# 组合数学第 16 讲

授课时间: 2024 年 12 月 16 日 授课教师: 孙晓明

记录人: 李驭(助教) 陈子珩(助教)

#### 1 广义 Ramsey 数

我们将完全图的边 2 染色扩展到边 k 染色,得到广义 Ramsey 数的定义.

定义 1 (广义 Ramsey 数). 令  $s_1, s_2, \ldots s_k \geq 2$  为正整数, $c_1, c_2, \ldots, c_k$  为 k 种颜色,广义 Ramsey 数  $R(s_1, s_2, \ldots, s_k)$  为满足以下条件的最小的正整数 n: 对  $K_n$  的所有边进行任意 k 染色,都存在一个 i,使得这种边染色方式包含一个边的颜色均为  $c_i$  的  $K_i$ .

对于边 3 仍然色的广义 Ramsey 数,使用和之前相同的估计方式,我们可以得到如下结论.

**定理 2.** 对于正整数  $m, n, p \ge 3$ ,如果 R(n-1, m, p), R(n, m-1, p) 和 R(n, m, p-1) 都存在,则 R(n, m, p) 存在且满足  $R(n, m, p) \le R(n-1, m, p) + R(n, m-1, p) + R(n, m, p-1)$ .

## 2 舒尔 (Schur) 定理

定理 3 (舒尔 (Schur) 定理). d 为正整数,对全体正整数进行任意 d 染色,则一定存在 3 个正整数 x,y,z 同色,且 x+y=z.

我们首先对 d=2 给出一个证明.

**证明** 用反证法。假设结论不成立,考虑式子 1+2=3,则 1,2,3 的染色必然为一种颜色两个数字,另一种颜色一个数字,且同一种颜色的两个数字和与差为另一种颜色。不妨设其中两个数字的颜色是红色,下面分情况证明.

- (1) 1,3 为红色,2 为蓝色。于是 1+3=4 为蓝色,2+4=6 为红色,1+6=7 为蓝色,3+6=9 为蓝色.得到红色数集合  $\{1,3,6\}$ ,蓝色数集合  $\{2,4,7,9\}$ ,此时存在红色的三个数 2,7,9 满足 2+7=9,矛盾.
- (2) 2,3 为红色, 1 为蓝色. 于是 2+3=5 为蓝色, 5-1=4 为红色, 2+4=6 为蓝色。得到红色 数集合  $\{2,3,4\}$ , 蓝色数集合  $\{1,5,6\}$ , 此时存在蓝色的三个数 1,5,6 满足 1+5=6, 矛盾。
- (3) 当 1,2 为红色, 3 为蓝色时, 我们分别考虑 4 的颜色为红色和蓝色的情形。
  - (3.1) 4 为蓝色时,3+4=7 为红色,7-2=5,7-1=6,1+7=8,2+7=9,均为蓝色。得到红色数集合  $\{1,2,7\}$ ,蓝色数集合  $\{3,4,5,6,9\}$ ,此时存在蓝色的三个数 3,6,9 满足 3+6=9,矛盾。
  - (3.2) 4 为红色时,1+4=5,2+4=6 为蓝色,3+5=8,3+6=9 为红色。得到红色数集合  $\{1,2,4,8,9\}$ ,蓝色数集合  $\{3,5,6\}$ ,此时存在红色的三个数 1,8,9 满足 1+8=9,矛盾。

综上所得,对  $\{1,2,\cdots,9\}$  二染色就能保证一定有同色的三个数 x,y,z 使得 x+y=z. 我们可以构造  $\{1,2,3,\cdots,8\}$  的二染色为红色:  $\{1,2,4,8\}$ ,蓝色:  $\{3,5,6,7\}$  不满足结论。因此 9 是使上述结论成立 的最小正整数.

接下来我们证明该定理本身.

**证明** 设  $N = R(\overline{3,3,\ldots,3})$ . 基于  $\{1,2,\ldots,N\}$  的任意一种 d 染色方式,将完全图  $K_N$  的所有边按照如下方式 d 染色:将这 N 个顶点标号为  $v_1,v_2,\ldots,v_N$ ,边  $v_iv_j$  染成正整数 |i-j| 的颜色. 根据 N 的定义, $K_N$  中一定存在同色三角形.设这三个点为  $v_i,v_j,v_k$ ,其中 i>j>k.这意味着在  $\{1,2,\ldots,N\}$  的染色中,正整数 i-j、j-k 和 i-k 被染成了同一颜色。令 x=i-j,y=j-k,z=i-k,则 x+y=z,从而定理得证.

事实上, 若加入  $x \neq y$  的限制条件, 定理依然成立.

**定理 4.** d 为正整数,对全体正整数进行任意 d 染色,则一定存在互不相同的 3 个正整数 x,y,z 同色,且 x+y=z.

证明 设 N = R(4,4,...,4). 基于  $\{1,2,...,N\}$  的任意一种 d 染色方式,将完全图  $K_N$  的所有边按照如下方式 d 染色:将这 N 个顶点标号为  $v_1,v_2,...,v_N$ ,边  $v_iv_j$  染成正整数 |i-j| 的颜色. 根据 N 的定义,图染色中一定存在同色  $K_4$ ,设这四个点为  $v_i,v_j,v_k,v_l$ ,其中 i>j>k>l。这意味着在  $\{1,2,...,N\}$  的染色中,正整数 i-j、j-k、k-l、i-k、j-l 和 i-l 都被染成了同一颜色. 若  $i-j\neq j-k$ ,则令 x=i-j,y=j-k,z=i-k 即得证。否则, $i-j\neq j-l$ ,令 x=i-j,y=j-l,z=i-l 即得证.

如果我们将 Schur 定理中的方程 x + y = z, 变为  $x_1 + x_2 + \cdots + x_t = x_{t+1}$ , 结论依然成立.

**定理 5.** d,t 为正整数,对全体正整数进行任意 d 染色,则一定存在 t+1 个正整数  $x_1,x_2,\ldots,x_t,x_{t+1}$  同色,且  $x_1+x_2+\cdots+x_t=x_{t+1}$ .

$$d \uparrow (t+1)$$

**证明** 设  $N = R(t+1,t+1,\ldots,t+1)$ . 对于  $\{1,2,\ldots,N\}$  的任意一种 d 染色方式,将完全图  $K_N$  的所有边进行如下 d 染色:将这 N 个顶点标号为  $v_1,v_2,\ldots,v_N$ ,边  $v_iv_j$  染成正整数 |i-j| 的颜色. 根据 N 的定义,图染色中一定存在同色  $K_{t+1}$ . 设它的顶点下标从大到小排列依次为  $i_1,i_2,i_3,\ldots,i_{t+1}$ . 这意味着正整数  $i_1-i_2,i_2-i_3,\ldots,i_t-i_{t+1}$  以及  $i_1-i_{t+1}$  被染成了同一颜色,依次令  $x_1,x_2,\ldots,x_t,x_{t+1}$  为这 t+1 个正整数,则它们满足  $x_1+x_2+\cdots+x_t=x_{t+1}$ .

如果我们进一步要求  $x_1 + x_2 + \cdots + x_t = x_{t+1}$  中的未知数互不相等,我们可以按照定理 2 的证明方法,将 Ramsey 数中的参数变大,通过不断调整完成证明,但是对于这个参数的大小设定可能难以精确把握. 为此,我们提供一种更简单的证明方式.

证明 设  $N = R(t+1,t+1,\ldots,t+1)$ . 对于  $\{1,2,\ldots,2^{N-1}\}$  的任意一种 d 染色方式,将完全图  $K_N$  的所有边进行如下 d 染色:将这 N 个顶点标号为  $v_{2^0},v_{2^1},\ldots,v_{2^{N-1}}$ ,边  $v_{2^i}v_{2^j}$  染成正整数  $|2^i-2^j|$  的颜色. 根据 N 的定义,图染色中一定存在同色  $K_{t+1}$ . 设它的顶点下标从大到小排列依次为  $2^{i_1},2^{i_2},2^{i_3},\ldots,2^{i_{t+1}}$ . 这意味着正整数  $2^{i_1}-2^{i_2},2^{i_2}-2^{i_3},\ldots,2^{i_t}-2^{i_{t+1}}$  以及  $2^{i_1}-2^{i_{t+1}}$  被染成了同一颜色,依次令  $x_1,x_2,\ldots,x_t,x_{t+1}$  为这 t+1 个正整数,则它们满足  $x_1+x_2+\cdots+x_t=x_{t+1}$ . 对于不完全相同的正整数对 (a,b),(c,d),其中 a>b,c>d,若 a=c,则  $b\neq d$ ,于是  $2^a-2^b\neq 2^c-2^d$ ;若

 $a \neq c$ ,不妨设 a > c,则  $2^a - 2^b \ge 2^{a-1} \ge 2^c > 2^c - 2^d$ . 所以对于不完全相同的正整数对 (a,b),(c,d),其中 a > b,c > d, $2^a - 2^b \ne 2^c - 2^d$  一定成立,于是上述  $x_1,x_2,\ldots,x_t,x_{t+1}$  互不相同,满足条件.

#### 3 Van der Waerden 定理

**定理 6** (范德瓦尔登定理 (Van der Waerden's theorem)). 对于任意给定的正整数 d 和 k, 存在正整数 N, 使得对  $\{1,2,\ldots,N\}$  的任意 d 染色中都存在长度为 k 的同色等差数列. 我们把满足上述条件最小的 N 记作 W(d,k).

该定理由荷兰数学家范德瓦尔登(B. L. Van der Waerden)在 1927 年证明. 我们先来观察一些 d,k 取值较小时的 W(d,k) 例子, 易知 W(1,k)=k,W(d,1)=1,W(d,2)=d+1, 如下表格所示:

| d | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 | 5 |
| 2 | 1 | 3 |   |   |   |
| 3 | 1 | 4 |   |   |   |
| 4 | 1 | 5 |   |   |   |
| 5 | 1 | 6 |   |   |   |

类比 Ramsey 数上界的证明方法,我们可以通过这些已知的范德瓦尔登数,以递归的方式证明范德瓦尔登定理. 下面给出 W(2,3) 和 W(3,3) 的证明.

**定理 7.** 
$$W(2,3) \le (2W(2,2)-1)[2W(2^{2W(2,2)-1},2)-1] = 325.$$

**证明** 假设我们使用红、蓝这两种颜色. 把  $\{1,2,\ldots 325\}$  中的数字按顺序分为 65 个长度为 5 的块. 考虑一个块可能出现的染色方法,由于每个块中有 5 个数字,且每个数字有 2 种染色方法,所以每个块可以有  $2^5=32$  种不同的染色方法,由于 W(32,2)=33,因此前 33 个块中必有两个块染色方式相同. 设第 i,j 个块染色方式相同, $0 < i < j \le 33$ .

由于每个块中有五个数字,而 W(2,2)=3,因此每个块前 3 个数必有两个同色. 不妨设第 i 个块中第 1,3 个数染红色 (其它情形类似),此时如果第 i 块中第 5 个数染红色,则第 1,3,5 个数构成长度为 3 的同色等差数列;否则第 5 个数染蓝色. 由于第 j 块与第 i 块同色,第 j 个块中对应地第 1,3 个数染红色,第 5 个数染蓝色. 考虑第 k=2j-i 块,则因为  $0 < i < j \le 33$ ,所以  $k \le 65$ . 如下图所示:



每条虚线所连接的三个数字可构成等差数列, 两条虚线交于第 k 块中的第 5 个数, 因此无论这个数染蓝色还是红色, 都能找到一个长度为 3 的同色等差数列.

类似地我们来处理 W(3,3).

定理 8. 
$$W(3,3) \leq (2W(3,2)-1)\left[2W(3^{2W(3,2)-1},2)-1\right]\left[2W(3^{(2W(3,2)-1)\left[2W(3^{2W(3,2)-1},2)-1\right]},2)-1\right]$$

如果我们继续重复上一个证明过程,会发现第k块第5个数可以染绿色,导致无法得到结论.为了解决这个问题,我们要把上述整个结构当作一个更大的整体(细节处需要做微小调整),再通过重复这个更大的结构完成证明.

**证明** 假设我们使用红、蓝、绿这三种颜色. 令  $L = (2W(3,2)-1) [2W(3^{2W(3,2)-1},2)-1]$ . 取  $2W(3^L,2)-1$  个长度为 L 的 "超块",同样考虑超块的染色方式,共  $3^L$  种. 因此前  $W(3^L,2)$  个 "超块"中至少有两个染色方式相同,不妨设为第 i,j 个 "超块".

对于第 i 个"超块",这个"超块"中有 L 个连续的正整数,将这些正整数继续划分为  $2W(3^{2W(3,2)-1},2)$  一 1 个长度为 2W(3,2)-1 的块. 每个块的染色方式有  $3^{2W(3,2)-1}$  种,因此前  $W(3^{2W(3,2)-1},2)$  块必有两块染色方式相同.设第 i',j' 个块染色方式相同, $0 < i' < j' \le W(3^{2W(3,2)-1},2)$ .

每个块中有 2W(3,2)-1 个数, 前 W(3,2) 个数中必有两个同色. 不妨设第 i' 块中第 2,4 个数染红色 (其它情形类似), 如果第 6 个数也是红色,则找到了长度为 3 的同色等差数列; 否则设第 6 个数染蓝色. 对应地,第 j' 个块中第 2,4 个数染红色,第 6 个数染蓝色. 考虑第 k'=2j'-i' 块,如下图所示.



每条虚线所连接的三个数字可构成等差数列, 两条虚线交于第 k' 块中的第 6 个数. 与 W(2,3) 不同的是, 第 k 块中的第 6 个数可染红色、蓝色或绿色. 如果染红色或蓝色, 则找到了长度为 3 的同色等差数列; 否则设第 6 个数染绿色.

此时,第 j 个 "超块" 与第 i 个 "超块" 染色方式相同,我们考虑第 k=2j-i 个 "超块",同样由之前对 i,j 的上界限制, $k \leq 2W(3^L,2)-1$ . 如下图所示:



每条虚线所连接的三个数字可构成等差数列, 三条虚线交于第 k 个"超块"中的一个数, 这个数无论染红色、蓝色还是绿色, 都能找到一个长度为 3 的同色等差数列.

## 4 Van der Waerden 定理的应用

定理 9. 对平面上的整点进行任意 d-染色,均存在两直角边平行于坐标轴的同色等腰直角三角形 (指三个顶点同色).

**证明** 我们证明, 对一个两直角边平行于坐标轴且底边长  $L(d) < \infty$  的等腰直角三角形进行 d-染色, 就能找到一个满足要求的同色等腰直角三角形. 注意这里的"底边长度"是指底边上点的个数.

采用数学归纳法. d=1 时 L(1)=2 成立. 设 d=k 时 L(k) 成立. d=k+1 时, 令 L(k+1)=W(k+1,L(k)+1). 由范德瓦尔登定理, 底边 L(k+1) 个整点中存在 L(k)+1 个点同色且等间隔, 不妨设都是红色. 对于这些点, 找到其上方的点组成一个等腰直角三角形, 如下图所示:

: •

• • •

• • • • •

如果上方任意一个点是红色,则可以找到一个红色等腰直角三角形. 否则上方的点构成了一个底边长为 L(k) 的等腰直角三角形, 且至多染 k 种颜色, 由归纳假设必有同色等腰直角三角形.