

Définitions Animation = modification d'une scène au cours du temps

- L'animation en informatique graphique consiste à attribuer des transformations (rotation, translation) et des modifications (compression, cisaillement, etc.) à une entité 3D.
 - Modification des attribues des composants de la scène (couleur, coordonnées textures, transformations, etc.)

- Les scènes tridimensionnelles se composent de 3 types d'entités évoluant au cours du temps:
 - Objets
 - . Caméras
 - Lumières

Attributs animables

Pour les objets:

- · position (automobile)
- · orientation (bras de robot)
- · taille (croissance)
- · forme (nuage, coeur humain)
- · couleur (plaque de cuisinière électrique qui chauffe)
- · transparence (simulation de brouillard évoluant)
- · coordonnées textures

Attributs animables

- Pour les caméras:
 - · position de l'observateur (simulation de vol)
- · point d'intérêt
- · angle de vue (zoom in)
- · Pour les sources de lumières:
 - · intensité de la lumière
 - · couleur d'une composante (diffuse, ambiante, etc.)
 - position de la lumière (simulation de phares de voiture)

- Natures des objets animables
 - · Objets rigides
 - · libres : chute de pierres, billard, etc.
 - articulés : robots industriels, mécanismes, etc.
 - · Objets déformables : corps biologiques, tissus, etc.
 - · Déformation locale
 - · Déformation globale
 - Objets flexibles
 - Déformation permettant d'articuler certaines parties de l'objet
 - Systèmes de particules : fumé, neige, etc.
 - ..

Types d'animations

- · L'animation peut être :
 - · Temps réel vs non-temps réel
 - Calcul & génération
 - Visualisation doit être en temps réel
 - Interactive vs non-interactive
 - Apport d'une perturbation externe
 - L'opérateur « externe » est considéré comme élément de la scène et est modélisé comme entité géométrique et dynamique dans la scène

Animation par interpolation entre positions clés

- Interpolation d'étapes « clés » : Keyframing
 - Le concepteur définit les étapes clés et le programme génère les configurations intermédiaires par interpolation.
- · Une étape est une paire composée :
 - · d'un instant
 - · d'une valeur scalaire ou vectorielle
- L'interpolation consiste à évaluer une valeur intermédiaire cohérente entre deux étapes clés.

Animation par interpolation entre positions clés Ce qui est intépolable Position Orientation Echelle Forme: morphing Couleur Transparence etc.

Animation par interpolation entre positions clés

· Paramétrage simple, rapide, uniforme.

$$\mathbf{p}(i,0) = \mathbf{p}^{i}, \ \mathbf{p}(i,1) = \mathbf{p}^{i+1} \ \text{ et } \ \mathbf{p}(i,1/2) = \frac{\mathbf{p}^{i} + \mathbf{p}^{i+1}}{2}$$

- L'interpolation linéaire occasionne des discontinuités au niveau de la dérivée, donc de la vitesse et par conséquent, l'animation va être saccadée.
 - · Changement de direction brutal à chaque étape.

Animation par interpolation entre positions clés

Une animation fluide nécessite

Continuité C⁰, C¹ et C²

Animation par interpolation entre positions clés Interpolation polynomiale : Interpolation globale (\mathbf{p}^{2},t_{2}) (\mathbf{p}^{1},t_{1}) (\mathbf{p}^{1},t_{1}) (\mathbf{p}^{1},t_{1}) (\mathbf{p}^{2},t_{2}) $(\mathbf{p}^$

Interpolation polynomiale calcul du polynôme d'interpolation $y = L_0(x) + 5 \cdot L_1(x) + 17 \cdot L_2(x)$ $x = 2 \cdot L_1(x) + 4 \cdot L_2(x)$ Après simplification $y = t^2 + 1$ x = t

Animation par interpolation entre positions clés

- Interpolation des positions et des vitesses séparément
- · Utilisation des Splines Hermite pour un meilleur contrôle de l'interpolation

$$P(u) = U . M_{Spline_Hermite} . p^{r}$$

$$P(u) = \begin{pmatrix} u^3 & u^2 & u^1 & 1 \end{pmatrix} \begin{pmatrix} 2 & -2 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \\ p'_0 \\ p'_1 \end{pmatrix}$$

Animation par interpolation entre positions clés

- Morphing 3D (ou Morphage 3D)
 - · Animation permettant de transformer une forme géométrique en

Animation par interpolation entre positions clés

Problème

· Les deux configurations clefs ne présentent pas le même nombre de sommets

Animation par interpolation entre positions clés

il faut d'abord procéder à un prétraitement consistant en l'égalis ation du nombre de sommets des deux dessins. Plusieurs algorit hmes sont possibles. Le plus simple est le suivant:

Soient N1 et N2 les nombres de sommets des 2 dessins.

on calcule le rapport RT:=(N1-1) div (N2-1) et le reste RS:=(N1-1) mod (N2-1) on ajoute RT points aux RS premiers segments et RT-1 aux autres.

Animation par interpolation entre positions clés

N1=15 et N2=7 => RS=2 et RT=2.

On ajoute donc 2 points aux 2 premiers segments et 1 point aux 4 autres.

Animation par capture de mouvements Principe Mesurer les actions directes d'un acteur pour l'analyse et la réplication immédiate ou différée Correspondances: Directe: bras humain contrôlant le mouvement du bras de l'acteur de synthèse Indirecte: mouvement de souris contrôlant les yeux d'un personnage et la direction de la tête. Ce qui peut être traqué: tête: champ de perception (visuel, auditif, etc.) pupilles: point de vue plus précis main(s): Commande et interaction avec l'EV autres organes représentation entière de l'opérateur dans l'EV.

· autres objets de la scène réel : application mélangent réel et virtuel (RA)

Évaluation technologique					
Système	Précision	Réponse	Robustesse	Sociabilité	Commentaire
Mécanique	Bonne 0.1-2.5 mm	Bonne	Bonne Faible sensibilité à l'environnement	Encombrement assez important	Bien adapté po le retour d'effo Application téléopération
Optique	Bonne 0.1-0.5 mm La précision et la résolution diminuent quand le volume de travail augmente	Bonne Ces systèmes sont bien adaptés au temps réel.	Bonne Certains systèmes peuvent êtres affectés par la lumière ambiante	Sensible au masquage des marqueurs ou caméras. Encombrement assez important	Peut demande des installatior complexes pou obtenir de bon résultats.
Magnétiques	Bonne ~ Smm Bonne dans les petits espaces de travail. Dépend fortement de la présence de métal dans la zone de travail	Fréquence d'échantillonnag e relativement faible	Grande sensibilité au métal dans la zone utile	Bonne dans les petits espace de travail.	Le plus couramment utilisé. Possibilités de suivre plusieur objets simultanément en rajoutant de capteurs au système.
Acoustique	Bonne ~1mm	Dépendant de la distance	Dépendant de la distance	Sensible au masquage des capteurs ou des sources.	Extrêmement stable dans la zone utile. Peu onéreux e peu encombrar

- - · Pour un nouveau mouvement, il est nécessaire d'enregistrer de nou veau la réalité.
 - · La capture de mouvement n'est donc pas possible dans les cas suiv ants:
 - simulation en temps réel, où la situation et les actions des personnages virtuels ne peuvent pas être prédits à l'avance.
 - dans les situations dangereuses, où on ne peut pas impliquer une vraie personne.

Modèles de contrôle du mouvement Les modèles de contrôle du mouvement forment le cœur de tout sy stème d'animation. Ils déterminent la classe des mouvements et/o u déformations réalisables par le système ainsi que la convivialité de l'interface homme machine et définissent le champ d'applicatio n du système. Les modèles de contrôle du mouvement peuvent être classés en tro is grandes familles générales : les modèles descriptifs ou phénoménologiques : ils sont utilisés pour r eproduire uniquement les effets (mouvement, déformation), sans auc une connaissance it a priori sur les causes qui pourraient les avoir pro duits. Ils décrivent la cinématique des phénomènes dynamiques. les modèles générateurs ou fondés sur la physique : ils décrivent les causes capables de produire un effet. Par exemple, les modèles utilis ant la mécanique font partie des modèles générateurs. les modèles comportementaux : ils simulent les organismes et les êtres vivants, leurs actions et leurs réponses à des stimulations extérieur

Animation par cinématique inverse

Animation par cinématique inverse • Étude locale • L'extrémité est identifiée par sa position et son orientation rassemblées dans un vecteur \mathbf{X} • On cherche un vecteur de degrés de liberté \mathbf{I} qui vérifie l'équation suivante : $\mathbf{X} = f\left(\mathbf{I}\right)$ • f est la fonction résultant de la composition des changements de repères depuis l'extrémité jusqu'à la racine

Animation par cinématique inverse $. \ \ \, \text{La fonction} \, f \text{ est une composée de rotations et de translations } (\theta_1, \theta_2, \theta_3, ..., t_{\nu}, t_{\mathcal{P}} \ldots)$

Singular Values Decomposition

Toute matrice m*n peut s'exprimer par SVD: A=USV^T

- **U** est une matrice $m \times n$, orthonormale
- S est une matrice *n*×*n*, diagonale, *singular values*
- . \mathbf{V} est une matrice $n \times n$ orthonormale

$$\mathbf{A} = (\mathbf{h}_1 \mid \mathbf{h}_2 \mid \dots \mid \mathbf{h}_n) \cdot \begin{pmatrix} s_1 & 0 & 0 & 0 \\ 0 & s_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & s_n \end{pmatrix} \cdot \begin{pmatrix} \underline{\mathbf{a}_1} \\ \underline{\mathbf{a}_2} \\ \vdots \\ \underline{\mathbf{a}_n} \end{pmatrix}$$

 $m \times n$ $m \times m$

 $\times n$

Singular Values Decomposition

- Les s_i sont les valeurs singulières de A
- · Si la matrice A est singulière, il y a des s_inulles
- Rang de A: nombre de s_i non nulles
- La décomposition SVD est unique, mis à part l'ordre des s_j ou s'il y a égalité parmi des s_j
- Déterminant : produit des valeurs
- . $\mathbf{U},\,\mathbf{V}:$ colonnes orthogonales

 $A^{-1}=(V^T)^{-1}S^{-1}U^{-1}=VS^{-1}U^T$

- · L'inverse d'une matrice orthonormale est sa transposée
- . Puisque S est diagonale, S 1 est aussi diagonale avec les inverses multiplicatifs des s_i

$$\begin{pmatrix} s_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & s_n \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{s_1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \frac{1}{s_n} \end{pmatrix}$$

Calcul de la matrice inverse

 $A^{-1} = (V^{T})^{-1} S^{-1} U^{-1} = V S^{-1} U^{T}$

- Ce n'est pas vrai quand des $s_i = 0$
 - · La matrice est singulière
- Pseudoinverse: si $s_i=0$, on fixe $1/s_i=0$
 - · C'est la matrice "la plus près" de l'inverse
 - Existe pour toutes les matrices, même singulières ou rectangulaires
 - · Égale à (ATA)-1AT si ATA est inversible

Calcul du Jacobien: DDL Rotation

Dans un premier temps il faut calculer le pivot et l'axe de rotation

$$\mathbf{a}_{i}' = \mathbf{a}_{i} \cdot \mathbf{W}_{i-parent}$$

e

$$\mathbf{r}_{i}' = \mathbf{r}_{i} \cdot \mathbf{W}_{i-parent}$$

 \mathbf{a}_{i} resp. \mathbf{a}'_{i} : axe de rotation dans le repère local resp. global (vecteur unitaire)

- \cdot a est un vecteur unité $[a_x \, a_y \, a_z \, 0]$ $\cdot r_i$ resp. $\cdot r_i$: pivot dans le repère local resp. global
 - r est une position [r_x r_y r_z 1]
- Wi-parent: changement de repère du nœud concerné vers le repère parent

Calcul du Jacobien: DDL Rotation

Avec une rotation 3DDL : XYZ dans l'ordre

$$x - ddl$$
: $\mathbf{a}'_i = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \cdot \mathbf{R}_y(\theta_y) \cdot \mathbf{R}_z(\theta_z) \cdot \mathbf{W}_{parent}$

$$y - ddl$$
: $\mathbf{a}'_i = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \cdot \mathbf{R}_z(\theta_z) \cdot \mathbf{W}_{parent}$

$$z - ddl$$
: $\mathbf{a}'_i = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \cdot \mathbf{W}_{parent}$

. $R_v(\theta_v)$ et $R_z(\theta_z)$ sont les matrices de rotation suivant y

Calcul du Jacobien : DDL translation Pour les DDL en translation uniquement · Pas de pivot · Uniquement un axe de translation ∂e $\mathbf{a}_{i}' = \mathbf{a}_{i} \cdot \mathbf{W}_{i-parent}$ $\partial \phi_{i}$

Calcul du Jacobien : DDL translation

- Translation en 3D XYZ
 - · On applique la même démarche suivant chaque axe
 - · La translation suivant un axe n'influe pas les translations suivant les autres axes
 - · Le résultat est un vecteur unitaire dans la même direction que l'axe de translation


```
InverseKinematics()
{
    Vector n = getLinkParameters();
    Vector x = target - computeEndPoint();
    for(k=0; k<kmax; k++){
        Matrix J = computeJacobian();
        Matrix J* = pseudoInverse(J);
        Vector dn = J* x;
        n = n+ dn;
        putLinkParameters();
    }
}</pre>
```