



### **Grundbegriffe der Informatik Tutorium 33**

Lukas Bach, lukas.bach@student.kit.edu | 4.11.2016



## Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

Wörter

## Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

 $A := \{a, b, c\}, B := \{b, c, d\}, C := \{a, d\}$ 

Wörter

## Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

$$A := \{a, b, c\}, B := \{b, c, d\}, C := \{a, d\}$$

 $lacktriangledown A \cap B$  Wörter

# Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörter

Formale Sprachen  $A := \{a, b, c\}, B := \{b, c, d\}, C := \{a, d\}$ 

 $A \cap B = \{b, c\}$ 

## Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörter

Formale Sprachen

- $\bullet A \cap B = \{b, c\}$
- $A \cup B$

## Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörter

Formale Sprachen

- $A \cap B = \{b, c\}$
- $\bullet A \cup B = \{a, b, c, d\}$

## Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörter

Formale Sprachen

- $\bullet A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- A\B

## Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörter

Formale Sprachen

- $\bullet A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- $A \backslash B = \{a\}$

## Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörter

Formale Sprachen

- $\bullet A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- A\B = {a}
- $C^2$

## Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörter

Formale Sprachen

- $A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- A\B = {a}
- $C^2 = C \times C$

# Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörter

Spracher

- $A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- A\B = {a}
- $C^2 = C \times C = \{(a, a), (a, d), (d, a), (d, d)\}$

## Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörter

Sprachen

- $A \cap B = \{b, c\}$
- $\bullet A \cup B = \{a, b, c, d\}$
- $A \backslash B = \{a\}$
- $C^2 = C \times C = \{(a, a), (a, d), (d, a), (d, d)\}$
- 2<sup>C</sup>

# Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörter

Formale Sprache

- $A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- $A \backslash B = \{a\}$
- $C^2 = C \times C = \{(a, a), (a, d), (d, a), (d, d)\}$

# Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörter

Sprache

- $\bullet A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- $A \backslash B = \{a\}$
- $C^2 = C \times C = \{(a, a), (a, d), (d, a), (d, d)\}$
- $2^C = \{\emptyset, \{a, d\},$

# Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörter

Sprache

- $A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- $A \backslash B = \{a\}$
- $C^2 = C \times C = \{(a, a), (a, d), (d, a), (d, d)\}$

## Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörter

Sprache

- $\bullet A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- $A \backslash B = \{a\}$
- $C^2 = C \times C = \{(a, a), (a, d), (d, a), (d, d)\}$
- $2^C = \{\emptyset, \{a, d\}, \{a\}, \{d\}\}$

# Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörte

Formale Sprache

- $A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- $A \backslash B = \{a\}$
- $C^2 = C \times C = \{(a, a), (a, d), (d, a), (d, d)\}$
- $2^C = \{\emptyset, \{a, d\}, \{a\}, \{d\}\}$
- Unterschied zwischen  $\{a, b\}$  und (a, b)?

# Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörte

Sprache

- $\bullet A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- $A \backslash B = \{a\}$
- $C^2 = C \times C = \{(a, a), (a, d), (d, a), (d, d)\}$
- $2^C = \{\emptyset, \{a, d\}, \{a\}, \{d\}\}$
- Unterschied zwischen {a, b} und (a, b)?
- Definition von...

# Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörte

Sprache

- $\bullet A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- $A \backslash B = \{a\}$
- $C^2 = C \times C = \{(a, a), (a, d), (d, a), (d, d)\}$
- $2^C = \{\emptyset, \{a, d\}, \{a\}, \{d\}\}$
- Unterschied zwischen {a, b} und (a, b)?
- Definition von...
  - Alphabet?

# Wiederholung



Lukas Bach, lukas.bach@student.kit.edu

### Wiederholung

Wörte

Sprache

- $A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- $A \backslash B = \{a\}$
- $C^2 = C \times C = \{(a, a), (a, d), (d, a), (d, d)\}$
- $2^C = \{\emptyset, \{a, d\}, \{a\}, \{d\}\}$
- Unterschied zwischen  $\{a, b\}$  und (a, b)?
- Definition von...
  - Alphabet?
  - Abbildung?





Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

### Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

### Konkatenation

Wörter

Durch Konkatenation werden einzelne Buchstaben aus einem Alphabet miteinander verbunden.

### Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

#### Konkatenation

Durch Konkatenation werden einzelne Buchstaben aus einem Alphabet miteinander verbunden.

Symbol: ·

### Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

#### Konkatenation

Durch Konkatenation werden einzelne Buchstaben aus einem Alphabet miteinander verbunden.

■ Symbol: ·, also zwei Buchstaben *a* und *b* miteinander konkateniert: *a* · *b*.

### Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

#### Konkatenation

- Symbol: ·, also zwei Buchstaben a und b miteinander konkateniert: a · b.
- Nicht kommutativ

### Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

#### Konkatenation

- Symbol: ·, also zwei Buchstaben a und b miteinander konkateniert: a · b.
- Nicht kommutativ:  $a \cdot b \neq b \cdot a$

### Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Formale Sprache

#### Konkatenation

- Symbol: ·, also zwei Buchstaben *a* und *b* miteinander konkateniert: *a* · *b*.
- Nicht kommutativ:  $a \cdot b \neq b \cdot a$
- Aber assoziativ

### Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Formale Sprache

#### Konkatenation

- Symbol: ·, also zwei Buchstaben *a* und *b* miteinander konkateniert: *a* · *b*.
- Nicht kommutativ:  $a \cdot b \neq b \cdot a$
- Aber assoziativ:  $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

### Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Formale Sprachen

#### Konkatenation

- Symbol: ·, also zwei Buchstaben *a* und *b* miteinander konkateniert: *a* · *b*.
- Nicht kommutativ:  $a \cdot b \neq b \cdot a$
- Aber assoziativ:  $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Kurzschreibweise

### Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Formale Sprache

#### Konkatenation

- Symbol: ·, also zwei Buchstaben *a* und *b* miteinander konkateniert: *a* · *b*.
- Nicht kommutativ:  $a \cdot b \neq b \cdot a$
- Aber assoziativ:  $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Kurzschreibweise: Ohne Punkte

### Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Formale Sprache

#### Konkatenation

- Symbol: ·, also zwei Buchstaben *a* und *b* miteinander konkateniert: *a* · *b*.
- Nicht kommutativ:  $a \cdot b \neq b \cdot a$
- Aber assoziativ:  $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Kurzschreibweise: Ohne Punkte, also  $a \cdot b = ab$





Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

### Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter: Intuitivere Definition

Wörter Ein Wort w

### Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

### Wörter: Intuitivere Definition

Ein Wort w entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.



### Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter: Intuitivere Definition

Wörter

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Formale Sprachen

Also Abfolge von Zeichen.

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

## Wörter: Intuitivere Definition

Wörter

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Formale Sprachen

Also Abfolge von Zeichen.

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

## Wörter: Intuitivere Definition

Wörter

Ein Wort w entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Formale Sprachen

Also Abfolge von Zeichen.

Sei  $A := \{a, b, c\}.$ 

Mögliche Worte:

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

## Wörter: Intuitivere Definition

Wörter

Ein Wort w entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Formale Sprachen

Also Abfolge von Zeichen.

Sei  $A := \{a, b, c\}.$ 

■ Mögliche Worte:  $w_1 := a \cdot b$ 

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

## Wörter: Intuitivere Definition

Wörter

Ein Wort  $\it w$  entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Formale Sprachen

Also Abfolge von Zeichen.

Sei  $A := \{a, b, c\}.$ 

■ Mögliche Worte:  $w_1 := a \cdot b$ ,  $w_2 = b \cdot c \cdot c$ 

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

## Wörter: Intuitivere Definition

Wörter

Ein Wort  $\it w$  entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Formale Sprachen

Also Abfolge von Zeichen.

Sei  $A := \{a, b, c\}.$ 

■ Mögliche Worte:  $w_1 := a \cdot b$ ,  $w_2 = b \cdot c \cdot c$ ,  $w_3 = a \cdot c \cdot c \cdot b \cdot a$ .

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Wörter: Intuitivere Definition

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Also Abfolge von Zeichen.

- Mögliche Worte:  $w_1 := a \cdot b$ ,  $w_2 = b \cdot c \cdot c$ ,  $w_3 = a \cdot c \cdot c \cdot b \cdot a$ .
- Keine möglichen Worte:

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Wörter: Intuitivere Definition

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Also Abfolge von Zeichen.

- Mögliche Worte:  $w_1 := a \cdot b$ ,  $w_2 = b \cdot c \cdot c$ ,  $w_3 = a \cdot c \cdot c \cdot b \cdot a$ .
- Keine möglichen Worte: d.

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Wörter: Intuitivere Definition

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Also Abfolge von Zeichen.

- Mögliche Worte:  $w_1 := a \cdot b$ ,  $w_2 = b \cdot c \cdot c$ ,  $w_3 = a \cdot c \cdot c \cdot b \cdot a$ .
- Keine möglichen Worte: d.
- Konkatenation nicht kommutativ

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprachen

#### Wörter: Intuitivere Definition

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Also Abfolge von Zeichen.

- Mögliche Worte:  $w_1 := a \cdot b$ ,  $w_2 = b \cdot c \cdot c$ ,  $w_3 = a \cdot c \cdot c \cdot b \cdot a$ .
- Keine möglichen Worte: d.
- Konkatenation nicht kommutativ: Wort abc

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

#### Wörter: Intuitivere Definition

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Also Abfolge von Zeichen.

- Mögliche Worte:  $w_1 := a \cdot b$ ,  $w_2 = b \cdot c \cdot c$ ,  $w_3 = a \cdot c \cdot c \cdot b \cdot a$ .
- Keine möglichen Worte: d.
- Konkatenation nicht kommutativ: Wort abc ist ungleich dem Wort bca.





Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Wörter: Abstraktere Definition

Ein Wort w

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Wörter: Abstraktere Definition

Ein Wort w über dem Alphabet A

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

## Wörter: Abstraktere Definition

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

## Wörter: Abstraktere Definition

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung  $w : \mathbb{Z}_n \to A$ .

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Wörter: Abstraktere Definition

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung  $w: \mathbb{Z}_n \to A$ . Dabei heißt n

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

## Wörter: Abstraktere Definition

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Wörter: Abstraktere Definition

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung  $w : \mathbb{Z}_n \to A$ . Dabei heißt n die Länge |w| des Wortes.

lacksquare  $\mathbb{Z}_n$ 

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Wörter: Abstraktere Definition

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung  $w: \mathbb{Z}_n \to A$ . Dabei heißt n die Länge |w| des Wortes.

 $\mathbb{Z}_n = \{i \in \mathbb{N} :$ 

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Sprachen

Wörter: Abstraktere Definition

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung  $w : \mathbb{Z}_n \to A$ . Dabei heißt n die Länge |w| des Wortes.

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Sprachen

## Wörter: Abstraktere Definition

$$\mathbb{Z}_n = \{i \in \mathbb{N} : 0 \le i < n\}$$

$$\mathbb{Z}_3$$

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Wörter: Abstraktere Definition

$$\mathbb{Z}_n = \{i \in \mathbb{N} : 0 \le i < n\}$$
  
 $\mathbb{Z}_3 = \{0, 1, 2\},$ 

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprache

## Wörter: Abstraktere Definition

$$\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$$

$$\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$$

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Sprache

#### Wörter: Abstraktere Definition

- $\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$   $\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$
- Länge oder Kardinalität eines Wortes:

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprache

#### Wörter: Abstraktere Definition

- $\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$   $\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$
- Länge oder Kardinalität eines Wortes: |w|.

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprache

#### Wörter: Abstraktere Definition

- $\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$   $\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$
- Länge oder Kardinalität eines Wortes: |w|. |abcde|

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Sprache

#### Wörter: Abstraktere Definition

- $\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$   $\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$
- Länge oder Kardinalität eines Wortes: |w|. |abcde| = 5.

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprache

#### Wörter: Abstraktere Definition

- $\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$   $\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$
- Länge oder Kardinalität eines Wortes: |w|. |abcde| = 5.
- Wort w = abdec als Relation aufgeschrieben:

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Sprache

#### Wörter: Abstraktere Definition

- $\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$   $\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$
- Länge oder Kardinalität eines Wortes: |w|. |abcde| = 5.
- Wort w = abdec als Relation aufgeschrieben:  $w = \{(0, a), (1, b), (2, d), (3, e), (4, c)\}.$

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprache

#### Wörter: Abstraktere Definition

- $\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$   $\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$
- Länge oder Kardinalität eines Wortes: |w|. |abcde| = 5.
- Wort w = abdec als Relation aufgeschrieben:  $w = \{(0, a), (1, b), (2, d), (3, e), (4, c)\}$ . Also w(0) = a, w(1) = b, w(2) = d, ...

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Sprache

#### Wörter: Abstraktere Definition

- $\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$   $\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$
- Länge oder Kardinalität eines Wortes: |w|. |abcde| = 5.
- Wort w = abdec als Relation aufgeschrieben:  $w = \{(0, a), (1, b), (2, d), (3, e), (4, c)\}$ . Also w(0) = a, w(1) = b, w(2) = d, ...Damit sieht man auch:  $|w| = |\{(0, a), (1, b), (2, d), (3, e), (4, c)\}| = 5$ .





Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

Wörter

Formale Sprachen

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

Wörter

Das leere Wort

Formale Sprachen Das leere Wort

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

Wörter

Das leere Wort

Formale Sprachen Das leere Wort  $\varepsilon$ 

# Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

Wörter

Das leere Wort

Formale Sprachen Das leere Wort  $\varepsilon$  ist definiert ein Wort mit Kardinalität 0

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

Wörter

Das leere Wort

Formale Sprachen

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

Wörter

#### Das leere Wort

Formale Sprachen Das leere Wort  $\varepsilon$  ist definiert ein Wort mit Kardinalität 0, also mit 0 Zeichen.

 Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

#### Wörter

#### Das leere Wort

Formale Sprachen Das leere Wort  $\epsilon$  ist definiert ein Wort mit Kardinalität 0, also mit 0 Zeichen.

Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden: aabc

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

#### Wörter

### Das leere Wort

Formale Sprachen Das leere Wort  $\varepsilon$  ist definiert ein Wort mit Kardinalität 0, also mit 0 Zeichen.

Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden:  $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$ .

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

#### Wörter

#### Das leere Wort

Formale Sprachen

- Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden:  $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$ .
- $|\{\varepsilon\}|$

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

#### Wörter

#### Das leere Wort

Formale Sprachen

- Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden:  $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$ .
- $|\{\varepsilon\}| = 1$

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

#### Wörter

#### Formale Sprachen

#### Das leere Wort

- Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden:  $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$ .
- $|\{\varepsilon\}| = 1$ , die Menge ist nicht leer!

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

#### Wörter

## Formale Sprachen

#### Das leere Wort

- Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden:  $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$ .
- $|\{\varepsilon\}| = 1$ , die Menge ist nicht leer! Das leere Wort ist nicht *nichts*!

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

#### Wörter

## Formale Sprachen

#### Das leere Wort

- Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden:  $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$ .
- $|\{\varepsilon\}| = 1$ , die Menge ist nicht leer! Das leere Wort ist nicht *nichts*! (Vergleiche leere Menge)

## Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

#### Wörter

#### Formale Sprachen

Das leere Wort

- Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden:  $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$ .
- $|\{\varepsilon\}| = 1$ , die Menge ist nicht leer! Das leere Wort ist nicht *nichts*! (Vergleiche leere Menge)
- $|\varepsilon|=0.$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

 $A^n$ 

Zu einem Alphabet A

Wörter

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

 $A^n$ 

Zu einem Alphabet A ist  $A^n$  definiert als die Menge aller Wörter

Wörter

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

demolarig

Wörter

Formale Sprachen  $A^n$ 

Zu einem Alphabet A ist  $A^n$  definiert als die Menge aller Wörter der Länge n

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen  $A^n$ 

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

nolung

Wörter

Sprachen

 $A^n$ 

Zu einem Alphabet A ist  $A^n$  definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

Nicht mit Mengenpotenz verwechseln!

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

#### $A^n$

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen  $A^n$ 

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 =$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Sprachen

 $A^n$ 

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprache  $A^n$ 

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$   $A^1$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprache

#### $A^n$

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$  $A^1 = A,$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprache

#### $A^n$

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$  $A^1 = A, A^0 = \{\varepsilon\}.$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Spracher

#### $A^n$

Zu einem Alphabet A ist  $A^n$  definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$  $A^1 = A, A^0 = \{\epsilon\}.$

Die Menge aller Wörter

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprache

#### $A^n$

Zu einem Alphabet A ist  $A^n$  definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$  $A^1 = A, A^0 = \{\epsilon\}.$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprache

#### $A^n$

Zu einem Alphabet A ist  $A^n$  definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$  $A^1 = A, A^0 = \{\epsilon\}.$

$$lacksquare$$
  $A^* := \bigcup_{i \in \mathbb{N}_0} A_i$ 

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprachen

#### $A^n$

Zu einem Alphabet A ist  $A^n$  definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$  $A^1 = A, A^0 = \{\epsilon\}.$

- lacksquare  $A^* := \bigcup_{i \in \mathbb{N}_0} A_i$
- $A := \{a, b, c\}$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Spracher

#### $A^n$

Zu einem Alphabet A ist  $A^n$  definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$  $A^1 = A, A^0 = \{\epsilon\}.$

- lacksquare  $A^* := \bigcup_{i \in \mathbb{N}_0} A_i$
- $A := \{a, b, c\}. \ aa \in A^*$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprache

#### $A^n$

Zu einem Alphabet A ist  $A^n$  definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$  $A^1 = A, A^0 = \{\epsilon\}.$

- $A^* := \bigcup_{i \in \mathbb{N}_0} A_i$
- $A := \{a, b, c\}$ .  $aa \in A^*$ ,  $abcabcabc \in A^*$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Sprachen

#### $A^n$

Zu einem Alphabet A ist  $A^n$  definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$  $A^1 = A, A^0 = \{\epsilon\}.$

- lacksquare  $A^* := \bigcup_{i \in \mathbb{N}_0} A_i$
- $A := \{a, b, c\}$ .  $aa \in A^*$ ,  $abcabcabc \in A^*$ ,  $aaaa \in A^*$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprache

An

Zu einem Alphabet A ist  $A^n$  definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$  $A^1 = A, A^0 = \{\epsilon\}.$

- lacksquare  $A^* := \bigcup_{i \in \mathbb{N}_0} A_i$
- $A := \{a, b, c\}$ .  $aa \in A^*$ ,  $abcabcabc \in A^*$ ,  $aaaa \in A^*$ ,  $\epsilon \in A^*$ .

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Konkatenation von Wörtern:

Wiederholung

Wörter

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Konkatenation von Wörtern:

Wiederholung | lag

lager · regal

Wörter

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Konkatenation von Wörtern:

Wiederholung

■ lager · regal = lagerregal

Wörter

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Konkatenation von Wörtern:

Wiederholung

■ lager · regal = lagerregal

Wörter

■ lag · erregal = lagerregal

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Konkatenation von Wörtern:

- lager · regal = lagerregal
- lag · erregal = lagerregal

### Konkatenation von Wörtern.

$$w_1 \cdot w_2 : \mathbb{Z}_{m+n} o A_1 \cup A_2$$
  $i \mapsto egin{cases} w_1(i) & ext{falls } 0 \leq i < m \ w_2(i-m) & ext{falls } m \leq i < m+n \end{cases}$ 

# Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Spracher Konkatenation von Wörtern:

- lager · regal = lagerregal
- lag · erregal = lagerregal

### Konkatenation von Wörtern.

$$w_1 \cdot w_2 : \mathbb{Z}_{m+n} \to A_1 \cup A_2$$
 
$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \leq i < m \\ w_2(i-m) & \text{falls } m \leq i < m+n \end{cases}$$

■ Warum  $\mathbb{Z}_{m+n}$ ?

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Spracher

Konkatenation von Wörtern:

- lager · regal = lagerregal
- lag · erregal = lagerregal

### Konkatenation von Wörtern.

$$w_1 \cdot w_2 : \mathbb{Z}_{m+n} \to A_1 \cup A_2$$
 
$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \le i < m \\ w_2(i-m) & \text{falls } m \le i < m+n \end{cases}$$

■ Warum  $\mathbb{Z}_{m+n}$ ? Wörter  $w_1$  und  $w_2$ 

# Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Sprache

Konkatenation von Wörtern:

- lager · regal = lagerregal
- lag · erregal = lagerregal

### Konkatenation von Wörtern.

$$w_1 \cdot w_2 : \mathbb{Z}_{m+n} \to A_1 \cup A_2$$
 
$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \le i < m \\ w_2(i-m) & \text{falls } m \le i < m+n \end{cases}$$

■ Warum  $\mathbb{Z}_{m+n}$ ? Wörter  $w_1$  und  $w_2$  mit  $|w_1| = m$  und  $|w_2| = n$  werden konkateniert

# Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprache Konkatenation von Wörtern:

- lager · regal = lagerregal
- lag · erregal = lagerregal

### Konkatenation von Wörtern.

$$w_1 \cdot w_2 : \mathbb{Z}_{m+n} \to A_1 \cup A_2$$
 
$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \le i < m \\ w_2(i-m) & \text{falls } m \le i < m+n \end{cases}$$

■ Warum  $\mathbb{Z}_{m+n}$ ? Wörter  $w_1$  und  $w_2$  mit  $|w_1| = m$  und  $|w_2| = n$  werden konkateniert, also neues Wort hat Länge m + n.

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

## Mehr über Wörter



#### Konkatenation von Wörtern.

$$w_1 \cdot w_2 : \mathbb{Z}_{m+n} \to A_1 \cup A_2$$
 $i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \leq i < m \\ w_2(i-m) & \text{falls } m \leq i < m+n \end{cases}$ 

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprache

### Mehr über Wörter



#### Konkatenation von Wörtern.

$$egin{aligned} w_1 \cdot w_2 : \mathbb{Z}_{m+n} &
ightarrow A_1 \cup A_2 \ & i \mapsto egin{cases} w_1(i) & ext{falls } 0 \leq i < m \ w_2(i-m) & ext{falls } m \leq i < m+n \end{cases} \end{aligned}$$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

# Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Immernoch:

# Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Formale Sprachen Immernoch: Reihenfolge ist wichtig!

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Formale Sprachen Immernoch: Reihenfolge ist wichtig!

 $OTT \cdot O = OTTO$ 

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Formale Sprachen Immernoch: Reihenfolge ist wichtig!

$$\textit{OTT} \cdot \textit{O} = \textit{OTTO} \neq \textit{OOTT} = \textit{O} \cdot \textit{OTT}$$

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Formale Sprachen Immernoch: Reihenfolge ist wichtig!  $OTT \cdot O = OTTO \neq OOTT = O \cdot OTT$ 

Auf wieviele Weisen kann man abc als Konkatenation nichtleerer Wörter schreiben?

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Formale Sprachen Immernoch: Reihenfolge ist wichtig!  $OTT \cdot O = OTTO \neq OOTT = O \cdot OTT$ 

Auf wieviele Weisen kann man abc als Konkatenation nichtleerer Wörter schreiben? abc

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

- Immernoch: Reihenfolge ist wichtig!  $OTT \cdot O = OTTO \neq OOTT = O \cdot OTT$
- Auf wieviele Weisen kann man abc als Konkatenation nichtleerer Wörter schreiben? abc, a · bc

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

- Immernoch: Reihenfolge ist wichtig!  $OTT \cdot O = OTTO \neq OOTT = O \cdot OTT$
- Auf wieviele Weisen kann man abc als Konkatenation nichtleerer Wörter schreiben? abc, a · bc, ab · c

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Formale Sprachen Immernoch: Reihenfolge ist wichtig!  $OTT \cdot O = OTTO \neq OOTT = O \cdot OTT$ 

Auf wieviele Weisen kann man abc als Konkatenation nichtleerer Wörter schreiben? abc, a · bc, ab · c, a · b · c.

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

- Immernoch: Reihenfolge ist wichtig!  $OTT \cdot O = OTTO \neq OOTT = O \cdot OTT$
- Auf wieviele Weisen kann man abc als Konkatenation nichtleerer Wörter schreiben? abc, a · bc, ab · c, a · b · c.
- Wortkonkatenation mit dem leeren Wort

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprachen Immernoch: Reihenfolge ist wichtig!  $OTT \cdot O = OTTO \neq OOTT = O \cdot OTT$ 

- Auf wieviele Weisen kann man abc als Konkatenation nichtleerer Wörter schreiben? abc, a · bc, ab · c, a · b · c.
- Wortkonkatenation mit dem leeren Wort: w · ε

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Formale Sprachen ■ Immernoch: Reihenfolge ist wichtig!  $OTT \cdot O = OTTO \neq OOTT = O \cdot OTT$ 

- Auf wieviele Weisen kann man abc als Konkatenation nichtleerer Wörter schreiben? abc, a · bc, ab · c, a · b · c.
- Wortkonkatenation mit dem leeren Wort:  $w \cdot \varepsilon = w$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

- Immernoch: Reihenfolge ist wichtig!  $OTT \cdot O = OTTO \neq OOTT = O \cdot OTT$
- Auf wieviele Weisen kann man abc als Konkatenation nichtleerer Wörter schreiben? abc, a · bc, ab · c, a · b · c.
- Wortkonkatenation mit dem leeren Wort:  $w \cdot \varepsilon = w = \varepsilon \cdot w$ .

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort Potenzen

Wörter

Sich direkt wiederholende Teilworte kann man als Wortpotenz darstellen

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

### Wort Potenzen

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

#### Wort Potenzen

$$a^4 = aaaa$$

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

#### Wort Potenzen

$$a^4 = aaaa, b^3 = bbb$$

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

#### Wort Potenzen

• 
$$a^4 = aaaa, b^3 = bbb, c^0 =$$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

### Wort Potenzen

• 
$$a^4 = aaaa$$
,  $b^3 = bbb$ ,  $c^0 = \varepsilon$ 

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Spracher

### Wort Potenzen

• 
$$a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 =$$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Spracher

### Wort Potenzen

• 
$$a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$$

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprache

#### Wort Potenzen

- $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$
- $a^3c^2b^6$

### Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprache

#### Wort Potenzen

- $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$
- $\bullet$   $a^3c^2b^6 = aaaccbbbbbbb.$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprache

#### Wort Potenzen

- $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$
- $a^3c^2b^6 = aaaccbbbbbbb.$
- $\bullet b \cdot a \cdot (n \cdot a)^2$

## Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprachen

#### Wort Potenzen

- $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$
- $a^3c^2b^6 = aaaccbbbbbbb.$
- $b \cdot a \cdot (n \cdot a)^2 = banana$ .

# Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprache

#### Wort Potenzen

- $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$
- $a^3c^2b^6 = aaaccbbbbbbb.$
- $b \cdot a \cdot (n \cdot a)^2 = banana$ .
- $(a^3b^2)^2c(a^2bcb^3)^3dd$

# Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprache

### Wort Potenzen

- $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$
- $a^3c^2b^6 = aaaccbbbbbbb.$
- $b \cdot a \cdot (n \cdot a)^2 = banana$ .
- $(a^3b^2)^2c(a^2bcb^3)^3dd = (aaabb)^2c(aabcbbb)^3dd$

# Mehr über Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprache

### Wort Potenzen

- $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$
- $a^3c^2b^6 = aaaccbbbbbb.$
- $b \cdot a \cdot (n \cdot a)^2 = banana$ .
- $(a^3b^2)^2c(a^2bcb^3)^3dd = (aaabb)^2c(aabcbbb)^3dd$ =  $aaabb \cdot aaabb \cdot c \cdot aabcbbb \cdot aabcbbb \cdot aabcbbb \cdot dd$ .

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Spracher

# Übung zu Wörter



Sei A ein Alphabet.

- 1. Finde Abbildung  $f: A^* \to A^*$ , sodass für alle  $w \in A^*$  gilt:  $2 \cdot |w| = |f(w)|$ .
- 2. Finde Abbildung  $g: A^* \to A^*$ , sodass für alle  $w \in A^*$  gilt: |w| + 1 = |g(w)|.
- 3. Finde Abbildung  $h: A^* \to A^*$ , sodass für alle  $w \in A^*$  gilt:  $\lfloor \frac{|w|}{2} \rfloor = |h(w)|$ . (Zusatz)
- 4. Sind *f*, *g*, *h* injektiv und/oder surjektiv?

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

# Übung zu Wörter



Sei A ein Alphabet.

- 1. Finde Abbildung  $f: A^* \to A^*$ , sodass für alle  $w \in A^*$  gilt:  $2 \cdot |w| = |f(w)|$ .
- 2. Finde Abbildung  $g: A^* \to A^*$ , sodass für alle  $w \in A^*$  gilt: |w| + 1 = |g(w)|.
- 3. Finde Abbildung  $h: A^* \to A^*$ , sodass für alle  $w \in A^*$  gilt:  $\lfloor \frac{|w|}{2} \rfloor = |h(w)|$ . (Zusatz)
- 4. Sind *f*, *g*, *h* injektiv und/oder surjektiv?
- 1.  $f: A^* \rightarrow A^*, w \mapsto w \cdot w$ .

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

# Übung zu Wörter



Sei A ein Alphabet.

- 1. Finde Abbildung  $f: A^* \to A^*$ , sodass für alle  $w \in A^*$  gilt:  $2 \cdot |w| = |f(w)|$ .
- 2. Finde Abbildung  $g: A^* \to A^*$ , sodass für alle  $w \in A^*$  gilt: |w| + 1 = |g(w)|.
- 3. Finde Abbildung  $h: A^* \to A^*$ , sodass für alle  $w \in A^*$  gilt:  $\lfloor \frac{|w|}{2} \rfloor = |h(w)|$ . (Zusatz)
- 4. Sind *f*, *g*, *h* injektiv und/oder surjektiv?
- 1.  $f: A^* \rightarrow A^*, w \mapsto w \cdot w$ .
- 2.  $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$ .

Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Sprachen

# Übung zu Wörter



Sei A ein Alphabet.

- 1. Finde Abbildung  $f: A^* \to A^*$ , sodass für alle  $w \in A^*$  gilt:  $2 \cdot |w| = |f(w)|$ .
- 2. Finde Abbildung  $g: A^* \to A^*$ , sodass für alle  $w \in A^*$  gilt: |w| + 1 = |g(w)|.
- 3. Finde Abbildung  $h: A^* \to A^*$ , sodass für alle  $w \in A^*$  gilt:  $\lfloor \frac{|w|}{2} \rfloor = |h(w)|$ . (Zusatz)
- 4. Sind *f*, *g*, *h* injektiv und/oder surjektiv?
- 1.  $f: A^* \rightarrow A^*, w \mapsto w \cdot w$ .
- 2.  $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$ .
- $3. \ \ h: A^* \to A^*, \ w \mapsto \widehat{w} \ \text{mit} \ \widehat{w}_i = \left\{ \begin{array}{cc} w_i & \text{wenn } i \leq \lfloor \frac{|w|}{2} \rfloor \\ \varepsilon & \text{sonst} \end{array} \right\} \ \text{und} \ i \in \mathbb{Z}_{|w|}.$

# Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

1.  $f: A^* \rightarrow A^*, w \mapsto w \cdot w$ .

Wiederholung

Wörter

Formale Sprachen

# Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

1.  $f: A^* \rightarrow A^*, w \mapsto w \cdot w$ .

f ist injektiv

Wiederholung

Wörter

Formale Sprachen

## Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen 1.  $f: A^* \rightarrow A^*, w \mapsto w \cdot w$ .

f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.

## Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

- *f* ist injektiv, denn jedes *w* aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv

## Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Formale Sprachen

- *f* ist injektiv, denn jedes *w* aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf  $x \in A$  ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).

# Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

- f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf  $x \in A$  ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2.  $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$ .

# Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Sprachen

- f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf  $x \in A$  ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2.  $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$ .
  - g ist injektiv.

## Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

- *f* ist injektiv, denn jedes *w* aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf  $x \in A$  ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2.  $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$ .
  - g ist injektiv.
  - g ist nicht surjektiv

# Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

#### Wörter

Sprachen

- f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf  $x \in A$  ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2.  $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$ .
  - g ist injektiv.
  - g ist nicht surjektiv, denn z.B. bildet nichts auf  $\varepsilon$  ab.

# Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Spracher

- *f* ist injektiv, denn jedes *w* aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf  $x \in A$  ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2.  $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$ .
  - g ist injektiv.
  - g ist nicht surjektiv, denn z.B. bildet nichts auf  $\varepsilon$  ab.

$$3. \ \ h: A^* \to A^*, w \mapsto \widehat{w} \ \text{mit} \ \widehat{w}_i = \left\{ \begin{array}{cc} w_i & \text{wenn } i \leq \lfloor \frac{|w|}{2} \rfloor \\ \varepsilon & \text{sonst} \end{array} \right\} \ \text{und} \ i \in \mathbb{Z}_{|w|}.$$

# Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

Wiederholun

#### Wörter

Formale Spracher 1.  $f: A^* \rightarrow A^*, w \mapsto w \cdot w$ .

- $: A \rightarrow A, w \mapsto w \cdot w.$ 
  - f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf  $x \in A$  ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2.  $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$ .
  - g ist injektiv.
  - g ist nicht surjektiv, denn z.B. bildet nichts auf  $\varepsilon$  ab.

$$3. \ \ h: A^* \to A^*, \ w \mapsto \hat{w} \ \text{mit} \ \hat{w}_i = \left\{ \begin{array}{cc} w_i & \text{wenn } i \leq \lfloor \frac{|w|}{2} \rfloor \\ \varepsilon & \text{sonst} \end{array} \right\} \ \text{und} \ i \in \mathbb{Z}_{|w|}.$$

h ist nicht injektiv

# Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wörter

1.  $f: A^* \to A^*, w \mapsto w \cdot w$ .

- - f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.
  - f ist nicht surjektiv, denn z.B. bildet nichts auf  $x \in A$  ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2.  $g: A^* \to A^*, w \mapsto w \cdot x, x \in A$ .
  - g ist injektiv.
  - q ist nicht surjektiv, denn z.B. bildet nichts auf  $\varepsilon$  ab.

$$3. \ \ h: A^* \to A^*, w \mapsto \widehat{w} \ \text{mit} \ \widehat{w}_i = \left\{ \begin{array}{cc} w_i & \text{wenn } i \leq \lfloor \frac{|w|}{2} \rfloor \\ \varepsilon & \text{sonst} \end{array} \right\} \ \text{und} \ i \in \mathbb{Z}_{|w|}.$$

• h ist nicht injektiv, denn z.B. x = h(xy) = h(xz) mit  $x, y, z \in A$ .

# Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

#### Wörter

Formale Spracher

- *f* ist injektiv, denn jedes *w* aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf  $x \in A$  ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2.  $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$ .
  - g ist injektiv.
  - g ist nicht surjektiv, denn z.B. bildet nichts auf  $\varepsilon$  ab.

$$3. \ \ h: A^* \to A^*, \ w \mapsto \hat{w} \ \text{mit} \ \hat{w}_i = \left\{ \begin{array}{cc} w_i & \text{wenn } i \leq \lfloor \frac{|w|}{2} \rfloor \\ \varepsilon & \text{sonst} \end{array} \right\} \ \text{und} \ i \in \mathbb{Z}_{|w|}.$$

- h ist nicht injektiv, denn z.B. x = h(xy) = h(xz) mit  $x, y, z \in A$ .
- h ist surjektiv

# Übung zu Wörter



Lukas Bach, lukas.bach@student.kit.edu

#### Wörter

- f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf  $x \in A$  ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2.  $g: A^* \to A^*, w \mapsto w \cdot x, x \in A$ .
  - g ist injektiv.
  - q ist nicht surjektiv, denn z.B. bildet nichts auf  $\varepsilon$  ab.

$$3. \ \ h: A^* \to A^*, w \mapsto \widehat{w} \ \text{mit} \ \widehat{w}_i = \left\{ \begin{array}{cc} w_i & \text{wenn } i \leq \lfloor \frac{|w|}{2} \rfloor \\ \varepsilon & \text{sonst} \end{array} \right\} \ \text{und} \ i \in \mathbb{Z}_{|w|}.$$

- h ist nicht injektiv, denn z.B. x = h(xy) = h(xz) mit  $x, y, z \in A$ .
- h ist surjektiv, denn für jedes  $w \in A^*$  existiert ein  $\hat{w} \in A^*$  mit  $\hat{w} = w \cdot w$ sodass  $h(\hat{w}) = w$ .

## Formale Sprache



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

## **Formale Sprache**



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

Formale Sprache



Lukas Bach, lukas.bach@student.kit.edu Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung

Formale Sprache

Wörter

Eine Formale Sprache L

Formale Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

## **Formale Sprache**



Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

## Formale Sprache

## **Formale Sprache**



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

## Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge  $L \subseteq A^*$ .

Zufälliges Beispiel:

## **Formale Sprache**



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

## Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge  $L \subseteq A^*$ .

■ Zufälliges Beispiel:  $A := \{b, n, a\}$ .

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

## **Formale Sprache**



Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

## Formale Sprache

- Zufälliges Beispiel:  $A := \{b, n, a\}$ .
  - $L_1 := \{ban, baan, nba, aa\}$  ist eine mögliche formale Sprache über A.

## **Formale Sprache**



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

### Formale Sprache

- Zufälliges Beispiel:  $A := \{b, n, a\}$ .
  - $L_1 := \{ban, baan, nba, aa\}$  ist eine mögliche formale Sprache über A.
  - $L_2 := \{banana, bananana, banananana, ...\}$

## **Formale Sprache**



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

### Formale Sprache

- Zufälliges Beispiel:  $A := \{b, n, a\}$ .
  - $L_1 := \{ban, baan, nba, aa\}$  ist eine mögliche formale Sprache über A.
  - $L_2 := \{banana, bananana, banananana, ...\}$ =  $\{w : w = bana(na)^k, k \in \mathbb{N}\}$  auch.

# **Formale Sprache**



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

### Formale Sprache

- Zufälliges Beispiel:  $A := \{b, n, a\}$ .
  - $L_1 := \{ban, baan, nba, aa\}$  ist eine mögliche formale Sprache über A.
  - $L_2 := \{banana, bananana, banananana, ...\}$ =  $\{w : w = bana(na)^k, k \in \mathbb{N}\}$  auch.
  - $L_3 := \{ban, baan, baaan, ...\}$  auch.

## Formale Sprache



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

### Formale Sprache

- Zufälliges Beispiel:  $A := \{b, n, a\}$ .
  - $L_1 := \{ban, baan, nba, aa\}$  ist eine mögliche formale Sprache über A.
  - $L_2 := \{banana, bananana, banananana, ...\}$ =  $\{w : w = bana(na)^k, k \in \mathbb{N}\}$  auch.
  - $L_3 := \{ban, baan, baaan, ...\}$  auch. Andere Schreibweise?

## **Formale Sprache**



Lukas Bach, lukas.bach@student.kit.edu

Wiederholun

Wörte

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

### Formale Sprache

- Zufälliges Beispiel:  $A := \{b, n, a\}$ .
  - $L_1 := \{ban, baan, nba, aa\}$  ist eine mögliche formale Sprache über A.
  - $L_2 := \{banana, bananana, banananana, ...\}$ =  $\{w : w = bana(na)^k, k \in \mathbb{N}\}$  auch.
  - $L_3 := \{ban, baan, baaan, ...\}$  auch. Andere Schreibweise?  $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$

## **Formale Sprache**



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

### Formale Sprache

- Zufälliges Beispiel:  $A := \{b, n, a\}$ .
  - $L_1 := \{ban, baan, nba, aa\}$  ist eine mögliche formale Sprache über A.
  - $L_2 := \{banana, bananana, banananana, ...\}$ =  $\{w : w = bana(na)^k, k \in \mathbb{N}\}$  auch.
  - $L_3 := \{ban, baan, baaan, ...\}$  auch. Andere Schreibweise?  $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.

## **Formale Sprache**



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

### Formale Sprache

- Zufälliges Beispiel:  $A := \{b, n, a\}$ .
  - $L_1 := \{ban, baan, nba, aa\}$  ist eine mögliche formale Sprache über A.
  - $L_2 := \{banana, bananana, banananana, ...\}$ =  $\{w : w = bana(na)^k, k \in \mathbb{N}\}$  auch.
  - $L_3 := \{ban, baan, baaan, ...\}$  auch. Andere Schreibweise?  $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel: A := {w : w ist ein ASCII Symbol }.

# Formale Sprache



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

### Formale Sprache

- Zufälliges Beispiel:  $A := \{b, n, a\}$ .
  - $L_1 := \{ban, baan, nba, aa\}$  ist eine mögliche formale Sprache über A.
  - $L_2 := \{banana, bananana, banananana, ...\}$ =  $\{w : w = bana(na)^k, k \in \mathbb{N}\}$  auch.
  - $L_3 := \{ban, baan, baaan, ...\}$  auch. Andere Schreibweise?  $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel: A := {w : w ist ein ASCII Symbol }.
  - $L_4 := \{class, if, else, while, for, ...\}$  ist eine formale Sprache über A.

## **Formale Sprache**



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

### Formale Sprache

- Zufälliges Beispiel:  $A := \{b, n, a\}$ .
  - $L_1 := \{ban, baan, nba, aa\}$  ist eine mögliche formale Sprache über A.
  - $L_2 := \{banana, bananana, banananana, ...\}$ =  $\{w : w = bana(na)^k, k \in \mathbb{N}\}$  auch.
  - $L_3 := \{ban, baan, baaan, ...\}$  auch. Andere Schreibweise?  $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel: A := {w : w ist ein ASCII Symbol }.
  - $L_4 := \{class, if, else, while, for, ...\}$  ist eine formale Sprache über A.
  - L<sub>5</sub> := {w : w = a ⋅ b mit a als Großbuchstabe und b als Groß- oder Kleinbuchstabe }

## **Formale Sprache**



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

### Formale Sprache

- Zufälliges Beispiel:  $A := \{b, n, a\}$ .
  - $L_1 := \{ban, baan, nba, aa\}$  ist eine mögliche formale Sprache über A.
  - $L_2 := \{banana, bananana, banananana, ...\}$ =  $\{w : w = bana(na)^k, k \in \mathbb{N}\}$  auch.
  - $L_3 := \{ban, baan, baaan, ...\}$  auch. Andere Schreibweise?  $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel:  $A := \{w : w \text{ ist ein ASCII Symbol }\}.$ 
  - $L_4 := \{class, if, else, while, for, ...\}$  ist eine formale Sprache über A.
  - L<sub>5</sub> := {w : w = a ⋅ b mit a als Großbuchstabe und b als Groß- oder Kleinbuchstabe }\L<sub>4</sub>

## **Formale Sprache**



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Was war nochmal A\*? Menge aller Wörter beliebiger Länge über Alphabet A.

### Formale Sprache

- Zufälliges Beispiel:  $A := \{b, n, a\}$ .
  - $L_1 := \{ban, baan, nba, aa\}$  ist eine mögliche formale Sprache über A.
  - $L_2 := \{banana, bananana, banananana, ...\}$ =  $\{w : w = bana(na)^k, k \in \mathbb{N}\}$  auch.
  - $L_3 := \{ban, baan, baaan, ...\}$  auch. Andere Schreibweise?  $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel: A := {w : w ist ein ASCII Symbol }.
  - $L_4 := \{class, if, else, while, for, ...\}$  ist eine formale Sprache über A.
  - L<sub>5</sub> := {w : w = a ⋅ b mit a als Großbuchstabe und b als Groß- oder Kleinbuchstabe }\L<sub>4</sub> ist eine formale Sprache von korrekten Klassennamen in Java.

## Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

## Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter 
$$A := \{a, b\}$$

## Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

$$A:=\{a,b\}$$

Formale Sprachen ■ Sprache *L* aller Wörter über *A*, die nicht das Teilwort *ab* enthalten?

## Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

$$A:=\{a,b\}$$

- Sprache *L* aller Wörter über *A*, die nicht das Teilwort *ab* enthalten?
  - Was passiert wenn ein solches Wort ein a enthält?

## Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Sprachen

Formale

- Sprache *L* aller Wörter über *A*, die nicht das Teilwort *ab* enthalten?
  - Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!

## Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

- Sprache L aller Wörter über A, die nicht das Teilwort ab enthalten?
  - Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
  - $L = \{w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^*\}$

## Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

Wörter

Formale Sprachen

- Sprache L aller Wörter über A, die nicht das Teilwort ab enthalten?
  - Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
  - $L = \{w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^*\}$
  - Andere Möglichkeit

## Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

Wörter

$$A := \{a, b\}$$

- Sprache L aller Wörter über A, die nicht das Teilwort ab enthalten?
  - Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
  - $L = \{w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^*\}$
  - Andere Möglichkeit: Suche Wörter mit ab und nehme diese Weg.

## Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

Wörter

$$A := \{a, b\}$$

- Sprache *L* aller Wörter über *A*, die nicht das Teilwort *ab* enthalten?
  - Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
  - $L = \{w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^*\}$
  - Andere Möglichkeit: Suche Wörter mit ab und nehme diese Weg.
  - $L = \{a, b\}^*$

## Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

#### Wiederholung

Wörte

Formale Sprachen

- Sprache L aller Wörter über A, die nicht das Teilwort ab enthalten?
  - Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
  - $L = \{w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^*\}$
  - Andere Möglichkeit: Suche Wörter mit ab und nehme diese Weg.
  - $L = \{a, b\}^* \setminus \{w_1 \cdot ab \cdot w_2 : w_1, w_2 \in \{a, b\}^*\}$

### Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Sei  $A := \{a, b\}, B := \{0, 1\}.$ 

- 1. Sprache  $L_1 \subseteq A^*$  von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache  $L_2 \subseteq A^*$  von Wörtern, die gerade Zahl von a's enthält.
- 3. Sprache  $L_3 \subseteq B^*$  von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.

### Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Sei  $A := \{a, b\}, B := \{0, 1\}.$ 

- 1. Sprache  $L_1 \subseteq A^*$  von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache  $L_2 \subseteq A^*$  von Wörtern, die gerade Zahl von *a*'s enthält.
- 3. Sprache  $L_3 \subseteq B^*$  von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
- 1. L<sub>1</sub>

### Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Sei  $A := \{a, b\}, B := \{0, 1\}.$ 

- 1. Sprache  $L_1 \subseteq A^*$  von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache  $L_2 \subseteq A^*$  von Wörtern, die gerade Zahl von a's enthält.
- 3. Sprache  $L_3 \subseteq B^*$  von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
- 1.  $L_1 = \{w = w_1bw_2bw_3bw_4 : w_1, w_2, w_3, w_4 \in A^*\}$

## Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholun

Wörte

Formale Sprachen Sei  $A := \{a, b\}, B := \{0, 1\}.$ 

- 1. Sprache  $L_1 \subseteq A^*$  von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache  $L_2 \subseteq A^*$  von Wörtern, die gerade Zahl von a's enthält.
- 3. Sprache  $L_3 \subseteq B^*$  von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
- 1.  $L_1 = \{ w = w_1 b w_2 b w_3 b w_4 : w_1, w_2, w_3, w_4 \in A^* \}$
- 2. L<sub>2</sub>

### Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Sei  $A := \{a, b\}, B := \{0, 1\}.$ 

- 1. Sprache  $L_1 \subseteq A^*$  von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache  $L_2 \subseteq A^*$  von Wörtern, die gerade Zahl von a's enthält.
- 3. Sprache  $L_3 \subseteq B^*$  von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
- 1.  $L_1 = \{ w = w_1 b w_2 b w_3 b w_4 : w_1, w_2, w_3, w_4 \in A^* \}$
- 2.  $L_2 = \{ w = (w_1 a w_2 a w_3)^* : w_1, w_2, w_3 \in \{b\}^* \}$

### Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholun

Wörte

Formale Sprachen Sei  $A := \{a, b\}, B := \{0, 1\}.$ 

- 1. Sprache  $L_1 \subseteq A^*$  von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache  $L_2 \subseteq A^*$  von Wörtern, die gerade Zahl von a's enthält.
- 3. Sprache  $L_3 \subseteq B^*$  von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
- 1.  $L_1 = \{ w = w_1 b w_2 b w_3 b w_4 : w_1, w_2, w_3, w_4 \in A^* \}$
- 2.  $L_2 = \{ w = (w_1 a w_2 a w_3)^* : w_1, w_2, w_3 \in \{b\}^* \}$  (Ist da  $\varepsilon$  drin?)

### Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Sei  $A := \{a, b\}, B := \{0, 1\}.$ 

- 1. Sprache  $L_1 \subseteq A^*$  von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache  $L_2 \subseteq A^*$  von Wörtern, die gerade Zahl von a's enthält.
- 3. Sprache  $L_3 \subseteq B^*$  von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
- 1.  $L_1 = \{ w = w_1 b w_2 b w_3 b w_4 : w_1, w_2, w_3, w_4 \in A^* \}$
- 2.  $L_2 = \{ w = (w_1 a w_2 a w_3)^* : w_1, w_2, w_3 \in \{b\}^* \}$  (Ist da  $\varepsilon$  drin?)
- 3.  $L_3$

### Übung zu formalen Sprachen



Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen Sei  $A := \{a, b\}, B := \{0, 1\}.$ 

- 1. Sprache  $L_1 \subseteq A^*$  von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache  $L_2 \subseteq A^*$  von Wörtern, die gerade Zahl von *a*'s enthält.
- 3. Sprache  $L_3 \subseteq B^*$  von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
- 1.  $L_1 = \{ w = w_1 b w_2 b w_3 b w_4 : w_1, w_2, w_3, w_4 \in A^* \}$
- 2.  $L_2 = \{ w = (w_1 a w_2 a w_3)^* : w_1, w_2, w_3 \in \{b\}^* \}$  (Ist da  $\varepsilon$  drin?)
- 3.  $L_3 = \{ w = w \cdot 0 : w \in B^* \}$

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

