LARGE SPARSE EIGENVALUE PROBLEMS

- Projection methods
- The subspace iteration
- Krylov subspace methods: Arnoldi and Lanczos
- Golub-Kahan-Lanczos bidiagonalization

General Tools for Solving Large Eigen-Problems

- ➤ Projection techniques Arnoldi, Lanczos, Subspace Iteration;
- ➤ Preconditioninings: shift-and-invert, Polynomials, ...
- ➤ Deflation and restarting techniques
- ➤ Computational codes often combine these three ingredients

13-2 ______ Csci 5304 – December 4, 2013

A few popular solution Methods

- Subspace Iteration [Now less popular sometimes used for validation]
- Arnoldi's method (or Lanczos) with polynomial acceleration
- Shift-and-invert and other preconditioners. [Use Arnoldi or Lanczos for $(A-\sigma I)^{-1}$.]
- Davidson's method and variants, Jacobi-Davidson
- Specialized method: Automatic Multilevel Substructuring (AMLS).

Projection Methods for Eigenvalue Problems

Projection method onto K orthogonal to L

- ▶ Given: Two subspaces K and L of same dimension.
- Approximate eigenpairs $\tilde{\lambda}, \tilde{u}$, obtained by solving: Find: $\tilde{\lambda} \in \mathbb{C}, \tilde{u} \in K$ such that $(\tilde{\lambda}I - A)\tilde{u} \perp L$
- ➤ Two types of methods:

Orthogonal projection methods: Situation when L = K.

Oblique projection methods: When $L \neq K$.

➤ First situation leads to Rayleigh-Ritz procedure

13.3 Csci 5304 – December 4, 2011

13-4 _____ Csci 5304 – December 4, 2013

Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to eigenvectors of A.

Question: How to extract 'best' approximations to eigenvalues/ eigenvectors from this subspace?

Answer: Orthogonal projection method

- ▶ Let $Q = [q_1, ..., q_m]$ = orthonormal basis of X
- Orthogonal projection method onto X yields: $Q^H(A-\tilde{\lambda}I)\tilde{u}=0$ \rightarrow
- $ightharpoonup Q^H A Q y = \tilde{\lambda} y$ where $\tilde{u} = Q y$
- ➤ Known as Rayleigh Ritz process

Subspace Iteration

Original idea: projection technique onto a subspace of the form $Y = A^k X$

Practically: A^k replaced by suitable polynomial

Advantages: • Easy to implement (in symmetric case);

• Easy to analyze:

Disadvantage: Slow.

 \triangleright Often used with polynomial acceleration: A^kX replaced by $C_k(A)X$. Typically C_k = Chebyshev polynomial.

Procedure:

- 1. Obtain an orthonormal basis of X
- 2. Compute $C = Q^H A Q$ (an $m \times m$ matrix)
- 3. Obtain Schur factorization of C, $C = YRY^H$
- 4. Compute $\tilde{U} = QY$

Property: if X is (exactly) invariant, then procedure will yield exact eigenvalues and eigenvectors.

Proof: Since X is invariant, $(A - \tilde{\lambda}I)u = Qz$ for a certain z. $Q^HQz=0$ implies z=0 and therefore $(A-\tilde{\lambda}I)u=0$.

➤ Can use this procedure in conjunction with the subspace obtained from subspace iteration algorithm

Algorithm: Subspace Iteration with Projection

- 1. Start: Choose an initial system of vectors $X = [x_0, \dots, x_m]$ and an initial polynomial C_k .
- 2. Iterate: Until convergence do:
- (a) Compute $\hat{Z} = C_k(A)X$.
- (b) Orthonormalize \hat{Z} : $[Z, R_Z] = qr(\hat{Z}, 0)$
- (c) Compute $B = Z^H A Z$
- (d) Compute the Schur factorization $B = YR_BY^H$ of B
- (e) Compute X := ZY.
- (f) Test for convergence. If satisfied stop. Else select a new polynomial $C'_{k'}$ and continue.

THEOREM: Let $S_0 = span\{x_1, x_2, \ldots, x_m\}$ and assume that S_0 is such that the vectors $\{Px_i\}_{i=1,\ldots,m}$ are linearly independent where P is the spectral projector associated with $\lambda_1,\ldots,\lambda_m$. Let \mathcal{P}_k the orthogonal projector onto the subspace $S_k = span\{X_k\}$. Then for each eigenvector u_i of $A,\ i=1,\ldots,m$, there exists a unique vector s_i in the subspace S_0 such that $Ps_i=u_i$. Moreover, the following inequality is satisfied

$$\|(I-\mathcal{P}_k)u_i\|_2 \leq \|u_i-s_i\|_2 \left(\left|rac{\lambda_{m+1}}{\lambda_i}
ight|+\epsilon_k
ight)^k, \quad (1)$$

where ϵ_k tends to zero as k tends to infinity.

9 Csci 5304 – December 4, 201

Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

$$K_m(A,v_1)=\mathsf{span}\{v_1,Av_1,\cdots,A^{m-1}v_1\}$$

- The most important class of projection methods [for linear systems and for eigenvalue problems]
- Variants depend on the subspace L
- ▶ Let $\mu = \deg$. of minimal polynom. of v_1 . Then:
- $K_m = \{p(A)v_1|p = \text{polynomial of degree} \le m-1\}$
- $ullet K_m = K_\mu$ for all $m \geq \mu.$ Moreover, K_μ is invariant under A.
- $\bullet dim(K_m)=m ext{ iff } \mu \geq m.$

Arnoldi's algorithm

▶ Goal: to compute an orthogonal basis of K_m .

KRYLOV SUBSPACE METHODS

▶ Input: Initial vector v_1 , with $\|v_1\|_2 = 1$ and m.

ALGORITHM: 1. Arnoldi's procedure

For
$$j=1,...,m$$
 do Compute $w:=Av_j$ For $i=1,...,j$, do $\left\{egin{aligned} h_{i,j}:=(w,v_i)\ w:=w-h_{i,j}v_i\ v_{j+1}=w/h_{j+1,j} \end{aligned}
ight.$ End

➤ Based on Gram-Schmidt procedure

Cosi F204 December 4 20

3.11 Csci 5304 – December 4, 2013

Result of Arnoldi's algorithm

Results:

- 1. $V_m = [v_1, v_2, ..., v_m]$ orthonormal basis of K_m .
- 2. $AV_m = V_{m+1}\overline{H}_m = V_mH_m + h_{m+1,m}v_{m+1}e_m^T$
- 3. $V_m^T A V_m = H_m \equiv \overline{H}_m$ last row.

13-13 _____ Csci 5304 – December 4, 2013

Hermitian case: The Lanczos Algorithm

➤ The Hessenberg matrix becomes tridiagonal :

$$A=A^H$$
 and $V_m^HAV_m=H_m$ $ightarrow H_m=H_m^H$

ightharpoonup Denote H_m by T_m and \bar{H}_m by \bar{T}_m . We can write

➤ Consequence: three term recurrence

$$eta_{j+1}v_{j+1}=Av_j-lpha_jv_j-eta_jv_{j-1}$$

ightharpoonup Relation $AV_m=V_{m+1}\overline{T_m}$

Application to eigenvalue problems

- ightharpoonup Write approximate eigenvector as $ilde{u}=V_m y$
- ➤ Galerkin condition:

$$(A- ilde{\lambda}I)V_m y \perp \mathcal{K}_m \quad o \quad V_m^H (A- ilde{\lambda}I)V_m y = 0$$

ightharpoonup Approximate eigenvalues are eigenvalues of H_m

$$H_m y_j = ilde{\lambda}_j y_j$$

> Associated approximate eigenvectors are

$$ilde{u}_j = V_m y_j$$

➤ Typically a few of the outermost eigenvalues will converge first.

3-14 ______ Csci 5304 – December 4, 2013

ALGORITHM: 2. Lanczos

1. Choose an initial v_1 with $||v_{-1}||_2 = 1$;

Set
$$\beta_1 \equiv 0, v_0 \equiv 0$$

2. For j = 1, 2, ..., m Do:

$$3. w_j := Av_j - \beta_j v_{j-1}$$

- 4. $\alpha_j := (w_j, v_j)$
- $\mathbf{5.} \qquad w_i := w_i \alpha_i v_i$
- 6. $\beta_{i+1} := ||w_i||_2$. If $\beta_{i+1} = 0$ then Stop
- 7. $v_{j+1} := w_j/\beta_{j+1}$
- 8. EndDo

Hermitian matrix + **Arnoldi** → **Hermitian Lanczos**

- ightharpoonup In theory v_i 's defined by 3-term recurrence are orthogonal.
- ► However: in practice severe loss of orthogonality;

13-16 Csci 5304 – December 4, 20

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first eigenpair has converged. It is a sign of loss of linear indedependence of the computed eigenvectors. When orthogonality is lost, then several the copies of the same eigenvalue start appearing.

Csci 5304 - December 4, 2013

Reorthogonalization

- Full reorthogonalization reorthogonalize v_{i+1} against all previous v_i 's every time.
- Partial reorthogonalization reorthogonalize v_{i+1} against all previous v_i 's only when needed [Parlett & Simon]
- Selective reorthogonalization reorthogonalize v_{i+1} against computed eigenvectors [Parlett & Scott]
- No reorthogonalization Do not reorthogonalize but take measures to deal with 'spurious' eigenvalues. [Cullum & Willoughby]

Csci 5304 - December 4, 2013

Lanczos Bidiagonalization

 \blacktriangleright We now deal with rectangular matrices. Let $A \in \mathbb{R}^{m \times n}$.

ALGORITHM: 3. Golub-Kahan-Lanczos

- 1. Choose an initial v_1 with $||v_{-1}||_2 = 1$; Set $p \equiv v_1$, $\beta_0 \equiv 1$, $u_0 \equiv 0$
- 2. For k = 1, ..., p Do:
- 3. $r := Av_k \beta_{k-1}u_{k-1}$
- 4. $\alpha_k = ||r||_2$; $u_k = r/\alpha_k$
- 5. $p = A^T u_k \alpha_k v_k$
- $eta_k = \|p\|_2 \; ; \qquad v_{k+1} := p/eta_k$
- 7. EndDo

 $egin{aligned} V_{p+1} &= [v_1, v_2, \cdots, v_{p+1}] &\in \mathbb{R}^{n imes (p+1)} \ U_p &= [u_1, u_2, \cdots, u_p] &\in \mathbb{R}^{m imes p} \end{aligned}$ Let:

$$egin{bmatrix} lpha_1 & eta_2 \ lpha_2 & eta_3 \ \end{bmatrix}$$

Let:

$$B_p = egin{bmatrix} lpha_1 & eta_2 & & & & \ & lpha_2 & eta_3 & & & \ & \ddots & \ddots & & \ & & \ddots & \ddots & \ & & & lpha_p & eta_{p+1} \end{bmatrix};$$

- $m{\hat{B}}_p = B_p(:,1:p)$ $m{V}_p = [v_1,v_2,\cdots,v_p] \ \in \mathbb{R}^{n imes p}$

$$V_{n+1}^T V_{p+1} = I$$

$$\triangleright U_p^T U_p = I$$

$$ightharpoonup AV_p = U_p \hat{B}_p$$

$$lacksquare A^T U_p = V_{p+1} B_p^T$$

Observe that

$$A^T(AV_p) = A^T(U_p\hat{B}_p) \ = V_{p+1}B_p^T\hat{B}_p$$

 $m B_p^T \hat B_p$ is a (symmetric) tridiagonal matrix of size (p+1) imes p – Call it $\overline{T_k}$. Then

$$(A^TA)V_p = V_{p+1}\overline{T_p}$$

- ➤ Standard Lanczos relation!
- ► Therefore the algorithm is equivalent to the standard Lanczos algorithm applied to A^TA .
- ► Similar result for the u_i 's [involves AA^T]
- Mork out the details: What are the entries of \bar{T}_p relative to those of B_p ?

13-21 _____ Csci 5304 - December 4, 2013

Graph Laplaceans - Definition

- ➤ "Laplace-type" matrices associated with general undirected graphs useful in many applications
- **Solution** Given a graph G = (V, E) define
- ullet A matrix W of weights w_{ij} for each edge
- ullet Assume $w_{ij} \geq 0$,, $w_{ii} = 0$, and $w_{ij} = w_{ji} \; orall (i,j)$
- ullet The diagonal matrix $D=diag(d_i)$ with $d_i=\sum_{j
 eq i}w_{ij}$
- \triangleright Corresponding graph Laplacean of G is:

$$L = D - W$$

▶ Gershgorin's theorem $\rightarrow L$ is positive semidefinite

APPLICATION: GRAPH PARTITIONING

> Simplest case:

$$w_{ij} = egin{cases} 1 ext{ if } (i,j) \in E\&i
eq j \ 0 ext{ else} \end{cases} \quad D = ext{diag} \left[d_i = \sum_{j
eq i} w_{ij}
ight]$$

Define the graph Laplacean for the graph associated with the simple mesh shown next. [use the simple weights of 0 or 1]

What is the difference with the discretization of the Laplace operator in 2-D for case when mesh is the same as this graph?

13.23 Csci 5304 – December 4, 2013

13-24 ______ Csci 5304 – December 4, 201

A few properties of graph Laplaceans

Strong relation between x^TLx and local distances between entries of x

Let L= any matrix s.t. L= D-W, with $D=diag(d_i)$ and $w_{ij}\geq 0, \qquad d_i=\sum_{i\neq i}w_{ij}$

Property 1: for any $x \in \mathbb{R}^n$:

$$x^ op Lx = rac{1}{2}\sum_{i,j} w_{ij}|x_i-x_j|^2$$

-26

_ Csci 5304 - December 4, 2013

Property 3: For the particular $L=I-\frac{1}{n}11^{ op}$ $XLX^{ op}=ar{X}ar{X}^{ op}==n imes ext{Covariance matrix}$

Property 4: L is singular and admits the null vector e = ones(n,1)

Property 5: (Graph partitioning) Consider situation when $w_{ij} \in \{0,1\}$. If x is a vector of signs (± 1) then

$$x^ op Lx = 4 imes$$
 ('number of edge cuts') edge-cut = pair (i,j) with $x_i
eq x_j$

- ightharpoonup Would like to minimize (Lx,x) subject to $x\in\{-1,1\}^n$ and $e^Tx=0$ [balanced sets]
- ➤ WII solve a relaxed form of this problem

► Consider any symmetric (real) matrix A with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and eigenvectors u_1, \cdots, u_n

Recall that:
$$(\hbox{Min reached for } x=u_1) \qquad \min_{x\in \mathbb{R}^n} \frac{(Ax,x)}{(x,x)} = \lambda_1$$

Property 2: (generalization) for any $Y \in \mathbb{R}^{d \times n}$:

 $\mathsf{Tr}\left[YLY^{ op}
ight] = rac{1}{2} \sum_{i:i} w_{ij} \|y_i - y_j\|^2$

In addition:
$$\min_{x \perp u_1} \frac{(Ax,x)}{(x,x)} = \lambda_2$$

- For a graph Laplacean $u_1 = e$ = vector of all ones and
- ightharpoonup ...vector u_2 is called the Fiedler vector. It solves a relaxed form of the problem -

$$\min_{x \in \{-1,1\}^n; \; e^T x = 0} rac{(Lx,x)}{(x,x)}
ightarrow \min_{x \in \mathbb{R}^n; \; e^T x = 0} rac{(Lx,x)}{(x,x)}$$

▶ Define $v = u_2$ then lab = sign(v - med(v))

13-28 _____ Csci 5304 - December 4, 20

3-27 ______ Csci 5304 – December 4, 2013

Spectral Graph Partitioning

Idea:

- ➤ Partition graph in two using fiedler vectors
- ➤ Cut largest in two ..
- > Repeat until number of desired partitions is reached
- ➤ Use the Lanczos algorithm to compute the Fiedler vector at each step

13-29 _____ Csci 5304 – December 4, 2013