PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A01N 37/18, 43/04, C12Q 1/00, 1/02, 1/68, C12N 5/00, 5/06, 15/00, 15/06, 15/09, 15/10, 15/11, G01N 33/53

(11) 1

(11) International Publicati n Number:

WO 98/54963

A2

(43) International Publication Date: 10 December

10 December 1998 (10.12.98)

(21) International Application Number:

PCT/US98/11422

(22) International Filing Date:

4 June 1998 (04.06.98)

(30) Priority Data:

60/048,915 6 June 1997 (06.06.97) US 60/048,882 6 June 1997 (06.06.97) US

(Continued on the following page)

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors: and

(75) Inventors/Applicants (for US only): YOUNG, Paul [US/US]; 122 Beckwith Street, Gaithersburg, MD 20878 (US). GREENE, John, M. [US/US]; 872 Diamond Drive, Gaithersburg, MD 20878 (US). FERRIE, Ann, M. [US/US]; 13203 L Astoria Hill Court, Germantown, MD 20874 (US). RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). HU, Jing-Shan [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). OLSEN, Henrik, S. [DK/US]; 182 Kendrick Place #24, Gaithersburg, MD 20878 (US). EBNER, Reinhard [DE/US]; 9906 Shelbume Terrace #316,

Gaithersburg, MD 20878 (US). BREWER, Laurie, A. [US/US]; 14920 Mt. Nebo Road, Poolesville, MD 20837 (US). MOORE, Paul, A. [GB/US]; Apartment 104, 1908 Holly Ridge Drive, McLean, VA 22102 (US). SHI, Yanggu [CN/US]; 437 West Side Drive, Gaithersburg, MD 20878 (US). FLORENCE, Charles [US/US]; (US). FLORENCE, Kimberly [US/US]; 12805 Atlantic Avenue, Rockville, MD 20851 (US). LAFLEUR, David, W. [US/US]; 1615 Q Street, N.W. #807, Washington, DC 20009 (US). NI, Jian [CN/US]; 5502 Manorfield Road, Rockville, MD 20853 (US). FAN, Ping [CN/US]; Apartment 302, 335 West Side Drive, Gaithesburg, MD 20878 (US). WEI, Ying-Fei [CN/US]; 13524 Straw Bale Lane, Darnestown, MD 20878 (US). FISCHER, Carrie, L. [US/US]; 5810 Hall Street, Burke, VA 22015 (US). SOPPET, Daniel, R. [US/US]; 15050 Stillfield Place, Centreville, VA 22020 (US). LI, Yi [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). ZENG, Zhizhen [CN/US]; 13950 Saddleview Drive, Gaithersburg, MD 20878 (US). KYAW, Hla [MM/US]; 520 Sugarbush Circle, Frederick, MD 21703 (US). YU, Guo-Liang [CN/US]; 13524 Straw Bale Lane, Darnestown, MD 20878 (US). FENG, Ping [CN/US]; 4 Relda Court, Gaithersburg, MD 20878 (US). DILLON, Patrick, J. [US/US]; 1055 Snipe Court, Carlsbad, CA 92009 (US). ENDRESS, Gregory, A. [US/US]; 9729 Clagett Farm Drive, Potomac, MD 20854 (US). CARTER, Kenneth, C. [US/US]; 11601 Brandy Hall Lane, North Potomac, MD 20878 (US).

- (74) Agents: HOOVER, Kenley, K. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 10850 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority.

(54) Title: 207 HUMAN SECRETED PROTEINS

60/048.892	6 June 1997 (06.06.97)	ÙS	60/057,651	. 5 September 1997 (05.09.97)	UŚ
60/048.901	6 June 1997 (06.06.97)	US	60/057,769 .	5 September 1997 (05.09.97)	US
60/048.900	6 June 1997 (06.06.97)	US	60/05 7,64 3	5 September 1997 (05.09.97)	US
60/048.893	6 June 1997 (06.06.97)	US	60/057,645	5 September 1997 (05.09.97)	US
60/048,964	6 June 1997 (06.06.97)	US	60/05 7,6 68	5 September 1997 (05.09.97)	US
60/048.884	6 June 1997 (06.06.97)	US	60/0 57,63 5	5 September 1997 (05.09.97)	US
60/048.894	6 June 1997 (06.06.97)	US	60/05 7,62 7	5 September 1997 (05.09.97)	US
60/048,971	6 June 1997 (06.06.97)	US	60/057,667	5 September 1997 (05.09.97)	US
60/048.885	6 June 1997 (06.06.97)	US	60/0 57,66 6	5 September 1997 (05.09.97)	US
60/049,375	6 June 1997 (06.06.97)	US	60/057,764	5 September 1997 (05.09.97)	US
60/048,881	6 June 1997 (06.06.97)	US	60/057,644	5 September 1997 (05.09.97)	US
60/048.880	6 June 1997 (06.06.97)	US	60/0 57,76 5	5 S ptember 1997 (05.09.97)	US
60/048.896	6 June 1997 (06.06.97)	US	60/057,762	5 September 1997 (05.09.97)	US
60/049,020	6 June 1997 (06.06.97)	US	60/0 <i>57,77</i> 5	5 September 1997 (05.09.97)	US
60/048.876	6 June 1997 (06.06.97)	US	60/057,634	5 September 1997 (05.09.97)	US
60/048,895	6 June 1997 (06.06.97)	US	60/057 ,77 7	5 September 1997 (05.09.97)	US
60/049.019	6 June 1997 (06.06.97)	US	60/057,628	5 September 1997 (05.09.97)	US
60/048,916	6 June 1997 (06.06.97)	US	60/057,776	5 September 1997 (05.09.97)	US
60/048,970	6 June 1997 (06.06.97)	US	60/057,760	5 September 1997 (05.09.97)	US
60/048,972	6 June 1997 (06.06.97)	US	60/057,761	5 September 1997 (05.09.97)	US
60/048,949	6 June 1997 (06.06.97)	US	60/057,771	5 September 1997 (05.09.97)	US
60/048,974	6 June 1997 (06.06.97)	US	60/057,770	5 September 1997 (05.09.97)	US
60/048.883	6 June 1997 (06.06.97)	US	60/057,649	5 September 1997 (05.09.97)	US
60/048,897	6 June 1997 (06.06.97)	US	60/057 ,7 74	5 September 1997 (05.09.97)	US
60/048,898	6 June 1997 (06.06.97)	US	60/057,648	5 September 1997 (05.09.97)	US
60/049,373	6 June 1997 (06.06.97)	US	60/057,642	5 September 1997 (05.09.97)	US
60/048,917	6 June 1997 (06.06.97)	US	60/05 7,62 9	5 September 1997 (05.09.97)	US
60/048,962	6 June 1997 (06.06.97)	US	60/057,778	5 September 1997 (05.09.97)	US
60/048,878	6 June 1997 (06.06.97)	US	60/057,763	5 September 1997 (05.09.97)	US
60/049,374	6 June 1997 (06.06.97)	US	60/057,584	5 September 1997 (05.09.97)	US
60/048.875	6 June 1997 (06.06.97)	US	60/057,654	5 September 1997 (05.09.97)	US
60/048,899	6 June 1997 (06.06.97)	US	60/057,646	5 September 1997 (05.09.97)	US
60/048,877	6 June 1997 (06.06.97)	US	60/057,662	5 September 1997 (05.09.97)	US
60/048,963	6 June 1997 (06.06.97)	US	60/057,650	5 September 1997 (05.09.97)	US
-	,		60/057,661	5 September 1997 (05.09.97)	US
			60/057,647	5 September 1997 (05.09.97)	US
			60/070,923	18 December 1997 (18.12.97)	US

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fi	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Моласо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	' GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΠE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	TL.	israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakatan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

5

10

15

20

25

30

35

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide

10

15

35

AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG AATGCCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAACCCCC ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT GTACACCCTGCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT 5 GACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA GGTGGCAGCAGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGC GACGGCCGCGACTCTAGAGGAT (SEQ ID NO:1)

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

20 In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell 25 Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at 30 about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 µg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as

5

10

15

20

25

30

35

described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

Example 11: Production Of Secreted Protein For High-Throughput Screening Assays

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a

(2) INFORMATION FOR SEQ ID NO: 425:

3						•										
			(i)	SEQ	(A) (B)	LENG TYPE	TH: : am	92 a ino	STIC mino acid near	aci l	ds					
10			(xi) SE							ID N	0: 4	25:			
	Met 1	: Gly	/ Le	u Lys		ı Ası	n Gly	y Ar	д Ту	r Il 1		r Le	u Il	e Le	ı Ala	a Val
15	Gln	ıle	: Ala	а Туг 20	: Let	ı Val	l Gl	n Ala	a Vai		g Ala	a Ala	a Gly	y Ly: 30	_	s Asp
20	Ala	Val	. Phe 39	e Lys	Gl _y	/ Phe	e Sei	Ası 40		s Le	u Lei	ı Lys	Let		/ Asp	Thr
	Trp	Pro 50	Thi	Thr	Arg	ser Ser	: Let 55		/ Arg	g Gli	n As <u>r</u>	Glu 60		s Glr	ı Asp	Arg
25	Val 65	His	Ile	e Leu	Gly	70		Pro	Glr	ı Leı	u His 75		/ His	s Ser	Pro	Tyr 80
	Gly	Leu	Pro	Gly	Arg 85		Glu	Arg	Туг	Va]		⁄ Xaa	Ł			
30																
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	426:							
35			(i)	(A) I B) I	ENGI YPE:	H: 3	380 a	mino cid		ids					
		,	(xi)	SEQ		OPOL E DE				EQ I	D NO	: 42	6:			•
40	Met 1	Ala	Arg	Arg	Ser 5	Ala	Phe	Pro	Ala	Ala 10		Leu	Trp	Leu	Trp 15	Ser
45	Ile	Leu	Leu	Cys 20	Leu	Leu	Ala	Leu	Arg 25	Ala	Glu	Ala	Gly	Pro 30	Pro	Gln
	Glu	Glu	Ser 35	Leu	Tyr	Leu	Trp	Ile 40	Asp	Ala	His	Gln	Ala 45	Arg	Val	Leu
50	Ile	Gly 50	Phe	Glu	Glu	Asp	Ile 55	Leu	Ile	Val	Ser	Glu 60	Gly	Lys	Met	Ala
	Pro 65	Phe	Thr	His	Asp	Phe 70	Arg	Lys	Ala	Gln	Gln 75	Arg	Met	Pro	Ala	Ile 80
55	Pro	Val	Asn	Ile	His 85	Ser	Met	Asn	Phe	Thr 90	Trp	Gln	Ala	Ala	Gly 95	Gln
50	Ala	Glu	тут	Phe 100	Tyr	Glu	Phe	Leu	Ser 105	Leu	Arg	Ser	Leu	Asp 110	Lys	Gly.

•	iie	met	115	Asp	Pro	Thr	Val	Asn 120		Pro	Leu	Leu	Gly 125	Thr	Val	Pro
5	His	Lys 130	Ala	Ser	Val	Val	Gln 135	Val	Gly	Phe	Pro	Cys 140	Leu	Gly	Lys	Gln
	Asp 145		Val	Ala	Ala	Phe 150	Glu	Val	Asp	Val	Ile 155	Val	Met	Asn	Ser	Glu 160
10	Gly	Asn	Thr	Ile	Leu 165	Gln	Thr	Pro	Gln	Asn 170	Ala	Ile	Phe	Phe	Lys 175	Thr
15	Cys	Gln	Gln	Ala 180	Glu	Cys	Pro	Gly	Gly 185	Cys	Arg	Asn	Gly	Gly 190	Phe	Cys
	Asn	Glu	Arg 195	Arg	Ile	Cys	Glu	Cys 200	Pro	Asp	Gly	Phe	His 205	Gly	Pro	His
20	Cys	Glu 210	Lys	Ala	Leu	Cys	Thr 215	Pro	Arg	Суз	Met	Asn 220	Gly	Gly	Leu	Cys
	Val 225		Pro	Gly	Phe	Cys 230	Ile	Cys	Pro	Pro	Gly 235	Phe	Tyr	Gly	Val	Asn 240
25	Cys	Asp	Lys	Ala	Asn 245	Cys	Ser	Thr	Thr	Cys 250	Phe	'Asn	Gly	Gly	Thr 255	Суз
30	Phe	Tyr	Pro	Gly 260	Lys	Cys	Ile	Xaa	Pro 265	Pro	Gly	Leu	Glu	Gly 270	Glu	Gln
	Cys	Glu	Ile 275	Ser	Lys	Cys	Pro	Gln 280	Pro	Cys	Arg	Asn	Gly 285	Gly	Lys	Cys ·
35	Ile	Gly 290	Lys	Ser	Lys	Cys	Lys 295	Xaa	Ser	Lys	Gly	Tyr 300	Gln	Gly	Asp	Leu
	Cys 305	Ser	Lys	Pro	Val	Cys 310	Glu	Pro	Gly	Суѕ	Gly 315	Ala	His	Gly	Thr	Cys 320
40	His	Glu	Pro	Asn	Lys 325	Cys	Gln	Cys	Gln	Glu 330	Gly	Trp	His	Gly	Arg 335	His
45	Cys	Asn	Lys	Arg 340	Tyr	Glu	Ala	Ser	Leu 345	Ile	His	Ala	Leu	Arg 350	Pro	Ala
	Gly	Ala	Gln 355	Leu	Arg	Gln	His	Thr 360	Pro	Ser	Leu	Lys	Lys 365	Ala	Glu	Glu
50	Arg	Arg 370	Asp	Pro	Pro	Glu	Ser 375	Asn	Tyr	Île	Trp	Xaa 380				
55	(2)		RMAT			-										
			(i) S	EQUE	NCE	CHAF	CACTE	RIST	ICS:							

(A) LENGTH: 24 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 427:

60