Cálculo Diferencial e Integral 2 Respostas à Ficha de Trabalho 8

- 1. (a) $\int_0^{\sqrt{2}} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f(r\cos\theta, r\sin\theta) r d\theta dr$.
 - (b) $\int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} \int_{1}^{2} f(r\cos\theta, r\sin\theta) r dr d\theta$.
 - (c) $\int_{-\frac{\pi}{2}}^{0} \int_{0}^{1} f(r\cos\theta, r\sin\theta) r dr d\theta + \int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{1}{\cos\theta}} f(r\cos\theta, r\sin\theta) r dr d\theta.$
- 2. (a) $\frac{\pi}{4} \left(1 \frac{1}{e}\right)$.
 - (b) $\frac{\pi \log 3}{8}$.
 - (c) $\frac{\pi}{4}$.
 - (d) $\pi(1-\cos(\frac{\pi^2}{4}))$.
 - (e) 2 arctan 2.
- 3. (a) A imagem de T é $S=\left\{(x,y)\in\mathbb{R}^2\colon 0\leq x\leq 2, -x\leq y\leq \frac{x^2}{4}\right\}.$
 - (b) 2
- 4. $\frac{1}{16} (\operatorname{sen}(16) \operatorname{sen}(1))$.
- 5. $\operatorname{área}(R) = \log \frac{5}{3}$ e $\operatorname{massa}(R) = 4$.
- 6. (a) $\int_0^{2\pi} \int_0^1 \int_{\rho^2}^{\sqrt{2-\rho^2}} \rho dz d\rho d\theta$.
 - (b) $\int_0^{\pi} \int_1^{\sqrt{2}} \int_0^{\pi/4} r^2 \sin \phi d\phi dr d\theta$.
- 7. $\frac{\pi}{28}$.
- 8. (a) $\frac{2\pi}{3}$.
 - (b) $2\pi^2$.
- 9. $\frac{4\pi}{3} \left[R^3 (R^2 r^2)^{\frac{3}{2}} \right]$.
- 10. $\frac{\sin(1)}{3}$.
- 11. $G'(x) = 3x^2 f(x^4, x^6 + x^3) f(x^2, x^2 + x^3) + \int_x^{x^3} t \frac{\partial f}{\partial u}(tx, t^2 + x^3) + 3x^2 \frac{\partial f}{\partial v}(tx, t^2 + x^3) dt$.
- 12. $\frac{\pi}{8} \left(2e^{16} e^4 \right)$.