

FIT5201 Data Analysis Algorithms

Week 9 - Neural Networks

Outline

- Refresher about Neural Network
- Network Training

Neural Network, a little bit refresher

- Not new
- Human intelligence?

Why Neural Networks

- More advanced neural networks such as deep learning, convolutional, networks are all built on top of the basic neural networks
- Highly adoptable for many uses
 - Image recognition
 - > Automatic number plate recognition
 - Voice recognition
 - > Siri, OK Google
 - Handwriting recognition
 - > Post code on envelops
 - Self-driving cars

Model of a Neuron

Neural Network

A collection of Neurons connected together

Neural Networks with Multiple Outputs

The power of neural networks

- The model class corresponding to neural networks can represent almost any function (given some minor conditions) provided the network has a sufficiently large number of hidden units
 - Have been widely studied
 - 9 layer can solve many low-level intelligence task pretty well

The power of neural networks

- Classification problem
 - Approximate the target decision boundary to any required precision
- Regression problem:
 - Approximate the target function to any precision
- Price:
 - Large number of neurons in the hidden layers
 - Large number of parameters
 - Tend to over fit the training data

The power of neural networks

- Methods to prevent overfitting
 - Use a large training data
 - Use regularization methods
 - Use deep architecture instead of wide and shallow architecture
 - > Given same number of neurons, deep design performs better
 - Siven same performance, deep architecture needs smaller number of neurons
- A toy neural network
 - http://playground.tensorflow.org

Outline

- Recall about Neural Network
- Network Training

3-Layer Neural Network

$${\pmb{\theta}} = ({\pmb{W}}^{(1)}, {\pmb{b}}^{(1)}, {\pmb{W}}^{(2)}, {\pmb{b}}^{(2)})$$

$$egin{align*} egin{align*} a_1^{(2)} &:= fig(W_{11}^{(1)}x_1 + W_{12}^{(1)}x_2 + W_{23}^{(1)}x_3 + b_2^{(1)}ig) \ & a_3^{(2)} &:= fig(W_{31}^{(1)}x_1 + W_{32}^{(1)}x_2 + W_{33}^{(1)}x_3 + b_3^{(1)}ig) \ & h_{m{ heta}}(m{x}) &:= fig(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}ig) \ & \end{pmatrix} \end{split}$$

- $\succ W_{ij}^l$: denote the weight associated with the connection between unit j in layer l and unit i in layer l+1
- $\succ a_i^{(l)}$: the output of the i^{th} neuron in layer l
- $\succ z_i^{(l)}$: the total weighted sum of inputs to the i^{th} neuron in layer l

$$z_i^l \coloneqq \sum_{j=1}^n W_{ij}^{l-1} x_j + b_i^{l-1} \qquad a_i^{(l)} \coloneqq f(z_i^{(l)}).$$

Feedforward Function

- Put $a^{(1)} = x$
- Then given layer l's activations $a^{(l)}$, we can compute layer (l+1)'s activations $a^{(l+1)}$ as

$$z^{(l+1)} = w^{(l)}a^{(l)} + b$$

 $a^{(l+1)} = f(z^{(l+1)})$

- Provide input values x_i and obtain an output y_i
- Find the optimal values for the weights that provide the correct output for the given input
 - Can be used for regression or classification

- Provide input values x_i and obtain an output y_i
- Find the optimal values for the weights that provide the correct output for the given input
 - Can be used for regression or classification
 - Can have one output or multiple outputs
 - There is a natural choice of both output unit activation function and matching error function

- Natural choice of both output unit activation function and matching error function
 - For regression
 - > one output
 - > linear outputs (i.e., identity activation function) $h_{\theta}(x) = z_1^{(n_l)}$
 - > sum of square error to evaluate the model
 - For binary classification
 - > one output (or two)
 - > logistic sigmoid activation function (or two outputs with softmax output activation function)
 - > cross-entropy error function
 - For K-class classification,
 - > K output
 - > softmax output activation function
 - > multiclass cross-entropy error function

Natural choice of both output unit activation function and matching error function

- > cross-entropy error function
- For K-class classification,
 - > K output
 - > softmax output activation function
 - > multiclass cross-entropy error function

Parameter Optimization

For a 3 layer Neural Network

$$m{ heta} = (m{W}^{(1)}, m{b}^{(1)}, m{W}^{(2)}, m{b}^{(2)})$$

- Find optimal value for θ that minimises the error $E(\theta)$
- Use gradient descent
- Start from regression as an example

Gradient Descent

For regression problems the cost function to minimize is

$$J(\boldsymbol{\theta}) := \underbrace{\frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} ||h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(n)}) - \boldsymbol{y}^{(n)}||^{2}}_{E(\boldsymbol{\theta})} + \frac{\lambda}{2} \sum_{l=1}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l}+1} (W_{ji}^{(l)})^{2}$$

- Weight decay is usually not applied to the bias term, why?
- Initialize all $w_{ij}^{(l)}$ and $b_i^{(l)}$ to random values near zero.
 - If initialized with zeros or equal values, the hidden units will be learning the same function WRT the input variables
- One iteration of GD updates the parameters as follows:

$$egin{align} W_{ij}^{(l)} &= W_{ij}^{(l)} \!-\! \eta rac{\partial}{\partial W_{ij}^{(l)}} J(oldsymbol{ heta}) \ b_i^{(l)} &= b_i^{(l)} \!-\! \eta rac{\partial}{\partial b_i^{(l)}} J(oldsymbol{ heta}) \ \end{split}$$

Where η is the learning rate

Gradient Descent

- How to derive gradients?
- Back propagation algorithm!
 - For general idea, refer to
 https://www.youtube.com/watch?time_continue=1&v=An5z8IR8asY
 - For detailed algorithm, refer to handwritten material

