Forecast Evaluation and Uncertainty Communication

--introduction of a useful tool

Yi Xu Cooperative Research Units Run Forecasting workshop OSU, Aurora, Oregon Sep 11-13, 2024

Challenges we face as forecasters:

- Our forecast is not accurate.
- We don't think our model is wrong, but data are messy.
- It's hard to compare our forecast with others because we are using different models.
- The uncertainty is so high that the forecast is not helpful.
- Folks are questioning about our forecast, it's hard to explain to them.

Introduction

- A tool that can help:
 - Diagnose data/model issues
 - Compare all models for a single stock
 - Compare models across different stocks
 - Demonstrate uncertainties
 - Communicate to non-experts

Taylor Diagram

- Taylor (2001)
 Google citations: 7,808 (last checked, 2024/9/6)
- Be widely used by many science communities (weather, oceanography, other fisheries)
- Ready to use in multiple languages
 R (plotrix), Python (VCS), Matlab (taylordiag)

Taylor Diagram

Inputs:

- Observation
- Prediction

3-metrics-in-1

- Correlation
- SD
- RMSE

Taylor Diagram - correlation

Taylor Diagram - correlation

Taylor Diagram - standard deviation

Taylor Diagram - RMSE

- Other metrics:
 - MAE
 - MRE
 - MAPE
- Good model:
 - High correlation
 - Similar SD
 - Small RMSE
 - => Close to observation

Case study: Fraser sockeye

Fennell (Upper Barriere)

- PowerGOA.SST
- PowerSockeye
- △ PowerChum
- PowerPink
- ∇ PowerSalmon.Total
- + Larkin
- × LarkinCyc
- Sibling
- LLY
- R1C
- △ R2C
- + RAC
- × TSA
- ♦ RS1
- ∇ RS2
- RSC
- * MRS
- RS4yr
- RS8yr

- Observation
- Forecast
- + Ricker
- × RickerCyc
- RickerEi.SST
- RickerPi.SST
- RickerFRD.mean
- RickerFRD.peak
- ∇ RickerPDO
- RickerGOA.SST
- RickerSockeye
- △ RickerChum
- RickerPink
- RickerSalmon.Total
- + Power
- × PowerCyc
- PowerEi.SST
- PowerPi.SST
- △ PowerFRD.mean
- PowerFRD.peak
- ▼ PowerPDO

Case study: Fraser sockeye

Gates

- PowerGOA.SST
- PowerSockeye
- △ PowerChum
- PowerPink
- ∇ PowerSalmon.Total
- + Larkin
- × LarkinCyc
- Sibling
- LLY
- R1C
- △ R2C
- + RAC
- × TSA
- ◇ RS1 ▽ RS2
- ▼ RSC
- * MRS
- RS4vr
- RS8yr

- Observation
- Forecast
- + Ricker
- × RickerCyc
- RickerEi.SST
- RickerPi.SST
- A RickerFRD.mean
- RickerFRD.peak
- ∇ RickerPDO
- RickerGOA.SST
- RickerSockeye
- A RickerChum
- RickerPink
- RickerSalmon.Total
- + Power
- × PowerCyc
- PowerEi.SST
- PowerPi.SST
- PowerFRD.mean
- PowerFRD.peak
- ▼ PowerPDO

Identify work priorities

- Model Selection
 Develop new models
- QA/QC data

0.9

0.95

0.99

Shiny app

Taylor Diagram

A Salmon Forecast Model Evaluation Tool

Select stock

Late Shuswap

Select age

all

Evaluation Year Range

2009

2020

Developed by Yi Xu
yi.xu@dfw.wa.gov
Last update 2024.8.8.
Method in Xu et al. 2024 CJFAS

We are evaluating from 2009 to 2020.

Fraser forecast vs return in recent years

Year	Forecast	Return	Percentage	Source
2021	1,330,000	2,549,000	+92%	(DFO,2022)
2022	9,775,000	6,777,000	-31%	(<u>PSC,2022</u>)
2023	1,564,000	1,670,000	+7%	(PSC,2023)
2024	567,000			(<u>DFO,2024</u>)

Future development

- Dynamic Taylor
- Automated process
- Forecast Evaluation

Summary

- Introduce a tool that can potentially help:
 - forecasters to improve their forecast by identify data/model issues, evaluate model performance more effectively within and across stocks
 - managers to identify work priorities, better communicate results to non-experts
- All data/method are published and accessible.
 - Data weblink: https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/41227153.pdf
 - Analyses weblink: https://github.com/yi-xu/Sockeye_paper (Xu et al., 2024, CJFAS)
 - Paper weblink: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2000JD900719
 - Shiny app weblink: https://github.com/yi-xu-dfw/ForecastEvaluation
- This tool can be further developed and may become a more powerful standard tool for the salmon fisheries/forecast society.

Acknowledgements

Questions? Contact Yi Yi.Xu@dfw.wa.gov

WDFW:

Derek Dapp

Ty Garber

Mark Sorel

Matt Bogaard

Mickey Agha

Peter Verhey

DFO: 100+ colleagues

Pêches et Océans Canada

Tulalip Tribe:

Diego Holmgren

Stillaguamish Tribe:

Robert Roose

USGS:

Amanda Gelsomin

OSU:

James Peterson