Unit 2: Structures & Properties

IMPORTANT STRUCURES:

Functional groups..

Hybridization...

MOLECULAR TYPE	n_{σ}	n_{hyb}	ELECTRON REGION GEOMETRY	MOLECULAR GEOMETRY	IDEAL BOND ANGLES	HYBRIDIZATION OF THE CENTRAL ATOM
AX ₄	4	4	Tetrahedral	Tetrahedral	109.5°	sp^3
AX_3E_1	3	4	Tetrahedral	Triangular pyramidal	109.5°	sp^3
AX_2E_2	2	3	Trigonal planar	Bent	120°	sp^2
AX_3	3	3	Trigonal planar	Trigonal Planar	120°	sp^2
AX_2E_1	2	3	Trigonal planar	Bent	120°	sp^2
AX_2	2	2	Linear	Linear	180°	sp

EXAM: Monday, October 14th 5:45PM – 7:00PM @ PSYCH 105

MORE COMPLEX MOLECULAR STRUCUTRES

Line structures	only the $C-C$ bonds are shown; element symbols and $C-$
	<u>H</u> are omitted

→ Must include the formal charge on any atom that has a nonzero formal charge

Isomers	when more than one molecular structure corresponds to the
	same molecular formula, the two or more structures

- → When two molecular formulas are different, the formulas must correspond to susbtances with different properties
 - Occurs because the formula conveys how many atoms of each type are in a moleculse, and chemical bonmd would have to be broken to change the number of atoms or type of atoms
 - Breaking covalent bonds require energy, and at room temp, very few molecules have enough energy for bond breaking to occur

Constitutional isomers	compounds with the same molecular formula but different	
	atomic connectivity	
Functional group	specific structure that has similar chemical properties	
	whenever it is present in a molecule	

→ Alkane parts of a molecule don't usually participate in reactions and are *not* defined as functional groups

Alkyl group a portion of an alkane molecule bonded to something else

- \rightarrow Ex) $-CH_3$ (methyl), $-CH_3CH_2$ (ethyl), and $-CH(CH_3)_2$ (2-propyl)
- \rightarrow Use R to designate any alkyl group
 - o If there are two or more different alkyl groups, we use R, R', R'' or R_1 , R_2 , R_3

Electronegativity	tendency of an atom in a molecule to attract bonding
	electron density

BONDS IN MOLECULES ARRANGED IN 3D

Valence bond theory	a model that focuses on the formation of individual
	chemical bonds, such as the formation of a σ bond between
	two atoms within a polyatomic molecule

- → How atomic orbitals change and combine when a molecule forms
- → VSPER model is not accurate

Hybrid orbital	combinations of valence atomic orbitals that emphasize
	concentration of electron density in specific directions

 \Rightarrow A hybrid orbital's greater e^- density in a specific direction provides greater overlap with an orbital from another atom when forming a σ bond

sp hybrid orbitals...

- → Two of these (degenerate) form when combining the valence s AO with one p AO
- → Oriented at 180° from each other; linear geometry
- \rightarrow Leaves two unhybridized p orbitals
- \rightarrow 50% s character, 50% p character; 1:1

sp^2 hybrid orbitals...

- → Three of these (degenerate) form when combining the valence s AO with two p AOs
- \rightarrow The three sp^2 hybrid orbitals are oriented in trigonal planar with each other (120°) on the same plane
- \rightarrow Leaves one unhybridized p orbital
- \rightarrow 33% s character, 67% p character; 1:2

sp^3 hybrid orbitals...

- → Four of these (degenerate) form when combining the valence s AO with all three p AOs
- \rightarrow The four sp^3 hybrid orbitals are oriented as a tetrahedron (109.5°)
- \rightarrow No unhybridized p orbitals
- \rightarrow 25% s character, 75% p character; 1:3

Formation of σ and π bonds...

- \rightarrow σ bonds form when a hybrid orbital with one unpaired e^- from one atom overlaps with a hybrid orbital with one unpaired e^- from another atom creating a σ bond containing a pair of e^-
- → Hybrid orbitals are derived from combining two or more AOs from valence shells of a single AO
 - \circ AOs are the most stable arrangements of e^{-} in isolated atoms
 - \circ Hybrid orbitals are important in molecules because they result in stronger (lower energy) σ bonds
- \rightarrow Most σ bonds form from overlaps of hybrid orbitals; most π bonds form from overlap of unhybridized p orbitals
- → # of hybrid orbitals = # valence AOs that were combinded to produce the hybrid orbital
- \rightarrow Since π bonds are formed by unhybridized p AOs, an atom that's involved in π bonding cannot be sp^3 hybridized
- → If a hybrid orbital on an atom in a molecule has a pair of e⁻ but is not pointing at another atom, the filled hybrid orbital is *not* in bonding. This corresponds to a lone pair on an atom in Lewis structure

Determining hybridization...

- (1) Determine the number of valence AOs that are hybridized n_{hyb}
- (2) Count the number of σ bonds n_{σ} the atom forms
 - Double bond $\rightarrow 1 \sigma, 1 \pi$
 - Triple bond $\rightarrow 1 \sigma$, 2π
- (3) Are there any lone pairs?
 - a. YES: $n_{hyh} = n_{\sigma} + 1$
 - b. NO: $n_{hyb} = n_{\sigma}$
- (4) Using n_{hyb} , determine the hybridization...
 - a. $n_{hyb} = 2$: atom is sp hybridized (two AOs are hybridized)
 - b. $n_{hyb} = 3$: atom is sp^2 hybridized (three AOs are hybridized)
 - c. $n_{hyb} = 4$: atom is sp^3 hybridized (four AOs are hybridized)
 - d. SPECIAL CASE: If $n_{hyb} = 1$ or H atom, NOT hybridized

Applying and interpreting hybridization...

MOLECULAR TYPE	n_{σ}	n_{hyb}	ELECTRON REGION GEOMETRY	MOLECULAR GEOMETRY	IDEAL BOND ANGLES	HYBRIDIZATION OF THE CENTRAL ATOM
AX_4	4	4	Tetrahedral	Tetrahedral	109.5°	sp^3
AX_3E_1	3	4	Tetrahedral	Triangular pyramidal	109.5°	sp^3
AX_2E_2	2	3	Trigonal planar	Bent	120°	sp^2
AX_3	3	3	Trigonal planar	Trigonal Planar	120°	sp^2
AX_2E_1	2	3	Trigonal planar	Bent	120°	sp^2
AX_2	2	2	Linear	Linear	180°	sp

Wedge-dash i	notation	straight lines represent bonds on plane of page; solid
		wedges represent coming out of page and dashed wedges
		represent bonds going away, in the page
Bendt's r	rule	a hybrid orbital on a central atom has greater p character,
		the greater the electronegativity of the other atom forming a
		bond

→ A lone pair is assigned zero electronegativity since there is no atom attracting electrons in the bond away from the central atom

CONSEQUENCES OF 3D STRUCTURES: ORBITAL OVERLAP AND ELECTRON DELOCALIZATION

Resonance structure	weighted average of a set of Lewis structures
Resonance hybrid	the actual electronic structure of the molecule

- → A molecule does *NOT* fluctuate between resonance structures, instead the actual electronic structure is *ALWAYS* the weighted average of the resonance structures
- → Guidelines...
 - \circ Each resonance structure should have the name # e^- ; formal charge is useful to help with this
 - Between resonance structures, atom locations are fixed: only the locations where the e^- are shown changes; can be drawn from *any* perspective
 - \circ Double headed arrow (\leftrightarrow) is used to denote a set of resonance structures

Aromatic compounds	contain ring structures and exhibit bonding that much be
	described using resonance structures

Ex) Benzene C_6H_6

CONSEQUENCES OF 3D STRUCTURES: FLUXIONALITY AND STEROISOMERISM

Conformers	structures that differ only because of rotations around single
	<u>bonds</u>

- → Conformers represent the same chemical compound, same name, same physical properties
- \rightarrow The energy needed for rotation about a single bond is relatively small because the MO of a σ covalent bond has cylindrical symmetry along the internuclear axis

Stereoisomers	molecules that have the same molecular formula and same
	atomic connectivity, but differ in orientation of atoms in 3D
	<u>space</u>

Two carbon atoms as C = C double bond cannot freely rotate with respect to each other because such rotation would break the π bond; when this bond is broken it is free to rotate

Geometric isomers	stereoisomers that differ in orientation of the groups
	connected to the two carbons in a $C = C$ bond

- \rightarrow Caused by rigid characteristic of C = C bond
- → Two types: cis and trans

Cis isomer	two groups on the same side causing restricted rotation;
	type of geometric isomer
Trans isomer	two groups on the opposite side; type of geometric isomer

Ex) General alkane

Enantiomers	isomers that are mirror images of each other but cannot be
	superimposed; exhibit chirality
Chirality	property of a molecule that is not superimposable on its
	mirror image
Chiral center	atom bonded to four different groups; can be marked by an
	asterisk (*)

- → A carbon atom that is a chiral center is referred to as an asymmetric carbon atom or chiral carbon atom
- → Enantiomeric structures represent different substances that can be separated from one another and would not readily convert from one another

Intermolecular forces	any attractive forces between molecules
Viscosity	measure of liquids resistance to flow

CONSEQUENCES OF 3D STRUCTURE: UNEVEN DISTIBUTIONS OF ELECTRON DENSITY

Polarity...

Pure covalent bond	shared e^- have an equal probability of being near each
	<u>nucleus</u>
Polar covalent bond	bonding e^- are attracted by one atom more than the other
	<u>atom</u>
Bond dipole moment	unequal distribution of electron density on two bonded
	<u>atoms</u>

 $\mu = Qr$

- → Polarity can be estimated by the difference between the electronegativities of the bonded atoms
- \rightarrow \(\frac{1}{2}\) polarity, \(\frac{1}{2}\) \(\Delta EN\), \(\frac{1}{2}\) \(\Q_0\)

Dipole-dipole attraction	attractive electrostatic force between polar molecules

- → The positive end of one molecular dipole interacts with the negative end of another molecular dipole
- → More polar, stronger dipole-dipole attractions

Polar molecules	molecules that have a molecular dipole moment
Nonpolar molecules	molecules that have a zero (or near zero) molecular dipole
	moment

Functional groups...

Carbonyl group	a carbon atom double bonded to an oxygen
Aldehyde	functional group which the carbonyl carbon is also bonded
	to a hydrogen
Ketone	functional group consisting of solely the carbonyl group
Ether	functional group centering the -0 – bond between two
	different R groups
Ester	functional group containing a carbonyl group with a second
	oxygen atom single bonded to the carbonyl carbon and also
	single bonded to another carbon atom
Alcohol	functional group containing a hydroxyl group $(-0H)$
	covalently bonded to a carbon atom
Addition reaction	all atoms contained in the reactant molecules are contained
	in the product molecule

Hydrogen bonding...

Hydrogen bonding	the interaction between an $X - H$ covalent bond (X is a
	highly electronegative atom) and the lone pair on an
	electron rich atom Z

- \rightarrow Strong hydrogen binding occurs between F-H, O-H, N-H, and an e^- lone pair on another F, O, N atom (these are among the most electronegative atoms on the periodic table)
- ightharpoonup Has about 5-10% the strength of a typical covalent bond

More functional groups...

• ,	
Carboxylic acid	functional group $-COOH$; hydroxyl group linked to a
	<u>carbonyl carbon atom</u>

→ Different from an ester because its bonded to a hydrogen atom and is found at the end of a molecule

Amine	functional group that's a derivative of ammonia that
	contains one or more carbon-nitrogen bonds
Amide	functional group that contains a nitrogen atom connected to
	the carbon atom of the carbonyl group

POLYMERS ARE MACROMOLECULES

Polymers	large molecules made by covalently linking man small
	<u>molecules</u>
Monomer	the small molecules that link to form a polymer
Addition polymer	made by addition reactions, where two molecules combine
	to from a single product molecule
Cross-link	a covalent σ bond between two separate polymer strands;
	not at the end of either strand

- → Increase molecular weight and limits motions of polymer strands with respect to one another
- → Since they are covalent bonds, they are typically stronger than IMFs between polymer chains and therefore amplify the effect of increasing IMFs on polymer properties

Examples of addition reaction...

Monomer	Common Name	Polymer	Physical Property	Some Typical Uses
HC=CH	Ethylene	Polyethylene	Varied depending on branching/density	Packaging films, toys, bottles, coatings, water pipes
H CH ₃	Propylene	Polypropylene (Herculon)	Usually tough and flexible, similar to HDPE	Hinges, molding, rope, outdoor carpeting
H C=C	Styrene	Polystyrene (Styrofoam, Styron)	Hard and rather brittle	Transparent containers (such as Petri dish), plastic glasses, styrofoam
HC=CH	Vinyl chloride	Polyvinyl chloride (PVC)	Hard, moderately tough, can be rigid or flexible	Pipe and tubing, raincoats, phonograph records, floor tiles
FC=CF	Tetrafluoroethylene	Polytetrafluoroethylene (Teflon)	Hard and tough	Nonstick pan coatings, bearings, gaskets
H C=C O CH ₃	Vinyl acetate	Polyvinyl acetate	Highly branched, not solid at room temperature	Elmer's glue, wood glue
H C=CCH ₃	Methyl methacrylate	Polymethyl methacrylate (Plexiglass, Lucite)	Hard and brittle, but can be modified to be more shatter-resistant	Stiff plastic sheets, blocks, tubing, and other shapes

Table: Monomers for Some Common Addition Polymers

Copolymers and condensation polymers...

Copolymers	made by polymerizing a mixture of two or more monomers	
Condensation polymer	a polymer formed in a condensation reaction	
Polyester	a polymer where the individual units are held together by	
	<u>ester linkages</u>	
Polyamide	a polymer where the individual units are held together by	
	amide linkages	

BIOLOGICALLY RELEVANT MOLECULES

Proteins...

Proteins	condensation polymers amino acids
Amino acids	carbon atom bonded to a hydrogen atom, amine group,
	carboxylic acid group, and an R group often on the side of
	the chain; referred to the protein backbone
Primary structure	sequence in which the amino acids are linked
Secondary structure	pattern of hydrogen bonds between non-adjacent backbone
	amide group
α-helix	regular pattern of hydrogen bonding between backbone
	amide group
β-sheet	structures of pattern chain connected side-by-side by
	hydrogen bonds between backbone amide group
Tertiary structure	overall 3D shape of the protein

Primary forces that stabilize a proteins 3D structure...

- → Keeping hydrophobic side chains away from water as much as possible
- → Maximizing LDFs by minimizing open spaces in the interior of the proteins
- → Maximizing hydrogen bonding
- → Attractions between negatively and positively charged sites formed when acidic and basic side chains lose or gain H⁺ ions
- \rightarrow Formation of d-sulfide bonds

DNA and Lipids...

Deoxyribonucleic acid (DNA)	two polymer strands that coil around each other forming a
	double helix
Nucleotides	monomer units of DNA strands; a phosphate group and
	nucleo-base attached to a sugar (deoxyribose)
Glycolipids	composed of glycerol and fatty acids
Glycerol	three C atoms each bonded to $-OH$ (hydroxyl group)
Fatty acids	long, unbranched hydrocarbon chains with a carboxylic acid
	and atomic end
Fats	glycolipids with higher melting points usually solid at room
	temperature (also called waxes)
Oils	glycolipids with lower melting points usually liquid at room
	<u>temperature</u>

PHASE CHANGES AND ENERGY FLOWS

Energy and enthalpy...

Thermal energy	kinetic energy associated with random motion of atoms and
	<u>molecules</u>

 \rightarrow When thermal energy is transferred into an object, its atoms move faster on average (higher KE_{avg}), the objects temperature increases

Heating	\underline{q} ; transfer of thermal energy between two samples of matter
	at different temperatures

→ Heat transfer occurs until thermal equilibrium is achieved

Specific heat capacity	c; heating required to move the temperature of $1g$ of
	substance by 1°C

$$q = mc\Delta T = mc(T_f - T_i)$$

- \rightarrow $\Delta T < 0 \rightarrow q < 0 \rightarrow$ substance is being cooled
- ightharpoonup $\Delta T > 0
 ightharpoonup q > 0
 ightharpoonup$ substance is being heated

System	the substance undergoing a physically or chemical change	
Surrounding	everything else that can exchange energy with the system	
Exothermic process	heat transfer from the system to the surroundings	
Endothermic process	heat transfer from the surroundings to the system	
Enthalpy	H; energy transfer that accumulate physical and chemical	
	<u>changes</u>	

 \rightarrow If pressure is constant, $\Delta H = q$

Solutions...

Solution	homogenous mixture of two or more substances
Miscible	infinite mutual solubility

→ For gases, molecules are so far apart so IMFs are negligible

Immiscible	do not mix completely but instead form two separate liquid
	<u>layers</u>
Hydrophobic	intermolecular attractions of its molecules with water are
	<u>weak</u>
Hydrophilic	capable of strong intermolecular attractions to water