Álgebra Relacional

Banco de Dados: Teoria e Prática

André Santanchè e Patrícia Cavoto Instituto de Computação - UNICAMP Setembro 2016

Álgebra Relacional

Álgebra

- Operandos: relações ou variáveis que as representam
- Operadores: fazem operações comuns com relações em um banco
- Closure property
 - Álgebra 'fechada' em relação ao modelo relacional
 - Cada operação: recebe relações e retorna uma relação
- Given closure property, operations can be composed!

Linguagens de Query

- Para manipulação e recuperação de dados
- Linguagens de Query (LQ) em BD:
 - Fundamentação formal
 - Subsidiam otimização
- LQ <> linguagens de programação
 - não se espera que sejam "Turing completas".
 - não pensadas para cálculos complexos.
 - suportam acessos simples e eficientes a extensos conjuntos de dados

(Ramakrishnan, 2003)

Linguagens de

Uma linguagem é dita "Turing completa" se puder ser demonstrado que ela é computacionalmente equivalente à máquina de Turing.

- Para manipulação e recuper
- Linguagens de Query (LQ) em BD:
 - Fundamentação formal
 - Subsidiam otimização
- LQ <> linguagens de programação
 - não se espera que sejam "Turing completas"
 - não pensadas para cálculos complexos.
 - suportam acessos simples e eficientes a extensos conjuntos de dados

(Ramakrishnan, 2003)

Caso Prático - Taxis

Esquema Conceitual - Exemplo Táxis

Este é um subconjunto do Estudo de Caso proposto "Despacho e controle de Táxis via terminais móveis ligados on-line com um sistema multi-usuário" por prof. Geovane Cayres Magalhães

Esquema Conceitual - Exemplo Cliente

Para ilustrar o tema apresentado, foram acrescentadas duas entidades que são especialização de Cliente. A primeira representa um indivíduo que irá pagar a conta, a segunda representa um funcionário de uma empresa conveniada, para a qual a conta será enviada. Um cliente pode pertencer a ambas especializações.

Esquema Conceitual completo Táxis

Tabelas para exemplo - Táxis

Cliente Particular (CP)

<u>C lild</u>	Nome	C P F
1 5 3 2	A sdrúbal	4 4 8 . 7 5 4 . 2 5 3 - 6 5
1 7 5 5	D oriana	5 6 7 . 3 8 7 . 3 8 7 - 4 4
1 7 8 0	Quincas	5 4 6 . 3 7 3 . 7 6 2 - 0 2

<u>C lild</u>	Nome	C G C
1 5 3 2	A sdrúbal	7 5 4 .8 5 6 .9 6 5 / 0 0 0 1 - 5 4
1 6 4 4	Jepeto	4 7 8 . 6 5 2 . 6 3 5 / 0 0 0 1 - 7 5
1 7 8 0	Quincas	5 5 4 . 6 6 3 . 9 9 6 / 0 0 0 1 - 8 7
1 9 8 2	Zandor	7 3 6 . 9 5 2 . 3 6 9 / 0 0 0 1 - 2 3

Tabelas para exemplo - Táxis

Táxi (TX)

Placa	M arca	M odelo	A n o F a b
D A E 6 5 3 4	Ford	Fiesta	1 9 9 9
D K L 4 5 9 8	W olksvagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
J D M 8 7 7 6	Wolksvagen	Santana	2 0 0 2
JJM 3692	Chevrolet	Corsa	1 9 9 9

Corrida (R1)

<u>C II d</u>	<u>Placa</u>	<u>DataPedido</u>
1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

Álgebra Relacional Operações Básicas

- Operações unárias
 - Projeção (π) e Seleção (σ)
- Operações de conjuntos
 - União (∪), Intersecção (∩) e Diferença (-)
 - Produto cartesiano (×)
- Operações binárias
 - □ Junção (⋈) e Divisão (/)
- Outras operações
 - Renomeamento (ρ)

$\pi_{\text{Marca,Modelo}}(TX)$

<u>Placa</u>	M arca	M odelo	A n o F a b
D A E 6 5 3 4	Ford	Fiesta	1 9 9 9
D K L 4 5 9 8	W olksvagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
JD M 8776	Wolksvagen	Santana	2 0 0 2
JJM 3692	C h e v r o l e t	Corsa	1 9 9 9

 $\pi_{\text{Marca}, \text{Modelo}}(\mathsf{TX})$

<u>Placa</u>	M arca	M odelo	A n o F a b
D A E 6 5 3 4	Ford	F ie sta	1 9 9 9
D K L 4 5 9 8	W olksvagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	F ie sta	2 0 0 1
JD M 8776	W olksvagen	Santana	2 0 0 2
JJM 3692	C hevrolet	Corsa	1 9 9 9

 $\pi_{\text{Marca,Modelo}}(\mathsf{TX})$

M arca	M odelo
Ford	Fiesta
Wolksvagen	G 0 1
Ford	Fiesta
Wolksvagen	Santana
C h e v r o l e t	Corsa

Projeção

 $\pi_{\text{Marca,Modelo}}(\mathsf{TX})$

M arca	M odelo
Ford	Fiesta
Wolksvagen	G 0 1
Ford	F ie sta
Wolksvagen	Santana
C h e v r o l e t	Corsa

 $\pi_{\text{Marca,Modelo}}(\mathsf{TX})$

M arca	M odelo
Ford	Fiesta
Wolksvagen	G 0 1
Wolksvagen	Santana
C h e v r o l e t	Corsa

Closure Property

 $\pi_{\text{Marca,Modelo}}(TX)$

<u>Placa</u>	M arca	M odelo	A n o F a b
D A E 6 5 3 4	Ford	Fiesta	1999
D K L 4 5 9 8	W olksvagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	F ie sta	2 0 0 1
JD M 8776	W olksvagen	Santana	2 0 0 2
JJM 3692	C hevrolet	Corsa	1 9 9 9

M arca	M odelo
Ford	F ie sta
W olksvagen	G 0 1
Wolksvagen	Santana
C h e v r o l e t	Corsa

 Cada operação: recebe relações e retorna uma relação

(Ramakrishnan & Gehrke, 2003)

Projeção - Cliente Particular $\pi_{\text{Clild},\text{Nome}}(\text{CP})$

<u>C lild</u>	Nome	C P F
1 5 3 2	A sdrúbal	4 4 8 . 7 5 4 . 2 5 3 - 6 5
1 7 5 5	D o ria n a	5 6 7 . 3 8 7 . 3 8 7 - 4 4
1 7 8 0	Quincas	5 4 6 . 3 7 3 . 7 6 2 - 0 2

<u>C liId</u>	Nome
1 5 3 2	Asdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

(*) Adotaremos o nome C1 para o resultado da projeção (o modo como isto é feito será estudado mais adiante em renomeamento).

Projeção Tabela Cliente Particular $\pi_{\text{Clild},\text{Nome}}(\text{CE})$

<u>C lild</u>	Nome	C G C
1 5 3 2	A s d r ú b a l	7 5 4 . 8 5 6 . 9 6 5 / 0 0 0 1 - 5 4
1 6 4 4	Jepeto	4 7 8 . 6 5 2 . 6 3 5 / 0 0 0 1 - 7 5
1 7 8 0	Quincas	5 5 4 . 6 6 3 . 9 9 6 / 0 0 0 1 - 8 7
1 9 8 2	Zandor	7 3 6 . 9 5 2 . 3 6 9 / 0 0 0 1 - 2 3

C2

<u>C lild</u>	N o m e
1 5 3 2	A sdrúbal
1 6 4 4	Jepeto
1 7 8 0	Quincas
1 9 8 2	Zandor

SELECT Projeção

SELECT Marca, Modelo FROM Taxi

<u>Placa</u>	M arca	M odelo	A n o F a b
D A E 6 5 3 4	Ford	Fiesta	1 9 9 9
D K L 4 5 9 8	W olksvagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	F ie sta	2 0 0 1
JD M 8776	W olksvagen	Santana	2 0 0 2
JJM 3692	Chevrolet	Corsa	1 9 9 9

SELECT Projeção

SELECT Marca, Modelo FROM Taxi

<u>Placa</u>	M arca	M odelo	A n o F a b
D A E 6 5 3 4	Ford	F ie sta	1 9 9 9
D K L 4 5 9 8	W olksvagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	F ie sta	2 0 0 1
JD M 8776	W olksvagen	Santana	2 0 0 2
JJM 3692	C hevrolet	Corsa	1 9 9 9

SELECT Projeção

SELECT Marca, Modelo FROM Taxi

M arca	M odelo
Ford	Fiesta
Wolksvagen	G 0 1
Ford	Fiesta
Wolksvagen	Santana
C h e v r o l e t	Corsa

- Liste todos os componentes ativos disponíveis
- Esquema:
 - medicamento(nomeVenda, compostoAtivo)

- Liste todos os componentes ativos disponíveis
- Esquema:
 - medicamento(nomeVenda, compostoAtivo)

<u>nome</u> <u>venda</u> composto ativo

 $\pi_{\text{compostoAtivo}}(\text{medicamento})$

Medicamento

- Como obter um efeito equivalente ao DISTINCT?
- Esquema:
 - medicamento(nomeVenda, compostoAtivo)

 $\pi_{\text{compostoAtivo}}(\text{medicamento})$

- Como obter um efeito equivalente ao DISTINCT?
 - O modelo relacional por trás da álgebra já garante isso
- Esquema:
 - medicamento(nomeVenda, compostoAtivo)

 $\pi_{\text{compostoAtivo}}(\text{medicamento})$

Seleção

$O_{AnoFab>2000}(TX)$

<u>Placa</u>	M arca	M odelo	A n o F a b
D A E 6 5 3 4	Ford	Fiesta	1 9 9 9
D K L 4 5 9 8	W olksvagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
JD M 8776	W olksvagen	Santana	2 0 0 2
JJM 3692	C h e v r o l e t	Corsa	1 9 9 9

Seleção

$O_{AnoFab>2000}(TX)$

<u>Placa</u>	M arca	M odelo	A n o F a b
D A E 6 5 3 4	Ford	Fiesta	1 9 9 9
D K L 4 5 9 8	W olksvagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
JD M 8776	W olksvagen	Santana	2 0 0 2
JJM 3692	C h e v r o l e t	Corsa	1999

Seleção

$O_{AnoFab>2000}(TX)$

<u>Placa</u>	M arca	M odelo	A n o F a b
D K L 4 5 9 8	W olksvagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
JD M 8776	W olksvagen	Santana	2 0 0 2

SELECT Seleção

SELECT * FROM Taxi WHERE AnoFab > 2000

P la c a	M arca	M odelo	A n o F a b
D A E 6 5 3 4	Ford	Fiesta	1 9 9 9
D K L 4 5 9 8	W olksvagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
JD M 8776	Wolksvagen	Santana	2 0 0 2
JJM 3692	Chevrolet	Corsa	1 9 9 9

SELECT Seleção

SELECT * FROM Taxi WHERE AnoFab > 2000

<u>Placa</u>	M arca	M odelo	A n o F a b
D A E 6 5 3 4	Ford	Fiesta	1 9 9 9
D K L 4 5 9 8	W olksvagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
JD M 8776	W olksvagen	Santana	2 0 0 2
JJM 3692	C h e v r o l e t	Corsa	1 9 9 9

SELECT Seleção

SELECT * FROM Taxi WHERE AnoFab > 2000

<u>Placa</u>	M arca	M odelo	A n o F a b
D K L 4 5 9 8	W olksvagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1
JD M 8776	W olksvagen	Santana	2 0 0 2

- Liste todos os vírus com período de incubação maior que 5 dias.
- Esquema:

virus (nomeCientifico, nomePopular, incubacao)

- Liste todos os vírus com período de incubação maior que 5 dias.
- Esquema:

virus (nomeCientifico, nomePopular, incubacao)

O_{incubacao>5}(virus)

Composição de Operações

- Closure property
 - cada operação recebe relações e retorna uma relação
 - operações podem ser compostas

(Ramakrishnan & Gehrke, 2003)

Composição de Operações

Exemplo:

```
operação_2 (operação_1 (relação_a))
```

Sequência de dentro para fora

Composição de Operações

Exemplo:

```
operação_2 (operação_1 (relação_a))
```

Sequência de dentro para fora

```
operação_1 (relação_a) → relação_b
```

Composição de Operações

Exemplo:

```
operação_2 (operação_1 (relação_a))
```

Sequência de dentro para fora

```
operação_1 (relação_a) → relação_b
operação 2 (relação_b) → relação_c
```

Questão 4

- Liste o nome popular de todos os vírus com período de incubação maior que 5 dias.
- Esquema:

virus (nomeCientifico, nomePopular, incubacao)

Questão 4

- Liste o nome popular de todos os vírus com período de incubação maior que 5 dias.
- Esquema:

virus (nomeCientifico, nomePopular, incubacao)

 $\pi_{\text{nomePopular}}(\sigma_{\text{incubacao}>5}(\text{virus})) \qquad \text{virus}$

Exercício 1

- Dadas as seguintes tabelas:
 - Pessoa(<u>nome</u>, nome_da_mãe, ano_nascimento, nome_cidade_natal)
 - nome_cidade_natal → CHE Cidade
 - Cidade(<u>nome cidade</u>, sigla_estado)
- Componha expressões em álgebra relacional para:
 - a) nomes de todas as mães
 - b) nomes de todas as mães com filhos maiores de 12 anos

União C1 U C2

<u>C lild</u>	Nome
1 5 3 2	A sdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C lild</u>	Nome
1 5 3 2	A sdrúbal
1 6 4 4	Jepeto
1 7 8 0	Quincas
1 9 8 2	Zandor

União C1 U C2

<u>C lild</u>	Nome
1 5 3 2	A sdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C lild</u>	Nome
1 5 3 2	A sdrúbal
1 6 4 4	Jepeto
1 7 8 0	Quincas
1 9 8 2	Zandor

<u>C lild</u>	Nome
1 5 3 2	A sdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

União C1 U C2

<u>C lild</u>	Nome
1 5 3 2	A sdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C lild</u>	Nome
1 5 3 2	A sdrúbal
1 6 4 4	Jepeto
1 7 8 0	Quincas
1 9 8 2	Zandor

<u>C lild</u>	N o m e
1 5 3 2	A sdrúbal
1 6 4 4	Jepeto
1 7 5 5	D oriana
1 7 8 0	Quincas
1 9 8 2	Zandor

Interseção C1 ∩ C2

<u>C lild</u>	Nome
1 5 3 2	A sdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C lild</u>	Nome
1 5 3 2	A sdrúbal
1 6 4 4	Jepeto
1 7 8 0	Quincas
1 9 8 2	Zandor

Interseção C1 ∩ C2

<u>C lild</u>	Nome
1 5 3 2	A sdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C lild</u>	Nome
1 5 3 2	A s d r ú b a l
1 6 4 4	Jepeto
1 7 8 0	Quincas
1 9 8 2	Zandor

<u>C liId</u>	Nome
1 5 3 2	A s d r ú b a l

Interseção C1 ∩ C2

<u>C lild</u>	N o m e
1 5 3 2	A sdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C lild</u>	Nome
1 5 3 2	A sdrúbal
1 6 4 4	Jepeto
1 7 8 0	Quincas
1 9 8 2	Zandor

<u>C liId</u>	Nome
1 5 3 2	A sdrúbal
1 7 8 0	Quincas

<u>C lild</u>	Nome
1 5 3 2	Asdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C lild</u>	N o m e
1 5 3 2	A sdrúbal
1 6 4 4	Jepeto
1 7 8 0	Quincas
1 9 8 2	Zandor

<u>C lild</u>	N o m e
1 5 3 2	Asdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C liId</u>	N o m e
1 5 3 2	A sdrúbal
1 6 4 4	Jepeto
1 7 8 0	Quincas
1 9 8 2	Zandor

	C lild	Nome
--	--------	------

Clild	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

Clild	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

<u>C lild</u>	Nome
1 7 5 5	D o ria n a

Clild	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

Clild	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

<u>C lild</u>	Nome
1 7 5 5	D oriana

Clild	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

	C 1: 1 4	N o mo o
	Clild	Nome
1	532	Asdrúbal
1	644	Jepeto
1	780	Quincas
1	982	Zandor

<u>C lild</u>	Nome
1 7 5 5	D oriana

Exercício 2

- Dadas as duas relações abaixo, liste:
 - a)todos os nomes populares cadastrados
 - b)somente os nomes populares que aparecem em ambas as relações
 - c)nome científico dos vírus que aparecem em apenas uma das relações
- Esquemas:

```
virus1(nomeCientifico, nomePopular, incubacao)
virus2(nomeCientifico, nomePopular, incubacao)
```

<u>C lild</u>	Nome
1 5 3 2	Asdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C II d</u>	<u>Placa</u>	<u>DataPedido</u>
1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

<u>C lild</u>	Nome
1 5 3 2	Asdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C II d</u>	<u>Placa</u>	<u>DataPedido</u>
1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

(Clild)	N o m e	(C IId)	P la c a	DataPedido
1 5 3 2	A sdrúbal	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	Asdrúbal	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

<u>C liId</u>	N o m e
1 5 3 2	A sdrúbal
1 7 5 5	Dorian a
1 7 8 0	Quincas

<u>C II d</u>	<u>Placa</u>	<u>DataPedido</u>
1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

(Clild)	Nome	(C IId)	P la c a	Data Pedido
1 5 3 2	A sdrúbal	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	A sdrúbal	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

<u>C lild</u>	Nome
1 5 3 2	Asdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C II d</u>	<u>Placa</u>	<u>DataPedido</u>
1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

(Clild)	N o m e	(C IId)	P la c a	DataPedido
1 5 3 2	A sdrúbal	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	A sdrúbal	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

<u>C liId</u>	N o m e
1 5 3 2	Asdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C II d</u>	<u>Placa</u>	<u>DataPedido</u>
1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

<u>C liId</u>	Nome
1 5 3 2	Asdrúbal
1 7 5 5	D oriana
1780	Quincas

<u>C II d</u>	<u>Placa</u>	<u>DataPedido</u>
1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

(Clild)	N o m e	(C IId)	P la c a	D a ta P e d i d o
1 5 3 2	A sdrúbal	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	Asdrúbal	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

<u>C liId</u>	Nome
1 5 3 2	A sdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C II d</u>	<u>Placa</u>	<u>DataPedido</u>
1755	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

(Clild)	Nome	(C IId)	Placa	D a ta P e d i d o
1 5 3 2	A sdrúbal	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	A sdrúbal	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 5 5	Doriana	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

<u>C lild</u>	N o m e
1 5 3 2	Asdrúbal
1 7 5 5	D oriana
1 7 8 0	Quincas

<u>C II d</u>	<u>Placa</u>	<u>DataPedido</u>
1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

(Clild)	Nome	(C IId)	P la c a	DataPedido
1 5 3 2	A sdrúbal	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	A sdrúbal	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 8 0	Q u in c a s	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

Junção

C1 C1.Clild<R1.ClildR1

(Clild)	N o m e	(CIId)	P la c a	DataPedido
1 5 3 2	Asdrúbal	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	A sdrúbal	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1755	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

Junção

C1 C1.Clild<R1.ClildR1

(Clild)	N o m e	(C IId)	P la c a	Data Pedido
1 5 3 2	A sdrúbal	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	A sdrúbal	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1755	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

Junção

C1 C1.Clild<R1.ClildR1

(Clild)	N o m e	(C IId)	P la c a	DataPedido
1 5 3 2	Asdrúbal -	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	A sdrúbal	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

medicamento (nomeVenda, compostoAtivo)

virus(nomeCientifico, nomePopular, incubacao,
nomeVendaMedicamento)

- CHE: nomeVendaMedicamento para medicamento
- Para as relações acima escreva uma sentença em algebra que retorne:
 - o nome popular dos vírus tratados pelo medicamento de composto ativo X

(Clild)	N o m e	(C IId)	P la c a	DataPedido
1 5 3 2	A sdrúbal	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	A sdrúbal	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1755	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

(Clild)	Nome	(CIId)	P la c a	DataPedido
1 5 3 2	A sdrúbal	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	A sdrúbal	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

(Clild)	N o m e	(C IId)	P la c a	Data Pedido
1 7 5 5	D oriana -	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3

Junção Natural

C1 * R1

equivalente a

(Clild)	N o m e	(C IId)	P la c a	DataPedido
1 7 5 5	D oriana	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3

SELECT Cliente.CliId, Cliente.Nome,

Corrida.CliId, Corrida.Placa,

Corrida. Data Pedido

FROM Cliente, Corrida

WHERE Cliente.CliId = Corrida.CliId

(Clild)	N o m e	(C IId)	P la c a	Data Pedido
1 5 3 2	A sdrúbal	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	A sdrúbal	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

SELECT Cliente.CliId, Cliente.Nome,

Corrida.CliId, Corrida.Placa,

Corrida.DataPedido

FROM Cliente, Corrida

WHERE Cliente.CliId = Corrida.CliId

(Clild)	N o m e	(C IId)	P la c a	Data Pedido
1 5 3 2	A sdrúbal	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	A sdrúbal	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 5 5	D oriana	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 7 8 0	Quincas	1 9 8 2	JD M 8776	1 8 / 0 2 / 2 0 0 3

SELECT Cliente.CliId, Cliente.Nome, Corrida.CliId, Corrida.Placa,

Contida Dala Dalida

Corrida. Data Pedido

FROM Cliente, Corrida

WHERE Cliente.CliId = Corrida.CliId

(Clild)	Nome	(C IId)	P la c a	DataPedido
1 7 5 5	D oriana -	1 7 5 5	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3

Exercício para Casa 1

- Dadas as seguintes tabelas:
 - Pessoa(<u>nome</u>, nome_da_mãe, ano_nascimento, nome_cidade_natal)
 - nome_cidade_natal → CHE Cidade
 - Cidade(<u>nome cidade</u>, sigla_estado)
- Componha uma expressão em álgebra relacional para listar:
 - nomes de parentes que nasceram no mesmo estado que você e que é possível inferir a partir das relações

Exercício para Casa 2

- Dadas as seguintes tabelas:
 - Pessoa(<u>nome</u>, nome_da_mãe, ano_nascimento, nome_cidade_natal)
 - nome_cidade_natal → CHE Cidade
 - Cidade(<u>nome_cidade</u>, sigla_estado)
- Descreva, sem se preocupar com o formalismo, como você construiria uma expressão que retorne seus primos por parte de mãe que podem ser inferidos a partir das relações.

Álgebra Relacional Operações Básicas e Adicionais

- Operações básicas
 - □ Projeção (π) , Seleção (σ) , Produto cartesiano (\times) , Diferença (-) e União (\cup)
- Operações adicionais (não essenciais)
 - Intersecção (∩), Junção (⋈), Divisão (/) e
 Renomeamento (ρ)

(Ramakrishnan, 2003)

medicamento (nomeVenda, compostoAtivo)

virus(nomeCientifico, nomePopular, incubacao,
nomeVendaMedicamento)

- CHE: nomeVendaMedicamento para medicamento
 - Para as tabelas acima escreva uma sentença SQL que retorne:
 - a) vírus tratados pelo medicamento de nome de venda W
 - b) vírus tratados pelo medicamento de composto ativo X

Renomeamento

TX

P la c a	M arca	M odelo	A n o F a b
D A E 6 5 3 4	Ford	Fiesta	1 9 9 9
D K L 4 5 9 8	W olksvagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	F ie sta	2 0 0 1
JD M 8776	W olksvagen	Santana	2 0 0 2
JJM 3692	C h e v r o l e t	Corsa	1 9 9 9

Renomeamento

$$\rho(FR, \sigma_{Marca='Ford'}TX)$$

FR

<u>Placa</u>	M arca	M odelo	A n o F a b
D A E 6 5 3 4	Ford	F ie sta	1 9 9 9
D K L 7 8 7 8	Ford	Fiesta	2 0 0 1

Tabela adicional

Corrida (R2)

<u>C II d</u>	<u>Placa</u>	Data Pedido
1 5 3 2	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 5 3 2	D K L 4 5 8 6	1 7 / 0 2 / 2 0 0 3
1 6 4 4	D K L 7 8 7 8	1 0 / 0 1 / 2 0 0 3
1 6 4 4	JD M 8776	1 8 / 0 2 / 2 0 0 3
1 7 8 0	JJM 3692	0 8 / 0 1 / 2 0 0 3
1 9 8 2	D A E 6 5 3 4	1 5 / 0 1 / 2 0 0 3
1 9 8 2	D K L 4 5 9 8	2 6 / 0 1 / 2 0 0 3
1 9 8 2	D K L 7 8 7 8	0 1 / 0 2 / 2 0 0 3

Táxi (FR)

<u>Placa</u>	M arca	M odelo	A n o F a b
D A E 6 5 3 4	Ford	F ie sta	1 9 9 9
D K L 7 8 7 8	Ford	F ie sta	2 0 0 1

Divisão

 Encontre clientes que tenham andado com todos os táxis da Marca Ford.

Divisão

CIId	P la c a
1 5 3 2	D A E 6 5 3 4
1 5 3 2	D K L 4 5 8 6
1 6 4 4	D K L 7 8 7 8
1 6 4 4	JD M 8776
1 7 8 0	JJM 3692
1 9 8 2	D A E 6 5 3 4
1 9 8 2	D K L 4 5 9 8
1 9 8 2	D K L 7 8 7 8

 $\rho(\text{SFR}, \pi_{\text{Placa}}(\text{FR}))$

		Pl	a	c	a		
\mathbb{D}	A	E	6	5	3	4	
D	K	L	7	8	7	8	

SR2

CIId	P la c a
1 5 3 2	D A E 6 5 3 4
1 5 3 2	D K L 4 5 8 6
1 6 4 4	D K L 7 8 7 8
1 6 4 4	JD M 8776
1 7 8 0	JJM 3692
1 9 8 2	D A E 6 5 3 4
1 9 8 2	D K L 4 5 9 8
1 9 8 2	D K L 7 8 7 8

SFR

]	P	a	C	a		
D	A	E	6	5	3	4	
D	K	L	7	8	7	8	

SR2

Clld	Placa
1532	D A E 6 5 3 4
1532	D K L 4586
1644	DKL7878
1644	JD M 8776
1780	JJ M 3692
1982	D A E 6534
1982	DKL4598
1982	DKL7878

SFR

C IId

SR2

CIId	Placa
1532	D A E 6534
1532	DKL4586
1644	D K L 7878
1644	JD M 8776
1780	JJ M 3692
1982	DAE6534
4 4	
1982	DKL4598

SFR

C IId

SR2

Clld	Placa
1532	DAE6534
1532	DKL4586
1644	DKL7878
1644	JDM8776
1780	JJM3692
1982	DAE6534
1982	DKL4598
1982	DKL7878

SFR

C IId

SR2

CIId	Placa
1532	D A E 6534
1532	DKL4586
1644	DKL7878
1644	JD M 8776
1780	JJ M 3692
1982	DAE6534
1982	D K L 4598
1982	D K L 7878

SFR

		Pl	a	c	a		
D	A	E	6	5	3	4	
D	K	L	7	8	7	8	

Agradecimentos

- Luiz Celso Gomes Jr (professor desta disciplina em 2014)
 pela contribuição na disciplina e nos slides.
- Patrícia Cavoto (professora desta disciplina em 2015) pela contribuição na disciplina e nos slides.

Referências

- Codd, Edgar Frank (1970) A relational model of data for large shared data banks. Communications ACM 13(6), 377-387.
- Elmasri, Ramez; Navathe, Shamkant B. (2005) Sistemas de Bancos de Dados. Addison-Wesley, 4ª edição em português.
- Elmasri, Ramez; Navathe, Shamkant B. (2010) Sistemas de Banco de Dados. Pearson, 6ª edição em português.
- Guimarães, Célio (2003) Fundamentos de Bancos de Dados: Modelagem, Projeto e Linguagem SQL. Editora UNICAMP, 1ª edição.

Referências

- Heuser, Carlos Alberto (2004) Projeto de Banco de Dados. Editora Sagra Luzzato, 5ª edição.
- Ramakrishnan, Raghu; Gehrke, Johannes (2003) Database
 Management Systems. McGraw-Hill, 3rd edition.

André Santanchè

http://www.ic.unicamp.br/~santanche

License

- These slides are shared under a Creative Commons License.
 Under the following conditions: Attribution, Noncommercial and Share Alike.
- See further details about this Creative Commons license at: http://creativecommons.org/licenses/by-nc-sa/3.0/

Exercício 1 (antigo)

- Desenhe as seguintes tabelas:
 - Pessoa(<u>nome</u>, nome_da_mãe, ano_nascimento, nome_cidade_natal)
 - nome_cidade_natal → CHE Cidade
 - Cidade(<u>nome_cidade</u>, sigla_estado)
- Preencha a tabela Pessoa com os seus dados e dados de familiares próximos (cerca de 10 linhas). Preencha a tabela Cidade com as cidades listadas na tabela Pessoa e suas respectivas siglas de estado. Use dados fictícios se preciso.

Exercício 4

- Liste todos os componentes ativos disponíveis
- Esquema:
 - medicamento(nomeVenda, compostoAtivo)

