Explicit Semantic Ranking for Academic Search via Knowledge Graph Embedding

阅读报告

张继元 201728014628057 自动化研究所 zhangjiyuan2017@ia.ac.cn

Challenge

Exact matching query and document's words does not solve IR.

Query

CMU location

Document

Carnegie Mellon
University is a
private research
university in ...

Query Log Analysis

(a) Query Intent Distribution

(b) Error Source Distribution

Contribution

- 1. An in-domain knowledge graph construction for academic search
- 2. Bag-of-Entities based text representation
- 3. Explicit Semantic Ranking

In-domain knowledge graph construction

Entities are from a general domain knowledge graph (Freebase):

- Very good coverage in academic search
- Better than automatic key phrase extraction

Bag-of-Entities based text representation

- Domain specific edges
- 1. Author Edge
- 2. Venue Edge
- 3. Context Edge
- 4. Description Edge

An entity embedding model for each edge type

Skip-gram model on each Entity →
Author | Venue | Context | Description Pair

Explicit Semantic Ranking

Figure 2: The Framework of Explicit Semantic Ranking (ESR).

Advantages

- 1. Smart Phasing
- 2. Embedding-based Soft Match

Query **Document** Convolutional Neural Networks

Evalution Results

Method	NDCG@1		NDCG@5		NDCG@10		NDCG@20		$\overline{ m W/T/L}$
tf.idf-F	0.2020	-59.65%	0.2254	-54.93%	0.2741	-47.57%	0.3299	-39.91%	28/01/71
BM25-F	0.2512	-49.81%	0.2890	-42.20%	0.3150	-39.74%	0.3693	-32.75%	32/01/67
Semantic Scholar	0.5006	_	0.5000	_	0.5228	_	0.5491	_	-/-/-
ESR-Author	0.5499^{\dagger}	+9.85%	0.5501^\dagger	+10.02%	0.5671^{\dagger}	+8.47%	0.5935^{\dagger}	+8.08%	60/10/30
ESR-Context	0.5519^{\dagger}	+10.25%	0.5417^\dagger	+8.35%	0.5636^{\dagger}	+7.80%	0.5918^\dagger	+7.77%	58/04/38
ESR-Desc	0.5304	+5.96%	0.5496^\dagger	+9.92%	0.5536^\dagger	+5.88%	0.5875^\dagger	+6.99%	55/11/34
ESR-Venue	$\boldsymbol{0.5638}^{\dagger}$	+12.63%	0.5700^{\dagger}	+13.99%	0.5795^\dagger	+10.83%	0.6090^\dagger	+10.91%	59/11/30

1、用最短也最通俗的一段话描述本论文内容(动机,方法,结果)

- 动机: 改进词袋模型的局限性
- 方法: 引入知识图谱的实体表示改进查询的匹配度
- 结果: 明显提高查询的匹配度, 特别是在基于词袋排序失败的一些查询中

2、本文的最大创新是什么?

- ①直接继承wiki或者freebase的图谱信息构建知识图谱,迅速建立当前领域的图谱。
- ②将知识图谱方法引入了检索领域,用bag-of-entity的表示形式,改变用词袋模型对查询和文档建模的方式,将语义信息引入到搜索中,既能实现exact-match,也能实现soft-match。

3、觉得本文有什么提高的空间?

构建bag-of-entity表示时候的edge type可以有更多的考虑,最后基于直方图的排序方法也可以有一些其他方法的尝试对比。

4、对自己的启发是什么?

对经典方法缺陷的反思,并能够结合最新的一些方法做改进。