

"Découvrez comment le Machine Learning révolutionne notre façon de penser et de créer."

WHAT THE MACHINE LEARNING

Ines Lorquet

Sommaire

- I Terminologie ML
- 2 L'apprentissage supervisé
- 3 L'apprentissage non supervisé
- 4 Schémas
- 5 Conclusion

- Définition
- Origine
- Créateur
- Exemple
- Source

Terminologie ML

La science des données

- La science des données utilise des méthodes et des algorithmes pour extraire des informations à partir de grandes quantités de données.
- 1960s, popularisée dans les années 1990.
- William S. Cleveland
- Application de fitness analysant des données de santé pour des conseils personnalisés.
- Cleveland, W. S. (2001). "Data Science: An Action Plan for Expanding the Technical Areas of the Field of Statistics."

La classification non supervisée

- Regroupement de données sans étiquettes, cherchant des patterns sous-jacents.
- Années 1960.
- James MacQueen.
- Segmentation des utilisateurs pour des recommandations musicales sur Spotify.
- MacQueen, J. "Some Methods for Classification and Analysis of Multivariate Observations."

L'apprentissage automatique et/ou l'apprentissage profond

- L'apprentissage automatique permet aux machines d'apprendre à partir de données. L'apprentissage profond est une sous-catégorie avec des réseaux neuronaux complexes.
- 1950s pour l'apprentissage automatique, 2000s pour l'apprentissage profond.
- Arthur Samuel (1959), Geoffrey Hinton (années 2000).
- Siri ou Alexa utilisant l'apprentissage pour comprendre la voix.
- Samuel, A. L. (1959). "Some Studies in Machine Learning Using the Game of Checkers."

La classification supervisée

- Apprentissage supervisé pour attribuer une étiquette à une entrée en fonction de ses caractéristiques.
- Années 1960-1970.
- Frank Rosenblatt.
- Reconnaissance faciale sur un smartphone.
- Rosenblatt, F. (1958). "The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain."

- Définition
- Origine
- Créateur
- Exemple
- Source

La régression

- Méthode d'apprentissage supervisé pour prédire une valeur continue à partir de données.
- 1805.
- Francis Galton.
- Prédiction du prix d'une maison en fonction de sa superficie.
- Galton, F. (1886). "Regression towards Mediocrity in Hereditary Stature."

Les données d'entraînement, les données de test et/ou de validation

- Ensemble de données utilisé pour entraîner, tester et valider un modèle.
- 1950-1960.
- Concept adopté par de nombreux chercheurs.
- Utilisation d'exercices révisés (données d'entraînement) et d'autres questions pour l'examen (données de test).
- Bishop, C. M. (2006). "Pattern Recognition and Machine Learning."

La validation croisée

- Technique pour évaluer un modèle en le testant sur plusieurs sousensembles des données.
- Années 1990.
- Ron Kohavi.

Terminologie ML

- Tester un produit sur plusieurs groupes avant son lancement.
- Kohavi, R. "A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection."

Corrélation linéaire (de Pearson)

- Mesure la force et la direction de la relation linéaire entre deux variables.
- 1896.
- Karl Pearson.
- Corrélation entre les heures d'ensoleillement et la température.
- Pearson, K. (1896). "Mathematical Contributions to the Theory of Evolution."

- Définition
- Origine
- Créateur
- Exemple
- Source

Une fonction de coût

- Fonction qui mesure l'erreur du modèle en comparant les prédictions aux valeurs réelles.
- Années 1960-1970.
- Concepts issus de l'optimisation.
- Calculer combien tu économises chaque mois en ajustant tes dépenses.
- Bishop, C. M. (2006). "Pattern Recognition and Machine Learning."

La descente de gradient

- Méthode d'optimisation pour ajuster les paramètres d'un modèle en minimisant la fonction de coût.
- 1847, appliqué en machine learning dans les années 1980.
- Augustin-Louis Cauchy.

Terminologie ML

- Trouver le chemin le plus rapide en ajustant constamment ton itinéraire.
- Cauchy, A. L. (1847). "Méthode générale pour la résolution des systèmes d'équations simultanées."

Années 1950

Conceptualisation de l'apprentissage supervisé

Années 1950

Contributions d'Arthur Samuel et d'Alan Turing

L'apprentissage supervisé

L'apprentissage supervisé est une méthode d'apprentissage utilisée en intelligence artificielle (IA), où un modèle apprend à partir de données étiquetées. Cela signifie que le modèle reçoit des exemples de données avec les réponses correctes déjà fournies, et il doit apprendre à prédire ces réponses pour de nouvelles données.

Enseigner à une IA à reconnaître les chats

images

Former l'IA

Tester l'IA

Reconnaissance réussie

Années 1950-1960

Émergence de l'apprentissage non supervisé

\sum

Années 1950-1960

Contributions de Geoffrey Hinton et d'autres

L'apprentissage non supervisé

$$heta^* = rg\min_{ heta} \sum_{i=1}^n \mathcal{L}(x_i, f_{ heta}(x_i))$$

L'apprentissage non supervisé est une méthode où le modèle apprend à partir de données qui ne sont pas étiquetées, c'est-à-dire sans réponses correctes fournies. L'objectif est de découvrir des structures ou des motifs cachés dans les données par lui-même.

Photos classées en catégories

Schémas

(Pearson)

Conclusion

Machine Learning Process

Prétraitement des Données

Nettoyage et préparation des données pour l'analyse

Apprentissage Supervisé

Apprentissage à partir de données étiquetées

Apprentissage Non Supervisé

Découverte de structures cachées dans les données

Évaluation du Modèle

Validation des performances du modèle

Optimisation du Modèle

Ajustement des paramètres pour de meilleures performances