Lecture III. : Lists and Comprehensions.
nats :: [In+] nats = [1]
[5 10] :: [Int] in the prelude.
take : lut -> [a] -> [a]
take 0 xs = []
take n [] = []
take $n(x:xs) = x:take (n-1)xs$
< table : 1-+ + (27 + C=7.
[]
X:XS
Wrong.
tale n x: xs =
- /-
take n [x]
[x ₁ y ₂]
[(x:xs)]
-(Xo, X1 X2
$X_0: X_1: X_2: X_5$

drop ::
$$[n+ \rightarrow [a] \rightarrow [a]$$

drop 0 $\times s = \times s$
drop n $(x) = [a]$
drop n $(x) = [a]$

drop 2 ['a', 'b', 'e', d']

xs = m m

tale (m-m) (drop m xs)

alphabet: 11+ > Char alphabet 1 = 'a' alphabet 2 = 'b'

$$[1..26] = [1, 2, 3, 4 - ... 26] :: [1xi]$$

$$['a', 'b', 'c', ... 'z']$$

map alphabet [1..26]

between :: Int
$$\rightarrow$$
 Int \rightarrow CInt?
between χ $y = \chi$: between (x+1) y

Square :: Int -> Int Square x = x * x

map square nots

list comprehension style:

[square n | n < [1..]]

map square nets

even: Int 7 Bool.

map square (filter even nots)

[square n | n < [1..], even n]