

Universidade Estadual do Rio Grande do Sul

PROF. DR. ÉDER JULIO KINAST <eder-kinast@uergs.edu.br>

MÉTODOS NUMÉRICOS – APONTAMENTOS DE AULA

03. Método da Bissecção

Versão 07 - 15/09/2020

Método da Bissecção

Planilha MetNum03

Algoritmo BISSEC

Programa C-bissec

Neste método, o intervalo que contem a raiz é diminuído à metade a cada iteração.

O valor médio da intervalo é calculado com $x = \frac{a+b}{2}$.

Exemplo visual: $f_1(x) = e^{\left(\frac{2}{5} \cdot x + \frac{3}{2}\right)} - 18$.

A raiz está em [1; 5].

Inicialmente a = 1 e b = 5.

$$x = \frac{a+b}{2} = \frac{1+5}{2} = 3$$

O novo intervalo que contem a raiz é [3; 5].

Exemplo visual: 2^{a} iteração com $f_1(x) = e^{\left(\frac{2}{5} \cdot x + \frac{3}{2}\right)} - 18$.

A raiz está em [3; 5].

Então a = 3 e b = 5.

$$x = \frac{a+b}{2} = \frac{3+5}{2} = 4$$

O novo intervalo que contem a raiz é [3; 4].

Localização de Raízes

A decisão do novo intervalo que contem a raiz é feito com o teste abaixo, a partir

de
$$a = 1$$
, $b = 5$ e $x = 3$:

Se
$$f(a) \cdot f(x) > 0 \rightarrow a = x$$

Se
$$f(a) \cdot f(x) < 0 \rightarrow b = x$$

Assim:

$$f(1) \cdot f(3) > 0 \rightarrow a = 3$$

e b permanece 5 e o

intervalor fica [3; 5].

Na 2^{a} iteração a = 3, b = 5 e x = 4:

Se
$$f(a) \cdot f(x) > 0 \rightarrow a = x$$
 \mathfrak{F}^{30}

Se $f(a) \cdot f(x) < 0 \rightarrow b = x$

Assim:

e a permanece 3 e o

intervalor fica [3; 4].

Algoritmo BISSEC

- 1) Dados f(x), a, b, ε_1 , ε_2
- 2) Para k de 1 até 100 com passo 1

$$\begin{cases} x = \frac{a+b}{2} \\ \text{se } f(a) \cdot f(x) > 0 \end{cases} \begin{cases} \text{então } a = x \\ \text{senão } b = x \end{cases}$$
$$\text{se } (b-a) < \varepsilon_1 \text{ ou } |f(x)| < \varepsilon_2 \text{ então PARAR}$$

3) Raiz $\cong x$

Exemplo – estime a raiz de $f_2(x) = x^3 - 9 \cdot x + 3$ contida no intervalo [0; 1] com $\varepsilon_1 = \varepsilon_2 = 10^{-5}$, utilizando o programa Excel com macro para definição da função e linguagem C.

Fazer "a mão" o início deste exemplo, explicitando as colunas

k	X	f(a)	f(x)	а	b	b-a	f(x)	Continuar?

Planilha **MetNum03.xlsm** (localização e algoritmo):

	Α	В	С	D	E	F	G	Н	1	J
1	k	x	f(a)	f(x)	а	b	b-a	f(x)	Continuar?	٤1
2	início				0	1				1,00E-05
3	1	0,5	3	-1,375	0	0,5	0,5	1,375	Continuar	٤2
4	2	0,25	3	0,765625	0,25	0,5	0,25	0,765625	Continuar	1,00E-05
5	3	0,375	0,765625	-0,32227	0,25	0,375	0,125	0,322266	Continuar	Passos
6	4	0,3125	0,765625	0,218018	0,3125	0,375	0,0625	0,218018	Continuar	17
7	5	0,34375	0,218018	-0,05313	0,3125	0,34375	0,03125	0,053131	Continuar	Raiz
8	6	0,328125	0,218018	0,082203	0,328125	0,34375	0,015625	0,082203	Continuar	0,337608
9	7	0,3359375	0,082203	0,014474	0,335938	0,34375	0,007813	0,014474	Continuar	
10	8	0,33984375	0,014474	-0,01934	0,335938	0,339844	0,003906	0,019344	Continuar	
11	9	0,337890625	0,014474	-0,00244	0,335938	0,337891	0,001953	0,002439	Continuar	
12	10	0,336914063	0,014474	0,006017	0,336914	0,337891	0,000977	0,006017	Continuar	
13	11	0,337402344	0,006017	0,001789	0,337402	0,337891	0,000488	0,001789	Continuar	
14	12	0,337646484	0,001789	-0,00032	0,337402	0,337646	0,000244	0,000325	Continuar	
15	13	0,337524414	0,001789	0,000732	0,337524	0,337646	0,000122	0,000732	Continuar	
16	14	0,337585449	0,000732	0,000204	0,337585	0,337646	6,1E-05	0,000204	Continuar	
17	15	0,337615967	0,000204	-6,1E-05	0,337585	0,337616	3,05E-05	6,07E-05	Continuar	
18	16	0,337600708	0,000204	7,14E-05	0,337601	0,337616	1,53E-05	7,14E-05	Continuar	
19	17	0,337608337	7,14E-05	5,36E-06	0,337608	0,337616	7,63E-06	5,36E-06	Parar	
20										

Rotina C/C++ para o Método da Bissecção

```
#include<iostream>
#include<math.h>
double f(double x) { // Esta é a função f
    return(pow(x,3)-9*x+3);}
int main()
    double a=0,b=1,eps1=1e-5,eps2=1e-5,x;
    int k;
    for(k=1;k<=100;k++) {</pre>
        x=(a+b)/2;
        if(f(a)*f(x)>0) a=x;
        else b=x;
        if( (b-a)<eps1 || fabs(f(x))<eps2 ) break;</pre>
        printf("Passo k = %2d, raiz x = %14.10lf\n",k,x);
    printf("A raiz vale %14.10lf com %d passos.\n\n",x,k);
    system("PAUSE");
    return 0;
```


Exercícios

- 1) Estime a raiz de $f_1(x) = e^{\left(\frac{2}{5} \cdot x + \frac{3}{2}\right)} 18$ contida no intervalo [1; 5] com $\varepsilon_1 = \varepsilon_2 = 10^{-6}$, utilizando o programa Excel com macro para definição da função e linguagem C (**MetNum03b**).
- 2) Estime o ponto em que as funções $g(x) = \sqrt{x}$ e $h(x) = 5 \cdot e^{-x}$ se interceptam com $\varepsilon_1 = 5 \times 10^{-6}$ e $\varepsilon_2 = 2 \times 10^{-6}$. DICA: determinar a raiz da função $f_3(x) = g(x) h(x)$ (**MetNum03c**).

