Intervals, Transformations, and Slope Solution (version 84)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-10, -5) \cup (2, 5)$
Negative	$(-5,2) \cup (5,9)$
Increasing	$(0,4) \cup (8,9)$
Decreasing	$(-10,0) \cup (4,8)$
Domain	(-10,9)
Range	(-6,2)

Intervals, Transformations, and Slope Solution (version 84)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=30$ and $x_2=62$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 9 & 30 \\ 30 & 81 \\ 62 & 9 \\ 81 & 62 \\ \end{array}$$

$$\frac{g(62) - g(30)}{62 - 30} = \frac{9 - 81}{62 - 30} = \frac{-72}{32}$$

The greatest common factor of -72 and 32 is 8. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-9}{4}$$

2