An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale – ViT

2024.3.27

Hae-Yeon Kim

Division of AI & Computer Engineering

Abstract

- Transformer architecture applied directly to sequences of image patches can perform very well on image classification tasks.
- When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.

1. Introduction

Introduction

- we experiment with applying a standard Transformer directly to images, with the fewest possible modifications.
- we split an image into patches and provide the sequence of linear embeddings of these patches as an input to a Transformer. Image patches are treated the same way as tokens (words) in an NLP application.
- Large scale training trumps inductive bias.

1. Introduction

Inductive bias

- Transformer는 CNN에 고유한 inductive biases이 부족하므로 충분하지 못한 양의 데이터으로 학습할 때 일반화가 잘 되지 않는다.
- 머신러닝 알고리즘은 타겟 함수를 학습하고 학습 데이터를 넘어 일반화하기 위해 모델에 의해 가정된 Inductive Bias(유도 편향)를 의도적으로 사용한다
- 머신러닝 문제를 더 잘 풀기 위해 사전 정보를 통해 추가된 가정을 Inductive bias라고 할 수 있다.
- 특정 데이터셋에 대해 더 좋은 성능을 얻고자 Inductive bias를 의도적으로 강제해준다.

1. Introduction

Inductive bias

Component	Entities	Relations	Rel. inductive bias	Invariance
Fully connected	Units	All-to-all	Weak	-
Convolutional	Grid elements	Local	Locality	Spatial translation
Recurrent	Timesteps	Sequential	Sequentiality	Time translation
Graph network	Nodes	Edges	Arbitrary	Node, edge permutations

Table 1: Various relational inductive biases in standard deep learning components. See also Section 2.

• Inductive bias is the set of assumptions that a machine learning algorithm makes about the relationship between input variables (features) and output variables (labels) based on the training data.

2. Related work

- Better than other work
 - large scale pre-training makes vanilla transformers
 - Cordonnier et al. (2020) use a small patch size of 2×2 pixels, small-resolution images, while we handle medium-resolution images as well.
 - 데이터셋 사이즈에 따른 성능 연구 트랜스포머를 훈련

3. Method

Structure

3. Method

■ Step

- 1. Split an image into patches (fixed P*P)
- 2. Flatten the patches and Tokenization ($N = HW / P^2$)

$$\mathbf{x} \in \mathbb{R}^{H \times W \times C}$$
 $\mathbf{x}_p \in \mathbb{R}^{N \times (P^2 \cdot C)}$

- 3.Produce lower-dimensional linear embeddings from the flattened patches
- 4.Add positional embeddings
- 5. Feed the sequence as an input to a standard transformer encoder
- 6.Pretrain the model with image labels (fully supervised on a huge dataset)
- 7. Finetune on the downstream dataset for image classification

- ViT is pretrained on the large dataset and then finetuned to small ones.
 - The only modification is to discard the prediction head (MLP head) and attach a new *D*×*K* linear layer, where K is the number of classes of the small dataset.

Comparison to State of the Art

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Table 1:Details of Vision Transformer model variants.

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4 / 88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers- 102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	-
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Table 2: Comparison with state of the art on popular image classification benchmarks.

Inspecting Vision Transformer

< fig1. Embedding projection>

< fig2. Position embedding>

< fig3. Self attention>