Weekly Puzzle Matrices - Solutions

Thomas Winrow-Campbell

04/02/2025 - 10/02/2025

Questions:

Matrices:

1. (a) First, subtract $\frac{4}{7}$ of row 1 from row 2, to get $\begin{pmatrix} 7 & 4 & 3 \\ 0 & -\frac{79}{7} & -\frac{5}{7} \\ 5 & 0 & 2 \end{pmatrix}$. Next, subtract $\frac{5}{7}$ of row 1 from row 3, to get $\begin{pmatrix} 7 & 4 & 3 \\ 0 & -\frac{79}{7} & -\frac{5}{7} \\ 0 & -\frac{20}{7} & -\frac{1}{7} \end{pmatrix}$. Next, subtract $\frac{20}{79}$ of row 2 from row 3, to get $\begin{pmatrix} 7 & 4 & 3 \\ 0 & -\frac{79}{7} & -\frac{5}{7} \\ 0 & 0 & \frac{3}{7} \end{pmatrix}$

So the determinant is $7 \times -\frac{79}{7} \times \frac{3}{79} = -3$.

- (b) Let $\mathbf{M} = \begin{pmatrix} 1 & 2 & -6 \\ 3 & 1 & -4 \\ 5 & 3 & 2 \end{pmatrix}$, then we can left-multiply by \mathbf{M}^{-1} , giving $\mathbf{M}^{-1}\mathbf{M} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} -34 \\ -14 \\ 40 \end{pmatrix}$. $LHS = \mathbf{I} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \text{ so } \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} -34 \\ -14 \\ 40 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{62} \begin{pmatrix} -14 & 22 & 2 \\ 26 & -32 & 14 \\ -4 & -7 & 5 \end{pmatrix},$ $\mathbf{so} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} -34 \\ -14 \\ 40 \end{pmatrix} = \frac{1}{62} \begin{pmatrix} -14 & 22 & 2 \\ 26 & -32 & 14 \\ -4 & -7 & 5 \end{pmatrix} \begin{pmatrix} -34 \\ -14 \\ 40 \end{pmatrix} = \frac{1}{62} \begin{pmatrix} -14 \times -34 + 22 \times -14 + 2 \times 40 \\ 26 \times -34 + -32 \times -14 + 14 \times 40 \\ -4 \times -34 + -7 \times -14 + 5 \times 40 \end{pmatrix} = \frac{1}{62} \begin{pmatrix} 248 \\ 124 \\ 434 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 7 \end{pmatrix}.$
- (c) Let $\mathbf{M} = \begin{pmatrix} 3 & 2 \\ 5 & -6 \end{pmatrix}$, and let $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$. If $\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$, then $(\mathbf{M} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$. $\begin{pmatrix} 3 - \lambda & 2 \\ 5 & -6 - \lambda \end{pmatrix} \mathbf{v} = \mathbf{0}$. So $\begin{pmatrix} 3 - \lambda & 2 \\ 5 & -6 - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{0}$.

The determinant of
$$\begin{pmatrix} 3-\lambda & 2 \\ 5 & -6-\lambda \end{pmatrix}$$
 is 0, so $(3-\lambda)(-6-\lambda)-10=0$, so $\lambda^2+3\lambda-28=0$ so $(\lambda+7)(\lambda-4)=0$, so $\lambda=-7$ or $\lambda=4$.

Therefore,
$$(3 - \lambda)x + 2y = 0$$
, and $5x + (-6 - \lambda)y = 0$.

If
$$\lambda = -7$$
, then $10x + 2y = 0$, so $5x + y = 0$, so $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$ is an eigenvector.

If
$$\lambda = 4$$
, then $-x + 2y = 0$, so $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ is an eigenvector.

(d) From part (c), what is the link between the square matrix and the product of the eigenvalues? Prove this link for any square matrix \mathbf{M} of size $n \times n$ with eigenvalues $\lambda_1, \ldots, \lambda_n$.

The eigenvalues
$$\lambda_1, \ldots, \lambda_n$$
 are solutions to $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$.

$$\det(\mathbf{A} - \lambda \mathbf{I}) = k(\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$$
, where k is a scalar.

However, the leading term, λ^n would have coefficient $(-1)^n$, because the highest-degree term in $\det(\mathbf{A} - \lambda \mathbf{I})$ comes from the product of the diagonal elements.

Therefore,
$$k = (-1)^n$$
, so $\det(\mathbf{A} - \lambda \mathbf{I}) = (-1)^n (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \dots (\lambda_n - \lambda)$.

Therefore, by setting $\lambda = 0$, then $\det(\mathbf{A}) = \lambda_1 \lambda_2 \dots \lambda_n$.

(e) The sum of the eigenvalues is equal to the trace.