Lab 4

Kendall Dimson

1. Read in the Data

First download and then read in with data.table::fread()

```
if (!file.exists("met_all.gz"))
  download.file(
    url = "https://raw.githubusercontent.com/USCbiostats/data-science-data/master/02_met/met
    destfile = "met_all.gz",
    method = "libcurl",
    timeout = 60
    )
met <- data.table::fread("met_all.gz")</pre>
```

2. Prepare the data

Remove temperatures less than -17C

```
met <- met[met$temp > -17, ]
```

Make sure there are no missing data in the key variables coded as 9999, 999, etc

summary(met)

USAFID	WBAN	year	month	day
Min. :690150	Min. : 116	Min. :2019	Min. :8	Min. : 1.00
1st Qu.:720867	1st Qu.: 3131	1st Qu.:2019	1st Qu.:8	1st Qu.: 8.00
Median :722550	Median :13829	Median :2019	Median :8	Median :16.00
Mean :722909	Mean :29158	Mean :2019	Mean :8	Mean :16.01
3rd Qu.:724699	3rd Qu.:54743	3rd Qu.:2019	3rd Qu.:8	3rd Qu.:24.00
Max. :726516	Max. :94998	Max. :2019	Max. :8	Max. :31.00
hour	min	lat	lon	
Min. : 0.00	Min. : 0.00	Min. :24.55	Min. :-12	4.29
1st Qu.: 6.00	1st Qu.:20.00	1st Qu.:33.80	1st Qu.: −9	8.00
Median :11.00	Median :48.00	Median :37.87	Median : -9	0.65
Mean :11.46	Mean :39.19	Mean :37.59	Mean : -9	1.87
3rd Qu.:17.00	3rd Qu.:55.00	3rd Qu.:41.53	3rd Qu.: −8	2.57
Max. :23.00	Max. :59.00	Max. :48.94	Max. : -6	8.31
elev	wind.dir	wind.dir.qc	wind.t	ype.code
Min. : -13.0	Min. : 3.0	Length: 220066	9 Length	:2200669
1st Qu.: 95.0	1st Qu.:120.0	Class :charac	ter Class	:character
Median : 238.0	Median :180.0	Mode :charac	ter Mode	:character
Mean : 407.2	Mean :183.9			
3rd Qu.: 392.0	3rd Qu.:260.0			
Max. :9999.0	Max. :360.0			
	NA's :702097			
wind.sp	${\tt wind.sp.qc}$	ceiling.h	t ceiling	.ht.qc
Min. : 0.000	Length:2200669	Min. :	O Min.	:1.000
1st Qu.: 0.000	Class :charact	er 1st Qu.: 30)48 1st Qu.	:5.000
Median : 2.100	Mode :charact	er Median:220	000 Median	:5.000
Mean : 2.444		Mean :161	.64 Mean	:4.943
3rd Qu.: 3.600		3rd Qu.:220	000 3rd Qu.	:5.000
Max. :36.000		Max. :220	000 Max.	:9.000
NA's :31304		NA's :663	396	

```
ceiling.ht.method
                      sky.cond
                                                         vis.dist.qc
                                          vis.dist
                   Length: 2200669
                                                         Length: 2200669
Length: 2200669
                                       Min.
                                             :
                                       1st Qu.: 16093
Class : character
                   Class : character
                                                         Class : character
Mode :character
                   Mode :character
                                       Median : 16093
                                                         Mode :character
                                       Mean
                                              : 14904
                                       3rd Qu.: 16093
                                       Max.
                                               :160000
                                       NA's
                                               :30081
                    vis.var.qc
  vis.var
                                            temp
                                                          temp.qc
Length: 2200669
                   Length:2200669
                                       Min.
                                              :-2.40
                                                        Length: 2200669
                                       1st Qu.:20.00
Class : character
                   Class : character
                                                        Class : character
Mode :character
                   Mode :character
                                       Median :23.90
                                                        Mode :character
                                       Mean
                                              :23.81
                                       3rd Qu.:27.90
                                       Max.
                                               :56.00
  dew.point
                 dew.point.qc
                                       atm.press
                                                         atm.press.qc
                                     Min.
Min.
      :-37.20
                 Length: 2200669
                                           : 960.5
                                                        Min.
                                                               :1.000
1st Qu.: 14.00
                 Class : character
                                     1st Qu.:1011.8
                                                        1st Qu.:5.000
Median : 18.50
                 Mode :character
                                     Median :1014.1
                                                        Median :9.000
Mean
      : 17.21
                                     Mean
                                            :1014.2
                                                        Mean
                                                               :7.694
3rd Qu.: 22.00
                                     3rd Qu.:1016.4
                                                        3rd Qu.:9.000
Max.
       : 36.00
                                     Max.
                                            :1059.9
                                                        Max.
                                                               :9.000
NA's
                                     NA's
                                            :1525297
       :6115
      rh
       : 0.833
Min.
1st Qu.: 55.684
Median: 76.441
       : 71.593
Mean
3rd Qu.: 90.703
Max.
       :100.000
NA's
       :6115
```

```
met[met$elev==9999.0, ] <- NA
str(met$lon)</pre>
```

```
num [1:2200669] -116 -116 -116 -116 ...
```

Generate a date variable using the functions as.Date() (hint: You will need the following to create a date paste(year, month, day, sep = "-")).

```
year<- met$year
month<- met$month
day<- met$day

date <- as.Date(paste(year, month, day, sep ="-"))</pre>
```

Using the data.table::week function, keep the observations of the first week of the month.

```
met<- met[met$day <=7 ]</pre>
```

Compute the mean by station of the variables temp, rh, wind.sp, vis.dist, dew.point, lat, lon, and elev.

Create a region variable for NW, SW, NE, SE based on lon = -98.00 and lat = 39.71 degrees

Create a categorical variable for elevation as in the lecture slides

```
met_means[, elev_cat := ifelse(mean_elev >252, "high", "low")]
```

3.Use geom_violin to examine the wind speed and dew point by region

You saw how to use geom_boxplot in class. Try using geom_violin instead (take a look at the help). (hint: You will need to set the x aesthetic to 1)

ggplot(met_means[!is.na(elev_cat)], aes(x=factor(1), y=mean_dew.point, fill=region)) + geom_

ggplot(met_means[!is.na(elev_cat)], aes(x=factor(1), y=mean_wind.sp, fill=region)) + geom_vio

Warning: Removed 12 rows containing non-finite outside the scale range (`stat_ydensity()`).

Use facets Make sure to deal with NAs Describe what you observe in the graph

The graphs display distribution of wind speed and dewpoint in the NE and SE regions. For wind speed, it is between 0-5 m/s, and for dew point, the largest distribution is concentrated at dew.point=20.

4. Use geom_jitter with stat_smooth to examine the association between dew point and wind speed by region

Color points by region Make sure to deal with NAs Fit a linear regression line by region Describe what you observe in the graph

For both regions, as the average dew point increases, the average wind speed decreases.

```
ggplot(met_means, aes(x=mean_dew.point, y=mean_wind.sp, color=region))+
  geom_jitter()+
  stat_smooth(method="lm", aes(group=region))
```

```
`geom_smooth()` using formula = 'y ~ x'
```

Warning: Removed 12 rows containing non-finite outside the scale range (`stat_smooth()`).

Warning: Removed 12 rows containing missing values or values outside the scale range (`geom_point()`).

5. Use geom_bar to create barplots of the weather stations by elevation category colored by region

Bars by elevation category using position="dodge" Change colors from the default. Color by region using scale_fill_brewer see this Create nice labels on the axes and add a title Describe what you observe in the graph Make sure to deal with NA values

Barplots of Weather Stations, b

There are more weather stations located at lower elevations, in comparison to weather stations located at higher elevations.

6. Use stat_summary to examine mean dew point and wind speed by region with standard deviation error bars

Make sure to remove NAs

Use fun.data="mean_sdl" in stat_summary

Add another layer of stats summary but change the geom to "errorbar" (see the help).

Describe the graph and what you observe

Warning: Width not defined
i Set with `position_dodge(width = ...)`


```
geom='errorbar',
position='dodge')
```

```
Warning: Width not defined
i Set with `position_dodge(width = ...)`
```


Dew point is... average 15/16 in NW and 19 in SE.

Wind speed is... average 2 in NW and 2.25 in SE.

7. Make a map showing the spatial trend in relative humidity in the US

Make sure to remove NAs Use leaflet() Make a color palette with custom colors Use addMarkers to include the top 10 places in relative humidity (hint: this will be useful rank(-rh) \leq 10) Add a legend Describe the trend in RH across the US

```
#met$lon <- as.numeric(as.character(met$lon))</pre>
#met means$lon
#map <- leaflet(met) %>%
# addProviderTiles('OpenStreetMap') %>%
 #addCircles(
# lng= ~lon,
  # lat= ~lat,
 # color=~temp.pal(rh),
 # fillOpacity = 0.5, radius=500
  # %>%
  # addMarkers(
  # lng=~rh_top$lon,
  # lat=~rh_top$lat,
  # label
 # ) %/%
       addLegend('bottomleft', pal=temp.pal, values= met_means$mean_rh,
                title='Relative Humidity', opacity=1)
# )
#map
#wasn't able to get code to function correctly on last two questions :(
```

8. Use a ggplot extension

Pick an extension (except cowplot) from here and make a plot of your choice using the met data (or met_avg)

```
#library (ggplot2)
#install.packages(ggforce)
#library(gganimate)

#plot <- ggplot(met, aes(x=date, y=temp))+
    #geom_line(color="purple")+
    # label(title 'Temperature over Time')
#+transition_reveal(date)

#animate(plot, nframes=100, width=800, height=400)</pre>
```

Might want to try examples that come with the extension first (e.g. ggtech, gganimate, ggforce)