باسمه تعالى

-تمرین سری اول درس ساختمان داده ها و مبانی الگوریتم ها

-پاسخ تمرین در قالب یک فایل pdf تایپ شده یا دست نویس اسکن شده (مرتب و خوانا) و با نام HW1_StudentNumber.pdf آپلود شود.

-مهلت ارسال تمرین تا ساعت ۱۳:۰۰ روز دوشنبه مورخ ۱۳ اسفند ۱۳۹۷ می باشد.

- در صورت وجود هرگونه سوال می توانید با ایمیل های زیر در ارتباط باشید.

aliabigdeli@gmail.com

amoazeni75@gmail.com

۱ : با در نظر گرفتن الگوریتم مرتب سازی حبابی(Bubblesort) به سوالات زیر پاسخ دهید :

BUBBLESORT(A)

1 for $i \leftarrow 1$ to length[A]2 do for $j \leftarrow length[A]$ downto i + 13 do if A[j] < A[j - 1]4 then exchange $A[j] \leftrightarrow A[j - 1]$

الف: فرض کنید A' خروجی مرتب شده ی الگوریتم را نشان دهد. برای اثبات درستی الگوریتم مرتب سازی حبابی نیاز است تا اثبات کنیم اولا الگوریتم پایان پذیر است، دوما شرط زیر برقرار است :

$$A'[1] \le A'[2] \le \cdots \le A'[n]$$

که در آن n برابر با length[A] است، به نظر شما چه شرط دیگری برای اثبات درستی الگوریتم نیاز است؟ ب: برای حلقه موجود در الگوریتم(خط ۲ الی ۴) ثابت حلقه (Loop invariant) را به طور دقیق مشخص کنید و اثبات کنید که حلقه پایان پذیر است. برای مطالعه بیشتر در ارتباط با روش اثبات می توانید به کتاب مرجع درس مراجعه کنید.

ج: حال با توجه به ثابت حلقه ی تایین شده در قسمت قبل، ثابت حلقه خط ۱ الی * را نیز به صورت دقیق مشخص کنید و در نهایت اثبات کنید که پس از پایان الگوریتم نامساوی $A'[1] \leq A'[2] \leq \cdots \leq A'[n]$ برقرار خواهد بود.

برای مطالعه بیشتر در ارتباط با روش اثبات می توانید به کتاب مرجع درس مراجعه کنید.

د: پیچیدگی زمانی اجرای الگوریتم مرتب سازی حبابی در بدترین حالت چیست؟ الگوریتم مرتب سازی حبابی را با الگوریتم مرتب سازی درجی (Insertion sort) از نظر زمانی مقایسه کنید

Y: یکی از روش های پیاده سازی مرتب سازی درجی به صورت بازگشتی می باشد، با در نظر گرفتن اینکه برای A[n] مرتب کردن دنباله A[n] ما ابتدا به صورت بازگشتی دنباله ی A[n] را مرتب کرده و سپس A[n] را به دنباله ی مرتب شده اضافه می کنیم، تحلیل زمانی برای این نسخه ارائه دهید.

A: مرتب سازی A عدد که در آرایه ی A ذخیره شده اند را با پیدا کردن اولین کوچکترین عنصر A و جابه جا کردن آن با عنصر A در نظر بگیرید. سپس دومین کوچکترین عنصر را یافته و با A جابه جا می کنیم. این روند را برای A عنصر اول A انجام می دهیم.

الف: شبه کدی برای این الگوریتم مرتب سازی که به آن مرتب سازی انتخابی (Selection Sort) نیز می گویند بنویسید.

ب: ثابت حلقه ی این الگوریتم را مشخص کنید.

ج: چرا به جای آنکه برای n عنصر اول الگوریتم را اجرا کنیم برای n-1 عنصر اول الگوریتم را اجرا می کنیم؟ د: تحلیل زمانی برای بهترین حالت و بدترین حالت در قالب σ (Theta) ارائه دهید.

big کنید که رابطه ی بین A و B چگونه است (مثلا A یک E برای هر یک از ردیف های جدول زیر مشخص کنید که رابطه ی بین E و E > E و E > E است. کافی است در E می با شد یا خیر).فرض کنید E و E > E و E > E است. کافی است در هر خانه از جدول Yes یا No بنویسید.

	\boldsymbol{A}	B	0	0	Ω	ω	Θ
a.	$\lg^k n$	n^{ϵ}					
b.	n^k	C^{n}					
c.	\sqrt{n}	$n^{\sin n}$					
d.	2 ⁿ	$2^{n/2}$					
e.	$n^{\lg c}$	$c^{\lg n}$					
f.	lg(n!)	$\lg(n^n)$					

و نادرستی هریک از موارد زیر اثبات ارائه g(x) و تابع مثبت باشند، برای درستی یا نادرستی هریک از موارد زیر اثبات ارائه دهید.

a.
$$f(n) = O(g(n))$$
 implies $g(n) = O(f(n))$.

b.
$$f(n) + g(n) = \Theta(\min(f(n), g(n))).$$

c. f(n) = O(g(n)) implies $\lg(f(n)) = O(\lg(g(n)))$, where $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n.

d.
$$f(n) = O(g(n))$$
 implies $2^{f(n)} = O(2^{g(n)})$.

e.
$$f(n) = O((f(n))^2)$$
.

f.
$$f(n) = O(g(n))$$
 implies $g(n) = \Omega(f(n))$.

g.
$$f(n) = \Theta(f(n/2)).$$

h.
$$f(n) + o(f(n)) = \Theta(f(n)).$$