Outline

processor + sensors + radio

▶ 3 LEDs for debugging

▶ 2 AA batteries, on/off switch

Sensor Networks

Self-stabilization and Sensor Networks

M Potop Butucaru, F Petit, S Tixeuil

UPMC Sorbonne Universités prenom.nom@lip6.fr

Sensor Networks and Self-stabilization

Sensor Networks and Self-stabilization

Sensor Networks

While (batteries supply power)

- ▶ Collect, aggregate and reduce data
- ▶ log into memory

In spite of numerous fault modes

- Permanent sensor failures, node failures
- restarts, radio failures
- transient faults, reconfigurations

TDMA

Motivation Algorithm stack

Cached Sensornet

Self-stabilizing Unison

Model(s)

Clustering

Density Self-stabilizing Clustering Simulation Results

Sensor Networks and Self-stabilization

Conclusion

Sensor Networks and Self-stabilization

Sensor Networks and Self-stabilization

stabilizing)

Distributed Systems

Starting from a particular initial configuration, the system

eventually reaches a configuration from with its behavior

Self-stabilization permits to recover from transient

Definition (Classical System, a.k.a. Non

immediately exhibits correct behavior.

Definition (Self-stabilizing System)

Starting from any initial configuration, the system

Distributed Systems

Definition (Classical System, a.k.a. Non stabilizing)

Starting from a particular initial configuration, the system immediately exhibits correct behavior.

Definition (Self-stabilizing System)

Starting from any initial configuration, the system eventually reaches a configuration from with its behavior is correct.

Sensor Networks and Self-stabilization

Sensor Networks and Self-stabilization

is correct.

failures

Self-stabilization

Complexity Criteria

Maximize useful lifetime of system

- ▶ "maximise useful": correct quickly from illegitimate state
 - Self-stabilization, scalability
- "maximise lifetime": use minimal energy to preserve
 - ▶ local vs. global preserving

System Specifics

- ▶ only one radio frequency
- no collision detect
- ▶ access technique: CSMA/CA
- use CRC to detect collision
- no directional send/receive
- msg. are small (30 bytes)
- radio range about 1 meter
- ▶ number of neighbors < 10
- ▶ could be large number of nodes (perhaps > 100000)

- ▶ unique node IDs (probably)
- cost a few ¥(someday)
- ▶ slow processor (4 MHz)
- ▶ limited memory (4 KB RAM)
- ▶ item nodes have real-time $clocks \equiv drift between 1$ msec and 100 msec per second
- several power modes available

Sensor Networks and Self-stabilization

Self-stabilization in Sensor Networks Transform (i.e. Simulate) the self-stabilizing

model into the sensor networks model

- ▶ Pros: reuse existing SS algorithms
- ▶ Cons: potentially inefficient, overhead
- ► [Herman 03] Cached Sensornet Transform

Design self-stabilizing algorithms for the sensor networks model

- ▶ Pros: potentially efficient
- ► Cons: ignore previous SS work

The Model(s)

Self-stabilizing model

- ▶ Read neighborhood state,
- ▶ compute and update local state

Sensor Network model

- ▶ Read local state,
- ▶ compute and broadcast to neighborhood
- ► Collisions may appear

Self-stabilization in Sensor Networks

Transform (i.e. Simulate) the self-stabilizing model into the sensor networks model

- ▶ Pros: reuse existing SS algorithms
- ▶ Cons: potentially inefficient, overhead
- ► [Herman 03] Cached Sensornet Transform

Design self-stabilizing algorithms for the sensor networks model

- ▶ Pros: potentially efficient
- ► Cons: ignore previous SS work
- ► [Herman 03] Unison with collisions

Self-stabilization in Sensor Networks Transform (i.e. Simulate) the self-stabilizing model into the sensor networks model

- ▶ Pros: reuse existing SS algorithms
- ▶ Cons: potentially inefficient, overhead

Design self-stabilizing algorithms for the sensor networks model

- ▶ Pros: potentially efficient
- ► Cons: ignore previous SS work

Cached Sensornet Transform

Basic Algorithm

- ightharpoonup Each node p has a variable v_p
- ▶ Each neighbor q of p has a variable $c_q v_p$
 - $c_q v_p$ is the cached value of v_p at q
- ▶ Whenever p assigns v_p , p also broadcasts the new value to the neighborhood
- ▶ Whenever a neighbor q of p receives v_p , q updates c_qv_p accordingly

Lemma (Closure)

occurrences of $c_a v_v$ by v_v

If started from a cache coherent state, and without collisions,

the self-stabilizing model is simulated by replacing all

Example

Cached Sensornet Transform

Definition (Cache coherence)

For all neighbors p and q, $c_q v_p = v_p$

Lemma (Closure)

If started from a cache coherent state, and without collisions, the self-stabilizing model is simulated by replacing all occurrences of $c_q v_p$ by v_p

Example

Lemma (Closure)

If started from a cache coherent state, and without collisions, the self-stabilizing model is simulated by replacing all occurrences of $c_a v_v$ by v_v

Sensor Networks and Self-stabilization 00000000

Sensor Networks and Self-stabilization 00000000

Lemma (Closure)

occurrences of $c_a v_n$ by v_n

Example

If started from a cache coherent state, and without collisions,

the self-stabilizing model is simulated by replacing all

Sensor Networks and Self-stabilization

00000000

Cached Sensornet Transform

Periodic retransmit

ightharpoonup Each node p periodically broadcasts v_p to its neighborhood

Lemma (Convergence)

If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached

Example

Lemma (Convergence)

If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached

Sensor Networks and Self-stabilization

Sensor Networks and Self-stabilization

Sensor Networks and Self-stabilization

Example

Lemma (Convergence)

If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached

Example

Lemma (Convergence)

If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached

Example

Lemma (Convergence)

If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached

Example

Lemma (Convergence)

If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached

Example

- ▶ If *q* receives v_v correctly, $b_q v_v$ becomes true
- ► $G \rightarrow A$ becomes for all neighbors q of p, $b_p v_q$ and $G \rightarrow$ A; for all neighbors q of p, $b_p v_q$ becomes false

Example

- ▶ If *q* receives v_n correctly, $b_a v_n$ becomes true
- ▶ $G \rightarrow A$ becomes for all neighbors q of p, b_pv_q and $G \rightarrow$ A; for all neighbors q of p, b_pv_q becomes false

Sensor Networks and Self-stabilization ○○○ ○○○○

)MA))

lustering

Conclusion

Sensor Networks and Self-stabilization

TDMA 00 00000

Clustering 0000 00 Conclusion

Cached Sensornet Transform

Message Corruption

- ▶ Each neighbor q of p has a Boolean variable $b_q v_p$
- ▶ If *q* receives v_p correctly, $b_q v_p$ becomes true
- ▶ $G \rightarrow A$ becomes for all neighbors q of p, $b_p v_q$ and $G \rightarrow$ A; for all neighbors q of p, $b_v v_a$ becomes false

Example

- ▶ If q receives v_p correctly, $b_q v_p$ becomes true
- ▶ $G \rightarrow A$ becomes for all neighbors q of p, b_pv_q and $G \rightarrow A$; for all neighbors q of p, b_pv_q becomes false

Example

- ▶ If *q* receives v_v correctly, $b_a v_v$ becomes true
- ▶ $G \rightarrow A$ becomes for all neighbors q of p, b_pv_q and $G \rightarrow$ A; for all neighbors q of p, b_pv_q becomes false

Example

- ▶ If *q* receives v_v correctly, $b_q v_v$ becomes true
- ► $G \rightarrow A$ becomes for all neighbors q of p, $b_p v_q$ and $G \rightarrow$ A; for all neighbors q of p, $b_v v_a$ becomes false

Sensor Networks and Self-stabilization

Sensor Networks and Self-stabilization

TDMA 00 000000 Clustering

Conclus

Example

- ▶ If q receives v_p correctly, $b_q v_p$ becomes true
- ▶ $G \rightarrow A$ becomes for all neighbors q of p, $b_p v_q$ and $G \rightarrow$ A; for all neighbors q of p, $b_p v_q$ becomes false

Example

- ▶ If *q* receives v_n correctly, $b_q v_n$ becomes true
- ► $G \rightarrow A$ becomes for all neighbors q of p, $b_p v_q$ and $G \rightarrow$ A; for all neighbors q of p, $b_p v_q$ becomes false

Sensor Networks and Self-stabilization

Cached Sensornet Transform

Sensor Networks and Self-stabilization

Self-stabilizing Unison

Example

- ▶ If *q* receives v_n correctly, $b_a v_n$ becomes true
- $G \rightarrow A$ becomes for all neighbors q of p, $b_n v_a$ and $G \rightarrow$ A; for all neighbors q of p, $b_p v_q$ becomes false

Sensor Networks and Self-stabilization

legitimate

Self-stabilizing Unison

Specification

Sensor Networks and Self-stabilization

- ightharpoonup Each node p has a clock variable v_p
- ▶ For every neighbors *p* and q, $|v_v v_a| \le 1$

Self-stabilizing Unison

Self-stabilizing Unison

• for every neighbor $q, v_q \geqslant v_v \rightarrow v_v := v_v + 1$

Example

Sensor Networks and Self-stabilization

Example

If started from an arbitrary state, the self-stabilizing model is

Self-stabilizing Unison

Periodic Retransmit

Message Corruption

eventually simulated

Lemma (Self-stabilization)

• for every neighbor $q, v_q \geqslant v_v \rightarrow v_v := v_v + 1$

Sensor Networks and Self-stabilization

Example

Self-stabilizing Unison

• for every neighbor $q, v_q \geqslant v_p \rightarrow v_p := v_p + 1$

Specification

- ightharpoonup Each node p has a clock variable v_v
- ▶ For every neighbors p and q, $|v_p v_q| \le 1$

Sensor Networks and Self-stabilization

Example

Self-stabilizing Unison

• for every neighbor $q, v_a \geqslant v_v \rightarrow v_v := v_v + 1$

Sensor Networks and Self-stabilization

Example

Self-stabilizing Unison

• for every neighbor q, $v_q \geqslant v_p \rightarrow v_p := v_p + 1$

non activatableactivatable

• for every neighbor $q, v_q \geqslant v_p \rightarrow v_p := v_p + 1$

• for every neighbor q, $v_q \geqslant v_p \rightarrow v_p := v_p + 1$

Example

Self-stabilizing Unison

• for every neighbor $q, v_q \geqslant v_v \rightarrow v_v := v_v + 1$

Example

Self-stabilizing Unison

• for every neighbor $q, v_q \geqslant v_p \rightarrow v_p := v_p + 1$

Example

Self-stabilizing Unison

Sensor Networks and Self-stabilization

• for every neighbor $q, v_q \geqslant v_p \rightarrow v_p := v_p + 1$

Example

Self-stabilizing Unison

• for every neighbor $q, v_a \geqslant v_v \rightarrow v_v := v_v + 1$

Example

Self-stabilizing Unison

• for every neighbor q, $v_q \geqslant v_p \rightarrow v_p := v_p + 1$

Sensor Networks and Self-stabilization

Sensor Networks and Self-stabilization

Sensor Networks and Self-stabilization

Unison with Collisions

Unison with Collisions

Specification

- \triangleright Each node p has a clock variable v_n
- ▶ For every neighbors p and q, $|v_v v_a| \le 1$

Self-stabilizing Unison

• for every neighbor $q, v_a \ge v_n \rightarrow v_n := v_n + 1$

Unison with Collisions

Specification

- \triangleright Each node p has a clock variable v_n
- ▶ For every neighbors p and q, $|v_v v_a| \le 1$

Self-stabilizing Unison with Collisions

• for every neighbor q, $c_p v_q \geqslant v_p \rightarrow v_p := v_p + 1$

Specification

- \triangleright Each node p has a clock variable v_n
- ▶ For every neighbors p and q, $|v_v v_a| \le 1$

Self-stabilizing Unison with Collisions

- for every neighbor q, $c_p v_q \geqslant v_p \rightarrow v_p := v_p + 1$
- ▶ Only correctly received messages update cached variables

Sensor Networks and Self-stabilization

Sensor Networks and Self-stabilization

legitimate

Sensor Networks and Self-stabilization

legitimate

Example

- non activatableactivatable
- legitimate
- □ lower than value □ strictly greater

Example

- non activatableactivatable
- □ lower than value □ strictly greater

Example

- non activatableactivatable
- □ lower than value □ strictly greater

Sensor Networks and Self-stabilization

Sensor Networks and Self-stabilization

legitimate

Sensor Networks and Self-stabilization

legitimate

Example

- non activatableactivatable
- legitimate
- □ lower than value □ strictly greater

Example

- non activatableactivatable
- □ lower than value □ strictly greater

Example

- non activatableactivatable
- □ lower than value □ strictly greater

Example

Unison with Collisions

Cache coherence weakening

▶ For every neighbors p and q, $c_p v_q \leq v_q$

Self-stabilizing Unison with collisions

- Unison and Weak cache coherence are preserved by program executions
- ▶ Unison and Weak cache coherence eventually hold
- Some extra work is expected to get bounded clock values

Example

Sensor Networks and Self-stabilization TDMA Clustering Conclusion 000 00 0

Self-stabilization in Sensor Networks

Transform (i.e. Simulate) the self-stabilizing model into the sensor networks model

- ▶ [Herman 03] Cached Sensornet Transform
- ▶ Overhead is not upper bounded

Design self-stabilizing algorithms for the sensor networks model

- ► [Herman 03] Unison with collisions
- ▶ Proof in the model is specific to the problem

Sensor Networks and Self-stabilization TDMA Chastering Conclusion 00000000 000

Example

