Lecture 13

7.8 Improper Integrals Type I Improper Integrals

Definition 1. (a) if $\int_a^t f(x)dx$ exists for every $t \ge a$, then

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx$$

provided this limit exists.

(b) if $\int_t^b f(x)dx$ exists for every $t \le b$, then

$$\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx$$

provided this limit exists.

Integrals $\int_a^\infty f(x)dx$ and $\int_{-\infty}^b f(x)dx$ are called **convergent** if the corresponding limit exists and **divergent** if the limit does not exist.

(c) If both $\int_a^\infty f(x)dx$ and $\int_{-\infty}^a f(x)dx$ are convergent, then

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx$$

Type II Improper Integrals

Definition 2. (a) If f is continuous on [a, b) and is discontinuous at b, then

$$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx$$

provided this limit exists.

(b) If f is continuous on (a, b] and is discontinuous at a, then

$$\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx$$

provided this limit exists.

The improper integral $\int_a^b f(x)dx$ is called **convergent** if the corresponding limit exists and **divergent** if the limit does not exist.

(c) If f has a discontinuity at c, where (a < c < b), and both $\int_a^c f(x) dx$ and $\int_c^b f(x) dx$ are convergent, then

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Tests for Convergence/Divergence of Improper Integrals Comparison Test

Theorem 1. Suppose that f and g are continuous functions with $f(x) \ge g(x) \ge 0$ for all $x \ge a$.

- (a) If $\int_a^\infty f(x)dx$ is convergent then $\int_a^\infty g(x)dx$ is convergent.
- (b) If $\int_a^\infty g(x)dx$ is divergent then $\int_a^\infty f(x)dx$ is divergent.

Limit Comparison Test

Theorem 2. If $f(x) \ge 0$ and $g(x) \ge 0$ and continuous on $[a, \infty)$ and if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$, where $0 < L < \infty$, then $\int_a^\infty f(x) dx$ and $\int_a^\infty g(x) dx$ both converge or both diverge.