

5COP093 - Lista de Exercícios 02

1. Considere a árvore abstrata e a tabela de padrões de árvore que aparecem na sequência. Considerando que cada padrão possui custo 1, gere código para a árvore utilizando o algoritmo de programação dinâmica. Não se esqueça de dizer qual foi a sequência de instruções geradas.

1)	$R_i \leftarrow C_a$	{ LD Ri, #a }
2)	$R_i \leftarrow M_x$	$\{ \text{ LD } \mathbf{R}i, x \}$
3)	$M \leftarrow = M_x = R_i$	{ ST x, Ri }
4)	$M \leftarrow = $ $ \begin{array}{c} \mathbf{ind} & R_j \\ & \\ R_i \end{array} $	{ ST *Ri, Rj }
5)	$R_i \leftarrow egin{array}{c} oldsymbol{\operatorname{ind}} & & & & & & & & & \\ & & & & & & & & &$	{ LD Ri, a(Rj) }
6)	$R_i \leftarrow + \\ R_i \text{ind} \\ \\ C_a R_j$	$\{ \ ext{ADD R}i, \ ext{R}i, \ a(ext{R}j) \ \}$
7)	$R_i \leftarrow + \\ R_i \qquad R_j$	{ ADD Ri, Ri, Rj }
8)	$R_i \leftarrow + \\ R_i \leftarrow C_1$	{ INC Ri }

2. Considere uma máquina que possui apenas DOIS registradores R0 e R1, e o seguinte conjunto de instruções, sendo que cada uma possui custo 1:

```
LD
                   // Ri = Mi
    Ri, Mj
LD
    Ri, Rj
                   // Ri = Ri
ST
   Mi, Rj
                  // Mi = Rj
ADD Ri, Ri, Rj
                   // Ri = Ri + Rj
ADD Ri, Ri, Mj
                  // Ri = Ri + Mj
SUB Ri, Ri, Rj
                  // Ri = Ri - Rj
                  // Ri = Ri - Mj
SUB Ri, Ri, Mj
MUL Ri, Ri, Rj
                  // Ri = Ri * Rj
MUL Ri, Ri, Mj
                   // Ri = Ri * Mj
DIV Ri, Ri, Rj
                   // Ri = Ri / Rj
DIV Ri, Ri, Mj
                   // Ri = Ri / Mj
```

Neste conjunto de instruções, Ri é RO ou R1 e Mj é uma posição de memória. Considere agora a árvore de expressões abaixo:

Considerando que cada variável na árvore corresponde a uma posição de memória, gere código para a mesma utilizando programação dinâmica e diga qual foi o custo total do código gerado. Lembre-se que somente os registradores R0 e R1 podem ser utilizados.

3. Considere a árvore abstrata apresentada que foi gerada por um compilador.

Considere também a tabela que se encontra a seguir e que faz o mapeamento entre padrões de subárvores e instruções assembly e o respectivo custo de cada instrução, sendo que o custo associado a cada padrão de árvore corresponde ao número de ciclos que a instrução assembly correspondente precisa para ser executada na arquitetura alvo. Considere também que o registrador ro sempre contém o valor zero.

Utilizando a tabela apresentada, gere código utilizando programação dinâmica e após a geração de código, compare o resultado otbitdo com os código gerados para essa mesma árvore utilizando MAXIMAL MUNCH e MIMIMAL MUNCH em termos de quantidade de instruções e o custo de execução de cada código e faça uma análise indicando em que tipos de cenários cada um dos códigos pode ser melhor empregado.

Name	Effect	Trees	
_	r_i	TEMP	Tile Cost
ADD	$r_i \leftarrow r_j + r_k$	<u></u>	1
MUL	$r_i \leftarrow r_j \times r_k$		
SUB	$r_i \leftarrow r_j - r_k$		1
DIV	$r_i \leftarrow r_j/r_k$	/\	1
ADDI	$r_i \leftarrow r_j + c$	+ + CONST	1
SUBI	$r_i \leftarrow r_j - c$	CONST	1
LOAD	$r_i \leftarrow M[r_j + c]$	MEM MEM MEM MEM I I I I + + CONST CONST CONST	1
STORE	$M[r_j + c] \leftarrow r_i$	MOVE MOVE MOVE MOVE MEM MEM MEM MEM I I I I I I I CONST CONST CONST	2
MOVEM	$M[r_j] \leftarrow M[r_i]$	MOVE MEM MEM I I	3