DEPTH FROM SINGLE IMAGE

Input

Output

LOCAL PREDICTIONS

Superpixels:

LOCAL PREDICTIONS

Train a regressor to predict superpixel depth:

—> Noisy predictions.

Encouraging coherence

Connect the neighboring superpixels

Encourage their depths to be consistent.

MARKOV RANDOM FIELD

Graph with vertices and edges

Assign values to the nodes to minimize

$$E(Y) = \sum_{i} \varphi(y_i) + \sum_{(i,j)} \psi(y_i, y_j)$$
unary pairwise

REASONING ABOUT EDGES

HIGHER ORDER TERMS

Larger regions can help reason about the scene

DEEP LEARNING WITH MRF

Liu et al., PAMI 2016

DEPTH FROM A SINGLE IMAGE

PREDICTING NORMALS

Using deep learning

NORMALS FROM A SINGLE IMAGE

STRENGTHS AND LIMITATIONS

Strengths:

- More general than shape-from-texture.
- Leverages data.

Limitations:

- Requires training data for specific scenes.
- Currently, only limited geometrical reasoning.