Implementation Choices & Challenges Report

Project Title: LLM-Powered Booking Analytics & QA System

Implementation Details:

Data Processing:

1. Data Cleaning:

- Handled missing values in columns (children, country, agent, company).
- o Converted reservation status date to datetime format.

2. Feature Engineering:

• Calculated total_revenue feature by multiplying adr (average daily rate) with total stay duration from the dataset.

3. Exploratory Data Analysis (EDA):

- Visualized revenue trends over time.
- o Analyzed cancellation rates.
- Examined the geographical distribution of bookings.
- Created histograms for lead time distribution.

RAG-based Q&A System:

1. Sentence Embeddings:

- Used all-MiniLM-L6-v2 from sentence-transformers to generate embeddings for text descriptions of bookings.
- With the help of FAISS Vector Database, Indexed embeddings using faiss.IndexFlatL2.

2. Retrieval Mechanism:

• FAISS searches for the most relevant text snippets based on user queries.

3. Text Generation:

- Used mistralai/Mistral-Small-24B-Instruct-2501 for response generation.
- Passed retrieved context as input to generate answers.

API Development with FastAPI

1. Endpoints:

- o /analytics: Returns cancellation rate and top booking countries.
- o /ask: Processes queries using the RAG model.

Deployment:

• Used uvicorn for running the FastAPI server.

Challenges:

1. Model Latency:

• Issue: Generative models can have high inference times..

2. FAISS Indexing for Large Datasets:

• Issue: Indexing large datasets increases memory usage.

3. Handling Missing Values:

• Issue: Missing values in children, country, and company columns.

4. Hugging Face Model Access:

• **Issue**: Requires API token for certain models.

Conclusion:

This project LLM-Powered Booking Analytics & QA System successfully integrates the data analysis, information retrieval, and generative AI to provide insights and an interactive Q&A system for hotel bookings. Future improvements could involve fine-tuning the transformer model on domain-specific datasets for better accuracy.