Regularized regression I

Motivation

Selecting features for prediction

- Prediction problems might involve data with many potential features (and less domain knowledge)
 - Contrasts theory-based hypothesis testing perspective
 - Relates to building parsimonious models (e.g. with respect to AIC, BIC)
- Interest in developing sparse models to improve:
 - Prediction accuracy
 - Model interpretability
- ightarrow Remove non-informative variables to improve effectiveness

Motivation

Is feature selection necessary?

- Regression models
 - Run into problems in high dimensions (large p, small n)
 - $p \approx n$: Overfitting and poor prediction performance
 - p > n: OLS can not be estimated
- Tree-based models
 - Involve built-in feature selection
 - Less affected by irrelevant features
- Support vector machines, neural networks
 - Negatively affected by irrelevant features

Selecting Predictors

Figure: Consequences of non-informative predictors

Feature Selection Methods

Feature selection methods

- Wrapper
 - Search algorithms that add and/or remove predictors to optimize performance
 - e.g. forward, backward, and best subset selection
- Filter
 - Test individual predictors outside of the predictive model
 - e.g. *t*-tests, r, χ^2
- ℓ_1 regularization