

Fair Multiple Decision Making Through Soft Interventions

Yaowei Hu¹, Yongkai Wu², Lu Zhang¹, Xintao Wu¹

¹University of Arkansas ²Clemson University

Fair Decision Making

Credit

• • •

How to ensure fairness in algorithmic decision making models is an important task in machine learning.

Multiple Decision Making

Fair Multiple Decision Making

What if we build fair model for each task independently?

$$(X_1, Y_1) \quad (X_2, Y_2)$$

Step 1: data collection

Step 2: offline training and evaluation (separately)

 $(X_1, Y_1) \Longrightarrow h_1$ (fair classifier)

 $(X_2, Y_2) \Longrightarrow h_2$ (fair classifier)

$$\sqrt{}$$

Why?

- Decision \widehat{Y}_1 will affect values of \widehat{X}_2
- Distribution $X_2 \neq \text{Distribution } \widehat{X}_2$

$$\widehat{X}_1 \xrightarrow{h_1} \widehat{Y}_1$$
 (fair) $\widehat{X}_2 \xrightarrow{h_2} \widehat{Y}_2$ (unfair)

Step 3: deploy and make decisions on new data

Proposed Solution

<u>Core idea:</u> leverage Pearl's structural causal model (SCM), treat each decision model as a soft intervention and infer the post-intervention distributions to formulate the loss function as well as the fairness constraints.

Using Soft Interventions to Simulate Decision Model Deployments

- In general, we have l decisions $\{Y_1, \dots, Y_l\}$.
- For each decision Y_k , we build a classifier $h_k(\mathbf{z}_k)$.
- The soft intervention for deploying all these models is $do(h_1, \cdots, h_l)$.

Loss Function and Fair Constraints

• Traditionally, classification error of classifier $h: \mathbb{Z} \mapsto Y$ is

$$R(h) = \mathbb{E}_{\mathbf{Z}}[P(Y=1|\mathbf{z})\mathbf{1}_{h(\mathbf{z})<0} + P(Y=0|\mathbf{z})\mathbf{1}_{h(\mathbf{z})\geq0}]$$

• Under soft intervention of deploying all models, for classifier h_k

$$R(h_k) = \mathbb{E}_{\mathbf{Z}_k | do(h_1, \dots, h_l)} [P(Y = 1 | \mathbf{z}_k) \mathbf{1}_{h(\mathbf{z}_k) < 0} + P(Y = 0 | \mathbf{z}_k) \mathbf{1}_{h(\mathbf{z}_k) \ge 0}]$$

• Similarly, fairness constraints are given by total effect

$$T(h_k) = P(Y = 1 | do(S = 1, h_1, \dots, h_l)) - P(Y = 1 | do(S = 0, h_1, \dots, h_l))$$

Deriving Loss Function and Fair Constraints with Observed Data

Loss function

$$R_{\phi}(h_{k}) = \underset{S, \mathbf{X}'_{Y_{k}}}{\mathbb{E}} \left[P(y_{k}^{+}|\mathbf{z}_{k})\phi(h_{k}(\mathbf{z}_{k})) \sum_{\mathbf{Y}'_{Y_{k}}} \prod_{Y_{i} \in \mathbf{Y}'_{Y_{k}}, y_{i}^{+}} \phi(-h_{i}(\mathbf{z}_{i})) \prod_{Y_{i} \in \mathbf{Y}'_{Y_{k}}, y_{i}^{-}} \phi(h_{i}(\mathbf{z}_{i})) \prod_{X_{i} \in \mathbf{X}'_{Y_{k}}} \frac{P(\mathbf{y}'_{X_{i}}|s, \mathbf{x}_{i}, \mathbf{x}'_{X_{i}})}{P(\mathbf{y}'_{X_{i}}|s, \mathbf{x}'_{X_{i}})} \right] + P(y_{k}^{-}|\mathbf{z}_{k})\phi(-h_{k}(\mathbf{z}_{k})) \sum_{\mathbf{Y}'_{Y_{k}}} \prod_{Y_{i} \in \mathbf{Y}'_{Y_{k}}, y_{i}^{+}} \phi(-h_{i}(\mathbf{z}_{i})) \prod_{Y_{i} \in \mathbf{Y}'_{Y_{k}}, y_{i}^{-}} \phi(h_{i}(\mathbf{z}_{i})) \prod_{X_{i} \in \mathbf{X}'_{Y_{k}}} \frac{P(\mathbf{y}'_{X_{i}}|s, \mathbf{x}_{i}, \mathbf{x}'_{X_{i}})}{P(\mathbf{y}'_{X_{i}}|s, \mathbf{x}'_{X_{i}})} \right].$$

Fair constraint

$$T_{\phi}(h_{k}) = \mathbb{E}_{\mathbf{X}'_{Y_{k}}|S=s^{+}} \left[\phi(-h_{k}(\mathbf{z}_{k})) \sum_{\mathbf{Y}'_{Y_{k}}} \prod_{Y_{i} \in \mathbf{Y}'_{Y_{k}}, y_{i}^{+}} \phi(-h_{i}(\mathbf{z}_{i})) \prod_{Y_{i} \in \mathbf{Y}'_{Y_{k}}, y_{i}^{-}} \phi(h_{i}(\mathbf{z}_{i})) \prod_{X_{i} \in \mathbf{X}} \frac{P(\mathbf{y}'_{X_{i}}|s^{+}, x_{i}, \mathbf{x}'_{X_{i}})}{P(\mathbf{y}'_{X_{i}}|s^{+}, \mathbf{x}'_{X_{i}})} \right]$$

$$+ \mathbb{E}_{\mathbf{X}'_{Y_{k}}|S=s^{-}} \left[\phi(h_{k}(\mathbf{z}_{k})) \sum_{\mathbf{Y}'_{Y_{k}}} \prod_{Y_{i} \in \mathbf{Y}'_{Y_{k}}, y_{i}^{+}} \phi(-h_{i}(\mathbf{z}_{i})) \prod_{Y_{i} \in \mathbf{Y}'_{Y_{k}}, y_{i}^{-}} \phi(h_{i}(\mathbf{z}_{i})) \prod_{X_{i} \in \mathbf{X}} \frac{P(\mathbf{y}'_{X_{i}}|s^{-}, x_{i}, \mathbf{x}'_{X_{i}})}{P(\mathbf{y}'_{X_{i}}|s^{-}, \mathbf{x}'_{X_{i}})} \right] - 1.$$

Problem Formulation for Fair Multiple Decision Making

• The problem of fair multiple decision making for $\mathbf{Y} = \{Y_1, \dots, Y_l\}$ is formulated as the following constrained optimization problem:

$$\min_{h_1, \dots, h_l \in \mathcal{H}} \sum_{k=1}^l R_{\phi}(h_k) \quad \text{s.t.} \quad \forall k, -\tau_k \leq T_{\phi}(h_k) \leq \tau_k$$

where $R_{\phi}(h_k)$ and $T_{\phi}(h_k)$ are smoothed loss function and fair constraint.

Excess Risk Bound

• For any classification-calibrated surrogate function ϕ satisfying $\phi(0)=1$ and $\inf_{\alpha\in\mathbb{R}}\phi(\alpha)=0$, any measurable function h_k for predicting Y_k , we have

$$\psi(R(h_k) - R^*) \le R_{\phi}(h_k) - R_{\phi}^*$$

where ψ is a non-decreasing function mapping from [0,1] to $[0,\infty)$.

Experiments

- Data:
 - Synthetic data:

– Adult data:

Experiments

Table 1: Accuracy and unfairness from Unconstrained, Separate, Serial and Joint methods on synthetic and Adult data (bold values indicate violation of fairness).

			Synthetic				Adult			
Phase			Uncons.	Separate	Serial	Joint	Uncons.	Separate	Serial	Joint
Train	h_1	Acc. (%)	80.32	75.35	75.35	75.35	55.71	55.64	55.63	55.63
		Unfairness	0.15	0.01	0.01	0.01	0.15	0.05	0.05	0.05
	h_2	Acc. (%)	90.13	75.79	84.02	82.77	76.75	71.17	68.90	69.31
		Unfairness	0.23	0.04	0.03	0.04	0.24	0.10	0.10	0.10
Test	h_1	Acc. (%)	80.70	75.54	75.54	75.54	55.63	55.56	55.57	55.57
		Unfairness	0.15	0.01	0.01	0.01	0.15	0.05	0.05	0.05
	h_2	Acc. (%)	89.95	77.06	84.16	82.09	77.07	73.33	68.91	69.40
		Unfairness	0.13	0.09	0.03	0.03	0.23	0.17	0.10	0.10

Conclusions

- Proposed an approach that learns multiple fair classifiers from a static training dataset.
- Treated the deployment of each classifier as a soft intervention and inferred the distributions after the deployment as postintervention distributions.
- Adopted surrogate functions to smooth the loss function and fair constraints to formulate the fair classification problem as a constrained optimization problem.
- Theoretically analyzed excess risk bound.
- Conducted experiments on both synthetic and real-world datasets.

Fair Multiple Decision Making Through Soft Interventions

Yaowei Hu

Yongkai Wu

Lu Zhang

Xintao Wu

This work was supported in part by NSF 1646654, 1920920, and 1946391.

