Contents

1	Animals and Environments	2
	Introduction	2
	Homeostasis	G
	Physiology and Time	3
2	Molecules and Cells in Animal Physiology	5
	Cell Membrane Review	5
	Enzyme Fundamentals	5
3	Genomics and Proteomics	7
		7
4	Physiological Development	8
		2
5	Transport of Solutes and Water	g
		Ş
27	Water and Salt Physiology: Mechanisms	10
		10
7	Nutrition, Feeding, and Digestion	11
		1-

1 Animals and Environments

Introduction

- ▶ What is physiology?
 - Form and function of organisms; the study of how organisms work.
- ▷ Central questions of physiology: mechanism and origin.
 - Mechanism:
 - Refers to the components of living organisms and understanding how components interact to enable the organism to function.
 - o Origin:
 - Asks why a mechanism exists, or what is the mechanistic adaptive significance of the mechanism.
 - Mechanism and adaptive significance are distinct concepts; knowing about one doesn't necessarily mean you know anything about the other.
- ▶ Krogh's principle:
 - "For such a large number of problems there will be some animal of choice or a few such animals on which it can be most conveniently studied."
 - This idea is central to disciplines that rely on the comparative method.
 The key take away: there is unity in diversity; many organisms are very much alike at the most fundamental levels.
- ▶ Physiology subdisciplines:
 - Mechanistic: emphasizes the mechanisms by which organisms perform their life functions.
 - Evolutionary: emphasizes evolutionary origins and the adaptive significance of traits.
 - Comparative: emphasizes the way in which diverse phylogenetic groups resemble and differ from each other.
 - Environmental: emphasizes the ways in which physiology and ecology interact.
 - Integrative: emphasizes the importance of all levels of organization, from genes to proteins and tissues to organs in order to better understand whole physiological systems.

Homeostasis

- ▶ Important ideas to remember:
 - Organisms are structurally dynamic; form stays relatively static while individual cells recycle frequently.
 - Most cells are exposed to the internal environment, not external.
 - Internal cells may vary or kept constant with the environment.
- ▶ Temperature regulation:
 - **Conformity**: organism's internal temperature correlates with external temperature in a particular range of temperatures.
 - Regulation: internal environment is held mostly contant using celluar mechanisms.
- ▶ **Homeostasis**: the coordinated physiological processes that maintain a relatively constant state in the organism.
 - Positive feedback: less common in homeostasis due difficulty in regulation; leads to runaway effect easily.
 - Negative feedback: more common in homeostasis due to self correcting nature.
 - **Effector**: executes the change in action that produces an effect, e.g. signals to increase temperature.
 - Sensor: sense changes in environment and sends information to the effector.

Physiology and Time

- ▷ Timeframes of physiological change:
 - Acute: short-term, reversible, and quick to adapt to changes in environment. Usually minutes to hours.
 - **Chronic**: long-term after prolonged exposure to new environments. Changes are usually reversible, but often slower.
 - Chronic can be termed acclimation, or phenotypic plasticity/flexibility.
 - Repetitive acute responses usually lead to chronic responses.
 - Evolutionary: changes due to alteration in gene frequencies in populations exposed to new environments.
- Acclimation is not the same as adaption.

- Adaption is an evolutionary trait presnet at high frequency in a population due to survival/reproductive advantages.
- Not all traits are adaptations.
- The amount of natural variation in a trait must be considered across populations, species etc.

2 Molecules and Cells in Animal Physiology

Cell Membrane Review

- ▶ Major cell memberane structures:
 - **Glycoproteins**: carbohydrate chain attached to a protein.
 - o Glycolipids: similar to glycoproteins, but attached to lipid molecues.
 - Glycocalyx: combination of glycoproteins and glycolipids on the surface of cell.
 - o Integral proteins: embedded in phospholipid bilayer.
 - Peripheral proteins: associated with one side of the bilayer.
- ▶ **Unsaturated phospholipid**: whey hydrocarbon tails contain double bonds (less hydrogen).
 - o Increase membrane fluidity due to extra space created.
- ▶ The fluidity of the cell membrane allows proteins to from complexes and dynamically change shape.

Enzyme Fundamentals

- Enzymes: a protein catalyst that plays two primary roles: accelerating and regulating chemical reactions.
- ▷ Substrates: the initial reactants of the reaction that an enzyme catalyzes.
- ▶ Enzyme-substrate-complex (E-S): a combination of enzyme (E) with a molecule of substrate (S) that starts a reaction.
 - Usually stabalized by non-covalent bonds.
 - The substrate is converted to a product by first becomeing an enzyme-product complex (E-P), then dissociates to yield free product and free enzyme.
 - $\circ \overline{E + S} \rightleftharpoons \overline{E} S \rightleftharpoons \overline{E} P \rightleftharpoons \overline{E} + P$

▶ Saturation kinetics:

- \circ V_{max} : the maximum velocity of a reaction and is determined by:
 - the number of active enzyme molecues present relative to substrate.
 - the catalytic effectiveness of each enzyme molecule.
 - These properties usually undergo heavy selection pressure.

- Saturated: all enzymes are occupied by a substrate molecule nearly all the time and now unable to increase reaction velocity.
- Hyperbolic: asymptotically approaches V_{max}
 - Tends to happen when enzymes have just one substrate binding site.
 - Or when substrate sites behave independently
- Sigmodal: approaches V_{max} with a sigmodal trajectory.
 - When multiple sites influence each other.
- Turnover number (k_{cat}): the total effectiveness, expressed as the number of substrate molecules coverted to product per second by each enzyme molecule when saturated.
 - Depends partly on the activation energy of the enzyme-catalyzed reaction.
 - Activation energy: the energy required for the substrate to enter the transition state.
 - Transition state: the intermediate chemical state between substrate and product.
 - Enzymes lower the activation energy required to enter transition state.

Enzyme-substrate affinity:

- The proclivity of the enzyme to form a complex with the substrate when they meet.
 - Likely complex formation results in high-affinity.
 - Unlikely complex formation results in low-affinity.
- Affinity affects the shape of the reaction velocity.
 - Higher affinity produces a steeper velocity, and lower produces a more linear result.
- Half-saturation constant, K_m: the substrate concentration required to attain one-half maximum reaction velocity.
 - K_m and enzyme-substrate affinity are inversely related.
 - i.e. low-affinity enzyme has a greater K_m .

3 Genomics and Proteomics

4 Physiological Development

5 Transport of Solutes and Water

27 Water and Salt Physiology: Mechanisms

D

7 Nutrition, Feeding, and Digestion