

Technische Optik Praktikum Laser-Triangulation

Hans Herrmann Felix Kayser Hermann Pommerenke Tino Steinmetz

09. Juli 2015

Inhaltsverzeichnis

1	Einleitung						
	1.1	Prinzip der Laser-Triangulation	1				
	1.2	Herleitung	1				
2	Ver	suchsaufbau	3				
3	Aus	swertung	4				

1 EINLEITUNG 1

1 Einleitung

1.1 Prinzip der Laser-Triangulation

1.2 Herleitung

Die zurückgelegte Entfernung ergibt sich aus der Differenz der Gesamtentfernung z_{ges} des Startpunktes z_0 .

$$z = z_{ges} - z_0 \tag{1}$$

Da sich die Strahlengänge in rechtwinklige Dreiecke unterteilen lassen, können durch Anwendung des Cosinus- und Sinussatzes Ausdrücke für z_{ges} und z_0 bestimmt werden, die nur von der Entfernung d zwischen Linse und Laser und den Winkeln α und β abhängen.

$$\cos(\beta - \alpha) = \frac{z_{ges}}{g'}
\sin(\beta - \alpha) = \frac{d}{g'}$$

$$z_{ges} = d \cdot \frac{\cos(\beta - \alpha)}{\sin(\beta - \alpha)}$$
(2)

$$\begin{vmatrix}
\cos(\beta) = \frac{z_0}{g_1} \\
\sin(\beta) = \frac{d}{g_1}
\end{vmatrix} \qquad z_0 = d \cdot \frac{\cos(\beta)}{\sin(\beta)} \tag{3}$$

Die entstandenen Terme können nun in Gleichung (1) eingesetzt werden. Wie man leicht sieht lassen sich die Brüche der Winkelfunktionen in den Cotangens überführen.

$$z = d \cdot \left(\frac{\cos(\beta - \alpha)}{\sin(\beta - \alpha)} - \frac{\cos(\beta)}{\sin(\alpha)} \right) \tag{4}$$

$$= d \cdot (\cot(\beta - \alpha) - \cot(\beta)) \tag{5}$$

Da der Winkel α nicht direkt gemessen werden kann muss ein Ausdruck gefunden werden, der von den Parametern des Optischen Systems abhängt. Dazu werden zunächst die Punktverschiebung auf dem CCD-Sensor $\Delta p'$ und die Bildweite b als bekannt angenommen.

$$\begin{vmatrix}
\sin(\alpha) = \frac{\Delta p'}{b'} \\
\cos(\alpha) = \frac{b}{b'}
\end{vmatrix} \qquad \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{\Delta p'}{b} = \tan(\alpha) \tag{6}$$

Durch Umkehrung des Tangens erhält man nun für α :

$$\alpha = \arctan\left(\frac{\Delta p'}{b}\right) \tag{7}$$

Da auch der Abstand d zwischen Brennpunkt und Laser nicht genau bestimmt werden kann, ist es notwendig diesen durch bekannte Größen zu substituieren. Abhilfe schafft hier die

1 EINLEITUNG 2

Anwendung des Sinussatzes auf den Winkel β .

$$\sin(\beta) = \frac{d}{q_1} \tag{8}$$

$$d = g_1 \cdot \sin(\beta) \tag{9}$$

Setzt man nun (7) und (9) in Gleichung (5) ein, so ergibt sich folgender Ausdruck:

$$z = g_1 \cdot \sin(\beta) \cdot \left\{ \cot \left[\beta - \arctan\left(\frac{\Delta p'}{b}\right) \right] - \cot(\beta) \right\}$$
 (10)

Mit Hilfe der Linsengleichung (11) muss nun noch ein passender Ausdruck für b gefunden werden.

$$\frac{1}{f} = \frac{1}{b} + \frac{1}{a} \tag{11}$$

$$b = \frac{f \cdot g}{g - f} \tag{12}$$

Durch das Einsetzen von (12) in Gleichung (10) ergibt sich ein Ausdruck für z, der nur von bekannten oder messbaren Größen abhängt.

$$z = g_1 \cdot \sin(\beta) \cdot \left\{ \cot \left[\beta - \arctan\left(\frac{\Delta p'}{\frac{f \cdot g}{g - f}}\right) \right] - \cot(\beta) \right\}$$
 (13)

3

2 Versuchsaufbau

3 AUSWERTUNG 4

3 Auswertung

z/mm	px_g	px_m	z_g/mm	z_m/mm	$\Delta z_g/\mathrm{mm}$	$\Delta z_m/\mathrm{mm}$	$\frac{\Delta z_g}{z}$	$\frac{\Delta z_m}{z}$
0	150.93	147	0	0	0	0	0	0
10	241.02	226	9.87	8.64	-0.13	-1.36	-1.32	-13.6
20	329.67	337	19.81	21.09	-0.19	1.09	-0.96	5.44
30	416.47	419	29.77	30.52	-0.23	0.52	-0.77	1.74
40	501.17	501	39.72	40.17	-0.28	0.17	-0.7	0.41
50	583.43	569	49.6	48.33	-0.4	-1.67	-0.8	-3.34
60	664.29	650	59.54	58.25	-0.46	-1.75	-0.77	-2.91
70	743.56	728	69.5	68.02	-0.5	-1.98	-0.72	-2.83
80	820.99	831	79.44	81.26	-0.56	1.26	-0.7	1.57
90	896.68	890	89.38	89.01	-0.62	-0.99	-0.69	-1.1
100	970.41	968	99.27	99.47	-0.73	-0.53	-0.73	-0.53

Tabelle 1: Messwerte

3 AUSWERTUNG 5

Abbildung 1: Relative Fehler

Abbildung 2: Absolute Fehler