ChE331 Experimental Project

Rate Kinetics of Burning Candle

By: Tushar Verma (221147) Under guidance of *Prof. Raj Ganesh S. Pala Sir*

Aim: To analyze & determine the rate kinetics of burning candle

Objective:

- Calculate & model the rate expression of candle burning.
- Calculate the overall order of reaction for complete combustion.
- Check does the rate of burning "depends" upon the 'concentration of candle wax' or 'height of candle' & if yes, then find out the relation.
- Optimize at which dimensions (or the ratio of height/area) does the candle last for the longest.

Procedure:

- 1) Take 5-6 candles of different size, with same volume of candle wax.
- 2) Observe the burning of candles & note down the "Xa" ('conversion') vs "time" data (at about interval of ~8 minutes).
- 3) $(1-X_A) \approx \frac{vol_left}{vol_total}$; "Xa" can be approximated from height's ratio, because the cross-section area of candle is constant.
- 4) Perform this analysis for all 5-6 candles of different area & height such that volume of candle wax is constant.
- 5) Repeat the same observations for every candle.
- 6) Note down the total time taken by each candle to burn completely.

Chemical Reaction: In Burning of Candle

$$C_{25}H_{52} + 38O_2 \rightarrow 25CO_2 + 26H_2O$$

Materials Required:

- 5-6 Candles of different sizes (if not available, then wax ~ 400gm; cotton wick; few beakers of different size; burner.)
- Temperature or Thermal sensor (if available) for measuring the variation of flame temperature with height of candle.

Area = πr^2

Observations:

Experiment 1:

Exp 1	h_left	ха	t (sec)	t (min)	t (min)	vol_conv	vol_left
cone	11		254	4.233	00:04:14	0.619	14.601
	9.5	0.136	854	14.233	00:14:14	1.991	12.610
_	8.1	0.264	1454	24.233	00:24:14	3.849	10.751
ja Ja	6.5	0.409	2054	34.233	00:34:14	5.973	8.628
cylinder	5.4	0.509	2654	44.233	00:44:14	7.433	7.168
3	4.1	0.627	3254	54.233	00:54:14	9.159	5.442
	1.3	0.882	3854	64.233	01:04:14	12.875	1.726

		units
h_cy	11	cm
h_cone	1.4	cm
dia	1.3	cm
rad	0.65	cm
vol_cy	14.60055	cm^3
vol_cn	0.619417	cm^3

Experiment 2:

Exp 2	h_left	ха	t (sec)	t (min)	t (min)	vol_conv	vol_left
cone	11		259	4.317	00:04:19	0.619	14.601
	9.7	0.118	859	14.317	00:14:19	1.726	12.875
ē	7.9	0.282	1459	24.317	00:24:19	4.115	10.486
cylinder	4.7	0.573	2059	34.317	00:34:19	8.362	6.238
c	2.8	0.745	2659	44.317	00:44:19	10.884	3.717
	0.1	0.991	3068	51.133	00:51:08	14.468	0.133

		units
h_cy	11	cm
h_cone	1.4	cm
dia	1.3	cm
rad	0.65	cm
vol_cy	14.60055	cm^3
vol_cn	0.619417	cm^3

Experiment 3:

Ехр 3	h_left	ха	t (sec)	t (min)	t (min)	vol_conv	vol_left			
cone	11		269	4.483	00:04:29	0.619	14.601	 <u> </u>		units
					00.01.23		1.1001	 h_cy	11	cm
	9.6	0.127	869	14.483	00:14:29	1.858	12.742	 h_cone	1.4	cm
	8.1	0.264	1469	24.483	00:24:29	3.849	10.751	dia	1.3	cm
nder	5.6	0.491	2069	34.483	00:34:29	7.168	7.433	rad	0.65	cm
cylin	3.6	0.673	2669	44.483	00:44:29	9.822	4.778	vol_cy	14.60055	cm^3
3	1.5	0.864	3269	54.483	00:54:29	12.610	1.991	vol_cn	0.619417	cm^3
	0.3	0.973	3663	61.050	01:01:03	14.202	0.398			

Experiment 4:

Exp 4	h_left	ха	t (sec)	t (min)	t (min)	vol_conv	vol_left	
_	8.5	0.000	0	0	00:00:00	0.000	15.021	
de	6.5	0.235	600	10	00:10:00	3.534	11.486	
cylinder	3.2	0.624	1200	20	00:20:00	9.366	5.655	
	0.2	0.976	1800	30	00:30:00	14.667	0.353	
Cup forn	Cup formed on the top got melted from one side, causing flickering & uneven melting.							

		units
h_cy	8.5	cm
dia	1.5	cm
rad	0.75	cm
vol_cy	15.02074	cm^3

Experiment 5:

Exp 5	h_left	ха	t (sec)	t (min)	t (min)	vol_conv	vol_left
	3.5	0.000	0	0	00:00:00	0.000	24.740
	3.1	0.114	600	10	00:10:00	2.827	21.913
er	2.8	0.200	1200	20	00:20:00	4.948	19.792
cylinder	2.6	0.257	1800	30	00:30:00	6.362	18.378
₹	2.4	0.314	2400	40	00:40:00	7.775	16.965
	2.2	0.371	3000	50	00:50:00	9.189	15.551
	2	0.429	3600	60	01:00:00	10.603	14.137

		units
h_cy	3.5	cm
dia	3	cm
rad	1.5	cm
vol_cy	24.74004	cm^3

Experiment 6:

Exp 6	h_left	ха	t (sec)	t (min)	t (min)	vol_conv	vol_left	
er	3	0.000	0	0	00:00:00	0.000	14.726	
cylinder	2.6	0.079	600	10	00:10:00	1.963	12.763	
₹	2.3	0.139	1200	20	00:20:00	3.436	11.290	
Candl	Candle's cover was made of cardboard, which caught fire after these readings.							

		units
h_cy	3	cm
dia	2.5	cm
rad	1.25	cm
vol_cy	14.72622	cm^3

Experiment 7:

Exp 7	h_left	ха	t (sec)	t (min)	t (min)	vol_conv	vol_left
	2.3	0.000	0	0	00:00:00	0.000	7.226
	2.1	0.087	600	10	00:10:00	0.628	6.597
er	2	0.130	1200	20	00:20:00	0.942	6.283
cylinder	1.9	0.174	1800	30	00:30:00	1.257	5.969
₹	1.8	0.217	2400	40	00:40:00	1.571	5.655
	1.7	0.261	3000	50	00:50:00	1.885	5.341
	1.6	0.304	3600	60	01:00:00	2.199	5.027

		units
h_cy	2.3	cm
dia	2	cm
rad	1	cm
vol_cy	7.225663	cm^3

Analysis & Conclusion:

- Change of volume or <u>Conversion is linearly proportional to time</u> i.e. Equal volume decreases in equal amount of time, <u>independent of the shape of candle</u>.
- Rate kinetics for candle wax is following zero-order kinetics as dXa/dt = constant (~0.01).
- Volume conversion data obtained from experiments follows a linear curve as $R^2 \sim 1$.
- Hence, we can say that <u>chemical reaction in burning of candle follows zero-order kinetics & is independent of shape chosen</u>. Flame luminosity depends on O₂ (oxygen) available near the flame (where wick is burning).
- During candle burning a beautiful cup is formed where solid wax is melted to liquid & this liquid is transferred to top of wick through capillary action. There the wax is vaporized & this vaporized wax undergoes chemical reaction to form carbon-dioxide & water vapor. If this cup is somehow broken or leaked, the melted wax flows down causing uneven burning of candle. Flame width & conversion rate will increase of sudden, as occurred in during Experiment 4.
- Ratio of radius/height does not effect the change of volume per unit time. So for
 optimization we should choose a candle in which the cup formed at top is stable.

Possible sources of errors during experiment:

- When candle is burned in open atmosphere, blowing of wind can cause uneven burning of flame & making the cup of liquid wax broken from one side, leading to increased rate of combustion & error in data. (As shown in figure ->)
- Candle burned in ceramic beaker was having a limited source of O₂ (from top only), therefore it's luminosity was less as compared to candle burned in open. Rate of change of volume with time was also less. (As seen in Experiment 5,6,7)

- In experiment 6, melted wax was stored in cardboard container & allowed to freeze it. Due to some unwanted air which caused flickering of candle flame & led to burn the carboard container, so further data couldn't be obtained.
- Flame width was dependent on the oxygen available for combustion, which was different in Experiment 5,6,7 because of different dimensions & shapes of containers. It led to difference in luminosity.