Ideas of mathematical proof. Practical class week 22

- **4.1.** For which of the following pairs $A, B \subseteq \mathbb{R}$ does the relation $f = \{(x,y) \mid x = |y|\} \subseteq A \times B$ define a mapping $f : A \to B$? Give reasons to your answers.
 - (1) $A = \mathbb{R}, B = [0, \infty).$
 - (2) $A = [0, \infty), B = \mathbb{R}.$
 - (3) $A = [0, \infty), B = (-\infty, 0].$
- **4.2.** Given the mappings

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}, \ f((x,y)) = x + y, \text{ and}$$

$$g: \mathbb{R} \to \mathbb{R}, \ g(a) = a^2 + 1,$$

determine which of the composites $f \circ g$, $g \circ f$ is defined and write the resulting mapping in standard form.

- **4.3.** For each of the following mappings, determine whether it is (a) injective, (b) surjective.
 - (1) $f: \mathbb{Z} \to \mathbb{N}$, $f(k) = k^2 + 2$.
 - (2) $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \ f((x,y)) = x + y.$
 - (3) $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \ f((m,n)) = 2^{m-1} \cdot (2n-1).$
- **4.4.** Let $A = \mathcal{P}(\{u, v, w\})$ be the set of all subsets of $\{u, v, w\}$ and let $f : A \to A$, $f(X) = X \cap \{u, v\}$. Draw the diagram of the Cartesian product $A \times A$ and indicate f as a subset of $A \times A$. What is the image of f?
- **4.5.** Find the image of the mapping $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x^2 + 5}$.
- **4.6.** Show that $f:[3,\infty)\to(0,1],\ f(x)=\frac{2}{x-1}$ is a bijection and find the inverse mapping f^{-1} (also indicate the domain and image of f^{-1}).
- **4.7.** Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1. Define recursively the mappings $F_1 = f$ and $F_{k+1} = f \circ F_k$ for all $k \in \mathbb{N}$. Compute several first mappings, conjecture an expression for F_n and prove it by induction.