SME0300 Cálculo Numérico Aula 24

Maria Luísa Bambozzi de Oliveira marialuisa @ icmc . usp . br

Página: edisciplinas.usp.br

26 de novembro de 2020

Aula Passada

Solução Numérica de EDOs:

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) \\ y(a) = y_0 \end{cases}, \quad x \in [a, b]$$

► Método de k-Passos

$$\sum_{j=0}^k \alpha_j y_{n+j} = h \sum_{j=0}^k \beta_j f_{n+j}$$

- Desenvolvimento de Taylor;
- Integração Numérica.

Ordem e Constante do Erro:

O **operador diferença linear** \mathcal{L} , associado ao método linear de passo múltiplo

$$\sum_{j=0}^k \alpha_j y_{n+j} = h \sum_{j=0}^k \beta_j f_{n+j},$$

é definido por

$$\mathcal{L}[y(x);h] = \sum_{j=0}^{k} \left[\alpha_{j} y(x+jh) - h \beta_{j} y'(x+jh) \right]$$

onde y(x) é função arbitrária continuamente diferenciável em [a, b].

$$\mathcal{L}[y(x);h] = \sum_{j=0}^{k} \left[\alpha_{j} y(x+jh) - h \beta_{j} y'(x+jh) \right]$$

$$\Rightarrow \mathcal{L}[y(x);h] = C_{0} y(x) + C_{1} h y'(x) + \ldots + C_{q} h^{q} y^{(q)}(x) + \ldots,$$
onde
$$C_{0} = \alpha_{0} + \alpha_{1} + \ldots + \alpha_{k}$$

$$C_{1} = \alpha_{1} + 2\alpha_{2} + \ldots + k\alpha_{k} - (\beta_{0} + \beta_{1} + \ldots + \beta_{k})$$

$$\vdots$$

$$C_{s} = \frac{1}{s!} (\alpha_{1} + 2^{s} \alpha_{2} + \ldots + k^{s} \alpha_{k}) + \frac{1}{(s-1)!} (\beta_{1} + 2^{s-1} \beta_{2} + \ldots + k^{s-1} \beta_{k}), \ s > 1$$

$$\vdots$$

O operador diferença e o método linear de passo múltiplo associado têm ${\bf ordem}\ q$ se

$$C_0 = C_1 = \cdots = C_q = 0$$
 e $C_{q+1} \neq 0$.

 C_{q+1} é a constante do erro.

Exemplo: Calcule a ordem e a constante do erro para o Método do Trapézio.

Solução: Sendo o Método do Trapézio

$$y_{n+1} = y_n + \frac{h}{2} [f_n + f_{n+1}],$$

podemos reescrevê-lo como

$$y_{n+1}-y_n=h\Big[\frac{1}{2}f_n+\frac{1}{2}f_{n+1}\Big].$$

Como
$$\alpha_0 = -1$$
, $\alpha_1 = 1$, $\beta_0 = 1/2$, $\beta_1 = 1/2$, então:

$$C_0 = \alpha_0 + \alpha_1 = 0; C_1 = \alpha_1 - (\beta_0 + \beta_1) = 0;$$

$$C_2 = \alpha_1/2 - \beta_1 = 0.$$

Agora,
$$C_3 = \alpha_1/6 - \beta_1/2 = -1/12 \neq 0$$
. Então, $q = 2$.

Erro de Truncamento Local:

O **erro de truncamento local** em x_{n+k} do método linear de passo múltiplo é dado por

$$T_{n+k} = \mathcal{L}[y(x_n); h] = \sum_{j=0}^{k} [\alpha_j y(x_{n+j}) - h \beta_j y'(x_{n+j})],$$

onde y(x) é a solução exata do PVI.

Para o Método de Euler, $T_{n+1} = \frac{h^2}{2!}y''(\xi), \ x_n < \xi < x_{n+1}.$

Para o M. do Trapézio,
$$T_{n+1} = -\frac{h^3}{12}y'''(\xi), \ x_n < \xi < x_{n+1}.$$

Consistência e Estabilidade: Dado o método linear de passo múltiplo, definimos inicialmente

$$\rho(\xi) = \sum_{j=0}^k \alpha_j \, \xi^j$$

como o (primeiro) polinômio característico.

Um método linear de passo múltiplo é **estável** se nenhuma raiz de $\rho(\xi)$ tem módulo maior que 1 e toda raiz com módulo 1 é simples.

Um método linear de passo múltiplo é **consistente** se tem ordem $q \ge 1$, isto é, se e somente se

$$C_0 = 0$$
 e $C_1 = 0$.

Maria Luísa

Consistência:

- significa que a solução numérica corresponde à solução do PVI;
- limita a magnitude do erro local cometido em cada passo;

Estabilidade:

controla a propagação do erro durante os cálculos.

Exemplo: Determine se o Método de Euler é estável e consistente.

Solução: Para que o Método de Euler seja estável, devemos definir seu primeiro polinômio característico e avaliar suas raízes.

Sendo a fórmula do Método de Euler

$$y_{n+1} = y_n + h f_n,$$

então temos $\alpha_0=-1$, $\alpha_1=1$, $\beta_0=1$ e todos os outros α_j , β_j são nulos.

Assim, o primeiro polinômio característico é dado por

$$\rho(\xi) = \alpha_0 + \alpha_1 \xi = \xi - 1$$

com raiz $\xi=1$. Então, como a única raiz tem módulo 1 e é simples, o método é estável.

Como $T_{n+1} = \frac{h^2}{2!}y''(\xi)$, $x_n < \xi < x_{n+1}$, então q = 1 e o método é consistente.

Maria Luísa

Se o erro de truncamento local é $C_{q+1} h^{q+1} y^{(q+1)}(\xi)$, $q \ge 1$, então o método é **consistente de ordem** q.

Convergência: $y_n \rightarrow y(x_n)$ quando $h \rightarrow 0$.

Um método de k-passos é **convergente** de ordem q se $y(x_n) - y_n = O(h^q)$ tende a zero quando $h \to 0$, com x_n fixo, isto é, se e somente se é estável e consistente de ordem q.

CONVERGENTE = CONSISTENTE + ESTÁVEL

Métodos Previsor-Corretor

Como usamos métodos lineares de passo múltiplo (de *k*-passos) *implícitos* para resolver o PVI

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$
?

Nos métodos de k-passos implícitos, em cada passo resolvemos para y_{n+k} com a equação

$$y_{n+k} = -\sum_{j=0}^{k-1} \alpha_j y_{n+j} + h \sum_{j=0}^{k-1} \beta_j f_{n+j} + h \beta_k f(x_{n+k}, y_{n+k}).$$

Se h é suficientemente pequeno, podemos encontrar solução única para y_{n+k} através do *método iterativo*:

$$y_{n+k}^{[s]} = -\sum_{j=0}^{k-1} \alpha_j y_{n+j} + h \sum_{j=0}^{k-1} \beta_j f_{n+j} + h \beta_k f(x_{n+k}, y_{n+k}^{[s-1]}),$$

$$s = 1, 2, \dots$$

Métodos Previsor-Corretor (cont.)

Como encontrar $y_{n+k}^{[0]}$ para aplicar no método iterativo? Utilizando um método linear de passos múltiplos explícito:

$$y_{n+k}^{[0]} = -\sum_{j=0}^{k-1} \alpha_j^* y_{n+j} + h \sum_{j=0}^{k-1} \beta_j^* f_{n+j},$$
 (Previsor)

Aplicando o resultado no método iterativo implícito (**Corretor**), calculamos $y_{n+k}^{[1]}$, $y_{n+k}^{[2]}$, ... Indicamos as etapas como

P: aplicação do Previsor

E: cálculo de $f(x_{n+k}, y_{n+k}^{[s]})$

C: aplicação do Corretor

e o par PC é aplicado no modo $P(EC)^mE$, (EC) por m vezes, até a precisão desejada.

Métodos Previsor-Corretor (cont.)

Exemplo: Resolver o PVI

$$\begin{cases} y' = y + x - 2 \\ y(0) = 2 \end{cases}, x \in [0, 0, 2], h = 0, 1$$

utilizando o par PC, onde

P:
$$y_{n+2} = y_{n+1} + \frac{h}{2} [-f_n + 3f_{n+1}],$$

C: $y_{n+2} = y_n + \frac{h}{3} [f_n + 4f_{n+1} + f_{n+2}]$

no modo P(EC)E. Obter os valores iniciais necessários pelo método de Euler.

Métodos Previsor-Corretor (cont.)

Solução: Temos h = 0,1, $x_0 = 0,0$, $x_1 = 0,1$ e $x_2 = 0,2$. Do PVI, f(x,y) = y + x - 2 e $y_0 = 2$. Então precisamos calcular y_1, y_2, f_0, f_1, f_2 .

Temos o método de Euler, $y_{n+1} = y_n + h f_n$, além do par PC no modo P(EC)E (ver slide anterior).

Para
$$i = 0$$
: $x_0 = 0,0$, $y_0 = 2$ e $f_0 = y_0 + x_0 - 2 = 0,0$.

Para
$$i = 1$$
: $x_1 = 0,1$, $y_1 = y_0 + h f_0 = 2 + 0,1(0,0) = 2$ e $f_1 = y_1 + x_1 - 2 = 0,1$.

Para
$$i = 2$$
: $x_2 = 0.2$.

$$P: y_2^{[0]} = y_1 + \frac{(0,1)}{2} [-f_0 + 3f_1] = 2,015;$$

E:
$$f_2^{[0]} = y_2^{[0]} + x_2 - 2 = 0.215$$
;

C:
$$y_2^{[1]} = y_0 + \frac{(0,1)}{3} [f_0 + 4f_1 + f_2^{[0]}] = 2,0205 = y_2$$

E:
$$f_2^{[1]} = y_2^{[1]} + x_2 - 2 = 0,2205 = f_2$$

Como melhorar $y_1 \approx y(0,1)$?