

Chapter 15: Query Processing

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Chapter 15: Query Processing

- Overview
- Measures of Query Cost
- Selection Operation
- Sorting
- Join Operation
- Other Operations
- Evaluation of Expressions

Basic Steps in Query Processing

- 1. Parsing and translation
- 2. Optimization
- 3. Evaluation

Basic Steps in Query Processing (Cont.)

- Parsing and translation
 - translate the query into its internal form. This is then translated into relational algebra.
 - Parser checks syntax, verifies relations
- Evaluation
 - The query-execution engine takes a query-evaluation plan, executes that plan, and returns the answers to the query.

Basic Steps in Query Processing: Optimization

- A relational algebra expression may have many equivalent expressions
 - E.g., $\sigma_{salary < 75000}(\prod_{salary}(instructor))$ is equivalent to $\prod_{salarv}(\sigma_{salarv < 75000}(instructor))$
- Each relational algebra operation can be evaluated using one of several different algorithms
 - Correspondingly, a relational-algebra expression can be evaluated in many ways.
- Annotated expression specifying detailed evaluation strategy is called an evaluation-plan. E.g.,:
 - Use an index on salary to find instructors with salary < 75000,
 - Or perform complete relation scan and discard instructors with salary
 ≥ 75000

Basic Steps: Optimization (Cont.)

- Query Optimization: Amongst all equivalent evaluation plans choose the one with lowest cost.
 - Cost is estimated using statistical information from the database catalog
 - e.g.. number of tuples in each relation, size of tuples, etc.
- In this chapter we study
 - How to measure query costs
 - Algorithms for evaluating relational algebra operations
 - How to combine algorithms for individual operations in order to evaluate a complete expression
- In Chapter 16
 - We study how to optimize queries, that is, how to find an evaluation plan with lowest estimated cost

Measures of Query Cost

- Many factors contribute to time cost
 - disk access, CPU, and network communication
- Cost can be measured based on
 - response time, i.e. total elapsed time for answering query, or
 - total resource consumption
- We use total resource consumption as cost metric
 - Response time harder to estimate, and minimizing resource consumption is a good idea in a shared database
- We ignore CPU costs for simplicity
 - Real systems do take CPU cost into account
 - Network costs must be considered for parallel systems
- We describe how estimate the cost of each operation
 - We do not include cost to writing output to disk

Measures of Query Cost

- Disk cost can be estimated as:
 - Number of seeks * average-seek-cost
 - Number of blocks read * average-block-read-cost
 - Number of blocks written * average-block-write-cost
- For simplicity we just use the number of block transfers from disk and the number of seeks as the cost measures
 - t_T time to transfer one block
 - Assuming for simplicity that write cost is same as read cost
 - t_S time for one seek
 - Cost for b block transfers plus S seeks
 b * t_T + S * t_S
- t_S and t_T depend on where data is stored; with 4 KB blocks:
 - High end magnetic disk: $t_S = 4$ msec and $t_T = 0.1$ msec
 - SSD: $t_S = 20$ -90 microsec and $t_T = 2$ -10 microsec for 4KB

Measures of Query Cost (Cont.)

- Required data may be buffer resident already, avoiding disk I/O
 - But hard to take into account for cost estimation.
- Several algorithms can reduce disk IO by using extra buffer space
 - Amount of real memory available to buffer depends on other concurrent queries and OS processes, known only during execution
- Worst case estimates assume that no data is initially in buffer and only the minimum amount of memory needed for the operation is available
 - But more optimistic estimates are used in practice

Selection Operation

- File scan
- Algorithm A1 (linear search). Scan each file block and test all records to see whether they satisfy the selection condition.
 - Cost estimate = b_r block transfers + 1 seek
 - b_r denotes number of blocks containing records from relation r
 - If selection is on a key attribute, can stop on finding record
 - cost = $(b_r/2)$ block transfers + 1 seek
 - Linear search can be applied regardless of
 - selection condition or
 - ordering of records in the file, or
 - availability of indices
- Note: binary search generally does not make sense since data is not stored consecutively
 - except when there is an index available,
 - and binary search requires more seeks than index search

Selections Using Indices

- Index scan search algorithms that use an index
 - selection condition must be on search-key of index.
- A2 (clustering index, equality on key). Retrieve a single record that satisfies the corresponding equality condition
 - $Cost = (h_i + 1) * (t_T + t_S)$
- A3 (clustering index, equality on nonkey) Retrieve multiple records.
 - Records will be on consecutive blocks
 - Let b = number of blocks containing matching records
 - $Cost = h_i^* (t_T + t_S) + t_S + t_T^* b$

Selections Using Indices

- A4 (secondary index, equality on key/non-key).
 - Retrieve a single record if the search-key is a candidate key

•
$$Cost = (h_i + 1) * (t_T + t_S)$$

- Retrieve multiple records if search-key is not a candidate key
 - each of n matching records may be on a different block
 - Cost = $(h_i + n) * (t_T + t_S)$
 - Can be very expensive!

Selections Involving Comparisons

- Can implement selections of the form $\sigma_{A < V}(r)$ or $\sigma_{A > V}(r)$ by using
 - a linear file scan,
 - or by using indices in the following ways:
- A5 (clustering index, comparison). (Relation is sorted on A)
 - For $\sigma_{A \ge V}(r)$ use index to find first tuple $\ge V$ and scan relation sequentially from there
 - For $\sigma_{A \le V}(r)$ just scan relation sequentially till first tuple > v; do not use index
- A6 (clustering secondary index, comparison).
 - For $\sigma_{A \ge V}(r)$ use index to find first index entry $\ge v$ and scan index sequentially from there, to find pointers to records.
 - For $\sigma_{A \le V}(r)$ just scan leaf pages of index finding pointers to records, till first entry > V
 - In either case, retrieve records that are pointed to
 - requires an I/O per record; Linear file scan may be cheaper!

Implementation of Complex Selections

- Conjunction: $\sigma_{\theta 1} \wedge \theta_{2} \wedge \dots \theta_{n}(r)$
- A7 (conjunctive selection using one index).
 - Select a combination of θ_i and algorithms A1 through A7 that results in the least cost for $\sigma_{\theta_i}(r)$.
 - Test other conditions on tuple after fetching it into memory buffer.
- A8 (conjunctive selection using composite index).
 - Use appropriate composite (multiple-key) index if available.
- A9 (conjunctive selection by intersection of identifiers).
 - Requires indices with record pointers.
 - Use corresponding index for each condition, and take intersection of all the obtained sets of record pointers.
 - Then fetch records from file
 - If some conditions do not have appropriate indices, apply test in memory.

Algorithms for Complex Selections

- Disjunction: $\sigma_{\theta 1} \vee \sigma_{\theta 2} \vee \dots \sigma_{\theta n}(r)$.
- A10 (disjunctive selection by union of identifiers).
 - Applicable if all conditions have available indices.
 - Otherwise use linear scan.
 - Use corresponding index for each condition, and take union of all the obtained sets of record pointers.
 - Then fetch records from file
- Negation: $\sigma_{-\theta}(r)$
 - Use linear scan on file
 - If very few records satisfy $\neg \theta$, and an index is applicable to θ
 - Find satisfying records using index and fetch from file

Bitmap Index Scan

- The bitmap index scan algorithm of PostgreSQL
 - Bridges gap between secondary index scan and linear file scan when number of matching records is not known before execution
 - Bitmap with 1 bit per page in relation
 - Steps:
 - Index scan used to find record ids, and set bit of corresponding page in bitmap
 - Linear file scan fetching only pages with bit set to 1
 - Performance
 - Similar to index scan when only a few bits are set
 - Similar to linear file scan when most bits are set
 - Never behaves very badly compared to best alternative

Sorting

- We may build an index on the relation, and then use the index to read the relation in sorted order. May lead to one disk block access for each tuple.
- For relations that fit in memory, techniques like quicksort can be used.
 - For relations that don't fit in memory, external sort-merge is a good choice.

Example: External Sorting Using Sort-Merge

External Sort-Merge

Let *M* denote memory size (in pages).

- 1. **Create sorted runs**. Let *i* be 0 initially. Repeatedly do the following till the end of the relation:
 - (a) Read *M* blocks of relation into memory
 - (b) Sort the in-memory blocks
 - (c) Write sorted data to run R; increment i.

Let the final value of *i* be *N*

2. Merge the runs (next slide).....

External Sort-Merge (Cont.)

- **2.** Merge the runs (N-way merge). We assume (for now) that N < M.
 - Use N blocks of memory to buffer input runs, and 1 block to buffer output. Read the first block of each run into its buffer page
 - 2. repeat
 - 1. Select the first record (in sort order) among all buffer pages
 - 2. Write the record to the output buffer. If the output buffer is full write it to disk.
 - Delete the record from its input buffer page.
 If the buffer page becomes empty then read the next block (if any) of the run into the buffer.
 - 3. until all input buffer pages are empty:

External Sort-Merge (Cont.)

- If N ≥ M, several merge passes are required.
 - In each pass, contiguous groups of M 1 runs are merged.
 - A pass reduces the number of runs by a factor of *M* -1, and creates runs longer by the same factor.
 - E.g. If M=11, and there are 90 runs, one pass reduces the number of runs to 9, each 10 times the size of the initial runs
 - Repeated passes are performed till all runs have been merged into one.

External Merge Sort (Cont.)

- Cost analysis:
 - 1 block per run leads to too many seeks during merge
 - Instead use b_b buffer blocks per run
 - \rightarrow read/write b_h blocks at a time
 - Can merge \(\bar{M}\) b_b\\ _−1 runs in one pass
 - Total number of merge passes required: \[\log_{\left|M/bb|-1}(b_r/M) \].
 - Block transfers for initial run creation as well as in each pass is 2b_r
 - for final pass, we don't count write cost
 - we ignore final write cost for all operations since the output of an operation may be sent to the parent operation without being written to disk
 - Thus total number of block transfers for external sorting: $b_r(2\lceil \log_{\lfloor M/bb \rfloor 1}(b_r/M) \rceil + 1)$
 - Seeks: next slide

External Merge Sort (Cont.)

- Cost of seeks
 - During run generation: one seek to read each run and one seek to write each run
 - $2\lceil b_r/M \rceil$
 - During the merge phase
 - Need $2\lceil b_r/b_p \rceil$ seeks for each merge pass
 - except the final one which does not require a write
 - Total number of seeks:

$$2\lceil b_r/M \rceil + \lceil b_r/b_b \rceil (2\lceil \log_{M/bb} \lfloor 1(b_r/M) \rceil - 1)$$

Join Operation

- Several different algorithms to implement joins
 - Nested-loop join
 - Block nested-loop join
 - Indexed nested-loop join
 - Merge-join
 - Hash-join
- Choice based on cost estimate
- Examples use the following information
 - Number of records of student: 5,000 takes: 10,000
 - Number of blocks of student: 100 takes: 400

Nested-Loop Join

```
    To compute the theta join r ⋈ θ s
    for each tuple t<sub>r</sub> in r do begin
    for each tuple t<sub>s</sub> in s do begin
    test pair (t<sub>r</sub>,t<sub>s</sub>) to see if they satisfy the join condition θ if they do, add t<sub>r</sub> • t<sub>s</sub> to the result.
    end
    end
```

- r is called the outer relation and s the inner relation of the join.
- Requires no indices and can be used with any kind of join condition.
- Expensive since it examines every pair of tuples in the two relations.

Nested-Loop Join (Cont.)

- In the worst case, if there is enough memory only to hold one block of each relation, the estimated cost is
 - $n_r * b_s + b_r$ block transfers, plus $n_r + b_r$ seeks
- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - \bullet 5000 * 400 + 100 = 2,000,100 block transfers,
 - 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (student) fits entirely in memory, the cost estimate will be 500 block transfers.
- Block nested-loops algorithm (next slide) is preferable.

Block Nested-Loop Join

 Variant of nested-loop join in which every block of inner relation is paired with every block of outer relation.

```
for each block B_r of r do begin
for each block B_s of s do begin
for each tuple t_r in B_r do begin
Check if (t_r, t_s) satisfy the join condition
if they do, add t_r \cdot t_s to the result.
end
end
end
```


Indexed Nested-Loop Join

- Index lookups can replace file scans if
 - join is an equi-join or natural join and
 - an index is available on the inner relation's join attribute
 - Can construct an index just to compute a join.
- For each tuple t_r in the outer relation r, use the index to look up tuples in s that satisfy the join condition with tuple t_r .
- Worst case: buffer has space for only one page of r, and, for each tuple in r, we perform an index lookup on s.
- Cost of the join: $b_r(t_T + t_S) + n_r * c$
 - Where c is the cost of traversing index and fetching all matching s tuples for one tuple or r
 - c can be estimated as cost of a single selection on s using the join condition.
- If indices are available on join attributes of both r and s, use the relation with fewer tuples as the outer relation.

Merge-Join

- 1. Sort both relations on their join attribute (if not already sorted on the join attributes).
- 2. Merge the sorted relations to join them
 - 1. Join step is similar to the merge stage of the sort-merge algorithm.
 - 2. Main difference is handling of duplicate values in join attribute every pair with same value on join attribute must be matched
 - Detailed algorithm in book

Merge-Join (Cont.)

- Can be used only for equi-joins and natural joins
- Each block needs to be read only once (assuming all tuples for any given value of the join attributes fit in memory
- Thus the cost of merge join is:

$$b_r + b_s$$
 block transfers $+ \lceil b_r / b_b \rceil + \lceil b_s / b_b \rceil$ seeks

- + the cost of sorting if relations are unsorted.
- hybrid merge-join: If one relation is sorted, and the other has a secondary B+-tree index on the join attribute
 - Merge the sorted relation with the leaf entries of the B+-tree.
 - Sort the result on the addresses of the unsorted relation's tuples
 - Scan the unsorted relation in physical address order and merge with previous result, to replace addresses by the actual tuples
 - Sequential scan more efficient than random lookup

Hash-Join

- Applicable for equi-joins and natural joins.
- A hash function h is used to partition tuples of both relations
- h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the common attributes of r and s used in the natural join.
 - r_0, r_1, \ldots, r_n denote partitions of r tuples
 - Each tuple $t_r \in r$ is put in partition r_i where $i = h(t_r[JoinAttrs])$.
 - $-r_0, r_1, \dots, r_n$ s_0, s_1, \dots, s_n denotes partitions of s tuples
 - Each tuple $t_s \in s$ is put in partition s_i , where $i = h(t_s [JoinAttrs])$.
- *Note:* In book, Figure 12.10 r_i is denoted as H_{r_i} , s_i is denoted as H_{s_i} and n is denoted as n_h .

Hash-Join (Cont.)

Hash-Join Algorithm

The hash-join of *r* and *s* is computed as follows.

- 1. Partition the relation *s* using hashing function *h*. When partitioning a relation, one block of memory is reserved as the output buffer for each partition.
- 2. Partition *r* similarly.
- 3. For each i:
 - (a) Load s_i into memory and build an in-memory hash index on it using the join attribute. This hash index uses a different hash function than the earlier one h.
 - (b) Read the tuples in r_i from the disk one by one. For each tuple t_r locate each matching tuple t_s in s_i using the in-memory hash index. Output the concatenation of their attributes.

Relation s is called the **build input** and r is called the **probe input**.

Hash-Join algorithm (Cont.)

- The value n and the hash function h is chosen such that each s_i should fit in memory.
 - Typically n is chosen as \[\bar{b}_s/M \] * f where f is a "fudge factor", typically around 1.2
 - The probe relation partitions s_i r_i need not fit in memory
- **Recursive partitioning** required if number of partitions *n* is greater than number of pages *M* of memory.
 - instead of partitioning n ways, use M-1 partitions for s
 - Further partition the M-1 partitions using a different hash function
 - Use same partitioning method on r
 - Rarely required: e.g., with block size of 4 KB, recursive partitioning not needed for relations of < 1GB with memory size of 2MB, or relations of < 36 GB with memory of 12 MB

Handling of Overflows

- Partitioning is said to be skewed if some partitions have significantly more tuples than some others
- **Hash-table overflow** occurs in partition s_i if s_i does not fit in memory. Reasons could be
 - Many tuples in s with same value for join attributes
 - Bad hash function
- Overflow resolution can be done in build phase
 - Partition s_i is further partitioned using different hash function.
 - Partition r_i must be similarly partitioned.
- Overflow avoidance performs partitioning carefully to avoid overflows during build phase
 - E.g., partition build relation into many partitions, then combine them
- Both approaches fail with large numbers of duplicates
 - Fallback option: use block nested loops join on overflowed partitions

Cost of Hash-Join

If recursive partitioning is not required: cost of hash join is

$$3(b_r + b_s) + 4 * n_h$$
 block transfers + $2(\lceil b_r/b_h \rceil + \lceil b_s/b_h \rceil) + 2n$ seeks

- If recursive partitioning required:
 - number of passes required for partitioning build relation s to less than M blocks per partition is $\lceil log_{|M/bb|-1}(b_s/M) \rceil$
 - best to choose the smaller relation as the build relation.
 - Total cost estimate is:

$$2(b_r + b_s)\lceil log_{\lfloor M/bb \rfloor - 1}(b_s/M)\rceil + b_r + b_s$$
 block transfers + $2(\lceil b_r/b_b \rceil + \lceil b_s/b_b \rceil)\lceil log_{\lfloor M/bb \rfloor - 1}(b_s/M)\rceil$ seeks

- If the entire build input can be kept in main memory no partitioning is required
 - Cost estimate goes down to $b_r + b_s$.

Hybrid Hash–Join

- Useful when memory sized are relatively large, and the build input is bigger than memory.
- Main feature of hybrid hash join:Keep the first partition of the build relation in memory.
- E.g. With memory size of 25 blocks, instructor can be partitioned into five partitions, each of size 20 blocks.
 - Division of memory:
 - The first partition occupies 20 blocks of memory
 - 1 block is used for input, and 1 block each for buffering the other 4 partitions.
- teaches is similarly partitioned into five partitions each of size 80
 - the first is used right away for probing, instead of being written out
- Cost of 3(80 + 320) + 20 +80 = 1300 block transfers for hybrid hash join, instead of 1500 with plain hash-join.
- Hybrid hash-join most useful if M >>

$$\sqrt{b_{\!\scriptscriptstyle \mathcal{S}}}$$

Complex Joins

Join with a conjunctive condition:

$$r\bowtie_{\theta_1,\theta_2,\dots,\theta_n} s$$

- Either use nested loops/block nested loops, or
- Compute the result of one of the simpler joins $r \bowtie_{\theta i} s$
 - final result comprises those tuples in the intermediate result that satisfy the remaining conditions

$$\theta_1 \wedge \ldots \wedge \theta_{i-1} \wedge \theta_{i+1} \wedge \ldots \wedge \theta_n$$

Join with a disjunctive condition

$$r\bowtie_{\theta_1\vee\theta_2\vee\ldots\vee\theta_n}s$$

- Either use nested loops/block nested loops, or
- Compute as the union of the records in individual joins $r \bowtie_{\theta_i} s$:

$$(r\bowtie_{\theta_1} s) \cup (r\bowtie_{\theta_2} s) \cup \ldots \cup (r\bowtie_{\theta_n} s)$$

Joins over Spatial Data

- No simple sort order for spatial joins
- Indexed nested loops join with spatial indices
 - R-trees, quad-trees, k-d-B-trees

Other Operations

- Duplicate elimination can be implemented via hashing or sorting.
 - On sorting duplicates will come adjacent to each other, and all but one set of duplicates can be deleted.
 - Optimization: duplicates can be deleted during run generation as well as at intermediate merge steps in external sort-merge.
 - Hashing is similar duplicates will come into the same bucket.

Projection:

- perform projection on each tuple
- followed by duplicate elimination.

Other Operations: Aggregation

- Aggregation can be implemented in a manner similar to duplicate elimination.
 - Sorting or hashing can be used to bring tuples in the same group together, and then the aggregate functions can be applied on each group.
 - Optimization: partial aggregation
 - combine tuples in the same group during run generation and intermediate merges, by computing partial aggregate values
 - For count, min, max, sum: keep aggregate values on tuples found so far in the group.
 - When combining partial aggregate for count, add up the partial aggregates
 - For avg, keep sum and count, and divide sum by count at the end

Other Operations : Set Operations

- **Set operations** (\cup , \cap and \longrightarrow): can either use variant of merge-join after sorting, or variant of hash-join.
- E.g., Set operations using hashing:
 - 1. Partition both relations using the same hash function
 - 2. Process each partition *i* as follows.
 - 1. Using a different hashing function, build an in-memory hash index on r_i .
 - 2. Process s_i as follows
 - *r* ∪ *s*:
 - 1. Add tuples in s_i to the hash index if they are not already in it.
 - 2. At end of s_i add the tuples in the hash index to the result.

Other Operations: Set Operations

- E.g., Set operations using hashing:
 - 1. as before partition r and s,
 - 2. as before, process each partition *i* as follows
 - 1. build a hash index on r_i
 - 2. Process s_i as follows
 - $r \cap s$:
 - 1. output tuples in s_i to the result if they are already there in the hash index
 - r − s:
 - 1. for each tuple in s_i , if it is there in the hash index, delete it from the index.
 - 2. At end of s_i add remaining tuples in the hash index to the result.

Answering Keyword Queries

- Indices mapping keywords to documents
 - For each keyword, store sorted list of document IDs that contain the keyword
 - Commonly referred to as a inverted index
 - E.g.,: database: d1, d4, d11, d45, d77, d123
 distributed: d4, d8, d11, d56, d77, d121, d333
 - To answer a query with several keywords, compute intersection of lists corresponding to those keywords
- To support ranking, inverted lists store extra information
 - "Term frequency" of the keyword in the document
 - "Inverse document frequency" of the keyword
 - Page rank of the document/web page

Other Operations: Outer Join

- Outer join can be computed either as
 - A join followed by addition of null-padded non-participating tuples.
 - by modifying the join algorithms.
- Modifying merge join to compute r ⋈ s
 - In $r \bowtie s$, non participating tuples are those in $r \prod_{B} (r \bowtie s)$
 - Modify merge-join to compute r ⋈ s:
 - During merging, for every tuple t_r from r that do not match any tuple in s, output t_r padded with nulls.
 - Right outer-join and full outer-join can be computed similarly.

Other Operations: Outer Join

- Modifying hash join to compute $r \bowtie s$
 - If r is probe relation, output non-matching r tuples padded with nulls
 - If r is build relation, when probing keep track of which r tuples matched s tuples. At end of s_i output non-matched r tuples padded with nulls

Evaluation of Expressions

- So far: we have seen algorithms for individual operations
- Alternatives for evaluating an entire expression tree
 - Materialization: generate results of an expression whose inputs are relations or are already computed, materialize (store) it on disk. Repeat.
 - Pipelining: pass on tuples to parent operations even as an operation is being executed
- We study above alternatives in more detail

Materialization

- Materialized evaluation: evaluate one operation at a time, starting at the lowest-level. Use intermediate results materialized into temporary relations to evaluate next-level operations.
- E.g., in figure below, compute and store

$$\sigma_{building = "Watson"}(department)$$

then compute the store its join with *instructor*, and finally compute the projection on *name*.

Materialization (Cont.)

- Materialized evaluation is always applicable
- Cost of writing results to disk and reading them back can be quite high
 - Our cost formulas for operations ignore cost of writing results to disk, so
 - Overall cost = Sum of costs of individual operations + cost of writing intermediate results to disk
- Double buffering: use two output buffers for each operation, when one
 is full write it to disk while the other is getting filled
 - Allows overlap of disk writes with computation and reduces execution time

Pipelining

- Pipelined evaluation: evaluate several operations simultaneously, passing the results of one operation on to the next.
- E.g., in previous expression tree, don't store result of

$$\sigma_{building="Watson"}(department)$$

- instead, pass tuples directly to the join. Similarly, don't store result of join, pass tuples directly to projection.
- Much cheaper than materialization: no need to store a temporary relation to disk.
- Pipelining may not always be possible e.g., sort, hash-join.
- For pipelining to be effective, use evaluation algorithms that generate output tuples even as tuples are received for inputs to the operation.
- Pipelines can be executed in two ways: demand driven and producer driven

Pipelining (Cont.)

- In demand driven or lazy evaluation
 - system repeatedly requests next tuple from top level operation
 - Each operation requests next tuple from children operations as required, in order to output its next tuple
 - In between calls, operation has to maintain "state" so it knows what to return next
- In producer-driven or eager pipelining
 - Operators produce tuples eagerly and pass them up to their parents
 - Buffer maintained between operators, child puts tuples in buffer, parent removes tuples from buffer
 - if buffer is full, child waits till there is space in the buffer, and then generates more tuples
 - System schedules operations that have space in output buffer and can process more input tuples
- Alternative name: pull and push models of pipelining

Pipelining (Cont.)

- Implementation of demand-driven pipelining
 - Each operation is implemented as an iterator implementing the following operations
 - open()
 - E.g., file scan: initialize file scan
 - state: pointer to beginning of file
 - E.g., merge join: sort relations;
 - state: pointers to beginning of sorted relations
 - next()
 - E.g., for file scan: Output next tuple, and advance and store file pointer
 - E.g., for merge join: continue with merge from earlier state till next output tuple is found. Save pointers as iterator state.
 - close()

Blocking Operations

- Blocking operations: cannot generate any output until all input is consumed
 - E.g., sorting, aggregation, ...
- But can often consume inputs from a pipeline, or produce outputs to a pipeline
- Key idea: blocking operations often have two suboperations
 - E.g., for sort: run generation and merge
 - For hash join: partitioning and build-probe
- Treat them as separate operations

Pipeline Stages

Pipeline stages:

- All operations in a stage run concurrently
- A stage can start only after preceding stages have completed execution

Evaluation Algorithms for Pipelining

- Some algorithms are not able to output results even as they get input tuples
 - E.g., merge join, or hash join
 - intermediate results written to disk and then read back
- Algorithm variants to generate (at least some) results on the fly, as input tuples are read in
 - E.g., hybrid hash join generates output tuples even as probe relation tuples in the in-memory partition (partition 0) are read in
 - Double-pipelined join technique: Hybrid hash join, modified to buffer partition 0 tuples of both relations in-memory, reading them as they become available, and output results of any matches between partition 0 tuples
 - When a new r₀ tuple is found, match it with existing s₀ tuples, output matches, and save it in r₀
 - Symmetrically for s₀ tuples

Pipelining for Continuous-Stream Data

- Data streams
 - Data entering database in a continuous manner
 - E.g., Sensor networks, user clicks, ...
- Continuous queries
 - Results get updated as streaming data enters the database
 - Aggregation on windows is often used
 - E.g., tumbling windows divide time into units, e.g., hours, minutes
- Need to use pipelined processing algorithms
 - Punctuations used to infer when all data for a window has been received

Query Processing in Memory

- Query compilation to machine code
 - Overheads of interpretation
 - E.g., repeatedly finding attribute location within tuple, from metadata
 - Overhead of expression evaluation
 - Compilation can avoid many such overheads and speed up query processing
 - Often via generation of Java byte code / LLVM, with just-in-time (JIT) compilation
- Column-oriented storage
 - Allows vector operations (in conjunction with compilation)
- Cache conscious algorithms

Cache Conscious Algorithms

- Goal: minimize cache misses, make best use of data fetched into the cache as part of a cache line
- For sorting:
 - Use runs that are as large as L3 cache (a few megabytes) to avoid cache misses during sorting of a run
 - Then merge runs as usual in merge-sort
- For hash-join
 - First create partitions such that build+probe partitions fit in memory
 - Then subpartition further s.t. build subpartition+index fits in L3 cache
 - Speeds up probe phase significantly by avoiding cache misses
- Lay out attributes of tuples to maximize cache usage
 - Attributes that are often accessed together should be stored adjacent to each other
- Use multiple threads for parallel query processing
 - Cache misses leads to stall of one thread, but others can proceed

End of Chapter 15