Ejercicios 1: EYP1027 Modelos Probabilísticos

Ejercicio 1: Sea $\Omega = \mathbb{N} = \{1, 2, ..., n, ...\}$. Encuentre $\bigcup_{n=1}^{\infty} A_n$ y $\bigcap_{n=1}^{\infty} A_n$ Para cada una de las siguientes secuencias:

- (a) $A_n = \{1, 2, ..., n\}, n = 1, 2$
- (b) $A_n = \mathbb{N} \{1, 2, ..., n\}, n = 1, 2 ...$

Ejercicio 2: Sean $A_1, A_2 \subseteq \Omega$ y $C = \{A_1, A_2\}$. Encuentre una σ -álgebra que contenga a C

Ejercicio 3: Sean A y B subconjuntos de Ω tales que $A \subseteq B$. Considere la colección de conjuntos $a = \{\emptyset, A, B, A^c, B^c, B - A, (B - A)^c\}$. Es a un σ -álgebra de subconjuntos de Ω ?

Ejercicio 4: Sean a_1 y a_2 dos σ -álgebras de subconjuntos de Ω . Demuestre que $a_1 \cup a_2$ no necesariamente es un σ -álgebra. Considere, por ejemplo, el conjunto $\Omega = \{1, 2, 3\}$ y las σ -álgebras $a_1 = \{\emptyset, \{1\}, \{2, 3\}, \Omega\}$ y $a_2 = \{\emptyset, \{1, 2\}, \{3\}, \Omega\}$.

Ejercicio 5: Sea (Ω, α, P) un espacio de probabilidad.

- (a) Sean A y B en a. Cuál es la probabilidad de que ocurra exactamente uno de los eventos A o B?
- (b) Sea Q otra medida de probabilidad definida en (Ω, a) . Es $\alpha P + (1 \alpha)Q$, con $0 \le \alpha \le 1$, una medida de probabilidad ?

Ejercicio 6: Sea (Ω, α, P) un espacio de probabilidad.

- (a) Sean A y B en a tales que $A \subseteq B$. Pruebe que P(B A) = P(B) P(A).
- (b) Si A y B son eventos independientes, muestre que A y B^c también lo son.
- (c) Sean $a_1,...,a_n$ números positivos y $A_1,...,A_n$ una partición de Ω . Para todo A en α sea

$$Q(A) = \sum_{i=1}^{n} a_i P(A \cap A_i) / \sum_{i=1}^{n} a_i P(A_i).$$

¿Es Q(A), $A \in \mathcal{A}$, una medida de probabilidad ?

Ejercicio 7: Sea (Ω, a, P) un espacio de probabilidad, con P definida como;

$$P((-\infty, x]) = \begin{cases} 0, & \text{si } x < 0, \\ x^2/2, & \text{si } 0 \le x < 1/2, \\ (x+1)/3, & \text{si } 1/2 \le x < 1, \\ 1, & \text{si } x \ge 1. \end{cases}$$

- (a) bCalcule las siguientes probabilidades; $P((-\infty, 1/2]), P((-\infty, 5])$ y P((1/2, 8]).
- (b) Estudie si la función $F_X(x) = P((-\infty, x])$ definida arriba es una función distribución.

Ejercicio 8: Sea $\Omega = \{0, 1, 2, ..., n, ...\}, \alpha = \mathcal{P}(\Omega)$ y P definida como;

$$P({i}) = (1 - q)q^{i}$$
, para $i = 0, 1, 2,$; $0 < q < 1$.

Es P una medida de probabilidad sobre (Ω, a) ?

Ejercicio 9: Sea (Ω, α, P) un espacio de probabilidad.

- (a) Sean A y B en a, pruebe que $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- (b) Sea $\{A_n; n = 1, 2,\}$ una secuencia decreciente de elementos de a, muestre que $P(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$.

Ejercicio 10: Sea (Ω, α, P) un espacio de probabilidad. Si A y B son tales que P(A) = p, P(B) = q y $P(A \cup B) = r$. Muestre que;

- (a) $P(A \cap B) = p + q r$.
- (b) $P(A \cap B^c) = r q$.
- (c) $P(A^c \cap B^c) = 1 r$.
- (d) $P(A \cup B^c) = p r + 1$.

Ejercicio 11: Para ganar el campeonato, el City debe vencer al Town y al United. Tienen un 60% de posibilidades de ganarle a Town, un 70% de posibilidades de ganarle al United, y un 80% de posibilidades de al menos una victoria. Cuál es el posibilidad de que el City gane el campeonato? Describa (Ω, a, P) en este caso.

Ejercicio 12: Se tienen n personas formadas en un círculo, dos de las cuales se llaman Ana y Berta. Cuál es la probabilidad de que Ana y Berta se encuentren separadas por r personas en la formación ? Describa (Ω, α, P) .

Ejercicio 13: De entre los números $\{1, 2, ..., 50\}$ se escoge uno al azar. Cuál es la probabilidad de que el número escogido sea devisible por 6 o por 8?

Ejercicio 14: De 6 números positivos y 8 negativos, se eligen 4 al azar (sin sustitución) y se multiplican. Cuál es la probabilidad de que el producto sea positivo?

Ejercicio 15: Sea (Ω, α, P) un espacio de probabilidad.

- (a) Demuestre que para dos sucesos cualquiera, A_1 y A_2 , se tiene que $P(A_1 \cup A_2) \leq P(A_1) + P(A_2)$.
- (b) Demuestre que para n sucesos cualquiera, $A_1, A_2, ..., A_n$, se tiene que $P(A_1 \cup A_2 \cup A_n) \le P(A_1) + P(A_2) + ... + P(A_n)$.

Ver además: Los ejercicios 1.1 al 1.45 del libro Casella/Berger (2002, Ch.1, Section 1.7), y los ejercicios del libro de Blanco/ Arunachalam/Dharmaraja (2012, Ch.1).