СХЕМОТЕХНИКА ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ (ОУ)

Operational amplifier (op-amp)

— это монолитные интегральные схемы, которые используются для усиления разности напряжений двух входных сигналов.

Условные обозначения ОУ

Благодаря практически идеальным характеристикам операционных усилителей реализация различных схем на их основе оказывается значительно проще, чем на отдельных транзисторах.

Большой запас по усилению, позволяющий вводить в ОУ глубокие обратные связи, обеспечивает многофункциональные возможности ОУ. В результате, микросхемы ОУ стали самыми массовыми элементами аналоговой электроники.

выводы оу

делятся на: входные, выходные и вспомогательные:

Входные выводы

(инвертирующий и неинвертирующий).

$$U_D = U_{HH} - U_{HHB}.$$

ightharpoonup Выходной вывод. $U_{\text{вых}} = \mu \cdot U_{D}$.

Входное и выходное напряжения измеряются относительно общей точки.

- $ightharpoonup Bыводы для подключения источника питания (обычно расщепленные источники питания <math>\pm 15~\mathrm{B}$).
 - **В**спомогательные выводы:
- c метками FC для подсоединения цепи, корректирующей АЧХ ОУ.
- -c метками NC для подключения элементов балансировки по постоянному току (установки нуля на выходе вследствие небольшой асимметрии).
- $-\bot$ вывод металлического корпуса для соединения с общим проводом устройства, в которое входит ОУ.

Таким образом, интегральные ОУ должны иметь, как минимум, 5 выводов: 2—входных, выходной и 2 для подключения источников питания.

ХАРАКТЕРИСТИКИ ОУ

(для большинства практических схем)

- Коэффициент усиления по напряжению для дифференциального сигнала без обратной связи (в разомкнутой петле ОС) бесконечно велик: $\mu \to \infty$ (типичное значение $2 \cdot 10^5$).
 - Входное сопротивление бесконечно велико: $R_{\text{вх}} \to \infty$ (типичное значение 2МОм).
 - Выходное сопротивление очень мало: $R_{\text{вых}} \to 0$ (типичное значение 75 Ом).
 - Бесконечно широкой полосой усиления.
 - Бесконечно большой скоростью нарастания выходного напряжения.

ИЗ ЧЕГО СОСТОИТ ОУ?

Упрощенная блок-схема ОУ

В зависимости от количества каскадов, вносящих вклад в получение нужного коэффициента по напряжению, ОУ делятся

Двухкаскадные

Трёхкаскадные

Электрическая схема ОУ µА 741 фирмы Texas Instruments (отечественный аналог ОУ типа 140УД7)

выходное напряжение оу

Определяется разностью напряжений на входах ОУ:

$$U_{\text{вых}} = \mu \cdot U_{D}$$
, где $U_{D} = U_{\text{ни}} - U_{\text{инв.}}$

Полярность выходного напряжения зависит от дифференциального сигнала:

1. Когда сигнал на неинвертирующем входе становится более положительным, чем потенциал на инвертирующим входе, выходной сигнал изменяется в положительном направлении:

2. И наоборот:

Выходное напряжение линейно зависит от U_D лишь в некотором диапазоне изменения U_D и не превышает E_π .

ПРАВИЛА, ОПРЕДЕЛЯЮЩИЕ ПОВЕДЕНИЕ ОУ ПРАВИЛО 1

Выход ОУ стремится к тому, чтобы разность напряжений между его входами была равна нулю (линейный режим).

Для того чтобы ОУ работал в линейном режиме, в схему необходимо ввести отрицательную обратную связь (ООС).

Наклон амплитудной характеристики определяется коэффициентом усиления:

$$tg \alpha = \Delta U_{BbIX} / \Delta U_D = K_U.$$

ПРАВИЛО 2

Входы ОУ тока не потребляют.

ОУ является хорошим усилителем напряжения, когда его входное сопротивление бесконечно велико. Для идеального ОУ сопротивления по обоим входам можно считать равными бесконечности.

ПАРАМЕТРЫ УСИЛЕНИЯ ОУ

Собственный коэффициент усиления:

$$\mu = \Delta U_{\rm BMX} / \Delta U_{\rm D} = \Delta U_{\rm BMX} / \Delta (U_{\rm HM} - U_{\rm MHB}).$$

Идеальный ОУ: $\mu \approx \infty$.

Коэффициент усиления с ОС:

$$K_F = U_{BbIX}/U_{BX} = U_{BbIX}/(U_D - U_{OC}),$$

где $U_{OC} = \beta \cdot U_{BbIX}$.

Тогда

$$K_F = \frac{U_{\text{BMX}}}{U_{BX}} = \frac{U_{BMX}}{U_D - U_{OC}} = \frac{\mu}{1 - \beta \cdot \mu}.$$

Если $\beta \cdot \mu \gg 1$, то $K_F \approx 1 / \beta$.

В случае ООС:

$$K_{FOOC} = \frac{U_{\text{BbIX}}}{U_{BX}} = \frac{\mu}{1 + \beta \cdot \mu}.$$

