

February 2008

FIN1108 — LVDS 8-Port, High-Speed Repeater

Features

- Greater than 800Mbps Data Rate
- 3.3V Power Supply Operation
- 3.5ps Maximum Random Jitter and 135ps Maximum Deterministic Jitter
- Wide Rail-to-rail Common Mode Range
- LVDS Receiver Inputs Accept LVPECL, HSTL, and SSTL-2 Directly
- Ultra-low Power Consumption
- 20ps Typical Channel-to-channel Skew
- Power-off Protection
- 7.5kV HBM ESD Protection
- Meets or Exceeds the TIA/EIA-644-A LVDS Standard
- 48-Lead TSSOP Package
- Open-circuit Fail-safe Protection
- V_{BB} Reference Output

Descriptions

This eight-port repeater is designed for high-speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology.

The FIN1108 accepts and outputs LVDS levels with a typical differential output swing of 330mV, which provides low EMI at ultra-low power dissipation even at high frequencies. The FIN1108 provides a $V_{\rm BB}$ reference for AC coupling on the inputs. In addition, the FIN1108 can directly accept LVPECL, HSTL, and SSTL-2 for translation to LVDS.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FIN1108MTD	-40 to +85°C 48-Lead, Thin Shrink Small Outline Package JEDEC MO-153, 6.1mm Wide		Tube
FIN1108MTDX	-40 to +85°C 48-Lead, Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide		Tape and Reel

All packages are lead free per JEDEC: J-STD-020B standard.

Pin Configuration

Figure 1. Pin Configuration

Pin Definitions

Pin # Name		Description		
1,2,23,37,36	GND	Ground.		
3	/EN ₁₂	Inverting driver enable for D _{OUT1} and D _{OUT2} .		
4,7,8,11,14,17,18,21	R _{IN1-} ,R _{IN2-} ,R _{IN3-} ,R _{IN5-} R _{IN6-} ,R _{IN7-} ,R _{IN8-}	Inverting LVDS input.		
5,6,9,10,15,16,19,20	R _{IN1+} ,R _{IN2+} ,R _{IN3+} ,R _{IN5+} R _{IN6+} ,R _{IN7+} ,R _{IN8+}	Non-inverting LVDS input.		
12,25,26,47,48	VCC	Power supply pin.		
13	EN	Driver enable for all outputs.		
22	/EN ₃₄	Inverting driver enable for D _{OUT3} and D _{OUT4} .		
24	V_{BB}	Reference voltage output.		
27	/EN ₅₆	Inverting driver enable for D _{OUT5} and D _{OUT6} .		
28,31,32,35,38,41,42,45	D _{OUT8-} ,D _{OUT7-} ,D _{OUT6-} ,D _{OUT5} -D _{OUT4-} ,D _{OUT3-} ,D _{OUT2-} ,D _{OUT1} -	Inverting drive output.		
29,30,33,34,39,40,43,44	D _{OUT8+} ,D _{OUT7+} ,D _{OUT6+} ,D _{OUT5+} D _{OUT4+} , D _{OUT3+} ,D _{OUT2+} ,D _{OUT1} +	Non-inverting drive output.		
46	/EN ₇₈	Inverting driver enable for D_{OUT7} and D_{OUT8} .		

Functional Diagram

Figure 2. Functional Diagram

Table 1. Function Table

Inputs				Outputs		
EN	/EN _{XX}	D _{IN+} D _{IN-}		D _{OUT+}	D _{OUT-}	
HIGH	LOW	HIGH	LOW	HIGH LOW		
HIGH	LOW	LOW	HIGH	LOW	HIGH	
HIGH	LOW	Fail-Safe		HIGH	LOW	
Don't Care	HIGH	Don't Care	Don't Care	High Impedance	High Impedance	
LOW	Don't Care	Don't Care	Care Don't Care High Impedance Hi		High Impedance	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	+4.6	V
V _{IN}	LVDS DC Input Voltage	-0.5	+4.6	V
V _{OUT}	LVDS DC Output Voltage	-0.5	+4.6	V
I _{OSD}	Driver Short-Circuit Current	Continuous	10	mA
T _{STG}	Storage Temperature Range	-65	+150	°C
TJ	Junction Temperature		+150	°C
TL	Lead Temperature, Soldering, 10 seconds		+260	°C
ESD	Human Body Model, JESD22-A114		7500	V
Machine Model, JEDEC: JESD22-A115			400	V

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	3.0	3.6	V
V _{ID}	Magnitude of Differential Voltage	100	mV to V _{CC}	V
V _{IC}	Common Mode Voltage Range	(0V + V _{ID} /2)	(V _{CC} - V _{ID} /2)	V
T _A	Operating Temperature	-40	+85	°C

DC Electrical Characteristics

Typical values are at $T_A=25\,^{\circ}\text{C}$ with $V_{\text{CC}}=3.3\text{V}$.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V_{TH}	Differential Input Threshold HIGH	V _{IC} =+0.05V, + 1.2V, or V _{CC} - 0.05V Figure 3			100	mV
V_{TL}	Differential Input Threshold LOW	V_{IC} =+0.05V, + 1.2V, or V_{CC} - 0.05V Figure 3	-100			mV
V _{IH}	Input HIGH Voltage (EN or /EN)		2.0		V _{CC}	V
VIL	Input LOW Voltage (EN or /EN)		GND		0.8	V
V _{OD}	Output Differential Voltage		250	330	450	mV
ΔV_OD	V _{OD} Magnitude Change from Differential LOW-to-HIGH	$R_L=100\Omega$, Driver Enabled,			25	mV
Vos	Offset Voltage	Figure 4	1.125	1.230	1.375	V
ΔV_{OS}	Offset Magnitude Change from Differential LOW-to-HIGH				25	mV
I _{OS}	Short-Circuit Output Current	D _{OUT+} =0V and D _{OUT-} =0V, Driver Enabled		-3.4	-6.0	mA
	Current	V _{OD} =0V, Driver Enabled		±3.4	±6.0	mA
I _{IN}	Input Current (EN, /EN, D _{INx+} , D _{INx-})	V_{IN} =0V to V_{CC} , Other Input= V_{CC} or 0V for Differential Input			±20	μA
l _{OFF}	Power-off Input or Output Current	V _{CC} =0V, V _{IN} or V _{OUT} =0V to 3.6V			±20	μΑ
I _{CCZ}	Disabled Power Supply Current	Drivers Disabled			20	mA
Icc	Power Supply Current	Drivers Enabled, Any Valid Input Condition			80	mA
l _{OZ}	Disabled Output Leakage Current	Driver Disabled, D _{OUT+} =0V, to 3.6V or D _{OUT-} =0V to 3.6V	y		±20	μΑ
V _{IC}	Common Mode Voltage Range		V _{ID} /2		V _{CC} - (V _{ID} /2)	V
Cin	Input Capacitance	Enable Input		3		pF
OIN	при Сараспапсе	LVDS Input		3		PΓ
Соит	Output Capacitance			3		pF
V_{BB}	Output Reference Voltage	V_{CC} =3.3V, I_{BB} =0 to -275 μ A	1.125	1.200	1.375	V
R _T	Terminating Resistance			100		Ω

AC Electrical Characteristics

Typical values are at $T_A=25$ °C with $V_{CC}=3.3V$.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{PLHD}	Differential Output Propagation Delay LOW-to-HIGH		0.75	1.10	1.75	ns
t _{PHLD}	Differential Output Propagation Delay HIGH-to-LOW		0.75	1.10	1.75	ns
t _{TLHD}	Differential Output Rise Time (20% to 80%)	$R_L=100\Omega$, $C_L=5pF$ $V_{ID}=200mV$ to 450mV,	0.29	0.40	0.58	ns
t _{THLD}	Differential Output Fall Time (80% to 20%)	$V_{IC}=V_{ID}/2$ to $V_{CC}-(V_{ID}/2)$ Duty Cycle=50%	0.29	0.40	0.58	ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}	Figure 3		0.02	0.20	ns
t _{SK(LH)}	Channel-to-Channel			0.02	0.15	20
t _{SK(HL)}	Skew ⁽¹⁾			0.02	0.15	ns
t _{SK(PP)}	Part-to-Part Skew ⁽²⁾				0.5	ns
f _{MAX}	Maximum Frequency ⁽³⁾⁽⁴⁾		400	>630	1	MHz
t _{PZHD}	Differential Output Enable Time from Z to HIGH			3.0	5.0	ns
t _{PZLD}	Differential Output Enable Time from Z to LOW	R _L =100Ω, C _L =5pF		3.1	5.0	ns
t _{PHZD}	Differential Output Disable Time from HIGH to Z	Figure 4, Figure 5		2.2	5.0	ns
t _{PLZD}	Differential Output Disable Time from LOW to Z			2.5	5.0	ns
t _{DJ}	LVDS Data Jitter, Deterministic	V _{ID} =300mV, PRBS=2 ²³ -1, V _{IC} =1.2V at 800Mbps		80	135	ps
t _{RJ}	LVDS Clock Jitter, Random (RMS)	V _{ID} =300mV V _{IC} =1.2V at 400Mbps		1.9	3.5	ps

Notes:

- 1. $t_{SK(LH)}$, $t_{SK(HL)}$ is the skew between specified outputs of a single device when the outputs have identical loads and are switching in the same direction.
- 2. t_{SK(PP)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.
- 3. Passing criteria for maximum frequency is the output V_{OD} >250mV and the duty cycle is better than 45% / 55% with all channels switching.
- 4. Output loading is transmission-line environment only; C_L is <1pF of stray test fixture capacitance.

Test Diagrams

Figure 3. Differential Receiver Voltage Definitions

Notes: All LVDS input pulses have frequency=10MHz, t_R or t_F<0.5ns. C_L includes all probe and jig capacitance.

Figure 5. Differential Driver Propagation Delay and Transition Time Test Circuit

Notes: All LVTTL input pulses have frequency=10MHz, t_R or t_F<2ns. C_L includes all probe and jig capacitance.

Figure 7. Differential Driver Enable and Disable Circuit

Figure 4. Differential Driver DC Test Circuit

Figure 6. AC Waveform

Figure 8. Enable and Disable AC Waveforms

Physical Dimensions 12.50±0.10 0.40 TYP -B- 6.10 ± 0.10 4.60 9.20 8.10 4.05 19 0.2 C B A 6 24 ALL LEAD TIPS PIN #1 IDENT. - 0.30 - 0.50 LAND PATTERN RECOMMENDATION △ 0.1 C SEE DETAIL A 1.2 MAX $0.90^{+0.15}_{-0.10}$ ALL LEAD TIPS -C-0.09-0.20-0.10±0.05 0.17-0.27 0.50 ⊕ 0.13M A BS CS 12.00° TOP & BOTTOM DIMENSIONS ARE IN MILLIMETERS R0.16 GAGE PLANE R0.31 0.25 NOTES: A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ED, DATE 4/97. SEATING PLANE 0.60±0.10 B. DIMENSIONS ARE IN MILLIMETERS. 1.00 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. DETAIL A MTD48REVC

Figure 9. 48-Lead, Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CROSSVOLT™ CTL TM

Current Transfer Logic™ EcoSPARK[®]

EZSWITCH™ * EZ TM

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™

FACT® FAST® FastvCore™ FlashWriter®* FPS™ FRFET®

Global Power Resources

Green FPS™ Green FPS™e-Series™

GTO™ i-LoTM IntelliMAX™

ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP-SPM<u>™</u> Power220® POWEREDGE® Power-SPM™ PowerTrench®

Programmable Active Droop™

QFET® QS™

QT Optoelectronics™ Quiet Series™ RapidConfigure™

SMART STÄRT™ SPM[®] STEALTH TM SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

SupreMOS™ SvncFET™ SYSTEM®
GENERAL
The Power Franchise®

p wer TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ uSerDes™ UHC®

Ultra FRFET™ UniFET™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
 - device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.			

Rev. 133

^{*} EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.