$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}$$

$$AC = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 10 & 12 \\ 20 & 24 \end{bmatrix}$$

$$A(B+C) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 11 & 12 \\ 23 & 24 \end{bmatrix}$$

 $Yep.$

Eliminating up wards by Ganss Fordan, we get

U'= [1 -a ac-b]

O 1 -C

O 0 1