srinivasan530_termproject

March 1, 2025

```
[33]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
      import scipy.stats as stats
      from statsmodels.formula.api import ols
      from scipy.stats import pearsonr
      from sklearn.linear model import LinearRegression
      import seaborn as sns
      class StockDataAnalysisDataset:
          def __init__(self, file_name):
              self.file_path = file_name
              self.df = None
              self.selected_variables = ["Open", "Close", "High", "Low", "Volume"]
          #describe variable for dataset
          def describe_variables_for_dataset(self):
              descriptions_val = self.df[self.selected_variables].describe()
              print("Variable Descriptions from dataset used:")
              print(descriptions_val)
          #Load dataset
          def load_dataset(self):
              self.df = pd.read_csv(self.file_path)
              # renaming columns
              self.df.rename(columns={
                  "date": "Date", "open": "Open", "high": "High",
                  "low": "Low", "close": "Close", "volume": "Volume", "Name": "Ticker"
              }, inplace=True)
              self.df["Date"] = pd.to_datetime(self.df["Date"])
              self.df.dropna(inplace=True)
              print("Data Loaded Successfully!")
          #Plot histogram
          def plot histograms for dataset(self):
              for var in self.selected variables:
```

```
plt.figure(figsize=(6,4))
          sns.histplot(self.df[var], bins=30, kde=True)
          plt.title(f'Histogram of {var}')
          plt.show()
  # Identify outliers for the variables
  def identify_outliers_for_dataset(self):
      for var in self.selected_variables:
          q1 = self.df[var].quantile(0.25)
          q3 = self.df[var].quantile(0.75)
          iqr = q3 - q1
          lower_bound = q1 - 1.5 * iqr
          upper_bound = q3 + 1.5 * iqr
          outliers = self.df[(self.df[var] < lower_bound) | (self.df[var] >__
→upper_bound)]
          print(f"Outliers in {var}: {len(outliers)}")
  # compute PMF for AAPL and GOOGLe
  def compute_pmf_for_dataset(self):
      scenarios = \Gamma
          self.df[self.df['Ticker'] == 'AAPL']['Close'],
          self.df[self.df['Ticker'] == 'GOOG']['Close'],
          self.df[self.df['Ticker'] == 'CMS']['Close'],
          self.df[self.df['Ticker'] == 'CSCO']['Close'],
          self.df[self.df['Ticker'] == 'ILMN']['Close'],
          self.df[self.df['Ticker'] == 'NVDA']['Close'],
      1
      labels = ["AAPL", "GOOG", "CMS", "CSCO", "ILMN", "NVDA"]
      for i, scenario in enumerate(scenarios):
          pmf = scenario.value_counts(normalize=True)
          plt.figure(figsize=(6,4))
          pmf.plot(kind='bar')
          plt.title(f'PMF of Closing Prices - {labels[i]}')
          plt.show()
  # computation of Cumulative Distribution function
  def compute_cdf_for_dataset(self):
      sorted_data = np.sort(self.df['Close'])
      cdf = np.arange(len(sorted_data)) / float(len(sorted_data))
      plt.figure(figsize=(6,4))
      plt.plot(sorted_data, cdf, marker='.', linestyle='none')
      plt.title("Cumulative Distribution Function (CDF) of Closing Prices")
      plt.show()
  def analyze_distribution_for_dataset(self):
      stats.probplot(self.df['Close'], dist="norm", plot=plt)
```

```
plt.title("Normal Q-Q Plot for Closing Prices")
   plt.show()
def scatter_plots_for_dataset(self):
   plt.figure(figsize=(6,4))
    sns.scatterplot(x=self.df['Open'], y=self.df['Close'])
   plt.title("Scatter Plot of Open vs Close Prices")
   plt.show()
   plt.figure(figsize=(6,4))
    sns.scatterplot(x=self.df['High'], y=self.df['Low'])
   plt.title("Scatter Plot of High vs Low Prices")
   plt.show()
def compute_correlation_for_dataset(self):
    correlation, _ = pearsonr(self.df['Open'], self.df['Close'])
    print(f"Pearson Correlation between Open and Close: {correlation}")
def regression_analysis_for_dataset(self):
    model = ols("Close ~ Open + High + Low + Volume", data=self.df).fit()
   print(model.summary())
def correlation_analysis_for_dataset(self):
    """Computes Pearson correlation coefficients."""
    correlation_matrix = self.df[self.selected_variables].corr()
   print("Correlation Matrix:\n", correlation_matrix)
   plt.figure(figsize=(8, 6))
   sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f")
   plt.title("Correlation Matrix Heatmap")
   plt.show()
def linear_regression_analysis(self):
    """Performs regression analysis using Linear Regression."""
    X = self.df[["Open", "High", "Low", "Volume"]]
    y = self.df["Close"]
    self.model = LinearRegression()
    self.model.fit(X, y)
   r_squared = self.model.score(X, y)
    regression_results = {
        "Coefficients": self.model.coef ,
        "Intercept": self.model.intercept_,
        "R-Squared": r_squared
    }
```

```
regression df = pd.DataFrame(regression results, index=["Open", "High", |
print("Regression Analysis Result:\n", regression_df)
      plt.figure(figsize=(8, 6))
      sns.heatmap(regression_df, annot=True, cmap="coolwarm", fmt=".2f")
      plt.title("Regression Analysis Results Heatmap")
      plt.show()
  def hypothesis_testing_for_dataset(self):
      """Performing hypothesis testing compare mean Close and Open prices."""
      t_stat, p_value = stats.ttest_rel(self.df["Close"], self.df["Open"])
      hypothesis_results = pd.DataFrame({
          "T-Statistic": [t_stat],
          "P-Value": [p_value],
          "Conclusion": ["Reject HO" if p_value < 0.05 else "Fail to Reject_
-H0"1
      })
      print("Hypothesis Analysis Result:\n", hypothesis_results)
  def plot_analytical_distribution_for_dataset(self):
      """Fits and plots an analytical normal distribution."""
      mu, sigma = stats.norm.fit(self.df["Close"])
      x = np.linspace(self.df["Close"].min(), self.df["Close"].max(), 100)
      pdf = stats.norm.pdf(x, mu, sigma)
      plt.figure(figsize=(10, 5))
      sns.histplot(self.df["Close"], bins=50, kde=True, stat="density", __
→label="Actual Data", color="blue")
      plt.plot(x, pdf, 'r-', label="Fitted Normal Distribution")
      plt.xlabel("Closing Price")
      plt.ylabel("Density")
      plt.title("Analytical Distribution of Closing Prices")
      plt.legend()
      plt.show()
  def run all analysis(self):
      self.load dataset()
      self.describe variables for dataset()
      self.plot_histograms_for_dataset()
      self.identify_outliers_for_dataset()
      self.compute_pmf_for_dataset()
      self.compute_cdf_for_dataset()
      self.analyze_distribution_for_dataset()
      self.scatter_plots_for_dataset()
      self.compute_correlation_for_dataset()
```

```
self.regression_analysis_for_dataset()
self.correlation_analysis_for_dataset()
self.linear_regression_analysis()
self.hypothesis_testing_for_dataset()
self.plot_analytical_distribution_for_dataset()

print("Analysis Completed successfully for Stock dataset!")

# Class initialization with the dataset
analysis_data = StockDataAnalysisDataset("all_stocks_5yr.csv")
analysis_data.run_all_analysis()
```

Data Loaded Successfully!

Variable Descriptions from dataset used:

	Open	Close	High	Low	\
count	619029.000000	619029.000000	619029.000000	619029.000000	
mean	83.023334	83.043305	83.778419	82.256200	
std	97.378769	97.388913	98.207735	96.507634	
min	1.620000	1.590000	1.690000	1.500000	
25%	40.220000	40.240800	40.620000	39.830000	
50%	62.590000	62.620000	63.150000	62.020000	
75%	94.370000	94.410000	95.180000	93.540000	
max	2044.000000	2049.000000	2067.990000	2035.110000	

Volume

count 6.190290e+05
mean 4.321892e+06
std 8.693671e+06
min 1.010000e+02
25% 1.070351e+06
50% 2.082165e+06
75% 4.284550e+06
max 6.182376e+08

Outliers in Open: 38963 Outliers in Close: 38930 Outliers in High: 39020 Outliers in Low: 38891 Outliers in Volume: 59502

Pearson Correlation between Open and Close: 0.999871931742259 OLS Regression Results

============	=======================================		=======================================
Dep. Variable:	Close	R-squared:	1.000
Model:	OLS	Adj. R-squared:	1.000
Method:	Least Squares	F-statistic:	3.097e+09
Date:	Sat, 01 Mar 2025	Prob (F-statistic):	0.00
Time:	18:47:56	Log-Likelihood:	-6.4729e+05
No. Observations:	619029	AIC:	1.295e+06
Df Residuals:	619024	BIC:	1.295e+06
Df Model:	4		

Df Model: 4
Covariance Type: nonrobust

=======	coef	std err	 t	P> t	[0.025	0.975]
Intercept	-0.0058	0.001	-4.567	0.000	-0.008	-0.003
Open	-0.5555	0.001	-569.233	0.000	-0.557	-0.554
High	0.7890	0.001	939.721	0.000	0.787	0.791
Low	0.7668	0.001	976.186	0.000	0.765	0.768
Volume	-4.584e-11	1.02e-10	-0.450	0.653	-2.46e-10	1.54e-10
=======	========			========	========	========
Omnibus:		257405	.725 Durb	in-Watson:		2.057
Prob(Omnib	us):	0	.000 Jarq	ue-Bera (JB): 51	0301750.744
Skew:		0	.066 Prob	(JB):		0.00
Kurtosis:		143	.658 Cond	. No.		1.41e+07

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.41e+07. This might indicate that there are strong multicollinearity or other numerical problems.

 Correlation Matrix:

	Oper	n Close	e Higl	h Lov	v Volume
Open	1.000000	0.999872	0.999939	0.999928	-0.142705
Close	0.999872	1.000000	0.999936	0.999939	-0.142802
High	0.999939	0.999936	1.000000	0.999903	-0.142316
Low	0.999928	0.999939	0.999903	1.000000	-0.143240
Volume	-0.142705	-0.142802	-0.142316	-0.143240	1.000000

Regression Analysis Result:

	Coefficients	Intercept	R-Squared
Open	-5.555230e-01	-0.005817	0.99995
High	7.889903e-01	-0.005817	0.99995
Low	7.667548e-01	-0.005817	0.99995
Volume	-4.584100e-11	-0.005817	0.99995

Hypothesis Analysis Result:

T-Statistic P-Value Conclusion
0 10.081291 6.712676e-24 Reject HO

Analysis Completed successfully for Stock dataset!

[]: