KRAVSPECIFIKATION TAXIBIL

Projektgrupp 13

Version 1.0

Status

Granskad	Johan Klasén Thomas Wiger	2022-09-15 2022-09-15
Godkänd	Anders Nilsson	2022-09-15

PROJEKTIDENTITET

Grupp13, 2022HT, Powerpuffpinglorna Linköpings tekniska högskola, ISY

Namn	Ansvar	Telefon	E-post
Linus Thorsell	Projektledare	0765612171	linth181@student.liu.se
Oscar Sandell	Testansvarig	0709416866	oscsa604@student.liu.se
Hannes Nörager	Utvecklare	0733118779	hanno696@student.liu.se
Johan Klasén	Dokumentansvarig	0730982555	johkl473@student.liu.se
Zackarias Wadströmer	Utvecklare	0706142029	zacwa923@student.liu.se
Thomas Pilotti Wiger	Konstruktionsansvarig	0761708593	thopi836@student.liu.se

E-postlista för hela gruppen: <u>TSEA29_2022HT_E7-Grupp13@groups.liu.se</u> Hemsida: <u>https://gitlab.liu.se/da-proj/microcomputer-project-laboratory-d/2022/g13</u>

Kund: Anders Nilsson, 013-28 26 35, anders.p.nilsson@liu.se

Kursansvarig: Anders Nilsson, 3B:512, 013-28 26 35, anders.p.nilsson@liu.se Handledare: Peter Johansson, 013-28 1345, peter.a.johansson@liu.se

Innehåll

Inledning	1
Parter	1
Syfte och Mål	1
Användning	1
Bakgrundsinformation	1
Definitioner	2
Översikt av systemet	2
Grov beskrivning av produkten	2
Produktkomponenter	2
Beroenden till andra system	2
Ingående delsystem	2
Avgränsningar	3
Generella krav på hela systemet	3
Delsystem 1 Kommunikationsmodul	4
Krav för delsystem 1	4
Delsystem 2 Styrmodul	4
Krav för delsystem 2	4
Delsystem 3 Sensormodul	4
Krav för delsystem 3	4
Delsystem 4 Extern Applikation	5
Krav för delsystem 4	5
Utvecklingsmetodik	5
Krav för utvecklingsmetodiken	5
Leveranskrav och delleveranser	6
Dokumentation	7
Referenser	7

Dokumenthistorik

Version	Datum	Utförda förändringar	Utförd av	Granskad
0.1	2022-09-08	Första utkastet	Gruppen	Gruppen
0.2	2022-09-12	Andra utkastet	Gruppen	Gruppen
0.3	2022-09-14	Tredje utkastet	JK	TW
1.0	2022-09-15	Första versionen	JK	TW

1 Inledning

Presenterade i denna kravspecifikation är alla de krav sammanställda för projektet och dess genomförande.

Figur 1. Ett exempel på en bil med diverse sensorer

Kraven presenteras på formen:

Kravnummer	Version	Kravtext för krav nr X	Prioritet
------------	---------	------------------------	-----------

1.1 Parter

Projektet kommer utföras av en grupp studenter, även benämnd "gruppen" eller "projektgruppen", under handledning av Peter Johansson härefter benämnd "handledaren" till förmån för Anders Nilsson också känd som "kunden".

1.2 Syfte och Mål

Projektets syfte är konstruktionen av en autonom taxibil. Arbetet kommer framförallt vara att utveckla systemet och den tekniska designen.

1.3 Användning

Produkten används fritt av kunden efter leverans.

1.4 Bakgrundsinformation

Kunden vill undersöka möjligheterna att konstruera en autonom bil. Bilen ska kunna köra autonomt från en punkt till en annan i ett känt vägnät utan att kollidera med eventuella hinder på vägen. För att utvärdera hur en sådan bil kan konstrueras har kunden anordnat en tävling där flera prototyper ska delta för att utvärdera olika konstruktionsalternativ.

1.5 Definitioner

Prioritetsnivåer [2]:

- 1. Grundkrav, ska uppfyllas vid beslutspunkt 5.
- 2. Extra krav, ska uppfyllas om det finns tid kvar då grundkraven är utförda.
- 3. Krav på framtida utbyggnad, uppfylls om tid finns då samtliga krav med prioritet 1 och 2 är uppfyllda.

Autonom - Utan externt inflytande.

Bil, taxibil, robot - Den produkt som projektet utvecklar.

Köruppdrag, uppdrag - Att i en bana hämta upp passagerare och föra dem till sin destination.

Telemetri - Mätdata såsom avstånd till vägkant eller synbara hinder, avlagd sträcka, styrbeslut och styrdata till den bärbara datorn.

2 Översikt av systemet

En kortare översikt av det konstruerade systemet.

Figur 2. Denna bild visar en översikt av systemet.

2.1 Grov beskrivning av produkten

Produkten är en autonom taxibil som kan navigera sig genom ett vägnät i enlighet med angivna krav. Tillkommer gör mjukvara för att till viss grad styra samt inspektera systemet.

2.2 Produktkomponenter

Produkten utgörs av en färdigbyggd bil samt mjukvara för att kontrollera den.

2.3 Beroenden till andra system

Inget beroende i nuläget utöver Python.

2.4 Ingående delsystem

Produkten kommer bestå av en färdigkonstruerad bil med motorer och servon. Den kommer även bestå av en kommunikationsmodul, styrmodul, sensormodul samt en extern applikation.

2.5 Avgränsningar

Det autonoma fordonet ska endast förväntas navigera en väl definierad bana. Banan designas i samråd med de övriga grupperna som deltar i tävlingen och beskrivs i ingående detalj i dokumentet Banspecifikation [3].

2.6 Generella krav på hela systemet

En lista på generella krav som gäller hela systemet.

Kravnummer	Version	Kravtext	Prioritet
2.6.1	Original	Bilen ska köra autonomt från en punkt till en annan i ett känt vägnät enligt banspecifikation [3].	1
2.6.2	Original	Bilen ska inte kollidera med hinder på vägen genom att bilen stannar tills det att hindret tas bort.	1
2.6.3	Original	Bilen ska stanna och hämta/upp släppa av passagerare vid en enligt banspecifikationen[3] känd punkt på banan.	1
2.6.4	Original	Upphämtning/avsläppning ska ske på höger sida.	1
2.6.5	Original	Bilen ska vara modulbyggd. Ska vara möjligt att byta ut en modul mot en annan.	1
2.6.6	Original	Gränssnitten mellan modulerna ska vara tydligt specificerade.	1
2.6.7	Original	Varje modul ska innehålla minst en egen processor.	1
2.6.8	Original	Det ska finnas en kommunikationsmodul, styrmodul och sensormodul i systemet.	1
2.6.9	Original	Bilen ska kunna fjärr-övervakas och styras från en bärbar dator.	1
2.6.10	Original	Bilen ska kunna uppvisa repeterbarhet detta sker genom att bilen ska klara av köruppdraget 3 av 4 gånger vid BP5.	1
2.6.11	Original	Bilen ska ta kortast möjliga väg under köruppdraget.	1
2.6.12	Original	Bilen ska ha en LCD som visar aktuella mätvärden från bilens sensorer.	2

3 Delsystem 1 Kommunikationsmodul

Systemets kommunikationsmodul ska vara den hub på roboten som kommunicerar med den externa datorn. Den ska ta emot data från en extern källa som ska påverka roboten.

3.1 Krav för delsystem 1

Kravnummer	Version	Kravtext	Prioritet
3.1.1	Original	Bilen ska kommunicera med en Extern Laptop.	1
3.1.2	Original	Bilen ska fortlöpande skicka mätdata såsom avstånd till vägkant eller synbara hinder, avlagd sträcka etc, samt styrbeslut och styrdata.	1
3.1.3	Original	Bilen ska reagera på manuella kommandon (framåt, bakåt, sväng(v/h), stanna).	1
3.1.4	Original	Systemet ska kunna ta telemetri från styr- och sensormodulerna.	1
3.1.5	Original	Bilen ska kunna initieras med styrparametrar skickade från en extern laptop.	1

4 Delsystem 2 Styrmodul

Styrmodulens uppgift är att driva taxibilen framåt så att den kan utföra uppdraget. Detta genom att kontrollera de olika aktuatorerna på roboten så som motorer och styrning. Modulen får data från kommunikationsmodulen och styr roboten därefter.

4.1 Krav för delsystem 2

Kravnummer	Version	Kravtext	Prioritet
4.1.1	Original	Styrmodulen ska kunna översätta styrkommandon och skicka vidare dessa till de olika aktuatorerna.	1
4.1.2	Original	Styrmodulen ska ansvara för robotens framdrivning.	1
4.1.3	Original	Styrmodulen ska kunna ta emot manuella styrkommandon via kommunikationsmodulen.	1

5 Delsystem 3 Sensormodul

Denna modul ska ansvara för att fixa fram mätdata från sensorerna och sedan skicka den till kommunikationsmodulen.

5.1 Krav för delsystem 3

Kravnummer	Version	Kravtext	Prioritet
5.1.1	Original	Sensormodulen ska kommunicera med kommunikationsmodulen.	1

6 Delsystem 4 Extern Applikation

Denna applikation skall ta emot data från kommunikationsmodulen på Taxibilen och visa relevant telemetridata på gränssnittet. Denna skall även kunna användas för att manuellt styra och ändra inställningar på Taxibilen.

6.1 Krav för delsystem 4

Kravnummer	Version	Kravtext	Prioritet
6.1.1	Original	Applikationen ska kommunicera med kommunikationsmodulen.	1
6.1.2	Original	Applikationen ska visualisera vägnätet som bilen kör på.	2
6.1.3	Original	Applikationen ska ta emot video från kommunikationsmodulen.	2
6.1.4	Original	Applikationen ska ta emot telemetri.	1
6.1.5	Original	Det ska genom applikationen gå att kunna styra bilen manuellt (Stanna, Sväng, Bakåt, Framåt).	1
6.1.6	Original	Applikationen ska kunna skicka startparametrar till kommunikationsmodulen.	1

7 Utvecklingsmetodik

Ett krav från beställaren är att utveckling av produkten ska ske enligt den så kallade LIPS-modellen [1]. LIPS-modellen beskriver övergripande vilka delmoment projektet ska delas upp i för att få ett bra flöde under projekttiden. I detta ingår även en viss mängd planeringsmoment och dokumentation som ska ske löpande under projekttiden. Dessa delmoment listas nedan under rubrikerna *Leveranskrav och delleveranser* och *Dokumentation*. Projektet ska även utföras inom en strikt budgeterad tidsram på 160 arbetstimmar/person efter det att en godkänd projektplan har levererats och godkänts av beställaren.

7.1 Krav för utvecklingsmetodiken

Kravnummer	Version	Kravtext	Prioritet
7.1.1	Original	Projektet i sin helhet ska bedrivas enligt LIPS-modellen [1].	1
7.1.2	Original	Projektet ska slutföras inom den av beställaren fastställda tidsramen på 160 arbetstimmar/person.	1

8 Leveranskrav och delleveranser

Produkten som förväntas levereras till beställaren består av en fungerande autonom taxibil med tillhörande teknisk dokumentation och användaranvisningar.

Projektgruppen förväntas möta följande leveranser till beställaren.

Kravnummer	Version	Kravtext	Prioritet
8.1	Original	Senast 15/9 kl 16:00 ska kravspecifikationen v1.0 vara levererad till beställaren.	1
8.2	Original	Senast 29/9 kl 16:00 ska projektplanen, tidplanen och systemskissen vara levererad till beställaren.	1
8.3	Original	Senast 13/10 kl 16:00 ska designspecifikation v1.0 vara inlämnad till handledaren.	1
8.4	Original	En löpande tidrapport ska lämnas in till beställaren varje måndag senast kl 16 från den 31/10 till 12/12.	1
8.5	Original	En avslutande tidrapport ska lämnas in till beställaren den 21/12 kl 16:00.	1
8.6	Original	Teknisk dokumentation v1.0 och användarhandledning v1.0 ska lämnas in till kunden senast den 14/12 kl 16:00	1
8.7	Original	Projektgruppen ska den 19/12 uppvisa en fungerande robot som klarar att köra banan i både manuellt och autonomt läge.	1
8.8	Original	En efterstudie ska lämnas in till beställaren senast den 21/12.	1

9 DOKUMENTATION

Dokument som projektgruppen kommer tillhandahålla är:

Dokument	Språk	Syfte	Målgrupp	Format/media
Systemskiss	Svenska	Övergripande modell hur produkten ska designas. Ska innehålla modulindelning av systemet och ett preliminärt blockschema.	Kund	Pdf
Projektplan	Svenska	Planering för projektets villkor och utförande samt övergripande fördelning av den tillgängliga projekttiden i form av aktiviteter.	Kund	Pdf
Tidsplan	Svenska	Detaljerat schema över hur projektmedlemmarna kommer fördela tillgängliga arbetstimmar under projekttiden utgående från aktiviteterna i projektplanen.	Kund	Excel-dokument
Tidrapportering	Svenska	Löpande redovisning av tidsanvändning till kunden.	Kund	Markdown-filer
Designspecifikation	Svenska	Förfining av systemskissen på tydlig detaljnivå över hur produkten ska konstrueras. Ska innehålla krets- och flödesscheman.	Handledaren	Pdf
Teknisk dokumentation	Svenska	Komplett beskrivning av hur produkten är konstruerad.	Kund	Pdf
Användarhandledning	Svenska	Tydliga instruktioner hur man använder produkten.	Kund	Pdf
Efterstudie	Svenska	Sammanställning hur projektgruppen upplevde utförandet av av arbetet.	Kund	Pdf

Referenser

Publicerade källor

[1] T. Svensson och C. Krysander, Projektmodellen LIPS, 1st ed. Studentlitteratur, 2011

Elektroniska källor

[2] A. Nilsson, *Fö3: Kravspecifikation*. 2021-09-02 [Online] Tillgänglig: https://www.isy.liu.se/edu/kurs/TSEA29/forelasning/TSEA29_Fo3_22.pdf Hämtad: 2022-9-13

Opublicerade källor

[3] Projektgrupp 11, 12 & 13, *Banspecifikation*. Gemensamt skapat dokument för kursen TSEA29 HT2022, ISY, Linköpings tekniska högskola