Discrete Math Homework 8

noflowerzzk

2024.11.06

1

- a) Proof. For all interpretation \mathcal{J} , if $\llbracket \phi \rrbracket_{\mathcal{J}} = \mathbf{T}$, then $\llbracket \psi \rrbracket_{\mathcal{J}} = \mathbf{T}$. Assuming a \mathcal{J}_0 , $\llbracket \forall x \phi \rrbracket_{\mathcal{J}_0} = \mathbf{T}$, i.e. $\forall a \in \mathcal{J}$'s domain, $\llbracket \phi \rrbracket_{\mathcal{J}_0[x \mapsto a]} = \mathbf{T}$, so $\llbracket \psi \rrbracket_{\mathcal{J}_0[x \mapsto a]} = \mathbf{T}$, which means $\llbracket \forall x \psi \rrbracket_{\mathcal{J}_0} = \mathbf{T}$. So $\forall x \phi \models \forall x \psi$.
- b) Proof. Suppose a interpretation \mathcal{J} , $\forall \phi_0 \in \Phi$, $\llbracket \phi_0 \rrbracket_{\mathcal{J}} = \mathbf{T}$ and $\llbracket \forall x \phi \rrbracket_{\mathcal{J}} = \mathbf{T}$. So for all $a \in \mathcal{J}$'s domain, $, \llbracket \phi \rrbracket_{\mathcal{J}_0[x \mapsto a]} = \mathbf{T}$. And noting that x does not freely occur in Φ , so $\forall \phi_0 \in \Phi$, $\llbracket \phi_0 \rrbracket_{\mathcal{J}[x \mapsto a]} = \llbracket \phi_0 \rrbracket_{\mathcal{J}} = \mathbf{T}$. So according to the condition, $\llbracket \psi \rrbracket_{\mathcal{J}[x \mapsto a]} = \mathbf{T}$, i.e. $\llbracket \forall x \psi \rrbracket_{\mathcal{J}} = \mathbf{T}$. Thus Φ , $\forall x \phi \models \forall x \psi$.
- c) Let $Phi = \{\chi\}$, and a interpretation \mathcal{J} , where $[\![\chi]\!]_{\mathcal{J}} = \mathbf{T}$ iff. $\mathcal{J}(x) = a(a \in \mathcal{J}$'s domain), and $[\![\forall x \phi]\!]_{\mathcal{J}} = \mathbf{T}$, $[\![\forall x \psi]\!]_{\mathcal{J}} = \mathbf{T}$ Then let $b \in \mathcal{J}$'s domain, $[\![\phi]\!]_{\mathcal{J}[x \mapsto b]} = \mathbf{T}$, $[\![\psi]\!]_{\mathcal{J}[x \mapsto b]} = \mathbf{T}$, but $[\![\chi]\!]_{\mathcal{J}[x \mapsto b]} = \mathbf{F}$. That indicates that $\Phi, \phi \not\models \psi$.

$\mathbf{2}$

- a) WRONG
- b) CORRECT
- c) WRONG
- d) CORRECT

3

$$A = \{1\}, B = \{1, \{1\}\}.$$

4

$$A=\{1\}, B=\{1,\{1\}\}, C=\{1,\{1\},\{1,\{1\}\}\}$$

5

Proof.

$$\begin{split} \forall X, \quad X \in \mathcal{P}(A) \cap \mathcal{P}(B) \\ \leftrightarrow X \in \mathcal{P}(A) \wedge X \in \mathcal{P}(B) \\ \leftrightarrow X \subseteq A \wedge X \subseteq B \\ \leftrightarrow \forall x \in X, x \in A \wedge x \in B \\ \leftrightarrow \forall x \in X, x \in A \cap B \\ \leftrightarrow X \subseteq A \cap B \\ \leftrightarrow X \in \mathcal{P}(A \cap B). \end{split}$$

So
$$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$$

5.1

Proof.

$$\begin{split} \forall (x,y), \quad & (x,y) \in A \times \bigcup B \\ & \Leftrightarrow x \in A \land \exists Y (Y \in B \land y \in Y) \\ & \Leftrightarrow \exists Y (Y \in B \land (x,y) \in A \times Y) \\ & \Leftrightarrow \exists T (T \in \{A \times X | X \in B\} \land (x,y) \in T) \\ & \Leftrightarrow (x,y) \in \bigcup \{A \times X | X \in B\} \end{split}$$

So
$$A \times \bigcup B = \bigcup \{A \times X | X \in B\}$$