Tri des déchets INFO-F308

groupe 5

Yahya Bakkali - Hugo Callebaut - Amir Fallahi -Maxime Hauwaert - Dumitru Negru - Brice Petit

Problématique des déchets

Techniques de classification

k-nearest neighbor (KNN), Bayes, Desision tree, ...

Classification d'images

Support Vector Machine (SVM)

Convolutional Neural Network (CNN)

Base de données

Environ 4000 images utilisées pour l'apprentissage

À classifier en 5 sacs : Blanc, Jaune, Bleu, Orange, Verre

Support Vector Machine (SVM)

- Extraction des caractéristiques de chaque image (SIFT, SURF, ...)
- Regroupement des caractéristiques en classe
- Classification

Extraction des caractéristiques

Speeded Up Robust Features

Scale Invariant Features Transform

SURF

Regroupement des caractéristiques

Modèle final

Phase d'entraînement

Phase de classification

Convolutional Neural Network (CNN)

- Bloc Filtreur
- Bloc Classifieur

Convolution Filter

Transfer Learning

- Un modèle déjà entraîné sur des millions d'images différentes
- On entraîne une partie du modèle différencier les déchets spécifiquement

Dispositif pour le printemps des sciences

- Modèle exporté sur le Raspberry Pi
- Poubelles équipées d'un moteur
- Caméra à actionner avec un bouton

Et après ?

Évolution du modèle entièrement automatisé

