Tópico

LP & MIP

Mar 2019

AUTORES:

ERIK ALVAREZ JEFFERSON CHÁVEZ

UNIVERSIDADE ESTADUAL DE CAMPINAS

DSEE — Departamento de Sistemas de Energia Elétrica

Programación lineal: Formulación

• Cualquier PL puede ser colocado en una forma estándar

Minimizar
$$c_1x_1 + c_2x_2 + \dots + c_nx_n = v$$

Sujeto a $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots \vdots \vdots \vdots \vdots \vdots $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$
 $x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0$

- Las constantes c_j , b_i y a_{ij} , $i=1,2,\ldots,m$ & $j=1,2,\ldots,n$ describen un PL particular
- La forma estándar, $b_i \geq 0$ para i=1,2,...,m

Programación lineal (PL): Métodos de solución

$$Min \sum_{i=1}^{n} c_i x_i$$

$$Sujeto a$$

$$\sum_{i=1}^{n} a_{ji} x_i = b_j, \forall j = 1, ..., m$$

$$x_i \ge 0, \qquad \forall i = 1, ..., n$$

- *Método simplex primal y dual* (SX).
 - Muchas iteraciones simples, moviéndose de un vértice a otro adyacente de la región factible con mejor función objetivo.
 - Eficiente para problemas de tamaño medio.
 - El tiempo computacional depende del número de restricciones al cubo.
- *Método de punto interior* (PI) primal-dual y predictor-corrector
 - Pocas iteraciones computacionalmente costosas por puntos interiores de la región factible
 - Eficiente para problemas de grande tamaño.
 - EL tiempo computacional depende casi linealmente del número de elementos no nulos de la matriz de restricciones.
- *Para un problema convexo:* ambos métodos encuentran una *solución óptima* o *global*, no tiene problemas de convergencia.

🎥 Programación lineal: Forma gráfica

$$\max_{x_1, x_2} z = 3x_1 + 5x_2$$

s.t.

$$x_1 \le 4$$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $0 \le x_1, x_2$

Programación lineal: Forma gráfica

$$\max_{x_1, x_2} z = 2x_1 + x_2$$

s.t.

$$x_1 + x_2 \le 5$$

$$-x_1 + x_2 \le 0$$

$$6x_1 + 2x_2 \le 21$$

$$0 \le x_1, x_2$$

- Ejemplo
 - Implementar el siguiente problema PL en Julia

$$\max_{x_1, x_2, x_3} z = x_1 + 2x_2 + 5x_3$$
s.t.
$$-x_1 + x_2 + 3x_3 \le -5$$

$$x_1 + 3x_2 - 7x_3 \le 10$$

$$0 \le x_1 \le 10$$

$$0 \le x_2, x_3$$

$$Min\sum_{i=1}^{n}c_{i}x_{i}+\sum_{i=1}^{n}d_{i}y_{i}$$

Sujeto a

$$\sum_{i=1}^{n} a_{ji} x_{i} + \sum_{i=1}^{l} e_{ji} y_{i} = b_{j}, \forall j = 1, ..., m$$

$$x_{i} \geq 0, \qquad \forall i = 1, ..., n$$

$$y_{i} \geq 0, \qquad \forall i = 1, ..., l$$

$$x_{i} \in \mathbb{Z}, \qquad \forall i = 1, ..., n$$

- Método de ramificación y limitación (*Branch & Bound*).
- Método de ramificación y corte (**Branch & Cut**)
- Método de planos de cortes
- Métodos de descomposición (Benders & Lagrangian)
- Método de enumeración implícita
- Problema no convexo, pueden ser transformados en problemas convexos a través de métodos de relajación
- Todos los métodos encuentran una solución óptima o global
- No tiene problemas de convergencia, tiempo de procesamiento elevados

- Método de ramificación y limitación (Branch & Bound).
 - Es un método de resolución que se basa en la idea de desenvolver una enumeración implícita inteligente de los puntos candidatos a solución óptima entera de un problema, por medio de partición de espacio de soluciones y evaluaciones progresivas de las soluciones.
- Entrega tres procedimientos: aproximación, ramificación (*branching*) y limitación (*bouding*)
- El término Branch se refiere a las particiones hechas por el método y el término bound a las nuevas restricciones adicionadas.
- Utiliza el método simplex de forma recurrente en el proceso de obtener la solución óptima.

• Método de ramificación y limitación (Branch & Bound)

•

$$Max \ z = 2x_1 + x_2$$
Sujeto a
$$x_1 + x_2 \le 5$$

$$-x_1 + x_2 \le 0$$

$$6x_1 + 2x_2 \le 21$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \in \mathbb{Z}$$

- Ignore las restricciones de integralidad y resuelva el problema de programación lineal relajado (PLIR)
- Si la solución es óptima integral, entonces el problema entero también habrá sido resuelto. El algoritmo termina.
- Sino, el valor v encontrado se transforma en un limitante superior, LS, para el valor óptimo del problema entero.

- Método de ramificación y limitación (Branch & Bound)
 - Paso 1: resolver el problema de programación lineal relajado (P0)

.

*

Programación entera mixta

- Si x_j^* , por ejemplo, no es entera, entonces $i_1 \le x_j^* \le i_2$, i_1 y i_2 enteros no negativos consecutivos;
- Se crean dos nuevos problemas incluyendo el problema entero las restricciones $x_j \le i_1 \ y \ i_2 \le x_j$;
- Se elimina la solución con x_j no entera y se preserva las soluciones viables enteras del problema original;
- Si mas de una variable es no entera, se ramifica la que presenta parte fraccionaria mas próxima de 0,5.

DSEE – Departamento de Sistemas de Energia Elétrica

- Método de ramificación y limitación (Branch & Bound)
- Paso 2: Escoger la variable x_1 para dividir y resolver los problemas de PL: $P1 (P0 + x_1 \le 2) y P2 (P0 + x_1 \ge 3)$.

- Las aproximaciones de (P1) y (P2) son:
 - (P1) $x_1 = 2$, $x_2 = 2$ y v = 6
 - (P2) $x_1 = 3$, $x_2 = 1.5$ y v = 7.5
- El proceso de ramificación prosigue hasta que una aproximación presente la solución entera.
- El valor v^* asociado a soluciones enteras se torna una limitante inferior, LI. Así LI=6.
- Los problemas cuyas aproximaciones (integrales o no) poseen valores inferiores a LI son descartados;
- Se actualiza LI siempre que una aproximación presente solución entera con v mayor;
- El método Branch & Bound termina cuando no existen mas problemas ramificados;
- En el ejemplo, la ramificación prosigue con (P2) la variable x_2 , del caso $1 \le x_2 \le 2$

- Método de ramificación y limitación (Branch & Bound)
- Paso 3: Escoger la variable x_2 para dividir y resolver los problemas de PL: $P3 (P2 + x_2 \le 1) y P4 (P2 + x_2 \ge 2)$.

- Las aproximaciones de (P3) y (P4) son:
 - (P3) $x_1 = 3,17, x_2 = 1 \text{ y } v = 7,33$
 - (P4) Inviable
- La ramificación, algún problema puede no ser viable, ramificaciones de este problema no son posibles;
- Pero todavía no es posible descartar el problema P3.
- La aproximación (P3) no es integral. Una nueva ramificación es necesaria;
- Note que: si existen mas de una aproximación no integrales. Una nueva ramificación es necesaria; se ramifica el problema cuyo valor óptimo v este mas próximo de LS;

- Método de ramificación y limitación (Branch & Bound)
- Paso 4: Escoger la variable x_1 para dividir y resolver los problemas de PL: $P5 (P3 + x_1 \le 3) y P6 (P3 + x_1 \ge 4)$.

- Las aproximaciones de (P5) y (P6) son:
 - (P5) $x_1 = 3$, $x_2 = 1$ y v = 7
 - (P6) Inviable
- Se actualiza el limitante inferior para LI = 7
- Como no existen mas problemas a ser ramificados, la solución óptima del problema es $x_1=3$, $x_2=1$ y v=7

Árbol Branch and Bound (B&B).

- Enumeración implícita de las soluciones enteras factibles.
 - Utiliza el principio divide y vencerás.
 - Divide (ramifica) el conjunto de soluciones en subconjuntos disyuntos cada vez menores
 - Determina (limita) el valor de la mejor solución de cada subconjunto
 - Poda (elimina) la rama del árbol se acota indica que no puede contener la solución óptima

- Ejemplo
 - Implementar el siguiente problema MIP en Julia

$$\max_{x_1, x_2, x_3} z = x_1 + 2x_2 + 5x_3$$
s.t.
$$-x_1 + x_2 + 3x_3 \le -5$$

$$x_1 + 3x_2 - 7x_3 \le 10$$

$$0 \le x_1 \le 10$$

$$0 \le x_2, \quad integer$$

$$x_3, \quad binary$$

"The new becomes old, and the old becomes new...a life cycle"

