Задание 1. Метод конечных элементов

Первое задание весеннего семестра посвящено методу конечных элементов в применении к одномерному стационарному уравнению теплопроводности на отрезке.

Обобщенная постановка задачи

Рассмотрим следующую краевую задачу:

$$-\frac{d}{dx}\left(k\frac{du}{dx}\right) = f(x), \quad k(x) \ge k_0 > 0, \quad 0 < x < 1, \quad u(0) = T_0, \quad u(1) = T_1.$$

Чтобы сформулировать обобщенное по Галеркину решение краевой задачи введем на отрезке [0,1] множество функций, имеющих кусочно-непрерывную первую производную, и удовлетворяющих нулевым граничным условиям:

$$H = \{v(x): v(0) = v(1) = 0\}.$$

Будем называть множество H множеством допустимых функций. Умножим уравнение на $v(x) \in H$ и проинтегрируем по частям с учетом граничных условий:

$$0 = \int_{0}^{1} \left(-\frac{d}{dx} \left(k \frac{du}{dx} \right) - f(x) \right) v(x) dx = \int_{0}^{1} k \frac{du}{dx} \frac{dv}{dx} dx - \int_{0}^{1} f(x) v(x) dx.$$

Определим симметричную билинейную форму $a(y,v) = \int\limits_0^1 k \frac{du}{dx} \frac{dv}{dx} dx$ и линейную форму $l(v) = \int\limits_0^1 f(x)v(x)dx$. С учетом введенных определений получим следующую задачу:

$$a(u, v) = l(v), \quad u(0) = T_0, \quad u(1) = T_1.$$

Функция u(x), удовлетворяющая этому уравнению $\forall v(x) \in H$ называется обобщенным по Галеркину решением исходной краевой задачи. Именно задачу в этой формулировке мы будем использовать для реализации метода конечных элементов.

Введем на отрезке [0,1] сетку из M узлов:

$$x_j = (j-1)h, \quad h = \frac{1}{M-1}, \quad j = 1, \dots, M.$$

Пусть $y(x_j) = y_j, \quad j = 1, \ldots, M$ - значения функции y(x) на сетке. Введем базисные функции $\varphi_j(x), \quad j = 1, \ldots, M$. Представим решение в виде $y(x) = \sum\limits_{j=1}^M u_j \varphi_j(x)$. Возьмем $v(x) = \varphi_k(x), \quad k = 2, \ldots, M-1$ и подставим все в обобщенную постановку задачу. В результате получим замкнутую систему уравнений для y_1, \ldots, y_M :

$$\sum_{j=1}^{M} a(\varphi_{j}, \varphi_{m}) y_{j} = l(\varphi_{m}), \quad m = 2, \dots, M - 1, \quad y_{1} = T_{0}, \quad y_{M} = T_{1}.$$

Линейный одномерный конечный элемент

Теперь на каждом отрезке $[x_k, x_{k+1}]$ выберем следующие базисные функции:

$$\varphi_1^k(x) = \varphi_k(x) = \frac{x_{k+1} - x}{h}, \quad \varphi_2^k(x) = \varphi_{k+1}(x) = \frac{x - x_k}{h}, \quad x \in [x_k, x_{k+1}].$$

Решение будем искать в виде $y(x) = \sum_{k=1}^{N} \sum_{i=1}^{2} u_{l_i^k} \varphi_i^k(x)$. N- количество элементов Линейным одномерным конечным элементом называется тройка:

- 1. отрезок $[x_k, x_{k+1}] = e_k$.
- 2. множество узловых точек $\{x_k, x_{k+1}\}$.

3. набор из двух функций $\varphi_1^k(x)$ и $\varphi_2^k(x)$, определенных на отрезке $[x_k, x_{k+1}]$ и называемых функциями формы элемента e_k . Вне отрезка $[x_k, x_{k+1}]$ обе функции полагаются равными нулю.

Вектор-строка $X = \begin{bmatrix} x_1 & x_2 & \dots & x_{M-1} & x_M \end{bmatrix}$ называется матрицей узлов. Введем локальную нумерацию узлов. Узлу x_k присвоим номер 1, а узлу x_{k+1} - номер 2. Соответствие между локальным и глобальными номерами узлов зададим матрицей индексов:

$$L = \begin{bmatrix} 1 & 2 & M-2 & M-1 \\ 2 & 3 & \cdots & M-1 & M \end{bmatrix} = \{l_i^k\}$$

Номер столбца k - это номер элемента (k = 1, 2, ..., N, N = M-1), а номер строки i есть локальный номер узла в элементе (i = 1, 2), а l_i^k - глобальный номер узла.

Представим коэффиценты матрицы системы в виде суммы по элементам:

$$a(\varphi_m, \varphi_j) = \sum_{k=1}^{N} a^k (\varphi_m, \varphi_j), \quad a^k (\varphi_m, \varphi_j) = \int_{e_k} k \frac{d\varphi_m}{dx} \frac{d\varphi_j}{dx} dx.$$

Ненулевыми на элементе e_k являются 2 функции:

$$\varphi_1^k(x) = \varphi_{l_1^k}(x), \quad \varphi_2^k(x) = \varphi_{l_2^k}(x).$$

А значит, в матрице $\left\{ a^{k}\left(\varphi_{m},\varphi_{j}\right)\right\}$ есть 4 ненулевых элемента:

$$a^k\left(\varphi_{l_1^k},\varphi_{l_1^k}\right) = a_{11}^k, \quad a^k\left(\varphi_{l_1^k},\varphi_{l_2^k}\right) = a_{12}^k, \quad a^k\left(\varphi_{l_2^k},\varphi_{l_1^k}\right) = a_{21}^k, \quad a^k\left(\varphi_{l_2^k},\varphi_{l_2^k}\right) = a_{22}^k,$$

расположенных на пересечении строк с номерами $\{l_1^k, l_2^k\}$ и столбцов с теми же номерами. Матрица A_k из ненулевых элементов, связанная с e_k называется матрицей жесткости элемента e_k (вычисления опущены),

$$A^{k} = \begin{bmatrix} a_{11}^{k} & a_{12}^{k} \\ a_{21}^{k} & a_{22}^{k} \end{bmatrix} = k_{k+\frac{1}{2}} \frac{1}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Аналогично поступим с вектором правых частей. Введем вектор длины 2, связанный с элементом e_k . Назовем его вектором нагрузки F^k .

$$F^{k} = \begin{bmatrix} F_{1}^{k} \\ F_{2}^{k} \end{bmatrix} = \frac{h}{6} \begin{bmatrix} 2f_{l_{1}^{k}} + f_{l_{2}^{k}} \\ f_{l_{1}^{k}} + 2f_{l_{2}^{k}} \end{bmatrix} = \frac{h}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} f_{l_{1}^{k}} \\ f_{l_{2}^{k}} \end{bmatrix}.$$

Далее для реализации МКЭ нужно из матриц жесткости и векторов нагрузки собрать полную матрицу системы линейных алгебраических уравнений и вектор правой части. Это можно сделать суммированием по элементам. Например, следующии образом:

$$\begin{array}{l} \text{for } k=1 \text{ to } M-1 \\ \text{for } i=1 \text{ to } 2 \\ \text{for } j=1 \text{ to } 2 \\ A_{l_i^k,l_j^k}=A_{l_i^k,l_j^k}+a_{ij}^k \\ \text{end for} \\ \text{end for} \end{array}$$

end for

Алгоритм сборки вектора правых частей на псевдокоде может выглядеть следующим образом:

$$\begin{array}{l} \text{for } k=1 \text{ to } M-1 \\ \text{for } i=1 \text{ to } 2 \\ F_{l_i^k}=F_{l_i^k}+F_i^k \\ \text{end for} \end{array}$$

end for

Для учета граничных условий в полученных матрице и столбце необходимо исправить соответственно первую и последнуюю строчку и первый и последний элементы. Полученная матрица имеет трехдиагональный вид, так что решение системы уравнений может быть найдено методом трехточечной скалярной прогонки.

Квадратичный конечный элемент

Аналогичным образом могут быть сконструированы квадратичные элементы. Пусть отрезок [0,1] делится на N элементов. Число узлов в таком случае будет равно M=2N+1. Определим матрицу узлов:

$$X = \left\{ x_j = (j-1)\frac{h}{2}, \quad h = \frac{1}{N}, j = 1, \dots, M \right\}.$$

Матрица индексов примет вид:

$$L = \begin{bmatrix} 1 & 3 & 5 & \dots & M-2 \\ 2 & 4 & 6 & \dots & M-1 \\ 3 & 5 & 7 & \dots & M \end{bmatrix} = \{ l_i^k = 2k-2+i, \quad i = 1, 2, 3, \quad k = 1, \dots, N \},$$

введем на каждом элементе локальную координату:

$$t = \frac{x - x_{l_1^k}}{h}, \quad dt = \frac{dx}{h}, \quad x_{l_1^k} < x < x_{l_3^k}, \quad 0 < t < 1.$$

Функции формы определим следующим образом:

$$\Phi_1(t) = 2(t-1)\left(t - \frac{1}{2}\right), \quad \Phi_2(t) = 4t(1-t), \quad \Phi_3(t) = 2t\left(t - \frac{1}{2}\right).$$

Квадратичным элементом называется тройка:

- 1. отрезок $e_k = \left[x_{l_1^k}, x_{l_3^k} \right]$ длины $h = \frac{1}{N}$,
- 2. множество узловых точек $\{x_{l_i^k}, i=1,2,3\}$,
- 3. набор функций формы $\left\{ \varphi_i^k(x) = \Phi_i \left(\frac{x x_{l_i^k}}{h} \right), \quad i = 1, 2, 3 \right\}.$

Матрица жесткости элемента e_k и вектор нагрузки примут вид:

$$A^{k} = k_{k+\frac{1}{2}} \frac{1}{3h} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix},$$

$$F^{k} = \frac{h}{30} \begin{bmatrix} 4 & 2 & -1 \\ 2 & 16 & 2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} f_{l_{1}^{k}} \\ f_{l_{2}^{k}} \\ f_{l_{2}^{k}} \end{bmatrix}.$$

Снова приведем алгоритмы сборки полной системы на псевдокоде для матрицы системы: for k=1 to N

for
$$i = 1$$
 to 3

for $j = 1$ to 3

 $A_{l_i^k, l_j^k} = A_{l_i^k, l_j^k} + a_{ij}^k$

end for
end for

и для вектора правых частей:

$$\begin{array}{l} \text{for } k=1 \text{ to } N \\ \text{for } i=1 \text{ to } 3 \\ F_{l_i^k}=F_{l_i^k}+F_i^k \\ \text{end for} \\ \end{array}$$

После сборки необходимо подправить матрицу с учетом граничных условий.

Задание

Каждый студент выполняет общую задачу и одну из четырех (A,Б,В или Г) в соответствии с буквой варианта. В каждой задаче необходимо построить численное решение при помощи метода конечных элементов, нанести его на график вместе с точным решением задачи.

Общая задача. Рассмотрим задачу о стационарной теплопроводности в стержне, составленном из двух однородных стержней одинаковой длины. Предположим, что на на концах стержня поддерживается постоянная температура.

$$\begin{cases} -\frac{d}{dx} \left(k \frac{du}{dx} \right) = f(x), & 0 < x < 1, \\ u(0) = T_0, & u(1) = T_1. \end{cases}$$

Здесь f(x) – мощность тепловых источников, распределенных внутри стержня, u(x) – распределение температуры по длине стержня.

Зададим следующие входные данные:

$$f(x) = \begin{cases} f_1, & x < 0.5, \\ f_2, & x > 0.5, \end{cases} \quad k(x) = \begin{cases} k_1, & x < 0.5, \\ k_2, & x > 0.5. \end{cases}$$

Поставим дополнительные условия непрерывности температуры и потока тепла в точке контакта стержней:

$$u(0.5-0) = u(0.5-0), \qquad \left(k\frac{du}{dx}\right)(0.5-0) = \left(k\frac{du}{dx}\right)(0.5+0).$$
 (1)

Необходимо разработать программу метода конечных элементов, использующую линейные элементы.

Задача А. Рассмотрим задачу о стационарной теплопроводности в однородном стержне, на концах которого поддерживается нулевая температура:

$$\begin{cases} u'' + f(x) = 0, & 0 < x < 1, \\ u(0) = u(1) = 0. \end{cases}$$

Здесь f(x) – мощность тепловых источников, распределенных внутри стержня, u(x) – распределение температуры по длине стержня.

Задать точное решение в виде

$$u(x) = \exp\left(-\frac{0.25}{x(1-x)}\right), \quad 0 < x < 1,$$

Необходимо разработать программу метода конечных элементов, использующую квадратичные элементы.

Задача Б. Рассмотрим задачу о стационарной теплопроводности в однородном стержне, на концах которого поддерживается нулевая температура:

$$\begin{cases} u'' + f(x) = 0, & 0 < x < 1, \\ u(0) = u(1) = 0. \end{cases}$$

Здесь f(x) – мощность тепловых источников, распределенных внутри стержня, u(x) – распределение температуры по длине стержня.

Задать точное решение в виде

$$u(x) = \exp\left(-(32x - 16)^2\right), \quad 0 < x < 1,$$

Необходимо разработать программу метода конечных элементов, использующую квадратичные элементы.

Задача В. Рассмотрим задачу о стационарной теплопроводности в однородном стержне, на концах которого поддерживается нулевая температура:

$$\left\{ \begin{array}{l} u'' + f(x) = 0, \quad 0 < x < 1, \\ u(0) = u(1) = 0. \end{array} \right.$$

Здесь f(x) – мощность тепловых источников, распределенных внутри стержня, u(x) – распределение температуры по длине стержня.

Задать мощность тепловых источников в виде

$$f(x) = \exp(-(8x - 4)^4), \quad 0 < x < 1.$$

Необходимо разработать программу метода конечных элементов, использующую квадратичные элементы.

Задача Г. Рассмотрим задачу о стационарной теплопроводности в неоднородном стержне, на концах которого поддерживается постоянная температура:

$$\begin{cases} -\frac{d}{dx} \left(k \frac{du}{dx} \right) = f(x), & 0 < x < 1, \\ u(0) = T_0, & u(1) = T_1. \end{cases}$$

Здесь f(x) – мощность тепловых источников, распределенных внутри стержня, u(x) – распределение температуры по длине стержня.

Задать следующие входные данные:

$$f(x) = 1 + \frac{\pi}{2}\sin(\pi x), \quad k(x) \equiv 1, \quad T_0 = 0, \ T_1 = 1.$$

Необходимо разработать программу метода конечных элементов, использующую квадратичные элементы.