SI251 - Convex Optimization, 2024 Spring Homework 3

Name: **Zhou Shouchen** Student ID: 2021533042

Due 23:59 (CST), Apr. 24, 2024

1. (50 pts) **L-smooth functions**. Suppose the function $f : \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable. Please prove that the following relations holds for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}$ if f with an L-Lipschitz continuous conditions,

$$[1] \Rightarrow [2] \Rightarrow [3]$$

[1]
$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \le L ||\mathbf{x} - \mathbf{y}||^2$$
,

$$[2] f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||^2,$$

$$[3] \ f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{1}{2L} \|\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\|^2, \forall \mathbf{x}, \mathbf{y}.$$

Solution:

 $[1] \Rightarrow [2]$:

Define g(t) = f()

So we have proved that $[1] \Rightarrow [2]$.

 $[2] \Rightarrow [3]:$

So we have proved that $[2] \Rightarrow [3]$.

So above all, we have proved that $[1] \Rightarrow [2] \Rightarrow [3]$.

2. (50 pts) Backtracking line search. Please show the convergence of backtracking line search on a m-strongly convex and M-smooth objective function f as

$$f\left(x^{(k)}\right) - p^{\star} \le c^{k} \left(f\left(x^{(0)}\right) - p^{\star}\right)$$

where $c = 1 - \min\{2m\alpha, 2\beta\alpha m/M\} < 1$.

Algorithm 9.2 Backtracking line search.

given a descent direction Δx for f at $x \in \operatorname{dom} f$, $\alpha \in (0, 0.5)$, $\beta \in (0, 1)$. t := 1.

while $f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^T \Delta x$, $t := \beta t$.

Solution: