UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 522115 Listado 2 (Funciones)

1. Determinar el dominio y recorrido de la relación \mathcal{R} representada por:

a) $R = \{(x, y) \in \mathbb{N}^2 : x + y \le 10\},$ d) $R = \{(x, y) \in \mathbb{Z}^2 : x^2 + 2y^2 = 12\},$ b) $R = \{(x, y) \in \mathbb{N} \times \mathbb{Z} : x - y = 1\},$ e) $R = \{(x, y) \in \mathbb{R}^2 : 4x^2 - y^2 = 16\},$

c) $R = \{(x, y) \in \mathbb{R}^2 : \sqrt{x - y} = -1\},$ f) $R = \{(x, y) \in \mathbb{R}^2 : x - y^2 = 15\}.$

2. Considere la relación binaria \mathcal{R} en : (i) $\mathbb{N} \times \mathbb{N}$, (ii) $\mathbb{Z} \times \mathbb{N}$, (iii) $\mathbb{N} \times \mathbb{Z}$, definida por:

 $x \mathcal{R} y \iff y = 8 - 2x.$

Determinar $Dom(\mathcal{R})$ y $Rec(\mathcal{R})$ en cada caso.

3. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2 - 1$. Dé un ejemplo de conjunto no vacío $B \subseteq \mathbb{R}$, en cada caso, tal que

a) $f(B) = |1, +\infty[$, b) $f^{-1}(B) = \emptyset$, c) $|f^{-1}(B)| = 1$.

4. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = x - 3. Dé un ejemplo de conjunto no vacío $B \subseteq \mathbb{R}$, en cada caso, tal que

a) $f(B) =]-\infty, -1],$ b) $f^{-1}(B) = [1, 2],$ c) $f^{-1}(B) = \mathbb{R} - [1, 2].$

5. Sea la función $f: \mathbb{Z} \to \mathbb{Z}$ definida por f(x) = x - 3, y sean los conjuntos $A = \mathbb{N}$ y $B = \{x \in \mathbb{Z} : x = 3k, k \in \mathbb{Z}\}.$ Determine

a) $f(A \cup B)$, b) $f(A \cap B)$, c) $f^{-1}(A \cup B)$, d) $f^{-1}(A \cap B)$.

6. Considere la función $f: \mathbb{N} \to \mathbb{N}$ definida por

 $f(n) = \begin{cases} \frac{n}{2} & \text{si n es par} \\ \frac{n+1}{2} & \text{si n es impar} \end{cases}$

y los siguientes subconjuntos de N.

 $A = \{ n \in \mathbb{N} : n \le 10 \quad \text{y } n \text{ es divisible por } 3 \},$

 $B = \{ n \in \mathbb{N} : n \le 13 \text{ y } n \text{ es divisible por } 6 \},$

 $C = \{n \in \mathbb{N} : n \le 20 \quad \text{y } n \text{ es número primo } \}.$

- a) Determine si la función f es inyectiva, sobreyectiva o biyectiva.
- b) Encuentre: f(A), $f^{-1}(B)$ y $\{x \in C, f(x) = 5\}$.
- 7. Considere las funciones
 - i) $f: \mathbb{N} \to \mathbb{N}$; $n \longmapsto f(n) = 2n$,
 - ii) $g: \mathbb{N} \to \mathbb{P}$; $n \longmapsto g(n) = 2n$, donde $\mathbb{P} = \{n \in \mathbb{N} : n \text{ es par}\}$,

iii)
$$h: \mathbb{Z} \to \mathbb{N} \cup \{0\}; \quad n \longmapsto h(n) = \begin{cases} 2n-2 & \text{si} \quad n > 0 \\ 0 & \text{si} \quad n = 0 \\ -2n & \text{si} \quad n < 0 \end{cases}$$

Decidir si ellas son inyectivas, sobreyectivas o biyectivas, respectivamente.

8. En los siguientes problemas determine Dominio y Recorrido de las funciones reales, definidas por:

a)
$$f:Dom(f)\subseteq\mathbb{R}\longrightarrow\mathbb{R}-\{0\}$$

$$x\longmapsto f(x)=\frac{1}{1-x}$$

b)
$$f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x) = \sqrt{x+3}$

$$f:Dom(f)\subseteq\mathbb{R}\longrightarrow\mathbb{R}$$

c)
$$x \longmapsto f(x) = \frac{x^2 - 1}{x^2 + 2x - 3}$$

d)
$$f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x) = |x-2|$

e)
$$f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x) = -\frac{2}{\sqrt{x-1}}$

- 9. Sea la función $f: \mathbb{R} \to]-2, +\infty[$ definida por $f(x)=x^2-6x+7.$ Determine si f es o no sobreyectiva.
- 10. Determine para qué valores de $k \in \mathbb{N}$, la función $f : \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^k + k$ es biyectiva.
- 11. Para la función f definida por:

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \mapsto f(x) = x^2 - 4x + 4.$$

- i) Muestre que f no es sobreyectiva ni inyectiva.
- ii) Redefina el dominio y recorrido de f de manera que la nueva función sea biyectiva.
- 12. Considere la función $g: \text{Dom}(g) \subseteq R \longrightarrow \mathbb{R}$, definida por

$$g(x) = \begin{cases} \frac{1}{x-2} & \text{si } x > 3, \\ x-4 & \text{si } x \le 3. \end{cases}$$

2

- i) Encuentre Dom(g) (dominio de g).
- ii) Pruebe que g es inyectiva; determine el recorrido de g, y concluya si g es o no sobrevectiva.
- iii) Determine el conjunto $g^{-1}(]-1,0[)$.
- En cada caso dé un ejemplo de una función $fDom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ tal que:
 - a) f es creciente e impar.
- d) f es impar y no inyectiva.
- b) f no es creciente ni decreciente.
- e) f es par y no sobreyectiva.
- c) f no es par ni impar.
- f) f es biyectiva y decreciente.
- Sean $f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ y $g: Dom(g) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ dos funciones reales. Analice la existencia de la suma, el producto, el cuociente y las compuestas $g \circ f$ y $f \circ g$. En los casos donde exista la función, defínala.
 - a) $f(x) = 1 + x^2$; $g(x) = \sqrt{x 1}$.
 - b) $f(x) = \frac{x+1}{x}$; $g(x) = \frac{1}{x}$.

 - c) $f(x) = \begin{cases} \frac{x}{2} + 1; & x \le 0 \\ \frac{1}{x}; & x > 0 \end{cases}$ $g(x) = \begin{cases} 2x 2; & x \le 1 \\ \frac{1}{x 1}; & x > 1 \end{cases}$ d) $f(x) = \begin{cases} x + 2; & x < 2 \\ x^2; & x \ge 2 \end{cases}$ $g(x) = \begin{cases} \frac{1}{x}; & x < -1 \\ 2x; & x \ge -1 \end{cases}$

- Sean las funciones $f:Dom(f)\subseteq\mathbb{R}\to\mathbb{R}$ y $g:Dom(g)\subseteq\mathbb{R}\to\mathbb{R}$ definidas por:

$$f(x) = \frac{1}{x+2},$$
 $g(x) = (x-1)^3.$

Defina en cada caso (si es posible) las siguientes funciones:

- a) $(f \circ g)^{-1}$, b) $g \circ g^{-1}$, c) $f^{-1} \circ g^{-1}$, d) $f^{-1} \circ g$.
- 16. En los siguientes casos determine si la función es invertible, y si lo es defina su
 - a) $f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}, \quad x \mapsto f(x) = \frac{x+3}{2x-4}$
 - b) $f: [2, 10] \longrightarrow \mathbb{R}, \quad x \mapsto f(x) = \sqrt{\frac{x+3}{x-1}}.$
- Sea h la función real definida por: $\forall x \in \mathbb{R}$: h(x) = (x-1)(x-2).
 - a) Determinar el recorrido de h.
 - b) Probar que la función $h_1 = h|_{[\frac{3}{2}, +\infty[}$ es estrictamente creciente y determinar su recorrido.
 - c) Mostrar que existe la inversa h_1^{-1} y defínala.

JAL

Primer Semestre de 2005.