

Licence 1^{re} année, MATHÉMATIQUES ET CALCUL

Fiche de TD nº 2 : intégrales convergentes

Exercice 1. Soit f une fonction continue sur $[0, +\infty[$.

- 1. Montrer que si $\lim_{x\to +\infty} f(x) = l$ avec $l\neq 0$, alors son intégrale sur $[0,+\infty[$ diverge.
- 2. Prouver que si l'intégrale de f sur $[0, +\infty[$ est convergente et si f admet une limite l quand x tend vers $+\infty$, alors l=0.
- 3. Si $\lim_{x \to +\infty} f(x) = 0$, son intégrale sur $[0, +\infty[$ converge-t-elle?
- 4. On suppose que f est de classe \mathcal{C}^1 sur $[0, +\infty[$ et que les intégrales de f et de f' sur $[0, +\infty[$ sont convergentes. Montrer que f converge vers 0, quand x tend vers $+\infty$. En complément, on admettra qu'il existe des fonctions continues ne tendant pas vers 0 quand x tend vers $+\infty$ dont l'intégrale converge.

Exercice 2. Déterminer la nature des intégrales suivantes :

1)
$$\int_{1}^{+\infty} \frac{dt}{t^{3}}, \quad 2) \int_{1}^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt, \quad 3) \int_{1}^{+\infty} \sqrt{t} e^{-t} dt, \quad 4) \int_{1}^{+\infty} \frac{\ln t}{\sqrt{1+t}} dt, \quad 5) \int_{0}^{+\infty} \frac{t e^{-\sqrt{t}}}{1+t^{2}} dt,$$
6)
$$\int_{1}^{+\infty} \frac{(t^{5} + 3t + 1)e^{-t}}{t^{3} + 4} dt, \quad 7) \int_{0}^{+\infty} \frac{\ln(1+t^{2})}{1+t^{2}} dt, \quad 8) \int_{1}^{+\infty} \sin(t^{-2}) dt,$$
9)
$$\int_{0}^{+\infty} \left(t + 2 - \sqrt{t^{2} + 4t + 1}\right) dt, \quad 10) \int_{0}^{1} \frac{dt}{\sqrt{t}}, \quad 11) \int_{0}^{1} \frac{dt}{\sqrt{1-t}}, \quad 12) \int_{0}^{1} \frac{\ln t}{\sqrt{t}} dt,$$
13)
$$\int_{0}^{\pi/2} \sqrt{\tan t} \, dt, \quad 14) \int_{0}^{1} \frac{\sqrt{1-\ln t}}{\sin t} dt.$$

Exercice 3. Etudier la convergence absolue et la convergence des intégrales suivantes :

1)
$$\int_{1}^{+\infty} \frac{\sin t}{t^2} dt$$
, 2) $\int_{1}^{+\infty} \frac{\sin t}{t} dt$ 3) $\int_{0}^{1} \frac{\sin(1/t)}{\sqrt{t}} dt$, 4) $\int_{0}^{1} \frac{\sin(1/t)}{t} dt$ 5) $\int_{0}^{2} \cos(1/t) dt$.

Exercice 4. Trouver une condition nécessaire et suffisante sur a et b pour que les intégrales suivantes convergent. On pourra distinguer les cas b > 0, b < 0 et b = 0 pour la question 4.

1)
$$\int_{1}^{+\infty} \frac{dt}{t^{a}(t-1)^{b}}$$
, 2) $\int_{0}^{+\infty} t^{a} \left(1 - e^{-1/\sqrt{t}}\right) dt$, 3) $\int_{0}^{+\infty} \frac{t^{a}}{1 + t^{2}} dt$, 4) $\int_{0}^{+\infty} \frac{te^{-t}}{1 + t^{b}} dt$, 5) $\int_{1}^{+\infty} \frac{\ln t}{t^{a}} dt$, 6) $\int_{0}^{1} \frac{\ln t}{t^{a}} dt$, 7) $\int_{0}^{+\infty} \frac{\ln(1 + t^{3})}{t^{a}} dt$.

Exercice 5.

- 1. Montrer que $\int_0^1 \ln t \, dt$ converge et calculer sa valeur (effectuer une intégration par parties).
- 2. Montrer que $\int_0^{\pi/2} \ln{(\sin{t})} dt$ converge. On note A sa valeur. Montrer que $\int_0^{\pi/2} \ln{(\cos{t})} dt$ converge et vaut A.
- 3. En déduire que $\int_0^{\pi} \ln(\sin t) dt$ converge. On note I sa valeur. Montrer que I = 2A.
- 4. Montrer finalement que $I = -\pi \ln 2$.

Exercice 6.

- 1. Montrer que $I = \int_0^{+\infty} \frac{\arctan t}{1 + t^2} dt$ converge et que $I = \frac{\pi^2}{8}$.
- 2. Soit n > 1. Montrer que $J_n = \int_1^{+\infty} \frac{\ln t}{t^n} dt$ converge et que $J_n = \frac{1}{(n-1)^2}$.

Exercice 7. Soit a > 0. On considère l'intégrale $I(a) = \int_0^{+\infty} \frac{\ln t}{(a+t)^2} dt$.

- 1. Montrer que I(a) converge.
- 2. Montrer que $I(a) = \frac{\ln a}{a}$.

Exercice 8. Révisions. Soit $f:[1,+\infty[\to\mathbb{R}]$ une fonction continue.

- 1. Montrer que si pour tout $t \geq 27$, $0 \leq f(t) \leq t^4$, alors l'intégrale de $t \mapsto e^{-t/2} f(t)$ sur $[1, +\infty[$ converge.
- 2. Soit $F: [1, +\infty[\to \mathbb{R}$ une primitive de f. On suppose que F est bornée sur $[1, +\infty[$. Montrer que pour tout $\alpha > 0$, l'intégrale $\int_{1}^{+\infty} \frac{f(t)}{t^{\alpha}} dt$ converge.

Exercice 9. Compléments.

- 1. Généralisation du théorème de la moyenne. Soit $g:[a,b]\to\mathbb{R}$ et $h:[a,b]\to\mathbb{R}^+$ deux fonctions continues. On note m le minimum de g sur [a,b] et M son maximum.
 - a) Montrer que

$$m \int_a^b h(t) dt \le \int_a^b g(t)h(t) dt \le M \int_a^b h(t) dt.$$

- b) En déduire qu'il existe $c \in [a,b]$ tel que $\int_a^b g(t)h(t)\,dt = g(c)\int_a^b h(t)\,dt.$
- 2. Soit a > 0, b > 0 et $f: [0, +\infty[\to \mathbb{R} \text{ une fonction continue telle que } \int_1^{+\infty} \frac{f(t)}{t} dt$ converge.
 - a) Montrer que l'intégrale $I:=\int_0^{+\infty} \frac{f(at)-f(bt)}{t}\,dt$ converge et que $I=f(0)\ln\left(\frac{b}{a}\right)$.

2

b) Application : calculer $J:=\int_0^{+\infty}\frac{e^{-at}-e^{-bt}}{t}\,dt.$