练习 1. 我们对任何集合定义了其外测度: 假设 $E \subset \mathbb{R}^n$, 定义

$$m_*(E) = \inf \Big\{ \sum_{k=1}^{\infty} |Q_k| : Q_k$$
 是一列闭的正方体,且 $E \subset \bigcup_{k=1}^{\infty} Q_k \Big\},$

其中 $|Q_k|$ 表示 Q_k 的体积。我们也可以用 (开的) 长方体覆盖来定义外测度: 令

$$m^*(E) = \inf \Big\{ \sum_{k=1}^{\infty} |R_k| : R_k$$
 是一列开的长方体,且 $E \subset \bigcup_{k=1}^{\infty} R_k \Big\}.$

证明:对任何 $E \subset \mathbb{R}^n$,均有 $m_*(E) = m^*(E)$. (这表明我们对外测度的定义和教材的定义 (见教材第 42 页) 是等价的,它们将给出完全相同的理论.)

练习 2. 实数集 \mathbb{R} 上外 Jordan 测度 J_* 定义如下:对任何 $E \subset \mathbb{R}$,

$$J_*(E) = \inf \Big\{ \sum_{k=1}^N |I_k| : \quad I_k$$
 是一列区间,且 $E \subset \bigcup_{k=1}^N I_k \Big\}.$

证明:

- (i) 对任何 $E \subset \mathbb{R}$,均有 $J_*(E) = J_*(\overline{E})$.
- (ii) 存在区间 [0,1] 的子集 E,其满足 $m_*(E) = 0$ 且 $J_*(E) = 1$. (这表明在外侧度的定义中,可列覆盖改为有限覆盖会发展出不同的理论.)
- (iii) 一般地,(i) 的结论对 m_* 不成立. 即存在 $E \subset \mathbb{R}$ 使得 $m_*(E) < m_*(\overline{E})$.
- 练习 3. 假设 $E \subset \mathbb{R}^n$, $h \in \mathbb{R}^n$. 证明: $m_*(E_h) = m_*(E)$, 其中 $E_h = \{x+h : x \in E\}$.

练习 4. 假设 $\delta = (\delta_1, ..., \delta_n)$,其中 δ_i 均为正数. 对于 $E \subset \mathbb{R}^n$,定义 $\delta E = \{(\delta_1 x_1, ..., \delta_n x_n) : (x_1, ..., x_n) \in E\}$. 证明: $m_*(\delta E) = \delta_1 \cdots \delta_n m_*(E)$.