פתרון תרגיל בית מספר 2

שאלה 1

א. נשתמש באלגוריתם תכנות דינמי הידוע לפתרון בעית הסכומים החלקיים, אלא שהפעם יתכנו גם מחוברים שליליים, לכן לא נוכל להגביל את רוחב הטבלה ע"י הערך S. הרי אם קיימת קבוצה שמסתכמת ל-S, הסכומים של תתי-הקבוצות שלה יכולים להיות גם גדולים מ-S וגם שליליים. נסמן ב-S את סכום כל הערכים החיוביים ב-S, וב-S חכום כל השליליים. כלומר, S וב-S וב-S חבים ב-S אז הטבלה תכיל את העמודות עבור כל המספרים השלמים בין S ל-S (כולל).

```
### איתחול ### P=\sum_{a_i>0}a_i , N=\sum_{a_i<0}a_i , t=table (P+|N|+1)\times(n+1) for j=N..P : t[0,j]=0 for i=0..n : t[i,0]=1 ### for i=1..n : for j=N..P : if N\leq j-a_i\leq P : t[i,j]=t[i-1,j]\vee t[i-1,j-a_i] else: t[i,j]=t[i-1,j] if t[n,S]=0 : return False ### בניית קבוצת הסכום ע"ס הטבלה ### Q=\emptyset , x=S for i=n..1 : if t[i-1,x]=0 : Q=Q\cup\{a_i\}, x=x-a_i return True,Q
```

ב. החלק הכבד ביותר באלגוריתם הוא מילוי הטבלה בגודל $(P+|N|+1) \times (n+1) \times (n+1)$. חישוב תא בודד הוא סה"כ הסיבוכיות היא $O\left((\sum_{i=1}^n |a_i|) \cdot n\right)$. זאת סיבוכיות פסאודו-פולינומית.

ג. <u>הטבלה</u>:

	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
2	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
3	0	0	0	0	0	0	1	0	1	1	0	1	0	0	0	1	0	1	1	0	1	0	0	0	0
4	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	0	1
5	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

הערה: את השורה האחרונה אין צורך למלא את כולה, אלא רק תא t[n,S], כי לא נצטרך ערכים אחרים בשורה הזאת. וספציפית בדוגמה הנ"ל קיבלנו 1 בעמודה 7 כבר בשורה 5, לכן יכולנו לא למלא את השורה 6 בכלל.

כעת, נפעיל את החלק האחרון של האלגוריתם ונקבל את הקבוצה הבאה (החישוב לפי התאים כעת, נפעיל את החלק האחרון של האלגוריתם $Q = \{9, -3, 2, 4, -5\}$

אלגוריתם מתקדם 10121 אלגוריתם מתקדם 10121

שאלה 2

<u>האלגוריתם</u>:

הרצת האלג' להתאמת מחרוזות ### $\pi, au = KMP(T,P)$ ### חישוב מס' רישות בכל רישא של התבנית ### a[0]=0 for $i=1..m: \quad a[i]=a[\pi[i]]+1$ ### חישוב מס' רישות של התבנית בסיפות של כל הרישות של הטקסט ### for $i=1..n: \quad A[i]=a[au[i]]$ return A

נכונות:

i באורך P באורך P_i את הרישא של

במערך π המוחזר ע"י KMP, כל $\pi[i]$ מציין אורך הרישא הארוכה ביותר של P שקטנה מi ונכנסת כסיפא $\pi[i]$ פלוס איים לכן מס' רישות לא ריקות של P שהן סיפות של P_i שווה למס' רישות כאלה ברישא באורך $\pi[i]$ פלוס אחד עבור i עצמו. לכן בתום תהליך החישוב של המערך a[i], כל a[i] מכיל את מס' רישות לא ריקות שהן סיפות של a[i].

'מאחר ו-au[i] הוא אורך הרישא הארוכה ביותר של P שהיא גם סיפא של $\pi[i]$, אז a[au[i]] זהו בדיוק מס au[i]רישות לא ריקות של P שהן סיפות של T[1...i].

<u>סיבוכיות</u>:

- O(m+n) היא KMP סיבוכיות
 - .O(m) חישוב a חישוב \bullet
 - O(n) חישוב A חישוב \bullet
 - .0(m+n) סה"כ •

שאלה 3

א.

טבלת המצבים:

תווים מצבים	Α	В	С
0	0	1	0
1	2	1	0
2	0	3	0
3	2	4	0
4	5	1	0
5	0	6	0
6	2	4	7
7	8	1	0
8	0	9	0
9	2	1	0

ב. הרצת האוטומט על T:

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Т	Α	В	Α	В	Α	В	Α	В	В	Α	В	С	Α	Α
state	0	1	2	3	2	3	2	3	4	5	6	7	8	0

לא יודפסו הודעות, כי התבנית לא נמצאת בתוך הטקסט.

٦.

_										
	i	1	2	3	4	5	6	7	8	9
	π	0	0	1	1	2	3	0	0	1

ſ	i	1	2	3	4	5	6	7	8	9	10	11	12	13	14
ĺ	τ	0	1	2	3	2	3	2	3	4	5	6	7	8	0

שאלה 4

PROGRAM 1

 $\overline{0(n)}$ א. סיבוכיות

.0(1) איטרציה. וכל איטרציה היא היא ומקודם ב-1 בכל איטרציה, לכן יהיו n איטרציות. וכל איטרציה היא וומקודם ב-1 בכל איטרציה, לכן יהיו

ב. התוכנית עלולה לא למצוא אף מופע, למרות שיש.

<u>הסבר</u>: לדוגמה, אם P = "ARARAT" = P", התוכנית לא תמצא את P בתוך T, כי כשנסיון זיהוי נכשל באמצע, התכנית לא חוזרת אל התווים שכבר זוהו.

PROGRAM 2

 $O(n \cdot m)$ א. סיבוכיות

הסבר: במקרה של זיהוי תבנית בתוך טקסט, i מוחזר m-1 תווים אחורה. במקרה של זיהוי תבנית בתוך T=1 ו- T=1 איטרציות. T=1 איטרציות. T=1 איטרציות.

ב. התוכנית עלולה לא למצוא אף מופע, למרות שיש.

<u>הסבר</u>: לדוגמה, אם RARARAT" = P - "RAT", התוכנית לא תמצא את P בתוך T, כי כשנסיון זיהוי נכשל באמצע, התכנית לא חוזרת אל התווים שכבר זוהו (כמו תכנית 1).

PROGRAM 3

 $.0(n\cdot m)$ א. סיבוכיות

עד או מוצלח) באורך עד k מתבצע נסיון זיהוי (כושל או מוצלח) באורך עד n-m+1 איטרציות. ארכב: בלולאה, ארכנית תרוץ דור T=0 ו- T=0 איטרציות m תווים. לדוגמה, אם m איטרציות m

ב. התוכנית מוצאת את כל המופעים.

<u>הסבר</u>: התוכנית, למעשה, מממשת את האלגוריתם הנאיבי שפשוט עובר על כל האפשרויות.