Devoir Surveillé n°4 - Sujet groupe A

- 1. (Question de cours) Démonstration de l'associativité du produit matriciel.
- 2. (Question de cours) Les matrices

$$A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \qquad \text{et} \qquad B = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix}$$

sont-elles inversibles? Le cas échéant, les inverser.

3. Montrer que la relation R définie sur $]1;+\infty[$ définie par

$$xRy \iff \frac{x}{1+x^2} \ge \frac{y}{1+y^2}$$

est une relation d'ordre total.

4. Montrer que la relation R définie sur \mathbb{R}^2 par :

$$(x_1, y_1)R(x_2, y_2) \iff \exists a > 0, \exists b > 0, x_2 = ax_1$$
 et $y_2 = by_1$

est une relation d'équivalence.

5. Montrer que la relation R définie sur \mathbb{R}^2 par :

$$(x_1, y_1)R(x_2, y_2) \iff x_1 = x_2$$

est une relation d'équivalence, et donner les classes d'équivalence. Plus précisément, si $(a, b) \in \mathbb{R}^2$, représenter graphiquement sa classe d'équivalence.

- 6. Le nom du groupe Imagine Dragons provient d'une anagramme de « Imagine Dragons », uniquement connue des membres du groupe ¹. Donner le nombre de possibilités (sans tenir compte des espaces ou des majuscules).
- 7. Montrer que $\mathbb{R}^* \times \mathbb{R}$, muni de la loi \oplus définie par $(x_1, y_1) \oplus (x_2, y_2) = (x_1x_2, x_1y_2 + y_1)$ est un groupe. Est-il abélien?
- 8. Montrer que l'ensemble des rationnels qui peuvent s'écrire comme quotient de deux entiers impairs est un sous-groupe de \mathbb{R}^* .
- 9. Justifier que $f: z \mapsto z/|z|$ est un morphisme de groupes de \mathbb{C}^* dans lui-même. Quel est son noyau?
- 10. On rappelle que l'ensemble $\mathbb{R}^{\mathbb{R}}$ des fonctions de \mathbb{R} dans \mathbb{R} , muni de la somme et du produit, est un anneau. Montrer que l'ensemble des fonctions admettant une limite finie en $+\infty$ est un sous-anneau de $\mathbb{R}^{\mathbb{R}}$. Est-il intègre?
- 11. On munit $\mathbb R$ des deux lois de composition internes suivantes :

$$\forall (a,b) \in \mathbb{R}^2, a\$b = a+b-1 \qquad \text{et} \qquad a\top b = ab - (a+b) + 2$$

Étudier la structure de $(\mathbb{R}, \$, \top)$.

- 12. Donner le degré et le coefficient dominant de $P = (X+2)^{2024} (X-2)^{2024}$
- 13. Effectuer la division euclidienne de $5X^4 2X^3 + 16X^2 X 1$ par $2X^2 + 3$.
- 14. Donner $(X^4 3X^3 + X^2 + 4) \wedge (X^3 3X^2 + 3X 2)$.
- 15. Donner le reste dans la division euclidienne de $(X+1)^n X^n 1$ par $(X-2)^2$.
- 16. Donner la multiplicité de 1 en tant que racine de $P = X^6 5X^5 + 8X^4 2X^3 7X^2 + 7X 2$.
- 17. Soient $n, m, p \in \mathbb{N}$. Montrer que $X^2 + X + 1$ divise $X^{3m+2} + X^{3n+1} + X^{3p}$.
- 18. Factoriser sur \mathbb{R} et sur \mathbb{C} le polynôme $P = X^4 + 3X^3 + 5X^2 + 3X$.
- 19. Donner un polynôme P vérifiant P(1) = 5, P(2) = 7 et P(10) = -4.
- 20. Décomposer en éléments simples la fraction rationnelle $F = \frac{X^{n-1}}{X^n 1}$.

1. True story!

Page 1/1 2023/2024