LaPIS Diagnostic Test Workbook - Mathematics

Name : Vibish K S

Class: 7

Section : A

School : AKV Public School

Login ID : AKV119

Vibish K S's Performance Report

Score: 20/40 Percentage: 50.0%

Vibish K S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Data handling

	Topics to be Improved	
Chance of probability	Basis of probability	
Hi, here in this video you	will learn Basics of probability	
Question: 1		
Identify the sure events and im	possible events	
(i) The sun rises in the west.		
(ii) Water is colourless.		
(iii) Clock rotates in clock wis	se direction.	
(iv) Ball is square in shape.		
Answer:		
Events that cannot occur are called. The sun rises in the west event.	alled (sure/ impossible) events. alled (sure/ impossible) events. is event. Water is colourless is ection is event. Ball is square in shape is	
Question: 2		
Probability of sure events is	(greater / smaller) than probability	of impossible events.
$\underline{Answer:}$		
	= $(0/ 1/ any number).$ $=$ $(0/ 1/ any number).$ event $=$ Probability of impossible event.	
$Question: 3 \cdots$		
Raju has pencil, an eraser, a sc probability of getting a pen fro	eale, sharpener, colour pencil and protractor in h m his box.	his box. What is the
Answer:		
Things Raju have Does Raju have pen in his box. Then probability of getting per	, (Yes/ No).	

Geometry

Topics to be Improved		
Angle sum property of triangle	Angle sum property of triangle	
Related angles Basic of angles		
Faces vertex and edges	Idenfication of faces, edges and vertices	
Right angle triangle and pythagoras property Basics of Pythagoras property		
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	

.....

Hi, here in this video you will learn Angle sum property

Question: 4

Sum of the angles of triangle is ______.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Question: 5

Which of the following triangle satisfy the angle sum property.

Answer:

 $\underline{\textit{Question: } 6}$

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is ______ Let's consider the angles of triangle be 8x, ____ and ____ We know sum of the angles of a triangle is ____ Therefore, 8x+ ____ + ___ = 180° . The value of x= _____ The angles of the triangle are _____

Hi, here in this video you will learn Related Angles

Question: 7

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a $\underline{\hspace{1cm}}$ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A _____ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ °and it is called _____ angles.

Question: 8

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC =$ ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
 Therefore,
$$\angle DBE = \underline{\hspace{1cm}}$$

Question: 9

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to _____.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE =$ ______, and its complement angle is ______.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn Basics of 3D model

Question: 10					
A point at which t	wo or more lines segments	meet is called	(Verte	ex/ edges/	faces).

Answer:

has two end point (line/line segment/ray).

A ______ is a point where two or more line segments meet(Vertex/ edges/ faces).

Mark the vertices in the diagram,

Question: 11

Mark and find the number of vertices, edges and faces in a cube.

Answer:

Mark the vertex, edges and faces in a cube.

Count the number of vertex, edges and faces in a cube. Cube have vertices, edges and faces.
Question: 12
How many vertices, edges and faces does dices have?

Answer:	
The shape of dice is Dices have vertices, edges and faces.	
blees have vertices, euges and races.	muero m
Hi, here in this video you will learn Pythagoras property	
Question: 13	
In a right angled triangle, square of the $___$ = sum of legs.	the squares of the
Answer:	
Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two s (hypotenuse/ legs). Pythagoras theorem states that	
Question: 14	
Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.	

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its Given: Base = _____, Altitude = _____, Base and altitude are _____ (hypotenuse/legs) of the triangle. By Pythagoras theorem, $(_{)}^{2} = (_{)}^{2} + (_{)}^{2}$ Therefore, hypotenuse of the triangle is _____. Question: 15 Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm. Answer: $_{\rm cm}$ cmPythagoras theorem states that square on the _____ = sum of the squares on Is Pythagoras theorem applicable in rectangle? ____ (yes/ no). Given: breadth = _____, length of diagonal = _____ By Pythagoras theorem, $(_{)}^{2} = (_{)}^{2} + (_{)}^{2}$ Therefore, diagonal of the rectangle is _____ Hi, here in this video you will learn Criteria of congruence Question: 16 Circle the groups that contain congruent images.

Answer:

Two geometrical shapes are said to be congruent if they are (identical/non-identical) in shapes and size. Example: Square and Rectangle are (congruent/not congruent).
Question: 17
If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under (SSS/ASA/SAS) criteria .
$\underline{Answer:}$
Two triangle are (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, and
1. In SSS Congruence criteria - $(2/3/5)$ sides of the triangle are (equal/not equal) to the three corresponding sides of the other triangle.
2. In SAS Congruence criteria - $(2/3/5)$ sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
3. In ASA Congruence criteria (2/ 3/ 5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 18

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Number system

Topics to be Improved			
Integers	Basics of integers		
Operations on rational numbers	Division of rational numbers		
Positive and negative rational numbers	Identification of positive rational numbers		
Fractions	Multiplication of fractions, Division of fraction		
Exponents	Solving exponents		
Properties of integers	Associative property		

Hi, here in this video you will learn Basics of integers

Question: 19

Highlight the ring that contains whole numbers.

Answer:

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers.

The numbers inside the middle ring are _____ numbers.

The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as ______.

Question: 20

Colour the frame of the box which contains the number 1, 4 and -10

Whole numbers

Negative numbers

Integers

Naturals numbers

1	ns		nn	
\boldsymbol{H}	มเร	w	er:	•

Whole number consists of $\underline{0,1,2,3,4,...}$. Negative number consists of ______. Natural numbers consists of ______.

Now, 1, 4, -10 are in _____

Question: 21

State whether the statement is true or false.

Every positive number is an integer.

Answer:

Positive numbers are ______. Integers consists of _____.

Therefore, positive numbers are ______ (in/not in) integers.

Hi, here in this video you will learn **Operation on rational numbers**

Question: 22

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \boxed{\square}$$

......

.....

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor.

Here, dividend = _____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 23

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of 0.6 =

when any fraction is divided by a fraction, we multiply the dividend by the $_$ (same/reciprocal) of the divisor. Here, dividend = $_$ and divisor = $_$.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 24

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\Box} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 25

Segregate positive and negative rational number.

 $\underline{Answer:}$

• If both the numerator and the denominator of a rational number are
• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
$\underline{Question:~26}$
$\frac{-3}{-4}$ is a (positive / negative / neither positive nor negative) rational number.
Answer:
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
Question: 27
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Multiplication on fractions
<u>Question: 28</u>
Fill the boxes
$2+4+\frac{6}{2} = \frac{2}{\square} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$
$\underline{Answer:}$
The whole number can be expressed in fraction with denominator equal to (zero/one). Therefore, 2 can be written as in fraction. 4 can be written as in fraction.
$2+4+6 = 2 + 4 + = 2 + 4 + 3 = \square = 9$

Question: 29

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = $_$

Fraction of students who are girls = _____

Number of girls = \times = = =

Question: 30

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{\qquad} \times \frac{2}{3} = \boxed{\qquad}$$

Hi, here in this video you will learn Division on fractions

Question: 31

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction.

Here, 5 is ______, 2 is _____ and 7 is _____.

To convert mixed fraction into improper fraction, (Whole × ____

Question:	39
Question:	02

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by _____ (same / reciprocal) of the divisor. Here, dividend = _____ and divisor = ____.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \square = \square$$

.....

Question: 33

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by ____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is ___

Hi, here in this video you will learn **Exponents and power**

Question: 34

Find the exponential form of 1000.

Answer:

____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

.....

Exponents is also called as _____ (Base / Power).

1000 can be written as = $10 \times$ 10 is raised to the power of $\underline{\hspace{1cm}} = (10)^{\underline{\hspace{1cm}}}$

Question: 35

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
, base = ____, power = ____.
 $(-2)^3$ = ____ × ___ × ___ = ___.

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn **Properties of integers**

Question: 37

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
c	15 + 17 = 32
d	1 + 99 = 99 + 1

.....

Answer:

(i) Closure property:

The sum of integers is always _____(integer / not a integer).

Therefore, _____ + ____ = ____

From the given option ______ satisfies the closure property.

(ii)	Associative property: Rearranging the parentheses	(brackets)	(does not/	does) change the sum.
	Therefore, $(a + b) + c = \underline{\hspace{1cm}}$,
	From the given option	satisfie	s the Associative prope	erty.
(iii)	Commutative property: Changing the order of the ad Therefore, $a + b = \underline{\hspace{1cm}}$ From the given option	+		
(iv)	Identity property: The sum	of and a	ny number always retu	ırns same number.
	Therefore, $a + \underline{\hspace{1cm}} = a$ From the given option $\underline{\hspace{1cm}}$	satisfie	s the Identity property	7.
	stion: 38 the operations in which com	nutative property	holds true for any tw	o integers.
	Addition	Subtraction	Multiplication	Division
Ans	wer:			
In co	mmutative property, changing (does not/ does) cl		(order/ brackets)	of the operands
For a	ony two integers, commutative commutative property for add commutative property for mul	property holds to		
Que	stion: 39			
Are a	additive identity and multiplic	ative identity the	same? (Yes or No)	
\underline{Ans}	wer:			
The I	ity property holds only for Identity property for addition Identity property for multiplic	is	$_{-}$ and additive identity	
Ther	efore, additive identity is	(equal / not	equal) to multiplicative	ve identity.

Comparing Quantities

Topics to be Improved				
Equivalent ratios Basic of proportion				
Percentage	Basic of percentage			

Hi, here in this video you will learn Basics of proportion	
Question: 40	
If a:b and c:d are equivalent ratio, then it can be expressed as	
Answer:	
A (proportion / ratio) is used to express (one/two) equivalent Standard form to express proportion is	ratios.
Question: 41	

Find the ratio of shaded part to unshaded part of A and B. Are the two ratios equivalent ?

Answer:

Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of $A = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of A is Fractional form =
Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of B is
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.
Question: 42

If a: b:: c: d is proportion, shade the correct expression

$\boxed{a = \frac{bc}{d}}$ $\boxed{c = \frac{ad}{b}}$ $\boxed{ad=cd}$
Answer:
Two equivalent ratio which are proportion, it can be written as a : b :: c : d or = (in fraction) . First and fourth term are called and second and third term are called In proportion, product of extreme terms is (equal to/ not equal to) product of middle terms. Therefore, a \times d =,
then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$
Hi, here in this video you will learn Basics of percentage
Question: 43
2% can be written as
Answer:
Percentages are numerators of fractions with denominator $2\% = { }$
Question: 44
Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?
Answer:
Arun attended LaPIS test for marks. He got marks.
75 % can be written in fraction form
Then the mark scored by Arun = Total mark \times 75% = \times =

apples.

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten

There are $___$ apples in a bas	ket.	
Number of rotten apples are		
Fraction form of rotten apples in	ı a basket =_	
Convert it into a percent—	v	% _

Algebra

Topics to be Improved				
Monomials, binomials, trinomials and polynomials	Types of algebraic expression			
Terms of an expression	Identification of terms in an expression			
Addition and subtraction of algebraic expressions	Like terms and Unlike terms			
Basics of simple equation	Solving of simple equation			
subtraction of algebraic expressions	subtraction of algebraic expressions			

Hi,	here	in	this	video	you	will	learn	Types	of	expression
-----	------	----	------	-------	-----	------	-------	-------	----	------------

Question	n: 46	ĵ

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, $___$ (variables/ terms) are connected together with operations of addition.

......

The terms in the expression are $____$, $____$, and $____$.

Therefore, there are ______ terms in the expression.

Question: 47

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.

	*	n + 2 are		
$5m^2 + m + 0$ is a	ex	xpression. (Monomia	l/ Binomial/ Trinom	nial)
Answer:				
		0 are terms and it is		expression.
Hi, here in this	video you wi	ll learn Terms o f	f an expression	
Question: 49				
		s for all the terms gi		
1				
	18	$16r 54c^4$	$-4mn$ z^2	
	4x	12 x	ab	
A				
<i>Answer:</i>	ian waniahlaa an	a nannagantad br	and Car	natantia a
m argebraic express ———.	ion, variables ar	e represented by		nstant is a
	Terms	Constants	Variables	
Question:~50				
Mark the expression $3x + 5$ 12a	4xy 12a+b+			
Answer:				
	pression $3x + 5$	is/are		
	-	are		
		are		
		0 + 1 is/are 0 is/are		
Question: 51				
Shade the outline of	f circle that cont	tains the term of the	given expression.	

$6m^2$	_	7mn	+	nl	1
OHL	_	-111616	$\overline{}$	11.1	,

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

Here, _____, are the terms of the given expression.

Hi, here in this video you will learn **Addition on expression**

Question: 52

Shade the like terms.

Answer:

Given terms are _____

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 53

Complete the expression $7r^2 + r \Box - 2 \Box = \underline{} r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7 + 2} - _{2})_{r^2} =$$

.....

Question: 54

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

- (i) Total chocolates Ram and Sam have: _____.
- (ii) How many icecreams Sam have more than Ram:

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i)) Total	${\it chocolates}$	Ram	and	Sam	have	:
-----	---------	--------------------	-----	-----	----------------------	------	---

Ram's chocolate + Sam's chocolates = _____ + ____ = ___

_____ icecream - ____ icecream = ____ - __ = ____

......

.....

.....

Hi, here in this video you will learn Solving an equation

Question: 55

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

Question: 56

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

 $7 \cap + 3 = -4$

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times __+3 = __$$

$$7 \times$$
 _____+ $3 =$ _____

$$7 \times$$
____+ $3 =$ ____

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 57

Arrange the terms in the descending order when the value of x is 2.

$$2x$$
 $5x \times 1$ $x+3$ $2x-4$ $\frac{1}{2}x$

Answer:

The given expression are _____

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____, _____, _____.

Hi, here in this video you will learn Subtraction on expression

Question: 58

Find the sum of two expressions a + b + c and b + c + d

Answer:

The	given	two	expres	ssions	s ar	·е		and	
CD1			•11		1 1	1	1	· C + 1	

The two terms will get added only if they are _____(Like/ Unlike) terms.

The sum of two expressions = $_$ + $_$.

The answer is _____

Question: 59

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

......

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

- (i) Number of boys in school A = _____,

 Number of boys in school B = _____.

 Total number of boys in school A and school B is _____ + ___ = ____
- (ii) Number of boys in school $B = \underline{\hspace{1cm}}$, Number of girls in school $B = \underline{\hspace{1cm}}$.

 Total number of students in school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 60

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$