MAT1830

Lecture 15: Composition and Inversion

simple parts. For example, the function $f: \mathbb{R} \to$ \mathbb{R} defined by $f(x) = (x^2 + 1)^3$ is computed by

- doing the following steps in succession:
- cube.
- · square,

of the functions (from \mathbb{R} to \mathbb{R}) • square $(x)=x^2$, • successor(x)=x+1, • cube(x)= x^3 .

- add 1.

We say that $f(x) = (x^2 + 1)^3$ is the composite

- Complicated functions are often built from

15.1 Notation for composite functions

tions

In the present example we write
$$f(x) = \mathrm{cube}(\mathrm{successor}(\mathrm{square}(x))),$$

 $f = \text{cube} \circ \text{successor} \circ \text{square}.$

or

In general, if f(x) = g(h(x)) we write $f = g \circ h$ and say f is the *composite* of g and h.

Warning: Remember that $g \circ h$ means "do h first, then g." $g \circ h$ is usually different from $h \circ g$.

Example.

 $\label{eq:square} \begin{aligned} & \text{square}(\text{successor}(x)) = (x+1)^2 = x^2 + 2x + 1 \\ & \text{successor}(\text{square}(x)) = x^2 + 1 \end{aligned}$

Question 15.1 Let f, m and s be functions on the set of people defined by m(x) = mother of x f(x) = father of x

s(x) = spouse of x.

What are the following?

(Note
$$s$$
 is not actually a valid function on the set of people.)

$$m \circ s(x)$$
 mother in law of x
 $f \circ s(x)$ father in law of x

$$m \circ m(x)$$
 grandmother (maternal) of x
 $f \circ m(x)$ grandfather (maternal) of x

$$s \circ s(x)$$

Question 15.2 Write the following as composites of square(x), sqrt(x), successor(x) and cube(x).

(Assume that all of these have domain and codomain $\{x:x\in\mathbb{R} \text{ and } x\geq 0\}.$)

$$\begin{array}{rcl} \sqrt{1+x^3} &=& \mathsf{sqrt}(\mathsf{successor}(\mathsf{cube}(x))) = \mathsf{sqrt} \circ \mathsf{successor} \circ \mathsf{cube}(x) \\ x^{\frac{3}{2}} &=& \mathsf{sqrt}((\mathsf{cube}(x)) = \mathsf{sqrt} \circ \mathsf{cube}(x) \\ (1+x)^3 &=& \mathsf{cube}(\mathsf{successor}(x)) = \mathsf{cube} \circ \mathsf{successor}(x) \\ (1+x^3)^2 &=& \mathsf{square}(\mathsf{successor}(\mathsf{cube}(x))) = \mathsf{square} \circ \mathsf{successor} \circ \mathsf{cube}(x) \end{array}$$

Note Composition of functions is associative: $(f \circ g) \circ h = f \circ (g \circ h)$. So we don't bother with the brackets.

Conditions for composition 15.2

Composite functions do not always exist.

Example. If reciprocal : $\mathbb{R} - \{0\} \to \mathbb{R}$ is de-

fined by reciprocal(x) = $\frac{1}{x}$ and predecessor : $\mathbb{R} \to \mathbb{R}$ is defined by predecessor(x) = x - 1,

then reciprocal o predecessor does not exist, because predecessor(1) = 0 is not a legal input for reciprocal.

To avoid this problem, we demand that the codomain of h be equal to the domain of g for $g \circ h$ to exist. This ensures that each output of h will be a legal input for q.

Let $h:A\to B$ and $g:C\to D$ be functions. Then $g\circ h:A\to D$ exists if and only if B = C.

Let $g: C \to D$ and $h: A \to B$ be functions.

The function $g \circ h$ exists if and only if C = B.

If it exists, $g \circ h : A \to D$ and is defined by $g \circ h(x) = g(h(x))$.

Question Let $f: A \to B$ and $g: C \to D$ be the functions pictured below.

Does $g \circ f$ exist?

codomain $(f) = \{y_1, y_2, y_3, y_4\}$ and domain $(g) = \{y_1, y_2, y_3, y_4\}$. So $g \circ f$ does exist because codomain(f) = domain(g). $g \circ f : A \to D$ **Question** Let $f: A \rightarrow B$ and $g: C \rightarrow D$ be the functions pictured below.

Does $g \circ f$ exist?

codomain $(f) = \{y_1, y_2, y_3, y_4, y_5\}$ and domain $(g) = \{y_1, y_2, y_3, y_4\}$. So $g \circ f$ does not exist because codomain $(f) \neq \text{domain}(g)$.

Flux Exercise

Let f, g and h be the functions

$$f: \mathbb{R} \to \mathbb{Z}$$
 defined by $f(x) = \lfloor x \rfloor$. ("x rounded down") $g: \mathbb{Z} \to \mathbb{R}$ defined by $g(x) = \frac{x}{2}$.

 $h: \mathbb{R} \to \mathbb{R}$ defined by $h(x) = x^2 + 7$.

Which of the following statements is *false*?

A.
$$g \circ f$$
 exists, $g \circ f : \mathbb{R} \to \mathbb{R}$

B.
$$f \circ g$$
 exists, $f \circ g : \mathbb{Z} \to \mathbb{Z}$

C.
$$g \circ h$$
 does not exist

D. $g \circ f \circ g$ does not exist

15.3 The identity function

On each set A the function $i_A:A\to A$ defined by

by
$$i_A(x) = x,$$

is called the *identity function* (on A).

15.4 Inverse functions

Functions $f:A\to A$ and $g:A\to A$ are said to be inverses (of each other) if

$$f \circ g = g \circ f = i_A$$
.

Example. square and sqrt are inverses of each other on the set $\mathbb{R}^{\geq 0}$ of reals ≥ 0 .

$$\operatorname{sqrt}(\operatorname{square}(x)) = x$$
 and $\operatorname{square}(\operatorname{sqrt}(x)) = x$.

In fact, this is exactly what sqrt is supposed to do – reverse the process of squaring. However, this works only if we restrict the domain to

ever, this works only if we restrict the domain to $\mathbb{R}^{\geqslant 0}$. On \mathbb{R} we do not have $\operatorname{sqrt}(\operatorname{square}(x)) = x$ because, for example,

$$\operatorname{sqrt}(\operatorname{square}(-1)) = \operatorname{sqrt}(1) = 1.$$
 This problem arises whenever we seek an in-

verse for a function which is not one-to-one. The squaring function on \mathbb{R} sends both 1 and -1 to 1, but we want a single value 1 for sqrt(1). Thus we have to restrict the squaring function to $\mathbb{R}^{\geq 0}$.

15.5 Conditions for inversion

A function f can have an inverse without its domain and codomain being equal.

The inverse of a function $f:A \to B$ is a function $f^{-1}:B\to A$ such that

 $f^{-1} \circ f = i_A$ and $f \circ f^{-1} = i_B$.

Note that $f^{-1} \circ f$ and $f \circ f^{-1}$ are both iden-

tity functions but they have different domains. Not every function has an inverse, but we can neatly classify the ones that do. Let $f:A\to B$ be a function. Then $f^{-1}:B\to A$ exists if and only if f is one-to-one

can neatly classify the ones that do.
Let
$$f:A\to B$$
 be a function. Then $f^{-1}:B\to A$ exists if and only if f is one-to-one and onto.

Let $f: A \rightarrow B$.

The function $f^{-1}: B \to A$ exists if and only if f is one-to-one and onto.

(Remember onto means image(f) = B.)

If it exists, $f^{-1}: B \to A$ is defined by $f^{-1}(y)$ equals the unique $x \in A$ such that f(x) = y.

We have $f^{-1} \circ f = i_A$ and $f \circ f^{-1} = i_B$.

Note f^{-1} is just a notation for "the inverse function of f". It is *not* an exponential.

Question Let $f: A \rightarrow B$ be the function pictured below.

Does f^{-1} exist? Yes.

Question Let $f: A \rightarrow B$ be the function pictured below.

Does f^{-1} exist? No. f is not one-to-one.

Question Let $f: A \rightarrow B$ be the function pictured below.

Does f^{-1} exist? No. f is not onto.

Question 15.4 What feature do

$$\neg : \mathbb{B} \to \mathbb{B}$$
 defined by $\neg(x) = \neg x$;

 $f(x): \mathbb{R} - \{0\} \to \mathbb{R} - \{0\}$ defined by $f(x) = \frac{1}{x}$; and $g(x): \mathbb{R} - \{1\} \to \mathbb{R} - \{1\}$ defined by $g(x) = \frac{x}{x-1}$; have in common?

They are their own inverses.

Example: e^x and \log

Consider $f: \mathbb{R} \to \mathbb{R}^{\geqslant 0} - \{0\}$ defined by $f(x) = e^x$. We know that e^x is one-to-one (e.g. because it is strictly increasing), and onto. So it has an inverse f^{-1} on $\mathbb{R}^{\geqslant 0} - \{0\}$.

Plot of $y = e^x$.

In fact, $f^{-1} = \log(y)$ where

$$\log: \mathbb{R}^{\geqslant 0} - \{0\} \to \mathbb{R}.$$

Now

$$e^{\log x} = x$$
 and $\log(e^x) = x$.

so $e^{\log x}$ and $\log(e^x)$ are both identity functions, but they have different domains.

The domain of $e^{\log x}$ is $\mathbb{R}^{\geqslant 0} - \{0\}$ (note log is defined only for reals > 0). The domain of $\log(e^x)$ is \mathbb{R} .

Question Let $f: \{x: x \text{ is a Monash student}\} \to \mathbb{N}$ be the function defined by f(x) equals the ID number of x. Does f^{-1} exist?

Answer

No. f is not onto. (E.g. there is no student with ID number 10^{200} .)

Flux Exercise

Let g and h be the functions

$$g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
 defined by $g(a, b) = ab$

 $h: \{C: C \text{ is a circle in the plane with centre } (0,0)\} \to \mathbb{R}$ defined by h(C) is the area of C.

Does g^{-1} exist? Does h^{-1} exist?

A. Yes, yes

B. Yes, no

C. No, yes

D. No, no