	1000													
Roll	No.													

National Institute of Technology, Delhi

Name of the Examination: B. Tech

: ECE Branch

Semester

: IV

Title of the Course

: Analog Electronics

: ECB 252 Course Code

Time: 2 Hours

Maximum Marks: 25

- Questions are printed on BOTH sides. Answers should be CLEAR AND TO THE POINT
- All parts of a single question must be answered together. ELSE QUESTION SHALL NOT BE EVALUATED.
- A silicon (Si) transistor with $V_{CE}(sat) = 0.2V$, $h_{CE}(sat) = 100$, $V_{BE}(sat) = 0.8V$ is used in the following circuit in Fig. 1

- (a) Find the minimum value of R, for which the transistor is in saturation. Assume $I_C \approx I_E$, $V_{BB} = 12V$ and $V_{CE} = 10V$
- (b) Determine the output, V_0 at saturation for $R_L = R_{in,min}$, for which the transistor remains in saturation.
- In CE mode of transistor operation, the DC current gain is defined as, $\beta_{de} \equiv \frac{t_C}{t_R} \equiv h_{fE}$, [4] small signal forward current gain is defined as, $m{eta}_{ac}\!\!=\!\!m{eta}'\!\!\equiv\!\!rac{\delta t_C}{\delta t_B}|_{V_{CE}}=h_{fe}$

The above two are related as, $\beta' = \beta + (I_{CBO} + I_B) \cdot \frac{\delta \beta}{\delta I_B}$, where, symbols have their usual meanings. At the condition $I_B \gg I_{CBO}$, show that, $\frac{h_{fe} - h_{fE}}{h_{fe}} \approx \frac{I_C}{h_{fE}} \cdot \frac{\delta h_{fE}}{\delta I_C}$

$$\frac{h_{fe} - h_{fE}}{h_{fe}} \approx \frac{I_C}{h_{fE}} \cdot \frac{\delta h_{fE}}{\delta I_C}$$

Consider the following transistor switching circuit (Fig. 2): [2+2=4]

(a) Let the input varies between the two voltage levels $\overline{a}s$, $V_i = V_{low} \le 0$ and

 $V_i = V_{high} \ge V_{min}$, then what will be the expression for the minimum voltage required for the transistor to be operated in saturation, under non-ideal situation?

(b) If suppose now, $V_i \ge V_{RE(sat)}$ and $R_c=0$ in the above circuit and we receive $R_b \approx 10~R_c$, then at what region transistor will operate? What will be the output of the corresponding voltage levels of input for, $V_t = V_{low} \le 0$ and $V_t = V_{high} \ge V_{min}$?

4. For the two-battery transistor circuit, as shown in Fig. 3, prove that the [2] stabilization factor is given by,

$$S = \frac{1+\beta}{1+\beta \cdot R_e/(R_e + R_b)}$$

5. In the circuit shown in Fig. 7, V_{CC} = 24V, R_C = 10 K Ω and R_R = 270 Ω . If a Si transistor is [2 + 2 = 4 used with β =45 and at quiescent condition, V_{CC} = 5V, determine (a) value of R (b) stability factor.

6. Comment on the following with brief analogy:

"Fixed bias circuit provides higher gain but less stability than collector feedback bias circuit".

7. Write true (T)/false (F) against each of the following statements: $[1 \times 5 = 5]$

- (a) For $R_{\rm o}{=}0$ and $R_{\rm e}{\neq}0$, transistor cannot be operated in active region
- (b) Compound can be made up of two alloy semiconductors
- (c) Rate of change of stored charge is responsible for storage time in switching.
- (d) Heavily doped base in HBT increases the base resistance.
- (e) Stabilization techniques of bias stability use thermistors.