Introduction to Ray Tracing

RAJESH SHARMA
Walt Disney Animation Studios

Thank you to ACM SIGGRAPH!

Pol Jeremias-Vila: SIGGRAPH 2021 Chair

Tomasz Bednarz: Frontiers Program Chair

Alex Bryant: Student Volunteers Chair

Tim Hendrickson: Digital Marketing Manager

Student Volunteers:

Rogelio, Trinity, Aurora, Emily, Hunter & Kendra

Ray Tracing

Rajesh Sharma

Course Outline

- ✓ Intro, Model, Sampling
- **✓** Rays, Intersections
- ✓ Scene, Recursion
- -**✓** Materials, BRDF
- -**✓** BRDF-2
- -- Systems View: Integrators, Accelerators, BRDF-3
- -- Wrap up, Learn more

Today

- Guest: Keith Morley
- Recap
- More BRDF
- Shadows

Keith Morley

Keith Morley is currently a development technology engineer, responsible for helping key partners design and implement ray-tracing based solutions on NVIDIA GPUs. Keith joined NVIDIA after graduating from Princeton. In his ten years at the company, Keith focused on various ray-tracing efforts both as a research engineer and one of the original developers of the Optix API.

Housekeeping

- Link to today's slides and shaderToys:
 - Log in to your google drive
 - Google drive folder: https://bit.ly/3viTHez
 - Code: https://www.shadertoy.com/user/xarmalarma
- Use the chat to ask questions, help others
- After the lecture: @xarmalarma, #siggraph2021

Materials

- So far our material is just a color and possibly a texture
- We have diffuse (Lambertian) surfaces

Materials - Mirror

Materials - Glossy

Materials - Things can get complicated

Mirror - Specular Metal - Glossy Skin - Subsurface Glass - Transparent Plaster, Paper - Diffuse

Materials - Simplify

$$f_{
m r}(\omega_{
m i},\,\omega_{
m r})\,=\,rac{{
m d}\,L_{
m r}(\omega_{
m r})}{{
m d}\,E_{
m i}(\omega_{
m i})}\,=\,rac{{
m d}\,L_{
m r}(\omega_{
m r})}{L_{
m i}(\omega_{
m i})\cos heta_{
m i}\,\,{
m d}\,\omega_{
m i}}$$

For Diffuse of Lambertian: ω_r doesn't matter

So, the BRDF in that case is simply the reciprocal of the dot product of normal and incident direction.

Materials - BRDFs for different materials

$$f_{
m r}(\omega_{
m i},\,\omega_{
m r})\,=\,rac{{
m d}\,L_{
m r}(\omega_{
m r})}{{
m d}\,E_{
m i}(\omega_{
m i})}\,=\,rac{{
m d}\,L_{
m r}(\omega_{
m r})}{L_{
m i}(\omega_{
m i})\cos heta_{
m i}\,\,{
m d}\,\omega_{
m i}}$$

Multiple lobes

Materials - BRDFs for different materials

$$f_{
m r}(\omega_{
m i},\,\omega_{
m r})\,=\,rac{{
m d}\,L_{
m r}(\omega_{
m r})}{{
m d}\,E_{
m i}(\omega_{
m i})}\,=\,rac{{
m d}\,L_{
m r}(\omega_{
m r})}{L_{
m i}(\omega_{
m i})\cos heta_{
m i}\,\,{
m d}\,\omega_{
m i}}$$

https://www.disneyanimation.com/publications/physically-based-shading-at-disney/

Materials - Mirror

$$R_r = R_i - 2 N (R_i . N)$$

Materials - Generalizing

Not enough to just compute the BRDF

Need to sample it!

- In the diffuse case we chose not to choose
- In the mirror case, we chose to 'reflect'
- In other cases we have to choose the direction of outgoing ray

Probability Density Function (PDF)

- Sample the distribution: get new direction
- Evaluate the BRDF
- Attenuate the result with the PDF

Each sub-part of the BRDF has its own PDF

- Specular
- Diffuse
- etc.

If we have multiple components we can..

- Choose one at equal probability on each hit
- Or use MIS by weighting the samples.

Next Class

- Sampling the BRDF and lights
- Unifying everything, optimize
- Homework:
 - Try different materials on each sphere
 - o @xarmalarma, #siggraph2021

QUESTIONS?

- Chat
- #xarmalarma