

Scikit-Learn Overview

- We've seen NumPy had some built in capabilities for simple linear regression, but when it comes to more complex models, we'll need Scikit-Learn!
- Before we jump straight into machine learning with Scikit-Learn and Python, let's understand the philosophy behind sklearn.

- Scikit-learn is a library containing many machine learning algorithms.
- It utilizes a generalized "estimator API" framework to calling the models.
- This means the way algorithms are imported, fitted, and used is uniform across all algorithms.

- This allows users to easily swap algorithms in and out and test various approaches.
- Important Note:
 - This uniform framework also means users can easily apply almost any algorithm effectively without truly understanding what the algorithm is doing!

- Scikit-learn also comes with many convenience tools, including train test split functions, cross validation tools, and a variety of reporting metric functions.
- This leaves Scikit-Learn as a "one-stop shop" for many of our machine learning needs.

- Philosophy of Scikit-Learn
 - Scikit-Learn's approach to model building focuses on applying models and performance metrics.
 - This is a more pragmatic industry style approach rather than an academic approach of describing the model and its parameters.

- Philosophy of Scikit-Learn
 - Academic users used to R style reporting may also want to explore the statsmodels python library if interested in more statistical description of models such as significance levels.

- Let's quickly review the framework of Scikit-Learn for the supervised machine learning process.
- We will quickly see how the code directly relates to the process theory!

 Recall that we will perform a Train | Test split for supervised learning.

TRAIN

TEST

Area m²	Bedrooms	Bathrooms	Price
200	3	2	\$500,000
190	2	1	\$450,000
230	3	3	\$650,000
180	1	1	\$400,000
210	2	2	\$550,000

 Also recall there are 4 main components after a Train | Test split:

	Area m²	Bedrooms	Bathrooms	Price	
	200	3	2	\$500,000	
X TRAIN	190	2	1	\$450,000	Y TRAIN
	230	3	3	\$650,000	
X TEST	180	1	1	\$400,000	Y TEST
	210	2	2	\$550,000	

 Scikit-Learn easily does this split (as well as more advanced cross-validation)

TRAIN

TEST

Area m²	Bedrooms	Bathrooms	Price
200	3	2	\$500,000
190	2	1	\$450,000
230	3	3	\$650,000
180	1	1	\$400,000
210	2	2	\$550,000

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y)

Also recall that we want to compare predictions to the y test labels.

Predictions	Area m²	Bedrooms	Bathrooms	Price
\$410,000	180	1	1	\$400,000
\$540,000	210	2	2	\$550,000

from sklearn.model_family import ModelAlgo


```
from sklearn.model_family import ModelAlgo
mymodel = ModelAlgo(param1,param2)
```



```
from sklearn.model_family import ModelAlgo
mymodel = ModelAlgo(param1,param2)
mymodel.fit(X_train,y_train)
```



```
from sklearn.model_family import ModelAlgo
mymodel = ModelAlgo(param1,param2)
mymodel.fit(X_train,y_train)
predictions = mymodel.predict(X_test)
```



```
from sklearn.model_family import ModelAlgo
mymodel = ModelAlgo(param1,param2)
mymodel.fit(X_train,y_train)
predictions = mymodel.predict(X_test)
```

from sklearn.metrics import error_metric


```
from sklearn.model_family import ModelAlgo
mymodel = ModelAlgo(param1,param2)
mymodel.fit(X_train,y_train)
predictions = mymodel.predict(X_test)
```

from sklearn.metrics import error_metric
performance = error_metric(y_test,predictions)

- This framework will be similar for any supervised machine learning algorithm.
- Let's begin exploring it further with Linear Regression!

Linear Regression with Scikit-Learn

Part One:
Data Setup and Model Training

Linear Regression

- Previously, we explored "Is there a relationship between total advertising spend and sales?"
- Now we want to expand this to "What is the relationship between each advertising channel (TV,Radio,Newspaper) and sales?"

01-Linear-Regression-with-Scitkit-Learn[LEC4].ipynb

Performance Evaluation

Regression Metrics

- Now that we have a fitted model that can perform predictions based on features, how do we decide if those predictions are any good?
- Fortunately we have the known test labels to compare our results to.

- Let's take a moment now to discuss evaluating Regression Models
- Regression is a task when a model attempts to predict continuous values (unlike categorical values, which is classification)

- For example, attempting to predict the price of a house given its features is a regression task.
- Attempting to predict the country a house is in given its features would be a classification task.

- You may have heard of some evaluation metrics like accuracy or recall.
- These sort of metrics aren't useful for regression problems, we need metrics designed for continuous values!

- Let's discuss some of the most common evaluation metrics for regression:
 - Mean Absolute Error
 - Mean Squared Error
 - Root Mean Square Error

 The metrics shown here apply to any regression task, not just Linear Regression!

- Mean Absolute Error (MAE)
 - This is the mean of the absolute value of errors.
 - Easy to understand

$$\frac{1}{n}\sum_{i=1}^{n}|y_{i}-\hat{y}_{i}|$$

MAE won't punish large errors however.

MAE won't punish large errors however.

 We want our error metrics to account for these!

- Mean Squared Error (MSE)
 - Larger errors are "punished" more than with MAE, making MSE more popular.

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Mean Squared Error (MSE)
 - Issue with MSE:
 - Different units than y.
 - It reports units of y squared!

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\hat{y}_{i})^{2}$$

Evaluating Regression

- Root Mean Square Error (RMSE)
 - This is the root of the mean of the squared errors.
 - Most popular (has same units as y)

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\hat{y}_{i})^{2}}$$

- Most common question from students:
 - "What is a good value for RMSE?"
 - Context is everything!
 - A RMSE of \$10 is fantastic for predicting the price of a house, but horrible for predicting the price of a candy bar!

- Compare your error metric to the average value of the label in your data set to try to get an intuition of its overall performance.
- Domain knowledge also plays an important role here!

- Context of importance is also necessary to consider.
 - We may create a model to predict how much medication to give, in which case small fluctuations in RMSE may actually be very significant.

- Context of importance is also necessary to consider.
 - If we create a model to try to improve on existing human performance, we would need some baseline RMSE to compare to.

Evaluating Regression

 Let's quickly jump back to the notebook and calculate these metrics with SciKit-Learn!

01-Linear-Regression-with-Scitkit-Learn[LEC4].ipynb

Evaluating Residuals

- Often for Linear Regression it is a good idea to separately evaluate residuals (y-ŷ) and not just calculate performance metrics (e.g. RMSE).
- Let's explore why this is important...

Recall Anscombe's quartet:

Clearly Linear Regression is not suitable!

- But how can we tell if we're dealing with more than one x feature?
- We can not see this discrepancy of fit visually if we have multiple features!

- What we could do is plot residual error against true y values.
- Consider an appropriate data set:

 The residual errors should be random and close to a normal distribution.

 The residual errors should be random and close to a normal distribution.

 Residual plot shows residual error vs. true y value.

There should be no clear line or curve.

What about non valid datasets?

What about non valid datasets?

 Residual plot showing a clear pattern, indicating Linear Regression no valid!

 Residual plot showing a clear pattern, indicating Linear Regression no valid!

What about non valid datasets?

 Residual plot showing a clear pattern, indicating Linear Regression no valid!

 Residual plot showing a clear pattern, indicating Linear Regression no valid!

 Let's explore creating these plots with Python and our model results!

01-Linear-Regression-with-Scitkit-Learn[LEC4].ipynb

Model Deployment

- We're almost done with our first machine learning run through!
- Let's quickly review what we've done so far in the ML process.

Supervised Machine Learning Proces

Recall the Supervised ML Process

Supervised Machine Learning Proces

Recall the Supervised ML Process

- Later on we will explore polynomial regression and regularization as model adjustments.
- For now, let's focus on a simple "deployment" of our model by saving and loading it, then applying to new data.

01-Linear-Regression-with-Scitkit-Learn[LEC4].ipynb

