2 pages 1

```
Source | Model | Option
| Model Option | Help on fd methods | Archived Tests
```

fd_cryer

References

Input parameters:

- SpaceStepNumber N
- \bullet TimeStepNumber M

Output parameters:

- Price
- Delta

This is a direct method for solving LCP with tridiagonal Minkowski matrix.

```
/*Time Step/*
Define the time step k = \frac{T}{N}.
```

/*Space localisation/*

Define the integration domain D = [-l, l] using inequality there.

/*Space Step/*

Define the space step $h = \frac{2l}{M}$.

At each time, we have to solve the linear complementarity problem cf. there

/*Peclet Condition*/

If $|r - \delta|/\sigma^2$ is not small, then a more stable finite difference approximation is used. there.

/*Lhs factor of implicit scheme/*

Initialize the matrix N issued from the totally implicit method there

2 pages 2

/*Terminal value/*

Put the value of the payoff saved in Obst into a vector P which will be used to save the option value.

/*Finite difference Cycle/*

At any time step, described by the loop in the variable *TimeIndex*, we have to solve the linear complementarity problem

/*Algorithm of Cryer*/

Computation of the solution of LCP

$$\begin{cases} W = MZ + V \\ W \ge 0, \quad Z \ge 0 \\ (W, Z) = 0 \end{cases}$$
 (1)

cf. there

/*Price*/

/*Delta*/

/*Memory Desallocation*/