Solid State Kilowatt Amplifiers

A tutorial on how to annoy your neighbors with modern LDMOS transistors

Which bands will we explore here?

- 2m, 222MHz and 70cm
- 6m (winter 2013/14)
- HF through 6m (spring 2014)

Can You Build One of These?

Sure, why not?

Another version

BIG LDMOS devices are available

At "reasonable" cost

- Freescale and NXP (Phillips)
 - MRFE6VP1K25H 1.25kw (Freescale) HF to ~300MHz
 - MRFE6VP5600H 600w (Freescale) HF to 450 MHz
 - BLF578XR -1.25KW (NXP) HF to ~300MHz
 - BLF184XR 600w (NXP) HF to 450MHz (new device, unverified)

Measured Performance

- 6m, 2m and 222MHz
 - 1.25kw part produces 1kw at P1db, and up to 1.35kw at P3db
 - Efficiency is >70% at P1db

Measured Performance

70cm

- 1.25kw part produces ~350w with low efficiency
 - 600w part
 produces 500w
 at P1db with
 53% efficiency
 - Two of the 600w parts produce
 1kw at P1db with 53% efficiency

Where to Find Design Info

- Manufacturer reference designs
- Dubus magazine
- QST and QEX magazine
- Web sites
 - www.w6pql.com
 - -F1JRD
 - Many others

Critical Parts

1. LDMOS distributors

- Newark Electronics <u>www.newark.com</u> (Freescale)
- RFMW Limited http://www.rfmw.com/ (NXP)
- Digikey <u>www.digikey.com</u>
- Mouser <u>www.mouser.com</u>
- Richardson RFPD <u>www.richardsonrfpd.com</u> (Freescale)

Critical Parts

High power RF capacitors

- Metal Micas
 - Mouser
 - Digikey
 - Communication Concepts <u>www.communication-concepts.com/</u>
- SMT micas (CDE MC series)
 - Mouser
- Coaxial matching capacitors
 - Self-made

Inductors and transformers

- Communication Concepts
- Mouser
- Self-wound RF chokes and transformers

Coax (special stuff, 10, 12, and 25 ohm)

- Communication Concepts
- RF Elettronica <u>www.rfmicrowave.it</u>
- EBay (50 Ohm RG401,RG402, RG316, RG142)

Terminations

- Richardson RFPD
- RFMW Limited (Florida RF labs terminations)
- EBay

High power RF resistors and attenuators

- Richardson RFPD (ATC attenuators)
- Newark (Johanson attenuators)
- Mouser (high power resistors for attenuators)

Relays and transfer switches

- RFPARTS (<u>www.rfparts.com</u>) Tohtsu, Dow Key
- Surplus Sales of Nebraska Tohtsu, Dow Key
- EBay
- <u>WWW.W6PQL.COM</u> (input relay board)

PC boards

- Communications Concepts
- RFHAM
- WWW.W6PQL.COM

Copper spreaders

- RFHAM
- WWW.W6PQL.COM

Aluminum heat sinks

- www.heatsinkusa.com
- <u>WWW.W6PQL.COM</u> (fully machined to accept spreaders)

Cabinets and panels

www.frontpanelexpress.com

Design Cautions

- 1. All bands
 - Use good quality PC board substrate
 - Matching components (capacitors)
 - Best capacitor for matching is coaxial
 - Instability due to low frequency gain
 - Gate components
- 2. Bias stability (thermal drift)
 - LDMOS IDQ thermal drift
 - Use of thermistors for stabilization

OK, you have an RF Deck

Now what?

Flange-Mount Attenuators

- Available in 3,6,10,20 and 30 db packages (availability varies)
- Made by ATC and Johanson
- 100 watt package
- Requires transistion boards

A more flexible option

PNWVHFS conference October 2013

Attenuator setup

432 MHz	3db	6db	10db	13db	16db
R1	300 - 15w	100 - 15w	100 - 30w	75 -30w	
R2	15 -15w	50 – 15w 75 – 15w		100 – 15w	
R3	300 -15w	Not used 100 – 15w		75 – 15w	
LI	27nh	3 turns #22 3mm dia, space-wound input inductor; position across R1 terminals near body	across R1	3mm id, 8mm	
L2	27nh	33nh	27nh	27nh	

222 MHz	3db	6db	10db	13db	16db
R1		100 – 15w			
R2 R3		50 -15w			
R3		Not used			
L1 L2		120nh			
L2		220nh			

144 MHz	3db	6db	10db	13db	16db
R1	300 - 15w	100 – 15w	100 - 30w	75 -30w	75 – 100w
R2	15 -15w	50 -15w	75 – 15w	100 – 15w	150 - 30w
R3	300 -15w	Not used	100 – 15w	75 – 15w	75 – 15w
Ll	330nh	270nh	220nh	220nh	120nh
L2	330nh	560nh	330nh	330nh	270nh

50 MHz	3db	6db	10db	13db	16db
R1	300 – 15w	100 – 15w	100 – 30w	75 -30w	75 – 100w
R2	15 -15w	50 -15w	75 – 15w	100 – 15w	150 - 30w
R3	300 -15w	Not used	100 – 15w	75 – 15w	75 – 15w
L1	Not used				
L2	Not used				

Filter Passband

2m setup

with dual directional detector

1 KW LPF and dual directional detector assembly - total insertion loss is < 1/10 db (7-2013 version)

with dual directional detector

- Coupler will sample both forward and reflected power levels
- Each band can be configured for correct signal levels
 - On-board attenuators set the correct signal levels for the detector diodes

Coupler Response

coupling across VHF/UHF bands

Antenna Relays (output)

Transfer switchDow Key model 412

SPDT model 402

Antenna Relays (output)

SPDT - Tohtsu model CX600NL

Relay Measurements (CX600NL)

insertion loss

Marker 1: 145.0000 MHz, 0.0 dBm Marker 4: 900.0000 MHz, 0.0 dBm Marker 2: 220.0000 MHz, 0.0 dBm Marker 5: 1295.0000 MHz, -0.1 dBm Marker 3: 435.0000 MHz, -0.0 dBm

Relay Measurements (CX600NL)

return loss

Relay Measurements (CX600NL)

isolation

Antenna Relays (input)

Relay Specs (CX120A)

insertion loss

Relay Specs (CX120A)

return loss

Relay Specs (CX120A)

isolation

Control Board Functions

- Sequencer
 - Prevents hot-switching the antenna output relay
- DC power gate
 - VDD and bias (event 2)
- Fan control
- Reverse power lockout (high VSWR)
- Over-temp lockout
- Sequenced LNA power feed and drive power gating if required (event 3)

Coming soon to a band near you

- K2OP 160 thru 6m
 - 650w on 160m
 - 1kw+ on 75m thru 10m
 - 950w on 6m
 - Broadband transformer design

Very complex switching and filtering, as you can imagine

- Harmonic content is as high as -9dbc on some bands
 - Thus, a complex output filter is required...the prototype is working well now
 - Combination LPF and diplexer