

GridLab: Dynamic Grid Applications for Science and Engineering

A story from the difficult to the ridiculous...

Ed Seidel

Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institute) NCSA, U of Illinois

+

Lots of colleagues...

eseidel@ncsa.uiuc.edu

Co-Chair, GGF Applications Working Group

Grand Challenge Simulations

Science and Eng. Go Large Scale: Needs Dwarf Capabilities

- NASA Neutron Star
 Grand Challenge
 - 5 US Institutions
 - Solve problem of colliding neutron stars (try...)

- NSF Black Hole Grand Challenge
 - 8 US Institutions, 5 years
 - Solve problem of colliding black holes (try...)

- EU Network Astrophysics
 - 10 EU Institutions, 3 years
 - Try to finish these problems ...
 - Entire Community becoming Grid enabled
- Examples of Future of Science & Engineering
 - Require Large Scale Simulations, beyond reach of any machine
 - Require Large Geo-distributed Cross-Disciplinary Collaborations
 - Require Grid Technologies, but not yet using them!
 - Both Apps and Grids Dynamic...

Any Such Computation Requires Incredible Mix of Varied Technologies and Expertise!

- Many Scientific/Engineering Components
 - Physics, astrophysics, CFD, engineering,...
- Many Numerical Algorithm Components
 - Finite difference methods?
 - Elliptic equations: multigrid, Krylov subspace, preconditioners,...
 - Mesh Refinement?
- Many Different Computational Components
 - Parallelism (HPF, MPI, PVM, ???)
 - Architecture Efficiency (MPP, DSM, Vector, PC Clusters, ???)
 - I/O Bottlenecks (generate gigabytes per simulation, checkpointing...)
 - Visualization of all that comes out!
- Scientist/eng. wants to focus on top, but all required for results...
- Such work cuts across many disciplines, areas of CS...

Cactus: community developed simulation infrastructure

- Developed as response to needs of large scale projects
- Numerical/computational infrastructure to solve PDE's
- Freely available, Open Source community framework: spirit of gnu/linux
 - Many communities contributing to Cactus
 - Cactus Divided in "Flesh" (core) and "Thorns" (modules or collections of subroutines)
 - Multilingual: User apps Fortran, C, C++; automated interface between them
- Abstraction: Cactus Flesh provides API for virtually all CS type operations
 - Storage, parallelization, communication between processors, etc
 - Interpolation, Reduction
 - IO (traditional, socket based, remote viz and steering...)
 - Checkpointing, coordinates
- "Grid Computing": Cactus team and many collaborators worldwide, especially NCSA, Argonne/Chicago, LBL.

Future view: much of it here already...

- Scale of computations much larger
 - Complexity approaching that of Nature
 - Simulations of the Universe and its constituents
 - Black holes, neutron stars, supernovae
 - Human genome, human behavior
- Teams of computational scientists working together
 - Must support efficient, high level problem description
 - Must support collaborative computational science
 - Must support all different languages
- Ubiquitous Grid Computing
 - Very dynamic simulations, deciding their own future
 - Apps find the resources themselves: distributed, spawned, etc...
 - Must be tolerant of dynamic infrastructure (variable networks, processor availability, etc...)
 - Monitored, viz'ed, controlled from anywhere, with colleagues elsewhere

Grid Simulations: a new paradigm

- Computational Resources Scattered Across the World
 - Compute servers
 - Handhelds
 - File servers
 - Networks
 - Playstations, cell phones etc...
- How to take advantage of this for scientific/engineering simulations?
 - Harness multiple sites and
 - devices
 - Simulations at new level of complexity and scale

Photo - JPEG decompressor are needed to see this picture

> QuickTime™ and a Photo decompressor are needed to see this pictur

Many Components for Grid Computing: all have to work for real applications

- 1. Resources: Egrid (www.egrid.org)
- QuickTime™ and a Photo - JPEG decompressor are needed to see this picture.
- A "Virtual Organization" in Europe for Grid Computing
- Over a dozen sites across Europe
- Many different machines
- 2. Infrastructure: Globus Metacomputing Toolkit (Example)
 - Develops fundamental technologies needed to build computational grids.
 - Security: logins, data transfer
 - Communication
 - Information (GRIS, GIIS)

Components for Grid Computing, cont.

- 3. Grid Aware Applications (Cactus example):
 - Grid Enabled Modular Toolkits for Parallel Computation: Provide to Scientist/Engineer...
 - Plug your Science/Eng. Applications in!
 - Must Provide Many Grid Services
 - Ease of Use: automatically find resources, given need!
 - Distributed simulations: use as many machines as needed!
 - Remote Viz and Steering, tracking: watch what happens!
 - Collaborations of groups with different expertise: no single group can do it! Grid is natural for this...

Egrid Testbed

- Many sites, heterogeneous
 - MPI-Gravitationsphysik,
 - Konrad-Zuse-Zentrum,
 - Poznan,
 - Lecce, Vrije Universiteit-Amsterdam,
 - Paderborn,

- Brno,
- MTA-Sztaki-Budapest,
- DLR-Köln,
- GMD-St. Augustin
- ANL, ISI, & friends
- In 12 weeks, all sites had formed a Virtual Organization with
 - Globus 1.1.4
 - MPICH-G2
 - GSI-SSH
 - GSI-FTP
- Central GIIS's at Poznan, Lecce
- Key Application: Cactus
- Egrid merged with Grid Forum to form GGF, but maintains Egrid testbed, identity

Cactus & the Grid

Cactus Application Thorns

Distribution information hidden from programmer Initial data, Evolution, Analysis, etc

Grid Aware Application Thorns

Drivers for parallelism, IO, communication, data mapping PUGH: parallelism via MPI (MPICH-G2, grid enabled message passing library)

Single Proc Standard MPI

Grid Enabled Communication Library

MPICH-G2 implementation of MPI, can run MPI programs across heterogenous computing resources

Grid Applications so far...

- SC93 SC2000
- Typical scenario
 - Find remote resource (often using multiple computers
 - Launch job (usually static, tightly coupled)
 - Visualize results (usually in-line, fixed)

Metacomputing the Einstein Equations: Connecting T3E's in Berlin, Garching, San Diego

- Need to go far beyond thisMake it much, much easier
 - Make it much, much easier
 Portals, Globus, standards
 - Make it much more dynamic, adaptive, fault tolerant
 - Migrate this technology to general user

Supercomputing super difficult

Consider simplest case: sit here, compute there

Accounts for one AEI user (real case):

- berte.zib.de
- denali.mcs.anl.gov
- golden.sdsc.edu
- gseaborg.nersc.gov
- harpo.wustl.edu
- horizon.npaci.edu
- loslobos.alliance.unm.edu
- mcurie.nersc.gov
- modi4.ncsa.uiuc.edu
- ntsc1.ncsa.uiuc.edu
- origin.aei-potsdam.mpg.de
- pc.rzg.mpg.de
- pitcairn.mcs.anl.gov
- quad.mcs.anl.gov
- rr alliance unm edu
- sr8000.lrz-muenchen.de

16 machines, 6 different usernames, 16 passwords, ...

This is hard, but it gets much worse from here...

ASC Portal (Russell, Daues, Wind², Bondarescu, Shalf, et al)

- ASC Project
 - Code management
 - Resource selection (including distributed runs
 - Code Staging, Sharing
 - Data Archiving, Monitoring, etc...
- Technology: Globus, GSI, Java, DHTML, MyProxy, GPDK, TomCat, Stronghold
- Used for the ASC Grid Testbed (SDSC, NCSA, Argonne, ZIB, LRZ, AEI)
- Driven by the need for easy access to machines
- Useful tool to test Alliance VMR!!

Distributed Computation:

Harnessing Multiple Computers

- Why would anyone want to do this?
 - Capacity
 - Throughput
- Issues
 - Bandwidth
 - Latency
 - Communication needs
 - Topology
 - Communication/computation
- Techniques to be developed
 - Overlapping comm/comp
 - Extra ghost zones
 - Compression
 - Algorithms to do this for the scientist...
- **Experiments**
 - 3 T3Es on 2 continents
 - Last month: joint NCSA, SDSC test with 1500 processors (Dramlitsch

- Why would anyone want to do this?
 - Capacity, Throughput
- Solving Einstein Equations, but could be any application
 70-85% scaling, ~250GF (only 15% scaling without tricks)
- Techniques to be developed
 - Overlapping comm/comp, Extra ghost zones
 - Compression
 - Adaption!!
 - · Algorithms to do this for the scientist...

Dynamic Distributed Computing

Static grid model works only in special cases; must make apps able to respond to changing Grid environment...

- Many new ideas
 - Consider: the Grid IS your computer:
 - Networks, machines, devices come and go
 - Dynamic codes, aware of their environment, seeking out resources
 - Rethink algorithms of all types
 - Distributed and Grid-based thread parallelism
 - Scientists and engineers will change the way they think about their problems: think global, solve much bigger problems
- Many old ideas
 - 1960's all over again
 - How to deal with dynamic processes
 - processor management
 - memory hierarchies, etc

GridLab: New Paradigms for Dynamic Grids

- Code should be aware of its environment
 - What resources are out there NOW, and what is their current state?
 - What is my allocation?
 - What is the bandwidth/latency between sites?
- Code should be able to make decisions on its own
 - A slow part of my simulation can run asynchronously...spawn it off!
 - New, more powerful resources just became available...migrate there!
 - Machine went down...reconfigure and recover!
 - Need more memory...get it by adding more machines!
- Code should be able to publish this information to central server for tracking, monitoring, steering...
 - Unexpected event...notify users!
 - Collaborators from around the world all connect, examine simulation.

New Grid Applications: some examples

- Dynamic Staging: move to faster/cheaper/bigger machine
 - "Cactus Worm"
- Multiple Universe
 - create clone to investigate steered parameter ("Cactus Virus")
- Automatic Convergence Testing
 - from intitial data or initiated during simulation
- Look Ahead
 - spawn off and run coarser resolution to predict likely future
- Spawn Independent/Asynchronous Tasks
 - send to cheaper machine, main simulation carries on
- Thorn Profiling
 - best machine/queue, choose resolution parameters based on queue
- Dynamic Load Balancing
 - inhomogeneous loads, multiple grids
- Intelligent Parameter Surveys
 - farm out to different machines
- ...Must get application community to rethink algorithms...

Issues Raised by Grid Scenarios

- Infrastructure:
 - Is it ubiquitous? Is it reliable? Does it work?
- Security:
 - How does user pass proxy from site to site?
 - Firewalls? Ports?
- How does user/application get information about Grid?
 - Need reliable, ubiquitous Grid information services
 - Portal, Cell phone, PDA
- What is a file? Where does it live?
 - Crazy Grid apps will leave pieces of files all over the world
- Tracking
 - How does user track the Grid simulation hierarchies?
- Two Current Examples that work Now: Building blocks for the future
 - Dynamic, Adaptive Distributed Computing
 - Migration: Cactus Worm

- 70-85% scaling, ~250GF (only 15% scaling without tricks)
- Techniques to be developed
 - Overlapping comm/comp, Extra ghost zones
 - Compression
 - Adaption!!
 - Algorithms to do this for the scientist...

Worm as a building block for dynamic Grid applications: many uses

- Tool to test operation of Grid: Alliance VMR, Egrid, other testbeds
- Will be outfitted with diagnostics, performance tools
 - What went wrong where?
 - How long did a given Worm "payload" take to migrate
 - Are grid map files in order?
 - Certificates, etc...
- Basic technology for migrating
 - Entire simulations
 - Parts of simulations
- Example: contract violation...
 - Code going too slow, too fast, using too much memory, etc...

How to determine when to migrate: Contract Monitor

- GrADS project activity: Foster, Angulo, Cactus team
- Establish a "Contract"
 - Driven by user-controllable parameters
 - Time quantum for "time per iteration"
 - % degradation in time per iteration (relative to prior average) before noting violation
 - Number of violations before migration
- Potential causes of violation
 - Competing load on CPU
 - Computation requires more processing power: e.g., mesh refinement, new subcomputation
 - Hardware problems
 - Going too fast! Using too little memory? Why waste a resource??

Grid Application Development Toolkit

- Application developer should be able to build simulations with tools that easily enable dynamic grid capabilities
- Want to build programming API to easily allow:
 - Query information server (e.g. GIIS)
 - What's available for me? What software? How many processors?
 - Network Monitoring
 - Decision Routines (Thorns)
 - How to decide? Cost? Reliability? Size?
 - Spawning Routines (Thorns)
 - Now start this up over here, and that up over there
 - Authentication Server
 - Issues commands, moves files on your behalf (can't pass-on Globus proxy)
 - Data Transfer
 - Use whatever method is desired (Gsi-ssh, Gsi-ftp, Streamed HDF5, scp...)
 - Etc...

Grid Related Projects

- GridLab <u>www.gridlab.org</u>
 - Enabling these scenarios
- ASC: Astrophysics Simulation Collaboratory www.ascportal.org
 - NSF Funded (WashU, Rutgers, Argonne, U. Chicago, NCSA)
 - Collaboratory tools, Cactus Portal
- Global Grid Forum (GGF) <u>www.gridforum.org</u>
 - Applications Working Group
- GrADs: Grid Application Development Software www.isi.edu/grads
 - NSF Funded (Rice, NCSA, U. Illinois, UCSD, U. Chicago, U. Indiana...)
- TIKSL/GriKSL <u>www.zib.de/Visual/projects/TIKSL/</u>
 - German DFN funded: AEI, ZIB, Garching
 - Remote online and offline visualization, remote steering/monitoring
- Cactus Team www.CactusCode.org
 - Dynamic distributed computing ...

Summary

- Science/Engineering Drive/Demand Grid Development
 - Problems very large, need new capabilities
- Grids will fundamentally change research
 - Enable problem scales far beyond present capabilities
 - Enable larger communities to work together (they'll need to)
 - Change the way researchers/engineers think about their work
- Dynamic Nature of Grid makes problem much more interesting
 - Harder
 - Matches dynamic nature of problems being studied
- Need to get applications communities to rethink their problems
 - The Grid is the computer...
- Join the Applications Working Group of GGF
- Join our project: www.gridlab.org
 - Work with us from here, or come to Europe!

Credits: this work resulted from a great team

QuickTime™ and a Sorenson Video decompressor are needed to see this picture.