

2019 年「大学物理 2 | 杉州電チ科ガス学 期末试题 🥒

考试时间: 2020 年 2 月 20 日

课程编号: A0715012

任课教师: 大学物理教学团队

解析制作: 未央物理讲师 Axia

1. 选择题 (每题 3 分, 共 27 分)

☑ 题目 1

一质量为m的滑块,两边分别与劲度系数为 k_1 和 k_2 的轻弹簧联接,两弹簧的另外两端分别固定在墙上. 滑块m可在光滑的水平面上滑动,O 点为系统平衡位置. 将滑块 m 向右移动到 x_0 , 自静止释放, 并从释放时开始计时. 取水平向右为正方向,则其振动方程为

A.
$$x_0 \cos \sqrt{\frac{k_1 + k_2}{m}}$$

B.
$$x_0 \cos \sqrt{\frac{k_1 k_2}{m(k_1 + k_2)}} t$$

$$C. x_0 \cos \sqrt{\frac{k_1 + k_2}{m}} t + \pi$$

A.
$$x_0 \cos \sqrt{\frac{k_1 + k_2}{m}} t$$
 B. $x_0 \cos \sqrt{\frac{k_1 k_2}{m(k_1 + k_2)}} t$ C. $x_0 \cos \sqrt{\frac{k_1 + k_2}{m}} t + \pi$ D. $x_0 \cos \left[\sqrt{\frac{k_1 k_2}{m(k_1 + k_2)}} t + \pi \right]$

弹簧振子

ightharpoonup 分析与解 两弹簧均连接在物块上且对物块的回复力方向相同,所以二者并联,系统角频率 $\omega^2=rac{k_1+k_2}{m}$. 初始 时刻 $x=x_0$, v<0, 所以初相 $\varphi=0$, 物块的运动方程为 $x=x_0\cos\left(\sqrt{\frac{k_1+k_2}{m}}t\right)$. 故本题选择 A 项.

☑ 题目 2

● 平面简谐波

图为沿 x 轴负方向传播的平面简谐波在 t=0 时刻的波形. 若波的表达式 以余弦函数表示,则 O 点处质点振动的初相为

B.
$$\frac{1}{2}\pi$$

B.
$$\frac{1}{2}\pi$$
 C. π D. $\frac{3}{2}\pi$

驻波

☑ 分析与解 此时 O 点的振动速度大于零,所以 $\varphi = -\frac{1}{2}\pi = \frac{3}{2}\pi$. 故本题选择 \mathbf{D} 项.

☑ 颞目 3

在波长为λ的驻波中,两个相邻波腹之间的距离为

A.
$$\frac{\lambda}{4}$$

B.
$$\frac{\lambda}{2}$$

C.
$$\frac{3\lambda}{4}$$

▶ 颞目 4

● 弗琅禾费衍射

一束波长为 λ 的平行单色光垂直入射到一单缝AB上,装置如图.在屏幕 D 上形成衍射图样,如果 P 是一级暗纹所在的位置,则 \overline{BC} 的长度为

- Β. λ
- C. $\frac{3\lambda}{2}$

ightharpoonup 分析与解 由暗纹条件 $\overline{BC} = \delta = 1 \cdot \lambda$. 故本题选择 m B 项.

☑ 题目 5

光的偏振

使一光强为 I_0 的平面偏振光先后通过两个偏振片 P_1 和 P_2 . P_1 和 P_2 的偏振化方向与原入射光光矢量振动方向的 夹角分别是 α 和 90°, 则通过这两个偏振片后的光强 I 是

- A. $\frac{1}{2}I_0\cos^2\alpha$
- B. 0

- C. $\frac{1}{4}I_0 \sin^2(2\alpha)$ D. $\frac{1}{4}I_0 \sin^2 \alpha$

☑ 分析与解 由 Malus 定律得 $I = I_0 \cos^2 \alpha \cos^2 \left(\frac{\pi}{2} - \alpha\right) = \frac{1}{4} I_0 \sin^2 (2\alpha)$. 故本题选择 C 项.

☑ 题目 6

▶ 相对论基本原理

I D

有下列几种说法

- (1) 所有惯性系对物理基本规律都是等价的
- (2) 在真空中光度与光的频率、光源的运动状态无关
- (3) 在任何惯性系中, 光在真空中沿任何方向的传播速率都相同

其中说法正确的是

- A. (1)(2)
- B. (1)(3)

C. (2)(3)

D. (1)(2)(3)

☑ 分析与解 由相对性原理和光速不变原理可知三个说法都是正确的. 故本题选择 D 项.

☑ 题目 7

尺缩效应

一宇航员要到离地球为5光年的星球. 如果宇航员希望把路程缩短为3光年,则他所乘的火箭相对于地球的速度 应是

A. $\frac{1}{2}c$

B. $\frac{3}{5}c$

D. $\frac{9}{10}c$

☑ 分析与解 由尺缩效应 $3ly = 5ly\sqrt{1-v^2/c^2}$ 得 v = 0.8c. 故本题选择 C 项.

☑ 题目 8

四个量子数

在原子的 L 壳层中, 电子可能具有的四个量子数 (n,l,m_l,m_s) 是

- i. $(2,0,1,\frac{1}{2})$ ii. $(2,1,0,-\frac{1}{2})$ iii. $(2,1,1,\frac{1}{2})$
- iv. $(2, 1, -1, -\frac{1}{2})$

- A. 只有 i, ii 是正确的 B. 只有 ii, iii 是正确的 C. 只有 ii, iii, iv 是正确的 D. 全部是正确的

☑ 分析与解 四个量子数: n 确定时, $l=0,\pm 1,\cdots,\pm n-1$; $m_l=0,\pm 1,\cdots,\pm l$; $m_s=\pm 1/2$. 故本题选择 $\mathbb C$ 项.

☑ 题目 9

▶ 光电效应 【 B

以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示,然后保持光的频率不变,增大照射 光的强度,测出其光电流曲线在图中用虚线表示. 满足题意的图是

2. 填空题 (共 21 分)

☑ 题目 10 (本题 3 分)

→ 弹簧振子

一物块悬挂在弹簧下方做简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的 3/4 (设平衡位置处势能为零). 当这物块在平衡位置时,弹簧的长度比原长长 Δl ,这一振动系统的周期为 $2\pi\sqrt{\Delta l/g}$.

☑ 分析与解 此时物块动能为 $E_k = \frac{1}{2}kA^2 - \frac{1}{2}k\left(\frac{A}{2}\right)^2 = \frac{3}{4} \cdot \frac{1}{2}kA^2$,所以此时物块动能是总能量的 $\frac{\frac{3}{4} \cdot \frac{1}{2}kA^2}{\frac{1}{2}kA^2} = \frac{3}{4}$; 弹簧的劲度系数 $k = \frac{mg}{\Delta l}$,由弹簧振子周期表达式得系统的周期为 $T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{\Delta l}{g}}$.

☑ 题目 11 (本题 3 分)

₩ 驻波

设入射波的表达式为 $y_1 = A\cos\left[2\pi\left(\nu t + \frac{x}{\lambda}\right) + \pi\right]$,波在 x = 0 处发生反射,反射点为一固定端,则入射波和反射波合成的驻波的波腹位置所在处的坐标为 $\frac{k\lambda}{2}$, $k = 0, 1, 2 \cdots$

■ 分析与解 反射波的表达式为 $y_2 = A\cos\left[2\pi\left(\nu T - \frac{x}{\lambda}\right)\right]$, 由此得驻波表达式 $y_1 + y_2 = 2A\cos\left(2\pi\nu T\right)\cos\left(\frac{2\pi x}{\lambda}\right)$, 所以波腹的位置为 $\cos\left(\frac{2\pi x}{\lambda} - \frac{\pi}{2}\right) = \pm 1$, $x = \frac{k\lambda}{2}$, $k = 0, 1, 2 \cdots$.

☑ 题目 12 (本题 3 分)

▶ 光程和光程差

如图所示,两缝 S_1 和 S_2 之间的距离为 d,媒质的折射率为 n=1,平行单色光斜入射到双缝上,入射角为 θ 则屏幕上 P 处,两相干光的光程差为 $\underline{r_2-r_1-d\sin\theta}$.

☑ 题目 13 (本题 3 分)

起偏角

一束自然光入射到折射率分别为 n_1 和 n_2 的两种介质的交界面上,发生反射和折射. 已知反射光是完全偏振光,那 么折射角 r 的值为 $\frac{\pi}{2}$ – $\arctan\frac{n_2}{n_1}$.

Arr 分析与解 起偏角为 $\arctan \frac{n_2}{n_1}$,由起偏条件 $i+r=90^\circ$ 得折射角 $r=\frac{\pi}{2}-\arctan \frac{n_2}{n_1}$.

☑ 题目 14 (本题 3 分)

钟慢效应

 π^+ 介子是不稳定的粒子,在它自己的参照系中测得平均寿命是 $2.6\times 10^{-8}\mathrm{s}$,如果它相对于实验室以 0.8c 的速率 运动,那么实验室坐标系中测得的 + 介子的寿命是 4.33×10^{-8} s.

☑ 分析与解 由钟慢效应公式 $t = \frac{t_0}{\sqrt{1 - \beta^2}} = 4.33 \times 10^{-8} \text{s}.$

☑ 题目 15 (本题 3 分)

相对论能动量关系

设电子静止质量为 m_e ,将一个电子从静止加速到速率为 0.6c,需做功 $\frac{1}{4}m_ec^2$.

✓ 分析与解 $W = mc^2 - m_0c^2 = \frac{m_e}{\sqrt{1 - v^2/c^2}} - m_ec^2 = \frac{1}{4}m_ec^2$

☑ 题目 16 (本题 3 分)

▶ 売层结构

多电子原子中, 电子的排列遵循 泡利不相容 原理和 能量最低 原理.

3. 计算题 (共 52 分)

☑ 题目 17 (本题 6 分)

简谐振动

一简谐振动的振动曲线如图所示, 求振动方程.

☑ 分析与解

- t = 0 时,x = -5cm,v < 0,所以初相 $\varphi = 2\pi/3$(2pt) t = 2 时相位 $\varphi = -\frac{\pi}{2} = \omega \cdot 2 + \frac{2\pi}{3}$,得角频率 $\omega = \frac{5}{12}\pi$(2pt)
- 综上, 振动方程为 $y = 0.1\cos\left(\frac{5}{12}\pi t + \frac{2\pi}{3}\right)$(2pt)

☑ 题目 18 (本题 6 分)

→ 平面简谐波的波函数

如图所示,一简谐波向 x 轴正向传播,波速 $u=500\text{m/s},\ x_0=1\text{m}$ 处 P点的振动方程为 $y = 0.03 \cos \left(500\pi t - \frac{\pi}{2}\right)$ (SI).

- 1. 按图所示坐标系,写出相应的波的表达式。
- 2. 在图上画出 t=0 时刻的波形曲线
- ☑ 分析与解 $y(x,t) = 0.03\cos\left[500\pi\left(t \frac{x-1}{500}\right) \frac{1}{2}\pi\right]$ (SI).

☑ 题目 19 (本题 5 分)

劈尖干涉

用波长为 $\lambda = 500$ nm 的单色光垂直照射折射率 n = 1.33 的劈尖膜观察反射光的等厚干涉. 从劈尖膜的棱算起,第 五条明纹中心对应的膜厚是多少.

☑ 分析与解 由明纹条件 $\delta = 2nh + \lambda/2 = k\lambda$ 得 k = 5 时, $h = 9\lambda/4n = 0.85\mu m$.

☑ 题目 20 (本题 10 分)

→ 弗琅禾费衍射

- 1. 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长, $\lambda_1 = 400$ nm $\lambda_2 = 760$ nm. 已知单缝宽度 $a = 1.0 \times 10^{-2}$ cm,透镜焦距 f = 50cm. 求两种光第一级衍射明纹中心之间的距离.
- 2. 若用光栅常数 $d = 1.0 \times 10^{-3}$ cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.

☑ 分析与解

- 1. 由单缝衍射明纹公式 $a\sin\varphi=\frac{2k+1}{2}\lambda\approx\frac{xa}{f}$ 得一级明纹间距 $\Delta x=x_2-x_1=\frac{3(\lambda_2-\lambda_1)f}{2a}=0.27\mathrm{cm}$. (5pt)
- 2. 由光栅主极大公式 $d\sin\varphi=k\lambda\approx\frac{x}{f}$ 得两个主极大之间距离 $\Delta x=x_2-x_1=\frac{(\lambda_2-\lambda_1)f}{d}=1.8 ext{cm}\cdot\cdot\cdot\cdot\cdot$ (5pt)

☑ 题目 21 (本题 8 分)

▶ 光的偏振

将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为,一束光强为 I_0 的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成 30° 角.

- 1. 求透过每个偏振片后的光束强度.
- 2. 若将原入射光束换为强度相同的自然光, 求透过每个偏振片后的光束强度.

☑ 分析与解

- 1. 线偏光透过偏振片 1 后与偏振片 2 夹角为 60° . 由 Malus 定律得 $I_1 = I_0 \cos^2 30^\circ \cos^2 60^\circ = \frac{3}{16} I_0$. · · · · · · (4pt)
- 2. 自然光透过偏振片 1 后光强减半,与偏振片 2 夹角为 60° . 由 Malus 定律得 $I_2 = \frac{1}{2}I_0\cos^260^\circ = \frac{1}{8}I_0....(4pt)$

☑ 题目 22 (本题 6 分)

▶ 相对论能动量关系

- 一电子(静质量 $m_e = 9.11 \times 10^{-31} \text{kg}$) 以 0.99c 的速率运动, 试求
- 1. 电子的总能量.
- 2. 电子的经典力学的动能与相对论动能之比.

✓ 分析与解
$$E = m_c^2 = \frac{m_e c^2}{\sqrt{1 - \beta^2}} = 5.8 \times 10^{-13} \text{J}, \ \frac{E_{k_0}}{E_k} = \frac{\frac{1}{2} m_e v^2}{m_c^2 - m_e c^2} = 8.13\%.$$

☑ 题目 23 (本题 6 分)

▶ 光电效应

光电管的阴极用逸出功 A=2.2eV 的金属制成,今用一单色光照射此光电管,阴极发射出光电子,测得遏止电势差为 $|U_a|=5.0eV$. 试求

- 1. 光电管的阴极金属的光电效应红限波长.
- 2. 入射光波长.

☑ 分析与解

- 1. $\lambda_{\text{max}} = hc/A = 563.56 \text{nm}. \dots (3pt)$
- 2. $\lambda = hc/(eU_a + A) = 172.20$ nm. (3pt)

☑ 题目 24 (本题 5 分)

无限深势阱中运动粒子波函数为 $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right)$,求发现粒子的概率密度为最大的位置 $(0 \le x \le a)$.

☑ 分析与解

粒子的概率密度为

$$\omega = |\psi(x)|^2 = \frac{2}{a}\sin^2\left(\frac{\pi x}{a}\right)$$

令 $\frac{\mathrm{d}\omega}{\mathrm{d}x}=0$ 得在 $0 \le x \le a$ 范围内发现粒子的概率密度 为最大位置为 x=a/2.