Upcoming Schedule

- One more programming assignment, details likely Thursday after the break. Due date will be April 11, the last class meeting before final projects.
- Final Project presentations last 2 weeks of classes and <u>maybe</u> Finals week (Tue April 30 6pm).
- Proposals for projects will be due March 21.

Final Project preview

Proposal Due March 21

- Statement of the problem you want to solve.
- Outline of approach or algorithm you plan to use, References?
- Questions or issues do you plan to investigate.
- It want, you can discuss your idea with me beforehand.
- Undergrad projects can be a teamed project, no more than 3 students per team. Project scope should match team size.

Possibilities

- Numerical PDEs
- Numerical Linear Algebra
 - Sparse Matrix times Vector
- Monte Carlo Methods
 - Neutron Transport
- Sorting
- Others: searching, dense linear algebra, maximal independent sets, graph coloring ...
- Any topic from texts that we haven't covered
- Other styles of parallelism on other machines: "Proof of concept" recommended before proposal.

Numerical PDEs

Parallel multigrid solvers for partial differential equations in coastal ocean simulation

Jim E. Jones: Math

Steven Jachec: Marine and Environmental Systems

Anjali Ram PhD Math 2011

Osita Onyejekwe MS Math 2012

Work partially supported by NSF Grant No. CNS 09-23050 ONR Early Student Support Grant (# N000141110170)

Tidal effects: surface and internal

Bay of Fundy, New Brunswick, Canada

Pineda Woods Hole, Annual Report 1998

Newton's Principia Early numerical model of tides

$$F = ma$$

$$F = G \frac{mM}{r^2}$$

Stanford Unstructured Non-hydrostatic Terrain-following Adaptive Navier-**Stokes Simulator**

The three-dimensional Navier-Stokes equations with the Boussinesq approximation in a rotating frame, after filtering with either Reynolds-averaging or via a large-eddy simulation and employing an eddy viscosity model, are given by

$$\frac{\partial u}{\partial t} + \nabla \cdot (\vec{u}u) - fv + bw = -\frac{1}{\rho_0} \frac{\partial p}{\partial x} + \nabla_H \cdot (v_H \nabla_H u) + \frac{\partial}{\partial z} (v_V \frac{\partial u}{\partial z})$$

$$\frac{\partial v}{\partial t} + \nabla \cdot (\vec{u}v) + fu = -\frac{1}{\rho_0} \frac{\partial p}{\partial y} + \nabla_H \cdot (v_H \nabla_H v) + \frac{\partial}{\partial z} (v_V \frac{\partial v}{\partial z})$$

$$\frac{\partial w}{\partial t} + \nabla \cdot (\vec{u}w) - bu = -\frac{1}{\rho_0} \frac{\partial p}{\partial z} + \nabla_H \cdot (v_H \nabla_H w) + \frac{\partial}{\partial z} (v_V \frac{\partial w}{\partial z}) - \frac{g}{\rho_0} (\rho_0 + \rho)$$

Fringer, Gerriten, Street Ocean Modeling

2006

http://www.stanford.edu/~fringer/research.html

$$\frac{\partial u}{\partial t} + \nabla \cdot (\vec{u}u) - fv + bw = -\frac{1}{\rho_0} \frac{\partial p}{\partial x} + \nabla_H \cdot (v_H \nabla_H u) + \frac{\partial}{\partial z} (v_V \frac{\partial u}{\partial z})$$

If you can't do a problem, there is a simpler problem you do not understand. Your first job is to find that simpler problem.

$$u_t - (u_{xx} + u_{yy}) = f$$

Discretization approximates the differential problem by an algebraic one

$$Au = f$$

Continuous to Discrete in 2D

$$u_{xx}(x, y) \approx \frac{1}{h^2} (u(x-h, y) - 2u(x, y) + u(x+h, y))$$

Approximated derivative at a point by an algebraic equation involving function values at nearby points

By Taylor's Theorem, the error in this approximation (the truncation error) is $O(h^2)$

$$u_{xx} + u_{yy}$$

$$\frac{1}{h^2}(u(x-h,y)+u(x,y-h)-4u(x,y)+u(x+h,y)+u(x,y+h))$$

Error in approximation is determined by the mesh size h. Difference between differential solution and algebraic solution goes to zero as h does.

Solve the heat equation in 2d

- Develop Parallel Code.
- Run on Blueshark.
- Investigate speed-ups and scalability.
- Explore different partition strategies.

Related PDE possible projects

- Implicit methods for time dependent problems.
- Use parallel libraries (hypre, PetSc, ...)
- Run on Blueshark.
- Investigate speed-ups and scalability.

Sparse MPI Matvec

Sparse Matrix times Dense Vector

- y=Ax
- Store only non-zero's of A

```
      6
      0
      0
      4
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

Sparse Matrix times Dense Vector

- Develop Parallel MPI Code.
- Challenge is minimize the communication and allow general sparsity structure.
- Run on Blueshark.
- Investigate speed-ups and scalability.

Monte Carlo

Ratio of areas

$$\frac{\pi D^2/4}{D^2} = \frac{\pi}{4}$$

Ratio of areas

Ratio of "hits"

- Monte Carlo approximates
- Parallelization by running trials on each processor

- Issues
 - accuracy vs. number of trials
 - parallel random number generators
- Applications
 - Neutron Transport

- Issues
 - accuracy vs. number of trials
 - parallel random number generators
- Applications
 - Neutron Transport

$$C = C_s + C_c$$

While not done

Travel Random Distance L=-In(u)/C

If outside slab, done.

Interact with atom (random outcome)

If (u<C_c/C) absorbed, done.

Else scattered in random direction (d=2*pi*u)

- Pick an application (Neutron transport?)
- Develop Parallel Code.
 - Will require mostly looking at parallel random number generation.
- Run on Blueshark.
- Investigate speed-ups and scalability.
- Investigate accuracy vs. number of trials

Sorting

Parallel Sorting

Given a set of n integers on each processor

 Produce a sorted list: sorted within a processor and largest integer on p0 less than or equal to smallest on p1 when rank(p0)<rank(p1).

Parallel Sorting

- Quinn Ch 14 discusses Parallel Sorting.
- I can provide other references as well.
- Project might be
 - Implement one or more of the other parallel sorting algorithms
 - Compare to Sorting performance.
 - Compare to models.
- FYI: this is a popular project topic but is difficult to do well and see significant speedups.

Worker Manager

- Certain applications will be well suited to this style:
 - -Game trees
 - Number theory problems
 - Any problem where tasks vary in length in unpredictable ways
- Run on Blueshark.
- Investigate speed-ups and scalability.

Graph Coloring

Graph Theory Definitions

A graph G=(V,E) is a collection of vertices
 V={v₁,v₂, ..., v_n} connected by edges E={e₁,e₂, ..., e_m}.

Independent Set Definition

 A set of vertices is a independent set if none of the vertices are connected by an edge

Maximal Independent Set Definition

 A set S of vertices is a maximal independent set (MIS) if it is an independent set and adding any other vertex to the set produces a set which is not independent.

Independent Set Example

 S₁={1,5} is not a MIS because we could add, say, vertex 7 to it and still have a independent set.

Maximal Independent Set Example

• $S_2 = \{1, 3, 10\}$ is a MIS

Maximal Independent Set is not unique

• $S_3 = \{4,6,8,10\}$ is a MIS

Given a graph G=(V,E), find a maximal independent set S.

For now, assume one process owns the entire graph.
 Ideas???????

- The **neighborhood** N_j of a vertex v_j consists of all vertices connected to v_i by an edge.
- The number of vertcies in the neighborhood is called the degree of vertex v_i

 If vertex v_j is in set S and S is a maximal independent set then all vertices in neighborhood N_i are not in S.

- 1. S=empty, U=V
- 2. While U not empty
 - 1. Pick v_i in U and add to S
 - 2. Remove v_j and its neighborhood N_j from U

- 1. S=empty, U=V
- 2. While U not empty
 - 1. Pick v_i in U and add to S
 - 2. Remove v_j and its neighborhood N_j from U

- 1. S=empty, U=V
- 2. While U not empty
 - 1. Pick v_i in U and add to S
 - 2. Remove v_j and its neighborhood N_j from U

- 1. S=empty, U=V
- 2. While U not empty
 - 1. Pick v_i in U and add to S
 - 2. Remove v_j and its neighborhood N_j from U

- 1. S=empty, U=V
- 2. While U not empty
 - 1. Pick v_i in U and add to S
 - 2. Remove v_j and its neighborhood N_j from U

- 1. S=empty, U=V
- 2. While U not empty
 - 1. Pick v_i in U and add to S
 - 2. Remove v_j and its neighborhood N_j from U

- 1. S=empty, U=V
- 2. While U not empty
 - 1. Pick v_i in U and add to S
 - 2. Remove v_j and its neighborhood N_j from U

- 1. S=empty, U=V
- 2. While U not empty
 - 1. Pick v_i in U and add to S
 - 2. Remove v_j and its neighborhood N_j from U

- Given a graph G=(V,E), find a maximal independent set S.
- Assume the number of processes is equal to n, the number of vertices.

 Choosing if my vertex is in S or not is a candidate for the primitive task.

Hurdle: how do I make sure my choice doesn't conflict with

my neighbors?

- Choosing if my vertex is in S or not is a candidate for the primitive task.
- Hurdle: how do I make sure my choice doesn't conflict with my neighbors? Ideas ??????

• Assign a random number r_j in (0,1) to my vertex. Communicate this value to neighbors.

• If my r is bigger than all my neighbor's r I'm in S.

If my r is bigger than all my neighbor's r,
 I'm in S.

 Remove vertices and edges for everyone in S and their neighbors (requires communication).

Start over with remaining graph.

.15

6

Start over with remaining graph.

.15

6

No more undecided vertices.

Luby: SIAM J. Comput., 15(4):1036--1053

- S=empty, U=V
- While U not empty
 - 1. Assign random r_i in (0,1) to each vertex
 - If r_j is greater than neighbors add v_j to S*
 Add S* to S

 - 4. Remove S* and its neighbors from U
- Which MIS we get depends on the random numbers.
- Number of iterations of while loop depends on random numbers.

- Given a graph G=(V,E), find a maximal independent set S.
- Assume the number of processes is much smaller than n, the number of vertices.

- Given a graph G=(V,E), find a maximal independent set S.
- Assume the number of processes is much smaller than n, the number of vertices.
- The graph is distributed. Ideas?

Graph Coloring

- Develop Parallel Code.
- Run on Blueshark.
- Investigate speed-ups and scalability.

Possibilities

- Numerical PDEs
- Numerical Linear Algebra
 - Sparse Matrix times Vector
- Monte Carlo Methods
 - Neutron Transport
- Sorting
- Others: searching, dense linear algebra, maximal independent sets, graph coloring ...
- Any topic from texts that we haven't covered
 - Pacheco: n-Body Solvers and Tree Search
 - Quinn: lots sorting, searching, FFT, Matrix Algebra
- Other styles of parallelism on other machines: like GPU. "Proof of concept" recommended before proposal.
- Same originality "Rules" as assignments: the code your team turns in must be written by your team.