

Support BBB TD N°1 Machine à état

Conception et synthèse d'une machine à état de Moore

<u>Détecteur de séquence</u> (combinaison de coffre ou recherche de caractères par exemple) Le système à réaliser possède une entrée **E** et une sortie **S**. **E** reçoit des bits en série (séquence d'entrée). Le système est cadencé par une horloge **H**. Chaque fois qu'une séquence **010** se présente en entrée, la sortie **S** passe à **1** dès le dernier bit détecté, puis retourne à **0** au bit suivant, **quel qu'il soit**.

1)	Proposer	un graphe	d'état (sans	overlapping)	complet	respectant	le cahier	des c	harges
en	assianant	aux états	, dans un pre	emier temps,	des lettr	es A. B. etc			

2) Combien de bascule(s) seront nécessaires pour coder les états en Binaire Naturel (BN)? Par la suite vous utiliserez des bascules JK (Questions 4 et 5).

1/3

3) Dresser à partir du graphe d'état codé en BN la table des transitions selon le modèle (forme compacte) suivant :

Etat	Etat s			
actuel	(fu	(futur)		
(présent)	E=0	E=1		

Etat	Etat s		
actuel	(futur)		5
(présent)	E=0	E=1	

4) En déduire les équations de l'état futur et de S en fonction de Q_0 , Q_1 et E.

On notera $Q_0(LSB)$ et $Q_1(MSB)$ les états actuels et Q_0^* et Q_1^* les <u>états futurs</u>.

On rappelle la table de transition d'une JK:

Q_n	Q_{n+1}	J_n	K _n
0	0	0	X
0	1	1	Χ
1	0	Χ	1
1	1	X	0

Etat actuel (présent)	Etat suivant (futur)					5		
		E=0 E=1						

E	Q1Q0	00	01	11	10
0					
1					

Ε	Q1Q0	00	01	11	10
0					
1					

5) Dessiner le schéma structurel du détecteur de séquence à l'aide d'opérateurs combinatoires à 2 entrées (ET, OU, NON) et séquentiel (Bascule JK). Encadrer les différents blocs constituant cette machine à états.

3/3