Neural Image Caption Generation with Visual Attention

Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, Yoshua Bengio

Literature Review
Deep Learning - DPL302m

Today's Date, 2024

Paper Overview

- Introduction
- Related Work
- Image Caption Generation with Attention Mechanism
 - Encoder: Convolutional Features
 - Decoder: LSTM Network
- Learning Stochastic "Hard" vs Deterministic "Soft" Attention
 - Stochastic "Hard" Attention
 - Deterministic "Soft" Attention
- Training & Evaluation
- Conclusion

Content Overview

- •Introduction: Why Attention?
- Challenges
- Model
 - Architecture
 - Attention Mechanism
 - Soft Attention
 - Hard Attention

Visual System

Language System

Scene Understanding

Better Evaluation for Computer Vision System

Computer Vision

Natural Language Processing

Object Recognition

The most IMPORTANT object

Relationship between objects

Practical Meaning: Al can finally understand daily scenes and INTERACT with human!

But Daily scenes ⇒ Visual Noises!

Challenges

- How to extract visual information from the image
- How to transform the visual information into proper natural language

 How to represent different parts of images and let the model focus on the IMPORTANT part

Model

Divide the image caption generator into 2 sub-problems:

- Image understanding
- Descriptive caption generating

Object Recognition

Computer Vision

Object localization

Object interaction

Natural Language Processing

Architecture

Convolutional Neural Network (CNN)

CNN consists of three types of layers:

- Convolutional layer
- Pooling layer
- Fully Connected layer

In this paper, they use a pre-trained CNN model VGG-Net 16 to do the image understanding.

NLP Part - Dependency between output

In NLP part, each output is a word in the caption. Usually the words in the one caption are highly related to each other

A girl holding her teddy bear

Long-short Term Memory Network (LSTM)

Problem: The output produced by most neural networks are independent

Solution:

Long-short Term memory network (LSTM)

Long-short Term Memory Network (LSTM)

LSTM has a powerful memory mechanism.

LSTM takes a new input and also inherits the hidden state and memory cell of the previous step when producing a new output.

Model without Attention

Model with Attention

Model with Attention

3.1.1. ENCODER: CONVOLUTIONAL FEATURES

We use a convolutional neural network in order to extract a set of feature vectors which we refer to as annotation vectors. The extractor produces L vectors, each of which is a D-dimensional representation corresponding to a part of the image.

$$a = \{\mathbf{a}_1, \dots, \mathbf{a}_L\}, \ \mathbf{a}_i \in \mathbb{R}^D$$

Annotation features

Annotation features

Annotation features

Attention Part

Model with attention

Attention Unit

Attention Unit

Attention Unit

 Soft Attention: different parts, different subregions

Hard Attention: only ONE subregion

 Soft Attention: different parts, different subregions

$$z = \sum_{n} s_{n} y_{n}$$

Soft Attention is <u>Deterministic</u>

 $s=\{(0,0), Forward\}$

 $s'=\{(5,0), Forward\}$

 Soft Attention: different parts, different subregions

$$z = \sum_{n} s_{n} y_{n}$$

Soft Attention is <u>Deterministic</u>

Implementing Soft Attention

Positive Example

(b) A stop sign is on a road with a mountain in the background.

Negative Example

(b) A woman holding a clock in her hand.

2. Hard Attention: only ONE subregion

Hard Attention is Stochastic

$$p(s_{t,i} = 1 \mid s_{j < t}, \mathbf{a}) = \alpha_{t,i}$$

$$\hat{\mathbf{z}}_t = \sum_i s_{t,i} \mathbf{a}_i.$$

We define a new objective function L_s that is a variational lower bound on the marginal log-likelihood $\log p(\mathbf{y} \mid \mathbf{a})$ of observing the sequence of words \mathbf{y} given image features \mathbf{a} . The learning algorithm for the parameters W of the models can be derived by directly optimizing L_s :

We represent the location variable s_t as where the model decides to focus attention when generating the t^{th} word. $s_{t,i}$ is an indicator one-hot variable which is set to 1 if the i-th location (out of L) is the one used to extract visual features. By treating the attention locations as intermediate latent variables, we can assign a multinoulli distribution parametrized by $\{\alpha_i\}$, and view \hat{z}_t as a random variable:

$$L_s = \sum_{s} p(s \mid \mathbf{a}) \log p(\mathbf{y} \mid s, \mathbf{a})$$

$$\leq \log \sum_{s} p(s \mid \mathbf{a}) p(\mathbf{y} \mid s, \mathbf{a})$$

$$= \log p(\mathbf{y} \mid \mathbf{a})$$

$$\frac{\partial L_s}{\partial W} = \sum_{s} p(s \mid \mathbf{a}) \left[\frac{\partial \log p(\mathbf{y} \mid s, \mathbf{a})}{\partial W} + \log p(\mathbf{y} \mid s, \mathbf{a}) \frac{\partial \log p(s \mid \mathbf{a})}{\partial W} \right]. \quad (11)$$

$$= \sum_{s} p(s \mid \mathbf{a}) \frac{\partial \log p(\mathbf{y} \mid s, \mathbf{a})}{\partial W} + p(s \mid \mathbf{a}) \log p(\mathbf{y} \mid s, \mathbf{a}) \frac{\partial \log p(s \mid \mathbf{a})}{\partial W}$$

This means that Monte Carlo Sampling can be performed!

$$\tilde{s_t} \sim \text{Multinoulli}_L(\{\alpha_i\})$$

$$\frac{\partial L_s}{\partial W} pprox \frac{1}{N} \sum_{n=1}^{N} \left[\frac{\partial \log p(\mathbf{y} \mid \tilde{s}^n, \mathbf{a})}{\partial W} + \right]$$

$$\log p(\mathbf{y} \mid \tilde{s}^n, \mathbf{a}) \frac{\partial \log p(\tilde{s}^n \mid \mathbf{a})}{\partial W}$$

The issue is that the variance in this estimate is too high

$$\begin{aligned} b_k &= 0.9 \times b_{k-1} + 0.1 \times \log p(\mathbf{y} \mid \tilde{s}_k, \mathbf{a}) \\ \frac{\partial L_s}{\partial W} &\approx \frac{1}{N} \sum_{n=1}^{N} \left[\frac{\partial \log p(\mathbf{y} \mid \tilde{s}^n, \mathbf{a})}{\partial W} + \\ \lambda_r(\log p(\mathbf{y} \mid \tilde{s}^n, \mathbf{a}) - b) \frac{\partial \log p(\tilde{s}^n \mid \mathbf{a})}{\partial W} + \lambda_e \frac{\partial H[\tilde{s}^n]}{\partial W} \right] \end{aligned}$$

Positive Example

(a) A giraffe standing in a field with trees.

Negative Example

(a) A dog is laying on a bed with a book.

Doubly Stochastic Attention

To encourage the model to look at various parts of the image

$$L_d = -\log(P(\mathbf{y}|\mathbf{x})) + \lambda \sum_{i}^{L} (1 - \sum_{t}^{C} \alpha_{ti})^2$$

Result

Table 1. BLEU-1,2,3,4/METEOR metrics compared to other methods, \dagger indicates a different split, (—) indicates an unknown metric, \circ indicates the authors kindly provided missing metrics by personal communication, Σ indicates an ensemble, a indicates using AlexNet

	Model	BLEU				
Dataset		BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR
Flickr8k	Google NIC(Vinyals et al., 2014) ^{†Σ}	63	41	27	- 11 <u>12 - 2</u> 1	71 <u></u> /
	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
	Soft-Attention	67	44.8	29.9	19.5	18.93
	Hard-Attention	67	45.7	31.4	21.3	20.30
Flickr30k	Google NIC [†] °Σ	66.3	42.3	27.7	18.3	<u> 8</u>
	Log Bilinear	60.0	38	25.4	17.1	16.88
	Soft-Attention	66.7	43.4	28.8	19.1	18.49
	Hard-Attention	66.9	43.9	29.6	19.9	18.46
COCO	CMU/MS Research (Chen & Zitnick, 2014) ^a	_	-	_	12	20.41
	MS Research (Fang et al., 2014) [†] a	_				20.71
	BRNN (Karpathy & Li, 2014)°	64.2	45.1	30.4	20.3	_
	Google NIC [†] ◦∑	66.6	46.1	32.9	24.6	_
	Log Bilinear°	70.8	48.9	34.4	24.3	20.03
	Soft-Attention	70.7	49.2	34.4	24.3	23.90
	Hard-Attention	71.8	50.4	35.7	25.0	23.04