Specialization Project

Andreas Larsen

08.09.2009

Student name: Andreas Larsen

Subject: TDT4570 - Specialization Project, Game Technology

Title: Approaches To Real-Time Simulation of Aircraft Autopi-

LOT SOFTWARE

Project description:

A study of state-of-the-art methods for simulating the physical behavior of aircrafts and for developing autopilot control logic. The purpose is to identify best-practice approaches to develop said simulator that can function as a benchmark for autopilot software performance. The conclusion of the project is a set of recommended methods and approaches for implementing the software and concerns for deploying the autopilot on real world aircrafts.

${\bf Abstract}$

TODO Fill out

Preface

Contents

1	Introduction (2-5p)						5				
	1.1	Purpo	se						5		
	1.2	•									
	1.3	Context									
	1.4	Intended Audience									
	1.5										
2	Me	thods	of Aircra	ft Simulation (18p)					6		
	2.1	Physic	es and Mo	dels 14p					6		
		2.1.1	Aerodyn	amics 9p					6		
			2.1.1.1	Drag 1p					6		
			2.1.1.2	Lift 1p					6		
			2.1.1.3	Turbulence 1p					6		
			2.1.1.4	Shockwaves 1p					6		
			2.1.1.5	Fixed-wing: Airplanes 2p					7		
			2.1.1.6	Rotary-wing: Helicopters 2p					7		
		2.1.2	1.2 Computational Methods for Aerodynamics 5p						7		
			2.1.2.1	Fluid Mechanics Equations 2p					7		
			2.1.2.2	Numerical Modelling Methods 2p .					7		
	2.2	Real-Time and Simulation-Time 4p							8		
		2.2.1	Simulati	on Depth 1p					8		
		2.2.2		and Time Steps 2p					8		
3	Me	thods	of Autop	ilot Control (18p)					9		
	3.1	Control Theory and Basic Concepts 1p									
		3.1.1	Direct D	rigital Control 1p					9		
	3.2	Mode	rn Control	l 9p					9		
		3.2.1	PID loop	os 8p					9		
			3.2.1.1	Closed and open loops 0.5p					9		
			3.2.1.2	Performance Indices 3p					9		
			3.2.1.3	Performance Tuning 4p					10		
		3.2.2		gressive Model 1p					12		
	3.3	Kalma	an Filter 5						12		

		3.3.1	Linear-Q	Quadratic-Gaussian Control problem	12								
	3.4	Deploy	ment Issi	ues 3p (skippable)	12								
		3.4.1	Hardwar	e Limitations 1.5p	12								
			3.4.1.1	Performance	12								
			3.4.1.2	Power Usage	12								
		3.4.2	Safety 1.	5p	12								
			3.4.2.1	Logic Robustness	12								
			3.4.2.2	Fail-safe Routines	12								
4	Discussion of Best-Practice Approach to Real-Time Aircraft												
	Sim	ulation	ı (5p)		13								
5 Conclusion (1p)													
Bibliography													

Table of Figures

Introduction (2-5p)

- 1.1 Purpose
- 1.2 Motivation
- 1.3 Context
- 1.4 Intended Audience
- 1.5 Overview

Methods of Aircraft Simulation (18p)

2.1 Physics and Models 14p

2.1.1 Aerodynamics 9p

• Generally about the most important principles in aerodynamics.

2.1.1.1 Drag 1p

- How does air resistance work and how does it affect aircrafts?
- Different types of drag with different properties (parasitic, lift-induced, wave)

2.1.1.2 Lift 1p

• What causes lift and how is heavier-than-air flight possible?

2.1.1.3 Turbulence 1p

- Laminar and turbulent flows
- Reynolds number

2.1.1.4 Shockwaves 1p

- Speed of sound
- The Mach barrier

2.1.1.5 Fixed-wing: Airplanes 2p

- General description
- Lift and drag
- Maneuverability
- Supersonic flight

2.1.1.6 Rotary-wing: Helicopters 2p

- General description
- Lift and drag
- Maneuverability
- Main rotor torque compensation 0.5p
 - Counter-rotation
 - Tail rotor
- Rotor aerodynamics 1.5p
 - Reynolds number and Mach number effects [2, p.350]
 - Dynamic stall [2, p.525]
 - Blade tip vortices [2, p.567]
- Ground effect [2, figures at p.261] 0.5p

2.1.2 Computational Methods for Aerodynamics 5p

• Relevant info[2, p.771] 1p

2.1.2.1 Fluid Mechanics Equations 2p

Navier-Stokes Equations

Euler Equations

Etc..

2.1.2.2 Numerical Modelling Methods 2p

CFD

Finite Element

Others..?

2.2 Real-Time and Simulation-Time 4p

- How does real-time constraints differ from simulation-time?
- Parallel computing

2.2.1 Simulation Depth 1p

- Dimensional (1D, 2D, 3D)
- Quantities (particle systems, grids)
- Complexity (mesh details, physics model relations and constraints)

2.2.2 Stiffness and Time Steps 2p

- Particle dynamics
- Numerical stiffness vs. time steps required
 - Springs, positions and velocities
- Implicit methods
- Constrained dynamics

Methods of Autopilot Control (18p)

- 3.1 Control Theory and Basic Concepts 1p
- 3.1.1 Direct Digital Control 1p
- 3.2 Modern Control 9p
- 3.2.1 PID loops 8p
 - Basic PID loop functionality
 - Combinations P, I, PD, PI and PID

3.2.1.1 Closed and open loops 0.5p

Summarising these properties we can define:

Systems in which the output quantity has no effect upon the process input quantity are called open-loop control systems.

Systems in which the output has an effect upon the process input quantity in such a manner as to maintain the desired output value are called closed-loop control systems.

http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node4.html

3.2.1.2 Performance Indices 3p

Time-Response

Maximum overshoot, peak time, rise time, settling time etc..

http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node57.html

Integral Error

Table 7.2: The most common integral performance indices http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node58.html

3.2.1.3 Performance Tuning 4p

Optimal PID tuning

 $http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node 62.html\\ Comparison of configurations P, I, and D$

http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node63.html

Trial and Error 1p

Ziegler-Nichols Method 1p

Root Locus Method 1p http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node69.html (root locus)

 $http://www.cds.caltech.edu/{\sim}murray/courses/cds110/fa02/cds101/lectures/L9.1_pid+rlocus_filectures/$

- Degree of Stability in Closed Loop
- Very useful in control design to measure performance

3.2.2 Auto Regressive Model 1p

3.3 Kalman Filter 5p

- Similar to Hidden Markov Model but differs in
 - Continuous hidden state variables (not discrete)
 - Only one distribution supported, namely Gaussian
- Recursive estimator
- Current estimate = Previous estimate + current measure

$$-\mathbf{x}_k = \mathbf{F}_k \mathbf{x}_{k-1} + \mathbf{B}_k \mathbf{u}_k + \mathbf{w}_k$$

• Current measure

$$- \ \mathbf{z}_k \mathbf{= H}_k \mathbf{z}_k \mathbf{+ v}_k$$

- ullet $\mathbf{F}_k = \mathrm{state}$ transition model applied to previous state
- \bullet $\mathbf{B}_k =$ control-input model applied to the control vector \mathbf{u}_k
- ullet $\mathbf{H}_{k} =$ observation model that maps true state space into observed space
- $\mathbf{w}_k = \text{process noise } \tilde{\ } N(0, \mathbf{Q}_k)$
- \mathbf{v}_k = observation noise $\tilde{\ } N(0, \mathbf{R}_k)$

3.3.1 Linear-Quadratic-Gaussian Control problem

- Linear-quadratic regulator (LQR)
- Linear-quadratic-Gaussian controller

3.4 Deployment Issues 3p (skippable)

3.4.1 Hardware Limitations 1.5p

- 3.4.1.1 Performance
- 3.4.1.2 Power Usage
- 3.4.2 Safety 1.5p
- 3.4.2.1 Logic Robustness
- 3.4.2.2 Fail-safe Routines

Discussion of Best-Practice Approach to Real-Time Aircraft Simulation (5p)

- Full-scale vs. mini-scale aircrafts
- Approaches and methods available
- Pros and cons for this scenario
- More..?

Conclusion (1p)

- \bullet Concrete methods suited for implementation
- Reusability of this research
- Deploying

Bibliography

- [1] George Done A.R.S. Bramwell and David Balmford. *Principles of Helicopter Aerodynamics*. Butterworth-Heinemann, second edition, 2001.
- [2] J. Gordon Leishman. *Principles of Helicopter Aerodynamics*. Cambridge University Press, second edition, 2006.
- [3] John Watkinson. The Art of the Helicopter. Elsevier Butterworth-Heinemann, 2004.

Appendices