Systemidentifikation und Regelung in der Medizin

9. Vorlesung

Modellbasierte prädiktive Regelung

Sommersemester 2020

26. Juni 2020

Thomas Schauer

Technische Universität Berlin

Fachgebiet Regelungssysteme

9. Modellbasierte prädiktive Regelung

9.1 Allgemeine Grundlagen

9.1.1 Bestandteile einer prädiktiven Regelung

- 1. Modell des zu regel
nden Systems \to Nutzung zur Vorhersage des Systemverhaltens in Abhängigkeit von der Stellgröße und beobachteten oder bekannten Störungen
- 2. Referenztrajektorie für den Systemausgang
- 3. Gütefunktional, das minimiert wird, um die optimale Stellgrößensequenz zu finden
- 4. Methode zur Minimierung des Gütefunktionals

9.1.2 Idee

Berechnung der zukünftigen Stellgrößentrajektorie so, dass der Systemausgang nahe an dem gewünschten Referenzverlauf ist unter Berücksichtigung des Stellaufwands und Beschränkungen z.B. bei der Stellgröße.

Receding Horizon Principle:

- Nur das erste Element u(k) der zukünftigen Stellgrößentrajektorie wird im Zeitschritt k auf die Strecke angewandt.
- Die komplette Optimierung wird dann für den Zeitschritt k+1 wiederholt.

9.1.3 Modell

- Beschreibung von deterministischen Verhalten (Beziehung von Stellgröße und Ausgang) als auch Störverhalten (deterministisch und/oder stochastisch)
- Möglicher Modellansatz: BJ-Modell stochastische Modellierungsansatz für alle Störungen
- Beobachtung und Schätzung von Störungen über den Prädiktor (ständiger Vergleich vom gemessenen Ausgang und der Prädiktion)

9.1.4 Gütefunktional

$$J(k) = \underbrace{\sum_{i=H_s}^{H_p} (\hat{y}(k+i) - w(k+i))^2}_{\text{Tracking}} + \underbrace{\rho \sum_{i=0}^{H_p - d} \left(\underbrace{\frac{Q_n(q^{-1})}{Q_d(q^{-1})} u(k+i)}_{u^*(k+i)} \right)^2}_{\text{Stellaufwand}}$$
(1)

Zum Zeitpunkt k ergeben sich:

- H_s : minimaler Gütefunktionalshorizont, $H_s \ge d$ (d Totzeit)
- H_p : Prädiktionshorizont (Die Wahl von H_p ist nach oben begrenzt durch die Modellqualität. H_p sollte aber mindestens so groß gewählt werden, dass die Anstiegszeit erfasst wird.)
- H_c : Stellhorizont (Dimension des Optimierungsproblems), $H_c \leq H_p d$ Man beachte: $u(k + H_p - d)$ ist die letzte Stellgröße, welche noch einen Einfluss auf $\hat{y}(k + H_p)$ hat.
- w(k) : Referenz

- y(k): gemessener Systemausgang
- \bullet y(t): wahrer kontinuierlicher Systemausgang
- $\hat{y}(k+i|k)$: zum Zeitpunkt k prädiktierter Systemausgang i Schritte im Voraus
- u(k-j): bereits angewandte Stellgrößen $j \geq 1$
- $\hat{u}(k+j)$: zukünftige Stellgröße, $j \geq 0$

Bestrafung von zu großen Sprüngen in der Stellgröße:

$$Q_d(q^{-1}) = 1, Q_n(q^{-1}) = 1 - q^{-1} = \Delta, \rho > 0$$
 (2)

Nebenbedingungen:

Optimiert werden die H_c zukünftigen Stellgrößen $\hat{u}(k)$ bis $\hat{u}(k+H_c-1)$. Für die restlichen Stellgrößen $\hat{u}(k+H_c)$ bis $\hat{u}(k+H_p-d)$ nimmt man an

$$\hat{u}(k+i) = \hat{u}(k+H_c-1), H_c \le i \le H_p - d \tag{3}$$

oder

$$\hat{u}(k+i) = 0, H_c \le i \le H_p - d.$$
 (4)

Abbildung: Prinzip der prädiktiven Regelung

9.1.5 Optimierung

Umschreibung des Gütefunktionals in Vektorschreibweise:

$$J = (\hat{\boldsymbol{y}} - \boldsymbol{w})^T (\hat{\boldsymbol{y}} - \boldsymbol{w}) + \rho \boldsymbol{u}^{*T} \boldsymbol{u}^*$$
(5)

mit

$$\hat{\boldsymbol{y}} = \begin{bmatrix} \hat{y}(k+H_s) & \cdots & \hat{y}(k+H_p) \end{bmatrix}^T \tag{6}$$

$$\mathbf{w} = \begin{bmatrix} w(k+H_s) & \cdots & w(k+H_p) \end{bmatrix}^T \tag{7}$$

$$\boldsymbol{u}^* = \begin{bmatrix} u^*(k) & \cdots & u^*(k+H_p-d) \end{bmatrix}^T \tag{8}$$

$$\hat{\boldsymbol{u}} = \begin{bmatrix} \hat{u}(k) & \cdots & \hat{u}(k+H_p-d) \end{bmatrix}^T \tag{9}$$

Minimierung des Gütefunktionals bezüglich des kompletten Vektors zukünftiger Stellgrößen unter Berücksichtigung der oben genannten Nebenbedingungen (3)-(4) und Stellgrößenbeschränkungen.

Stellgrößenbeschränkungen:

$$\mathbf{u}_{lb} \le \hat{\mathbf{u}} \le \mathbf{u}_{ub}. \tag{10}$$

Umformulierung der Nebenbedingungen (3) in Matrixschreibweise:

$$\begin{bmatrix}
0 & \cdots & 0 & 1 & -1 & 0 & 0 & \cdots & 0 & 0 \\
0 & \cdots & 0 & 1 & 0 & -1 & 0 & \cdots & 0 & 0 \\
\vdots & & & & & \vdots & & \\
0 & \cdots & 0 & 1 & 0 & 0 & 0 & \cdots & 0 & -1
\end{bmatrix}
\begin{bmatrix}
\hat{u}(k+H_c-2) \\
\hat{u}(k+H_c-1) \\
\hat{u}(k+H_c+1) \\
\hat{u}(k+H_c+2) \\
\vdots \\
\hat{u}(k+H_c+2)
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
\vdots \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
\hat{u}(k) \\
\vdots \\
\hat{u}(k+H_c-2) \\
\hat{u}(k+H_c-1) \\
\hat{u}(k+H_c) \\
\hat{u}(k+H_c+1) \\
\hat{u}(k+H_c+2) \\
\vdots \\
\hat{u}(k+H_p-d-1) \\
\hat{u}(k+H_p-d)
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
\vdots \\
0
\end{bmatrix}$$
(11)

$$S\hat{u} = t$$
 (12)

$$\hat{u}(k+H_c) = \hat{u}(k+H_c-1)$$

$$\hat{u}(k+H_c+1) = \hat{u}(k+H_c-1)$$

$$\vdots$$

Drückt man $\hat{\boldsymbol{y}}$ als lineare Vektorfunktion von $\hat{\boldsymbol{u}}$ aus (für lineare Modelle immer möglich) und schreibt auch \boldsymbol{u}^* als lineare Vektorfunktion von $\hat{\boldsymbol{u}}$, so lässt sich nach Umformungen das Gütefunktional schreiben als:

$$J = \frac{1}{2}\hat{\boldsymbol{u}}^T \boldsymbol{Q}\hat{\boldsymbol{u}} + \boldsymbol{c}^T \hat{\boldsymbol{u}} + \tilde{d}$$
(13)

Es ergibt sich dann folgendes Optimierungsproblem (Quadratic Programming):

$$\hat{\boldsymbol{u}}_{opt} = \arg\min_{\hat{\boldsymbol{u}}} J \tag{14}$$

$$\boldsymbol{u}_{lb} \le \hat{\boldsymbol{u}} \le \boldsymbol{u}_{ub} \tag{15}$$

$$\mathbf{S}\hat{\mathbf{u}} = \mathbf{t} \tag{16}$$

In Matlab existiert bereits eine Funktion zur Lösung dieses Problems (siehe nachfolgende Erläuterungen).

Matlab-Implementierung für Quadratic Programming

Gütefunktional bei Beschränkung der Stellgröße $(H_c = 2)$

9.2 Prädiktive Regelung bei einem BJ-Modellansatz

Formulierung der Stellgrößenbestrafung (2) in Vektor/Matrix-Darstellung:

$$u^*(k) = \hat{u}(k) - u(k-1)$$

$$\underbrace{\begin{bmatrix} u^*(k) \\ u^*(k+1) \\ u^*(k+2) \\ \vdots \\ u^*(k+H_p-d) \end{bmatrix}}_{\boldsymbol{u}^*} = \underbrace{\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}}_{\boldsymbol{\Phi}} \underbrace{\begin{bmatrix} \hat{u}(k) \\ \hat{u}(k+1) \\ \hat{u}(k+2) \\ \vdots \\ \hat{u}(k+H_p-d) \end{bmatrix}}_{\boldsymbol{\Omega}} + \underbrace{\begin{bmatrix} -1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{\boldsymbol{\Omega}} u(k-1)$$

$$\underline{u}^* = \boldsymbol{\Phi}\hat{u} + \boldsymbol{\Omega}u(k-1)$$

Bei komplexerem Filter $\frac{\mathsf{Q}_n(q^{-1})}{\mathsf{Q}_d(q^{-1})}$ muss man Diophantische Gleichungen lösen, um die Matrizen Φ und Ω zu bestimmen (siehe nächste Folien).

i-Schritt-Vorausprädiktion (i-step-ahead-prediction)

Gegeben sei die Box-Jenkins-Struktur:

$$y(k) = \frac{\mathsf{B}(q^{-1})}{\mathsf{A}(q^{-1})} u(k-d) + \frac{\mathsf{C}(q^{-1})}{\mathsf{D}(q^{-1})} e(k) \tag{17}$$

Ziel: Herleitung eines Algorithmus zur Ermittlung der optimalen i-Schritt-Vorausprädiktion $\hat{y}(k+i|k)$ des Systemausganges y(k+i) unter Annahme folgender Informationen zum Zeitpunkt k: Ausgangsmessungen bis zum Zeitpunkt k sowie Stellgrößen bis zum Zeitpunkt k+i-d. Man beachte, dass die Stellgrößen bis zum Zeitpunkt k-1 alt sind und bereits auf die Strecke angewandt wurden. Ab den Zeitpunkt k spricht man von zukünftigen Stellgrößen (Schätzungen).

Diophantische Gleichung

Gegeben sei eine Transferfunktion $X(q^{-1})/Y(q^{-1})$ und ein Signal s(k+i) (i Schritte voraus). Gesucht werden nun folgende durch Filterung des Signals s(k+i) mit $X(q^{-1})/Y(q^{-1})$ entstehende Anteile:

- Anteil, der nur alte (bekannte) Werte von s(l), $l = \ldots, k-1, k$ enthält.
- Anteil, der nur zukünftige Werte von s(l), $l = k + 1, \ldots, k + i$ enthält.

Ermittlung durch Lösen einer Diophantischen Gleichung:

$$\frac{\mathsf{X}(q^{-1})}{\mathsf{Y}(q^{-1})} = \mathsf{E}_i(q^{-1}) + q^{-i} \frac{\mathsf{F}_i(q^{-1})}{\mathsf{Y}(q^{-1})} \tag{18}$$

- $\mathsf{E}_i(q^{-1})$ bezogen auf zukünftige Werte
- $q^{-i} \frac{\mathsf{F}_i(q^{-1})}{\mathsf{Y}(q^{-1})}$ bezogen auf bekannte (alte) Werte

Lösungsansätze:

- Rekursive Formel: $E_i, F_i \Rightarrow F_{i+1}, E_{i+1}$
- Polynomdivision (long devision)

Voraussetzungen:

- Y ist monisch.
- Y und X sind teilerfremd.

Polynome:

$$Y(q^{-1}) = 1 + y_1 q^{-1} + \dots + y_{n_Y} q^{-n_Y}$$

$$X(q^{-1}) = x_0 + x_1 q^{-1} + \dots + x_{n_X} q^{-n_X}$$

$$E_i(q^{-1}) = e_{i,0} + e_{i,1} q^{-1} + \dots + e_{i,n_{E_i}} q^{-n_{E_i}}$$

$$F_i(q^{-1}) = f_{i,0} + f_{i,1} q^{-1} + \dots + f_{i,n_{F_i}} q^{-n_{F_i}}$$

Gradabschätzungen:

•
$$\deg \mathsf{E}_i =$$

$$\begin{cases} i-1 & \text{für } \deg \mathsf{Y} > 0 \\ s(k+i)q^{-(i-1)} = s(k+1) \text{ bis } s(k+i) \end{cases}$$

$$\min(i-1,n_X) & \text{für } \deg \mathsf{Y} = 0 \end{cases} \quad \text{(absorbiert } i \text{ zukünftige Werte:}$$

$$s(k+i)q^{-(i-1)} = s(k+1) \text{ bis } s(k+i) \end{cases}$$

$$\text{(siehe nächste Folie)}$$

•
$$\deg F_i = \deg(q^i X - q^i Y E_i) = \max(-i + n_X, -i + n_Y + i - 1) = \max(-i + n_X, n_Y - 1)$$

Beispiele: Annahme eines Signals s(k) (ab k+1 ist zukünftig).

• $\deg X = 3, \deg Y = 0, i = 5$

$$X(q^{-1})s(k+5) = \underbrace{(x_0 + x_1q^{-1} + x_2q^{-2} + x_3q^{-3})}_{\mathsf{E}_5} s(k+5)$$

•
$$\deg X = 3, \deg Y = 0, i = 2$$

$$\mathsf{X}(q^{-1})s(k+2) = \underbrace{(x_0 + x_1q^{-1})}_{\mathsf{E}_2} s(k+2) + \underbrace{(x_2q^{-2} + x_3q^{-3})}_{q^{-2}\mathsf{F}_2(q^{-1})} s(k+2)$$

$$\underbrace{(x_0 + x_1q^{-1})}_{\mathsf{E}_2} s(k+2) + \underbrace{(x_2 + x_3q^{-1})}_{\mathsf{E}_2(q^{-1})} s(k)$$

Lösung mittels Polynomdivision (long devision):

Beispiel:
$$X(q^{-1}) = 1$$
, $Y(q^{-1}) = (1 - q^{-1})^2 = 1 - 2q^{-1} + q^{-2}$

Gesucht:
$$\frac{\mathsf{X}(q^{-1})}{\mathsf{Y}(q^{-1})} = \mathsf{E}_i(q^{-1}) + q^{-i} \frac{\mathsf{F}_i(q^{-1})}{\mathsf{Y}(q^{-1})}, \qquad i = 1, 2$$

Für 1-Schritt-Prädiktion:

$$\frac{1}{1 - 2q^{-1} + q^{-2}} = \frac{q^2}{q^2 - 2q + 1}$$

$$q^{2} : (q^{2} - 2q + 1) = 1 + \frac{2q - 1}{q^{2} - 2q + 1}$$

$$\underline{-(q^{2} - 2q + 1)}$$

$$2q - 1$$

$$1 + \frac{2q - 1}{q^2 - 2q + 1} = 1 + \frac{2q^{-1} - q^{-2}}{1 - 2q^{-1} + q^{-2}} = \underbrace{1}_{\mathsf{E}_1(q^{-1})} + q^{-1} \frac{\underbrace{2 - q}_{\mathsf{F}_1(q^{-1})}}{1 - 2q^{-1} + q^{-2}}$$

Für 2-Schritt-Prädiktion:

$$q^{2} : (q^{2} - 2q + 1) = 1 + 2q^{-1} + \frac{3 - 2q^{-1}}{q^{2} - 2q + 1}$$

$$\frac{-(q^{2} - 2q + 1)}{2q - 1}$$

$$\frac{-(2q - 4 + 2q^{-1})}{3 - 2q^{-1}}$$

$$1 + 2q^{-1} + \frac{3 - 2q^{-1}}{q^2 - 2q + 1} = 1 + 2q^{-1} + \frac{3q^{-2} - 2q^{-3}}{1 - 2q^{-1} + q^{-2}} = \underbrace{1 - 2q^{-1}}_{\mathsf{E}_2(q^{-1})} + q^{-2} \underbrace{\frac{3 - 2q^{-1}}{1 - 2q^{-1} + q^{-2}}}_{\mathsf{F}_1(q^{-1})}$$

Rekursiver Algorithmus zur Lösung der Diophantischen Gleichung:

$$X(q^{-1}) = Y(q^{-1})E_{j+1}(q^{-1}) + q^{-(j+1)}F_{j+1}(q^{-1})$$
(19)

Diophantische Gleichung für j:

$$X(q^{-1}) = Y(q^{-1})E_j(q^{-1}) + q^{-j}F_j(q^{-1})$$
(20)

Die Subtraktion (19)-(20) ergibt

$$0 = Y(E_{j+1} - E_j) + q^{-j} (q^{-1}F_{j+1} - F_j), \qquad (21)$$

Mit $\deg \mathsf{E}_{j+1} = \deg \mathsf{E}_j + 1$ erhält man

$$\mathsf{E}_{j+1} - \mathsf{E}_{j} = \tilde{\mathsf{E}} + e_{j+1,j} q^{-j} \tag{22}$$

und damit

$$0 = Y(\tilde{E} + e_{j+1,j}q^{-j}) + q^{-j}(q^{-1}F_{j+1} - F_j)$$
(23)

$$0 = Y\tilde{E} + q^{-j} (q^{-1}F_{j+1} - F_j + e_{j+1,j}Y).$$
 (24)

Damit die Gleichung zu Null wird, muss gelten $\tilde{\mathsf{E}} \equiv 0$ (Y ist ungleich Null).

Daraus folgt

$$q^{-1}\mathsf{F}_{j+1} - \mathsf{F}_j + \mathsf{Y}e_{j+1,j} = 0 \tag{25}$$

Rekursive Lösung der Diophantischen Gleichung:

Aus $\tilde{\mathsf{E}} = 0$ und der Definition von $\tilde{\mathsf{E}}$ folgt:

$$\mathsf{E}_{j+1} = \mathsf{E}_j + e_{j+1,j} q^{-j} \tag{26}$$

Ausschreiben von Gl. (25) liefert:

$$q^{-1}(f_{j+1,0} + f_{j+1,1}q^{-1} + \dots + f_{j+1,n_{F_{j+1}}}q^{-n_{F_{j+1}}})$$

$$-(f_{j,0} + f_{j,1}q^{-1} + \dots + f_{j,n_{F_{j}}}q^{-n_{F_{j}}})$$

$$+(1 + y_{1}q^{-1} + \dots + y_{n_{Y}}q^{-n_{Y}})e_{j+1,j} = 0$$

Koeffizientenvergleich:

$$-f_{j,0} + e_{j+1,j} = 0 \rightarrow e_{j+1,j} = f_{j,0}$$

$$f_{j+1,0} = f_{j,1} - y_1 e_{j+1,j}$$

$$f_{j+1,1} = f_{j,2} - y_2 e_{j+1,j}$$

$$\vdots$$

$$f_{j+1,n_{F_{j+1}}} = f_{j,n_{F_{j+1}+1}} - y_{n_{F_{j+1}+1}} e_{j+1,j}$$

mit $n_{F_{j+1}} = \max(n_X - (j+1), n_Y - 1)$.

Anfangswerte für E_1, F_1

$$j = 1$$

$$X = YE_1 + q^{-1}F_1$$

$$(27)$$

Da Y monisch ist und deg $E_1 = 0$ ergibt sich

$$\mathsf{E}_1 = x_0 \text{ und } F_1 = q(\mathsf{X} - x_0 Y).$$

Zusammenfassung des Algorithmus (gegeben: $X(q^{-1}), Y(q^{-1})(\deg Y \ge 1), i \ge 1$):

- 1. Startwerte berechnen: $j = 1, E_1 = x_0$ und $F_1 = q(X x_0Y)$. Falls i = 1 = j, hier beenden.
- 2. E_{j+1} berechnen: $e_{j+1,j} = f_{j,0}, \; \mathsf{E}_{j+1} = \mathsf{E}_j + e_{j+1,j}q^{-j}$
- 3. F_{j+1} berechnen:

$$f_{j+1,0} = f_{j,1} - y_1 e_{j+1,j}$$

$$f_{j+1,1} = f_{j,2} - y_2 e_{j+1,j}$$

$$\vdots$$

$$f_{j+1,n_{F_{j+1}}} = f_{j,n_{F_{j+1}+1}} - y_{n_{F_{j+1}+1}} e_{j+1,j}$$

mit $n_{F_{j+1}} = \max(n_X - j - 1, n_Y - 1)$.

4. j = j + 1, falls j = i, hier beenden, ansonsten zu Schritt 2.

Die Formeln im 3. Schritt lassen sich in Polynomform wie folgt schreiben:

$$F_{j+1} = (F_j - f_{j,0})q - (Y - 1)qe_{j+1,j} = q(F_j - Yf_{j,0})$$

... Herleitung der i-Schritt-voraus-Prädiktion für das Box-Jenkins-Modell

$$y(k+i) = \frac{\mathsf{B}(q^{-1})}{\mathsf{A}(q^{-1})} u(k-d+i) + \underbrace{\frac{\mathsf{C}(q^{-1})}{\mathsf{D}(q^{-1})}}_{\zeta(k+i)} e(k+i), \quad i \ge d \tag{28}$$

(a) Separation der Störungen

$$\frac{\mathsf{C}}{\mathsf{D}} = \mathsf{E}_i + q^{-i} \frac{\mathsf{F}_i}{\mathsf{D}} \tag{29}$$

- Bekannt: ..., k-1, k
- Zukünftig: $k+1,\ldots,k+i$

Nach Lösen der Dio.-Gleichung:

$$\zeta(k+i) = \mathsf{E}_i e(k+i) + q^{-i} \frac{\mathsf{F}_i}{\mathsf{D}} e(k+i) = \mathsf{E}_i e(k+i) + \frac{\mathsf{F}_i}{\mathsf{D}} e(k) \tag{30}$$

Schätzung von $\frac{\mathsf{F}_i}{\mathsf{D}}e(k)$:

$$y(k) = \frac{\mathsf{B}}{\mathsf{A}}u(k-d) + \frac{\mathsf{C}}{\mathsf{D}}e(k) \cdot \frac{\mathsf{F}_i}{\mathsf{C}}$$
(31)

$$\frac{\mathsf{F}_i}{\mathsf{D}}e(k) = \frac{\mathsf{F}_i}{\mathsf{C}}\left(y(k) - \frac{\mathsf{B}}{\mathsf{A}}u(k-d)\right) \tag{32}$$

Dies stellt eine Tiefpassfilterung der Prädiktionsfehler dar. Es folgt nun

$$y(k+i) = \frac{B(q^{-1})}{A(q^{-1})}u(k-d+i) + \frac{F_i}{C}\left(y(k) - \frac{B}{A}u(k-d)\right) + E_i e(k+i)$$
 (33)

Da zukünftige Werte von e nicht bekannt sind und der Erwartungswert Null ist, folgt für den Prädiktor:

$$\hat{y}(k+i) = \frac{\mathsf{B}(q^{-1})}{\mathsf{A}(q^{-1})} u(k-d+i) + \frac{\mathsf{F}_i}{\mathsf{C}} \left(y(k) - \frac{\mathsf{B}}{\mathsf{A}} u(k-d) \right)$$
(34)

Separation von bekannten und zukünftigen Stellgrößen:

$$\frac{\mathsf{B}}{\mathsf{A}} = \mathsf{G}_i + q^{-i+d-1} \frac{\mathsf{H}_i}{\mathsf{A}} \tag{35}$$

- Bekannt: ..., k 2, k 1
- Zukünftig: $k, k+1, \ldots, k+i-d, i \geq d$
- $\deg G_i = i d, i \ge d$

Für den Prädiktor folgt dann:

$$\hat{y}(k+i) = \mathsf{G}_i u(k-d+i) + \frac{\mathsf{H}_i}{\mathsf{A}} u(k-1) + \frac{\mathsf{F}_i}{\mathsf{C}} \left(y(k) - \frac{\mathsf{B}}{\mathsf{A}} u(k-d) \right) \tag{36}$$

Für den i-Schritt-voraus-Prädiktor muss man folglich zwei Diophantische Gleichungen lösen:

$$\frac{\mathsf{B}(q^{-1})}{\mathsf{A}(q^{-1})} = \mathsf{G}_i(q^{-1}) + q^{-i+d-1} \frac{\mathsf{H}_i(q^{-1})}{\mathsf{A}(q^{-1})}$$
(37)

$$\frac{\mathsf{C}(q^{-1})}{\mathsf{D}(q^{-1})} = \mathsf{E}_i(q^{-1}) + q^{-i} \frac{\mathsf{F}_i(q^{-1})}{\mathsf{D}(q^{-1})}. \tag{38}$$

Für die Lösung der Diophantischen Gleichungen anhand des rekursiven Algorithmus wird eine Matlab-Routine in der Übung erstellt. Die Polynome G_i , H_i , E_i und F_i werden für alle zukünftigen Schritte $(i = H_s \cdots H_p)$ berechnet.

Gradabschätzungen für H_i , F_i und G_i :

$$\begin{split} \deg \mathsf{G}_i &= i-d, \qquad i = H_s \dots H_p, \qquad H_s \leq d \\ \deg \mathsf{H}_i &= j, \qquad j = \max(\deg \mathsf{B} - (i-d+1), \deg \mathsf{A} - 1) = \deg \mathsf{A} - 1 \\ \deg \mathsf{F}_i &= j, \qquad j = \max(\deg \mathsf{C} - i, \deg \mathsf{D} - 1) = \deg \mathsf{D} - 1 \end{split}$$

Tabelle 1: Anwendung des rekursiven Algorithmus für dieses Problem $(i \ge d)$.

Algorithmus	C/D	B/A
X	С	В
Υ	D	Α
E_i	$ig _{E_i}$	G_i
F_i	$ig F_i$	H_i
i	ig i	i-d+1

Filterung

$$\hat{y}(k+i|k) = \mathsf{G}_i(q^{-1})\hat{u}(k+i-d) + \frac{\mathsf{H}_i(q^{-1})}{\mathsf{A}(q^{-1})}u(k-1) + \frac{\mathsf{F}_i(q^{-1})}{\mathsf{C}(q^{-1})}(y(k) - \hat{y}(k))$$
(39)

Abbildung: Filter

$$\hat{y}(k+i|k) = \mathsf{G}_i(q^{-1})\hat{u}(k+i-d) + \mathsf{H}_i(q^{-1})p(k) + \mathsf{F}_i(q^{-1})o(k) \tag{40}$$

Vektor/Matrix Darstellung

 G_i , H_i und F_i werden in Matrizen gespeichert. Somit haben wir eine Dreiecksmatrix G mit Dimension $(H_p - H_s + 1) \times (H_p - d + 1)$, eine Matrix H mit Dimension $(H_p - H_s + 1) \times (\deg(A(q^{-1})))$ und F mit Dimension $(H_p - H_s + 1) \times (\deg(D(q^{-1})))$, die dann für die Prädiktion des Ausgangs des Systems in (41) eingesetzt werden.

Die Vektor/Matrix-Schreibweise für den Prädiktor lautet:

$$\hat{m{y}} = m{G}\hat{m{u}} + m{H}\hat{m{p}} + m{F}\hat{m{o}},$$

wobei die Vektoren \hat{p} und \hat{o} alte Werte der Ausgänge der beiden Filter in der Abbildung Filter beinhalten. Folglich hat man die folgende Darstellung für die Prädiktion von $H_p - H_s$ -Schritten:

$$\frac{\hat{y}(k+H_{s}|k)}{\hat{y}(k+H_{s}+1|k)} \\
\vdots \\
\hat{y}(k+H_{p}-1|k) \\
\hat{y}$$

$$\frac{\hat{y}}{\hat{y}}$$

$$\frac{\hat{y}}{$$

Einsetzen von (17) und (41) in das Gütefunktional (5):

$$J = (G\hat{\boldsymbol{u}} + H\hat{\boldsymbol{p}} + F\hat{\boldsymbol{o}} - \boldsymbol{w})^{T}(G\hat{\boldsymbol{u}} + H\hat{\boldsymbol{p}} + F\hat{\boldsymbol{o}} - \boldsymbol{w}) + \rho(\Phi\hat{\boldsymbol{u}} + \Omega\boldsymbol{u}(k-1))^{T}(\Phi\hat{\boldsymbol{u}} + \Omega\boldsymbol{u}(k-1))$$

$$(41)$$

Ausgehend von der Gleichung (41) ergibt sich folgende Formel für das Gütefunktional:

$$J = (G\hat{\boldsymbol{u}} + H\hat{\boldsymbol{p}} + F\hat{\boldsymbol{o}} - \boldsymbol{w})^{T}(G\hat{\boldsymbol{u}} + H\hat{\boldsymbol{p}} + F\hat{\boldsymbol{o}} - \boldsymbol{w}) + \\ + \rho(\Phi\hat{\boldsymbol{u}} + \Omega\boldsymbol{u}(k-1))^{T}(\Phi\hat{\boldsymbol{u}} + \Omega\boldsymbol{u}(k-1)) \\ = (\hat{\boldsymbol{u}}^{T}G^{T} + \hat{\boldsymbol{p}}^{T}H^{T} + \hat{\boldsymbol{o}}^{T}F^{T} - \boldsymbol{w}^{T})(G\hat{\boldsymbol{u}} + H\hat{\boldsymbol{p}} + F\hat{\boldsymbol{o}} - \boldsymbol{w}) + \\ + \rho(\hat{\boldsymbol{u}}^{T}\Phi^{T} + \boldsymbol{u}(k-1)^{T}\Omega^{T})(\Phi\hat{\boldsymbol{u}} + \Omega\boldsymbol{u}(k-1))$$

mit $u(k-1)^T = u(k-1)$, da u(k-1) ein Skalar ist, ergibt sich dann:

$$J = \hat{\boldsymbol{u}}^{T} (\boldsymbol{G}^{T} \boldsymbol{G} + \rho \boldsymbol{\Phi}^{T} \boldsymbol{\Phi}) \hat{\boldsymbol{u}} + \underbrace{(\hat{\boldsymbol{u}}^{T} \boldsymbol{G}^{T}) (\boldsymbol{H} \hat{\boldsymbol{p}} + \boldsymbol{F} \hat{\boldsymbol{o}} - \boldsymbol{w})}_{x} + (\hat{\boldsymbol{p}}^{T} \boldsymbol{H}^{T} + \hat{\boldsymbol{o}}^{T} \boldsymbol{F}^{T} - \boldsymbol{w}^{T}) (\boldsymbol{G} \hat{\boldsymbol{u}})$$

$$+ \underbrace{(\hat{\boldsymbol{p}}^{T} \boldsymbol{H}^{T} + \hat{\boldsymbol{o}}^{T} \boldsymbol{F}^{T} - \boldsymbol{w}^{T}) (\boldsymbol{H} \hat{\boldsymbol{p}} + \boldsymbol{F} \hat{\boldsymbol{o}} - \boldsymbol{w})}_{\text{const.}} + \underbrace{\rho \hat{\boldsymbol{u}}^{T} \boldsymbol{\Phi}^{T} \boldsymbol{\Omega} u (k-1)}_{\text{const.}} + \underbrace{u (k-1) \boldsymbol{\Omega}^{T} \boldsymbol{\Omega} u (k-1)}_{\text{const.}}$$

Da
$$x = x^T = (\boldsymbol{H}\hat{\boldsymbol{p}} + \boldsymbol{F}\hat{\boldsymbol{o}} - \boldsymbol{w})^T \boldsymbol{G}\hat{\boldsymbol{u}} \text{ und } z = z^T = \rho u(k-1)\boldsymbol{\Omega}^T \boldsymbol{\Phi}\hat{\boldsymbol{u}} \text{ gilt, folgt}$$

$$J = \hat{\boldsymbol{u}}^T (\boldsymbol{G}^T \boldsymbol{G} + \rho \boldsymbol{\Phi}^T \boldsymbol{\Phi})\hat{\boldsymbol{u}} + 2(\boldsymbol{H}\hat{\boldsymbol{p}} + \boldsymbol{F}\hat{\boldsymbol{o}} - \boldsymbol{w})^T \boldsymbol{G}\hat{\boldsymbol{u}} + 2\rho u(k-1)\boldsymbol{\Omega}^T \boldsymbol{\Phi}\hat{\boldsymbol{u}} + \tilde{\boldsymbol{d}}$$

$$= \hat{\boldsymbol{u}}^T \underbrace{\left(\boldsymbol{G}^T \boldsymbol{G} + \rho \boldsymbol{\Phi}^T \boldsymbol{\Phi}\right)}_{\frac{1}{2}} \hat{\boldsymbol{u}} + \underbrace{2\left((\boldsymbol{H}\hat{\boldsymbol{p}} + \boldsymbol{F}\hat{\boldsymbol{o}} - \boldsymbol{w})^T \boldsymbol{G} + \rho u(k-1)\boldsymbol{\Omega}^T \boldsymbol{\Phi}\right)}_{\hat{\boldsymbol{c}} \text{ const.}} \hat{\boldsymbol{u}} + \underbrace{\tilde{\boldsymbol{d}}}_{\text{const.}}$$

Nun haben wir die erforderliche Form für das Gütefunktional entsprechend Gleichung (13), um das quadratische Problem in Matlab lösen zu können.

9.3 Einstellparameter der MPC

- 1. Gewicht ρ (Geschwindigkeit, Stellaufwand $\leq >$ Rauschempfindlichkeit)
- 2. Störgrößenmodell (C und D) (Schätzung von deterministischen Störungen <=> Rauschempfindlichkeit)
- 3. Horizonte H_p (Stabilität) und H_c (Rechenaufwand, Stabilität)