

Information Integration – Task 3 Datenbereinigung Sascha Obst, Johannes Hötter **HBRSler** 09.01.2020

Kurzer Rückblick

- Uns stehen folgende Datenquellen zur Verfügung:
 - IHME: Allgemeine Daten zu Krankheiten in verschiedenen Ländern
 - GHDx: Daten zum Konsum von Tabakwaren
 - WDI:Allgemeine Bevölkerungsdaten (Einkommensschichten, ...)
- Ziel ist es, Korrelationen zwischen Einflussfaktoren auf den Konsum von Tabakwaren und der Sterblichkeitsrate aufzudecken

"Höhere Einschränkung von Werbungen zu Tabakwaren" \rightarrow "geringere Anzahl an Rauchern" "Höhere Unterstützung, mit dem Rauchen aufzuhören" \rightarrow "geringere Anzahl an weibl. Rauchern" "Höhere Steuern" \rightarrow "Wesentlich weniger Jugendliche, die rauchen"

- → jeweils Betrachtung der Auswirkungen auf die allgemeine Sterblichkeitsrate
- → was sind die effektivsten Mittel, um die Sterblichkeitsrate zu verringern?

Task 4 - Cleansing

Welche Probleme bestehen noch?

- Nach der Integration der drei Quellen (IHME, GHDx, WDI) fallen noch folgende Probleme auf:
 - Uninterpretierbare Spalten
 - "Schlecht" modellierte Daten
 - Verschiedene Bezeichnungen für selben Sachverhalte,
 Vereinheitlichung der Bezeichnungen (sowohl von Werten als auch Spaltenbezeichnungen) praktisch
- Gut: keine Duplikate!
- Entscheidung: nur auf Views arbeiten -> besserer Überblick, um "Rohtabellen" gedanklich ausschalten zu können

Task 4 - Cleansing

Beispiele

Task 4 - Cleansing

Umschlüsselungen von Werten über Mapping-Tabellen

```
■ old_val

    table name

    new_val

1 <1 year
                                              Birth
                                                                                 age
                                              1 to 4
   Under 5
                                                                                 age
   70+ years
                                              70+
                                                                                 age
                                              01 to 04
   1 to 4
                                                                                 age
   5 to 9
                                              05 to 09
                                                                                 age
   5-14 years
                                              05 to 14
                                                                                 age
   15. # read them as a pandas file, update from old to new values
   50- # doing this extra step to get a table which contains our mappings (as a legacy value lookup)
   80 x mapping = pd.read sql table('x mapping', con=engine)
       template = "UPDATE  SET value = '<new value>' WHERE value = '<old value>';"
10
11 YLD for idx, row in x mapping.iterrows():
12 DAL
           old value, new value, table name = row
13 YLL
           sql = template.replace('', table name) \
               .replace('<old value>', old value) \
               .replace('<new value>', new value)
           sql = text(sql)
           engine.execute(sql)
```

Task 4 - Cleansing

■ Erstellen von Statistiken zu Lookup-Werten (Übersichtlichkeit)

```
⊪ value
                                                                                              i count :
view template = """\
                                                                     1 01 to 04
DROP VIEW IF EXISTS < lkp name > occurences;
                                                                                                  33184
                                                                     2 05 to 09
                                                                                                  17513
CREATE VIEW <1kp name> occurences AS
                                                                     3 05 to 14
                                                                                                  17858
SELECT value, COUNT(<lkp_name>.key) FROM ihme_smoking_diseases ihme
                                                                     4 10 to 14
                                                                                                  34094
INNER JOIN < lkp name>
                                                                     5 10 to 24
                                                                                                  21257
ON ihme.<lkp name> id = <lkp name>.key
                                                                     6 10 to 54
                                                                                                  27839
                                                                     7 15 to 19
                                                                                                  37451
                                                                     8 15 to 49
                                                                                                  37986
lkp names = ['age', 'cause', 'measure', 'metric', 'location', 'sex']
                                                                     9 20 to 24
                                                                                                  37439
for 1kp name in 1kp names:
                                                                    10 25 to 29
                                                                                                  37430
    delete sql = delete template.replace('<1kp name>', 1kp name)
                                                                    11 30 to 34
   delete sql = text(delete sql)
                                                                    12 35 to 39
                                                                                                  37424
    engine.execute(delete sql)
                                                                    13 40 to 44
                                                                                                  37942
    view sql = view template.replace('<1kp name>', 1kp name)
                                                                    14 45 to 49
                                                                                                  37958
    view sql = text(view sql)
    engine.execute(view sql)
```

Task 4 - Cleansing

Sascha Obst, Johannes Hötter 09.01.2020

Chart 6

Beispiele

Löschen von nicht interpretierbaren / irrelevanten Daten

Task 4 - Cleansing

Beispiele

Pivotisierung von lückenreichen Daten

						·	
1 KAZ	1998	2	5			25	
2 UZB	1996	1)			19	
3 SWE	1973	<null.< td=""><td>•</td><td></td><td></td><td><null></null></td><td></td></null.<>	•			<null></null>	
1 SWE	1932	<null.< td=""><td></td><td></td><td></td><td><null></null></td><td></td></null.<>				<null></null>	
GRC	2008	2	3			23	
JOR	2015	<null.< td=""><td></td><td>■ Code</td><td>: ⊮Year</td><td>⊕ Metric</td><td>Measure :</td></null.<>		■ Code	: ⊮Year	⊕ Metric	Measure :
JPN	1945	<null.< td=""><td>1</td><td>NIC</td><td>2012</td><td>Average cigarette pri</td><td>ce 3</td></null.<>	1	NIC	2012	Average cigarette pri	ce 3
LTU	2003	1:	2	RWA	2014	Average cigarette pri	ce 2
MNE	1985	2:	3	MEX	2014	Average cigarette pri	ce 5
BHS	2008	24	4	LKA	2014	Average cigarette pri	ce 8
L CHE	1937	<null.< td=""><td>5</td><td>ESP</td><td>2012</td><td>Average cigarette pri</td><td>ce 6</td></null.<>	5	ESP	2012	Average cigarette pri	ce 6
OWID_CZ	S 1991	<null.< td=""><td>6</td><td>UZB</td><td>2012</td><td>Average cigarette pri</td><td>ce 2</td></null.<>	6	UZB	2012	Average cigarette pri	ce 2
3 ITA	1971	<null.< td=""><td>7</td><td>JAM</td><td>2012</td><td>Average cigarette pri</td><td>ce 12</td></null.<>	7	JAM	2012	Average cigarette pri	ce 12
			8	UZB	2014	Average cigarette pri	
		4	9	BLR	2014	Average cigarette pri	
			10	LTU	2012	Average cigarette pri	
			11	ZAF	2014	Average cigarette pri	
				NZL	2012	Average cigarette pri	
			13		2012	Average cigarette pri	
			14		2014	Average cigarette pri	
			15		2012	Average cigarette pri	
			16		2012	Average cigarette pri	
			17		2012	Average cigarette pri	
			18	ITA	2012	Average cigarette pri	ce

☐ Code : ☐ Year : ☐ Estimated daily cigarette consumption per smoker : ☐ Estimated daily cigarette consumption :

Task 4 - Cleansing

Was wir gelernt haben

- Daten können wahnsinnig schlecht modelliert sein!
 - Share of Women (in %) enthielt Werte > 30000
 - Zahlreiche Spalten "Unnamed: 5" o.ä. in originaler Datei enthalten
 - Spalten mit langem, aber geringfügig variablem Inhalt
- Wie in vorheriger Übung: Pivotisierung oftmals hilfreich!
- Werte-Mapping Tabellen sind sehr hilfreich, um eine gute Dokumentation für Umschlüsselungen zu erhalten
 - X_Mapping
 - X_Deletion

Task 4 - Cleansing

Nächste Schritte

- Analyse der Daten auf Basis unserer Fragestellung
 - In aggregierter Form: Statistiken zu Verteilungen berechnen
 - Ggf. in Form von Karten visualisieren -> wenn, dann mit Tools wie Tableau (automatisierte Herleitung von Längen-/Breitengrad anhand ISO-3 Codes)

Task 4 - CleansingSascha Obst,
Johannes Hötter

09.01.2020 Chart **10**

