Projet Architecture Matériel

CPU_V1

Caractéristiques du processeur

Le processeur:

- Traite des mots de 4 Bits
- Reçois des instructions de 12 Bits
- Dispose de 4 registres de travail de 4 Bits chacun
- Dispose d'une mémoire d'instruction de 16 lignes
- Dispose d'une mémoire de données de 16 lignes
- Peut effectuer ces opérations :
 - Addition d'entiers
 - Soustraction d'entiers (Amélioration)
 - OU logique entre deux mots
 - ET logique entre deux mots
 - Négation d'un mot
- Est capable d'effectuer une opération par cycle d'horloge

Schéma général du processeur

Composition de l'unité de controle

Composition de l'unité Arithmétique et Logique

Jeu d'instruction du processeur (1/3)

Le processeur comprend 6 instructions codées sur un total de 12 bits :

Les instructions de décomposent en deux types d'opérations :

- Les opérations de calcul (Opérations effectuées par l'ALU entre deux opérandes stockées dans les registre de travail)

Exemple : 0000 10 00 01 00

Stock le résultat de l'addition des registres 0 et 1 dans le registre 2

- Les opérations de chargement (Chargement et déchargement des données depuis/vers la mémoire RAM)

Exemple: 1000 11 0100 00

Stock la valeur de la cellule 0x04 de la RAM dans le registre 3

Jeu d'instruction du processeur (2/3)

Les différents codes opérations que supporte le processeur sont :

Opération	Code	Descriptif				
OPÉRATIONS DE CALCUL						
ADDITION (ADD)	0000	Additionne deux mots				
ET BINAIRE (AND)	0001	Effectue le ET binaire entre deux mots				
OU BINAIRE (OR)	0010	Effectue le OU binaire entre deux mots				
NON BINAIRE (NOT)	0011	Effectue le NON du second mot				
SOUSTRACTION (SUB)	0100	Soustrait le second mot au premier grâce au complément à deux				
OPÉRATIONS DE CHARGEMENT						
ÉCRITURE (STORE)	1000	Écrit la donnée présente dans un registre dans la RAM				
CHARGEMENT (LOAD)	1100	Charge la donnée présente dans la RAM dans le registre				

Jeu d'instruction du processeur (3/3)

Exemple d'instructions possible :

OPÉRATIONS DE CALCUL							
CODE	RES	Α	В	EXT	DESCRIPTION		
0000	10	00	01	00	Additionne les valeurs des registres 0 et 1 dans le registre 3		
0001	11	10	01	00	Effectue le ET entre les registres 1 et 2 dans le registre 3		
0010	01	11	10	00	Effectue le OU entre les registres 3 et 2 dans le registre 1		
0011	00	XX	00	00	Inverse la valeur du registre 0		
0100	10	10	11	00	Soustrait le registre 3 au registre 2 dans le registre 2		
OPÉRATIONS DE CHARGEMENT							
CODE	RES	ADD		EXT	DESCRIPTION		
1000	11	0101		00	Enregistre la valeur en registre 3 dans la RAM en 0x5		
1100	01	0110		00	Charge la valeur de la RAM 0x6 dans le registre 1		

Amélioration du processeur

Le choix de l'amélioration du processeur c'est porté sur l'ajout de l'opération de soustraction.

L'opération occupe le code 0100 et permet de soustraire le second registre au premier grâce à l'utilisation du complément à deux.

La seconde opérande est donc inversée puis ajoutée à la première via l'opération d'addition ainsi qu'avec une retenue pour le bit de poids faible.

Le résultat est donnée en complément à deux.

L'inconvénient de l'utilisation du complément à deux est que notre processeur ne peut maintenant travailler que sur des données allant de -8 a +7 (4 Bits)

Programme de test

Le programme de test est composé de 6 instructions et de 3 données :

Instructions:

- 0xC00 : Charge la donnée présente en 0x0 dans le registre 0
 - 0xC44 : Charge la donnée présente en 0x1 dans le registre 1

- 0x084 : Effectue l'addition entre les registres 0 et 1 dans le registre 2

- 0xCCC : Charge la donnée présente en 0x4 dans le registre 3

- 0x42C : Effectue la soustraction des registres 2 et 3 dans le registre 0

- 0x820 : Ecrit la valeur du registre 0 dans la RAM en 0x8

Données de départ :

- 0x4 , 0x2 , 0x0 , 0x5 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0

Résultat : L'opération est ((4 + 2) - 5) = 1

Données d'arrivée :

-0x4, 0x2, 0x0, 0x5, 0x0, 0x0, 0x0, 0x0, 0x1 = 1

FIN