宋辞

逾二年金融行业机器学习实践经验,法国工程师学校 EFREI 工程师学位(工程硕士学

位),华南理工大学工学学士学位

工作经验

11.2017 - present

高级机器学习工程师 北京玖富联银科技有限公司 - 中国 北京

- + 基于强化学习和遗传算法(进化策略)开发用于机器学习模型最优超参数组寻找的框架Finder
- + 开发智能运营系统。将机器学习算法(K-means, GBDT XGBoost, ANN etc.) 应用到运营工作中去,例如推广渠道质量(欺诈)监控,推荐模块(千人千面系统),卡券优化配置模块,用户运营(流失唤回)等
 - o 主要负责了推广渠道质量监控模块,主要通过分析设备行为数据(基于 GrowinglO数据采集),聚类设备行为,行为标签价值量化等达到监控渠 道质量
 - o 参与了推荐模块算法开发部分。开发了基于隐语义矩阵分解, 行为数据轨 迹的推荐模块
 - o 参与了卡券优化配置工作的特征工程(基于HIVE SQL)部分,对同事的建模工作提供支持

11.2016 - 11-2017

软件工程师

源讯科技(中国)有限公司 - 中国 北京

- + 开发基于信贷业务全生命周期的通用机器学习平台Wisdom(基于 Deeplearning4J)
- + 用户可以通过部署业务线达到从数据ETL(DataVec),特征抽象,模型建立,模型训练,到模型版本控制来实现将机器学习应用到贷前,贷中,贷后各个业务中去
- + 模型开发人员可以基于已经预定义的模型模板文件,通过drag-drop方式继续开发基于业务的模型
- + 部署基于Docker的持续集成平台,使交付工程实现一键部署

03.2016 - 10.2016

数据工程师

源讯科技 法国总部

- 法国 Bezons

- + 为英国铁路运营公司协会(ATOC)开发基于SpringXD以及GreenPlum的大数据解决方案
- + 平台能够采集分散在FTP服务器上的XML原始文本数据,通过数据流(SpringXD)的形式处理成结构化数据然后存储在分布式数据库(Greenplum)里
- + 对列车运行数据做数据挖掘,预测性分析。探索列车正晚点的内在规律,对列车的 正晚点可能给出概率值。将以上结构部署在Tableau Server上
- + 系统包括数据ETL(SpringXD),预测性分析(SVM),数据可视化(Tableau) 等部分

04.2015 - 09.2015

软件工程师

SARL EYELLE

- 法国 巴黎

- + Opencart框架的再开发工作。(Opencart是在线商店的CMS,使用PHP MVC+Language开发)。实习期间开发了在线**实时订单打印技术**以及**在线支付 模块**(基于源讯科技的支付解决方案)
- + 前端交互开发(主要从事JQuery和AngularJS的使用)

教育背景

一
2010 - 2014 + 学习内容摘要: 信息系统建模, Al, data warehouse, big data series 艾爾
支能 工学学士 - 华南理工大学 - 中国广州 + 专业:信息工程 + 学习内容摘要:通信技术, 网络技术, 高等编程 技能 PYTHON, JAVA, C, RUBY, SQL, NOSQL 数据处理 使件技术技能 语言 PYTHON, JAVA, C, RUBY, SQL, NOSQL PANDAS, HIVE SQL, PYSPARK, MATLAB, R LABVIEW, FPGA, DSP 中文(普通话) 母语 英文 流利, 托业: 900/990[2015.4] 法语 常用交流水平 强化学习实践 基于增强学习的 Sorso 算法, A2C 算法实现的解决魔方问题(AlphaCube) + 抽象用于3阶魔方的状态空间, 以及奖励办法。 + 使用Sorsa框架(算法)生成简单状态下的Q-Toble的状态值。 + 基于生成的Q-Toble生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic) + 使用A2C算法训练复杂状态空间下的魔方。 Sorso, Policy Gradient(A2C), Reinforcement Learning 使用 GPGPU 的并行计算能力加速计算。团队工作, 获学校(EFREI) Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口, 使大型数据计算程序可以做到"即插即用" OpenCL, JAVA, Android technologies
技能 編程技能 数据处理 PYTHON, JAVA, C, RUBY, SQL, NOSQL 数据处理 PANDAS, HIVE SQL, PYSPARK, MATLAB, R 硬件技术技能 LABVIEW, FPGA, DSP 中文(普通话) 母语 英文 流利, 托业: 900/990(2015.4) 法语 常用交流水平 弧化学习实践 基于增强学习的 Sarsa 算法, A2C 算法实现的解决魔方问题(AlphaCube) + 抽象用于3阶魔方的状态空间, 动作空间, 以及奖励办法。 + 使用Sarsa框架(算法)生成简单状态下的Q-Table的状态值。 + 基于生成的Q-Table生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic) + 使用A2C算法训练复杂状态空间下的魔方。Sarsa, Policy Gradient(A2C), Reinforcement Learning 并行快速计算 使用 GPGPU 的并行计算能力加速计算。团队工作, 获学校(EFREI) Enterprise day 推荐 + 开发了一个支持远程部署在CPGPU上的平台 + 提供基于OpenCL的接口, 使大型数据计算程序可以做到"即插即用"OpenCL, JAVA, Android technologies
技能 编程技能 数据处理 使件技术技能 语言 PYTHON, JAVA, C, RUBY, SQL, NOSQL PANDAS, HIVE SQL, PYSPARK, MATLAB, R LABVIEW, FPGA, DSP 中文(普通话) 母语 英文 流利, 托业: 900/990(2015.4) 法语 常用交流水平 项目 经验 基于增强学习的 Sarsa 算法, A2C 算法实现的解决魔方问题(AlphaCube) + 抽象用于3阶魔方的状态空间, 动作空间, 以及奖励办法。 + 使用Sarsa框架(算法)生成简单状态下的Q-Table的状态值。 + 基于生成的Q-Table生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic) - 使用A2C算法训练复杂状态空间下的魔方。 Sarsa, Policy Gracilent(A2C), Reinforcement Learning 并行快速计算 使用 GPGPU 的并行计算能力加速计算。团队工作, 获学校(EFREI) Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口, 使大型数据计算程序可以做到"即插即用" OpenCL, JAVA, Android technologies
接
编程技能 PYTHON, JAVA, C, RUBY, SQL, NOSQL 数据处理 PANDAS, HIVE SQL, PYSPARK, MATLAB, R 硬件技术技能 LABVIEW, FPGA, DSP 中文(普通话) 母语 英文 流利, 托业: 900/990(2015.4) 法语 常用交流水平 强化学习实践 基于增强学习的 Sarsa 算法, A2C 算法实现的解决魔方问题 (AlphaCube)
编程技能 PYTHON, JAVA, C, RUBY, SQL, NOSQL 数据处理 PANDAS, HIVE SQL, PYSPARK, MATLAB, R 硬件技术技能 LABVIEW, FPGA, DSP 中文(普通话) 母语 英文 流利, 托业: 900/990(2015.4) 法语 常用交流水平 强化学习实践 基于增强学习的 Sarsa 算法, A2C 算法实现的解决魔方问题 (AlphaCube)
数据处理 使件技术技能 语言 PANDAS, HIVE SQL, PYSPARK, MATLAB, R LABVIEW, FPGA, DSP 中文(普通话) 母语 英文 流利, 托业: 900/990(2015.4) 法语 常用交流水平 项目 经 验 基于增强学习的 Sarsa 算法, A2C 算法实现的解决魔方问题(AlphaCube) + 抽象用于3阶魔方的状态空间, 动作空间, 以及奖励办法。 + 使用Sarsa框架(算法)生成简单状态下的Q-Table的状态值。 + 基于生成的Q-Table生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic) + 使用A2C算法训练复杂状态空间下的魔方。 Sarsa, Policy Gradlent(A2C), Reinforcement Learning 使用 GPGPU 的并行计算能力加速计算。团队工作, 获学校(EFREI) Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口, 使大型数据计算程序可以做到"即插即用" OpenCL, JAVA, Android technologies
硬件技术技能 LABVIEW, FPGA, DSP 中文(普通话) 母语 英文 流利, 托业: 900/990(2015.4) 強化学习实践 基于增强学习的 Sarsa 算法, A2C 算法实现的解决魔方问题(AlphaCube) + 抽象用于3阶魔方的状态空间, 动作空间, 以及奖励办法。 + 使用Sarsa框架(算法)生成简单状态下的Q-Table的状态值。 + 基于生成的Q-Table生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic) + 使用A2C算法训练复杂状态空间下的魔方。Sarsa, Policy Gradient(A2C), Reinforcement Learning 使用 GPGPU 的并行计算能力加速计算。团队工作, 获学校(EFREI)Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口, 使大型数据计算程序可以做到"即插即用"OpenCL, JAVA, Android technologies
语言 中文(普通话) 母语 英文 流利, 托业: 900/990(2015.4) 法语 常用交流水平 項目 经 验 基于增强学习的 Sarsa 算法, A2C 算法实现的解决魔方问题 (AlphaCube) + 抽象用于3阶魔方的状态空间,动作空间,以及奖励办法。 + 使用Sarsa框架 (算法)生成简单状态下的Q-Table的状态值。 + 基于生成的Q-Table生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic) + 使用A2C算法训练复杂状态空间下的魔方。Sarsa, Policy Gradient(A2C), Reinforcement Learning + 使用 GPGPU 的并行计算能力加速计算。团队工作,获学校(EFREI) Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用"OpenCL, JAVA, Android technologies
英文 流利, 托业: 900/990[2015.4] 港语 常用交流水平 項目经验 基于增强学习的 Sarsa 算法, A2C 算法实现的解决魔方问题 (AlphaCube) + 抽象用于3阶魔方的状态空间, 动作空间, 以及奖励办法。 + 使用Sarsa框架 (算法) 生成简单状态下的Q-Table的状态值。 + 基于生成的Q-Table生成A2C算法的训练数据 (两份数据分别用于训练Actor和Critic) + 使用A2C算法训练复杂状态空间下的魔方。Sarsa, Policy Gradient(A2C), Reinforcement Learning 并行快速计算 使用 GPGPU 的并行计算能力加速计算。团队工作, 获学校 (EFREI) Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口, 使大型数据计算程序可以做到"即插即用"OpenCL, JAVA, Android technologies
選・ 常用交流水平 基于増强学习的 Sarsa 算法, A2C 算法实现的解决魔方问题(AlphaCube) + 抽象用于3阶魔方的状态空间,动作空间,以及奖励办法。 + 使用Sarsa框架(算法)生成简单状态下的Q-Table的状态值。 + 基于生成的Q-Table生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic) + 使用A2C算法训练复杂状态空间下的魔方。 Sarsa, Policy Gradient(A2C), Reinforcement Learning 使用 GPGPU 的并行计算能力加速计算。 团队工作,获学校(EFREI)Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用" OpenCL, JAVA, Android technologies
選化学习实践 基于増强学习的 Sarsa 算法,A2C 算法实现的解决魔方问题(AlphaCube) + 抽象用于3阶魔方的状态空间,动作空间,以及奖励办法。 + 使用Sarsa框架(算法)生成简单状态下的Q-Table的状态值。 + 基于生成的Q-Table生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic) + 使用A2C算法训练复杂状态空间下的魔方。 Sarsa, Policy Gradient(A2C), Reinforcement Learning 使用 GPGPU 的并行计算能力加速计算。团队工作,获学校(EFREI)Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用" OpenCL, JAVA, Android technologies
强化学习实践基于增强学习的 Sarsa 算法,A2C 算法实现的解决魔方问题(AlphaCube)+ 抽象用于3阶魔方的状态空间,动作空间,以及奖励办法。+ 使用Sarsa框架(算法)生成简单状态下的Q-Table的状态值。+ 基于生成的Q-Table生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic)+ 使用A2C算法训练复杂状态空间下的魔方。Sarsa, Policy Gradient(A2C), Reinforcement Learning使用 GPGPU 的并行计算能力加速计算。团队工作,获学校(EFREI)Enterprise day 推荐+ 开发了一个支持远程部署在GPGPU上的平台+ 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用"OpenCL, JAVA, Android technologies
强化学习实践基于增强学习的 Sarsa 算法,A2C 算法实现的解决魔方问题(AlphaCube)+ 抽象用于3阶魔方的状态空间,动作空间,以及奖励办法。+ 使用Sarsa框架(算法)生成简单状态下的Q-Table的状态值。+ 基于生成的Q-Table生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic)+ 使用A2C算法训练复杂状态空间下的魔方。Sarsa, Policy Gradient(A2C), Reinforcement Learning使用 GPGPU 的并行计算能力加速计算。团队工作,获学校(EFREI)Enterprise day 推荐+ 开发了一个支持远程部署在GPGPU上的平台+ 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用"OpenCL, JAVA, Android technologies
 + 抽象用于3阶魔方的状态空间,动作空间,以及奖励办法。 + 使用Sarsa框架(算法)生成简单状态下的Q-Table的状态值。 + 基于生成的Q-Table生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic) + 使用A2C算法训练复杂状态空间下的魔方。Sarsa, Policy Gradient(A2C), Reinforcement Learning 使用 GPGPU 的并行计算能力加速计算。团队工作,获学校(EFREI)Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用"OpenCL, JAVA, Android technologies
 + 抽象用于3阶魔方的状态空间,动作空间,以及奖励办法。 + 使用Sarsa框架(算法)生成简单状态下的Q-Table的状态值。 + 基于生成的Q-Table生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic) + 使用A2C算法训练复杂状态空间下的魔方。Sarsa, Policy Gradient(A2C), Reinforcement Learning 使用 GPGPU 的并行计算能力加速计算。团队工作,获学校(EFREI)Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用"OpenCL, JAVA, Android technologies
+ 使用Sarsa框架(算法)生成简单状态下的Q-Table的状态值。+ 基于生成的Q-Table生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic)+ 使用A2C算法训练复杂状态空间下的魔方。Sarsa, Policy Gradient(A2C), Reinforcement Learning使用 GPGPU 的并行计算能力加速计算。团队工作,获学校(EFREI)Enterprise day 推荐+ 开发了一个支持远程部署在GPGPU上的平台+ 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用"OpenCL, JAVA, Android technologies
+ 基于生成的Q-Table生成A2C算法的训练数据(两份数据分别用于训练Actor和Critic)+ 使用A2C算法训练复杂状态空间下的魔方。 Sarsa, Policy Gradient(A2C), Reinforcement Learning并行快速计算使用 GPGPU 的并行计算能力加速计算。团队工作,获学校(EFREI)Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用" OpenCL, JAVA, Android technologies
Critic) + 使用A2C算法训练复杂状态空间下的魔方。 Sarsa, Policy Gradient(A2C), Reinforcement Learning 使用 GPGPU 的并行计算能力加速计算。团队工作,获学校(EFREI)Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用" OpenCL, JAVA, Android technologies
+ 使用A2C算法训练复杂状态空间下的魔方。 Sarsa, Policy Gradient(A2C), Reinforcement Learning并行快速计算使用 GPGPU 的并行计算能力加速计算。团队工作,获学校(EFREI) Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用" OpenCL, JAVA, Android technologies
Sarsa, Policy Gradient(A2C), Reinforcement Learning 使用 GPGPU 的并行计算能力加速计算。团队工作,获学校(EFREI)Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用" OpenCL, JAVA, Android technologies
使用 GPGPU 的并行计算能力加速计算。团队工作,获学校(EFREI)Enterprise day 推荐 + 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用" OpenCL, JAVA, Android technologies
+ 开发了一个支持远程部署在GPGPU上的平台 + 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用" OpenCL, JAVA, Android technologies
+ 提供基于OpenCL的接口,使大型数据计算程序可以做到"即插即用" OpenCL, JAVA, Android technologies
OpenCL, JAVA, Android technologies
异构网络融合 基于 SIP 技术提供 WLAN 下的 VoIP 技术和移动网络通话服务的融合实验
SIP, Wlan, 3G, Android. 本科毕业设计项目
网页自动打印 网页在线来单实时打印技术,无人值守状态下的订单来单打印系统
Ajax, PHP, MySQL, JAVA
实时直径测量 基于单片机和光学仪器 CCD 的实时直径测量仪器,System on Chip 使用 C 语言
である。
C, MCO, CCD
更多信息。
请登录 https://cinqs.me 查看更多最新动态