Sprawozdanie 2

Dioda półprzewodnikowa

Maciej Mionskowski

Celem ćwiczeń było zapoznanie z właściwościami diody półprzewodnikowej.

1 Działanie prostownicze diody półprzewodnikowej w obwodzie elektrycznym

1.1 Cel

Celem ćwiczenia było poznanie właściwości diody takich jak: przewodzenie prądu w jednym kierunku, zjawisko napięcia progowego U_p i zmierzenie go dla diody prostowniczej.

Rysunek 1: Prosty obwód z diodą

Tablica 1: Wartości napięć zmierzonych w obwodzie na rysunku 1

Wartość	Dioda włączona jak na rys. 1	Dioda włączona w przeciwnym zwrocie
Napięcie progowe (oscyloskop)	0.722V	0.722V
Napiecie progowe (transient)	0.722V	0.722V
Napiecie średnie wyprostowane	4.15498V	-4.15498V

Rysunek 2: Pomiar na oscyloskopie

Rysunek 3: Analiza transient

Z powyższej analizy wynika, że dioda posiada napięcie progowe wynoszące $\sim 0.72V$. Rozbieżności w powyższych danych spowodowane są błędem pomiarowym polegającym na: niewłaściwym ustawieniu kursorów, a także niedokładności programu MultiSim. Zarówno na analizie transient jak i na oscyloskopie możemy zauważyć, że prąd płynie tylko w jedną stronę (od + do -).

2 Prostownik jednopołówkowy z filtrem RC na wyjściu

2.1 Cel

Celem ćwiczenia było poznanie właściwości prostownika jednopołówkowego z filtrem RC, zmierzenie wartości tętnień i ich redukcja.

Rysunek 4: Prosty obwód z prostownikiem jednopołówkowym

Tablica 2: Wartości napięć zmierzonych w obwodzie na rysunku 4

R_1	$5k\Omega$	$5k\Omega$	$5k\Omega$	$5k\Omega$
C_1	brak	$1\mu F$	$3\mu F$	$1.6\mu F$
$oxed{ ext{Napięcie tętnień} \ U_t[V]} \ egin{tabular}{c} ext{Napięcie tętnień} \ U_t[V] \ ext{(transient)} \ \end{array}$	13.43V	2.17V	0.7863V	1.33V

Rysunek 5: Pomiar na oscyloskopie dla $C_1=3\mu F$

Rysunek 6: Analiza transient dla $C_1 = 3\mu F$

Analiza pokazuje, że dodanie kondensatora powoduje zaczęcie występowania napięcia tętnień. Zwiększenie pojemności kondensatora powoduje zmniejszenie napięcia tętnień. Analogicznie czym mniejsza pojemność kondensatora tym tętnienia są większe. Dzieje się tak dlatego, że podczas gdy negatywna część napięcia nie jest przetwarzana kondensator oddaje ładunki. Czym większa pojemność tym więcej ich może oddać.

3 Prostownik w układzie Graetza

3.1 Cel

Celem ćwiczenia było poznanie zasady działania i zmierzenia wartości napięcia tętnień układu z prostownikiem dwupołówkowym - układem Graetza.

Rysunek 7: Obwód z prostownikiem Graetza

Tablica 3: Wartości napięć zmierzonych w obwodzie na rysunku 7

R_1	$1k\Omega$	$1k\Omega$	$1k\Omega$	$10k\Omega$
C_1	brak	$5\mu F$	$2\mu F$	$5\mu F$
Napięcie tętnień $U_t[V]$ (transient)	12.645V	0.9547V	2.1533V	0.1029V

Rysunek 8: Pomiar na oscyloskopie dla $C_1=5\mu F$

Rysunek 9: Analiza transient dla $C_1 = 5\mu F$

Rysunek 10: Pomiar na oscyloskopie dla uszkodzonej diody (7a) przy $C_1=5\mu F$

Rysunek 11: Pomiar na oscyloskopie dla uszkodzonych diód (7b) przy $C_1=5\mu F$

Rysunek 12: Pomiar na oscyloskopie dla uszkodzonych diód (7c) przy $C_1 = 5\mu F$

Mostek Graetza prostuje obie połówki (-,+) prądu zmiennego, można to zaobserwować przy analizie tętnień na rysunku 9. W przeciwieństwie do prostownika jednopołówkowego, przy mostku Graetza występują dwa tętnienia na okres sinusoidy. Można też zauważyć, że napięcie progowe U_p liczone jest teraz dwukrotnie. Oznacza to, że w jednym momencie prąd płynie tylko przez dwie diody. Podobnie jak przy prostowniku jednopołówkowym, wzrost pojemności kondensatora powoduje zmniejszenie napiecia tętnień U_t . Wraz ze wzrostem rezystancji napięcie tętnień również maleje, ponieważ kondensator wolniej się rozładowuje. Z tablicy 3 można również wywnioskować, że pojemność kondensatora nie jest liniowo skorelowana z napięciem tętnień U_t . Różne uszkodzenia mostka Graetza wpływają niekorzystnie na jego działanie.

4 Detektor szczytowy

4.1 Cel

Celem ćwiczenia było zapoznanie z zasadą działania detektora szczytowego.

Rysunek 13: Prosty detektor szczytowy

Rysunek 14: Analiza transient

Ze schematu obwodu 13 oraz analizy transient tego obwodu na rysunku 14 można wywnioskować jak działa detektor szczytowy. Widać, że napięcie na kondensatorze wynosi niemal tyle ile wynosiła maksymalna wartość napięciai do tej pory - różnica spowodowana jest napięciem progowym diody $U_p=0.72V$. Zasada działania detektora jest prosta, podczas dodatniego i większego niż obecnie na kondensatorze przebiegu napięcia wejścia dioda przewodzi prąd ładując kondensator. Przy napięciu mniejszym niż obecnie na kondensatorze prąd nie może się cofnąć do źródła, ponieważ dioda jest polaryzowana zaporowo, sprawia to, że napięcie na kondensatorze może tylko wzrosnąć.

5 Demodulator diodowy

5.1 Cel

Celem ćwiczenia było zapoznanie z zasadą działania detektora szczytowego.

Rysunek 15: Prosty demodulator AM z podłączonym oscyloskopem

Rysunek 16: Pomiar na oscyloskopie przy $R_1=100k\Omega$

Rysunek 17: Pomiar na oscyloskopie przy $R_1=10k\Omega$

Rysunek 18: Pomiar na oscyloskopie przy $R_1=1k\Omega$

Zasada działania demodulatora AM jest bardzo podobna i bazuje na działaniu detektora szczytowego. Różnicą jest dodatkowy opornik, który ma za zadanie częściowo rozładować kondensator, tak aby kolejny grzbiet fali mógł zostać zarejestrowany jako szczyt. Ważny jest tutaj odpowiedni dobór opornika i kondensatora. Można zauważyć, że przy $R_1=100k\Omega$ (rysunek 16), demodulator zachowuje się poprawnie. Natomiast przy mniejszych oporach 17 i 18 sygnał nie jest poprawnie demodulowany (kondensator jest za bardzo rozładowywany) i powstają skoki. Demodulacja AM polega na wydobyciu oryginalnej informacji z fali. Ma zostosowanie między innymi w radiotelekomunikacji.