Extra problems to save for review/backup

More relevant

Problem

A reactor is operating for a long time at some known power density P_0 . Then, it instantaneously changes power to some power density P_1 . One fission product of interest is 135 Xe, though it has a neglible yield from the initial fission reaction. 135 Xe precursors 135 Te and 135 I are produced with a combined yield of approximately 6%, before decaying via β^- decay to 135 I and 135 Xe respectively. Find the number density of 135 Xe as a function of time after the power change. (Your solution may be left as variables)

Nucleus	Half-life	Thermal $\sigma_{\rm a}$
$^{135}\mathrm{Te}$	19.0 s	~ 0
$^{135}\mathrm{I}$	$6.6 \; \mathrm{hr}$	~ 0
$^{135}\mathrm{Xe}$	9.2 hr	$2.6 \times 10^6 \text{ barns}$

Walkthrough of neutron slowing down

- (1) Generate a neutron from fission-neutron energy spectrum
- (2) Find cross section at that point
- (3) Determine if more likely to scatter/absorb; choose higher prob ((hopefully scatter))
- (4) Decrease by average energy loss
- (5) Repeat steps 2/3 until absorbed

Identify interaction points on fission cross section plot... show "skipped resonances"

Less relevant

Problem

Recall from mechanics that centripetal force is $F_{\rm cent} = -\frac{mv^2}{r}$ and recall from E&M that the Coulombic force is $F_{\rm coul} = -\frac{Ze^2}{r^2}$. Solve for the Bohr radius of the orbit of an electron on hydrogen, assuming the angular momentum L = mvr is quantized multiples of \hbar (1 \hbar , 2 \hbar , 3 \hbar , etc). Compare this to the measured value of 5.2917721067(12) × 10^{11}Å , the most probable distance between an electron in the ground state and the nucleus of a hydrogen atom.