2) Neural networks in Keras

1-

```
X = load_wine().data
y = load_wine().target
```

2-

```
def preprocess_data(X, y):
### TO DO ###

X_out = scale(X)

y_out = to_categorical(y)
return X_out, y_out
```

Ratios of sizes
Data_train_val/(Data_train_val+Data_test) = .7
Data_train/(Data_train+Data_val) = .8

3- Please see the notebook at the end of this document

4-

Model: "sequential_1"			
Layer (type)	Output Shape	Param #	
dense_1 (Dense)	(None, 10)	140	
dense_2 (Dense)	(None, 3)	33	
Total params: 173 Trainable params: 1 Non-trainable param			
54/54 [======		====] - 0s 55us/step)

5-

Test loss: 0.38749685883522034 Test accuracy: 0.9814814925193787

The model fits on the training data properly; the test accuracy is high (98%) which shows that the model does not underfit, and by comparing the train and validation loss and accuracy graphs, we observe that the model does not overfit.

6The defined hyperparameters:

If the Flag is true then build_MLP adds one additional hidden layer and HiddenLayerActivationRelu determines the type of activation function in the hidden layers.

Finally, KFold_model_selection selects the best setting and trains a model based on that, and calculates the accuracy and loss values for the test set.

Please see the notebook at the end of this document.