WRITE FIRST NAME, LAST NAME, AND ID NUMBER ("MATRICOLA") BELOW AND READ ALL INSTRUCTIONS BEFORE STARTING WITH THE EXAM! TIME: 2.5 hours.

FIRST NAME:	 	 	
LAST NAME: .	 	 	
ID NUMBER:	 	 	

INSTRUCTIONS

- solutions to exercises must be in the appropriate spaces, that is:
 - Exercise 1: pag. 1, 2, 3
 - Exercise 2: pag. 4, 5
 - Exercise 3: pag. 6, 7, 8
 - Exercise 4: pag. 9, 10, 11, 12

Solutions written outside the appropriate spaces (including other papersheets) will not be considered.

- the use of notes, books, or any other material is forbidden and will make your exam invalid;
- electronic devices (smartphones, calculators, etc.) must be turned off; their use will make your exam invalid;
- this booklet must be returned in its entirety.

Exercise 1 [8 points]

In the context of supervised learning:

- 1. provide the definition of the regression task
- 2. consider the following model class that is linear in the parameter:

$$h(x) := \mathbf{w}^{\mathsf{T}} \Psi(x) \quad \Psi(x) = [\psi_1(x), ..., \psi_L(x)]^{\mathsf{T}} \quad x \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^L$$

where $\Psi(x) = [\psi_1(x), ..., \psi_L(x)]^{\top}$ can be a generic function, e.g., recall the polynomial regression case where $\Psi(x) = [1, x, x^2,, x^{L-1}]^{\top}$. Write the explicit expression of the least squares estimator of \mathbf{w} given data (x_k, y_k) , k = 1, ..m.

3. Recalling the answer to the previous question, consider the one-hidden-layer neural network

$$h(x) := \sum_{i=1}^{L} w_i \sigma(\alpha_i(x - \beta_i)) \quad x \in \mathbb{R}$$

where $\alpha_i, w_i, \beta_i, i = 1, ..., L$, are the network parameters. Show that for α_i and β_i fixed, the optimal w_i can be found in closed form under the square loss.

[Solution: Exercise 1]

[Solution: Exercise 1]

[Solution: Exercise 1]

Exercise 2 [8 points]

Consider a generic machine learning problem and assume that a regularized loss function has been used by the selected algorithm A. In the loss function the relevance of the regularization term is controlled by a parameter λ . Let us denote with h_A the solution found by algorithm A and with $L_S(h_A)$ its empirical risk while the true risk (generalization error) of h_A is $L_D(h_A)$.

- 1. Which is the impact of the λ parameter on the empirical risk $L_S(h_A)$ of the solution found by A?
- 2. Which is the expected behavior of the true risk $L_D(h_A)$ of the found solution as a function of the λ parameter?
- 3. Describe how the behavior of the empirical risk and of the true risk in the answers to the previous questions are related to the bias-complexity trade-off.

[Solution: Exercise 2]

[Solution: Exercise 2]

Exercise 3 [8 points]

Consider a classification problem with 0-1 loss.

- 1. Provide the definition of VC dimension $VCdim(\mathcal{H})$ of a hypothesis set \mathcal{H} , and of empirical error and true risk (generalization error) for an arbitrary hypothesis $h \in \mathcal{H}$. What is the relation between the empirical error and the true risk in terms of the VC dimension of \mathcal{H} ?
- 2. Consider the hypothesis set \mathcal{H} defined as: $\mathcal{H} = \{h_{a,b} : a, b \in \mathbb{R}, a < b\}$ where $h_{a,b} : \mathbb{R} \mapsto \{0,1\}$ is

$$h_{a,b}(x) = \begin{cases} 1 & \text{if } x \le a \ OR \ x \ge b \\ 0 & \text{otherwise} \end{cases}$$

What's the value of $VCdim(\mathcal{H})$? Provide a proof of your claim.

3. Assume that you have many hypothesis sets, denoted by \mathcal{H}_i , i = 1, 2, ..., n. Describe one strategy to choose a good hypothesis set \mathcal{H}_i and a good model $\hat{h}_i \in \mathcal{H}_i$.

[Solution: Exercise 3]

[Solution: Exercise 3]

[Solution: Exercise 3]

[Solution: Exercise 3]

Exercise 4 [8 points]

Consider the problem of clustering.

- 1. Introduce the k-means clustering problem, rigorously defining its cost function.
- 2. Consider Lloyd's algorithm. What is the rule that is used to update the cluster centers after the points are assigned to clusters? Prove that such rule minimizes the k-means cost for the given assignment of points to clusters (i.e., once the assignment of points to clusters is fixed).
- 3. Consider the data in the figure below where each point $\mathbf{x} \in \mathbb{R}^2$ is represented by a cross. Draw (approximately) the output of Lloyd's algorithm for k = 3 when
 - (a) the initial centers for the algorithm are the circles;
 - (b) the initial centers for the algorithm are the squares.

Which one of the two resulting clusterings has a lower cost?

[Solution: Exercise 4]

[Solution: Exercise 4]

[Solution: Exercise 4]