- 1. An organic compound **T** on complete combustion yielded 13.2g of carbon dioxide and 2.7g of water. When 4.7g of **T** was vaporized at 273°C and at 760mmHg, it occupied a volume of $2.7 \times 10^{-3} m^3$.
 - (a) (i) Calculate empirical formula of **T** (02marks)
 - (ii) Determine the molecular formula of **T** (2½marks)
 - (b) **T** burns with a sooty flame. Identify **T**. (0½mark)
 - (c) Discuss the reactions of **T** with
 - (i) Bromine (4½marks)
 - (ii) Propene (4½marks)
 - (iii) Ethanoyl bromide (4½marks)

(You answer should include conditions for the reactions and mechanisms for the reactions where possible)

- (d) Write equations to show how **T** can be synthesized from benzaldehyde (1½marks)
- **2.** (a) What is meant by the terms.
 - (i) order of reaction (01mark)
 - (ii) half –life of a reaction (01mark)
 - (b) The rate equation for the reaction.

$$S_2O_3^{2-}(aq) + 2H^+(aq) \longrightarrow SO_2(g) + S(s) + H_2O(l)$$
 is

Rate =
$$k [S_2O_3^{2-}][H^+]^2$$

- (i) State how the rate will be affected if the concentrations of the reactants are both doubled. (02mark)
- (ii) Describe an experiment to determine the order of the reaction with respect to $S_2O_3^{\ 2}$ in the laboratory. (06marks)
- (c) The table below shows the kinetic data for the reaction between hot aqueous potassium hydroxide and alkylbromide(C_4H_9Br)

$$C_4H_9Br(l) + KOH(aq) \longrightarrow C_4H_9OH(aq) + KBr(aq)$$

Experiment	$[C_4H_9Br]$	[KOH(aq)]	Initial rate
	(moldm ⁻³)	(moldm ⁻³)	$(\text{moldm}^{-3}\text{s}^{-1})$
1	$1.0 \text{ x} 10^{-3}$	$1.0 \text{ x} 10^{-3}$	5.0 x 10 ⁻⁸
2	2.0×10^{-3}	$1.0 \text{ x} 10^{-3}$	1.0×10^{-7}
3	$2.0 \text{ x} 10^{-3}$	$2.0 \text{ x} 10^{-3}$	2.0×10^{-7}

- (i) determine the overall order of reaction. (01mark)
- (ii) determine the rate constant for the reaction and state its units.

(02marks)

- (iii) identify the aklybromide. (0½marks)
- (d) Write the mechanism for the reaction in (c) above. (3½marks)
- (e) Draw a well labelled energy level diagram for the reaction mechanism illustrated in (d) above. (03marks)
- **3.** Carbon ,silicon , germanium , tin and lead are elements of Group (IV) of the Periodic Table .
 - (a) Write the electronic configuration of the outer most energy level of group(IV) elements. (01marks)
 - (b) Describe how:
 - (i) carbon, silicon and lead react with water. (06marks)
 - (ii) oxides of the elements in b(i) react with sodium hydroxide. (08marks)
 - (c) Dilute nitric acid was added to trileadtetraoxide (Pb₃O₄) and the mixture warmed.
 - (i) State what would be observed. (01mark)
 - (ii) Write equation for the reaction that took place. (1½marks)

(d)	The resultant mixture in (c) above was filtered and the residue was
	added to a solution of manganese(II) sulphate followed by few drops
	of concentrated nitric acid and the mixture warmed.

(i) State what would be observed. (01mark)

(ii) Write equation for the reaction. (1½marks)

- 4. (a) (i) What is meant by the term standard **enthalpy of combustion?** (01mark)
 - (ii) Describe an experiment that can be carried out to determine the enthalpy of combustion of liquid cyclohexane.

(Diagram **not** required) (05marks)

(b) The standard enthalpies of combustion of the first five straight chain alkanes are shown in the table below.

Number of carbon	0	1	2	3	4	5
atoms (n)						
Enthalpy of	286	890	1560	2220	2877	3509
combustion of alkanes						
$-\Delta H_c (kJmol^{-1})$						

- (i) Plot a graph of the enthalpies of combustion of alkanes against number of carbon atoms. (03marks)
- (ii) Use the graph to determine the enthalpy of combustion of hexane. (01mark)
- (ii) Explain the shape of the graph. (03marks)

(c) Some thermo chemical data for copper, copper(I) oxide and oxygen is given below.

Sublimation energy of copper $= +339.3 \text{kJmol}^{-1}$

Enthalpy of formation of copper(I) oxide $= -166.7 \text{kJmol}^{-1}$

First ionization energy of copper $= +750 \text{kJmol}^{-1}$

Bond dissociation energy of oxygen $= +498.4 \text{kJmol}^{-1}$

First electron affinity of oxygen $= -141.4 \text{kJmol}^{-1}$

Second electron affinity of oxygen $= +790.8 \text{kJmol}^{-1}$

- (i) Define the term standard enthalpy of formation. (01mark)
- (ii) Draw an energy level diagram for the formation of copper(I) oxide using the enthalpy data given. (04marks)
- (iii) Determine the lattice energy of copper(I) oxide (02marks)

.

- **5.** Write equations to show how the following conversions can be effected.
 - (a) bromobenzene from nitrobenzene (05marks)

(b)
$$CH_3CH_2$$
 H from but- 1-ene (05marks)

(c) Aminoethane from propanal (05marks)

$$SO_3^-Na^+$$
(d) OH from phenol (05marks)

6. (a) What is meant by the term **standard electrode potential?**

(01mark)

(b) (i) State and explain **two** factors that affect electrode potential of a metal. (03marks)

- (ii) Describe how the standard electrode potential of iron can be determined in the laboratory. (07marks)
- (c) The standard reduction potentials of some half- cells are given in the table below.

Half –cell reaction	Standard lectrode
	potential (V)
$A: Fe^{2+}(aq) + e \longrightarrow Fe(s)$	-0.44
B : $Cr_2O_7^{2-}(aq) + 6e + 14H^+(aq) \longrightarrow Cr^{3+}(aq) + 7H_2O(1)$	+1.33
C: $MnO_4^-(aq) + 5e + 8H^+(aq) \longrightarrow Mn^{2+}(aq) + 4H_2O(1)$	+1.52
D : $Cl_2(g) + 2e$ \longrightarrow $2Cl^-(aq)$	+1.36

(i) State which species is the

• strongest reducing agent. (0½marks)

• strongest oxidizing agent. (0½marks)

(ii) Write the cell convention for the cell formed by combining the following half – cells:

• \mathbf{A} and \mathbf{B} (01marks)

• \mathbf{C} and \mathbf{D} (01marks)

- (iii) State what would be observed at the cathode in each of the cells in (ii) above. (02marks)
- (iv) Draw a labelled diagram for the cell formed by combining **B** and **C**. (03marks)
- (v) Calculate the standard free energy for the cell in (iv) above. (02marks
- 7. Explain each of the following observations
 - (a) When solid iodine crystals were added to s dilute sodium hydroxide solution, the grey solid dissolves to form a pale yellow solution which turns colourless on standing. (04marks)

- (b) When ammonium sulphate solution was mixed with sodium sulphite solution and the mixture warmed, there was effervescence of a colourless gas that turns moist red litmus paper blue. (04mark)
- (c) When a mixture of anhydrous zinc chloride and concentrated hydrochloric acid was added to 2- methylpropan- 2- ol, immediate cloudiness was formed but there no observable change at room temperature if the same reagent was treated with propan- 1- ol.

 (4½marks)
- (d) When aluminium was added to concentrated sodium hydroxide solution, the metal dissolved with effervescence of a colourless gas that burnt with a pop sound.. (3½marks)
- (e) When methanoic acid was warmed with Fehling's solution a red precipitate was formed whereas with ethanoic acid, there was no observable change. (04marks)
- **8.** (a) (i) What is meant by the term **ore**? (01mark)
 - (ii) Write the formula and name of **one** ore from which zinc is extracted. (01marks)
 - (b) Describe how pure zinc can be extracted from the ore in (a)(ii) above. (8marks)
 - (c) Describe the reaction of zinc with

(i) air (02marks) (ii) sulphuric acid (4marks)

(iii) sodium hydroxide solution (2marks)

(v) copper(II) sulphate solution (2marks)

END

SECTIONA (46marks)

1.	(a)	Giver	n the nuclea	ar proc esses b	elow:			
	$^{212}_{82}P$	b _	(1)	→ ²¹² X_	(2)	²⁰⁸ ₈₁ Y	β particle	Z
		Identi	ify					
		(i)	the emitte	ed particles (1) and (2).			(1½marks)
			(1)			• • • • • • • • • • • • • • • • • • • •		
			(2)					
		(ii)	Z		• • • • • • • • • • • • • • • • • • • •			(01mark)
	(b)			ecay constant of the sample				ate the time (02½marks)
		• • • • • • • •			•••••			
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
		• • • • • • • •						
					• • • • • • • • • • • • • • • • • • • •			
	() -	a						(4
2.	(a) D	efine th	ne term fir s	st ionization ((1mark)
		•••••			•••••			
		• • • • • • • •			•••••			

(b) The table below shows the first four ionization energies in $KJmol^{-1}$ of the element A,B,C,D and E

Element	1 st ionization	2 nd ionization	3 rd ionization	4 th ionization
	energy	energy	enegry	energy
A	494	4600	9600	9500
В	740	1500	7740	10500
С	634	1600	3100	4800
D	900	1820	14800	21100
Е	581	1820	2740	11600

(i)	Which one of the elements belongs to group I of the Periodic Table? Giv for your answer.	e a reason
	Element	(½mark)
	Reason	(½mark)
(ii)	Which one of the elements forms a cation with three positive charges?	(½mark)
(iii)	Identify the elements which belong to group II of the Periodic Table.	(½mark)
(iv) your aı	Which one of the elements in (iii) above has the smallest atomic radius. nswer.	Explain (2marks)

- 1. 10cm³ of a hydrocarbon **X** were mixed with 90cm³ of oxygen(excess) and the mixture ignited. The gaseous product was cooled to room temperature and the residual gases occupied a volume of 75cm³. On treatment with concentrated potassium hydroxide solution a contraction in volume of 40cm³ occurred.
 - (a) Calculate the molecular formula of X.

(2½marks)

(b) Write the structural formulae and IUPAC name	
1 (-) D-C (l- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	
4. (a) Define the term lattice energy	(1 mark)
(b) Calculate the lattice energy of sodium chloride	
	$\triangle H^{\theta}/\mathrm{kJmol}^{-1}$
$Na(s) \longrightarrow Na(g)$	+109
$Na(g) \longrightarrow Na^{+}(g)$	+494
$Cl_2(g) \longrightarrow 2Cl(g)$	+242
$Cl(g) + e \longrightarrow Cl^{-}(g)$	-360
$Na(s) + \frac{1}{2}Cl(g) \longrightarrow NaCl(s)$	-411
••••••	

5.	State what was observed and write equation for the reaction when							
	(a)	Copper turnings are added to moderately concentrated nitric acid. (3marks) Observation						
• • • • •		Equation						
	(b)	Concentrated hydrochloric acid was added to lead(II) chloride drop-wise until in excess . (3marks)						
		Observation						
		Equation						
6.		lete the following reactions and in each case write the I.U.P.A.C names of the main to product. (1marks each)						
	(a)	CH_3 MnO_4^-/OH^-						

	(b)	Br CH	CH CH2 CH2 B CH3	Br -	EtO ⁻ / EtOF	<u>I</u> →			•
•••••	(c) C	CH ₃ CH C	С≡СН	H ₂ / I	Lindlar's cata	lyst •			•
7 .	(a)	Write (i)	nonia solution is a	ionizat	ion of ammo			(1marks)	• •
		(ii)	an expression fo	or the b	ase ionization	n constant , K	Tb for amr	nonia.(1mark)	
	(b)	Calcul (i)	ate the pH of the ammo						•••
		(ii)	base ionization	consta	nt , Kb for am	ımonia.		(2½marks)	

8.	(a)	Define osmotic pressure.		(1mark)		
	(h)	A malysaaahamida haa tha famayyla	(C II () A solution contai	ning 5 00 adm ⁻³		
	(b)	A polysaccharide has the formula		iiiig 3.00guiii		
		of the sugar has an osmotic pressure. Find the value of n.	are of 7.12x10 Nm at 20 C.	(21/		
		ring the value of n.		(3½marks)		
•••••			•••••	•••••		
•••••	•••••			•••••		
9.	The re	esults of an investigation of a powd	ered element T are given in the t	able below.		
		Experiment	Results			
(a) A	mixture	of T and lead(IV) oxide was	A colourless gas with a choking	g smell and		
heated	1.		turned acidified potassium dichromate from			
			orange to green was evolved.			
(b) C	oncentra	ated nitric acid is added to heated	T dissolve in nitric acid with ef	fervescence of a		
T; the	e produc	cts were diluted and barium	brown gas . on addition of barium nitrate			
nitrate solution added.			solution a white precipitate was formed.			
	(i)	Identify T.		(1mark)		
	(ii)	Write equations for the reactions	in experiments (a) and (b).	(4½marks)		

		SECTION B (54marks)	
		Attempt all questions in this section.	
10.	An or	ganic compound ${f Z}$, contains carbon , hydrogen and oxygen only. V	When vaporized
at 101	kPa and	d 373K , $0.10g$ of Z occupied a volume of $66.7cm^3$. On combustion	in excess
oxyge	n , 1 m	ole of Z produced 2 moles of carbon dioxide and 3 moles of water.	
	(a)	Calculate the relative molecular mass of Z .	(2marks)
•••••	• • • • • • • • •		
•••••			
•••••			
	(b)	Determine the molecular formula of Z .	(3marks)
•••••			
	• • • • • • • • • • • • • • • • • • •		•••••
			, 4
	(c)	Z is a liquid at room temperature and reacts with metallic sodium	_
		hydrogen gas. Identify Z .	(1mark)

(d)	Write	e equation and suggest a mechanism for the re	eaction between Z and
	conce	entrated sulphuric acid at 140°C.	(3markas)
• • • • • • • •			
• • • • • • • •	• • • • • • • • •		
Carbo	on is in	group(IV) of the Periodic Table but differs fr	om the reaction of the elements
oup(IV)	elemer	nts.	
(a)	(i)	State three properties in which carbon diffe	ers from the rest of the members
		of group(IV) elements.	(3marks)
• • • • • • • •	• • • • • • • • • •		
• • • • • • • • • •	(ii)	Give a reason for answer.	(1mark)
(b)	State	what would observed and write equation for	the reaction that would take
	place	if any, when the following compounds are to	reated with water.
	(i)	tetrachloromethane	(1mark)
	(ii)	silicon (IV) chloride	(2½marks)
	Carbo oup(IV) (a)	Carbon is in oup(IV) element (a) (i) (b) State place (i)	Carbon is in group(IV) of the Periodic Table but differs froup(IV) elements. (a) (i) State three properties in which carbon differ of group(IV) elements. (ii) Give a reason for answer. (b) State what would observed and write equation for place if any, when the following compounds are to (i) tetrachloromethane

•••••	(c)	Give	a reason for your observation in b(i) and b(ii) above.	(1½marks)
12.	(a)	Sulpl	nur dioxide and oxygen react to form sulphur trioxide acco	
	$2SO_2$		wing equation: $2(g)$ $\Delta H = -96kJ$	
			yould happen to the position of equilibrium and in each case	give a reason if:
		(i)	the pressure of the system is increased.	(1½marks)
•••••		(ii)	the temperature of the system was increased.	(1½marks)
•••••		(iii)	air is added to the system.	(1½marks)
	(b)	At 80	00°C and total pressure of one atmosphere ,the partial pressu	ure of sulphur
		dioxi	de and oxygen at equilibrium are 0.22 and 0.48atmospheres	s respectively.
		(i)	Write an expression for the equilibrium constant ,Kp.	(½mark)

		(ii) Calculate the equilibrium constant, Kp	(2½marks)
	(c)	Write equation for the reaction to show how sulphur dioxide pyrites.	(1½marks)
		g equations only show how the following compounds can be sy	
	(a)	Propan- 2- ol from propyne	(3marks)
	(b)	Phenylethene from benzene	(3marks)
•••••			

				• • • • • • • • • • • • • • • • • • • •
•••••				
14.	The s	solubilit	by product of calcium fluoride is $4.0 \times 10^{-11} \text{mol}^3 \text{dm}^{-9}$ and $10^{-11} \text{mol}^3 \text{dm}^{-9}$	Ka of hydrogen
	fluor	ide is 5.	6 x 10 ⁻⁴ moldm ⁻³	
	(a)	What	t is meant by the terms:	
		(i)	solubility product of a salt.	(1mark)
				•••••
		(ii)	the acid ionization constant, ka for a weak acid.	(1marks)
• • • • • •				
•••••	•••••	•••••		•••••
	(b)	Calcı	ulate the solubility in moldm ⁻³ of calcium fluoride:	
	` '	(i)	in pure water	(2marks)

	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	
(ii) in 0.2M ca	alcium nitrate sol	ution.		(2marks)
	•••••		•••••	• • • • • • • • • • • • • • • • • • • •
	•••••		•••••	
	•••••		•••••	
	•••••	•••••	•••••	
	•••••	•••••	•••••	
	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
(iii) in 0.2M h	ydrogen fluoride	•	(3mark	s)
(iii) in 0.2M h	ydrogen fluoride		(3mark	s)
(iii) in 0.2M h	ydrogen fluoride		(3mark	s)
(iii) in 0.2M h	ydrogen fluoride		(3mark	s)
(iii) in 0.2M h	ydrogen fluoride		(3mark	s)
(iii) in 0.2M h	ydrogen fluoride		(3mark	s)
(iii) in 0.2M h	ydrogen fluoride		(3mark	s)
(iii) in 0.2M h				
15. The electron affinities an				
15. The electron affinities an are given in the table below.	ad atomic number	rs of elements of	group(VII) in th	r Period Table

(a)

Define the term **electron affinity**.

(2marks)

(b)	(i)	Draw a graph of electron affinity against atomic number of	the halogens
(0)	(1)	Draw a graph of electron arrinity against atomic number of	(3marks)
	(ii)	Explain the shape of the graph you have drawn in b(i).	(4marks)
	(2)	Chata .	
16.	(a)	State: (i) Distribution law.	(2marks)
	• • • • • • • • • • • • • • • • • • • •		
		(ii) two applications of the law.	(1mark)
	(b)	Iodine is dissolved in water containing 0.16M potassium iowas shaken with tetrachloromethane. The concentration of	
		layer was found to be 0.08M; that in the organic layer 0.1M	
		coefficient for iodine between tetrachloromethane and water	r is 85. Calculate the

		• • • • • • • •		• • • • • • • • • • • • • • • • • • • •
••••••	•••••	•••••		•••••
•••••	•••••	•••••		
• • • • • • • •	• • • • • • • • •	•••••		•••••
		•••••		
		•••••		
• • • • • • •		•••••		
• • • • • • • •		• • • • • • • • • • • • • • • • • • • •		
17.	(a)	Explai	n what is meant by the terms:	
		(i)		(1½marks)
		(i)	Buffer solution	(1½marks)
		(i)		(1½marks)
		(i)		(1½marks)
		(i)	Buffer solution	
		(i)(ii)		(1½marks) (1½marks)
			Buffer solution	
			Buffer solution	
			Buffer solution	
			Buffer solution Hydrolysis of a salt.	
			Buffer solution Hydrolysis of a salt.	
	(b)	(ii)	Buffer solution Hydrolysis of a salt.	

•••••	
	(ii) Calculate the mass of potassium propanoate that must dissolved in water at 25° C to form 200 cm ³ of solution with pH = 9.64
(Kw	for water = $1.0 \times 10^{-14} \text{ mol}^2 \text{dm}^{-6}$. Ka for propanoic acid = 1.82×10^{-6})
	(03marks)
•••••	
(c)	Calculate the pH of a mixture of 20cm ³ of 0.1M potassium propanoate and 30cm ³ of 0.1M propanoic acid.
	(Ka for propanonoic acid = $1.82 \times 10^{-6} \text{ moldm}^{-3}$) (03marks)
•••••	

END