

Claims

1. In a communication system, a method for decoding a sequence of turbo
2 encoded data symbols transmitted over a channel comprising:

3 updating channel nodes R_x , R_y and R_z based on a received channel

4 output;

5 initializing outgoing messages from symbol nodes X_i , Y_i and Z_k , wherein

6 said symbol nodes X_i , Y_i and Z_k are in communication with said channel nodes
 R_x , R_y and R_z ; and

7 triggering updates of computational nodes C and D, associated with
8 different instances of time, in accordance with a triggering schedule, wherein a
9 computational node C_i is in communication with said symbol nodes X_i and Y_i and
10 a computational node D_k is in communication with said symbol nodes X_i and Z_k .

- 11
- 12 2. The method as recited in claim 1 wherein said computational node C_i is in
13 communication with state nodes S_i and S_{i-1} associated with a first constituent
14 code, and said computational node D_k is in communication with state nodes σ_k
15 and σ_{k-1} associated with a second constituent code, wherein said first and second
16 constituent codes are associated with a turbo code in said communication
17 system used for encoding said sequence of encoded data symbols.

- 18
- 19 3. The method as recited in claim 1 further comprising:

2 accepting a value of symbol X_i at said symbol node X_i as a decoded value
of symbol X_i after at least one iteration of said triggering updates of said
4 computational nodes C and D.

4. The method as recited in claim 1 wherein said triggering schedule
2 includes triggering said computational nodes C and D at different instances of
time essentially concurrently.

5. The method as recited in claim 1 wherein said triggering schedule
2 includes triggering said computational nodes C and D at different instances of
time in a sequence of $C_0, C_1, C_2, \dots, C_N, C_{N-1}, C_{N-2}, C_{N-3}, \dots, C_2, C_1, C_0, D_0, D_1, D_2,$
4 $\dots, D_N, D_{N-1}, D_{N-2}, D_{N-3}, \dots, D_2, D_1, D_0.$

6. The method as recited in claim 1 further comprising:

2 partitioning said computational node C at time instances $C_0, C_1, C_2, \dots, C_N$
into at least two subsets, wherein said triggering schedule includes triggering
4 updates of computational nodes C in a sequence at different time instances in
each subset.

7. The method as recited in claim 6 further comprising:

2 determining said sequence at different time instances in each subset for
said triggering updates.

8. The method as recited in claim 6 wherein said triggering of computational node C at different time instances in said least two subsets occurs concurrently.
9. The method as recited in claim 6 wherein said least two subsets of computational node C at different time instances $C_0, C_1, C_2, \dots, C_N$ have at least one common computational node time instance.
10. The method as recited in claim 1 further comprising:
partitioning computational node D at different time instances $D_0, D_1, D_2, \dots, D_N$ into at least two subsets, wherein said triggering schedule includes triggering computational nodes D at different time instances in a sequence in each subset.
11. The method as recited in claim 10 further comprising:
determining said sequence at different time instances in each subset for said triggering updates.
12. The method as recited in claim 10 wherein said triggering of computational node D at different time instance in said least two subsets occurs concurrently.
13. The method as recited in claim 10 wherein said subsets of computational node D at time instances $D_0, D_1, D_2, \dots, D_N$ have at least one common computational node time instance.

14. The method as recited in claim 1 wherein said updating includes summing
2 incoming messages to produce an output message, and outputting said output
message for updating.

15. The method as recited in claim 1 wherein said updating said channel
2 nodes R_x , R_y and R_z based on said received channel output includes:

receiving at said channel node R_x said channel output associated with a

3 symbol X_i ;

receiving at said channel node R_y said channel output associated with a

4 symbol Y_i ;

receiving at said channel node R_z said channel output associated with a

5 symbol Z_i ;

passing from said channel node R_x a likelihood of said symbol X_i , based

6 on said received channel output, to said symbol node X_i ;

passing from said channel node R_y a likelihood of said symbol Y_i , based

7 on said received channel output, to said symbol node Y_i ; and

passing from said channel node R_z a likelihood of said symbol Z_i , based

8 on said received channel output, to said symbol node Z_i .

16. The method as recited in claim 1 wherein said initializing outgoing
2 messages from symbol nodes X_i , Y_i and Z_i includes:

passing a message from said symbol node X_i to said computational node

- 4 C_i of said computational node C , wherein said message is based on a summation of incoming messages at said symbol node X_i ;

- 6 passing a message from said symbol node X_i to said computational node
D_k of said computational node D, wherein said message is based on a
8 summation of incoming messages at said symbol node X_i ;

passing a message from said symbol node Y_i to said computational node

- 10 C_i, wherein said message is based on said likelihood of data symbol Y_i ; and

passing a message from said symbol node Z_k to said computational node
12 D_k, wherein said message is based on said likelihood of data symbol Z_k .

17. The method as recited in claim 1 wherein said sequence of data includes
2 "N" number of symbols, wherein each symbol in said sequence is identified by
either a subscript "i" or "k," and wherein said subscript "i" and "k" are references
4 to time instances in the decoding process.

18. An apparatus for decoding a sequence of turbo encoded data symbols

- 2 communicated over a channel comprising:

channel nodes R_x, R_y and R_z for receiving channel output;

- 4 symbol nodes X_i, Y_i and Z_k in communication with said channel nodes R_x,
R_y and R_z;

- 6 state nodes S_i and S_{i-1} associated with a first constituent code in a turbo
code;

8 state nodes σ_k and σ_{k-1} associated with a second constituent code in said
turbo code;

10 a computational node C_i in communication with said symbol nodes X_i and
 Y_i ; and

12 a computational node D_k in communication with said symbol nodes X_i and
 Z_k , wherein said computational node C_i is in communication with said state nodes
14 S_i and S_{i-1} and said computational node D_k is in communication with said state
nodes σ_k and σ_{k-1} ;

16 a computational node C_{i+1} in communication with said state node S_i ;

18 a computational node C_{i-1} in communication with said state node S_{i-1} ;

a computational node D_{k+1} in communication with said state node σ_k ; and

a computational node D_{k-1} in communication with said state node σ_{k+1} ,

20 wherein computational nodes C and D at different time instances are configured
for updates in accordance with a update triggering schedule.

19. The apparatus as recited in claim 18 wherein said update triggering
2 schedule includes triggering updates of said computational nodes C and D in a
sequence of $C_0, C_1, C_2, \dots, C_N, C_{N-1}, C_{N-2}, C_{N-3}, \dots, C_2, C_1, C_0, D_0, D_1, D_2, \dots, D_N,$
4 $D_{N-1}, D_{N-2}, D_{N-3}, \dots, D_2, D_1, D_0$.

20. The apparatus as recited in claim 18, wherein said update triggering
2 schedule includes triggering updates in a sequence in a partitioned

computational nodes $C_0, C_1, C_2, \dots, C_N$ of at least two subsets and in a sequence

- 4 in a partitioned computational nodes $D_0, D_1, D_2, \dots, D_N$ of at least two subsets.

21. The apparatus as recited in claim 18 wherein said sequence of data

- 2 includes "N" number of symbols, wherein each symbol in said sequence is
4 identified by either a subscript "i" or "k" corresponding to the subscripts used for
4 said state nodes and said computational nodes.

22. A processor configured for decoding a sequence of turbo encoded data

2 symbols for communication over a channel comprising:

4 channel nodes R_x, R_y and R_z for receiving channel output;

6 symbol nodes X_i, Y_i and Z_k in communication with said channel nodes $R_x,$
 R_y and $R_z;$

8 state nodes S_i and S_{i-1} associated with a first constituent code in a turbo
code;

10 state nodes σ_k and σ_{k-1} associated with a second constituent code in said
turbo code;

12 a computational node C_i in communication with said symbol nodes X_i and
 $Y_i;$ and

14 a computational node D_k in communication with said symbol nodes X_i and
 $Z_k,$ wherein said computational node C_i is in communication with said state nodes
 S_i and S_{i-1} and said computational node D_k is in communication with said state
nodes σ_k and $\sigma_{k-1};$

- 16 a computational node C_{i+1} in communication with said state node S_i ;
- 18 a computational node C_{i-1} in communication with said state node S_{i-1} ;
- 18 a computational node D_{K+1} in communication with said state node σ_K ; and
- 20 a computational node D_{K-1} in communication with said state node σ_{K+1} ,
- 20 wherein computational nodes C and D at different time instances are configured
for updates in accordance with a update triggering schedule.

23. The processor as recited in claim 22 wherein said update triggering
2 schedule includes triggering updates of said computational nodes C and D in a
sequence of $C_0, C_1, C_2, \dots, C_N, C_{N-1}, C_{N-2}, C_{N-3}, \dots C_2, C_1, C_0, D_0, D_1, D_2, \dots, D_N,$
4 $D_{N-1}, D_{N-2}, D_{N-3}, \dots D_2, D_1, D_0$.

24. The processor as recited in claim 22 wherein said sequence of data
2 includes "N" number of symbols, wherein each symbol in said sequence is
identified by either a subscript "i" or "k" corresponding to the subscripts used for
4 said state nodes and said computational nodes.

25. An apparatus for decoding a sequence of turbo encoded data symbols for
2 communication over a channel comprising:
4 means for channel nodes R_x, R_y and R_z for receiving channel output;
4 means for symbol nodes X_i, Y_i and Z_k in communication with said channel
nodes R_x, R_y and R_z ;

- 6 means for state nodes S_i and S_{i-1} associated with a first constituent code in
a turbo code;
- 8 means for state nodes σ_k and σ_{k-1} associated with a second constituent
code in said turbo code;
- 10 means for a computational node C_i in communication with said symbol
nodes X_i and Y_i ;
- 12 means for a computational node D_k in communication with said symbol
nodes X_i and Z_k , wherein said computational node C_i is in communication with
said state nodes S_i and S_{i-1} , said computational node D_k is in communication with
said state nodes σ_k and σ_{k-1} ;
- 14 16 means for a computational node C_{i+1} in communication with said state
node S_i ;
- 18 means for a computational node C_{i-1} in communication with said state
node S_{i-1} ;
- 20 means for a computational node D_{k+1} in communication with said state
node σ_k ; and
- 22 means for a computational node D_{k-1} in communication with said state
node σ_{k+1} , wherein computational nodes C and D at different time instances are
24 configured for updates in accordance with a update triggering schedule.