- 1. Aflați $\cos^2 x$, știind că $\sin x = \frac{\sqrt{3}}{2}$. (5 pct.)
 - a) $\frac{3}{4}$; b) $\frac{1}{3}$; c) 0; d) 1; e) $\frac{1}{4}$; f) $\frac{1}{2}$.
- 2. Fie vectorii: $\bar{u} = 3\bar{i} 4\bar{j}$, $\bar{v} = \bar{i} + \bar{j}$, $\bar{w} = 5\bar{i} 2\bar{j}$. Determinați $a \in \mathbb{R}$ astfel încât $\bar{u} + a\bar{v} = \bar{w}$. (5 pct.) a) 0; b) 1; c) -2; d) 3; e) 2; f) -1.
- 3. Calculați aria unui triunghi dreptunghic isoscel de ipotenuză egală cu $\sqrt{2}$. (5 pct.)
 - a) 2; b) 1; c) $\frac{1}{2}$; d) $\sqrt{5}$; e) $\sqrt{2}$; f) $\frac{1}{\sqrt{2}}$.
- 4. Se dau vectorii: $\bar{u}=2\bar{i}+3\bar{j}$ și $\bar{v}=3\bar{i}+m\bar{j}$. Calculați valoarea parametrului real m pentru care \bar{u} și \bar{v} sunt perpendiculari. (5 pct.)
 - a) 2; b) 3; c) -2; d) 1; e) -3; f) 0.
- 5. Să se calculeze $E = \frac{\operatorname{tg} 45^{\circ} \cdot \cos 90^{\circ}}{\sin 30^{\circ}}$. (5 pct.)
 - a) $-\frac{1}{2}$; b) 0; c) $\frac{1}{2}$; d) 1; e) -1; f) $\frac{\sqrt{3}}{2}$.
- 6. Calculați a^4 , unde $a=\frac{1+i}{\sqrt{2}}$. (5 pct.)
 - a) 1; b) i; c) 1 4i; d) 1 + 4i; e) -1; f) 4 i.
- 7. Valoarea lui sin 120° este: (5 pct.)
 - a) $\frac{\sqrt{2}}{2}$; b) $\frac{\sqrt{3}}{2}$; c) $-\frac{\sqrt{3}}{2}$; d) $\frac{1}{2}$; e) $-\frac{1}{2}$; f) $-\frac{\sqrt{2}}{2}$.
- 8. Soluțiile ecuației $\sin x + \cos^2 x = 1$ din intervalul $\left[0, \frac{\pi}{2}\right]$ sunt: (5 pct.)
 - a) $\left\{\frac{\pi}{4}, \frac{\pi}{2}\right\}$; b) $\left\{\frac{\pi}{3}, \frac{\pi}{2}\right\}$; c) $\left\{0, \frac{\pi}{4}\right\}$; d) $\left\{0, \frac{\pi}{2}\right\}$; e) $\left\{0, \frac{\pi}{6}\right\}$; f) $\left\{0, \frac{\pi}{3}\right\}$.
- 9. Dacă $\bar{u} = \bar{i} + \bar{i}$ și $\bar{v} = \bar{i} \bar{i}$, atunci $\|\bar{u} + 3\bar{v}\|$ este: (5 pct.)
 - a) $\sqrt{5} 1$; b) $2 + \sqrt{5}$; c) $1 + \sqrt{5}$; d) $2\sqrt{5}$; e) 2; f) $\sqrt{5}$.
- 10. Aflati tg x stiind că $\sin x 4\cos x = 0$. (5 pct.)
 - a) -2; b) -1; c) -4; d) 2; e) 1; f) 4.
- 11. Să se calculeze partea reală a numărului complex $z=i+i^3+i^5$. (5 pct.)
 - a) 3; b) 1; c) -1; d) 0; e) -2; f) 2.
- 12. Dacă z=1+i, atunci valoarea expresiei $E=z\cdot \bar{z}$ este: (5 pct.)
 - a) 1; b) -i; c) 0; d) -1; e) i; f) 2.
- 13. Dreapta care trece prin punctele A(1,3), B(2,4) are ecuatia: (5 pct.)
 - a) x y 1 = 0; b) x y = 0; c) x y + 2 = 0;
 - d) x + y = 0; e) x y 2 = 0; f) x y + 1 = 0.
- 14. Se consideră triunghiul ABC cu laturile AB=3, BC=4, CA=5. Aflati $\cos A$. (5 pct.)
 - a) $\frac{1}{5}$; b) $\frac{2}{5}$; c) $\frac{4}{5}$; d) $\frac{3}{5}$; e) 1; f) 0.
- 15. Calculați distanța de la punctul A(1,1) la dreapta de ecuație x+y-1=0. (5 pct.)
 - a) 1; b) 2; c) $\sqrt{2}$; d) $\sqrt{3}$; e) $\frac{1}{\sqrt{2}}$; f) $\frac{1}{\sqrt{3}}$.
- 16. Aflați valoarea lui $m \in \mathbb{R}$ pentru care punctul A(m,2) aparține dreptei de ecuație x-y-1=0. (5 pct.)
 - a) 2; b) -2; c) 1; d) -3; e) 3; f) -1.

- 17. Ecuațiile tangentelor duse din punctul $A(\sqrt{2},0)$ la cercul de ecuație $x^2+y^2=1$ sunt: (5 pct.)
 - a) $y x + \sqrt{2} = 0$, y = 0; b) $y + x \sqrt{2} = 0$, y = 0; c) $y + x \sqrt{2} = 0$, x = 0;
 - d) $y x + \sqrt{2} = 0$, x = 0; e) x = 0, y = 0; f) $y + x \sqrt{2} = 0$, $y x + \sqrt{2} = 0$.
- 18. Determinați aria triunghiului de vârfuri $A(0,1),\,B(1,0),\,C(-1,0).$ (5 pct.)
 - a) 4; b) 1; c) $\frac{3}{2}$; d) 2; e) $\frac{1}{2}$; f) $\frac{1}{4}$.