Universidade de Brasília Instituto de Ciências Exatas

Departamento de Ciência da Computação

CIC 117536 - Projeto e Análise de Algoritmos

Terceira Prova

Turma: B

NP-completude

Prof. Flávio L. C. de Moura

6 de dezembro de 2018

1. (2.5 pontos) O problema 2-SAT tem como instâncias as fórmulas lógicas formadas por conjunções de disjunções de até dois literais, onde um literal é uma variável booleana ou a negação de uma variável booleana. Por exemplo, a expressão a seguir é uma instância de 2-SAT:

$$(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee \neg x_3) \wedge (x_1 \vee x_2) \wedge x_3$$

Prove que 2-SAT \in P.

Solução.Consideremos a seguinte expressão cuja é uma instância de 2-SAT:

$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_1 \lor \neg x_3) \land (x_3 \lor x_2)$$

Dessa forma, obtemos duas afirmações:

- (a) Se G contém um caminho de ϕ até ψ , então também contém o caminho de $\neg \psi$ até $\neg \phi$.
 - Para provarmos, consideremos que o caminho de ϕ a ψ é $\phi \rightarrow P_1 \rightarrow ... \rightarrow P_k \rightarrow \psi$. Agora, pela construção de G, se há uma aresta (x, y), então tem um aresta $(\neg x, \neg y)$. Logo, temos $(\neg \psi, \neg P_k), ..., (\neg P_1, \neg \phi)$. Portanto, temos um caminho de $\neg \psi$ até $\neg \phi$.
- (b) Uma cláusula conjuntiva de dois valores Υ é insatisfazível se e somente se existe um x tal que:
 - i. há um caminho de x a $\neg x$ no grafo.
 - ii. há um caminho de $\neg x$ a x no grafo

Suponhamos que existam os caminhos x a $\neg x$ e $\neg x$ a x para algum $x \in G$, mas também existe uma associação satisfatível $\rho(x_1, x_2...x_n)$ para a cláusula Υ .

Para o caso (i), consideremos que $\rho(x_1, x_2...x_n)$ tal que x é verdadeiro. Assim o caminho de x a $\neg x$ é $x \to ... \to \phi \to \psi \to \neg x$. Agora, se existe uma aresta entre X e Y do grafo G, então existe $(\neg A \lor B)$ em Υ . A aresta de X a Y indica que X é verdadeiro, então Y também deve ser. Como x é verdadeiro, todos os literais entre ele e ϕ também devem ser. Da mesma forma, de ψ a $\neg x$ devem ser falsos, pois $\neg x$ é falso. Isso resulta em uma aresta entre $\phi \land \psi$, onde ϕ é verdadeiro e ψ é falso. Por consequência, a cláusula $(\neg \phi \lor \psi)$ é falsa, contradizendo a afirmação de $\rho(x_1, x_2...x_n)$ para Υ .

Já para o caso (ii), consideremos que $\rho(x_1, x_2...x_n)$ tal que x é falso. Assim, a prova é semelhante ao caso (i).

Portanto, havendo a existência de um caminho x a $\neg x$ e/ou $\neg x$ a x no grafo, assim podendo utilizar algoritmos como BFS ou DFS, cujos levam tempo polinomial, $\Theta(V+E)$. Assim, provamos que 2-SAT \in P.

2. **(2.5 pontos)** Em aula, assumimos que SAT é um problema NP-completo (Teorema de Cook-Levin), e a partir deste fato mostramos que 3-SAT e CLIQUE também são problemas NP-completos. As reduções foram feitas de acordo com o seguinte diagrama:

Um ciclo Hamiltoniano é um ciclo simple que visita cada vértice de um grafo exatamente uma vez. Considere o problema de decisão HAM-CYCLE que pergunta se um dado grafo (não-dirigido) G possui um ciclo Hamiltoniano. Mostre que HAM-CYCLE é um problema NP-completo. Sua solução deve ser construída a partir de SAT, 3-SAT ou CLIQUE. Caso, você não veja como reduzir diretamente HAM-CYCLE a partir destes, mas sabe como fazê-lo a partir de um certo problema Q então inicialmente mostre que Q é NP-completo a partir de SAT, 3-SAT ou CLIQUE, e assim por diante. Digamos que você não saiba como mostrar que Q é NP-completo diretamente a partir de SAT, 3-SAT ou CLIQUE, mas você sabe como fazê-lo a partir de outro problema Q', e também sabe como mostrar que Q' é NP-completo a partir de 3-SAT, por exemplo. Então o diagrama correspondente à sua solução seria:

E todas as reduções (de 3-SAT para Q', de Q' para Q e de Q para HAM-CYCLE) devem ser detalhadas na sua solução.

Solução. Para provarmos que HAM-CYCLE é NP-Completo, precisamos mostrar que 3-SAT \leq_p HAM-CYCLE.

Assim, consideremos uma instância I do 3-SAT, com as variáveis $x_1, x_2, ..., x_n$ e as cláusulas $C_1, C_2, ..., C_n$. Criamos um grafo G_v com que representa as variáveis, enquanto criamos um outro grafo G_c que representa as cláusulas. Vale observar que cada cláusula C_k apresenta-se no formato:

$$(x_k \vee x_{k+1} \vee x_{k+2})$$

Com isso, unimos as variáveis do grafo G_v com as cláusulas do grafo G_c , de forma a criar uma relação do tipo:

$$\phi = C_1 \wedge C_2 \wedge \dots \wedge C_n.$$

Um caminho Hamiltoniano atribui uma associação de verdade para cada variável, dependendo de qual direção a corrente de conexões é transversada.

Para haver um ciclo Hamiltoniano é preciso que cada nó cláusula do grafo seja visitado. Dessa forma, podemos visitar apenas as cláusulas que satisfazem a condição (ao atribuir o valor de verdade para cada uma). Assim se temos um ciclo Hamiltoniano, conseguindo satisfazer a condição da instância I do 3-SAT precisa ter um ciclo Hamiltoniano.

3. (2.5 pontos) Considere o seguinte jogo em um grafo (não-dirigido) G, que inicialmente contém 0 ou mais bolas de gude em seus vértices: um movimento deste jogo consiste em remover duas bolas de gude de um vértice $v \in G$, e adicionar uma bola a algum vértice adjacente de v. Agora, considere o seguinte problema: Dado um grafo G, e uma função p(v) que retorna o número de bolas de gude no vértice v, existe uma sequência de movimentos que remove todas as bolas de G, exceto uma? Mostre que este problema é NP-completo. A mesma observação feita no exercício anterior vale aqui: a prova deve ser feita a partir de problemas que provamos serem NP-completos, e reduções intermediárias, caso existam, devem ser incluídas na solução.

Solução. Escreva aqui sua solução.

4. **(2.5 pontos)** Uma fórmula booleana em *forma normal conjuntiva com disjunção exclusiva (FNCX)* é uma conjunção de diversas cláusulas, e cada cláusula é uma disjunção exclusiva (XOR) de diversos literais. Lembre-se que a disjunção exclusiva é dada por:

a	b	$a \oplus b$
V	V	F
V	F	V
F	V	V
\overline{F}	F	F

O problema FNCX-SAT pergunta se uma dada fórmula em FNCX é satisfatível. Mostre que o problema FNCX-SAT está em P, ou então que FNCX-SAT é NP-completo. No último caso, a mesma observação feita nos dois exercícios anteriores vale aqui: a prova deve ser feita a partir de problemas que provamos serem NP-completos, e reduções intermediárias, caso existam, devem ser incluídas na solução.

Solução. Provaremos que FNCX-SAT \in P. Para isso, observaremos o comportamento do XOR ou disjunção exclusiva. Assim, temos a seguinte tabela-verdade:

a	b	$\neg a \wedge b$	$a \wedge \neg b$	$(\neg a \wedge b) \vee (a \wedge \neg b)$
F	F	F	F	F
F	V	V	F	V
V	\overline{F}	F	V	V
V	V	F	F	F

Como pode ser visto, é possível transformar a disjunção exclusiva em uma disjunção de 2 literais. Com isso, podemos tratar o FNCX-SAT como um caso especial do 2-SAT, assim, provando que o FNCX-SAT \in P.