import pandas as pd
import numpy as np
import seaborn as sns

LOADING THE DATASET

df=pd.read_csv('/content/abalone.csv')

df

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight S
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765

4177 rows × 9 columns

df.dtypes

Sex	object
Length	float64
Diameter	float64
Height	float64
Whole weight	float64
Shucked weight	float64
Viscera weight	float64
Shell weight	float64
Rings	int64

dtype: object

import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

UNIVARIATE ANALYSIS

plt.scatter(df.index,df['Diameter'])
plt.show()

sns.scatterplot(x=df.index,y=df['Diameter'],hue=df['Sex'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f41478efdd0>

sns.set(rc={'figure.figsize': (7,7)})
sns.set (font_scale=1.5)
fig=sns.lineplot (x=df.index, y=df['Length'], markevery=1, marker='d', data=df, hue=df ['S
fig.set(xlabel='index')

<matplotlib.axes._subplots.AxesSubplot at 0x7f4145efa910>

sns.stripplot (x=df['Sex'], y=df['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f4145ecd850>

sns.set(rc={'figure.figsize': (5,5)})
sns.swarmplot (x=df['Whole weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 61.6 warnings.warn(msg, UserWarning)

plt.hist(df['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f414356ffd0>


```
fig, ax = plt.subplots()
sns.rugplot (df ['Height'])
ax.set_xlim (3,9)
plt.show()
```


plt.boxplot(df['Height'])

BIVARIATE ANALYSIS

sns.barplot(x='Sex',y='Height',data=df)
sns.countplot(x='Sex',data=df)

sns.violinplot (x="Sex", y="Length", data=df, size=8)
plt.show()

sns.boxplot (x='Sex',y='Diameter', data=df)
plt.show()

MULTIVARIATE ANALYSIS

sns.pairplot (df, hue="Sex", size=3)
plt.show()

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:2076: UserWarning: The `si warnings.warn(msg, UserWarning)

PERFORM DESCRIPTIVE STATISTICS ON THE DATASET

pd.set_option('display.width', 100)
pd.set_option('precision', 3)
description = df.describe()
print(description)

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Sł
count	4177.000	4177.000	4177.000	4177.000	4177.000	4.177e+03	
mean	0.524	0.408	0.140	0.829	0.359	1.806e-01	
std	0.120	0.099	0.042	0.490	0.222	1.096e-01	
min	0.075	0.055	0.000	0.002	0.001	5.000e-04	
25%	0.450	0.350	0.115	0.442	0.186	9.350e-02	

Check for Missing values

11.000

29.000

df.isnull()

75%

max

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight
0	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False
4172	False	False	False	False	False	False	False
4173	False	False	False	False	False	False	False
4174	False	False	False	False	False	False	False
4175	False	False	False	False	False	False	False
4176	False	False	False	False	False	False	False

4177 rows × 9 columns

df.notnull()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	5
0	True	True	True	True	True	True	True	
1	True	True	True	True	True	True	True	
2	True	True	True	True	True	True	True	
3	True	True	True	True	True	True	True	
4	True	True	True	True	True	True	True	

sns.heatmap(df.isnull(),yticklabels=False,cbar=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4141754850>

Find the outliers and replace them outliers

sns.boxplot(df['Rings'],data=df)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f4141f23850>

df['Rings'].hist()

<matplotlib.axes._subplots.AxesSubplot at 0x7f414141af50>


```
fare_mean = df['Rings'].mean()
fare_std = df['Rings'].std()
low= fare_mean -(3 * fare_std)
high= fare_mean + (3 * fare_std)
fare_outliers = df[(df['Rings'] < low) | (df['Rings'] > high)]
fare_outliers.head()
```

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Sh
6	F	0.530	0.415	0.150	0.777	0.237	0.141	
72	F	0.595	0.475	0.170	1.247	0.480	0.225	
83	М	0.595	0.475	0.160	1.317	0.408	0.234	
166	F	0.725	0.575	0.175	2.124	0.765	0.452	
167	F	0.680	0.570	0.205	1.842	0.625	0.408	

```
Q1 = df['Rings'].quantile(0.25)
Q3 = df['Rings'].quantile(0.75)
IQR = Q3 - Q1
whisker_width = 1.5
lower_whisker = Q1 -(whisker_width*IQR)
```

```
upper_whisker = Q3 +(whisker_width*IQR)
df['Rings']=np.where(df['Rings']>upper_whisker,upper_whisker,np.where(df['Rings']<lower_wh
sns.boxplot(df['Rings'],data=df)</pre>
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning <matplotlib.axes._subplots.AxesSubplot at 0x7f41413b6d50>


```
Q1 = df['Rings'].quantile(0.10)
Q3 = df['Rings'].quantile(0.90)
IQR = Q3 - Q1
whisker_width = 1.5
lower_whisker = Q1 - (whisker_width*IQR)
upper_whisker = Q3 + (whisker_width*IQR)
index=df['Rings'][(df['Rings']>upper_whisker)|(df['Rings']<lower_whisker)].index
df.drop(index,inplace=True)</pre>
```

Check for Categorical columns and perform encoding

```
from sklearn.compose import make_column_selector as selector

categorical_columns_selector = selector(dtype_include=object)
categorical_columns = categorical_columns_selector(df)
categorical_columns

['Sex']

data_categorical = df[categorical_columns]
data_categorical.head()
```

```
Sex
      0
          M
      1
          M
      2
           F
from sklearn.preprocessing import OrdinalEncoder
Sex_column = data_categorical[["Sex"]]
encoder = OrdinalEncoder()
Sex_encoded = encoder.fit_transform(Sex_column)
Sex_encoded
     array([[2.],
            [2.],
            [0.],
            . . . ,
            [2.],
            [0.],
            [2.]])
encoder.categories_
     [array(['F', 'I', 'M'], dtype=object)]
data_encoded = encoder.fit_transform(data_categorical)
data_encoded[:5]
     array([[2.],
            [2.],
            [0.],
            [2.],
            [1.]])
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder(sparse=False)
Sex_encoded = encoder.fit_transform(Sex_column)
Sex_encoded
     array([[0., 0., 1.],
            [0., 0., 1.],
            [1., 0., 0.],
            [0., 0., 1.],
            [1., 0., 0.],
            [0., 0., 1.]])
feature_names = encoder.get_feature_names_out(input_features=["Sex"])
Sex encoded = pd.DataFrame(Sex encoded, columns=feature names)
Sex_encoded
```

	Sex_F	Sex_I	Sex_M
0	0.0	0.0	1.0
1	0.0	0.0	1.0
2	1.0	0.0	0.0
3	0.0	0.0	1.0
4	0.0	1.0	0.0
4172	1.0	0.0	0.0
4173	0.0	0.0	1.0
4174	0.0	0.0	1.0
4175	1.0	0.0	0.0
4176	0.0	0.0	1.0

4177 rows × 3 columns

Split the data into dependent and independent variables

```
X= df.iloc[ : , :-1].values
print(X)

[['M' 0.455 0.365 ... 0.2245 0.101 0.15]
       ['M' 0.35 0.265 ... 0.0995 0.0485 0.07]
       ['F' 0.53 0.42 ... 0.2565 0.1415 0.21]
       ...
       ['M' 0.6 0.475 ... 0.5255 0.2875 0.308]
       ['F' 0.625 0.485 ... 0.531 0.261 0.296]
       ['M' 0.71 0.555 ... 0.9455 0.3765 0.495]]

y= df.iloc[ : , 4].values
print(y)

[0.514 0.2255 0.677 ... 1.176 1.0945 1.9485]
```

Scale the independent variables

```
10/20/22, 8:42 PM
                                              Assignment 4.ipynb - Colaboratory
   from sklearn import preprocessing
   df.drop(labels="Sex",axis=1)
   min_max_scaler = preprocessing.MinMaxScaler(feature_range =(0, 1))
   new_x= min_max_scaler.fit_transform(x)
   print ("\n VALUES AFTER MIN MAX SCALING: \n\n", new_x)
          VALUES AFTER MIN MAX SCALING:
          [[0.51351351 0.5210084 0.0840708 ]
          [0.37162162 0.35294118 0.07964602]
          [0.61486486 0.61344538 0.11946903]
          [0.70945946 0.70588235 0.18141593]
          [0.74324324 0.72268908 0.13274336]
          [0.85810811 0.84033613 0.17256637]]
   Standardisation = preprocessing.StandardScaler()
   new_x= Standardisation.fit_transform(x)
   print ("\n\n VALUES AFTER STANDARDIZATION : \n\n", new_x)
```

VALUES AFTER STANDARDIZATION:

```
[[-0.57455813 -0.43214879 -1.06442415]
[-1.44898585 -1.439929 -1.18397831]
[ 0.05003309  0.12213032 -0.10799087]
[ 0.84118198  0.77718745  0.25067161]
```

Split the data into training and testing

```
from sklearn.model selection import train test split
X=df.iloc[ : , :-1]
y=df.iloc[:, -1]
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.05, random_state=0)
X train
```

		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	S
	678	F	0.450	0.380	0.165	0.817	0.250	0.192	
	3009	1	0.255	0.185	0.065	0.074	0.030	0.017	
	1906	1	0.575	0.450	0.135	0.825	0.338	0.211	
	768	F	0.550	0.430	0.155	0.785	0.289	0.227	
	2781	М	0.595	0.475	0.140	1.030	0.492	0.217	
			•••						
	1033	М	0.650	0.525	0.185	1.622	0.664	0.323	
	3264	F	0.655	0.500	0.140	1.171	0.540	0.318	
	1653	М	0.595	0.450	0.145	0.959	0.463	0.206	
ra:	in								

y_trair

```
678
       15.5
3009
        4.0
       11.0
1906
       11.0
768
2781
       10.0
1033
       10.0
3264
       12.0
1653
       10.0
2607
       9.0
         8.0
2732
```

Name: Rings, Length: 3968, dtype: float64

Build the Model -> Train and test the model

```
fig, axes = plt.subplots(ncols=2,figsize=(16, 5))
train[target].plot.hist(color='blue', ax=axes[0])
axes[0].set(title="Train")
test[target].plot.hist(color='blue', ax=axes[1])
axes[1].set(title="Test")
plt.tight_layout()
plt.show()
fig, axes = plt.subplots(4,2,figsize=(16, 14))
axes = np.ravel(axes)
for i, c in enumerate(numerical_features):
    hist = train[c].plot(kind = 'hist', ax=axes[i], title=c, color='blue', bins=30)
plt.tight_layout()
plt.show()
idx = train.loc[train.Height>0.4].index
train.drop(idx, inplace=True)
idx = train.loc[train['Viscera weight']>0.6].index
train.drop(idx, inplace=True)
idx = train.loc[train[target]>25].index
train.drop(idx, inplace=True)
X_train = train[features]
y_train = train[target]
X_test = test[features]
y_test = test[target]
X_train.head()
```

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell
4014	0.625	0.480	0.175	1.065	0.486	0.259	
3252	0.480	0.380	0.130	0.618	0.300	0.142	
305	0.200	0.145	0.060	0.037	0.013	0.009	
1857	0.505	0.400	0.145	0.705	0.334	0.142	
439	0.500	0.415	0.165	0.689	0.249	0.138	

```
from sklearn.linear_model import LinearRegression
from sklearn. linear_model import Lasso
from sklearn.tree import DecisionTreeRegressor
```

Measure the performance using Metrics.

```
# Linear regression
lr_params = {'fit_intercept':[True,False]}
# Lasso
lasso_params = {'alpha': [1e-4, 1e-3, 1e-2, 1, 10, 100]}
# Decision tree
dt_params = {'max_depth': [4, 6, 8, 10, 12, 14, 16, 20],
            'min_samples_split': [5, 10, 20, 30, 40, 50],
            'max_features': [0.2, 0.4, 0.6, 0.8, 1],
            'max_leaf_nodes': [8, 16, 32, 64, 128,256]}
# Random Forest
rf_params = {'bootstrap': [True, False],
             'max_depth': [2, 5, 10, 20, None],
             'max_features': ['auto', 'sqrt'],
             'min_samples_leaf': [1, 2, 4],
             'min_samples_split': [2, 5, 10],
             'n_estimators': [100, 150, 200, 250]}
# XGBoost
xgb_params = {'n_estimators':[100, 200, 300] ,
             'max depth':list(range(1,10)) ,
             'learning rate':[0.006,0.007,0.008,0.05,0.09],
             'min_child_weight':list(range(1,10))}
from sklearn.model selection import RandomizedSearchCV
params = [lr_params, lasso_params, dt_params, rf_params, xgb_params]
# searching Hyperparameters
i=0
for name, model in models.items():
    print(name)
    regressor = RandomizedSearchCV(estimator = model,
                                   n iter=10,
                                   param_distributions = params[i],
                                   cv = 3,
```

```
scoring = 'neg root mean squared error')
```

```
search = regressor.fit(X train, y train)
print('Best params :',search.best_params_)
print("RMSE :", -search.best_score_)
i+=1
print()
 linear regression
 Best params : {'fit_intercept': True}
 RMSE : 1.850711478798481
 lasso
 /usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_search.py:296: UserWa
   UserWarning,
 /usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_search.py:296: UserWa
   UserWarning,
 Best params : {'alpha': 0.0001}
 RMSE: 1.8506688457783522
 decision_tree
 Best params : {'min_samples_split': 30, 'max_leaf_nodes': 16, 'max_features': 0.8, 'n
 RMSE: 1.9493904303644696
 random forest
 Best params : {'n_estimators': 200, 'min_samples_split': 5, 'min samples leaf': 4, 'n
 RMSE: 1.7791857070978347
 xgboost
 [10:42:32] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:33] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:33] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:33] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:34] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
 [10:42:35] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:36] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:36] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
 [10:42:36] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:36] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
 [10:42:37] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
 [10:42:38] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
 [10:42:38] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:39] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:39] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
 [10:42:39] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:39] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
 [10:42:40] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
 [10:42:40] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:40] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
 [10:42:40] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
 [10:42:40] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:41] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:42] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:43] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
 [10:42:44] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
 [10:42:44] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
 [10:42:45] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now
 [10:42:46] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
```

[10:42:46] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now [10:42:46] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now Best params : {'n_estimators': 200, 'min_child_weight': 2, 'max_depth': 4, 'learning_RMSE : 1.7699400041667699

```
rf_params = {'n_estimators': 200,
             'min_samples_split': 2,
             'min_samples_leaf': 4,
             'max_features': 'sqrt',
             'max_depth': None,
             'bootstrap': True}
model = RandomForestRegressor(random_state=1, **rf_params)
model.fit(X_train, y_train)
     RandomForestRegressor(max_features='sqrt', min_samples_leaf=4, n_estimators=200,
                           random_state=1)
import pickle
with open("model.pkl", "wb") as f:
    pickle.dump(model, f)
y_pred = model.predict(X_test)
fig = plt.figure(figsize=(10, 6))
plt.scatter(range(y_test.shape[0]), y_test, color='red', label='y_true')
plt.scatter(range(y_test.shape[0]), y_pred, color='blue', label='y pred')
plt.legend()
plt.show()
```



```
plt.figure(figsize=(10,5))
plt.hist(y_pred-y_test, bins=30)
plt.show()

def predict_age(x):
    x = pd.DataFrame([x], columns=features)
    age = model.predict(x)
    return round(age[0],2)

with open("model.pkl", 'rb') as f:
    model = pickle.load(f)
ex = [0.295 , 0.225 , 0.08 , 0.124 , 0.0485, 0.032 , 0.04 , 0.]
print("Estimated age : ",predict_age(ex))
Estimated age : 7.26
```

Colab paid products - Cancel contracts here

×