EXAM 1 tomorrow

Time: 8:00-9:30 pm tomorrow (Wed Feb 8)

Place: Elliott Hall

Material: lectures 1-8, HW 1-8, Recitations 1-4, Labs 1-4

Problems: multiple choice, 10 questions (70 points)

write-up part, hand graded (30 points)

Equation sheet: provided with exam

Practice exam + equation sheet: have been posted over the weekend

Note: no lecture this Thursday (Feb 9)!

 $\Delta \vec{p} = \vec{F} \Delta t$ $\Delta E = W + Q$ $\Delta \vec{L} = \vec{\tau} \Delta t$

The Momentum Principle for components

$$\frac{d\vec{p}}{dt} = \vec{F}_{net}$$

$$\frac{d\vec{p}}{dt} = \frac{d|\vec{p}|}{dt}\,\hat{p} + |\vec{p}|\frac{d\hat{p}}{dt}$$

$$ec{F}_{_{net}} = ec{F}_{_{\parallel}} + ec{F}_{_{\perp}}$$

Parallel component:

$$\frac{d|\vec{p}|}{dt}\,\hat{p} = \vec{F}_{\parallel}$$

Perpendicular component:

$$\left|\vec{p}\right|\frac{d\hat{p}}{dt} = \vec{F}_{\perp}$$

$$p \left| \frac{d\hat{p}}{dt} \right| = F_{\perp}$$

$$\left(\frac{d\vec{p}}{dt}\right)_{\parallel} = \frac{dp}{dt} = F_{\parallel} \qquad \left(\frac{d\vec{p}}{dt}\right)_{\perp} = p\frac{v}{R} = F_{\perp}$$

Circlular motion: conditions

Only perpendicular component for circle!

Condition for circular motion:

$$\left(\frac{d\vec{p}}{dt}\right)_{\perp} = p\frac{v}{R} = F_{\perp} = F$$

For planets (assume sun is fixed)

$$p\frac{v}{R} = G\frac{mm_s}{R^2}$$

Nonrelativistic: $p \approx mv$

$$mv\frac{v}{R} = G\frac{mm_s}{R^2}$$

$$v^2 = G \frac{m_s}{R}$$

 $v^2 = G \frac{m_s}{R}$ Condition for circular motion for planets motion for planets

Initial conditions for circular motion

$$v^2 = G \frac{m_s}{R}$$

 $v^2 = G \frac{m_s}{R}$ Condition for circular motion for planets

Energy Principle

What Is Energy?

Energy is just some number you can compute that obeys a conservation law. It's helpful book-keeping.

(See Feynman Lectures on Physics, Vol. 1, Sec. 4-1)

Why Introduce Energy?

Without following the details of a complicated process, we can:

- say something about initial and final states of a system
- predict whether some process CAN occur

Basically, for some problems, using energy is much simpler than using the momentum principle.

Often, however, we'll use both principles in combination.8

The Energy Principle

* We mean the Work done ON a System by a Force in the Surroundings*

Compare With Momentum Principle:

$$\Delta \vec{p}_{system} = \text{impulse} = \vec{F}_{net} \Delta t$$
"effect" "cause" (due to interactions)

NOTE: Momentum is a vector. Energy is a scalar (no direction).

Energy is A Conserved Quantity

Energy is a useful thing to consider because energy can't be destroyed: it can only change forms.

$$\Delta E_{system} + \Delta E_{surroundings} = 0$$

Compare with Conservation of Momentum:

$$\Delta \vec{p}_{system} + \Delta \vec{p}_{surroundings} = 0$$

Reminder: Momentum is a vector. Energy is a scalar (no direction).

Energy of a Single Particle System

Rest Energy

Note:
$$v = 0 \rightarrow \gamma = 1 \rightarrow E_{\text{single particle}} = \gamma mc^2 = mc^2$$

A particle at rest has some energy just because it exists! Rest energy = mc^2 .

Kinetic Energy

Excess energy above rest energy (mc^2) is due to motion (ignoring internal degrees of freedom):

Kinetic energy
$$K \equiv \gamma mc^2 - mc^2$$

Kinetic Energy

$$K \equiv \gamma mc^2 - mc^2$$

$$K \approx \frac{1}{2}mv^2$$
 for $v/c \ll 1$

What?? What happened to
$$K=rac{1}{2}mv^2$$
 ?

At low velocities, $v/c \ll 1$

Use a Taylor expansion (power series): $(1+x)^n \approx 1 + nx + \dots$

$$\gamma = \frac{1}{\sqrt{1 - (v/c)^2}} = \left(1 - (v/c)^2\right)^{-1/2}$$

$$\approx 1 - \frac{1}{2}\left(-(v/c)^2\right) + \dots = 1 + \frac{1}{2}(v/c)^2$$

$$\Rightarrow K = mc^2(\gamma - 1) \approx mc^2\left(1 + \frac{1}{2}(v/c)^2 - 1\right) = \frac{1}{2}mv^2$$

Energy And Momentum

$$E = \gamma mc^2$$

$$p = \gamma m v$$

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

$$E^2 = \gamma^2 m^2 c^4$$

$$(pc)^2 = \gamma^2 m^2 c^2 v^2$$

$$E^{2} - (pc)^{2} = \gamma^{2}m^{2}c^{2}(c^{2} - v^{2})$$

$$Use \quad \gamma^{2} = \frac{1}{1 - v^{2}/c^{2}} = \frac{c^{2}}{c^{2} - v^{2}}$$

$$= \left(\frac{c^{2}}{c^{2} - v^{2}}\right)m^{2}c^{2}(c^{2} - v^{2}) \quad = m^{2}c^{4}$$

$$E^2 - (pc)^2 = m^2 c^4$$

ALWAYS TRUE. EVERY REFERENCE FRAME.