Álgebra lineal

Trabajo práctico N°4 - 2022

Representación matricial de transformaciones lineales

- 1. Considerar las transformaciones lineales $R_{\frac{\pi}{2}}$, S_Y , H_2 y P_X del ejercicio 11 de la práctica 2 y escribir su representación matricial con respecto a la base $B = \{(1,1), (1,-1)\}$.
- 2. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$, la transformación lineal dada por T(x,y,z) = (z,y+z,x+y+z).
 - a) Hallar la representación matricial de T con respecto a la base canónica de \mathbb{R}^3 .
 - b) Sea $B = \{(1, 1, 0), (1, 2, 3), (1, 3, 5)\}$. Hallar las matrices de cambio de base $P_{\mathcal{E},B}$ y $P_{B,\mathcal{E}}$.
 - c) Hallar la representación matricial de T con respecto a la base B.
- 3. Sea $T: \mathbb{R}^2 \to \mathbb{R}^3$, la transformación lineal dada por T(x,y) = (3x+y,-y,x+y). Consideremos $B = \{(1,1),(-1,0)\}$ y $\tilde{B} = \{(1,0,1),(1,-1,0),(0,2,1)\}$, bases de \mathbb{R}^2 y \mathbb{R}^3 , respectivamente. Hallar la matriz $[T]_{\tilde{B},B}$, es decir, la matriz de la transformación T con respecto a las bases B y \tilde{B} .
- 4. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$, la transformación lineal dada por T(x,y,z) = (2y+z,x-4y,3x).
 - a) Hallar $[T]_B$ para la base $B = \{(1,1,1); (1,1,0); (1,0,0)\}$ de \mathbb{R}^3 .
 - b) Probar que $[T(v)]_B = [T]_B [v]_B$, para $v \in \mathbb{R}^3$.
- 5. Sea $T: \mathbb{C}^2 \to \mathbb{C}^2$ la transformación lineal dada por T(x,y) = (y,0). Consideremos la base $B = \{(1,i), (-i,2)\}$ de \mathbb{C}^2 como \mathbb{C} -EV.
 - a) Hallar la representación matricial de T con respecto a las bases \mathcal{E} y B.
 - b) Hallar la representación matricial de T con respecto a las bases B y \mathcal{E} .
 - c) Hallar la representación matricial de T con respecto a la base B. Calcular el determinante y la traza.
 - d) Elegir otra base de \mathbb{C}^2 y hallar la representación matricial de T con respecto a esa base. ¿Puede decir cuánto valen el determinante y la traza sin hacer las cuentas? Justificar.
- 6. Consideremos a \mathbb{C} como un \mathbb{R} -EV y sea $T:\mathbb{C}\to\mathbb{C}$ dada por $T(z)=\overline{z}$.
 - a) Probar que T es una transformación lineal.
 - b) Hallar la representación matricial $[T]_B$ para la base $B = \{1, i\}$ y $[T]_{\tilde{B}}$ para la base $\tilde{B} = \{1 + i, 1 i\}$.

Algebra lineal 2022

- c) Hallar $P_{B,\tilde{B}}$ y $P_{\tilde{B},B}$.
- d) Probar que $[T]_{\tilde{B}} = P_{\tilde{B},B} \, [T]_B \, P_{B,\tilde{B}}$
- 7. Sea $T: \mathbb{R}_2[x] \to \mathbb{R}^3$, la transformación lineal dada por

$$T(ax^{2} + bx + c) = (a + 2b + c, a + b, 2a + b - c).$$

- a) Hallar una representación matricial de T.
- b) Hallar la dimensión del núcleo y de la imagen.
- c) Sea W un subespacio de \mathbb{R}^3 tal que $W \oplus \operatorname{Im}(T) = \mathbb{R}^3$. Hallar $T^{-1}(W)$.
- 8. a) Sean V un \mathbb{K} -EV de dimensión 5 y $B = \{b_1, \dots, b_5\}$ una base (ordenada) de V. Supongamos también que $T \in L(V)$.
 - 1) Hallar la representación matricial de T en la base B si

$$T(b_j) = \begin{cases} b_{j+1} & \text{si } j = 1, 2, 3, 4 \\ 0 & \text{si } j = 5 \end{cases}$$

- 2) Probar que $T^5 = 0$ pero $T^4 \neq 0$.
- b) Optativo. Supongamos ahora que $\dim(V) = n$ y que $B = \{b_1, \dots, b_n\}$ es una base (ordenada) de V. Hallar la representación matricial de T en la base B si

$$T(b_j) = \begin{cases} b_{j+1} & \text{si } j = 1, \dots, n-1 \\ 0 & \text{si } j = n \end{cases}$$

Probar que ocurre lo mismo que en el inciso anterior, es decir $T^n=0$ pero $T^{n-1}\neq 0$.

Sugerencia: Notar que $b_j = T^{j-1}(b_1)$ y probar que $T^n(b_j) = 0$ para $j = 1, \dots, n$.

- c) **Optativo.** Supongamos que $S \in L(V)$ es cualquier operador lineal tal que $S^n = 0$ y $S^{n-1} \neq 0$. Probar que existe una base (ordenada) de V, tal que la representación matricial de S en esa base, coincide con la matriz hallada en el ítem anterior.
- d) Optativo. Probar que si $M, N \in \mathbb{K}^{n \times n}$ son tales que $M^n = N^n = 0$, $M^{n-1} \neq 0$ y $N^{n-1} \neq 0$, entonces M y N son semejantes.
- 9. Sean $B = \{b_1, b_2, b_3\}$ una base de \mathbb{R}^3 y $\tilde{B} = \{c_1, c_2, c_3, c_4\}$ una base de \mathbb{R}^4 . Sea $T \in L(\mathbb{R}^3, \mathbb{R}^4)$ tal que

$$[T]_{\tilde{B},B} = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 1 \\ 2 & 1 & 4 \\ 3 & -2 & 5 \end{pmatrix}.$$

- a) Hallar $T(3b_1 + 2b_2 b_3)$ y decir cuáles son sus coordenadas en la base \tilde{B} .
- b) Hallar una base para el núcleo y otra para la imagen de T.
- c) Hallar $T^{-1}(c_1 3c_3 c_4)$.