2018 Spring STAT448 Advanced Data Analysis

Final Report: Analysis of University Information

Submitted to:

Prof. Yeonjoo Park
Department of Statistic
University of Illinois at Urbana-Champaign

Report Prepared By:

Group 8
Jinran Yang
(jinrany2)
Department of Industrial and Enterprise Systems Engineering
University of Illinois at Urbana-Champaign

1. INTRODUCTION

1.1 Description of Data:

This dataset is taken from the ASA Statistical Graphics Section's 1995 Data Analysis Exposition contains information on over 1300 American colleges and universities. The U.S. News data contains information on tuition, room & board costs, SAT or ACT scores, application/acceptance rates, graduation rate, student/faculty ratio, spending per student, and a number of other variables for 1300+ schools.

Citation: <u>Index of /datasets/colleges</u>

Number of variables: 35

- 1. FICE (Federal ID Number)
- 2. College Name
- 3. State (Postal Code)
- 4. Public/Private indicator (public = 1, private = 2)
- 5. Average Math SAT score
- 6. Average Verbal SAT score
- 7. Average Combined SAT score
- 8. Average ACT score
- 9. First quartile Math SAT
- 10. Third quartile Math SAT
- 11. First quartile Verbal SAT
- 12. Third quartile Verbal SAT
- 13. First quartile ACT
- 14. Third quartile ACT
- 15. Number of applications received
- 16. Number of applicants accepted
- 17. Number of new students enrolled
- 18. Pct. new students from top 10% of H.S. class
- 19. Pct. new students from top 25% of H.S. class

- 20. Number of full time undergraduates
- 21. Number of part time undergraduates
- 22. In-state tuition
- 23. Out-of-state tuition
- 24. Room and board costs
- 25. Room costs
- 26. Board costs
- 27. Additional fees
- 28. Estimated book costs
- 29. Estimated personal spending
- 30. Pct. of faculty with Ph.D.'s
- 31. Pct. of faculty with terminal degree
- 32. Student/faculty ratio
- 33. Pct.alumni who donate
- 34. Instructional expenditure per student
- 35. Graduation rate

1.2 Description of the analysis:

This report mainly focuses on seeing whether there are associations between tuition and any other variables, such as university types, acceptance rates, student/faculty ratio, percentage of new students from top 10% of high school class, room and board costs, etc.

Since the difference between the in-state tuition and out-state tuition is significant for public university, I use the arithmetic average of them as the general tuition to do the analysis.

Besides, I also create two variables in the analysis -- accept rate and enrollment rate which are calculated by number of application accepted divided by number of application received and number of new students enrolled divided by number of application accepted respectively.

Then, I removed all the missing value. After that, we have 267 universities' information.

1.3 Basic Descriptive Statistic

In this data set, we only have one categorical variable -- Public/Private indicator. So, I run *pro univariate* sort by university type to get the basic descriptive statistic of the overall tuition.

Table 1 basic descriptive statistic of the tuition of Public University

Moments							
N	N 58 Sum Weights 5						
Mean	4684.51724	Sum Observations	271702				
Std Deviation	1852.20569	Variance	3430665.9				
Skewness	3.00630221	Kurtosis	13.2376864				
Uncorrected SS	1468340660	Corrected SS	195547956				
Coeff Variation	39.5388808	Std Error Mean	243.206522				

Table 2 basic descriptive statistic of the tuition of Private University

Moments							
N	209	Sum Weights	209				
Mean	11866.823	Sum Observations	2480166				
Std Deviation	3582.51114	Variance	12834386.1				
Skewness	0.46085346	Kurtosis	-0.387009				
Uncorrected SS	3.21012E10	Corrected SS	2669552304				
Coeff Variation	30.189303	Std Error Mean	247.807477				

According to the table above, we can know that there are 58 public universities and 209 private universities' information in this data set. The mean of tuition of public university is 4685 which is much lower than that of private university which is 11867.

Besides, the standard deviation of tuition of private university is much higher than that of public university, which might imply that some private university might have extremely high tuition compared to other private university.

What is more, based on the result of the tests for normality, we can also find that both of them are not normally distributed. As a result, I choose the nonparametric method (proc nparlway) to do a location test for the tuition of public university and private university.

Fig. 1. Location of tuition of Public University (PPI=1) and Private University (PPI=2)

As we can see from the graph above, generally the tuition of private university is much higher than that of the public university. There only exist two extreme points which means there are two public universities' tuition are higher than others.

2. METHODS

2.1 ANOVA

ANOVA can tell us which variables are significant to the tuition. The first thing we should do is to choose an appropriate way to the ANOVA. According to the basic descriptive statistics of the data set, we know that the number of public university is different from the number of private university so that we are going to deal with the unbalanced data set. As a result, I should choose *proc glm* to run the ANOVA.

First, I used *proc glmselect* to do a stepwise model selection to find the variables significant to the tuition. Then, I check the diagnostics panel. According to the graph of Cook's distance, there seems exist some influential points. So, I set 4/N (N is the number of observations which is 267) as a cut off to remove the influential points.

Fig. 2. Diagnostics panel of the first model

After three times removal of influential points, I get diagnostics panel as follow. As we can see, the histogram now is more symmetric and bell-shaped than before. In the RStudent graph, majority of residuals are randomly distributed between [-2,2]. And the new model can explain 88.75% variation of tuition which is quite a lot.

Fig. 3. Diagnostics panel of the model after removing all outliers

Table 3 Result of the final model of ANOVA

R-Square	Coeff Var	Root MSE	Overaltuition Mean
0.887501	14.26371	1441.030	10102.77

Source	DF	Type III SS	Mean Square	F Value	Pr > F
PPI	1	673437436.1	673437436.1	324.30	<.0001
ACSS	1	62439112.8	62439112.8	30.07	<.0001
RBCost	1	11625551.2	11625551.2	5.60	0.0188
PctDonate	1	9806718.6	9806718.6	4.72	0.0308
InstExpend	1	288382301.5	288382301.5	138.87	<.0001
enrolrate	1	47856305.7	47856305.7	23.05	<.0001

We can tell from the Table 3, the type of university, students' average combined SAT score, Room and Board costs, Pct.alumni who donate, Instructional expenditure per student and enrollment rate are significant to the tuition.

2.2 Linear Regression

We know which variables are significant to tuition by ANOVA, but we still do not know how they contribute the tuition and what relationships between them and tuition. Thus, I do a linear regression and compare the result with the result of ANOVA.

Similar to ANOVA, I do a stepwise model selection and I also check the VIF in order to ensure there is no multicollinearity problem. And then, I use 4/N (N is the number of observations which is 267) as a cut off to remove the outliers. After three times removal, I get a model which can explain 89.63% variation of tuition.

Fig. 4 Diagnostics panel of final model of Linear Regression

As we can see, the histogram is symmetric and bell-shaped. Majority of residuals are randomly distributed between [-2,2] in RStudent graph. The Quantile plot is almost a straight line. As a result, the residuals seem to be normally distributed and we can trust the result we get from the linear regression.

TE 1.1 4 D 1	C .1	C 1	1 1	CT		ъ .	
Table 4 Result	of the	final	model	01 I	∟ınear	Regressio	n

Parameter Estimates									
		Parameter	Standard			Variance			
Variable	DF	Estimate	Error	t Value	Pr > t	Inflation			
Intercept	1	-6558.41435	1280.64830	-5.12	<.0001	0			
InstExpend	1	0.52619	0.03979	13.22	<.0001	1.97543			
PPI	1	4410.63964	275.30509	16.02	<.0001	1.72559			
ACSS	1	5.35548	1.23194	4.35	<.0001	1.98266			
PersonalEst	1	-0.61471	0.17578	-3.50	0.0006	1.32244			
enrolrate	1	-3782.94464	825.04094	-4.59	<.0001	1.21949			
GradRate	1	22.27386	6.74395	3.30	0.0011	1.54261			
AddFee	1	-1.53053	0.43162	-3.55	0.0005	1.15721			

After removing all the outliers, some variables which are original significant become insignificant. Thus, I remove them and again refit the model and then check whether there exist influential points. Eventually, it turns out no outliers and then this is the final model.

Since all VIF value are less than 10, there is no multicollinearity issue in this model. It can be found that average combined SAT score and graduation rate have strong positive relationship with tuition which might imply that students of university with high tuition tend to study harder and get better academic performance. And the tuition of private university (PPI=2) generally higher than that of public university (PPI=1) by 4277. On the other hand, the enrollment rate has a really strong negative relationship with tuition which imply that students who have already be accepted by the university might choose not to enroll that university because of high tuition.

2.3 Generalized Linear Model

Since tuition is a positive continuous variable, I do a generalized linear model which allow response variable follow gamma distribution and I use log as the link function. I, at the beginning, do a model selection to find the variables which are significant to tuition. And then after removing all the outliers, I check the residual plots. We find that majority of residuals are randomly distributed between [-2,2]. As a result, this model should be fine.

Comparing to the result of linear regression, we find that the result of the generalized linear model is nearly the same as the result of linear regression. The only difference is that the linear regression considers the personal estimated cost is also significant to the

tuition. However, there are too many factors influence the personal estimated cost such as living style, university or living location, individual consumption concept, family society status and etc. which make it hard to explain it. Thus, generally we cannot draw a clear conclusion about the relationship with personal estimated cost and tuition. We can only assume that it might have close relationship with the location of the university.

TC 11 7	D 1.	C	1. 1	1.	
Table 5	Resulf	ot	generalized	linear	regression

Analysis Of Maximum Likelihood Parameter Estimates									
				Wald	95%				
			Standard	Confi	dence	Wald Chi-			
Parameter	DF	Estimate	Error	Lin	nits	Square	Pr > ChiSq		
Intercept	1	6.9062	0.1213	6.6685	7.1440	3241.87	<.0001		
PPI	1	0.7633	0.0265	0.7113	0.8152	830.45	<.0001		
ACSS	1	0.0006	0.0001	0.0003	0.0008	22.63	<.0001		
AddFee	1	-0.0001	0.0000	-0.0002	-0.0000	6.44	0.0112		
InstExpend	1	0.0000	0.0000	0.0000	0.0000	127.31	<.0001		
GradRate	1	0.0025	0.0007	0.0011	0.0038	13.23	0.0003		
enrolrate	1	-0.5002	0.0804	-0.6577	-0.3427	38.73	<.0001		
Scale	0	55.7815	0.0000	55.7815	55.7815				

Fig. 5 Residuals plot of generalized model selection

2.4 Principal Component Analysis

Principal component analysis can help us to find the hidden information about tuition in this data set. In order to eliminate the influence of the difference variance among variables, I use correlation matrix to do PCA.

Based on the Scree Plot, I choose knee point which is 3 to draw a score plot. And we can also see that three principal components can explain over 60% variance of the tuition. Since the eigenvector is too long, I put it in appendices.

Fig. 6 Scree Plot and Variance Explained

According to the values of eigenvectors, I interpret the principal components as follow:

PC1: + Student academic performance + Tuition

PC2: + Size of university

- Tuition

PC3: + (number of new students enrolled) / (number of accepted)

- Room and Board costs

Fig. 7 Score Plot of PC 1 and PC 2

Fig. 8 Score Plot of PC 2 and PC 3

For PC 1, as we can see, some private university have really large PC1 which implies that some private universities students' academic performance is outstanding and the tuitions are really high.

For PC 2, some public university have really large PC2 which implies that contrast between the university size and the tuition is significant. It might imply that the public universities have lower tuition and larger population of students. Besides, there also exist a few private universities that have relative larger PC 2. It might imply that the university tuition is high however, the population of student is small.

For PC 3, It seems no difference between the private university and public university.

3. CONCLUSION

At the beginning, by descriptive analysis, we know the tuition of private university is much higher than that of public university. Then, we use ANOVA to find which variables are significant to tuition. We find that the type of university (public of private), students' average combined SAT score, Room and Board costs, Pct.alumni who donate, Instructional expenditure per student and enrollment rate are significant to the tuition. But we do not know how these variables are correlated to the tuition. As a result, I use linear regression to find which variables are significant to tuition and how they correlated to the tuition and also compare the result of linear regression with the result of ANOVA.

Based on the result of linear regression, we know that average combined SAT score, graduation rate has a strong positive relationship with tuition which might imply that students of university with higher tuition tends to study harder and have a better academic performance. And the tuition of private university (PPI=2) generally higher than that of public university (PPI =1) by 4277. On the other hand, the enrollment rate has a really strong negative relationship with tuition which might imply that students who have already be accepted by the university will choose not to attend because of high tuition. As we can see, the result of ANOVA generally agrees with the result of linear regression.

Then, I do a generalized linear regression which assumes the response variable is gamma distributed. I also do a model selection, remove all influential points and check the residuals plots. Then, after comparing the result of generalized linear regression and the linear regression, it turns out that they are very much close to each other. Generally, we get nearly the same result from these two different methods.

At last, I do a principal component analysis to find the hidden information about the tuition of the data set. The result of PCA reveals that the tuition and students' academic performance are outstanding in private university. On the other hand, the contrast of tuition and the size of university is significant in public university. It can be interpreted as the tuition of public university is lower, however, the public university accept much more students than private university. There are also a few private university which have larger PC 2. It can be interpreted as these university have really high tuition but a small population of students.

In conclusion, the tuition has close relationship with the type of university, student academic performance, the location (living expenses), the size of university.

4. APPENDICES

4.1 Variables labels

When coding in SAS, I use abbreviation to represent variables. My variables and it corresponding label are as follow:

Name – College Name

PPI – Public Private Indicator

AMSS – Average Math SAT score

AVSS – Average Verbal SAT score

ACSS – Average Combined SAT score

AAS – Average ACT Score

FQMS – First Quartile Math SAT

TQMS - Third Quartile Math SAT

FQVS – First Quartile Verbal SAT

TQVS – Third Quartile Verbal SAT

FQA – First Quartile ACT

TQA – Third Quartile ACT

Num_app_rec - Number of applications received

Num_app_acc - Number of applications accepted

Enroll – Number of new students enrolled

TopHS10 – Pct. New students from top 10% of H.S. class

TopHS25 – Pct. New students from top 25% of H.S. class

Under – Number of full time undergraduates

PartUnder – Number of part time undergraduates

InTuition – In State Tuition

OutTuition – Out of State Tuition

RBCost – Room and Board costs

AddFee – Additional Fee

BookEst – Estimated Book Costs

PersonalEst – Estimated Personal Spending

PctPhD – Pct. Of faculty with Ph.D.'s

PctTerminal – Pct. of faculty with terminal degree

SFRatio – Student/faculty ratio

PctDonate – Pct.alumni who donate

InstExpend – Instructional expenditure per student

GradRate – Graduation rate

4.2 Result of generalized linear regression

Model Information							
Data Set	WORK.DIAGNOSTICS1	Predicted Values and Diagnostic Statistics					
Distribution	Gamma						
Link Function	Log						
Dependent Variable	Overaltuition						

Criteria For Assessing Goodness Of Fit									
Criterion	DF	Value	Value/DF						
Deviance	227	4.0695	0.0179						
Scaled Deviance	227	227.0000	1.0000						
Pearson Chi-Square	227	3.9696	0.0175						

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Scaled Pearson X2	227	221.4313	0.9755					
Log Likelihood		-1998.8513						
Full Log Likelihood		-1998.8513						
AIC (smaller is better)		4011.7027						
AICC (smaller is better)		4012.1983						
BIC (smaller is better)		4035.8899						

Analysis Of Maximum Likelihood Parameter Estimates									
				Wald	95%				
			Standard	Confi	dence	Wald Chi-			
Parameter	DF	Estimate	Error	Lin	nits	Square	Pr > ChiSq		
Intercept	1	6.9062	0.1213	6.6685	7.1440	3241.87	<.0001		
PPI	1	0.7633	0.0265	0.7113	0.8152	830.45	<.0001		
ACSS	1	0.0006	0.0001	0.0003	0.0008	22.63	<.0001		
AddFee	1	-0.0001	0.0000	-0.0002	-0.0000	6.44	0.0112		
InstExpend	1	0.0000	0.0000	0.0000	0.0000	127.31	<.0001		
GradRate	1	0.0025	0.0007	0.0011	0.0038	13.23	0.0003		
enrolrate	1	-0.5002	0.0804	-0.6577	-0.3427	38.73	<.0001		
Scale	0	55.7815	0.0000	55.7815	55.7815				

4.2 PCA- eigenvalue and three eigenvectors

Eigenvalues of the Correlation Matrix						
	Eigenvalue	Difference	Proportion	Cumulative		
1	8.50035898	3.55583060	0.3542	0.3542		
2	4.94452838	3.43613653	0.2060	0.5602		
3	1.50839186	0.33349178	0.0628	0.6231		
4	1.17490007	0.05333352	0.0490	0.6720		
5	1.12156655	0.08748047	0.0467	0.7187		
6	1.03408608	0.13009652	0.0431	0.7618		
7	0.90398956	0.14799720	0.0377	0.7995		
8	0.75599236	0.04778526	0.0315	0.8310		
9	0.70820710	0.10292800	0.0295	0.8605		
10	0.60527910	0.06566779	0.0252	0.8857		
11	0.53961131	0.07097776	0.0225	0.9082		
12	0.46863355	0.06544046	0.0195	0.9277		
13	0.40319309	0.05306594	0.0168	0.9445		
14	0.35012715	0.08390456	0.0146	0.9591		
15	0.26622259	0.05235662	0.0111	0.9702		
16	0.21386597	0.06073571	0.0089	0.9791		

Eigenvalues of the Correlation Matrix						
	Eigenvalue	Difference	Proportion	Cumulative		
17	0.15313026	0.03304178	0.0064	0.9855		
18	0.12008848	0.03686918	0.0050	0.9905		
19	0.08321930	0.01392247	0.0035	0.9940		
20	0.06929683	0.02015605	0.0029	0.9969		
21	0.04914078	0.03301444	0.0020	0.9989		
22	0.01612634	0.00726633	0.0007	0.9996		
23	0.00886001	0.00767572	0.0004	1.0000		
24	0.00118429		0.0000	1.0000		

Eigenvectors						
	Prin1	Prin2	Prin3			
AMSS	0.314640	0.035842	0.186079			
AVSS	0.317298	034773	0.172822			
ACSS	0.322208	0.002879	0.184216			
AAS	0.309119	010480	0.141211			
Num_app_rec	0.138186	0.367335	222365			
Num_app_acc	0.096029	0.387901	259783			
Enroll	0.071523	0.414734	114836			
TopHS10	0.299387	010214	0.186801			
TopHS25	0.294001	0.017733	0.194326			
Under	0.055281	0.425378	080349			
PartUnder	018823	0.284938	045738			
RBCost	0.168910	085535	415313			
AddFee	0.056004	0.122102	0.030906			
BookEst	0.041326	0.084597	0.209191			
PersonalEst	072244	0.222329	0.218207			
PctPhD	0.234503	0.100891	021562			
PctTerminal	0.217879	0.093889	071845			
SFRatio	145045	0.222206	0.150765			
PctDonate	0.191529	186217	013694			
InstExpend	0.250468	081484	166531			
GradRate	0.199917	094989	074489			
acceptrate	165840	080222	100274			
rollrate	095376	0.110455	0.531406			
Overaltuition	0.223519	247527	226311			