

7: Indices and logarithms

EN1106 - Introductory Mathematics

Level I - Semester 1

7.3 Multiplication and division by powers of 10

Definitions

- To multiply and divide decimal fractions by powers of 10 is particularly simple.
- In general, to multiply a number by 10ⁿ, the decimal point is moved n places to the right if n is a positive integer, and n places to the left if n is a negative integer.
- For Example:
 - To multiply 256.875 by 10 the decimal point is moved one place to the right, that is 256.875 x 10 (or 10^1)= 2568.75
 - To multiply by 100 the decimal point is moved two places to the right. So 256.875×100 (or 10^2) = 25687.5

Definitions

- To divide a number by 10, the decimal point is moved one place to the left. This is equivalent to multiplying by 10⁻¹.
- To divide by 100, the decimal point is moved two places to the left.
 This is equivalent to multiplying by 10⁻².
- Example:
 - 256.875 x 10⁻¹= 25.6875
 - 256.875 x 10⁻²= 2.56875
 - $256.875 \times 10^{-3} = 0.256875$

7.4 Scientific Notation

Scientific Notation

- It is often necessary to use very large numbers such as 6500000000 or very small numbers such as 0.00000001.
 Scientific notation can be used to express such numbers in a more concise form, which avoids writing very lengthy strings of numbers.
- Each number is written in the form a x 10ⁿ where a is usually a number between 1 and 10.
- We also make use of the fact that
 - $10 = 10^1$, $100 = 10^2$, $1000 = 10^3$ and so on
 - $10^{-1} = 1/10 = 0.1$, $10^{-2} = 1/100 = 0.01$ and so on
 - 68000 can be written $6.8 \times 10000 = 6.8 \times 10^4$
 - 0.09 can be written $9 \times 0.01 = 9 \times 10^{-2}$

7.7 Solving Equations with Logarithms

- This section illustrates the use of logarithms in solving certain types of equations.
- Earlier we have learned that if a and y be positive real numbers and let $a^x = y$: Then x is called the logarithm of y to the base a.
- We write this as $log_a y = x$
- Also, from the laws of Algorithms,
 - $\log A + \log B = \log AB$
 - $\log A \log B = \log(A/B)$
 - $n \log A = \log A^n$

• Logarithms to base 10 are often denoted by 'log' or 'log $_{10}$ '; logarithms to base **e** are denoted by 'ln' or 'log $_{e}$ '

Examples

1.
$$10^x = 59$$

Taking logs to base 10 gives

$$\log_{10} 10^{x} = \log_{10} 59$$

$$xlog_{10}10 = log_{10}59$$

$$x = log 59 = 1.7709$$

2.
$$e^x = 0.5$$

Taking logs to base e gives

$$log_e e^x = log_e 0.5$$

$$ln e^x = ln 0.5$$

$$x \ln e = \ln 0.5$$

$$x = \ln 0.5 = 0.6931$$

•
$$log(3x) = 0.76$$

$$\log 3x = 0.76$$

$$3x = 10^{0.76}$$

$$x = \frac{10^{0.76}}{3} = 1.9181$$

• In
$$(x/2) = 2.6$$

$$\ln\left(\frac{x}{2}\right) = 2.6$$

$$\frac{x}{2} = e^{2.6}$$

$$x = 2e^{2.6} = 26.9275$$