

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 «ДЛИННАЯ АРИФМЕТИКА»

Студент Гурова Наталия Алексеевна

Группа ИУ7 – 34Б

Оглавление

ОПИСАНИЕ УСЛОВИЯ ЗАДАЧИ	3
ОПИСАНИЕ ТЕХНИЧЕСКОГО ЗАДАНИЯ	3
ОПИСАНИЕ СТРУКТУРЫ ДАННЫХ	4
ОПИСАНИЕ АЛГОРИТМА	<u>5</u>
НАБОР ТЕСТОВ	5
ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ	<u>7</u>
ВЫВОЛ	Q

Описание условия задачи

Смоделировать операцию деления целого числа длиной до 30 десятичных цифр на действительное число в форме \pm m.n E \pm K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка K - до 5 цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

Описание технического задания

Входные данные:

Целое число: строка, содержащая целое число в виде <+\- m>. Знак перед числом не обязателен. Длина модуля числа <m> - до 30 цифр.

Действительное число: строка, содержащая вещественное число в виде <+\-m.nE+\-K>. Знак перед числом и перед порядком не обязателен. Знак экспоненты <E> или <e> необязателен. Суммарная длина <m+n> может быть больше 30, но после округления длина порядка должна быть не больше 5 цифр.

Выходные данные:

Длинное число в виде <+\-0.m1E+\-K1>. Длинна мантиссы <m1> - до 30 цифр; длинна порядка <K1> — до 5 цифр.

Действие программы:

Деление целого числа на вещественное.

Обращение к программе:

Запускается через терминал.

Аварийные ситуации:

1. Некорректный ввод: строка с целым числом содержит символы, которые не цифра и не (+\-), если это не нулевой элемент строки.

Ha выходе сообщение: «Invalid input big_int, your input is not big_int number.»

2. Некорректный ввод: строка с целым числом пустая.

На выходе сообщение: «Invalid input big_int, input is empty.»

3. Некорректный ввод: строка с вещественным числом содержит символ не цифру и не символ из набора ("+", "-", "-", ". ", "Е").

Ha выходе сообщение: «Invalid input big_double, your input is not scientific number.»

4. Некорректный ввод: строка с вещественным числом пустая.

На выходе сообщение: «Invalid input big_double, input is empty.»

5. Некорректный ввод: переполнение порядка при вводе вещественного числа. (порядок превышает по модулю 99999)

На выходе сообщение: «Invalid input big_double, the number is too large.»

6. Некорректный ввод: превышение длины при вводе целого числа (больше 30 цифр).

Ha выходе: «Invalid input big_int, your input is not big_int number.»

7. Деление на нуль: при вводе вещественного числа введен нуль.

На выходе сообщение: «Division by zero»

8. Переполнение при делении: экспонента получившегося числа содержит больше 5 цифр.

На выходе сообщение: «Overflow»

Описание структуры данных

Целое число:

После ввода, хранится в массиве символов длиной 32 символа. Далее число обрабатывается и записывается в структуру big_int_t.

```
#define DATA_LEN 30
typedef struct
{
    int is_negative;
    int data[DATA_LEN];
} big_int_t;
```

Поля структуры:

- is_negative знак числа
- data мантисса числа

Вещественное число:

После ввода, хранится в массиве символов длиной 40 символов (с учетом всех служебных знаков: точка < . >, знак экспоненты <E>, знак числа и знак порядка <+ \setminus -).

Далее число обрабатывается и записывается в структуру big_double_t.

```
#define M_LEN 30
#define E_LEN 5
typedef struct
{
    int is_negative_m;
    int mantissa[M_LEN];
    int is_negative_e;
    int exponent[E_LEN];
}
```

Поля структуры:

- is_negative_m знак мантиссы
- mantissa мантисса числа
- is_negative_e знак экспоненты
- exponent экспонента

Описание алгоритма

- 1. Программа считывает первую строку, содержащую целое число.
- 2. Строка обрабатывается, проводится проверка данных и число записывается в структуру big_int_t.
- 3. Программа считывает вторую строку, содержащую вещественное число.
- 4. Строка обрабатывается, проводится проверка данных и число записывается в структуру big_double_t.
- 5. Если второе число (вещественное) равно нулю, то выводится сообщение о том, что на нуль делить нельзя.
- 6. Если первое (целое) число равно нулю, то ответ принимается равным за нуль.
- 7. Если происходит переполнение порядка, или порядок равен машинному нулю, то выводится поясняющее сообщение.
- 8. Если все данные верные, то происходит деление первого (целого) числа на второе (вещественное), без контроля округления.
- 9. После деления результат выводится в нормализованном виде в соответствии со спецификацией, указанной в Т3 (<+\-0.m1E+\-K1>).

Набор функциональных тестов

№	Название теста	Число №1	Число №2	Вывод
1	Деление на нуль	123	+0e0	Division by zero
2	Переполнение при делении	123	+1e99998	Overflow
3	Переполнение при округлении (ввод	123	99999e9999 9	Invalid input big_double, the
	вещественного числа)		(31 девятка в мантиссе)	number is too large.
4	Неверно введено вещественное число	123	1e4e	Invalid input big_double, your input is not scientific number.
5	Неверно введено целое число	12e	123e	Invalid input big_int, your input is not big_int number.
6	Неверно введено вещественное число (пустая строка)	123		Invalid input big_double, input is empty.
7	Неверно введено целое число (пустая строка)		123	Invalid input big_int, input is empty.
8	Граничные значения (вещественное число)	+123	+9999999.	+0.123E-27
9	Граничные значения (порядок)	+123	+1E+99998	+0.123E-99995

10	Граничные значения (целое число)	-999999	123	- 0.8130081300813 008130081300813 E+28
11	Обычный тест	10	2	5
12	Обычный тест	10	3	+0.333333333333333333333333333333333333
13	Обычный тест	1	11	+0.909090909090 909090909090909 09E-1
14	Обычный тест (отрицательное на вещественное)	-8	90	- 0.888888888888 88888888888888 88E-1
15	Деление нуля	0	90	+0.0E+0

Ответы на контрольные вопросы

1. Каков возможный диапазон чисел, представляемых в ПК?

Диапазон чисел зависит от разрядности процессора и выбранного типа. Максимальное значение беззаконного целого числа, для которого выделяется 64 разряда, равно $2^64 - 1 = 18$ 446 744 073 709 551 615.

2. Какова возможная точность представления чисел, чем она определяется?

Точность представления вещественных чисел определяется количеством памяти, выделяемой для хранения мантиссы числа. Для мантиссы числа типа double выделяется 52 бита, с помощью этого мантисса числа может иметь значение до $2^52 = 4503599627370496$.

3. Какие стандартные операции возможны над числами?

Возможны операции сложения, вычитания, умножения, деление, деление по модулю, сравнение.

4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Программист может выбрать структуру, куда он сможет записать не только мантиссу, но и знак числа и порядка, или же использовать массив символов.

5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Можно использовать самостоятельно разработанные функции или библиотеки.

Вывод