Планеты-гиганты

ИСПОЛНИТЕЛЬ:

Распутько Тимур, учащийся 10 «Б» класса

НАУЧНЫЙ РУКОВОДИТЕЛЬ:

Фролова Наталья Николаевна, учитель физики

МБОУ г. Ростова-на-Дону «Лицей №50 при ДГТУ» 2024

Методы исследования

Инструменты и подходы

- 1. Анализ данных космических миссий (Cassini, Voyager, Galileo).
- 2. Виртуальные наблюдения с использованием астрономического ПО.
- 3. Построение диаграмм и графиков для сравнения характеристик.
- 4. Моделирование атмосферных явлений и климатических процессов.

Объект и предмет исследования

Объект исследования: Планеты-гиганты Солнечной системы.

Предмет исследования: Их физические характеристики, атмосферные явления, состав, а также влияние на спутники и окружающую среду.

Цель, задачи, гипотеза

Цель работы:

• Анализ физических характеристик планет-гигантов, их влияние на спутники и планетарные системы.

Задачи:

- Изучить параметры планет-гигантов (масса, состав, атмосфера).
- Исследовать их климатические явления.
- Провести анализ спутников и их потенциальной обитаемости.

Гипотеза исследования:

- Основные предположения
- Влияние на эволюцию: планеты-гиганты играют решающую роль в динамике Солнечной системы.
- Сравнение с экзопланетами: Образование и эволюция газовых гигантов помогут понять механизмы формирования планетных систем.

Актуальность работы

Почему важно изучать планеты-гиганты?

- Ключевая роль в Солнечной системе: Планеты-гиганты оказывают значительное влияние на формирование и устойчивость орбит других объектов.
- Исследование экзопланет: Изучение планетгигантов помогает понять механизмы образования планет за пределами Солнечной системы.
- Потенциал для обнаружения жизни: Спутники гигантов, такие как Европа и Энцелад, могут содержать условия, благоприятные для жизни.

Физические характеристики планет-гигантов

Сравнительный анализ

- Размеры и масса: Юпитер крупнейшая планета (317.8 масс Земли), за ним следуют Сатурн, Уран и Нептун.
- Плотность: Сатурн имеет наименьшую плотность (0.69 г/см³), а Нептун наибольшую среди гигантов (1.64 г/см³).
- Скорость вращения: Юпитер вращается быственной всем (О О насев). Упан

быстрее всех (9.9 часов), Уран — медленнее (17.2 часа).

Сатурн

Атмосферные явления

• Юпитер: Большое Красное Пятно (шторм более 300 лет).

• Сатурн: Шестиугольный шторм у северного полюса.

Юпитер и его большое красное пятно

- Температура и энергия
- Юпитер и Сатурн излучают больше тепла, чем получают.
- Уран и Нептун имеют аномальные температурные показатели.

Химический состав

Особенности планет-гигантов

- Юпитер и Сатурн: Состоят в основном из водорода (89-96%) и гелия (3-10%).
- Уран и Нептун: Высокое содержание метана, что придает синий оттенок их атмосферам.

Климатические явления

Особенности на планетах-гигантах

• Уран и Нептун: Сезонные изменения и интенсивные ветры до 900 км/ч.

Роль планет-гигантов

• Газовые гиганты формируют стабильность Солнечной системы и обеспечивают защиту её внутренних объектов.

Магнитные поля планет-гигантов

Сравнение и характеристики

- Юпитер: Самое мощное магнитное поле в Солнечной системе (4.3 гаусс).
- Уран и Нептун: Наклонены относительно оси вращения на 59° и 47° соответственно.
- Сатурн: Магнитное поле идеально совпадает с осью вращения.

Демонстрация магнитного поле урана

Спутники планетгигантов

Потенциально обитаемые объекты

- Европа: Спутник Юпитера, возможный подледный океан.
- Титан: Спутник Сатурна с метановыми озёрами.
- Энцелад: Спутник Сатурна с активными гейзерами воды.

Исследование физических параметров планетгигантов

Таблица 1. Физические характеристики планет-гигантов

Планета	Масса (относительно Земли)	Диаметр (км)	Средняя плотность (г/см³)	Период вращения (часы)
Юпитер	317,8	139 820	1,33	9,9
Сатурн	95,2	116 460	0,69	10,7
Уран	14,5	50 724	1,27	17,2
Нептун	17,1	49 244	1,64	16,1

Исследование химического состава и структуры атмосферы

Таблица 2. Химический состав атмосфер планет-гигантов

Планета	Основной состав атмосферы	Преобладающие атмосферные явления
Юпитер	Водород (89%), гелий (10%), метан, аммиак	Большое Красное Пятно
Сатурн	Водород (96%), гелий (3%), метан	Шестиугольный шторм
Уран	Водород (83%), гелий (15%), метан	Шторма и полосы
Нептун	Водород (80%), гелий (19%), метан	Чёрные пятна

Температурные и энергетические характеристики

Таблица 3. Температурные и энергетические характеристики планет-гигантов

Планета	Температура верхнего слоя облаков (К)	Внутреннее излучение (Вт/м²)
Юпитер	165	5,44
Сатурн	134	2,01
Уран	76	0,42
Нептун	72	1,14

Магнитные поля и их влияние

Таблица 4. Характеристики магнитных полей планет-гигантов

Планета	Интенсивность магнитного поля (гаусс)	Наклон магнитного поля (относительно оси вращения)
Юпитер	4,3	10°
Сатурн	0,2	0 °
Уран	0,23	59°
Нептун	0,43	47°

Исследование спутников планет-гигантов

Таблица 5. Особенности спутников планет-гигантов

Спутник	Планета	Диаметр (км)	Особенности поверхности	Возможность существования воды
Европа	Юпитер	3 121	Ледяная поверхность, гейзеры	Подледный океан
Ганимед	Юпитер	5 268	Ледяная поверхность	Подповерхностный океан
Титан	Сатурн	5 151	Атмосфера, метановые озера	Возможны подледные моря
Знцелад	Сатурн	504	Гейзеры воды	Подледный океан

Выводы

Итог работы

- Роль планет-гигантов
- Формирование и эволюция Солнечной системы невозможны без их влияния.
- Интерес к исследованию
- Тема остаётся актуальной в связи с развитием технологий.
- Будущие перспективы
- Разработка новых миссий для изучения спутников.

Список источников

- 1. Whtephet-pecypc: https://cyberleninka.ru/article/n/o-modeli-gazovoy-planety
- 2. Интернет-ресурс:

https://ru.wikipedia.org/wiki/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B5%D1%82%D1%8B-%D0%B3%D0%B8%D0%B3%D0%B 0%D0%BD%D1%82%D1%8B

3. Интернет-ресурс:

https://bguor.ru/subjects/ae-umk-history/html/astronomy/pages/h2/2_7.html

- 4. Whtephet-pecypc: https://astronaut.ru/bookcase/books/20let/text/05.htm
- 5. Whtephet-pecypc: https://cyberleninka.ru/article/n/o-modeli-gazovoy-planety
- 6. Интернет-ресурс:

https://www.pravda.ru/science/1132235-planet_gigas/

7. Интернет-ресурс:

https://new-science.ru/gazovyj-gigant/

8. Интернет-ресурс:

https://cyclowiki.org/wiki/%D0%9B%D0%B5%D0%B4%D1%8F%D0%BD%D0%BE%D0%B9_%D0%B3%D0%B8%D0%B3%D0%B0%<u>D0%BD%D1%82</u>

9. Интернет-ресурс:

https://ru.wikipedia.org/wiki/%D0%93%D0%B0%D0%B7%D0%BE%D0%B2%D1%8B%D0%B5 %D0%B3%D0%B8%D0%B3%D0%B 0%D0%BD%D1%82%D1%8B

10. Интернет-ресурс:

https://scfh.ru/lecture/planety-giganty-ikh-koltsa-i-planety-sputniki/

11. Интернет-ресурс:

https://web.snauka.ru/issues/2018/08/87127

Был также проведен анализ следующих научных статей (представлены в приложении):

- Курков А.А. ВВЕДЕНИЕ. ФИЗИКА СТРУКТУР // Международный журнал прикладных и фундаментальных исследований. – 2015. – № 10-4. – С. 615-623;
- Существование планет-гигантов не находит объяснения 22.03.2006 Александр Сергеев
- з. ПЛАНЕТА ЗЕМЛЯ УДК 552.6:523.3-52 Маракушев А.А.*, Зиновьева Н.Г.**, Грановский Л.Б.*** А.А. Маракушев Н.Г. Зиновьева Околосолнечные планеты-гиганты и происхождение Земли 1