The Great Book of Zebra

The Zebra Project

September 11, 2015

Preface

This book is a collaborative work from the https://github.com/fsvieira/zebrajs project community and everyone is invited to participate.

The list of contributors is at the contributors section 1.3 and your name can be there too :D.

This is a work in progress.

Contents

1	Intr	Introduction																		
	1.1	The Zebra-machine (ZM)																		
		1.1.1	ZM La	inguage (L)																
		1.1.2	ZM O _l	perations .																
		1.1.3	ZM Co	omputation																
	1.2	Comp	nputing Examples																	
	1.3	Contri	butors																	

Chapter 1

Introduction

This is the official book of Zebra-machine (ZM). Here you will find anything you need to understand in deep the ZM, the book covers both theoretical and practical definitions.

Zebra-machine (ZM)is a logical symbolic computation query system, given a set of computational definitions it will answer questions about them, therefor ZMis better suited for software validation and constrain satisfaction problems.

1.1 The Zebra-machine (ZM)

As mentioned before ZM is a logical symbolic computation query system, and it consists of two parts the definitions and the query, both parts share the same language of ZM terms, which is defined by a certain formal syntax, and a set of transformation rules.

1.1.1 ZM Language (\mathbb{L})

The ZM language (\mathbb{L}) of terms are defined as:

- 1. $c \in \mathbb{C}$: \mathbb{C} is the set of terminal symbols called constants, c is a terminal symbol. Constants are ZM terms.
- 2. $p \in \mathbb{V}$: \mathbb{V} is the set of variables, p is a variable. Variables are ZM terms
- 3. $(p_0 \dots p_n) \in \mathbb{T}$: \mathbb{T} is the set of tuples, $(p_0 \dots p_n)$ its a n-tuple of ZM terms and is a ZM term.
- 4. $\sigma \to (p_0 \dots p_n) \in \mathbb{T} \land \sigma \in \mathcal{P}(\mathbb{V})$
- 5. $p \otimes q$
- 6. $p \ominus q$

7. Nothing else is a ZM term.

1.1.2 ZM Operations

Unification (\otimes , binary operation) defined as

$$\otimes: \mathbb{L} \times \mathbb{L} \to \mathbb{L}$$

and by the rules,

1. $p \otimes p \implies p$

p unifies with itself, resulting on itself.

2. $p \otimes Q \iff p = Q, p \in \mathbb{V} \land Q \in \mathbb{L}$

'p is a variable and Q is a ZM term, they unify iff p = Q.

3. $Q \otimes' p \iff 'p = Q, p \in \mathbb{V} \land Q \in \mathbb{L}$

'p is a variable and Q is a ZM term, they unify iff p = Q.

 $4. (p_0 \dots p_n) \otimes (q_0 \dots q_n) \iff (p_0 \otimes q_0 \dots p_n \otimes q_n)$

 $(p_0 \dots p_n)$ z-tuple only unifies with other z-tuple if they have same size and all sub ZM terms unify.

5. Anything else fails to unify.

Not-unify $(\ominus$, binary operation) defined as

$$\ominus: \mathbb{L} \times \mathbb{L} \to \mathbb{L}$$

and by the rules,

1. $P \ominus Q = P \iff \overline{P \otimes Q}, P \in \mathbb{L} \land Q \in \mathbb{L}$

Two ZM terms not-unify if they dont unify.

2. Note:

In case of variables their values must also not-unify,

Tuples and constants will never unify,

If two tuples are not-unifiable then at least one of the elements is not-unifiable.

Substitution (\mathcal{S} , function) defined as

$$S: \mathbb{V} \times \mathbb{L} \times \mathbb{L} \to \mathbb{L} \tag{1.1}$$

$$S(v, w, t) = \begin{cases} w & \text{, if } t = v, \\ (S(v, w, t_0) \dots S(v, w, t_n)) & \text{, if } t = (t_0 \dots t_n) \\ t & \text{, otherwise} \end{cases}$$
(1.2)

1.1.3 ZM Computation

A ZM computation is expressed as 4-tuple $(\sigma, \delta, q, \alpha)$ where:

- 1. σ is a set of terminal symbols (constants),
- 2. δ is a set of z-tuples (definitions),
- 3. q is a z-tuple (query),
- 4. α is the set of possible computational answers to query q based on delta definitions.

A definition is a fact in the system. The inner tuples of a definition are considered and called queries, therefor for a definition to be true all of its inner tuples/queries must also be true.

A query is a question to the system that is true if and only if it unifies at least with one definition.

Free and bound variables on the context of a definition all definition variables are considered to be bound to the definition, on the context of queries all variables are free.

1.2 Computing Examples

Unification

- 1. $yellow \otimes yellow \implies yellow$ succed.
- 2. $blue \otimes yellow$

fail: can't unify constants with different value.

3. $yellow \otimes (yellow)$

fail: can't unify constant and tuple.

4. $(blue\ yellow) \otimes (blue\ yellow) \implies (blue\ \otimes blue\ yellow \otimes yellow) \implies (blue\ yellow)$ succed.

Not-Unify

- $yellow \ominus blue$, yellow and blue are constants and $yellow \neq blue$.
- $(blue\ yellow) \ominus (yellow\ blue),$ $(blue\ yellow) \neq (yellow\ blue)$
- $(blue\ 'p)\ominus (yellow\ blue),$ 'p is a variable and since $(blue'p)\neq (yellow\ blue)$ then $'p\neq blue$
- $'p\ominus'q$, 'p and 'q are variables, $'p\neq'q$.

1.3 Contributors

• Filipe Vieira, https://github.com/fsvieira