КОМПЬЮТЕРНАЯ ЛИНГВИСТИКА

УДК 519.007

А. А. Петюшко, аспирант Московский государственный университет имени М. В. Ломоносова

ЧАСТОТНЫЕ ЯЗЫКИ

Рассматриваются как конечные языки, заданные матрицей биграмм, так и введенные частотные языки на матрице биграмм, характеризумые тем, что язык состоит из всех слов с матрицей биграмм, кратной (т. е. умноженной на натуральное число) исходной матрице биграмм. Устанавливается связь различных характеристик частотных языков с ориентированными графами и эйлеровыми циклами в них. Приводятся необходимые и достаточные условия для непустоты и счетности частотных языков. Рассматривается вопрос зависимости мощности частотного языка от исходной матрицы биграмм. Приведена формула для числа слов в зависимости от матрицы биграмм. Устанавливаются условия регулярности счетных частотных языков.

Ключевые слова: матрица биграмм, частотные языки, регулярность языков, эйлеровы циклы

Необходимые определения

Цель работы — исследовать различные множества слов с ограничениями на кратность входящих в них подслов (а именно биграмм). В частности, будут исследованы такие свойства, как условие пустоты таких языков, количество слов в них, условия регулярности и т. п. Для этого введем ряд необходимых понятий и обозначений.

Пусть $A (|A| < \infty)$ – конечный алфавит.

Определение 1. Биграммой в алфавите A называется двухбуквенное слово $ab \in A^*, a, b \in A$ (порядок вхождения букв в биграмму имеет значение, например, биграмма ab не равна биграмме ba при $a \neq b$).

Определение 2. Обозначим через $n_{\beta}(\alpha)$, где $\beta \in A^*$, $\alpha \in A^*$, причем β — непустое слово, отображение $A^* \to N \cup \{0\}$, которое определяется как количество подслов β в слове α , т. е. количество различных разложений слова α в виде $\alpha = \alpha'\beta\alpha''$ (α' и α'' могут быть пустыми). При длине слова α , меньшем, чем длина слова β , значение $n_{\beta}(\alpha)$ положим равным θ . Само же значение $n_{\beta}(\alpha)$ при данных β и α назовем кратностью β в слове α .

С учетом введенных определений, по каждому слову $\alpha \in A^*$ можно построить квадратную матрицу биграмм $(n(\alpha))_{i,j=1}^{|A|}$ размера $|A| \times |A|$, такую, что на месте (i,j) матрицы будет стоять значение $n_{a_i a_j}(\alpha)$ (при условии, что все буквы алфавита $A = \{a_1, a_2, ..., a_{|A|}\}$ пронумерованы).

Определение 3. Назовем языком $L(n(\alpha))$, порожденным матрицей биграмм $n(\alpha)$, множество всех слов, имеющих одну и ту же матрицу биграмм $n(\alpha)$, т. е. $L(n(\alpha)) = \{\beta \mid n(\beta) = n(\alpha)\}$.

 Π р и м е р. Π усть $A = \{0,1\}$, $\alpha = 01011100$.

Тогда матрица биграмм
$$n(\alpha) = \begin{pmatrix} n_{00}(\alpha) & n_{01}(\alpha) \\ n_{10}(\alpha) & n_{11}(\alpha) \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}.$$

Регулярность языков на биграммах с кратностями

Рассмотрим сначала задачу с достаточно простыми ограничениями на кратности биграмм. Здесь и далее будем использовать обозначение $len(\beta)$ в качестве длины слова β (количества входящих в него букв).

Лемма 1. Язык $L_{\beta,c}^+$ с ограничением вида $n_{\beta}(\alpha) \ge c$, где $c \in N \cup \{0\}$, а $len(\beta) = 2$ – регулярен.

Лемма 2. Язык $L_{\beta,c}^-$ с ограничением вида $n_{\beta}(\alpha) \le c$, где $c \in N \cup \{0\}$, а $len(\beta) = 2$ – регулярен.

Замечание. В частности, взяв язык $L_{\beta,0}^-$, получим множество всех слов, в которых нет подстроки β .

Теорема 1. Пусть задан набор k слов $\overline{\beta} = (\beta_1,...,\beta_k)$, где $len(\beta_i) = 2, i = 1..k$, а также набор отрезков $\overline{c} = ([c_1^1, c_2^1], ..., [c_1^k, c_2^k])$, где $c_1^i \le c_2^i, c_j^i \in N \cup \{0\}$, i = 1..k, j = 1..2. Тогда язык $L_{\overline{\beta},\overline{c}}$ с k ограничениями вида $n_{\beta_i}(\alpha) \in [c_1^i, c_2^i]$ — регулярен.

Следствие 1. В условиях Теоремы 1 можно изменить некоторые ограничения, заменив принадлежность отрезкам на принадлежность полуоткрытым и открытым интервалам (в т.ч. бесконечным справа), а также на точное равенство числу $c,c\in N\cup\{0\}$, при этом регулярность языка $L_{\overline{8}\,c}$ не нарушится.

Замечание. Условие Теоремы 1 остается верным даже в том случае, если в качестве подстроки брать одиночный символ, т.е. $len(\beta) = 1$. Пусть $\beta = a, a \in A$. Тогда условие $n_a(\alpha) \ge c$ порождает множество

$$\langle A \setminus \{a\} \rangle \cdot a \cdot \langle A \setminus \{a\} \rangle \cdot a \cdot \langle A \setminus \{a\} \rangle \cdot ... \cdot a \cdot \langle A \rangle$$

(в записи c раз встречается фрагмент $a \cdot$), которое является регулярным, и, значит, соответствующий ему язык $L_{a,c}^+$ тоже. Остальные построения проводятся аналогично оным для случая биграмм.

Свойства матрицы $n(\alpha)$

Пусть $a \in A$. Обозначим за $n_a^{in}(\alpha), \alpha \in A^*$ количество всех двухбуквенных подслов в α , заканчивающихся на a , т. е. $n_a^{in}(\alpha) = \sum_{b \in A} n_{ba}(\alpha)$, что будет равно сумме значений матрицы $n(\alpha)$ в столбце, соответствующем символу a.

Аналогичным образом определим и $n_a^{out}(\alpha), \alpha \in A^*$ как количество двухбуквенных подслов в α , начинающихся на a , т. е. $n_a^{out}(\alpha) = \sum_{b \in A} n_{ab}(\alpha)$, что будет равно сумме

значений матрицы $n(\alpha)$ в строке, соответствующей символу a .

 Π р и м е р. Рассмотрим то же слово, что и в предыдущем примере, а именно $A = \{0,1\}$, $\alpha = 01011100$.

Тогда соответствующие значения будут вычисляться как

$$n_1^{in}(\alpha) = n_{01}(\alpha) + n_{11}(\alpha) = 2 + 2 = 4;$$

$$n_1^{out}(\alpha) = n_{10}(\alpha) + n_{11}(\alpha) = 2 + 2 = 4;$$

$$n_0^{in}(\alpha) = n_{00}(\alpha) + n_{10}(\alpha) = 1 + 2 = 3;$$

$$n_0^{out}(\alpha) = n_{00}(\alpha) + n_{01}(\alpha) = 1 + 2 = 3.$$

Рассмотрим некоторые свойства матрицы $n(\alpha)$.

Лемма 3 (Условие неразрывности). Пусть задано слово $\alpha = a_1 \beta a_2$, $a_i \in A, i = 1, 2, \beta \in A^*$ длины не менее 2 (len(α) ≥ 2), где a_1 и a_2 – соответственно первая и последняя буквы этого слова (слово β может быть пустым). Тогда матрица $n(\alpha)$ обладает следующим свойством:

$$\forall b \in A \quad n_b^{out}(\alpha) - n_b^{in}(\alpha) = \delta_{ba_1} - \delta_{ba_2}, \tag{1}$$

где δ_{ij} — символ Кронекера (δ_{ij} = 1 при i = j , δ_{ij} = 0 при $i \neq j$).

 Π р и м е р. Продолжим рассматривать все то же слово, а именно $A = \{0,1\}$, $\alpha = 01011100$. Проверим условие неразрывности.

Имеем $a_1 = a_2 = 0$. Тогда

$$\begin{split} &n_0^{out}-n_0^{in}=3-3=0\;,\;\delta_{0a_1}-\delta_{0a_2}=1-1=0\;,\;\text{верно};\\ &n_1^{out}-n_1^{in}=4-4=0\;,\;\delta_{1a_1}-\delta_{1a_2}=0-0=0\;,\;\text{верно}. \end{split}$$

Замечание. Условие неразрывности (1) является необходимым, но не достаточным условием существования хотя бы одного слова α с заданным набором значений биграмм $n(\alpha)$. Например, если $n_{00}(\alpha) = n_{11}(\alpha) = 1$, $n_{01}(\alpha) = n_{10}(\alpha) = 0$ в алфавите $A = \{0,1\}$, то очевидно, что слова α с данным набором $n(\alpha)$ не существует – хотя бы потому, что где-то в слове должны рядом стоять буквы 1 и 0, и должна быть ненулевая кратность $n_{01}(\alpha)$ или $n_{10}(\alpha)$ (хотя у нас обе кратности нулевые). При этом

$$n_0^{in}(\alpha) = n_0^{out}(\alpha) = n_1^{in}(\alpha) = n_1^{out}(\alpha) = 1,$$

и если бы слово α начиналось и заканчивалось на одну и ту же букву, то условие неразрывности было бы выполнено.

Построим по матрице $n(\alpha)$ ориентированный граф $G_{n(\alpha)}$ на плоскости. Вершинами у этого графа будут все буквы из алфавита A, при этом ребра будут соответствовать биграммам с учетом их кратностей, т. е. кратность $n_{ab}(\alpha)$ будет

порождать $n_{ab}(\alpha)$ ориентированных ребер $a \to b$. Аналогично, кратность $n_{cc}(\alpha)$ будет порождать $n_{cc}(\alpha)$ петель $c \to c$.

 Π р и м е р. $A = \{0,1\}$, $\alpha = 01011100$.

$$n(\alpha) = \begin{pmatrix} n_{00}(\alpha) & n_{01}(\alpha) \\ n_{10}(\alpha) & n_{11}(\alpha) \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}.$$

Построим граф $G_{n(\alpha)}$ по $n(\alpha)$ – см. рис. 1.

 $Puc.\ 1.\ \Gamma$ раф $G_{n(\alpha)}$, построенный по набору $n(\alpha)$

Введем несколько широко известных понятий, касающихся эйлеровых путей.

Определение 4. Назовем ориентированный граф эйлеровым, если выполняются следующие условия: 1) Все вершины, являющиеся начальной или конечной вершиной хотя бы одного ребра, лежат в одной компоненте связности соответствующего неориентированного графа; 2) У всех вершин количество входящих ребер равно количеству исходящих ребер.

Определение 5. Назовем ориентированный граф почти эйлеровым, если выполняются следующие условия: 1) Все вершины, являющиеся начальной или конечной вершиной хотя бы одного ребра, лежат в одной компоненте связности соответствующего неориентированного графа; 2) У всех вершин, кроме двух, количество входящих ребер равно количеству исходящих ребер. У оставшихся двух вершин разность количества входящих ребер и количества исходящих ребер равна +1 и –1 соответственно.

Определение 6. Путем в ориентированном графе назовем такую последовательность попарно различных ребер (набор параллельных ребер будем считать состоящим из различных ребер), что конец предыдущего ребра совпадает с началом следующего.

Определение 7. Циклом в ориентированном графе назовем такой путь, что начало первого ребра в этом пути совпадает с концом последнего.

Определение 8. Эйлеровым путем в ориентированном графе назовем такой путь, который содержит все ребра этого графа.

Определение 9. Эйлеровым циклом в ориентированном графе назовем такой цикл, который содержит все ребра этого графа.

Как показано в [1], в эйлеровом графе существует эйлеров цикл, а в почти эйлеровом – эйлеров путь, не являющийся эйлеровым циклом (то есть начальная вершина не совпадает с конечной).

Лемма 4 (Достаточное условие существования). Для того, чтобы существовало хотя бы одно слово α с данной матрицей кратностей биграмм $n(\alpha)$, достаточно, чтобы построенный по $n(\alpha)$ ориентированный граф $G_{n(\alpha)}$ был либо эйлеровым, либо почти эйлеровым.

Пример.
$$A = \{0,1\}$$
. Пусть $n(\alpha) = \begin{pmatrix} n_{00}(\alpha) & n_{01}(\alpha) \\ n_{10}(\alpha) & n_{11}(\alpha) \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$.

Построим граф $G_{n(\alpha)}$ по $n(\alpha)$ – см. рис. 1. В этом графе можно без труда найти эйлеров путь, например, $1 \to 0 \to 0 \to 1 \to 1 \to 1 \to 0 \to 1$ (мы получили другое слово 10011101, отличное от изначального $\alpha = 01011100$), при этом все вершины (а именно 0 и 1) находятся в одной компоненте связности. Значит, для данного набора $n(\alpha)$ есть слово с такой матрицей кратностей биграмм.

Как итог, получаем следующее важное следствие:

Следствие 2 (Алгоритмическая разрешимость). Задача определения по набору значений $n(\alpha)$, существует ли хотя бы одно слово α , имеющее эту матрицу биграмм, алгоритмически разрешима.

Напоследок рассмотрим вопрос о том, сколько существует слов с данным набором $n(\alpha)$. В данной статье рассмотрим рассмотрим случай двухбуквенного алфавита.

Теорема 2. Для алфавита $A = \{0,1\}$ и матрицы биграмм $n(\alpha)$, задающей эйлеров или почти эйлеров ориентированный граф $G_{n(\alpha)}$, число слов $N_{n(\alpha)}$ с заданной матрицей биграмм $n(\alpha)$:

- 1) $\Pi pu \ n_{01}(\alpha) > n_{10}(\alpha) \ \kappa onuvecmso \ N_{n(\alpha)} = C_{n_{11}+n_{10}}^{n_{11}} C_{n_{00}+n_{10}}^{n_{00}},$
- 2) При $n_{01}(\alpha) \leq n_{10}(\alpha)$ количество $N_{n(\alpha)} = C_{n_{11}+n_{01}}^{n_{11}} C_{n_{00}+n_{01}}^{n_{00}}$;
- 3) При $n_{01}(\alpha) = n_{10}(\alpha)$ количество

$$N_{n(\alpha)} = C_{n_{00}+n_{01}}^{n_{00}} C_{n_{11}+n_{01}}^{n_{11}} \left(\frac{n_{01}}{n_{00}+n_{01}} + \frac{n_{01}}{n_{11}+n_{01}} \right);$$

(здесь под C_n^k понимается число сочетаний из n по k, m. e. $C_n^k = \frac{n!}{k!(n-k)!}$, a $n_{ij} = n_{ij}(\alpha), i, j = 0,1$).

Пример.
$$A = \{0,1\}$$
. Пусть $n(\alpha) = \begin{pmatrix} n_{00}(\alpha) & n_{01}(\alpha) \\ n_{10}(\alpha) & n_{11}(\alpha) \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$.

Так как $n_{01}(\alpha) = n_{10}(\alpha)$, то искомое число слов с данным набором по доказанной выше теореме равно

$$N_{n(\alpha)} = C_{n_{00}+n_{01}}^{n_{00}} C_{n_{11}+n_{01}}^{n_{11}} \left(\frac{n_{01}}{n_{00}+n_{01}} + \frac{n_{01}}{n_{11}+n_{01}} \right) = C_3^1 C_4^2 \left(\frac{2}{3} + \frac{1}{2} \right) = 12 + 9 = 21 \ .$$

Это действительно так, поскольку с данным набором $n(\alpha)$ существует ровно 21 слово: 11100101, 11001101, 11001011, 10011101, 10011011, 10010111, 11101001, 11011001, 11010011, 10110011, 10110011, 10110101, 00111010, 00110110, 00101110, 01110010, 0110110, 01001110, 01101100, 01011100.

Частотные языки на биграммах с кратностями

Более интересен случай, когда мы рассматриваем матрицу биграмм не как абсолютное ограничение, а как задание относительных значений (пропорций) биграмм, то есть языка, в котором сохраняются отношения $n_{ab}(\alpha)/n_{cd}(\alpha)$ $\forall a,b,c,d \in A, n_{cd}(\alpha) > 0$. Определим такой язык.

Определение 10. Назовем частотным языком на биграммах с кратностями, заданным матрицей биграмм $n(\alpha)$, следующий язык при $k \in N$:

$$F_{\cup n(\alpha)} = \bigcup_{k=1}^{\infty} L(kn(\alpha)),$$

т. е. язык, состоящий из всех таких слов β , т.ч. набор кратностей этих слов $n(\beta)$ кратен набору $n(\alpha)$, а именно $F_{\cup n(\alpha)} = \{\beta \mid n(\beta) = kn(\alpha), k \in N\}$, где умножение k на $n(\alpha)$ понимается как умножение скаляра на матрицу.

Рассмотрим, какие дополнительные ограничения накладывает условие «частотности» на матрицу $n(\alpha)$.

Лемма 5 (Условие неразрывности для частотных языков). Пусть задано слово $\alpha = a_1 \alpha' a_2$, $a_i \in A, i = 1, 2, \alpha' \in A^*$ длины не менее 2 ($len(\alpha) \ge 2$, α' может быть пустым). Для того, чтобы в частотном языке $F_{\cup n(\alpha)}$ существовало хотя бы одно слово $\beta = b_1 \beta' b_2$, $b_i \in A, i = 1, 2, \beta' \in A^*$ (β' может быть пустым), т. ч. $n(\beta) = kn(\alpha), k \in N, k > 1$, необходимо:

$$\forall b \in A \quad n_b^{out}(\alpha) = n_b^{in}(\alpha), \quad n_b^{out}(\beta) = n_b^{in}(\beta), \tag{2}$$

при этом как в α , так и в β первая буква должна совпадать с последней ($a_1=a_2$ и $b_1=b_2$).

Следствие 3 (Корректность определения). Если существует хотя бы одно слово α , соответствующее набору $n(\alpha)$, и при этом выполняется условие неразрывности для частотных языков (2), то существует слово β_k для любого натурального k, т.ч. $n(\beta_k) = kn(\alpha)$.

Ну и как итог, приведем достаточный признак существования такого β_k , что для любого натурального k выполняется $n(\beta_k) = kn(\alpha)$.

Лемма 6 (Достаточное условие существования для частотных языков). Для того, чтобы $\forall k \in N$ существовало слово β_k , т.ч. для заданного набора кратностей биграмм $n(\alpha)$ выполнялось $n(\beta_k) = kn(\alpha)$, достаточно, чтобы построенный по $n(\alpha)$ ориентированный граф $G_{n(\alpha)}$ являлся эйлеровым графом.

Теорема 3 (О числе слов в частотных языках). Пусть задан набор биграмм $n(\alpha)$. Тогда

- 1) Если ориентированный граф $G_{n(\alpha)}$ является эйлеровым, то в частотном языке $F_{\cup n(\alpha)}$ счетное число слов;
- 2) Если ориентированный граф $G_{n(\alpha)}$ является почти эйлеровым, то в частотном языке $F_{\cup n(\alpha)}$ конечное ненулевое число слов, имеющих одинаковую длину;

3) Если ориентированный граф $G_{n(\alpha)}$ не является ни эйлеровым, ни почти эйлеровым, то в частотном языке $F_{\cup n(\alpha)}$ нет ни одного слова.

$$\Pi \ \mathbf{p} \ \mathbf{u} \ \mathbf{m} \ \mathbf{e} \ \mathbf{p}. \quad A = \{0,1\} \ . \ \Pi \mathbf{y} \mathbf{c} \mathbf{t} \mathbf{b} \quad n(\alpha) = \begin{pmatrix} n_{00}(\alpha) & n_{01}(\alpha) \\ n_{10}(\alpha) & n_{11}(\alpha) \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}.$$

Построим граф $G_{n(\alpha)}$ по $n(\alpha)$ — см. рис. 1. В этом графе в вершину 0 входит 3 ребра, исходит тоже 3, в вершину 1 входит 4 ребра и исходит тоже 4. Все вершины лежат в одной компоненте связности. Получается, что граф $G_{n(\alpha)}$ эйлеров, т. е. в Теореме 3 выполняется условие 1), и, соответственно, в частотном языке $F_{\cup n(\alpha)}$ счетное число слов.

Следствие 4 (Алгоритмическая разрешимость для частотных языков). Задача определения по набору значений $n(\alpha)$, пуст, конечен или счетен частотный язык $F_{\cup n(\alpha)}$, алгоритмически разрешима.

Регулярность частотных языков на биграммах с кратностями

В данном разделе попытаемся установить, регулярны ли бесконечные языки $F_{\cup n(\alpha)}$ с заданным набором $n(\alpha)$. Рассмотрим сначала общий случай с произвольным числом букв в алфавите A.

Определение 11. Назовем две ненулевые матрицы n_1 и n_2 одинакового размера неколлинеарными, если не существует ненулевых действительных коэффициентов $c_1, c_2 \in R, (c_1, c_2) \neq (0, 0)$, таких, что верно $c_1 n_1 + c_2 n_2 = 0$.

Определение 12. Назовем элементарной матрицей, соответствующей набору биграмм $n(\alpha)$ в алфавите A, A $|< \infty$, матрицу $\hat{n}(\alpha) = n(\alpha) / HOД(n_{ab}(\alpha), a, b \in A)$.

- **Теорема 4.** Пусть A, $|A| < \infty$ некоторый конечный алфавит. Далее, пусть задана матрица биграмм $n(\alpha)$, такая, что соответствующий ей ориентированный граф $G_{n(\alpha)}$ является эйлеровым. Тогда:
- 1) Если существует такое разложение $n(\alpha)$ в сумму двух ненулевых неколлинеарных матриц $n(\alpha) = n(\alpha_1) + n(\alpha_2)$, такое, что обе матрицы $n(\alpha_1)$ и $n(\alpha_2)$ задают ориентированные графы $G_{n(\alpha_1)}$ и $G_{n(\alpha_2)}$, которые являются эйлеровыми, то язык $F_{\cup n(\alpha)}$ нерегулярен;
- 2) В противном случае язык $F_{\cup n(\alpha)}$ регулярен. При этом для $\forall k \in N$ существуют ровно l слов $\beta_{k,i}$, i = 1..l, т.ч. $n(\beta_{k,i}) = kn(\alpha)$, а l число ненулевых элементов в матрице $n(\alpha)$.

Доказательство.

- 1) Доказывается от противного с использованием теоремы Клини [2].
- 2) В данном случае матрице биграмм будет соответствовать элементарная матрица с единицами на ненулевых позициях, неразложимая в сумму двух ненулевых неколлинеарных матриц, каждая их которых задает эйлеров граф, что и будет означать один цикл в графе с точностью до выбора начальной вершины.

Конец доказательства.

Однако данная теорема дает слишком общие условия на матрицу биграмм. Рассмотрим частный, но часто используемый на практике случай двухбуквенного алфавита.

Теорема 5. Пусть $A = \{0,1\}$. Далее, пусть задан такой набор $n(\alpha)$, что соответствующий ориентированный граф $G_{n(\alpha)}$ является эйлеровым. Тогда:

- 1) Если матрица биграмм $n(\alpha)$ имеет вид, не совпадающий ни c одним из перечисленных $M_1=\begin{pmatrix}c_1&0\\0&0\end{pmatrix}, M_2=\begin{pmatrix}0&0\\0&c_2\end{pmatrix}, M_3=\begin{pmatrix}0&c_3\\c_3&0\end{pmatrix}$, где $c_i\in N, i=1..3$, то язык $F_{\cup n(\alpha)}$ нерегулярен;
- 2) Если матрица биграмм $n(\alpha)$ имеет вид, совпадающий с M_1 или M_2 , то язык $F_{\cup n(\alpha)}$ регулярен. При этом для $\forall k \in N$ существует единственное β_k , т.ч. $n(\beta_k) = kn(\alpha)$;
- 3) Если матрица биграмм $n(\alpha)$ имеет вид, совпадающий с M_3 , то язык $F_{\cup n(\alpha)}$ регулярен. При этом для $\forall k \in N$ существуют ровно два слова β_k и γ_k , т.ч. $n(\beta_k) = n(\gamma_k) = kn(\alpha)$.

Доказательство.

1) Пусть матрица биграмм $n(\alpha)$ имеет вид, не совпадающий ни с одним из M_1 , M_2 и M_3 , и при этом соответствующий ориентированный граф $G_{n(\alpha)}$ является эйлеровым. С учетом Леммы 5 для двухбуквенного алфавита получаем $n_{01}(\alpha)=n_{10}(\alpha)=c>0$. Значит, матрица биграмм $n(\alpha)$ имеет вид $n(\alpha)=\begin{pmatrix} d_1 & c \\ c & d_2 \end{pmatrix}$, где хотя бы один из элементов d_1 и d_2 больше нуля. Пусть, для определенности, $d_1>0$ (случай $d_2>0$ рассматривается аналогично).

Тогда можем представить исходную матрицу биграмм $n(\alpha)$ в виде суммы двух неколлинеарных матриц $n(\alpha) = \begin{pmatrix} d_1 & c \\ c & d_2 \end{pmatrix} = \begin{pmatrix} d_1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & c \\ c & d_2 \end{pmatrix} = C_1 + C_2$. Заметим, что матрицы C_1 и C_2 задают эйлеровы графы.

Получается, что исходная матрица биграмм раскладывается в сумму двух неколлинеарных матриц, т.ч. соответствующие им ориентированные графы — эйлеровы. Значит, верно условие 1) Теоремы 4, и, следовательно, язык $F_{\cup n(\alpha)}$ нерегулярен.

2) Пусть для определенности $n_{00}(\alpha)=c_1>0$, и при этом $\forall u,v\in\{0,1\},(u,v)\neq(0,0)$ выполняется $n_{uv}(\alpha)=0$, т. е. матрица биграмм имеет вид M_1 (случай $n_{11}(\alpha)=c_2>0$ и вид матрицы биграмм M_2 рассматривается аналогично). Тогда язык $F_{\cup n(\alpha)}$ должен состоять только из таких слов β_k , $n(\beta_k)=kn(\alpha)$, т.ч. слово β_k $\forall k\in N$ имеет вид: $\beta_k=\underbrace{0...0}_{1+k*n_{00}(\alpha)}$. Очевидно, что все такие слова задаются одним регулярным выражением:

$$F_{\cup n(\alpha)} = 0 \cdot \underbrace{0 \cdot \dots \cdot 0}_{n_{00}} < \underbrace{0 \cdot \dots \cdot 0}_{n_{00}} >$$

и, значит, язык $F_{\cup n(\alpha)}$ регулярен.

Для визуализации воспользуемся представлением слова в обобщенном источнике, которые отличается от обычного источника возможностью помечать ребра пустым словом Λ , но при этом позволяется иметь только одну финальную вершину. Обобщенный источник, в котором начальная вершина помечена символом «*», а конечная — «**», изображен на рис. 2.

Рис. 2. Обобщенный источник для случая 2

3) Имеем $n_{01}(\alpha)=n_{10}(\alpha)=c_3>0$, $n_{00}(\alpha)=n_{11}(\alpha)=0$, т. е. матрица биграмм имеет вид M_3 . Значит, язык $F_{\cup n(\alpha)}$ должен состоять только из таких слов β_k , $n(\beta_k)=kn(\alpha)$, т. ч. слово β_k $\forall k\in N$ имеет один из двух возможных видов: либо $\beta_k=101...01\atop k^*n_{01}(\alpha)$, либо $\beta_k=010...10\atop k^*n_{10}(\alpha)$. В любом случае все такие слова задаются одним

регулярным выражением:

$$F_{n^2(\alpha)} = 1 \cdot \underbrace{0 \cdot 1 \cdot \ldots \cdot 0 \cdot 1}_{n_{01}(\alpha)} < \underbrace{0 \cdot 1 \cdot \ldots \cdot 0 \cdot 1}_{n_{01}(\alpha)} > \underbrace{0 \cdot \underbrace{1 \cdot 0 \cdot \ldots \cdot 1 \cdot 0}_{n_{10}(\alpha)}} < \underbrace{1 \cdot 0 \cdot \ldots \cdot 1 \cdot 0}_{n_{10}(\alpha)} >$$

и, значит, язык $F_{\cup n(\alpha)}$ регулярен.

Обобщенный источник, определяющий то же событие, что и приведенное выше регулярное выражение, изображен на рис. 3. Начальная вершина помечена символом *, конечная - *.

Рис. 3. Обобщенный источник для случая 3

Конец доказательства.

$$\Pi \ \mathbf{p} \ \mathbf{u} \ \mathbf{m} \ \mathbf{e} \ \mathbf{p}. \quad A = \{0,1\} \ . \ \Pi \mathbf{y} \mathbf{c} \mathbf{t} \mathbf{b} \quad n(\alpha) = \begin{pmatrix} n_{00}(\alpha) & n_{01}(\alpha) \\ n_{10}(\alpha) & n_{11}(\alpha) \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}.$$

Эта матрица задает эйлеров граф $G_{n(\alpha)}$, как было установлено в одном из предыдущих примеров. При этом вид матрицы биграмм $n(\alpha)$ не совпадает ни с одним из M_1 , M_2 и M_3 . Значит, по Теореме 5 выполняется условие 1), и, соответственно, частотный язык $F_{\cup n(\alpha)}$ в данном случае нерегулярен.

Библиографические ссылки

- 1. *Оре О.* Теория графов. 2-е изд. М. : Наука, 1980. 336 с.
- 2. *Кудрявцев В. Б., Алешин С. В., Подколзин А. С.* Введение в теорию автоматов. М. : Наука, 1985. 320 с.

A. A. Petyushko, Post-graduate, Lomonosov Moscow State University

Frequency languages

This paper deals with finite languages specified by a bigrams matrix along with introduced frequency languages on bigrams, which consist of all words with the bigrams matrix multiple of (i.e. multiplied by a positive integer) a given bigrams matrix. Connection between different characteristics of frequency languages and directed graphs and Eulerian circuits in it is established. Necessary and sufficient conditions of non-emptyness and countability of frequency languages are presented. The question of dependence of frequency language cardinality on a given bigrams matrix is analyzed. The formula for the words quantity for a specified bigrams matrix is established. Conditions of frequency languages to be regular are obtained.

Keywords: bigrams matrix, frequency languages, regularity of languages, Euler circuits

Получено: 10.05.12