

Tony Xiang

Wuhan University

June 11, 2019

What Are Prime Numbers?

Definition

A prime number is a number that has exactly two divisors.

▶ 2 is prime (two divisors: 1 and 2).

What Are Prime Numbers?

Definition

A prime number is a number that has exactly two divisors.

- ▶ 2 is prime (two divisors: 1 and 2).
- ▶ 3 is prime (two divisors: 1 and 3).

What Are Prime Numbers?

Definition

A prime number is a number that has exactly two divisors.

- ▶ 2 is prime (two divisors: 1 and 2).
- ▶ 3 is prime (two divisors: 1 and 3).
- ▶ 4 is not prime (three divisors: 1, 2 and 4)

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

1. Suppose *p* were the largest prime number.

4. But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 4. But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 3. Then q + 1 is not divisible by any of them.
- 4. But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 3. Then q+1 is not divisible by any of them.
- 4. But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof used reductio ad absurdum.

What's Still To Do?

Answered Questions

How many primes are there?

Open Questions

Is every even number the sum of two primes?

What's Still To Do?

- Answered Questions
 - How many primes are there?
- Open Questions
 - ▶ Is every even number the sum of two primes?

What's Still To Do?

Answered Questions How many primes are there?

Open Questions

Is every even number the sum of two primes? [1]


```
int main (void)
std::vector<bool> is_prime (100, true);
for (int i = 2; i < 100; i++)
return 0;
```



```
int main (void)
std::vector<bool> is_prime (100, true);
for (int i = 2; i < 100; i++)
if (is_prime[i])
return 0;
```



```
int main (void)
std::vector<bool> is prime (100, true);
for (int i = 2; i < 100; i++)
if (is prime[i])
std::cout << i << " ";
for (int j = i; j < 100;
is prime [j] = false, j+=i);
}
return 0;
```



```
int main (void)
std::vector<bool> is prime (100, true);
for (int i = 2; i < 100; i++)
if (is prime[i])
std::cout << i << " ";
for (int j = i; j < 100;
is prime [j] = false, j+=i);
}
return 0;
```


Note the use of std::.

Theorem

A = B.

Proof.

- ightharpoonup Clearly, A = C.
- ightharpoonup Thus A = B.

<+-> on a frame

Theorem

A = B.

Proof.

- ightharpoonup Clearly, A = C.
- ▶ As shown earlier, C = B.
- ► Thus A = B.

► Shown from first slide on.

▶ Shown from first slide on.

- ▶ Shown from first slide on.
- Shown from second slide on.
 - Shown from second slide on.

*

▶ Shown from first slide on.

- Shown from first slide on.
- Shown from second slide on.
 - Shown from second slide on.
 - Shown from third slide on.
- Shown from third slide on.

► Shown from first slide on.

9 / 15

- Shown from first slide on.
- Shown from second slide on.
 - Shown from second slide on.
 - Shown from third slide on.
- Shown from third slide on.
- Shown from fourth slide on.

Shown from fourth slide on.

Shown from first slide on.

- Shown from first slide on.
- Shown from second slide on.
 - Shown from second slide on.
 - Shown from third slide on.
- Shown from third slide on.
- Shown from fourth slide on.

Shown from fourth slide on.

- Shown from first slide on.
- Shown from fifth slide on.

Part I

Review of Previous Lecture

First item. ▶ Jump to second slide

- First item.
- Second item.

▶ Jump to second slide

- First item.
- Second item.
- ► Third item.

▶ Jump to second slide

repeating a frame

- ► First subject.
- Second subject.
- ► Third subject.

repeating a frame

- First subject.
- Second subject.
- ► Third subject.

Some stuff explaining more on the second matter.

repeating a frame

- First subject.
- Second subject.
- ► Third subject.

- ► Eggs
- Plants
- Animals

Goldbach, 1742 Christian Goldbach.

A problem we should try to solve before the ISPN '43 deadline,

Letter to Leonhard Euler, 1742.

