```
In [1]: import pandas as pd
        from sklearn.metrics import confusion_matrix, classification_report, accuracy
         from sklearn.preprocessing import LabelEncoder
         from sklearn.model selection import train test split
         from sklearn.naive bayes import GaussianNB
In [2]: df = pd.read csv('Iris.csv')
        df
                Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Spe
Out[2]:
           0
                1
                                5.1
                                                 3.5
                                                                  1.4
                                                                                  0.2
                                                                                        St
           1
                2
                                4.9
                                                 3.0
                                                                  1.4
                                                                                  0.2
                                                                                         St
           2
                3
                                4.7
                                                 3.2
                                                                  1.3
                                                                                  0.2
                                                                                         Sŧ
           3
                                4.6
                                                 3.1
                                                                  1.5
                                                                                  0.2
                4
                                                                                         St
           4
                5
                                5.0
                                                 3.6
                                                                  1.4
                                                                                  0.2
                                                                                         St
                                                                                  2.3
         145 146
                                6.7
                                                 3.0
                                                                  5.2
                                                                                       virc
         146 147
                                6.3
                                                 2.5
                                                                  5.0
                                                                                  1.9
                                                                                       virc
         147 148
                                6.5
                                                 3.0
                                                                  5.2
                                                                                  2.0
                                                                                       virg
         148 149
                                6.2
                                                 3.4
                                                                  5.4
                                                                                  2.3
                                                                                       virg
                                5.9
         149 150
                                                 3.0
                                                                  5.1
                                                                                  1.8
                                                                                       virg
        150 rows \times 6 columns
In [3]: df.isnull().sum()
                           0
Out[3]: Id
         SepalLengthCm
                           0
         SepalWidthCm
                           0
         PetalLengthCm
                           0
                           0
         PetalWidthCm
         Species
                           0
         dtype: int64
In [4]: label_encoder = LabelEncoder()
        df['Species'] = label_encoder.fit_transform(df['Species'])
        df
```

Out[4]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Spe
	0	1	5.1	3.5	1.4	0.2	
	1	2	4.9	3.0	1.4	0.2	
	2	3	4.7	3.2	1.3	0.2	
	3	4	4.6	3.1	1.5	0.2	
	4	5	5.0	3.6	1.4	0.2	
	145	146	6.7	3.0	5.2	2.3	
	146	147	6.3	2.5	5.0	1.9	
	147	148	6.5	3.0	5.2	2.0	
	148	149	6.2	3.4	5.4	2.3	
	149	150	5.9	3.0	5.1	1.8	

150 rows × 6 columns

In [5]: x = df.drop('Species', axis=1)
x

Out[5]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	0	1	5.1	3.5	1.4	0.2
	1	2	4.9	3.0	1.4	0.2
	2	3	4.7	3.2	1.3	0.2
	3	4	4.6	3.1	1.5	0.2
	4	5	5.0	3.6	1.4	0.2
	145	146	6.7	3.0	5.2	2.3
	146	147	6.3	2.5	5.0	1.9
	147	148	6.5	3.0	5.2	2.0
	148	149	6.2	3.4	5.4	2.3
	149	150	5.9	3.0	5.1	1.8

150 rows × 5 columns

```
In [6]: y = df.Species
y
```

```
Out[6]: 0
                 0
          1
                 0
          2
                 0
          3
                 0
                 0
                . .
          145
                 2
          146
                 2
          147
                 2
          148
                 2
          149
          Name: Species, Length: 150, dtype: int32
In [11]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, rar
         gaussian = GaussianNB()
         gaussian.fit(x train, y train)
Out[11]:
              GaussianNB
         GaussianNB()
In [12]: y pred = gaussian.predict(x test)
In [13]: matrix = confusion matrix(y test, y pred)
         matrix
Out[13]: array([[11, 0,
                           0],
                           0],
                 [ 0, 13,
                 [ 0, 0, 6]], dtype=int64)
In [14]: print(classification_report(y_test, y_pred))
                       precision
                                    recall f1-score
                                                        support
                    0
                            1.00
                                      1.00
                                                 1.00
                                                             11
                    1
                            1.00
                                      1.00
                                                 1.00
                                                             13
                    2
                            1.00
                                      1.00
                                                 1.00
                                                              6
                                                             30
                                                 1.00
            accuracy
           macro avg
                            1.00
                                      1.00
                                                 1.00
                                                             30
        weighted avg
                            1.00
                                      1.00
                                                 1.00
                                                             30
In [15]: | accuracy = accuracy_score(y_test, y_pred)
         accuracy
Out[15]: 1.0
 In [ ]:
```