Apuntes - GRAFOS

Enzo Giannotta

28 de abril de 2023

Índice general

1.	Par	te I: Introducción a grafos	2
	1.1.	Clase 1: 16/03/23	4
	1.2.	Clase 2: 18/03/23	Ę
		1.2.1. El grado de un vértice	6
		1.2.2. Caminos y Ciclos	8
	1.3.	Clase 3: 20/03/23	10
		1.3.1. Conexidad	16
	1.4.	Clase 4: 23/03/23	18
		1.4.1. Árboles y bosques	20
	1.5.	Clase 5: 27/03/23	23
		1.5.1. Grafos bipartitos	26
		1.5.2. Paseos Eulerianos	30
	1.6.	Clase 6: 30/03/23	31
		1.6.1. Conexidad	33
	1.7.	Clase 7: 03/04/23	36
		1.7.1. Grafos 2-conexos	37
	1.8.	Clase 8: 06/04/23	40
		1.8.1. Contracciones y menores	42
		1.8.2. subdivisiones	45
	1.9.	Clase 9: 17/04/23	46
		1.9.1.	48
	1.10	.Clase 10: 20/04/23	48
	1.11	.Ejercicios	51
	1.12	.Clase 11: 27/04/23	55
Α.		nera parte de la materia (primer capítulo del Diestel)	56
	A.1.		
	A.2.		62

Capítulo 1

Parte I: Introducción a grafos

Bibliografia: [DSS10].

Evaluaciones:

Nota: sumativa significa examen.

1. Sumativa 1 : Lunes 24 abril. 30 porciento.

2. Sumativa 2: Lunes 22 mayo: 25 porciento.

3. Sumativa 3: Jueves 6 julio: 25 porciento.

4. Talleres (usualmente los viernes): 20 porciento (hay que trabajar y entregar lo que se hizo en el taller, te pueden hacer resolver en clase al azar el ejercicio al siguiente taller).

1.1. Clase 1: 16/03/23

Definición 1.1.1. Un **Grafo** es un par ordenado G = (V, E), donde V es un conjunto de **vértices** y E es un conjunto de **Aristas**. Es decir, las aristas son pares (v_1, v_2) con $v_1, v_2 \in V$. En un prinicipio si el grafo **no es dirigido**, no importa el orden de los vértices que aparece en un par (v_1, v_2) .

La manera de visualizar un grafo es dibujar cada vértice y unir dos pares de vértices $v_1, v_2 \in V$ por un segmento que representa la arista (v_1, v_2) .

Ejemplo 1.1.2. Sea $V = \{1, 2, 3, 4, 5\}$ y $E = \{\{1, 3\}, \{3, 4\}, \{5, 4\}, \{4, 1\}, \{1, 2\}\}$

Figura 1.1.1: Dibujo del grafo V.

Definición 1.1.3. Para un grafo G = (W,R), denotamos por V(G) a W (los vértices) y por E(G) = R (las aristas).

El número de vértices de G se denota como |G| o |V(G)|, y se llama **orden** de G. El número de aristas lo denotamos como |G| o simplemente |E(G)|. Un grafo con orden 1 o 0 se llama **trivial**.

Definición 1.1.4. Si $v \in V(G)$ y $e \in E(G)$, y además $v \in e$, decimos que v es **incidente** en e y viceversa, i.e. e es incidente en v. Los dos vértices que inciden en una arista son sus **extremos**.

Dos vértices x, y son **adyacentes** o **vecinos** si $(x, y) \in E$ (Otra notación: $xy \in E$ donde xy es la arista).

Observación 1.1.5. Si mi grafo tiene n vértices, entonces tiene a lo sumo $\binom{n}{2}$ aristas. Luego, la cantidad de grafos que se pueden construir es $2^{\binom{n}{2}}$.

Definición 1.1.6. Si en un grafo todo par de vértices es adyacente, decimos que el grafo es **completo**. Notamos: K_n para todo $n \ge 1$, al grafo completo con n vértices.

Figura 1.1.2: Ejemplo de grafos completos de orden 1,2,3 y 5.

Definición 1.1.7. Si un par de vértices no es adyacente, decimos que son **independientes** o **estables**.

Si $V' \subset V(G)$ es tal que cada par de vértices en V' es independiente, entonces decimos que V' es **independiente**.

Definición 1.1.8. Sean G1 = (V1, E1) y G2 = (V2, E2) grafos, decimos que $\varphi : V1 \rightarrow V2$ es un **isomorfismo** si para todo par de vértices $x, y \in V1$ se tiene que $xy \in E1 \Leftrightarrow \varphi(x)\varphi(y) \in E2$.

Usualmente no hacemos distinciones entre dos grafos isomorfos. De hecho en ese caso escribimos G1=G2.

Figura 1.1.3: Ejemplo de isomorfismo de grafos.

En este ejemplo un isomorfismo válido entre G1 y G2 es

$$\varphi: 1 \mapsto A$$

$$2 \mapsto B$$

$$3 \mapsto C$$

$$4 \mapsto D$$

Definición 1.1.9. Definimos:

- $\blacksquare G \cup G' := (V \cup V', E \cup E')$
- $lacksquare G \cap G' := (V \cap V', E \cap E')$

Figura 1.1.4: Ejemplo de unión e intersección de grafos.

Definición 1.1.10. Si $G \cap G' = \emptyset$, decimos que son **disjuntos**.

Si $V' \subset V$ y $E' \subset E$, decimos que G' es **subgrafo** de G, y que G es **supergrafo** de G'. Notamos $G' \subset G$. Si G' es subgrafo de G pero $G \neq G$, decimos que G' es **subgrafo propio** de G' y análogamente decimois que G **supergrafo propio** de G'; notamos $G' \subsetneq G$.

Definición 1.1.11. Sea $G' \subset G$, tal que G' contiene todas las aristas $xy \in E$ tal que $x, y \in V'$. Decimos que G' es un **subgrafo inducido** de G.

En este caso diremos que V' induce G' en G, y escribimos G' = G[V'] para un subconjunto $V' \subset V$.

Figura 1.1.5: Ejemplo de grafo inducido y no inducido.

1.2. Clase 2: 18/03/23

Definición 1.2.1. Si $U \subset V(G)$, escribimos $G \setminus U$ para denotar $G[V \setminus U]$. Es decir, $G \setminus U$ se obtiene de borrar los vértices de U y sus aristas incidentes.

Figura 1.2.6: Ejemplo de $G \setminus U$.

Definición 1.2.2. El **complemento** \overline{G} de un grafo G, es el grafo con vértices V(G) y que tiene una arista xy si y solo si $xy \notin E(G)$.

Figura 1.2.7: Ejemplo de complemento.

Notar que en el ejemplo de arriba, G y \overline{G} son isomorfos. Esto no pasa necesariamente, por ejemplo el complemento de un grafo completo es el grafo sin aristas.

1.2.1. El grado de un vértice

Definición 1.2.3. Sea G un grafo no vacío, y sea $v \in V(G)$. El conjunto de vecinos de v lo denotamos como N(v) o si el contexto no es claro $N_G(v)$. Llamamos a este conjunto el **vecindario** de v.

Más en general, si $U \subset V(G)$, no vacío. El **vecindario** de U es el subconjunto de vértices de $V(G) \setminus U$ que contiene vecinos de algún elemento de U. Notamos N(U) o $N_G(U)$.

Figura 1.2.8: Ejemplo de vecindario de $U = \{3,4\}$. Tenemos que $N(U) = \{0,2\}$.

Definición 1.2.4. El **grado** de un vértice $v \in V(G)$ es el número de aristas que inciden en v y lo denotamos como d(v) o $d_G(v)$. Notar que

$$d(v) = |N(v)|,$$

porque no permitimos multigrafos.

Si v tiene grado 0, decimos que es **aislado**.

Definición 1.2.5. Definimos la cantidad de G:

$$\delta(G) := \min_{v \in V(G)} \{d(v)\}.$$

Es el **grado mínimo** de G.

Análogamente, tenemos la cantidad *G*:

$$\Delta(G) := \max_{v \in V(G)} \{d(v)\}.$$

Es el **grado máximo** de G.

En el caso que todos los vértices tienen el mismo grado, i.e. $\delta(G) = \Delta(G)$, decimos que G tiene grado k y que G es k-regular o simplemente regular.

Definición 1.2.6. Definimos la cantidad del grafo *G*:

$$d(G) := rac{1}{|V(G)|} \sum_{v \in V(G)} d(v) = rac{1}{|G|} \sum_{v \in V(G)} d(v).$$

Es el grado promedio de G.

Observación 1.2.7.

$$\sum_{v\in V(G)}d(v)=2\left|E(G)\right|=2\left|\left|G\right|\right|.$$

Con lo cual,

$$\boxed{d(G) = 2\frac{E(G)}{V(G)} = 2\frac{||G||}{|G|}.}$$

Proposición 1.2.8. El número de vértices de grado impar en un grafo siempre par.

Demostraci'on. Por la observaci\'on anterior, $\sum_{v\in V(G)}d(v)=2\,|G|\equiv 0\mod 2$ con lo cual,

$$\#\{\,v\in V(G)\mid d(v)\equiv 1\mod 2\,\}=\sum_{v\mid d(v)\equiv 1\mod 2}d(v)\equiv 0\mod 2.$$

Proposición 1.2.9. Para todo grafo G con al menos una arista, existe un subgrafo H tal que

 $\delta(H) > \frac{|E(H)|}{|V(H)|} \geqslant \frac{|E(G)|}{|V(G)|}.$

Demostraci'on. En efecto, la idea es la siguiente: construimos una secuencia de grafos $G=G_0\supset G_1\supset\dots$ de subgrafos inducidos, tales que si G_i tiene un vértice de grado $d(v_i)\leqslant \frac{|E(G_i)|}{|V(G_i)|}$, entonces tomamos $G_{i+1}:=G_i\backslash v_i$; si no, la secuencia termina en $H:=G_i$. Por la elección de v_i se sigue que $\frac{|E(G_{i+1})|}{|V(G_{i+1})|}\geqslant \frac{|E(G_i)|}{|V(G_i)|}$, pues esto sucede si y solo si

$$\begin{split} \frac{|E(G_i)| - d(v_i)}{|V(G_i)| - 1} \geqslant \frac{|E(G_i)|}{|V(G_i)|} \\ \Leftrightarrow \left(|E(G_i)| - d(v_i) \right) |V(G_i)| \geqslant |E(G_i)| \left(|V(G_i)| - 1 \right) \\ \Leftrightarrow - d(v_i) |V(G_i)| \geqslant - |E(G_i)| \\ \Leftrightarrow \frac{|E(G_i)|}{|V(G_i)|} \geqslant d(v_i). \end{split}$$

En particular, $\frac{|E(H)|}{|V(H)|} \geqslant \frac{|E(G)|}{|V(G)|}$.

Afirmamos que H tiene al menos una arista, de lo contrario $\frac{|E(H)|}{|V(H)|} = 0 < \frac{|E(G)|}{|V(G)|}$, por tener G al menos una arista. En particular, $H \neq \emptyset$. Como H es el mínimo de esta construcción, se tiene que $\delta(H) > \frac{|E(H)|}{|V(H)|}$.

1.2.2. Caminos y Ciclos

Definición 1.2.10. Un **camino** es un grafo no vacío P = (V, E) de la forma

$$V = \{x_0, x_1, \dots, x_k\}, \ k \geqslant 0.$$

Con

$$E = \{x_0x_1, x_1x_2, \dots, x_{k-1}x_k\}.$$

Donde todos los x_i son distintos.

Decimos que ||G||, i.e. el número de aristas, es su **longitud**.

Usualmente denotamos al camino P como la secuencia de vértices

$$P = x_0 x_1 \dots x_k$$
.

En este caso diremos que P es un **camino entre** x_0 y x_k .

Notar que |G| = k + 1, y que |G| = k.

Figura 1.2.9: Dibujo de un camino de k + 1 vértices.

Definición 1.2.11. Sea C un grafo que se construye a partir de un camino $P = x_0x_1\cdots x_k$ con $k \ge 1$, en donde agregamos la arista x_kx_0 . Este grafo se llama **ciclo**. Notamos a esta construcción $C := P + x_kx_0$ o $x_0x_1 \dots x_kx_0$.

La **longitud** de un ciclo es su número de aristas, es decir ||C||.

Notar que |C| = k.

Definición 1.2.12. Sea G un grafo. Definimos la **cintura** de G como la mínima longitud g(G) de un ciclo en G.

Definimos la **circunferencia** como la máxima longitud de un ciclo en G.

Si G no tiene ciclos, definimos $g(G) := \infty$ y circunferencia 0.

Figura 1.2.10: Ejemplo de ciclos en un grafo de cinutra igual a 4.

Definición 1.2.13. Una arista que une a dos vértices de un ciclo C, pero que no pertenece a E(C), se la llama **cuerda**.

Figura 1.2.11: Ejemplo de dos cuerdas de un ciclo C.

Proposición 1.2.14. Todo grafo G contiene un camino de largo $\geqslant \delta(G)$. Más aún, si $\delta(G) \geqslant 2$, entonces también contiene un ciclo de largo $\geqslant \delta(G) + 1$.

Demostración. Sea $P = x_0 x_1 \dots x_k$ un camino de largo k máximo en G. El caso k = 1 es inmediato, luego supongamos que $k \ge 1$.

Figura 1.2.12: Camino P de longitud maximal k. Imaginemos que $x_0 = 0$ y que $x_k = 8$ (no pude cambiar las etiquetas en sage math cuando grafique el grafo).

Notar que por maximalidad de P, todos los vecinos de x_k están en V(P), de lo contrario habria un camino más largo. Con lo cual

$$|V(P)| = k \geqslant d(x_k) + 1 \geqslant \delta(G) + 1.$$

Con lo cual, $||P|| \ge \delta(G)$.

Ahora, sea i < k el menor índice tal que $x_i x_k \in E(G)$. Como $\delta(G) \geqslant 2$, se sigue que i < k-1, i.e. x_i y x_k no son advacentes, luego tomamos el ciclo $C = x_i x_{i+1} \dots x_k x_i$. Notar que entonces la longitud de $||C|| \geqslant \delta(x_k) + 1 \geqslant \delta(G) + 1$.

1.3. Clase 3: 20/03/23

Definición 1.3.1. La **distancia** entre dos vértices x, y de un grafo G, es la longitud de un camino con longitud mínima entre x, y, la notamos

$$d(x,y)$$
.

Si no hay un camino entre x e y, escribimos

$$d(x,y) = \infty$$
.

El **diámetro** de G es el máximo de las distancias entre todos los pares de vértices, lo notamos

$$diam(G)$$
.

Notar que d(x, y) = 0 si y solo si x = y.

Definición 1.3.2. El **radio** de un grafo G, denotado rad(G), es la cantidad

$$\operatorname{rad}(G) = \min_{x \in V(G)} \max_{y \in V(G)} d(x,y).$$

Decimos que un vértice $v \in V(G)$ es **central**, si

$$\max_{\mathbf{y} \in v(G)} d(v,\mathbf{y}) = \mathrm{rad}(G).$$

Es decir, v minimiza la función $x \mapsto \max_{y \in V(G)} d(x, y)$.

Figura 1.3.13: Ejemplo de vértice central es 3 y tiene radio 4. El grafo G tiene diámetro 8.

Ejercicio 1.3.3 (Entrega de taller). Probar que

$$rad(G) \leq diam(G) \leq 2rad(G)$$
.

Solución. Si el grafo G no es conexo, luego el radio y el diámetro son infinito, luego vale la desigualdad. En efecto, por un lado si $x \in V(G)$ está fijo, como G no es conexo existe $y \in V(G)$ tal que $d(x,y) = \infty$, con lo cual $\max_{y \in V(G)} d(x,y) = \infty$ para x fijo, luego si tomamos mínimo sobre los x se tiene que $\operatorname{rad}(G) = \infty$. Por otro lado, $\operatorname{diam}(G) = \infty$ porque es el máximo sobre todas las distancias entre dos vértices, y como mencionamos recién, al no ser conexo el grafo tiene que haber una distancia infinita entre algún par de vértices.

Ahora supongamos que G es conexo, es decir para todo par de vértices x,y existe un camino P_{xy} que los conecta, sin pérdida de generalidad supongamos que es el más corto, i.e. d(x,y) es la longitud de P_{xy} . Se deduce que $d(x,y) \leq \operatorname{diam}(G)$ por definición de diámetro. Tomando máximo sobre y y luego mínimo sobre x se sigue por definición que

$$rad(G) \leq diam(G)$$
.

Esto prueba la primera desigualdad. Ahora veamos la segunda.

Sea o un vértice que minimice la función $x\mapsto \max_{y\in V(G)}d(x,y)$, es decir, o es central. Ahora tomemos dos vértices arbitrarios x,y. Como o minimiza la función anterior, tenemos que $d(x,o)\leqslant \operatorname{rad}(G)=\max_{z\in V(G)}d(o,z)$, es decir existe un camino de longitud $\leqslant \operatorname{rad}(G)$ que une x con o. Análogamente, existe un camino de longitud $\leqslant \operatorname{rad}(G)$ que une o con y. Concatenando ambos caminos obtenemos un camino entre x e y de longitud $\leqslant \operatorname{2rad}(G)$. Tomando máximo sobre x,y obtenemos la otra desigualdad:

$$\operatorname{diam}(G) \leqslant 2\operatorname{rad}(G)$$
.

Si queremos relacionar el radio o diámetro con el grafo mínimo, promedio o máximo debemos tener otros parámetros como intermediario. Por ejemplo, los caminos tienen grado mínimo 1 pero pueden tener radio y diámetro arbitrariamente grandes. O podemos tener radio y diámetro arbitrariamente grande y grado mínimo arbitrario. Antes de dar un ejemplo, necesitamos la siguiente definición:

Definición 1.3.4. Sea G un grafo, definimos G^k como la **potencia** de G. Es el grafo que contiene los mismos vértices y las aristas son las originales pero agregando a cada vértice x una arista incidente con cada vértice y a distancia $d(x,y) \leq k$.

12

Figura 1.3.14: El camino $P:0,1,2,\ldots,7$ dibujado en negro, le agregamos aristas para dibujar P^3 . Las aristas rojas conectan nodos a distancia 2 y las azules 3.

Por ejemplo, todo camino de longitud 2n tiene 2n+1 vértices, radio n, diámetro 2n. Luego P^k tiene misma cantidad de vértices (pero no aristas), mismo radio y diámetro, pero grado k para todo $1 \le k \le 2n$.

Vamos a relacionar el radio y grado máximo a través de el número de vértices. Un grafo puede tener muchos vértices, por ejemplo si tiene radio alto, o si tiene grado máximo alto,

Proposición 1.3.5. Sea $d\geqslant 3$. Un grafo G con radio a lo más k y grado máximo a lo más d. Entonces tiene menos que $\frac{d}{d-2}(d-1)^k$ vértices.

Demostración. Sea z un vértice central de G y D_i el conjunto de los vértices a distancia i de z.

Figura 1.3.15: D_0 son los verdes, D_1 los amarillos, y así...

Tenemos que $|D_0|=1, |D_1|\leqslant \Delta\leqslant d$. Notar que cada vértice de D_1 tiene como vecino en D_2 a lo sumo d-1 vértices, pues ya es vecino de z. En general, tenemos que

$$|D_{i+1}| \le |D_i| (d-1), \quad i \ge 1.$$

Con lo cual

$$|D_{i+1}| \leq |D_1| (d-1)^i = d(d-1)^i, \quad i \geqslant 1.$$

Entonces

$$egin{aligned} |V(G)| &= \sum_{i=0}^k |D_i| \leqslant 1 + d \sum_{i=0}^{k-1} (d-1)^i \ &= 1 + d (d-1)^k - 1/d - 2 \ &< rac{d}{d-2} (d-1)^k. \end{aligned}$$

Observación 1.3.6. 1. Cuando el radio es k=1, por ejemplo en un grafo estrella, la cantidad de vértices es asintóticamente igual a $\frac{d}{d-2}(d-1)^k$ cuando $d\to\infty$.

Figura 1.3.16: Ilustración del grafo estrella.

2. La cota no es para nada óptima para grafos de potencia P^k de caminos. Por ejemplo, si P tiene 2n+1 vértices, k=n y $d=k\geqslant 3$. Luego en el mejor de los casos con d=3, tenemos que

$$\left|P^k\right|=2n+1\ll 3\cdot 2^n.$$

O sea que la diferencia es exponencial.

Similarmente, podemos acotar el orden de G por abajo, si es que podemos controlar inferiormente δ y g. Definamos la cantidad para $d \in \mathbb{R}$ y $g \in \mathbb{N}$:

$$n_0(d,g) := egin{cases} 1 + d \sum_{i=0}^{r-1} (d-1)^i & ext{ si } g = 2r+1 ext{ es impar,} \ 2 \sum_{i=0}^{r-1} (d-1)^i & ext{ si } g = 2r ext{ es par.} \end{cases}$$

Teorema 1.3.7 (Versión débil). ¹ Sea G un grafo con $\delta(G) \ge d \ge 2$ y $g(G) \ge g \in \mathbb{N}$. Entonces

$$|G|\geqslant n_0(d,g).$$

En particular, $|G| \ge n_0(d(G)/2,g)$.

Demostración. Notar que la función es creciente en ambas variables para todo $d \ge 2$ y $g \in \mathbb{N}$. Con lo cual, basta probar la afirmación para $d = \delta(G)$ y g = g(G).

Sea v un vértice de un ciclo C de largo mínimo, i.e. $\geq g$. Consideremos como D_i al conjunto de vértices a distancia i de v en G. Como antes, $|D_0|=1$, para cada vértice de D_{i+1} tiene un vecino en D_i si i>0; como cada vértice de D_i tiene un vecino

¹La versión fuerte de este teorema, por Alon, Hoory and Linial, 2002, dice que si $d(G) \ge d \ge 2$ y $g(G) \ge g \in \mathbb{N}$, entonces $|G| \ge n_0(d,g)$.

en D_{i-1} , se sigue que $|D_{i+1}| \ge (d-1)|D_i|$ si i < r, ya que de lo contrario existiría un ciclo de longitud más chica que r. Reiterando recursivamente esta igualdad, se sigue que $|D_{i+1}| \ge (d-1)^i |D_1|$ para todo i < r

Luego como

$$G = \sqcup_i D_i \supset \sqcup_{0 \leqslant i \leqslant r} D_i$$

se sigue que

Caso g = 2r + 1

$$|G|\geqslant \sum_{0\leqslant i\leqslant r}|D_i|=1+\sum_{i=0}^{r-1}|D_{i+1}|\geqslant 1+\sum_{i=0}^{r-1}(d-1)^i\,|D_1|\geqslant 1+\sum_{i=0}^{r-1}(d-1)^id.$$

Caso g = 2r Analogo.

La última afirmación vale, pues sea $d=d(G)/2=\epsilon(G)$, luego por la Proposición $\ref{eq:constraint}$, existe un subgrafo H de G tal que $\delta(G)>d$, y por lo tanto aplicando este teorema a H se tiene que $|G|\geqslant |H|\geqslant n_0(\delta(H),g(H))$, pero como $\delta(H)>d$ y $g(H)\geqslant g(G)=g$, y n_0 es creciente en ambas variables, se sigue que $|G|\geqslant n_0(d,g)$.

Corolario 1.3.8. Si $\delta(G) \geqslant 3$, entonces $g(G) < 2\log_2|G|$.

Demostración. Tomamos g = g(G). Si es par, entonces

$$n_0(3,g) = 2rac{2^{g/2}-1}{2-1} = 2^{g/2} + (2^{g/2}-2) > 2^{g/2}.$$

Si g es impar, entonces

$$n_0(3,g) = 1 + 3 \frac{2^{(g-1)/2} - 1}{2 - 1} = \frac{3}{\sqrt{2}} 2^{g/2} - 2 > 2^{g/2}.$$

Luego por el teorema anterior el resultado se sigue luego de tomar logarítmo en base 2.

Proposición 1.3.9. Todo grafo G que contiene al menos un ciclo, satisface

$$g(G) \leq 2 \operatorname{diam}(G) + 1.$$

Demostración. Supongamos que no. Es decir, si C es el ciclo de G con menor longitud, se tiene que $||C|| = g(G) \ge 2 \operatorname{diam}(G) + 2$. Es decir, existen dos vértices de C, digamos x,y tales que su distancia en C es mayor o igual a $\operatorname{diam}(G) + 1$. En G, estos vértices están a distancia menor que $\operatorname{diam}(G) + 1$, sea P el camino mas corto en G que une a x,y (i.e. tiene longitud $< \operatorname{diam}(G) + 1$), luego P no es subgrafo de G. Con lo cual, existe un subcamino de P que es un C-camino; luego este camino unión el x-y camino más corto de C es un ciclo de longitud más chica que la de C, absurdo. □

1.3.1. Conexidad

Definición 1.3.10. Un grafo es **conexo** si es no vacío y para todo par de vértices, existe un camino que los une a ambos.

Proposición 1.3.11. Los vértices de un grafo conexo G se pueden enumerar, digamos $v_1, v_2, ..., v_n$ tal que $G_i = G[v_1, v_2, ..., v_i]$ es conexo para todo i = 1, ..., n.

Demostración. Probaremos la proposición por inducción en n. Sea v arbitrario, y asumamos por inducción que v_1, \ldots, v_i han sido escogidos para i < |V(G)| y que G_i es conexo

Escojo un vértice v no enumerado aún. Como G es conexo existe un camino P entre $v_1 \ge v$.

Figura 1.3.17: Camino P que une a v y v_1 . En color azul representa los vértice de G_i en P.

Tomamos como v_{i+1} al último vértice en P, contado desde v, que no está en G_i . Como v_{i+1} tiene vecino en G_i y G_i es conexo se tiene que G_{i+1} es conexo.

Ejemplo 1.3.12. El siguiente dibujo es un mal ejemplo:

Figura 1.3.18: Mal ejemplo, pues 0 y 2 no inducen un grafo conexo G[0,2].

1.4. Clase 4: 23/03/23

Definición 1.4.1 (Maximalidad). Consideremos una propiedad P, para para algún grafo, conjunto de vértices, etc. Decimos que un conjunto de vértices U es maximal para P, si U cumple P, y $U \cup \{v\}$ con $v \notin U$ no cumple P.

Figura 1.4.19: Ejemplo de camino maximal: 0,1,2,3,5,6,7,8. Sin embargo, 5,7,8 no lo es.

Definición 1.4.2. Sea G = (V, E) un grafo. Un subgrafo conexo maximal de G es llamado una **componente** o **componente conexa** de G.

Figura 1.4.20: Ejemplo de componentes: tiene 3.

Notación 1.4.3. Sea G = (V, E) un grafo. Vamos a notar a la cantidad de arisstas por vértice como la cantidad:

$$\epsilon(G) = \frac{|E|}{|V|}.$$

Teorema 1.4.4. Sea $k \in \mathbb{N}$. Todo grafo G con $d(G) \geqslant 4k$ tiene un subgrafo H que es (k-1)-conexo tal que $\varepsilon(H) > \varepsilon(G) - k$.

Demostración. Notemos por $\gamma = \epsilon(G)$; como $\gamma = \frac{1}{2}d(G)$, tenemos que $\gamma \geqslant 2k$. Consideremos los subgrafos $G' \subset G$ tales que

$$|G'| \geqslant 2k$$
 y $||G'|| > \gamma(|G'| - k);$

esta familia es no vacía, pues G cumple esta condición; notemos por H al subgrafo de menor orden que cumple esta condición. En efecto, G cumple ambas condiciones, pues por un lado $||G|| > \gamma(|G|-k) = ||G|| - \gamma k$, y por otro lado

$$\Delta(G) \geqslant d(G) \geqslant 4k$$
,

con lo cual existe un vértice de G de grado máximo, con al menos 4k vecinos, es decir $|G|\geqslant 4k+1\geqslant 2k$.

Notar que ningún grafo G' que cumpla la condición tiene orden exactamente 2k, ya que esto implicaría que $||G'|| > \gamma k \geqslant 2k^2 > {|G'| \choose 2} = k(2k-1)$, lo cual contradice la cantidad máxima de aristas que puede tener un grafo de |G'| vértices. Por minimalidad de H, se tiene que $\delta(H) > \gamma$: de lo contrario podríamos eliminar un vértice de grado a lo más γ y obtener un grafo $G' \subsetneq H$ que satisface la condición. En particular, como existe un vértice de grado $> \gamma$, se sigue que $|H| \geqslant \gamma$. Ddividiendo la desigualdad $||H|| > \gamma |H| - \gamma k$ de la c ondición por |H|, tenemos que $\epsilon(H) > \gamma - k$, como queríamos.

Falta ver que H es efectivamente (k+1)-conexo. De lo contrario, H tendría una separación propia $\{U_1,U_2\}$ de orden a lo más k; escribamos $H[U_i]=:H_i$. Como todo vértice $v\in U_1\backslash U_2$ tiene $d(v)\geqslant \delta(H)>\gamma$ vecínos de H en H_1 , tenemos que $|H_1|\geqslant \gamma\geqslant 2k$. Similarmente, $|H_2|\geqslant 2k$. Por la minimalidad de H, ninguno de los H_1,H_2 puede satisfaced la condición, con lo cual

$$||H_i|| \leqslant \gamma(|H_i|-k), \quad i=1,2.$$

Sin embargo, tenemos que

$$egin{aligned} ||H|| &\leqslant ||H_1|| + ||H_2|| \ &\leqslant \gamma(|H_1| + |H_2| - 2k) = \gamma(|H| + |H_1 \cap H_2| - 2k) \ &\leqslant \gamma(|H| - k) \quad (ext{pues } |H_1 \cap H_2| \leqslant k), \end{aligned}$$

contradiciendo la condición.

1.4.1. Árboles y bosques

Definición 1.4.5. Un grafo acíclico, es decir, sin ciclos, es llamado un **bosque**. A un bosque conexo lo llamamos **árbol**, es decir un grafo conexo y acíclico. Los vértices de grado 1 son sus **hojas**, los otros vértices son sus **vértices interiores**.

Notar que las componentes conexas de un bosque son árboles.

Observación 1.4.6. Los subgrafos conexos de un árbol son árboles.

Figura 1.4.21: Un árbol con hojas y vértices interiores.

Ejercicio 1.4.7. Todo árbol tiene al menos 1 hoja. Más aún, si el árbol tiene más de un vértice entonces tiene al menos 2 hojas. En particular los árboles tienen grado mínimo $\delta = 1$.

Solución. Sea P un camino maximal en el árbol, y miro uno de los extremos (podría haber solo uno si el camino tiene un solo vértice). Ese extremo si tuviera grado $\geqslant 2$, el otro vecino debería caer en el camino por maximalidad, luego existe un ciclo, absurdo!. Más aún, si el árbol tiene más de un vértice entonces el camino maximal que tomamos tiene dos vértices, i.e. dos hojas.

Esto implica lo mismo para caminos, pues los caminos son árboles.

Teorema 1.4.8. Sea T un grafo. Las siguientes definiciones son equivalentes:

- (I) T es árbol.
- (II) Cada par de vértices en T están unidos por un único camino.
- (III) T es conexo, pero $T \setminus e$ es disconexo para todo $e \in E(T)$. Es decir, es minimalmente conexo.
- (IV) T es conexo, pero $T \setminus v$ es disconexo para todo $v \in V(T)$ que no sea hoja.
- (V) T es acíclico, pero $T \cup xy$ tiene un ciclo para cualquier par de vértices x, y no adyacentes. Es decir, es maximalmente acíclico.

Demostración.

- (i) \Rightarrow (ii) Si no, existe al menos un camino por ser conexo, luego si hay dos caminos distintos entonces podemos construir un ciclo.
- (ii) \Rightarrow (iii) Sea e una arista entre xy, entonces xy es un camino entre esos vértices, por hipótesis es el único, luego al quitarlo debe quedar disconexo, de lo contrario es que había otro camino.
- (iii) \Rightarrow (iv) Como v no es una hoja, es vecino de al menos dos vértices distintos, dicamos a,b. Si todo camino entre a y b pasa por v, entonces quitar este vértice haría que T fuera disconexo. Supongamos que existe un camino que une a,b pero que no contiene a v. Luego si quitamos la arista av o vb el grafo sigue siendo conexo, pues tenemos un ciclo avb, absurdo.
- (iv) \Rightarrow (v) T es acíclico, pues de lo contrario podríamos podríamos quitar un vértice y que siga quedando conexo. En efeco, sea C un ciclo en T, digamos con vértices $x_0, x_1, \ldots, x_n, x_0$ y $n \geqslant 2$. Si quitamos cualquier vértice v de C, este queda conexo, pero veamos que T también. De lo contrario, es que v separa a v en dos componentes conexas, es decir, todos los caminos entre v0 y v1 pasan por v2, con lo cual tomando otro vértice de v2 que no sea v3 y quitándolo, nos quedaría que v3 menos ese punto ex conexo, absurdo.

Sean x, y no advacentes. Consideremos P un camino entre x, y. Como no son advacentes este camino necesariamente tiene al menos un vértice en intermedio, digamos z. Por hipótesis, si quitamos z el grafo nos queda disconexo, y esto lo podemos hacer para cualquier $z \neq x, y$ en P. Con lo cual, $P \cup xy$ es un ciclo en $T \cup xy$.

(v) \Rightarrow (i) Por hipótesis, T es acíclico. Sean $x, y \in V(G)$. Por hipótesis tenemos que $T \cup xy$ tiene un cíclo C_{xy} , luego C_{xy} debe contener la arista xy pues T es acíclico. Entonces $C_{xy} \setminus xy$ conecta a xy. Como x, y eran arbitrarios, tenemos que T es conexo.

Definición 1.4.9. Sea G un grafo. Un **árbol generador** de G es un subgrafo de G que es árbol y que contiene a todos los vértices de G.

21

Figura 1.4.22: Ejemplo: árbol generador, con aristas en rojo.

Observación 1.4.10. Del dibujo anterior podemos ver que el árbol generador no necesariamente es único, y de hecho, puede haber otro que no sea isomorfo. Por ejemplo cambiemos los vértices del árbol en rojo, de manera que ya no tenga vértices de grado 3:

Figura 1.4.23: Otro árbol generador.

Proposición 1.4.11. Todo grafo conexo tiene un árbol generador.

Demostración. Tomemos un subgrafo minimalmente conexo H, que contenga a todo V(G). Por (iii) del teorema anterior tenemos que H es un árbol. También se puede usar el ítem (v), aplicado a un subgrafo acíclico maximal.

Observación 1.4.12. Esta demostración nos da un álgoritmo para construir el árbol generador de un grafo: quitamos aristas hasta que nos quede minimalmente conexo.

Definición 1.4.13. Si T es un árbol generador de un grafo G, las aristas en $E(G)\backslash E(T)$ son las **cuerdas** de T en G.

Proposición 1.4.14. Los vértices de un árbol T pueden ser enumerados, digamos $v_1, v_2, ..., v_n$ de manera que para todo $i \ge 2$, v_i es hoja en $T[v_1, ..., v_i]$ (que es árbol también).

Demostración. Por la Proposición 1.3.11 existe una enumeración v_1, \ldots, v_n tal que $T[v_1, \ldots, v_i]$ es conexo para todo $i \ge 1$. Inspeccionando la demostración, se puede ver que esta construcción sirve. En efecto, sabemos que v_{i+1} tiene un vecino en $G[v_1, \ldots, v_i]$, llamemosló x, si tuviera otro llamado y, entonces $G[v_1, \ldots, v_i]$ contiene un camino P_{xy} entre ellos, que junto con $xv_{i+1}y$ nos forma un cíclo, absurdo.

Figura 1.4.24: Ver dibujo.

1.5. Clase 5: 27/03/23

Corolario 1.5.1. Un grafo de n vértices conexo es un árbol si y solo si tiene n-1 aristas.

 $Demostraci\'on. \Rightarrow$) Supongamos que T es árbol; en particular es conexo. Por la proposición anterior, existe una enumeración $v_1, v_2, ..., v_n$ tal que para todo $i \geqslant 1$, el grafo $T[v_1, ..., v_i]$ tiene i-1 aristas por inducción.

 \Leftarrow) Como T es conexo tiene árbol generador T', y por la implicación anterior tiene n-1 aristas, entonces T=T', i.e. T es árbol.

Corolario 1.5.2. Todo grafo conexo de n vértices tiene al menos n-1 aristas.

Demostración. Tiene un árbol generador, que debe tener n-1 aristas.

Corolario 1.5.3. Si T es un arbol y G es un grafo con $\delta(G) \ge |T| - 1$, entonces $T \subset G$, es decir G tiene un subgrafo isomorfo a T.

Demostración. Sea v_1,\ldots,v_n con n=|T|, una numeración de los vértices de T tal que $v_i,i\geqslant 2$ es una hoja de $T[v_1,\ldots,v_{i-1}]$. Haremos inducción en estos vértices. El caso base es trivial. Veamos el paso inductivo: supongamos que G tiene a $T[v_1,\ldots,v_{i-1}]$ como subgrafo con $i\leqslant n$, entonces como $\delta(G)\geqslant n-1$, tenemos que $v_j,1\leqslant j\leqslant i-1$ (el único vecino de v_i) tiene al menos $\delta(G)\geqslant n-1$ vecinos en G, es decir, tiene un vecino que no está en $T[v_1,\ldots,v_{i-1}]$, luego agregamos a ese vértice como v_i junto con la arista que le corresponde a v_i .

De véz en cuando, es útil fijar un vértice r de un árbol T, que llamaremos **raíz**. Un árbol con una raíz fija, se denomina **árbol enraigado** (o en inglés, **rooted tree**). Recordemos que para todo $y \in V(T)$, existe un único camino entre r e y que denotaremos rTy; esto induce un orden parcial $x \le y$ si y solo si $x \in rTy$. Este orden en V(T) se lo llama el **orden del árbol** asosciado a T y r. Definimos los conjuntos:

$$[y] := \{x \mid x \leqslant y\}$$
 y $[x] := \{y \mid y \geqslant x\}$

la **clausura inferior** de y, y la **clausura superior** de x, respectivamente. En general, definimos $[X] := \bigcup_{x \in X} [x]$ y análogamente [X], para un conjunto $X \subset V(T)$. Un conjunto X que coincide con [X], se dice **cerrado inferiormente**, análogamente en el otro caso tenemos que es **cerrado superiormente**.

Notar que r es el mínimo en este orden, y todas las hojas de T son maximales. Los extremos de una arista son siempre comparables entre sí, y los elementos de una clausura inferior forman una cadena (i.e. son comparables entre sí), sin embargo los elementos de una clausura superior no tienen por qué formar una cadena. Decimos que los vértice a distancia k de r tienen **altura** k y el conjunto de estos vértices forma el k-ésimo **nivel** de T.

Un árbol enraigado T contenido en un grafo G se dice **normal** en G, si los extremos de todo T-camino en G son comparables en el orden de T. Si T genera G, esto equivale a pedir que dos vértices de T sean comparables siempre que sean adyacentes en G; ver la siguiente figura:

Figura 1.5.25: Un árbol generador normal con raíz r de un grafo G.

Un arbol normal puede ser una herramienta realmente útil para examinar la estructura de su grafo subyacente, ya que este grafo refleja las propiedades de separación de T:

Lema 1.5.4. Sea T un árbol normal en G. Tenemos que:

- (I) Dados $x, y \in V(T)$, están separados en G por el conjunto $[x] \cap [y]$.
- (II) Supongamos que T genera G. Si $S \subset V(T) = V(G)$ y S es inferiormente cerrado, luego las componentes conexas de $G \setminus S$ están generadas por los conjuntos |x| con x minimal en $T \setminus S$.
- Demostración. (I) Sea P cualquier camino entre x,y en G; veamos que P interseca $[x] \cap [y]$. Sea t_1,\ldots,t_n una sucesión de vértices en $P \cap T$, minimal con la propiedad que $t_1 = x$ y $t_n = y$ y t_i,t_{i+1} son comparables en el orden del árbol T para todo i. Dicha sucesión existe, pues el conjunto de todos los vértices en $P \cap T$, con el orden natural inducido por P, tiene esta propiedad, ya que como T es normal todo segmento t_iPt_{i+1} es una arista de T o un T-camino. En nuestra secuencia minimal no podemos tener $t_{i-1} < t_i > t_{i+1}$ para ningún i, pues t_{i-1},t_{i+1} son comparables y podríamos eliminar a t_i de nuestra secuencia, obteniendo así una secuencia más chica. Entonces nuestra secuencia tiene la forma

$$x = t_1 > ... > t_k < ... < t_n = y$$

(se podrían retirar los elementos en el "medio"). Así, $t_k \in [x] \cap [y] \cap V(P)$.

(II) Consideremos una componente C de $G \setminus S$, y tomemos x un elemento minimal (T genera G) de V(G). Afirmamos que x es único, en efecto, si x' fuera otro, ambos serian no comparables entre sí, pero por el ítem (i), cualquier camino entre x, x' contiene un vértice más chico que ambos, contradiciendo minimalidad en C. Por lo tanto todo vértice de C yace arriba de x: nuevamente por el ítem (i) hay un vértice debajo de ambos que por minimalidad es x. Recíprocamente, todo vértice $y \in [x]$ está en C, pues como S es cerrado inferiormente, el camino creciente xTy yace en $T \setminus S$. Consecuentemente, V(C) = |x|.

Ahora veamos que x es minimal no solo en V(C), sino también en $T \setminus S$. Los vérticces por debajo de x forman una cadena [t] en T. Como t es vecino de x en T, la maximalidad de C como componente conexa de $G \setminus S$ implica que $t \in S$, y por lo tanto $[t] \subset S$ porque S es cerrado inferiormente. Esto completa la demostración de que toda componente de $G \setminus S$ está generada por un conjunto [x] con x minimal en $T \setminus S$.

Recíprocamente, si x es un elemento minimal en $T \setminus S$, claramente también es minimal en la componente C de $G \setminus S$ que lo contiene. Eso significa que V(C) = |x|.

Proposición 1.5.5. Todo grafo conexo contiene un árbol generado normal, con el orden inducido por cualquier vértice como raíz.

Demostración. Sea G un grafo conexo y $r \in G$ un vértice fijo. Sea T un árbol normal maximal con raíz r, veamos que V(T) = V(G), i.e. genera G..

Supongamos por el absurdo que no, y sea C una componente conexa de $G \setminus T$. Como T es normal, la vecindad $N_G(C)$ (que está contenida en T) es una cadena en T, obviamente porque C permite construir T-caminos entre cualquier par de vértices de $N_G(C)$. Sea x su máximo elemento (recordemos que estamos en una cadena), y sea $y \in C$ adyacente a x. Sea T' el arbol obtenido de T agregando la arista yx; el orden de árbol de T' extiende al de T. Veamos que T' también es normal en G, contradiciendo maximalida.

Sea P un T'-camino en G. Si sus extremos están en T, luego son comparables con el orden de T, y por lo tanto por el de T' también, ya que P es un T-camino también porque $T \subset T'$ y T es normal. Si alguno de los extremos de P fuera y, tenemos que $P \subset C$ salvo por su otro extremo z, que yace en $N_G(C)$. Como x era máximo, tenemos que $z \leqslant x$. Luego z,y serán comparables si vemos que x < y, es decir que $x \in TT'y$. Lo cual es claro ya que y es una hoja de T' con vecinon x.

1.5.1. Grafos bipartitos

Definición 1.5.6. Sea $r \ge 2$ entero. Decimos que un grafo G = (V, E) es r-partito si podemos particionar a V en r partes tal que cada arista tiene sus extremos en partes distintas. Es decir, cada parte es un conjunto independiente.

2-partito es bipartito, 3-partito es tripartito, etc.

26

Figura 1.5.26: Ejemplo de grafo 3-partito, 4-partito y 5-partito, pero no 2-partito porque siempre existirian dos vértices del triangulo amarillo en la misma partición, pero eso es imposible porque son adyacentes. Se ilustran dos triparticiones distintas: A,B,C y por otro lado rojo, azul, verde.

Figura 1.5.27: Ejemplo de grafo 2-partito.

Definición 1.5.7. Un grafo r-partito G, donde cada par de vértices de partes distintas son adyacentes, decimos que G es r-partito completo.

Un grafo r-partito completo con partes de tamaño n_1, n_2, \ldots, n_r se denota $K_{n_1, n_2, \ldots, n_r}$.

Figura 1.5.28: Ejemplo de grafo 3-partito completo.

Observación 1.5.8. Un grafo $K_{1,n}$ es una estrella.

Figura 1.5.29: $K_{1,5}$

Observación 1.5.9. Si G es bipartito, entonces no tiene ciclos impares.

Demostración. Sea $C=C_{2k+1}$ con $k\geqslant 1$ un subciclo de longitud 2k+1 de G. Si G fuera bipartito, entonces C también. En efecto, numerando $C:x_0,x_1,\ldots,x_{2k},x_0$, ser bipartito equivale a que existe una función $\rho:x_i\mapsto 0,1\in\{0,1\}$ tal que $\rho(x)\neq\rho(y)$ para todo par de vértices adyacentes $x,y\in C$. Sin pérdida de generalidad $\rho(x_0)=0$. Pero como x_i y x_{i+1} son siempre adyacentes, debe ser que $\rho(x_0)=0, \rho(x_1)=1,\ldots,\rho(x_i)=i$ mód 2 (lo podemos probar recursivamente). Con lo cual, $\rho(x_{2k})=0=\rho(x_0)$, lo cual es absurdo porque x_{2k} y x_0 son adyacentes.

Figura 1.5.30: Como se ilustra en el dibujo, no podemos 2-particionar a C_7 , C_5 ni C_3 . Pues siempre que pintamos con dos colores quedan dos vértices adyacentes.

Teorema 1.5.10. *Un grafo es bipartito si y solo si no tiene ciclos impares.*

Demostraci'on. La observaci\'on anterior prueba la necesidad. Veamos la suficiencia. Sea G un grafo sin ciclos impares. Podemos asumir sin pérdida de generalidad que es conexo. Sea T un árbol generador, r un vértice de G que llamaremos raíz (de T). Para $v \in V(G)$ denotamos por rTv al único camino entre r y v en T (por la caracterización de árboles). Por último, si $w,v \in V(G)$, entonces decimos que $w \leqslant v$, si $w \in rTv$.

Definimos la partición de G: los vértices v tales que rTv tiene largo par, y por otro lado los vértices v tales que rTv tiene largo impar. Veamos que en efecto esto es una partición, i.e., no hay vértices adyacentes en la misma partición. Sea e = xy una arista de G.

- CASO 1: Si $e \in E(T)$, tendremos x < y o y < x, pero nunca igualdad. Más aún, $||rTx|| = ||rTy|| \pm 1$, i.e. tienen paridades distintas.
- CASO 2: Si $e \notin E(T)$, entonces rTx, rTy y e forman un ciclo (por la caracterización de árbol). Por la hipótesis, el ciclo es par. Esto implica que ||rTx|| y ||rTy|| tienen distinta paridad:

Figura 1.5.31: Ilustración de este hecho.

Corolario 1.5.11. Los árboles y los bosques son bipartitos.

1.5.2. Paseos Eulerianos

Viajamos a Prusia, siglo XVIII, a la ciudad de Königsberg.

Figura 1.5.32: Los siete puentes de Königsberg.

La gente de la ciudad se preguntaba si se podía partir de un punto $x \in A$ o B de la ciudad, cruzar cada puente exactamente una sola vez y volver a x. Euler se propuso a responder la pregunta.

Podemos modelar el problema como un *multi*grafo (i.e. dos vértices pueden estar unidos por más de una arista):

Figura 1.5.33: Multigrafo de los puentes de Königsberg.

Definición 1.5.12. Un **paseo** en un multigrafo, es una secuencia de vértices x_0, x_1, \ldots , tal que $x_i x_{i+1}$ es arista para todo $i \ge 0$, y ninguna de estas aristas se repite.

Un **paseo cerrado** comienza y termina en el mismo vértice.

Un paseo es **Euleriano** si es cerrado y recorre todas las aristas del multigrafo.

Un grafo Euleriano, es un multigrafo que contiene un paseo Euleriano.

Teorema 1.5.13. Un multigrafo conexo es Euleriano si y solo si todos sus vértices tienen grado par.

Veremos la demostración la clase siguiente.

1.6. Clase 6: 30/03/23

Teorema 1.6.1. Un multigrafo conexo es Euleriano si y solo si todos sus vértices tienen grado par.

Demostración.

- \Rightarrow) Asumimos que G tiene un paseo Euleriano P. Cada vez que el paseo "entra" en una vértice, lo hace por medio de una arista, y debe salir por otra. Cada vez que v a parece en P se utilizan otras dos aristas incidentes en v. Como se ocupan todas esas aristas, d(v) es par.
- \Leftarrow) Supongamos que todos los grados son pares. Haremos inducción en ||G||. El caso base es ||G|| = 2 que claramente tiene un paseo Euleriano:

Figura 1.6.34: ||G|| = 2.

Supongamos que ||G|| > 2. Cuando todos los grados son pares, puedo encontrar un paseo cerrado no trivial. Tomemos como P el de largo máximo, y sea F su conjunto de aristas. Si F es todo, la demostración está terminada. Luego supongamos que no. Sea $G \setminus F = G'$, tiene una arista e que incide en un vértice de P, pues G es conexo. Sea C la componente de G' que contiene a e. Todo vértice de G, posee un número par de aristas incidentes en F, luego la cantidad de aristas en G' sigue siendo par. Aplicando la hipótesis inductiva, podemos encontrar un paseo Euleriano en C, llamémoslo P'. Como P y P' unidos son un paseo cerrado más grande que P, llegamos a un absurdo.

Figura 1.6.35: Esta es una ilustración de lo que podría suceder: P: 0,1,2,3,5,6,7,8,4,0 es el camino negro y C es el grafo conexo.

1.6.1. Conexidad

Definición 1.6.2. Decimos que un conjunto X de vértices o aristas **separa** a $u, v \in V$ si $u, v \notin X$ y todo camino entre u y v tiene un elemento de X.

Si X separa un par de vértices, decimos que es **separador** (de u,v). Si un vértice solo, i.e. X es un singleton, es separador, decimos que es un **vértice de corte**. Un pequeño abuso de notación será simplemente referirnos a ese vértice en lugar del conjunto que lo contiene.

Análogamente, una arista sola $X=\{e\}$ que separa sus vértices se dice **puente**. Un pequeño abuso de notación será simplemente referirnos a ese vértice en lugar del conjunto que lo contiene.

Figura 1.6.36: Ejemplo: $X = \{4, 5, 7, 8, 9\}$ separa a u = 3, v = 6. También $Y = \{e_1, e_2\}$ e $Y' = \{e_3, e_4\}$ son separadores de u, v. La arista e = (6, 10) es un puente.

Definición 1.6.3. Para $k \ge 0$ decimos que G = (V, E) es k-conexo si |V| > k y $G \setminus X$ es conexo para todo $X \subset V$ con |X| < k. Es decir, ningún conjunto de menos de k-vértices separa.

Ejemplo 1.6.4. • 0-conexo: Todo grafo no vacío.

• 1-conexo: grafos conexos no triviales (tiene que tener al menos una arista).

Definición 1.6.5. La **conexidad**, $\mathcal{K}(G)$ de G, es el máximo $k \ge 0$ tal que G es k-conexo.

Ejemplo 1.6.6. • $\mathcal{K}(G) = 0$: Todo grafo disconexo no vacío o K_1 .

•
$$\mathcal{K}(K_n) = n - 1, \forall n \geqslant 1.$$

Definición 1.6.7. Sea G no vacío y sea $\ell \ge 1$. Decimos que G es ℓ -arista conexo, si $G \setminus F$ es conexo para todo $F \subset E$ con $||F|| < \ell$.

Ejemplo 1.6.8. 1-arista conexo: los grafos conexos no vacíos.

Definición 1.6.9. La **arista conexidad**, $\lambda(G)$ de G, es el máximo ℓ tal que G es ℓ -arista conexo.

Figura 1.6.37: Ejemplo de grafo que tiene $\mathcal{K}=4, \lambda=4.$

Ejemplo 1.6.10. $\lambda(K_n) = n - 1, \forall n \ge 1.$. Con lo cual, por el Ejemplo 1.6.6 tenemos que

$$\lambda(K_n) = \mathcal{K}(K_n).$$

Ejercicio 1.6.11. Calcular \mathcal{K} y λ del siguiente grafo G:

Figura 1.6.38: Grafo G.

Solución. Si quitamos los vértices 4,5 entonces nos queda G disconexo, luego $\mathcal{K}(G)$ < 3. Si quito cualquier vértice, entonces el grafo sigue siendo conexo, luego es 2-conexo, i.e. $\mathcal{K}(G) \geqslant 2$. Luego $\mathcal{K}(G) = 2$.

En el anterior ejemplo teníamos $\lambda=4$ en cada triángulo azul, y como sacar 3 aristas incidentes a 4,5 no evita que G siga siendo conexo, tenemos que G es 4-

arista conexo, i.e. $\lambda(G) \geqslant 4$. Por otro lado, si quitamos las 4 aristas incidentes en el vértice 1, queda el aislado del resto del grafo, i.e. $\lambda(G) < 5$. Luego $\lambda(G) = 4$.

1.7. Clase 7: 03/04/23

Proposición 1.7.1. Si G es no trivial, entonces $\mathcal{K}(G) \leq \lambda(G) \leq \delta(G)$

Demostración. La segunda desigualdad se tiene porque todas las aristas incidentes en un vértice fijo separan a G.

Veamos ahora la primera desigualdad. Sea F un conjunto de aristas que separa a G, con $|F| = \lambda(G)$, tal que $G \setminus F$ es disconexo. Observación: F es un conjunto de aristas minimal con la propiedad de ser separador.

CASO 1: Existe $v \in V(G)$ que no incide en F. Sea C la componente conexa que contiene a v en $G \setminus F$. No puede haber una arista f de F con extremos en C, pues de lo contrario $F \setminus \{f\}$ sería un conjunto más chico tal que es separador, lo cual contradice la minimalidad de F.

Figura 1.7.39: Ilustración de ${\it C}$, donde las aristas violeta corresponden a aristas de ${\it F}$.

Luego, si quitamos los vértices de las aristas de F incidentes en C, las cuales solo comparten un vértice de C, nos queda que v estaría separado del resto del grafo. Esta cantidad de vértices es a lo sumo $|F|=\lambda(G)$. Con lo cual $\mathcal{K}(G)\leqslant |F|=\lambda(G)$.

CASO 2: Todo $v \in V(G)$ incide en F. Fijemos $v \in V(G)$ y C la componente conexa de $G \setminus F$ que lo contiene. Consideremos $N_G(v)$, los vecinos de v. Cada $w \in N_G(v)$ incide en una arista de F.

Figura 1.7.40: Ilustración de lo que sucede: los vecinos de v inciden en una arista de F.

Entonces $d_G(v) \leqslant |F| = \lambda(G)$. Por lo tanto, salvo que $V(G) = \{v\} \cup N_G(v)$, tenemos que $N_G(v)$ separa a v del resto del grafo, y salvo ese caso tendríamos que $\mathcal{K}(G) \leqslant |N_G(v)| \leqslant \lambda(G)$. Pero v era arbitrario, entonces en el peor de todos los casos, tenemos que $V(G) = \{v\} \cup N_G(v)$ para todo $v \in G$, i.e. G es un grafo completo. Pero en este caso vale la igualdad por el Ejemplo 1.6.10.

1.7.1. Grafos 2-conexos

Definición 1.7.2. Sea H un grafo. Decimos que un camino P es un H-camino si es no trivial (tiene al menos una arista) e interseca a H exactamente en sus extremos (P no tiene ni vértices ni aristas en H, salvo por sus extremos).

Figura 1.7.41: Ejemplo de H-camino P de un grafo H. Notar que en el dibujo consideramos a los vértices 0.5 como extremos de P.

Los ciclos son los grafos 2-conexos más elementales. Veamos que todos los demás se pueden construir a partir de ellos.

Figura 1.7.42: Ejemplos de ciclos: C_7, C_6, C_5, C_4 y C_3 .

Proposición 1.7.3. Un grafo es 2-conexo si y solo si se puede construir a partir de un ciclo añadiendo sucesivamente H-caminos a grafos H ya construidos.

Comentario 1.7.4. Es decir, si H_0 es un ciclo, le agregamos un H_0 -camino, y a la unión la llamamos H_1 , el cual es 2-conexo, si quisieramos podemos agregar un H_1 -camino y seguiría siendo 2-conexo, etc.

Figura 1.7.43: Ilustración de un ciclo H_0 en negro, al que le agregamo H-caminos en el siguiente orden: H_0 -camino, H_1 -camino y por último H_2 -camino.

Demostración.

- (\Leftarrow) Claramente un grafo construido de esta manera no se puede separar por un solo vértice. Y por su puesto que tiene más de 2 vértices.
 - (⇒) Tomemos un grafo G, 2-conexo (en particular es también conexo). Como es 2-conexo, debe tener algún ciclo C, pues de lo contrario sería un árbol con al menos 3-vértices, y quitando un vértice que no es hoja nos quedaría separado. Nos fijamos si tiene un C-camino, si esto es así lo agregamos, y luego seguimos agregando hasta que no podamos más. Consideremos el subgrafo maximal H de G construido de esta manera a partir de G. Entonces toda arista $xy \in E(G) \setminus E(H)$ tal que $x,y \in V(H)$, es un G-camino, con lo cual no puede existir por maximalidad de G. Entonces todas las aristas de G que no están en G-tienen un extremo fuera de G-conexión existe un vértice G-G-conectándolo por un camino con G-conexión existe un vértice G-G-G-conexión existe G-conexión en G-conexió

Figura 1.7.44: Ilustración: H contiene a w, con una arista incidente de extremo v, que se extiende a un H-camino P.

1.8. Clase 8: 06/04/23

Todo grafo sin vértices aislados se puede particionar en subgrafos 1-conexos. Y podemos intentar lo mismo para subgrafos 2-conexos. Pero pueden ocurrir problemas, por ejemplo:

Figura 1.8.45: Ejemplo de problemas para particionar en subgrafos 2-conexos maximales. Las componentes 2-conexas del dibujo son sus ciclos que comparten vértices con otras estructuras como por ejemplo las dos aristas 12 y 23; o comparten aristas entre dos ciclos.

Como ilustra la figura de arriba, los subgrafos 2-conexos maximales no siempre

abarcan todo el grafo ni son siempre disjuntos. Veamos como se arregla: podemos simplificar la noción para poder abarcar todo el grafo.

Definición 1.8.1. Un **bloque** es un subgrafo conexo maximal sin vértices de corte.

En la figura anterior, los bloques del grafo con los ciclos y las aristas 12 y 23.

Observación 1.8.2. Es fácil ver que los bloques van a ser o subgrafos 2-conexos o una arista o un vértice.

Proposición 1.8.3. Los ciclos de un grafo son los ciclos de sus bloques.

Demostraci'on. Todo ciclo es 2-conexo, luego es conexo sin vértices de corte, y debe estar contenido en un subgrafo maximal con esta propiedad, i.e. un bloque.

Proposición 1.8.4. Sean $e, f \in E(G)$. Entonces pertenecen a un mismo bloque si y solo si pertenecen a un mismo ciclo.

Demostración. Si pertenecen al mismo ciclo, entonces por la proposición anterior están en el mismo bloque.

Recíprocamente, como e, f son dos aristas en un mismo bloque, puedo asumir que el bloque es un subgrafo 2-conexo (no es arista sola o vértice solo). La idea es la siguiente: este subgrafo 2-conexo se construye a partir de un ciclo uniendo H-caminos, luego no es difícil ver que las dos aristas están contenidas en un mismo ciclo.

Definición 1.8.5. El **grafo bloque** de un grafo G tiene un vértice por cada bloque y por cada vértice de corte de G; hay una arista entre dos vértices si una representa un bloque y si el otro representa un vértice de corte que está dentro del bloque.

Figura 1.8.46: Ejemplo: G (izquierda) tiene 5 bloques (denotados por letras mayúscula: A,B,C,D,E) y 2 puntos de corte (denotados por letras minúscula: a,b). Luego el grafo bloque (derecha) de G tiene 7 vértices.

Notar que en nuestro ejemplo, el grafo bloque es un árbol. Esto no es casualidad:

Ejercicio 1.8.6. El grafo bloque de un grafo conexo es un árbol.

Demostración. Notación: al grafo bloque de G lo denotamos por Block(G). A un subgrafo conexo sin vértices de corte maximal, i.e. un bloque, lo vamos a denotar con las letras mayusculas B, C, D. Y denotaremos con la misma letra al vértice que inducen en el grafo Block(G). A los vértices de corte los denotaremos por una letra minúscula como x, y, z, u, v, w y los denotaremos de la misma manera en el grafo

Block(G). Quedará claro dependiendo del contexto, a qué grafo pertenece cada vértice en esta notación. Haremos el abuso de notación y llamaremos bloque tanto al subgrafo de G como al vértice de Block(G). Análogamente, cuando digamos vértice de corte de Block(G) nos estamos refiriendo a un vértice que proviene de un vértice de corte de G.

Si G es conexo, luego Block(G) es conexo. Antes notemos que basta probar que entre dos blockes de Block(G) existe un camino, pues todo vértice de corte de Block(G) es adyacente a algún bloque en Block(G) por definición de grafo bloque. Sean B,B' dos bloques de Block(G), consideremos luego a partir de un B,B'-camino siempre podemos construir un camino que no puede entrara y salir de un bloque más de una vez, por conexión del bloque. Este camino nos induce un camino en Block(G) dado por $\tilde{P}:B_0v_0B_1v_1\cdots B_{r-1}v_{r-1}B_r$, donde cada bloque o vértice aparece en el orden en el cual el camino P se intersecó por primera véz con estos en G.

Ahora vevamos que Block(G) es aciclico. En efecto, supongamos que no, sea C un ciclo en Block(G). Como Block(G) es bipartito (particionamos entre vértices de corte y bloques), no tiene ciclos impares, luego C tiene al menos 4 vértices (pueden ser cortes o bloques). Con lo cual, existen dos bloques distintos B_1, B_2 y dos vértices de corte distintos v_1, v_2 tal que podemos escribir $C: B_1v_1B_2\cdots v_2B_1$. Pero esto quiere decir que hay otro B_1, B_2 -camino en G que no pasa por v_1 , es decir que v_1 no era vértice de corte, absurdo.

1.8.1. Contracciones y menores

Definición 1.8.7. Contraer una arista e = xy equivale a borrar x e y, y añadir un nuevo vértice v_{xy} advacente a todos los vértices que eran vecinos a x o y.

Figura 1.8.47: Ejemplo. Contraemos los vértices x, y y formamos v_{xy} .

Notación 1.8.8. Dado un grafo G y $e = xy \in E(G)$, notamos como G/e al grafo que se obtiene de G al contraer la arista e.

Definición 1.8.9. Decimos que H es un **menor** de G si se puede obtener H a partir de G al utilizar las siguientes operaciones:

1. Borrar vértices.

- 2. Borrar vértices y aristas.
- 3. Contraer aristas. O equivalentemente, contraer subgrafos conexos.

Ejemplo 1.8.10. Los subgrafos y contracciones de G son *menores* de G. No necesariamente vale la vuelta:

Figura 1.8.48: Ejemplo de menor H de G, que no es subgrafo porque tiene grado máximo $\Delta(H) = 5$. Pues H se obtiene luego de contraer las aristas de G

1.8.2. subdivisiones

Sea X un grafo fijo.

Definición 1.8.11. Llamamos **subdivisión** de X a cualquier grafo G que se obtiene de *subdividir* algunas aristas de X y dibujando encima nuevos vértices. Más precisamente, reemplazamos las aristas de X con nuevos caminos entre sus extremos, de manera que estos caminos no se intersecan entre si y tampoco intersecan a V(X) salvo en los extremos. Diremos que G es un TX.

Llamaremos a los vértices originales de X, vértices de ramificación de los de TX; a los nuevos vértices los llamaremos vértices subdivisores.

Si un grafo Y contiene a TX como subgrafo, diremos que X es una **menor to- pológica** de Y.

Notar que los vértices subdivisores tienen grado 2 y los vértices de ramificación no cambian de grado.

Figura 1.8.49: De izquierda a derecha, tenemos la construcción prograsia de X, luego le agregamos vértices subdivisores formando TX, y finalmente ilustramos un ejemplo de grafo Y con X como menor topológico.

Definición 1.8.12. Similarmente, reemplazando los vértices $x \in X$ con grafos conexos disjuntos G_x , y las aristas $xy \in X$ con conjuntos no vacíos de $G_x - G_y$ aristas, obtenemos un grafo que llamaremos IX. Recíprocamente, decimos que X se obtiene a partir de G contrayendo subgrafos G_x (y fusionando las $G_x - G_y$ aristas), y lo llamamos una **menor contraida** de G.

Si un grafo Y contiene un IX como subgrafo, decimos entonces que X es una **menor** de Y, llamamos a IX un **modelo** de X en Y, y denotamos $X \leq Y$

Figura 1.8.50: De izquierda a derecha, tenemos el grafo X, que se obtiene de contraer subgrafos de G; finalmente, el grafo Y tiene a X como menor y a G como modelo de X en Y

Por lo tanto, X es un menor de Y si y solo si existe una función $\varphi:S\subset V(Y)\to V(X)$ tal que para todo vértice $x\in X$ si preimagen $\varphi^{-1}(x)$ es conexa en Y y para toda arista $xx'\in E(X)$ existe una arista en Y entre conjuntos de ramificación $\varphi^{-1}(x), \varphi^{-1}(x')$. Si el dominio de φ es todo V(Y)=S, y si $xx'\in E(X)$ siempre que $x\neq x'$ e Y tiene una arista entre $\varphi^{-1}(x)$ y $\varphi^{-1}(x')$ (es decir Y es una IX), decimos que φ es una **contracción** de Y en X.

Proposición 1.8.13. La relación de menores $\leq y$ la relación de menores topológicos son ordenes parciales en la clase de grafos finitos. Es decir, son reflexivos, antisimétricos, y transitivos.

Si G es una IX, luego $P = \{G_x \mid x \in X\}$ es una partición de V(G), y notamos G/P := X. Si $U = G_x$ es el único conjunto de ramificación que no es un singleton, escribimos G/U := X, y notamos v_U al vértice $x \in X$ al que se contrae U, y pensamos al ressto de X como un subgrafo inducido de G. El caso más simple es cuando U contiene exactamente dos vértices que forman una arista e = U, aquí escribiremos G/e = X, el grafo que se obtiene de **contraer la arista** e.

Proposición 1.8.14. Sean X e Y grafos finitos. Entonces X es una menor de Y si y solo si existen grafos G_0, \ldots, G_n tales que $G_0 = Y$ y $G_n = X$, y además G_{i+1} se obtiene a partir de G_i borrando aristas, contrayendo aristas, o borrando vérticces.

Demostración. Estas tres últimas operaciones claramente producen una menor X, pues la relación de menor es transitiva. Recíprocamente, se puede hacer inducción en |Y| + ||Y||.

Finalmente, tenemos la siguiente relación entre menores y menores topológicos:

Proposición 1.8.15. (I) Todo TX es también un IX (ver la siguiente figura); por lo tanto, toda menor topológica de un grafo es su menor (ordinaria).

(II) $Si \ \Delta(X) \leq 3$, entonces todo IX contiene un TX; con lo cual, toda menor con grado máximo a lo sumo 3 de un grafo es también su menor topológico.

Demostración. Veamos solo (ii), el primer ítem es obvio. En efecto, IX es el grafo que se obtiene de X reemplazando cada vértice x de él por un subgrafo conexo G_x y cada arista por un conjunto de aristas no vacío, luego tomando una arista de ese conjunto, basta con escoger un vértice de G_x que tenga por cada vecino de x en X un camino distinto hacia cada arista incidente en G_x . Esto es posible: empezamos eligiendo de manera inocente al vértice que es extremo de una arista incidente con G_x , de este vértice, llamemosló x, tendríamos que contrar dos caminos disjuntos con extremo final, en el peor de los casos pues $\Delta(X) \leq 3$, en otras dos aristas de X; ahora si no se cruzan ya ganamos, de lo contrario se fusionan a partir de un momento, incluso varias veces, pero luego movemos nuestro vértice x a la última véz que se fusionan los caminos, y llamemosló x':

Figura 1.8.51: Ilustración de cómo se ven dos caminos, ambos de color amarillo pero uno más claro que el otro, que salen de nuestro vértice x y tienen que llegar a las aristas incidentes en G_x . Al final movemos nuestro vértice a x'.

Figura 1.8.52: Ejemplo: Una subdivisión de K^4 visto como IK^4 .

Ahora que conocemos todas las relaciones standard entre grafos, podemos definir lo qu esignifica embeber a un grafo en otro.

Definición 1.8.16. Básicamente, una **inmersión** (o **embedding** en inglés) de H en G es un mapa inyectivo $\varphi:V(H)\to V(G)$ tal que preserva la estructura en la que estamos interesados. Con lo cual, φ embebe a H en G c omo un subgrafo si preserva la adyacencia entre vértices, y como subgrafo inducido si preserva tanto la adyacencia como la no adyacencia. Si φ está definido también en E(H) como en V(H) y manda xy en caminos independientes de G entre $\varphi(x)$ y $\varphi(y)$, decimos que φ embebe a H en G como un menor topológico. Similarmente, decimos que es una inmesión de H en G como un menor, si mapea a V(H) en conjuntos disjuntos de vértices en G conexos, de manera que G tiene una arista entre los conjuntos $\varphi(x)$ y $\varphi(y)$ siempre que xy es una arisda de H. Más varíantes existen, pero depende del contexto en el que estemos; por ejemplo, se pueden definir de manera obvia las inmersiones de 'subgrafos generadores', y 'menores inducidas', etc.

1.9. Clase 9: 17/04/23

Lema 1.9.1. Todo grafo 3-conexo, distinto de K_4 , tiene una arista e tal que G/e es 3-conexo.

Demostración. Supongamos que no hay una arista con esta propiedad. Es decir, para toda $xy \in E(G)$, el grafo G/xy tiene un conjunto separador S de a lo más 2 vértices. Como G es 3-conexo, v_{xy} (el vértice que sale de contraer la arista xy) tiene que estar en S y |S|=2, ya que |S|=0 es imposible porque el grafo es conexo y por otro lado si |S|=1, estamos diciendo que G se puede separar con un solo vértice si $v_{xy} \notin S$ o si $v_{xy} \in S$ entonces podemos desconectar a G con los vértices x,y, imposible. Luego, escribimos $S=\{z,v_{xy}\}$ con $z\notin\{x,y\}$ separador de G/xy. Con lo cual, $T=\{z,x,y\}$ separa a G. Como ningún subconjunto propio de T separa, cada vértice de T tiene un vecino en cada componente de $G\backslash T$.

Figura 1.9.53: Ilustración del conjunto T, donde se muestra que el vértice z tiene vecinos en cada componente de $G \setminus T$.

Como xy era arbitrario, podemos elegir la arista xy, el vértice z y la componente C tal que |C| es mínimo. Tomo $v \in C$ y es vecino de z. Entonces G/vz tampoco es 3-conexo, o sea que existe w tal que v,z,w (distintos) separan G. Como antes cada una de v,z,w tiene un vecino en cada conmponente de $G\setminus\{v,z,w\}$. Como x e y son advacentes, existe D componente de $G\setminus\{v,z,w\}$ tal que $D\cap\{x,y\}=\emptyset$ (porque $G\neq K_4$!).

Figura 1.9.54: D está contenido en el subgrafo azul.

Dado que $v \in C$, los vecinos de v en D están en C. Tenemos que $D \cap C \neq \emptyset$, más aún, $D \subsetneq C$. Contradiciendo la minimalidad del orden de C.

Teorema 1.9.2 (Teorema de Tutte, 1961). Un grafo G es 3-conexo si y solo si existe una secuencia de grafos G_0, G_1, \ldots, G_n que cumple lo siguiente:

(I)
$$G_0 = K_4 y G_n = G$$
.

(II) G_{i+1} tiene una arista xy tal que $d(x), d(y) \geqslant 3$ y $G_i = G_{i+1}/xy$ para todo i < n. Más aún, cada G_i es 3-conexo.

Demostración. Por el lema anterior, podemos quitar una arista recursivamente hasta llegar a K_4 . La vuelta esta en el DIESTEL.

1.9.1. Teorema de Menger

Definición 1.9.3. Si $A,B,X \subset V(G)$ son tales que todo A,B-camino tiene un vértice de X, decimos que X separa a A y B en G.

Teorema 1.9.4 (Menger, 1927). Sea G = (V, E) un grafo y sean $A, B \subset V$. El mínimo número de vértices que separa a A y B es igual al máximo número de A, B-caminos disjuntos.

1.10. Clase 10: 20/04/23

Teorema 1.10.1 (Menger, 1927). Sea G = (V, E) un grafo y sean $A, B \subset V$. El mínimo número de vértices que separa a A y B es igual al máximo número de A, B-caminos disjuntos.

Demostración. Sea k el mínimo numero de vértices que separan A y B. No es difícil convencerse que G no puede contener más de k caminos entre A y B, i.e. $k \ge a$ l máximo número de A,B-caminos disjuntos.

Figura 1.10.55: El conjunto separador con k-elementos se ilustra en el medio de los conjuntos A y B, formados por los vértices 0,1,2,3 y 0,4,5,6 respectivamente.

Para la otra desigualdad, haremos inducción en el número de aristas. Si G no tiene aristas entonces los A,B-caminos son puntos de $A\cap B!$ y trivialmente vale la igualdad. Ahora, si existe una arista e=xy de G, y si G no tiene k caminos entre A,B disjuntos (es decir tiene < k), entonces G/e tampoco pues G/e no puede tener más A,B-caminos (contamos a v_e como elemento de A (o B) si alguna de x o y está en A (o B)). Luego por hipótesis inductiva, G/e tiene un A,B-separador Y con menos de k vértices. El vértice v_e debe estar en Y, porque si no Y sería separador de G, contradiciendo minimalidad de k. Entonces $X=(Y\backslash v_e)\cup\{x,y\}$ es un A,B-separador de G con exactamente k vértices. En efedcto, por minimalidad $k\leqslant |X|$, y por construccón $|X|=|Y|+1< k+1\leqslant k$.

Consideremos ahora $G \setminus e$. Como $x, y \in X$, todo A, X-separador en $G \setminus e$ es un A, B-separador en G con al menos k-vértices por minimalildad de k.

Figura 1.10.56: Ilustración del conjunto separador X y los conjuntos de vértices A y B. Notar que todos los A,B-caminos deben pasar por el A,X-separador.

Por inducción, hay al menos k caminos entre A, X disjuntos en $G \setminus e$. Lo mismo pasa con los B, X-caminos. Como X separa a A y B, estos caminos solo se encuentran en X y los puedo combinar para tener al menos k caminos entre A y B (disjuntos), contradicción.

Definición 1.10.2. El **grafo línea** L(G) de un grafo G = (V, E) es aquel cuyo conjunto de vértices es E y hay una arista entre dos elementos de E si y solo si las aristas son adyacentes en G, es decir comparten un extremo.

Figura 1.10.57: Ejemplo de un grafo G.

Figura 1.10.58: Grafo de línea de G, donde se puede ver que sus vértices son las aristas de G.

Definición 1.10.3. Un conjunto de a,B-caminos es un a,B-abanico si cada par de estos caminos se intersecta SOLO en a.

Figura 1.10.59: Ejemplo de α , B-abanico.

Corolario 1.10.4. Para $B \subset V$ y $a \in V \setminus B$, el mínimo número de vértice que separan a de B en G es igual al máximo número de caminos en un a,B-abanico en G.

Demostraci'on. Aplicamos el Teorema de Menger a $G \setminus a$ con conjuntos $A = N_G(a)$ y B como en el enunciado.

Figura 1.10.60: Ilustración del procedimiento: en rojo los vecinos de a, en azúl el conjunto B, y en marrón a un connjunto A, B-separador X.

Corolario 1.10.5. Sean a y b vértices distintos de G = (V, E).

- (I) Si $ab \notin E$ (a,b no son adyacentes), entonces el mínimo número de vértices que separan a de b en G es igual al máximo número de a,b-caminos INTERNA-MENTE disjuntos.
- (II) El mínimo número de aritas que separan a de b es igual al máximo número de a,b-caminos arista-disjuntos.

Demostraci'on. (I) Aplicamos el Teorema de Menger a $Gackslash\{a,b\}$ con $A=N_G(a)$ y $B=N_G(b).$

(II) Aplicamos el Teorema de Menger al grafo L(G) con conjuntos A=E(a) y B=E(b) los conjuntos de aristas incidentes en a y b, respectivamente.

Notar que en el segundo ítem de la demostración anterior usamos que hay una correspondencia biyectiva entre aristas A,B-separadoras y vérticces separadores de E(A),E(B) en L(G), y también entre los A,B-caminos arista-disjuntos y los E(A),E(B)-caminos disjuntos de L(G).

Teorema 1.10.6 (Versión global de Menger). (I) Un grafo es k-conexo si y solo si contiene k-caminos internamente disjuntos entre cada par de vértices.

(II) Un grafo es k-aristaconexo si y solo si contiene k caminos arista disjuntos entre cada par de vértices.

Demostraci'on.

1.11. Ejercicios

Ejercicio 1.11.1. Sea G un grafo que contiene un ciclo C, y supongamos que G contiene un camino de longitud al menos k entre dos vértices de C. Probar que G contiene un ciclo de longitud al menos \sqrt{k} .

Solución. Si C tiene longitud \sqrt{k} entonces la afirmación vale. Si no, denotemos por P al camino de longitud k entre dos vérticces $x,y\in C$. Como $||C||<\sqrt{k}$, P interseca con C en menos de \sqrt{k} vértices, por lo tanto existen dos vértices $a,b\in P\cap C$ tales que, en el orden inducido por el camino P, no hay otro vértice de C entre estos, y aPb tiene longitud $\geqslant \sqrt{k}$. Luego el ciclo aPbCa tiene logit $d\geqslant \sqrt{k}$.

Ejercicio 1.11.2. Probar que los grafos de cintura $\geqslant 5$ y orden n tienen $\delta = o(n)$. Es decir, existe $f: \mathbb{N} \to \mathbb{N}$ tal que $f(n)/n \to 0$ cuando $n \to \infty$ y $\delta(G) \leqslant f(n)$ para todo G de orden n.

Solución. En efecto, tenemos que

$$n = |G| \ge n_0(\delta, 5) = 1 + \delta(1 + (\delta - 1)) = 1 + \delta^2$$

por el Teorema débil ??, si $\delta \ge 2$.

Ejercicio 1.11.3. Probar que todo grafo conexo G contiene un camino o un ciclo de longitud al menos mín $\{2\delta(G), |G|\}$.

Solución. Comentario, el resultado es falso solo para n=2. En efecto, veremos en la demostración que vale para $n \neq 2$, y un camino de longitud uno no cumple pues $2\delta = 2$ y n=2 pero la longitud de cualquier sub camino o ciclo es a lo más uno.

Procederemos por inducción en |G|=n. Vale trivialmente para n=1; vimos que para n=2 es falso; pero para n=3 vale pues G es un camino o un ciclo de longitud 3 y aquí si vale la afirmación. En general, supongamos que es falso para algún $n \geq 4$, el cual podemos tomarlo mínimo. Sea P un camino o ciclo de longitud máxima m en G, notar que $m < 2\delta(G), n$. Supongamos que P es un camino, luego sus extremos no pueden ser adyacentes (por maximalidad de P), pero tampoco pueden tener tener vecinos

SEGUIR PENSANDO Sea $v \in G \setminus P$. Debe ser que todos sus vecinos son vértices de P. En efecto, completar... Luego, notar que si $x, y \in N_G(v)$ son distintos, entonces no pueden ser adyacentes por maximalidad de P, luego P tiene logitud $\geq 2(\delta(G))$ si

v no tiene grado mínimo, con lo cual todos los vértices fuera de P tienen grado $\delta(G)$ y además P tiene longitud $\geq 2(\delta(G)-1)$.

Si P es un ciclo la demostración es una versión más facil de la anterior y es análoga.

 $\operatorname{Si} P$

Ejercicio 1.11.4. Sean α, β dos invariantes de grafos en \mathbb{N} .

Ejercicio 1.11.5. Probar que todo árbol T tiene al menos $\Delta(T)$ hojas.

Demostración. En efecto, fijemos una raíz r con $d(r) = \Delta(t)$. Afirmamos que hay una hoja distinta por cada vecinos de r, más aún, estos son los elementos maximales en el orden de arbol con raíz r. Y hay al menos d(r) de estos, tomand el máximo de cada conjuntos $w^{\geqslant} := \{v \in T | v \geqslant w\}$, con $w \in N_T(r)$. Son distintos, pues de lo contrario, sean m_1 al mínimo vértice de w_1^{\geqslant} y m_2 el de w_2^{\geqslant} tales que no son más grandes que w_2 y w_1 respectivamente. En particular, existe $m \geqslant w_1, w_2$. Luego tenemos un ciclo $r < w_1 < \cdots < m_1 < m > m_2 > \cdots > w_2 > r$, lo cual es imposible.

Ejercicio 1.11.6. Sean F, F' dos bosques en el mismo conjunto de vértices, y ||F|| < ||F'||. Probar que F' tiene una arista e tal que F + e es nuevamente un bosque.

Solución. En efecto, si F tuviera más de una componente, entonces cualquier arista $e \in F'$ con extremo en ambas funcionaría. Luego supongamos que F' no tiene aristas que conectan ningúna componente de F, es decir por inducción en ||F|| se sigue el resultado. Luego supongamos que F es conexo, es decir es un árbol, como ||F'|| = |F'| - #componentes, se sigue de la desigualdad del enunciado que F' también es conexo. Ahora si consideramos el grafo G = F + F, este grafo tiene dos árboles generadores F y F'. Si F y F' tuvieran una arista en común, luego el resultado se sigue. De lo contrario, tendríamos que por cada arista $e \in F'$, tenemos un ciclo en T + e, es decir un ciclo fundamental C_e . Pero por la Proposición $\ref{eq:contraction}$:

$$||F|| + ||F'|| = \dim \mathscr{E}(G) = n - 1 + \dim \mathscr{C}(G)$$

con n = |F| = |F'|, y como F es árbol n - 1 = ||F||. Luego $\dim \mathcal{C}(G) = ||F'||$. An álogamente, $\dim \mathcal{C}(G) = ||F|| < ||F'||$, imposible.

Ejercicio 1.11.7. Probar que todo grafo es 2-arista-conexo, si y solo si, tiene una orientación **fuertemente conexa**, es decir, tiene una orientación en la cual para todo par de vértices x, y existe un camino dirigido \overrightarrow{P} con dirección de x hacia y.

Solución. (\Rightarrow) Numeremos los vértices de $G: v_1, v_2, v_3, ..., v_n$ (\Leftarrow)

Ejercicio 1.11.8. Dar una demostración corta por inducción de la exisstencia de un árbol normal generador en cualquier grafo finito conexo (para cualquier orden de árbol).

Solución. Afirmamos que existe un vértice v de G que se puede eliminar y sigue siendo conexo: G tiene un árbol generador , luego quitamos una hoja. Ahora por inducción, $G \setminus v$ tiene un árbol generador normal T'. Afirmamos que el árbol generador T = T'vx de G es también normal, donde $x \in T'$ es adyacente a v en G, maximal en el orden de T'. Ahora, el orden de T' se extiende al de T para cualquier raíz r de T'. Sea P un T-camino entre dos vértices distintos de v, luego son comparables en T'; por otro lado, si uno de los vértices es v y el otro es v, digamos, entonces v y es un v camino, luego v e v son comparables, y por lo tanto v e v tambi én, pues por la maximalidad de v and v e v son comparables or v en v como raíz tambi én.

Ejercicio 1.11.9 (Depth-first search). Sea G un grafo conexo, y $r \in G$ un vértice arbitrario. Empezando desde r, nos movemos a través de las aristas de G, priorizando movernos a un vértice que no hayamos visitado aún. Si no hay ningún vértice, retrocedemos por las aristas que visitamos por última véz, ordenadamente: la más reciente primero, intentando ocupar un vértice no visitadao nuevamente. El algorítmo para cuando regresamos a r. Probar que las aristas recorridas forman un árbol normal generadores de G con raíz r.

Soluci'on. Debemos probar varias cosas, primero que este recorrido, que llamaremos T, es un árbol: basta ver que no tiene ciclos; que es generador; y que es normal.

- 1. Sea C un ciclo con vértices consecutivos $x_0, x_1, x_2, ..., x_k$ en T. Podemos suponer que x_k fue el último en haber sido visitado. Luego x_0 tuvo que haber sido el vértice que se visitó primero de C y en consecuencia se visitó en orden: $x_0, x_1, ..., x_k$. Pero una vez visitado x_k el algorítmo sigui corriendo sin volver a x_0 pues este ya fue visitado, pero esto significa que C no puede tener la arista $x_k x_0$, absurdo.
- 2. Supongamos que existe un vértice no visitado, luego existe un vértice sin visitar a distancia mínima de T, i.e. adyacente a $x \in T$. Luego el algorítmo tuvo que pasar por este vértice cuando volvió a x por última vez.
- 3. Como T genera, se sigue que es normal si y solo si para todo par de vértices adyacentes en $G \setminus T$ son comparables. En efecto, supongamos que el algorítmo visitó primero a x y luego a y, con lo cual $x \leq y$.

Ejercicio 1.11.10. Sea \mathcal{T} un conjunto de subárboles de un árbol T, y $k \in \mathbb{N}$.

- (I) Mostrar que si los árboles de $\mathcal T$ son disjuntos dos a dos, entonces $\bigcap_{S\in\mathcal T} S
 eq \emptyset$.
- (II) Mostrar que o $\mathcal T$ tiene k árboles disjuntos o existe un conjunto de a lo sumo k-1 vérticces de T en $\bigcap_{S\in\mathcal T} S$.

Notar que \mathcal{T} tiene que ser finito, por ejemplo si T es finito, porque si no el primer ítem fallta tomando una cadena (con el orden de inclusión) de conjuntos de caminos infinitos.

Solución. (I) Basta probar que la intersección de dos subárboles de T es un subárbol de T, pues . En efecto, es ac íclico; veamos que también es conexo. De lo contrario, sean x, y dos elementos de la intersección $S \cap S'$, de dos

subárboles, en distintas componentes. Tomemos a y de manera que tenga distancia mínima a x en S, y tomemos un camino P que la realice. Por otro lado, hay otro camino yQx en S' que debe ser internamente disjunto con P, de lo contrario violaríamos la minimalidad de P. Con lo cual, T tendría un ciclo xPyQx, absurdo.

(II) Por inducción en k. Si k = 1

Ejercicio 1.11.11. Probar que todo automorfismo de un árbol fija un vértice o una arista.

Solución. Supongamos que el automorfismo φ no fija ningún vértice. Veamos que fija entonces una arista. Tomemos $x \in T$ y consideremos el conjunto $\{y \in T | x < y\}$; también consideremos $\{x \in T | x < \varphi(x)\}$. Tomemos a x maximal en este conjunto. Entonces que pasa si hacemos $\varphi(x)$? Siguen siendo comparables $\varphi(x)y\varphi^2(x)$, más aún, φ preserva la orientación. Con lo cual, al ser distintas, $\varphi(x) < \varphi^2(x)$, absurdo por maximalidad de x. Consecuentemente tenemos que $\varphi^2 x > \varphi(x)$. Consideremos ahora z el minimo de los vértices más grandes que x. Veamos que $z = \varphi(x)$ y por lo tanto $\varphi(x)$ y x son adyacentes, en particular φ preserva la arista $x\varphi(x)$. En efecto, de lo contrario tendríamos $x < z < \varphi(x)$ y como z no está en el conjunto: $z > \varphi(z)$ y tenemos $\varphi(x) > z > x > \varphi(z)$

Ejercicio 1.11.12. Mostrar que en un grafo conexo los conjuntos de aristas que son minimales con la propiedad de contener una arista de cada árbol generador son precisamente los enlaces del grafo.

Solución. Por un lado, un corte de G tiene que tener una arista de cada árbol generador, pues el arbol es conexo y no se puede separar por las partes que inducen el corte; luego los enlaces son minimales con esta propiedad. Por otro lado, lo anterior implica que los conjuntos de aristas minimales con esta propiedad, cumplen que si son cortes entonces son enlaces. Luego basta probar que estos conjuntos son cortes. Para eso, usamos la Proposición $\ref{eq:condition}$, que dice que $F\in \mathscr{B}$ si y solo si $F\in \mathscr{C}^\perp$, es decir, todos los cortes de G intersecan un número par de veces a cualquier ciclo de G. Ahora, necesitamos el siguiente lema:

Lema 1.11.13. Sea un S un conjunto de aristas fuera de los árboles generadores T_1, \ldots, T_r de G, entonces el conjunto

$$S' = S + \sum_{f \in S \cap T'} D_f(T') \quad (D_f(T') \ \ es \ un \ corte \ fundamental),$$

con T' un árbol de generador de G, tiene a todas sus aristas fuera de T_1, \ldots, T_r, T' .

Demostración. Antes, necesitamos observar que el conjunto S' no tiene aristas en T', pues de lo contrario, digamos $g \in T'$, si $g \in S$ entoncces está en un único $D_f(T)$, luego no esta en S'; si $g \notin S$, luego no puede estar en ningún $D_f(T')$, pues $g \in T'$.

Ahora, veamos que tampoco tiene aristas en T_i con $1\leqslant i\leqslant r$. En efecto, sea $g\in T=T_i\cap S'$ con i fijo, entonces sabemos por lo anterior que $g\notin T'$, también tenemos que como $S\cap T=\varnothing$, luego $g\notin S$, consecuentemente está en una cantidad impar de $D_f(T')$ con $f\in S\cap T'$ porque $g\in S'$, sin embargo, tenemos por dualidad que $g\in D_f(T')$ si y solo si $f\in C_g(T')$, si y solo si $f\in \sum_{f\in S\cap T'}D_f(T')\cap C_e(T')$

pero esta intersección es par porque los corrtes fundamentales están en $\mathscr{B}=\mathscr{C}^{\perp}.$ Absurdo. \Box
Finalmente, consideramos aplicar el lema anterior reiteradas veces a $S:=F+\sum_{f\in F\cap T}D_f(T)$ con T un árbol generador arbitrario: S no contiene aristas en T . Luego se puede obtener $S'=F+F'$ un conjunto de aristas, con $F'\in \mathscr{B}$ pues los $D_f(T)$ son cortes fundamentales, que está fuera de todo árbol generador de G , es decir es vacío. En particular $F=F'\in \mathscr{B}$.
1.12. Clase 11: 27/04/23
Definición 1.12.1. Un matching o emparejamiento en un grafo $G=(V,E)$ es un subconjunto $M\subset E$ tal que ningún par de aristas en M comparten un vértice. Un matching es maximal si al añadirle cualquier otra arista deja de ser matching.
Un matching es máximo si no hay otro matchinig con mayor tamaño (número de aristas).
Decimos que un matching cubre a los vértices de sus aristas.
Un matching que cubre a todo $V(G)$ es perfecto .
Comentario 1.12.2. Hay grafos sin mathchings perfectos. Ejemplo:
./Editor de Grafos/Figuras/Clase 11/Dibujo 1.pdf

Figura 1.12.61

remark

Observación 1.12.3. Un arbol tiene un matching perfecto si y solo si es un camino.

Sea $G=(X\sqcup Y,E)$ un grafo bipartito (hablamos de un X,Y-bigrafo). Si G tiene un matching de tamaño |X| (en particular cubre a X) los elementos de cualquier $S\subset X$ tienen

$$|N(S)| \geqslant |S|. \tag{1.1}$$

Definición 1.12.4. Cualquier subconjunto de vértices $S \subset G$ tal que cumplen (??), decimos que S cumple la **condición de Hall**.

Teorema 1.12.5 (Teorema de Hall (1935)). En un X, Y-bigrafo, existe un matching que cubre a X si y solo si S cumple la condición de Hall (??) para todo $S \subset X$.

Demostración. La primera implicación la vimos antes de la definición de condición de Hall.

Veamos la recíproca. Lo haremos por inducción en |X| =: n. Si n = 1 es trivial. En general, si n > 1, queremos ver que vale para n + 1. Hay dos casos:

Caso 1: |N(S)| > |S| para todo subconjunto $S \subsetneq X$ no vacío. Tomemos un vértices que sean vecinos $x \in X$ e $y \in Y$, luego consideramos la $X', Y' = X \setminus \{x\}, Y \setminus \{y\}$ -bipartición proveniente de G al eliminar x, y; todos los subconjuntos de X' siguen cumpliendo la condición de Hall, luego tiene un matching por hipótesis inductiva, luego agregando xy obtenemos un matching que cubre a X en G.

Figura 1.12.62: Ilustración de lo que sucede

Tomemos un vértices $x \in X$ y otro de Y, luego por hipótesis todo subconjunto de $X' = X \setminus \{x\}$ cumple la condición de Hall, luego tiene un matching, luego agregando xy obtenemos un matching que cubre a X.

Apéndice A

Primera parte de la materia (primer capítulo del Diestel)

A.1. Un poco de álgebra lineal

Sea G=(V,E) un grafo con n vértices y m aristas, digamos $V=\{v_1,\ldots,v_n\}$ y $E=\{e_1,\ldots,e_m\}.$

Definición A.1.1. El **espacio de vértices** V(G) de G, es el \mathbb{F}_2 -espacio vectorial de todas las funciones $V \to \mathbb{F}_2$.

Todo elemento de $\mathcal{V}(G)$ corresponde naturalmente con un subconjunto de V, más precisamente con la preimagen de 1, y más aún todo subconjunto de V se representa de manera única de esta manera por su función indicadora. Con lo cual, podemos identificar a $\mathcal{V}(G)$ con el conjunto de subconjuntos de V, i.e. 2^V ; así tenemos un espacio vectorial de los subconjuntos de $V: U+U'=U\Delta U'$ es la diferencia simétrica! y U=-U. El cero en este espacio vectorial corresponde con el subconjunto vacío $\varnothing \subset V$. Notar que $\{\{v_1\},\ldots,\{v_n\}\}$ es una base de $\mathcal{V}(G)$, llamada la **base standard**; tenemos entonces que dim $\mathcal{V}(G)=n$.

Definición A.1.2. Análogamente, podemos definir el **espacio de aristas** $\mathcal{E}(G)$ de G, más precisamente, el \mathbb{F}_2 -espacio vectorial de funciones $E \to \mathbb{F}_2$.

Nuevamente, los elementos de $\mathscr{E}(G)$ se corressponden con subconjuntos de E: tomamos la preimagen de 1. En este caso, la suma de vectores es la diferencia simétrica de conjuntos de aristas, y el conjunto vacío $\varnothing \subset E$ corresponde con el cero, además F = -F para todo $F \subset E$. La **base standard** es $\{\{e_1\}, \ldots \{e_m\}\}$, luego $\dim \mathscr{E}(G) = m$.

Dados $F, F' \in \mathcal{E}(G)$, vistos como funciones, podemos definir:

$$\langle F,F'
angle\!:=\sum_{e\in E}F(e)F'(e)\!\in\!\mathbb{F}_2.$$

Esta cantidad es cero si y solo si F y F' tienen una cantidad par de aristas en común, i.e $|F \cap F'| \equiv 0 \mod 2$; en particular ciertamente puede suceder que $\langle F, F \rangle = 0$ con $F \neq \emptyset$. De todas formas, es simétrico y \mathbb{F}_2 -bilineal. De manera la manera usual, para cualquier subespacio $\mathscr{F} \subset \mathscr{E}(G)$, podemos definir el subespacio ortogonal:

$$\mathscr{F}^{\perp} := \{ D \in \mathscr{E}(G) \, | \, \langle F, D \rangle = 0, \forall F \in \mathscr{F} \}.$$

Que es un subespacio. Se tiene que

$$\dim \mathcal{F} + \dim \mathcal{F}^{\perp} = m$$
.

Pues se sigue de la demostración standard, ya que este producto es *no degenerado*, es decír el morfismo de espacios vectoriales $F \mapsto \langle \cdot, F \rangle$ es inyectivo, luego la ecuación se sigue de álgebra lineal (estudiando el espacio dual).

Definición A.1.3. El **espacio de ciclos** $\mathscr{C} = \mathscr{C}(G)$ es el subespacio de $\mathscr{E}(G)$ generado por todos los ciclos de G (por sus aristas). La dimensión de este espacio se lo llama a veces **número ciclomático** de G.

Proposición A.1.4. Las siguientes afiirmacaiones son equivalentes para conjuntos de aristas $D \subset E$:

- 1. $D \in \mathscr{C}(G)$;
- 2. D es una unión (posiblemente vacía) disjunta de ciclos en G;
- 3. Todos los grados de los vértices de (V,D) son pares.

Demostración. Como los ciclos tienen grados pares y tomar diferencia simétrica preserva esta propiedad, luego 1. implica 3. por inducción en la cantidad de ciclos que generan D con la suma. Que 3. implica 2. se sigue por inducción en |D|: si $D \neq \emptyset$ entonces (V,D) contiene un ciclo por la Proposición 1.2.14, borrando las aristas de C podemos proceder inductivamente pues los vértices siguen teniendo grado par. Finalmente la implicación $2. \Rightarrow 1$. es inmediata de la definición de $\mathscr{C}(G)$.

Definición A.1.5. Un conjunto F de aristas se dice un **corte**¹ de G si existe una partición $\{V_1, V_2\}$ de V tal que $F = E(V_1, V_2)$. Decimos que las aristas de F **cortan** esta partición. Los conjuntos V_1, V_2 son los **lados** del corte. A un corte no vacío minimal lo llamamos **enlace**.

Proposición A.1.6. Junto con el conjunto vacío \emptyset , los cortes en G forman un subespacio $\mathscr{B} = \mathscr{B}(G) \subset \mathscr{E}(G)$. Este espacio está generado por los cortes de la forma E(v) (es decir los conjuntos de aristas incidentes a un vértice).

Demostración. Sea \mathscr{B} el subespacio generado por los cortes de la forma E(v) en $\mathscr{E}(G)$. Todo corte de G, con partición $\{V_1,V_2\}$, coincide con $\sum_{v\in V_1} E(v)$ y por lo tanto está en \mathscr{B} . En efecto, el conjunto $\sum_{v\in V_1} E(v)$ es la diferencia simétrica de los conjuntos E(v), i.e. las aristas que están en algún E(v), $v\in V_1$ pero no en todos, es decir, las aristas que inciden en un vértice de V_1 y que su otro extremo no puede estár en V_1 , es decir tiene que estár en V_2 . Recíprocamente, todo conjunto $\sum_{u\in U} E(u) \in \mathscr{B}$ es vacío, por ejemplo si $U\in\{\varnothing,V\}$, o es el corte $E(U,V\setminus U)$ (mismo razonamiento de antes). □

Definición A.1.7. El espacio $\mathcal{B}(G)$ es el espacio de cortes, o el espacio de enlaces de G.

¹No vamos a incluir el caso de particiones vacías. Luego la única manera de que el conjunto vacío de aristas sea un corte es que el grafo subyacente sea disconexo.

Observación A.1.8. Los enlaces son para \mathcal{B} , lo que son los ciclos para \mathcal{C} : elementos minimales no vacíos.

Si G es conexo, entonces los enlaces son justamente sus cortes minimales: un corte en un grafo conexo es minimal si y solo si ambos lados de la partición inducen subgrafos conexos. En efecto, por un lado, dados un corte minimal con bipartición $\{V_1,V_2\}$ induce subgrafos conexos $G[V_1],G[V_2]$, pues de lo contrario eligiendo un vértice $v_1 \in V_1$ aislado en $G[V_1]$, se sigue que el corte $E(V_1 \setminus \{v_1\}, V_2 \cup \{v_1\})$ pierde todas la V_1,V_2 aristas incidentes en v_1 (G es conexo), contradiciendo minimalidad; por otro lado, un corte con bipartición $\{V_1,V_2\}$ de conjuntos de vértices que inducen subgrafos conexos tiene que ser minimal, de lo contrario es que se le pueden quitar aristas y sigue siendo un corte, luego es porque uno de los subgrafos inducidos no era conexo. Ahora, si G es disconexo, luego sus enlases sson los cortes minimales de sus componentes conexas, pues unir cortes de cada componente conexa sigue dando un corte (y por lo tanto un corte no es minimal a menos que esté contenido en una componente).

Lema A.1.9. Todo corte es la unión disjunta de enlaces.

Demostración. Haremos inducción en el tamaño del corte F a considerar. Para $F = \emptyset$ no hay nada que probar. Si $F \neq \emptyset$, y no es un enlace, luego contiene propiamente a algún corte F'. Por la proposición anterior, la suma de cortes es un corte (forman un subespacio), es decir $F \setminus F' = F + F'$ es un corte más chico no vacío. Por inducción tenemos que F' y $F \setminus F'$ son ambos unión disjunta de enlaces, y por lo tanto F también.

Ejercicio A.1.10. Hallar una base de $\mathscr{B}(G)$ dada por conjuntos de aristas de la forma E(v).

Solución. Sabemos que los E(v), $v \in V(G)$ generan $\mathcal{B}(G)$; afirmamos que si G es conexo, entonces para todo $w \in V(G)$ el siguiente conjunto forma una base del subespacio de cortes:

$$\{E(v)\}_{v\in V(G)\backslash \{w\}}.$$

En efecto, el conjunto de generadores de $\mathscr{B}(G)$ es linealmente dependiente porque $\sum_{v \in V(G)} E(v) = \varnothing$, pero si quitamos cualquier vértice se vuelve linealmente independiente, pues que sea linealmente dependiente equivale a que existe un subconjunto $S \subsetneq V(G)$ no vacío tal que

$$arnothing = \sum_{v \in S} E(v) = E(S, V(G) ackslash S),$$

que es imposible si G es conexo.

En general, si G no es conexo escribimos $G = \bigsqcup_i C_i$, donde C_i son sus componentes conexas, luego una base de $\mathscr{B}(G)$ es la unión de las bases de $\mathscr{B}(G_i)$, pues podemos hacer el abuso de notación $\mathscr{B}(G) = \bigoplus_i \mathscr{B}(G_i)$.

Corolario A.1.11. Se sigue que

$$\dim \mathscr{B}(G) = \sum_{\substack{C \ componente \ de \ G}} (|C|-1) = |G| - \#\{componentes \ de \ G\}.$$

En particular si G es conexo,

$$\dim \mathscr{B}(G) = |G|-1.$$

Ejercicio A.1.12. Construir de manera explícita la partición en enlaces de un corte: sea F un corte en G, con partición $\{V_1, V_2\}$. Para i=1,2 escribamos $C_1^i, \ldots, C_{k(i)}^i$ a las componentes conexas de $G[V_i]$. Usar los C_j^i para definir los enlaces que forman una unión disjunta para F.

Soluci'on. Vamos a considerar el caso G conexo, pues el caso disconexo directamente escribimos a un corte como la unión disjunta de sus aristas en cada componente. Ahora, si G es conexo consideremos los conjuntos de aristas

$$E(C_i^1 \cup igcup_{C_j^2 \cap N(C_i^1)
eq arnothing} C_j^2, igcup_{C_j^2 \cap N(C_i^1) = arnothing} C_j^2 \cup igcup_{C_k^1
eq C_i^1} C_k^1),$$

para todo $1\leqslant i\leqslant k(1)$ fijo. Hay que verificar que estos son disjuntos entre si, y su unión da $E(V_1,V_2)$, y además que son enlaces (basta ver que su partición induce subgrafos conexos). En efecto, $E(V_1,V_2)$ está claramente contenido en su unión; recíprocamente, las aristas de $E(C_i^1\cup N(C_i^1)\cap V_2,*)$ están en $E(V_1,V_2)$ pues hay dos posibilidades: o la arista está en $E(C_i^1,C_j^2)$ con $C_j^2\cap N(C_i^1)=\varnothing$ o está en $E(C_j^2,C_{i'}^1)$. Por contrucción son enlaces porque cada parte de la partición es un subgrafo inducido conexo, pues la parte $\bigcup_{C_j^2\cap N(C_i^1)=\varnothing}C_j^2\cup \bigcup_{C_k^1\neq C_i^1}C_k^1$ tiene que ser conexa porque G lo es y las C_j^i con i fijo no están conectadas entre sí porque son las componentes de V_i . Finalmente, tienen que ser claramente disjuntas.

Teorema A.1.13. El espacio de ciclos $\mathscr{C}(G)$ y el espacio de cortes $\mathscr{B}(G)$ de cualquier grafo satisfacen

$$\mathscr{C} = \mathscr{B}^{perp} \quad \mathsf{y} \quad \mathscr{B} = \mathscr{C}^{\perp}.$$

Demostraci'on. Consideremos un grafo G=(V,E). Claramente todo ciclo en G tiene un número par de aristas en cada corte, luego los ciclos son ortogonales a los cortes, es decir

$$\mathscr{C}(B) \subset \mathscr{B}(G)^{\perp} \quad \text{y} \quad (B)(G) \subset \mathscr{C}(G)^{\perp}.$$

Para probar $\mathscr{B}(G)^{\perp} \subset \mathscr{C}$ hay que usar la anteúltima proposición que caracteriza los vectores del subespacio de ciclos, es decir $F \notin \mathscr{C}(G)$ si y solo si tiene un vértice incidente con un número impar de aristas en F. Luego $\langle E(v), F \rangle = 1$, entonces como $E(v) \in \mathscr{B}(G)$ se sigue que $F \notin \mathscr{B}(G)^{\perp}$. Esto termina de probar que $\mathscr{C} = \mathscr{B}^{\perp}$ en G.

Finalmente, para probar $(G)^{\perp} \subset \mathcal{B}(G)$, tomemos $F \in \mathcal{C}(G)^{\perp}$. Consideremos el $\mathit{multigrafo}\ H$ obtenido a partir de G luego de contraer las aristas de $E \backslash F$. Todo ciclo en H tiene sus aristas en F. Como lo podemos extender a cualquier ciclo en G agergando aristas de $E \backslash F$, entonces el número de aristas del ciclo extendido que están en F (es decir las aristas del ciclo en H original) debe ser par, pues $F \in \mathcal{C}^{\perp}$. Usando la caracterización de grafos bipartitos, tenemos q ue H es bipartito. Su partición induce una partición (V_1,V_2) de V (ya que las aristas que habíamos contraído convierten la bipartición en un corte), tal que $E(V_1,V_2)=F$, i.e. $F \in \mathcal{B}(G)$.

Consideremos ahaora un grafo conexo G=(V,E) con un árbol generador $T\subset G$. Para toda cuerda $e\in E\backslash E(T)$ existe un único ciclo C_e en T+e, que llamaremos el **ciclo fundamental** de e con respecto a T. Similarmente, para toda arista $f\in T$, el bosque tienee exactamente dos componentes (por la caracterización de árbol). El conjunto $D_f\subset E$ de aristas de G entre ambas componentes es un enlace (usando una de las propiedades probadas en essta sección, pues ambos lados de la partición

Figura A.1.1: Ejemplo: El ciclo fundamental C_e , y el corte fundamental D_f .

son subgrafos inducidos conexos) en G, el **corte fundamental** de f con respecto de T.

Notar que $f \in C_e$ si y solo si $e \in D_f$, para todo $e \notin T$ y $f \in T$. En efecto, por un lado si $e \notin T$ y $f \in T$, entonces $f \in C_e$ entonces sacar a f de T hace que se parta en dos componentes, que tienen que estar conectada por la cuerda e ya que todo camino entre ambas componentes pasaba por f, luego por C_e y cuando quitas una arista de un ciclo los caminos pueden seguir pasando por los vértices de f a través de e, i.e. $e \in D_f$. Por otro lado, si $e \in D_f$ entonces el camino $f \cdots e \cdots f$ tiene que ser un ciclo en G porque las aristas de $f \cdots e$ están en una componente y las aristas $e \cdots f$ en otra, así $f \in C_e$. Esto indica una conexión más profunda de dualidad; el siguiente teorema explora un poco este descubrimiento.

Teorema A.1.14. Sea G un grafo conexo con n vértices y m aristas, y sea $T \subset G$ un árbol generador.

- (I) Los cortes fundamentales y los ciclos fundamentales de G respecto de T forman bases de $\mathcal{B}(G)$ y $\mathcal{C}(G)$, respectivamente.
- (II) Consecuentemente,

$$\dim \mathscr{B}(G) = n-1$$
 y $\dim \mathscr{C}(G) = m-n+1$.

Demostración. (I) Notemos que toda arista $f \in T$ yace en D_f , pero ningún otro corte fundamental lo hace (estas son aristas de T), mientras que una arista $e \notin T$ yace en C_e pero no en otro ciclo fundamental (este ciclo está construido con una sola arista fuera de T). Es decir, dados un subconjunto arbitrario de cortes fundamentales $\{D_{f_1}, \ldots, D_{f_r}\}$, entonces

$$\sum_{i=1}^r D_{f_i} \neq \emptyset.$$

Análogamente, lo mismo sucede para un subconjunto de ciclos sfundamentales $\{C_{e_1}, \ldots, C_{e_s}\}$. Con lo cual los cortes fundamentales y los ciclos fundamentales son, respectivamente, conjuntos linealmente independientes en $\mathscr{B} = \mathscr{B}(G)$ y $\mathscr{C} = \mathscr{C}(G)$.

Veamos ahora que los ciclos fundamentales generan a un ciclo C arbitrario. Por nuestra observación inicial, $D:=C+\sum_{e\in C\setminus T}C_e$, es decir a C le estamos quitando todas las aristas fuera de T, es un elemento de $\mathscr C$, que no contiene ningúna arista fuera de T, i.e. está contenido en T. Pero la Proposición $\ref{content}$ los elementos de $\mathscr C$ son unión disjunta de ciclos, pero como T es aciclico, la única opción es que sea el conjunto \varnothing . En consecuencia $D=\varnothing$ y en particular $C=\sum_{e\in C\setminus T}C_e$.

Similarmente, todo corte D es la suma de cortes fundamentales. En efecto, el elemento $D + \sum_{f \in D \cap T} D_f$ de $\mathscr B$ no contiene aristas en T. Así es, pues si $e \in (E(G) \backslash E(T)) \cap (D + \sum_{f \in D \cap T} D_f)$, entonces por la observación inicial $C_e \cap (D + \sum_{f \in D \cap T} D_f) = \{e\}$ ya que la única arista extra g que podría aparecer debería estar en T pues C_e de lo contrario $g \in C_g \cap C_e$, por otro lado g está en D o en algún D_f ; por un lado si está en D luego está en un único D_f por la observación inicial, es decir no está en $D + \sum_{f \in D \cap T} D_f$, por otro lado si no oestá en D, no puede estar en ningún D_f con $f \in D \cap T$ pues D_f contiene a un único corte fundamental. En resumen, $D + \sum_{f \in D \cap T} D_f$ es vacío. Es decir, $D = \sum_{f \in D \cap T} D_f$.

(II) Por un ladod hay n-1 cortes fundamentales, pues hay uno por cada arista del arbol generador T de G, el cual tiene n vértices (usamos que los grafos conexos de n vértices tienen n-1 aristas si y solo si son árboles). Por otro lado, como vimos que $\mathscr{C}(G) = \mathscr{B}(G)^{\perp}$ y que para todo subespacio $V \subset \varepsilon(G)$ se tiene $\dim V + \dim V^{\perp} = \dim \mathscr{E}(G) = m$, se sigue que $\dim \mathscr{C}(G) = m - n + 1$.

Definición A.1.15. La **matriz de incidencia** $B=(b_{ij})_{n\times m}\in\mathbb{F}_2^{n\times m}$ de un grafo G=(V,E) con $V=\{v_1,\ldots,v_n\}$ y $E=\{e_1,\ldots,e_m\}$ está dada por

$$b_{ij} := egin{cases} 1 & ext{ si } v_i \in e_j \ 0 & ext{ si no.} \end{cases}$$

Luego las matrices B y B^t definen las transformaciones lineales

$$B: \mathcal{E}(G) \to \mathcal{V}(G)$$
 y $B^t \mathcal{V}(G) \to \mathcal{E}(G)$

definidas respecto de las bases standard.

Observación A.1.16. La transformación B manda conjuntos de aristas $F \subset E$ en al conjunto de vértices incidentes en un número impar de aristas de F. Mientras que B^t manda un conjunto de vértices $U \subset V$ en el lconjunto de aristas con exactamente un solo extremo en U.

Como consecuencia obtenemos:

Corolario A.1.17. (I) El núcleo de B es $\mathscr{C}(G)$.

(II) La imagen de B^t es $\mathscr{B}(G)$.

- Demostración. (I) $C \in \operatorname{Ker} B$ si y solo si todos los vértices de G tienen un número par de aristas incidentes en C, es decir (G,C) tiene todos sus vértices de grado par, lo cual es una definición equivalente de estar en $\mathscr{C}(G)$.
 - (II) Sea $U \subset V$, entonces $B^t(U) = F$ el conjunto de aristas con exactamente un extremo en U, es decir, $F = E(U, V \setminus U)$ es un corte.

Definición A.1.18. La **matriz de adyasencia** $A=(a_{ij})_{n\times n}\in \mathbb{F}_2^{n\times n}$ de G está dada por

$$a_{ij} := egin{cases} 1 & ext{ si } v_i v_j \in E \ 0 & ext{ si no.} \end{cases}$$

Observación A.1.19. Esta matriz es simétrica. Además, se puede ver como una transformación lineal $A: \mathcal{V}(G) \to \mathcal{V}(G)$, que manda subconjuntos de vértices $U \subset V$ al conjunto de vértices con un número impar de vecinos en U.

Denotemos por D a la matriz real diagonal $(d_{ij})_{n\times n}\in\mathbb{R}^{n\times n}$ con $d_{ii}=d(v_i)$. Nuestra última proposición establece una conexión de A y B vistos como matrices reales:

Proposición A.1.20.

$$B \cdot B^t = A + D$$
.

Demostración. La cuenta se tiene que hacer entre matrices reales, la cual una cuenta muy elemental. □

Notar que la misma ecuación sigue valiendo módulo 2.

A.2. Otras nociones sobre grafos

Definición A.2.1. Un **hipergrafo** es un par (V,E) de conjuntos disjuntos, donde los elementos de E son subconjuntos no vac íos (de cualquier cardinalidad) de V. Con lo cual, los grafos son un caso particulara de los hipergafos.

Definición A.2.2. Un **grafo dirigido** o **digrafo** es un par (V,E) de conjuntos disjuntos de vértices y aristass, junto con dos funciones init : $E \to V$ y ter : $E \to V$ que mandan una arista e en un **vértice inicial** init(e) y en un **vértice terminal** ter(e). La arista e se dice **dirigida desde** init(e) **hasta** ter(e).

Notar que un grafo dirigido puede tenenr varias aristas entre dos vértices x, y. Estas aristas se llaman **aristas múltiples**; si tienen la misma dirección, digamos de x a y, se dicen **paralelas**. Si init(e) = ter(e), decimos que e es un **bucle**.

Un grafo dirigido D es una **orientación** de un grafo (sin dirigir) G si V(D) = V(G) y E(D) = E(G), y además $\{ \operatorname{init}(e), \operatorname{ter}(e) = \{x,y\} \text{ para toda ariwstas } e = xy.$ Intuitivamente, este **grafo orientado** surge de un grafo sin dirigir simplemente luego de darle una orientación a cada arista de G, desde uno de sus extremos hasta el otro. En particular, los grafos orientados son grafos dirigidos sin bucles ni aristas multiples.

Figura A.2.2: Contración de la arista *e* en un multigrafo *G*.

Definición A.2.3. Un **multigrafo** es un par (V,E) de conjuntos disjuntos de vértices y aristas con una función $E \to V \cup [V]^2$ que le asigna a cada arista uno o dos vértices a sus extremos.

Por lo tanto, los multigrafos pueden tener bucles y aristas multiples: podemos pensar a los multigrafos como grafos dirigidos, donde las direcciones de sus aristas fueron eliminadas. Para expresar que x e y son los extremos de una arista e, escribimos e = xy, sin embargo esta escritura no siempre es única!

Un grafo es entonces un multigrafo sin bucles ni aristas múltiples. De manera sorprendente, a veces probar un teorema para grafos es más díficil que probar para multigrafos. Más aún, existen áreas de la teoría de grafos donde los multigrafos surgen de manera más natural que los grafos, y donde restringirse a estos últimos resulta artificial y más complicado (por ejemplo dualidad de planos). Para multigrafos usaremos la misma terminología que vimos para grafos, pues estas definiciónes se trasladan de manera obvia. Por ejemplo, ver la Figura A.2.

De todas maneras, cabe resaltar algunas diferencias. Un multigrafo puede tener ciclos de longitud 1 o 2: los bucles, y los pares de aristas de aristas múltliples o las **aristas doble**. Un bucle en un vértice vuelve a su vértice su propio vecino, con lo cual en la figura anterior tenemos que $d_{G/e}(v_e)=6$, o sea que también contamos a un vecinos multiples veces, una por cada aristas que compartan ambos vértices! Los extremos de los bucles y de las aristas paralelas en un multigrafo G, se consideran separadoras de esta aristas del resto de G. El vértice v de un bucle e, es entonces un vértice de corte, a menos que $(\{v\},\{e\})$ sea una componente de G, con lo cual $(\{v\},\{e\})$ es un bloque. En efecto, un vértice de corte v es aquel que separa dos vértices x,y, i.e. todos los x,y-caminos pasan por v pero en un multigrafo podemos considerar x=v=y. Entonces un multigrafo con un bucle nunca es 2-conexo, y todo multigrafo 3-conexo es de hecho un grafo.

La noción de arista contracción es mucho más simple en multigrafos que en grafos: si contraemos una arista e=xy en un multigrafo G=(V,E) a un vértice v_e , entonces ya no necesitamos borrar cualquier arista distinta de e: las aristas paralelas a e se convierten en bucles de v_e , mientras que las aristas xv e yv se vuelven aristas paralelas entre v_e y v (ver la figura anterior). Formalmente, $E(G/e) = E \setminus \{e\}$, y solamente debemos modificar al **mapa de incidencia** $e' \mapsto \{\text{init}(e'), \text{ter}(e')\}$ de G para ajustarse a los vértices de G/e. Contraer un bucle es, por lo tanto, lo mismo que eliminarlo.

La noción de menor se adapta de manera acorde. La menor de contracción G/P definida a partir de unapartición P de V(G) en conjuntos conexos tiene precisamente las aristas de G que unen dos particiones distintas. Si hay varias aristas entre dos de estos conjuntos, entonces se convierten en aristas paralelas de G/P. Sin embargo, normalmente no le daremos a G/P bucles provenientes de aristas de G cuyos extremos yacen en la mismo conjunto conexo de la partición.

Si v es un vértice de grado 2 en un multigrafo G, luego **suprimir** v significa quitarlo y agregar una arista entre sus dos vecinos. (Si dos aristas incidentes son identicas, i.e. forman un bucle en v, no agregamos ninguna arista y solo obtenemos $G \setminus v$. Si ambas aristas van al mismo vértice $w \neq v$, la arista agregada será entonces un bucle en w. Ver la Figura $\ref{eq:condition}$.) Como los grados de todos los vértices distintos de v permanecen inmutados cuando v es suprimido, suprimir varios vértices de G siempre nos dará un multigrafo bien definido, que es independiente del orden escogido para suprimir los vértices.

En cuanto a terminología, algunos autores se refieren a los multigrafos como grafos; en este contexto nuestros grafos serían llamados **grafos simples**.

Bibliografía

[DSS10] Reinhard Diestel, Alexander Schrijver, and Paul Seymour. $Graph\ theory$, volume 7. 2010.