

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

к лабораторной работе №18
По курсу: «Функциональное и логическое программирование»

Студентка ИУ7-65Б Оберган Т.М.

Преподаватели Толпинская Н.Б. Строганов Ю.В.

Оглавление

Задание	3
Вопросы	3
Листинг	5
Таблица	6

Задание

Используя хвостовую рекурсию, разработать программу, позволяющую найти

- n!,
- п-е число Фибоначчи.

Убедиться в правильности результатов.

Для одного из вариантов ВОПРОСА и каждого задания составить таблицу, отражающую конкретный порядок работы системы:

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: <u>вершина – сверху!</u> Новый шаг надо начинать с нового состояния резольвенты!

Вопрос:.....

No	Состояние	Для каких термов	Дальнейшие действия:
ша	резольвенты, и	запускается алгоритм	прямой ход или откат
га	вывод: дальнейшие действия (почему?)	унификации: T1=T2 и каков результат (и подстановка)	(почему и к чему приводит?)
1			Комментарий, вывод

Вопросы

Что такое рекурсия?

Рекурсия – это ссылка на описываемый объект при описании объекта.

Как организуется хвостовая рекурсия в Prolog?

- Рекурсивный вызов единственен и расположен в конце тела правила
- Не должно быть возможности сделать откат до вычисления рекурсивного вызова

Как организовать выход из рекурсии в Prolog?

С помощью отсечения.

Какое первое состояние резольвенты?

Заданный вопрос (goal).

В каком случае система запускает алгоритм унификации?

Система запускает алгоритм унификации автоматически при необходимости что-то доказать

Каково назначение и результат использования алгоритма унификации?

Унификация – механизм логического вывода. Результат – подстановка.

В каких пределах программы переменные уникальны?

Именованная переменная уникальна в рамках предложения, в котором она используется. Анонимные переменные всегда уникальны.

Как применяется подстановка, полученная с помощью алгоритма унификации?

Подстановка применяется к целям в резольвенте путем замены текущей переменной на соответствующий терм.

Как изменяется резольвента?

Преобразования резольвенты выполняются с помощью редукции. Редукцией цели G с помощью программы P называется замена цели G телом того правила из P, заголовок которого унифицируется с целью. Новая резольвента образуется в два этапа:

- 1. в текущей резольвенте выбирается одна из подцелей и для неё выполняется редукция;
- 2. к полученной конъюнкции целей применяется подстановка, полученная как наибольший общий унификатор цели и заголовка сопоставленного с ней правила.

В каких случаях запускается механизм отката?

Механизм отката запустится в случае неудачи алгоритма унификации.

Листинг

```
predicates
        factorial(integer, integer).
        factorial(integer, integer, integer).
clauses
        factorial (N, -1) := N < 0, !. % error
        factorial (0, 1) :- !.
        factorial(N, Res) :- factorial(N, 1, Res).
        factorial(1, Res, Res) :- !.
        factorial(N, Cur, Res) :-
               NewN = N - 1,
               NewMult = Cur * N,
               factorial (NewN, NewMult, Res).
goal
        %factorial(-10, Res).
        %factorial(0, Res).
        %factorial(5, Res).
```

```
predicates
       fib(integer, integer). %target, res
       fib(integer, integer, integer, integer). %targer, current,
prevRes, prevRes2, res
       sign(integer, integer).
clauses
       fib(0, 0) :- !.
       fib(1, 1) :- !.
       fib(N, Res) :-
               N < 0,
               NormalN = N \star -1,
               fib (NormalN, PreRes),
               sign(NormalN, Sign),
               Res = PreRes * Sign, !.
        fib(N, Res) :- fib(N, 2, 0, 1, Res).
        fib(N, N, Prev1, Prev2, Res) :- Res = Prev1 + Prev2, !.
        fib(N, CurN, Prev1, Prev2, Res) :-
               NewN = CurN + 1,
               Next = Prev1 + Prev2,
               fib(N, NewN, Prev2, Next, Res).
       sign(N, 1) :- (N mod 2) = 1, !.
       sign(, -1).
goal
       %fib(-9, Res). % 34
       fib(-8, Res). % -21
       fib(-2, Res). % -1
       %fib(2, Res). % 1
       %fib(8, Res). % 21
```

Эффективность достигнута за счет использования хвостовой рекурсии и использования отсечения.

Таблица

Boпрос: factorial(2, Res).

№ шага	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
1	factorial(2, Res).	factorial(2, Res) = factorial(N, -1) Vcnex N = 2 Res = -1	Прямой ход. Тело правила заносится в резольвенту.
2	N < 0 !	Сравнение: 2 < 0 Ложь	Откат к 1. Переход к следующему предложению
3	factorial(2, Res).	factorial(2, Res) = factorial(0, 1) Неудача	Переход к следующему предложению
4	factorial(2, Res).	factorial(2, Res) = factorial(N, Res) Vcπex N = 2 Res = Res	Прямой ход. Тело правила заносится в резольвенту.
5	factorial(N, 1, Res)	factorial(2, 1, Res) = factorial(1, Res, Res) Неудача	Переход к следующему предложению
6	factorial(N, 1, Res)	factorial(2, 1, Res) = factorial(N, Cur, Res) Успех N = 2 Cur = 1 Res = Res	Прямой ход. Тело правила заносится в резольвенту.
7	NewN = N - 1 $NewMult = Cur * N$ $factorial(NewN,$ $NewMult, Res)$	NewN = $2 - 1 = 1$	Прямой ход.
8	NewMult = Cur * N factorial(NewN, NewMult, Res)	NewMult = 1 * 2 = 2	Прямой ход.
9	factorial(NewN, NewMult, Res)	factorial(1, 2, Res) = factorial(1, Res, Res) Vcnex Res = Res = 2	Прямой ход.
10			Резольвента пуста. Res = 2 Откат к 4. Конец процедуры factorial арности 2. Система завершает работу.

Boпрос: fib(2, Res).

№ шага	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
1	fib(2, Res)	fib(2, Res) = fib(0, 0) Неудача	Переход к следующему предложению
2	fib(2, Res)	fib(2, Res) = fib(1, 1) Неудача	Переход к следующему предложению
3	fib(2, Res)	fib(2, Res) = fib(N, Res) Успех N = 2 Res = Res	Прямой ход. Тело правила заносится в резольвенту.
4	N < 0 NormalN = N * -1 fib(NormalN, PreRes) sign(NormalN, Sign), Res = PreRes * Sign !	Сравнение: 2 < 0 Ложь	Откат к 3. Переход к следующему предложению
5	fib(2, Res)	fib(2, Res) = fib(N, Res) Успех N = 2 Res = Res	Прямой ход. Тело правила заносится в резольвенту.
6	fib(N, 2, 0, 1, Res)	fib(2, 2, 0, 1, Res) = fib(N, N, Prev1, Prev2, Res) Успех Prev1 = 0 Prev2 = 1 Res = Res	Прямой ход. Тело правила заносится в резольвенту.
7	Res = Prev1 + Prev2 !	Res = $0 + 1 = 1$	Прямой ход.
8	!		Найдено решение. Res = 1 Ввиду отсечения не будет попыток найти другие решения fib(N, 2, 0, 1, Res). Откат к 5. Конец fib арности 2. Система завершит свою работу.