# NVAE: A Deep Hierarchical Variational Autoencoder

Ахметов Артемий

#### VAE

VAE - variational autoencoders.
Энкодер переводит объект в скрытое пространство z, после чего декодер пытается восстановить исходный объект.

Скрытое пространство - bottleneck, поэтому энкодеру нужно сохранить максимальное количество информации об объекте в z

Отличие VAE от обычных автоэнкодеров - p(z)~Normal(0,1)



$$l_i( heta, \phi) = -\mathbb{E}_{z \sim q_{ heta}(z \mid x_i)}[\log p_{\phi}(x_i \mid z)] + \mathbb{KL}(q_{ heta}(z \mid x_i) \mid\mid p(z))$$

# В чем проблема?

- VAE пытаются сохранить как можно больше информации, однако строятся в основном на архитектурах для классификации, отбрасывающих много информации.
- VAE часто по-разному реагируют на большое количество параметров.
- VAE моделируют долговременные корелляции в данных из за чего в сети должно быть большие поля восприятия(receptive field)
- Из за KL дивергенции обучение глубоких VAE нестабильно

#### **NVAE**

#### Nouveau VAE - глубокий иерархический VAE

- В NVAE используются глубокие свертки
- Residual блоки
- Спектральная регуляризация для стабилизации обучения
- Уменьшение затрат по памяти в сравнении с VAE
- NVAE первое успешное применение VAE на изображения разрешения больше 256x256

# Архитектура

В глубоких иерархических VAE скрытые переменные z распределяются на L групп

Чтобы уменьшить затратность обучения, используется bidirectional encoder, часть которое позже становится генеративной моделью.



(a) Bidirectional Encoder (b) Generative Model

$$\mathcal{L}_{\text{VAE}}(\boldsymbol{x}) := \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \left[ \log p(\boldsymbol{x}|\boldsymbol{z}) \right] - \text{KL}(q(\boldsymbol{z}_1|\boldsymbol{x})||p(\boldsymbol{z}_1)) - \sum_{l=2}^{L} \mathbb{E}_{q(\boldsymbol{z}_{< l}|\boldsymbol{x})} \left[ \text{KL}(q(\boldsymbol{z}_l|\boldsymbol{x}, \boldsymbol{z}_{< l})||p(\boldsymbol{z}_l|\boldsymbol{z}_{< l})) \right]$$

#### Residual блоки

Residual блоки используются для сохранения долговременных корреляций при их прохождении сквозь сеть.

# Блоки генеративной модели

- Используется свертка с большим ядром
- Используется особенный BN
- Swish активация показывает обнадеживающие результаты
- Squeeze and Excitation (SE) gating слой



#### Блоки в энкодере

Сделан вывод что BN-Activation-Conv лучше чем Conv-BN-Activation



# Проблемы с памятью

Из за использования глубинных сверток сильно возрастают требования к памяти. Что делать?

- 1. Использовать NVIDEA APEX, для переведения float в half-precision float. Уменьшает затраты по памяти на 40%!
- 2. Копия карты признаков хранится при каждом backward проходе. Используется gradient check-pointing и BN пересчитывается при каждом проходе назад. Не сильно замедляет обучение но памяти требуется еще на 18% меньше.

# Обучение

Из за присутствия KL в функции потерь, при большой разнице в распределениях энкодера и декодера обучение происходит нестабильно. Есть два решения:

- 1. Переопределение KL
- Спектральная регуляризация.
   Добавим к L\_vae регуляризацию на константу Липшица

$$p(z_l^i|\boldsymbol{z}_{< l}) := \mathcal{N}\left(\mu_i(\boldsymbol{z}_{< l}), \sigma_i(\boldsymbol{z}_{< l})\right)$$

$$q(z_l^i|\boldsymbol{z}_{< l}, \boldsymbol{x}) := \mathcal{N}\left(\mu_i(\boldsymbol{z}_{< l}) + \Delta\mu_i(\boldsymbol{z}_{< l}, \boldsymbol{x}), \sigma_i(\boldsymbol{z}_{< l}) \cdot \Delta\sigma_i(\boldsymbol{z}_{< l}, \boldsymbol{x})\right)$$

$$KL\left(q(z^i|\boldsymbol{x})||p(z^i)\right) = \frac{1}{2}\left(\frac{\Delta\mu_i^2}{\sigma_i^2} + \Delta\sigma_i^2 - \log\Delta\sigma_i^2 - 1\right)$$

$$\mathcal{L}_{SR} = \lambda \sum_{i} s^{(i)}$$

# Эксперименты







(e) FFHQ (t=0.5)

(f) MaCow [67] trained on CelebA HQ (t=0.7)

(g) Glow [62] trained on CelebA HQ (t = 0.7)

| Method                                                                     | MNIST<br>28×28 | CIFAR-10<br>32×32 | ImageNet<br>32×32 | CelebA<br>64×64 | CelebA HQ<br>256×256 | FFHQ<br>256×256 |
|----------------------------------------------------------------------------|----------------|-------------------|-------------------|-----------------|----------------------|-----------------|
| NVAE w/o flow                                                              | 78.01          | 2.93              |                   | 2.04            | _                    | 0.71            |
| NVAE w/ flow                                                               | 78.19          | 2.91              | 3.92              | 2.03            | 0.70                 | 0.69            |
| VAE Models with an Unconditional Decoder                                   |                |                   |                   |                 |                      |                 |
| BIVA [36]                                                                  | 78.41          | 3.08              | 3.96              | 2.48            | -                    | -               |
| IAF-VAE [4]                                                                | 79.10          | 3.11              | -                 | -               | -                    | -               |
| DVAE++ [20]                                                                | 78.49          | 3.38              | -                 | -               | -                    | -               |
| Conv Draw [42]                                                             | -              | 3.58              | 4.40              | -               | -                    | -               |
| Flow Models without any Autoregressive Components in the Generative Model  |                |                   |                   |                 |                      |                 |
| VFlow [59]                                                                 | -              | 2.98              | -                 | -               | -                    | -               |
| ANF [60]                                                                   | -              | 3.05              | 3.92              | -               | 0.72                 | -               |
| Flow++ [61]                                                                | -              | 3.08              | 3.86              | -               | -                    | -               |
| Residual flow [50]                                                         | -              | 3.28              | 4.01              | -               | 0.99                 | -               |
| GLOW [62]                                                                  | -              | 3.35              | 4.09              | -               | 1.03                 | -               |
| Real NVP [63]                                                              | -              | 3.49              | 4.28              | 3.02            | -                    | -               |
| VAE and Flow Models with Autoregressive Components in the Generative Model |                |                   |                   |                 |                      |                 |
| $\delta$ -VAE [25]                                                         | -              | 2.83              | 3.77              | -               | -                    | -               |
| PixelVAE++ [35]                                                            | 78.00          | 2.90              | -                 | -               | -                    | -               |
| VampPrior [64]                                                             | 78.45          | -                 | -                 | -               | -                    | -               |
| MAÊ [65]                                                                   | 77.98          | 2.95              | -                 | -               | -                    | -               |
| Lossy VAE [66]                                                             | 78.53          | 2.95              | -                 | -               | -                    | -               |
| MaCow [67]                                                                 | -              | 3.16              | -                 | -               | 0.67                 | -               |
| Autoregressive Models                                                      |                |                   |                   |                 |                      |                 |
| SPN [68]                                                                   | -              | -                 | 3.85              | -               | 0.61                 | -               |
| PixelSNAIL [34]                                                            | -              | 2.85              | 3.80              | -               | -                    | -               |
| Image Transformer [69]                                                     | -              | 2.90              | 3.77              | -               | -                    | -               |
| PixelCNN++ [70]                                                            | -              | 2.92              | -                 | -               | -                    | -               |
| PixelRNN [41]                                                              | -              | 3.00              | 3.86              | -               | -                    | -               |
| Gated PixelCNN [71]                                                        | -              | 3.03              | 3.83              | -               | -                    | -               |

#### Источники

- 1. VAE <a href="https://jaan.io/what-is-variational-autoencoder-vae-tutorial/">https://jaan.io/what-is-variational-autoencoder-vae-tutorial/</a>
- 2. NVAE <a href="https://arxiv.org/abs/2007.03898">https://arxiv.org/abs/2007.03898</a>