Санкт-Петербургский Национальный Исследовательский Университет ИТМО Факультет программной инженерии и компьютерной техники

Основы профессиональной деятельности Лабораторная работа №4

Вариант 31044

Выполнил:

студент группы Р3231

Нестеров Иван Алексеевич

Преподаватель:

Блохина Елена Николаевна

Задание:

OFA:	+ 0200	Τ	108:	4E0D	116:	E11E	Т	6D3:	0000
OFB:	EE1A	1	109:	EE0C				6D4:	0FA9
OFC:	AE18	1	10A:	AE09	6C7:	AC01		6D5:	0074
OFD:	0C00	1	10B:	0740	6C8:	F203			
OFE:	D6C7	1	10C:	0C00	6C9:	7E0A			
OFF:	0800		10D:	D6C7	6CA:	F006			
100:	0740		10E:	0800	6CB:	F805			
101:	6E14		10F:	0740	6CC:	0500			
102:	EE13		110:	6E05	6CD:	0500			
103:	AE0F	1	111:	EE04	6CE:	6C01			
104:	0C00		112:	0100	6CF:	4E05			
105:	D6C7		113:	ZZZZ	6D0:	CE01			
106:	0800		114:	YYYY	6D1:	AE02			
107:	0700	Ι	115:	XXXX	6D2:	EC01			

По выданному преподавателем варианту восстановить текст заданного варианта программы и подпрограммы (программного комплекса), определить предназначение и составить его описание, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программного комплекса.

Данные для трассировки: XXX = 500, YYY = 5, ZZZ = -500 (в десятичной СС)

Текст исходной программы:

Адрес	Код команды	Мнемоника	Комментарий
0FA	0200	CLA	Очистка аккумулятора
0FB	EE1A	ST 0x115	Прямая относительная (IP+25) адресация.
			Cохранение AC \rightarrow 0х115
0FC	AE18	LD 0x115	Прямая относительная (IP+24) адресация.
			Загрузка 0х115 → АС
0FD	0C00	PUSH	Запись значения АС в стек.
			$AC \rightarrow -(SP)$
0FE	D6C7	CALL 0x6C7	Вызов подпрограммы по адресу 0х6С7
0FF	0800	POP	Чтение значения стека в АС.
			$SP+ \rightarrow AC$
100	0740	DEC	Декремент $AC - 1 \rightarrow AC$
101	6E14	SUB 0x116	Прямая относительная (IP+20) адресация.
			Вычитание $AC - 0x116 \rightarrow AC$
102	EE13	ST 0x116	Прямая относительная (IP+19) адресация.
			Cохранение AC \rightarrow 0х116
103	AE0F	LD 0x113	Прямая относительная (IP+15) адресация.
			Загрузка 0х113 → АС
104	0C00	PUSH	Запись значения АС в стек.
			$AC \rightarrow -(SP)$
105	D6C7	CALL 0x6C7	Вызов подпрограммы по адресу 0х6С7
106	0800	POP	Чтение значения стека в АС.
			$ST+ \rightarrow AC$
107	0700	INC	Инкремент $AC + 1 \rightarrow AC$
108	4E0D	ADD 0x116	Прямая относительная (IP+13) адресация.
			Сложение $AC + 0x116 \rightarrow AC$

109	EE0C	ST 0x116	Прямая относительная (IP+12) адресация.
			Cохранение $AC \rightarrow 0$ х116
10A	AE09	LD 0x114	Прямая относительная (IP+9) адресация.
			Загрузка 0х114 → АС
10B	0740	DEC	Декремент $AC - 1 \rightarrow AC$
10C	0C00	PUSH	Запись значения АС в стек.
			$AC \rightarrow -(SP)$
10D	D6C7	CALL 0x6C7	Вызов подпрограммы по адресу 0х6С7
10E	0800	POP	Чтение значения стека в АС.
			$ST+ \rightarrow AC$
10F	0740	DEC	Декремент $AC - 1 \rightarrow AC$
110	6E05	SUB 0x116	Прямая относительная (IP+5) адресация.
			Вычитание $AC - 0x116 \rightarrow AC$
111	EE04	ST 0x116	Прямая относительная (IP+4) адресация.
			Coxpaнeние AC \rightarrow 0x116
112	0100	HLT	Отключение ТГ, переход в пультовый режим

Текст подпрограммы:

Адрес	Код команды	Мнемоника	Комментарий
6C7	AC01	LD (SP+01)	Загрузка значения первого элемента стека в
			$AC. (SP+01) \rightarrow AC$
6C8	F203	BNS 0x6CC	Переход в 0х6СС при N == 1
			$IP + 3 \rightarrow IP$
6C9	7E0A	CMP 0x6D4	Прямая относительная (IP+10) адресация.
			Установить флаги по результату AC – 0x6D4
6CA	F006	BZS 0x6D1	Переход в 0 х 6 D1 при Z == 1.
			$IP + 6 \rightarrow IP$
6CB	F805	BLT 0x6D1	Переход в 0х6D1 при N != V.
			$IP + 5 \rightarrow IP$
6CC	0500	ASL	Арифметический сдвиг влево.
			$AC15 \rightarrow C, 0 \rightarrow ACO$
6CD	0500	ASL	Арифметический сдвиг влево.
			$AC15 \rightarrow C, 0 \rightarrow ACO$
6CE	6C01	SUB (SP+01)	Вычитание из АС первого элемента стека
			$AC - (SP+01) \rightarrow AC$
6CF	4E05	ADD 0x114	Прямая относительная (IP+5) адресация.
			Сложение $AC + 0x114 \rightarrow AC$
6D0	CE01	JUMP 0x6D2	Переход в 0x6D2.
			$IP + 1 \rightarrow IP$
6D1	AE02	LD 0x6D4	Прямая относительная (IP+2) адресация.
			Загрузка 0х6D4 → AC
6D2	EC01	ST (SP+01)	Coxpaнение AC → (SP+01)
6D3	0A00	RET	Выход из подпрограммы

Описание программы:

Вычисление значения по формуле:

$$R = Y - Z - X - 1$$

Описание подпрограммы:

Обработка чисел происходит следующим образом:

$$f(w) = \begin{cases} 3w + x , \text{ если } w < 0; \\ y, \text{ если } 0 \le w \le y; \\ 3w + x, \text{ если } w > y. \end{cases}$$

Описание программного комплекса:

Вычисление значения:

$$R_{\pi \kappa} = F(b - a) - F(c) - F(a) - I$$

Область представления:

 $R_{\text{пк}}$ – результат работы программного комплекса – знаковое 16-разрядное число.

а, b, c – аргументы, передаваемые в подпрограмму - знаковые 16-разрядные числа.

х, у — используемые в вычислении результата работы подпрограммы константы — знаковые 16-разрядные числа. ($x=0074_{16},\ y=0F49_{16}$)

w – независимая переменная в функции, реализуемой подпрограммой – знаковое 16разрядное число.

Область допустимых значений:

Проанализируем функцию на каждом отрезке и получим следующие значения с учетом разрядности БЭВМ:

- 1. $F(w) \in [-32767; 116)$ при $w \in [-8218; 0)$
- 2. F(w) = 3913 при $w \in [0; 3913]$
- 3. $F(w) \in (116; 32768]$ при $w \in (3913; 8163]$

Область функции, реализуемой подпрограммой:

Расположение в памяти ЭВМ программы, исходных данных и результатов

Расположение программы: 0x0FA – 0x112

Расположение подпрограммы: 0x6C7 – 0x6D3

Расположение исходных данных: 0x113 - 0x115, 0x6D4 - 0x6D5

Ячейка для хранения результата: 0x116

Адрес первой выполняемой команды программы: 0x0FA

Адрес последней выполняемой команды программы: 0х112

Адрес первой выполняемой команды подпрограммы: 0x6C7

Адрес последней выполняемой команды программы: 0x6D3

Таблица трассировки

Выполняемая команда		Содержание регистров процессора после выполнения команды									Ячейка, содержимое которой изменилось после выполнения команды	
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код	
0FA	0200	0FB	0200	0FA	0200	000	00FA	0000	0100			
0FB	EE1A	0FC	EE1A	116	0000	000	001A	0000	0100	116	0000	
0FC	AE18	0FD	AE18	115	FE08	000	0018	FE08	1000			
0FD	0C00	0FE	0C00	7FF	FE08	7FF	00FD	FE08	1000	7FF	FE08	
0FE	D6C7	6C7	D6C7	7FE	00FF	7FE	D6C7	FE08	1000	7FE	00FF	
6C7	AC01	6C8	AC01	7FF	FE08	7FE	0001	FE08	1000			
6C8	F203	6CC	F203	6C8	F203	7FE	0003	FE08	1000			
6CC	0500	6CD	0500	6CC	FE08	7FE	06CC	FC10	1001			
6CD	0500	6CE	0500	6CD	FC10	7FE	06CD	F820	1001			
6CE	6C01	6CF	6C01	7FF	FE08	7FE	0001	FA18	1000			
6CF	4E05	6D0	4E05	6D5	0074	7FE	0005	FA8C	1000			
6D0	CE01	6D2	CE01	6D0	06D2	7FE	0001	FA8C	1000			
6D2	EC01	6D3	EC01	7FF	FA8C	7FE	0001	FA8C	1000	7FF	FA8C	
6D3	0A00	0FF	0A00	7FE	00FF	7FF	06D3	FA8C	1000			
0FF	0800	100	0800	7FF	FA8C	000	00FF	FA8C	1000			
100	0740	101	0740	100	0740	000	0100	FA8B	1001			
101	6E14	102	6E14	116	0000	000	0014	FA8B	1001			

102	EE13	103	EE13	116	FA8B	000	0013	FA8B	1001	116	FA8B
103	AE0F	104	AE0F	113	15C7	000	000F	15C7	0001		
104	0C00	105	0C00	7FF	15C7	7FF	0104	15C7	0001	7FF	15C7
105	D6C7	6C7	D6C7	7FE	0106	7FE	D6C7	15C7	0001	7FE	0106
6C7	AC01	6C8	AC01	7FF	15C7	7FE	0001	15C7	0001		
6C8	F203	6C9	F203	6C8	F203	7FE	06C8	15C7	0001		
6C9	7E0A	6CA	7E0A	6D4	0FA9	7FE	000A	15C7	0001		
6CA	F006	6CB	F006	6CA	F006	7FE	06CA	15C7	0001		
6CB	F805	6CC	F805	6CB	F805	7FE	06CB	15C7	0001		
6CC	0500	6CD	0500	6CC	15C7	7FE	06CC	2B8E	0000		
6CD	0500	6CE	0500	6CD	2B8E	7FE	06CD	571C	0000		
6CE	6C01	6CF	6C01	7FF	15C7	7FE	0001	4155	0001		
6CF	4E05	6D0	4E05	6D5	0074	7FE	0005	41C9	0000		
6D0	CE01	6D2	CE01	6D0	06D2	7FE	0001	41C9	0000		
6D2	EC01	6D3	EC01	7FF	41C9	7FE	0001	41C9	0000	7FF	41C9
6D3	0A00	106	0A00	7FE	0106	7FF	06D3	41C9	0000		
106	0800	107	0800	7FF	41C9	000	0106	41C9	0000		
107	0700	108	0700	107	0700	000	0107	41CA	0000		
108	4E0D	109	4E0D	116	FA8B	000	000D	3C55	0001		
109	EE0C	10A	EE0C	116	3C55	000	000C	3C55	0001	116	3C55
10A	AE09	10B	AE09	114	0005	000	0009	0005	0001		
10B	0740	10C	0740	10B	0740	000	010B	0004	0001		
10C	0C00	10D	0C00	7FF	0004	7FF	010C	0004	0001	7FF	0004
10D	D6C7	6C7	D6C7	7FE	010E	7FE	D6C7	0004	0001	7FE	010E
6C7	AC01	6C8	AC01	7FF	0004	7FE	0001	0004	0001		
6C8	F203	6C9	F203	6C8	F203	7FE	06C8	0004	0001		
6C9	7E0A	6CA	7E0A	6D4	0FA9	7FE	000A	0004	1000		
6CA	F006	6CB	F006	6CA	F006	7FE	06CA	0004	1000		
6CB	F805	6D1	F805	6CB	F805	7FE	0005	0004	1000		
6D1	AE02	6D2	AE02	6D4	0FA9	7FE	0002	0FA9	0000		
6D2	EC01	6D3	EC01	7FF	0FA9	7FE	0001	0FA9	0000	7FF	0FA9
6D3	0A00	10E	0A00	7FE	010E	7FF	06D3	0FA9	0000		

10E	0800	10F	0800	7FF	0FA9	000	010E	0FA9	0000		
10F	0740	110	0740	10F	0740	000	010F	0FA8	0001		
110	6E05	111	6E05	116	3C55	000	0005	D353	1000		
111	EE04	112	EE04	116	D353	000	0004	D353	1000	116	D353
112	0100	113	0100	112	0100	000	0112	D353	1000		

Выводы: в ходе работы я ознакомился с организацией работы с подпрограммами в БЭВМ, узнал о назначении регистра SP, командах для работы с ним.