DEPARTMENT OF MATHEMATICS

Bennett University

Linear Algebra and Ordinary Differential Equations (EMAT102L)

Mid Term Examination	l
----------------------	---

June 6, 2021

Time: 1 hour 30 minute MID TERM EXAMINATION Maximum Marks: 30

1. If A is skew-symmetric matrix, then A^2 is a

[1] Answer: symmetric matrix

2. Let $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 1\}$, then W is a subspace of \mathbb{R}^3

Answer: False [1]

3. The linear span of the vectors (1, 2), (3, 4) is \mathbb{R}^2 .

Answer: True [1]

4. The set $\{(0,0),(1,0),(0,1)\}$ is linearly independent.

Answer: False [1]

5. Write down the dimension of the nullspace of the following matrix $\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$

Answer: 2 [1]

6. The mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by $T(x_1, x_2) = (x_1 + x_2, x_2^2)$ is a linear mapping.

Answer: False [1]

7. Let the linear mapping $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(x_1, x_2) = (x_1, x_1 + x_2, x_2)$. Then the nullity of T is

Answer: 0 [1]

8. The distinct eigen values of the matrix $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Answer: 0 and 2 [1]

9. The number of linearly independent eigenvectors of the matrix $\begin{bmatrix} 2 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix}$ is Answer: 4 [1]

10. The dimension of the subspace $W = \{(x_1, x_2, x_3, x_4, x_5) : 3x_1 - x_2 + x_3 = 0\}$ of \mathbb{R}^5 is Answer: 4

[1]

11. Determine the rank of the following matrix $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 6 & 7 & 8 \\ 3 & 6 & 9 & 12 & 15 \\ 4 & 8 & 12 & 14 & 16 \end{bmatrix}$

Answer: 2 [2]

12. Investigate for what values of λ and μ the following equations have an infinite number of solutions

$$x + y + z = 6$$
$$x + 2y + 3y = 10$$
$$x + 2y + \lambda z = \mu$$

Answer: $\lambda = 3$ and $\mu = 10$

13. Determinant value of the matrix $\begin{pmatrix} a+d & a+d+k & a+d+c \\ c & c+b & c \\ d & d+k & d+c \end{pmatrix}$ is

Answer: abc [2]

14. A linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by $T(x_1, x_2, x_3) = (x_1 + x_2 - x_3, 2x_1 - x_2 + x_3, x_1 - 2x_2 + 2x_3)$. Find Ker(T)

Answer: Ker(T) = 1 [2]

15. Let $\{(1,1,0),(1,0,0),(1,1,1)\}$ is a basis of R^3 , Then find the orthonormal basis for R^3 using Gram-Schmidt process with the following inner product $\langle x,y \rangle = (x_1y_1 + x_2y_2 + x_3y_3)$ where $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in R^3$

Answer: $\left\{ \frac{1}{\sqrt{(2)}}(1,1,0), \frac{1}{\sqrt{(2)}}(1,-1,0), (0,0,1) \right\}$ [2]

16. If the nullity of the matrix $\begin{bmatrix} k & 1 & 2 \\ 1 & -1 & -2 \\ 1 & 1 & 4 \end{bmatrix}$ is 1 , then the value of k is

Answer: -1 [2]

17. Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear map, satisfying

$$T(1,0,0,0) = (0,1,0,0)$$

$$T(0,1,0,0) = (0,0,1,0)$$

$$T(0,0,1,0) = (0,0,0,0)$$

$$T(0,0,0,1) = (0,0,1,0),$$

where (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) is the ordered basis of \mathbb{R}^4 . Then

Answer: Rank(T) = 2

[2]

18. A basis of

$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 - x_3 = 0, x_2 + x_3 + x_4 = 0, 2x_1 + x_2 - 3x_3 - x_4 = 0\}$$
 is

Answer: $\{(2, -1, 1, 0), (1, -1, 0, 1)\}$ [2]

19. A linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by $T(x_1, x_2, x_3) = (x_1 + x_2 - x_3, x_1 + x_2 + x_3, x_2 - x_3)$. Find the matrix of T with respect to the ordered basis $\{(0, 1, 0), (0, 0, 1), (1, 0, 0)\}$ of \mathbb{R}^3

Answer: $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$ [2]

20. Let A be a 3×3 matrix. Suppose that the eigen values of A are -1, 0, 1 with respective eigen $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$

vectors $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Then 6A equals

Answer: $\begin{bmatrix} -1 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$ [2]