Big Data Lista zadań

Jacek Cichoń, WiT, PWr, 2022/23

1 Wstęp

Zadanie 1 — Pobierz plik z kilkoma dramatami Szekspira ze strony wykładu. Wybierz jeden z dramatów.

- 1. Oczyść wybrany plik. Podziel go na słowa.
- 2. Usuń z niego "Stop Words" i usuń z niego słowa o długości mniejszej lub równej 2.
- 3. Zbuduj chmurę wyrazów (word cloud) z otrzymanej listy. Możesz skorzystać np. z serwisu http://www.wordclouds.com/

Celem tego zadania jest wygenerowanie mniej więcej takiego obrazka (dla poematu "Pan Tadeusz"):

Zadanie 2 — To jest kontynuacja poprzedniego zadania.

- 1. Zastosuj część funkcji które napisałeś do realizacji poprzedniego zadania do wyznaczenia indeksów TF.IDF dla wszystkich wyrazów z dokumentów w dramatów Szekspira znajdujących się w pliku ze strony wykładu.
- 2. Zbuduj chmury wyrazów oparte o TF.IDF dla wszystkich rozważanych dramatów.

Zadanie 3 — Pokaż, że jeśli chcesz jednoznacznie wyreprezentować każdą z liczb ze zbioru $\{0, 1, \dots, n\}$ za pomocą b bitów to $b \ge \lceil \log_2(n+1) \rceil$.

Zadanie 4 — Pokaż, że jeśli $x=\sum_{k=0}^s a_k 2^k$, gdzie $a_i\in\{0,1\}$ oraz $a_s=1$ to $s=\lceil\log_2(x+1)\rceil$

Zadanie 5 — Rozważmy następującą modyfikację licznika Morrisa: ustalamy liczbę $\alpha>0$ oraz rozważamy tak oprogramowany licznik:

```
init :: C =0 onInc :: if \left(random() < \left(\frac{1}{1+\alpha}\right)^C\right) then C = C+1 onGet :: return (?????)
```

Niech C_n oznacza wartość zmiennej C po n wywołaniach metody on
Inc.

1. Wyznacz E $[(1+\alpha)^{C_n}]$

2. Uzupełnij funkcję onGet tak aby otrzymać nieobciążony estymator liczby użyć metody onInc.

Zadanie 6 — Niech C_n będzie wartością klasycznego licznika Morris'a po n krotnym wywołaniu funkcji onInc().

- 1. Pokaż, że $E[4^{C_n}] = 1 + \frac{3}{2}n(n+1)$.
- 2. Pokaż, że var $[2^{C_n}] = \frac{1}{2}n(n-1)$.
- 3. Skorzystaj z nierówności Jensena dla wartości oczekiwanej zmiennej losowej do pokazania, że $\mathrm{E}\left[C_n\right]\leqslant \log_2(n+1).$

Zadanie 7 — Załóżmy, że X_1, \ldots, X_m są niezależnymi zmiennymi losowymi o wartości oczekiwanej μ oraz wariancji σ^2 . Niech

$$L = \frac{X_1 + \ldots + X_m}{m} .$$

- 1. Pokaż/sprawdź, że E $[L] = \mu$ oraz var $[L] = \frac{1}{m}\sigma^2$.
- 2. Pokaż, że $\Pr[|L \mu| \geqslant \epsilon \mu] \leqslant \frac{\sigma^2}{\epsilon^2}$.

Zadanie 8 — Rozważamy ciąg B_1, \ldots, B_n niezależnych zdarzeń, takich, że $\Pr[B_1] = \ldots = \Pr[B_n] = \frac{3}{4}$. Niech X oznacza liczbę sukcesów, czyli $X = \sum_{i=1}^n X_i$, gdzie $X_i = 1$ jeśli zaszło zdarzenie B_i oraz $X_i = 0$ w przeciwnym przypadku.

1. Korzystając z nierówności Czernoffa dla rozkładu dwumianowego pokaż, że

$$\Pr[X \leqslant \frac{1}{2}n] \leqslant \exp\left(-\frac{n}{24}\right)$$

- 2. Niech $\delta>0$. Pokaż, że jeśli $n\geqslant 24\ln\frac{1}{\delta},$ to $\Pr[X\leqslant\frac{n}{2}]\leqslant\delta.$
- 3. Skorzystaj z następującej wersji nierówności Czernoffa

$$\Pr[X \le \mu - \lambda], \Pr[X \ge \mu + \lambda] \le \exp\left(-\frac{2\lambda^2}{n}\right)$$

dla zmiennej losowej X o rozkładzie dwumianowym Binom (n,μ) do wzmocnienia wyników z poprzednich dwóch punktów.

Zadanie 9 — Niech x_1, \ldots, x_n będzie ciągiem liczb rzeczywistych. Rozważamy dwie funkcje $f(x) = \sum_{i=1}^{n} |x_i - x|$ oraz $g(x) = \sum_{i=1}^{n} (x_i - x)^2$

- 1. Pokaż, że funkcja g osiąga minimum w średniej arytmetycznej liczb x_1, \ldots, x_n
- 2. Pokaż, że funkcja h osiąga minimum w medianie ciągu x_1,\ldots,x_n . Wskazówka: Możesz założyć, że $x_1\leqslant x_x\leqslant\cdots\leqslant x_n$. Przyjrzy się najpierw pomocniczej funkcji $\phi(x)=|x_1-x|+|x_n-x|$.

Zadanie 10 — Niech x_1, \ldots, x_n będzie ciągiem liczb rzeczywistych oraz niech a < b będą dowolnymi liczbami rzeczywistymi. Załóżmy, że

$$|\{i \in \{1,\ldots,n\} : x_i \in (a,b)\}| > \frac{n}{2}.$$

Pokaż, że wtedy mediana ciągu x_1, \ldots, x_n należy do odcinka (a, b). Wskazówka: Rozważ oddzielnie przypadek parzystego i nienarzystego n.

2 Hashinig

Zadanie 11 — ("Rolling hash") Rozważamy metodę haszowania opartą na wzorze

$$h_{r,p}([x_0,\ldots,x_k]) = \sum_{i=0}^k x_i \cdot r^i \mod p$$

- Zastosuj metodę Hornera do implementacji tej metody haszowania i oszacuj złożoność obliczeniową tej metody.
- 2. Załóżmy, że p jest liczbą pierwszą. Rozważamy ciąg $[x_0, \ldots, x_m]$. Niech $0 \le a < b < m$. Pokaż, że można wyznaczyć $h_{r,p}[x_{a+1}, \ldots, x_{b+1}]$) można wyznaczyć z $h_{r,p}[x_a, \ldots, x_{a+b}]$) w stałym czasie.
- 3. Załóżmy, że p jest liczbą pierwszą. Niech \vec{x} i \vec{y} będą ciągami długości r. Losujemy z jednakowym prawdopodobieństwem liczbę r ze zbioru $\{0, \ldots, p-1\}$. Pokaż, że

$$\Pr[h_{r,p}(\vec{x}) = h_{r,p}(\vec{y})] \leqslant \frac{r-1}{p} .$$

4. Zapoznaj się z algorytmem Rabina-Karpa wyszukiwania wzorca w w ciągu t. Pokaż, że jeśli to tego algorytmu zastosujemy funkcję haszującą $h_{r,p}$ z p będącym liczbą pierwszą taką, że $p > |t|^2$ zaś r jest losową liczbą ze zbioru $\{0, \ldots, p-1\}$, to algorytm ten działa w średnim czasie O(|s|+|t|) (|x| oznacza tu długość ciągu x).

Zadanie 12 — Do n urn wkładamy niezależnie k kul (rozważamy rozkład jednostajny). Niech $L_{n,k}$ oznacza wartość oczekiwaną liczby pustych urn. Oblicz

- 1. $\lim_{n\to\infty} \mathbf{E}\left[\frac{L_{n,n}}{n}\right]$
- 2. $\lim_{n\to\infty} \mathrm{E}\left[L_{n,n\ln n}\right]$
- 3. $\lim_{n\to\infty} \mathbb{E}\left[\frac{1}{\sqrt{n}}(n-L_{n,\sqrt{n}})\right]$

Zadanie 13 — Rozważamy dwie zmienne losowe X,Y o wartościach w zbiorze $\{1,\ldots,n\}$. Niech $\Pr[X=i]=\Pr[Y=i]=p_i$ dla $i\in\{1,\ldots,n\}$.

- 1. Pokaż, że $\Pr[X = Y] = \sum_{i=1}^{n} p_i^2$
- 2. Pokaż, że $\Pr[X=Y]$ przyjmuje wartość minimalną dla rozkładu jednostajnego na $\{1,\ldots,n\}$.

Zadanie 14 — Niech $f(x) = \ln(x) \ln(1-x)$ dla $x \in (0,1)$.

- 1. Pokaż, że $f(x) = f(\frac{1}{2} x)$.
- 2. Pokaż, że $\lim_{x\to 0} f(x) = 0$.
- 3. Pokaż, że f osiąga maksimum w punkcie $x = \frac{1}{2}$.
- 4. Naszkicuj wykres funkcji f.

Zadanie 15 — Oprogramuj w języku Python Filtr Blooma. Skorzystaj z funkcji MurMurHash z biblioteki mmh3 (instalacja: pip install mmh3). Do implementacji tablicy wykorzystaj tablicę bitów (skorzystaj z bibliteki bitarray). Filtr zrealizuj jako obiekt. Przetestuj działanie filtru Blooma na słowach z pliku Hamlet.txt (użyj 8 funkcji haszujących, ustaw rozmiar tablicy na licze słów w Hamlet.txt).

3 Sampling

Zadanie 16 — Pokaż, że jeśli \mathcal{H} jest (k+1)-niezależną rodziną haszującą, to jest również k-niezależną rodziną haszującą.

Zadanie 17 — Pokaż, że 2-niezależna rodzina funkcji haszujących jest rodziną uniwersalną.

Zadanie 18 — Pokaż, że jeśli $\mathcal H$ jest 2- niezależną rodziną funkcji haszujących z U do V, to dla dowolnych $x\in U$ oraz $v\in V$ mamy

$$\Pr_{h \leftarrow \mathcal{H}}[h(x) = y] = \frac{1}{|V|} .$$

Zadanie 19 — Załóżmy, że 1 < n < p. Niech X będzie zmienną losową o rozkładzie jednostajnym na zbiorze $\{0, \ldots, p-1\}$. Niech $\phi(x) = x \mod n$. Wyznacza rozkład zmiennej losowej $\phi \circ X$.

Zadanie 20 — Załóżmy, że $h: U \to R$ jest funkcją różnowartościową. Pokaż, że jednoelementowa rodzina $\mathcal{H} = \{h\}$ jest rodziną uniwersalną ale nie jest 2-niezależna.

Zadanie 21 — Jak z liczb $S=\sum_{i=1}^n x_i, SS=\sum_{i=1}^n x_i^2$ oraz nmożesz wyznaczyć wariancję $\frac{1}{n}\sum_{i=1}^n (x-\mu)^2,$ gdzie μ oznacza średnią $\mu=\frac{1}{n}\sum_{i=1}^n x_i?$

Zadanie 22 — Zaimplementuj prostą (z użyciem generatora liczb pseudolosowych po wczytaniu każdego elementu) wersję algorytmu **R** Vittera. Pobierz z sieci notowania dzienne bitcoina z ostatnich 5 lat (możesz posłużyć się biblioteką Pandas języka Python), wydobądź z danych notowania otwarcia, wygeneruj losową próbkę 40 elementów i wygeneruj wykresy notowań i losowej próbki.

Zadanie 23 — Ustalmy liczby naturalne $1 \le k \le n$. Rozważamy przestrzeń probabilistyczną $[n]^k = \{X \subseteq \{1, \dots n\} : |X| = k\}$ z prawdopodobieństwem jednostajnym ($\Pr[X] = \binom{n}{k}^{-1}$). Ustalmy zbór $A \subseteq \{1, \dots, n\}$ taki, że |A| = k - 1. Rozważmy następujący proces: (1) losujemy $B' \in [n]^k$; (2) z wylosowanego B' usuwamy losowo wybrany element (każdy z prawdopodobieństwem $\frac{1}{k}$) i otrzymujemy zbiór B.

- 1. Sprecyzuj powyższe rozumowanie korzystając z przestrzeni probabilistycznej $[n]^k \times \{1, \dots, k\}$
- 2. Wyznacz prawdopodobieństwo otrzymania zbioru A.

Zadanie 24 — (Własności dystrybuanty) Celem tego zadania jest przypomnienie sobie podstawowych własności dystrubuant zmiennych losowych o wartościach w liczbach rzeczywistych.

- 1. Niech F_X będzie dystrybuantą zmiennej losowej X (czyli $F_X(x) = \Pr[X \leq x]$). Pokaż, że $\lim_{x \to -\infty} F(x) = 0$ oraz $\lim_{x \to \infty} F(x) = 1$
- 2. Niech F_X będzie dystrybuantą zmiennej losowej X. Pokaż, że F jest prawostronnie ciągła w każdym punkcie x, czyli, że dla każdego $a \in \mathbb{R}$ mamy $\lim_{x \to a+} F(x) = F(a)$.
- 3. Załóżmy, że F_X jest ostro rosnąca oraz, że $\operatorname{rgn}(F) = (0,1)$. Niech U będzie zmienną losową o rozkładzie jednostajnym w odcinku (0,1). Pokaż, że zmienna losowa $F^{-1} \circ U$ ma taki sam rozkład, co zmienna X.
- 4. Załóżmy, że F jest dystrybuantą zmiennej losowej X. Uogólnioną odwrotnością dystrybuanty F nazywamy funkcję zdefiniowaną wzorem

$$F^{\leftarrow}(p) = \inf\{x : F(x) \geqslant p\}$$
.

Zbadaj podstawowe własności tej funkcji (np. F^{\leftarrow} jest niemalejąca, $F^{\leftarrow}(F(x)) \leq x$, $F(F^{\leftarrow}(p)) \geq p$) oraz pokaż, że $F^{\leftarrow} \circ U$ ma taki sam rozkład co zmienna X, gdzie U, podobnie jak w poprzednim punkcie, ma rozkład jednostajny na odcinku (0,1).

Zadanie 25 — Zaimplementuj podstawową wersję algorytmu Bravermana, Ostrovsky'iego, Zaniolo z pracy *Optimal sampling from sliding windows*.

- 1. Sprawdź poprawność działania implementacji generując odpowiedni histogram (możesz użyć polecenia plt.hist(sample, density=True, bins=N) języka Python) ze wskazywanych przez ten algorytm elementów.
- 2. Przetestuj swoją implementację dla okna długości 5 i po zaobserwowaniu 10000 elementów. Po wczytaniu każdego elementu zapamiętaj w jakiejś strukturze pozycję wskazywanego elementu. Zastosuj test χ^2 p-wartością p=0.01 dla hipotezy zerowej

$$H_0 =$$
 próbka pochodzi z rozkładu jednostajnego

(wartość krytyczna dla tej wartości p oraz 4 stopni swobody wynosi 11.345). Możesz też posłużyć się biblioteką scipy.stats do przeprowadzenia tego testu.

c.d.n. Powodzenia, Jacek Cichoń