Санкт-Петербургский Политехнический университет Петра Великого

Отчет по лабораторной работе $\mathbb{N}3$

Решение задачи одномерной минимизации.

Студенты: Ерошкин Иван Игоревич

Губриенко Денис Дмитриевич Чибышев Тимофей Андреевич

Преподаватель: Родионова Елена Александровна

 Γ руппа: 5030102/00401

Содержание

1	Постановка задачи			
2	Методы решения задачи линейной минимизации			
	2.1	Метод равномерного поиска	2	
		2.1.1 Теоретические выкладки для оценки количества вызовов функции	2	
		2.1.2 Сравнение теоретических выкладок с результатом на практике	4	
	2.2	Метод пробных точек	Ę	
		2.2.1 Теоретические выкладки для оценки количества вызовов функции	Ę	
	2.3	Метод Фибоначи	6	

1 Постановка задачи

- $\Box S = [a, b]$, где $a, b \in \mathbf{R} : a < b$ $\Box f(x)$ определена на S:
- во-первых, $\exists ! x_*$ точка глобального минимума f на S;
- ullet во-вторых, на $[a,x_*]\ f$ убывает, на $[x_*,b]$ возрастает.
- $\exists \epsilon \in \mathbf{R} : 0 < \epsilon < b a$

Требуется вычислить $\tilde{x}_* \in S : |\tilde{x}_* - x_*| \le \epsilon$

2 Методы решения задачи линейной минимизации

Мы рассмотрим три метода решения задачи линейной минимизации (метод Фибоначчи, равномерного поиска и пробных точек). Также мы сравним методы по числу обращений к вычислению функции f(x), требуемому для достижения заданной точности.

2.1 Метод равномерного поиска

Описание. Задаются начальный интервал неопределенности [a;b] и количество отрезков разбиения N. Вычисления производятся в N-1 равномерно удаленных друг от друга точках (при этом количество вызовов функции равно N-1). Путем сравнения величин $f(x_i), i=1,...,N-1$ находится точка x_j , в которой значение функции наименьшее. Искомая точка минимума x_* считается заключенной в интервале $[x_{j-1},x_{j+1}]$ (рис. 2.1).

Рис. 2.1. Графическая иллюстрация метода равномерного поиска

Алгоритм.

- 1. Зададим точность ϵ . Выберем число n и построим точки: $x_i=a+i\cdot h,$ где $i=1,\dots,n-1$
- 2. Вычислим значение функции в этих точках и найдем минимальное из них. Пусть оно соответствует номеру j.
- 3. f(x) унимодальная функция, следовательно, $x^* \in [x_{j-1}, b]$ и $x^* \in [a, x_{j+1}] \implies x^* \in [x_{j-1}, x_{j+1}]$ Тогда новый интервал неопределенности $[x_{j-1}, x_{j+1}]$

Будем повторять шаги 1) — 3) до тех пор, пока $|x_{i+1}-x_{i-1}| \ge \epsilon$

В качестве решения можно выбрать любую точку конечного интервала неопределенности. Например, середину.

Замечания. «Давайте подумаем, что выгоднее, делить отрезок на 5 или на 50 частей?»

2.1.1 Теоретические выкладки для оценки количества вызовов функции

Рассмотрим каждую итерацию работы нашего алгоритма.

1-шаг:

Поделим отрезок на n частей. Заметим, что n>2, ибо в противном получим бесконечный цикл. Вычислим длину интервала неопределенности: $|x_{j+1}^{(1)}-x_{j-1}^{(1)}|=|x_{j+1}^{(1)}-x_{j}^{(1)}|+|x_{j}^{(1)}-x_{j-1}^{(1)}|=\frac{2}{n}(b-a)$

Подробнее на рисунке.

2-шаг:

Вычислим длину интервала неопределенности на втором шаге: $|x_{i+1}^{(2)}-x_{i-1}^{(2)}|=\frac{2^2}{n^2}(b-a)$

k-шаг:

Вычислим длину интервала неопределенности на k-ом шаге: $|x_{j+1}^{(k)}-x_{j-1}^{(k)}|=\frac{2^k}{n^k}(b-a)$

Предположим, что k-й шаг был последним. Значит, выполнено условие отсановки, то есть $|x_{j+1}^{(k)} - x_{j-1}^{(k)}| < \epsilon$, где k - шаг, то есть в этом случае количество итераций, необходимое для достижения заданной точности. Произведем эквивалентные преобразования:

$$\frac{2^k}{n^k}(b-a) < \epsilon$$
$$(\frac{2}{n})^k < \frac{\epsilon}{(b-a)}$$

Так как $n>2 \implies \frac{2}{n} < 1$. Также $\epsilon < b-a$, ибо в противном случае мы выйдем из цикла на первой же итераций. Тогда:

$$k \cdot ln(\frac{2}{n}) > ln(\frac{\epsilon}{b-a})$$

$$k \cdot (ln(2) - ln(n)) > ln(\epsilon) - ln(b-a)$$

$$k > \frac{ln(\epsilon) - ln(b-a)}{ln(2) - ln(n)} = \frac{ln(\frac{b-a}{\epsilon})}{ln(\frac{n}{2})}$$

Получаем оценку для количества итераций. Заметим, что b-a задается в условии задачи. Точность ϵ также определяется до начала алгоритма, тогда $C=ln(\frac{b-a}{\epsilon})-$ константа. Следовательно, запишем оценки для k: $k_{low}=\left[\frac{ln(\frac{b-a}{\epsilon})}{ln(\frac{n}{2})}\right],$ $k_{up}=\left[\frac{ln(\frac{b-a}{\epsilon})}{ln(\frac{n}{2})}\right]+1,$ [...] - взятие целой части. Далее на практике убедимся, что количество итераций будет равно следующему целому числу для $\frac{ln(\frac{b-a}{\epsilon})}{ln(\frac{n}{2})}$. Заметим, что при $n\in(2,2e)$, то есть при n=3,4,5; $ln(\frac{n}{2})<1\implies k>ln(\frac{b-a}{\epsilon})$. А при $n>2e:ln(\frac{n}{2})>1\implies k< ln(\frac{b-a}{\epsilon})$. Откуда можно сделать вывод, что при заданной точности ϵ и начальном отрезке [a,b]. Меньшее количество итераций будет получено при большем количестве отрезков разбиения. На рисунке представлен график функции количества итераций от количества отрезков разбиения. Можно наглядно убедиться в вышесказанном.

Теперь оценим количество вызовов функции. Так как на каждой итерации мы осуществляем n-1 вызов $\Longrightarrow f_{calls} > (n-1)\cdot [k] = [\frac{ln(\frac{b-a}{\epsilon})}{ln(\frac{n}{2})}]\cdot (n-1)$. Так же оценим сверху $f_{calls} \le (n-1)\cdot ([k]+1) = [\frac{ln(\frac{b-a}{\epsilon})}{ln(\frac{n}{2})}\cdot (n-1)] + n-1$. $|f(n) = \frac{ln(\frac{b-a}{\epsilon})}{ln(\frac{n}{2})}\cdot (n-1) \implies f'(n) = ln(\frac{b-a}{\epsilon})\cdot \frac{ln(\frac{n}{2})-\frac{n-1}{n}}{ln^2(\frac{n}{2})} \implies \text{ определим экстремум. Тогда } f'(n) = 0 \implies ln(\frac{n}{2}) = \frac{n-1}{n} \implies \frac{n}{2} = e^{1-\frac{1}{n}} \implies n\cdot e^{\frac{1}{n}} = 2e$, при этом n>2 нетрудно заметить, что равенство будет достигаться при $n \le (5,6)$. Заметим, что при $n < n_*$, f'(n) < 0. А при $n > n_*$, $f'(n) > 0 \implies n_*$ - это минимум.

Можем сделать вывод, что для количества отрезков разбиения, равного 5, количество вызовов функции будет меньше, чем для 50 отрезков. Оптиммальным же будет $n \approx 5$.

2.1.2 Сравнение теоретических выкладок с результатом на практике

Для сравнения программно посчитаем для разных точностей ($eps=10^{-1},10^{-3},10^{-6},10^{-9},10^{-12},10^{-15}$) зависимость количества вызовов функции от числа отрезков разбиения от 3 до 30. Также нанесем на график полученную теоретическую оценку сверху и снизу.

Можем заметить, что график фактической оценки лежит между графиками для ограничения сверху и снизу. Также оптимальное количество отрезков разбиения $n \approx 5$.

2.2 Метод пробных точек

Описание. Задаются начальный интервал неопределенности [a,b], который делим на 4 отрезка тремя пробными точками. Пробные точки: $x_i = a + \frac{b-a}{4} * i$, где i = 1,2,3.

Лемма. f(x) - унимодальная функция на [a, b].

Пусть $x_1, x_2 \in [a, b], x_1 < x_2.$

Тогда

- 1) $f(x_1) \ge f(x_2) \Rightarrow x^* \notin [a, x_1]$
- 1) $f(x_1) \le f(x_2) \Rightarrow x^* \notin [x_2, b]$

Алгоритм. Сравниваем значение функции в точках x_1 и x_2 : $f(x_1) \le f(x_2) \Rightarrow [a_{k+1}, b_{k+1}] = [a_{k+1}, x_2]$. Такой переход делаем опираясь на лемму.

Если же условие в левой части не выполнено, то проводим следующее сравнение: $f(x_2) \leq f(x_3) \Rightarrow [a_{k+1}, b_{k+1}] = [x_1, x_3].$

Если же и это условие не выполнено, то: $[a_{k+1}, b_{k+1}] = [x_2, b_{k+1}].$

Будем повторять шаги выше до тех пор, пока $|x_{j+1}-x_{j-1}| \geq \epsilon$

В качестве решения можно выбрать середину конечного интервала неопределённости.

Замечания. Нетрудно заметить, что во всех возможных результатах сравнения мы сократили интервал неопределенности вдвое. А также мы можем заметить, что в любом исходе мы будем знать середину нового интервала неопределенности. Значит, вычисление функции в этой точке можно не производить повторно. И в итоге мы получим, что на следующей итерации число обращений к вычислению функции цели будет ≤ 2 .

2.2.1 Теоретические выкладки для оценки количества вызовов функции

Для вывода теоретической формулы количества вызовов функции от точности в методе пробных точек одномерной оптимизации, предположим, что изначально отрезок [a,b] делится на четыре равные части точками x1, x2 и x3, т.е. a=x0< x1 < x2 < x3 < x4 = b.

Выведем общее количество итераций для достижения заданной точности ϵ .

Будем пользоваться тем фактом, что во всех возможных результатах сравнения мы сократили интервал неопределенности вдвое, содержащий минимум.

При этом, чтобы достичь заданной точности ϵ , необходимо, чтобы длина текущего отрезка стала меньше или равной ϵ . Предположим, что на первой итерации длина отрезка равна b-a. Тогда на k- итерации длина отрезка будет равна $\frac{(b-a)}{2^k}$.

Чтобы найти количество итераций, необходимых для достижения точности ϵ , решим неравенство $\frac{(b-a)}{2^k} \le \epsilon$. Перепишем его в виде $2^k \ge \frac{(b-a)}{\epsilon}$. Тогда $k \ge \frac{\ln \frac{(b-a)}{\epsilon}}{\ln(2)}$.

Каждый вызов функции включает вычисление значения функции в одной точке. На каждой итерации мы используем три пробные точки, но вызываем функцию не более 2 раз (смотреть замечание). Таким образом,на каждой итерации функция могла быть вызвана 1 или 2 раза, тогда общее количество вызовов функции будет лежать в диапазоне : $1*\frac{\ln\frac{(b-a)}{\epsilon}}{\ln(2)} \le f_{calls} \le 2*\frac{\ln\frac{(b-a)}{\epsilon}}{\ln(2)}$.

2.3 Метод Фибоначи

Алгоритм

Предварительный этап

Пусть заданы: $[a_1,b_1]$ - начальный интервал неопределенности

 ϵ - конечный интервал неопределенности

n - наименьшее число, такое что: $F_n > \frac{b_1 - a_1}{\epsilon}$, где F_n - числа Фибоначчи $(F_0 = F_1 = 1, F_i = F_{i-1} + F_{i-2})$

Положим: $\lambda_1 = a_1 + \frac{F_{n-2}}{F_n} \cdot (b_1 - a_1)$

$$\mu_1=a_1+rac{F_{n-1}}{F_n}\cdot (b_1-a_1)$$

Вычислим $f(\lambda_1)$ и $f(\mu_1)$

Положим k=1

Основной этап

Первый шаг Если $f(\lambda_k) > f(\mu_k)$, то перейти ко второму шагу, иначе - к третьему

Второй шаг Положить
$$a_{k+1}=\lambda_k, b_{k+1}=b_k$$
 $\lambda_{k+1}=\mu_k, \mu_{k+1}=a_{k+1}+\frac{F_{n-k-1}}{F_{n-k}}\cdot(b_{k+1}-a_{k+1})$ Если $k=n-1$, то перейти к пятому шагу

Иначе: вычислить $f(\mu_{k+1})$ и перейти к четвертому шагу

Tретий шаг Положить $a_{k+1}=a_k, b_{k+1}=\mu_k$

$$\mu_{k+1}=\lambda_k, \lambda_{k+1}=a_{k+1}+rac{F_{n-k-2}}{F_{n-k}}\cdot (b_{k+1}-a_{k+1})$$
 Если $k=n-1$, то перейти к пятому шагу

Иначе: вычислить $f(\lambda_{k+1})$ и перейти к четвертому шагу

Четвертый шаг k = k + 1, перейти к первому шагу

Пятый шаг
$$\frac{a_{k+1}+b_{k+1}}{2}$$
 - ответ

Пятый шаг $\frac{a_{k+1}+b_{k+1}}{2}$ - ответ **Теоретическая оценка количества обращений к функции** На предварительном этапе было произведено д**ва** обращения к функции

На основном этапе будет проведено n-1 итераций, в каждой из которых, кроме последней будет произведено **одно** обращение к функции

Таким образом будет совершено n обращений, где число n единственным образом определяется на предварительном этапе и зависит только от начального и конечного интервалов неопределенности.

Аналитическое решение задачи линейной минимизации.

Отрезок: [0.2, 2.7]

Проверим условия применимости наших методов, то есть убедимся в унимодальности нашей функции:

Невооруженным глазом можем заметить, что $\exists x_*$ на данном отрезке такая, что на $[a, x_*]$ функция убывает, а на $[x_*, b]$ функция возрастает, что позволяет судить о ее унимодальности. Из чего следует, что методы применимы.

Найдем минимум функции аналитически:

$$\frac{df(x)}{dx} = 2 - 2\frac{1}{x^3} = 0 \Rightarrow x_{extr} = 1 \Rightarrow f(x_{extr}) = 3$$

Проверим, является ли полученный экстремум точкой минимума:

Рассмотрим значение производной при x < 1:

$$]x_1 = \frac{1}{2} \implies f'(x_1) = -14 < 0$$

Рассмотрим значение производной при x>1 :

$$]x_2 = 2 \implies f'(x_2) = \frac{3}{2} > 0$$

Из чего можно сделать вывод о том, что в точке x=1 функция достигает минимума f(1)=3.

Таблица.

Сравнение методов одномерной минимизации по количеству вызовов функции от точности					
	Количеств	о обращений к вызову функ	сции		
ϵ	Метод равномерного поиска	Метод пробных точек	Метод Фибоначи		
	(n=5)				
10^{-1}	16	10	8		
10^{-2}	28	16	13		
10^{-3}	36	22	17		
10^{-4}	48	28	22		
10^{-5}	56	33	27		
10^{-6}	68	40	32		

Сравнение. Достоинства и недостатки.

Благодаря вышеуказанной таблице и знанию алгоритмов рассматриваемых методов можем провести сравнение. Например, можем заметить, что методу равномерного поиска необходимо неибольшее количество вызовов функции для увеличения точности на порядок выше (по сравнению с другим методами), что обусловлено большим количеством вызовов функции на каждой итерации. В остальных же методах для устранения этого недостатка мы, например, жертвуем простотой алгоритма или требуем дополнительную память.

Метод Фибоначчи

Достоинства:

• Требует меньше всех обращений к функции

Недостатки:

• Необходимо хранить в памяти или вычислять на каждой итерации числа Фибоначчи

Метод Пробных точек

Достоинства:

- Простота реализации: метод пробных точек очень прост в реализации и понимании.
- Эффективность: при правильном выборе начального отрезка и числа пробных точек метод может быть эффективным в поиске минимума функции.
- Эффективность: дает достаточно хорошее количество вызовов функции по сравнению с равномерным поиском. *Недостатки*:
 - Низкая скорость сходимости: метод пробных точек может требовать большого числа итераций для достижения оптимального результата. Нежеле метод Фибоначи

Метод Равномерного поиска

Достоинства:

- Простота реализации: метод равномерного поиска очень прост в реализации и понимании.
- Гарантированная сходимость: метод равномерного поиска гарантирует сходимость к оптимальному решению, если у нас достаточно времени и точности.

Heдостатки:

• Низкая скорость сходимости: метод равномерного поиска может быть медленным в случае, если мы ищем минимум на большом интервале или при большом количестве разбиений. Это может привести к невыгодному использованию вычислительных ресурсов и времени.