计算机组成原理 实验一报告

姓名: 曾郅琛 学号: PB20071431 实验日期: 2022-3-24

一、实验题目:

Lab01 运算器及其应用

二、实验目的:

设计算术逻辑运算单元(ALU),掌握数据通路和控制器设计方法 实现 32 位操作数 ALU 加、减、与、或、异或功能,利用前述的 32 位 ALU 模 块设计 6 位操作数 ALU

设计计算斐波拉契数列 FLS, 完成逻辑设计、仿真和下载测试

三、实验平台:

Vivado

四、实验过程:

1. ALU 逻辑设计

```
1 ⊝ module alu #(parameter WIDTH=32)
 2
          (
 3
              input [WIDTH-1:0] a,b,
 4 :
              input [2:0]f,
 5 ;
              output reg [WIDTH-1:0] y,
              output reg z
 7 :
         localparam ADD=0, SUB=1, AND=2, OR=3, XOR=4;
 9 🖨
         always @(*)
10 🗇
         begin
11 🖯
             case(f)
12 ;
                  ADD: y = a+b;
13 :
                  SUB: y = a-b;
14
15
16
                  AND: y = a\&b;
                  OR: y = a|b;
                  XOR: y = a^b;
17 🖨
                  default:
18 🗇
                      begin y = 0;
19 ;
                             z = 1;
20 🗀
                      end
21 (a)
22 (b)
           endcase
            if(y) z=0;
23 🖨
            else z=1:
24 🖨
25 endmodule
```

在 ALU 实现中, f 实现操作功能, y 作为运算结果输出,按照模块功能表执行功能.

 ALU 模块功能表

 f
 y
 z

 000
 a+b
 *

 001
 a-b
 *

 010
 a&b
 *

 011
 a|b
 *

 100
 a^b
 *

 其他
 0
 1

RTL 电路:

综合电路:

资源使用情况

综合电路:

Q ¥ ♦	Q ¥ \$ % H	ierarchy			
Hierarchy Summary	Name ^:	Slice LUTs (63400)	Slice Registers (126800)	Bonded IOB (210)	BUFGCTRL (32)
Slice Logic	∨ N fls	19	29	17	1
∨Slice LUTs (<1%)	I alu_7 (alu)	0	0	0	0
LUT as Logic (<1%)	■ D1 (diff)	1	1	0	0
∨Slice Registers (<1%)	■ D2 (diff_0)	3	1	0	0
Register as Latch (r1 (register1)	0	7	0	0
Register as Flip Fl	r2 (register1_1)	14	7	0	0
Memory DSP	[12 (100100011_1)			*	v

ALU 模块综合电路性能及时间性能报告:

tup		Hol d		Pulse Width	
Worst Negative Slack (WNS):	7.823 ns	Worst Hold Slack (WHS):	0.159 ns	Worst Pulse Width Slack (WPWS):	4,500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	25	Total Number of Endpoints:	25	Total Number of Endpoints:	20

2. 6 位操作数 ALU 逻辑设计

en	sel	ena	enb	ef
1	00	1	0	0
1	01	0	1	0
1	10	0	0	1
1	11	0	0	0
0	xx	0	0	0


```
1
      `timescale lns / lps
 3 🖨
     module register
          #(parameter WIDTH=32,
 4
 5
          RST_VALUE=0)
          (input clk, en, input [WIDTH-1:0] d,
 6
 7
          output reg [WIDTH-1: 0] q);
 8
9 ()
10 ()
     always @(posedge clk)
if (en)
11 🖨
              q \le d;
     endmodule
12 🗀
13
14  module Decoder(
15
          input [1:0] sel,
16
          input en,
17
          output wire ef,ea,eb//ef,ea,eb
18
     );
19
20
     assign ea = ~sel[1]& ~sel[0] & en;//00
     assign eb = \simsel[1]& sel[0] & en;//01
assign ef = sel[1]& \simsel[0] & en;//10
21
22
23
24 🖨 endmodule
25
26 module alu_6
27
28
              input en,clk,
              input [1:0]sel,
input [5:0]x,
29
30
31
              output [5:0] y,
              output z
32
33
      );
      wire ef,ea,eb;
35
      wire [5:0] a,b;
      wire [2:0] f;
36
     wire [5:0] y_in;
37
38
      wire z_in;
39
40
      Decoder dl(.en(en),.sel(sel),.ea(ea),.eb(eb),.ef(ef));
41
42
      register \#(6,0) A(.clk(clk),.en(ea),.d(x[5:0]),.q(a[5:0]));
      register #(6,0) B(.clk(clk),.en(eb),.d(x[5:0]),.q(b[5:0]));
43
44
      register #(3,0) F(.clk(clk),.en(ef),.d(x[2:0]),.q(f[2:0]));
45
46
      alu #(6) alu6 (.a(a),.b(b),.f(f),.y(y_in),.z(z_in));
47
      register #(6,0) Y(.clk(clk),.en(1),.d(y_in[5:0]),.q(y[5:0]));
48
      register #(1,0) Z(.clk(clk),.en(1),.d(z_in),.q(z));
49 endmodule
```

设计译码器对 ef、ea、eb,选择 ALU 计算(按上图编写数据通路),操作数 a, b 和功能 f 复用开关输入 x[5:0]。通过 sel 和 en,生成译码电路,将开关输入 x[5:0]分时存入寄存器 F(x[2:0]),A(x[5:0]),B(x[5:0])。

RTL 电路图:

综合电路图:

Q 🛬 🜲 % Hierarchy

Name ^:	Slice LUTs (63400)	Slice Registers (126800)	Bonded IOB (210)	BUFGCTRL (32)
∨ N fls	19	29	17	1
🔳 alu_7 (alu)	0	0	0	0
■ D1 (diff)	1	1	0	0
■ D2 (diff_0)	3	1	0	0
🛚 r1 (register1)	0	7	0	0
▼ r2 (register1_1)	14	7	0	0

时间性能报告:

Design Timing Summary Hol d Setup Pulse Width Worst Negative Slack (WNS): 7.823 ns Worst Hold Slack (WHS): 0.159 ns Worst Pulse Width Slack (WPWS): Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): $0.000 \ \mathrm{ns}$ Total Pulse Width Negative Slack (TPWS): 0.000 ns Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: Total Number of Endpoints: Total Number of Endpoints: 20 Total Number of Endpoints: 25

All user specified timing constraints are $\ensuremath{\mathsf{met}}.$

	n 0		1 - I. D - I	11						
	л ।	Intra-C		sys_clk_pl	n - Se	tup				
Slack ^1	Level s	Routes	High Fanout	From	To		Total Delay	Logic Delay	Net Delay	Requirement
7.823	1	2	14	D1/b_reg/C r1/dat		a_reg[0]/CE	1.795	0.773	1.022	10.0
7.823	1	2	14	D1/b_reg/C	D1/b_reg/C r1/data		1.795	0.773	1.022	10.0
7.823	1	2	14	D1/b_reg/C r1/data		a_reg[2]/CE	1.795	0.773	1.022	10.0
7.823	1	2	14	D1/b_reg/C r1/data		a_reg[3]/CE	1.795	0.773	1.022	10.0
7.823	1	2	14	D1/b_reg/C r1/data		a_reg[4]/CE	1.795	0.773	1.022	10.0
7.823	1	2	14	D1/b_reg/C r1/data		a_reg[5]/CE	1.795	0.773	1.022	10.0
7.823	1	2	14	D1/b_reg/C r1/data		a_reg[6]/CE	1.795	0.773	1.022	10.0
7.823	1	2	14	D1/b_reg/C r2/data		a_reg[0]/CE	1.795	0.773	1.022	10.0
7.823	1	2	14	D1/b_reg/C r2/data		a_reg[1]/CE	1.795	0.773	1.022	10.0
7.823	1	2	14	D1/b_reg/C	r2/data_res[2]/CE		1.795	0.773	1.022	10.0
H ⊗ H	и	Intra-	Clock Paths	- sys_clk_p	in - H	ol d				
Slack ^1	Level s	Routes	High Famout	From		То		Total Delay	Logic Delay	Net Delay
0.159	0	1	3	r1/data_rea	g[0]/C	r2/data_reg[0]/D		0.295	0.147	0.148
0.159	0	1	3	r1/data_rea	r1/data_reg[1]/C		r2/data_reg[1]/D		0.147	0.148
0.159	0	1	3	r1/data_rea	[2]/C	r2/data_reg[2]/D		0.295	0.147	0.148
0.159	0	1	3	r1/data_rea	(3]/C	r2/data_reg[3]/D		0.295	0.147	0.148
0.159	0	1	3	r1/data_rea	[4]/C	C r2/data_reg[4]/D		0.295	0.147	0.148
0.159	0	1	3	r1/data_rea	[5]/C	r2/data_res[5]/D		0.295	0.147	0.148
0.159	0	1	3	r1/data_rea	[6]/C			0.295	0.147	0.148
0.164	0	1	5	D1/b_res/C	res/C D2/b res/D 0.300		0.147	0.153		
0, 292	1	2	4				0.245	0, 291		
******	-	2	-	D2/b_reg/C		FSM_onehot_cs_res[1]/D		******	******	0, 291
	Slack ^1 7,823 7,823 7,823 7,823 7,823 7,823 7,823 7,823 7,823 7,823 81	Slack ↑¹ Level s 7,823 1 7,823 1 7,823 1 7,823 1 7,823 1 7,823 1 7,823 1 7,823 1 7,823 1 7,823 1 7,823 1 7,823 1 7,823 1 7,823 1 7,823 0 0,159 0	Slack	Slack	Slack	Slack	Slack	Slack ^ 1 Level s Routes High Fanout From To Total Delay	Slack A Level Routes High Fanout From To Total Delay Logic Delay	Slack A Level Routes High Fanout From To Total Delay Logic Delay Net Delay 7.823 1 2 14 Dl/b_res/C rl/data_res[0]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[1]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[2]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[3]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[3]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[4]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[5]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[6]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[6]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[0]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[0]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[0]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[0]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[0]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[0]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[0]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[0]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[0]/CE 1.795 0.773 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[0]/CE 1.795 0.773 1.022 7.823 1.022 7.823 1 2 14 Dl/b_res/C rl/data_res[0]/CE 1.795 0.773 1.022 7.823 1.022 7.823 1.022 1.795 0.773 1.022 7.823 1.022 1.795 0.773 1.022

3. FLS 逻辑设计


```
module diff(
   input a,clk,
   output reg b
       );
       always@(posedge clk)
       b<=a;
   endmodule
1
    `timescale lns / lps
3 ⊕ module fls (
4; input clk, rst,
                         //时钟,复位(高电平有效)
//輸入輸出使能
5
       input en,
       input en,
input [6:0] d,
                         //输入数列初始项
//输出数列
6
      output [6:0] f
7
    );
8
     parameter s0=2'b00,s1=2'b01,s2=2'b10;
9 :
10
    reg [1:0]cs,ns;
11 ;
    reg [6:0]fl;
     wire[6:0]f2,f3,f4;
12
13 :
     wire zero;
14
15
     wire en2, en3, e;
     diff D1(en,clk,en2);
                           //en2=en
16 diff D2(en2,clk,en3); //en3=en2
17 assign e=en2&~en3; //当en2=1, en3=0时赋值为1
18 alu#(7) alu_7(f2,f3,3'b000,f4,zero);
     register1#(7) r1(e,clk,f1,f2);
19 ;
20 : register1#(7) r2(e,clk,f2,f3);
21 - always@(posedge clk)
22 ⊝ begin
23 (rst)cs<=s0;
24  else if(e)cs<=ns;
25 else cs<=cs;
26 🖨 end
27 - always@(*)
28 ⊝ begin
29 case(cs)
34 ← endcase
35 @ end
36 □ always@(*)
37 □ case(cs)
    2'b00:begin fl=d;end
38
39 2'b01:begin fl=d;end
40 2'b10:begin fl=f4;end
41 | default:;
42 	☐ endcase
43 | assign f=f2;
44 △ endmodule
```

五、实验结果:

波形仿真:

1. ALU 仿真运算:

分别对 000、001、010、011、100 五个操作功能进行运算

											1,000.000 ns
Name	Val ue	0 ns			200 ns		400 ns		600 ns		800 ns
¼ reset	0										
> 🐶 a[31:0]	00000002	(X	00000049	0	0000043	0000	00003	X	0000	10002	
> 🕶 b[31:0]	00000001	X	0000003c	0	000000b	0000	00002	X	0000	10001	
> 🕶 f[2:0]	4	X	0		1		2	X	3	$\langle -$	4
> W out[31:0]	00000003	X	00000085	0	0000038	0000	00002	X	0000	10003	;
¼ zero	0										

2. 6 位操作数 ALU 仿真波形

3. FLS 波形仿真:

```
23 🖨
           initial begin
24 :
25 :
26 :
27 :
      O #20
O rst=
O d=1;
          rst=0;
          d=1;
28 🖨
           end
           fls sim3(
29
30
           en(en),
           rst(rst),
.clk(clk),
31
32
33
           .d(d),
           .f(f)
34
35
             );
36 🖒
           endmodule
```


FPGA 效果图:

1. 6-ALU 算术逻辑运算器运算展示

以 3-2 为例:

```
o assign ea = ~sel[1]& ~sel[0] & en;//00
o assign eb = ~sel[1]& sel[0] & en;//01
o assign ef = sel[1]& ~sel[0] & en;//10
```


2. FLS 斐波拉契数列 bit 烧板展示由 1 得到 8 为止:

六、心得体会:

本次实验首先以编写基本 32 位操作数 ALU 开始,对以前的知识进行复习,之后利用译码器和此 ALU 编写 6 位操作数 ALU,并练习了 Vivado 波形仿真。最后计算斐波拉契数列,在 FPGA 平台上烧写代码。

本次实验,开始写约束文件.xdc 时不知道怎么去连接以及 clk 怎么去写,后来问助教和同学才了解到这个是和我们 FPGA 管脚对应连接,属于一种硬件连接文件吧。然后就是在写代码过程中,时序逻辑可以含 reg,组合逻辑不能含 reg!!!这是在开始就要定义好的,我中途搞忘了,然后一直 bug 找了好久才找到原因······