- Write the dimensions of $a \times b$ in the relation $E = \frac{b x^2}{at}$, where E is the energy, x is the displacement, and t is the time.
 - (1) ML^2T
- (2) $M^{-1}L^2T^1$
- (3) ML^2T^{-2}
- (4) MLT^{-2}
- If the velocity of light C, the universal gravitational constant G, and Planck's constant h are chosen as fundamental units, the dimensions of mass in this system are
 - (1) $h^{1/2}C^{1/2}G^{-1/2}$
- (2) $h^{-1}C^{-1}G$
- (3) hCG^{-1}
- (4) hCG
- The effective length of a simple pendulum is the sum of the following three: length of string, radius of bob, and length of hook.

In a simple pendulum experiment, the length of the string, as measured by a meter scale, is 92.0 cm. The radius of the bob combined with the length of the hook, as measured by a vernier callipers, is 2.15 cm. The effective length of the nendulum is

- (1) 94.1 cm
- (2) 94.2 cm
- (3) 94.15 cm
- (4) 94 cm
- The moment of inertia of a body rotating about a given axis is 12.0 kg m² in the SI system. What is the value of the moment of inertia in a system of units in which the unit of length is 5 cm and the unit of mass is 10 g?
 - (1) 2.4×10^3
- (2) 6.0×10^3
- $(3) 5.4 \times 10^5$
- (4) 4.8×10^5
- 37. If the velocity (V), acceleration (A), and force (F) are taken as fundamental quantities instead of mass (M), length (L), and time (T), the dimensions of Young's modulus (Y) would be
 - (1) FA^2V^{-4}
- (2) FA^2V^{-5}
- (3) FA^2V^{-3}
- (4) FA^2V^{-2}
- The percentage errors in the measurement of mass and speed are 2% and 3%, respectively. How much will be the maximum error in the estimation of KE obtained by measuring mass and speed?
 - (1) 5%

(2) 1%

(3) 8%

- (4) 11%
- 39. An experiment measures quantities a, b, and c, and then Xis calculated from $X = \frac{a^{1/2}b^2}{c^3}$. If the percentage errors in
 - a, b, and c are $\pm 1\%$, $\pm 3\%$, and $\pm 2\%$, respectively, then the percentage error in X can be
 - $(1) \pm 12.5\%$
- $(2) \pm 7\%$

 $(3) \pm 1\%$

- (4) ±4%
- 40. The resistance of a metal is given by R = V/I, where V is potential difference and I is the current. In a circuit, the potential difference across resistance is $V = (8 \pm 0.5) \text{ V}$ and current in resistance, $I = (4 \pm 0.2)$ A. What is the value of resistance with its percentage error?
 - (1) $(2 \pm 5.6\%) \Omega$
- (2) $(2 \pm 0.7\%) \Omega$
- (3) $(2 \pm 35\%) \Omega$
- (4) $(2 \pm 11.25\%) \Omega$

- The mass of the liquid flowing per second per unit area of cross section of the tube is proportional to I" and v, where 41. P is the pressure difference and v is the velocity, then the relation between x and y is
 - (1) x = y
- (2) x = -y

- (4) $y = -x^2$
- A physical quantity x is calculated from $x = akr \sqrt{c}$. Calculate the percentage error in measuring x when the percentage errors in measuring a, b, and c are 4, 2, and 3%, respectively.
 - (1) 7%

(2) 9%

(3) 11%

- (4) 9.5%
- The specific resistance ρ of a circular wire of radius r, resistance R, and length l is given by $\rho = \pi r^2 R/l$. Given: $r = 0.24 \pm 0.02$ cm, $\bar{R} = 30 \pm 1$ Ω , and $l = 4.80 \pm 0.01$ cm. The percentage error in ρ is nearly
 - (1) 7%

(2) 9%

(3) 13%

- (4) 20%
- Using mass (M), length (L), time (T), and electric current (A)as fundamental quantities, the dimensions of permittivity will be
 - (1) $[MLT^{-1}A^{-1}]$
- (2) $[MLT^{-2}A^{-2}]$
- (3) $[M^{-1}L^{-3}T^4A^2]$
- (4) $[M^2L^{-2}T^{-2}A]$
- Assuming that the mass m of the largest stone that can be moved by a flowing river depends upon the velocity v of 45. the water, its density ρ , and the acceleration due to gravity g. Then m is directly proportional to
 - (1) v^3

(2) VA

 $(3) v^5$

- (4) v
- A spherical body of mass m and radius r is allowed to fall 46. in a medium of viscosity η . The time in which the velocity of the body increases from zero to 0.63 times the terminal velocity (v) is called time constant (τ). Dimensionally, τ can be represented by
 - (1) $\frac{mr^2}{6\pi n}$

- (2) $\sqrt{\frac{6\pi mr\eta}{\sigma^2}}$
- (3) $\frac{m}{6\pi\eta rv}$
- (4) None of these
- A liquid drop of density ρ , radius r, and surface tension σ oscillates with time period T. Which of the following expressions for T^2 is correct?

(2) $\frac{\rho\sigma}{3}$

(3) $\frac{r^3\sigma}{2}$

- (4) None of these
- A highly rigid cubical block A of small mass M and side L is 48. fixed rigidly on the other cubical block of same dimensions and of modulus of rigidity η such that the lower face of A completely covers the upper face of B. The lower face of B is rigidly held on a horizontal surface. A small force F is applied perpendicular to one of the side faces of A. After the force is withdrawn, block A executes small oscillations, the time period of which is given by
- (2) $2\pi\sqrt{M\eta/L}$
- (1) $2\pi\sqrt{M\eta L}$ (3) $2\pi\sqrt{ML/\eta}$
- (4) $2\pi \sqrt{M/\eta L}$