Chap 8 线性回归

1 回归问题

• 定义

$$Y = f(X_1, \cdots, X_n) + \varepsilon.$$

- *Y* 因变量(响应变量).
- \circ X_1, \dots, X_n 一 自变量(回归变量).
- \circ ε 随机误差(无法测量或不重要的因素).

假定 $E(\varepsilon \mid X_1, \dots, X_n) = 0$,

$$\Rightarrow E(Y \mid X_1, \dots, X_n) = f(X_1, \dots, X_n).$$

称为 Y 对 X_1, \dots, X_n 的回归函数. 由样本数据 X_1, \dots, X_n, Y 获取 f 的过程称为回归(有监督学习).

注

- \circ X_1, \dots, X_n 可以是随机的(e.g. 随机抽取一人的身高、体重等).
- \circ X_1, \dots, X_n 也可以是非随机的控制变量(e.g. 施肥量、药品使用剂量).
- o 在应用中, 自变量一律视为非随机的.
- 假设 $E(\varepsilon) = 0$, $Var(\varepsilon) = \sigma^2$ (未知).
- 注 要素是否完全、f 的形式是否准确关乎 σ^2 的大小.

2 简单线性回归

• 定义

$$Y = \beta_0 + \beta_1 X + \varepsilon$$
.

这是理论模型, 提供背景作用. 其中回归参数(未知待定):

- β₀ 截距.
- β₁ 斜率(回归系数).

对 (X,Y) 进行 n 次独立观测, 得到样本观测值 $(x_1,y_1),\cdots,(x_n,y_n)$. 则

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i (1 \leq i \leq n).$$

其中 ε_i 作为第 i 次观测的随机误差, 无法直接观测得到. 不妨认为

$$egin{cases} E(arepsilon_i) = 0, \ Var(arepsilon_i) = \sigma^2. \end{cases}$$

这是简单线性回归模型. 其中:

$$\circ \ E(y_i) = \beta_0 + \beta_1 x_i.$$

$$\circ \ Var(y_i) = \sigma^2.$$

注

○ 简单: n = 1.

o **线性**: f 关于参数 β_0 , β_1 线性.

3 最小二乘法 (LS) 估计参数

• 定义

$$S(eta_0,eta_1) = \sum_{i=1}^n (y_i - (eta_0 + eta_1 x_i))^2.$$

最小化 $S(\beta_0, \beta_1)$, 得

$$\circ \hat{\beta}_1 = \frac{\sum\limits_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} = \frac{\sum\limits_{i=1}^n (x_i - \overline{x})y_i}{S_{xx}} \ (y_i \ 的线性组合).$$

$$\circ$$
 $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = \sum_{i=1}^n (\frac{1}{n} - \frac{(x_i - \overline{x})\overline{x}}{S_{xx}}) y_i \ (y_i$ 的线性组合).

$$\circ y = \hat{\beta}_0 + \hat{\beta}_1 x$$
 (拟合直线).

• 注

○ 损失函数: $(y - (\beta_0 + \beta_1 x))^2$.

o 线性模型是否合理.

• **命题** $\hat{\beta}_0$, $\hat{\beta}_1$ 分别为 β_0 , β_1 的无偏估计.

证明

$$E(\hat{\beta}_{1}) = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) E(y_{i})}{S_{xx}}$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) (\beta_{0} + \beta_{1} x_{i})}{S_{xx}}$$

$$= \beta_{1} \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) x_{i}}{S_{xx}}$$

$$= \beta_{1} \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{S_{xx}}$$

$$= \beta_{1}.$$

$$E(\hat{\beta}_0) = E(\overline{y} - \hat{\beta}_1 \overline{x})$$

$$= \frac{1}{n} \sum_{i=1}^n E(y_i) - E(\hat{\beta}_1) \overline{x}$$

$$= \frac{1}{n} \sum_{i=1}^n (\beta_0 + \beta_1 x_i) - \beta_1 \overline{x}$$

$$= \beta_0.$$

$$egin{aligned} Var(\hat{eta}_1) &= Var\Big(rac{\sum_{i=1}^n (x_i - \overline{x})y_i}{S_{xx}}\Big) \ &= rac{\sum_{i=1}^n (x_i - \overline{x})^2}{S_{xx}^2} Var(y_i) \ &= rac{\sigma^2}{S_{xx}}. \end{aligned}$$

$$egin{align} Var(\hat{eta}_0) &= Var\Big(\sum_{i=1}^n (rac{1}{n} - rac{(x_i - \overline{x})\overline{x}}{S_{xx}})y_i\Big) \ &= \sum_{i=1}^n (rac{1}{n} - rac{(x_i - \overline{x})\overline{x}}{S_{xx}})^2 Var(y_i) \ &= (rac{1}{n} + rac{\overline{x}^2}{S_{xx}})\sigma^2 \ &= rac{\sigma^2}{S_{xx}} \cdot rac{\sum_{i=1}^n x_i^2}{n}. \end{split}$$

• 注 中心化处理:

$$y_i = eta_0 + eta_1 \overline{x} + eta_1 (x_i - \overline{x}) + arepsilon_i.$$

此时常数项 $\beta_0 + \beta_1 \overline{x}$ 的估计 = $\hat{\beta}_0 + \hat{\beta}_1 \overline{x} = \overline{y}$.

• **定义(残差)** 当 $X = x_i$ 时, 拟合直线上相应点为 $(x_i, \hat{\beta}_0 + \hat{\beta}_1 x_i)$. 记 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$, 称为 x_i 处的拟合值. 定义残差 $y_i - \hat{y}_i$. 考虑残差平方和

$$SSE := \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n (y_i - (\hat{eta}_0 + \hat{eta}_1 x_i))^2.$$

• **命题** $\hat{\sigma}^2 := \frac{SSE}{n-2}$ 为 σ^2 的无偏估计. 此时

$$\circ \hat{se}(\hat{\beta}_1) = \frac{\hat{\sigma}}{\sqrt{S_{xx}}}.$$

$$\circ \hat{se}(\hat{\beta}_0) = \hat{\sigma}\sqrt{\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}}}.$$

4 回归参数推断

- 追加假设 $\varepsilon_i \sim N(0, \sigma^2), 1 \leq i \leq n.$
- 注

$$v_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$
 独立, $1 \leq i \leq n$.

○ MLE $(\beta_0^*, \beta_1^*) = (\hat{\beta}_0, \hat{\beta}_1)$ (**习题课 5**). $L(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y_i - (\beta_0 + \beta_1 x_i))^2}{2\sigma^2}}.$ $(\sigma^2)^* = \frac{SSE}{n}.$

• 定义(假设检验) $H_0: \beta_1 = 0$ v.s. $H_1: \beta_1 \neq 0$. 因为 $\hat{\beta}_1$ 为 y_i 的线性组合. 得到

$$rac{\hat{eta}_1 - eta_1}{rac{\sigma}{\sqrt{S_{xx}}}} \sim N(0,1)$$

可证明

$$rac{SSE}{\sigma^2} = rac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-2).$$

从而

$$rac{\hat{eta}_1-eta_1}{\hat{se}(\hat{eta}_1)}=rac{\hat{eta}_1-eta_1}{rac{\hat{\sigma}}{\sqrt{S_{xx}}}}=rac{\hat{eta}_1-eta_1}{rac{\sigma}{\sqrt{S_{xx}}}}/\sqrt{rac{(n-2)\hat{\sigma}^2}{(n-2)\sigma^2}}\sim t(n-2).$$

检验统计量:

$$T = rac{\hat{eta}_1}{\hat{se}(\hat{eta}_1)}.$$

当 H_0 为真时, $T \sim t(n-2)$. 检验准则为: 当 $|T| \geq t_{\frac{\alpha}{2}}(n-2)$ 时拒绝 H_0 .

- 注
- \circ 可以对其他的 β_1 可能值进行检验.
- \circ 可以对 β_1 进行区间估计.
- \circ 可以对 β_0 进行相应推断, 过程类似.

5 预测

• 例 当 $X=x_0$ 时, $y_0=\beta_0+\beta_1x_0+\varepsilon_0$, 其中 $\varepsilon\sim N(0,\sigma^2)$. 令

$$\mu_0=E(y_0)=\beta_0+\beta_1x_0,$$

给出对 μ_0 的预测.

• 解答 用拟合直线上 x_0 处的取值 \hat{y}_0 给出 μ_0 的点估计:

$$\hat{y}_0=\hat{eta}_0+\hat{eta}_1x_0=\overline{y}-\hat{eta}_1(x_0-\overline{x})=\sum_{i=1}^n(rac{1}{n}+rac{(x_i-\overline{x})(x_0-\overline{x})}{S_{xx}})y_i$$

分别给出

$$\begin{array}{l} \circ \ E(\hat{y}_0) = E(\hat{\beta}_0 + \hat{\beta}_1 x_0) = \beta_0 + \beta_1 x_0 = \mu_0. \\ \circ \ Var(\hat{y}_0) = \sum_{i=1}^n \Big(\frac{1}{n} + \frac{(x_i - \overline{x})(x_0 - \overline{x})}{S_{xx}}\Big)^2 \sigma^2 = \Big(\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\Big) \sigma^2. \end{array}$$

从而

$$rac{\hat{y}_0-\mu_0}{se(\hat{y}_0)}\sim N(0,1).$$

使用 $\hat{se}(\hat{y}_0) = \hat{\sigma}\sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}$ 估计 $se(\hat{y}_0)$, 我们有

$$rac{\hat{y}_0-\mu_0}{\hat{se}(\hat{y}_0)}\sim t(n-2).$$

从而 μ_0 的 $(1-\alpha)$ — 置信的双侧区间估计为

$$\Big(\hat{y}_0 - t_{\frac{lpha}{2}}\hat{\sigma}\sqrt{rac{1}{n} + rac{(x_0 - \overline{x})^2}{S_{xx}}},\hat{y}_0 + t_{rac{lpha}{2}}\hat{\sigma}\sqrt{rac{1}{n} + rac{(x_0 - \overline{x})^2}{S_{xx}}}\Big).$$

- 例 当 $X=x_0$ 时, $y_0=\beta_0+\beta_1x_0+\varepsilon_0$, 其中 $\varepsilon\sim N(0,\sigma^2)$. 给出对 y_0 的预测.
- **解答** $y_0 \sim N(\mu_0, \sigma^2)$. 若 μ_0 已知, 则 y_0 的(均方意义下最优)估计为 μ_0 .

一般情况下, y_0 的良好点估计为 $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$.

注意到 y_0 与 \hat{y}_0 相互独立, 从而 $\hat{y}_0 - y_0$ 服从正态分布.

分别给出

$$\bullet \ E(\hat{y}_0 - y_0) = E(\hat{y}_0) - E(y_0) = \mu_0 - \mu_0 = 0.$$

$$\circ \ \ Var(\hat{y}_0-y_0)=Var(\hat{y}_0)+Var(y_0)=\sigma^2(1+rac{1}{n}+rac{(x_0-\overline{x})^2}{S_{xx}}).$$

从而

$$rac{\hat{y}_0-y_0}{\sigma\sqrt{1+rac{1}{n}+rac{(x_0-\overline{x})^2}{S_{xx}}}}\sim N(0,1).$$

进而

$$rac{\hat{y}_0-y_0}{\hat{\sigma}\sqrt{1+rac{1}{n}+rac{(x_0-\overline{x})^2}{S_{xx}}}}\sim t(n-2).$$

从而 y_0 的 $(1-\alpha)$ — 置信的双侧区间估计为

$$\Big(\hat{y}_0-t_{rac{lpha}{2}}\hat{\sigma}\sqrt{1+rac{1}{n}+rac{(x_0-\overline{x})^2}{S_{xx}}},\hat{y}_0+t_{rac{lpha}{2}}\hat{\sigma}\sqrt{1+rac{1}{n}+rac{(x_0-\overline{x})^2}{S_{xx}}}\Big).$$

- 注 当 x_0 与 \overline{x} 距离增加时, 估计误差增大.
- 注
- \circ 结合实际理解 β .
- o 外推需谨慎.
- o 截距为 0 的回归复杂度 $n-2 \rightarrow n-1$.
- o 回归方程不可逆转使用.
- o 常见应用:
 - 描述趋势.
 - 预测均值\取值.
 - 实验控制.