Subjectul D. OPTICĂ

Nr. item	Soluţie/Rezolvare
II.a.	
	Aplicarea formulei lentilelor subțiri pentru lentila L_2 : $\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f_2}$; $C_2 = \frac{1}{f_2}$
	Exprimarea măririi liniare și transversale a lentilei L_2 : $x_2 / x_1 = -2$
	Exprimarea distanței obiect-imagine: $d_1 = -x_1 + x_2$
	Rezultat final: $C_2 = 4 m^{-1} = 4 \delta$
b.	
	Aplicarea formulelor sistemelor de lentile subțiri acolate pentru ansamblul format din L_1 și L_2 :
	$\frac{1}{x_1} - \frac{1}{x_2} = \frac{1}{f}; \frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$
	Exprimarea măririi liniare și transversale a sistemului: $x_2^{'}/x_1^{'}=-2$
	Exprimarea distanței obiect-imagine: $d_2 = -x_1 + x_2$
	Determinarea distanței focale a sistemului: $f = 50cm$
	Rezultat final: $f_1 = -50cm$
C.	
	$\frac{1}{f_2} = 2 \cdot \frac{(n-1)}{R_1}$, $R_1 = 25cm$ sau $\frac{1}{f_1} = \frac{n-1}{R}$, $R = -25cm$
	Rezultat final: $n = 1,5$
d.	
	$x_1'' = -x_2''; \frac{1}{x_2''} - \frac{1}{x_1''} = \frac{1}{f} \implies x_2'' = 100 cm$
	Rezultat final: $d_3 = -x_1^{"} + x_2^{"} = 200 cm = 2 m$