Outline
Software quality assessment
Floyd Method
Hoare Logic
Next lecture
Questions
References

Software Systems Verification and Validation

Lecture 07 - Correctness - Floyd, Hoare

Lect. dr. Andreea Vescan

Babeș-Bolyai University Cluj-Napoca

2015-2016

- Software quality assessment
 - Quality and quality assessment activities
 - Program verification
 - Program verification methods
- Ployd Method
 - Floyd Method Inductive assertions
 - Floyd Partial correctness
 - Floyd Termination
- Hoare Logic
 - Hoare Logic
 - Semantics of Hoare triples
 - Hoare Partial correctness
 - Hoare Total correctness
- Mext lecture
 - Next lecture
- Ouestions

Software quality assessment

- Software quality: Conformance to explicitly stated functional and performance requirements, explicitly documented development standards, and implicit characteristics that are expected of all professionally developed software. [Pre00]
 - correctness the extent to which a program conforms to its specification.

Quality and quality assessment activities Program verification Program verification methods

Program verification

- Program verification
 - proof-based, computer-assisted, program-verification approach, mainly used for programs which we expect to terminate and produce a result
 - model-based, automatic, property-verification approach, mainly used for concurrent, reactive systems (originally used in a post-development stage) - model checking

Program verification methods

- Floyd Method Inductive assertions
- Hoare Semantics of Hoare triples
- Dijkstra's Language- Guarded commands, Nondeterminacy and Formal Derivation of Programs

Floyd Method - Inductive assertions [Flo67]

- Input: The condition satisfied by the initial values of the program.
- Output: The condition to be satisfied by the output of the program.
- Method: Steps:
 - Cut the loops
 - 2 Find an appropriate set of inductive assertions.
 - Onstruct the verification/termination conditions.

Floyd - Termination

Partial correctness

- Method:
 - Cut the loops.
 - Prind an appropriate set of inductive assertions.
 - Construct the verification conditions.
- Theorem: If all verification conditions are true, then the program is partially correct, i.e., whenever it terminates the result is correct.
- The method is useful when it is combined with termination.

Floyd Method - Inductive assertions Floyd - Partial correctness Floyd - Termination

Steps - Partial correctness

- Cutting points are chosen inside the algorithm
 - 1 point at the beginning of the algorithm, 1 point at the end;
 - ② At least 1 point for each loop statement
- For each cutting point an assertion (invariant predicate) is chosen.
 - Entry point $\varphi(X)$;
 - 2 Ending point $\psi(X, Z)$.
- Construction of the verification conditions
 - **1** Path from i to j α ;
 - P_i and P_j are assertions in i and j;
 - **3** $R_{\alpha}(X,Y)$ predicate that gives the condition for path α ;
- Theorem: If all the verification conditions are true then P is

Example - Partial correctness

```
• Algorithm for z = x^y

z := 1; u := x; v := y;

While (v > 0) execute

If (v \text{ is even})

then u := u * u; v := v/2;

else v := v - 1; z := z * u;

endIf

endWhile

endAlg;
```

```
Algorithm for z=x^y z:=1;\ u:=x;\ v:=y; A: \varphi(X)::=(v>0 \land (y\geq 0)) While (v>0) execute If (v \text{ is even}) then u:=u*u;\ v:=v/2; else v:=v-1;\ z:=z*u; endIf endWhile endAlg; C: \psi(X,Z)::=z=x^y
```

Example - Partial correctness

• Algorithm for $z=x^y$ $z:=1;\ u:=x;\ v:=y;$ A: $\varphi(X)::=(v>0 \land (y\geq 0))$ While (v>0) execute B: $\eta(X,Y)::=z*u^v=x^y$ If (v is even) then $u:=u*u;\ v:=v/2;$ else $v:=v-1;\ z:=z*u;$ endIf endWhile endAlg; C: $\psi(X,Z)::=z=x^y$

Floyd Method - Inductive assertions Floyd - Partial correctness Floyd - Termination

Termination

- Method:
 - ① Cut the loops and find "good" inductive assertions.
 - Choose a well-formed set M (i.e., an ordered set without infinite strictly decreasing sequences) and a "good" partial function mapping program variables in M. ("Good" means, if the assertions in a state are true, then the function is defined.)
 - Show the termination condition hold, i.e., the function strictly decreases at each loop.
- Theorem: If all termination conditions are true, then the program terminates.

Steps - Termination

- Steps:
 - Well-ordered set *M* partial ordered and doesn't have an infinite decreasing sequence.
 - To demonstrate that some termination conditions hold: passing from one cutting point to another the values of some functions in the well-ordered set decrease.
 - In point *i* a function is chosen $u_i: D_X \times D_Y \to M$ and the termination condition on α is:

$$\forall X \forall Y (\varphi(X) \land R_{\alpha}(X,Y) \rightarrow (u_i(X,Y) > u_j(X, r_{\alpha}(X,Y)))).$$

If partial correctness was demonstrated then the termination condition can be:
\(\text{V} \text{V} \text{V} \text{P} \text{V} \text{V} \text{P} \text{V} \

$$\forall X \forall Y (P_i(X) \land R_\alpha(X,Y) \rightarrow (u_i(X,Y) > u_j(X, r_\alpha(X,Y)))).$$

 Theorem: If all the termination conditions hold then the program P terminates.

Hoare triples [Hoa69]

- The meaning of a statement is described by a triple
 - $\{\varphi\}$ P $\{\psi\}$, where φ is called the precondition and ψ is called the postcondition.
 - Informal Meaning: "If the program P is run in a state that satisfies φ , then the state after its execution will satisfy ψ "
- Note the caveat: "all terminating executions of"
- If P does not terminate, we make no guarantees.
- This is called the partial correctness property

Semantics of Hoare triples

- Partial correctness
 - $\models_{\it par} \{\varphi\}P\{\psi\}$
 - only if P actually terminates.
- Total correctness
 - $\models_{tot} \{\varphi\}P\{\psi\}$
 - the program P is guaranteed to terminate.

Hoare rules - Assignment

- Consider the triple $\{P\}X := Y + 2\{Q\}$
 - Given predicate Q, for what predicate P does this hold?
 - for any P such that $[P \Rightarrow \langle X \leftarrow Y + 2 \rangle (Q)]$
- Examples

•
$$\{P_0\} X := Y + 2 \{X \le Y + 2\}$$

 $P_0 \equiv true$

•
$$\{P_1\} \ X := Y + 2 \ \{X < 0\}$$

 $P_1 \equiv (Y + 2 < 0)$

•
$$\{P_2\}\ X := Y + 2\ \{Y < 0\}$$

 $P_2 \equiv (Y < 0)$

•
$$\{P_3\} \ X := X + 2 \ \{X \text{ is even}\}\$$

 $P_3 \equiv (X \text{ is even})$

General Form: for any expression E

•
$$\{P\} \ X := E\{Q\} \ provided[P \Rightarrow \langle X \leftarrow E \rangle (Q)]$$

Hoare rules - Sequencing

We can conclude

$$\{P\}$$
 S; $T\{Q\}$
if we can find a predicate R such that $\{P\}$ S $\{R\}$ and $\{R\}$ $T\{Q\}$

Examples

•
$$\{P_0\} X := 2 * X; X := X + 1\{X > 0\}$$

 $P_0 \equiv (2 * X + 1 > 0)]$

•
$$\{P_1\} \ X := Y; \ Y := 3 \ \{X + Y < 5\}$$

 $\{P_1 \equiv (Y + 3 < 5)]$

Hoare rules - Conditionals

We can conclude

```
\{P\} IF (C) THEN S ELSE T END\{Q\} provided we can show \{P \land C\} S\{Q\} and \{P \land \neg C\}T\{Q\}
```

Examples

•
$$\{?\}\ \{((x > y) \Rightarrow Q_0) \land ((x \le y) \Rightarrow Q_1)\}\ IF\ (x > y)\ THEN\ Q_0: \{(m|x-y) \land (m|y)\}\ x := x - y\ ELSE\ Q_1: \{(m|x) \land (m|y-x)\}\ y := y - x\ END\ Q: \{(m|x) \land (m|y)\}\$$

• So our final proof obligations are

$$[(x > y) \Rightarrow (m|x - y) \land (m|y) \text{ and}$$
$$[(x < y) \Rightarrow (m|x) \land (m|y - x)]$$

- Mystery Program
 - ?

$$x := x + y$$
;

$$y := x - y$$

$$x := x - y$$

- Mystery Program
 - ?

$$x := x + y;$$

$$y := x - y$$

$$x := x - y$$

$$(x = A) \land (y = B)$$

- Mystery Program
 - ?

$$x := x + y;$$

 $y := x - y$
 $x := x - y \{(x - y = A) \land (y = B)\}$
 $(x = A) \land (y = B)$

- Mystery Program
 - ?

$$x := x + y;$$

 $y := x - y \{(x - (x - y) = A) \land (x - y = B)\}$
 $x := x - y \{(x - y = A) \land (y = B)\}$
 $(x = A) \land (y = B)$

- Mystery Program
 - ?

$$x := x + y; \{(y = A) \land (x - y = B)\}$$

$$y := x - y \{(x - (x - y) = A) \land (x - y = B)\}$$

$$x := x - y \{(x - y = A) \land (y = B)\}$$

$$(x = A) \land (y = B)$$

Mystery Program

• ?
$$\{(y = A) \land ((x + y) - y = B)\}$$

$$x := x + y; \{(y = A) \land (x - y = B)\}$$

$$y := x - y \{(x - (x - y) = A) \land (x - y = B)\}$$

$$x := x - y \{(x - y = A) \land (y = B)\}$$

$$(x = A) \land (y = B)$$

Mystery Program

• ? $\{(y = A) \land ((x + y) - y = B)\}$ $\{(y = A) \land (x = B)\}$ $x := x + y; \{(y = A) \land (x - y = B)\}$ $y := x - y \{(x - (x - y) = A) \land (x - y = B)\}$ $x := x - y \{(x - y = A) \land (y = B)\}$ $(x = A) \land (y = B)$

Mystery Program

```
• ?

 \{(y = A) \land ((x + y) - y = B)\} 
 \{(y = A) \land (x = B)\} 
 x := x + y; \{(y = A) \land (x - y = B)\} 
 y := x - y \{(x - (x - y) = A) \land (x - y = B)\} 
 x := x - y \{(x - y = A) \land (y = B)\} 
 (x = A) \land (y = B)
```

Thus this program swaps the values of x, y.

Hoare rules - Reasoning About Loops

How can we conclude

 $\{P\}$ WHILE (G) DO S END $\{Q\}$

At the end of the loop (assuming it terminates), we know $\neg G$ But in general we dont know how often S is executed...

Suppose we have a predicate J that is preserved by S
 {J}S{J} such a J is called a loop invariant
 Then, at the end of the loop, we can conclude

$$J \wedge \neg G$$

To establish the postcondition, we need J such that

$$[J \land \neg G \Rightarrow Q]$$

Hoare rules - Loops

We can conclude

$$\{P\}$$
 WHILE (G) DO S END $\{Q\}$ provided we can find a loop invariant J such that

$$[P \Rightarrow J]$$

$$[J \land \neg G \Rightarrow Q]$$

$$\{G \land J\}S\{J\}$$

J holds at loop entry
J establishes Q at loop exit
J is preserved by each iteration

```
• \{N \ge 0\}

m := 0; y := 1;

WHILE (m! = N) DO

y := 2 * y;

m := m + 1

END
```

```
• \{N \ge 0\}

m := 0; y := 1;

WHILE (m! = N) DO

y := 2 * y;

m := m + 1

END

\{y = 2^N\}
```

```
• \{N \ge 0\}

m := 0; y := 1;

WHILE (m! = N) DO J : \{y = 2^m\}

y := 2 * y;

m := m + 1

END

\{y = 2^N\}
```

- Need to show that invariant
 - holds initially
 - is preserved by loop body $\{J\}$ y := 2 * y; $m := m + 1 \{J\}$
 - establishes postcondition $[J \land (m = N) \Rightarrow (y = 2^N)].$


```
• \{N \ge 0\}

m := 0; y := 1;

\{y = 2^m\}

WHILE (m! = N) DO J : \{y = 2^m\}

y := 2 * y;

m := m + 1

END

\{y = 2^N\}
```

- Need to show that invariant
 - holds initially
 - is preserved by loop body $\{J\}$ y := 2 * y; $m := m + 1 \{J\}$
 - establishes postcondition $[J \land (m = N) \Rightarrow (y = 2^N)].$

- Multiplication using addition
 - Precondition $B \ge 0$
 - Postcondition $R = A * B \Rightarrow \{B \ge 0\}$ $S\{R = A * B\}$
 - Solution:

```
\{B \ge 0\}
"initialize R"
WHILE (G) DO
"update R"
END
\{R = A * B\}
```

Hoare Logic Semantics of Hoare triples Hoare - Partial correctness Hoare - Total correctness

Hoare rules - Loop Example

- Multiplication using addition
 - Precondition $B \ge 0$
 - Postcondition $R = A * B \Rightarrow \{B \ge 0\}$ $S\{R = A * B\}$
 - Solution:

```
\{B \ge 0\}
"initialize R"
WHILE (G) DO
"update R"
END
\{R = A * B\}
```

- Rule: replace constant with variable in postcondition Q to obtain a loop invariant J such that $[(J \land \neg G) \Rightarrow Q]$
 - Introduce variable b and add the invariant J defined as R = A * b
 - To ensure postcondition, choose G to be $(b \neq B)$ since

- Multiplication using addition (2)
 - the loop invariant will be (R = A * b) and the loop guard will be $(b \neq B)$
 - To ensure that invariant holds initially, we initialize with
 R := 0: b := 0

- Multiplication using addition (2)
 - the loop invariant will be (R = A * b) and the loop guard will be $(b \neq B)$
 - To ensure that invariant holds initially, we initialize with R := 0; b := 0
 - In each iteration, we increase b by 1 , giving $\{B \ge 0\}$ R := 0; b := 0; WHILE $((b \ne B) \text{ DO } J: \{R = A * b\}$

$$R := ? \Rightarrow R := R + A$$

 $b := b + 1$

END

 $\{R = A * B\}$

• Exponentiation using multiplication

•
$$\{(A > 0) \land (B \ge 0)\}\ S\ \{R = A^B\}$$

- Exponentiation using multiplication
 - $\{(A > 0) \land (B \ge 0)\}\ S\ \{R = A^B\}$
 - Solution: Again, we replace a constant with a variable use loop invariant $I: R = A^b$

```
invariant J: R = A^b

\{(A > 0) \land (B \ge 0)\}

R:=?; b:=0 R:=1

WHILE (b \ne B) DO J: R = A^b

R:=?; R:=R*A;

b:=b+1

END

\{R = A^B\}
```

Hoare - Partial and Total correctness

- Recall that we interpreted {P}S{Q} as
 "when started in a state satisfying P, any terminating execution of S ends in a state satisfying Q"
- The "total correctness" interpretation also requires termination
 - "when started in a state satisfying P, any execution of S must terminate in a state satisfying Q " $\,$
- Informally
 - proof of total correctness = proof of partial correctness
 + proof of termination

Hoare Rules - Total correctness

Assignment

$$\{P\} \ X := E \ \{Q\} provided[P \Rightarrow \langle X \leftarrow E \rangle (Q)]$$

Sequencing

$$\{P\}$$
 S ; $T\{Q\}$ provided $\{P\}$ S $\{R\}$ and $\{R\}$ T $\{Q\}$ for some R

Conditional

$$\{P\}$$
 IF (G) THEN S ELSE T END $\{Q\}$ provided $\{P \land G\}$ S $\{Q\}$ and $\{P \land \neg G\}$ T $\{Q\}$

Note: Same as the rules for partial correctness!

Hoare Rules - Total correctness

- Total correctness rule for loops
- Consider{P} WHILE (G) DO S END {Q}
- How do we show that the loop terminates?
- One method find an integer expression V such that the value of V is nonnegative (that is V ≥ 0), and the value of V (strictly) decreases in every iteration that is, {V = K} S {V < K}
- Such an expression is called a "loop variant"

Hoare Rules - Total correctness - loop

Exponentiation using multiplication

```
• \{(A > 0) \land (B > 0)\}\ \{R = A^B\}
• Recall loop invariant J: R = A^b \land (B \ge b);
  \{(A > 0) \land (B > 0)\}
  R := 1: b := 0
  WHILE (b \neq B) DO J: R = A^b \land (B > b);
  R := R * A:
  b := b + 1
  FND
  {R = A^B}
```

- We define loop variant V to be the expression (B-b)
- Note: V strictly decreases with every loop iteration, because [(B-(b+1))<(B-b)]
- How do we show that V is non-negative?

Summary: Total Correctness Rule for Loops

- To show {P} WHILE (G) DO S END {Q}
 we find a loop invariant predicate J and a loop variant expression V such that
 - J holds initially $[P \Rightarrow J]$
 - J establishes the postcondition upon exit

$$[(J \land \neg G) \Rightarrow Q]$$

- is preserved by loop body { *J* } *S* { *J* }
- variant V strictly decreases in every iteration $\{V = K\}$ S $\{V < K\}$
- variant V is always non-negative $[J \Rightarrow (V > 0)]$

Next lecture

- Correctness Dijkstra
- Static analysis ESC/Java tool Topic of Laboratory 6!

References I

[Flo67] Robert W. Floyd.
Assigning meanings to programs.

In Proceedings of Symposia in Applied Mathematics, pages 19–32, 1967.

[Hoa69] C. A. R. Hoare.

An axiomatic basis for computer programming. *Commun. ACM*, 12(10):576–580, 1969.

[Pre00] Roger S. Pressman.

Software Engineering: A Practitioner's Approach.

McGraw-Hill, Inc., 2000.