcal{H}(b)$. We will show that $\mathcal{P}_+\subset\overline{a}H^2$.

- Suppose that b is nonextreme. Then, $\overline{a}H^2 = \mathcal{H}(\overline{b}) \subset \mathcal{H}(b)$. We will show that $\mathcal{P}_+ \subset \overline{a}H^2$.
- 2 Let $n \ge 0$. If k > n, then

$$\widehat{T_{\overline{a}}\chi_n}(k) = \langle T_{\overline{a}}\chi_n, \chi_k \rangle_2 = \langle \chi_{n-k}, a \rangle_2 = 0.$$

 $T_{\overline{a}}\chi_n$ is a polynomial of degree d at most n.

- Suppose that b is nonextreme. Then, $\overline{a}H^2 = \mathcal{H}(\overline{b}) \subset \mathcal{H}(b)$. We will show that $\mathcal{P}_+ \subset \overline{a}H^2$.
- 2 Let $n \ge 0$. If k > n, then

$$\widehat{T_{\overline{a}}\chi_n}(k) = \langle T_{\overline{a}}\chi_n, \chi_k \rangle_2 = \langle \chi_{n-k}, a \rangle_2 = 0.$$

 $T_{\overline{a}}\chi_n$ is a polynomial of degree d at most n.

3 Suppose that d < n. Then, $T_{\overline{a}}\chi_n = \sum_{k=0}^d c_k \chi_k$ and we have

$$\langle T_{\overline{a}}\chi_n, \chi_n \rangle_2 = \sum_{k=0}^d c_k \langle \chi_k, \chi_n \rangle_2 = 0.$$

- **1** Suppose that b is nonextreme. Then, $\overline{a}H^2 = \mathcal{H}(\overline{b}) \subset \mathcal{H}(b)$. We will show that $\mathcal{P}_+ \subset \overline{a}H^2$.
- 2 Let $n \ge 0$. If k > n, then

$$\widehat{T_{\overline{a}}\chi_n}(k) = \langle T_{\overline{a}}\chi_n, \chi_k \rangle_2 = \langle \chi_{n-k}, a \rangle_2 = 0.$$

 $T_{\overline{a}}\chi_n$ is a polynomial of degree d at most n.

3 Suppose that d < n. Then, $T_{\overline{a}}\chi_n = \sum_{k=0}^d c_k \chi_k$ and we have

$$\langle T_{\overline{a}}\chi_n, \chi_n \rangle_2 = \sum_{k=0}^d c_k \langle \chi_k, \chi_n \rangle_2 = 0.$$

From this, we get

$$0 = \langle T_{\overline{a}}\chi_n, \chi_n \rangle_2 = \langle \chi_0, a \rangle = \hat{a}(0) = a(0).$$

- Suppose that b is nonextreme. Then, $\overline{a}H^2 = \mathcal{H}(\overline{b}) \subset \mathcal{H}(b)$. We will show that $\mathcal{P}_+ \subset \overline{a}H^2$.
- 2 Let $n \ge 0$. If k > n, then

$$\widehat{T_{\overline{a}}\chi_n}(k) = \langle T_{\overline{a}}\chi_n, \chi_k \rangle_2 = \langle \chi_{n-k}, a \rangle_2 = 0.$$

 $T_{\overline{a}}\chi_n$ is a polynomial of degree d at most n.

3 Suppose that d < n. Then, $T_{\overline{a}}\chi_n = \sum_{k=0}^d c_k \chi_k$ and we have

$$\langle T_{\overline{a}}\chi_n, \chi_n \rangle_2 = \sum_{k=0}^d c_k \langle \chi_k, \chi_n \rangle_2 = 0.$$

From this, we get

$$0 = \langle T_{\overline{a}}\chi_n, \chi_n \rangle_2 = \langle \chi_0, a \rangle = \hat{a}(0) = a(0).$$

5 This contradicts the Lemma and so $T_{\overline{a}}\chi_n$ is a polynomial of the same degree.

15/20

- Suppose that b is nonextreme. Then, $\overline{a}H^2 = \mathcal{H}(\overline{b}) \subset \mathcal{H}(b)$. We will show that $\mathcal{P}_+ \subset \overline{a}H^2$.
- 2 Let $n \ge 0$. If k > n, then

$$\widehat{T_{\overline{a}}\chi_n}(k) = \langle T_{\overline{a}}\chi_n, \chi_k \rangle_2 = \langle \chi_{n-k}, a \rangle_2 = 0.$$

 $T_{\overline{a}}\chi_n$ is a polynomial of degree d at most n.

3 Suppose that d < n. Then, $T_{\overline{a}}\chi_n = \sum_{k=0}^d c_k \chi_k$ and we have

$$\langle T_{\overline{a}}\chi_n, \chi_n \rangle_2 = \sum_{k=0}^d c_k \langle \chi_k, \chi_n \rangle_2 = 0.$$

From this, we get

$$0 = \langle T_{\overline{a}} \chi_n, \chi_n \rangle_2 = \langle \chi_0, a \rangle = \hat{a}(0) = a(0).$$

- **5** This contradicts the Lemma and so $T_{\overline{a}}\chi_n$ is a polynomial of the same degree.
 - The results now follows from linearity.

1 Suppose that $\mathcal{P}_+ \subset \mathcal{H}(b)$ and b is extreme.

- **1** Suppose that $\mathcal{P}_+ \subset \mathcal{H}(b)$ and b is extreme.
- ② From the Theorem, $\chi_n \in \ker T_{\overline{b}}$ for every $n \geq 0$.

- **1** Suppose that $\mathcal{P}_+ \subset \mathcal{H}(b)$ and b is extreme.
- ② From the Theorem, $\chi_n \in \ker T_{\overline{b}}$ for every $n \geq 0$.

$$0 = \langle T_{\overline{b}}\chi_n, \chi_k \rangle_2 = \langle \chi_{n-k}, b \rangle_2 = \hat{b}(n-k).$$

- **1** Suppose that $\mathcal{P}_+ \subset \mathcal{H}(b)$ and b is extreme.
- ② From the Theorem, $\chi_n \in \ker T_{\overline{h}}$ for every $n \geq 0$.

$$0 = \left\langle T_{\overline{b}}\chi_n, \chi_k \right\rangle_2 = \left\langle \chi_{n-k}, b \right\rangle_2 = \hat{b}(n-k).$$

• In other words, $\hat{b}(m) = 0$ for all $m \ge 0$, so b = 0.

- **1** Suppose that $\mathcal{P}_+ \subset \mathcal{H}(b)$ and b is extreme.
- ② From the Theorem, $\chi_n \in \ker T_{\overline{h}}$ for every $n \geq 0$.

$$0 = \left\langle T_{\overline{b}}\chi_n, \chi_k \right\rangle_2 = \left\langle \chi_{n-k}, b \right\rangle_2 = \hat{b}(n-k).$$

- In other words, $\hat{b}(m) = 0$ for all $m \ge 0$, so b = 0.
- This contradicts our assumption that b is not zero.

This last Theorem tells:

- No approximation is possible by polynomials.
- Moreover, no approximation is possible by rational functions.
- Finally, no approximation is possible by elements of ker $T_{\overline{b}}$.

This last Theorem tells:

- No approximation is possible by polynomials.
- Moreover, no approximation is possible by rational functions.
- ullet Finally, no approximation is possible by elements of ker $T_{\overline{b}}$.

Huston, we got a problem...

However, recently

- Aleman and Malman [1] showed that $A \cap \mathcal{H}(b)$ is dense in $\mathcal{H}(b)$.
- The authors of [3] showed that

$$||T_{\overline{\varphi}_n}f - f||_b \to 0 \quad n \to \infty$$

for a suitable choice of $(\varphi_n)_{n\geq 1}\subset H^{\infty}$.

However, recently

- Aleman and Malman [1] showed that $A \cap \mathcal{H}(b)$ is dense in $\mathcal{H}(b)$.
- The authors of [3] showed that

$$||T_{\overline{\varphi}_n}f - f||_b \to 0 \quad n \to \infty$$

for a suitable choice of $(\varphi_n)_{n\geq 1}\subset H^\infty$.

The goal is to give a constructive proof of the density of $A \cap \mathcal{H}(b)$.

Thanks for your attention!

Bibliography I

Hilbert spaces of analytic functions with a contractive backward shift. Journal of Functional Analysis, 2018.

L. De Branges.

Square summable power series.

Toronto: Holt-Rinehart and Winston, 1966.

O. El-Fallah, E. Fricain, K. Kellay, J. Mashreghi, and T. Ransford. Constructive approximation in de branges—rovnyak spaces.

Constructive Approximation, 44(2):269–281, Oct 2016.

D. Sarason.

Sub-Hardy Hilbert Spaces in the Unit Disk.

The University of Arkensas Lecture Notes in the Mathematical Sciences. Wiley-Interscience, 1994.