NCSU ST 503 Discussion 7

Probems 6.2,6.3,6.4,6.5 Parts c,d,e,f Faraway, Julian J. Linear Models with R CRC Press.

Bruce Campbell

- 6.2 Using the teengamb dataset, fit a model with gamble as the response and the other variables as predictors.
- (c) Check for large leverage points.

```
rm(list = ls())
data(teengamb, package = "faraway")

df <- teengamb
numPredictors <- (ncol(df) - 1)
lm.fit <- lm(gamble ~ ., data = df)
hatv <- hatvalues(lm.fit)
lev.cut <- (numPredictors + 1) * 2 * 1/nrow(df)
high.leverage <- df[hatv > lev.cut, ]
pander(high.leverage, caption = "High Leverage Data Elements")
```

Table 1: High Leverage Data Elements

	sex	status	income	verbal	gamble
31	0	18	12	2	88
33	0	38	15	7	90
35	0	28	1.5	1	14.1
42	0	61	15	9	69.7

We've used the rule of thumb that points with a leverage greater than $\frac{2p}{n}$ should be looked at.

(d) Check for outliers.

```
studentized.residuals <- rstudent(lm.fit)
max.residual <- studentized.residuals[which.max(abs(studentized.residuals))]
range.residuals <- range(studentized.residuals)</pre>
```

```
names(range.residuals) <- c("left", "right")
pander(data.frame(range.residuals = t(range.residuals)), caption = "Range of Studentized")</pre>
```

Table 2: Range of Studentized residuals

range.residuals.left	range.residuals.right
-2.506	6.016

```
p <- numPredictors + 1
n <- nrow(df)
t.val.alpha <- qt(0.05/(n * 2), n - p - 1)
pander(data.frame(t.val.alpha = t.val.alpha), caption = "Bonferroni corrected t-value")</pre>
```

Table 3: Bonferroni corrected t-value

t.val.alpha	
-3.523	

```
outlier.index <- abs(studentized.residuals) > abs(t.val.alpha)
outliers <- df[outlier.index == TRUE, ]

if (nrow(outliers) >= 1) {
    pander(outliers, caption = "outliers")
}
```

Table 4: outliers

	sex	status	income	verbal	gamble
24	0	27	10	4	156

Here we look for studentized residuals that fall outside the interval given by the Bonferroni corrected t-values.

(e) Check for influential points.

We plot the Cook's distances and the residual-leverage plot with level set contours of the Cook distance.

```
plot(lm.fit, which = 4)
```


plot(lm.fit, which = 5)

(f) Check for structure in the model.

Plot residuals versus predictors

```
predictors <- names(lm.fit$coefficients)
predictors <- predictors[2:length(predictors)]

for (i in 1:length(predictors)) {
    predictor <- predictors[i]

    plot(df[, predictor], residuals(lm.fit), xlab = , ylab = "Residuals", main = paste(]
        " versus residuals", sep = ""))
}</pre>
```

sex versus residuals

status versus residuals

income versus residuals

verbal versus residuals

Perform partial regression

```
predictors <- names(lm.fit$coefficients)
predictors <- predictors[2:length(predictors)]

lm.formula <- formula(lm.fit)
response <- lm.formula[[2]]

for (i in 1:length(predictors)) {
    predictor <- predictors[i]
    others <- predictors[which(predictors != predictor)]
    d.formula <- paste(response, " ~ ", sep = "")
    m.formula <- paste(predictor, " ~ ", sep = "")

    for (j in 1:(length(others) - 1)) {
        d.formula <- paste(d.formula, others[j], " + ", sep = "")
        m.formula <- paste(m.formula, others[j], " + ", sep = "")
    }
    d.formula <- paste(d.formula, others[length(others)], sep = "")
    d.formula <- paste(d.formula, others[length(others)], sep = "")
    d.formula <- formula(d.formula)</pre>
```

```
m.formula <- paste(m.formula, others[length(others)], sep = "")
m.formula <- formula(m.formula)

d <- residuals(lm(d.formula, df))

m <- residuals(lm(m.formula, df))

plot(m, d, xlab = paste(predictor, " residuals", sep = ""), ylab = "response residuals" main = paste("Partial regression plot for ", predictor, sep = ""))
}</pre>
```

Partial regression plot for sex

Partial regression plot for status

Partial regression plot for income

Partial regression plot for verbal

6.3 For the prostate data, fit a model with lpsa as the response and the other variables as predictors.

```
rm(list = ls())
data(prostate, package = "faraway")
lm.fit <- lm(lpsa ~ ., data = prostate)

df <- prostate
numPredictors <- (ncol(df) - 1)
hatv <- hatvalues(lm.fit)
lev.cut <- (numPredictors + 1) * 2 * 1/nrow(df)
high.leverage <- df[hatv > lev.cut, ]
pander(high.leverage, caption = "High Leverage Data Elements")
```

Table 5: High Leverage Data Elements

	lcavol	lweight	age	lbph	svi	lcp	gleason	pgg45	lpsa
32	0.1823	6.108	65	1.705	0		6	0	2.008
						1.386			

	lcavol	lweight	age	lbph	svi	lcp	gleason	pgg45	lpsa
37	1.423	3.657	73	-	0	1.658	8	15	2.158
				0.5798					
41	0.6206	3.142	60	-1.386	0	-	9	80	2.298
						1.386			
74	1.839	3.237	60	0.4383	1	1.179	9	90	3.075
92	2.533	3.678	61	1.348	1	-	7	15	4.13
						1.386			

We've used the rule of thumb that points with a leverage greater than $\frac{2p}{n}$ should be looked at.

(d) Check for outliers.

```
studentized.residuals <- rstudent(lm.fit)
max.residual <- studentized.residuals[which.max(abs(studentized.residuals))]
range.residuals <- range(studentized.residuals)
names(range.residuals) <- c("left", "right")
pander(data.frame(range.residuals = t(range.residuals)), caption = "Range of Studentized."</pre>
```

Table 6: Range of Studentized residuals

range.residuals.left	range.residuals.right
-2.617	2.554

```
p <- numPredictors + 1
n <- nrow(df)
t.val.alpha <- qt(0.05/(n * 2), n - p - 1)
pander(data.frame(t.val.alpha = t.val.alpha), caption = "Bonferroni corrected t-value")</pre>
```

Table 7: Bonferroni corrected t-value

t.val.alpha	
-3.607	

```
outlier.index <- abs(studentized.residuals) > abs(t.val.alpha)
outliers <- df[outlier.index == TRUE, ]
if (nrow(outliers) >= 1) {
   pander(outliers, caption = "outliers")
```

}

Here we look for studentized residuals that fall outside the interval given by the Bonferroni corrected t-values.

(e) Check for influential points.

We plot the Cook's distances and the residual-leverage plot with level set contours of the Cook distance.

plot(lm.fit, which = 5)

(f) Check for structure in the model.

Plot residuals versus predictors

Icavol versus residuals

lweight versus residuals

age versus residuals

Ibph versus residuals

svi versus residuals

Icp versus residuals

gleason versus residuals

pgg45 versus residuals

Perform partial regression

```
predictors <- names(lm.fit$coefficients)
predictors <- predictors[2:length(predictors)]

lm.formula <- formula(lm.fit)
response <- lm.formula[[2]]

for (i in 1:length(predictors)) {
    predictor <- predictors[i]
    others <- predictors[which(predictors != predictor)]
    d.formula <- paste(response, " ~ ", sep = "")
    m.formula <- paste(predictor, " ~ ", sep = "")

    for (j in 1:(length(others) - 1)) {
        d.formula <- paste(d.formula, others[j], " + ", sep = "")
        m.formula <- paste(m.formula, others[j], " + ", sep = "")
    }
    d.formula <- paste(d.formula, others[length(others)], sep = "")
    d.formula <- paste(d.formula)</pre>
```

```
m.formula <- paste(m.formula, others[length(others)], sep = "")
m.formula <- formula(m.formula)

d <- residuals(lm(d.formula, df))

m <- residuals(lm(m.formula, df))

plot(m, d, xlab = paste(predictor, " residuals", sep = ""), ylab = "response residual main = paste("Partial regression plot for ", predictor, sep = ""))
}</pre>
```

Partial regression plot for Icavol

Partial regression plot for lweight

Partial regression plot for age

Partial regression plot for lbph

Partial regression plot for svi

Partial regression plot for lcp

Partial regression plot for gleason

Partial regression plot for pgg45

6.4 For the swiss data, fit a model with Fertility as the response and the other variables as predictors.

```
rm(list = ls())
data(swiss, package = "faraway")
lm.fit <- lm(Fertility ~ ., data = swiss)

df <- swiss
numPredictors <- (ncol(df) - 1)
hatv <- hatvalues(lm.fit)
lev.cut <- (numPredictors + 1) * 2 * 1/nrow(df)
high.leverage <- df[hatv > lev.cut, ]
pander(high.leverage, caption = "High Leverage Data Elements")
```

Table 8: High Leverage Data Elements (continued below)

	Fertility	Agriculture	Examination	Education
La Vallee	54.3	15.2	31	20
V. De Geneve	35	1.2	37	53

Fertility	Agriculture	Examination	Education

	Catholic	Infant.Mortality
La Vallee	2.15	10.8
V. De Geneve	42.34	18

We've used the rule of thumb that points with a leverage greater than $\frac{2p}{n}$ should be looked at.

(d) Check for outliers.

```
studentized.residuals <- rstudent(lm.fit)
max.residual <- studentized.residuals[which.max(abs(studentized.residuals))]
range.residuals <- range(studentized.residuals)
names(range.residuals) <- c("left", "right")
pander(data.frame(range.residuals = t(range.residuals)), caption = "Range of Studentized.")</pre>
```

Table 10: Range of Studentized residuals

range.residuals.left	range.residuals.right
-2.394	2.445

```
p <- numPredictors + 1
n <- nrow(df)
t.val.alpha <- qt(0.05/(n * 2), n - p - 1)
pander(data.frame(t.val.alpha = t.val.alpha), caption = "Bonferroni corrected t-value")</pre>
```

Table 11: Bonferroni corrected t-value

```
t.val.alpha
-3.529
```

```
outlier.index <- abs(studentized.residuals) > abs(t.val.alpha)
outliers <- df[outlier.index == TRUE, ]

if (nrow(outliers) >= 1) {
    pander(outliers, caption = "outliers")
}
```

Here we look for studentized residuals that fall outside the interval given by the Bonferroni corrected t-values.

(e) Check for influential points.

We plot the Cook's distances and the residual-leverage plot with level set contours of the Cook distance.

plot(lm.fit, which = 5)

(f) Check for structure in the model.

Plot residuals versus predictors

```
predictors <- names(lm.fit$coefficients)
predictors <- predictors[2:length(predictors)]

for (i in 1:length(predictors)) {
    predictor <- predictors[i]

    plot(df[, predictor], residuals(lm.fit), xlab = , ylab = "Residuals", main = paste(]
        " versus residuals", sep = ""))
}</pre>
```

Agriculture versus residuals

Examination versus residuals

Education versus residuals

Catholic versus residuals

Infant.Mortality versus residuals

Perform partial regression

```
predictors <- names(lm.fit$coefficients)
predictors <- predictors[2:length(predictors)]

lm.formula <- formula(lm.fit)
response <- lm.formula[[2]]

for (i in 1:length(predictors)) {
    predictor <- predictors[i]
    others <- predictors[which(predictors != predictor)]
    d.formula <- paste(response, " ~ ", sep = "")
    m.formula <- paste(predictor, " ~ ", sep = "")

    for (j in 1:(length(others) - 1)) {
        d.formula <- paste(d.formula, others[j], " + ", sep = "")
    }
    d.formula <- paste(d.formula, others[j], " + ", sep = "")
}
d.formula <- paste(d.formula, others[length(others)], sep = "")
d.formula <- formula(d.formula)</pre>
```

```
m.formula <- paste(m.formula, others[length(others)], sep = "")
m.formula <- formula(m.formula)

d <- residuals(lm(d.formula, df))

m <- residuals(lm(m.formula, df))

plot(m, d, xlab = paste(predictor, " residuals", sep = ""), ylab = "response residuals" main = paste("Partial regression plot for ", predictor, sep = ""))
}</pre>
```

Partial regression plot for Agriculture

Partial regression plot for Examination

38

Partial regression plot for Education

Partial regression plot for Catholic

Partial regression plot for Infant.Mortality

6.5 Using the cheddar data, fit a model with taste as the response and the other three variables as predictors.

```
rm(list = ls())
data(cheddar, package = "faraway")
lm.fit <- lm(taste ~ ., data = cheddar)

df <- cheddar
numPredictors <- (ncol(df) - 1)
hatv <- hatvalues(lm.fit)
lev.cut <- (numPredictors + 1) * 2 * 1/nrow(df)
high.leverage <- df[hatv > lev.cut, ]
pander(high.leverage, caption = "High Leverage Data Elements")
```

Table 12: High Leverage Data Elements

taste Acetic H2S Lactic

We've used the rule of thumb that points with a leverage greater than $\frac{2p}{n}$ should be looked at.

(d) Check for outliers.

```
studentized.residuals <- rstudent(lm.fit)
max.residual <- studentized.residuals[which.max(abs(studentized.residuals))]
range.residuals <- range(studentized.residuals)
names(range.residuals) <- c("left", "right")
pander(data.frame(range.residuals = t(range.residuals)), caption = "Range of Studentized.")</pre>
```

Table 13: Range of Studentized residuals

range.residuals.left	range.residuals.right
-1.878	3.015

```
p <- numPredictors + 1
n <- nrow(df)
t.val.alpha <- qt(0.05/(n * 2), n - p - 1)
pander(data.frame(t.val.alpha = t.val.alpha), caption = "Bonferroni corrected t-value")</pre>
```

Table 14: Bonferroni corrected t-value

```
t.val.alpha
-3.523
```

```
outlier.index <- abs(studentized.residuals) > abs(t.val.alpha)
outliers <- df[outlier.index == TRUE, ]

if (nrow(outliers) >= 1) {
    pander(outliers, caption = "outliers")
}
```

Here we look for studentized residuals that fall outside the interval given by the Bonferroni corrected t-values.

(e) Check for influential points.

We plot the Cook's distances and the residual-leverage plot with level set contours of the Cook distance.

plot(lm.fit, which = 5)

(f) Check for structure in the model.

Plot residuals versus predictors

Acetic versus residuals

H2S versus residuals

Lactic versus residuals

Perform partial regression

```
predictors <- names(lm.fit$coefficients)
predictors <- predictors[2:length(predictors)]

lm.formula <- formula(lm.fit)
response <- lm.formula[[2]]

for (i in 1:length(predictors)) {
    predictor <- predictors[i]
    others <- predictors[which(predictors != predictor)]
    d.formula <- paste(response, " ~ ", sep = "")
    m.formula <- paste(predictor, " ~ ", sep = "")

    for (j in 1:(length(others) - 1)) {
        d.formula <- paste(d.formula, others[j], " + ", sep = "")
        m.formula <- paste(m.formula, others[j], " + ", sep = "")
    }
    d.formula <- paste(d.formula, others[length(others)], sep = "")
    d.formula <- paste(d.formula)</pre>
```

```
m.formula <- paste(m.formula, others[length(others)], sep = "")
m.formula <- formula(m.formula)

d <- residuals(lm(d.formula, df))

m <- residuals(lm(m.formula, df))

plot(m, d, xlab = paste(predictor, " residuals", sep = ""), ylab = "response residuals" main = paste("Partial regression plot for ", predictor, sep = ""))
}</pre>
```

Partial regression plot for Acetic

Partial regression plot for H2S

Partial regression plot for Lactic

