Introduction to Analysis

Chen Gao

Spring 2025

Course: MATH 104Professor [Name] Instructor: Institution:

University of California, Berkeley

Spring 2025 Semester:

Contents

1	Course Overview	2
2	Limits and Continuity2.1 Fundamental Limit Concepts	
3	Differentiation Techniques 3.1 Product Rule Exploration	2 2
4	Linear Algebra Foundations 4.1 Vector Space Fundamentals	3
5	Numerical Methods	3
6	Graphical Representations	3
7	Supplementary Notes	3

1 Course Overview

Note

These notes compile key concepts, theorems, and insights from the Mathematical Analysis course. They serve as a comprehensive reference for understanding advanced mathematical principles.

2 Limits and Continuity

2.1 Fundamental Limit Concepts

Definition 2.1: Limit of a Function

For a function f(x), we say $\lim_{x\to a} f(x) = L$ if for every $\epsilon > 0$, there exists a $\delta > 0$ such that:

$$0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$$

Theorem 2.1: Limit Laws

If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then:

1.
$$\lim_{x\to a}[f(x)+g(x)]=L+M$$

2.
$$\lim_{x\to a} [f(x) \cdot g(x)] = L \cdot M$$

3.
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{L}{M}$$
, if $M \neq 0$

2.2 Continuity Analysis

Example 2.1: Continuous Function

Consider $f(x) = x^2$. This function is continuous at every point $x \in \mathbb{R}$ because:

$$\lim_{h \to 0} [f(x+h) - f(x)] = \lim_{h \to 0} [(x+h)^2 - x^2] = 0$$

3 Differentiation Techniques

3.1 Product Rule Exploration

Exercise 3.1: Derivative Computation

Compute the derivative of $f(x) = x^3 \sin(x)$ using the product rule.

Solution

Using the product rule, $\frac{d}{dx}[f(x)] = \frac{d}{dx}[x^3] \cdot \sin(x) + x^3 \cdot \frac{d}{dx}[\sin(x)]$

$$f'(x) = 3x^2 \sin(x) + x^3 \cos(x)$$

4 Linear Algebra Foundations

4.1 Vector Space Fundamentals

Definition 4.1: Vector Space

A vector space V over a field \mathbb{F} is a set with two operations:

- Vector addition: $+: V \times V \to V$
- Scalar multiplication: $\cdot : \mathbb{F} \times V \to V$

satisfying specific axioms of vector spaces.

Example 4.1: Linear Transformation

Consider a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by:

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x - y \\ x + 3y \end{pmatrix}$$

This transformation preserves vector addition and scalar multiplication.

5 Numerical Methods

```
Algorithm 1: Selection Sort Algorithm
```

```
Data: Input array A of n elements
   Result: Sorted array in ascending order
 1 begin
        for i \leftarrow 1 to n-1 do
 \mathbf{2}
            \min_{i} idx \leftarrow i;
 3
            for j \leftarrow i + 1 to n do
                if A[j] < A[\min_{i} dx] then
 5
                     \min_{i} dx \leftarrow j;
 6
                end
            end
            Swap A[i] and A[\min idx];
        \quad \text{end} \quad
10
11 end
```

6 Graphical Representations

7 Supplementary Notes

Note

These notes are a personal compilation of key mathematical concepts, serving as a study aid and reference for Advanced Mathematical Analysis.

Quadratic Function $f(x) = x^2 - 2x + 1$

Problem 7.1: Research Challenge

Investigate the convergence properties of the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ for different values of p.