Exercice MUSA

Le tableau suivant (TAB 1) contient les défaillances enregistrées (en sec.) pour un système réel :

311	3085	5447	8625	11486
366	3089	5644	8982	12708
608	3089	5837	9175	13251
676	3565	5843	9411	13261
1098	3623	5922	9442	13277
1278	4080	6738	9811	13806
1288	4380	8089	10559	14185
2434	4477	8237	10559	14229
3034	4740	8258	10791	14358
3049	5192	8491	11121	16168

Pour k=5 déterminez :

Q1.2) les couples (m, r) et les valeurs de λ_0 , ν_0 pour les données du TAB 1;

Indication (slides 93, 95, 96)

Il faut regrouper les défaillances par groupes de k = 5. On retrouve 10 intervalles :

Intervalle 1: 0-1098, ..., Intervalle 10: 13277-16168

mi est le nombre cumulatif de défaillances jusqu'à l'intervalle i

 r_i est l'intensité de la défaillance sur l'intervalle $i: r_i = k / durée$ de l'intervalle

- Q1.3) combien de défauts sont encore dans le logiciel?
- Q1.4) Si le logiciel est de 25000 LOC quelles sont les pourcentages de défauts initial et final?
- Q1.5) Si la valeur de λ n'est pas acceptable et qu'il n'est pas permis plus d'une défaillance par demijournée, déterminez les défaillances à corriger et le temps CPU des activités du test requis. Si pour une heure de temps CPU, 20 heures de travail sont requises du personnel, combien d'heures sont requises pour obtenir la valeur désirée?