Задача:

Для того чтобы две противоположные стороны четырехугольника были параллельны, необходимо и достаточно, чтобы отрезок, соединяющий их середины, проходил через точку пересечения диагоналей.

Комментарий:

Пусть в четырехугольнике ABCD параллельны стороны BC и AD. Точки E и F — середины сторон BC и AD соответственно, а O — пересечение диагоналей. Тогда \overrightarrow{BC} и \overrightarrow{AD} линейно зависимы и, значит, $\overrightarrow{AD} = \alpha \overrightarrow{BC}$ для некоторого α . Так как \overrightarrow{BD} и \overrightarrow{BO} линейно зависимы, то $\overrightarrow{BD} = \beta \overrightarrow{BO}$ для некоторого β . Так же существует такое γ , что $\overrightarrow{CA} = \gamma \overrightarrow{CO}$.

Мы покажем, что \overrightarrow{EO} и \overrightarrow{EF} линейно зависимы.

Будем использовать, скажем, \overrightarrow{BC} и \overrightarrow{CO} в качестве базисных. Выразим векторы

$$\overrightarrow{EF} = \overrightarrow{EC} + \overrightarrow{CA} + \overrightarrow{AF} = \frac{1}{2}\overrightarrow{BC} + \gamma\overrightarrow{CO} + \frac{1}{2}\alpha\overrightarrow{BC} = \left(\frac{1}{2} + \frac{1}{2}\alpha\right)\overrightarrow{BC} + \gamma\overrightarrow{CO}$$

И

$$\overrightarrow{EO} = \frac{1}{2}\overrightarrow{BC} + \overrightarrow{CO}.$$

Они будут коллинеарны, если определитель $\begin{vmatrix} \frac{1}{2} + \frac{1}{2}\alpha & \frac{1}{2} \\ \gamma & 1 \end{vmatrix}$ равен 0, то есть если $\frac{1}{2} + \frac{1}{2}\alpha - \frac{1}{2}\gamma = 0$ или $\gamma = \alpha + 1$. Это и установим.

Получим для \overrightarrow{AD} что-то, помимо известного $\overrightarrow{AD} = \alpha \overrightarrow{BC}$. Так

$$\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD} = (-\gamma)\overrightarrow{CO} + \overrightarrow{CB} + \overrightarrow{BD} =$$

$$= (-\gamma)\overrightarrow{CO} + (-1)\overrightarrow{BC} + \beta \overrightarrow{BO} = (-\gamma)\overrightarrow{CO} + (-1)\overrightarrow{BC} + \beta \overrightarrow{BC} + \beta \overrightarrow{CO} =$$

$$= (\beta - 1)\overrightarrow{BC} + (\beta - \gamma)\overrightarrow{CO}.$$

Рассчитывая на линейную независимость \overrightarrow{BC} и \overrightarrow{CO} , получаем $\beta-1=\alpha$ и $\beta-\gamma=0$. Отсюда $\beta=\gamma$ и $\gamma=\alpha+1$.