# UNCLASSIFIED

AD 407 430

# DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA



UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

### World-Wide Standard Station Seismic Measurements

Project 173-7

ANTLER

September 15, 1961

Prepared

bу

Seismology Division

under

ARPA Project VELA-UNIFROM

U. S. Department of Commerce Coast and Geodetic Survey Washington 25, D. C.

June 1963

This shot report is issued on behalf of the Advanced Research Projects Agency, Department of Defense, to provide information which may prove of value in the study of data from nuclear tests.

The data contained in this report are preliminary and subject to later revision as may be necessary.

### CONTENTS

|                                                    | Page |
|----------------------------------------------------|------|
| Event Description                                  | 1    |
| Introduction                                       | 3    |
| Instrumentation                                    | 3    |
| Data and Results                                   | 4    |
| Computer Data Reduction                            | 6    |
| References                                         | 8    |
| Appendix I (Seismic Analysis Diagram)              | A-1  |
| Appendix II (First Motion Criteria)                | A-2  |
| Appendix III (Computation of Azimuth and Distance) | A-6  |
| Appendix IV (Unified Magnitudes)                   | A-7  |

### TABLES

|    |                                         | Page |
|----|-----------------------------------------|------|
| 1  | Station Status Report                   | 9    |
| 2  | Station Distance and Magnification Data | 10   |
| 3  | Station Site Information                | 11   |
| 4  | Principal Phases                        | 12   |
| 5  | Periods and Amplitudes of Pn and P      | 13   |
| 6  | Periods and Amplitudes of Pg            | 14   |
| 7  | Periods and Amplitudes of Lg            | 15   |
| 8  | Computer Input Data                     | 16   |
| 9  | Travel Time Residual Data               | 17   |
| 10 | Epicenter Computation                   | 18   |

### FIGURES

|   |                                                                                          | Page |
|---|------------------------------------------------------------------------------------------|------|
| 1 | Map showing recording stations within the United States and signals received from ANTLER | 2    |
| 2 | Maximum Single Amplitude of $P_n$ and $P$                                                | -20  |
| 3 | Maximum Single Amplitude of $P_g$                                                        | 21   |
| 4 | Travel Time Residuals from ANTLER, Pn and P Data                                         | 22   |
| 5 | Unified Magnitudes for ANTLER                                                            | 23   |

### ANTLER

### NOUGAT SERIES

### EVENT DESCRIPTION

DATE: September 15, 1961

TIME OF ORIGIN: 17:00:00.1Z

MAGNITUDE:  $m_b = 4.4 \pm 0.4$ 

### LOCATION:

Site: Area Ul2eo3a

Geographic Coordinates:

Lat. 37°11'17" N Long. 116°12'28" W N 887 716.89 feet E 633 676.25 feet

Nevada Grid Coordinates: N 887 716.89 feet E 633 676.25 feet

### **ENVIRONMENT:**

Geological Medium: Tuff Shot Depth: 1319 feet

Surface Elevation: 7483 feet Shot Elevation: 6164 feet

### COMPUTED EPICENTER DATA:

Geographic Coordinates: Lat. 37°11'01.0" N Long. 116°14'34.1" W

Time of Origin: 16:59:59.5Z Station Used: See Table 8

COLLAPSE: None Observed



Map showing recording stations within the United States and signals received from ANTLER Figure 1.

### INTRODUCTION

A World-Wide Network of Standardized Seismograph
Stations (WWNSS) is being established under VELA-UNIFORM
Project to provide standardized short and long period instruments for recording seismic data. This program was
initiated to provide improved instrumentation for recording
world-wide seismic activity and to eliminate, as far as
possible, uncertainties in the analysis of seismic data
due to differences in instrumentation.

This report comprises an analysis of seismic data recorded from the ANTLER event at the Nevada Test Site (NTS) by Coast and Geodetic Survey and other stations. These, and other data, will be used by VELA-UNIFORM participants for studies directed toward the development of methods for distinguishing between explosion and earthquake seismic sources.

### INSTRUMENTATION

The Coast and Geodetic Survey stations used in this report have either Benioff variable reluctance or Benioff moving coil instruments: Recording techniques differ as shown below:

| Flaming Gorge, Utah       | 35 mm film                   |
|---------------------------|------------------------------|
| Eureka, Nevada            | photographic paper recording |
| Tucson Telemeter, Arizona | photographic paper recording |
| College, Alaska           | photographic paper recording |

Reference time is placed on the records at Coast and Geodetic Survey stations as follows:

| Flaming Gorge | _ | a | sepa: | rate | film  | 18 | used   | to | re- |
|---------------|---|---|-------|------|-------|----|--------|----|-----|
|               |   | C | ord a | rad: | io ti | me | signa] | l. |     |

Eureka - operator manually impresses a radio time signal, such as WWV.

Tucson Telemeter - operator manually impresses a radio time signal, such as WWV.

College - operator manually impresses a radio time signal, such as WWV.

The horizontal instruments of each station used in this report have N-S and E-W orientation.

### DATA AND RESULTS

Figure 1 shows the station locations within the United States and indicates stations which recorded the event.

Table 1 summarizes signal reception and instrument availability; Table 2 contains instrument peak magnifications;

Table 3 shows station coordinates, elevation, epicenter to station azimuth, and instrument foundation.

Table 4 summarizes the measurements made of the principal phases from the ANTLER event. Included are  $P_n$  and  $P_n$ ,  $P_g$ , and  $P_g$  arrival times. First motion conforming to Technical Working Group II (TWG II) criteria is noted (see Appendix II). A second column included in Table 4 gives first

motion as it might be listed by a working seismologist in routine analysis of seismograms, not necessarily meeting TWG II signal to noise specifications.

Table 5 shows the travel times, periods, maximum ground displacement in mµ, and maximum amplitude/period in mµ/sec for Pn and P. These data are measured on the short period vertical instruments. Arrival times and periods are read to the nearest ± 0.1 sec and amplitudes are measured to ± 0.5 mm. Four Coast and Geodetic Survey stations with the required instrumentation recorded ANTLER. Also shown in Table 5 are the unified magnitudes (mb), based on either Pn or P trace displacements and the AFTAC extension of the Gutenberg and Richter technique of "Q" values. The average magnitude value of 4.4 shown in Figure 5 is apparently low since College, Alaska has been closer to the average value in previous reports. A second stronger arrival at MHT is plotted by an open square in both Figures 2 and 5.

Travel times, periods, maximum ground displacements, and maximum amplitude/period of  $P_{\rm g}$  taken from the short period vertical instruments are given in Table 6. Travel times are measured to the beginning of the phase and do not indicate the time at which maximum amplitude is recorded. Recordings of  $P_{\rm g}$  were observed at two stations.

In Table 7 are listed the travel times, periods, maximum ground displacements, and maximum amplitude/period of Lg phase. The following criteria were used in the identification of the Lg phase: (1) the relation of the vertical amplitude to the horizontal amplitude; (2) observed travel time; (3) initial period; and (4) reverse dispersion. The Lg phase was recognized at only one station.

Figures 2 and 3 show plots of the energy attenuation (amplitude/period) versus distance for  $P_n$  and  $P_n$  and  $P_g$  respectively. A reference line proportional to the inverse cube of the epicentral distance has been visually fitted through the observed  $P_n$  and  $P_g$  points and a fourth power line through the  $P_n$  points. In Figure 4 are shown the travel time residuals of  $P_n$  and  $P_n$  based on a constant  $P_n$  velocity of 8.1 km/sec.

### COMPUTER DATA REDUCTION

Useful signals from ANTLER were recorded out to a distance of 3717 (College, Alaska). Input data for the computer program are tabulated in Table 8. In Table 9 are tabulated the computer determined travel time residuals, azimuths, and distances based on the known coordinates, origin time, and assuming a depth on the surface of the reference sphere. A hypocenter determination was made (not shown) which resulted

in a depth value 12 km above the reference sphere and errors of 1 km N and 2 km E in epicenter coordinates. In Table 10 is shown the epicenter computation obtained by holding the depth fixed on the surface of the reference sphere. This computation resulted in an epicenter coordinate error of 0.5 km S and 3.9 km W.

### REFERENCES

Carder, D. S., and L. F. Bailey, (1958), "Seismic Wave Travel Times from Nuclear Explosions," Bulletin Seismological Society of America, Vol. 48, pp. 377-398.

Gunst, R. H., and E. R. Engdahl, (1962), "Progress Report of USC&GS Hypocenter Computer Program," Earthquake Notes, Vol. 33, No. 4, p. 93.

Gutenberg, B., and C. F. Richter, (1956), "Magnitude and Energy of Earthquakes," Annali di Geofisica, Vol. 9, p. 1.

Jeffreys, H., and K. E. Bullen, (1958), "Seismological Tables," British Association for the Advancement of Science, Burlington House, W. 1, London, England.

Lehmann, I., (1962), "The Travel Times of the Longitudinal Waves of the Logar and Blanca Atomic Explosions and their Velocities in the Upper Mantle," Bulletin Seismological Society of America, Vol. 52, No. 3, p. 519.

Romney, Carl, (1959), "Amplitudes of Seismic Body Waves from Underground Nuclear Explosions," Journal of Geophysical Research, Vol. 64, No. 10, pp. 1489-1501.

Table 1. ANTLER Station Status Report

| Sta.                    | Abbr. | Dist. | SPZ | SPN | SPE | LPZ | LPN | <u>LPE</u> |
|-------------------------|-------|-------|-----|-----|-----|-----|-----|------------|
| Eureka, Nev.            | EUR   | 256   | +   | x   | x   | x   | x   | x          |
| Flaming Gorge, Utah     | FGU   | 722   | +   | +   | +   | x   | x   | x          |
| Tucson Telemeter, Ariz. | TUT   | 736   | +   | x   | x   | x   | x   | x          |
| College, Alaska         | COL   | 3717  | +   | х   | х   | x   | х   | х          |

<sup>+</sup> Received signal x No instrument

Table 2. ANTLER

Station Distance and Magnification

|      | <u>Instrument Magnification in K</u> |     |            |     |     |     |     |
|------|--------------------------------------|-----|------------|-----|-----|-----|-----|
| Sta. | <u>Dist.</u><br>km                   | SPZ | <u>SPN</u> | SPE | LPZ | LPN | LPE |
| EUR  | 256                                  | 425 | x          | x   | x   | x   | х   |
| FGU  | 722                                  | 63  | -          | -   | x   | х   | х   |
| TUT  | 736                                  | 200 | x          | x   | x   | x   | x   |
| COL  | 3717                                 | 425 | x          | x   | x   | x   | x   |

x No instrument

<sup>-</sup> Magnifications not known

Table 3. ANTLER
Station Site Information

|        | Foundation       | Dolomite  | Limestone | Granite  | Granite   |
|--------|------------------|-----------|-----------|----------|-----------|
| Az1.   | Ep1-Sta.         | 9*1       | 52.8      | 135.4    | 336,1     |
|        | Elev.<br>km      | 2.18      | 1.98      | 0.20     | 0.16      |
| phic   | W. Long.         | 115 58 12 | 109 23 10 | 10 50 01 | 36 74 741 |
| Geogra | N. Lat. W. Long. | 39 29 00  | 40 55 36  | 32 14 49 | 64 54 00  |
|        | Sta.             | EUR       | FGU       | TUT      | COL       |

Table 4. ANTLER Principal Phases

| Sta. | Dist. | Inst.             | Phase                         | GMT                                    | TWG II<br>FM* | FM** |
|------|-------|-------------------|-------------------------------|----------------------------------------|---------------|------|
| EUR  | 256   | SPZ               | $\mathtt{iP}_n$               | 17:00:39.9                             | С             | C    |
| TUT  | 736   | SPZ<br>SPZ        | ePn<br>ePg                    | 17:01:39.4<br>17:02:03.6               |               |      |
| FGU  | 722   | SPZ<br>SPZ<br>SPZ | eP <sub>n</sub><br>ePg<br>eLg | 17:01:39.8<br>17:02:13.2<br>17:03:25.5 |               |      |
| MHT  | 1731  | SPZ<br>SPZ        | eP<br>e                       | 17:03:44.0<br>17:03:58.9               |               |      |
| COL  | 3717  | SPZ               | eР                            | 17:06:42.3                             |               |      |

e Emergent i Impulsive

C Compression

D Rarefaction

<sup>\*</sup> See Appendix II

\*\* As it may be picked in routine analysis, but not meeting TWG II specifications

Table 5. ANTLER Periods and Amplitudes of Pn and P

| Sta. | Dist. | T-T*<br>sec | Per. | Ampl.** | Ampl./Per. | mb  |
|------|-------|-------------|------|---------|------------|-----|
| EUR  | 256   | 39.8        | -    | -       | -          | -   |
| FGU  | 722   | 99.7        | 0.6  | 12.1    | 20.2       | 4.8 |
| TUT  | 736   | 99•3        | 0.6  | 3.0     | 5.0        | 4.1 |
| MHT  | 1731  | 223.9       | 0.8  | 5.3     | 6.6        | 3.9 |
| COL  | 3717  | 402.2       | 0.9  | 11.3    | 12.6       | 4.8 |

<sup>\*</sup> Observed travel time from short period vertical seismogram

<sup>\*\*</sup> Maximum ground displacement in mµ (single amplitude)
- Excessive amplitude

Table 6. ANTLER Periods and Amplitudes of Pg\_

| Sta. | Dist. | T-T*  | Per. | <u>Ampl.**</u><br>mμ | Ampl./Per. | Comp. |
|------|-------|-------|------|----------------------|------------|-------|
| FGU  | 722   | 133.1 | 0.6  | 10.6                 | 17.7       | SPZ   |
| TUT  | 736   | 123.5 | 0.9  | 3.5                  | 3.8        | SPZ   |

<sup>\*</sup>Observed travel time
\*\*Maximum zero to peak ground displacement

Table 7. ANTLER Periods and Amplitudes of Lg\_

| Sta. | Dist. | T-T*  | Per. | Ampl.** | Ampl./Per. | Comp. |
|------|-------|-------|------|---------|------------|-------|
|      | km    | sec   | sec  | mµt     | mµ/sec     |       |
| FGU  | 722   | 205.4 | 0.6  | 8.3     | 13.8       | SPZ   |

<sup>\*</sup>Observed travel time
\*\*Maximum zero to peak ground displacement

Table 8. ANTLER

## Computer Input Data

| Sta.                            | Phase                                                                    | GMT                                                                |
|---------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|
| MN1                             | iPn                                                                      | 17:00:34.4                                                         |
| EUR                             | iPn                                                                      | 17:00:39.9                                                         |
| WDY                             | iPn                                                                      | 17:00:43.3                                                         |
| BF1                             | iPn                                                                      | 17:00:49.1                                                         |
| RVR                             | iPn                                                                      | 17:00:53.1                                                         |
| PAS<br>HAY<br>KRC<br>FM1<br>MHC | iP <sub>n</sub><br>iP <sub>n</sub><br>iP <sub>n</sub><br>iP <sub>n</sub> | 17:00:55.0<br>17:00:55.3<br>17:00:55.6<br>17:00:58.3<br>17:01:07.9 |
| CP1                             | iP <sub>n</sub>                                                          | 17:01:08.3                                                         |
| BE1                             | iP <sub>n</sub>                                                          | 17:01:09.0                                                         |
| FS1                             | iP <sub>n</sub>                                                          | 17:01:10.5                                                         |
| VIN                             | e                                                                        | 17:01:13.2                                                         |
| SLC                             | eP <sub>n</sub>                                                          | 17:01:13.6                                                         |
| SFC                             | e                                                                        | 17:01:25.8                                                         |
| TUT                             | eP <sub>n</sub>                                                          | 17:01:39.4                                                         |
| FGU                             | eP <sub>n</sub>                                                          | 17:01:39.8                                                         |
| DR1                             | eP <sub>n</sub>                                                          | 17:01:40.7                                                         |
| LAR                             | iP                                                                       | 17:02:18.2                                                         |
| I.Cl                            | eP                                                                       | 17:02:19.5                                                         |
| MHT                             | eP                                                                       | 17:03:44.0                                                         |
| COL                             | eP                                                                       | 17:06:42.3                                                         |

Table 9. ANTLER

Travel Time Residual Data\*

| Sta. | Dist.<br>km | Azi.  | Res.** |
|------|-------------|-------|--------|
| MN1  | 220         | 309.6 | 1.0    |
| EUR  | 256         | 4.6   | 0.2    |
| WDY  | 289         | 235.9 | 0.8    |
| BF1  | 292         | 235.1 | -4.5   |
| RVR  | 369         | 197.0 | 1.3    |
| PAS  | 381         | 208.4 | 0.9    |
| HAY  | 390         | 172.2 | 1.8    |
| KRC  | 378         | 238.0 | 0.1    |
| FM1  | 417         | 56.0  | 2.3    |
| WI1  | 475         | 347.2 | 1.2    |
| MHC  | 482         | 273.7 | 1.1    |
| CP1  | 495         | 181.8 | 2.3    |
| BE1  | 498         | 297.3 | 1.9    |
| FS1  | 500         | 116.6 | 0.7    |
| VIN  | 464         | 265.5 | -6.8   |
| SLC  | 548         | 42.2  | 3.7    |
| SFC  | 553         | 278.5 | -8.0   |
| TUT  | <b>7</b> 36 | 135.4 | 1.6    |
| FGU  | <b>7</b> 22 | 52.8  | -0.4   |
| DR1  | 747         | 85.1  | 2.1    |
| LAR  | 1024        | 60.2  | -1.0   |
| LC1  | 1026        | 118.3 | -1.8   |
| MHT  | 1731        | 76.6  | -1.6   |
| COL  | 3717        | 336.1 | 0.1    |

<sup>\*</sup>The exact origin time and hypocenter coordinate data were used to compute distance, azimuth, and travel time residual for each observation.

<sup>\*\*</sup>TIME RESIDUAL = Jeffreys-Bullen travel time - Observed travel time + Ellipticity and station elevation corrections

Table 10. ANTLER

Epicenter Computation\*

Error

Computed

| Ø =  | 37°11'01.0" N      | 0.5 1            | km W   |
|------|--------------------|------------------|--------|
| λ =  | 116°14'34.1" W     | 3.9 1            |        |
| H =  | 16:59:59.5Z        | 6                |        |
| Sta. | <u>Dist.</u><br>km | <u>Az1.</u><br>o | Res.** |
| MN1  | 222                | 310.2            | 0.1    |
| EUR  | 256                | 5.3              | -0.3   |
| WDY  | 289                | 235.6            | -0.1   |
| RVR  | 367                | 196.5            | 0.6    |
| PAS  | . 378              | 208.0            | 0.0    |
| HAY  | 389                | 171.7            | 1.2    |
| KRC  | 378                | 237.8            | -0.9   |
| WI1  | 478                | 347.6            | 0.6    |
| MHC  | 478                | 273.7            | 0.1    |
| FS1  | 500                | 116.4            | 0.4    |
| SLC  | 556                | 42.4             | 3.4    |
| TUT  | 734                | 135.2            | 1.3    |
| FGU  | 723                | 52.9             | -0.6   |
| LAR  | 1023               | 60.2             | -1.2   |
| LC1  | 1034               | 118.2            | -2.1   |
| MHT  | 1735               | 76.6             | -1.8   |
| COL  | 3714               | 336.1            | -0.6   |

| Sta.                                   | Dist.                                  | Az1.                                              | Res.**                                    |
|----------------------------------------|----------------------------------------|---------------------------------------------------|-------------------------------------------|
| BF1<br>FM1<br>CP1<br>BE1<br>VIN<br>SFC | 289<br>423<br>489<br>500<br>456<br>545 | 234.8<br>56.2<br>181.4<br>297.5<br>265.5<br>278.6 | -5.5<br>2.1<br>1.6<br>1.0<br>-7.8<br>-9.0 |
| DR1                                    | 745                                    | 85.1                                              | 1.9                                       |

\*The epicenter coordinates and origin time were computed holding the depth at 00 km using the first 17 stations listed. Residuals were computed for all stations.

\*\*TIME RESIDUAL = Jeffreys-Bullen travel time - Observed travel time + Ellipticity and station elevation corrections









### SEISMIC ANALYSIS DIAGRAM

### APPENDIX I







DETAIL SHOWING
ALLOWANCE FOR LINE WIDTH



Pick time of  $P_n$  at beginning of "a" half-cycle. Pick amplitude of  $P_g$  as maximum "d/2" within 2 or 3 cycles of "c".

Pick amplitude of Pg and  $L_g$  at maximum of corresponding motion.

#### APPENDIX II

# FIRST MOTION CRITERIA TECHNICAL WORKING GROUP II (TWG)

Excerpt from Appendices to Hearings before the Special Subcommittee on Radiation and the Subcommittee on Research and Development of the Joint Committee on Atomic Energy; 86th Cong., 2d Sess.; April 19-22, 1960; on Technical Aspects of Detection and Inspection Controls of a Nuclear Weapons Test Ban; Part 2 of 2 Parts, pp 632-633:

### "2. Identification of Earthquakes

A located seismic event shall be ineligible for inspection if, and only if, it fulfills one or more of the following criteria:

- a. Its depth of focus is established as below 60 kilometers;
- b. Its epicentral location is established to be in the deep open ocean and the event is unaccompanied by a hydroacoustic signal consistent with the seismic epicenter and origin time;
- c. It is established within 48 hours to be a foreshock by the occurrence of a larger event of at least magnitude 6 whose epicenter coincides with that of the given event within the accuracy of the determination of the two epicenters. The eligibility of the second event for inspection must be determined separately.
- d. The directions of clearly recorded first motions define a pattern which strongly indicates a faulting source. First motions recorded at distances between 1100 kilometers and 2500 kilometers will not be used. First motions beyond 3500 kilometers will not be used for events of magnitude smaller than 5.5. The apparent direction of first motion must also meet both the following minimum conditions to be considered to be clearly recorded:
- (1) The amplitude of the half-cycle of apparent first motion is at least two (2) times as large as any half-cycle of apparent noise in the preceding few minutes, and
- (2) The largest of the amplitudes of the half-cycle of apparent first motion and the two immediately following half-cycles.

### APPENDIX II

(a) at epicentral distances less than 700 kilometers is twenty (20) times larger than any half-cycle of noise in the preceding few minutes;

(b) at epicentral distances more than 700 kilometers is forty (40) times larger than any half-cycle of noise in the preceding few minutes.

A pattern of clearly recorded first motions strongly indicates a faulting source if the observed motions, extended backward to a small sphere about the focus, can be separated into alternate quadrants by two orthogonal great circles drawn on the small sphere, with the requirement that two opposite quadrants combined (i) contain at least 4 clearly recorded rarefactive first motions and (ii) contain not more than 15% compressions among the clearly recorded first motions."





 $700 < \Delta < 1100 \text{ km}$ 

### 2.





Δ<700 km. Example shows what may be interpreted to be earlier signal; however, motion is less than 2 times the motion level and may be interpreted as noise.

### APPENDIX II

### Application of the TWG II Criteria

Δ<700 km.
Similar to example 3 Rarefaction

5. Not applicable



Δ 700 km. Amplitude of first half-cycle is less than 20 time

### APPENDIX III

### COMPUTATION OF AZIMUTH AND EPICENTRAL DISTANCE

Standard formulas of spherical trigonometry are used in computing azimuth and distance from epicenter to station. As required by the Jeffreys-Bullen travel time curves, the formulas are referred to a spherical earth equal in volume to the Hayford-Bowie spheroidal earth. This requires a sphere of radius 6371.14 km.

The geographic coordinates of the station and epicenter must be converted to geocentric coordinates. Use is then made of direction-cosines of the line joining the Earth's center to the epicenter and of the line joining the Earth's center to the station. By this method the formula obtained for the epicentral distance is as follows:

Cos Δ = Sin Ø Sin Ø' + Cos Ø Cos Ø' (Cos γ Cos γ' + Sin γ Sin γ').

Where

 $\emptyset$  = geocentric latitude of epicenter

 $\gamma = 1$ ongItude of epicenter

y' - reocentric latitude of station

 $\gamma' = longitude of station$ 

A - ancular distance from epicenter to station

The azimuth, which is the angle measured from north through east between the meridian line through the epicenter and the arc line from epicenter to recording station, is obtained by use of the following formula from spherical trigonometry:

$$\frac{\text{Cos Z} = \underbrace{\text{Sin } \cancel{\emptyset}^{1} - \text{Cos } \Delta \text{ Sin } \cancel{\emptyset}}_{\text{Cos } \cancel{\emptyset} \text{ Sin } \Delta}.$$

Printout of both Z and  $\Delta$  is rounded off to the nearest 0.1 deg. It is expected then that an error of  $\pm$  5.5 km. due to rounding may exist in our quoted epicentral distance. This rounding error is reflected in neither the epicentral computation nor the published travel time residuals.

### APPENDIX IV

### Unified Magnitudes from Pn or P Waves

Unified Magnitude:  $m = log_{10} (A/T) + B$ 

A = zero to peak ground motion in millimicrons where

= (mm)(1000)

T = signal period in seconds
B = distance factor (see Table below)
mm = record amplitude in millimeters zero

to peak

K = magnification in thousands at signal

frequency

Table of Distance Factors (B) for Zero Depth

| Dist.                      | В                               |   | Dist.                      | B                        | Dist.                      | B                               |
|----------------------------|---------------------------------|---|----------------------------|--------------------------|----------------------------|---------------------------------|
| 0<br>1<br>2<br>3<br>4      | 2.2<br>2.7<br>3.1               | · | 20<br>21<br>22<br>23<br>24 | 3.0<br>3.1<br>3.2<br>3.3 | 40<br>41<br>42<br>43<br>44 | 3.4<br>3.5<br>3.5<br>3.5        |
| 5<br>7<br>8<br>9           | 3.4<br>3.6<br>3.8<br>4.0<br>4.2 |   | 25<br>26<br>27<br>28<br>29 | 3.5<br>3.4<br>3.6<br>3.6 | 45<br>46<br>47<br>48<br>49 | 3.7<br>3.8<br>3.9<br>3.9<br>3.8 |
| 10<br>11<br>12<br>13<br>14 | 4.3<br>4.2<br>4.1<br>4.0<br>3.6 |   | 30<br>31<br>32<br>33<br>34 | 3.6<br>3.7<br>3.7<br>3.7 | 50<br>51<br>52<br>53<br>54 | 3.7<br>3.7<br>3.7<br>3.8        |
| 15<br>16<br>17<br>18<br>19 | 3.3<br>2.9<br>2.9<br>2.9<br>3.0 |   | 35<br>36<br>37<br>38<br>39 | 3.7<br>3.5<br>3.5<br>3.4 | 55<br>56<br>57<br>58<br>59 | 3.8<br>3.8<br>3.8<br>3.8        |

| Dist.                      | <u>B</u>                               | Dist.                      | В                               | Dist.                              | В                               |
|----------------------------|----------------------------------------|----------------------------|---------------------------------|------------------------------------|---------------------------------|
| 60<br>61<br>62<br>63<br>64 | 3.8<br>3.9<br>4.0<br>3.0               | 75<br>76<br>77<br>78<br>79 | 3.8<br>3.9<br>3.9<br>3.8        | 90<br>91<br>92<br>9 <b>3</b><br>94 | 4.0<br>4.1<br>4.1<br>4.2<br>4.1 |
| 65<br>66<br>67<br>68<br>69 | 4.0<br>4.0<br>4.0<br>4.0               | 80<br>81<br>82<br>83<br>84 | 3.7<br>3.8<br>3.9<br>4.0<br>4.0 | 95<br>96<br>97<br>98<br>99         | 4.2<br>4.3<br>4.5<br>4.5        |
| 70<br>71<br>72<br>73<br>74 | 3.9<br>3.9<br>3.9<br>3.9<br>3.9<br>3.9 | 85<br>86<br>87<br>88<br>89 | 4.0<br>3.9<br>4.0<br>4.1<br>4.0 | 100<br>101<br>102<br>103<br>104    | 4.4<br>4.3<br>4.5<br>4.6        |
|                            |                                        |                            |                                 | 105                                | 4.7                             |