Solutions for Homework 2

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy

February 26, 2022

1 Problem 2.5

Find the electric field a distance z above the center of a circular loop of radius r that carries a uniform line charge λ .

Start by filling in the pieces of the Coulomb effect:

$$d\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{dq'}{2^2} \hat{\boldsymbol{\lambda}} \tag{1}$$

- $\mathbf{r} = z\hat{z} R\hat{s}$
- $\nu = \sqrt{z^2 + R^2} = z\sqrt{1 + (R/z)^2} = z\sqrt{1 + \epsilon^2}$. (If $\epsilon \to 0$, this represents the far-field).
- $z^2 = z^2 + R^2$
- $\hat{z} = (\hat{z} \epsilon \hat{s})/(1 + \epsilon^2)^{1/2}$
- $dq' = \lambda R d\phi'$, because cylindrical coordinates are the correct choice here.
- Note that $\epsilon = R/z$, so if z = 0 then $\epsilon \to \infty$, and $\epsilon \to 0$ if $z \gg R$.
- $Q = 2\pi R\lambda$, the total charge.

Integrate to add up the $d\mathbf{E}$ to find \mathbf{E} :

$$\mathbf{E} = \frac{\lambda R}{4\pi\epsilon_0 z^2 (1+\epsilon^2)^{3/2}} \int_0^{2\pi} d\phi'(\hat{z} - \epsilon \hat{s})$$
 (2)

By symmetry, the \hat{s} term evaluates to zero. The result is

$$\mathbf{E} = \frac{2\pi\lambda R\hat{z}}{4\pi\epsilon_0 z^2 (1+\epsilon^2)^{3/2}} = \frac{Q\hat{z}}{4\pi\epsilon_0 z^2 (1+\epsilon^2)^{3/2}}$$
(3)

Checks: $\mathbf{E} = 0$ if z = 0 because $\epsilon \to \infty$. Also, we find the far-field effect if $z \ll R$, because $\epsilon \to 0$. The units also check out.

2 Problem 2.6

Find the electric field a distance z above a the center of a flat circular disc of radius R that carries a uniform surface charge σ . What does your formula give in the limit $R \to \infty$? Also check the case $z \gg R$.

Start by filling in the pieces of the Coulomb effect:

$$d\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{dq'}{2} \hat{\boldsymbol{\lambda}}$$
 (4)

- $\mathbf{z} = z\hat{z} s\hat{s}$. As in Problem 2.5, the \hat{s} -component will vanish upon integration.
- $v^2 = z^2 + s^2$
- $\hat{z} = (z\hat{z} s\hat{s})/(z^2 + s^2)^{1/2}$
- $dq' = \sigma da' = s ds d\phi$, because cylindrical coordinates work best here.
- $Q = \pi R^2 \sigma$ is the total charge.
- Let $z \tan \theta = s$, so that $ds = z \sec^2 \theta d\theta$, and $\theta_0 = \tan^{-1}(R/z)$

Integrate to add up the $d\mathbf{E}$ to find \mathbf{E} :

$$\mathbf{E} = \frac{\sigma}{2\epsilon_0} z \hat{z} \int_0^R \frac{s ds}{(s^2 + z^2)^{3/2}} \tag{5}$$

$$\mathbf{E} = \frac{\sigma}{2\epsilon_0} \cos \theta \Big|_0^{\theta_0} \hat{z} = \frac{\sigma}{2\epsilon_0} \left(1 - \cos \theta_0 \right) \hat{z} \tag{6}$$

We know what is $\tan \theta = R/z$, but what is $\cos \theta_0$? (Hint: draw the triangle and then find the hypoteneuse). The result is

$$\mathbf{E} = \frac{\sigma \hat{z}}{2\epsilon_0} \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right) \tag{7}$$

The units check automatically because of the units of σ (Coulombs per meter squared), and the ϵ_0 in the denominator. If $R \to \infty$, then the second term vanishes and the field is

$$\mathbf{E} \to \frac{\sigma \hat{z}}{2\epsilon_0} \tag{8}$$

This form of the field is the boundary condition near a charged surface. To check the limit that $z \gg R$, first factor a z:

$$\mathbf{E} = \frac{\sigma \hat{z}}{2\epsilon_0} z \left(z^{-1} - (z^2 + R^2)^{-1/2} \right) = \frac{\sigma \hat{z}}{2\epsilon_0} z \left(z^{-1} - z^{-1} (1 + (R/z)^2)^{-1/2} \right)$$
(9)

Now replace $(1 + (R/z)^2)^{-1/2} \approx (1 - (1/2)(R/z)^2)$, and notice the 1/z terms cancel:

$$\mathbf{E} = \frac{\sigma \hat{z}}{2\epsilon_0} z \left(\frac{1}{2z} \left(\frac{R}{z} \right)^2 \right) \tag{10}$$

Multiply top and bottom by π , and recall that $Q = \pi R^2$ to find the point-charge field:

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{Q\hat{z}}{z^2} \tag{11}$$

3 Problem 2.9

Suppose the electric field in some region is found to be $\mathbf{E} = kr^3\hat{r}$, in spherical coordinates (k is some constant). (a) Find the charge density ρ . (b) Find the total charge contained in a sphere of radius R, centered at the origin. (Do it two ways).

(a) This is a straightforward application of Gauss' Law in differential form, noting that only the \hat{r} term matters by symmetry:

$$\nabla \cdot \mathbf{E} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \mathbf{E} \cdot \hat{r} \right) + \dots = 5kr^2$$
 (12)

Thus the charge distribution is

$$\rho(r) = 5k\epsilon_0 r^2 \tag{13}$$

(b) The total charge Q may be found by (i) direct integration of Eq. 13, or (ii) by using Gauss' Law. First, (i):

$$Q = \int \rho(r)d\tau = \int_0^R \int_0^\pi \int_0^{2\pi} 5k\epsilon_0 r^2 r^2 \sin\theta dr d\theta d\phi = (4\pi)(5k\epsilon_0) \int_0^R r^4 dr = 4\pi k\epsilon_0 R^5$$
 (14)

Now, method (ii):

$$Q = \epsilon_0 \oint \mathbf{E} \cdot d\mathbf{a} = \epsilon_0 \int_0^{2\pi} \int_0^{\pi} kR^3 \hat{r} \cdot \hat{r} R^2 d\theta d\phi = 4\pi k \epsilon_0 R^5$$
 (15)

4 Problem 2.12

Use Gauss' Law to find the electric field inside a uniformly charged solid sphere (charge density ρ).

Note that

- $d\mathbf{a} \propto \hat{r}$
- $\mathbf{E} \propto \hat{r}$ and only varies with r, by symmetry.
- Along a spherical Gaussian surface at radius $r,\,{\bf E}$ is constant.
- Thus, $\oint \mathbf{E} \cdot d\mathbf{a} = \mathbf{E} \cdot \mathbf{A}$, where **A** is the surface area of the Gaussian surface oriented in the \hat{r} direction.

We now have

$$\mathbf{E} \cdot \mathbf{A} = \frac{1}{\epsilon_0} \rho \int d\tau' = \frac{\rho}{\epsilon_0} (4\pi) \int_0^r r'^2 dr'$$
 (16)

The final result is

$$\mathbf{E}(\mathbf{r}) = \frac{\rho \mathbf{r}}{3\epsilon_0} = \frac{\rho r \hat{r}}{3\epsilon_0} \tag{17}$$