Ph.D. Qualifying Exam, Real Analysis Spring 2018, part I

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Two short problems.
 - **a.** Show that there is a closed subset E of [0,1] of positive Lebesgue measure and with empty interior.
 - **b.** Show that if $f:[0,1] \to \mathbb{R}$ is absolutely continuous and A is Lebesgue measurable with measure 0 then f(A) is measurable with measure 0.
- Let S be a closed subspace of C[0,1] (with the sup norm). Suppose that $f \in S$ implies that f is continuously differentiable. Prove that S is finite dimensional.
- 3 Let $K \in L^2_{\mathbb{R}}(\mathbb{R}^2)$, i.e. real valued element of the L^2 -space on \mathbb{R}^2 . Define $T: L^2_{\mathbb{R}}(\mathbb{R}) \to L^2_{\mathbb{R}}(\mathbb{R})$ by

$$(Tf)(x) = \int_{\mathbb{R}} K(x, y) f(y) \, \mathrm{d}y.$$

- **a.** Prove that $T: L^2_{\mathbb{R}}(\mathbb{R}) \to L^2_{\mathbb{R}}(\mathbb{R})$ is bounded and moreover that T is compact.
- **b.** For $\alpha\in\mathbb{R}$ and $g\in L^2_{\mathbb{R}}(\mathbb{R})$, consider the following equation where $f\in L^2_{\mathbb{R}}(\mathbb{R})$ is an unknown:

$$f(x) + \alpha \int_{\mathbb{R}} K(x, y) f(y) \, \mathrm{d}y = g(x). \tag{1}$$

Prove that there exists $\epsilon > 0$ (depending only on K) such that if $|\alpha| < \epsilon$, then (1) admits a unique solution $f \in L^2_{\mathbb{R}}(\mathbb{R})$.

- **c.** Suppose that $\int_{\mathbb{R}} \int_{\mathbb{R}} h(x) K(x,y) h(y) \, \mathrm{d}x \, \mathrm{d}y \geq 0$ for all $h \in L^2_{\mathbb{R}}(\mathbb{R})$. Prove that for all $\alpha \geq 0$, (1) admits a unique solution $f \in L^2_{\mathbb{R}}(\mathbb{R})$.
- Let $L^2=L^2((0,\infty),x^{-1}\,dx)$, i.e. $\|f\|_{L^2}^2=\int_0^\infty |f(x)|^2\frac{dx}{x}$. For each $s\in\mathbb{R}$ consider the statement: there exists C>0 such that for all $u\in C_0^\infty((0,\infty))$, $\|x^{s-1}u\|_{L^2}\leq C\|x^s\partial_x u\|_{L^2}$. Find, with proof, the values of s for which this statement holds. (Hint: rewrite $x^s\partial_x u=(x^{s-1}(x\partial_x)x^{-(s-1)})(x^{s-1}u)$. Let $t=\log x$, and rewrite the estimate in terms of $L^2(\mathbb{R},dt)$. Then use the Fourier transform.)
- 5 Let X be a Banach space over $\mathbb C$ and M and N closed subspaces of X. Write $M+N=\{x\in X:\exists m\in M,\ n\in N,\ x=m+n\}.$
 - **a.** Show that M+N is closed if and only if there exists C>0 such that for all $x\in M+N$ there exist $m\in M, n\in N$ such that x=m+n and $\|m\|+\|n\|\leq C\|x\|$.
 - **b.** Suppose that $\ell_M: M \to \mathbb{C}$ and $\ell_N: N \to \mathbb{C}$ are continuous linear functionals and $\ell_M|_{M \cap N} = \ell_N|_{M \cap N}$. Show that if M + N is closed, then there exists $\ell \in X^*$ such that $\ell|_M = \ell_M$ and $\ell|_N = \ell_N$.
 - **c.** Give an example of a Banach space X and closed subspaces M,N such that $M\cap N=\{0\}$ but M+N is *not* closed.

Ph.D. Qualifying Exam, Real Analysis Spring 2018, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- Suppose f is a non-negative Lebesgue measurable function on [0,1] such that f>0 almost everywhere. Show that for any $\epsilon>0$ there is $\delta>0$ such that if E is a Lebesgue measurable subset of [0,1] with measure $m(E)\geq \epsilon$, then $\int_E f(x)\,dx\geq \delta$.
- Let X be a non-zero Banach space and $T \in \mathcal{L}(X)$. Let $\rho(T)$ be the resolvent set, $\sigma(T)$ the spectrum of T.
 - **a.** Suppose $\{\lambda_n\}_{n=1}^{\infty} \subset \rho(T)$ and $\lambda \in \sigma(T)$ such that $\lambda_n \to \lambda$. Prove that

$$\sup_{n} \|(\lambda_n I - T)^{-1}\|_{\mathcal{L}(X)} = +\infty.$$

- **b.** Using part (a), or otherwise, show that there exists $\lambda \in \sigma(T)$ such that $\lambda I T$ is not bounded below, i.e. for every c > 0, there exists $x \in X \setminus \{0\}$ such that $\|(\lambda I T)x\|_X \le c\|x\|_X$.
- Recall that the Fourier transform of an $L^1(\mathbb{R}^n)$ function f is $(\mathcal{F}f)(\xi) = \int e^{-ix\cdot\xi}f(x)\,dx$, where \cdot is the standard inner product on \mathbb{R}^n .

Let A be a real symmetric matrix, and define the function f by $f(x) = e^{-iAx \cdot x/2}$. Show that f is a tempered distribution, and find (with proof) its Fourier transform if $\det(A) \neq 0$. Make sure to give an explicit formula in terms of A, without involving any limits. (*Hint:* Write A as the limit of complex symmetric matrices with negative definite imaginary part.)

- **4 a.** Let X be a Banach space and $E \subset X^*$ be a subspace of X^* which is closed in the weak-* topology. Suppose moreover that $\bigcap_{\lambda \in E} \ker(\lambda) = \{0\}$. Prove that $E = X^*$.
 - **b.** Let X,Y be Banach spaces, $T\in \mathcal{L}(X,Y)$. Let $T'\in \mathcal{L}(Y^*,X^*)$ be the adjoint defined by $T'(\lambda)(x)=\lambda(T(x))$ for $x\in X,\ \lambda\in Y^*$. Prove that T is injective if and only if $\operatorname{im}(T')\subset X^*$ is dense in the weak-* topology.
- 5 Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Then A acts on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ by matrix multiplication, and thus on $C(\mathbb{T}^2)$ via pullback: $(\Phi_A f)(x) = f(Ax), f \in C(\mathbb{T}^2), x \in \mathbb{T}^2$.
 - **a.** Show that the action on $C(\mathbb{T}^2)$ extends to a weak-* continuous action on $\mathcal{D}'(\mathbb{T}^2)$, i.e. on distributions on the torus.
 - **b.** Express the Fourier coefficients $\widehat{\Phi_A u}(k)$, $k \in \mathbb{Z}^2$, of $\Phi_A u \in \mathcal{D}'(\mathbb{T}^2)$ in terms of the Fourier coefficients of u. (Recall that the Fourier series of f on \mathbb{T}^2 is of the form $\sum_{k \in \mathbb{Z}^2} \widehat{f}(k) e^{2\pi i k \cdot x}$.)
 - **c.** Show that if $f \in L^1(\mathbb{T}^2)$ and $\Phi_A f = f$, then f is an a.e. constant function.
 - **d.** Show that the space of invariant distributions, i.e. $u \in \mathcal{D}'(\mathbb{T}^2)$ such that $\Phi_A u = u$, is however infinite dimensional.