לינארית ל \sim משפט קיילי־המילטון

שחר פרץ

2025 באפריל 2025

REMINDERS..... הגדרה 1. מטריצה ניתנת לישלוש אם היא דומה למשולשית. . משולשית $[T]_B$ מיים כך ש $B\subseteq V$ משולשית אם הגדרה $T\colon V o V$ ט"ל $f_T(T)=0,\;f_A(A)=0$ משפט 1. (קיילי המילטון) תהי $T\colon V o B$ ט"ל $T\colon V o B$ ט"ל (דיס) או $T\colon V o B$ הפ"א, אז $f(A)=0\iff f(T)=0$ אז $f\in\mathbb{F}[x]$. רf(A)=0 משפט 2. אס f(A)=0 מייצגת של העתקה (באופן כללי, עבור כל פולינום). משפט 3. ט"ל משולשית ו-A ניתנת לשילוש, אמ"מ הפ"א האופייני שלהם מתפצל לגורמים לינארים. הוכחה. נוכיח את המשפט בשלושה שלבים – $orall i\in [n]\colon Tv_i\in S$ משולשית (עליונה). אאר מתקיים אמ"מ בסיס מיים בסיס $B=:(v_1\dots v_n)$ כך ש־ $B=:(v_1\dots v_n)$. נפנה להוכיח את משפט קיילי־המילטון למקרה $\mathrm{span}(v_1 \dots v_i)$ (העתקה ממדית היא כפל בסקלר). $f_T(T)=T-\lambda I=0$ בי ער כך אז קיים אז ממדית היא כפל בסקלר). $\lambda\in\mathbb{F}$ $\forall v \in V \colon (T - \lambda)v = 0$ בפרט , $\dim W \leq \dim V$ כך ש־ $W = \mathrm{span}(v_1 \dots v_n)$ משולשית. קיים תמ"ו $B = (v_1 \dots v_n, v_{n+1})$ כך ש־ $B = (v_1 \dots v_n, v_{n+1})$ הצמצום של T ל- $W: f_{T|_W}(T)(w) = 0$, ידוע ש $T|_w$ ניתנת לשילוש ולכן מקיימת את תנאי האינדוקציה. לכן, $T|_w$ ניתנת לשילוש ולכן מקיימת את האינדוקציה. $A \cdot \forall w \in W \colon f_T(T)(w) = 0$ וקיבלנו $f_T(x) = (x - \lambda_{n+1}) f_{T|_W}(x)$ וסה"כ וסה"כ $f_{T|_W}(x) = \prod_{i=1}^n (x - \lambda_i)$ מספיק להראות ש־ $v \in V \colon (T-\lambda_{n+1})v \in W$. למה? כי:

$$f_T(T)(v) = \left(\prod_{i=1}^n (T - \lambda_i)\right) (T - \lambda_{n+1})(v)$$

מלינאריות, מספיק להראות ש־W שכן $[T]_{n}$, שכן זה מתקיים על כל בסיס אחר. אך זה ברור – עבור $[T]_{n}$ העמודה מלינאריות, מספיק להראות ש־ :האחרונה היא

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \\ \lambda_{n+1} \end{pmatrix}$$

ולכן:

$$T(v_{n+1}) = \alpha_1 v_1 + \dots + \alpha_n v_n + \lambda_{n+1} v_{n+1} \implies (T - \lambda_{n+1})(v_{n+1}) = \alpha_1 v_1 + \dots + \alpha_n v_n \in W$$

• נוכיח בעבור מטריצה משולשית/ניתנת לשילוש.

הוכחה. אם A משולשית, אז $T_A(x)=f_{T_A}(x)$ כאשר $T_A\colon \mathbb{F}^n o \mathbb{F}^n$ המוגדרת ע"י $T_A(x)=f_{T_A}(x)$, ואז $T_A(x)=f_{T_A}(x)$ ניתנת לשילוש וסיימנו. אם A ניתנת לשילוש, אז היא דומה למשולשית, והן בעלות אותו הפולינום האופייני. אז חזרה לתחילת ההוכחה.

עבור T כללית או \bullet

הוכחה. נניח $f_A(x)$ אמ"מ $f_A(x)$ מתפצל. טענה מהעתיד $f_T(x)=f_A(x)$ אידוע ש $f_A(x)$ מתפצל. טענה מהעתיד $A=[T]_B$ הוכחה. נניח הלא רחוק: לכל שדה \mathbb{F} קיים שדה $\mathbb{F}\subseteq K$ סגור אלגברית (כל פולינום מעל שדה סגור אלגברית מפתצל). על כן, ניתן לחשוב על

ולכן (מעל K), הפולינום האופייני מעל R הוא אותו הפולינום האופייני מעל R . לכן הוא מתפצל (מעל R), ולכן $A\in M_n(\mathbb{F})$ הוא דומה למשולשית, ומהמקרה הראשון $f_A(A)=0$. זאת כי $f_A(A)=0$ לא תלוי בשדה עליו אנו עובדים, וסה"כ הוכחנו בעבור מטריצה
בללית, ולכן לכל ט"ל.
הערה על שדות סגורים אלגברית. (אולי לא נאמר בקורס) העובדה שלכל שדה יש שדה שסגור אלגברית – טענה שתלויה באקסיומת הבחירה. הסגור האלגברי הוא יחיד.
RINGS
מה זה אובייקט אלגברי? דוגמאות: תמורות, חבורות, שדות, מרחבים וקטורים, ועוד. הרעיון – "Data עם אקסיומות".
הגדרה 3. חוג עס יחידה הוא קבוצה עם שתי פעולות, כפל וחיבור, ניטרלים לפעולות (0, 1) כך שמתקיימות כל אקסיומות השדה למעט (אולי) קיום איבר הופכי, וקומטטיביות הכפל.
אנחנו נתעניין ספצפית בחוגים קומטטיבים, כלומר, בהם הכפל כן קומטטיביים. המטריצות הריבועיות מעל אותו הגודל, לדוגמה, הוא חוג שאיננו קומטטיבי. החוג ה"בסיסי ביותר" – חוג השלמים (אין הופכי). ישנם חוגים בלי יחידה (לדוגמה הזוגיים בלי יחידה), לא נדבר עליהם.

שחר פרץ, 2025

אונצר באמצעות תוכנה חופשית בלכד $\mathrm{L}^{\!\!A} T_{\!\!E} X$