Algorithmes approchés

VLADY RAVELOMANANA

IRIF - UMR CNRS 8243
Université de Paris 7
vlad@irif.fr
- M1 Algorithmique avancée -

Plan de ce cours

- Algorithmes approchés.
- Approximation et schémas.
- Limite de l'approximabilité.
- Non approximabilité.
- Complexité paramétrique.

Le problème de couverture par sommets ou "Vertex Cover"

Définition.

Une **couverture par sommets**, ou **transversale** d'un graphe G est un ensemble de sommets tel que chaque arête de G=(V,E) est incidente à au moins un sommet de ce sous-ensemble (cf. les sommets en rouge dans le dessin):

Un tel ensemble est dit **minimale** si la propriété de couverture est violée lorsqu'on lui enlève un sommet:

Le problème de couverture par sommets ou "Vertex Cover"

Définition.

Une **couverture par sommets**, ou **transversale** d'un graphe G est un ensemble de sommets tel que chaque arête de G = (V, E) est incidente à au moins un sommet de ce sous-ensemble (cf. les sommets en rouge dans le dessin):

Un tel ensemble est dit **minimale** si la propriété de couverture est violée lorsqu'on lui enlève un sommet:

Le problème algorithmique.

Input: Un graphe G = (V, E).

Output: Un ensemble (de cardinalité) minimum de sommets couvrant toutes les arêtes.

Un glouton

NP-complétude.

Difficile de trouver l'optimum efficacement.

Un glouton

NP-complétude.

Difficile de trouver l'optimum efficacement.

Un algorithme glouton.

```
res := {};

A := \{ \text{tous les sommets de } G \} = V;

while A \neq \emptyset do

Prendre un sommet s dans A;

res := res \bigcup \{ s \};

Supprimer s et tous ses voisins dans A;

end

retourner(res);
```

Un glouton

NP-complétude.

Difficile de trouver l'optimum efficacement.

Un algorithme glouton.

```
res := {};

A := \{ \text{tous les sommets de } G \} = V;

while A \neq \emptyset do

Prendre un sommet s dans A;

res := res \bigcup \{ s \};

Supprimer s et tous ses voisins dans A;

end

retourner(res);
```

Pire instance.

Si le graphe est une étoile, cet algorithme peut renvoyer un ensemble de cardinalité n-1 sommets.

On veut une certaine garantie par rapport à l'optimum.

Un algorithme approché.

Méthodologie générale.

Trouver une quantité comparable Q par rapport à la solution optimale S_{OPT} et si possible montrer que:

 $ightharpoonup c.Q \le S_{\mathsf{OPT}} \le C.Q$ pour deux constantes absolues c et C.

Un algorithme approché.

Méthodologie générale.

Trouver une quantité comparable Q par rapport à la solution optimale S_{OPT} et si possible montrer que:

 $ightharpoonup c.Q \le S_{\mathsf{OPT}} \le C.Q$ pour deux constantes absolues c et C.

Couplage dans un graphe

Un **couplage** ou **appariement** ("**matching**") d'un graphe est un ensemble d'arêtes de ce graphe qui n'ont pas de sommets en commun. Un couplage M est dit **maximal** si toute arête du graphe possède une extrémité commune avec une arête de M. Un couplage **maximum** est un couplage contenant le plus grand nombre possible d'arêtes.

Matching vs. S_{OPT}

- Une **borne inférieure**: si M est un matching et S un couvrant alors $|M| \le |S|$ donc $|M| \le |S_{OPT}|$.
- ▶ Une **borne supérieure**: si M est un matching maximal alors ses sommets forment un couvrant. On a $|S_{OPT}| \le 2|M|$.

Un autre glouton

GreedyMaximalMatching

```
res := {};

A := \{ \text{toutes les arêtes de } G \} = E;

while A \neq \emptyset do

Prendre une arête a dans A;

res := res \bigcup \{a\};

Supprimer a et toutes les arêtes couvertes par ses deux extrémités;

end

retourner(res);
```

Un autre glouton

GreedyMaximalMatching

```
res := {};

A := \{ \text{toutes les arêtes de } G \} = E;

while A \neq \emptyset do

Prendre une arête a dans A;

res := res \bigcup \{a\};

Supprimer a et toutes les arêtes couvertes par ses deux extrémités;

end

retourner(res);
```

Théorème.

L'algorithme GreedyMaximalMatching permet de trouver une solution approchée s au problème du couverture par sommets telle que $|s| \le 2|S_{OPT}|$

On peut exécuter l'algorithme suivant:

- (i) trouver un couplage maximal avec GreedyMaximalMatching,
- (ii) renvoyer les deux extrémités des arêtes comme sommets couvrant.

On peut exécuter l'algorithme suivant:

- (i) trouver un couplage maximal avec GreedyMaximalMatching,
- (ii) renvoyer les deux extrémités des arêtes comme sommets couvrant.

Proposition 1. Les appels (i) et (ii) renvoient bien des sommets couvrant. **Preuve.** (i) renvoie un couplage maximal M par construction. Pour (ii), on montre que si une arête e n'est pas couverte par un sommet alors $M \cup \{e\}$ est un couplage qui contredit le fait que M soit maximal.

On peut exécuter l'algorithme suivant:

- (i) trouver un couplage maximal avec GreedyMaximalMatching,
- (ii) renvoyer les deux extrémités des arêtes comme sommets couvrant.

Proposition 1. Les appels (i) et (ii) renvoient bien des sommets couvrant.

Preuve. (i) renvoie un couplage maximal M par construction. Pour (ii), on montre que si une arête e n'est pas couverte par un sommet alors $M \cup \{e\}$ est un couplage qui contredit le fait que M soit maximal.

Proposition 2. Soit M la solution renvoyée par GreedyMaximalMatching, on a $|M| \leq |S_{OPT}|$.

Preuve. Par définition, une solution au problème de couverture par sommets doit couvrir chaque arête dans M, en particulier ceci est valable pour la **solution optimale**.

On peut exécuter l'algorithme suivant:

- (i) trouver un couplage maximal avec GreedyMaximalMatching,
- (ii) renvoyer les deux extrémités des arêtes comme sommets couvrant.

Proposition 1. Les appels (i) et (ii) renvoient bien des sommets couvrant.

Preuve. (i) renvoie un couplage maximal M par construction. Pour (ii), on montre que si une arête e n'est pas couverte par un sommet alors $M \cup \{e\}$ est un couplage qui contredit le fait que M soit maximal.

Proposition 2. Soit M la solution renvoyée par GreedyMaximalMatching, on a $|M| \leq |S_{\mathsf{OPT}}|$.

Preuve. Par définition, une solution au problème de couverture par sommets doit couvrir chaque arête dans M, en particulier ceci est valable pour la **solution optimale**.

Algorithme approché.

On a un algorithme qui retourne un ensemble de sommets s tel que $|s| = 2 \times |\{\text{arêtes renvoyées}\}| \le 2|S_{\mathsf{OPT}}|.$

Remarque.

A ce jour, cet algorithme est le meilleur algorithme d'approximation pour le problème du couverture par sommets.

Remarque.

A ce jour, cet algorithme est le meilleur algorithme d'approximation pour le problème du couverture par sommets.

Exercice:

Pour le montrer, considérer le graphe biparti complet $K_{n,n}$.

Remarque.

A ce jour, cet algorithme est le meilleur algorithme d'approximation pour le problème du couverture par sommets.

Exercice:

Pour le montrer, considérer le graphe biparti complet $K_{n,n}$.

Considérons le graphe complet biparti $K_{n,n}$ avec n sommets bleus et n sommets rouges.

La taille de tout couplage maximal dans ce graphe est n: |M| = n. Ainsi,

- l'appel GreedyMaximalMatching $(K_{n,n})$ retourne un ensemble de n arêtes
- puis le fait de prendre les 2 extrémités renvoie 2*n* sommets comme sommets couvrant.
- Mais clairement, l'optimal est n.

Plan de ce cours

- Algorithmes approchés.
- Approximation et schémas.
- Limite de l'approximabilité.
- Non approximabilité.
- Complexité paramétrique.

Algorithmes approchés: définition

Position du problème algorithmique.

Trouver parmi toutes les solutions d'un problème une qui optimise une fonction f.

Algorithmes approchés: définition

Position du problème algorithmique.

Trouver parmi **toutes les solutions** d'un problème une qui **optimise** une fonction f.

Définition.

Un algorithme est dit ε -approché s'il donne une solution S qui satisfait

$$\frac{f(S_{\mbox{\scriptsize opt}}) - f(S)}{f(S_{\mbox{\scriptsize opt}})} \leq \varepsilon \hspace{1cm} \mbox{si $S_{\mbox{\scriptsize opt}}$ maximise f}$$

et

$$\frac{f(S) - f(S_{\mathsf{opt}})}{f(S)} \le \varepsilon \qquad \qquad \mathsf{SI} \; S_{\mathsf{OPT}} \; \mathsf{MINIMISE} \; \; f \, .$$

(on veut un ε aussi proche de 0 que possible!)

On dit qu'un algorithme APPROCHE L'OPTIMUM à un facteur φ si

$$\max\left(\frac{f(S)}{f(S_{\mathsf{opt}})}, \frac{f(S_{\mathsf{opt}})}{f(S)}\right) \leq \varphi.$$

(on veut un φ aussi proche de 1 que possible!)

Algorithmes approximables

L'ensemble d'arêtes M couvrant fournit par GreedyMaximalMatching vérifie $|M| \le 2|S_{\text{opt}}|$ donc (minimisation ici)

$$\varepsilon = \frac{|M| - |S_{\mbox{\scriptsize opt}}|}{|M|} \leq \frac{|S_{\mbox{\scriptsize opt}}|}{|M|} \leq \frac{1}{2}$$

mais aussi

$$\varphi = \frac{|M|}{|S_{\mathsf{opt}}|} \le 2.$$

C'est un algorithme $\frac{1}{2}$ -approché ou une approximation à un facteur 2.

Algorithmes approximable et nouvelles classes

La classe APX.

La classe des algorithmes approximables à un facteur constant (une constante absolue) est noté **APX**.

Le couplage glouton fournit une approximation à un facteur 2 pour le problème de couverture des sommets (qui donc appartient à la classe **APX**).

Algorithmes approximable et nouvelles classes

La classe APX.

La classe des algorithmes approximables à un facteur constant (une constante absolue) est noté **APX**.

Le couplage glouton fournit une approximation à un facteur 2 pour le problème de couverture des sommets (qui donc appartient à la classe **APX**).

Les classes PTAS, EPTAS et FPTAS.

Un problème admet un **schéma d'approximation polynomiale** si pour tout ε il admet un algorithme ε -approché de complexité polynomial pour un ε donné. La classe de ces problèmes est notée **PTAS** (pour "Polynomial-Time Approximation Scheme"). De plus, un schéma d'approximation est dit efficace si la complexité est POLYNOMIAL EN LA TAILLE DE L'ENTRÉE **sans dépendre d'** ε . La classe de ces problèmes est appelée **EPTAS**. Enfin, le schéma d'approximation est totalement polynomial si la complexité est POLYNOMIALE À LA FOIS EN LA TAILLE DE L'ENTRÉE ET DE ε . La classe correspondante est **FPTAS**.

Par exemple, pour un problème P sur une instance de taille n, on a un algorithme A tel que pour tout ε , A est un algorithme ε -approché de complexité $O(n^{\text{constante}}/\varepsilon)$.

Algorithmes approximable et nouvelles classes

La classe APX.

La classe des algorithmes approximables à un facteur constant (une constante absolue) est noté **APX**.

Le couplage glouton fournit une approximation à un facteur 2 pour le problème de couverture des sommets (qui donc appartient à la classe **APX**).

Les classes PTAS, EPTAS et FPTAS.

Un problème admet un **schéma d'approximation polynomiale** si pour tout ε il admet un algorithme ε -approché de complexité polynomial pour un ε donné. La classe de ces problèmes est notée **PTAS** (pour "Polynomial-Time Approximation Scheme"). De plus, un schéma d'approximation est dit efficace si la complexité est POLYNOMIAL EN LA TAILLE DE L'ENTRÉE **sans dépendre d'** ε . La classe de ces problèmes est appelée **EPTAS**. Enfin, le schéma d'approximation est totalement polynomial si la complexité est POLYNOMIALE À LA FOIS EN LA TAILLE DE L'ENTRÉE ET DE ε . La classe correspondante est **FPTAS**.

Par exemple, pour un problème P sur une instance de taille n, on a un algorithme A tel que pour tout ε , A est un algorithme ε -approché de complexité $O(n^{\text{constante}}/\varepsilon)$.

Ranking des classes.

On a par construction FPTAS \subseteq EPTAS \subseteq PTAS \subseteq APX.

Le problème du sac à dos

Définition.

Input/donnée: n pairs (c_i, w_i) d'entiers et un entier K. On peut interpréter c_i comme étant le coût d'un objet numéro i et w_i son volume/poids. K est la capacité totale du sac à dos.

Le problème d'optimisation: trouver Sol $\subseteq \{1, 2, \cdots, n\}$ tel que $\sum_{i \in Sol} w_i \leq K$ et $\sum_{i \in Sol} c_i$ est maximum.

Le problème du sac à dos

Définition.

Input/donnée: n pairs (c_i, w_i) d'entiers et un entier K. On peut interpréter c_i comme étant le coût d'un objet numéro i et w_i son volume/poids. K est la capacité totale du sac à dos.

Le problème d'optimisation: trouver Sol $\subseteq \{1, 2, \dots, n\}$ tel que $\sum_{i \in \text{Sol}} w_i \leq K$ et $\sum_{i \in \text{Sol}} c_i$ est maximum.

On définit une fonction C tel que

C(w, I) = J si $S \subseteq \{1, 2, \dots, I\}$ et $J = \max_{S} (\sum_{i \in S} c_i)$ On remarque alors que C(w, I + 1) peut être défini à partir de C(w, I) en considérant la solution maximum sur toutes les solutions incluant I + 1 ou non. Donc, on a

$$\begin{cases} C(w,0) = 0 \\ C(w,l+1) = \max\{C(w,l), c_{i+1} + C(w-w_{i+1},l)\} \end{cases}$$

Donc en O(n.K) étapes on a $\{C(1, n), \dots, C(K, n)\}.$

Le problème du sac à dos

Définition.

Input/donnée: n pairs (c_i, w_i) d'entiers et un entier K. On peut interpréter c_i comme étant le coût d'un objet numéro i et w_i son volume/poids. K est la capacité totale du sac à dos.

Le problème d'optimisation: trouver Sol $\subseteq \{1, 2, \cdots, n\}$ tel que $\sum_{i \in Sol} w_i \leq K$ et $\sum_{i \in Sol} c_i$ est maximum.

On définit une fonction C tel que

C(w, I) = J si $S \subseteq \{1, 2, \dots, I\}$ et $J = \max_S (\sum_{i \in S} c_i)$ On remarque alors que C(w, I + 1) peut être défini à partir de C(w, I) en considérant la solution maximum sur toutes les solutions incluant I + 1 ou non. Donc, on a

$$\begin{cases} C(w,0) = 0 \\ C(w,l+1) = \max\{C(w,l), c_{i+1} + C(w-w_{i+1},l)\} \end{cases}$$

Donc en O(n.K) étapes on a $\{C(1, n), \dots, C(K, n)\}.$

Remarque (ce n'est pas polynomial!!!!!!).

La taille de l'entrée est

$$\sum_{i=1}^n \log c_i + \sum_{i=1}^n \log w_i + \log K.$$

Le problème du sac à dos (suite)

On définit une fonction W tel que W(c, I) = J où J est le plus petit volume $\sum_{i \in S} w_i$ d'un sous-ensemble $S \subseteq \{1, 2, \cdots, I\}$ tel que $\sum_{i \in S} w_i = c$ On peut calculer W(c, I) pour tout $c \le n$. $\max\{c_1, c_2, \cdots, c_n\}$ et $I \le n$ car

```
\begin{cases} W(c,1) = w_1 \text{ si } c = c_1 \\ W(0,I) = 0 \\ W(c,I+1) = \min\{W(c,I), w_{i+1} + W(c-c_{i+1},I)\} \end{cases}
```

Ces équations réflètent le fait que W(c, l+1) est le minimum des volumes des ensembles qui incluent ou non l'objet l+1. En choisissant le plus grand c tel que $W(c, n) \le K$ on a un algorithme en $O(n^2, \max\{c_i\})$.

Le problème du sac à dos (suite)

On définit une fonction W tel que W(c, I) = J où J est le plus petit volume $\sum_{i \in S} w_i$ d'un sous-ensemble $S \subseteq \{1, 2, \dots, I\}$ tel que $\sum_{i \in S} w_i = c$ On peut calculer W(c, I) pour tout $c \le n$. $\max\{c_1, c_2, \dots, c_n\}$ et $I \le n$ car

$$\begin{cases} & W(c,1) = w_1 \text{ si } c = c_1 \\ & W(0,I) = 0 \\ & W(c,I+1) = \min\{W(c,I), w_{i+1} + W(c-c_{i+1},I)\} \end{cases}$$

Ces équations réflètent le fait que W(c, I+1) est le minimum des volumes des ensembles qui incluent ou non l'objet I+1. En choisissant le plus grand c tel que $W(c, n) \leq K$ on a un algorithme en $O(n^2, \max\{c_i\})$.

Remarque (ce n'est toujours pas polynomial!!!!!).

La taille de l'entrée est

$$\sum_{i=1}^n \log c_i + \sum_{i=1}^n \log w_i + \log K.$$

Le problème du sac à dos (suite)

Décomposer les c_i

On code les c_i en binaire et on considère les bits les plus significatifs. On fixe un entier b et on "élimine" les b bits les moins significatifs des c_i en définissant $c'_i = 2^b . d_i$ avec $d_i = \lfloor \frac{c_i}{2^b} \rfloor$. Si les données en entrée sont w_1, w_2, \cdots, w_n, K et d_1, \cdots, d_n alors la solution trouvée par l'algorithme est <u>la même</u> que si les données sont w_1, w_2, \cdots, w_n, K et c'_1, \cdots, c'_n . La complexité est alors $O(n^2 . \frac{\max c_i}{2^b})$ et on trouve une solution S':

$$\sum_{i \in S} c_i \geq \sum_{i \in S'} c_i \geq \sum_{i \in S'} c'_i \geq \sum_{i \in S} c'_i \geq \sum_{i \in S} c_i - n.2^b.$$
S est optimale $\sum_{i \in S} c_i \geq \sum_{i \in S} c_i = \sum_{i \in S} c_i =$

(la dernière inégalité utilise le fait que $c'_i \ge c_i - 2^b$.) On a alors (via 2nde et 4ième expressions):

$$\sum_{i \in S} c_i - \sum_{i \in S'} c_i \le n.2^b$$

et donc

$$\frac{\sum_{i \in S} c_i - \sum_{i \in S'} c_i}{\sum_{i \in S} c_i} \le \frac{\sum_{i \in S} c_i - \sum_{i \in S'} c_i}{\max c_i} \le \frac{n.2^b}{\max c_i}$$

On a donc un algorithme approché pour $\varepsilon = \frac{n.2^b}{\max c_i}$. On choisit $b = \log\left(\varepsilon \frac{\max c_i}{n}\right)$ pour avoir une complexité en $O(n^3/\varepsilon) \longrightarrow \text{un FPTAS}$.

Approximations randomisées et classes PRAS, EPRAS et FPRAS.

Définition: avec très grande probabilité

On dit qu'un évènement \mathcal{E}_n arrive avec une très grande probabilité si la probabilité de cet évènement est plus grande que $1 - O\left(\frac{1}{n^c}\right)$ pour une constante c > 0.

Approximations randomisées et classes PRAS, EPRAS et FPRAS.

Définition: avec très grande probabilité

On dit qu'un évènement \mathcal{E}_n arrive avec une très grande probabilité si la probabilité de cet évènement est plus grande que $1 - O\left(\frac{1}{n^c}\right)$ pour une constante c > 0.

Définitions: PRAS, EPRAS, FPRAS

Un algorithme randomisé fournit un **schéma randomisé d'approximation polynomiale** si **pour toute instance** d'un problème d'optimisation et pour tout ε en un temps polynomial en n l'algorithme fournit une solution qui est à un facteur ε de l'optimal avec une **très grande probabilité**. La classe de ces problèmes est notée **PRAS** (pour "Polynomial-time Randomized Approximation Scheme").

De plus, un schéma d'approximation randomisé est dit efficace si la complexité est POLYNOMIALE EN LA TAILLE DE L'ENTRÉE sans dépendre d' ε . La classe de ces problèmes est appelée **EPRAS**.

Enfin, le schéma d'approximation randomisé est totalement polynomial si la complexité est POLYNOMIAL À LA FOIS EN LA TAILLE DE L'ENTRÉE ET DE ε . La classe correspondante est **FPRAS**.

Le problème MAX-3-SAT

C'est le problème d'optimisation correspondant au **problème** de décision 3-SAT.

Définition de MAX-3-SAT

Input/donnée: Une formule 3-SAT construite sur *n* variables et *m* clauses

```
 \begin{cases} C_1 \wedge C_2 \wedge \dots \wedge C_m \\ \text{avec } C_i \text{ de la forme } C_i = x_r \vee x_s \vee x_t \\ \text{où } (x_r, x_s, x_t) \in \{x_1, x_2, \dots, x_n, \bar{x}_1, \bar{x}_2, \dots, \bar{x}_n\}^3 \end{cases}
```

Output/Sortie: trouver une affectation des booléens x_i qui maximise le nombre de clauses satisfaites.

Le problème MAX-3-SAT

C'est le problème d'optimisation correspondant au problème de décision 3-SAT.

Définition de MAX-3-SAT

Input/donnée: Une formule 3-SAT construite sur *n* variables et *m* clauses

$$\begin{cases} & C_1 \wedge C_2 \wedge \dots \wedge C_m \\ & \text{avec } C_i \text{ de la forme } C_i = x_r \vee x_s \vee x_t \\ & \text{où } (x_r, \, x_s, \, x_t) \in \{x_1, \, x_2, \dots, \, x_n, \, \bar{x}_1, \, \bar{x}_2, \dots, \, \bar{x}_n\}^3 \end{cases}$$

Output/Sortie: trouver une affectation des booléens x_i qui maximise le nombre de clauses satisfaites.

MAX-3-SAT est NP-difficile

Si MAX-3-SAT peut être résolu en **temps polynomial** alors ce sera le cas aussi de 3-SAT!

Le premier glouton venu

GreedyApproxMax3SAT

```
for i = 1 to n do
\begin{vmatrix} x_i = 0; \\ \text{Faire Pile ou Face;} \\ \text{if Pile then} \\ | x_i = 1; \\ \text{end} \end{vmatrix}
```

Le premier glouton venu

GreedyApproxMax3SAT

```
for i = 1 to n do
\begin{vmatrix} x_i = 0; \\ \text{Faire Pile ou Face;} \\ \text{if Pile then} \\ | x_i = 1; \\ \text{end} \end{vmatrix}
```

Observations.

- L'algorithme GreedyApproxMax3SAT tourne en temps linéaire O(n).
- L'espérance du nombre de clauses satisfaites est 7 m.
- La méthode probabiliste nous dicte donc que pour toute instance de 3-SAT, il existe une affectation qui va satisfaire au moins ⁷/₈ des clauses.
- Une instance de 3-SAT avec moins de 7 clauses peut toujours être satisfaite.

L'amplification de Johnson (1974)

Un autre glouton

L'algorithme de Johnson consiste à **répéter** gloutonnement GreedyApproxMax3SAT **jusqu'à** ce qu'au moins $\frac{7}{8}$ des clauses soient satisfaites.

L'amplification de Johnson (1974)

Un autre glouton

L'algorithme de Johnson consiste à **répéter** gloutonnement GreedyApproxMax3SAT jusqu'à ce qu'au moins $\frac{7}{9}$ des clauses soient satisfaites.

Théorème.

L'algorithme de Johnson tourne en **moyenne** en **temps polynomial** et fournit une solution approchée avec un facteur 8/7.

L'amplification de Johnson (1974)

Un autre glouton

L'algorithme de Johnson consiste à **répéter** gloutonnement GreedyApproxMax3SAT **jusqu'à** ce qu'au moins $\frac{7}{8}$ des clauses soient satisfaites.

Théorème.

L'algorithme de Johnson tourne en **moyenne** en **temps polynomial** et fournit une solution approchée avec un facteur 8/7.

Les observations clefs

- On a vu qu'on peut toujours satisfaire au moins 7/8 des clauses.
- En répétant à l'infini GreedyApproxMax3SAT, on va finir par trouver l'optimum.
- Combien de répétitions pour trouver une affectation satisfaisant au moins 7/8 des clauses?
- L'idée est donc de quantifier

 $\mathbb{P}\left[\text{un appel à GreedyApproxMax3SAT satisfait au moins } 7/8 \text{ des clauses}\right]$

Lemme

 $\mathbb{P}\left[\text{un appel à GreedyApproxMax3SAT} \text{ satisfait au moins } 7/8 \text{ des clauses}\right] \geq \frac{1}{8m}$.

Lemme

 $\mathbb{P}\left[\text{un appel à GreedyApproxMax3SAT satisfait au moins } 7/8 \text{ des clauses}
ight] \geq \frac{1}{8m}$.

Preuve. Soit p_j la probabilité qu'exactement j clauses soient satisfaites par un appel à GreedyApproxMax3SAT et p la probabilité qu'au moins 7/8 des clauses soient satisfaies. Si Z est la v.a. des clauses satisfaites par une affectation gloutonne, on a

$$\frac{7}{8}m = \mathbb{E}\left[Z\right] = \sum_{j=0}^{m} jp_{j}$$

et donc

$$\frac{7}{8}m = \sum_{j=0}^{7m/8-1} jp_j + \sum_{7m/8}^{m} jp_j \le \left(\frac{7m-1}{8}\right) \sum_{j=0}^{7m/8-1} p_j + m \sum_{7m/8}^{m} p_j \le \left(\frac{7m-1}{8}\right).1 + m.p.$$

On résout pour trouver $p \ge \frac{1}{8m}$.

Lemme

 $\mathbb{P}\left[\text{un appel à GreedyApproxMax3SAT satisfait au moins }7/8 \text{ des clauses}
ight] \geq rac{1}{8m}$.

Preuve. Soit p_j la probabilité qu'exactement j clauses soient satisfaites par un appel à GreedyApproxMax3SAT et p la probabilité qu'au moins 7/8 des clauses soient satisfaies. Si Z est la v.a. des clauses satisfaites par une affectation gloutonne, on a

$$\frac{7}{8}m = \mathbb{E}\left[Z\right] = \sum_{j=0}^{m} jp_{j}$$

et donc

$$\frac{7}{8}m = \sum_{j=0}^{7m/8-1} jp_j + \sum_{7m/8}^{m} jp_j \le \left(\frac{7m-1}{8}\right) \sum_{j=0}^{7m/8-1} p_j + m \sum_{7m/8}^{m} p_j \le \left(\frac{7m-1}{8}\right).1 + m.p$$

On résout pour trouver $p \ge \frac{1}{8m}$.

En conséquence, en répétant en moyenne au plus 8m fois on trouve une affectation satisfaisant au moins 7/8 des clauses.

Lemme

 $\mathbb{P}\left[\text{un appel à GreedyApproxMax3SAT satisfait au moins }7/8 \text{ des clauses}
ight] \geq rac{1}{8m}\,.$

Preuve. Soit p_j la probabilité qu'exactement j clauses soient satisfaites par un appel à GreedyApproxMax3SAT et p la probabilité qu'au moins 7/8 des clauses soient satisfaies. Si Z est la v.a. des clauses satisfaites par une affectation gloutonne, on a

$$\frac{7}{8}m = \mathbb{E}\left[Z\right] = \sum_{j=0}^{m} jp_{j}$$

et donc

$$\frac{7}{8}m = \sum_{j=0}^{7m/8-1} jp_j + \sum_{7m/8}^{m} jp_j \le \left(\frac{7m-1}{8}\right) \sum_{j=0}^{7m/8-1} p_j + m \sum_{7m/8}^{m} p_j \le \left(\frac{7m-1}{8}\right) .1 + m.p.$$

On résout pour trouver $p \ge \frac{1}{8m}$.

En conséquence, en répétant en moyenne au plus 8m fois on trouve une affectation satisfaisant au moins 7/8 des clauses.

Exercice:

combien de répétitions pour avoir avec une très grande probabilité une affectation satisfaisant au moins 7/8 des clauses?