Общо уравнение на афинно подпространство

Нека \mathcal{A} е n-мерно афинно пространство, моделирано върху линейното простран-

Нека
$$\mathcal{A}$$
 е n -мерно афинно пространство, моделирано върху линейното пространство $U, K = Oe_1 \dots e_n$ е афинна координатна система в \mathcal{A} и $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} : \mathcal{A} \to \mathbb{R}^n$ е

координатното изображение, съответно на K.

Определение 1. Нека B е k-мерно афинно подпространство на \mathcal{A} . Общо уравнение на B спрямо K е уравнение на B спрямо K от вида Ax = b (или Ax - b = 0), където A е матрица $(n-k) \times n$, $b \in \mathbb{R}^{n-k}$ (и r(A) = n-k).

С други думи, общо уравнение на B спрямо K е линейна система с n-k уравнения, която задава B спрямо K (n-k е най-малкият възможен брой уравнения в системата).

Забележка 1. Условието r(A) = n - k следва от останалите условия – виж следващата теорема. Също в нея се вижда, че n-k е най-малкият възможен брой уравнения в системата.

- 0. Подмножеството B на A е k-мерно афинно подпространство на AТеорема 1. $\Leftrightarrow B$ се задава спрямо K с някоя съвместима линейна система от вида Ax=b,където рангът на матрицата $A \ e \ r(A) = n - k$.
 - 1. Всяко k-мерно афинно подпространство на ${\cal A}$ има общо уравнение спрямо K, тоест задава се спрямо K с някоя линейна система Ax = b с n - k уравнения (това е най-малкият възможен брой) ($u \ r(A) = n - k$).
 - 2. Обратно: Ако Ax = b е линейна система с n неизвестни и броят на уравненията \dot{u} е равен на r(A), то тя е съвместима и е общо уравнение спрямо K на някое k-мерно афинно подпространство на A, където k=n-r(A).

Частни случаи:

- 1. Хиперравнина: k = n 1.
 - Следователно линейната система за общото уравнение се състои от n-k=1уравнение.
 - 1. Всяка хиперравнина в A има общо уравнение спрямо K, тоест Teopeма 1'. уравнение от вида $a_1x_1 + \cdots + a_nx_n = b$ (и $(a_1, \dots, a_n) \neq 0$).
 - 2. Обратно: Всяко уравнение от вида $a_1x_1 + \cdots + a_nx_n = b$, където $(a_1,\ldots,a_n)\neq 0$, е общо уравнение спрямо K на някоя хиперравнина в A.
- 2. Права в 2-мерно афинно пространство (в частност, в геометричната равнина): n=2, k=1=n-1.

Нека координатите са (x, y) вместо (x_1, x_2) .

- 1. Всяка права в 2-мерно афинно пространство A има общо уравнение спрямо K, тоест уравнение от вида Ax + By + C = 0 ($u(A, B) \neq 0$).
 - 2. Обратно: Всяко уравнение от вида Ax+By+C=0, където $(A,B)\neq 0$, е общо уравнение спрямо K на някоя права в A.

3. Равнина в 3-мерно афинно пространство (в частност, в геометричното пространство): $n=3,\,k=2=n-1.$

Нека координатите са (x, y, z) вместо (x_1, x_2, x_3) .

- **Теорема 1**"". 1. Всяка равнина в 3-мерно афинно пространство \mathcal{A} има общо уравнение спрямо K, тоест уравнение от вида Ax + By + Cz + D = 0 ($u(A, B, C) \neq 0$).
 - 2. Обратно: Всяко уравнение от вида Ax + By + Cz + D = 0, където $(A, B, C) \neq 0$, е общо уравнение спрямо K на някоя равнина в A.
- 4. Права в 3-мерно афинно пространство (в частност, в геометричното пространство): $n=3,\,k=1.$

Нека координатите са (x, y, z) вместо (x_1, x_2, x_3) .

Теорема 1^{\prime v}. 1. Всяка права в 3-мерно афинно пространство \mathcal{A} има общо уравнение спрямо K, тоест уравнение от вида

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

(u матрицата $\begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix}$ има ранг 2).

2. Обратно: Всяка система от вида

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases},$$

където рангът на матрицата на системата $\begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix}$ е 2, е общо уравнение спрямо K на някоя права в \mathcal{A} .

Теорема 2. Нека точката $P_0 \in \mathcal{A}$ и линейно независимите вектори $v_1, \ldots, v_k \in U$ имат спрямо K координати $P_0(x_0), v_j(\xi_j), j = 1, \ldots, k$. Тогава k-мерното афинно подпространство B на \mathcal{A} , което минава през P_0 и е успоредно на v_1, \ldots, v_k , има спрямо K уравнение

(1)
$$B: \{ \det M_{i_1...i_{k+1}} = 0, \quad 1 \le i_1 < \dots < i_{k+1} \le n , \}$$

където $M_{i_1...i_{k+1}}$ е квадратната подматрица от ред k+1 на $M=(\underbrace{x-x_0\ \xi_1\ ...\ \xi_k}_{cm ilde{o}n ilde{o}be}),$

състояща се от редовете с номера $i_1,\ldots,i_{k+1}.$

Ако в (1) се вземат онези n-k уравнения, които се получават от подматриците, съдържащи фиксирана квадратна подматрица от ред k на $M'=(\underbrace{\xi_1\ldots\xi_k})$ с ненулева

стълбове

детерминанта, то получената система е общо уравнение на B спрямо K.

Теорема 3. Нека $k \le n$ и нележащите в (k-1)-мерно афинно подпространство на $\tilde{\mathcal{A}}$ точки $P_0,\ldots,P_k\in\mathcal{A}$ имат спрямо K координати $P_j(x^j),\ j=0,\ldots,k.$ Тогава k-мерното афинно подпространство B на A, което минава през P_0, \ldots, P_k , има спрямо K уравнение

(2)
$$B: \{ \det M_{i_1...i_{k+1}} = 0, \quad 1 \le i_1 < \dots < i_{k+1} \le n , \}$$

където $M_{i_1...i_{k+1}}$ е квадратната подматрица от ред k+1 на $M=(\underbrace{x-x^0\ x^1-x^0\ ...\ x^k-x^0})$, състояща се от редовете с номера i_1,\ldots,i_{k+1} . cтълбове Aко в (2) се вземат онези n-k уравнения, които се получават от подматриците,

съдържащи фиксирана квадратна подматрица от ред k на $M'=(x^1-x^0\dots x^k-x^0)$

c толбове c ненулева детерминанта, то получената система е общо уравнение на B спрямо K. B (2) вместо M_{i} ... може до се сасио могда. B (2) вместо $M_{i_1\dots i_{k+1}}$ може да се вземе квадратната матрица от ред k+2

$$\left(\frac{N_{i_1...i_{k+1}}}{1\ldots 1}\right)$$
, където $N_{i_1...i_{k+1}}$ е подматрицата на $N=(\underbrace{x\ x^1\ ...\ x^k\ x^0}_{cmълбове})$, състояща се от

редовете с номера i_1, \ldots, i_{k+1} .

 $(N_{i_1...i_{k+1}}\ e\ (k+1)\times (k+2)\ u\ \grave{u}\ ce\ добавя\ един\ ред\ единици\ за\ да\ стане\ (k+2)\times (k+2).)$

Забележка 2. Формулите от Теорема 2 и Теорема 3 не са подходящи за конкретни пресмятания, защото в тях участват много детерминанти, чието пресмятане е трудоемко. Най-простият случай е когато имаме хиперравнина, защото тогава k=n-1 и следователно имаме единствена квадратна подматрица от ред k+1=n на M, а именно самата M. Така че уравнението става само едно: $\det M = 0$. Всъщност и пресмятането на една детерминанта е твърде трудоемко. Но при n=2 и n=3 е лесно, така че при права в равнината и равнина в пространството формулите от Теорема 2 и Теорема 3 са удобни за конкретни пресмятания. За щастие това са случаите, които най-често се срещат на упражненията. В общия случай най-икономичният метод за получаване на общи уравнения в ситуациите от Теорема 2 и Теорема 3 е да се напишат параметрични уравнения, след което да се изключат параметрите, както е обяснено в Забележка 3 по-долу.

Частни случаи:

1. Хиперравнина: k = n - 1.

 $M \in n \times (k+1) = n \times n$. Следователно квадратната подматрица на M от ред k+1=n е единствена – самата M.

Теорема 2'. Нека точката $P_0 \in \mathcal{A}$ и линейно независимите вектори $v_1,\ldots,v_{n-1}\in U$ имат спрямо K координати $P_0(x_0),\,v_j(\xi_j),\,j=1,\ldots,n-1.$ Тогава определената от тях хиперравнина B в $\mathcal A$ има спрямо K общо уравнение

$$B: \det(\underbrace{x - x_0 \ \xi_1 \dots \xi_{n-1}}_{cm \text{ obsee}}) = 0.$$

Теорема 3'. Нека нележащите в (n-2)-мерно афинно подпространство на \mathcal{A} точки $P_0, \ldots, P_{n-1} \in \mathcal{A}$ имат спрямо K координати $P_j(x^j), j = 0, \ldots, n-1$. Тогава определената от тях хиперравнина B в \mathcal{A} има спрямо K общо уравнение

B:
$$\det(\underbrace{x - x^0 \ x^1 - x^0 \dots x^{n-1} - x^0}_{cm \circ n \circ o o e}) = 0,$$

или еквивалентно

$$B: \det \left(\begin{array}{cccc} x & x^1 & \dots & x^{n-1} & x^0 \\ \hline 1 & 1 & \dots & 1 & 1 \end{array} \right) = 0.$$

2. Права в 2-мерно афинно пространство (в частност, в геометричната равнина): $n=2,\,k=1=n-1.$

Нека координатите са (x, y) вместо (x_1, x_2) .

Теорема 2". Нека точката $P_0 \in \mathcal{A}$ и ненулевият вектор $v \in U$ имат спрямо K координати $P_0(x_0, y_0)$, $v(\xi, \eta)$. Тогава определената от тях права l в \mathcal{A} има спрямо K общо уравнение

$$l: \det \begin{pmatrix} x - x_0 & \xi \\ y - y_0 & \eta \end{pmatrix} = 0.$$

Теорема 3". Нека различните точки $P_0, P_1 \in \mathcal{A}$ имат спрямо K координати $P_j(x_j, y_j), j = 0, 1$. Тогава определената от тях права l в \mathcal{A} има спрямо K общо уравнение

$$l: \det \begin{pmatrix} x - x_0 & x_1 - x_0 \\ y - y_0 & y_1 - y_0 \end{pmatrix} = 0,$$

или еквивалентно

$$l: \det \left(\begin{array}{ccc} x & x_1 & x_0 \\ y & y_1 & y_0 \\ 1 & 1 & 1 \end{array} \right) = 0.$$

3. Равнина в 3-мерно афинно пространство (в частност, в геометричното пространство): $n=3,\,k=2=n-1.$

Нека координатите са (x, y, z) вместо (x_1, x_2, x_3) .

Теорема 2". Нека точката $P_0 \in \mathcal{A}$ и неколинеарните (тоест линейно независими) вектори $v_1, v_2 \in U$ имат спрямо K координати

 $P_0(x_0,y_0,z_0),\ v_j(\xi_j,\eta_j,\zeta_j),\ j=1,2.$ Тогава определената от тях равнина π в $\mathcal A$ има спрямо K общо уравнение

$$\pi : \det \begin{pmatrix} x - x_0 & \xi_1 & \xi_2 \\ y - y_0 & \eta_1 & \eta_2 \\ z - z_0 & \zeta_1 & \zeta_2 \end{pmatrix} = 0.$$

Теорема 3"". Нека нележащите на една права точки $P_0, P_1, P_2 \in \mathcal{A}$ имат спрямо K координати $P_j(x_j, y_j, z_j), j = 0, 1, 2$. Тогава определената от тях равнина π в \mathcal{A} има спрямо K общо уравнение

$$\pi : \det \begin{pmatrix} x - x_0 & x_1 - x_0 & x_2 - x_0 \\ y - y_0 & y_1 - y_0 & y_2 - y_0 \\ z - z_0 & z_1 - z_0 & z_2 - z_0 \end{pmatrix} = 0,$$

или еквивалентно

$$\pi: \det \begin{pmatrix} x & x_1 & x_2 & x_0 \\ y & y_1 & y_2 & y_0 \\ z & z_1 & z_2 & z_0 \\ 1 & 1 & 1 & 1 \end{pmatrix} = 0.$$

4. Права в 3-мерно афинно пространство (в частност, в геометричното пространство): $n=3,\,k=1.$

Нека координатите са (x, y, z) вместо (x_1, x_2, x_3) .

Теорема 2^v. Нека точката $P_0 \in \mathcal{A}$ и ненулевият вектор $v \in U$ имат спрямо K координати $P_0(x_0, y_0, z_0)$, $v(\xi, \eta, \zeta)$. Тогава определената от тях права l в \mathcal{A} има спрямо K уравнение

$$l: \begin{cases} \det\begin{pmatrix} y - y_0 & \eta \\ z - z_0 & \zeta \end{pmatrix} = 0 \\ \det\begin{pmatrix} z - z_0 & \zeta \\ x - x_0 & \xi \end{pmatrix} = 0 \\ \det\begin{pmatrix} x - x_0 & \xi \\ y - y_0 & \eta \end{pmatrix} = 0 \end{cases}$$

Ако се вземат двете уравнения, съдържащи фиксирана ненулева координата на v, то получената система е общо уравнение на l спрямо K.

Забележка 3. Преминаване от параметрични уравнения към общо уравнение може да се прави по следния начин. Ако B е зададено с параметрични уравнения

$$B: x = x_0 + \lambda_1 \xi_1 + \dots + \lambda_k \xi_k, \quad \lambda_1, \dots, \lambda_k \in \mathbb{R},$$

то тъй като векторите ξ_1, \ldots, ξ_k са линейно независими и следователно матрицата $M' = (\xi_1 \ldots \xi_k)$ има ранг k, някои k уравнения могат да се решат относно $\lambda_1, \ldots, \lambda_k$. Замествайки в останалите n-k уравнения, получаваме линейна система за x, която е общо уравнение на B. (Всъщност Теорема 2 дава явна формула за общото уравнение.) Обратно: Ако B е зададено с общо уравнение Ax = b, то тъй като A има ранг n-k, системата може да се реши относно n-k от координатите. Останалите k координати се полагат параметри и се получават параметрични уравнения на B.

Теорема 4. Нека афинното подпространство B на A има спрямо K уравнение Ax = b (в частност, това можее да е общо уравнение на B) и нека векторът $v \in U$ има спрямо K координатен вектор $\xi \in \mathbb{R}^n$. Тогава $v \parallel B \Leftrightarrow A\xi = 0$ (тоест когато ξ е решение на хомогенната система Ax = 0, съответна на Ax = b).

Частни случаи:

1. Хиперравнина: k = n - 1.

Теорема 4'. Нека хиперравнината B в A има спрямо K общо уравнение $a_1x_1+\cdots+a_nx_n=b,$ а векторът $v\in U$ има спрямо K координатен вектор $\xi\in\mathbb{R}^n.$ Torasa $v \parallel B \Leftrightarrow a_1\xi_1 + \cdots + a_n\xi_n = 0.$

2. Права в 2-мерно афинно пространство (в частност, в геометричната равнина): n=2, k=1=n-1.

Нека координатите са (x, y) вместо (x_1, x_2) .

Теорема 4". Нека правата l в 2-мерното афинно пространство A има спрямо K общо уравнение Ax + By + C = 0, а векторът v има спрямо K координати (ξ,η) . Torasa $v \parallel l \Leftrightarrow A\xi + B\eta = 0$.

В частност, векторът u(-B, A) е ненулев вектор, колинеарен с l.

3. Равнина в 3-мерно афинно пространство (в частност, в геометричното пространство): n = 3, k = 2 = n - 1.

Нека координатите са (x, y, z) вместо (x_1, x_2, x_3) .

Теорема 4"'. Нека равнината π в 3-мерното афинно пространство \mathcal{A} има спрямо K общо уравнение Ax + By + Cz + D = 0, а векторът v има спрямо K координати (ξ, η, ζ) . Тогава $v \parallel \pi \Leftrightarrow A\xi + B\eta + C\zeta = 0$.

4. Права в 3-мерно афинно пространство (в частност, в геометричното пространство): n = 3, k = 1.

Нека координатите са (x, y, z) вместо (x_1, x_2, x_3) .

Теорема 4' $^{\circ}$. Нека правата l в 3-мерното афинно пространство \mathcal{A} има спрямо К общо уравнение

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases},$$

а векторът
$$v$$
 има спрямо K координати (ξ,η,ζ) . Тогава $v\parallel l\Leftrightarrow \left\{ \begin{array}{l} A_1\xi+B_1\eta+C_1\zeta=0\\ A_2\xi+B_2\eta+C_2\zeta=0 \end{array} \right.$

Забележка 4. В горните неща никъде не се използват някакви специфични свойства на полето на реалните числа, така че всичко важи без промяна и ако вместо $\mathbb R$ се вземе произволно поле F, тоест ако U е линейно пространство над произволно поле.

Декартово уравнение на права в равнината

Нека l е права в равнината, която не е успоредна на Oy. Нека l има спрямо K общо уравнение Ax+By+C=0. Тогава $B\neq 0$, защото ако допуснем, че B=0, то A.0+B.1=0 и значи по Теорема 2 $e_2(0,1)\parallel l$, тоест $Oy\parallel l-$ противоречие. Следователно уравнението Ax+By+C=0 е еквивалентно на $y=-\frac{A}{B}\cdot x-\frac{C}{B}$. Означаваме $k=-\frac{A}{B},\ m=-\frac{C}{B}$. Следователно l има спрямо K уравнение y=kx+m.

Уравнение на l спрямо K от тоя вид се нарича deкартово уравнение на l спрямо K. (И горните разсъждения показват, че всяка права, която не е успоредна на Oy, има декартово уравнение.) Коефициентът k се нарича σ глов коефициент на l спрямо K.

Наименованието "ъглов коефициент" идва от следното: Ако v е ненулев вектор, колинеарен с l и координатите на v спрямо K са (a,b), то $k=\frac{b}{a}$.

Нека координатната система K е ортонормирана. Тогава $k = \operatorname{tg} \alpha$, където $\alpha = \sphericalangle(Ox, r)$, където r е лъчът върху l, сочещ в полуравнината относно правата Ox, в която лежи положителната полуос на Oy, тоест в "горната полуравнина". (С други думи, посоката на r се определя от вектор върху l, чиято втора координата е неотрицателна.)

Декартово уравнение на равнина в пространството

Нека π е равнина в пространството, която не е успоредна на Oz. Нека π има спрямо K общо уравнение Ax + By + Cz + D = 0. Тогава $C \neq 0$, защото ако допуснем, че C = 0, то A.0 + B.0 + C.1 = 0 и значи по Теорема 3 $e_3(0,0,1) \parallel \pi$, тоест $Oz \parallel \pi$ — противоречие. Следователно уравнението Ax + By + Cz + D = 0 е еквивалентно на $z = -\frac{A}{C} \cdot x - \frac{B}{C} \cdot y - \frac{D}{C}$. Означаваме $k = -\frac{A}{C}$, $l = -\frac{B}{C}$, $m = -\frac{D}{C}$. Следователно π има спрямо K уравнение z = kx + ly + m.

Уравнение на π спрямо K от тоя вид се нарича deкapmoso уравнение на π спрямо K. (И горните разсъждения показват, че всяка равнина, която не е успоредна на Oz, има декартово уравнение.)