Eric Rouse

Individual Assignments #58

Assignment: 4.3: 2(a,b), 8, 24, 26a, 28a, 32a

Q2

a)
$$f(1) = -2*f(0) = -2*3 = 6$$

 $f(2) = -2*f(1) = -2*-6 = 12$
 $f(3) = -2*f(2) = -2*12 = -24$
 $f(4) = 2*f(3) = -2*-24 = 48$
 $f(5) = 2*f(4) = -2*48 = -96$
b) $f(1) = 3*f(0) + 7 = 3*3 + 7 = 16$
 $f(2) = 3*f(1) + 7 = 3*16 + 7 = 55$
 $f(3) = 3*f(2) + 7 = 3*55 + 7 = 172$
 $f(4) = 3*f(3) + 7 = 3*172 + 7 = 523$
 $f(5) = 3*f(4) + 7 = 3*523 + 7 = 1576$

Q8

Part A

Base Step: $a_1 = 2$

Recursive Step $a_{n+1} = a_n + ?$? = 4*(n+1)-2-(4n-2)? = 4n+4-2-4n+2? = 4 $a_{n+1} = a_n + 4$

Part B

Base Step: $a_1 = 0$

Recursive Step $a_{n+1} = a_n + ?$? =1+(-1)ⁿ⁺¹ - (1+(-1)ⁿ) ? = (-1) (-1)ⁿ - (-1)ⁿ ? = -2(-1)ⁿ⁺¹ $a_{n+1} = a_n - 2(-1)^{n+1}$

Part C

Base Step: $a_1 = 2$

```
Recursive Step a_{n+1} = a_n + ?
? = (n+1)(n+1+1)-(n(n+1))
? = n(n+1)+(n+1)+(n+1)-n(n+1)
? = 2(n+1)
a_{n+1} = a_n + 2(n+1)

Part D

Base Step: a_1 = 1

Recursive Step a_{n+1} = a_n + ?
? = n^2 + 2n + 1 - n^2
? = 2n + 1
a_{n+1} = a_n + 2n + 1
```

Q24

- a) BASE: 1∈S, RECURSIVE: If n∈S, then n+2∈S.
- b) BASE: $1 \in S$, RECURSIVE: If $n^3 \in S$, then $(n+2)^3 \in S$.
- c) BASE: $(0,0) \in S$, RECURSIVE: If $(a,b) \in S$ then $(a+1,b) \in S$, $(a,b+1) \in S$, $(a+1,b+1) \in S$

Q26a

Step 1

Starting pair: (0,0)

Results: (2,3);(3,2)

Step 2

Starting pairs: (2,3);(3,2)

Results: (4,6);(5,5);(6,4)

Step 3

Starting pairs: (4,6);(5,5);(6,4)

Results: (6,9);(7,8);(8,7);(9,6)

Step 4

Starting pairs: (6,9);(7,8);(8,7);(9,6)

Results: (8,12);(9,11);(10,10);(11,9);(12,8)

Step 5

Starting pairs: (8,12);(9,11);(10,10);(11,9);(12,8)

Results: (10,15);(11,14);(12,13);(13,12);(14,11);(15,10)

28a

BASE: $(1,2) \in S \text{ OR } (2,1) \in S$

RECURSIVE: If $(a,b) \in S$ then $(a+2,b) \in S$, $(a,b+2) \in S$

32a

BASE: Ones(λ) = 0 (where λ is the empty string)

RECURSIVE: Ones(Sx) = $\begin{cases} 1 + Ones(S), & if \ x = 1 \\ 0 + Ones(S), & if \ x = 0 \end{cases}$