$Działania\ na\ liczbach\ binarnych\ i\ szesnastkowych$

Arytmetyka binarna

Uwaga! Błędy nadmiaru i niedomiaru

Uwaga! Liczba bitów przy kodzie uzupełnieniowym U2

Dodawanie

+ 1 0 0 0 1 1 0 1 0 1 + 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0

Dodawanie z nadmiarem na 4 bitach

1111 (15₍₁₀₎) +1 = $\frac{1}{10000}$ (0₍₁₀₎)

1 1 1 1 + 0 0 0 1 0 0 0 0

Odejmowanie

Odejmowanie z niedomiarem na 4 bitach

 $1001 (9_{(10)})-1101 (13_{(10)}) = 1100 (12_{(10)})$

1 0 0 1 + 1 1 0 1 1 1 0 0

Mnożenie

* 1 0 1 1 0 1 * 1 0 1 1 1 0 1 1 0 + 1 0 1 1 0 0 1 1 0 1 1 0

Dzielenie

1 0 1 1 1 1 1 1 0 1 0 : 1 1 0 0 1 0 - 1 1 0 0 1 0 0 0 1 1 0 0 1 0 - 1 1 0 0 0 0 0 0 0

Operacje logiczne w systemie binarnym

a=10110011

b=01011010

c=00000000

Koniunkcja

a&&b=00000001

a&&c=00000000

Alternatywa

a | | b=00000001

a | | c=00000001

Negacja

!a=00000000

!b=00000000

!c=00000001

Iloczyn bitowy

a&b=00010010

a&c=00000000

Suma bitowa

a|b=11111011

a | c=10110011

Bitowa różnica symetryczna (alternatywa wykluczająca, suma modulo dwa)

a^b=11101001

a^c=10110011

Negacja bitowa

~10110011=01001100

~01011010=10100101

~00000000=111111111

Przesunięcia bitowe

a/8=a>>3=00010110 (bo 23=8)

b*2=b<<1=10110100 (bo 21=2)

Ustawianie zadanego bitu

Ustawiamy czwarty bit w słowie binarnym 110001001011 na 1=10110100.

	1100010 0 1011	zmieniane słowo
OR()	000000010000	maska bitowa
	1100010 1 1011	wynik operacji

Zerowanie zadanego bitu

Zerujemy czwarty bit w słowie binarnym 110001010111.

	1100010 1 0111	zmieniane słowo
AND(&)	1111111 0 1111	maska bitowa
	1100010 0 0111	wvnik operacii

Negacja zadanego bitu.

Zmieniamy stan czwartego bitu w słowie binarnym 110001000111.

	1100010 0 0111	zmieniane słowo
XOR(^)	000000010000	maska bitowa
	1100010 1 11111	wynik operacji

Arytmetyka binarna w kodzie uzupełnieniowym U2

Dodawanie i odejmowanie liczb w kodzie uzupełnieniowym

Liczby w kodzie uzupełnieniowym dodajemy i odejmujemy tak samo jak w kodzie prostym. Przeniesienia poza bit znaku ignorujemy.

$$5 + (-3) = 2$$

Mnożenie w kodzie uzupełnieniowym

Przed wykonaniem operacji rozszerzamy znakowo obie mnożone liczby tak, aby ich liczba bitów wzrosła dwukrotnie. Rozszerzenie znakowe polega na powielaniu bitu znaku na wszystkie dodane bity.

$$(-2) \times 3 = (-6)$$

Wynik mnożenia musi być liczbą o długości równej sumie długości mnożonych przez siebie liczb (tutaj 4+4=8).

Dzielenie w kodzie uzupełnieniowym.

Zapamiętujemy znaki dzielonych liczb. Zamieniamy liczby na dodatnie. Dokonujemy dzielenia binarnego. Zmieniamy liczbę na liczbę przeciwną jeśli znaki dzielnej i dzielnika były różne. Jeśli w wyniku dzielenia otrzymamy resztę, to musi ona mieć ten sam znak, co dzielna.

$$6:(-3)=(-2)$$

$$6 = 0110_{(2)}$$

$$-3 = 1101_{(U2)} - zmieniamy na 3 = 0011_{(2)}$$

$$0100:1101 = 0010 = 2_{(10)}$$

liczby miały różne znaki, więc zamieniamy na -2=1110_(U2)

Arytmetyka szesnastkowa

Działania wykonuje się analogiczna jak przy arytmetyce dziesiętnej i binarnej. Poniżej pomocna w obliczeniach szesnastkowa tabliczka mnożenia. Wszystkie wartości w niej są w systemie szesnastkowym.

	1	2	3	4	5	6	7	8	9	A	В	\mathbf{C}	D	E	F
1	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
2	2	4	6	8	A	\mathbf{C}	E	10	12	14	16	18	1A	1C	1E
3	3	6	9	C	F	12	15	18	1B	1E	21	24	27	2A	2D
4	4	8	\mathbf{C}	10	14	18	1C	20	24	28	2C	30	34	38	3C
5	5	A	F	14	19	1E	23	28	2D	32	37	3C	41	46	4B
6	6	\mathbf{C}	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
7	7	Е	15	1C	23	2A	31	38	3F	46	4D	54	5B	62	69
8	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	9	12	1B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
A	A	14	1E	28	32	3C	46	50	5A	64	6E	78	82	8C	96
В	В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
\mathbf{C}	\mathbf{C}	18	24	30	3C	48	54	60	6C	78	84	90	9C	A8	B4
D	D	1A	27	34	41	4E	5B	68	75	82	8F	9C	A9	В6	С3
\mathbf{E}	E	1C	2A	38	46	54	62	70	7E	8C	9A	A8	В6	C4	D2
\mathbf{F}	F	1E	2D	3C	4B	5A	69	78	87	96	A5	B4	СЗ	D2	E1

48DAF2+81CC9 = 50F7BB

E8DBCA2-FDE5B=E7DDE47

5DC2*EC = 566ED8

62BE8:A5 = 993r. 29