博弈论作业

1、解:

总产量 $Q = q_1 + q_2 + \cdots + q_n$, 其中qi是厂商i的产量

价格函数为: p(Q) = a - bQ

由于每个厂商的生产成本为0,因此厂商i的利润 πi 只与它的产量qi和市场价格p(Q)有关,利润函数为:

$$\pi_i = p(Q) \cdot q_i = (a - bQ) \cdot q_i$$

为了求出均衡下每个厂商的利润, 我们需要先确定均衡时各个厂商的产量。在古诺模型中, 每个厂商会选择自己的产量以最大化自己的利润, 考虑到其他厂商的产量。这是一个纳什均衡问题。

因为所有公司都是对称的,所以在均衡状态下,所有公司的产量相同,即 $q_1=q_2=\dots=q_n=q^*$ 。则总产量 $Q^*=nq^*$ 。

将总产量Q*代入价格函数中,得到均衡价格:

$$p^* = a - b(nq^*)$$

厂商的利润函数变为:

$$\pi_i^* = (a - b(nq^*)) \cdot q^*$$

要最大化利润, 我们对q*求导并令其等于0:

$$\frac{d\pi_i^*}{dq^*} = a - 2bq^* - b(n-1)q^* = a - b(n+1)q^* = 0$$

解得均衡产量:

$$q^* = \frac{a}{b(n+1)}$$

将均衡产量代入价格函数中得到均衡价格:

$$p^* = a - b(nq^*) = a - \frac{abn}{b(n+1)} = \frac{a}{n+1}$$

最终均衡下每个厂商的利润为:

$$\pi_i^* = p^* \cdot q^* = \frac{a}{n+1} \cdot \frac{a}{b(n+1)} = \frac{a^2}{b(n+1)^2}$$

当n→∞时,每个厂商的利润趋近于:

$$\lim_{n\to\infty}\pi_i^* = \lim_{n\to\infty} \frac{a^2}{b(n+1)^2} = 0$$

因此,当公司数量趋于无穷大时,每个厂商的利润趋于 0。 2、解:

(1)

当玩家 A 选择策略 a1 时,玩家 B 最佳响应是策略 b3 (标黄); 当玩家 A 选择策略 a2 时,玩家 B 最佳响应是策略 b2 (标黄); 当玩家 A 选择策略 a3 时,玩家 B 最佳响应是策略 b1 (标黄); 当玩家 B 选择策略 b1 时,玩家 A 最佳响应是策略 a1 (标绿); 当玩家 B 选择策略 b2 时,玩家 A 最佳响应是策略 a2 (标绿); 当玩家 B 选择策略 b3 时,玩家 A 最佳响应是策略 a3 (标绿)。

	玩家 B			
玩家 A		策略 b 1	策略b ₂	策略 b 3
	策略a ₁	(5,3)	(0,4)	(3, <mark>5</mark>)
	策略a ₂	(4,0)	(5,5)	(4,0)
	策略a ₃	(3, <mark>5</mark>)	(0,4)	(5,3)

故纳什均衡点为 (策略 a2,策略 b2)。

当玩家 A 选择策略 a1 时,玩家 B 最佳响应是策略 b1 (标黄); 当玩家 A 选择策略 a2 时,玩家 B 最佳响应是策略 b2 (标黄); 当玩家 A 选择策略 a3 时,玩家 B 最佳响应是策略 b2 (标黄); 当玩家 A 选择策略 a4 时,玩家 B 最佳响应是策略 b1、b3 (标黄); 当玩家 B 选择策略 b1 时,玩家 A 最佳响应是策略 a3 (标绿); 当玩家 B 选择策略 b2 时,玩家 A 最佳响应是策略 a2 (标绿); 当玩家 B 选择策略 b3 时,玩家 A 最佳响应是策略 a1、a3 (标绿); 当玩家 B 选择策略 b4 时,玩家 A 最佳响应是策略 a4 (标绿)。

	策略 b 1	策略 b 2	策略 b 3	策略b4
策略a ₁	(0,7)	(2,5)	(7,0)	(0,1)
策略a ₂	(5,2)	(3,3)	(5,2)	(0,1)
策略a ₃	(<mark>7</mark> ,0)	(2,5)	(<mark>7</mark> ,0)	(0,1)
策略a ₄	(0, <mark>0</mark>)	(0,-2)	(0, <mark>0</mark>)	(10,-1)

故纳什均衡点为 (策略 a2,策略 b2)。

3、解:

max	min				
	-5	19	1	2	-5
4*	4*	8	4	4	6
	-6	-6	0	4	5

故纳什均衡点为 a_{2,2}=a_{2,3}=4

4、解:

				min	max
	4	0	2	0*	
	-2	7	1	-2	0*
max	4	7	2		
min		2*			

显然该矩阵对策没有纯纳什均衡,这时可以求解其混合纳什均衡。 求解:

$$\underset{p \in \Delta_1}{maxminp} M q^{\top}$$

等价于

max v

s.t.

$$pM \le v1$$

$$p = (p1, ..., pm) \in \Delta_1$$

$$1 = (1, ..., 1)^{\top}$$

求解得纳什均衡点为2。

5、证:

定理1证明:

由于
$$\min_{j} a_{ij} \leq a_{ij}^* \leq \max_{j} a_{ij}$$

所以 $v_1 = \underset{i}{maxmin} a_{ij}$ (gain floor) $\leq \underset{j}{min} \underset{i}{max} a_{ij}$ (Loss-ceiling) $= v_2$ 定理 2 证明:

由定义 2: $\max_{i} a_{is} \leq a_{rs} \leq \min_{j} a_{rj}$ 可知, 鞍点即为博弈值v。

再由定义1: $v_1 = v_2 = v$ 可知, $v_1 = a_{rs} = v_2$ 。