PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43) Date of publication of application: 22.04.1994

(51)Int.CI.

G06F G06F G06F 12/00 G06F 15/16

(21)Application number: 04-257012

(71)Applicant: HITACHI LTD

(22)Date of filing:

25.09.1992

(72)Inventor: TANAKA TOSHIHARU

ARAI TOSHIAKI IKEGAYA NAOKO

(54) COMPLEX COMPUTER SYSTEM

(57)Abstract:

PURPOSE: To provide a complex computer system which is suitable for operating plural OS (operating systems).

CONSTITUTION: For the request of an IPL (initial program load) of an OS from the terminal 400-2 of a first computer 100-1, the IPL is performed for this OS in a second computer 100-2 corresponding to this terminal 400-2. The screen information outputted to a console device 500-2 by the OS 120-2 is outputted to the terminal 400-2 of the first computer 100-1. Further, the input from the terminal 400-2 for this output is notified as the input from the console device 500-2 of the second computer 100-2 to the OS 120-2 of the second computer 100-2.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-110717

(43)公開日 平成6年(1994)4月22日

(51)Int.Cl. ⁵ G 0 6 F 9/46 12/00 15/16	酸別配号 360 B 350 570 420 S 430	庁内整理番号 8120-5B 8120-5B 9366-5B 9190-5L	FI		技術表示箇所
			;	審査請求 未請求 請求項G	の数15(全 17 頁)
(21)出顧番号	特頗平4-257012		(71)出願人	000005108 株式会社日立製作所	
(22)出顯日	平成4年(1992)9月	125日	(72)発明者	東京都千代田区神田駿河 f 田中 俊治 神奈川県川崎市麻生区王 社日立製作所システム開発	単寺1099 株式会
	· ·		(72)発明者	新井 利明 神奈川県川崎市麻生区王社 社日立製作所システム開発	
			(72)発明者	池ケ谷 直子 神奈川県川崎市麻生区王社 社日立製作所システム開発	
			(74)代理人	弁理士 富田 和子	

(54) 【発明の名称】 複合計算機システム

(57)【 要約】

【目的】 複数のOSを操作するのに好適な複合計算機 システムを提供する。

【 構成】 第1の計算機100-1の端末400-2からのOSのIPLの要求に対し、この端末400-2に対応づけられた第2の計算機100-2において、このOSをIPLする。また、OS120-2がコンソール装置500-2に対して出力した画面情報を、第1の計算機100-1の端末400-2に出力する。さらに、この出力に対する端末400-2からの入力を、第2の計算機100-2のコンソール装置500-2からの入力として、第2の計算機100-2のOS120-2に通知する。

本発明の第1の実施例における複合計算機システムの構成図(図1)

【特許請求の範囲】

【 請求項1 】それぞれ主記憶装置を有する複数台の計算機と、少なくとも1 台の計算機に接続された少なくとも1 台の端末装置および少なくとも1 台の入出力装置とを備えた複合計算機システムにおいて、

前記複数の計算機で共有される共有メモリを設け、どの 計算機に接続されたどの端末装置からどの計算機を操作 するかを定める情報を格納するフィールドを有する交信 テーブルを前記共有メモリに設け、前記対応情報に従っ て、第1の計算機の端末装置から第2の計算機を操作す 10 ることを特徴とする複合計算機システム。

【請求項2】前記交信テーブルには、計算機ごとにどの入出力装置から当該オペレーティングシステムをロードするかを定める情報を格納するフィールドを設け、前記第1の計算機の端末装置からの指示に応じて前記第2の計算機は当該計算機について定められた入出装置から当該オペレーティングシステムをロードすることを特徴とする請求項1記載の複合計算機システム。

【 請求項3 】前記交信テーブルには、計算機ごとにその 計算機に対する要求の内容を記述するフィールドを設 け、該フィールドの内容に応じて当該計算機が動作する ことを特徴とする請求項1 または2 記載の複合計算機シ ステム。

【 請求項4 】前記第2 の計算機の出力画面情報を前記共有メモリを介して前記第1 の計算機の端末装置に出力し、該端末装置からの入力を前記共有メモリを介して前記第2 の計算機上のオペレーティングシステムに通知することを特徴とする請求項2 記載の複合計算機システム。

【 請求項5 】 前記第1 の計算機の端末装置から 前記共有 30 メモリを介して前記第2 の計算機のオペレーティングシステムの停止を要求し、該要求に応じて前記第2 の計算機が当該オペレーティングシステムを停止することを特徴とする請求項1 記載の複合計算機システム。

【 請求項6 】前記交信テーブルには、計算機ごとにその 計算機に対する要求の内容を記述するフィールドを設 け、該フィールドの内容に応じて当該計算機が動作する ことを特徴とする請求項1、2、3、4または5記載の 複合計算機システム。

【 請求項7 】前記共有メモリには、前記各計算機に対応 40 して画面バッファを有することを特徴とする請求項4 記 載の複合計算機システム。

【 請求項8 】それぞれ主記憶装置を有する複数台の計算機を備え、各計算機で複数のオペレーティングシステム (OS)を走行可能な複合計算機システムにおいて、前記複数の計算機に共有される共有メモリを設け、どの計算機において現在どのような計算機資源が利用可能かを示す資源テーブルと、各OSに対応する仮想計算機の構成に必要とされる計算機資源を定めた構成テーブルとを前記共有メモリに格納し、特定のOSを走行させよう

とするとき、当該OSに対応する仮想計算機の構成に必要な計算機資源を前記構成テーブルにより求め、該必要な計算機資源が満足される計算機を選択して、該選択された計算機において前記特定のOSを走行させることを特徴とする複合計算機システム。

【 請求項9 】前記特定のOS の走行の指示は、任意の計算機において行うことを特徴とする請求項8 記載の複合計算機システム。

【請求項10】前記各計算機の主記憶装置には、同一の 仮想計算機モニタを格納することを特徴とする請求項8 記載の複合計算機システム。

【 請求項1 1 】 前記仮想計算機モニタを1 台の計算機の 主記憶装置内に外部記憶装置から読み込み、該読み込ん だ仮想計算機モニタを前記共有メモリを介して他の計算 機の主記憶装置内に複写することを特徴とする請求項1 0 記載の複合計算機システム。

【 請求項12】前記特定のOSをどの計算機上で走行させるかは、前記仮想計算機モニタが決定することを特徴とする請求項10記載の複合計算機システム。

0 【 請求項13】前記特定のOSをどの計算機上で走行させるかはユーザが指定し、当該計算機上で前記特定のOSが走行可能か否かは前記仮想計算機モニタが判断することを特徴とする請求項10記載の複合計算機システム。

【 請求項14】前記資源テーブルおよび構成テーブルを 前記共有メモリ内に代えて、各計算機の主記憶装置内に 設けたことを特徴とする請求項8記載の複合計算機シス テム。

【 請求項15】前記特定のOSを走行させた計算機(第1の計算機)上の仮想計算機が出力した画面情報を前記任意の計算機(第2の計算機)に出力し、前記画面情報に対する前記第2の計算機からの入力を前記第1の計算機の仮想計算機に通知することを特徴とする請求項9記載の複合計算機システム。

【 発明の詳細な説明】

[0001]

【 産業上の利用分野】本発明は、複数の実計算機からなる複合計算機システムに関し、特に、複数のOSを操作するのに好適な複合計算機システムに関する。

0 [0002]

【 従来の技術】1 台の実計算機(単に計算機ともいう) 上で複数のオペレーティング・システム(OS: Operating System)が走行可能な計算機システムとして、特開昭57-212680号公報記載の仮想計算機システム(VMS: Virtual Machine System)がある。仮想計算機システムは、1 台の計算機上に論理的な計算機である仮想計算機(VM: Virtual Machine)を複数台生成し、各仮想計算機(VM)において対応する1 つのOSの走行を可能とする。この仮想計算機システムは、使用目的の異なる複数のOSを1台の計算機上で運用した

り、OS 移行時に新旧2 つのOS を1 台の計算機上で運用したり、OS のテストを並列に1 台の計算機上で実行するためのツールとして主に利用されている。

【0003】仮想計算機システムにおいて、制御プログラムである仮想計算機モニタ(VMM: Virtual Machin e Manitor)は、1 台の計算機の資源を各仮想計算機 (VM)に分配するとともに、仮想計算機のスケジューリングとディスパッチとを行なう。さらに、仮想計算機モニタは、仮想計算機上のOSが発行した命令のうち計算機上では直接実行できない命令、即ち、ソフトウェア 10の介在を必要とする命令のシミュレーション処理を行なう。また、入出力命令のような割込みを伴う命令をシミュレーションした場合、仮想計算機モニタは、割込みのシミュレーションもOSに対して行なう。さらに、仮想計算機モニタは、OSの立ち上げ処理である、いわゆる初期プログラムロード(IPL: Initial Program Load)の処理も仮想計算機上のOSに対して行なう。

【 0004】また、特開平2-201655号公報は、 1台の計算機を構成する複数の中央処理装置を、仮想計 算機の中央処理装置として割り当てる仮想計算機割り当 20 て方式を開示している。

[0005]

【 発明が解決しようとする課題】複数の計算機から構成 される複合計算機システムにおいて複数のOS を運用し ようとすると、以下の課題がある。

【 0006】(1) 第1の課題は、OSの操作に関する。

【0007】従来、複合計算機システムの各々の計算機においてOSを走行させる場合、各々の計算機において対応するOSを初期プログラムロード(IPL)しなけ 30 ればならなかった。即ち、ある計算機上のOSを、他の計算機からはIPLできなかった。また、IPL後は、各々の計算機のコンソール装置を用いて、この計算機上のOSを操作しなければならなかった。即ち、ある計算機上のOSを、他の計算機からは操作できなかった。このため、複合計算機の各々の計算機が離れている場合、各々の計算機にオペレータを配置する必要が有った。【0008】従って、複合計算機システムを構成する各

【0008】従って、複合計算機システムを構成する各々の計算機でのOSのIPLと、これらOSの操作が任意の計算機から可能であることが望ましい。

【 0009】(2) 第2の課題は、OSへの計算機資源の割り当てに関する。

【 0010】仮想計算機システムは、前記特開平2-2 01655号公報に記載のように、1台の計算機の資源 を複数の仮想計算機に割り当てる機能を有している。

【 0011】しかしながら、複合計算機システムの場合、この複合計算機システムを構成する複数の計算機の 資源を統合的に管理し、OS に割り当て可能であること が望ましい。

【0012】(3) 第3の課題は、仮想計算機モニタの 50

起動に関する。

【 0013】従来、複合計算機システムの複数の計算機において仮想計算機を走行させようとすると、これら複数の計算機毎に仮想計算機モニタを格納するディスク装置が必要であり、各々の計算機において仮想計算機モニタを初期プログラムロード(IPL)しなければならなかった。

【 0014】しかしながら、複合計算機システムの複数の計算機において仮想計算機を走行させる場合であっても、仮想計算機モニタのIPLは、1回で済ませられることが操作性向上の点で望ましい。

【 0015】本発明の目的は、前記第1の課題を解決し、複合計算機システムを構成する各々の計算機上でのOSのIPLと、これらOSの操作が任意の計算機から可能である複合計算機システムを提供することにある。【 0016】本発明の別の目的は、前記第2の課題を解決し、複合計算機システムを構成する複数の計算機の資源を統合的に管理し、OSに割り当て可能な複合計算機システムを提供することにある。

【 0017】本発明のさらに別の目的は、前記第3の課題を解決し、複合計算機システムの複数の計算機において仮想計算機を走行させる場合であっても、仮想計算機モニタのIPLは1回ですむ複合計算機システムを提供することにある。

[0018]

【 課題を解決するための手段】本発明による複合計算機システムは、それぞれ主記憶装置を有する複数台の計算機と、少なくとも1台の計算機に接続された少なくとも1台の端末装置および少なくとも1台の入出力装置とを備えた複合計算機システムにおいて、前記複数の計算機で共有される共有メモリを設け、どの計算機に接続されたどの端末装置からどの計算機を操作するかを定める情報を格納するフィールドを有する交信テーブルを前記共有メモリに設け、前記対応情報に従って、第1の計算機の端末装置から第2の計算機を操作することを特徴とする

【 0019】本発明による他の複合計算機システムは、それぞれ主記憶装置を有する複数台の計算機を備え、各計算機で複数のオペレーティングシステム(OS)を走行可能な複合計算機システムにおいて、前記複数の計算機に共有される共有メモリを設け、どの計算機において現在どのような計算機資源が利用可能かを示す資源テーブル、および各OSに対応する仮想計算機の構成に必要とされる計算機資源を定めた構成テーブルとを前記共有メモリに格納し、特定のOSを走行させようとするとき、当該OSに対応する仮想計算機の構成に必要な計算機資源を前記構成テーブルにより求め、該必要な計算機資源が満足される計算機を選択して、該選択された計算機において前記特定のOSを走行させることを特徴とする

[0020]

【作用】以下、本発明の代表的な構成における作用を説明する。

【0021】(1)複合計算機システム内の第1の計算機上の複数の端末と、複合計算機システムを構成する各々の計算機との対応関係を、予め定義しておく。そして、第1の計算機上の端末からのOSのIPL(初期プログラムロード)の要求に対し、この端末に対応づけられた第2の計算機において、このOSのIPLを行う。また、第2の計算機上のOSがコンソール装置に出力し 10たメッセージ(画面情報)を、この第2の計算機に対応づけられた、第1の計算機上の端末に出力する。さらに、この出力に応じた第1の計算機上の端末からの入力を、第2の計算機上のコンソール装置からの入力として、第2の計算機上のOSに通知する。

【 0022】以上のようにして、複合計算機システムを構成する各々の計算機上でのOSのIPLと、これらOSの操作が任意の計算機から可能である複合計算機システムを提供できる。

【0023】(2)複合計算機システムの各計算機にお 20 いて利用可能な計算機資源を示す資源テーブルと、各O Sが走行するために必要とする計算機資源を示す構成テーブルを予め作成しておく。次に、第1の計算機においてユーザがあるOSの走行開始を要求したとき、第1の計算機が、このOSに対応する構成テーブルと、各計算機に対応する資源テーブルを用いて、このOSが走行可能な第2の計算機を選択する。また、選択した第2の計算機の識別子を、第1の計算機に表示することによって、ユーザにOSが走行する計算機を通知する。その後、第1の計算機が第2の計算機を通知する。その後、第1の計算機が第2の計算機に対して、このOSの表行を開始を要求する。この結果、この第2の計算機は、このOSの構成テーブルが示す計算機資源をOSに与えて、このOSの走行を開始する。

【 0024】以上のようにして、複合計算機システムを 構成する複数の計算機の資源を統合的に管理し、OSに 割り当て可能な複合計算機システムを提供できる。

【 0 0 2 5 】(3)複合計算機システムの中の1 台の計算機において、1 つの仮想計算機モニタをI P L し、主記憶上にローディングする。次に、複合計算機システムを構成する他の計算機に前記仮想計算機モニタをコピー 40 する。さらに、コピーした仮想計算機モニタをコピー先の計算機において起動する。

【 0026】以上のようにして、複合計算機システムの 複数の計算機において仮想計算機を走行させる場合であ っても、仮想計算機モニタのI PLは1回ですむ複合計 算機システムを提供できる。

[0027]

【 実施例】以下、本発明の4 つの実施例を図を用いて詳細に説明する。

【0028】1. 第1の実施例

図1 は、本発明の第1 の実施例における複合計算機シス テムの構成図である。図1 において、100-1 は第1 の計算機、100-2は第2の計算機、100-3は第 3 の計算機、200 は各計算機100 によって共用され る共有メモリである。共有メモリ200は、各計算機1 00 内にあるそれぞれの主記憶装置とは別のメモリであ り、例えば拡張記憶装置の如きメモリである。第iの計 算機100-i(i=1,2,または3)は、共有メモ リ200の参照および更新が可能であり、さらに共有メ モリ200の内容を他の第j の計算機100 -j の主記 憶にコピー可能である。また、各計算機100 −i にお いて通信命令を実行すると、命令で指定した第」の計算 機100一」に対して外部割込みを発生させることがで き、また、外部割込みを受けた第j の計算機1 0 0 ーj は、通信命令発行元の第i の計算機100 -i を識別で きる。

【0029】共有メモリ200上には、計算機間の交信 時に用いる交信テーブル210と、それぞれ第i の計算 機100-i(i=1,2,3)を操作するコンソール 装置500-i の画面の内容を計算機間で受け渡すとき に用いる画面バッファ220-i(i=1,2,3)、 および、制御プログラム1 10-1を第2の計算機10 0-2 および第3 の計算機100-3 へそれぞれ制御プ ログラム110-2および110-3としてコピーする ときに用いるバッファ230がある。この本発明にて設 けた制御プログラム110 -i は、後で詳しく述べるよ うに、計算機間の交信を行ないながらコンソール画面を 制御する。また、第1の計算機100-1には、制御プ ログラム110-1のロードモジュールを格納するディ スク装置300と、端末400-i が接続されている。 この3台の端末の装置アドレスは、各々(020)、 (021)、(022)とする。

【 0030】通常、コンソール装置は、各計算機に1 台だけ設けられ、計算機の電源投入、初期プログラムロード(IPL)等の計算機操作を行うための装置であり、端末はユーザがTSS (Time Sharing System)等により計算機を使用するための装置であるが、本発明では端末からもIPL等の操作を行えるようにする。

【 0031】次に、図2を用いて計算機間の交信に用いる交信テーブル210の構成を説明する。交信テーブル210の構成を説明する。交信テーブル210の各エントリは、複合計算機システムを構成する各計算機に対応している。操作計算機I D212は、その計算機I Dが示す計算機の操作をどの計算機から行うかを定める識別子である。端末アドレス213は、操作計算機I D212で示された計算機に接続されたどの端末から操作を行うかを定めるものである。また、I PL装置アドレス214は、計算機I D211を識別子とする計算機に対するI PLをどの入出力装置から行うかを定めるものである。さらに、要求内容フィールド215は、計算機間の交信における要求内容を保持している。

詳細は後述するが、本実施例では、要求内容フィールド 215の値が16進数の(80)のときIPL要求を、 (40)のとき画面更新要求を、(20)のときアテンション割込み要求を、(10)のとき終了要求を表わす。

【 0 0 3 2 】例えば、図2 の交信テーブル2 1 0 では、 第2 の計算機1 0 0 -2 はアドレス4 4 0 の入出力装置 から I P L を行ない、この第2 の計算機1 0 0 -2 の操 作は、第1 の計算機1 0 0 -1 に接続されたアドレス (0 2 1) の端末4 0 0 -2 から行なうことを示してい 10 る。

【 0033】次に、図3のフローチャートに従って、本発明の第1の実施例による複合計算機システムの具体的な動作例を説明する。

【 0034】まず、複合計算機システムを構成する第1 の計算機100-1において、ディスク装置300から 初期プログラムロード(IPL)を行うことにより、制 御プログラム110-1を第1の計算機100-1の主 記憶上にローディングする。次に、このローディングさ れた制御プログラム110-1は、制御プログラム11 0-1 自身を共有メモリ200のバッファ230にコピ ーする。さらに、制御プログラム110-1は、バッフ ァ230の内容を、この複合計算機システムを構成する 第2の計算機100-2および第3の計算機100-3 の主記憶にコピーする(ステップ3000)。そして、 コピーした制御プログラム110-2 および110-3 をコピー先の第2 および第3 の計算機100-2 および 100-3において起動する。この起動は、第1の計算 機100-1の制御プログラム110-1が、第2の計 算機100-2 および第3の計算機100-3に対し で、通信命令を発行し、外部割込みを第2の計算機10 0-2上の制御プログラム110-2 および第3の計算 機100-3上の制御プログラム110-3に発生させ ることにより行なう。

【 0035】次に、制御プログラム110-1が、第1の計算機100-1上の複数の端末400-i(i=1, 2, 3)と第jの計算機(j=1, 2, 3)との対応関係を交信テーブル210に定義し、また、画面バッファ220-i(i=1, 2, 3)を作成する(ステップ3010)。この交信テーブル210の定義は、第1の計算機100-1上の端末400-i(i=1, 2, 3)から、操作対象とする第jの計算機100-jを指定することによって行なj。本実施例では、図2に示すように第1の計算機100-i に接続された端末400-i が各第iの計算機100-i 上のOS 120-iを操作するように、交信テーブル210は、設定されている。

【 0036】第1の計算機100-1に接続された、アドレスが(021)の端末400-2から、ユーザがIPLを行なう入出力装置のアドレスを指定してOSのI

PLを要求する。これに応じて、制御プログラム110 -1 は、交信テーブル210の端末アドレス213が (021)であるエントリのIPL装置アドレス214にユーザが端末400-2から指定したOSの入出力装置アドレスを格納する。さらに、制御プログラム110-1は、要求内容フィールド215に(80)を格納してIPLを指示し、この端末400-2が操作を行なう第2の計算機100-2に対して、通信命令を発行する(ステップ3020)。この結果、制御プログラム110-2は、第2の計算機100-2に対応する交信テーブル210の計算機ID211が2であるエントリを解析し、指定されたアドレスの入出力装置からOSをIPLする(ステップ3030)。その結果、第2の計算機100-2においてOS120-2が走行を開始する(ステップ3040)。

【 0 0 3 7 】また、第2 の計算機1 0 0 -2 のOS 1 2 0-2 がコンソール装置500-2への出力を要求する 入出力命令を発行した場合(ステップ3050)、この 入出力命令を制御プログラム110-2に割り出し、制 御プログラム110-2がこの命令をシミュレーション する。このシミュレーションにおいて、制御プログラム 110-2は、このOS120-2に対応する画面バッ ファ220-2をOS120-2が入出力命令で指定し た内容に更新する。また、制御プログラム110-2 は、交信テーブル2 1 0 の計算機I D2 1 1 が2 を示す エントリの要求内容フィールド215に(40)を格納 することにより画面更新を指示して、交信テーブル21 0 の操作計算機I D212 が示す第1 の計算機100 -1に対して、通信命令を発行する。さらに、制御プログ ラム110-2は、コンソール装置500-2への出力 の終了割込みのシミュレーションをOS120-2に対 して行なう(ステップ3060)。その結果、第2の計 算機100-2のOS120-2が走行を再開する(ス テップ3070)。

【 0 0 3 8 】外部割込みを受けた制御プログラム1 1 0 -1 は、通信命令発行元の第2 の計算機1 0 0 -2 に対応する交信テーブル2 1 0 のエントリ の要求内容フィールド 2 1 5 を解析し、第2 の計算機1 0 0 -2 上のOS 1 2 0 -2 を操作する端末4 0 0 -2 に、画面バッファ2 2 0 -2 の内容を出力する(ステップ3 0 8 0)。この結果、OS 1 2 0 -2 がコンソール装置5 0 0 -2 に対して出力した画面情報が、端末4 0 0 -2 に出力される。

【 0039】さらに、ユーザが端末400-2の出力を見て、コマンド等を入力した場合、アテンション割込みが制御プログラム110-1に報告される。このアテンション割込みは、ユーザから端末400-2への入力があったことをOS120-2に通知するための割込みであり、通常、キーボードの実行キーを押すことによって発生する。また、一般に、OSは、このアテンション割

込みを契機として、画面を読み込み、ユーザが指定したコマンドの処理を行なう。アテンション割込みを報告された制御プログラム110-1は、端末220-2の画面の内容を読み込み、この端末400-2に対応する画面パッファ220-2に端末400-2の画面の内容を書き込む。また、交信テーブル210の端末アドレス213が(021)のエントリの要求内容フィールド215に(20)を格納することによりアテンション割込みを指示して、第2の計算機100-2に対して、通信命令を発行する(ステップ3090)。この結果、制御プ10ログラム110-2は、この第2の計算機100-2に対応する交信テーブル210のエントリの要求内容フィールド215(ここでは20)を解析し、OS120-2にアテンション割込みのシミュレーションを行なう(ステップ3100)。この割込みを受けた結果、第2

【 0040】その後、OS120-2がこのアテンション割込みの処理において画面リードを要求する入出力命令を発行した場合(ステップ3110)、この入出力命20令を制御プログラム110-2に割り出し、制御プログラム110-2がこの命令をシミュレーションする。このシミュレーションにおいて、制御プログラム110-2は、画面バッファ220-2の内容を入出力命令が指定するOS120-2の領域に書き込み、画面リードの終了割込みをシミュレーションする(ステップ3120)。この結果、割込みを受けたOS120-2は、画面の内容を読み、画面上に指示されたコマンドを解析し、このコマンドの処理を行なう(ステップ3130)。

の計算機100-2のOS120-2は、アテンション

割込みの処理を行なう。

【 0041】以上のようにして、第1の計算機100-1に接続された端末400-2から第2の計算機100-2のOS120-2を操作できる。

【0042】一方、第1の計算機100-1上の装置ア ドレスが(021)の端末400-2において、ユーザ がOSの停止を要求したとする。このとき、制御プログ ラム110-1は、交信テーブル210の端末アドレス 213が(021) のエントリ の要求フィールド215 に(10)を格納することによりOSの停止を指示し て、この端末400-2が操作する第2の計算機100 -2 に対して、通信命令を発行する(ステップ314 0)。その結果、外部割込みを起こされた制御プログラ ム110-2は、第2の計算機100-2に対応する交 信テーブル210の要求内容フィールド215を解析 し、OS120-2を停止する(ステップ3150)。 【0043】以上のようにして、本実施例によれば、複 合計算機システムを構成する各々の計算機上でのOSの I PLと、これらOS の操作が任意の計算機から可能で ある複合計算機システムを提供できる。

【0044】なお、本実施例では複合計算機システムを 50

| 10 |3 台としたが|| 4 ま

構成する計算機の台数は、3 台としたが、4 台以上の計 算機からなる複合計算機システムにも本発明が適用でき ることは明らかであろう。

【 0045】また、本実施例では、制御プログラムは、ディスク装置からローディングするとしたが、他の記憶 媒体、例えば、フロッピーディスク等からローディング する場合にも、本発明が適用できることは明らかであろう。

【 0046 】 さらに、本実施例では、全てのOS 120 ーi (i=1, 2, 3) を第1 の計算機100-1 に接続された端末400-i (i=1, 2, 3) から操作した。しかし、例えば、第1 の計算機100-1 上のOS 120-1 を第2 の計算機100-2 に接続された端末から操作し、第2 の計算機100-2 上のOS 120-2 および第3 の計算機100-3 上のOS 120-3 を、第1 の計算機100-1 に接続された端末から操作することも可能である。

【0047】2. 第2の実施例

図4 は、本発明の第2 の実施例における複合計算機システムの構成図である。図4 においても第1 の実施例の場合と同じく、100-1 は第1 の計算機、100-2 は第2 の計算機、100-3 は第3 の計算機、200 は各第i の計算機100-i (i=1,2,3)によって共用される共有メモリである。

【 0048】共有メモリ200上には、バッファ230と、複合計算機システムを構成する各第iの計算機100ーiにおいて使用可能な計算機の資源を表わす資源テーブル240と、各仮想計算機(VM)が走行に必要とする計算機の資源を表わす構成テーブル250がある。第1の計算機100ーiには、仮想計算機モニタ(VMM)130-1のロードモジュールを格納するディスク装置300がある。また、各第iの計算機100ーiには、コンソール装置500ーiがある。

【 0049】本実施例は、後で詳しく述べるように、次の3点を特徴としている。

【 0050】(1) ユーザがコンソール装置500-1 において指定した仮想計算機を生成するとき、仮想計算機モニタ130-1は、資源テーブル240および構成テーブル250を参照して、この仮想計算機を生成するために必要な資源を有する計算機を選択する。そして、この選択した計算機上で、仮想計算機を走行させる。このように、複合計算機システム全体の計算機資源の利用状況に従って、新たな仮想計算機を生成する。

【 0051】(2) 各々の仮想計算機モニタ130-i (i=1 , 2 , 3) が、構成テーブル250を共用して参照することにより、仮想計算機の構成情報を計算機間で共用できる。

【 0052】(3) 第1の計算機100-1の主記憶上の仮想計算機モニタ130-1が、共有メモリ200上のバッファ230を介して、第2の計算機100-2お

よび第3の計算機100-3の主記憶上に仮想計算機モニタ130-1自身をコピーする。従って、第2の計算機100-2および第3の計算機100-3には、仮想計算機モニタのロードモジュールを格納するディスク装置が不要である。さらに、仮想計算機モニタの初期プログラムロード(IPL)は、第1の計算機100-1においてのみ実行すればよい。

【0053】次に、図5を用いて計算機における使用可 能な計算機資源を表わす資源テーブル240の構成を説 明する。各々の資源テーブル2 4 0 -i は第i の計算機 10 100-i における使用可能な計算機資源を表わす。従 って、共有メモリ200には、第1の計算機100-1、第2の計算機100-2、および、第3の計算機1 00-3に対応して、資源テーブル240-1、240 -2、および、240-3がある。資源テーブル240 のCPU構成フィールド241は、ビットの値が1のと きビット 位置に対応する番号の中央処理装置(CPU: Central Processing Unit) が空き状態(使用可能状 態)であることを、また、ビットの値が0 のときビット 位置に対応する番号の中央処理装置がインストールされ 20 ていないか、あるいは、既に仮想計算機が使用中である ことを表わす。また、チャネル構成フィールド242 は、ビットの値が1のときビット位置に対応する番号の チャネルが空き状態(使用可能状態)であることを、ま た、ビットの値が0のときビット位置に対応する番号の チャネルがインストールされていないか、あるいは、既 に仮想計算機が使用中であることを表わす。さらに、主 記憶マップ243の第mビットは、ビットの値が1のと きmに64メガを乗じた主記憶上のアドレスから64メ ガバイトの領域が空き状態(使用可能状態)であること 30 を、また、ビットの値が0のときmに64メガを乗じた 主記憶上のアドレスから64メガバイトの領域がインス トールされていないか、あるいは、既に仮想計算機が使 用中であることを表わす。

【 0054】例えば、図5の資源テーブル240は、中央処理装置0と2、チャネル0から3、および、主記憶装置の0番地から128メガ番地未満の領域が使用可能であることを示している。

【0055】さらに、図5を用いて仮想計算機の走行に 必要な計算機資源を表わす構成テーブル250の構成を 40 説明する。構成テーブル250一k は第k 番目の仮想計算機140一k の走行に必要な計算機の資源を表わして いる。従って、10台の仮想計算機を定義するとき、共有メモリ200には、仮想計算機140一k(k=1,2,……,10)に対応して構成テーブル250一1から250一1のが格納される。構成テーブル250の仮想CPU構成フィールド251は、この仮想計算機が走行するために必要とする中央処理装置の数を表わす。計算機識別子252は、値が16進数の(FF)のとき、この仮想計算機は計算機上で走行していないことを、ま 50

た、値が16進数の(FF)以外のとき、この仮想計算 機が走行している計算機の識別番号を保持する。また、 専有CPUフィールド253は、この仮想計算機が計算 機上で走行しているとき専有している中央処理装置の番 号を、ビット 位置に対応して表わしている。また、仮想 チャネルフィールド254は、ビットの値が1のときビ ット 位置に対応するチャネルをこの仮想計算機が走行す るために必要とすることを、また、ビットの値が0のと きビット 位置に対応するチャネルは必要としないことを 表わす。さらに、仮想主記憶サイズフィールド255 は、この仮想計算機が必要とする主記憶のサイズをメガ バイト単位で表わす。また、専有主記憶起点フィールド 256は、この仮想計算機が計算機上で走行していると き、この仮想計算機の主記憶領域の主記憶装置における 起点アドレスを保持する。また、IPL装置アドレス2 57は、この仮想計算機140上のOSが格納されてい る入出力装置のアドレス、即ち、仮想計算機140にお

12

【 0056 】例えば、図5の構成テーブル250 は、この仮想計算機の走行には、中央処理装置が2 つ、チャネルが0 か63 までの4 本、主記憶サイズが128 メガバイト必要であることを示している。また、計算機識別子252 が16 進数の(FF)でないので、この仮想計算機は、第1 の計算機100-1 の中央処理装置0 と2 、主記憶装置064 メガ番地か5128 メガバイトの領域を使用して、走行中であることも示している。

いてIPLするOSの装置アドレスを保持する。

【0057】次に、図6に従って、本発明の第2の実施例による複合計算機システムの動作例を説明する。

【0058】まず、複合計算機システムを構成する第1 の計算機100-1において、ディスク装置300から 初期プログラムロード(IPL)することにより、仮想 計算機モニタ(VMM) 130を第1の計算機100-1 の主記憶上にローディングする(ステップ600 0)。次に、このローディングされた仮想計算機モニタ 130-1は、仮想計算機モニタ130-1自身を共有 メモリ200のバッファ230にコピーする。さらに、 仮想計算機モニタ130-1は、バッファ230の内容 を、この複合計算機システムを構成する第2の計算機1 00-2 および第3の計算機100-3の主記憶にコピ ーする(ステップ6010)。そして、コピーした仮想 計算機モニタ130-2および130-3をコピー先の 第2 および第3 の計算機1 0 0 -2 および1 0 0 -3 に おいて起動する(ステップ6020)。この起動は、第 1 の計算機100-1の仮想計算機モニタ130-1 が、第2の計算機100-2および第3の計算機100 -3 に対して、通信命令を発行し、外部割込みを第2 の 計算機100-2上の仮想計算機モニタ130-2およ び第3の計算機100-3上の仮想計算機モニタ130 -3 に発生させることにより行なう。

【 0059】次に、仮想計算機モニタ130-1が有す

る複数の仮想計算機(VM)の構成情報を共有メモリ2 00内の構成テーブル250に格納することにより、複 数の仮想計算機の構成情報を計算機間で共有可能とす る。この共有メモリ200上の構成テーブル250の内 容は、各第i の計算機100-i 上の仮想計算機モニタ 130-i(i=1,2,3)によって、変更可能であ る。即ち、ユーザがコンソール装置500 -i から仮想 計算機の構成変更を指示することにより、仮想計算機モ ニタ130 -i がこの仮想計算機140に対応する構成 テーブル250のフィールドの値を変更できる。また、 仮想計算機モニタ130-1が有する複合計算機システ ムの各々の第i の計算機(i =1,2,3)の構成情報 を、資源テーブル2 40 -i (i =1, 2, 3) に格納 する(ステップ6030)。

【 0060】ユーザがコンソール装置500-1から仮 想計算機140の生成を要求したとき、指定された仮想 計算機140が必要とする計算機資源を構成テーブル2 50から読みだし、資源テーブル240-i(i=1, 2,3)と比較することにより、この仮想計算機140 が走行可能な例えば第2の計算機100-2を選択する 20 (ステップ6040)。この比較では、構成テーブル2 50の仮想CPU構成フィールド251が示す数だけの 中央処理装置が空き状態であることが資源テーブル24 0 -i のCP U構成フィールド241 に示されている か、かつ、仮想チャネルフィールド254が示すチャネ ルが空き状態であることがチャネル構成フィールド24 2 に示されているか、かつ、仮想主記憶サイズフィール ド255が示すサイズの主記憶領域が空き状態であるこ とが主記憶マップ243において示されているか、を判 定する。

【 0061】ステップ6040で選択した第2の計算機 100-2の識別子を、第1の計算機100-1のコン ソール装置500-1に表示する(ステップ605 0)。この表示によって、ユーザは、OSをどの計算機 のコンソール装置から操作すればよいかを、知ることが できる。さらに、第1の計算機100-1上の仮想計算 機モニタ130-1が、第2の計算機100-2の主記 憶の特定の領域に、仮想計算機140の識別子を格納し ておく。その後、第1の計算機100-1が、選択され た第2の計算機100-2に対して通信命令を実行する ことにより、仮想計算機140の生成を要求する(ステ ップ6060)。

【 0 0 6 2 】外部割込みをかけられた第2 の計算機1 0 0 -2 上の仮想計算機モニタ1 3 0 -2 は、第2 の計算 機100-2の主記憶の特定の領域に先に格納された職 別子で示される仮想計算機140の構成を共有メモリ2 00の構成テーブル250から読み出す(ステップ60 70)。さらに、読み出した構成の仮想計算機140を 生成し、資源テーブル240-2および構成テーブル2 50 に計算機資源の利用状況を格納し、生成した仮想計 50 14

算機140を走行させる(ステップ6080)。

【 0063】即ち、第2の計算機100-2上の仮想計 算機モニタ130-2は、ステップ6080では、次の (1)から(5)の処理を行なう。

【 0064】(1) 構成テーブル2 5 0 の仮想C P U構 成フィールド251に示された数だけの中央処理装置を 仮想計算機140に専有させ、この中央処理装置の番号 に対応する 専有CP Uフィールド253 のビット の値を 1に変更し、また、対応するCPU構成フィールド24 1のビットの値を0に変更する。

【0065】(2)仮想チャネルフィールド254が示 すチャネルを仮想計算機140に専有させ、このチャネ ル番号に対応するチャネル構成フィールド242のビッ ト の値を0 に変更する。

【 0066】(3) 仮想主記憶サイズフィールド255 が示すサイズの主記憶領域を仮想計算機140に専有さ せ、その起点アドレスを専有主記憶起点フィールド25 6 に格納し、対応する主記憶マップ243 のビットの値 を0 に変更する。

【 0067】(4) 計算機識別子252を16進数の (FF) から第2の計算機100-2の識別子である2 に変更する。

【 0068】(5) 構成テーブルのIPL 装置アドレス 257が示す入出力装置からOSをIPLする。

【0069】一方、ユーザがコンソール装置500-1 から仮想計算機140の終了を要求したとき、第1の計 算機100-1上の仮想計算機モニタ130-1は、こ の仮想計算機140に対応する構成テーブル250の計 算機識別子252を参照することにより、この仮想計算 機140がどの計算機上で実行中かを判別することがで きる。その後、第1の計算機100-1上の仮想計算機 モニタ130-1が、仮想計算機140を実行中の第2 の計算機100-2に対して、通信命令を実行すること により仮想計算機140の終了を要求する(ステップ6 090)。この結果、第2の計算機100-2上の仮想 計算機モニタ130-2は、第2の計算機100-2に 対応する資源テーブル240 -2、および、この仮想計 算機140に対応する構成テーブル250の計算機資源 の利用状況を更新し、仮想計算機140を終了する(ス テップ6100)。

【0070】即ち、第2の計算機100-2上の仮想計 算機モニタ130-2は、ステップ6100では、次の (1)から(4)の処理を行なう。

【0071】(1)仮想計算機140による中央処理装 置の専有を解除し、仮想計算機140に対応する構成テ ーブル250の専有CPUフィールド253に0を格納 し、また、仮想計算機140が専有していた中央処理装 置の番号に対応する 資源テーブル2 40 -2 のCP U構 成フィールド241のビットの値を1に変更する。

【 0072】(2) 仮想計算機140によるチャネルの

専有を解除し、仮想計算機1 4 0 が専有していたチャネルの番号に対応する資源テーブル2 4 0 -2 のチャネル構成フィールド 2 4 2 のビットの値を1 に変更する。

【 0073】(3) 仮想計算機140による主記憶領域の専有を解除し、仮想計算機140が専有していた主記 億領域に対応する資源テーブル240-2の主記憶マップ243のビットの値を1に変更する。

【 0074】(4) 仮想計算機140に対応する構成テーブル250の計算機識別子252に16進数の(FF) を格納する。

【0075】以上のようにして、本実施例によれば、複合計算機システムを構成する複数の計算機の資源を統合的に管理し、仮想計算機に割り当て可能な複合計算機システムを提供できる。特に、第2の計算機上での仮想計算機の走行開始を、別の第1の計算機から指示可能な複合計算機システムを提供できる。また、仮想計算機の構成定義が、複数の計算機間で共用可能な複合計算機システムを提供できる。さらに、複合計算機システムの複数の計算機において仮想計算機を走行させる場合であっても、仮想計算機モニタのIPLは1回ですむ。

【 0076】なお、本実施例においても、複合計算機システムを構成する計算機の台数は、4 台以上であってもよく仮想計算機モニタは、ディスク装置以外の記憶媒体、例えば、フロッピーディスク等からローディングすることも可能である。

【 0077】また、本実施例では、仮想計算機は計算機 の資源(中央処理装置、主記憶の分割領域、チャネル、 等)を専有するとしたが、共用する場合にも本発明が適 用できる。

【 0078】また、第1の実施例と実施例と組み合わせ 30 ることにより、第1の計算機の端末から他の計算機上で 動作する仮想計算機(OS)上のOSを操作可能とな

【 0079】さらに、仮想計算機システム(VMS)に限らず、類似の機能を有する計算機システムにも、本発明が適用できる。

【 0 0 8 0 】3. 第3 の実施例

本実施例において、複合計算機システムの構成は、図4 に示した第2の実施例の場合と同一である。また、資源 テーブル240および構成テーブル250の構成も、図 40 5に示した第2の実施例の場合と同一である。

【 0081】第2の実施例では、ユーザは開始させる仮想計算機140のみを指定し、この仮想計算機140を動作させる計算機は、第1の計算機100-1上の仮想計算機モニタ130-1が選択した。これに対し、本実施例では、ユーザがコンソール装置500-1により、開始させる仮想計算機140とこれを動作させる計算機の両方を指定するものとする。

【 0082】 図7 のフローチャート に従って、本発明の 第3 の実施例による複合計算機システムの動作を説明す 50

る。図7 のフローチャート のステップ7000からステ ップ7030までは、第2の実施例における図6のフロ ーチャート のステップ6000 からステップ6030と 全く同じである。従って、第2の実施例の場合と同様 に、第1の計算機100-1において仮想計算機モニタ 130-1をローディングし(ステップ7000)、第 2 および第3 の計算機1 0 0 -2 および1 0 0 -3 に仮 想計算機モニタ130-1を共有メモリ200のバッフ ァ230を介してコピーし(ステップ7010)、コピ ーした仮想計算機モニタ130-2および130-3を コピー先の第2 および第3 の計算機1 0 0 -2 および1 00-3において起動し(ステップ7020)、資源テ ープル240-i(i=1,2,3)および各々の仮想 計算機1 4 0 -k に対応する構成テーブル2 5 0 -k を 共有メモリ200上に格納する(ステップ7030)。 【0083】本実施例では、ユーザがコンソール装置5 00-1により、開始させる仮想計算機140とこれを 動作させる計算機の両方を指定する。このため、第1の 計算機100-1において、ユーザが指定した仮想計算 機140が、ユーザが指定した第2の計算機100-2 において走行可能か否かを、仮想計算機140に対応す る構成テーブル250と第2の計算機100-2に対応 する資源テーブル240-2を用いて判定する(ステッ プ7040)。走行不可能な場合、仮想計算機140が 第2 の計算機1 0 0 -2 では走行不能であることを、第 1 の計算機1 0 0 -1 のコンソール装置5 0 0 -1 に表 示する(ステップ7050)。一方、走行可能な場合、 第2 の実施例のステップ6060と同様にして、第1 の 計算機100-1上の仮想計算機モニタ130-1が第 2 の計算機1 0 0 -2 上の仮想計算機モニタ1 3 0 -2 に対して仮想計算機140の生成を要求する(ステップ 7060).

【 0084】その後の動作は、第2の実施例におけるステップ6070からステップ6100と全く同様にして、第2の計算機100-2上の仮想計算機モニタ130-2が、通知された仮想計算機140の構成を共有メモリ200上の構成テーブル250から読み出し(ステップ7070)、読み出した構成の仮想計算機140を生成し、資源テーブル240-2および生成した仮想計算機140に対応する構成テーブル250を更新し、仮想計算機140の走行を開始する(ステップ7080)。

【 0085】一方、ユーザがコンソール装置500-1 から 仮想計算機140の終了を要求した場合、第1の計算機100-1上の仮想計算機モニタ130-1は、第2の計算機100-2上の仮想計算機モニタ130-2に対して、ユーザが指定した仮想計算機140の終了を要求する(ステップ7090)。この結果、第2の計算機100-2上の仮想計算機モニタ130-2は、資源テーブル240-2および構成テーブル250を更新

し、仮想計算機1 4 0 を終了する(ステップ7 1 0 0)。

【 0086】以上のようにして、本実施例によれば、ユーザが指定した第2の計算機上での仮想計算機の走行開始を、別の第1の計算機から指示可能な複合計算機システムを提供できる。

【0087】4. 第4の実施例

本実施例においても、複合計算機システムの構成は、図4に示した第2の実施例の場合と同様であるが、資源テーブル240および構成テーブル250が共有メモリ200上にではなくて、各第iの計算機100-i(i=1,2,3)の仮想計算機モニタ130-iの領域上にあるという点が異なる。資源テーブル240および構成テーブル250の構成は、図5に示した第2の実施例の場合と同一である。

【 0 0 8 8 】 図8 のフローチャートに従って、本発明の 第4 の実施例による複合計算機システムの動作を説明する。図8 のフローチャート のステップ8 0 0 0 からステップ8 0 2 0 までは、第2 の実施例における図6 のフローチャート のステップ6 0 0 0 からステップ6 0 2 0 と 20 全く同じである。従って、第2 の実施例の場合と同様に、第1 の計算機1 0 0 -1 において仮想計算機モニタ 1 3 0 -1 をローディングし(ステップ8 0 0 0)、第 2 および第3 の計算機1 0 0 -2 および1 0 0 -3 に仮想計算機モニタ1 3 0 -1 を共有メモリ 2 0 0 のバッファ2 3 0 を介してコピーし(ステップ8 0 1 0)、コピーした仮想計算機モニタ1 3 0 -2 および1 3 0 -3 をコピー先の第2 および第3 の計算機1 0 0 -2 および1 0 0 -3 において起動する(ステップ8 0 2 0)。

【 0089】本実施例では、資源テーブル240および 30 構成テーブル250を、各第i の計算機100-i (i=1,2,3)の仮想計算機モニタ130-i の領域上に配置する。このため、仮想計算機モニタ130-1 が作成した、資源テーブル240および構成テーブル250を仮想計算機モニタ130-2および130-3にコピーする(ステップ8030)。

【 0 0 9 0 】 次に、第2 の実施例における図6 のフローチャートのステップ6 0 4 0 からステップ6 0 6 0 と全く同じようにして、第1 の計算機1 0 0 -1 上の仮想計算機モニタ1 3 0 -1 において、指定された1 台の仮想 40 計算機1 4 0 が走行可能な第2 の計算機1 0 0 -2 を選択し(ステップ8 0 4 0)、選択した第2 の計算機1 0 0 -2 の識別子を、第1 の計算機1 0 0 -1 のコンソール装置5 0 0 -1 に表示し(5 0 5 0)、第1 の計算機1 0 0 -1 上の仮想計算機モニタ1 3 0 -1 が第2 の計算機上の仮想計算機モニタ1 3 0 -2 に対して仮想計算機1 4 0 の生成を要求する(ステップ8 0 6 0)。

【 0 0 9 1 】 その後、第2 の計算機1 0 0 -2 において、通知された仮想計算機1 4 0 の構成を仮想計算機モニタ1 3 0 -2 の領域上の構成テーブル2 5 0 から読み 50

18

出し(ステップ8070)、読み出した構成の仮想計算機140を生成し、資源テーブル240-2およびこの仮想計算機140に対応する構成テーブル250を更新し、さらに、資源テーブル240-2および構成テーブル250の更新を、第1および第3の計算機に通知して、仮想計算機140の走行を開始する(ステップ8080)。この後、第1および第3の計算機100-1および130-3は、領域内の資源テーブル240-2および構成テーブル250を更新する。

【 0092】一方、ユーザがコンソール装置500一1から仮想計算機140の終了を要求した場合、第1の計算機100-1上の仮想計算機モニタ130-1は、第2の計算機100-2上の仮想計算機モニタ130-2に対して、ユーザが指定した仮想計算機140の終了を要求する(ステップ8090)。この結果、第2の計算機100-2上の仮想計算機モニタ130-2は、資源テーブル240-2および構成テーブル250を更新し、さらに、資源テーブル240および構成テーブル250の更新を、第1および第3の計算機に通知して、仮想計算機140を終了する(ステップ8100)。この後、再度、第1および第3の計算機100-1および100-3上の仮想計算機モニタ130-1および130-3は、領域内の資源テーブル240-2および構成テーブル250を更新する。

【 0093】以上のようにして、本実施例によれば、資源テーブル240および構成テーブル250を計算機間の共有メモリに配置しない場合でも、第2の計算機上での仮想計算機の走行開始を、別の第1の計算機から指示可能な複合計算機システムを提供できる。また、本実施例において仮想計算機モニタ130ーiは、共有メモリ200上にバッファ230は、複合計算機システムの初期設定時にしか利用しない。このため、複合計算機システムを構成する各計算機上のOSは、共有メモリ200全体を使用可能となる。

[0094]

【 発明の効果】本発明によれば、複合計算機システムを構成する各々の計算機上でのOSのI PLと、これらOSの操作が任意の計算機から可能である複合計算機システムを提供できる。

【 0095】また、複合計算機システムを構成する複数の計算機の資源を統合的に管理し、OS に割り当て可能な複合計算機システムを提供できる。

【 0096】さらに、複合計算機システムの複数の計算機において仮想計算機を走行させる場合であっても、仮想計算機モニタのI PLは1回ですむ複合計算機システムを提供できる。

【図面の簡単な説明】

【 図1 】 本発明の第1 の実施例における複合計算機シス

テムの構成図。

【 図2 】 本発明の第1 の実施例における交信テーブルの説明図。

【 図3 】 本発明の第1 の実施例における複合計算機システムの動作のフローチャート。

【 図4 】 本発明の第2 の実施例における複合計算機システムの構成図。

【 図5 】 本発明の第2 の実施例における資源テーブルおよび構成テーブルの説明図。

【図6】本発明の第2の実施例における複合計算機シス 10 テムの動作のフローチャート。

【 図7 】 本発明の第3 の実施例における複合計算機シス

テムの動作のフローチャート。

【 図8 】 本発明の第4 の実施例における複合計算機システムの動作のフローチャート。

20

【符号の説明】

100 - i …第i の計算機、110 - i …制御プログラム、120 - i …OS、130 - i …仮想計算機モニタ(VMM)、140 - k …仮想計算機(VM)、200 …共有メモリ、210 …交信テーブル、220 …画面バッファ、230 …バッファ、240 …資源テーブル、250 …構成テーブル、300 …ディスク装置、400 - i …端末、500 - i …コンソール装置、

【 図1 】

本発明の第1の実施例における複合計算機システムの構成図(図1)

【図2】 本発明の第1の実施例における交信テーブルの説明図(図2)

211 5	212 5	213 \$	214 5	215 5
計算機ID	OSの操作計算機ID	端末アドレス	IPL 装置アドレス	要求内容フィールド
1	1	020	4 4 0	1
2	1	021	4 4 0	
3	1	022	180	
210 交信テー	要求内容フィール	(4 0) (2 0)	: IPL要求 : 画面更新要求 : アテンション部 : 終了要求	込み要求

· 【図5】

本発明の第2の実施例における資源テーブルおよび構成テーブルの説明図(図5)

【図3】

本発明の第1の実施例によるコンソール操作のフローチャート(図3)

制御プログラム 1 1 0 - 1 が、他の計算機に制御プログラムをロードする。 3000
制御プログラム! 10-1が、第1の計算機上の複数の端末と各計算機との対応 関係を定義し、交信テーブルおよび画面バッファを作成する。
第1の計算機上の端末から、ユーザがOSのIPLを要求したとき、制御プログラムIIO-Iは、交信テーブルにIPLを指示して、この端末に対応する第2の計算機に対して、通信命令を発行する。
制御プログラム 10-2が、交信テーブルを解析し、OSをIPLする。
第 2 の計算機において O S が走行を開始する。 3040 2050
第 2 の計算機の O S がコンソールへの出力を要求する。 3050 3060
制御プログラム 1 1 0 - 2 は、画面パッファを更新し、交信テーブルに画面更新を指示して、第 1 の計算機に対して、通信命令を発行する。さらにコンソールへの出力の終了割込みのシミュレーションを行なう。
第2の計算機のOSが走行を再開する。
制御プログラム110-1が、第2の計算機に対応する端末に、画面バッファの内容を出力する。
制御プログラム110-1は、端末からのアテンション割込みを契機として、端末の画面の内容を画面バッファに書き込む。また、交信テーブルにアテンション割込みを指示して、第2の計算機に対して、通信命令を発行する。
制御プログラム 1 1 0 - 2 は、OSにアテンション割込みのシミュレーションを 行なう。
第2の計算機のOSは、アテンション割込みの処理を行ない、画面リードを要求 する
制御プログラム 1 1 0 - 2 は、画面バッファの内容をOSの領域に書き込み、画面リードの終了割込みをシミュレーションする。
OSは、画面の内容を読み、コマンドを解析し、このコマンドの処理を行なう。
第 の計算機上の端末から、ユーザがOSの停止を要求したとき、制御プログラム 10 - 1は、交信テーブルに停止を指示して、この端末に対応する第 2 の計算機に対して、通信命令を発行する。
制御プログラム 1 1 0 - 2 が、交信テーブルを解析し、OSを停止する。

【 図4 】 本発明の第2の実施例における複合計算機システムの構成図(図4)

【図6】

本発明の第2の実施例による複合計算機システムの動作のフローチャート(図6)

【 図7 】

本発明の第3の実施例による複合計算機システムの動作のフローチャート(図7)

【図8】

本発明の第4の実施例における複合計算機システムの動作のフローチャート(図8)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.