Noise-Induced Randomization in Regression Discontinuity Designs

Dean Eckles, Nikolaos Ignatiadis, Stefan Wager, Han Wu

Presented by: Sai Zhang

November 18, 2022

Outline

Key Argument

Key Argument

Assumption 1: Sharp RD design

- **I.I.D.** samples $\{Y_i(0), Y_i(1), Z_i\} \in \mathbb{R}^3, i = 1, \dots, n$
- treatment assignment: $W_i = 1$ ($\{Z_i \ge c\}$), where $c \in \mathbb{R}$ is the <u>cutoff</u>
- lacksquare observation: $\{Y_i,Z_i\}$ where $Y_i=Y_i(W_i)$

Assumption 2: Noisy running variable

$$Z_i \mid U_i \sim p\left(\cdot \mid U_i\right)$$

where $p(\cdot \mid \cdot)$ is a **known** conditional density w.r.t. to a measure λ , the latent variable U_i has an **unknown** distribution G

Assumption 2: Noisy running variable

$$Z_i \mid U_i \sim \mathcal{N}(U_i, \nu^2), \nu > 0$$

where $p(\cdot \mid \cdot)$ is a **known** conditional density w.r.t. to a measure λ , the latent variable U_i has an **unknown** distribution G

Assumption 2: Noisy running variable

$$Z_i \mid U_i \sim \text{Binomial}(K, U_i), K \in \mathbb{N}$$

where $p(\cdot \mid \cdot)$ is a **known** conditional density w.r.t. to a measure λ , the latent variable U_i has an **unknown** distribution G

Assumption 3: Exogeneity

$$[\{Y_i(0),Y_i(1)\}\perp Z_i]\mid U_i$$

which implies $\mathbb{E}\left[Y_i \mid U_i, Z_i\right] = \alpha_{(W_i)}\left(u\right)$

Assumption 3: Exogeneity

$$[\{Y_i(0), Y_i(1)\} \perp Z_i] \mid U_i$$

which implies $\mathbb{E}\left[Y_i \mid U_i, Z_i\right] = \alpha_{(W_i)}\left(u\right)$, where $\alpha_{(w)}\left(u\right) = \mathbb{E}\left[Y_i\left(w\right) \mid U_i = u\right]$ is the response functions for the potential oucomes conditional on the latent variable u

- A1 **Sharp** RD
- A2 Noisy Z_i : $Z_i \mid U_i \sim p(\cdot \mid U_i)$
- A3 Exogeneity: $\overline{\left[\left\{Y_{i}\left(0\right),Y_{i}\left(1\right)\right\} \perp Z_{i}\right] \mid U_{i}}$

- A1 Sharp RD
- A2 Noisy Z_i : $Z_i \mid U_i \sim p(\cdot \mid U_i)$
- A3 Exogeneity: $\overline{\left[\left\{Y_{i}\left(0\right),Y_{i}\left(1\right)\right\}\perp Z_{i}\right]\mid U_{i}}$

Proposition 1

Let $\gamma_+(\cdot), \gamma_-(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where $h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right),\ \alpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$

Proposition 1

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h(u, \gamma) := \int \gamma(z) p(z \mid u) d\lambda(z)$$
, $\alpha_{(w)}(u) = \mathbb{E}[Y_i(w) \mid U_i = u]$

Proposition 1

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right)$$
, $lpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$

$$\blacksquare \ \mathbb{E}\left[Y^2\right], \mathbb{E}\left[\gamma_-\left(Z\right)^2\right], \mathbb{E}\left[\gamma_+\left(Z\right)^2\right] < \infty$$

Proposition 1

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right)$$
, $\alpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$

- $\blacksquare \ \mathbb{E}\left[Y^2\right], \mathbb{E}\left[\gamma_-\left(Z\right)^2\right], \mathbb{E}\left[\gamma_+\left(Z\right)^2\right] < \infty$
- $\gamma_+(\cdot), \gamma_-(\cdot)$ are weighting functions s.t.

Proposition 1

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right)$$
, $\alpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$

- $\blacksquare \mathbb{E}\left[Y^2\right], \mathbb{E}\left[\gamma_-\left(Z\right)^2\right], \mathbb{E}\left[\gamma_+\left(Z\right)^2\right] < \infty$
- $> \gamma_+(\cdot), \gamma_-(\cdot)$ are weighting functions s.t.
 - $\gamma_{+}\left(z
 ight)=0$ for z< c: assign non-zero weights only to treated units

Proposition 1

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right)$$
, $\alpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$

- $\blacksquare \ \mathbb{E}\left[Y^2\right], \overline{\mathbb{E}\left[\gamma_-\left(Z\right)^2\right]}, \mathbb{E}\left[\gamma_+\left(\overline{Z}\right)^2\right] < \infty$
- - $\gamma_+(z) = 0$ for z < c: assign non-zero weights only to treated units
 - $\gamma_{-}\left(z\right)=0$ for $z\geq c$: assign non-zero weights only to control units

Proposition 1

Let $\gamma_{+}(\cdot), \gamma_{-}(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h(u, \gamma) \coloneqq \int \gamma(z) p(z \mid u) d\lambda(z)$$
, $\alpha_{(w)}(u) = \mathbb{E}[Y_i(w) \mid U_i = u]$

- $\blacksquare \ \mathbb{E}\left[Y^2\right], \mathbb{E}\left[\gamma_-\left(Z\right)^2\right], \mathbb{E}\left[\gamma_+\left(Z\right)^2\right] < \infty$
- $> \gamma_+(\cdot), \gamma_-(\cdot)$ are weighting functions s.t.
 - $\gamma_{+}(z) = 0$ for z < c: assign non-zero weights only to treated units
 - $\gamma_{-}(z) = 0$ for $z \geq c$: assign non-zero weights only to control units

To achieve balance in the latent variable: $h(\cdot, \gamma_+) \approx h(\cdot, \gamma_-)$

- A1 Sharp RD
- A2 Noisy Z_i : $Z_i \mid U_i \sim p(\cdot \mid U_i)$
- A3 Exogeneity: $\overline{\left[\left\{Y_{i}\left(0\right),Y_{i}\left(1\right)\right\} \perp Z_{i}\right] \mid U_{i}}$

- A1 Sharp RD
- A2 Noisy Z_i : $\overline{Z_i} \mid U_i \sim p(\cdot \mid U_i)$
- A3 Exogeneity: $\overline{\left[\left\{Y_{i}\left(0\right),Y_{i}\left(1\right)\right\} \perp Z_{i}\right] \mid U_{i}}$

- No need to know G (distribution of U)
- Need to know $p(z \mid u)$ (conditional distribution of the noise)

- A1 **Sharp** RD
- A2 Noisy Z_i : $Z_i \mid U_i \sim p(\cdot \mid U_i)$
- A3 Exogeneity: $[\{Y_i(0), Y_i(1)\} \perp Z_i] \mid U_i$

- **No need to know** G (distribution of U)
- Need to know $p(z \mid u)$ (conditional distribution of the noise)
 - test-retest data, prior modelling of responses to tests, physical model of the measurement device, biomedical knowledge, etc.

- A1 **Sharp** RD
- A2 Noisy Z_i : $Z_i \mid U_i \sim p(\cdot \mid U_i)$
- A3 Exogeneity: $\overline{\{Y_i(0), Y_i(1)\} \perp Z_i} \mid U_i$

- **No need to know** G (distribution of U)
- Need to know $p(z \mid u)$ (conditional distribution of the noise)
 - test-retest data, prior modelling of responses to tests, physical model of the measurement device, biomedical knowledge, etc.
 - still valid when underestimating the true noise level

References I

Eckles, D., Ignatiadis, N., Wager, S., & Wu, H. (2020). **Noise-induced randomization in regression discontinuity designs.** *arXiv preprint arXiv:2004.09458*.

Thank you!