1. You are working for a fast food chain who has asked you to build a model to predict the number of guests using the drive-through on a given date. Loading the data as a pandas dataframe and displaying the info gives:

#	Column	Non-Null Count	Dtype
0	Franchise number	20000 non-null	int64
1	City	19758 non-null	object
2	Date	20000 non-null	object
3	Number of guests	20000 non-null	int64
4	Temperature	19846 non-null	float64

(a) (3 points) How would you encode the City column as a numeric value? Justify your answer.

Solution: One-hot encoding, because there is no natural order to impose on cities.

(b) (3 points) The Temperature column has some null values. Suggest a reasonable approach to deal with them.

Solution: Since there aren't many features, nor are there many missing from temperature, you probably want to impute the values with something like a Nearest Neighbour imputer. This would be a reasonable choice, as the same city on a similar date would likely have a similar temperature. You could also choose just a simple median or constant imputer.

(c) (3 points) In preprocessing your data, you have chosen to normalize the numeric features. Why is it a problem to recompute the normalization parameters during inference?

Solution: This would make the predicted value of a sample change depending on the other values in the inference batch. In the extreme case (inference on a single sample), you would end up with a divide by 0 error, or just normalizing to a constant.

2. Consider a simple neural network with one hidden layer as shown:

(a) (4 points) Assume that the loss function is given as $\mathcal{L}(y, \hat{y}) = \frac{1}{2}(\hat{y} - y)^2$ and $f^{(2)}(x) = x$ such that $\hat{y} = \mathbf{z}^T \mathbf{W_2}$, where \mathbf{z} is the output of the hidden layer. Given the following values:

$$y = 5$$
, $\hat{y} = 4$, $\mathbf{W_2} = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$, $\mathbf{z} = \begin{bmatrix} 0.5 \\ 0.6 \end{bmatrix}$

calculate the gradient of the loss with respect to W_2 , given as:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W_2}} = \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{y}}} \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{W_2}}$$

Solution: It seems complicated, but this reduces down a lot! $\frac{\partial \mathcal{L}}{\partial \hat{y}} = \hat{y} - y = (4 - 5) = -1$, and $\frac{\partial \hat{y}}{\partial \mathbf{W_2}}$ is just \mathbf{z} . The gradient of the weight is then simply $-\mathbf{z} = \begin{bmatrix} -0.5 \\ -0.6 \end{bmatrix}$.

(b) (4 points) The previous question was calculated for a single sample. Complete the table below for the dimensions of the terms with a batch size of 8.

Term	Single Sample	Batch of 8
у	scalar	8×1
ŷ	scalar	8×1
\mathbf{W}_2	2 × 1	2×1
Z	2 × 1	2 × 8

(c) (1 point) What additional term(s) is missing or assumed to be 0 in this network?

Solution: The bias terms.