

Understanding the alignment of LHCb's SciFi Tracker

Nils Breer*, Sophie Hollitt, Johannes Albrecht
13.03.2023

TU Dortmund, Fakultät Physik

Overview and Motivation

Motivation

- Performance studies of alignments on run 256145 data
- → unexpected different results!
- → analysis of individual quarters

Overview

- The SciFi Detector Upgrade
- Alignment how to
- Analysis of SciFi quarters in different alignment versions

N.Breer | 13.03.2023 2 / 15

The Scintillating Fibre Tracker

Abbildung: Visualization of the SciFi tracking

- Consists of 3 stations (T1, T2, T3) with 4 layers each (X1, U, V, X2)
- Front two stations have 5 modules per side
- Back station has 6 modules on each side
- U, V layers have a ∓5 deg stereo angle respectively
- → used for determining y-position of track by comparing hitposition at different angles

N.Breer | 13.03.2023 3 / 15

SciFi terminology

- Long modules have the full height of the SciFi
- Half modules only span across one quarter
- layers are divided into two halves commonly labeled as A-side and C-side
 - A-side: side from which the cavern is accessed
 - C-side: side of the cryogenic lab
- each layer can be split into four quarters, two per half layer

N.Breer | 13.03.2023 4 / 15

What is Alignment?

- top: ideal detector, bottom: physical detector
- Surveys are used to find the rotation and position of each detector component
- Are used as starting positions for software alignment

N.Breer | 13.03.2023 5 / 15

The survey: what is it and the different types

- measure distance of some points on the detector with a laser
- → relative angles and positions between points are compared to simulation

- 3 types:
- BCAM survey: over time, the BCAM monitors the positions of reference points on each layer
- module survey: performed inside assebly hall using reflective stickers keeping track of all positions
- layer survey: performed in the cavern on the layer in the front in closed state (both halves together)

N.Breer | 13.03.2023 6 / 15

Alignment: track fits with the Kalman Filter

- Use survey information as starting point
- Minimise χ^2 with respect to the track parameters for the track fit
- Minimise χ^2 with respect to the alignment parameters α during the alignment
- Update the alignment constants α and repeat until convergence criterium for χ^2 is reached
- validate alignment quality using χ^2

N.Breer | 13.03.2023 7/15

Alignment versions in use

V1:

- use full length modules
- alignable degrees of freedom: Tx Rz (x translation, rotation around z →beam pipe axis)

low μ :

- uses half modules
- uses VELO alignment on run 256145 data
- Tx Rz

V2:

- newest alignment version
- half modules (top half and bottom half)
- uses newest time alignment
- utilizes VELO alignment from run 256145
- used for HLT2 reprocessing
- $\mu \approx 2.26$ (run database)

Why analyse the quarters separately?

- perfomance in each quarter might be very different from one another
- \bullet $\to \chi^2$ per quarter can provide more insights about the performance in each detector part
- v2 alignment shows improvements from v1 alignment but not across the whole SciFi
- find and resolve possible issues is easier
- → data from run 256145 is being used because at this point the current best alignment version v2 was in use

N.Breer | 13.03.2023 9 / 15

Hit distribution per quarter in V1 and V2 alignment

- V1(left)- and V2(right) alignment on 20000 events with run 256145 data
- C-side: negative x direction, A-side: positive x
- plotted is x-coordinate against number of hits in each quarter coded by colour.
- 9 minimum hits per quarter (solid lines), 11 minimum hits (dashed lines)

Weighted residuals for V2 alignment

Abbildung: mean Residual per layer weighted with quarter hits.

mean residual per quarter weighted:

 $\overline{Res_L} = \sum_{\text{layer,quarter}} \frac{\text{hits quarter of layer}}{\text{hits layer}}$ goal: residual around 0 per layer

V2: quite good except second C-frame in T2

V1: everywhere worse than V2 low μ : quite ok except for back T2

 \rightarrow V2 best performing alignment version for now, but still uses half modules \rightarrow long modules as in the physical SciFi preferred in the long run

N.Breer | 13.03.2023 11 / 15

Track hits comparison of alignment versions

- V2 alignment with run 256145 data
- Hits on tracks as X-Y distribution with all layer information used
- C-side: negative x, A-side: positive x
- quite homogenous distribution of tracks throughout the whole A-side
- C-side tracks are not filled into the most outer modules
- information of all layers per quarter added on top of each other
- → track distribution becomes clear when looking at the worst performing

New Q0 positions in T2X2 layer

- changes based on V2 alignment positions
- manually scan rotations/positions of T2X2Q0 and register alignment tracks
- Upcoming:
 - Test these starting condition in alignment + compare to current survey
 - More investigation for T2X2Q2 as well

Summary

- Trying to solve a puzzle with tracking alignment regarding C-side especially Quarter 0
- Source of complications: parts of the SciFi being too far out of alignment to be corrected
- → An improvement of the alignment track hits in T2X2Q0 was achieved which results in more tracks in additional modules. Further investigation needed.
- A-side showed an improvement from V1 to V2
- Next steps: adding changes into the survey and running alignments on the new configuration

N.Breer | 13.03.2023

Sources

• SciFi Conference Talk:

https://twiki.cern.ch/twiki/pub/LHCb/SciFiConference/fee_2018.pdf

• LHCb SciFi: From performance requirements to an operational detector:

https://indico.cern.ch/event/1163878/

N.Breer | 13.03.2023 15 / 15