Tarea 2 - Estructuras Discretas

1 - Tablas de verdad de xor, nand y nor

Xor					no	and	nor	
ρ	q	P179	V	7 0 1 9		p1q	7	pvq
0	0	0	0	0		0	l	0
0	ı	0	1	l	1	0	0	1
1	0	1	ı	0	1	0	0	1
	1	0	0	0	0		0	

P	q	pvq	4>	7 p → q			
0	0	0	1	0	Es	una	tautología.
0	ı	1	1	l			
1	0	1	1	l			
1	1	1		l l			

2	+	2 v t	٧	15 17+
0	0	0	1	1
0	ı	0	1	1
	0	0		-(
ı	1			0

Tautología

ρ	q	P ->9	٨	9
0	0	1	0	0
0	ı	l	l	1
	0	0	0	0
1	ı		1	1

Contingencia

d) pv (¬pnq) -> (pvq) p q pv (¬pnq) -> pvq											
ρ	9	PV	(7P19)	^	PV9	_					
0	0	0	0	l	0	Tautología.					
0	ı	1	1	l	1	·					
	0		0	· [

Formula asociada al argumento:

$$\rho \rightarrow (q \land r) \land \neg q \rightarrow \rho \rightarrow r$$

$$\equiv (\rho \rightarrow (q \land r)) \land \neg q \rightarrow (\rho \rightarrow r)$$

ρ	q	r	ρ→	91	٨	19	^	P-01
0	0	0		0	l		1	
0	0	1		0	l	1	l	l
0		0		0	0	0	1	1
0	1		1	1	0	0	1	1
l	0	0	0	0	0	1	1	0
1	0		0	0	0	1	l	1
	1	0	0	0	0	0	l	0
I					0	0	l	

La fórmula asociada es una tautología :. El argumento es correcto

b) pvq, n(p1r), nq/:. r -> q

Formula asociada al argumento:

ρ	q	r	(009	٨	7(01)	٨	79	Î	9-01
0	0	0	0	0	1	0	1	1	1
0	0	ı	0	0	(<	0	1	l	1
0		0	1	1	(0	0	1	0
0	1	l	1	1	ı	0	0	1	1
l	0	0	(ı	1	١	1		1
1	0		1	0	0	0	1	l	1
1	1	0		l	l	0	0	l	0
1				9	0	0	0	1	1

La fórmula asociada es una tautología :. El argumento es correcto

$$4 \cdot q)((-x) + (2 * y)) + (4 * (x * * 2)))$$

b)
$$((p \land q) \land r) \longleftrightarrow ((p \lor r) \longrightarrow p))$$

c)
$$((x < y) \land (y < z)) \rightarrow (x < z))$$

$$d)((x + x) + y) \longrightarrow ((x < y) \land (y > 0))$$