APPENDIX

Table 1: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. (K = 1, L = 1).

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$4.94\pm0.02 \mid \xi=0$	$4.94{\pm}0.02$	$\xi=0$	$4.94{\pm}0.02$
INFLOW	$\xi = 0.01$	$4.98\pm0.01 \mid \xi=0$	4.95 ± 0.01	$\xi = 0.5$	4.94 ± 0.04
	$\xi = 0.001$	$4.94\pm0.03 \mid \xi=1$	4.95 ± 0.01	$\xi=1$	$4.93{\pm}0.03$
	$\xi = 0.0001$	4.93 \pm 0.01 ξ =2	$\textbf{4.92} {\pm} \textbf{0.01}$	$\xi=2$	$4.92{\pm}0.03$
	$\xi=0$	$5.24\pm0.01 \mid \xi=0$	5.24 ± 0.01	$\xi=0$	5.24 ± 0.01
OUTFLOW	$\xi = 0.01$	$5.27\pm0.02 \mid \xi=0$	5.25 ± 0.02	$\xi = 0.5$	5.24 ± 0.02
	$\xi = 0.001$	5.25 ± 0.03 $\xi=1$	$\boldsymbol{5.24 {\pm} 0.01}$	$\xi=1$	$\boldsymbol{5.23 {\pm} 0.01}$
	$\xi = 0.0001$	5.24 \pm 0.02 ξ =2	$\boldsymbol{5.24 {\pm} 0.03}$	$\xi=2$	$5.21{\pm}0.02$

Table 2: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). (K = 1, L = 1).

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$23.64 {\pm} 0.41$	$\xi=0$	$23.64 {\pm} 0.41$	$\xi=0$	$23.64 {\pm} 0.41$
INFLOW	$\xi = 0.01$	23.79 ± 0.40	$\xi = 0.5$	$23.95{\pm}0.35$	$\xi = 0.5$	$23.26{\pm}0.29$
	$\xi = 0.001$	23.89 ± 0.60	$\xi=1$	$23.38{\pm}0.36$	$\xi=1$	$23.58{\pm}0.48$
	$\xi = 0.0001$	$23.54{\pm}0.10$	$\xi=2$	$23.30 {\pm} 0.35$	$\xi=2$	$23.37 {\pm} 0.36$
	$\xi=0$	24.22 ± 0.21	$\xi = 0$	24.22 ± 0.21	$\xi=0$	24.22 ± 0.21
OUTFLOW	$\xi = 0.01$	$24.68 {\pm} 0.35$	$\xi = 0.5$	24.63 ± 0.32	$\xi = 0.5$	$24.12 {\pm} 0.32$
	$\xi = 0.001$	24.64 ± 0.47	$\xi=1$	24.47 ± 0.36	$\xi=1$	24.22 ± 0.43
	$\xi = 0.0001$	$24.25{\pm}0.16$	$\xi=2$	$24.13{\pm}0.21$	$\xi=2$	$24.21 {\pm} 0.37$

Table 3: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. $(K=1,\,L=2).$

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	$4.97{\pm}0.01$	$\xi=0$	$4.97{\pm}0.01$	$\xi=0$	$4.97 {\pm} 0.01$
INFLOW	$\xi = 0.01$	$\boldsymbol{4.95 {\pm} 0.02}$	$\xi = 0.5$	$4.96{\pm}0.03$	$\xi = 0.5$	$\textbf{4.94} {\pm} \textbf{0.03}$
	$\xi = 0.001$	$\boldsymbol{4.93 {\pm} 0.01}$	$\xi=1$	$\boldsymbol{4.96 {\pm} 0.01}$	$\xi=1$	$\boldsymbol{4.93 {\pm} 0.02}$
	$\xi = 0.0001$	$\boldsymbol{4.96 \!\pm\! 0.02}$	$\xi=2$	$\boldsymbol{4.92 {\pm} 0.01}$	$\xi=2$	4.89 ± 0.01
	$\xi=0$	$5.25{\pm}0.03$	$\xi=0$	$5.25{\pm}0.03$	$\xi=0$	5.25 ± 0.03
OUTFLOW	$\xi = 0.01$	$5.26{\pm}0.01$	$\xi = 0.5$	$5.27{\pm}0.03$	$\xi = 0.5$	$\boldsymbol{5.23 {\pm} 0.01}$
	$\xi = 0.001$	$\boldsymbol{5.23 {\pm} 0.02}$	$\xi=1$	$5.26 {\pm} 0.02$	$\xi=1$	$\boldsymbol{5.23 {\pm} 0.02}$
	$ \xi = 0.0001$	5.27 ± 0.031	$\xi=2$	$5.22{\pm}0.015$	$\xi=2$	$\boldsymbol{5.21 {\pm} 0.01}$

Table 4: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=1,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$23.87 \pm 0.70 \mid \xi$	$=0$ 23.87 \pm 0.7	$70 \mid \xi = 0$	$23.87 {\pm} 0.70$
INFLOW	$\xi = 0.01$	$egin{array}{c c} 23.65 {\pm} 0.27 & \xi \end{array}$	$=0.5$ 23.45 \pm 0.1	.3 ξ =0.5	$23.32{\pm}0.39$
	$\xi = 0.001$	23.67 \pm 0.15 ξ	$=1$ 23.76 \pm 0.3	88 $\xi = 1$	$23.38{\pm}0.45$
	$\xi = 0.0001$	23.46 \pm 0.36 ξ	=2 23.55 ± 0. 4	$12 \mid \xi = 2$	$23.61 {\pm} 0.48$
	$ \xi=0$	$24.47 \pm 0.60 \mid \xi$	=0 24.47±0.6	$60 \mid \xi = 0$	24.47 ± 0.60
OUTFLOW	$\xi = 0.01$	$egin{array}{c c} 24.39 {\pm} 0.42 & \xi \end{array}$	=0.5 24.24 ± 0.1	.9 ξ =0.5	24.21 ± 0.24
	$\xi = 0.001$	24.41 \pm 0.25 ξ	$=1$ 24.55 \pm 0.3	$32 \mid \xi = 1$	$24.41 {\pm} 0.33$
	$ \overline{\xi} = 0.0001$	24.18 \pm 0.26 ξ	=2 24.50±0.3	$86 \mid \xi = 2$	$24.23{\pm}0.20$

Table 5: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. $(K=1,\,L=4).$

Түре	$\alpha_{t'} = \exp(-\alpha_{t'})$	$(-\xi(t-t'))$ α	$t' = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} = \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$4.93\pm0.02 \mid \xi=0$	$4.93\pm0.02 \mid \xi =$	$=0$ 4.93 \pm 0.02
INFLOW	$\xi = 0.01$	$4.95\pm0.02 \mid \xi=0.5$	$6 4.96 \pm 0.01 \mid \xi =$	$=0.5$ 4.95 ± 0.04
	$\xi = 0.001$	$4.97\pm0.04 \mid \xi=1$	$4.95\pm0.02 \mid \xi =$	$=1$ 4.94 \pm 0.02
	$\xi = 0.0001$	4.96 ± 0.01 $\xi=2$	$egin{array}{c c} 4.92 \pm 0.04 & \xi \end{array}$	=2 4.91±0.01
	$\xi=0$	5.25 ± 0.03 $\xi=0$	5.25 ± 0.03 ξ =	$=0$ 5.25 ± 0.03
OUTFLOW	$\xi = 0.01$	$5.26\pm0.02 \mid \xi=0.5$	$5.27\pm0.01 \mid \xi =$	$=0.5$ 5.23 \pm 0.03
	$\xi = 0.001$	5.25 ± 0.01 $\xi=1$	$5.23{\pm0.03}$ ξ =	$=1$ 5.25 ± 0.03
	$\xi = 0.0001$	5.26 ± 0.01 $\xi=2$	$5.22{\pm}0.01$ ξ =	=2 5.20 ± 0.01

Table 6: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=1,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$lpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$23.52 {\pm} 0.26$	$\xi=0$	$23.52 {\pm} 0.26$	$\xi=0$	$23.52{\pm}0.26$
INFLOW	$\xi = 0.01$	23.60 ± 0.25	$\xi = 0.5$	24.15±0.25	$\xi = 0.5$	23.54 ± 0.42
	$\xi = 0.001$	23.70 ± 0.61	$\xi=1$	$23.57 {\pm} 0.36$	$\xi=1$	$23.33{\pm}0.40$
	$\xi = 0.0001$	$23.47 {\pm} 0.29$	$\xi=2$	$23.46{\pm}0.27$	$\xi=2$	$23.50 {\pm} 0.54$
	$\xi=0$	24.35 ± 0.43	$\xi=0$	24.35 ± 0.43	$\xi=0$	24.35 ± 0.43
OUTFLOW	$\xi = 0.01$	$24.27 {\pm} 0.28 \; \big \;$	$\xi = 0.5$	24.70 ± 0.40	$\xi = 0.5$	$24.24{\pm}0.30$
	$\xi = 0.001$	$24.27 {\pm} 0.38 \; \big \;$	$\xi=1$	$24.26 {\pm} 0.18 \; \big \;$	$\xi=1$	$24.04{\pm}0.33$
	$\xi = 0.0001$	24.32±0.40	$\xi=2$	24.25±0.25	$\xi=2$	24.47±0.38

Table 7: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. $(K=1,\,L=8).$

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	$4.95 \pm 0.03 \mid \xi = 0$	$4.95 {\pm} 0.03$	$\xi=0$	$4.95{\pm}0.03$
INFLOW	$\xi = 0.01$	4.94 ± 0.01 ξ =0.5	$4.97{\pm}0.02$	$\xi = 0.5$	$\textbf{4.94} {\pm} \textbf{0.02}$
	$\xi = 0.001$	4.94 \pm 0.03 ξ =1	$\textbf{4.94} {\pm} \textbf{0.02}$	$\xi=1$	$4.93{\pm}0.01$
	$\xi = 0.0001$	$4.95 \pm 0.03 \mid \xi = 2$	$\boldsymbol{4.93 {\pm} 0.02}$	$\xi=2$	$\textbf{4.91} {\pm} \textbf{0.01}$
	$\xi=0$	$5.24 \pm 0.04 \mid \xi = 0$	5.24 ± 0.04	$\xi=0$	5.24 ± 0.04
OUTFLOW	$\xi = 0.01$	5.24 ± 0.02 ξ =0.5	$5.25 {\pm} 0.03$	$\xi = 0.5$	5.26 ± 0.03
	$\xi = 0.001$	5.23 \pm 0.02 ξ =1	$\boldsymbol{5.23 {\pm} 0.02}$	$\xi=1$	5.26 ± 0.03
	$ \xi = 0.0001$	5.23 \pm 0.01 ξ =2	$\boldsymbol{5.23 {\pm} 0.03}$	$\xi=2$	5.24 ± 0.02

Table 8: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=1,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$:	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$23.82{\pm}0.74$	$\xi=0$	$23.82{\pm}0.74$	$\xi=0$	$23.82{\pm}0.74$
INFLOW	$\xi = 0.01$	$23.71 {\pm} 0.23$	$\xi = 0.5$	24.02 ± 0.49	$\xi = 0.5$	$23.36{\pm}0.32$
	$\xi = 0.001$	$23.72 {\pm} 0.43$	$\xi=1$	$23.31 {\pm} 0.35$	$\xi=1$	$23.39{\pm}0.27$
	$\xi = 0.0001$	$23.68 {\pm} 0.17$	$\xi=2$	$23.46 {\pm} 0.53$	$\xi=2$	$23.63{\pm}0.29$
	$\xi=0$	$24.43{\pm}0.51$	$\xi=0$	$24.43{\pm}0.51$	$\xi=0$	24.43 ± 0.51
OUTFLOW	$\xi = 0.01$	$24.66 {\pm} 0.17$	$\xi = 0.5$	$24.62{\pm}0.26$	$\xi = 0.5$	$24.23{\pm}0.35$
	$\xi = 0.001$	$24.33 {\pm} 0.33$	$\xi=1$	24.00 ± 0.34	$\xi=1$	24.44 ± 0.66
	$\xi = 0.0001$	$24.26 {\pm} 0.12$	$\xi=2$	$24.19{\pm}0.45$	$\xi=2$	$24.37{\pm}0.33$

Table 9: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. $(K=2,\,L=1).$

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	4.93 ± 0.01 $\xi=0$	$4.93 {\pm} 0.01$	$\xi=0$	$4.93 {\pm} 0.01$
INFLOW	$\xi = 0.01$	$4.95\pm0.02 \mid \xi=0.5$	$4.95{\pm}0.03$	$\xi = 0.5$	4.96 ± 0.03
	$\xi = 0.001$	4.96 ± 0.01 $\xi=1$	$4.96 {\pm} 0.01$	$\xi=1$	$\boldsymbol{4.93 {\pm} 0.01}$
	$\xi = 0.0001$	4.93 \pm 0.02 ξ =2	$\textbf{4.91} {\pm} \textbf{0.01}$	$\xi=2$	$\textbf{4.89} {\pm} \textbf{0.01}$
	$\xi=0$	$5.24 \pm 0.01 \mid \xi = 0$	5.24 ± 0.01	$\xi = 0$	5.24 ± 0.01
OUTFLOW	$\xi = 0.01$	5.26 ± 0.03 ξ =0.5	$5.25 {\pm} 0.02$	$\xi = 0.5$	5.25 ± 0.02
	$\xi = 0.001$	$5.24\pm0.02 \mid \xi=1$	$\boldsymbol{5.23 {\pm} 0.02}$	$\xi=1$	$\boldsymbol{5.23 {\pm} 0.02}$
	$ \xi = 0.0001$	5.24 ± 0.03 $\xi=2$	$\boldsymbol{5.21 {\pm} 0.02}$	$\xi=2$	$\boldsymbol{5.20 {\pm} 0.03}$

Table 10: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=2,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	23.78 ± 0.43	$\xi=0$	$23.78 {\pm} 0.43$	$\xi=0$	23.78 ± 0.43
INFLOW	$\xi = 0.01$	23.92 ± 0.39	$\xi = 0.5$	$23.63 {\pm} 0.45$	$\xi = 0.5$	23.88 ± 0.44
	$\xi = 0.001$	$23.44 {\pm} 0.22$	$\xi=1$	$23.81 {\pm} 0.48$	$\xi=1$	$23.04{\pm}0.29$
	$\xi = 0.0001$	$23.47 {\pm} 0.38$	$\xi=2$	$23.57 {\pm} 0.42$	$\xi=2$	$23.54{\pm}0.28$
	$\xi=0$	24.42 ± 0.30	$\xi=0$	$24.42 {\pm} 0.30$	$\xi=0$	24.42 ± 0.30
OUTFLOW	$\xi = 0.01$	$24.55{\pm}0.33$	$\xi = 0.5$	$24.56 {\pm} 0.30$	$\xi = 0.5$	24.53 ± 0.22
	$\xi = 0.001$	$24.41 {\pm} 0.23$	$\xi=1$	$24.61 {\pm} 0.48$	$\xi=1$	$24.15{\pm}0.22$
	$ \xi = 0.0001$	$24.23 {\pm} 0.46$	$\xi = 2$	$24.35 {\pm} 0.52$	$\xi = 2$	$24.04{\pm}0.21$

Table 11: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. $(K=2,\,L=2).$

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$4.94\pm0.02 \mid \xi=0$	$4.94{\pm}0.02$	$\xi=0$	$4.94{\pm}0.02$
INFLOW	$\xi = 0.01$	4.98 ± 0.02 ξ =0.5	$\textbf{4.94} {\pm} \textbf{0.02}$	$\xi = 0.5$	4.95 ± 0.03
	$\xi = 0.001$	4.93 \pm 0.03 ξ =1	$\textbf{4.94} {\pm} \textbf{0.03}$	$\xi=1$	4.94 ± 0.04
	$\xi = 0.0001$	$4.95 \pm 0.00 \mid \xi = 2$	$\textbf{4.94} {\pm} \textbf{0.03}$	$\xi=2$	$\boldsymbol{4.92 {\pm} 0.02}$
	$\xi=0$	$5.25\pm0.02 \mid \xi=0$	$5.25 {\pm} 0.02$	$\xi=0$	5.25 ± 0.02
OUTFLOW	$\xi = 0.01$	5.28 ± 0.02 ξ =0.5	$\boldsymbol{5.25 {\pm} 0.02}$	$\xi = 0.5$	$\boldsymbol{5.25 {\pm} 0.02}$
	$\xi = 0.001$	5.24 \pm 0.01 ξ =1	$\boldsymbol{5.23 {\pm} 0.03}$	$\xi=1$	$\boldsymbol{5.24 {\pm} 0.05}$
	$ \xi = 0.0001$	5.26 ± 0.02 $\xi=2$	$5.23{\pm}0.02$	$\xi = 2$	$\boldsymbol{5.23 {\pm} 0.03}$

Table 12: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=2,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$23.38 \pm 0.17 \mid \xi =$	$=0$ 23.38 ± 0.17	$7 \mid \xi = 0$	$23.38 {\pm} 0.17$
INFLOW	$\xi = 0.01$	$23.94 \pm 0.40 \mid \xi =$	$=0.5$ 23.46 ± 0.23	$8 \mid \xi = 0.5$	23.70 ± 0.52
	$\xi = 0.001$	$23.71\pm0.16 \mid \xi =$	$=1$ 23.57 \pm 0.29	$\theta \mid \xi=1$	23.60 ± 0.31
	$\xi = 0.0001$	$23.87 \pm 0.34 \mid \xi =$	$=2$ 23.69 \pm 0.18	$8 \mid \xi=2$	$\boldsymbol{23.21 {\pm} 0.34}$
	$\xi=0$	$24.31\pm0.18 \mid \xi =$	$=0$ 24.31 \pm 0.18	$8 \mid \xi = 0$	24.31 ± 0.18
OUTFLOW	$\xi = 0.01$	$24.56\pm0.20 \mid \xi =$	$=0.5$ 24.38 ± 0.38	$8 \mid \xi = 0.5$	24.29 ± 0.48
	$\xi = 0.001$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$=1$ 24.65 \pm 0.37	$7 \mid \xi=1$	24.53 ± 0.33
	$\xi = 0.0001$	$24.32 \pm 0.25 \mid \xi =$	$=2$ 24.46 \pm 0.30	$\mid \xi=2$	$23.96{\pm}0.15$

Table 13: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. $(K=2,\,L=4).$

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'}$	$=rac{1}{(t-t')^{\xi}}$ $\alpha_{t'}=$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$4.95{\pm}0.01$	$\xi=0$	$4.95\pm0.01 \mid \xi=0$	$4.95 {\pm} 0.01$
INFLOW	$\xi = 0.01$	$4.98 {\pm} 0.03$	$\xi = 0.5$	4.96 ± 0.01 ξ =0.5	$4.93{\pm}0.03$
	$\xi = 0.001$	$\textbf{4.94} {\pm} \textbf{0.0}$	$\xi=1$	4.93 \pm 0.01 ξ =1	$\textbf{4.92} {\pm} \textbf{0.02}$
	$\xi = 0.0001$	$\textbf{4.94} {\pm} \textbf{0.01}$	$\xi=2$	$4.96\pm0.02 \mid \xi=2$	4.92 ± 0.03
	$\xi=0$	$5.25 {\pm} 0.03$	$\xi=0$	$5.25\pm0.03 \mid \xi=0$	5.2593 ± 0.03
OUTFLOW	$\xi = 0.01$	$5.27 {\pm} 0.01$	$\xi = 0.5$	5.26 ± 0.01 ξ =0.5	$\boldsymbol{5.25 {\pm} 0.03}$
	$\xi = 0.001$	$\boldsymbol{5.24 {\pm} 0.02}$	$\xi=1$	5.23 \pm 0.02 ξ =1	$\boldsymbol{5.21 {\pm} 0.02}$
	$ \xi = 0.0001$	$5.28 {\pm} 0.03$	$\xi = 2$	5.26 ± 0.05 $\xi=2$	$\boldsymbol{5.23 {\pm} 0.03}$

Table 14: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=2,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$lpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	23.57 ± 0.50	$\xi=0$	$23.57{\pm}0.50$	$\xi=0$	$23.57 {\pm} 0.50$
INFLOW	$\xi = 0.01$	$23.54{\pm}0.26$	$\xi = 0.5$	$23.66{\pm}0.50$	$\xi = 0.5$	$23.48{\pm}0.45$
	$\xi = 0.001$	23.75 ± 0.39	$\xi=1$	${\bf 23.57} {\pm} {\bf 0.28}$	$\xi=1$	$\boldsymbol{23.37 {\pm} 0.41}$
	$\xi = 0.0001$	$23.37 {\pm} 0.36 \; \big \;$	$\xi=2$	${\bf 23.19 {\pm} 0.42}$	$\xi=2$	$23.37{\pm}0.41$
	$\xi=0$	24.23 ± 0.33	$\xi=0$	$24.23{\pm}0.33$	$\xi=0$	24.23 ± 0.33
OUTFLOW	$\xi = 0.01$	24.50 ± 0.31	$\xi = 0.5$	$24.35{\pm}0.46$	$\xi = 0.5$	24.26 ± 0.29
	$\xi = 0.001$	24.49 ± 0.43	$\xi=1$	$24.27{\pm}0.30$	$\xi=1$	24.25 ± 0.36
	$\xi = 0.0001$	$23.86{\pm}0.35$	$\xi=2$	$23.81 {\pm} 0.32$	$\xi=2$	$24.13{\pm}0.39$

Table 15: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. $(K=2,\,L=8).$

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	$4.95 \pm 0.02 \mid \xi = 0$	$4.95{\pm}0.02$	$\xi=0$	$4.95{\pm}0.02$
INFLOW	$\xi = 0.01$	4.97 ± 0.01 ξ =0.5	$4.96{\pm}0.03$	$\xi = 0.5$	$\textbf{4.94} {\pm} \textbf{0.03}$
	$\xi = 0.001$	4.95 ± 0.02 $\xi=1$	$\boldsymbol{4.95 {\pm} 0.02}$	$\xi=1$	$\textbf{4.94} {\pm} \textbf{0.02}$
	$\xi = 0.0001$	4.93 \pm 0.02 ξ =2	$4.93{\pm}0.03$	$\xi=2$	$\textbf{4.92} {\pm} \textbf{0.03}$
	$\xi=0$	5.25 ± 0.03 $\xi=0$	$5.25 {\pm} 0.03$	$\xi=0$	5.25 ± 0.03
OUTFLOW	$\xi = 0.01$	5.26 ± 0.01 ξ =0.5	$\boldsymbol{5.24 {\pm} 0.02}$	$\xi = 0.5$	$\boldsymbol{5.23 {\pm} 0.01}$
	$\xi = 0.001$	5.25 \pm 0.02 ξ =1	$\boldsymbol{5.24 {\pm} 0.03}$	$\xi=1$	$\boldsymbol{5.24 {\pm} 0.02}$
	$ \overline{\xi = 0.0001}$	5.24 \pm 0.04 ξ =2	$5.24{\pm}0.03$	$\xi=2$	$\boldsymbol{5.22 {\pm} 0.02}$

Table 16: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=2,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi = 0$	23.56 ± 0.06	$\xi=0$	23.56 ± 0.06	$\xi=0$	$23.56 {\pm} 0.06$
INFLOW	$\xi = 0.01$	$23.21 {\pm} 0.19$	$\xi = 0.5$	23.73 ± 0.39	$\xi = 0.5$	$23.52{\pm}0.29$
	$\xi = 0.001$	$23.40{\pm}0.23$	$\xi=1$	23.73 ± 0.30	$\xi=1$	$23.39{\pm}0.33$
	$\xi = 0.0001$	23.77 ± 0.16	$\xi=2$	$23.21 {\pm} 0.17$	$\xi=2$	$23.42{\pm}0.49$
	$\xi=0$	24.20 ± 0.35	$\xi=0$	24.20 ± 0.35	$\xi=0$	24.20 ± 0.35
OUTFLOW	$\xi = 0.01$	$24.16 {\pm} 0.26 \; \big \;$	$\xi = 0.5$	24.59 ± 0.30	$\xi = 0.5$	$24.14{\pm}0.32$
	$\xi = 0.001$	$24.13 {\pm} 0.29 \; \big \;$	$\xi=1$	24.38 ± 0.10	$\xi=1$	24.63 ± 0.39
	$ \xi = 0.0001$	24.26 ± 0.25	$\xi=2$	$23.99{\pm}0.28$	$\xi = 2$	24.32 ± 0.40

Table 17: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. (K = 3, L = 1).

Түре	$\alpha_{t'} = \epsilon$	$\exp(-\xi(t-t'))$		$\alpha_{t'} = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'}$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$4.9427{\pm0.01958}$	$\xi=0$	4.9427 ± 0.0195	$68 \mid \xi = 0$	$4.9427{\pm0.01958}$
INFLOW	$\xi = 0.01$	$4.95{\pm}0.01$	$\xi = 0.5$	4.95 ± 0.0	$01 \mid \xi = 0.5$	$\textbf{4.92} {\pm} \textbf{0.01}$
	$\xi = 0.001$	$4.94{\pm}0.03$	$\xi=1$	4.94 ± 0.0	$01 \xi = 1$	$4.92{\pm}0.01$
	$ \xi = 0.0001$	$4.95{\pm}0.03$	$\xi=2$	4.94 ± 0.0	$03 \xi = 2$	$4.92{\pm}0.01$
	$\xi=0$	$5.25 {\pm} 0.01$	$\xi=0$	5.25 ± 0.0	$01 \xi = 0$	5.25 ± 0.01
OUTFLOW	$ \xi = 0.01$	$5.26 {\pm} 0.01$	$\xi = 0.5$	5.26 ± 0.0	$02 \mid \xi = 0.5$	$\boldsymbol{5.24 {\pm} 0.01}$
	$ \xi = 0.001$	$\boldsymbol{5.22 {\pm} 0.03}$	$\xi=1$	$\boldsymbol{5.22 {\pm} 0.0}$	1 $\xi = 1$	$5.22{\pm}0.03$
	$ \xi = 0.0001$	$5.23{\pm}0.02$	$\xi=2$	$\boldsymbol{5.24 {\pm} 0.0}$	2 ξ =2	$5.22{\pm}0.01$

Table 18: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=3,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$23.39 {\pm} 0.24$	$\xi=0$	$23.39 {\pm} 0.24$	$\xi=0$	$23.39 {\pm} 0.24$
INFLOW	$\xi = 0.01$	$23.53{\pm}0.32$	$\xi = 0.5$	$23.82 {\pm} 0.39$	$\xi = 0.5$	23.58 ± 0.51
	$\xi = 0.001$	23.83 ± 0.34	$\xi=1$	$23.54 {\pm} 0.21$	$\xi=1$	$23.23{\pm}0.17$
	$ \xi = 0.0001$	23.97 ± 0.27	$\xi=2$	$23.48{\pm}0.25$	$\xi=2$	23.57 ± 0.64
	$\xi=0$	$24.38 {\pm} 0.62$	$\xi=0$	$24.38 {\pm} 0.62$	$\xi=0$	24.38 ± 0.62
OUTFLOW	$\xi = 0.01$	$24.36 {\pm} 0.37$	$\xi = 0.5$	${\bf 24.33 {\pm} 0.23}$	$\xi = 0.5$	$24.46 {\pm} 0.56$
	$\xi = 0.001$	24.64 ± 0.21	$\xi=1$	${\bf 24.32 {\pm} 0.13}$	$\xi=1$	24.10 ± 0.11
	$ \xi=0.0001$	24.66 ± 0.32	$\xi=2$	$24.24{\pm}0.25$	$\xi = 2$	$24.33{\pm}0.37$

Table 19: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. $(K=3,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$4.93\pm0.03 \mid \xi=0$	4.93 ± 0.03	$\xi=0$	4.93 ± 0.03
INFLOW	$\xi = 0.01$	4.96 ± 0.05 ξ =0.5	$4.97{\pm}0.03$	$\xi = 0.5$	4.95 ± 0.04
	$\xi = 0.001$	4.93 ± 0.03 $\xi=1$	$4.95{\pm}0.02$	$\xi=1$	$\textbf{4.91} {\pm} \textbf{0.04}$
	$\xi = 0.0001$	4.94 ± 0.03 $\xi=2$	$\boldsymbol{4.93 {\pm} 0.03}$	$\xi=2$	$\textbf{4.92} {\pm} \textbf{0.01}$
	$\xi=0$	5.25 ± 0.03 $\xi=0$	$5.25 {\pm} 0.03$	$\xi=0$	5.25 ± 0.03
OUTFLOW	$\xi = 0.01$	5.26 ± 0.03 ξ =0.5	$5.25 {\pm} 0.02$	$\xi = 0.5$	$\textbf{5.22} {\pm} \textbf{0.01}$
	$\xi = 0.001$	5.22 \pm 0.01 ξ =1	$\boldsymbol{5.24 {\pm} 0.02}$	$\xi=1$	$\boldsymbol{5.22 {\pm} 0.04}$
	$ \xi = 0.0001$	5.23 \pm 0.01 ξ =2	$\boldsymbol{5.24 {\pm} 0.03}$	$\xi=2$	$\boldsymbol{5.22 {\pm} 0.01}$

Table 20: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=3,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$23.66 \pm 0.33 \mid \xi =$	$=0$ 23.66 \pm 0.33	$\xi=0$	$23.66 {\pm} 0.33$
INFLOW	$\xi = 0.01$	$23.77 \pm 0.60 \mid \xi =$	$=0.5$ 23.98 ± 0.71	$\xi = 0.5$	23.90 ± 0.38
	$\xi = 0.001$	$23.67 \pm 0.34 \mid \xi =$	$=1$ 23.81 ± 0.32	$\xi=1$	$23.37{\pm}0.22$
	$\xi = 0.0001$	$oldsymbol{23.50}{\pm0.40}$ ξ =	23.52±0.49	$\xi=2$	$23.53{\pm}0.34$
	$\xi=0$	$24.33 \pm 0.38 \mid \xi =$	$=0$ 24.33 \pm 0.38	$\xi=0$	24.33 ± 0.38
OUTFLOW	$\xi = 0.01$	$24.40\pm0.61 \mid \xi =$	$=0.5$ 24.68 ± 0.32	$\xi = 0.5$	24.45 ± 0.53
	$\xi = 0.001$	24.26 \pm 0.36 ξ =	24.32 ± 0.44	$\xi=1$	24.11 ± 0.17
	$ \xi = 0.0001$	$24.24{\pm}0.38$ ξ =	24.28±0.49	$\xi = 2$	$24.14{\pm}0.13$

Table 21: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. $(K=3,\,L=4)$.

Түре	$\alpha_{t'} = e$	$\exp(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}} \qquad \qquad \qquad \alpha_t$	$\epsilon' = \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$4.9358\pm0.0189 \mid \xi=0$	$4.9358\pm0.0189 \mid \xi=0$	$4.9358 {\pm} 0.0189$
INFLOW	$\xi = 0.01$	$4.9445\pm0.0344 \mid \xi=0.5$	$4.9855\pm0.0345 \mid \xi=0.5$	4.9481 ± 0.035
	$\xi = 0.001$	$4.9512\pm0.0243 \mid \xi=1$	$4.9713\pm0.0315 \mid \xi=1$	$4.9136{\pm}0.0263$
	$\xi = 0.0001$	4.9290 \pm 0.0198 ξ =2	$4.9576\pm0.0324 \mid \xi=2$	4.9374 ± 0.0354
	$\xi=0$	$5.2458\pm0.0190 \mid \xi=0$	$5.2458\pm0.0190 \mid \xi=0$	5.2458 ± 0.0190
OUTFLOW	$\xi = 0.01$	$5.2521\pm0.0297 \mid \xi=0.5$	$5.2731\pm0.0386 \mid \xi=0.5$	5.2678 ± 0.0336
	$\xi = 0.001$	$5.2568\pm0.0372 \mid \xi=1$	$5.2625\pm0.0509 \mid \xi=1$	$5.2236{\pm}0.0255$
	$\xi = 0.0001$	5.2315 \pm 0.0176 ξ =2	5.2327 \pm 0.0256 ξ =2	$5.2425{\pm}0.0277$

Table 22: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=3,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$-\xi(t-t')$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	23.44 ± 0.32	$\xi=0$	23.44 ± 0.32	$\xi=0$	$23.44 {\pm} 0.32$
INFLOW	$\xi = 0.01$	23.65 ± 0.26	$\xi = 0.5$	$23.34{\pm}0.34$	$\xi = 0.5$	23.84 ± 0.75
	$\xi = 0.001$	$23.26{\pm}0.36$	$\xi=1$	$23.42 {\pm} 0.20$	$\xi=1$	$23.30 {\pm} 0.33$
	$\xi = 0.0001$	23.72 ± 0.47	$\xi=2$	23.46 ± 0.38	$\xi=2$	23.52 ± 0.45
	$\xi=0$	$24.20{\pm}0.26$	$\xi=0$	24.20 ± 0.26	$\xi=0$	24.20 ± 0.26
OUTFLOW	$\xi = 0.01$	24.41 ± 0.34	$\xi = 0.5$	24.22 ± 0.32	$\xi = 0.5$	24.49 ± 0.52
	$\xi = 0.001$	$24.15{\pm}0.32$	$\xi=1$	$24.19{\pm}0.08$	$\xi=1$	24.08 ± 0.28
	$ \xi = 0.0001$	24.47±0.43	$\xi=2$	24.33±0.44	$\xi=2$	24.50 ± 0.38

Table 23: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. $(K=3,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$4.95\pm0.03 \mid \xi=0$	4.95±0.03	ξ=0	4.95 ± 0.03
INFLOW	$\xi = 0.01$	$4.95\pm0.02 \mid \xi=0.5$	$4.95{\pm}0.02$	$\xi = 0.5$	$4.94{\pm}0.02$
	$\xi = 0.001$	4.95 \pm 0.03 ξ =1	$4.94{\pm}0.02$	$\xi=1$	$4.92{\pm}0.02$
	$ \overline{\xi = 0.0001}$	$4.95\pm0.02 \mid \xi=2$	$4.95{\pm}0.02$	$\xi=2$	4.95 ± 0.03
	$\xi=0$	$5.24\pm0.04 \mid \xi=0$	5.24 ± 0.04	$\xi=0$	5.24 ± 0.04
OUTFLOW	$\xi = 0.01$	5.25 ± 0.02 ξ =0.5	$5.25 {\pm} 0.01$	$\xi = 0.5$	$\boldsymbol{5.24 {\pm} 0.02}$
	$\xi = 0.001$	5.23 \pm 0.02 ξ =1	$\boldsymbol{5.22 {\pm} 0.01}$	$\xi=1$	$\boldsymbol{5.21 {\pm} 0.02}$
	$ \overline{\xi = 0.0001}$	$5.26\pm0.03 \mid \xi=2$	5.25 ± 0.03	$\xi=2$	$\overline{5.22{\pm}0.02}$

Table 24: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=3,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'}$ =	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln{(t-t'+1)}}$
	$\xi=0$	23.39±0.14	$\xi = 0$	23.39 ± 0.14	$\xi=0$	23.39 ± 0.14
INFLOW	$\xi = 0.01$	24.04±0.44	ξ =0.5	23.83 ± 0.49	$\xi = 0.5$	23.53 ± 0.28
	$\xi = 0.001$	23.61±0.16	$\xi=1$	23.62 ± 0.33	$\xi=1$	23.50 ± 0.30
	$\xi = 0.0001$	23.67 ± 0.37	$\xi=2$	23.62 ± 0.39	$\xi=2$	23.98 ± 0.89
	$\xi=0$	24.11±0.37	$\xi=0$	24.11±0.37	$\xi=0$	24.11 ± 0.37
OUTFLOW	$\xi = 0.01$	24.92 ± 0.37	$\xi = 0.5$	24.50 ± 0.41	$\xi = 0.5$	24.56 ± 0.40
	$\xi = 0.001$	24.33 ± 0.23	$\xi=1$	24.40±0.43	$\xi=1$	24.34 ± 0.28
	$\xi = 0.0001$	24.44±0.44	$\xi=2$	24.52 ± 0.45	$\xi=2$	24.77 ± 0.66

Table 25: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. $(K=4,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	4.94 ± 0.01 $\xi=0$	$4.94{\pm}0.01$	$\xi=0$	$4.94{\pm}0.01$
INFLOW	$\xi = 0.01$	$4.95\pm0.02 \mid \xi=0.5$	$4.98 {\pm} 0.04$	$\xi = 0.5$	$\textbf{4.92} {\pm} \textbf{0.01}$
	$\xi = 0.001$	4.92 \pm 0.02 ξ =1	$4.95{\pm}0.03$	$\xi=1$	$4.93{\pm}0.01$
	$ \xi = 0.0001$	$4.94\pm0.02 \mid \xi=2$	$4.93{\pm}0.03$	$\xi=2$	$\textbf{4.90} {\pm} \textbf{0.02}$
	$\xi=0$	$5.24 \pm 0.01 \mid \xi = 0$	5.24 ± 0.01	$\xi=0$	5.24 ± 0.01
OUTFLOW	$\xi = 0.01$	5.23 \pm 0.01 ξ =0.5	5.29 ± 0.04	$\xi = 0.5$	$\boldsymbol{5.23 {\pm} 0.01}$
	$\xi = 0.001$	5.23 \pm 0.03 ξ =1	$\boldsymbol{5.22 {\pm} 0.02}$	$\xi=1$	$\boldsymbol{5.22 {\pm} 0.01}$
	$ \xi = 0.0001$	5.24 ± 0.01 ξ =2	$5.22{\pm}0.02$	$\xi = 2$	$\boldsymbol{5.21 {\pm} 0.01}$

Table 26: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=4,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$23.65\pm0.48 \mid \xi$	$\xi = 0$ 23.65 \pm 0.48	$\xi = 0$	$23.65 {\pm} 0.48$
INFLOW	$\xi = 0.01$	23.70 ± 0.73 ξ	$\xi = 0.5$ 23.50 ± 0.38	$\xi = 0.5$	$23.42{\pm}0.24$
	$\xi = 0.001$	23.70 ± 0.31 ξ	$\xi = 1$ 23.69 \pm 0.46	$\xi=1$	$23.40{\pm}0.61$
	$\xi = 0.0001$	23.49 \pm 0.39 ξ	$\xi = 2$ 23.62 \pm 0.53	$\xi=2$	23.28 ± 0.29
	$\xi=0$	24.30 ± 0.25 ξ	$\xi = 0$ 24.30±0.25	$\xi = 0$	24.30 ± 0.25
OUTFLOW	$\xi = 0.01$	$24.66\pm0.48 \mid \xi$	$\xi = 0.5$ 24.15 ± 0.45	$\xi = 0.5$	24.28 ± 0.44
	$\xi = 0.001$	24.27±0.18 8	$\xi = 1$ 24.37±0.43	$\xi=1$	24.10 ± 0.67
	$ \xi = 0.0001$	24.11 \pm 0.23 ξ	$\xi = 2$ 24.30 \pm 0.33	$\xi = 2$	$23.97{\pm}0.18$

Table 27: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. $(K=4,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t-t)^2}$	$\frac{1}{-t')^{\xi}}$	$\alpha_{t'} = \frac{1}{\xi \ln(t - t' + t')}$	1)
	$\xi=0$	4.93±0.01	$\xi = 0$ 4.9	$93\pm0.01 \mid \xi$	=0 4.93±	:0.01
INFLOW	$\xi = 0.01$	4.94±0.02	$\xi = 0.5$ 4.9	$94\pm0.01 \mid \xi$	$=0.5$ $4.9407\pm$:0.04
	$\xi = 0.001$	4.96±0.02	$\xi = 1$ 4.9	$93\pm0.02 \mid \xi$	=1 4.90 ±	0.02
	$\xi = 0.0001$	4.95±0.03	$\xi = 2$ 4.9	92 ± 0.03 ξ	=2 4.93 ±	0.02
	$\xi=0$	5.24±0.0278	$\xi = 0$ 5.5	$24\pm0.02 \xi$	=0 5.24±	:0.02
OUTFLOW	$\xi = 0.01$	$5.23{\pm}0.02$	$\xi = 0.5$ 5.2	24 ± 0.01 ξ	=0.5 5.23 ±	0.03
	$\xi = 0.001$	$5.25{\pm}0.02$	$\xi = 1$ 5.2	22 ± 0.03 ξ	$=1$ 5.20 \pm 0	.031
	$\xi = 0.0001$	5.25±0.03	$\xi = 2$ 5.2	22 ± 0.02 ξ	=2 5.24±	:0.01

Table 28: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=4,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$23.62 {\pm} 0.34$	$\xi=0$	23.62 ± 0.34	$\xi=0$	23.62 ± 0.34
INFLOW	$\xi = 0.01$	$23.75 {\pm} 0.36$	$\xi = 0.5$	23.63 ± 0.48	$\xi = 0.5$	23.63 ± 0.21
	$\xi = 0.001$	$23.53 {\pm} 0.61$	$\xi=1$	$23.59 {\pm} 0.43$	$\xi=1$	$23.51{\pm}0.32$
	$\xi = 0.0001$	$23.23 {\pm} 0.20$	$\xi=2$	$23.47 {\pm} 0.25$	$\xi=2$	$23.18{\pm}0.40$
	$\xi=0$	$24.46{\pm}0.26$	$\xi=0$	$24.46 {\pm} 0.26$	$\xi=0$	24.46 ± 0.26
OUTFLOW	$\xi = 0.01$	$24.39 {\pm} 0.27$	$\xi = 0.5$	24.59 ± 0.40	$\xi = 0.5$	24.48 ± 0.34
	$\xi = 0.001$	${\bf 24.26} {\pm} {\bf 0.36}$	$\xi=1$	$24.44 {\pm} 0.34$	$\xi=1$	24.21 ± 0.24
	$ \xi = 0.0001$	$24.06{\pm}0.30$	$\xi = 2$	24.49 ± 0.47	$\xi = 2$	$23.92{\pm}0.32$

Table 29: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. $(K=4,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	$4.94 \pm 0.02 \mid \xi = 0$	$4.94{\pm}0.02$	$\xi=0$	$4.94{\pm}0.02$
INFLOW	$ \xi = 0.01$	4.95 ± 0.03 ξ =0.5	$4.97{\pm}0.05$	$\xi = 0.5$	$\textbf{4.93} {\pm} \textbf{0.02}$
	$\xi = 0.001$	4.96 ± 0.02 $\xi=1$	$\boldsymbol{4.93 {\pm} 0.01}$	$\xi=1$	$\boldsymbol{4.93 {\pm} 0.02}$
	$ \xi = 0.0001$	4.95 ± 0.03 $\xi=2$	$4.94{\pm}0.04$	$\xi=2$	$\textbf{4.90} {\pm} \textbf{0.01}$
	$\xi=0$	5.25 ± 0.01 ξ =0	$5.25{\pm}0.01$	$\xi=0$	5.25 ± 0.01
OUTFLOW	$ \xi = 0.01$	5.26 ± 0.03 ξ =0.5	$5.26{\pm}0.03$	$\xi = 0.5$	$\boldsymbol{5.24 {\pm} 0.04}$
	$\xi = 0.001$	$5.27 \pm 0.04 \mid \xi = 1$	$\boldsymbol{5.23 {\pm} 0.02}$	$\xi=1$	$\boldsymbol{5.23 {\pm} 0.03}$
	$\xi = 0.0001$	5.23 \pm 0.03 ξ =2	$5.25{\pm}0.03$	$\xi=2$	$\boldsymbol{5.22 {\pm} 0.02}$

Table 30: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). (K = 4, L = 4).

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$23.38 \pm 0.27 \mid \xi =$	$=0$ 23.38 \pm 0.27	$\xi=0$	$23.38 {\pm} 0.27$
INFLOW	$\xi = 0.01$	$23.58 \pm 0.56 \mid \xi =$	$=0.5$ 23.46 ± 0.15	$\xi = 0.5$	23.95 ± 0.41
	$\xi = 0.001$	$23.63\pm0.29 \mid \xi =$	$=1$ 23.56 ± 0.24	$\xi=1$	$23.37{\pm}0.33$
	$\xi = 0.0001$	$23.63\pm0.41 \mid \xi =$	$=2$ 23.57 ± 0.30	$\xi=2$	23.45 ± 0.56
	$\xi=0$	$24.33 \pm 0.47 \mid \xi =$	$=0$ 24.33 \pm 0.47	$\xi=0$	24.33 ± 0.47
OUTFLOW	$\xi = 0.01$	$24.30{\pm}0.46$ ξ =	$=0.5$ 24.28 \pm 0.14	$\xi = 0.5$	24.49 ± 0.28
	$\xi = 0.001$	$24.55 \pm 0.46 \mid \xi =$	$=1$ 24.34 \pm 0.50	$\xi=1$	24.48 ± 0.41
	$ \xi = 0.0001$	$24.35\pm0.42 \mid \xi =$	$=2$ 24.33 \pm 0.31	$\xi=2$	$24.28 {\pm} 0.42$

Table 31: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAE. (K = 4, L = 8).

Түре	$\alpha_{t'} = \exp(-\alpha_{t'})$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$4.93\pm0.01 \mid \xi=0$	$4.93{\pm}0.01$	$\xi=0$	4.93 ± 0.01
INFLOW	$\xi = 0.01$	$4.94\pm0.0 \mid \xi=0.5$	4.98 ± 0.03	$\xi = 0.5$	$4.92{\pm}0.01$
	$\xi = 0.001$	$4.94\pm0.03 \mid \xi=1$	$4.95{\pm}0.01$	$\xi=1$	$4.92{\pm}0.01$
	$\xi = 0.0001$	$4.95\pm0.02 \mid \xi=2$	$4.94{\pm}0.02$	$\xi=2$	$4.91{\pm}0.03$
	$\xi=0$	$5.22\pm0.01 \mid \xi=0$	$5.22{\pm}0.01$	$\xi=0$	5.22 ± 0.01
OUTFLOW	$\xi = 0.01$	$5.26\pm0.02 \mid \xi=0.5$	$5.28{\pm}0.03$	$\xi = 0.5$	5.25 ± 0.01
	$\xi = 0.001$	$5.24\pm0.01 \mid \xi=1$	$5.23{\pm}0.01$	$\xi=1$	5.23 ± 0.01
	$\xi = 0.0001$	$5.25\pm0.04 \mid \xi=2$	5.24 ± 0.02	$\xi=2$	$\boldsymbol{5.21 {\pm} 0.01}$

Table 32: Comparison of models with and without decay on dataset **NYCBike1** in terms of MAPE(%). $(K=4,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln{(t-t'+1)}}$
	$\xi=0$	$23.94 \pm 0.28 \mid \xi =$	$=0$ 23.94 \pm 0.28	$\xi=0$	23.94 ± 0.28
INFLOW	$\xi = 0.01$	$oldsymbol{23.53}{\pm0.25}$ ξ =	$=0.5$ 23.70 \pm 0.35	$\xi = 0.5$	$23.71 {\pm} 0.39$
	$\xi = 0.001$	$oldsymbol{23.63}{\pm0.29}$ ξ =	$=1$ 23.45 \pm 0.25	$\xi=1$	$23.39{\pm}0.26$
	$\xi = 0.0001$	$oldsymbol{23.79}{\pm0.69}$ ξ =	=2 23.32 ± 0.16	$\xi=2$	$23.39{\pm}0.43$
	$\xi=0$	$24.53\pm0.16 \mid \xi =$	$=0$ 24.53 \pm 0.16	$\xi=0$	24.53 ± 0.16
OUTFLOW	$\xi = 0.01$	$24.45{\pm}0.28$ ξ =	$=0.5$ 24.57 ± 0.40	$\xi = 0.5$	$24.40{\pm}0.25$
	$\xi = 0.001$	$oldsymbol{24.38 \pm 0.20} ig egin{array}{c} \xi = \end{array}$	=1 24.25 ± 0.33	$\xi=1$	$24.23{\pm}0.27$
	$ \xi = 0.0001$	24.40 \pm 0.49 ξ =	=2 24.28 ± 0.29	$\xi=2$	$24.23{\pm}0.50$

Table 33: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=1,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$ \alpha_{t'} $	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	12.23 ± 0.10	$\xi=0$	12.23 ± 0.10	$\xi=0$	12.23 ± 0.10
INFLOW	$\xi = 0.01$	$12.21{\pm}0.07$	$\xi = 0.5$	$12.09 {\pm} 0.10$	$\xi = 0.5$	12.10 ± 0.11
	$\xi = 0.001$	$12.18{\pm}0.18$	$\xi=1$	$12.13 {\pm} 0.10$	$\xi=1$	12.18 ± 0.13
	$\xi = 0.0001$	$12.13{\pm}0.13$	$\xi=2$	$12.14 {\pm} 0.16$	$\xi=2$	$12.25{\pm}0.17$
	$\xi=0$	$9.90 {\pm} 0.08$	$\xi=0$	$9.90 {\pm} 0.08$	$\xi=0$	9.90 ± 0.08
OUTFLOW	$\xi = 0.01$	$\boldsymbol{9.83 {\pm} 0.06}$	$\xi = 0.5$	$9.91 {\pm} 0.13$	$\xi = 0.5$	$\boldsymbol{9.87 {\pm} 0.07}$
	$\xi = 0.001$	$\boldsymbol{9.86 {\pm} 0.14}$	$\xi=1$	$9.91 {\pm} 0.15$	$\xi=1$	$9.85{\pm}0.10$
-	$ \xi = 0.0001$	$9.86{\pm}0.14$	$\xi=2$	$9.76{\pm}0.12$	$\xi=2$	$9.87{\pm}0.10$

Table 34: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=1,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	17.16 ± 0.56	$\xi=0$	17.16 ± 0.56	$\xi=0$	17.16 ± 0.56
INFLOW	$\xi = 0.01$	16.74 ± 0.60	$\xi = 0.5$	$16.92 {\pm} 0.42$	$\xi = 0.5$	$16.77{\pm}0.26$
	$\xi = 0.001$	16.91 ± 0.13	$\xi=1$	17.83 ± 1.22	$\xi=1$	$16.95{\pm}0.63$
	$ \xi = 0.0001$	$16.85 {\pm} 0.49$	$\xi=2$	17.05 ± 0.59	$\xi=2$	17.35 ± 1.29
	$ \xi=0$	17.27 ± 0.3	$\xi=0$	17.27 ± 0.3	$\xi=0$	17.27 ± 0.3
OUTFLOW	$\xi = 0.01$	17.54 ± 0.63	ξ =0.5	18.30 ± 1.23	$\xi = 0.5$	17.74 ± 0.76
	$\xi = 0.001$	17.17 ± 0.31	$\xi=1$	18.06 ± 1.00	$\xi=1$	17.76 ± 0.42
	$ \xi = 0.0001$	17.46 ± 0.98	$\xi=2$	17.28 ± 0.28	$\xi = 2$	17.95 ± 1.32

Table 35: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=1,\,L=2).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$ $\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$ $\alpha_{t'}=$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	<u> </u>	* - * //	, ,	
	$\xi=0$	$12.15\pm0.08 \mid \xi=0$	$12.15\pm0.08 \mid \xi=0$	12.15 ± 0.08
INFLOW	$\xi = 0.01$	12.15 \pm 0.11 ξ =0.5	$12.20\pm0.17 \mid \xi=0.5$	$12.07 {\pm} 0.05$
	$\xi = 0.001$	12.07 \pm 0.15 ξ =1	$12.16\pm0.12 \mid \xi=1$	12.1 ± 0.09
	$\xi = 0.0001$	$12.19\pm0.03 \mid \xi=2$	$12.25\pm0.15 \mid \xi=2$	12.17 ± 0.17
	$\xi=0$	$9.82\pm0.10 \mid \xi=0$	$9.82\pm0.10 \mid \xi=0$	$9.82 {\pm} 0.10$
OUTFLOW	$\xi = 0.01$	9.86 ± 0.17 ξ =0.5	$9.84\pm0.13 \mid \xi=0.5$	$9.73 {\pm} 0.07$
	$\xi = 0.001$	$9.83\pm0.12 \mid \xi=1$	9.79 \pm 0.09 ξ =1	$\boldsymbol{9.81 {\pm} 0.12}$
	$\xi = 0.0001$	9.79 \pm 0.14 ξ =2	$9.83\pm0.18 \mid \xi=2$	$9.78{\pm}0.06$

Table 36: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=1,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$16.71 {\pm} 0.27$	$\xi=0$	$16.71 {\pm} 0.27$	$\xi=0$	$16.71 {\pm} 0.27$
INFLOW	$\xi = 0.01$	17.08 ± 0.78	$\xi = 0.5$	16.73 ± 0.33	$\xi = 0.5$	17.07 ± 0.21
	$\xi = 0.001$	17.01 ± 0.76	$\xi=1$	$16.51 {\pm} 0.41$	$\xi=1$	16.72 ± 0.09
	$\xi = 0.0001$	17.08 ± 0.70	$\xi=2$	$16.82 {\pm} 0.63$	$\xi=2$	16.94 ± 0.61
	$\xi=0$	17.39 ± 0.5	$\xi=0$	17.39 ± 0.5	$\xi=0$	17.39 ± 0.5
OUTFLOW	$\xi = 0.01$	$17.47 {\pm} 0.61$	$\xi = 0.5$	17.42 ± 0.91	$\xi = 0.5$	17.65 ± 0.53
	$\xi = 0.001$	17.73 ± 0.66	$\xi=1$	$17.10 {\pm} 0.60$	$\xi=1$	$17.31 {\pm} 0.46$
	$ \xi=0.0001$	$17.08{\pm}0.20$	$\xi = 2$	17.57 ± 0.71	$\xi = 2$	18.34 ± 1.45

Table 37: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=1,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	12.18 ± 0.21	$\xi=0$	12.18 ± 0.21	$\xi=0$	12.18 ± 0.21
INFLOW	$\xi = 0.01$	$12.16 {\pm} 0.13$	$\xi = 0.5$	$12.15 {\pm} 0.11$	$\xi = 0.5$	12.08 ± 0.14
	$\xi = 0.001$	12.21 ± 0.12	$\xi=1$	12.11 ± 0.13	$\xi=1$	12.35 ± 0.13
	$\xi = 0.0001$	$12.15{\pm}0.10$	$\xi=2$	$12.06 {\pm} 0.04$	$\xi=2$	12.24 ± 0.07
	$\xi=0$	$9.77{\pm}0.08$	$\xi=0$	$9.77{\pm}0.08$	$\xi=0$	9.77 ± 0.08
OUTFLOW	$\xi = 0.01$	$9.87{\pm}0.08$	$\xi = 0.5$	$9.93{\pm}0.13$	$\xi = 0.5$	9.87 ± 0.19
	$\xi = 0.001$	$9.84{\pm}0.13$	$\xi=1$	$9.76 {\pm} 0.15$	$\xi=1$	9.93 ± 0.19
	$\xi = 0.0001$	$9.80 {\pm} 0.07$	$\xi=2$	9.79 ± 0.13	$\xi=2$	$9.74{\pm}0.11$

Table 38: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=1,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$16.84 \pm 0.46 \mid \xi = 0$	$16.84 {\pm} 0.46$	$\xi = 0$	16.84 ± 0.46
INFLOW	$\xi = 0.01$	16.74 ± 0.43 ξ =0	$.5 17.01 \pm 0.51$	$\xi = 0.5$	16.90 ± 0.33
	$\xi = 0.001$	$16.91\pm0.89 \mid \xi=1$	$16.95 {\pm} 0.47$	$\xi=1$	17.43 ± 0.87
	$\xi = 0.0001$	16.69 \pm 0.52 ξ =2	$\textbf{16.68} {\pm} \textbf{0.33}$	$\xi=2$	17.69 ± 1.05
	$\xi=0$	$17.18 \pm 0.57 \mid \xi = 0$	17.18 ± 0.57	$\xi = 0$	17.18 ± 0.57
OUTFLOW	$\xi = 0.01$	17.03 \pm 0.31 ξ =0	$.5 17.73 \pm 0.55$	$\xi = 0.5$	18.18 ± 1.24
	$\xi = 0.001$	$17.27\pm0.38 \mid \xi=1$	$17.39 {\pm} 0.17$	$\xi=1$	18.01 ± 0.80
	$ \xi = 0.0001$	$17.52\pm0.50 \mid \xi=2$	18.15 ± 1.43	$\xi = 2$	17.42 ± 0.47

Table 39: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=1,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}} \qquad \Big \qquad \delta$	$\alpha_{t'} = \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$12.10\pm0.09 \mid \xi=0$	$12.10\pm0.09 \mid \xi =$	$0 12.10 \pm 0.09$
INFLOW	$ \xi = 0.01$	12.09 \pm 0.16 ξ =0.5	$12.18 \pm 0.18 \mid \xi =$	$0.5 12.15 \pm 0.08$
	$\xi = 0.001$	$12.16\pm0.15 \mid \xi=1$	$12.10\pm0.12 \mid \xi =$	1 12.12 ± 0.10
	$\xi = 0.0001$	$12.18\pm0.08 \mid \xi=2$	$12.14 \pm 0.07 \mid \xi =$	$2 12.28 \pm 0.10$
	$\xi=0$	$9.79\pm0.09 \mid \xi=0$	$9.79 \pm 0.09 \mid \xi =$	$0 9.79 \pm 0.09$
OUTFLOW	$ \xi = 0.01$	9.78 \pm 0.10 ξ =0.5	$9.86 \pm 0.14 \mid \xi =$	$0.5 9.83 \pm 0.09$
	$\xi = 0.001$	$9.87 \pm 0.08 \mid \xi = 1$	9.79 \pm 0.11 ξ =	9.77±0.11
	$ \overline{\xi = 0.0001}$	$9.83\pm0.07 \mid \xi=2$	9.79 \pm 0.11 ξ =	$2 9.83 \pm 0.08$

Table 40: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=1,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$16.76 {\pm} 0.21$	$\xi=0$	$16.76 {\pm} 0.21$	$\xi=0$	16.76 ± 0.21
INFLOW	$\xi = 0.01$	$16.48 {\pm} 0.36$	$\xi = 0.5$	$16.77 {\pm} 0.22$	$\xi = 0.5$	16.82 ± 0.62
	$\xi = 0.001$	$16.59 {\pm} 0.29$	$\xi=1$	$16.95 {\pm} 0.62$	$\xi=1$	17.11 ± 1.06
	$\xi = 0.0001$	$16.66 {\pm} 0.23$	$\xi=2$	$16.84{\pm}0.33$	$\xi=2$	17.79 ± 1.17
	$\xi=0$	17.51 ± 0.34	$\xi=0$	17.51 ± 0.34	$\xi=0$	17.51 ± 0.34
OUTFLOW	$\xi = 0.01$	$\boldsymbol{17.04 {\pm} 0.44}$	$\xi = 0.5$	$17.47 {\pm} 0.32$	$\xi = 0.5$	17.60 ± 0.85
	$\xi = 0.001$	17.97 ± 0.75	$\xi=1$	$17.54 {\pm} 0.92$	$\xi=1$	$17.03 {\pm} 0.22$
	$ \xi = 0.0001$	$\textbf{16.89} {\pm} \textbf{0.31}$	$\xi = 2$	17.88 ± 1.19	$\xi = 2$	17.70 ± 0.48

Table 41: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=2,\,L=1).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	12.18 ± 0.13	$\xi=0$	12.18 ± 0.13	$\xi=0$	12.18 ± 0.13
INFLOW	$\xi = 0.01$	12.21 ± 0.14	$\xi = 0.5$	$12.11 {\pm} 0.09$	$\xi = 0.5$	12.11 ± 0.11
	$\xi = 0.001$	$12.17{\pm}0.14$	$\xi=1$	12.19 ± 0.18	$\xi=1$	$12.13{\pm}0.19$
	$\xi = 0.0001$	$12.08 {\pm} 0.08$	$\xi=2$	$12.13 {\pm} 0.06$	$\xi=2$	12.22 ± 0.19
	$\xi=0$	$9.85{\pm}0.09$	$\xi=0$	$9.85{\pm}0.09$	$\xi=0$	9.85 ± 0.09
OUTFLOW	$\xi = 0.01$	$9.92{\pm}0.23$	$\xi = 0.5$	$\boldsymbol{9.82 {\pm} 0.07}$	$\xi = 0.5$	9.89 ± 0.09
	$\xi = 0.001$	$9.87{\pm}0.06$	$\xi=1$	$9.88 {\pm} 0.22$	$\xi=1$	$9.79{\pm}0.25$
	$ \xi = 0.0001$	$9.86 {\pm} 0.10$	$\xi=2$	$9.73{\pm}0.15$	$\xi=2$	$9.86{\pm}0.15$

Table 42: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=2,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$16.75\pm0.34 \mid \xi=0$	$16.75 {\pm} 0.34$	$\xi=0$	16.75 ± 0.34
INFLOW	$\xi = 0.01$	$17.10\pm0.65 \mid \xi=0$	$.5$ 16.63 \pm 0.48	$\xi = 0.5$	16.89 ± 0.27
	$\xi = 0.001$	$17.02\pm0.57 \mid \xi=1$	$17.65 {\pm} 1.23$	$\xi=1$	16.84 ± 0.49
	$\xi = 0.0001$	$16.78 \pm 0.40 \mid \xi = 2$	16.89 ± 0.71	$\xi=2$	$16.52{\pm}0.18$
	$\xi=0$	$18.02 \pm 0.59 \mid \xi = 0$	$18.02 {\pm} 0.59$	$\xi=0$	18.02 ± 0.59
OUTFLOW	$\xi = 0.01$	17.55 \pm 1.23 ξ =0	.5 17.17 ± 0.56	$\xi = 0.5$	$17.62 {\pm} 0.55$
	$\xi = 0.001$	17.09 \pm 0.25 ξ =1	$17.60 {\pm} 1.03$	$\xi=1$	$17.85 {\pm} 1.10$
	$\xi = 0.0001$	17.31 \pm 0.60 ξ =2	$17.25 {\pm} 0.37$	$\xi=2$	$17.06 {\pm} 0.25$

Table 43: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=2,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$ $\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$ $\alpha_{t'}=$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$12.11\pm0.09 \mid \xi=0$	$12.11\pm0.09 \mid \xi=0$	12.11±0.09
INFLOW	$\xi = 0.01$	$12.14\pm0.11 \mid \xi=0.5$	$12.16\pm0.02 \mid \xi=0.5$	$12.08{\pm}0.14$
	$\xi = 0.001$	$12.23\pm0.09 \mid \xi=1$	$12.11\pm0.10 \mid \xi=1$	12.29 ± 0.21
	$\xi = 0.0001$	12.08 \pm 0.05 ξ =2	12.20 ± 0.19 $\xi=2$	12.13 ± 0.06
	$\xi=0$	$9.76\pm0.14 \mid \xi=0$	$9.76\pm0.14 \mid \xi=0$	$9.76 {\pm} 0.14$
OUTFLOW	$\xi = 0.01$	$9.80\pm0.10 \mid \xi=0.5$	$9.83\pm0.08 \mid \xi=0.5$	9.70 ± 0.09
	$\xi = 0.001$	$9.84 {\pm} 0.15 \mid \xi = 1$	$9.79\pm0.04 \mid \xi=1$	9.87 ± 0.13
	$\xi = 0.0001$	9.73 \pm 0.09 ξ =2	$9.87\pm0.16 \mid \xi=2$	9.71 ± 0.09

Table 44: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=2,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	16.83 ± 0.53	$\xi=0$	$16.83 {\pm} 0.53$	$\xi=0$	16.83 ± 0.53
INFLOW	$\xi = 0.01$	17.01 ± 0.55	$\xi = 0.5$	$16.56 {\pm} 0.16$	$\xi = 0.5$	${\bf 16.30 {\pm} 0.20}$
	$\xi = 0.001$	17.01 ± 0.89	$\xi=1$	$16.94 {\pm} 0.38$	$\xi=1$	17.61 ± 0.54
	$\xi = 0.0001$	16.90 ± 0.34	$\xi=2$	17.18 ± 0.41	$\xi=2$	16.84 ± 0.44
	$\xi=0$	17.64 ± 1.13	$\xi=0$	17.64 ± 1.13	$\xi=0$	17.64 ± 1.13
OUTFLOW	$\xi = 0.01$	17.79 ± 0.89	$\xi = 0.5$	$17.21 {\pm} 0.52$	$\xi = 0.5$	$16.87 {\pm} 0.23$
	$\xi = 0.001$	$17.39 {\pm} 0.71$	$\xi=1$	$17.66 {\pm} 0.65$	$\xi=1$	18.04 ± 0.89
	$\xi = 0.0001$	$17.35 {\pm} 0.57$	$\xi=2$	$18.71 {\pm} 1.37$	$\xi=2$	17.97±1.28

Table 45: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=2,\,L=4).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	12.11 ± 0.08	$\xi=0$	12.11 ± 0.08	$\xi=0$	12.11 ± 0.08
INFLOW	$\xi = 0.01$	12.18 ± 0.12	$\xi = 0.5$	12.13 ± 0.13	$\xi = 0.5$	$12.03{\pm}0.10$
	$\xi = 0.001$	$12.25 {\pm} 0.11$	$\xi=1$	$12.02 {\pm} 0.03$	$\xi=1$	12.25 ± 0.13
	$\xi = 0.0001$	$12.08 {\pm} 0.06$	$\xi=2$	12.21 ± 0.14	$\xi=2$	12.20 ± 0.15
	$\xi=0$	$9.81 {\pm} 0.11$	$\xi=0$	$9.81 {\pm} 0.11$	$\xi=0$	9.81 ± 0.11
OUTFLOW	$\xi = 0.01$	$9.86{\pm}0.14$	$\xi = 0.5$	$9.92{\pm}0.15$	$\xi = 0.5$	$9.78{\pm}0.11$
	$\xi = 0.001$	$9.94{\pm}0.16$	$\xi=1$	$\boldsymbol{9.74} {\pm} \boldsymbol{0.04}$	$\xi=1$	$9.79{\pm0.06}$
	$ \xi = 0.0001$	$\boldsymbol{9.69 {\pm} 0.04}$	$\xi = 2$	$9.85 {\pm} 0.12$	$\xi = 2$	9.83 ± 0.09

Table 46: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=2,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln{(t-t'+1)}}$
	$\xi=0$	17.01 ± 0.78	$\xi=0$	17.01 ± 0.78	$\xi=0$	17.01 ± 0.78
INFLOW	$\xi = 0.01$	17.16 ± 0.56	$\xi = 0.5$	17.15 ± 0.42	ξ =0.5	$16.79 {\pm} 0.31$
	$\xi = 0.001$	17.39 ± 0.81	$\xi=1$	17.07 ± 0.46	$\xi=1$	17.28 ± 0.61
	$\xi = 0.0001$	$16.98{\pm}0.58$	$\xi=2$	$16.66 {\pm} 0.13$	$\xi=2$	17.90 ± 1.54
	$\xi=0$	17.73 ± 0.83	$\xi=0$	17.73 ± 0.83	$\xi=0$	17.73 ± 0.83
OUTFLOW	$\xi = 0.01$	17.80 ± 0.95	$\xi = 0.5$	18.11±1.01	ξ =0.5	17.71 ± 0.55
	$\xi = 0.001$	18.27 ± 1.34	$\xi=1$	17.27 ± 0.35	$\xi=1$	18.13 ± 0.55
	$ \xi = 0.0001$	17.18 ± 0.27	$\xi=2$	17.45 ± 0.57	$\xi=2$	18.45 ± 1.05

Table 47: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=2,\,L=8).$

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	12.14 ± 0.13	$\xi=0$	12.14 ± 0.13	$\xi=0$	12.14 ± 0.13
INFLOW	$\xi = 0.01$	12.15 ± 0.10	$\xi = 0.5$	12.16 ± 0.10	$\xi = 0.5$	$12.13{\pm}0.03$
	$\xi = 0.001$	12.19 ± 0.16	$\xi=1$	$12.10 {\pm} 0.07$	$\xi=1$	12.28 ± 0.10
	$\xi = 0.0001$	$12.12 {\pm} 0.13$	$\xi=2$	12.21 ± 0.12	$\xi=2$	12.21 ± 0.09
	$\xi=0$	$9.85{\pm}0.11$	$\xi=0$	$9.85{\pm}0.11$	$\xi=0$	9.85 ± 0.11
OUTFLOW	$\xi = 0.01$	$9.86{\pm}0.12$	$\xi = 0.5$	$\boldsymbol{9.81 {\pm} 0.07}$	$\xi = 0.5$	$9.78{\pm}0.09$
	$\xi = 0.001$	$9.87{\pm}0.18$	$\xi=1$	$\boldsymbol{9.84 {\pm} 0.20}$	$\xi=1$	9.90 ± 0.10
	$ \xi = 0.0001$	$9.73{\pm}0.03$	$\xi = 2$	$9.77{\pm}0.13$	$\xi = 2$	$9.81{\pm}0.07$

Table 48: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=2,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$-\xi(t-t')$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	17.01±0.49	$\xi=0$	17.01 ± 0.49	$\xi=0$	17.01 ± 0.49
INFLOW	$\xi = 0.01$	17.11 ± 0.52	$\xi = 0.5$	$16.83 {\pm} 0.37$	$\xi = 0.5$	17.25 ± 0.98
	$\xi = 0.001$	17.50 ± 1.44	$\xi=1$	$16.64{\pm}0.47$	$\xi=1$	17.10 ± 0.51
	$\xi = 0.0001$	$16.53 {\pm} 0.29$	$\xi=2$	17.06 ± 0.60	$\xi=2$	17.44 ± 0.98
	$ \xi=0$	17.18±0.36	$\xi=0$	17.18 ± 0.36	$\xi=0$	17.18 ± 0.36
OUTFLOW	$\xi = 0.01$	17.84 ± 0.86	ξ =0.5	17.99 ± 0.77	$\xi = 0.5$	17.41 ± 0.58
	$\xi = 0.001$	17.55 ± 0.32	$\xi=1$	17.60 ± 0.73	$\xi=1$	18.06 ± 0.74
	$ \xi = 0.0001$	$16.97{\pm}0.17$	$\xi=2$	18.29 ± 0.93	$\xi = 2$	17.01 ± 0.38

Table 49: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=3,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}} \qquad \qquad \alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$12.11\pm0.10 \mid \xi=0$	$12.11\pm0.10 \mid \xi=0$	12.11±0.10
INFLOW	$\xi = 0.01$	$12.12\pm0.15 \mid \xi=0.5$	$12.12\pm0.09 \mid \xi=0.5$	$12.08{\pm}0.13$
	$\xi = 0.001$	$12.14\pm0.09 \mid \xi=1$	$12.15\pm0.14 \mid \xi=1$	12.18 ± 0.14
	$\xi = 0.0001$	$12.14\pm0.07 \mid \xi=2$	$12.23\pm0.10 \mid \xi=2$	$12.10{\pm}0.14$
	$\xi=0$	$9.75\pm0.14 \mid \xi=0$	$9.75\pm0.14 \mid \xi=0$	9.75 ± 0.14
OUTFLOW	$\xi = 0.01$	$9.80\pm0.18 \mid \xi=0.5$	$9.87\pm0.14 \mid \xi=0.5$	9.76 ± 0.21
	$\xi = 0.001$	$9.75\pm0.11 \mid \xi=1$	$9.78\pm0.12 \mid \xi=1$	9.80 ± 0.09
	$\xi = 0.0001$	$9.78\pm0.06 \mid \xi=2$	$9.75\pm0.06 \mid \xi=2$	$\boldsymbol{9.67 {\pm} 0.04}$

Table 50: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=3,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$16.66 {\pm} 0.57$	$\xi=0$	$16.66 {\pm} 0.57$	$\xi=0$	$16.66 {\pm} 0.57$
INFLOW	$\xi = 0.01$	17.07 ± 0.65	$\xi = 0.5$	16.78 ± 0.27	ξ =0.5	$16.52 {\pm} 0.33$
	$\xi = 0.001$	$16.57{\pm}0.21$	$\xi=1$	16.97 ± 0.57	$\xi=1$	17.25 ± 0.62
	$ \xi = 0.0001$	16.70±0.32	$\xi=2$	17.04±0.40	$\xi=2$	17.39 ± 0.81
	$\xi=0$	17.25 ± 0.61	$\xi=0$	17.25 ± 0.61	$\xi=0$	17.25 ± 0.61
OUTFLOW	$\xi = 0.01$	17.87 ± 0.98	$\xi = 0.5$	17.74 ± 0.95	ξ =0.5	$16.99 {\pm} 0.39$
	$\xi = 0.001$	$16.99 {\pm} 0.18$	$\xi=1$	18.41 ± 0.74	$\xi=1$	17.13 ± 0.16
	$\xi = 0.0001$	17.66±0.68	$\xi=2$	17.21 ± 0.20	$\xi=2$	17.52±0.39

Table 51: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=3,\,L=2).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	12.20 ± 0.06	$\xi=0$	12.20 ± 0.06	$\xi=0$	$12.20{\pm}0.06$
INFLOW	$\xi = 0.01$	$12.19{\pm}0.14$	$\xi = 0.5$	$12.19 {\pm} 0.14$	$\xi = 0.5$	$12.07{\pm}0.09$
	$\xi = 0.001$	$12.15{\pm}0.18$	$\xi=1$	$12.08 {\pm} 0.11$	$\xi=1$	$12.12{\pm}0.17$
	$\xi = 0.0001$	$12.08{\pm}0.08$	$\xi=2$	$12.27{\pm}0.07$	$\xi=2$	12.28 ± 0.25
	$\xi=0$	9.79 ± 0.07	$\xi=0$	$9.79 {\pm} 0.07$	$\xi=0$	9.79 ± 0.07
OUTFLOW	$\xi = 0.01$	$9.82 {\pm} 0.11$	$\xi = 0.5$	$9.86{\pm}0.07$	$\xi = 0.5$	$9.73{\pm}0.10$
	$\xi = 0.001$	9.84±0.14	$\xi=1$	$9.84{\pm}0.12$	$\xi=1$	9.84 ± 0.16
	$ \overline{\xi = 0.0001}$	$9.73{\pm}0.12$	$\xi=2$	$\boldsymbol{9.78 {\pm} 0.12}$	$\xi=2$	9.83 ± 0.15

Table 52: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=3,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$16.93\pm0.39 \mid \xi =$	$=0$ 16.93 ± 0.39	$\xi=0$	16.93 ± 0.39
INFLOW	$\xi = 0.01$	$17.04\pm1.15 \mid \xi =$	$=0.5$ 17.22 ± 0.89	$\xi = 0.5$	16.78 ± 0.19
	$\xi = 0.001$	16.47 \pm 0.31 ξ =	$=1$ 16.55 \pm 0.34	$\xi=1$	17.42 ± 0.77
	$\xi = 0.0001$	16.73 \pm 0.56 ξ =	$=2$ 16.89 ± 0.26	$\xi=2$	17.70 ± 1.59
	$ \xi=0$	$17.29 \pm 0.4 \mid \xi =$	$=0$ 17.29 \pm 0.4	$\xi=0$	17.29 ± 0.4
OUTFLOW	$\xi = 0.01$	$17.34\pm0.38 \mid \xi =$	$=0.5$ 17.81 ± 0.68	$\xi = 0.5$	17.60 ± 0.78
	$\xi = 0.001$	16.94 \pm 0.12 ξ	$=1$ 17.79 ± 1.17	$\xi=1$	18.00 ± 1.39
	$ \xi = 0.0001$	$17.89 \pm 1.20 \mid \xi =$	$=2$ 17.26 \pm 0.65	$\xi = 2$	$17.23{\pm}0.56$

Table 53: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=3,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	12.22 ± 0.06	$\xi=0$	12.22 ± 0.06	$\xi=0$	12.22 ± 0.06
INFLOW	$\xi = 0.01$	$12.03 {\pm} 0.14$	$\xi = 0.5$	$12.12 {\pm} 0.06$	$\xi = 0.5$	$12.21 {\pm} 0.03$
	$\xi = 0.001$	$12.16 {\pm} 0.12$	$\xi=1$	12.11 ± 0.16	$\xi=1$	12.33 ± 0.14
	$\xi = 0.0001$	$12.13 {\pm} 0.07$	$\xi=2$	$12.12 {\pm} 0.14$	$\xi=2$	$12.10{\pm}0.08$
	$\xi=0$	$9.84{\pm}0.07$	$\xi=0$	$9.84{\pm}0.07$	$\xi=0$	$9.84{\pm}0.07$
OUTFLOW	$\xi = 0.01$	$\boldsymbol{9.77 {\pm} 0.11}$	$\xi = 0.5$	$9.76 {\pm} 0.07$	$\xi = 0.5$	9.83 ± 0.12
	$\xi = 0.001$	$9.86{\pm}0.13$	$\xi=1$	$9.75 {\pm} 0.04$	$\xi=1$	9.92 ± 0.13
-	$ \xi = 0.0001$	$9.77{\pm}0.03$	$\xi = 2$	$9.77{\pm}0.08$	$\xi = 2$	$9.77{\pm0.06}$

Table 54: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=3,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$16.95 {\pm} 0.32$	$\xi=0$	$16.95{\pm}0.32$	$\xi=0$	16.95 ± 0.32
INFLOW	$\xi = 0.01$	$16.69 {\pm} 0.37$	$\xi = 0.5$	17.07 ± 0.34	$\xi = 0.5$	16.95 ± 0.34
	$\xi = 0.001$	$16.73 {\pm} 0.37$	$\xi=1$	17.04 ± 0.51	$\xi=1$	18.11±0.33
	$\xi = 0.0001$	$16.63 {\pm} 0.39$	$\xi=2$	$16.89 {\pm} 0.48$	$\xi=2$	17.04 ± 0.37
	$\xi=0$	18.43 ± 1.11	$\xi=0$	$18.43{\pm}1.11$	$\xi=0$	18.43±1.11
OUTFLOW	$\xi = 0.01$	17.08 ± 0.47	ξ =0.5	$18.20 {\pm} 0.53$	$\xi = 0.5$	17.17 ± 0.28
	$\xi = 0.001$	17.52 ± 0.66	$\xi=1$	$17.90 {\pm} 0.84$	$\xi=1$	18.85 ± 1.16
	$ \xi = 0.0001$	17.28 ± 0.60	$\xi=2$	$17.72 {\pm} 0.46$	$\xi=2$	$17.91 {\pm} 0.72$

Table 55: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=3,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	12.18 ± 0.17	$\xi=0$	12.18 ± 0.17	$\xi=0$	12.18 ± 0.17
INFLOW	$\xi = 0.01$	$12.14 {\pm} 0.13$	$\xi = 0.5$	$12.12 {\pm} 0.08$	$\xi = 0.5$	$12.17{\pm}0.05$
	$\xi = 0.001$	$12.15 {\pm} 0.15$	$\xi=1$	$12.14 {\pm} 0.08$	$\xi=1$	12.16 ± 0.12
	$\xi = 0.0001$	$12.15 {\pm} 0.12$	$\xi=2$	12.26 ± 0.11	$\xi=2$	12.20 ± 0.08
	$\xi=0$	$9.82 {\pm} 0.13$	$\xi=0$	$9.82 {\pm} 0.13$	$\xi=0$	9.82 ± 0.13
OUTFLOW	$\xi = 0.01$	$\boldsymbol{9.74 {\pm} 0.12}$	$\xi = 0.5$	$9.87{\pm}0.05$	$\xi = 0.5$	9.82 ± 0.07
	$\xi = 0.001$	$9.85{\pm}0.15$	$\xi=1$	$\boldsymbol{9.81 {\pm} 0.16}$	$\xi=1$	$\boldsymbol{9.80 {\pm} 0.12}$
	$ \overline{\xi = 0.0001}$	$9.81{\pm}0.10$	$\xi=2$	$9.77{\pm}0.10$	$\xi=2$	$9.72{\pm}0.08$

Table 56: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=3,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	16.90 ± 0.79	$\xi=0$	$16.9 {\pm} 0.79$	$\xi=0$	16.9 ± 0.79
INFLOW	$\xi = 0.01$	$17.54 {\pm} 0.77$	$\xi = 0.5$	$16.76 {\pm} 0.40$	$\xi = 0.5$	$16.81 {\pm} 0.26$
	$\xi = 0.001$	$16.75 {\pm} 0.28$	$\xi=1$	$16.89 {\pm} 0.43$	$\xi=1$	17.08 ± 0.64
	$\xi = 0.0001$	${\bf 16.90} {\pm} {\bf 0.60}$	$\xi=2$	17.37 ± 1.09	$\xi=2$	$\textbf{16.68} {\pm} \textbf{0.54}$
	$\xi=0$	17.24 ± 0.69	$\xi=0$	17.24 ± 0.69	$\xi=0$	17.24 ± 0.69
OUTFLOW	$\xi = 0.01$	18.05 ± 0.88	$\xi = 0.5$	17.62 ± 0.48	$\xi = 0.5$	$16.95 {\pm} 0.21$
	$\xi = 0.001$	17.60 ± 0.48	$\xi=1$	17.39 ± 0.48	$\xi=1$	17.44 ± 0.38
	$\xi = 0.0001$	17.57 ± 0.80	$\xi = 2$	$18.41 {\pm} 1.07$	$\xi = 2$	17.61 ± 0.64

Table 57: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=4,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$12.08\pm0.07 \mid \xi=0$	12.08 ± 0.07	$\xi=0$	12.08 ± 0.07
INFLOW	$\xi = 0.01$	12.08 \pm 0.07 ξ =0.5	12.13 ± 0.05	$\xi = 0.5$	12.33 ± 0.44
	$\xi = 0.001$	$12.23\pm0.15 \mid \xi=1$	$12.16 {\pm} 0.14$	$\xi=1$	12.13 ± 0.14
	$\xi = 0.0001$	$12.08\pm0.05 \mid \xi=2$	12.18 ± 0.13	$\xi=2$	12.16 ± 0.13
	$\xi=0$	$9.74\pm0.09 \mid \xi=0$	$9.74{\pm}0.09$	$\xi=0$	9.74 ± 0.09
OUTFLOW	$\xi = 0.01$	9.73 \pm 0.05 ξ =0.5	$9.81 {\pm} 0.07$	$\xi = 0.5$	$9.91 {\pm} 0.23$
	$\xi = 0.001$	$9.88\pm0.17 \mid \xi=1$	$9.82 {\pm} 0.10$	$\xi=1$	9.79 ± 0.10
	$\xi = 0.0001$	9.70 \pm 0.07 ξ =2	$9.80 {\pm} 0.07$	$\xi=2$	9.79 ± 0.13

Table 58: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=4,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	17.20 ± 0.69	$\xi=0$	17.20 ± 0.69	$\xi=0$	17.20 ± 0.69
INFLOW	$\xi = 0.01$	17.03 ± 0.38	ξ =0.5	$16.71 {\pm} 0.45$	$\xi = 0.5$	$16.75 {\pm} 0.42$
	$\xi = 0.001$	17.54 ± 1.31	$\xi=1$	17.00 ± 0.89	$\xi=1$	17.11 ± 0.70
	$\xi = 0.0001$	$16.77 {\pm} 0.42$	$\xi=2$	$16.73 {\pm} 0.55$	$\xi=2$	$16.89 {\pm} 0.61$
	$\xi=0$	17.65 ± 1.29	$\xi=0$	17.65 ± 1.29	$\xi=0$	17.65 ± 1.29
OUTFLOW	$\xi = 0.01$	17.58 ± 0.99	ξ =0.5	17.71 ± 0.94	ξ =0.5	17.50 ± 0.62
	$\xi = 0.001$	17.90 ± 1.02	$\xi=1$	18.09 ± 0.93	$\xi=1$	17.74 ± 1.22
	$ \xi = 0.0001$	17.00±0.27	$\xi=2$	16.95 ± 0.23	$\xi = 2$	17.25 ± 0.75

Table 59: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=4,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\mid \xi=0$	$12.08\pm0.14 \mid \xi=0$	12.08 ± 0.14	$\xi=0$	12.08 ± 0.14
INFLOW	$\xi = 0.01$	12.07 \pm 0.05 ξ =0.5	12.10 ± 0.11	$\xi = 0.5$	12.14 ± 0.01
	$\xi = 0.001$	$12.17\pm0.10 \mid \xi=1$	12.09 ± 0.15	$\xi=1$	12.22 ± 0.15
	$\xi = 0.0001$	$12.09\pm0.12 \mid \xi=2$	12.19 ± 0.12	$\xi=2$	12.16 ± 0.13
	$\mid \xi=0$	$9.76\pm0.07 \mid \xi=0$	$9.76 {\pm} 0.07$	$\xi=0$	9.76 ± 0.07
OUTFLOW	$\xi = 0.01$	9.73 \pm 0.07 ξ =0.5	$9.81 {\pm} 0.08$	$\xi = 0.5$	$9.71 {\pm} 0.08$
	$\xi = 0.001$	$9.76\pm0.16 \mid \xi=1$	$\boldsymbol{9.70 \!\pm\! 0.11}$	$\xi=1$	9.83 ± 0.07
	$ \xi=0.0001$	$9.77\pm0.09 \mid \xi=2$	$9.72{\pm}0.08$	$\xi=2$	9.87 ± 0.05

Table 60: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=4,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$16.68\pm0.47 \mid \xi=0$	$16.68 {\pm} 0.47$	$\xi=0$	16.68 ± 0.47
INFLOW	$\xi = 0.01$	$16.72\pm0.13 \mid \xi=0.5$	$5 17.22 \pm 0.46$	$\xi = 0.5$	$16.65{\pm}0.16$
	$\xi = 0.001$	$17.62\pm1.03 \mid \xi=1$	17.16 ± 0.79	$\xi=1$	17.14 ± 0.49
	$\xi = 0.0001$	16.64 \pm 0.36 ξ =2	$16.91 {\pm} 0.36$	$\xi=2$	$16.56{\pm}0.13$
	$\xi=0$	$17.59\pm0.93 \mid \xi=0$	17.59 ± 0.93	$\xi=0$	17.59 ± 0.93
OUTFLOW	$\xi = 0.01$	17.11 \pm 0.55 ξ =0.	$5 18.19 \pm 1.11$	$\xi = 0.5$	$17.56{\pm}0.74$
	$\xi = 0.001$	17.71 \pm 0.51 ξ =1	$17.77 {\pm} 1.46$	$\xi=1$	18.48 ± 1.45
	$ \xi = 0.0001$	17.31 \pm 0.48 ξ =2	$17.59 {\pm} 0.59$	$\xi=2$	$17.42{\pm}0.42$

Table 61: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=4,\,L=4).$

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}} \qquad \qquad \qquad \alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$12.13\pm0.14 \mid \xi=0$	$12.13\pm0.14 \mid \xi=0$	12.13 ± 0.14
INFLOW	$\xi = 0.01$	$12.20\pm0.12 \mid \xi=0.5$	$12.19\pm0.14 \mid \xi=0.5$	12.15 ± 0.14
	$\xi = 0.001$	$12.17\pm0.07 \mid \xi=1$	12.11 \pm 0.17 ξ =1	12.23 ± 0.09
	$\xi = 0.0001$	$12.13\pm0.06 \mid \xi=2$	$12.16\pm0.15 \mid \xi=2$	$12.10 {\pm} 0.05$
	$\xi=0$	$9.73\pm0.06 \mid \xi=0$	$9.73\pm0.06 \mid \xi=0$	9.73 ± 0.06
OUTFLOW	$\xi = 0.01$	$9.90\pm0.17 \mid \xi=0.5$	$9.85\pm0.15 \mid \xi=0.5$	9.75 ± 0.06
	$\xi = 0.001$	$9.83\pm0.07 \mid \xi=1$	$9.78\pm0.12 \mid \xi=1$	9.82 ± 0.09
	$\xi = 0.0001$	9.75 ± 0.07 $\xi=2$	$9.74\pm0.05 \mid \xi=2$	9.76 ± 0.08

Table 62: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=4,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$\alpha(-\xi(t-t'))$ α	$\gamma_{t'} = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$16.8 \pm 0.32 \mid \xi = 0$	$16.8 {\pm} 0.32$	$\xi = 0$	$16.8 {\pm} 0.32$
INFLOW	$\xi = 0.01$	16.58 \pm 0.19 ξ =0.5	16.53 ± 0.29	$\xi = 0.5$	17.18 ± 0.48
	$\xi = 0.001$	17.21 ± 0.87 $\xi=1$	17.72 ± 1.29	$\xi=1$	17.38 ± 0.60
	$\xi = 0.0001$	$16.83\pm0.26 \mid \xi=2$	16.89 ± 0.41	$\xi=2$	17.01 ± 0.63
	$\xi=0$	$17.43\pm0.18 \mid \xi=0$	$17.43 {\pm} 0.18$	$\xi = 0$	17.43 ± 0.18
OUTFLOW	$\xi = 0.01$	17.25 \pm 0.31 ξ =0.5	17.24 ± 0.48	$\xi = 0.5$	$18.00 {\pm} 1.07$
	$\xi = 0.001$	$17.70\pm1.24 \mid \xi=1$	18.18 ± 0.90	$\xi=1$	18.43 ± 0.38
	$\xi = 0.0001$	$18.01\pm0.86 \mid \xi=2$	$17.29 {\pm} 0.62$	$\xi=2$	17.43 ± 0.79

Table 63: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAE. $(K=4,\,L=8).$

Түре	$\alpha_{t'} = \exp$	$\alpha(-\xi(t-t'))$ α	$a_{t'} = \frac{1}{(t-t')^{\xi}} \qquad $	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$12.14\pm0.07 \mid \xi=0$	$12.14\pm0.07 \mid \xi=0$	$12.14 {\pm} 0.07$
INFLOW	$\xi = 0.01$	$12.14\pm0.15 \mid \xi=0.5$	$5 12.18 \pm 0.14 \mid \xi = 0.5$	12.16 ± 0.13
	$\xi = 0.001$	$12.22\pm0.13 \mid \xi=1$	$12.14\pm0.08 \mid \xi=1$	12.17 ± 0.09
	$\xi = 0.0001$	12.13 \pm 0.06 ξ =2	$12.15\pm0.04 \mid \xi=2$	$12.12{\pm}0.14$
	$\xi=0$	$9.78\pm0.04 \mid \xi=0$	$9.78\pm0.04 \mid \xi=0$	9.78 ± 0.04
OUTFLOW	$\xi = 0.01$	$9.82\pm0.16 \mid \xi=0.5$	$9.80\pm0.09 \mid \xi=0.5$	9.78 ± 0.10
	$\xi = 0.001$	$9.83\pm0.09 \mid \xi=1$	$9.84\pm0.09 \mid \xi=1$	9.82 ± 0.14
	$ \overline{\xi = 0.0001}$	9.73 \pm 0.05 ξ =2	9.75 \pm 0.04 ξ =2	$9.75{\pm}0.08$

Table 64: Comparison of models with and without decay on dataset **NYCTaxi** in terms of MAPE(%). $(K=4,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$:	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	17.05 ± 0.5	$\xi=0$	17.05 ± 0.5	$\xi=0$	17.05 ± 0.5
INFLOW	$\xi = 0.01$	$16.87{\pm}0.71$	$\xi = 0.5$	17.00 ± 0.30	ξ =0.5	$16.58 {\pm} 0.19$
	$\xi = 0.001$	17.35 ± 0.74	$\xi=1$	16.77 ± 0.18	$\xi=1$	$16.75 {\pm} 0.38$
	$\xi = 0.0001$	$16.32{\pm}0.15$	$\xi=2$	$16.98 {\pm} 0.58$	$\xi=2$	$16.79 {\pm} 0.50$
	$\xi=0$	17.55 ± 0.51	$\xi=0$	17.55 ± 0.51	$\xi=0$	17.55 ± 0.51
OUTFLOW	$\xi = 0.01$	$17.22{\pm}0.42$	$\xi = 0.5$	18.02 ± 0.73	ξ =0.5	$17.53 {\pm} 0.57$
	$\xi = 0.001$	$17.45{\pm}0.44$	$\xi=1$	18.15 ± 0.98	$\xi=1$	17.70 ± 0.65
	$\xi = 0.0001$	16.90±0.25	$\xi=2$	17.18 ± 0.54	$\xi=2$	17.58 ± 0.47

Table 65: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=1,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ α_t	$r = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	$5.09\pm0.02 \mid \xi=0$	5.09 ± 0.02	$\xi=0$	5.09 ± 0.02
INFLOW	$\xi = 0.01$	5.06 ± 0.01 ξ =0.5	$\boldsymbol{5.03 {\pm} 0.03}$	$\xi = 0.5$	$\boldsymbol{5.07{\pm0.0}}$
	$\xi = 0.001$	5.07 \pm 0.02 ξ =1	$\boldsymbol{5.07} {\pm} \boldsymbol{0.04}$	$\xi=1$	$\boldsymbol{5.07 {\pm} 0.06}$
	$\xi = 0.0001$	5.06 \pm 0.02 ξ =2	$\boldsymbol{5.06 {\pm} 0.01}$	$\xi=2$	$5.06{\pm0.03}$
	$\xi=0$	$4.73\pm0.02 \mid \xi=0$	4.73 ± 0.02	$\xi=0$	4.73 ± 0.02
OUTFLOW	$\xi = 0.01$	4.72 ± 0.01 ξ =0.5	$\boldsymbol{4.68 {\pm} 0.02}$	$\xi = 0.5$	4.76 ± 0.05
	$\xi = 0.001$	4.71 ± 0.05 ξ =1	$4.75 {\pm} 0.02$	$\xi=1$	$4.72{\pm}0.05$
	$\xi = 0.0001$	4.71 \pm 0.05 ξ =2	4.73 ± 0.02	$\xi = 2$	4.73 ± 0.04

Table 66: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). $(K=1,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$-\xi(t-t')$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	23.05 ± 0.30	$\xi=0$	23.05 ± 0.30	$\xi=0$	23.05 ± 0.30
INFLOW	$\xi = 0.01$	$22.83{\pm}0.29$	$\xi = 0.5$	$22.90{\pm}0.23$	$\xi = 0.5$	23.06 ± 0.50
	$\xi = 0.001$	$22.59{\pm}0.30$	$\xi=1$	$23.04{\pm}0.70$	$\xi=1$	$22.86{\pm}0.56$
	$\xi = 0.0001$	$22.79 {\pm} 0.29$	$\xi=2$	$22.95{\pm}0.32$	$\xi=2$	$22.60{\pm}0.29$
	$ \xi=0$	21.73 ± 0.30	$\xi=0$	21.73 ± 0.30	$\xi=0$	21.73 ± 0.30
OUTFLOW	$\xi = 0.01$	21.96 ± 0.27	$\xi = 0.5$	21.76 ± 0.44	$\xi = 0.5$	$21.67{\pm}0.53$
	$\xi = 0.001$	$21.58{\pm}0.27$	$\xi=1$	21.95 ± 0.38	$\xi=1$	$21.68{\pm}0.53$
	$ \xi = 0.0001$	$21.60 {\pm} 0.25$	$\xi=2$	$21.66 {\pm} 0.27$	$\xi = 2$	$21.44{\pm}0.46$

Table 67: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=1,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ α_t	$r = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	$5.08\pm0.02 \mid \xi=0$	5.08 ± 0.02	$\xi=0$	5.08 ± 0.02
INFLOW	$ \xi = 0.01$	5.08 ± 0.04 ξ =0.5	$\boldsymbol{5.06 {\pm} 0.03}$	$\xi = 0.5$	5.08 ± 0.03
	$\xi = 0.001$	$5.09\pm0.04 \mid \xi=1$	$\boldsymbol{5.05 {\pm} 0.02}$	$\xi=1$	$\boldsymbol{5.05 {\pm} 0.01}$
	$ \xi = 0.0001$	5.07 \pm 0.03 ξ =2	$\boldsymbol{5.08 {\pm} 0.05}$	$\xi=2$	5.15 ± 0.06
	$\xi=0$	$4.71\pm0.03 \mid \xi=0$	$4.71 {\pm} 0.03$	$\xi=0$	4.71 ± 0.03
OUTFLOW	$ \xi = 0.01$	4.71 ± 0.05 ξ =0.5	$4.74{\pm}0.04$	$\xi = 0.5$	4.75 ± 0.04
	$\xi = 0.001$	4.73 ± 0.07 $\xi=1$	$\bf 4.70 {\pm} 0.03$	$\xi=1$	4.72 ± 0.02
	$\xi = 0.0001$	4.71 ± 0.03 ξ =2	$4.75 {\pm} 0.04$	$\xi = 2$	4.79 ± 0.05

Table 68: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). $(K=1,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$lpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	23.21 ± 0.56	$\xi=0$	$23.21{\pm}0.56$	$\xi=0$	$23.21 {\pm} 0.56$
INFLOW	$\xi = 0.01$	$23.09 {\pm} 0.51$	ξ =0.5	$22.63{\pm}0.24$	$\xi = 0.5$	23.51 ± 0.53
	$\xi = 0.001$	$22.80{\pm}0.42$	$\xi=1$	$22.56{\pm}0.42$	$\xi=1$	$23.19{\pm}0.17$
	$\xi = 0.0001$	$22.76 {\pm} 0.58$	$\xi=2$	$22.67{\pm}0.40$	$\xi=2$	23.53 ± 0.90
	$\xi=0$	22.05 ± 0.32	$\xi=0$	$22.05{\pm}0.32$	$\xi=0$	22.05 ± 0.32
OUTFLOW	$\xi = 0.01$	$21.70 {\pm} 0.43$	ξ =0.5	21.78 ± 0.21	$\xi = 0.5$	22.43 ± 0.67
	$\xi = 0.001$	$21.74{\pm}0.25$	$\xi=1$	$21.52 {\pm} 0.35$	$\xi=1$	$21.86 {\pm} 0.44$
	$\xi = 0.0001$	$21.56 {\pm} 0.43$	$\xi=2$	$21.67 {\pm} 0.47$	$\xi=2$	22.28 ± 0.68

Table 69: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=1,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	$5.11\pm0.02 \mid \xi=0$	5.11 ± 0.02	$\xi=0$	5.11 ± 0.02
INFLOW	$ \xi = 0.01$	5.10 \pm 0.04 ξ =0.5	$\boldsymbol{5.08 {\pm} 0.03}$	$\xi = 0.5$	$\boldsymbol{5.09 {\pm} 0.03}$
	$\xi = 0.001$	5.08 \pm 0.03 ξ =1	$5.05{\pm}0.04$	$\xi=1$	$\boldsymbol{5.09 {\pm} 0.05}$
	$ \xi = 0.0001$	5.08 \pm 0.01 ξ =2	$\boldsymbol{5.07 {\pm} 0.02}$	$\xi=2$	$\boldsymbol{5.07 {\pm 0.03}}$
	$ \xi=0$	4.75 ± 0.01 $\xi=0$	$4.75{\pm}0.01$	$\xi=0$	4.75 ± 0.01
OUTFLOW	$ \xi = 0.01$	4.76 ± 0.01 ξ =0.5	$\bf 4.70 {\pm} 0.05$	$\xi = 0.5$	$\textbf{4.74} {\pm} \textbf{0.05}$
	$\xi = 0.001$	4.75 \pm 0.05 ξ =1	$4.73 {\pm} 0.02$	$\xi=1$	4.76 ± 0.06
	$\xi = 0.0001$	4.73 \pm 0.02 ξ =2	$4.73{\pm}0.03$	$\xi=2$	$4.74{\pm}0.03$

Table 70: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). (K = 1, L = 4).

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'} =$	$\frac{1}{(t\!-\!t')^\xi} \qquad \qquad \Big $	$\alpha_{t'} = 1$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$ \xi=0$	23.01±0.30 §	$\xi=0$	23.01±0.30	$\xi=0$	23.01 ± 0.30
INFLOW	$\xi = 0.01$	23.26 ± 0.77 ξ	$\xi = 0.5$	23.09±0.37	$\xi = 0.5$	23.22 ± 0.56
	$\xi = 0.001$	22.70±0.68 8	$\xi = 1$ 2	$22.84{\pm}0.35$	$\xi=1$	23.42 ± 0.64
	$\xi = 0.0001$	$22.59{\pm}0.52$ ξ	$\xi = 2$ 2	$22.74{\pm}0.35$	$\xi=2$	23.53 ± 0.51
	$\xi=0$	21.57±0.74 8	$\xi=0$	21.57±0.74	$\xi=0$	21.57 ± 0.74
OUTFLOW	$\xi = 0.01$	21.92±0.66 §	$\xi = 0.5$	21.67±0.31	$\xi = 0.5$	21.77 ± 0.73
	$\xi = 0.001$	22.08±1.11 §	$\xi=1$	22.14±0.48	$\xi=1$	22.09 ± 0.51
	$ \xi = 0.0001$	$21.91 \pm 0.55 \mid \xi$	$\xi=2$	21.75±0.47	$\xi=2$	$22.24{\pm}0.56$

Table 71: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=1,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	5.09 ± 0.02 $\xi=0$	5.09 ± 0.02	$\xi = 0$	5.09 ± 0.02
INFLOW	$\xi = 0.01$	5.08 \pm 0.03 ξ =0.5	$\boldsymbol{5.06 {\pm} 0.05}$	$\xi = 0.5$	5.10 ± 0.03
	$\xi = 0.001$	5.08 \pm 0.02 ξ =1	$\boldsymbol{5.06 {\pm} 0.03}$	$\xi=1$	$\boldsymbol{5.07 {\pm} 0.01}$
	$\xi = 0.0001$	5.05 \pm 0.03 ξ =2	5.09 ± 0.03	$\xi=2$	$\boldsymbol{5.08 {\pm} 0.03}$
	$\xi=0$	4.75 ± 0.03 $\xi=0$	$4.75 {\pm} 0.03$	$\xi=0$	4.75 ± 0.03
OUTFLOW	$\xi = 0.01$	4.74 ± 0.03 ξ =0.5	$4.70 {\pm} 0.03$	$\xi = 0.5$	$4.75{\pm}0.02$
	$\xi = 0.001$	4.74 \pm 0.02 ξ =1	$4.72 {\pm} 0.04$	$\xi=1$	$4.72{\pm}0.03$
	$\xi = 0.0001$	4.70 \pm 0.03 ξ =2	$4.76 {\pm} 0.02$	$\xi = 2$	$4.74{\pm}0.04$

Table 72: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). (K = 1, L = 8).

Type	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	$23.11 \pm 0.26 \mid \xi$	$=0$ 23.11 \pm 0.2	$6 \mid \xi = 0$	$23.11 {\pm} 0.26$
INFLOW	$\xi = 0.01$	22.91 \pm 0.48 ξ	$=0.5$ 22.82 \pm 0.3	4 ξ =0.5	23.32 ± 0.44
	$\xi = 0.001$	22.61 \pm 0.50 ξ	$=1$ 22.85 \pm 0.2	7 $\xi = 1$	23.12 ± 0.34
	$\xi = 0.0001$	22.74 \pm 0.43 ξ	$=2$ 23.07 \pm 0.5	0 $\xi = 2$	$23.03 {\pm} 0.42$
	$\xi=0$	$21.74 \pm 0.35 \mid \xi$	$=0$ 21.74 \pm 0.3	$5 \mid \xi = 0$	21.74 ± 0.35
OUTFLOW	$\xi = 0.01$	$22.09\pm0.30 \mid \xi$	$=0.5$ 21.46 \pm 0.2	0 ξ =0.5	22.05 ± 0.54
	$\xi = 0.001$	$21.76 \pm 0.32 \mid \xi$	=1 21.66 ± 0.4	3 $\xi = 1$	21.99 ± 0.38
	$\xi = 0.0001$	21.60 \pm 0.50 ξ	$=2$ 21.88 ± 0.4	$6 \mid \xi = 2$	21.88 ± 0.47

Table 73: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=2,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	5.08 ± 0.03	$\xi=0$	5.08 ± 0.03	$\xi=0$	5.08 ± 0.03
INFLOW	$\xi = 0.01$	$\boldsymbol{5.08 {\pm} 0.02}$	$\xi = 0.5$	$5.05{\pm}0.03$	$\xi = 0.5$	$\boldsymbol{5.04 {\pm} 0.01}$
	$\xi = 0.001$	5.09 ± 0.01	$\xi=1$	5.09 ± 0.07	$\xi=1$	5.10 ± 0.03
	$\xi = 0.0001$	$5.06{\pm}0.03$	$\xi=2$	$\boldsymbol{5.07} {\pm 0.02}$	$\xi=2$	5.11 ± 0.06
	$\xi=0$	4.73 ± 0.04	$\xi=0$	$4.73 {\pm} 0.04$	$\xi=0$	4.73 ± 0.04
OUTFLOW	$\xi = 0.01$	$4.73 {\pm} 0.05$	$\xi = 0.5$	$\boldsymbol{4.69 {\pm} 0.02}$	$\xi = 0.5$	$4.70{\pm}0.03$
	$\xi = 0.001$	$4.76 {\pm} 0.03$	$\xi=1$	$4.74{\pm}0.03$	$\xi=1$	4.74 ± 0.04
	$\xi = 0.0001$	$4.70{\pm}0.06$	$\xi=2$	$4.77{\pm}0.04$	$\xi=2$	$4.73{\pm}0.04$

Table 74: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). $(K=2,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$22.85{\pm}0.34$	$\xi=0$	$22.85{\pm}0.34$	$\xi=0$	$22.85{\pm}0.34$
INFLOW	$\xi = 0.01$	$22.89 {\pm} 0.45$	$\xi = 0.5$	$22.74{\pm}0.34$	$\xi = 0.5$	23.00 ± 0.28
	$\xi = 0.001$	$22.37{\pm}0.31$	$\xi=1$	$22.88{\pm}0.30$	$\xi=1$	23.37 ± 0.68
	$\xi = 0.0001$	$22.71 {\pm} 0.34$	$\xi=2$	$22.87{\pm}0.75$	$\xi=2$	22.97 ± 0.61
	$\xi=0$	$21.77 {\pm} 0.46$	$\xi=0$	$21.77 {\pm} 0.46$	$\xi=0$	21.77 ± 0.46
OUTFLOW	$\xi = 0.01$	$21.67{\pm}0.26$	$\xi = 0.5$	$21.72 {\pm} 0.25$	$\xi = 0.5$	21.95 ± 0.62
	$\xi = 0.001$	$21.58{\pm}0.24$	$\xi=1$	$21.98 {\pm} 0.47$	$\xi=1$	21.92 ± 0.76
	$ \xi = 0.0001$	21.72±0.64	ξ =2	21.80 ± 0.61	$\xi=2$	$21.74 {\pm} 0.42$

Table 75: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=2,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln{(t-t'+1)}}$
	$\xi=0$	5.05 ± 0.01	$\xi=0$	$5.05{\pm}0.01$	$\mid \xi=0$	5.05 ± 0.01
INFLOW	$\xi = 0.01$	5.13 ± 0.05	$\xi = 0.5$	5.09 ± 0.06	$ \xi = 0.5$	5.06 ± 0.02
	$\xi = 0.001$	5.06 ± 0.02	$\xi=1$	$\boldsymbol{5.03 {\pm} 0.02}$	$\mid \xi=1$	5.09 ± 0.03
	$\xi = 0.0001$	5.07 ± 0.03	$\xi=2$	5.06 ± 0.04	$\mid \xi=2$	5.10 ± 0.03
	$\xi=0$	$4.71 {\pm} 0.01$	$\xi=0$	$4.71 {\pm} 0.01$	$\mid \xi=0$	4.71 ± 0.01
OUTFLOW	$\xi = 0.01$	$4.75 {\pm} 0.03$	$\xi = 0.5$	4.681 ± 0.04	$ \xi = 0.5$	4.71 ± 0.03
	$\xi = 0.001$	$4.73 {\pm} 0.04$	$\xi=1$	$4.72 {\pm} 0.03$	$\mid \xi=1$	4.74 ± 0.05
	$ \xi=0.0001$	$\textbf{4.68} {\pm} \textbf{0.02}$	$\xi = 2$	4.73 ± 0.04	$\xi=2$	4.75±0.06

Table 76: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). $(K=2,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$ α	$t' = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$22.61\pm0.16 \mid \xi=0$	$22.61 {\pm} 0.16$	$\xi=0$	22.61 ± 0.16
INFLOW	$\xi = 0.01$	$22.97\pm0.70 \mid \xi=0.5$	23.08 ± 0.48	$\xi = 0.5$	23.03 ± 0.55
	$\xi = 0.001$	$22.99\pm0.46 \mid \xi=1$	$22.82 {\pm} 0.30$	$\xi=1$	23.04 ± 0.57
	$\xi = 0.0001$	$22.68\pm0.50 \mid \xi=2$	23.08 ± 0.59	$\xi=2$	23.18 ± 0.31
	$\xi=0$	$21.60\pm0.28 \mid \xi=0$	21.60 ± 0.28	$\xi=0$	21.60 ± 0.28
OUTFLOW	$\xi = 0.01$	$21.82\pm0.37 \mid \xi=0.5$	$21.48{\pm}0.18$	$\xi = 0.5$	21.62 ± 0.60
	$\xi = 0.001$	$21.83\pm0.53 \mid \xi=1$	$21.84 {\pm} 0.41$	$\xi=1$	22.16 ± 0.61
	$\xi = 0.0001$	21.44 ± 0.53 ξ =2	21.93 ± 0.46	$\xi=2$	21.87 ± 0.56

Table 77: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=2,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	$5.12\pm0.03 \mid \xi=0$	5.12 ± 0.03	$\xi=0$	5.12 ± 0.03
INFLOW	$\xi = 0.01$	5.08 \pm 0.02 ξ =0.5	$5.06{\pm}0.03$	$\xi = 0.5$	$\boldsymbol{5.07 {\pm} 0.04}$
	$\xi = 0.001$	5.11 \pm 0.04 ξ =1	$\boldsymbol{5.07} {\pm} \boldsymbol{0.05}$	$\xi=1$	$\boldsymbol{5.07 {\pm} 0.02}$
	$\xi = 0.0001$	5.07 \pm 0.02 ξ =2	$\boldsymbol{5.09 {\pm} 0.05}$	$\xi=2$	$5.11{\pm}0.04$
	$\xi=0$	$4.75\pm0.04 \mid \xi=0$	$4.75 {\pm} 0.04$	$\xi=0$	4.75 ± 0.04
OUTFLOW	$\xi = 0.01$	4.71 ± 0.03 ξ =0.5	$4.69{\pm}0.03$	$\xi = 0.5$	$4.74{\pm}0.02$
	$\xi = 0.001$	4.74 \pm 0.02 ξ =1	$4.73 {\pm} 0.04$	$\xi=1$	$4.75{\pm}0.02$
	$\xi = 0.0001$	4.70 \pm 0.03 ξ =2	$4.75{\pm}0.05$	$\xi=2$	4.78 ± 0.06

Table 78: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). $(K=2,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$23.08 {\pm} 0.48$	$\xi=0$	23.08 ± 0.48	$\xi=0$	23.08 ± 0.48
INFLOW	$\xi = 0.01$	$22.98{\pm}0.40$	$\xi = 0.5$	$22.78 {\pm} 0.33$	$\xi = 0.5$	23.06 ± 0.33
	$\xi = 0.001$	${\bf 23.06 {\pm} 0.24}$	$\xi=1$	${\bf 23.07} {\pm 0.36}$	$\xi=1$	$22.90{\pm}0.42$
	$\xi = 0.0001$	$22.72{\pm}0.24$	$\xi=2$	$23.25{\pm}0.55$	$\xi=2$	23.45 ± 0.76
	$\xi=0$	21.80 ± 0.21	$\xi=0$	21.80 ± 0.21	$\xi=0$	21.80 ± 0.21
OUTFLOW	$\xi = 0.01$	$21.68{\pm}0.24$	$\xi = 0.5$	$21.43 {\pm} 0.27$	$\xi = 0.5$	$21.53{\pm}0.39$
	$\xi = 0.001$	$22.05{\pm}0.46$	$\xi=1$	21.96 ± 0.42	$\xi=1$	21.82 ± 0.39
	$ \xi = 0.0001$	$21.62{\pm}0.25$	$\xi=2$	21.81 ± 0.38	$\xi=2$	22.24 ± 0.77

Table 79: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=2,\,L=8).$

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$ $\alpha_{t'}=$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\mid \xi=0$	$5.07\pm0.01 \mid \xi=0$	$5.07\pm0.01 \mid \xi=0$	5.07 ± 0.01
INFLOW	$ \xi = 0.01$	5.07 ± 0.03 ξ =0.5	5.07 ± 0.07 ξ =0.5	5.09 ± 0.04
	$\xi = 0.001$	$5.05\pm0.02 \mid \xi=1$	5.04 \pm 0.03 ξ =1	5.08 ± 0.02
	$\xi = 0.0001$	$5.06\pm0.02 \mid \xi=2$	$5.12\pm0.03 \mid \xi=2$	5.17 ± 0.06
	$ \xi=0$	4.72 ± 0.01 $\xi=0$	$4.72\pm0.01 \mid \xi=0$	4.72 ± 0.01
OUTFLOW	$\xi = 0.01$	$4.73\pm0.04 \mid \xi=0.5$	4.70 ± 0.0 ξ =0.5	4.74 ± 0.02
	$\xi = 0.001$	4.71 \pm 0.03 ξ =1	4.69 \pm 0.03 ξ =1	4.73 ± 0.04
	$ \xi = 0.0001$	4.70 \pm 0.03 ξ =2	$4.77\pm0.03 \mid \xi=2$	4.84 ± 0.05

Table 80: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). (K = 2, L = 8).

Түре	$\alpha_{t'} = \exp$	$\rho(-\xi(t-t'))$ $\alpha_{t'}$	$r = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$22.82\pm0.37 \mid \xi=0$	22.82±0.37	$\xi = 0$	22.82 ± 0.37
INFLOW	$\xi = 0.01$	$23.02\pm0.42 \mid \xi=0.5$	$22.65{\pm}0.35$	$\xi = 0.5$	23.08 ± 0.43
	$\xi = 0.001$	22.51 \pm 0.29 ξ =1	23.10 ± 0.23	$\xi=1$	$23.55 {\pm} 0.37$
	$\xi = 0.0001$	23.00 ± 0.31 $\xi=2$	23.04 ± 0.34	$\xi=2$	23.45 ± 0.51
	$\xi=0$	$21.92\pm0.28 \mid \xi=0$	21.92±0.28	$\xi=0$	21.92 ± 0.28
OUTFLOW	$\xi = 0.01$	21.80 ± 0.53 ξ =0.5	$\boldsymbol{21.50 {\pm} 0.43}$	$\xi = 0.5$	22.11 ± 0.40
	$\xi = 0.001$	21.41 ± 0.34 ξ =1	22.07 ± 0.42	$\xi=1$	21.96 ± 0.43
	$\xi = 0.0001$	21.57 \pm 0.28 ξ =2	22.19±0.66	$\xi=2$	22.59 ± 0.33

Table 81: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. (K = 3, L = 1).

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$5.05\pm0.01 \mid \xi=0$	5.05 ± 0.01	$\mid \xi=0$	5.05 ± 0.01
INFLOW	$\xi = 0.01$	$5.08\pm0.02 \mid \xi=0.5$	5.09 ± 0.03	$ \xi = 0.5 $	5.07 ± 0.04
	$ \xi = 0.001$	$5.07\pm0.03 \mid \xi=1$	5.06 ± 0.05	<i>ξ</i> =1	5.09 ± 0.01
	$ \xi = 0.0001$	$5.07\pm0.05 \mid \xi=2$	5.07 ± 0.04	$\xi=2$	5.07 ± 0.01
	$\xi=0$	$4.69\pm0.02 \mid \xi=0$	$4.69 {\pm} 0.02$	$\mid \xi=0$	4.69 ± 0.02
OUTFLOW	$\xi = 0.01$	4.74 ± 0.01 ξ =0.5	$4.70 {\pm} 0.01$	$\mid \xi = 0.5$	4.74 ± 0.03
	$\xi = 0.001$	4.73 ± 0.03 $\xi=1$	$4.69 {\pm} 0.02$	$\mid \xi=1$	4.7 ± 0.03
	$ \xi = 0.0001$	$4.70\pm0.05 \mid \xi=2$	4.74 ± 0.02	<i>ξ</i> =2	4.72 ± 0.02

Table 82: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). $(K=3,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$ =	$= \frac{1}{(t-t')^{\xi}} $	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	22.93 ± 0.34	$\xi=0$	$22.93{\pm}0.34$	$\xi=0$	$22.93 {\pm} 0.34$
INFLOW	$\xi = 0.01$	23.25 ± 0.70	$\xi = 0.5$	$22.93{\pm}0.57$	$\xi = 0.5$	$23.20 {\pm} 0.48$
	$\xi = 0.001$	22.88±0.39	$\xi=1$	23.11 ± 0.77	$\xi=1$	$22.88 {\pm} 0.61$
	$\xi = 0.0001$	$22.84{\pm}0.22$	$\xi=2$	23.03 ± 0.77	$\xi=2$	$22.86{\pm}0.35$
	$\xi=0$	21.73 ± 0.23	$\xi=0$	21.73 ± 0.23	$\xi=0$	21.73 ± 0.23
OUTFLOW	$\xi = 0.01$	$22.20{\pm}0.27$	$\xi = 0.5$	21.51 ± 0.43	$\xi = 0.5$	21.93 ± 0.62
	$\xi = 0.001$	21.96 ± 0.37	$\xi=1$	$22.01{\pm}0.39$	$\xi=1$	$21.80 {\pm} 0.74$
	$\xi = 0.0001$	21.99±0.24 8	$\xi=2$	$21.65{\pm}0.30$	$\xi=2$	$21.65{\pm}0.57$

Table 83: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=3,\,L=2).$

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$5.08\pm0.03 \mid \xi=0$	5.08 ± 0.03		5.08 ± 0.03
INFLOW	$\xi = 0.01$	$5.09\pm0.04 \mid \xi=0.5$	$5.06{\pm}0.03$	$\xi = 0.5$	$5.06{\pm}0.02$
	$\xi = 0.001$	$5.09\pm0.02 \mid \xi=1$	5.08 ± 0.03	$\xi=1$	$\boldsymbol{5.06 {\pm} 0.01}$
	$ \overline{\xi = 0.0001}$	5.08 \pm 0.03 ξ =2	5.09 ± 0.04	$\xi=2$	5.09 ± 0.05
	$ \xi=0$	$4.70\pm0.02 \mid \xi=0$	4.70 ± 0.02	$\xi=0$	4.70 ± 0.02
OUTFLOW	$\xi = 0.01$	$4.71\pm0.04 \mid \xi=0.5$	$4.68{\pm}0.02$	$\xi = 0.5$	4.71 ± 0.01
	$\xi = 0.001$	$4.75\pm0.06 \mid \xi=1$	4.74 ± 0.02	$\xi=1$	4.70 ± 0.03
	$ \xi = 0.0001$	4.68 \pm 0.02 ξ =2	4.77 ± 0.03	$\xi=2$	4.77 ± 0.05

Table 84: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). $(K=3,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$22.78 \pm 0.16 \mid \xi =$	22.78 ± 0.16	$\xi=0$	22.78 ± 0.16
INFLOW	$\xi = 0.01$	$23.28 \pm 0.50 \mid \xi =$	$0.5 23.06 \pm 0.23$	$\xi = 0.5$	23.38 ± 0.53
	$\xi = 0.001$	$23.08 \pm 0.52 \mid \xi =$	$1 22.96 \pm 0.51$	$\xi=1$	$22.67{\pm}0.38$
	$\xi = 0.0001$	22.51 \pm 0.12 ξ =	23.28 ± 0.37	$\xi=2$	23.06 ± 0.26
	$\xi=0$	$21.62 \pm 0.28 \mid \xi =$	$0 21.62 \pm 0.28$	$\xi=0$	21.62 ± 0.28
OUTFLOW	$\xi = 0.01$	$21.92 \pm 0.39 \mid \xi =$	$0.5 21.69 \pm 0.46$	$\xi = 0.5$	21.90 ± 0.35
	$\xi = 0.001$	$21.83 \pm 0.48 \mid \xi =$	$1 21.74 \pm 0.47$	$\xi=1$	$21.42{\pm}0.31$
	$\xi = 0.0001$	21.36 \pm 0.10 ξ =	22.02 ± 0.46	$\xi=2$	22.13 ± 0.55

Table 85: Comparison of models with and without decay on dataset NYCBike2 in terms of MAE. $(K=3,\,L=4).$

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$ $\alpha_{t'}=$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$5.07\pm0.02 \mid \xi=0$	$5.07\pm0.02 \mid \xi=0$	5.07 ± 0.02
INFLOW	$\xi = 0.01$	5.10 ± 0.03 ξ =0.5	5.06 ± 0.02 ξ =0.5	5.07 ± 0.05
	$\xi = 0.001$	5.05 \pm 0.01 ξ =1	5.02 \pm 0.04 ξ =1	5.09 ± 0.04
	$\xi = 0.0001$	$5.09\pm0.02 \mid \xi=2$	$5.09\pm0.08 \mid \xi=2$	5.15 ± 0.05
	$\xi=0$	4.70 ± 0.03 $\xi=0$	4.70 ± 0.03 $\xi=0$	4.70 ± 0.03
OUTFLOW	$\xi = 0.01$	$4.75\pm0.02 \mid \xi=0.5$	4.70 ± 0.05 ξ =0.5	4.75 ± 0.05
	$\xi = 0.001$	4.74 ± 0.01 $\xi=1$	$4.70\pm0.02 \mid \xi=1$	4.74 ± 0.05
	$\xi = 0.0001$	$4.74\pm0.0 \mid \xi=2$	$4.72\pm0.02 \mid \xi=2$	4.83 ± 0.06

Table 86: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). $(K=3,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$22.90 {\pm} 0.36$	$\xi=0$	22.90±0.36	$\xi=0$	$22.90{\pm}0.36$
INFLOW	$\xi = 0.01$	23.04 ± 0.64	$\xi = 0.5$	$22.80{\pm}0.26$	$\xi = 0.5$	23.02 ± 0.33
	$\xi = 0.001$	22.77 ± 0.20	$\xi=1$	23.21 ± 0.63	$\xi=1$	$22.81{\pm}0.19$
	$\xi = 0.0001$	$22.73 {\pm} 0.30$	$\xi=2$	22.96 ± 0.31	$\xi=2$	23.32 ± 0.59
	$\xi=0$	21.77 ± 0.16	$\xi=0$	21.77±0.16	$\xi=0$	21.77 ± 0.16
OUTFLOW	$\xi = 0.01$	$21.68 {\pm} 0.49$	$\xi = 0.5$	$21.31 {\pm} 0.32$	$\xi = 0.5$	$\boldsymbol{21.68 {\pm} 0.44}$
	$\xi = 0.001$	$21.69 {\pm} 0.75$	$\xi=1$	22.01 ± 0.36	$\xi=1$	21.78 ± 0.66
	$\xi = 0.0001$	$21.67{\pm}0.42$	$\xi=2$	$21.52{\pm}0.26$	$\xi=2$	22.47 ± 0.76

Table 87: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=3,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	5.09 ± 0.03 $\xi=0$	5.09 ± 0.03	$\xi = 0$	5.09 ± 0.03
INFLOW	$\xi = 0.01$	5.13 ± 0.07 ξ =0.5	$\boldsymbol{5.06 {\pm} 0.04}$	$\xi = 0.5$	$\boldsymbol{5.08 {\pm} 0.01}$
	$\xi = 0.001$	5.05 \pm 0.06 ξ =1	$\boldsymbol{5.07} {\pm} \boldsymbol{0.04}$	$\xi=1$	$\boldsymbol{5.07 {\pm} 0.02}$
	$ \xi = 0.0001$	5.06 \pm 0.02 ξ =2	5.10 ± 0.03	$\xi=2$	5.18 ± 0.08
	$\xi=0$	$4.74\pm0.03 \mid \xi=0$	4.74 ± 0.03	$\xi=0$	4.74 ± 0.03
OUTFLOW	$\xi = 0.01$	4.72 \pm 0.05 ξ =0.5	$\boldsymbol{4.70 {\pm} 0.03}$	$\xi = 0.5$	4.76 ± 0.01
	$\xi = 0.001$	4.70 \pm 0.06 ξ =1	$4.73 {\pm} 0.03$	$\xi=1$	$4.70 {\pm} 0.01$
	$ \xi = 0.0001$	4.72 \pm 0.03 ξ =2	$4.77 {\pm} 0.08$	$\xi=2$	$4.86 {\pm} 0.10$

Table 88: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). $(K=3,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$ =	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	23.03±0.34 8	$\xi=0$	23.03 ± 0.34	$\xi=0$	23.03 ± 0.34
INFLOW	$\xi = 0.01$	23.54 ± 0.42	$\xi = 0.5$	23.35 ± 0.46	$\xi = 0.5$	$22.88{\pm}0.60$
	$\xi = 0.001$	23.00 ±0.38	$\xi=1$	23.17 ± 0.41	$\xi=1$	23.12 ± 0.33
	$\xi = 0.0001$	22.69 ±0.58	$\xi=2$	23.07 ± 0.52	$\xi=2$	23.39 ± 0.73
	$\xi=0$	21.73±0.32 8	$\xi=0$	21.73 ± 0.32	$\xi=0$	21.73 ± 0.32
OUTFLOW	$\xi = 0.01$	22.06±0.36 8	$\xi = 0.5$	22.06 ± 0.61	$\xi = 0.5$	21.82 ± 0.70
	$\xi = 0.001$	$21.67{\pm}0.42$	$\xi=1$	21.95 ± 0.41	$\xi=1$	$21.50 {\pm} 0.46$
	$\xi = 0.0001$	21.73 ± 0.44 8	$\xi=2$	21.80 ± 0.82	$\xi=2$	22.27 ± 0.68

Table 89: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=4,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	5.07 ± 0.01	$\xi=0$	5.07 ± 0.01	$\xi=0$	5.07 ± 0.01
INFLOW	$\xi = 0.01$	5.10 ± 0.05	$\xi = 0.5$	5.12 ± 0.08	$\xi = 0.5$	$\boldsymbol{5.06 {\pm} 0.02}$
	$\xi = 0.001$	$\boldsymbol{5.05 {\pm} 0.03}$	$\xi=1$	$\boldsymbol{5.06 {\pm} 0.05}$	$\xi=1$	5.10 ± 0.03
	$\xi = 0.0001$	5.07 ± 0.03	$\xi=2$	$\boldsymbol{5.07} {\pm} \boldsymbol{0.02}$	$\xi=2$	5.07 ± 0.06
	$\xi=0$	$4.71 {\pm} 0.03$	$\xi=0$	$4.71 {\pm} 0.03$	$\xi=0$	4.71 ± 0.03
OUTFLOW	$\xi = 0.01$	4.73 ± 0.03	$\xi = 0.5$	$4.71 {\pm} 0.03$	$\xi = 0.5$	4.73 ± 0.05
	$\xi = 0.001$	$4.72 {\pm} 0.03$	$\xi=1$	$4.73 {\pm} 0.07$	$\xi=1$	4.72 ± 0.03
	$\xi = 0.0001$	$4.72 {\pm} 0.04$	$\xi=2$	4.72 ± 0.04	$\xi = 2$	4.73 ± 0.04

Table 90: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). $(K=4,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$22.97{\pm}0.38$	$\xi=0$	$22.97{\pm}0.38$	$\xi=0$	$22.97{\pm}0.38$
INFLOW	$\xi = 0.01$	23.04 ± 0.51	$\xi = 0.5$	23.08 ± 0.61	$\xi = 0.5$	23.20 ± 0.51
	$\xi = 0.001$	$22.78{\pm}0.42$	$\xi=1$	23.02 ± 0.61	$\xi=1$	23.12 ± 0.46
	$\xi = 0.0001$	$22.68{\pm}0.39$	$\xi=2$	$22.97{\pm}0.59$	$\xi=2$	$22.74{\pm}0.41$
	$\xi=0$	21.64 ± 0.33	$\xi=0$	$21.64 {\pm} 0.33$	$\xi=0$	21.64 ± 0.33
OUTFLOW	$\xi = 0.01$	$21.52{\pm}0.27$	$\xi = 0.5$	$21.48 {\pm} 0.35$	$\xi = 0.5$	22.11 ± 0.56
	$\xi = 0.001$	21.79 ± 0.23	$\xi=1$	21.79 ± 0.64	$\xi=1$	21.78 ± 0.43
	$\xi = 0.0001$	$21.44{\pm}0.42$	$\xi=2$	$21.48 {\pm} 0.28$	$\xi=2$	$21.23{\pm}0.27$

Table 91: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=4,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	5.09 ± 0.03 $\xi=0$	5.09 ± 0.03	$\xi=0$	5.09 ± 0.03
INFLOW	$\xi = 0.01$	5.09 ± 0.05 ξ =0.5	$\boldsymbol{5.07} {\pm} \boldsymbol{0.04}$	$\xi = 0.5$	$\boldsymbol{5.06 {\pm 0.04}}$
	$\xi = 0.001$	5.05 \pm 0.02 ξ =1	$\boldsymbol{5.05 {\pm} 0.03}$	$\xi=1$	5.11 ± 0.04
	$\xi = 0.0001$	5.07 \pm 0.04 ξ =2	$\boldsymbol{5.08 {\pm} 0.04}$	$\xi=2$	$5.11{\pm}0.02$
	$\xi=0$	$4.74\pm0.04 \mid \xi=0$	4.74 ± 0.04	$\xi=0$	4.74 ± 0.04
OUTFLOW	$\xi = 0.01$	4.70 ± 0.02 ξ =0.5	4.74 ± 0.02	$\xi = 0.5$	$4.71 {\pm} 0.05$
	$\xi = 0.001$	4.72 \pm 0.02 ξ =1	$4.71{\pm}0.03$	$\xi=1$	$4.73{\pm}0.06$
	$ \xi = 0.0001$	4.66 \pm 0.02 ξ =2	4.77 ± 0.04	$\xi=2$	$4.74{\pm}0.02$

Table 92: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). $(K=4,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln{(t-t'+1)}}$
	$\xi=0$	22.97 ± 0.34	$\xi=0$	$22.97{\pm}0.34$	$\xi=0$	$22.97{\pm}0.34$
INFLOW	$\xi = 0.01$	23.20 ± 0.44	$\xi = 0.5$	$23.33{\pm}0.45$	$\xi = 0.5$	23.31 ± 0.48
	$\xi = 0.001$	23.09 ± 0.41	$\xi=1$	$22.69{\pm}0.40$	$\xi=1$	23.18 ± 0.28
	$\xi = 0.0001$	$22.49{\pm}0.29$	$\xi=2$	$23.19 {\pm} 0.65$	$\xi=2$	23.61 ± 0.47
	$\xi=0$	21.67 ± 0.33	$\xi=0$	$21.67 {\pm} 0.33$	$\xi=0$	21.67 ± 0.33
OUTFLOW	$\xi = 0.01$	21.74 ± 0.52	$\xi = 0.5$	$21.95{\pm}0.37$	$\xi = 0.5$	21.97 ± 0.52
	$\xi = 0.001$	21.98 ± 0.54	$\xi=1$	$21.72 {\pm} 0.56$	$\xi=1$	$21.64{\pm}0.24$
	$ \xi = 0.0001$	$21.31 {\pm} 0.24$	$\xi=2$	21.94 ± 0.26	$\xi = 2$	21.85 ± 0.35

Table 93: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=4,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	5.07 ± 0.03 $\xi=0$	5.07 ± 0.03	$\xi = 0$	5.07 ± 0.03
INFLOW	$\xi = 0.01$	5.08 ± 0.05 ξ =0.5	5.08 ± 0.03	$\xi = 0.5$	$\boldsymbol{5.06 {\pm} 0.03}$
	$\xi = 0.001$	5.10 ± 0.11 $\xi=1$	$\boldsymbol{5.06 {\pm} 0.04}$	$\xi=1$	5.09 ± 0.04
	$\xi = 0.0001$	5.07 ± 0.04 $\xi=2$	5.08 ± 0.02	$\xi=2$	5.11 ± 0.04
	$\xi=0$	4.73 ± 0.03 $\xi=0$	4.73 ± 0.03	$\xi=0$	4.73 ± 0.03
OUTFLOW	$\xi = 0.01$	4.72 \pm 0.05 ξ =0.5	$4.72 {\pm} 0.03$	$\xi = 0.5$	$\textbf{4.69} {\pm} \textbf{0.03}$
	$\xi = 0.001$	4.73 \pm 0.09 ξ =1	$\bf 4.73 {\pm} 0.02$	$\xi=1$	$4.72{\pm}0.04$
	$\xi = 0.0001$	4.71 \pm 0.01 ξ =2	4.76 ± 0.05	$\xi=2$	4.78 ± 0.05

Table 94: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). $(K=4,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$22.92 \pm 0.34 \mid \xi =$	$=0$ 22.92 \pm 0.34	$4 \mid \xi = 0$	$22.92{\pm}0.34$
INFLOW	$\xi = 0.01$	$23.30\pm0.49 \mid \xi =$	$=0.5$ 23.35 ± 1.08	$8 \mid \xi = 0.5$	$22.87{\pm}0.30$
	$\xi = 0.001$	$23.09\pm0.38 \mid \xi =$	$=1$ 23.19 \pm 0.45	$5 \mid \xi=1$	23.05 ± 0.52
	$\xi = 0.0001$	$oxed{22.74 \pm 0.25} ig eta$	$=2$ 23.18 \pm 0.33	$3 \mid \xi=2$	23.40 ± 1.00
	$\xi=0$	$21.84 \pm 0.36 \mid \xi =$	$=0$ 21.84 \pm 0.36	$\delta \mid \xi=0$	21.84 ± 0.36
OUTFLOW	$\xi = 0.01$	21.82 \pm 0.15 ξ	$=0.5$ 21.98 ± 0.67	$7 \mid \xi = 0.5$	$21.67{\pm}0.29$
	$\xi = 0.001$	21.76 \pm 0.58 ξ	$=1$ 22.07 \pm 0.64	$4 \xi = 1$	$21.59 {\pm} 0.39$
	$\xi = 0.0001$	21.30 \pm 0.21 ξ =	$=2$ 22.14 \pm 0.69	$\theta \mid \xi=2$	22.41 ± 0.99

Table 95: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAE. $(K=4,\,L=8).$

Түре	$\alpha_{t'} = \exp[-\alpha_{t'}]$	$o(-\xi(t-t'))$ $\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$ $\alpha_{t'}=$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\mid \xi=0$	$5.08\pm02 \mid \xi=0$	$5.08\pm02 \mid \xi=0$	$5.08 {\pm} 02$
INFLOW	$\xi = 0.01$	$5.10\pm0.04 \mid \xi=0.5$	5.06 \pm 0.04 ξ =0.5	$\boldsymbol{5.07 {\pm} 0.05}$
	$\xi = 0.001$	$5.09\pm0.0338 \mid \xi=1$	5.07 \pm 0.05 ξ =1	$5.06{\pm}0.03$
	$\xi = 0.0001$	5.08 \pm 0.05 ξ =2	5.09 ± 0.03 $\xi=2$	5.14 ± 0.06
	$ \xi=0$	$4.71\pm0.04 \mid \xi=0$	$4.71\pm0.04 \mid \xi=0$	4.7169 ± 0.04
OUTFLOW	$\xi = 0.01$	$4.73\pm0.01 \mid \xi=0.5$	4.70 ± 0.03 ξ =0.5	4.72 ± 0.05
	$\xi = 0.001$	$4.75\pm0.03 \mid \xi=1$	$4.75\pm0.04 \mid \xi=1$	4.75 ± 0.04
	$\xi = 0.0001$	$4.71\pm0.04 \mid \xi=2$	$4.75\pm0.03 \mid \xi=2$	4.82 ± 0.10

Table 96: Comparison of models with and without decay on dataset **NYCBike2** in terms of MAPE(%). $(K=4,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$23.18{\pm}0.35$	$\xi=0$	$23.18 {\pm} 0.35$	$\xi=0$	$23.18 {\pm} 0.35$
INFLOW	$\xi = 0.01$	$23.55{\pm}0.54$	$\xi = 0.5$	$23.27 {\pm} 0.62$	$\xi = 0.5$	$22.94{\pm}0.53$
	$\xi = 0.001$	$22.82{\pm}0.27$	$\xi=1$	$23.32 {\pm} 0.84$	$\xi=1$	23.38 ± 0.37
	$\xi = 0.0001$	$22.63{\pm}0.47$	$\xi=2$	${\bf 23.14 {\pm} 0.56}$	$\xi=2$	24.04 ± 0.69
	$\xi=0$	21.97 ± 0.48	$\xi=0$	$21.97 {\pm} 0.48$	$\xi=0$	21.97 ± 0.48
OUTFLOW	$\xi = 0.01$	22.21 ± 0.49	$\xi = 0.5$	$21.67{\pm}0.32$	$\xi = 0.5$	$21.62{\pm}0.31$
	$\xi = 0.001$	$21.91 {\pm} 0.48$	$\xi=1$	$21.96{\pm}0.79$	$\xi=1$	22.16 ± 0.57
	$\xi = 0.0001$	$21.52{\pm}0.47$	$\xi=2$	22.20 ± 0.69	$\xi=2$	23.06±1.23

Table 97: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=1,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t-t')^{\xi}}$		$\alpha_{t'} = \frac{1}{\xi \ln (t - t' + 1)}$	
	$\xi=0$	11.31±0.03	$\xi=0$	11.31±0.03	$\xi=0$	11.31 ± 0.03
INFLOW	$\xi = 0.01$	11.28 ± 0.05	$\xi = 0.5$	11.28 ± 0.02	$\xi = 0.5$	11.34 ± 0.06
	$\xi = 0.001$	11.34±0.14	$\xi=1$	$11.30 {\pm} 0.08$	$\xi=1$	11.34 ± 0.08
	$\xi = 0.0001$	11.26 \pm 0.04	$\xi=2$	11.40±0.09	$\xi=2$	11.49 ± 0.13
	$\xi=0$	11.40±0.03	$\xi=0$	11.40±0.03	$\xi=0$	11.40 ± 0.03
OUTFLOW	$\xi = 0.01$	11.37 \pm 0.04	$\xi = 0.5$	11.37 ± 0.02	$\xi = 0.5$	11.43 ± 0.06
	$\xi = 0.001$	11.43±0.13	$\xi=1$	$11.39{\pm}0.08$	$\xi=1$	11.43 ± 0.08
	$ \xi = 0.0001$	11.35 \pm 0.04	$\xi=2$	11.49±0.09	$\xi=2$	11.58 ± 0.12

Table 98: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=1,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$15.57 {\pm} 0.35$	$\xi=0$	$15.57 {\pm} 0.35$	$\xi=0$	15.57 ± 0.35
INFLOW	$\xi = 0.01$	$15.23 {\pm} 0.48$	$\xi = 0.5$	$15.37 {\pm} 0.32$	$\xi = 0.5$	$15.40 {\pm} 0.39$
	$\xi = 0.001$	$15.37 {\pm} 0.37$	$\xi=1$	$15.51 {\pm} 0.52$	$\xi=1$	15.73 ± 0.14
	$\xi = 0.0001$	$15.29 {\pm} 0.31$	$\xi=2$	$15.63 {\pm} 0.46$	$\xi=2$	15.88 ± 0.42
	$\xi=0$	$15.75 {\pm} 0.3$	$\xi=0$	$15.75 {\pm} 0.3$	$\xi=0$	15.75 ± 0.3
OUTFLOW	$\xi = 0.01$	$15.41 {\pm} 0.52$	$\xi = 0.5$	$15.53 {\pm} 0.32$	$\xi = 0.5$	$15.59 {\pm} 0.42$
	$\xi = 0.001$	$15.52 {\pm} 0.39$	$\xi=1$	$15.67 {\pm} 0.54$	$\xi=1$	15.90 ± 0.12
	$ \xi = 0.0001$	$15.44{\pm}0.30$	$\xi=2$	15.78 ± 0.46	$\xi=2$	16.04 ± 0.43

Table 99: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=1,\,L=2).$

Түре	$\alpha_{t'} = \exp(-\xi(t - t'))$		$\alpha_{t'} = \frac{1}{(t-t')^{\xi}} $		$\alpha_{t'} = \frac{1}{\xi \ln (t - t' + 1)}$	
	$\xi=0$	11.35 ± 0.02	$\xi=0$	$11.35 {\pm} 0.02$	$\xi=0$	11.35 ± 0.02
INFLOW	$\xi = 0.01$	$11.30 {\pm} 0.09$	$\xi = 0.5$	$11.30 {\pm} 0.07$	$\xi = 0.5$	$11.32{\pm}0.02$
	$\xi = 0.001$	$11.30 {\pm} 0.04$	$\xi=1$	$11.31 {\pm} 0.07$	$\xi=1$	$11.29{\pm}0.03$
	$\xi = 0.0001$	$11.29 {\pm} 0.04$	$\xi=2$	$11.40 {\pm} 0.12$	$\xi=2$	11.46 ± 0.20
	$\xi=0$	$11.44 {\pm} 0.02$	$\xi=0$	$11.44 {\pm} 0.02$	$\xi=0$	11.44 ± 0.02
OUTFLOW	$\xi = 0.01$	$11.39 {\pm} 0.08$	$\xi = 0.5$	$11.39 {\pm} 0.07$	$\xi = 0.5$	11.40 ± 0.02
	$\xi = 0.001$	$11.39 {\pm} 0.03$	$\xi=1$	$11.39 {\pm} 0.07$	$\xi=1$	$11.37{\pm}0.03$
	$ \xi = 0.0001$	$11.38{\pm}0.04$	$\xi=2$	11.49 ± 0.11	$\xi=2$	11.54 ± 0.19

Table 100: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=1,\,L=2).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	15.45 ± 0.37	$\xi=0$	15.45 ± 0.37	$\xi=0$	15.45 ± 0.37
INFLOW	$\xi = 0.01$	$15.28 {\pm} 0.22$	ξ =0.5	15.46 ± 0.40	ξ =0.5	15.47 ± 0.36
	$\xi = 0.001$	$15.03{\pm}0.22$	$\xi=1$	$15.38 {\pm} 0.36$	$\xi=1$	15.42 ± 0.20
	$\xi = 0.0001$	15.46 ± 0.16	$\xi=2$	15.56 ± 0.30	$\xi=2$	15.45 ± 0.23
	$\xi=0$	15.60 ± 0.40	$\xi=0$	15.60 ± 0.40	$\xi=0$	15.60 ± 0.40
OUTFLOW	$\xi = 0.01$	$15.44{\pm}0.22$	ξ =0.5	15.65 ± 0.39	ξ =0.5	$15.59 {\pm} 0.34$
	$\xi = 0.001$	$15.15 {\pm} 0.21$	$\xi=1$	$15.54{\pm}0.38$	$\xi=1$	$15.59 {\pm} 0.20$
	$ \xi = 0.0001$	15.58 ± 0.11	$\xi=2$	15.71 ± 0.35	$\xi = 2$	$15.58{\pm}0.20$

Table 101: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=1,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t')) \qquad \qquad \alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$11.27\pm0.03 \mid \xi=0$	$11.27{\pm}0.03$	$\xi=0$	$11.27{\pm}0.03$
INFLOW	$\xi = 0.01$	11.25 \pm 0.02 ξ =0.5	11.29 ± 0.03	$\xi = 0.5$	11.34 ± 0.05
	$\xi = 0.001$	$11.30\pm0.08 \mid \xi=1$	11.31 ± 0.04	$\xi=1$	11.35 ± 0.06
	$\xi = 0.0001$	$11.33\pm0.03 \mid \xi=2$	11.31 ± 0.04	$\xi=2$	11.42 ± 0.07
	$\xi=0$	$11.36\pm0.02 \mid \xi=0$	11.36 ± 0.02	$\xi=0$	11.36 ± 0.02
OUTFLOW	$\xi = 0.01$	11.34 \pm 0.02 ξ =0.5	11.38 ± 0.03	$\xi = 0.5$	11.43 ± 0.05
	$\xi = 0.001$	$11.39\pm0.08 \mid \xi=1$	11.39 ± 0.04	$\xi=1$	11.43 ± 0.06
	$ \xi = 0.0001$	$11.42\pm0.03 \mid \xi=2$	11.40 ± 0.04	$\xi=2$	11.51 ± 0.07

Table 102: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=1,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t')) \qquad \qquad \alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	15.08 ± 0.31 $\xi=0$	15.08 ± 0.31	$\xi=0$	15.08 ± 0.31
INFLOW	$\xi = 0.01$	14.90 ± 0.06 ξ =0.5	15.31 ± 0.39	$\xi = 0.5$	15.51 ± 0.66
	$\xi = 0.001$	$15.53\pm0.41 \mid \xi=1$	15.13 ± 0.18	$\xi=1$	15.47 ± 0.29
	$\xi = 0.0001$	$15.70\pm0.53 \mid \xi=2$	$15.50 {\pm} 0.32$	$\xi=2$	15.53 ± 0.24
	$\xi=0$	$15.21\pm0.30 \mid \xi=0$	15.21 ± 0.30	$\xi=0$	15.21 ± 0.30
OUTFLOW	$\xi = 0.01$	15.06 ± 0.05 ξ =0.5	15.47 ± 0.39	$\xi = 0.5$	15.65 ± 0.68
	$\xi = 0.001$	$15.65\pm0.44 \mid \xi=1$	15.29 ± 0.19	$\xi=1$	15.58 ± 0.28
	$\xi = 0.0001$	$15.87\pm0.64 \mid \xi=2$	15.66 ± 0.31	$\xi = 2$	15.70 ± 0.29

Table 103: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=1,\,L=8).$

Түре	$\alpha_{t'} = \exp$	$\rho(-\xi(t-t'))$ $\alpha_{t'}$	$t = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} = \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$11.27\pm0.02 \mid \xi=0$	$11.27 \pm 0.02 \mid \xi =$	=0 11.27±0.02
INFLOW	$\xi = 0.01$	11.26 \pm 0.03 ξ =0.5	$11.27 \pm 0.05 \mid \xi =$	$=0.5 11.33 \pm 0.03$
	$\xi = 0.001$	$11.33\pm0.04 \mid \xi=1$	$11.29 \pm 0.05 \mid \xi =$	$=1$ 11.37 ± 0.10
	$\xi = 0.0001$	$11.29\pm0.06 \mid \xi=2$	$11.34 \pm 0.07 \mid \xi =$	$=2$ 11.43 \pm 0.05
	$\xi=0$	$11.36\pm0.03 \mid \xi=0$	$11.36 \pm 0.03 \mid \xi =$	$=0$ 11.36 ± 0.03
OUTFLOW	$\xi = 0.01$	11.34 \pm 0.03 ξ =0.5	11.36 \pm 0.05 ξ =	$=0.5$ 11.42 ± 0.03
	$\xi = 0.001$	$11.42\pm0.04 \mid \xi=1$	$11.37 \pm 0.05 \mid \xi =$	=1 11.45±0.10
	$\xi = 0.0001$	$11.38\pm0.06 \mid \xi=2$	$11.43\pm0.07 \mid \xi =$	$=2$ 11.51 ± 0.05

Table 104: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=1,\,L=8)$.

Түре	$\alpha_{t'} = \exp(-\xi(t - t'))$		$\alpha_{t'} = \frac{1}{(t-t')^{\xi}} $		$\alpha_{t'} = \frac{1}{\xi \ln (t - t' + 1)}$	
	$\xi=0$	$15.23\pm0.25 \mid \xi=0$	$15.23 {\pm} 0.25$	$\xi=0$	15.23 ± 0.25	
INFLOW	$\xi = 0.01$	15.10 ± 0.26 ξ =0	$.5$ 15.21 \pm 0.13	$\xi = 0.5$	15.30 ± 0.46	
	$\xi = 0.001$	$15.57 \pm 0.52 \mid \xi = 1$	$15.59 {\pm} 0.36$	$\xi=1$	15.36 ± 0.19	
	$\xi = 0.0001$	$15.64 \pm 0.53 \mid \xi = 2$	$15.25 {\pm} 0.15$	$\xi=2$	15.56 ± 0.14	
	$\xi=0$	$15.37 \pm 0.26 \mid \xi = 0$	$15.37 {\pm} 0.26$	$\xi=0$	15.37 ± 0.26	
OUTFLOW	$\xi = 0.01$	15.23 \pm 0.21 ξ =0	$.5$ 15.35 \pm 0.13	$\xi = 0.5$	15.44 ± 0.43	
	$\xi = 0.001$	$15.74 \pm 0.50 \mid \xi = 1$	$15.69 {\pm} 0.38$	$\xi=1$	15.53 ± 0.14	
	$ \xi = 0.0001$	$15.75\pm0.53 \mid \xi=2$	15.40 ± 0.13	$\xi=2$	15.67 ± 0.16	

Table 105: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=2,\,L=1).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$ $\alpha_{t'}$	$=rac{1}{(t-t')^{\xi}}$ $\alpha_{t'}$	$=rac{1}{\xi\ln(t-t'+1)}$
	$\xi=0$	$11.31\pm0.04 \mid \xi=0$	$11.31\pm0.04 \mid \xi=0$	11.31 ± 0.04
INFLOW	$\xi = 0.01$	11.26 \pm 0.03 ξ =0.5	11.27 \pm 0.10 ξ =0.5	$11.28{\pm0.06}$
	$\xi = 0.001$	11.30 \pm 0.06 ξ =1	11.30 \pm 0.04 ξ =1	11.31 ± 0.02
	$\xi = 0.0001$	$11.31\pm0.05 \mid \xi=2$	$11.32\pm0.08 \mid \xi=2$	11.45 ± 0.16
	$\xi=0$	$11.39\pm0.05 \mid \xi=0$	$11.39\pm0.05 \mid \xi=0$	11.3952 ± 0.05
OUTFLOW	$\xi = 0.01$	11.35 \pm 0.03 ξ =0.5	11.36±0.10 ξ =0.5	$11.38{\pm}0.05$
	$\xi = 0.001$	$11.39\pm0.06 \mid \xi=1$	11.39 \pm 0.04 ξ =1	11.40 ± 0.02
	$\xi = 0.0001$	$11.40\pm0.05 \mid \xi=2$	$11.41\pm0.07 \mid \xi=2$	11.53 ± 0.16

Table 106: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=2,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$-\xi(t-t')$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln{(t-t'+1)}}$
	$\xi=0$	$15.46 {\pm} 0.34$	$\xi = 0$	15.46 ± 0.34	$\xi=0$	15.46 ± 0.34
INFLOW	$\xi = 0.01$	$15.15{\pm}0.24$	ξ =0.5	15.05 ± 0.14	$\xi = 0.5$	$15.24{\pm}0.29$
	$\xi = 0.001$	$15.23{\pm}0.33$	$\xi=1$	15.54 ± 0.53	$\xi=1$	15.10 ± 0.13
	$\xi = 0.0001$	$15.56 {\pm} 0.44$	$\xi=2$	$15.25{\pm}0.27$	$\xi=2$	15.52 ± 0.50
	$ \xi=0$	15.58 ± 0.30	$\xi = 0$	15.58 ± 0.30	$\xi=0$	15.58 ± 0.30
OUTFLOW	$\xi = 0.01$	$15.30 {\pm} 0.27$	ξ =0.5	15.19 ± 0.15	$\xi = 0.5$	$15.39 {\pm} 0.30$
	$\xi = 0.001$	$15.41 {\pm} 0.36$	$\xi=1$	15.69 ± 0.55	$\xi=1$	$15.25{\pm}0.14$
	$ \xi = 0.0001$	15.75 ± 0.45	$\xi=2$	$15.35{\pm}0.28$	$\xi = 2$	15.65 ± 0.53

Table 107: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=2,\,L=2)$.

Түре	$\alpha_{t'} = \exp(-\xi(t - t'))$		$\alpha_{t'} = \frac{1}{(t-t')^{\xi}} $		$\alpha_{t'} = \frac{1}{\xi \ln (t - t' + 1)}$	
	$\xi=0$	11.30±0.05 8	$\xi = 0$ 1	1.30±0.05	$\xi=0$	11.30 ± 0.05
INFLOW	$\xi = 0.01$	11.24±0.02 8	$\xi = 0.5$ 11	$1.28{\pm}0.05$	$\xi = 0.5$	11.26 ± 0.06
	$\xi = 0.001$	11.30±0.05 8	$\xi = 1$ 1	1.30±0.04	$\xi=1$	11.46 ± 0.09
	$ \xi = 0.0001$	11.32±0.06 8	$\xi=2$ 1	1.31±0.07	$\xi=2$	11.39 ± 0.04
	$\xi=0$	11.38±0.05 8	$\xi = 0$ 1	1.38±0.05	$\xi=0$	11.38 ± 0.05
OUTFLOW	$\xi = 0.01$	11.33±0.02 8	$\xi = 0.5$ 11	$1.37{\pm}0.05$	$\xi = 0.5$	$11.35{\pm}0.06$
	$\xi = 0.001$	11.39±0.05 8	$\xi = 1$ 1	1.39±0.04	$\xi=1$	11.54 ± 0.08
	$ \xi = 0.0001$	11.41±0.05 8	$\xi=2$ 1	1.39±0.07	$\xi=2$	11.47 ± 0.04

Table 108: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=2,\,L=2).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	15.54 ± 0.38	$\xi=0$	$15.54 {\pm} 0.38$	$\xi=0$	15.54 ± 0.38
INFLOW	$\xi = 0.01$	$15.27{\pm}0.30$	$\xi = 0.5$	$15.35 {\pm} 0.32$	$\xi = 0.5$	$15.15 {\pm} 0.23$
	$\xi = 0.001$	$15.44{\pm}0.29$	$\xi=1$	$15.35 {\pm} 0.31$	$\xi=1$	15.85 ± 0.80
	$\xi = 0.0001$	15.64 ± 0.33	$\xi=2$	$15.39 {\pm} 0.45$	$\xi=2$	15.66 ± 0.39
	$\xi=0$	$15.64 {\pm} 0.37$	$\xi=0$	$15.64 {\pm} 0.37$	$\xi=0$	15.64 ± 0.37
OUTFLOW	$\xi = 0.01$	$15.42{\pm}0.35$	$\xi = 0.5$	$15.52 {\pm} 0.29$	$\xi = 0.5$	$15.32 {\pm} 0.26$
	$\xi = 0.001$	$15.60 {\pm} 0.28$	$\xi=1$	$15.49 {\pm} 0.28$	$\xi=1$	16.00 ± 0.75
	$ \xi = 0.0001$	15.80 ± 0.35	$\xi=2$	$15.51 {\pm} 0.46$	$\xi=2$	15.78 ± 0.42

Table 109: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=2,\,L=4)$.

Түре	$\alpha_{t'} = \epsilon$	$\exp(-\xi(t-t'))$	c	$\alpha_{t'} = \frac{1}{(t-t')^{\xi}}$		$\alpha_{t'} = \frac{1}{\xi \ln (t - t' + 1)}$	
	$\xi=0$	11.2695 ± 0.0363	$\xi=0$	11.2695 ± 0.0363	$\xi = 0$	11.2695 ± 0.0363	
INFLOW	$\xi = 0.01$	11.27 ± 0.06	$\xi = 0.5$	$11.27{\pm}0.05$	$\xi = 0.5$	11.31 ± 0.05	
	$\xi = 0.001$	11.29 ± 0.07	$\xi=1$	$11.32 {\pm} 0.15$	$\xi=1$	11.31 ± 0.04	
	$\xi = 0.0001$	11.28 ± 0.07	$\xi=2$	$11.34 {\pm} 0.05$	$\xi=2$	11.45 ± 0.10	
	$\xi=0$	11.35 ± 0.03	$\xi=0$	$11.35 {\pm} 0.03$	$ \xi=0$	11.35 ± 0.03	
OUTFLOW	$\xi = 0.01$	11.36 ± 0.06	$\xi = 0.5$	$11.36 {\pm} 0.05$	$ \xi = 0.5$	11.39 ± 0.05	
	$\xi = 0.001$	11.37 ± 0.07	$\xi=1$	11.4 ± 0.16	$\xi=1$	11.41 ± 0.04	
	$\xi = 0.0001$	11.37 ± 0.07	$\xi = 2$	$11.42 {\pm} 0.04$	$\xi = 2$	11.53 ± 0.09	

Table 110: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=2,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	15.54 ± 0.45	$\xi=0$	$15.54 {\pm} 0.45$	$\xi=0$	15.54 ± 0.45
INFLOW	$\xi = 0.01$	$15.39{\pm}0.46$	$\xi = 0.5$	$15.62 {\pm} 0.30$	$\xi = 0.5$	$15.17{\pm}0.15$
	$\xi = 0.001$	$15.32{\pm}0.17$	$\xi=1$	$15.24 {\pm} 0.43$	$\xi=1$	15.60 ± 0.37
	$\xi = 0.0001$	$15.51 {\pm} 0.48$	$\xi=2$	15.41 ± 0.43	$\xi=2$	15.71 ± 0.55
	$\xi=0$	15.58 ± 0.44	$\xi=0$	15.58 ± 0.44	$\xi=0$	15.58 ± 0.44
OUTFLOW	$\xi = 0.01$	15.58 ± 0.50	$\xi = 0.5$	15.79 ± 0.31	$\xi = 0.5$	$15.29 {\pm} 0.15$
	$\xi = 0.001$	15.47 \pm 0.18	$\xi=1$	$15.50 {\pm} 0.56$	$\xi=1$	15.78 ± 0.36
	$ \overline{\xi = 0.0001}$	15.68±0.45	$\xi=2$	$15.52{\pm}0.42$	$\xi=2$	15.80 ± 0.50

Table 111: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=2,\,L=8).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	11.33 ± 0.09	$\xi=0$	11.33 ± 0.09	$\xi=0$	11.33 ± 0.09
INFLOW	$\xi = 0.01$	$11.26{\pm}0.05$	$\xi = 0.5$	11.23 ± 0.01	$\xi = 0.5$	11.28 ± 0.09
	$\xi = 0.001$	$11.33{\pm}0.04$	$\xi=1$	$11.30 {\pm} 0.07$	$\xi=1$	$11.31 {\pm} 0.04$
	$\xi = 0.0001$	$11.26 {\pm} 0.06$	$\xi=2$	$11.30 {\pm} 0.06$	$\xi=2$	11.47 ± 0.13
	$\xi=0$	11.42 ± 0.09	$\xi=0$	$11.42 {\pm} 0.09$	$\xi=0$	11.42 ± 0.09
OUTFLOW	$\xi = 0.01$	$11.35{\pm}0.04$	$\xi = 0.5$	$11.32 {\pm} 0.01$	$\xi = 0.5$	$11.37{\pm}0.09$
	$\xi = 0.001$	$11.42{\pm}0.04$	$\xi=1$	$11.39 {\pm} 0.07$	$\xi=1$	$11.40{\pm}0.04$
	$ \xi = 0.0001$	$11.35{\pm}0.06$	$\xi=2$	$11.39{\pm}0.06$	$\xi = 2$	11.56 ± 0.13

Table 112: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=2,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$ \alpha_{t'} $	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	15.01 ± 0.13	$\xi=0$	15.01 ± 0.13	$\xi=0$	15.01 ± 0.13
INFLOW	$\xi = 0.01$	$15.37 {\pm} 0.20$	$\xi = 0.5$	15.18 ± 0.10	$\xi = 0.5$	15.60 ± 0.48
	$\xi = 0.001$	15.77 ± 0.34	$\xi=1$	15.37 ± 0.45	$\xi=1$	15.44 ± 0.35
	$\xi = 0.0001$	15.20 ± 0.35	$\xi=2$	15.50 ± 0.42	$\xi=2$	15.56 ± 0.45
	$\xi=0$	15.15 ± 0.13	$\xi=0$	15.15 ± 0.13	$\xi=0$	15.15 ± 0.13
OUTFLOW	$\xi = 0.01$	$15.56 {\pm} 0.22$	$\xi = 0.5$	15.35 ± 0.16	$\xi = 0.5$	15.75 ± 0.41
	$\xi = 0.001$	15.90 ± 0.33	$\xi=1$	15.51 ± 0.41	$\xi=1$	15.60 ± 0.30
	$\xi = 0.0001$	15.35 ± 0.33	$\xi=2$	15.66 ± 0.41	$\xi=2$	15.73 ± 0.49

Table 113: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=3,\,L=1).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	11.30 ± 0.03	$\xi=0$	11.30 ± 0.03	$\xi=0$	11.30 ± 0.03
INFLOW	$\xi = 0.01$	$11.24{\pm}0.05$	$\xi = 0.5$	11.31 ± 0.07	$\xi = 0.5$	11.26 ± 0.02
	$\xi = 0.001$	$11.27{\pm}0.05$	$\xi=1$	$11.29{\pm}0.03$	$\xi=1$	11.37 ± 0.08
	$\xi = 0.0001$	11.33 ± 0.09	$\xi=2$	11.34 ± 0.10	$\xi=2$	11.37 ± 0.04
	$\xi=0$	11.38 ± 0.03	$\xi=0$	11.38 ± 0.03	$\xi=0$	11.38 ± 0.03
OUTFLOW	$\xi = 0.01$	$11.33{\pm}0.06$	$\xi = 0.5$	11.39 ± 0.07	$\xi = 0.5$	$11.35{\pm}0.02$
	$\xi = 0.001$	$11.36 {\pm} 0.05$	$\xi=1$	11.38 ± 0.03	$\xi=1$	11.47 ± 0.08
	$ \xi = 0.0001$	11.42±0.09	$\xi=2$	11.43±0.09	$\xi = 2$	11.46 ± 0.04

Table 114: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=3,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	$15.33 \pm 0.25 \mid \xi =$	$=0$ 15.33 ± 0.25	$\xi=0$	15.33 ± 0.25
INFLOW	$\xi = 0.01$	15.18 \pm 0.29 ξ =	$=0.5$ 15.42 ± 0.47	$\xi = 0.5$	$15.06 {\pm} 0.16$
	$\xi = 0.001$	$15.39 \pm 0.29 \mid \xi =$	$=1$ 15.48 ± 0.30	$\xi=1$	15.45 ± 0.28
	$\xi = 0.0001$	$15.46 \pm 0.50 \mid \xi =$	$=2$ 15.20 \pm 0.13	$\xi=2$	15.69 ± 0.45
	$ \xi=0$	$15.41 \pm 0.21 \mid \xi =$	$=0$ 15.41 \pm 0.21	$\xi=0$	15.41 ± 0.21
OUTFLOW	$\xi = 0.01$	15.36 \pm 0.31 ξ =	$=0.5$ 15.53 ± 0.45	$\xi = 0.5$	$15.23 {\pm} 0.18$
	$\xi = 0.001$	$15.48 \pm 0.28 \mid \xi =$	$=1$ 15.65 ± 0.30	$\xi=1$	15.62 ± 0.32
	$ \xi = 0.0001$	$15.63 \pm 0.54 \mid \xi =$	$=2$ 15.31 \pm 0.17	$\xi = 2$	15.82 ± 0.42

Table 115: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=3,\,L=2).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	11.32 ± 0.13	$\xi=0$	11.32 ± 0.13	$\xi=0$	11.32 ± 0.13
INFLOW	$\xi = 0.01$	$11.29{\pm}0.07$	$\xi = 0.5$	$11.28{\pm}0.03$	$\xi = 0.5$	11.28 ± 0.03
	$\xi = 0.001$	$11.28 {\pm} 0.04$	$\xi=1$	$11.29{\pm}0.04$	$\xi=1$	11.39 ± 0.09
	$\xi = 0.0001$	$11.28 {\pm} 0.05$	$\xi=2$	$11.34 {\pm} 0.06$	$\xi=2$	11.41 ± 0.12
	$\xi=0$	11.41 ± 0.13	$\xi=0$	11.41 ± 0.13	$\xi=0$	11.41 ± 0.13
OUTFLOW	$\xi = 0.01$	$11.37{\pm}0.07$	$\xi = 0.5$	$11.37 {\pm} 0.03$	$\xi = 0.5$	$11.37{\pm}0.03$
	$\xi = 0.001$	$11.37{\pm}0.04$	$\xi=1$	$11.38{\pm}0.04$	$\xi=1$	11.47 ± 0.10
	$\xi = 0.0001$	$11.37{\pm}0.05$	$\xi=2$	11.43 ± 0.07	$\xi=2$	11.50 ± 0.12

Table 116: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=3,\,L=2)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$15.36 \pm 0.35 \mid \xi$	=0 15.36±0.	.35 $\xi = 0$	$15.36 {\pm} 0.35$
INFLOW	$\xi = 0.01$	$15.39 \pm 0.29 \mid \xi$	$=0.5$ 15.24 \pm 0.	19 ξ =0.5	$15.24 {\pm} 0.29$
	$\xi = 0.001$	15.30 \pm 0.18 ξ	$=1$ 14.99 \pm 0.	08 ξ =1	$\textbf{15.21} {\pm} \textbf{0.40}$
	$\xi = 0.0001$	15.31 \pm 0.47 ξ	=2 15.30 ± 0 .	38 ξ =2	15.71 ± 0.37
	$\xi=0$	15.50 ± 0.32 ξ	=0 15.50±0.	.32 ξ =0	15.50 ± 0.32
OUTFLOW	$\xi = 0.01$	$15.56 \pm 0.29 \mid \xi$	=0.5 15.45 ± 0 .	19 ξ =0.5	$\textbf{15.37} {\pm} \textbf{0.31}$
	$\xi = 0.001$	15.42 \pm 0.21 ξ	=1 15.16 ± 0 .	09 $\xi = 1$	$15.39 {\pm} 0.47$
	$ \xi = 0.0001$	15.47 \pm 0.46 ξ	$=2$ 15.48 \pm 0.	47 ξ =2	15.81 ± 0.37

Table 117: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=3,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'} = \frac{1}{(t - t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	$11.27 \pm 0.04 \mid \xi =$	$=0$ 11.27 \pm 0.04	$\xi=0$	11.27 ± 0.04
INFLOW	$\xi = 0.01$	11.27 \pm 0.02 ξ =	$=0.5$ 11.26 \pm 0.04	$\xi = 0.5$	11.34 ± 0.04
	$\xi = 0.001$	$11.30\pm0.05 \mid \xi =$	$=1$ 11.31 ± 0.05	$\xi=1$	11.35 ± 0.01
	$\xi = 0.0001$	$11.30\pm0.05 \mid \xi =$	$=2$ 11.35 ± 0.05	$\xi=2$	11.52 ± 0.14
	$\xi=0$	$11.36\pm0.05 \mid \xi =$	$=0$ 11.36 ± 0.05	$\xi=0$	11.36 ± 0.05
OUTFLOW	$\xi = 0.01$	11.35 \pm 0.02 ξ =	$=0.5$ 11.35 \pm 0.03	$\xi = 0.5$	11.43 ± 0.04
	$\xi = 0.001$	$11.38 \pm 0.05 \mid \xi =$	$=1$ 11.40 ± 0.05	$\xi=1$	11.44 ± 0.01
	$\xi = 0.0001$	$11.39 \pm 0.05 \mid \xi =$	$=2$ 11.45 ± 0.05	$\xi=2$	11.60 ± 0.15

Table 118: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=3,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$ $\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}} \qquad \Big $	$\alpha_{t'} = \frac{1}{\xi \ln(t - t' + 1)}$	-
	$\xi=0$	$15.06\pm0.22 \mid \xi=0$	15.06±0.22 §	$\xi = 0$ 15.06±0.5	22
INFLOW	$\xi = 0.01$	15.09 ± 0.18 ξ =0.5	$15.39 \pm 0.45 \mid \xi$	$\xi = 0.5$ 15.42 ± 0.3	34
	$\xi = 0.001$	15.06 \pm 0.11 ξ =1	15.45±0.51 §	$\xi = 1$ 15.33 ± 0.3	19
	$ \xi = 0.0001$	$15.22\pm0.26 \mid \xi=2$	15.55±0.37 §	$\xi = 2$ 16.04±0.	72
	$\xi=0$	$15.24\pm0.25 \mid \xi=0$	$15.24 \pm 0.25 \mid \xi$	$\xi = 0$ 15.24 ± 0.2	25
OUTFLOW	$\xi = 0.01$	15.26 ± 0.17 ξ =0.5	$15.52 \pm 0.36 \mid \xi$	$\xi = 0.5$ 15.58 ± 0.3	37
	$\xi = 0.001$	15.21 \pm 0.12 ξ =1	15.61±0.50 §	$\xi = 1$ 15.57 ± 0.3	35
	$\xi = 0.0001$	$15.31\pm0.21 \mid \xi=2$	15.74±0.39 §	$\xi = 2$ 16.21±0.	73

Table 119: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=3,\,L=8).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	11.30 ± 0.01	$\xi=0$	11.30 ± 0.01	$\xi=0$	11.30 ± 0.01
INFLOW	$\xi = 0.01$	11.31 ± 0.09	$\xi = 0.5$	$11.26 {\pm} 0.05$	$\xi = 0.5$	$11.27{\pm}0.04$
	$\xi = 0.001$	$11.29 {\pm} 0.08$	$\xi=1$	11.32 ± 0.07	$\xi=1$	11.35 ± 0.03
	$\xi = 0.0001$	$11.28 {\pm} 0.05$	$\xi=2$	11.31 ± 0.03	$\xi=2$	11.47 ± 0.09
	$\xi=0$	11.39 ± 0.01	$\xi=0$	11.39 ± 0.01	$\xi=0$	11.39 ± 0.01
OUTFLOW	$\xi = 0.01$	11.40 ± 0.09	$\xi = 0.5$	$11.35 {\pm} 0.05$	$\xi = 0.5$	$11.36{\pm}0.04$
	$\xi = 0.001$	$11.37 {\pm} 0.08$	$\xi=1$	$11.41 {\pm} 0.07$	$\xi=1$	11.44 ± 0.03
	$ \xi = 0.0001$	$11.36 {\pm} 0.05$	$\xi=2$	11.40 ± 0.03	$\xi = 2$	11.56 ± 0.09

Table 120: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=3,\,L=8)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	15.08 ± 0.23	$\xi=0$	15.08 ± 0.23	$\xi=0$	15.08 ± 0.23
INFLOW	$\xi = 0.01$	15.25 ± 0.18	$\xi = 0.5$	15.33 ± 0.32	$\xi = 0.5$	15.18 ± 0.21
	$\xi = 0.001$	$15.17{\pm}0.25$	$\xi=1$	15.38 ± 0.23	$\xi=1$	15.28 ± 0.11
	$\xi = 0.0001$	15.20 ± 0.28	$\xi=2$	15.84 ± 0.41	$\xi=2$	15.99 ± 0.46
	$\xi=0$	$15.23 {\pm} 0.24$	$\xi=0$	15.23 ± 0.24	$\xi=0$	15.23 ± 0.24
OUTFLOW	$\xi = 0.01$	15.43 ± 0.19	$\xi = 0.5$	15.52 ± 0.34	$\xi = 0.5$	15.30 ± 0.20
	$\xi = 0.001$	$15.34 {\pm} 0.26$	$\xi=1$	15.55 ± 0.29	$\xi=1$	15.45 ± 0.09
	$ \overline{\xi = 0.0001}$	15.32 ± 0.27	$\xi=2$	15.94 ± 0.44	$\xi=2$	16.15 ± 0.46

Table 121: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=4,\,L=1).$

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'} =$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	11.29±0.04	$\xi=0$	11.29±0.04	$\xi=0$	11.29 ± 0.04
INFLOW	$\xi = 0.01$	11.29±0.03	$\xi = 0.5$	$11.28 {\pm} 0.01$	$\xi = 0.5$	11.32 ± 0.01
	$\xi = 0.001$	11.33±0.07	$\xi=1$	11.30±0.08	$\xi=1$	11.39 ± 0.10
	$ \xi = 0.0001$	11.36±0.06	$\xi=2$	11.32±0.11	$\xi=2$	11.40 ± 0.10
	$\xi=0$	11.37±0.04	$\xi=0$	11.37±0.04	$\xi=0$	11.37 ± 0.04
OUTFLOW	$\xi = 0.01$	11.38±0.03	$\xi = 0.5$	$11.36{\pm}0.01$	$\xi = 0.5$	11.40 ± 0.01
	$\xi = 0.001$	11.42±0.07	$\xi=1$	11.39±0.08	$\xi=1$	11.48 ± 0.10
	$ \overline{\xi = 0.0001}$	11.45±0.07	$\xi=2$	11.41±0.10	$\xi=2$	11.49±0.10

Table 122: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=4,\,L=1)$.

Түре	$\alpha_{t'} = \exp$	$-\xi(t-t')$	$lpha_{t'}$:	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln{(t-t'+1)}}$
	$\xi=0$	15.37 ± 0.38	$\xi=0$	15.37 ± 0.38	$\xi=0$	15.37 ± 0.38
INFLOW	$\xi = 0.01$	$15.24{\pm}0.39$	$\xi = 0.5$	15.40 ± 0.41	$\xi = 0.5$	$15.25{\pm}0.43$
	$\xi = 0.001$	15.81±0.34	$\xi=1$	$15.32 {\pm} 0.09$	$\xi=1$	15.42 ± 0.26
	$\xi = 0.0001$	$15.21 {\pm} 0.22$	$\xi=2$	15.51 ± 0.34	$\xi=2$	15.50 ± 0.21
	$\xi=0$	15.49±0.36	$\xi=0$	15.49 ± 0.36	$\xi=0$	15.49 ± 0.36
OUTFLOW	$\xi = 0.01$	15.39 \pm 0.38	$\xi = 0.5$	15.55 ± 0.40	$\xi = 0.5$	$15.37 {\pm} 0.42$
	$\xi = 0.001$	16.03±0.44	$\xi=1$	15.48 ± 0.14	$\xi=1$	15.67 ± 0.42
	$ \xi = 0.0001$	15.38±0.20	$\xi=2$	15.69 ± 0.36	$\xi = 2$	15.57 ± 0.20

Table 123: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=4,\,L=2).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t-t'+1)}$
	$\xi=0$	11.33 ± 0.06	$\xi=0$	11.33 ± 0.06	$\xi=0$	11.33 ± 0.06
INFLOW	$\xi = 0.01$	11.24 ± 0.10	$\xi = 0.5$	$11.28 {\pm} 0.03$	$\xi = 0.5$	$11.28{\pm}0.02$
	$\xi = 0.001$	$11.29 {\pm} 0.05$	$\xi=1$	$11.31 {\pm} 0.05$	$\xi=1$	11.33 ± 0.02
	$\xi = 0.0001$	$11.32{\pm}0.08$	$\xi=2$	11.33 ± 0.06	$\xi=2$	11.48 ± 0.09
	$\xi=0$	$11.42 {\pm} 0.05$	$\xi=0$	$11.42 {\pm} 0.05$	$\xi=0$	11.42 ± 0.05
OUTFLOW	$\xi = 0.01$	$11.34{\pm}0.10$	$\xi = 0.5$	$11.37 {\pm} 0.04$	$\xi = 0.5$	$11.37{\pm}0.02$
	$\xi = 0.001$	$11.38{\pm}0.05$	$\xi=1$	$11.40 {\pm} 0.05$	$\xi=1$	11.42 ± 0.03
	$\xi = 0.0001$	$11.41 {\pm} 0.08$	$\xi=2$	11.42 ± 0.06	$\xi = 2$	11.56 ± 0.09

Table 124: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=4,\,L=2).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$15.55 {\pm} 0.40$	$\xi=0$	15.55±0.40	$\xi=0$	15.55 ± 0.40
INFLOW	$\xi = 0.01$	$15.21 {\pm} 0.24$	$\xi = 0.5$	15.29 ± 0.31	ξ =0.5	$15.40 {\pm} 0.32$
	$\xi = 0.001$	$15.43{\pm}0.31$	$\xi=1$	$15.26 {\pm} 0.32$	$\xi=1$	$\textbf{15.54} {\pm} \textbf{0.44}$
	$\xi = 0.0001$	$15.35{\pm}0.31$	$\xi=2$	$15.30 {\pm} 0.22$	$\xi=2$	15.86 ± 0.37
	$\xi=0$	$15.55 {\pm} 0.42$	$\xi=0$	15.55 ± 0.42	$\xi=0$	15.55 ± 0.42
OUTFLOW	$\xi = 0.01$	$15.37{\pm}0.27$	$\xi = 0.5$	$15.48{\pm}0.34$	$\xi = 0.5$	15.57 ± 0.36
	$\xi = 0.001$	15.58±0.29	$\xi=1$	$15.40{\pm}0.33$	$\xi=1$	15.74 ± 0.49
	$\xi = 0.0001$	$15.50{\pm}0.32$	$\xi=2$	$15.41{\pm}0.27$	$\xi=2$	15.97 ± 0.33

Table 125: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=4,\,L=4).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\alpha_{t'}$	$= \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\tfrac{1}{\xi \ln (t\!-\!t'\!+\!1)}$
	$\xi=0$	11.30±0.06	$\xi=0$	11.30 ± 0.06	$\xi=0$	11.30 ± 0.06
INFLOW	$\xi = 0.01$	$11.28{\pm}0.04$	$\xi = 0.5$	$11.30 {\pm} 0.10$	$\xi = 0.5$	$11.27{\pm}0.05$
	$\xi = 0.001$	$11.29{\pm}0.06$	$\xi=1$	11.32 ± 0.10	$\xi=1$	11.36 ± 0.07
	$\xi = 0.0001$	$11.26{\pm}0.04$	$\xi=2$	11.36 ± 0.02	$\xi=2$	11.42 ± 0.08
	$\xi=0$	11.38±0.06	$\xi = 0$	11.38 ± 0.06	$\xi=0$	11.38 ± 0.06
OUTFLOW	$\xi = 0.01$	$11.37{\pm}0.03$	$\xi = 0.5$	$11.38 {\pm} 0.09$	$\xi = 0.5$	$11.36 {\pm} 0.05$
	$\xi = 0.001$	$11.38{\pm}0.05$	$\xi=1$	11.41 ± 0.11	$\xi=1$	11.45 ± 0.07
	$\xi = 0.0001$	$11.35{\pm}0.03$	$\xi=2$	11.451 ± 0.02	$\xi=2$	11.51 ± 0.08

Table 126: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=4,\,L=4)$.

Түре	$\alpha_{t'} = \exp$	$(-\xi(t-t'))$	$\alpha_{t'}$	$=\frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	15.21 ± 0.10	$\xi=0$	15.21 ± 0.10	$\xi=0$	15.21 ± 0.10
INFLOW	$\xi = 0.01$	$15.55 {\pm} 0.46$	$\xi = 0.5$	15.31 ± 0.44	$\xi = 0.5$	15.45 ± 0.46
	$\xi = 0.001$	$15.25{\pm}0.24$	$\xi=1$	15.25 ± 0.43	$\xi=1$	15.49 ± 0.09
	$\xi = 0.0001$	$15.57 {\pm} 0.44$	$\xi=2$	15.28 ± 0.40	$\xi=2$	15.61 ± 0.38
	$ \xi=0$	$15.36 {\pm} 0.10$	$\xi=0$	15.36 ± 0.10	$\xi=0$	15.36 ± 0.10
OUTFLOW	$\xi = 0.01$	15.75 ± 0.53	$\xi = 0.5$	15.44 ± 0.41	$\xi = 0.5$	15.63 ± 0.53
	$\xi = 0.001$	$15.41 {\pm} 0.26$	$\xi=1$	15.43 ± 0.48	$\xi=1$	15.69 ± 0.14
	$ \xi = 0.0001$	15.71 ± 0.41	$\xi=2$	15.40 ± 0.36	$\xi=2$	15.70 ± 0.33

Table 127: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAE. $(K=4,\,L=8).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$	$\ell_{t'} = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$\frac{1}{\xi \ln (t - t' + 1)}$
INFLOW	$\xi=0$	$11.29\pm0.08 \mid \xi=0$	11.29 ± 0.08	$\xi=0$	11.29 ± 0.08
	$\xi = 0.01$	11.27 \pm 0.06 ξ =0.5	11.25 ± 0.02	$\xi = 0.5$	11.29 ± 0.04
	$\xi = 0.001$	11.28 \pm 0.05 ξ =1	$11.37 {\pm} 0.15$	$\xi=1$	11.38 ± 0.05
	$\xi = 0.0001$	11.27 \pm 0.02 ξ =2	$11.28 {\pm} 0.09$	$\xi=2$	11.38 ± 0.06
	$\xi=0$	$11.37\pm0.08 \mid \xi=0$	$11.37 {\pm} 0.08$	$\xi=0$	11.37 ± 0.08
OUTFLOW	$\xi = 0.01$	11.36 \pm 0.06 ξ =0.5	11.33 ± 0.02	$\xi = 0.5$	11.38 ± 0.04
	$\xi = 0.001$	11.37 \pm 0.05 ξ =1	$11.46 {\pm} 0.16$	$\xi=1$	11.47 ± 0.05
	$\xi = 0.0001$	11.36 \pm 0.02 ξ =2	$11.37 {\pm} 0.09$	$\xi=2$	11.46 ± 0.06

Table 128: Comparison of models with and without decay on dataset **BJTaxi** in terms of MAPE(%). $(K=4,\,L=8).$

Түре	$\alpha_{t'} = \exp$	$o(-\xi(t-t'))$ $\alpha_{t'}$	$r = \frac{1}{(t-t')^{\xi}}$	$\alpha_{t'} =$	$= \frac{1}{\xi \ln (t - t' + 1)}$
	$\xi=0$	$15.55\pm0.32 \mid \xi=0$	$15.55 {\pm} 0.32$	$\xi=0$	15.55 ± 0.32
INFLOW	$\xi = 0.01$	15.06 ± 0.23 ξ =0.5	$15.00 {\pm} 0.12$	$\xi = 0.5$	15.69 ± 0.41
	$\xi = 0.001$	15.17 \pm 0.17 ξ =1	$15.38 {\pm} 0.32$	$\xi=1$	15.67 ± 0.61
	$\xi = 0.0001$	15.42 \pm 0.46 ξ =2	$15.36 {\pm} 0.37$	$\xi=2$	$15.48{\pm}0.49$
	$\xi=0$	$15.70\pm0.27 \mid \xi=0$	15.70 ± 0.27	$\xi=0$	15.70 ± 0.27
OUTFLOW	$\xi = 0.01$	15.26 ± 0.30 ξ =0.5	$15.16 {\pm} 0.16$	$\xi = 0.5$	15.88 ± 0.45
	$\xi = 0.001$	15.24 \pm 0.12 ξ =1	$15.48 {\pm} 0.25$	$\xi=1$	15.85 ± 0.65
	$\xi = 0.0001$	15.56 \pm 0.42 ξ =2	$15.51{\pm}0.44$	$\xi=2$	$15.62{\pm}0.47$