(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-232420

(P2000-232420A)

(43)公開日 平成12年8月22日(2000.8.22)

(51) Int.Cl. ⁷	識別記号	FΙ		デー	73~ド(参考)
H04B 17	/00	H04B 1	7/00	В	
10,	/08	H 0 4 M	3/22	Z	
10,	/02	H 0 4 Q	3/52	В	
H04L 29,	/14	H 0 4 B	9/00	K	
H04M 3	/22			T	
	審查	E請求 有 請求項	質の数4 OL	(全 10 頁)	最終頁に続く
(21)出願番号	特顧2000-51964(P2000-51964)	(71)出願人	(71)出顧人 000004237		
(62)分割の表示	特願平8-223331の分割		日本電気株式会社		
(22)出顧日	平成8年8月26日(1996.8.26)		東京都港区芝五丁目7番1号 (72)発明者 白垣 違哉		
		(72)発明者			
	·		東京都港区芝	五丁目7番1号	子 日本電気株
			式会社内		
		(72)発明者	逸見 直也		
			東京都港区芝	五丁目7番1号	日本電気株
			式会社内		
		(74)代理人	100082935		
			弁理士 京本	直樹 (外2	2名)
					• • •

(54) 【発明の名称】 信号監視方式

(57) 【要約】

【課題】 光のまま切り替えられて通過する光信号の監視を低コストで実現する。

【解決手段】 光スイッチ回路網201の出力端の一部に、信号を監視する装置207を接続する。光信号を監視する命令を受信した時のみ、伝送されてきた光信号を監視装置207を接続し、信号品質の監視を行う。監視装置207としては、光信号のオーバヘッドを終端を設置を用いることができ、それによりビット誤り率を認べたり、オーバヘッドに記述されている識別子を確認することができる。本構成を用いることにより、多数の光信号の監視を行うことが可能であるので、低コストに主信号の監視を行うことが可能である。又、常に監視する要求が起こった時のみ監視するので、なった時のみ監視する要求が起こった時のみ監視するので、なシステムを構築することが可能となるという効果がある。

1

【特許請求の範囲】

【請求項1】第1の信号監視手段と第2の信号監視手段とを持つノードからなる通信ネットワークにおいて、通常は前記第1の信号監視手段を用いた監視を行い前記第2の信号監視手段を用いた信号の監視を行わず、詳細な監視情報が必用になった場合に、前記第2の信号監視手段にも前記信号を入力し、前記第2の信号監視手段を併用した信号の監視を行うことを特徴とする信号監視方式

【請求項2】他ノードと監視制御情報の送受を行う手段と第1の信号監視手段と第2の信号監視手段とを持つノードからなる通信ネットワークにおいて、通常は前記第1の信号監視手段を用いた信号の監視を行いず、他ノードから受信した監視制御情報が前記第2の信号監視手段を用いた信号の監視を行う要求であった場合に、前記第2の信号監視手段にも前記信号を入力し、前記第2の信号監視手段を併用した信号の監視を行うことを特徴とする信号監視方式。

【請求項3】第1の信号監視手段と第2の信号監視手段と前記第2の信号監視手段と信号とを切り替えるスイッチ回路網とを備えるノードからなる通信ネットワークにおいて、通常は前記第1の信号監視手段を用いた監視を行い前記第2の信号監視手段を用いた信号の監視を行わず、詳細な監視情報が必用になった場合に、前記スイッチ回路網を切り替えて前記第2の信号監視手段に前記信号を入力し、前記第2の信号監視手段を併用した信号の監視を行うことを特徴とする信号監視方式。

【請求項4】他ノードと監視制御情報の送受を行う手段と第1の信号監視手段と第2の信号監視手段と前記第2の信号監視手段と信号とを切り替えるスイッチ回路網とを備えるノードからなる通信ネットワークにおいて、通常は前記第1の信号監視手段を用いた信号の監視を行わず、他ノードから受信した監視制御情報が前記第2の信号監視手段を用いた信号の監視を行う要求であった場合に、前記スイッチ回路網を切り替えて前記第2の信号監視手段にも前記信号を入力し、前記第2の信号監視手段を併用した信号の監視を行うことを特徴とする信号監視方式。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、通信ネットワーク ノード、及び、通信ネットワーク監視方式、通信ネット ワークに関するものである。

[0002]

【従来の技術】従来、光スイッチ回路網を用いて、ネットワークを構成する時、主信号光の誤り率等の信号品質や識別子等をノードに於いて監視しようとすると、図6に示すように全ての光信号を電気信号に変換して信号の

2 監視を行わなければならなかった(K. Sato et

al., IEEE J. Select AreasC ommun., vol/12, no. 1, pp. 159 -170, 1994)。図6に於いて605、606は 光ファイバ伝送路、601は波長分割多重された光信号 を波長毎に分離して出力する波長分割多重分離器、60 2は光信号を電気信号に変換し、再び光信号に変換して 出力する光送受信器、603は光スイッチ回路網であ る。604は異なる複数の光信号を波長分割多重する合 流器である。例えば、このノード構成を用い、伝送する 10 信号としてSONET (Synchronous op tical network) の規格の信号 (Bell core TR-NWT-000253参照)を用いた 場合、隣接ノード間に於いて、バイト多重により監視情 報を常に伝達する。光送受信器602にSONETの信 号の終端機能を持たせると、光送受信器602に於い て、信号光を電気信号に変換してパリティ・チェック等 を行うことにより、その信号のビット誤り率を監視する ことが可能である。又、SONET規格の信号の終端す 20 ることにより、信号の識別子の情報を取得することがで き、信号の識別子を監視することが可能である。

[0003]

【発明が解決しようとする課題】以上説明した従来技術 を用いれば、光通信ネットワークに於いて、ノードに入 力される、全ての主信号光の信号品質や識別子の監視を 行うことが可能である。しかし、常に全ての信号光の監 視を行うために全ての光信号を電気終端し信号監視装置 を用い信号の監視を行っているので、信号監視装置の数 が信号数分だけ必要となり、ノード装置の大きさが大き 30 くなってしまう上、消費電力も大きくなり、ノード装置 のコストが高くなる。又、常に監視を行っているので、 監視システムのためのメモリ容量等が大きくなり、高コ ストになる。又、監視情報を信号に時分割多重して埋め 込んで常に伝送しているので、監視・制御のための情報 量が大きくなってしまい、監視・制御回線の容量が大き くなってしまったり監視・制御回線に輻輳が起こり易く なる。監視・制御回線の輻輳が起こり易くなると、高速 な障害回復を行うことができない。

[0004]

40 【課題を解決するための手段】本発明の信号監視方式 は、第1の信号監視手段と第2の信号監視手段とを持つ ノードからなる通信ネットワークにおいて、通常は前記 第1の信号監視手段を用いた監視を行い前記第2の信号 監視手段を用いた信号の監視を行わず、詳細な監視情報 が必用になった場合に、前記第2の信号監視手段にも前 記信号を入力し、前記第2の信号監視手段を併用した信 号の監視を行うことを特徴とする。

【0005】また、他ノードと監視制御情報の送受を行う手段と第1の信号監視手段と第2の信号監視手段とを 50 持つノードからなる通信ネットワークにおいて、通常は

前記第1の信号監視手段を用いた信号の監視を行い前記 第2の信号監視手段を用いた信号の監視を行わず、他ノ ードから受信した監視制御情報が前記第2の信号監視手 段を用いた信号の監視を行う要求であった場合に、前記 第2の信号監視手段にも前記信号を入力し、前記第2の 信号監視手段を併用した信号の監視を行うことを特徴と

【0006】また、第1の信号監視手段と第2の信号監 視手段と前記第2の信号監視手段と信号とを切り替える スイッチ回路網とを備えるノードからなる通信ネットワ ークにおいて、通常は前記第1の信号監視手段を用いた 監視を行い前記第2の信号監視手段を用いた信号の監視 を行わず、詳細な監視情報が必用になった場合に、前記 スイッチ回路網を切り替えて前記第2の信号監視手段に 前記信号を入力し、前記第2の信号監視手段を併用した 信号の監視を行うことを特徴とする。

【0007】また、他ノードと監視制御情報の送受を行 う手段と第1の信号監視手段と第2の信号監視手段と前 記第2の信号監視手段と信号とを切り替えるスイッチ回 路網とを備えるノードからなる通信ネットワークにおい て、通常は前記第1の信号監視手段を用いた信号の監視 を行い前記第2の信号監視手段を用いた信号の監視を行 わず、他ノードから受信した監視制御情報が前記第2の 信号監視手段を用いた信号の監視を行う要求であった場 合に、前記スイッチ回路網を切り替えて前記第2の信号 監視手段にも前記信号を入力し、前記第2の信号監視手 段を併用した信号の監視を行うことを特徴とする。

【0008】(作用)以下、本発明の作用について説明 【0009】本発明では、スイッチ回路網の一部の出力

端に信号の監視装置を接続することにより、信号監視の 必要が無いときは監視を行わずに、信号監視の必要な時 のみ信号監視を行う。これにより、全ての信号に対し て、信号終端装置を準備する必要がなく、ノード装置の 低コスト化が図れる。又、常に監視情報の伝達を行わず に、必要な時のみ監視・制御の情報を伝達するので、監 視・制御情報の伝達量を減らすことができ、必要なメモ リ容量が少なくて済むので監視・制御システムの低コス ト化が可能である。又、監視・制御情報の伝達量が減る ことにより、必要な監視・制御の回線容量、又は監視・ 制御回路の輻輳が減り、高速な障害回復を行うことが可 能である。

[0010]

【発明の実施の形態】光線路の状態を監視したり、スイ ッチの状態を監視する装置を用いても、監視用の信号の 状態を監視することにより実現しているので本発明の目 的である信号品質の監視を行うことは不可能である。例 えば、特開平6-177838号公報、特開昭61-2 32734号公報は光線路の監視を行うためのシステム であり、本発明の目的である主信号の監視のために適用

することは不可能である。特公昭62-6207号公 報、特開昭63-223721号公報はスイッチの動作 状態を監視するものであり、本発明の目的である信号の 監視のために用いることは不可能である。本発明は、主 信号の監視を行うためのものである。

4

【0011】以下、実施例を示して本発明を詳しく説明

【0012】以下、STS-1規格の信号とは、SON ET (Synchronous optical ne twork, Bellcore TR-NWT-000 253参照)で用いられる信号形式であり、主信号の他 に監視・制御情報も埋め込んで伝送するものである。具 体的には、バイト毎に時分割多重されている領域を監視 ・制御用の領域(オーバヘッド)と主信号を伝達するた めの領域(ペイロード)に分けて伝送することにより実 現する。ある終端間で内容が変わらずに伝達される区間 をパスと呼んでいるが、あるバイト(C1バイト等)に は、パスの識別子の情報が格納されており、それを調べ ることによりパスの識別子を知ることができる。又、あ 20 るバイト (B1バイト等) を解析することにより、パリ ティチェックを行って誤り率を計算することができ、ビ ット誤り率に関する信号品質を知ることが可能である。 従って、STS-1の信号を終端することにより、誤り 率等の信号の監視を行うことが可能である。

【0013】第1の発明の実施例について図1を用いて 説明する。図1に於いて、100は通信ネットワーク・ ノードを表す。101はスイッチ回路網であり、SON ETの規格のADM (Add/drop multip lexing) 装置やDCS (Digital cro ss-connect system) 装置 (Tson g-HoWu、「ファイバ・ネットワーク・サービス・ サバイバビリティ」参照)を用いることが可能であり、 STS-1フォーマットの信号単位を切り替えて編集し たり、add(信号を伝送信号中に付加)したり、dr op (伝送信号中からある信号を抜き取る) したりする ことが可能である。106、109はSTS-1フォー マットの信号が通る信号線路であり、この線路を通るこ とにより他ノードに信号を伝送することが可能である。

【0014】ノード100の外側には106の直前には 光一電気変換する光受信器の部分、光受信した信号を時 間多重分離して複数のSTS-1の信号に分離する部 分、109の直後には、電気-光変換する光送信器の部 分があり、複数のSTS-1の信号を時分割多重する部 分があるが、説明を簡単にするため図1には記述してい ない。又、スイッチ回路網101の一部の入出力端に は、主信号即ちSTS-1信号のadd/dropを行 う装置を付加することが可能であるが、説明を簡単にす るために図1には記述していない。ノード100では、 今、106を通ってくるSTS-1信号は、スイッチ回 50 路網101で切り替えられ、109へ送出されSTS-

1信号の終端を行っていない。従って、どこかでSTS-1の終端を行わないと、STS-1信号の監視を行うことはできない。

【0015】105は信号終端装置(信号監視手段)で あり、STS-1フォーマットの信号を終端する装置を 用いることができる。105はSTS-1フォーマット の信号の識別子を監視することができ、又、誤り率を計 算することができる領域を監視することにより、STS -1信号の信号品質 (ビット誤り率) を監視することが 可能である。情報処理手段としては、ワークステーショ ン103を用いることが可能である。107、108は デジタル信号が通る電話線である。102、104は、 ISDN (Integrated Services DigitalNetwork) ODSU (Digit al Signal Unit) (制御管理信号を受信 する手段、制御管理信号を送信する手段) であり、ネッ トワークプロバイダと接続することにより、インタネッ トに接続することが可能である。従って、102、10 4を用いて各ノード間で制御管理情報の授受を行うこと が可能である。

【0016】今、図1に示されるノード100に於い て、信号線路106から到着した信号はスイッチ回路網 101でルーティングが行われた後、信号線路109へ と送出される。この場合、この接続のままであると、S TS-1の終端を行わないで他ノードへ送出してしまう のでこの信号の監視を行うことができない。しかし、通 信に障害が発生した場合はビット誤り率等の信号の品質 を監視する必要がある。他ノードがノード100の信号 の監視結果を必要とする時は、他ノードからインタネッ トを介してその命令をノード100に転送する。102 を介してその命令情報を受け取った情報処理装置103 は、スイッチ回路網101を切り替えて信号を信号監視 装置105に接続して、STS-1フォーマットの信号 の監視、即ち、信号の識別子やビット誤り率を監視させ ることが可能である。105を用いて監視情報を得た情 報処理装置は、104を介して接続してあるインタネッ トを用いて、ある信号のノード100での監視情報を他 ノードへ転送することが可能である。

【0017】図1のノード構成を用いると、信号の監視が要求される時のみ、スイッチ回路網101を切り替え信号を信号監視装置に入力することが可能である。従って、ノード100に於いて、信号の個数分のSTS-1フォーマットの信号監視装置が必要なく、信号監視装置の個数は少数で良いので、ノードの監視を低コストで実現できる。又、図1のノード構成を用いることにより、通信障害が発生した時等、監視が要求される時のみ監視を行い監視情報を伝達するので、監視制御情報の伝達量を減らすことができる。従って、監視・制御を低コストで行うことが可能である。

【0018】第1の発明の実施例に於いて、制御管理情

報の転送手段としてインタネットを用いたが、他ノード と通信できるものなら、他のネットワークを用いても本

【0019】又、実施例に於いては、インタネットに接続する手段として102、104と2つの装置を用いたが、インタネットは双方向通信可能であり1つのボードで実現できるので、102、104として同一の装置を

発明は支障無く実現することが可能である。

【0020】又、実施例に於いては、監視装置105か 10 らの監視情報を一旦情報処理装置103に入力している が、監視装置105の出力端を104の入力端に直接接 続することによっても、本発明は支障無く実現できる。

用いることにより実現できることは明らかである。

【0021】又、実施例に於いては、主信号を終端する 装置がスイッチ回路網101の一部の入出力端に接続さ れていないが、主信号を終端する装置をスイッチ回路網 の一部の入出力端に接続しても、本発明は支障無く実施 できる。

【0022】次に、図2を用いて第2の発明の実施例について説明する。図2に於いて、208、209は光伝20 送路であり、この線路を通ることにより他ノードに信号を伝送することが可能である。200は光通信ネットワーク・ノードを表す。201は光スイッチ回路網であり、光スイッチ回路網201として、図5に示すように、LiNbO3を用いて作られた8×8のマトリクス光スイッチを複数組み合わせて作られる64×64の光スイッチ回路網(白垣ら、イー・シー・オー・シー・93(ECOC・93:European Conference on Optical Communication)プロシーディング第2巻、TuP5.3,13053ページ参照)を用いることができる。

【0023】光スイッチ回路網の一部の入出力端には、 光信号を電気信号に変換し、STS-1信号を終端する 装置を接続し、主信号のadd(光信号を光伝送信号中 に付加) / d r o p (光伝送信号中からある光信号を抜 き取る)を行うことが可能であるが、ここでは、説明を 簡単にするためにadd/dropした光信号を終端す る装置を図2に記載していない。今、1.55μπ帯の 光信号を主信号に用い、1. 31μm の光信号を制御・ 監視情報の転送用に用いる。203は光受信器(制御管 理信号を受信する光受信手段)である。205は1.3 1 μ m の光信号を送出する光送信器 (制御管理信号を送 信する光送信手段) である。202は1.31 µm の光 信号を光受信器203に、1.55μm 帯の光信号を光 スイッチ回路網の入力端に接続するWDMカップラ(光 分波手段)である。204はワークステーション(情報 処理手段)であり、制御・管理情報の処理を行う。20 4は、制御管理情報のルータを持っており、制御管理情 報のヘッダを参照して、送りたいノードヘルーティング を行う。206は、202と同じくWDMカップラ(光 50 合波器) であり、光送信器 2 0 5 からの1. 3 1 μπ の

8

光信号と光スイッチ回路網201からの1.55 μ m 帯の光信号を合波する。207は光信号終端装置(光信号監視手段)であり、光一電気変換後、STS-1フォーマットの信号を終端することが可能なものを用いる。従って、207はSTS-1フォーマットの信号の識別子を監視することができ、又、STS-1信号のオーバヘッドの中で、誤り率を計算することができる領域を監視することにより、STS-1信号の信号品質を監視することが可能である。

7

【0024】通常、図2に示されるノード200に於い て、光スイッチ回路網201を用いて光のまま光信号が 切り替えられ、208、202、201、206、20 9のように伝送されており、ノード200に於いて光信 号の監視を行うことはできない。光伝送路に障害が発生 する等して、他のノードがノード200での主信号の監 視を行う必要がある時には、まず他のノードが、ノード 200宛でにその光信号を監視する命令を送出する。2 08から伝送されてきた光信号の内、制御・管理情報は WDMカップラ202により光受信器203により受信 され、ワークステーション204により情報の解釈を行 うことが可能である。このようにして、情報処理装置2 04が、他ノードから信号を監視するように命令を受け ると、情報処理装置204は、光スイッチ回路網201 を切り替えて、信号光が207に接続されるように切り 替え、207により光信号の監視を行う。207から光 信号の監視情報を得た情報処理装置204は、光送信器 205を用いて、その情報を他のノードへと送出するこ とが可能となる。

【0025】図2のようなノード構成を用いることにより、監視の必要な時だけ、光スイッチ回路網201を用い光信号監視装置に接続して監視を行うことが可能である。従って、必要とされる光信号監視装置(監視のために必要な光一電気変換装置も含む)の個数を減らすことができノードのコストを安くすることができる。又、障害が発生していない時等、監視情報が要求されない時には、監視情報を伝達せず、必要な時だけ監視情報を伝達するので、監視・制御のための情報量が少なくて済み、監視・制御のコストを安くすることが可能である。

【0026】又、図2の構成を用いると2段階の監視レベルを設定することが可能である。図2の構成でWDMカップラ202を用いる代わりに光のパワーをある比率で分岐する光カップラを用いると主信号光の光レベルを監視することが可能である。従って、まず第1段階として、光受信器203により、監視信号の直流成分を監視することが可能であり、光スイッチ回路網201を切り替えて光信号監視装置207に入力させて監視することにより光信号の誤り率、識別子等の第2の段階の光信号の監視を行うことが可能である。このような構成を用いると障害回復の時に要求されるような急を要する情報は、低コストで常に監視しておくことができる。障害回

復が起こった後の光伝送路の修復のために障害点を確定するためには、秒単位の時間が要求されないので、後から、光スイッチ回路網を切り替えて光信号を光信号終端装置207に接続して監視することが可能である。

【0027】第2の発明の実施例に於いて、制御管理信号の伝送には、主信号光と別波長の光信号を用いることにより実現したが、サブキャリア多重による方法、別のファイバを用いて伝送する方法、電話線を利用する方法等を用いても本発明は支障無く実現することが可能である。従って、光合波手段、光分波手段として、WDMカップラを用いたが、サブキャリア多重等の方法を用いると、光パワーをある比率で結合する光カップラを用いることが可能である。

【0028】又、実施例に於いては、光信号監視装置207は情報処理装置204に入力に接続される構成となっているが、207の出力端を直接、光送信器205へ接続する構成でも本発明は支障無く実現することが可能である。

【0029】又、実施例に於いては、監視以外の用途で、主信号光を終端する終端装置が光スイッチ回路網に接続されていないが、主信号光を終端してそのノードに於いて主信号光を利用するようにしても本発明は支障無く実施できる。

【0030】図3を用いて、第3の発明の実施例につい て説明する。図3に於いて3101、3201は光通信 ネットワーク・ノードを表す。3102、3202は光 スイッチ回路網で、図5に示すように、LiNbO3を 用いて作られたマトリクス光スイッチ501、502、 503を複数組み合わせて接続して構成する光スイッチ 30 回路網(白垣ら、イー・シー・オー・シー、93 (EC OC'93:European Conference on Optical Communicatio n) プロシーディング第2巻、TuP5.3,153ペ ージ参照)を用いることができる。3103、3202 は光送信器であり、それぞれ図3に示すように光スイッ チ回路網3102、3202に接続されている。310 4、3204は光受信器であり、それぞれ光スイッチ回 路網3102、3202に接続されている。3107、 3207は情報処理装置で、ワークステーションを用い 40 ることができる。3113~3116及び3213、3 214は主信号を伝送するための光ファイバ伝送路であ 0, 3111, 3112, 3117, 3118, 321 1、3212は監視・制御信号を伝送するための光ファ イバ伝送路である。3105、3109、3205、3 209は、情報処理装置からの制御情報を伝送する光受 信器であり、それぞれ監視・制御情報を伝送するための 光ファイバ伝送路に接続されている。3106、311 0、3206、3210は、他ノードからの監視・制御 情報を伝送する信号光を受信後、各ノードの情報処理装 置へ監視・制御情報を伝達する。3108、3208は

9

光信号を受信して信号の監視を行う装置で、光受信器と 信号の中から制御・監視情報だけ記述されている領域 (SONETの場合は、オーバヘッドの部分) のみを抽 出する。

【0031】図3に示すシステムを用いると、主信号の 光信号を常に監視しなくても監視を行うことが可能であ る。今、光伝送路3115、光スイッチ回路網310 2、光伝送路3114、光スイッチ回路網3202を通 って光受信器3204に行くように光スイッチ回路網3 102、3202が切り替えられているとする。通常 は、この光信号の監視を行わない。光受信器3204に より光信号を受信しているが、その誤り率が増加し受信 不能になると、情報処理装置3208は、ノード310 1での光信号の状態を知るために制御用光送信器320 5を用いて、ノード3101での光信号の状態を調べる ように、ノード3101へ命令を出す。ノード3202 からの命令を受けたノード3101は、光伝送路311 5からの光信号が光信号監視装置3108で受信される ように切り替える。パリティ・チェック等により誤り率 を測定し、その結果を光送信器3109を用いて送信す ることにより、ノード3201は、ノード3201に於 ける光信号の状態を把握することが可能である。

【0032】又、光信号監視装置は、主信号を切り替え る光スイッチ回路網の出力端に接続されていることによ り、光スイッチ回路網を切り替えれば、どの入力端に接 続されている光信号の状態でも監視することが可能であ る。このようなシステムを用いることにより、監視装置 の個数を減らすことが可能であり、ノード装置を低コス ト化することが可能である。又、ネットワークが正常な した時には、光信号監視装置へ切り替えることにより、 全ての光信号の監視を行うことが可能となる。従って、 障害が発生していない時の監視・制御情報の伝達量を減 らすことができ、監視制御情報の情報処理量が少なくて 済むので、監視制御システムのCPU使用率が減る上、 メモリの使用量も減る。従って、監視・制御システムを 低コストにすることが可能である。

【0033】このように光信号がビット誤りなく正常に 受信されている時は、監視を省略し、障害が起こった時 だけ、監視を行うことにより、監視用に電気一光変換す る装置を伝送路毎に配置する必要がなく、経済的に網を 構築できる。

【0034】図4を用いて、第4の発明の実施例につい て説明する。図4に於いて4101、4201は、光通 信ネットワーク・ノードを表す。3102~3214は 第3の発明の実施例に於いて説明したものと同じであ る。4104、4105、4204、4205は光受信 器であり、光信号の光レベルがあるレベル以上か、以下 であるか判定して、情報処理装置3107又は3207 へ判定結果を伝達する。4102、4103は光分岐器

であり、光スイッチ回路網3102の方へ95%、光受 信器4104、4105の方へ5%の割合で光を分岐す る。同様に4202、4203は光分岐器であり、光ス イッチ回路網3202の方へ95%、光受信器420 2、4205の方へ5%の割合で光を分岐する。従っ て、光分岐器4102、4103と光受信器4104、 4105を用いることにより主信号光の光レベルを常に 監視する事が可能である。同様に、光分岐器4202、 4203と光受信器4204、4205を用いることに 10 より主信号の光レベルを常に監視する事が可能である。

【0035】上記のように主信号光の光レベルの監視 (第1段階の監視)を常に行うことが可能である。又、 主信号光を光信号監視装置3208に接続するように光 スイッチ回路網3202を切り替えることにより、主信 号光のビット誤り率の監視を行うことが可能である。従 って、このシステムに於いて監視する段階を、第1段階 として主信号光の光レベルの監視、第2段階として主信 号光のビット誤り率の監視とすることが可能である。

【0036】今、主信号光が光伝送路3114を通って 伝送され、光スイッチ回路網3202を通り、光受信器 3204で受信されているとする。3113を予備光伝 送路とする。光ファイバ3114が完全に切断されてい る状態では、光受信器4204を用い光レベルの監視に より断状態と判定できる(第1段階の監視)。第1段階 の監視による障害検出により、障害回復動作を起動し、 予め定められた予備光伝送路3113に切り替えて障害 回復を行うことが可能である。一方、障害回復が終了し た後は、障害点を定めて修復する必要がある。一旦障害 回復が行われた後であり、その障害点の探索のためのビ 時の監視項目を減らすことが可能で、且つ、障害が発生 30 ット誤り率等の監視には、障害回復時ほど高速性が要求 されないので、常時監視している必要はない。従って、 第2段階の監視を行う第2の信号監視手段(光信号監視 装置3108、3208)を用いて、ビット誤り率等の 監視が必要な時にのみ、詳細な監視を行えば良い。

> 【0037】第4の発明の実施例では、光信号の監視に ついて説明したが、本実施例はこれに限らない。例え ば、第1段階の監視として、STS-1のセクション・ オーバヘッドを監視し、第2段階の監視としてSTS-1フォーマットでパス・オーバヘッドを監視することも 可能である。SONETでは、STS-1のセクション ・オーバヘッドを監視して、初めてパスオーバヘッドを 監視することが可能であるので、セクション・オーバへ ッドを監視する装置よりも、パスオーバヘッドまで監視 できる装置の方が、装置規模が大きい。従って、障害の 起こっていない時は、あるノードでdrop(終端)を 行わないパスに関して、STS-1フォーマットのセク ション・オーバヘッドのみ監視することにより、パス・ オーバヘッドまで監視する装置の数を減らすことができ 装置規模が小さくて済む。

【0038】障害回復は、至急行わなければならないの

可能である。

で、セクション・オーバヘッドの監視は常に行う必要が ある。一方、パスのビット誤り率や識別子の監視は、途 中のノードにおいては常に行う必要がなく、障害が発生 した時だけ行えれば良い。あるパスに障害が発生した 時、障害の発生したパスがどこまで正常に伝送されてい るか確認するために、そのパスの drop (終端)を行 わない途中のノードで、パスのビット誤り率、識別子等 の監視を行えれば良い。従って、第1段階の監視として セクション・オーバヘッドの監視を行い、第2段階の監 視としてパス・オーバヘッドの監視を行うように監視段 階を割り当てることが可能である。従って、第1段階の 監視を各信号に対して行った後、スイッチ回路網(図4 に於いて光スイッチ回路網3202の代わりに用いる) に入力し、通常そのノードでdrop (終端) する必要 があるものはパス・オーバヘッドの終端器(図4で32 04の部分に用いる)に接続し、そのノードで終端しな いパスは他ノードへ接続する線路(図4で3212、3 213相当)に接続する。パス・オーバヘッドを監視す る必要がある時のみスイッチ回路網を信号監視装置(図 4で3208の部分に相当)に切り替えて監視を行うこ とが可能である。第1段階のセクション・オーバヘッド の監視は常に行うが、第2段階のパス・オーバヘッドの 監視は常に行わずに、必要なときだけ監視を行うので、 低コストな監視システムを構成することが可能である。

【0039】第5の発明の実施例について図4を用いて 説明する。第4の発明の実施例で説明したように、図4 のシステムを用いると、監視・制御情報を伝達するため の光伝送路を用いて他ノードとの通信を行うことが可能 である。又、ノード4201、4202は、第1段階の 監視情報(主信号光の光レベル)は常に監視し、第2段 階の監視情報(主信号光のピット誤り率、識別子等) は、要求があった時のみ光スイッチ回路網を切り替えを 信号光を光信号監視装置3208に接続し、第2段階の 監視を行うことが可能である。従って、通常は、監視・ 制御情報を伝達するための光伝送路を用いて伝達されて の監視情報を伝送し、他ノードからの要求が、監視・ 制御情報を伝達するための光伝送路を用いて伝達されて きた時のみ、光スイッチ回路網3202を切り替えることにより第2段階まで監視を行うことが可能である。

【0040】このように、通常は第1段階までの監視情報のみ他ノードへ伝達し、必要な時のみ他ノードへ第2段階までの監視情報を伝達することにより、第2段階の監視を行う装置の数を減らすことが出来、ネットワークを低コストにすることが可能である。又、常に全ての監視情報を送出する方式に比べ、障害が起こっていない時に伝達する監視・制御情報量が少なくて済み、監視・制御の通信路の輻輳がおきにくい。障害時でも、高速に必要な制御情報を伝達することが可能であるので、障害回復時間が高速になる。従って、障害時のネットワークの断時間が短くなる、社会的ダメージを小さくすることが

【0041】以上、実施例をもって第1の発明から第5の発明までを詳細に説明したが、これらの発明はこの実施例のみに限定されるものではない。

12

【0042】第1の発明の実施例、信号付加装置、信号 終端装置、信号監視装置の個数として、ノード内でそれ ぞれ1個用いる場合を示したが、1個であっても、2個 以上の個数であっても、本発明は適用できる。

【0043】第2の発明の実施例では、光送信器、光受信器、光信号監視装置の個数として、ノード内でそれぞれ1個用いる場合を示したが、1個であっても2個以上の個数であっても、本発明は適用できる。

【0044】第3の発明、第4の発明、第5の発明の実施例においては、2ノード間での監視情報のやり取りについて説明したが、実施例と異なるノード数で、リング、チェーン、スター状等他のトポロジーのネットワークでも本発明が適用できることは自明である。

【0045】又、監視・制御信号を伝達する手段として第3の発明、第4の発明の実施例においては主信号を伝 20 送する光ファイバ伝送路と異なる監視・制御用の光ファイバ伝送路を用い第1の発明の実施例では電話線を用いた。しかし、監視・制御情報を伝達する手段は、必ずしも空間的に異なる光ファイバ伝送路を用いる必要はなく、例えば、ノード間毎に主信号光と異なる波長の監視・制御光を送り側ノードで重畳し、受け側ノードで分離する方式を用いることによっても、本発明は支障なく実施することが可能である。又、サブキャリア信号を送り側ノードで重畳し、受け側ノードで分離することにより、監視制御信号光を分離することにより、監視・制御の信号を伝達することによっても、本発明は支障なく実施することが可能である。

【0046】光スイッチ回路網の中で用いる光スイッチとして、LiNbO3を用いて作られた光スイッチを用いたが、機械式光スイッチ、半導体光スイッチ、石英光スイッチ等任意の光スイッチを用いて構成された光スイッチ回路網を用いても、本発明は適用できる。

【0047】本発明の実施例では光スイッチ回路網として、図3の構成の空間光スイッチ回路網を用いたが、任意のスイッチ回路網構成の、任意の入出力ポート数のス40 イッチ回路網を用いても、本発明は適用できる。

【0048】本発明の実施例では、光スイッチ回路網として、空間分割光スイッチ回路網を用いたが、波長分割 光スイッチ回路網を用いても本発明は実施できる。波長 分割光スイッチ回路網として、波長変換素子と空間分割 光スイッチ回路網を用いた構成や、波長変換素子、波長 ルーティング素子を用いた構成や、スター・カップラと 波長選択フィルタを用いた構成の波長分割光スイッチ回 路網を用いても、本発明は適用できる。

【0049】本発明の実施例では、スイッチ回路網とし 50 て、SONETのADM、DCSを用いたが、SDH

(Synchronous digital hier archy)規格のADM、DCSを用いても、その他 の時分割スイッチ回路網を用いても、本発明は支障なく 実施できる。

【0050】光信号が電気終端されている区間の障害回 復に関して説明したが、光信号が途中で電気終端され中 継されていても伝送されている信号の内容が変わらない 区間であれば、本発明は適用できることは、自明であ

【0051】又、情報処理装置としてワークステーショ 10 105 信号終端装置(信号監視手段) ンを用いたが、パーソナル・コンピュータ、DSP (デ ジタル・シグナル・プロセッサ) 等を用いても、本発明 は適用できる。

[0052]

【発明の効果】本発明を適用するならば、常に監視する 必要がない監視項目を、必要な時だけ監視することが可 能となるので、常に監視する必要がない監視装置の準備 数を減らすことができる。即ち多数の信号に対し、少数 の監視装置を準備するだけで、全ての信号の監視を行う ことが可能であり、ノード装置を低コスト化することが 20 207 光信号終端装置(光信号監視手段) 可能である。又、監視装置の個数が少ないので、消費電 力も少なくて良い。光通信を用いたシステムでは、監視 ・制御のために必要な光ー電気変換に必要な装置の数を 減らすことが可能であり、ノード装置の体積を小さくす ることができ、消費電力も小さくすることができる。 又、監視情報の保存量を減らすことが可能なので、監視 制御システムに要求されるメモリ容量等を少なくするこ とができ、監視・制御システムの低コスト化が可能であ る。又、監視情報の伝達量を減らすことが可能なので、 監視・制御回線の容量を減らすことができるか、又は、 監視・制御回線の輻輳が起こりにくくすることができ る。従って、障害時の情報の伝達の高速化が可能であ り、ネットワークの障害による社会的、経済的ダメージ を小さくすることが可能である。

【図面の簡単な説明】

【図1】第1の発明の一実施例を示すブロック図であ

【図2】第2の発明の一実施例を示すブロック図であ

【図3】第3の発明の一実施例を説明するためのブロッ 40 603 光スイッチ回路網 ク図である。

【図4】第4の発明の一実施例を説明するためのブロッ ク図である。

【図5】第2~第4の発明の実施例で用いる光スイッチ 回路網の一実施例を説明するためのブロック図である。

【図6】従来例を示すブロック図である。

【符号の説明】

100 通信ネットワーク・ノード

101 スイッチ回路網

102, 104 DSU (Digital signa 1 unit)

103 ワークステーション (情報処理手段)

106, 109 信号線路

107, 108 電話線

200 光通信ネットワーク・ノード

201 光スイッチ回路網

202 WDMカップラ(光分波手段)

203 光受信器(制御管理信号を受信する受信手段)

204 情報処理装置(情報処理手段)

205 光送信器(制御管理信号を送信する送信手段)

206 WDMカップラ(光合波手段)

208, 209 光伝送路

3101, 3201 光通信ネットワーク・ノード

3102, 3202 光スイッチ回路網

3103, 3203 光送信器

3104, 3204 光受信器

3105, 3205, 3109, 3209 光送信器

3106, 3206, 3110, 3210 光受信器

3107, 3207 情報処理装置

3108, 3208 光信号監視装置

30 3111~3118, 3211~3214 光ファイバ 伝送路

4101, 4201 光通信ネットワーク・ノード

4102, 4103, 4202, 4203 光分岐器

4104, 4105, 4204, 4205 光受信器

500 光スイッチ回路網

501~503 マトリクス光スイッチ

600 光通信ネットワーク・ノード

601 波長分割多重分離器

602 光送受信器

604 波長分割多重合波器

605,606 光ファイバ伝送路

【図3】

【図4】

【図5】

【図6】

フロントページの続き

(51) Int. Cl. ⁷

識別記号

FΙ

テーマコード(参考)

H 0 4 L 13/00 3 1 3

H O 4 Q 3/52