A General Framework for Symmetric Property Estimation

Moses Charikar Kiran Shiragur Aaron Sidford

NeurIPS Conference

Symmetric property estimation

Setup: Unknown distribution p. Given n i.i.d samples $x^n \sim p$.

Setup: Unknown distribution p. Given n i.i.d samples $x^n \sim p$.

Goal: Estimate f(p), where $f(\cdot)$ is a symmetric property.

Setup: Unknown distribution p. Given n i.i.d samples $x^n \sim p$.

Goal: Estimate f(p), where $f(\cdot)$ is a symmetric property. **Symmetric Properties**: invariant to label permutation.

Setup: Unknown distribution p. Given n i.i.d samples $x^n \sim p$.

Goal: Estimate f(p), where $f(\cdot)$ is a symmetric property. **Symmetric Properties**: invariant to label permutation.

f(·)	Optimal samples n	References
Support	$\frac{N}{\log N} \log^2 \frac{1}{\varepsilon}$	(WY15)
Support coverage	$\frac{m}{\log m}\log \frac{1}{\varepsilon}$	(OSW16)
Entropy	$\frac{N}{\log N} \frac{1}{\varepsilon}$	(VV11a; WY16; JVHW15)
Dist. to uniform	$\frac{N}{\log N} \frac{1}{\varepsilon^2}$	(JHW16; VV11b)

Setup: Unknown distribution p. Given n i.i.d samples $x^n \sim p$.

Goal: Estimate f(p), where $f(\cdot)$ is a symmetric property. **Symmetric Properties**: invariant to label permutation.

f(·)	Optimal samples n	References
Support	$\frac{N}{\log N} \log^2 \frac{1}{\varepsilon}$	(WY15)
Support coverage	$\frac{m}{\log m}\log\frac{1}{\varepsilon}$	(OSW16)
Entropy	$\frac{N}{\log N} \frac{1}{\varepsilon}$	(VV11a; WY16; JVHW15)
Dist. to uniform	$\frac{N}{\log N} \frac{1}{\varepsilon^2}$	(JHW16; VV11b)

Universal estimator: one algorithm that is sample competitive for all symmetric properties?

Profile Maximum Likelihood

• **Domain**: $\mathcal{X} = \{a, b, c\}$

- **Domain**: $\mathcal{X} = \{a, b, c\}$
- You receive n(=3) i.i.d symbols: $x^n = aba$ $(x^n \in \mathcal{X}^n)$

- **Domain**: $\mathcal{X} = \{a, b, c\}$
- You receive n(=3) i.i.d symbols: $x^n = aba$ $(x^n \in \mathcal{X}^n)$
- **Profile** of x^n : $\phi = \Phi(x^n) = \{2,1\}$ also: pattern/histogram of histogram/fingerprint

- **Domain**: $\mathcal{X} = \{a, b, c\}$
- You receive n(=3) i.i.d symbols: $x^n = aba$ $(x^n \in \mathcal{X}^n)$
- Profile of x^n : $\phi = \Phi(x^n) = \{2,1\}$ also: pattern/histogram of histogram/fingerprint
- For any distribution p,

Sequence probability

$$\mathbf{P}(p,x^n) = \mathbf{P}(p,aba) = p_a^2 \cdot p_b$$

- **Domain**: $\mathcal{X} = \{a, b, c\}$
- You receive n(=3) i.i.d symbols: $x^n = aba$ $(x^n \in \mathcal{X}^n)$
- **Profile** of x^n : $\phi = \Phi(x^n) = \{2,1\}$ also: pattern/histogram of histogram/fingerprint
- For any distribution p,

Sequence probability

$$\mathbf{P}(p, x^n) = \mathbf{P}(p, aba) = p_a^2 \cdot p_b$$

Profile probability

$$P(p,\phi) = \sum_{\{y^n \in \mathcal{X}^n: \Phi(y^n) = \phi\}} P(p,y^n)$$

- **Domain**: $\mathcal{X} = \{a, b, c\}$
- You receive n(=3) i.i.d symbols: $x^n = aba$ $(x^n \in \mathcal{X}^n)$
- **Profile** of x^n : $\phi = \Phi(x^n) = \{2,1\}$ also: pattern/histogram of histogram/fingerprint
- For any distribution p,

Sequence probability

$$\mathbf{P}(p, x^n) = \mathbf{P}(p, aba) = p_a^2 \cdot p_b$$

Profile probability

$$\mathbf{P}(p,\phi) = \sum_{\{y^n \in \mathcal{X}^n : \Phi(y^n) = \phi\}} \mathbf{P}(p,y^n)$$

• Sequences with profile {2,1}: {aab, aac, bba, bbc, cca, ccb} Permutations of aab: {aab, aba, baa}

- **Domain**: $\mathcal{X} = \{a, b, c\}$
- You receive n(=3) i.i.d symbols: $x^n = aba$ $(x^n \in \mathcal{X}^n)$
- **Profile** of x^n : $\phi = \Phi(x^n) = \{2,1\}$ also: pattern/histogram of histogram/fingerprint
- For any distribution p,

Sequence probability

$$\mathbf{P}(p,x^n) = \mathbf{P}(p,aba) = p_a^2 \cdot p_b$$

Profile probability

$$\mathbf{P}(p,\phi) = \sum_{\{y^n \in \mathcal{X}^n : \Phi(y^n) = \phi\}} \mathbf{P}(p,y^n)$$

- Sequences with profile $\{2,1\}$: $\{aab, aac, bba, bbc, cca, ccb\}$ Permutations of aab: $\{aab, aba, baa\}$
- $P(p, \{2,1\}) = 3 \times (p_a^2 p_b + p_a^2 p_c + p_b^2 p_a + p_b^2 p_c + p_c^2 p_a + p_c^2 p_b)$

Given any sequence $x^n \in \mathcal{X}^n$, $\phi = \Phi(x^n)$ be its profile.

Given any sequence $x^n \in \mathcal{X}^n$, $\phi = \Phi(x^n)$ be its profile.

Sequence maximum likelihood (SML)

$$p_{sml} = \max_{p} \mathbf{P}(p, x^n)$$

Given any sequence $x^n \in \mathcal{X}^n$, $\phi = \Phi(x^n)$ be its profile.

Sequence maximum likelihood (SML)

$$p_{sml} = \max_{p} \mathbf{P}(p, x^n)$$

Profile maximum likelihood (PML)

$$p_{pml} = \max_{p} \mathbf{P}(p, \phi)$$

Given any sequence $x^n \in \mathcal{X}^n$, $\phi = \Phi(x^n)$ be its profile.

Sequence maximum likelihood (SML)

$$p_{sml} = \max_{p} \mathbf{P}(p, x^n)$$

Profile maximum likelihood (PML)

$$p_{pml} = \max_{p} \mathbf{P}(p, \phi)$$

Introduced by (OSVZ04)

Given any sequence $x^n \in \mathcal{X}^n$, $\phi = \Phi(x^n)$ be its profile.

Sequence maximum likelihood (SML)

$$p_{sml} = \max_{p} \mathbf{P}(p, x^n)$$

Profile maximum likelihood (PML)

$$p_{pml} = \max_{p} \mathbf{P}(p, \phi)$$

Introduced by (OSVZ04)

Example 1

For a sequence: aba, profile: $\{2,1\}$

Given any sequence $x^n \in \mathcal{X}^n$, $\phi = \Phi(x^n)$ be its profile.

Sequence maximum likelihood (SML)

$$p_{sml} = \max_{p} \mathbf{P}(p, x^n)$$

Profile maximum likelihood (PML)

$$p_{pml} = \max_{p} \mathbf{P}(p, \phi)$$

Introduced by (OSVZ04)

Example 1

For a sequence: aba, profile: $\{2,1\}$

$$p_{sml} = (2/3, 1/3)$$

Given any sequence $x^n \in \mathcal{X}^n$, $\phi = \Phi(x^n)$ be its profile.

Sequence maximum likelihood (SML)

$$p_{sml} = \max_{p} \mathbf{P}(p, x^n)$$

Profile maximum likelihood (PML)

$$p_{pml} = \max_{p} \mathbf{P}(p, \phi)$$

Introduced by (OSVZ04)

Example 1

For a sequence: aba, profile: $\{2,1\}$

$$p_{sml} = (2/3, 1/3)$$
 $p_{pml} = (1/2, 1/2)$

Given any sequence $x^n \in \mathcal{X}^n$, $\phi = \Phi(x^n)$ be its profile.

Sequence maximum likelihood (SML)

$$p_{sml} = \max_{p} \mathbf{P}(p, x^n)$$

Profile maximum likelihood (PML)

$$p_{pml} = \max_{p} \mathbf{P}(p, \phi)$$

Introduced by (OSVZ04)

Example 1

For a sequence: aba, profile: $\{2,1\}$

 $p_{sml} = (2/3, 1/3)$ $p_{pml} = (1/2, 1/2)$

Example 2

For a sequence: abca, profile: $\{2, 1, 1\}$

Given any sequence $x^n \in \mathcal{X}^n$, $\phi = \Phi(x^n)$ be its profile.

Sequence maximum likelihood (SML)

$$p_{sml} = \max_{p} \mathbf{P}(p, x^n)$$

Profile maximum likelihood (PML)

$$p_{pml} = \max_{p} \mathbf{P}(p, \phi)$$

Introduced by (OSVZ04)

Example 1

For a sequence: aba, profile: $\{2,1\}$

$$p_{sml} = (2/3, 1/3)$$
 $p_{pml} = (1/2, 1/2)$

Example 2

For a sequence: abca, profile: $\{2, 1, 1\}$

$$p_{sml} = (1/2, 1/4, 1/4)$$

Given any sequence $x^n \in \mathcal{X}^n$, $\phi = \Phi(x^n)$ be its profile.

Sequence maximum likelihood (SML)

 $p_{sml} = \max_{p} \mathbf{P}(p, x^n)$

Profile maximum likelihood (PML)

 $p_{pml} = \max_{p} \mathbf{P}(p, \phi)$

Introduced by (OSVZ04)

Example 1

For a sequence: *aba*, profile: $\{2,1\}$ $p_{sml} = (2/3, 1/3)$ $p_{pml} = (1/2, 1/2)$

Example 2

For a sequence: abca, profile: $\{2, 1, 1\}$ $p_{sml} = (1/2, 1/4, 1/4)$ $p_{pml} = (1/5, 1/5, 1/5, 1/5, 1/5)$

• For any distribution p, and profile $\phi = \Phi(x^n)$:

• For any distribution p, and profile $\phi = \Phi(x^n)$:

$$P(p,\phi) \propto \operatorname{perm} Q_{p,\phi}$$

where $Q_{p,\phi}$ (depends on p, ϕ) is a generalized Vandermonde matrix.

• For any distribution p, and profile $\phi = \Phi(x^n)$:

$$P(p,\phi) \propto \mathrm{perm} Q_{p,\phi}$$

where $Q_{p,\phi}$ (depends on p, ϕ) is a generalized Vandermonde matrix.

• For instance: domain $\mathbf{X} = \{a, b, c\}$ and profile $\phi = \{2, 1\}$, then:

$$Q_{p,\phi} = egin{bmatrix} \mathbf{p}_a^2 & \mathbf{p}_a & \mathbf{p}_a^0 \ \mathbf{p}_b^2 & \mathbf{p}_b & \mathbf{p}_b^0 \ \mathbf{p}_c^2 & \mathbf{p}_c & \mathbf{p}_c^0 \end{bmatrix}$$

4

• For any distribution p, and profile $\phi = \Phi(x^n)$:

$$\mathbf{P}(p,\phi) \propto \mathrm{perm} Q_{p,\phi}$$

where $Q_{p,\phi}$ (depends on p, ϕ) is a generalized Vandermonde matrix.

• For instance: domain $\mathbf{X} = \{a, b, c\}$ and profile $\phi = \{2, 1\}$, then:

$$Q_{p,\phi} = egin{bmatrix} \mathbf{p}_a^2 & \mathbf{p}_a & \mathbf{p}_a^0 \ \mathbf{p}_b^2 & \mathbf{p}_b & \mathbf{p}_b^0 \ \mathbf{p}_c^2 & \mathbf{p}_c & \mathbf{p}_c^0 \end{bmatrix}$$

• (Val79) #-P hard in general.

• For any distribution p, and profile $\phi = \Phi(x^n)$:

$$\mathbf{P}(p,\phi) \propto \mathrm{perm} Q_{p,\phi}$$

where $Q_{p,\phi}$ (depends on p, ϕ) is a generalized Vandermonde matrix.

• For instance: domain $\mathbf{X} = \{a, b, c\}$ and profile $\phi = \{2, 1\}$, then:

$$Q_{p,\phi} = egin{bmatrix} \mathbf{p}_a^2 & \mathbf{p}_a & \mathbf{p}_a^0 \ \mathbf{p}_b^2 & \mathbf{p}_b & \mathbf{p}_b^0 \ \mathbf{p}_c^2 & \mathbf{p}_c & \mathbf{p}_c^0 \end{bmatrix}$$

- (Val79) #-P hard in general.
- (JSV04) Gives an efficient randomized algorithm to approximate permanent of non-negative matrices within $(1 + \epsilon)$ accuracy.

Recall, given a profile ϕ , $\max_p \operatorname{perm} Q_{p,\phi}$.

$$\max_{p_a+p_b+p_c=1} \operatorname{perm} \begin{bmatrix} \mathbf{p}_a^2 & \mathbf{p}_a & \mathbf{p}_a^0 \\ \mathbf{p}_b^2 & \mathbf{p}_b & \mathbf{p}_b^0 \\ \mathbf{p}_c^2 & \mathbf{p}_c & \mathbf{p}_c^0 \end{bmatrix}$$

Recall, given a profile ϕ , $\max_p \operatorname{perm} Q_{p,\phi}$.

Approximate profile maximum likelihood (APML)

A distribution p_{pml}^{β} is a β -APML if,

$$\mathbf{P}(p_{pml}^{\beta}, \phi) \ge \beta \max_{p} \mathbf{P}(p, \phi)$$

Recall, given a profile ϕ , $\max_p \operatorname{perm} Q_{p,\phi}$.

Approximate profile maximum likelihood (APML)

A distribution p_{pml}^{β} is a β -APML if,

$$\mathbf{P}(p_{pml}^{\beta}, \phi) \ge \beta \max_{p} \mathbf{P}(p, \phi)$$

For any profile ϕ , uniform distribution is a $\exp(-\tilde{O}(n))$ -APML distribution.

6

Recall, given a profile ϕ , $\max_p \operatorname{perm} Q_{p,\phi}$.

Approximate profile maximum likelihood (APML)

A distribution p_{pml}^{β} is a β -APML if,

$$\mathbf{P}(p_{pml}^{\beta}, \phi) \ge \beta \max_{p} \mathbf{P}(p, \phi)$$

For any profile ϕ , uniform distribution is a $\exp(-\tilde{O}(n))$ -APML distribution.

- Heuristic algorithms:
 - Expectation maximization (EM) (OSVZ04)
 - Bethe free energy approximation of permanent (Von12)
 - Dynamic programming heuristic (PJW17)

Recall, given a profile ϕ , $\max_p \operatorname{perm} Q_{p,\phi}$.

Approximate profile maximum likelihood (APML)

A distribution p_{pml}^{β} is a β -APML if,

$$\mathbf{P}(p_{pml}^{\beta}, \phi) \ge \beta \max_{p} \mathbf{P}(p, \phi)$$

For any profile ϕ , uniform distribution is a $\exp(-\tilde{O}(n))$ -APML distribution.

- Heuristic algorithms:
 - Expectation maximization (EM) (OSVZ04)
 - Bethe free energy approximation of permanent (Von12)
 - Dynamic programming heuristic (PJW17)
- No non-trivial guarantees!

Connection between PML and symmetric property estimation

Profile is a **sufficient statistic** for estimating symmetric properties.

Profile is a **sufficient statistic** for estimating symmetric properties.

Theorem (ADOS16)

Let n be the optimal sample complexity for estimating symmetric property $f(\cdot)$ within accuracy ϵ , then

Profile is a **sufficient statistic** for estimating symmetric properties.

Theorem (ADOS16)

Let n be the optimal sample complexity for estimating symmetric property $f(\cdot)$ within accuracy ϵ , then

$$f(p_{pml}) \stackrel{2\epsilon}{\approx} f(p)$$

Profile is a **sufficient statistic** for estimating symmetric properties.

Theorem (ADOS16)

Let n be the optimal sample complexity for estimating symmetric property $f(\cdot)$ within accuracy ϵ , then

$$f(p_{pml}) \stackrel{2\epsilon}{\approx} f(p)$$

Holds when $\epsilon^2 > \frac{1}{n^{0.499}}$.

7

Profile is a **sufficient statistic** for estimating symmetric properties.

Theorem (ADOS16)

Let n be the optimal sample complexity for estimating symmetric property $f(\cdot)$ within accuracy ϵ , then

$$f(p_{pml}) \stackrel{2\epsilon}{\approx} f(p)$$

Holds when $\epsilon^2 > \frac{1}{n^{0.499}}$.

Approximation suffices:

Any β -APML where $\beta > e^{-n^{1-\delta}}$ for some constant $\delta > 0$, we have

7

Profile is a **sufficient statistic** for estimating symmetric properties.

Theorem (ADOS16)

Let n be the optimal sample complexity for estimating symmetric property $f(\cdot)$ within accuracy ϵ , then

$$f(p_{pml}) \stackrel{2\epsilon}{\approx} f(p)$$

Holds when $\epsilon^2 > \frac{1}{n^{0.499}}$.

Approximation suffices:

Any β -APML where $\beta > e^{-n^{1-\delta}}$ for some constant $\delta > 0$, we have

$$f(p_{pml}^{\beta}) \stackrel{2\epsilon}{\approx} f(p)$$

Holds when $\epsilon^2 > \max\left(\frac{1}{n^{0.499}}, \frac{n^{1-\delta}}{n}\right)$.

Profile is a **sufficient statistic** for estimating symmetric properties.

Theorem (ADOS16)

Let n be the optimal sample complexity for estimating symmetric property $f(\cdot)$ within accuracy ϵ , then

$$f(p_{pml}) \stackrel{2\epsilon}{\approx} f(p)$$

Holds when $\epsilon^2 > \frac{1}{n^{0.499}}$.

Approximation suffices:

Any β -APML where $\beta > e^{-n^{1-\delta}}$ for some constant $\delta > 0$, we have

$$f(p_{pml}^{\beta}) \stackrel{2\epsilon}{\approx} f(p)$$

Holds when $\epsilon^2 > \max\left(\frac{1}{n^{0.499}}, \frac{n^{1-\delta}}{n}\right)$. Exact PML is no better than $e^{-\sqrt{n}}$ -APML.

Open Question

Open Question

Can we get rid of the condition on ϵ ?

Our Results

Open Question

Can we get rid of the condition on ϵ ? Psuedo PML

Universal estimator approaches

- Linear Programming (VV11a)
 - Suboptimal dependence on ε .

Universal estimator approaches

- Linear Programming (VV11a)
 - Suboptimal dependence on ε .
- Local Moment Matching (HJW18)
 - Recovers the distribution in sorted order.

Universal estimator approaches

- Linear Programming (VV11a)
 - Suboptimal dependence on ε .
- Local Moment Matching (HJW18)
 - Recovers the distribution in sorted order.
- Profile Maximum Likelihood
 - (ADOS16) Broad applicability, testing (HO19).

Open Question: Can we get rid of the condition on ϵ ?

Property specific estimator for estimating f

 ${\sf Empirical\ estimate} \,+\, {\sf Sophisticated\ Tools}$

Property specific estimator for estimating *f*

Empirical estimate + Sophisticated Tools

Psuedo PML for estimating f

Empirical estimate + PML estimate

Property specific estimator for estimating f

Empirical estimate + Sophisticated Tools

Psuedo PML for estimating f

Empirical estimate + PML estimate

• Weakly depends on the property.

Property specific estimator for estimating f

Empirical estimate + Sophisticated Tools

Psuedo PML for estimating f

Empirical estimate + PML estimate

- Weakly depends on the property.
- Speed up in the running times (Next slide).

Property specific estimator for estimating f

Empirical estimate + Sophisticated Tools

Psuedo PML for estimating *f*

Empirical estimate + PML estimate

- Weakly depends on the property.
- Speed up in the running times (Next slide).
- Independent work: Truncated PML (HO19).

Psuedo PML: Expirements

Samples size	10 ³	5 * 10 ³	10 ⁴	5 * 10 ⁴	10 ⁵	5 * 10 ⁵	10 ⁶	5 * 10 ⁶	10 ⁷
EmpFrac	0.18382	0.31654	0.37150	0.50457	0.56239	0.69533	0.75245	0.88554	0.94282
Speedup	0.824	1.205	1.669	3.561	4.852	9.552	13.337	12.196	10.204

