Algorithms - Homework

Student	Sascha Feldmann (547307)	
Due Date	12-03-2014	
Description	Basic Concepts: exponentiation	

Task 1: Function func3()

I realized this better recursion as following:

```
/// <summary>
/// This own implementation makes usage of the exponential law x ^ (m * n) = (x ^ m) ^ n.
/// Therefore, we try to express x ^ n by x ^ (2 * n/2) = (x ^ 2) ^ n/2.
/// </summary>
/// <param name="x"></param>
/// <param name="n"></param>
/// <returns></returns>
3 Verweise
protected double func3(long x, long n)
    if (n == 1)
        return x;
    }
    else
        if (n % 2 == 0)
            return func3( x * x, n / 2);
        }
        else
        {
            return x * func3(x, n - 1);
}
```

Figure 1 - Implementation of func3()

It makes use of the exponential law $x^{n*m}=(x^n)^{-m}$ by working with the "2"-exponentials. In general, you can express the formula x^n by making use of "2": $x^{2*\frac{n}{2}}$ if the exponent n can be divided by 2. Then, the recursive algorithm should only calculate the first part of the formula: x^2 and hand in $\frac{n}{2}$ as new parameter for n.

I will give an example now to show that the number of recursive calls can be reduced in half by the implementation of func3. I want to calculate 2^8 :

```
    func3(2, 8)

            n is even, so express the exponential by using 2

    #1: func3(2 * 2, 8 / 2) = func3(4, 4)

            n is even, so express by using 2

    #2: func3(4 * 4, 4 / 2) = func3(16, 2)

            n is even, so express the exponential again by using 2

    #3: func3(16 * 16, 2/2) = func3(256, 1)

            n is 1, so return x = 256
```

This best-case example (due the basis of 2) shows us that only 3 iterations are required. Comparing to func2, we would have needed 4 more recursive calls:

- func2(2, 8)
- #1 func3(2, 7)
- #2 func3(2, 6)
- #3 func3(2, 5)
- #4 func3(2, 4)
- #5 func3(2, 3)
- #6 func3(2, 2)
- #7 func3(2,1)

Task 2: Complexity of func3()

Let's take a look at the best case: we want to calculate the 2^8 which is a best case cause $8 = 2^3$, so 8 has an integer value for the logarithm of 2.

You can identify recurrence function calls for the first iteration of func3:

$$T(n) = 1 + T(\frac{n}{2})$$

In the next iteration we will have:

$$T\left(\frac{n}{2}\right) = 1 + T(\frac{n}{4})$$

So we can express T(n) as:

$$T(n) = 1 + T\left(\frac{n}{2}\right)$$
$$= 1 + 1 + T\left(\frac{n}{4}\right)$$
$$= 1 + 1 + 1 + T\left(\frac{n}{8}\right)$$

...

$$= log2(k) + T\left(\frac{n}{n}\right)$$

The stopping rule for $T\left(\frac{n}{n}\right)$ is n = 1. This leads to T(1) and therefore we can express k by n.

$$T(n) = log 2(n)$$

This means that func3(x, n) implementation is $O(\log (n))$.

Task 3: Normalized Histogram of CPU-Time (Ticks)

Input sizes		Х	N	
		2	10	
		2	20	
		2	60	
Loops for each input size	1000	•	•	

Processor	Intel Core I5-3230M
Speed (GHz)	2.6

Figure 2 - Simple iterative 1

Figure 2 shows the measured CPU ticks for the calculation of x^n using the simple iterative exponentiation (func1). The smallest measured CPU ticks was 0, the biggest one 3. There were no other outside values. The low probability of the value 3 indicates that it was only the first iteration that needed 3 ticks. Afterwards, the runtime might have applied optimization.

Figure 3- Simple recursive 1

Figure 3 shows higher ticks in general. The recursive algorithm func2 doesn't seem to be really efficient, because it has a probability of 90% to need 4 ticks compared to N1 which has a probability of 85% to need only 1 tick and to N2 with 50%. I think this is due the size of the function stack that is caused by the recursion. I ran another experiment with 10000 loops to check whether the runtime will optimize anything – the probabilities remain almost the same.

Figure 4 - Improved recursive 1

The improved recursive function shows that ticks are less than those needed in func2() with a high probability. The highest probability for all input sizes is 1 tick. There aren't as many higher CPU ticks as in figure 3. Compared to func1(), the probability to have an higher tick than 1 is higher in general. Figure 1 also shows higher probabilities to have zero CPU ticks only. In general, the improved recursive function doesn't seem to be as time-efficient than the simple iterative function func1().