

Tema 6. Fibre Channel (FC)

- Juan Carlos Pichel
- Enxeñería de Computadores
- Grao en Enxeñería Informática

Fibre Channel (FC)

Tecnología para redes de almacenamiento:

- Transmisión serie de alta velocidad a larga distancia
- Baja tasa de errores de transmisión
- Baja latencia
- El protocolo FC (FCP) se implementa en hardware en el HBA (host bus adapter) para no cargar la CPU

Stack de FC

Upper layer protocol (ULP) • Small computer systeminterface-3 (SCSI-3) •Internet protocol (IP) • Fibre connection (FICON = ESCON over Fibre Channel) Fibre Channel level 4 FC-4) · Fibre Channel protool mappings • Fibre Channel protool for SCSI-3 (FCP) IP over Fibre Channel (IPFC) • Fibre Channel singlebyte command sets Fibre Channel level 3 (FC-3) Common services · Multiport devices Fibre Channel link services · Encryption/compression Fibre Channel fabric services Fibre Channel level 2 (FC-2) · Exchange und sequence management Frame structure · Classes of service · Flow control Fibre Channel level 1 (FC-1) · 8b/10b encoding Ordered sets · Link control protocols Fibre Channel level 0 (FC-0) · Physical interface · Optical and electrical interface · Cables and connectors

FC-0. Cables, conectores y codificación de señales

Nombre del producto	MByte/s (en cada dirección)	Especificación (año)	Disponibilidad en el mercado (año)	
1GFC	100	1996	1997	_
2GFC	200	2000	2001	/
4GFC	400	2003	2005	
8GFC	800	2006	2008	
16GFC	1.600	2009	2011	
32GFC	3.200	2013	2016	
64GFC	6.400	2017	2019	E AFF
128GFC	12.800	2014	2016	
256GFC	25.600	2017	2019 LC MT	_RJ SC DB-9

Nombre del producto	MByte/s (en cada dirección)	Especificación (año)	Disponibilidad en el mercado (año)
10GFC	1.200	2003	2004
20GFC	2.400	2008	2008
40GFC	4.800	2009	2011
80GFC	9.600	futuro	Según se demande
100GFC	12.000	futuro	Según se demande
160GFC	19200	futuro	Según se demande

FC-1. Codificación, conjuntos ordenados y links

- Codificación 8b/10b (también se usa en otros estándares):
- Ejemplo: codificar el valor 01001010b suponiendo que hay exceso de 1's:

010 01010 01010
$$\rightarrow$$
 101010 \rightarrow 1010

El código de 10 bits es 1010 101010 y sigue habiendo exceso de 1's

• Ejemplo: codificar el valor 11101111b suponiendo que hay exceso de 1's:

```
111 01111 \rightarrow 000101 \rightarrow pasa a exceso de 0's

111 \rightarrow 0111 \rightarrow pasa a exceso de 1's
```

El código de 10 bits es 0111 000101 y sigue habiendo exceso de 1's

Tablas 8b/10b

3b/4b code							
input		RD = -1	RD = +1	input		RD = -1	RD = +1
	HGF	fg	hj		HGF	fghj	
D.x.0	000	1011	0100	K.x.0	000	1011	0100
D.x.1	001	1001		K.x.1 ‡	001	0110	1001
D.x.2	010	0101		K.x.2 ‡	010	1010	0101
D.x.3	011	1100	0011	K.x.3	011	1100	0011
D.x.4	100	1101	0010	K.x.4	100	1101	0010
D.x.5	101	10	10	K.x.5 ‡	101	0101	1010
D.x.6	110	01	10	K.x.6 ‡	110	1001	0110
D.x.P7 †	111	1110	0001				
D.x.A7 †	111	0111	1000	K.x.7 † ‡	111	0111	1000

¡En las tablas el orden de los bits de entrada y salida cambia: p. ej. EDCBA y abcdei (A/a bits menos significativos)!

	5B/6B code							
input		RD = -1	RD = +1	input		RD = −1	RD = +1	
	EDCBA	abo	edei	EDCBA		abcdei		
D.00	00000	100111	011000	D.16	10000	011011	100100	
D.01	00001	011101	100010	D.17	10001	100	100011	
D.02	00010	101101	010010	D.18	10010	010	011	
D.03	00011	110	001	D.19	10011	110	010	
D.04	00100	110101	001010	D.20	10100	001	011	
D.05	00101	101	001	D.21	10101	101010		
D.06	00110	011	001	D.22	10110	011010		
D.07	00111	111000	000111	D.23 †	10111	111010	00010	
D.08	01000	111001	000110	D.24	11000	110011	001100	
D.09	01001	100	100101		11001	100110		
D.10	01010	010101		D.26	11010	010	110	
D.11	01011	110	100	D.27 †	11011	110110	00100	
D.12	01100	001101		D.28	11100	001	110	
D.13	01101	101100		D.29 †	11101	101110	01000	
D.14	01110	011	100	D.30 †	11110	011110	10000	
D.15	01111	010111	101000	D.31	11111	101011	010100	
				K.28	11100	001111	110000	

FC-2: Transferencia de datos

SOF	Frame Header	Data Payload Transmission Words	CRC	EOF
1 TW	6 TW	0-528 TW	1 TW	1 TW

Unidad de transmisión: frame

Induye

- Dirección Destino del Frame (D ID)
- · Dirección Origen del Frame (S ID)
- · Sequence ID
- · Número de frame dentro de la secuencia
- Exchange ID

Control del flujo basado en créditos

(1) Nivel de puertos (link flow)

(2) Nivel de HBA (*end-to-end flow*)

Servicio de transmisión: clase 2

- Servicio orientado a transmisión de paquetes con confirmación (end-toend y link flow)
- No se construye una conexión dedicada, si no que los frames son encaminados a través de la red FC de forma individual.
- De este modo, un puerto puede mantener varias conexiones al mismo tiempo.

Servicio de transmisión: clase 3

- Como clase 2 pero sin confirmación (sólo link flow)
- El tiempo de respuesta a un frame perdido es más elevado
- Sacrifica algo de fiabilidad en las comunicaciones por un protocolo más sencillo
- Es la clase más utilizada

FC-3 y FC-4

- FC-3: Servicios comunes
 - En la actualidad ningún producto implementa nada en FC-3.
 - Se discute que funciones puede implementar.

- FC-4 y ULPs (upper layer protocols):
 - FC-4 mapea otros protocolos sobre el protocolo
 FC
 - SCSI sobre FC → FCP
 - IP sobre FC → IPFC

Fuera del stack: servicios de enlace y

red (fabric)

Login:

- Dos puertos deben negociar antes de intercambiar datos. Hay 3 etapas:
 - Fabric Login (se establece sesión entre puerto N (servidor) y F (switch))
 - N-Port login (entre dos puertos N)
 - Process Login (se establece sesión entre dos procesos FC-4)

Fuera del stack: servicios de enlace y

red (fabric)

Port_ID	WWPN	WWNN	Dispositivo
010000	20000003 EAFE2C31	2100000C EAFE2C31	Servidor 1,Port A
010100	20000003 C10E8CC2	2100000C EAFE2C31	Servidor 1, Port
010200	10000007 FE667122	10000007 FE667122	Servidor 2
010300	20000003 3CCD4431	2100000A EA331231	Servidor 3
020600	20000003 EAFE4C31	50000003 214CC4EF	Disco, Port B
020700	20000003 EAFE8C31	50000003 214CC4EF	Disco, Port A

Direccionamiento:

- En FC todos los dispositivos tienen un identificador de 64 bits.
- Algunos de estos identificadores son únicos en todo el mundo y se denominan Word Wide Names (WWNs). Otros son únicos sólo en la red y se llaman FC Names (FCNs). En la práctica no se distinguen.
- En la red, los WWN son automáticamente traducidos a una dirección de puerto de 24 bits

Fuera del stack: servicios de enlace y red (fabric)

En una red de almacenamiento FC con topología fabric, los switches gestionan los servicios de red que incluyen:

- Fabric login
- Fabric controller (maneja los posibles cambios en la red)
- Name server (administra la base de datos de puertos N - dispositivos)

Puertos y topologías en FC

- Para conectar un dispositivo a una red FC es necesario que esta tenga un puerto FC
- En un servidor, normalmente el puerto está en el Host Bus Adapter (HBA, normalmente tarjeta PCIe).
- Puertos tienen siempre 2 canales, uno de entrada y uno de salida.

Puertos FC

- N-port. Es el puerto de un dispositivo en una Fabric FC
- F-port. Es un puerto en un switch FC
- L-port. Es el puerto de un dispositivo en un AL
- NL-port. En la actualidad se ofrecen estos puertos para mayor flexibilidad
- FL-port. Permite unir un AL a una Fabric
- E-port. Permite conectar 2 switches FC
- EX-port. Permite conectar 1 switch FC y un router FC
- **G-port**. Genérico. Algunos switches modernos permiten que el puerto se configure como E-port ó F-port según el rol que vaya a desempeñar
- **B-port**. Actúa como un Bridge. La idea es conectar 2 switches FC mediante una red tipo ATM o IP

Arbitrated Loop

- Loop arbitrado lógico Fibre Channel
- Cableado físico Fibre Channel

Loops privados y públicos

Loops privados y públicos

- Baja latencia de los switches
 (tiempo en transmitir una señal o un frame): 2-4 microsegundos
- Varios dispositivos pueden enviar y recibir datos simultáneamente usando el máximo ancho de banda: si hay buen diseño!!!

Fabric: links inter-switch (ISL)

