Álgebra Linear

Intersecção e Soma de Subespaços Vetoriais

Graciela, Katiani e Marnei

Interseção

Definição: Sejam S_1 e S_2 dois subespaços vetoriais de V. A interseção S de S_1 e S_2 , que se representa por $S = S_1 \cap S_2$, é o conjunto de todos os vetores $v \in V$ tais que $v \in S_1$ e $v \in S_2$.

<u>Teorema:</u> O conjunto interseção $S = S_1 \cap S_2$ é um subespaço vetorial de V.

Dem.:

Exemplos: Interseção

- 1. Dados os subespaços do \mathbb{R}^3 :
- $U = \{(x,y,z) \in \mathbb{R}^3 \mid x = 0\}$
- W={ $(x,y,z) \in \mathbb{R}^3 \mid z=0$ }

 $U \cap W = \{(x,y,z) \in \mathbb{R}^3 \mid x=0, z=0\}$

Exemplos: Interseção

- 2. Sejam $U = \{(x, y, z, t) \in \mathbb{R}^4 | 2x z + t = 0 \ e \ z + t = 0\}$ e $W = \{(x, y, z, t) \in \mathbb{R}^4 | 4x + z + 5t = 0 \ e \ y + t = 0\}$ subespaços do \mathbb{R}^4 . Encontre a dim $(U \cap W)$.
- 3. Sejam $U=\{ax^3+bx^2+cx+d\in P_3\mid a+b-c+3d=0\}$ e W= $\{p(x)\in P_3\mid p'(1)=0\}$ subespaços de P_3 . Determine uma base para $U\cap W$
- 4. Considere os subespaços do \mathbb{R}^3 , U=ger{(1,2,1),(0,1,-2)} e W=ger{(2,0,-1),(2,1,3)}. Encontre U∩W.
- 5. Mostre, utilizando um contraexemplo, que a união de dois subespaços de um mesmo espaço vetorial V nem sempre é um subespaço de V.

Soma de subespaços

 Vimos que o principal problema quando consideramos a união de subespaços é que se tomamos um vetor em cada subespaço, a união deles pode não pertencer à união. Seria, então, natural considerarmos o conjunto soma definido a seguir:

<u>Definição</u>: Sejam U e W dois subespaços vetoriais de V. A soma U + W é o conjunto:

$$U + W = \{u + w \mid u \in U \ e \ w \in W\}.$$

<u>Teorema:</u> A soma U + W é um subespaço vetorial de V, de fato se:

i. Sejam v_1 e v_2 vetores de U+W . Então existem u_1 e u_2 elementos de U e existem w_1 e w_2 elementos de W tais que:

$$v_1$$
= u_1 + w_1 e v_2 = u_2 + w_2
Então, v_1 + v_2 =(u_1 + w_1) + (u_2 + w_2)=(u_1 + u_2) + (w_1 + w_2) $\in U + W$

ii Faça a segunda parte como exercício

Soma direta

Sejam *U* e *W* dois subespaços vetoriais de *V*.

V é a soma direta de U e W, e representamos por $V = U \oplus W$, se V = U + W e $U \cap W = \{0\}$.

Teorema:

Se V é a soma direta de U e W, $V = U \oplus W$, todo o vetor $v \in V$ se escreve, de modo único, na forma:

•
$$v = u + w, u \in U e w \in W$$

<u>Teorema</u>: Sejam U e W dois subespaços vetoriais de V tais que

•
$$U = ger\{u_1, u_2, \cdots, u_n\}$$

•
$$W = ger\{w_1, w_2, \cdots, w_m\}.$$

Então,

$$U + W = ger\{u_1, u_2, \dots, u_n, w_1, w_2, \dots, w_m\}.$$

Teorema: Se *U* e *W* são subespaços vetoriais então

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W).$$

Exemplo 1: O espaço vetorial \mathbb{R}^2 é soma direta dos subespaços

$$U = \{(x, y) \in \mathbb{R}^4 | y = 0\} e W = \{(x, y) \in \mathbb{R}^2 | x = 0\}$$

Vejamos:

Exemplo 2: Considere os subespaços de \mathbb{R}^3 , U={(x,y,z) $\in \mathbb{R}^3 \mid x=0$ } e W={(x,y,z) $\in \mathbb{R}^3 \mid y=0$ }. Verifique se $\mathbb{R}^3 = U \oplus W$

Exemplo 3: Sejam
$$U = \left\{ X \in M(2,2) / X = \begin{pmatrix} a & b \\ c & -c+2b \end{pmatrix} \right\}, \quad W = ger \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\} \quad e$$

$$S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(2,2)/2a + b - d = 0 \right\}$$
 subespaços vetoriais de M(2,2). Determine:

- a) uma base e a dimensão de $U \cap W \cap S$ e uma base e a dimensão de S + W;
- b) S + W = M(2,2)?
- c) uma base para $\underline{M(2,2)}$ que contenha uma base para $U \cap W \cap S$. Justifique.

Exemplo 4: Em $V=P_3$ considere os subespaços vetoriais dados por

$$W_1 = \{p(x) \in P_3; \ p(0) + p(-1) = 0\}$$

e

$$W_2 = \{ a + bx + cx^2 + dx^3 \in P_3 ; b = -a, c = 3a \in d = 4a \}.$$

Verifique se $W_1 \oplus W_2 = P_3$.

Solução: Precisamos verificar se $W_1 \cap W_2 = \{\vec{0}\}$ e se $W_1 + W_2 = P_3$.

i)
$$W_1 \cap W_2 = \{\vec{0}\}$$
?

Seja $p(x) = a + bx + cx^2 + dx^3 \in W_1 \cap W_2$. Logo

$$\begin{cases} p(x) \in W_1 \\ p(x) \in W_2 \end{cases} \Rightarrow \begin{cases} p(0) + p(-1) = 0 \\ b = -a \\ c = 3a \\ d = 4a \end{cases} \Rightarrow \begin{cases} 2a - b + c - d = 0 \\ b = -a \\ c = 3a \\ d = 4a \end{cases} \Rightarrow \begin{cases} a = 0 \\ b = 0 \\ c = 0 \\ d = 0 \end{cases}$$

Portanto,

$$p(x) = a + bx + cx^2 + dx^3 = 0 + 0x + 0x^2 + 0x^3 = \vec{0}$$

E com isso, $W_1 \cap W_2 = \{\vec{0}\}$ está satisfeito.

ii)
$$W_1 + W_2 = P_3$$
?

Para verificar se essa igualdade é válida, vamos obter os geradores de $W_1 + W_2$. Pelo Teorema anterior, precisamos encontrar os geradores de cada um dos subespaços.

• Para W_1 : Seja $p(x) = a + bx + cx^2 + dx^3 \in W_1$. Logo

$$p(0) + p(-1) = 0 \Rightarrow (a+0) + (a-b+c-d) = 0$$

 $\Rightarrow 2a-b+c-d = 0 \Rightarrow d = 2a-b+c$

Assim

$$p(x) = a + bx + cx^{2} + (2a - b + c)x^{3} = a(1 + 2x^{3}) + b(x - x^{3}) + c(x^{2} + x^{3})$$

Portanto

$$W_1 = ger\{1 + 2x^3, x - x^3, x^2 + x^3\}$$

É fácil ver que esses geradores são L.I. (verifique como exercício) e com isso, obtemos que $\dim(W_1)=3$

• Para W_2 : Seja $p(x) = a + bx + cx^2 + dx^3 \in W_2$. Logo

$$b = -a$$
, $c = 3a$ e $d = 4a$

Assim

$$p(x) = a + (-a)x + 3ax^2 + 4ax^3 = a(1 - x + 3x^2 + 4x^3)$$

E então

$$W_2 = ger\{1 - x + 3x^2 + 4x^3\}$$

Esse conjunto de um único gerador é obviamente L.I. Assim

$$\dim(W_2)=1.$$

Portanto, pelo Teorema anterior, temos que

$$W_1 + W_2 = ger\{1 + 2x^3, x - x^3, x^2 + x^3, 1 - x + 3x^2 + 4x^3\}$$

Pelo Teorema da dimensão:

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2) = 3 + 1 - 0 = 4.$$

Portanto, os quatro geradores formam uma base de $W_1 + W_2$.

Por fim, como

$$\dim(W_1 + W_2) = 4 = \dim(P_3)$$

concluímos que

$$W_1 + W_2 = P_3$$

Enfim, como $W_1 \cap W_2 = \{\vec{0}\}$ e $W_1 + W_2 = P_3$, a soma é direta e temos $W_1 \oplus W_2 = P_3$.

