Seven Dollars and Ninety-Five Cents

TRS-80 BRAPHICS

By J. D. Robertson and John P. Grillo

INTRODUCTION TO GRAPHICS

The second secon				
				,

Microcomputer Power

INTRODUCTION TO GRAPHICS

John P. Grillo/J. D. Robertson

Bentley College Waltham, Massachusetts

WChPersonal Computer Series

Wm. C. Brown Company Publishers Dubuque, Iowa 52001

Copyright © 1981 by Wm. C. Brown Company Publishers

Library of Congress Catalog Card Number: 81-65444

ISBN 0-697-09953-9

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Printed in the United States of America

Contents		Introduction	vii
	1	The Program Is the Picture Problem 1.1: Virgo Zodiac Sign 1 Problem 1.2: State of Massachusetts 3 Problem 1.3: Bentley College Logo 4 Program 1.4: Woodstock 5	1
	2	TABbed Pictures Problem 2.1: TAB Function for Table Output 7 Problem 2.2: Sine Curve, y=sin x 12 Problem 2.3: Three Functions, a=sin x, b=sin 2x, and c=a+b 13 Problem 2.4: Damped Cosine Curve 15	7
	3	Bar Graph Pictures Problem 3.1: Crime Bar Graph—Horizontal 19 Problem 3.2: Crime Bar Graph—Vertical 21 Problem 3.3: Generalized Bar Graph 23	19
	4	Computer Pictures Problem 4.1: Sine Curve—Horizontal X-Axis 27 Problem 4.2: Thermal Gradient 29 Problem 4.3: Ionic Field Strength 35 Problem 4.4: Chemical Soup 37 Problem 4.5: Character Density Chart 42	27
	5	Table-Driven Pictures Problem 5.1: Expanded Digit —Position and Length Coded 47 Problem 5.2: Expanded Digit —Binary Coded 49 Problem 5.3: Silhouette of a Witch 52 Problem 5.4: Expanded Digit —Straight Line Coded 55 Problem 5.5: Bentley College Logo with Optional Initials 58 Problem 5.6: Bentley College Logo on Line Printer 62	47

6	Character Graphics	65
	PRINT @ 65	
	Problem 6.1: PRINT @ for Table Output 66	
	STRING\$ 70	
	The Character Set 70	
	Tabulation Codes 71	
	Graphics Codes 71	
	Graphic to Binary Conversion 71	
	Problem 6.2: Graphic Character Display 72	
	Problem 6.3: Dynamic Graphic Character Display 73	
	Problem 6.4: Message in a Box 76	
	Problem 6.5: Moving Message Banner 78	
	Problem 6.6: Screen Full of Oversize Digits 81	
	Problem 6.7: Large-Digit Digital Clock 84	
_	D. 10 11	0.77
7	Pixel Graphics	87
	SET 88	
	RESET 88	
	POINT 88	
	Problem 7.1: Draw a Line 89	
	Problem 7.2: Draw a Circle 92	
	Problem 7.3: State of Massachusetts Outline 94	
	Problem 7.4: Smile Face 98	
	Problem 7.5 : Stand Up Comedian 101	
8	Motion Graphics	109
	Bouncing Dots 110	
	Problem 8.1 : Bounce a Dot Off a Wall 112	
	Problem 8.2: Bouncing Dot Display 115	
	Problem 8.3: Movie Marquee 121	
	Problem 8.4: Bouncing Bentley Stick Figure 125	
	Annualis A	131
	Appendix A	131

Introduction

The purpose of this book is to explore the computer's special abilities to produce graphic displays. The book is geared toward one microcomputer, the Radio Shack TRS-80, and one computer language, BASIC. However, due to the generalized nature of the discussion, we feel that the techniques employed in the many sample programs can be adapted to other hardware and other languages.

Three general methods for producing computer graphics are examined in depth. The most traditional method of creating pictures with a computer, *line printer graphics*, is treated first. With line printer graphics, the picture is considered to be a set of horizontal lines whose components are the letters, digits, and special symbols that make up BASIC's character set. This method of producing outlines, silhouettes, graphs, and other visually appealing pictures takes up the largest part of the book, as it should. Line printer graphics can be produced using any language and with any computer, with or without printer.

Character graphics is the second method for creating graphics and relies on the TRS-80's 64-character set of graphic symbols. Many microcomputer makers besides Radio Shack have adopted special graphic characters, and for good reason. These characters allow the video screen to display a wide variety of special effects, such as game boards and pieces, lunar landers and space ships, faces and entire bodies, even schematics and blueprints. The popularity of this technique has increased significantly since the appearance of the many microcomputer chess games on the market in the late 1970's.

The third technique for producing graphics is *pixel graphics*. The pixel is to visual information what the binary digit or bit is to stored information. The bit is the smallest amount of storable information, a 1 or a 0, whereas the pixel is the smallest amount of pictorial information, an addressable area of the screen that can be turned on or off, bright or dark. The microcomputer programmer who can deal with pixel graphics on the TRS-80 can produce computer displays at moderate resolution. While the normal display density of a TRS-80 screen is 64 characters across and 16 lines down, the display density increases by a factor of 6, to 128 pixels across and 48 down.

As you proceed through the discussion of the three graphics methods, you will discover a diversity of techniques exemplified by many complete programs, both short and long. We hope you will try them out and modify them as you see fit. We have purposely left some programs in skeletal form so that you can adapt them more easily to your particular taste.

The Program Is the Picture

The simplest form of line printer graphics is when the program is the picture. Each program statement is a PRINT statement which outputs a line of the picture. An overwhelming advantage of this technique is that the programmer can detect and correct errors in the picture easily by inspecting a listing of the program.

Problem 1.1

Draw a picture of the Virgo zodiac sign.

```
10 'filename:"s1p1"
              draw a picture of the Virso zodiac sism
20 ' purpose:
      author: jdr 8/80
30 '
40 '
                                           0000"
                                 0000
              0000
                       0000
50 PRINT "
                               000000
                                         000000"
60 PRINT "
            000000
                     000000
00"
                                               00"
                       00000000
                                 00000000
80 PRINT "
              00000000
                                             0000"
                                 0000
90 PRINT "
              0000
                       0000
                                            0000"
               0000
                         0000
                                  0000
100 PRINT "
                                  0000
                                          0000"
110 PRINT "
              0000
                        0000
120 PRINT "
               0000
                         0000
                                  0000 0000"
                                  00000000"
130 PRINT "
               0000
                         0000
                                  000000"
               0000
                         0000
140 PRINT "
                                  0000"
150 PRINT "
               0000
                         0000
160 PRINT "
               0000
                         0000
                                000000"
170 END
```

0000 000000	0000 000000	0000 000000	0000 000000
0000000000000			
00000000	0000000		
0000	0000	0000	0000
0000	0000	0000	0000
0000	0000	0000	0000
0000	0000	0000	0000
0000	0000	000000	00
0000	0000	000000	
0000	0000	0000	
0000	0000	000000	

2

Problem 1.2

Draw a picture of the state of Massachusetts.

```
10 'filename:"s1r2"
20 ' purpose: Massachusetts
30 ' suthor: Jdr 8/80
40 '
                       ****
50 PRINT "
      ************************
60 PRINT "
      70 PRINT "
      80 PRINT "
      90 PRINT "
      *****************
                              " * * *
100 PRINT "
                               水水水水11
****
                            *********
130 PRINT "
                         水水水
                             ЖÐ
140 FRINT "
150 END
```


Chapter 1 The Program Is the Picture

Problem 1.3

Draw the logo for Bentley College.

```
Solution
```

```
10 'filename:"s1p3"
20 ' purpose: produce loso of Bentley Collese
30 '
     author: jdr 8/80
40 '
60 PRINT "::
70 PRINT "::
                                   :::::::
                                                 + + B
80 PRINT "::
                                 + + n
90 PRINT "::
                               ::::
                                                 * * H
                                          ::::
100 PRINT "::
                                                  * * *
                  ::::::::
                                * * * *
110 PRINT "::
                * * * * *
                                                  0 + m
120 PRINT "::
                         ::::
                                * * * *
130 PRINT "::
              ::::
                         * * * *
                                ::::
                                           ::::
140 PRINT "::
              ::::
                         ::::
                                ::::
                                          * * * *
                                                  0 0 0
150 PRINT "!!
              1111
                         * * * *
                                ::::
                                          0 0 0 0
                                                  0 + M
160 PRINT "::
              ::::
                         ::::
                                * * * *
                                          * * * *
                                                  0 0 B
170 PRINT "::
              ::::
                         ::::
                                * * * *
                                                  0 0 B
                                          * * * *
180 PRINT "::
                                0 0 B
190 PRINT "::
210 IF INKEY$="" THEN 210
220 END
```


Chapter 1 The Program Is the Picture

Solution

```
10 'filename:"slr4"
20 ' rurrose: draw Woodstock
30 '
     author: jdr 8/80
40 '
50 LPRINT "
60 LPRINT "
70 LPRINT "
80 LPRINT "
90 LPRINT "
                     --(
100 LPRINT " .====== *
110 LPRINT "(
120 LPRINT ",
130 LPRINT " -----
140 LPRINT "
150 LPRINT "
160 LPRINT "
170 LPRINT "
180 LPRINT "
190 LPRINT "
200 LPRINT "
210 LPRINT "
220 LPRINT "
230 LPRINT "
240 LPRINT "
                      ---,-==========
                            ======="
250 LPRINT "
                         Ι
                   (((((((-"
260 LPRINT "
270 LPRINT "
                       7( n
280 END
                     ====
               ----------
                 _____
       (((((((-
```

5

,(

- Producing pictures in this way is simple, if you trace either an existing sketch or an original drawing onto a coding form.
- If you use a variety of characters to produce the output, you can more closely approximate the subtle shadings, pleats, highlights, and other details in the picture.

Don't let the simplicity of this graphics technique dissuade you from using it. The very fact that it is so simple makes it immensely popular. Using someone else's artistic ability or your own as a pattern, persistence in the face of tedium coupled with this technique can provide some pleasant computer graphics.

TABbed Pictures

All versions of BASIC have a TAB function that allows positioning of the carriage or print head or cursor anywhere across the output line. Also, the execution of a PRINT statement that doesn't end with a comma or semicolon results in a carriage return-linefeed. With these controls in two dimensions, a wide variety of pictures can be produced. As in the previous chapter, we will illustrate the techniques using both output on a line printer and pictures of actual screen output.

Problem 2.1

List a table of strings in a variety of ways using the TAB function for positioning the string on the output line.

```
140 FOR I=1 TO 15
       PRINT TAB(I);P$(I)
160 NEXT I : GOSUB 1000 'pause & clear
180 FOR I=1 TO 15
190
       PRINT TAB(2*I);P$(I)
200 NEXT I: GOSUB 1000 'pause & clear
220 FOR I=1 TO 15
230
       PRINT TAB(3*ABS(8-I));F$(I)
240 NEXT I : GOSUB 1000 'pause & clear
260 FOR I=1 TO 15
270
       PRINT TAB(RND(40));P$(I)
280 NEXT I : GOSUB 1000 'pause & clear
300 FOR I=1 TO 15
310
       PRINT TAB(40-LEN(P$(I)));P$(I)
320 NEXT I : GOSUB 1000 'pause & clear
340 STOP
350 DATA "parrot", "pheasant", "ptarmigan", "pelican", "penguin"
360 DATA "pochard", "pipit", "purple martin", "pardalote", "pewee"
370 DATA "pintail", "puffin", "phoenix", "phoebe", "plover"
1000 'pause and clear screen subroutine
1010 FOR J=1 TO 200 : NEXT J : CLS : RETURN
9999 END
```


Chapter 2 TABbed Pictures

Chapter 2 TABbed Pictures

can be transformed into a graphic presentation of information.

Suggestions

• Modify the argument of the TAB function to produce other interesting visual patterns.

expression than a constant, some otherwise prosaic output

```
Problem 2.2
```

Produce a visual representation of the sine curve, y=sin x.

```
10 'filename:"s2r2"
Solution
              20 ' purpose: graph the sine function
              30 7
                    author: jps 1/80
              40 '
              50 /
                          let the X axis vary from 0 to 2 pi radians.
              60 FOR X=0 TO 6.28 STEP .25
              70
                             calculate displacement from 0 on Y axis,
              80
                                                   then expand by 30.
              90
                     Y=SIN(X)*30
                     LPRINT TAB(Y+30); "*"
              100
               110 NEXT X
               9999 END
```


Chapter 2 TABbed Pictures

- The Y-axis is across the print line and the X-axis is down the page. Thus, the tabbed position of Y, as represented by the asterisk ("*"), varies according to the sine of the line count X.
- The increment between calculated points is .25 radians. To squeeze the sine wave (increase its frequency), increase the increment. To expand the sine wave (decrease its frequency), reduce the increment.
- The sine wave is shown between 0 and 6.28 radians, or 0 to 360 degrees. To see more waves, increment from 0 to 10 (or more) radians. To see the sine function before 0 degrees, increment from -6.28 to 6.28 radians. Note that 6.28 is approximately two times pi, or almost a full circle of 360 degrees.

Suggestions

• Make the following changes in the statements indicated.

```
60 FOR X=0 TO 6.28 STEP .5
60 FOR X=0 TO 6.28 STEP .1
60 FOR X=-6.28 TO 6.28 STEP .35
60 FOR X=-20 TO 20 STEP .7
90 Y=ABS(30*SIN(X))+32
```

Problem 2.3

Produce a visual representation of three functions simultaneously; a=sin x, b=sin 2x, and c=a+b

```
10 'filename:"s2r3"
20 ' purpose: graph of multiple functions
30 7
      author: jps 1/80
40 '
50 ' vary X from .1 to 6.28 radians
60 FOR X=.1 TO 6.28 STEP .1
70
            set orisinal values of desired functions
      S=SIN(X): S2=SIN(3*X): SS=S+S2
08
90
            adjust values of functions for printer
100
      A=20*S+32: B=20*S2+32: C=20*SS+32
110
      IF A<=B AND A<=C THEN LPRINT TAB(A)".";:
          IF B<=C THEN LPRINT TAB(B)"+" TAB(C)"*"
                  ELSE LPRINT TAB(C)"*" TAB(B)"+"
      IF B<=A AND B<=C THEN LPRINT TAB(B)"+";:</pre>
120
           IF A<=C THEN LPRINT TAB(A)"." TAB(C)"*"
                   ELSE LPRINT TAB(C)"*" TAB(A)"."
      if C<=A AND C<=B THEN LPRINT TAB(C)"*";;</pre>
130
           IF A<=B THEN LPRINT TAB(A)"." TAB(B)"+"
                  ELSE LPRINT TAB(B)"+" TAB(A)"."
140 NEXT X
9999 END
```


Chapter 2 TABbed Pictures

- Once you find out which one of the points is lowest in value, print it. Then print the lesser of the remaining two. Then print the one that's left.
- If you graph this kind of multiple function, it is usually necessary to use different characters to plot the different functions.

Suggestions

- Add the first five harmonics of x:
 y=sin x + sin 2x + sin 3x + sin 4x + sin 5x
 Then, graph y versus x. The result will be a sawtooth wave form.
- Add the first five odd harmonics of x:
 y=sin x + sin 3x + sin 5x + sin 7x + sin 9x
 Then graph y versus x. The result will be a square wave form.
- Graph sin x and cos x together.

Problem 2.4

Graph a damped cosine curve. More specifically (and complicated sounding), graph two full cycles of a rectified sinusoidal curve that decays exponentially.

```
10 'filename:"s2p4"
20 ' purpose: absolute cosine function decaying exponentially
30 ′
      author: jps 1/80
40 '
50 INPUT "Enter the decay factor (.01 to .3)";DF
60 INPUT "Enter the step size in degrees (5 to 30)";S
80 LPRINT ,"Decay factor: ";DF, "Ster size:";S
90 LPRINT: LPRINT
100 'print vertical srid header
110 LPRINT TAB(10)".0" TAB(20)".2" TAB(30) ".4" TAB(40)".6"
          TAB(50)".8" TAB(60)"1.0"
120 ' print vertical grid itself
130 LPRINT TAB(10);
140 FOR I=10 TO 60
      IF I/10=INT(I/10) THEN LPRINT "+"; ELSE LPRINT "-";
150
160 NEXT I: LPRINT
170 ' step from 0 to 720 degrees by steps of S degrees
180 FOR D=0 TO 720 STEP S
200
      R=D*.017 ' convert degrees to radians
      Y=49*ABS(EXP(-DF*R)*COS(R))
210
      IF D/90=INT(D/90) THEN LPRINT USING "### des.";D;
220
      LPRINT TAB(10)"." TAB(Y+11)"*"
230
240 NEXT D
9999 END
```


- The absolute value function ABS in line 210 does the rectifying by converting all negative values of the cosine function into their positive counterparts.
- The exponential function EXP in line 210 produces the damping effect on the curve.

Suggestions

- Remove the ABS function and shift the graph to the center of the screen: The output is the trace of a moving pendulum as it loses its momentum.
- Modify the program to show two traces at different frequencies.
- Change the EXP function's argument from negative to positive. The effect will be to display an increasing amplitude. This is what happens when an object begins to vibrate at its resonant frequency.

The TAB function can be very useful in the plotting of curves. The examples shown above should provide sufficient patterns for you to explore its use in graphing more exotic or more useful functions.

Bar Graph Pictures

The pictorial representations that are variously called bar graphs or histograms are easy to understand but can be difficult to get the computer to produce them. If the bars are arranged horizontally, the bar graph's generation is relatively simple to program but the descriptive text is arranged contrary to custom.

Problem 3.1

Depict the rate of reported crimes in five large metropolitan areas in 1976 using a bar graph.

Metropolitan area	Population, thousands	Crime index, thousands of reported crimes
New York	9,635	658
Chicago	6,982	214
Los Angeles—Long Beach	6,945	247
Philadelphia	4,797	77
Detroit	4,444	154

```
10 'filename:"$3p1"
Solution
         20 ' purpose: horizontal bar chart
         30 ′
               author: jps 1/80
         40 '
         50 DIM C$(5), P(5), C(5)
         60 FOR I=1 TO 5: READ C$(I), P(I), C(I): NEXT I
         70 DATA "NEW YORK", 9635, 658, CHICAGO, 6982, 214
         80 DATA "L.A.-LONG BEACH", 6945, 247
         90 DATA PHILADELPHIA, 4797, 77, DETROIT, 4444, 154
         95 CLS
         100 PRINT TAB(15)"REPORTED CRIMES PER THOUSAND POPULATION"
          110 PRINT
         115 FOR I=15 TO 60 STEP 10: PRINT TAB(I); (I-15)*2; NEXT I: PRINT
          120 FOR I=1 TO 5: L=500*C(I)/P(I)
          130 PRINT
          140 PRINT C$(I);: GOSUB 500
          160 NEXT I
          170 GOTO 170
          500 FOR J=1 TO L: PRINT TAB(15+J)"*"; NEXT J: PRINT: RETURN
          9999 END
```


Chapter 3 Bar Graph Pictures

- The program graphs the number of reported crimes per ten thousand population.
- Each one of the rightmost 50 columns of the screen represent one reported crime per 500 population.
- This program could be improved by generalizing it to allow flexibility in defining the tabular data.

Suggestions

 Provide a dialog before the DIM statement that allows a variable number of cities to be analyzed. This would require the input of the data interactively, rather than through DATA statements.

Problem 3.2

Rotate the bar graph produced in problem 3.1 so that the bars are vertical.

```
10 'filename:"s3p2"
20 ' purpose: vertical bar chart
30 ′
      author: jps 1/80
40 '
50 DIM C$(5), P(5), C(5)
55 DIM L(5)
60 FOR I=1 TO 5: READ C$(I), P(I), C(I): L(I)=500*C(I)/P(I): NEXT I
70 DATA "NEW YORK", 9635, 658, CHICAGO, 6982, 214
80 DATA "L.A.-LONG BEACH", 6945, 247
90 DATA PHILADELPHIA, 4797, 77, DETROIT, 4444, 154
95 CLS
100 PRINT TAB(15) REPORTED CRIMES PER THOUSAND POPULATION"
130 FOR Y=0 TO 15
132 M=(15-Y)*5
135 IF M/20=INT(M/20) THEN PRINT @ Y*32+160, M;
138 FOR I=1 TO 5
140 IF L(I)>(Y+1)*4 THEN PRINT @ 64*(10-Y)+I*13-8, "******";
150 NEXT I
160 NEXT Y
162 FOR I=0 TO 4: PRINT @ 708+I*13, C$(I+1); NEXT I
170 GOTO 170
9999 END
```


- Note the clumsy subtitling when the city names are very long.
 - Also note the lack of resolution in the heights of the bars. One might assume from looking at this bar graph that Philadelphia's crime rate is two thirds that of Chicago's when in fact it is about half. The flaw lies in the restriction on the height of the bars to just 15 units in order for the bar graph to fit on the screen. This low resolution was not apparent in the previous program because each bar could be as long as 45 characters, yielding a threefold increase in detail.

Suggestions

- Rewrite the program to accept the data interactively.
 Suggest to the user that city names be abbreviations, such as "CHI", "LA-LB", or "DET", each limited to five characters.
 With such a restriction, you should be able to graph about twice as many cities, and the titles won't run into each other.
- Alter the program to provide more resolution, say bar heights to 30 or 40. Notice that this restricts the program's output to the printer.

```
Solution
                  10 'filename: "s3p3"
                  20 ' purpose: seneralized histogram
                  30 /
                        author: jps 1/80
                  40 '
                  60 INPUT "HOW MANY DATA POINTS" #N: DIM D(N)
                  70 INPUT "WHAT IS LOW VALUE"; L: MIN=L
                  80 INPUT "WHAT IS HIGH VALUE"; H: MAX=H
                  90 LPRINT "Num=";N,"Low=";L,"Hish=";H
                  100 ′
                         Generate N random data points between MAX and MIN
                  110 FOR I=1 TO N
                  120 D(I)=RND(MAX-MIN+1)+MIN-1
                  130 LPRINT D(I);
                  140 IF I=INT(I/10)*10 THEN LPRINT
                  150 NEXT I
                  160 LPRINT
                  170 ′
                          Get height interval size.
                  180 H=INT(MAX-MIN+1)/10
                  190 DIM B(10)
                  200 FOR I=1 TO N
                  210 ' P is proper bar pointer
                  220 P=(D(I)-MIN+1)/H + .5
                  230 B(P)=B(P)+1
                  240 NEXT I
                  250 LPRINT
                  260 FOR I=1 TO 10: LPRINT B(I); NEXT I
                  270 LPRINT : LPRINT : LPRINT
                  280 HT=B(1)
                  290 FOR J≈1 TO 10
                  300 IF HT<B(J) THEN HT=B(J)
                  310 NEXT J
                  320 ' II is vertical interval size (integer)
                  330 II=INT(HT/10+1)
                  340 FOR I=10 TO 1 STEP -1
                  350 LPRINT II*I; TAB(5); " ";
                  360 FOR J=1 TO 10
                  370
                        IF B(J)>=I*II THEN LPRINT " *** ";
                                   ELSE LPRINT "----";
                  380 NEXT J: LPRINT
                  390 NEXT I
                  400 LPRINT "Size>";
                  410 T=7
                  420 FOR I=MIN TO MAX STEP H
                  430 K=INT(I+H/2)
                  440 LPRINT TAB(T); K;: T=T+5
                  450 NEXT I
```

9999 END

```
High= 99
Num= 200
                 Low= 0
     49
          25
              48
                 70
                      22
                           37
                               52
                                   4
                                       39
 31
 61
     74
          77
              20 62
                      43
                          18
                               3
                                  83
                                      26
 15
         53
             71
                 67
                      31
                          76
                               23
                                   3 19
     1
                           72
                                    94 80
 89
     15
          84
              80
                  98
                       38
                               71
                                    25
 85
     25
          31
              48
                  14
                       48
                           93
                               53
                                        8
 28
     85
          31
              81
                  58
                       49
                           42
                               88
                                    67
                                        86
                       92
 87
     94
          61
              64
                  12
                           1
                               44
                                   56
                                       53
 20
     23
          97
              62
                  4
                      53
                          75
                               17
                                   55
                                       31
          25
                               21
 93
     10
              65
                 89
                      86
                           30
                                    84 64
                      10
                          88
                               19
 35
     36
          6
             52
                 12
                                   80 75
              39
                  12
 44
     51
          13
                      86
                           28
                               99
                                    82
                                        10
 44
     34
          95
              45
                  21
                       76
                           11
                               98
                                    67
                                        47
 65
     94
          26
              81
                  82
                      77
                           40
                               11
                                    84
                                        95
     42
          56
              50
                  69
                      89
                           1
                               30
                                   49
                                       95
 81
 58
     13
          59
              23
                  2
                      47
                          65
                               26
                                   20
                                       4
                      30
                               54
                                   41 28
                  88
                           37
 66
     86
          56
              11
 70
     55
          53
              54
                  16
                      34
                           85
                                32
                                   37
     50
          23
              9
                 96
                      58
                          86
                               50
 14
                                    93
 36
     87
          24
              97
                  30
                      51
                           68
                                94
                                         66
 12
     20
          20
              34
                   41
                       20
                           45
                                87
                                    58
                                         26
 18
     22
          24
             18 25 16
                          17
                                16
                                    24
                                        13
 30
```

```
27
     ----- *** ----- ***
24
              *** ----- *** -----
     21
                        *** ----- ***
18
      *** ***
               ***
                   水岩水
               ***
                   ***
                        ***
                            常常常
                                 *** ***
                                         水水水
      ***
          本本本
15
                        水水水
                            米米米
                                 常常常
                                     水水水
                                         ***
                                              本本本
12
      ***
          水水水
               岩岩岩
                   ***
               ***
                   水水水
                        水常床
                            水水水
                                 水水水
                                     ***
                                         ***
                                              ***
 9
      ***
          水水水
                        水水水
                            本本本
                                 米水米
                                     ***
                                         本本本
                                              ***
      ***
          本本本
               米米米
                   水水水
 6
                                              京京本
                                         水水水
               本本本
                        水水水
                            本本本
                                 水水水
                                     ***
 3
      水水水
          水水水
                   ***
                                               95
       5
           15
               25
                    35
                         45
                             55
                                 65
                                      75
                                          85
Size>
```

- This is a generalized bar graph generator which can apply to most kinds of data. It provides for 10 bars oriented vertically.
- Note that the program's calculations are almost entirely for purposes of scaling the vertical and horizontal dimensions of the graph.
- The data values that are graphed are produced by the program itself in lines 110-150. Of course this section of the program should be rewritten to allow the user to either enter the data conversationally or provide DATA statements which the program would READ.

Suggestions

- Rewrite the program to have the user provide the data.
- Modify the program to give the user the choice of symbol used for printing the bars.
- Rewrite the program to give the user the choice of screen or printer output.

Computed Pictures

This chapter illustrates a technique that uses a two-dimensional table to hold numeric values that have been computed according to the solution of some problem. This table is then outputted with conversion of the numeric table elements to a symbol that provides a meaningful "picture" of the computation.

Problem 4.1

Rotate the graph of the sine curve of problem 2.2 so that the X-axis is horizontal and progresses across the screen.

```
10 'filename:"s4r1"
20 ' purpose: sine wave across screen
30 '
      author: jps 1/80
40 ′
45 CLEAR 200: DEFINT P: DIM P(64,16): CLS
70 FOR A=0 TO 8 STEP .25
80
     X=A*7: Y=SIN(A-1)*7+8: P(X*Y)=1
100 NEXT A
140 FOR Y=14 TO 0 STEP -1: X$=""
150
      FOR X=1 TO 62
        IF P(X,Y)=1 THEN X$=X$+"*" ELSE X$=X$+" "
160
190
      NEXT X: PRINT X$
200 NEXT Y
210 GOTO 210
9999 END
```


- A lot of memory is used to store the table. Each position of the table is an integer value that indicates whether or not that position is on the sine curve.
- Each line of output is produced directly by building a string of mostly blanks and a few asterisks "(*)" from scanning a row of the table.
- The program uses the fact that BASIC sets all variables to 0 initially. This is not a good programming practice, because if the program was to be used as a subroutine and was called more than once, it would "remember" all elements of the table that had been set previously to 1. To make the program more generally useful, you should set each element of the table to zero before each use.

Suggestions

- Try modifying the program so that a composite graph of sines and cosines can be made. You'll have to devise a way to encode three potential symbols; point for sine, point for cosine, and no point at all. What if the sine and cosine intersect? Maybe a fourth symbol could be used to show this occurrence.
- Cause the X-axis and Y-axis to be printed along with the graphs.

Problem 4.2

Display the changing thermal gradient around a rectangular fireplace located at the center of a rectangular room. Imagine a room surrounded by exterior walls on three sides with a Franklin stove in its center. It's a cold, overcast winter day. What is the heat distribution in the room as the exterior of the Franklin stove begins to heat from 70° F to 400° F?

The problem resembles a problem on page 98 of Daniel D. McCracken's *A Guide to FORTRAN Programming*, (Wiley, 1965).

Solution

- Consider the room to be 40 feet long and 30 feet wide. The exterior walls are at a constant 0° F and the interior wall is a constant 70° F.
- Reserve a 30 x 40 integer table X in memory, with X(0,1) to X(0,39) held at a value of 70; X(30,0) to X(30,40), X(0,0) to X(0,30), and X(0,40) to X(30,40) held at a value of 0. These are the walls of the room. The 6-foot wide by 4-foot deep center area is the Franklin stove that starts at 70° F and ends at 400° F.
- Proceed to compute the temperatures between wall and stove, from X(1,1) to X(1,39), then X(2,1) to X(2,39),..., through X(29,1) to X(29,39), calculating each point on the basis of its neighbors according to the formula:

 X(I_I)=(X(I-1)_I)+X(I_I-1)+X(I_I+1_I)+X(I_I+1_I)/4

X(I,J)=(X(I-1),J)+X(I,J-1)+X(I+1,J)+X(I,J+1))/4This formula calculates the temperature of a point by averaging the temperatures of that point's four neighbors.

• Repeat the computations for as many iterations as the user wishes.

Chapter 4 Computed Pictures

• Convert all numeric values of table X to characters one 64-character line at a time using the chart of symbols below to indicate various temperatures.

Integer value	Symbo
0- 9 20- 29 40- 49	A B C
•	•
•	•
380-389 400-409	U V

All temperatures in unspecified intervals like 10-19, 30-39, etc., are symbolized with a blank.

- Paint the picture on the screen or line printer one line at a time.
- Repeat the above process increasing the temperature of the Franklin stove by 50 degrees, until it reaches 400 degrees.
- Continue the above for as many iterations as the user wishes or until the output is a picture of the room at equilibrium conditions.

```
10 'filename:"s4p2"
20 ' purpose: graph thermal gradient in a heated room
30 ′
      author: jps 1/80
40 '
50 CLEAR 300: DEFINT A-Z
60 'set up initial conditions
80 DEPTH=30: WIDTH=40
                                        'room measurements
                                       'stove position
90 LL=5/12*WIDTH:
                      LR=7/12*WIDTH
100 LT=5/12*DEPTH:
                      LB=7/12*DEPTH
110 INPUT "INNER, OUTER WALL TEMPERATURES"; IN, OU
115 INPUT "STARTING, LAST, STEP TEMPERATURES OF STOVE"; ST, FI, CY
118 INPUT "TOTAL ITERATIONS, NUMBER PER PRINTING CYCLE"; IT, Q
120 DIM X(DEPTH, WIDTH), S$(41)
125 LPRINT "INNER=";IN, "OUTER=";OU, "STOVE=";ST"TO"FI"BY"CY
127 LPRINT "ITERATIONS="$IT,"NUMBER/PRINTING CYCLE="$Q
130 FOR I=0 TO 40 STEP 2: READ S$(I): NEXT I
140 DATA A, B, C, D, E, F, G, H, I, J, K
145 DATA L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z
150 FOR I=1 TO 40 STEP 2: S$(I)=" ": NEXT I
```

```
160 'set initial room temperature to random between OU & ST
170 FOR I=1 TO DEPTH-1: FOR J=1 TO WIDTH-1
180
      X(I,J)=RND(ST-OU)/10
190 NEXT J,I
200 'set inner wall, bottom outer wall to starting temperatures
210 FOR I=0 TO WIDTH: X(O, I)=IN/10: X(DEPTH, I)=OU/10: NEXT I
220 'set left and right outer walls to starting temperatures
230 FOR I=0 TO DEPTH: X(I,0)=0U/10: X(I,WINTH)=0U/10: NEXT I
240 'set stove to starting temperature for this cycle
250 FOR S=ST/10 TO FI/10 STEP CY/10
     LPRINT: LPRINT: LPRINT "STOVE IS AT"S*10"DEGREES",TIME$
270
      FOR I=LT TO LB: FOR J=LL TO LR: X(I,J)=S: NEXT J,I
280
      CLS
290
      FOR N=1 TO IT: I=0: GOSUB 400
300
        FOR I=1 TO DEPTH-1
302
            'weave calculations back and forth
304
            'instead of always left to right
305
            IF I/2=INT(I/2) THEN S1=1: S2=WIDTH-1: S3=1
                            ELSE S1=WIDTH-1: S2=1: S3=-1
          FOR J=S1 TO S2 STEP S3
310
320
              'calculate all inner values. if stove, bypass
330
            IF I>=LT AND I<=LB AND J>=LL AND J<=LR THEN NEXT J
340
            X(I_{f}J)=(X(I-1_{f}J)+X(I+1_{f}J)+X(I_{f}J-1)+X(I_{f}J+1)+2)/4
350
          NEXT J: GOSUB 400
360
        NEXT I: GOSUB 400
370
      NEXT N
380 NEXT S
390 GOTO 390
400 'subroutine to graph a single line
410 A$="": FOR K=0 TO WIDTH
420 'the symbol # is reserved for the stove's position
430 IF K>=LL AND K<=LR AND I>=LT AND I<=LB
      THEN AS=AS+"#" ELSE AS=AS+SS(X(I,K))
440 NEXT K
450 PRINT A$,N;I
460 IF INT(N/Q)=N/Q THEN LPRINT A$,N,I
470 RETURN
500 CLEAR 100
9999 END
```

INNER= 70 OUTER= 0 STOVE= 70 TO 400 BY 50 ITERATIONS= 9 NUMBER/PRINTING CYCLE= 3

STOVE IS	AT 70	DEGREES	3		00/00/00	00:35:18	3	
A						A	3	0
A 0000000	ccccc	cccccccc	cccci	ccccc	CCCCCCC	A	3	1
A BEEBBBB	BBBBB	BBBBBBBB	BBBBB	BBBBBB	BBBBBBB	A	3	2
A					1	AA	3	3
AAAAAAAA	44444	AAAAAAA	44444	44444	AAAAAAA	λA	3	4
AAAAAAAA	44444	444444	AAAAA	AAAAA	AAAAAAA	\A	3	5
AAAAAAAA	44444	4444444	AAAAA	<mark></mark> ስልልልል	AAAAAAA	\A	3	6
AAAAAAAA	44444	4444444	44444	<u> </u>	AAAAAAA	\A	3	7
AAAAAAAA	44444	4444444	44444	AAAAAA	AAAAAAA	AA	3	8
AAAAAAAA	44444	4444444	AAAAA	<mark></mark> ስብብብ	AAAAAAA	AA	3	9
AAAAAAAA	44444	ıΑ	A	<u> </u>	AAAAAAA	ìΑ	3	10
AAAAAAAA	44444	B CCCCC	CC B	44444		λA	3	11
AAAAAAAA	ትልልልል	* * * * * * * * * * * * * * * * * * * *	144	<mark>ስ</mark> ስስስስ	AAAAAAA	λA	3	12
AAAAAAAA	AAAA	BC#####	F##C	AAAAAA	AAAAAAA	AA	3	13
AAAAAAAA	AAAA	BC#####	###CB	AAAAA	AAAAAAA	A4	3	14
AAAAAAAA	4444	BC#####	###CB	AAAAA	AAAAAAA	AA	3	15
AAAAAAAA	AAAA	BC#####	###CB		AAAAAAA	•••	3	16
AAAAAAAA	AAAA	HC#####	###CB	AAAAA	AAAAAAA	¥A	3	17
AAAAAAAA	4444	B CCCCCC	CCC	88888	AAAAAAA	AA	3	18
AAAAAAAA	AAAA	BBBBBBB	BBB	AAAAAA	AAAAAAA	AA	3	19
AAAAAAAA	<u> </u>	A	1	AAAAAA	1444444	AA	3	20
AAAAAAAA	44444	ነልልልልልልል	44444	AAAAAA	AAAAAAA	AA	3	21
AAAAAAAA	44444	4444444	44444	AAAAAA	AAAAAAA	AA	3	22
AAAAAAAA	44444	ነልልልልልልል	AAAAA	AAAAAA	AAAAAAA	AA	3	23
4444444	ት <mark>ስ</mark> ስስስ	ነልልልልልልል	44444	<mark></mark>	******	AA	3	24
AAAAAAAA	<mark>ት</mark> ስልልልፉ	4444444	44444	<mark></mark>	AAAAAAA	AA	3	25
AAAAAAAA	ት <mark>ስ</mark> ስስስ	ነልልልልልልልል	44444	<mark></mark>	AAAAAAA	AA	3	26
AAAAAAAA	44444	1444444	4444	44444	AAAAAAA	AA	3	27
AAAAAAAA	<u>ነ</u> ስለሰለ ሰ	4444444	4444	<mark></mark>	AAAAAAA	AA	3	28
AAAAAAAA	<u>ነ</u> ልልልል	1444444	4444	AAAAA	AAAAAAA	àΑ	3	29
AAAAAAAA	44444	4444444	4444	AAAAAA	AAAAAA	AA	3	30

• The previous output shows the effect of starting the room's temperature a 0 degrees, the same temperature as the exterior walls. We arbitrarily started the interior of the room at various random settings between 0 and the temperature of the stove, and while not realistic, it seems to be most effective in reaching equilibrium quickly.

INNER= 70 OUTER= 0 STOVE= 70 TO 400 BY 50 ITERATIONS= 9 NUMBER/PRINTING CYCLE= 3

STOVE IS AT 70 DEGREES 00/00.	/00	00:16:48		
A	6		-	0
AC DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	- 6			1
A C CC	CCB			2
AB CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	B			3
AB CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	B	4 .		4
AB CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Be			5
AB CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	B			6
AB CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	B	?		7
AB CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	B			8
AB CCCCC CCCCCCCCCCCCCCCCCCCCC	Be	4 ;		9
AB CC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	B	A ;	3	10
AB CCC CCCCCCCCC	B		3	11
AB CCCCC D######## CCCCCCCCCC	B (3	12
AB CCCCCC D######## CCCCCCCCC	P/			13
AB CCCCCCCC D#######D CCCCCCCCC	B		3	14
AB CCCCCCCC D####### CCCCCCCCCCCC	B		3	15
AB CCCCCCCC D#######D CCCCCCCCCCC			3	16
AB CCCCCCCCC D#######D CCCCCCCCCCC	C Bi		3	17
AB CCCCCCCCCC DD CCCCCCCCCC			3	18
AB CCCCCCCCCCCCCCCCCCCCCCC CCCCCC				19
AB CCCCCCCCCCCCCCCCCCCC	C B		3	20
AB CCCCCCCCCCCCCCCCC CCCCC	C B		3	21
AB CCCCCCCCCCCCCCCCCC CCCCC			3	22
AB CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	C B			23
AB CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	C B		3	24
AB CCCCCCCCCC CC CCCCCCCCCCCCCCCCCCCCCC	C B		3	25
AB CCCCCCCCC CC CCCCCCCCCCCCCCCCCCCCCCC	C B		3	26
AB CCCCCCCCCC CC CCCCCCCCCCCCCCC	B		3	27
AB CCC CC	B		3	28
A вверверверверверверверверверверверве	BB i		3	29
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAA	A :	3	30

• The program was limited to this size room for practical reasons of time. It takes our TRS-80 about 10 minutes to proceed from one graph to the next, with an interval size of 5 iterations.

Suggestions

• Use other symbols to represent temperature, such as:

Temperature	Symbo
0- 9	blank
10-19	
20-29	:
30-39	•
40-49	-
50-59	=
60-69	1
70-79	I
80-89	L
90-99	T
•	
•	
•	
400-409	#

A minor modification of this program can yield startingly different results. The modification is based on doing an exact point-by-point calculation of a location's value. This kind of calculation isn't appropriate for thermal gradients, as was the case with the wood-burning stove, but it works for a wide variety of applications in which point values are based on field effects, such as electricity, gravitation, and sound.

Consider a "generator" of such a field located at a point in the middle of a rectangularly shaped area. The field strength at any other point is proportional to the square of the distance away from the generator. Thus a sound is one fourth the volume at 20 feet from a speaker as it is 10 feet away. If there are two speakers located in the rectangular area, the intensity of the sound at any point is the sum of the sound from the two speakers. It is easy to determine the distance to each of the speakers by use of the Pythagorean theorem ($c^2 = a^2 + b^2$). Then the process of summing the individual intensities, taking into account their distances and original intensities, yields the total amount of sound at a selected point. Repeat this process for all points on the grid, and represent point intensities by graphical means. The effect is a "picture" of the sound sources and their acoustic "fields".

The same process can be used to picture any physical field phenomenon, such as gravitational "wells" around planets and ionic field strengths. An excellent discussion and example of this method of graphing can be found in *BASIC and the Personal Computer* by Dwyer and Critchfield, (Addison-Wesley, 1978), pages 304-306.

Problem 4.3

Display the point-by-point ionic field strength that surrounds each of up to five electrical sources. Each source can be positive or negative in relation to the background field strength. Each source will have a strength from -2 to +2. Pictorially, a negative field will be represented as a series of digits and characters ranging from 9 through 0 to such characters as /, !, +, *, ..., %, and @. A positive field will be represented as a series of letters, from A to Z. Field areas closest to background will be represented as 9s or As.

```
Solution
```

```
10 'filenamet"s4p3"
20 ' purpose: to graph electric charges
30 4
      author: jps 2/80
40 CLEAR 200
45 DIM A$(52)
50 DATA 35,64,36,42,38,37,94,91,93,95,43,34,40,44,33
60 DATA 47,48,49,50,51,52,53,54,55,56,57
70 FOR I=1 TO 26: READ A: A$(I)=CHR$(A): NEXT I
80 FOR I=27 TO 52: A$(I)=CHR$(I+38): NEXT I
90 4
100 N=5: A(1)=15: B(1)=12: A(2)=18: B(2)=50: A(3)=50
110 B(3)=35: A(4)=70: B(4)=15: A(5)=70: B(5)=45
120 GOTO 180
130 CLS: INPUT "HOW MANY CHARGES" #N
140 FOR I=1 TO N
      PRINT "TYPE X AND Y POSITIONS OF CHARGE" ; 1;
150
160
      INPUT A(I), B(I)
170 NEXT I
180 F = SQR(3)/2
190 FOR I=1 TO N: A(I)=A(I)*F: NEXT I
200 C(1)=1: C(2)=1: C(3)=-2: C(4)=-1: C(5)=1: GOTO 240
210 PRINT "TYPE IN THE SIZE OF EACH CHARGE. USE 3 FOR 3Q"
220 FOR I=1 TO N
      PRINT "CHARGE "; I;: INPUT C(I): NEXT I
230
235 F = SQR(3)/2
240 FOR J=1 TO 121 STEP 2
250
      X=J*F
260 FOR Y=1 TO 61
270
      GOSUB 1000
      Z=( V+1 )*26
280
      IF Z<1 THEN B$=" ": GOTO 320
290
      IF Z>52 THEN B$="@": GOTO 320
300
      IF Z>INT(Z)+.5 THEN B$=" " ELSE B$=A$(Z)
310
      LPRINT B$;
320
      NEXT Y
330
340 LPRINT: NEXT J
350 GOTO 350
```

```
1000 'SUBROUTINE TO CALCULATE FIELD STRENGTH
1010 V=0
1020 FOR I=1 TO N
1030 X1=X-A(I): Y1=Y-B(I)
1040 R=SQR(X1*X1+Y1*Y1)
1050 IF R>O THEN V=V+C(I)/R ELSE V=10000: RETURN
1060 NEXT I
1070 RETURN
9999 END
AAAAAA
               AAAA
                  AAAAAAAAAAAAAAAAAAAAAAA
                                              AAAAAAAAA
     BBBBBBBBBBB
                    ААААААААААААА
                                                   AAAAA
   BBB CCCCC BBB
                                          BBBBBBB
                     ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ
                                                     AAA
  BB C DDDDD CC BB
                      AAAAAAAAAAAAA
                                       BBB
                                                BBB
  RB C D
            ED C BB
                      AAAAAAAAAAAAA
                                     BBB CC
                                              CC BB
  BB CDE ILNLI EDC B
                      ААААААААААА
                                     BB C D EEE D C B
    D LYQYL D
                  P
                      AAAAAAAAAAAAA BB C
                                          GIG
                                                 C BB
 BB CDE LNL EDC BB AAAAA
                              AAAAA BB CD GK @ K
             DC BB AAAA
A BB CD F F
                                AAAA B CDEGK @ KG DC BB
AA BB CC D C B AAA
                                  AAA BB D HIHG
                     99999 AAA B C D D CC BB
999999999999 AAA BB CCC BB
                         99999
    BBB
            BB
                AAA
 AAAAA
              AAA
                   999999
                               99999
   AAAAAAAAAA
                                           BBBB
                                      AA
                                                   AAAAA
               999999
                                   999
                                         AAAAAAAAAAAA
999999
          99999999
                       888888888888
                                     9999
????????????????
                   888888
                                  88888 999999
                                            99999999999
99999999
                88888
                                     888
                         777777777
                      7777
                                   777 8888
             888888
                                   66 77
         8888888
                  7777 666
                                          888
     88888888
                            4444 5 6 77
                      66 5
                                           888
 88888888888
               7777 66 55 4 3 22 3 5 66 77
                                            8888
88300588
              7777 66 5 4
                             / /01234 5 6 77
                  66 5 4 1 ] ]" 0 34 6 7
88888
8880
                666 55 3 0 + *+!
                                       56 7
                                              888
                8888
               6666
      77777
    77777
              66666
           666666
                      5555 444444 5 6 7 888 9999999
5555555 66 7 8 999999999999999
        8888
       66 5555555
6 55 44 555
7777
     દે હ
                           6666 77 8 9 AAAAA
                                                99999999
             3 4 55 6666 77 8 9 B CC BB AA
/ 234 55 666 77 8 ABC G EDCB A
    66 55 3 3 4 55
    6 5432
    6 5 7 7 20 455 666 777 8 ABC IQRQ FDCB AA 6 5 77 7 2 5 66 777 88 9 AB IQRQ FDCB AA 6 5 4 21 1234 5 66 777 88 9 AB D G G B AA
                                                     999
                                                     999
                                                     999
     6 5 4 333 4 55 66 777
                             88
                                 9 A B C
                                         CC B AAA
                                                     999
     66 55 55 666 777
                            988 99 AA BBBBB AAA
       666
                                 777 AAAAAAAAA
   6777 66666
777777
                666
                           888
                   7777
                           888
                 77777
                          8888
                                   9999
                                                99999999
      77777777777777777
                                    9999999999999999999
                          88888
         7777777
                         888888
                                     999999999999999999
                       88888888
                                     99999999999999999
                     888888888
                                       9999999999999999
888888
                  88888888888
                                         999999999999999
799999999999
88888888888888888888888888888888
                                                99999999
```

- Notice that the conversational portion of the program has been bypassed by the statements at 100-120 and 180-200. This was done so that a test could be run with 5 charges located on the rectangular area.
- Beware! This program is a number-crunching sloth. You must have patience with the slowness of the output. It is quite extraordinary looking when complete.

Suggestions

- Rewrite the program to display other field relationships. To increase the range of intensity from -2 and +2 to, say, -10 and +10, change line 180 to 180 F=SQR(3)/10
- To change the characters that represent the various intensities, rewrite the DATA statements in lines 50 and 60 and the loops in 70 and 80. They are presently written to use 52 ASCII characters.

Problem 4.4

Display the varying concentrations of up to six ionic species that may coexist in a solution of varying acidity. Solving this classic problem in analytic chemistry will provide a chemist with the ability to determine at a glance what the "soup" of acid contains at a particular level of acidity, or pH. Without such a graphical aid, the chemist must rely on rather complex and time-consuming calculations to obtain the same information.

Solution

```
10 'filename: "94F4"
20 / purpose: chemical soup graphing
30 '
      author: jps 9/80
40 '
50 CLEAR 4000
60 DIM G$(26),PK(6),K(6),A(6),Y(6)
                   'Set up width to 71 cols, intervals to 5
70 W=71: WI=5
80 INPUT "Which included acid from the DATA stmts"; K
90 FOR J=1 TO K: READ A$,N: Y(0)=1
      FOR I=1 TO N: READ PK(I)
1.00
               Get ionization constants, cumulative products
110 '
120
        K(I)=10[(-PK(I)): Y(I)=K(I)*Y(I-1)
               Note the left bracket prints for an up-arrow
130 '
140
      NEXT I
150 NEXT J
160 LPRINT: LPRINT
                                   'Double-wide
170 LPRINT TAB(5); CHR$(1); A$
180 LPRINT TAB(5); CHR$(2); "the";N; "PKs are:";
190 FOR I=1 TO N: LPRINT TAB(I*10); PK(I); NEXT I
200 LPRINT: LPRINT
```

```
210 /
           Presare the background grid
220 1
               First, blank out inner strings
230 FOR I=2 TO 25: G$(I)=STRING$(W-2,32): NEXT I
240 /
               Then dot the outer, interval strings
250 FOR I=1 TO 26 STEP 5: G$(I)=STRING$(W-2,"."): NEXT I
260 /
               Then dot left, right, center columns
270 FOR I=1 TO 26
    G$( I )="."+LEFT$(G$(I),34)+"."+RIGHT$(G$(I),34)+"."
280
290 NEXT I
300 'Go through pH range
310 /
               calculate H-ion concentration
320 FOR PH=0 TO 14 STEP .2: PRINT PH; H=10[(-PH): D=0
330 /
               Calculate H-ion cumulative products, denom.
340 FOR I=0 TO N: Z(I)=HE(N-I)*Y(I): D=D+Z(I): NEXT I
350 4
               Calculate Alpha value (activity of subspecies)
360
      FOR I=0 TO N: A(I)=Z(I)/D
370 /
              Calculate vertical displacement V (which string)
380 ′
               and horizontal displacement B
390
        V=A(I)*25+1.5: B=PH*WI+1
400 '
               Substitute appropriate disit
410 '
                 in proper position of proper string
420
        MID$(G$(V),B,1)=CHR$(48+I)
430
      NEXT I
440 NEXT PH
450 PRINT
460 T=1.2
          'T is vertical concentration marker 0 to 1.0
470 FOR I=26 TO 1 STEP -1
480
      IF INT((I-1)/5)*5<>I-1 THEN 520
490
        T=T-.2
500
          IF T<.2 THEN T=0
510
        LPRINT T;
520
      LPRINT TAB(7); G$(I)
530 NEXT I
540 LPRINT " pH=->";
550 FOR I=0 TO 14: LPRINT TAB(I*WI+7); I; NEXT I
560 LPRINT: STOP
1000 '**** data statements with acid names, PKs
1010 DATA "Ethylene Diamine Tetra-acetic Acid (EDTA)"
1020 DATA 4, 2.00, 2.67, 6.16, 10.26
1030 DATA "Arsenic Acid", 3, 2.22, 6.98, 11.4
1040 DATA "Carbonic Acid", 2, 6.35, 10.33
1050 DATA "Citric Acid", 3, 3.13, 4.76, 6.40
1060 DATA "Malic Acid", 2, 3.40, 5.05
1070 DATA "Oxalic Acid", 2, 1.27, 4.27
1080 DATA "Phosphoric Acid", 3, 2.15, 7.20, 12.4
1090 DATA "Purophosphoric Acid", 4, .85, 1.96, 6.54, 8.44
1100 DATA "Salicylic Acid", 2, 2.97, 13.0
1110 DATA "Tartaric Acid", 2, 3.04, 4.37
1120 DATA "DCTA", 4, 2.40, 3.52, 6.12, 11.7
9999 END
```

Arsenic Acid the 3 pKs are: 2.22 6.98 11.4

1	000111:	111222	2233	333,
•	. 000 11	11 . 222	222 333	
	, 0 11	11 . 2	2 3	•
	. 0	. 2	2 3	•
	, 1	i .		•
•8		1 2	2 3	
	•	4 0	2 7	٠
	. 0 1	1 •2	2 3	•
	. 0	• •		•
1	1		2 . 3	
•6				
	. 0	2,		
	. 1	1.	3	•
	•	•		•
+4			3 . 2	• • • •
	. 1	1		٠
	•	, ·,	7 0	•
	. 1 0	2 .1	3 2	•
_	•	2 1	7	
•2		7		••••
	. 1	. 1	3 2	
	1 00	22 . 1	3 2	
	. 111 00	22 . 111	333 222	
0	33333333333333333333333333	33333333333333333333333	33311111111111111111111122	222.
-=Hq	0 1 2 3 4	5 6 7 8	9 10 11 12 13	14
Cu- Z	V 1 2 0 1			

Carbonic Acid the 2 pKs are: 6.35 10.33

Chapter 4 Computed Pictures

Malic Acid the 2 pKs are: 3.4 5.05 1 000 22 .8 111 1 .6 2 .2 2 0 22 0 0 <-=Hq 1 3 4 5 6 78 9 10 11 12 13 14 Pyrophosphoric Acid the 4 pKs are: .85 1.96 6.5422222... 222 .8 3 0 1 2 .6 . 1

2.

5 6 7 8 9 10 11 12 13 14

111

. 1 02 1

٠2

PH=-> 0

• A wide variety of disciplines are plagued with experimental conditions such as these. Interfering signals in electronics, competing species in genetics, varying levels of soil conditioners, fertilizers and hybrids in agriculture—all lend themselves to this graphing technique. The calculations for for each application are different, but the terminal result is the same: The experimenter wants a graph of competing, interfering, or mutually affecting species.

Suggestions

• RUN this program with various acids to get a feel for the way pKs affect competing species. Here is a list of acids and their pKs for you to try.

Name	pK1	pK2	pK3	pK4
Arsenic acid	2.22	6.98	11.4	
Carbonic acid	6.35	10.33		
Citric acid	3.13	4.76	6.40	
Malic acid	3.40	5.05		
Oxalic acid	1.27	4.27		
Phosphoric acid	2.15	7.20	12.4	
Pyrophosphoric acid	0.85	1.96	6.54	8.44
Salicylic acid	2.97	13.0		
Tartaric acid	3.04	4.37		
EDTA	2.00	2.67	6.16	10.26
DCTA	2.40	3.52	6.12	11.7

• Add a table-printing feature to this program that prints out the concentrations of all species present at each pH.

Problem 4.5

Produce a chart on the printer that displays blocks of all printable characters so that an enterprising programmer can scan it to pick out likely candidates for future density gradient graphs. Each block is to be 5 characters tall and 8 characters wide, and separated from its neighboring blocks by 8 spaces. Above each block is to be printed the ASCII code value which that character represents.

Solution

```
10 'filename:"s4p5"
20 ' purpose: produce a chart to show character densities
      author: jdr 8/80
40 /
50 I=32
60 FOR L=1 TO 4
70
      FOR K=1 TO 6
         LPRINT I, I+1, I+2, I+3
80
90
         FOR J=1 TO 5
1.00
            LPRINT STRING$(8,1), : LPRINT STRING$(8,1+1),
110
            LPRINT STRING$(8,1+2), : LPRINT STRING$(8,1+3)
120
         NEXT J
130
         LPRINT : LPRINT
140
         I=I+4
150
      NEXT K
      FOR K=1 TO 8
160
1.70
         LPRINT
1.80
      NEXT K
190 NEXT L
9999 END
```

32	33	34	35
	1111111		*******
	1111111		*******
	1111111	11 11 11 II II II II	+++++++
	1111111		+++++++
	11111111		*******
36	37	38	39
\$\$\$\$\$\$\$\$\$	7.7.7.7.7.7.7.	\$\$\$\$ \$\$\$\$	11111111
\$\$\$\$\$\$\$\$	7.7.7.7.7.7.7.7.7.	8888888	11111111
\$\$ \$ \$\$\$\$\$	7.7.7.7.7.7.7.7.	888888	11111111
\$\$\$\$\$\$\$\$	1/2/2/2/2/2/2/2/2/2	8888888	11111111
\$ \$\$ \$\$\$\$\$	7.7.7.7.7.7.7.	3888888	///////
40	41	42	43
aacaa))))))))	*****	+++++++
iiiiiiiiiii)))))))	*****	+++++++
(((((())))))))	*****	+++++++
(((((()))))))	*****	+++++++
((((((())))))))	*****	+++++++
***************************************			,,,,,,,,,
44	45	46	47
77777777	naje osta mare liku ann alia pilita pers	* * * * * * * *	///////
9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		* * * * * * *	///////
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		* * * * * * * *	1//////
71117777		* * * * * * *	///////
9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	near sold cause from some filter delle speed	* * * * * * *	///////
48	49	50	51
00000000	11111111	2222222	33333333
00000000	11111111	2222222	33333333
00000000	11111111	2222222	33333333
00000000	11111111	2222222	33333333
00000000	11111111	2222222	33333333
Fa	E7	E4	55
52	53	54	
4444444	5555555	6666666	7777777
4444444	5555555	6666666	7777777
4444444	5555555	6666666	7777777
4444444	5555555	6666666	7777777
4444444	5555555	6666666	7777777

56 88888888 8888888 8888888 8888888 888888	57 9999999 9999999 9999999 9999999	58 	59 ,,,,,,,, ,,,,,,, ,,,,,,,,,,,,,,,,,,,
60 <<<<<<<< <<<<<<< <<<<<<< <<<<<<<<<<<	61 ======= ======= ====================	62 >>>>>>> >>>>>> >>>>>>> >>>>>>>>>>>>>	63 ???????? ???????? ???????? ????????
64 09900000 09900000 09900000 09900000	65 AAAAAAA AAAAAAA AAAAAAA AAAAAAA	66 BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBB	67 CCCCCCC CCCCCCC CCCCCCC CCCCCCC CCCCCC
68 DDDDDDDD DDDDDDDDDDDDDDDDDDDDDDDDDDD	69 EEEEEEEE EEEEEEEE EEEEEEEE EEEEEEEE	70 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF	71 66666666 66666666 66666666 66666666
72 НИННИННИ НИКНИННИ НИКНИННИ НИКНИННИ НИКНИННИ	73 11111111 11111111 11111111 11111111	11111111 11111111 111111111 111111111 1111	75 KKKKKKK KKKKKKK KKKKKKK KKKKKKK KKKKKK
76 LLLLLLL LLLLLLL LLLLLLL LLLLLLLL LLLLLL	77 НМИНИММ НМИНИММ НМИНИММ НМИНИММ НМИНИММ	78 ИНИНИНИ ИНИНИНИН ИНИНИНИН ИНИНИНИНИ	79 00000000 0000000 0000000 0000000

80 PPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPP	81 00000000 00000000 00000000 00000000	82 RRRRRRR RRRRRRR RRRRRRR RRRRRRR RRRRRR	83 \$555555 \$555555 \$555555 \$555555 \$555555
84 TTTTTTTT TTTTTTTTT TTTTTTTTT TTTTTTTT	85 00000000 00000000 00000000 00000000	86 00000000 00000000 00000000 00000000	87 ************************************
88 XXXXXXXX XXXXXXXX XXXXXXXX	89 YYYYYYY YYYYYYY YYYYYYY YYYYYYY YYYYYY	90 ZZZZZZZZ ZZZZZZZZ ZZZZZZZZ ZZZZZZZZ ZZZZ	91 CCCCCCC CCCCCCC CCCCCCCC CCCCCCCC CCCCC
92 \\\\\\\\ \\\\\\\\ \\\\\\\\ \\\\\\\\\	93 113111111 113111111 113111111 113111111	94 11111111 1111111 1111111 1111111	95
96 	97 ********** ******** ******** *******	98 5555555 5555555 5555555 5555555 555555	99 cececec cececec cececec cececec
100 dddddddd dddddddd dddddddd dddddddd dddd	101 eeeeeeee eeeeeee eeeeeee eeeeeee	102 ffffffff ffffffff ffffffff ffffffff ffff	दबददददद दबदददददद दबदददददद दबदददददद 103

104	105	106	107
Ի հի ի Ի Ի Ի Ի Ի Ի	iiiiiiii	ززززززز	KKKKKKKK
Ի րիր Իրիր	iiiiiiii	نزنزنزنز	KKKKKKKK
Ի րիր Իրիր	iiiiiiii	نززززززز	KKKKKKKK
Ի իիի ի ի ի ի	iiiiiiii	نزنزنزنز	KKKKKKK
Ի րիր ի իրի	iiiiiiii	لننلنلال	KKKKKKKK
108	109	110	111
11111111	amaaamm	กกกกกกกก	00000000
11111111	ammaamm	nnnnnnn	00000000
11111111	Blimbanni	nnnnnnn	00000000
11111111	nmanamin	nnnnnnn	00000000
11111111	BAMARAMAA	nnnnnnn	00000000
		***************************************	0000000
112	113	114	115
9999999	00000000	rrrrrrr	5555555
244444	00000000	rrrrrrr	5555555
PPPPPPPP	00000000	rrrrrrr	5555555
PPPPPPPP	00000000	rrrrrrr	5555555
PPPPPPPP	99999999	rrrrrrr	5555555
			on to € (v.€ (v.€ (v.€ (v.€ (v.€ (v.€
116	117	118	119
ttttttt	ប្រការពិធីក្រុ	VVVVVVV	ผพพพพพพพ
ttttttt	បលលបលប	VVVVVVV	มนนนนนนน
tittttt	นนนนนนนน	VVVVVVV	มผนมนนนน
ttttttt	ប្រមាសព្វភាព	VVVVVVV	มมมมมมมม
ttittit	ប្រកាសព្រក	VVVVVVV	HMMMMAM
120	121	122	123
XXXXXXXXX	222222	2222222	0000000
XXXXXXXX	ネネネネネネネ	2222222	3333333
XXXXXXXX	A RRRARR	ZZZZZZZZ	3333333
XXXXXXXX	ネ オネネネネネ	ZZZZZZZZ	3333333
XXXXXXXX	สลลลลลล	2222222	((((((
124	125	126	127
11111111) }}}}}}	NANANANA TCO	12/
1111111))))))))	****	
1111111))))))))	******	
111111)))))))))	MNNNNNN	
1111111))))))))	*******	
11111111	1111111		

Table-Driven Pictures

Many graphic designs can be contained within a program as DATA statements whose values represent an encoded version of the picture or design. The program READs the DATA values and performs the decoding necessary to reconstruct the graphic design.

Problem 5.1

Draw an expanded digit 1 on the screen.

Solution

Store the sketch of the digit into a 2-dimensional table in which the first column represents the starting position in a line of output of a string of asterisks. The second column of the table specifies the length of the string.

```
10 'filename:"s5p1"
20 ' purpose: draw expanded digit 1, coded by position & length
30 '
     author: jdr 8/80
40 '
50 DEFINT A-Z : DIM D(14,2)
60 FOR I=1 TO 14
     READ D(I+1)+D(I+2)
80 NEXT I
100 DATA 23,6,22,8,22,8,22,8,22,8,23,6
110 FOR I=1 TO 14
      PRINT TAB(D(I,1)) #STRING $ (D(I,2), "*")
120
130 NEXT I
140 END
```


- The graph of a single digit, as in this case, suggests the many such designs that could be produced this way.
- You can expand the technique that this example shows by incorporating a repetition factor, wherein there are three values associated with a PRINT statement:
 - (1) number of PRINT statements of this format,
 - (2) starting position for the string,
 - (3) length of the string.
- In order to fully generalize this technique, two more pieces of information could be added to the encoding information:
 - (1) indicator of whether this PRINT line is finished or is to be continued,
 - (2) what character is to be used in the string.

Suggestions

- Modify the program by implementing the ideas in the discussion points above. Cause the program to draw an enlarged digit 0.
- Modify the program so that the user can select the position where the digit is to be placed on the screen.
- Create graphic symbols and make up DATA statements that could be used by your program for display on the screen.

Problem 5.2

Draw an expanded digit 1 on the screen.

Solution

Encode the sketch of the digit into a series of binary numbers, with zeros and ones representing the absence or presence of a character. For example, each line of a sketch of the digit 1

can be encoded into binary by using a binary digit 1 to represent an x and a binary digit 0 to represent a blank. The result would be the 14 8-bit binary numbers

Convert each of the binary numbers to its decimal equivalent. Remember that the binary number system uses each place to represent a power of two. The rightmost position corresponding to 2 to the zero power or 1, the next being 2 to the first power or 2, the next being 2 to the second power or 4, and so on. Thus the binary numbers above equal the decimal numbers

All the program needs to do then is decode the decimal numbers (convert them back to binary) and cause an asterisk to correspond to a 1 and a blank to correspond to a 0.

```
10 'filename:"s5p2"
20 ' rurrose: draw expanded disit 1, coded in binary
30 ′
      author: jdr 8/80
40 '
50 DEFINT A-Z : CLEAR 200 : DIM D(14),X$(14)
60 FOR I=1 TO 14
70
      READ D(I)
80 NEXT I
90 DATA 112,240,240,240,48,48,48,48
100 DATA 126,255,255,255,255,126
110 FOR I=1 TO 14
       C=D(I)
120
130
       X$(I)=""
140
       FOR J=1 TO 8
150
          Q=INT(C/2)
160
          R=C-2*Q
170
          IF R=1
            THEN X$(I)="x"+X$(I)
            ELSE X$(I)=" "+X$(I)
180
          C=Q
190
       NEXT J
200 NEXT I
210 FOR I=1 TO 14
220
       PRINT TAB(22);X$(I)
230 NEXT I
240 END
```


- Because of the internal representation of integers in the TRS-80, we are able to code each line of the figure in binary if its width is less than sixteen characters wide. Of course, wider pictures could use two or more numbers to represent each line of the picture.
- Many other kinds of designs can be easily represented this way. For example, an alphabet or other set of graphic symbols could be coded and thus displayed in a manner similar to that used in this program.

Suggestions

- Alter the program so that the one becomes twice as fat when displayed, but don't change any of the encoded data values.
- Alter the program so that the user can specify the position of the number on the screen. Also, let the user specify the character used to sketch the figure.
- Design a corporate logo or other simple figure and place the encoded information in DATA statements and alter the program to output it.

Problem 5.3

Draw the silhouette of a witch.

Solution

```
j0 'filenamet"s5p3"
20 ' purpose: draw a silhouette of a witch
      author: ses 9/79
40 '
50 LPRINT CHR$(31) ' convert printer to 16.5 cpi
60 CLEAR 500 ' make room for strings
70 READ A$ ' set next piece of data
80 IF A$="END" THEN 9999
90 1
     check for a new line
100 IF A$="B" THEN LPRINT: LPRINT TAB(21); : GOTO 70
110 ' check for the code for spaces (S##)
120 IF LEFT$(A$,1)="S" THEN
        LPRINT STRING$(VAL(MID$(A$,2))," "); : GOTO 70
130 LPRINT STRING$(VAL(A$),"%");
140 GOTO 70
150 DATA B, S44, 2, B, S43, 4, B, S43, 5, B, S44, 6, B, S45, 5, B, S45,
6,B,S46,6,B,S46,7,S7,2,B,S45,9,S5,3,B,S45,16,B,S45,15,
B, S45, 14, B, S42, 17, B, S40, 20, B, S40, 21, B, S43, 16, B, S34, 26,
B, S31, 28, B, S28, 28, B, S26, 30, B, S24, 32, B
160 DATA $22,34,B,$20,36,B,$18,39,B,$16,43,B,$15,46,B,$14,
54, B, S10, 65, S3, 3, B, S5, 74, B, 79, B, S1, 77, B, S2, 23, S3, 45, B, S8, 14,
$6,44,B,$28,36,$3,4,B,$28,37,B,$28,36,B,$29,34,B,$30,32,B,$30,
32,B,S32,30,B,S37,24,B,S29,2,S2,27,B,S25,34,B
170 DATA $14,5,$1,12,$2,24,B
180 DATA $8,23,52,24,59,3,8,28,53,26,53,10,B,25,54,40,B,51,
21,54,40,B,53,15,54,39,B,53,14,54,24,B,54,9,54,23,B,56,5,53,
23, B, S6, 3, S3, 22, B, S6, 2, S4, 16, B, S14, 8
190 DATA END
9999 END
```

Discussion

• This program is a variation on many of the ideas presented in the previous programs.

```
77
                                                    7777
                                                    77.777
                                                     ZZZZZZ
                                                      777777
                                                       XXXXXX
                                                       7.7.7.7.7.7
                                                                        77.
                                                      XXXXXXXXXXX
                                                                       777
                                                      XXXXXXXXXXXXXXXXX
                                                      XXXXXXXXXXXXXXXX
                                                      7777777777777777
                                                  ZZZZZZZZZZZZZZZZZ
                                         ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
                               777777777777
                                  NAMES AND ASSESSED AS
         ZZZ
ZZZZZZZZZZZZ
    ZZZZZZZZZ
                  77
              77777777
```

As we near completion of this chapter and the discussion of line printer graphics in general, we will introduce another method for encoding a picture description that will provide a generalized program upon which many other programs can be based to generate graphic designs of all kinds.

The method used to code a picture or design is based on the fact that all pictures produced on a video screen or line printer are formed from single characters or straight lines composed of characters. If a grid is introduced over the picture like that shown below, then the picture or design can be reduced to a set of pairs of end points of a bunch of straight lines.

As an example, the figure in the grid is composed of two straight lines. The first has end points (3,4) and (7,0). The second has end points (7,0) and (7,4). If we were to draw the straight lines connecting these end points and fill in the middle points, the figure shown in the drawing would be created. That is the basis of this method: Reduce the drawing to end points of a straight line. The plot the endpoints and all points on the line in between.

The expanded digit 1 of programs G5P1 and G5P2 could be coded as:

Chapter 5 Table-Driven Pictures

```
(0,1) to (0,3)
(1,0) to (1,3)
(2,0) to (2,7)
(3,0) to (3,7)
(1,8) to (6,8)
(0,9) to (7,9)
(0,10) to (7,10)
(0,11) to (7,11)
(0,12) to (7,12)
(1,13) to (6,13)
```

A further compression of this encoding scheme would be to combine the two numbers of each end point into a single number without loss of information. Since the second number will be at most 2 digits, the end point (7,10) could be expressed as the single number 710 with the understanding that the rightmost two digits of such a number represent the vertical grid position or second component. The horizontal grid position or first component is the part of the number left when the rightmost two digits are removed. With such a compression scheme, the expanded digit 1 could be encoded as the series of numbers:

```
1,3,100,103,200,207,300,307,108,608,9,709, 10,710,11,711,12,712,113,613
```

Notice that each pair of numbers are the end points of a line to be drawn. Also notice that the first two numbers (1 and 3) would be more recognizable as 001 and 003, but the leading zeros are redundant when we normally write numbers and were left off with no loss of information.

Problem 5.4

Draw an expanded digit 1 on the video screen using the straight line coding method.

Solution

```
10 'filename:"s5r4"
20 ' purpose: draw expanded disit 1, coded as straight lines
30 ' author: Jdr 8/80
40 '
50 CLS
60 INPUT "input position of picture on screen";XINC,YINC
70 INPUT "input characters to be used in drawing";CHAR$
80 CHAR$=LEFT$(CHAR$,10)
90 GOSUB 1000 'draw the picture
100 IF INKEY$="" THEN 100
110 STOP
```

```
1000 'subroutine to draw picture on screen
1010 CLS
1020 READ N 'number of straight lines to draw in picture
1030 FOR L=1 TO N
1040
        READ E+C+D
        X1=INT(C/100) : Y1=C-100*X1
1050
        X2=INT(D/100): Y2=D-100*X2
1060
1080 X1=X1+XINC : Y1=Y1+YINC 'relocate coordinates
1090 X2=X2+XINC : Y2=Y2+YINC
1100 IF X1>63 OR X2>63 OR Y1>15 OR Y2>15
       THEN PRINT "picture will not fit, cannot continue" :
            RETURN
1110 IF X1=X2 THEN 1270
1120 IF Y1=Y2 THEN 1310
1130 M=(Y2-Y1)/(X2-X1) 'calculate slope of line
1140 B=Y1-M*X1 'calculate y-intercept
1150 IF M>0
       THEN IF MK=1 THEN 1220 ELSE 1170
       ELSE IF M>=-1 THEN 1220 ELSE 1160
1160 T=Y1 : Y1=Y2 : Y2=T 'slope between -1 and -infinity
1170 FOR J=Y1 TO Y2 'slope between 1 and infinity
        I=INT((J-B)/M+0.5)
1180
1190
        PRINT@64*J+I, MID$(CHAR$, E+1,1);
1200 NEXT J
1210 GOTO 1340
1220 FOR I=X1 TO X2 'slope between -1 and 1
         J=INT(M*I+B+0.5)
1230
         PRINT@64*J+I, MID$(CHAR$, E+1,1);
1240
1250 NEXT I
1260 GOTO 1340
1270 FOR J=Y1 TO Y2 'no slope, vertical line
         PRINT@64*J+X1;MID$(CHAR$;E+1;1);
1290 NEXT J
1300 GOTO 1340
1310 FOR I=X1 TO X2 'zero slope, horizontal line
         PRINT@64*Y1+I,MID$(CHAR$,E+1,1);
 1320
 1330 NEXT I
 1340 NEXT L
 1350 RETURN
 2000 DATA 10,0,1,3,0,100,103,0,200,207,0,300,307,0,108,608
 2010 DATA 0,9,709,0,10,710,0,11,711,0,12,712,0,113,613
 9999 END
```


Chapter 5 Table-Driven Pictures

- The number zero has been inserted in front of each pair of numbers that represents the end points of a straight line. Its purpose is to specify which character is to be used when drawing the straight line. The effect here is minimal since the same character is used to draw the entire picture. But as will be shown in the next program, this number will not always be zero and will provide for flexibilty in the characters used to draw the picture.
- The picture can be placed anywhere on the screen because when the picture was coded we located it in the upper left-hand corner. The program reads in XINC and YINC values which are added to each point to relocate it on the screen.
- It is necessary that the two numbers representing the end points of a line are in numeric order; that is, the first is less than or equal to the second. For example, 3 then 307 is okay, but 307 then 3 is not acceptable. Of course, the program could be modified to place them in order.

Problem 5.5

Draw the logo for Bentley College with an optional user's initials to be embedded within it.

Solution

The previous program with changes only to the DATA statements, will be used to draw the logo.

```
10 'filename:"s5p5"
20 ' purpose: draw Bentley Collede loso with users initials
30 ' author: jdr 8/80
40 '
50 CLS
60 INPUT "input position of picture on screen";XINC,YINC
70 INPUT "input characters to be used in drawins";CHAR$
80 CHAR$=LEFT$(CHAR$,10)
90 GOSUB 1000 'draw the picture
100 IF INKEY$="" THEN 100
110 STOP
```

```
1000 'subroutine to draw micture on screen
1010 CLS
1020 READ N 'number of straight lines to draw in picture
1030 FOR L=1 TO N
        READ E,C,D
1040
        X1=INT(C/100) : Y1=C-100*X1
1050
        X2=INT(D/100) : Y2=D-100*X2
1060
1080 X1=X1+XINC : Y1=Y1+YINC 'relocate coordinates
1090 X2=X2+XINC : Y2=Y2+YINC
1100 IF X1>63 OR X2>63 OR Y1>15 OR Y2>15
       THEN PRINT "picture will not fit, cannot continue" :
            RETURN
1110 IF X1=X2 THEN 1270
1120 IF Y1=Y2 THEN 1310
1130 M=(Y2-Y1)/(X2-X1) 'calculate slope of line
1140 B=Y1-M*X1 'calculate y-intercept
1150 IF M>0
       THEN IF M<=1 THEN 1220 ELSE 1170
       ELSE IF M>=-1 THEN 1220 ELSE 1160
1160 T=Y1 : Y1=Y2 : Y2=T 'slope between -1 and -infinity
1170 FOR J=Y1 TO Y2 'slope between 1 and infinity
        I=INT((J-B)/M+0.5)
1180
        PRINT@64*J+I,MID*(CHAR*,E+1,1);
1190
1200 NEXT J
1210 GOTO 1340
1220 FOR I=X1 TO X2 'slope between -1 and 1
        J=INT(M*I+B+0.5)
1230
        PRINT@64*J+I, MID$(CHAR$, E+1,1);
1240
1250 NEXT I
1260 GOTO 1340
1270 FOR J=Y1 TO Y2 'no slope, vertical line
        PRINT@64*J+X1,MID$(CHAR$,E+1,1);
1280
1290 NEXT J
1300 GOTO 1340
1310 FOR I=X1 TO X2 'zero slope; horizontal line
        PRINT@64*Y1+I,MID$(CHAR$,E+1,1);
1320
1330 NEXT I
1340 NEXT L
1350 RETURN
2000 DATA 31,0,0,4700,0,1,14,0,101,114,0,4601,4614,0,4701,4714
2010 DATA 0,15,4715,0,1005,1705,0,806,1906,0,607,612,0,707,712
2020 DATA 0,807,812,0,907,912,0,1807,1812,0,1907,1912
2030 DATA 0,2007,2012,0,2107,2112,0,613,2113,0,3002,3702
2040 DATA 0,2803,3903,0,2604,2612,0,2704,2712,0,2804,2812
2050 DATA 0,2904,2912,0,3804,3812,0,3904,3912,0,4004,4012
2060 DATA 0,4104,4112,0,2613,4113,1,302,302,2,402,402,3,502,502
9999 END
```


Chapter 5 Table-Driven Pictures

- The digit zero isn't in front of each pair of end points. The last 3 pairs have the digits 1, 2, and 3 in front. This means that four characters will be used in drawing the picture. The same character will be used for drawing most of the picture, but the last three lines will be drawn using different characters.
- The last three pairs of end points are strange. Both end points of the line are the same. This means that the line is really just a point, which is a special case of the more general line. The line drawing portion of the subroutine will handle this properly.
- Notice that the input to this program is the character to be used to draw the Bentley College logo followed by the user's initials. If the users initials are missing, then the last three lines are plotted with blanks.

Suggestions

• Investigate the broad generality of this program by using it to draw a number of different pictures in various positions on the screen. The only changes to the program will be in the DATA statements.

Problem 5.6

Draw the Bentley College logo on the line printer.

Solution

```
10 'filename:"s5p6"
20 ' purpose: draw Bentley College logo on line printer
30 4
      author: jdr 8/80
40 '
50 CLEAR 8000 : DIM P$(64) : CLS
51 FOR I=0 TO 63
      P$( I )=STRING$(64,32)
53
55 NEXT I
60 INPUT "input position of picture on printer"; XINC, YINC
70 INPUT "input characters to be used in drawing"; CHAR$
80 CHAR$=LEFT$(CHAR$,10)
90 GOSUB 1000 'draw the picture
100 IF INKEY$="" THEN 100
110 STOP
```

```
1000 'subroutine to draw ricture on screen
1010 CLS
1020 READ N'number of straight lines to draw in picture
1030 FOR L=1 TO N
        READ E,C,D
1040
        X1=INT(C/100) : Y1=C-100*X1
1050
        X2=INT(D/100): Y2=D-100*X2
1060
1080 X1=X1+XINC : Y1=Y1+YINC 'relocate coordinates
1090 X2=X2+XINC : Y2=Y2+YINC
1100 IF X1>63 OR X2>63 OR Y1>63 OR Y2>63
       THEN PRINT "picture will not fit, cannot continue" :
            RETURN
1110 IF X1=X2 THEN 1270
1120 IF Y1=Y2 THEN 1310
1130 M=(Y2-Y1)/(X2-X1) 'calculate slope of line
1140 B=Y1-M*X1 'calculate y-intercept
1150 IF M>0
       THEN IF M<=1 THEN 1220 ELSE 1170
       ELSE IF N>=-1 THEN 1220 ELSE 1160
1160 T=Y1 : Y1=Y2 : Y2=T 'slore between -1 and -infinity
1170 FOR J=Y1 TO Y2 'slope between 1 and infinity
        I=INT((J-B)/M+0.5)
1180
        MID$(P$(J),I+1,1)=MID$(CHAR$,E+1,1)
1190
1200 NEXT J
1210 GOTO 1340
1220 FOR I=X1 TO X2 'slope between -1 and 1
        J=INT(MxI+B+0.5)
1230
1240
        MIDs(Fs(J), I+1, 1)=MIDs(CHARs, E+1, 1)
1250 NEXT I
1260 GOTO 1340
1270 FOR J=Y1 TO Y2 'no slope, vertical line
        MIDs(Fs(J),X1+1,1)=MIDs(CHARs,E+1,1)
1280
1290 NEXT J
1300 GOTO 1340
1310 FOR I=X1 TO X2 'zero slope, horizontal line
1320
        MIDs(Ps(Y1),I+1,1)=MIDs(CHARs,E+1,1)
1330 NEXT I
1340 NEXT L
1350 FOR J=0 TO 63
1360
        LPRINT P$(J)
1370 NEXT J
1380 RETURN
2000 DATA 31,0,0,4700,0,1,14,0,101,114,0,4601,4614,0,4701,4714
2010 DATA 0,15,4715,0,1005,1705,0,806,1906,0,607,612,0,707,712
2020 DATA 0,807,812,0,907,912,0,1807,1812,0,1907,1912
2030 DATA 0,2007,2012,0,2107,2112,0,613,2113,0,3002,3702
2040 DATA 0,2803,3903,0,2604,2612,0,2704,2712,0,2804,2812
2050 BATA 0,2904,2912,0,3804,3812,0,3904,3912,0,4004,4012
2060 BATA 0,4104,4112,0,2613,4113,1,302,302,2,402,402,3,502,502
9999 END
```


• Notice that this is program G5P5 with a few minor changes. The PRINT@s were changed to LET statements using the MID\$ function on the *left* of the equal sign. A simple routine to PRINT the strings at the subroutine's end furnishes the output to the printer.

Character Graphics

Character Graphics techniques rely on the use of a few advanced BASIC commands and the graphic character set. This chapter will explore the full range of instructions in the TRS-80's Level II BASIC that is needed for this type of graphics.

PRINT@

The TRS-80 video screen is 64 columns wide and 16 rows deep. All of the 1024 positions are addressable. The positions in the screen's top row are numbered 0 to 63, the second row 64 to 127, the third row 128 to 191, and so on until the last row, which has addresses 960 to 1023.

The PRINT@ statement positions the cursor at the screen location (0 to 1023) defined by the value of the expression immediately following the PRINT@ instruction. When keying the PRINT@ command, be careful to *not* depress the shift key. The shift-@ symbol looks like a @ with no shift, but when the program is run a syntax error will result.

Instruction

Output

10	PRINT	0	() # X # # ()
20	PRINT	0	95,"ZOT"
30	PRINT	6	510, ZOTZOT
40	PRINT	Ø	1023.4744

X at the top left of the screen ZOT centered on the second line ZOTZOT centered on the screen Z at the bottom right of the screen If the PRINT@ instruction ends with no punctuation, the cursor returns to the beginning of the next line, and this may produce undesirable results. If the address is between 960 and 1023, the string prints on the last line of the screen, then the screen scrolls one line. The effect of a PRINT@960 becomes the same as a PRINT@896, which is not what was intended.

If the PRINT@ instruction ends with a semicolon (;), the result is predictable. We recommend that you always end all PRINT@ instructions with a semicolon.

Problem 6.1

List a table in a variety of ways using the PRINT@ statement.

```
Solution
             10 'filename:"s6p1"
             20 ' purpose: output table in sundry ways using TAB function
             30 ′
                   author: jdr 8/80
             40 '
             50 DIM P#(15)
             60 FOR I=1 TO 15
             70
                   READ P$(I)
             80 NEXT I
             90 CLS: RANDOM
             100 FOR I=1 TO 15
                    PRINT@64*(I-1)+25,P$(I)
             110
             120 NEXT I : GOSUB 1000 'pause and clear screen
             140 FOR I=1 TO 15
                    PRINT@64*(I-1)+I,P$(I)
             150
             160 NEXT I : GOSUB 1000 'Pause & clear
             180 FOR I=1 TO 15
             190
                    PRINT@64*(I-1)+2*I,P$(I)
             200 NEXT I : GOSUB 1000 'Pause & clear
             220 FOR I=1 TO 15
             230
                    FRINT@64*(I-1)+3*ABS(8-I),P$(I)
             240 NEXT I : GOSUB 1000 'Pause & clear
             260 FOR I=1 TO 15
             270
                    PRINT@64*(I-1)+RND(40),P$(I)
             280 NEXT I : GOSUB 1000 'Pause & clear
             300 FOR I=1 TO 15
             310
                    PRINT@64*(I-1)+40-LEN(P$(I)),P$(I)
             320 NEXT I : GOSUB 1000 'Pause & clear
             340 STOP
             350 DATA "puffer", "pompano", "pickeral", "pollock", "piranha"
             360 DATA "pinfish", "platy", "porcupine fish", "pirarucu", "porgy"
             370 DATA "pilchard", "plaice", "perch", "plectosnath", "panchax"
             1000 'pause and clear screen subroutine
             1010 FOR J=1 TO 200 : NEXT J : CLS : RETURN
```

9999 END


```
putfer
pompano
pickeral
pollock
pirarha
pinfish
platy
porcupine fish
pirarucu
porgy
pilchard
plaice
perch
plectognath
panchax
```

Chapter 6 Character Graphics

Chapter 6 Character Graphics

STRING\$

A Level II BASIC function which is useful in graphing is the STRING\$ function. This function has two arguments: The first is the number of characters desired, up to 255, and the second is the character itself.

Instruction	Output
and the series and also also said that capt that cap	AND NAME AND AND AND AND
10 PRINT STRING\$(10,"*")	******
20 PRINT STRING\$(5,CHR\$(65))	AAAAA
30 PRINT STRING\$(8,CHR\$(13))	Cursor moves down 8 lines, positions itself at left of line. CHR\$(13) is a carriage/cursor return which is the character produced by the ENTER key (/EN/).
40 PRINT @960, STRING\$(64,"Z");	ZZZZZZ (64 of them) on the bottom of the screen
50 A=128: B\$="9": PRINT STRING\$(A,B\$)	Two rows of 9s

Note: Since the computer builds the string in its memory first, before displaying it, your program may require additional string space to be reserved for it. Use the CLEAR instruction to allow for more string space.

The Character Set

A look at Appendix A reveals that the TRS-80 has a total of 256 possible characters, and the effect of each can be displayed by using the instruction PRINT CHR\$(N) where N is a number from 0 to 255. A few of these values of the TRS-80's character code have no effect on the TRS-80, but most do, and they are certainly more numerous than would be necessary for just the alphabet, digits, and special characters that BASIC needs. The table below is a summary of the expanded table in Appendix A.

Code	Function
0-7	None
8-31	Carriage/Cursor Control
32-47	Special Characters
48-57	Digits
58-64	Special Characters
65-90	Alphabet (Upper Case)
91-95	Up, down, left, right arrows
96	Lower Case @
97-122	Alphabet (Lower Case)
123-127	Lower Case of Codes 91-95
128-191	Graphics Characters
192-255	Tabs for 0 to 63 Spaces

Tabulation Codes

The last two groups of codes represent half the possible printable characters, and they deserve special mention. The last 64 codes allow tabbing without the TAB function.

Instruction	Output 	
10 PRINT CHR\$(202);"*" 20 A\$=CHR\$(192+I): PRINT A\$;"*"	<pre>* in the 10th position * in the Ith position</pre>	

Graphics Codes

The codes from 128 to 191 are graphic characters that are made up of six small rectangles, or *pixels*, arranged in three rows and two columns for each character. Each character entirely fills one of the 1024 print positions on the screen. Each pixel is either on (bright) or off (blank), depending on the code. For example, the graphic character 134 looks like this:

where is off, and and is on.

The result of PRINT CHR\$(134) would be the printing of the graphics character shown above.

Graphic to Binary Conversion

Each character code can be thought of as a visual representation of a six-bit binary number from 000000 to 111111, corresponding to all 64 possible combinations of bits. The character's code value can be computed by translating each off pixel to a 0 and each on pixel to a 1. Then the positions of the 1s can be masked into the six-bit binary number. The value of that number plus 128 is equal to the code value.

Thus the graphics character whose code is 134 is

and so the statement PRINT CHR\$(134) produces that graphic symbol. The graphic character whose code is 191 is the one in which all pixels are on, resulting in a large rectangle of light.

Problem 6.2

Display the graphics characters on the video screen.

Suggestions

- Investigate the character obtained from CHR\$(23). Printing it causes the TRS-80 video screen to go to double-wide character format. Printing CHR\$(28) causes return to the normal mode for screen output.
- Modify the program to output the graphic characters in double-wide format.

Problem 6.3

Create a dynamic visual display using the TRS-80 graphics characters.

```
10 'filename:"s6p3"
20 ' purpose: random pattern of characters
30 ' Battlechar Galactica!
40 ' author: Jdr 5/79
50 '
60 CLS
70 FOR I=1 TO 1024
80 PRINT@RND(1024)-1*CHR$(RND(64)+127);
90 NEXT I
100 END
```


74

Discussion
Suggestions

- A very simple program can create an attractive visual display.
- Modify the program so that the display uses double-wide graphics characters.
- Modify the program so that it outputs all TRS-80 characters in the display.

Problem 6.4

Write a program that will put a box around a message near the center of the screen.

```
10 'filename:"sór4"
20 ' purpose: place a message in a box
30 '
      author: jdr 8/80
40 '
50 CLS : CLEAR 300
60 PRINT "input message with less than 60 characters"
70 PRINT@67,"";
80 INPUT T$
85 T$=" "+T$+" "
90 CLS
100 L=INT(64-LEN(T$))/2-1
110 M=448
120 PRINTOM-65+L, STRING$(LEN(T$)+2, CHR$(131));
130 PRINTEM+63+L, STRING#(LEN(T$)+2, CHR$(176));
140 FOR I=1 TO 3
150
      K=M+L+64*(I-2)-1
160
      PRINT@K, CHR$(170); : PRINT@K+LEN(T$)+1, CHR$(149);
170 NEXT I
180 PRINTEM+L,T$;
190 IF INKEY$="" THEN 190 ELSE 50
200 END
```


Chapter 6 Character Graphics

Chapter 6 Character Graphics

- The variable L points to the position of the screen where the message will be printed.
- Look at the output from program G6P2 to see the characters corresponding to CHR\$(131), CHR\$(176), CHR\$(170), and CHR\$(149). They are used here as the top horizontal bar, bottom horizontal bar, left vertical bar, and right vertical bar respectively.
- Notice how the values of the variables M and L are used to position the box and message.

Suggestions

- Write the boxing portion of the program as a subroutine that can be called to box and center a message.
- Generalize the program so that the user can specify the position of the boxed message.

Problem 6.5

Write a program that will display a message as a moving banner similar to the flashing light messages appearing at night on the side of a blimp.

```
Solution
           10 'filename:"s6p5"
           20 ' purpose: moving banner of characters
           30 ' author : jdr 8/80
           40 '
           45 CLS : CLEAR 1000 : DEFINT A-Z
           46 INPUT"input message to be displayed";B$ : Z=25 'speed factor
           47 C$="" : FOR I=1 TO 15 : C$=C$+CHR$(128+RND(63))+" " : NEXT I
           48 D$=" " : FOR I=1 TO 15 : D$=" "+CHR$(128+RND(63))+D$ : NEXT I
           60 B$=STRING$(19,32)+C$+" "+B$+" "+D$+STRING$(19,32)
          65 PRINT@528, CHR$(149); : PRINT@549, CHR$(170);
          70 I=1 : FOR J=1 TO 1000 : PRINT@529, MID$(B$, I, 20);
          75 I=I+1 : IF I>LEN(B$)-20 THEN I=1
          76 FOR K=1 TO Z : NEXT K : NEXT J
          100 END
```


Chapter 6 Character Graphics

- 15 randomly selected graphics characters are affixed to the beginning and the end of the message to be displayed.
- 19 blanks are affixed to the beginning and end of the string to be displayed.
- A 20 character wide window is provided for the message to move through and be displayed.
- The motion is obtained by using the MID\$ function to select the 20 characters to be printed by the PRINT@ statement.
- A delay loop is needed to slow the TRS-80 down so that the message can be read.

Suggestions

- Convert the program to a subroutine that can be called to create a moving banner out of a message.
- Modify the program so that the width of the banner is specified by the user of the program.
- Modify the program so that the position of the banner can be specified by the user of the program.
- Convert the program to produce a double-wide banner.

Problem 6.6

Produce a screen full of oversize random digits.

```
Solution
              10 'filename:"sóró"
              20 ' purpose: produce screen full of large digits
              30 ' author: jdr 6/79
              40 '
              50 CLS
              60 CLEAR 100
              70 RANDOM
              80 DIM D$(10)
              90 Es=CHR$(26)+CHR$(8)+CHR$(8) /linefeed-backspace-backspace
              100 FOR I=1 TO 10
                      A$=""
              110
              120
                      FOR J=1 TO 4
              130
                         READ X
                         A$=A$+CHR$(X)
              140
              150
                         IF J=2 THEN A$=A$+E$
                      NEXT J
               160
               170
                      D$( I )=A$
               180 NEXT I
               190 DATA 151,171,141,142,175,128,143,143
               200 DATA 179,187,141,140,179,181,140,143
               210 DATA 149,176,131,143,183,179,140,143
               220 DATA 181,176,141,142,131,155,138,128
               230 DATA 183,187,141,142,183,187,128,143
               240 FOR K=0 TO 60 STEP 3
                      FOR L=K TO 896+K STEP 128
               250
                         C=RND(10)
               260
               270
                         PRINT@L,D$(C);
               280
                      NEXT L
               290 NEXT K
               300 IF INKEY$="" THEN 300
               310 END
```


Chapter 6 Character Graphics

- This program couples the table-driven technique with character graphics.
- Notice the speed with which each oversize digit appears on the screen. This is accomplished by concatenating a sequence of linefeed-backspace-backspace characters (CHR\$(26)+CHR\$(8)+CHR\$(8)) in the middle of the four graphics characters that create each large digit.
- The enlarged digit is constructed from 4 graphics characters. For example, the first four numbers in the DATA statements are 151, 171, 141, and 142 are the numbers of the graphic characters used to construct the oversize digit zero. The first two, 151 and 171 are the top of the zero.

The linefeed+backspace+backspace allows the next two numbers, 141 and 142, to be the bottom of the zero.

When put together by the program, D\$(1) is defined by D\$(1)=CHR\$(151)+CHR\$(171)+CHR\$(26)+CHR\$(8) +CHR\$(8)+CHR\$(141)+CHR\$(142) and becomes available for printing a large digit zero.

Suggestions

- Modify the DATA statements so that strange symbols instead of digits are displayed.
- Write a program that uses the ideas of the oversize digits to output the value of a numeric variable in oversize form at the center of the screen.
- Modify the program so that the oversize digits disappear one at a time from left to right, top to bottom.

Chapter 6 Character Graphics

Problem 6.7

Write a program that will display a large-digit digital clock showing hour and minutes in the lower left-hand corner of the screen.

```
10 'filename:"s6p7"
20 ' purpose: disital clock in lower left screen
30 ′
      author: jdr 8/80
40 '
50 CLS : CLEAR 300
80 DIM D$(10),T(5)
90 E$=CHR$(26)+CHR$(8)+CHR$(8)
100 FOR I=1 TO 10
       A$=""
110
120
       FOR J=1 TO 4
130
          READ X
140
          A$=A$+CHR$(X)
150
          IF J=2 THEN A$=A$+E$
160
       NEXT J
170
       D$( I )=A$
180 NEXT I
190 DATA 151,171,141,142,175,128,143,143
200 DATA 179,187,141,140,179,181,140,143
210 DATA 149,176,131,143,183,179,140,143
220 DATA 181,176,141,142,131,155,138,128
230 DATA 183, 187, 141, 142, 183, 187, 128, 143
240 'display time
250 X$=MID$(TIME$,10,5) : GOSUB 1000
260 'continuous check to see if time changes
270 Y$=X$ : X$=MID$(TIME$,10,5)
280 IF X$<>Y$
      THEN GOSUB 1000
      ELSE 270
290 GOTO 250
1000 'disital clock subroutine
1030 J=0
1040 FOR I=1 TO 5
1050
        IF I=3 THEN 1080
1060
        J=J+1
1070
        T(J)=VAL(MID$(X$,I,1))+1
1080 NEXT I
1090 J=1 : K=0 : L=0
1100 FOR I=1 TO 5
        IF I=3
1110
          THEN PRINT@902, CHR$(140); :
               PRINT@966, CHR$(131); : L=L+2
          ELSE K=T(J) : PRINT@896+L,D$(K); :
                J=J+1 : L=L+3
1120 NEXT I
1130 RETURN
9999 END
```


Chapter 6 Character Graphics

- The oversize digit routines from program G6P6 are used.
- The function TIME\$ returns the date and time established by TRSDOS commands. The last eight characters are the time. The first five of these are 2-digit hour, a colon, and 2-digit minute count. Thus MID\$(TIME\$,10,5) extracts the required 5 characters from TIME\$.

Suggestions

- Modify the program so that the user can specify the position of the clock on the screen.
- Alter the program so that hours, minutes, and seconds are displayed.

Pixel Graphics

In the previous chapter it was shown that each graphic character is composed of a 3 x 2 rectangle of pixels. The screen, which contains 16 rows and 64 columns of characters, equivalently contains 48 rows and 128 columns of pixels. While the screen address of a character is a single number between 0 and 1023, the screen address of a pixel is a pair of numbers specifying its two-dimensional position or coordinates on the screen. A programmer can address a single pixel with X and Y coordinates, using the column numbers 0 to 127 for X and the row numbers 0 to 47 for Y. See figure 7.1.

Figure 7.1 Pixel Addressing

The SET command turns on the pixel whose screen address is in X,Y coordinate form in parentheses immediately following the word SET.

Instruction	Outrut	
ring ples and other space rings per firm polit bear from		
10 SET(0,0)	Upper left pixel is turned on	
20 SET(2,4)	Second rixel on fourth row	
30 SET(127,47)	Last pixel on 47th row	
40 SET(0,47)	Bottom left pixel	
50 SET(127,0)	Top right pixel	
60 POKE 15360, 128+21	See text below	
70 SET(0,0): SET(0,1): SET(0,2)	See text below	

The last two statements above have the same effect, except that the POKE is much faster. Both light up the top left pixels like this:

RESET

The RESET command turns off the pixel whose screen address is in X,Y coordinate form.

POINT

The POINT function returns a zero (false) if the pixel at the X,Y coordinates that make up its argument is off, and a -1 (true) if that pixel is on. Thus it is useful when testing if a particular spot is on or off.

10 IF POINT(0,0) THEN RESET(0,0)

20 IF POINT(X,Y) THEN SET(X+1,Y+1): RESET(X,Y)

Chapter 7 Pixel Graphics

Problem 7.1

Write a program to draw a line using pixel graphics. The user is to input the X,Y coordinates of the two end points.

```
10 'filename:"s7p1"
20 ' purpose: draw a straight line given two end points
      author: jdr 8/80
40 '
50 INPUT "input X,Y coordinates of end point 1"; X1,Y1
60 INPUT "input X,Y coordinates of end point 2"; X2,Y2
70 IF 100*X1+Y1 > 100*X2+Y2
     THEN T=X1 : X1=X2 : X2=T : T=Y1 : Y1=Y2 : Y2=T
80 GOSUB 1000 'draw the line
90 IF INKEY$="" THEN 90
100 STOP
1000 'subroutine to draw picture on screen
1010 CLS
1100 IF X1>127 OR X2>127 OR Y1>47 OR Y2>47
       THEN PRINT "line will not fit, cannot continue" :
            RETURN
1110 IF X1=X2 THEN 1270
1120 IF Y1=Y2 THEN 1310
1130 M=(Y2-Y1)/(X2-X1) 'calculate slope of line
1140 B=Y1-M*X1 'calculate w-intercept
1150 IF M>0
       THEN IF M<=1 THEN 1220 ELSE 1170
       ELSE IF M>=-1 THEN 1220 ELSE 1160
1160 T=Y1 : Y1=Y2 : Y2=T 'slore between -1 and -infinity
1170 FOR J=Y1 TO Y2 'slope between 1 and infinity
1180
        I = INT((J-B)/M+0.5)
1190
        SET(I,J)
1200 NEXT J
1210 GOTO 1340
1220 FOR I=X1 TO X2 'slope between -1 and 1
1230
        J=INT(M*I+B+0.5)
1240
        SET(I,J)
1250 NEXT I
1260 GOTO 1340
1270 FOR J=Y1 TO Y2 'no slope, vertical line
1280
        SET(X1,J)
1290 NEXT J
1300 GOTO 1340
1310 FOR I=X1 TO X2 'zero slore, horizontal line
1320
        SET(I,Y1)
1330 NEXT I
1340 RETURN
9999 END
```


Chapter 7 Pixel Graphics

Chapter 7 Pixel Graphics

- The subroutine used to draw the line is basically the same as that in program G5P4 with all PRINT@ statements replaced with appropriate SET commands.
- The two points are ordered in line 70 so that the drawing of the line can proceed from left to right on the screen.

Problem 7.2

Draw a circle centered at a point X,Y with radius R.

```
10 'filename:"s7p2"
20 ' purpose: draw a circle
30 '
      author: jdr 8/80
40 '
50 INPUT "input X,Y coordinates of circle's center";X1,Y1
60 INPUT "input radius of circle" ?R
70 CLS : E=128/48
80 FOR T=0 TO 6.3 STEP 1/(R+R)
90
      X=INT(E*R*COS(T)+X1+0.5)
      Y=INT(R*SIN(T)+Y1+0.5)
100
      SET(X,Y)
110
120 NEXT T
130 IF INKEY$="" THEN 130
9999 END
```


Chapter 7 Pixel Graphics

- The polar coordinate form for the equation of a circle is used.
- Since pixels are not square, the variable E was used to help overcome inherent distortion.

Suggestions

- Modify the program so that there is a multiplier variable in front of R*SIN(T) as well as R*COS(T). By varying these values, ellipses can be drawn.
- Write a program that draws circles at randomly chosen points on the screen. The radius of each circle can be selected at random also.

```
graphics.
                10 'filename:"s7p3"
Solution
                20 ' purpose: draw picture of Massachusetts
                30 ' author : jdr 8/80
                40 '
                50 XINC=35 : YINC=4 : A$="Chelmsford" : X=50 : Y=1 : 5=0
                70 GOSUB 1000
                152 GOSUB 6000
                155 RESTORE
                160 IF INKEY$="" THEN GOTO 160 ELSE GOTO 45
                1000 'subroutine to draw sicture on screen
                1010 CLS
                1020 READ N 'number of straight lines to draw in picture
                1030 FOR L=1 TO N
                1040
                        READ C.D
                        X1=INT(C/100) : Y1=C-100*X1
                1050
                        X2=INT(D/100) : Y2=D-100*X2
                1060
                1080 X1=X1+XINC : Y1=Y1+YINC 'relocate coordinates
                1090 X2=X2+XINC : Y2=Y2+YINC
                1100 IF X1>127 OR X2>127 OR Y1>47 OR Y2>47
                        THEN PRINT "picture will not fit, cannot continue" :
                             RETURN
                1110 IF X1=X2 THEN 1270
                1120 IF Y1=Y2 THEN 1310
                1130 M=(Y2-Y1)/(X2-X1) 'calculate slope of line
                1140 B=Y1-M*X1 'calculate y-intercept
                1150 IF M>0
                        THEN IF M<=1 THEN 1220 ELSE 1170
                        ELSE IF M>=-1 THEN 1220 ELSE 1160
                 1160 T=Y1 : Y1=Y2 : Y2=T 'slore between -1 and -infinity
                 1170 FOR J=Y1 TO Y2 'slope between 1 and infinity
                         I=INT((J-B)/M+0.5)
                 1180
                         SET(I,J) 1
                 1190
                 1200 NEXT J
                 1210 GOTO 1340
                 1220 FOR I=X1 TO X2 'slope between -1 and 1
                         J=INT(MxI+B+0.5)
                 1230
                 1240
                         SET(I,J)
                 1250 NEXT I
                 1260 GOTO 1340
                 1270 FOR J=Y1 TO Y2 'no slope, vertical line
                         SET(X1,J)
                 1280
                 1290 NEXT J
                 1300 GOTO 1340
                 1310 FOR I=X1 TO X2 'zero slope, horizontal line
                         SET(I,Y1)
                 1320
                 1330 NEXT I
```

Draw an outline of the state of Massachusetts using pixel

Problem 7.3

```
1340 IF S=1 RETURN
1345 NEXT L
1350 RESTORE : S=1
1360 RETURN
4000 DATA 42,110,602,111,702,802,4602,112,4712,1613,1713
4010 DATA 4701,4801,4900,5600,5701,5702,6203,6203,5802,6302
4020 DATA 5904,6104,5605,5905,5506,5507,5608,6008,6009,6110
4030 DATA 6210,6412,6513,6614,6714,7514,7110,7110,7209,7409
4040 DATA 7310,7510,7511,7511,7611,7914,7415,7815,7816,7816
4050 DATA 6616,7416,6315,6517,6417,6417,6015,6315,5916,5916
4060 DATA 5616,5816,5316,5518,5116,5216,5418,5418,4915,5015
4070 DATA 4714,4814,4613,4713,6320,6920,6419,6619,6919,6919
4080 DATA 7421,7821,7720,7820
6000 'draw line from town name to position in map
6010 X1=8 : Y1=43 : X2=X+XINC : Y2=Y+YINC
6020 PRINT@960,A$; : SET(X2,Y2) : GOSUB 1130
6024 FOR J=1 TO 100
6025
        FOR I=1 TO 100 : NEXT I : RESET (X2,Y2)
6026
        FOR I=1 TO 100 : NEXT I : SET (X2, Y2)
6027 NEXT J
6030 RETURN
9999 END
```


Chapter 7 Pixel Graphics

Chapter 7 Pixel Graphics

- Again, the basic line drawing subroutine that has been used in previous programs appears at lines 1000 and beyond with SET commands doing the drawing on the screen.
- The DATA statements provide end points of the lines that are drawn to form the picture.
- As an extra flourish, the town of Chelmsford is singled out for special identification.
- Finally with panache, the position of the town blinks on and off.

Suggestions

- Modify the program to give the user a menu of cities to choose from, with the program then drawing a line from the town's name to its position in the state.
- Modify the program so that the town name is printed above the town's position, so that a vertical line can connect the town name and the pixel locating the town's position.

Problem 7.4

Write a program that will produce a smile face at a position on the screen specified by the user.

```
10 'filename:"s7r4"
20 ' purpose: smile face w/ mobility
30 ' author : jdr 8/80
40 '
45 CLS
50 INPUT input position of picture ";XINC,YINC
60 GOSUB 1000
155 RESTORE
160 IF INKEY$="" THEN GOTO 160 ELSE GOTO 45
1000 'subroutine to draw micture on screen
1010 CLS
1020 READ N 'number of straight lines to draw in picture
1030 FOR L=1 TO N
1040
        READ C.D
1050
        X1=INT(C/100) : Y1=C-100*X1
1060
        X2=INT(D/100) : Y2=D-100*X2
1080 X1=X1+XINC : Y1=Y1+YINC 'relocate coordinates
1090 X2=X2+XINC : Y2=Y2+YINC
1100 IF X1>127 OR X2>127 OR Y1>47 OR Y2>47
       THEN PRINT "picture will not fit, cannot continue":
            RETURN
1110 IF X1=X2 THEN 1270
1120 IF Y1=Y2 THEN 1310
```

```
1130 M=(Y2-Y1)/(X2-X1) 'calculate slore of line
1140 B=Y1-M*X1 'calculate w-intercept
1150 IF M>0
       THEN IF M<=1 THEN 1220 ELSE 1170
       ELSE IF M>=-1 THEN 1220 ELSE 1160
1160 T=Y1 : Y1=Y2 : Y2=T 'slore between -1 and -infinits
1170 FOR J=Y1 TO Y2 'slope between 1 and infinits
1180
        I = INT((J-B)/M+0.5)
1190
        SET(I,J)
1200 NEXT J
1210 GOTO 1340
1220 FOR I=X1 TO X2 'slope between -1 and 1
        J=INT(M*I+B+0.5)
1230
1240
        SET(I,J)
1250 NEXT I
1260 GOTO 1340
1270 FOR J=Y1 TO Y2 'no slope, vertical line
1280
        SET(X1,J)
1290 NEXT J
1300 GOTO 1340
1310 FOR I=X1 TO X2 'zero slore, horizontal line
1320
        SET(I,Y1)
1330 NEXT I
1340 NEXT L
1350 RETURN
4000 DATA 25,1200,1202,1300,1302,3000,3002,3100,3102,7,9
4010 DATA 107,109,4207,4209,4307,4309,209,210,309,310,4009,4010
4020 DATA 4109,4110,410,411,510,511,3810,3811,3910,3911,611,611
4030 DATA 711,711,3611,3611,3711,3711,612,1112,3212,3712
4040 DATA 813,1513,2813,3513,1214,3114
9999 END
```


- Notice the similarity between this and the previous program. The generality of this approach for producing graphics is quite astonishing.
- Modify the program so that a circle delineating the head is drawn around the eyes and smile.

```
10 'filename:"47p5"
Solution
           20 ' purpose: stand up comedian doing impersonations
           30 ' author : jdr 8/80
           41 DIM W$(15),C$(15)
           42 FOR I=1 TO 15
                 READ W$(I),C$(I)
           44 NEXT I
           45 RANDOM
           46 CLS
           50 XINC=0 : YINC=12
           51 PRINT@26, "And now, heeeeeres John Binary ..."
           52 FOR I=1 TO 375 : NEXT I
           60 GOSUB 1000 'draw smile face
           61 FOR Q=1 TO 15 : PRINT@25, "for ms ";
                 IF Q=1 THEN PRINT@32, "first";
                          ELSE IF Q=15 THEN PRINT@32,"last";
                                       ELSE PRINT@36," "; : PRINT@32,"next";
                PRINT@POS(0)+1, "impression ...";
           63
                PRINT@94, W$(Q);
           65 FOR I=1 TO 375 : NEXT I
           76 A$=C$(Q)
           77 A$=A$+CHR$(191)
           80 GOSUB 7000
           170 PRINT@94, STRING$(33,32) : FOR I=1 TO 350 : NEXT I : NEXT Q
           175 PRINT@25,STRING$(33,32); : FOR I=1 TO 500 : NEXT I
           180 PRINT@25,"thank you ..."
           185 FOR I=1 TO 1525+RND(1000) : NEXT I
           190 PRINT@271," "; : PRINT@262," "; : FOR I=1 TO 50 : NEXT I
           200 PRINT@271, CHR$(191); : PRINT@262, CHR$(191);
           210 IF INKEY$="" THEN 185
            220 STOP
            1000 'subroutine to draw picture on screen
            1010 CLS
            1020 READ N'number of straight lines to draw in ricture
            1030 FOR L=1 TO N
                    READ C.D
            1040
                    X1=INT(C/100); Y1=C-100*X1
            1050
                    X2=INT(D/100) : Y2=D-100*X2
            1060
            1080 X1=X1+XINC: Y1=Y1+YINC 'relocate coordinates
            1090 X2=X2+XINC : Y2=Y2+YINC
            1100 IF X1>127 OR X2>127 OR Y1>47 OR Y2>47
                   THEN PRINT "picture will not fit, cannot continue" :
                        RETURN
            1110 IF X1=X2 THEN 1270
            1120 IF Y1=Y2 THEN 1310
```

```
1130 M=(Y2-Y1)/(X2-X1) 'calculate slore of line
1140 B=Y1-M*X1 'calculate w-intercept
1150 IF M>0
       THEN IF M<=1 THEN 1220 ELSE 1170
       ELSE IF N>=-1 THEN 1220 ELSE 1160
1160 T=Y1 : Y1=Y2 : Y2=T 'slore between -1 and -infinity
1170 FOR J=Y1 TO Y2 'slore between 1 and infinity
        I = INT((J-B)/M+0.5)
1180
1190
        SET(I,J)
1200 NEXT J
1210 GOTO 1340
1220 FOR I=X1 TO X2 'slope between -1 and 1
1230
        J=INT(M*I+B+0.5)
1240
        SET(I,J)
1250 NEXT I
1260 GOTO 1340
1270 FOR J=Y1 TO Y2 'no slope, vertical line
1280
        SET(X1,J)
1290 NEXT J
1300 GOTO 1340
1310 FOR I=X1 TO X2 'zero slope, horizontal line
1320
        SET(I,Y1)
1330 NEXT I
1340 NEXT L
1350 RETURN
3990 DATA "Arnold Palmer","444","Little Orphan Annie","ooo"
3991 DATA "Orson Welles","###","Jimmy The Greek","%%%%
3992 DATA "Rona Barrett","'!'","3-sear-old child","? ?"
3993 DATA "a math teacher","1+1","a math student","= 3"
3994 DATA "Bozo the Clown"," +x+", "Gloria Steinem", "= ="
3995 DATA "NBC censor","* *","Dean Martin","J&E"
3996 DATA "Irma La Douce","$ $","Hush Hefner","T&A"
3997 DATA "librarian in Boston's combat zone";".o0"
4000 DATA 25,1200,1202,1300,1302,3000,3002,3100,3102,7,9
4010 DATA 107, 109, 4207, 4209, 4307, 4309, 209, 210, 309, 310, 4009, 4010
4020 DATA 4109,4110,410,411,510,511,3810,3811,3910,3911,611,611
4030 DATA 711,711,3611,3611,3711,3711,612,1112,3212,3712
4040 DATA 813, 1513, 2813, 3513, 1214, 3114
7000 'impersonation subroutine
7010 FOR I=1 TO 4 : X$=MID$(A$,I,1)
7020 ·
        PRINT@262,X$; : PRINT@271,X$;
7030
        FOR J=1 TO 150
7040
        NEXT J
7045
        IF I=3 THEN FOR J=1 TO 150 : NEXT J
7050 NEXT I
7060 RETURN
9999 END
```


Chapter 7 Pixel Graphics

104

Chapter 7 Pixel Graphics

Chapter 7 Pixel Graphics

- The program performs 15 impressions.
- Notice the simple motion that the eyes give the smile face.
- This program is a crude beginning to what might be called cartooning.
- The stand up comic's name is John Binary. Of course, his idol is John Byner.

Suggestions

• Turn the smile-faced impressionist of this program into a comedian that delivers short, snappy one-liners. His name could be Grinny Youngman. "Take my computer — please!"

Motion Graphics

The previous chapters have shown you programs ranging widely in sophistication from a simple picture in the program Woodstock to a computerized map drawn using pixel graphics. There was little motion in the graphics examples because it is a difficult proposition to plan on paper and realize in code the effect of movement. Many factors contribute to this difficulty. The speed of the computer is one such factor because there is usually a lot of calculation when motion is involved. The translation of where each point "moves to" requires a calculation. The resolution of the video screen is another factor governing the way a picture looks. If the picture is rotated, then distortion can occur. Much planning must take place prior to writing a program. A third factor is that the BASIC programming language was not designed to facilitate the many primitive graphics operations that would be useful to have. Another, and probably the most important factor impeding a computer's ability to produce motion, is a lack of imagination and willingness to experiment on the part of the computer's programmer.

We will show you some programs that will illustrate the beginnings of how motion can be produced and the visual diversity and delight it can provide.

Bouncing Dots

In many games, as well as in serious graphing applications, you will want to have a dot move in a straight direction until it meets an obstacle and keeps moving in a new direction. Consider the possible bounces:

Vertical Wall Collision

Each moving dot changes its X direction by an amount DX, and its Y direction by an amount DY. In all the conditions above, the Y direction increment DY never changes sign. In conditions 1 and 2, DX starts as positive, but changes sign to negative on the bounce.

If you investigate the four possible bounces from a horizontal wall, you will find that, as expected, the only change is the reversal of the sign of DY.

This understanding is all that is necessary to graph a moving and bouncing dot. The dot is a pixel drawn with a SET command. The coordinates of the SET are X and Y. The movement is provided by a SET at a new position X+DX, Y+DY followed by a RESET of the old dot at X,Y.

- 100 SET(X,Y)
- 110 X=X+DX: Y=Y+DY
- 120 SET(X,Y)
- 130 RESET(X-DX,Y-DY)
- 140 GOTO 110

To bounce the dot off the wall, you must "feel" ahead to see if any part of the surrounding territory is occupied. It is not enough to just sense the status of the next point. For example, suppose the dot is moving up and to the right, and it encounters a horizontal wall.

If the "next place" is the only point that is considered on a bounce, the computer couldn't tell if the wall were horizontal or vertical.

The only way to judge which direction increment, the DX or the DY, needs to change sign is to sense in all four directions.

There is something to the right of the dot, so reverse the sign of DX

Problem 8.1

Write a program that bounces a dot off any wall set up in either a vertical or horizontal position.

Solution

```
10 'filename:"s8r1"
20 ' purpose: bouncins dot prosram
      author: jps 2/80
40 INPUT "DX, DY BETWEEN 1 AND 2 INCLUSIVE" ; DX, DY
50 INPUT "STARTING COORDINATES" ; X, Y: CLS
60 FOR I=0 TO 127 ′ this loop draws horizontal boundaries
70
     SET(I,0): SET(I,1): SET(I,46): SET(I,47)
80 NEXT I
90 FOR I=0 TO 47 ' draw vertical boundaries
      SET(0,1): SET(1,1): SET(126,1): SET(127,1)
100
110 NEXT I
120 SET(X,Y) '
                 put a point at location X,Y
130 ′
         change direction of dot if necessary
140 IF POINT(X+DX,Y) OR POINT(X-DX,Y) DX=-DX
150 IF POINT(X,Y+DY) OR POINT(X,Y-DY) DY=-DY
160 X=X+DX: Y=Y+DY: GOTO 120
9999 END
```

Discussion

- The program allows DX and DY to be defined for any value between 1 and 2.
- The walls are built on the four sides of the screen.

- Modify the program so that the rectangular area in which the dot bounces can be specified by the user.
- Turn the bouncing dot into a blob and write a program to bounce the blob off horizontal and vertical walls.

Chapter 8 Motion Graphics

Chapter 8 Motion Graphics

Problem 8.2

Write a program to produce a visual display by bouncing a dot off randomly placed lines on the video screen.

```
Solution
              10 'filename:"s8r2"
              20 ' purpose: creating computer ant
              30 '
                    author: sps 2/79
                    next line initializes variables; clears screen
              50 RANDOM: CLEAR 1000: DEFSTR A: DEFINT B-Z: E=1: P=-1: CLS
              60 CLOSE: PRINT " PRESS:"
              70 PRINT "
                          L-
                                 TO LOOK AT OLD PICTURES"
              80 PRINT "
                            M- TO CREATE NEW PICTURES"
              90 A=INKEY$: IF A="" THEN 90
              100 IF A="L" THEN 790
              110 '
                          user wants to create new art
              120 CLS
              130 ′
                       the next loop draws 6 random lines on the screen
              140 '
                                 (3 vertical, 3 horizontal)
              150 FOR T=1 TO 3
              160 '
                        set ur random variables
              170
                     BO=RND(25)*2+4: B1=B+RND(50-,5*B)*2: B2=RND(21)*2+4
              180
                     C=RND(11)*2+4: C1=C+RND(23-.5*C)*2: C2=RND(60)*2+4
              190 '
                        draw the lines using the variables
              200 .
                     FOR N=BO TO B1: SET(N+B2): NEXT N
              210
                     FOR N=C TO C1: SET(C2,N): NEXT N
              220 NEXT T
              230 ' the next two lines initialize the direction of the dot
              240 S=INT(RND(100)/50); IF S=0 THEN S=-1
              250 T=INT(RND(100)/50): IF T=0 THEN T=-1
              260 (
                      the next two lines draw a boundary around the screen
              270 FOR N=1 TO 125: SET(N+3): SET(N+47): NEXT N
              280 FOR N=4 TO 46: SET(1,N): SET(125,N): NEXT N
              290 4
                       next line sives the point a starting spot &
             300 '
                           makes sure it isn't occuried
              310 X=RND(61)*2+2: Y=RND(20)*2+5: IF POINT(X+Y) THEN 310
                        print the command statement on the screen
              330 PRINT@ 10, "COMMAND(P,S, ,R,E):
              340 '
              350 4
              360 '
                         the rest is the main portion of the program
                      next 4 lines change the direction if necessary
              380 IF POINT(X+1,Y) THEN S=-1
              390 IF POINT(X-1,Y) THEN S=1
              400 IF POINT(X,Y+1) THEN T=-1
              410 IF POINT(X,Y-1) THEN T=1
                       previous point is blanked if P=1
              430 IF P=1 THEN RESET(X,Y)
```

```
440 ' next 4 lines actually tell the dot where to move
450 IF S=1 THEN X=X+1
460 IF S=-1 THEN X=X-1
470 IF T=1 THEN Y=Y+1
480 IF T=-1 THEN Y=Y-1
490 ' next line erases point if it was white and E=1
500 IF POINT(X,Y) AND E=1 THEN RESET(X,Y) ELSE SET(X,Y)
510 '
       the next line checks to see if a Kes was pressed-
520 /
         if not, then so back to the main program
530 A=INKEY$: IF A="" THEN 380
540 '
         print the letter that was pressed in the corner
550 PRINT@ 30, A;
560 /
            execute the command
570 (
         reverse the dot?
580 IF A="R" THEN T=-T: S=-S: GOTO 330
        erase the dots trail?
590 (
600 IF A="P" THEN P=-P: GOTO 330
610 '
         erase the dot when it runs over another?
620 IF A="E" THEN E=-E: GOTO 330
630 '
         stor the motion of the dot?
640 IF A<>" " THEN 670
650 A=INKEY$: IF A="" THEN 650 ELSE 330
         store the picture on disk?
670 IF A<>"S" THEN 330
680 '
        store the file using random access
690 OPEN "R",1,"SCRNGRPH/DAT"/ open the file for access
700 FIELD 1, 255 AS B$: M=LOF(1): I=15359' initialize
710 A=""' nullify A$
720 ' the next 5 lines copy the screen to disk
730 I=I+1
740 IF LEN(A)<255 THEN 770
750 M=M+1: LSET B$=A: FUT 1,M
760 IF M/4=INT(M/4) THEN 60 ELSE 710
770 A=A+CHR$(PEEK(I)): POKE I,46: GOTO 730
780 ′
          this portion copies the art on disk to the screen
790 OPEN "R",1,"SCRNGRPH/DAT": FIELD 1, 255 AS B$
800 IF LOF(1)<>0 GOTO 830
810 PRINT "SORRY, BUT THERE IS NO ART ON FILE... <<CR>>";
820 A=INKEY$: IF A="" THEN 820 ELSE 60
830 CLS
840 FOR C=1 TO LOF(1) STEP 4
       FOR D=O TO 3: GET 1,C+D: PRINT B$: NEXT D
850
       PRINT @970, " <<CR>>";
860
       A=INKEY$: IF A="" THEN 870 ELSE PRINT
870
880 NEXT C
9999 END
```


Chapter 8 Motion Graphics

Chapter 8 Motion Graphics

- The program allows the user to participate in the way the graphic design proceeds.
 - Typing an "R" reverses the dot's direction.
 - Typing a "P" causes the dot's trail to be erased.
 - Typing an "E" erases a dot that is run over by the moving dot.
 - Typing a "" freezes the dot's motion.
- The program allows the user to save on disk the screen contents when a particularly interesting pattern is perceived.

 Typing an "S" stores the picture on a direct access disk file.
- All user input is through INKEY\$. Depressing the ENTER key accidentally after typing any of the above keys can cause unpredictable and weird things to happen to the screen pictures.

Suggestions

• When a screen picture is saved, the status of the picture is lost and the picture can not be continued. Modify the program so that the dot picks up where it left off when interrupted by the typing of an "S".

```
Solution
             10 'filename:"s8p3"
            20 ' prosram: marquee display
            30 4
                   author: jdr 8/80
            40 '
            41 CLS : CLEAR 300 : DEFINT A-Z
            42 Z=600
            43 READ E$,F$,G$
            44 READ A$,B$,C$,R$
            45 N=20 : M=5
            46 'n=20, m=3 or n=20, m=5 or mod lines 60 å 120 step 2*p
            47 'n=20, m=6, modify step in line 60 to be 2*p-1
            50 FOR Q=1 TO 100
            52 P=Q-1NT(Q/M)*M+1
            53 IF P<>2 THEN PRINT@Z-202,F$; : PRINT@Z-138,G$;
                       ELSE PRINT@Z-202,R$+R$+R$; : PRINT@Z-138,R$+R$;
            60 FOR I=P TO 63 STEP P
                   J1=64-I+INT(I/64)*64 : J3=127-J1 : J2=63-J1 : J4=64+J1
            61
                   SET (J1,0) : SET (J3,0) : SET (J2,47) : SET (J4,47)
            62
            63
                   SET (J1,1): SET (J3,1): SET (J2,46): SET (J4,46)
            64 IF I-INT(I/5)*5⇔0 THEN PRINT@Z-391,E$;
                                   ELSE PRINT0Z-391,R$+R$;
                   IF J1<=59 THEN RESET (J1+4,0) : RESET (J1+4,1)</pre>
            100
                             ELSE RESET (J1-60,0): RESET (J1-60,1)
            102
                   IF J2>=4 THEN RESET (J2-4,47): RESET (J2-4,46)
                            ELSE RESET (J2+60,47) : RESET (J2+60,46)
            105
                   IF J3>=68 THEN RESET (J3-4,0) : RESET (J3-4,1)
                             ELSE RESET (J3+60,0) : RESET (J3+60,1)
            107
                   IF J4<=123 THEN RESET (J4+4,47): RESET (J4+4,46)
                             ELSE RESET (J4-60,47) : RESET (J4-60,46)
            110 NEXT I
            115 IF P=1 THEN PRINT@Z+A$; : PRINT@Z+64,B$; : PRINT@Z+128,C$;
                        ELSE PRINT@Z,R$; : PRINT@Z+64,R$; : PRINT@Z+128,R$;
            120 FOR J=P TO 47 STEP P
                   SET (0,J): SET (1,J): SET (127,J): SET (126,J)
            121
            122
                   FOR K=1 TO N : NEXT K
            123
                   IF J > = 4 THEN RESET (0, J-4): RESET (1, J-4):
                               RESET (127, J-4): RESET (126, J-4)
            130 NEXT J
            993 DATA "
                               now playing"
            994 DATA "The Hedsehos
                                               That"
            995 DATA "
                         Ate Chelmsford"
            996 DATA "
                           starring", "Doug & Dinsdale", "
                                                           Piranha"
            997 DATA "
            998 NEXT Q
            999 END
```


Chapter 8 Motion Graphics

Chapter 8 Motion Graphics

- The marquee lights cycle from the center top toward the edges, then down the sides where they turn to converge at the center bottom of the screen.
- Some parameters have been built in to control speed, pattern, and cycle of the marquee lights.
- The movie's title and cast come and go giving added movement to the marquee.

- Run the program varying the parameters to get a feel for the type of visual displays that can be produced by the marquee.
- Experiment with the controlling loop structures to change the display. Some simple changes produce remarkable and unpredictable results.
- Change the size of the marquee.

Problem 8.4

Write a program that will cause a stick figure person to jump up and down on the video screen.

Solution

```
10 'filename:"s8r4"
20 ' purpose: bouncing Bentles
30 /
      author: jdr 8/80
40 '
50 CLEAR 1000 : CLS : RANDOM
60 GOSUB 1000 : GOSUB 2000 : GOSUB 3000
65 PRINT@259,A$; : PRINT@585,C$;
66 PRINT@408, "Hello, I'm bouncins Bentles.";
67 FOR I=1 TO 700 : NEXT I
68 PRINT@408, "I feel a bouncins fit comins on!";
69 FOR I=1 TO 500 : NEXT I : CLS
70 FOR X=3 TO 47 STEP 2
72 Y=X+256 : Z=100
     PRINT@X,A$; : PRINT@X+319,B$;
85 FOR I=1 TO Z : NEXT I : CLS
     PRINT@Y,A$; : PRINT@Y+326,C$;
90
93 FOR I=1 TO Z : NEXT I : IF X ♦ 47 THEN CLS
95 NEXT X
96 PRINT@408; "Geez; I'm pooped!";
98 FOR I=1 TO 500 : NEXT I
99 PRINT@408, "sood bye .....";
100 FOR I=1 TO 10000
       PRINT@RND(1023)-1," ";
110
120 NEXT I
160 STOP
1000 'bentles head
1010 A$=""
1020 FOR I=1 TO 74
1030
        READ X
1040
        IF X>=0
          THEN A$=A$+CHR$(128+X)
          ELSE A$=A$+CHR$(26)+STRING$(ABS(X),8)
1050 NEXT I
1060 DATA 63,3,3,3,3,3,3,3,51,51,19,3,43,21,-14
1070 DATA 63,0,32,60,60,16,0,62,3,3,43,20,42,21,-14
1080 DATA 63,0,63,0,0,63,0,63,0,63,0,42,21,42,21,-14
1090 DATA 63,0,63,48,48,63,0,63,48,48,58,21,42,21,-14
1100 DATA 15,12,12,12,12,12,44,12,12,12,12,12,12,14,5
1110 RETURN
2000 'bods - up
2010 B$=""
2020 FOR I=1 TO 85
        READ X
2030
2040
        IF X \ge 0
          THEN B$=B$+CHR$(128+X)
          ELSE B$=B$+CHR$(26)+STRING$(ABS(X),8)
```

```
2050 NEXT I
2060 DATA 11,52,0,0,0,0,0,42,0,0,0,0,0,32,30,1,-15
2070 DATA 2,13,12,12,12,12,46,12,12,12,12,12,12,7,-7
2080 DATA 42,-5,40,23,3,3,3,3,3,3,3,61,-9
2090 DATA 42,21,0,0,0,0,0,0,0,63,-9
2100 DATA 42,21,0,0,0,0,0,0,0,63,-9
2110 DATA 42,21,0,0,0,0,0,0,0,63,-10
2120 DATA 56,7,0,0,0,0,0,0,0,0,2,45,16
2130 RETURN
3000 'bods - down
3010 C$=""
3020 FOR I=1 TO 83
3030
        READ X
3040
        IF X>=0
          THEN C$=C$+CHR$(128+X)
          ELSE C$=C$+CHR$(26)+STRING$(ABS(X),8)
3050 NEXT I
3060 DATA 42,-10,8,12,12,12,12,12,12,12,12,12
3070 DATA 46,12,12,12,12,12,12,12,12,12,12,-10
3080 DATA 42,-6,63,3,3,3,3,3,3,3,3,3,43,21,-12
3090 DATA 63,0,0,0,0,0,0,0,0,0,0,42,21,-12
3100 DATA 63,0,0,0,0,0,0,0,0,0,0,42,21,-16
3120 RETURN
```


Chapter 8 Motion Graphics

Chapter 8 Motion Graphics

Chapter 8 Motion Graphics

- This program is an example of the kind of simple animation that can be programmed easily.
- Notice that the displaying of Bouncing Bentley is very rapid. Delay counting loops are incorporated at strategic positions to hold the picture for the viewer.
- The strings A\$, B\$, and C\$ provide the body parts that are printed and cause the animation to unfold.
- Modify the program so that Bouncing Bentley doesn't progress from left to right during the bouncing fit, but starts at the center and bounces left or right at random.
- Add some intermediate stances to the bounce that Bentley performs.
- Using the basic ideas of this program, write a program that causes a stick figure to walk across the screen.
- Combining the stand up comedian with the stick figure, write a program that causes the stick figure to "shuffle off to Buffalo".

Appendix A

ASCII Codes and Character Set

Appendix A ASCII Codes and Character Set

ASCII codes 192 through 255 are called space compression codes because printing one of these characters causes tabbing for 0 to 63 spaces.

TRS-80 GRAPHICS

