Flavour Mixing Effects in the Direct Detection of Dark Matter

Anja Beck

Lehrstuhl für Theoretische Physik IV Fakultät Physik Technische Universität Dortmund

1. August 2017

Flavour Mixing Effects in the Direct Detection of Dark Matter

Effects in the

Dunkle Materie

Flavour Mixing Effects in the Direct Detection of Dark -07-29 Matter Einführung

Abbildung: Energieverteilung im Universum (ESA, Planck Collaboration 2013

-Einführung

Menschen schauen schon immer in den Himmel. Dunkle Materie als Lösung für zu schnelle Galaxien. Großteil dessen was das Universums ausmacht ist unbekannt.

Abbildung: Energieverteilung im Universum (ESA, Planck Collaboration 2013)

Einführung Direct Detection

Flavour Mixing Effects in the Direct Detection of Dark 2017-07-29 Matter -Einführung -Einführung

Einführung

Abbildung: Streuung eines DM-Teilchens am Atomkern.

Flavour Mixing Effects in the Direct Detection of Dark Matter	Flavour-Mischung Ursprung	Flavour Mixing Effects in the Direct Detection of Dark Natter Flavour-Mischung	Flavour-Mischung. De Masser-Egentrustinds sind nicht gleich den Flavour-Egenzustanden.
Anja Beck	Die Massen-Eigenzustände sind nicht gleich den Flavour-Eigenzuständen.	Flavour-Mischung Flavour-Mischung	
Einführung Flavour- Mischung			
Verwendeter Formalismus			
Neue Wechsel- wirkung			
Ergebnisse			
Literatur			
4/19			

 $\mathcal{L}^{(\text{mass})} = -rac{v}{\sqrt{2}} \left[ar{E}_L \lambda^e E_R + ar{D}_L \lambda^d D_R + ar{U}_L \lambda^u U_R + ext{h.c.}
ight]$

Flavour Mixing

Effects in the

Flavour-Mischung

Die Massen-Eigenzustände sind nicht gleich den

Flavour-Mischung

Effects in the

Direct Detection

of Dark Matter

Anja Beck

Flavour-Mischung

Flavour-Mischung Ursprung Die Massen-Eigenzustände sind nicht gleich den

Flavour-Eigenzuständen.

$$\mathcal{L}^{(\text{mass})} = -\frac{v}{\sqrt{2}} \left[\bar{E}_L \lambda^e E_R + \bar{D}_L \lambda^d D_R + \bar{U}_L \lambda^u U_R + \text{h.c.} \right]$$

• Massenterme werden durch unitäre Rotation der Teilchen-Multipletts diagonalisiert:

$$E_I \rightarrow S_e E_I \qquad E_R \rightarrow R_e E_R$$

 $\mathcal{L}^{(exacc)} = -\frac{\nu}{-\overline{\mathcal{L}}} \left[\tilde{E}_L \lambda^a E_R + \tilde{D}_L \lambda^d D_R + \tilde{U}_L \lambda^a U_R + h.c. \right]$

Flavour-Mischung

· Massenterme werden durch unitäre Rotation der

Feilchen-Multipletts diagonalisiert: $E_1 \rightarrow S_a E_1 \quad E_0 \rightarrow R_a E_0$

Die Massen-Eigenzustände sind nicht gleich den Flavour-Eigenzuständen.

Effects in the

Direct Detection

of Dark Matter

Die Massen-Eigenzustände sind nicht gleich den Flavour-Eigenzuständen.

$$\mathcal{L}^{(\mathsf{mass})} = -rac{v}{\sqrt{2}} \left[ar{E}_L \lambda^e E_R + ar{D}_L \lambda^d D_R + ar{U}_L \lambda^u U_R + \mathsf{h.c.}
ight]$$

• Massenterme werden durch unitäre Rotation der Teilchen-Multipletts diagonalisiert:

$$E_L
ightarrow S_e E_L \qquad E_R
ightarrow R_e E_R \ ar{E}_L \lambda^e E_R
ightarrow ar{E}_L S_e^\dagger \lambda^e R_e E_R$$

Flavour Mixing Effects in the Direct Detection of Dark Matter Flavour-Mischung

-Flavour-Mischung

Die Massen-Eigenzustände sind nicht gleich den Flavour-Eigenzuständen. $\mathcal{L}^{(exacc)} = -\frac{\nu}{-\overline{\mathcal{L}}} \left[\tilde{E}_L \lambda^a E_R + \tilde{D}_L \lambda^d D_R + \tilde{U}_L \lambda^a U_R + h.c. \right]$ · Massenterme werden durch unitäre Rotation der Feilchen-Multipletts diagonalisiert: $E_1 \rightarrow S_a E_1 \quad E_0 \rightarrow R_a E_0$

 $\tilde{E}_L \lambda^e E_R \rightarrow \tilde{E}_L S_e^{\dagger} \lambda^e R_e E_R$

Flavour-Mischung

4/19

Flavour-

Flavour Mixing

Flavour-Mischung Effects in the Direct Detection Ursprung of Dark Matter Anja Beck Die Massen-Eigenzustände sind nicht gleich den

Flavour-Eigenzuständen.

$$\mathcal{L}^{(\text{mass})} = -\frac{v}{\sqrt{2}} \left[\bar{E}_L \lambda^e E_R + \bar{D}_L \lambda^d D_R + \bar{U}_L \lambda^u U_R + \text{h.c.} \right]$$

• Massenterme werden durch unitäre Rotation der Teilchen-Multipletts diagonalisiert:

$$E_I
ightarrow S_e E_I \qquad E_R
ightarrow R_e E_R$$

$$ar{\mathcal{E}}_{\!I}\,\lambda^{\mathrm{e}}\mathcal{E}_{\!R}
ightarrowar{\mathcal{E}}_{\!I}\,S_{\mathrm{e}}^{\dagger}\lambda^{\mathrm{e}}\mathcal{R}_{\mathrm{e}}\mathcal{E}_{\!R}$$

$$ar U_I \gamma^\mu D_I o ar U_I \gamma^\mu S_u^\dagger S_d D_I$$

Matter Flavour-Mischung -Flavour-Mischung

Flavour Mixing Effects in the Direct Detection of Dark

 $\mathcal{L}^{(exacc)} = -\frac{\nu}{-\overline{\mathcal{L}}} \left[\tilde{E}_L \lambda^a E_R + \tilde{D}_L \lambda^d D_R + \tilde{U}_L \lambda^a U_R + h.c. \right]$ · Massenterme werden durch unitäre Rotation der Feilchen-Multipletts diagonalisiert:

Die Massen-Eigenzustände sind nicht gleich den Flavour-Eigenzuständen.

 $E_1 \rightarrow S_a E_1 \quad E_0 \rightarrow R_a E_0$ $\tilde{E}_1 \lambda^a E_0 \rightarrow \tilde{E}_1 S^{\dagger} \lambda^a R_a E_0$ · Dadurch verändert sich der Strom

 $\tilde{U}_L \gamma^{\mu} D_L \rightarrow \tilde{U}_L \gamma^{\mu} S_{\nu}^{\dagger} S_d D_L$

Beträge der Matrix-Elemente:

$$V_{\mathsf{CKM}} = \begin{pmatrix} 0.974 & 0.225 & 0.004 \\ 0.220 & 0.995 & 0.041 \\ 0.008 & 0.040 & 1.009 \end{pmatrix}$$

Flavour Mixing Effects in the Direct Detection of Dark Matter		Formalismus Operatoren	
Anja Beck	Unchirale Operatoren:		
Einführung Flavour- Mischung Verwendeter Formalismus	$egin{aligned} R_{1,q} &= (ar{\chi}\gamma_{\mu}\chi)(ar{q}\gamma^{\mu}q) \ R_{2,q} &= (ar{\chi}\gamma_{\mu}\gamma_5\chi)(ar{q}\gamma^{\mu}q) \end{aligned}$	$egin{aligned} R_{3,q} &= (ar{\chi}\gamma_{\mu}\chi)(ar{q}\gamma^{\mu}\gamma_5q) \ R_{4,q} &= (ar{\chi}\gamma_{\mu}\gamma_5\chi)(ar{q}\gamma^{\mu}\gamma_5q) \end{aligned}$	
Neue Wechsel- wirkung Ergebnisse Literatur	Chirale Operatoren: $Q_{1ij} = (\bar{\chi}\gamma_{\mu}\tilde{\tau}^{3}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}\tau^{3}Q_{L}^{j})$	$Q_{5ij} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\tilde{\tau}^{3}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}\tau^{3}Q_{L}^{j})$	
	$egin{aligned} Q_{2ij} &= (ar{\chi}\gamma_{\mu}\chi)(ar{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{j}) \ Q_{3ij} &= (ar{\chi}\gamma_{\mu}\chi)(ar{U}_{R}^{i}\gamma^{\mu}U_{R}^{j}) \ Q_{4ij} &= (ar{\chi}\gamma_{\mu}\chi)(ar{D}_{R}^{i}\gamma^{\mu}D_{R}^{j}) \end{aligned}$	$Q_{6ij} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{i})$ $Q_{7ij} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{U}_{R}^{i}\gamma^{\mu}U_{R}^{j})$ $Q_{8ij} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{D}_{R}^{i}\gamma^{\mu}D_{R}^{j})$	
6/19	Ziel: Drücke die Koeffizienten der unchiralen Operatoren in Abhängigkeit der Koeffizienten der chiralen Operatoren aus.		

2017-07-29 -Verwendeter Formalismus Chirale Operatoren: $Q_{k\bar{q}} = (\bar{\chi}\gamma_{\mu}\bar{\tau}^3\chi)(\bar{Q}_L^i\gamma^{\mu}\tau^3Q_L^i)$ $Q_{k\bar{q}} = (\bar{\chi}\gamma_{\mu}\gamma_5\bar{\tau}^3\chi)(\bar{Q}_L^i\gamma^{\mu}\tau^3Q_L^i)$ $Q_{2ij} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{Q}_L^i\gamma^{\mu}Q_L^i)$ $Q_{1ij} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{U}_R^i\gamma^{\mu}U_R^j)$ $Q_{4j} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{D}_{R}^{j}\gamma^{\mu}D_{R}^{j})$ -Formalismus Ziel: Drücke die Koeffizienten der unchiralen Operatoren in Abhängigkeit der Koeffizienten der chiralen Operatoren aus.

Flavour Mixing Effects in the Direct Detection of Dark

Matter

Formalismus

 $R_{3,q} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{q}\gamma^{\mu}\gamma_5 q)$

 $R_{4,q} = (\tilde{\chi}\gamma_{\mu}\gamma_5\chi)(\tilde{q}\gamma^{\mu}\gamma_5q)$

 $Q_{6ij} = (\tilde{\chi}\gamma_{\mu}\gamma_{5}\chi)(\tilde{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{j})$

 $Q_{7ij} = (\tilde{\chi}\gamma_{\mu}\gamma_{5}\chi)(\tilde{U}_{R}^{i}\gamma^{\mu}U_{R}^{j})$

 $Q_{k\bar{j}} = (\bar{\chi}\gamma_{\mu}\gamma_5\chi)(\bar{D}_R^i\gamma^{\mu}D_R^j)$

Unchirale Operatoren:

 $R_{1,q} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{q}\gamma^{\mu}q)$

 $R_{2,q} = (\bar{\chi}\gamma_{\mu}\gamma_5\chi)(\bar{q}\gamma^{\mu}q)$

Flavour Mix

Direct Detec

of Dark Mar

Verwendete Formalismu

Verwendeter Formalismus

Einfügen der CKM-Matrix:

Effects in the

Formalismus Rechnung: Schritt 2

Verwendeter Formalismus

Identifikation der nicht-chiralen Operatoren:

und rechtshändigen Projektoren:

Umschreiben der chiralen Teilchen-Multipletts mit den links-

$$\begin{split} \bar{Q}_L^i \gamma^\mu Q_L^j &= \frac{1}{2} (\bar{u} \gamma^\mu u \delta_{iu} \delta_{ij} + V_{id}^* V_{jd} \bar{d} \gamma^\mu d + V_{is}^* V_{js} \bar{s} \gamma^\mu s) \\ &- \frac{1}{2} (\bar{u} \gamma^\mu \gamma_5 u \delta_{iu} \delta_{ij} + V_{id}^* V_{jd} \bar{d} \gamma^\mu \gamma_5 d + V_{is}^* V_{js} \bar{s} \gamma^\mu \gamma_5 s) \end{split}$$

-Verwendeter Formalismus

Matter

-Formalismus

Flavour Mixing Effects in the Direct Detection of Dark Imschreiben der chiralen Teilchen, Multipletts mit den lieb

> $\tilde{Q}_i^i \gamma^\mu Q_i^i = \frac{1}{2} (\tilde{u} \gamma^\mu u \delta_{ik} \delta_{il} + V_{il}^* V_{kl} \tilde{d} \gamma^\mu d + V_{il}^* V_{kl} \tilde{s} \gamma^\mu s)$ $-\frac{1}{2}(\bar{u}\gamma^{\mu}\gamma_{5}u\delta_{ia}\delta_{i} + V_{id}^{*}V_{id}\bar{d}\gamma^{\mu}\gamma_{5}d + V_{ia}^{*}V_{id}\bar{s}\gamma^{\mu}\gamma_{5}s)$

> > $Q_{2ij} = \frac{1}{2} (R_{1a}\delta_{ia}\delta_{ij} + V_{id}^*V_{jd}R_{1d} + V_{ic}^*V_{jc}R_{1c})$ $\frac{1}{\pi}(R_{ba}\delta_{ia}\delta_{ii} + V_{ca}^*V_{id}R_{bd} + V_{c}^*V_{ic}R_{bc})$

Formalismus

 $\sum_{l,q} K_{l,q} R_{l,q} \stackrel{!}{=} \sum_{m,i,j} C_{mij} Q_{mij}$

ortieren der rechten Seite nach
$$R_{l,q}$$
 liefert einergleich die Abhängigkeiten $K_{l,q}(C_{min})$

Nach dem Umsortieren der rechten Seite nach $R_{l,a}$ liefert ein Koeffizienten-Vergleich die Abhängigkeiten $K_{l,q}(C_{mii})$.

Effects in the Direct Detection of Dark Matter Anja Beck

Neue Wechselwirkung

Flavour Mixing

Neue Wechselwirkung

- Neue U(1)-Symmetrie mit Eichboson Z' [1]
- Unter der neuen Wechselwirkung geladene Teilchen:
 - Leptonen der zweiten und dritten Generation
 - Neue Quarks
 - Dunkle Materie [2]

Flavour Mixing Effects in the Direct Detection of Dark 2017-07-29 Matter Neue Wechselwirkung -Neue Wechselwirkung

Neue Wechselwirkung

 Neue U(1)-Symmetrie mit Eichboson Z' [1] · Unter der neuen Wechselwirkung geladene Teilchen

Legtonen der zweiten und dritten Generation

Neue Quarks

. Dunkle Materie (2)

Neue Wechselwirkung

Anja Beck

Neue Wechselwirkung

- Neue U(1)-Symmetrie mit Eichboson Z' [1]
- Unter der neuen Wechselwirkung geladene Teilchen:
 - Leptonen der zweiten und dritten Generation
 - Neue Quarks
 - Dunkle Materie [2]

Abbildung: Wechselwirkung von SM-Quarks mit dem Eichboson Z' (aus [1])

Flavour Mixing Effects in the Direct Detection of Dark -07-29 Matter Neue Wechselwirkung -Neue Wechselwirkung

Neue Wechselwirkung Neue U(1)-Symmetrie mit Eichboson Z' [1] . Unter der neuen Wechselwirkung geladene Teilcher Leptonen der zweiten und dritten Generation

Effects in the

Direct Detection

of Dark Matter Anja Beck

Neue Wechselwirkung Erklärung seltener B-Zerfälle

 $\bar{u}, \bar{d}, \bar{s}$

Abbildung: $B \to K \mu \bar{\mu}$ bzw. $B_s \to \Phi \mu \bar{\mu}$

Neue Wechselwirkung

Matter

Flavour Mixing Effects in the Direct Detection of Dark

Neue Wechselwirkung Erklänung seltener B-Zerfälle

-Neue Wechselwirkung

Neue Wechselwirkung Erklärung seltener B-Zerfälle

Flavour Mixing

Effects in the

Effects in the Direct Detection of Dark Matter

Flavour Mixing

Neue Wechselwirkung

Erklärung seltener *B*-Zerfälle

Anja Beck

Einführun

Flavour-Mischun

Verwendeter Formalismus

Neue Wechselwirkung

Ergebniss

Abbildung: $b o s \mu \bar{\mu}$

Beschreibung mit Z'-Austausch:

$$H=rac{Y_{Qb}Y_{Qs}^*}{2m_Q^2}(ar{s}_L\gamma_\mu b_L)(ar{\mu}\gamma^\mu\mu)-rac{Y_{Db}Y_{Ds}^*}{2m_D^2}(ar{s}_R\gamma_\mu b_R)(ar{\mu}\gamma^\mu\mu)$$

Flavour Mixing Effects in the Direct Detection of Dark

Natter

Neue Wechselwirkung

Neue Wechselwirkung

Neue Wechselwirkung

Erklärung seltener *B*-Zerfälle

Neue Wechselwirkung

Abbildung: $b \to s \mu \bar{\mu}$

Beschreibung mit Z'-Austausch:

$$H=rac{Y_{Qb}Y_{Qs}^*}{2m_Q^2}(ar{s}_L\gamma_\mu b_L)(ar{\mu}\gamma^\mu\mu)-rac{Y_{Db}Y_{Ds}^*}{2m_D^2}(ar{s}_R\gamma_\mu b_R)(ar{\mu}\gamma^\mu\mu)$$

Beschränkung der Masse auf:

$$m_{Q,D}pprox 25\,{
m TeV}\,\sqrt{{
m Re}\left(Y_{(Q,D)b}Y_{(Q,D)s}
ight)}$$

Flavour Mixing Effects in the Direct Detection of Dark 2017-07-29 Matter Neue Wechselwirkung -Neue Wechselwirkung

Effects in the Direct Detection of Dark Matter Anja Beck

Flavour Mixing

Neue Wechselwirkung

Loop-Diagramm zur Streuung am Atomkern

Neue Wechselwirkung

Flavour Mixing Effects in the Direct Detection of Dark 2017-07-29 Matter Neue Wechselwirkung -Neue Wechselwirkung

Direct Detection of Dark Matter

Direct Detection mit Flavour-Mischung

Anja Beck

Flavour Mixing

Effects in the

Ergebnisse

 b_L, s_L s_L, b_L Abbildung: Tree-Wechselwirkung zur

Streuung DM am Atomkern.

Flavour Mixing Effects in the Direct Detection of Dark Matter -Ergebnisse

2017-07-29

Direct Detection mit Flavour-Mischung

-Direct Detection mit Flavour-Mischung

Direct Detection mit Flavour-Mischung

$$Q_{2sb} = C(\bar{\chi}\gamma_{\mu}\chi)(\bar{Q}_L^2\gamma^{\mu}Q_L^3)$$

 $Q_{6sb} = C(\bar{\chi}\gamma_{\mu}\gamma_5\chi)(\bar{Q}_L^2\gamma^{\mu}Q_L^3)$

Abbildung:

Tree-Wechselwirkung zur Streuung DM am Atomkern.

Flavour Mixing Effects in the Direct Detection of Dark -07-29 Matter Ergebnisse 201 -Direct Detection mit Flavour-Mischung

Direct Detection mit Flavour-Mischung

Anja Beck

Ergebnisse

Abbildung:

Tree-Wechselwirkung zur Streuung DM am Atomkern. Mögliche chirale Wechselwirkungen

$$Q_{2sb} = C(\bar{\chi}\gamma_{\mu}\chi)(\bar{Q}_{L}^{2}\gamma^{\mu}Q_{L}^{3})$$

$$Q_{6sb} = C(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{Q}_{L}^{2}\gamma^{\mu}Q_{L}^{3})$$

Flavour Mixing Effects in the Direct Detection of Dark -07-29 Matter Ergebnisse 201

-Direct Detection mit Flavour-Mischung

Direct Detection mit Flavour-Mischung Mögliche chirale Wechselwirkungen $Q_{2ab} = C(\tilde{\chi}\gamma_{\mu}\chi)(\tilde{Q}_L^2\gamma^{\mu}Q_L^3)$

Direct Detection mit Flavour-Mischung

Abbildung:

Tree-Wechselwirkung zur Streuung DM am Atomkern. Mögliche chirale Wechselwirkungen

$$Q_{2sb} = C(\bar{\chi}\gamma_{\mu}\chi)(\bar{Q}_{L}^{2}\gamma^{\mu}Q_{L}^{3})$$

$$Q_{6sb} = C(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{Q}_{L}^{2}\gamma^{\mu}Q_{L}^{3})$$

Nicht-chirale Wechselwirkungen:

$$+\text{Re}(V_{cd}^*V_{td}C) \qquad (\bar{\chi}\gamma_{\mu}\chi)(\bar{d}\gamma^{\mu}d) \\ +\text{Re}(V_{cs}^*V_{ts}C) \qquad (\bar{\chi}\gamma_{\mu}\chi)(\bar{s}\gamma^{\mu}s) \\ -\text{Re}(V_{cd}^*V_{td}C) \qquad (\bar{\chi}\gamma_{\mu}\chi)(\bar{d}\gamma^{\mu}\gamma_5d) \\ -\text{Re}(V_{cs}^*V_{ts}C) \qquad (\bar{\chi}\gamma_{\mu}\chi)(\bar{s}\gamma^{\mu}\gamma_5s) \\ \end{aligned}$$

Flavour Mixing Effects in the Direct Detection of Dark -07-29 Matter Ergebnisse

-Direct Detection mit Flavour-Mischung

 b_L, s_L

Direct Detection mit Flavour-Mischung

 s_L, b_L

Abbildung:

Tree-Wechselwirkung zur Streuung DM am Atomkern. Mögliche chirale Wechselwirkungen

$$Q_{2sb} = C(\bar{\chi}\gamma_{\mu}\chi)(\bar{Q}_{L}^{2}\gamma^{\mu}Q_{L}^{3})$$
$$Q_{6sb} = C(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{Q}_{L}^{2}\gamma^{\mu}Q_{L}^{3})$$

Nicht-chirale Wechselwirkungen:

$$+\text{Re}(V_{cd}^*V_{td}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{d}\gamma^{\mu}d)$$

$$+\text{Re}(V_{cs}^*V_{ts}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{s}\gamma^{\mu}s)$$

$$-\text{Re}(V_{cd}^*V_{td}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{d}\gamma^{\mu}\gamma_5d)$$

$$-\text{Re}(V_{cs}^*V_{ts}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{s}\gamma^{\mu}\gamma_5s)$$

Flavour Mixing Effects in the Direct Detection of Dark -07-29 Matter Ergebnisse

Mögliche chirale Wechselwirkungen $Q_{2ab} = C(\tilde{\gamma}\gamma_a\gamma)(\tilde{Q}_c^2\gamma^{\mu}Q_c^3)$ Gicht-chirale Wechselwirkungen:

Direct Detection mit Flavour-Mischung

-Direct Detection mit Flavour-Mischung

 b_L, s_L

Abbildung:

Tree-Wechselwirkung zur Streuung DM am Atomkern.

 s_L, b_L

Mögliche chirale Wechselwirkungen

Nicht-chirale Wechselwirkungen:

$$+\text{Re}(V_{cd}^*V_{td}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{d}\gamma^{\mu}d)$$

$$+\text{Re}(V_{cs}^*V_{ts}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{s}\gamma^{\mu}s)$$

$$-\text{Re}(V_{cd}^*V_{td}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{d}\gamma^{\mu}\gamma_5d)$$

$$-\text{Re}(V_{cs}^*V_{ts}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{s}\gamma^{\mu}\gamma_5s)$$

-Direct Detection mit Flavour-Mischung

Direct Detection mit Flavour-Mischung

Direct Detection mit Flavour-Mischung

Mögliche chirale Wechselwirkungen

Anja Beck

Ergebnisse

 b_L, s_L s_L, b_L

Abbildung:

Tree-Wechselwirkung zur Streuung DM am Atomkern.

 $(C = q_{\chi} \frac{Y_{Qb} Y_{Qs}^*}{2m_{Qs}^2})$: $Q_{2sb} = C(ar{\chi}\gamma_{\mu}\chi)(ar{Q}_{L}^{2}\gamma^{\mu}Q_{L}^{3})$ $Q_{6sb} = C(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{Q}_{I}^{2}\gamma^{\mu}Q_{I}^{3})$ Nicht-chirale Wechselwirkungen: $+\text{Re}(V_{cd}^*V_{td}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{d}\gamma^{\mu}d)$ $+\text{Re}(V_{cs}^*V_{ts}C) \qquad (\bar{\chi}\gamma_{\mu}\chi)(\bar{s}\gamma^{\mu}s)$

 $-\text{Re}(V_{cd}^*V_{td}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{d}\gamma^{\mu}\gamma_5d)$

 $-\text{Re}(V_{cs}^*V_{ts}C) \quad (\bar{\chi}\gamma_{\mu}\chi)(\bar{s}\gamma^{\mu}\gamma_5s)$ $\sigma_{0,\text{tree}} = \frac{\mu_{A\chi}^2}{A2\pi} \left| Z \cdot \text{Re}(V_{cd}^* V_{td} C) + (A - Z) \cdot 2 \cdot \text{Re}(V_{cd}^* V_{td} C) \right|^2$ Flavour Mixing Effects in the Direct Detection of Dark Matter -Ergebnisse

-Direct Detection mit Flavour-Mischung

 $\sigma_{0,\text{tast}} = \frac{\mu_{Ay}^2}{2\Delta} |Z \cdot \text{Re}(V_{cd}^* V_{rd} C) + (A - Z) \cdot 2 \cdot \text{Re}(V_{cd}^* V_{rd} C)|^2$

14/19

Einschränkung aus den B-Zerfällen 1 Real- und Imaginärteil von *C* variabel

Flavour Mixing

Effects in the

Ergebnisse

Einschränkung aus der Relic Density $g'=2\cdot 10^{-3}$

Ergebnisse

Einschränkung aus der Relic Density

-Einschränkung aus der Relic Density

-07-29

Matter

-Ergebnisse

Literatur

[hep-ph]. W. Altmannshofer, S. Gori, S. Profumo und F. S. Queiroz.

Explaining Dark Matter and B Decay Anomalies with an L_{μ} – 2017. arXiv: 1609.04026v2 [hep-ph].

W. Altmannshofer, S. Gori, M. Pospelov und I. Yavin. Dressing $L_{\mu} - L_{\tau}$ in Color. 2016. arXiv: 1403.1269v3

-Bibliographie

Flavour Mixing Effects in the Direct Detection of Dark