Shiny App Guide to Picking a College Major

Team 9

Kai-Duan Chang, Li-Ci Chuang, Sri Manogna Gurijala, Ryan Egbert, Meghan Harris

Business Problem

Students feel lost and have no direction when deciding a college major.

Business Problem

Stakeholders

High school students

College students

Students
looking to
change their
college major

Our Opportunity

Provide a guide to help students choose their major.

Our Opportunity

Provide a guide to help students choose their major.

- 1 Help students understand the earning difference and employment rate between majors.
- 2 Recommend majors based on students' interests.

Analytics Problem

Find a relationship between major category and the high school subjects.

Analytics Problem

Drivers and relationships to outputs

1 Average Salary

2 Employment Rate

3 Number of students/ Male and Female

Key Assumptions

Students wants to pursue higher salary.

Students care about the employment rate in the field they choose.

Students would like to know the class profile before making a decision.

Key metrics of success

Potential model performance measurements:

- Hit Ratio
- Accuracy Percentage
- AUC
- Utilizing h2o.get_leaderboard/h2o.performance

Data

Data PreProcessing Steps

Data Acquisition

"College Majors" dataset was found on Kaggle.com Data Cleaning

Data Transformation 2

Data Acquisition

Data Cleaning

- Removed irrelevant major category and missing values
- Split combined major category into separate major categories
- Added unique features corresponding to each major category for predictive model

Data Transformation

Data Cleaning

3

Data Transformation

- Added dummies based on major category
- Checked and removed multicollinearity and perfect collinearity

Methodology Selection

Methodology Types

1 Descriptive Analysis

2 Predictive Analysis

1 Descriptive Analysis

Using the data of several majors list, understanding the statistics of each major preferences, and visualizing the results.

1 Descriptive Analysis

Using the data of several majors list, understanding the statistics of each major preferences, and visualizing the results.

Why?

1

Descriptive Analysis

Using the data of several majors list, understanding the statistics of each major preferences, and visualizing the results.

For the ease of exploring and comparing different variables within each major category.

Why?

Providing accurate data analysis though the model.

Effective exploratory data analysis using tables, bar graphs, scatter plots, and slope chart.

2 Predictive Analysis

Predicting the majors based on the selection of interests by the students.

2 Predictive Analysis

Predicting the majors based on the selection of interests by the students.

Why?

2

Predictive Analysis

Predicting the majors based on the selection of interests by the students.

Forecasting the major category selection and analyzing the prospects like salary, employment rate etc.

Why?

Projecting what is going to happen through the selections made by the students.

Predictive Analysis

Predictive Variables:

2 fields of interest to draw the comparison

Salary range selection

Three favorite/least favorite high school subjects

Advantages of Using R

The library(ggplot2) is used for the aesthetic graphical representation, which is one of the key aspects in our project.

Using the shiny package was extremely easy to make our reports with data, plots and R scripts embedded within.

Regression, predictive, and descriptive models, being majorly used throughout our project, are facilitated through the R environment.

Advantages of Using R

R is an open source programming language providing the freedom to work with in the environment with multiple packages.

The main packages we used in this project helped us transform messy data into a structured form.

Model Building

Model Building

- There are only a handful of predictors
- Use Random Forest model (H2O)

Method

- 1 Iterate through several different values
- Final parameters: ntrees = 50, max_depth = 5
- Model is loaded in when app starts

On the 'Recommend' page, the prediction is made

Functionality

1

Explore

2 c

Compare

3

Recommend

Future enhancements

1

Include more data and data variables

2

Add more predictive variables for predictive model

References

References

We based our Shiny app UI on Zimin Luo's and Lasha Gochiashvili's project "Graduate Employment in Singapore".

https://gesurvey.shinyapps.io/Graduate-Employment-Survey/#1_brief_introduction

Summary

Visual Comparison

Details By University

Data	hv	Vea
Data	Dy	Tea

Select Year

2018

Referenced UI example

No. of Graduates Ranking

Nanyang Technological University

University		Employment Rate Overall (Avg %)	Gross Monthly Median Income (Avg)
Singapore Ur	niversity of Social Sciences	94	3133
Singapore M	anagement University	93	3955
Singapore Ins	stitute of Technology	92	3350

National University of Singapore 91

3472

89

3625

Thank you!