МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Лабораторная работа № 5.2.2

Изучение спектров атома водорода и молекулы йода

выполнил студент 3 курса группы Б04-006 **Белостоцкий Артемий**

Аннотация

В данной работе будет вычислена постоянная Ридберга, путем исследования оптического спектра водорода. Также будет представлен анализ спектра поглощение паров йода в видимой области.

Теоретические сведения

Спектр атома водорода

Атом водорода является простейшей атомной системой, для которой уравнение Шредингера (1) может быть решено точно.

$$-\frac{\hbar^2}{2m}\Delta\psi - \frac{e^2}{r}\psi = E\psi\tag{1}$$

Именно поэтому спектр атома водорода является предметом тщательного экспериментального исследования. Длины волн спектральных линий атома водорода описываются формулой:

$$\frac{hc}{\lambda_{nm}} = R\left(\frac{1}{n^2} - \frac{1}{m^2}\right),\tag{2}$$

где R – константа, называемая постоянной Ридберга, а m, n – целые числа.

В данной работе будут наблюдаться 3 линии из серии Бальмера (n = 2), а именно – $H_{\alpha}, H_{\beta}, H_{\gamma}$

Спектр молекулы йода

Молекулы обладают более богатым спектром возбужденных состояний, чем изолированные атомы, в молекулах могут возбуждаться дополнительные степени свободы: колебания составляющих их атомов друг относительно друга и вращения молекул относительно различных осей. Энергии вращательных и колебательных уровней задаются выражениями:

$$E_{ exttt{вращ}} = rac{\hbar^2}{2J} l(l+1),$$

где J – момент инерции молекулы относительно оси вращения, $l=0,1,2,\dots$

$$E_{ ext{ iny KOЛEG}}=\hbar\omega_0\left(n+rac{1}{2}
ight),$$

где ω_0 – собственная частота осциллятора, $n=0,1,2,\ldots$

Также приведем отношение характерных энергий вращательного и колебательного возбуждения:

$$\frac{E_{\text{колеб}}}{E_{\text{вращ}}} \approx \frac{1}{\sqrt{\frac{m_e}{M_{\text{яд}}}}} \approx 10^3$$

Именно поэтому вращательные степени свободы в данной лабораторной работе видны не будут.

Рис. 2: Электронные и электронно-колебательные энергетические уровни молекулы йода. Красным отмечены переходы, которые наблюдались в работе (взято из описания лабораторной работы)

Экспериментальная установка

Рис. 3: Экспериментальная установка. (1) — монохроматор, (2) — кювета с йодом и лампа накаливания, (3) — водородная лампа, (4) — неоновая лампа, (5) — ртутная лампа

Ход работы

Используя окуляр и неоновую лампу, проградуируем барабан монохроматора, зная спектр неоновой лампы.

Рис. 4: Спектральные линии неона и соответствующие им длины волн

Рис. 5: Спектральные линии неона, полученные экспериментально

Аналогично проградуируем спектрометр по спектру ртути.

Рис. 6: Экспериментальный спектр линий паров ртути

Рис. 7: Спектр линий паров ртути в видимом диапазоне. (взято из описания лабораторной работы)

По полученным данным построим график зависимости угла, указываемого на барабане, от длины волны спектральных линий Ne и Hg

Аппроксимируем калибровочную кривую полиномом степени n, учитывая что мы хотим получить минимум погрешности коэффициентов и не большое количество самих коэффициентов (т.к. погрешности будут складываться). Анализируя разные n (графики представлены в Приложении), остановим свой выбор на n=3

Рис. 8: Калибровочный график зависимости угла, указанного на барабане монохроматора от длины волны спектральной линии Ne и Hg

Спектр водорода

Снимем спектр водорода. Измерим положение линий $H_{\alpha}, H_{\beta}, H_{\gamma}$. Полученные данные занесем в Таблицу 1

Рис. 9: Экспериментальный спектр водорода

Таблица 1: Полученные длины волн спектра водорода

Линия	α, \circ	λ , HM
H_{α}	1132	438,6
H_{β}	1768	485,4
H_{γ}	2762	657,5

С помощью калибровочного графика определим длины волн линий $H_{\alpha}, H_{\beta}, H_{\gamma}$. Построим график зависимости $\frac{1}{\lambda}$ от $\left(\frac{1}{4}-\frac{1}{m^2}\right)$, по наклону графика определим константу Ридберга.

Рис. 10: График зависимости $\lambda = f\left(\frac{hc}{\frac{1}{4} - \frac{1}{m^2}}\right)$

Из графика получаем:

$$R \approx 13,65 \pm 0,04 \text{ BB}$$

Спектр йода

Получим спектр поглощения йода.

Измерим положения 3 полос поглощения: самой левой, шестой по счету от крайней левой и крайнюю правую. Полученные данные занесем в Таблицу 2

Рис. 11: Экспериментальный спектр поглощения йода (темные полосы)

Таблица 2: Полученные длины волн для спектра поглощения йода

Линия	α, \circ	λ , HM
Крайняя левая	2624	621,8
Шестая от крайней левой	2516	597
Крайняя правая	2038	515,6

Вычислим энергию колебательного кванта возбужденного состояния молекулы йода:

$$h\nu_2 = (h\nu_{1,5} - h\nu_{1,0})/5 \approx 17$$
 мэВ

Оценим энергию электронного перехода $h\nu_{\rm эл}$ (см. Рис.2), зная что энергия нулевых колебаний основного состояния равна $h\nu_1=0,027$ эВ.

$$h\nu_{\text{эл}} = h\nu_{1.0} + h\nu_1 \approx 2,03 \text{ эВ}$$

Оценим энергию диссоциации молекулы в основном состоянии D_1 (см. Рис.2), измерив величину $h\nu_{\rm rp}$ и зная E_a :

$$D_1 = h\nu_{\rm rp} - E_a = (2,41-0,94)$$
э
В = 1,47 эВ

Оценим энергию диссоциации молекулы в возбужденном состоянии:

$$D_2 = h\nu_{\text{гр}} - h\nu_{\text{эл}} = (2, 41 - 2, 03)$$
эВ = 0,38 эВ

Обсуждение результатов

Сравнение кванта колебательной энергии и температуры

При средней комнатной температуре $T=298~{\rm K},~kT\approx 0,026~{\rm эB},$ расстояние между колебательными уровнями энергии основного состояния $\Delta E=0,027~{\rm эB}\sim kT,$ а энергия электронного перехода $h\nu_{\rm эл}\gg kT.$

Таким образом, можем предположить, что колебательные уровни основного состояния заселены, а колебательные уровни возбужденного состояния почти не заселены.

Оценим вклад колебательных степеней в теплоемкость молекулы йода. Из курса термодинамики (а именно, из задач домашнего задания) мы знаем, что, используя статистические методы, возможно рассчитать теплоемкость, которую «создают» только колебательные степени свободы:

$$c_v = \frac{\partial \langle \varepsilon \rangle}{\partial T} \cdot N_A = \left(\frac{h\nu}{kT}\right)^2 \frac{e^{\frac{h\nu}{kT}}}{(e^{\frac{h\nu}{kT}} - 1)^2} \approx 0.91R$$

Тогда, учитывая что молекула имеет 3 поступательные степени свободы и 2 вращательные, полная теплоемкость паров йода:

$$c_V = \frac{5}{2}R + 0.91R = 3.41R = 28, 3\frac{Дж}{K \cdot \text{моль}}$$

Выводы

- В ходе работы была вычислена постоянная Ридберга $R=13,65\pm0,04$ эВ, что, в пределах погрешности, совпадает с табличным результатом R=13,61 эВ
- Были оценены энергии диссоциации молекулы йода в основном $D_1=1,47$ эВ и возбужденном состоянии $D_2=0,38$ эВ
- Также была оценена теплоемкость паров йода $c_V \approx 20, 1 \frac{\text{Дж}}{\text{K-моль}}$