Analyzing Concert Data to Predict Ticket Price Markups

Evan Paul April 2016

https://github.com/epsilon670/predicting_ticket_markups

Background

- Buyers of concert tickets are able to re-sell them on StubHub.com, often at a markup compared to face values
- The price one is willing to pay for a ticket on StubHub is influenced by many factors
 - Is the show sold out?
 - How popular is the artist?
 - o How soon is the show?
- Can we use features to predict the price markup of a concert ticket on StubHub?

Hypothesis

Variables such as the number of days until a show, whether the show is sold out or not, and artist popularity can be used to predict the price markup of concert tickets on StubHub.com.

Data

Data Sources

- Data was gathered from 3 primary sources:
 - StubHub.com API
 - Event details and ticket prices
 - Webpage scrapes of SongKick.com
 - Ticket Face values and whether shows were sold out or not
 - EchoNest.com API
 - Artist metadata and popularity data

StubHub API Data

- Artist
- Date of show
- # of days until show (from 3/13/16)
- Lowest available StubHub ticket price
- Venue name
- City

Data Gathered from Scraping SongKick.com

- Ticket Vendor
 - E.g., Ticketmaster, TicketFly, EventBrite, etc.
- Ticket Face Value
- Whether the show is sold out or not (as of 3/13/16)

Artist Data from EchoNest

echonest

- Artist "Familiarity" score
 - Measures how well known an artist is (cont. values between 0 and 1
- Artist "Discovery" score
 - Measures the current "discovery" level of an artist (cont. values between 0 and 1)
 - o I.e., artist who is relatively unknown but is currently getting many plays gets a high score
- Artist "hotttnesss" score
 - Measures how much people are sharing an artist currently (cont. values between 0 and 1)
- Number of blogs published recently about artist
- Number of news articles published recently
- Number of reviews published recently
- How many years an artist has been active

Data Collection

- Collected data for concerts from 16 metropolitan areas in USA
- Resulted in 3,126 concerts total
- All data was collected on March 13th, 2016

Concert Breakdown by Metro Area

Data Limitations and Challenges

Data Limitations and Challenges

- SongKick did not have complete data for every show
 - 3,126 events total
 - SongKick webpages only had valid ticket info for 1,436 of them
- Some shows were not marked as "sold out" on SongKick when they were actually sold out in reality
 - sold_out feature is thus underrepresented in our data

Buy tickets

We don't know about tickets yet. Check the venue website for more info.

Data Challenges

StubHub also had some major outliers

Data Challenges

??? StubHub also had some major outliers Sun Adele Tickets Jul 10 7:30 pm at United Center, Chicago, IL Section ~ Qty ~ Price v Section \$711,711.00 Floor 3 21 UPS 302 303 Upper Level 303 \$5,000.00 66 67 68 69 70 71 72 1 2 3 4 5 Electronic 55 58 57 58 59 60 1 2 3 4 Club Level 234 \$5,000.00 \$711,711.00 Electronic

Cleaned Data

- After removing outliers and bad data, we were left with 1,192 valid concerts with the following markup characteristics:
- Mean ticket markup: \$40.87
- Standard Deviation: 20.7
- Min markup: \$7.26
 - Charlie Puth @ Theatre of Living Arts, Philadelphia, PA
- Max markup: \$104.90
 - o Robert Plant @ The Moody Theater, Austin, TX

Let's try to predict ticket markup

Features

- Used the following concert features to attempt to predict ticket markup:
 - 'face_value' original ticket price (in USD)
 - 'sold out' 1 if show was sold out, 0 if not sold out
 - 'days_to_show' integer for # of days from data collection date (3/13/16) to concert
 - 'num_blogs' integer for # of blog posts about artist recently
 - 'num_news' integer for # of news articles written about artist recently
 - 'num_reviews' integer for # of reviews written about artist recently
 - 'discovery' EchoNest discovery score between 0 and 1
 - 'familiarity' EchoNest familiarity score between 0 and 1
 - 'hotttnesss' EchoNest "hotttnesss" score between 0 and 1
 - 'num_years_active' integer for # of years an artist has been active

Sample Feature Data Frame

artist	venue	city	face_value	sold_out	days_to_show	num_blogs	num_news	num_reviews	discovery	familiarity	hotttnesss	num_y
Selena Gomez	Philips Arena	Atlanta	35.00	0	88	9475	2202	7	0.439948	0.770825	0.862321	8
Ciara	Center Stage Theatre	Atlanta	29.00	0	41	8129	962	52	0.391567	0.749624	0.729409	14
Demi Lovato and Nick Jonas	Philips Arena	Atlanta	29.95	0	108	6062	1776	13	0.427074	0.769929	0.835224	14
They Might Be Giants	Variety Playhouse	Atlanta	25.00	0	26	2083	231	167	0.368564	0.701520	0.619015	34
Prong	Masquerade Atlanta	Atlanta	16.00	0	52	1110	289	14	0.409728	0.616520	0.589147	30

Random Forest Regressor

- Used RandomForestRegressor from sklearn.
 ensemble
- Split data into training set (66%) and test set (33%)
- Tuned model and found best results with 8 max_features and 5,000 trees
- Model with these parameters produced MSE of ~386.65 when run with test data
- This MSE means, the model's prediction was off by about \$19.66 on average when run on test data


```
# Check feature importances
sorted(zip(RF.feature_importances_,X.columns.values))

[(0.019122638683807328, 'sold_out'),
  (0.07638689615620757, 'num_reviews'),
  (0.088009621941953622, 'familiarity'),
  (0.097252680838548961, 'discovery'),
  (0.098578076025170588, 'num_news'),
  (0.10871390046650277, 'num_blogs'),
  (0.1169508361476027, 'hotttnesss'),
  (0.12461576593001537, 'face_value'),
  (0.13091751663667109, 'days_to_show'),
  (0.13945206717351824, 'num_years_active')]
```

Sample Predictions with RF Model

- Avett Brothers @ Chicago Theatre in Chicago, IL on 4/21/2016
 - Ticket Face value: \$45.00
 - Minimum StubHub Price: \$82.74
 - Actual Markup: \$37.74
 - Model's predicted markup: \$36.78 (off by \$0.96 pretty good!)
- Avett Brothers @ Chicago Theatre in Chicago, IL on 4/23/2016
 - Ticket Face value: \$45.00
 - Minimum StubHub Price: \$120.50
 - Actual Markup: \$75.50
 - Model's predicted markup: \$37.01 (off by \$38.49 eh...)
- Wait! These are 2 predictions for the same artist only 2 days apart!What gives?

One of the shows is sold out!

April 21st Show - <u>not sold out</u> (StubHub markup=\$37.74)

April 23rd Show - sold out! (StubHub markup=\$75.50)

But our data did not capture this...

	date	artist	venue	sold_out
77	2016-06-19T20:00:00-0500	The Avett Brothers	ACL Live at The Moody Theater	1
203	2016-04-22T20:00:00-0500	The Avett Brothers	Chicago Theatre	0
204	2016-04-23T20:00:00-0500	The Avett Brothers	Chicago Theatre	0
214	2016-04-21T19:00:00-0500	The Avett Brothers	Chicago Theatre	0

...because SongKick does not have accurate sold_out status

Saturday 23 April 2016

The Avett Brothers

Chicago Theatre, Chicago, IL, US (map)
Line-up: The Avett Brothers

Join Songkick to track this concert and we'll remind you when it's coming up.

Track event

I'm going

US \$45.00

Buy tickets 🕜

Not marked as sold

Buy tickets
Ticketmaster

Re-run Prediction with correct sold_out value

- Let's try re-running our prediction algorithm with the correct sold_out value for the Avett Bros' April 23rd show
- Knowing event was sold out, RF model predicts a markup of \$45.50
 - Originally predicted a markup of \$37.01 with 0 sold_out value
 - Actual StubHub markup: \$75.50
 - Not an amazing improvement, but still better
- Lack of correct sold_out values from SongKick may explain why sold_out was an insignificant feature in prediction model

MSE was high with Random Forest Regressor. Can we do better?

Let's try turning this into a classification problem...

- Random Forest didn't allow us to predict ticket prices very precisely
- But maybe we can predict the <u>range</u> that a markup is in
- Let's create buckets for different markup ranges:
 - Bucket 1: \$0 \$25
 - 293 observations
 - Bucket 2: \$25 \$37
 - 299 observations
 - Bucket 3: \$37-\$52
 - 303 observations
 - Bucket 4: >\$52
 - 297 observations

	FV_delta	FV_delta_bucket
0	50.04	3
1	26.99	2
2	16.91	1
3	35.32	2
4	32.37	2

Random Forest Classifier

- RandomForestClassifier yielded best results with max_features value of 4
 - Classifier made correct predictions ~38.3% of the time
- Let's try Boosting
- Ideal parameters for GradientBoostingClassifier:
 - Learning rate: 0.05
 - Number of trees: 4,000
 - Max depth: 4
- This Boosting algorithm allowed us to predict the markup range for concerts in our test set with 41.6% accuracy
 - Better than nothing, but still not great

Can we interpret anything using the data?

Let's Try Linear Regression

- Linear regression is prone to outliers, so let's make sure our data isn't too skewed
- Box plot of raw markup values:

Let's take the logs of our data

Let's Try Linear Regression

Looks much better

Lasso Regression to Find Best Variables

- First scaled the data
- Then found ideal alpha for Lasso: a = -3
- Then checked the Lasso coefficients
- Then checked correlation matrix
 - hotttnesss was highly correlated with all variables except sold_out (-0.01)
- Decided to use hotttnesss and sold_out for regression

```
# Find feature coefficients using Lasso regret
lm = linear_model.Lasso(alpha=10**(-3))
lm.fit(X_lasso, y_lasso)
sorted(zip(lm.coef_, X_lasso.columns))
```

```
[(-0.33055393604368116, 'familiarity'),
(-0.30831655082782616, 'discovery'),
(-0.061658698486772807, 'num_blogs_log'),
(-0.0010283055307501879, 'num_reviews_log'),
(0.022689061491567599, 'num_news_log'),
(0.057162538340669429, 'face_value_log'),
(0.06264697551684871, 'days_to_show_log'),
(0.12417420023515652, 'sold_out'),
(0.22574460169029595, 'num_years_active'),
(0.35455412807878184, 'hotttnesss')]
```

Running Linear Regression

 Used Linear Regression on hotttnesss and sold_out values to predict the logarithm of ticket price markups

> Df Model: Covariance Type:

Used the Statsmodel python package to get p-values, R^2, and

coefficients:

- R^2 is low (~0.01)
- But coefficient P-values are significant!
 - 0.046 and 0.001
- Model may not capture much variability, but results are significant

У	R-squared:	0.011
OLS	Adj. R-squared:	0.010
Least Squares	F-statistic:	7.048
Sun, 03 Apr 2016	Prob (F-statistic):	0.000904
17:49:50	Log-Likelihood:	-1157.8
1260	AIC:	2322.
1257	BIC:	2337.
	Least Squares Sun, 03 Apr 2016 17:49:50 1260	OLS Adj. R-squared: Least Squares F-statistic: Sun, 03 Apr 2016 Prob (F-statistic): 17:49:50 Log-Likelihood: 1260 AIC:

OLS Regression Results

	coef	std err	t	P> t	[95.0% Conf.	Int.]
Intercept	3.4353	0.103	33.349	0.000	3.233	3.637
x[0]	0.3267	0.164	1.996	0.046	0.006	0.648
X[1]	0.2531	0.079	3.201	0.001	0.098	0.408

nonrobust.

Omnibus:	0.582	Durbin-Watson:	1.660
Prob(Omnibus):	0.748	Jarque-Bera (JB):	0.478
Skew:	0.030	Prob(JB):	0.787
Kurtosis:	3.074	Cond. No.	13.3

Interpreting Linear Regression Results

- Hottmesss coefficient is 0.3267
 - "hotttnesss" = how much people are currently talking about/sharing artist online
- Sold_out coefficient is 0.2531
- Interpretation: holding all other variables fixed...
 - For every increase of 0.1 in EchoNest's hotttness metric, the StubHub ticket price markup increases by ~3.3%*
 - If a show sells out, the StubHub ticket price markup increases by ~25%*

*The prediction values were the <u>logarithms</u> of ticket markups, so we interpret coefficients as % increases rather than absolute increases

Limitations of this Analysis

Data Limitations

- SongKick did not always give us correct sold_out values
 - Only had ~80 out of 1,200 shows marked as "sold out"
 - o Impact of a show being sold out is likely underestimated in models from this dataset
- Only looked at minimum StubHub ticket price to compute markup
 - o Future studies might look at differing price levels e.g., VIP sections vs. GA
- Data came from 16 U.S. metros, so conclusions are limited to concerts in those cities
 - Future studies might look at wider concert data across additional geos

Model Limitations

- Interpretation from Linear Regression is based on the assumption that the data is linear
 - This may not be true low R^2 value suggests that linear model doesn't capture much variability
- Did not include some variables that may explain additional variability
 - Metro area for concert.
 - Day of the week of show (e.g., weekday vs. weekends)