

IMPACT OF THE ADOPTION OF ARTIFICIAL INTELLIGENCE ON THE STRUCTURE OF EUROPEAN EMPLOYMENT (2023-2024): AN EMPIRICAL ANALYSIS BY SECTOR AND OCCUPATION

Author: Eduardo Fernández Dionicio

Supervisor: Javier Fernández-Blanco

Degree: Economics

2 June 2025

RESEARCH QUESTION

HISTORICAL EFFECTS
OF AUTOMATION

Will artificial intelligence follow a similar pattern to that of technological advances in the past?

OBJECTIVE & HYPOTHESIS

Objective: To analyse how the adoption of AI by businesses affects the relative distribution of employment across NACE sectors and ISCO occupations in Europe in recent years

Main hypothesis: The adoption of AI will have a heterogeneous effect on employment depending on the type of predominant tasks.

MOTIVATION

Gaps in current empirical evidence

Lack of actual adoption data

European context

Contribution of the study

DATA AND METHODOLOGY

Figura 1. Distribución de las observaciones de IA_Adoption por país en Europa (2023-2024) Fuente: Elaboración propia a partir de datos de Eurostat (Digital Economy and Society dataset, 2023-2024).

Figura 3 y 4. Número de observaciones de adopción de IA a nivel de empresa por sector (NACE). Número de observaciones de adopción de IA agregadas por sector (sector-país-año, NACE). Fuente: Elaboración propia con datos de Eurostat (Digital Economy and Society dataset, 2023-2024).

Sectoral model (NACE Rev. 2 classification)

```
Share\_Sector_{i,s,t} = \beta_0 + \beta_1 \times IA\_Adoption_{i,s,t} + \beta_2 \times GDPCap_{i,t} + \beta_3 \times Educ\_Rate_{i,t} + \beta_4 \times Unemp\_Rate_{i,t} + \sum_{s \neq M} \gamma_s \left[ Sector_s \times IA\_Adoption_{i,s,t} \right] + \mu_i + \lambda_t + \varepsilon_{i,s,t}
```

- i = pais
- s = sector económico (clasificación NACE Rev. 2; la sección M se toma como categoría base, por eso el sumatorio excluye s=M)
- *t* = año
- μ_i = efectos fijos de país
- λ_t = efectos fijos de tiempo
- $\varepsilon_{i,s,t}$ = término de error idiosincrático

Occupational model (ISCO-08 classification)

$$Share_Occupation_{i,s,o,t} = \beta_0 + \beta_1 \times IA_Adoption_{i,s,t} + \beta_2 \times GDPCap_{i,t} + \beta_3 \times Educ_Rate_{i,t} + \beta_4 \times Unemp_Rate_{i,t} + \sum_{o \neq OC2} \gamma_o \left[Occupation_o \times IA_Adoption_{i,s,t}\right] + \sum_s \delta_s \left[Sector_s\right] + \mu_i + \lambda_t + \varepsilon_{i,s,o,t}$$

- i = pais
- o = ocupación (clasificación ISCO-08; el grupo OC2 se toma como categoría base, por eso el sumatorio excluye o=OC2)
- t = año
- μ_i = efectos fijos de país
- λ_t = efectos fijos de tiempo
- $\varepsilon_{i,s,t}$ = término de error idiosincrático

Nota: Efectos totales calculados como suma del coeficiente "IA_Adoption" y las interacciones con cada sector a partir del modelo de panel con efectos fijos por sector-país y tiempo. Barras verticales muestran intervalos de confianza al 95%. Fuente: elaboración propia a partir de estimaciones de PanelOLS con datos de Eurostat (Digital Economy and Society dataset y EU-LFS).

Nota: Efectos totales calculados como suma del coeficiente "IA_Adoption" y las interacciones con cada grupo ocupacional a partir del modelo de panel con efectos fijos por sector-país y tiempo. Barras verticales muestran intervalos de confianza al 95%. Fuente: elaboración propia a partir de estimaciones de PanelOLS con datos de Eurostat (Digital Economy and Society dataset y EU-LFS).

CONTRAST WITH THEORY: ROUTINE VS NON-ROUTINE TASKS

$$Share_Sector_{i,s,t} = \beta_0 + \beta_1 \times IA_Adoption_{i,s,t} + \beta_2 \times (IA_Adoption \times RTI)_{i,s,t} + \gamma_1 \times GDPCap_{i,t} + \gamma_2 \times Educ_Rate_{i,t} + \gamma_3 \times Unemp_Rate_{i,t} + \mu_i + \lambda_t + \varepsilon_{i,s,t}$$

- μ_i: Son los efectos fijos entidad (sector-país).
- λ_t : Son los efectos fijos temporales (año).
- ε_{i,t}: Es el término de error.

CONTRAST WITH THEORY: SUB-TASKS

$$Share_Sector_{i,s,t} = \beta_0 + \beta_1 \times IA_{i,s,t} + \beta_2 \times IA_{i,s,t} \times NRA_{i,s,t} + \beta_3 \times IA_{i,s,t} \times NRI_{i,s,t} + \beta_4 \times IA_{i,s,t} \times RM_{i,s,t} + \beta_5 \times IA_{i,s,t} \times NRM_{i,s,t} + \gamma_1 \times NRA_{i,s,t} + \gamma_2 \times NRI_{i,s,t} + \gamma_3 \times RM_{i,s,t} + \gamma_4 \times NRM_{i,s,t} + \delta_1 \times GDPCap_{i,t} + \delta_2 \times Educ_Rate_{i,t} + \delta_3 \times Unemp_Rate_{i,t} + \mu_i + \lambda_t + \varepsilon_{i,s,t}$$

- IA: IA_Adoption
- μ_i: Son los efectos fijos por entidad (sector-país).
- λ_t : Son los efectos fijos temporales (año).
- $\varepsilon_{i,t}$: Es el término de error.

TABLA 5

EFECTO DE LA ADOPCIÓN DE IA SOBRE LA ESTRUCTURA SECTORIAL DEL EMPLEO POR EL ÍNDICE DE INTENSIDAD EN TAREAS RUTINARIAS (RTI)

DATOS DE PANEL CON EFECTOS FIJOS, 2023-2024			
IA_Adoption	0.0971	(0.2785)	p=0.7276
IA Adoption x Mean RTI	0.1467	(0.3867)	p=0.7046
R2 (<u>Within</u>)			0.0239
<u>Nº</u> Obs			644

Nota: Errores estándar entre paréntesis. (***) 1%, (**) 5%, (*) 10%. Errores robustos clusterizados.

Variables de Control: GDPCap, Educ_Rate, Unemp_Rate

Efectos incluidos: Entidad, Tiempo

Nota: Efectos totales calculados como suma del coeficiente "IA_Adoption" y las interacciones con cada sub-tarea (RC, NRA, NRI, RM, NRM) a partir del modelo de panel con efectos fijos por sector-país y tiempo. Barras verticales muestran intervalos de confianza al 95%. Fuente: elaboración propia a partir de resultados de regresión.

DISCUSSION AND IMPLICATIONS

- Heterogeneous effects of AI (2023–24)
- Insufficient task theory
- Mechanisms still unclear

- Continuing education and retraining
- Incentives for sectoral restructuring
- Employment protection and guidance systems

CONCLUSIONS AND LIMITATIONS

Short-term window (2023– 24)

Aggregate data

Limited Al measurement

Sectors not included

THANK YOU