Física quântica

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

19 de Janeiro de 2021

- Quantização da energia
- Dualidade onda partícula
- O modelo atômico
- Aplicações
- 6 Apêndice

Prof. Flaviano W. Fernandes

IFPR-Irati

Um corpo negro é um material que absorve toda a radiação que incide sobre ele. Após absorver a radiação, o corpo negro aquece e emite radiação própria, que por sua vez depende da temperatura.

Corollary

Quantização da energia

•00

Representação de um corpo negro.

Corollary

Desde Maxwell consideramos que a luz é uma onda eletromagnética, cuja intensidade é definida como energia por tempo e área;

Discrepância entre a teoria clássica da radiação e a experiência

O que era esperado pela teoria clássica

A radiação emitida pelo corpo negro deveria assumir qualquer valor, independente da frequência da onda eletromagnética.

A intensidade da onda eletromagnética é diretamente proporcional ao quadrado da frequência, portanto a intensidade da radiação deveria aumentar com o aumento da frequência.

O que os físicos observaram

A radiação emitida pelo corpo negro aumenta até uma certa frequência, atingindo um valor máximo e decaindo a zero em seguida, à medida que a frequência aumenta.

A Lei de Planck

Hipótese de Planck

A energia das cargas oscilantes no interior do corpo negro não pode assumir qualquer valor, mas sim valores discretos (quantizados), e que seria proporcional a frequência da radiação emitida,

$$E_n = nhf, \quad n = 0, 1, 2, \cdots$$

 $h \approx 6,63 \times 10^{-34} \, \mathrm{J \cdot s}, \quad \text{(Constante de Planck)}.$

Corollary

As idéias de Plank sobre quantização da energia marca o nascimento da Física quântica.

O efeito fotoelétrico - O que era esperado?

A luz incide na parte T, os elétrons do metal absorve a energia da luz e pela teoria clássica deveria escapar do material, acusando uma corrente i no amperímetro.

O que era esperado pela teoria clássica

- ✓ A energia cinética dos elétrons deveria depender da intensidade da luz:
- ✓ O efeito fotoelétrico deveria ocorrer com luz de qualquer frequência;
- ✓ Deveria haver um retardo no tempo, de modo que o elétron absorveria continuamente o feixe de energia.

Montagem usada para o estudo do efeito fotoelétrico..

O efeito fotoelétrico - O que foi obtido!

O que era esperado pela teoria clássica

- ✓ Os elétrons não escapam do material, independente da intensidade da luz incidente;
- ✓ Foi observado um valor mínimo para a frequência para que os elétrons escapem do material;
- ✓ Os elétrons não escapam do material se a frequência for menor que o valor mínimo, não importa o tempo que fique exposto.

Elétron escapando do metal após absorver a energia do fóton.

Hipótese de Einstein

A luz é constituída por pacotes de energia (E = hf) chamados fótons.

Postulado de de Broglie

Hipótese de de Broglie

Devido a simetria da natureza, o dualismo onda-partícula é um fenômeno absolutamente geral,

$$f = \frac{E}{h}$$
, (Efeito fotoelétrico),
 $\lambda = \frac{h}{p}$, (Postulado de de Broglie).

Corollary

Os elétrons se movem como ondas ao redor do núcleo, o que explica o modelo atômico de Bohr.

O que era esperado pela teoria clássica

Os elétrons se movem ao redor do núcleo em órbitas circulares:

Pela teoria do eletromagnetismo, cargas em movimento emitem radiação diminuindo sua energia;

À medida que a energia diminui, a órbita do elétron encolhe e ele colapsa para dentro do núcleo.

Teoria clássica.

Corollary

Com o colapso do elétron no interior do núcleo, não seria possível a formação de moléculas ou demais combinações envolvendo átomos.

Postulados de Bohr

Os elétrons se movem em certas órbitas bem definidas sem irradiar energia;

O átomo emite radiação quando um elétron faz uma transição de uma órbita para outra;

No limite de grandes órbitas e altas energias, os resultados quânticos devem coincidir com a teoria clássica.

Modelo de Bohr.

Princípio da correspondência

Para grandes números quânticos, os cálculos quânticos e os clássicos levam ao mesmo resultado.

O modelo atômico

O modelo atômico

Níveis de energia do átomo de hidrogênio

$$E_n = \frac{E_1}{n^2}, \quad (n = 1, 2, 3, \cdots),$$

$$E_1 = -2.18 \times 10^{-18} \, \text{J}$$
, (estado fundamental).

Corollary

O elétron ao redor do átomo adquire valores discretos de energia, e no limite $n \to \infty$ se aproxima do resultado clássico (energias no continuum).

Níveis de energia do hidrogênio.

Laser de Argônio [2].

Laser usado para cortar chapas metálicas [3].

Transformar um número em notação científica

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Conversão de unidades em uma dimensão

$$1~\text{mm} = 1 \times 10^{(-1)\times 2}~\text{dm} \rightarrow 1 \times 10^{-2}~\text{dm}$$

$$2,5~g=2,5\times 10^{(1)\times 3}~mg \rightarrow 2,5\times 10^3~mg$$

10
$$\mu$$
C = 10 × 10^[(-3)×1+(-1)×3] C \rightarrow 10 × 10⁻⁶ C

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

10
$$\mu$$
m² = 10 × 10^[(-6)×1+(-2)×3] m² \rightarrow 10 × 10⁻¹² m²

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

10
$$\mu \text{m}^3 = 10 \times 10^{[(-9) \times 1 + (-3) \times 3]} \text{ m}^3 \rightarrow 10 \times 10^{-18} \text{ m}^3$$

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ, ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	heta
lota	1	ι
Capa	K	κ
Lambda	Λ	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Ρ	ρ
Sigma	Σ	σ
Tau	Τ	au
Ípsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências

- A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.1, 2.ed., São Paulo, Scipione (2016)
- https://nl.m.wikipedia.org/wiki/Bestand:Nci-vol-2268-300_argon_ion_laser.jpg
- https://www.thefabricator.com/article/lasercutting/back-to-basics-the-subtle-science-of-burr-free-laser-cutting

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education