MODELLO COMPLETO PER IL CONTROLLO

- $d_m(t)$: disturbi misurabili
- $d_r(t)$: disturbi non misurabili
- ullet $y^o(t)$: andamento desiderato della variabile controllata
- u(t): variabile di controllo
- ullet P(s): funzione di trasferimento del processo
- Problema del controllo:
 - determinare l'ingresso u in modo che risulti $y \approx y^0$.

CONTROLLO IN CATENA DIRETTA

- Soluzione in catena diretta.
 - Ipotesi: poli e zeri con parte reale minore di zero.

• Legge di controllo in assenza di disturbi non misurabili

$$U(s) = \frac{1}{P(s)}Y^{o}(s) - \frac{1}{P_{1}(s)}D_{m}(s)$$

CONTROLLO IN CATENA APERTA VS. CONTROLLO IN RETROAZIONE

- Ipotesi:
 - i due schemi di controllo sono stabili internamente;
 - le funzioni di trasferimento ingresso-uscita soddisfano:

$$rac{C_{ret}PH}{1+C_{ret}PH}pprox 1$$
 $C_{dir}Ppprox 1$

CONTROLLO IN CATENA APERTA VS. CONTROLLO IN RETROAZIONE

• Effetto di un disturbo d (non misurabile) sull'uscita $(y_d e y_n \text{ sono rispettivamente la risposta al disturbo } d e all'uscita desiderata <math>y^0$):

controllo in catena diretta:
$$\frac{Y_d}{Y_n} = \frac{1}{C_{dir}P} \frac{D}{Y^0} \approx \frac{D}{Y^0}$$

controllo in retroazione:
$$\frac{Y_d}{Y_n} = \frac{1}{C_{ret}PH} \frac{D}{Y^0} << \frac{D}{Y^0}$$

• Effetto di una variazione parametrica ΔP dell'impianto P (Δy è la variazione dell'uscita dovuta a ΔP):

controllo in catena diretta:
$$\frac{\Delta Y}{Y_n} = \frac{\Delta P}{P}$$

controllo in retroazione:
$$\frac{\Delta Y}{Y_n} = \frac{1}{1 + C_{ret}PH} \frac{\Delta P}{P} << \frac{\Delta P}{P}$$

SCHEMA DI CONTROLLO IN RETROAZIONE COMPLETO

determinare la funzione di trasferimento C(s) del controllore in modo che l'andamento di y(t) sia ragionevolmente vicino a $y^o(t)$ per ogni configurazione ammissibile dei disturbi.

• Problema della regolazione:

Caso precedente con l'ipotesi aggiuntiva che $y^o(t) \equiv$ costante.

SPECIFICHE DI CONTROLLO

- Condizione fondamentale: sistema stabile internamente
- Classi di specifiche:
 - Specifiche di precisione:
 - * rapporto desiderato a regime fra il segnale di riferimento e l'uscita;
 - * errori a regime dovuti alla presenza di disturbi.
 - Specifiche di stabilità:
 - * limite alla massima sovraelongazione della risposta al gradino (picco di risonanza, margine di fase, coefficiente di smorzamento dei poli dominanti)
 - Specifiche di velocità di risposta:
 - * limite al tempo di salita della risposta al gradino (tempo di assestamento, banda passante)

SINTESI PER TENTATIVI: SPECIFICHE

• Generazione riferimento: $R(s) = H(s)Y^{0}(s) \Longrightarrow$ Riduzione schema a retroazione unitaria con

$$L(s) = C(s)P(s)H(s)$$

- ullet Le altre specifiche sono soddisfatte dal compensatore C(s)
 - Specifiche tipiche:
 - 1. Tipo del sistema di controllo: definisce l'ingresso canonico per il quale si ha errore a regime limitato e non nullo.
 - 2. Entità di tale errore di regime permanente.
 - 3. Sovroelongazione massima y_p^0 .
 - 4. Tempo di salita desiderato $t_s^{\rm 0}$
 - Struttura del compensatore:

$$C(s) = \frac{K_c}{s^h}C'(s)$$
 $C'(0) = 1$

SINTESI PER TENTATIVI: DETERMINAZIONE DI K_c e h

Determinazione del tipo:

- Ordine massimo k^r dell'ingresso canonico per il quale si vuole un errore di inseguimento a regime
 limitato
- Ordine massimo k_i^d del disturbo canonico in ingresso all'impianto per il quale si vuole un errore a regime limitato
- Ordine massimo k_u^d del disturbo canonico in uscita dall'impianto per il quale si vuole un errore a regime limitato
- $-N_p$: numero dei poli in zero dell'impianto
- Determinazione del guadagno di Bode:
 - $-k_r$, k_i^d , k_u^d e N_p
 - Guadagno di Bode K_p dell'impianto e K_h del trasduttore

SPECIFICHE EQUIVALENTI SUL GUADAGNO D'ANELLO

• Specifiche nel dominio del tempo ad anello chiuso:

1.
$$y_p \leq y_p^0$$

2.
$$t_s = t_s^o$$

ullet Specifiche "equivalenti" nel dominio della frequenza ad anello chiuso (W(s)):

1.
$$M_r \le M_r^0 \approx y_p^0/[0.85, 1]$$

2.
$$B_3 = B_3^o \approx 3/t_s^o$$

ullet Specifiche "equivalenti" nel dominio della frequenza ad anello aperto (C(s)P(s)H(s)):

1.
$$m_{\phi} \geq m_{\phi}^{0}$$
 (diagramma di Bode)

2.
$$\omega_a = \omega_a^o \approx [0.5, 0.8] B_3^o$$

SINTESI PER TENTATIVI: DETERMINAZIONE DI C'(s)

• Forma guadagno d'anello:

$$L(s) = C'(s)L'(s)$$

dove

$$L'(s) = \frac{K_c}{s^h} P(s) H(s)$$

- Problema:
 - dati il margine di fase desiderato m_ϕ^o e la pulsazione di attraversamento desiderata ω_a^o determinare C'(s) in modo che:

$$|L(j\omega_a^o)|_{\mathsf{dB}} = 0$$
 $\arg[L(j\omega_a^o)] + \pi = m_\phi^o$

ovvero

$$|C'(j\omega_a^o)|_{\mathsf{dB}} = -|L'(j\omega_a^o)|_{\mathsf{dB}}$$

 $\arg[C'(j\omega_a^o)] = m_\phi^o - \arg[L'(j\omega_a^o)] - \pi$

PRINCIPALI RETI CORRETTRICI: RITARDATRICE

$$C'(s) = \frac{1 + s\tau/m}{1 + s\tau}, \qquad m > 1$$

• Realizzazione circuitale:

• Valore dei parametri:

$$\tau = (R_1 + R_2)C,$$

$$m = \frac{R_1 + R_2}{R_2}$$

PRINCIPALI RETI CORRETTRICI: ANTICIPATRICE

$$C'(s) = \frac{1 + s\tau}{1 + s\tau/m}, \qquad m > 1$$

• Realizzazione circuitale:

• Valore dei parametri:

$$\tau = R_1 C, \qquad m = \frac{R_1 + R_2}{R_2}$$

• Caso I

$$|L'(j\omega_a^o)|_{\mbox{dB}} \leq 0$$
 $\arg[L'(j\omega_a^o)] + \pi \leq m_\phi^o$

• Caso II

$$|L'(j\omega_a^o)|_{\mbox{dB}} \geq 0$$
 $\arg[L'(j\omega_a^o)] + \pi \leq m_\phi^o$

• Caso III

$$|L'(j\omega_a^o)|_{\mbox{dB}} \geq 0$$
 $\arg[L'(j\omega_a^o)] + \pi \geq m_\phi^o$

• Caso IV

$$|L'(j\omega_a^o)|_{\mbox{dB}} \leq 0$$
 $\arg[L'(j\omega_a^o)] + \pi \geq m_\phi^o$

VERIFICA ULTERIORI SPECIFICHE

• Specifica sul massimo valore ammissibile per la funzione di trasferimento fra il riferimento e l'ingresso dell'impianto (saturazione attuatori)

$$|F(j\omega)|_{dB} = \frac{|C(j\omega)|_{dB}}{|1 + C(j\omega)P(j\omega)H(j\omega)|_{dB}} \le M_u$$

Comportamento alle alte frequenze (disturbi)

$$\lim_{\omega \to \infty} |C(j\omega)|_{\mathsf{dB}} \leq M_u$$

Specifica sull'errore in uscita prodotto da disturbi sinusoidali.
 Disturbo sull'uscita:

$$d(t) = \sin \omega_d t$$

Specifica:

$$\frac{1}{|1 + C(j\omega_d)P(j\omega_d)H(j\omega_d)|} \leq e_d$$