Requirements Document: Water LLM – Leak Detection in Water Networks

1. Document Control

Project Name	Water LLM – Water Networks &
	Distribution
Use Case Name	Leak Detection
Prepared By	Business Analyst, TCS
Date	July 21, 2025
Version	1.0
Reviewed By	Solution Architect, GenAI Engineering
	Team

2. Purpose

This document captures the functional and non-functional requirements for implementing Leak Detection using GenAI within the Water LLM Engine. The objective is to proactively detect potential leaks using real-time and historical pressure and flow data, reducing non-revenue water and infrastructure damage.

3. Scope

- Applicable for urban and rural water distribution networks
- Monitors real-time sensor inputs from pressure and flow meters
- Supports predictive and anomaly-based leak identification
- Integrates with SCADA, GIS, and Work Order systems
- Delivers GenAI summaries and recommendations

4. Actors & Stakeholders

Actor	Role & Responsibility
Field Engineer	Acts on leak alerts, verifies leaks on-ground
SCADA Operator	Monitors alerts in real-time, validates
	sensor health
Water LLM Engine	Processes sensor data, generates GenAI
	insights
Leak Detection Model	AI/ML model predicting leak probabilities
Supervisor / Manager	Approves field actions, reviews summaries
GIS System	Maps pipe segments and sensor zones
Work Order System	Issues and tracks maintenance tickets

5. Use Cases

UC1: Leak Detection via Flow-Pressure Anomalies Trigger: Periodic or real-time data from sensors

Input: Flow rate, pressure, expected vs. actual consumption

Output: Leak likelihood, segment ID, location

UC2: GenAI Summary for Leak Insight

Trigger: Leak identified or anomaly detected

Input: AI model output, zone history, weather, past incidents

Output: GenAI-generated narrative explaining root cause, urgency, impact

UC3: Auto-Triage & Work Order Generation Trigger: Confirmed leak > threshold severity

Input: Leak location, urgency, available technicians Output: Work Order issued to field ops with details

UC4: Leak Zone Risk Scoring

Trigger: Daily

Input: Historical leak data, pipe age, material, terrain Output: Zone risk scores (High / Medium / Low)

UC5: Technician Advisory Trigger: Leak ticket creation

Input: Leak type, location, weather, skillset DB

Output: Recommended technician, safety precautions

6. User Stories

ID	As a	I want to	So that
US01	SCADA Operator	receive real-time	I can notify the field
		alerts on pressure	team promptly
		drops	
US02	Field Technician	view leak location	I can prepare the
		and suggested	right equipment
		action via mobile	
		app	
US03	Supervisor	get daily GenAI	I can plan
		summaries of leak-	inspections more
		prone zones	effectively
US04	Data Scientist	access labeled	to improve the leak
		historical leak data	prediction model
US05	GenAI Engine	summarize incident	to support field
		causes and actions	learning and
		in natural language	documentation
US06	GIS Analyst	overlay leak alerts	to visually validate
		on the network map	correlation with

			terrain
US07	Asset Manager	track frequently	to plan capital
		leaking segments	investment

7. Functional Requirements

- System must collect real-time pressure and flow data from all connected sensors
- AI model must calculate leak probability per segment every 15 minutes
- GenAI must generate summaries for confirmed leaks including cause, impact, and action
- Alerts must be routed to SCADA and field dashboard with severity tagging
- GIS must show leak segments in red for critical, orange for moderate, green for healthy
- Technician recommendations must consider distance, experience, and certifications
- Historical leak incidents must be exportable in CSV for model retraining
- Users should receive proactive notifications for high-risk zones

8. Non-Functional Requirements

- System uptime \geq 99.9%
- Real-time data latency ≤ 10 seconds
- Alerts delivery time ≤ 1 minute
- Support for at least 10,000 sensors in parallel
- Compliance with GDPR, ISO 27001
- Interface must support desktop and mobile views
- Data archival policy: 2 years minimum for pressure/flow records

9. Data Requirements

Source	Туре	Description
Pressure Sensor	Real-time	Per pipe segment, minute-
		wise
Flow Meter	Real-time	Inflow/outflow readings by
		junction
GIS	Static + live	Pipe layout, elevation,
		terrain info
Leak History DB	Historical	Verified past leaks
Work Orders DB	Operational	Completed and pending
		leak repairs
Weather API	Real-time	Temperature, rainfall, flood
		conditions

10. Integration Requirements

- SCADA System → for sensor input and alert broadcasting
- GIS Platform \rightarrow to visualize pipe segments and sensor locations
- Work Order System (Maximo/SAP/IFS) → for auto ticket generation

- Cloud Storage (Azure/GCP/AWS) → for GenAI model and data lake
- Notification Services (Email, SMS, App push)

11. Open Questions

Question	Owner	Status
What SCADA protocol is	IT Ops	Pending
used (Modbus, OPC UA)?		
Will leak confirmations be	Field Ops	Under review
manually verified or sensor-		
only?		
What is the expected	Management	TBD
frequency of GenAI		
summaries?		

12. Risks & Mitigations

Risk	Mitigation Strategy
False positives from sensor data	Combine AI + rule-based + manual
	verification
Incomplete historical leak records	Use data imputation, seek SME validation
Delays in field response	Prioritize critical segments, auto-assign
	techs
GenAI hallucinations in summary	Include structured output + review by
generation	supervisor

13. Technical Components & Platforms

- Leak Detection Model: Custom LLM trained on flow-pressure anomalies.
- ML Frameworks: PyTorch, TensorFlow, scikit-learn (for anomaly detection & scoring).
- Data Integration Pipeline: Real-time ingestion from flow & pressure sensors.
- SCADA Interface: OPC-UA, Modbus TCP/RTU, MQTT integration for sensor telemetry.
- GIS Platform: For network segmentation, terrain correlation, and spatial analytics.
- GenAI Layer: GPT-4 or fine-tuned LLM to provide narrative insight & summaries.
- Work Order System: Maximo, SAP PM, or IFS integration for auto-ticket generation.
- Notification Systems: Email, SMS, mobile app push via APIs.
- Database & Storage: PostgreSQL / TimescaleDB for time-series sensor data, S3 or Azure Blob for leak logs.

14. Resources & Skills Required

15. Logic / Rules for Each Use Case

UC1: Leak Detection via Flow-Pressure Anomalies

- Rule: If actual_pressure < threshold and actual_flow > expected → Leak Suspected
- Logic: Calculate deviation index = (expected actual) / expected. Trigger if > 10%.
- Action: Flag segment, log time window, pass to GenAI for narrative.

UC2: GenAI Summary for Leak Insight

- Inputs: Zone ID, historical incidents, weather anomalies
- LLM Prompt: Explain the likely root cause and urgency given anomalies in Zone X
- Logic: Cluster by cause (age, corrosion, rainfall impact), assign severity score

UC3: Auto-Triage & Work Order Generation

- Condition: If leak severity $> 3 \rightarrow$ auto-create WO
- Assignment: Match based on skill, proximity, availability

UC4: Leak Zone Risk Scoring

- Factors: Pipe age, terrain, incidents → compute weighted score

- Risk Index: Zones > 70% = High Risk

UC5: Technician Advisory

- Rule: Use GenAI to match experience, zone, and conditions for technician selection

16. Competitive Analysis vs. Market Tools

```
| Feature | Water LLM | Market Tools (e.g., Syrinix, TaKaDu) |
|------|-------------------------|
| GenAI Insight | ✓ Natural language summary | ★ No narrative |
| Custom LLM | ✓ Adaptable | ★ Vendor-locked |
| Integration | ✓ Full SCADA, GIS, WO | ▲ Partial |
| Explainability | ✓ Transparent summaries | ★ Black-box |
| Flexibility | ✓ On-prem/cloud | ▲ SaaS only |
```

17. Business Benefits

- Reduce Non-Revenue Water (NRW) by up to 30%
- Cut response time to leaks by 40%
- Enable proactive asset planning
- Decrease field investigation costs
- Support Ofwat leakage performance KPIs

18. Customer Readiness Guidelines

Infra Readiness:

- Ensure SCADA supports OPC-UA, MQTT, Modbus protocols
- Install IoT gateways where needed

Data Readiness:

- Collect 6-12 months of flow/pressure data

- Curate verified leak logs
- Annotate pipe metadata (age, terrain)

System Readiness:

- Define ticket workflow in WO system
- Enable secure data lake access

19. Technical & Functional Architecture

```
[ Sensors ] → [ SCADA / IoT Gateway ] → [ Water LLM Engine ]

↓
[ Leak Model ]

↓
[ GenAI Advisory Layer ]

↓
[ Work Order System + Notification ]

↓
[ GIS Platform for Visuals ]
```

20. Al Ethics & Governance