Lecture 12: CFL Pumping Lemma and Turing Machines

CSC 320: Foundations of Computer Science

Quinton Yong

quintonyong@uvic.ca

Pumping Lemma for Context-Free Languages

If L is a context-free language, then there is a number p (pumping length of L) such that for every string $s \in L$ of length at least p, s can be divided into five parts s = uvxyz satisfying the following:

- 1. |vy| > 0 (i.e. v and y cannot both be empty)
- $2. |vxy| \le p$
- 3. $uv^ixy^iz \in L$ for each $i \ge 0$

Note: Since there is no restriction on u, we need to consider **all cases** of what the substring vxy (with length $\leq p$) could be

Prove that $L = \{ \mathbf{0}^n \mathbf{1}^n \mathbf{2}^n \mid n \geq \mathbf{0} \}$ is not context-free.

Proof:

- Assume for a contradiction that L is context-free.
- Let p be the pumping length given by the pumping lemma.
- We choose $s = 0^p 1^p 2^p$.
- Since $s \in L$ and $|s| \ge p$, according to the PL, we can rewrite s = uvxyz satisfying
 - 1. |vy| > 0 (i.e. v and y cannot both be empty)
 - $2. |vxy| \leq p$
 - 3. $uv^ixy^iz \in L$ for each $i \ge 0$

$$L = \{ 0^n 1^n 2^n \mid n \ge 0 \}$$

- By property 2, $|vxy| \le p$, we have the following cases:
 - 1. vxy = 0 ... 0

$$L = \{ 0^n 1^n 2^n \mid n \ge 0 \}$$

- By property 2, $|vxy| \le p$, we have the following cases:
 - 1. vxy = 0 ... 0
 - 2. vxy = 1 ... 1

$$L = \{ 0^n 1^n 2^n \mid n \ge 0 \}$$

- By property 2, $|vxy| \le p$, we have the following cases:
 - 1. vxy = 0 ... 0
 - 2. vxy = 1 ... 1
 - 3. vxy = 2 ... 2

$$L = \{ 0^n 1^n 2^n \mid n \ge 0 \}$$

- By property 2, $|vxy| \le p$, we have the following cases:
 - 1. vxy = 0 ... 0
 - 2. vxy = 1 ... 1
 - 3. vxy = 2 ... 2
 - 4. $vxy = 0 \dots 0 1 \dots 1$

$$L = \{ 0^n 1^n 2^n \mid n \ge 0 \}$$

- By property 2, $|vxy| \le p$, we have the following cases:
 - 1. vxy = 0 ... 0
 - 2. vxy = 1 ... 1
 - 3. vxy = 2 ... 2
 - 4. $vxy = 0 \dots 0 1 \dots 1$
 - 5. $vxy = 1 \dots 12 \dots 2$

$$L = \{ 0^n 1^n 2^n \mid n \ge 0 \}$$

Consider **case 1** where $vxy = 0 \dots 0$

- By property 1, |vy| > 0 (i.e. v and y cannot both be empty).
- So, v or y (or both) is a non-empty substring of 0's.
- The string $uv^2xy^2z \notin L$ since it increases the number of 0's without increasing the number of 1's or 2's.
- This violates property 3 of the pumping lemma.

$$L = \{ 0^n 1^n 2^n \mid n \ge 0 \}$$

Consider **case 2** where $vxy = 1 \dots 1$

- By property 1, |vy| > 0 (i.e. v and y cannot both be empty).
- So, v or y (or both) is a non-empty substring of 1's.
- The string $uv^2xy^2z \notin L$ since it increases the number of 1's without increasing the number of 0's or 2's.
- This violates property 3 of the pumping lemma.

 $L = \{ 0^n 1^n 2^n \mid n \ge 0 \}$

Consider **case 3** where $vxy = 2 \dots 2$

- By property 1, |vy| > 0 (i.e. v and y cannot both be empty).
- So, v or y (or both) is a non-empty substring of 2's.
- The string $uv^2xy^2z \notin L$ since it increases the number of 2's without increasing the number of 0's or 1's.
- This violates property 3 of the pumping lemma.

$$L = \{ 0^n 1^n 2^n \mid n \ge 0 \}$$

Consider **case 4** where $vxy = 0 \dots 0 1 \dots 1$

- By property 1, |vy| > 0 (i.e. v and y cannot both be empty), so we could have:
 - $m{v}$ is non-empty $m{0}$'s, $m{y}$ is non-empty $m{1}$'s, or both $m{v}$ is non-empty $m{0}$'s and $m{y}$ is non-empty $m{1}$'s
 - Or, either \boldsymbol{v} or \boldsymbol{y} is non-empty substring of $\boldsymbol{0}$... $\boldsymbol{01}$... $\boldsymbol{1}$
- In all cases, $uv^2xy^2z \notin L$ since we increase 0's and/or increase 1's without increasing 2's, or we get 0's and 1's out of order.
- This violates property 3 of the pumping lemma.

$$L = \{ 0^n 1^n 2^n \mid n \ge 0 \}$$

Consider case 5 where $vxy = 1 \dots 1 2 \dots 2$

- By property 1, |vy| > 0 (i.e. v and y cannot both be empty), so we could have:
 - $m{v}$ is non-empty $m{1}$'s, $m{y}$ is non-empty $m{2}$'s, or both $m{v}$ is non-empty $m{1}$'s and $m{y}$ is non-empty $m{2}$'s
 - Or, either \boldsymbol{v} or \boldsymbol{y} is non-empty substring of $\boldsymbol{1}$... $\boldsymbol{12}$... $\boldsymbol{2}$
- In all cases, $uv^2xy^2z \notin L$ since we increase 1's and/or increase 2's without increasing 0's, or we get 1's and 2's out of order.
- This violates property 3 of the pumping lemma.

$$L = \{ 0^n 1^n 2^n \mid n \geq 0 \}$$

- We have shown that there is **no way** to rewrite s = uvxyz which satisfies all three conditions of the pumping lemma.
- Therefore, **L** is not context-free.

Prove that $L = \{ww \mid w \in \{0, 1\}^*\}$ is not context-free.

Proof:

- Assume for a contradiction that L is context-free.
- Let p be the pumping length given by the pumping lemma.
- We choose $s = 0^p 1^p 0^p 1^p$.
- Since $s \in L$ and $|s| \ge p$, according to the PL, we can rewrite s = uvxyz satisfying
 - 1. |vy| > 0 (i.e. v and y cannot both be empty)
 - 2. $|vxy| \leq p$
 - 3. $uv^ixy^iz \in L$ for each $i \ge 0$

 $L = \{ ww \mid w \in \{0, 1\}^* \}$

- By property 2, $|vxy| \le p$, we have the following cases:
 - 1. vxy = 0 ... 0

$$L = \{ ww \mid w \in \{0, 1\}^* \}$$

- By property 2, $|vxy| \le p$, we have the following cases:
 - 1. vxy = 0 ... 0
 - 2. vxy = 1 ... 1

$$L = \{ ww \mid w \in \{0, 1\}^* \}$$

- By property 2, $|vxy| \le p$, we have the following cases:
 - 1. vxy = 0 ... 0
 - 2. vxy = 1 ... 1
 - 3. $vxy = 0 \dots 0 1 \dots 1$

 $L = \{ ww \mid w \in \{0, 1\}^* \}$

- By property 2, $|vxy| \le p$, we have the following cases:
 - 1. vxy = 0 ... 0
 - 2. vxy = 1 ... 1
 - 3. $vxy = 0 \dots 0 1 \dots 1$
 - 4. $vxy = 1 \dots 10 \dots 0$

 $L = \{ ww \mid w \in \{0, 1\}^* \}$

Consider **case 1** where $vxy = 0 \dots 0$

- By property 1, |vy| > 0 (i.e. v and y cannot both be empty). So, v or y (or both) is a non-empty substring of 0's.
- The string $uv^2xy^2z \notin L$ since it increases the number of 0's (somewhere) without increasing the number of 1's.
- This violates property 3 of the pumping lemma.

 $L = \{ ww \mid w \in \{0, 1\}^* \}$

Consider **case 2** where $vxy = 1 \dots 1$

- By property 1, |vy| > 0 (i.e. v and y cannot both be empty). So, v or y (or both) is a non-empty substring of $\mathbf{1}$'s.
- The string $uv^2xy^2z \notin L$ since it increases the number of 1's (somewhere) without increasing the number of 0's.
- This violates property 3 of the pumping lemma.

 $L = \{ ww \mid w \in \{0, 1\}^* \}$

Consider **case 3** where $vxy = 0 \dots 0 1 \dots 1$

- By property 1, |vy| > 0 so we could have:
 - v is non-empty $\mathbf{0}$'s, y is non-empty $\mathbf{1}$'s, or both v is non-empty $\mathbf{0}$'s and y is non-empty $\mathbf{1}$'s, or either v or y is non-empty substring of $\mathbf{0}$... $\mathbf{01}$... $\mathbf{1}$
- In all cases, $uv^2xy^2z \notin L$ since the resulting string will be either $0^k1^l0^p1^p$ or $0^p1^p0^k1^l$ with k>p or l>p, or out of order imbalanced 0's and 1's.
- This violates property 3 of the pumping lemma.

 $L = \{ ww \mid w \in \{0, 1\}^* \}$

Consider **case 4** where $vxy = 1 \dots 10 \dots 0$

- By property 1, |vy| > 0, so we could have:
 - v is non-empty 1's, y is non-empty 0's, or both v is non-empty 1's and y is non-empty 0's, or either v or y is non-empty substring of $1 \dots 10 \dots 0$
- In all cases, $uv^2xy^2z \notin L$ since the resulting string is of form $0^p1^k0^l1^p$ with k > p or l > p, or out of order imbalanced 0's and 1's.
- This violates property 3 of the pumping lemma.

$$L = \{ ww \mid w \in \{0, 1\}^* \}$$

- We have shown that there is **no way** to rewrite s = uvxyz which satisfies all three conditions of the pumping lemma .
- Therefore, *L* is not context-free.

Turing Machines

Turing Machine (TM)

- A much more **powerful computational model** than a FA / PDA
- Similar to a finite automaton, but with unlimited read / write access to an infinite amount of memory

 Model of a classical computer (a Turing Machine can do everything a classical computer can do)

Turing Machine (TM)

A Turing Machine consists of:

- State machine which defines computation instructions
- Infinite tape representing its unlimited memory
- Tape head which can
 - read and write symbols
 - move left and right along the tape

Turing Machine Computation (TM)

 Similar to previous computational models, a TM takes an input string and accepts or does not accept the string

Computation:

- Initially, tape contains only the input string, blank everywhere else
- If TM needs to store information, it can write information on tape
- To read information that it has written, TM can move tape head back over
- TM continues computing until it decides to produce an output 'accept' or 'reject'
 - Outputs obtained by entering designated accept or reject states
 - If TM doesn't enter an output state, it **continues computation** (infinite loop)

Differences between TMs and FAs

Turing Machines

- 1. TM can both read and write from tape
- 2. Read-write head can move both left and right
- 3. Tape is infinite
- 4. Special states for accept and reject (can take place immediately without reading entire input string, or can loop infinitely)

Finite Automata

- 1. FA can only read from input string
- 2. Read head can only move right

- 3. No tape
- 4. Special state for accept, accept or not accept only after reading entire input string

Design a TM *M* which accept strings in the language

$$L = \{ w \# w \mid w \in \{0, 1\}^* \}$$

High Level Instructions:

- If input string on tape does not contain # in the middle, then output reject
- Move tape head between corresponding places on two sides of #
 - Mark pairs of matching symbols (replace with an \mathbf{x})
 - If all symbols on both sides are crossed off, then output accept
 - Otherwise, output reject

 $L = \{ w \# w \mid w \in \{0, 1\}^* \}$

High Level Instructions:

- If input string on tape does not contain # in the middle, then output reject
- Move tape head between corresponding places on two sides of #
 - Mark pairs of matching symbols (replace with an x)
 - If all symbols on both sides are crossed off, then output accept
 - Otherwise, output reject

 $L = \{ w \# w \mid w \in \{0, 1\}^* \}$

High Level Instructions:

- If input string on tape does not contain # in the middle, then output reject
- Move tape head between corresponding places on two sides of #
 - Mark pairs of matching symbols (replace with an x)
 - If all symbols on both sides are crossed off, then output accept
 - Otherwise, output reject

 $L = \{ w \# w \mid w \in \{0, 1\}^* \}$

High Level Instructions:

- If input string on tape does not contain # in the middle, then output reject
- Move tape head between corresponding places on two sides of #
 - Mark pairs of matching symbols (replace with an x)
 - If all symbols on both sides are crossed off, then output accept
 - Otherwise, output reject

$$L = \{ w \# w \mid w \in \{0, 1\}^* \}$$

High Level Instructions:

- If input string on tape does not contain # in the middle, then output reject
- Move tape head between corresponding places on two sides of #
 - Mark pairs of matching symbols (replace with an x)
 - If all symbols on both sides are crossed off, then output accept
 - Otherwise, output reject

 $L = \{ w \# w \mid w \in \{0, 1\}^* \}$

High Level Instructions:

- If input string on tape does not contain # in the middle, then output reject
- Move tape head between corresponding places on two sides of #
 - Mark pairs of matching symbols (replace with an x)
 - If all symbols on both sides are crossed off, then output accept
 - Otherwise, output reject

