MAC 0336/5723 - Criptografia e Segurança de Dados - Lista de exercícios 1 (USP) - 2019

- prazo de entrega: veja no paca.ime.usp.br
- resolver individualmente, duas soluções idênticas receberão nota zero na lista toda
- entregue as suas soluções no sistema PACA, digitado, em formato PDF
- manuscritos não são corrigidos
- escreva no cabeçalho o seu NUSP e nome completo

Notações usadas nesta lista:

- 1. Os valores inteiros de 10 a 15 são representados na base 16 pelos símbolos A, B, C, D, E, F, respectivamente. Denotamos um byte de 8 bits, na base 16, da seguinte maneira: para X, Y de 4 bits, $XY = (XY)_{16} = X \times 2^4 + Y$. Exemplos: $(3A)_{16} = 3 \times 2^4 + 10 = 58$ e $(2A)_{16} = 2 \times 2^4 + 10 = 42$.
- 2. [x] é teto de x. Exemplos: [2.59] vale 3, e [2.01] vale 3.

Exercício 1 (40%) São dadas n informações $X = \{x_1, x_2, ... x_n\}$ ocorrendo respectivamente com as respectivas probabilidades de ocorrerem: $p(x_1), p(x_2), ... p(x_n)$. Este exercício é para:

- 1. Calcular a entropia de X para $p(x_1) = 1/16, p(x_2) = 1/4, p(x_3) = 1/16, p(x_4) = 1/4, p(x_5) = 1/4, p(x_6) = 1/16, p(x_7) = 1/16.$
- 2. Demonstrar (i.e., provar matematicamente) que, para j = 1, 2, ...n, se $\max_j \lceil \log_2 \left[\frac{1}{p(x_j)} \right] \rceil$ representa o comprimento suficiente de bits para codificar cada um dos $x_j : j = 1, 2, ...n$.
- 3. Demonstrar que $\log_2 n$ é a entropia **máxima** de qualquer X.Sugestão: Supor dado o Lema: "A função $\log_2()$ é estritamente côncava". Aplicar o Teorema de Jensen: "Se $f:\mathbb{R}\to\mathbb{R}$ é uma função contínua estritamente côncava no intervalo I, então $\sum_{i=1}^n a_i f(x_i) \leq f(\sum_{i=1}^n a_i x_i)$, onde, para $1 \leq i \leq n: a_i \in \mathbb{R}, \ a_i > 0$ e $\sum_{i=1}^n a_i = 1$."
- 4. Para qual conjunto X essa entropia **máxima** ocorre? Demonstrar esse fato.

Exercício 2 (20%) Este exercício é sobre multiplicação de um vetor de 8 bits, um byte, por outro de 8 bits, sobre o Corpo de Galois $GF(2^8)$, conforme as páginas 93, 94, e 272 a 273 do livro-texto, que é usada na definição do AES (Advanced Encryption Standard). Denotaremos a multiplicação por \otimes . Por exemplo, $(45)_{16} \otimes (0A)_{16} = (94)_{16}$. Por definição $m(x) = x^8 + x^4 + x^3 + x + 1 = (11B)_{16} = (100011011)_2$. Este exercício é para:

- 1. Escrever TODOS os passos dos seguintes cálculos: $(B2)_{16} \otimes (15)_{16}$, ou seja, escrever:
 - 1. os dois polinômios s(x), t(x) correspondentes a esses dois operandos, e
 - 2. o polinômio produto $u(x) = s(x) \times t(x)$, e

- 3. os polinômios quociente q(x) e resto r(x) resultantes da divisão u(x)/m(x).
- 2. Escrever TODOS os passos do cálculo da inversa $r^{-1}(x) \mod m(x)$ utilizando o Algoritmo de Euclides estendido, ou seja, escrever TODOS os polinômios intermediários que são quociente e resto resultantes de cada divisão efetuada por esse algoritmo.
- 3. Escrever TODOS os passos da verificação que $r^{-1}(x) \otimes r(x) = 1 \mod m(x)$ ou seja, escrever:
 - 1. o polinômio produto $U(x) = r^{-1}(x) \times r(x)$, e
 - 2. os polinômios quociente Q(x) e resto R(x) resultantes da divisão U(x)/m(x).

Exercício 3 (20%) Este exercício é sobre multiplicação de um vetor de 4 bytes por outro de 4 bytes, sobre o Corpo de Galois $GF(2^{32})$, conforme as páginas 99, 100, e 272 a 273 do livro-texto, que é usada na definição do AES.

Denotamos um vetor de 32 bits por um vetor de 4 bytes sobre $GF(2^8)$, $[a_3, a_2, a_1, a_0]$. Tal vetor é representado polinomialmente por $A(x) = a_3x^3 + a_2x^2 + a_1x + a_0$.

É usada a soma de um byte por outro byte, denotada por \oplus ; por definição a soma é o ou-exclusivo (xor) bit por bit. Por exemplo: $(45)_{16} \oplus (78)_{16} = (3D)_{16}$. A multiplicação de um byte por outro byte, a_ib_j , é calculada conforme o exercício anterior.

A multiplicação de dois vetores, A(x) e B(x), cada um de 4 bytes, é descrita no livro-texto. $M(x) = x^4 + 1$ é fixo, é tal que $x^j \mod M(x) = x^{j \mod 4}$.

Este exercício é para escrever TODOS os passos para calcular: $(B255873D) \otimes (127BC466)$, ou seja, escrever:

- 1. os dois polinômios A(x), B(x) correspondentes a esses dois operandos, e
- 2. o produto, polinômio de grau 6, $C(x) = A(x) \times B(x)$, e
- 3. os polinômios quociente Q(x) e resto R(x) resultantes da divisão C(x)/M(x).

Exercício 4 (20%) Este exercício é sobre MixColumns(). A multiplicação de 4 bytes por 4 bytes, $T(x) \otimes U(x)$, é calculada conforme o exercício anterior. É usado o vetor fixo $c(x) = (03)_{16}x^3 + (01)_{16}x^2 + (01)_{16}x + (02)_{16}$. Como c(x) e $M(x) = x^4 + 1$ são co-primos (i.e., relativamente primos), c(x) possui inversa $c^{-1}(x) \mod M(x)$: $c^{-1}(x) = (0B)_{16}x^3 + (0D)_{16}x^2 + (09)_{16}x + (0E)_{16}$ e $c(x) \otimes c^{-1}(x) = 1$.

- A operação MixColumns(A(x)), utilizada no AES, consiste em calcular $B(x) = A(x) \otimes c(x)$. O resultado é de 4 bytes (32 bits).
- A inversa da transformação MixColumns(B(x)) opera também sobre um vetor de 4 bytes (32 bits), e consiste em calcular $A(x) = B(x) \otimes c^{-1}(x)$.

Este exercício é para escrever TODOS os passos para calcular: MixColumns(B255873D), ou seja, escrever:

- 1. o polinômio A(x) correspondente a esse operando B255873D, e
- 2. o produto, polinômio de grau 6, $C(x) = A(x) \times c(x)$, e
- 3. os polinômios quociente Q(x) e resto B(x) resultante da divisão C(x)/M(x), para obter o resultado B(x).

A seguir escrever os passos (1), (2) e (3) para calcular o inverso de MixColumns(B), e verificar se obtém A(x) original, como deveria ocorrer.