

$$P(\emptyset) = 0$$

· Probability of nothing happening is zero!

$$\times P(E') = (-P(E))$$

we'll use this one,

P(E1)
$$\leq P(E2)$$

Addition Rule

$$P(AUB) = P(A) + P(B) - P(ADB)$$

avea in which they intersect. So you don't count twice!

if events
$$A : B$$
 are mutually exclusive:
$$P(A \cap B) = \emptyset$$

$$P(A \cup B) = P(A) + P(B)$$

events, we can determine total probability much more efficiently using these concepts than first determining outcomes associated of operation!

Conditional Probability

of some of an event depends on the outcome of some other event

$$P(B|A)$$
 "the probability of B

exhaustive set or sets:

"events contain all outcomes"

Mutually exclusive, then:

independence: two events are independent if any one of the following is true:

means B Joesnit affect A