Preprocessing and Visualization

- · Import neccessary library
- · Read Dataset
- · Sanity Check of Data
- · Exploratory Data Analysis
- · Missing Value Treatment
- · Outlier Treatment
- · Duplicates & garbage value treatment
- Normalization
- · Encoding of data

Import neccessary library

```
In [33]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Read Dataset

```
In [34]: df = pd.read_csv('Life Expectancy Data.csv')
In [35]: df.head()
Out[35]:
```

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatit
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	65
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	62
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	64
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	67
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	68
5 rows × 22 columns									

```
Life
                                                 Adult
                                                        infant
        Country Year
                                                               Alcohol
                          Status
                                  expectancy Mortality
                                                       deaths
                                                                        expenditure
2933 Zimbabwe 2004 Developing
                                                 723.0
                                                           27
                                                                  4.36
                                                                                0.0
                                        44.3
2934 Zimbabwe 2003 Developing
                                        44.5
                                                 715.0
                                                           26
                                                                  4 06
                                                                                0.0
2935 Zimbabwe 2002 Developing
                                        44.8
                                                  73.0
                                                           25
                                                                  4.43
                                                                                0.0
2936 Zimbabwe 2001 Developing
                                        45.3
                                                 686.0
                                                           25
                                                                  1.72
                                                                                0.0
      Zimbabwe 2000 Developing
                                        46.0
                                                 665.0
                                                           24
                                                                  1.68
                                                                                0.0
5 rows × 22 columns
```

Sanity Check of Data

10/3/24, 5:59 PM

In [36]: df.tail()

Out[36]:

```
Data columns (total 22 columns):
    Column
                                      Non-Null Count Dtype
                                      _____
    Country
                                      2938 non-null
                                                      object
1
    Year
                                      2938 non-null
                                                      int64
    Status
                                      2938 non-null
                                                      object
                                      2928 non-null
    Life expectancy
                                                      float64
    Adult Mortality
                                      2928 non-null
                                                      float64
    infant deaths
                                      2938 non-null
                                                     int64
    Alcohol
                                      2744 non-null
                                                     float64
    percentage expenditure
                                      2938 non-null
                                                     float64
    Hepatitis B
                                      2385 non-null
                                                     float64
 9
    Measles
                                      2938 non-null
                                                     int64
     BMT
                                      2904 non-null
                                                     float64
10
     under-five deaths
                                      2938 non-null
                                                     int64
 12
    Polio
                                      2919 non-null
                                                     float64
    Total expenditure
                                      2712 non-null
                                                     float64
    Diphtheria
                                      2919 non-null
                                                     float64
 15
     HIV/AIDS
                                      2938 non-null
                                                      float64
    GDP
                                      2490 non-null
                                                     float64
16
    Population
                                      2286 non-null
                                                      float64
     thinness 1-19 years
                                      2904 non-null
                                                      float64
     thinness 5-9 years
                                      2904 non-null
                                                      float64
    Income composition of resources 2771 non-null
                                                     float64
                                      2775 non-null
                                                     float64
    Schooling
```

dtypes: float64(16), int64(4), object(2)
memory usage: 505.1+ KB

```
In [39]: # display the missing values count
         df.isnull().sum()
Out[39]: Country
                                              0
         Year
                                              a
                                              0
         Status
         Life expectancy
                                             10
         Adult Mortality
                                             10
         infant deaths
                                              a
                                            194
         Alcohol
         percentage expenditure
                                              0
         Hepatitis B
                                            553
         Measles
                                              0
          BMT
                                             34
         under-five deaths
                                              0
         Polio
                                             19
         Total expenditure
                                            226
         Diphtheria
                                             19
         HIV/AIDS
                                              0
         GDP
                                            448
         Population
                                            652
          thinness 1-19 years
                                             34
          thinness 5-9 years
                                             34
         Income composition of resources
                                            167
         Schooling
                                            163
         dtype: int64
In [40]: # display the missing values percentage
         round(df.isnull().sum() / df.shape[0]*100,2)
Out[40]: Country
                                             0.00
         Year
                                             0.00
         Status
                                             0.00
         Life expectancy
                                             0.34
         Adult Mortality
                                             0.34
         infant deaths
                                             0.00
         Alcohol
                                             6.60
         percentage expenditure
                                             0.00
         Hepatitis B
                                            18.82
         Measles
                                             0.00
          BMT
                                             1.16
         under-five deaths
                                             0.00
         Polio
                                             0.65
         Total expenditure
                                             7.69
         Diphtheria
                                             0.65
         HIV/AIDS
                                             0.00
         GDP
                                            15.25
         Population
                                            22.19
          thinness 1-19 years
                                             1.16
          thinness 5-9 years
                                             1.16
         Income composition of resources
                                             5.68
         Schooling
                                             5.55
         dtype: float64
```

Data Cleaning and Preprocessing - Jupyter Notebook

```
In [102]: print(df.shape)
          print(df.shape[0])
         print(df.shape[0]*100)
          (2938, 22)
          2938
          293800
 In [41]: # check the duplicate value
          df.duplicated().sum()
 Out[41]: 0
 In [42]: # identify the garbage value
          for i in df.select dtypes(include='object').columns:
             print(df[i].value counts())
             print('*'*30)
          Country
                                 16
          Afghanistan
                                 16
          Peru
         Nicaragua
                                 16
         Niger
                                 16
         Nigeria
                                 16
                                 . .
         Niue
                                  1
          San Marino
                                 1
         Nauru
                                  1
         Saint Kitts and Nevis
                                 1
         Dominica
         Name: count, Length: 193, dtype: int64
          **********
          Status
                       2426
         Developing
         Developed
                       512
          Name: count, dtype: int64
          **********
```

0.50/

```
In [107]: # it filter columns
           df.select_dtypes(include='object')
Out[107]:
                   Country
                              Status
              0 Afghanistan Developing
              1 Afghanistan Developing
              2 Afghanistan Developing
              3 Afghanistan Developing
              4 Afghanistan Developing
            2933
                  Zimbabwe Developing
            2934
                  Zimbabwe Developing
            2935
                  Zimbabwe Developing
            2936
                  Zimbabwe Developing
            2937
                  Zimbabwe Developing
           2938 rows × 2 columns
In [108]: # it filter columns
           df.select_dtypes(include='object').columns
Out[108]: Index(['Country', 'Status'], dtype='object')
In [109]: df['Country'].value_counts()
Out[109]: Country
           Afghanistan
                                     16
           Peru
                                     16
                                     16
           Nicaragua
           Niger
                                     16
           Nigeria
                                     16
           Niue
                                      1
           San Marino
                                      1
           Nauru
                                      1
           Saint Kitts and Nevis
                                      1
           Dominica
           Name: count, Length: 193, dtype: int64
```

Data Cleaning and Preprocessing - Jupyter Notebook

In [43]: # describe numerical features and T means moving hrizontly
df.describe().T

Out[43]:

	count	mean	std	min	25%	50%
Year	Year 2938.0 2.007519e+03 4.6138		4.613841e+00	2000.00000	2004.000000	2.008000e+03
Life expectancy	2928.0	6.922493e+01	9.523867e+00	36.30000	63.100000	7.210000e+01
Adult Mortality	2928.0	1.647964e+02	1.242921e+02	1.00000	74.000000	1.440000e+02
infant deaths	2938.0	3.030395e+01	1.179265e+02	0.00000	0.000000	3.000000e+00
Alcohol	2744.0	4.602861e+00	4.052413e+00	0.01000	0.877500	3.755000e+00
percentage expenditure	2938.0	7.382513e+02	1.987915e+03	0.00000	4.685343	6.491291e+01
Hepatitis B	2385.0	8.094046e+01	2.507002e+01	1.00000	77.000000	9.200000e+01
Measles	2938.0	2.419592e+03	1.146727e+04	0.00000	0.000000	1.700000e+01
BMI	2904.0	3.832125e+01	2.004403e+01	1.00000	19.300000	4.350000e+01
under-five deaths	2938.0	4.203574e+01	1.604455e+02	0.00000	0.000000	4.000000e+00
Polio	2919.0	8.255019e+01	2.342805e+01	3.00000	78.000000	9.300000e+01
Total expenditure	2712.0	5.938190e+00	2.498320e+00	0.37000	4.260000	5.755000e+00
Diphtheria	2919.0	8.232408e+01	2.371691e+01	2.00000	78.000000	9.300000e+01
HIV/AIDS	2938.0	1.742103e+00	5.077785e+00	0.10000	0.100000	1.000000e-01
GDP	2490.0	7.483158e+03	1.427017e+04	1.68135	463.935626	1.766948e+03
Population	2286.0	1.275338e+07	6.101210e+07	34.00000	195793.250000	1.386542e+06
thinness 1- 19 years	2904.0	4.839704e+00	4.420195e+00	0.10000	1.600000	3.300000e+00
thinness 5-9 years	2904.0	4.870317e+00	4.508882e+00	0.10000	1.500000	3.300000e+00
Income composition of resources	2771.0	6.275511e-01	2.109036e-01	0.00000	0.493000	6.770000e-01
Schooling	Schooling 2775.0 1.199279e+01 3.358920e+		3.358920e+00	0.00000 10.100000 1.23		1.230000e+01
4						>

```
In [115]: df.describe()
```

Out[115]:

	Year	expectancy	Adult Mortality	deaths	Alcohol	expenditure	Нера
count	2938.000000	2938.000000	2938.000000	2938.000000	2938.000000	2938.000000	2938.0
mean	2007.518720	69.234802	162.024154	13.635126	4.602861	284.045797	84.€
std	4.613841	9.479612	115.483835	19.108928	3.916288	389.455566	12.8
min	2000.000000	44.600000	1.000000	0.000000	0.010000	0.000000	58.0
25%	2004.000000	63.200000	74.000000	0.000000	1.092500	4.685343	9.08
50%	2008.000000	72.000000	144.000000	3.000000	4.160000	64.912906	87.0
75%	2012.000000	75.600000	227.000000	22.000000	7.390000	441.534144	96.0
max	2015.000000	89.000000	456.500000	55.000000	17.870000	1096.807347	99.0
4							•

In [44]: # describing categorical features
df.describe(include="object").T

Out[44]:

	count	unique	тор	Treq
Country	2938	193	Afghanistan	16
Statue	2038	2	Developing	2426

Exploratory Data Analysis

· check data distribution

10/3/24, 5:59 PM

Identify Outlier

```
In [46]: for i in df.select_dtypes(include='number').columns:
    sns.boxplot(data=df, x=i, vert=False)
    plt.show()
```

• Relation between Feature Matrix and Target Vector

```
In [47]: x = df.select_dtypes(include="number").columns
x = list(x)
target = 'Life expectancy '
x.remove(target) # removing target vector
```


10/3/24, 5:59 PM

```
In [49]: corr_matrix = df.select_dtypes(include='number').corr()
    plt.figure(figsize=(20,20))
    sns.heatmap(corr_matrix, annot=True)
    plt.show()
```

Data Cleaning and Preprocessing - Jupyter Notebook

Missing Value Treatment

- Traditional Method (Mean, Mode, Median)
- New Method KNNImputer

```
In [50]: for i in [' BMI ','Polio','Income composition of resources']:
    df[i].fillna(df[i].median(), inplace=True)
```

```
In [51]: df.isna().sum()
Out[51]: Country
                                              0
         Year
                                              0
         Status
                                              a
         Life expectancy
                                             10
         Adult Mortality
                                             10
         infant deaths
                                              0
         Alcohol
                                            194
         percentage expenditure
                                              0
         Hepatitis B
                                            553
         Measles
                                              0
          BMI
                                              0
         under-five deaths
                                              0
         Polio
                                              0
         Total expenditure
                                            226
         Diphtheria
                                             19
          HIV/AIDS
                                              0
         GDP
                                            448
         Population
                                            652
          thinness 1-19 years
                                             34
          thinness 5-9 years
                                             34
         Income composition of resources
                                              0
         Schooling
                                            163
         dtype: int64
In [52]:
         # using KNNImputer
         from sklearn.impute import KNNImputer
         imputer = KNNImputer()
In [53]: for i in df.select_dtypes(include='number').columns:
             df[i] = imputer.fit transform(df[[i]])
```

```
In [54]: df.isna().sum()
Out[54]: Country
         Year
                                           0
         Status
                                            a
         Life expectancy
         Adult Mortality
         infant deaths
         Alcohol
         percentage expenditure
         Hepatitis B
         Measles
          BMT
         under-five deaths
         Polio
         Total expenditure
         Diphtheria
         HIV/AIDS
         GDP
         Population
          thinness 1-19 years
          thinness 5-9 years
                                           0
         Income composition of resources
         Schooling
                                           0
         dtype: int64
In [55]: imputer.n neighbors
Out[55]: 5
```

Outlier Treatment

```
In [56]: def wisker(col):
             q1,q3 = np.percentile(col,[25,75])
             iqr = q3 - q1
             hf = q3 + 1.5 * iqr
             lf = q1 - 1.5 * igr
             return 1f,hf
In [57]: wisker(df['GDP'])
Out[57]: (-9773.52021495771, 17837.165679596183)
```

```
In [58]: df outlier cols = list(df.select dtypes(include='number').columns)
         df outlier cols.remove('Year')
         df outlier cols.remove(' BMI ')
         df outlier cols.remove('Alcohol')
         df outlier cols
Out[58]: ['Life expectancy ',
           'Adult Mortality',
          'infant deaths',
          'percentage expenditure',
           'Hepatitis B',
          'Measles',
          'under-five deaths ',
          'Polio',
          'Total expenditure',
          'Diphtheria',
          ' HIV/AIDS',
           'GDP',
           'Population',
          'thinness 1-19 years',
          'thinness 5-9 years',
          'Income composition of resources',
          'Schooling']
In [59]: for i in df_outlier_cols:
             lw, uw = wisker(df[i])
             df[i] = np.where(df[i]<lw,lw,np.where(df[i]>uw,uw,df[i]))
             # df[df[i] > uw][i] = uw
In [60]: for i in df_outlier_cols:
             sns.boxplot(data=df,x=i)
             plt.show()
```

remove duplicate

In [61]: print(df.shape)
 df.drop_duplicates(inplace=True)
 print(df.shape)

Data Cleaning and Preprocessing - Jupyter Notebook

(2938, 22) (2938, 22)

Encodding

In [62]: pd.get_dummies(data=df,columns=["Country","Status"],drop_first=True)

Out[62]:

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	ВМІ
0	2015.0	65.0	263.0	55.0	0.01	71.279624	65.000000	900.625	19.1
1	2014.0	59.9	271.0	55.0	0.01	73.523582	62.000000	492.000	18.6
2	2013.0	59.9	268.0	55.0	0.01	73.219243	64.000000	430.000	18.1
3	2012.0	59.5	272.0	55.0	0.01	78.184215	67.000000	900.625	17.6
4	2011.0	59.2	275.0	55.0	0.01	7.097109	68.000000	900.625	17.2
2933	2004.0	44.6	456.5	27.0	4.36	0.000000	68.000000	31.000	27.1
2934	2003.0	44.6	456.5	26.0	4.06	0.000000	58.351153	900.625	26.7
2935	2002.0	44.8	73.0	25.0	4.43	0.000000	73.000000	304.000	26.3
2936	2001.0	45.3	456.5	25.0	1.72	0.000000	76.000000	529.000	25.9
2937	2000.0	46.0	456.5	24.0	1.68	0.000000	79.000000	900.625	25.5
2938 ı	ows × 2	213 columns							

In [63]: pd.get dummies(data=df,columns=["Country","Status"],drop first=True,dtype=i Out[63]: Life Adult infant percentage Hepatitis Measles BMI Alcohol expectancy Mortality deaths expenditure 0 2015.0 65.0 263.0 55.0 0.01 71.279624 65.000000 900.625 19.1 1 2014.0 59.9 271.0 55.0 0.01 73.523582 62.000000 492.000 18.6 2 2013.0 59.9 268.0 55.0 0.01 73.219243 64.000000 430.000 18.1 3 2012.0 59.5 272.0 55.0 0.01 78.184215 67.000000 900.625 **4** 2011.0 592 275.0 55.0 0.01 7.097109 68.000000 900.625 2933 2004 0 44 6 456.5 27.0 4.36 0.000000 68.000000 31.000 27.1 2934 2003.0 44.6 456.5 26.0 4.06 0.000000 58.351153 900.625 26.7 2935 2002.0 44.8 73.0 25.0 4.43 0.000000 73.000000 304.000 26.3 2936 2001.0 45.3 456.5 25.0 1.72 0.000000 76.000000 529.000 25.9 2937 2000.0 46.0 456.5 24.0 1.68 0.000000 79.000000 900.625 25.5 2938 rows × 213 columns mydata = pd.get dummies(data=df,columns=["Country", "Status"],drop first=Tru mydata Out[64]: Life Adult infant percentage Hepatitis Alcohol Measles BMI Year Mortality deaths expenditure expectancy 0 2015.0 263.0 55.0 71.279624 65.000000 900.625 19.1 65.0 0.01 1 2014.0 59.9 271.0 55.0 0.01 73.523582 62.000000 492.000 2 2013.0 59.9 268.0 55.0 0.01 73.219243 64.000000 430.000 3 2012.0 59.5 272.0 55.0 78.184215 67.000000 900.625 **4** 2011.0 59.2 275.0 55.0 0.01 7.097109 68.000000 900.625 17.2 2933 2004.0 44.6 456.5 27.0 4.36 0.000000 68.000000 31.000 27.1 **2934** 2003.0 44.6 456.5 26.0 4.06 0.000000 58.351153 900.625 26.7 2935 2002.0 44.8 73.0 25.0 4.43 0.000000 73.000000 304.000 26.3 2936 2001.0 45.3 456.5 25.0 1.72 0.000000 76.000000 529.000 2937 2000.0 46.0 456.5 24.0 1.68 0.000000 79.000000 900.625 25.5

In [82]: X = mydata.drop('Life expectancy ',axis=1)
Y = mydata['Life expectancy ']

2938 rows × 213 columns

10/3/24, 5:59 PM

In [86]:

scaler.fit transform(X)

Data Cleaning and Preprocessing - Jupyter Notebook

```
In [83]: X
Out[83]:
                                                                                       under-
                            Adult
                                   infant
                                                   percentage
                                                               Hepatitis
                                                                         Measles BMI
                                                                                         five Poli
                                          Alcohol
                         Mortality
                                  deaths
                                                  expenditure
                                                                                       deaths
              0 2015.0
                            263.0
                                    55.0
                                            0.01
                                                    71.279624
                                                              65.000000
                                                                         900.625 19.1
                                                                                         70.0
                                                                                               49.
              1 2014.0
                            271.0
                                    55.0
                                                    73.523582
                                                              62.000000
                                                                         492,000 18.6
                                                                                         70.0
                                                                                               58.
                                             0.01
              2 2013.0
                            268.0
                                    55.0
                                            0.01
                                                    73.219243 64.000000
                                                                         430.000 18.1
                                                                                         70.0 62
              3 2012.0
                            272.0
                                    55.0
                                            0.01
                                                    78.184215 67.000000
                                                                         900.625 17.6
                                                                                         70.0
                                                                                               67.
              4 2011.0
                            275.0
                                    55.0
                                            0.01
                                                     7.097109 68.000000
                                                                         900.625 17.2
                                                                                         70.0 68
            2933 2004 0
                            456.5
                                    27.0
                                             4 36
                                                     0.000000 68.000000
                                                                          31.000 27.1
                                                                                         42 0
                                                                                               67
           2934 2003.0
                            456.5
                                    26.0
                                             4.06
                                                     0.000000 58.351153
                                                                         900.625 26.7
                                                                                         41.0
                                                                                              49.
            2935 2002.0
                            73.0
                                    25.0
                                             4.43
                                                     0.000000 73.000000
                                                                         304.000 26.3
                                                                                         40.0 73.
            2936 2001.0
                            456.5
                                    25.0
                                             1.72
                                                     0.000000 76.000000
                                                                         529.000 25.9
                                                                                         39.0
                                                                                               76.
            2937 2000.0
                            456.5
                                    24.0
                                             1.68
                                                     0.000000 79.000000
                                                                         900.625 25.5
                                                                                         39.0 78.
           2938 rows × 212 columns
In [84]: Y
Out[84]: 0
                    65.0
                    59.9
          1
          2
                    59.9
          3
                    59.5
                    59.2
                    . . .
           2933
                    44.6
           2934
                    44.6
           2935
                    44.8
           2936
                    45.3
           2937
                    46.0
          Name: Life expectancy , Length: 2938, dtype: float64
          Normalization

    Scalling using Standerdization
```

```
In [110]: from sklearn.preprocessing import StandardScaler
          scaler = StandardScaler()
          scaler
```

Out[110]: StandardScaler()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
Out[86]: array([[ 1.6217623 , 0.87452096, 2.16505686, ..., -0.07399798,
                   -0.07399798, 0.45939851],
                  [1.40498625, 0.94380652, 2.16505686, ..., -0.07399798,
                   -0.07399798, 0.45939851],
                  [ 1.1882102 , 0.91782444,
                                               2.16505686, ..., -0.07399798,
                   -0.07399798, 0.45939851]
                  [-1.19632639, -0.77101101, 0.59484283, ..., -0.07399798,
                  13.51388175, 0.45939851],
                  [-1.41310244, 2.55036537, 0.59484283, ..., -0.07399798,
                  13.51388175, 0.45939851],
                  [-1.62987849, 2.55036537, 0.54250236, ..., -0.07399798,
                   13.51388175, 0.45939851]])
In [87]: X = pd.DataFrame(scaler.fit transform(X),columns=X.columns)
Out[87]:
                             Adult
                                      infant
                                                                 Hepatitis
                                                      percentage
                                              Alcohol
                                                                            Measles
                                                                                        BMI
                          Mortality
                                     deaths
                                                     expenditure
                 1.621762
                          0.874521
                                  2.165057
                                            -1.172958
                                                       -0.546410
                                                                -1.534064
                                                                           1.886225
                                                                                    -0.967349
                1.404986
                          0.943807 2.165057
                                                       -0.540647 -1.768413
                                                                           0.730456
                          0.917824 2.165057 -1.172958
                                                       -0.541429 -1.612181
                                                                           0.555093 -1.017519
                          0.952467 2.165057
                                                       -0.528678
                                                                -1.377832
                                                                           1.886225 -1.042605
                0.754658
                          0.978449 2.165057
                                           -1.172958
                                                       -0.711239
                                                                -1.299715
                                                                           1.886225
                                                                                   -1.062673
           2933
                -0.762774
                          2.550365 0.699524 -0.062024
                                                       -0.729465 -1.299715 -0.573453 -0.565984
                -0.979550
                          2.550365 0.647183 -0.138640
                                                       -0.729465
                                                                -2.053448
                                                                           1.886225
                                                                                   -0.586052
           2935
                          -0.771011 0.594843
                                            -0.044146
                                                       -0.729465
                -1.196326
                                                                -0.909134
                                                                           0.198710
                                                                                   -0.606120
                -1.413102 2.550365 0.594843 -0.736246
                                                       -0.729465 -0.674785
                                                                           0.835108 -0.626188
               -1.629878 2.550365 0.542502 -0.746462
                                                       -0.729465 -0.440436
                                                                           1.886225 -0.646257
          2938 rows × 212 columns
```

Scaling using Normalization

```
Data Cleaning and Preprocessing - Jupyter Notebook
In [89]: # in normalization convert data by default into 0 to 1
          from sklearn.preprocessing import MinMaxScaler
          scaler = MinMaxScaler(feature range=(-1,1)) # here we have defind a accer
          X = pd.DataFrame(scaler.fit transform(X),columns=X.columns)
Out[89]:
                                        infant
                                                                     Hepatitis
                               Adult
                                                         percentage
                                                Alcohol
                                                                               Measles
                                                                                             вмі
                            Mortality
                                       deaths
                                                         expenditure
              0 1.000000
                           0.150384
                                     1.000000
                                              -1.000000
                                                           -0.870023
                                                                    -0.672864
                                                                               1.000000 -0.580533
              1 0.866667
                           0.185510
                                     1.000000
                                              -1.000000
                                                           -0.865932 -0.820470
                                                                               0.092575 -0.592121
                                     1.000000
                                              -1.000000
                                                           -0.866487 -0.722066
                                                                              -0.045108 -0.603708
              2 0.733333
                           0.172338
                 0.600000
                           0.189901
                                     1.000000
                                              -1.000000
                                                           -0.857433 -0.574460
                                                                               1.000000 -0.615295
                           0.203074 1.000000 -1.000000
                                                           -0.987059 -0.525259
                                                                              1.000000 -0.624565
                 0.466667
                 -0.466667
                            1.000000 -0.018182 -0.512878
                                                           -1.000000 -0.525259
                                                                              -0.931159 -0.395133
                 -0.600000
                            1.000000
                                     -0.054545
                                              -0.546473
                                                           -1.000000 -1.000000
                                                                               1.000000 -0.404403
                 -0.733333
                           -0.683864
                                     -0.090909
                                               -0.505039
                                                           -1.000000 -0.279249
                                                                              -0.324913 -0.413673
                 -0.866667
                            1.000000
                                     -0.090909
                                              -0.808511
                                                           -1.000000 -0.131643
                                                                               0.174740 -0.422943
            2937 -1.000000
                           1.000000 -0.127273 -0.812990
                                                           -1.000000 0.015962
                                                                              1.000000 -0.432213
           2938 rows × 212 columns
```

In [90]: In [98]: from sklearn.model selection import train test split x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.3,random_s # if use random_state then will not change accuracy of ml model

In [97]: len(x_train),len(x_test),len(y_train),len(y_test) Out[97]: (2056, 882, 2056, 882) In []: In []:

In []: