Pytorch Tutorials

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} & \cdots & \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x}$$

forward (colculate the «ys»)

$$L = \frac{Z_1 + Z_2}{3} \qquad \vec{Z} = 2\vec{y}^2 \qquad \vec{y} = \vec{x} + 2$$

$$\frac{1}{1} \frac{1}{1} \frac{1}$$

$$\mathbb{O}\left[\frac{\partial L}{\partial z_1} \quad \frac{\partial L}{\partial z_2}\right] = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

If we have x, = 1 and x2 = 2 :

$$\frac{\partial L}{\partial x} = \begin{bmatrix} \frac{A(3)}{2} \\ \frac{A(4)}{2} \end{bmatrix} = \begin{bmatrix} 6 \\ 8 \end{bmatrix} = D - \text{le gradient d'inst.}$$

In Pytorch

Computational Graph

(x)
$$\Rightarrow x = y$$

(y) $\Rightarrow x = y$

Ly $\Rightarrow x = x$

(y) $\Rightarrow x = x$

(x) $\Rightarrow x = x$

(y) $\Rightarrow x = x$

(x) $\Rightarrow x = x$

$$\begin{cases} \frac{\partial x}{\partial x} = \frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} \\ \frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} \end{cases}$$

LOCAL GRADIENTS.

BACKPROPAGATION ALGORITHY

- 1) Forward pass: Compute the loss
- 2) Compute Local Gradients
- designs using the chair rule. 3) Backward pass: Compute

O LOCAL GRAPIENTS:

$$\frac{26}{26}$$
, $\frac{26}{26}$, $\frac{26}{26}$

O FORWARD PASS

$$\frac{\partial Loss}{\partial s} = 2s \implies \frac{\partial Loss}{\partial \hat{y}} = \frac{\partial Loss}{\partial s} \cdot \frac{\partial s}{\partial \hat{y}} = 2s \cdot 1 = -2$$

$$\Rightarrow \frac{\partial L_{023}}{\partial w} = \frac{\partial L_{023}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial w} = -2 \cdot \varkappa = [-2]$$

-> Convolutional Layer -> Convolutional Layer -> Max- Pooling (reduce the size of the image) Lib computional cost, avoid over-fitting as well.
Datasets and Dataloaders Epoch: I forward and backward pass of ALL training samples Batch Size: number of training samples ion one forward & backward pass Noumber of iterations: passes a mathiceil (total-samples / batch size) Dataset: after the samples and their corresponding fabels. Dataset: wraps an iterable around the Dataset to enable easy access to the samples.
Transforms in Pytonch.
Trunsforms Trunsforms On Images: Crom. Grayscale. Pad, Random Botation, etc. On Tensors: Linear Transformation. Normalize. Bandom Erazing.
-> On Tensors: Linear transfer tensor or adarray. -> Conversion: To PILImage: from tensor or adarray or PILImage To Tensor: from numpy adarray or PILImage
- Generic: Lambda
→ Custom classes / compose maripo Ex: composed: trasforms. Compose ([Rescale(256), Random Crops(224)]) Ex: composed: transforms. Compose [[List of transformations])
Softmax and Crow-Entropy. Softmax function: $S(y_i) = \frac{e^{y_i}}{Ze^{y_i}}$ Linear 19 Softmax function: $S(y_i) = \frac{e^{y_i}}{Ze^{y_i}}$
· Cross-Entropy: loss foretion for multi-closes clossification
$\mathcal{D}(7,9) = -\frac{1}{4} \cdot \sum_{i} y_{i} \log(\hat{g}_{i})$
Ly Note: Y: must be one-hot ence de 1 ?: must be softmax probabilities
In Pytorch [[[Ross (9, y)]] nn. crossEntropy Loss applies nn. log softmax + nn. NILLoss (neg. likely hound loss) ed Therefore, NO SOFTHAX layer?

=> Y: not One-hot? } closs labels
=> P: no softmax? } rowswere

(

(