Задача 1. Доказать, что функция удовлетворяет уравнению:

2.
$$z = x + y + \varphi(z)$$
, $1 - y\varphi'(z) \neq 0$, что $\frac{\partial z}{\partial y} = \varphi(z) \frac{\partial z}{\partial x}$

Задача 2. Доказать, что для однородной и имеющей производные функции $f(tx, ty, tz) = t^m f(x, y, z)$ выполняется $f_x'(x, y, z) x + f_y'(x, y, z) y + f_z'(x, y, z) z = m f(x, y, z)$.

/Задача 3. Найти
$$f_x'$$
, $f_x'(0,0)$, $f_y'(0,0)$, $f_{xy}''(0,0)$, $f_{xy}''(0,0)$, $f_{y,x}''(0,0)$, $f_{xy}''(0,0)$,

Задача 4. Исследовать на максимум и минимум $z=rac{x^2}{2p}\pmrac{y^2}{2q},\quad (p>0,\quad q>0).$

Задача 5. Найти максимум:

- 1. $u = \sin x + \sin y \sin (x + y)$ на треугольнике, образованным осями координат и прямой $x + y = 2\pi$.
- 2. $u=a^2x^2+b^2y^2+c^2z^2-\left(ax^2+by^2+cz^2\right)^2$ на сфере $x^2+y^2+z^2=1,\quad a>b>c>0.$
- 3. u = xyzt, если x + y + z + t = 4c (сделать вывод о среднем геометрическом и среднем).
- 4. минимум для u = x + y + z + t, $xyzt = c^4$

Задача 6. Предположим какой-нибудь газ (например, воздух) сжимается в поршневом компрессоре от атмосферного давления p_0 до давления $p > p_0$. Работа, затрчиваемая при этом на сжатие 1 кг газа, выразится так: $A = RT_0 \frac{\gamma}{\gamma-1} \left(\left(\frac{p}{p_0} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right)$. R, T_0 , γ – газовая постоянная, абсолютная температура газа до сжатия, постоянная большая единицы,

зависящая от конструкции компрессора. Пусть процесс трёхступенчатый, температура между сжатиями возвращается холодильниками в T_0 , промежуточные давления p_1 , p_2 (после первой и второй ступеней сжатия), то работа вычисляется аддитивно $(A_{01} + A_{12} + A_{23})$. Какие выбрать p_1 , p_2 при заданных p_0 , p, T_0 , чтобы величина затрачиваемой работы была минимальна?

Задача 7. Найти
$$y''$$
: $\ln\left(\sqrt{x^2+y^2}\right) = \arctan\frac{y}{x}$.

Задача 8. Найти экстремум $F(x, y) = x^3 + y^3 - 3axy = 0.$

Задача 9. Вычислить угловой коэффициент касательной в полярных координатах $\tan \alpha = y_x'(r, \theta)$; Вычислить угол между касательной и радиусомвектором $\tan \omega = \tan (\alpha - \theta)$, где θ – угол наклона радиус-вектора.

Задача 10. Лемниската Бернулли. Найти геометрическое место точек M, произведение от каждой из двух наперёд заданных до M на расстоянии 2a друг от друга равно a^2 (a если не a^2 , a b^2 , то **овалы Кассини**).