PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 16/04/2004 – TRACCIA A

PARTE I

ESERCIZIO 1:

Progettare una rete R sequenziale con una linea di ingresso X ed una linea di uscita z. Ad ogni colpo di clock, R riceve un bit sulla linea X. La rete R riconosce sequenze di ingresso S del tipo S=0000Q0000, dove Q denota una sequenza di bit di lunghezza arbitraria. In corrispondenza dell'ultimo bit di S, la rete R deve restituire 1 se il numero di bit uno presenti in S è pari, mentre deve restituire 0 se il numero di bit uno presenti in S è dispari.

Segue un esempio di possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
X(t):	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0
Z(t):														<u>1</u>	0	0

La sequenza S ha inizio nel ciclo di clock t=2, in quanto a partire da tale ciclo R riceve la sequenza di quattro bit **0000**, ed ha termine nel ciclo di clock t=13, in quanto in tale ciclo R riceve l'ultimo bit della seconda sequenza di quattro bit **0000**. La sequenza S è dunque **0000**0101**0000**. Poiché in S è presente un numero pari di bit uno, l'uscita z di R in corrispondenza dell'ultimo bit di S è 1.

Si noti che a partire dal ciclo di clock t=14, la rete R continua a riconoscere le successive sequenze S del tipo sopra descritto.

La minimizzazione dell'automa NON E' RICHIESTA.

ESERCIZIO 2:

Estendere il set di istruzioni della macchina ad accumulatore con l'operazione SUMM X che, dato un intero X, restituisce nell'accumulatore la somma del contenuto delle locazioni di memoria che contengono un valore maggiore o uguale ad X.

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 16/04/2004 – TRACCIA A

PARTE II

DOMANDA 1:

Si illustrino le differenze che sussistono tra relazione di equivalenza e relazione di compatibilità nell'ambito della minimizzazione di automi.

DOMANDA 2:

Si descriva cosa si intende per *alea statica* in una rete combinatoria.

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 16/04/2004 – TRACCIA B

PARTE I

ESERCIZIO 1:

Progettare una rete R sequenziale con una linea di ingresso X ed una linea di uscita z. Ad ogni colpo di clock, R riceve un bit sulla linea X. La rete R riconosce sequenze di ingresso S del tipo S=0101Q0101, dove Q denota una sequenza di bit di lunghezza arbitraria. In corrispondenza dell'ultimo bit di S, la rete R deve restituire 1 se il numero di bit uno presenti in S è dispari, mentre deve restituire 0 se il numero di bit uno presenti in S è pari.

Segue un esempio di possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
X(t):	1	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0
Z(t):	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

La sequenza S ha inizio nel ciclo di clock t=2, in quanto a partire da tale ciclo R riceve la sequenza di quattro bit **0101**, ed ha termine nel ciclo di clock t=13, in quanto in tale ciclo R riceve l'ultimo bit della seconda sequenza di quattro bit **0101**. La sequenza S è dunque **0101**0100**0101**. Poiché in S è presente un numero dispari di bit uno, l'uscita z di R in corrispondenza dell'ultimo bit di S è 1.

Si noti che a partire dal ciclo di clock t=14, la rete R continua a riconoscere le successive sequenze S del tipo sopra descritto.

La minimizzazione dell'automa NON E' RICHIESTA.

ESERCIZIO 2:

Estendere il set di istruzioni della macchina ad accumulatore con l'operazione CNTE X che, dato un intero X, restituisce nell'accumulatore il numero di locazioni di memoria che contengono un valore uguale ad X.

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 16/04/2004 – TRACCIA B

PARTE II

DOMANDA 1:

Si illustrino per grandi linee le differenze che sussistono tra architetture RISC e architetture CISC

DOMANDA 2:

Si supponga di collegare un multiplexer (a monte) con un demultiplexer (a valle), ponendo l'unica uscita del multiplexer in ingresso al demultiplexer. Quale funzione viene calcolato dalla rete così ottenuta?

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 16/04/2004 – TRACCIA C

PARTE I

ESERCIZIO 1:

Progettare una rete R sequenziale con una linea di ingresso X ed una linea di uscita z. Ad ogni colpo di clock, R riceve un bit sulla linea X. La rete R riconosce sequenze di ingresso S del tipo S=1111Q1111, dove Q denota una sequenza di bit di lunghezza arbitraria. In corrispondenza dell'ultimo bit di S, la rete R deve restituire 1 se il numero di bit uno presenti in S è pari, mentre deve restituire 0 se il numero di bit uno presenti in S è dispari.

Segue un esempio di possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
X(t):														<u>1</u>	0	0
Z (t):	0	0	$\overline{0}$	$\overline{0}$	0	0	0	0	0	0	0	0	$\overline{0}$	1	0	0

La sequenza S ha inizio nel ciclo di clock t=2, in quanto a partire da tale ciclo R riceve la sequenza di quattro bit 1111, ed ha termine nel ciclo di clock t=13, in quanto in tale ciclo R riceve l'ultimo bit della seconda sequenza di quattro bit 1111. La sequenza S è dunque 111101101111. Poiché in S è presente un numero pari di bit uno, l'uscita z di R in corrispondenza dell'ultimo bit di S è 1.

Si noti che a partire dal ciclo di clock t=14, la rete R continua a riconoscere le successive sequenze S del tipo sopra descritto.

La minimizzazione dell'automa NON E' RICHIESTA.

ESERCIZIO 2:

Estendere il set di istruzioni della macchina ad accumulatore con l'operazione CNTM X che, dato un intero X, restituisce nell'accumulatore il numero delle locazioni di memoria che contengono un valore maggiore o uguale ad X.

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 16/04/2004 – TRACCIA C

PARTE II

DOMANDA 1:

Descrivere il bit di supero in un sommatore per numeri in complemento a due.

DOMANDA 2:

Qual è, in una rete sequenziale, la funzione del registro di stato?

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 16/04/2004 – TRACCIA D

PARTE I

ESERCIZIO 1:

Progettare una rete R sequenziale con una linea di ingresso X ed una linea di uscita z. Ad ogni colpo di clock, R riceve un bit sulla linea X. La rete R riconosce sequenze di ingresso S del tipo S=1010Q1010, dove Q denota una sequenza di bit di lunghezza arbitraria. In corrispondenza dell'ultimo bit di S, la rete R deve restituire 1 se il numero di bit uno presenti in S è dispari, mentre deve restituire 0 se il numero di bit uno presenti in S è pari.

Segue un esempio di possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
X(t):	1	1	1	0	<u>1</u>	0	0	1	0	0	1	0	1	0	0	0
Z (t):	0	0	$\overline{0}$	$\overline{0}$	0	0	0	0	0	0	$\overline{0}$	0	$\overline{0}$	1	0	0

La sequenza S ha inizio nel ciclo di clock t=2, in quanto a partire da tale ciclo R riceve la sequenza di quattro bit **1010**, ed ha termine nel ciclo di clock t=13, in quanto in tale ciclo R riceve l'ultimo bit della seconda sequenza di quattro bit **1010**. La sequenza S è dunque **1010**0100**1010**. Poiché in S è presente un numero dispari di bit uno, l'uscita z di R in corrispondenza dell'ultimo bit di S è 1.

Si noti che a partire dal ciclo di clock t=14, la rete R continua a riconoscere le successive sequenze S del tipo sopra descritto.

La minimizzazione dell'automa NON E' RICHIESTA.

ESERCIZIO 2:

Estendere il set di istruzioni della macchina ad accumulatore con l'operazione SUME X che, dato un intero X, restituisce nell'accumulatore la somma del contenuto delle locazioni di memoria che contengono un valore uguale ad X.

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 16/04/2004 – TRACCIA D

PARTE II

DOMANDA 1:

E' vero o no che qualsiasi funzione booleana può essere espressa da una rete con porte AND, OR e NOT a due livelli (laddove i NOT non vengano considerati ai fini del calcolo dei livelli)?

DOMANDA 2:

Descrivere come si possa ottenere una ALU a partire da un sommatore.