

Exercice 1 - Moteur à courant continux

B2-07

On donne les équations du moteur à courant continu :

- $u(t) = e(t) + Ri(t) + L\frac{di(t)}{dt}$; $e(t) = K\omega(t)$; c(t) = Ki(t);

- $c(t) + c_r(t) f\omega(t) = J\frac{d\omega(t)}{dt}$.

Question 1 Réaliser le schéma-blocs.

Question 2 Mettre le schéma-blocs sous la forme suivante.

Exercice 2 - Diagramme de Bode*

C2-02

Question 1 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_1(p) = \frac{15}{1+10p}$.

Question 2 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_2(p) = \frac{10}{(1+10p)(10+p)}$.

Question 3 Tracer le diagramme de Bode de la Corrigé voir 1. | fonction de transfert suivante : $F_3(p) =$

Corrigé voir 5.

Exercice 3 - Schéma d'Euler* C3-02 Pas de corrigé pour cet exercice.

Question 1 Donner la méthode de résolution numérique des équations différentielles suivantes en utilisant le schéma d'Euler explicite.

$$\begin{cases} y'(t) = -t y^2(t) & \text{si } t > 0 \\ y(0) = \alpha \end{cases}$$
 (1)

Corrigé voir 3.

Exercice 4 - Vérin*

B2-07 Pas de corrigé pour cet exercice.

On donne le schéma de principe d'une servocommande.

Les différentes équations temporelles qui modélisent le fonctionnement d'une servocommande sont :

- un amplificateur différentiel défini par : $u_c(t) =$ $\frac{i(t)}{K_a} + u_s(t);$ • débit dans le vérin dans le cas d'une hypothèse de
- fluide incompressible $q(t) = S \cdot \frac{dx(t)}{dt}$;
 capteur de position : $u_s(t) = K_c \cdot x(t)$;
- le servo-distributeur est un composant de la chaîne de commande conçu pour fournir un débit hydraulique q(t) proportionnel au courant de commande i(t). (Attention, valable uniquement en régime permanent.) On a $q(t) + T \frac{dq(\bar{t})}{dt} = K_d i(t)$.

Question 1 Réaliser le schéma-blocs.

Corrigé voir 4.

Exercice 5 - Diagramme de Bode * C2-02 Pas de corrigé pour cet exercice.

Question 1 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_1(p) =$

$$\frac{200}{p\left(1+20p+100p^2\right)}.$$

Corrigé voir 5.

Exercice 6 - Schéma d'Euler* Pas de corrigé pour cet exercice.

Question 1 Donner la méthode de résolution numérique des équations différentielles suivantes en utilisant le schéma d'Euler explicite.

$$\ddot{\theta}(t) + \frac{g}{l}\sin\theta = 0$$
$$\theta(0) = 0 \quad \dot{\theta}(0) = 0$$

Corrigé voir 6.

Exercice 7 – Banc d'épreuve hydraulique * B2-07 Pas de corrigé pour cet exercice.

Analyse de la fonction technique « mettre le tube sous pression ».

Un schéma hydraulique simplifié est donné figure suivante.

Mise en place du modèle

Les équations du débit sont :

$$Q_e(t) = S_e \frac{\mathrm{d}z(t)}{\mathrm{d}t} - \frac{V_{e0}}{B_e} \frac{\mathrm{d}P_e(t)}{\mathrm{d}t}$$

et

$$Q_h(t) = S_h \frac{\mathrm{d}z(t)}{\mathrm{d}t} + \frac{V_{h0}}{B_h} \frac{\mathrm{d}P_h(t)}{\mathrm{d}t}.$$

En appliquant le théorème de la résultante dynamique selon \overrightarrow{z} sur le piston du multiplicateur, on a : $M\ddot{z}(t) = S_h p_h(t) - S_e p_e(t) - Mg - f \dot{z}(t)$.

Question 1 Déduire de la relation précédente l'équation reliant Z(p), $P_e(p)$, $P_h(p)$, et Poids(p) = Mg/p, transformées de Laplace de z(t), $P_e(t)$, $P_h(t)$ et du poids perçu comme une perturbation. Les conditions initiales sont supposées nulles.

On note:

- *L*(*t*) la position de l'équipage mobile repérée par rapport à sa position initiale;
- $V_t(t)$ le volume du tube;
- $F_t(t)$ l'effort du tube sur l'équipage mobile, avec $F_t(t) = -rL(t)$.

On néglige les variations de volume du tube dues à ses déformations. L'équation du débit s'écrit alors :

$$Q_e(t) = (S_a - S_b) \cdot \frac{\mathrm{d}L(t)}{\mathrm{d}t} + \frac{V_t}{B_e} \frac{\mathrm{d}P_e(t)}{\mathrm{d}t}.$$

L'équation du mouvement de l'équipage mobile est donnée par :

$$m\ddot{L}(t) = -rL(t) + (S_a - S_b)p_e(t) - f'\dot{L}(t).$$

Question 2 En déduire, en tenant compte de l'équation du débit, deux équations liant L(p), $P_e(p)$ et $Q_e(p)$, transformées de Laplace de L(t), $P_e(t)$ et $Q_e(t)$. Les conditions initiales sont supposées nulles.

Question 3 Compléter le schéma-blocs de l'ensemble (sans le distributeur hydraulique), l'entrée étant la pression d'huile régulée $P_r(p)$ et la sortie la pression d'épreuve dans le tube $P_e(p)$.

Corrigé voir 4.

Exercice 8 - Schéma d'Euler*

C3-02 Pas de corrigé pour cet exercice.

Question 1 Donner la méthode de résolution numérique des équations différentielles suivantes en utilisant le schéma d'Euler explicite.

$$\begin{cases} y'(t) + \alpha y(t) = \beta \\ y(0) = \gamma \end{cases}$$
 (2)

Corrigé voir 8.