ROOT

warsztaty

Część 1

Strony internetowe

• instrukcja instalacji dla różnych dystrybucji Linuxa root.cern/install/#download-a-pre-compiled-binary-distribution

• pliki, których dziś będziemy używać:

https://github.com/KrzysztofProscinski/ROOT

szerszy poradnik ROOT-a

https://www.fuw.edu.pl/~kpias/

Dydaktyka -> Computer Tools for Nuclear Physics

Linux - powtórzenie

Komendy te należy wpisywać w linuxowy terminal.

Komendy do terminala będą

terminalu należy wpisać "cd".

oznaczane jako "> [treść komendy]".

Przykładowo "> cd" oznacza, że w

- > mkdir [folder]
- > touch [plik]
- > cd [folder]
- > cd ..
- > cd
- > ls
- > mv [plik] [folder]
- > mv [plik1] [plik2]
- > cp [plik] [folder]/
- > cp -r [folder1] [folder2]/
- > rm [plik]

- utworzenie nowego folderu
- utworzenie nowego pliku
- przejście do danego folderu
- przejście do folderu macierzystego
- przejście do folderu domowego
- zawartość obecnego folderu
- przeniesienie pliku do folderu
- zmiana nazwy pliku
- skopiowanie pliku do folderu
- skopiowanie folderu do folderu
- usunięcie pliku

"-r" trzeba dodawać zawsze do operacji na folderach.

.bashrc

.bashrc to plik domyślnie istniejący w Linuxach, do którego należy dopisać poniższe linijki, aby ROOT poprawnie działał.

> cd

> nano ~/.bashrc

"nano" to przykładowy edytor tekstowy w Linuxie. Zamiast tego można użyć innego edytora.

wpisać:

"export ROOTSYS=\$HOME/root
export PATH=\$PATH:\$ROOTSYS/bin
export
LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:
\$ROOTSYS/lib

source root/bin/thisroot.sh"

krzysztof@krzysztof-VirtualBox: ~ /home/krzysztof/.bashrc GNU nano 4.8 enable programmable completion features (you don't need to enable this, if it's already enabled in /etc/bash.bashrc and /etc/profile sources /etc/bash.bashrc). f ! shopt -og posix; then if [-f /usr/share/bash-completion/bash completion]; then . /usr/share/bash-completion/bash completion elif [-f /etc/bash_completion]; then . /etc/bash completion xport ROOTSYS= /pracownia/root xport PATH= /bin LIBRARY_PATH: \$ROOTSYS/lib export LD LIBRARY PATH= source root/bin/thisroot.sh export PLUTOLIBDIR=~/hades/pluto_v6.01/builddir ^G Get Help ^O Write Out ^W Where Is ^K Cut Text ^J Justify

Niebieskie teksty w cudzysłowiach oznaczają treści makr.

Jak uruchomić ROOT-a

- uruchamianie
- > root
- opcje uruchamiania
- > root -l -b
- "-|"

- bez ekranu powitalnego

"-b"

- bez grafiki
- zamykanie
- p. <

Opcje można ze sobą składać, tzn. jeżeli zostaną wpisane obie, to obie zostaną uwzględnione.

Po uruchomieniu ROOT-a normalne linuxowe komendy (np. zmiana katalogu) są niedostępne. Aby móc ich użyć należy zamknąć ROOT-a.

Jak uruchomić ROOT-a

```
H.
                           krzysztof@krzysztof-VirtualBox: ~
krzysztof@krzysztof-VirtualBox:~$ root
   Welcome to ROOT 6.22/06
                                                   https://root.cern
    (c) 1995-2020, The ROOT Team; conception: R. Brun, F. Rademakers
   Built for linuxx8664gcc on Jan 24 2021, 01:28:00
   From tag , 27 November 2020
   Try '.help', '.demo', '.license', '.credits', '.quit'/'.q'
root [0]
```

Zdalne połączenie (Windows)

wymagane programy

PuTTy (lub inna aplikacja do zdalnego logowania)

Xming (lub inny serwer systemu X Windows)

uruchamianie

uruchomić PuTTy

wpisać odpowiedni adres (lub adres IP) w pole "Host Name"

wcisnąć "Open"

dostęp do aplikacji graficznych

uruchomić Xming, a następnie PuTTy

włączyć opcję "Enable X11 forwarding" (Connection->SSH->X11)

dalej jak przy normalnym uruchamianiu

Przykładowo adres Studenckiej Pracowni Komputerowej to spk-ssh.if.uj.edu.pl, a adres IP to 149.156.43.64.

Na niektórych zdalnych komputerach użycie aplikacji graficznych może nie być możliwe i pozostaje jedynie korzystanie z terminala.

Zdalne połączenie (Windows)

Zdalne połączenie (Linux)

- połączenie
- > ssh [login]@[serwer]
- przykład
- > ssh kproscin@149.156.43.64
- kopiowanie plików między komputerami
- > scp kproscin@149.156.43.64:~/plik.txt.
- > scp plik.txt kproscin@149.156.43.64:~/.
- zamykanie połączenia
- > exit

Do kopiowania plików należy wpisać "scp [adres pliku] [adres docelowy]".

W pierwszym przypadku kopiowany jest plik "plik.txt" z komputera pracowni na komputer użytkownika. Kropka wpisana zamiast adresu docelowego oznacza, że adresem docelowy jest aktualnie otwarty w terminalu folder. W drugim przypadku kopiowany jest plik z komputera użytkownika na komputer pracowni. ~/. oznacza, że adresem docelowym jest folder domowy.

Polecenia scp należy wpisać na komputerze użytkownika, nie na komputerze zdalnym.

rootlogon.C

- makro ładowane przy każdym uruchomieniu ROOT-a
- > nano rootlogon.C

```
wpisać
"#include<iostream>
Bool_t rootlogon(void){
cout<<"hello"<<endl;
return kTRUE;
}"</pre>
```

dodatkowych procesów podczas uruchamiania ROOT-a, np. ładowania dodatkowych bibliotek.

Makro to służy do wykonywania

Przy uruchamianiu ROOT-a automatycznie uruchamiane jest makro rootlogon.C, które znajduje się w aktualnie otwartym folderze. Do innych folderów należy utworzyć nowe makra rootlogon.C.

W przypadku takiego makra jak to po lewej, przy każdym uruchomieniu ROOT-a napisany zostanie tekst "hello".

Internetowa dokumentacja: root.cern

Internetowa dokumentacja: root.cern

Proste obliczenia matematyczne

• co działa, co nie działa

> 2+3 - dodawanie

> 2*3 - mnożenie

> 2^3 - dodawanie!

Poprawny zapis takiego potęgowania to "TMath::Pow(2,3)"

TMath

Wszystkie klasy w ROOT-cie zaczynają się od "T".

> TMath::Sqrt(4) - pierwiastek

> TMath::Pi() - liczba pi

> TMath::Sin(0) - sinus

root.cern.ch/root/html524/TMath.html

Na tej stronie znajduje się spis wszystkich funkcji matematycznych w klasie TMath.

Typy zmiennych

Wszystkie typy zmiennych w ROOT-cie kończą się "_t".

```
Char_t - char (znak)
```

Short_t - short integer (liczba całkowita)

Int_t - integer (liczba całkowita)

Long64_t - long64 (liczba całkowita)

Float_t - float (liczba zmiennoprzecinkowa)

Double_t - double (float podwójnej precyzji)

Bool_t - boolean (zmienna boolowska)

Stałe w ROOT-cie zaczynają się od "k". Przykładowo klasa Bool_t zawiera dwie stałe: "kTRUE" oraz "kFALSE".

Niektóre typy zmiennych posiadają wersję "unsigned", czyli pozbawioną informacji o znaku (+ lub -). Przykładowo Short_t posiada wersję UShort_t. Obie wersje posiadają 16 bitów, więc Short_t obejmuje zakres od -32768 do 32767, natomiast UShort_t obejmuje zakres od 0 do 65535. Istnieją jeszcze UChar_t, UInt_t oraz ULong64_t.

Makra

```
macro.C
"#include <iostream>
using namespace std;
Int_t macro(){
       for(Int_t i=0; i<10; i++){
               cout<<i<<endl;</pre>
       return 0;
}"
```

```
macro.C
            Æ
                                                             Save
                                       ~/hades/doc
1 #include <iostream>
2 using namespace std;
4 Int t macro(){
          for(Int_t i=0; i<10; i++){</pre>
                   cout<<"i"<<endl;
8
          return 0;
9 }
                                      C++ ▼ Tab Width: 8 ▼
                                                                 Ln 8, Col 1
                                                                                   INS
```

Makra

- utworzenie i edycja makra
- > touch macro.C
- > nano macro.C
- uruchamianie
- > root
- > .L macro.C //kompilacja (opcjonalna)
- > .x macro.C //wykonywanie makra

W ROOT-cie kompilacja nie jest konieczna. Można wykonać makro od razu.

input, output

output

```
"cout<<"hello"<<endl;"
```

otrzymamy napis hello

```
"Int t t=0;
```

cout<<t<endl;"

otrzymamy wartość t, czyli 0

input

```
"Int ts;
```

ustawiamy wartość s na to co wpiszemy

z klawiatury

Istnieją pewne znaki specjalne, takie jak np. tabulator, które należy wpisywać w nastepujący sposób: \[znak]

"\b" - backspace

"\r" - return to left margin

Znaki specjalne muszą znajdować się wewnątrz cudzysłowa.

Get, Set

```
Set - ustawianie, np.:
"TH1F *hist = new TH1F("h1","Title",10,0.,5.);
hist.SetTitle("nowy tytul");
hist.SetMinimum(0);
hist.SetMaximum(10);"
• Get - pobieranie, np.:
"TH1F *hist = new TH1F("h1","Title",10,0.,5.);
hist.GetBinContent(10);
hist.GetBinError(10);"
```

Ustawimy kolejno:

- tytuł histogramu
- dolny histogramu
- górny kres histogramu

Otrzymamy wartości kolejno:

- liczby zliczeń w dziesiątym binie histogramu
- niepewności liczby zliczeń w dziesiątym binie histogramu

Obsługa plików

```
• TFile
    Definicja pliku z opcją "RECREATE".

"TFile* f = new TFile ("file.root", "RECREATE");

TH1F *hist = new TH1F("h1","Title",200,-1.,1.);

[...]
f->cd();
hist->Write();
    Zapisywanie do pliku.

f->Close();"
    Zamykanie pliku.
```

pobranie obiektu z pliku

```
"TFile* f = new TFile ("file.root");
TH1F *hist2= (TH1F*)f -> Get("h1");"
```

Biblioteki

```
<iostream> - input/output na ekran
<ifstream> - input do pliku
<ofstrem> - output do pliku
<fstream> - input/output do pliku
```

 Opcje do wpisania przy definiowaniu pliku:
 CREATE, NEW, READ, RECREATE, UPDATE

W tym przypadku plik file.root musi istnieć już wcześniej i zawierać histogram o nazwie "h1".

Obsługa plików - opcje

Opcja	Krótki opis	Jeśli plik o takiej nazwie wcześniej nie istniał	Jeśli plik o takiej nazwie wcześniej już istniał
CREATE	nowy plik	Utworzony zostaje nowy plik	Stary plik nie zostaje otwarty, a dane nie są nigdzie zapisywane
NEW	nowy plik	Utworzony zostaje nowy plik	Stary plik nie zostaje otwarty, a dane nie są nigdzie zapisywane
READ	plik tylko do odczytu	Nowy plik nie jest tworzony	Stary plik jest otwierany i można pobrać z niego dane, ale nie można go edytować
RECREATE	utworzenie na nowo	Utworzony zostaje nowy plik	Stary plik jest kasowany i zastępowany nowym
UPDATE	wprowadzenie nowych danych do pliku	Utworzony zostaje nowy plik	Nowe dane zostają dodane do już istniejących

Jeżeli przy definicji pliku nie zostanie wpisana opcja, to domyślnie działającą opcją jest "READ".

Opcje "CREATE" i "NEW" działają identycznie.

Histogramy

- histogram jednowymiarowy
- > TH1F *hist = new TH1F("h1"," Histogram", 100, 0., 10.)
- "h1" nazwa, "Histogram" wyświetlany tytuł
- 100 liczba binów, 0. dolna krawędź, 10. górna krawędź
- histogram dwuwymiarowy
- > TH2F *hist2 = new TH1F("h2","Histogram",100,0.,10.,100,0.,10.);
- rysowanie
- > hist->Draw();

Histogramy - wypełnianie

wypełnianie binów

```
"for(Int_t i=0; i<1000; i++)
{hist->Fill(1);}"
```

Jest to wypełnianie zdarzenie po zdarzeniu.

powtórzeń

być równa

pętli powinna

liczbie zdarzeń.

bin o numerze 1 zostaje wypełniony tysiącem zdarzeń

```
"TRandom3 r;
r.SetSeed();
for(Int_t i=0; i<1000; i++)
{hist->Fill(r.Gaus(0.,1.));}"
```

wypełnienie histogramu tysiącem losowym zdarzeń, wg rozkładu Gaussa ustalanie wartości binów

```
"for(Int_t i=0; i<100; i++)
{hist->SetBinContent(i,3);}"
```

Jest to wypełnianie bin po binie, gdzie wiemy już ile zdarzeń będzie w każdym z binów.

każdy bin będzie miał trzy zdarzenia

```
"for(Int_t i=0; i<100; i++)
{hist->SetBinContent(i, tab[i] )};"
```

każdy bin będzie miał liczbę zdarzeń zgodną z wcześniej przygotowaną tablicą tab[i]

Liczba powtórzeń pętli powinna być równa liczbie binów.

Wykresy

```
wykres
TGraph plot (10,x,y);
10 - liczba rysowanych punktów, x[] - tablica z wartościami x, y[] - tablica z wartościami y

    przykład

"Double ta[] = \{1.,2.,3.\};
Double t b[]={0.,1.,0.};
TGraph plot(3,a,b);
plot.Draw();"

    wykres pobierający dane z pliku

"TGraph plot("dane.dat");"
```

TBrowser

okienkowa przeglądarka (wymagana włączona grafika)

umożliwia otwieranie plików .root i oglądanie zapisanych w nich histogramów oraz wykresów

możliwa jest edycja histogramów (zmiana opcji rysowanie, kolorów, zakresu, liczby binów itd.)

- uruchamianie
- > root
- > new TBrowser

TBrowser

