Electricity Price Forecasting by Hybrid Model

Department of Data Science and Analytics Central University of Rajasthan Presented By:
Nitesh Sukhwani
Pradyumna Kumar Sahoo

Introduction

In Competitive electricity markets, Electricity price forecasting is very valuable for all participants. Good forecasting plays a very important role in power investment decision and transmission expansion.

Agenda

- 1. Why Electricity price forecasting is difficult?
- 2. Why didn't we simply employed the statistical model??
- 3. Why we didn't only use machine learning??
- 4. Wavelet transformation
- 5. Extreme Machine Learning (ELM)
- 6. Particle Swarm Optimisation(PSO)
- 7. Time- Series Analysis
- 8. Performance Measures
- 9. Results
- 10. Conclusion
- References

Electricity price forecasting is difficult. Why??

- 1. High volatility
- 2. High frequency
- 3. Nonlinearity
- 4. Mean-reversion
- 5. Non-stationarity
- 6. Calendar-effect
- 7. Price spikes

Why didn't we simply employed the statistical model??

Because:

- 1.Limited ability to capture the non-linear behavior
- 2. Rapid changes in the price signal

Why we didn't only use machine learning??

- Selection of network structure and parameters dependent on experience
- 2. Features captured by the ANNs method may lose their value as time changes
- 3. **Excessive** tunable parameters
- High possibility of entrapment in local minima
- 5. Over-tuning

Wavelet transformation:

- Wavelets = Mini-Waves
- Wavelet Transform tells us about the frequencies present as well as the time in which these frequencies were observed.
- It is possible to model with a finite wave which you can 'slide' along to time domain (Convolution)

Wavelet transformation:

- First we work on the signal with larger windows captures the larger features and then, for smaller features we use a smaller window.
- Small frequencies = high resolution in the frequency domain but less resolution in the time domain.
- On the other hand, it has large resolution in time domain for large frequencies but less in frequency domain.

The maths behind Wavelet...

Sliding finite wave = mother wavelet(there are various types,used as per convenience

Window = Non zero magnitudes of the mother wavelet **Scale** = size of the window

Different types of Wavelets..

Why we are not using it??

Sadly, we are not using this because our data is **already stationary**.. We need not decompose the series into more stationary components.

Extreme learning machine (ELM)

- Extreme learning machines are feedforward neural networks for classification, regression and clustering with a single layer or multiple layers of hidden nodes, where the parameters of hidden nodes need not be tuned.
- These hidden nodes can be randomly assigned and never updated.
- The output weights of hidden nodes are usually learned in a single step, which essentially amounts to learning a linear model.

How it works?

 $(\mathbf{x}_i, \mathbf{y}_i)$ with M distinct samples, satisfied $\mathbf{x}_i \in \mathcal{R}^{d1}$ and $\mathbf{y}_i \in \mathcal{R}^{d2}$, the structure of ELM with N hidden neurons perfectly approximates to the given output as:

$$\sum_{i=1}^{N} \beta_i \mathbf{f}(\mathbf{w}_i^T \mathbf{x}_j + b_i) = \mathbf{y}_j, 1 \le j \le M$$
 (1)

f: activation function; \mathbf{w}_i : the weight for connecting input layer and hidden layer; b_i : bias; β_i : output weight

How it works?

Eq. 1 can be written as HB = Y, H can be represented as:

$$\mathbf{H} = \begin{pmatrix} f(\mathbf{w}_1^T \mathbf{x}_1 + b_1) & \cdots & f(\mathbf{w}_N^T \mathbf{x}_1 + b_N) \\ \cdots & \cdots & \cdots \\ f(\mathbf{w}_1^T \mathbf{x}_M + b_1) & \cdots & f(\mathbf{w}_N^T \mathbf{x}_M + b_N) \end{pmatrix}$$
(2)

$$\mathbf{B} = (\beta_1^T, \beta_2^T, ..., \beta_N^T)^T \text{ and } \mathbf{Y} = (y_1^T, y_2^T, ..., y_M^T)^T.$$

B can be found by

$$B = H^{-1} * Y$$

Particle Swarm Optimization (PSO)

- PSO was first intended for simulating social behaviour, as a stylized representation of the movement of organisms in a bird flock or fish school.
- PSO is a metaheuristic as it makes few or no assumptions about the problem being optimized and can search very large spaces of candidate solutions

How PSO works?

- Initially we have set of Candidate solutions (called Particles).
- These particles are moved around in the search-space
- Every Particle have three direction to move
 - Its current direction
 - Particle's best direction
 - Swarm's best direction

Visual representation of Single Particle movement

Mathematics of PSO

A particle i is defined by its position vector, x_i and its velocity vector, v_i . Every iteration, each particle changes its position according to the new velocity as

$$X_{i}(t+1) = X_{i}(t) + V_{i}(t+1)$$

Where

$$V_i(t+1) = w.V_i(t) + c_1 r_1(xBest_i - X_i(t)) + c_2 r_2(gBest - X_i(t))$$

xBest = best particle position gBest = best swarm position W = inertia weight

r1,r2 = random parameters in [0, 1] c1,c2 = two positive constants

Time Series

Time Series is a set of observations on the values that a variable takes at different time.

Ex.Sales trend, Stock market prices, weather forecasts etc.

Stationarity

A series y, is said to be stationary:

$$E(X_t)=\mu$$

 $Var(X_t) = \sigma^2$

 $Cov(X_t X_{t+h})=f(h)$; does not depend on t

AR

Series current values depend on its own previous values In equation form it can be written as

AR(1): yt = a1* yt - 1

AR(2): $y_t = a1^* y_{t-1} + a2^* y_{t-2}$

AR(3): $y_t = a1^* y_{t-1} + a2^* y_{t-2} + a3^* y_{t-3}$

AR(p) - Current values depend on its own p-previous values

P is the order of AR process

MA

The current deviation from mean depends on previous deviations MA(q) - The current deviation from mean depends on q- previous deviations

q is the order of MA process

$$MA(1)$$
: εt = b1* ε t - 1

MA(2):
$$\varepsilon_t = b1^* \varepsilon_{t-1} + b2^* \varepsilon_{t-2}$$

MA(3) :
$$\epsilon_t = b1^* \epsilon_{t-1} + b2^* \epsilon_{t-2} + b3^* \epsilon_{t-3}$$

Differencing

Differencing in statistics is a transformation applied to time-series data in order to make it stationary.

A stationary time series properties do not depend on the time at which the series is observed.

$$y_{t=}^{y} y_{t-1}^{-y}$$

One order differencing

Autocorrelation

Correlation between series and its past values Correlation between pairs of values at a certain lag

Use of Autocorrelation

ARIMA

Auto-Regressive Integrated Moving Average

A ARIMA model is classified as an "ARIMA(p,d,q)" model, where:

p is the number of autoregressive terms,

d is the number of differences needed for stationarity, and

q is the number of lagged forecast errors in the prediction equation.

Performance Measure:

We have used three performance measure for checking how good our model is

1. Mean Absolute Error

$$MAE = rac{1}{n} \sum_{i=1}^n |Y_i - y_i|$$

2. Mean Squared Error

$$MSE = rac{1}{n} \sum_{i=1}^n (Y_i - y_i)^2$$

3. R2 Score

$$R^2 = 1 - rac{\sum_{i=1}^n (Y_i - y_i)^2}{\sum_{i=1}^n (Y_i - y_{mean})}$$

Results of ELM

Results of various Methods:

Methods	Mean Absolute Error		Mean Squared Error		R2 - Score	
	Train	Test	Train	Test	Train	Test
EML	0.2012	0.2219	0.0717	0.0881	0.6014	0.6364
ARIMA	0.0350	0.0319	0.0032	0.0030	0.9810	0.9796
Hybrid (ELM+ARIMA)	0.0120	0.0112	0.0240	0.0225	0.8820	0.8745
ELM+PSO	-	-	0.0071	0.0130	-	-

Conclusion:

ARIMA gives the best forecast according to MSE and R2-Score

ELM+ARIMA gave best results on MAE.

While employing PSO optimiser on ELM, the model got overfit on train set and gave comparatively poor results on test set.

Reference:

1.Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods - **ZhangYang**^{ab}**LiCe**^a**LiLian**^a https://doi.org/10.1016/j.apenergy.2016.12.130

Thank You

QnA:

1.Why did we not use fourier transform?

A- The Fourier Transform has problem of resolution. You can either be sure of the frequency or the time of a signal, but not both.

