Notes

Maksim Levental

November 27, 2019

1

1

2

2

3

Contents

1 Differential Geometry

1	Differential Geometry													
	1.1	Directional Derivative												
	1.2	Deriva	tions							 				
	1.3	Vector	Fields .							 				
2		ppendix Definitions												
		2.1.1 2.1.2 2.1.3	Linear (Germs Algebra Module)pe 	erat 	or ·				 				

Contents

1.1 Directional Derivative

Elements of the tangent space $T_p(\mathbb{R}^n)$ anchored at a point $p = (p^1, \dots, p^n) \in \mathbb{R}^n$ can be visualized as arrows emanating from p. These arrows are called tangent vectors and represented by column vectors:

$$\boldsymbol{v} = \begin{bmatrix} v^1 \\ \vdots \\ v^n \end{bmatrix} \tag{1}$$

The line through a point p with direction \boldsymbol{v} has parameterization

$$c(t) = (p^1 + tv^1, \dots, p^n + tv^n)$$
 (2)

If $f \in C^{\infty}$ in a neighborhood of p and \boldsymbol{v} is a tangent vector at p, the directional derivative of f in the direction of \boldsymbol{v} at p is defined

$$D_{v}f = \lim_{t \to 0} \left. \frac{f(c(t)) - f(p)}{t} = \frac{\mathrm{d}}{\mathrm{d}t} f(c(t)) \right|_{t=0}$$
 (3)

By the chain rule

$$D_{\mathbf{v}}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \bigg|_{p} \frac{\mathrm{d}c^{i}}{\mathrm{d}t} \bigg|_{t=0} \tag{4}$$

$$= \sum_{i=1}^{n} \frac{\mathrm{d}c^{i}}{\mathrm{d}t} \bigg|_{t=0} \frac{\partial f}{\partial x^{i}} \bigg|_{p} \tag{5}$$

$$= \sum_{i=1}^{n} v^{i} \frac{\partial f}{\partial x^{i}} \bigg|_{p} \tag{6}$$

(7)

The directional derivative operator at p is defined

$$D_{\mathbf{v}} = \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p} \tag{8}$$

The association $v\mapsto D_v$ offers a way to isomorphically identify tangent vectors with operators on functions. The following makes this rigorous.

1.2 Derivations

For each tangent vector v at a point $p \in \mathbb{R}^n$, the directional derivative at p gives a map of vector spaces

$$D_{\boldsymbol{v}} \colon C_p^{\infty} \to \mathbb{R}$$

 $D_{\boldsymbol{v}}$ is a linear map that satisfies the Leibniz rule

$$D_{\mathbf{v}}(fg) = (D_{\mathbf{v}}f)g(p) + f(p)(D_{\mathbf{v}}g) \tag{9}$$

because the partial derivative satisfy the product rule. In general, any linear map $L\colon C_p^\infty\to\mathbb{R}$ that satisfies the Leibniz rule is called a *derivation* at p. Denote the set of all derivations at p by $\mathcal{D}_p(\mathbb{R}^n)$. This set is also a real vector space.

So far we know directional derivatives $D_{\boldsymbol{v}}$ at p are derivations at p. Thus, there is a map

$$\phi \colon T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$$
$$\boldsymbol{v} \mapsto D_{\boldsymbol{v}}$$

Theorem 1.1. The linear map ϕ is an isomorphism of vector spaces.

The implication is that we may identify tangent vectors at p with derivations at p (by way of directional derivatives against germs). Under this isomorphism $T_p(\mathbb{R}^n) \simeq \mathcal{D}_p(\mathbb{R}^n)$, the standard basis $\{e_1, \ldots, e_n\}$ for $T_p(\mathbb{R}^n)$ maps to

$$\left\{ \frac{\partial}{\partial x^1} \bigg|_p, \dots, \frac{\partial}{\partial x^n} \bigg|_p \right\} \tag{10}$$

Therefore from now on we write a tangent vector as

$$\mathbf{v} = \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p} \tag{11}$$

The point being that, while not as geometrically intuitive as arrows, $\mathcal{D}_p(\mathbb{R}^n)$ generalizes to manifolds.

1.3 Vector Fields

A vector field X on an open $U \subset \mathbb{R}^n$ is function that assigns to $p \in U$ a tangent vector $X_p \in T_p(\mathbb{R}^n)$. Notice, carefully, that the vector field assigns at each point a vector in the tangent space anchored at that point. Using the tangent basis (eqn. (10))

$$X \colon p \mapsto \sum_{i} a^{i}(p) \frac{\partial}{\partial x^{i}} \bigg|_{p}$$
 (12)

Note that both the coefficients and the partial derivatives are evaluated at p. Having said that, we often omit p in the specification of a vector field when it clear from context.

Example 1.1. On $\mathbb{R}^n - \{\mathbf{0}\}$, let p = (x, y). Then

$$X = \frac{-y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}$$
$$= \begin{bmatrix} \frac{-y}{\sqrt{x^2 + y^2}} \\ \frac{x}{\sqrt{x^2 + y^2}} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{-y}{\sqrt{x^2 + y^2}} & \frac{x}{\sqrt{x^2 + y^2}} \end{bmatrix}^T$$

See figure 1

In general we can identify vector fields with parameterized column vectors

$$X = \sum_{i} a^{i}(p) \frac{\partial}{\partial x^{i}} \bigg|_{p} \leftrightarrow \begin{bmatrix} a^{1}(p) \\ \vdots \\ a^{n}(p) \end{bmatrix}$$
 (13)

2 Appendix

Contents

2.1	Definitions									
	2.1.1	Linear Operator	3							
	2.1.2	Germs	3							
	2.1.3	Algebra	3							
	2.1.4	Module	3							

2.1 **Definitions**

Linear Operator

A map $L\colon V\to W$ between vector spaces over a field K is a linear operator if

- 1. distributivity: L(u+v) = L(u) + L(v)
- 2. homogeneity: L(rv) = rL(v)

To emphasize the field, L is said to be K-linear.

2.1.2Germs

Consider the set of all pairs (f, U), where U is a neighborhood of p and $f: U \to \mathbb{R}$ is a C^{∞} function. We say that $(f,U) \sim (g,U')$ if there is an open W such that $p \in W \subset U \cap U'$ and f = g when restricted to W. The equivalence class [(f, U)] of (f, U) is the germ of f at p. We write

$$C_p^{\infty}(\mathbb{R}^n) := \{ [(f, U)] \}$$
 (14)

for the set all germs of C^{∞} functions on \mathbb{R}^n at p.

2.1.3 Algebra

An algebra over field K is a vector space A over K with a multiplication map

$$\mu \colon A \times A \to A \tag{15}$$

usually written $\mu(a,b) = a \cdot b$, such that μ is associative, distributive, and homogeneous, where homogeneity is defined:

- 1. associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 2. **distributivity**: $(a+b) \cdot c = a \cdot c + b \cdot c$ and $a \cdot b + a \cdot c$
- 3. homogeneity: $r(a \cdot b) = (ra) \cdot b = a \cdot (rb)$

If A, A' are algebras then an algebra homomorphism is a linear operator L that respects algebra multiplication L(ab) = L(a)L(b). It's the case that addition and multiplication of functions induces addition and multiplication on the set of germs C_p^{∞} , making it into an algebra over \mathbb{R}^n .

2.1.4 Module

If R is a communicative ring with identity, then a (left) R-module is an abelian group A with a scalar multiplication map

$$\mu \colon R \times A \to A \tag{16}$$

such that μ is

- 1. **associative**: (rs)a = r(sa) for $r, s \in R$
- 2. identity: $1 \in R \implies 1a = a$
- 3. **distributive**: (r+s)a = ra+sa and r(a+b) = ra+rb

If R is a field, then an R-module is a vector space over R; in this sense modules generalize vector space to scalars from a ring rather than a field.

Let A, A' be R-modules. An R-module homomorphism $f: A \to A'$ is a map that preserves both addition and scalar multiplication.

Index

```
R—module homomorphism, 3
algebra, 3
algebra homomorphism, 3
derivation, 2
directional derivative, 1
field, 3
germ, 3
isomorphically, 1
Leibniz rule, 2
linear operator, 3
module, 3
tangent space, 1
tangent vectors, 1
vector field, 2
```