In [14]:	Clasificacion de Vinos Adrián de Lucas Gómez y Andrés Ruiz Bartolomé import numpy as np import checkNNGradients as checkNNG import matplotlib.pyplot as plt from scipy.special import expit from scipy.special import expit from scipy.sparse.construct import random import scipy.optimize as opt import sklearn.model_selection as ms from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.sym import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report, accuracy_score, confusion_matrix import seaborn as sns from pandas.io.parsers import read_csv import pandas as pd En este proyecto vamos a utilizar varios métodos vistos en Aprendizaje Automático para intentar predecir si cierto vino vale la pena o no,
In [15]:	basándonos en parámetros fisio-químicos (densidad, alcohol, acidos cítricos, ph). Para ello vamos a usar el datatset Red Wine Quality. Vamos a usar: Regresión Logística, Redes Neuronales, Suport Vector Machines y Bosques Aleatorios. Visualizacion de los datos Para empezar, vamos a cargar el archivo con los datos de los vinos y a mirar con que vamos a trabajar wines = read_csv ('winequality-red.csv') print (wines.info()) <class 'pandas.core.frame.dataframe'=""> RangeIndex: 1599 entries, 0 to 1598 Data columns (total 12 columns):</class>
In [16]:	7 density 1599 non-null float64 8 pH 1599 non-null float64 9 sulphates 1599 non-null float64 10 alcohol 1599 non-null float64 11 quality 1599 non-null int64 dtypes: float64(11), int64(1) memory usage: 150.0 KB None print (wines.head()) fixed acidity volatile acidity citric acid residual sugar chlorides \ 0 7.4 0.70 0.00 1.9 0.076 1 7.8 0.88 0.00 2.6 0.098 2 7.8 0.76 0.04 2.3 0.092 3 11.2 0.28 0.56 1.9 0.075 4 7.4 0.70 0.00 1.9 0.075 free sulfur dioxide total sulfur dioxide density pH sulphates \ 0 1.0 34.0 0.9978 3.51 0.56 1 25.0 67.0 0.9968 3.20 0.68 2 15.0 54.0 0.9970 3.26 0.65 3 17.0 60.0 0.9970 3.26 0.65 3 17.0 60.0 0.9980 3.16 0.58 4 11.0 34.0 0.9978 3.51 0.56
In [17]:	alcohol quality 0 9.4 5 1 9.8 5 2 9.8 5 3 9.8 6 4 9.4 5 print(wines.describe()) fixed acidity volatile acidity citric acid residual sugar \ count 1599.000000 1599.000000 1599.000000 1599.000000 mean 8.319637 0.527821 0.270976 2.538806 std 1.741096 0.179060 0.194801 1.409928 min 4.600000 0.120000 0.000000 0.900000 25% 7.100000 0.390000 0.090000 1.900000 50% 7.900000 0.520000 0.260000 2.200000 75% 9.200000 0.640000 0.420000 2.600000 max 15.900000 1.580000 1.580000 15.500000 chlorides free sulfur dioxide total sulfur dioxide density \ count 1599.000000 1599.000000 1599.000000 mean 0.087467 15.874922 46.467792 0.996747 std 0.047065 10.460157 32.885324 0.001887 min 0.012000 1.000000 7.000000 0.9990070 25% 0.070000 7.000000 0.9995600
In [18]:	1.000000
	fixed acidity - 1
In [19]:	Estas graficas muestran la distribucion de los 1599 casos de prueba en los diferentes parámetros vincea .h.isat (bins=25, £lgsize= (10,10)) pltshow () fixed acidity volatile acidity vola
In [20]:	saber la proporcion que hat de cada uno. Luego procederemos a distribuir el dataSet en 3 conjuntos: entrenamiento, validación y prueba. Una vez troceado se normalizan los datos. NOTA: Podremos descartar algunos atributos del vino que no sean muy importante en relación a su calidad evitando así ruido innecesario y mejorando un poco la precision. Para saber cuales se pueden quitar en el apartado del RANDOM FOREST se puede ver.
In [21]:	print(f"Numero de vinos: \"malos\" (nbad) y buenos: (ngood)") ##################################
In [22]: In [23]:	<pre>grad = (gradiente(theta, XT, Y)) a = grad[0] reg = lambo*theta / len(Y) reg[0] = a return grad + reg def evaluaLogistica(X,Y,theta): b = expit(np.dot(X,theta))>=0.5 correctos = np.sum((expit(np.dot(X,theta))>=0.5)==Y) return correctos / np.shape(X)[0] ###################################</pre>
In [26]:	theta_opt = result[0] accuracy = evalualogistica(X_valid_s, y_valid, theta_opt) if accuracy > maxAccuracy:
In [27]:	Resumen de regresion logistica con datos de test:
	<pre>costeR = costeN + (lambo/(2*len(X)) * (np.sum(np.square(thetal[:,1:])) + np.sum(np.square(theta2[:,1:]))) return costeR def redNeuronalPaLante(X, theta1, theta2):</pre>
	<pre>d3t = ht - yt d2t = np.dot(theta2.T, d3t) * (a2t * (1 - a2t)) Delta1 = Delta1 + np.dot(d2t[1:, np.newaxis], a1t[np.newaxis, :]) Delta2 = Delta2 + np.dot(d3t[:, np.newaxis], a2t[np.newaxis, :]) #Gradientes G1= Delta1 / m G2 = Delta2 / m #Lambdas lambo1 = lambdita * theta1 / m lambo2 = lambdita * theta2 / m lambo1[:, 0] = 0 lambo2[:, 0] = 0 G1 += lambo1 G2 += lambo2 gradiente = np.concatenate((np.ravel(G1), np.ravel(G2))) #Coste coste = costeNNReg(X, y, theta1, theta2, lambdita) return coste, gradiente def randomWeights(L ini, L out, E ini):</pre>
In [29]:	<pre>return np.random.random((I_out, I_ini + 1)) * (2*E_ini) - E_ini) ##################################</pre>
	<pre>if(v(a)>v(1):</pre>
In []:	Cs = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30] signas = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30] bestAcc = 0 bestC = 0 bestC = 0 bestSig = 0 for c in Cs:
In []:	Random Forest Aparte de los modelos vistos en clase, vimos que mucha gente usaba Bosques Aleatorios para este tipo de ejercicios (de clasificación), así que decidimos probarlo. Es un metaestimador que hace uso de varios árboles de decisión a varios niveles en el conjunto de datos. Para mejorar la precisión predictiva y controlar el sobreajuste se hace la media con los resultados dados por esos arboles. Esto es así porque los arboles de decisión por si solos tienden rápidamente al sobreajuste. Como en los otros clasificadores deberemos de encontrar la configuracion que maximiza el numero de aciertos o lo que es lo mismo, minimizar costes. Hay muchos parámetros posibles para configurar un bosque aleatorio pero en esta ocasion hemos decidido ver que numero de arboles de decisión es el óptimo. ###################################
In []:	pred_rfc = randForest.predict(X_test) print(f"Resumen de Random Forest con numero de arboles = (bestEst;\n") print(classification_report(y_test, pred_rfc)) Resumen de Random Forest con numero de arboles = 50.0 precision recall f1-score support 0
	citric acid - pH - chlorides - density - total sulfur dioxide - volatile acidity - sulphates - alcohol - 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
	Conclusiones Como era de esperar nos ha resultado más cómodo usar las librerías que nuestros propios métodos. Sin embargo, estamos satisfechos con su desempeño (sobre todo con la regresión logística, en la que conseguimos un mayor porcentaje de aciertos que la funcion de librería) Metodo Porcentaje de aciertos Bosques Aletorios 81% Regresión Logística (propia) 75,3% SVMs 73%