NAME: LAKSHANSH CHOUHAN

AIM - The first objective is to estimate the parameters of Antoine equation using regression. While several functional forms are proposed to predict vapor pressure (p vap) as a function of temperature, the Antoine equation is often preferred. The form of the equation is:

$$\ln(p^{vap}) = A - \frac{B}{T}$$

where A and B are parameters that vary with compounds, and T is temperature. The data of p vap for different temperature is given for CH3OH and H2O.

- 1. Determine A and B for CH3OH and H2O using linear regression on the training dataset.
- 2. Report the training and test dataset's root mean squared error.
- 3. Make plots for CH3OH and H2O to show the predicted $\ln (p \ vap)$ and the actual $\ln (p \ vap)$ as a function of temperature (T).

The second objective is to compute the molar volume of CO2 and H2 in mol/m3 at 78 bar and 210 °C using ideal gas, Redlich-Kwong (RK), and Peng-Robinson (PR) equations of state. RK and PR belong to a class of cubic equation of state. The generic form of the equation can be stated as follows:

$$V = \frac{RT}{P} + b - \frac{a(T)}{P} \frac{V - b}{(V + \epsilon b)(V + \sigma b)}$$

METHOD -

- 1. Load the data for both components given in the Excel sheet using the readmatrix function.
- 2. Use the fitlm function with the training dataset to estimate A and B for CH3OH and H2O.
- 3. Using the computed parameters, estimate p vap for the testing set and compute the root mean squared error.

The above equation is nonlinear in V and may be solved using the fsolve function. It is often convenient to define the following dimensionless quantities:

$$\beta = \frac{bP}{RT}$$
, $q = \frac{\alpha(T)}{bRT}$, $\Omega = \frac{\beta T_r}{P_r}$, $\Psi = \frac{q\Omega T_r}{\alpha(T_r,\omega)}$, $T_r = \frac{T}{T_c}$, $P_r = \frac{P}{P_c}$

Table 1. Parameters for equations of state.

Eq. of state	$\alpha(T_r)$	σ	ϵ	Ω	Ψ
RK	$T_r^{-0.5}$	1	0	0.08664	0.42748
PR	$[1 + (0.37464 + 1.54226\omega - 0.26992\omega^{2})(1 - T_{r}^{0.5})]^{2}$	1+√2	1-√2	0.0778	0.45724

Table 2. Parameters for CO₂ and H₂.

Substance	P_c (bar)	<i>T_c</i> (K)	ω
CO ₂	7.38	304.15	0.225
H ₂	12.93	33.18	-0.22

RESULT -

- A_CH3OH = 24.850034739689832
- A_H2O = 24.695726929983188
- B_CH3OH = 4.510372064085043e+03
- B_H2O = 4.940460460481752e+03
- rms_test_CH3OH = 0.073576299704207
- rms_train_CH3OH = 0.073996352008509
- rms_test_H20 = 0.075949087194976
- rms_train_H2O = 0.078482677132507
- V_CO2_PR = 5.845814056333681e-04
- V_CO2_RK = 5.881422791853185e-04
- V_H2_PR = 5.128264014540197e-04
- V_H2_RK = 5.184023916415067e-04

