Universität Potsdam

MASTER THESIS

Forecasting Macroseismic Intensities: A Sensitivity Study of a Bayesian Approach

Author:
Silvio Schwarz

Supervisor:

Dr. Kristin Vogel

Examiner:

Prof. Dr. Stefano PAROLAI

A thesis submitted in fulfillment of the requirements for the degree of Master of Science

in the

General Geophysics/Seismology Group Institute of Earth and Environmental Science

February 2019

Declaration of Authorship

I, Silvio Schwarz, declare that this thesis titled, 'Forecasting Macroseismic Intensities: A Sensitivity Study of a Bayesian Approach' and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:		
Date:		

UNIVERSITÄT POTSDAM

Abstract

Faculty of Science
Institute of Earth and Environmental Science

Master of Science

Forecasting Macroseismic Intensities:
A Sensitivity Study of a Bayesian Approach

by Silvio Schwarz

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

Acknowledgements

Contents

D	eclaration of Authorship	
A l	$\operatorname{bstract}$	ii
A	${f cknowledgements}$	iv
Co	ontents	`
Li	st of Figures	vi
Li	st of Tables	vii
A l	bbreviations	ix
1	Introduction	1
2	Methodology	2
3	Sensitivity study 3.1 Synthetic Data	9
4	Case Study 4.1 Data 4.2 Handling uncertain data	4
5	Conclusions	5
A	Data	(
Bi	ibliography	ę

List of Figures

List of Tables

1	Data																																								8
_		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_

Abbreviations

 I_0 Intensity at the epicentre

 I_s Intensity at site

PGA Peak Ground Acceleration

 $\mathbf{PSA} \quad \mathbf{P}\mathrm{eak} \ \mathbf{S}\mathrm{pectral} \ \mathbf{A}\mathrm{cceleration}$

PGV Peak Ground Velocity

For/Dedicated to/To my...

1 Introduction

2 Methodology

3 Sensitivity study

3.1 Synthetic Data

4 Case Study

- 4.1 Data
- 4.2 Handling uncertain data

5 Conclusions

A Data

	year	month	day	λ	θ	ϕ	I_{max}	depth	K	MLH	M_W	Length	F1.1	F1.2	F2.1	F2.2
1	1883	11	14	72.80	40.60	200	7	12	13.9	5.383	5.68	4.98	72.790	40.579	72.823	40.586
2	1885	8	2	74.10	42.70	250	9	15	15.6	6.182	6.20	11.43	74.034	42.682	74.155	42.668
3	1887	6	8	76.80	43.10	250	9	20	16.9	6.793	6.81	29.89	76.627	43.054	76.945	43.017
4	1889	7	11	78.40	43.20	250	9	40	18.5	7.545	7.55	97.54	77.837	43.049	78.872	42.929
5	1897	9	17	68.47	39.80	270	8	25	15.4	6.088	6.15	10.54	68.405	39.800	68.515	39.771
6	1902	12	16	72.30	40.80	270	9	9	15.6	6.182	6.20	11.43	72.232	40.800	72.353	40.768
7	1907	10	21	68.10	38.70	270	9	24	17.0	6.840	6.85	32.18	67.915	38.700	68.246	38.611
8	1911	1	3	76.90	42.90	250	10	25	17.8	7.216	7.22	58.14	76.566	42.810	77.180	42.739
9	1911	2	18	72.80	38.20	200	9	26	17.3	6.981	6.99	40.17	72.722	38.030	72.981	38.089
10	1924	7	12	73.20	40.60	270	8	14	15.6	6.182	6.20	11.43	73.132	40.600	73.253	40.568
11	1927	8	12	71.60	41.00	270	8	14	14.8	5.806	5.96	7.81	71.554	41.000	71.637	40.978
12	1932	12	24	78.20	42.80	250	6	23	14.0	5.430	5.71	5.23	78.170	42.792	78.225	42.786
13	1933	9	9	70.70	40.10	270	6	26	13.6	5.242	5.58	4.28	70.675	40.100	70.720	40.088
14	1937	12	18	70.90	42.10	270	7	25	15.6	6.182	6.20	11.43	70.831	42.100	70.955	42.068
15	1938	6	20	75.80	42.70	250	8	21	16.0	6.370	6.39	15.37	75.712	42.676	75.874	42.657
16	1941	4	20	70.50	39.20	270	9	8	15.6	6.182	6.20	11.43	70.434	39.200	70.552	39.168
17	1942	1	18	71.60	41.10	270	7	21	14.0	5.430	5.71	5.23	71.569	41.100	71.625	41.086
18	1946	11	2	72.00	41.90	270	9	25	17.0	6.840	6.85	32.18	71.806	41.900	72.153	41.811
19	1947	6	2	72.30	40.90	270	8	13	14.5	5.665	5.87	6.72	72.260	40.900	72.331	40.881
20	1948	7	28	75.40	41.40	250	7	6	13.6	5.242	5.58	4.28	75.376	41.393	75.420	41.388
21	1949	7	10	70.80	39.20	200	9	16	17.0	6.840	6.85	32.18	70.736	39.064	70.947	39.111
22	1954	12	3	74.80	41.40	250	7	15	14.0	5.430	5.71	5.23	74.771	41.392	74.825	41.386
23	1955	4	15	74.60	39.90	200	9	25	16.4	6.558	6.57	20.65	74.559	39.813	74.695	39.843
24	1957	5	8	74.60	41.60	250	6	7	13.0	4.960	5.39	3.17	74.582	41.595	74.615	41.591
25	1958	10	13	75.10	41.60	250	6	12	13.0	4.960	5.39	3.17	75.082	41.595	75.115	41.591
26	1959	7	12	72.80	41.70	270	6	14	12.9	4.913	5.36	3.02	72.782	41.700	72.814	41.692
27	1959	10	24	70.00	41.70	270	7	13	14.0	5.430	5.71	5.23	69.969	41.700	70.025	41.686
28	1960	12	18	78.40	42.30	250	6	17	12.8	4.866	5.33	2.87	78.384	42.296	78.414	42.292
29	1961	4	27	72.90	39.65	200	6	26	14.2	5.524	5.77	5.78	72.888	39.626	72.927	39.634
30	1962	9	3	73.10	40.93	270	7	20	14.0	5.430	5.71	5.23	73.069	40.933	73.125	40.919
31	1963	10	19		41.23		6	8	12.5	4.725	5.24	2.47	71.602	41.233	71.628	41.227
32	1965	3	17	69.37	40.80	270	7	12	13.0	4.960	5.39	3.17	69.348	40.800	69.381	40.791

Appendix A. Data

-	year	month	day	λ	θ	ϕ	I_{max}	depth	K	MLH	M_W	Length	F1.1	F1.2	F2.1	F2.2
33	1965	9	25	75.03	41.53	250	6	25	13.0	4.960	5.39	3.17	75.015	41.528	75.048	41.525
34	1965	10	18	77.55	41.97	250	6	15	13.0	4.960	5.39	3.17	77.532	41.962	77.565	41.958
35	1966	4	25	69.28	41.38	270	6	8	13.3	5.101	5.49	3.69	69.261	41.383	69.301	41.373
36	1966	4	30	71.80	41.10	270	6	20	13.6	5.242	5.58	4.28	71.774	41.100	71.820	41.088
37	1967	5	18	70.75	40.62	270	6	25	12.0	4.490	5.08	1.92	70.739	40.617	70.759	40.611
38	1967	9	28	79.70	42.10	250	6	18	13.5	5.195	5.55	4.07	79.677	42.094	79.719	42.089
39	1967	11	30	77.40	43.00	250	6	10	12.0	4.490	5.08	1.92	77.389	42.997	77.409	42.995
40	1968	3	20	75.07	41.15	250	6	17	12.6	4.772	5.27	2.60	75.052	41.146	75.079	41.143
41	1970	1	19	69.22	41.05	270	7	25	12.1	4.537	5.11	2.02	69.205	41.050	69.226	41.044
42	1970	6	5	78.73	42.52	250	8	15	15.6	6.182	6.20	11.43	78.668	42.499	78.788	42.485
43	1971	5	10	71.40	42.92	250	7	20	14.0	5.430	5.71	5.23	71.370	42.909	71.425	42.902
44	1971	10	28	72.25	41.95	270	6	17	14.0	5.430	5.71	5.23	72.218	41.950	72.275	41.936
45	1972	3	17	69.65	40.28	270	6	20	13.5	5.195	5.55	4.07	69.626	40.283	69.669	40.272
46	1974	1	22	71.90	40.20	270	7	24	12.7	4.819	5.30	2.73	71.884	40.200	71.913	40.192
47	1974	2	20	75.25	40.72	250	6	15	13.2	5.054	5.46	3.51	75.230	40.711	75.266	40.707
48	1974	7	2	75.32	42.23	250	6	15	12.9	4.913	5.36	3.02	75.299	42.229	75.331	42.225
49	1974	8	11	73.85	39.38	200	6	15	16.6	6.652	6.67	23.94	73.802	39.282	73.960	39.317
50	1975	2	12	78.80	43.30	250	6	10	13.0	4.960	5.39	3.17	78.782	43.295	78.815	43.291
51	1977	1	31	70.87	40.08	296	8	20	15.5	6.135	6.15	10.62	70.811	40.104	70.916	40.054
52	1977	6	3	71.82	40.00	128	6	15	14.2	5.524	5.77	5.78	71.843	39.984	71.843	39.984
	1977	12	6	69.70	41.57	270	7	15	14.0	5.430	5.71	5.23		41.567		
	1978	3	24		42.88		8	22	15.6	6.182	6.20			42.883		
55	1978	11	1		39.40		8	30		6.464		17.81		39.325		
	1979	4	6		41.97		6	25		5.195				41.957		
	1980	7	5		41.92		6	20		5.336		4.73		41.909		
	1980	12	11		41.33		7	10		5.195				41.333		
	1982	5	6		40.17		8	20		5.618				40.156		
	1982			77.37				15				4.28				
	1983	12		72.90			7	15		5.712		7.06		39.379		
	1983	12		77.25			6	20		4.725				42.063		
	1984	2	2		42.87		6	15		4.772		2.60		42.863		
	1984	2	17		40.85		8	10		5.477		5.50		40.838		
	1984	10		71.23			8	15		5.806		7.81		39.228		
	1985	4	27		40.85		8	15		4.866		2.87		40.847		
	1985	8	23		39.43		7	20		6.605		22.24		39.495		
	1985	10	13		40.30		8	10		5.806		7.81		40.323		
	1987	3	26		41.82		6	5		5.007		3.33		41.803		
	1988	3		75.47			6	7		4.772		2.60		42.096		
	1988	6	17		42.93		6	21		4.913		3.02		42.945		
	1988	12 11		72.32			6	10		4.913		3.02		41.233		
	1990	11		77.93			8	15		6.041				42.895		
74	1992	5	15	72.42	41.10	270	8	10	15.3	6.041	6.12	10.02	(2.357	41.100	(2.464	41.072

year	month	day	λ	θ	ϕ	I_{max}	depth	K	MLH M	I_W	Length	F1.1	F1.2	F2.1	F2.2
75 1992	8	19	73.63	42.07	250	10	25	17.0	6.840 6.	.85	32.18	73.451	42.017	73.787	41.978

Table 1: Data (Dziewonski et al., 1981) (Ekström et al., 2012)

Bibliography

Dziewonski, A., Chou, T.-A., and Woodhouse, J. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. *Journal of Geophysical Research: Solid Earth*, 86(B4):2825–2852.

Ekström, G., Nettles, M., and Dziewoński, A. (2012). The global cmt project 2004–2010: centroid-moment tensors for 13,017 earthquakes. *Physics of the Earth and Planetary Interiors*, 200:1–9.