

planetmath.org

Math for the people, by the people.

proof of equivalent definitions of analytic sets for paved spaces

 ${\bf Canonical\ name} \quad {\bf ProofOf Equivalent Definitions Of Analytic Sets For Paved Spaces}$

Date of creation 2013-03-22 18:48:36 Last modified on 2013-03-22 18:48:36

Owner gel (22282) Last modified by gel (22282)

Numerical id 4

Author gel (22282) Entry type Proof

Classification msc 28A05

Let (X, \mathcal{F}) be a paved space with $\emptyset \in \mathcal{F}$, let \mathcal{N} be Baire space, and let Y be any uncountable Polish space. For a subset A of X, we show that the following statements are equivalent.

- 1. A is \mathcal{F} -http://planetmath.org/AnalyticSet2analytic.
- 2. There is a closed subset S of \mathcal{N} and $\theta \colon \mathbb{N}^2 \to \mathcal{F}$ such that

$$A = \bigcup_{s \in S} \bigcap_{n=1}^{\infty} \theta(n, s_n).$$

3. There is a closed subset S of \mathcal{N} and $\theta \colon \mathbb{N} \to \mathcal{F}$ such that

$$A = \bigcup_{s \in S} \bigcap_{n=1}^{\infty} \theta(s_n).$$

- 4. A is the result of a Souslin scheme on \mathcal{F} .
- 5. A is the projection of a set in $(\mathcal{F} \times \mathcal{K})_{\sigma\delta}$ onto X, where \mathcal{K} is the collection of compact subsets of Y.
- 6. A is the projection of a set in $(\mathcal{F} \times \mathcal{G})_{\sigma\delta}$ onto X, where \mathcal{G} is the collection of closed subsets of Y.
- (??) implies (??): As A is analytic, there exists a compact paved space (K, \mathcal{K}) and a set $B \in (\mathcal{F} \times \mathcal{K})_{\sigma \delta}$ such that $A = \pi_X(B)$, where $\pi_X \colon X \times K \to X$ is the projection map. Write

$$B = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} A_{n,m} \times K_{n,m}$$

for $A_{n,m} \in \mathcal{F}$ and $K_{n,m} \in \mathcal{K}$. Rearranging this expression,

$$B = \bigcup_{s \in \mathcal{N}} \bigcap_{n=1}^{\infty} A_{n,s_n} \times K_{n,s_n}.$$

So, defining $S \subseteq \mathcal{N}$ by

$$S = \left\{ s \in \mathcal{N} : \bigcap_{n=1}^{\infty} K_{n,s_n} \neq \emptyset \right\}.$$

gives

$$A = \pi_X(B) = \bigcup_{s \in S} \bigcap_{n=1}^{\infty} A_{n,s_n}.$$

Setting $\theta(n,m) = A_{n,m}$ gives the required expression, and it only remains to show that S is closed. So, let s^1, s^2, \ldots be a sequence in S converging to a limit $s \in \mathcal{N}$. For any $k \geq 0$ then $s_n^r = s_n$ for all $n \leq k$ and large enough r. Hence,

$$\bigcap_{n \le k} K_{n,s_n} = \bigcap_{n \le k} K_{n,s_n^r} \supseteq \bigcap_{n=1}^{\infty} K_{n,s_n} \neq \emptyset.$$

So, the collection of sets K_{n,s_n} for $n=1,2,\ldots$ satisfies the finite intersection property, and http://planetmath.org/PavedSpacecompactness of the paving K gives

$$\bigcap_{n=1}^{\infty} K_{n,s_n} \neq \emptyset,$$

showing that $s \in S$ and that S is indeed closed.

(??) implies (??): Supposing that A satisfies the required expression, choose any bijection $\phi \colon \mathbb{N} \to \mathbb{N}^2$. Then define $\tilde{\theta} \equiv \theta \circ \phi$ and $f \colon \mathcal{N} \to \mathcal{N}$ by f(s) = t where $t_n = \phi^{-1}(n, s_n)$. As S is closed, it follows that $\tilde{S} = f(S)$ will also be closed and,

$$A = \bigcup_{s \in S} \bigcap_{n} \theta(n, s_n) = \bigcup_{s \in S} \bigcap_{n} \tilde{\theta}(\phi^{-1}(n, s_n)) = \bigcup_{s \in \tilde{S}} \bigcap_{n} \tilde{\theta}(s_n)$$

as required.

(??) implies (??): Suppose that A satisfies the required expression and define a Souslin scheme (A_s) as follows. For any $n \geq 1$ and $s \in \mathbb{N}^n$ let us set

$$A_s = \begin{cases} \theta(s_n), & \text{if } s = t|_n \text{ for some } t \in \mathcal{N}, \\ \emptyset, & \text{otherwise.} \end{cases}$$

Then, for $s \in \mathcal{N}$,

$$\bigcap_{n=1}^{\infty} A_{s|n} = \begin{cases} \bigcap_{n=1}^{\infty} \theta(s_n), & \text{if } s \in S, \\ \emptyset, & \text{otherwise.} \end{cases}$$

Here, if $s \notin S$, we have used the fact that S is closed to deduce that for large n, there is no $t \in S$ with $t|_n = s|_n$ and, therefore, $A_{s|_n} = \emptyset$. The result of the Souslin scheme (A_s) is then

$$\bigcup_{s \in \mathcal{N}} \bigcap_{n=1}^{\infty} A_{s|_n} = \bigcup_{s \in S} \bigcap_{n=1}^{\infty} \theta(s_n) = A$$

as required.

(??) implies (??): Suppose that A is the result of a Souslin scheme (A_s) . Let us first consider the case where Y is Cantor space, $\mathcal{C} = \{0,1\}^{\mathbb{N}}$, which is a compact Polish space. Then, for any $s \in \mathbb{N}^n$, let K_s be the set of $t \in \mathcal{C}$ such that $t_k = 1$ if $k = s_1 + \cdots + s_m$ for some $m \leq n$ and $t_k = 0$ for all other $k < s_1 + \cdots + s_n$. These are closed and, therefore, compact sets.

Given any sequence $s^1 \in \mathbb{N}^1$, $s^2 \in \mathbb{N}^2$, ... it is easily seen that $\bigcap_n K_{s^n}$ is nonempty if and only if there is an $s \in \mathcal{N}$ such that $s|_n = s^n$ for all n. Define the set B in $(\mathcal{F} \times \mathcal{K})_{\sigma\delta}$ by

$$B = \bigcap_{n=1}^{\infty} \bigcup_{s \in \mathbb{N}^n} A_s \times K_s$$

$$= \bigcup_{s^1 \in \mathbb{N}^1, s^2 \in \mathbb{N}^2, \dots} \bigcap_{n=1}^{\infty} A_{s^n} \times K_{s^n}$$

$$= \bigcup_{s \in \mathcal{N}} \bigcap_{n=1}^{\infty} A_{s|_n} \times K_{s|_n}.$$

The projection of B onto X is then

$$\pi_X(S) = \bigcup_{s \in \mathcal{N}} \bigcap_{n=1}^{\infty} A_{s|_n},$$

which is the result A of the scheme (A_s) as required. The result then generalizes to any uncountable Polish space Y, as all such spaces http://planetmath.org/UncountablePoCantor space.

- (??) implies (??): This is trivial, since all compact sets are closed.
- (??) implies (??): This is a consequence of the result that projections of analytic sets are analytic.