1.4. Розрахунок глобальних ваг елементів ієрархії

Постановка задачі розрахунку глобальних ваг альтернатив (для ієрархії з двома рівнями)

Дано:

$$A = \{A_i \mid i = \overline{1,n}\}$$
 - множина альтернатив рішень,

$$C = \{C_j | j = \overline{1,m}\}$$
 - множина критеріїв,

$$V = \{(v_{ij}) \,|\, i = \overline{1,n},\, j = \overline{1,m}\}$$
 - локальні ваги альтернатив відносно критеріїв, ненормовані,

$$w^{C} = \{(w_{j}^{C}) \mid j = \overline{1,m}\}$$
 - ваги критеріїв: $\sum_{j=1}^{m} w_{j}^{C} = 1$.

Знайти:

$$w^{glob} = \{(w_i^{glob}) | i = \overline{1,n}\}$$
 - глобальні ваги альтернатив, нормовані.

Дистрибутивний синтез

$$w_i^{glob} = \sum_{j=1}^m w_j^C \cdot r_{ij} \qquad i = \overline{1, n}$$

$$r_{ij} = \frac{v_{ij}}{\sum_{k=1}^{n} v_{kj}} \qquad \sum_{i=1}^{n} r_{ij} = 1 \qquad j = \overline{1, m}$$

$$\sum_{i=1}^{n} w_i^{glob} = 1$$

Ідеальний синтез

$$v_i^{glob} = \sum_{j=1}^m w_j^C \cdot r_{ij} \qquad i = \overline{1, n}$$

$$r_{ij} = \frac{v_{ij}}{\max_{k=1,\dots,n} v_{kj}} \qquad j = \overline{1,m}$$

$$w_i^{glob} = \frac{v_i^{glob}}{\sum_{k=1}^n v_k^{glob}} \qquad i = \overline{1, n}$$

Мультиплікативний синтез

$$v_i^{glob} = \prod_{j=1}^m (v_{ij})^{w_j^C} \qquad i = \overline{1,n}$$

$$w_i^{glob} = \frac{v_i^{glob}}{\sum_{k=1}^{n} v_k^{glob}} \qquad i = \overline{1, n}$$

Максимінний синтез

$$v_i^{glob} = \min_{j=1,\dots,m} v_{ij} w_j^C \qquad i = \overline{1,n}$$

$$w_i^{glob} = \frac{v_i^{glob}}{\sum_{k=1}^{n} v_k^{glob}} \qquad i = \overline{1, n}$$

Приклад. Дистрибутивний синтез

	Локальні ваги альтернатив			
	C1 (0.6) C2 (0.4)			
A ₁	v ₁₁ =2.52	v ₁₂ =0.38		
A 2	v ₂₁ =0.31	v ₂₂ =2.29		
A 3	v ₃₁ =1.26	v ₃₂ =1.15		

	r_{ij}		
	C1 C2		
A 1	r ₁₁ =0.62	r ₁₂ =0.10	
A ₂	r ₂₁ =0.08	r ₂₂ =0.60	
A 3	r ₃₁ =0.30	r ₃₂ =0.30	

$$Y_{ij} = \frac{v_{ij}}{\sum_{k=1}^{n} v_{kj}} \qquad w_i^{glob} = \sum_{j=1}^{m} w_j^C \cdot r_{ij} \qquad w_1^{glob} = 0.41$$

$$w_i^{glob} = \sum_{j=1}^{m} w_j^C \cdot r_{ij} \qquad w_2^{glob} = 0.29$$

$$w_3^{glob} = 0.30$$

Приклад. Ідеальний синтез

	Локальні ваги альтернатив			
	C1 (0.6) C2 (0.4)			
A 1	v ₁₁ =2.52	v ₁₂ =0.38		
A 2	v ₂₁ =0.31	v ₂₂ =2.29		
A 3	v ₃₁ =1.26	v ₃₂ =1.15		

	r_{ij}	
	C1 C2	
A 1	r ₁₁ =1.00	r ₁₂ =0.17
A ₂	r ₂₁ =0.12	r ₂₂ =1.00
Аз	r ₃₁ =0.50	r ₃₂ =0.50

$$Y_{ij} = \frac{v_{ij}}{\max_{k=1,...,n} v_{kj}}$$
 $v_i^{glob} = \sum_{j=1}^m w_j^C \cdot r_{ij}$ $v_1^{glob} = 0.67$ $v_2^{glob} = 0.47$ $v_3^{glob} = 0.50$

Ненормовані глобальні ваги альтернатив

Приклад. Мультиплікативний синтез

	Локальні ваги альтернатив			
	C1 (0.6) C2 (0.4)			
A 1	v ₁₁ =2.52	v ₁₂ =0.38		
A 2	v ₂₁ =0.31	v ₂₂ =2.29		
A 3	v ₃₁ =1.26	v ₃₂ =1.15		

$$v_i^{glob} = \prod_{j=1}^m (v_{ij})^{w_j^C}$$

$$v_1^{glob} = 1.18$$
 $v_2^{glob} = 0.69$
 $v_3^{glob} = 1.21$

Ненормовані глобальні ваги альтернатив

Приклад. Максимінний синтез

	Локальні ваги альтернатив	
	C ₁ (0.6) C ₂ (0.4)	
A 1	v ₁₁ =2.52	v ₁₂ =0.38
A 2	v ₂₁ =0.31	v ₂₂ =2.29
A 3	v ₃₁ =1.26	v ₃₂ =1.15

$$v_i^{glob} = \min_{j=1,\dots,m} v_{ij} w_j^C$$

$$v_1^{glob} = 0.152$$

 $v_2^{glob} = 0.186$
 $v_3^{glob} = 0.46$

Ненормовані глобальні ваги альтернатив

Приклад. Результати

Метод синтезу	Глобальні ваги альтернатив		
	A 1	A 2	Аз
Дистрибутивний	0.41	0.29	0.30
Ідеальний	0.67	0.47	0.50
Мультиплікативний	1.18	0.69	1.21
Максимінний	0.15	0.19	0.46

ГВБВПА

$$n(n-1)/2$$
 підзадач (a_i,a_k) (w_i^{ik},w_k^{ik}) w_i^{ik} - глобальна вага a_i при розгляді тільки пари (a_i,a_k) $i=1,...,n$ $k=1,...,(n-1)/2$ $w_i^{ik} = \sum_{j=1}^m w_j^C \cdot r_{ij}$ дистрибутивний синтез $l\in\{i,k\}$ $r_{ij}+r_{kj}=1$ $P=\left(w_i^{ik}/w_k^{ik}\right)$ $i,k=1,...,n$ результуючі глобальні ваги —

методами EM, RGMM з МПП P

Приклад. ГВБВПА

	Локальні ваги альтернатив			
	C ₁ (0.6) C ₂ (0.4)			
A 1	v ₁₁ =2.52	v ₁₂ =0.38		
A 2	v ₂₁ =0.31	v ₂₂ =2.29		
A 3	v ₃₁ =1.26	v ₃₂ =1.15		

 (A_1, A_2) дистрибутивний синтез

	Нормовані ваги			
	C ₁ (0.6) C ₂ (0.4)			
A 1	2.52 /	0.38 / (0.38+2.29)		
	(2.52+0.31)=0.89	=0.14		
A 2	0.31 /	2.29 / (0.38+2.29)		
	(2.52+0.31)=0.11	=0.86		

$$P = \begin{pmatrix} 1 & 0.59 / 0.41 \\ 0.41 / 0.59 & 1 \end{pmatrix}$$

$$P = \begin{pmatrix} 1 & 0.59/0.41 \\ 0.41/0.59 & 1 \\ 1 \end{pmatrix} \begin{array}{l} w_1^{12} = 0.89 \cdot 0.6 + 0.14 \cdot 0.4 = 0.59 \\ w_2^{12} = 0.11 \cdot 0.6 + 0.86 \cdot 0.4 = 0.41 \\ w_1^{13}, w_3^{13} & w_2^{23}, w_3^{23} \end{array}$$

Порівняння синтезів

Арифметична середня:

- мале значення альтернативи за одним критерієм компенсується великим її значенням за іншим критерієм
- вибирає крайню альтернативу
- всі критерії повинні мати одну і ту ж розмірність попереднє нормування оцінок, отриманих за різними критеріями

Геометрична середня:

- не потребує нормування
- вибирає середню альтернативу

Транзитивність переваг в різних синтезах

Тв 1. Ранжування, отримані мультиплікативним синтезом з узгоджених МПП, задовольняють властивості транзитивності:

$$(A_i \succ A_j) \land (A_j \succ A_k) \Longrightarrow (A_i \succ A_k) \qquad \forall i, j, k$$

$$(v_i^{2,7006} \gt v_i^{2,7006}) \land (v_i^{2,7006} \gt v_k^{2,7006}) \Longrightarrow (v_i^{2,7006} \gt v_k^{2,7006})$$

Транзитивність переваг в різних синтезах

Доведення.
$$A_1, A_2, A_3$$
 оцінюються за M критеріями Нехай $A_1 \succ A_2$ \Longrightarrow $\prod_{j=1}^M \left(v_{1j}\right)^{w_j^C} > \prod_{j=1}^M \left(v_{2j}\right)^{w_j^C}$ \Longrightarrow $\prod_{j=1}^M \left(v_{2j}\right)^{w_j^C} > \prod_{j=1}^M \left(v_{3j}\right)^{w_j^C}$ Об' єднуючи ці дві нерівності, $\prod_{j=1}^M \left(v_{1j}\right)^{w_j^C} > \prod_{j=1}^M \left(v_{3j}\right)^{w_j^C} \Longleftrightarrow$ $A_1 \succ A_3$ $(A_1 \succ A_2) \land (A_2 \succ A_3) \Longrightarrow (A_1 \succ A_3)$

Твердження 1 (продовження)

N альтернатив

Мультиплікативний синтез <u>не призводить</u> до нетранзитивного ранжування $A_1 \succ A_2 \succ ... \succ A_k \succ ... \succ A_1$

Транзитивність переваг в різних синтезах. Приклад

<u>Приклад</u> (в якому ранжування за дистрибутивним та ідеальним синтезом з узгоджених МПП <u>не задовольняють</u> властивості транзитивності). $\exists i, j, k$

$$A_1 - A_3 \qquad C_1 - C_4 \qquad (A_i \succ A_j) \land (A_j \succ A_k) \land (A_k \succ A_i)$$

	Локальні ваги				
	C ₁	C ₁ C ₂ C ₃ C ₄			
	(0.27)	(0.41)	(0.05)	(0.27)	
A 1	1.92	7.59	1.27	6.13	
A 2	3.12	4.31	8.57	7.11	
A 3	7.70	4.77	7.45	3.29	

Приклад (продовження)

ідеальний синтез

 (A_1, A_2)

	Нормовані локальні ваги			
	C ₁ C ₂ C ₃ C ₄ (0.27) (0.41) (0.05)			
A 1	1.92 / 3.12	1	1.27 / 8.57	6.13 / 7.11
A 2	1	4.31 / 7.59	1	1

$$w_1^{12} = \frac{1.92}{3.12} \cdot 0.27 + 1 \cdot 0.41 + \frac{1.27}{8.57} \cdot 0.05 + \frac{6.13}{7.11} \cdot 0.27 = 0.8163$$

$$w_2^{12} = 1 \cdot 0.27 + \frac{4.31}{7.59} \cdot 0.41 + 1 \cdot 0.05 + 1 \cdot 0.27 = 0.8228$$

Tomy $A_2 \succ A_1$

Приклад (продовження)

(A1, A3) ідеальний синтез (A2, A3)
$$w_1^{13} = 0.7558$$
 $w_2^{23} = 0.7999$ $w_3^{13} = 0.7226$ $w_3^{23} = 0.8484$ $A_1 \succ A_3$

транзитивність переваг порушується

Аналогічно – при використанні дистрибутивного синтезу.

Приклад (продовження): мультипліка-тивний синтез

	Локальні ваги				
	C ₁				
	(0.27)	(0.41)	(0.05)	(0.27)	
A 1	1.92	7.59	1.27	6.13	
A ₂	3.12	4.31	8.57	7.11	
A 3	7.70	4.77	7.45	3.29	

$$(A_1, A_2) \qquad A_2 \succ A_1$$

$$R\left(\frac{A_1}{A_2}\right) = \left(\frac{1.92}{3.12}\right)^{0.27} \cdot \left(\frac{7.59}{4.31}\right)^{0.41} \cdot \left(\frac{1.27}{8.57}\right)^{0.05} \cdot \left(\frac{6.13}{7.11}\right)^{0.27} = 0.966 < 1.000$$

Приклад (продовження):мультипліка-тивний синтез

$$(A_1, A_3) \qquad A_3 \succ A_1$$

$$R\left(\frac{A_1}{A_3}\right) = \left(\frac{1.92}{7.70}\right)^{0.27} \cdot \left(\frac{7.59}{4.77}\right)^{0.41} \cdot \left(\frac{1.27}{7.45}\right)^{0.05} \cdot \left(\frac{6.13}{3.29}\right)^{0.27} = 0.9 < 1.0$$

$$(A_2, A_3) \qquad A_3 \succ A_2$$

$$R\left(\frac{A_2}{A_3}\right) = \left(\frac{3.12}{7.70}\right)^{0.27} \cdot \left(\frac{4.31}{4.77}\right)^{0.41} \cdot \left(\frac{8.57}{7.45}\right)^{0.05} \cdot \left(\frac{7.11}{3.29}\right)^{0.27} = 0.932 < 1.0$$

транзитивність виконується

1.5. Явище реверсу рангів при використанні методів синтезу

(для ієрархії з двома рівнями)

Реверс рангів

Реверс рангів - це зміна рангів альтернатив при їх оцінюванні за багатьма критеріями при додаванні / вилученні альтернативи

(при незмінності множини критеріїв, їх ваг та оцінок "старих" альтернатив).

Оптимальна - альтернатива, яка має найбільшу глобальну вагу.

Оптимальна за одним з критеріїв - альтернатива, яка має найбільшу локальну вагу за цим критерієм.

Постановка задачі моделювання реверсу рангів

Дано:

$$A = \left\{A_i \,|\, i=1,...,n\right\}$$
 - множина альтернатив рішень, $C = \left\{C_j \,|\, j=1,...,m\right\}$ - множина критеріїв, w_j^C - вага критерію C_j , $\sum_{j=1}^m w_j^C = 1$ $D^j = (d_{ik}^j)$ - узгоджена МПП n альтернатив відносно C_j $D^{*j} = (d_{ik}^{*j})$ - узгоджена МПП $n+1$ альтернатив відносно C_j $i,k=1,...,n+1$ $d_{ik}^{*j} = d_{ik}^j$ при $i,k=1,...,n$

Постановка задачі моделювання реверсу рангів (продовження)

Потрібно:

- встановити, чи має місце реверс рангів,
- знайти частоту появи реверсу рангів

```
w_i^{\it глоб} - глобальні ваги альтернатив, i=1,...,n
```

$$w_i^{*_{\mathcal{Z}\!\!N\!O}\delta}$$
 - глобальні ваги альтернатив, $i=1,...,n+1$

Види реверсу рангів

1) зміна оптимальної альтернативи $i \neq i^*$

$$i: w_i^{\text{глоб}} = \max_{k=1,\dots,n} w_k^{\text{глоб}}$$

$$i^*: w_{i^*}^{2,no6} = \max_{k=1,\dots,n,n+1} w_k^{*2,no6}$$

Види реверсу рангів

2) зміна знаку переваги між старими альтернативами

$$A_1 \succ A_2 \succ ... \succ A_k \succ ... \succ A_n$$
 $A_1 \succ A_2 \succ ... \succ A_k \succ A_i \succ ... \succ A_n$ після додавання (n+1)—ї альтернативи $(\Delta w_{ik}^{\scriptscriptstyle 2,006} \cdot \Delta w_{ik}^{\scriptscriptstyle 2,006} < 0) \lor ((\Delta w_{ik}^{\scriptscriptstyle 2,006} = 0) \land (\Delta w_{ik}^{\scriptscriptstyle 2,006} \neq 0)) \lor ((\Delta w_{ik}^{\scriptscriptstyle 2,006} \neq 0) \land (\Delta w_{ik}^{\scriptscriptstyle 2,006} = 0))$ $\Delta w_{ik}^{\scriptscriptstyle 2,006} = w_i^{\scriptscriptstyle 2,006} - w_k^{\scriptscriptstyle 2,006} = w_i^{\scriptscriptstyle 2,006} - w_k^{\scriptscriptstyle 2,006}$

3) зміна рангів альтернатив при їх попарному розгляді в порівнянні з розглядом всіх альтернатив одночасно

Приклад реверсу рангів. Вибір квартири

 C_1 — ціна квартири (0.5), C_2 — умови проживання (0.5)

A1: Смт.Буча, цiна 265 тис. грн, площа 132,59/66,40/22,64

А2: м.Лівобережна, ціна 1 млн.грн., площа 130,65/78,74/14,37

АЗ: Позняки, ціна 350 тис.грн., площа 130,68/81,07/15,68

$$M_{C_1} = \begin{pmatrix} 1 & 7 & 3 \\ 1/7 & 1 & 3/7 \\ 1/3 & 7/3 & 1 \end{pmatrix} \qquad M_{C_2} = \begin{pmatrix} 1 & 1/6 & 1/3 \\ 6 & 1 & 2 \\ 3 & 1/2 & 1 \end{pmatrix}$$

А4: ціна 300 тис.грн., умови гірші ніж у А1

$$M_{C_1} = \begin{pmatrix} 1 & 7 & 3 & 2 \\ 1/7 & 1 & 3/7 & 2/7 \\ 1/3 & 7/3 & 1 & 2/3 \\ 1/2 & 7/2 & 3/2 & 1 \end{pmatrix} \qquad M_{C_2} = \begin{pmatrix} 1 & 1/6 & 1/3 & 3/2 \\ 6 & 1 & 2 & 9 \\ 3 & 1/2 & 1 & 9/2 \\ 2/3 & 1/9 & 2/9 & 1 \end{pmatrix}$$

Приклад реверсу рангів. Вибір квартири (продовження)

	Глобальні ваги альтернатив				
	A 1	A 2	Аз	A 4	
Дистрибутивний	0.300	0.317	0.225	0.158	
Ідеальний	0.311	0.304	0.222	0.163	
ГВБВПА	0.285	0.255	0.280	0.181	
Мультиплікативний	0.285	0.264	0.285	0.165	

Вправа: Розрахувати глобальні ваги альтернатив до і після додавання А4 за усіма синтезами.

Приклад реверсу рангів. Вибір квартири (продовження)

	Ранж	DD	
	до додавання А ₄	після додавання А₄	PP
Дистрибутивний	$A_1 \succ A_2 \succ A_3$	$\boxed{A_2 \succ A_1 \succ A_3 \succ A_4}$	+
Ідеальний	$A_1 \succ A_2 \succ A_3$	$A_1 \succ A_2 \succ A_3 \succ A_4$	-
ГВБВПА	$A_3 \succ A_1 \succ A_2$	$A_1 \succ A_3 \succ A_2 \succ A_4$	+
Мультиплікативний	$A_1 \sim A_3 \succ A_2$	$A_1 \sim A_3 \succ A_2 \succ A_4$	-