Notes of Mathematics Statistics

Min-Yi Chen

October 1, 2022

1 Probability Theory

1.1 Probability Spaces and Random Elements

Exercise 1.1. $\mathbb{C} = \{(-\infty, t], t \in \mathbb{R}\}\ , \ prove \ \sigma(\mathbb{C}) = \mathcal{B}(\mathbb{R})$

Proof:

To prove $\sigma(\mathbb{C}) = \mathcal{B}(\mathbb{R})$, we have to prove

- 1. $\sigma(\mathbb{C}) \subseteq \mathcal{B}(\mathbb{R})$
- 2. $\sigma(\mathbb{C}) \supseteq \mathcal{B}(\mathbb{R})$

By definition of Borel σ -field, \mathcal{B} is generated by the open set. Thus, the first thing we have to do before proving 1. and 2. is to argue whether $\{t\} \in \mathcal{B}(\mathbb{R})$.

We construct a open interval $(t - \frac{1}{n}, t + \frac{1}{n}) \ \forall t \in \mathbb{R}$, We have

$$\bigcap_{n=1}^{\infty} \left(t - \frac{1}{n}, t + \frac{1}{n}\right) = t$$

Thus, $\{t\} \in \mathcal{B}(\mathbb{R})$.

Next, we construct $\sigma(\mathbb{C})$,

Let
$$A_i = (-\infty, t_i], t_i \in \mathbb{R}, i = 1, 2, ...$$
 and $B_j = \mathbb{R} \setminus (-\infty, t_j], t_j \in \mathbb{R}, j = 1, 2, ...$ $\sigma(\mathbb{C}) = \{ \cup_{i \in I} A_i; i \subseteq I = \{1, 2, ... \} \} \cup \{ \cup_{j \in J} B_j; j \subseteq J = \{1, 2, ... \} \}.$

By the definition of σ -field, $\sigma(\mathbb{C})$ should satisfied conditions below:

i
$$\emptyset \in \sigma(\mathbb{C})$$

ii If
$$C \in \sigma(\mathbb{C})$$
, then $C^c \in \sigma(\mathbb{C})$

iii If
$$C_i \in \sigma(\mathbb{C}) \forall i = 1, 2, ..., \text{then } \cup C_i \in \sigma(\mathbb{C})$$

$$(1) \ \sigma(\mathbb{C}) \subseteq \mathcal{B}(\mathbb{R})$$

Let
$$C \in \sigma(\mathbb{C})$$
, since $\{A_i\} \subseteq \mathbb{R}$ and $\{B_i\} \subseteq \mathbb{R}$, $C \subseteq \mathbb{R}$, $\sigma(\mathbb{C}) \subseteq \mathcal{B}(\mathbb{R})$

$$(2) \ \sigma(\mathbb{C}) \supseteq \mathcal{B}(\mathbb{R})$$

Since, $(-\infty, t]^c$ is a open set $\forall t \in \mathbb{R}$, by the definition (ii) of σ -field, if $(-\infty, t] \in \mathcal{F}$ then $(-\infty, t]^c \in \mathcal{F}$. And by the definition (iii) of σ -field, we can show

$$\sigma(\mathbb{C}) \supseteq \mathcal{B}(\mathbb{R})$$

Consider (1) and (2), we have $\sigma(\mathbb{C}) = \mathcal{B}(\mathbb{R})$.

Exercise 1.2. $\mathbb{C} = \{A_1 \times A_2, A_1 \in B(\mathbb{R}); A_2 \in B(\mathbb{R})\}$. Is \mathbb{C} a σ -field ?

Proof:

Assume \mathbb{C} is a σ -field, \mathbb{C} satisfy

 $i \ \emptyset, \Omega \in \mathbb{C}$

ii If $C \in \mathbb{C}$, then $C^c \in \mathbb{C}$

iii If $C_i \in \mathbb{C} \forall i = 1, 2, ..., \text{then } \cup C_i \in \mathbb{C}$

In other words, if \mathbb{C} cannot satisfy (i),(ii) or (iii), then we reject the assumption.

Let
$$C_1 = (a_i, a_2] \times (b_1, b_2]$$
 and $C_2 = (a_2, a_3] \times (b_2, b_3]$, $a_1 < a_2 < a_3, b_1 < b_2 < b_3$ $a_i, b_i \in \mathbb{R}, \forall i=1,2,3$

If $C_1 \in \mathbb{C}$ and $C_2 \in \mathbb{C}$, then $C_1 \cup C_2 \in \mathbb{C}$ by (iii). We can rewrite $C_1 \cup C_2 = A \times B, A, B \subseteq \mathbb{R}, (a_1, a_3] \subseteq A$ and $(b_1, b_3] \subseteq B$. $\exists \ a' \in A \text{ where } a_1 < a' < a_2 \text{ and } \exists \ b' \in B \text{ where } b_2 < b' < b_3.$ $a' \times b \in A \times B$, however, $a' \times b \notin C_1 \times C_2$. This implies $C_1 \cup C_2 \notin \mathbb{C}$.

Exercise 1.3. $\{A_n\}_{n=1}^{\infty}$: sequence of event in $\mathcal{F}, A_{n+1} \subset A_n, \forall n \in \mathbb{N}$ show $v(\cap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} v(A_n)$.

Proof:

Suppose $v(A_n)$ is finite (i.e. $v(A_n) \leq \infty$).

$$v(A_1 \setminus \bigcap_{n=1}^{\infty} A_n) = v(A_1) - v(\bigcap_{n=2}^{\infty} A_n).$$

$$A_1 \setminus \cap_{n=1}^{\infty} A_n = A_1 \cap (\cap_{n=2}^{\infty} A_n)^c = A_1 \cap (\cup_{n=2}^{\infty} A_n^c) = \cup_{n=2}^{\infty} (A_1 \cap A_n^c) = \cup_{n=2}^{\infty} (A_1 \setminus A_n)$$

Thus,
$$v(A_1 \setminus \bigcap_{n=1}^{\infty} A_n) = v(\bigcup_{n=2}^{\infty} (A_1 \setminus A_n)) = v(A_1) - \lim_{n \to \infty} v(A_n)$$
.
We have $v(A_1) - v(\bigcap_{n=2}^{\infty} A_n) = v(A_1) - \lim_{n \to \infty} v(A_n)$, $v(\bigcap_{n=2}^{\infty} A_n) = \lim_{n \to \infty} v(A_n)$

Exercise 1.4. Let
$$f:(\Omega, \mathcal{F}) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$$
, f is a measurable function $f^+(\omega) = \begin{cases} f(x), if f(x) > 0 \\ 0, if f(x) \leq 0 \end{cases}$, show $f^+(\omega)$ is mble from $(\Omega, \mathcal{F}) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$

This question is about measurable function, the function f is