Санкт-Петербургский Политехнический Университет Петра Великого Институт Компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная работа 13 Задание 1 Предмет: «Проектирование реконфигурируемых гибридных вычислительных систем» **Тема: «Сравнение типов данных»**

Студент: Ерниязов Т.Е. Гр. № 3540901/81502

Преподаватель: Антонов А.П.

Оглавление

1.	Задание	4
2.	Первое решение	6
2.1.	Исходный код	6
2.2.	Моделирование	7
2.3.	Синтез	7
2.4	4. Использование ресурсов	7
3.	Второе решение	9
3.1	1. Исходный код	9
3.2	2. Моделирование	. 10
3.3	3. Синтез	. 10
3.4	4. Использование ресурсов	. 10
4.	Третье решение	. 12
4.1.	Исходный код	. 12
4.2.	Моделирование	. 13
4.3.	Синтез	. 13
4.4.	Использование ресурсов	. 13
5.	Выволы	. 15

1. Залание

- Создать проект lab13_1
- Микросхема: xa7a12tcsg325-1q
- В папке Source имеется 3 папки с описанием одной функции, но разными типами данных
- Ознакомиться с описаниями функций
- Ознакомиться с тестами
- Исследование:
- Solution_1a для функции types_standard
 - о Осуществить моделирование (с выводом результатов в консоль)
 - о задать: clock period 10; clock_uncertainty 0.1
 - о установить реализацию ПО УМОЛЧАНИЮ
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - о Выполнить cosimulation и привести временную диаграмму
- Solution_2a для функции types_float_double
 - о Осуществить моделирование (с выводом результатов в консоль)
 - o задать: clock period 10; clock_uncertainty 0.1
 - о установить реализацию ПО УМОЛЧАНИЮ
 - о осуществить синтез
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)

- о На скриншоте показать Latency
- о На скриншоте показать Initiation Interval
- resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- о Выполнить cosimulation и привести временную диаграмму
- Сравнить два решения (solution_1a и solution_2a) и сделать выводы
- Solution_3a для функции apint_arith
 - о Осуществить моделирование (с выводом результатов в консоль)
 - о задать: clock period 10; clock_uncertainty 0.1
 - о установить реализацию ПО УМОЛЧАНИЮ
 - о осуществить синтез
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - о Выполнить cosimulation и привести временную диаграмму
- Сравнить два решения (solution_1a и solution_3a) и сделать выводы
- Сравнить два решения (solution_2a и solution_3a) и сделать выводы

2. Первое решение

2.1. Исходный код

```
1  #include "source.h"
2
3  void types_standard(
4     din_A inA,
5     din_B inB,
6     din_C inC,
7     din_D inD,
8     dout_1 *out1,
10     dout_3 *out2,
10     dout_4 *out4) {
12
13     *out1 = inA * inB;
14     *out2 = inB + inA;
15     *out3 = inC / inA;
16     *out4 = inD % inA;
17 }
```

Рис. 2.1.1. Source code

```
#ifndef _TYPES_STANDARD_H_
#define _TYPES_STANDARD_H_

#include <stdio.h>
#include <stdint.h>

#include <stdint.h

#inc
```

Рис. 2.1.2. Source code - header

2.2. Моделирование

По результатам моделирования видно, что устройство работает корректно.

Рис. 2.2. Modeling result

2.3.Синтез

Рис. 2.3. Performance estimates

Полученная величина задержки укладывается в заданное значение.

2.4. Использование ресурсов

Utilization Estimates								
□ Summary								
Name	BRAM_18K	DSP48E	FF	LUT	URAM			
DSP	-	1	-	-	-			
Expression	-	-	0	15	-			
FIFO	-	-	-	-	-			
Instance	-	-	1173	707	-			
Memory	-	-	-	-	-			
Multiplexer	-	-	-	309	-			
Register	er -		68	-	-			
Total	0	1	1241	1031	0			
Available	40	40	16000	8000	0			
Utilization (%)	0	2	7	12	0			

Рис. 2.4.1. Utilization estimates

Рис. 2.4.2. Performance profile

Рис. 2.4.3 Resource profile

Рис. 2.4.4. Schedule viewer

Рис. 2.4.5. Resource viewer

Исходя из диаграммы видно, что дольше всего выполняются операции деление нацело и деление с остатком — это связано с используемым типом данных.

3. Второе решение

3.1. Исходный код

Рис.3.1.1 Source code

```
#ifndef _SOURCE_FLOAT_H_
#define _SOURCE_FLOAT_H_

#include <math.h>
#include <stdio.h>
#include <stdio.h>
#include <stdiot.h>

#include <stdiot.h>

#include <stdiot.h>

#include <stdiot.h>

#unclude <stdiot.h

#unclude <
```

Рис.3.1.2 Source code – header

```
#include "source_float.h"

int main() {
    din_A inA;
    din_B inB;
    din_C inC;
    din_D inD;
    dout_1 out1;
    dout_2 out2;
    dout_3 out3;
    dout_4 out4;|

int i, retval = 0;
    FILE "fp;

fp = fopen("result.dat", "w");

for (i = 0; i < N; i++) {
    inA = i + 12.3;
    inB = i + 12.34;
    inC = i + 123.456;
    inD = i + 123.45678;

    types_float_double(inA, inB, inC, inD, &out1, &out2, &out3, &out4);
    fprintf(fp, "%f"%f=%f; %f+%f=%f; %f sqrt =%.5f \n", inA, inB, out1, inB, inC, inA, out3, inD, out4);
}
fclose(fp);

retval = system("diff --brief -w result.dat result.golden.dat");
if (retval = 0) {
    printf("_____ Pass!_____\n");
} else {
    printf("_____ Fail!_____\n");
    return retval;
}
return retval;
}
</pre>
```

Рис.3.1.3 Test code

3.2. Моделирование

По результатам моделирования видно, что устройство работает корректно.

Рис.3.2 Modeling result

3.3. Синтез

Полученная величина задержки укладывается в заданное значение.

rformance	e Estimate	s				
Timing						
Summ Sum	агу					
Clock	Target	Estimate	d Uncer	tainty		
ap_clk	10.00 ns	8.997	ns 0).10 ns	10 ns	
∃ Latency ☐ Summ	ary					
⊡ Summ	(cycles)	Latency (absolute)	Interva	al (cycles)	
⊡ Summ		Latency (absolute) max	Interva min	al (cycles)	Туре

Рис. 3.3. Performance estimates

3.4. Использование ресурсов

Utilization Estimates						
─ Summary						
Name	BRAM_18K	DSP48E	FF	LUT	URAM	
DSP	-	-	-	-	-	
Expression	-	-	-	-	-	
FIFO	-	-	-	-	-	
Instance	-	14	4379	4779	-	
Memory	-	-	-	-	-	
Multiplexer	-	-	-	145	-	
Register	-	-	31	-	-	
Total	0	14	4410	4924	0	
Available	40	40	16000	8000	0	
Utilization (%)	0	35	27	61	0	

Рис. 3.4.1. Utilization estimates

Рис. 3.4.2. Performance profile

Рис. 3.4.3 Resource profile

Рис. 3.4.4. Schedule viewer

Рис. 3.4.5. Resource viewer

В данном проекте используется наибольшее количество ресурсов в связи с тем что используются 64 и 32-битные типы данных для синтеза которых требуется больше триггером и LUT, чем для типов данных char и short.

4. Третье решение

4.1. Исходный код

```
#include "apint_arith.h"

void apint_arith(

dinA_t inA,

dinB_t inB,

dinC_t inC,

dinD_t inD,

dout1_t *out1,

dout2_t *out2,

dout3_t *out3,

dout4_t *out4) {

*out1 = inA * inB;

*out2 = inB + inA;

*out3 = inC / inA;

*out4 = inD % inA;

*out4 = inD % inA;

*out4 = inD % inA;
```

Рис.4.1.1 Source code

```
#ifndef _APINT_ARITH_H_
define _APINT_ARITH_H_

#include <stdio.h>
#include <ap_cint.h>

#define N 9

typedef int6 dinA_t;
typedef int12 dinB_t;
typedef int2 dinD_t;

typedef int3 dinD_t;

typedef int18 dout1_t;
typedef int18 dout2_t;
typedef int2 dout3_t;

typedef int6 dout4_t;

void apint_arith(dinA_t inA, dinB_t inB, dinC_t inC, dinD_t inD,
dout1_t *out1, dout2_t *out2, dout3_t *out3, dout4_t *out4);

#endif
```

Рис.4.1.2 Source code – header

```
#include "apint_arith.h"

int main() {
    dinA_t inA;
    dinB_t inB;
    dinC_t inC;
    dinO_t inD;
    dout1_t out1;
    dout2_t out2;
    dout3_t out3;
    dout4_t out4;

int i, retval = 0;
    FILE *fp;

fp = fopen("result.dat", "w");

for (i = 0; i < N; i++) {
    inA = i + 2;
    inB = i + 23;
    inC = i + 234;
    inD = i + 2345;

apint_arith(inA, inB, inC, inD, &out1, &out2, &out3, &out4);

#indef _MINGW32__
fprintf(fp, "%d*%d=%d, %d*%d=%d; %d/%d=%d; %lld mod %d =%d \n",
    inA, inB, out1, inB, inA, out2, inC, inA, out3, inD, inA, out4);

#else
fprintf(fp, "%d*%d=%d; %d*%d=%d; %d/%d=%d; %d mod %d =%d \n",
    inA, inB, out1, inB, inA, out2, inC, inA, out3, inD, inA, out4);

#endif
}
fclose(fp);

retval = system("diff --brief -w result.dat result.golden.dat");
if (retval == 0) {
    printf(" _____ Pass! _____\n");
    } else {
        printf(" ______ Pass! _____\n");
        retval = 1;
}

return retval;
}
</pre>
```

Рис.4.1.3 Test code

4.2. Моделирование

По результатам моделирования видно, что устройство работает корректно.

```
Vivado HLS Console
INFO: [HLS 200-10] In directory 'C:/Users/Misha/Desktop/university/ maga/3sem/antor
Sourcing Tcl script 'C:/Users/Misha/Desktop/university/__maga/3sem/antonov/lab13/lak
INFO: [HLS 200-10] Opening project 'C:/Users/Misha/Desktop/university/__maga/3sem/ar
INFO: [HLS 200-10] Opening solution 'C:/Users/Misha/Desktop/university/__maga/3sem/&
INFO: [SYN 201-201] Setting up clock 'default' with a period of 10ns.
INFO: [SYN 201-201] Setting up clock 'default' with an uncertainty of 0.1ns.
WARNING: [HLS 200-40] Cannot find library 'C:/Xilinx/Vivado/2019.2/common/technology
WARNING: [HLS 200-40] Cannot find library 'xilinx/aartix7/aartix7'.
INFO: [HLS 200-10] Setting target device to 'xa7a12t-csg325-1Q'
INFO: [SIM 211-2] *********** CSIM start ***********
INFO: [SIM 211-4] CSIM will launch GCC as the compiler.
make: 'csim.exe' is up to date.
     Pass!
INFO: [SIM 211-1] CSim done with 0 errors.
Finished C simulation.
```

Рис.4.2 Modeling result

4.3. Синтез

Полученная величина задержки укладывается в заданное значение.

Рис.4.3 Performance estimates

4.4. Использование ресурсов

Jtilization Estimates						
─ Summary						
Name	BRAM_18K	DSP48E	FF	LUT	URAM	
DSP	-	1	-	-	-	
Expression	-	-	0	20	-	
FIFO	-	-	-	-	-	
Instance	-	-	681	415	-	
Memory	-	-	-	-	-	
Multiplexer	-	-	-	169	-	
Register	-	-	37	-	-	
Total	0	1	718	604	0	
Available	40	40	16000	8000	0	
Utilization (%)	0	2	4	7	0	

Рис.4.4.1 Utilization estimates

Рис.4.4.2 Performance profile

Рис.4.4.3 Resource profile

Рис.4.4.4 Schedule viewer

Рис.4.4.5 Resource viewer

В данном решении значение latency чуть больше, чем в лучшем решении и количество требуемых ресурсов чуть больше, чем в лучшем решении. Это связано с тем, что используются оптимальные типы данных для задачи. В связи с этим требуется оптимальное количество ресурсов.

5. Выводы

В ходе выполнения работы была исследована одна функция с разными типами данных. Было установлено, что чем лучше подобраны типы данных, на основе анализа возможных значений, тем оптимальнее синтезированная схема.