Dynamic Pricing for Urban Parking Lots

Summer Analytics 2025 - Final Capstone Project

Author: BVS Sai Nikhil

Overview:

This project builds a dynamic pricing engine for 14 urban parking spaces.

The pricing adjusts based on:

- Occupancy
- Queue length
- Traffic conditions nearby
- Special day indicator (holidays/events)
- Vehicle type
- Competitor prices (optional in Model 3)

Models Implemented:

Model 1: Baseline Linear Model

- Price increases linearly as occupancy increases

Model 2: Demand-Based Model

- Price adjusts using a formula:

demand = (0.3 * occupancy_rate + 0.1 * queue_length

- 0.05 * traffic + 0.2 * is_special_day
- + 0.1 * vehicle_weight)
- Normalized demand adjusts price between 0.5x and 2x base

Model 3 (Optional): Competitive pricing

- Adjusts price considering competitor lots nearby
Tech Stack:
- Python (Pandas, Numpy)
- Pathway (real-time streaming)
- Bokeh (visualization)
- Google Colab
Architecture Diagram:
Refer to architecture_diagram.png in the GitHub repo
How to Run:
1. Open the notebook in Google Colab
2. Upload the dataset
3. Run cells sequentially
4. View the live price trend graph
Conclusion:
The system dynamically updates parking prices in real time, improving utilization while managing
demand efficiently.