Gene Expression Data

Bacteria Strain/Species	GEO Accession Number	Date Accessed
E. coli K12 MG1655	GSE60522	December 20, 2017
$E.\ coli\ \mathrm{K}12\ \mathrm{MG}1655$	GSE73673	December 19, 2017
$E.\ coli\ \mathrm{K}12\ \mathrm{M}\mathrm{G}1655$	GSE85914	December 19, 2017
$E.\ coli\ \mathrm{K}12\ \mathrm{D}H10\mathrm{B}$	GSE98890	December 19, 2017
B. subtilis 168	GSE104816	December 14, 2017
B. subtilis 168	GSE67058	December 16, 2017
B. subtilis 168	GSE93894	December 15, 2017
$S.\ coelicolor\ { m A3}$	GSE57268	March 16, 2018
$S.\ meliloti\ {\rm RM2010\ Chromosome}$	GSE69880	December 12, 2017
$S.\ meliloti\ \mathrm{RM2010}\ \mathrm{pSym}\mathrm{A}$	GSE69880	December 12, 2017
$S.\ meliloti\ \mathrm{RM2010\ pSymB}$	GSE69880	December 12, 2017

Table S1: Strains and species used for each gene expression analysis. Gene Expression Omnibus accession numbers and date accessed are provided.

Origin and Terminus Locations

Bacteria	Origin of Replication	Terminus of Replication
E. coli	3925744	1678398
$B.\ subtilis$	1	1942542
Streptomyces	3419363	1 & 9054831
$S.\ meliloti$ Chromosome	1	1735626
$S.\ meliloti\ \mathrm{pSymA}$	1350001	672888
$S.\ meliloti\ pSymB$	55090	896756

Table S2: Origin of replication and terminus of replication positions in replicons of *E. coli*, *B. subtilis*, *Streptomyces*, and *S. meliloti*. The linear nature of *Streptomyces* chromosome gives it two termini, one at each end of the chromosome.

Correlation of Gene Expression Over Datasets

To assess uniform expression over bacteria with multiple datasets we looked at the mean normalized expression values. Multiple replicates from a dataset were combined by finding the median normalized CPM expression value for each gene. This was done for any datasets that had multiple replicates. For each gene (x_i) the mean normalized expression value was calculated across all datasets (\bar{x}_{ij}) . Then the normalized median expression value for each dataset was subtracted from the mean across all expression values $(|x_{ij} - \bar{x}_{ij}|)$. The distribution of these $|x_{ij} - \bar{x}_{ij}|$ across all genes are found in Figures S1 and S2. All datasets are well mixed, implying that the expression levels are consistent across all datasets. Only *E. coli* and *B. subtilis* had multiple expression datasets available so they are the only ones that were analyzed. Streptomyces and all replicons of *S. meliloti* had only one dataset each and therefore were not analyzed.

Figure S1: Distribution of the median expression value for each *E. coli* dataset minus the mean expression value for that gene across all datasets. Each gene is shown on the x-axis and the log base 10 values are on the y-axis.

B. subtilis Chromosome

Figure S2: Distribution of the median expression value for each *B. subtilis* dataset minus the mean expression value for that gene across all datasets. Each gene is shown on the x-axis and the log base 10 values are on the y-axis.

Linear Regression

A more detailed linear regression was performed to determine if there is any correlation between gene expression per gene and distance from the origin of replication. This was done on a per gene basis where the median CPM expression value for each gene was considered a separate data point. These results mirror the results from the linear regression on the median gene expression value per 10kb genomic region. Most bacteria have a negative correlation, implying that gene expression tends to decrease with distance from the origin of replication.

Bacteria and Replicon	Coefficient Estimate	Standard Error	P-value
E. coli Chromosome	-6.03×10^{-5}	1.28×10^{-5}	2.8×10^{-6}
B. subtilis Chromosome	-9.7×10^{-5}	2.0×10^{-5}	1.2×10^{-6}
Streptomyces Chromosome	-1.17×10^{-6}	1.04×10^{-7}	$<2\times10^{-16}$
$S. \ meliloti$ Chromosome	3.97×10^{-5}	4.25×10^{-5}	NS
$S.\ meliloti\ \mathrm{pSymA}$	1.39×10^{-3}	2.53×10^{-4}	4.9×10^{-8}
S. meliloti pSymB	1.46×10^{-4}	2.03×10^{-4}	NS

Table S3: Linear regression analysis of the median counts per million expression data along the genome of the respective bacteria replicons. Linear regression was calculated after the origin of replication was moved to the beginning of the genome and all subsequent positions were scaled around the origin accounting for bidirectionality of replication. A grey row indicates a significant negative trend.

Bacteria and Replicon	Coefficient Estimate	Standard Error	P-value
E. coli Chromosome	-1.59×10^{-5}	1.51×10^{-5}	NS
B.subtilis Chromosome	-1.01×10^{-4}	2.59×10^{-5}	1.31×10^{-4}
Streptomyces Chromosome	-1.26×10^{-7}	1.20×10^{-7}	NS
$S.\ meliloti$ Chromosome	3.32×10^{-6}	3.48×10^{-5}	NS
$S.\ meliloti\ \mathrm{pSymA}$	1.32×10^{-3}	3.67×10^{-4}	5.30×10^{-4}
S. meliloti pSymB	2.66×10^{-4}	3.64×10^{-4}	NS

Table S4: Linear regression analysis of normalized expression and distance from the origin of replication. The normalized expression values were calculated by dividing the total counts per million expression value per 10kb section of the genome by the total number of genes in the respective 10kb section. Linear regression was calculated after the origin of replication was moved to the beginning of the genome and all subsequent positions were scaled around the origin accounting for bidirectionality of replication. NS indicates Not Significant at $P \leq 0.05$. A grey row indicates a significant negative trend.

Gene Distribution

D		
Bacteria and Replicon	Genomic Position (bp)	Protein/Gene Examples
E. coli Chromosome	0 - 10000	DNA replication and repair
		ATP-proton motive force
		ATP biosynthesis
		transport
	470000 - 480000	DNA replication and repair
		tRNA synthesis
		Ribosomal proteins
		Putative transport
	610000 - 620000	Ribosomal protein
		Translation modification
		tRNA modification
		RNA synthesis
	1520000 - 1530000	Energy metabolism
	2330000 - 2340000	Energy metabolism
	2770000 - 2780000	Energy metabolism
	2870000 - 2880000	Putative transport
		Transport
	3250000 - 3260000	Metabolism
		Putative transport
B. subtilis Chromosome	0 - 10000	tRNA modification
		Ribosomal proteins
		DNA gyrase
		rRNA small subunit methylation
	130000 - 150000	Ribosomal proteins
		Elongation factor
	730000 - 740000	tRNA subunit
		Transcription regulation
		Glycolysis
S. meliloti Chromosome	30000 - 40000	Small molecule metabolism
S. memon Chromosome	30000 40000	Macromolecule metabolism
		Hypothetical proteins
	1480000 - 1490000	Ribosomal proteins
	1400000 1400000	Structural elements
		Transmembrane proteins
	1550000 - 1560000	Small molecule metabolism
	1990000 1900000	Structural element
		Hypothetical proteins
	1930000 - 1940000	Hypothetical proteins
	1990000 1940000	Small molecule metabolism
S. meliloti pSymA	890000 - 900000	Cell processes
Z. Moodoo pay min	5	Hypothetical proteins
		Macromolecule metabolism
	010000 00000	TT 1

010000 020000