Cyber-Physical Systems (CSC.T431)

Dynamical Systems (1)

Instructor: Takuo Watanabe (Department of Computer Science)

Agenda

Dynamical Systems (1)

Course Support & Material

- Slides: OCW-i
- Course Web: https://titech-cps.github.io
- Course Slack: titech-cps.slack.com

Dynamical Systems

- Controllers interacting with physical world via sensors and actuators
- Physical quantities change continuously over time.
- We use continuous-time models using differential equations.

Control System

- Plant: physical world to be controlled
- Disturbances: uncontrollable factors from the environment
- Reference Inputs: commands/parameters given by the user

Ex. Thermostat

 Goal: to regulate the temperature of the room to be close to the reference temperature

Models of Dynamical Systems

- Like synchronous/asynchronous systems, a dynamical system can be described as a system of connected components with inputs/outputs.
 - While the underlying computation model is synchronous, the values of the variables in a dynamical system change continuously over time.
 - In contrast, in a system consists of SRCs, the values of the variables are updated in a sequence of discrete logical rounds.
- Such components are called continuous-time components.
- We use real to type the variables of continuous-time components.

Signals

• Signals are values that change over time, described as functions from the time domain to the types of the values (here, real).

- We regard that the time domain consists of non-negative real numbers. Thus time $\cong \mathbb{R}_{>0} = \{v \mid v \in \mathbb{R} \land v \geq 0\}.$
- For a variable x in a continuous-time component, \bar{x} denotes the signal over x, i.e., $\bar{x}(t)$ is the value of x at time t.

Signals

- For a finite set of variables $V, \bar V$ denotes a signal that gives a valuation over V. $\bar V: {\sf time} \to V \to {\sf real}$
- Thus, for $x \in V$, $\overline{V}(t)(x)$ denotes a value of x at time t.
- Shorthand: Let $V=\{x_1,x_2,...,x_n\}$. We use \bar{V} to denote function from time to a tuple (or a vector) of real values such that $\bar{V}(t)=(\bar{x}_1(t),\bar{x}_1(t),...,\bar{x}_n(t))$.
- Thus we can write \bar{V} : time \to realⁿ

Signals

- A signal can be regarded as a function $\mathbb{R}_{>0} \to \mathbb{R}^n$.
- So we can apply some standard mathematical notions such as continuity and differentiability to signals.
- E.g., Continuity: A signal $ar{V}$ is continuous if
 - $\forall t \in \text{time.} \ \forall \varepsilon > 0. \ \exists \delta > 0. \ \forall t' \in \text{time.} \ \left(\|t t'\| < \delta \to \|\bar{V}(t) \bar{V}(t')\| < \varepsilon \right).$
 - Note: ||u v|| denotes the distance between u and v.

Ex. Heat Flow

- NetHeat is a continuous-time component with two inputs h_+ , h_- , an output h_{net} , and no state variables.
- The behavior is expressed declaratively using an algebraic equation.
- The output signal \bar{h}_{net} can be defined as

$$\bar{h}_{net}(t) = \bar{h}_{+}(t) - \bar{h}_{-}(t).$$

Ex. Car Motion

Using the classical Newtonian mechanics, we have

$$F - k\dot{x} = m\ddot{x}$$
.

- k: the coefficient of the frictional force, m: the mass of the car

$$\dot{x} = \frac{dx}{dt}, \, \ddot{x} = \frac{d^2x}{dt^2}$$

Ex. Car Motion

Possible Scenarios

- Case 1: $F = kv_0$, $\bar{x}(0) = x_0$, $\bar{v}(0) = v_0$
 - $\dot{x} = v; \ \dot{v} = k(v_0 v)/m$
 - $\bar{v}(t) = v_0, \bar{x}(t) = x_0 + tv_0$
- Case 2: $F = 0, \bar{x}(0) = 0, \bar{v}(0) = v_0$
 - $\dot{x} = v; \ \dot{v} = -kv/m$
 - $\bar{v}(t) = v_0 e^{-kt/m}, \bar{x}(t) = (mv_0/k)(1 e^{-kt/m})$
- Case 3: $F = F_0$, $\bar{x}(0) = 0$, $\bar{v}(0) = 0$
 - $\dot{x} = v; \ \dot{v} = (F_0 kv)/m$
 - $\bar{v}(t) = F_0(1 e^{-kt/m})/k, \, \bar{x}(t) = F_0 m(e^{-kt/m} 1 + kt/m)/k^2$

Ex. Case 3

$$F_0 = 500, k = 50, m = 1000$$

 $\bar{v}(t) = 10 - 10e^{-t/20}$

Continuous-Time Component

- $H = (I, O, S, Init, \mathbf{E}_O, \mathbf{E}_S)$
 - I,O,S: finite sets of real-valued input/output/state variables
 - Init: initialization constraint, defining [Init]] as the set of initial states.
 - $\bar{S}(0) \in [Init]$
 - $\mathbf{E}_O \in \mathsf{Expr}(I \cup S)^O, \mathbf{E}_S \in \mathsf{Expr}(I \cup S)^S$
 - Expr(V) denotes the set of real-valued expressions over a finite set of real-valued variables V.
 - For each variable in O(S), $\mathbf{E}_O(\mathbf{E}_S)$ gives a real-valued expression over $I \cup S$.
 - For $y \in O$ and $t \in \text{time}$, $\bar{y}(t)$ equals the value of $h_y = \mathbf{E}_O(y)$ evaluated using $\bar{I}(t)$ and $\bar{S}(t)$.
 - For $x \in S$ and $t \in \text{time}$, $\frac{d\bar{x}}{dt}$ equals the value of $f_x = \mathbf{E}_S(x)$ evaluated using $\bar{I}(t)$ and $\bar{S}(t)$.

Continuous-Time Component

```
• H = (I, O, S, Init, \mathbf{E}_O, \mathbf{E}_S)
I = \{z_1, ..., z_l\}, O = \{y_1, ..., y_m\}, S = \{x_1, ..., x_n\}
      • \bar{I}(t) = (\bar{z}_1(t), \dots, \bar{z}_l(t)), \, \bar{O}(t) = (\bar{y}_1(t), \dots, \bar{z}_m(t)), \, \bar{S}(t) = (\bar{x}_1(t), \dots, \bar{x}_n(t))
S(0) \in [Init] \subseteq Q_S
\mathbf{E}_{O} = (h_{y_1}, \dots, h_{y_m}),
                                                                              \mathbf{E}_{S} = (f_{x_1}, \dots, f_{x_n})
        \begin{cases} \bar{y}_{1}(t) = h_{y_{1}}(\bar{I}(t), \bar{S}(t)) \\ \vdots \\ \bar{y}_{m}(t) = h_{y_{m}}(\bar{I}(t), \bar{S}(t)) \end{cases} \begin{cases} d\bar{x}_{1}(t)/dt = f_{x_{1}}(\bar{I}(t), \bar{S}(t)) \\ \vdots \\ d\bar{x}_{n}(t)/dt = f_{x_{n}}(\bar{I}(t), \bar{S}(t)) \end{cases}
```

Existence/Uniqueness of Response Signals

 Problem: Given an input signal, when the system has at least (or exactly) one execution?

- The problem can be seen as an initial value problem.
 - An initial value problem is a differential equation $\dot{\mathbf{x}}(t) = f(t, \mathbf{x}(t))$ with $\mathbf{x} : \mathbb{R} \to \mathbb{R}^n$ and $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ together with a point $(t_0, \mathbf{x}_0) \in \mathbb{R} \times \mathbb{R}^n$ called initial value.
 - A solution to this initial value problem is a function \mathbf{x} that is a solution of the differential equation and satisfies $\mathbf{x}(t_0) = \mathbf{x}_0$.

Existence

- Let \mathbf{x} : time \rightarrow realⁿ be a *n*-dimentional signal that satisfies $d\mathbf{x}/dt = f(\mathbf{x})$ and $\mathbf{x}(0) = \mathbf{x}_0$.
- There exists at least one solution if f is a continuous function.
- Ex. The RHS of $\dot{v} = (F kv)/m$ is continuous.
- For a conditional differential equation $\dot{x} = \text{if } x = 0$ then 1 else 0, there are no differentiable signal \bar{x} that satisfies the equation.

Uniqueness

- Consider the differential equation $\dot{x} = x^{1/3}$ with the initial value $\bar{x}(0) = 0$. This differential equation has two solutions: $\bar{x}(t) = 0$ and $\bar{x}(t) = (2t/3)^{3/2}$.
- Let \mathbf{x} : time \rightarrow realⁿ be a *n*-dimentional signal that satisfies $d\mathbf{x}/dt = f(\mathbf{x})$ and $\mathbf{x}(0) = \mathbf{x}_0$.
- There exists exactly one solution if f is Lipschitz continuous.
 - A function $f : \text{real}^n \to \text{real}^n$ is said to be Lipschitz continuous if $\exists K \in \mathbb{R} . \forall u, v \in \mathbb{R}^n . ||f(u) f(v)|| \leq K||u v||.$

Lipschitz-Continuous Dynamics

- A continuous-time component $H=(I,O,S,Init,\mathbf{E}_O,\mathbf{E}_S)$ is said to have Lipschitz-continuous dynamics if:
 - for each $y \in O$, $h_v = \mathbf{E}_O(y)$ is Lipschitz-continuous, and
 - for each $x \in S$, $f_x = \mathbf{E}_S(x)$ is Lipschitz-continuous.
- If H has Lipschitz-continuous dynamics, then for a given initial state and a given continuous input signal \bar{I} , the corresponding response of the component as a signal over the state and the output variables exists and unique.

Ex. Helicopter Spin

- Goal: keep the helicopter from spinning by controlling the torque applied by the tail rotor.
 - Assumption: the only freedom of motion is the angular rotation around Z-axis.
- The motion is given by $\ddot{\theta} = T/I$
 - where θ : yaw (rotation around Z-axis), T : torque, I : the moment of inertia.
- The goal is represented as the spin $s=\dot{\theta}$ to be zero.

Ex. Simple Pendulum

 The dynamics of the system is described by the second-order nonlinear differential equation

$$ml^2 \dot{\varphi} = u - mgl \sin \varphi$$

where m is the mass, $g = 9.8 m/s^2$ is the gravitational acceleration, l is the length of the rod, φ is the angle of the pendulum, and u is the external torque.

 In the model, the second-order differential equation is replaced with two first-order differential equations.

Models with Disturbance

Ex. Car Motion on a Graded Road

• The grade of the road (θ) models the disturbance (uncontrolled input) of the system.

• Ex. design problem: Design a cruise controller with v as input and F as output such that composed system keeps v within $[v_0 - \Delta, v_0 + \Delta]$ for all continuous input θ in $[-\pi/6, \pi/6]$.

Composing Components

- Continuous-time components can be composed in a way similar to SRCs.
 - variable renaming, parallel composition, output hiding
- Await Dependencies
 - An output variable y awaits an input variable x if the value of y at time t depends on the value of x at time t.
 - Ex. In NetHeat, h_{net} awaits both h_+ and h_- .
 - Ex. In Car Motion, v awaits neither F nor θ .
 - Suppose that the value an output variable y is described by the expression h_y . The output variable y awaits an input variable w if w occurs in h_y .

Stability

- Correctness requirement for dynamical systems
 - Small perturbations in the input values should not cause disproportionately large changes in the outputs.
- Ex. Cruise Controller
 - Safety: Speed should always be within certain threshold values.
 - Liveness: Actual speed should eventually get close to the desired speed.
 - Stability: If grade of the road changes, speed should change only slowly.
- Formalization
 - Lyapunov stability of equilibria
 - BIBO (Bounded-Input-Bounded-Output) stability of response

Equilibria

- Consider a closed continuous-time component whose state S is an n -dimensional vector, with the dynamics given by the Lipschitz-continuous differential equation $\dot{S} = f(S)$. A state s_e of the system is said to be an equilibrium state if $f(s_e) = 0$.
 - closed: no input variables (or input values are fixed)
- If the initial state of the system equals s_e , then the system stays in the state at all times.

Equilibria

Examples

Car Motion

- Suppose that F=0. The dynamics of the component is described as:

$$\dot{x} = v; \ \dot{v} = -kv/m$$

- A state (x_e, v_e) is an equilibrium state iff $v_e = 0$.

Simple Pendulum

- Suppose that u=0. The dynamics of the component is described as:

$$\dot{\varphi} = v; \ \dot{v} = -g \sin \varphi / l$$

- A state (ϕ_e, v_e) is an equilibrium state iff $(\phi_e, v_e) = (0, 0)$ or $(\phi_e, v_e) = (-\pi, 0)$.

- Consider a closed continuous-time component whose state S is an n -dimensional vector, with the dynamics given by the Lipschitz-continuous differential equation $\dot{S} = f(S)$. Let s_e be an equilibrium state (i.e., $f(s_e) = 0$).
- As we have seen before, if the initial state s_0 equals to s_e then $\bar{S}(t)=s_0$.
- Suppose that the initial state s_0 is perturbed slightly (i.e., $||s_e s_0||$ is small).

- Consider a closed continuous-time component whose state S is an n -dimensional vector, with the dynamics given by the Lipschitz-continuous differential equation $\dot{S} = f(S)$. Let s_e be an equilibrium state (i.e., $f(s_e) = 0$).
- As we have seen before, if the initial state s_0 equals to s_e then $\bar{S}(t)=s_0$.
- Suppose that the state s is perturbed slightly (i.e., $||s_e s||$ equals to a small positive number).
- As time passes, will the system stay close to the equilibrium state? or will the system eventually return to the equilibrium state?

- Consider a closed continuous-time component H with n state variables S and dynamics given by $\dot{S} = f(S)$ where f is Lipschitz continuous.
- Given an initial state s_0 , let \bar{S}_0 be the unique response of H from s_0 .
 - An equilibrium S_e of H is said to be *stable* if $\forall \varepsilon > 0. \exists \delta > 0. \forall s_0 \in \llbracket Init \rrbracket . \forall t \in \text{time} . (\|s_e - s_0\| < \delta \rightarrow \|\bar{S}_0(t) - s_e\| < \varepsilon).$

- An equilibrium
$$s_e$$
 of H is said to be *asymptotically stable* if it is stable and $\exists \delta > 0. \, \forall s_0 \in \llbracket Init \rrbracket \, . \, \left(\|s_e - s_0\| < \delta \to \lim_{t \to \infty} \bar{S}_0(t) = s_e \right).$

Ex. Car Motion

- Suppose that F = 0. The state $(x_e, 0)$ is equilibrium.
- Let us start from the state (x_0, v_0) such that $||(x_e, 0) (x_0, v_0)||$ is small positive number.
- The car will slow down according to $\dot{v} = -kv/m$, with the velocity converging to 0. The position of the car converges to $x_f = x_0 + mv_0/k$.
- Thus, $||(x_e, 0) (\bar{x}(t), \bar{v}(t))||$ is bounded. So $(x_e, 0)$ is stable.
- The state $(x_e,0)$ is not asymptotically stable because $\bar{x}(t)$ converges to x_f .

Ex. Simple Pendulum

- Suppose that u=0. The states (0,0) and $(-\pi,0)$ are equilibria.
- The state $(-\pi, 0)$ is not stable. If we displace the pendulum slightly from this vertically upward position, the angular velocity v will keep increasing, thereby increasing the displacement φ .
- Clearly (0,0) is stable.
- (0,0) is not asymptotically stable (the pendulum may keep swinging forever) if we ignore the effects of dumping (friction).

Summary

- Dynamical Systems (1)
 - Control Systems, Signals
 - Continuous-Time Components
 - Existence/Uniqueness of Responses, Lipschitz-Continuous Dynamics
 - Stability, Equilibria, Lyapunov Stability