Example: Euclidean Space

Example: Euclidean Space

The *n*-dimensional Euclidean space \mathbb{R}^n is a fundamental example of a Vector Space over the field \mathbb{R} of real numbers.

Construction

 \mathbb{R}^n consists of all ordered *n*-tuples of real numbers:

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R} \text{ for all } i = 1, 2, \dots, n\}$$

Operations

For vectors $\mathbf{u}=(u_1,u_2,\ldots,u_n)$ and $\mathbf{v}=(v_1,v_2,\ldots,v_n)$ in \mathbb{R}^n , and scalar $a\in\mathbb{R}$:

1. Vector addition:

$$\mathbf{u}+\mathbf{v}=(u_1+v_1,u_2+v_2,\dots,u_n+v_n)$$

2. Scalar multiplication:

$$a\mathbf{u} = (au_1, au_2, \dots, au_n)$$

Special Cases

- $\mathbb{R}^1 = \mathbb{R}$: The real line
- \mathbb{R}^2 : The Euclidean plane
- \mathbb{R}^3 : Three-dimensional Euclidean space

Verification

The zero vector is $\mathbf{0}=(0,0,\dots,0),$ and the additive inverse of \mathbf{u} is $-\mathbf{u}=(-u_1,-u_2,\dots,-u_n).$

All vector space axioms can be verified component-wise using the field properties of \mathbb{R} .

Geometric Interpretation

 \mathbb{R}^n represents the familiar geometric spaces: - Vectors can be visualized as arrows from the origin - Addition corresponds to the parallelogram rule - Scalar multiplication stretches or shrinks vectors

Dependency Graph

Local dependency graph