

Mini-project 수집한 데이터를 통한 머신러닝 알고리즘 적용

배전반 신뢰성 시험시 데이터

e	s_no 🔻 es_door 🕶	es_wave +	es_alive 🕶	es_temp v e	es_hum 💌 es_ep1	Ψ	es_ep2 🔻 es_ep3	▼ es_ec1	¥	es_ec2 🔻	es_ec3 🔻	es_pw_f 🔻	es_thd1 -	es_thd2 🔻	es_thd3 🕶	es_max	K_ w
	29517 None	None	R,S,T	19.3	58.3	22	21	21	217	214	217	1	4	4 2	4	. 81	019
	29518 None	None	R,S	19.4	58.4	22	13	12	217	214	217	-1	4	4 2	4	71	811
	29519 None	None	R,S,T	19.3	58.3	22	21	21	216	214	216	1	4	4 2	4	81	023
	29520 None	None	R,S,T	19.3	58.3	22	21	21	217	214	217	1	4	4 2	4	81	025
	29521 None	None	R,S,T	19.4	58.4	22	21	22	217	214	217	1	4	4 2	4	81	053
	29522 None	None	R,S,T	19.4	58.4	22	21	22	217	214	217	1	4	4 2	4	18	046
	29523 None	S Wave 20	R,S,T	19.3	58.3	22	21	22	217	214	217	1	4	4 2	4	18	009
	29524 None	S Wave 20	R,S,T	19.3	58.3	22	21	22	217	214	217	1	4	4 2	4	18	036
	29525 None	S Wave 20	R,S,T	19.3	58.4	22	21	22	217	214	217	1	4	4 2	4	81	034
	29526 None	None	R,S,T	19.4	58.4	22	21	22	217	214	217	1	4	4 2	4	81	038
	29527 None	None	R,S,T	19.4	58.3	22	21	21	217	214	217	1	4	4 2	4	81	022
	29528 None	P wave 5~	R,S,T	19.3	58.3	22	21	22	217	214	217	1	4	4 2	4	81	050
	29529 None	P wave 5~	R,S,T	19.3	58.3	22	21	22	217	214	217	1	4	4 2	4	81	053
	29530 None	P wave 5~	R,S,T	19.4	58.4	22	21	22	217	214	217	1	4	4 2	4	86	056
	29531 B	P wave 5~	R,S,T	19.3	58.3	22	21	22	217	214	217	1	4	4 2	4	81	059
	29532 B	P wave 5~	R,S,T	19.3	58.3	22	21	22	217	214	217	1	4	4 2	4	81	068
	29533 B	P wave 5~	R,S,T	19.3	58.3	22	21	22	217	214	217	1	4	4 2	4	81	074
	29534 B,Sensor	P wave 5~	R,S,T	19.3	58.3	22	21	22	217	214	217	1	4	4 2	4	81	091
	29535 B,Sensor	P wave 5~	R,S,T	19.3	58.3	22	21	22	218	215	217	1	4	4 2	4	81	880
	29536 B,Sensor	P wave 5~	R,S,T	19.4	58.3	22	21	22	218	214	217	1	12	2 4	4	18	080
	29537 B,Sensor	P wave 5~	R,S,T	19.3	58.3	22	21	22	218	214	217	1	12	2 4	4	81	080
	29538 B	P wave 5~	R,S,T	19.4	58.3	22	21	22	217	214	217	1	12	2 4	4	81	046
	29539 B	P wave 5~	R,S,T	19.3	58.3	22	21	22	217	214	217	1	12	2 4	4	86	055
	29540 B	P wave 5~	R,S,T	19.3	58.3	22	21	22	217	214	217	1	12	2 4	4	81	034
	29541 B	P wave 5~	R,S,T	19.4	58.3	22	21	21	217	214	216	1	12	2 4	4	81	020
	29542 B	P wave 5~	R,S,T	19.4	58.3	22	21	22	217	214	217	1	12	2 4	4	81	039
	29543 B	P wave 5~	R,S,T	19.4	58.3	22	21	21	217	214	216	1	12	2 4	4	81	005
	29544 B	P wave 5~	R,S,T	19.4	58.3	22	21	21	217	214	216	1	12	2 4	4	18	024
	29545 B,Sensor	P wave 5~	R,S,T	19.4	58.3	22	21	21	217	214	216	1	12	2 4	4	18	024
	29546 B,Sensor	P wave 5~	R,S,T	19.4	58.3	22	21	21	217	214	216	1	12	2 4	4	81	013
	29547 B	P wave 5~	R,S,T	19.4	58.2	22	21	21	217	214	216	1	12	2 4	4	81	028
	29548 B	None	R,S,T	19.4	58.4	22	21	21	217	214	216	1	12	2 4	4	8	024
	29549 None	None	R,S,T	19.4	58.3	22	21	21	217	214	216	1	12	2 4	4	81	024
	29550 None	None	R,S,T	19.4	58.2	22	21	22	217	214	217	1	12	2 4	4	81	029
	29551 None	None	R.S.T	19.3	58.2	22	21	22	217	214	217	1	12	2 4	4	81	036

수집한 데이터 설명

순번	도어열림	지진가속도센서값	활선상태	온도	습도	전압1	전압2	전압3	전류1	전류2	전류3	역률	고조파불평형률1	고조파불평형률2	고조파불평형률3	최대	전력	0+
29513	None	None	R,S,T	19.3	58.3	2	2 21	22	2 2	7 21	4 217	1		1	4	4	8066	-01
29514	None	None	R,S,T	19.3	58.3	2	2 21	22	2 2	7 21	4 217	1		1	4	4	8047	
29515	None	None	R,S,T	19.3	58.3	2	2 21	22	2 2	7 21	4 217	1		1	4	4	8031	
29516	None	None	R,S,T	19.3	58.3	17	7 21	17	7 21	6 21	4 216	1		1	2 .	4	6920	
29517	None	None	R,S,T	19.3	58.3	27	2 21	2	1 21	7 21	4 217	1		1	2 .	4	8019	
29518	None	None	R,S	19.4	58.4	2	2 13	12	2 21	7 21	4 217	-1		1	2 .	4	7811	-7
29519	None	None	R,S,T	19.3	58.3	2	2 21	2	1 21	6 21	4 216	1		1	2 .	4	8023	
29520	None	None	R,S,T	19.3	58.3	2	2 21	2	1 21	7 21	4 217	1		1	2 .	4	8025	
29521	None	None	R,S,T	19.4	58.4	2	2 21	22	2 21	7 21	4 217	1		1	2	4	8053	
29522	None	None	R,S,T	19.4	58.4	2	2 21	22	2 21	7 21	4 217	1		1	2 .	4	8046	
29523	None	S Wave 20	R,S,T	19.3	58.3	2	2 21	22	2 21	7 21	4 217	1		1	2 .	4	8009	
29524	None	S Wave 20	R,S,T	19.3	58.3	2	2 21	22	2 21	7 21	4 217	1		1	2 .	4	8036	
29525	None	S Wave 20	R,S,T	19.3	58.4	2	2 21	22	2 21	7 21	4 217	1		1	2 .	4	8034	,
29526	None	None	R,S,T	19.4	58.4	2	2 21	22	2 21	7 21	4 217	1		1	2 .	4	8038	
29527	None	None	R,S,T	19.4	58.3	2	2 21	2	1 21	7 21	4 217	1		1	2 .	4	8022	
29528	None	P wave 5~10	R,S,T	19.3	58.3	2	2 21	22	2 21	7 21	4 217	1		1	2 .	4	8050	
29529	None	P wave 5~10	R,S,T	19.3	58.3	2	2 21	22	2 21	7 21	4 217	1		1	2 .	4	8053	
29530	None	P wave 5~10	R,S,T	19.4	58.4	2	2 21	22	2 21	7 21	4 217	1		1	2 .	4	8056	
29531	В	P wave 5~10	R,S,T	19.3	58.3	27	2 21	22	2 21	7 21	4 217	1		1	2 .	4	8059	
29532	В	P wave 5~10	R,S,T	19.3	58.3	27	2 21	22	2 21	7 21	4 217	1		1	2 .	4	8068	
29533	В	P wave 5~10	R,S,T	19.3	58.3	27	2 21	22	2 21	7 21	4 217	1		1	2 .	4	8074	
29534	B,Sensor	P wave 5~10	R,S,T	19.3	58.3	2	2 21	22	2 21	7 21	4 217	1		1	2 .	4	8091	
29535	B,Sensor	P wave 5~10	R,S,T	19.3	58.3	2	2 21	22	2 21	8 21	5 217	1		1	2	4	8088	
29536	B,Sensor	P wave 5~10	R,S,T	19.4	58.3	2	2 21	22	2 21	8 21	4 217	1	1:	2	4	4	8080	
29537	B,Sensor	P wave 5~10	R,S,T	19.3	58.3	2	2 21	22	2 21	8 21	4 217	1	1:	2	4	4	8080	
29538	В	P wave 5~10	R,S,T	19.4	58.3	2	2 21	22	2 21	7 21	4 217	1	1	2	4	4	8046	
29539	В	P wave 5~10	R,S,T	19.3	58.3	2	2 21	22	2 21	7 21	4 217	1	11	2	4	4	8055	
29540	В	P wave 5~10	R,S,T	19.3	58.3	2	2 21	22	2 2	7 21	4 217	1	1	2	4	4	8034	
29541	В	P wave 5~10	R,S,T	19.4	58.3	2	2 21	2	1 21	7 21	4 216	1	1	2	4	4	8020	
29542	В	P wave 5~10	R,S,T	19.4	58.3	2	2 21	22	2 2	7 21	4 217	1	1:	2	4	4	8039	
29543	В	P wave 5~10	R,S,T	19.4	58.3	2	2 21	2	1 2	7 21	4 216	1	1:)	4	4	8005	
														I foreigner				

학습과정 - 회귀, 의사결정트리

사용한 모델 - RandomForest

전체 독립변수들의 히트맵 시각화

상관관계 높은 변수들 히트맵 시각화

성능평가 - 평균 제곱 오차(MSE)

파이썬 코드 실행

```
: 데미터셋 불러오기
data = pd.read excel('배전반 데이터 엑셀수전.xlsx')
 # 도대열림 영의 경촉치 처리
door mode value = data['도어열립'].mode()[0]
data['도어열림'].fillna(door_mode_value, inplace=True)
 # 지진가속도센서값 열의 결측치 처리
sensor mode value = data['지진가속도선서값'].mode()[0]
data['双凸가典도센서弘'].fillna(sensor_mode_value, inplace=True)
# 독립 변수와 종속 변수 분리
X = data[['쩐화1', '쩐화2', '쩐화3', '쩐류1', '전류2', '전류3']]
y = data['최대전력']
# 학습 데이터와 테스트 데이터 분리
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model_rf = RandomForestRegressor(n_estimators=100, random_state=42)
model_rf.fit(X_train, y_train)
# 모델 평가
 mse_rf = mean_squared_error(y_test, y_pred_rf)
scores_rf = cross_val_score(model_rf, X_train, y_train, cv=5, scoring='neg_mean_squared_error')
print("Cross-validated MSE (RandomForest):", -scores_rf.mean())
# 상관 행렬 계산
correlation matrix = X.corr()
plt.rcParams['font.family'] = 'Malgun Gothic'
plt.rcParams['axes.unicode_minus'] = False
 # 상관 행렬 히트맵 그리기
plt.figure(figsize=(10, 8))
```

MSE 결과값 및 예측값 정확도

```
MSE (Mean Squared Error) RandomForest: 11972.1819029
교차검증(Cross-validated MSE) RandomForest : 5254.2469
Percentage Difference: 20468 -0.065532
15306
      -0.074754
25226
      -0.341728
31744
        0.183107
14601
        0.427194
           . . .
23920
       -0.022826
18770
       -0.118544
18429
       -0.320926
36555
        0.032870
19501
        0.093638
Name: 최대전력, Length: 3659, dtype: float64
Accuracy Percentage(예측값 정확도) 98.551516807871
```

실제 현장 응용 - 센서데이터, 이상탐지

웹화면을 통한 배전반 상태 확인

규칙 조건을 통한 배전반 상태 알림

```
도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다.
                                                            도어가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
 ta = pd.read_excel('배젼반_데이터_엑셀수졍.xlsx')
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
  check_consecutive_door_opening(data, start_index, consecutive_count):
  for i in range(start index, start index + consecutive_count):
    if i >= len(data):
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
    if data.iloc[i]['도어열림'] not in ['F', 'M', 'B', 'sensor']:
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
  check door condition(data, start index):
   consecutive_count = 10 # 연속된 도어열림 상태를 확인할 횟수
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
  if check_consecutive_door_opening(data, start_index, consecutive_count):
    for i in range(start_index, start_index + consecutive_count):
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
       row = data.iloc[i]
if row['윤도'] >= 29 or row['율도'] >= 65:
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
         if row['≧⊊'] >= 29:
                                                            도머가 연속해서 열렸으며 RST중 하나미상 활선상태가 입니다
           print(f"도어가 연속해서 열렸으며 온도가 29 이상입니다. (행: {i+1})")
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
          if row['音도'] >= 65:
                                                            도머가 연속해서 열렸으며 RST중 하나미상 활선상태가 입니다
            print(f"도어가 연속해서 열렸으며 습도가 65 이상입니다. (항: {i+1})")
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
                                                            도머가 연속해서 열렸으며 RST중 하나미상 활선상태가 입니다
  check_power_condition(data, start_index):
consecutive count = 10 # 연속된 도머열림 상태를 확인할 횟수
                                                            도머가 면속해서 열렸으며 RST중 하나이상 활선상태가 입니다
  if check_consecutive_door_opening(data, start_index, consecutive_count):
                                                            도머가 연속해서 열렸으며 RST중 하나미상 활선상태가 입니다
     for i in range(start index, start_index + consecutive_count):
    row = data.iloc[i]
                                                            도머가 연속해서 열렸으며 RST중 하나미상 활선상태가 입니다
       row = data.llo(1)
if 'R' in row['출선설명'] or 'S' in row['출선설명'] or 'T' in row['출선설명'];
print(f"도하가 설측해서 설렜으며 RST중 하나이실 출선설명가 입니다. (황: {i+1})")
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
                                                            도머가 연속해서 열렸으며 RST중 하나미상 활선상태가 입니다
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
alert count = 0
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
  if check door condition(data, i):
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
  if check power condition(data, i):
                                                            도머가 연속해서 열렸으며 RST중 하나이상 활선상태가 입니다
                                                            알림을 준 횟수: 472
   ("왕항을 준 원수:", alert count
```

프로젝트 수행을 통해서 얻은 경험

- 입력 데이터(Feature) 신규센서 설치 후 확보된 실시간 원본 데이터를 기반으로 결측지, 이상치 및 상관계수를 분석 머신 러닝으로 지도 학습
- 출력 데이터(Label) 실시간 측정이 상대적으로 어려운 고농도 구간 3개의 변수(TOC, TN, TP)를 출력 데이터로 선정

수질분석 데이터에도 적용하여 상하수도 관련 인자 값의 상관관계 분석에도 활용 가능

프로젝트 수행을 통해서 얻은 경험

기존자료를 통한 학습 및 테스트를 통 하여 예측 값과 실제 값을 비교 가능

JPY F +1 J72.84 AUD F +1437 3169.19 CHF H +3192 2591.78 CAD C +6205 9217.67 EUR F +508 805.51 GBP S +85 4.57 CHF X

상관행렬을 통한 다양한 변수 간의 상관관계 확인

공공 데이터 포털 활용 주요지표 탐색 (금융, 날씨, 교통, 고용, 교육, 물류 등)

