Exame de Qualificação em Matrizes - 07/08/2013

Questão 1

- a) Considere $A: m \times n$, posto(A) = n. Demonstre que $\|(A^t A)^{-1}\|_2 = \|A^{\dagger}\|_2^2$. (Inclua as demonstrações de propriedades e/ou teoremas que forem citados nesta demonstração.)
- b) $A:n\times n$ é idempotente se $A^2=A$. Demonstre que uma matriz idempotente é a Identidade de ordem n ou é uma matriz singular.
- c) Considere a matriz $A:n\times n$ e a matriz $G:n\times n,\ G=I_n-ge_k^t,$ onde $g:n\times 1$ é tal que: $g_i=0,\ 1\leq i\leq k.$ Se B=AG, obtenha a a relação entre os elementos a_{ij} e b_{ij} sem realizar explicitamente o produto.

Questão 2: Considere a matriz $A: m \times n, m > n$, e sua decomposição SVD. Particionando as matrizes U, D e V por $U = [U_s \ U_t], D = [D_s \ 0; \ 0 \ 0]$ e $V = [V_s, V_w]$.

Para $b \in \mathbb{R}^m$, considere o problema de quadrados mínimos: min $||b - Ax||_2$.

- a) Quais os valores de s, t, w em função das dimensões e posto de A? Justifique.
- b) Relacione as matrizes U_s , U_t , V_s , V_w com os 4 subespaços fundamentais: imagem e núcleo de A e de A^t .
- c) Demonstre que as soluções para o problema de quadrados mínimos são da forma:
- $y = V_s(D_s)^{-1}(U_s)^t b + V_w z \quad z \in \mathbb{R}^w.$
- d) Explique o que representa a solução y de norma-2 mínima para o problema de quadrados mínimos. Qual a representação desta solução de acordo com a notação do item (b). Justifique.
- e) A solução y para o problema de QM pode ser única? Justifique.
- f) O valor mínimo de min $||b Ax||_2$ pode ser nulo? Justifique.

Escolha 2 questões entre as questões 3, 4 e 5:

Questão 3: Considere $A: n \times n$, simétrica e não singular e sua fatoração $A = LDL^t$ onde L é triangular inferior com diagonal unitária e D diagonal. Considere a matriz M tal que $LDL^t = MD^{-1}M^t$. a) Deduza expressão da matriz M em função das matrizes L e D. Qual e estrutura da matriz M? b) Escreva os elementos da matriz M em função dos elementos de A de modo que a fatoração $MD^{-1}M^t$ possa ser obtida diretamente de A, isto é, sem calcular a matriz L.

Questão 4: Considere $A=uv^t$ onde $u:m\times 1$ e $v:n\times 1$ ambos com norma—2 igual a 1 e com todas entradas positivas.

- a) Sabendo que $Q_1 = I (2/(s^t s))ss^t$ é a matriz de Householder para realizar a primeira etapa do processo da fatoração QR, explicite cada entrada do vetor s e dê uma expressão para $2/(s^t s)$ em função dos vetores u e v é/ou de suas entradas.
- b) Quantas etapas do processo de Householder devem ser realizadas para triangularizar a matriz A? Justifique.
- c) Qual a estrutura especial da matriz R? Justifique.

Questão 5: Considere o subespaço de Krylov $\mathcal{K}_j(A,b)$ e a relação $AV_j = V_jH_j + H_{j+1,j}v_{j+1}e_j^t$.

- a) Escreva o pseudo-código do Método de Arnoldi baseado na relação acima.
- b) Explique como este método pode ser utilizado para aproximar autopares da matriz A.
- c) Comente o erro cometido na aproximação dos autovalores.
- d) O que significa reinicialização nesse contexto?