Análisis Matemático II

Tema 6: Integración de funciones positivas

27 de abril, 3 y 4 de mayo

1 Definición y primeras propiedades de la integral

2 Teorema de la convergencia monótona

Definición de la integra

Sea $s:\mathbb{R}^N \to \mathbb{R}^+_0$ una función simple positiva, y consideremos su descomposición canónica:

Definición de la integra

Sea $s:\mathbb{R}^N \to \mathbb{R}^+_0$ una función simple positiva, y consideremos su descomposición canónica:

$$s = \sum_{k=1}^{p} \alpha_k \chi_{A_k} \quad \text{con} \quad p \in \mathbb{N}, \quad \alpha_1, \dots, \alpha_p \in \mathbb{R}_0^+, \quad A_1, \dots, A_p \in \mathcal{M}$$

Definición de la integra

Sea $s:\mathbb{R}^N \to \mathbb{R}^+_0$ una función simple positiva, y consideremos su descomposición canónica:

$$s = \sum_{k=1}^{p} \alpha_k \chi_{A_k} \quad \text{con} \quad p \in \mathbb{N}, \quad \alpha_1, \dots, \alpha_p \in \mathbb{R}_0^+, \quad A_1, \dots, A_p \in \mathcal{M}$$

Para $E \in \mathcal{M}$, se define la integral de s sobre E mediante la igualdad:

Definición de la integra

Sea $s:\mathbb{R}^N \to \mathbb{R}^+_0$ una función simple positiva, y consideremos su descomposición canónica:

$$s = \sum_{k=1}^{p} \alpha_k \chi_{A_k} \quad \text{con} \quad p \in \mathbb{N}, \quad \alpha_1, \dots, \alpha_p \in \mathbb{R}_0^+, \quad A_1, \dots, A_p \in \mathcal{M}$$

Para $E \in \mathcal{M}$, se define la integral de s sobre E mediante la igualdad:

$$\int_{E} s = \sum_{k=1}^{p} \alpha_k \ \lambda(E \cap A_k)$$

Homegeneidad

Si s es una función simple positiva y $\rho \in \mathbb{R}^+_0$, entonces:

Homegeneidad

Si s es una función simple positiva y $\rho \in \mathbb{R}^+_0$, entonces:

$$\int_{E} \rho s = \rho \int_{E} s \quad \forall E \in \mathcal{M}$$

Homegeneidad

Si s es una función simple positiva y $\rho \in \mathbb{R}_0^+$, entonces:

$$\int_{E} \rho \, s = \rho \int_{E} s \quad \forall \, E \in \mathcal{M}$$

Aditividad

Homegeneidad

Si s es una función simple positiva y $\rho \in \mathbb{R}^+_0$, entonces:

$$\int_{E} \rho s = \rho \int_{E} s \quad \forall E \in \mathcal{M}$$

Aditividad

Si $\,s\,$ es una función simple positiva y definimos:

Homegeneidad

Si s es una función simple positiva y $\rho \in \mathbb{R}_0^+$, entonces:

$$\int_{E} \rho s = \rho \int_{E} s \quad \forall E \in \mathcal{M}$$

Aditividad

Si $\,s\,$ es una función simple positiva y definimos:

$$\varphi: \mathcal{M} \to [0, \infty], \quad \varphi(E) = \int_E s \quad \forall E \in \mathcal{M}$$

Homegeneidad

Si s es una función simple positiva y $\rho \in \mathbb{R}_0^+$, entonces:

$$\int_{E} \rho \, s = \rho \int_{E} s \quad \forall \, E \in \mathcal{M}$$

Aditividad

Si $\,s\,$ es una función simple positiva y definimos:

$$\varphi: \mathcal{M} \to [0, \infty], \quad \varphi(E) = \int_E s \quad \forall E \in \mathcal{M}$$

entonces $\varphi(\emptyset)=0$ y φ es σ -aditiva, luego es una medida

Homegeneidad

Si s es una función simple positiva y $\rho \in \mathbb{R}_0^+$, entonces:

$$\int_{E} \rho s = \rho \int_{E} s \quad \forall E \in \mathcal{M}$$

Aditividad

Si $\,s\,$ es una función simple positiva y definimos:

$$\varphi: \mathcal{M} \to [0, \infty], \quad \varphi(E) = \int_E s \quad \forall E \in \mathcal{M}$$

entonces $\varphi(\emptyset) = 0$ y φ es σ -aditiva, luego es una medida

Crecimiento

Homegeneidad

Si s es una función simple positiva y $\rho \in \mathbb{R}_0^+$, entonces:

$$\int_{E} \rho s = \rho \int_{E} s \quad \forall E \in \mathcal{M}$$

Aditividad

Si s es una función simple positiva y definimos:

$$\varphi: \mathcal{M} \to [0, \infty], \quad \varphi(E) = \int_E s \quad \forall E \in \mathcal{M}$$

entonces $\varphi(\emptyset) = 0$ y φ es σ -aditiva, luego es una medida

Crecimiento

Si s,t son funciones simples positivas y $E \in \mathcal{M}$, entonces:

Homegeneidad

Si s es una función simple positiva y $\rho \in \mathbb{R}_0^+$, entonces:

$$\int_{E} \rho \, s = \rho \int_{E} s \quad \forall \, E \in \mathcal{M}$$

Aditividad

Si s es una función simple positiva y definimos:

$$\varphi: \mathcal{M} \to [0, \infty], \quad \varphi(E) = \int_E s \quad \forall E \in \mathcal{M}$$

entonces $\varphi(\emptyset) = 0$ y φ es σ -aditiva, luego es una medida

Crecimiento

Si s,t son funciones simples positivas y $E\in\mathcal{M}$, entonces:

$$s(x) \leqslant t(x) \ \forall x \in E \implies \int_{E} s \leqslant \int_{E} t$$

Notación

Denotaremos por \mathcal{S}^+ al conjunto de todas las funciones simples positivas

Notación

Denotaremos por \mathcal{S}^+ al conjunto de todas las funciones simples positivas En todo lo que sigue, fijamos un conjunto medible $\Omega\subset\mathbb{R}^N$

Notación

Denotaremos por \mathcal{S}^+ al conjunto de todas las funciones simples positivas En todo lo que sigue, fijamos un conjunto medible $\Omega\subset\mathbb{R}^N$

Integral de una función medible positiva

Notación

Denotaremos por \mathcal{S}^+ al conjunto de todas las funciones simples positivas En todo lo que sigue, fijamos un conjunto medible $\Omega\subset\mathbb{R}^N$

Integral de una función medible positiva

Para $t \in \mathcal{S}^+$ y $E \in \mathcal{M}$ se tiene

Notación

Denotaremos por \mathcal{S}^+ al conjunto de todas las funciones simples positivas En todo lo que sigue, fijamos un conjunto medible $\Omega\subset\mathbb{R}^N$

Integral de una función medible positiva

Para $t \in \mathcal{S}^+$ y $E \in \mathcal{M}$ se tiene

$$\int_E t = \max \left\{ \int_E s : s \in \mathcal{S}^+, \ s(x) \leqslant t(x) \ \forall x \in E \right\}$$

Notación

Denotaremos por \mathcal{S}^+ al conjunto de todas las funciones simples positivas En todo lo que sigue, fijamos un conjunto medible $\Omega\subset\mathbb{R}^N$

Integral de una función medible positiva

Para $t \in \mathcal{S}^+$ y $E \in \mathcal{M}$ se tiene

$$\int_{E} t = \max \left\{ \int_{E} s : s \in \mathcal{S}^{+}, \ s(x) \leqslant t(x) \ \forall x \in E \right\}$$

lo que hace coherente la siguiente definición:

Notación

Denotaremos por \mathcal{S}^+ al conjunto de todas las funciones simples positivas En todo lo que sigue, fijamos un conjunto medible $\Omega\subset\mathbb{R}^N$

Integral de una función medible positiva

Para $t \in \mathcal{S}^+$ y $E \in \mathcal{M}$ se tiene

$$\int_{E} t = \max \left\{ \int_{E} s : s \in \mathcal{S}^{+}, \ s(x) \leqslant t(x) \ \forall x \in E \right\}$$

lo que hace coherente la siguiente definición:

Si
$$f:\Omega \to [0,\infty]$$
 es una función medible positiva y $E\in \mathcal{M}\cap \mathcal{P}(\Omega)$

Notación

Denotaremos por \mathcal{S}^+ al conjunto de todas las funciones simples positivas En todo lo que sigue, fijamos un conjunto medible $\Omega\subset\mathbb{R}^N$

Integral de una función medible positiva

Para $t \in \mathcal{S}^+$ y $E \in \mathcal{M}$ se tiene

$$\int_E t = \max \left\{ \int_E s : s \in \mathcal{S}^+, \ s(x) \leqslant t(x) \ \forall x \in E \right\}$$

lo que hace coherente la siguiente definición:

Si $f:\Omega \to [0,\infty]$ es una función medible positiva y $E \in \mathcal{M} \cap \mathcal{P}(\Omega)$ se define la integral de f sobre E mediante la igualdad:

Notación

Denotaremos por \mathcal{S}^+ al conjunto de todas las funciones simples positivas En todo lo que sigue, fijamos un conjunto medible $\Omega\subset\mathbb{R}^N$

Integral de una función medible positiva

Para $t \in \mathcal{S}^+$ y $E \in \mathcal{M}$ se tiene

$$\int_E t = \max \left\{ \int_E s : s \in \mathcal{S}^+, \ s(x) \leqslant t(x) \ \forall x \in E \right\}$$

lo que hace coherente la siguiente definición:

Si $f:\Omega \to [0,\infty]$ es una función medible positiva y $E \in \mathcal{M} \cap \mathcal{P}(\Omega)$ se define la integral de f sobre E mediante la igualdad:

$$\int_{E} f = \sup \left\{ \int_{E} s : s \in \mathcal{S}^{+}, \ s(x) \leqslant f(x) \ \forall x \in E \right\}$$

Crecimiento

Si f y g son funciones medibles positivas y $E\in\mathcal{M}\cap\mathcal{P}(\Omega)$, se tiene:

Crecimiento

Si f y g son funciones medibles positivas y $E\in\mathcal{M}\cap\mathcal{P}(\Omega)$, se tiene:

$$f(x) \leqslant g(x) \quad \forall x \in E \quad \implies \quad \int_E f \leqslant \int_E g$$

Crecimiento

Si f y g son funciones medibles positivas y $E \in \mathcal{M} \cap \mathcal{P}(\Omega)$, se tiene:

$$f(x) \leqslant g(x) \quad \forall x \in E \quad \implies \quad \int_E f \leqslant \int_E g$$

Homogeneidad

Crecimiento

Si f y g son funciones medibles positivas y $E\in\mathcal{M}\cap\mathcal{P}(\Omega)$, se tiene:

$$f(x) \leqslant g(x) \quad \forall x \in E \quad \implies \quad \int_E f \leqslant \int_E g$$

Homogeneidad

Si f es una función medible positiva, se tiene:

Crecimiento

Si f y g son funciones medibles positivas y $E\in\mathcal{M}\cap\mathcal{P}(\Omega)$, se tiene:

$$f(x) \leqslant g(x) \quad \forall x \in E \quad \implies \quad \int_E f \leqslant \int_E g$$

Homogeneidad

$$\int_{E} \rho f = \rho \int_{E} f \quad \forall \rho \in \mathbb{R}_{0}^{+}, \ \forall E \in \mathcal{M} \cap \mathcal{P}(\Omega)$$

Crecimiento

Si f y g son funciones medibles positivas y $E \in \mathcal{M} \cap \mathcal{P}(\Omega)$, se tiene:

$$f(x) \leqslant g(x) \quad \forall x \in E \quad \implies \quad \int_E f \leqslant \int_E g$$

Homogeneidad

Si f es una función medible positiva, se tiene:

$$\int_{E} \rho f = \rho \int_{E} f \quad \forall \rho \in \mathbb{R}_{0}^{+}, \ \forall E \in \mathcal{M} \cap \mathcal{P}(\Omega)$$

Localización

Crecimiento

Si f y g son funciones medibles positivas y $E\in\mathcal{M}\cap\mathcal{P}(\Omega)$, se tiene:

$$f(x) \leqslant g(x) \quad \forall x \in E \quad \implies \quad \int_E f \leqslant \int_E g$$

Homogeneidad

Si f es una función medible positiva, se tiene:

$$\int_{E} \rho f = \rho \int_{E} f \quad \forall \rho \in \mathbb{R}_{0}^{+}, \ \forall E \in \mathcal{M} \cap \mathcal{P}(\Omega)$$

Localización

Crecimiento

Si f y g son funciones medibles positivas y $E\in\mathcal{M}\cap\mathcal{P}(\Omega)$, se tiene:

$$f(x) \leqslant g(x) \quad \forall x \in E \quad \implies \quad \int_E f \leqslant \int_E g$$

Homogeneidad

Si f es una función medible positiva, se tiene:

$$\int_{E} \rho f = \rho \int_{E} f \quad \forall \rho \in \mathbb{R}_{0}^{+}, \ \forall E \in \mathcal{M} \cap \mathcal{P}(\Omega)$$

Localización

$$\int_{E} f = \int_{\Omega} \chi_{E} f \quad \forall E \in \mathcal{M} \cap \mathcal{P}(\Omega)$$

Teorema de la convergencia monótona

Teorema de la convergencia monótona

Sea $\{f_n\}$ una sucesión creciente de funciones medibles positivas,

Teorema de la convergencia monótona

Sea $\{f_n\}$ una sucesión creciente de funciones medibles positivas,

y sea
$$f(x) = \lim_{n \to \infty} f_n(x)$$
 para todo $x \in \Omega$. Entonces:

Teorema de la convergencia monótona

Sea $\{f_n\}$ una sucesión creciente de funciones medibles positivas,

y sea $f(x) = \lim_{n \to \infty} f_n(x)$ para todo $x \in \Omega$. Entonces:

$$\int_{\Omega} f = \lim_{n \to \infty} \int_{\Omega} f_n$$

Integral de la suma de una serie

Para cualquier sucesión $\{f_n\}$ de funciones medibles positivas, se tiene:

Integral de la suma de una serie

Para cualquier sucesión $\{f_n\}$ de funciones medibles positivas, se tiene:

$$\int_{\Omega} \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int_{\Omega} f_n$$

Integral de la suma de una serie

Para cualquier sucesión $\{f_n\}$ de funciones medibles positivas, se tiene:

$$\int_{\Omega} \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int_{\Omega} f_n$$

Aditividad

Integral de la suma de una serie

Para cualquier sucesión $\{f_n\}$ de funciones medibles positivas, se tiene:

$$\int_{\Omega} \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int_{\Omega} f_n$$

Aditividad

Si f es una función medible positiva, definiendo

$$\varphi(E) = \int_{E} f \quad \forall E \in \mathcal{M} \cap \mathcal{P}(\Omega)$$

Integral de la suma de una serie

Para cualquier sucesión $\{f_n\}$ de funciones medibles positivas, se tiene:

$$\int_{\Omega} \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int_{\Omega} f_n$$

Aditividad

Si f es una función medible positiva, definiendo

$$\varphi(E) = \int_{E} f \quad \forall E \in \mathcal{M} \cap \mathcal{P}(\Omega)$$

se obtiene una función $\varphi:\mathcal{M}\cap\mathcal{P}(\Omega)\to[\,0\,,\infty\,]$,

que es σ -aditiva con $\varphi(\emptyset)=0$, luego es una medida

Integrales nulas

Si f es una función medible positiva y $A\in\mathcal{M}\cap\mathcal{P}(\Omega)$, entonces:

Integrales nulas

Si f es una función medible positiva y $A \in \mathcal{M} \cap \mathcal{P}(\Omega)$, entonces:

$$\int_{A} f = 0 \iff \lambda (\{x \in A : f(x) > 0\}) = 0$$

Integrales nulas

Si f es una función medible positiva y $A \in \mathcal{M} \cap \mathcal{P}(\Omega)$, entonces:

$$\int_{A} f = 0 \iff \lambda (\{x \in A : f(x) > 0\}) = 0$$

En particular, si $\lambda(A)=0$, se tiene: $\int_A f = 0$

Integrales nulas

Si f es una función medible positiva y $A\in\mathcal{M}\cap\mathcal{P}(\Omega)$, entonces:

$$\int_{A} f = 0 \iff \lambda (\{x \in A : f(x) > 0\}) = 0$$

En particular, si $\,\lambda(A)=0\,$, se tiene: $\,\int_A f\,=0\,$

Integrales finitas

Integrales nulas

Si f es una función medible positiva y $A \in \mathcal{M} \cap \mathcal{P}(\Omega)$, entonces:

$$\int_{A} f = 0 \iff \lambda (\{x \in A : f(x) > 0\}) = 0$$

En particular, si $\,\lambda(A)=0\,,$ se tiene: $\,\int_A f\,=0\,$

Integrales finitas

Si f es una función medible positiva y $A \in \mathcal{M} \cap \mathcal{P}(\Omega)$

verifican que
$$\int_A f < \infty$$
, entonces:

Integrales nulas

Si f es una función medible positiva y $A \in \mathcal{M} \cap \mathcal{P}(\Omega)$, entonces:

$$\int_{A} f = 0 \iff \lambda (\{x \in A : f(x) > 0\}) = 0$$

En particular, si $\,\lambda(A)=0\,$, se tiene: $\,\int_A f\,=0\,$

Integrales finitas

Si f es una función medible positiva y $A\in\mathcal{M}\cap\mathcal{P}(\Omega)$

verifican que
$$\int_A f < \infty$$
, entonces:

$$\lambda \left(\left\{ x \in A : f(x) = \infty \right\} \right) = 0$$

Casi por doquier en Ω

Si P(x) es una condición que un punto $x\in\Omega$ puede cumplir o no,

Casi por doquier en $\,\Omega\,$

Si P(x) es una condición que un punto $x\in\Omega$ puede cumplir o no, decimos que se verifica P(x) para casi todo $x\in\Omega$, abreviado p.c.t. $x\in\Omega$,

Casi por doquier en Ω

Si P(x) es una condición que un punto $x\in\Omega$ puede cumplir o no, decimos que se verifica P(x) para casi todo $x\in\Omega$, abreviado p.c.t. $x\in\Omega$, cuando los puntos $x\in\Omega$ que no verifican P(x) forman un conjunto de medida nula

Casi por doquier en $\,\Omega\,$

Si P(x) es una condición que un punto $x\in\Omega$ puede cumplir o no, decimos que se verifica P(x) para casi todo $x\in\Omega$, abreviado p.c.t. $x\in\Omega$.

cuando los puntos $x \in \Omega$ que no verifican P(x)

forman un conjunto de medida nula

Si no es necesario aludir a un punto genérico $x \in \Omega$,

of the estimated and a uniquito generico $x \in M$,

decimos que la condición P se verifica casi por doquier (abreviado c.p.d.)

Casi por doquier en $\,\Omega\,$

```
Si P(x) es una condición que un punto x\in\Omega puede cumplir o no, decimos que se verifica P(x) para casi todo x\in\Omega, abreviado p.c.t. x\in\Omega,
```

cuando los puntos $x \in \Omega$ que no verifican P(x) forman un conjunto de medida nula

Si no es necesario aludir a un punto genérico $x \in \Omega$,

decimos que la condición P se verifica casi por doquier (abreviado c.p.d.)

Ejemplos que ya han aparecido

Casi por doquier en Ω

Si P(x) es una condición que un punto $x\in\Omega$ puede cumplir o no, decimos que se verifica P(x) para casi todo $x\in\Omega$, abreviado p.c.t. $x\in\Omega$.

cuando los puntos $x \in \Omega$ que no verifican P(x) forman un conjunto de medida nula

Si no es necesario aludir a un punto genérico $x \in \Omega$,

decimos que la condición P se verifica casi por doquier (abreviado c.p.d.)

Ejemplos que ya han aparecido

Casi por doquier en $\,\Omega\,$

Si P(x) es una condición que un punto $x\in\Omega$ puede cumplir o no, decimos que se verifica P(x) para casi todo $x\in\Omega$, abreviado p.c.t. $x\in\Omega$.

cuando los puntos $x \in \Omega$ que no verifican P(x)

forman un conjunto de medida nula

Si no es necesario aludir a un punto genérico $\,x\in\Omega$,

decimos que la condición P se verifica casi por doquier (abreviado c.p.d.)

Ejemplos que ya han aparecido

$$\bullet \quad \int_{\Omega} f = 0 \quad \Longleftrightarrow \quad f(x) = 0 \quad \text{p.c.t.} \quad x \in \Omega \quad \Longleftrightarrow \quad f = 0 \quad \text{c.p.d.}$$

Casi por doquier en $\,\Omega\,$

Si P(x) es una condición que un punto $x\in\Omega$ puede cumplir o no, decimos que se verifica P(x) para casi todo $x\in\Omega$, abreviado p.c.t. $x\in\Omega$.

cuando los puntos $x\in\Omega$ que no verifican P(x)

forman un conjunto de medida nula

Si no es necesario aludir a un punto genérico $\,x\in\Omega\,$,

decimos que la condición P se verifica casi por doquier (abreviado c.p.d.)

Ejemplos que ya han aparecido

$$\bullet \quad \int_{\Omega} f \ = 0 \quad \Longleftrightarrow \quad f(x) = 0 \quad \text{p.c.t.} \quad x \in \Omega \quad \Longleftrightarrow \quad f = 0 \quad \text{c.p.d.}$$

$$\bullet \quad \int_{\Omega} f < \infty \quad \Longrightarrow \quad f(x) < \infty \quad \text{p.c.t.} \quad x \in \Omega \quad \Longleftrightarrow \quad f < \infty \quad \text{c.p.d.}$$

Casi por doquier en un subconjunto de Ω Dado un conjunto medible $A\subset \Omega$

Casi por doquier en un subconjunto de Ω

Dado un conjunto medible $A\subset\Omega$ decimos que se verifica P(x) para casi todo $x\in A$, abreviado p.c.t. $x\in A$,

Casi por doquier en un subconjunto de Ω

Dado un conjunto medible $A\subset\Omega$ decimos que se verifica P(x) para casi todo $x\in A$, abreviado p.c.t. $x\in A$, cuando los puntos $x\in A$ que no verifican P(x) forman un conjunto de medida nula

Casi por doquier en un subconjunto de Ω

Dado un conjunto medible $A\subset \Omega$

decimos que se verifica P(x) para casi todo $x \in A$,

abreviado p.c.t. $x \in A$,

cuando los puntos $x \in A$ que no verifican P(x)

forman un conjunto de medida nula

Si no es necesario aludir a un punto genérico $\,x\in A\,$, decimos que

la condición P se verificacasi por doquier en A (abreviado c.p.d. en A)

Casi por doquier en un subconjunto de Ω

Dado un conjunto medible $A \subset \Omega$

decimos que se verifica P(x) para casi todo $x \in A$,

abreviado p.c.t. $x \in A$,

cuando los puntos $x \in A$ que no verifican P(x)

forman un conjunto de medida nula

Si no es necesario aludir a un punto genérico $\,x\in A\,$, decimos que

la condición P se verificacasi por doquier en A (abreviado c.p.d. en A)

Ejemplos que ya han aparecido

Casi por doquier en un subconjunto de Ω

Dado un conjunto medible $A \subset \Omega$

decimos que se verifica P(x) para casi todo $x \in A$,

abreviado p.c.t. $x \in A$,

cuando los puntos $x \in A$ que no verifican P(x)

forman un conjunto de medida nula

Si no es necesario aludir a un punto genérico $\,x\in A\,$, decimos que

la condición P se verificacasi por doquier en A (abreviado c.p.d. en A)

Ejemplos que ya han aparecido

Si f es una función medible positiva, y $A \in \mathcal{M} \cap \mathcal{P}(\Omega)$, se tiene:

Casi por doquier en un subconjunto de Ω

Dado un conjunto medible $A \subset \Omega$

decimos que se verifica P(x) para casi todo $x \in A$,

abreviado p.c.t. $x \in A$,

cuando los puntos $x \in A$ que no verifican P(x)

forman un conjunto de medida nula

Si no es necesario aludir a un punto genérico $\,x\in A\,$, decimos que

la condición P se verificacasi por doquier en A (abreviado c.p.d. en A)

Ejemplos que ya han aparecido

Si f es una función medible positiva, y $A \in \mathcal{M} \cap \mathcal{P}(\Omega)$, se tiene:

•
$$\int_{\Omega} f = 0 \iff f(x) = 0$$
 p.c.t. $x \in A \iff f = 0$ c.p.d. en A

Casi por doquier en un subconjunto de Ω

Dado un conjunto medible $A \subset \Omega$

decimos que se verifica P(x) para casi todo $x \in A$,

abreviado p.c.t. $x \in A$,

cuando los puntos $x \in A$ que no verifican P(x)

forman un conjunto de medida nula

Si no es necesario aludir a un punto genérico $\,x\in A\,$, decimos que

la condición P se verificacasi por doquier en A (abreviado c.p.d. en A)

Ejemplos que ya han aparecido

Si f es una función medible positiva, y $A \in \mathcal{M} \cap \mathcal{P}(\Omega)$, se tiene:

•
$$\int_{\Omega} f = 0 \iff f(x) = 0$$
 p.c.t. $x \in A \iff f = 0$ c.p.d. en A

$$\bullet \quad \int_{\Omega} f < \infty \implies f(x) < \infty \quad \text{p.c.t.} \quad x \in A \iff f < \infty \quad \text{c.p.d. en } A$$

No hay un análogo para sucesiones decrecientes

No hay un análogo para sucesiones decrecientes

En el caso $\Omega=\mathbb{R}$, y para cada $n\in\mathbb{N}$,

sea χ_n la función característica de la semirrecta $[n, +\infty[$

No hay un análogo para sucesiones decrecientes

En el caso $\Omega = \mathbb{R}$, y para cada $n \in \mathbb{N}$,

sea χ_n la función característica de la semirrecta $[n,+\infty[$

Es claro que $\{\chi_n\} \searrow 0$ pero $\int_{\mathbb{D}} \chi_n = \infty \ \forall n \in \mathbb{N}$

No hay un análogo para sucesiones decrecientes

En el caso $\Omega = \mathbb{R}$, y para cada $n \in \mathbb{N}$,

sea χ_n la función característica de la semirrecta $[n,+\infty[$

Es claro que
$$\{\chi_n\} \searrow 0$$
 pero $\int_{\mathbb{D}} \chi_n = \infty \ \forall n \in \mathbb{N}$

Lema de Fatou

No hay un análogo para sucesiones decrecientes

En el caso $\Omega = \mathbb{R}$, y para cada $n \in \mathbb{N}$,

sea χ_n la función característica de la semirrecta $[n,+\infty[$

Es claro que
$$\{\chi_n\} \searrow 0$$
 pero $\int_{\mathbb{R}} \chi_n = \infty \ \forall n \in \mathbb{N}$

Lema de Fatou

Si $\{f_n\}$ es una sucesión de funciones medibles positivas, se tiene:

No hay un análogo para sucesiones decrecientes

En el caso $\Omega = \mathbb{R}$, y para cada $n \in \mathbb{N}$,

sea χ_n la función característica de la semirrecta $[n,+\infty[$

Es claro que $\{\chi_n\} \searrow 0$ pero $\int_{\mathbb{T}} \chi_n = \infty \ \forall n \in \mathbb{N}$

Lema de Fatou

Si $\{f_n\}$ es una sucesión de funciones medibles positivas, se tiene:

$$\int_{\Omega} \liminf_{n \to \infty} f_n \leqslant \liminf_{n \to \infty} \int_{\Omega} f_n$$