

General information

Designation

Poly Vinyl Chloride (Chlorinated, Molding and Extrusion); CPVC

Tradenames

Boltaron, Geon, Protherm, Unitec

Typical uses

Hot water piping; fibers;

Composition overview

Compositional summary

Compound of chlorinated PVC: (CH2CHCI)n with additional random substitution of H by Cl. 63-66% chlorine compared to 56.7% in standard PVC.

Material family	Plastic (thermoplastic, amorphous)
Base material	PVC-C (Polyvinyl chloride, chlorinated)
Polymer code	PVC-C

Composition detail (polymers and natural materials)

Polymer	100	%

Price

Price	* 1.83	-	2.67	USD/kg
Price per unit volume	* 2.65e3	-	4.17e3	USD/m^3

Physical properties

Density	1.45e3	- 1.56e3	kg/m^3
---------	--------	----------	--------

Mechanical properties

Young's modulus Yield strength (elastic limit) Tensile strength Elongation	2.18 53 46 20 4		3.41 58 58	GPa MPa MPa
Tensile strength	46 20	-	58	
9	20			MPa
Flongation		-		
Liongation	1		50	% strain
Elongation at yield	4	-	7	% strain
Compressive modulus	* 2.18	-	3.41	GPa
Compressive strength	* 50	-	67	MPa
Flexural modulus	2.19	-	2.79	GPa
Flexural strength (modulus of rupture)	82	-	90	MPa
Shear modulus	* 0.776	-	1.22	GPa
Bulk modulus	* 4.28	-	4.49	GPa
Poisson's ratio	0.35	-	0.38	
Shape factor	5.3			

PVC (chlorinated, molding and extrusion)

61EDOPIACK					
Hardness - Vickers	* 14	4	-	17	HV
Hardness - Rockwell M	* 72	2	-	90	
Hardness - Rockwell R	* 11	13	-	132	
Fatigue strength at 10^7 cycles	* 18	3.2	-	22.1	MPa
Mechanical loss coefficient (tan delta)	* 0.	0122	-	0.017	
Impact & fracture properties					
Fracture toughness	* 3.	54	_	3.87	MPa.m^0.5
Impact strength, notched 23 °C	9.		_	13.1	kJ/m^2
Impact strength, unnotched 23 °C		90	_	600	kJ/m^2
impact ottorigti, drinotorioa 20 0		30		000	NO/111 Z
Thermal properties					
Glass temperature	10	02	-	118	${\mathfrak C}$
Heat deflection temperature 0.45MPa	10	02	-	119	$\mathcal C$
Heat deflection temperature 1.8MPa	94	4	-	112	$\mathcal C$
Vicat softening point	* 10	02	-	119	$\mathcal C$
Maximum service temperature	85	5	-	100	${\mathfrak C}$
Minimum service temperature	* -5	51	-	-31	${\mathfrak C}$
Thermal conductivity	0.	133	-	0.144	W/m.℃
Specific heat capacity	* 1.	29e3	-	1.34e3	J/kg.℃
Thermal expansion coefficient	11	12	-	140	µstrain/℃
Electrical properties					
Electrical resistivity	16	e21	-	2e22	µohm.cm
Dielectric constant (relative permittivity)	3		-	3.2	
Dissipation factor (dielectric loss tangent)	0.	0189	-	0.0208	
Dielectric strength (dielectric breakdown)	23	3.6	-	24.6	MV/m
Magnetic properties					
Magnetic type	N	on-ma	gnet	ic	
Optical properties					
Transparency	0	paque			
Critical materials risk					
CHUCAL HIALEHAIS HSK	N	0			
Contains >5wt% critical elements?	IN	J			
Contains >5wt% critical elements?					
Contains >5wt% critical elements? Absorption & permeability					
	0.	.02	-	0.15	%

Polymer injection molding	Accepta	able		
Polymer extrusion	Acceptable			
Polymer thermoforming	Accepta	able		
Linear mold shrinkage	0.3	-	0.7	%
Melt temperature	182	-	227	$\mathcal C$
Mold temperature	40	-	70	$\mathcal C$
Molding pressure range	103	-	275	MPa

Durability

Excellent
Excellent
Limited use
Unacceptable
Fair
Self-extinguishing

Primary production energy, CO2 and water

Embodied energy, primary production	49.3	-	54.4	MJ/kg
Sources 51.8 MJ/kg (Franklin Associates,				
CO2 footprint, primary production	* 1.78	-	1.97	kg/kg
Water usage	* 198	-	219	l/kg

Processing energy, CO2 footprint & water

Polymer extrusion energy	* 5.74	-	6.35	MJ/kg
Polymer extrusion CO2	* 0.431	-	0.476	kg/kg
Polymer extrusion water	* 4.79	-	7.19	l/kg
Polymer molding energy	* 16.4	-	18.2	MJ/kg
Polymer molding CO2	* 1.23	-	1.36	kg/kg
Polymer molding water	* 11.7	-	17.5	l/kg
Coarse machining energy (per unit wt removed)	* 0.841	-	0.929	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.063	-	0.0697	kg/kg
Fine machining energy (per unit wt removed)	* 4.13	-	4.57	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.31	-	0.342	kg/kg
Grinding energy (per unit wt removed)	* 7.79	-	8.61	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.584	-	0.645	kg/kg

Recycling and end of life

PVC (chlorinated, molding and extrusion)

Recycle	V
Embodied energy, recycling	* 16.7 - 18.5 MJ/kg
CO2 footprint, recycling	* 0.605 - 0.669 kg/kg
Recycle fraction in current supply	1.43 - 1.58 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 12.9 - 13.5 MJ/kg
Combustion CO2	* 1.08 - 1.13 kg/kg
Landfill	✓
Biodegrade	×

Links

ProcessUniverse	
Producers	
Reference	
Shape	