

High-Performance Computing Bioinformatics data analysis environment @ CINECA

Tiziana Castrignanò (Cineca)

What does CINECA offer for bioinformatics?

1. Computing resources

Bioinformatics software available through command line

2. Advanced services

Automated web workflows for Next Generation Sequencing

3. Bioinformatics Expertise

To customize solutions or implement new systems and tools

Bioinformatics software available through command line

Bioinformatics software available through command line

Quality control

fastqc ngsqctoolkit trimmomatic

Annotation

annovar snpeff ngsrich

Conversion utilities

samtools bedtools vcftools sra picard

Alignment

abra
diamond
bowtie
bwa
shrimp
tophat
blast+
mosaik
mauve
mummer
star
bismark

General Purpose

bioconductor biopython cluto igvtools idl mrjob r emboss

Bioinformatics software available through command line

RNA-Seq

cufflinks htseq splicetrap chimerascan reditools Peak finders

macs peakranger sicer Variant callers

gatk mutect varscan2 lofreq **Assembling**

spades velvet ray cisa pagit

Metagenomics

concoct qiime

Cineca can add new software under user requests

CINECA Consortio Interuniversitario

Available released genomes

www.cineca.it

Annotation databases

ANNOVAR is an efficient software tool to utilize update-to-date information to functionally annotate genetic variants detected from diverse genomes

can add new genomes and annotation databases under user requests

ExAC Data Set:
exome sequencing data
from a wide variety of
large-scale sequencing projects

A free public archive for short genetic variation within and across different species

Please fill out the form on:

https://userdb.hpc.cineca.it/user/register

- You'll receive userdb credentials: Then
- → Click on "HPC Access" and follow the on-screen instructions
- →You'll be asked to upload an image of a valid ID document
- → Ask your PI or send an email to superc@cineca.it to be included on an active project.

 When everything is done an automatic procedure sends you (via 2 separate emails) the username/password to access HPC systems

All cluster HPC infrastructures are available for bioinformatics.

PICO is the infrastructure dedicated to NGS bioinformatics applications and

big data.

Users can access trough command line

scp, ssh for linux users
 (ssh username@login.pico.cineca.it)

 putty, winscp, TECTIA for windows users

Example of connection on the front-end *PICO* through putty application

\$HOME (librerie e eseguibili personalizzati dell'utente):

- Permanent, backed-up, and local.
- \cdot Quota = 5GB.
- •For source code or important input files.

\$CINECA_SCRATCH (area indicata per la prototipazione e controllo di validità dell'eseguibile):

- Large, parallel filesystem (GPFS).
- •Temporary (files older than 30 days automatically deleted), no backup.
- •No quota max. A cleaning procedure for files older than 30 days

\$WORK (area per lo storage dei dati/risultati ai fini del progetto):

Permanent, backed-up, project specific, 1 Tb quota by default.

Acconting: saldo

Accounting philosophy is based on the resources requested for the time of the batch job: cost = no. of cores requested x job duration

In the CINECA system it is possible to have more than 1 budget ("account") from which you can use time. The accounts available to your UNIX username can be found from the saldo command.

[mcestari@node342]\$ saldo -b

account	start	end	total	localCluster	totConsumed	totConsumed
			(local h)	Consumed(local h)	(local h)	%
try11_test	20110301	20111201	10000	0	2	0.0
cin_staff	20110323	20200323	200000000	64581	6689593	3.3
ArpaP prod	20130130	20131101	1500000	0	0	0.0

• CINECA's work environment is organized in modules, a set of installed libs, tools and applications available for all users.

• "loading" a module means that a series of (useful) shell environment variables wil be set

• E.g. after a module is loaded, an environment variable of the form "<MODULENAME>_HOME" is set

Bioinformatics applications, public databases and annotations are pre-installed on *PICO* cluster using the "module" environment.

"module" environment allows the user, by using a single command, to:

- list all the installed programs
- list all the genomes, indexes, and annotation databases
- get all the configured path (set environmental variables)
- automatic load the program in any directory
- launch the program

Module environment: usage

Command to initialize the module environment

\$ module load profile/advanced

Command to list the installed modules

\$ module available

Command to load a module program

\$ module load autoload name program

Module commands

- > module available (or just "> module av")
- Shows the full list of the modules available in the profile you're into, divided by: environment, libraries, compilers, tools, applications
- > module (un)load <module_name> (Un)loads a specific module
- > module show <module_name>Shows the environment variables set by a specific module
- > module help <module_name>
 Gets all informations about how to use a specific module
- > module purge
 Gets rid of all the loaded modules

Module environment: usage

Command example to list available modules in «profile bio»

```
$ module available
        ---- /cineca/prod/modulefiles/base/biodata -----
D melanogaster/dm3
                       Mus musculus/mm9
                                               Z mays/ZmB73
Homo Sapiens/hg18
                       R norvegicus/rn4
                                               Z mays/maize3
Homo Sapiens/hg19
                       S cerevisiae/sacCer3
                                               Mus musculus/mm10
Z mays/Mo17 v1(default)
       ---- /cineca/prod/modulefiles/base/applications
annovar/2014Sep15
                     cufflinks/2.2.1
                                             snpeff/4.1b
bedtools/2.21.0
                      fastqc/0.11.2
                                             star/2.4.0d
bowtie/1.0.1
                      id1/8.1
                                             tophat/2.0.11 (default)
bowtie2/2.2.3
                      picard/1.119
                                             tophat/2.0.12
bwa/0.7.10
                      samtools/0.1.19
                                             vcftools/0.1.12b
chimerascan/0.4.5a
                      samtools/1.1
```


Module commands

> module available (or just "> module av") Examples

-----/cineca/prod/modulefiles/advanced/applications ------

•
0.33
7

. . . .

> module available bowtie*

-----/cineca/prod/modulefiles/advanced/applications ------

bowtie/1.0.1 bowtie2/2.2.3

- > module load bowtie2/2.2.3
- > module list

Currently Loaded Modulefiles:

- 1) profile/advanced 2) bowtie2/2.2.3
- > module show bowtie2/2.2.3

/cineca/prod/modulefiles/advanced/applications/bowtie2/2.2.3:

module-whatis Fast and sensitive read alignment setenv BOWTIE2_HOME /cineca/prod/applications/bowtie2/2.2.3/binary prepend-path PATH /cineca/prod/applications/bowtie2/2.2.3/binary/bin

Module commands

> module help bowtie2/2.2.3

Module Specific Help for /cineca/prod/modulefiles/advanced/applications/bowtie2/2.2.3:

modulefile "bowtie2/2.2.3"

bowtie2-2.2.3

Fast and sensitive read alignment

License type: gpl

Web site: http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Download url: http://sourceforge.net/projects/bowtie-bio/files/bowtie2/2.2.3/

Bowtie 2 is an ultrafast and memory-efficient tool for aligning sequencing reads to long reference sequences. It is particularly good at aligning reads of about 50 up to 100s or 1,000s of characters, and particularly good at aligning to relatively long (e.g. mammalian) genomes. Bowtie 2 indexes the genome with an FM Index to keep its memory footprint small: for the human genome, its memory footprint is typically around 3.2 GB. Bowtie 2 supports gapped, local, and paired-end alignment modes.

Module commands: dependencies

> module load biopython/1.65

WARNING: biopython/1.65 cannot be loaded due to missing prereq.

HINT: the following modules must be loaded first: python/2.7.8

• What happens?

> module show biopython /1.65

/cineca/prod/modulefiles/advanced/applications/biopython/1.65:

module-whatis Biopython is a set of freely available tools for biological computation written in Python by an international team of developers.

```
prereq python/2.7.8
```

setenv BIOPYTHON_HOME /cineca/prod/applications/biopython/1.65/gnu--4.8.3 prepend-path PYTHONPATH /cineca/prod/applications/biopython/1.65/gnu--

4.8.3/lib/python2.7/site-packages

Module commands:dependencies

5) biopython/1.65

> module load autoload biopython/1.65

> module list

Currently Loaded Modulefiles:

- 1) profile/advanced 3) gnu/4.8.3
- 2) autoload/0.1 **4) python/2.7.8**
- > module show python/2.7.8

/cineca/prod/modulefiles/advanced/tools/python/2.7.8:

```
module-whatis python language
```

```
gnu/4.8.3
prereg
conflict python
setenv
```

PYTHON HOME /cineca/prod/tools/python/2.7.8/gnu--4.8.3 prepend-path PYTHONPATH /cineca/prod/tools/python/2.7.8/gnu--4.8.3/lib/python2.7/site-packag

/cineca/prod/tools/python/2.7.8/gnu--4.8.3/bin prepend-path PATH

prepend-path LD LIBRARY PATH /cineca/prod/tools/python/2.7.8/gnu--4.8.3/lib:

Module environment: load biodata

Command example to load available data and indexes

```
$ module load Homo Sapiens/hg19
several environment variables are defined:
$ module show Homo Sapiens/hg19
/cineca/prod/modulefiles/base/biodata/Homo Sapiens/hg19:
module-whatis
               Human Sapiens genome hg19
setenv GENOME /cineca/prod/biodata/Homo Sapiens/hg19/
              /cineca/prod/biodata/Homo Sapiens/hg19/annotation
seteny ANNOT
setenv GFASTA /cineca/prod/biodata/Homo Sapiens/hg19/genome
              /cineca/prod/biodata/Homo Sapiens/hg19/indexes
setenv GINDEX
setenv BWINDEX /cineca/prod/biodata/Homo Sapiens/hg19/indexes/bowtie-1.0.1
setenv BW2INDEX /cineca/prod/biodata/Homo Sapiens/hg19/indexes/bowtie2-2.2.3
that point to raw or indexed genomic data
```

Module environment: usage

Command example to launch a program using environmental variables

```
1) Command example to launch bowtie (using bowtie2 index)
```

```
$ module load autoload bowtie2
```

```
$ bowtie2 $BW2INDEX/name_index -un output.unmapped.fastq --chunkmbs 128 -p 8
-k 1 --best -S input.sam --phred64-quals
```


Lauching a job

 Now that we have our executable, it's time to learn how to prepare a job for its execution

Pico has the PBS scheduler.

- The job script scheme is:
 - #!/bin/bash
 - #PBS keywords
 - variables environment
 - execution line

Environment setup and execution line

The execution line starts with ./myexe arg_1 arg_2:

arg 1 arg 2 are the normal arguments of myexe

The environment setting usually starts with "cd \$PBS_O_WORKDIR".

That's because by default you are launching on your home space the executable may not be found.

\$PBS_O_WORKDIR points to the directory from where you're submitting the job

PBS keywords

```
#PBS -N jobname
                                                    # name of the job
#PBS -o job.out
#PBS -e job err
#PBS -1 select=1:ncpus=20:mpiprocs=20:mem=1226B
                                                    # resources
#PBS -l walltime=l:nn:nn
                                                    # hh:mm:ss
#PBS -q <queue>
#PBS -A <my account>
#PBS -W group_list=<group>
```

select = number of node requested **ncpus** = number of cpus per node requested **mpiprocs** = number of mpi tasks per node **mem** = RAM memory per node

output file # error file # chosen queue # name of the account # name of effective group for reservation

username@node013.pico:[~]\$

qsub -I -l select=1:ncpus=2:mpiprocs=1:mem=8GB -l walltime=5:00:00 -A

train_RNAseq15 -W group_list=train_RNAseq15 -q R121546

qsub: waiting for job 123456.node001 to start

qsub: job 123456.node001 ready

select = number of nodes requested

ncpus = number of cpus per node requested

mpiprocs = number of MPI tasks per node

mem = RAM memory per node

walltime = wall time limit

parallel = name of queue for parallel job (multithread too)

train... = account namec

username@node013.pico:[~]\$

qsub -I -l select=1:ncpus=2:mpiprocs=1:mem=8GB -l walltime=5:00:00 -A train_RNAseq15 -W group_list=train_RNAseq15 -q R121546

qsub: waiting for job 123456.node001 to start

qsub: job 123456.node001 ready

username@node009.pico:[~]\$ module load profile/advanced

username@node009.pico:[~]\$ module load fastqc/0.11.3

<u>username@node009.pico</u>:[~]\$ fastqc --nogroup -t 2 --extract input.R1 input.R2 -o output 2>&1 | tee input.log

Example of batch-script to launch fastqc/0.11.3 on PICO

```
#!/bin/bash

#PBS -N fastqc

#PBS -I select=1:ncpus=2:mpiprocs=1:mem=8GB

#PBS -q R121546

#PBS -I walltime=5:00:00

#PBS -A train_RNAseq15

#PBS -W group_list=train_RNAseq15
```

cd \$PBS O WORKDIR

==> change to current dir

module load profile/advanced module load fastqc/0.11.3

fastqc --nogroup -t 2 --extract input.R1 input.R2 -o output 2>&1 | tee input.log

Example of batch-script to launch fastqc/0.11.3 on PICO

username@node013.pico:[~] qsub launch_fastqc.sh

123456.node001

Example of batch-script to launch fastqc/0.11.3 on PICO

```
#!/bin/bash
#PBS -N fastqc
#PBS -I select=1:ncpus=2:mpiprocs=1:mem=8GB
#PBS -q R121546
#PBS -I walltime=5:00:00
#PBS -A train RNAseq15
#PBS -W group_list=train_RNAseq15
INPUT HOME="/pico/home/userinternal/tcastign/test/input"
OUTPUT_HOME="/pico/home/userinternal/tcastign/test/output"
OUTPUT FASTQC="/pico/home/userinternal/tcastign/test/output/fastgc"
echo $INPUT HOME:
echo $OUTPUT HOME;
echo $OUTPUT FASTQC:
```

fastqc --nogroup -t 2 --extract \$INPUT_HOME/\$fastq -o \$OUTPUT_FASTQC 2>&1 |tee input.log

1. Computing resources

Bioinformatics software available through command line

PROS	CONS
Rich environment: bioinformatics resources continuosly updated	Basic Unix/Linux Knowledge needed
Flexible environment: Resources can be added under request depending on user needs	
Simple usage through «module» environment	

1. Computing resources

Bioinformatics software available through command line

2. Advanced services

Automated web workflows for Next Generation Sequencing

3. Bioinformatics Expertise

To customize solutions or implement new systems and tools

Bioinformatics NGS Pipelines

Automated workflows (pipelines) for Next Generation Sequencing are available through a web interface and are able to perform analyses for several NGS application fields:

- Deep targeted exome sequencing;
- RNA sequencing (trascriptome analysis);
- Whole exome sequencing;
- Identification of DNA protein interactions by ChIP-seq;

Ultra Deep Exome Sequencing Pipeline

Online Deep Exome Sequencing Software Analysis (ODESSA)

Handles genes targeted at high coverage

Specifically focused for clinical diagnostics

Identifies (SNPs) and (DIPs) classified by different scores (e.g. depth, SIFT, MAV, MEQ).

Results are supported with genomic information, functional annotations, cross-linking databases and quality and relevance scores, graphics, tables and browsing, filtering and download.

Optimized for MiSeq Illumina platform

Ultra Deep Exome Sequencing Pipeline

Example of output: variant results

position	allele variation	state	Depth	Mutation	Туре	Func	gene info	location	dbSNP
chr16:23360199- 23360199	$T\toC$	het	66	SNV	synonymous SNV	-	SCNN1B	exonic	rs238547
chr16:27373915- 27373915	$G\toT$	het	147	SNV	synonymous SNV	-	IL4R	exonic	rs2234898
chr16:85706047- 85706047	$A\toC$	het	62	SNV	synonymous SNV	-	GSE1	exonic	rs9940601
chr16:15818141- 15818141	$A\toC$	het	115	SNV	synonymous SNV	-	MYH11	exonic	rs2075511
chr16:89836323- 89836323	$C\toT$	het	140	SNV	nonsynonymous SNV	-	FANCA	exonic	rs7195066
chr16:20554248- 20554248	$G\toA$	het	166	SNV	synonymous SNV	-	ACSM2B	exonic	rs140717461
chr16:20489919- 20489919	$G\toA$	het	47	SNV	nonsynonymous SNV	-	ACSM2A	exonic	rs147314845
chr16:15811023- 15811023	$C\toT$	het	120	SNV	synonymous SNV	-	MYH11	exonic	rs1050163

RNA Sequencing Pipeline

The RNA-Seq Analysis Pipeline (RAP)

Performs a complete and customizable RNA-seq pipeline, allowing users to examine NGS data under many points of view:

- Gene and transcript expression
- Differential expression
- Splicing junctions
- Cassette exons
- Poly(A) sites
- Fusion transcripts

RNA editing

RNA Sequencing Pipeline

Gene and transcript expression summary

Click on the colored-box numbers to open the expression overview

File	Label		Expressed FPKM>0	Expres FPKM>		Expressed FPKM>20	Expressed FPKM>100	#HIDATA Loci						
1	Embryonic1	transcripts	22852	7374		4265	640							
		genes	16963	7180		4355	680	0						
2	Embryonic2	transcripts	23096	7436		_	_	Click o	on a column title to or	der this tab	la l			
		genes	17160	7196	UID	Gene	Transcript	Genomic Po	osition	Strand	TLen	#Exons	FPKMĮ	Coverage
3	Embryonic3	transcripts	23104	7332	1268	MIR4461	NR_039666	chr5.13429	1628-134291701	+	74	1	237307.93	9918.79
		genes	17160	7126	637	MIR548AC	NR_039621	chr17:2854	7066-28547096	2	31	1	64029.67	2676.26
4	Embryonic4	transcripts	23182	7408	987	MIR3687	NR_037458	chr21:1678	868-1678928		61	1	42134.91	1761.12
		genes	17223	7203	1206	MIR1267	NR_031671	chr4.17719	6342-177331125		57	3	39547.53	1652.97
5	Adult1	transcripts	23989	7198	672	MIR54802	NR_039605	chr17:6082	1546-60847231	ă l	52	3	34715.01	1450.99
		genes	17866	6987	941	MIR663A	NR_030386	chr20;2613/	6822-26136914	*	93	1	16631.98	695.17
6	Adult2	transcripts	23874	7262	1282	MIR54802	NR_030385	chr5 15900	2885-159095000	*	81	4	14808.62	618.96
		genes	17782	7045	1214	MIR4454	NR_039659	chr5:73224	16-7322457	•	52	1	12569.28	525.36
					1603	MIR548D1	NR_030382	chr9:12341	5763-123798763	-	59	4	11998.16	501.49
W۱	www.cineca.it					MIR548AB	NR_039611	chr4:18371	3766-183720064	-	56	2	11737.12	490.58

Whole-exome Sequencing Pipeline

Whole-Exome sequencing Pipeline (WEP)

SNP and DIP detection and annotation

gapped alignment, duplicates removal, quality scores recalibration

cross-linking, intersections, trio analyses, statistics

ChiP-seq Pipeline

Chip-seq analysis pipeline (CAST)

- peaks detection
- peaks filtering
- peaks visualization on UCSC Genome Browser
- peaks annotation with genomic features

Summary	y Statistics Pe	aks Gene tools	Formats for fu	nctional analysis	1				
Lane	Label	Files		TOTAL Peaks	Corepromoter	Promoter	Genic	Downstream	Intergenic
1	HistoneK562 rep1	HistoneK562H3k4n	ne3bUcd1.bam	781 view	296 view	432 view	131 view	153 view	0
2	HistoneK562 rep 2	HistoneK562H3k	9acbUcd2.bam	2.789 view	5 view	692 view	1580 view	298 view	542 view
9	TfbsK562 input	TfbsK562	2InputStd1.bam	Control lane	-		-		-
10	TfbsK562 rep 1	TfbsK56	2NfyaStd1.bam	1.508 view	4 view	168 view	729 view	78 view	616 view
11	TfbsK562 rep 2	TfbsK56	2NfybStd2.bam	1.505 view	10 view	186 view	682 view	113 view	625 view
12	TfbsK562 rep 3	TfbsK56	2Pol2Std2.bam	4.317 view	112 view	510 view	3023 view	767 view	624 view

2. Advanced services

Automated web workflows for Next Generation Sequencing

PROS	CONS
User-friendly graphic interface: The pipeline is completely automatized at each stage and doesn't require any computational knowledge by the user	Low flexibility: changes are allowed only with a specific project agreement with Cineca
Any knowledge of the underlying high-performance computing infrastructure is not needed by the user	
Automation avoids human errors introduced by hand-made scripts and also eases the processing of Big Data NGS experiments	

1. Computing resources

Bioinformatics software available through command line

2. Advanced services

Automated web workflows for Next Generation Sequencing

3. Bioinformatics Expertise

To customize solutions or implement new systems and tools

Bioinformatics specialistic support

Cineca offers bioinformatics specialistic support to develop and optimize

- configuration parameters
- command-line programs
- complex bash scripts

on hundreds of computing cores

For further information write to: hpc-bioinformatics@cineca.it

General Information

Whole Exome

ChIP-Seq

Official web site http://www.hpc.cineca.it

Bio & Genomics http://www.hpc.cineca.it/content/hpc-bioinformatics

How to get computational resources?

ISCRA initiative http://www.hpc.cineca.it/services/iscra

PRACE: http://www.prace-ri.eu/

Automated analysis workflows

Target Exome https://bioinformatics.cineca.it/odessa

RNA-Seq https://bioinformatics.cineca.it/rap

https://bioinformatics.cineca.it/wep

https://bioinformatics.cineca.it/cast