Algebraic Number Theory 3704

Dr H Wilton

Jan 2012

Contents

1	1 Introduction		2
2	Fiel	ds	6
	2.1	Background material	4
	2.2	Field Extentions	,
	2.3	Degrees of extension	8

Introduction 1

An Algebraic number is the root of a polynomial.

eg.
$$\alpha = \sqrt{2}$$
, $15\sqrt[7]{3}$, $2+i$,... such that $f(\alpha) = 0$ where $f \in \mathbb{Z}[x]$ or $\mathbb{Q}[x]$

An Algebraic number field

 $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$ is the smallest subfield of \mathbb{C} containing both \mathbb{Q} and $\sqrt{2}$ also $\mathbb{Q}(i+\sqrt{2})$ for example

K is an algebraic number field $\underbrace{\sigma}_{\text{algebraic integers}}\subseteq K$ eg. $\mathbb{Z}[x]\subseteq \mathbb{Q}[x]$

Typical questions to ask about σ

- (i) Does σ have unique factorisation?
- (ii) Is σ a PID?
- (iii) If not then how close is σ to being a PID?
- (iv) How does a prime p factorise in σ ? eg. in $\mathbb{Z}[i]$, $5 = (\sqrt{2} + 1)(\sqrt{2} - 1)$ but 7 doesn't factorise.
- (v) What are the units of σ ? eg. $(\sqrt{2}+1)(\sqrt{2}-1)=1$ in $\mathbb{Z}(\sqrt{2})$ but in $\mathbb{Z}(\sqrt{-5})$ only 1, -1 are units.

Fields 2

2.1Background material

Rings - commutative with 1

K - a field

Rings of interest

1. Z

2.
$$K[x] = \{f(x) = \sum_{i=0}^{n} a_i x^i \mid a^i \in K\}$$

Members of the ring:

- (i) units irreducible elements
- (ii) reductible elements f = gh, g, h non units
- (iii) irreductible elements, everything else

eg. Units of $K[x] = K^*$

Criteria for irreductibility of $f \in \mathbb{Q}[x]$

(i) Gauss lemma: If f is irreducible in $\mathbb{Z}[x]$ then f is irreducible in $\mathbb{Q}[x]$ Corollary: if f is monic of degree 2 or 3 then if f is reductible it has a root in \mathbb{Z} which has to divide the constant term of f. eg. $x^3 + x + 1$

- (ii) Eissenstein Criterion: $f(x) = \sum_{i=0}^{n} a_i x^i$ if there is p a prime such that:
 - (a) $p \mid a_i, i < n$
 - (b) $p \nmid a_n$
 - (c) $p \nmid a_0$

then f is irreducible. eg. for: $x^2 + 4x + 2$

(iii) Reduction mod p if $f \in \mathbb{Z}[x]$ denote the map:

$$\mathbb{Z}[x] \to (\mathbb{Z}/p)[x]$$

by $f \to f$

if the degree of the polynomial doesn't go down and deg $f = \deg f$ and f is irreductible in $(\mathbb{Z}/p)[x]$, then f is irreductible in $\mathbb{Z}[x]$.

Also note that $\underbrace{f(x)}_{\in \mathbb{Z}[x]}$ s irreductable iff f(x+a) is irreductable where $a\in \mathbb{Z}$

Definition 2.1 (Euclid's algorithm). If $f, g \in K[x]$ then we can write

$$f(x) = h(x)g(x) + r(x) deg(r) < deg(g)$$
$$hcf(f,g) = hcf(g,r) = \dots$$

Definition 2.2. A ring with a euclidean algorithm is called a euclidean domain eg. $\mathbb{Z}[x]$, K[x] where a euclidean algorithm assigns each member of the ring a degree deg: $R \to \mathbb{N}$

Definition 2.3 (Ideal). R-ring, $I \subseteq R$, $I \neq \phi$ is called an ideal if:

- (i) $x, y \in I \Rightarrow x + y \in I$
- (ii) $x \in I, \ \lambda \in R \Rightarrow \lambda x \in I$

eg.
$$x \in R$$
 then $(x) = \{\lambda x \mid \lambda \in R\}$ – Principal ideal.

Also
$$(x_1, ..., x_n) = \left\{ \sum_{i=1}^n \lambda_i x^i \mid \lambda_i \in R \right\} eg. \ \underbrace{(4,6)}_{\subset \mathbb{Z}} = (hcf(4,6)) = (2)$$

Definition 2.4. If every ideal in R is a principal ideal then R is a principal ideal domain.

Theorem 2.1 (Euclidean rings are PID).

Proof. $I \subseteq R$, ideal. Take $x \in I/0$ of minimal degree. Let $y \in I$ then

$$y = gx + r$$
, $deg(r) < deg(x)$, $r \in I \implies r = 0$

Definition 2.5 (Maximal ideal). an ideal $I \subseteq R$ is maximal if for any ideal J with $I \subseteq J \subseteq R$ either I = J or J = R.

Example 2.1. maximal ideals in K[x] are all of the form (f) where f is and irreductable polynomial. for (g) if g = hk then $(g) \subsetneq (h)$.

Definition 2.6. Let $I \subseteq R$ be an ideal then $(I, +) \subseteq (R, +)$ is a subgroup. We can consider the group

$$R/I = \{x + I \mid x \in R\}$$

$$(x + I) + (y + I) = (x + y) + I$$

 $(x + I)(y + I) = xy + I$

R/I is the quotient of R by I.

Definition 2.7. If R, S are rings, $\phi: R \to S$ is a ring homomorphism if:

(i)
$$\phi(a+b) = \phi(a) + \phi(b)$$

(ii)
$$\phi(ab) = \phi(a)\phi(b)$$

(*iii*)
$$\phi(1) = 1$$

Lemma 2.2. If K is a field and $I \subseteq K$ is an ideal then $I = \{0\}$ or $I = \{K\}$

Proof. If $x \in I/\{0\}$ and $y \in K$ be arbitrary. Then

$$\underbrace{(yx^{-1})x}_{=y} \in I$$

Corollary 2.1. If $\phi: K \to R$ is a ring homomorphism where K is a field and R is a ring, then ϕ is injective.

Proof.

$$\phi(1) = 1_R \text{ so } 1 \notin ker(\phi) \Rightarrow ker(\phi) \neq K : ker(\phi) = \{0\}$$

Theorem 2.3. An ideal $i \subset R$ is maximal iff R/I is a field.

Proof.

 (\Leftarrow) Let

 $\phi: R \to R/I, \quad \phi: x \mapsto x+I$ be the quotient homomorphism

Suppose $I \subseteq J \subseteq R$ then

$$\phi(J) \subset R/I$$

is an ideal. By the lemma 2.2

$$\phi(J) = \{0\} \Rightarrow J = I$$

 $\phi(J) = R/I \Rightarrow J = R$

(⇒) Suppose $I \subseteq R$ is maximal and consider $x \in R/I$. We need to show that $x + I \in R/I$ has a multiplicative inverse. The ideal generated by x and I is R. $1 \in R$ so there is $y \in R$ and $\xi \in I$ such that

$$xy + \xi = 1 \Rightarrow 1 \in xy + I = (x+I)(y+I)$$

x + I has a multiplicative inverse, hence R/I is a field.

2.2 Field Extentions

Definition 2.8. if K, L are fields and $K \subseteq L$ then K is a subfield of L and L is an extention of K

Example 2.2.

$$K = \mathbb{Q}, \quad L = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$$

$$K \subset L \subset \mathbb{C}$$

Definition 2.9. An element $\alpha \in L$ is algebraic over K if:

$$\exists f(x) \in K[x]$$
 such that $f(\alpha) = 0$.

Usually $k = \mathbb{Q}$

Definition 2.10. The ring generated by K and $\alpha \in L$ is denoted $K[\alpha]$:

$$K[\alpha] = \{ f(\alpha) \mid f \in K[x] \}.$$

Definition 2.11. The field generated by K and $\alpha \in L$ is denoted $K(\alpha)$:

$$K(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} \mid f, g \in K[x], \ g(\alpha) \neq 0 \right\}.$$

Definition 2.12.

$$I(\alpha) = \{ f \in K[x] \mid f(\alpha) = 0 \}.$$

Lemma 2.4. $I(\alpha)$ is an ideal.

Proof. $f, g \in I(\alpha)$

$$(f+g)(\alpha) = f(\alpha) + g(\alpha) = 0 + 0$$

 $f \in I(\alpha), \ g \in K[x]$

$$(fg)(\alpha) = f(\alpha)g(\alpha) = 0 \cdot g(\alpha) = 0$$

Definition 2.13. K[x] is a PID

$$I(\alpha) = (M)$$

M is well defined up to multiplication by $\lambda \in K^*$, because it's minimum degree element of $I(\alpha)$

Definition 2.14. The minimal polynomial of α , M_{α} , is the unique monic polynomial such that

$$I(\alpha) = M_{\alpha}$$

Example 2.3. $\alpha = \sqrt{2}, \quad k = \mathbb{Q}$

$$M_{\alpha}(x) = x^2 - 2$$

Lemma 2.5. I(x) is maximal or equlivlently, M_{α} is irreductable.

Proof. suppose M_{α} is reductable then:

$$M_{\alpha}(x) = a(x)b(x)$$

 $M_{\alpha}(\alpha) = a(\alpha)b(\alpha) = 0$

Without loss of generality

$$a(\alpha) = 0 \Rightarrow a \in I(\alpha) = (M_{\alpha})$$

So $M_{\alpha}|a$ and $deg(a) = deg(M_{\alpha})$ so b(x) is constant. b(x) is a unit in K[x] and so M_{α} is irreductable.

Lemma 2.6. A polynomial M is the minimal polynomial of α if:

- (i) $M(\alpha) = 0$
- (ii) M is monic
- (iii) M is irreductable

Proof.

- (\Rightarrow) already done
- (\Leftarrow)

$$(i) \Rightarrow M \in I(\alpha) = (M_{\alpha})$$

 $\Rightarrow M_{\alpha} | M \text{ if } M = a \cdot M_{\alpha}$

by (iii) $a \in K^*$, compare coefficients and using the fact, (ii), that M is monic

$$x^m = ax^n \Rightarrow a = 1$$

we just proved that proved that $I(\alpha)$ is a maximal ideal, so $K[x]/I(\alpha)$ is a field.

Theorem 2.7. Let $\alpha \in L$ be algebraic over K. Then:

$$\Phi: k[x]/I(\alpha) \to k(\alpha)$$

 $f + (M_{\alpha}) \mapsto f(\alpha)$

is a field isomorphism and $K[\alpha] = k(\alpha)$.

Proof. first we need to check Φ is well defined. Suppose:

$$g \in f + (M_{\alpha}) \Leftrightarrow [f - g \in (M_{\alpha})]$$

then

$$\Phi(g + (M_{\alpha})) = g(\alpha) = f(\alpha) = \Phi(f + (M_{\alpha}))$$

next we should check that Φ is a ring homomorphism.

$$\Phi(1 + (M_{\alpha})) = 1$$

$$\Phi(f + g + (M_{\alpha})) = f + g = \Phi(f + (M_{\alpha})) + \Phi(g + (M_{\alpha}))$$

$$\Phi((f+(M_{\alpha}))\cdot(g+(M_{\alpha}))) = fg+f(M_{\alpha})+g(M_{\alpha})+(M_{\alpha})^{2} = fg = \Phi(f+(M_{\alpha}))\cdot\Phi(g+(M_{\alpha}))$$
notice

$$Im(\Phi) = K(\alpha)$$

but $k[x]/(M_{\alpha})$ is a field so Φ is injective, so we have

$$k[x]/(M_{\alpha}) \cong \Phi(\underbrace{k[x]}/\underbrace{(M_{\alpha})}) \subseteq K[\alpha] \subseteq K(\alpha).$$

Therefore by definition of $K(\alpha)$,

$$\Phi(k[x]/(M_{\alpha})) = K[\alpha] = K(\alpha).$$

It's normal to abuse notation and write f for $f + I \in k[x]/I$

Example 2.4. $\alpha = \sqrt{2} + \sqrt{3}$ can talk about $\mathbb{Q}(\sqrt{2} + \sqrt{3})$

$$\alpha^2 = 5 + 6\sqrt{6} \qquad (\alpha^2 - 5)^2 = 24$$

so α is a root of $M=x^2-10x+1=0$, need to check M is irreductable. Recall that a quartic can factor in two different ways

- $(i) (quadratic) \times (quadratic)$
- $(ii) \ (quadratic) \times (linear)$
- $(ii) \Rightarrow root \ is \ a \ factor \ of \ 1$

$$M(1) = -8$$
 $M(-1) = -8$

M does not have a linear factor (i)

$$(x^{2} + ax + b)(x^{2} + cx + d) = x^{4} - 10x^{2} + 1$$
$$(x^{2} + ax + b)(x^{2} + cx + d) = x^{4}(a + c)x^{3}(ac + b + d)x^{2} + (bc + ad)x + bd$$

$$a+c=0$$
 \Rightarrow $a=-c$
 $bd=1$ \Rightarrow $b=d, b=\pm 1$
 $ac+b+d=-10$ \Rightarrow $a^2=10+2b=8 \text{ or } 12$

8 or 12 not squares $\Rightarrow x^4 - 10x + 1$ is irreductable. So:

$$\mathbb{Q}[x]/(x^4 - 10x + 1) \cong \mathbb{Q}(\sqrt{2} + \sqrt{3})$$
$$f \mapsto f(\sqrt{2} + \sqrt{3})$$

2.3 Degrees of extension

 $L \supset K$ if we we say $l_1 + l_2$ and kl are defined but l_1l_2 is not $\forall l_1, l_2 \in L$, $\forall k \in K$, this realises L as a vector space over K.

Definition 2.15. The degree of L over K is just dim(L) when L is thought of as a vector space over K. It is denoted

Example 2.5. $\mathbb{C} \supset \mathbb{R}$

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\} \quad \{1, i\} \text{ form a basis over } \mathbb{R}$$

So $[\mathbb{C}:\mathbb{R}]=2$

Example 2.6. Let $f(x) = \sum_{i=0}^{d} a_i x^i$ be an irreductable polynomial over K

$$L = K[x]/(f) \supset K$$
 $[L:K] = deg(f)$

To show $B = \{1, x, \dots, x^{d-1}\}$ is a basis: Span:

$$x^{d} = \frac{-1}{a_{d}} \sum_{i=0}^{d-1} a_{i} x^{i} \Rightarrow x^{d} \in span(B)$$

similarly $x^n \in span(B)$ for any $n \ge d$

$$x^{n} = x^{n-d}x^{d} = x^{n-d}\left(\frac{-1}{a_{d}}\sum_{i=0}^{d-1}a_{i}x^{i}\right)$$
 is of degree $\leq n-1$

and so $x^n \in span(B)$ by induction, but $\forall g \in K[x]/(f)$

$$g \in span(\{1, x, \dots, x^n\}) \in span(\{1, x, \dots, x^{d-1}\}) = span(B)$$

Linear Independence:

suppose $g(x) = \sum_{i=0}^{d} b_i x^i = 0$. Then $g \in (f)$ but

$$deg(g) \le d - 1 \le d = deg(f) \Rightarrow g = 0 \Rightarrow b_i = 0 \forall i$$

therefore if $f = M_{\alpha}$ for some α algebraic over K then

$$[k(\alpha):K] = deg(M_{\alpha})$$

Proposition 2.1. α is algebraic over K iff $[K(\alpha):K]<\infty$

Proof.

 (\Rightarrow)

$$[k(\alpha):k] = deg(M_{\alpha}) < \infty$$

 (\Leftarrow)

suppose

$$[k(\alpha):k] = d < \infty$$

then $1, \alpha, \dots, \alpha^d$ is linearly independent \Rightarrow there exists a_i such that

$$\sum_{i=0}^{d} a_i \alpha^i = 0$$

Theorem 2.8 (Tower Theorem). suppose $K \subseteq L \subseteq M$ then

$$[M:K] = [M:L][L:K]$$

Proof.

Let $\{a_i\}$ be a basis for L over K & let $\{b_i\}$ be a basis for M over L

Claim. $\{a_i, b_i\}$ is a basis for M over K.

Span: Let $v \in M$, then $\exists \lambda_i \in L$ such that

$$v = \sum_{j} \lambda_{j} b_{j}$$

 $\exists m_{i,j} \in K \text{ such that } \lambda_j = \sum_i m_{i,j} a_i \text{ because } \lambda_i \in L. \text{ So:}$

$$v = \sum_{i,j} m_{i,j} a_i b_j$$

Linear independance: suppose

$$\sum_{i,j} \underbrace{m_{i,j}}_{\in K} a_i b_j = 0$$

Let $\lambda_j = \sum_i m_{i,j} a_i$ then

$$\sum_{i} \lambda_{j} b_{j} = 0 \Rightarrow \lambda_{j} = 0 \quad \forall j$$

So

$$m_{i,j} = 0 \quad \forall i, j.$$

Corollary 2.2. Let L be a field extention of K, $L \supseteq K$, and let $L^{alg} \subseteq L$ be the set of algebraic elements over K f L. Then L^{alg} is a field.

Proof. Let α , $\beta \in L^{alg}$ then

$$[K(\alpha, \beta) : K] = [K(\alpha, \beta) : K(\alpha)][K(\alpha) : K]$$

Let $\theta < \alpha + \beta, \alpha\beta, \alpha - \beta, \frac{\alpha}{\beta} \in K(\alpha, \beta)$, now:

$$[K(\alpha,\beta):K] = [K(\alpha,\beta):K(\theta)][K(\theta):K]$$

therefore $[K(\theta):K]<\infty$ so $\theta\in L^{alg}$

Example 2.7. what is the minimal polynomial of $\sqrt{3}$ over $\mathbb{Q}(\sqrt{2})$? Hopefully it's still $x^2 - 3$ note $\sqrt{2}$, $\sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$(\sqrt{2} + \sqrt{3})^3 = 11\sqrt{2} + 9\sqrt{3}$$

$$(\sqrt{2} + \sqrt{3})^3 - 9(\sqrt{2} + \sqrt{3}) = 11\sqrt{2} + 9\sqrt{3} - 9(\sqrt{2} + \sqrt{3}) = 2\sqrt{2} \quad so \ \sqrt{2}, \sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$$
$$[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = deg(x^4 - 10x^2 + 1) = 4$$

Therefore

$$4 = [\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}), \mathbb{Q}]$$

by theorem 2.8

$$[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})]=2$$

Theorem 2.9 (Galois separability theorem). $K \subseteq \mathbb{C}$ and $f \in K[x]$ irreductable. Then f does not have repeated roots in \mathbb{C} .

Proof. suppose α is a repeated root. Then

$$f(\alpha) = (x - \alpha)^2 g(x) \quad g \in \mathbb{C}[x]$$

$$f'(\alpha) = (x - \alpha)^2 g'(x) + 2(x - \alpha)g(x)$$

So $f'(\alpha) = 0$ then $f' \in I(\alpha) = (f)$, but

$$deg(f') < deg(f) \Rightarrow f' = 0$$

Therefore f is constant, a contradiction.

Note. This doesn't work over finite fields eg. \mathbb{F}_p :

$$f = x^p - \alpha, \qquad f' = px^{p-1} = 0$$

Theorem 2.10 (Primitive element theorem). suppose $K \subseteq L \subseteq \mathbb{C}$ and $[L:K] < \infty$. Then $\exists \theta \in L \text{ such that}$

$$L = K(\theta)$$

Proof. Let $\{1, \gamma_1, \ldots, \gamma_{d-1}\}$ be a basis for L over K. Then

$$L = K(\gamma_1, \dots, \gamma_{d-1}) = K(\gamma_1, \dots, \gamma_{d-2})K(\gamma_{d-1})$$

By induction on d we may assume that $k(\gamma_1, \ldots, \gamma_{d-2}) = K(\alpha)$. Let $\gamma_{d-1} = \beta$, now $L = K(\alpha, \beta)$. Let $p = M_{\alpha}$, $q = M_{\beta}$ and let

$$\alpha = \alpha_1, \dots, \alpha_m$$
 be the roots of p and $\beta = \beta_1, \dots, \beta_n$ be the roots of q

Choose c such that

$$\alpha_i + c\beta_j \neq \alpha + c\beta$$
 unless $i = j = 1$

To choose c we use:

- (i) L is infinite
- (ii) we have finitely many C's to avoid
- (iii) Galois separability theorem $2.9 \Rightarrow \alpha_i = \alpha_{i'} \Rightarrow i = i'$ and $\Rightarrow \beta_i = \beta_{i'} \Rightarrow i = i'$

Let $\theta = \alpha + c\beta$ we need to prove that

$$K(\theta) = k(\alpha, \beta)$$

Claim.

$$\beta \in K(\theta) \Rightarrow \alpha = \theta - c\beta \in K(\theta) \Rightarrow K(\alpha, \beta) \subseteq K(\theta) \subseteq K(\alpha, \beta)$$

Define $r(x) \in K(\theta)[x]$ by

$$r(x) = p(\theta - cx)$$

Then

$$r(\beta) = p(\theta - c\beta) = p(\alpha) = 0$$

on the other hand, $r(\beta_j) = p(\theta - c\beta_j) = 0$ for $j \ge 2$

$$\Leftrightarrow \theta - c\beta_j = \alpha_i \qquad for some i$$

$$\Leftrightarrow \alpha + c\beta = \alpha_i + c\beta_j \quad which never happens by choice of c$$

Now β satisfies two polynomials over $K(\theta)$:

$$q(\beta) = 0 \quad \& \quad r(\beta) = 0$$

We have just seen that β is the only root that q and L have in common. Let M be the minimum polynomial of β over $K(\theta)$

$$M|q$$
 and $M|r$

So and root of M is a root of q and r the only root of M is β so $M = (x - \beta)^d$. d = 1 by Galois separability theorem 2.9

$$\Rightarrow M = x - \beta \Rightarrow \beta \in (\theta)$$