МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Институт математики и информационных систем Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

«ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Матрица инцидентности

Отчёт по лабораторной работе №3
по дисциплине
«Дискретная математика»
Вариант 7

Выполнил студент гр. ИВТб-1301-05-00	/Макаров С.А./
Руководитель преподаватель	/Пахарева И.В./

Цель

Цель лабораторной работы: изучение основ теории графов, представление графов в виде матрицы инцидентности, разработка приложения на языке Паскаль или СИ согласно заданию.

Задание

По матрице инцидентности определить вершину, имеющую максимальную полустепень захода (матрицу инцидентности задать из файла). Вывести множество соответсвующих дуг найденной вершины.

Решение

Для решения задач подготовлен ориентированный граф, представленный на рисунке 1.

Рисунок 1 – Ориентированный граф

Перед разработкой составлена схема алгоритма, представленная на рисунке 2.

Рисунок 2 – Схема алгоритма программы

При разработке реализована программа, исходный код которой представлен ниже.

```
uses
   SysUtils;
var
  matrix: array [1..5, 1..7] of integer;
```

```
degrees: array [1..5] of integer;
 vertexes: array[1..5] of integer;
  i, j, k, max: integer;
  fileInput: text;
  fileLine: string;
begin
 assign(fileInput, 'input.txt');
  reset(fileInput);
  writeln('Maтрица инцидентности', #10);
  write(' ');
  for i := 1 \text{ to } 7 \text{ do}
    write(' ', i, ' ');
  writeln();
  i := 1;
  while not Eof(fileInput) do
  begin
    write(i, ',');
    readln(fileInput, fileLine);
    j := 1;
    for k := 1 to Length(fileLine) do
      if (fileLine[k] <> ', ') and (fileLine[k] <> '-') then
      begin
        if fileLine[k - 1] = '-' then
        begin
          matrix[i][j] := StrToInt(fileLine[k]) * -1;
          write(matrix[i][j], '')
        end
        else
        begin
          matrix[i][j] := StrToInt(fileLine[k]);
          write(' ', matrix[i][j], ' ');
        end;
        if (matrix[i][j] = -1) or (matrix[i][j] = 2) then
          degrees[i] += 1;
        j := j + 1;
```

```
end;
    end;
    writeln();
    i := i + 1;
  end;
  writeln();
  max := degrees[1];
  for i := 2 \text{ to } 5 \text{ do}
  begin
    if (degrees[i] > max) then
      max := degrees[i];
  end;
  j := 1;
  for i := 1 to 5 do
  begin
    if degrees[i] = max then
    begin
      vertexes[j] := i;
      j := j + 1;
    end;
  end;
  writeln('Вершины с максимальной полустепенью захода');
  i := 1;
  while vertexes[i] <> 0 do
    write('Множество дуг для вершины ', vertexes[i], ': {');
    for j := 1 to 7 do
    begin
      if (matrix[vertexes[i]][j] = -1) or
          (matrix[vertexes[i]][j] = 2) then
        write(',', j);
    end;
    writeln(', }');
    i := i + 1;
  end;
  readln;
end.
```

Экранная форма программы в виде консольного приложения представлена на рисунке 3.

```
Матрица инцидентности
           4
                 6
                    7
   1
        1
           0
              0
                 0
                    0
  -1
     1
        0 0
              0 0
                    0
        0 1
              0 1
                    0
  0 -1 -1 -1
                    0
              1
                 0
        0 0 -1 -1
                    2
Вершины с максимальной полустепенью захода
Множество дуг для вершины 4: { 2 3 4 }
Множество дуг для вершины 5: { 5 6 7 }
```

Рисунок 3 – Консольный интерфейс программы

Вывод

В процессе выполнения лабораторной работы, при решении предложенных задач, реализована программа на языке Паскаль, находящая номер вершины, имеющей максимальную полустепень захода и выводит множество соответсвующих дуг согласно матрице инцидентности, заданной в файле.