10.9 Aktiver Tiefpass 1. Ordnung

Aufgabe

Realisieren sie einen aktiven RC-Tiefpass mit einem rückgekoppelten Operationsverstärker.

- (a) Skizzieren Sie die Schaltung
- (b) Dimensionieren Sie die Schaltung für: $f_{Gr} \approx 1,6kHz$ und $V_u = -21,3$ für $f \ll f_{Gr}$
- (c) geben sie die Gleichung für die Spannungsverstärkung V_u und den Phasengang an
- (d) Skizzieren sie den logarithmischen Amplitudenfrequenzgang und Phasengang

10.10 Bandpass 2. Ordnung mit Mehrfachgegenkopplung

Abbildung 1: Bandpass 2. Ordnung mit Mehrfachgegenkopplung

Aufgabe

Gegeben ist die Schaltung eines Tiefpasses 2. Ordnung mit Mehrfachgegenkopplung (Abbildung 1).

- (a) Leiten Sie die Gleichung für die komplexe Verstärkung her. (Nutzen Sie hierzu die Knotenspannungsanalyse)
- (b) Leiten Sie die Gleichung für die Resonanzfrequenz her.
 - Wie groß ist die Verstärkung bei Resonanzfrequenz?
- (c) Normieren sie die Gleichung für die Verstärkung auf $\frac{\omega}{\omega_0}$ und berechnen Sie die Bandbreite und die Güte.

Anmerkung: Bringen sie die Gleichung für die komplexe Verstärkung in folgende Form:

$$\frac{u_a}{u_e} = -\frac{a \cdot pC}{1 + b \cdot pC + c \cdot p^2 C^2} \qquad \text{mit } p = j\omega$$
 (1)

10.11 Dimensionierung eines Dreieck-Rechteck-Generators

Abbildung 1: Dreieck-Rechteck-Generator

Aufgaben

- (a) Entwickeln Sie die Schaltung unter folgenden Voraussetzungen:
 - Die Ausgangsspannungen sollen gleichanteilsfrei sein
 - Die Rechteckspannung soll durch zwei Z-Dioden ($U_Z=6V,\ U_F=0,6V,\ I_D=0,5mA$) begrenzt werden und unabhängig von U_S sein
- (b) Dimensionieren Sie die Schaltung für:
 - $\hat{U}_2 = 10V, f_0 = 1kHz, U_S = \pm 15V$
 - Der Ausgangsstrom der verwendeten OPVs soll $\leq 2mA$ sein
 - Der Ladestrom des Integrators ist auf 1mA zu begrenzen
- (c) Wie lässt sich die Frequenz möglichst einfach variieren?