

Finite element models for the study of hydrogen embrittlement of steel structures

Daniella LOPES PINTO 1,2*

daniella.lopes_pinto@minesparis.psl.eu

Academic advisor: Jacques BESSON 1

Industrial advisors: Nikolay OSIPOV 2

¹ Centre des Matériaux, Mines Paris

² Transvalor S.A.

Thesis defense

March 7th 2025

Outline

Hydrogen inside metals

Finite element formulation

► Sieverts' law: The solubility of a diatomic gas in a metal is proportional to the square root of the gas pressure

Hydrogen diffusion and trapping

 Model from Sofronis and McMeeking (1989) and corrected by Krom et al. (1999)

• Hydrogen concentration: $C = C_L + C_T$

Lattice concentration: $C_L = \beta N_L \theta_L$

► Trapped concentration: $C_T = N_T(\kappa)\theta_T$

Hydrogen flux:

$$J = -D_L \nabla C_L + \frac{D_L C_L V_H}{RT} \nabla P$$

Oriani's equilibrium:

$$\frac{1-\theta_L}{\theta_L} \frac{\theta_T}{1-\theta_T} = K$$

(Coupling terms)

The **ductile behavior** of the metal is described by the **GTN model** (Tvergaard et al. 1984):

$$\frac{\sigma_{eq}^2}{\sigma_F^2} + 2q_1 f_* \cosh\left(\frac{q_2}{2} \frac{\sigma_{ii}}{\sigma_F}\right) - 1 - q_1^2 f_*^2 = 0$$

$$\dot{f} = \dot{f}_{nucleation} + \dot{f}_{growth}$$

phase particles

Void growth

Void coalescence and fracture

Void growth: Unchanged due to mass conservation

$$\dot{f}_g = (1 - f_g) \operatorname{trace}(\dot{\varepsilon}_p)$$

▶ **Void nucleation**: Proposed dependance on hydrogen concentration

Outline

Hydrogen inside metals

Finite element formulation

Mixed formulation

- Fully implicit finite strain framework
- ▶ Based on a mixed formulation: \underline{u} , P, θ (Zhang et al. 2017) and C_L

- Quadratic elements with reduced integration
- ► Aim: better pressure fields by avoiding volumetric locking

Advantage

 ∇P can be directly computed from nodal values

$$J = -D_L \nabla C_L + \frac{D_L C_L V_H}{RT} \nabla P$$

B-bar formulation

- ► The use of quadratic element lead to high simulation times
- ▶ *B*-bar formulation:

Thank you for your attention

Daniella LOPES PINTO

daniella.lopes_pinto@minesparis.psl.eu

