Introdução às Máquinas de Turing

O que um computador pode fazer?

 Reconhecer os strings em uma linguagem é um modo formal de expressar qualquer problema, e resolver um problema é uma expressão razoável daquilo que os computadores fazem.

 Importante: quais linguagens podem ser definidas por qualquer dispositivo computacional?

Incomputabilidade (indecidibilidade)

- Linguagens Regulares: reconhecidas por DFA,
 NFA, ε-NFA ou RE;
- Linguagens Livres de Contexto: reconhecida por CFG;
- Linguagens "Decidíveis": reconhecidas por um computador.

= Máquina de Turing

Máquinas de Turing (TM)

- É um formalismo para computadores;
- Embora uma máquina de Turing não se pareça em nada com um PC e, apesar de ser inviável fabricá-la e vendê-la, a TM é um modelo preciso daquilo que qualquer dispositivo físico de computação é capaz de fazer.

Linguagem

$$\begin{split} \Sigma &= \{\text{a, b, c}\} \\ \Sigma^* &= \text{todas as strings que podem ser escritas com } \Sigma \\ &= \Sigma^0 \ \text{U} \ \Sigma^1 \ \text{U} \ \Sigma^2 \ \text{U} \ \Sigma^3 \ \text{U} \ \dots \\ &= \{\epsilon\} \ \text{U} \ \{\text{a,b,c}\} \ \text{U} \ \{\text{aa,ab,...}\} \ \text{U} \ \{\dots\} \end{split}$$

$$L \subseteq \Sigma^*$$

 $L = \{w \in \Sigma^* \mid restrição\}$

Por que os problemas indecidíveis têm de existir?

- Um problema pode ser definido como a pertinência de um string a uma linguagem.
- O número de linguagens diferentes sobre qualquer alfabeto de mais de um símbolo não é enumerável.
- Sendo os programas strings finitos sobre um alfabeto finito, são enumeráveis.
- <u>Conclusão</u>: existem infinitamente menos programas que problemas.

^{*} A única razão pela qual a maioria dos problemas parece ser decidível é que raras vezes estamos interessados em problemas aleatórios (linguagem escolhida ao acaso). Mas, mesmo problemas simples e estruturados podem ser indecidíveis.

- Problemas que nenhum computador pode resolver!!!
- <u>Exemplo</u>: Verificar se a primeira saída que um programa imprime é "hello, world".
 - Dado como entrada um fonte de programa em 'C'
 - file.c
 - Saída: sim, file.c imprime "hello, world"
 não, caso contrário

• file.c

```
main() {
    printf("hello, world");
}
```

• file2.c

```
main() {
    printf("xyz");
}
```

• file3.c

```
fermat(n) {
    max = 3;
    while(true) {
           for (a=1; a < max; a++)
                 for (b=1; b < max; b++)
                        for (c=1; c<max; c++)
                            if (a < b) and (a^n + b^n = c^n)
                               printf("hello, world");
          max++;
```

 Vários problemas podem ser convertidos em uma pergunta da forma:

"esse programa, com essa entrada, imprime hello, world?"

 Não existe um programa capaz de examinar qualquer programa P e cada entrada I para P, e informar se P, executado com I como sua entrada, imprimiria hello, world.

Indecidibilidade

- T = { L | L $\subseteq \Sigma^*$ } = 2 Σ^*
- Pelo Teorema de Cantor: |T| > |programas|
- Conclusão: grande maioria das linguagens são indecidíveis;
 - Não existe um programa (DFA, PDA, Máquina de Turing, computador tradicional) que a resolva.

Indecidibilidade

- Problema: uma dado programa com uma determinada entrada imprime hello, world?
 - Não pode ser resolvido por um computador
 - > problema indecidível
- Suponha que queremos descobrir se algum outro problema pode ou não ser resolvido por um computador.
- É possível tentar escrever um programa para resolvêlo, mas se não conseguirmos descobrir como fazê-lo, podemos tentar provar que não existe tal programa.

Máquina de Turing

- Em 1936, Alan Turing propôs a Máquina de Turing como um modelo de "qualquer computação possível".
- O propósito da teoria de Máquinas de Turing é provar que certas linguagens específicas não possuem algoritmo para resolvê-las.
- Ferramenta para provar que as questões do dia a dia são indecidíveis ou intratáveis.
 - Intratáveis: uso de soluções heurísticas.
- Reduções podem ser usadas para provar questões de indecibilidade mais simples.

Uma Máquina deTuring

Fita infinita dividida em células contendo símbolos de fita escolhidos de um alfabeto finito

Por que Máquina de Turing?

- Por que n\u00e3o tratar de programas em C ou algo assim?
- Resposta: Você pode, mas é mais fácil provar a indecidibilidade sobre TM's, pois são um modelo muito simples de computador.
 - E ainda assim são tão poderosas como qualquer computador.
 - Mais poderosas ainda, na realidade, uma vez que têm memória infinita.

Máquina de Turing - Formalismo

Uma TM é descrita por:

- 1. Um conjunto finito de *estados* (Q).
- 2. Um alfabeto de entrada (Σ) .
- 3. Um alfabeto de fita $(\Gamma, \Gamma \subseteq \Sigma)$.
- 4. Uma função de transição (δ) .
- 5. Um *estado inicial* (q_0) .
- 6. Um *símbolo branco* (B, $\in \Gamma \Sigma$).
 - Toda fita, exceto pela entrada, possui o símbolo branco inicialmente.
- 7. Um conjunto de *estados finais* ($F \subseteq Q$).

Convenções

- a, b, ... são símbolos de entrada.
- ..., X, Y, Z são símbolos de fita.
- ..., w, x, y, z são strings de símbolo de entrada.
- α , β ,... são strings de símbolos de fita.

A Função de Transição

- Os argumentos de δ são:
 - 1. Um estado q, em Q.
 - 2. Um símbolo de fita X em Γ.
- δ(q, X), se ele for definido, é uma tripla (p, Y, D).
 - p é o próximo estado.
 - Y é o novo símbolo de fita gravado na célula que está sendo varrida.
 - D é a direção em que a cabeça se move, L ou R.

Movimentos de um PDA

Se $\delta(q, X) = (p, Y, D)$ então, no estado q, varrendo ("scanning") X sob a cabeça da fita, a TM:

- 1. Mudará o estado para p.
- 2. Trocará X por Y na fita.
- 3. Moverá a cabeça uma célula na direção D.
 - ◆ D = L: mover para esquerda; D = R; mover para direita.

Exemplo: Máquina de Turing

- Esta TM varre sua entrada a direita, procurando por um 1.
- Se encontrar algum 1, muda para 0, vai para o estado final, e pára.
- Se alcança um branco, muda para 1 e move para esquerda.

Exemplo: Máquina de Turing – (2)

- Estados = {q (inicial), f (final)}.
- Símbolos de entrada = {0, 1}.
- Símbolos de fita = {0, 1, B}.
- $\delta(q, 0) = (q, 0, R)$.
- $\delta(q, 1) = (f, 0, R)$.
- $\delta(q, B) = (q, 1, L)$.

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

$$\delta(q, B) = (q, 1, L)$$

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

$$\delta(q, B) = (q, 1, L)$$

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

$$\delta(q, B) = (q, 1, L)$$

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

$$\delta(q, B) = (q, 1, L)$$

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

$$\delta(q, B) = (q, 1, L)$$

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

$$\delta(q, B) = (q, 1, L)$$

Nenhum movimento é possível. A TM pára e aceita.

Exemplo 2

$$\begin{split} L(M) &= \{0^n 1^n \mid n \geq 1\} \end{split} \\ \\ TM \ M &= (\{q_0, \, q_1, \, q_2, \, q_3, \, q_4\}, \, \{0,1\}, \, \{0,1,X,Y,B\}, \, \delta, \, q_0, \, B, \, \{q_4\}) \end{split}$$

	Símbolo				
Estado	0	1	X	Υ	В
q_0	(q ₁ , X, R)	-	-	(q ₃ , Y, R)	-
q_1	(q ₁ , 0, R)	(q ₂ , Y, L)	-	(q ₁ , Y, R)	-
q ₂	(q ₂ , 0, L)	-	(q ₀ , X, R)	(q ₂ , X, L)	-
q_3	-	-	-	(q ₃ , Y, R)	(q ₄ , B, R)
q_4	-	-	-	-	-

Descrições Instantâneas de uma Máquina de Turing

- Inicialmente, uma TM tem uma fita consistindo de um string de símbolos de entrada cercado por brancos em ambas direções.
- A TM está no estado inicial, e a cabeça está no símbolo mais a esquerda.

TM ID's - (2)

- Uma ID é um string $\alpha q \beta$, onde $\alpha \beta$ é a fita entre os não-brancos mais à esquerda e mais à direita (inclusive).
- O estado q está imediatamente à esquerda do símbolo de fita varrido.

• Como exceção, se a cabeça estiver à esquerda do não-branco mais à esquerda ou à direita do não-branco mais à direita, algum prefixo ou sufixo de $\alpha\beta$ será branco.

TM ID's - (3)

- Como para PDA's podemos usar símbolos ⊢ e

 ⊢* para representar "um movimento" e

 "zero, um ou mais movimentos,"
 respectivamente, sobre ID's.
- Exemplo: Os movimentos da TM do exemplo 2 são :

q00+0q0+0q01+00q1+000f

Definição Formal de Movimentos

- 1. Se $\delta(q, Z) = (p, Y, R)$, então

 - lacktriangle Se Z é o branco B, então $\alpha q \vdash \alpha Yp$
- 2. Se $\delta(q, Z) = (p, Y, L)$, então
 - ◆ Para algum X, αXqZβ+αpXYβ
 - lack Novamente, $qZ\beta \vdash pBY\beta$

Linguagens de uma TM

- Uma TM define uma linguagem pelo estado final.
- L(M) = {w | q₀w+* I, onde I é um ID com um estado final}.
- Ou, uma TM pode aceitar uma linguagem por parada.
- H(M) = {w | q₀w+* I, e não há nenhum movimento possível da ID I}.

Equivalência de Aceitação e Parada

- 1. Se L = L(M), então há uma TM M' tal que L = H(M').
- 2. Se L = H(M), então há uma TM M" tal que L = L(M").

Prova 1: Aceitação -> Parada

- Modifique M para se tornar M' como a seguir:
 - Para cada estado de aceitação de M, remova qualquer movimentos, então M' pára naquele estado.
 - 2. Evitar que M' pare acidentalmente.
 - Introduza um novo estado s, o qual se desloca sempre para direita; isto é $\delta(s, X) = (s, X, R)$ para todos símbolos X.
 - Se q é não aceito, e $\delta(q, X)$ é indefinido, faça $\delta(q, X) = (s, X, R)$.

Prova de 2: Parada -> Aceitação

- Modifique M para se tornar M" como a seguir:
 - 1. Introduza um novo estado f, o único estado de aceitação de M".
 - 2. f não tem movimentos.
 - 3. Se $\delta(q, X)$ é indefinido para qualquer estado q e símbolo X, defina este por $\delta(q, X) = (f, X, R)$.

Linguagens Recursivamente Enumeráveis

- Podemos ver que as classes de linguagens definidas por TM's usando estado final e parada são as mesmas.
- Esta classe de linguagens é chamada linguagens recursivamente enumeráveis.
 - Por que? O termo, na verdade, antecede a máquina de Turing e refere-se a uma outra noção de computação de funções.

Linguagens Recursivas

- Um algoritmo é uma TM a qual seja garantida parar (independente de aceitação ou não).
- Se L = L(M) para alguma TM M que é um algoritmo, dizemos que L é uma linguagem recursiva.
 - Por que? Mais uma vez, não pergunte; é um termo histórico.

Exemplo: Linguagens Recursivas

- Toda CFL é uma linguagem recursiva.
- Toda linguagem regular é uma CFL (pense no DFA como sendo um PDA que ignora sua pilha); portanto toda linguagem regular é recursiva.
- Quase tudo que você pode pensar é recursiva.

Exercícios

- Mostre as ID's da máquina de Turing da linguagem 0ⁿ1ⁿ, n ≥ 1, se a fita de entrada contêm:
 - a) 00
 - b) 000111
 - c) 00111

Exercícios

- 2. Projete máquinas de Turing para as seguintes linguagens:
 - a) Conjunto de strings com um número igual de 0's e 1's.
 - b) $\{a^nb^nc^n \mid n \ge 1\}.$
 - c) {ww^r | w é qualquer string de 0's e 1's.

Exercícios

3. Considere a máquina de Turing

$$M = (\{q_0, q_1, q_2, q_f\}, \{0,1\}, \{0,1,B\}, \delta, q_0, B, \{q_f\})$$

Descreva de maneira informal, mas clara, a linguagem L(M) se δ consistir nos seguintes conjuntos de regras:

- a) $\delta(q_0, 0) = (q_1, 1, R); \delta(q_1, 1) = (q_0, 0, R); \delta(q_1, B) = (q_f, B, R);$
- b) $\delta(q_0, 0) = (q_0, B, R); \delta(q_0, 1) = (q_1, B, R); \delta(q_1, 1) = (q_1, B, R); \delta(q_1, B) = (q_1, B, R);$
- c) $\delta(q_0, 0) = (q_1, 1, R); \delta(q_1, 1) = (q_2, 0, L); \delta(q_2, 1) = (q_0, 1, R); \delta(q_1, B) = (q_1, B, R);$