Turing Machines

Formal Languages and Abstract Machines

Week 10

Baris E. Suzek, PhD

Outline

- Last week
- Formal Definition for Turing Machines
- Computing Functions with Turing Machines
- Turing's Thesis
- Variations of the Turing Machine
- Universal Turing Machine
- Countable/uncountable Sets

Context-Free and Regular Languages

Context-Free Languages

A string is accepted if there is one computation such that:

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

A string is rejected if in every computation with this string:

The input cannot be consumed

OR

The input is consumed and the last state is not a final state

OR

The stack head moves below the bottom of the stack

Formal Definition

Non-Deterministic Pushdown Automaton

Instantaneous Description

Union

Concatenation

Context-free languages

are closed under:

Union

Context-free languages

are closed under:

Concatenation

 $L_{
m l}$ is context free

>

 $L_1 \cup L_2$

 L_2 is context free

is context-free

 $L_{
m l}$ is context free

 L_2 is context free

 L_1I

is context-free

Star Operation

Context-free languages

are closed under:

Star-operation

L is context free

 L^{*} is context-free

13

Intersection

Complement

Context-free languages are **not** closed under:

intersection

 $L_{\rm l}$ is context free

 L_2 is context free

14

 $L_1 \cap L_2$ ${\color{red} \underline{\sf not}} \ {\color{blue} {\sf necessarily}}$ context-free

Context-free languages are **not** closed under:

complement

L is context free

not necessarily context-free

14

The Language Hierarchy

Languages accepted by

Turing Machines

$$a^nb^nc^n$$

WW

Context-Free Languages

$$a^nb^n$$

 WW^{R}

Regular Languages

$$a^*$$

a*b*

A Turing Machine

Tape

Read-Write head

Control Unit

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

Read-Write head

The head at each time step:

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Example:

Time 0

Time 1

- 1. Reads *a*
- 2. Writes k
- 3. Moves Left

Time 1

Time 2

- 1. Reads b
- 2. Writes f
- 3. Moves Right

The Input String

Head starts at the leftmost position of the input string

Remark: The input string is never empty

States & Transitions

Example:

Time 1

Time 1

Time 2

$$q_1$$
 $a \rightarrow b, R$ q_2

Example:

Time 2

$$(q_1)$$
 $a \rightarrow b, L$ (q_2)

Example:

Time 1

Time 2

$$\begin{array}{c}
 & & & & & & & \\
\hline
 & q_1 & & & & & \\
\end{array}$$

Determinism

Turing Machines are deterministic

No lambda transitions allowed

Partial Transition Function Example:

Allowed:

No transition for input symbol

Halting

The machine *halts* if there are no possible transitions to follow

Example:

No possible transition

HALT!!!

Final States q_1 Allowed

• Final states have no outgoing transitions

In a final state the maçhine halts

Acceptance

Accept Input

If machine halts in a final state

Reject Input

If machine halts in a non-final state or

If machine enters an *infinite loop*

Infinite Loop Example

A Turing machine for language aa*+b(a+b)*

Because of the infinite loop:

The final state cannot be reached

The machine never halts

The input is not accepted

Another Turing Machine Example

Turing machine for the language

$$\{a^nb^n\}$$

Standard Turing Machine

The machine we described is the standard:

Deterministic

Infinite tape in both directions

Tape is the input/output file

Outline

- Last week
- Formal Definition for Turing Machines
- Computing Functions with Turing Machines
- Turing's Thesis
- Variations of the Turing Machine
- Universal Turing Machine
- Countable/uncountable Sets

Transition Function

$$\delta(q_1, a) = (q_2, b, R)$$

Transition Function

$$\begin{array}{c|c}
\hline
q_1 & c \to d, L \\
\hline
\end{array}$$

$$\delta(q_1,c) = (q_2,d,L)$$

Turing Machine:

Configuration

Instantaneous description: $ca q_1 ba$

A Move:
$$q_2 xayb > x q_0 ayb$$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Equivalent notation: $q_2 xayb \succ xxy q_1 b$

Initial configuration: $q_0 w$

Input string

The Accepted Language

For any Turing Machine M

$$L(M) = \{w: q_0 \ w \succ x_1 \ q_f \ x_2\}$$
 Initial state Final state

Outline

- Last week
- Formal Definition for Turing Machines
- Computing Functions with Turing Machines
- Turing's Thesis
- Variations of the Turing Machine
- Universal Turing Machine
- Countable/uncountable Sets

A function may have many parameters:

Example: Addition function

$$f(x, y) = x + y$$

Integer Domain

Decimal: 5

Binary: 101

Unary: 11111

We prefer unary representation:

easier to manipulate with Turing machines

Definition:

A function f is computable if there is a Turing Machine M such that:

Initial configuration

Final configuration

For all $w \in D$ Domain

In other words:

A function f is computable if there is a Turing Machine M such that:

$$q_0 \ w \ \succ \ q_f \ f(w)$$
 Initial Final Configuration

For all $w \in D$ Domain

Example

The function
$$f(x, y) = x + y$$
 is computable

x, y are integers

Turing Machine:

Input string: x0y unary

Output string: xy0 unary

The 0 is the delimiter that separates the two numbers

The 0 helps when we use the result for other operations

Turing machine for function f(x, y) = x + y

Execution Example:

Time 0

$$x = 11$$
 (2)

$$y = 11$$
 (2)

Final Result

$$\begin{array}{c|c|c} x + y \\ \hline & \Diamond & 1 & 1 & 1 & 0 & \Diamond \\ \hline & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ &$$

Time 2 \Diamond 1 1 0 1 1 \Diamond

Time 4 \Diamond 1 1 1 1 \Diamond

Another Example

$$f(x) = 2x$$

The function f(x) = 2x is computable

is integer

Turing Machine:

Input string:

unary

Output string:

 $\chi\chi$

unary

Turing Machine Pseudocode for f(x) = 2x

- Replace every 1 with \$
- · Repeat:
 - Find rightmost \$, replace it with 1

Go to right end, insert 1

Until no more \$ remain

Turing Machine for f(x) = 2x

Example

Finish

$$1 \rightarrow \$, R$$
 $1 \rightarrow 1, L$

$$1 \rightarrow 1, L$$

$$1 \rightarrow 1, R$$

Another Example

The function
$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \leq y \end{cases}$$
 is computable

Turing Machine for

$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

Input:
$$x0y$$

Turing Machine Pseudocode:

Repeat

```
Match a 1 from x with a 1 from y
Until all of x or y is matched
```

• If a 1 from x is not matched erase tape, write 1 (x > y) else erase tape, write 0 $(x \le y)$

Outline

- Last week
- Formal Definition for Turing Machines
- Computing Functions with Turing Machines
- Turing's Thesis
- Variations of the Turing Machine
- Universal Turing Machine
- Countable/uncountable Sets

Turing's thesis:

Any computation carried out by mechanical means can be performed by a Turing Machine

(1930)

Computer Science Law:

A computation is mechanical if and only if it can be performed by a Turing Machine

There is no known model of computation more powerful than Turing Machines

Definition of Algorithm:

```
An algorithm for function f(w) is a Turing Machine which computes f(w)
```

Algorithms are Turing Machines

When we say:

There exists an algorithm

We mean:

There exists a Turing Machine that executes the algorithm

Outline

- Last week
- Formal Definition for Turing Machines
- Computing Functions with Turing Machines
- Turing's Thesis
- Variations of the Turing Machine

- Universal Turing Machine
- Countable/uncountable Sets

The Standard Model

Infinite Tape

Read-Write Head (Left or Right)

Control Unit

Deterministic

Variations of the Standard Model

Turing machines with: • Stay-Option

- · Semi-Infinite Tape
- · Off-Line
- Multitape
- Multidimensional

The variations form different Turing Machine Classes

Each Class has the same power with the Standard Model

Same Power of two classes means:

For any machine M_1 of first class

there is a machine $\,M_{2}\,$ of second class

such that:
$$L(M_1) = L(M_2)$$

And vice-versa

Turing Machines with Stay-Option

The head can stay in the same position

$$\Diamond \Diamond a a b a b b c a c a \Diamond \Diamond \Diamond$$

Left, Right, Stay

L,R,S: moves

Example:

Time 1

Time 2

$$q_1$$
 $\xrightarrow{a \to b, S}$ q_2

Semi-Infinite Tape

The Off-Line Machine

Input File

Control Unit

Off-line machines simulate Standard Turing Machines:

Off-line machine:

1. Copy input file to tape

2. Continue computation as in Standard Turing machine

Multitape Turing Machines

Time 2

$$\underbrace{q_1} \xrightarrow{(b,f) \to (g,d), L, R} q_2$$

Outline

- Last week
- Formal Definition for Turing Machines
- Computing Functions with Turing Machines
- Turing's Thesis
- Variations of the Turing Machine
- Universal Turing Machine
- Countable/uncountable Sets

A limitation of Turing Machines:

Turing Machines are "hardwired"

they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

· Reprogrammable machine

· Simulates any other Turing Machine

Universal Turing Machine simulates any other Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Initial tape contents of M

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

State Encoding

Head Move Encoding

Transition Encoding

Transition:
$$\delta(q_1,a)=(q_2,b,L)$$
 Encoding: 10101101101 separator

Machine Encoding

Transitions:

$$\delta(q_1, a) = (q_2, b, L)$$
 $\delta(q_2, b) = (q_3, c, R)$

$$\delta(q_2,b) = (q_3,c,R)$$

Encoding:

10101101101 00 1101101110111011

Tape 1 contents of Universal Turing Machine:

encoding of the simulated machine $\,M\,$ as a binary string of 0's and 1's

A Turing Machine is described with a binary string of 0's and 1's

Therefore:

The set of Turing machines forms a language:

each string of the language is the binary encoding of a Turing Machine

Language of Turing Machines

```
(Turing Machine 1)
L = \{ 010100101,
                          (Turing Machine 2)
     00100100101111,
     111010011110010101,
     .....}
```

Outline

- Last week
- Formal Definition for Turing Machines
- Computing Functions with Turing Machines
- Turing's Thesis
- Variations of the Turing Machine
- Universal Turing Machine
- Countable/uncountable Sets

Infinite sets are either: Countable

or

Uncountable

Countable set:

```
Any finite set or
```

Any Countably infinite set:

There is a one to one correspondence between elements of the set and Natural numbers

$$2n$$
 corresponds to $n+1$

Example: The set of rational numbers is countable

Rational numbers:
$$\frac{1}{2}$$
, $\frac{3}{4}$, $\frac{7}{8}$, ...

Naïve Proof

$$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots$$

Correspondence:

Positive integers: 1, 2, 3, ...

Doesn't work:

we will never count $\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots$ numbers with nominator 2:

$$\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots$$

Better Approach

$$\frac{1}{1}$$
 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$...

$$\frac{2}{1}$$
 $\frac{2}{2}$ $\frac{3}{3}$...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

1 1	$\rightarrow \frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$
<u>2</u>	$\frac{2}{2}$	$\frac{2}{3}$	•

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

1	1	1	1	
$\overline{1}$	$\sqrt{2}$	3	4	• • •
2	2	2		
<u> </u>	$\overline{2}$	$\frac{1}{3}$	•	

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

Rational Numbers:
$$\frac{1}{1}$$
, $\frac{1}{2}$, $\frac{2}{1}$, $\frac{1}{3}$, $\frac{2}{2}$, ...

Correspondence:

We proved:

the set of rational numbers is countable by describing an enumeration procedure

Definition

Let S be a set of strings

An enumeration procedure for S is a Turing Machine that generates all strings of S one by one

and

each string is generated in finite time

strings
$$s_1, s_2, s_3, \ldots \in S$$

Enumeration
Machine for
$$S$$

output
 $s_1, s_2, s_3, ...$

(on tape)

Finite time: $t_1, t_2, t_3, ...$

Enumeration Machine

Configuration

Time 0

Time t_1

Time t_2

Time t_3

Observation:

If for a set there is an enumeration procedure, then the set is countable

Example:

The set of all strings $\{a,b,c\}^+$ is countable

Proof:

We will describe an enumeration procedure

Naive procedure:

Produce the strings in lexicographic order:

a

aa

aaa

aaaa

• • • • •

Doesn't work:

strings starting with b will never be listed (violates the generation in finite time rule)

Better procedure: Proper Order

1. Produce all strings of length 1

2. Produce all strings of length 2

3. Produce all strings of length 3

4. Produce all strings of length 4

• • • • • • • •

aaab acba length 2 bbbccacbCCaaa aab

Produce strings in Proper Order:

Theorem: The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Enumeration Procedure:

Repeat

1. Generate the next binary string of 0's and 1's in proper order

Check if the string describes a
 Turing Machine
 if YES: print string on output tape
 if NO: ignore string

Definition: A set is uncountable if it is not countable