Contrôle d'analyse I N°1

Durée : 1 heure 45 minutes Barème sur 15 points

NOM:	
	Groupe
PRENOM ·	

1. Résoudre dans \mathbb{R} l'inéquation suivante :

$$\sqrt{x^2 - |3x + 4|} \le x - 2$$
. 4,5 pts

2. On considère le domaine \mathcal{D} décrit ci-contre.

Il est formé de deux secteurs circulaires, l'un de rayon 2r et d'angle au centre α (en radians) et l'autre de rayon r et d'angle au centre 2α .

Les grandeurs r et α sont variables.

Le périmètre du domaine \mathcal{D} est fixé et vaut $L=24\,\mathrm{cm}$. On choisit r comme variable indépendante (on admet que $\pi=3$).

- a) Déterminer le domaine de la variable r.
- b) Représenter graphiquement l'aire A du domaine \mathcal{D} en fonction de r, (axe des abscisses : 1 unité = 2 carrés, axe des ordonnées : 3 unités = 1 carré).
- c) Pour quelles valeurs de r et de α l'aire A est-elle maximale?

4.5 pts

3. Résoudre l'inéquation suivante par rapport à la variable réelle $\,x\,$ en fonction du paramètre $\,m\,.$

$$\sqrt{x^2 + 3m x} \ge -x - m$$
, $m \in \mathbb{R}$.

4. On considère la suite (a_n) définie par son terme général

$$a_n = \sqrt{1 + \frac{1}{n}}, \quad n \in \mathbb{N}^*.$$

En utilisant la définition de la limite d'une suite, montrer que la suite (a_n) converge vers a=1.