2.3.	P (A(s)	= K M((=	P(NIS)=k, P(N(t)= P(K events P(N(t))	n) in (0,5] , i)=n)			(اح
			= (n	$\frac{(\lambda s)^{k}}{k!} e^{\lambda s}$	1- \frac{1}{1-\frac{1}{2}}	6)	\$)	
								#
2.4.	E [A(t) - N(t+s)	= E[]	$ \frac{1}{\sqrt{100}} $ $ 1$	((2)) e ^{->t} +	λ²ts λ²ts	J.	
			= \(\sum_{2} \tau	$\left[\begin{array}{c} \sum_{i=1}^{\infty} \frac{(\lambda + \lambda)^{n-1}}{(\lambda - 2)!} \\ \frac{1}{2} + \lambda t + \lambda^{2} + \frac{1}{2} \end{array}\right]$	zS	,	" J + 7t+	S
2,5	PCAI	(t)+ N2(t)	$=\frac{1}{100}$	$P(\lambda_{1}(t) = i,$ $\frac{(\lambda_{1}t)^{\frac{1}{2}}}{i!} \in$ $= \frac{(\lambda_{1}t)^{\frac{1}{2}}}{(\lambda_{1}t)^{\frac{1}{2}}} \in$ $= \frac{(\lambda_{1}t)^{\frac{1}{2}}}{(\lambda_{1}t)^{\frac{1}{2}}} \in$	5^{-7} it . (1): (K) (1): (1): (1): (2): (1): (2): (3): (4): (5): (7): (7): (8): (8): (8): (9): (1): (1): (1): (1): (1): (1): (1): (1	t) ^{k-i} e-7.2t		
				rate 为 比))= p(
				= -		=1, x2(t)=0 - (t)=1) - (c-2)t - (0,+2)t		
2,8	a)	P(Xt.	< a) = P	(J og∪t ≤α)) = P(0	g Ut >-ar?		

		$= P(U_{t} \ge e^{-a\lambda})$ $= 1 - e^{-a\lambda}$
	数	CXt 服人参敬为λ的指数分布.
	ь).	$-\frac{\Omega}{2} \ln U_{i} \leq \lambda < -\frac{2H}{2} \ln U_{i}.$
		故 $\frac{\Gamma}{\Gamma} - \frac{\Gamma}{\Gamma} = 1$, $\frac{M}{\Gamma} - \frac{\Gamma}{\Gamma} = 1$
		由 a 知 -InUi 服火参数为入的指数分布.
		故上式可以看作一个 Poisson Process . rate 为入
		3 Sn ≤ 1. Sn+1 > 1.
		故 $N=n$ 满足 $P(N(1)=n)=\frac{2^n}{n!}e^{-2}$. 即 $Roisson$ 分布.
2 ID	a)	变量 丁表示 火到达车站 到回家 所花时间. 七表示等各公
2,10.	<i>a</i>)	
		支车到达时间。 1
		$\mathbb{D} = \int t + R \text{if } t < S$
		\[\s + \w \. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		$III = \int_{0}^{S} (t+R) \cdot \lambda e^{-\lambda t} dt + (s+w) \cdot e^{-\lambda s}$
		$= R(1-e^{7s}) + \frac{1}{\pi}(1-e^{7s}) + we^{7s}$
	£)	$ET = (W-R-\frac{1}{\lambda})e^{-\lambda S} + R + \frac{1}{\lambda}.$
		若 W < R+ 六, ET 単调 増. 故 取 S=O 最小.
		若 W>R+元 ET单调液. 故取 S=∞ 最小.
		若 W=R+六, ET=R+六, 与8取值形矣.
		W-KTカ、よ)-K+カ 、 J S W/目 だ) 大 ·
	C)	3意到, 公文车的到达 般从指数分布. 具有无识 忆性.

	故已经等39久和刚平始等.光区别.
2.14.	a) i
	b) 注意到. Oj = 云 Pij Ni. 而 Ni 是相互独立的 Poisson. 故 Oj 是 服从 均值为 云 Pij Ni 的 Poisson
	c). 由于 Oj 和 Ox 是相互独立的. 因此 其联合分布. P (Oj-j, Ox=K) = P(Oj-j) P(Ox=K) 其中 Oj 服 从 Poisson (是 Pj 2i) Ox 服 从 Poisson (是 Pix 2i).
216.	注意到. 结果;发生的 次数 服 从参数为 $P_i\lambda$ 的 P_0 isson 分布. 且相 P_0 相 P_0 , P_0 记 P_0 。 P_0 是 P
	$E[X_{\hat{j}}] = \sum_{i=1}^{n} E[X_{\hat{i}}] = \sum_{i=1}^{n} P(N_{i} = \hat{j}) = \sum_{i=1}^{n} \frac{(D_{i} \times J)^{\hat{j}}}{J!} e^{-JP_{i}}$ $\sqrt{D} = \sum_{i=1}^{n} E[X_{\hat{i}}] = \sqrt{D} P(N_{i} = \hat{j}) = \sum_{i=1}^{n} \sqrt{D} P(X_{i}) = \sum_{i=1}^{n} E[X_{i}] $

5′18 ·	$f(U_{(a)},,U_{(n-1)} U_{(n)}) = \frac{f(U_{(a)} = y_1,, (U_{(n)} = y_n))}{f_{U_{(n)}}(y_n)}$ $f(U_{(a)},,U_{(n-1)}) = n!$
	$F(Un) < y) = F(Ui < y, \dots, Un < y) = y^n$ $\Delta f_{Un}(y) = n y^{n-1}$
	火雨、 $f_{(U_{11}),,(U_{n-1})} _{U_{nn}=y} = \frac{n!}{n y^{n-1}} = \frac{(n-1)!}{y^{n-1}}$ 数 $U_{(11),,(U_{n-1})} _{U_{nn}=y}$ 与 $(0,y)$ 上 $U_{(1),}$ 以 か 起 词.
2.19.	1) 记 Nj(t) 是 t 时刻 搭截 3 j 名乘客且完成服务的公支车数. Xj(t) 是上述对应公支车服务的总、人数.
	数 $E \times L(t) = E \int_{j=1}^{\infty} X_{j}(t) = \int_{j=1}^{\infty} E[X_{j}(t)] = \sum_{j=1}^{\infty} E[E_{j}(t)] \times I_{j}(t) = I_{j}$
	上) 注意(引. j=2日寸. $P(X_2(h)=1) = P(\lambda_2(h)=1) \neq o(h)$
2,22	假这一辆车在时测 S 从速度 V 进入高速. 若七时测 \overline{v} 在 \overline{v} 区间 $\Gamma(a,b)$. 则 应 满足: $\alpha < V(t-s) < b$ $\Rightarrow \frac{\alpha}{t-s} < V < \frac{b}{t-s}$ 而 V 服从分布 \overline{F} . 故满足上述要求的概率为. $\overline{F}(\frac{b}{t-s}) - \overline{F}(\frac{a}{t-s})$. 而 S 是 $(0,t)$ 中任一时刻. 故平均概率为 \overline{t} \overline{f} \overline
2,29.	$ \lambda $ $ \beta $ $ (s) = P(\lambda(t+s) - \lambda(t) = 0) $ $ \mu $ $ P(s+h) = P(\lambda(t+s+h) - \lambda(t) = 0) $ $ P(\lambda(t+s+h) - \lambda(t+s) = 0 $ $ \lambda(t+s) - \lambda(t) = 0 $ $ \lambda(t+s) - \lambda(t+s) = 0 $

	= (1-2/t+s)h+ o(h)). Po(s)
	$\Rightarrow \frac{P_0(sth) - P_0(s)}{h} = -\lambda(t+s)P_0(s) + \frac{o(h)}{h}$
	$P_{0}(S) = -\lambda(t+s) P_{0}(S)$ $P_{0}(0) = 1$
	→ Po(S) = e-(Mt+S)-Mt)) 满足条件.
	x+7 Pn(sth)=P(x(t+sth)-x(t+h)=n)
	= $P(\lambda(t+s+h) - \lambda(t+s) = 0, \lambda(t+s) - \lambda(t) = n) + P(\lambda(t+s+h) - \lambda(t+s))$
	刈tts)=1, 刈(tts)-N(t)=n-1) + o(h)
	= (1-2(t+s)h + 0(h)) - Ph (s) + 2(t+s)h Ph-1(s) + 0(h) Ph (sth)-Ph (s) h = 2(t+s)Ph (s) + 2(t+s) Ph-1(s) + 6
	$P_{0}'(s) = \lambda(t+s) [P_{0}(s) + P_{0-1}(s)]$
	(exitis) Pais) = exitis 2/11 Ph-1(s).
	e-rithes) Priss = So = ritha) rithan Pr-1 (11) du + C.
	可以由数学归纳法: Pn-1(s)= (m(t+s)-m(t)) ⁿ⁻¹ e-(m(t+s)-m(t)) 得.
2,30.	$P(T_i > t) = P(N(t) = 0) = e^{-mtt}$
	故 $P(T_i \leq t) = 1 - e^{-mtt}$ $P(T_i = t) = \lambda(t) - e^{-mtt}$
	$P(T_2 > t) = \int_0^{\infty} P(T_2 > t \mid T_1 = s) \cdot P(T_1 = s) ds.$
	$= \int_0^\infty P(0 \text{ event in } (s,s+t)) P(T_i=s) ds.$
	$= \int_0^\infty e^{-m(s+t)+m(s)} - \lambda(s) \cdot e^{m(s)} ds.$
	$= \int_0^\infty \lambda(s) e^{-n(s+t)} ds.$
	$P(T \leq t) = 1 - \int_0^\infty \lambda(s) e^{-m(s+t)} ds$
	故下、下工不相互独立、可分布也不相同、
2,31.	$A_1 = M^{-1}(t)$. $\mu_1 = M^{-1}(t+h)$. $\mu_2 = M^{-1}(t+h)$.

	N^* (tth) $-N^*$ (t) = $N(\mu) - N(\mu)$.
	而 $\lambda(\mu) - \lambda(\mu)$ 般人均值为 $\int_{\mu}^{\mu} \lambda(t) dt = \int_{m^{-1}(t)}^{m^{-2}(t+h)} dm(t) = h$
	的 Poisson 分布.
	而 Nit) 的 Increments Independent 是显然的, 因此.
	N*(t) 是 note 为 1 的 Doisson Process.
	N (t) R NULLE R 1 BO POISON PROCESS.
2(3)	假设 X: 共有 K 个取值、分别为 Q1, …, Q4、则 对于每个 Qj, 给定时间
	t. 取值:
	且从ju间相互独立、故 Xth = 兰以;从tt).
	而对于一个 Risson 分布, X ~ TO). 有.
	$Y = \frac{X + \lambda}{\sqrt{\lambda}}$
	$M_{Y} = E c exp \left(t \frac{X - \lambda}{\sqrt{\lambda}}\right)$
	$= \exp(-t\sqrt{\lambda}) - \exp(\lambda(e^{\frac{\pi}{\lambda}-1})).$
	$= \exp(-t\pi + \lambda(\sum_{i=0}^{\infty} \frac{(\pm i)^i}{i!} - 1))$
	$= \exp\left(\frac{t^{3}}{2} + \frac{t^{3}}{6\sqrt{2}} + \cdots\right).$
	$D \mapsto \lambda \rightarrow \infty. \qquad M \rightarrow \exp(\frac{t}{2}). D \rightarrow \lambda(0.1).$
	故 Poisson 渐近正志,
	进而 X(t) = 产 xi xi(t) 新近正态、 t→ to.
. ۹ ډ.د	当 s < t 时 Gv(X(s), X(t)) = Gv(X(s), X(t) - X(s) + X(s))
1	
	$= (o_{Y}(X(S), X(t) - X(S) + (o_{Y}(X(S), X(S)))$
	$= Var (X(S)) = \lambda S EX^{2}$
	当 c>t 时. Gv (X(s), X(t)) = Gv(X(s)-X(t), X(t)) + Gv (X(t), X(t))

				= \6	- 1 √1.	t1) =	7L :	5.V ^L		
				γu	י נ אָנ	L11 -	λL	匚义		
									#	
									•	