

09/978,146

PALM INTRANET

Day : Wednesday
Date: 12/8/2004
Time: 14:34:06

Inventor Name Search Result

Your Search was:

Last Name = MELMED

First Name = SHLOMO

Application#	Patent#	Status	Date Filed	Title	Invent Name
60370912	Not Issued	159	04/08/2002	OVER-EXPRESSION OF THE MAMMALIAN SECURIN, PTTG, DISRUPTS MITOSIS AND LEADS TO ANEUPLOIDY	MELM SHLO
60045241	Not Issued	159	05/01/1997	METHOD OF TREATING HYPERPROLACTINEMIA AND PROLACTINOMAS	MELM , SHLO
60031338	Not Issued	159	11/21/1996	NUCLEIC ACID ENCODING A FAMILY OF PITUITARY-TUMOR-SPECIFIC-GENES, AND PRODUCTS RELATED THERETO	MELM , SHLO
10334385	Not Issued	061	12/31/2002	SUPPRESSOR OF CYTOKINE SIGNALING (SOCS)-3 PROMOTER AND METHODS FOR ITS USE IN GENETIC THERAPY IN HUMANS	MELM SHLO
10284126	Not Issued	030	10/29/2002	POLYNUCLEOTIDES ENCODING MOUSE PITUITARY TUMOR TRANSFORMING GENE (PTTG) CARBOXY-TERMINAL PEPTIDES AND METHODS OF USE THEREOF TO INHIBIT NEOPLASTIC CELLULAR PROLIFERATION AND/OR TRANSFORMATION	MELM SHLO
10283874	Not Issued	030	10/29/2002	POLYNUCLEOTIDES ENCODING RAT PITUITARY TUMOR TRANSFORMING GENE (PTTG) CARBOXY-TERMINAL PEPTIDES AND METHODS OF USE THEREOF TO INHIBIT NEOPLASTIC CELLULAR PROLIFERATION AND/OR TRANSFORMATION	MELM SHLO
10283797	Not Issued	041	10/29/2002	NON-HUMAN MAMMALS COMPRISING CELLS EXPRESSING VECTOR-BORNE MOUSE PTTG CARBOXY-TERMINAL-RELATED DNA	MELM SHLO
10283771	Not Issued	041	10/29/2002	NON-HUMAN MAMMALS COMPRISING CELLS EXPRESSING VECTOR-BORNE RAT PTTG CARBOXY-TERMINAL-RELATED DNA	MELM SHLO
10264372	Not Issued	041	10/04/2002	TRANSGENIC CELLS TRANSFECTED WITH PITUITARY TUMOR TRANSFORMING GENE (PTTG) EXPRESSION VECTORS AND USES THEREFOR	MELM SHLO

<u>10262264</u>	Not Issued	030	09/30/2002	OLIGONUCLEOTIDES ANTISENSE TO MOUSE PITUITARY TUMOR TRANSFORMING GENE CARBOXY-TERMINAL (PTTG-C) AND METHODS OF USE THEREOF TO INHIBIT NEOPLASTIC CELLULAR PROLIFERATION AND/OR TRANSFORMATION	MELN SHLO
<u>10262258</u>	Not Issued	030	09/30/2002	OLIGONUCLEOTIDES ANTISENSE TO RAT PITUITARY TUMOR TRANSFORMING GENE CARBOXY-TERMINAL (PTTG-C) AND METHODS OF USE THEREOF TO INHIBIT NEOPLASTIC CELLULAR PROLIFERATION AND/OR TRANSFORMATION	MELN SHLO
<u>10262252</u>	Not Issued	071	09/30/2002	ANTIBODIES AGAINST MOUSE PITUITARY TUMOR TRANSFORMING GENE CARBOXY-TERMINAL (PTTG-C) PEPTIDES	MELN SHLO
<u>10261821</u>	Not Issued	095	09/30/2002	ANTIBODIES AGAINST RAT PITUITARY TUMOR TRANSFORMING GENE CARBOXY-TERMINAL (PTTG-C) PEPTIDES	MELN SHLO
<u>10261787</u>	Not Issued	041	09/30/2002	RAT PITUITARY TUMOR TRANSFORMING GENE (PTTG) CARBOXY-TERMINAL PEPTIDES AND METHODS OF USE THEREOF TO INHIBIT NEOPLASTIC CELLULAR PROLIFERATION AND/OR TRANSFORMATION	MELN SHLO
<u>10261717</u>	Not Issued	041	09/30/2002	MOUSE PITUITARY TUMOR TRANSFORMING GENE (PTTG) CARBOXY-TERMINAL PEPTIDES AND METHODS OF USE THEREOF TO INHIBIT NEOPLASTIC CELLULAR PROLIFERATION AND/OR TRANSFORMATION	MELN SHLO
<u>10252309</u>	Not Issued	030	09/23/2002	LIVE CELL METHOD FOR OBSERVING CELLULAR PROCESSES	MELN SHLO
<u>10183140</u>	Not Issued	161	06/25/2002	PITUITARY-TUMOR-TRANSFORMING-GENES, AND RELATED PRODUCTS	MELN SHLO
<u>10176812</u>	Not Issued	061	06/21/2002	TRANSGENIC NON-HUMAN MAMMALS CARRYING HUMAN PITUITARY TUMOR TRANSFORMING GENE (PTTG) SEQUENCES	MELN SHLO
<u>10176549</u>	Not Issued	061	06/21/2002	TRANSGENIC NON-HUMAN MAMMALS CARRYING RAT PITUITARY TUMOR TRANSFORMING GENE (PTTG) SEQUENCES	MELN SHLO
<u>10163277</u>	Not Issued	041	06/04/2002	PITUITARY-TUMOR-TRANSFORMING-GENES, AND RELATED PRODUCTS	MELN SHLO
<u>10163053</u>	6673823	150	06/04/2002	USE OF PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR (PPAR)-GAMMA LIGANDS AS A TREATMENT FOR PITUITARY TUMORS AND ASSOCIATED CONDITIONS, SUCH AS CUSHING'S SYNDROME	MELN SHLO

<u>10136224</u>	Not Issued	061	04/29/2002	TRANSGENIC EXPRESSION FROM A SOCS-3 PROMOTER IN VERTEBRATE CELLS	MELN SHLO
<u>10136098</u>	Not Issued	041	04/29/2002	OLIGONUCLEOTIDES ANTISENSE TO PITUITARY TUMOR TRANSFORMING GENE CARBOXY-TERMINAL (PTTG-C) AND METHODS OF USE THEREOF TO INHIBIT NEOPLASTIC CELLULAR PROLIFERATION AND/OR TRANSFORMATION	MELN SHLO
<u>10136082</u>	Not Issued	094	04/29/2002	PITUITARY TUMOR TRANSFORMING GENE (PTTG) CARBOXY-TERMINAL PEPTIDES AND METHODS OF USE THEREOF TO INHIBIT NEOPLASTIC CELLULAR PROLIFERATION AND/OR TRANSFORMATION	MELN SHLO
<u>10136056</u>	Not Issued	061	04/29/2002	NON-HUMAN MAMMALS COMPRISING CELLS EXPRESSING VECTOR-BORNE PTTG CARBOXY-TERMINAL-RELATED DNA	MELN SHLO
<u>10135671</u>	Not Issued	041	04/29/2002	ANTIBODIES AGAINST PITUITARY TUMOR TRANSFORMING GENE CARBOXY-TERMINAL (PTTG-C) PEPTIDES	MELN SHLO
<u>10124905</u>	Not Issued	041	04/17/2002	ANTI-INFLAMMATORY THERAPIES USING CYTOKINE SIGNALING REGULATED BY A SOCS-3 PROMOTER	MELN SHLO
<u>09978146</u>	Not Issued	080	10/15/2001	PTTG KNOCKOUT RODENT AS A MODEL TO STUDY MECHANISMS FOR VARIOUS PHYSIOLOGICAL PHENOMENA, INCLUDING DIABETES	MELN SHLO
<u>09949476</u>	6750327	150	09/07/2001	COMPOSITIONS AND METHOD FOR DETERMINING THE PRESENCE OF HUMAN PTTG PEPTIDE IN A SAMPLE	MELN SHLO
<u>09949272</u>	Not Issued	094	09/07/2001	HUMAN PTTG POLYPEPTIDE AND METHOD FOR PRODUCING IT	MELN SHLO
<u>09949271</u>	6723519	150	09/07/2001	COMPOSITIONS AND METHOD FOR DETERMINING THE PRESENCE OF RAT PTTG PEPTIDE IN A SAMPLE	MELN SHLO
<u>09949270</u>	Not Issued	094	09/07/2001	RAT PTTG POLYPEPTIDE AND METHOD FOR PRODUCING IT	MELN SHLO
<u>09854326</u>	Not Issued	094	05/11/2001	METHOD OF REGULATING BIOLOGICAL ACTIVITY OF PITUITARY TUMOR TRANSFORMING GENE (PTTG)1 USING PTTG2	MELN SHLO
<u>09777422</u>	Not Issued	161	02/05/2001	METHODS OF MODULATING ANGIOGENESIS BY REGULATING THE EXPRESSION OF PITUITARY TUMOR TRANSFORMING GENE (PTTG)	MELN SHLO
<u>09730469</u>	Not Issued	161	12/04/2000	METHODS OF USING PITUITARY TUMOR TRANSFORMING GENE (PTTG) CARBOXY-TERMINAL PEPTIDES TO INHIBIT	MELN SHLO

NEOPLASTIC CELLULAR PROLIFERATION AND/OR TRANSFORMATION OF BREAST AND OVARIAN CELLS				
<u>09687911</u>	Not Issued	061	10/13/2000	MODULATING ACTIVATION OF LYMPHOCYTES AND SCREENING POTENTIAL IMMUNOMODULATING AGENTS BY TARGETING PITUITARY TUMOR TRANSFORMING GENE (PTTG) EXPRESSION AND/OR FUNCTION
<u>09569956</u>	Not Issued	094	05/12/2000	PITUITARY TUMOR TRANSFORMING GENE (PTTG) CARBOXY-TERMINAL PEPTIDES AND METHODS OF USE THEREOF TO INHIBIT NEOPLASTIC CELLULAR PROLIFERATION AND/OR TRANSFORMATION
<u>09327138</u>	6541244	150	06/07/1999	SUPPRESSOR OF CYTOKINE SIGNALING (SOCS)-3 PROMOTER AND METHODS FOR ITS USE IN GENETIC THERAPY IN HUMANS
<u>08894251</u>	6455305	150	07/23/1999	PITUITARY-TUMOR-TRANSFORMING-GENES, AND RELATED PRODUCTS
<u>08852221</u>	5972893	150	05/06/1997	METHOD OF TREATING HYPERPROLACTINEMIA AND PROLACTINOMA
<u>08848787</u>	Not Issued	169	05/01/1997	METHOD OF TREATING HYPERPROLACTINEMIA AND PROLACTINOMAS
<u>08647401</u>	5824838	150	05/09/1996	TRANSGENIC MOUSE MODEL FOR PITUITARY DISORDERS ASSOCIATED WITH LIF OVEREXPRESSION AND/OR GH UNDEREXPRESSION, AND ITS USE FOR TESTING THERAPEUTIC DRUGS FOR THE CONDITIONS
<u>08465232</u>	Not Issued	164	06/05/1995	VARIANT INSULIN-LIKE GROWTH FACTOR I RECEPTOR SUBUNITS AND METHODS FOR USE THEREOF
<u>08460787</u>	Not Issued	164	06/05/1995	INHIBITION OF RECEPTOR FUNCTION WITH USE OF VARIANT INSULIN-LIKE GROWTH FACTOR I RECEPTOR SUBUNITS
<u>08249687</u>	5942412	250	05/26/1994	POLYNUCLEIC ACID ENCODING VARIANT INSULIN-LIKE GROWTH FACTOR I RECEPTOR
<u>08044540</u>	Not Issued	166	04/06/1993	VARIANT INSULIN-LIKE GROWTH FACTOR I RECEPTOR SUBUNITS AND METHODS FOR USE THEREOF

Inventor Search Completed: No Records to Display.

**Search Another:
Inventor**

Last Name	First Name
melmed	shlomo

To go back use Back button on your browser toolbar.

Back to [PALM](#) | [ASSIGNMENT](#) | [OASIS](#) | Home page

09/09/08/146

=> d his

(FILE 'HOME' ENTERED AT 14:45:18 ON 08 DEC 2004)

FILE 'MEDLINE, CAPLUS, BIOSIS, SCISEARCH' ENTERED AT 14:45:31 ON 08 DEC 2004

L1 1137 S PTTG OR PTSG OR SECURIN
L2 76705 S (NULL(W) MUTANT OR KNOCKOUT) (5A) (MOUSE OR MICE OR RAT OR RODEN
L3 1 S L1(S)L2
L4 4 S L1 AND L2
L5 4 DUP REM L4 (0 DUPLICATES REMOVED)

=> d bib ab 13

L3 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2003:396993 CAPLUS

DN 138:397254

TI PTTG knockout rodent as a model to study
mechanisms for various physiological phenomena, including diabetes
IN Wang, Zhiyong; Melmed, Shlomo
PA Cedars-Sinai Medical Center, USA
SO PCT Int. Appl., 50 pp.
CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2003042356	A2	20030522	WO 2002-US30845	20020927
	WO 2003042356	A3	20031016		
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW				
	RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	US 2003106080	A1	20030605	US 2001-978146	20011015
	EP 1435775	A2	20040714	EP 2002-773633	20020927
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK				
PRAI	US 2001-978146	A	20011015		
	WO 2002-US30845	W	20020927		

AB The present invention discloses a **null mutant** (or
knockout) **rodent** comprising in its germ cells an
artificially induced PTTG null mutation. In some embodiments,
the null mutant rodent can be generated by way of homologous recombination
in an embryonic stem cell or germ cell. The inventive null mutant rodent
can be used to study mammalian physiol. at the cellular, tissue, and/or
organismal level with respect to various phenotypes, including
hyperglycemia, hypoinsulinemia, hypoleptinemia, diabetes, chromosomal
aneuploidy, premature centromere division, chromosomal damage, aberrant
mitotic cellular division, thrombocytopenia, thymic hyperplasia, splenic
hypoplasia, testicular hypoplasia, and female subfertility. Also
disclosed is an animal model for diabetes, a somatic or germ cell obtained
from the null mutant rodent and a cell line derived from a cell obtained
from the null mutant rodent.

=> d au ti so pi ab 1-4 15

L5 ANSWER 1 OF 4 MEDLINE on STN
AU Dai Wei; Wang Qi; Liu Tongyi; Swamy Malisetty; Fang Yuqiang; Xie Suqing; Mahmood Radma; Yang Yang-Ming; Xu Ming; Rao Chinthalapally V
TI Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency.
SO Cancer research, (2004 Jan 15) 64 (2) 440-5.
Journal code: 2984705R. ISSN: 0008-5472.
AB A compromised spindle checkpoint is thought to play a key role in genetic instability that predisposes cells to malignant transformation. Loss of function mutations of BubR1, an important component of the spindle checkpoint, have been detected in human cancers. Here we show that BubR1(+-) mouse embryonic fibroblasts are defective in spindle checkpoint activation, contain a significantly reduced amount of **securin** and Cdc20, and exhibit a greater level of micronuclei than do wild-type cells. RNA interference-mediated down-regulation of BubR1 also greatly reduced **securin** level. Moreover, compared with wild-type littermates, BubR1(+-) mice rapidly develop lung as well as intestinal adenocarcinomas in response to challenge with carcinogen. BubR1 is thus essential for spindle checkpoint activation and tumor suppression.

L5 ANSWER 2 OF 4 MEDLINE on STN
AU Wirth Karin G; Ricci Romeo; Gimenez-Abian Juan F; Taghybeeglu Shahryar; Kudo Nobuaki R; Jochum Wolfram; Vasseur-Cognet Mireille; Nasmyth Kim
TI Loss of the anaphase-promoting complex in quiescent cells causes unscheduled hepatocyte proliferation.
SO Genes & development, (2004 Jan 1) 18 (1) 88-98.
Journal code: 8711660. ISSN: 0890-9369.
AB The anaphase-promoting complex or cyclosome (APC/C) is an ubiquitin protein ligase that together with Cdc20 and Cdh1 targets mitotic proteins for degradation by the proteosome. APC-Cdc20 activity during mitosis triggers anaphase by destroying **securin** and cyclins. APC-Cdh1 promotes degradation of cyclins and other proteins during G(1). We show that loss of APC/C during embryogenesis is early lethal before embryonic day E6.5 (E6.5). To investigate the role of APC/C in quiescent cells, we conditionally inactivated the subunit Apc2 in mice. Deletion of Apc2 in quiescent hepatocytes caused re-entry into the cell cycle and arrest in metaphase, resulting in liver failure. Re-entry into the cell cycle either occurred without any proliferative stimulus or could be easily induced. We demonstrate that the APC has an additional function to prevent hepatocytes from unscheduled re-entry into the cell cycle.

L5 ANSWER 3 OF 4 CAPLUS COPYRIGHT 2004 ACS on STN
IN Wang, Zhiyong; Melmed, Shlomo
TI PTTG knockout rodent as a model to study mechanisms for various physiological phenomena, including diabetes
SO PCT Int. Appl., 50 pp.
CODEN: PIXXD2

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2003042356	A2	20030522	WO 2002-US30845	20020927
WO 2003042356	A3	20031016		
W:	AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW			
RW:	GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG			
US 2003106080	A1	20030605	US 2001-978146	20011015
EP 1435775	A2	20040714	EP 2002-773633	20020927
R:	AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,			

IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK
AB The present invention discloses a **null mutant** (or knockout) **rodent** comprising in its germ cells an artificially induced **PTTG** null mutation. In some embodiments, the **null mutant rodent** can be generated by way of homologous recombination in an embryonic stem cell or germ cell. The inventive **null mutant rodent** can be used to study mammalian physiol. at the cellular, tissue, and/or organismal level with respect to various phenotypes, including hyperglycemia, hypoinsulinemia, hypoleptinemia, diabetes, chromosomal aneuploidy, premature centromere division, chromosomal damage, aberrant mitotic cellular division, thrombocytopenia, thymic hyperplasia, splenic hypoplasia, testicular hypoplasia, and female subfertility. Also disclosed is an animal model for diabetes, a somatic or germ cell obtained from the **null mutant rodent** and a cell line derived from a cell obtained from the **null mutant rodent**.

L5 ANSWER 4 OF 4 MEDLINE on STN
AU Wang Zhiyong; Moro Enrico; Kovacs Kalman; Yu Run; Melmed Shlomo
TI Pituitary tumor transforming gene-null male mice exhibit impaired pancreatic beta cell proliferation and diabetes.
SO Proceedings of the National Academy of Sciences of the United States of America, (2003 Mar 18) 100 (6) 3428-32.
Journal code: 7505876. ISSN: 0027-8424.
AB The mammalian **securin**, pituitary tumor transforming gene (**PTTG**), regulates sister chromatid separation during mitosis. Mice or cell lines deficient in **PTTG** expression, however, are surprisingly viable. Here we show that **PTTG** disruption in mice (**PTTG**-/-) severely impairs glucose homeostasis leading to diabetes during late adulthood, especially in males associated with nonautoimmune insulinopenia and reversed alphabeta cell ratio. Islet beta cell mass in **PTTG**-/- mice was already diminished before development of frank diabetes and only increased minimally during growth. BrdUrd incorporation of islet cells in **PTTG**-null mice was approximately 65% lower ($P < 0.005$) than in the WT pancreas, whereas apoptosis rates were similar. **PTTG**-/- beta cells had pleiotropic nuclei, suggesting defects in cell division. The results indicated that **securin** is indispensable for normal pancreatic beta cell proliferation.

=>

Refine Search

Search Results -

Terms	Documents
L1 with L2	1

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Database:

Search:

L3

Refine Search

Recall Text Clear Interrupt

Search History

DATE: Wednesday, December 08, 2004 [Printable Copy](#) [Create Case](#)

<u>Set</u>	<u>Name</u>	<u>Query</u>	<u>Hit</u>	<u>Set</u>
			<u>Count</u>	<u>Name</u>
side by side				result set
DB=PGPB,USPT; PLUR=YES; OP=AND				
<u>L3</u>	l1 with L2		1	<u>L3</u>
<u>L2</u>	(null adj mutant or knockout) near5 (mouse or mice or rodent or rat or mammal or animal)		7721	<u>L2</u>
<u>L1</u>	pttg or ptsg or securin		109	<u>L1</u>

END OF SEARCH HISTORY

[Generate Collection](#)[Print](#)**Search Results - Record(s) 1 through 1 of 1 returned.**

1. 20030106080. 15 Oct 01. 05 Jun 03. PTTG knockout rodent as a model to study mechanisms for various physiological phenomena, including diabetes. Melmed, Shlomo, et al. 800/14; 435/353 435/354 800/18 A01K067/027 C12N005/06.

[Generate Collection](#)[Print](#)

Terms	Documents
L1 with L2	1

[Prev Page](#) [Next Page](#) [Go to Doc#](#)