Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Scripting and breakpointing is also part of this process. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Use of a static code analysis tool can help detect some possible problems. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. One approach popular for requirements analysis is Use Case analysis. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Programming languages are essential for software development. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. There are many approaches to the Software development process. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. They are the building blocks for all software, from the simplest applications to the most sophisticated ones.