

FCC & IC REPORT (WIFI)

Applicant: Binatone Electronics International Limited

Address of Applicant: Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong

Equipment Under Test (EUT)

Product Name: DECT Phone

Model No.: SMART64

FCC ID: VLJ-SMART64

Canada IC: 4522A-SMART64

FCC CFR Title 47 Part 15 Subpart C Section 15.247

Applicable standards: RSS-210 Issue 8, December 2010

RSS-Gen Issue 3, December 2010

Date of sample receipt: 10 Feb., 2014

Date of Test: 12 Feb., 2014 to 20 Feb., 2014

Date of report issued: 21 Feb., 2014

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	21 Feb., 2014	Original

Prepared by: Date: 21 Feb., 2014

Report Clerk

Reviewed by: Date: 21 Feb., 2014

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	
2	VFR	SION	
3		ITENTS	
_			
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	_
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1 6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	
8		CONSTRUCTIONAL DETAILS	
0	EUI	CONSTITUTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Section	Result
Antenna requirement	15.203/15.247 (c)	RSS-210,RSS-GEN	Pass
AC Power Line Conducted Emission	15.207	RSS-210,RSS-GEN	Pass
Conducted Peak Output Power	15.247 (b)(3)	RSS-210,RSS-GEN	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	RSS-210, RSS-GEN	Pass
Power Spectral Density	15.247 (e)	RSS-210,RSS-GEN	Pass
Band Edge	15.247(d)	RSS-210,RSS-GEN	Pass
Spurious Emission	15.205/15.209	RSS-210,RSS-GEN	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Binatone Electronics International Limited
Address of Applicant:	Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong
Manufacturer:	Shenzhen concox information technology company limited
Address of Manufacturer:	4/F, Building B, Gaoxinqi Industrial Park, Liuxian 1st Road, No. 67, Bao'an District, Shenzhen, China
Factory:	Huizhou Goldenchip Electronics Co., Ltd.
Address of Factory:	No.12 Factory, Songyang Road, Zhongkai Hi-tech Development Zone, Huizhou City, Guangdong Province, China

5.2 General Description of E.U.T.

Product Name:	DECT Phone
Model No.:	SMART64
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1500mAh
AC adapter:	Model:MLF-A00060501000U0021 Input:100-240VAC,50/60Hz 0.18A Output:5.0VDC MAX1A

Operation	Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Operation Frequency each of channel For 802.11n(H40)								
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
		4	2427MHz	7	2442MHz			
		5	2432MHz	8	2447MHz			
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

5.3 Test environment and mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	
Test mode:		
Operation mode	Keep the EUT in continuous transmitting with modulation	

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11p, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A			
N/A			

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

■ IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2013	June 08 2014
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 25 2013	May 24 2014
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 25 2013	May 24 2014
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2013	Mar. 31 2014
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2013	Mar. 31 2014
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2013	Mar. 31 2014
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2013	Mar. 31 2014
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2013	Mar. 31 2014
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2013	Mar. 31 2014
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2013	June 08 2014
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2013	Mar. 31 2014
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2013	Mar. 29 2014
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 25 2013	May. 24 2014
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2013	Mar. 31 2014
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2013	Aug. 11 2014
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	May. 25 2013	May. 24 2014
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	May. 25 2013	May. 24 2014

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2013	June 08 2014			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2013	May 24 2014			
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2013	Mar. 31 2014			
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2013	Mar. 31 2014			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c) and RSS-Gen Section 7.1.2

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.5 dBi.

BT WIFI ANT

6.2 Conducted Emission

Test procedure 1. The E.U.T and simulators are connected to the main power thr a line impedance stabilization network (L.I.S.N.), which provide 500hm/50uH coupling impedance for the measuring equipmen 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedan with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted							
Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9 kHz, VBW=30 kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power thr a line impedance stabilization network (L.I.S.N.), which provide 50ohm/50uH coupling impedance for the measuring equipmen 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedan with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted							
Class / Severity: Receiver setup: RBW=9 kHz, VBW=30 kHz Limit: Frequency range (MHz) Quasi-peak O.15-0.5 66 to 56* 0.5-5 56 46 5-30 Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power thr a line impedance stabilization network (L.I.S.N.), which provide 50ohm/50uH coupling impedance for the measuring equipmen 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedan with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted							
Receiver setup: RBW=9 kHz, VBW=30 kHz							
Limit: Frequency range (MHz) Quasi-peak O.15-0.5 66 to 56* 56 to 46* O.5-5 56 46 5-30 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power thral line impedance stabilization network (L.I.S.N.), which provide 50ohm/50uH coupling impedance for the measuring equipment 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedan with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted							
Test procedure 1. The E.U.T and simulators are connected to the main power threat line impedance stabilization network (L.I.S.N.), which provide 500hm/50uH coupling impedance for the measuring equipment 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedan with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Beth sides of A.C. line are checked for maximum conducted							
Test procedure 1. The E.U.T and simulators are connected to the main power thr a line impedance stabilization network (L.I.S.N.), which provide 500hm/50uH coupling impedance for the measuring equipmen 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedan with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted	Quasi-peak Average						
* Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power thr a line impedance stabilization network (L.I.S.N.), which provide 500hm/50uH coupling impedance for the measuring equipment 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedan with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted	0.15-0.5 66 to 56* 56 to 46*						
* Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power thr a line impedance stabilization network (L.I.S.N.), which provide 500hm/50uH coupling impedance for the measuring equipment 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedan with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted							
Test procedure 1. The E.U.T and simulators are connected to the main power thr a line impedance stabilization network (L.I.S.N.), which provide 500hm/50uH coupling impedance for the measuring equipmen 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedan with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted							
positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted 						
Reference Plane LISN 40cm 80cm Filter AC pow Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m	− wer						
Test Instruments: Refer to section 5.7 for details							
Test mode: Refer to section 5.3 for details							
Test results: Passed							

Measurement Data

Neutral:

: CCIS Conducted test Site : FCC CLASS-B QP LISN NEUTRAL Site Condition

: 049RF Job. no : DECT phone : wifi mode EUT Test Mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Joe

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu∀	dB	
1	0.158	41.80	0.25	0.00	42.05	65.56	-23.51	Peak
2	0.174	39.42	0.25	0.00	39.67	64.77	-25.10	Peak
3	0.198	36.93	0.25	0.00	37.18	63.71	-26.53	Peak
4	0.238	33.81	0.25	0.00	34.06	62.17	-28.11	Peak
5	0.253	32.87	0.26	0.00	33.13	61.64	-28.51	Peak
6	0.274	31.57	0.26	0.00	31.83	60.98	-29.15	Peak

Line:

Site : CCIS Conducted test Site
Condition : FCC CLASS-B QP LISN LINE
Job. no : 049RF

Job. no : 049RF EUT : DECT phone Test Mode : wifi mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Joe

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∜	₫B	₫B	dBu₹	dBu₹	₫B		
1	0.158	45.06	0.27	0.00	45.33	65.56	-20.23	Peak	
2	0.174	41.37	0.27	0.00	41.64	64.77	-23.13	Peak	
2	0.194	39.93	0.28	0.00	40.21	63.84	-23.63	Peak	
4	0.214	37.99	0.28	0.00	38.27	63.05	-24.78	Peak	
4 5	0.234	36.78	0.27	0.00	37.05	62.30	-25.25	Peak	
6	0.249	35.61	0.27	0.00	35.88	61.78	-25.90	Peak	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3) and RSS-210 A8.4 section 4
Test Method:	ANSI C63.4:2003 and KDB558074 / RSS-Gen section 4.8
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
	Passed
Test results:	
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.

Measurement Data

T O	Мах	kimum Conduct	1 1 - 2 (/ 1 D)	D 14		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	17.85	14.48	13.70	12.40		
Middle	17.91	14.62	13.75	12.68	30.00	Pass
Highest	17.24	15.16	13.87	12.51		

Test plot as follows:

Highest channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2) and RSS-210 section A8.2(a)
Test Method:	ANSI C63.4:2003 and KDB558074 / RSS-Gen section 4.6.2
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

T . 011		6dB Emission		5		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.08	16.48	17.68	36.32		
Middle	10.08	16.48	17.84	36.48	>500	Pass
Highest	10.00	16.56	17.68	36.00		

T		99% Occupy		5 1		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.88	16.56	17.68	36.16		
Middle	12.88	16.56	17.68	36.16	N/A	N/A
Highest	12.88	16.56	17.68	36.16		

Test plot as follows:

Test mode:6dB OBW 802.11b

Date: 13.FEB.2014 13:52:54

Lowest channel

Date: 13.FEB.2014 13:47:34

Middle channel

Date: 13.FEB.2014 13:56:15

Highest channel

Date: 13.FEB.2014 14:07:27

Lowest channel

Date: 13.FEB.2014 14:04:47

Middle channel

Date: 13.FEB.2014 14:02:24

Highest channel

Test mode:6dB OBW

802.11n(H20)

Date: 13.FEB.2014 14:20:41

Lowest channel

Date: 13.FEB.2014 14:17:10

Middle channel

Date: 13.FEB.2014 14:12:59

Highest channel

Date: 13.FEB.2014 14:34:05

Lowest channel

Date: 13.FEB.2014 14:30:59

Middle channel

Date: 13.FEB.2014 14:25:02

Highest channel

Page 23 of 56

Date: 13.FEB.2014 13:54:58

Lowest channel

Date: 13.FEB.2014 13:55:36

Middle channel

Date: 13.FEB.2014 13:50:28

Highest channel

Date: 13.FEB.2014 14:06:53

Lowest channel

Date: 13.FEB.2014 15:29:28

Middle channel

Date: 13.FEB.2014 14:01:53

Highest channel

Date: 13.FEB.2014 14:19:29

Lowest channel

Date: 13.FEB.2014 14:16:33

Middle channel

Date: 13.FEB.2014 15:29:58

Highest channel

Date: 13.FEB.2014 14:22:58

Lowest channel

Date: 13.FEB.2014 14:23:21

Middle channel

Date: 13.FEB.2014 14:24:09

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e) and RSS-210 section A8.2 (b)
Test Method:	ANSI C63.4:2003 and KDB558074 / RSS-210 section A8.2 (b) and KDB558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

		Power Spec				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	7.26	1.04	0.11	-3.97		
Middle	7.46	1.12	0.14	-3.86	8.00	Pass
Highest	7.64	1.21	0.37	-3.60		

Test plot as follows:

CCIS

Report No: CCIS14020004904

Date: 13.FEB.2014 13:53:12

Lowest channel

Date: 13.FEB.2014 13:57:12

Middle channel

Date: 13.FEB.2014 13:46:59

Highest channel

CCIS

Report No: CCIS14020004904

Date: 13.FEB.2014 14:07:54

Lowest channel

Date: 13.FEB.2014 14:05:13

Middle channel

Date: 13.FEB.2014 14:02:56

Highest channel

Date: 13.FEB.2014 14:21:19

Lowest channel

Date: 13.FEB.2014 14:17:29

Middle channel

Date: 13.FEB.2014 14:13:30

Highest channel

Date: 13.FEB.2014 14:34:46

Lowest channel

Date: 13.FEB.2014 14:32:33

Middle channel

Date: 13.FEB.2014 14:26:39

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d) and RSS-210 section A8.5				
Test Method:	ANSI C63.4:2003 and KDB558074 / RSS-210 section A8.5				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205 and RSS-210 section A8.5						
Test Method:	ANSI C63.4: 2003 / RSS-Gen section 4.9						
Test Frequency Range:	2.3GHz to 2.5GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	model of the block						
receiver setup.	Frequency	Detector	RBW	VBW	Remark		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	713010 10112	Peak	1MHz	10Hz	Average Value		
Limit:	Freque	Remark					
			Limit (dBuV/m @3m) 54.00		Average Value		
	Above 1GHz		74.00		Peak Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

802.11b

Te	st channel:		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line	I I imit	Polarization	
2390.00	50.55	27.58	3.81	36.8	1	44.73	74.00	-29.27	Horizontal	
2400.00	48.85	27.58	3.83	34.8	3	45.43	74.00	-28.57	Horizontal	
2390.00	47.85	27.58	3.81	34.8	3	44.41	74.00	-29.59	Vertical	
2400.00	46.75	27.58	3.83	34.8	3	43.33	74.00	-30.67	Vertical	

Test	channel:		Lowest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB)	or .	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2390.00	40.16	27.58	3.81	34.8	3	36.72	54.00	-17.28	Horizontal	
2400.00	39.55	27.58	3.83	34.8	3	36.13	54.00	-17.87	Horizontal	
2390.00	31.46	27.58	3.81	34.8	3	28.02	54.00	-25.98	Vertical	
2400.00	30.28	27.58	3.83	34.8	3	26.86	54.00	-27.14	Vertical	

Test	channel:		Highest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	i imit	Polarization	
2483.50	50.14	27.52	3.89	34.86	6	46.69	74.00	-27.31	Horizontal	
2500.00	51.59	27.55	3.90	34.87	7	48.17	74.00	-25.83	Horizontal	
2483.50	50.22	27.52	3.89	34.86	6	46.77	74.00	-27.23	Vertical	
2500.00	51.08	27.55	3.90	34.87	7	47.66	74.00	-26.34	Vertical	

Test	channel:		Highest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Factor (dB)	1 4041	Limit Line (dBuV/m	I I imit	Polarization	
2483.50	41.45	27.52	3.89	34.86	38.00	54.00	-16.00	Horizontal	
2500.00	41.27	27.55	3.90	34.87	37.85	54.00	-16.15	Horizontal	
2483.50	37.98	27.52	3.89	34.86	34.53	54.00	-19.47	Vertical	
2500.00	40.75	27.55	3.90	34.87	37.33	54.00	-16.67	Vertical	

Remark:

^{1.} Final Level = Read level + Antenna Factor + Cable Loss

802.11g

Te	st channel:		Lowest		Level:			Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2390.00	50.23	27.58	3.81	34.8	3	46.79	74.00	-27.21	Horizontal	
2400.00	49.06	27.58	3.83	34.8	3	45.64	74.00	-28.36	Horizontal	
2390.00	47.52	27.58	3.81	34.8	3	44.08	74.00	-29.92	Vertical	
2400.00	48.84	27.58	3.83	34.8	3	45.42	74.00	-28.58	Vertical	

Tes	st channel:		Lowest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2390.00	41.42	27.58	3.81	34.83	37.98	54.00	-16.02	Horizontal	
2400.00	37.56	27.58	3.83	34.83	34.14	54.00	-19.86	Horizontal	
2390.00	35.24	27.58	3.81	34.83	31.80	54.00	-22.20	Vertical	
2400.00	38.56	27.58	3.83	34.83	35.14	54.00	-18.86	Vertical	

Test	channel:		Highest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB)	or	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2483.50	51.21	27.52	3.89	34.8	6	47.76	74.00	-26.24	Horizontal	
2500.00	47.86	27.55	3.90	34.8	7	44.44	74.00	-29.56	Horizontal	
2483.50	48.35	27.52	3.89	34.8	6	44.90	74.00	-29.10	Vertical	
2500.00	48.36	27.55	3.90	34.8	7	44.94	74.00	-29.06	Vertical	

Test	channel:		Highest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line	I I imit	Polarization	
2483.50	40.62	27.52	3.89	34.8	6	37.17	54.00	-16.83	Horizontal	
2500.00	39.00	27.55	3.90	34.8	7	35.58	54.00	-18.42	Horizontal	
2483.50	39.56	27.52	3.89	34.8	6	36.11	54.00	-17.89	Vertical	
2500.00	38.59	27.55	3.90	34.8	7	35.17	54.00	-18.83	Vertical	

Remark:

^{1.} Final Level = Read level + Antenna Factor + Cable Loss

802.11n (H20)

Te	st channel:		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prean Facto (dB)	or	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2390.00	50.56	27.58	3.81	34.8	3	47.12	74.00	-26.88	Horizontal	
2400.00	48.58	27.58	3.83	34.8	3	45.16	74.00	-28.84	Horizontal	
2390.00	52.16	27.58	3.81	34.8	3	48.72	74.00	-25.28	Vertical	
2400.00	48.29	27.58	3.83	34.8	3	44.87	74.00	-29.13	Vertical	

Test	channel:		Lowest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Factor (dB)	-	Level (dBuV/m)	Limit Line (dBuV/m)	l limit	Polarization	
2390.00	40.30	27.58	3.81	34.83		36.86	54.00	-17.14	Horizontal	
2400.00	38.46	27.58	3.83	34.83		35.04	54.00	-18.96	Horizontal	
2390.00	41.00	27.58	3.81	34.83		37.56	54.00	-16.44	Vertical	
2400.00	37.47	27.58	3.83	34.83		34.05	54.00	-19.95	Vertical	

Test	channel:		Highest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB)	or .	Level (dBuV/m)	Limit Line (dBuV/m)	i imit	Polarization	
2483.50	52.56	27.52	3.89	34.8	6	49.11	74.00	-24.89	Horizontal	
2500.00	49.28	27.55	3.90	34.8	7	45.86	74.00	-28.14	Horizontal	
2483.50	51.46	27.52	3.89	34.8	6	48.01	74.00	-25.99	Vertical	
2500.00	48.57	27.55	3.90	34.8	7	45.15	74.00	-28.85	Vertical	

Test	Test channel:				Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Factor (dB)	1 1 4 7 4 1	Limit Line (dBuV/m	I I imit	Polarization	
2483.50	41.52	27.52	3.89	34.86	38.07	54.00	-15.93	Horizontal	
2500.00	39.03	27.55	3.90	34.87	35.61	54.00	-18.39	Horizontal	
2483.50	41.25	27.52	3.89	34.86	37.80	54.00	-16.20	Vertical	
2500.00	38.22	27.55	3.90	34.87	34.80	54.00	-19.20	Vertical	

Remark:

1. Final Level = Read level + Antenna Factor + Cable Loss

802.11n (H40)

Te	st channel:		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	I I Imit	Polarization	
2390.00	53.25	27.58	3.81	34.83	3	49.81	74.00	-24.19	Horizontal	
2400.00	50.18	27.58	3.83	34.83	3	46.76	74.00	-27.24	Horizontal	
2390.00	55.24	27.58	3.81	34.83	3	51.80	74.00	-22.20	Vertical	
2400.00	50.23	27.58	3.83	34.83	3	46.81	74.00	-27.19	Vertical	

Test	channel:		Lowest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2390.00	40.25	27.58	3.81	34.83	36.81	54.00	-17.19	Horizontal	
2400.00	40.26	27.58	3.83	34.83	36.84	54.00	-17.16	Horizontal	
2390.00	40.26	27.58	3.81	34.83	36.82	54.00	-17.18	Vertical	
2400.00	38.33	27.58	3.83	34.83	34.91	54.00	-19.09	Vertical	

Test	channel:		Highest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	i ilmit	Polarization	
2483.50	53.26	27.52	3.89	34.8	6	49.81	74.00	-24.19	Horizontal	
2500.00	52.14	27.55	3.90	34.8	7	48.72	74.00	-25.28	Horizontal	
2483.50	56.58	27.52	3.89	34.8	6	53.13	74.00	-20.87	Vertical	
2500.00	49.69	27.55	3.90	34.8	7	46.27	74.00	-27.73	Vertical	

Test	channel:		Highest		Level:			Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line	I I imit	Polarization	
2483.50	44.26	27.52	3.89	34.8	6	40.81	54.00	-13.19	Horizontal	
2500.00	37.56	27.55	3.90	34.8	7	34.14	54.00	-19.86	Horizontal	
2483.50	44.85	27.52	3.89	34.8	6	41.40	54.00	-12.60	Vertical	
2500.00	40.29	27.55	3.90	34.8	7	36.87	54.00	-17.13	Vertical	

Remark:

^{1.} Final Level = Read level + Antenna Factor + Cable Loss

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d) and RSS-210 section A8.5					
Test Method:	ANSI C63.4:2003 and KDB558074 / RSS-210 section A8.5					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Test mode: 802.11b

Date: 13.FEB.2014 13:54:36

30MHz~25GHz

Date: 13.FEB.2014 13:57:57

30MHz~25GHz

30MHz~25GHz

Test mode: 802.11g

Date: 13.FEB.2014 14:09:59

Date: 13.FEB.2014 13:51:02

30MHz~25GHz

Date: 13.FEB.2014 14:06:25

30MHz~25GHz

30MHz~25GHz

Test mode: 802.11n(H20)

Date: 13.FEB.2014 14:22:24

30MHz~25GHz

#ABM 100 kHz Delta 1 [71] *28.08 dB *28.08 dB *28.08 dB *28.00 dB *ALT 20 dB **NEW 300 kHz *11.236500000 GHz **NEW 2.5 dB **NEW 2.5 d

Date: 13.FEB.2014 14:18:36

30MHz~25GHz

30MHz~25GHz

Test mode: 802.11n(H40)

Date: 13.FEB.2014 14:15:30

Date: 13.FEB.2014 14:36:34

30MHz~25GHz

Date: 13.FEB.2014 14:33:12

30MHz~25GHz

Date: 13.FEB.2014 14:28:56

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205 and RSS-Gen section 4.9									
Test Method:	ANSI C63.4:2003 / RSS-Gen section 4.9									
Test Frequency Range:	9KHz to 25GHz / 30MHz to 40GHz									
Test site:	Measurement D	istance: 3m								
Receiver setup:										
	Frequency Detector RBW VBW Remark									
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	Above 1GHz	Peak	1MHz	10Hz	Average Value					
Limit:										
	Freque	_	Limit (dBuV		Remark					
	30MHz-8		40.0		Quasi-peak Value					
	88MHz-21		43.5		Quasi-peak Value					
	216MHz-9		46.0		Quasi-peak Value					
	960MHz-	1GHZ	54.0 54.0		Quasi-peak Value					
	Above 1	GHz	74.0 74.0		Average Value Peak Value					
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antenrathe ground Both horizon make the number of the end of the euther and the end of the euther end of the euther end of the euther end of the end of the end of the euther end of the end of the euther end of the euther end of the euther end of the end of the euther end of the end of the euther end of the euther end of the euther end of the end of the euther end of the euther end of the euther end of t	at a 3 meter cane the position of as set 3 meters which was mount in a height is variet to determine the contal and vertical and vertical and vertical easurement. If the rota table maximum readiceiver system was and width with sion level of the ecified, then test would be reported to the position of the contact of the ecified, then test would be reported to the position of the ecified, then the sion of the ecified of the position of the ecified of the position of the ecified of the	ne top of a reamber. The samber. The samber. The samber is a way from ted on the total ed from one maximum all polarizations ion, the EU a was turned was turned was turned samble EUT in peasiting could be ted. Otherwood in the could be re-tested.	tating table table was rest radiation. The interferop of a variate meter to for value of the ons of the air to heights from 0 degreeak Detect old Mode. It was a stopped a vise the emione by one	e 0.8 meters above otated 360 degrees rence-receiving able-height antenna our meters above he field strength. Intenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees					

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 049RF

Condition Job No. : U49RF
EUT : DECT phone
Test mode : WIFI mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Joe
Remark :

emark									
	Freq		Antenna Factor					Over Limit	Remark
-	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1	30.000	36.60	12.33	0.72	26.27	23.38	40.00	-16.62	QP
2	33.917	36.32	12.31	0.98	26.69	22.92	40.00	-17.08	QP
3	45.695	33.55	13.51	1.29	27.86	20.49	40.00	-19.51	QP
4	120.277	34.71	10.38	2.17	29.69	17.57	43.50	-25.93	QP
5	158.668	37.68	8.61	2.57	29.82	19.04	43.50	-24.46	QP
6	188.413	41.88	10.40	2.79	29.32	25.75	43.50	-17.75	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

Job No. EUT : 049RF : DECT phone : WIFI mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Joe Remark

CHIGIN									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1	30.000	49.74	12.33	0.72	26.27	36.52	40.00	-3.48	QP
2	33.211	47.66	12.31	0.91	26.62	34.26	40.00	-5.74	QP
3	38.212	44.60	13.15	1.18	27.09	31.84	40.00	-8.16	QP
4 5	89.590	40.28	11.76	2.04	30.07	24.01	43.50	-19.49	QP
5	104.170	39.24	12.78	1.99	30.00	24.01	43.50	-19.49	QP
6	145.351	43.65	8.23	2.46	29.30	25.04	43.50	-18.46	QP

Above 1GHz 802.11b:

Test mode:			Test channe	el: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	53.26	31.53	8.90	40.24	53.45	74.00	-20.55	Vertical
7236.00								Vertical
4824.00	50.24	31.53	8.90	40.24	50.43	74.00	-23.57	Horizontal
7236.00								Horizontal

Test mode:			Test channe	el: Lowest		Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	43.25	31.53	8.90	40.24	43.44	54.00	-10.56	Vertical
7236.00								Vertical
4824.00	42.35	31.53	8.9	40.24	42.54	54.00	-11.46	Horizontal
7236.00								Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11b:

Test mode:			Test channe	el: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	58.32	31.58	8.98	40.15	58.73	74.00	-15.27	Vertical
7311.00								Vertical
4874.00	53.26	31.58	8.98	40.15	53.67	74.00	-20.33	Horizontal
7311.00								Horizontal

Test mode:			Test channe	el: Middle		Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	46.35	31.58	8.98	40.15	46.76	54.00	-7.24	Vertical
7311.00								Vertical
4874.00	43.2	31.58	8.98	40.15	43.61	54.00	-10.39	Horizontal
7311.00								Horizontal

Remark:

- 2. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "--", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11b:

Test mode:			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	56.32	31.69	9.08	40.03	57.06	74.00	-16.94	Vertical
7386.00								Vertical
4924.00	54.32	31.69	9.08	40.03	55.06	74.00	-18.94	Horizontal
7386.00								Horizontal

Test mode:			Test channe	el: Highest		Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	45.32	31.69	9.08	40.03	46.06	54.00	-7.94	Vertical
7386.00								Vertical
4924.00	43.25	31.69	9.08	40.03	43.99	54.00	-10.01	Horizontal
7386.00								Horizontal

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.