Monotone sequences

Definition (Increasing, decreasing, monotone sequences)

A sequence (s_n) is called increasing (decreasing) if $s_n \leq s_{n+1}$ (resp. $s_n \geq s_{n+1}$) for any n.

A sequence is monotone if it is either increasing or decreasing.

Our "increasing" sequences are sometimes called "nondecreasing." We do not require $s_n < s_{n+1}$. Similarly, our "decreasing" sequences are also referred to as "nonincreasing."

Example 1. $x_n = \sum_{k=1}^n \frac{1}{k^2}$. This sequence is increasing: $x_{n+1} = x_n + \frac{1}{(n+1)^2} > x_n$ for any n.

Example 2. $y_n = \frac{(-1)^n}{n^2}$. This sequence is not monotone: $y_{n+1} > y_n$ if n is odd, $y_{n+1} < y_n$ if n is even.

Bounded monotone sequences converge

Theorem (Theorem 10.2)

Any monotone bounded sequence converges.

Any convergent sequence is **bounded** (proved before).

A convergent sequence need not be **monotone** – e.g. $y_n = \frac{(-1)^n}{n^2}$.

Example. Let $s_n = \sum_{k=0}^{n-1} \frac{1}{k!}$. Does (s_n) converge? Recall: 0! = 1.

 $s_{n+1} = s_n + \frac{1}{n!}$, hence (s_n) is increasing.

Is (s_n) bounded? Does there exists A > 0 s.t. $s_n \leqslant A$ for any n?

Let $s_n = \sum_{k=0}^{n-1} \frac{1}{k!}$. Does there exists A > 0 s.t. $s_n \leqslant A$ for any n?

For $k \ge 1$, $k! \ge 2^{k-1}$ (prove this using induction!).

$$s_n = \frac{1}{0!} + \frac{1}{1!} + \dots + \frac{1}{(n-1)!} \leqslant 1 + \frac{1}{2^0} + \frac{1}{2^1} + \dots + \frac{1}{2^{n-2}}$$
$$1 + \frac{1 - 1/2^{n-1}}{1 - 1/2} < 1 + \frac{1}{1 - 1/2} = 1 + 2 = 3.$$

We already know: (s_n) is increasing. Thus, (s_n) converges.

In fact: $\lim s_n = e = 2.71828...$

Bounded monotone sequences converge: proof

Theorem (Theorem 10.2)

Any monotone bounded sequence converges.

Proof: Any bounded increasing sequence converges.

Let $u = \sup\{s_1, s_2, \ldots\}$. Show that $\lim s_n = u$.

Want: $\forall \varepsilon > 0 \ \exists N \in \mathbb{R} \ \text{s.t.} \ |s_n - u| < \varepsilon \ \text{for} \ n > N.$

As $s_n \leqslant u$, it suffices to verify $s_n > u - \varepsilon$.

 $u-\varepsilon$ is not an upper bound for $\{s_1,s_2,\ldots\}$, hence $s_N>u-\varepsilon$ for some N.

For
$$n > N$$
, $s_n \geqslant s_N > u - \varepsilon$.

Decreasing sequences are handled similarly.

Example (recursively defined sequence: pp. 57-58)

Let $s_0 = 5$, $s_{n+1} = \frac{s_n^2 + 5}{2s_n}$ for $n \ge 0$. Does $\lim s_n$ exist, and if yes, what is it?

- (1) If \limsup exists, what is it? $\underbrace{Suppose}_{s=1} s = \limsup s_n$. Pass to the limit in $s_{n+1} = \frac{s_n^2 + 5}{2s_n}$ to obtain $s = \frac{s^2 + 5}{2s} \Rightarrow 2s^2 = s^2 + 5 \Rightarrow s^2 = 5 \Rightarrow s = \pm \sqrt{5}$. $s_n > 0$ for any n, hence $s \ge 0$, so $s = \sqrt{5}$.
- (2) Does (s_n) converge? $s_0 = 5$, $s_1 = 3$, $s_2 = \frac{7}{3}$, ... We guess: (s_n) is decreasing to $\sqrt{5}$, hence bounded. This will imply

convergence. Show: for $n \ge 0$, $\sqrt{5} \le s_{n+1} \le s_n$.

We show: if $n \ge 0$ and $s_n \ge \sqrt{5}$, then $\sqrt{5} \leqslant s_{n+1} \leqslant s_n$.

Example continued. $s_0 = 5$, $s_{n+1} = \frac{s_n^2 + 5}{2s_n}$ for $n \geqslant 0$

We show: if $n \geqslant 0$ and $s_n \geqslant \sqrt{5}$, then $\sqrt{5} \leqslant s_{n+1} = \frac{s_n^2 + 5}{2s_n} \leqslant s_n$.

- 1) Right hand inequality. Want $\frac{s_n^2+5}{2s_n} \leqslant s_n$ $\Leftrightarrow s_n^2+5 \leqslant 2s_n^2 \Leftrightarrow 5 \leqslant s_n^2$, which is true.
- 2) Left hand inequality. Want $\frac{s_n^2+5}{2s_n}\geqslant \sqrt{5}\Leftrightarrow s_n^2+5\geqslant 2s_n\sqrt{5}$.

Arithmetic-Geometric Means (AGM) Inequality: for $a,b\in[0,\infty)$, $\frac{a+b}{2}\geqslant\sqrt{ab}$.

Proof of AGM:
$$\frac{a+b}{2} - \sqrt{ab} = \frac{1}{2} (a+b-2\sqrt{a}\sqrt{b})^2 = \frac{1}{2} (\sqrt{a}-\sqrt{b})^2 \geqslant 0.$$

Apply AGM with $a = s_n^2, b = 5$ to get $s_n^2 + 5 \ge 2s_n\sqrt{5}$.

Optional: Newtons' method for finding zeros (p. 259)

Need to find (numerically) x_* s.t. $f(x_*) = 0$. Use iterative process.

Find (x_n) converging to x_* (starting from a certain x_0).

Approximate f by its tangent line at $(x_n, f(x_n))$:

 $y = f'(x_n)(x - x_n) + f(x_n)$. x_{n+1} is the x-intercept of this tangent line.

$$0 = f'(x_n)(x_{n+1} - x_n) + f(x_n), \text{ hence } \left[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\right].$$

Do we have $\lim_n x_n = x_*$? Can we estimate $|x_n - x_*|$ (so that we would know when to stop)? Most often, yes!

If C > 0, then \sqrt{C} is the positive root of $f(x) = x^2 - C$. Then

$$x_{n+1} = x_n - \frac{x_n^2 - C}{2x_n} = \frac{2x_n^2 - (x_n^2 - C)}{2x_n} = \frac{x_n^2 + C}{2x_n}.$$
 $x_{n+1} = \frac{x_n^2 + C}{2x_n}.$

Decimal expansions of positive numbers (10.3)

A decimal expansion $K.d_1d_2d_3...$ ($K \in \{0,1,2,...\}$,

 $d_1, d_2, \ldots \in \{0, \ldots, 9\}$) determines a non-negative real number.

Let
$$s_n = K . d_1 d_2 d_3 ... d_n = K + \sum_{k=1}^n \frac{d_k}{10^k}$$
.

We claim that $\lim s_n$ is a real number.

The sequence (s_n) is increasing. Need to show boundedness:

$$s_n \leqslant K + \sum_{k=1}^n \frac{9}{10^k} = K + \frac{9}{10} \cdot \frac{1 - 1/10^n}{1 - 1/10} = K + 1 - \frac{1}{10^n} < K + 1.$$

Note. §16 shows that any real number has a decimal expansion.

However, some real numbers have two decimal expansions.

$$1 = 1.000... = 0.999...$$
, since $\lim_{n \to \infty} \frac{9}{10^{k}} = 1$.

Unbounded monotone sequences

Theorem (Theorem 10.4)

If $(s_n)_{n\geqslant m}$ is an unbounded increasing (decreasing) sequence, then $\lim s_n = +\infty$ (resp.= $-\infty$).

Proof when $(s_n)_{n\geqslant m}$ is unbounded increasing.

Need to show: $\forall A \in \mathbb{R} \exists N \in \mathbb{R} \text{ s.t. } s_n > A \text{ whenever } n > N.$

The sequence (s_n) is bounded below by s_m , hence it is not bounded above. In particular, A is not an upper bound.

 $\exists N \in \{m, m+1, \ldots\}$ s.t. $s_N > A$. We claim that this N works: if n > N, then $s_n \geqslant s_N > A$.

Corollary (Corollary 10.5)

If $(s_n)_{n\geqslant m}$ is a monotone sequence, then $\lim s_n$ exists, and is equal to a real number, or to $\pm\infty$.

Example

Let $s_n = \sum_{k=1}^n \frac{1}{k}$. Does (s_n) converge?

 (s_n) is increasing: for any n, $s_{n+1} = s_n + \frac{1}{n+1}$. Is (s_n) bounded? **No!**

$$s_{2^m} = \frac{1}{1} + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{m-1}+1} + \dots + \frac{1}{2^m}\right)$$

= $\frac{1}{1} + \frac{1}{2} + \sum_{j=1}^{m-1} \sum_{k=2^j+1}^{2^{j+1}} \frac{1}{k} \geqslant \frac{3}{2} + \frac{1}{2}(m-1) = \frac{m+2}{2}.$

The sequence (s_n) is unbounded, hence it **diverges to** $+\infty$.

Optional: s_n "behaves like" $\ln n$. $\lim \frac{s_n}{\ln n} = 1$, and $\lim (s_n - \ln n) = \gamma$ – the Euler-Mascheroni constant. $\gamma = 0.577...$

Open question: is γ rational?

Definition of liminf and lim sup

Convention: if a non-void set $A \subset \mathbb{R}$ is not bounded above (below), set $\sup A = +\infty$ (resp. inf $A = -\infty$).

For a sequence (s_n) and $N \in \mathbb{N}$, define $u_N = \sup\{s_n : n > N\}$ (also denoted by $\sup_{n > N} s_n$).

If (s_n) is not bounded above, then $u_N = +\infty$ for any N.

If (s_n) is bounded above, then (u_N) is a decreasing sequence of real numbers, hence it has a limit (in $\mathbb{R} \cup \{-\infty\}$).

Definition (10.6 – \limsup of the sequence (s_n))

 $\limsup s_n = \lim u_N$ (this equals $+\infty$ if $\forall N, u_N = +\infty$).

Similarly, let $v_N = \inf\{s_n : n > N\}$ (also denoted by $\inf_{n>N} s_n$).

Either $v_N = -\infty$ for any N (if (s_n) is not bounded below), or (v_N) is an increasing sequence of real numbers.

Define $\lim \inf s_n = \lim v_N$.

More on lim inf and lim sup

Observation: $\limsup s_n \geqslant \liminf s_n$. Indeed, $u_N = \sup\{s_n : n > N\} \geqslant \inf\{s_n : n > N\} = v_N$, hence $\limsup s_n = \lim u_N \geqslant \lim v_N = \liminf s_n$.

Example:
$$s_n = \begin{cases} 1/n & n \text{ even} \\ -n & n \text{ odd} \end{cases}$$
. **Find** $\limsup s_n$, $\liminf s_n$.

- (1) $\limsup s_n = \lim_N u_N$, where $u_N = \sup_{n>N} s_n$. $u_1 = \sup_{n>1} s_n = \sup\{\frac{1}{2}, -3, \frac{1}{4}, -5, \ldots\} = \frac{1}{2}$, $u_2 = \sup\{-3, \frac{1}{4}, -5, \ldots\} = \frac{1}{4}$, $u_3 = \sup\{\frac{1}{4}, -5, \ldots\} = \frac{1}{4}$, ... In general, for $k \in \mathbb{N}$, $u_{2k} = u_{2k+1} = \frac{1}{2k+2}$. $0 < u_n < \frac{1}{n}$, hence, by Squeeze Theorem, $\lim u_N = 0$. Thus, $\limsup s_n = 0$.
- (2) $\liminf s_n = \lim_N v_N$, where $v_N = \inf_{n>N} s_n$. (s_n) is not bounded below, hence $v_N = -\infty$ for any N, and so, $\liminf s_n = -\infty$.

lim inf and lim sup vs. lim

Theorem (Theorem 10.7)

- (1) If $\lim s_n$ is defined, then $\lim \inf s_n = \lim s_n = \limsup s_n$.
- (2) If $\lim \inf s_n = s = \lim \sup s_n$, then $\lim s_n$ is defined, and = s.

Proof of (1). Recall: $u_N = \sup_{n>N} s_n$, $v_N = \inf_{n>N} s_n$, $\lim \sup s_n = \lim u_N$, $\lim \inf s_n = \lim v_N$.

- $\lim s_n = +\infty$. Need: $\lim u_N = +\infty = \lim v_N$ that is, $\forall A \in \mathbb{R} \ \exists K \in \mathbb{N}$ s.t. $u_N, v_N \geqslant A$ for N > K.
- $\forall A \in \mathbb{R} \ \exists K \in \mathbb{N} \ \text{s.t.} \ s_n > A \ \text{for} \ n > K. \ \text{For} \ N > K, \ u_N = \sup_{n > N} s_n > A,$ and $v_N = \inf_{n > N} s_n \geqslant A \ (\text{indeed}, \ A \ \text{is a lower bound for} \ \{s_n : n > N\}). \ \Box$
- $\lim s_n = -\infty$: handled similarly.