Devoir maison 7.

À rendre le jeudi 3 février 2022

Exercice

On cherche dans cet exercice l'ensemble \mathcal{E} des fonctions $f:\mathbb{R}\to\mathbb{R}$ continues en 0 et qui vérifient la propriété :

 $(*): \quad \forall (x,y) \in \mathbb{R}^2, f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$

Partie 1:

Soit f une solution du problème. On pose : $g: x \mapsto f(x) - f(0)$.

- 1°) Montrer que, pour tout $x \in \mathbb{R}, g(2x) = 2g(x)$.
- **2°)** En déduire que, pour tous réels x et y, g(x+y) = g(x) + g(y).
- 3°) Étudier la parité de g.
- **4°)** Soit $x_0 \in \mathbb{R}$. Montrer que, pour tout $x \in \mathbb{R}$, $g(x x_0) = g(x) g(x_0)$. En déduire que g est continue en x_0 .
- **5°)** On souhaite prouver que : $\forall x \in \mathbb{R}, g(x) = ax$ où a = g(1). On pose : $h : x \mapsto g(x) ax$.
 - a) Montrer que h est 1-périodique.
 - b) Justifiez soigneusement que h possède un maximum et un minimum sur $\mathbb{R}.$
 - c) Soit M le maximum de h sur \mathbb{R} et soit un réel x_1 tel que $h(x_1) = M$. En calculant, pour tout réel x, $h(x_1 + x)$, montrer que l'on a $h(x) \leq 0$.
 - d) De la même façon, en considérant le minimum de h sur \mathbb{R} , montrer que l'on a, pour tout réel $x, h(x) \geq 0$.

En déduire la fonction h puis la fonction g.

 6°) En déduire la forme de f.

Partie 2:

Déterminer l'ensemble \mathcal{E} .