

Inspire...Educate...Transform.

Improving organizational efficiencies

Mentor Scheduling Calendar Invites Tableau Reports

Sagar Patel
Data Scientist, INSOFE

Mentor Scheduling – Problem Statement

Allocate mentors to classes

Date	PGP-47	PGP-48	PGP-49
27-Oct			
28-Oct			
3-Nov			
4-Nov			

Date	PGP-47	PGP-48	PGP-49
27-Oct	Sridhar	Kishore	Lab
28-Oct	Sridhar	Murthy	Lab
3-Nov	Sridhar	Anand	Kishore
4-Nov	Surya	Anand	Kishore

T&Cs ahead...

Conver	Conventional time-table scheduling problems		lems		INSOFE's	mentor s	cheduling	g problem			
	Day	Class 1	Class 2	Class 3			Date	PGP-47	PGP-48	PGP-49	
	Mon						27-Oct				
	Tue						28-Oct				
	Wed										
	Thu						3-Nov				
	Fri						4-Nov				
	Weekly requirements are constant. Eg. 3 stats class, 3 programming classes, etc		c	Requirements are dynamic and depend on the a lot of factors like <i>batch start date</i> , <i>topics dependency</i> , <i>mentor availablity</i> , etc					ne a		
This gen	Problem can be reduced to 5 days scheduling. This generalized template is replicated throughout the duration of course.			•	henc	e one can	luirement i not reduce Ilized form	the probl	•		
Usually the faculty is stationed at one campus and hardly is required to travel to another location.		Because of multiple satellite campus, the mentors are required to travel and technically serve multiple locations.			ntors						
Most faculties are committed full-time and in terms of resources, have equal cost associated to them.			asso differ	ciation. Meent location	nay have a oreover the ons. Hence cost assoc	ey are state each me	tioned at ntor-alloca				

Lets get an idea of how large the solution space is...

Date	PGP-47	PGP-48	PGP-49
27-Oct	Stats	Stats	ML

How many solutions are possible?

Dr. Sridhar Pappu

Dr. Anand Jayaraman

Dr. Manoj Duse

Dr. Anand Narasimhamurthy

Dr. Ventakesh Sunkad

Dr. Surya Kompalli

Dr. Kishore Konda

Dr. Sreerama Murthy

Dr. Rohit Lotlikar

Dr. Manish Gupta

Dr. Praphul Chandra

Dr. Manoj Duse

Lets get an idea of how large the solution space is...

Date	PGP-47	PGP-48	PGP-49
27-Oct	Stats	Stats	ML

Dr. Sridhar Pappu

Dr. Anand Jayaraman

Dr. Manoj Duse

Dr. Anand Narasimhamurthy

Dr. Ventakesh Sunkad

Dr. Surya Kompalli

Dr. Kishore Konda

Dr. Sreerama Murthy

Dr. Rohit Lotlikar

Dr. Manish Gupta

Dr. Praphul Chandra

Dr. Manoj Duse

How many solutions are possible?

140

Date	PGP-47	PGP-48	PGP-49
27-Oct	5	4	7

How does it scale?

Date	PGP-47	PGP-48	PGP-49	PGP-50
27-Oct	Stats	Stats	ML	ML
28-Oct	Stats	Stats	ML	ML

4 Batches How many solutions 2 Days are possible?

Dr. Sridhar Pappu

Dr. Anand Jayaraman

Dr. Manoj Duse

Dr. Anand Narasimhamurthy Dr. Rohit Lotlikar

Dr. Ventakesh Sunkad

Dr. Surya Kompalli

Dr. Kishore Konda

Dr. Sreerama Murthy

Dr. Manish Gupta

Dr. Praphul Chandra

Dr. Manoj Duse

6

How does it scale?

Date	PGP-47	PGP-48	PGP-49	PGP-50
27-Oct	Stats	Stats	ML	ML
28-Oct	Stats	Stats	ML	ML

Dr. Sridhar Pappu

Dr. Anand Jayaraman

Dr. Manoj Duse

Dr. Anand Narasimhamurthy

Dr. Ventakesh Sunkad

Dr. Surya Kompalli

Dr. Kishore Konda

Dr. Sreerama Murthy

Dr. Rohit Lotlikar

Dr. Manish Gupta

Dr. Praphul Chandra

Dr. Manoj Duse

Date	PGP-47	PGP-48	PGP-49	PGP-50
27-Oct	5	4	7	6
28-Oct	5	4	7	6

4 Batches How many solutions 2 Days are possible?

= 705600

Note - Technically each day allocation is independent of the previous allocation.

Generalized form

Date	PGP-47	PGP-48	PGP-49	PGP-50
27-Oct	5	5	5	5
28-Oct	5	5	5	5

- 4 Batches
- 2 Days
- **5 Mentors***

*Approximating mentor availability for easier calculations (Batches * Days) ^ (Available mentors)

- $= (4*2)^5$
- = 32,768

Note – We are underestimating the available mentors

Generalized form

Date	PGP-47	PGP-48	PGP-49	PGP-50
27-Oct	5	5	5	5
28-Oct	5	5	5	5

2 Days

5 Mentors*

 $= (4*2)^5$

= 32,768

6 Batches50 Weekend days*5 Mentors

*Equivalent to 6 months of forward planning.

$$= 2.43 \times 10^{12} (2.43 \text{ Trillion})$$

Note – We are underestimating the available mentors. So its a kind of lower bound.

^{*}Approximating mentor availability for easier calculations (Batches * Days) ^ (Available mentors)

Assuming that you have the set of all possible solutions, how do you select the best solution??

Date	PGP-47	PGP-48	PGP-49
27-Oct	Stats	Stats	ML

Date	PGP-47	PGP-48	PGP-49
27-Oct	Sridhar	Anand	Surya

Date	PGP-47	PGP-48	PGP-49
27-Oct	Kishore	Surya	Sridhar

Assuming that you have the set of all possible solutions, how do you select the best solution??

Date	PGP-47	PGP-48	PGP-49
27-Oct	Stats	Stats	ML

Date	PGP-47	PGP-48	PGP-49
27-Oct	Sridhar	Anand	Surya

Date	PGP-47	PGP-48	PGP-49
27-Oct	Kishore	Surya	Sridhar

We need some kind of heuristic that gives us an idea of how good the solution is.

Mentor-Topic proficiency matrix

Module	Topics	Dr. Sridhar Pappu	Dr. Surya Kompalli	Dr. Kishore Konda
	Statistics and Probability in			
CSE 7302c	Decision Modeling	Expert	Not Comfortable	Comfortable
CSE 7302c	Linear Regression	Expert	Proficient	Comfortable
CSE 7305c	Decision Trees	Comfortable	Expert	Expert
CSE 7305c	Association Rules	Comfortable	Proficient	Comfortable

Date	PGP-47	PGP-48	PGP-49
27-Oct	Stats	Stats	ML

Date	PGP-47	PGP-48	PGP-49
27-Oct	Sridhar	Anand	Surya
	(Expert)	(Expert)	(Expert)

Date	PGP-47	PGP-48	PGP-49
27-Oct	Kishore (Comfortable)	Surya (Not Comfortable)	Sridhar (Comfortable)

However its better to have a number that quantifies the quality of the solution.

Expert	Proficient	Comfortable	Not-Comfortable
3	2	1	0

Date	PGP-47	PGP-48	PGP-49
27-Oct	Stats	Stats	ML

Date	PGP-47	PGP-48	PGP-49
27-Oct	Sridhar (Expert)	Anand (Expert)	Surya (Expert)
Avg=3	3	3	3

Date	PGP-47	PGP-48	PGP-49
27-Oct	Kishore (Comfortable)	Surya (Not Comfortable)	Sridhar (Comfortable)
Avg=0.6	1	0	1

Increasing the complexity...

Adding location and faculty association into consideration

Date	PGP-47	PGP-48	PGP-49
	(BLR)	(HYD)	(HYD)
27-Oct	Stats	Stats	ML

Date	PGP-47	PGP-48	PGP-49
27-Oct	Sridhar (Expert)	Anand (Expert)	Manish (Expert)
	Travel		
			External

Date	PGP-47	PGP-48	PGP-49
27-Oct	Rohit (Comfortable)	Anand (Expert)	Surya (Expert)

Problem

Competency	Travel	Internal
Expert	0	1
Expert	0	0
Expert	1	1
Expert	1	0
Proficient	0	1
Proficient	0	0
Proficient	1	1
Proficient	1	0
Comfortable	0	1
Comfortable	0	0
Comfortable	1	1
Comfortable	1	0
Not-Comfortable	0	1
Not-Comfortable	0	0
Not-Comfortable	1	1
Not-Comfortable	1	0

Competency	Travel	Internal
Proficient	0	1
Expert	1	1

Solution

Competency	Travel	Internal	Rank	Score
Expert	0	1	1	15
Proficient	0	1	2	14
Expert	0	0	3	13
Proficient	0	0	4	12
Expert	1	1	5	11
Proficient	1	1	6	10
Comfortable	0	1	7	9
Comfortable	0	0	8	8
Expert	1	0	9	7
Proficient	1	0	10	6
Comfortable	1	1	11	5
Comfortable	1	0	12	4
Not-Comfortable	0	1	13	2
Not-Comfortable	0	0	14	1
Not-Comfortable	1	1	15	1
Not-Comfortable	1	0	16	0

Using Linear Regression to understand the intuition

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       1.8750
                                 0.7925 2.366 0.039560 *
Competency Comfortable 5.5000 0.9152 6.010 0.000130 ***
Competency Expert
                      10.5000 0.9152 11.474 4.45e-07 ***
Competency_Proficient
                      9.5000 0.9152 10.381 1.13e-06 ***
Travel
                      -3.7500 0.6471 -5.795 0.000174 ***
Internal
                                 0.6471 3.091 0.011431 *
                       2.0000
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.294 on 10 degrees of freedom
Multiple R-squared: 0.9537, Adjusted R-squared: 0.9305
F-statistic: 41.19 on 5 and 10 DF, p-value: 2.354e-06
```

Notice the beauty of this technique. It can be used pretty much anywhere to decode the factors behind any decision making.

Cracking Warren Buffet's strategy...

Imagine you have financial statistics (EPS, P/E Ratio, Dividend, etc) of a bunch of companies.

Now if you can get Warren Buffet to give his recommendation for each of them, after a sufficiently large number of samples you can come up with a model that replicates Warren Buffet's logical thinking.

Note – T&Cs Apply. To be taken with a pinch of salt :p

Now that you have the formula to rank the mentors, all you need to do is get the topic-flow matrix and

1. Find the list of available mentors for each day

2. Rank them according to their proficiency

Day	Week	Module	Module Text	Topics
Day11	Week6	CSE 7302c	Statistics and Probability in Decision Modeling	Multiple Linear Regression and Feature Selection (StepAIC & VIF)
Day12	Week6	CSE 7302c	Statistics and Probability in Decision Modeling	Logistic Regression & Naive Bayes Classifier
Day13	Week7	CSE 7302c	Statistics and Probability in Decision Modeling	PCA & Regularization
Day14	Week7	CSE 7302c	Statistics and Probability in Decision Modeling	Time Series

Calculate the score for each mentor allocation and then rank them to get the final matrix...

Date	Topics	Best	Best Score	2nd Best	2nd Best Score	3rd Best	3rd Best Scrore
2019-03-23	Foundations of Probability and Statistics for Data Science	Dr. Sridhar Pappu	10.08	Dr. Anand Jayaraman	10.08	Dr. Surya Kompalli	3.36
2019-03-24	Introduction to Supervised Methods, Linear Regression	Dr. Anand Jayaraman	10.08	Dr. Surya Kompalli	6.72	Dr. Sreerama Murthy	4.2
2019-05-19	Logistic Regression & Naive Bayes Classifier	Dr. Anand Jayaraman	16.8	Dr. Surya Kompalli	13.44	Dr. Dakshinamurthy Kolluru	6.72
2019-05-25	Ensemble techniques: Bagging (RF) & Boosting (GBM)	Dr. Surya Kompalli	10.08	Dr. Anand Jayaraman	6.72	Dr. Manish Gupta	6.3

Disclaimer

- 1.The topics to be taught have dependency on each other (Statistics should be taught before ML). The current algorithm relies on a strict topic flow to handle this. However one can shuffle a couple of classes without hampering the dependencies. Such solutions aren't considered in this approach.
- 2.A good schedule is one which doesn't overburden a single resource. It is been observed that a carefully articulated Mentor-Topic proficiency matrix helps to converge at a reasonable solution. However it cannot be ruled out that this approach may fail in some rare scenarios leading to mentor over-utilization.
- 3. Given the dynamic nature of the ad-hoc requirements (corporate training, students requests, etc) one may have to manually improvise on the schedules generated.
- 4. For the above mentioned reasons, this system can be considered as an assistive system but not decisive system.

Is there anything better out there??

Genetic algorithms remain a popular approach in solving such type of problems.

Then why not?

- Given the differences compared to traditional scheduling problems, it would require good amount to research and testing to come up with a complete solution.
- Development time for GA is very high and convergence time is always a challenge.
- GA has no transparency of logic and hence it becomes difficult to handle ad-hoc requests through manual intervention.
- In cases where rescheduling becomes inevitable, the global optimal solution becomes sub-optimal. The 5% improvement due to GA goes for a toss.

Invitation: Introduction to supervised methods, Linear regression @ P... @ Sat Sep 8, 2018 2pm - 6pm (IST) (sagar.patel@insofe.edu.in) > Inbox × INSOFE ×

INSOFE grader@insofe.edu.in via google.com

to me, Sajna, harshit.lamba 🔻

Introduction to supervised methods, L...

View on Google Calendar

When Sat Sep 8, 2018 2pm - 6pm (IST)

Who Sajna Vilangapurath M, harshit.lamba@insofe.edu.in, grader@insofe.edu.in*

Agenda

Sat Sep 8, 2018

No earlier events

2pm Introduction to supervised r

No later events

Introduction to supervised methods, Linear regression @ PGP48-HYD

Batch: PGP48-HYD

Date: 08-Sep

ROTe: Day 7 Topics

ROTe Topics: Advanced commands in R, Begin with Data preprocessing

Module: CSE 7302c - Statistics and Probability in Decision Modeling

Topics to be taught: Introduction to supervised methods, Linear regression

Mentor: Dr. Anand Jayaraman

anand.jayaraman@insofe.edu.in - 9959466177

Data Scientists

Harshit - harshit.lamba@insofe.edu.in - 9158873720 SagarPatel - sagar.patel@insofe.edu.in - 9429830337

Calendar notifications

	DS 1	DS 2	DS 3	DS 4	DS 5
12-Sep					Corporate
13-Sep	Corporate				Corporate
14-Sep		Corporate			Corporate
15-Sep	PGP		PGP	PGP	
16-Sep	PGP		PGP	PGP	

Date	Module	Module Text	Mentor	ROTe	CUTe	Topics
		Essential Engineering Skills in Big				Orientation and
2-Sep	CSE 7212c	Data Analytics Using R and Python	Data Scientists			Introduction to R
		Foundations of Probability and				Probability and
3-Sep	CSE 7315c	Statistics for Data Science	Dr. Sridhar Pappu			Statistics-Day 1
		Foundations of Probability and				Probability and
9-Sep	CSE 7315c	Statistics for Data Science	Dr. Sridhar Pappu			Statistics-Day 2
						KNN +
		Methods and Algorithms in Machine				Collaborative
10-Sep	CSE 7305c	Learning	Dr. Sreerama Murthy			filtering
						Ensemble
		Methods and Algorithms in Machine				technique: RF,
16-Sep	CSE 7305c	Learning	Dr. Sreerama Murthy			SVM

Hello! Welcome on the INSOFE platform.

INSOFE allows to securely grade code made by students.

Please log in to see the courses.

© 2017 - INSOFE Grader - International School of Engineering

Status

Solution	Before	Now
Grader	Exam submission done on piazza. DS had to download each student submission independently. Students engagement was less.	Submissions organized at one place. Single click submission download for whole class. Increased students engagement due to Kaggle like environment and leader-board scores.
Scheduler	Manual mentor scheduling. Tedious work of checking topic → available mentors → blocking the allocated mentor (repeated 50 times)	Sajna believes that her work is reduced by 50% (I would dispute that :p) 1 schedule generated in 1 min. All she has to do is verify the allocation and take care of ad-hoc requests.
Calendar Notification	Refer to EDMS to check schedule every week. Keep a check of changes in EDMS	You get a mail along with your allocation details. Event gets added to your calendar along with appropriate reminder alerts.
Tableau Dashboard	Sajna had to manually generate resource utilization reports. BD team would call up Sajna everytime to check mentor availability or feasible dates.	Automated reports generations. Tableau dashboards generated providing a easy UI to understand resource utilizations. BD team has a go-to tool and less dependence of Sajna or EDMS

Remember its a crime to do redundant work. Let the smartness prevail ...

Thank You

