Parameter Sharing in Multilingual Dependency Parsing

MIRYAM DE LHONEUX

SLTC - 8 November 2018

Work in Collaboration with:

(a) Anders Soegaard

(b) Johannes Bjerva

(c) Isabelle Augenstein

Work in Collaboration with:

(a) Anders Soegaard

(b) Johannes Bjerva

(c) Isabelle Augenstein

Parameter sharing between dependency parsers for related languages

¹Department of Linguistics and Philology Uppsala University Uppsala, Sweden

Miryam de Lhoneux1* Johannes Bjerva2 Isabelle Augenstein2 Anders Søgaard2 ² Department of Computer Science University of Copenhagen Copenhagen, Denmark

Work in Collaboration with:

(a) Anders Soegaard

(b) Johannes Bjerva

(c) Isabelle Augenstein

Parameter sharing between dependency parsers for related languages

Miryam de Lhoneux1* Johannes Bjerva2 Isabelle Augenstein2 Anders Søgaard2 ¹Department of Linguistics and Philology Uppsala University Uppsala, Sweden

² Department of Computer Science University of Copenhagen Copenhagen, Denmark

+ Joakim Nivre, Sara Stymne and Aaron Smith

Overview

Parsing Architecture

Parameter Sharing

Results

Outline for section 1

Parsing Architecture

2 Parameter Sharing

Results

Configuration:

STACK the brown fox BUFFER

jumped root

Kiperwasser and Goldberg (2016); de Lhoneux et al. (2017)

Configuration:

Transitions:

LEFT-ARC RIGHT-ARC SHIFT

Kiperwasser and Goldberg (2016); de Lhoneux et al. (2017)

Kiperwasser and Goldberg (2016); de Lhoneux et al. (2017)

Xthe

Outline for section 2

1 Parsing Architecture

Parameter Sharing

Results

le renard brun l e

• 3 types of sharing: hard, soft, not

- 3 types of sharing: hard, soft, not
- 3 sets of parameters: MLP, word, char

- 3 types of sharing: hard, soft, not
- 3 sets of parameters: MLP, word, char
- $3^3 = 27$ combinations

Lang	#sen	#tok	Group	Word order
Arabic	5,000	208,932	Semitic	VSO
Hebrew	5,000	161,685	Semitic	SVO
Estonian	5,000	60,393	Finnic	SVO
Finnish	5,000	67,258	Finnic	SVO
Croatian	5,000	109,965	Slavic	SVO
Russian	5,000	90,170	Slavic	SVO
Italian	5,000	113,825	Romance	SVO
Spanish	5,000	154,844	Romance	SVO
Dutch	5,000	75,796	Germanic	No dom. order
Norwegian	5,000	76,622	Germanic	SVO

Table: Dataset characteristics

Outline for section 3

1 Parsing Architecture

2 Parameter Sharing

• Sharing the MLP is helpful

- Sharing the MLP is helpful
- Sharing Word and Characters depends on language pair

W	C	Ours	Mono	δ
X	X	77.2	77.1	0.1
✓	X	80.0	79.8	0.3
×	ĪŪ	71.4	70.5	0.8
X	X	71.6	71.6	0.1
√	_X	77.9	78.0	-0.1
✓	X	83.5	82.7	8.0
ĪD		85.0	84.0	-1.0
ID	\checkmark	84.3	83.8	0.5
ĪD		75.5	74.1	-1.4
X	ID	81.1	80.1	1.0
		78.8	78.2	0.6
	x	X	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table: LAS on the test sets of the best of 9 sharing strategies and the monolingual baseline.

Unrelated languages

Unrelated languages

Unrelated languages

the brown fox der braune Fuchs er le renard brun er la volpe marrone er le e

Thanks!

Questions?

References

- Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu Kiperwasser, Sara Stymne, Yoav Goldberg, and Joakim Nivre. 2017. From raw text to universal dependencies look, no tags! In *Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics. Vancouver. Canada. pages 207–217.
- Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency parsing using bidirectional LSTM feature representations. *Transactions of the Association for Computational Linguistics* 4:313–327.