DM 5 : Lampe et régime critique

Exercice 1 : Lampe au néon

On considère le schéma ci-dessous, dans lequel $E=200\,\mathrm{V},\,R=1,00\cdot10^7\,\Omega$ et N représente une lampe au néon.

La lampe au néon présente les propriétés suivantes :

- Elle ne s'allume que si la tension u_N à ses bornes est supérieure à une certaine valeur, dite tension d'allumage, égale à $u_A = 90,0 \,\mathrm{V}$. La lampe peut alors être modélisée par un conducteur ohmique de résistance $R_N = 10,0 \,\mathrm{k}\Omega$.
- Elle s'éteint dès que u_N est inférieure à une autre valeur, dite tension d'extinction, égale à $u_E = 70.0 \,\mathrm{V}$. La lampe se comporte comme un interrupteur ouvert, et ne laisse passer aucun courant électrique.

Le condensateur étant initialement déchargé, on ferme l'interrupteur à la date t=0. Déterminer la forme complète de $u_N(t)$, et représenter l'allure caractéristique de sa courbe représentative jusqu'à l'instant t_A où la lampe s'allume, et que l'on déterminera. Quelle énergie a emmagasiné le condensateur durant cette phase? Déterminer ensuite la forme complète de $u_N(t)$, et représenter l'allure caractéristique de sa courbe représentative jusqu'à l'instant t_E où la lampe s'éteint et que l'on déterminera. Montrer que des flashes périodiques sont émis et déterminer la période de ce phénomène.

Exercice 2 : Régime critique

Le condensateur de capacité $C=10\,\mu\text{F}$, initialement chargé sous une tension est connecté à l'instant t=0 à une bobine d'inductance $L=25\,\text{mH}$ et de résistance R.

- 1. Établir l'équation différentielle vérifiée par la tension u aux bornes du condensateur.
- 2. Le régime étudié est le régime critique. Déterminer R. Exprimer puis tracer u(t).
- **3.** En déduire l'intensité i(t), puis la tracer.
- **4.** Quelle est l'énergie dissipée par effet Joule dans la résistance R?