4

Relações de Implicação e de Equivalência

O estudo das relações de implicação e de equivalência, de grande importância na Lógica, será feito de maneira suscinta, como convém ao nosso estudo. Antes, porém, definiremos alguns conceitos introdutórios.

4.1 DEFINIÇÕES

a) Duas proposições são ditas *independentes* quando, em suas tabelas-verdade, ocorrem as quatro alternativas.

Exemplo:

р	q
0	0
p	1
1	0
1	1

b) Dizemos que duas proposições são dependentes quando, em suas tabelas-verdade, uma ou mais alternativas não ocorrem.

Exemplo:

р	q	$q \longrightarrow p$
0	0	1
0	1	0
1	0	1 1
1	1	1

Não ocorre a alternativa 10 entre p e q \longrightarrow p.

Neste caso, dizemos que existe uma relação entre as proposições p e q \longrightarrow p. Examinaremos as relações simples (quando uma alternativa não ocorre) e as relações duplas (quando duas alternativas não ocorrem).

4.2 RELAÇÃO DE IMPLICAÇÃO

Diz-se que uma proposição p *implica* uma proposição q quando, em suas tabelas-verdade, *não ocorre 10* (nessa ordem!).

Observação importante:

Não confundir os símbolos — e —>, pois, enquanto o primeiro representa uma operação entre proposições dando origem a uma nova proposição, o segundo indica apenas uma relação entre duas proposições dadas.

Exemplo: Verificar se $p \Longrightarrow q \longrightarrow p$.

Solução:

р	q	q-		p	
0		0		1	
0		1		0	
1		0		1	
1	1		1		

Comparando as tabelas-verdade p e q \longrightarrow p, verificamos que não ocorre 10 (nessa ordem!) numa mesma linha. Portanto: p \Longrightarrow q \longrightarrow p.

4.3 RELAÇÃO DE EQUIVALÊNCIA

Diz-se que uma proposição p é equivalente a uma proposição q quando, em suas tabelas-verdade, não ocorrem 10 nem 01.

Observação importante:

Vale para os símbolos ←→ e ←→ a mesma observação feita para → e →→.

$$E_{xemplo}$$
: Verificar se p • q \iff (p' + q')'.

Solução:

	р	q	b · d	p′	q'	p' + q'	(p' + q')'
1	0	0	0	1	1	1	0
	0	1	0	1	0	1	0
	1	0	0	0	1	1	0
	1	1	1	0	0	0	1

Comparando as tabelas-verdade de p \cdot q e (p' + q')', verificamos que $n\tilde{ao}$ o corre 10 nem 01 numa mesma linha. Portanto, p \cdot q \Longleftrightarrow (p' + q')'.

De maneira prática, verifica-se que duas proposições dadas são equivalentes quando suas tabelas-verdade forem iguais.

4.4 EQUIVALÊNCIAS NOTÁVEIS

Dupla negação: (p')' ⇔ p.

р	p'	(p')'	
0	1	0	
	0	1	

Leis idempotentes:

a)
$$p + p \Leftrightarrow p$$
.

b)
$$p \cdot p \iff p$$
.

р	p+p	b.b
0	0	0
1	1	1

Leis comutativas:

- a) $p + q \Leftrightarrow q + p$.
- b) $p \cdot q \iff q \cdot p$.
- a)

р	q	p + q	q+p
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

b) Verificar como exercício.

Leis associativas:

- a) $p + (q + r) \iff (p + q) + r$.
- b) $p \cdot (q \cdot r) \iff (p \cdot q) \cdot r$.

р	q	r	q+r	p + (q + r)	p + q	(p + q) + r
0	0	0	0	0	0	0
0	0	1	1	1	0	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	-1	1	1	1

b) Verificar como exercício.

Leis de De Morgan:

- a) $(p \cdot q)' \iff p' + q'$.
- b) $(p+q)' \iff p' \cdot q'$.

a)

р	q	p'	q′	p' + q'	p•q	(p · q)'
0	0	1	1	1	0	1
0	1	1	0	1	0	1
1	0 -	0	1	1	0	1
1	1	0	0	0	1	0

b) Verificar como exercício.

Leis distributivas:

a) $p \cdot (q + r) \iff (p \cdot q) + (p \cdot r)$.

b)
$$p + (q \cdot r) \iff (p + q) \cdot (p + r)$$
.

a)	р	q	r	q+r	p • (q + r)	b · d	p•r	$(p \cdot q) + (p \cdot r)$
	0	0	0	0	0	0	0	0
	0	0	1	1	0	0	0	0
	0	1	0	1	0	0	0	0
	0	1	1	1		0	0	0
	1	0	0	0	0	0	0	0
	1	0	1	1	1	0	1	11
	1	1	0	1	1	1	0	1
	1	1	1	1	1	1	1	1

b) Verificar como exercício.

Bicondicional: $p \longleftrightarrow q \iff (p \longrightarrow q) \cdot (q \longrightarrow p)$.

	р	q	$p \longleftrightarrow q$	$p \longrightarrow q$	q > p	$(b \longrightarrow d) \cdot (d \longrightarrow b)$
	0	0	1	1	1	1
	0	1	0	1	0	o
-	1	0	0	0	1	0
Į	1	1	1	1	1	1

Condicionais:

- a) $p \longrightarrow q$.
- b) $q' \longrightarrow p'$ (contrapositivo).
- c) q ---- p (recíproca do condicional)
- d) p' ---- q' (recíproca do contrapositivo).

į	р	q	p'	q'	$p \longrightarrow q$	$q' \longrightarrow p'$	$q \longrightarrow p$	$p' \longrightarrow q'$
	0	0	1	1	1	1	1	1
	0	1	1	0	1	1	0	0
	1	0	0	1	0	0	1	1
	1	1	0	0		1	1	1

Destas tabelas tiramos as seguintes equivalências notáveis:

$$(p \longrightarrow q) \iff (q' \longrightarrow p')$$

 $(q \longrightarrow p) \iff (p' \longrightarrow q')$

4.5 PROPRIEDADES

a) A condição necessária e suficiente para que p \Longrightarrow q é que o condicional p \longrightarrow q seja uma tautologia.

Demonstração:

- A A condição é necessária: (p ⇒ q) → (p → q).
 Se p ⇒ q, não ocorre 10, logo o condicional p → q é uma tautologia.
- B A condição é suficiente: (p → q) → (p ⇒ q).
 Se p → q, não ocorre em sua tabela-verdade a alternativa 10; logo, p ⇒ q.
- b) A condição necessária e suficiente para $\ que\ p \Longleftrightarrow q$ é que p \longleftrightarrow q seja uma tautologia.

Demonstração análoga à anterior.

EXERCICIOS

- 1. Dizer se entre as seguintes proposições há implicação ou equivalência quando tomadas aos pares.
 - a) p'
 - b) $q \longrightarrow p'$
 - c) $p \longrightarrow q$
 - d) q' + p
 - e) p·q
- 2. Mostrar que:
 - a) $q \Longrightarrow p \longrightarrow q$
 - b) $q \Rightarrow p \cdot q \leftrightarrow p$
 - c) $p \longleftrightarrow q'$ não implica $p' \longrightarrow q'$
 - d) p não implica p · q
 - e) $p+q \Longrightarrow p$

3. Verificar mediante tabelas-verdade as seguintes equivalências:

a)
$$((p+r)')' \iff p+r$$

$$b) ((p \cdot q')')' \iff p \cdot q'$$

d)
$$p \cdot q' + p \cdot q' \iff p \cdot q'$$

e)
$$(p'+q)' \iff (q+p')'$$

f)
$$p+q'\cdot r \iff q'\cdot r+p$$

q)
$$p \cdot (q + p) \iff p$$

h)
$$p + (p \cdot q) \iff p$$

i)
$$p \leftrightarrow p \cdot q \iff p \longrightarrow q$$

$$j) q \leftrightarrow p+q \Longleftrightarrow p \longrightarrow q$$

1)
$$(p \longrightarrow q) \cdot (p \longrightarrow r) \iff p \longrightarrow q \cdot r$$

m)
$$(p \longrightarrow q) + (p \longrightarrow r) \iff p \longrightarrow q + r$$

n)
$$(p \longrightarrow q) \longrightarrow r \iff p \cdot r' \longrightarrow q'$$

4. Dadas as proposições abaixo, escrever as proposições equivalentes usando as equivalências notáveis indicadas.

a) Dupla negação:

b) Leis idempotentes:

$$(p \longrightarrow q) + (p \longrightarrow q)$$

 $((p \longrightarrow q)' \cdot (p \longrightarrow q)')'$

c) Leis comutativas:

$$(p' \cdot q) + r$$

$$(s \cdot r) \cdot (p \longrightarrow s)'$$

$$(p \longrightarrow s) \cdot (p+r)$$

d) Leis de De Morgan:

$$(p' + q')'$$

$$((p+q)\cdot (r \longrightarrow s)')$$

$$(p \longrightarrow q) \cdot r'$$

e) Leis associativas:

$$r + (p' + q')$$

$$p \cdot ((r \longrightarrow s) \cdot (s + r))$$

$$((p+q)\cdot (p\longrightarrow r))\cdot (p+s)$$

f) Leis distributivas:

$$s' \cdot (p' + q)$$

52

$$p + ((q \cdot r)' \cdot (r \longrightarrow s))$$

g) Contrapositivo:

$$p' \longrightarrow (q \cdot r)'$$

$$(p + q) \longrightarrow r'$$

$$(p \longrightarrow q) \longrightarrow (r \longrightarrow s)'$$

h) Condicional:

$$p' \longrightarrow (q \cdot r)'$$

$$p + (q \longrightarrow r)$$

$$(p'+q)'$$

i) Bicondicional:

$$((p' \longrightarrow q') \cdot (q' \longrightarrow p'))$$

$$((p \cdot q) \longrightarrow r') \cdot (r' \longrightarrow (p \cdot q))$$

$$(p \longleftrightarrow q')$$

53