PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-266362

(43)Date of publication of application: 28.09.2001

(51)Int.Cl.

G11B 7/007 G11B 7/24

G11B 20/12

(21)Application number : 2001-007047

(71)Applicant : PIONEER ELECTRONIC CORP

(22)Date of filing:

15.01.2001

(72)Inventor: KURODA KAZUO

(30)Priority

Priority number : 2000007153

Priority date: 14.01.2000

Priority country: JP

(54) RECORDABLE OPTICAL DISK AND ITS RECORDING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent the alteration of important control data or the like not to be altered. recorded in a control data zone or the like, by recording important information common to a read-only DVD-ROM or the like and a writable DVD- ROM or the like in the same zone on both disks.

SOLUTION: A recordable optical disk is provided with a disk substrate, a recording track formed spirally or concentric-circularly around the center of the disk substrate, an embossed pit formed in a specified area on the disk substrate so as to have a correlation with specified data recorded on the recording track in the specified area.

LEGAL STATUS

[Date of request for examination]

13.03.2006

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-266362 (P2001-266362A)

(43)公開日 平成13年9月28日(2001.9.28)

(51) Int.Cl.7		識別記号	F I	テーマコード(参考)
G11B	7/007		G11B 7/007	
	7/24	563	7/24	563F
		565		565F
	20/12		20/12	

審査請求 未請求 請求項の数13 OL (全 12 頁)

(21)出願番号	特顧2001-7047(P2001-7047)	(71)出願人	000005016
			パイオニア株式会社
(22)出顧日	平成13年1月15日(2001.1.15)		東京都目黒区目黒1丁目4番1号
		(72)発明者	黒田 和男
(31)優先権主張番号	特願2000-7153(P2000-7153)		埼玉県所沢市花園四丁目2610番地 パイオ
(32)優先日	平成12年1月14日(2000.1.14)		ニア株式会社所沢工場内
(33)優先権主張国	日本(JP)	(74)代理人	100083839
			弁理士 石川 泰男

(54) 【発明の名称】 記録可能な光ディスク及びその記録方法

(57)【要約】

【課題】 読み取り専用のDVD-ROM等と書き込み 可能なDVD-RW等とに共通した重要な情報を両ディ スク上における同じゾーンに記録することを可能ならし めつつ、コントロールデータゾーン等に記録された重要 な改竄されたくないコントロールデータ等が改竄されな いようにする。

【解決手段】 記録可能な光ディスクは、ディスク基板 と、ディスク基板の中心の回りに渦巻状又は同心円状に 形成された記録トラックと、ディスク基板上の所定領域 に、該所定領域における記録トラック上に記録される所 定データと相関をもって形成されたエンボスピットとを 備える。

【特許請求の範囲】

【請求項1】 ディスク基板と、

該ディスク基板の中心の回りに渦巻状又は同心円状に形成された記録トラックと、

1

前記ディスク基板上の所定領域に、該所定領域における 前記記録トラック上に記録される所定データと相関をも って形成されたエンボスピットとを備えたことを特徴と する記録可能な光ディスク。

【請求項2】 前記エンボスピットは、前記所定データの記録マークと記録スペースとの間の境界には存在しな 10 いように形成されていることを特徴とする請求項1に記載の記録可能な光ディスク。

【請求項3】 前記エンボスピットは、前記所定データの記録マークの前記記録トラックに沿った長さが所定長さ以上となる位置に形成されていることを特徴とする請求項1又は2に記載の記録可能な光ディスク。

【請求項4】 前記エンボスピットの長さは、前記記録マークの長さに拘わらず一定であることを特徴とする請求項3に記載の記録可能な光ディスク。

【請求項5】 前記エンボスピットの長さは、前記記録マークの長さに応じて変化することを特徴とする請求項3に記載の記録可能な光ディスク。

【請求項6】 前記エンボスピットは、前記所定データの記録スペースの前記記録トラックに沿った長さが所定長さ以上となる位置に形成されていることを特徴とする請求項1又は2に記載の記録可能な光ディスク。

【請求項7】 前記エンボスピットの長さは、前記記録スペースの長さに拘わらず一定であることを特徴とする請求項6に記載の記録可能な光ディスク。

【請求項8】 前記エンボスピットの長さは、前記記録スペースの長さに応じて変化することを特徴とする請求項6に記載の記録可能な光ディスク。

【請求項9】 前記所定領域は、コントロールデータ領域内にあり、

前記所定データは、前記所定領域と異なり且つ前記エンボスピットが形成されないデータ記録領域内における前記記録トラック上に記録されるデータについての記録・再生動作を制御するためのコントロールデータであることを特徴とする請求項1から8のいずれか一項に記載の記録可能な光ディスク。

【請求項10】 前記所定データ以外のデータが、前記 所定領域と異なり且つ前記エンボスピットが形成されな いデータ記録領域内における前記記録トラック上に記録 されていることを特徴とする請求項1から9のいずれか 一項に記載の記録可能な光ディスク。

【請求項11】 前記ディスク基板上に形成された記録 層を更に備えており、

該記録層により前記所定データを含むデータが前記記録トラック上に記録されることを特徴とする請求項1から10のいずれか一項に記載の記録可能な光ディスク。

【請求項12】 請求項1から11のいずれか一項に記載の記録可能な光ディスクにデータを記録する光ディスクの記録方法であって、

前記ディスク基板に前記エンボスピットを形成する工程 と、

前記エンボスピットが形成された前記所定領域に前記所 定データを記録する工程とを含むことを特徴とする光ディスクの記録方法。

【請求項13】 前記所定データ以外のデータを、前記 所定領域と異なり且つ前記エンボスピットが形成されな いデータ記録領域内における前記記録トラック上に記録 する工程を更に含むことを特徴とする請求項12に記載 の記録可能な光ディスク。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、記録可能な光ディスク及びその記録方法に関する。

[0002]

【従来の技術】CD (Compact Disc) フォーマットの多様化、及びDVDの登場などにより、光ディスクには、種々のタイプがある。現状、CDには、読み取り専用のCD-ROM (CD-Read Only)、1回だけ書き込み可能なCD-R (CD-Recordable)、多数回書き込み可能なCD-RW (CD-Rewritable)等がある。DVDには、読み取り専用のDVD-ROM (DVD-Read Only)、1回だけ書き込み可能なDVD-R (DVD-Recordable)、書き換え回数が有限であるDVD-RW (DVD-Re-recordable)、何度でも書き換え可能なDVD-R (DVD-Re-recordable)、何度でも書き換え可能なDVD-R (DVD-Re-recordable)等がある。

【0003】ところで、DVD-ROMのコントロールデータゾーンには、DVD-ROMにとってのみ重要な情報が書き込まれる。DVD-RWにおける、このコントロールデータゾーンと同じ位置にあるゾーンには、データの改竄防止のために、このゾーンでの読み出し及び記録の何れをも不可能とするアンリーダブルエンボスが形成されている(埋め込まれている)。従って、DVD-RW上では、DVD-ROMのコントロールデータゾーンとは異なるゾーンに、コントロールデータが書き込まれる。

40 [0004]

【発明が解決しようとする課題】しかしながら、読み取り専用のDVD-ROM等と記録可能なDVD-RW等とに共通した改竄されたくない重要な情報を、両ディスク上に共通に書く可能性を考えた場合、係る重要な情報を両ディスク上の同じゾーンに記録する必要性が生じてくる。そして、前述の如くアンリーダブルエンボスの形成によって記録可能な光ディスク上における係る重要な情報の改竄防止を図りつつ、このような必要性に応えることは極めて困難であるという問題点が発生する。

50 【0005】本発明は上記問題点に鑑みなされたもので

3

あり、所定領域に記録される所定データの読み取りを可能としつつ、該所定領域に記録されるデータが改竄されることを阻止できる記録可能な光ディスク及びその記録方法を提供することを課題とする。

[0006]

【課題を解決するための手段】本発明の記録可能な光ディスクは上記課題を解決するために、ディスク基板と、該ディスク基板の中心の回りに渦巻状又は同心円状に形成された記録トラックと、前記ディスク基板上の所定領域に、該所定領域における前記記録トラック上に記録される所定データと相関をもって形成されたエンボスピットとを備える。

【0007】本発明の記録可能な光ディスクによれば、 所定データのデータパターンは、予め既知であるため、 エンボスピットは、所定領域に記録されることとなる所 定データと相関をもって所定領域に形成される。そし て、所定データは、エンボスピットが形成された所定領 域に記録される。ここで、所定領域にはエンボスピット が存在するものの、所定データはエンボスピットと相関 をもっているので、所定データの書き込み及び読み出し を正常に行なうことが可能となる。他方で、所定データ でないデータはエンボスピットと相関をもっていないの で、該所定データでないデータは、所定領域において正 常に書き込んだり読み込んだりできない。即ち、仮に所 定データを改竄しようとしても、そのような所定データ でないデータの記録マーク及び記録スペースは、該記録 マーク及び記録スペース間の境界に高確率で出現すると 共に記録マークや記録スペースの途中で信号レベルを無 視し得ない程にずらすエンボスピットの存在による影響 を高確率で受けるのである。

【0008】このように予め所定領域に所定データと相関をもつエンボスピットを形成することにより、所定領域ではエンボスピットの存在により意図的に反射率は低下するので、所定データの改竄作業は高確率で失敗に終わる。他方で、(正規の)所定データについては、この反射率の低下によらずに正常に書き込み及び読み出しが可能となる。

【0009】本発明の記録可能な光ディスクの一態様では、前記エンボスピットは、前記所定データの記録マークと記録スペースとの間の境界には存在しないように形成されている。

【0010】この態様によれば、エンボスピットは、所定データの記録マークと記録スペースとの間の境界には存在しない。即ち、記録トラックに沿ったエンボスピットの長さは、記録トラックに沿った記録マーク或いは記録スペースの長さより短い。従って、所定データについては、エンボスピットにより引き起こされる反射率の低下によらずに正常に書き込み及び読み出しが可能となる。

【0011】本発明の記録可能な光ディスクの他の態様 50

では、前記エンボスピットは、前記所定データの記録マークの前記記録トラックに沿った長さが所定長さ以上となる位置に形成されている。

【0012】この態様によれば、エンボスピットは、所定データの記録マークの記録トラックに沿った長さが、所定長さ(例えば、8T、4Tなど(但しては、基本クロック周期))以上となる位置に形成されているので、記録マークよりも短く且つ基本クロック周期よりも長い長さ(例えば、4T、2Tなど)を有するエンボスピットを形成することにより、所定データが改竄されるのをより確実に阻止できる。

【0013】この態様では、前記エンボスピットの長さは、前記記録マークの長さに拘わらず一定であってもよい。

【0014】このように構成すれば、エンボスピットを比較的容易に形成できる。

【0015】或いはこの態様では、前記エンボスピットの長さは、前記記録マークの長さに応じて変化してもよい。

20 【0016】このように構成すれば、可変長の記録マークの端に対するエンボスピットのマージンを維持できる。即ち、記録マークが長ければエンボスピットも短くして、 エンボスピットにおける適度なマージンを維持する。

【0017】本発明の記録可能な光ディスクの他の態様では、前記エンボスピットは、前記所定データの記録スペースの前記記録トラックに沿った長さが所定長さ以上となる位置に形成されている。

【0018】この態様によれば、エンボスピットは、所定データの記録スペースの記録トラックに沿った長さが、所定長さ(例えば、8T、4Tなど)以上となる位置に形成されているので、記録スペースよりも短く且つ基本クロック周期よりも長い長さ(例えば、4T、2Tなど)を有するエンボスピットを形成することにより、所定データが改竄されるのをより確実に阻止できる。

【0019】この態様では、前記エンボスピットの長さは、前記記録スペースの長さに拘わらず一定であってもよい。

【0020】このように構成すれば、エンボスピットを比較的容易に形成できる。

【0021】或いはこの態様では、前記エンボスピットの長さは、前記記録スペースの長さに応じて変化してもよい。

【0022】このように構成すれば、可変長の記録スペースの端に対するエンボスピットのマージンを維持できる。即ち、記録スペースが長ければエンボスピットも長くし、記録スペースが短ければエンボスピットも短くして、エンボスピットにおける適度なマージンを維持する。

【0023】本発明の記録可能な光ディスクの他の態様

では、前記所定領域は、コントロールデータ領域内にあ り、前記所定データは、前記所定領域と異なり且つ前記 エンボスピットが形成されないデータ記録領域内におけ る前記記録トラック上に記録されるデータについての記 録・再生動作を制御するためのコントロールデータであ る。

【0024】この態様によれば、コントロールデータ領 域内に記録されたコントロールデータが改竄されるのを 阻止できる。そして、データ記録領域内のビデオデー タ、オーディオデータ等のデータは、このコントロール 10 データに従って記録され或いは再生される。

【0025】尚、このようなコントロールデータ領域 は、例えば、リードインエリア内にある。

【0026】このように構成すれば、リードインエリア 内にあるコントロールデータ領域内のコントロールデー タが改竄されるのを阻止できる。

【0027】本発明の記録可能な光ディスクの他の態様 では、前記所定データ以外のデータが、前記所定領域と 異なり且つ前記エンボスピットが形成されないデータ記 録領域内における前記記録トラック上に記録されてい る。

【0028】この態様によれば、エンボスピットが形成 されていないデータ記録領域内で、ビデオデータ、オー ディオデータ等のデータを正常に記録でき、再生でき る。

【0029】本発明の記録可能な光ディスクの他の態様 では、前記ディスク基板上に形成された記録層を更に備 えており、該記録層により前記所定データを含むデータ が前記記録トラック上に記録される。

【0030】この態様によれば、ビデオデータ、オーデ ィオデータ等に加えてコントロールデータ等の所定デー タを含むデータは、記録層によって記録トラック上に確 実に記録される。

【0031】尚、このような記録層は、多数回書き変え 可能な記録動作を可能ならしめる材料からなってもよ く、この場合にはDVD-RAM等の記録可能な光ディ スクを実現できる。記録層は、1回のみ書き変え可能な 記録動作を可能ならしめる材料からなってもよく、この 場合にはDVD-R等の記録可能な光ディスクを実現で きる。或いは、記録層は、所定回数のみ書き変え可能な 記録動作を可能ならしめる材料からなってもよく、この 場合には、DVD-RW等の記録可能な光ディスクを実 現できる。

【0032】本発明の記録可能な光ディスクの記録方法 は上記課題を解決するために、上述した本発明の記録可 能な光ディスク(その各種態様も含む)にデータを記録 する光ディスクの記録方法であって、前記ディスク基板 に前記エンボスピットを形成する工程と、前記エンボス ピットが形成された前記所定領域に前記所定データを記 録する工程とを含む。

【0033】本発明の光ディスクの記録方法によれば、 先ず、エンボスピットは、所定領域に記録されることと なる所定データと相関をもって所定領域に形成される。 次に、所定データは、既にエンボスピットが形成された 所定領域に記録される。従って、所定データの改竄作業 は、エンボスピットにより引き起こされる反射率の低下 により高確率で失敗に終わる。他方で、所定データにつ いては、このエンボスピットにより引き起こされる反射 率の低下によらずに正常に書き込み及び読み出しが可能 となる。

【0034】本発明の光ディスクの記録方法の一態様で は、前記所定データ以外のデータを、前記所定領域と異 なり且つ前記エンボスピットが形成されないデータ記録 領域内における前記記録トラック上に記録する工程を更 に含む。

【0035】この態様によれば、例えば、光ディスクの 出荷前に所定データがリードインエリア内のコントロー ル領域等の所定領域に記録された後に、ビデオデータ、 オーディオデータ等の所定データ以外のデータがデータ 記録領域に、ユーザによって自宅で記録される。従っ て、データ記録領域内のデータは、改竄されていない所 定領域内の所定データに従って、記録でき、再生でき る。

【0036】本発明のこのような作用及び他の利得は次 に説明する実施の形態から明らかにされる。

[0037]

20

【発明の実施の形態】以下、本発明の実施形態を図面に 基づいて説明する。

【0038】 先ず図1から図3を参照して、本発明の記 録可能な光ディスクの一例たるDVDの物理的な構成に ついて説明する。ここに、図1は、DVDの外観斜視図 であり、図2は、DVDを構成する透明基板の記録トラ ック部分における部分的な拡大斜視図であり、図3は、 DVDの記録トラック部分における部分的な断面図であ

【0039】図1において、本発明の記録可能な光ディ スクの一例たるDVD100は、センターホール103 を持つ透明基板110と、センターホール103の回り に螺旋状或いは同心円状の記録トラック102とを備え て構成されている。DVD100上における内側から外 側に向かって、DVD100が情報記録・再生装置にセ ットされた際にクランパによってクランプされるクラン ピングエリアCA、R(記録)インフォーメーションエ リアRIA及びインフォーメーションエリアIAが設け **られている。インフォーメーションエリアIA内には、** リードインエリアLIA、データ記録エリアDRA及び リードアウトエリアLOAが、内側からこの順に設けら れている。記録トラック102は、インフォーメーショ ンエリアIAのみならずRインフォーメーションエリア 50 RIAにも形成されている。

【0040】図2に示すように、記録トラック102 は、透明基板110上で凸であり且つ読み取り又は書き 込み用のレーザービーム L B に対して凹であるランドか らなるランドトラックしと、透明基板110上で凹であ り且つ読み取り又は書き込み用のレーザービームLBに 対して凸であるグループからなるグループトラックGと から構成されている。ランドトラックL上には、ランド プリピットLPPが形成されている。グループトラック Cは、所定周波数でウォブリングされている。ランドプ リピットLPPは、記録トラック102上に物理アドレ スを定義するのに用いられる。

7

【0041】グルーブトラックGへの記録データの記録 動作(即ち、データ書き込み動作)やグループトラック Gからの記録データの再生動作(即ち、データ読み取り 動作)が実行されるように、ランドプリピットLPPに より示される情報に基づいて、情報記録・再生装置にお ける光ピックアップの位置が制御される。尚、記録デー タや、記録データの記録や再生を制御するコントロール データは、グルーブトラックGに代えて又は加えて、ラ ンドトラックL上に記録されてもよい。

【0042】図3に示すように、DVD100において は、透明基板110上には、記録層111、光反射層1 12及び保護層113が積層形成されている。記録層1 11は、例えばDVD-Rの場合には、読み取り用レー ザービームよりも高強度の書き込み用レーザービームが 照射されると光学特性が変化する材料である色素等から 構成されてもよい。或いは、記録層111は、例えばD VD-RW、DVD-RAM等の場合には、レーザービ ームの照射条件に応じて結晶相とアモルファス相との間 で相が変化する相変化材料等から構成されてもよい。 【0043】次に、上述したDVD100に記録される

データのデータ構造について図4を参照して説明する。 ここに、図4はDVD100のデータ構造を模式的に示 した図である。

【0044】図4において、R-インフォメーションエ リアRIAは、パワーキャリブレーションエリア(Pow er Calibration Area) PCAと、レコーディングマ ネージメントエリアRMA (Recording Management A rea)とを備えて構成されている。インフォメーション エリアIAは、リードインエリアLIA、データ記録エ 40 リアDRA及びリードアウトエリアLOAを備えて構成 されている。

【0045】ここで、データ記録エリアDRAには、オ ーディオデータやビデオデータ等の各種コンテンツデー タ(以下、メインデータという)及びメインデータをフ ァイルとして管理するためのファイル管理情報が記録さ れる。

【0046】パワーキャリブレーションエリアPCA は、情報記録再生装置がデータ書き込みを行う際、試し 書き等を行って適当な動作状態でのデータ書き込みが行 50 ットが、図の上部分に時間軸に沿って概念的に図示され

えるように光ピックアップの光量等を調整するために設 けられている。

【0047】レコーディングマネージメントエリアRM Aには、パワーキャリブレーションエリアPCAでのテ スト結果データが記録される。

【0048】リードインエリアLIAには、ディスクの 物理情報を示す記録管理データが記録される。

【0049】リードアウトエリアLOAは、データ記録 エリアDRAに記録されるメインデータの終端位置に設 けられる。リードアウトエリアLOAには、(00) h のデータが記録される。リードアウトエリアLOAの記 録開始位置は、メインデータのデータ量に応じて変化す る。

【0050】これら各エリアPCA、RIA、LIA、 DRA、LOAの領域アドレスと、データの記録アドレ スとは、上記のランドプリピットLPPに記録されたE CCブロックアドレスに従って設定されるようになって いる。

【0051】図5は、リードインエリアLIA及びリー ドアウトエリアLOAにおけるデータ構造の詳細を説明 する図である。

【0052】図5において、リードインエリアLIAの 開始位置にはイニシャルゾーンが設けられ、このイニシ ャルゾーンには、ブランクを意味する(00)hがセッ トされている。このイニシャルゾーンに続いてリファレ ンスコードゾーンが設けられ、このリファレンスコード ゾーンには、チャンネルビットパターン(3 T - 6 T -7 T) が記録されている。チャンネルビットパターンと して予め定められた変換テーブル中のコードワードが繰 り返されている。このチャンネルビットパターンに基 き、HF信号のイコライザが調整される。このリファレ ンスコードゾーンに続いて(00)hのバッファゾーン が設けられている。

【0053】コントロールデータゾーンには、適用され るDVD規格のタイプ(DVD-ROM、DVD-RA M、DVD-RW等) およびパートバージョン、ディス クサイズおよび最小読出レート、ディスク構造(1層R OMディスク、1層RAMディスク、2層ROM/RA Mディスク等)、記録密度、データエリアアロケーショ ン、バーストカッティングエリア有無、ボーダーゾーン の開始セクター等が記録されている。

【0054】このコントロールデータゾーンの一部は、 DVD-ROMにとってのみ重要な情報エリアが記録さ れるゾーンに割り当てられている。このコントロールデ ータゾーンに続いて、(OO)hのバッファゾーンが設 けられている。

【0055】図6に、本発明における光ディスクの記録 方法の基本原理を示す。図6では、DVD-RWにおけ るグループトラック、ランドトラック及びランドプリピ

ており、エンボスピットと共に記録信号のタイミングチャートが、図の下部分に、図の上部分に対応して図示されている。

【0056】図6に示すように、DVD-RWの場合には、トラックフォーマットとして、ランドプリピット方式が採用されており、グルーブトラック上にレーザビームを照射することによって該グループトラック上に記録データを記録する。一方、ランドトラック上には、ランドプリピットを形成することにより、ECCブロックアドレスが予め記録されている。

【0057】図6中、各斜線部分がグループトラックを示し、ランドトラック上の各黒塗りした矩形部分はランドプリピットを示す。また、グループトラック上における微小部分Aに関する記録信号及びエンボスピットが、図6の下部分におけるタイミングチャートとして拡大表示されている。

【0058】図7に示すように、本実施形態のDVD1 00 (例えば、DVD-RW) では、エンボスピット は、コントロールデータゾーン内におけるランドトラッ クLとほぼ同一レベルにある透明基板部分により分離さ れた間欠性のグループトラックGから構成されている。 即ち、DVD100のコントロールデータゾーンでは、 エンボスピットは、グループトラックG上で光ビームL Bに対して凸状である。従って、グループトラックGの 反射率は、エンボスピットのところで低下する。図7で は、正規の記録マーク(即ち、元々正規に記録された記 録マーク)の検出がエンボスピットによって実践上影響 を受けないように、正規の記録マークは、エンボスピッ トと同期して記録されている。これに対して、改竄され た記録マーク(即ち、改竄されてエンボスピットと同期 していない記録マーク)の検出は、図8から図11を参 照して詳細に後述するように、エンボスピットにより影 響を受ける。尚、図7では、グループトラックGのウォ ブルは、説明の便宜上省略されており、グループトラッ クGの幅よりも大きい直径をもつ光スポットSPが光ビ ームLBから形成されている。

【0059】本実施形態では、DVD-ROMにとってのみ重要な改竄されたくないデータは、予め決められているので、エンボスピットは、この重要なデータに同期して形成されている(埋め込まれている)。従って、DVD-RWの場合、レーザービームが照射された際における反射率は、エンボスピットの存在に起因して低下するものの、エンボスピットに同期して記録されている重要なデータは、読み出される際に影響を受けない。この重要なデータは、エンボスピットと同期しているが故に、正常に読み出し可能なように書き込むことができる。これに対し、この重要なデータを改竄しようとすると、改竄されたデータは、もはやエンボスピットと同期していないので、このデータは正常に読み出すことができない。即ち、改竄されたデータはエンボスピットと同

期しないが故に、重要なデータは正常に読み出し可能な ようには改竄できないのである。

【0060】更に、記録トラックに沿った長さが比較的 長くなる記録マークや記録スペースの中央部にエンボス ピットを形成することにより、レーザービームによるデータの書き込み開始位置又は終了位置が若干ずれたとしても影響は出にくい。本実施形態では、エンボスピットは、記録パルス幅が約8T(但しては、基本クロック周期)以上となる記録マーク或いは記録スペースの中央部 に形成されている。例えば図6の下部分に示したように、長さが8T、13T及び14Tである記録信号の夫々に対して、エンボスピットが形成されている。

【0061】更に、エンボスピットが記録トラックに沿って、ある程度の長さを持たない場合には、改竄されたデータの端がエンボスピットにかかって影響を与える可能性が低下してしまい、結果として、改竄データが正常に読み出される可能性がある。即ち、改竄が成功してしまう。従って、本実施形態では、約4Tの長さを持つエンボスピットが、8T以上の長さを夫々持つ記録マークや記録スペースの夫々に対して形成されている。

【0062】図8は、本発明の第1実施形態の記録方法における、図6に示したタイミングチャートの詳細を示した図である。

【0063】即ち図8では、記録トラックに沿って8下 の長さを持つ記録マーク(以下、単に8Tマークとい う) と、記録トラックに沿って8Tの長さを持つ記録ス ペース(以下、単に8Tスペースという)の両方にエン ボスピットが入った状態における記録信号、エンボスピ ット、RF信号及び2値化信号のそれぞれの信号波形を 示している。エンボスピットは好ましくは、DVD10 0の製造工程或いはカッティング工程においてグルーブ トラック、ランドトラック及びランドプリピットを透明 基板110(図1から図3参照)に形成する際に或いは 形成後に、透明基板110上にエンボスされる。エンボ スピットは、記録信号がグループトラックに記録される のであれば、グループトラック上にエンボスされる。或 いは、エンボスピットは、記録信号がランドトラックに 記録されるのであれば、ランドトラック上にエンボスさ れてもよいし、記録信号がグループトラック及びランド トラックの両方に記録されるのであれば、グループトラ ック及びランドトラックの両方上にエンボスされてもよ

【0064】図8において、記録信号は、改竄されたものではなく正規のものであるため、記録信号とエンボスピットとは、互いに相関をもっている(同期している)。

る。これに対し、この重要なデータを改竄しようとする 【0065】8Tマークは、記録トラックに沿って4T と、改竄されたデータは、もはやエンボスピットと同期 の長さを持つエンボスピット(以下、単に4Tエンボス ピットという)が形成されているところに記録されていきない。即ち、改竄されたデータはエンボスピットと同 50 る。しかしながら、4Tエンボスピットのみならず8T

マーク自身によっても、8 Tマークにおける反射率は低 下するので、RF信号を2値化信号に変換するのに用い られると共に図中RF信号に重ねて点線で示したスレッ シュホールド(閾値)レベルよりも下にまで、当該RF 信号は、8 Tマーク及び4 Tエンボスピットによって二 重にレベルダウンさせられている。従って、8Tマーク に係る2値化信号は、4Tエンボスピットの存在によっ て影響を受けていない。

11

【0066】実際には、図8に示す例では、たとえエン ボスピットが記録マークに同期して形成されていなくて 10 も、記録マークのところで得られるRF信号は、記録マ ークの存在自身に起因してほぼ最低レベルにまで低下し ている。従って、本例では、スレッシュホールドレベル より低レベルにある8TマークにおけるRF信号は、4 Tエンボスピットの存在による影響を実質的には受けて いない。しかしながら、仮に記録マークにおけるRF信 号が最低レベルにまで低下していないのであれば、8T マークにおけるRF信号は、4Tエンボスピットによっ て更にレベルダウンしてもよい。この場合、4 Tエンボ スピットによる8TマークにおけるRF信号の更なる低 20 下は、記録マークがエンボスピットと同期している限り において、スレッシュホールドレベルより下レベルにあ るRF信号の低下にのみ寄与するので、上述した本実施 形態の原理は、なお有効である。従って、この場合に は、8 Tマークに関連する 2 値化信号は、やはり、4 T エンボスピットの存在による影響を受けない。

【0067】図8において、他の4Tエンボスピットが 形成されているところに、8 Tスペースは位置してい る。しかしながら、この4 Tエンボスピットの存在に起 因する8Tスペースにおける反射光量の低下は、RF信 30 号をスレッシュホールドレベル以下までレベルダウンさ せない程度に小さい。従って、8 T スペースに対応する 2値化信号は、4 Tエンボスピットの存在による影響を 受けない。

【0068】図9に、エンボスピットが図8の場合と同 様に形成され且つ記録データが改竄された状態におけ る、記録信号、エンボスピット、RF信号及び2値化信 号のそれぞれの信号波形を示す。

【0069】図9において、記録信号は不正に改竄され たものであるため、記録信号とエンボスピットとは、も 40 はや相互に相関をもっていない(同期していない)。

【0070】8丁マーク(即ち、この場合には改竄され た記録データ)の一端は、一の4 Tエンボスピット内に 位置しており、8 Tマークの他端は、他の4 Tエンボス ピット内に位置しているので、8Tマークにおける反射 光量は、これらの4Tエンボスピットの存在により、こ れらの端付近で低下する。従って、スレッシュホールド レベルに対するRF信号レベルは、これらの4Tエンボ スピットの影響により無視し得ない程に影響を受け、結 録データに関しては、図9においてずれ量X及びずれ量 Yで示すように顕著にずれてしまうのである。

【0071】図8及び図9から明らかなように、第1実 施形態によれば、重要なデータが記録されると共に改竄 されたくない所定領域で、記録データが改竄されたとし ても、改竄された記録データは正常に読めない。即ち、 記録データの改竄は失敗に終わる。このように、改竄を 殆ど行えないので、所定領域における記録データの保護 を図ることができる。

【0072】図10は、本発明の第2実施形態の記録方 法における、図6に示したタイミングチャートの詳細を 示した図である。

【0073】即ち、図10では、8Tマークに4Tエン ボスピットが形成されており且つ記録スペースにはエン ボスピットが形成されていない状態における記録信号、 エンボスピット、RF信号及び2値化信号のそれぞれの 信号波形を示している。

【0074】図10において、記録信号は、改竄された ものではなく正規のものであるため、記録信号とエンボ スピットとは、互いに相関をもっている(同期してい る)。

【0075】8 Tマークは4 Tエンボスピットに重ねて 記録されているが、4 T エンボスピットのみならず8 T マーク自身によっても、8Tマークにおける反射率は低 下するので、RF信号は、スレッシュホールドレベルよ りも下にまで、8 Tマーク及び 4 Tエンボスピットによ って二重にレベルダウンさせられている。従って、8T マークに係る2値化信号は、4Tエンボスピットの存在 によって影響を受けていない。

【0076】他方、記録スペースは、エンボスピットの ないところに位置している。従って、記録スペースに対 応する2値化信号は、エンボスピットの存在による影響 を受けない。

【0077】図11に、エンボスピットが図10の場合 と同様に形成され且つ記録データが改竄された状態にお ける、記録信号、エンボスピット、RF信号及び2値化 信号のそれぞれの信号波形を示す。

【0078】図11において、記録信号は不正に改竄さ れたものであるため、記録信号とエンボスピットとは、 もはや相互に相関をもっていない(同期していない)。

【0079】8 Tマーク(即ち、この場合には改竄され た記録データ)の一端は、4 Tエンボスピット内に位置 しているので、8 Tマークにおける反射光量は、この4 Tエンボスピットの存在により、この端付近で低下す る。従って、スレッシュホールドレベルに対するRF信 号の信号レベルは、この4Tエンボスピットの影響によ り無視し得ない程に影響を受ける。即ち、RF信号は、 8 Tマークの一端において 4 Tエンボスピットの存在に よりレベルダウンさせられるので、2値化信号は、8 T 果として、2値化信号は、8Tマーク即ち改竄された記 50 マーク即ち改竄された記録データに関しては、図11に

おいてずれ量 Z で示すようにずれてしまうのである。 【 0 0 8 0 】 第 2 実施形態では、記録スペースにエンボスピットが形成されていないため、記録スペースにおけるエンボスピットによりレベルダウンされる R F 信号が第 1 実施形態の場合のようにスレッシュホールドレベルより上側に位置するようにエンボスピットの深さを設定する必要はない。従って、第 2 実施形態では、エンボスピットの深さを第 1 実施形態の場合よりも深く設定してよく、更に記録スペースにおける R F 信号をスレッシュホールドレベルより下までレベルダウンさせる程に深く設定することが好ましい。このようにエンボスピットの深さを設定すれば、記録データが改竄された場合に、8 Tマークに同期したエンボスピットは、極めて効果的に

【0081】図10及び図11から明らかなように、第2実施形態によれば、重要なデータが記録されると共に改竄されたくない所定領域で、記録データが改竄されたとしても、改竄された記録データは正常に読めない。即ち、記録データの改竄は失敗に終わる。このように、改竄を殆ど行えないので、所定領域における記録データの保護を図ることができる。

2値化信号をずらすように機能する。

【0082】次に、図12を参照して上述の如き構成を有するDVD100にデータを記録する方法について説明する。

【0083】図12に示すように、先ず、レーザーカッ ティング処理を行う。即ち、ガラス基板45上にフォト レジスト46を形成する。その後、グループトラック G、ランドトラックL、ランドプリピットLPP及びエ ンボスピットに対応するフォトレジスト46のパターン を形成するように、フォトレジスト46を光ビームによ 30 り露光する(ステップS1)。次に、露光されたフォト レジスト46を現像して、フォトレジスト46の上記パ ターンを、ガラス基板45上に形成する(ステップS 2)。次に、この露光されたフォトレジスト46を用い て、スタンパ47(即ち、所謂スタンパディスク)を形 成する(ステップS3)。次に、グルーブトラックG、 ランドトラックL及びランドプリピットLPPに加えて エンボスピットを有するDVD100 (例えば、DVD RW)を、このスタンパ47を用いてレプリケーショ ンにより製造する(即ち、所謂レプリケーションとして 40 製造する) (ステップ S 4)。次に、プリライト処理 を、DVD100に対して行う。即ち、レーザービーム LBを照射することにより、コントロールデータゾーン 等にコントロールデータ等を記録する(ステップS

【0084】本実施形態によれば、ステップS1からS4におけるDVD100の製造工程において、ステップS5のプリライト処理で記録すべき所定データは、既に知られている。そこで、ステップS5のプリライト処理で記録すべき所定データに同期するエンボスピットを、

ステップS1からS4の製造工程で形成しておく。その後、ステップS5のプリライト処理で、即ち出荷前の記録工程で、ステップS1からS4の製造工程で既に形成したエンボスピットに同期した所定データを記録する。従って、ステップS5のプリライト処理後、例えばDVD100の出荷後或いは購入後には、コントロールデータゾーン等の所定領域における所定データを改竄しても、改竄されたデータは、エンボスピットとしても、改竄されたデータは、エンボスピットとし同期しておらずエンボスピットによる影響を受けるので(図8から図11参照)、正常に読み出すことができない。他方で、DVD100の出荷後或いは購入後に、インフォーメーションエリアIA内のデータ記録エリアDRAに対しては(図1及び図4参照)、ユーザは、メインデータの書き込み処理や読み取り処理を正規のコントロールデータ等に基づいて問題なく行える。

【0085】以上詳細に説明したように本実施形態によれば、エンボスピットを形成することにより、コントロールデータゾーン等の所定領域に記録された重要な改竄されたくないコントロールデータ等の所定データが改竄されないようにできる。しかも、読み取り専用のDVDーROM等と書き込み可能なDVDーRW等とに共通した重要な情報を両ディスク上における同じ領域に記録することを可能ならしめつつ、一方で、係る重要なデータの違法な書き換え作業或いは改竄作業は行えない光ディスクが実現される。

【0086】以上説明した実施形態において、エンボスピットが形成される記録マークや記録スペースの長さであるデータパターンの長さは、8Tに限られない。また、エンボスピットの長さも4Tに限られない。例えば、記録トラックに沿って4Tの長さを持つ記録マークや記録スペースに対して、記録トラックに沿って2Tの長さを持つエンボスピットを形成することも可能である。いずれにせよ、エンボスピットがデータパターンと相関をもっており且つデータパターンの記録トラックに沿った長さよりもエンボスピットのそれが短く設定され

【0087】更に、記録トラックに沿ったエンボスピットの長さ(例えば、1T~12T)を、記録トラックに沿った記録マークや記録スペースの長さ(例えば、3T~14T)に応じて変化させることも可能である。これにより、エンボスピット及びデータパターン間の端部におけるマージンを全てのエンボスピットを通じて一定にできるので、より信頼性の高いデータの保護が可能となる。

【0088】更に、上述した実施形態によれば、主にDVD-RWに適用した場合について記述したが、1回書き込み可能なディスク(例えばDVD-R)等の他の記録可能な光ディスクに適用することもできる。

【0089】本発明は、上述した実施形態に限られるも

50

のではなく、請求の範囲及び明細書全体から読み取れる 発明の要旨或いは思想に反しない範囲で適宜変更可能で あり、そのような変更を伴なう記録可能な光ディスク及 びその記録方法もまた本発明の技術的範囲に含まれるも のである。

[0090]

【発明の効果】本発明の光ディスク及びその記録方法によれば、コントロールデータゾーン等の所定領域に記録される、コントロールデータ等の所定データの読み取りを可能としつつ、係る所定データが改竄されることを有 10 効に阻止できる。

【図面の簡単な説明】

【図1】 本発明の実施形態において使用されるDVD の斜視図である。

【図2】 図1に示したDVDの透明基板のうち記録トラックを含む部分を拡大して示す部分斜視図である。

【図3】 図1に示したDVDのうち記録トラックを含む部分を拡大して示す部分断面図である。

【図4】 実施形態において使用されるDVDのデータ 構造を模式的に示す図である。

【図5】 図4におけるリードインエリアの詳細構造を示す図である。

【図6】 実施形態の光ディスクの記録方法における基本原理を示す図である。

*【図7】 実施形態の光ディスクの記録方法における基本原理を示す DVDの部分拡大斜視図である。

【図8】 第1実施形態における記録方法の一の動作例 を示すタイミングチャートである。

【図9】 図8に示す例において改竄データが書き込まれたときの動作例を示すタイミングチャートである。

【図10】 第2実施形態における記録方法の一の動作例を示すタイミングチャートである。

【図11】 図10に示す例において改竄データが書き 込まれたときの動作例を示すタイミングチャートであ る。

【図12】 実施形態におけるDVDの記録方法を示す工程図である。

【符号の説明】

1 0 0 ··· D V D

102…記録トラック

110…透明基板

1 1 1 …記録層

112…光反射層

20 113…保護層

G…グループトラック

L…ランドトラック

LPP…ランドプリピット

LB…光ビーム

【図1】

RIA IA

CA LIA DRA LOA

102 103 100

【図2】

【図3】

【図12】

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第4区分

【発行日】平成18年4月27日(2006.4.27)

【公開番号】特開2001-266362(P2001-266362A)

【公開日】平成13年9月28日(2001.9.28)

【出願番号】特願2001-7047(P2001-7047)

【国際特許分類】

G 1 1 B 7/007 (2006.01) G 1 1 B 7/24 (2006.01) G 1 1 B 20/12 (2006.01)

[FI]

G 1 1 B 7/007

G 1 1 B 7/24 5 6 3 F G 1 1 B 7/24 5 6 5 F

G 1 1 B 20/12

【手続補正書】

【提出日】平成18年3月13日(2006.3.13)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】 ディスク基板と、

該ディスク基板の中心の回りに渦巻状又は同心円状に形成された記録トラックと、

前記ディスク基板上の所定領域に、該所定領域における前記記録トラック上に記録される所定データと相関をもって形成されたエンボスピットとを備えたことを特徴とする記録可能な光ディスク。

【請求項2】 前記エンボスピットは、前記所定データの記録マークと記録スペースとの間の境界には存在しないように形成されていることを特徴とする請求項1に記載の記録可能な光ディスク。

【請求項3】 前記エンボスピットは、前記所定データの記録マークの前記記録トラックに沿った長さが所定長さ以上となる位置に形成されていることを特徴とする請求項1又は2に記載の記録可能な光ディスク。

【請求項4】 前記エンボスピットの長さは、前記記録マークの長さに拘わらず一定であることを特徴とする請求項3に記載の記録可能な光ディスク。

【請求項 5 】 前記エンボスピットの長さは、前記記録マークの長さに応じて変化することを特徴とする請求項 3 に記載の記録可能な光ディスク。

【請求項6】 前記エンボスピットは、前記所定データの記録スペースの前記記録トラックに沿った長さが所定長さ以上となる位置に形成されていることを特徴とする請求項1又は2に記載の記録可能な光ディスク。

【請求項7】 前記エンボスピットの長さは、前記記録スペースの長さに拘わらず一定であることを特徴とする請求項6に記載の記録可能な光ディスク。

【請求項8】 前記エンボスピットの長さは、前記記録スペースの長さに応じて変化する ことを特徴とする請求項6に記載の記録可能な光ディスク。

【請求項9】 前記所定領域は、コントロールデータ領域内にあり、前記所定データは、前記所定領域と異なり且つ前記エンボスピットが形成されないデータ記録領域内における前記記録トラック上に記録されるデータについての記録・再生動作を制御するためのコン

トロールデータであることを特徴とする請求項 1 から 8 のいずれか一項に記載の記録可能 な光ディスク。

【請求項10】 前記所定データ以外のデータが、前記所定領域と異なり且つ前記エンボスピットが形成されないデータ記録領域内における前記記録トラック上に記録されていることを特徴とする請求項1から9のいずれか一項に記載の記録可能な光ディスク。

【請求項11】 前記ディスク基板上に形成された記録層を更に備えており、該記録層により前記所定データを含むデータが前記記録トラック上に記録されることを特徴とする請求項1から10のいずれか一項に記載の記録可能な光ディスク。

【請求項12】 請求項1から11のいずれか一項に記載の記録可能な光ディスクにデータを記録する光ディスクの記録方法であって、

前記ディスク基板に前記エンボスピットを形成する工程と、

前記エンボスピットが形成された前記所定領域に前記所定データを記録する工程とを含むことを特徴とする光ディスクの記録方法。

【請求項13】 前記所定データ以外のデータを、前記所定領域と異なり且つ前記エンボスピットが形成されないデータ記録領域内における前記記録トラック上に記録する工程を更に含むことを特徴とする光ディスクの記録方法。