PES UNIVERSITY

PES University, Bangalore

(Established under Karnataka Act No. 16 of 2013)

UE19CS203 – STATISTICS FOR DATA SCIENCE

Unit - 3 - Probability Distributions

QUESTION BANK

Principles of Point Estimation (Mean Squared Error))

Exercises for Section 4.9

[Text Book Exercise – Section 4.9 – Q. No. [1 – 4] – Pg. No. [284 - 285]]

- 1. Choose the best answer to fill in the blank. If an estimator is unbiased, then
 - a) The estimator is equal to the true value.
 - b) The estimator is usually close to the true value.
 - c) The mean of the estimator is equal to the true value.
 - d) The mean of the estimator is usually close to the true value.
- 2. Choose the best answer to fill in the blank. The variance of an estimator measures
 - a) How close the estimator is to the true value.
 - b) How close repeated values of the estimator are to each other.
 - c) How close the mean of the estimator is to the true value.
 - d) How close repeated values of the mean of the estimator are to each other.
- 3. Let X_1 and X_2 be independent, each with unknown mean μ and known variance $\sigma^2 = 1$.
 - a) Let $\widehat{\mu_1} = \frac{X_1 + X_2}{2}$. Find the bias, variance and mean squared error of $\widehat{\mu_1}$.
 - b) Let $\widehat{\mu_2} = \frac{X_1 + 2X_2}{3}$. Find the bias, variance and mean squared error of $\widehat{\mu_2}$.
 - c) Let $\widehat{\mu_3} = \frac{X_1 + X_2}{4}$. Find the bias, variance and mean squared error of $\widehat{\mu_3}$.
 - d) For what values of μ does $\widehat{\mu_3}$ have smaller mean squared error than $\widehat{\mu_1}$?
 - e) For what values of μ does $\widehat{\mu_3}$ have smaller mean squared error than $\widehat{\mu_2}$?
- 4. Let $X_1 ext{....} X_n$ be a random sample from $N(\mu, \sigma^2)$ population. For any constant k > 0, define $\widehat{\sigma_k} = \frac{\sum_{i=1}^n (X_i \bar{X})^2}{k}$. Consider $\widehat{\sigma_k}^2$ as an estimator of σ^2 .

- a) Compute bias of $\hat{\sigma}_k^2$ in terms of k. [Hint: The sample variance s^2 is unbiased and $\hat{\sigma}_k^2 = (n-1)s^2/k$].
- b) Compute the variance of $\hat{\sigma}_k^2$ in terms of k. [Hint: $\sigma_{s^2}^2 = 2\sigma^4/(n-1)$, and $\hat{\sigma}_k^2 = (n-1)s^2/k$].
- c) Compute mean squared error of $\hat{\sigma}_k^2$ in terms of k.
- d) For what value of k is the mean squared error of $\hat{\sigma}_k^2$ minimized?