Lecture 4

Comparing Loss Functions

DSC 40A, Fall 2025

Announcements

- Homework 1 is due on Friday, October 10th.
- Remember that in, general, groupwork worksheets are released on Sunday and due Monday.
- Look at the office hours schedule here and plan to start regularly attending!
- Remember to take a look at the supplementary readings linked on the course website.

Agenda

- Recap: Empirical risk minimization.
- Choosing a loss function.
 - The role of outliers.
- Other loss functions

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

Recap: Empirical risk minimization

Goal

We had one goal in Lectures 2 and 3: given a dataset of values from the past, **find the** best constant prediction to make.

$$y_1 = 72$$
 $y_2 = 90$ $y_3 = 61$ $y_4 = 85$ $y_5 = 92$

Key idea: Different definitions of "best" give us different "best predictions."

The modeling recipe

In Lectures 2 and 3, we made two full passes through our "modeling recipe."

1. Choose a model.

$$H(x) = h$$

2. Choose a loss function.

$$L_{ ext{sq}}(y_i,h)=(y_i-h)^2 \qquad \qquad L_{ ext{abs}}(y_i,h)=|y_i-h|^2$$

3. Minimize average loss to find optimal model parameters.

$$h* = \operatorname{mean}(y_1, \dots, y_n)$$
 $h* = \operatorname{median}(y_1, \dots, y_n)$

Empirical risk minimization

- The formal name for the process of minimizing average loss is **empirical risk minimization**.
- Another name for "average loss" is **empirical risk**.
- When we use the squared loss function, $L_{sq}(y_i, h) = (y_i h)^2$, the corresponding empirical risk is mean squared error:

$$R_{ ext{sq}}(h) = rac{1}{n} \sum_{i=1}^n (y_i - h)^2$$

• When we use the absolute loss function, $L_{\rm abs}(y_i,h)=|y_i-h|$, the corresponding empirical risk is mean absolute error:

$$R_{
m abs}(h) = rac{1}{n} \sum_{i=1}^n |y_i - h|$$

Empirical risk minimization, in general

Key idea: If $L(y_i, h)$ is any loss function, the corresponding empirical risk is:

$$R(h) = rac{1}{n} \sum_{i=1}^n L(y_i,h)$$

Choosing a loss function

Now what?

- We know that, for the constant model H(x)=h, the **mean** minimizes mean squared error.
- We also know that, for the constant model H(x)=h, the **median** minimizes mean absolute error.
- How does our choice of loss function impact the resulting optimal prediction?

Comparing the mean and median

Consider our example dataset of 5 commute times.

$$y_1 = 72$$
 $y_2 = 90$ $y_3 = 61$ $y_4 = 85$ $y_5 = 92$

$$y_3 = 61$$

$$y_4 = 85$$

$$y_5 = 92$$

- As of now, the median is 85 and the mean is 80.
- \bullet What if we add 200 to the largest commute time, 92?

$$y_1 = 72$$

$$y_2 = 90$$

$$y_3 = 61$$

$$y_4 = 85$$

$$y_1 = 72$$
 $y_2 = 90$ $y_3 = 61$ $y_4 = 85$ $y_5 = 292$

Now, the median is

but the mean is

• **Key idea**: The mean is quite **sensitive** to outliers.

Outliers

Below, $|y_4-h|$ is 10 times as big as $|y_3-h|$, but $(y_4-h)^2$ is 100 times $(y_3-h)^2$.

The result is that the mean is "pulled" in the direction of outliers, relative to the median.

As a result, we say the **median** is **robust** to outliers. But the **mean** was easier to solve for.

Distribution of Commuting Time

Example: Income inequality

Balance points

Both the mean and median are "balance points" in the distribution.

- The **mean** is the point where $\sum_{i=1}^{n} (y_i h) = 0$.
- The **median** is the point where $\# (y_i < h) = \# (y_i > h)$.

Why stop at squared loss?

Empirical Risk, $R(h)$	Derivative of Empirical Risk, $\frac{d}{dh}R(h)$	Minimizer
$rac{1}{n}\sum_{i=1}^{n} y_i-h $	$rac{1}{n}ig(\sum_{y_i < h} 1 - \sum_{y_i > h} 1ig)$	median
$rac{1}{n}\sum_{i=1}^n (y_i-h)^2$	$rac{-2}{n}\sum_{i=1}^n (y_i-h)$	mean
$rac{1}{n}\sum_{i=1}^n y_i-h ^3$???
$rac{1}{n}\sum_{i=1}^n (y_i-h)^4$???
$rac{1}{n} \sum_{i=1}^n (y_i - h)^{100}$???
•••	•••	•••

Generalized L_p loss

For any $p \geq 1$, define the L_p loss as follows:

$$L_p(y_i,h) = |y_i-h|^p$$

The corresponding empirical risk is:

$$R_p(h) = rac{1}{n} \sum_{i=1}^n |y_i - h|^p$$

- When p=1, $h^*=\operatorname{Median}(y_1,y_2,\ldots,y_n)$.
- ullet When p=2, $h^*=\operatorname{Mean}(y_1,y_2,\ldots,y_n)$.
- What about when p = 3?
- What about when $p \to \infty$?

What value does h^* approach, as $p \to \infty$?

Consider the dataset 1, 2, 3, 14:

On the left:

- The x-axis is p.
- The y-axis is h^* , the optimal constant prediction for L_p loss:

$$h^* = \operatornamewithlimits{argmin}_h rac{1}{n} \sum_{i=1}^n |y_i - h|^p$$

The *midrange* minimizes average L_{∞} loss!

On the previous slide, we saw that as $p\to\infty$, the minimizer of mean L_p loss approached the midpoint of the minimum and maximum values in the dataset, or the midrange.

- As $p \to \infty$, $R_p(h) = \frac{1}{n} \sum_{i=1}^n |y_i h|^p$ minimizes the "worst case" distance from any data point". (Read more here).
- If your measure of "good" is "not far from any one data point", then the midrange is the best prediction.

Another example: 0-1 loss

Consider, for example, the **0-1 loss**:

$$L_{0,1}(y_i,h) = egin{cases} 0 & y_i = h \ 1 & y_i
eq h \end{cases}$$

The corresponding empirical risk is:

$$R_{0,1}(h) = rac{1}{n} \sum_{i=1}^n L_{0,1}(y_i,h)$$

Question 👺

Answer at q.dsc40a.com

$$R_{0,1}(h)=rac{1}{n}\sum_{i=1}^negin{cases} 0&y_i=h\ 1&y_i
eq h \end{cases}$$

Suppose y_1, y_2, \ldots, y_n are all unique. What is $R_{0,1}(y_1)$?

- A. O.
- B. $\frac{1}{n}$.
- C. $\frac{n-1}{n}$.
- D. 1.

Minimizing empirical risk for 0-1 loss

$$R_{0,1}(h)=rac{1}{n}\sum_{i=1}^negin{cases} 0&y_i=h\ 1&y_i
eq h \end{cases}$$

Summary: Choosing a loss function

Key idea: Different loss functions lead to different best predictions, $h^*!$

Loss	Minimizer	Always Unique?	Robust to Outliers?	Differentiable?
$L_{ m sq}$	mean	yes 🗸	no X	yes 🗸
$L_{ m abs}$	median	no X	yes <a>V	no X
L_{∞}	midrange	yes 🗸	no X	no X
$L_{0,1}$	mode	no X	yes <a>	no X

The optimal predictions, h^* , are all **summary statistics** that measure the **center** of the dataset in different ways.

What's next?

Towards simple linear regression

- In Lecture 1, we introduced the idea of a hypothesis function, H(x).
- We've focused on finding the best constant model, H(x)=h.
- Now that we understand the modeling recipe, we can apply it to find the best simple linear regression model, $H(x)=w_0+w_1x.$
- This will allow us to make predictions that aren't all the same for every data point.

The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.