

Deep Learning for ECE EECE-580G

Introduction to Learning theory

Notations

Notations

- m: samples or observations $x^{(i)}$ are collected from a subject of interest (e.g. for a pet classification task, samples are photos from multiple pets)
- We consider these observations to be labeled, i.e. each sample $x^{(i)}$ is assigned a label $y^{(i)}$ (e.g. for each pet photo we collected, we know the breed of the pet appearing in it)
- This setting is called "supervised learning" 1
- $D = (x^{(i)}, y^{(i)})_{i=i}^m$: is the set of the available tuples of observations and labels, this is the dataset at hand
- $X \to x^{(i)}$, and $Y \to y^{(i)}: x^{(i)}$ and $y^{(i)}$ are i.i.d. samples of the random variables X and Y
- $X \sim P_X$, and $Y \sim P_Y$.
- $(X,Y) \to D$ the dataset is an observation of the joint random variable (X,Y)
- $x^{(i)} \in \mathcal{X} = \mathbb{R}^n$: n is the dimensionality of the data (e.g. considering the pet photos being of size $H \times W$, $n = 3 \cdot H \cdot W$, the total number of pixels in one image represented in RGB space)
- $y^{(i)} \in \mathcal{Y} = \{0, 1\}$: we consider the simple case of a binary label (e.g. only two pet breeds) the task we are performing is a binary classification task²
- $D \in \mathcal{D} = \mathbb{R}^n \times \{0,1\}$: the cartesian product of \mathcal{X} and \mathcal{Y}

dog	dog	dog	cat	dog
dog	cat	cat	dog	dog
dog	cat	cat	dog	cat
cat	cat	dog	cat	dog

$y^{(0)}$						
1	1	1	O	1		
1	O	O	1	1		
1	O	O	1	O		
O	О	1	O	1		

Example


```
array([[108, 110, 113, ..., 110, 109
                    [110, 111, 113, ..., 108, 108
                    [112, 113, 114, ..., 108, 108
      array([[102, 104, 107, ..., 106, 105, 105],
             [104, 105, 107, ..., 104, 104, 104],
             [106, 107, 108, ..., 104, 104, 104],
array([[ 88, 90, 93, ..., 94, 93, 93],
      [ 90, 91, 93, ..., 92, 92, 92],
      [ 92, 93, 94, ..., 92, 92, 92],
      [133, 137, 141, ..., 147, 144, 140],
      [135, 138, 142, ..., 148, 143, 138],
      [136, 139, 143, ..., 150, 148, 147]], dtype=uint8)
```

Notations

- We also consider that there exists a function f, that maps X to Y, i.e. f(X) = Y. This function is obviously unknown
- To link with the definition from the textbook:
 - Task T = binary classification task
 - Experiences E = the dataset D
 - Performance measures P = loss function and notion of risk which will be introduced later

Learning

A learning algorithm

A learning algorithm:
$$\mathcal{D} \to \mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$$

 $D \mapsto \widehat{f},$

- $\mathcal{H} = \text{The hypothesis space, we can't look at the space of all functions ...}$
- \widehat{f} = A function that "approximates" the ground truth function i.e.

$$\forall (x,y) \leftarrow (X,Y), \widehat{f}(x) \approx f(x)$$

1-Nearest-Neighbor

$$\widehat{f}(x) \mapsto y^{(j)}, j = \operatorname{argmin}_i \left\| x - x^{(i)} \right\|$$

- || . || can be any distance but we will use the Euclidean distance
- ullet Maps x to the label of its closest neighbor in the dataset
- *H* ?

1-Nearest-Neighbor

$$\widehat{f}(x) \mapsto y^{(j)}, j = \operatorname{argmin}_i \left\| x - x^{(i)} \right\|$$

- || . || can be any distance but we will use the Euclidean distance
- ullet Maps x to the label of its closest neighbor in the dataset
- ullet can be described using $\,m\,$ parameters, the number of data points
- = the representational capacity C

1-Nearest-Neighbor

Empirical Risk Minimization

Risk - loss function $l\left(\widehat{f}(x),y\right)$

- We need to quantify "goodness" of fit of the approximation
 - o o-1 loss
 - Weighted o-1 loss with a cost matrix
 - "Smooth" surrogate losses (later in the course)
 - 0 ...

Empirical risk - Generalization risk

$$\widetilde{L}(h) = \frac{1}{m} \sum_{i=1}^{m} l(h(x^{(i)}), y^{(i)})$$

- We don't know the distributions of (X, Y)
- We are interested in the "generalization risk"

$$L(h) = E\left[l(h(X), Y)\right]$$

• Luckily when samples are i.i.d.

$$E\left[\widetilde{L}(h)\right] = E\left[\frac{1}{m} \sum_{i=1}^{m} l(h(x^{(i)}), y^{(i)})\right] = E\left[l(h(X), Y)\right] = L(h)$$

Empirical risk minimizer

$$\widetilde{L}(h) = \frac{1}{m} \sum_{i=1}^{m} l(h(x^{(i)}), y^{(i)})$$

• So let's pick the approximation function as:

$$\widehat{f} = \operatorname{argmin}_{h \in \mathcal{H}} \widetilde{L}(h)$$

- The "empirical risk minimizer"
- How does the empirical risk of empirical risk minimizer link to its generalization risk

$$E\left[\widetilde{L}(\widehat{f})\right] \stackrel{?}{=} L(\widehat{f})$$

Empirical risk minimizer

$$\widetilde{L}(h) = \frac{1}{m} \sum_{i=1}^{m} l(h(x^{(i)}), y^{(i)})$$

• So let's pick the approximation function as:

$$\widehat{f} = \operatorname{argmin}_{h \in \mathcal{H}} \widetilde{L}(h)$$

- The "empirical risk minimizer"
- How does the empirical risk of empirical risk minimizer link to its generalization risk

$$E\left[\widetilde{L}(\widehat{f})\right] \neq L(\widehat{f})$$

• Why?

Empirical risk minimizer

- $l(\widehat{f}(x^{(i)}), y^{(i)})$ Are not necessarily i.i.d anymore
- \widehat{f} Is dependent on the entire dataset! $\widehat{f} = \operatorname{argmin}_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} l(h(x^{(i)}), y^{(i)})$
- In general, the empirical risk of empirical risk minimizer is a **biased estimator** of its generalization risk

$$E\left[\widetilde{L}(\widehat{f})\right] \neq L(\widehat{f})$$

Example - 1-Nearest-Neighbor

• $\widetilde{L}(\widehat{f}) = 0$

Because the 1-Nearest Neighbor to each datapoint is itself!

• But in almost all cases, $L(\widehat{f}) \neq 0$

$$\widehat{f} = \operatorname{argmin}_{h \in \mathcal{H}} \widetilde{L}(h) \quad \text{Empirical risk minimizer}$$

$$f^* = \operatorname{argmin}_{h \in \mathcal{H}} L(h) \quad \text{Generalization risk minimizer}$$

• f^* Is unknown and impossible to compute, we can't compute the expectations...

• Is $L(\widehat{f})$ close enough to $L(f^*)$?

Proof in handout

Bias variance trade-off

- Larger $\mathcal{H} \longrightarrow$ smaller bias, but higher fluctuations
- The choice of ${\cal H}$ is not trivial, needs to be validated by the data too
- This is called the **bias-variance trade-off**

Training/validation/testing sets

- Remember that $E\left[\widetilde{L}(\widehat{f})\right] \neq L(\widehat{f})$
- But what if we computed $\widetilde{L}(\widehat{f})$ using a different set of data, not used to find \widehat{f}
- I.e. we split D into D^{Train} and $D^{\text{Validation}}$

$$\widetilde{L}^{\text{Validation}}(\widehat{f}) = \frac{1}{m} \sum_{\left(x^{(i)}, y^{(i)}\right) \in D^{\text{Validation}}} l(\widehat{f}(x^{(i)}), y^{(i)})$$
 Is unbiased now!

Entire Dataset

Training set, used for determining \widehat{f}

Validation set, used for approximating $L(\widehat{f})$

Entire Dataset $\widehat{f} \qquad \qquad \text{Validation set, used for approximating } \widehat{f}$ $\text{Validation used} \qquad \text{Test set used for }$

Train for making design choices

Test set used for approximating $L(\widehat{f})$

Used for design choices

Test set used for approximating $L(\widehat{f})$

End