Sécurité

Explosif

Inflammable

Comburant

Dangereux pour l'environnement

Nocif, irritant, sensibilisant

Toxique

Corrosif

Gaz sous pression

Les bons réflexes à avoir

Pour prévenir les accidents

Toujours porter la blouse pour les manipulations réalisées au laboratoire.

Cette remarque est valable lorsqu'on est en train de manipuler ou bien posté à proximité.

Porter des lunettes ou des surlunettes de sécurité lors de la manipulation d'espèces chimiques :

- toxiques;
- irritantes ou sensibilisantes;
- corrosives.

Enfiler une paire de gants de protection adaptés lors de la manipulation d'espèces chimiques:

- toxiques;
- irritantes ou sensibilisantes ;
- corrosives.

Récupérer dans un bécher poubelle les espèces chimiques identifiées en début de séance par le professeur ou par l'énoncé.

En cas d'accident

En cas de contact sur la peau d'une espèce toxique, irritante ou corrosive :

Appeler immédiatement le professeur et passer la zone touchée sous l'eau pendant 5 à 10 minutes

En cas de projection dans les yeux :

Appeler immédiatement le professeur, rincer au plus vite à l'aide d'un rince-œil.

GROUPES CARACTÉRISTIQUES EN CHIMIE ORGANIQUE

Fonction	Groupe caractéristique	Formule et nom générique
alcane	-c-	C _n H _{2n+2} alcane
alcène	_c=c<	C _n H _{2n} alc- i-ène
alcyne	-c≡c-	C _n H _{2n-2} alc- i-yne
alcool	— <mark>Г</mark> — <u>о</u> н	ROH alcan- <mark>i-ol</mark>
aldéhyde	$-c \leqslant_{H}^{\underline{o}_{I}}$	RCHO alcan <mark>al</mark>
cétone	-c-c o	RCOR' alcan- <mark>i-one</mark>
acide carboxylique	−c <u>o</u> H	RCOOH acide alcan oïque
ester	-c √0 	RCOOR' alcan <mark>oate</mark> d'alk yle

 ${\it Exemple avec un alcool:}$

$${\overset{1}{\text{CH}}_{3}} - {\overset{2}{\text{CH}}} - {\overset{3}{\text{CH}}}_{2} - {\overset{4}{\text{CH}}}_{2} - {\overset{5}{\text{CH}}}_{3}$$

$${\overset{1}{\text{OH}}}$$

l'alcan-i-ol s'écrit ici pentan-2-ol.

CERCLE CHROMATIQUE

^{1.} Le nombre de masse (nombre de nucléons) indiqué est celui de l'isotope stable majoritaire.

^{2.} La masse molaire indiquée est la masse molaire moyenne pondérée par l'abondance des isotopes.