Feuille d'exercices nº 1

Exercice 1 Soit $n \ge 2$ un nombre entier. On considère l'ensemble des racines n-èmes de l'unité

$$\mathbb{U}_n = \{ z \in \mathbb{C} / z^n = 1 \}.$$

- 1. Vérifier que le produit des nombres complexes est une loi de composition interne sur \mathbb{U}_n .
- 2. Montrer que (\mathbb{U}_n,\cdot) est un groupe commutatif.

Exercice 2 On considère l'ensemble

$$SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in M_2(\mathbb{R}) / \theta \in \mathbb{R} \right\}$$

- 1. Vérifier que le produit des matrices est une loi de composition interne sur SO(2).
- 2. Montrer que $(SO(2), \cdot)$ est un groupe. Préciser son élément neutre et une formule pour l'inverse.
- 3. Ce groupe est-il commutatif?

Exercice 3 On considère l'ensemble

$$H_3(\mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} / (a, b, c) \in \mathbb{R}^3 \right\}$$

- 1. Vérifier que le produit des matrices est une loi de composition interne sur $H_3(\mathbb{R})$.
- 2. Montrer que $(H_3(\mathbb{R}),\cdot)$ est un groupe. Préciser son élément neutre et une formule pour l'inverse.
- 3. Ce groupe est-il commutatif?

Exercice 4 Soit G un ensemble non vide muni d'une loi de composition associative notée \star . Montrer que (G, \star) est un un groupe si et seulement si il existe un élément $e \in G$ tel que

(1)
$$\forall g \in G \quad g \star e = g$$

(2)
$$\forall g \in G \quad \exists g' \in G, g \star g' = e.$$

Exercice 5 Soit
$$\mathcal{E} = \{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \in M_2(\mathbb{R}) , a \in \mathbb{R}^*, b \in \mathbb{R} \}.$$

- 1. Vérifier que le produit des matrices est une loi de composition interne associative sur £.
- 2. Trouver tous les éléments $E \in \mathcal{E}$ tels que

$$\forall A \in \mathcal{E}, AE = A.$$

De tels éléments E s'appellent des éléments neutres à droite de (\mathcal{E},\cdot) .

3. Existe-t-il un élément $E \in \mathcal{E}$ tels que

$$\forall A \in \mathcal{E}, EA = A$$
?

4. Soit E un élément neutre à droite de (\mathcal{E}, \cdot) . Montrer que tout élément A de \mathcal{E} admet un inverse à gauche pour cet élément neutre, i.e.

$$\forall A \in \mathcal{E}, \exists B \in \mathcal{E}, BA = E.$$

Exercice 6 Montrer que $H = \{2^n / n \in \mathbb{Z}\}$ est un sous groupe multiplicatif de \mathbb{Q}^* .

Exercice 7 On considère l'ensemble $\mathrm{SL}_2(\mathbb{Z})$ des matrices carrées à coefficients réels de la forme

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 avec $(a, b, c, d) \in \mathbb{Z}^4$ et $ad - bc = 1$.

- 1. Montrer que $\mathrm{SL}_2(\mathbb{Z})$ est un sous groupe de $\mathrm{GL}_2(\mathbb{R})$.
- 2. Calculer l'ordre des éléments suivants :

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \ , \ B = \left(\begin{array}{cc} 0 & -1 \\ 1 & 1 \end{array} \right)$$

3. Quel est l'ordre du produit AB?

Exercice 8 Soit $\theta \in \mathbb{R}$ et posons $g = e^{i\theta}$.

- 1. Supposons que $\theta = \pi(p/q)$ avec p/q est un rationnel sous forme irréductible. Montrer que l'ordre de g dans le groupe (\mathbb{C}^*,\cdot) est q si p est pair et 2q sinon.
- 2. Quel est l'ordre de g si θ n'est pas comme dans la question précédente?

Exercice 9 Soit (G, \cdot) un groupe et H une partie non vide de G stable pour \cdot . Montrer que si H est finie alors H est un sous-groupe. La propriété est-elle vraie dans le cas où H est infinie?

Exercice 10 Soit (G,\cdot) un groupe abélien et g_1,g_2 deux éléments de G d'ordre finis p_1,p_2 .

- 1. Montrer que le produit g_1g_2 est d'ordre fini p.
- 2. Montrer que p divise $PPCM(p_1, p_2)$.
- 3. Montrer que si p_1 et p_2 sont premiers entre eux alors $p = p_1 p_2$.

Exercice 11 On considère l'ensemble C des matrices carrées à coefficients réels de la forme

$$\begin{pmatrix} x & -y \\ y & x \end{pmatrix}, (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$$

- 1. Montrer que C muni de la multiplication des matrices est un groupe.
- 2. Montrer que le groupe (\mathcal{C},\cdot) est isomorphe au groupe multiplicatif \mathbb{C}^* .

Exercice 12 Soit (G, \cdot) un groupe. L'application

$$\begin{array}{ccc} \psi: G & \longrightarrow & G \\ g & \longmapsto & g^{-1} \end{array}$$

est-elle un homomorphisme? (discuter selon que G est commutatif ou non).

Exercice 13 Soit (G, \cdot) un groupe.

1. Montrer que pour tout $g \in G$, l'application

$$\psi_g: G \longrightarrow G$$

$$x \longmapsto gxg^{-1}$$

est un automorphisme de G.

- 2. Montrer que l'ensemble $\{\psi_g/g \in G\}$ est un sous-groupe du groupe $(S(G), \circ)$ où S(G) est l'ensemble des bijections de G.
- 3. Montrer que l'application

$$\begin{array}{ccc} \Psi: G & \longrightarrow & S(G) \\ g & \longmapsto & \psi_g \end{array}$$

est un homomorphisme et trouver son novau.

Exercice 14

1. Soit G_1 l'ensemble formé des matrices suivantes

$$A_1=\left(\begin{array}{cc}1&0\\0&1\end{array}\right),A_2=\left(\begin{array}{cc}-1&0\\0&-1\end{array}\right),A_3=\left(\begin{array}{cc}0&-1\\1&0\end{array}\right),A_4=\left(\begin{array}{cc}0&1\\-1&0\end{array}\right).$$

Montrer que G muni de la multiplication des matrices est un groupe, donner son tableau, et préciser l'ordre de chacun de ses éléments. Le groupe G_1 est-il isomorphe à $\mathbb{Z}/4\mathbb{Z}$?

2. Même questions pour l'ensemble G_2 formé des matrices suivantes

$$B_1=\left(\begin{array}{cc}1&0\\0&1\end{array}\right), B_2=\left(\begin{array}{cc}-1&0\\0&-1\end{array}\right), B_3=\left(\begin{array}{cc}0&1\\1&0\end{array}\right), B_4=\left(\begin{array}{cc}0&-1\\-1&0\end{array}\right).$$

3. Les groupes G_1 et G_2 sont-ils isomorphes?

Exercice 15

- 1. Trouver tous les groupes à isomorphe près d'ordre inférieur ou égal à 5.
- 2. En déduire que tout groupe non commutatif est d'ordre au moins égal à 6.
- 3. Donner un groupe non commutatif d'ordre 6. Ce groupe est-il isomorphe à $\mathbb{Z}/6\mathbb{Z}$?

Exercice 16 Soit
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 6 & 7 & 1 & 2 & 4 \end{pmatrix} \in S_8$$
.

- 1. Décomposer σ en produit de cycles à supports disjoints.
- 2. Donner la signature de σ .
- 3. Décomposer σ en produit de transpositions.
- 4. Calculer σ^{2021} .

Exercice 17 Considérons les deux permutations suivantes

- 1. Décomposer σ_1 en produits de cycles à supports disjoints.
- 2. Déterminer la signature de σ_1 .
- 3. Décomposer σ_2 en produits de cycles à supports disjoints.
- 4. Déterminer la signature de σ_2 .

Exercice 18

1. Décomposer en produit de cycles à supports disjoints les permutations suivantes.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 4 & 8 & 5 & 2 & 6 & 1 & 3 \end{pmatrix} \in S_8,$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 5 & 6 & 3 & 7 & 8 & 2 & 11 & 1 & 12 & 4 & 10 & 9 \end{pmatrix} \in S_{12},$$

- 2. Calculer σ^{-1} et τ^{-1} .
- 3. Calculer l'ordre de τ . Calculer τ^{2021} .
- 4. Calculer la signature de σ et τ .

Exercice 19 Soit σ la permutation de S_{10} donnée par

- 1. Écrire l'inverse de σ .
- 2. Décomposer σ en cycles.
- 3. Calculer sa signature.
- 4. Quel est le plus petit entier non nul n tel que $\sigma^n = id$?
- 5. Calculer σ^{147} .

Exercice 20 Soit σ la permutation de S_{12} définie par

- 1. Combien σ possède-t-elle d'inversions?
- 2. Décomposer σ en produit de transpositions. Retrouver sa signature.
- 3. L'orbite d'un élément selon une permutation s est l'ensemble de ses images successives obtenues par applications répétées de s. Déterminer les orbites de σ , i.e. déterminer l'orbite de i selon σ pour tout $i \in \{1, \ldots, 12\}$.
- 4. Déterminer σ^{2021} .

Exercice 21 Soit σ la permutation de S_9 donnée par

- 1. Déterminer le nombre d'inversions de σ et la signature de $\sigma.$
- 2. Décomposer σ en produit de cycles disjoints.
- 3. Décomposer σ en produit de transpositions.
- 4. On dit qu'une transposition est simple si elle est de la forme $(i \ i+1)$. Décomposer σ en produit de transpositions simples.
- 5. Quel est l'ordre de σ dans S_9 ? Calculer σ^{1000} .

Exercice 22 Décomposer en cycles les permutations suivantes de S_7 :

1.

$$\sigma = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 7 & 2 & 1 & 4 & 5 \end{array}\right)$$

2.

$$\sigma = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 4 & 2 & 3 & 5 & 6 & 1 \end{array}\right)$$

3.

$$\sigma = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 7 & 2 & 4 & 5 & 6 \end{array}\right)$$

Exercice 23 Soit σ la permutation de S_{10} définie par

- 1. Décomposer σ en produit de cycles disjoints.
- 2. Décomposer σ en produit de transpositions.
- 3. Quelle est la signature de σ ?
- 4. Combien σ présente-t-elle d'inversions?
- 5. Quel est l'ordre de σ ?
- 6. Calculer σ^{3914} .
- 7. Combien y a-t-il de cycles de longueur 4 dans S_{10} ?
- 8. Combien y a-t-il de permutations qui se décomposent en un produit de deux cycles disjoints, l'un de longueur 3, l'autre de longueur 6?

Exercice 24

- 1. Soit $n \ge 2$. Montrer que toute permutation $\sigma \in S_n \setminus \{id\}$ s'écrit comme la composée de transpositions.
- 2. Soit $n \ge 3$. Soient i, j deux entiers distincts dans $\{2, \ldots, n\}$. Calculer $(1 \ i)(1 \ j)(1 \ i)$.
- 3. Soit $n \ge 3$. Montrer que toute permutation $\sigma \in S_n \setminus \{id\}$ s'écrit comme la composée de transpositions de la forme $(1 \ i)$ où i appartient à $\{2, \ldots, n\}$.
- 4. Soit $n \ge 3$. Montrer que toute permutation $\sigma \in S_n \setminus \{id\}$ s'écrit à l'aide de la transposition $(1 \ 2)$ et du cycle $(2\ 3\ \dots\ n\ 1)$.