Trig Final (Solution v14)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 3.4 radians. The arc length is 370 meters. How long is the radius in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

r = 108.8 meters.

Question 2

Consider angles $\frac{-15\pi}{4}$ and $\frac{7\pi}{3}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{-15\pi}{4}\right)$ and $\sin\left(\frac{7\pi}{3}\right)$ by using a unit circle (provided separately).

Find $cos(-15\pi/4)$

$$\cos(-15\pi/4) = \frac{\sqrt{2}}{2}$$

Find $sin(7\pi/3)$

$$\sin(7\pi/3) = \frac{\sqrt{3}}{2}$$

Question 3

If $\tan(\theta) = \frac{63}{16}$, and θ is in quadrant III, determine an exact value for $\cos(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$16^{2} + 63^{2} = C^{2}$$

$$C = \sqrt{16^{2} + 63^{2}}$$

$$C = 65$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant III in a unit circle.

$$\cos(\theta) = \frac{-16}{65}$$

Question 4

A mass-spring system oscillates vertically with a midline at y = 3.67 meters, a frequency of 2.6 Hz, and an amplitude of 8.89 meters. At t = 0, the mass is at the midline and moving up. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 8.89\sin(2\pi 2.6t) + 3.67$$

or

$$y = 8.89\sin(5.2\pi t) + 3.67$$

or

$$y = 8.89\sin(16.34t) + 3.67$$