Pravděpodobnost a statistika

Pravděpodobnost

Vilém Vychodil

KMI/PRAS, Přednáška 3

Vytvořeno v rámci projektu 2963/2011 FRVŠ

Přednáška 3: Přehled

- Struktury náhodných jevů:
 - náhodný jev a jeho výskyt,
 - vzájemné vztahy náhodných jevů a operace s náhodnými jevy,
 - pole, σ-algebry, Borelovské množiny, Borelovské jevové pole.
- Míry a pravděpodobnostní míry:
 - míra, vlastnosti míry, příklady měr,
 - pravděpodobnostní míra a pravděpodobnostní prostor,
 - Lebesgueova a Diracova míra,
 - klasické pravděpodobnostní prostory.
- Vlastnosti pravděpodobnostní míry:
 - Kolmogorovovy axiomy,
 - zákony pro počátíní s pravděpodobností, princip inkluze a exkluze,
 - příklady počítání pravděpodobností.

Opakování: Náhodný pokus

Definice (Náhodný pokus a jeho výsledek)

Náhodný pokus je činnost probíhající pod vlivem náhody a jehož výsledek není plně určen podmínkami, za kterých je prováděn. Každý **náhodný pokus** (angl.: random experiment) končí výsledkem, který je nazýván **elementární jev** (angl.: outcome).

Dále předpokládáme, že

- náhodný pokus může být libovolně opakován,
- výsledek náhodného pokusu je nejistý dokud není pokus dokončen,
- předpokládáme, že všechny možné výsledky náhodného pokusu jde vymezit:

Definice (Prostor elementárních jevů Ω)

Množina všech elementární jevů náhodného pokusu, o který se zajímáme, se označuje Ω a nazývá **prostor** (**elementárních jevů**), angl.: *outcome space*.

Náhodný jev a jeho výskyt

Definice (Náhodný jev, výskyt náhodného jevu)

Uvažujme náhodný pokus s prostorem elementárních jevů Ω . Každou podmnožinu $A \subseteq \Omega$ nazveme **náhodný jev** (angl.: event). Speciálně,

- Ø nazveme jev nemožný (angl.: empty event, impossible event),
- Ω nazveme **jev jistý** (angl.: *universal event, certain event*).

Předpokládejme, že je proveden náhodný pokus a jeho výsledkem je $x \in \Omega$. Pokud $x \in A$, pak mluvíme o **výskytu náhodného jevu** A (angl.: event A occurred).

Množinový pohled na náhodné jevy:

náhodný jev = libovolná podmnožina Ω

Poznámka:

Elementární jev $x \in \Omega$ (Přednáška 1) lze chápat jako náhodný jev $\{x\} \subseteq \Omega$.

Příklady (Příklady náhodných jevů)

• Jsou vrženy dvě kostky; zajímáme se o součet teček na obou kostkách.

$$\Omega = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$
.
 $A = \{2, 4, 6, 8, 10, 12\}, B = \{2, 3, 4, 5, 6\}, \dots$

- Pro $\Omega = \{A, B\}$ máme $A_1 = \emptyset$, $A_2 = \{M\}$, $A_3 = \{D\}$, $A_4 = \{M, D\}$.
- Házíme mincí tak dlouho, dokud neuvidíme orla; zajímáme se o počet hodů.

$$\Omega = \{1, 2, 3, 4, \dots\} = \mathbb{N}$$
.
 $A = \{1, \dots, 100\}, B = \{n \mid n > 1000\}, \dots$

$$D = \{1, \dots, 100\}, D = \{n \mid n \geq 1000\}, \dots$$

 \bullet Pro spojitý prostor $\Omega = (50,400) \,$ máme $A = (0,1), \, B = (0,1] \cup [6,7), \ldots$

Vztahy náhodných jevů

Definice (Vzájemně neslučitelné jevy, úplný systém jevů)

Uvažujme prostor Ω a spočetně mnoho náhodných jevů A_1, A_2, \ldots v tomto prostoru. Náhodné jevy A_1, A_2, \ldots nazveme

- vzájemně neslučitelné (angl.: mutually exclusive events) pokud pro každé i, j, kde $i \neq j$, platí $A_i \cap A_j = \emptyset$;
- úplným systémem jevů (angl.: exhaustive events) pokud $\Omega = A_1 \cup A_2 \cup \cdots$;
- úplným systémem neslučitelných jevů (angl.: mutually exclusive and exhaustive events) pokud jsou vzájemně neslučitelné a tvoří úplný systém jevů.

Poznámky:

- vzájemně neslučitelné jevy: nemohou nastat současně;
- úplným systémem jevů: alespoň jeden z jevů vždy nastane;
- úplný systém neslučitelných jevů = nastává právě jeden z jevů

Příklady (Příklady vztahů náhodných jevů)

Jsou vrženy dvě kostky a zajímáme se o součet teček na horních stranách.

Prostor elementárních jevů: $\Omega = \{2,3,4,5,6,7,8,9,10,11,12\}$

```
\begin{array}{l} A_1 = \{2,4,6,8,10,12\} \ldots \text{ sudý počet teček}; \\ A_2 = \{3,5,7,9,11\} \ldots \text{ lichý počet teček}; \\ A_3 = \{2,3,4,5,6,7\} \ldots \text{ počet teček menší než 8}; \\ A_4 = \{10,11,12\} \ldots \text{ počet teček větší než 9}; \\ A_5 = \{3,4,5,6,7,8,9,10,11,12\} \ldots \text{ vše kromě "hadích očí"}. \\ A_1,A_2 \ldots \text{ úplný systém neslučitelných jevů (rovněž třeba } A_1,A_2,\emptyset) \\ A_3,A_4 \ldots \text{ vzájemně neslučitelné jevy (rovněž třeba } A_3,A_4,\emptyset) \\ A_1,A_5 \ldots \text{ úplný systém jevů (rovněž třeba } A_1,A_5,\emptyset) \\ A_3,A_5 \ldots \text{ úplný systém jevů (rovněž třeba } A_3,A_5,\emptyset) \end{array}
```

Poznámka: úplný systém neslučitelných jevů \neq rozklad na Ω (může obsahovat \emptyset)

Operace s náhodnými jevy

Množinové operace:

- $\bullet \ \ A\cap B=\{x\in\Omega\,|\,x\in A\ {\rm a}\ x\in B\}\ \ {\rm (průnik)}$
- $A \cup B = \{x \in \Omega \mid x \in A \text{ nebo } x \in B\}$ (sjednocení)
- $A B = \{x \in \Omega \mid x \in A \text{ a } x \notin B\}$ (rozdíl)
- $A' = \{x \in \Omega \mid x \notin A\} = \Omega A$ (doplněk, neboli komplement)
- $A \div B = (A B) \cup (B A) = (A \cup B) (A \cap B)$ (symetrický rozdíl)

Význam:

ullet $A\cap B$ nastane p.k. A nastane a současně nastane B,\dots

Vybrané zákony:

- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$,
- $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$, $(A \cup B)' = A' \cap B'$, $(A \cap B)' = A' \cup B'$, ...

Prevděpodobnost jako míra výskytu náhodného jevu

Motivace

Chceme náhodnému jevu $A\subseteq\Omega$ přiřadit číslo P(A), zvané pravděpodobnost výskytu jevu A, které přiřazuje náhodnému jevu A míru jistoty jeho výskytu.

Jaké vlastnosti by měla mít funkce P?

- $P(\emptyset) = 0$ (míra jistoty výskytu nemožného jevu je 0),
- $P(\Omega) = 1$ (míra jistoty výskytu jistého jevu je 1),
- pokud $A \subseteq B$, pak $P(A) \le P(B)$ (monotonie),
- aditivita: pokud $A \cap B = \emptyset$, pak $P(A \cup B) = P(A) + P(B)$.
 - ullet Rozdělíme náhodný jev C na dvě disjunktní části A a B,
 - stanovíme pravděpodobnosti P(A) a P(B) výskytu A a B,
 - vypočteme pravděpodobnost P(C) výskytu C jako P(C) = P(A) + P(B).
- σ -aditivita (zesílení aditivity pro sekvence náhodných jevů, viz dále), . . .

Příklad (Pravděpodobnost jako délka)

Uvažujme prostor elementárních jevů $\Omega = [0,1] \subseteq \mathbb{R}$.

Náhodný pokus:

"Je vybráno jedno číslo z Ω , přitom všechna čísla mají stejnou šanci být vybrána."

Pokud je náhodný jev (otevřený) interval $(a,b)\subseteq\Omega$, pak má smysl chápat pravděpodobnost výskytu tohoto jevu jako *délku intervalu* (a,b), například:

• pokud A=(0.3,0.7), pak P(A)=0.7-0.3=0.4; pokud B=(0.1,0.25), pak $P(B)=0.25-0.1=0.15,\ldots$

Použitím aditivity (součet délek disjunktních intervalů):

ullet pokud $C=(0.3,0.7)\cup(0.1,0.25)$, pak $P(C)=0.4+0.15=0.55,\ldots$

Pozorování: P se na intervalech chová jako délka.

Fundamentání otázka: Lze rozšířit definici takové P pro každý $A \in 2^{\Omega}$? Nelze!

Důsledek: Je potřeba se omezit pouze na některé podmnožiny Ω .

Pole a sigma algebry (σ -algebry)

Definice (Pole a σ -algebry)

Podmnožina $\mathcal{F}\subseteq 2^{\Omega}$ se nazývá **pole** (angl.: *field*) v Ω , pokud platí následující:

- \bullet $\Omega \in \mathcal{F}$,
- pokud $A \in \mathcal{F}$, pak $\Omega A \in \mathcal{F}$ (to jest $A' \in \mathcal{F}$) a
- pokud $A, B \in \mathcal{F}$, pak $A \cup B \in \mathcal{F}$.

Pole $\mathcal{F} \subseteq 2^{\Omega}$ se nazývá σ -algebra v Ω , pokud platí následující:

• pokud $A_i \in \mathcal{F}$ pro každé $i = 1, 2, \ldots$, pak $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Poznámky:

- ullet pole = podmnožina 2^Ω obsahující Ω uzavřená na doplňky a sjednocení,
- σ -algebra = pole, které je navíc uzavřené na spočetná sjednocení,
- zřejmé: každá σ -algebra je pole (opačně obecně neplatí, viz dále).

Příklady (Pole a σ -algebry)

- Pro každou Ω jsou $\mathcal{F}_\emptyset=\{\emptyset,\Omega\}$ (nejměnší), $\mathcal{F}_\Omega=2^\Omega$ (největší) σ -algebry.
- ② Pro každou je $A \subseteq \Omega$ je $\mathcal{F} = \{\emptyset, A, \Omega A, \Omega\}$ σ -algebra.
- $oldsymbol{0}$ Mějme $\Omega=\{1,2,3,4\}$, pak
 - $\mathcal{F}_1 = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{3,4\}, \{2,3,4\}, \{1,3,4\}, \Omega\}$ je σ -algebra,
 - $\mathcal{F}_2 = \{\{1,2\},\{3,4\},\Omega\}$ není pole, protože $\Omega \Omega \not\in \mathcal{F}_2$,
 - $\mathcal{F}_3 = \{\emptyset, \{1\}, \{1, 2\}, \{3, 4\}, \{2, 3, 4\}, \Omega\}$ není pole, protože $\{1\} \cup \{3, 4\} \notin \mathcal{F}_3$.
- lack Mějme $\Omega=(0,1)\subseteq \mathbb{R}$, pak
 - $\mathcal{F}_4 = \{\emptyset, (0,0.4), (0.4,1), (0,1)\}$ není pole, protože $(0,0.4) \cup (0.4,1) \not\in \mathcal{F}_4$,
 - $\bullet \ \mathcal{F}_5 = \{\emptyset, (0,0.4), [0.4,1), (0,0.6), [0.6,1), (0,1)\} \ \text{nen\'i pole:} \ (0,0.4) \cup [0.6,1) \not \in \mathcal{F}_5,$
 - $\mathcal{F}_6 = \{\emptyset, (0, 0.5), [0.5, 1), (0, 1)\}$ je σ -algebra.
- - Pokud je Ω konečná, pak je \mathcal{F} σ -algebra.
 - Pokud je Ω nekonečná, pak $\mathcal F$ není pole, protože komplement $\Omega-A$ konečné množiny $A\in\mathcal F$ je nekonečný a tím pádem $\Omega-A\not\in\mathcal F$.

Vlastnosti polí a σ -algeber

Věta

- Každé konečné pole je σ -algebra.
- 2 Každé pole je uzavřené na průniky každých dvou prvků.
- **3** Každá σ -algebra je uzavřená na průniky každých spočetně mnoha prvků.

Důkaz.

První tvrzení: Pokud je $\mathcal F$ konečné pole, pak pro libovolné $A_i \in \mathcal F$ $(i=1,2,\dots)$ existuje konečná $I=\{i_1,\dots,i_k\}$ tak, že $\bigcup_{i=1}^\infty A_i=A_{i_1}\cup\dots\cup A_{i_k}\in\mathcal F$.

Druhé tvrzení: Důsledek De Morganových zákonů $A \cap B = (A' \cup B')'$. To jest, pokud $A, B \in \mathcal{F}$, pak i $A', B' \in \mathcal{F}$, tím pádem i $A' \cup B' \in \mathcal{F}$ a také $(A' \cup B')' \in \mathcal{F}$.

Třetí tvrzení: Důsledek De Morganových zákonů pro spočetně mnoho množin z \mathcal{F} : Pro $A_i \in \mathcal{F}$ (i = 1, 2, ...) platí: $\bigcap_{i=1}^{\infty} A_i = (\bigcup_{i=1}^{\infty} A_i')' \in \mathcal{F}$.

Příklad (Příklad nekonečného pole)

Uvažujme libovolnou nekonečnou množinu Ω .

Označme $\mathcal F$ tu podmnožinu 2^Ω obsahující právě všechny konečné podmnožiny Ω a všechny podmnožiny Ω , které mají konečný doplněk.

Tvrzení: \mathcal{F} je pole.

- $\textbf{0} \ \, \mathsf{Z\check{r}ejm\check{e}} \ \, \Omega \in \mathcal{F} \mathsf{, proto\check{z}e} \ \, \Omega' = \emptyset \ \, \mathsf{je} \ \, \mathsf{kone\check{c}n\acute{a}}.$
- ② Pokud $A \in \mathcal{F}$, pak mohou nastat dvě situace: (i) A je konečná a tím pádem $A' \in \mathcal{F}$, protože $A' \in \mathcal{F}$ má konečný doplněk. (ii) A má konečný doplněk, tím pádem $A' \in \mathcal{F}$, protože A' je konečná.
- Vezměme A, B ∈ F. Pokud jsou obě A, B konečné, je i jejich sjednocení A ∪ B konečné a tím pádem A ∪ B ∈ F. Pokud má A konečný doplněk, pak je A' ∩ B' konečná množina a patří tedy do F. To jest, z De Morganových zákonů plyne, že A ∪ B má konečný doplněk A' ∩ B', to jest A ∪ B ∈ F.

Příklad (Pole, které není σ -algebra)

Vezměme Ω a $\mathcal F$ z předchozího příkladu:

Uvažujme libovolnou nekonečnou množinu Ω .

Označme $\mathcal F$ tu podmnožinu 2^Ω obsahující právě všechny konečné podmnožiny Ω a všechny podmnožiny Ω , které mají konečný doplněk.

Příklad: Pro $\Omega=\mathbb{N}$ máme $\{1,2,3\}\in\mathcal{F}$, $\{n\in\mathbb{N}\,|\,n\geq1000\}\in\mathcal{F}$, ale $\{n\in\mathbb{N}\,|\,n\text{ je sudé}\}\not\in\mathcal{F}$, $\{n\in\mathbb{N}\,|\,n\text{ je prvočíslo}\}\not\in\mathcal{F}$ a podobně.

Pozorování: Pole \mathcal{F} není σ -algebra.

Konkrétní protipříklad:

Vezměme $A_i = \{2i\} \ (i = 1, 2, ...).$

To jest $A_1 = \{2\}$, $A_2 = \{4\}$, $A_3 = \{6\}$, . . .

Sjednocení: $\bigcup_{i=1}^{\infty} A_i = \{ n \in \mathbb{N} \mid n \text{ je sudé} \} \notin \mathcal{F}.$

Uzávěrový systém všech σ -algeber v Ω

Věta (O uzávěrovéch vlastnostech)

Mějme indexový systém polí $\{\mathcal{F}_i \subseteq 2^{\Omega} \mid i \in I\}$. Pak $\bigcap_{i \in I} \mathcal{F}_i \subseteq 2^{\Omega}$ je pole. Pokud jsou navíc všechny \mathcal{F}_i σ -algebry, pak je $\bigcap_{i \in I} \mathcal{F}_i$ rovněž σ -algebra.

Důkaz.

Označme $\mathcal{F} = \bigcap_{i \in I} \mathcal{F}_i$. Platí:

- $\Omega \in \mathcal{F}_i$ pro každé $i \in I$, Odtud $\Omega \in \bigcap_{i \in I} \mathcal{F}_i = \mathcal{F}$.
- Pokud $A \in \mathcal{F}$, pak platí, že $A \in \mathcal{F}_i$ pro každé $i \in I$. Z toho dostáváme, že $A' \in \mathcal{F}_i$ pro každé $i \in I$, to jest $A' \in \mathcal{F}$.
- Pokud $A, B \in \mathcal{F}$, pak platí, že $A, B \in \mathcal{F}_i$ pro každé $i \in I$. To jest, $A \cup B \in \mathcal{F}_i$ pro každé $i \in I$, tedy $A \cup B \in \mathcal{F}$.

Pokud $A_j \in \mathcal{F}$, pro každé $j=1,2,\ldots$, pak $A_j \in \mathcal{F}_i$ pro každé $j=1,2,\ldots$ a $i \in I$, to znamená, že $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}_i$ pro každé $i \in I$, to jest $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}$.

Příklad (Sjednocení polí obecně není pole)

Dvě pole definované na témže Ω :

$$\Omega = \{1, 2, 3\}$$

$$\mathcal{F}_1 = \{\emptyset, \{1\}, \{2,3\}, \Omega\}$$
 je pole (σ -algebra).

$$\mathcal{F}_2 = \{\emptyset, \{2\}, \{1,3\}, \Omega\}$$
 je pole (σ -algebra).

Operace s poli:

 $\mathcal{F}_1 \cap \mathcal{F}_2 = \{\emptyset, \Omega\}$ je pole (σ -algebra); důsledek předchozí Věty.

$$\mathcal{F}_1 \cup \mathcal{F}_2 = \{\emptyset, \{1\}, \{2\}, \{1,3\}, \{2,3\}, \Omega\}$$
 není pole, protože $\{1\} \cup \{2\} \notin \mathcal{F}_1 \cup \mathcal{F}_2$.

$$\mathcal{F} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \Omega\} \text{ je nejmenší pole obsahující } \mathcal{F}_1 \cup \mathcal{F}_2.$$

Generování σ -algeber

Důsledek: Předchozí věta říká, že všechny σ -algebry v Ω tvoří *uzávěrový systém.* Má tedy smysl bavit se o σ -algebře generované libovolnou podmnožinou Ω .

Definice (σ -algebra generovaná podmnožinou Ω)

Mějme Ω a libovolnou množinu $\mathcal{A}\subseteq 2^\Omega.$ Pak

$$\mathcal{F}_{\mathcal{A}} = \bigcap \{ \mathcal{F} \mid \mathcal{F} \text{ je } \sigma\text{-algebra v } \Omega, \text{ pro kterou } \mathcal{A} \subseteq \mathcal{F} \}$$

se nazývá σ -algebra v Ω generovaná \mathcal{A} .

Z vlastností uzávěrových systémů dostáváme:

- $\mathcal{A} \subseteq \mathcal{F}_{\mathcal{A}}$; pokud $\mathcal{A} \subseteq \mathcal{B}$, pak $\mathcal{F}_{\mathcal{A}} \subseteq \mathcal{F}_{\mathcal{B}}$; $\mathcal{F}_{\mathcal{A}} = \mathcal{F}_{\mathcal{F}_{\mathcal{A}}}$.
- \mathcal{A} je σ -algebra, právě když $\mathcal{F}_{\mathcal{A}} = \mathcal{A}$.
- $\mathcal{F}_{\mathcal{A}}$ je nejmenší σ -algebra v Ω obsahující \mathcal{A} .

Příklady (σ -algebry generované podmnožinami Ω)

$$\Omega = [0,1] \subseteq \mathbb{R}$$

$$\begin{split} \mathcal{A}_1 &= \big\{ [0,1] \big\} \cup \big\{ \big[\frac{1}{2^{n+1}}, \frac{1}{2^n} \big) \, | \, n = 0,1,2,\ldots \big\}, \text{ to jest:} \\ \mathcal{A}_1 &= \big\{ [0,1], \big[\frac{1}{2}, 1 \big), \big[\frac{1}{4}, \frac{1}{2} \big), \big[\frac{1}{8}, \frac{1}{4} \big), \big[\frac{1}{16}, \frac{1}{8} \big), \big[\frac{1}{32}, \frac{1}{16} \big), \ldots \big\}. \\ \mathcal{A}_2 &= \big\{ \{0,1\} \big\} \cup \big\{ \big[\frac{1}{2^{n+1}}, \frac{1}{2^n} \big) \, | \, n = 0,1,2,\ldots \big\}, \text{ to jest:} \\ \mathcal{A}_2 &= \big\{ \{0,1\}, \big[\frac{1}{2}, 1 \big), \big[\frac{1}{4}, \frac{1}{2} \big), \big[\frac{1}{8}, \frac{1}{4} \big), \big[\frac{1}{16}, \frac{1}{8} \big), \big[\frac{1}{32}, \frac{1}{16} \big), \ldots \big\}. \end{split}$$

Tvrzení: $\mathcal{F}_{A_1} = \mathcal{F}_{A_2}$.

Stačí ověřit
$$\mathcal{A}_1 \subseteq \mathcal{F}_{\mathcal{A}_2}$$
 a $\mathcal{A}_2 \subseteq \mathcal{F}_{\mathcal{A}_1}$, potom $\mathcal{F}_{\mathcal{A}_1} \subseteq \mathcal{F}_{\mathcal{F}_{\mathcal{A}_2}} = \mathcal{F}_{\mathcal{A}_2}$ a $\mathcal{F}_{\mathcal{A}_2} \subseteq \mathcal{F}_{\mathcal{F}_{\mathcal{A}_1}} = \mathcal{F}_{\mathcal{A}_1}$:
$$\{0,1\} - [0,1] - [0,1] - [0,1] - [0,1] - [0,1] + [0,$$

$$\{0,1\} = [0,1] - \bigcup_{n=0}^{\infty} \left[\frac{1}{2^{n+1}}, \frac{1}{2^n} \right), \qquad [0,1] = \{0,1\} \cup \bigcup_{n=0}^{\infty} \left[\frac{1}{2^{n+1}}, \frac{1}{2^n} \right).$$

To jest, $\{0,1\} \in \mathcal{A}_1$ a $[0,1] \in \mathcal{A}_2$, odtud $\mathcal{F}_{\mathcal{A}_1} = \mathcal{F}_{\mathcal{A}_2}$.

Příklady: •
$$\left[\frac{1}{4},1\right)\in\mathcal{F}_{\mathcal{A}_1}$$
, $\left(0,\frac{1}{2}\right)\in\mathcal{F}_{\mathcal{A}_1}$, \ldots

•
$$\{0\} \not\in \mathcal{F}_{\mathcal{A}_1}$$
, $\{1\} \not\in \mathcal{F}_{\mathcal{A}_1}$, $\left\{\frac{1}{2}\right\} \not\in \mathcal{F}_{\mathcal{A}_1}$, $\left(\frac{1}{4},1\right] \not\in \mathcal{F}_{\mathcal{A}_1}$, $\left[0,\frac{1}{2}\right] \not\in \mathcal{F}_{\mathcal{A}_1}$, ...

Borelovské jevové pole

Speciální σ -algebra generovaná otevřenými intervaly:

Definice (Borelovské jevové pole, Borelovská množina)

Mějme $\Omega=\mathbb{R}$ a nechť \mathcal{A} je množina všech otevřených intervalů v Ω . Pak σ -algebru $\mathcal{B}=\mathcal{F}_{\mathcal{A}}$ nazveme **Borelovské (jevové) pole** (angl.: *Borel* σ -algebra) a každou $A\in\mathcal{B}$ nazveme **Borelovská množina** (angl.: *Borel set*).

Terminologie: Borelovské jevové pole / Borelovská σ -algebra.

Poznámky:

- B obsahuje všechny otevřené intervaly, jejich doplňky, sjednocení spočetně mnoha intervalů nebo jejich doplňků,... (transfinitní proces);
- Ize ukázat, že $\mathcal{B} \cap 2^{(a,b)}$ je σ -algebra na intervalu (a,b) $(\sigma$ -algebra všech Borelovských množin, které jsou podmnožinami (a,b)).

Příklad (Příklady Borelovských množin)

Nechť ${\mathcal A}$ je množina všech otevřených intervalů v $\Omega.$ Potom pro ${\mathcal B}={\mathcal F}_{\!{\mathcal A}}$ platí:

$$(a,b) \in \mathcal{B}$$
, protože $(a,b) \in \mathcal{A}$.

$$(a,\infty)\in\mathcal{B}$$
, protože $(a,\infty)=\bigcup_{i=1}^{\infty}(a,a+i)\in\mathcal{B}$.

$$(-\infty, a) \in \mathcal{B}$$
, protože $(-\infty, a) = \bigcup_{i=1}^{\infty} (a - i, a) \in \mathcal{B}$.

$$[a,b] \in \mathcal{B}$$
, protože $\mathbb{R} - ((-\infty,a) \cup (b,\infty)) \in \mathcal{B}$.

$$\{a\} \in \mathcal{B}$$
, protože $[a,a] = \mathbb{R} - ((-\infty,a) \cup (a,\infty)) \in \mathcal{B}$.

$$(-\infty,a]\in\mathcal{B}$$
, protože $(-\infty,a]=(-\infty,a)\cup\{a\}\in\mathcal{B}.$

$$[a,\infty)\in\mathcal{B}$$
, protože $[a,\infty)=\{a\}\cup(a,\infty)\in\mathcal{B}$.

Pro každou
$$A = \{a_1, \ldots, a_n\} \subseteq \mathbb{R}$$
 máme $A \in \mathcal{B}$, protože $A = \bigcup_{i=1}^n \{a_i\} \in \mathcal{B}$.

Pro každou
$$A=\{a_1,a_2,\dots\}\subseteq\mathbb{R}$$
 máme $A\in\mathcal{B}$, protože $A=\bigcup_{i=1}^\infty\{a_i\}\in\mathcal{B}$.

Speciálně: $\mathbb{N} \in \mathcal{B}$, $\mathbb{Z} \in \mathcal{B}$ a $\mathbb{Q} \in \mathcal{B}$, protože jsou všechny spočetné.

Důsledek: $\mathbb{I}=\mathbb{R}-\mathbb{Q}\in\mathcal{B}$, protože \mathbb{I} je doplněk $\mathbb{Q}\in\mathcal{B}$.

Příklad (Cantorova množina je Borelovská)

Konstrukce Cantorovy množiny:

- odstraníme otevřený interval $(\frac{1}{3}, \frac{2}{3})$ z intervalu [0, 1],
- každý ze zbývajících intervalů rozdělíme na třetiny,
- odstraníme prostřední části, to jest $\left(\frac{1}{9},\frac{2}{9}\right)$ a $\left(\frac{7}{9},\frac{8}{9}\right)$.
- stejnný postup aplikujeme na nově vzniklé intervaly.
- Cantorova množina je množina zbylých bodů.
- vlastnost: Cantorova množina je nespočetná

Tvrzení: Cantorova množina je Borelovská. Zdůvodnění:

$$\begin{split} C_0 &= [0,1], \\ C_1 &= \left[0,\frac{1}{3}\right] \cup \left[\frac{2}{3},1\right], \\ C_2 &= \left[0,\frac{1}{9}\right] \cup \left[\frac{2}{9},\frac{1}{3}\right] \cup \left[\frac{2}{3},\frac{7}{9}\right] \cup \left[\frac{8}{9},1\right], \\ &\vdots &\vdots \end{split}$$

$$C = \bigcap_{i=0}^{\infty} C_i$$

Věta (Ekvivalentní zavedení Borelovského jevového pole)

Platí, že $\mathcal{B} = \mathcal{F}_{A}$, kde \mathcal{A} je množina všech uzavřených intervalů v \mathbb{R} .

Důkaz.

Víme, že $\mathcal{F}_{\mathcal{A}}\subseteq\mathcal{B}$, protože každý uzavřený interval patří do \mathcal{B} . Zbývá ověřit, že $\mathcal{B}\subseteq\mathcal{F}_{\mathcal{A}}$. K tomu stačí prokázat, že každý otevřeý interval náleží do $\mathcal{F}_{\mathcal{A}}$.

Vezměme otevřený interval (a, b).

Nejprve prokážeme, že $(-\infty,a]\in\mathcal{F}_{\mathcal{A}}$ a $[b,\infty)\in\mathcal{F}_{\mathcal{A}}$. To jsou ale důsledky:

$$(-\infty, a] = \bigcup_{i=1}^{\infty} [a - i, a] \in \mathcal{F}_{\mathcal{A}}, \qquad [b, \infty) = \bigcup_{i=1}^{\infty} [b, b + i] \in \mathcal{F}_{\mathcal{A}}.$$

To znamená, že $(a,b)=\mathbb{R}-ig((-\infty,a]\cup[b,\infty)ig)\in\mathcal{F}_{\mathcal{A}}.$

Poznámka: Existují množiny, které nejsou Borelovské (pro nás nezajimavé).

Míra, pravděpodobnostní míra, pravděpodobnostní prostor

Definice (Míra a pravděpodobnostní míra)

Mějme σ -algebru $\mathcal{F}\subseteq 2^{\Omega}$. Každé zobrazení $m\colon \mathcal{F}\to \mathbb{R}\cup \{\infty\}$ splňující

- $m(A) \ge 0$ pro každou $A \in \mathcal{F}$,
- $m(\emptyset) = 0$,
- $m(\bigcup_{i \in I} A_i) = \sum_{i \in I} m(A_i)$ pro libovolnou spočetnou $\{A_i \in \mathcal{F} \mid i \in I\}$, kde $A_i \cap A_j = \emptyset$ pro každé $i, j \in I$ takové, že $i \neq j$ (σ -aditivita).

nazýváme **míra na** \mathcal{F} (angl.: measure). Míra m na \mathcal{F} splňující $m(\Omega)=1$ se nazývá **pravděpodobnostní míra na** \mathcal{F} (angl.: probability measure). Pravděpodobnostní míru na \mathcal{F} obvykle označujeme $P\colon \mathcal{F} \to \mathbb{R}$.

Definice (Pravděpodobnostní prostor)

Je-li $P: \mathcal{F} \to \mathbb{R}$ pravděpodobnostní míra na σ -algebře $\mathcal{F} \subseteq 2^{\Omega}$, pak trojici $\langle \Omega, \mathcal{F}, P \rangle$ nazýváme **pravděpodobnostní prostor**, (angl.: *probability space*).

Příklady (Pravděpodobnostní prostory na konečné Ω)

$$\begin{array}{ll} \text{Pro } \Omega = \{a,b,c\}\text{, } \mathcal{F} = 2^{\Omega} \text{ uvažujme } P_1 \colon \mathcal{F} \to \mathbb{R} \text{ a } P_2 \colon \mathcal{F} \to \mathbb{R} \colon \\ & P_1(\emptyset) = 0, & P_1(\{a\}) = 0.3, \\ & P_1(\{b\}) = 0.2, & P_1(\{c\}) = 0.5, \\ & P_1(\{a,b\}) = 0.5, & P_1(\{a,c\}) = 0.8, \\ & P_1(\{b,c\}) = 0.7, & P_1(\{a,b,c\}) = 1. \\ & P_2(\emptyset) = 0, & P_2(\{a\}) = 0.2, \\ & P_2(\{b\}) = 0.6, & P_2(\{c\}) = 0.2, \\ & P_2(\{a,b\}) = 0.8, & P_2(\{a,b,c\}) = 1. \end{array}$$

Poznámka: $\langle \Omega, \mathcal{F}, P_1 \rangle$ a $\langle \Omega, \mathcal{F}, P_2 \rangle$ jsou (různé) pravděpodobnostní prostory.

Frekventistická interpretace pravděpodobnosti

Otázka: Jaký význam má pravděpodobnost P(A) výskytu náhodného jevu A?

- ullet Několik interpretací toho, "co znamená hodnota P(A)";
- nejznámější: frekventistická a Bayesovská.

Definice (Relativní četnost výskytu náhodného jevu)

Uvažujme náhodný pokus s prostorem Ω . Pokud je náhodný pokus opakován n-krát a f je počet výskytů náhodného jevu $A\subseteq \Omega$, pak se $\frac{f}{n}$ nazývá **relativní četnost výskytu náhodného jevu** A a označuje se N(A).

Frekventistická interpretace pravděpodobnosti

Relativní četnost výskytu jevu A je (obvykle) nestabilní pro malé hodnoty n. Se vzrůstající hodnotou n se relativní četnost výskytu A stabilizuje kolem nějaké hodnoty. Pokud $n \to \infty$, relativní četnost výskytu A přejde v P(A).

Čítač relativních četností pro simulované náhodné pokusy

```
(defparameter *repetitions* 10000)
(defun %relative-frequency (fn &optional (n *repetitions*))
  "Return relative frequency of FN returning true in N trials."
  (iter (for i :from 1 :to n)
        (when (funcall fn)
          (counting i :into success))
        (finally (return (float (/ success n))))))
(defmacro relative-frequency (&rest forms)
  "Return relative frequency of FORMS evaluating to true."
  '(%relative-frequency
   #'(lambda ()
        (@forms)))
```

Příklad (Házení nefalšovanou mincí)

Je hozena mince a zajímáme se o stranu, která padne.

$$\Omega = \{ \text{panna}, \text{orel} \}, \ A = \{ \text{panna} \}, \ B = \{ \text{orel} \}, \\ P(A) = 0.5, \ P(B) = 0.5, \ P(\emptyset) = 0, \ P(A \cup B) = 1.$$

(relative-frequency
 (= (random 2) 0))

Příklad (Série hodů šestistrannou kostkou)

Šestistraná kostka je šestkrát vržena. Pokud na i-tý pokus hodíme i, pak nazveme výsledek shodou. Náhodný pokus považujeme za úspěch, pokud padne během šesti hodů alespoň jedna shoda.

```
\Omega=\{\text{úspěch},\, \text{neúspěch}\},\, A=\{\text{úspěch}\},\, B=\{\text{neúspěch}\},\, P(A)\approx 0.665102,\, P(B)\approx 0.334898,\, P(\emptyset)=0,\, P(A\cup B)=1.
```


Příklad (Házení disku na podlahu)

Kruhový disk o průměru $2\,\mathrm{dm}$ je vržen na podlahu se čtvercovými kachličkami o straně $4\,\mathrm{dm}$. Jaká je pravděpodobnost, že disk přistaně uvnitř některé kachličky?

$$\Omega = [0, 4] \times [0, 4]$$
, $A = [1, 3] \times [1, 3]$, $P(A) = 0.25$.

Bayesovská interpretace pravděpodobnosti

Bayesovská (subjektivní) interpretace pravděpodobnosti

Mějme náhodný jev $A\subseteq\Omega$. Pokud věříme, že P(A)=p a pokud jsme ochotni si vsadit peníze na to, že náhodný jev A nastane, pak bychom měli akceptovat libovolnou z následujících dvou sázek:

- f O Získáme 1\$, pokud A nastane; odevzdáme p\$, pokud A nenastane.
- ② Získáme 1\$, pokud A nenastane; odevzdáme 1\$-p\$, pokud A nastane.

Příklad (Sázka na "české hokejisty")

Pokud věřím, že pravděpodobnost výhry je P(A)=0.2, pak přijmu sázky:

- ① Získám 80\$ (plus 20\$), pokud A nastane; odevzdám 20\$, pokud A nenastane.
- 2 Získám 20\$ (plus 80\$), pokud A nenastane; odevzdám 80\$, pokud A nastane.

Klasické pravděpodobnostní prostory

Definice (Klasická pravděpodobnostní míra)

Mějme konečnou Ω a σ -algebru $\mathcal{F}=2^{\Omega}$. Pravděpodobnostní míru $P\colon \mathcal{F}\to \mathbb{R}$ nazveme **klasická pravděpodobnostní míra** na \mathcal{F} pokud

$$P(\{a\}) = \frac{1}{|\Omega|},$$
 platí pro každý $a \in \Omega$.

Navíc $\langle \Omega, \mathcal{F}, P \rangle$ se nazývá klasický pravděpodobnostní prostor.

Důsledek (Pravděpodobnosti se odvozují z velikostí náhodných jevů)

Pokud je $\langle \Omega, \mathcal{F}, P \rangle$ klasický pravděpodobnostní prostor, pak lze každou $A \in \mathcal{F}$ vyjádřit jako $A = \{a_1, \dots, a_k\}$ a z aditivity P dostáváme:

$$P(A) = \sum_{i=1}^{k} P(\{a_k\}) = \sum_{i=1}^{k} \frac{1}{|\Omega|} = \frac{k}{|\Omega|} = \frac{|A|}{|\Omega|}.$$

Příklad (Tahání karet z balíku)

Náhodně táhneme karty ze standarního balíčku 52 hracích karet.

Můžeme předpokládat, že $|\Omega|=52$, $\mathcal{F}=2^{\Omega}$ a $P(\{x\})=\frac{1}{52}.$

Příklad pravděpodobností výskytů vybraných náhodných jevů

- A ... množina karet skládající se ze všech králů $P(A) = \frac{4}{52} = 0.0769$.
- B ... množina všech karet, které jsou buď kluk, dáma, nebo král $P(B)=\frac{3\cdot 4}{52}=\frac{12}{52}=0.231.$
- C ... množina karet, které jsou \heartsuit , \clubsuit , nebo \spadesuit $P(C) = \frac{13\cdot 3}{52} = \frac{39}{52} = 0.75$.

Analogické problémy: házení mincí, vrhání kostek, . . .

Příklad (Jednoduchá analýza hazardní hry)

Hrajeme následující hazardní hru:

- Zvolíme si tři různá čísla od 1 do 20.
- Protihráč (kasino) losujeme tři míčky z urny obsahující míčky s čísly od 1 do 20.
- Dva možné výsledky hry:
 - vyhráváme \$1000 pokud jsou naše čísla stejná jako čísla na vylosovaných míčcích;
 - v opačném případě ztrácíme \$1.

Otázka: Je rozumné (dlouhodobě) hrát tuto hru?

Míčky mohou být taženy
$$1140$$
 způsoby:
$$\frac{20\cdot 19\cdot 18}{6}=\frac{6840}{6}=1140=\binom{20}{3}.$$

Pravděpodobnost, že zvolíme správná čísla je $\frac{1}{1140} \approx 0.000877$.

Lze očekávat, že vyhrajeme (zhruba) 1 hru za 1140 kol (cena > \$1000).

Lebesgueova míra Borelovských množin

Definice (Lebesgueova míra Borelovských množin)

Zobrazení $m \colon \mathcal{B} \to \mathbb{R} \cup \{\infty\}$, které zobrazuje každý interval na jeho délku, to jest

$$m((a,b)) = m([a,b)) = m((a,b]) = m([a,b]) = b - a,$$

a které je navíc σ -aditivní, se nazývá **Lebesgueova míra**.

Poznámky:

- zavedli jsme pro naše účely zjednodušeně (bude dostačovat),
- ullet existují podmnožiny $\mathbb R$, které mají Lebesgueovu míru a nejsou Borelovské,
- ullet existují podmnožiny $\mathbb R$, které nemají Lebesgueovu míru (Vitaliho množina),

Důsledek: Při úvahách o pravděpodobnosti se omezujeme na Borelovské množiny na [0,1], to jest $\mathcal{B} \cap 2^{[0,1]}$ místo celé $2^{[0,1]}$.

Příklad (Lebesgueova míra Borelovských množin)

Platí:

Pro
$$(a,b) \in \mathcal{B}$$
 máme $m((a,b)) = b - a$.

$$\begin{array}{l} \mathsf{Pro}\;(a,b)\in\mathcal{B}\;\mathsf{a}\;(c,d)\in\mathcal{B}\text{, kde }(a,b)\cap(c,d)=\emptyset\;\mathsf{plati}\\ m\big((a,b)\cup(c,d)\big)=b-a+d-c. \end{array}$$

$$\operatorname{Pro}\ (a,\infty)\in \mathcal{B}\ \mathrm{m\'ame}\ mig((a,\infty)ig)=\infty$$
, protože

$$m((a,\infty)) = m(\bigcup_{i=1}^{\infty} (a+i-1, a+i))$$

= $\sum_{i=1}^{\infty} m((a+i-1, a+i)) = \sum_{i=1}^{\infty} (a+i-(a+i-1)) = \infty.$

Pro
$$\{a\} \in \mathcal{B}$$
 máme $m(\{a\}) = 0$.

Pro každou
$$A = \{a_1, \ldots, a_n\} \in \mathcal{B}$$
 máme $m(A) = 0$.

Pro každou
$$A = \{a_1, a_2, \dots\} \in \mathcal{B}$$
 máme $m(A) = 0$.

Speciálně:
$$m(\mathbb{N}) = m(\mathbb{Z}) = m(\mathbb{Q}) = 0$$
.

Platí: m na $\mathcal{B} \cap 2^{[0,1]}$ je pravděpodobnostní míra.

Diracova pravděpodobnostní míra

Definice (Diracova míra)

Mějme libovolnou Ω , $\mathcal{F}=2^{\Omega}$ a nechť $x\in\Omega$. Pak se $\delta_x\colon\mathcal{F}\to\mathbb{R}$ definované

$$\delta_x(A) = \begin{cases} 1 & \text{pokud } x \in A, \\ 0 & \text{jinak,} \end{cases}$$

nazývá Diracova míra na Ω koncentrovaná v bodě x.

Zřejmě δ_x je pravděpodobnostní míra:

- Triviálně platí $\delta_x(\emptyset) = 0$, $\delta_x(\Omega) = 1$ a $\delta_x(A) \geq 0$.
- ullet Pokud je A sjednocením spočetně mnoha vzájemně disjunktních množin A_i , pak
 - pokud $x \in A$, pak platí, že x náleží do právě jedné z A_i , tedy $\delta_x(A) = 1 = \delta_x(A_i) = \sum_{i \in I} \delta_x(A_i)$.
 - pokud $x \notin A$, pak zřejmě $\delta_x(A) = 0 = \sum_{i \in I} \delta_x(A_i)$.

Diskrétní pravděpodobnostní míra

Definice (Diskrétní pravděpodobnostní míra)

Mějme libovolnou Ω , $\mathcal{F}=2^{\Omega}$ a prvky $x_i\in\Omega$ a $a_i\in[0,1]$ pro každé $i=1,2,\ldots$ tak, že $\sum_{i=1}^{\infty}a_i=1$. Pak se $P\colon\mathcal{F}\to\mathbb{R}$ definované

$$P(A) = \sum_{i=1}^{\infty} a_i \cdot \delta_{x_i}(A),$$

nazývá diskrétní pravděpodobnostní míra na Ω .

Poznámky:

- diskrétní pravděpodobnostní míra je zobecnění Diracovy míry a klasické pravděpodobnostní míry;
- Ize definovat na libovolné Ω , tedy i $\Omega = \mathbb{R}$;
- míra je koncentrovaná ve spočetně mnoha bodech.

Věta

Diskrétní pravděpodobnostní míra je pravděpodobnostní míra.

Důkaz.

Zřejmě $P(\emptyset)=0$, protože $\delta_{x_i}(\emptyset)=0$ pro každé $i=1,2,\ldots$

Dále platí $P(\Omega)=1$, protože $a_i\cdot \delta_{x_i}(\Omega)=a_i\cdot 1=a_i$ a $\sum_{i=1}^\infty a_i=1$.

Zřejmě $P(A) \ge 0$ pro každou $A \in \mathcal{F}$.

Zbývá oveřit σ -aditivitu:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{j=1}^{\infty} a_j \cdot \delta_{x_j} \left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{j=1}^{\infty} a_j \cdot \left(\sum_{i=1}^{\infty} \delta_{x_j}(A_i)\right)$$
$$= \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} a_j \cdot \delta_{x_j}(A_i)\right) = \sum_{i=1}^{\infty} P(A_i).$$

Kolmogorovovy axiomy

Pravděpodobnostní míra se často zavádí následovně:

Definice (Андрей Николаевич Колмогоров)

Mějme σ -algebru $\mathcal{F}\subseteq 2^{\Omega}$. Každé zobrazení $P\colon \mathcal{F}\to \mathbb{R}\cup \{\infty\}$ splňující

- (P1) $P(A) \ge 0$ pro každou $A \in \mathcal{F}$,
- (P2) $P(\Omega) = 1$,
- (P3) $P(\bigcup_{i \in I} A_i) = \sum_{i \in I} P(A_i)$ pro libovolnou spočetnou $\{A_i \in \mathcal{F} \mid i \in I\}$, kde $A_i \cap A_j = \emptyset$ pro každé $i, j \in I$ takové, že $i \neq j$ (σ -aditivita),

se nazývá pravděpodobnostní míra na \mathcal{F} , (angl.: probability measure). Číslu $P(A) \in \mathbb{R}$ říkáme pravděpodobnost výskytu jevu A.

Je třeba prokázat, že

• předchozí dvě definice jsou ekvivalentní (viz dále).

Věta (Pravděpodobnost komplementárních jevů)

Pro každý náhodný jev $A \in \mathcal{F}$ platí:

$$P(A) + P(A') = 1,$$
 (1)

$$P(A) = 1 - P(A'). (2)$$

Důkaz.

Jelikož je \mathcal{F} σ -algebra, pokud $A \in \mathcal{F}$, pak $A' \in \mathcal{F}$.

Jevy A a A' se vzájemně vylučují, protože $A\cap A'=\emptyset$. Použitím (P3) dostáváme

$$P(A \cup A') = P(A) + P(A').$$

Dále platí, že $A \cup A' = \Omega$ a $P(\Omega) = 1$ plyne užitím (P2). Odtud

$$P(A) + P(A') = P(A \cup A') = P(\Omega) = 1,$$

což dokazuje (1). Vztah (2) plyne přímo ze vztahu (1).

Příklad (Postupné házení mincí)

Házíme mincí tak dlouho, dokud neuvidíme stejné strany dvakrát po sobě.

Zajímáme se o počet hodů, které je potřeba vykonat.

Uvažujme $A=\{3,4,5,\dots\}$, to jest A má význam "je potřeba tři hody nebo víc".

Úkol: Stanovte hodnotu P(A).

 ${\rm Z\check{r}ejm\check{e}}\ A'=\Omega-A=\{2\}.$

Během dvou hodů máme následující možné výsledky: $\{HH, HT, TH, TT\}$.

Za předpokladu, že mince je nefalšovaná, máme:

$$P(A') = \frac{2}{4} = \frac{1}{2}.$$

To jest, $P(A) = 1 - P(A') = 1 - \frac{1}{2} = \frac{1}{2}$.

Věta (Pravděpodobnost nemožného jevu)

$$P(\emptyset) = 0. (3)$$

Důkaz.

Z předchozí Věty dostáváme, že pro každou $A \in \mathcal{F}$ platí

$$P(A) = 1 - P(A').$$

Speciálně pro $A=\emptyset$ máme

$$P(\emptyset) = 1 - P(\emptyset') = 1 - P(\Omega).$$

To jest, použitím faktu $P(\Omega) = 1$ (P2) dostáváme

$$P(\emptyset) = 1 - P(\Omega) = 1 - 1 = 0.$$

Důsledek: $P \colon \mathcal{F} \to \mathbb{R}$ splňující (P1)–(P3) je míra.

Příklad (Jev s pravděpodobností 0 může nastat)

Vezměme Lebesgueovu míru m na $\mathcal{B} \cap 2^{[0,1]}$.

Zřejmě m je míra na $\mathcal{B} \cap 2^{[0,1]}$, pro kterou m([0,1]) = 1 - 0 = 1, to jest m je pravděpodobnostní míra (dále ji označujeme P).

Z definice Lebesgueovy míry:

$$P((0.5,1)) = 0.5,$$

 $P((0.25,0.3)) = 0.05,$
 $P([0.5,0.5]) = P(\{0.5\}) = 0,...$

Obecně:

$$P(\{a\}) = P([a,a]) = 0$$
 (všechny elementární jevy mají pravděpodobnost 0).

Analogicky: Jev s pravděpodobností 1 nemusí nastat, například

$$P([0,1] - \{a\}) = 1 - P(\{a\}) = 1 - 0 = 1.$$

Věta (Monotonie pravděpodobnosti)

Pro jakékoliv náhodné jevy $A, B \in \mathcal{F}$ platí:

$$\operatorname{\textit{pokud}} A \subseteq B \operatorname{\textit{pak}} P(A) \leq P(B). \tag{4}$$

Důkaz.

Předpokládejme, že $A\subseteq B$. Platí, že B lze vyjádřit jako $B=A\cup(B-A)$. Dále platí, že A a B-A jsou vzájemně neslučitelné jevy, to jest $A\cap(B-A)=\emptyset$. Můžeme proto aplikovat (P3) následovně:

$$P(B) = P(A \cup (B - A)) = P(A) + P(B - A).$$

Dále z (P1) plyne, že $P(B-A) \ge 0$, to jest

$$P(A) \le P(A) + P(B - A) = P(B),$$

což je hledaná nerovnost.

Věta (Důsledky monotonie)

Pro libovolný náhodný jev $A \in \mathcal{F}$ platí:

$$0 \le P(A) \le 1. \tag{5}$$

Důkaz.

Užitím (P1) dostáváme $0 \le P(A)$. Zbývá tedy dokázat, že $P(A) \le 1$. Užitím předchozí Věty, pro každé $A, B \in \mathcal{F}$ platí:

pokud
$$A \subseteq B$$
 pak $P(A) \le P(B)$.

Položme $B=\Omega.$ Zřejmě platí $A\subseteq\Omega.$ Použitím (P2) dostáváme $P(\Omega)=1$, to jest

$$P(A) \le P(\Omega) = 1,$$

což dokazuje (5).

Věta (Vztah pravděpodobnosti A, A - B a $A \cap B$)

Pro libovolné náhodné jevy $A, B \in \mathcal{F}$ platí:

$$P(A) = P(A - B) + P(A \cap B). \tag{6}$$

Důkaz.

Jelikož $A, B \in \mathcal{F}$, pak i $A - B = A \cap (\Omega - B) \in \mathcal{F}$ a také $A \cap B \in \mathcal{F}$.

Dále platí, že A-B a $A\cap B$ se vzájemně vylučují a platí, že $A=(A-B)\cup (A\cap B).$

Užitím (P3) proto dostáváme:

$$P(A) = P((A - B) \cup (A \cap B)) = P(A - B) + P(A \cap B).$$

A, A - B a $A \cap B$

Věta (Pravděpodobnost sjednocení a průniku náhodných jevů)

Pro libovolné náhodné jevy $A, B \in \mathcal{F}$ platí:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B), \tag{7}$$

$$P(A \cap B) = P(A) + P(B) - P(A \cup B). \tag{8}$$

Důkaz (začátek).

Platí, že $A-B\in\mathcal{F}$, $A\cap B\in\mathcal{F}$ a $B-A\in\mathcal{F}$. Navíc jsou A-B, $A\cap B$ a B-A vzájemně neslučitelné náhodné jevy, pro které

$$A \cup B = (A - B) \cup (A \cap B) \cup (B - A).$$

Použitím (P3) dostáváme, že

$$P(A \cup B) = P(A - B) + P(A \cap B) + P(B - A).$$

Použitím předchozí Věty, $P(A) = P(A - B) + P(A \cap B)$, to jest

$$P(A \cup B) = P(A) + P(B - A).$$

Důkaz (dokončení).

Nyní zbývá dokázat, že $P(B-A)=P(B)-P(A\cap B)$. Toto tvrzení je však opět důsledkem předchozí Věty. Platí totiž

$$P(B) = P(B - A) + P(A \cap B),$$

z čehož dostáváme

$$P(B - A) = P(B) - P(A \cap B).$$

Shrneme-li předchozí zjištění dohromady, dostaneme

$$P(A \cup B) = P(A - B) + P(A \cap B) + P(B - A)$$

= $P(A) + P(B - A) = P(A) + P(B) - P(A \cap B),$

což prokazuje rovnost (7). Rovnost (8) plyne z právě dokázané rovnosti (7).

Příklad (Problém semaforů na cestě ze Senice na Hané)

Motorista jede ze Senice na Hané automobilem směrem budova PřF a na cestě jej mohou zdržet dva semafory. Pravděpodobnost, že musí zastavit na prvním semaforu je 0.4 (označíme P(A)=0.4); pravděpodobnost, že musí zastavit na druhém semaforu je 0.5 (označíme P(B)=0.5); a pravděpodobnost, že musí zastavit aspoň na jednom z nich je 0.6 (to jest, $P(A\cup B)=0.6$).

Otázka: Jaká je pravděpodobnost, že:

- Motorista musí zastavit na obou semaforech?
- Motorista musí zastavit na prvním semaforu, ale ne na druhém?
- Motorista musí zastavit právě na jednom semaforu?

Řešení:

- $P(A \cap B) = P(A) + P(B) P(A \cup B) = 0.4 + 0.5 0.6 = 0.3.$
- $P(A B) = P(A) P(A \cap B) = 0.4 0.3 = 0.1.$
- $P((A-B) \cup (B-A)) = P(A-B) + P(B-A) = 0.1 + P(B) P(A \cap B) = 0.3.$

Příklad (Dva různé pravděpodobnostní prostory)

$$\begin{split} P_1(\emptyset) &= 0, & P_1(\{a\}) = 0.2, & P_1(\{b\}) = 0.4, & P_1(\{c\}) = 0.1, \\ P_1(\{d\}) &= 0.3, & P_1(\{a,b\}) = 0.6, & P_1(\{a,c\}) = 0.3, & P_1(\{a,d\}) = 0.5, \\ P_1(\{b,c\}) &= 0.5, & P_1(\{b,d\}) = 0.7, & P_1(\{c,d\}) = 0.4, & P_1(\{a,b,c\}) = 0.7, \\ P_1(\{a,b,d\}) &= 0.9, & P_1(\{a,c,d\}) = 0.6, & P_1(\{b,c,d\}) = 0.8, & P_1(\{a,b,c,d\}) = 1. \\ P_2(\emptyset) &= 0, & P_2(\{a\}) = 0.3, & P_2(\{b\}) = 0.3, & P_2(\{c\}) = 0.2, \\ P_2(\{d\}) &= 0.2, & P_2(\{a,b\}) = 0.6, & P_2(\{a,c\}) = 0.5, & P_2(\{a,d\}) = 0.5, \\ P_2(\{b,c\}) &= 0.5, & P_2(\{a,c,d\}) = 0.7, & P_2(\{a,b,c,d\}) = 1. \\ \end{split}$$

Pro P_1 a P_2 platí:

- **1** $P_1(\{a,b\}) = 0.6$, $P_1(\{b,c\}) = 0.5$, ale $P_1(\{b\}) = 0.4$ a $P_1(\{a,b,c\}) = 0.7$.
- ② $P_2(\{a,b\}) = 0.6$, $P_2(\{b,c\}) = 0.5$, ale $P_2(\{b\}) = 0.3$ a $P_2(\{a,b,c\}) = 0.8$.

Věta (Zobecnění předchozí vlastnosti pro tři náhodné jevy)

Pro libovolné náhodné jevy $A,B,C\in\mathcal{F}$ platí:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

Důkaz.

$$P((A \cup B) \cup C) = P(A \cup B) + P(C) - P((A \cup B) \cap C)$$

$$= P(A) + P(B) - P(A \cap B) + P(C) - P((A \cup B) \cap C)$$

$$= P(A) + P(B) - P(A \cap B) + P(C) - P((A \cap C) \cup (B \cap C))$$

$$= P(A) + P(B) - P(A \cap B) + P(C)$$

$$- (P(A \cap C) + P(B \cap C) - P((A \cap C) \cap (B \cap C)))$$

$$= P(A) + P(B) - P(A \cap B) + P(C)$$

$$- P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

Věta (Princip inkluze a exkluze pro pravděpodobnostní prostory)

Pro libovolné náhodné jevy $A_1, A_2, \ldots, A_n \in \mathcal{F}$ platí:

$$P\left(\bigcup\nolimits_{i\in I_n}A_i\right) = \sum_{\emptyset\neq I\subset I_n}(-1)^{|I|+1}\cdot P\left(\bigcap\nolimits_{i\in I}A_i\right),$$

kde $I_n = \{1, ..., n\}.$

Důkaz (začátek).

Tvrzení prokážeme indukcí přes n. Pro n=1 je zřejmé, protože P(A)=P(A). Předpokládejme, že tvrzení platí pro n a ukážeme, že tvrzení platí pro n+1. Platí:

$$P\left(\bigcup_{i \in I_{n+1}} A_i\right) = P\left(\left(\bigcup_{i \in I_n} A_i\right) \cup A_{n+1}\right)$$

$$= P\left(\bigcup_{i \in I_n} A_i\right) + P(A_{n+1}) - P\left(\left(\bigcup_{i \in I_n} A_i\right) \cap A_{n+1}\right)$$

$$= P\left(\bigcup_{i \in I_n} A_i\right) + P(A_{n+1}) - P\left(\bigcup_{i \in I_n} (A_i \cap A_{n+1})\right)$$

Důkaz (dokončení).

Dvojnásobým použitím indukčního předpokladu dostáváme:

$$P\left(\bigcup_{i \in I_{n+1}} A_i\right) = P\left(\bigcup_{i \in I_n} A_i\right) + P(A_{n+1}) - P\left(\bigcup_{i \in I_n} (A_i \cap A_{n+1})\right)$$

$$= \sum_{\emptyset \neq I \subseteq I_n} (-1)^{|I|+1} \cdot P\left(\bigcap_{i \in I} A_i\right) + P(A_{n+1}) - P\left(\bigcup_{i \in I_n} (A_i \cap A_{n+1})\right)$$

$$= \sum_{\emptyset \neq I \subseteq I_n} (-1)^{|I|+1} \cdot P\left(\bigcap_{i \in I} A_i\right) + P(A_{n+1}) - \sum_{\emptyset \neq I \subseteq I_n} (-1)^{|I|+1} \cdot P\left(\bigcap_{i \in I} A_i \cap A_{n+1}\right)$$

$$= \sum_{\emptyset \neq I \subseteq I_{n+1}} (-1)^{|I|+1} \cdot P\left(\bigcap_{i \in I} A_i\right).$$

Příklady (Použití předchozí Věty)

Ze vztahu

$$P\left(\bigcup\nolimits_{i\in I_n}A_i\right) = \sum_{\emptyset\neq I\subseteq I_n}(-1)^{|I|+1}\cdot P\!\left(\bigcap\nolimits_{i\in I}A_i\right),$$

dostaneme pro A_1, A_2, A_3, A_4 následující předpis:

$$P(A_1 \cup A_2 \cup A_3 \cup A_4) = P(A_1) + P(A_2) + P(A_3) + P(A_4)$$

$$- P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_1 \cap A_4)$$

$$- P(A_2 \cap A_3) - P(A_2 \cap A_4) - P(A_3 \cap A_4)$$

$$+ P(A_1 \cap A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_4)$$

$$+ P(A_1 \cap A_3 \cap A_4) + P(A_2 \cap A_3 \cap A_4)$$

$$- P(A_1 \cap A_2 \cap A_3 \cap A_4).$$

Poznámka: Počet sčítanců roste exponenciálně!

Příklad (Postupné házení mincí – modifikované zadání)

Házíme mincí tak dlouho, dokud neuvidíme stejné strany dvakrát po sobě.

Zajímáme se o počet hodů, které je potřeba vykonat.

Uvažujme $A=\{4,5,\dots\}$, to jest A má význam "je potřeba čtyři hody nebo víc".

Úkol: Stanovte hodnotu P(A).

Zřejmě
$$A'=\Omega-A=\{2,3\}.$$

Výsledky během prvních dvou nebo tří hodů: $\{HH,TT,HTH,HTT,THH,THT\}$.

Po druhém hodu má každý HH, HT, TH, TT pravděpodobnost výskytu $\frac{1}{4}$.

V případě $\{HT,TH\}$, pokračujeme třetím hodem: $\{HTH,HTT,THH,THT\}$.

Po třetím hodu má každý HTH, HTT, THH, THT pravděpodobnost výskytu $\frac{1}{8}.$

$$\begin{split} P(A') &= P(\{HH, TT, HTT, THH\}) \\ &= P(\{HH\}) + P(\{TT\}) + P(\{HTT\}) + P(\{THH\}) \\ &= \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} = \frac{3}{4}. \quad \text{To jest } P(A) = 1 - P(A') = \frac{1}{4}. \end{split}$$

Poznámka: Neaditivní míry, teorie evidence, možnosti, . . .

Pravděpodobnost formalizuje pouze specifický typ neurčitosti.

Dempster-Shaferova teorie (DST)

- teorie evidence založená na dvou "neaditivních" mírách:
 - superaditivní míra domnění (angl.: belief measure),
 - subaditivní míra plauzibility (angl.: plausibility measure).
- formalizuje některé fenomény (například "ignoranci"), které v teorii pravděpodobnosti nelze formalizovat
- speciální případ:
 - míry domnění a plauzibility jsou shodné,
 - míry přejdou v pravděpodobnostní míru.

Teorie možnosti

• míry možnosti (angl.: possibility) a nutnosti (angl.: necessity)

Přednáška 3: Závěr

Pojmy:

- ullet náhodný jev, pole, σ -algebra, Borelovská množina, Borelovské jevové pole
- ullet σ -aditivita, míra, pravděpodobnostní míra, pravděpodobnostní prostor
- interpretace pravděpodobnosti: frekventistická a Bayesovská
- Lebesgueova a Diracova míra, klasické pravděpodobnostní prostory

Použité zdroje:

- Capinski M., Zastawniak T. J.: *Probability Through Problems* Springer 2001, ISBN 978–0–387–95063–1.
- Riečan B., Neubrunn T.: *Teória miery* Veda 1992, ISBN 978-80-224-0368-9.
- Hogg R. V., Tanis E. A.: *Probability and Statistical Inference* Prentice Hall; 7. vydání 2005, ISBN 978-0-13-146413-1.