LINEAR REGRESSION

Linear Regression-Overview

- Difference between Regression and Classification
- Linear Regression
 - Motivating Example: Predicting Housing Prices
 - Hypothesis function
 - Cost Function
 - Gradient Descent
 - Probabilistic Interpretation
- Applying linear regression for hand digit recognition

Supervised Learning

- Data: D = { d_1 , d_2 , d_3 ,...., d_n } d_i = $\langle x_i, y_i \rangle$
- a set of n examples

 X_i

- Input vector
- Independent variables
- Explanatory variables
- Features
- Predictors

 y_i

- Output scalar
- Dependent variables
- Response
- Outcome

Supervised Learning

Regression: X discrete or continuous → Y is continuous

Eg. Prices, Weight, Height, signal measurement, temperature etc.

- Classification : X discrete or continuous \longrightarrow Y is discrete
- Objective: learn the mapping of $f: X_i \longrightarrow Y_i$

Predict Housing Prices

Living area ($feet^2$)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:
•	•

Can we learn to predict the price when the price of the house is not in the dataset?

Living Area = 3500 sq. ft.

Price = ?

Predict Housing Prices

- Can we learn to predict the price when the price of the house is not in the dataset?
- Living Area = 3500 sq. ft. Price = ?
- Use the line that is somewhere in the middle
- How do we define somewhere in the middle?

Training Process In Linear Regression

Objective: learn the mapping of $f: X_i \longrightarrow Y_i$ Training Finding h is the goal here set **h** is known as the hypothesis Learning algorithm predicted v (living area of (predicted price)

house.)

of house)

Predict Housing Prices

Living area ($feet^2$)		Price (1000\$s)	
X ⁽¹⁾	2104	400	y (1)
$\mathbf{X}^{(2)}$	1600	330	$y^{(2)}$
$\mathbf{X}^{(3)}$	2400	369	$\mathbf{y}^{(3)}$
$X^{(4)}$	1416	232	$y^{(4)}$
$\mathbf{X}^{(5)}$	3000	540	$\mathbf{y}^{(5)}$
	÷	:	
$\mathbf{X}^{(m)}$			$\mathbf{y}^{(m)}$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

m = Total number of training examples

 θ_i = Parameters

Hypothesis Function-Linear regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $h_{\theta}(x^{i})$ is the prediction of the hypothesis h_{θ} for given input x^{i} y^{i} is the target values (what we would call labels in a classification problem)

We want the prediction $h_{\theta}(x^i)$ to be as close to the true label y^i as possible. How do we do that?

Cost Function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

In Plain English

 find a linear line that is as close to the actual outputs as possible.

Mathematically

- Find linear function of X that minimizes the sum of squared residuals from Y.
- a.k.a loss function

The Cost Function

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Parameters: θ_0, θ_1

Goal: $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

- Goal: $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$
- Gradient descent starts with some initial θ and then performs an update for each value θ_i
- Repeat until θ converge.

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$
 For $j=0$ and $j=1$

Repeat until converge {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

- α is known as the learning rate
- Each time the algorithm takes a step in the direction of the steepest, $J(\theta)$ decreases.
- α determines how quickly or slowly the algorithm will converge to a solution

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

$$z=x^2+2y^2$$

$$z=x^2+2y^2$$

$$z=x^2+2y^2$$

$$z = x^2 + 2y^2$$

$$z = x^2 + 2y^2$$

$$z = x^2 + 2y^2$$

$$z=x^2+2y^2$$

$$z = x^2 + 2y^2$$

$$z = x^2 + 2y^2$$

$$z=x^2+2y^2$$

$$z = x^2 + 2y^2$$

$$z=x^2+2y^2$$

$$z=x^2+2y^2$$

$$z=x^2+2y^2$$

$$z=x^2+2y^2$$

$$z=x^2+2y^2$$

$$z = x^2 + 2y^2$$

$$z = x^2 + 2y^2$$

$$z=x^2+2y^2$$

$$z = x^2 + 2y^2$$

$$z = x^2 + 2y^2$$

$$z=x^2+2y^2$$

$$z = x^2 + 2y^2$$

$$z = x^2 + 2y^2$$

$$z = x^2 + 2y^2$$

Multivariate Linear Regression

Predict Housing Prices – With Two Features

x^{i}_{1} x^{i}_{1}	i 2	y^i
Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
÷	÷	A linear function is just
one of the choices to approximate the target variable.		

 θ is the space of linear functions mapping the space of input variables to the output/target variables

datasciencedojo

Predict Housing Prices – With Two Features

 When we have two features, the linearity is in plane instead of line.

Algebraic Notation

• The function approximating the target variable *y* is given by:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

$$\theta^T = [\theta_0 \, \theta_1 \theta_2]$$

 $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$

$$\theta^T x = [\theta_0 \ \theta_1 \theta_2] \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \sum_{i=0}^n \theta_i x_i$$

Batch Gradient Descent

For ONE training examples, we get the following update rule:

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}.$$

What do we observe here about the magnitude of the update?

For ALL training examples, we get the following update rule:

```
Repeat until convergence { \theta_j := \theta_j + \alpha \sum_{i=1}^m \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}. }
```

Stochastic Gradient Descent

Consider the following algorithm:

```
Loop { for i=1 to m, { \theta_j := \theta_j + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}.} }
```

- This algorithm updates the parameters θ_j using each training example instead of all training examples.
- If the training set is big i.e., m is large, this technique converges quicker than batch gradient descent.
- Stochastic gradient descent may oscillate around the minimum of $J(\theta)$ and may not completely converge datasciencedojo

Batch vs. Stochastic Gradient Descent

Batch Gradient Descent

```
Repeat until convergence { \theta_j := \theta_j + \alpha \sum_{i=1}^m \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}. }
```

- To update each parameter value, scan through the whole training data
- Converges to the minimum value slowly
- Preferred for small datasets

Stochastic Gradient Descent

```
Loop { for i=1 to m, { \theta_j := \theta_j + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}.} }
```

- Update the parameter values with one training example at a time
- Converges to the 'proximity' of minimum value fast but may keep oscillating near the minimum
- Preferred for large datasets

datasciencedojo

• We will discuss why the least-squares cost function $J(\theta)$ is a reasonable choice.

 Assume that the inputs and the target variable are related by the following equation:

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

- Where the ϵ^i term captures the un-modeled effects:
 - Random noise
 - Some relevant feature not taken into consideration
- Assumptions:
 - ϵ^i is IID (Independently and Identically Distributed)
 - Normal distribution with mean 0 and variance σ^2
 - variance σ^2 is random

$$\epsilon^i = N(0, \sigma^2)$$

The density of
$$\epsilon^i$$
 is given by $p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right)$

We can rewrite:

$$p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$$

This is the distribution of y^i given x^i and parameterized by θ

$$y^{(i)} \mid x^{(i)}; \theta \sim \mathcal{N}(\theta^T x^{(i)}, \sigma^2)$$

• Probability of observing the data as a function of θ is given by:

$$L(\theta) = L(\theta; X, \vec{y}) = p(\vec{y}|X; \theta).$$

- This is known as the likelihood function
- Due to the independence assumption, we can rewrite:

$$L(\theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$
$$= \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right).$$

Maximizing The Likelihood Function

- Principle of maximum likelihood: Choose θ that makes the observed data as high probability as possible. In other words, choose θ that maximizes $L(\theta)$.
- For mathematical ease, we can maximize the log of the likelihood function $L(\theta)$ instead.

Maximizing The Log Likelihood Function

$$\ell(\theta) = \log L(\theta)$$

$$= \log \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$= m \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^{2}} \cdot \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^{T} x^{(i)})^{2}.$$

$$\frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^{T} x^{(i)})^{2}.$$

Maximizing $L(\theta)$ is equivalent to minimizing $J(\theta)$

Linear Regression Using R

- We will learn how to use linear regression for handwritten digit recognition now
- Distinguishing between 2s and 3s
- We will see some R code
 - For processing the inputs
 - Applying linear regression to learn a hypothesis
- You can download R by searching 'R download'

Example: Handwritten Digit Recognition

Extracting Features For Learning

- Each x_i corresponds to a feature value in the image
- y is a label of the training data; can be numeric or categorical, '3' or 'three'
- Each image is converted to row vectors and the appropriate learning algorithm is used
- Convention
 - x_i represents the i^{th} feature in a training sample
 - y represents the label for the training sample

Questions?

