

Dual-Band Multi-System GNSS Positioning Module GEM1205

Datasheet V1.3

Notice, Statement and Copyright

ALLYSTAR Technology offers this document as a service to its customers, to support application and engineering efforts that use the products designed by ALLYSTAR Technology. Products and specifications discussed herein are for reference purposes only. Performance characteristics listed in this document do not constitute a warranty or guarantee of product performance.

ALLYSTAR Technology assumes no liability or responsibility for any claims or damages arising out of the use of this document, or from the use of integrated circuits based on this document, including, but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights.

This document contains proprietary technical information which is the property of ALLYSTAR Technology, copying of this document and giving it to others and using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. ALLYSTAR Technology reserves the right to make changes in its products, specifications and other information at any time without notice.

For more recent documents, please visit www.allystar.com.

Copyright © ALLYSTAR Technology (Shenzhen) Co., Ltd. 2022. All rights reserved.

TABLE OF CONTENT

1	OVE	RVIEW	6				
	1.1	Introduction	6				
	1.2	Features	6				
	1.3	Specifications	7				
		1.3.1 GNSS reception	7				
	1.4	Block diagram	8				
2	APP	LICATION INTERFACES	9				
	2.1	Pin definition	9				
		2.1.1 Pin assignment	9				
		2.1.2 Pin description					
	2.2	Power management					
		2.2.1 Full on mode					
		2.2.2 Backup mode					
	2.3	RESET					
	2.4 BOOT						
		2.5 UART					
	2.6	PPS					
	2.7	3D_FIX					
	2.8	JAM_IND					
	2.9 2.10	AADET_NGEO_FENCE interface					
	2.10	ANT_EXT (External Antenna)					
3	ELEC	CTRICAL CHARACTERISTICS					
	3.1	Absolute maximum ratings					
	3.2	Operating conditions					
	3.3	Power consumption	14				
4	MINI	IMAL DESIGN	15				
5	MEC	HANICAL SPEFICATIONS	15				
	5.1	Mechanical dimensions	15				
	5.2	Recommended PCB					
6	RFVI	REVISION HISTORY					

List of Tables

	Table 1 Specifications	7
	Table 2 GNSS reception	7
	Table 3 Pin description	9
	Table 4 Absolute maximum ratings	14
	Table 5 Operating conditions	
	Table 6 Power consumption	14
.ist	of Figures	
	Figure 1 GEM1205	
	Figure 2 Block diagram	8
	Figure 3 Pin assignment	9
	Figure 4 Power input reference circuit	
	Figure 5 External antenna reference design	13
	Figure 6 Minimal application diagram	
	Figure 7 Mechanical dimensions	15
	Figure 8 PCB footprints	16

ABOUT THE DOCUMENT

This document defines ALLYSTAR GEM1205 GNSS positioning module. It describes the hardware interfaces, electrical and mechanical specifications, aiming to make customers understand the hardware design of GEM1205.

1 OVERVIEW

1.1 Introduction

GEM1205 is a high-performance dual-band (L1/L5) GNSS positioning module. It supports the global civil navigation systems, including GPS, NavIC, BDS, GLONASS, Galileo, and QZSS. Embedded antennas ensure GEM1205 to work at L1 and L5 bands simultaneously to increase the number of visible satellites assisting by GPS, BDS, Galileo, and NavIC signals, which makes this module achieve high positioning accuracy and short TTFF, especially in a rough urban environment. GEM1205 supports external active antenna featured with auto-detecting and auto-switching. With a compact body and high performance, GEM1205 is widely applied to tracking applications, like the automotive, consumer, and industrial tracking.

Figure 1 GEM1205

1.2 Features

- Supports GPS, BDS, NavIC, Galileo and QZSS systems covering L1 and L5 bands
- Supports AGPS/DGPS/SBAS (WAAS/EGNOS/MSAS/GAGAN)
- Built-in LNA & SAW for better sensitivity
- Integrated with dual-feed (L1&L5) antenna
- Supports Geo-Fence function
- Supports message broadcast service for NavIC*
- Ultra-low power consumption around 40 mA in dual-band tracking mode
- Supports external active antenna featured with auto-detecting and auto-switching
- Compact size: 26.7*18.5*7.0 mm

^{*} Supported by specific firmware upgrade

1.3 Specifications

Table 1 Specifications

Parameter	Specification				
Positioning accuracy	GNSS: <1m CEP @ Open Sky				
Velocity & Time	GNSS	0.1 m/s CEP			
Accuracy	PPS_1σ	20 ns			
Time to First Fix (TTFF)	Hot start	1s			
Tillie to Filst Fix (TTFF)	Cold start	30s			
	Cold start	-149 dB	m		
Sensitivity	Reacquisition	-158 dB	m		
	Tracking	-162 dB	m		
Operating Limit	Velocity	515 m/s	3		
Operating Limit	Altitude	18,000m	1		
		Adjustable: 9600-460800 bps;			
Interface	UART	Default: 9600 bps			
		Update Rate: 1 Hz (Default), up to 10 Hz			
Protocol	NMEA 0183 V4.10				
External Antenna	Antenna Type: Active				
Interface	Antenna Power Supply: GEM1205 Module (Pin 15)				
Power Supply	VDD: 3.1-5.0 V, Typical 3.3V				
1 Ower Suppry	VDD_BAK: 1.7-3.6 V, Typical 3.3V				
	Operating mode		Acquisition: 42 mA @ 3.3V		
Power consumption	(GPS+QZSS+BDS+Galileo+Na	avIC)	Tracking: 40 mA @ 3.3V		
	Backup mode		12 uA @ 3.3V		
Temperature	Operation temperature: -40°C to +85°C				
remperature	Storage temperature: -40°C to +85°C				
Dimensions	26.7*18.5*7.0 mm				
Weight	Approx. 8.5g				

1.3.1 GNSS reception

Table 2 GNSS reception

P/N	D/M	Option	GPS/0	QZSS	BI	os	GLONASS	Gal	ileo	NavIC
	Орион	L1C/A	L5C	B1I	B2a	L1	E1	E5a	L5	
	A (Default)	•	•	•	•	-	•	•	•	
(GEM1205	В	•	•	-	_	•	•	•	•
		С	•	•	-	-	-	-	_	•

1.4 Block diagram

Figure 2 Block diagram

2 APPLICATION INTERFACES

2.1 Pin definition

2.1.1 Pin assignment

Figure 3 Pin assignment

2.1.2 Pin description

Table 3 Pin description

Pin name	Pin No.	1/0	DC characteristics	Comment
			V _{IL} min = 0V	
DVD	1		V _{IL} max = 0.4V	
RXD	ı	I	V _{IH} min = 2.6V	LIADT want is used for NINATA systems.
		V _{IH} max =	V _{IH} max = 3.6V	UART port is used for NMEA output, and
			V _{OL} max = 0.4V	firmware upgrade.
TXD	2	0	V _{OH} min = 2.6V	
			V _{OH} nom = 3.0V	

GND	3, 16	VSS		Assure a good GND connection to all GND pins of the module, preferably with a large ground plane.
VDD	4	Power	$V_{max} = 5V$ $V_{min} = 3.1V$ $V_{nom} = 3.3V$	Main voltage supply. Provide clean and stable supply. Assure that the load current is not less than 150 mA.
VDD_BAK	5	Power	$V_{max} = 3.6V$ $V_{min} = 1.7V$ $V_{nom} = 3.3V$	Backup power supply voltage input. Backup power is needed in order to enable warm start and hot start features.
PPS	6	0	V_{OL} max = 0.4V V_{OH} min = 2.6V V_{OH} nom = 3.0V	Time pulse output. If not used, keep it floating.
JAM_IND	7	0	V_{OL} max = 0.4V V_{OH} min = 2.6V V_{OH} nom = 3.0V	Jamming detection indicator. If not used, keep it floating.
GEO_FENCE	8	0	V_{OL} max = 0.4V V_{OH} min = 2.6V V_{OH} nom = 3.0V	Geo-fence boundary indicator. If not used, keep it floating.
3D_FIX	11	0	V_{OL} max = 0.4V V_{OH} min = 2.6V V_{OH} nom = 3.0V	3D fix indicator. The pin is at high level by default. After 3d-fix, the pin turns to low level.
AADET_N	12	0	V_{OL} max = 0.4V V_{OH} min = 2.6V V_{OH} nom = 3.0V	Active antenna Indicator. If not used, keep it floating.
воот	13	I	V_{IL} min = 0V V_{IL} max = 0.4V V_{IH} min = 2.6V V_{IH} nom = 3.3V	Mode selection. Keep it floating or Hi-Z when system powers up or resets, and the module enters into full on mode; keep low level when system powers up or resets, and the module enters into BOOT mode.
RESET	14	I	V_{IL} min = 0V V_{IL} max = 0.4V V_{IH} min = 2.6V V_{IH} nom = 3.3V	External reset, low active.
ANT_EXT	15	I		External active antenna pin
Reserved	9, 10	-		Reserved pins.

2.2 Power management

GEM1205 has two kinds of power supply: VDD and VDD_BAK. The main power is supplied through VDD pin, and the backup power is supplied through VDD_BAK. For a better positioning performance, it is recommended to use an LDO with 150 mA current at least.

VDD_BAK supplies power for RTC domain. If the VDD is off, VDD_BAK will be activated to keep the orbit information for a quick startup (hot start) and a shorter TTFF.

Note: If no backup power supply, VDD will supply to VDD_BAK through a diode.

Figure 4 Power input reference circuit

2.2.1 Full on mode

Full on mode consists of tracking mode and acquisition mode. In acquisition mode, the module searches satellites, and determines the visible satellites, coarse carrier frequency as well as code phase of satellite signals. Once the acquisition completed, it will automatically switch to tracking mode. In tracking mode, the module tracks satellites and demodulates the navigation data from specific satellites.

Both VDD and VDD_BAK pins are valid or only VDD is valid, the module enters into full on mode automatically.

2.2.2 Backup mode

If the power for VDD pin is off, the real-time clock (RTC) and battery backed RAM (BBR) are supplied through the VDD_BAK pin, and the module will enter into backup mode automatically. In backup mode, acquiring and tracking stops, and UART is not accessible. But orbit information and time will be maintained and allows a Hot or Warm start. Two ways to enter backup mode as below:

- Cut off VDD supply and keep VDD_BAK supply, and backup mode will be activated automatically.
 Reconnect the VDD supply, the module wakes the full on mode up.
- Send "\$PHD,06,41,TN,BB,<duration>,3*xx" command to enter into backup mode. After the specific duration, the module wakes the full on mode up.

For example:

Send "\$PHD,06,41,TN,BB,60000,3*40" command, and the system keeps backup mode for 60000 ms. After 60000 ms, the module turns to full on mode.

2.3 RESET

Reset pin is used to reset system. GEM1205 module can be reset by driving RESET to low level voltage. Keep RESET pin floating if not used. Do not reserve any pull-up or pull-down circuit for this pin.

2.4 **BOOT**

Boot pin is used to upgrade the module. Keep BOOT pin Hi-Z or floating during an external reset or system power-on, the module enters full on mode.

How to enter the Boot mode?

Drive **BOOT** pin to low or connect **BOOT** pin to GND directly (not by pull-down resistance) during system powers up or the external reset happens. The system enters Boot mode after **BOOT** pin is released from low to floating state.

Note: Do not reserve any pull-up or pull-down circuit for this pin.

2.5 UART

The Universal Asynchronous Receiver/Transmitter (UART) provides serial communication with external device. It performs serial-to-parallel & parallel-to-serial data conversion during receiving & transmitting respectively.

- UART port is used for NMEA output and firmware upgrade
- Range: 9600-460800 bps, the default baud rate is 9600 bps.

2.6 PPS

An extremely accurate time pulse signal "Pulse Per Second" (PPS) generated by GNSS can be output to designated pin. It is useful in timing applications. The pulse interval can be adjusted by changing internal parameters.

2.7 3D_FIX

3D_FIX defaults low level. It will output a high level after successful positioning.

2.8 JAM_IND

JAM_IND is used to detect if there is any jammer interfering the device. If a jammer interference exists, JAM_IND pin will produce a low level; otherwise it produces a high level.

2.9 AADET_N

AADET_N pin is used to detect whether there is an external active antenna. It outputs a low level if

an external active antenna is detected; a high level if no external active antenna is detected. Keep AADET_N pin floating if not used.

Note:

- 1) Active antenna requires a DC supply through Pin 15 (ANT_EXT pin).
- 2) The current supplying to active antenna should be in the range of 2 mA to 35 mA. Any current out of the range cannot indicate an active antenna status.

2.10 GEO_FENCE interface

The GEO_FENCE signal is used for geo-fence boundary indication. If not used, keep it floating.

2.11 ANT_EXT (External Antenna)

ANT_EXT pin is designed for an external active antenna connection. When an external active antenna is connected, GEM1205 can automatically detect its presence and automatically switch to use it.

Recommended circuit design for an external antenna:

Figure 5 External antenna reference design

Note:

- Active antenna requires a DC supply through Pin 15 (ANT_EXT pin).
- 2) The current supplying to active antenna should be in the range of 2 mA to 35 mA.

3 ELECTRICAL CHARACTERISTICS

3.1 Absolute maximum ratings

This product contains devices to protect the inputs from high static voltages damage, however it is advisable to take normal precautions to avoid application of any voltage higher than the specified maximum rated voltages. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Table 4 Absolute maximum ratings

Symbol	Parameter	Min.	Max.	Unit
VDD	Power input for the main power domain	-0.3	6	V
VDD_BAK	Backup supply	-0.5	3.63	V
I/O pin voltage	I/O pin voltage	-0.5	3.63	V
P _{ANT_EXT}	Input power at external antenna	-	15	dBm
T _{storage}	Storage temperature	-40	+85	°C

3.2 Operating conditions

Table 5 Operating conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Power input for the main power domain	3.1	3.3	5.0	V
VDD_BAK	Backup supply	1.7	3.3	3.6	V
ICC _{max}	Maximum operating current @ VDD	-	-	60	mA
T _{env}	Operating temperature	-40	+25	+85	°C

3.3 Power consumption

Table 6 Power consumption

Module	Condition	Acquisition	Tracking	Backup
GEM1205	(GPS+QZSS+BDS+Galileo+NavIC) @ 3.3V	42 mA	40 mA	12 uA

4 MINIMAL DESIGN

Minimal design for GEM1205 shows as below.

Figure 6 Minimal application diagram

5 MECHANICAL SPEFICATIONS

5.1 Mechanical dimensions

Figure 7 Mechanical dimensions

5.2 Recommended PCB

Figure 8 PCB footprints

6 REVISION HISTORY

Revision	Date	Reviser	Status/Comments
V1.0	2020-06	Vita Wu	First released
V1.1	2020-11	Vita Wu	Adds minimal design in Section 4.
V1.2	2021-02	Vita Wu	Updates product photo.
			Modifies default baud rate
V1.3	2022-06	Cao Min	Deletes I2C interfaces
V 1.3			Updates the company headquarters address
			Content optimization

www.allystar.com

info.gnss@allystar.com

Headquarters

Allystar Technology (Shenzhen) Co., Ltd.

Address: 201-2, 2F, Tower F, Xinghe World, No.1, Yabao Road, LongGang District, Shenzhen City, Guangdong Province, China.

Calgary Office

Allystar Technology (Canada) Ltd.

Address: Unit 288, 3553 31 Street NW Calgary, Alberta, Canada T2L 2K7

