P.PORTO	ESCOLA Superior	Tipo de Prova Teste 1	Ano letivo 2021/2022	Data 11-04-2022
		Curso LSIRC+LEI		Hora 15:00
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas + 15 min

Nome:	Νύ	ímero:

Observações:

A avaliação desta Unidade Curricular, na modalidade de avaliação durante o período letivo, contempla os três elementos e respetivas ponderações: 35% Teste 1 + 35% Teste 2 + 30% Trabalho Prático.

Para a realização desta prova o estudante pode usar um formulário manuscrito e criado pelo próprio.

O formulário pode ter até uma página A4 (ou duas páginas A5).

No final da prova, têm de ser entregues o enunciado, as folhas de resposta e de rascunho, assim como o formulário, todos devidamente identificados com o nome e número de estudante.

Deve responder às questões colocadas neste enunciado, expeto para as devidamente indicadas.

Apresente todas as justificações.

Bom trabalho!

Eliana Costa e Silva e Isabel Cristina Duarte

- **1.** Considere os conjuntos $X = \{x^2 + 2 : x \in \{1,3\}\}$ e $Y = \{\emptyset, 0, 1, \{1\}, 3, \{3,10\}\}$
- **1.1. [0.8]** Complete, sem justificar, os espaços com ∈, ∉, ⊆, ⊇, =, ≠ por forma a obter afirmações verdadeiras:.

 $\{1,3\}$ _____ X $\{1,3\}$ _____ Y

 $\mathcal{P}(X)$ ____ $\mathcal{P}(Y)$

1.2. [0.8] Diga, justificando, se a função $f: \{1,3\} \rightarrow \mathcal{P}(X \cup \{1,3\})$, tal que $f(x) = \{x\} \cap \{3,10\}$ é bijetiva.

1.3. [1.0] Determine $X^2 \in \mathcal{P}(X) - \mathcal{P}(Y)$.

2. [0.8] Dê três exemplos de conjuntos infinitos enumeráveis.

ESTG-PR05-Mod013V2 Página 1 de 6

3. [1.8] Tendo em conta as igualdades apresentadas ao lado, determine:
$$\sum_{i=7}^{52}(i^2-i^3)+\sum_{i=1}^{100}\left(\frac{2}{3}\right)^i-7\prod_{i=20}^{89}3$$

$\sum_{i=0}^{n} ar^{i}, r \neq 0 \text{ (PG)}$	$a \times \frac{1 - r^{n+1}}{1 - r}, r \neq 1$
$\sum_{i=1}^{n} i$ (PA)	$\frac{n(n+1)}{2}$
$\sum_{i=1}^{n} i^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{i=1}^{n} i^3$	$\frac{n^2(n+1)^2}{4}$

4. [1.0] Sejam X, Y e W conjuntos tais que $Y \subseteq W$, $\#(X^2) = 36$, $\#(\mathcal{P}(Y)) = 16$ e #W = 7. Determine $\#(X \times (Y \oplus W))$

ESTG-PR05-Mod013V2 Página 2 de6

P.PORTO		Tipo de Prova Teste 1	Ano letivo 2021/2022	Data 11-04-2022
	ESCOLA SUPERIOR	Curso LSIRC+LEI	Hora 15:00	
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas + 15 min

Nome: ______Número: _____

5. [1.4] Mostre, recorrendo a indução Matemática que, para todo $n \in IN$:

$$\sum_{j=1}^{n} (10j - 5) = 5 n^2$$

6. [1.4] Considere a fórmula de recorrência dada por:

$$\begin{cases} S(1) = 3 \\ S(n) = 4 S(n-1) + 5, \ n \ge 2 \end{cases}$$

Recorrendo ao algoritmo EGV (Expand, Guess, Verify), encontre a fórmula fechada correspondente.

ESTG-PR05-Mod013V2 Página 3 de6

P.PORTO		Tipo de Prova Teste 1	Ano letivo 2021/2022	Data 11-04-2022
	ESCOLA SUPERIOR	Curso LSIRC+LEI		Hora 15:00
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas+15 min

7.	Considere o conjunto $A = \frac{1}{2}$	$\{1,4,6,7\}$, e as duas relações sequintes definidas	em A

$$R = \{(x, y): |x - y| \text{ \'e divis\'ivel por 3} \} \in S = \{(1,4), (1,7), (4,4), (4,6), (6,7), (7,6), (7,7)\}$$

- **7.1.** [1.0] Represente a relação *S* sob a forma de uma matriz e represente relação *R* graficamente;
 - 1 4
 - 6 7
- **7.2. [1.4]** Indique, justificando, se alguma das relações é de equivalência e em caso afirmativo escreva o seu conjunto quociente;

7.3. [0.6] Indique, justificando, se alguma das relações é de ordem parcial;

7.4. [1.2] Calcule $R^{-1} \cup S \in S^2 \circ (S \cap R)$.

P.PORTO	ESCOLA Superior	Tipo de Prova Teste 1	Ano letivo 2021/2022	Data 11-04-2022
		Curso LSIRC+LEI	Hora 15:00	
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas + 15 min

Nome: ______Número: _____

8. Considere o fragmento de código sciente onde são definidas as matrizes de adjacência M1 e M2 de dois grafos com vértices V1={a,b,c,d,e,f} e V2={A,B,C,D}, respetivamente. Com base no output, responda às questões seguintes.

> M1=[1 0 0 1 0 1;	> M1′	`2					> M2^2
> 1 0 0 0 0 0;	ans =	=					ans =
> 1 1 0 0 0 1;	2.	1.	1.	2.	2.	1.	6. 2. 4. 2.
> 0 0 1 0 1 0;	1.	0.	0.	1.	0.	1.	2. 1. 1. 0.
> 0 0 1 0 0 1;	3.	1.	0.	2.	1.	1.	4. 1. 6. 2.
> 1 1 0 1 1 0];	1.	1.	1.	0.	0.	2.	2. 0. 2. 2.
	2.	2.	0.	1.	1.	1.	> M2^4
> M2=[1 0 2 1	2.	0.	2.	1.	1.	2.	ans =
> 0 0 1 0	> M1′	`4					60. 18. 54. 24.
> 2 1 1 0	ans =	=					18. 6. 15. 6.
> 1 0 0 1];	16.	9.	6.	10.	8.	12.	54. 15. 57. 24.
	5.	2.	4.	3.	3.	5.	24. 6. 24. 12.
	13.	7.	7.	9.	8.	11.	> M2+M2^2+M2^3+M2^4
	10.	2.	5.	7.	5.	7.	ans =
	11.	5.	5.	8.	6.	9.	83. 24. 78. 35.
	17.	7.	7.	11.	9.	11.	24. 8. 23. 8.
							78. 23. 79. 32.
							35. 8. 32. 19.

8.1. [1.2] Relativamente ao grafo definido pela matriz M1, indique, justificando: i) todos os caminhos de comprimento 2 do terceiro para o quarto vértice;

ii) o número de caminhos de comprimento 4 do quarto para o quinto vértice;

8.2. [1.2] Relativamente ao grafo definido pela matriz M2, justifique se se trata de: i) de um grafo fortemente conexo;

ii) de um grafo euleriano.

ESTG-PR05-Mod013V2 Página 5 de6

P.PORTO	ESCOLA SUPERIOR	Tipo de Prova Teste 1	Ano letivo 2021/2022	Data 11-04-2022
		Curso LSIRC+LEI	Hora 15:00	
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas+15 min

- **9.** Relativamente ao grafo apresentado ao lado:
- **9.1. [1.0]** classifique-o, indique o conjunto dos vértices e das arestas, assim como sua ordem e dimensão;

9.2. [1.0] determine a matriz de adjacências e, com base nessa matriz, determine o grau de cada vértice.

9.3. [1.0] averigue, justificando, se se trata de um grafo euleriano ou semi-euleriano, e, se possível, determine um circuito ou caminho de Euler, recorrendo ao Algoritmo de Fleury.

10. [1.4] Uma multinacional pretende testar todas as ligações de circuitos dedicados entre as suas filiais sediadas em 7 países (A – Alemanha, B – Bélgica, C – Canadá, D – Dinamarca, E – Espanha, F –Finlândia e G – Grécia), utilizando uma mensagem de diagnóstico que terá de percorrer todas as ligações. As ligações entre as diferentes filiais são dadas na figura ao lado. Verifique se é possível que a mensagem parta da Dinamarca, D, percorra todas as ligações exatamente uma vez e retorne à Dinamarca. Caso seja possível, indique um circuito que o permita fazer.

ESTG-PR05-Mod013V2 Página 6 de6