

Linear Algebra

By- Rahul sir

Topics covered in previous lecture

Topic

Problems on Determinant of a matrix

Topic

Matrix multiplication and question based on matrices

Topic

Adjoint and inverse of a matrix

Topics to be Covered

Topic

Properties of matrices

Topic

Question based on properties of the matrix

Peroperties of Adjoint:

Adja [0 0 0] = [0 0 0] [0 0 0] $Ady A = \begin{cases} d_2 d_3 & 0 & 0 \\ 0 & d_3 d_4 & 0 \\ 0 & 0 & d_1 d_2 \end{cases}$ N= Scaler = constant 10 A = 10 (ady A) (F) A(aelyA)=(aolyA)A=|A|I

VSES - determinant:

X = A-1B

AX = B (system of equations)

A-1 = ady A

|A|

$$X = \frac{\text{ady A} \cdot \text{B}}{|A|} \quad X = \frac{K}{|A|} \quad X \times \frac{1}{|A|}$$

$$X = \frac{K}{|A|}$$

2) If |A| + Vector orientation depend on determinant

#Q.Let A, B, C, D be n × n matrices, each with non-zero determinant. ABCD =

then
$$B^{-1} =$$

Let A, B, C, D -> Non Singular

(ABCD) =
$$(I)^{-1}$$

(a)
$$D^{-1} C^{-1} A^{-1}$$

#Q.The number of different n × n symmetric matrices with each elements being either 0 or 1 is

- (a) 2ⁿ
- (b) 2ⁿ²
- (c) $2^{\frac{n^2+n}{2}}$
- (d) $2^{\frac{n^2-n}{2}}$

#Q.Let P be 2x2 real orthogonal matrix and \bar{x} is a real vector $[x_1, x_2]^T$ with

length $||\bar{x}|| = (x_1^2 + x_2^2)^{1/2}$. Then which one of the following statement is ス= [なス2]

> Norm | 1 = distance correct?

- $||P\bar{x}|| \le ||\bar{x}||$ where at least one vector satisfies $||P\bar{x}|| < ||\bar{x}||$ (a)
- $||P\bar{x}|| = ||\bar{x}||$ for all vector \bar{x}
- (c) $||P\bar{x}|| \ge ||\bar{x}||$ where at least one vector satisfies $||P\bar{x}|| > ||\bar{x}||$
- (d) No relationship can be established between $||\bar{x}||$ and $||P\bar{x}||$

- (g) 2
- (b) 5
- (c) 8
- (d) 16

[2	1	1	1
1	2	1	1
1	1	2	1
[2 1 1	1	1	2

#Q.The determinant of matrix A is 5 and the determinant of matrix B is 40.

The determinant of matrix AB is_____.

#Q.Given the matrices
$$J = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 6 \end{bmatrix}$$
 and $K = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, the product $K^T J K$ is ____.

#Q.The determinant of matrix

$\lceil 0$	1	2	3
1	0	3	0
2	3	0	1
3	0	1	2

is

#Q. For
$$A = \begin{bmatrix} 1 \\ -\tan x \end{bmatrix}$$

$$\tan x$$

$$\begin{bmatrix}
1 & \tan x \\
-\tan x & 1
\end{bmatrix}$$
, the determinant of $A^T A^{-1}$ is

$$(d)$$
 0

$$A^{T} = \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix}$$

$$= Stc^{2}x$$

#Q.The matrix
$$A = \begin{bmatrix} a & 0 & 3 & 7 \\ 2 & 5 & 1 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & \underline{b} \end{bmatrix}$$
 has $det(A) = 100$ and $trace(A) = 14$.

The value of $|a - b|$ is ____.

$$(ab-10)$$
 $a+5+2+b=10$
 $(a+b=7)$

#Q.Which one of the following matrices is singular?

(a)
$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$

(b)
$$\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$$
 (d) $\begin{bmatrix} 4 & 3 \\ 6 & 2 \end{bmatrix}$

#Q. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$
 then $det(A^{-1})$ is ____ (correct to two decimal places).
$$|A^{-1}| = \frac{1}{|A|}$$

#Q. If
$$A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$, then value of α for which $A^2 = B$, is

$$A = \begin{bmatrix} x & b \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix}$$

$$A^{2} = 18$$

$$\begin{cases} 9^{2} & 0 \\ 9+1 & 1 \end{cases} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$$

#Q.Let
$$A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
 and $B = A^3 - A^2 - 4A + 5I$, where I is the 3 × 3 identity

matrix. The determinant of B is ____ (up to 1 decimal place).

#Q. If
$$P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
 and $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $Q = PAP^{T}$ and $x = P^{T} Q^{2005} P$ then

and
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, $Q = PAP^{T}$ and $x = P^{T} Q^{2005} P$ then

x is equal to

(a)
$$\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 4 + 2005\sqrt{3} & 6015 \\ 2005 & 4 - 2005\sqrt{3} \end{bmatrix}$$

$$\begin{array}{ccc}
1 & 2 + \sqrt{3} & 1 \\
(c) & 4 & 2 - \sqrt{3}
\end{array}$$

#Q. If
$$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$$
, then

(a)
$$x = 3, y = 1$$

(b)
$$x = 0, y = 3$$

(c)
$$x = 1, y = 3$$

$$(d) x = 0, y = 0$$

$$= 6i(32+3) + 3i(4i+20) + 1(12-60i)$$

$$= 6i[0] + 122+601-60i+12$$

$$= 0 = x + iy = 0 + i - 0$$

Let *k* be a positive real number and let

If det (adj A) + det (adj B) = 106. then [k] is equal to greatest Integer

Note: adj M denotes the adjoint of square matrix M and [k] denotes the largest integer less than or equal k.

Vising Paroperty
$$= |A|^{N-1} + |B|^{N-1}$$

$$= |A|^{N-1} = |06|$$

$$= |A|^{3-1} = |06|$$

$$= (2K+1)^3 = |06|$$

$$= (2K+1)^6 = |06|$$

det
$$(AdyA) + det(AdyB) = 10^6$$
 $|A|^{N-1} + |B|^{N-1} = 10^6$
 $|A|^{N-1} = 10^6$
 $|A|^{$

#Q.Let $M^4 = I$ (where I denotes the identity matrix) and $M \neq I$, $M^2 \neq I$ and $M^3 \neq I$.

Then, for any natural number k, M⁻¹ equals:

- (a) M^{4k+1}
- (b) M^{4k+2}
- (c) M^{4k+3}
- (d) M^{4k}

MnKtz

```
M=I
both sides Square It
```

M#I,
$$M^{2}$$
I, M^{3} I

 M^{4} I, M^{3} I

 M^{4} I

 M^{4} I

 M^{3} I

(a)
$$Q = \begin{vmatrix} 3/7 & 2/7 & 6/7 \\ -6/7 & 3/7 & 2/7 \\ 2/7 & 6/7 & -3/7 \end{vmatrix}$$

#Q. For the given orthogonal matrix
$$Q = \begin{bmatrix} 3/7 & 2/7 & 6/7 \\ -6/7 & 3/7 & 2/7 \end{bmatrix}$$
 The inverse is $2/7 & 6/7 & -3/7 \end{bmatrix}$ The inverse is $2/7 & 6/7 & -3/7 \end{bmatrix}$ The inverse is $2/7 & 6/7 & -3/7 \end{bmatrix}$

(a)
$$Q = \begin{bmatrix} 3/7 & 2/7 & 6/7 \\ -6/7 & 3/7 & 2/7 \\ 2/7 & 6/7 & -3/7 \end{bmatrix}$$
 (b) $Q = \begin{bmatrix} -3/7 & -2/7 & 6/7 \\ 6/7 & -3/7 & -2/7 \\ -2/7 & -6/7 & 3/7 \end{bmatrix}$

(c)
$$Q = \begin{bmatrix} 3/7 & -6/7 & 2/7 \\ 2/7 & 3/7 & 6/7 \\ 6/7 & 2/7 & -3/7 \end{bmatrix}$$

(d)
$$Q = \begin{bmatrix} -3/7 & 6/7 & -2/7 \\ -2/7 & -3/7 & -6/7 \\ -6/7 & -2/7 & 3/7 \end{bmatrix}$$

If P is a 3 \times 3 matrix such that $P^{T} = 2P + I$, where P^{T} is the transpose #Q. of P and I is the 3×3 identity matrix, then there exists a column

$$P = 4l + 2I$$

$$PX = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \end{bmatrix} \qquad (PT)^{T} = 2P^{T} + IT$$

$$P = 2P^{T} + I$$

$$P = 2P^{T} + I$$

$$P = 2(2P + I) + I$$

$$-3P = 3I$$

$$P = 2(2P + I) + I$$

$$P = 2(2P + I) + I$$

(d)
$$PX = -X$$
 $P = 4P + 3I$ $P - 4P = 3T$

PX = X

THANK - YOU