Who Needs Attention Anyway?

Geometric Inference for Streaming State Space Models

Dario Fumarola

Abstract

We introduce Geometry-Aware Streaming State Space Models (GeoSSMs), a constant-latency framework that augments selective-scan SSMs with a decoder-induced pullback (Fisher) metric in latent space. GeoSSM performs a predict-then-correct update each step: after the frozen SSM predicts $z_{t+1|t}$, we compute a natural direction $v = -(\lambda I + UU^{\top})^{-1}\nabla\ell(z_{t+1|t})$ using a strictly constant-time Woodbury solve, then apply a metric-capped geodesic trust-region correction $z_{t+1} = \operatorname{Retr}_{z_{t+1|t}}(\alpha v)$ with standard TR acceptance ratio η and adaptive radius ρ . The metric **G** is a low-rank EMA sketch of the pullback/Fisher tensor from decoder Jacobians (Gauss-Newton), updated online without touching SSM weights. Across (i) **curved 2-D worlds** (nonstationary navigation) and (ii) **molecular control** (peptide torsions), GeoSSM adapts without policy retraining, reducing steps-to-goal/constraint by 39–46%, collisions/clashes by $2\times-4\times$, and a normalized energy proxy by $\approx 35\%$ at matched accuracy; latency remains flat with low p99. Ablations isolate the value of decoder-derived geometry versus Euclidean and latent-preconditioned controls, and show graceful degradation under tighter budgets (r, λ, β) .

1 Introduction

Transformers excel at long-range dependencies but incur quadratic attention costs and unpredictable latency. Modern *state space models* (SSMs) deliver linear-time, constant-memory scanning, providing a natural substrate for streaming agents. Yet standard SSMs evolve in a Euclidean latent, ignoring curvature and task constraints.

We propose **GeoSSM**: a frozen SSM backbone enhanced with a *decoder-induced pullback* (*Fisher*) *metric* that guides a *geodesic trust-region* correction at *inference time*. The result is instant, constant-latency re-planning in nonstationary settings—agents that *think in curves, not tokens*.

Contributions.

- 1. **Predict-then-correct geometry.** A pullback/Fisher metric on the SSM latent yields natural directions and geodesic trust-region corrections with a constant-time Woodbury solve.
- 2. **Streaming adaptation w/o retraining.** The SSM parameters are frozen; only metric statistics adapt via a low-rank EMA from decoder Jacobians (Gauss–Newton/Fisher).
- 3. **Unified demos & rigor.** Two domains—curved 2-D navigation and peptide torsion control—share one spine; we add latency-matched planner baselines (iLQR-lite, MPC wrapper), nonstationarity panels, p99 latency, CIs, and a (λ, r, β) grid.
- 4. **Analysis.** We formalize the step as Riemannian steepest descent with standard TR guarantees and provide a contraction-style stability statement in a local region.

2 Background

Selective-scan SSMs. We use a compact SSM block with selective scan as the backbone: $z_{t+1|t} = f_{\theta}(z_t, x_t)$, decoder $g_{\phi} : \mathbb{Z} \to \mathcal{Y}$ produces predictions/actions. Inference runs in O(1) memory per step.

Pullback (Fisher) metric. Let $p_{\phi}(y|z)$ be the decoder likelihood and $\mathbf{I}_{obs}(z)$ its Fisher in observation space. The pullback metric on \mathcal{Z} is

$$\mathbf{G}(z) = \mathbf{J}_{g}(z)^{\mathsf{T}} \mathbf{I}_{\text{obs}}(z) \mathbf{J}_{g}(z) + \lambda I, \tag{1}$$

with $\lambda > 0$ ensuring SPD. For Gaussian decoders, \mathbf{I}_{obs} is the inverse covariance; for general likelihoods we use Gauss–Newton.

Natural gradient and trust regions. The steepest descent direction under **G** is $v = -\mathbf{G}^{-1}\nabla \ell$. Trust regions use a model $m(\alpha)$ to compare predicted vs. actual decrease and adapt the radius ρ .

3 Method: GeoSSM (Predict-then-Correct)

At each step, we (1) *predict* with the frozen SSM, (2) build a low-rank sketch of the pullback metric at $z_{t+1|t}$, (3) compute a natural direction with a Woodbury solve, and (4) *correct* via a geodesic TR step.

3.1 Metric from decoder Jacobians (low-rank EMA)

We estimate G(z) from JVPs/VJPs without forming J_g . With r probe directions $q_j \in \mathbb{R}^{d_z}$ (see sampling below), define

$$u_j = \mathbf{J}_g(z)^{\top} (W(z) \mathbf{J}_g(z) q_j) \in \mathbb{R}^{d_z}, \qquad W(z) \approx \mathbf{I}_{\text{obs}}(z),$$

and stack $U^{\text{new}} = [u_1, \dots, u_r] \in \mathbb{R}^{d_z \times r}$. We maintain an EMA

$$U_t \leftarrow \beta U_{t-1} + \sqrt{1 - \beta^2} U^{\text{new}}, \qquad \mathbf{G}_t = \lambda I + U_t U_t^{\mathsf{T}},$$
 (2)

with $\beta \in (0, 1)$. **Probe sampling.** We use a *loss-aware* sketch with $q_1 = \nabla \ell(z), q_2, \dots, q_{r-1}$ i.i.d. Rademacher (Hutchinson), and q_r the previous accepted direction (stabilizes dynamics).

3.2 Horizon surrogate and TR model

We evaluate a small-horizon surrogate around $z = z_{t+1|t}$:

$$m(\alpha) = \sum_{h=0}^{H-1} \gamma^h \ell \Big(\Phi_h \big(\text{Retr}_z(\alpha v) \big) \Big), \quad \Phi_h: \text{ h-step rollout of } f_\theta \text{ (weights frozen)}.$$
 (3)

We linearize $m(\alpha)$ at $\alpha = 0$ and use a quadratic model $\widehat{m}(\alpha) = m(0) + \alpha \langle -\nabla \ell(z), v \rangle - \frac{1}{2}\alpha^2 v^{\top} \mathbf{G}_t v$. The *predicted* decrease is $\Delta_{\text{pred}} = \widehat{m}(0) - \widehat{m}(\alpha)$. The *actual* decrease is $\Delta_{\text{act}} = m(0) - m(\alpha)$ using the short rollout.

```
Input Frozen SSM f_{\theta}, decoder g_{\phi}, TR radius \rho, EMA \beta, rank r, damping \lambda, horizon H, discount \gamma,
           thresholds \eta_{lo}, \eta_{hi}.
State: Latent z_t, U_{t-1}, hardware latency budget \tau_{\text{max}} (soft cap).
Predict: z \leftarrow f_{\theta}(z_t, x_t)
                                                                                                                                       //z \equiv z_{t+1|t}
Metric: Sample probes q_1 = \nabla \ell(z), q_{2...r} (Rademacher), q_r = \text{prev dir};
        Build \hat{U}^{\text{new}} = [\mathbf{J}_g^{\top}(W \mathbf{J}_g q_j)]_{j=1}^r via JVP/VJP;
        U \leftarrow \beta U_{t-1} + \sqrt{1 - \beta^2} U^{\text{new}};
\mathbf{G} \leftarrow \lambda I + UU^{\mathsf{T}};
Gradient: g \leftarrow \nabla_z \ell(z)
Solve (Woodbury): Factor R = \text{chol}(\lambda I + U^{T}U);
        v \leftarrow -\frac{1}{\lambda} (g - UR^{-\top}R^{-1}U^{\top}g)
Backtrack: Choose largest \alpha \in \{\alpha_0, \alpha_0/2, \alpha_0/4\} s.t. \|\alpha v\|_{\mathbf{G}} \le \rho;
TR check: Compute \Delta_{\text{pred}} = \alpha \langle -g, v \rangle - \frac{1}{2} \alpha^2 v^{\top} \mathbf{G} v;
        Compute m(0) and m(\alpha) via H-step rollout (Section 3.2);
        \eta \leftarrow (m(0) - m(\alpha))/\Delta_{\text{pred}}
Accept/Reject: if \eta < \eta_{lo} then
     shrink \rho \leftarrow \rho/2; reject (set \alpha = 0)
                                                                                                                                         // accept
else
     accept; if \eta > \eta_{hi} and \|\alpha v\|_{\mathbf{G}} \approx \rho, grow \rho \leftarrow 1.5\rho
Correct: z_{t+1} \leftarrow \text{Retr}_z(\alpha v); emit g_{\phi}(z_{t+1}) or action
               Algorithm 1: GeoSSM (predict-then-correct, trust-region, Woodbury solve)
```

3.3 Woodbury solve (strict constant latency)

With $\mathbf{G}_t = \lambda I + U_t U_t^{\top}$ and $g = \nabla \ell(z)$, the natural direction solves $\mathbf{G}_t v = -g$. The Sherman–Morrison–Woodbury identity gives

$$(\lambda I + UU^{\mathsf{T}})^{-1}g = \frac{1}{\lambda} \Big(g - U (\lambda I + U^{\mathsf{T}}U)^{-1}U^{\mathsf{T}}g \Big). \tag{4}$$

We cache $R = \operatorname{chol}(\lambda I + U^{\top}U) \in \mathbb{R}^{r \times r}$ and compute $v = -\frac{1}{\lambda} (g - U R^{-\top} R^{-1} U^{\top} g)$ with cost $O(d_z r + r^2)$. This is deterministic and strictly constant-time for fixed r.

3.4 Algorithm and TR mechanics

Algorithm 1 implements a genuine TR: we cap $\|\alpha v\|_{\mathbf{G}} \le \rho$, compute $\eta = \Delta_{\mathrm{act}}/\Delta_{\mathrm{pred}}$, adapt ρ , and accept/reject. Retractions use a second-order update; see Section A.

Latency discipline. We fix $r \in \{4, 8\}$, a three-point backtracking set, $H \in \{1, 3\}$, and cache R. The end-to-end per-step latency stays below a soft budget τ_{max} ; we report mean and p99.

4 Analysis

We give two concise statements using standard Riemannian/TR tools; proofs are sketched.

Proposition 1 (Riemannian steepest descent with TR). Let ℓ be L-smooth in the $\mathbf{G}(z)$ -metric on a neighborhood N of z, and $\mathbf{G}(z)$ be SPD and Lipschitz on N. The TR subproblem with radius ρ and quadratic model \widehat{m} has solution proportional to the natural direction $v^* = -\mathbf{G}(z)^{-1}\nabla \ell(z)$. For any $\alpha \leq 1/L$ with $\|\alpha v^*\|_{\mathbf{G}} \leq \rho$,

$$\ell(\operatorname{Retr}_{z}(\alpha v^{\star})) \leq \ell(z) - \frac{\alpha}{2} \|\nabla \ell(z)\|_{\mathbf{G}^{-1}}^{2} + O(\alpha^{2}).$$

Proposition 2 (Local contraction-style stability). Assume there exists a region $\mathcal{R} \subset \mathcal{N}$ and $\mu > 0$ s.t. along the SSM flow $\dot{V} \leq -\mu V + \epsilon$ for $V(z) = \|z - z^{\star}\|_{\mathbf{G}}^2$, and the retraction applies steps with $\|\Delta z\|_{\mathbf{G}} \leq \rho$ where \mathbf{G} is Lipschitz. Then the composed update satisfies

$$\mathbb{E}[V(z_{t+1})] \leq (1 - \mu \Delta t) \, \mathbb{E}[V(z_t)] + O(\epsilon + \rho^3),$$

yielding local exponential stability up to modeling/retraction error.

Geodesic error. Second-order retractions incur local error $O(\|\alpha v\|_{\mathbf{G}}^3)$; our TR cap keeps this small (Section A).

5 Experiments

Backbone. A compact selective-scan SSM (d_z =64) is trained offline per domain; inference freezes θ . Planner defaults: r=8, λ =10⁻³, β =0.98, H=3, γ =0.97, η_{lo} =0.25, η_{hi} =0.75, ρ initialized to 0.5. Hardware: single RTX 4090 (24GB), AMD 7950X, PyTorch 2.2; soft per-step budget τ_{max} = 6 ms. Metrics: mean \pm 95% CI over 5 seeds (256 episodes/seed); latency reports include p99.

5.1 Curved 2-D worlds (nonstationary navigation)

Env. Height-field maze with barriers; episodes of 256 steps. At step $t^* \in \{64, 128, 192\}$ we *drag* an obstacle (small/medium/large displacement). Loss ℓ includes goal distance, signed-distance collision penalties, and control effort.

Agents. Transformer (win128, streaming cache), Vanilla SSM (no geometry), RMP-style reactive controller, Euclidean TR on z, **GeoSSM**, GeoSSM (no adapt), **iLQR-lite** (linearize f_{θ} at z; single Riccati sweep, horizon H=3), **Latent precond.** (TR with frozen EMA covariance in z, no decoder Jacobians).

5.2 Molecular control (peptide torsions)

Task. Peptides (8–12 aa), internal coordinates; actions set (ϕ, ψ) torsions. On-the-fly constraints: bring residues i, j within 6 Å while minimizing clashes/energy and keeping to valid Ramachandran regions. Decoder outputs torsions and a coarse distance map; ℓ aggregates contact errors, Lennard–Jones proxy, and smoothness.

Agents. Greedy torsion MLP; SE(3)-Transformer (small); **SE(3)-Transformer+MPC** (horizon 3, no weight updates); **Latent precond.**; **GeoSSM**.

6 Results

Nonstationarity panels. Figure 1 shows success vs. move time and performance vs. move magnitude: GeoSSM is robust when perturbations land late and large.

Table 1: Curved 2-D worlds. Mean \pm 95% CI over seeds. Energy is normalized GPU power (Transformer = 1). Latency includes per-step p99 (ms). GeoSSM adapts to moved obstacles without retraining, reducing collisions/regret at stable latency.

Method	Steps↓	Collisions↓	Regret↓	Success†	FPS↑	p99 (ms)↓	Energy↓
Transformer (win128)	39.7±1.2	0.19	1.00	0.68	85±5	38.2	1.00
Vanilla SSM	34.2 ± 0.9	0.12	0.78	0.77	220 ± 4	6.0	0.62
RMP-style reactive	31.1 ± 1.0	0.11	0.71	0.82	230 ± 4	6.2	0.64
Euclidean TR (latent)	26.7 ± 0.8	0.09	0.60	0.88	216 ± 4	6.1	0.66
Latent precond. (EMA cov)	25.9 ± 0.8	0.08	0.57	0.89	215 ± 4	6.2	0.66
iLQR-lite (H=3)	24.8 ± 0.8	0.08	0.54	0.90	205 ± 5	8.9	0.71
GeoSSM (no adapt)	25.3 ± 0.8	0.07	0.55	0.90	214 ± 4	6.3	0.66
GeoSSM (ours)	21.6 ± 0.7	0.04	0.41	0.96	215 ± 3	6.4	0.67

Table 2: Molecular control (8–12 aa). Mean \pm 95% CI. Latency includes p99 (ms). GeoSSM reaches constraints faster with smoother, lower-energy paths under constant latency.

Method	RMSD (Å)↓	Steps↓	Clash/Energy↓	Success†	p99 (ms)↓	Latency mean (ms)↓
Greedy torsion MLP	3.7 ± 0.2	74±3	8.7 ± 0.6	0.62	4.1	2.6
SE(3)-Transformer (small)	2.9 ± 0.2	52 ± 2	5.1 ± 0.5	0.74	11.7	8.9
SE(3)-Tr.+MPC (H=3)	2.7 ± 0.2	45 ± 2	4.0 ± 0.4	0.80	14.2	10.3
Latent precond. (EMA cov)	2.6 ± 0.2	40 ± 2	3.6 ± 0.3	0.85	3.9	3.1
GeoSSM (no adapt)	2.6 ± 0.2	38 ± 2	3.0 ± 0.3	0.87	4.0	3.1
GeoSSM (ours)	2.3 ± 0.2	31 ± 2	2.2 ± 0.2	0.91	4.2	3.1

7 Ablations

Metric source. Replacing pullback/Fisher with Euclidean increases steps-to-goal by +24% (maze) and steps-to-constraint by +32% (peptide). Latent preconditioning narrows the gap but remains behind GeoSSM, isolating the value of decoder-derived geometry. Adaptation speed. Freezing U (no EMA) drops success by 4–9 points. Horizon. H=3 balances cost and stability; H=1 is myopic. Latency. GeoSSM holds p99 ≈ 6.4 ms on our hardware; iLQR-lite incurs higher p99 (≈ 8.9 ms) due to Riccati sweeps.

Budget grid. Table 3 shows a 3×3 grid varying (λ, r, β) on the maze; errors rise gracefully under tighter budgets.

8 Qualitative views

9 Related Work

Linear-time SSMs. Structured/selective SSMs enable long-context modeling with constant memory and strict streaming guarantees.

Riemannian methods. Pullback/Fisher metrics, natural gradients, and Riemannian optimization provide invariance and curvature-aware steps; we apply them *in latent space at inference* with a TR/MPC wrapper and fixed budgets.

Figure 1: Nonstationarity stress. GeoSSM maintains high success and lower steps under later/larger perturbations.

Table 3: **Budget grid (maze).** Steps-to-goal \downarrow for $\lambda \in \{10^{-4}, 10^{-3}, 10^{-2}\}, r \in \{4, 8, 12\}, \beta \in \{0.95, 0.98, 0.995\}$. Best in bold.

Config		S	Steps (95% CI)				
λ	r	β	small	medium	large		
10^{-4}	4	0.95	24.8±0.8	26.1 ± 0.9	27.4±0.9		
10^{-3}	8	0.98	21.6±0.7	22.3 ± 0.7	23.5 ± 0.8		
10^{-2}	12	0.995	22.0±0.7	22.7 ± 0.7	24.1 ± 0.8		

Geometric control. Control contraction metrics and RMP-style policies formalize metric-driven stability/composability; our method uses a learned pullback metric as the local geometry for MPC.

Molecular modeling. Equivariant networks (SE(3)-Transformer, GVP) and fast single-sequence predictors (ESMFold) address different aims; we focus on *streaming constraint satisfaction* in torsion space.

10 Limitations

Metric misspecification. Poorly calibrated decoders can distort **G**; we use temperature scaling on decoder variances, EMA smoothing, and a floor λ with condition-number clamps. **High curvature.** Very sharp curvature shrinks ρ ; horizons H=3 mitigate but add modest cost. **Scope.** We do not do full RL policy training or de novo folding; our gains are in streaming adaptation.

11 Conclusion

We presented **GeoSSM**, a geometry-aware *streaming* inference procedure for SSMs that adds a decoder-derived pullback metric, a constant-time Woodbury natural step, and a geodesic trust region. Across two domains, this yields instant, constant-latency re-planning without policy retraining. Thinking in *curves*, not tokens, provides safer, smoother adaptation under fixed compute.

Figure 2: **Qualitative behavior.** Left: GeoSSM follows smooth geodesics that avoid obstacles and adapt instantly. Right: GeoSSM respects Ramachandran constraints while satisfying a distance constraint with minimal overshoot.

References

- [1] A. Gu, K. Goel, A. Ré. Efficiently Modeling Long Sequences with Structured State Spaces. *ICLR*, 2022.
- [2] A. Gu, T. Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces. *arXiv:2312.00752*, 2023.
- [3] S.-I. Amari. Natural Gradient Works Efficiently in Learning. *Neural Computation*, 10(2):251–276, 1998.
- [4] P.-A. Absil, R. Mahony, R. Sepulchre. *Optimization Algorithms on Matrix Manifolds*. Princeton University Press, 2009.
- [5] J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz. Trust Region Policy Optimization. *ICML*, 2015.
- [6] S. Kakade. A Natural Policy Gradient. *NeurIPS*, 2001.
- [7] I. Manchester, J.-J. Slotine. Control Contraction Metrics: Convex and Intrinsic Criteria for Nonlinear Feedback Design. *IEEE TAC*, 62(6):3046–3053, 2017.
- [8] C.-A. Cheng, J. F. F. Soler, R. Ratliff, S. S. Srinivasa. RMPflow: A Computational Graph for Automatic Motion Policy Generation. *ISRR*, 2019.
- [9] F. Fuchs, D. Worrall, V. Fischer, M. Welling. SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks. *NeurIPS*, 2020.
- [10] B. Jing, C. E. T. Senior, J. Xu, R. S. Fiser. Learning from Protein Structure with Geometric Vector Perceptrons. *ICLR*, 2021.
- [11] Z. Lin et al. Language Models of Protein Sequences at the Scale of Evolution Enable Accurate Structure Prediction. *Science*, 2023.
- [12] J. L. Watson et al. De Novo Design of Protein Structure and Function with RFdiffusion. *Nature*, 2023.

- [13] G. N. Ramachandran, C. Ramakrishnan, V. Sasisekharan. Stereochemistry of Polypeptide Chain Configurations. *J. Mol. Biol.*, 7:95–99, 1963.
- [14] M. F. Hutchinson. A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian Smoothing Splines. *Communications in Statistics*, 18(3):1059–1076, 1989.
- [15] K. B. Petersen, M. S. Pedersen. The Matrix Cookbook. Technical University of Denmark, 2012. (Woodbury identity)
- [16] Y. Tassa, N. Mansard, E. Todorov. Control-Limited Differential Dynamic Programming. *ICRA*, 2014. (iLQR/DDP lineage)

Appendix

A Retractions and local geodesic error

We use a second-order retraction $\operatorname{Retr}_z(\Delta) = z + \Delta + \frac{1}{2} A(z) [\Delta, \Delta]$, where A approximates Christoffel terms from automatic differentiation of \mathbf{G} . For $\|\Delta\|_{\mathbf{G}} \leq \rho$, the distance to the true geodesic endpoint is $O(\|\Delta\|_{\mathbf{G}}^3)$, justifying small trust radii.

B Woodbury solve details

For $\mathbf{G} = \lambda I + UU^{\top}$ with $U \in \mathbb{R}^{d_z \times r}$, Woodbury yields

$$\mathbf{G}^{-1} = \frac{1}{\lambda} I - \frac{1}{\lambda} U (\lambda I + U^{\mathsf{T}} U)^{-1} U^{\mathsf{T}} \frac{1}{\lambda}.$$

Thus $v = -\mathbf{G}^{-1}g$ can be computed as

$$v = -\frac{1}{\lambda}g + \frac{1}{\lambda}U(\lambda I + U^{\top}U)^{-1}U^{\top}\left(\frac{1}{\lambda}g\right),$$

with one $r \times r$ Cholesky and two matrix–vector multiplies, $O(d_z r + r^2)$. This strictly fixes per-step latency for fixed r.

C Surrogate $m(\alpha)$ and TR acceptance

We roll out H steps with f_{θ} to evaluate $m(\alpha)$ in Equation (3). The quadratic model \widehat{m} is built from $\nabla \ell(z)$ and ν with local metric G. The TR acceptance ratio $\eta = \Delta_{\rm act}/\Delta_{\rm pred}$ determines accept/reject and radius updates. In practice we restrict α to $\{\alpha_0, \alpha_0/2, \alpha_0/4\}$ to keep latency flat and clip $\|\alpha\nu\|_{G} \leq \rho$.

D Decoder calibration and guardrails

We calibrate Gaussian decoder variances via temperature scaling on a held-out split. We clamp the condition number $\kappa(\mathbf{G})$ by flooring λ and capping $\|U\|_2$. We report average $\kappa(\mathbf{G})$ over time in the supplement.

E Baseline implementations

iLQR-lite. Linearize f_{θ} around z, quadraticize ℓ , perform one Riccati sweep (H=3), apply the first action; wall-clock is capped to match GeoSSM. **SE(3)-Tr.+MPC.** We wrap a small SE(3)-Transformer in a horizon-3 MPC without weight updates. **Latent precond.** Replace **G** by a frozen EMA covariance in z, i.e., $\mathbf{G} = \lambda I + \Sigma_z$ with Σ_z diagonal or low rank; no decoder Jacobians.

F Statistical reporting

We report mean \pm 95% CI over 5 seeds; main claims (steps-to-goal/constraint) are significant under paired tests (p < 0.01). Latency reports include per-step mean and p99 on the stated hardware.