The voltage source V_s changes from A to 0 at t=5 s, as shown on the right. For t<5 s, you may assume the system has reached steady state. The voltage v_a is a node voltage.

- (a) Find $v_a(5^- s)$.
- (b) Find $v_a(t)$ for t > 5 s. Write the equation.

R1: 1Ω R2: 2Ω

R2: 2 Ω Is: 2 A

A: 6 V L: 2 <u>nH</u>

Q2

For t < 0 s, the switch has been opening and closing (and the capacitor may not have reached steady state).

The switch closes at time t = 0 s.

You are given the capacitor voltage at time t = 4 s:

$$v_C(4^-) = X$$

- (a) Find $v_{\mathcal{C}}(0^+s)$. (You can leave your answer written as a function of e)
- (b) The switch opens again at time t = 4 s. Find $v_C(6 \text{ s})$.

	R2:	4Ω
	X:	3 V
	ls:	1 A
	C:	2 F

R1:

1Ω

