Machine Learning HW1

TAs ntu.mlta@gmail.com

Outline

- ◆ hw1介紹
- train/test data
- Kaggle
- ❖ 作業規定、繳交格式、批改方式
- ❖ 配分
- FAQ
- ❖ Github (請看hw0影片)

Task - Predict PM2.5

本次作業的資料是從中央氣象局網站下載的 真實觀測資料,希望大家利用 linear regression或其他方法預測 PM2.5的數值。

健康影響與活動建議

發布時間: 2017/02/25 23:00 即時細懸浮微粒指標

請點擊左方測站位置或

所屬單位: 環保署▼

地區: 中部 ▼ > 忠明▼ 查詢

發布時間: 2017-02-25 23:00:00

單位 : μg/m³ · 微克/立方公尺

ND : 未檢出(表示數據低於偵測極限2 微

克/立方公尺

PM_{2.5}移動平均值計算方式: 0.5 × 前12小 時平均 + 0.5 × 前4小時平均 (前4小時3筆

有效,前12小時8筆有效)

低	低	低	中	中	中	高	驷	迥	非常高
1	2	3	4	5	6	7	8	9	10

- ○監測車
- ☆ 設備維護(測站例行維護、儀器異常維修、監測數據不足)

Data 簡介

- ◆ 本次作業使用豐原站的觀測記錄,分成train set跟test set, train set是豐原站每個月的前20天所有資料。test set則是從豐原站剩下的資料中取樣出來。
- ❖ train.csv:每個月前20天的完整資料。
- ❖ test_X.csv:從剩下的資料當中取樣出連續的10小時為一筆, 前九小時的所有觀測數據當作feature, 第十小時的PM2.5當作answer。一共取出240筆不重複的test data, 請根據feature預測這240筆的PM2.5。

Training Data

1	А	В	C	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q	R
1	日期	測站	測項	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	2014/1/1	豐原	AMB_TEM	14	14	14	13	12	12	12	12	15	17	20	22	22	22	22
3	2014/1/1	豐原	CH4	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
4	2014/1/1	豐原	CO	0.51	0.41	0.39	0.37	0.35	0.3	0.37	0.47	0.78	0.74	0.59	0.52	0.41	0.4	0.37
5	2014/1/1	豐原	NMHC	0.2	0.15	0.13	0.12	0.11	0.06	0.1	0.13	0.26	0.23	0.2	0.18	0.12	0.11	0.1
6	2014/1/1	豐原	NO	0.9	0.6	0.5	1.7	1.8	1.5	1.9	2.2	6.6	7.9	4.2	2.9	3.4	3	2.5
7	2014/1/1	豐原	NO2	16	9.2	8.2	6.9	6.8	3.8	6.9	7.8	15	21	14	11	14	12	11
8	2014/1/1	豐原	NOx	17	9.8	8.7	8.6	8.5	5.3	8.8	9.9	22	29	18	14	17	15	14
9	2014/1/1	豐原	03	16	30	27	23	24	28	24	22	21	29	44	58	50	57	65
10	2014/1/1	豐原	PM10	56	50	48	35	25	12	4	2	11	38	56	64	56	57	52
11	2014/1/1	豐原	PM2.5	26	39	36	35	31	28	25	20	19	30	41	44	33	37	36
12	2014/1/1	豐原	RAINFALI	IR N	IR I	NR	NR	NR	NR	NR 1	NR	NR I	NR	NR	NR	NR 1	NR :	NR N
13	2014/1/1	豐原	RH	77	68	67	74	72	73	74	73	66	56	45	37	40	42	47
14	2014/1/1	豐原	SO2	1.8	2	1.7	1.6	1.9	1.4	1.5	1.6	5.1	15	4.5	2.7	3.5	3.6	3.9
15	2014/1/1	豐原	THC	2	2	2	1.9	1.9	1.8	1.9	1.9	2.1	2	2	2	1.9	1.9	1.9
16	2014/1/1	豐原	WD_HR	37	80	57	76	110	106	101	104	124	46	241	280	297	305	307
17	2014/1/1	豐原	WIND_DII	35	79	2.4	55	94	116	106	94	232	153	283	269	290	316	313
18	2014/1/1	豐原	WIND_SPI	1.4	1.8	1	0.6	1.7	2.5	2.5	2	0.6	0.8	1.6	1.9	2.1	3.3	2.5
19	2014/1/1	豐原	WS HR	0.5	0.9	0.6	0.3	0.6	1.9	2	2	0.5	0.3	0.8	1.2	2	2.6	2.1
20	2014/1/2	豐原	AMB_TEM	16	15	15	14	14	15	16	16	17	20	22	23	24	24	24
-04	004440		0111						- 10	1.0	- 10	- 4.0	- 10					

Testing Data

A	А	В	C	D	E	F	G	Н	1	J	K	L	M
1	id_0	AMB_TEM	15	14	14	13	13	13	13	13	12		
2	id_0	CH4	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8		
3	id_0	CO	0.36	0.35	0.34	0.33	0.33	0.34	0.34	0.37	0.42		
4	id_0	NMHC	0.11	0.09	0.09	0.1	0.1	0.1	0.1	0.11	0.12		
5	id_0	NO	0.6	0.4	0.3	0.3	0.3	0.7	0.8	0.8	0.9		
6	id_0	NO2	9.3	7.1	6.1	5.7	5.5	5.3	5.5	7.1	7.5		
7	id_0	NOx	9.9	7.5	6.4	5.9	5.8	6	6.2	7.8	8.4		
8	id_0	03	36	44	45	44	44	44	43	40	38		
9	id_0	PM10	51	51	31	40	34	51	42	36	30		
10	id_0	PM2.5	27	13	24	29	41	30	29	27	28		<u></u>
11	id_0	RAINFALI	NR										
12	id_0	RH	75	71	71	73	74	74	74	74	74		
13	id_0	SO2	1.2	1.2	1.2	1.6	1.5	1.5	1.5	1.6	1.6		
14	id_0	THC	1.9	1.8	1.8	1.9	1.9	1.9	1.9	1.9	1.9		
15	id_0	WD_HR	116	114	112	109	111	104	107	108	104		
16	id_0	WIND_DIE	115	113	105	102	106	106	112	113	106		
17	id_0	WIND_SPI	2.6	2.2	2	1.9	2.4	2.4	2.5	2.8	2		
18	id_0	WS_HR	2.1	2.4	2.2	1.9	2.3	2.3	2.5	2.5	2.3		
19	id_1	AMB_TEN	12	12	12	13	14	15	14	14	13		
20	id_1	CH4	1.8	1.8	1.9	1.9	1.8	1.8	1.8	1.8	1.8		

Submission format

- ❖ 預測test set中的240筆PM2.5, 上傳至Kaggle。
 - ➤ 上傳格式為csv
 - ➤ 第一行必須是 id, value
 - ➤ 第二行開始,每行分別為id及預測數值,以逗點分開
- ❖ 範例格式:

```
sampleSubmission.csv *

id, value

id_0,0

id_1,0

id_2,0

id_3,0

id_4,0

id_5,0

id_5,0

id_6,0

id_7,0
```

Kaggle

- ◆ 網址: https://inclass.kaggle.com/c/ml2017-hw1-pm2-5
- ❖ 請至kaggle創帳號登入(務必使用@ntu.edu.tw信箱)
- ❖ 個人進行、不須組隊
- ❖ 隊名:學號 任意名稱 (ex.b02901000 mlgod), 旁聽同學則避免使用此命名原則
- ❖ 每日上傳上限5次
- ❖ test_X.csv的240筆資料分為:120筆public、120筆private
- ❖ Leaderboard上顯示的是public的分數, 在死線前可選擇兩份答案作為private的評分依據
- ◆ 最後計分排名將將會考慮到public以及private的成績
- * kaggle deadline: 2017/03/23 08:00:00 (GMT+8)
- * github code & report deadline: 2017/03/23 21:00:00 (GMT+8)

請填寫github url表單: https://goo.gl/forms/IXKOauCxTQXBKUx22 #請每位修課同學務必填寫, hw0填過的也再填一次

作業規定

- ❖ 請實作linear regression, 方法限定使用Gradient Descent。
- ❖ 若想嘗試其他方法也可以, 但是仍然需實作linear regression。
- ❖ 不能使用現成套件,只能使用numpy、scipy以及pandas。 若需要使用其他套件,請在Deadline前寄信至助教信箱詢問,並請簡述原因。
- ❖ 建議使用版本:

Python 3.4

numpy 1.12.0

繳交格式

- 1. Only Python & C/C++ 請在script中寫清楚使用python版本, 2.7, 3.4, 3.5 e.g. 使用python3.4請打 python3.4 xxx.py C / C++ 請寫好makefile 並且在script中進行compile, 並且寫好compiler版本
- 2. **Deadline:2017/03/23 21:00:00 (GMT+8)**Github commit為local端時間,請注意你電腦時間,並且上Github確認助教會在Deadline一到就clone所有程式,並且**不再重新clone任何檔案**
- 3. 你的Github上至少需要有下列三個檔案,如果你有其他程式檔案,請一併上傳, e.g. xxx.py xxx.cpp等等。另外,請不要上傳與作業無關檔案以及data。 (required) ML2017/hw1/Report.pdf (請按照page. 13提供之templete撰寫) (required) ML2017/hw1/hw1.sh
 - (required) ML2017/hw1/hw1_best.sh
 - (optional) ML2017/hw1/model
 - (optional) ML2017/hw1/model_best

批改方式

- 1. 請在hw1.sh以及hw1_best.sh中, 自行抽取你所需要的feature
- 2. 助教批改改程式時,會用下列的方法執行:

```
bash hw1.sh [input file 1] [input file 2] [output file] bash hw1_best.sh [input file 1] [input file 2] [output file]
```

input file 1為助教提供train.csv的路徑 input file 2為助教提供test_X.csv的路徑 output file為助教提供output的路徑

- e.g. 如果為 bash hw1.sh ./data/train.csv ./data/test_X.csv ./result/res.csv 則hw1.sh 最後需要產生一個 res.csv的檔案在result資料夾中 註:res.csv輸出格式同page. 7 kaggle上傳格式
- 3. hw1.sh與hw1_best.sh皆需要在10分鐘內跑出結果,否則不會拿到分數
- 4. 如果模型需要訓練很久, 請把參數存下來, 並且一併上傳到Github (見page. 10)
- 5. 如果助教無法重新跑出你kaggle上結果,程式0分,Report部分給分

配分 (10%) - 1

- Kaggle Rank:
 - > (1%) 超過public leaderboard的simple baseline分數
 - > (1%) 超過public leaderboard的strong baseline分數
 - > (1%) 超過private leaderboard的simple baseline分數
 - > (1%) 超過private leaderboard的strong baseline分數
 - > (1%) 3/15 23:59 前超過public simple baseline
 - ➤ (BONUS) kaggle排名前五名(且在3/30願意上台跟大家分享的同學)
- ◆ 備註:hw1.sh的結果必須超過public simple baseline否則程式部分將不會有任何分數, report部分也會是部分給分

配分 (10%) - 2

- ❖ Report.pdf:PDF (限制:中文&不能超過2頁、請使用template作答)
 - > (1%) 請簡明扼要地闡述你如何抽取模型的輸入特徵(feature)
 - > (1%)請作圖比較不同訓練資料量對於PM2.5預測準確率的影響
 - ➤ (1%)請比較不同複雜度的模型對於PM2.5預測準確率的影響
 - ➤ (1%)請討論正規化(regularization)對於PM2.5預測準確率的影響
 - ➤ (1%) 線性回歸問題中求解最小化損失函數的向量詳見report template)

Other policy:

- ➤ script 錯誤, 直接0分。若是格式錯誤, 請在公告時間內找助教修好, 修完kaggle分數 *0.7。
- ➤ Kaggle超過deadline直接shut down, 可以繼續上傳但不計入成績。
- ➤ Github遲交一天(*0.7), 不足一天以一天計算, 不得遲交超過兩天, 有特殊原因請找助教。
- ➤ Github遲交表單: https://goo.gl/forms/mq0F6u82AKiw4tt33 (遲交才必需填寫) 遲交請「先上傳程式」至Github再填表單,助教會根據表單填寫時間當作繳交時間。

* Report template:

https://goo.gl/AN1b2C

FAQ

1. 如果只有做一個方法是否需要繳交兩份script?

Ans.

是的。如果只有做linear regression, kaggle上的分數也是linear regression 的話, 也麻煩交兩份script。

2. 表單填錯怎麼辦?

Ans.

請直接重新填即可,會以最近的表單為準。 提醒,表單只是蒐集各位github repo url,不需每次git push都填一次表單。 再次提醒,修課同學一定都要填寫!

Github

- ◆ 請參考hw0投影片
 link: https://docs.google.com/presentation/d/1wQ4H_JbFkFzKhLhBrRa_tfBJO
 hb2JAk5bBeMWf_I-7U/edit#slide=id.g1cdeb07386_0_16
 (from page 10)
- Video link:
 http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/HW0.mp4
 (from 07:49)