Лекция 4: Представяне и използване на знания

РАБОТА СЪС ЗНАНИЯ В СИСТЕМИТЕ С ИЗКУСТВЕН ИНТЕЛЕКТ. ДАННИ И ЗНАНИЯ. АРХИТЕКТУРА НА СИСТЕМИТЕ, ОСНОВАНИ НА ЗНАНИЯ

Обща постановка. Работата със знания е една от съществените отличителни черти на програмните системи с ИИ. Според едно от популярните определения интелектът е способност за формулиране, натрупване и използване на знания (Intelligence is applied knowledge). Терминът "знания" ("знание") в системите с ИИ се използва за означаване на кодирания опит на агентите. Опитът е източникът на знания (информация) за решаването на задачи. Чрез определението "кодиран" се означава обстоятелството, че знанията са формулирани, записани и готови за използване.

Съществена за системите с ИИ е възможността за преход от работа с данни към работа със знания. Традиционните програмни системи работят с информация, организирана във вид на бази от данни (БД), докато за системите с ИИ и по-точно за т. нар. системи, основани на знания (СОЗ; Knowledge-based Systems, KBS) е характерна работата с бази от знания (БЗ). Има фундаментална разлика между възможностите, които предоставят тези две системи за съхранение и предоставяне на информация.

При БД е възможно извличане само на такава информация, която е представена в явен вид в базата. При БЗ е възможно извършването на разсъждения (извод), в резултат на което може да се генерира нова информация, която не присъства в явен вид в базата. В този смисъл по принцип БД не могат да представят и СУБД не могат да обработват непълна информация, докато за БЗ такова ограничение не съществува.

Съшност на знанието

В общ енциклопедичен план знанието обикновено се определя като система от съждения с принципна и единна организация, основана на обективни закономерности.

В обективен смисъл (т.е. като резултат от определен познавателен процес) знанието се противопоставя на заблуждението.

В субективен смисъл знанието представлява мнение, вяра, убеждение (по реални причини) в истинността на наблюдението.

В СОЗ знанията представляват съвкупност от твърдения, представящи мнението, вярата и убежденията на т. нар. когнитивен агент.

Различия между данни и знания в СИИ:

- В степента на общност (и постоянност/изменяемост):
- По начина на използване;
- Наличие на класификационно-йерархична структура на знанията (основана на родово-видови отношения от тип обект клас, клас суперклас, тип подтип, ситуация подситуация и т.н.).

Няма рязка граница между данни и знания в СИИ.

Архитектура на СОЗ

Основава се на приемане (символен подход) или отхвърляне (конекционистки подход) на т. нар. хипотеза за представянето на знанията (knowledge representation hypothesis).

При символния подход:

- база от знания (knowledge base)
- машина за извод (inference engine) или интерпретатор на знанията (knowledge interpreter)

Архитектура на СОЗ (символен подход)

Типове знания в СОЗ:

- знания за обектите и фактите в предметната област (фактологически знания);
- предметната

знания за

- знания за връзките (релациите) между обектите и фактите;
- метазнания.

Видове метазнания: стратегически знания, поддържащи знания и др. Изисквания към формализмите за представяне и използване на знания (ПИЗ):

- ясна семантика (значението на правилно построените изрази да бъде добре определено, т.е. всеки правилно построен израз да може да се интерпретира еднозначно);
- коректност на правилата за извод (правилата за извод да бъдат такива, че ако явно зададените знания в БЗ са верни, то всички извлечени от тях знания също да са верни);
- естественост на представянето (по отношение на терминологията и структурата на знанията за съответната предметна област);
- модулност на представянето;
- ефективност (по отношение на изискванията за памет и време).

Основни типове формализми за ПИЗ

Съществуват два основни типа формализми за ПИЗ: формализми от декларативен тип (декларативни формализми – $\kappa a \kappa s o$?) и формализми от процедурен тип (процедурни формализми – $\kappa a \kappa$?). При декларативните формализми основната тежест пада върху представянето на знанията; при процедурните формализми съществен е начинът на използване на знанията. При декларативните формализми знанията се представят явно, в декларативен формат, а при процедурните формализми знанията се съдържат в процедурите на някаква програма. Процедурните формализми

дават възможност за по-голяма ефективност при използването на знанията, но при тях измененията в БЗ стават по-трудно, отколкото при декларативните.

ПИЗ ЧРЕЗ ПРОЦЕДУРИ

Обща характеристика. Типичен процедурен формализъм. Процедурите са обособени като формализъм за ПИЗ, защото всяка програма "носи" в себе си своите знания (част от знанията на своя автор) и в този смисъл те са представени чрез нея.

Идея на представянето. Най-често знанията се представят чрез системи от малки по обем процедури – демони, в които са кодирани знания за определени характерни ситуации и всяка от които се активира само при настъпване на съответната ситуация. За разлика от стандартните програмни системи, за които е характерна йерархична структура, за базите от процедури (демони) е типична хетерархична структура.

Характерни области на приложение: при управление на роботи, управление на процеси, протичащи в реално време, и др. (в области, в които преобладават алгоритмични знания).

ПИЗ ЧРЕЗ СРЕДСТВА НА МАТЕМАТИЧЕСКАТА ЛОГИКА

Обща характеристика на ПИЗ чрез средствата на математическата логика

Математическата логика може да се разглежда като един от най-рано създадените формализми за ПИЗ, който има ясно изразен декларативен характер. Всяка логическа система е формален език, с помощта на който могат да се изразяват различни твърдения (знания) и да се извеждат нови твърдения с помощта на съответни правила за извод. По-точно, представянето на знания в термините на дадена формална логическа система се извършва с помощта на правилно построени формули в тази система, а използването на знанията се осъществява посредством валидните за логическата система правила и методи за извод.

Най-често използваната формална логическа система за целите на ПИЗ е предикатното смятане от първи ред.

Характерни особености на предикатното смятане от първи ред като формализъм за ПИЗ:

- полуразрешимост
- монотонност (невъзможност за работа със знания, верни по подразбиране)

Некласически логики, които се използват като формализми за ПИЗ: немонотонни логики, модални логики, размита логика и др.

Обща оценка на логическите системи като средства за ПИЗ. В сила са всички общи предимства и недостатъци на декларативните формализми за ПИЗ. Найсъществени специфични предимства на логическите системи: ясна семантика, голяма изразителна сила.

ПИЗ ЧРЕЗ СИСТЕМИ ОТ ПРОДУКЦИОННИ ПРАВИЛА

Обща характеристика. Декларативен в основата си формализъм с елементи на процедурност на по-ниско ниво. Негова основна характеристика е декомпозирането на знанията на малки части (правила) от типа условие – следствие (ситуация – действие).

Архитектура на системите, основани на правила:

- работна памет (контекст)
- база от правила
- интерпретатор на правилата

Работна памет. Съдържа данните за конкретно решаваната задача, които са установени (известни) към текущия момент.

База от правила. Съхранява знанията за предметната област, представени под формата на импликации от вида

(<име на правило> <лява страна> <дясна страна>)

Интерпретатор на правилата. Програмна система, чието основно предназначение е да приложи описаните чрез правилата знания върху данните за конкретната задача.

Стратегии на работа на интерпретатора на правилата:

- *прав извод* (forward chaining) или *извод*, *управляван от данните* (data-driven inference). Пример: OPS5;
- обратен извод (backward chaining) или извод, управляван от целите (goal-driven inference). Пример: Пролог.

Обща оценка на правилата като формализъм за ПИЗ

Специфични преимущества:

- естественост на представянето на експертни знания;
- модулност на базата от знания;
- възможност за обяснение на резултатите от извода.

Недостатъци и проблеми:

- проблеми при генериране на съдържателни обяснения на взетите решения;
- недостатъчна изразителна сила;
- потенциална неефективност на работата на интерпретатора на правилата.