FONDAMENTI DI INFORMATICA II (Parte B) A.A. 2011-2012

(12 settembre 2012)

COMPITO A

Cognome e nome			
Matricola			

Premessa

Tempo a disposizione 90 minuti. Ognuna delle domande vale 10 punti, 5 per la teoria (parte a) della domanda e 5 per l'esercizio (parte b) della domanda. Per avere la sufficienza è necessario ottenere almeno 18 punti totalizzando 9 punti sulle domande di tipo a) e 9 sulle domande di tipo b).

Domanda 1

- 1a) Definire i linguaggi regolari e dimostrare la loro chiusura rispetto unione, concatenazione, iterazione, complementazione ed intersezione.
- 1b) Realizzare l'automa a stati finiti deterministico che riconosce il linguaggio (ba*b+ab*a)*

Domanda 2

2a) Si consideri il linguaggio $R = \{a^nb^nc^n \mid n>0\}$. Descrivere la modalità con cui una macchina di Turing deterministica con un nastro di input unidirezionale e tre di lavoro bidirezionali può riconoscere tale linguaggio, valutando sia il numero di passi eseguiti che la quantità di nastro utilizzata.

Facoltativo: scrivere una grammatica che genera R.

2b) Il problema Hitting Set (HS) è definito come segue: data una collezione C di sottoinsiemi di un insieme finito S e dato un intero positivo $k \le |S|$, esiste $S' \subseteq S$, con $|S'| \le k$, tale che S' contenga almeno un elemento di ciascun sottoinsieme presente nella collezione C? Sapendo che Vertex Cover è NP- completo, dimostrare che anche HS è NP-completo. Mostrare una istanza positiva e una negativa di VC e le corrispondenti istanze positive e negative di HS ottenute in base alla riduzione.

Domanda 3

- 3a) Descrivere in dettaglio l'algoritmo *Convert1* e stimarne un upper bound.
- 3b) Attraverso l'applicazione di DPLL verificare se la formula (c $\Lambda \neg a \Lambda b$) $V (\neg c \Lambda a \Lambda b) V (a \Lambda b) V (\neg a \Lambda \neg c \Lambda \neg b) V (\neg b \Lambda c \Lambda a) V (b \Lambda c) è una tautologia o meno.$