EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

Video Analysis

Sending Alert Message

Date	08 November 2022
Team ID	PNT2022TMID12327
Project Name	Emerging Methods for Early Detection of
	ForestFires

Importing The ImageDataGenerator Library

import keras

from keras.preprocessing.image import ImageDataGenerator

Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2, rotation_range=180,zoom_range=0.2, horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)

Applying ImageDataGenerator functionality to trainset

x_train=train_datagen.flow_from_directory(r'/content/drive/MyDrive/Dataset/train_set', target_size=(128,128),batch_size=32, class_mode='binary')

Found 436 images belonging to 2 classes.

Applying ImageDataGenerator functionality to testset

x_test=test_datagen.flow_from_directory(r'/content/drive/MyDrive/Dataset/test_set', target_size=(128,128),batch_size=32, class_mode='binary')

Found 121 images belonging to 2 classes.

Import model building libraries

#To define Linear initialisation import Sequential
from keras.models import Sequential
#To add layers import Dense
from keras.layers import Dense
#To create Convolution kernel import Convolution2D
from keras.layers import Convolution2D
#import Maxpooling layer
from keras.layers import MaxPooling2D
#import flatten layer
from keras.layers import Flatten import warnings

Initializing the model

warnings.filterwarnings('ignore')

model=Sequential()

Add CNN Layer

model.add(Convolution2D(32, (3,3),input_shape=(128,128,3),activation='relu'))#add maxpooling layer model.add(MaxPooling2D(pool_size=(2,2))) #add flatten layer model.add(Flatten())

Add Dense Layer

#add hidden layer model.add(Dense(150,activation='relu')) #add output layer model.add(Dense(1,activation='sigmoid'))

Configure the learning process

model.compile(loss='binary_crossentropy',optimizer="adam",metrics=["accuracy"])

Train the model

```
model.fit_generator(x_train,steps_per_epoch=14,epochs=10,validation_da
ta=x_test,validation_steps=4)
Epoch 1/10
14/14 [==============] - 205s 15s/step - loss: 2.7344 -
accuracy: 0.7454 - val_loss: 0.2016 - val_accuracy: 0.9256Epoch
2/10
val_loss: 0.2290 - val_accuracy: 0.9339Epoch 3/10
val_loss: 0.0524 - val_accuracy: 0.9835Epoch 4/10
val_loss: 0.1570 - val_accuracy: 0.9421Epoch 5/10
val loss: 0.0767 - val accuracy: 0.9752Epoch 6/10
val_loss: 0.0749 - val_accuracy: 0.9752Epoch 7/10
val_loss: 0.1264 - val_accuracy: 0.9421Epoch 8/10
val_loss: 0.0652 - val_accuracy: 0.9835Epoch 9/10
val loss: 0.0567 - val accuracy: 0.9835Epoch
10/10
val_loss: 0.0448 - val_accuracy: 0.9917
0.3267 -
0.2991 -
0.2418 -
0.1984 -
0.1643 -
0.1538 -
0.1732 -
0.1514 -
0.1445 -
<keras.callbacks.History at 0x7f51fdf33610>
```

Save The Model

model.save("forest1.h5")

Predictions

#import load_model from keras.model

from keras.models import load_model

#import image class from keras

```
from tensorflow.keras.preprocessing import image #import numpy import numpy as
np
#import cv2
import cv2
#load the saved model
model = load model("forest1.h5")
img=image.load_img(r'/content/drive/MyDrive/Dataset/test_set/forest/
0.48007200_1530881924_final_forest.jpg')
x=image.img_to_array(img)
res = cv2.resize(x, dsize=(128, 128), interpolation=cv2.INTER_CUBIC) #expand the
image shape
x=np.expand_dims(res,axis=0)
pred= model.predict(x)
array([[0.]], dtype=float32)
```

OpenCV For Video Processing

pip install twilio

Looking in indexes: https://pypi.org/simple, https://us-

 $python.pkg.dev/colab-wheels/public/simple/\ Collecting\ twilio$

Downloading twilio-7.15.1-py2.py3-none-any.whl (1.4 MB)

ent already satisfied: pytz in /usr/local/lib/python3.7/dist-packages (from twilio)(2022.5)

Collecting PyJWT<3.0.0,>=2.0.0

Downloading PyJWT-2.6.0-py3-none-any.whl (20 kB)

Requirement already satisfied: requests>=2.0.0 in /usr/local/lib/python3.7/dist- packages (from twilio) (2.23.0) Requirement already satisfied: chardet<4,>=3.0.2 in

/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages(from requests>=2.0.0->twilio) (2.10)

Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-

packages (from requests>=2.0.0->twilio) (2022.9.24)

Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in

/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (1.24.3)Installing

collected packages: PyJWT, twilio

Successfully installed PyJWT-2.6.0 twilio-7.15.1pip install

playsound

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Collecting

playsound

Downloading playsound-1.3.0.tar.gz (7.7 kB) Building wheels for collectedpackages: playsound

Building wheel for playsound (setup.py) ... e=playsound-1.3.0-py3- none-any.whl size=7035 sha256=e7e96c774a98522e182b59b7b292f0f932097658d8bfce86c922c363f862b0e 2

Stored in directory:

/root/.cache/pip/wheels/ba/f8/bb/ea57c0146b664dca3a0ada4199b0ecb5f9dfc b7b7e22b65ba2

Successfully built playsound

Installing collected packages: playsoundSuccessfully

installed playsound-1.3.0 #import opency library

import cv2

#import numpy

import numpy as np

#import image function from keras from

keras.preprocessing import image#import

load_model from keras

from keras.models import load_model#import

client from twilio API

from twilio.rest import Client

#import playsound package

from playsound import playsound

WARNING:playsound:playsound is relying on another python subprocess. Pleaseuse `pip install pygobject` if you want playsound to run more efficiently.

#load the saved model

model=load_model("forest1.h5") #define video video=cv2.VideoCapture(0) #definethe features name=['forest','with fire']

Creating An Account In Twilio Service

 $account_sid='ACfb4e6d0e7b0d25def63044919f1b96e3' \\ auth_token='f9ae4fc4a617a527da8672e97eefb2d8' \\ client=Client(account_sid,auth_token) \\ message=client.messages \setminus \\ .create($

body='Forest Fire is detected, stay alert',

```
from_='+1 302 248 4366',
to='+91 99400 12164'
)
print(message.sid) SM4aa5a4751b7bcec159dc4c695752293d
```

Sending Alert Message

```
while(1):
sucess, frame= video.read()
cv2.imwrite("image.jpg",frame)
img=image.load_img("image.jpg",target_size=(64,64)) x=image.img_to_array(img)
x=np.expand_dims(x,axis=0)
pred=model.predict_classes(x) p=pred[0]
print(pred)
cv2.putText(frame, "predicted class="+str(name[p]),(100,100),
cv2.FONT_HERSHEY_SIMPLEX,1, (0,0,0), 1) pred = model.predict_classes(x) ifpred[0]==1:
account sid='ACfb4e6d0e7b0d25def63044919f1b96e3'
auth_token='f9ae4fc4a617a527da8672e97eefb2d8' client=Client(account_sid,auth_token)
message=client.messages \
.create(
body='Forest Fire is detected, stay alert', from_='+1 302 248 4366',to='+91
99400 12164'
print(message.sid) print('Fire Detected') print('SMS sent!')
else:
print('No Danger') cv2.imshow("image",frame)if
cv2.waitkey(1) & 0xFF == ord('a'): break
video.release() cv2.destryoAllWindows()
```