IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Borran, et al.

Title: PARTIALLY COHERENT

CONSTELLATIONS FOR MULTIPLE-ANTENNA

SYSTEMS

Appl. No.: 10/671,346

Filing Date: 9/24/2003

Examiner: Kevin Michael Burd

Art Unit: 2611

Confirmation 7074

Number:

Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450

DECLARATION UNDER 37 C.F.R. § 1.132

Sir:

I, Callie M. Bell, hereby declare the following:

- 1. I am an attorney of record for United States Patent Application No. 10/671,346, filed on September 24, 2003.
- 2. Attached as Exhibit C is a true and accurate copy of the Proceedings of the IEEE International Symposium on Information Theory (ISIT) 2002 Conference printed from the webpage IEEE Explore. Exhibit C includes a Table of Contents for the Proceedings of the ISIT 2002 Conference that indicates a presentation by Mohammad Jaber Borran, Ashutosh Sabharwal, Behnaam Aazhang, and Don H. Johnson, titled On Design Criteria and Construction of Noncoherent Space-time Constellations occurred Monday June 30, 2002 in Lausanne, Switzerland (page XI). Exhibit C further includes a one- page summary of the presentation titled On Design Criteria and Construction of Noncoherent Space-time Constellations included at page 74 of the Proceedings of the ISIT 2002 Conference.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and believe are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Respectfully submitted,

Dated: July 8, 2008

FOLEY & LARDNER 150 East Gilman Street Madison, Wisconsin 53701-1497 Telephone: (608) 258-4263

Facsimile:

(608) 258-4258

Callie M. Bell

Attorney for Applicant Registration No. 54,989

Exhibit C

Proceedings

2002 IEEE International Symposium on Information Theory

Palais de Beaulieu Lausanne, Switzerland

June 30 – July 5, 2002

Sponsored by the Information Theory Society of the Institute of Electrical and Electronics Engineers

Proceedings 2002 IEEE International Symposium on Information Theory

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331. All rights reserved. Copyright ©2002 by The Institute of Electrical and Electronics Engineers, Inc.

IEEE Catalog Number: 02CH37371

ISBN: 0-7803-7501-7

Library of Congress: 72-179437

Additional copies of this publication are available from:

IEEE Operations Center P.O. Box 1331 445 Hoes Lane Piscataway, NJ 08855-1331 USA

1-800-678-IEEE 1-732-981-1393 1-732-981-9667 (Fax)

email: customer-service@ieee.org

Table of Contents

Plenary Sessions

Monday 8:30 - 9:30 — Quantum Mechanics, Chaos, and the Primes Michael V. Berry

Tuesday 8:30 - 9:30 — Saving Bandwidth in the Wideband Regime Sergio Verdú

Wednesday 8:30 - 9:30 — Advances in Convex Optimization: Theory, Algorithms, and Applications Stephen P. Boyd

Thursday 8:30 - 9:30 — Shannon Lecture: Living Information Theory Toby Berger

Friday 8:30 - 9:30 — The Marriage of Cryptography and Complexity Theory Shafi Goldwasser

Mon 09:40 - 11:00

Analysis of LDPC Codes I

Finite-Length Analysis of Various Low-Density Parity-Check Ensembles for the Binary Erasure Channel Tom Richardson, Amin Shokrollahi, Rüdiger Urbanke	1
Stopping Sets and the Girth of Tanner Graphs Alon Orlitsky, Rüdiger Urbanke, Krishnamurthy Viswanathan, Junan Zhang	2
Finite-Length Analysis of LDPC Codes with Large Left Degrees Junan Zhang, Alon Orlitsky	3
On the Suboptimality of Iterative Decoding for Finite Length Codes Motohiko Isaka, Marc P. C. Fossorier, Hideki Imai	4
Performance Analysis of Convolutional and Turbo Codes	
Computing the Minimum Distances of Linear Codes by the Error Impulse Method Claude Berrou, Sandrine Vaton	5
Performance Bounds for Convolutional Codes over Finite State Channels Cecilio Pimentel	6
Analytic Expression for the Exact Bit Error Probability of the (7,5) Convolutional Code Michael Lentmaier, Dmitri Truhachev, Kamil Sh. Zigangirov	7
Stochastic Processes	
Statistical Characterisation of the Response of a Volterra Non-Linearity to a Cyclo-Stationary Zero-Mean Gaussian Stochastic Process	_
Miguel R. D. Rodrigues, John J. O'Reilly	8
Sergey I. Stasevich, Sergey N. Ganebnykh, Valery N. Koshelev	9
Spectra of Shot Noises and Hawkes Branching Point Processes Pierre Brémaud, Laurent Massoulié	10
Almost Sure Convergence of Titterington's Recursive Estimator for Mixture Models Shaojun Wang, Yunxin Zhao	11
Wireless Sensor Networks	
Asymptotic Delay in Random Wireless Networks Mohiuddin Ahmed, Gregory Pottie	12
Detection Performance in Self-Organized Wireless Sensor Networks Robert E. Van Dyck	13

Downlink-Uplink Duality and Effective Bandwidths David N. C. Tse, Pramod Viswanath	52
Delay-Optimal Power Control for Wireless Data Users with Average Power Constraints Won S. Yoon, Thierry E. Klein	53
Mon 14:30 - 15:50	
Turbo Code Design	
Design of Turbo Codes Interleaver by Loop Distributions Jungpil Yu, Marie-Laure Boucheret, Robert Vallet	54
Interleaver Pruning for Construction of Variable Length Turbo Codes Fereydoun (Fred) Daneshgaran, Paolo Mulassano	55
Turbo Code at 0.03 dB from Capacity Limit Joseph Boutros, Giuseppe Caire, Emanuele Viterbo, Hadi Sawaya, Sandrine Vialle	56
Non-Binary Turbo Codes Andrew C. Reid, Desmond P. Taylor, T. Aaron Gulliver	57
	<u>.</u>
Algebraic Geometry Codes	
Synthesis of the Simplest Linear Feedback Shift Register Allowing Prescribed Pairs of Input and Output Sequences — a Fast Algorithm for Solving Discrete-Time Wiener-Hopf Equations Shojiro Sakata	58
Integral Closures and Weight Functions over Finite Fields	36
Douglas A. Leonard, Ruud Pellikaan	59
A Class of Gröbner Basis Theoretically Based Evaluation Codes Hans Olav Geil	60
Explicit Construction of Codes on an Asymptotically Bad Tower of Function Fields Wei-Hsin Gu, Chung-Chin Lu	61
Multi-Terminal Source Coding I	
On Zero-Error Coding of Correlated Sources	
Prashant Koulgi, Ertem Tuncel, Kenneth Rose	62
Joint Entropy-Constrained Multiterminal Quantization Jean Cardinal, Gilles Van Assche	63
Stealing Bits from a Quantized Source	
Aaron Š. Cohen, Stark C. Draper, Emin Martinian, Gregory W. Wornell	64
Stark C. Draper, Gregory W. Wornell	65
Sequences I	
Quadriphase and 8-Phase Sequences and Sequence Pairs with Imaginary Correlation Sidelobes Hans Dieter Lüke, Hafez Hadinejad-Mahram	66
On the Self-Interferences of SS Codes Generated by a Markov Chain Yutaka Jitsumatsu, Tohru Kohda	67
New Families of Unimodular Perfect Sequences of Prime Length Based on Gaussian Periods Ernst M. Gabidulin, Vitaly V. Shorin	68
Feedback with Carry Shift Registers Synthesis with the Euclidean Algorithm François Arnault, Thierry P. Berger, Abdelkader Necer	69
Capacity of Quantum Channels	
Scalable Programmable Quantum Gates and a New Aspect of the Additivity Problem for the Classical Capacity of Quantum Channels	
Andreas Winter	70

A General Formula for the Classical Capacity of a General Quantum Channel Masahito Hayashi, Hiroshi Nagaoka	7:
An Exponential Lower Bound on the Highest Fidelity Achievable by Quantum Error-Correcting Codes Mitsuru Hamada	72
A New Proof of the Channel Coding Theorem via Hypothesis Testing in Quantum Information Theory	•
Tomohiro Ogawa, Hiroshi Nagaoka	73
Non-coherent Communication over MIMO Channels	
On Design Criteria and Construction of Non-Coherent Space-Time Constellations	_
Mohammad Jaber Borran, Ashutosh Sabharwal, Behnaam Aazhang, Don H. Johnson	74
Differentially En/Decoded Orthogonal Space-Time Block Codes with APSK Signals Xiang-Gen Xia	75
Combined Information and Performance Optimization of Linear MIMO Modulations	
Olav Tirkkonen, Rinat Kashaev	76
Space-Time Codes for the GLRT Noncoherent Detector Sandra Galliou, Ines Kammoun, Jean-Claude Belfiore	77
	• •
Power Control and Resource Allocation	
Power Control in Uplink and Downlink CDMA System with Multiple Flow Types Yun Li, Anthony Ephremides	78
Optimal Power Control in CDMA over Markov Fading Channels	,,
Ngoc Thanh Bui, Subhrakanti Dey	79
On Resource Allocation in Asynchronous CDMA Channels	^-
Slawomir Stańczak, Holger Boche	80
Contraint	01
Munish Goyal, Vinod Sharma, Anurag Kumar	81
Mon 16:10 – 17:50	
,	
Analysis of Turbo Codes	
On Algorithms for Determination of Turbo Code Weight Distribution Eirik Rosnes, Øyvind Ytrehus	82
A Note on the Analysis of Finite Length Turbo Decoding Jeong W. Lee, Richard E. Blahut	83
On the Minimum Distance of Turbo Codes	
Dmitri Truhachev, Michael Lentmaier, Ola Wintzell, Kamil Sh. Zigangirov On the Asymptotic Analysis of Superorthogonal Turbo Codes	84
Ola Wintzell, Michael Lentmaier, Kamil Sh. Zigangirov	85
Decoding of Block Codes	
A Parallel Version of a Special Case of the Sudan Decoding Algorithm	
Daniel Augot	86
High-Speed and Low-Latency Decoding of Reed-Solomon Codes Hyeong-Ju Kang, In-Cheol Park	87
Decoding Xing-Ling Codes Rasmus Refslund Nielsen	88
Decoding beyond the Designed Error Correcting Capability on the Basis of Supercodes	
Sergei Fedorenko, Eugenii Krouk	89
On Calculating Interpolation Polynomials for Error Values in Reed-Solomon Decoding Algorithm Yasunao Katayama, Toshiyuki Yamane	90

On Design Criteria and Construction of Non-coherent Space-Time Constellations

Mohammad Jaber Borran, Ashutosh Sabharwal, Behnaam Aazhang, and Don H. Johnson ECE Department, Rice University, 6100 Main St., MS-366, Houston, TX 77005-1892

Email: {mohammad, ashu, aaz, dhj}@rice.edu

We consider a non-coherent communication system with M transmit and N receive antennas in a block Rayleigh flat fading channel with coherence interval of T symbol periods. We use the following complex baseband notation

$$X = SH + W, \tag{1}$$

where S is the $T \times M$ transmitted matrix, X is the $T \times N$ received matrix, and H and W are the unknown (to both transmitter and receiver) $M \times N$ and $T \times N$ matrices of the i.i.d. fading coefficients and additive noise terms from $\mathcal{CN}(0, 1)$. The transmitted symbols are also assumed to be power constrained, $\sum_{t=1}^{M} \sum_{m=1}^{M} \mathbb{E}\left\{|s_{tm}|^{2}\right\} = P.$ The capacity of non-coherent systems was studied in [1],

where it was shown that at high SNR or when the coherence interval is much greater than the number of transmit antennas. capacity can be achieved by using a constellation of unitary matrices. However, at low SNR, or for small values of T (e.g., T = 1), unitary constellations are no longer optimal. The exact expression for the pairwise error probability of unitary constellations and the Chernoff upper bound are also given in [1]. However, these expressions appear to be intractable for the general case. Therefore, inspired by Stein's lemma [3], we propose the use of Kullback-Leibler [3] distance between distributions to approximate the exponential decay rate of pairwise error probabilities. The design problem will then be to seek constellations that have the largest minimum KL distance between the received distributions assigned to their elements (maximin code design). The resulting constellations coincide with the unitary designs at very high SNR or very low rates. But for high rate codes or at low SNR, different signal sets are obtained which show better probability of error performance.

The KL distance between $p_i = p(X|S_i)$ and $p_j = p(X|S_j)$, where S_i and S_j are two different $T \times M$ matrices from the constellation, can be calculated as

$$\mathcal{D}(p_i||p_j) = N \operatorname{tr} \left\{ (I_T + S_i S_i^H) (I_T + S_j S_j^H)^{-1} \right\} - N \operatorname{Tr} - N \operatorname{In} \det \left\{ (I_T + S_i S_i^H) (I_T + S_j S_j^H)^{-1} \right\}_{i=1}^{I_T}$$

Examining (2) shows that the KL distance consists of two parts. For example, for M = 1, (2) reduces to

$$\mathcal{D}(p_i||p_j) = \begin{bmatrix} \frac{1+||S_i||^2}{1+||S_j||^2} - \ln\left(\frac{1+||S_i||^2}{1+||S_j||^2}\right) - 1 \end{bmatrix} + \begin{bmatrix} \frac{||S_i||^2||S_j||^2 \sin^2(2S_i, S_j)}{1+||S_j||^2} \end{bmatrix},$$
(3)

in which, the first part is due to having different magnitudes (lying on different spheres in \mathbb{C}^T), and the second part is due to the angle between the points (lying on different one-dimensional subspaces of \mathbb{C}^T). This decoupling property suggests partitioning the signal space into subsets of concentric spheres and using

Fig. 1: Frame error rate comparison of 16-point real constellations

only intrasubset and intersubset KL distances in the maximin problem.

The unitary space-time codes of [1] have exponential encoding and decoding complexity. In [2] suboptimal unitary constellations with very low encoding and decoding complexity are proposed. In this work, we use the low complexity designs of [2] as the subsets of our multilevel constellation. The resulting 16point real constellation for T=2 and SNR = 10dB is a two level constellation, with 4 points on the inner circle and 12 points on the outer circle. The error rate performance of this constellation is simulated for different values of N and compared with the corresponding constellation proposed in [2]. The results are shown in Fig. 1. As we see, by using multilevel constellations (which use contributions from both parts of the KL distance) instead of single level unitary constellations (in which the first part of the KL distance is always zero), the performance of the non-coherent systems can be significantly improved. Moreover, the new constellations have a decoding complexity similar to the low complexity designs of [2].

REFERENCES

- B. M. Hochwald and T. L. Marzetta, "Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading," *IEEE Trans. on Info. Theory*, vol. 46, no. 2, pp. 543-564, March 2000.
- [2] V. Tarokh, "On the design of the first unitary space-time codes that have simple encoding/decoding algorithm," in Proc. of the 39th Allerton Conf., Monticello, 1L, Oct. 2001.
- [3] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley Interscience, 1991.