1	2	3a	3b	3c	3d	4	5	6	TOTAL

1. Dimostrare che

$$n! = \prod_{\ell \text{ primo } \alpha = 0}^{\infty} \ell^{\left[\frac{n}{\ell^{\alpha}}\right]}$$

.

2. Calcolare la frazione continua di $\sqrt{2}-1$

3.	Sia φ la funzione di Eulero e σ la funzione "somma dei divisori". a. Trovare tutti gli interi n tali che $\varphi(n)=6$.
	b. Dimostrare che se n è un intero tale che $\varphi(n)=\varphi(2n)$, allora n è dispari. E' vero anche il viceversa?
	c. Dimostrare che $\sigma(n) \geq n+1$ e che l'uguaglianza vale se e solo se n è primo.
	d. Determinare tutti gli interi n tali che $\sigma(n)=12$.

4. Enunciare e dimostrare la formula delle somme parziali e utilizzarla per dimostrare che se N è pari, allora $\sum_{n \leq N} \frac{(-1)^n}{n} = \int_1^N \frac{A(t)}{t^2} dt$ dove A(t) = 0 se [t] è pari e A(t) = -1 se [t] è dispari.

5. Sia $d, n, m \in \mathbf{Z}$. Dimostrare che se esistono $x, y, z, t \in \mathbf{Z}$ tali che $n = x^2 + dy^2$ e $m = z^2 + dt^2$, allora esistono $u, v \in \mathbf{Z}$ tali che $nm = u^2 + dv^2$. Usare questo fatto per esprimere 5548 nella forma $Q^2 + 3P^2$

6. Dimostrare che

$$\left(\frac{17}{p}\right)_{\rm J} = \begin{cases} 1 & \text{se } p \equiv \pm 1, \pm 2, \pm 4, \pm 8 \bmod 17 \\ 0 & \text{if } p = 17 \\ -1 & \text{if } p \equiv \pm 3, \pm 5, \pm 6, \pm 7 \bmod 17. \end{cases}$$