Deterministic Finite Automata And Regular Languages

Deterministic Finite Automaton (DFA)

Transition Graph

For <u>every</u> state, there is a transition for <u>every</u> symbol in the alphabet

head

Initial Configuration

Input Tape

a b b a

Initial state

Scanning the Input

Input finished

Last state determines the outcome

A Rejection Case

Input finished

Last state determines the outcome

Another Rejection Case

Tape is empty (λ)

This automaton accepts only one string

Language Accepted: $L = \{abba\}$

To accept a string:

all the input string is scanned and the last state is accepting

To reject a string:

all the input string is scanned and the last state is non-accepting

Another Example

$$L = \{\lambda, ab, abba\}$$

Empty Tape

 (λ)

Another Example

Input String

Input finished

A rejection case

b a b

Input String

Input finished

Language Accepted: $L = \{a^n b : n \ge 0\}$

Another Example

Alphabet:
$$\Sigma = \{1\}$$

Language Accepted:

$$EVEN = \{x : x \in \Sigma^* \text{ and } x \text{ is even}\}$$

= $\{\lambda, 11, 1111, 111111, ...\}$

Formal Definition

Deterministic Finite Automaton (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q : set of states

 Σ : input alphabet $\lambda \notin \Sigma$

 δ : transition function

 q_0 : initial state

F: set of accepting states

Set of States Q

Example

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

$$a, b$$

$$a, d$$

$$a + q_1 + b + q_2 + b + q_3 + a + q_4$$

Input Alphabet Σ

 $\lambda
otin \Sigma$:the input alphabet never contains λ

Initial State q_0

Example

Set of Accepting States $F \subseteq Q$

Example

Transition Function $\delta: Q \times \Sigma \rightarrow Q$

$$\delta(q,x)=q'$$

Describes the result of a transition from state q with symbol x

Example:

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b) = q_5$$

$$\delta(q_2,b) = q_3$$

Transition Table for δ

Extended Transition Function

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta^*(q,w)=q'$$

Describes the resulting state after scanning string W from state q

Example:
$$\delta^*(q_0,ab) = q_2$$

$$\delta^*(q_0, abbbaa) = q_5$$

$$\delta^*(q_1,bba)=q_4$$

Special case:

for any state 9

$$\delta^*(q,\lambda) = q$$

$$\delta^*(q,w)=q'$$

implies that there is a walk of transitions

$$W = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q \xrightarrow{\sigma_1} \sigma_2 \xrightarrow{\sigma_2} q$$

states may be repeated

Language Accepted by DFA

Language accepted by DFA M:

it is denoted as L(M) and contains all the strings accepted by M

We also say that M recognizes L(M)

For a DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

$$- q_0 \qquad \qquad w \qquad \qquad q' \in F$$

Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \delta^*(q_0, w) \notin F \}$$

$$q_0$$
 w $q' \notin F$

More DFA Examples

$$\Sigma = \{a,b\}$$

$$L(M) = \{ \}$$

Empty language

$$L(M) = \Sigma^*$$

All strings

$$\Sigma = \{a,b\}$$

$$L(M) = \{\lambda\}$$

Language of the empty string

$$\Sigma = \{a, b\}$$

L(M)= { all strings with prefix ab }

$L(M) = \{ all binary strings containing substring 001 \}$

$L(M) = \{ all binary strings without substring 001 \}$

$$L(M) = \left\{awa : w \in \left\{a, b\right\}^*\right\}$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

Costa Busch - LSU

Regular Languages

Definition:

```
A language L is regular if there is a DFA M that accepts it (L(M) = L)
```

The languages accepted by all DFAs form the family of regular languages

Example regular languages:

```
\{abba\} \{\lambda, ab, abba\}
 \{a^n b : n \ge 0\} \quad \{awa : w \in \{a,b\}^*\}
{ all strings in \{a,b\}^* with prefix ab }
{ all binary strings without substring 001}
 \{x: x \in \{1\}^* \text{ and } x \text{ is even}\}
 \{\} \{\lambda\} \{a,b\}^*
There exist DFAs that accept these
languages (see previous slides).
```

There exist languages which are not Regular:

$$L=\{a^nb^n:n\geq 0\}$$

$$ADDITTON = \{x + y = z : x = 1^n, y = 1^m, z = 1^k, n + m = k\}$$

There are no DFAs that accept these languages

(we will prove this in a later class)

Properties of Regular Languages

For regular languages L_1 and L_2 we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

A useful transformation: use one accept state

2 accept states

In General

NFA

Equivalent NFA

Single accepting state

Extreme case

NFA without accepting state

Add an accepting state without transitions

Take two languages

Regular language L_1

Regular language $\,L_2\,$

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

$$- M_1$$

NFA M_2

Single accepting state

Single accepting state

Example

$$L_1 = \{a^n b\}$$

$$M_1$$

$$a$$

$$b$$

$$L_2 = \{ba\} \qquad \longrightarrow \qquad b \longrightarrow \qquad \bigcirc$$

Union

NFA for $L_1 \cup L_2$

Example

NFA for
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Concatenation

NFA for L_1L_2

Example

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$a$$

$$L_{2} = \{ba\}$$

$$b \rightarrow a$$

Star Operation

NFA for L_1*

 $w = w_1 w_2 \cdots w_k$

Example

NFA for
$$L_1^* = \{a^n b\}^*$$

Reverse

- 1. Reverse all transitions
- 2. Make initial state accepting state and vice versa

$$L_1 = \{a^n b\}$$

$$M_1$$

$$L_1^R = \{ba^n\}$$

Complement

- 1. Take the DFA that accepts L_1
- 2. Make accepting states non-final, and vice-versa

$$L_1 = \{a^n b\}$$

$$a \xrightarrow{a,b}$$

Intersection

DeMorgan's Law: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
, L_2 regular $\overline{L_1}$, $\overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular regular $\overline{L_1} \cap L_2$ regular

$$L_1 = \{a^nb\} \quad \text{regular}$$

$$L_1 \cap L_2 = \{ab\}$$

$$L_2 = \{ab,ba\} \quad \text{regular}$$
 regular

Another Proof for Intersection Closure

Machine M_1

DFA for L_1

Machine M_2

DFA for L_2

Construct a new DFA $\,M\,$ that accepts $\,L_{\!1}\cap L_{\!2}\,$

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

States in M

DFAM

DFA M_1

DFA M_2

initial state

initial state

DFA M

New initial state

Both constituents must be accepting states

$$L_{1} = \{a^{n}b\}$$

$$M_{1}$$

$$a$$

$$b$$

$$q_{0}$$

$$a,b$$

$$q_{2}$$

$$a,b$$

 $n \ge 0$

Automaton for intersection

$$\mathcal{L} = \{a^{n}b\} \cap \{ab^{m}\} = \{ab\}$$

$$a,b$$

$$a,b$$

$$a,b$$

$$b$$

$$a,p_{1}$$

$$a$$

$$a,p_{2}$$

$$a$$

$$a,b$$

$$a,b$$

$$a,b$$

$$a,b$$

$\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

$$L(M) = L(M_1) \cap L(M_2)$$

Regular Expressions

Regular Expressions

Regular expressions describe regular languages

Example:
$$(a+b\cdot c)^*$$

describes the language

$$\{a,bc\}^* = \{\lambda,a,bc,aa,abc,bca,...\}$$

Recursive Definition

Primitive regular expressions: \emptyset , λ , α

Given regular expressions r_1 and r_2

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 $r_1 *$
 (r_1)

Are regular expressions

A regular expression:
$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression:
$$(a+b+)$$

Languages of Regular Expressions

$$L(r)$$
: language of regular expression r

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \dots\}$$

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1)L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Regular expression: $(a + b) \cdot a^*$

$$L((a+b) \cdot a^*) = L((a+b))L(a^*)$$

$$= L(a+b)L(a^*)$$

$$= (L(a) \cup L(b))(L(a))^*$$

$$= (\{a\} \cup \{b\})(\{a\})^*$$

$$= \{a,b\}\{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Regular expression
$$r = (a+b)*(a+bb)$$

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

Regular expression
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Regular expression r = (0+1)*00(0+1)*

$$L(r)$$
 = { all strings containing substring 00 }

Regular expression
$$r = (1+01)*(0+\lambda)$$

$$L(r) = \{ all strings without substring 00 \}$$

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if
$$L(r_1) = L(r_2)$$

 $L = \{ all strings without substring 00 \}$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda) + 1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$

 r_1 and r_2 are equivalent regular expressions

Regular Expressions and Regular Languages

Theorem

Languages
Generated by
Regular Expressions

Regular
Languages

Proof:

Languages
Generated by
Regular Expressions

Regular Languages

Languages
Generated by
Regular Expressions

Regular Languages

Proof - Part 1

For any regular expression r the language L(r) is regular

Proof by induction on the size of r

Induction Basis

Primitive Regular Expressions: \emptyset , λ , α Corresponding

NFAS

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = \{\lambda\} = L(\lambda)$$

regular languages

$$L(M_3) = \{a\} = L(a)$$

Inductive Hypothesis

Suppose

that for regular expressions r_1 and r_2 , $L(r_1)$ and $L(r_2)$ are regular languages

Inductive Step

We will prove:

$$L(r_1+r_2)$$

$$L(r_1 \cdot r_2)$$

$$L(r_1 *)$$

$$L((r_1))$$
Costa Busch - LSU

Are regular Languages

By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1)) *$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know:

$$L(r_1)$$
 and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

Union
$$L(r_1) \cup L(r_2)$$

Concatenation $L(r_1)L(r_2)$
Star $(L(r_1))^*$

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1)) *$$

$$L((r_1)) = L(r_1)$$

Are regular languages

is trivially a regular language (by induction hypothesis)

Using the regular closure of these operations, we can construct recursively the NFA M that accepts L(M) = L(r)

Example: $r = r_1 + r_2$

$$L(M_1) = L(r_1)$$

$$L(M_2) = L(r_2)$$

Proof - Part 2

For any regular language L there is a regular expression r with L(r) = L

We will convert an NFA that accepts L to a regular expression

112

Since L is regular, there is a NFA M that accepts it

$$L(M) = L$$

Take it with a single accept state

From M construct the equivalent Generalized Transition Graph

in which transition labels are regular expressions

Another Example:

Transition labels are regular expressions

Reducing the states:

Transition labels are regular expressions

Resulting Regular Expression:

$$r = (bb * a) * \cdot bb * (a + b) \cdot b *$$

$$L(r) = L(M) = L$$

In General

Removing a state: \mathcal{C} q_{j} q_i qa ae^*d *ce***b ce* * *d* q_{j} q_i ae*b

By repeating the process until two states are left, the resulting graph is

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

 $L(r) = L(M) = L$

Standard Representations of Regular Languages

When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

(DFA, NFA, or Regular Expression)