

JOINT INTERPRETATION OF MAGNETOTELLURIC AND GRAVIMETRIC DATA IN THE PARANÁ BASIN

EDGAR B. SANTOS⁽¹⁾ (edgarbueno.santos@gmail.com), HENRIQUE B. SANTOS⁽²⁾ , ÍCARO VITORELLO⁽³⁾ & MARCELO B. PÁDUA⁽³⁾

¹ Institute of Physics, University of São Paulo; ² Department of Petroleum Engineering, University of Campinas ³ Space Geophysics Division, National Institute for Space Research (INPE)

MT DATA ACQUISITION

A MT survey consists in the measurement of variations of orthogonal components of the electric field (E_X e E_y) and magnetic field (H_X , H_y e H_z) in the Earth's surface.

IMPEDANCE TENSOR

For an anisotropic or a laterally inhomogeneous earth model, the relation between the electric and magnetic fields is given by the impedance tensor:

$$egin{bmatrix} E_x \ E_y \end{bmatrix} = egin{bmatrix} Z_{xx} & Z_{xy} \ Z_{yx} & Z_{yy} \end{bmatrix} egin{bmatrix} H_x \ H_y \end{bmatrix}$$

Thus it is possible to calculate the apparent resistivity (ρ_a) and phase (ϕ) as

$$\rho_{a,ij}(\omega) = \frac{1}{\mu_0 \omega} |Z_{ij}(\omega)|^2$$

$$\phi_{ij} = \tan^{-1} \left(\frac{\Im(Z_{ij})}{\Re(Z_{ij})} \right)$$

where μ_0 is the magnetic permeability in the free-space and ω is the angular frequency. To calculate the impedance tensor we used a robust algorithm developed by Gary Egbert (Egbert and Booker, 1986).

SENSITIVITY OF THE TRANSVERSE MAGNETIC MODE

2-D inversion resistivity model using REBOCC, Reduced Basis OCCAM algorithm, proposed by Siripunvaraporn and Egbert (2000). The RMS resistivity for this model is 1.98.

2D INVERSION FOR THE TRANSVERSE MAGNETIC MODE

2-D inversion resistivity model using REBOCC, Reduced Basis OCCAM algorithm, proposed by Siripunvaraporn and Egbert (2000). The RMS resistivity for this model is 1.27.

2D INVERSION FOR THE TRANSVERSE AND ELECTRIC MODE

2-D inversion resistivity model using REBOCC, Reduced Basis OCCAM algorithm, proposed by Siripunvaraporn and Egbert (2000). The RMS resistivity for this model is 2.47.

CONCLUSIONS

- A gravimetric feature almost parallel and near the Paraná River indicates the presence of an anomalous deep body.
 We have presented a 2-D geoelectric model of the deep
- structure in the Paraná Basin.

 Presence of a high conductivity band in the upper part,
- that represents the sedimentary basin.
- High resistivity body below the area of the basin.
- Our model may help to understand the geological structure of the Paraná Basin.

ACKNOWLEDGEMENTS

The authors were supported in this research by a fellowship (EBS) from CNPq, (HBS) from CGG-Brazil and INCT and, (IV and MBP) from INPE. Additional support for the authors was provided by the Brazilian agency FAPESP (grant 2009/50493-8).

REFERENCES

- Egbert, G., and J. R. Booker, 1986, Robust estimation of geomagnetic transfer functions: Geophysical Journal International, 87, 173-194.
- Sá, N. C. de. 2004. O campo de gravidade, o geóide e a estrutura crustal na América do Sul: novas estratégias de representação. Tese (Livre Docência) Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo. 122 p.
- Santos, H. B; Ussami, N. 2011. Tensor gradiente gravimétrico da Bacia do Paraná. Dissertação de Mestrado – Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo. 97p.
- Siripunvaraporn, W; Egbert, G. 2000. An efficient datasubspace inversion method for 2-D magnetotelluric data. Geophysics. v. 65, p. 791-803.
- Zalán, P.V. et al. Bacia do Paraná. In: Gabaglia, G., and E. Milani, 1990, Origem e evolucãode bacias sedimentares: Petróleo Brasileiro, Serviço de Desenvolvimento de Recursos Humanos, Centro de Desenvolvimento de Recursos Humanos Sudeste. p. 135-168.