B. Các dang toán điển hình

Dang 1

Bài tập về phép biến đổi tương đương

Ví dụ 1: Tập nghiệm của bất phương trình $x + \sqrt{x+2} \le 2 + \sqrt{x+2}$ là:

A.
$$(-\infty; -2)$$
. **B.** $\{2\}$.

D. Ø.

STUDY TIP

Cần lưu ý đến điều kiện xác định khi giải bất phương trình chứa căn thức.

STUDY TIP

Trong nhiều trường hợp, phải giải bất phương trình thì mới khẳng định được

phép biến đổi có tương

đương hay không.

Lời giải

Điều kiện: $x+2 \ge 0 \Leftrightarrow x \ge -2$.

Ta có:
$$x + \sqrt{x+2} \le 2 + \sqrt{x+2} \Rightarrow x \le 2$$
.

(*Luu ý*: Ta nói $x \le 2$ là hệ quả của bất phương trình $x + \sqrt{x+2} \le 2 + \sqrt{x+2}$)

Vậy bất phương trình đã cho có nghiệm là $-2 \le x \le 2$.

Đáp án C.

Ví dụ 2: Bất phương trình nào sau đây tương đương với bất phương trình

A.
$$(x+3)\sqrt{x+4} > 0$$
.

B.
$$x + 3 + \sqrt{1 - x} > \sqrt{1 - x}$$
.

C.
$$(x-5)^2(x+3) > 0$$
.

D.
$$x^2(x+3) > 0$$
.

Lời giải

Ta có: $x+3>0 \Leftrightarrow x>-3$.

Với A:
$$(x+3)\sqrt{x+4} > 0 \Leftrightarrow \begin{cases} x+4>0 \\ x+3>0 \end{cases} \Leftrightarrow \begin{cases} x>-4 \\ x>-3 \end{cases} \Leftrightarrow x>-3$$
.

Vậy bất phương trình $(x+3)\sqrt{x+4} > 0$ và bất phương trình x+3>0 có cùng tập nghiệm, do đó tương đương với nhau. A là đáp án đúng.

Giải thích thêm:

*
$$x+3+\sqrt{1-x}>\sqrt{1-x} \Leftrightarrow \begin{cases} 1-x\geq 0 \\ x+3>0 \end{cases} \Leftrightarrow \begin{cases} x\leq 1 \\ x>-3 \end{cases} \Leftrightarrow -3 < x \leq 1.$$

Vậy bất phương trình $x+3+\sqrt{1-x}>\sqrt{1-x}$ và bất phương trình x+3>0 không có cùng tập nghiệm. Do đó chúng không tương đương với nhau.

*
$$(x-5)^2(x+3) > 0 \Leftrightarrow \begin{cases} x \neq 5 \\ x+3 > 0 \end{cases} \Leftrightarrow \begin{cases} x \neq 5 \\ x > -3 \end{cases}$$
.

Tương tự suy ra C không phải là đáp án đúng.

*
$$x^2(x+3) > 0 \Leftrightarrow \begin{cases} x \neq 0 \\ x+3 > 0 \end{cases} \Leftrightarrow \begin{cases} x \neq 0 \\ x > -3 \end{cases}$$
.

Do đó D cũng không phải là đáp án đúng.

Đáp án A.

Dang 2

Giải bất phương trình, hệ bất phương trình

Ví dụ 3: Tìm tập nghiệm S của bất phương trình $\sqrt{x-2018} > \sqrt{2018-x}$?

A.
$$S = \{2018\}.$$

B.
$$S = \emptyset$$
.

C.
$$S = (-\infty; 2018)$$
.

D.
$$S = (2018; +\infty)$$
.

STUDY TIP

Cần lưu ý đến điều kiện xác định khi giải bất phương trình.

Điều kiện: $\begin{cases} x - 2018 \ge 0 \\ 2018 - x \ge 0 \end{cases} \Leftrightarrow \begin{cases} x \ge 2018 \\ x \le 2018 \end{cases} \Leftrightarrow x = 2018.$

Dễ thấy x = 2018 không thỏa mãn bất phương trình đã cho. Vậy $S = \emptyset$.

Đáp án B.

Ví dụ 4: Cho bất phương trình $x^2(x-1)(x^2-4) \le (x-1)(x^2-4)(4x-4)$ có tập nghiệm S. Khẳng định nào dưới đây là đúng?

- **A.** *S* có 3 nghiệm nguyên không âm.
- **B.** *S* có 1 nghiệm duy nhất.
- C. Số $x_0 = 1$ là phần tử có giá trị tuyệt đối nhỏ nhất của S.
- **D.** *S* chứa khoảng (3; 4).

LƯU Ý

Lời giải sai: Bất phương trình tương đương với $x^2 \le 4x - 4 \Leftrightarrow (x - 2)^2 \le 0$ $\Leftrightarrow x = 2$.

STUDY TIP

Không được tùy tiện chia 2 vế của bất phương trình cho một biểu thức khi chưa xác định được dấu của biểu thức

đó.

LƯU Ý

Lòi giải sai: Bất phương trình tương đương với $x^2 - x - 10 \ge 2x^2 + 4x - 6$ $\Leftrightarrow x^2 + 5x + 4 \le 0$ $\Leftrightarrow x \in [-4;-1].$

STUDY TIP

Không được tùy tiện quy đồng khử mẫu khi giải bất phương trình chứa ẩn ở mẫu.

$$x^{2}(x-1)(x^{2}-4) \le (x-1)(x^{2}-4)(4x-4) \Leftrightarrow (x-1)(x^{2}-4)(x^{2}-4x+4) \le 0$$
.

Ta có $(x-1)(x^2-4)(x^2-4x+4)=0$ có các nghiệm x=1 (bội 1), x=2 (bội 3) và x = -2 (bội 1). Xét dấu vế trái:

x	$-\infty$		-2		1		2	-	$+\infty$
VT		_	0	+	0	_	0	+	

Vậy $S = (-\infty; -2] \cup [1; 2]$. Do đó C là đáp án đúng.

Đáp án C.

Vi du 5: Gọi M, m lần lượt là nghiệm nguyên lớn nhất và nhỏ nhất của bất

phương trình $\frac{x^2-x-10}{x^2+2x-3} \ge 2$. Tính M+m.

A. -5. B. -4. C. -3. D. -2.

Điều kiện: $x^2 + 2x - 3 \neq 0 \Leftrightarrow x \neq 1$ và $x \neq -3$.

$$\frac{x^2 - x - 10}{x^2 + 2x - 3} \ge 2 \Leftrightarrow \frac{x^2 - x - 10}{x^2 + 2x - 3} - 2 \ge 0 \Leftrightarrow \frac{-x^2 - 5x - 4}{x^2 + 2x - 3} \ge 0 \Leftrightarrow \frac{x^2 + 5x + 4}{x^2 + 2x - 3} \le 0.$$

Bảng xét dấu vế trái:

Suy ra nghiệm của bất phương trình là $x \in [-4; -3) \cup [-1; 1]$.

Do đó M=0 và $m=-4 \Rightarrow M+m=-4$.

Ví dụ 6: Bất phương trình $4x^2 + 4x - 5 \le |2x + 1|$ có tập nghiệm S = [a; b](a < b).

Tính $a^2 + b^2$.

A.
$$a^2 + b^2 = \frac{17}{4}$$
. **B.** $a^2 + b^2 = \frac{5}{2}$. **C.** $a^2 + b^2 = \frac{5}{4}$. **D.** $a^2 + b^2 = 5$.

B.
$$a^2 + b^2 = \frac{5}{2}$$

C.
$$a^2 + b^2 = \frac{5}{4}$$
.

D.
$$a^2 + b^2 = 5$$
.

$$|2x+1| \ge 4x^2 + 4x - 5 \Leftrightarrow$$

$$\begin{bmatrix} 2x+1 \ge 4x^2 + 4x - 5 & (1) \\ 2x+1 \le -4x^2 - 4x + 5 & (2) \end{bmatrix}$$

$$(1) \Leftrightarrow 4x^2 + 2x - 6 \le 0 \Leftrightarrow -\frac{3}{2} \le x \le 1.$$

$$(2) \Leftrightarrow 4x^2 + 6x - 4 \le 0 \Leftrightarrow -2 \le x \le \frac{1}{2}.$$

Vậy bất phương trình đã cho có tập nghiệm là $S = \left[-\frac{3}{2}; 1 \right] \cup \left[-2; \frac{1}{2} \right] = \left[-2; 1 \right].$

Do đó $a^2 + b^2 = 5$.

Đáp án D.

Ví dụ 7: Biết tập nghiệm của bất phương trình $\sqrt{x^2 - 4x + 5} + 2x \ge 3$ là nửa khoảng $[a; +\infty)$. Tìm [a].

A. 0.

B. 1.

C. 2.

D. 3.

STUDY TIP

Phần nguyên của một số thực x là số nguyên lớn nhất không vượt quá x, kí hiệu $\lceil x \rceil$. Ví dụ:

$$[2,5] = 2; [-2,5] = -3.$$

Lời giả

$$\sqrt{x^{2} - 4x + 5} + 2x \ge 3 \Leftrightarrow \sqrt{x^{2} - 4x + 5} \ge 3 - 2x \Leftrightarrow
\begin{cases}
3 - 2x \le 0 \\
x^{2} - 4x + 5 \ge 0
\end{cases}$$

$$\begin{cases}
3 - 2x \le 0 \\
x^{2} - 4x + 5 \ge 0
\end{cases}$$

$$\begin{cases}
3 - 2x \le 0 \\
x^{2} - 4x + 5 \ge 0
\end{cases}$$
(I)

$$(I) \Leftrightarrow \begin{cases} x \ge \frac{3}{2} \Leftrightarrow x \ge \frac{3}{2}, \\ x \in \mathbb{R} \end{cases}$$

(II)
$$\Leftrightarrow$$

$$\begin{cases} x < \frac{3}{2} \\ 3x^2 - 8x + 4 \le 0 \end{cases} \Leftrightarrow \begin{cases} x < \frac{3}{2} \\ \frac{2}{3} \le x \le 2 \end{cases} \Leftrightarrow \frac{2}{3} \le x < \frac{3}{2}.$$

Vậy tập nghiệm của bất phương trình đã cho là

$$S = \left[\frac{2}{3}; \frac{3}{2}\right] \cup \left[\frac{3}{2}; +\infty\right] = \left[\frac{2}{3}; +\infty\right].$$

Từ đó ta có $a = \frac{2}{3} \Rightarrow [a] = 0.$

Đáp án A.

Ví dụ 8: Hệ bất phương trình $\begin{cases} |x^2 - 7x + 6 < 0 \\ |x^2 - 4x| \le 0 \end{cases}$ có bao nhiều nghiệm nguyên?

A. 0

R 1

C. 2

D. 3.

STUDY TIP

Cho hàm số y = f(x) xác định trên D. Khi đó $|f(x)| \ge 0, \forall x \in D$.

- * $|x^2 4x| \le 0 \iff |x^2 4x| = 0 \text{ (do } |x^2 4x| \ge 0 \forall x \text{)}$

 $\Leftrightarrow x^2 - 4x = 0 \Leftrightarrow x(x - 4) = 0 \Leftrightarrow x = 0$ hoặc x = 4, trong hai giá trị này của x chỉ có giá trị x = 4 thỏa mãn (*).

Vậy hệ bất phương trình đã cho có nghiệm duy nhất x = 4.

Đáp án B.

Dang 3

STUDY TIP $f(x) = ax + b < 0 \ \forall x \in [\alpha; \beta]$

Bất phương trình, hệ bất phương trình bậc nhất chứa tham số

Ví dụ 9: Số giá trị nguyên của tham số m để bất phương trình $m^2(x-1)+x-3<0$ nghiệm đúng $\forall x \in [-5;2]$ là:

Lời giả

$$m^{2}(x-1)+x-3<0 \Leftrightarrow (m^{2}+1)x-m^{2}-3<0$$
.

Đặt
$$f(x) = (m^2 + 1)x - m^2 - 3$$
.

$$f(x) < 0 \ \forall x \in [-5; 2] \Leftrightarrow \begin{cases} f(-5) < 0 \\ f(2) < 0 \end{cases} \Leftrightarrow \begin{cases} -6m^2 - 8 < 0 \\ m^2 - 1 < 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 6m^2 + 8 > 0 \\ m^2 < 1 \end{cases} \Leftrightarrow |m| < 1 \Leftrightarrow -1 < m < 1.$$

Vậy có duy nhất 1 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán, đó là giá trị m=0.

Đáp án B.

Ví dụ 10: Hệ bất phương trình $\begin{cases} 3(x-6) < -3 \\ \frac{5x+m}{2} > 7 \end{cases}$ có nghiệm khi và chỉ khi:

A.
$$m \le -11$$
.

B.
$$m \ge -11$$
.

D.
$$m > -11$$
.

LƯU Ý

Hệ bất phương trình trong Ví dụ 10 vô nghiệm

$$\Leftrightarrow \frac{14-m}{5} \ge 5 \Leftrightarrow m \le -11.$$

Lời giải * $3(x-6) < -3 \Leftrightarrow x-6 < -1 \Leftrightarrow x < 5$.

*
$$\frac{5x+m}{2} > 7 \Leftrightarrow 5x+m > 14 \Leftrightarrow x > \frac{14-m}{5}$$
.

Vậy hệ bất phương trình đã cho có nghiệm khi và chỉ khi

$$\frac{14-m}{5}$$
 < 5 \Leftrightarrow 14 - m < 25 \Leftrightarrow m > -11.

Đáp án D.

Dang 4

Tam thức bậc hai, bất phương trình bậc hai chứa tham số

Ví dụ 11: Cho bất phương trình $f(x)=3x^2+2(2m-1)x+m+4\leq 0$, trong đó m là tham số, $m\in\mathbb{Z}$. Hỏi có bao nhiều giá trị của m để bất phương trình vô nghiệm?

D. 4.

Lời giả

Bất phương trình $f(x) \le 0$ vô nghiệm

$$\Leftrightarrow f(x) > 0 \ \forall x \in \mathbb{R} \Leftrightarrow \Delta' < 0$$

$$\Leftrightarrow 4m^2 - 7m - 11 < 0 \Leftrightarrow -1 < m < \frac{11}{4}$$
.

Mà
$$m \in \mathbb{Z} \Rightarrow m \in \{0; 1; 2\}.$$

Đáp án C.

Ví dụ 12: Cho bất phương trình $f(x) = mx^2 + (2m-1)x + m + 1 < 0$ (m là tham số).

Gọi S là tập tất cả các giá trị của m để bất phương trình có nghiệm. S chứa khoảng nào trong các khoảng dưới đây?

A.
$$(-1; 0)$$
.

Lời giải

Ta tìm điều kiện của m để bất phương trình f(x) < 0 vô nghiệm.

- TH1:
$$m = 0$$
. Khi đó $f(x) = -x + 1 < 0 \Leftrightarrow x > 1$.

Vậy với m=0 thì bất phương trình f(x) < 0 có nghiệm.

- TH2: $m \neq 0$. Khi đó bất phương trình f(x) < 0 vô nghiệm ⇔ $f(x) \ge 0 \ \forall x \in \mathbb{R}$

$$\Leftrightarrow \begin{cases} m > 0 \\ \Delta \le 0 \end{cases} \Leftrightarrow \begin{cases} m > 0 \\ 1 - 8m \le 0 \end{cases} \Leftrightarrow \begin{cases} m > 0 \\ m \ge \frac{1}{8} \end{cases} \Leftrightarrow m \ge \frac{1}{8}.$$

Vậy $m \ge \frac{1}{8}$ thì bất phương trình f(x) < 0 vô nghiệm.

Suy ra với $m < \frac{1}{8}$ thì bất phương trình f(x) < 0 có nghiệm $\Rightarrow S = \left(-\infty; \frac{1}{8}\right)$.

Vậy S chứa khoảng (-1; 0).

Đáp án A.

Ví dụ 13: Tìm tất cả các giá trị của tham số m để bất phương trình $\frac{-x^2+2x-5}{x^2-mx+1} \le 0$ nghiệm đúng $\forall x \in \mathbb{R}$.

A.
$$m \in \mathbb{R}$$
.

B.
$$m \in (-2; 2)$$
.

C.
$$m \in [-2; 2]$$
.

D.
$$m \in (-\infty; -2] \cup [2; +\infty)$$
.

Lời giải

Ta có $f(x) = -x^2 + 2x - 5$ có $\Delta' < 0$, a < 0 nên $f(x) < 0 \forall x \in \mathbb{R}$.

Do đó
$$\frac{-x^2 + 2x - 5}{x^2 - mx + 1} \le 0 \iff x^2 - mx + 1 > 0$$
.

 \Rightarrow Bất phương trình $\frac{-x^2+2x-5}{x^2-mx+1} \le 0$ nghiệm đúng $\forall x \in \mathbb{R} \Leftrightarrow x^2-mx+1 > 0$ nghiệm đúng $\forall x \in \mathbb{R} \Leftrightarrow \Delta = m^2 - 4 < 0 \Leftrightarrow m^2 < 4 \Leftrightarrow -2 < m < 2$.

Đáp án B.

Dang 5

LƯU Ý

Việc xác định chính xác dấu của tử thức $-x^2 + 2x - 5$

giúp ta có được lời giải đơn giản cho bài toán này.

STUDY TIP

Phương pháp "tìm phần bù": Thay vì tìm m để bất phương trình f(x) < 0 có nghiệm, ta tìm m để bất

phương trình f(x) < 0 vô

nghiệm.

Biện luận về nghiệm của phương trình bậc hai

Ví dụ 14: Cho phương trình $(m+2)x^2-2(m-1)x+4=0$. Biết tập hợp các giá trị của tham số m để phương trình vô nghiệm là khoảng (a;b). Tính b-a.

A.
$$b - a = 8$$
.

$$\mathbf{B}, h-a=6$$

$$C. h-a=-8$$

D.
$$b-a=-6$$
.

Lời giải

- * TH1: $m+2=0 \Leftrightarrow m=-2$. Phương trình đã cho trở thành: $6x+4=0 \Leftrightarrow x=-\frac{2}{3}$.
- * TH2: $m+2 \neq 0 \Leftrightarrow m \neq -2$. Khi đó phương trình đã cho có nghiệm

Khi phương trình dạng $ax^2 + bx + c = 0$ có hệ số a chứa tham số ta cần phải chú ý đến trường hợp a = 0.

$$\Leftrightarrow \Delta' = m^2 - 6m - 7 < 0 \Leftrightarrow m \in (-1, 7).$$

Vậy với m ∈ (-1; 7) thì phương trình đã cho vô nghiệm.

Do đó
$$b-a=7-(-1)=8$$
.

Đáp án A.

Ví dụ 15: Gọi m_0 là giá trị nguyên dương nhỏ nhất của tham số m để phương trình $-2x^2+2(m+1)x+m^2-5m+6=0$ có hai nghiệm trái dấu. Khi đó số ước nguyên dương của m_0 là:

D. 4.

STUDY TIP

Phương trình $ax^2 + bx + c = 0$ có hai nghiệm trái dấu khi và chỉ khi ac < 0.

truc số là b-a.

Lời giả

Phương trình đã cho có 2 nghiệm trái dấu $\Leftrightarrow -2(m^2 - 5m + 6) < 0$

$$\Leftrightarrow m^2 - 5m + 6 > 0 \Leftrightarrow m \in (-\infty; 2) \cup (3; +\infty).$$

Vậy $m_0 = 1$. Do đó m_0 có 1 ước nguyên dương.

Đáp án A.

Ví dụ 16: Cho phương trình $x^2 + 2(m-1)x + 4m + 8 = 0$. Biết tập hợp các giá trị của tham số m để phương trình có hai nghiệm dương phân biệt là khoảng (a; b). Tìm độ dài của đoạn [a; b] trên trục số.

D. 6

Lời giải

Phương trình đã cho có 2 nghiệm dương phân biệt \Leftrightarrow $\begin{cases} \Delta' > 0 \\ S > 0 \\ P > 0 \end{cases}$

$$\Leftrightarrow \begin{cases} m^2 - 6m - 7 > 0 \\ -2(m-1) > 0 \\ 4m + 8 > 0 \end{cases} \Leftrightarrow \begin{cases} m \in (-\infty; -1) \cup (7; +\infty) \\ m < 1 \\ m > -2 \end{cases} \Leftrightarrow m \in (-2; -1).$$

Vậy đoạn $\begin{bmatrix} a; b \end{bmatrix}$ có độ dài là -1 - (-2) = 1.

Đáp án A.

Lưu ý:

Cho phương trình bậc hai $ax^2 + bx + c = 0$ $(a \ne 0)$, $\Delta = b^2 - 4ac$, $S = \frac{-b}{a}$, $P = \frac{c}{a}$.

- + Phương trình có 2 nghiệm dương phân biệt \Leftrightarrow $\begin{cases} \Delta > 0 \\ S > 0 \end{cases}$; P > 0
- + Phương trình có 2 nghiệm âm phân biệt $\Leftrightarrow \begin{cases} \Delta > 0 \\ S < 0 \end{cases}$; P > 0
- + Phương trình có 2 nghiệm phân biệt cùng dấu $\Leftrightarrow \begin{cases} \Delta > 0 \\ P > 0 \end{cases}$;
- + Phương trình có 2 nghiệm trái dấu $\Leftrightarrow P < 0 \ (\Leftrightarrow ac < 0)$.