Solution: Employee Retention

```
#libraries needed
require(dplyr)
require(rpart)
require(ggplot2)
require(scales)
```

```
data = read.csv("employee_retention_data.csv") #read data set
str(data) #check the structure
```

```
## 'data.frame': 24702 obs. of 7 variables:
## $ employee_id: int 13021 825355 927315 662910 256971
...
## $ company_id: int 7 7 4 7 2 4 4 2 9 1 ...
## $ dept : Factor w/ 6 levels "customer_service",..: 1 5 5 1 2 2 1 1 4 6
...
## $ seniority : int 28 20 14 20 23 14 21 4 7 7 ...
## $ salary : num 89000 183000 101000 115000 276000 165000 107000 30000 1600
00 104000 ...
## $ join_date : Factor w/ 995 levels "2011-01-24","2011-01-25",..: 643 459 758
264 148 205 558 633 380 280 ...
## $ quit_date : Factor w/ 664 levels "2011-10-13","2011-10-14",..: 643 364 NA 2
29 428 267 NA NA 640 NA ...
```

```
data$company_id = as.factor(data$company_id) # this is a categorical var
data$join_date = as.Date(data$join_date) #make it a date
data$quit_date = as.Date(data$quit_date) #make it a date
summary(data) # everything seems to make sense, some simple plots would help doubl
e check that
```

```
##
                                                               seniority
     employee_id
                       company id
                                                   dept
          :
                                    customer service:9180
   Min.
               36
                            :8486
                                                             Min.
                                                                    : 1.00
##
                    1
##
    1st Qu.:250134
                            :4222
                                    data science
                                                     :3190
                                                             1st Qu.: 7.00
                    2
                                    design
##
    Median :500793
                    3
                            :2749
                                                     :1380
                                                             Median :14.00
##
    Mean
           :501604
                    4
                            :2062
                                    engineer
                                                     :4613
                                                             Mean
                                                                    :14.13
    3rd Qu.:753137
                            :1755
                                    marketing
                                                             3rd Qu.:21.00
##
                                                     :3167
##
    Max.
           :999969
                            :1291
                                    sales
                                                     :3172
                                                             Max.
                                                                    :99.00
                    6
##
                     (Other):4137
##
        salary
                        join_date
                                             quit_date
                     Min.
                                           Min.
##
    Min.
           : 17000
                             :2011-01-24
                                                   :2011-10-13
##
    1st Qu.: 79000
                     1st Qu.:2012-04-09
                                           1st Qu.:2013-06-28
##
    Median :123000
                     Median :2013-06-24
                                           Median :2014-06-20
    Mean
                             :2013-06-29
                                                   :2014-05-02
##
           :138183
                     Mean
                                           Mean
##
    3rd Qu.:187000
                     3rd Qu.:2014-09-17
                                           3rd Qu.:2015-03-27
##
    Max.
           :408000
                             :2015-12-10
                                                   :2015-12-09
                     Max.
                                           Max.
##
                                           NA's
                                                   :11192
```

Let's answer this question: You should create a table with 3 columns: day, employee_headcount, company_id.

```
unique_dates = seq(as.Date("2011/01/24"), as.Date("2015/12/13"), by = "day") # cre
ate list of unique dates for the table
unique companies = unique(data$company id) #ceate list of unique companies
data headcount = merge(unique dates, unique companies, by = NULL) #cross join so I
get all combinations of dates and companies. Will need it later.
colnames(data_headcount) = c("date", "company_id")
#now I get for each day/company, how many people quit/got hired on that day
data_join = data %>%
            group by(join date, company id) %>%
            summarise(join count = length(join date))
data_quit = data %>%
            group_by(quit_date, company_id) %>%
            summarise(quit count = length(quit date))
#Now I left outer join with data headcount.
#NA means no people were hired/quit on that day cause there is no match.
data headcount = merge (data headcount, data join,
                        by.x = c("date", "company id"),
                        by.y = c("join_date", "company_id"),
                        all.x = TRUE)
data headcount = merge (data headcount, data quit,
                        by.x = c("date", "company_id"),
                        by.y = c("quit date", "company id"),
                        all.x = TRUE)
#replace the NAs with 0
data_headcount$join_count[is.na(data_headcount$join_count)] = 0
data headcount$quit count[is.na(data headcount$quit count)] = 0
#Now I need the sum by company id. Data set is already ordered by date,
# so I can simply use dplyr to group by company id and do cumsum
data_headcount = data_headcount %>%
            group_by(company_id) %>%
            mutate ( join_cumsum = cumsum(join_count),
                     quit cumsum = cumsum(quit count)
# finally, for each date I just take join count - quit count and I am done
data headcount$count = data headcount$join cumsum - data headcount$quit cumsum
data_headcount_table = data.frame(data_headcount[, c("date", "company_id", "coun
t")])
#Another way to do it would be with a for loop.
#While you often hear that you should avoid for loops in R as much as possible,
#in some cases you don't care that much about processing time, and you are
#willing to have something slower but more understandable.
#Other data scientists reading your code in future (or even yourself) will appreci
```

```
ate.
#Let's try with the for loop. Again here we optimize for future readibility!
# This is as slow as it can possibly be, but much clearer.
loop cumsum = c() #intialize empty vector
loop date = c()
loop_company = c()
for (i in seq(as.Date("2011/01/24"), as.Date("2015/12/13"), by = "day")) { \#loop\ t
hrough all days
   for (j in unique(data$company_id)){ # loop through all companies
        tmp join = nrow(subset(data, join date <= i & company id == j)) # count jo
ins until that day
        tmp quit = nrow(subset(data, quit date <= i & company id == j)) # count qu</pre>
its
        loop_cumsum = c(loop_cumsum, tmp_join - tmp_quit )
        loop date = c(loop date, i)
        loop_company = c(loop_company, j)
data_headcount_table_loop = data.frame(date = as.Date(loop date, origin = '1970-0
1-01'), #fix R date
                                         company id = loop company,
                                         count = loop cumsum)
}
#Let's finally check the two data sets are exactly the same:
identical (data headcount table[order(data headcount table[,1],
                                       as.numeric(as.character(data headcount tabl
e[,2] )))
                                ,],
            data_headcount_table[order(data_headcount_table[,1],
                                   as.numeric(as.character(data headcount table[,2]
)))
                                 ,]
            )
```

```
## [1] TRUE
```

Now let's try to understand employee retention. Here the main challenge is about feature engineering. That is, extract variables from the quitting_date column.

```
# how many days was she employed? This should matter.
#People might get bored in the same place for too long
data$employment_length = as.numeric(data$quit_date - data$join_date)

#In general, whenever you have a date, extract week of the year, and day of the we
ek. They tend to give an idea of seasonlity and weekly trends.
#In this case, weekly trends probably don't matter. So let's just get week of the
year
data$week_of_year = as.numeric(format(data$quit_date, "%U"))
```

```
#Let's plot employee length in days
hist(data$employment_length, breaks = 100)
```

Histogram of data\$employment_length

Very interesting, there are peaks around each employee year anniversary!

```
#Let's plot week of the year
hist(data$week_of_year, breaks = length(unique(data$week_of_year)))
```

Histogram of data\$week_of_year

And it also peaks around the new year. Makes sense, companies have much more money to hire at the beginning of the year.

Now, let's see if we find the characteristics of the people who quit early. Looking at the histogram of employment_length, it looks like we could define early quitters as those people who quit within 1 yr or so. So, let's create two classes of users: quit within 13 months or not (if they haven't been in the current company for at least 13 months, we remove them).

```
#Create binary class
data = subset(data, data$join_date < as.Date("2015/12/13") - (365 + 31)) # only ke
ep people who had enough time to age
data$early_quitter = as.factor(ifelse( is.na(data$quit_date) | as.numeric(data$quit_date - data$join_date) > 396, 0, 1))
```

Let's now build a model. Here we can just care about: seniority, salary, dept and company. A simple decision tree is probably more than enough.

```
## n= 19270
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 19270 9635.0000 0 (0.5000000 0.5000000)
## 2) salary>=224500 2764 855.3351 0 (0.6528040 0.3471960) *
## 3) salary< 224500 16506 8026.7840 1 (0.4776014 0.5223986)
## 6) salary< 62500 2887 1249.7210 0 (0.5498859 0.4501141) *
## 7) salary>=62500 13619 6500.0510 1 (0.4632968 0.5367032) *
```

Not very surprising! Salary is what matters the most. After all, it probably has within it information about the other variables too. That is, seniority, dept and company impact salary. So salary carries pretty much all the information available.

It is interesting though that, looking at the terminal nodes, the way the tree split is: If salary between 62500 and 224500, the employee has higher probability of being an early quitter, otherwise she doesn't. That means that **people who make a lot of money and very little are not likely to quit** ("little money" by Silicon Valley standards).

By plotting the proportion of early quitter by salary percentile, this becomes quite clear:

Conclusions

- 1. Given how important is salary, I would definitely love to have as a variable the salary the employee who quit was offered in the next job. Otherwise, things like: promotions or raises received during the employee tenure would be interesting.
- 2. The major findings are that employees quit at year anniversaries or at the beginning of the year. Both cases make sense. Even if you don't like your current job, you often stay for 1 yr before quitting + you often get stocks after 1 yr so it makes sense to wait. Also, the beginning of the year is well known to be the best time to change job: companies are hiring more and you often want to stay until end of Dec to get the calendar year bonus.
- 3. Employees with low and high salaries are less likely to quit. Probably because employees with high salaries are happy there and employees with low salaries are not that marketable, so they have a hard time finding a new job.