Particle spectrograph

Wave operator and propagator

$\mathfrak{r}_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{k r_5 + 2 k^3 r_5}$	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k+2 k^3)^2 r_5 t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\sigma_{1^-\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	0	i kr5+2 k ³ r5
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} \dagger^{\alpha\beta}$	$\sigma_1^{\#2} + ^{\alpha\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

Quadratic (free) action
"== చీ
$\iiint (\frac{1}{6} \left(-2 t_1 \; \omega_{\kappa}^{\alpha \prime} \; \omega_{\kappa \alpha}^{\ \ \kappa} - 6 t_1 \; \omega_{\kappa \lambda}^{\ \ \prime} \; \omega_{\kappa \lambda}^{\ \ \prime} + 6 \; f^{\alpha \beta} \; \tau_{\alpha \beta} + 6 \; \omega^{\alpha \beta \chi} \; \sigma_{\alpha \beta \chi} - 6 r_5 \partial_{\iota} \omega^{\kappa \lambda}_{\kappa}$
$\partial' \omega_{\lambda}{}^{\alpha} - 6 r_5 \partial_{\alpha} \omega_{\lambda}{}^{\alpha}{}_{\theta} \partial_{\kappa} \omega^{\theta \kappa \lambda} + 6 r_5 \partial_{\theta} \omega_{\lambda}{}^{\alpha}{}_{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - 6 r_5 \partial_{\alpha} \omega_{\lambda}{}^{\alpha}{}_{\theta} \partial_{\kappa} \omega^{\kappa \lambda \theta} +$
$12r_5\partial_\theta\omega_\lambda^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 3t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\theta}^{\theta} - 3t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\theta}^{\theta} -$
$3t_1\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\lambda} + 2t_1\omega_{\kappa\alpha}^{\alpha}\partial^{\kappa}f'_{\prime} + 2t_1\omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f'_{\prime} + 4t_1\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\prime} -$
$2t_1\partial_\kappa f^\lambda_{\lambda}\partial^\kappa f^{\prime}_{\prime} + 12t_1\omega_{{}_{{}_{{}_{{}_{\!k}}}}}\partial^\kappa f^{\prime}^{\theta} - 2t_1\omega_{{}_{{}_{{}_{\!k}}}}^{\alpha}\partial^\kappa f^{\prime}_{\kappa} - 2t_1\omega_{{}_{{}_{{}_{\!k}}}}^{\lambda}\partial^\kappa f^{\prime}_{\kappa} +$
$3t_1\partial^\alpha f^\lambda_{\kappa}\partial^\kappa f_{\lambda\alpha} + 3t_1\partial_\kappa f_{\beta}^{\lambda}\partial^\kappa f_{\beta}^{\beta} + 3t_1\partial_\kappa f^\lambda_{\beta}\partial^\kappa f_{\beta}^{\beta} - 2t_1\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa} +$
$6 r_5 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \beta} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} - 6 r_5 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa}) [t, \varkappa, y, z] dz dy dx dt$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

$f_{1^-}^{\#2} \alpha$	0	0	0	آ <i>لا لا</i> 1 ع	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^{\bar{-}}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{1}{2}\sqrt{\Sigma}$	$\frac{\epsilon}{\Gamma_{J}}$	0	$-\frac{1}{3}i\sqrt{2}kt_1$
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5 + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} k t_1
$f_1^{\#1}{}_+\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#_+^2} _{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$+^{\alpha\beta}$	$\dagger^{\alpha \beta}$	$+^{\alpha\beta}$	1 †α	² † ^α	1 $^{+}$	² † ^α
	1+1	1+5	1+1	\mathcal{L}_{1}^{*}	ω_{1}^{*}	$f_{1}^{\#}$	$f_{1}^{\#}$

$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$							
$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	<u>t1</u> 2	$-\frac{ikt_1}{\sqrt{2}}$	0				
$f_2^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0				
$\omega_2^{\sharp_1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2				

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\sigma_{0^+}^{\#1} == 0$	1			
$\tau_{0+}^{\#1} == 0$	1			
$\tau_{0+}^{#2} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total constraints:	17			

$\sigma_{0^{\bar{-}}}^{\#1}$	0	0	0	$-\frac{1}{t_1}$
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	0	0	0	0
$\sigma_{0}^{\#1}$	0	0	0	0
•	+	+	+	+
	$\sigma_{0}^{\#1}$	$\tau_0^{\#1}$	$\tau_0^{\#2}$	$\sigma_{0^{\text{-}}}^{\#1}$

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $r_5 < 0 \&\& t_1 < 0 || t_1 > 0$