Neural networks

Restricted Boltzmann machine - definition

UNSUPERVISED LEARNING

Topics: unsupervised learning

- Unsupervised learning: only use the inputs $\mathbf{x}^{(t)}$ for learning
 - automatically extract meaningful features for your data
 - leverage the availability of unlabeled data
 - ightharpoonup add a data-dependent regularizer to training $(-\log p(\mathbf{x}^{(t)}))$

- We will see 3 neural networks for unsupervised learning
 - restricted Boltzmann machines
 - autoencoders
 - sparse coding model

RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h}$$

$$= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} - \sum_{j} b_{j} h_{j}$$

Distribution: $p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$ partition function (intractable)

MARKOV NETWORK VIEW

Topics: Markov network (with vector nodes)

• The notation based on an energy function is simply an alternative to the representation as the product of factors

MARKOV NETWORK VIEW

Topics: Markov network (with scalar nodes)

• The scalar visualization is more informative of the structure within the vectors

FACTOR GRAPH VIEW

Topics: factor graph of an RBM

Neural networks

Restricted Boltzmann machine - inference

RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h}$$

$$= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} - \sum_{j} b_{j} h_{j}$$

Distribution: $p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$ partition function (intractable)

INFERENCE

Topics: conditional distributions

$$p(\mathbf{h}|\mathbf{x}) = \prod_{j} p(h_{j}|\mathbf{x})$$

$$p(h_{j} = 1|\mathbf{x}) = \frac{1}{1 + \exp(-(b_{j} + \mathbf{W}_{j}.\mathbf{x}))}$$

$$= \operatorname{sigm}(b_{j} + \mathbf{W}_{j}.\mathbf{x})$$

$$j^{\text{th}} \text{ row of } \mathbf{W}_{j}$$

$$p(\mathbf{x}|\mathbf{h}) = \prod_{k} p(x_k|\mathbf{h})$$

$$p(x_k = 1|\mathbf{h}) = \frac{1}{1 + \exp(-(c_k + \mathbf{h}^{\top} \mathbf{W}_{\cdot k}))}$$

$$= \operatorname{sigm}(c_k + \mathbf{h}^{\top} \mathbf{W}_{\cdot k}) / k^{\text{th}} \operatorname{column of } \mathbf{W}$$

.

$$p(\mathbf{h}|\mathbf{x}) = p(\mathbf{x}, \mathbf{h}) / \sum_{\mathbf{h}'} p(\mathbf{x}, \mathbf{h}')$$

--

$$p(\mathbf{h}|\mathbf{x}) = p(\mathbf{x}, \mathbf{h}) / \sum_{\mathbf{h}'} p(\mathbf{x}, \mathbf{h}')$$

$$= \frac{\exp(\mathbf{h}^{\top} \mathbf{W} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}) / Z}{\sum_{\mathbf{h}' \in \{0,1\}^H} \exp(\mathbf{h}'^{\top} \mathbf{W} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}') / Z}$$

,

$$p(\mathbf{h}|\mathbf{x}) = p(\mathbf{x}, \mathbf{h}) / \sum_{\mathbf{h}'} p(\mathbf{x}, \mathbf{h}')$$

$$= \frac{\exp(\mathbf{h}^{\top} \mathbf{W} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}) / Z}{\sum_{\mathbf{h}' \in \{0,1\}^H} \exp(\mathbf{h'}^{\top} \mathbf{W} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}') / Z}$$

.

$$p(\mathbf{h}|\mathbf{x}) = p(\mathbf{x}, \mathbf{h}) / \sum_{\mathbf{h}'} p(\mathbf{x}, \mathbf{h}')$$

$$= \frac{\exp(\mathbf{h}^{\top} \mathbf{W} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}) / Z}{\sum_{\mathbf{h}' \in \{0,1\}^{H}} \exp(\mathbf{h'}^{\top} \mathbf{W} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}') / Z}$$

$$p(\mathbf{h}|\mathbf{x}) = p(\mathbf{x}, \mathbf{h}) / \sum_{\mathbf{h}'} p(\mathbf{x}, \mathbf{h}')$$

$$= \frac{\exp(\mathbf{h}^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}) / Z}{\sum_{\mathbf{h}' \in \{0,1\}^H} \exp(\mathbf{h}'^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}') / Z}$$

$$= \frac{\exp(\sum_{j} h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j})}{\sum_{h'_{1} \in \{0,1\}} \cdots \sum_{h'_{H} \in \{0,1\}} \exp(\sum_{j} h'_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h'_{j})}$$

$$p(\mathbf{h}|\mathbf{x}) = p(\mathbf{x}, \mathbf{h}) / \sum_{\mathbf{h}'} p(\mathbf{x}, \mathbf{h}')$$

$$= \frac{\exp(\mathbf{h}^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}) / Z}{\sum_{\mathbf{h}' \in \{0,1\}^{H}} \exp(\mathbf{h}'^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}') / Z}$$

$$= \frac{\exp(\sum_{j} h_{j} \mathbf{W}_{j}. \mathbf{x} + b_{j} h_{j})}{\sum_{h'_{1} \in \{0,1\}} \cdots \sum_{h'_{H} \in \{0,1\}} \exp(\sum_{j} h'_{j} \mathbf{W}_{j}. \mathbf{x} + b_{j} h'_{j})}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j}. \mathbf{x} + b_{j} h_{j})}{\sum_{h'_{1} \in \{0,1\}} \cdots \sum_{h'_{H} \in \{0,1\}} \prod_{j} \exp(h'_{j} \mathbf{W}_{j}. \mathbf{x} + b_{j} h'_{j})}$$

$$p(\mathbf{h}|\mathbf{x}) = p(\mathbf{x}, \mathbf{h}) / \sum_{\mathbf{h}'} p(\mathbf{x}, \mathbf{h}')$$

$$= \frac{\exp(\mathbf{h}^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}) / Z}{\sum_{\mathbf{h}' \in \{0,1\}^H} \exp(\mathbf{h}'^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}') / Z}$$

$$= \frac{\exp(\sum_{j} h_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h_{j})}{\sum_{h'_{1} \in \{0,1\}} \cdots \sum_{h'_{H} \in \{0,1\}} \exp(\sum_{j} h'_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h'_{j})}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h_{j})}{\sum_{h'_{1} \in \{0,1\}} \cdots \sum_{h'_{H} \in \{0,1\}} \prod_{j} \exp(h'_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h'_{j})}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h_{j})}{\left(\sum_{h'_{1} \in \{0,1\}} \exp(h'_{1} \mathbf{W}_{1}.\mathbf{x} + b_{1} h'_{1})\right) \cdots \left(\sum_{h'_{H} \in \{0,1\}} \exp(h'_{H} \mathbf{W}_{H}.\mathbf{x} + b_{H} h'_{H})\right)}$$

$$p(\mathbf{h}|\mathbf{x}) = p(\mathbf{x}, \mathbf{h}) / \sum_{\mathbf{h}'} p(\mathbf{x}, \mathbf{h}')$$

$$= \frac{\exp(\mathbf{h}^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}) / Z}{\sum_{\mathbf{h}' \in \{0,1\}^{H}} \exp(\mathbf{h}'^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}') / Z}$$

$$= \frac{\exp(\sum_{j} h_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h_{j})}{\sum_{h'_{1} \in \{0,1\}} \cdots \sum_{h'_{H} \in \{0,1\}} \exp(\sum_{j} h'_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h'_{j})}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h_{j})}{\sum_{h'_{1} \in \{0,1\}} \cdots \sum_{h'_{H} \in \{0,1\}} \prod_{j} \exp(h'_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h'_{j})}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h_{j})}{\left(\sum_{h'_{1} \in \{0,1\}} \exp(h'_{1} \mathbf{W}_{1}.\mathbf{x} + b_{1} h'_{1})\right) \cdots \left(\sum_{h'_{H} \in \{0,1\}} \exp(h'_{H} \mathbf{W}_{H}.\mathbf{x} + b_{H} h'_{H})\right)}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h_{j})}{\prod_{j} \left(\sum_{h'_{1} \in \{0,1\}} \exp(h'_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h'_{j})\right)}$$

$$p(\mathbf{h}|\mathbf{x}) = p(\mathbf{x}, \mathbf{h}) / \sum_{\mathbf{h}'} p(\mathbf{x}, \mathbf{h}')$$

$$= \frac{\exp(\mathbf{h}^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}) / Z}{\sum_{\mathbf{h}' \in \{0,1\}^{H}} \exp(\mathbf{h}'^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}') / Z}$$

$$= \frac{\exp(\sum_{j} h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j})}{\sum_{h'_{1} \in \{0,1\}} \cdots \sum_{h'_{H} \in \{0,1\}} \exp(\sum_{j} h'_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h'_{j})}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j})}{\sum_{h'_{1} \in \{0,1\}} \cdots \sum_{h'_{H} \in \{0,1\}} \prod_{j} \exp(h'_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h'_{j})}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{1} \cdot \mathbf{x} + b_{1} h'_{1}) \cdot \dots \left(\sum_{h'_{H} \in \{0,1\}} \exp(h'_{H} \mathbf{W}_{H} \cdot \mathbf{x} + b_{H} h'_{H})\right)}{\prod_{j} \left(\sum_{h'_{j} \in \{0,1\}} \exp(h'_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h'_{j})\right)}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j})}{\prod_{j} \left(1 + \exp(b_{j} + \mathbf{W}_{j} \cdot \mathbf{x})\right)}$$

$$p(\mathbf{h}|\mathbf{x}) = p(\mathbf{x}, \mathbf{h}) / \sum_{\mathbf{h}'} p(\mathbf{x}, \mathbf{h}')$$

$$= \frac{\exp(\mathbf{h}^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}) / Z}{\sum_{\mathbf{h}' \in \{0,1\}^{H}} \exp(\mathbf{h}'^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}') / Z}$$

$$= \frac{\exp(\sum_{j} h_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h_{j})}{\sum_{h'_{1} \in \{0,1\}} \cdots \sum_{h'_{H} \in \{0,1\}} \exp(\sum_{j} h'_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h'_{j})}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h_{j})}{\sum_{h'_{1} \in \{0,1\}} \exp(h'_{1} \mathbf{W}_{1}.\mathbf{x} + b_{1} h'_{1}) \cdot \cdots \cdot \left(\sum_{h'_{H} \in \{0,1\}} \exp(h'_{H} \mathbf{W}_{H}.\mathbf{x} + b_{H} h'_{H})\right)}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h_{j})}{\prod_{j} \left(\sum_{h'_{j} \in \{0,1\}} \exp(h'_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h'_{j})\right)}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h_{j})}{\prod_{j} (1 + \exp(b_{j} + \mathbf{W}_{j}.\mathbf{x})}$$

$$= \prod_{j} \frac{\exp(h_{j} \mathbf{W}_{j}.\mathbf{x} + b_{j} h_{j})}{1 + \exp(b_{j} + \mathbf{W}_{j}.\mathbf{x})}$$

$$p(\mathbf{h}|\mathbf{x}) = p(\mathbf{x}, \mathbf{h}) / \sum_{\mathbf{h}'} p(\mathbf{x}, \mathbf{h}')$$

$$= \frac{\exp(\mathbf{h}^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}) / Z}{\sum_{\mathbf{h}' \in \{0,1\}^{H}} \exp(\mathbf{h}'^{\top} \mathbf{W} \mathbf{x} + \mathbf{e}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}') / Z}$$

$$= \frac{\exp(\sum_{j} h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j})}{\sum_{h'_{1} \in \{0,1\}} \cdots \sum_{h'_{H} \in \{0,1\}} \exp(\sum_{j} h'_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h'_{j})}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j})}{\sum_{h'_{1} \in \{0,1\}} \exp(h'_{1} \mathbf{W}_{1} \cdot \mathbf{x} + b_{1} h'_{1}) \cdot \cdots \cdot \left(\sum_{h'_{H} \in \{0,1\}} \exp(h'_{H} \mathbf{W}_{H} \cdot \mathbf{x} + b_{H} h'_{H})\right)}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j})}{\prod_{j} \left(\sum_{h'_{j} \in \{0,1\}} \exp(h'_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h'_{j})\right)}$$

$$= \frac{\prod_{j} \exp(h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j})}{\prod_{j} (1 + \exp(b_{j} + \mathbf{W}_{j} \cdot \mathbf{x}))}$$

$$= \prod_{j} \frac{\exp(h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j})}{1 + \exp(b_{j} + \mathbf{W}_{j} \cdot \mathbf{x})}$$

$$= \prod_{j} p(h_{j}|\mathbf{x})$$

$$p(h_j = 1|\mathbf{x})$$

,

$$p(h_j = 1|\mathbf{x}) = \frac{\exp(b_j + \mathbf{W}_j \cdot \mathbf{x})}{1 + \exp(b_j + \mathbf{W}_j \cdot \mathbf{x})}$$

,

$$p(h_j = 1|\mathbf{x}) = \frac{\exp(b_j + \mathbf{W}_j \cdot \mathbf{x})}{1 + \exp(b_j + \mathbf{W}_j \cdot \mathbf{x})}$$
$$= \frac{1}{1 + \exp(-b_j - \mathbf{W}_j \cdot \mathbf{x})}$$

$$p(h_j = 1|\mathbf{x}) = \frac{\exp(b_j + \mathbf{W}_j \cdot \mathbf{x})}{1 + \exp(b_j + \mathbf{W}_j \cdot \mathbf{x})}$$
$$= \frac{1}{1 + \exp(-b_j - \mathbf{W}_j \cdot \mathbf{x})}$$
$$= \operatorname{sigm}(b_j + \mathbf{W}_j \cdot \mathbf{x})$$

LOCAL MARKOV PROPERTY

Topics: local Markov property

• In general, we have the following property:

$$p(z_{i}|z_{1},...,z_{V}) = p(z_{i}|\operatorname{Ne}(z_{i}))$$

$$= \frac{p(z_{i},\operatorname{Ne}(z_{i}))}{\sum_{z'_{i}}p(z'_{i},\operatorname{Ne}(z_{i}))}$$

$$= \frac{\prod_{\substack{f \text{ involving } z_{i} \\ \text{and any } \operatorname{Ne}(z_{i})}}{\sum_{z'_{i}}\prod_{\substack{f \text{ involving } z_{i} \\ \text{and any } \operatorname{Ne}(z_{i})}} \Psi_{f}(z'_{i},\operatorname{Ne}(z_{i}))}$$

- $lacktriangleright z_i$ is any variable in the Markov network (x_k or h_j in an RBM)
- $ightharpoonup \mathrm{Ne}(z_i)$ are the neighbors of z_i in the Markov network

Neural networks

Restricted Boltzmann machine - free energy

RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h}$$

$$= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} - \sum_{j} b_{j} h_{j}$$

Distribution: $p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$ partition function (intractable)

FREE ENERGY

Topics: free energy

• What about $p(\mathbf{x})$?

$$\mathbf{\mathbf{X}} \mathbf{\mathbf{X}} \mathbf{\mathbf{X}} \mathbf{\mathbf{X}} \mathbf{\mathbf{X}} \mathbf{\mathbf{A}} \mathbf{\mathbf{b}} = \sum_{\mathbf{h} \in \{0,1\}^H} p(\mathbf{x}, \mathbf{h}) = \sum_{\mathbf{h} \in \{0,1\}^H} \exp(-E(\mathbf{x}, \mathbf{h}))/Z$$

$$= \exp\left(\mathbf{c}^{\top} \mathbf{x} + \sum_{j=1}^H \log(1 + \exp(b_j + \mathbf{W}_j \cdot \mathbf{x}))\right)/Z$$

$$= \exp(-F(\mathbf{x}))/Z$$
free energy

 $p(\mathbf{x})$

•

$$p(\mathbf{x}) = \sum_{\mathbf{h} \in \{0,1\}^H} \exp(\mathbf{h}^\top \mathbf{W} \mathbf{x} + \mathbf{c}^\top \mathbf{x} + \mathbf{b}^\top \mathbf{h}) / Z$$

$$p(\mathbf{x}) = \sum_{\mathbf{h} \in \{0,1\}^H} \exp(\mathbf{h}^\top \mathbf{W} \mathbf{x} + \mathbf{c}^\top \mathbf{x} + \mathbf{b}^\top \mathbf{h}) / Z$$

$$= \exp(\mathbf{c}^{\mathsf{T}}\mathbf{x}) \sum_{h_1 \in \{0,1\}} \cdots \sum_{h_H \in \{0,1\}} \exp\left(\sum_j h_j \mathbf{W}_j \cdot \mathbf{x} + b_j h_j\right) / Z$$

$$p(\mathbf{x}) = \sum_{\mathbf{h} \in \{0,1\}^H} \exp(\mathbf{h}^\top \mathbf{W} \mathbf{x} + \mathbf{c}^\top \mathbf{x} + \mathbf{b}^\top \mathbf{h}) / Z$$

$$= \exp(\mathbf{c}^{\top}\mathbf{x}) \sum_{h_1 \in \{0,1\}} \cdots \sum_{h_H \in \{0,1\}} \exp\left(\sum_j h_j \mathbf{W}_j \cdot \mathbf{x} + b_j h_j\right) / Z$$

$$= \exp(\mathbf{c}^{\top}\mathbf{x}) \left(\sum_{h_1 \in \{0,1\}} \exp(h_1 \mathbf{W}_{1}.\mathbf{x} + b_1 h_1) \right) \dots \left(\sum_{h_H \in \{0,1\}} \exp(h_H \mathbf{W}_{H}.\mathbf{x} + b_H h_H) \right) / Z$$

.

$$p(\mathbf{x}) = \sum_{\mathbf{h} \in \{0,1\}^H} \exp(\mathbf{h}^\top \mathbf{W} \mathbf{x} + \mathbf{c}^\top \mathbf{x} + \mathbf{b}^\top \mathbf{h}) / Z$$

$$= \exp(\mathbf{c}^{\top}\mathbf{x}) \sum_{h_1 \in \{0,1\}} \cdots \sum_{h_H \in \{0,1\}} \exp\left(\sum_j h_j \mathbf{W}_j \cdot \mathbf{x} + b_j h_j\right) / Z$$

$$= \exp(\mathbf{c}^{\mathsf{T}}\mathbf{x}) \left(\sum_{h_1 \in \{0,1\}} \exp(h_1 \mathbf{W}_1 \cdot \mathbf{x} + b_1 h_1) \right) \dots \left(\sum_{h_H \in \{0,1\}} \exp(h_H \mathbf{W}_H \cdot \mathbf{x} + b_H h_H) \right) / Z$$

$$= \exp(\mathbf{c}^{\top}\mathbf{x}) \left(1 + \exp(b_1 + \mathbf{W}_{1}.\mathbf{x})\right) \dots \left(1 + \exp(b_H + \mathbf{W}_{H}.\mathbf{x})\right) / Z$$

$$p(\mathbf{x}) = \sum_{\mathbf{h} \in \{0,1\}^H} \exp(\mathbf{h}^\top \mathbf{W} \mathbf{x} + \mathbf{c}^\top \mathbf{x} + \mathbf{b}^\top \mathbf{h}) / Z$$

$$= \exp(\mathbf{c}^{\mathsf{T}}\mathbf{x}) \sum_{h_1 \in \{0,1\}} \cdots \sum_{h_H \in \{0,1\}} \exp\left(\sum_j h_j \mathbf{W}_j \cdot \mathbf{x} + b_j h_j\right) / Z$$

$$= \exp(\mathbf{c}^{\top}\mathbf{x}) \left(\sum_{h_1 \in \{0,1\}} \exp(h_1 \mathbf{W}_1 \cdot \mathbf{x} + b_1 h_1) \right) \dots \left(\sum_{h_H \in \{0,1\}} \exp(h_H \mathbf{W}_H \cdot \mathbf{x} + b_H h_H) \right) / Z$$

- $= \exp(\mathbf{c}^{\mathsf{T}}\mathbf{x}) \left(1 + \exp(b_1 + \mathbf{W}_{1}.\mathbf{x})\right) \dots \left(1 + \exp(b_H + \mathbf{W}_{H}.\mathbf{x})\right) / Z$
- $= \exp(\mathbf{c}^{\mathsf{T}}\mathbf{x})\exp(\log(1+\exp(b_1+\mathbf{W}_{1\cdot}\mathbf{x}))) \dots \exp(\log(1+\exp(b_H+\mathbf{W}_{H\cdot}\mathbf{x})))/Z$

$$p(\mathbf{x}) = \sum_{\mathbf{h} \in \{0,1\}^H} \exp(\mathbf{h}^\top \mathbf{W} \mathbf{x} + \mathbf{c}^\top \mathbf{x} + \mathbf{b}^\top \mathbf{h}) / Z$$

$$= \exp(\mathbf{c}^{\mathsf{T}}\mathbf{x}) \sum_{h_1 \in \{0,1\}} \cdots \sum_{h_H \in \{0,1\}} \exp\left(\sum_j h_j \mathbf{W}_j \cdot \mathbf{x} + b_j h_j\right) / Z$$

$$= \exp(\mathbf{c}^{\top}\mathbf{x}) \left(\sum_{h_1 \in \{0,1\}} \exp(h_1 \mathbf{W}_{1}.\mathbf{x} + b_1 h_1) \right) \dots \left(\sum_{h_H \in \{0,1\}} \exp(h_H \mathbf{W}_{H}.\mathbf{x} + b_H h_H) \right) / Z$$

$$= \exp(\mathbf{c}^{\top}\mathbf{x}) \left(1 + \exp(b_1 + \mathbf{W}_{1}.\mathbf{x})\right) \dots \left(1 + \exp(b_H + \mathbf{W}_{H}.\mathbf{x})\right) / Z$$

$$= \exp(\mathbf{c}^{\top}\mathbf{x})\exp(\log(1+\exp(b_1+\mathbf{W}_{1\cdot}\mathbf{x}))) \dots \exp(\log(1+\exp(b_H+\mathbf{W}_{H\cdot}\mathbf{x})))/Z$$

$$= \exp\left(\mathbf{c}^{\top}\mathbf{x} + \sum_{j=1}^{H} \log(1 + \exp(b_j + \mathbf{W}_j \cdot \mathbf{x}))\right) / Z$$

Topics: free energy

Topics: free energy

bias the prob of each x_i

Topics: free energy

"feature" expected in X

bias the prob of each x_i

Topics: free energy

"feature" expected in X

bias of each feature

bias the prob of each x_i

Neural networks

Restricted Boltzmann machine - contrastive divergence

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h}$$

$$= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} - \sum_{j} b_{j} h_{j}$$

Distribution: $p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$ partition function (intractable)

TRAINING

Topics: training objective

 To train an RBM, we'd like to minimize the average negative log-likelihood (NLL)

$$\frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)})) = \frac{1}{T} \sum_{t} -\log p(\mathbf{x}^{(t)})$$

We'd like to proceed by stochastic gradient descent

$$\frac{\partial -\log p(\mathbf{x}^{(t)})}{\partial \theta} = \mathbf{E_h} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \middle| \, \mathbf{x}^{(t)} \right] - \mathbf{E_{x,h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right]$$
positive phase
negative phase

TRAINING

hard to

compute

Topics: training objective

• To train an RBM, we'd like to minimize the average negative log-likelihood (NLL)

$$\frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)})) = \frac{1}{T} \sum_{t} -\log p(\mathbf{x}^{(t)})$$

We'd like to proceed by stochastic gradient descent

$$\frac{\partial -\log p(\mathbf{x}^{(t)})}{\partial \theta} = \mathbf{E_h} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \middle| \, \mathbf{x}^{(t)} \right] - \underbrace{\mathbf{E_{\mathbf{x}, \mathbf{h}}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right]}_{\text{positive phase}}$$
positive phase

(HINTON, NEURAL COMPUTATION, 2002)

- Idea:
 - I. replace the expectation by a point estimate at $\tilde{\mathbf{x}}$
 - 2. obtain the point $\tilde{\mathbf{x}}$ by Gibbs sampling
 - 3. start sampling chain at $\mathbf{x}^{(t)}$

(HINTON, NEURAL COMPUTATION, 2002)

$$\mathbf{E_{h}} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \middle| \mathbf{x}^{(t)} \right] \approx \frac{\partial E(\mathbf{x}^{(t)}, \tilde{\mathbf{h}}^{(t)})}{\partial \theta} \qquad \mathbf{E_{x,h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right] \approx \frac{\partial E(\tilde{\mathbf{x}}, \tilde{\mathbf{h}})}{\partial \theta}$$

(HINTON, NEURAL COMPUTATION, 2002)

$$\mathbf{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \middle| \mathbf{x}^{(t)} \right] \approx \frac{\partial E(\mathbf{x}^{(t)}, \tilde{\mathbf{h}}^{(t)})}{\partial \theta} \qquad \mathbf{E}_{\mathbf{x}, \mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right] \approx \frac{\partial E(\tilde{\mathbf{x}}, \tilde{\mathbf{h}})}{\partial \theta}$$

(HINTON, NEURAL COMPUTATION, 2002)

$$\mathbf{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \middle| \mathbf{x}^{(t)} \right] \approx \frac{\partial E(\mathbf{x}^{(t)}, \tilde{\mathbf{h}}^{(t)})}{\partial \theta} \qquad \mathbf{E}_{\mathbf{x}, \mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right] \approx \frac{\partial E(\tilde{\mathbf{x}}, \tilde{\mathbf{h}})}{\partial \theta}$$

(HINTON, NEURAL COMPUTATION, 2002)

$$\mathbf{E_{h}} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \middle| \mathbf{x}^{(t)} \right] \approx \frac{\partial E(\mathbf{x}^{(t)}, \tilde{\mathbf{h}}^{(t)})}{\partial \theta} \qquad \mathbf{E_{x,h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right] \approx \frac{\partial E(\tilde{\mathbf{x}}, \tilde{\mathbf{h}})}{\partial \theta}$$

Neural networks

Restricted Boltzmann machine - contrastive divergence (parameter update)

TRAINING

Topics: training objective

 To train an RBM, we'd like to minimize the average negative log-likelihood (NLL)

$$\frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)})) = \frac{1}{T} \sum_{t} -\log p(\mathbf{x}^{(t)})$$

We'd like to proceed by stochastic gradient descent

$$\frac{\partial -\log p(\mathbf{x}^{(t)})}{\partial \theta} = \mathbf{E_h} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \middle| \, \mathbf{x}^{(t)} \right] - \mathbf{E_{x,h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right]$$
positive phase
negative phase

TRAINING

hard to

compute

Topics: training objective

• To train an RBM, we'd like to minimize the average negative log-likelihood (NLL)

$$\frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)})) = \frac{1}{T} \sum_{t} -\log p(\mathbf{x}^{(t)})$$

We'd like to proceed by stochastic gradient descent

$$\frac{\partial -\log p(\mathbf{x}^{(t)})}{\partial \theta} = \mathbf{E_h} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \middle| \, \mathbf{x}^{(t)} \right] - \underbrace{\mathbf{E_{\mathbf{x}, \mathbf{h}}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right]}_{\text{positive phase}}$$
positive phase

DERIVATION OF THE LEARNING RULE

Topics: contrastive divergence

• Derivation of $\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta}$ for $\theta = W_{jk}$

$$\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial W_{jk}} = \frac{\partial}{\partial W_{jk}} \left(-\sum_{jk} W_{jk} h_j x_k - \sum_{k} c_k x_k - \sum_{j} b_j h_j \right)$$

$$= -\frac{\partial}{\partial W_{jk}} \sum_{jk} W_{jk} h_j x_k$$

$$=-h_jx_k$$

$$\nabla_{\mathbf{W}} E(\mathbf{x}, \mathbf{h}) = -\mathbf{h} \, \mathbf{x}^{\top}$$

DERIVATION OF THE LEARNING RULE

Topics: contrastive divergence

• Derivation of $\mathbb{E}_{\mathbf{h}}\left[\frac{\partial E(\mathbf{x},\mathbf{h})}{\partial \theta}\Big|\mathbf{x}\right]$ for $\theta=W_{jk}$

$$\mathbb{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial W_{jk}} \middle| \mathbf{x} \right] = \mathbb{E}_{\mathbf{h}} \left[-h_j x_k \middle| \mathbf{x} \right] = \sum_{h_j \in \{0, 1\}} -h_j x_k p(h_j | \mathbf{x})$$

$$= -x_k p(h_j = 1|\mathbf{x})$$

$$\mathrm{E}_{\mathbf{h}}\left[\nabla_{\mathbf{W}}E(\mathbf{x},\mathbf{h})\,|\mathbf{x}\right] = -\mathbf{h}(\mathbf{x})\,\mathbf{x}^{\top}$$

$$\mathbf{h}(\mathbf{x}) \stackrel{\text{def}}{=} \begin{pmatrix} p(h_1 = 1 | \mathbf{x}) \\ \dots \\ p(h_H = 1 | \mathbf{x}) \end{pmatrix}$$
$$= \operatorname{sigm}(\mathbf{b} + \mathbf{W}\mathbf{x})$$

DERIVATION OF THE LEARNING RULE

Topics: contrastive divergence

• Given $\mathbf{x}^{(t)}$ and $\tilde{\mathbf{x}}$ the learning rule for $\theta = \mathbf{W}$ becomes

$$\mathbf{W} \iff \mathbf{W} - \alpha \left(\nabla_{\mathbf{W}} - \log p(\mathbf{x}^{(t)}) \right)$$

$$\iff \mathbf{W} - \alpha \left(\mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\mathbf{x}^{(t)}, \mathbf{h}) \, \middle| \mathbf{x}^{(t)} \right] - \mathbf{E}_{\mathbf{x}, \mathbf{h}} \left[\nabla_{\mathbf{W}} E(\mathbf{x}, \mathbf{h}) \middle| \right) \right)$$

$$\iff \mathbf{W} - \alpha \left(\mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\mathbf{x}^{(t)}, \mathbf{h}) \, \middle| \mathbf{x}^{(t)} \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \, \middle| \tilde{\mathbf{x}} \right] \right)$$

$$\iff \mathbf{W} + \alpha \left(\mathbf{h}(\mathbf{x}^{(t)}) \, \mathbf{x}^{(t)^{\top}} - \mathbf{h}(\tilde{\mathbf{x}}) \, \tilde{\mathbf{x}}^{\top} \right)$$

CD-K: PSEUDOCODE

Topics: contrastive divergence

- I. For each training example $\mathbf{x}^{(t)}$
 - i. generate a negative sample $\tilde{\mathbf{x}}$ using k steps of Gibbs sampling, starting at $\mathbf{x}^{(t)}$
 - ii. update parameters

$$\mathbf{W} \iff \mathbf{W} + \alpha \left(\mathbf{h}(\mathbf{x}^{(t)}) \mathbf{x}^{(t)^{\top}} - \mathbf{h}(\tilde{\mathbf{x}}) \tilde{\mathbf{x}}^{\top} \right)$$

$$\mathbf{b} \iff \mathbf{b} + \alpha \left(\mathbf{h}(\mathbf{x}^{(t)}) - \mathbf{h}(\tilde{\mathbf{x}}) \right)$$

$$\mathbf{c} \iff \mathbf{c} + \alpha \left(\mathbf{x}^{(t)} - \tilde{\mathbf{x}} \right)$$

2. Go back to I until stopping criteria

(HINTON, NEURAL COMPUTATION, 2002)

Topics: contrastive divergence

- CD-k: contrastive divergence with k iterations of Gibbs sampling
- In general, the bigger k is, the less **biased** the estimate of the gradient will be
- In practice, k= I works well for pre-training

Neural networks

Restricted Boltzmann machine - persistent CD

CD-K: PSEUDOCODE

Topics: contrastive divergence

- I. For each training example $\mathbf{x}^{(t)}$
 - i. generate a negative sample $\tilde{\mathbf{x}}$ using k steps of Gibbs sampling, starting at $\mathbf{x}^{(t)}$
 - ii. update parameters

$$\mathbf{W} \iff \mathbf{W} + \alpha \left(\mathbf{h}(\mathbf{x}^{(t)}) \mathbf{x}^{(t)^{\top}} - \mathbf{h}(\tilde{\mathbf{x}}) \tilde{\mathbf{x}}^{\top} \right)$$

$$\mathbf{b} \iff \mathbf{b} + \alpha \left(\mathbf{h}(\mathbf{x}^{(t)}) - \mathbf{h}(\tilde{\mathbf{x}}) \right)$$

$$\mathbf{c} \iff \mathbf{c} + \alpha \left(\mathbf{x}^{(t)} - \tilde{\mathbf{x}} \right)$$

2. Go back to I until stopping criteria

PERSISTENT CD (PCD)

(TIELEMAN, ICML 2008)

Topics: persistent contrastive divergence

• Idea: instead of initializing the chain to $\mathbf{x}^{(t)}$, initialize the chain to the negative sample of the last iteration

PERSISTENT CD (PCD)

(TIELEMAN, ICML 2008)

Topics: persistent contrastive divergence

• Idea: instead of initializing the chain to $\mathbf{x}^{(t)}$, initialize the chain to the negative sample of the last iteration

PERSISTENT CD (PCD)

(TIELEMAN, ICML 2008)

Topics: persistent contrastive divergence

• Idea: instead of initializing the chain to $\mathbf{x}^{(t)}$, initialize the chain to the negative sample of the last iteration

Neural networks

Restricted Boltzmann machine - example

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h}$$

$$= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} - \sum_{j} b_{j} h_{j}$$

Distribution: $p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$ partition function (intractable)

EXAMPLE OF DATA SET: MNIST

3	8	6	٩	6	4	5	3	8	4	ς	J	3	8	4	8
I	5	0	5	9	7	4	1	0	3	0	و	2	9	9	4
1	3	6	8	0	7	1	6	8	9	\Diamond	3	8	3	>	7
				ð											
7	2	7	3	1	4	O	5	Ö	6	8	7	6	8	9	9
4	0	6	1	9	2	L	3	9	H	4	كو	6	6)	7
2	8	6	9	7	Ó	9		6	2	જ	3	6	4	9	5
F	6	ર્જ	7	B	8	6	9	1	7	6	0	9	6	7	0

FILTERS

(LAROCHELLE ET AL., JMLR2009)

DEBUGGING

Topics: stochastic reconstruction, filters

- Unfortunately, we can't debug with a comparison with finite difference
- · We instead rely on approximate "tricks"
 - we plot the average stochastic reconstruction $||\mathbf{x}^{(t)} \tilde{\mathbf{x}}||^2$ and see if it tends to decrease:
 - ▶ for inputs that correspond to image, we visualize the connection coming into each hidden unit as if it was an image
 - gives an idea of the type of visual feature each hidden unit detects
 - lacktriangleright we can also try to approximate the partition function Z and see whether the (approximated) NLL decreases
 - On the Quantitative Analysis of Deep Belief Networks. Ruslan Salakhutdinov and Iain Murray, 2008

Neural networks

Restricted Boltzmann machine - extensions

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h}$$

$$= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} - \sum_{j} b_{j} h_{j}$$

Distribution: $p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$ partition function (intractable)

GAUSSIAN-BERNOULLI RBM

Topics: Gaussian-Bernoulli RBM

- Inputs X are unbounded reals
 - > add a quadratic term to the energy function

$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\mathsf{T}} \mathbf{W} \mathbf{x} - \mathbf{c}^{\mathsf{T}} \mathbf{x} - \mathbf{b}^{\mathsf{T}} \mathbf{h} + \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{x}$$

- only thing that changes is that $p(\mathbf{x}|\mathbf{h})$ is now a Gaussian distribution with mean $\boldsymbol{\mu} = \mathbf{c} + \mathbf{W}^{\mathsf{T}}\mathbf{h}$ and identity covariance matrix
- recommended to normalize the training set by
 - subtracting the mean of each input
 - dividing each input x_k by the training set standard deviation
- > should use a smaller learning rate than in the regular RBM

FILTERS

(LAROCHELLE ET AL., JMLR2009)

OTHER TYPES OF OBSERVATIONS

Topics: extensions to other observations

- Extensions support other types:
 - real-valued: Gaussian-Bernoulli RBM
 - ▶ Binomial observations:
 - Rate-coded Restricted Boltzmann Machines for Face Recognition. Yee Whye Teh and Geoffrey Hinton, 2001
 - Multinomial observations:
 - Replicated Softmax: an Undirected Topic Model. Ruslan Salakhutdinov and Geoffrey Hinton, 2009
 - Training Restricted Boltzmann Machines on Word Observations. George Dahl, Ryan Adam and Hugo Larochelle, 2012
 - and more (see course website)

BOLTZMANN MACHINE

Topics: Boltzmann machine

• The original Boltzmann machine has lateral connections in each layer

when only one layer has lateral connection, it's a semi-restricted Boltmann machine

BOLTZMANN MACHINE

Topics: Boltzmann machine

• The original Boltzmann machine has lateral connections in each layer

when only one layer has lateral connection, it's a semi-restricted Boltmann machine

BOLTZMANN MACHINE

Topics: Boltzmann machine

• The original Boltzmann machine has lateral connections in each layer

when only one layer has lateral connection, it's a semi-restricted Boltmann machine