Group Theory

Buce-Ithon

9th August, 2024

Contents

0 What is Group?-Introduction to Group

4

Figure 1: Beautiful Algebra To My Elma

0 What is Group?-Introduction to Group

According to Chiniese Wikipeida:

In mathematics, the **Group** is a special set equiped a binary operation, (the core of Group operation) which has associativity, identity and inverse element.

Since lots of mathematical structure are all groups (for instance: the integer system equiped with addition forms a Group), therefore, common results can be succinctly summarized from different mathematical structures, which makes groups a core concept in contemporary mathematics.

The unilateral (left) definition of Group (weak definition) is below:

If a given set G, and it's equiped binary operation \circ : $G \times G \to G$ satisfying (the result of operation \circ (a,b) is simplified as $a \circ b$):

simplest definition of the Group

Associativity	$\forall g_1, g_2, g_3 \in G$, we have $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$	
(L)Identity & (L)Inverse	$\exists e \in G, \forall g \in G$, we have	$e \circ g = g$ and exists $\gamma \in G$, s.t. $\gamma \circ g = e$

then we say (G, \circ) is a **Group**. If \circ is understood, (G, \circ) is simplified as G.

The order of group operations is very important, i.e $a \cdot b = b \cdot a$ (commutative) doesn't necessarily hold.

A group satisfies the commutative law is called Commutative Group (or Abelian Group named after Niels-Abel), those doesn't satisfy is called Non-commutative Group (Non-Abelian Group). (For instance: The Dihedra Group (appearing next chapter) is a Non-Abelian Group.)

Equivalence definition of Group: unilateral (right) definition of Group (strong definition) is below: The above definition part of identity and inverse can also be changed to:

equivalance and full definition

Because no matter the original definition of lavender or the alternative definition of light-yellow, combined with the associativity, it's equivalent to the following definition:

Identity	$\exists e \in G, \forall g \in G, \text{ then}$	$e \circ g = g \circ e = g$
& Inverse	we have	and exists $\gamma \in G$, s.t. $\gamma \circ g = g \circ \gamma = e$

Ohh! Please remember the definitions above, because this is the most concise definition of Group. And it will be very helpful for us to understand Group Theory!