Control of: neuron proliferation, neuron cell death
Overall, the number of neurons decrease over developmental timeline, with the greatest rate of decrease during the
juvenile stage.
Apoptosis: programmed cell death, opposed to necrosis induced by injury
Rapid process, cell fragments are cleared by macrophages
Morphological characteristics: cytoplasmic blebbing + nuclear fragmentation
Biochemical characteristics: activation of caspase + DNA fragmentation
Influx of ions or the activation of Bcl2, cause oligomerisation
Bcl2 channel form, cytochrome-C move out of mitochondria
Cytochrome C bind to apaf-1 adaptor, activate procaspase 9
Procaspase 9 autocleave, release caspase 9, further cleaves procaspase 3
Procaspase 3 cleaved by 9 to become caspase 3, induce further downstream degradation of cell components
Apoptosis is important for development, lack of apoptosis can lead to overproliferation
Procaspase 9 KO lead to brain overgrowth in mice, failure to close neuropore.
Regulation of apoptosis: presence of survival signals / presence of apoptotic signals:
Grafting experiment shows less neuron death in dorsal root ganglions(DRG) innervating the limbs.
 Neurotrophic hypothesis: target tissues release trophic factors, neurons compete for the factor to survive, neuron
with the strongest connection to the target tissue survive. retrograde transport along the axon required.
○ Discovery of Nerve growth factor (NGF): sarcoma cells would prevent neuron death, culture medium of
sarcoma can promote neuron survival and proliferation of DRG in vitro.
○ Adding snake venom to culture medium induce neuron survival, venom is secreted by salivary gland
which produce a lot of NGF.
NGF is transported in a retrograde manner
○ Two compartment set up expose only axon ending to NGF, however this also induce neuron survival
Specificity of neurotrophin factors:
 NGF only induce proliferation in DRGs, while BDNF only induce proliferation in nodose ganglions.
Neurotrophic factors bind to specific Trk receptors
○ NGF bind to TrkA receptors, which is potentiated by p75 coreceptor, binding to p75 in absence of TrkA induce
apoptosis.
○ Neurotrophin (NT4/5) and BDNF bind to TrkB receptors
○ NT3 bind to TrkC receptor
Time dependency of neurotrophic factors:
Some neurotrophic factors only induce effect in early stage neurons, no effect however in late stage neurons
Dependency switching of neurotrophic factors:
• E.g. trigenminal nerve is dependent on BDNF during early developmental stages, but switch to NGF in later stages
Nerve growth factor (NGF) signalling pathway:
NGF —> TrkA RTK —> PI3K (survival) + Ras-MAPK (growth and differentiation) + PLC (synaptic function)

NGF binding with TrkA ativates PI3K pathway which inhibits cell death:
PI3K activates AKT
AKT phosphorylates bad, allow sequestration of bad-P by 14-3-3, prevent Bad from activating Bcl2
Sources of neurotrophic factors:
• Target derived
• Glial cell derived
• Endocrine derived
Autocrine / paracrine derived