Ahmet Faruk Ulutaş - 21803717

Q1)

- a- ∏m-id,title(σ year=2022 Λ dCountry='Turkey' (Movie x Director))
- b- \Box s-id,name(σ year>=1960 \wedge year<=1969 \wedge dName='Alfred Hitchcock' (Movie x Director x StarIn x MovieStar))
- c- \square name,birthYear,sCountry(σ year=2022 \land rating>6.0 \land (2023-birthYear)>40 (Movie x StarIn x MovieStar))
- d- \square dName(σ dCountry='Turkey' (Director)) \square dName(σ rating<6.0 (Movie x Director))
- e- ∏name,sCountry(σ year=2022 Λ genre='horror' Λ dCountry='USA' Λ (2023-birthYear)<25 (Movie x Director x StarIn x MovieStar))
- f- \mathcal{G} AVG(rating)->AvgRating(σ genre='horror' Λ dName='Alfred Hitchcock' (Movie x Director))
- g- \mathcal{G} COUNT(m-id)->NumOfMovies, year(σ genre='comedy' Λ rating>9.0 (Movie))
- h- \mathcal{G} COUNT(m-id)->NumOfMovies,dName(σ genre='action' Λ year>2010 Λ rating>6.0 (Movie)) HAVING NumOfMovies>=3
- i- \prod dName(σ year=2022 Λ genre='drama' (\mathcal{G} MAX(rating)->MaxRating (Movie) x Director))
- j- \sqcap dCountry,dName(σ year=2022 \land genre='drama' (\mathcal{G} MAX(rating)->MaxRating (Movie) x Director))
- k- ∏year,dCountry,dName(σ genre='drama' (*G* MAX(rating)->MaxRating (Movie) x Director))
- I- \square dName(σ year=2022 \land genre='western' \land dCountry='USA' \land rating > \mathcal{G} AVG(rating)->AvgRating (σ genre='western' \land dName='Clint Eastwood' (Movie)) (Movie x Director))

Q2)

A- Not holds. Let R,S,T be relations with a single attribute A.

- $R=\{(1),(2)\}$
- $S=\{(1),(3)\}$
- $T=\{(2),(3)\}$

 $S\bowtie(R\cup T)=\{(1)\}$ $(T\cup S)\bowtie R=\{(1),(2)\}$

b- Holds. If a tuple occurs in (T-S), it is in T but not in S. The same holds true for every tuple in (T-R); it is in T but not in R. As a result, (T)-(S)U(T)-(R) will represent all tuples that are in T but not in S or R. T-(SUR) is equivalent to this.

c- Not holds. Let R,S be relations with the attributes A and B, with L denoting "A" and denoting "A=1".

- R={(1,10),(2,20)}
- S={(1,11),(3,30)}S={(1,11),(3,30)}
- 1) $\pi A(\sigma A=1((R \cup S)-S)) = \pi A(\sigma A=1\{(2,20)\}) = \{\}$

2)
$$\sigma A=1(\pi A(R \cup S)-\pi A(S))=\sigma A=1(\{1,2,3\}-\{1,3\})=\{2\}\sigma A=1(\pi A(R \cup S)-\pi A(S))=\sigma A=1(\{1,2,3\}-\{1,3\})=\{2\}$$

The results of one and two were not equal. Not holds.