NG-RAN Model

Gabriel

1 Modelo

- $C = \{c_1, c_2, ..., c_{|C|}\}\$, é o conjunto de RCs.
- n = |C|, é o número total de RCs da rede.
- $B = \{b_1, b_2, ..., b_{|B|}\}\$, é o conjunto de BSs(RUs).
- $0 = \{O_1, O_2, ..., O_{|O|}\}$, é o conjunto de funções virtualizadas.
- $m = |\mathcal{O}|$, é o número total funções virtualizadas (não inclui O_7 e O_8).
- $T = \{t_1, t_2, ..., t_{|T|}\}\$, é o conjunto de nós de transporte.
- $\mathcal{D} = \{D_1, D_2, ..., D_{|\mathcal{D}|}\}$, é o conjunto de DSG's (Splits/Configurações).
- $P = \{P_{b_1}, P_{b_2}, ..., P_{b_{|B|}}\}$, é o conjunto de caminhos que tem como origem o Core e destino $b \in B$.
- Cada caminho $p \in P_b$ é formado pela junção de três sub caminhos p_1 , p_2 e p_3 . Onde $p = p_1 + p_2 + p_3$.
- $u_c^p = \{0,1\}$ representa se $c \in C$ faz parte do caminho $p \in P_b$.
- $I_e^p = \{0, 1\}$ representa se a aresta $e \in E$ faz parte do caminho $p \in P_b$.
- α_D^B representa o requisito de latência de backhaul necessário para realizar o DSG $D \in \mathcal{D}$.
- α_D^M representa o requisito de latência de midhaul necessário para realizar o DSG $D \in \mathcal{D}$.
- α_D^F representa o requisito de latência de fronthaul necessário para realizar o DSG $D \in \mathcal{D}$.
- β_D^B representa o requisito de banda de backhaul necessário para realizar o DSG $D \in \mathcal{D}$.
- β_D^M representa o requisito de banda de midhaul necessário para realizar o DSG $D \in \mathcal{D}$.
- β_D^F representa o requisito de banda de fronthaul necessário para realizar o DSG $D \in \mathcal{D}$.
- γ_c^O representa a quantidade de processamento necessário para a função virtualizada $O \in \mathcal{O}$ ser executada em $c \in C$.
- $\rho(c)$ representa o recurso computacional do RC $c \in C$.
- F(c,D,O,b) representa se o RC $c\in C$ executa a função virtualizada $O\in \mathcal{O}$ da BS $b\in B$.
- $x_b^{pD} = 0,1$ variável de decisão que representa qual caminho $p \in P_b$ e DSG $D \in \mathcal{D}$ é escolhido para atender a BS $b \in B$.

Para representar a topologia da rede, definimos um grafo G=(V,E), com $V=C\cup T\cup B$ e $E=\{e_{v_iv_j}|v_iv_j\in V\}$. Cada aresta tem uma capacidade c_e em bps e uma latência d_e em segundos.

$$\Phi_1 = \sum_{c \in C} \left[\frac{\sum_{b \in B} \sum_{p \in P} \sum_{D \in \mathcal{D}} \left(x_b^{pD} \cdot u_c^p \right)}{n} \right]$$
 (1)

 Φ_1 calcula a quantidade de RC's utilizados na solução.

$$\Phi_{2} = \sum_{c \in C} \sum_{O \in \mathcal{O}} \left(\sum_{D \in \mathcal{D}} \sum_{p \in P_{b}} \sum_{b \in B} \left[x_{b}^{pD} \cdot u_{c}^{p} \cdot F(c, D, O, b) \right] - \left[\frac{\sum_{D \in \mathcal{D}} \sum_{p \in P_{b}} \sum_{b \in B} \left[x_{b}^{pD} \cdot u_{c}^{p} \cdot F(c, D, O, b) \right]}{m} \right] \right)$$

$$(2)$$

 Φ_2 calcula o nível de agregação da solução.

minimize
$$\Phi_1 - \Phi_2$$
 (3)

subject to:

$$\sum_{p \in P_b} \sum_{D \in \mathcal{D}} x_b^{pD} = 1, \qquad \forall b \in B$$
 (4)

Cada BS é atendida com uma único DSG e caminho.

$$\sum_{D \in \mathcal{D}} \sum_{b \in B} \sum_{p \in P_b} \left[x_b^{pD} \left(I_e^{p_1} \cdot \beta_D^B + I_e^{p_2} \cdot \beta_D^M + I_e^{p_3} \cdot \beta_D^F \right) \right] \le c_e \quad \forall e \in E$$
 (5)

Respeitar a capacidade das arestas, dado o requisito de banda dos fluxos que passam por ela.

$$\sum_{e \in E} x_b^{pD} \cdot I_e^{p_1} \cdot d_e \le \alpha_D^B \qquad \forall b \in B, p \in P_b, D \in \mathcal{D}$$
 (6)

Respeitar o requisito de atraso no caminho p_1 , dado os caminhos e os DSG's escolhidos para cada BS.

$$\sum_{e \in E} x_b^{pD} \cdot I_e^{p_2} \cdot d_e \le \alpha_D^M \qquad \forall b \in B, p \in P_b, D \in \mathcal{D}$$
 (7)

Respeitar o requisito de atraso no caminho p_2 , dado os caminhos e os DSG's escolhidos para cada BS.

$$\sum_{e \in F} x_b^{pD} \cdot I_e^{p_3} \cdot d_e \le \alpha_D^F \qquad \forall b \in B, p \in P_b, D \in \mathcal{D}$$
 (8)

Respeitar o requisito de atraso no caminho p_3 , dado os caminhos e os DSG's escolhidos para cada BS.

$$\sum_{O \in \mathcal{O}} \sum_{D \in \mathcal{D}} \sum_{p \in P_b} \sum_{b \in B} x_b^{pD} \cdot u_c^p \cdot F(c, D, O, b) \cdot \gamma_c^O \le \rho(c) \qquad \forall c \in C$$

$$(9)$$

Respeitar a capacidade computacional de um RC, dado as funções virtualizadas que são executadas nele.