Lab Report

Course number: EE101	Lab Section: A04
Student Name: Helen Wang	Student ID: hwang2
Lab GTA:	Lab TA: Hannah, Artur

TA ONLY

			Points	0 - Wholly inadequate. 1 - An
Lab Objectives	OK	NOK	Earned	attempt, but missing many pieces,
				unprofessional parts, missed the
Materials	OK	NOK		point. 2 – More than one
				unsatisfactory section. 3- One
Exercise Req/Proc	OK	NOK		unsatisfactory section. 4 - Spot on.
				All sections delivered as required.
Conclusions	OK	NOK		Professional

Lab Title: Arduino digital input/output

Section A: Lab Objectives

In your own words list the objectives of this lab.

Using a serial to parallel shift register HC595 we can effectively turn two digital outputs from microcontroller into 8 outputs. We utilize a series of LEDs attached to the shift register and the persistence of the Human eye to create a few interesting visual effects. Learn the basics of serial to parallel data conversion. Interface a 74HC595 serial to parallel converter circuit to your RoboRed microcomputer given a schematic. Output a set of patterns to LEDs attached to the parallel outputs of the HC595.

Section B: Equipment and component materials used

Electronics measurement equipment, power supply, electronics components, etc. Only what you used for this lab.

- Arduino Programming book (Blum)
- 74HC595 serial to parallel converter (in kit) + Datasheet for 74HC595
- A view of: https://www.youtube.com/watch?v=c4M-GAS4cWE
- A couple articles on POV: Persistence of Vision
- Optional
- O-scope
- Power Supply.

Section C: Reference works and soft materials used

Text book sections, Datasheets, On-line sources, Code snippets, etc. Be thorough and give credit where due.

Dr.Gallagher(.n.d), Arduino digital input/output. Department of Electrical Engineering. Accesse 02/28/2020						

Section D: Exercises

Exercises have unique requirements that are met by your "unique" solutions. Multiple exercises fulfill our lab objectives. List the lab exercise requirements here.

Requirements:

Part 2. Test your circuit. Ping pong

Demonstrate a single illuminated LED "ping-ponging" across the 8 LED string. Use an input from the serial monitor input to vary the rate at which the ping pongs (4Hz - .25 Hz).

Solution/Procedure:

What did you do to fulfill the exercise requirements?

Breadboard schematic of the pingpong circuit

Section E: Lab Conclusion

In this lab, the first part of the lab introduces me to breadboarding and how to use a serial to parallel shift registaer HC59 so I can easily turn two digital outputs from microcontroller into 8 outputs. The second part is to code the pingpong circuit so the LED will be able to flash in order and repeat back. It is important to set an if function in the end to dictate the circuit to get back to the beginning.