近世代数作业2

cycleke

November 23, 2020

Contents

1	课后	习题																		
	1.1	第一题																		
	1.2	第二题																		
	1.3	第三题																		
	1.4	第四题																		
	1.5	第五题																		
	1.6	第六题																		

1 课后习题

1.1 第一题

证明 设 $G = \{x \mid \exists a_1, a_2, \cdots, a_n \in A, x = a_1 a_2 \cdots a_n, n \geq 1\}$,则只需证明 (A) = G。 首先证明 $(A) \subseteq G$

$$\forall x, y \in G, \exists a_1, a_2, \cdots, a_n, b_1, b_2 \cdots, b_m \in A, n, m \ge 1$$

$$s.t. x = a_1 a_2 \cdots a_n, y = b_1 b_2 \cdots b_m$$

$$\therefore x \circ y = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

$$\therefore x \circ y \in G$$

所以 (G, \circ) 是 (S, \circ) 的一个子半群。显然 $A \subseteq G$,又因为 (A) 是为由 A 生成的子半群,所以 $(A) \subseteq G$ 。

再证明 $G \subseteq (A)$

$$\forall x \in G, \exists a_1, a_2, \cdots, a_n \in A, x = a_1 a_2 \cdots a_n, n \ge 1$$

 $\therefore a_i \in A \in (A), 1 \le i \le n$
 $\therefore (A)$ 是一个子半群
 $\therefore a_1 a_2 \cdots a_n \in (A) \Rightarrow x \in (A)$

所以 $G \subseteq (A)$ 。

所以
$$A = G = \{x \mid \exists a_1, a_2, \dots, a_n \in A, x = a_1 a_2 \dots a_n, n \geq 1\}$$
。

1.2 第二题

证明 设 M 的所有幂等元之集为 M'。显然 $M' \subseteq M, e \in M'$,所以只需证明 M 是一个半群。

$$\forall a, b \in M'$$
 $a \circ b = (a \circ a) \circ (b \circ b)$
 $\therefore M$ 是一个可交换幺半群

$$\therefore a \circ b = (a \circ a) \circ (b \circ b)$$

$$= a \circ a \circ b \circ b$$

$$= a \circ b \circ a \circ b$$

$$= (a \circ b) \circ (a \circ b)$$

$$\therefore a \circ b \in M'$$

 \therefore 。是 M' 的一个二元运算。

因为 $M' \subseteq M$, (M, \circ, e) 是一个可交换幺半群,所以。符合交换律。M 的所有幂等元之集是 M 的一个子幺半群。

1.3 第三题

不一定。

如 $(Z^+,+)$ 是一个循环幺半群,而 $(Z^+-1,+)$ 不是。 如 $(Z_4,+)$, $(Z_4$ 是模 4 剩余类) 是一个循环幺半群,且其一个子幺半群 $(\{[0],[2]\},+)$ 也是。

1.4 第四题

$$M = e, a, a^{2}, a^{3}, a^{4}, a^{5}$$

$$(a^{2}) = e, a^{2}, a^{4}$$

$$(a^{3}) = e, a^{3}$$

$$(a^{4}) = e, a^{2}, a^{4}$$

$$(a^{5}) = M$$

1.5 第五题

首先证明 $\varphi^{-1}(e_2)$ 是 M 的一个子幺半群。

证明 因为 $\varphi(e_1) = e_2$,所以 $e_1 \in \varphi^{-1}(e_2)$,又由于 (M, \circ, e_1) 是一个幺半群,所以只需证明 \circ 是 $\varphi^{-1}(e_2)$ 的一个二元运算。

$$\forall x, y \in \varphi^{-1}(e_2)$$

因为 $\varphi \in M_1 \to M_2$ 的同态
 $\varphi(x \circ y) = \varphi(x) * \varphi(y)$
 $= e_2 * e_2$
 $= e_2$
所以 $x \circ y \in \varphi^{-1}(e_2)$

所以 $\varphi^{-1}(e_2)$ 是 M_1 的一个子幺半群。

 $\varphi^{-1}(e_2)$ 不一定是 M_1 的理想。

若 $\exists x \in M_1$ 且 $x \notin \varphi^{-1}(e_2)$,则 $\forall y \in \varphi^{-1}(e_2)$, $\varphi(x \circ y) = \varphi(x) * \varphi(y) = \varphi(x) \neq e_2$,所以 $x\varphi^{-1}(e_2) \neq \varphi^{-1}(e_2)$,此时 $\varphi^{-1}(e_2)$ 不是 M_1 的理想。所以 $\varphi^{-1}(e_2)$ 是 M_1 的理想当且仅当 $\varphi^{-1}(e_2) = M_1$ 。

1.6 第六题

显然 $(Z_3,+,0)$ 是一个幺半群。可以得出

$$L(Z_3) = \rho_a : \rho_a(x) = x + a, a, x \in Z_3$$

$$I = \rho_0$$
$$\varphi(x) = \rho_x$$

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Table 1: (Z₃, +, 0) 乘法表

0	$ ho_0$	ρ_1	ρ_2
ρ_0	$ ho_0$	$ ho_1 $	$ ho_2 $
ρ_1	$ \rho_1 $	ρ_2	$ vert ho_0$
ρ_2	ρ_2	ρ_0	ρ_1

Table 2: $(L(Z_3), \circ, I)$ 乘法表

不难发现 $(Z_3,+,0)$ 与 $(L(Z_3),\circ,I)$ 同构。