From Paper
Map to
Geospatial
Vector Layer

Peter Peller University of Calgary May 30, 2018

MHAS

Definitions

- Raster data structure is a matrix of cells (or pixels) where each cell contains a value
- Vector data is represented as points, lines and polygons with each feature containing information
- Scan create a raster image (ex/ scanned map)
- Vectorize convert raster image pixels to a vector feature class (or layer)

Study Methodology

- Multiple databases searched
- 70 studies identified and examined
- 11 specific cases selected based on the following criteria:
 - Software available openly or commercially
 - Semi-automated process
 - Scalable to multiple maps and map types
 - Appropriate for a library and archive setting

×	•		Authors	Title	Year	Published In	Added
± ☆	•	<u> </u>	Chiang, Yao-Yi	Harvesting Geographic Features From Heterogeneous Raster Maps	2010	the 1st ACM SI	4/18/17
₩	٠	<u> </u>	Sharma, O.	A Methodology for Raster to Vector Conversion of Colour Scanned Maps	2006		4/18/17
ŵ	•	<u> </u>	Ansoult, M.; Soille, P.	Mathematical Morphology: A Tool for Automated GIS Data Acquisition from Scanned Thematic Maps	1990	Photogrammetric Engineering an	4/18/17
ŵ	٠	<u> </u>	Leyk, Stefan; Boesch, Ruedi	Colors of the past: color image segmentation in historical topographic maps based on homogeneity	2009	GeoInformatica	4/18/17
₩	*		Dunshee, Ian	Towards Standards for the Manual Digitization and Vectorization of Analog Historical Maps and Records	2016		4/12/17
ŵ	٠	A	Chiang, Yao-Yi; Leyk, Stefan; Honarvar Nazari, Narges; M	Assessing the impact of graphical quality on automatic text recognition in digital maps	2016	Computers & Geosciences	4/12/17
¥	٠	<u> </u>	Dhar, Deeptendu Bikash; Chanda, Bhabatosh	Extraction and recognition of geographical features from paper maps	2006	International Journal of Docu	3/29/17
☆	٠	<u> </u>	Gibson, L; Lucas, D	Vectorization of raster images using hierarchical methods	1982	Computer Graphics and I	3/24/17
₩	٠	<u> </u>	Lacroix, V	Raster-to-vector conversion: problems and tools towards a solution a map segmentation application	2009	Proceedings of the 7th Interna	3/24/17
₩	٠	<u> </u>	Levachkine, Serguei	Raster to Vector Conversion of Color Cartographic Maps	2004	Lecture Notes in Computer Scien	3/24/17
₩	٠	A	Dedic, Abdulah; Murn, Rudolf; Pecek, Dusan	Digitalization of large area drawings and maps	1991	Melecon	3/24/17
₩	٠	<u> </u>	Naouai, M; Narjess, M; Hamouda, A	Line recognition algorithm using constrained Delaunay Triangulation	2010	Proceedings Elmar - Internat	3/24/17
☆	٠	<u>~</u>	Miyoshi, T; Li, W; Kaneda, K; Yamashita, H; Nakamae, E	Automatic extraction of buildings utilizing geometric features of a scanned topographic map	2004	Proceedings - International C	3/24/17
☆	٠	<u> </u>	Velázquez, A; Levachkine, Sergeui	Text/Graphics Separation and Recognition in Raster- Scanned Color Cartographic Maps	2004	Lecture Notes in Computer Scien	3/24/17
☆	٠	<u> </u>	Knoblock, Craig; Chen, CC.; Chiang, YY.; Goel, A; Mich	A general approach to discovering, registering, and extracting features from raster maps	2010	Proceedings of SPIE - The Inte	3/24/17
₩	٠	<u> </u>	Tarabek, P	General vectorization of line objects in drawn maps	2009	Komunikacie	3/24/17
☆	٠	<u> </u>	Junhua, T; Fahui, W	Improved algorithm for data conversion from raster to vector	2007	Proceedings of SPIE - The Inte	3/24/17
₩	٠	A	Chiang, YY.; Leyk, S.; Knoblock, Craig	Efficient and robust graphics recognition from historical maps	2013	Lecture Notes in Computer Scien	3/24/17
	٠	A	Taie, Shereen; ElDeeb, Hesham; Atiya, Diyaa	A new model for automatic raster-to-vector conversion	2011	International Journal of Engi	3/24/17
	٠	<u> </u>	Bodansky, E; Gribov, A; Pilouk, M	Smoothing and compression of lines obtained by raster-to- vector conversion	2002	Lecture Notes in Computer Scien	3/24/17
\$	٠	<u> </u>	Chiang, YY.; Knoblock, Craig	Extracting road vector data from raster maps	2010	Lecture Notes in Computer Scien	3/24/17
	٠	<u> </u>	Baily, Brian; Riley, Mark; Aucott, Paula; Southall, Hu	Extracting digital data from the First Land Utilisation Survey of Great Britain – Methods, issues and potential	2011	Applied Geography	3/24/17
	*	<u>~</u> "	Du, J; Zhang, Y	Automatic extraction of contour lines from scanned topographic map	2004	International Geoscience and	3/24/17
\$	٠	<u> </u>	Southall, Humphrey; Brown, Nigel; Burton, Nick	Digitising the Inter-War Land Use Survey of Great Britain: A Pilot Project	2003		3/24/17

The Process

```
Scanning
             Georeferencing
          Image Enhancement
          Image Segmentation
              Raster Editing
Raster to Vector Conversion (Vectorization)
              Vector Editing
```

Scanning

- ▶ Poor original maps try to borrow it from someone else
- ▶ Higher resolutions are not always better: 300-400 dpi sufficient
- ▶ 8-bit colour for grayscale maps; 24 bit colour for colour maps
- Output file format: TIFF

Source: Pearson et al, 2013, 327.

Georeferencing

Source: ESRI, 2016

- Don't overdo the number of control points
- ▶ Root Mean Square of all the residual errors ≤ cell size of the raster
- ► First Order Polynomial transformation usually sufficient in majority of cases for georectification
- Possibly employ crowdsourcing (ex/NYPL: MapWarper)

Image Enhancement

- Resample image from archival quality scanned map
- Use a "mask" to exclude extraneous parts of the map

Image Segmentation

Simple thresholding used with greyscale images

Image Segmentation – Linear Features

Image Segmentation – Areal Features

Image Segmentation: Supervised Classification

Training Sample Selection

- Select from cluttered areas
- Select a number of samples
- Can be reused with maps in same series

Source: Southall et al., 2003, 24

Raster Editing – Problems

Bridges

Text overlapping feature

Gaps and holes

Intersecting features

Raster Editing – Morphological Operators

Dilate

Erode

Raster Editing – GIS Functions

Vectorization

- ArcScan and R2V lines and outlines
 - Automated vectorization and interactive raster tracing
- ArcGIS' "RasterToPolygon" polygons

Vector Editing

- Use ArcGIS Eliminate function to dissolve areas of unwanted map elements (below a minimum threshold) and No Data gaps
- Use Smooth Line and Smooth Polygon tools to make these features look better
- Add attribute data to vector feature classes through the use of lookup tables to transfer multi-variable data to features

Conclusions

▶ Bad News:

There is no easy-to-use one-size-fits-all automated solution that works for all map types and features.

▶ Good News:

- There is a semi-automated process that can be adopted by libraries and archives to vectorize scanned maps with a few caveats:
 - The process does require some GIS skills.
 - Some experimentation required to determine optimal process.
 - Although significantly quicker than heads-up digitizing, it still takes time and effort.
- Vectorization enables all kinds of new possibilities for map features.