O. Preface.

"Natural" () defined without arbitrary choice

ex) V = V*: need choice of the basis . V = jV** : doesn't needed. Elenberg MacLane 45': Natural Transformation Function (as sounce/tasset)

Catesour (Objectives O Categoritying math. objects => isomorphy

(B) Study itself => Self-dual In Chapter 1, O Def @ Duality & Functor. To day! A Naturality & Equivalence (Diagra Chare)

(D 2- Categorie) Def 1.1.1 (: category consists of Objects, X, Y, Z, · Hom (C)

(or Mor (C)) 1) Each morphism has domain and codomain, 2) Each object X has 1x: identity morphism 3) Two morphism fix-) Y j'Y-) Z St. $= \frac{1}{1600} \left(\frac{1}{100} \right) = \frac{1}{100} \left(\frac{1}{100} \right)$ a) (unital). $\forall f: x \rightarrow Y \in Hom(C)$, f = 1x = fb) (associates) for any corposable triple, f(54) = (6914.

: Morphise = alhor or map In abstract Category (there not function) Rem 1,1,5 Size issue Russell's Paradox :=) No Collection contains itself. To avoid, Def 1.1.6. Small Category: Hom(C) is a set. Obj(c) is also a set) (Then, from Obj (C) and Homeca) How (don Ob) (. are functions. But none of exaple, of concrete category are Small. Def 1.1.7 locally small category: Ux, y & obj C. ((Y, X)=Hom (X, Y) is a set (set at all morphisms = Mon (X, Y) Q: when is one thing the Same as another thing? => iso (actually helidefine notion of equivalence) Def: 1.19. Iso in Category C is a morphili fix-ly Possibility 3 g! Y-) x st fg = 1 y st = 1 x In this care write XEY. Endo! f(x-)x. Auto: endo + iso. Set bijection (Gup, Rm, Fiel), Mode: bijective -: Ex 1. 1.10. Top: Homeo (Htpy honotopy equil. (P.S) identity Q! In a concrete category, Is even iso induced by bijection of underlying set? A: Len 5.6.1 (Yes)

Def 1.1.11. Groupoid: a category muhich every morphism is iso. Cf) In alsetia, groupoid: a group changing briany operation to partial function i.e. mult is not def on all the objects Ex1,1,12 G:(Group): groupoid with I object. (It is def of SP In Cateson, theory.) Ty (X): fundamental groupoid.
Obj: points in X Mon: Endpt preserving honotopy classes. Def) Subcategory D of C. OBJ D S Obj C. MOLD S HOLC S.t. 1) Obj D contains any domain on cobrain of fetbe(b) 2) Mo-D " any identity morphism of X E Obj(b) 3) Closed under Corposition. Ex) (CRing C Ring) (maybe (nonumital).

(Computal) (unital) (nonumital). Lem 1-1-13 Any Category C contains maximal groups pf) Show Collection of 150 houghists of C is subcategory EX). Fin: Obj: Amite set Mon! function,

This.

This.

I bijection,

this.

I buxinal groupoid of FM

(Offet: Objects X can be identified with identity 1x. So Cat det by morphis. What we care: Morphish Ex 1.1.3. (Concrete Category) Hom Composite is Name Obj function f Corposition set X Set A. Cts function f. " top. Space X Top base pt preserving 11 -(1X; >c) Setx, Topx XEX. base pt 9 p homo Group groups Mys " rings RIng. field " fields Field: module " left Robble Mode tight " 6-Structure. Model T RMOd prophis-preserves structure WAL REK Mode Vect 1 = WALL REZ Ab = Mode graph hosphise graphs Sending Vertex to Vertex edge to edge Graph preserving incidence relation) di " Pisnarh Shooth hat manifolds Man measurable Measurable space function Mens order preservis Posets Roset chain cpx of Rhalle chain homo. ChR

Concrete Category (Precise: 1.6,17) Obj has underlying set underlying houph lave functions between set. 1.1,4 (Abstract Category) Name Obj Morph Composition ! Matrix (P= [1,2,3 -- 3 A!n-)m O Matr multiplication. is (mxn) (R! Unital ting)

Dineeded for identity
norph. R-valued motion group product. 2 BG 9 E G. () G! group. Clear by $\chi \leq \gamma$ transitivity (P, 4) (idontity from reflexisty) Piposet So we condo for preorder (transitivity ad reflexation) 2 Ordinals Ø Ø 10. {Ø} 10, 1503, $[\phi, [\phi])$ Ø ---> [\$]. (0 -) ()all morphise ₹0,1,2,--} O-1(-)2-)3-)- ω Marine Lawrence eu 16 (-) 4 (-) 42) ---1a HaEA. A5 A (set). morphism is an identity "Discrete Category": Every homotopy class top space 10 Htpy hase preserving --(×, ×) HOLX equiv class of nosle nenule space)) Measure function (= a.e.).

Exercise! 1.1i) morphish can have at host I muse pf) If g,h: x->7 are mose of f:7->x then, j=g1x=5fh=1yh=h. (, 1, Ti). Maximal groupoid. -> done, (, 1, Ti) Slice Category. Let C: catesory C/C:Obj:=Obj:Hom(C,DC) := Mor (f: c->x, g: c->7). und Mor := = {h12-17: f/2 9, commutes) $\frac{\chi}{\chi} \frac{1}{h} \frac{1}{4}$ $\frac{\chi}{h} \frac{1}{h} \frac{$ Mon (f:x-)(,9:4-)() Court e) = [h:x-)7: f/a/9 1=gh. } 7 / 7

Duality Def 1.2.1. From C, C° is opposite category · Obj (C°1) = obj (C) · for E Mon (Cor) for each fec. ... with for cod(f) -) dou(f) Then, from structur of (, 1) Ix is if in Col 2) for X-> X -> Z \Rightarrow $g^{op} f^{op}: X \longrightarrow Z \iff fg: Z \longrightarrow X$ Thus, COP is category iff C is category Ex1,2.2. Mate: PP is than spore of f. $(P, \leq)^{op}$: $\chi \rightarrow \gamma \iff \gamma \leq \infty$ w^{op} : .- 3 --) 2 -- > (--) 0. $(BG)^{op} \cong B(G^{op})$ When $G^{op}: opposite$ GP With Fight multiplicate i.e. - = 9 f h G of proof about C also applies Thus any StateLet " dual theoren" to opposite:

Lemna 1.2.3 For any C. TFAE. (1) f: x-> y. is iso in C. (2) fx: (((x))) (((,4)) is bijection (cos)($((4, c) \rightarrow ((\times, c))$ fx: pest-composition, fx: pre-composition. P () f: 150, =) $\exists g: Y \rightarrow x$ inverse of f. (i) =) (ii)9xfx and fx9x are identity the Thus Take (=4. ∃g ∈ ((4,×), 5+ (i) = (i) $f_*(9) = 1_y = 1_y$ A(so), $f_*(gf) = f_gf = 1 + f.$ $\mathcal{L}_{\mathsf{x}}\left(\mathsf{1}_{\mathsf{x}}\right) = \mathsf{1}_{\mathsf{x}}$ By bijectaity 1x=5f. (i) (ii) Apply (i) (ii) on Cop to set. $f^{op}: \gamma \rightarrow \gamma c$ is iso $\iff f^{op}: C^{p}(C, \gamma) \rightarrow C^{p}(C, \chi)$ is bijection UCEC. Now, CP(C,7) (4,0) $C((X)) \hookrightarrow C(X,C)$ 900 () 9f Thus, fx send, s to st. =) fx = fx.

$$\frac{2(22)}{(C=5)}$$

$$\frac{1}{2}$$

$$\frac{1}{2$$

=) $f^{op}:Y \rightarrow X$ is iso (=) $f^{*}:C(Y,C) \rightarrow C(X,C)$ bij. $\forall C \in C$
f:x-17 is iso. dore.
Def: 1,2.7, f: X-) Y ho-phils L is
(1) mono morphism if $\forall h, k : W \Rightarrow x \Leftrightarrow w$ mono (now) monic (adi)
(2) epinorphism of the hole: Y= but for any large epic hf = kf = h=1c (right Cancellaste)
fis mono. (=) fx: ((c,x) -> ((c,y) Ucec. injective
11 epi (=) Surjective
Ex1,28. f: X -> Y mono in Set. t-ke x ex
Let $\{x\} \xrightarrow{g} X$, suppose $fg = fh = g = h$.
Thus f is injective.
Ex 1.2.9. (Split epi / Split mono) S: Section. Crisht inverse) $ \chi \rightarrow \gamma \rightarrow \chi $ St. $rs=1_{\chi}$. Then r: retraction (reflect) Cleft inverse)
In this case, (Sis mone)
S: Split mono
r: split epi.

energy (1) If f is split epimorphism, then f = 1 and f = 1=) $f_{*}(S9) = f_{S9} = f_{Y9} = 9$, Subjective. Conversely, take! C=4. $\exists s \in (C_4,x)^{-s}$. fs=fy. fis split ept. (1,2,11) (1Pryonis split epi (=) $\forall c \in C^p$, $f_{\#}^{\#}: C^p(c, \tau) \rightarrow C^p_{(c, \tau)}$ 1 is subj. fix-Y is Split more. Hcec, +*: c(4, c) → c(x, c)
is surj. (, 2. iii) due. 2. Iv) What are monomorphism of Freld? ans) Every morphism is more morphism. $= \frac{h}{2} = \frac{g}{2} = \frac{g}{2} = \frac{g}{2} = \frac{h}{2} = \frac{$ Ex 1, 2, vi) Let $f: \chi \rightarrow \gamma$ = $15: \gamma \rightarrow \chi$ 5.t. \$5 = 15c. By Lema 1,2.11 iii) f is epic. Apply it on Cop. Then for 4>>> >1, g:x->7.
St. 199got = 171 By above, for is iso. $\Rightarrow MC, f(x) = 1 \text{ s.t. } gf = 1 \text{ s.t$

Ex (.2.i).

By def, (.2.i) (.2.i) (.2.i) (.2.i)By dunlity, its opposite category is hor (C/CP) Obj = U Homop (C, X) Mor (for: (-> > (, go): (-) 7) $= \underbrace{\left\{ \left(h^{op} \right)^{op} : \left(h^{op} \right) \in \operatorname{Mon} \left(g^{op} : \left(\rightarrow \right)^{op} \right) \right\}}$ (Forget about commuting diagram) it is just abstract opposite.) Thus, (hop) of E Moropop for: (-) > , gop: (-) 7) €) hop ∈ Moror (gop: (-)4, for: (-)x) $(=) \int_{\chi}^{0} \int_{0}^{0} \int_{0}^{0}$ Thus by sending 3 1-> 6°P for object. h (hop) or we can identify C/c by (C/Cop) of.

Ex 1, 2, 10 Not all epi on monic is suri or inj. ext f: 72 cm Q canonical Inclusion. Fis haonic shee fis miertre (h(r) = fk(r) =) h(r)=k(n) f is epic since $(h(1) = k(1) =) h(b) \cdot h(b) = k(b) \cdot k(b)$ ad h(= h(6)-1, k(=)=k(1)-1. shre h(b)=k(b) by f, h(b)-1=k(b)($\Rightarrow h(\frac{1}{6}) = k(\frac{1}{6})$ But fis not this isomorphism! It is not bisective Lenna 1,2,11. Use >>> monic ->>> epic. (1) 1: x>>> 4 9: 7>> 2 =) 9+ x>>> 2. (11) f: 2c -> 4 5:4 -> 2 5+ 34:2>>2 F) (i): obvious (ii). Suppose $\dot{w} = \frac{\dot{h}}{K} \times St$. fh = fk.

Then gfh = gfk = 0 h = k.

Dually Dually, $(7) f^{\circ p} = \gamma \longrightarrow \chi \quad (9^{p} : 7 \longrightarrow \gamma =) \quad f^{\circ p} \circ p : 7 \longrightarrow \gamma \in \mathcal{F}$ (11) for 1 ->> for 2->> and for 2->> x. Peleter op. Exercise 1,2 VII) Define sup int on poset (P, E)

Categorical serse, i.e. del staterar define
Mf.

Functortality.		
Def. 1.3.1. F: C-) D fundor	(Morphish of Codeson)
OFCED YCE	<u></u>	
	ED. Y	f: C-)c'eC.
Satisfyho "functoria	ality axrow	<i>(() (</i>
a) f, J Cohposal	le pair, Fg	Ff = F(gf)
b) HCE(, F(1)	$(-c) = 1_{E}$	
Ex (.3.)		A
IIP! Set -> Set At	$\rightarrow PA$ (f:	A-10) -> fx: A' -> GA CO
1) Forsetful functor for (C	o'h'Chete Contregan	161
U: Group -> Set GH asgr	-> G. f l- as a set as how	as function.
Sivilar for Phy Field, T		
U, E: Graph -> Set (5 H V(G) E(G)	f'G-)H(-) (V(G)-)V(H) (E(G)-)T(H)
VUE!	V(G)[] E(G)	U(G)(L)F(G)
	disi	and the state of t
3) Another forgetful.		
(101 _R	Ab C	Group
Field Cin Ring		
4) Rins - Setx		functorial
$R \longrightarrow (R, e)$	e: identity	because
		homomorphish preserves identity.

(ix) F: Set -> Group. fl > induced sp home. X -> Free gp genty X. example of "free functor". x) Euclid* Obj: (IR", a) Mon: $f'(\mathbb{R}^n, a) \rightarrow (\mathbb{R}^n, b)$ differentiable Constits of f: IR" - 1R" " and fcal=b. D: Euclid + - Matir $(IR^n, a) \longmapsto n$ $f:(\mathbb{R}^n, a) \to (\mathbb{R}^n, b) \longrightarrow n \xrightarrow{dfa} m$ Ha: Jacobian mxn matrix (Say correction on Mate:) It satisfy functoriality axion due to chain rule Xi). Finx: Obj: (Ex. - xn, Xn+1), Xi) Mon: function preserving basept. M: Fin* ->> Set Let Nt:= ([N]U {a}, [a]) (M: Commutative)
monoid. M"+ = M" cartesian product (M": Sinsteton)

 $\forall f: M_+ \longrightarrow N_+, \det M^f: M^m \longrightarrow M^n$ (a,,-, am) (b,-- bn) where $b_i = \int TT$ a; if f (i) 7 % Tt expty Then, Hf preserves unit. So, Segal 74 : Cohonology on Some suitable Category Sin (JEFT (in) (Als, k-theory Arow Quillen)-(x1,3.) (Browner fixed Pt Theorem) Any cts endo f: D2 -> D2 has a fixed pt. pf) Let r: D'-) si by (for in prox) T is cts and n:s'-) B is inclusion =) $V\lambda = 151$: h: Split epi (rethaux) λ : Split more Since T_i is function, T_{OP*} —) Group, $T_i(S_i, x_i) \xrightarrow{T_a(i)} T_i(D^2, x_i) \xrightarrow{T_i(t)} T_i(S^1, x_i)$

 $\pi_{i}(r) \cdot \pi_{i}(i) = \pi_{i}(r,i) = \pi_{i}(I_{Si}) = I_{\pi_{i}(Si)}$ But $T_1(S') = 72$, $T_1(D') = 0$. = 72-) 0->7/ is identity Contradiction OFCED, UCEODIC OFF: Fc' > Fc Vf: c > C' EHOM C. (5+...) f:>(-)7 5:4->2, =) Ff-Fg = F(gf) (Fy-) For, Fz->Fy) $(2) F_{1c} = 1_{F_{c}}$ $C \xrightarrow{\sim} D$ t) Ff f library it c'l Fc $C' \longleftrightarrow F c$ (Covariant) Functor (Contravation+ Functor Ex1.3,7 (1) $P: Set^{P} \longrightarrow Set$ $A \longmapsto PA f'(B')CA.$ f | ---> 1 | R ----- PR B'CB

(6) Presheaves on (1) Simplex Category 1 : Obj: [n]=[o,1,-n), n = (N) (finite noneupty) Mon: f:[n] -> [m] Order preserving function. $(\lambda \leq j \mapsto f(i) \leq f(j))$ A simplicial set! any presheat on A, Tive. X: 10° -> Set ex) X: sending o [n] [n] 1. Lem 1.3.8 Functor preserves iso. $\mathsf{pf})\;\mathsf{F}\colon\mathsf{C}\longrightarrow\mathsf{D}\;\Rightarrow\;\;\mathsf{F}(\mathsf{s})\mathsf{F}(\mathsf{f})=\mathsf{F}(\mathsf{s}\mathsf{f})=\mathsf{F}(\mathsf{1}_{\mathsf{N}})=\mathsf{1}_{\mathsf{F}_{\mathsf{N}}}$ (f:x) (f) (fSo does contravariant fundor [x1,3,9. G: Sp. BG: group as a category. Let X: BG -> C: any Catesory · Some obj C. 9 - X By functoriality Ohx9x = (hg)x 47, h EG axion. Dex = 1x e:id in G.

Thus XIBG -> C. defines an action of the SPG on the object XEC. (ex) If $(= \begin{cases} Set \\ Vect_k \end{cases} =) \times : BG \rightarrow C$ is (G-Set) (G-Space)(G-rep.) G-space And Contravariant functor BGP -> C defines right action Similar way Since Function preserves iso, and all morphisms in BG are iso, so 9x is automorphism in that Catogory Corollary 1-3.10. When Gracts functorially on an object X in a cetesory ((i.e =X:BG-)C) g must act by automorphism 9+ :X-) X. and $(9_{*})^{-1} = (9^{-1})_{*}$ Zemark: Functor May Not Presere mono orepic but preserves split now / split epic. pf) Almost Save as (-3-8. Def 1.3.11 C' locally small CEObjC Function represented by c: ((c,-), ((-,c))

so contravante fuctor defres tight action. Also, since funda presers 150 morphis M G-Lep, any morphism mapped into Outonoushir のよう リークレ Corollary 1,3,10. Gast functorially on an object X m & Category C, 964 act by autocomplis 9, 1 X -> X ad (9*) = (51)* Ruk! Functe prevaers SHIF wows / ESTSPLIF EFT. Def 1.3.11 C: locally small. UCEC defin function tep by c ((c, -), (c, c), (c, c))(contravariat) (X) Set ((y, c) (covarian) () Set $\gamma(-)((c,x)$ (+) [+ * t | t* 7 (7, 6) 4 1-> (((,4) = Covariat action Thus left acti = Outle Variht ".

(((,-),(-, ()(op _____ Set (- Set $\chi \longrightarrow ((c, *)$ x ((×, c) f | ---> L f* q (c, y) 4 (-) ((4, 6) PLE COLPOSITION "post" Composition = Covariant action = left action pre = Contravaint = tishtaction

Bifunctor: (E) or functor of the Variable

Def 1,3,12 (, D: Category (XD) is category OPI (XD: (C'9) " CEOPÈC "960PI $Mon: (f,g): (C,d) \longrightarrow (C',d')$ for f: (-) c' E Hou (5: d-) d' E Mou D. Def 13, 13, 1, Two sided represented function $((-,-): (^{\circ} \times (-) Sct)$ f^{opt} $\downarrow h$ $\downarrow \downarrow h$ $\downarrow h$ (W,Z) ((W,Z) hgf. (So It is Covariant function.)

C°P # C. In goveral E/F: Galois ext. () E/F fmite ext.

[Aut(E/F)] = (E:F) Ex1.3,15. Galais SP: G= Aut(E/F)@. Obj! G/H! Sect a left coset de f (Setet all left cosets of H) by subspt of G Mor: CP function 6/4-) 6/16 Comute with left Gractin exercise: Every (7/H -) G/K hay the four gH (-) 98 K Field = obj: interrediste field norphilic K-) L. frold how fixing F. Thu, Aut (E/F) = {fettou(E,E) : fis autonorphy) F: OG - Freid E GH H GEE Subfick fixed by H G/H -) G/K) (XH) dx.) FITC of Galois Theory: BID is Liverth Mfact \$ 13 150.

Thus we need a little bit relaxed concept morphism of functor, i.e. natural transformation Exercise 1.3.i) Functor between groups? $G \xrightarrow{F} H$ F(0) = h S + ho) F(99') = F(9)F(9') $5) \mapsto h \downarrow b + (e) = e_{H}.$ =) If t is tundor, then it is op homo. Conversely gphono: satisfy a) =16) it is functor. 1.3. [i] Functor between preonders? (P, \leq) (Q, \leq) Fis order preserving $F(x) \leq F(y) := -1 \text{ a)}$ F(y) = F(y)function 360-66 3.111) pr. Hayesneyer Notation. nys C: 0 d F! C -> D a-> b |--> > > > Y c -> 1 (-> 2. We have composable morphisms in F(c)
But composite doesn't exists.

C(C,x):g E_{\times} (3. 70) $f = I_{\times} = 1$ Ix $\int (1 \times 1)^4 \int 1 \cdot dentity$ So (C \times \cdot) (1,9) = 9. or -) CCCK) P =x1.3.v). Clain: FCOP) D () G:C-3 DOP Let F: CP D. Construct G: C-) Dop s.t. G(c):= F(c) From Hom (Fb, Fa) Homps (Fa, Fb) so over f E. Hone (a, b) define G(f) = (Ff) of in Hom pop (Fa, Fs) Thus, Fic -> COP -> D 6: C -> D -> D nc I >>> Fx $\chi \mapsto f_{\chi} \mapsto f_{\chi}$ f Iffpr Jff. t] top]] Et. Y () Fy 4 1-> 7.1-> Fy F, G are the save functor Also, FICODESCOP, P C-) CP-) DP-) D x y Fx f I Tor T(FA) or Fx Fy. \(\frac{1}{2}\)

FID->C, GIE->C. : 065 = (d, e, f.) FLG det, eeE, f:Fl-)Ge ec Mor ((d,e,f), (d,e,f)) = { (h, k) E Horb x HonE! h: d-3d', $k: e \rightarrow e' + st$. FJ f Ge in C., i.e Fh Gk f. Fh = Gk.f. FJ' — Ge' It is category since. $\Delta(d,e,f) = (\Delta_d,\Delta_k)$ $(d,e,t) \xrightarrow{(h_1,k_1)} (d,e,t') \xrightarrow{(h_2,k_2)} (d'',e'',t'')$ #1/1/ Ge' +(h,h.) [th. 1 2. | the. Fin Ge" FJ" - F(k,k,) = F(k,k,) +

Functor: dm: F16 -> D (o):F1(-) E (d,e,f) (-) e $(d,e,f) \longmapsto d$ (h,k) $\downarrow k$ (h, k) | h $(d,e,f') \mapsto e'$ $D = (1-3, 1_0) \cdot F : D \rightarrow C \quad G = 1_C$ E = C(x (.3, vii) 0// Obj = $(e, x, f: c \rightarrow x)$ Under Mor: ((-, >1, f: (->>1)), (-, 4, 9: (->7)) = [(1. h:x-)7) EMOLD XMOLE $\begin{array}{ll}
P = C & F = 1c & G = \bullet \longrightarrow C \\
E = (\xi - \xi, 1_{\circ})
\end{array}$ over Obj: $(x, \cdot, f: x \rightarrow c)$ Mor ((x, , f:x -) (4, , 9:7 -)) = } (h:x->4, 1.) E Mon D x Mon E

projection function: dom: </ -> D=(1-), 1) 61: % -> E=C (°, 21, f:(->)1) |-> . (·, 21, f1c->2) +> 2 (1, h) (1.h) \longrightarrow $\begin{bmatrix} h \end{bmatrix}$ (·, 7,9; c-) y) (-). (°,7,5;(-)4)+) 4 Thus: Codiffe C du /c -> C. fix->c () X f:(->)(, |---->) (h) (h. h / h. 9:4-14 9:(-)y (-) y Similarly, don C/c -> D= C 6d: /c -> E=(1-), 1) (x, o, fix-)c) /-> >((x, o', f(x-)c) +); $(h,1) \downarrow \downarrow 1.$ (h,1) $\downarrow h$. (4, . , 9:4-) () -) = (4, · , 9 24 -) c) (-) 4 EX1.3, UIII) Ex! Functor need not reflect isomorphise Et. Ff IsoMD FMJ FIC-DD, FEMOL(C) f is not iso in C ex) Honology Hobotopy functor: More generically (Quasi-iso but not homeo) 1=((-),1.) (-) 1 by (). f -> 1.

Ex 1.3. ix) Source Group iso. Ghoupepi Group 7-(-) Yes. (iso) No O C(-) Yes Yes 2) Yes Au+ (-) / Yes No 3) D. II G = H => $Z(G) \subseteq Z(H)$ Claim 1: G +>> H Suri, then f(Z(G)) ≤ Z(H) pf) hf(g) = f(h'g) = f(gh') = f(g)h. theH, of F(G), h': preinage of h. Claim 2: G=>> H then f(2(G1) = Z(H) If $h \in Z(H)$, $\exists g \in G$, st. f(g) = h. - 0'5 = f'(h'h) = f'(hh') = f'(h) f'(h') = 00' =) $9 \in Z(G)$ =) $f(Z(G)) \supseteq Z(H)$. Line. [lail-]: Z(-): Group 110) Group is functorial GLOUPEPI Let 6, 9H+10K 19. L Z(16) (or epi) G -> Z(G).

Then. I'm $\phi(Z(G)) \subseteq Z(H)$, $\Psi(z(H)) \leq z(K)$ he have map 2(G) 2(H) 2(K)Thus, 4/z(H) o $6/6\overline{z}(G)$ = $(400)/\overline{z}(G)$ in places $6/6\pi st$ functionality axion. Clair 4: 7(-) Group -> Group is not a functor. $f(x) = (x_2 - x_3) = (x_3 - x_4) = (x_2 - x_4) = (x_2 - x_4) = (x_3 - x_4) = (x_2 - x_4) = (x_3 -$ $1 \mapsto (12) \mapsto (12) + A_3 \mapsto 1$ Where Cz: Cyclic group of order 2, Sj: Sym, " Az; alternations op of Sz. Then, If Z is a function, $Z(C_2) \rightarrow Z(C_3) \rightarrow Z(C_2) = Z(C_3) \rightarrow Z(C_3)$ $= C_2 \rightarrow O \rightarrow C_2 , Contractiction = C_2 \xrightarrow{fC_2} C_2$

2). Claim 1: $G \xrightarrow{f} H = C(f(G)) = f(C(G))$ $\leq C(H)$ $f(x) = \{ f(x) + f(y) + f(y)$ = [f(xyx171): x766] $= f(C(G)) \leq \{x_4x_1A_1, x_4 \in H\}$ C ((1) Clark 2: C(-): Group is C(H)Group is C(H)Group is C(H)Group is C(H)For C(H) C(H) C(H) C(H) C(H) C(H) C(H) C(H)=) (CCG) flows (H) 15 5p homo. If f = 16 => ((f) = G => H -> /< (40 Ø) (CG) is not a functor Group -) Group Pf) G = IF 1 × IF 1 by multiplication.

G=
$$\{(a, b): a \in \mathbb{F}_{11}, b \in \mathbb{F}_{1}^{1}\}$$

and $(a, b) \cdot (c, b) = (a + bc, bd)$
Also, Det N= $\{(a, b): a \in \mathbb{K}^{2}\} \subseteq \mathbb{F}_{11}$
 $= \mathbb{K} = \{(a, b): b \in \mathbb{K}^{2}\} \subseteq \mathbb{F}_{11}$
 $\mathbb{K} = \{(a, b): b \in \mathbb{K}^{2}\} \subseteq \mathbb{F}_{11}$
 $\mathbb{K} = \{(a, b): b \in \mathbb{K}^{2}\} \subseteq \mathbb{F}_{11}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{F}_{11}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{F}_{11}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$
 $\mathbb{K} = \{(a, b): a \in \mathbb{K}\} \subseteq \mathbb{K}$

Hence let X E Aut (G) => X(K) is a sub-op of G. withorder 1/41 $\exists g \in G$ S+ $g \propto (k)g = k$ =) Let leg EInn(G) S:+. (9(9')= 00'51. => God fix K. Also, Notes that God fix N since N is Unique 11-Sylow subspof G. (hus, if. 450 x (1;1) = (0,1) then, ato shoe look (0,1) = (0,1) (Identity.) thus 3 b E/F, S-t- ba. = 1 (0, b)(0, b') = (ab, b)(0, b') = (al, 1) $Q_b Q_q \circ \times (1,1) = (1,1)$ And since (0,6)(0,0)(0,61) = (0,0)Tix K. Let 8= 600000.

 $\beta((1)) = ((1)).$ Then, $\beta(k) = k$, $(\beta(N)=N)$ and Pis auto. It a to. M Fil =) $\beta(((a, 1)) = \beta((0, a)(1, 1)(0, a^{-1}))$ $= \left(\beta(0, a) \right) \left(| \beta(0, a) \right)^{-1}.$ -Since β frx. N, $\beta(\alpha, 1) = (b, 1)$ $\beta(\alpha, 1) = (0, 0)$. $\beta(\alpha, 1) = (0, 0)$. And B fix (=> B(P, a) = (0,C). CE (Pix Thus, $(b,1) = (o,c) (1,1) (o,c^{-1})$ = $(c,c) (o,c^{-1}) = (c,1)$ → b=c. And. $\beta(0-a) = (0, c) = (0, b)$ Thus, & Fu -> N -> Fu nduces a map on Fil (we didn't show it is homo) similarly, FX) K) FX a (0,a) (0,b) --- b. he day that I is field hono.

$$\frac{\partial(a)\partial(b)}{\partial(a)} = (\partial(a), 1)(\partial(b), 1) \quad \text{in } G_{1} \\
-(a) \partial_{1}(b) = (0, \partial(a))(\partial(b), 1)(0, \partial(a)^{-1}) \\
= \beta(0, a)\beta(b, 1)\beta(0, a^{-1}) \\
= \beta(0, a)\beta(b, 1)\beta(0, a^{-1}) \\
= \beta(0, a)\beta(b, 1)\beta(0, a^{-1}) \\
= (0, b)\beta(0, a) \\
= (0, a)\beta(0, a) \\
= (0, b)\beta(0, a) \\
= (0, b$$

a freth homonouphin on Fil

Thus $Aut(G) = Inn(G) \cdot Aut(F_n)$. $\subseteq Inn(G)$. $\subseteq G$.

Stree any automorphism sof G is field homomorphism times more automorphism. and Aut (Fin) = 0 stree of there are only to Fix 5p homomorphism and only to bomomorphism and only to homomorphism fix 1 + 1.

Now Think about a map.

 $\phi: F_{i}^{\times} \longrightarrow G \longrightarrow G_{i}^{2} F_{i}^{\times} : \text{ is a morphism.}$ $Aut(-) \text{ Moduce: } Aut(F_{i}^{\times}) \longrightarrow Aut(G_{i}) \longrightarrow Aut(F_{i}^{\times})$ $But |Aut(F_{i}^{\times})| = |Z(47c)| = 4 \text{ and } (4/10) = 1.$

(Au+(G))=(G)=110.

=) Aut(+(1) -) Aut(6) is Zero.

But $\phi = 1$

Aut (p) = " 1 Aut (Fix) 700, So Aut doesn't satisfy functionality axion.

1.3.X.) Let G, H or, f: G-> H hono, XG, XH, SOL of conjugacy classes, of G, H. o: G -> XG, h: H-) XH class fuction, 1.0. 9 (a) = 3 (bab) 46 EG. Let Gnj: Group > Set GH XG ϕ [$G_{n,j}(\varphi)$: fund (management of the second OGn5(Ø) is hell-defined; 14 5'E 5, then, 9'= 696 for some 66 Thus, $\phi(g') = \phi(g) \phi(g) \phi(g) = \phi(g) = \overline{\phi(g)}$ DI+ is functorial; If 4: H-) I morphise Gnj(4)- conj(p) = conj(400) and $Conj(\frac{G}{1L}) = 1x_{G}$ Thus, if (Xal 7 |Xh), the Gus (4) 1) not isomorphism. Since function presences 150, Ø:G->H is not is a

Natural Transformation E). (-)*0(-)* Where (-)*: Vector Vector V -> V* ! Induces ' V' = U** but this iso comes for ev. Guev. No unnatural cloice of basis is needed. Def 1.4.1. (Natural Transformation) C,D: categories F,G: (3) X'. Natural Transformation F => 6 = 18:05 'St. Xc: Fc -) Gc EMOLD. UCEC i C Grponet of X. Fe-) Ge St. Ufic-)c' Eth-(Et [] [] [] [] Commute, FC -> 6c1 Natural Isomorphism: X: natural transferration S+ X is iso YCEC. Then QIFEG

"The athous are natural" =) allection of allows Lefne natural transf. C (() ()Ex 1.43(i) Average (-)*. (-)* $\frac{1}{\varphi(u)} = \frac{1}{\varphi(u)} + \frac{$ $\emptyset^{**}(f_{V}) := \emptyset^{*} \emptyset^{*} V^{*} f_{V} \times f$ 5 (d(v)) Føw,:

(ii) 1 Vect (-)*. Shice Ived : Coratiat (-)+: Contravaint. More stanificantly VaU* candle defined without choice of basis (11.15) which is not preserved by any houidetity lhear endonorphise. A -> PCA) $A \xrightarrow{A} P(A)$ by 2: A-1 PCA) al-) [a] f] | f R nB P(B) @ (---> X. What is natural transfo iv) X, Y: BG = 3, C =) X: X-) Y hosphis h C. X st loft diasua 2x 12 19x. We say x is "G-equinorat"

(V) (O! Tope) Set. by () fakily Corpland. i.e., (0) To see this, any cts fivesx 670pp. $f'(v) = \frac{f'(v)}{f'(v)}$ $f'(v) = \frac{f'(v)}{f'(v)}$ Then, $(f^{-1}(U))^c = X - f^{-1}(U^c)$, Also, THIS natural iso since () is bijection. (1) (-) P: Group -) Group.

G --) GP: (obi: *

(mon:= G 5.+) g - h = (hg).

(5) Alfo! Category of Am. gen. al sp. for over at 5p A, left TA: torsion subsport. By classification The of alsop, ASTA O (A/TA) Prop 1.44. A= TAO (A/TA) are not natural MAEALS, pf) It it wer hatural, X: A ->> A/TA >--> TA (A/TA) EA. acthor as a natural endomorphism of the IAbfs. , i.e. 1_{Abfs} . 1_{Abfs} . Claim I! It 1: natural endomorphism of 1Alfg =) 21 2(1-) nx fusione nex pf). Since. 1:72 -> 72 is multiple by 11672 2 fair na ax. $A \longrightarrow A$ $A_{A}(ax) = X h_{A}(a)$

Thus, 2,: A -> A a -> na. E Now, if A=7L, X; $\alpha \mapsto \alpha$, by Then X: A ->> A/TA = A -> A => A. is iso, thus, hto. $A = \frac{7}{2} / \frac{1}{2} / \frac{1}{2}$, TA = A, thus But n to m 2/2002 1 / Xx) 2/2 / The state of n. doesn't Commute, Contradiction

Shae ((-, 4), ((-, 7) ale func tous $h_{\chi}: ((-, 4) \Rightarrow) ((-, 7)$ is natural transformation. (n.t.) Smilady $f^*: ((x, -) =), ((w, -))$ Ex1.4.9. For A, B & Sets. A+B := disjunion of A,B. A" := {B->A} => A×(B+c) = (A×B) + (A×c), (A×B) = Ac×Bc $A^{BtC} \subseteq A^{B} \times A^{C}$ $(A^{B})^{C} \subseteq A^{B} \times C$ Actually, this is natural iso between Setx Set x Set functions. or ((obttalaint) Now, restrict this natural iso in Finiso, Obj! finite set Mor! Livectron! Then let 1-11 FM -> 1N. befundon. (No discret category) & I (A)

et natural #) (B)=(A).

Then this induces $a(b+c) = ab+ac, (ab)^{c} = a^{c}b^{c},$ $a^{b}c = a^{b}a^{c}, (ab)^{c} = a^{c}b^{c},$ a laws of mult and add in IN. decategorification of Finiso = N and these law. Categorification of IN = Finiso.

Thus, Det at: collection of de. Tho. $\begin{aligned}
Hf! & C \rightarrow C' \\
G_{C} & \xrightarrow{p_{C}} FC \\
& \downarrow \neg \neg \Gamma
\end{aligned}$ $\begin{aligned}
Ff \circ X_{C}^{\dagger} &= X_{C}^{\dagger} \circ GF \\
\downarrow \neg \neg \Gamma
\end{aligned}$ Gf] IFF. Shire dotf = Gfode. GC' TO FC' =) XC, OFF. XC' = GF. 1GE 1.4.11. It Ø: G -> H be a function, then, $\phi(e_0) = e_H$ $\phi(9) \cdot \phi(9') = \phi(99')$ Thuc, \$\phi\$ is any homomorphism $\forall g \in G$, $\forall (g) = \alpha \neq (g)$ $|\psi(g)| = |\chi^{2} \psi(g)| = |\chi^{2} \psi(g)$

Hence, & EInn (M) St. X04=\$ Ex 1,4.711) (P, 4) = (Q, 4) then F, G are order preserving function It F = G, then. Wf:p->p' Tp dp i.e. Gp/Zfp/ZFp. 744 Gp, 2 Gp 2 Fp. Fpr Gpr. =) GpZFp Gp. Thus, natural transferreth of E, G Order prevening further is £ 56. i.e. UpEP, Fp < Gp. Works FEG(=) Norther Heart hold;)

(,4, TU)

Ex 1.4 iv) Each fx 9x, f", st defines n, t. by Ex 1.4,7 The fix = 9* =) C(x, c) $\xrightarrow{f_{x}}$ C(x, d)--hi.]--h. ((4, c) f*; ((4, d) =) Yle((x,c). lm) flh. $f(lh = 9lh.) \quad \text{Now pick } h = 1_{x}$ $\Rightarrow 1 \cdot f(l = 9l), \quad \text{Prck } x = 0, \quad l = 1_{c}.$ e) feg, contradiction - ft + 9x as hatural transformation. (ft, 9t: shilar manner) EX1.4 V.
FJG dom D => C Cd,e,f) \longrightarrow fd(h,k) | h. | | Fh. (d',e',f') | J' ---> Fd'

FLG Cod E - G C $(d,e,f) \longmapsto e \longmapsto Ge$ (h,k) [K] G/c. (d', e', &') | e' | Ge' Thus, @ For each (Je, f) (d/e', f') we need to find $\alpha(d,e,f)$, $\alpha(d',e',f')$ F_d (4,e,t) Ge th. I. O. LGK Commute, th. I. tJ' ~ Ge' Set d (d, e, f) = f. By construction of FLG, it holds. Ex 1.4 vi) If F, G has different tanget category i.e., FIAXBXBPD D WITH DFD! then, we bort town houte Cannot have a morphism F(a,L,L) -> G(a,cgc) in general

1.5. Equivalence of Categories. () () () () () () D: H/G. Lem 2.5.1. F; G: C=3, D. Then, [X: F=) G | natural transformation) IH: Satisfumo diagra } Thijection of) Construction of H is in [x1,5,1) To see bijective corresp, notes that given H, with (C, o) - (c', 1) H(c,0)=Fc, H(c',1)=Gc' by dragram. Now define $\times_{c} = H((c,0) \xrightarrow{f_{c}(0\rightarrow 1)} (c,1)).$ then, Fc Xc Gc. If we show this diag commutes done. (2) Ff \downarrow GfFc/ dc/

Actually it is taking Hon E) Commutes! ((1,0) - (0,1)Thus, I induces a natural transformation of Hence the bijection occur @ If (=2, 2x) is deproted as (0,0) (1,0) (1,0) (0,0then H sends 14. to If we change 2 to.

I:

F11 in the F(1) lemma, then. Fundan Satisfyho Comm. α_{s} α_{s} α_{s} α_{s} diagram Datural Isomorphism. G. G(C).

Def 1.5.4 Equivalence of Categories, Consists of. 0 F:C > D:G 0 1:1, CCF, EFGS1, natural isomorphism. UIn, this case write CCD. (Cf. (=D: isonorphism of catesony) Lem 1.5.5. (CDD is equivalence relation pf) Ex (,5, vi. Ex 1.5.6. (i) $(-)_{+}: Set_{+} \longrightarrow Set_{*}$ m 1.3. U: Sety -> Set are actually equiv of category $4set^2 = U(-)t$ and $2:4set_{\perp} \subseteq (U-)_{+}$ with $\lambda_{(x,x)}: (x,x) \rightarrow (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \\
 \forall (x|\xi_x) \cup (x|\xi_x) \cup (x|\xi_x) \cup$

(2) Matik (H.) Ved Kasis U Vect (E) Vect (E) $(k^{(-)}) (n^{(-)}) = k^n L_M$ U: forsetful function C: Sendho Vispace by chosino a M: Sendho V.S to dim and Imeau transformation to matrix over given bases. Aim: WTS Matik a Vections of Vectik Mere Vestik: Category of f.d. v.s with chosen basis. Def: 1.5.7. F! CDD a functor is Ofall if Ux, y EC, C(x, y) -> D(Fx, Fy). is surjectile @faithful is injective. @ Essentially surpertine IF 4dED, I CEC S.t. FZ GL.

Ren 1.5.8 (1) Full, faithfull : local andthous (2) Faith-full and injective on object = embedding
(3) Full-+ faithful = fully faithful
fully faithful + meether on object = full
embedding In case of full embeddhe image of domain = full subcategory of the codomain Thm 1.5.9. F. (CDD: G (=) F, G are full+faithful fers, suri. (under axtor of choice) Lem 1.5.10. For frank with a 2a', 626'.

] f'! a' 6' 5+. and amon M the left square

the left square

makes it committes pf) Ex (5-111) pf of Thm) Let $f, g: C \Rightarrow C'$. With ff = fg. $C \xrightarrow{h} GFC \leftarrow C$ $C \xrightarrow{g} GFF \downarrow GFg. 2. \qquad \downarrow g.$ (Since FF = Fg) (Since Ef=Fs) C' (C) GFC, EZ C'

 \Rightarrow 5 = f. =) F is faithful. (So is G by apply no save absured on FG =) "by symmetry") Let g E. D (Fc, Fc) f:= 27 (G9) 2 E (CC, C) Commutes Com requivalence def of fandg =) Go = GFf. From Gis faithful, 9=Ff => Fi full. Nou, AL dED, Ed: FGJ => J => F is essentially surjective. By symmetry, Gil also full and essisur.

Conversely let F: (-) Di; full faithful and ess. Sur. Want to construct G:D-) (equiv. By axion of choice and essential sur). HJED, JICEC St. JEFC. Met Gdiec => EindeFGI Then, gren f ∈ D'(d, d') he have FGd = 3d Sin $f(x) = \sum_{i=1}^{n} f(x_i)$ $f(x_i) = \sum_{i=1}^{n} f(x_i)$ Then, from Fis fully faithful, I hECCGd, Gdy St. Fh = g. Let Gf = h lence, by this definition $+GJ = \frac{\epsilon_d}{2}$ =) Ej: FG =) 1D FGF 1 1 1 f FGJ' ==> J'

Claim 1: G is functorial For first conditions FGJ Ed L ET FGJ. $FGI_{J} \bigcirc J \downarrow J \bigcirc F(I_{GJ})$ FGd Ed Ed O committees by definition of GIJ D / functoriality of F $= F(1_{Gd}) = F(1_{Gd}) = G(1_J) = 1_{GJ}$ by faithfullness of F. For second Condition, let f: d) d', f': d') d" $FGJ \longrightarrow EJ \longrightarrow FGJ$ $Commtes b_7$ definition ofFG(17). 2 ff. $J' \in J'$ FGJ' (we define these $J' \in J'$ $J' \in J'$ FGJ" \(\varepsilon\) \(\vareps

Corollary 1.5.11. Matk 2 Verte freisk. Pf.) Matk (Vectk) Vectk Those are ess sur, full, and faitful. (-full: set-of hoters (biject all lin though of show Last)

faithful

(-full: set-of hoters (biject last)

faithful

(-full: set-of hoters (biject last) (ess suis: Object, are 1-1 corresp.) Def) Category is connected if they ec. by a finite 715-7209. x, 7 Convected morphisms. Prop 1.5.12. Any connected groupoil is equil to automorphish of of any of its object. as a category. 51). G: groupoil. Fix g & Obj G. Let H = G(s, s). is fully faithful since $= \rangle \quad BG \iff G,$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ 139(0,-) = 6(2,9) by def. ϕ \downarrow ϕ . (Groupoid is connected. (all mor)

(Erroupoid is connected. (=iso)

Every pair of objects is isono-phic.) · 1 9

Ren 1.5.14 Topy: path cours spaces

Ti, topy

To TI: Topk U top TI Groupsid () Cat. Inclusion of $T_{i}(x,x) \leq T_{i}(y)$ since natural - (rans formation (T,(x,x)a) T,(x) And this Michigan is a function. Moreover, " is equivalonce of category Since fully faithful (a) 1065 sub category) and ess, surj. (from connected groupoil) Housever, $\Pi_{i}(y) \rightarrow \pi_{i}(x,y)$ inverse equivalence regules axen of choice for its construction. (In this case, GPEX, choose a path P tox) And these chosen paths (P-3x) need not be preserved by northism in Topy.

Def 1.5.15 C: Category is skeletal
If it contains 1-object Meach isomorphism.
class: skC: a skeletal category equiv to c
If it contains I-object Meach isomorphism. Class: SkC: a Skeletal category equiv to c (Unique up to iso) Rev. 16511
Tem (1)/10
SKC construction: Choose I object M.
each iso classes and skc: full subcategory
of C having these objects.
By the 1,5,9, sk(c) (is full (broket)) and faithful (by construction) and ess sous.
and faithful (by onstruction) and ess surs.
by done of representative of iso class
$= \rangle SKC \Delta C$
But sk(-): CAT -> CAT is not a function.
since sk(F) may not be a function
(ex) (c) (ex) (c) (ex) (ex) (ex) (ex) (ex) (ex) (ex) (ex
2 —) [
SK(.', 0 1.
=) Skt := Flskc sends 1 to 2 but 2 is not
m sec.

Ex 15,17) (1) G: Connected Groupoid =) SKG = G(9,9) (by construction) (11) $sk(P, \geq) = pose4!$ (since he any is onorphic but not equal (1111) $SK(Vect_{k}^{fJ}) \cong Mat_{k}$ ore) (every Vis with some dh is isomorphic) : Obs: fratesch)
(Mon: bijection) (IV) SK FINISO (FINISO = obj! positive Interer Mor! Hom (h, h) = Sn pernetative of n $Han(n, m) = \emptyset$ if m fn. Ex (.5.18 X: BG -> Set: a left G-set. Translation Groupoid (TGX: Obj = X(-) ESet! Mon: 6:21-27 1 796G St. Obj: Connected Components in Tax
i.e. Orbit of Graction. => SK | GX: Mor: For the distinct orbit, Ø.

Let XEX, Ox Optit of x Hom $_{sk}T_{G}\times(O_{x},O_{x})\cong Hom_{T_{G}}(x,x)\equiv :G_{x}$ from SKTGX 2 TGX. equivorer. =) fully faithful i.e, How side (Ox, Ox) is Stabilizer Gix of De. =) Any par in the Save orbit should have Bonorphic Stabilizer. Also, for any fixed X EX. it has disjunion $\bigcup_{Y \in \mathcal{O}_{X}} f(x, y) = G$ Shee (Howas (x,4)) = (Gx) 44. (10x1-16x1 = 161. I, orbit = stabilizer Thu. C: essentially small =) (2D, Di) discrete =) (2D) DB discrete category

C; locally small, D2C =) Dis locally ghoupoid. => b° c cop CCD, C'CD' =) CXC'CDXD'. $f:x\rightarrow y\in C$ iso, (=). Fif is iso. FICOD fully faithful.

Then Essential image of F = full subcategory of objects isomorphizes source to for cec.

then, FC FF FC" $\begin{array}{c|c}
G_{c} & G_{c}
\end{array}$ $\begin{array}{c|c}
G_{c} & G_{c}
\end{array}$ $\begin{array}{c|c}
G_{c}
\end{array}$ $\begin{array}{c|c}
G_{c}
\end{array}$ a is Deft diagra, b: tight diagra =) Commutes by natural transferation. Other case is similar. Other case is $>10^{-1}$.

And $H((c, \bar{x}) | \frac{1}{-1} (c, \bar{x})) = \left(\frac{F_c}{G_c} \frac{F_{dc}}{G_c} \right) G_c |\bar{x}| = 1$ = 1fc o- 1 Gc. = 1 HCC/1. So His a function. 2) H satisfies (-) (x) (-c F3 IH G $\hookrightarrow F_{c}$ $C \mapsto (C, \circ) \longmapsto F_{C}$ and the other =. t. [t.1%] [t.t way is C(L) For (' |---) (c'-) |--> + c' Similar.

(5.71.) M = Obj: finite set Mor: S > T $\Rightarrow \theta : S \rightarrow P(T) S_{-}+.$ $S \stackrel{\theta}{\rightarrow} T \stackrel{\phi}{\rightarrow} U = S \stackrel{\psi}{\rightarrow} U$ $(X \in \Theta(\alpha))$ G! Finx 1217 -> (F1/x) op. - $(\leq s)$ ≤ 1 $S \longrightarrow (SU(S), S)$ £ 1 1 1 1 9 7 0 $(T+) \longmapsto T+$ $T \longrightarrow (TUT), T)$ $\theta'(\beta) = (\alpha) \text{ if } \beta \in \theta(\alpha) \text{ f'}(\beta)$ First of all, O'(B) is well-defined since no element in T is contained in two preimage by O Also, for its well-defined since it is a map from TIE to P(SIS) with distinct preimose.

To see TEFINGE. Notes that FG: Fix -> T --> Fingel (S, s) -> SIS -> (SISUESUE) SUE f (-) (-) (h (T, +) -) The - (The UTTH) Thy To figure out h, hotes that If $x \in S \setminus s$, let y = f(x). =) f'(y) = ExES(s: fox) = y ?Thus, for any X & f (4) h(x) = y. and h(S|s) = T|tHence, fl = h. | Sls. (SISUESIS), SIS) (S, S) (hus define (\leq, \leq) as usual incluits.
(TI+ U{T(+), T(+)}). (T,+)

T(+ (---) t.

Then, it x E Sls with f(xv= 4. $X(\tau,t) = X(\tau,t) = \gamma$ $f \circ (x,s)(x) = f(x) = 4.$ and for 2=5/5, $Y_{\tau,t} \circ h(S(s)) = X_{(\tau,t)}(\tau(t)) = t$ $f \circ O(s,s)(5(s)) = f(s) = t$: diasta 6 mmutes. GF: T -> FM* Like wise S (SUES), S) (SUES), S T (TU(1), T)) T S.t. for XES, O(01) S.T. Hence, YYEOW) $\theta'(y)=\chi$. =) h(x)= premare of x under θ' . = Q(x). Mimonoid =) GF = 17. [In particular, Fin, M) Set is a functor in 1.3,2(xi) Hence. TEFMX and G Marie a function of The =) TPPG +m* M Set are presheenes out?

(15-111) Any morphism (:a) band fixed morphism (asa; 626) =) detamme f': a' + b' so that Pf) Define 1'= B, f A => BF = MA-1, BT= FA, BT+1A-1= F. .5. TU) F: (-> D) full and faithful (i) f: c-) c' hor h C s.t. Ff is isomp =) A is iso. Ti) 2, y EC S.t. FR SFy MD of) Shice Fis full and faithful, ((or, y) and D(fx, Fy) are buective. So, $11ffg \in (D(F_Y, F_X))$ S.t. $fg \cdot Ff = 1_{F_X}$ $fg = 1_{F_Y}$ then $F(gf) = 1_{Fx}$ $F(fg) = 1_{Fy}$ Since C(x,x) and D(Fx,Fx) C(y,y) " D(FyFy) are bijective, gf = 1x, fg=1x.

Smilarly, IF For Est (Fx, Fy)
Which is isomorphis. By (i), f is iso
in C, thus XEY.
Lem (-3, 8: 1) Converse of this statement.
$E_{X}(.5,V)$
$\frac{f}{\chi} = \frac{f}{\chi} = \frac{f}$
It is faithful since 2(x, y) <> D(Cx, Cr)
but not reflect since Di-17 is not iso, but in D it is.
$= \times 1.5. Vi)$
(i) composite of full faithful, ess subjects of full faithful f
$P(X,Y) \stackrel{>}{\sim} D(CX,GY) \stackrel{>}{\sim} E(D(X_X,DCY))$
$=) ((X,Y) \stackrel{?}{=} E(O(x,D(Y))$
And for essential suri, HeEE, 7dED St. eggs
and for deD DCECSA, defe =) e= Gd= Gfc in place DecE DcSA, GFcee.

we noed to find iso. satisfyin, Aud take 9-14-24-0 0/h=)-)4 5 --> h' $\alpha_{h'} = (h'-)_{0})^{-1}$ Since such of, on is fixed by construction of 6-136, It is well-dot and satisfy the amuthy diasia EX (.5 UTTI) Later Ex15 1X) Any category equiv to locally small category is locally small. Pt) Let (E) D. equiv of category By Thu 1-5-9 F, G: full, faithful. =) If assur P locally shall, the C(x,y) is a set since it is birean to a set D(x,y). => C is Docally stul,

(.5. viii). affine planes, Alk Affine: Obj = where k is a field. affine linear map. L-c: L: linear isomorphish C: Constant function Proj! Obj = projective planes (IPK, l) phojective linear isomorphism F: Projl ____ Affine. (IP2K, D) -> Al2K. by deleting linP2K Notes that Pk = K2 L1 (K1L1P+) where $k^2 = \left[CX:Y:2]: 2 \neq 0 \right] \mapsto \left[\left(\frac{2}{2}, \frac{7}{2} \right) \in A^2 k \right]$ K = [[x:4:0]: 470] pt = { tx:0:0]} with l= KUPT. Thus, G: Affine -> Proj! is embedding Alic Mto (182) by identify no Alk as k2 part. (X,7) [X:4:1]

Claim 1: F, G, maps pt to pt, line to line. Cexcest 2). Let L be a line in 11th generated by $\vec{\alpha} = [a_0, a_1, a_1], \vec{b} = [b_0, b_1, b_2]$ Then, L = E UZ + VE: U, V EK. (U, W) 7(0,0)) Case I: It $\vec{a}, \vec{b} \in \vec{k}$, as the following \vec{a} to \vec{b} \vec{c} \vec{c} Thus, $F(L) = \left\{ t \left(\frac{a_0}{a_1}, \frac{a_1}{a_2} \right) + \left(l - t \right) : \left(\frac{l_0}{l_0}, \frac{l_1}{l_0} \right) \right\}$ Shice Utv. Can be mapped into to and for any tek, $= \left[\left(\frac{b_0}{b_2}, \frac{b_1}{b_2} \right) + \left(\frac{a_0}{a_2}, \frac{b_1}{b_2}, \frac{a_1}{a_2} - \frac{b_1}{b_2} \right) \right]$ Hence F(L) is a line in Alt. Case 2: It one of a, b is in l Then, by adding suitable ua to b, We can change this as a case 1. Case); Both 2, I' are In Q Then, L=l and F drops l.

Now, let L be a line in Alice. => L=: \[\frac{1}{2} \tau A + (1-t) B \] \tau \tau \(\frac{1}{2} \) \[\frac{1}{2} \] for some A= [aojai), B=(bo,bi) =) $G(L) = \{ \pm La_0; a_1; 1] + (1-t) Lb_0; b_1; 1]$ $t \in \mathbb{Z}$ To see that G(L) is contained in a line in 1Pt. let L'be a line gen by [ao!a,:1], [bo'b,:1]. Then L'26(4) So G(L) matches with only one like L. Thus, $FG(L) \subseteq F(L') = L$. and $GF(L) = G(t(\frac{a_0}{a_1}, \frac{a_1}{a_2}) + (1-t)(\frac{b_0}{b_2} - \frac{b_1}{b_2}))$ L' Where L' is oen by [as (a) (1], [b) (1) = [a, :a, :a, 7, [ba; bi; bi] Hence, FG(Al212) = Al2/2 shee they GF (P2K) = 1P2k preserves ptantlines.

Thus, equivalence is induced by X as identity french object.

"Examples of some properties of functions" 1.5- xi) See Hame, P. Full Faithful Essentially Suri AL-) Gp. V Shy ->Ab X Rho (-)x Gp X Ans -> Pros X Field-Rho V \times MolpHAL. dep (b) Ring > Ab: No ring home Z/n72 >> 2 Since f(t+-t+1)=0, but f(t)+-+f(t)=nContradiction. (However, Rno on Al 7 trivial homo.) 2 Not essentially Sunj: Let Z(po) = [e 27/1 M/n EN] Prinfon p-oroup. If $U(R) \subseteq Z(p^{00})$ then $1 \mapsto \alpha \in Z(p^{\alpha})$ =) |1|=n in R =) HrER, nr=0 shice r(1+-+1) = k-0 = 0.Thus every element in U(R) has order - at most n. But 72(100) has elevent with greater order 100

(C)(-)Rho -> Grp. D. Not full Shee 72 is mittal in Ring, DRERING 7! f: 72 -> R => | Rmg (72, R) |=1 But Z'=Z/2: Take R= IFP Anite p-field. =) R^ = 2(p-1) And |Grp(Zx, Rx) = 2 since 0 and 2/2 -> 2(p-1) by 11-> p-1 are the homo morphisms. 1 Not faithful. Clain 1: Ø! k[t] > k[t] automorphis fixmo k =) Q(t) = at + b. pf) $\phi(t)$ cannot be degree more than one otherwise it is not automorphism. Also, Ø(t) carrot have destree 0 by swe requ And all $\phi(t) = a + t + b$ is auto since $\varphi(\frac{1}{a}t - b) = t$

Thus by dain 1, Ring (KIt], KIt]) 13 [determned by { at + b: a '6K'; b + k. } And $ktt]^{X} = k^{X}$ But Grp (Kx, Kx) is determined by. generators of KX (SINCE KX is ordin) and any maps in Rno (KIt). induces map Kx, Kx fixing all kx. Thus it is not faithful. 3) Not ess. surj. L Pearson, Schneider, Inno] Not every eyelle or is isomorphic to

Not every cyclic or is isomorphis
the gp of units of some rms.

(74/5 \$\fmax\$ RX \$\fmax\$ \$\fma

(d) Rm -> Rno.

DNOT full. ! Zero homomorphism is not a homomorphism in Rhs.

D'Faithful! Any unital times home.

Is also times home

and distinct unital times homes.

are " times homes.

1) Not ess. suri: Rins without mult.

Thentity is not

is a to unital rins.

(e) Field S) RM3.

D fully faithful.

Shre every freld home is

this home.

D Not ess. Surj: Not every ring

(7) U! Mode Ab. O faithful! Any distact Rhono is also distact op homo. (She distinction determined by value, not property) @ Ess suri! Y A & Ab, make tratal R hobble structure st. VaEA, UreR 3. Not necessarilly full.

End (R) Q R in Mod R

but End (R) \$\frac{7}{2} \ R \ in Ab. in seneral.

(It, R + 76), then It is full.)

1.6. Art of the diastan chase.
diagram (informal): directed graph
Gmmutes ("): any two composable
athous are the same
Pef 1.62 (Monoid) ME Set with
$M: H \times H$, $n: I \to H$ St . $M \times M \times M$
MXM — M M M M M M M M M M M M M M M M M
lu multiplication
1: 1 -> H 1: shaleton.
thus n(I) is multiplicative
Pef 1.6.3 (Topological monoid) ME lop with the same Commutathe dragua (So Mis C+S) (Unital Mos) REAL with ROR
instead of RXR. (Monoidal Structure)
(K-algebra) REVect, with ROR
instead of RXR (,,)

Det 1.6.4 Diagram of C=FiJ-> C.
Where J: indexho category is small. Diagram is Commutative. =) Any composite relation MJ must holds at C. UTA F $Ex 1.6.6. 2 \times 2 : 065 (0.0), (0.1) (1.0)(1.1)$ (0,0) (0->1,1.) (1,0) (10,0-31). (12,0-31)(0,1) (1,1)Notes that (12,0-1)0 (0-71, 10) = (0-)1, 0-21) $= (0 \rightarrow 1, 1,) \circ (1, 0 \rightarrow 1)$ So dragonal arrow is unique " Commutative 5 guare!" Pen 1.67: "Shape" as Mdexino category Shape = directed grants with specifics commutativity relation

 2×2 $a \longrightarrow b$ hf=ko 9 < -> 1 o of glasty k m with hf=ks, lj=mh Lemma 1.6.11 f, -fn: composable part. fiction - for = 9m - - 91. => fn-- f(= fn-- fk41 9m-- 21. pf) g=h =) fg=fh & ony composable f. Dragta chashs: Showns the paths acceptal

Len 1612 fly, fiso -) filly. (Dually, kt. 2) and kisso =) kill ? Pf), of=h => off-1=hf-1=> g=h-1. Pf) Bx = 87 =) 0/B1. (bx) 2/81 = xb/(80)2/81 => 2/5-1 = 4-1 P-1. Def 1-6-14 REC is mitial of VCEC $\exists | \hat{\lambda} \rightarrow c$ tec is terminal if tee (=11 C-> t. Ex 1-6-15 terminal Mitial Category Shaleton. Set Ø

MATZ! (erminal Categorn Shaleton. Ø Se+ Top Set* Sholeton. Mode Group Rh5 Rng (non unital) Do not exist. Field (diff characteristic =) No homo) Cat global global maxim (P, \leq) (4 exist) Lew 1.6.16. f. - for corposable ser. 9, -- 9~ $\leq t \, don (f_1) = don (o_1), \, (od (f_n) = cod (o_n)$ If either don(fi) = mitial or God(fin) terminal => for-fi= Sm--9, pf) Uniqueness of nouphisu from /to MATAI/ terminal.

Det 1.6.17. C: Concrete Category If U! (-) Set a faithful fundor exist. Ex 1.6.18 (Concrete Category) = Ex1.1.3 Graph ; VLIE: Graph - 1 Set is faithful Len 1.6.19. : U:C>> D faithful then for any diaston in C whose image Commutes in D also Commutes in C. pf) Let A.- fn, 9,-- Sh Parallel seg of Ourosable norphise s.t. Ufi- Ufn = Ugi -- Ugn =) U(fi-- fi) = U(9,-- 5_) by Fundourality =) fi - fu = 91-9 by faithfulness. Ren 1.6.20. Even outer rectangular commutes.

More rectangular may not commutes ex) $\frac{4\pi}{2}$ $\frac{2\pi}{2}$ I Dr. I 0 -> 72-172.

Len 1,6,21 $a \xrightarrow{f} b \xrightarrow{J} c$ and life mkg 5 | h | L a' -- > c' / 2) 04 If either O then the dragon commutes pf) Assure D: lif = mhf @ is dual case of O. Ex1.6.i) Let 1, Mittal, E: ferminal =) 31,9:12 —) t at 422 If 31: t -> 2. => 9 fort-> t. Since t-)+ is unique of= 1t. Pt Als_, fo! \(\lambda\) i is unione =) fg=1i.

Ex1.6.ii) Let t, t, are the terminal object. =)]Hit, -) t, al]1942->t, Thus $fg:t_s-)$ to unique =) $f_s=1_{t_s}$ 51 t_s-1 to = =) =1 t_s Ex 1.6.Tii) Let f: c-> c' St. Ff: c -> c' is mono in .P. Let 9_1 , $9_2 \in C(b,c)$ St. fg, = fg =) $f(f_{g_1}) = f(f_{g_2}) =)$ $fff_{g_1} = fff_{g_2}$ =) For = For by F.f is more =) 9, = 5. by faith ful ness =) fil novo in C. Thus, it Cis concrete category, then fathing U: C-> Set. exists. thus if f Ettoric. St. Uf = MJCCtion, then f is mono. Dydulity faithful functor reflects epi.

Ex 1.6. N) C: category f:c->c'. not epitor mono. 2: (50. f(0-)1)=f.F! 2-> C. =) Neither epi ornoro. 1 Ex 1.6 u) DN! Category of divisible group (G, +) is divisible if UneIN, 9 EG. 37466 SH. MY=9. Let: $\pi: \mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$ $\pi(x) f_{g}: G \to \mathbb{Q}$ SA_{n} $\pi\circ f = \pi\circ g$. Let $x \in G$. =) 70 for= 70000 =) f(x)-g(x)=n e? ## divisiLility, = 7 = G S.t. eny = 2. =) $f(2ny) = \frac{1}{2n}f(x) = \frac{1}{2n}f(x)$ $f(y) - g(y) = \frac{1}{2n} (f(x) - g(x)) = \frac{1}{2}$ Contra liction. Ux. $=) N=0, \quad \therefore f(x)=g(x),$ So Tis mono, but not injective.

in Rho is epi Also, T(Z) but not sunjective. Suppose f, 9: Q -) R. St. for= 307. Then, $f(\frac{2}{5}) = f(\frac{1}{5}) f(a) = f(\frac{1}{5}) \cdot 9(a)$ = 9(6%) f(4) = 9(%) 9(5) f(4)= 9(2) +(6) +(1) = 2(1) CASSURE COMM MMO; but it holds for any associative Outtal rins) [6.VI] Let (C, x) be a termhal. Then for any (d, Ø) coalsetia. ヨ、 f: (dめ) -) (cみ) 5.+. \$ 1 2 1 7 TI -) to

Thus Co-37C => 1C-37c has a coalgebra map (unique) $f'(t_c, t_b) \longrightarrow (c_c, \delta)$ Tc +) C 721 2. 12. T(C) Thus, TfoTx; = 20f An. J C Ta by functoriality 2 | Ti(2) T(2). To: (C, d) (Tc, Td) is a morphis, 5-+ C for C Shire (C, 2) is 7 2 17 ' terminal, $T_{\mathcal{C}} \longrightarrow T_{\mathcal{C}}.$ Los Inc.

1.7. 2- categories of categories C, D: catesories D': functor catesom 063: F! (--) D Junctor. Mon: (XU) D X: hatural iso. $1_{\mathsf{F}} : \mathsf{F} \to \mathsf{F} \qquad b_{\mathsf{T}} (1_{\mathsf{F}})_{\mathsf{C}} := 1_{\mathsf{FC}}.$ 15 Identity Louphish Lem 1.7,1 (Vertical Composition) $X : F \Rightarrow G, \beta : G \Rightarrow H.$ $= \Rightarrow \exists \beta \cdot \alpha : F \Rightarrow H \qquad \text{S.t.} \quad (\beta \cdot \alpha)_{c} := \beta_{c} \cdot \alpha_{c}$ Fc de Fc Hc The det of FF 2 GFL 2 L natural transf For Soil Gor Ber BX. =) (B. x) is natural transf.

is vell-det. Con 1.17.2 Size of DC Size of D Size of C Ren 1, n. 3. Snall Small Small Small lecally Docally Small. Docally (?)sucli =) Cat × (at -) (at. Catop X CAT -> CAT. Vertical Composition: Composition in Low-1.7.1 C (UPA) D = C (UPA) D Gupesian ! F H CUPERE C LX D UB E EG. HE FE KE Hack Rac. Kac.

L'en 1,7,7 (Middle four interchanse) (UB-X D US-2 E = 6 Det 1.7.8. A 2-category (atesotie) (ex) Functor) 1-Morphisne (ex) Natural transt. (ex) A-Mon! morphis Letheen pair of object functors St. 1) Obj + 4Mor " Category 2) FOL MY C, D & Obj D' With 2-non between the elembas. four a category.

Pf). HFc Standard Communes by B:H=>k Hxc L kxc. =). (Bx x) is well-det. HGC Back GC To show BXX is natural transf.

Let f: c-> c' ettor C. Then,

HFc HXc > HGc & Gc > KGc HFFT HGC' FGC.

HGC' FGC. Comm Ly B:H=) 10 Con by naturality of X. and Hpresenes Cour drague. Also note that Hac FGC; (p*x)c Haci Paci =) KGf (P+x) = (P+x) = HFf. done.

3) Obj = Obj F

Mon:= (The D

Corposition: horizontal Corposition

Form a category

4) Law of mille four interchange holds.

Ex 1,7. h)

Ex 1.17.in) Let F, G: C=3D F(0bC) G(0bC). Is a set. Since (1/1 / 5/C) is, a set Thus, OCEC D(FC, GC) D(Fr, Ge) is a set. since C is set and Now take a map → (A) (Fc, Gc) p(F,G) - $\alpha \mapsto \{(\alpha c)_{c \in c}\}$ It is more, since (xc) cec = (fc) cec =) Q= R, . is a set Thus D(F,G) small =) D'is locally

1.7.77 Let f: (-) c: LHFC LKFC THE T | LKFT LHFC' LKFC! WTS LKFf 0 LBFc = LBFc 0 LHFf. L(KFFORE) - L(PE,OH(EF)) Since for Ff: Fc -> Fc', from B natural, HFC BFC KFC KFF O RE HEt | J [KEt =) = PF, OHFF. HE(, BE, done

Thus Life: Natural transf.

C1C (UX) D (UB) to 15 to By whiskering we have HX: HE => HG KX: KF=) KG BE", HE => KE BG: MG => KG HIF LIHA HO LIFE LIFE LG By vertical composition, we have &G.HX.: HF=>KG, KXFF: HF)KG S.t. How Hope (Sperta) And we already

BFC. L. Showed in the proof

KFC -> KGC -- Of Lem 1. 17. 4 (Kast) that this diagram commute =) BGHX=KXBF. =) ((sta) e= "="".

Calley D 1.7. iv) Given RHS) From I. M. iii) be know that 2+d= 2G.Jd= Kd7F. SXB = SH·KB = LBSG =) (J*B): (2*x) = LP8G: Kx7F = 11 , 2G-Jx. = SH. KB KadF 11 & G-Ja LHS) (B-x)*(S-x) = (J-x H).(JB-w) = (LB-x)-(S-b.F) S. 2H = (S. 2) He = SHe. 2He. Notes that

 $J\beta - \alpha = J(\beta - \alpha)_c = J(\beta_c - \alpha_c)$ $= J\beta_c \cdot J\alpha_c$ $= J\beta_c \cdot J\alpha_c$ $= J\beta_c \cdot J\alpha_c$ $= J\beta_c \cdot J\alpha_c$

and (EXF)(XXV) = SH. KB & G. Jx $c = (SH)_c(k\beta)_c(\lambda\beta)_c(\lambda\beta)_c(J_{\alpha})_c$ = SHC. KBC. FGC. JKC. It suffices to show that middle rectonoun Commutes. 2HS Bel Ge - He. JGc J(Be) JHc. we have oge. I The Thus, RHS=LHS.

Exl, nv. Let Z(C)!= C(1,1) Then = Ux, B ∈ Z(C) O X-B= B-X Note that $\forall \alpha \in \mathbb{R}(c)$ take if :c-) c' then $C \xrightarrow{\propto_c} C$ Thus Choose fas $f = \beta_c : C \rightarrow C$ C' _____ C' then, (~c Fe I Be. =) of Be = Bear He. =) $\times \beta = \beta \cdot \propto$ (2) 1 = Z(C). 1: natural iso s-t $(1)_{c} = 1_{c}$ Then $x-1 = 1 \cdot x = x$. 3 closed under vertical composition RMK: actually () follows from Horizontal couposition.

he cando is Use. (M, Vi) First to get another natural transf. D (JE) D EX1. Then, G/F/ D (11 8*n') D exists and natural equivalence since both & 2' are natural equivalence. Then, GG/F/F = GFGF = 12.1c=1. For example. G'F' $G'F'G' \subseteq 1_E 1_E = 1_E$. CGSDFC is Whiskored Composite, thus Ex 1.7. is gives O. Aud. GF GF GFGF (In (In C = Clara) is natural egul $\frac{1}{1c} \frac{1}{1c} \frac$ by Horizontal Corposition. =) @ holds. By D, D, we get desired natural equivalence.

1,7 (11) Let F: (xp -) E be bifundor. Then let F'C-> ED $C \longmapsto F(C, -)$ f | (f,-) where F(f, -) is natural transformation between F(c,-) and (() ····). To define F(f, -), notes that farany d = (c, d) f(c, d) f(c, d)|F(c,9)| |F(c,9)|F(C, d) = (C', d')F(f,J) = F(f, JJ)with $F(c,g) = F(1_c,g)$. F(f,d')=F(f, 1...) $F(C,g) = F(L_{U},g)$ Then, since Fis bifunction, $F(C_{1},g) \circ F(f,J) = F(f,J) = F(f,J)$ $F(4, 3) \circ F(C, 9) = F(4, 23) \circ F(2c, 9) = F(f, 9)$ Thus E(f, -) is well-def natural transformation!

Thus ():06; E (EP) Well-def map. ; E/: C == > F(c) Conversely, for f(I) +(f). etUF: OXP -> E $(c,d) \longmapsto F(c)(d)$ $(c',d') \mapsto f'(c')(d')$ where F(f)(g) is defined as follow; $+(c)(q) \xrightarrow{E(+)q} +(c(q)q)$ F(00) | F(c')(0) $F(C)(q) \xrightarrow{F(t)^{q'}} F(C(q', q')$ Since F'(f) is natural transformation, let. $F(4)(6) := \pm (c')(9) \circ F'(4)$ I+ is $= E_{(t)}(t)^{1} \circ E_{(t)}(0)$. well-defined morphism.

Thus U(): Obj(E) -> Obj(Exp) is well-defined map (Actually be need to check compositions) Identity is clear. For F', apply it on c + c' +' gre! F(f,-) F(f',-) F(f',-) F(c',-) F(c',-) $F(\P'f,-)=F(f',-)\circ F(f,-)$ Since for any dist F(f', 11) $F(c,d) \longrightarrow F(c',d) \longrightarrow F(c',d)$ F(c',g) F(c',g) $F(C,d') \longrightarrow F(C',d') \longrightarrow F(C',d')$ F(4, 12,) F(4', 13,). and fundortality of F gives F(f, 1,) of(f, 1,) = F(((I)) Thus $f(f(1,-))_d = f(f(-))_d \circ f(f,-)_d$. Hele D f(f(f,-)) = F(f,-) - F(f,-) as natural iso.

In case of UE apply: it on. $F(c)(1) \xrightarrow{f(f)(9)} (c', 1') \xrightarrow{F(f)(9')} (c'', 1'')$ WTS $F(f)(g) \cdot F(f)(g) = F(ff)(g'g)$ F(CC)(d) -> F(CC)(d) F(4)(9) [F(4)(9)] F(c)(d) => F'(c)(d') -> F'(c)(d') f(f)(g'). F(c)(d") --> F(c)(d") --> F'(c")(d") Notes that each rectangular commutes F (1/2/96) by def of F((f)(9), F((f)(9), F((f)(9), F((f)(9) Hence outer rectangular Commutes. each outer So it suffices to show that edge is $f(f(f)(J_d))$ and £(1c")(9',9)

But F'(()(d) F(4) (4) $= F(t,t)^{q} \cdot oF(c)(1^{q})$ F'(c')(d) F(f)(12) L F ((")(1) 19/12/ $F'(f')(1_1) \cdot F(f')(1_1)$ $= F(1)_{d} \circ F'(C')(1_{d}) \cdot F(C')(1_{d}) \circ F'(f)_{d}$ = f'(f')J F'(C')(fJ) f'(f)J= F'(f') d fricci)(d) F(f) by Fundounting

of F(cc') = t (t') d - F ((t) d by functoriality
of F(()). = F((+(+))1 done. (Vertical one is similar) Hence shen map is well-det, thus bijection