

FIG₁

FIG 2

FIG 3

FIG 4

 C^{i} ONF(C_{i} , C_{i}) = 2/5 =40%

FIG 5

```
Profile (query q; maximum patch size m): SCONF list SCONFL
    {Let QNL be the m-patch precomputed for query q.}
    {Let NNL be a list of the m-patches precomputed for every element of QNL.}
    {Initially, w.count = \emptyset is assumed for every element v in the data set.}
1. score \leftarrow 0;
    {Initially, no query neighbors are in the current patch.}
    for i = 1 to m do
        QNL[i].count \leftarrow 0;
2.
    end for
    for i = 1 to m do
        {Retrieve the number of times QNL[i] has been encountered as an external neighbor so far.}
        score ← score + QNL[i].count;
3.
        {Indicate that henceforth QNL[i] is in the current i-patch.}
4.
        QNL[i].count ← present;
        for j = 1 to i - 1 do
            w \leftarrow NNL[j,i];
5.
            if w.count = present then
                  score \leftarrow score + 1;
6.
            else if w.count \ge 0 then
                  w.count \leftarrow w.count + 1;
7.
            end if
            w \leftarrow NNL[i, j];
8.
            if w.count = present then
                  score \leftarrow score + 1;
9.
            else if w.count \ge 0 then
                  w.count + w.count + 1;
10.
            end if
        end for
        w \leftarrow NNL[i, i];
11.
        if w.count = present then
            score \leftarrow score +1;
12.
        else if w.count \ge 0 then
            w.count \leftarrow w.count + 1;
13.
        end if
        SCONFL[i] = score/i^2;
14.
    end for
    {Reset the counts to their default value.}
    for i = 1 to m do
        QNL[i].count \leftarrow \emptyset;
15.
    end for
```

•	•
7	9
J	_

RSCONFL			. • •		
SCONFL	• • •		• •		
CONFL		***	: • • •	•	FIG 7
patch list	NN(R _{1'0,0'} m), •••	NN(R _{1,1,0} ,m), •••	• •	NN(R _{1'0,0} ,m), •••	
* HSYS	0	1	* * *	Ч	

.

```
RefineProfile (query q;
                 inner patch size ki;
                  outer patch size ko): reordered query ki-patch RQNL
   {Let QNL be the ko-patch precomputed for query q.}
   {Let NNL be a list of the ko-patches precomputed for every element of QNL.}
   {Initially, v.inpatch = false is assumed for every element v in the data set.}
    {Identify the inner patch members.}
   for i = 1 to k_I do
        QNL[i]_inpatch ← true;
1.
   {Initialize the confidence value CONFc of every patch element to zero.}
    for i = 1 to k_0 do
        CONFc[i] \leftarrow 0;
2.
    end for
    {For each element of the outer patch, count the number of elements
       of their k-nearest-neighbor sets shared with that of q.}
    for i = 1 to k_0 do
       for j = 1 to k_l do
           w \leftarrow NNL[i,j];
3.
           if w.inpatch = true then
                  CONFd[i] \leftarrow CONFd[i] + 1;
4.
           end if
        end for
        CONFc[i] \leftarrow CONFc[i]/ko;
5.
    end for
    {Reorder the outer patch elements according to their confidence values, from highest to lowest.}
6. RQNL \leftarrow sort(QNL, CONFc, k_0);
    {Reset the patch membership indicators to their default values.}
    for i = 1 to k_I do
        QNL[i].inpatch \leftarrow false;
7.
    end for
```

PatchCluster (data set S;

RSCM parameters $a, b, m = \varphi(b)$; Thresholds $\alpha, \beta, \gamma, \delta$): query cluster graph G

- 1. Randomly partition the set S into subsets S_t of approximate size $\frac{|S|}{2!}$, for $0 \le t \le h = \lfloor \log_2 |S| \rfloor$.
- 2. For all $0 \le t \le h$ do:
 - (a) For every element $v \in S_t$, compute nearest-neighbor patches $NN(R_t, v, m)$, where $R_t = \bigcup_{i \geq t} S_i$.
 - (b) For each element $v_{l,i} \in S_l$, compute the optimal query cluster size $k(v_{l,i})$ maximizing RSCONF(NN($R_l, v_{l,i}, k$), φ), for values of k between a and b The ranked collection of patches

$$C_{t} = \langle C_{t,i} | i < j \Rightarrow \texttt{RSCONF}(C_{t,i}, \varphi) \geq \texttt{BSCONF}(C_{t,j}, \varphi) \rangle$$

form the candidates for the query clusters associated with sample $R_t \subseteq S$, where $C_{i,i} = NN(R_t, v_{t,i}, k(v_{t,i}))$ and $C_{t,j} = NN(R_t, v_{t,j}, k(v_{t,j}))$.

- (c) Let Q_t be a list of patches of C_t that have been confirmed as query clusters of R_t . Initially, Q_t is empty.
- (d) For all $1 \le i \le |C_i|$ do:
 - i. If RSCONF($C_{t,i}, \varphi$) < α , then break from the loop.
 - ii. For all $w \in C_{t,i}$ do: if $NN(R_t, w, k) \notin |C_t|$ for any value of k, or failing that, if $\max\{CONF(NN(R_t, w, k), C_{t,i}), CONF(C_{t,i}, NN(R_t, w, k))\} < \beta$, then add $C_{t,i}$ to the list Q_t .
- 3. Let h' be the largest index for which $|Q_{h'}| > 0$. Let $\{C_{t,j}\}$ be the set of patches comprising Q_t , where $C_{i,j} = NN(R_t, q_{t,j}, k(q_{t,j}))\}$, for all $0 \le t \le h'$. Initialize the node set of the query cluster graph G to contain these patches, one patch per node.
- 4. For all $\delta \le t \le h'$, all $1 \le j \le |Q_t|$, and all $\max\{0, t \delta\} \le s \le t$, do:
 - (a) Compute $C'_{t,j} = NN(R_s, q_{t,j}, 2^{t-s}k(q_{t,j}))$.
 - (b) For all $1 \leq i \leq |Q_s|$, if $C_{s,i} \neq C'_{t,j}$ and $\max\{\text{CONF}(C_{s,i}, C'_{t,j}), \text{CONF}(C'_{t,j}, C_{s,i})\} \geq \gamma$, then introduce the edges $(C_{s,i}, C_{t,j})$ and $(C_{t,j}, C_{s,i})$ into G, with weights $\text{CONF}(C_{s,i}, C'_{t,j})$ and $\text{CONF}(C'_{t,j}, C_{s,i})$, respectively.

FIG 10

FIG 11

FIG 12

FIG13

(a)

FIG 14

FIG 15

FIG 16

FIG 17

FIG 18

Patches including queried nodes

FIG 19

FIG 20

