© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°08

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

Partie I -

- 1. On a $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$. Par suite, en prenant $\ell = 1$, f est continue en 0.
- **2.** Les fonctions $x \mapsto \sin x$ et $x \mapsto x$ sont \mathcal{C}^1 sur \mathbb{R} et $x \mapsto x$ ne s'annule pas sur \mathbb{R}^*_+ donc f est \mathcal{C}^1 sur \mathbb{R}^*_+ .

De plus, pour tout x > 0, $f'(x) = \frac{x \cos x - \sin x}{x^2}$. Puisque $\cos x = 1 + o(x)$ et $\sin x = x + o(x^2)$, $x \cos x - \sin x = o(x^2)$. Par conséquent, f est continue sur \mathbb{R}_+ , de classe C^1 sur \mathbb{R}_+^* et $\lim_{x \to 0^+} f'(x) = 0$. D'après le théorème de prolongement \mathcal{C}^1 , f est de classe \mathcal{C}^1 sur \mathbb{R}_+ .

Remarque. Si on n'a pas encore vu le théorème de prolongement \mathcal{C}^1 , on montre d'abord que f est dérivable en 0. En effet

$$\frac{f(x) - f(0)}{x - 0} = \frac{\sin x - x}{x^2} \underset{x \to 0}{\sim} -\frac{x}{6}$$

En particulier, $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = 0$ de sorte que f est dérivable en 0 et que f'(0) = 0. Puisque $\lim_{x\to 0^+} f'(x) = 0$ 0 = f'(0), f' est bien continue en 0. Finalement, on retrouve le fait que f est \mathcal{C}^1 sur \mathbb{R}_+ .

- 3. Soit $\varphi: x \mapsto x \cos x \sin x$. φ est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $\varphi'(x) = -x \sin x$. Ainsi φ' est de signe constant sur I_n et ne s'annule qu'aux bornes de I_n . Il s'ensuit que φ est strictement monotone sur I_n . Sur I_n , ϕ est continue et strictement monotone donc établit une bijection de I_n dans $\phi(I_n)$ qui est un intervalle. Or $\varphi(n\pi)\varphi((n+1)\pi) = -n(n+1)\pi^2 < 0$. Donc $0 \in \varphi(I_n)$ et il existe un unique réel x_n dans I_n tel que $\varphi(x_n) = 0$.
- **4.** Pour tout $n \in \mathbb{N}^*$, on a $n\pi \le x_n \le n\pi + \pi$ d'où $1 \le \frac{x_n}{n\pi} \le 1 + \frac{1}{n}$. Le théorème des gendarmes prouve alors que $\lim_{n \to +\infty} \frac{x_n}{n\pi} = 1 \text{ ce qui donne } x_n \sim n\pi.$
- **5.** Pour tout $x \in \mathbb{R}$, f'(x) est du signe de $\varphi(x)$.

Or φ est strictement décroissante sur I_0 et $\varphi(0) = 0$. Donc f' est négative sur I_0 et ne s'annule qu'en 0. Donc f est strictement décroissante sur I₀.

Soit maintenant $n \in \mathbb{N}^*$. Sur I_{2n} , φ est strictement décroissante et s'annule en x_{2n} . Donc f est strictement croissante sur $[2n\pi, x_{2n}]$ et strictement décroissante sur $[x_{2n}, (2n+1)\pi]$.

De même, sur I_{2n-1} , φ est strictement croissante et s'annule en x_{2n-1} . Donc f est strictement décroissante sur $[(2n-1)\pi, x_{2n-1}]$ et strictement croissante sur $[x_{2n-1}, 2n\pi]$.

1

6. La courbe représentative de f coupe l'axe des abscisses aux points d'abscisse $n\pi$, avec $n \in \mathbb{N}^*$.

Partie II -

1. Le calcul donne
$$g''(x) = \frac{-(x^2 - 2)\sin x - 2x\cos x}{x^3}$$
 pour tout $x > 0$.

2.

n	0	1	2
P _n	1	X	$X^2 - 2$
Q_n	0	1	2X

3. En dérivant la relation donnée par l'énoncé, on a pour tout x > 0:

$$g^{(n+1)}(x) = \frac{P'_n(x)\sin^{(n)}(x) + P_n(x)\sin^{(n+1)}(x) + Q'_n(x)\sin^{(n+1)}(x) + Q_n(x)\sin^{(n+2)}(x)}{x^{n+1}} - (n+1)\frac{P_n(x)\sin^{(n)}(x) + Q_n(x)\sin^{(n+1)}(x)}{x^{n+2}}$$

comme $\sin^{(n)}(x) = -\sin^{(n+2)}(x)$, on obtient :

$$g^{(n+1)}(x) = \frac{P_{n+1}(x)\sin^{(n+1)}(x) + Q_{n+1}(x)\sin^{(n+2)}(x)}{x^{n+2}}$$

avec

$$P_{n+1} = XP_n + XQ'_n - (n+1)Q_n$$

$$Q_{n+1} = XQ_n - XP'_n + (n+1)P_n$$

4. On isole le cas n=0. $P_0=1$ donc P_0 est à coefficients entiers, de degré 0, de coefficient dominant 1 et pair. $Q_0=0$ donc Q_0 à coefficients entiers, de degré $-\infty$. Cela n'a pas de sens de parler de son coefficient dominant et il est aussi bien pair qu'impair.

Traitons maintenant le cas $n \ge 1$. Soit \mathcal{H}_n la propriété :

© Laurent Garcin MP Dumont d'Urville

 P_n est de degré n de coefficient dominant 1, Q_n est de degré n-1 et de coefficient dominant n, P_n et Q_n sont à coefficients entiers, P_n a la parité de n, Q_n a la parité opposée de celle de n.

 \mathcal{H}_1 est vraie. Supposons \mathcal{H}_n vraie pour un certain $n \in \mathbb{N}^*$.

Alors P_n , Q_n , P_n' et Q_n' sont à coefficients entiers donc P_{n+1} et Q_{n+1} aussi.

De plus, XP_n est de degré n+1 de coefficient dominant 1 et XQ'_n et Q_n sont de degré strictement inférieur à n+1donc P_{n+1} est de degré n+1 de coefficient dominant 1.

Par ailleurs, XQ_n , XP'_n et $(n+1)P_n$ sont de degré n de coefficients dominants respectifs n, n et n+1 donc Q_{n+1} est degré n de coefficient dominant n + 1.

Enfin, P_n a la parité de n et Q_n a la parité opposée à celle de n donc XP_n , XQ'_n sont de la parité opposée à celle de n donc de la parité de n+1 tandis que XQ_n et XP_n' sont de la parité de n donc de la parité opposée à celle de n+1. On en déduit que P_{n+1} a la parité de n+1 tandis que Q_{n+1} a la parité opposée à celle de n+1.

Donc \mathcal{H}_{n+1} est vraie. Ainsi \mathcal{H}_n est vraie pour tout $n \in \mathbb{N}^*$.

- 5. On a $P_3 = XP_2 + XQ_2' 3Q_2 = X^3 6X$ et $Q_3 = XQ_2 XP_2' + 3P_2 = 3X^2 6$.
- **6.** Soit $\alpha_k = \frac{\pi}{2} + 2k\pi$ et $\beta_k = 2k\pi$. Comme pour tout x > 0, on a $U(x)\sin(x) + V(x)\cos(x) = 0$, pour tout entier $k \in \mathbb{N}^*$, $U(\alpha_k) = 0$ et $V(\beta_k) = 0$. U et V admettent une infinité de racines donc sont égaux au polynôme nul.
- 7. En dérivant n+1 fois l'égalité, $xg(x) = \sin x$, on obtient pour tout x > 0,

$$xg^{(n+1)}(x) + (n+1)g^{(n)}(x) = \sin^{(n+1)}(x)$$

d'où en reportant les formules donnant $g^{(n)}(x)$ et $g^{(n+1)}(x)$:

$$(P_{n+1}(x) + (n+1)Q_n(x) - x^n)\sin^{(n+1)}(x) + ((n+1)P_n(x) - Q_{n+1}(x))\sin^{(n)}(x) = 0$$

Puisque à n fixé, l'une des expressions $\sin^{(n+1)}(x)$ ou $\sin^{(n)}(x)$ vaut $\pm \sin(x)$ tandis que l'autre vaut $\pm \cos x$, on peut appliquer le résultat de la question précédente et on a donc :

$$P_{n+1} + (n+1)Q_n - X^{n+1} = 0 (n+1)P_n - Q_{n+1} = 0$$

8. En reportant $Q_{n+1} = (n+1)P_n$ dans la définition de Q_{n+1} , on a $X(Q_n - P_n') = 0$ ce qui donne $Q_n = P_n'$ par intégrité

On a donc $P_{n+1} = X^{n+1} - (n+1)Q_n = XP_n + XP_n'' - (n+1)Q_n$ ce qui donne $P_n + P_n'' = X^n$ à nouveau par intégrité

 P_n est donc solution de l'équation différentielle \mathcal{E}_n : $y'' + y = x^n$.

9. Si T est un polynôme non nul de degré p, T + T'' est aussi de degré p et non nul (car le degré de T'' est strictement inférieur à celui de T). Cela montre que Ψ est injectif et que si T appartient à $\mathbb{R}_n[X]$, $\Psi(T)$ aussi.

Donc Ψ_n est un endomorphisme injectif de $\mathbb{R}_n[X]$. Comme $\mathbb{R}_n[X]$ est de dimension finie, cela implique que Ψ_n est bijectif.

Si Q est un polynôme quelconque, il existe un entier p tel que Q appartienne à $\mathbb{R}_p[X]$. Comme Ψ_p est bijectif, il existe P tel que $\Psi_p(P) = Q$. Donc P est un antécédent de Q par $\Psi : \Psi$ est surjectif et comme Ψ est injectif, Ψ est bijectif.

10. Notons $P_n = \sum_{k=0}^n b_k X^k$. On a

$$P_n + P_n'' = \sum_{k=0}^n b_k X^k + \sum_{k=0}^n k(k-1)b_k X^k$$

$$= b_n X^n + b_{n-1} X^{n-1} + \sum_{k=0}^{n-2} (b_k + (k+2)(k+1)b_{k+2}) X^k = X^n$$

Par suite $b_n = 1$, $b_{n-1} = 0$ et pour tout $k \in [0, n-2]$, $b_k = -(k+2)(k+1)b_{k+2}$. Cela donne pour tout $k \in [1, p]$, $b_{n-2k} = (-1)^k \frac{n!}{(n-2k)!}$ et $b_{n-2k+1} = 0$.

Finalement P =
$$\sum_{k=0}^{p} a_k X^{n-2k}$$
 avec $a_k = (-1)^k \frac{n!}{(n-2k)!}$.

11. Les solutions de $y'' + y = x^n$ sont la somme d'une solution particulière de cette équation et de la solution générale de y'' + y = 0.

 P_n étant solution particulière, les solutions sont donc les fonctions du type : $x \mapsto P_n(x) + \lambda \cos x + \mu \sin x$, λ et μ étant deux réels.

© Laurent Garcin MP Dumont d'Urville

Solution 1

- 1. On a $\dim(F \oplus H) = \dim F + \dim H = n$ et $\dim(G \oplus H) = \dim G + \dim H = n$. D'où $\dim F = \dim G = n \dim H$.
- 2. F admet un supplémentaire dans E qui est également un supplémentaire de G puisque F = G.
- **3. a.** Puisque dim $F = \dim G = n 1$, on ne peut avoir $F \subset G$ sinon on aurait F = G. De même, on ne peut avoir $G \subset F$. Il existe donc $u \in F \setminus G$ et $v \in G \setminus F$.
 - **b.** Supposons que $w \in F$. Alors $v = w u \in F$ ce qui n'est pas. Supposons que $w \in G$, alors $u = w v \in G$, ce qui n'est pas. Ainsi $w \notin F \cup G$.
 - **c.** Soit $x \in F \cap H$. Il existe donc $\lambda \in \mathbb{K}$ tel que $x = \lambda w = \lambda(u + v)$. Si $\lambda \neq 0$, alors $v = \frac{1}{\lambda}x u \in F$, ce qui n'est pas. Ainsi $\lambda = 0$ et $x = 0_E$. Ainsi $F \cap H = \{0_E\}$.

Puisque $w \notin F \cup G$, $w \neq 0_E$ donc dim H = 1. Ainsi dim $F + \dim H = (n - 1) + 1 = n$, ce qui permet de conclure que $F \oplus H = E$.

Soit $x \in G \cap H$. Il existe donc $\lambda \in \mathbb{K}$ tel que $x = \lambda w = \lambda (u + v)$. Si $\lambda \neq 0$, alors $u = \frac{1}{\lambda} x - v \in G$, ce qui n'est pas. Ainsi $\lambda = 0$ et $x = 0_E$. Ainsi $G \cap H = \{0_E\}$. Puisque dim $G + \dim H = (n - 1) + 1 = n$, $G \oplus H = E$. H est donc un supplémentaire commun de F et G dans E.

- **4. a.** $F \cap G$ est un sous-espace vectoriel de F: il admet donc un supplémentaire F' dans F. De même, $F \cap G$ étant un sous-espace vectoriel de G, il admet un supplémentaire G' dans G.
 - $\textbf{b.} \ \ \text{Puisque} \ F \neq G, F \cap G \subsetneq F \ \text{et donc } \dim F \cap G < \dim F. \ \text{Puisque} \ F = (F \cap G) \oplus F', \dim F' = \dim F \dim F \cap G > 0.$ De même, $\dim G' = \dim G \dim F \cap G = \dim F \dim F \cap G = \dim F'.$ Soit $x \in F' \cap G'.$ Comme $F' \subset F \ \text{et} \ G' \subset G, \ x \in F \cap G.$ Ainsi $x \in (F \cap G) \cap F' = \{0_E\}$ puisque $F \cap G \ \text{et} \ F'$ sont en somme directe. D'où $F' \cap G' = \{0_E\}.$
 - $\textbf{c.} \ \operatorname{Soit} \lambda_1, \dots, \lambda_p \in \mathbb{K} \ \operatorname{tels} \ \operatorname{que} \sum_{i=1}^p \lambda_i h_i = 0_{\operatorname{E}}. \ \operatorname{On} \ \operatorname{a} \ \operatorname{donc} \sum_{i=1}^p \lambda_i f_i = -\sum_{i=1}^p \lambda_i g_i \in \operatorname{F}' \cap \operatorname{G}' = \{0_{\operatorname{E}}\}. \ \operatorname{Ainsi} \sum_{i=1}^p \lambda_i f_i = 0_{\operatorname{E}}. \ \operatorname{Comme} \ \operatorname{la} \ \operatorname{famille} \ (f_1, \dots, f_p) \ \operatorname{est} \ \operatorname{libre}, \ \operatorname{on} \ \operatorname{en} \ \operatorname{deduit} \ \operatorname{que} \ \operatorname{les} \ \lambda_i \ \operatorname{sont} \ \operatorname{nuls}. \ \operatorname{Ceci} \ \operatorname{prouve} \ \operatorname{la} \ \operatorname{libert\'e} \ \operatorname{de} \ (h_1, \dots, h_p).$
 - **d.** Comme la famille (h_1, \dots, h_p) est libre et génératrice de H', c'est une base de H'. Ainsi dim H' = p. Soit $x \in F \cap H'$. Il existe donc $\lambda_1, \dots, \lambda_p \in \mathbb{K}$ tels que $x = \sum_{i=1}^p \lambda_i (f_i + g_i)$. On a donc $\sum_{i=1}^p \lambda_i g_i = x \sum_{i=1}^p \lambda_i f_i \in (F \cap G) \cap G' = \{0_E\}$. Comme la famille (g_1, \dots, g_p) est libre, on en déduit que les λ_i sont nuls puis que x est nul. Ainsi $F \cap H' = \{0_E\}$. On démontre de même que $G \cap H' = \{0_E\}$.
 - e. Pour tout $i \in [1, p]$, $h_i = f_i + g_i \in F + G$. Ainsi $H' \subset F + G$. Donc $F \oplus H' \subset F + G$. De plus, $\dim(F + G) = \dim F + \dim G \dim F \cap G = \dim F + \dim G' = \dim F + p = \dim(F \oplus H')$. Ainsi $F \oplus H' = F + G$. On démontre de même que $G \oplus H' = F + G$.
 - **f.** $H' \subset F + G$ donc $\{0_E\} \subset H' \cap H'' \subset (F + G) \cap H'' = \{0_E\}$ puisque H'' est en somme directe avec F + G. D'où $H' \cap H'' = \{0_E\}$.
 - g. Soit $x \in F \cap H$. Il existe donc $h' \in H'$ et $h'' \in H''$ tel que x = h' + h''. Donc h'' = x h'. Or $x \in F \subset F + G$ et $h' \in H' \subset F + G$ donc $h'' \in H'' \cap (F + G) = \{0_E\}$. D'où $x = h' \in H' \cap F = \{0_E\}$. Ainsi $F \cap H = \{0_E\}$. De plus, $\dim(F \oplus H) = \dim F + \dim H = \dim F + \dim H' + \dim H'' = \dim(F + G) + \dim H'' = n = \dim E$. On en déduit que $F \oplus H = E$.

En échangeant le rôle de F et G, on démontre de même que $G \oplus H = E$.

Solution 2

1. On vérifie que

$$f \circ (2f - \mathrm{Id}_{\mathrm{E}}) = f \circ (2f - \mathrm{Id}_{\mathrm{E}}) = \mathrm{Id}_{\mathrm{E}}$$

Ainsi $f \in GL(E)$ et $f^{-1} = 2f - Id_E$.

2. Soit $x \in \text{Ker}(f - \text{Id}_{\text{E}}) \cap \text{Ker}\left(f + \frac{1}{2}\text{Id}_{\text{E}}\right)$. Comme $x \in \text{Ker}(f - \text{Id}_{\text{E}})$, f(x) = x et comme $x \in \text{Ker}\left(f + \frac{1}{2}\text{Id}_{\text{E}}\right)$, $f(x) = -\frac{1}{2}x$. Par conséquent, $x = -\frac{1}{2}x$ puis $x = 0_{\text{E}}$. Ainsi $\text{Ker}(f - \text{Id}_{\text{E}}) \cap \text{Ker}\left(f + \frac{1}{2}\text{Id}_{\text{E}}\right) = \{0_{\text{E}}\}$. Ensuite, il est clair que

$$\operatorname{Ker}(f - \operatorname{Id}_{\operatorname{E}}) \oplus \operatorname{Ker}\left(f + \frac{1}{2}\operatorname{Id}_{\operatorname{E}}\right) \subset \operatorname{E}$$

© Laurent Garcin MP Dumont d'Urville

Réciproquement, soit $x \in E$. Posons $y = \frac{1}{3}(x + 2f(x))$ et $z = \frac{2}{3}(x - f(x))$. On a bien x = y + z. De plus, tenant compte du fait que $f^2 = \frac{1}{3}(f + \mathrm{Id}_E)$,

$$\begin{split} f(y) &= \frac{1}{3}f(x) + \frac{2}{3}f^2(x) = \frac{1}{3}f(x) + \frac{1}{3}(f + \mathrm{Id_E})(x) = \frac{1}{3}\left(x + 2f(x)\right) = y \\ f(z) &= \frac{2}{3}f(x) - \frac{2}{3}f^2(x) = \frac{2}{3}f(x) - \frac{1}{3}(f + \mathrm{Id_E})(x) = \frac{1}{3}\left(f(x) - x\right) = -\frac{1}{2}z \end{split}$$

Par conséquent, $y \in \text{Ker}(f - \text{Id}_{\text{E}})$ et $z \in \text{Ker}\left(f + \frac{1}{2} \text{Id}_{\text{E}}\right)$. Ceci prouve que

$$E \subset Ker(f - Id_E) \oplus Ker(f + \frac{1}{2}Id_E)$$

Par double inclusion,

$$E = Ker(f - Id_E) \oplus Ker(f + \frac{1}{2}Id_E)$$

3. On a clairement

$$\left(f + \frac{1}{2}\operatorname{Id}_{\mathsf{E}}\right) \circ (f - \operatorname{Id}_{\mathsf{E}}) = f^2 - \frac{1}{2}f - \frac{1}{2}\operatorname{Id}_{\mathsf{E}} = 0$$

On en déduit notamment que

$$\operatorname{Im} (f - \operatorname{Id}_{\operatorname{E}}) \subset \operatorname{Ker} \left(f + \frac{1}{2} \operatorname{Id}_{\operatorname{E}} \right)$$

D'après le théorème du rang,

$$\dim E = \dim \operatorname{Im}(f - \operatorname{Id}_{E}) + \dim \operatorname{Ker} \operatorname{Im}(f - \operatorname{Id}_{E})$$

Mais d'après la question précédente,

$$\dim \mathbf{E} = \dim \operatorname{Ker} (f - \operatorname{Id}_{\mathbf{E}}) + \dim \operatorname{Ker} \left(f + \frac{1}{2} \operatorname{Id}_{\mathbf{E}} \right)$$

On en déduit que

$$\dim \operatorname{Im} (f - \operatorname{Id}_{\operatorname{E}}) = \dim \operatorname{Ker} \left(f + \frac{1}{2} \operatorname{Id}_{\operatorname{E}} \right)$$

Puisqu'on a déjà l'inclusion

$$\operatorname{Im}(f - \operatorname{Id}_{\operatorname{E}}) \subset \operatorname{Ker}\left(f + \frac{1}{2}\operatorname{Id}_{\operatorname{E}}\right)$$

on peut en déduire l'égalité

$$\operatorname{Im}(f - \operatorname{Id}_{\mathsf{E}}) = \operatorname{Ker}\left(f + \frac{1}{2}\operatorname{Id}_{\mathsf{E}}\right)$$

- **4.** Soit $(\lambda, \mu) \in \mathbb{R}^2$ tel que $\lambda f + \mu \operatorname{Id}_E = 0$. Supposons $\lambda \neq 0$. Alors $f = k \operatorname{Id}_E$ avec $k = -\frac{\mu}{\lambda}$. Mais alors $f^2 = k^2 \operatorname{Id}_E$. Or $f^2 = \frac{1}{2}f + \frac{1}{2}\operatorname{Id}_E$ donc $k^2\operatorname{Id}_E = \frac{k}{2}\operatorname{Id}_E + \frac{1}{2}\operatorname{Id}_E$. Or $\operatorname{Id}_E \neq 0$ donc $k^2 = \frac{k}{2} + \frac{1}{2}$ puis k = 1 ou $k = -\frac{1}{2}$. Mais ceci est impossible car $f \neq \operatorname{Id}_E$ et $f \neq -\frac{1}{2}\operatorname{Id}_E$. On en déduit donc que $\lambda = 0$. Or $\lambda f + \mu \operatorname{Id}_E = 0$ donc $\mu \operatorname{Id}_E = 0$ puis $\mu = 0$ car $\operatorname{Id}_E \neq 0$. Ainsi $\lambda = \mu = 0$. On en déduit que la famille (f, Id_E) est bien libre.
- **5.** L'unicité du couple (a_n, b_n) provient de la liberté de la famille (f, Id_E) . On prouve l'existence par récurrence. Tout d'abord

$$f^0 = \text{Id}_{\text{E}} = a_0 f + b_0 \text{Id}_{\text{E}}$$

avec $a_0 = 0$ et $b_0 = 1$.

Supposons qu'il existe $(a_n, b_n) \in \mathbb{R}^2$ tel que

$$f^n = a_n f + b_n \operatorname{Id}_{E}$$

Alors, en composant par f,

$$f^{n+1} = a_n f^2 + b_n f = \frac{a_n}{2} (f + \text{Id}_E) + b_n f = \left(\frac{a_n}{2} + b_n\right) f + \frac{a_n}{2} \text{Id}_E$$

On a donc bien

$$f^{n+1} = a_{n+1}f + b_{n+1} \operatorname{Id}_{E}$$

en posant

$$a_{n+1} = \frac{a_n}{2} + b_n b_{n+1} = \frac{a_n}{2}$$

Par récurrence, pour tout $n \in \mathbb{N}$, il existe bien $(a_n,b_n) \in \mathbb{R}^2$ tel que

$$f^n = a_n f + b_n \operatorname{Id}_{E}$$

et on a également prouvé que

$$a_{n+1} = \frac{a_n}{2} + b_n b_{n+1} = \frac{a_n}{2}$$

6. Soit $n \in \mathbb{N}$.

$$a_{n+2} = \frac{a_{n+1}}{2} + b_{n+1} = \frac{1}{2}a_{n+1} + \frac{1}{2}a_n$$

$$b_{n+2} = \frac{a_{n+1}}{2} = \frac{a_n}{4} + \frac{b_n}{2} = \frac{1}{2}b_{n+1} + \frac{1}{2}b_n$$

7. On peut clairement choisir

$$a_0 = 0$$
 $b_0 = 1$ $a_1 = 1$ $b_1 = 0$

Par ailleurs, le polynôme caractéristique associé à la relation de récurrence suivie par les suites (a_n) et (b_n) est $X^2 - \frac{1}{2}X - \frac{1}{2}$. Ses racines sont 1 et $-\frac{1}{2}$. Il existe donc des réels $\alpha, \beta, \gamma, \delta$ tels que pour tout $n \in \mathbb{N}$,

$$a_n = \alpha + \beta \left(-\frac{1}{2}\right)^n$$
 $b_n = \gamma + \delta \left(-\frac{1}{2}\right)^n$

Les valeurs de a_0 , b_0 , a_1 , b_1 permettent de trouver

$$\alpha = \frac{2}{3} \qquad \qquad \beta = -\frac{2}{3} \qquad \qquad \gamma = \frac{1}{3} \qquad \qquad \delta = \frac{2}{3}$$

Ainsi, pour tout $n \in \mathbb{N}$,

$$a_n = \frac{2}{3} \left(1 - \left(-\frac{1}{2} \right)^n \right)$$
 $b_n = \frac{1}{3} \left(1 + 2 \left(-\frac{1}{2} \right)^n \right)$

8. Puisque $-\frac{1}{2} \in]-1,1[$, $\lim_{n\to+\infty} \left(-\frac{1}{2}\right)^n=0$. Par opérations, on en déduit que $\lim_{n\to+\infty} a_n=\frac{2}{3}$ et $\lim_{n\to+\infty} b_n=\frac{1}{3}$.