- 1 import pandas as pd
- 2 import numpy as np
- 3 from datetime import datetime

1 df = pd.read_csv("HR-Employee-Attrition.csv")

2	df.	. he	ad (١)
_	u i	• • • •	ччι	•

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Educati
0	41	Yes	Travel_Rarely	1102	Sales	1	
1	49	No	Travel_Frequently	279	Research & Development	8	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	
3	33	No	Travel_Frequently	1392	Research & Development	3	
4	27	No	Travel_Rarely	591	Research & Development	2	

5 rows × 35 columns

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469

Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64

21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

1 df.describe(include='all')

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFro
count	1470.000000	1470	1470	1470.000000	1470	1470.00
unique	NaN	2	3	NaN	3	
top	NaN	No	Travel_Rarely	NaN	Research & Development	
freq	NaN	1233	1043	NaN	961	
mean	36.923810	NaN	NaN	802.485714	NaN	9.19
std	9.135373	NaN	NaN	403.509100	NaN	8.10
min	18.000000	NaN	NaN	102.000000	NaN	1.00
25%	30.000000	NaN	NaN	465.000000	NaN	2.00
50%	36.000000	NaN	NaN	802.000000	NaN	7.00
75%	43.000000	NaN	NaN	1157.000000	NaN	14.00
max	60.000000	NaN	NaN	1499.000000	NaN	29.00

11 rows × 35 columns

1 df.corr()

	Age	DailyRate	DistanceFromHome	Education	EmployeeC
Age	1.000000	0.010661	-0.001686	0.208034	
DailyRate	0.010661	1.000000	-0.004985	-0.016806	
DistanceFromHome	-0.001686	-0.004985	1.000000	0.021042	
Education	0.208034	-0.016806	0.021042	1.000000	
EmployeeCount	NaN	NaN	NaN	NaN	
EmployeeNumber	-0.010145	-0.050990	0.032916	0.042070	
EnvironmentSatisfaction	0.010146	0.018355	-0.016075	-0.027128	
HourlyRate	0.024287	0.023381	0.031131	0.016775	
JobInvolvement	0.029820	0.046135	0.008783	0.042438	
JobLevel	0.509604	0.002966	0.005303	0.101589	
JobSatisfaction	-0.004892	0.030571	-0.003669	-0.011296	
MonthlyIncome	0.497855	0.007707	-0.017014	0.094961	
MonthlyRate	0.028051	-0.032182	0.027473	-0.026084	
NumCompaniesWorked	0.299635	0.038153	-0.029251	0.126317	
PercentSalaryHike	0.003634	0.022704	0.040235	-0.011111	
PerformanceRating	0.001904	0.000473	0.027110	-0.024539	
RelationshipSatisfaction	0.053535	0.007846	0.006557	-0.009118	
StandardHours	NaN	NaN	NaN	NaN	
StockOptionLevel	0.037510	0.042143	0.044872	0.018422	
TotalWorkingYears	0.680381	0.014515	0.004628	0.148280	
TrainingTimesLastYear	-0.019621	0.002453	-0.036942	-0.025100	
WorkLifeBalance	-0.021490	-0.037848	-0.026556	0.009819	
YearsAtCompany	0.311309	-0.034055	0.009508	0.069114	
YearsInCurrentRole	0.212901	0.009932	0.018845	0.060236	
YearsSinceLastPromotion	0.216513	-0.033229	0.010029	0.054254	

1 df.corr()[df.corr()>0.5]

	Age	DailyRate	DistanceFromHome	Education	EmployeeCc
Age	1.000000	NaN	NaN	NaN	I
DailyRate	NaN	1.0	NaN	NaN	1
DistanceFromHome	NaN	NaN	1.0	NaN	1
Education	NaN	NaN	NaN	1.0	1
EmployeeCount	NaN	NaN	NaN	NaN	1
EmployeeNumber	NaN	NaN	NaN	NaN	1
EnvironmentSatisfaction	NaN	NaN	NaN	NaN	1
HourlyRate	NaN	NaN	NaN	NaN	1
Jobinvolvement	NaN	NaN	NaN	NaN	1
JobLevel	0.509604	NaN	NaN	NaN	1
JobSatisfaction	NaN	NaN	NaN	NaN	1
MonthlyIncome	NaN	NaN	NaN	NaN	1
MonthlyRate	NaN	NaN	NaN	NaN	1
NumCompaniesWorked	NaN	NaN	NaN	NaN	1
PercentSalaryHike	NaN	NaN	NaN	NaN	1
PerformanceRating	NaN	NaN	NaN	NaN	1
RelationshipSatisfaction	NaN	NaN	NaN	NaN	1
StandardHours	NaN	NaN	NaN	NaN	1
StockOptionLevel	NaN	NaN	NaN	NaN	1
TotalWorkingYears	0.680381	NaN	NaN	NaN	1
TrainingTimesLastYear	NaN	NaN	NaN	NaN	1
WorkLifeBalance	NaN	NaN	NaN	NaN	1
YearsAtCompany	NaN	NaN	NaN	NaN	1
YearsInCurrentRole	NaN	NaN	NaN	NaN	1
pd.set_option("display.flo	at_format"	, "{:.2f}".	format)		

¹ import matplotlib.pyplot as plt

² import seaborn as sns

³ import plotly.offline as py

⁴ py.init_notebook_mode(connected = True)

^{5 %}matplotlib inline

¹ df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'], axis = 'column'

```
1 df.columns
```

```
Index(['Age', 'Attrition', 'BusinessTravel', 'DailyRate', 'Department',
            'DistanceFromHome', 'Education', 'EducationField',
           'EnvironmentSatisfaction', 'Gender', 'HourlyRate', 'JobInvolvement',
           'JobLevel', 'JobRole', 'JobSatisfaction', 'MaritalStatus',
           'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'OverTime',
           'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction',
           'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole',
           'YearsSinceLastPromotion', 'YearsWithCurrManager'],
          dtype='object')
1 categorical_col = []
2 for column in df.columns:
3
      if df[column].dtype == object:
          categorical col.append(column)
4
          print(f"{column}:\n{df[column].unique()}")
5
6
          print("
    Attrition:
    ['Yes' 'No']
    BusinessTravel:
    ['Travel_Rarely' 'Travel_Frequently' 'Non-Travel']
    Department:
    ['Sales' 'Research & Development' 'Human Resources']
    EducationField:
    ['Life Sciences' 'Other' 'Medical' 'Marketing' 'Technical Degree'
     'Human Resources']
    Gender:
    ['Female' 'Male']
    JobRole:
    ['Sales Executive' 'Research Scientist' 'Laboratory Technician'
     'Manufacturing Director' 'Healthcare Representative' 'Manager'
     'Sales Representative' 'Research Director' 'Human Resources']
    MaritalStatus:
    ['Single' 'Married' 'Divorced']
    OverTime:
    ['Yes' 'No']
    sns.heatmap(df.corr(), vmax = 1, square = True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fc14aa1bb10>

- plt.figure(figsize =(20,20))
- 2 sns.heatmap(df.corr(), annot = True, cmap="RdYlGn", annot_kws = {"size": 10})

<matplotlib.axes. subplots.AxesSubplot at 0x7fc148582d90>


```
1 # Data Processing for ML Algorithm
2
3
4 from sklearn.model_selection import train_test_split
5 from sklearn.tree import DecisionTreeClassifier
6
7 categorical_col.remove('Attrition')
8
9 from sklearn.preprocessing import LabelEncoder
10 label = LabelEncoder()
11 for column in categorical_col:
12    df[column] = label.fit_transform(df[column])
```

1 df

					1 to	o 25 of 1470 entries	Filter $lacksquare$	
index	Age	Attrition	BusinessTravel	DailyRate	Department DistanceFromHome Education		Education	Edι
0	41	Yes	2	1102	2	1	2	
1	49	No	1	279	1	8	1	
2	37	Yes	2	1373	1	2	2	
3	33	No	1	1392	1	3	4	
4	27	No	2	591	1	2	1	
5	32	No	1	1005	1	2	2	
6	59	No	2	1324	1	3	3	
7	30	No	2	1358	1	24	1	
8	38	No	1	216	1	23	3	
9	36	No	2	1299	1	27	3	
10	35	No	2	809	1	16	3	
11	29	No	2	153	1	15	2	
12	31	No	2	670	1	26	1	
13	34	No	2	1346	1	19	2	
14	28	Yes	2	103	1	24	3	
15	29	No	2	1389	1	21	4	
16	32	No	2	334	1	5	2	
17	22	No	0	1123	1	16	2	
18	53	No	2	1219	2	2	4	
19	38	No	2	371	1	2	3	
20	24	No	0	673	1	11	2	
21	36	Yes	2	1218	2	9	4	

```
# Define a function module to print results of ML Classifier Score
  1
  2
  3
             from · sklearn.metrics · import · accuracy_score, · confusion_matrix, · precision_score, · recall
  4
  5
             def·print_score(clf, ·x_train, ·y_train, ·x_test, ·y_test, ·train ·= ·True):
              ····if·train:
  6
  7
              .....pred.=.clf.predict(x_train)
  8
              ·····print("Train·Result:\-==========")
  9
              .....print(f"accuracy.score:.{accuracy_score(y_train,.pred):.4f}\n")
              .....print("Classification.Data:")
10
              ·····print(f"Precision: ·{precision_score(y_train, ·pred, ·average=None, ·zero_division...
11
              .....print.(f"Recall.Score:.{recall score(y train,.pred,.average=None,.zero divisi
12
13
              .....print(f"Confusion_matrix:\n.{confusion_matrix(y_train,.clf.predict(x_train))}
14
              ....elif.train.==.False:
              .....pred.=.clf.predict(x_test)
15
16
              .....print("Test-Result:\-========")
17
              .....print(f"accuracy.score:.{accuracy_score(y_test,.pred)}\n")
18
              .....print("Classification.Data:")
              .....print(f"Precision: \{precision_score(y_test, \pred, \average=None, \zero_division
19
20
              .....print.(f"Recall.Score:.{recall_score(y_test,.pred,.average=None,.zero_divisio
              \cdots \cdots print(f"Confusion_matrix: n \cdot \{confusion_matrix(y_test, \cdot clf.predict(x_test))\} \setminus \{confusion_matrix : n \cdot \{confusion_mat
21
```

1 x=df.drop('Attrition', axis = 1)

```
1 x.head()
```

	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educatio
0	41	2	1102	2	1	2	
1	49	1	279	1	8	1	
2	37	2	1373	1	2	2	
3	33	1	1392	1	3	4	
4	27	2	591	1	2	1	

5 rows × 30 columns

1 # split data into X and Yx = df.drop('Attrition', axis = 1)
2 y = df.Attrition
3 y.head()

0 Yes 1 No

2 Yes

3 No

4 No

Name: Attrition, dtype: object

```
1 # Applying ML Algorithms
2
3 from sklearn.model_selection import train_test_split
4 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_stat
```

```
1 from sklearn.tree import DecisionTreeClassifier
2 tree = DecisionTreeClassifier(random_state = 38)
3 tree.fit(x_train, y_train)
4
5 print_score(tree, x_train, y_train, x_test, y_test, train = True)
6 print_score(tree, x_train, y_train, x_test, y_test, train = False)
```

accuracy score: 1.0000

Classification Data: Precision: [1. 1.]

Recall Score: [1. 1.]

Confusion_matrix:
 [[853 0]
 [0 176]]

```
Classification Data:
Precision: [0.88828338 0.27027027]

Recall Score: [0.85789474 0.32786885]

Confusion_matrix:
  [[326 54]
  [ 41 20]]
```

```
from sklearn.ensemble import RandomForestClassifier
1
2
3
   rand_forest = RandomForestClassifier(n_estimators = 30)
   rand_forest.fit(x_train, y_train)
4
5
   print_score(rand_forest, x_train, y_train, x_test, y_test, train = True)
6
   print_score(rand_forest, x_train, y_train, x_test, y_test, train = False)
7
accuracy score: 0.9990
   Classification Data:
   Precision: [0.99882904 1.
                              1
   Recall Score: [1.
                        0.99431818]
   Confusion_matrix:
    [[853 0]
    [ 1 175]]
   accuracy score: 0.8616780045351474
   Classification Data:
   Precision: [0.87006961 0.5
                              1
   Recall Score: [0.98684211 0.08196721]
   Confusion matrix:
    [[375 5]
    [ 56
         5]]
```

Overfit underfit means talk about

ensemblement, decision tree

k-fold classification

bagging