Operating Systems Concepts

CS 4375, Fall 2025

Instructor: MD Armanuzzaman (**Arman**)

marmanuzzaman@utep.edu

August 25, 2025

Agenda

- Course Overview
- Instructor and TA
- Course logistics
- Syllabus
- Learning outcomes
- Course motivation
- Introduction to OS

Course Description

- CS 4375 is a course about the **systems-level software** called the **operating system** that provides an interface between **application software** and the **computer hardware**.
- The operating system is **responsible** for sharing **resources**, providing common **services**, and **protecting** programs from interference from other programs.
- Topics covered in the course include process management and scheduling,
 concurrency, interprocess communication, memory management, input/output
 management, file systems, and networking basics.

Instructor

- MD Armanuzzaman (Arman)
 - He/him/his
- Research Area
 - Systems and Software Security
- PhD: University at Buffalo
- Email: <u>marmanuzzaman@utep.edu</u>
- Room: CCSB 3.1008
- Office Hours: **M**, 1.30 PM 3.00 PM Or by appointment

Teaching Assistant

Name: Daniel J Marin

Email: <u>djmarin1@miners.utep.edu</u>

Room: CCSB 1.0706

• Office Hours: **WF**, 3.00 PM - 5.00 PM Or by appointment

Prerequisites

- Basic data structures
- C programming
 - Pointers
- If you do run into a issue that you don't have a background, it is your
 responsibility to take appropriate steps to complete your understanding
 - Don't give up
 - Read the reference materials
 - Go to office hours
 - Ask questions

Class policies

- Do your own work
- No cheating
- No unauthorized collaboration
- Do not violate the academic integrity policy
- Be respectful

Logistics

- Class website:
 - Schedule, Syllabus, and slides (after lectures)
- Blackboard
 - Quiz, Syllabus, and Assignment submissions
- Microsoft teams (Invited)
 - Assignments and Communication
- Github
 - Hosting assignment solutions
- No videos of the class will be provided
 - Attendance will be graded

Logistics

- Assignment are due at 11.59 PM
- No extensions will be allowed without proper justification
- Exams will be in person
- Generative Al usage:
 - Discovering algorithms
 - Generating code for programming assignments
 - MUST DISCLOSE ASSISTANCE
 - Office of Student Conduct and Conflict Resolution

Grading Structure

- 500 points: Homework assignments
- 100 points: Quizzes
- 150 points: Midterm exam
- 250 points: **Final exam**

Books/Materials

- Operating Systems: Three Easy Pieces, by Remzi H. Arpaci Dusseau and Andrea C. Arpaci-Dusseau
- xv6: a simple, Unix-like teaching operating system, by Russ Cox, Frans
 Kaashoek, and Robert Morris. RISC-V version
- The C Programming Language, 2nd edition, by Brian Kernighan and Dennis Ritchie
- The Linux Programming Interface, by Michael Kerrisk

I can find out materials, once I know what I need to learn

Homeworks/programming assignments

- Six programming individual assignments
- We will use xv6 teaching operating systems from MIT
 - RISC-V 32-bit version
- Assigned on Teams and turned in using GitHub
- Most of you learning will come from the homeworks

xv6: a simple, Unix-like teaching operating system

Russ Cox

Frans Kaashoek

Robert Morris

August 31, 2024

Everything you do as a software engineering relies heavily in OS-level efficiency

- OS is the "magic" that provides abstractions for CPUs, devices, address space, and network communication
- Performance, functionality, security, and reliability
- Environment in which your application executes
- Troubleshoot problems that come from outside your application
- Industry demand for people with solid systems background
- Exciting research and development opportunities in IoT, cloud and edge computing, support for specialized architectures

My Research: Systems & Software Security

Embedded, Mobile, Desktop, Distributed systems

What is an OS and what does it do?

- An operating system (OS) is the systems software that interfaces application programs with the underlying hardware
- Applications make requests for services through a defined APIs
- The OS manages and interfaces to underlying hardware (e.g., processors, memory, storage devices, network interfaces) so that applications don't need to know about hardware details
- The OS launches and manages every application, including multiple processes or threads.

Types of Operating Systems

- General-purpose operating system
 - Run multiple applications in broad range of hardware
 - Windows, MacOS, Linux
- Mobile operating system
 - Efficient performance and resource usage and fast response time
 - Apple iOS, Google Android
- Embedded operating system
 - Usually provided on a chip that is incorporated into the device
 - ATMs, IoT devices, medical devices
 - Embedded Linux
- Real-time operating system
 - Respond quickly and predictably under time constraints
 - FreeRTOS, zephyr

Tasks

- Go over the syllabus carefully
- Take a look a to the tentative schedule
- Sharpen/improve your expertise with C programming
 - Pointers
- Refer to materials in the schedule

Thank you