## પ્રશ્ન 1(અ) [3 ગુણ]

એક્ટિવ અને પેસિવ કમ્પોનન્ટ વચ્ચેનો તફાવત આપો.

#### જવાબ:

| પેસિવ કમ્પોનન્ટ                                   | એક્ટિવ કમ્પોનન્ટ                                       |
|---------------------------------------------------|--------------------------------------------------------|
| બાહ્ય પાવર સ્ત્રોતની જરૂર પડતી નથી                | કાર્ય કરવા માટે બાહ્ય પાવર સ્ત્રોતની જરૂર પડે છે       |
| સિગ્નલને એમ્પલિફાઈ કે પ્રોસેસ કરી શકતા નથી        | સિગ્નલને એમ્પલિફાઈ, સ્વિય કે પ્રોસેસ કરી શકે છે        |
| ઉદાહરણ: રેઝિસ્ટર, કેપેસિટર, ઇન્ડક્ટર              | ઉદાહરણ: ટ્રાન્ઝિસ્ટર, ડાયોડ, ICs                       |
| બીજા સિગ્નલ દ્વારા કરંટ ફ્લો કંટ્રોલ કરી શકતા નથી | બીજા સિગ્નલનો ઉપયોગ કરીને કરંટ ફ્લો કંટ્રોલ કરી શકે છે |
| ઊર્જાનો સંગ્રહ કે વ્યય કરે છે                     | ઊર્જા ઉત્પન્ન કરે છે અથવા ગેઈન પ્રદાન કરે છે           |

મેમરી ટ્રીક: "PAPER-A" - Passive Are Power-free, Energy-storing/Resistive; Active Are Amplifying

# પ્રશ્ન 1(બ) [4 ગુણ]

આકૃતિ સહિત Light dependent resistor ની કામગીરી સમજાવો.

#### જવાબ:



### LDR ની કાર્યપદ્ધતિ:

- રચના: LDR અંધારામાં ઉચ્ચ રેઝિસ્ટન્સ ધરાવતા સેમિકન્ડક્ટર મટેરિયલ (સામાન્ય રીતે કેડમિયમ સલ્ફાઇડ) થી બનેલું હોય છે
- ફોટોકન્ડક્ટિવિટી: જ્યારે સપાટી પર પ્રકાશ પડે છે, ત્યારે ફોટોન ઇલેક્ટ્રોન્સને ઊર્જા આપે છે, જેનાથી ફ્રી ઇલેક્ટ્રોન-હોલ જોડી બને છે
- **રેઝિસ્ટન્સમાં ફેરફાર**: પ્રકાશની તીવ્રતા વધતાં રેઝિસ્ટન્સ નાટકીય રીતે ઘટે છે અંધારામાં મેગાઓમ્સથી પ્રકાશમાં ફક્ત થોડાસો ઓમ્સ સુધી
- **ઉપયોગો**: લાઇટ સેન્સિંગ સર્કિટ, ઓટોમેટિક સ્ટ્રીટ લાઇટ્સ, કેમેરા એક્સપોઝર કંટ્રોલમાં વપરાય છે

મેમરી ટ્રીક: "MILD" - More Illumination, Less resistance in Devices

# પ્રશ્ન 1(ક) [7 ગુણ]

Intrinsic અને Extrinsic સેમિકન્ડક્ટર વ્યાખ્યાયિત કરો. P અને N પ્રકારના સેમીકન્ડક્ટરને સવિસ્તર સમજાવો.

જવાબ:

| સેમિકન્ડક્ટર પ્રકાર | વર્ણન                                                            |  |
|---------------------|------------------------------------------------------------------|--|
| Intrinsic           | શુદ્ધ સેમિકન્ડક્ટર મટેરિયલ જેમાં કોઈ અશુદ્ધિઓ ઉમેરવામાં આવતી નથી |  |
| Extrinsic           | ડોપિંગ દ્વારા નિયંત્રિત અશુદ્ધિઓ ઉમેરાયેલા સેમિકન્ડક્ટર          |  |

### P-પ્રકારના સેમિકન્ડક્ટર:

• **ડોપિંગ**: શુદ્ધ સિલિકોનમાં ત્રિ-સંયોજી અશુદ્ધિઓ (બોરોન, ગેલિયમ, ઇન્ડિયમ) ઉમેરીને બનાવવામાં આવે છે

• હોલ ક્રિએશન: દરેક અશુદ્ધિ અણુ વેલેન્સ ઇલેક્ટ્રોન સ્વીકારીને એક હોલ બનાવે છે

• મેજોરિટી કેરિયર્સ: હોલ મેજોરિટી કેરિયર છે

• માઈનોરિટી કેરિયર્સ: ઇલેક્ટ્રોન્સ માઈનોરિટી કેરિયર છે

• **ઇલેક્ટ્રિકલ પ્રોપરીંઝ**: પોઝિટિવ ચાર્જ કેરિયર્સ કન્ડક્શનમાં મુખ્ય ભાગ ભજવે છે

## N-પ્રકારના સેમિકન્ડક્ટર:

• **ડોપિંગ**: શુદ્ધ સિલિકોનમાં પંચ-સંયોજી અશુદ્ધિઓ (ફોસ્ફરસ, આર્સેનિક, એન્ટિમની) ઉમેરીને બનાવવામાં આવે છે

• ઇલેક્ટ્રોન ક્રિએશન: દરેક અશુદ્ધિ અણુ એક વધારાનો ઇલેક્ટ્રોન આપે છે

• મેજોરિટી કેરિયર્સ: ઇલેક્ટોન મેજોરિટી કેરિયર છે

• માઈનોરિટી કેરિયર્સ: હોલ માઈનોરિટી કેરિયર છે

• **ઇલેક્ટ્રિકલ પ્રોપર્ટીઝ**: નેગેટિવ ચાર્જ કેરિયર્સ કન્ડક્શનમાં મુખ્ય ભાગ ભજવે છે

## आङ्गति:

| ++             | ++             |
|----------------|----------------|
| N-type         | P-type         |
|                |                |
| Si Si Si Si    | Si Si Si Si Si |
|                |                |
| Si Si P Si Si  | Si Si B Si Si  |
|                |                |
| Si Si Si Si Si | Si Si Si Si Si |
| v              | v              |
| Si Si e- Si Si | Si Si h+ Si Si |
|                |                |
| Si Si Si Si    | Si Si Si Si Si |
| ++             | ++             |
| Extra electron | Extra hole     |
|                |                |

મેમરી ટ્રીક: "PINE" - Positive Impurities make N-type Electrons, Pentavalent donors

## પ્રશ્ન 1(ક) OR [7 ગુણ]

ફિલ્ટર સર્કિટ એટલે શું? તેના પ્રકાર અને જરૂરિયાત જણાવો અને "પાઇ" ફિલ્ટર સર્કિટને ટૂંકમાં સમજાવો.

#### જવાબ:

**ફિલ્ટર સર્કિટ**: ઇલેક્ટ્રોનિક સર્કિટ જે સિગ્નલમાંથી અવાંછિત ફ્રિક્વન્સી કમ્પોનન્ટ્સને દૂર કરે છે, અને ઇચ્છિત ફ્રિક્વન્સીને પસાર થવા દે છે.

## કિલ્ટરની જરૂરિયાત:

• **રિપલ ઘટાડવા**: રેક્ટિફાયર આઉટપુટમાંથી AC રિપલ ઘટાડે છે

• ક્લિન DC: વધુ સારી રીતે સ્મૂધ DC આઉટપુટ વોલ્ટેજ પ્રદાન કરે છે

• કમ્પોનન્ટ સુરક્ષા: ડાઉનસ્ટ્રીમ કમ્પોનન્ટ્સને વોલ્ટેજ ફ્લક્ચ્યુએશનથી બચાવે છે

• કાર્યક્ષમતા: સમગ્ર પાવર સપ્લાયની કાર્યક્ષમતા સુધારે છે

### ફિલ્ટરના પ્રકાર:

| ફિલ્ટરનો પ્રકાર | કમ્પોનન્ટ્સ                 | ઉપયોગ              |
|-----------------|-----------------------------|--------------------|
| શન્ટ કેપેસિટર   | પેરેલલમાં એક કેપેસિટર       | બેઝિક ફિલ્ટરિંગ    |
| L-2เยน          | ઇન્ડક્ટર અને કેપેસિટર       | બેટર ફિલ્ટરિંગ     |
| π (પાઇ) ફિલ્ટર  | બે કેપેસિટર અને એક ઇન્ડક્ટર | સુપિરિયર ફિલ્ટરિંગ |
| RC ફિલ્ટર       | રેઝિસ્ટર અને કેપેસિટર       | લો-પાવર એપ્લિકેશન  |

## પાઇ (π) ફિલ્ટર:



- **કાર્યપદ્ધતિ**: પ્રથમ કેપેસિટર (C1) પ્રારંભિક રિપલ ઘટાડે છે, ઇન્ડક્ટર (L) AC કમ્પોનન્ટને અવરોધે છે, બીજો કેપેસિટર (C2) બાકીના રિપલ્સને ફિલ્ટર કરે છે
- **ફાયદો**: સાધારણ રીતે 0.5% થી નીચેના રિપલ ફેક્ટર સાથે સુપિરિયર ફિલ્ટરિંગ પ્રદાન કરે છે
- **ઉપયોગો**: હાઇ-કરંટ પાવર સપ્લાયમાં વપરાય છે જ્યાં ક્લિન DC જરૂરી હોય

મેમરી ટ્રીક: "PIRO" - Pi filters Input Ripples Out effectively

# પ્રશ્ન 2(અ) [3 ગુણ]

વિવિધ પ્રકારના કેપેસિટર લખો અને કોઈ પણ બે સમજાવો.

#### જવાલ:

### કેપેસિટરના પ્રકાર:

- સિરામિક કેપેસિટર
- ઇલેક્ટ્રોલિટિક કેપેસિટર
- ટેન્ટાલમ કેપેસિટર
- ફિલ્મ કેપેસિટર
- માઇકા કેપેસિટર
- વેરિએબલ કેપેસિટર

### સિરામિક કેપેસિટર:

• રચના: ધાતુની પ્લેટો વચ્ચે ડાઇઇલેક્ટ્રિક તરીકે સિરામિક મટેરિયલથી બનેલા

• **કેપેસિટી**: 1pF થી 1µF

• ફાયદા: ઓછી કિંમત, ઉચ્ચ સ્થિરતા, નોન-પોલરાઈઝ્ડ

• ઉપયોગો: હાઇ-ફ્રિક્વન્સી ફિલ્ટરિંગ

## ઇલેક્ટ્રોલિટિક કેપેસિટર:

• રચના: એલ્યુમિનિયમ ફોઇલ સાથે ડાઇઇલેક્ટ્રિક તરીકે ઓક્સાઇડ લેયર

• કેપેસિટી: 1µF થી 10,000µF

• લાક્ષણિકતાઓ: પોલરાઈઝ્ડ, ઉચ્ચ લીકેજ કરંટ

• ઉપયોગો: પાવર સપ્લાય ફિલ્ટરિંગ, ઓડિયો કપલિંગ

મેમરી ટ્રીક: "CAPEX" - Ceramics Are Precise, Electrolytics Expand capacity

# પ્રશ્ન 2(બ) [4 ગુણ]

એર કોર અને ટોરોઇડલ ઇન્ડક્ટર સમજાવો.

જવાબ:

### એર કોર ઇન્ડક્ટર:



- રચના: નોન-મેગ્નેટિક મટેરિયલ (પ્લાસ્ટિક, એર) પર વાયર કોઇલ કરીને બનાવવામાં આવે છે
- ગુણધર્મો: ઓછી ઇન્ડક્ટન્સ, મેગ્નેટિક કોર સેચ્યુરેશન નથી
- ઉપયોગો: હાઇ-ફ્રિક્વન્સી સર્કિટ, RF એપ્લિકેશન
- ફાયદા: કોર લોસેસ નથી, લિનિયર ઓપરેશન, સેચ્યુરેશન નથી

### ટોરોઇડલ ઇન્ડક્ટર:





• રચના: રિંગ-આકારના મેગ્નેટિક કોર પર વાયર વીંટાળીને બનાવવામાં આવે છે

• ગુણધર્મો: ઉચ્ચ ઇન્ડક્ટન્સ, સેલ્ફ-શીલ્ડિંગ મેગ્નેટિક ફિલ્ડ

• ઉપયોગો: પાવર સપ્લાય, ફિલ્ટર, ટ્રાન્સફોર્મર

• ફાયદા: ઓછી ઇલેક્ટ્રોમેગ્નેટિક ઇન્ટરફેરન્સ, કાર્યક્ષમ ફ્લક્સ કન્ટેઇનમેન્ટ

મેમરી ટ્રીક: "TACO" - Toroids Are Contained, Omnidirectional field reduction

# પ્રશ્ન 2(ક) [7 ગુણ]

હાફ વેવ રેક્ટિફાયર સમજાવો અને જુદા જુદા રેક્ટિફાયર સરખાવો.

જવાબ:

હાફ વેવ રેક્ટિફાયર:



### કાર્યસિદ્ધાંત:

- પોઝિટિવ હાફ-સાયકલ દરમિયાન: ડાયોડ કન્ડક્ટ કરે છે, કરંટ લોડ દ્વારા વહે છે
- નેગેટિવ હાફ-સાયકલ દરમિયાન: ડાયોડ બ્લોક કરે છે, કરંટ વહેતો નથી
- આઉટપુટમાં ફક્ત ઇનપુટ વેવફોર્મના પોઝિટિવ હાફ-સાયકલ હોય છે

## રેક્ટિફાયરની સરખામણી:

| પેરામીટર           | હાફ વેવ           | ફુલ વેવ (સેન્ટર-ટેપ)    | બ્રિજ રેક્ટિફાયર        |
|--------------------|-------------------|-------------------------|-------------------------|
| જરૂરી ડાયોડ        | 1                 | 2                       | 4                       |
| આઉટપુટ ફ્રિક્વન્સી | $f_1 = f_{in}$    | $f_2 = 2 \times f_{in}$ | $f_2 = 2 \times f_{in}$ |
| રિપલ ફેક્ટર        | 1.21              | 0.48                    | 0.48                    |
| કાર્યક્ષમતા        | 40.6%             | 81.2%                   | 81.2%                   |
| PIV                | 2V <sub>m</sub>   | 2V <sub>m</sub>         | V <sub>m</sub>          |
| TUF                | 0.287             | 0.693                   | 0.812                   |
| DC આઉટપુટ          | V <sub>m</sub> /π | 2V <sub>m</sub> /π      | 2V <sub>m</sub> /π      |

મેમરી ટ્રીક: "BRIEF" - Bridge Rectifiers Improve Efficiency Fundamentally

# પ્રશ્ન 2(અ) OR [3 ગુણ]

વિવિદ્ય કેપેસિટર સ્પષ્ટીકરણો લખો અને કોઈ પણ બે વિગતવાર સમજાવો.

### જવાબ:

## કેપેસિટર સ્પષ્ટીકરણો:

- કેપેસિટન્સ વેલ્યુ
- વોલ્ટેજ રેટિંગ
- ટોલરન્સ
- તાપમાન ગુણાંક
- ESR (ઇક્વિવેલન્ટ સિરીઝ રેઝિસ્ટન્સ)
- લીકેજ કરંટ
- ડાઇઇલેક્ટ્રિક પ્રકાર

### કેપેસિટન્સ વેલ્યુ:

- વ્યાખ્યા: દર વોલ્ટે સંગ્રહિત ઇલેક્ટ્રિક ચાર્જની માત્રા
- **એકમો**: ફેરડ (F)માં માપવામાં આવે છે, સામાન્ય રીતે માઇક્રોફેરડ (µF), નેનોફેરડ (nF), અથવા પિકોફેરડ (pF)
- મહત્વ: કપલિંગ, ફિલ્ટરિંગ, ટાઇમિંગ માટે એપ્લિકેશન યોગ્યતા નક્કી કરે છે
- માર્કિંગ: સીધી રીતે પ્રિન્ટ કરેલી અથવા કમ્પોનન્ટ પર કલર-કોડેડ

### વોલ્ટેજ રેટિંગ:

- વ્યાખ્યા: બ્રેકડાઉન વગર લાગુ કરી શકાય તેવું મહત્તમ વોલ્ટેજ
- સ્પેસિકિકેશન: વર્કિંગ વોલ્ટેજ (WVDC) અને સર્જ વોલ્ટેજ
- મહત્વ: રેટિંગથી વધારે જવાથી ડાઇઇલેક્ટ્રિક બ્રેકડાઉન અને નિષ્ફળતા થાય છે
- સેફ્ટી ફેક્ટર: સામાન્ય રીતે સર્કિટ વોલ્ટેજથી 50% વધુ રેટિંગવાળા કેપેસિટર વાપરવા જોઈએ

મેમરી ટ્રીક: "CAVERN" - Capacitance And Voltage Ensure Reliable Network

# પ્રશ્ન 2(બ) OR [4 ગુણ]

## સામગ્રીના આદ્યારે રેઝિસ્ટરનું વર્ગીકરણ સમજાવો.

#### જવાબ:

| રેઝિસ્ટર પ્રકાર     | સામગ્રી                                | ગુણઘર્મો                              | ઉપયોગો                                   |
|---------------------|----------------------------------------|---------------------------------------|------------------------------------------|
| કાર્બન<br>કમ્પોઝિશન | કાર્બન પાર્ટિકલ્સ + સિરેમિક<br>બાઇન્ડર | ઉચ્ચ તાપમાન ગુણાંક, નોઈઝી             | સામાન્ય ઉપયોગ, સર્જ પ્રોટેક્શન           |
| કાર્બન ફિલ્મ        | સિરેમિક પર કાર્બન ફિલ્મ                | કાર્બન કમ્પોઝિશન કરતાં વધુ<br>સ્થિરતા | સામાન્ય ઉપયોગ સર્કિટ                     |
| મેટલ ફિલ્મ          | સિરેમિક પર નિકલ ક્રોમિયમ<br>ફિલ્મ      | ઓછો નોઇઝ, સ્થિર, ચોક્કસ               | ઓડિયો સર્કિટ, ઇન્સ્ટ્રુમેન્ટેશન          |
| વાયર વાઉન્ડ         | સિરેમિક આસપાસ રેઝિસ્ટન્સ<br>વાયર       | હાઈ પાવર, લો તાપમાન ગુણાંક            | પાવર સપ્લાય, હાઈ કરંટ એપ્લિકેશન          |
| મેટલ<br>ઓક્સાઇડ     | સિરેમિક પર મેટલ ઓક્સાઇડ<br>ફિલ્મ       | સ્ટેબલ, હાઈ તાપમાન ટોલરન્સ            | હાઈ સ્ટેબિલિટી એપ્લિકેશન, પાવર<br>સપ્લાય |

## કાર્બન ફિલ્મ રેઝિસ્ટરની લાક્ષણિકતાઓ:

• તાપમાન ગુણાંક: -250 થી 500 ppm/°C

ટોલરન્સ: 5% થી 10%નોઇઝ: મધ્યમથી ઓછો

### મેટલ ફિલ્મ રેઝિસ્ટરની લાક્ષણિકતાઓ:

• તાપમાન ગુણાંક: 50 થી 100 ppm/°C

ટોલરન્સ: 0.1% થી 2%નોઇઝ: ખૂબ જ ઓછો

મેમરી ટ્રીક: "COMFORT" - Carbon Offers Moderate Films, Others Resist Temperature better

# પ્રશ્ન 2(ક) OR [7 ગુણ]

કુલ વેવ બ્રિજ અને સેન્ટર ટેપ્ડ રેક્ટિફાયર આકૃતિ સાથે સમજાવો.

જવાબ:

કુલ વેવ બ્રિજ રેક્ટિફાયર:



### કાર્યપદ્ધતિ:

- **પોઝિટિવ હાફ-સાયકલ**: D1 અને D3 કન્ડક્ટ કરે છે, કરંટ લોડ મારફતે વહે છે
- **નેગેટિવ હાફ-સાયકલ**: D2 અને D4 કન્ડક્ટ કરે છે, કરંટ હજુ પણ એ જ દિશામાં લોડ મારફતે વહે છે
- આઉટપુટ: ઇનપુટના બંને હાફ-સાયકલ પોઝિટિવ આઉટપુટમાં રૂપાંતરિત થાય છે

## સેન્ટર ટેપ્ડ કુલ વેવ રેક્ટિફાયર:



## કાર્થપદ્ધતિ:

- **પોઝિટિવ હાફ-સાયકલ**: D1 કન્ડક્ટ કરે છે, D2 બ્લોક કરે છે
- **નેગેટિવ હાફ-સાયકલ**: D2 કન્ડક્ટ કરે છે, D1 બ્લોક કરે છે
- આઉટપુટ: ઇનપુટના બંને હાફ-સાયકલ પોઝિટિવ આઉટપુટમાં રૂપાંતરિત થાય છે

## વેવફોર્મ:



ਮੇਮਣੀ ਟ੍ਰੀਡ: "FOUR-TWO" - FOUr diodes for Bridge, TWO diodes for Center-Tap

# પ્રશ્ન 3(અ) [3 ગુણ]

વેરેક્ટર ડાયોડની લાક્ષણિકતા સમજાવો.

જવાબ:

વેરેક્ટર ડાયોડની લાક્ષણિકતાઓ:



- ઓપરેટિંગ સિદ્ધાંત: જંક્શન કેપેસિટન્સ રિવર્સ બાયસ વોલ્ટેજ સાથે બદલાય છે
- C-V સંબંધ: રિવર્સ વોલ્ટેજ વધતાં કેપેસિટન્સ ઘટે છે
- ટ્યુનિંગ રેશિયો: સામાન્ય રીતે 4:1 થી 10:1 કેપેસિટન્સ વેરિએશન
- **ઉપયોગો**: વોલ્ટેજ-કંટ્રોલ્ડ ઓસિલેટર, FM મોડ્યુલેશન, ટ્યુનિંગ સર્કિટ

મેમરી ટ્રીક: "VARA" - Voltage Adjusts Reverse-biased capacitance Automatically

# પ્રશ્ન 3(બ) [4 ગુણ]

ઇલેક્ટ્રોમેગ્નેટિક ઇન્ડક્શનના ફેરાડેના નિયમો જણાવો અને સમજાવો.

જવાબ:

ફેરાડેના ઇલેક્ટ્રોમેગ્નેટિક ઇન્ડક્શનના નિયમો:

પ્રથમ નિયમ:

- **સ્ટેટમેન્ટ**: જ્યારે પણ કન્ડક્ટર મેગ્નેટિક ફલક્સને કાપે છે, ત્યારે કન્ડક્ટરમાં EMF ઇન્ડ્યુસ થાય છે
- **ગણતીય અભિવ્યક્તિ**: EMF 🛭 મેગ્નેટિક ફ્લક્સના પરિવર્તનનો દર
- ઉપયોગ: જનરેટર, ટ્રાન્સફોર્મર, ઇન્ડક્ટરનો આધાર

### બીજો નિયમ:

• સ્ટેટમેન્ટ: ઇન્ડ્યુસ્ડ EMFનું પરિમાણ મેગ્નેટિક ફ્લક્સ લિંકેજના પરિવર્તનના દર સાથે સમાન છે

- ગણતીય અભિવ્યક્તિ: EMF = -N × (dΦ/dt)
  - ૦ જ્યાં: N = લપેટાઓની સંખ્યા, dΦ/dt = ફલક્સના પરિવર્તનનો દર
- નેગેટિવ ચિહ્ન: દિશા દર્શાવે છે (લેન્ઝનો નિયમ) ઇન્ક્યુસ્ક કરંટ પરિવર્તનનો વિરોધ કરે છે

## આકૃતિ:



મેમરી ટ્રીક: "FACE" - Flux Alteration Creates Electricity

# પ્રશ્ન 3(ક) [7 ગુણ]

વિવિદ્ય ટ્રાન્ઝિસ્ટર રૂપરેખાંકનોની તુલના કરો.

### જવાબ:

| પેરામીટર            | કોમન ઇમિટર (CE)            | કોમન બેઝ (CB)                         | કોમન કલેક્ટર (CC)            |
|---------------------|----------------------------|---------------------------------------|------------------------------|
| ઇનપુટ ટર્મિનલ       | બેઝ                        | ઇમિટર                                 | બેઝ                          |
| આઉટપુટ ટર્મિનલ      | કલેક્ટર                    | કલેક્ટર                               | ઇમિટર                        |
| કોમન ટર્મિનલ        | ઇમિટર                      | બેઝ                                   | કલેક્ટર                      |
| કરંટ ગેઇન (α, β, γ) | $\beta = I_C/I_B (20-500)$ | $\alpha = I_C/I_E (0.95-0.99)$        | $\gamma = I_E/I_B (\beta+1)$ |
| વોલ્ટેજ ગેઇન        | હાઈ (250-1000)             | મધ્યમ (150-800)                       | 1 થી ઓછું                    |
| ઇનપુટ ઇમ્પિડન્સ     | મધ્યમ (1-2kΩ)              | લો (30-150Ω)                          | હાઈ (50-500kΩ)               |
| આઉટપુટ ઇમ્પિડન્સ    | હાઈ (30-50kΩ)              | વેરી હાઈ (250kΩ-1MΩ)                  | લો (50-100Ω)                 |
| ફેઝ શિફ્ટ           | 180°                       | 0°                                    | 0°                           |
| ઉપયોગો              | એમ્પલિફાયર, ઓસિલેટર        | RF એમ્પલિફાયર, હાઈ-ફ્રિક્વન્સી સર્કિટ | ઇમ્પિડન્સ મેચિંગ, બફર        |

## α, β અને γ વચ્ચેનો સંબંધ:

•  $\beta = \alpha/(1-\alpha)$ 

- $\alpha = \beta/(1+\beta)$
- $\gamma = \beta + 1$

મેમરી ટ્રીક: "BEC" - Base input for Emitter output needs Collector as common terminal

# પ્રશ્ન 3(અ) OR [3 ગુણ]

ફોરબિડન એનર્જી ગેપ શું છે? અવાહક, વાહક અને સેમીકન્ડક્ટર માટે એનર્જી બેન્ડ ડાયાગ્રામ દોરો.

જવાબ:

**ફોરબિડન એનર્જી ગેપ:** ઘન પદાર્થમાં એનર્જીની શ્રેણી જ્યાં કોઈ ઇલેક્ટ્રોન સ્ટેટ અસ્તિત્વમાં નથી, વેલેન્સ બેન્ડને કન્ડક્શન બેન્ડથી અલગ કરે છે. **એનર્જી બેન્ડ ડાયાગ્રામ:** 

| ++              | ++             | ++               |
|-----------------|----------------|------------------|
| /////////////// | ////////////// | [/////////////// |
| /// Conduction  | /// Conduction | /// Conduction   |
| ////////////    | /////////////  | /////////////    |
| ++              | ++             | ++               |
|                 | ////////////   |                  |
|                 | /////////////  | Small            |
| Large           | Overlap        | Gap              |
| Forbidden       | /////////////  |                  |
| Gap (>5eV)      | /////////////  | (~1eV)           |
|                 | /////////////  |                  |
| ++              | ++             | ++               |
| ////////////    | /////////////  | //////////////   |
| /// Valence     | /// Valence    | /// Valence      |
| /////////////   | ////////////   | //////////////   |
| ++              | ++             | ++               |
| Insulator       | Conductor      | Semiconductor    |

- અવાહક (ઇન્સુલેટર): મોટો ફોરબિડન ગેપ (>5eV) ઇલેક્ટ્રોન્સને કન્ડક્શન બેન્ડ સુધી પહોંચતા અટકાવે છે
- **વાહક (કન્ડક્ટર)**: ઓવરલેપિંગ બેન્ડ મુક્ત ઇલેક્ટ્રોન મૂવમેન્ટની મંજૂરી આપે છે
- **સેમિકન્ડક્ટર**: નાનો ગેપ (~1eV) થોડા ઇલેક્ટ્રોન્સને રૂમ ટેમ્પરેચર પર અથવા ઉત્તેજિત થયા પછી ક્રોસ કરવાની મંજૂરી આપે છે

મેમરી ટ્રીક: "IBCS" - Insulators Block, Conductors Share, Semiconductors have gap Between

# પ્રશ્ન 3(બ) OR [4 ગુણ]

ઝેનર વોલ્ટેજ રેગ્યુલેટર સર્કિટની કામગીરીનું વર્ણન કરો.

જવાબ:



## કાર્યસિદ્ધાંત:

- **સામાન્ય ઓપરેશન**: ઝેનર ડાયોડ રિવર્સ બાયસ્ડ છે અને જ્યારે વોલ્ટેજ બ્રેકડાઉન વોલ્ટેજ સુધી પહોંચે ત્યારે કન્ડક્ટ કરે છે
- **વોલ્ટેજ રેગ્યુલેશન**: જ્યારે ઇનપુટ વોલ્ટેજ વધે છે, ત્યારે ઝેનર ડાયોડ મારફતે વધુ કરંટ વહે છે, જેનાથી તેના પર સ્થિર વોલ્ટેજ જળવાઈ રહે છે
- **લોડ વેરિએશન**: જ્યારે લોડ વધુ કરંટ લે છે, ત્યારે ઝેનર મારફતે ઓછો કરંટ વહે છે, જેનાથી વોલ્ટેજ સ્થિર રહે છે
- સિરીઝ રેઝિસ્ટર: કરંટને મર્યાદિત કરે છે અને વધારાના વોલ્ટેજને ડ્રોપ કરે છે

### સર્કિટ બિહેવિયર:

- V<sub>out</sub> = V<sub>z</sub> (ઝેનર બ્રેકડાઉન વોલ્ટેજ)
- $I_z = (V_{in} V_z)/R I_L$

મેમરી ટ્રીક: "SERZ" - Series resistor Enables Regulation with Zener

# પ્રશ્ન 3(ક) OR [7 ગુણ]

P-N જંક્શન ડાયોડની V-I લાક્ષણિકતા સમજાવો અને P-N જંક્શન ડાયોડ અને ઝેનર ડાયોડ વચ્ચે સરખામણી આપો.

#### જવાબ:

## P-N જંક્શન ડાયોડની V-I લાક્ષણિકતા:





## મુખ્ય પોઇન્ટ્સ:

• ફોરવર્ડ બાયસ: ની વોલ્ટેજ (~0.7V સિલિકોન માટે) પછી સરળતાથી કન્ડક્ટ કરે છે

• રિવર્સ બાયસ: બ્રેકડાઉન વોલ્ટેજ સુધી ખૂબ જ ઓછો લીકેજ કરંટ

• **બ્રેકડાઉન રીજન**: ઉચ્ચ રિવર્સ વોલ્ટેજ પર થાય છે, સામાન્ય ડાયોડમાં નુકસાન કરે છે

### P-N જંક્શન ડાયોડ અને ઝેનર ડાયોડ વચ્ચેની સરખામણી:

| પેરામીટર           | P-N જંક્શન ડાયોડ               | ઝેનર ડાયોડ                      |
|--------------------|--------------------------------|---------------------------------|
| સિમ્બોલ            | > -                            | ⊳ -⊲                            |
| ફોરવર્ડ ઓપરેશન     | સરળતાથી કન્ડક્ટ કરે છે         | સામાન્ય ડાયોડ જેવું જ           |
| રિવર્સ બ્રેકડાઉન   | ઉચ્ચ વોલ્ટેજ પર, નુકસાન કરે છે | નિયંત્રિત, નોન-ડિસ્ટ્રક્ટિવ     |
| ડોપિંગ લેવલ        | મધ્યમ                          | ભારે ડોપિંગ                     |
| ઓપરેટિંગ રીજન      | ફોરવર્ડ બાયસ્ડ                 | રિવર્સ બાયસ્ડ (બ્રેકડાઉન રીજન)  |
| ઉપયોગો             | રેક્ટિફિકેશન, સ્વિચિંગ         | વોલ્ટેજ રેગ્યુલેશન, રેફરન્સ     |
| બ્રેકડાઉન મેકેનિઝમ | એવલાન્ય                        | ઝેનર ઇફેક્ટ અને એવલાન્ય         |
| તાપમાન ગુણાંક      | નેગેટિવ                        | પોઝિટિવ અથવા નેગેટિવ હોઈ શકે છે |

ਮੇਮਣੀ ਟ੍ਰੀਡ: "FORD" - Forward Operation for Rectifiers, Diodes; reverse operation for Zeners

# પ્રશ્ન 4(અ) [3 ગુણ]

ફોટો ડાયોડના કાર્ય સિદ્ધાંતનું વર્ણન કરો.

જવાબ:

## ફોટોડાયોડના કાર્યસિદ્ધાંત:



• **રચના**: પારદર્શક વિન્ડો અથવા લેન્સ સાથેનો P-N જંક્શન ડાયોડ

• ઓપરેશન: પ્રકાશ ડિટેક્શન માટે રિવર્સ બાયસ્ડ ઓપરેશન

- **ફોટોન એલ્સોર્પશન**: આવતા ફોટોન્સ ડિપ્લિશન રીજનમાં ઇલેક્ટ્રોન-હોલ જોડીઓ બનાવે છે
- **કરંટ જનરેશન**: ઇલેક્ટ્રિક ફિલ્ડ કેરિયર્સને તેમના સંબંધિત ટર્મિનલ તરફ મોકલે છે, જેનાથી ફોટોકરંટ બને છે
- લાઇટ સેન્સિટિવિટી: કરંટ પ્રકાશની તીવ્રતાના પ્રમાણમાં હોય છે

મેમરી ટ્રીક: "LIGER" - Light Induces Generation of Electrons in Reverse-bias

# પ્રશ્ન 4(બ) [4 ગુણ]

શોટકી બેરિયર ડાયોડની લાક્ષણિકતા સમજાવો.

જવાબ:

શોટકી બેરિયર ડાયોડની લાક્ષણિકતાઓ:



- **ઓછો ફોરવર્ડ વોલ્ટેજ ડ્રોપ**: સિલિકોન PN જંક્શનના 0.7V ની તુલનામાં 0.2-0.3V
- ફાસ્ટ સ્વિચિંગ: કોઈ માઈનોરિટી કેરિયર સ્ટોરેજ નહીં, મિનિમલ રિવર્સ રિકવરી ટાઇમ
- **રચના**: P-N જંક્શનને બદલે મેટલ-સેમિકન્ડક્ટર જંક્શન
- ક્રોઈ રિવર્સ રિકવરી ટાઇમ નહીં: મેજોરિટી કેરિયર ડિવાઇસ (ક્રોઈ સ્ટોર્ડ યાર્જ નહીં)
- ઉપયોગો: હાઈ-ફ્રિક્વન્સી એપ્લિકેશન, પાવર સપ્લાયમાં રેક્ટિફાયર

મેમરી ટ્રીક: "FAST" - Forward voltage low, Allows Switching Timely

# પ્રશ્ન 4(ક) [7 ગુણ]

PNP અને NPN ટાન્ઝિસ્ટરના કાર્ય સિદ્ધાંતને સમજાવો.

જવાબ:

NPN ટ્રાન્ઝિસ્ટરની સ્ટ્રક્ચર અને કાર્યપદ્ધતિ:



• **બાયસિંગ**: ઇમિટર-બેઝ જંક્શન ફોરવર્ડ બાયસ્ડ, કલેક્ટર-બેઝ જંક્શન રિવર્સ બાયસ્ડ

• કરંટ ફ્લો: ઇલેક્ટ્રોન્સ પાતળા બેઝ રીજન મારફતે ઇમિટરથી કલેક્ટર તરફ

• **એમ્પલિફિકેશન સિદ્ધાંત**: નાનો બેઝ કરંટ મોટા કલેક્ટર કરંટને નિયંત્રિત કરે છે

• કરંટ સંબંધ: I<sub>E</sub> = I<sub>B</sub> + I<sub>C</sub>

• મેજોરિટી કેરિયર્સ: ઇલેક્ટોન્સ

## PNP ટ્રાન્ઝિસ્ટરની સ્ટ્રક્ચર અને કાર્યપદ્ધતિ:



• **બાયસિંગ**: ઇમિટર-બેઝ જંક્શન ફોરવર્ડ બાયસ્ડ, કલેક્ટર-બેઝ જંક્શન રિવર્સ બાયસ્ડ

• કરંટ ફ્લો: હોલ્સ પાતળા બેઝ રીજન મારફતે ઇમિટરથી કલેક્ટર તરફ

• એમ્પલિફિકેશન સિદ્ધાંત: નાનો બેઝ કરંટ મોટા કલેક્ટર કરંટને નિયંત્રિત કરે છે

• કરંટ સંબંધ: I<sub>E</sub> = I<sub>B</sub> + I<sub>C</sub>

• મેજોરિટી કેરિયર્સ: હોલ્સ

• **કરંટ દિશા**: NPN કરતાં વિપરીત (કન્વેન્શનલ કરંટ ઇમિટરથી કલેક્ટર તરફ)

મેમરી ટ્રીક: "NPNP" - Negative carriers in NPN, Positive carriers in PNP

# પ્રશ્ન 4(અ) OR [3 ગુણ]

LED ના કાર્ય સિદ્ધાંતનું વર્ણન કરો.

જવાબ:

### LED (લાઇટ ઇમિટિંગ ડાયોડ)ના કાર્યસિદ્ધાંત:



- રચના: ડાયરેક્ટ બેન્ડગેપ સેમિકન્ડક્ટર મટેરિયલથી બનેલા P-N જંક્શન
- ફોરવર્ડ બાયસિંગ: n-રીજનમાંથી ઇલેક્ટ્રોન્સ અને p-રીજનમાંથી હોલ્સ જંક્શન પર રિકોમ્બાઇન થાય છે
- રિકોમ્બિનેશન: ઇલેક્ટ્રોન કન્ડક્શન બેન્ડમાંથી વેલેન્સ બેન્ડમાં પડે છે
- **ઊર્જા ઉત્સર્જન**: રિકોમ્બિનેશન દરમિયાન છૂટી પડેલી ઊર્જા ફોટોન્સ (પ્રકાશ) ઉત્સર્જિત કરે છે
- કલર ડિટરમિનેશન: બેન્ડગેપ ઊર્જા ઉત્સર્જિત પ્રકાશની તરંગલંબાઈ (રંગ) નક્કી કરે છે

મેમરી ટ્રીક: "REBEL" - Recombination of Electrons and holes By Energetic Light emission

# પ્રશ્ન 4(બ) OR [4 ગુણ]

કટ ઓફ અને સેચ્યુરેશન રીજીયનમાં ટ્રાન્ઝિસ્ટરનું સ્વિય તરીકે એપ્લિકેશન કાર્ય સમજાવો.

જવાબ:

### ટ્રાન્ઝિસ્ટર એઝ અ સ્વિય:



## કટ-ઓફ રીજન (સ્વિય OFF):

• **બેઝ વોલ્ટેજ**: 0.7V (સિલિકોન માટે) થી નીચે

• બેઝ કરંટ: લગભગ શૂન્ય

• કલેક્ટર કરંટ: લગભગ શૂન્ય

• કલેક્ટર-ઇમિટર વોલ્ટેજ: સપ્લાય વોલ્ટેજના બરાબર

• ઉપયોગો: લોજિક ગેટ્સ, ડિજિટલ સર્કિટ, રિલે ડ્રાઇવર

## સેચ્યુરેશન રીજન (સ્વિય ON):

• **બેઝ વોલ્ટેજ**: 0.7V કરતાં ઘણું ઊંચું

• **બેઝ કરંટ**: લઘુત્તમ V<sub>CE</sub> સુનિશ્ચિત કરવા માટે પર્યાપ્ત

• કલેક્ટર કરંટ: મહત્તમ (કલેક્ટર રેઝિસ્ટર દ્વારા મર્યાદિત)

• કલેક્ટર-ઇમિટર વોલ્ટેજ: ખૂબ જ ઓછું (0.2V - 0.3V)

• ઉપયોગો: ડિજિટલ સ્વીય, મોટર ડ્રાઇવર, LED ડ્રાઇવર

મેમરી ટ્રીક: "COSI" - Cutoff Opens Switch, Input saturates to close

# પ્રશ્ન 4(ક) OR [7 ગુણ]

C-E ટ્રાન્ઝિસ્ટર એમ્પ્લિફાયર રચના ટૂંકમાં સમજાવો. ટ્રાન્ઝિસ્ટર એમ્પ્લીફાયર માટે α અને β વચ્ચેનો સંબંધ મેળવો.

### જવાબ:

### કોમન ઇમિટર કોન્ફિગરેશન:



## કોમન ઇમિટર કોન્ફિગરેશનની લાક્ષણિકતાઓ:

• ઇનપુટ ટર્મિનલ: બેઝ

• આઉટપુટ ટર્મિનલ: કલેક્ટર

• **કોમન ટર્મિનલ**: ઇમિટર (ગ્રાઉન્ડેડ)

• **કરંટ ગેઇન (β)**: હાઈ (20-500)

• **વોલ્ટેજ ગેઇન**: હાઈ (250-1000)

• **ઇનપુટ ઇમ્પિડન્સ**: મધ્યમ (1-2kΩ)

• **આઉટપુટ ઇમ્પિડન્સ**: હાઈ (30-50kΩ)

• ફેઝ શિફ્ટ: 180° (આઉટપુટ ઇનપુટથી ઇન્વર્ટેડ)

## α અને β વચ્ચેનો સંબંધ:

### વ્યાખ્યા પ્રમાણે:

- α = I<sub>C</sub>/I<sub>E</sub> (કોમન બેઝ કરંટ ગેઇન)
- β = I<sub>C</sub>/I<sub>B</sub> (કોમન ઇમિટર કરંટ ગેઇન)

કિરચોફના કરંટ લૉ પરથી:

•  $I_E = I_B + I_C$ 

બંને બાજુને I<sub>F</sub> વડે ભાગીએ:

•  $1 = I_B/I_E + I_C/I_E$ 

•  $1 = I_B/I_E + \alpha$ 

તેથી:

•  $I_B/I_E = 1 - \alpha$ 

અને તેથી ઉલટું:

•  $\alpha = \beta/(1+\beta)$ 

મેમરી ટ્રીક: "BEAR" - Beta Equals Alpha divided by (1-alpha) Relation

# પ્રશ્ન 5(અ) [3 ગુણ]

ઇ-વેસ્ટનો અર્થ શું છે? ઇ-કચરાના નિકાલની વિવિદ્ય પદ્ધતિઓ શું છે?

જવાબ:

**ઇ-વેસ્ટ (ઇલેક્ટ્રોનિક વેસ્ટ)**: ત્યજાયેલા ઇલેક્ટ્રોનિક ડિવાઇસ અને કમ્પોનન્ટ્સ જે તેમના જીવનકાળનાં અંતે પહોંચ્યા છે અથવા હવે ઉપયોગી નથી. **ઇ-વેસ્ટ નિકાલની પદ્ધતિઓ**:

| નિકાલ પદ્ધતિ                            | વર્ણન                                                              |
|-----------------------------------------|--------------------------------------------------------------------|
| રિસાયક્લિંગ                             | મૂલ્યવાન સામગ્રી જેમ કે ધાતુઓ, પ્લાસ્ટિકને પુન:ઉપયોગ માટે અલગ કરવી |
| લેન્ડફિલિંગ                             | નિયુક્ત લેન્ડફિલ્સમાં નિકાલ (ભલામણ કરાતી નથી)                      |
| ઇન્સિનરેશન                              | ઉચ્ચ તાપમાને કચરાનું દહન (ઝેરી ઉત્સર્જન બનાવે છે)                  |
| રિયુઝ/રિફર્બિશમેન્ટ                     | વિસ્તારિત ઉપયોગ માટે રિપેરિંગ અને અપગ્રેડિંગ                       |
| ઇક્સટેન્ડેડ પ્રોક્યુસર રિસ્પોન્સિબિલિટી | ઉત્પાદકો પાછા લે અને નિકાલ સંભાળે છે                               |

મેમરી ટ્રીક: "RIPER" - Recycling Is Preferable to Environmentally-harmful Remedies

# પ્રશ્ન 5(બ) [4 ગુણ]

ઉદાહરણો સાથે ઈલેક્ટ્રોનિક કચરાનું સંચાલન કરવાની પદ્ધતિઓ સમજાવો.

જવાબ:

ઇલેક્ટ્રોનિક વેસ્ટ હેન્ડલિંગની પદ્ધતિઓ:



### કલેક્શન અને સેગ્રિગેશન:

- ઉદાહરણ: જાહેર સ્થળોએ સમર્પિત ઇ-વેસ્ટ બિન્સ, ઇ-વેસ્ટ કલેક્શન ડ્રાઇવ્સ
- લાલ: સામાન્ય કચરા સાથે મિશ્રણ અટકાવે છે, યોગ્ય પ્રોસેસિંગ સક્ષમ કરે છે

### ડિસમેન્ટલિંગ અને રિસોર્સ રિકવરી:

- ઉદાહરણ: સર્કિટ બોર્ડ અને કનેક્ટર્સમાંથી સોનું, ચાંદી, કોપર રિકવર કરવા
- લાલ: મૂલ્યવાન ધાતુઓ પુન:પ્રાપ્ત કરે છે, માઇનિંગની માંગ ઘટાડે છે

## રિફર્બિશમેન્ટ અને રિયુઝ:

- ઉદાહરણ: શૈક્ષણિક સંસ્થાઓ માટે જૂના કમ્પ્યુટર્સની મરામત
- લાભ: પ્રોડક્ટ લાઇફસાયકલ વિસ્તૃત કરે છે, કચરા ઉત્પાદન ઘટાડે છે

### હાનિકારક કમ્પોનન્ટ્સનો યોગ્ય નિકાલ:

- ઉદાહરણ: મર્ક્યુરી-ધરાવતા કમ્પોનન્ટ્સ માટે સ્પેશિયલાઇઝ્ડ ટ્રીટમેન્ટ
- લાલ: ઝેરી પદાર્થોને પર્યાવરણમાં પ્રવેશતા અટકાવે છે

મેમરી ટ્રીક: "CREED" - Collect, Recover, Extract, Extend, Dispose safely

# પ્રશ્ન 5(ક) [7 ગુણ]

## રિપલ ફેક્ટર શું છે? રેક્ટિફાયર માટે રિપલ ફેક્ટરનું સમીકરણ મેળવો.

### જવાબ:

**રિપલ ફેક્ટર**: રેક્ટિફાયરની ફિલ્ટરિંગની અસરકારકતાનું માપ - આઉટપુટમાં AC કમ્પોનન્ટ (રિપલ)નો DC કમ્પોનન્ટ સાથેનો ગુણોત્તર.

#### વ્યાખ્યા:

- રિપલ ફેક્ટર (γ) = AC કમ્પોનન્ટની RMS વેલ્યુ / DC વેલ્યુ
- ઓછો રિપલ ફેક્ટર વધુ સારા ફિલ્ટરિંગનો સંકેત આપે છે

### હાફ વેવ રેક્ટિફાયર માટે ડેરિવેશન:

ચાલો ધારીએ કે સાઇન્યુસોઇડલ ઇનપુટ: v = V<sub>m</sub>sinωt

### હાક વેવ રેક્ટિકાયર માટે:

- આઉટપુટ v = V<sub>m</sub>sinωt જ્યારે 0 ≤ ωt ≤ π
- આઉટપુટ v = 0 જ્યારે π ≤ ωt ≤ 2π

સ્ટેપ 1: DC કમ્પોનન્ટ (એવરેજ વેલ્યુ) શોધો

•  $V_{DC} = (1/2\pi) \int_0^{2\pi} v(\omega t) d(\omega t)$ 

- $V_{DC} = (1/2\pi) \int_0^{\pi} V_m \sin\omega t \ d(\omega t)$
- $V_{DC} = V_m/\pi$

**સ્ટેપ 2**: RMS વેલ્યુ શોધો

- $V_{RMS} = \sqrt{[(1/2\pi) \int_0^{2\pi} v^2(\omega t) d(\omega t)]}$
- $V_{RMS} = \sqrt{[(1/2\pi) \int_0^{\pi} V_m^2 \sin^2 \omega t \ d(\omega t)]}$
- $V_{RMS} = V_m/2$

**સ્ટેપ 3**: AC કમ્પોનન્ટ શોધો

- $V_{AC}^2 = V_{RMS}^2 V_{DC}^2$
- $V_{AC}^2 = (V_m/2)^2 (V_m/\pi)^2$
- $V_{AC}^2 = V_m^2 (1/4 1/\pi^2)$

સ્ટેપ 4: રિપલ ફેક્ટર ગણો

- $\gamma = V_{AC}/V_{DC}$
- $\gamma = \sqrt{(V_m^2(1/4 1/\pi^2))/(V_m/\pi)}$
- $\gamma = \pi \sqrt{(1/4 1/\pi^2)}$
- γ = 1.21 (હાફ વેવ રેક્ટિફાયર માટે)

## ફુલ વેવ રેક્ટિફાયર માટે:

સમાન પગલાં અનુસરીને γ = 0.48 મળે છે

મેમરી ટ્રીક: "ROAD" - Ripple is Output's AC Divided by DC component

# પ્રશ્ન 5(અ) OR [3 ગુણ]

ઈ-વેસ્ટમાં કયા ઝેરી પદાર્થો હોય છે?

જવાબ:

ઇ-વેસ્ટમાં ઝેરી પદાર્થો:

| ઝેરી પદાર્થ                    | ઇલેક્ટ્રોનિક્સમાં સ્ત્રોત         | આરોગ્ય/પર્યાવરણીય અસર                    |
|--------------------------------|-----------------------------------|------------------------------------------|
| લેs (Pb)                       | સોલ્ડર, CRT મોનિટર, બેટરીઓ        | ન્યુરોલોજીકલ નુકસાન, વિકાસાત્મક સમસ્યાઓ  |
| મર્ક્યુંરી (Hg)                | સ્વિય, બેકલાઇટ્સ, બેટરીઓ          | ન્યુરોલોજીકલ અને કિડનીને નુકસાન          |
| કેડમિયમ (Cd)                   | રિચાર્જેબલ બેટરીઓ, સર્કિટ બોર્ડ   | કિડનીને નુકસાન, હાડકાના રોગો             |
| બ્રોમિનેટેડ ફ્લેમ રિટાર્ડન્ટ્સ | પ્લાસ્ટિક કેસિંગ, સર્કિટ બોર્ડ    | એન્ડોક્રાઇન ડિસ્રપ્શન, બાયોએક્યુમ્યુલેશન |
| હેક્સાવેલેન્ટ ક્રોમિયમ         | મેટલ પાર્ટ્સમાં કોરોઝન પ્રોટેક્શન | એલર્જીક રિએક્શન, DNA નુકસાન              |
| બેરિલિયમ (Be)                  | કનેક્ટર્સ, સ્પ્રિંગ્સ             | ફેફસાના રોગ, ત્વચાના વિકાર               |

મેમરી ટ્રીક: "LMBCHB" - Lead, Mercury, and Beryllium Cause Harmful Bodily effects

## પ્રશ્ન 5(બ) OR [4 ગુણ]

તમારી એપ્લિકેશન માટે યોગ્ય ટ્રાન્ઝિસ્ટર પસંદ કરવા માટેના મહત્વપૂર્ણ પરિમાણો લખો અને કોઈપણ બે સમજાવો.

#### જવાબ:

## મહત્વપૂર્ણ ટ્રાન્ઝિસ્ટર સિલેક્શન પેરામીટર્સ:

- મહત્તમ કલેક્ટર કરંટ (I<sub>C</sub>)
- મહત્તમ કલેક્ટર-ઇમિટર વોલ્ટેજ (V<sub>CEO</sub>)
- મહત્તમ કલેક્ટર-બેઝ વોલ્ટેજ (V<sub>CBO</sub>)
- કરંટ ગેઇન (hFE અથવા β)
- ફ્રિક્વન્સી રિસ્પોન્સ (f<sub>T</sub>)
- પાવર ડિસિપેશન (P<sub>tot</sub>)
- પેકેજ ટાઇપ (TO-3, SMT, વગેરે)
- તાપમાન રેન્જ

### મહત્તમ કલેક્ટર કરંટ (I<sub>C</sub>):

- વ્યાખ્યા: નુકસાન વિના કલેક્ટર મારફતે વહી શકે તેવો મહત્તમ કરંટ
- મહત્વ: એપ્લિકેશનની પીક કરંટ જરૂરિયાતોને સેફ્ટી માર્જિન સાથે વટાવવો જોઈએ
- **સામાન્ય વેલ્યુ**: ટ્રાન્ઝિસ્ટર પ્રકાર પર આધારિત 100mA થી 100A
- **એપ્લિકેશન કન્સિડરેશન**: મહત્તમ જરૂરી કરંટ કરતાં 50% વધુ રેટિંગ પસંદ કરવી

### કરંટ ગેઇન (hFE અથવા β):

- વ્યાખ્યા: કલેક્ટર કરંટનો બેઝ કરંટ સાથેનો ગુણોત્તર
- મહત્વ: એમ્પલિફિકેશન ક્ષમતા અને જરૂરી બેઝ ડ્રાઇવ નક્કી કરે છે
- સામાન્ય વેલ્યુ: સામાન્ય-હેતુના ટ્રાન્ઝિસ્ટર માટે 20-500
- **એપ્લિકેશન કન્સિડરેશન**: સ્વિચિંગ માટે, ઉચ્ચ ગેઇન બેઝ કરંટની જરૂરિયાત ઘટાડે છે; એમ્પલિફાયર માટે, ઓપરેટિંગ રેન્જમાં સુસંગત ગેઇન મહત્વપૂર્ણ છે

મેમરી ટ્રીક: "GIVE" - Gain and Ic are Very Essential parameters

# પ્રશ્ન 5(ક) OR [7 ગુણ]

## રેક્ટિફાયર કાર્યક્ષમતા શું છે? ફુલ વેવ રેક્ટિફાયરની કાર્યક્ષમતા શોધો.

#### જવાબ:

**રેક્ટિફાયર કાર્યક્ષમતા**: DC આઉટપુટ પાવરનો AC ઇનપુટ પાવર સાથેનો ગુણોત્તર, ટકાવારીમાં વ્યક્ત.

#### વ્યાખ્યા:

કાર્યक्षमता (η) = (P<sub>DC</sub>/P<sub>AC</sub>) × 100%

• ઉચ્ચ કાર્યક્ષમતા એટલે AC થી DC માં વધુ સારું રૂપાંતરણ

## કુલ વેવ રેક્ટિફાયર માટે ડેરિવેશન:

**સ્ટેપ 1**: DC આઉટપુટ પાવર ગણો

- $I_{DC} = V_{DC}/R_L$
- $P_{DC} = I_{DC}^2 \times R_L = V_{DC}^2/R_L$
- કુલ વેવ માટે, V<sub>DC</sub> = 2V<sub>m</sub>/π
- $P_{DC} = (2V_m/\pi)^2/R_L = 4V_m^2/(\pi^2R_L)$

**સ્ટેપ 2**: AC ઇનપુટ પાવર ગણો

- $I_{RMS} = V_{RMS}/R_L$
- $P_{AC} = I_{RMS}^2 \times R_I = V_{RMS}^2 / R_I$
- સાઇન વેવ માટે, V<sub>RMS</sub> = V<sub>m</sub>/√2
- $P_{AC} = (V_m/\sqrt{2})^2/R_L = V_m^2/(2R_I)$

સ્ટેપ 3: કાર્યક્ષમતા ગણો

- $\eta = (P_{DC}/P_{AC}) \times 100\%$
- $\eta = [4V_m^2/(\pi^2R_I)] / [V_m^2/(2R_I)] \times 100\%$
- $\eta = [4/(\pi^2)] \times 2 \times 100\%$
- $\eta = 8/(\pi^2) \times 100\%$
- $\eta = 8/9.87 \times 100\%$
- $\eta = 81.2\%$

## કુલ વેવ રેક્ટિફાયર કાર્યક્ષમતા = 81.2%

તુલના માટે:

- હાફ વેવ રેક્ટિફાયર કાર્યક્ષમતા = 40.6%
- બ્રિજ રેક્ટિફાયર કાર્યક્ષમતા = 81.2%

મેમરી ટ્રીક: "PIDE" - Power Input Determines Efficiency