COL 351: Analysis and Design of Algorithms

Lecture 3

Facebook Network

Given: A Facebook network G = (V, E) with n users.

Question: What is the minimum number of accounts that when deactivated results in zero friends of all remaining users.

Example:

counter-example

Dus: Can greedily removing vertices of mandegree gives obtimal?

Vertex Cover

Given: A graph G = (V, E) with n vertices.

Def: A subset $S \subseteq V$ such that for each $(a, b) \in E$, at least one end-point of (a, b) lies in S.

Example:

Optimization question: Find a vertex-cover of <u>minimum</u> possible size.

Can we find optimal solution efficiently?

Approximate Vertex Cover

Given: A graph G = (V, E) with n vertices.

Def: A subset $S \subseteq V$ such that for each $(a, b) \in E$, at least one end-point of (a, b) lies in S.

Approximation Problem: Find a solution S satisfying ...

Greedy Approach-I

Repeatedly pick an uncovered edge, and add one of its end-points in the solution set.

Initialise $S := \phi$.

While there is an uncovered edge:

- Pick an uncovered edge (x, y).
- $\operatorname{Add} x \operatorname{or} y \operatorname{to} S.$
- Mark all edges incident to "new" vertex added to S as covered.

Return S.

Greedy Approach-II

Repeatedly choose vertices incident to the largest number of *currently* uncovered edges.

Initialise $S := \phi$.

While there exists an uncovered edge:

- Pick a vertex x incident to maximum number of uncovered edges.
- Add x to S.
- Mark all edges incident to x as covered.

Return S.

We will prove in lecture 3 that approximation is $O(\log n)$

Greedy Approach-II

Repeatedly choose vertices incident to the largest number of currently uncovered edges.

= colored verticas.

Red
$$-\underline{6}$$

Solve = 3

Blue -8

Green -12

Grey -24

deg = 1

Greedy-III (and stupid)

Repeatedly pick an uncovered edge, and add both of its end-points in the solution set.

Initialise $S := \phi$.

While there exists an uncovered edge:

- Pick an uncovered edge (x, y).
- Add x and y to S.
- Mark all edges incident to "new" vertices added to S as covered.

Return S.

Suppose edges & carmed ore: e, e_2 e_3 | VC opt | > 3

$$| VCopt | \ge 3$$

This gives us 2-appenimation.

Greedy-III

Repeatedly pick an uncovered edge, and add both of its end-points in the solution set.

redges considered at this step don't share a verten

Initialise $S := \phi$.

While there exists an uncovered edge:

- Pick an uncovered edge (x, y).
- $\operatorname{Add} x \operatorname{and} y \operatorname{to} S.$
- Mark all edges incident to "new"
 vertices added to S as covered.

Return S.

Theorem:

If S is the output of the above algorithm, then $|S| \leq 2 \ VC_{opt}$, where VC_{opt} is an optimal vertex cover.

Correctness

Theorem:

If S is the output of the algorithm, then $|S| \leq 2 |VC_{opt}|$, where $|VC_{opt}|$ is an optimal vertex cover.

Proof:

- @ greedy sol size = ISI = 2 IMI
- \odot [VCopt] \Rightarrow [M] = $\frac{|S|}{2}$

Vertex Cover in Trees/Forests

Theorem: We can compute a smallest verten cover for tree on n vertices in O(n) time

Topological Sort: Greedy Algorithm

GOAL : A linear ordering of vertices of DAG such that for every directed edge (u, v), u comes before v in the ordering.

H.W. 1 Prove that DAG contains a verter of deg "0"

H.W.2 Give O(m+n) time algo to find topological ordering of DAG using only ARRAYS & DOUBLY-LINK-LIST.