7.1

- 18. 至少添加 11 个顶点。
- 19. v_1 v_3 v_{10} v_5 v_8 v_9

- 20. 第 i 层顶点数为 2ⁱ , 共 1+2+2²+2³······+2ⁿ = 2ⁿ⁺¹-1 个顶点
- **21.** Basis step: n = 1. An n-tree of height 1 can have at most n leaves by definition.

Induction step: Use P(i): An n-tree of height i has at most n^i leaves to show P(i+1): An n-tree of height i+1 has at most n^{i+1} leaves. The leaves of a tree T of height i+1 belong to the subtrees of T whose roots are at level 1. Each of these subtrees has height at most i, and there are at most n of them. Hence the maximum number of leaves of T is $n \cdot n^i$ or n^{i+1} .

22. 顶点数最少时,第一层 1 个,第二层 n 个,第三层 n 个,共 1+2n 个,若减少顶点,则不构成完全 n-树

顶点数最多时,第一层 1 个,第二层 n 个,第三层 n*n 个,共 1+n*(n+1) 个,若增加顶点,则会超出 3 层。

所以,顶点为 1+kn, 其中 $2 \leq k \leq n+1$ 。

24. 假设 T 是自反的,假设 $a \in A$,则存在 a T a,那么这棵树存在 回路,这与树的定义矛盾,故 T 是非自反的。

- 29. 4. The tree of maximum height has one vertex on each level.
- 32. (1) 均衡
- (2) 均衡 (3) 非均衡 (4) 非均衡

- **33.** (a) $2 \le n$.
- **(b)** $1 \le k \le 7$.
- 34. 4≤n
- 7.2

7.

13.

18.

25. (a) CAR. (b) SEAR. (c) RACE. (d) SCAR.

中文版为 CER

26. (a) 11111011100 (d) 11111101100

(b) 110010

(c) 1011110

27.

7.3

10. ZWMADQESCNTFKLJGRMT

15. AZMWSDEQTCLKNFTMGJR

19. 4

20. -2/7

21. 15/16

22. 153/32

其他答案也可

33.

37. (a) • v_0

(c)

38. 不是,例如下面的树是均衡 2-树,但不是 AVL 树

7.4

16 2 种

17

19

26 由定理 2(b),从 R 中去掉无向边直到再去掉无向边将导致关系不连通为止,所得结果即为 R 的无向生成树。

7.5

6

9

11

设 R 是 n 个顶点的对称连通关系。 $S=\{e1,e2,...,ek\}$ 是 R 的加权边的集合。所选边为 em。

步骤 1: 设 E={em}, 用 S-{em}取代 S

步骤 2: 在 S 中选择最小权的边 ei, 并且不与 E 中的元素形成回路。用 E U {ei}代替 E, 并用 S-{ei}代替 S.

步骤 3: 重复步骤指导|E|=n-1.

18

设 R 是 n 个顶点的对称连通关系。 $S=\{e1,e2,...,ek\}$ 是 R 的加权边的集合。

步骤 1: 在 S 中选择最大权的边 e1, 设 E={e1}, 用 S-{e1}取代 S

步骤 2: 在 S 中选择最大权的边 ei, 并且不与 E 中的元素形成回路。用 E U {ei}代替 E, 并用 S-{ei}代替 S.

步骤 3: 重复步骤指导|E|=n-1.

23

If each edge has a distinct weight, there will be a unique maximal spanning tree since only one choice can be made at each step.