Lineáris Algebra képletgyűjtemény - második nagyZH

Menyhért Márton, Sztrókay Balázs

2018. május 5.

I. rész

Gram-Schmidt ortogonalizáció

$$v_n = u_n - \sum_{k=1}^{n-1} \left(\frac{\langle u_n, v_k \rangle}{\langle v_k, v_k \rangle} \cdot v_k \right)$$

Pl.:

$$\begin{aligned} v_1 &= u_1 \\ v_2 &= u_2 - \frac{< u_2, v_1 >}{< v_1, v_1 >} \cdot v_1 \\ v_3 &= u_3 - \frac{< u_3, v_1 >}{< v_1, v_1 >} \cdot v_1 - \frac{< u_3, v_2 >}{< v_2, v_2 >} \cdot v_2 \end{aligned}$$

II. rész

Mátrix rangja

A mátrix lineárisan független vektorainak száma.

III. rész

Valós Euklideszi terek

A valós Euklideszi terekben értelmezve van az alábbi három függvény.

1. Skalárszorzat

 $\langle x,y\rangle$

1.1. Pozitív definit

$$\langle x, x \rangle > 0, \langle x, x \rangle = 0 \Leftrightarrow x = 0$$

1.2. Szimmetrikus

 $\langle x, y \rangle = \langle y, x \rangle$

1.3. Homogén

 $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$

1.4. Lineáris

 $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$

2. Metrika

d(x,y)

2.1. Pozitív definit

 $d(x, y) \ge 0, d(x, y) \Leftrightarrow x = y$

2.2. Szimmetrikus

d(x,y) = d(y,x)

2.3. Háromszög egyenlőtlenség

 $d(x,y) \le d(x,z) + d(y,z)$

3. Norma

||x||

3.1.

 $||x|| = 0 \Leftrightarrow x = 0$

3.2.

 $\|\lambda x\| = |\lambda| \cdot \|x\|$

$$||x + y|| \le ||x|| + ||y||$$

5.3.1.

Könyvben rosszul!

$$\langle \lambda x, y \rangle = \lambda \cdot \langle x, y \rangle$$

4.1. Vektorok által bezárt szög

$$\cos \phi = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}$$

5.3.2.

Könyvben rosszul!

$$\langle x, \lambda y \rangle = \overline{\lambda} \cdot \langle x, y \rangle$$

4.2. Norma származtatása skalárszorzatból

$$\sqrt{\langle x, x \rangle} = ||x||$$

5.4.1.

$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

4.3. Metrika származtatása normából 5.4.2.

$$d(x,y) = \|y - x\|$$

$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

IV. rész

Komplex Euklideszi terek

A komplex Euklideszi terekben értelmezve van az alábbi függvény:

V. rész

Speciális transzformációk

Valós		Komplex		saját ért ék ek
Szimmetrikus:	$A = A^T$	Hermitikus:	$A = \overline{A}^T$	$\forall \lambda_i \in \mathbb{R}$
Antiszimmetrikus:	$A = -A^T$	Ferdén hermitikus:	$A = -\overline{A}^T$	$\forall \lambda_i = k \cdot i, k \in \mathbb{R}$
Ortogonális:	$A=A^{-1}$	Unitér:	$A^{-1} = \overline{A}^T$	$\forall \lambda_i = 1$

5. Komplex skalárszorzat

$$\langle x, y \rangle$$

Pl. a szokásos skalárszorzat

$$\langle x, y \rangle = \overline{y}^T \cdot x = \sum_{k=1}^n \overline{y_i} \cdot x_i$$

5.1.

$$\langle x, x \rangle \ge 0, \langle x, x \rangle = 0 \Leftrightarrow x = 0$$

5.2.

$$\langle x,y\rangle = \overline{\langle y,x\rangle}$$