Maximum Weighted Independent Set

Time Limit: 1 Second Memory Limit: 256 MB

Given an undirected graph with n vertices and n-1 edges $(1 \le n \le 10^6)$, where each vertex v is assigned a weight w_v , find the maximum weighted independent set of the graph.

An independent set of an undirected graph G = (V, E) is a set $I \subseteq V$ such that $\forall u, v \in I$ such that $u \neq v$, $(u, v) \notin E$. A maximum weighted independent set is an independent set I such that $\sum_{v \in I} w_v$ is maximized.

Input

The first line contains a single integer n $(1 \le n \le 10^6)$ - the number of vertices in n.

The following n-1 lines describe the edges in the graph. The *i*-th line contains two integers u_i and v_i $(1 \le u_i, v_i \le n, u_i \ne v_i)$, denoting an undirected edge between u_i and v_i . It is guaranteed that the graph doens't contain self-loops or multiple edges.

The final line of input contains n integers $w_1, \dots w_n$ $(1 \le w_i \le 10^4)$ - the weight assigned to each vertex in the graph.

Output

Output a single integer denoting the sum of vertex weights of the maximum weighted independent set of the given graph.

Sample Inputs

Sample Outputs

Sample Inputs	Sample Output
5	10
1 2	12
1 3	
2 4	
2 5	
1 2 3 4 5	