21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

22- Wednesday October 19, 2011.

Definition 22.1: If $P = a_0 + a_1x + \ldots + a_nx^n \in R[x]$, the derivative of P, noted P' is $P' = a_1 + 2a_2x + \ldots + n a_nx^{n-1} \in R[x]$.

Remark 22.2: One has (P+Q)'=P'+Q', and (PQ)'=P'Q+PQ' for all $P,Q\in R[x]$: if $P=a_0+a_1x+\ldots+a_nx^n$ and $Q=b_0+b_1x+\ldots+b_mx^m$, then for $k\geq 1$ the coefficient of x^k in PQ is $\sum_{j=0}^k a_jb_{k-j}$, so that the coefficient of x^{k-1} in (PQ)' is $k\left(\sum_{j=0}^k a_jb_{k-j}\right)=\sum_{j=0}^k k\left(a_jb_{k-j}\right)$, but for $0\leq j\leq k$ one has $k\left(a_jb_{k-j}\right)=\left(j\,a_j\right)b_{k-j}+a_j\left(\left(k-j\right)b_{k-j}\right)$, and $\sum_{j=0}^k \left(j\,a_j\right)b_{k-j}$ is the coefficient of x^{k-1} in P'Q, while $\sum_{j=0}^k a_j\left(\left(k-j\right)b_{k-j}\right)$ is the coefficient of x^{k-1} in PQ'.

If R is commutative, or simply if P and P' commute, one deduces by induction on ℓ that $(P^\ell)' = \ell P^{\ell-1}P'$ for $\ell \geq 2$: the preceding case with Q = P gives $(P^2)' = P'P + PP'$, which is 2PP' since P and P' commute; then for $\ell > 2$ one uses $Q = P^{\ell-1}$, so that by the induction hypothesis one has $Q' = (\ell-1) P^{\ell-2}P'$, hence $(P^\ell)' = (PQ)' = P'Q + PQ' = P'P^{\ell-1} + P(\ell-1)P^{\ell-2}P'$, which is $\ell P^{\ell-1}P'$ since P and P' commute.

If P is a constant, i.e. $P=a_0$, then P'=0, but in some rings it may happen that a non-constant polynomial has a zero derivative: for example, if R is an integral domain with characteristic p (necessarily a prime), then P'=0 means $j\,a_j=0$ for all $j\geq 0$, but since for $a_j\neq 0$ it implies that j is a multiple of the characteristic p, one deduces that P'=0 if and only if P is a polynomial in x^p , i.e. it has the form $\sum_{\ell=0}^m b_\ell x^{\ell p}$.

Lemma 22.3: If R is a commutative unital ring, then α is a multiple root of $P \in R[x]$ if and only if $P(\alpha) = 0$ and $P'(\alpha) = 0$.

Proof: If α is a root of multiplicity $k \geq 2$, one has $P = (x - \alpha)^k Q$ (with $Q(\alpha) \neq 0$), so that $P' = k(x-\alpha)^{k-1}Q + (x-\alpha)^k Q'$, hence $P(\alpha) = 0$ and $P'(\alpha) = 0$. Conversely, if $P(\alpha) = 0$ one has $P = (x-\alpha)Q_1$, so that $P' = Q_1 + (x-\alpha)Q_1'$, hence $P'(\alpha) = Q_1(\alpha)$; if $P(\alpha) = 0$ and $P'(\alpha) = 0$, one deduces that $Q_1(\alpha) = 0$, so that $Q_1 = (x-\alpha)Q_2$, hence $P = (x-\alpha)^2Q_2$, i.e. α is a multiple root of P (of multiplicity $k \geq 2$).

Remark 22.4: If R is a commutative unital ring and α is a root of multiplicity $k \geq 2$, then $P = (x - \alpha)^k Q$ with $Q(\alpha) \neq 0$, so that $P' = k(x - \alpha)^{k-1}Q + (x - \alpha)^k Q' = (x - \alpha)^{k-1}Q_1$ with $Q_1 = kQ + (x - \alpha)Q'$, hence α is a root of multiplicity at least k-1 of P'. Since $Q_1(\alpha) = kQ(\alpha)$, it may happen that $kQ(\alpha) = 0$ although $Q(\alpha) \neq 0$: if R is an integral domain, it means that R has a finite characteristic, which must be a prime p, and k is a multiple of p.

If α is a root of multiplicity $k \geq 3$, then $P(\alpha) = 0$ and the successive derivatives of P up to order k-1 are 0 at α . If R is an integral domain of characteristic p, the converse holds if $k \leq p$, and the proof is by induction on k: since $P(\alpha) = P'(\alpha) = 0$ implies $P = (x - \alpha)^2 Q$, it is true for k = 2; assume that $k \geq 3$ (so that $p \geq 3$) and that it has been proved up to k - 1, so that $P = (x - \alpha)^{k-1} Q$, and then the derivative of order k - 1 has a term in (k - 1)!Q and all other terms have $x - \alpha$ as a factor, so that the (k - 1)th derivative of P evaluated at α is $(k - 1)!Q(\alpha)$, and since (k - 1)! is not a multiple of p and the (k - 1)th derivative of P evaluated at α is 0 by hypothesis, one deduces that $Q(\alpha) = 0$, so that $Q = (x - \alpha) Q_1$ and $P = (x - \alpha)^k Q_1$.

One has almost used Leibniz's formula giving the kth derivative of a product,² that if one denotes $P^{(j)}$ the jth derivative of P, so that $P^{(1)}$ means P' and $P^{(0)}$ means P, then Leibniz's formula is that $(PQ)^{(k)} = \sum_{j=0}^k \binom{k}{j} P^{(j)} Q^{(k-j)}$, and it was proved for k=1, and the proof is by induction on k, and it follows easily by using the properties of binomial coefficients.

¹ Although R may not be commutative, for $a, b \in R$ and $\ell \in \mathbb{Z}$, one has $\ell(ab) = (\ell a)b = a(\ell b)$: for $\ell > 0$, it is about adding ℓ copies of ab, and the formula follows from distributivity; for $\ell < 0$, it is a consequence of -(ab) = (-a)b = a(-b), which is about having 0 = (ab) + (-a)b = (ab) + a(-b), which again follows from distributivity.

² Gottfried Wilhelm von Leibniz, German mathematician, 1646–1716. He worked in Frankfurt, in Mainz, Germany, in Paris, France, and in Hanover, Germany, but never in an academic position.

Remark 22.5: If R is a commutative unital ring, one can prove Taylor's expansion for polynomials: the usual formula taught in analysis is $P(x+h) = P(x) + P'(x) h + \frac{P''(x)h^2}{2!} + \ldots$, but for a polynomial the sum is finite, since $P^{(n+1)} = 0$ if P has degree n; since a term $\frac{P^{(j)}(x)h^j}{j!}$ appears, which may not make sense in some rings because one cannot always divide elements of R by j!, one should pay attention to the notation. If $P = x^k$ then $P^{(j)} = k \cdots (k+1-j) x^{k-j}$ if $j \le k$ and 0 if j > k, so that $\frac{P^{(j)}(x)h^j}{j!} = {k \choose j} x^{k-j}h^j$ and since ${k \choose j}$ is an integer, one never divides an element of R by an integer. Then the proof is obtained by writing the binomial formula for $(x+h)^k$, which one multiplies by a_k before summing in k.

In particular, if $P \in \mathbb{Z}[x]$, then one has observed that $\frac{P^{(j)}}{j!} \in \mathbb{Z}[x]$, so that if $a, h \in \mathbb{Z}$ one has $P(a+h) = P(a) + P'(a) h + \sum_{j=2}^{\deg(P)} c_j h^j$, with $c_j \in \mathbb{Z}$ for $j = 2, \ldots, \deg(P)$. In the following application, if p is a prime and h is a multiple of p^m (with $m \ge 1$), then $P(a+h) = P(a) + P'(a) h \pmod{p^{2m}}$.

Remark 22.6: If $P \in \mathbb{Z}[x]$ and f(N) is the number of solutions in \mathbb{Z}_N of $P(x) = 0 \pmod{N}$, then f is a multiplicative function by the Chinese remainder theorem, so that one must just wonder how many solutions there is modulo p^k for a prime p and an integer $k \geq 1$. If a_1 is a solution of $P(a_1) = 0 \pmod{p}$ and one has $P'(a_1) \neq 0 \pmod{p}$, then one can construct a sequence a_2, \ldots, a_k such that $a_j = a_{j-1} \pmod{p^{j-1}}$ for $j = 2, \ldots, k$ and $P(a_k) = 0 \pmod{p^k}$, so that $P'(a_k) = P'(a_1) \neq 0 \pmod{p}$. For example, one looks for $a_2 = a_1 + b_1 p$, and one uses the Taylor expansion, which gives $P(a_2) = P(a_1) + P'(a_1) b_1 p + \ldots$ where the terms not written contain $b_1 p$ to a power ≥ 2 , so that $P(a_2) = P(a_1) + P'(a_1) b_1 p \pmod{p^2}$; since $P(a_1) = 0 \pmod{p}$, one has $P(a_1) = c_1 p \pmod{p^2}$ for some $c_1 \in \mathbb{Z}$, so that $P(a_2) = 0 \pmod{p^2}$ is equivalent to $c_1 + P'(a_1) b_1 = 0 \pmod{p}$, which has a unique solution b_1 modulo p, because $P'(a_1)$ has an inverse modulo p.

Essentially, it is the same idea used in a method of NEWTON for solving equations, which is now known as the Newton-Raphson method:³ if f is a differentiable function on \mathbb{R} and $f'(x_0) \neq 0$, a guess for a solution of f(x) = 0 is to replace f(x) = 0 by $f(x_0) + f'(x_0)(x - x_0) = 0$, so that one takes $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$, and the iterative method $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ converges under some condition.⁴

HENSEL must have thought of this analogy when he invented the p-adic numbers \mathbb{Q}_p in 1897,⁵ by using a different metric on \mathbb{Q} (hence on \mathbb{Z}) than the usual one, so that the sequence a_k constructed converges to an element of \mathbb{Q}_p . For example, if $P = x^2 - 2$ and p = 7, then $P(3) = 7 = 0 \pmod{7}$ and $P'(3) = 6 \neq 0 \pmod{7}$, so that the method creates a sequence of integers, which converges in \mathbb{Q}_7 to a root of P, but is this root $+\sqrt{2}$ or $-\sqrt{2}$? For example, $1+2+\ldots+2^n+\ldots$ converges in \mathbb{Q}_2 , to -1, and it is quite similar to what will be shown later for formal power series that $(1-x)^{-1} = 1+x+\ldots+x^n+\ldots$, but it then must be explained in what sense one may take x=2 in this formula.

Definition 22.7: A field F is said to be algebraically closed if every non-constant polynomial has a root, hence a polynomial $P \in F[x]$ of degree $n \ge 1$ can be written as $a_n(x-\alpha_1)\cdots(x-\alpha_n)$ for some $\alpha_1,\ldots,\alpha_n \in F$.

Remark 22.8: It will be shown that \mathbb{C} is algebraically closed, but \mathbb{R} is obviously not since $x^2 + 1$ has no root. $P = (x^2 + 1)(x^2 + 2)$ has no roots, but it can be "reduced", because $P = P_1P_2$ with $P_1 = x^2 + 1$ and $P_2 = x^2 + 2$, so that one will need a notion of irreducibility for polynomials in R[x], but the definitions will actually be given for general rings. Irreducible polynomials of degree ≥ 2 in $\mathbb{R}[x]$ must have degree 2, and $x^2 + Ax + B$ is irreducible if and only if $A^2 < 4B$, but the situation is different for $\mathbb{Q}[x]$ and for every $m \geq 2$ there is an irreducible polynomial in $\mathbb{Q}[x]$ of degree m.

³ Joseph Raphson, English mathematician, c. 1648–1715. The Newton–Raphson method is partly named after him: he published it in 1690, and it is simpler than the method that Newton wrote in 1671, but which was only published in 1736.

⁴ For example, if $|f'(x)| \ge \frac{1}{2} |f'(x_0)|$ and $|f''(x)| \le M$ on $I = [x_0 - a, x_0 + a]$, one deduces that $|x_{n+1} - x_n| \le \frac{2|f(x_n)|}{|f'(x_0)|}$ and $|f(x_{n+1})| \le \frac{M|x_{n+1} - x_n|^2}{2} \le \frac{2M|f(x_n)|^2}{|f'(x_0)|^2}$ as long as the points stay in I; if $2M|f(x_0)| \le \theta |f'(x_0)|^2$ with $\theta < 1$, then $|f(x_n)| \le \theta^{2^n - 1} |f(x_0)|$ as long as the points stay in I, which is the case if $2|f(x_0)| \le (1 - \theta) a |f'(x_0)|$.

⁵ Kurt Wilhelm Sebastian Hensel, German mathematician, 1861–1941. He worked in Marburg, Germany. Hensel's lemma is named after him.