Algebraic Curve

Lectured by Wenchuan Hu and Noted by Xinyu Xiang

Jun. 2025

1 Day 0: Preliminary

2 Day I

Definition 2.1 (Polynomial). The collection of polynomials would denoted by $\mathbb{K}[x_1, \dots, x_n]$, whose elements are of the form

$$f = \sum_{i_1, \dots, i_n} a_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n},$$

where $a_{i_1,\dots,i_n} \in \mathbb{K}$, and i_1,\dots,i_n are non-negative integers.

Definition 2.2 (Algebraic Closed Field). *If*

Remark 2.1. Finite field is not algebraic closed: Consider $f = (x - a_1) \cdots (x - a_n) + 1$ which has no zero point.

Definition 2.3 (Unique Factorization Domain (UFD)).

Proposition 2.1. (1) $\mathbb{K}[x_1, \dots, x_n]$ is a commutative ring with unity called the polynomial ring in n variables over \mathbb{K}

(2) If R is UFD, then R[X] is a UFD, which means that every non-zero polynomial can be factored uniquely into irreducible polynomials, up to order and units.

From here on, we assume that \mathbb{K} is an algebraic closed field.

Definition 2.4 (Affine Variety). An affine variety is a subset of \mathbb{K}^n defined by the vanishing of a set of polynomials, i.e., it is the solution set of a system of polynomial equations.

Formally, given a set of polynomials $f_1, \ldots, f_m \in \mathbb{K}[x_1, \ldots, x_n]$, the affine variety $V(f_1, \ldots, f_m)$ is defined as:

$$V(f_1,...,f_m) = \{(a_1,...,a_n) \in \mathbb{K}^n; f_i(a_1,...,a_n) = 0 \text{ for all } i = 1,...,m\}.$$

Proposition 2.2 (Zariski Topology). *Consider* $f, g \in \mathbb{K}[x, y]$

- (1) $V(fg) = V(f) \cup V(g)$,
- (2) $V(f,g) = V(f) \cap V(g), V(f_{\lambda})_{\lambda \in \Lambda} = \bigcap_{\lambda \in \Lambda} V(f_{\lambda}),$
- (3) $V(0) = \mathbb{A}^2_{\mathbb{K}}$.

Definition 2.5 (Affine Curve). *Consider* $f \in \mathbb{K}[x,y]$, V(f) *denotes affine curve.*

- (1) $\deg V(f) = \deg f$,
 - (a) deg = 1: Line,
 - (b) deg = 2: conic curve (non-degenerate),

(2) $F = F_1^{n_1} F_2^{n_2} \cdots F_m^{n_m}$, where F_i irreducible.

Example 2.1. $(x + y)^2$ is irreducible, xy is reducible.

Example 2.2. $y^2 - x^3 + x$ is irreducible (left as exercise).

Definition 2.6 (Field of Fractions). The field of fractions of a UFD R is the smallest field in which R can be embedded, denoted by K(R). It consists of elements of the form $\frac{a}{b}$ where $a,b\in R$ and $b\neq 0\in R$.

Formally, if R is a UFD, then the field of fractions K(R) is defined as:

$$Q_{\mathrm{uot}}(R) = \left\{ \frac{a}{b} \mid a, b \in R, b \neq 0 \right\},$$

which is indeed a field.

Lemma 2.3. Consider $f \in \mathbb{K}[x,y]$ and deg f > 0, then

- (1) V(f) has infinitely many points,
- (2) $\mathbb{A}^2_{\mathbb{K}} V(f)$ has infinitely many points.

Theorem 2.4 (Simple Bezout Theorem). *If* $F, G \in \mathbb{K}[x,y] \subset \mathbb{K}(x)[y]$ *has no common component, then* V(F,G) *is a finite set* $\Leftrightarrow F = 0$, G = 0 *have finite solutions in* \mathbb{K}^2 .

Proof. (1) Assume there is an element α such that $F = \alpha F'$ and $G = \alpha G'$, where we consider the ring $\mathbb{K}(x)[y]$, then

$$\begin{cases} aF = HF' \\ bG = HG', \end{cases}$$

where $a \in \mathbb{K}[x]$ and $H \in \mathbb{K}[x,y]$.

(2) TBD

Theorem 2.5. Consider irreducible $F, G \in \mathbb{K}[x, y], F|G \Leftrightarrow V(F) \subset V(G)$.

Proof. (1) If F|G, then G = FH for some $H \in \mathbb{K}[x,y]$, thus $V(F) \subset V(G)$.

(2) If $V(F) \subset V(G)$, by definition F|G.

3 Day II: Intersection Number (1)

Definition 3.1 (Localized Ring). *Consider* $\mathbb{K}[x,y]$ *and a prime ideal* $P \subset R$, *the localized ring* \mathcal{O}_P *is defined as:*

$$\mathcal{O}_P = \left\{ \frac{f}{g}; f, g \in \mathbb{K}[x, y], g(p) \neq 0 \right\},$$

the maximal ideal \mathfrak{m}_P is defined as:

$$\mathfrak{m}_P = \left\{ \frac{f}{g}; f, g \in \mathbb{K}[x, y], g(p) \neq 0, f(p) = 0 \right\}.$$

which satisfies

$$0 \to \mathfrak{m}_P \to \mathcal{O}_P \to \mathbb{K}$$
.

3.1 Definition

Definition 3.2 (Intersection Number). *Consider* $F,G \in \mathbb{K}[x,y]$ *irreducible,* $P = V(F) \cap V(G)$, *then the intersection number* $I_P(F,G)$ *is defined as:*

$$\mu_P(F,G) = \dim_{\mathbb{K}} \mathcal{O}_P / \langle F,G \rangle$$
,

where $\langle F, G \rangle$ is the ideal generated by F and G in the localized ring \mathcal{O}_P .

Proposition 3.1. (1) $\mu_P(F,G) \in \mathbb{N} \cup \{\infty\}$;

- (2) $P \in F \cap G \Leftrightarrow \mu_P(F,G) \ge 1$, $\mu_P(F,G) = 1 \Leftrightarrow \langle F,G \rangle = \mu_P$
- (3) $\mu_P(F,G) = \mu_P(G,F);$
- (4) $\mu_P(F, G + FH) = \mu_P(F, G);$
- (5) $\mu_P(FG, H) = \mu_P(F, H) + \mu_P(G, H);$
- (6) $I_{(0,0)}(x,y) = 1$,

Example 3.1. Consider $F = y - x^2$ and G = y.

Solution. Use properties to compute:

$$\mu_0(y, y - x^3) = \mu_0(y, -x^3)$$

$$= 2\mu_0(y, x)$$

$$= 2$$

where we used the property (4) to reduce the degree of the polynomial for the given variable, and use the fact that $\mu_0(x,y) = 1$.

The most important part is to use the property (4) to reduce the degree of the polynomial for the given variable.

Example 3.2. Consider $F = y^2 - x^3$ and $G = x^2 - y^3$.

Solution.

$$\begin{split} \mu_0(y^2-x^3,x^2-y^3) &= \mu_0(y^2-x^3+x(x^2-y^3),y^3-x^2) \\ &= \mu_0(y^2-xy^3,y^3-x^2) \\ &= \mu_0(y^2,y^3-x^2) + \mu_0(1-xy,y^3-x^2) \\ &= 2\mu_0(y,y^3-x^2) + 0 \\ &= 2\mu_0(y,x^2) \\ &= 4\mu_0(y,x) \\ &= 4 \end{split}$$

 $\mu_0(1-xy,y^3-x^2)$ vanished since at (0,0), $1-xy \neq 0$ and $y^3-x^2=0$.

Example 3.3. Consider $F = y - x - x^2$ and $G = y^2 - x^2 - 3x^2y$.

Solution.

$$\begin{split} \mu_0(y-x-x^2,y^2-x^2-3x^2y) &= \mu_0(y-x-x^2,y^2-x^2-3x^2y-(x+y)(y-x-x^2)) \\ &= \mu_0(y-x-x^2,-2x^2y+x^3) \\ &= \mu_0(y-x-x^2,x^2(x-2y)) \\ &= 2\mu_0(y-x-x^2,x) + \mu_0(y-x-x^2,x-2y) \\ &= 3. \end{split}$$

Another way to compute is to use definition of intersection number, where we plug the equation $y = x + x^2$ into the second equation, we have

$$\mu_0(y-x-x^2,y^2-x^2-3x^2y) = \mathfrak{m}_0\left((x+x^2)^2-x^2-3x^2(x+x^2)\right) = \mathfrak{m}_0\left(x^3(-1-2x)\right) = 0.$$

Proposition 3.2. *If the lowest degree of F is* x^n *and the lowest degree of G is* y^m , *then the intersection number* $I_{(0,0)}(F,G)$ *is nm.*

Definition 3.3 (Short Exact Sequence). A short exact sequence of modules is a sequence of modules and homomorphisms

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

such that the image of f is equal to the kernel of g, i.e., Im(f) = ker(g).

We would use the short exact sequence for linear space.

Definition 3.4. Consider $P \in \mathbb{A}^2$ and $F, G, H \in \mathbb{K}[x, y]$, then

(1) If F, G has no common component cross P, then

$$0 \to \mathcal{O}_P / \langle F, H \rangle \xrightarrow{\bullet G} \mathcal{O}_p / \langle F, GH \rangle \xrightarrow{\pi} \mathcal{O}_P / \langle F, G \rangle \to 0,$$

where π is the natural projection map.

(2)
$$\mu_P(F, GH) = \mu_P(F, G) + \mu_P(F, H)$$
.

Proof. (1) π is surjection;

(2) Consider an element acted by multiplication by *G*:

$$\bullet G: \frac{f}{g} + aF + bH \mapsto F(aG) + G\left(\frac{f}{g} + bH\right) \in \ker \pi,$$

where $a, b \in \mathbb{K}[x, y]$ and $g \in \mathcal{O}_P$. On the other side, consider $f/g \in \ker \pi$, thus $f/g = aF + bG \rightarrow b \in \mathcal{O}_P / \langle F, H \rangle$.

(3) $\bullet G$ is injection.

Note that all the vector spaces are finite dimensional, thus the dimension of the kernel is equal to the dimension of the image, and we can conclude that

$$\mu_{P}(F, GH) = \mu_{P}(F, G) + \mu_{P}(F, H),$$

which proofs the proposition (5).

3.2 The Algorithm to Compute Intersection Number

Consider $F(x,y) \in \mathbb{K}[x,y]$, in order to compute the insertion number $\mu_0(y,F(x,y))$, we can expand F as F(x,y) = F(x,0) + yH(x,y), thus

$$\mu_0(y, F(x,y)) = \mu_0(y, F(x,0) + yH(x,y)) = \mu_0(y, F(x,0)).$$

Assume $F(x,0) = x^m f(x)$ where f(x) is no vanishing at x = 0, thus

$$\mu_0(y, F(x, y)) = m.$$

Now we shell consider the linear (homogeneous 1 degree part). We denote $F \in \mathbb{K}[x,y]$ as

$$F = F_0 + F_1 + \cdots$$

where F_i is homogeneous degree i part. The F_1 part is important, because of the theorem below:

Theorem 3.3 (2.17 Intersection multiplicity 1). *If* $F, G \in \mathbb{K}[x,y]$ *pass through the origin, then*

$$\mu_0(F,G) = 1 \Leftrightarrow F,G$$
 Linear Independent

Definition 3.5 (Tangents and multiplicities of points). *Let* $F \in \mathbb{K}[x,y]$ *be a curve, then*

- (1) The smallest $m \in \mathbb{N}$ for which the homogeneous part F_m is non-zero is called the multiplicity $m_0(F)$ of F at the origin. Any linear factor of F_m (considered as a curve) is called a tangent to F at the origin.
- (2) For a general point $P = (x_0, y_0) \in \mathbb{A}^2$, tangents at P and the multiplicity $m_P(F)$ are defined by first shifting coordinates to $x' = x x_0$ and $y' = y y_0$, and then applying (a) to the origin (x', y') = (0, 0).

4 Day III: Intersection Number (2)

Definition 4.1 (Cusps). Let P be a point on an affine curve F. We say that P is a cusp if $m_P(F) = 2$, there is exactly one tangent L to F at P, and $\mu_P(F, L) = 3$.

Definition 4.2 (Singular Curve and Non-singular Curve). *An affine curve* $F \in \mathbb{K}[x,y]$ *is called singular if it has a point* P *such that* $\mu_P(F) > 1$ *. If* F *has no point* P *such that* $\mu_P(F) > 1$ *, then* F *is called non-singular.*

where the multiplicity $\mu_P(F)$ is defined as the number of tangents at P.

Proposition 4.1 (Affine Jacobi Criterion). *Let* $P = (x_0, y_0)$ *be a point on an affine curve F.*

(a) P is a singular point of F if and only if

$$\frac{\partial F}{\partial x}(P) = \frac{\partial F}{\partial y}(P) = 0,$$

(b) If P is a smooth point of F, the tangent to F at P is given by

$$T_P F = \frac{\partial F}{\partial x}(P) \cdot (x - x_0) + \frac{\partial F}{\partial y}(P) \cdot (y - y_0).$$

Example 4.1. Consider the tangent T_PF of the curve $F \in \mathbb{K}[x,y]$, compute the intersection number $\mu_P(F,T_PF)$.

Solution. First, one can consider some basic examples. For example, consider $F = y - x^2$, thus the tangent at P = (0,0) is $T_P F = y$, so that the intersection number is

$$\mu_0(y, y - x^2) = 2.$$

Moreover, one can prove that $\mu_P(T_PF, F) = 2$ for $F = y - x^2$.

Theorem 4.2. Let P be a smooth point on a curve F. Then for any two curves G and H that do not have a common component with F through P we have

$$\langle F,G\rangle\subset \langle F,H\rangle \text{ in } \mathscr{O}_P \quad \Leftrightarrow \quad \mu_P(F,G)\geq \mu_P(F,H).$$

5 Day IV: Projective Curve

Definition 5.1 (Projective Space). For $n \in \mathbb{N}$, we define the projective space $\mathbb{P}^n(\mathbb{K})$ as the set of equivalence classes of non-zero vectors in \mathbb{K}^{n+1} , where two vectors (x_0, x_1, \ldots, x_n) and (y_0, y_1, \ldots, y_n) are equivalent if there exists a non-zero scalar $\lambda \in \mathbb{K}$ such that

$$\sim: (x_0, x_1, \dots, x_n) = \lambda(y_0, y_1, \dots, y_n).$$

The projective space could thus be defined as:

$$\mathbb{P}^n = \left\{ \mathbb{A}^{n+1}_{\mathbb{K}} - \{0\} \right\} / \sim .$$

Example 5.1. Consider the projective space $\mathbb{C}P^2 = \mathbb{C}^3 - \{0\}$ / \sim , one would induce the fiberation:

$$\mathbb{S}^1 \to \mathbb{S}^5 \xrightarrow{\pi} \mathbb{C}P^2$$
.

Example 5.2. Consider the curve $F = y - x^2$, in \mathbb{P}^2 we can introduce the homogeneous coordinate [x : y : z], thus the curve can be written as:

$$F = yz - x^2,$$

while z=0 (the point at infinity), we have [0:1:0], which is the point at infinity of the curve F.