Конспект лекций по дисциплине

Дифференциальные уравнения

Новосибирский государственный университет Физический факультет

4-й семестр

2025 год

Студент: Б.В.О

Преподаватель: Скворцова Мария Александровна

Оглавление

1	Bap	риационное исчисление.	2
	1.	Примеры задач вариационного исчисления	2
	2.	Простейшая задача вариационного исчисления	4
	3.	Необходимые условия локального экстремума	4
	4.	Случай понижения порядка в уравнении Эйлера	7
	5.	Решение задачи о брахистохроне	8
	6.	Решение задачи о поверхности вращения наименьшей площади	11
	7.	Вариационная задача с несколькими функциями	12

Глава 1: Вариационное исчисление.

1. Примеры задач вариационного исчисления

Задача математического анализа:

Есть кривая заданная функцией f(x) найти точки экстремума:

$$f'(x) = 0 \Rightarrow x_1, x_2$$
 — точки, подозреваемые на экстремум

$$f''(x_1) < 0 \Rightarrow x_1 - \max$$

 $f''(x_2) > 0 \Rightarrow x_2 - \min$

 $3 a \partial a$ ча вариационного исчисления: Функционал: $I[y] = \int_{x_0}^{x_1} F(x,y(x),y'(x)) dx$ Найти функцию y(x) такую, что I[y] принимает min или max

Пример 1 : задача наискорейшего спуска (задача Брахистохроне)

Найти кривую y(x) по которой тело из точки A в точку B попадет за наименьшее время.

3.C.9:
$$mgy_0 + 0 = mgy(x) + \frac{m|v|^2}{2}$$

$$|v| = \sqrt{v_x^2 + v_y^2} = \sqrt{\left(\frac{\partial x}{\partial t}\right)^2 + \left(\frac{\partial y}{\partial t}\right)^2} = \sqrt{1 + (y'(x))^2} \frac{dx}{dt}$$

$$\sqrt{2g(y_0 - y(x))} = |v| = \sqrt{1 + (y(x)')^2} \frac{dx}{dt}$$

$$T = \int_0^T dt = \int_{x_0}^{x_1} \frac{\sqrt{1 + (y'(x))^2}}{\sqrt{2g(y_0 + y(x))}} dx$$

Пример 2 : задача поверхности вращения наименьшей площади.

Площадь $S \to \min$

$$\Delta \delta = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{1 + \left(\frac{\Delta y}{\Delta x}\right)^2} \Delta x$$
$$\Delta S = 2\pi y(x) \Delta \delta$$
$$\sum \Delta S \xrightarrow{\Delta x \to 0} \int_{x_1}^{x_2} 2\pi y(x) \sqrt{1 + (y'(x))^2} dx$$

Пример 3 : задача о геодезических на поверхности.

Найти кривую, проходящую через точки А и В, лежащую на поверхности, которая имеет наименьшую длину.

$$G(x, y, z) = 0$$
 — уравнение поверхности

Пусть уравнение кривой :
$$\begin{cases} x=x(t)\\ y=y(t) & t\in [t_0,t_1]-\text{параметр}\\ z=z(t) \end{cases}$$

 $G(x(t),y(t),z(t))=0 \leftarrow$ кривая лежит на поверхности

$$l = \sum \Delta l = \sum \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2} = \sum \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2 + \left(\frac{\Delta z}{\Delta t}\right)^2} \Delta t$$
$$l \xrightarrow{\Delta t \to 0} \int_{t_0}^{t_1} \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt$$

2. Простейшая задача вариационного исчисления

$$I[y] = \int_{x_0}^{x_1} F(x, y(x), y'(x)) dx \tag{1}$$

 $F: \mathbb{D} \to \mathbb{R}, \mathbb{D} \subset \mathbb{R}^3$ непустое открытое множество, $F \in C^2(\mathbb{D})$

Определение 1 (допустимая функция). Функция $y : [x_0, x_1] \to \mathbb{R}$ называется допустимой, если:

- 1) $y(x) \in C([x_0, x_1])$
- 2) $y(x) \in C^2((x_0, x_1))$
- 3) $\forall x \in [x_0, x_1], (x, y(x), y'(x)) \in \mathbb{D}$

4)
$$\int_{x_0}^{x_1} F(x, y(x), y'(x)) dx$$
 cxodumcs

Краевые условия:
$$y(x_0) = y_0, \ y(x_1) = y_1$$
 (2)

Определение 2. Допустимая $\tilde{y}:[x_0,x_1]\to\mathbb{R}$ доставляет локальный минимум функционалу (1) при краевых условиях (2),если:

- 1) $\tilde{y}(x_0) = y_0, \tilde{y}(x_1) = y_1$
- (2) $\exists \varepsilon_0 > 0 \ \forall \ \partial$ опустимой функции y(x), удовлетворяющей (2): $\sup_{x \in [x_0, x_1]} |y(x) \tilde{y}(x)| < \varepsilon_0$ выполняется: $I[\tilde{y}] \leq I[y]$

Определение 3. Допустимая функция $\tilde{y}:[x_0,x_1]\to\mathbb{R}$ доставляет глобальный минимум функционалу I[y] при краевых условиях (2), если:

- 1) $\tilde{y}(x_0) = y_0$, $\tilde{y}(x_1) = y_1$
- 2) \forall допустимой функции y(x), удовлетворяющей (2), выполняется $I[\tilde{y}] \leq I[y]$

3. Необходимые условия локального экстремума

Аналог f'(x) = 0

Пусть функция \tilde{y} доставляет функционалу I[y] при краевых условиях (2) локальный минимум $\Rightarrow I[\tilde{y}] \leq I[y]$, где y(x) из определенного локального минимума.

и минимум
$$\Rightarrow I[y] \leq I[y]$$
, где $y(x)$ из определенного локального д
Возьмем $y(x) = \tilde{y} + \varepsilon \eta(x), \quad \varepsilon \in \left(-\frac{\varepsilon_0}{M}, \frac{\varepsilon_0}{M}\right), \quad M = \max_{x \in [x_0, x_1]} |\eta(x)|$ $\eta(x) \in C^2([x_0, x_1])$ - финитная функция.

Рассмотрим функцию $g(\varepsilon) = I[\tilde{y} + \varepsilon \eta] \Rightarrow g(0) \leq g(\varepsilon)$

$$0 = \frac{d}{d\varepsilon} g(\varepsilon)|_{\varepsilon=0} = \frac{d}{d\varepsilon} \left[\int_{x_0}^{x_1} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{x_0}^{x_1} \int_{(1)}^{x_1} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(1)}^{x_1} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(1)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta$$

Теорема 1 (из математического анализа). $f(x,\varepsilon):[a,b]\times[c,d]\to\mathbb{R}$ - непрерывна, $\exists \frac{df}{d\varepsilon}(x,\varepsilon)$ - непрерывна

$$\Rightarrow \frac{d}{d\varepsilon} \int_{a}^{b} f(x,\varepsilon) dx = \int_{a}^{b} \frac{d}{d\varepsilon} f(x,\varepsilon) dx$$

Вносим производную под знак интеграла:

$$\begin{split}
& = \int_{x_0+\delta}^{x_1-\delta} \left[\frac{\partial F}{\partial y}(\dots)\eta(x) + \frac{\partial F}{\partial y'}\eta'(x) \right] dx \Big|_{\varepsilon=0} = \int_{x_0+\delta}^{x_1-\delta} \frac{\partial F}{\partial y}(\dots)\eta(x) dx + \underbrace{\frac{\partial F}{\partial y'}(x)\eta(x)}_{x_0+\delta} \Big|_{x_0+\delta}^{x_1-\delta} - \int_{x_0+\delta}^{x_1-\delta} \eta(x) \frac{d}{dx} \left[\frac{\partial F}{\partial y'}(\dots) \right] dx \Big|_{\varepsilon=0} = \int_{x_0+\delta}^{x_1-\delta} \left[\frac{\partial F}{\partial y}(\dots) - \frac{\partial}{\partial x} \frac{\partial F}{\partial y'}(\dots) \right] \eta(x) dx \Big|_{\varepsilon=0} = \\
& = \int_{x_0}^{x_1} \eta(x) \left[\frac{\partial F}{\partial y}(x, y(x), y'(x)) - \dots \right] dx = 0
\end{split}$$

 \forall финитной функции $\eta(x)$

Лемма 1 (основаная леммая вариационного исчисления). $f(x):[x_0,x_1]\to \mathbb{R}-$ непре-

рывна $u\int_{x_0}^{x_1}f(x)\eta(x)dx=0, \forall \ \phi$ инитной $\eta(x)$. Тогда $f(x)\equiv 0 \ \forall x\in [x_0,x_1]$ По лемме: $\frac{\partial F}{\partial y}-\frac{d}{dx}\frac{\partial F}{\partial y'}=0$ - необходимое условие локального экстремума(уравнение Эйлера)

Определение 4 (экстремаль). Допустимая функция y(x) называется экстремалью функционала I[y] при краевых условиях (2), если:

- 1) $y(x_0) = y_0, \ y(x_1) = y_1$
- 2) y(x) удовлетворяет условию Эйлера

$$\begin{cases}
I[y] = \int_{x_0}^{x_1} F(x, y(x), y'(x)) dx \\
y(x_0) = y_0, \ y(x_1) = y_1
\end{cases}$$
(1)

Найти функцию y(x) такую, чтобы функционал I[y] принимал наибольшее или наименьшее значение.

Необходимо найти условие локального экстремума:

Если
$$\tilde{y}$$
 экстремум $\Rightarrow \tilde{y} \frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} = 0$ (2)

Докозательство формулы (2).

$$I[\tilde{y}] \leq I[y], y = \tilde{y} + \varepsilon \eta, \varepsilon \in (-\varepsilon_1, \varepsilon_1), \eta(x) \in C^2([x_0, x_1])$$
 – финитная

$$\underbrace{I[y]}_{=g(0)} \leq \underbrace{I[\tilde{y} + \varepsilon \eta]}_{=g(\varepsilon)} \Rightarrow g(0) \leq g(\varepsilon) \Rightarrow g'(0) = 0$$

$$0 = \frac{d}{d\varepsilon}g(\varepsilon)|_{\varepsilon=0} = \int_{x_0}^{x_1} \left(\frac{\partial F}{\partial y}(x,\tilde{y}(x),\tilde{y}'(x)) - \frac{d}{dx}\frac{\partial F}{\partial y'}(x,\tilde{y}(x),\tilde{y}'(x))\right)\eta(x)dx, \forall \eta(x) - \varphi$$
инитная

Лемма 2 (Лагранжа). Пусть f(x) - непрерывна и $\int_{x_0}^{x_1} f(x) \eta(x) dx = 0. \forall \eta(x)$ - финитная на $[x_0, x_1]$. Тогда $f(x) = 0, \forall x \in [x_0, x_1]$

Доказательство. От противного:

Пусть для определенности $f(\tilde{x})>0$. Тогда так как $f(\tilde{x})$ - непрерывна, то f(x)>0 при $x\in (\tilde{x}-\delta_0,\tilde{x}+\delta_0)$

Возьмем функцию $\eta(x) = \begin{cases} (\delta_0^2 - (x - \tilde{x}))^4, |x - \tilde{x}| < \delta \\ 0, |x - \tilde{x}| > \delta_0 \end{cases}$ — финитная функция

$$\int_{x_0}^{x_1} f(x)\eta(x)dx = \int_{x_0-\delta_0}^{x_1-\delta_0} \underbrace{f(x)}_{>0} \underbrace{\eta(x)}_{>0} dx > 0 - противоречие$$

$$\Rightarrow \forall x \in [x_0,x_1]: f(x) = 0$$

Из доказательства леммы следует, что доказана формула (2)

4. Случай понижения порядка в уравнении Эйлера

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} = 0 \quad F = F(x, y(x), y'(x))$$

1)
$$F = f(x, y) \Rightarrow \frac{\partial F}{\partial y}(x, y) = 0 \Rightarrow y = y(x)$$

2)
$$F = F(x, y') \Rightarrow \frac{d}{dx} \frac{\partial F}{\partial y'}(x, y') = 0 \Rightarrow \frac{\partial F}{\partial y'}(x, y') = C$$

3) F = F(y, y'):

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} = 0 | \cdot y'$$

$$y' \frac{\partial F}{\partial y} - y' \frac{\partial F}{\partial y'} = 0$$

$$= \frac{d}{dx} \left(y' \frac{\partial F}{\partial y'} \right) - y'' \frac{\partial F}{\partial y'}$$

Click me: GitHub Repository

$$\begin{split} y'\frac{\partial F}{\partial y} - \frac{d}{dx}\left(y'\frac{\partial F}{\partial y'}\right) + y''\frac{\partial F}{\partial y'} &= 0 \\ \text{Заметим, что: } \frac{d}{dx}F(y,y') &= y'\frac{\partial F}{\partial y} + y''\frac{\partial F}{\partial y'} \\ \frac{d}{dx}F - \frac{d}{dx}\left(y'\frac{\partial F}{\partial y'}\right) &= 0 \Rightarrow \boxed{F - y'\frac{\partial F}{\partial y'} = C} \end{split}$$

5. Решение задачи о брахистохроне

$$1 + (y'(x))^2 = \frac{c_1}{y_0 - y(x)} \xrightarrow{x \to x_1} + \infty$$

$$y'(x) \xrightarrow{x \to x_0} \pm \infty \Rightarrow y'(x) \xrightarrow{x \to x_0} -\infty$$

$$y' = -\sqrt{\frac{c_1 - y_0 + y}{y_0 - y}}$$

Замена: $\tilde{y} = y_0 - y(x)$:

$$\tilde{y}'(x) = +\sqrt{\frac{c_1 - \tilde{y}}{\tilde{y}}}$$

Замена: $\tilde{y} = c_1 z$:

$$c_1 z' = \sqrt{\frac{c_1 - c_1 z}{c_1 z}} = \sqrt{\frac{1 - z}{z}}$$

Замена: $z=\sin^2 s, s\in \left[0,\frac{\pi}{2}\right]$

 $c_1 2 \sin s \cos s \cdot s' = \sqrt{\frac{1 - \sin^2 s}{\sin^2 s}} = \frac{\cos s}{\sin s}$ (знак определили из интервала s)

$$2c_1\sin^2 s \frac{ds}{dt} = 1$$

$$\frac{dx}{ds} = c_1(1 - \cos(2s)) \Rightarrow x(s) = c_1\left(s - \frac{1}{2}\sin 2s\right) - c_2$$

$$y(x) = y_0 - \tilde{y}(x) = y_0 - c_1 z = y_0 - c_1 \sin^2 s = y_0 - \frac{c_1}{2} (1 - \cos 2s)$$

$$y(s) = y_0 - \frac{c_1}{2}(1 - \cos(2s))$$

Замена: $t = 2s, t \in (0, \pi)$

$$\begin{cases} x(t) = \frac{c_1}{2}(t - \sin t) + c_2 \\ y(t) = y_0 - \frac{c_1}{2}(1 - \cos t) \end{cases}, \quad t \in (0, \pi)$$

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \frac{c_1}{2} + c_2 \\ y - \frac{c_1}{2} \end{pmatrix} = \begin{pmatrix} -\frac{c_1}{2} \sin t \\ \frac{c_1}{2} \cos t \end{pmatrix} \quad t \in (0, \pi)$$

$$t = 0: \begin{cases} x(0) = c_2 = x_0 \\ y(0) = y_0 \end{cases}$$
$$t = \pi: \begin{cases} x(\pi) = \frac{c_1}{2}\pi + c_2 = \frac{c_1}{2}\pi + x_0 \\ y(\pi) = y_0 - c_1 \end{cases}$$

Теперь возьмем "+"(формула (3)):

$$y' = \sqrt{\frac{c_1 - y_0 + y}{y_0 - y}} \quad (5)$$

$$\tilde{y}(x) = y_0 - y(x) \Rightarrow \tilde{y}' = -\sqrt{\frac{c - \tilde{y}}{\tilde{y}}}$$

Делаем те же действия (замены) и получаем такие же x(s),y(s) с различием только в интервале для ${\bf t}$:

$$\begin{cases} x(T) = \frac{C_1}{2}(t-\sin t) + x_0 \\ y(t) = y_0 - \frac{c_1}{2}(1-\cos t) \end{cases}, \quad t \in (0,2\pi) \Rightarrow \text{ циклоида полная}$$

6. Решение задачи о поверхности вращения наименьшей площади

$$\begin{cases} I[y] = \int_{x_0}^{x_1} 2\pi y(x) \sqrt{1 + (y'(x)^2)} \\ y(x_0) = y_0, \ y(x_1) = y_1 \end{cases}$$

$$F - y; \frac{\partial F}{\partial y'} = C$$

$$2\pi y \sqrt{1 + (y')^2} - y' 2\pi y \frac{2y'}{2\sqrt{1 + (y')^2}} = C$$

$$2\pi y \left(\sqrt{1 + (y')^2} - \frac{(y')^2}{\sqrt{1 + (y')^2}} \right) = C$$

$$= \frac{1}{\sqrt{1 + (y')^2}}$$

$$(2\pi y)^2 = c^2(1 + (y')^2)$$

1)
$$c = 0 \Rightarrow y(x) = 0$$
 - решение, если $y_0 = y_1 = 0$

1)
$$c=0\Rightarrow y(x)=0$$
 - решение, если $y_0=y_1=0$
2) $c\neq 0\Rightarrow \left(\frac{y}{c_1}\right)^2=1+(y')^2\Rightarrow y'=\pm\sqrt{\frac{y^2}{c_1^2}-1},\ c_1=\frac{c}{2\pi}>0$

$$y(x) = \operatorname{ch} z(x)c_1, \ z > 0$$

$$c_1 \operatorname{sh} z \cdot z'(x) = \pm \underbrace{\sqrt{\operatorname{ch}^2 z - 1}}_{=\operatorname{sh} z} \Rightarrow c_1 z = \pm 1$$

$$z = \pm \frac{x - c_2}{c_1} \Rightarrow y(x) = c_1 \operatorname{ch}\left(\frac{x + c_2}{c_1}\right)$$
 — цепная линия

7. Вариационная задача с несколькими функциями

$$I[y_1, \dots, y_n] = \int_{x_0}^{x_1} F(x, y_1(x), y_1'(x), \dots, y_n(x), y_n'(x)) dx$$

$$\begin{cases} y_1(x_0) = y_{01}, \dots, y_n(x_0) = y_{0n} \\ y_1(x_1) = y_{11}, \dots, y_n(x_1) = y_{1n} \end{cases}$$

Необходимое условие локального экстремума: Пусть $\tilde{y}_1(x), \ldots, \tilde{y}_n(x)$, :

$$I[\tilde{y}_1,\ldots,\tilde{y}_n] \leq I[y_1,\ldots,y_n], \ \forall y_2,\ldots,y_n$$

Можно взять y_1 - любое: $y_2 = \tilde{y}_2, \dots,$

$$\Rightarrow \underbrace{I[\tilde{y}_1, \dots, \tilde{y}_n]}_{Y[\tilde{y}_1]} \leq \underbrace{I[y_1, \dots, \tilde{y}_n]}_{Y[y_1]} \Rightarrow \frac{\partial F}{\partial y_1} - \frac{d}{dx} \frac{\partial F}{\partial y_1'} = 0$$

Аналогично: $\frac{\partial F}{\partial y_j} - \frac{d}{dx} \frac{\partial F}{\partial y_j'} = 0$