More Precise Runtime Analyses of Non-elitist EAs in Uncertain Environments

Per Kristian Lehre ¹ & Xiaoyu Qin ²

School of Computer Science University of Birmingham United Kingdom

14 July 2021

¹p.k.lehre@cs.bham.ac.uk ²xxg896@cs.bham.ac.uk

Outline

Background

- Uncertainty models (Prior & posterior noise model, DYNBV)
- Non-elitist EAs with 2 tournament selection

Our results

- General tool for non-elitist EAs on uncertain optimisation
- Comparison with previous results

Conclusion

Uncertainty models

- Noisy optimisation
 - Prior noise model $f^n(x) = f(x')$, where x' is obtained from x
 - One-bit noise model (q) (Droste 2004): flip one bit in x with prob. q
 - Bit-wise noise model (p) (Qian et al. 2019):
 flip each bit of x independently with prob. p
 - Posterior noise model
 - Gaussian noise model (σ) (Gießen & Kötzing 2016): $f^n(x) = f(x) + \mathcal{N}(0, \sigma^2)$
- Dynamic optimisation
 - Random weights linear function (Lengler & Schaller 2018)
 - Dynamic Binary Value (DYNBV) (Lengler & Riedi 2020):

$$f^{t}(x) = \sum_{i=1}^{n} 2^{n-i} x_{\pi_{t}(i)}$$

where $\pi_t : [n] \to [n]$ is uniformly sampled in *t*-th generation.

Non-elitist EAs with 2-tournament selection

The fitness bias is $\theta \in (0, 1/2]$, if

$$f(x_1) > f(x_2) \iff \Pr(f^n(x_1) > f^n(x_2)) + \frac{1}{2} \Pr(f^n(x_1) = f^n(x_2)) \ge \frac{1}{2} + \theta$$

General tool

Theorem

If there exists a partition $(A_0, A_1,...,A_m)$ and a constant $\zeta \in (0,1)$, such that Algorithm 1 with mutation rate $\chi/n \in (0, \ln(1+2\theta\zeta)/n)$ satisfies,

- (C1) $Pr(MUTATION(z,\chi) \in A_{\geq j+1} \mid z \in A_j) \geq h_j(\chi) \geq h_{min}(\chi)$,
- (C2) $x_1 \in A_{\geq j}$ and $x_2 \in A_{< j}$ $\Longrightarrow \Pr\left(f^n(x_1) > f^n(x_2)\right) + \frac{1}{2}\Pr(f^n(x_1) = f^n(x_2)) \ge \frac{1}{2} + \theta$
- (C3) $\lambda > \frac{c}{\theta^2} \ln \left(\frac{m}{\theta^2 h_{\min}(\chi)} \right)$ for sufficiently large enough constant c,

then

$$E[T] = O\left(\frac{1}{\theta^2} \sum_{j=0}^{m-1} \left(\lambda \ln\left(\frac{1}{h_j(\chi)}\right) + \frac{1}{h_j(\chi)}\right)\right).$$

Proved by the level-based theorem (Corus et al. 2018).

Application of general tool (condition (C2))

Comparison to previous results for Algorithm 1:

Model	Prob.	Previous Results ³	This paper ⁴
One-bit	OM	$O(n\log(n)\log\log(n))$	$O(n\log(n))$
$q \in [0,1)$	LO	-	$O(n^2)$
Bit-wise $p \ge 0$	OM	-	$O(n^{4c+3}\log^2(n))$ for $p = 1/2 - 1/n^c$
	LO	-	$O(n^{12c+1} \log^2(n) + n^{9c+2})$ for $p = c \log(n)/n$
Gaussian	OM	$O(\sigma^7 n \log(n) \log \log(n))$	$O(\sigma^4 n \log^2(n))$
$\sigma \in poly(n)$	LO	$O(\sigma^7 n \log(n) \log \log(n) + \sigma^6 n^2)$	$O(\sigma^4 n \log^2(n) + \sigma^3 n^2)$
-	DynBV	-	$O(n^5 \log^2(n))$

³(Dang & Lehre 2015)

⁴Assuming using specific mutation rates and population sizes

Comparison to other algorithms:

(1+1) EA ^a

poly(n)

 $O(n^2)$

^bAssuming using specific mutation rates and population sizes

e(1+1) EA with resampling (Qian et al. 2018, 2019)

(q)		for $q \in O(\log(n)/n)$	for $q \in (0,1]$	for $q \in [0,1]$
	LO	poly(n)	$O(n^2)^d$	$O(n^2)$
		for $q \in O(\log(n)/n^2)$	for $q \in [0,1]$	for $q \in [0,1)$
Bit-wise	OM	poly(n)	poly(n) e	$O(n^{4c+3}\log^2(n))$
		for $p \in O(\log(n)/n^2)$	for $p = 1/2 - 1/n^c$	for $p = 1/2 - 1/n^c$

 $O(n\log(n))$

(p) poly(n)LO

OM

LO

DynBV

^a(Gießen & Kötzing 2016, Sudholt 2020)

 $c(\mu+1)$ EA (Gießen & Kötzing 2016) ^dUMDA (Lehre & Nguyen 2019)

fcGA (Friedrich et al. 2016)

Prob.

OM

Model

One-bit

Gaussian

 (σ)

for $p \in O(\log(n)/n^3)$ $O(n\log(n))$ for $\sigma^2 < 1/(4 \log(n))$

for $\sigma^2 < 1/(12en^2)$

 $O(n^{32c+5})^{e}$ for $p = c \log(n)/n$

 $O(\sigma^2 n^4)^e$

 $O(\sigma^4 n \log^2(n))^f$

for $\sigma^2 \in poly(n)$

for $\sigma^2 \in \text{poly}(n)$

Best Alg. $O(n \log^2(n))^c$

for $p = 1/2 - 1/n^{6}$

This paper b

 $O(n\log(n))$

for p = 1/2 - 1/n $O(n^{12c+1}\log^2(n) + n^{9c+2})$ for $p = c \log(n)/n$

for $\sigma^2 \in poly(n)$

for $\sigma^2 \in poly(n)$ $O(n^5 \log^2(n))$

 $O(\sigma^4 n \log^2(n) + \sigma^3 n^2)$

 $O(\sigma^4 n \log^2(n))$

8 / 11

Conclusion

- General tool for analysing non-elitist EAs under uncertainty
- More precise results than previous results
- Non-elitist population-based EAs can beat the current state of the art algorithms in some setting
- Lower mutation rate & larger population size required if higher uncertain level imposed
- First result to show that population-based EAs optimise DynBV in polynomial from any start point
- Future work:
 - Room for improvement: avoid overly pessimistic assumptions about the population, e.g., x_1 only slightly better than x_2
 - Negative analysis: what happens for mutation rate $\chi/n>\ln(1+2\theta\zeta)/n$
 - . . .

Thank you

Title: More Precise Runtime Analyses of Non-elitist EAs in Uncertain Environments

Authors: Per Kristian Lehre & Xiaoyu Qin {p.k.lehre, xxq896}@cs.bham.ac.uk

Presenter: Xiaoyu Qin

Connect to me via LinkedIn:

Reference I

- Corus, D., Dang, D.-C., Eremeev, A. V. & Lehre, P. K. (2018), 'Level-Based Analysis of Genetic Algorithms and Other Search Processes', IEEE Transactions on Evolutionary Computation 22(5), 707–719.
- Dang, D.-C. & Lehre, P. K. (2015), Efficient Optimisation of Noisy Fitness Functions with Population-based Evolutionary Algorithms, in 'Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII - FOGA '15', ACM Press, Aberystwyth, United Kingdom, pp. 62–68.
- Droste, S. (2004), Analysis of the (1+1) EA for a Noisy OneMax, in 'Genetic and Evolutionary Computation GECCO 2004', Vol. 3102, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1088–1099.
- Friedrich, T., Kotzing, T., Krejca, M. S. & Sutton, A. M. (2016), 'The Compact Genetic Algorithm is Efficient under Extreme Gaussian Noise', *IEEE Transactions on Evolutionary Computation* pp. 1–1.
- Gießen, C. & Kötzing, T. (2016), 'Robustness of Populations in Stochastic Environments', Algorithmica 75(3), 462-489.
- Lehre, P. K. & Nguyen, P. T. H. (2019), Runtime analysis of the univariate marginal distribution algorithm under low selective pressure and prior noise, in 'Proceedings of the Genetic and Evolutionary Computation Conference', ACM, Prague Czech Republic, pp. 1497–1505.
- Lengler, J. & Riedi, S. (2020), 'Runtime analysis of the (mu+1)-EA on the Dynamic BinVal function', arXiv:2010.13428 [cs] . arXiv: 2010.13428.
- Lengler, J. & Schaller, U. (2018), The (1+1)-EA on Noisy Linear Functions with Random Positive Weights, in '2018 IEEE Symposium Series on Computational Intelligence (SSCI)', pp. 712–719.
- Qian, C., Bian, C., Jiang, W. & Tang, K. (2019), 'Running Time Analysis of the (1+1)-EA for OneMax and LeadingOnes Under Bit-Wise Noise', Algorithmica 81(2), 749–795.
- Qian, C., Yu, Y., Tang, K., Jin, Y., Yao, X. & Zhou, Z.-H. (2018), 'On the Effectiveness of Sampling for Evolutionary Optimization in Noisy Environments', Evolutionary computation 26, 237–267.
- Sudholt, D. (2020), 'Analysing the Robustness of Evolutionary Algorithms to Noise: Refined Runtime Bounds and an Example Where Noise is Beneficial', *Algorithmica*.