1 -Robot planaire

Le robot planaire de la figure ci-dessous est à deux degrés de liberté . Il est constitué par deux bras S₁ et S₂ , contenus dans le plan (xOy) d'un repère de référence R_0 ($O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$) lié au bâti SO .

On définit deux repères R_1 (O, $\overrightarrow{x_1}$, $\overrightarrow{y_1}$, $\overrightarrow{z_1}$) et R_2 (A, $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, $\overrightarrow{z_2}$) liés au bras S_1 et S_2

On considère les mouvements suivants :

- S_1 est en rotation de θ_1 par rapport à S_0 autour de l'axe ($O, \overline{z_0}$), et le bras S_1 est en liaison pivot avec le bâti S_0 au point O O0 est en rotation de O1 par rapport à O2 par rapport à O3 autour de l'axe (O4, O5), et le bras O5 est en liaison pivot avec le bras O5 au point O6 est en rotation de O7 par rapport à O8 par rapport à O9 par On donne par ailleurs les dimensions suivantes : $\overrightarrow{OA} = l_1 \cdot \overrightarrow{x_1}$ et $\overrightarrow{AB} = l_2 \cdot \overrightarrow{x_2}$

Questions

- 1 Représenter sur des schémas plans, la position des différents repères utilisés par rapport au repère R₀
- 2 Calculer $\vec{\Omega}$ (R_1/R_0) et $\vec{\Omega}$ (R_2/R_0) . En déduire $\vec{\Omega}$ (R_2/R_1)
- 3 Quelle est la nature de la trajectoire des points A et B dans R0 si θ_2 est fixe (prendre $\theta_2 = \frac{\pi}{2}$)?

$$\text{4-Calculer}: \frac{d^{R_0} \, \overline{OA}}{dt}; \frac{d^{R_1} \, \overline{OA}}{dt}; \frac{d^{R_0} \, \overline{AB}}{dt}; \frac{d^{R_1} \, \overline{AB}}{dt}; \frac{d^{R_2} \, \overline{AB}}{dt}; \frac{d^{R_0} \, \overline{OB}}{dt}; \frac{d^{R_1} \, \overline{OB}}{dt}$$

- 5 Déterminer les coordonnées (éléments de réduction) des torseurs { v_{S_1/R_0} } et { v_{S_2/R_1} } aux points O et A respectivement
- 6 On considère un point P lié à R1 et un point Q mobile dans R2.

Calculer la vitesse de P par rapport à R₀ ainsi que celle de Q

Calculer l'accélération de P par rapport à R₀.

2 - Centre de masse et matrice d'inertie d'une demi-sphère creuse

On considère une demi-sphère creuse S de masse m et de rayon R.

- 1) Calculer la matrice d'inertie de la demi-sphère en son centre O.
- 2) Déterminer la position du centre de masse C de S

Figure 3.8 Coordonnées sphériques. L'angle θ correspond à la longitude et ϕ à la latitude en repérage terrestre.

3) Exprimer la matrice d'inertie en C. Utiliser les coordonnées sphériques (r, θ et ϕ).

Avec les conventions de la figure 3.8, on les définit comme suit :

 $x = r \sin\theta \cos\phi$ $y = r \sin\theta \sin\phi$

 $z = r \cos\theta$

L'élément de surface sur la sphère de rayon R est $dA = R^2 \sin\theta d\theta d\phi$