

TEST REPORT

of the accredited test laboratory

TÜV Nr.:INE-AT/EMV-19/304e

about

the following EMC - test/- research

Applicant:

TTTech Computertechnik AG

Schoenbrunner Strasse 7 A-1040 Vienna, Austria

Product:

TTE-SW A664 Lab V2.0

Standard:

EN 55035:2017, EN 55032:2015,

FCC Part 15 (October 31, 2018),

ICES-003 Issue 6, January 19, 2016 Updated April 2017

TÜV AUSTRIA SERVICES GMBH Test laboratory for EMC

Supervisor of EMC-laboratory

Ing. Michael Emminger

23.07.2020

Checked by

Wolfram Topka, BSc.

A publication of this test report is only permitted literally. Copying or reproduction of partial sections needs a written permission of TÜV AUSTRIA SERVICES GMBH.

The results of this test report only refer to the provided equipment.

TÜV AUSTRIA

Office:

Deutschstrasse 10 1230 Vienna/Austria T: +43 5 0454-0 **F**: +43 5 0454-6505 E: pzw@tuv.at W: www.tuv.at

Business Area Industry & Energy Austria

Technik

TÜV ®

Testing Laboratory, Inspection Body, Certification Body, Calibration Laboratory, Verifizierungsstelle

Notified Body 0408

Non-executive **Board of Directors:** KR DI Johann Marihart

Management: DI Dr. Stefan Haas Mag. Christoph Wenninger

Registered Office: Deutschstrasse 10 1230 Vienna/Austria

Branch Offices: www.tuv.at/standorte

Company Register Court / - Number: Vienna / FN 288476 f

Bank Details:

AT131200052949001066 BIC BKAUATWW

IBAN AT153100000104093282 **BIC RZBAATWW**

VAT ATU63240488 DVR 3002476

Contents

	Designation	page
1.	Applicant	3
2.	Description of EUT	4
3.	Standards / Final result	5
4.	Test results	6-33
Appendix	Designation	pages
1	Test equipment used	4
2	Photodocumentation	19

www.tuv.at | office@tuv.at

1. Applicant

Company: TTTech Computertechnik AG

Department: Aerospace & Industrial

Address: Schoenbrunner Strasse 7

A-1040 Vienna, Austria

Contact person : Ing. Aleksandar Sindrak

EUT received on: 09.12.2019

Tests were performed on: 09.12.2019 – 10.12.2019

File: 19-304e.docx Page 3 of 33

2. Description of EUT

EUT: TTE-SW A664 Lab V2.0

Manufacturer: TTTech Computertechnik AG

Schoenbrunner Strasse 7 A-1040 Vienna, Austria

Description: TTTech Computertechnik AG provided the following configuration for

the measurements:

Operating mode: The measurements were carried out at the following running states:

Power supply: 230 VAC / 50 Hz

File: 19-304e.docx Page 4 of 33

3. Standards / Final result

Name	Title	Deviation	Result
EN 55032:2015	Electromagnetic compatibility of multimedia equipment - Emission Requirements	none	OK
EN 55035:2017	Electromagnetic compatibility of multimedia equipment - Immunity requirements	none	OK
ICES-003 Issue 6, January 19, 2016 Updated April 2017	Digital Apparatus	none	ОК
FCC Part 15 (October 31, 2018)	Radio Frequency Devices	none	ОК

Result: Opinions and interpretation of testing laboratory

OK EUT passed NOK EUT failed

| office@tuv.at

4. Test results

4. 1.) Conducted emission on the AC supply-line

Limits Class B

Frequeny range	Lir	nit			
Detector	Quasi Peak	Average			
0,150 - 0,5 MHz	66 - 56 dBµV decreasing with the logarithm of frequency	56 - 46 dBµV decreasing with the logarithm of frequency			
0,5 - 5 MHz	56 dBμV	46 dBμV			
5 - 30 MHz	60 dBμV	50 dBμV			
Remark: Quasi Peak and Average limits must be both met					

Measuring apparatus parameters

Parameter	Preview measurement	Final measurement	Parameter	Preview measurement	Final measurement
Start frequency	150 kHz	150 kHz	Detector	MP/AV	QP/Cispr AV
Stop frequency	30 MHz	30 MHz	Measuring time	10 ms	1 s
Stepsize	5 kHz	5 kHz	RF-attenuation	0 dB	0 dB
IF- Bandwidth	9 kHz	9 kHz	Preamplifier	0 dB	0 dB

Measurement uncertainty

Expanded uncertainty $U_c = 2,98 \text{ dB}$ (Uncertainty budget = 3,6 dB)

Operating mode	Measuring result	
Normal operation	ОК	

Test result

4. 1.1.) Measurement

Frequency MHz	Average dBµV/m	Limit dBµV/m	Margin dB	Measuring time ms	Phase	PE
10,000000	41,11	50,00	8,89	1000,0	N	GND
11,030000	33,03	50,00	16,97	1000,0	N	GND
13,560000	41,99	50,00	8,01	1000,0	N	GND

Frequency MHz	QP dBµV/m	Limit dBµV/m	Margin dB	Measuring time ms	Phase	PE
4,255000	23,75	56,00	32,25	1000,0	L1	GND
13,560000	59,37	60,00	0,63	1000,0	N	GND

4. 2.) Telecom-Port Conducted Emissions

Limits

Frequeny range	Lir	nit		
Detector	Quasi Peak	Average		
0,150 - 0,5 MHz	40 - 30 dBμA decreasing with the logarithm of frequency	30 - 20 dBµA decreasing with the logarithm of frequency		
0,5 - 30 MHz	30 dBμA	20 dBμA		
Remark: Quasi Peak and Average limits must be both met				

Measuring apparatus parameters

Parameter	Preview measurement	Final measurement	Parameter	Preview measurement	Final measurement
Start frequency	150 kHz	150 kHz	Detector	MP/AV	QP/Cispr AV
Stop frequency	30 MHz	30 MHz	Measuring time	1 s	1 s
Stepsize	2,25 kHz	2,25 kHz	RF-attenuation	0dB	0dB
IF- Bandwidth	9 kHz	9 kHz	Preamplifier	0 dB	0 dB

Measurement uncertainty

 $U_{lab} < U_{cispr}$ for all frequency ranges

Operating mode	Measuring result
Normal operation	ОК

Test result

4. 2.1.) Measurement with QP-Detector and CISPR AV-Detector

Port 6

Port 7

office@tuv.at

Port 24

t | office@tuv.at

4. 3.) Radiated emission

Limits Class A (3 m measuring distance)

Frequency range	Quasi Peak			
30 - 230 MHz	50 dBμV/m			
230 - 1000 MHz	57 dBμV/m			
Frequeny range	Peak Average			
1 – 3 GHz	76 dBμV/m 56 dBμV/m			
3 – 18 GHz	80 dBμV/m 60 dBμV/m			

Measuring apparatus parameters 30 to 1000 MHz

Parameter	Preview measurement	Final measurement	Parameter	Preview measurement	Final measurement
Start frequency	30 MHz	30 MHz	Detector	Max Peak	Quasi Peak
Stop frequency	1000 MHz	1000 MHz	Measuring time	10 ms	1 s
Stepsize	50 kHz	50 kHz	RF-attenuation	0dB	0dB
IF- Bandwidth	120 kHz	120 kHz	Preamplifier	20 dB	20 dB

Measuring apparatus parameters 1 GHz to 18 GHz

Parameter	Preview measurement	Final measurement	Parameter	Preview measurement	Final measurement
Start frequency	1 GHz	1 GHz	Detector	Max Peak / Average	Max Peak / Average
Stop frequency	18 GHz	18 GHz	Measuring time	10 ms	1 s
Stepsize	500 kHz	500 kHz	RF-attenuation 0dB		0dB
IF- Bandwidth	1 MHz	1 MHz	Preamplifier	20 dB	20 dB

www.tuv.at | office@tuv.at

Test report number: INE-AT/EMV-19/304e

Date: 23.07.2020

Measurement uncertainty

30-200 MHz horizontal: Expanded uncertainty U_c = 4,06 dB (Uncertainty budget = 5,06 dB) 30-200 MHz vertical: Expanded uncertainty U_c = 4,19 dB (Uncertainty budget = 5,17 dB) 0,2-1 GHz horizontal: Expanded uncertainty U_c = 4,43 dB (Uncertainty budget = 5,45 dB) 0,2-1 GHz vertical: Expanded uncertainty U_c = 5,64dB (Uncertainty budget = 6,48 dB) 1-6 GHz: Expanded uncertainty U_c = 4,40 dB (Uncertainty budget = 5,17 dB)

Operating mode	Measuring result
Normal operation	ОК

t | office@tuv.at

ww.tuv.at | off

File: 19-304e.docx Page 13 of 33

Test result

4. 3.1.) Measurement with QP-Detector (30 MHz - 1000 MHz)

Frequenz	QuasiPeak	Limit	Margin	Measuring time	Bandwith	Hight	Pol	Azimut
MHz	dBµV/m	dBµV/m	dB	ms	kHz	cm		deg
32,550000	16,99	50	33,01	1000,0	120,000	150,0	Н	225,0
32,800000	15,89	50	34,11	1000,0	120,000	146,0	Н	150,0
33,650000	16,85	50	33,15	1000,0	120,000	114,0	Н	138,0
36,000000	27,02	50	22,98	1000,0	120,000	100,0	V	-32,0
37,050000	17,39	50	32,61	1000,0	120,000	109,0	Н	186,0
47,800000	32,39	50	17,61	1000,0	120,000	125,0	V	152,0
61,950000	20,14	50	29,86	1000,0	120,000	150,0	V	181,0
158,800000	16,27	50	33,73	1000,0	120,000	131,0	Н	66,0
425,000000	46,43	57	10,57	1000,0	120,000	100,0	Н	225,0
1000,000000	41,54	57	15,46	1000,0	120,000	100,0	Н	101,0

4. 3.2.) Measurement with Peak- and Average Detector (1 GHz – 18 GHz)

Frequenz	AV	Limit	Margin	Measuring time	Bandwith	Hight	Pol	Azimut
MHz	dBµV/m	dBµV/m	dB	ms	kHz	cm		deg
1500,000000	43,22	56,00	12,78	1000,0	1000,000	100,0	V	248,0
2500,000000	45,31	56,00	10,69	1000,0	1000,000	133,0	٧	184,0
2812,500000	47,98	56,00	8,02	1000,0	1000,000	124,0	V	-14,0
2937,500000	41,22	56,00	14,78	1000,0	1000,000	114,0	Н	4,0
3000,000000	54,56	56,00	1,44	1000,0	1000,000	150,0	V	189,0
5000,000000	57,76	60,00	2,24	1000,0	1000,000	126,0	V	-3,0
5062,500000	49,33	60,00	10,67	1000,0	1000,000	104,0	٧	-3,0

4. 4.) Radiated emission according to FCC Part 15

Class A Limits

	≤ 1 GHz → Quasi Peak Limit > 1 GHz → Average Limit (Peak Limit 20 dB above average Limit)		
Frequency range	Limit	Bandwith	Measurement distance
30 – 88 MHz	49,5 dBµV/m	120 kHz	3 m
88 – 216 MHz	54 dBµV/m	120 kHz	3 m
216 – 960 MHz	57 dBμV/m	120 kHz	3 m
960 MHz - 1000 MHz	60 dBµV/m	60 dBμV/m 120 kHz	
Above 1000 MHz	60 dBµV/m	1 MHz	3 m

Measuring apparatus parameters 30 to 1000 MHz

Parameter	Preview measurement	Final measurement	Parameter	Preview measurement	Final measurement
Start frequency	30 MHz	30 MHz	Detector	Maxc Peak	Quasi Peak
Stop frequency	1000 MHz	1000 MHz	Measuring time	10 ms	1 s
Stepsize	50 kHz	50 kHz	RF-attenuation	0dB	0dB
IF- Bandwidth	120 kHz	120 kHz	Preamplifier	20 dB	20 dB

Measuring apparatus parameters 1 GHz to 18 GHz

Parameter	Preview measurement	Final measurement	Parameter	Preview measurement	Final measurement
Start frequency	1 GHz	1 GHz Detector		Max Peak / Average	Max Peak / Average
Stop frequency	18 GHz	18 GHz	Measuring time	10 ms	1 s
Stepsize	500 kHz	500 kHz	RF-attenuation	0dB	0dB
IF- Bandwidth	1 MHz	1 MHz	Preamplifier	20 dB	20 dB

Page 16 of 33

Test report number: INE-AT/EMV-19/304e

Date: 23.07.2020

Measurement uncertainty

30-200 MHz horizontal: Expanded uncertainty U_c = 4,06 dB (Uncertainty budget = 5,06 dB) 30-200 MHz vertical: Expanded uncertainty U_c = 4,19 dB (Uncertainty budget = 5,17 dB) 0,2-1 GHz horizontal: Expanded uncertainty U_c = 4,43 dB (Uncertainty budget = 5,45 dB) 0,2-1 GHz vertical: Expanded uncertainty U_c = 5,64dB (Uncertainty budget = 6,48 dB) 1-18 GHz: Expanded uncertainty U_c = 4,40 dB (Uncertainty budget = 5,17 dB)

Operating mode	Measuring result
Normal operation	ОК

office@tuv.at

ww.tuv.at | of

Test result

4. 4.1.) Measurement with QP-Detector (30 MHz - 1000 MHz)

Frequenz	QuasiPeak	Limit	Margin	Measuring time	Bandwith	Hight	Pol	Azimut
MHz	dBμV/m	dBμV/m	dB	ms	kHz	cm		deg
32,550000	16,99	49,5	32,51	1000,0	120,000	150,0	Н	225,0
32,800000	15,89	49,5	33,61	1000,0	120,000	146,0	Н	150,0
33,650000	16,85	49,5	32,65	1000,0	120,000	114,0	Н	138,0
36,000000	27,02	49,5	22,48	1000,0	120,000	100,0	V	-32,0
37,050000	17,39	49,5	32,11	1000,0	120,000	109,0	Η	186,0
47,800000	32,39	49,5	17,11	1000,0	120,000	125,0	V	152,0
61,950000	20,14	49,5	29,36	1000,0	120,000	150,0	V	181,0
158,800000	16,27	54	37,73	1000,0	120,000	131,0	Η	66,0
425,000000	46,43	57	10,57	1000,0	120,000	100,0	Н	225,0
1000,000000	41,54	60	18,46	1000,0	120,000	100,0	Н	101,0

Page 18 of 33

www.tuv.at | office@tuv.at

4. 4.2.) Measurement with Peak- and Average Detector (1 GHz – 18 GHz)

Frequenz	AV	Limit	Margin	Measuring time	Bandwith	Hight	Pol	Azimut
MHz	dBμV/m	dBμV/m	dB	ms	kHz	cm		deg
1500,000000	43,22	60,00	16,78	1000,0	1000,000	100,0	V	248,0
2500,000000	45,31	60,00	14,69	1000,0	1000,000	133,0	V	184,0
2812,500000	47,98	60,00	12,02	1000,0	1000,000	124,0	V	-14,0
2937,500000	41,22	60,00	18,78	1000,0	1000,000	114,0	Н	4,0
3000,000000	54,56	60,00	5,44	1000,0	1000,000	150,0	V	189,0
5000,000000	57,76	60,00	2,24	1000,0	1000,000	126,0	V	-3,0
5062,500000	49,33	60,00	10,67	1000,0	1000,000	104,0	V	-3,0

4. 5.) Electrostatic discharge requirements (ESD)

Type of test	charging voltage	Basic standard	Test set-up	Comment	Performance criteria
Electrostatic discharge Air discharge	8 kV charging voltage	EN 61000-4-2	EN 61000-4-2		В
Electrostatic discharge Contact discharge	4 kV charging voltage	EN 61000-4-2	EN 61000-4-2		В

Measurement uncertainty

Expanded uncertainty $U_c = 6.6 \text{ dB}$ (Uncertainty budget = 6.6 dB)

Operating mode	Test positions	Criteria of compliance
Normal operation	The 15 test positions are shown in the following graphics.	Before and after the test the equipment shall operate as intended. During the test short interruptions are allowed.

ıv.at

Test positions for ESD

14. HCP 15. VCP

Page 21 of 33

tuv.at | office@tuv

Test result

Test position	Charging voltage	Type of discharge	Positive discharge	Negative discharge
1	4 kV	contact	ок	ОК
2	4 kV	contact	ок	ОК
3	4 kV	contact	ок	ОК
4	4 kV	contact	ок	ОК
5	4 kV	contact	ОК	ОК
6	4 kV	contact	ок	ОК
7	4 kV	contact	ок	ОК
8	8 kV	air	ок	ОК
9	4 kV	contact	ок	ОК
10	4 kV	contact	ок	ОК
11	4 kV	contact	ок	ОК
12	4 kV	contact	ок	ОК
13	4 kV	contact	ок	ОК
14 (HCP)	4 kV	contact	ОК	ОК
15 (VCP)	4 kV	contact	ОК	ОК
OK NOK	EUT passed EUT failed			

4. 6.) Radiated electromagnetic field requirements

Type of test	Test parameters	Basic standards	Test set-up	Comment	Performance criteria
Radiated electromagnetic field	80 MHz - 6000 MHz Spotfrequencies: 1800, 2600, 3500, 5000 MHz Fieldstrength: 3 V/m Modulation 80%/1 kHz AM Polarisation H/V Stepsize 1%	EN 61000-4-3	EN 61000-4-3		A

Measurement uncertainty

80 MHz - 1 GHz: Expanded uncertainty U_c = 1,73 dB (Uncertainty budget = 2,25 dB) 1 GHz - 6 GHz: Expanded uncertainty U_c = 2,11 dB (Uncertainty budget = 2,25 dB)

Operating mode	Criteria of compliance
Normal operation	Before, during and after the test the equipment shall operate as intended

www.tuv.at | office@tuv.at

Test result

Type of test	Test parameters	Performance criteria	Result
Radiated electromagnetic field	80 MHz - 6000 MHz Spotfrequencies: 1800, 2600, 3500, 5000 MHz Fieldstrength: 3 V/m Modulation 80%/1 kHz AM Polarisation H/V Stepsize 1%	A	OK
OK NOK	EUT passed EUT failed		

4.7.) Induced RF-field requirements

Type of test	Test parameters	Basic standards	Test set-up	Comment	Performance criteria
RF-current common mode	0,15 MHz - 80 MHz 10 Vrms (unmodulated) Modulation 80%/1 kHz AM Stepsize 1% Source impedance 150 Ohm	EN 61000-4-6	EN 61000-4-6		A

Measurement uncertainty

Coupling network: Expanded uncertainty U_c = 1,19 dB Coupling Clamp: Expanded uncertainty U_c = 3,12 dB

Operating mode	Criteria of compliance
Normal operation	Before, during and after the test the equipment shall operate as intended

Test result

Measure	ed line	Type of coupling	Performance criteria	Result
AC Supply		M3	А	ОК
Ethernet Cable Port 6		Clamp Injection	А	OK
Ethernet Cable Port 7		Clamp Injection	А	OK
Ethernet Cable Port 24		Clamp Injection	А	ОК
	UT passed		,	

NOK EUT failed

4. 7.) Electical fast transients/burst requirements

Type of test	Test parameters	Basic standards	Test set-up	Comment	Performance criteria
Electrical fast transients common mode	5/50 ns t _r /t _n 5kHz Burst frequency 15 ms Burst time 3 Hz Repetition frequency Polarity: positive/negative	EN 61000-4-4	EN 61000-4-4 direct coupling		В
Electrical fast transients common mode	5/50 ns t _r /t _n 5kHz Burst frequency 15 ms Burst time 3 Hz Repetition frequency Polarity: positive/negative	EN 61000-4-4	EN 61000-4-4 Coupling clamp		В

Measurement uncertainty

Expanded uncertainty U_c = 1,38 dB

Operating mode	Criteria of compliance
Normal operation	Before and after the test the equipment shall operate as intended During the test short interruptions are allowed.

t | office@tuv.at

Test result

4. 7. 1.) Measurement on the AC mains supply line (direct injection)

Combination	Test voltage	Performance criteria	Positive pulse	Negative pulse
Coupling path L	1 kV	В	ОК	ОК
Coupling path N	1 kV	В	ОК	ОК
Coupling path PE	1 kV	В	ОК	ОК
Coupling path L/N/PE	1 kV	В	ОК	ОК
	「passed 「failed			

4. 7. 2.) Measurement on other lines (coupling clamp)

Measured line		Test voltage	Performance criteria	Positive pulse	Negative pulse
Ethernet Cable Port 6		0,5 kV	В	ОК	ОК
Ethernet Cable Port 7		0,5 kV	В	ОК	ОК
Ethernet Cable Port 24		0,5 kV	В	ОК	ОК
OK NOK	EUT passed EUT failed				

4. 8.) Surge requirements

Type of test	Test parameters	Basic standards	Test set-up	Comment	Performance criteria
Surge, differential mode AC line	1 kV Test level 1,2/50 µs t _r /t _n Polarity: positive/negative	EN 61000-4-5	EN 61000-4-5		В
Surge, common mode AC line	2 kV Test level 1,2/50 μs t _r /t _n Polarity: positive/negative	EN 61000-4-5	EN 61000-4-5		В

Measurement uncertainty

Expanded uncertainty U_c = 1,36 dB

Operating mode	Criteria of compliance
Normal operation	Before and after the test the equipment shall operate as intended. During the test short interruptions are allowed.

t | office@tuv.at

Test result

4. 8.1.) Measurement on the AC power line – differential mode

Combination	Test voltage	Performance criteria	Positive pulse	Negative pulse
L/N	1 kV	В	ОК	ОК
	JT passed JT failed			

4. 8.2.) Measurement on the AC power line – common mode

Combination	Test voltage	Performance criteria	Positive pulse	Negative pulse
L/PE	2 kV	В	ОК	ОК
N/PE	2 kV	В	ОК	ОК
	passed failed			

t | office@tuv.at

4. 9.) Voltage dips and interrupts

Type of test	Test parameters	Basic standards	Test set-up	Comment	Performance criteria
Voltage - Dips	5 % for 0,5 cycles	EN 61000-4-11	EN 61000-4-11	1)	В
Voltage - Dips	70% for 25 cycles	EN 61000-4-11	EN 61000-4-11	2)	С
Voltage - Interruption	5% for 250 cycles	EN 61000-4-11	EN 61000-4-11	2)	С
	,	1	ı	1	

Measurement uncertainty

Expanded uncertainty U_c = 0,44 dB

Operating mode	Criteria of compliance
Normal operation	Before and after the test the equipment shall operate as intended During the test short interruptions are allowed.
	After the test the equipment shall operate as intended.

Test result

Type of test	Test parameters	Performance criteria	Result
Voltage - Dips	5 % for 0,5 cycles	В	ОК
Voltage - Dips	70% for 25 cycles	С	ОК
Voltage - Interruption	5% for 250 cycles	С	ОК
	UT passed UT failed		

File: 19-304e.docx Page 32 of 33

Test report number: INE-AT/EMV-19/304e

Date: 23.07.2020

4. 10.) Harmonics and Flicker

As the power consumption of the EUT is far below 50W, no test is necessary and the Equipment is deemed to be compliant.

File: 19-304e.docx Page 33 of 33

Appendix 1 Test equipment used

					Division: Industry & Energy
\boxtimes	Anechoic Chamber with 3m measurement distance	NT-100	Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-173	madatry & Energy
	Stripline according to ISO 11452-5	NT-108	Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200	Department: EMC
	MA4000 - Antenna mast 1 - 4 m height	NT-110/1	ESCI - Test receiver 9 kHz - 7 GHz	NT-203/1	Test report number: INE-AT/EMV-19/304e
	DS - Turntable 0 - 400 ° Azimuth	NT-111/1	ESI26 – Test receiver 20 Hz – 26,5 GHz	NT-207	Page: 1 of 4
	CO3000 Controller Mast+Turntable	NT-112/1	Digital Radio Tester CMW500	NT-208/1	Date: 23.07.2020
	HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121	Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209	
	FMZB1513 - Loop Antenna 9 kHz - 30 MHz	NT-122/1	CMTA - Radiocommunication analyzer; 0,1 - 1000 MHz	NT-210	
	HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211	
	3121C - Dipole Antenna 28 - 1000 MHz	NT-124	Digital Radio Tester Aeroflex 3920	NT-212/1	
	3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125	Mixer M28HW 26,5 GHz - 40 GHz	NT-214	
	3116 - Horn Antenna 18 - 40 GHz	NT-126	RubiSource T&M Timing reference	NT-216	
	SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127	Radiocommunicationanalyzer SWR 1180 MD	NT-217	
	AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128	Mixer M19HWD 40 GHz – 60 GHz	NT-218	
	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129	Mixer M12HWD 60 GHz – 90 GHz	NT-219	
	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130	DSO9104 Digital scope	NT-220/1	
	3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131	TPS 2014 Digital scope	NT-222	
	VULB 9163 Trilog Antenna 30 – 3000 MHz	NT-131/1	Artificial Ear according to IEC 60318	NT-224	
	Loop Antenna H-Field	NT-132	1 kHz Sound calibrator	NT-225	
	Horn Antenna 500 MHz - 2900 MHz	NT-133	B10 - Harmonics and flicker analyzer	NT-232	
	Horn Antenna 500 MHz - 6000 MHz	NT-133/1	SRM-3006 Spectrumanalyzer	NT-233/1a	
	Log. per. Antenna 800 MHz - 2500 MHz	NT-134	E-field probe SRM 75 MHz – 3 GHz	NT-234	
	Log. per. Antenna 800 MHz - 2500 MHz	NT-135	Field Meter NBM-500 incl. E- and H-Field probes	NT-240a-e	
	BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	Hall-Teslameter ETM-1	NT-241	
	Conical Dipol Antenna PCD8250	NT-138	EFA-3 H-field- / E-field probe	NT-243	
	HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139	EHP-50F H-field- / E-field probe	NT-243/1	
	HZ-1 Antenna tripod	NT-150	Field Meter EMR-200 100 kHz – 3 GHz	NT-244	
	BN 1500 Antenna tripod	NT-151	E-field probe 100 kHz – 3 GHz	NT-245	
\boxtimes	Ant. tripod for EN61000-4-3 Model TP1000A	NT-156	H-field probe 300 kHz – 30 MHz	NT-246	

BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W

NT-330

Appendix 1 (continued) Test equipment used

Division: Industry & Energy

Department: EMC

Page: 2 of 4

Date: 23.07.2020

Test report number: INE-AT/EMV-19/304e

	E-field probe 3 MHz – 18 GHz	NT-247	\boxtimes	T82-50 RF-Amplifier 2 GHz – 8 GHz	NT-331
	H-field probe 27 MHz – 1 GHz	NT-248	\boxtimes	500W1000M7 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332
	ELT-400 1 Hz – 400 kHz	NT-249	\boxtimes	AS0102-65R - RF-Amplifier 1 GHz - 2 GHz	NT-333
	MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250		APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334
	FCC-203I EM Injection clamp	NT-251		Preamplifier 1 GHz - 4 GHz	NT-335
	FCC-203I-DCN Ferrite decoupling network	NT-252		Preamplifier for GPS MKU 152 A	NT-336
	PR50 Current Probe	NT-253		Preamplifier 100 MHz – 23 GHz	NT-337
	i310s Current Probe	NT-254/1		DC Block 10 MHz – 18 GHz Model 8048	NT-338
	Fluke 87 V True RMS Multimeter	NT-260		2-97201 Electronic load	NT-341
	Model 2000 Digital Multimeter	NT-261		TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344
	Fluke 87 V Digital Multimeter	NT-262/1		TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345
\boxtimes	ESH2-Z5-U1 Artificial mains network 4x25A	NT-300		VDS 200 Mobil-impuls-generator	NT-350
	ESH3-Z5-U1 Artificial mains network 2x10A	NT-301		LD 200 Mobil-impuls-generator	NT-351
	ESH3-Z6-U1 Artificial mains network 1x100A	NT-302		MPG 200 Mobil-Impuls-Generators	NT-352
	ESH3-Z6-U1 Artificial mains network 1x100A	NT-302a		EFT 200 Mobil-impuls-generator	NT-353
	PHE 4500/B Power amplifier	NT-304		AN 200 S1 Artificial Network	NT-354
	EZ10 T-Artificial Network	NT-305		FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1
\boxtimes	SMG - Signal generator 0,1 - 1000 MHz	NT-310		PHE 4500 - Mains impedance network	NT-401
\boxtimes	SMA100A - Signal generator 9 kHz - 6 GHz	NT-310/1		IP 6.2 Coupling filter for data lines (Surge)	NT-403
	RefRad Reference generator	NT-312		TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409
	SMP 02 Signal generator 10 MHz - 20 GHz	NT-313		ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410
	40 MHz Arbitrary Generator TGA1241	NT-315	\boxtimes	IP 4 - Capacitive clamp (Burst)	NT-411
	Artificial mains network NSLK 8127-PLC	NT-316		Highpass-Filter 100 MHz – 3 GHz	NT-412
				Highpass-Filter 600 MHz – 4 GHz	NT-413
	PSURGE 4.1 Surge generator	NT-324		Highpass-Filter 1250 MHz – 4 GHz	NT-414
\boxtimes	IMU4000 Immunity test system	NT-325/1		Highpass-Filter 1800 MHz – 16 GHz	NT-415
	VCS 500-M6 Surge-Generator	NT-326			
	Oscillatory Wave Simulator incl. Coupling networks	NT- 328a+b+c			
	BT4 050 BE 4 US	NIT OOO			

Appendix 1 (continued) Test equipment used

Division:

						Industry & Energy
	Highpass-Filter 3500 MHz – 18 GHz	NT-416		FCC-801-AF10 Coupling decoupling network	NT-461	Department: EMC
	RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417		FCC-801-S25 Coupling decoupling network	NT-462	Test report number:
	RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418		FCC-801-T4 Coupling decoupling network	NT-463	INE-AT/EMV-19/304e Page: 3 of 4
	RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419		FCC-801-C1 Coupling decoupling network	NT-464	Date: 23.07.2020
	RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421		SW 9605 - Current probe 150 kHz – 30 MHz	NT-465/1	
	RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423		95242-1 – Current probe 1 MHz – 400 MHz	NT-468	
	RF-Attenuator 30 dB	NT-424		94106-1L-1 – Current probe 100 kHz – 450 MHz	NT-471	
	RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425		GA 1240 Power amplifier according to EN 61000-4-16	NT-480	
	RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426		Coupling networks according to EN 61000-4-16	NT-481 - NT-483	
	RF-Attenuator 6 dB	NT-428		Van der Hoofden Test Head	NT-484	
	RF-Attenuator 0 dB - 81 dB	NT-429	\boxtimes	EMC Video/Audiosystem	NT-511/1	
	WRU 27 - Band blocking 27 MHz	NT-430		ES-K1 Version 1.71 SP2 Test software	NT-520	
	WHJ450C9 AA - High pass 450 MHz	NT-431	\boxtimes	EMC32 Version 10.50.40 Test software	NT-520/1	
	WHJ250C9 AA - High pass 250 MHz	NT-432		SRM-TS Version 1.3 software for SRM-3000	NT-522	
	RF-Load 150 W	NT-433		SRM-TS Version 1.3.1 software for SRM-3006	NT-522/1	
	Impedance transducer 1:4; 1:9; 1:16	NT-435	\boxtimes	Spitzenberger und Spies Test software V4.1	NT-525	
	RF-Attenuator DC – 18 GHz 6 dB	NT-436		Noise power test apparatus according to EN 55014	NT-530	
	RF-Attenuator DC – 18 GHz 6 dB	NT-437	\boxtimes	Vertical coupling plane (ESD)	NT-531	
	RF-Attenuator DC – 18 GHz 10 dB	NT-438	\boxtimes	Test cable #4 for EN 61000-4-6	NT-553	
	RF-Attenuator DC – 18 GHz 20 dB	NT-439	\boxtimes	Test cable #3 for conducted emission	NT-554	
	I+P 7780 Directional coupler 100 - 2000 MHz	NT-440	\boxtimes	Test cable #5+#6 ESD-cable (2x470k)	NT-555 + NT-556	
\boxtimes	ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441		Test cable #8 Sucoflex 104EA	NT-559	
	Power Divider 6 dB/1 W/50 Ohm	NT-443		Test cable #9 (for outdoor measurements)	NT-580	
	Directional coupler 0,1 MHz – 70 MHz	NT-444		Test cable #10 (for outdoor measurements)	NT-581	
	Directional coupler 0,1 MHz – 70 MHz	NT-445		Test cable #13 Sucoflex 104PE	NT-584	
	Tube imitations according to EN 55015	NT-450		Test cable #21 for SRM-3000	NT-592	
\boxtimes	FCC-801-M3-16A Coupling decoupling network	NT-458		Shield chamber	NT-600	
	FCC-801-M2-50A Coupling decoupling network	NT-459		Climatic chamber	M-1200	
	FCC-801-M5-25 Coupling decoupling network	NT-460				

Appendix 1 (continued) Test equipment used

 	-			
				Division: Industry & Energy
Anechoic Chamber 3 m / 5 m measuring distance	EMV-100	Log.per Antenna 0,7 – 9 GHz STLP9149	EMV-305	
Turntabel 6 m diameter	EMV-101	HF- Ampflifier 9 kHz-250 MHz BBA150 (low noise)	EMV-306	Department: EMC
Antenna mast + controller	EMV-102+ EMV-103	ISO11451-2 TLS 10 kHz – 30 MHz	EMV-307	Test report number: INE-AT/EMV-19/304e
EMC Video/Audiosystem	EMV-104	Load Dump Generator LD 200N	EMV-350	Page: 4 of 4
EMC Software EMC32 Version 10.50.40	EMV-105	Ultra Compact Symulator UCS 200N100	EMV-351	Date: 23.07.2020
Hornantenna 1 – 18 GHz HF 907	EMV-110	Automotive Power fail module PFM 200N100.1	EMV-352	
Antennapre.amp. 1 – 18 GHz ERZ-LNA0200-1800-30-2	EMV-111	Voltage Drop Symulator VDS 200Q100	EMV-353	
Trilog Antenna 30-3000 MHz VULB9163	EMV-112	Arb. Generator AutoWave	EMV-354	
Monopol 9 kHz – 30 MHz VAMP 9243	EMV-113	Ultra Compact Symulator UCS 500N7	EMV-355	
Antennapre.amp 18 – 40 GHz BBV 9721	EMV-114	Coupling decoupling network CNI 503B7 / 32 A	EMV-356	
Hornantenna 200 – 2000 MHz AH-220	EMV-115	Coupling decoupling network CNI 503B7 / 63 A	EMV-357	
DC Artificial Network PVDC 8300	EMV-150	Telecom Surge Generator TSurge 7	EMV-358	
AC Artificial Network NNLK 8121 RC	EMV-151	Coupling decoupling network CNI 508N2	EMV-359	
EMI Receiver ESR26	EMV-200	Coupling decoupling network CNV 504N2.2	EMV-360	
Signalgenerator 9 kHz – 40 GHz N5173B	EMV-201	Immunity generator NSG4060/NSG4060-1	EMV-361	
GPS Frequency normal B-88	EMV-202	Coupling network CDND M316-2	EMV-362	
DC Power supply N5745A	EMV-203	Coupling network CT419-5	EMV-363	
Spektrum Analyzator FSV40	EMV-205	ESD Generator NSG 437	EMV-364	
Thd Multimeter Model 2015	EMV-206	Pulse Limiter VTSD 9561-F BNC	EMV-405	
Poweramplifier PAS15000	EMV- 207/abc	Transient emission BSM200N40+BS200N100	EMV- 450+451	
Inrush Current Source	EMV- 208/abc	Cap. Coupling Clamp HFK	EMV-455	
Arbgenerator Sycore	EMV-209	Mag. Field System MS100N+MC26100+MC2630	EMV- 456-458	
Harmonics/Flicker analyzer ARS 16/3	EMV-210	Coupling network CDN M2-100A	EMV-459	
HF- Ampflifier 9 kHz-250 MHz BBA150	EMV-300	Coupling network CDN M3-32A	EMV-460	
HF- Amplifier 80 -1000 MHz BBA150	EMV-301	Coupling network CDN M5-100A	EMV-461	
HF- Amplifier 0,8 - 6 GHz BBA150	EMV-302	Current Clamp CIP 9136A	EMV-462	
High Power Ant. 20-200 MHz HPBA-2510	EMV-303/1	DC Artificial Network HV-AN 150	EMV- 464+465	
Log.per Antenna 80-2700 MHz STLP 9128 E special	EMV-304	Coupling Clamp EM 101	EMV-466	
		Decoupling Clamp FTC 101	EMV-467	
		Power attenuator 10 dB / 250 Watt	EMV-469/2	