

# basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

# NATIONAL SENIOR CERTIFICATE

**GRADE 12** 

**MATHEMATICS P2** 

**FEBRUARY/MARCH 2011** 

**MEMORANDUM** 

**MARKS: 150** 

This memorandum consists of 15 pages.

| 1.1 | $\frac{55+55+50+47+42+3x}{8} = 48,375$ $\frac{249+3x}{8} = 48,375$ $3x = 138$ $x = 46$ | $\checkmark \frac{249 + 3x}{8} = 48,375$ $\checkmark 3x = 138$ (2) |
|-----|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1.2 | 42 46,5 52,5 54 55 56                                                                  | ✓ max and min ✓ median ✓ Q₁ and Q₃ ✓ whiskers  (4)  [6]            |

#### **OUESTION 2**

| QUEST |                                                        | 1                 | _                     |            |       | (/ -                                                                                                      |
|-------|--------------------------------------------------------|-------------------|-----------------------|------------|-------|-----------------------------------------------------------------------------------------------------------|
| 2.1   |                                                        | Mass              | Frequency             | Cumulative |       | ✓✓ Frequencies                                                                                            |
|       |                                                        | (kg)              |                       | Frequency  |       | ✓✓ Cumulative                                                                                             |
|       |                                                        | $60 \le x < 70$   | 5                     | 5          |       | Frequencies                                                                                               |
|       |                                                        | $70 \le x < 80$   | 7                     | 12         |       | (4)                                                                                                       |
|       |                                                        | $80 \le x < 90$   | 7                     | 19         |       |                                                                                                           |
|       |                                                        | $90 \le x < 100$  | 4                     | 23         |       |                                                                                                           |
|       |                                                        | $100 \le x < 110$ | 2                     | 25         |       |                                                                                                           |
| 2.2   |                                                        |                   |                       |            |       |                                                                                                           |
|       | Cumulative Frequency  Cumulative Frequency  10  10  40 | 50 60             | valuative Frequency C | 90 100 11  | 0 120 | ✓✓ plotting points 1 mark: 3 – 5 points correctly 0 marks: 2 or less points correctly plotted ✓ graph (3) |
| 2.3   | Mean = 79                                              | ,28               |                       |            |       | ✓✓ answer                                                                                                 |
|       |                                                        | ,                 |                       |            |       | (2)                                                                                                       |

| 2.4 | Standard Deviation = 11,02       |                                             |
|-----|----------------------------------|---------------------------------------------|
|     | 79,28 – 11,02 = 68,26            | $\checkmark\checkmark\checkmark$ sd = 11,02 |
|     | 79,28+11,02 = 90,3               |                                             |
|     | 17 players lie in this interval. | ✓ 17 players                                |
|     | 17 (00)                          | ✓ 68%                                       |
|     | $\frac{1}{25} = 68\%$            | (5)                                         |
|     |                                  | [14]                                        |





| 4.1 | Let β be the angle of inclination of PQ.          |                                  |
|-----|---------------------------------------------------|----------------------------------|
|     | $\tan \beta = m_{PQ}$                             | $\checkmark \tan \beta = m_{PQ}$ |
|     | $\int_{-1}^{1} \tan \theta = 2 - (-2)$            | $\checkmark \tan \beta = 4$      |
|     | $\tan \beta = \frac{2 - (-2)}{-1 - (-2)}$         |                                  |
|     | $\tan \beta = 4$                                  |                                  |
|     | $\beta = 75,96^{\circ}$                           | ✓ answer                         |
|     |                                                   | (3)                              |
| 4.2 | $M\left(\frac{-1+3}{2};\frac{2+0}{2}\right)$      |                                  |
|     |                                                   | ✓ x-value                        |
|     | M (1; 1)                                          | ✓ y-value                        |
|     |                                                   | (2)                              |
| 4.3 | $PQ = \sqrt{(-1+2)^2 + (2+2)^2}$                  | ✓ substitution into              |
|     | $=\sqrt{17}$                                      | correct formula  ✓ answer        |
|     | $PR = \sqrt{(-1-3)^2 + (2-0)^2}$                  | answer                           |
|     | $= \sqrt{20}$                                     |                                  |
|     |                                                   | ✓ answer                         |
|     | $QR = \sqrt{(0 - (-2))^2 + (3 - (-2))^2}$         | ✓ sum<br>✓ answer                |
|     | $=\sqrt{29}$                                      | (5)                              |
|     |                                                   |                                  |
|     | Perimeter = $\sqrt{29} + \sqrt{20} + \sqrt{17}$   |                                  |
|     | = 13,98 units<br>= 14 to the nearest whole number |                                  |
| 4.4 | y-1=4(x-1)                                        | $\checkmark m = 4$               |
|     | y = 4x - 3                                        | ✓ substitution of                |
|     |                                                   | (1;1)                            |
|     |                                                   | ✓ answer                         |
|     |                                                   | (3)<br>[ <b>13</b> ]             |

| 5.1.1 | $x^2 + y^2 - 8x + 6y$                                     |                                     |
|-------|-----------------------------------------------------------|-------------------------------------|
|       | $= (2)^2 + (-9)^2 - 8(2) + 6(-9)$                         | ✓ substitution                      |
|       | = 4 + 81 - 16 - 54                                        | ✓ answer (2)                        |
|       | =15                                                       |                                     |
|       | Hence, the point lies on the circumference of the circle. |                                     |
|       | OR                                                        |                                     |
|       | $x^2 + y^2 - 8x + 6y = 15$                                | ✓ substitution ✓ answer             |
|       | $(x-4)^2 + (y+3)^2 = 15+16+9$                             | (2)                                 |
|       | $(x-4)^2 + (y+3)^2 = 40$                                  |                                     |
|       | $(x-4)^2 + (y+3)^2$                                       |                                     |
|       | $=(2-4)^2+(-9+3)^2$                                       |                                     |
|       | $=2^2+6^2$                                                |                                     |
|       | = 40                                                      |                                     |
| 5.1.0 | :. The point lies on the circumference of the circle.     |                                     |
| 5.1.2 | $x^2 + y^2 - 8x + 6y = 15$                                |                                     |
|       | $(x-4)^2 + (y+3)^2 = 15+16+9$                             |                                     |
|       | $(x-4)^2 + (y+3)^2 = 40$                                  | $\checkmark (x-4)^2 + (y+3)^2 = 40$ |
|       | Circle centre $(4; -3)$                                   | ✓ centre                            |
|       | $m_{rad} = \frac{-3 - (-9)}{4 - 2}$                       |                                     |
|       |                                                           | ✓ gradient of radius                |
|       | $m_{rad} = 3$                                             |                                     |
|       | $m_{\rm tan} = -\frac{1}{3}$                              | ✓ gradient of tangent               |
|       | $y+9=-\frac{1}{3}(x-2)$                                   | ✓substitution                       |
|       | $y = -\frac{1}{3}x - \frac{25}{3}$                        | ✓ answer                            |
|       |                                                           | (7)                                 |
| 5.2   | $A(6;4)$ $\sqrt{10}$ $(3;-1)$                             |                                     |
|       |                                                           | $\checkmark$ radius = $\sqrt{10}$   |
|       |                                                           | Tudido VIO                          |

Copyright reserved

Radius AB =  $\sqrt{10}$ 

Distance from A to centre of circle is

$$=\sqrt{(6-3)^2+(4+1)^2}$$

$$=\sqrt{9+25}$$

$$=\sqrt{34}$$

$$AB^2 = 34 - 10$$

$$AB^2 = 24$$

$$AB = \sqrt{24}$$

$$AB = 2\sqrt{6}$$

$$AB = 4,90$$

$$r^2 = 10$$

$$r = \sqrt{10}$$

Radius  $\perp$  tangent

By Pythagoras

$$AB^2 = (6-3)^2 + (4+1)^2 - 10$$

$$AB = 4,90$$

✓ subs into distance formula

$$\checkmark \sqrt{34}$$

$$\checkmark AB^2 = 34 - 10$$

✓ answer

$$\checkmark r = \sqrt{10}$$

$$AB^2 = (6-3)^2 + (4+1)^2 - 10$$

✓ 
$$AB = 4,90$$

(5)

(5)

[14]



|       | <u></u>                                                                                                         |                                                          |
|-------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 6.1   | $9 + (y+2)^2 = 25$                                                                                              | $\checkmark x = 0$                                       |
|       | $(y+2)^2 = 16$                                                                                                  |                                                          |
|       | $y + 2 = \pm 4$                                                                                                 | ✓ factors                                                |
|       | y = 2 or $y = -6$                                                                                               | ✓ answers                                                |
|       | B(0; 2)                                                                                                         | ✓ answer for B                                           |
|       | OR                                                                                                              | (4)                                                      |
|       | x = 0                                                                                                           |                                                          |
|       | $(0)^2 - 6(0) + y^2 + 4y = 12$                                                                                  | $\checkmark x = 0$                                       |
|       | $y^2 + 4y - 12 = 0$                                                                                             |                                                          |
|       | (y+6)(y-2) = 0                                                                                                  |                                                          |
|       | y = -6 or $y = 2$                                                                                               | ✓ factors                                                |
|       | B(0; 2)                                                                                                         | ✓ answers ✓ answer for B                                 |
|       |                                                                                                                 | (4)                                                      |
| 6.2   | C(6; 2)                                                                                                         | ✓ ✓ answer                                               |
|       |                                                                                                                 | (2)                                                      |
| 6.3   | $\left(x-3\times\frac{3}{2}\right)^2 + \left(y+2\times\frac{3}{2}\right)^2 = \left(5\times\frac{3}{2}\right)^2$ | $\checkmark$ each part $\times \frac{3}{2}$              |
|       | $\left(x - \frac{9}{2}\right)^2 + \left(y + 3\right)^2 = \left(\frac{15}{2}\right)^2$                           | 2                                                        |
|       | $\left(x-\frac{9}{2}\right)^2+\left(y+3\right)^2=56{,}25$                                                       | ✓ answer                                                 |
|       | $\left(\frac{x-2}{2}\right)^{-1} + (y+3)^{-1} = 36,23$                                                          | $\begin{array}{c c} & \text{answer} \\ & & \end{array} $ |
| 6.4.1 | $AB = \sqrt{(12-3)^2 + (10-(-2))^2}$                                                                            | ✓ substitution                                           |
|       | $=\sqrt{9^2+12^2}$                                                                                              |                                                          |
|       | = 15                                                                                                            | ✓ answer                                                 |
|       |                                                                                                                 | (2)                                                      |
| 6.4.2 | The radii are 5 and 10.                                                                                         | ✓ addition of radii                                      |
|       | $r_A + r_B = 5 + 10$                                                                                            |                                                          |
|       | = 15                                                                                                            |                                                          |
|       | = AB                                                                                                            | ✓ answer                                                 |
|       | The circles will only intersect at one point.                                                                   | (2)                                                      |
|       |                                                                                                                 | [12]                                                     |

| nsion            |
|------------------|
| itution          |
|                  |
|                  |
|                  |
| er               |
| nsion            |
| 151011           |
|                  |
|                  |
|                  |
| er<br><b>[5]</b> |
|                  |

# **QUESTION 8**

| 8.1   |                                                                                                |                               |
|-------|------------------------------------------------------------------------------------------------|-------------------------------|
|       |                                                                                                | coordinates of new points (3) |
| 8.2.1 | $\frac{MN}{M'N'} = \frac{2}{3}$                                                                | (2)                           |
| 8.2.2 | $\frac{\text{area }\Delta MNP}{\text{area }\Delta M'N'P'} = \frac{4}{9}$                       | (2)                           |
| 8.2.3 | $\frac{\text{area }\Delta MNP}{\text{area }\Delta M''N''P''} = \left(\frac{4}{9}\right)^{n+1}$ | (2)<br>[9]                    |

Copyright reserved

| 9.1 | A'(-12;-6)                                                                                                  | ✓ answer                                                                                                                                                   |
|-----|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.2 | $x' = x \cos \alpha - y \sin \alpha$                                                                        | (1)                                                                                                                                                        |
|     | $-12\cos\alpha - 6\sin\alpha = -12$                                                                         | ✓ substitution                                                                                                                                             |
|     | $-2\cos\alpha - \sin\alpha = -2(1)$                                                                         |                                                                                                                                                            |
|     | $y' = y\cos\alpha + x\sin\alpha$                                                                            | ✓ substitution                                                                                                                                             |
|     | $6\cos\alpha - 12\sin\alpha = -6$                                                                           |                                                                                                                                                            |
|     |                                                                                                             | ✓ simplification                                                                                                                                           |
|     | $\cos \alpha = 2\sin \alpha - 1 \qquad \dots (2)$                                                           |                                                                                                                                                            |
|     | Substitute (2) into (1)<br>$-2(2\sin\alpha - 1) - \sin\alpha = -2$                                          | ✓ substitution                                                                                                                                             |
|     | $-4\sin\alpha+2-\sin\alpha=-2$                                                                              |                                                                                                                                                            |
|     | $-5\sin\alpha = -4$                                                                                         |                                                                                                                                                            |
|     | $\sin \alpha = 4$                                                                                           | ✓ simplification                                                                                                                                           |
|     | $\sin\alpha = \frac{4}{5}$                                                                                  | ✓ answer                                                                                                                                                   |
|     | $\alpha = 53,13^{\circ}$                                                                                    | (6)                                                                                                                                                        |
|     | OR                                                                                                          |                                                                                                                                                            |
|     | (-12;6)                                                                                                     |                                                                                                                                                            |
|     | $\alpha$                                                                                                    |                                                                                                                                                            |
|     | (-12;-6)                                                                                                    |                                                                                                                                                            |
|     | $\tan \theta = \frac{1}{2}$ $\theta = 26,565^{\circ}$ $\alpha = 2(26,565^{\circ})$ $\alpha = 53,13^{\circ}$ | $\checkmark \tan \theta = \frac{1}{2}$ $\checkmark \theta = 26,565^{\circ}$ $\checkmark \checkmark \alpha = 2(26,565^{\circ})$ $\checkmark \text{ answer}$ |
|     |                                                                                                             | (6)<br>[7]                                                                                                                                                 |

| 10.1.1 |                                                                                           |                                        |     |
|--------|-------------------------------------------------------------------------------------------|----------------------------------------|-----|
| 10.1.1 | $\cos 28^\circ = \sqrt{1 - \sin^2 28^\circ}$                                              | $\checkmark \sqrt{1-\sin^2 28^\circ}$  |     |
|        | $=\sqrt{1-a^2}$                                                                           | ✓answer                                |     |
|        | VI U                                                                                      |                                        | (2) |
| 10.1.2 | cos 64°                                                                                   |                                        |     |
| 10.1.2 |                                                                                           | ✓ cos 2(32°)                           |     |
|        | $= \cos 2(32^{\circ}) = 2\cos^2 32^{\circ} - 1$                                           | $\checkmark 2\cos^2 32^\circ -1$       |     |
|        | $=2b^2-1$                                                                                 | ✓ 2cos 32 -1                           |     |
|        | =20 $-1$                                                                                  | · answer                               | (3) |
| 10.1.3 | sin 4°                                                                                    |                                        | (3) |
|        | $= \sin(32^{\circ} - 28^{\circ})$                                                         | $\checkmark \sin(32^\circ - 28^\circ)$ |     |
|        |                                                                                           | ✓ expansion                            |     |
|        | $= \sin 32^{\circ} \cos 28^{\circ} - \cos 32^{\circ} \sin 28^{\circ}$                     | ✓✓answer                               |     |
|        | $=\sqrt{1-b^2}.\sqrt{1-a^2}-ab$                                                           |                                        | (4) |
|        |                                                                                           |                                        | , , |
|        | OR                                                                                        |                                        |     |
|        | sin 4°                                                                                    |                                        |     |
|        | $=\sin(60^{\circ}-2\times28^{\circ})$                                                     |                                        |     |
|        | $= \sin 60^{\circ} \cos(2 \times 28^{\circ}) - \cos 60^{\circ} \sin(2 \times 28^{\circ})$ |                                        |     |
|        | $=\frac{\sqrt{3}}{2}(1-2a^2)-\frac{1}{2}(2a)\sqrt{1-a^2}$                                 |                                        |     |
|        | $=\frac{\sqrt{3}}{2}-\sqrt{3}a^2-a\sqrt{1-a^2}$                                           |                                        |     |
|        | $=\frac{\sqrt{3}}{2}-\sqrt{3}a^2-a\sqrt{1-a^2}$                                           |                                        |     |
|        | 2                                                                                         |                                        |     |
|        | OR                                                                                        |                                        |     |
|        | sin 4°                                                                                    |                                        |     |
|        | $=\sin(2\times32^\circ-60^\circ)$                                                         |                                        |     |
|        | $= \sin(2\times32^\circ)\cos 60^\circ - \cos(2\times32^\circ).\sin 60^\circ$              |                                        |     |
|        | $=2.b\sqrt{1-b^2}.\frac{1}{2}-\frac{\sqrt{3}}{2}(2b^2-1)$                                 |                                        |     |
|        | $=b\sqrt{1-b^2}-\sqrt{3}b^2+\frac{\sqrt{3}}{2}$                                           |                                        |     |
|        | OR                                                                                        |                                        |     |
|        | Using $sin(A+B) + sin(A - B) = 2.sinA.cosB$                                               |                                        |     |
|        | With $A = 28^{\circ}$ and $B = 32^{\circ}$                                                |                                        |     |
|        | $\sin 60^\circ + \sin(-4^\circ) = 2ab$                                                    |                                        |     |
|        | $\sqrt{3}$                                                                                |                                        |     |
|        | $\sin 4^\circ = \frac{\sqrt{3}}{2} - 2ab$                                                 |                                        |     |
|        |                                                                                           |                                        |     |
|        | OR                                                                                        |                                        |     |

|        | Using $\sin(A+D) + \sin(A-D) = 2 \sin A \cos D$                                                                                                       | I                                 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|        | Using $sin(A+B) + sin(A - B) = 2.sinA.cosB$<br>With $A = 32^{\circ}$ and $B = 28^{\circ}$                                                             |                                   |
|        | $\sin 60^{\circ} + \sin(4^{\circ}) = 2\sqrt{1 - b^{2}} \cdot \sqrt{1 - a^{2}}$                                                                        |                                   |
|        |                                                                                                                                                       |                                   |
|        | $\sin 4^{\circ} = 2\sqrt{1 - b^2} \cdot \sqrt{1 - a^2} - \frac{\sqrt{3}}{2}$                                                                          |                                   |
|        | OR                                                                                                                                                    |                                   |
|        | Using $\sin 4^\circ = 2\sin 2^\circ .\cos 2^\circ$                                                                                                    |                                   |
|        | and $\sin 2^\circ = \sin(30^\circ - 28^\circ) = \frac{1}{2} \left( \sqrt{1 - a^2} - \sqrt{3}a \right)$                                                |                                   |
|        | and $\sin 2^\circ = \sin(32^\circ - 30^\circ) = \frac{1}{2} \left( \sqrt{3} \sqrt{1 - b^2} - b \right)$                                               |                                   |
|        | and $\cos 2^\circ = \cos(30^\circ - 28^\circ) = \frac{1}{2} \left( \sqrt{3} \sqrt{1 - a^2} + a \right)$                                               |                                   |
|        | and $\cos 2^\circ = \cos(32^\circ - 30^\circ) = \frac{1}{2} \left( \sqrt{3}b + \sqrt{1 - b^2} \right)$                                                |                                   |
|        | then                                                                                                                                                  |                                   |
|        | $\sin 4^{\circ} = \frac{1}{2} \left\{ \sqrt{3}b\sqrt{1 - a^{2}} - 3ab + \sqrt{1 - a^{2}} \cdot \sqrt{1 - b^{2}} - \sqrt{3}a\sqrt{1 - b^{2}} \right\}$ |                                   |
|        | OR                                                                                                                                                    |                                   |
|        | $\sin 4^{\circ} = \frac{1}{2} \left\{ 3\sqrt{1 - b^2} \sqrt{1 - a^2} + \sqrt{3}a\sqrt{1 - b^2} - \sqrt{3}b\sqrt{1 - a^2} - ab \right\}$               |                                   |
|        | _                                                                                                                                                     |                                   |
| 10.2   | $b\sqrt{1-a^2} - a\sqrt{1-b^2}$                                                                                                                       |                                   |
|        | $= \cos 32^{\circ} \cdot \sqrt{1 - \sin^2 28^{\circ}} - \sin 28^{\circ} \sqrt{1 - \cos^2 32^{\circ}}$                                                 | (1+i+-+i                          |
|        |                                                                                                                                                       | ✓ substitution<br>✓ cos 28°       |
|        | $=\cos 32^{\circ}.\cos 28^{\circ} - \sin 28^{\circ}.\sin 32^{\circ}$                                                                                  | ✓ sin 32°                         |
|        | $=\cos(32^\circ + 28^\circ)$                                                                                                                          | ✓ compound angle                  |
|        | $=\cos 60^{\circ}$                                                                                                                                    | formula                           |
|        | $=\frac{1}{-}$                                                                                                                                        | (4)                               |
|        | 2                                                                                                                                                     | ( ) 705                           |
| 10.3.1 | sin130°.tan60°                                                                                                                                        | ✓ sin 50°                         |
|        | cos 540°. tan 230°. sin 400°                                                                                                                          | ✓ tan 50°                         |
|        | $\frac{\sin 50^{\circ} \times \tan 60^{\circ}}{\cos 2}$                                                                                               | $\sqrt{\sin 40^\circ}$            |
|        | $= \cos 180^{\circ} \times \tan 50^{\circ} \times \sin 40^{\circ}$                                                                                    | ✓cos50°                           |
|        | <u>_</u>                                                                                                                                              | $\sqrt{\frac{\sin 50^{\circ}}{}}$ |
|        | $= \frac{\sin 50^{\circ} \times \sqrt{3}}{\sin 50^{\circ} \times \sqrt{3}}$                                                                           | cos 50°                           |
|        | $-\frac{\sin 50^{\circ}}{-1 \times \frac{\sin 50^{\circ}}{\cos 50^{\circ}}} \times \cos 50^{\circ}$                                                   | <b>√</b> -1                       |
|        | $\cos 50^{\circ}$                                                                                                                                     | ✓answer (7)                       |
|        | $=$ $\sqrt{3}\cos 50^{\circ}$                                                                                                                         | (7)                               |
|        | $-\frac{1}{\cos 50^{\circ}}$                                                                                                                          |                                   |
|        | $=-\sqrt{3}$                                                                                                                                          |                                   |

Copyright reserved

| 10.3.2 | $(1 - \sqrt{2}\sin 75^{\circ})(1 + \sqrt{2}\sin 75^{\circ})$ $= 1 - 2\sin^{2} 75^{\circ}$ $= \cos 150^{\circ}$ $= \frac{-\sqrt{3}}{2}$ | ✓ simplification $\checkmark 1 - 2\sin^2 75^\circ$ $\checkmark \cos 150^\circ$ ✓ answer  (4) |
|--------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|        | OR                                                                                                                                     |                                                                                              |
|        | sin 75°                                                                                                                                |                                                                                              |
|        | $=\sin(45^\circ + 30^\circ)$                                                                                                           |                                                                                              |
|        | $= \sin 45^{\circ}.\cos 30^{\circ} + \cos 45^{\circ}.\sin 30^{\circ}$                                                                  |                                                                                              |
|        | $=\frac{\sqrt{2}}{2}.\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}.\frac{1}{2}$                                                                |                                                                                              |
|        |                                                                                                                                        |                                                                                              |
|        | $\sqrt{2}\sin 75^\circ = \frac{\sqrt{3}}{2} + \frac{1}{2} = a$                                                                         |                                                                                              |
|        | $(1 - \sqrt{2}\sin 75^\circ)(1 + \sqrt{2}\sin 75^\circ)$                                                                               |                                                                                              |
|        | = (1-a)(1+a)                                                                                                                           |                                                                                              |
|        | $=1-a^2$                                                                                                                               | 4 . 1.0                                                                                      |
|        | $=1-\left(\frac{3}{4}+\frac{1}{4}+2.\frac{\sqrt{3}}{2}.\frac{1}{2}\right)$                                                             | ✓ simplification $\checkmark 1 - 2\sin^2 75^\circ$ $\checkmark \cos 150^\circ$               |
|        | $=-\frac{\sqrt{3}}{2}$                                                                                                                 | ✓answer (4)                                                                                  |
| 10.4   | $\sin^2 x + \cos 2x - \cos x = 0$                                                                                                      |                                                                                              |
|        | $\sin^2 x + (\cos^2 x - \sin^2 x) - \cos x = 0$                                                                                        | $\checkmark (\cos^2 x - \sin^2 x)$ $\checkmark \cos^2 x - \cos x = 0$                        |
|        | $\cos^2 x - \cos x = 0$                                                                                                                | $\checkmark \cos x - \cos x = 0$ $\checkmark \text{factors}$                                 |
|        | $\cos x(\cos x - 1) = 0$                                                                                                               |                                                                                              |
|        | $\cos x = 0 \ or \cos x = 1$                                                                                                           | $\checkmark \cos x = 0 \text{ or } \cos x = 1$ $\checkmark 90^{\circ} + k.360^{\circ}$       |
|        | $x = \pm 90^{\circ} + k.360^{\circ}$ or $x = 0^{\circ} + k.360^{\circ}$ $k \in \mathbb{Z}$                                             | $\sqrt{k.360^{\circ}}$                                                                       |
|        | = k.360°                                                                                                                               | $\checkmark x = -90^{\circ} + k.360^{\circ}$                                                 |
|        | (i.e. $x = 90^{\circ} + k.180^{\circ}$ or $x = k.360^{\circ} \pm 90^{\circ}, k \in \mathbb{Z}$ )                                       | (7)                                                                                          |
| 10.5.1 | $x = 0^{\circ}, 90^{\circ}, 180^{\circ}$                                                                                               | ✓✓✓ each value                                                                               |
|        |                                                                                                                                        | (3)                                                                                          |

| 10.5.2 | $\frac{\cos 2x \cdot \tan x}{\sin^2 x} = \frac{(\cos^2 x - \sin^2 x) \cdot \frac{\sin x}{\cos x}}{\sin^2 x}$ $= \frac{\cos^2 x - \sin^2 x}{\cos x \cdot \sin x}$ $= \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x}$ $= \frac{\cos x}{\sin x} - \tan x$ | $\checkmark (\cos^2 x - \sin^2 x)$ $\checkmark \frac{\sin x}{\cos x}$ $\checkmark \text{ answer}$ $\checkmark \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x}$ |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Sin x                                                                                                                                                                                                                                                 | $\sqrt[4]{\sin x} - \frac{1}{\cos x}$ $\sqrt[4]{\text{answer}}$ (5)  [39]                                                                                    |

DBE/Feb. - Mar. 2011

Mathematics/P2

# **QUESTION 11**

| 11.1 | $EC^2 = DE^2 + DC^2 - 2DE.DC\cos\hat{C}$                                      | ✓ substitution into cosine rule |
|------|-------------------------------------------------------------------------------|---------------------------------|
|      | $= (7,5)^2 + (9,4)^2 - 2.(7,5)(9,4)\cos 32^\circ$                             | cosine ruie                     |
|      | = 25,03521844                                                                 | ✓ 25,03521844                   |
|      | EC = 5.0 metres                                                               | ✓answer                         |
| 11.2 | ^                                                                             | (3)                             |
| 11.2 | $\frac{\sin \hat{DCE}}{\sin \hat{DCE}} = \frac{\sin 32^{\circ}}{\cos 2\pi i}$ | ✓ sin rule                      |
|      | 7,5 5,0                                                                       | Silituic                        |
|      | $\sin D\hat{C}E = \frac{7.5.\sin 32^{\circ}}{5.0}$                            |                                 |
|      |                                                                               | <b>✓</b> 0,7948788963           |
|      | = 0,7948788963                                                                | ✓answer                         |
|      | $\hat{DCE} = 52.6^{\circ}$                                                    | v answer (3)                    |
| 11.3 | Area of ΔDEC                                                                  |                                 |
|      | $= \frac{1}{2} DE.DC \sin \hat{D}$                                            | ✓ substitution                  |
|      | $=\frac{1}{2}(7,5)(9,4)\sin 32^{\circ}$                                       | ✓answer                         |
|      | _                                                                             | (2)                             |
|      | $=18,7m^2$                                                                    |                                 |
|      | OR                                                                            |                                 |
|      | Area of ΔDEC                                                                  |                                 |
|      | $= \frac{1}{2} \text{CE.DC} \sin 52,6^{\circ}$                                |                                 |
|      | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       |                                 |
|      | $= \frac{1}{2}(5,0)(9,4)\sin 52,6^{\circ}$                                    |                                 |
|      | $=18,7m^2$                                                                    |                                 |

| 11.4 | $\sin 32^\circ = \frac{EG}{7.5}$                      | ✓ratio        |                   |
|------|-------------------------------------------------------|---------------|-------------------|
|      | $SII 32 = \frac{7,5}{7,5}$ $EG = 7,5.\sin 32^{\circ}$ | ✓substitution |                   |
|      | = 4,0                                                 |               |                   |
|      | EF = (4 + 3.5)                                        | ✓answer       | 2)                |
|      | = 7,5 metres                                          |               | 3)<br><b>11</b> ] |
|      | OR                                                    |               |                   |
|      | $EG = EC.\sin 52,6^{\circ}$                           |               |                   |
|      | $= (5,0).\sin 52,6^{\circ}$<br>= 4,0                  |               |                   |
|      | EF = 4.0 + 3.5                                        |               |                   |
|      | = 7,5                                                 |               |                   |
|      | OR                                                    |               |                   |
|      |                                                       |               |                   |

$$\frac{1}{2}$$
.DC.EG = area △DEC  
 $\frac{1}{2}$ (9,4)EG = 18,7  
∴ EG =  $\frac{18,7 \times 2}{9,4}$   
= 4,0

$$EF = 4.0 + 3.5$$
  
= 7.5

Mathematics/P2

| 12.1 | Period = 360°                                                                    | ✓answer                                  |                      |
|------|----------------------------------------------------------------------------------|------------------------------------------|----------------------|
|      |                                                                                  |                                          | (1)                  |
| 12.2 | Amplitude = $\frac{1}{2}$                                                        | √√answer                                 | (2)                  |
| 12.3 | 2<br>-180 -150 -120 -30 -30 -30 -30 -30 -30 -30 -30 -30 -3                       | ✓ shape<br>✓ x intercepts<br>✓ amplitude | (3)                  |
| 12.4 | 2 solutions                                                                      | ✓answer                                  | (1)                  |
| 12.5 | $-60^{\circ} \le x \le 120^{\circ} \text{ or } x \in [-60^{\circ}; 120^{\circ}]$ | ✓ - 60°; 120°                            |                      |
|      |                                                                                  | ✓ notation                               |                      |
|      |                                                                                  |                                          | (2)                  |
| 12.6 | $-90^{\circ} < x < 30^{\circ}$ or $x \in (-90^{\circ}; 30^{\circ})$              | ✓ -90°; 30°                              |                      |
|      |                                                                                  | ✓ notation                               | (2)                  |
|      |                                                                                  |                                          | (3)<br>[ <b>12</b> ] |

**TOTAL: 150**