Module II Syntax Analysis

Parsing

- Syntax Analysis or Parsing is the process of analyzing a text made of a sequence of tokens, to determine its grammatical structure with respect to a given formal grammar.
- A syntax analyzer or parser checks for correct syntax and builds a data structure (often parse tree).

Syntax Analyzer

- The syntax analyzer (parser) checks whether a given source program satisfies the rules implied by a context-free grammar or not.
 - If it satisfies, the parser creates the parse tree of that program.
 - Otherwise the parser gives the error messages.
- The syntax of a programming language is described by a context-free grammar (CFG).
- A context-free grammar
 - gives a precise syntactic specification of a programming language.
 - a grammar can be directly converted into a parser by some tools.

Parsers

Parsers are categorized into two groups:

1. Top Down Parser

the parse tree is created top to bottom, starting from the root.

2. Bottom Up Parser

- the parse tree is created bottom to top, starting from the leaves
- Both top-down and bottom-up parsers scan the input from left to right (one symbol at a time).
- Efficient top down and bottom-up parsers can be implemented only for sub-classes of context-free grammars.
 - LL for top-down parsing
 - LR for bottom-up parsing

Context-Free Grammars

- Inherently recursive structures of a programming language are defined by a context-free grammar.
- In a context-free grammar, we have:
 - A finite set of terminals (in our case, this will be the set of tokens)
 - Terminals are basic symbols from which strings are formed.
 - A finite set of **non-terminals** (syntactic-variables)
 - Non terminals define sets of strings that help define the language generated by the grammar
 - Impose a hierarchical structure on the language that is useful for both syntax analysis and translation.
 - A finite set of productions rules in the following form
 - A $\rightarrow \alpha$ where A is a non-terminal and α is a string of terminals and non-terminals (including the empty string)
 - Productions specify the manner in which terminals and non terminals can be combined to form strings.
 - A start symbol (one of the non-terminal symbol)
 - The set of strings denoted by the start symbol is the language defined the grammar.

Derivations

Example 1:

$$E \rightarrow EAE \mid (E) \mid -E \mid id$$

 $A \rightarrow + \mid - \mid * \mid /$

E and A are non-terminals; E is the start symbol.

All other symbols are terminals.

Example 2:

$$E \rightarrow E + E \mid E - E \mid E * E \mid E / E \mid - E$$

 $E \rightarrow (E)$
 $E \rightarrow id$

$E \Rightarrow E+E$

- E+E derives from E
 - we can replace E by E+E
 - to able to do this, we have to have a production rule E→E+E in our grammar.

Derivations

$$E \Rightarrow E+E \Rightarrow id+E \Rightarrow id+id$$

A sequence of replacements of non-terminal symbols is called a **derivation** of *id+id from E*.

- In general a derivation step is $\alpha A\beta \Rightarrow \alpha \gamma \beta$
 - if there is a production rule $A \rightarrow \gamma$ in our grammar;
 - where α and β are arbitrary strings of terminal and non-terminal symbols

$$\alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_n$$
 (α_n derives from α_1 or α_1 derives α_n)

⇒ : derives in one or more steps

 $\stackrel{*}{\Rightarrow}$: derives in zero or more steps

CFG - Terminology

- L(G) is *the language* of G (the language generated by G) which is a set of sentences.
- A sentence of L(G) is a string of terminal symbols of G.
- If S is the start symbol of G then
 w is a sentence of L(G) iff S ⇒ w where w is a string of terminals of G.
- If G is a context-free grammar, L(G) is a context-free language.
- Two grammars are equivalent if they produce the same language.
- $S \Rightarrow \alpha$
 - If α contains non-terminals, it is called as a **sentential** form of G.
 - If α does not contain non-terminals, it is called as a **sentence** of G.

Derivation Example

 At each derivation step, we can choose any of the non-terminal in the sentential form of G for the replacement.

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(id+E) \Rightarrow -(id+id)$$

- If we always choose the left-most non-terminal in each derivation step, this derivation is called as left-most derivation.
- If we always choose the right-most non-terminal in each derivation step, this derivation is called as **right-most derivation**.

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(E+id) \Rightarrow -(id+id)$$

Rightmost derivations are also called canonical derivations

Left-Most and Right-Most Derivations

Left-Most Derivation

$$\mathsf{E} \underset{\mathrm{lm}}{\Longrightarrow} \mathsf{-E} \underset{\mathrm{lm}}{\Longrightarrow} \mathsf{-(E)} \underset{\mathrm{lm}}{\Longrightarrow} \mathsf{-(id+E)} \underset{\mathrm{lm}}{\Longrightarrow} \mathsf{-(id+id)}$$

Right-Most Derivation

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(E+id) \Longrightarrow -(id+id)$$

- $S \stackrel{*}{\Longrightarrow} \alpha$, α is a left sentential form of the grammar
- Top-down parsers try to find the left-most derivation of the given source program.
- Bottom-up parsers try to find the right-most derivation of the given source program in the reverse order.

Parse Tree

- Inner nodes of a parse tree are non-terminal symbols.
- The leaves of a parse tree are terminal symbols.
- Yield or frontier of the tree: leaves of the tree read from left to right
- A parse tree can be seen as a graphical representation of a derivation.

Parse Tree - Derivation

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(id+E) \Rightarrow -(id+id)$$

- A grammar produces more than one parse tree for a sentence is called as an *ambiguous* grammar.
- Produces more than one leftmost or more than one right most derivation for the same sentence

$$E \Rightarrow E+E \Rightarrow id+E \Rightarrow id+E*E$$

\Rightarrow id+id*id

$$E \Rightarrow E^*E \Rightarrow E+E^*E \Rightarrow id+E^*E$$

\Rightarrow id+id*id

- For the most parsers, the grammar must be unambiguous.
- Unambiguous grammar
 - unique selection of the parse tree for a sentence
- We should eliminate the ambiguity in the grammar during the design phase of the compiler.
 - An unambiguous grammar should be written to eliminate the ambiguity.

stmt → if expr then stmt | if expr then stmt else stmt | otherstmts

if E₁ then if E₂ then S₁ else S₂

(a) (b)

- We prefer the second parse tree (else matches with closest if).
- So, we have to disambiguate our grammar to reflect this choice.
- The unambiguous grammar will be:

```
stmt → matchedstmt | unmatchedstmt

matchedstmt → if expr then matchedstmt else matchedstmt

otherstmts
```

unmatchedstmt → if expr then stmt |
if expr then matchedstmt else unmatchedstmt

 Ambiguous grammars (because of ambiguous operators) can be disambiguated according to the precedence and associativity rules.

$$E \rightarrow E+E \mid E*E \mid id \mid (E)$$

$$\downarrow \downarrow$$
disambiguate the grammar

 $E \rightarrow E+T \mid T$

 $T \rightarrow T^*F \mid F$

 $F \rightarrow id \mid (E)$

Eliminate ambiguity from the above grammar.
 (Precedence order: id, (), ^, * and /, + and -)

E→E+E | E−E
E→E*E | E/E
E→E ^ E
E→(E) | id

$$\downarrow$$
 disambiguate the grammar
E-> E+T | E-T | T
T-> T * P | T/P | P
P-> F ^ P | F
F-> (E) | id

Left Factoring

Consider the productions,

 $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$ where α is non-empty and the first symbols of β_1 and β_2 (if they have one) are different.

• When processing α we cannot know whether to expand

A to $\alpha\beta_1$ or A to $\alpha\beta_2$

But, if we re-write the grammar as follows

$$A \rightarrow \alpha A'$$

 $\text{A'} \to \beta_1 \mid \beta_2 \;\; \text{ so, we can immediately expand A to} \; \alpha \text{A'}$

Left Factoring - Algorithm

 For each non-terminal A with two or more alternatives (production rules) with a common non-empty prefix, let say

$$A \rightarrow \alpha \beta_1 \mid ... \mid \alpha \beta_n \mid \gamma_1 \mid ... \mid \gamma_m$$

convert it into

$$A \to \alpha A' \mid \gamma_1 \mid \dots \mid \gamma_m$$
$$A' \to \beta_1 \mid \dots \mid \beta_n$$

Left Factoring-Algorithm

Algorithm 4.21: Left factoring a grammar.

INPUT: Grammar G.

OUTPUT: An equivalent left-factored grammar.

METHOD: For each nonterminal A, find the longest prefix α common to two or more of its alternatives. If $\alpha \neq \epsilon$ — i.e., there is a nontrivial common prefix — replace all of the A-productions $A \to \alpha \beta_1 \mid \alpha \beta_2 \mid \cdots \mid \alpha \beta_n \mid \gamma$, where γ represents all alternatives that do not begin with α , by

$$A \to \alpha A' \mid \gamma$$

$$A' \to \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$$

Here A' is a new nonterminal. Repeatedly apply this transformation until no two alternatives for a nonterminal have a common prefix.

Left Factoring - Example 1

```
A \rightarrow \underline{a}bB \mid \underline{a}B \mid cdg \mid cdeB \mid cdfB
A \rightarrow aA' \mid cdg \mid cdeB \mid cdfB
A' \rightarrow bB \mid B
A \rightarrow aA' \mid cdA''
A' \rightarrow bB \mid B
A'' \rightarrow g \mid eB \mid fB
```

Left Factoring

 A predictive parser (a top-down parser without backtracking) insists that the grammar must be left-factored.

grammar → a new equivalent grammar suitable for predictive parsing

```
stmt → if expr then stmt else stmt |
    if expr then stmt
```

• when we see if, we cannot know which production rule to choose to re-write *stmt* in the derivation.

Left Recursion

• A grammar is *left recursive* if it has a non-terminal A such that there is a derivation.

$$A \stackrel{+}{\Rightarrow} A\alpha$$
 for some string α

- Top-down parsing techniques cannot handle left-recursive grammars.
- So, we have to convert our left-recursive grammar into an equivalent grammar which is not left-recursive.
- The left-recursion may appear in a single step of the derivation (immediate left-recursion), or may appear in more than one step of the derivation.

Immediate Left Recursion

Immediate Left Recursion - Example

$$E \rightarrow E+T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow id \mid (E)$$

 \bigcup

eliminate immediate left recursion

$$E \rightarrow T E'$$
 $E' \rightarrow +T E' \mid \varepsilon$
 $T \rightarrow F T'$
 $T' \rightarrow *F T' \mid \varepsilon$
 $F \rightarrow id \mid (E)$

Left Recursion - Problem

- A grammar cannot be immediately left-recursive, but it still can be left-recursive.
- By just eliminating the immediate left-recursion, we may not get a grammar which is not left-recursive.

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Sc \mid d$ This grammar is not immediately left-recursive, but it is still left-recursive.

$$\underline{S} \Rightarrow Aa \Rightarrow \underline{S}ca$$
 or $\underline{A} \Rightarrow Sc \Rightarrow \underline{A}ac$ causes left-recursion

• So, we have to eliminate all left-recursions from our grammar

Eliminate Left Recursion - Algorithm

```
- Arrange non-terminals in some order: A<sub>1</sub> ... A<sub>n</sub>
for i from 1 to n do {
      for j from 1 to i-1 do {
            replace each production
                        A_i \rightarrow A_i \gamma
                            by
                        A_i \rightarrow \alpha_1 \gamma \mid ... \mid \alpha_k \gamma
                        where A_i \rightarrow \alpha_1 \mid ... \mid \alpha_k
      eliminate immediate left-recursions among A<sub>i</sub> productions
```

Eliminate Left Recursion - Example

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid f$

Order of non-terminals: S, A

for S:

- we do not enter the inner loop.
- there is no immediate left recursion in S.

for A:

- Replace A \rightarrow Sd with A \rightarrow Aad | bd So, we will have A \rightarrow Ac | Aad | bd | f
- Eliminate the immediate left-recursion in A

$$A \rightarrow bdA' \mid fA'$$

 $A' \rightarrow cA' \mid adA' \mid \epsilon$

Equivalent grammar which is not left-recursive:

$$S \rightarrow Aa \mid b$$

 $A \rightarrow bdA' \mid fA'$
 $A' \rightarrow cA' \mid adA' \mid \epsilon$

Top Down Parser

Top Down Parser

- Top-down parsing can be viewed
 - as an attempt to find a leftmost derivation for the input string
 - as the problem of constructing a parse tree for the input string, starting form the root and creating the nodes of the parse tree in preorder
- Recursive descent parsing is a general form of top down parsing which involves back tracking, i.e. making repeated scans of the input
- Predictive parser is special case of recursive descent parser where no backtracking is required

Recursive Descent Parser

• Consider the grammar:

$$S \rightarrow cAd$$

 $A \rightarrow ab \mid a$

The input string, w=cad

Build parse tree:

Step 1. From start symbol.

Recursive Descent Parser (Cont.)

Step 2. We expand A using the first alternative A→ab to obtain the following tree:

 Now, we have a match for the second input symbol "a", so we advance the input pointer to "d", the third input symbol, and compare d against the next leaf "b".

Recursive Descent Parser (Cont.)

- Backtracking
 - Since "b" does not match "d", we report failure and go back to A to see whether there is another alternative for A that has not been tried - that might produce a match!
 - In going back to A, we must reset the input pointer to "a".

 Step 3 а

Recursive Descent Parser

Recursive descent parser for the Grammar

```
E \rightarrow TE'
E' \rightarrow +TE'
T \rightarrow FT'
T' \rightarrow *FT' \mid \epsilon
F \rightarrow (E) \mid id
```

- The major approach of recursive-descent parsing is to relate each non-terminal with a procedure.
- There is a procedure for each non-terminal in the grammar.
- The objective of each procedure is to read a sequence of input characters that can be produced by the corresponding non-terminal, and return a pointer to the root of the parse tree for the non-terminal.

Recursive Descent Parser

Recursive Descent Parser

```
Procedure T()
Begin
    F()
                             T→FT'
End
Procedure T'()
Begin
         If input symbol = '*' then
         Begin
                                                        T' \rightarrow *FT'
                  Advance()
                  F()
                  T'()
         End
End
```

Recursive Descent Parser

```
Procedure F()
Begin
     If input symbol = 'id ' then
          Advance()
     Else if input symbol = '(' then
     Begin
         Advance()
                                                        F \rightarrow id \mid (E)
          E()
          if input symbol = ')' then
             Advance()
          else error()
     End
     Else Error()
```

- By writing a grammar and eliminating left recursion and left factoring the resulting grammar, we can obtain a grammar that can be parsed by a recursive descent parser that needs no backtracking, i.e. a predictive parser
- Predictive parsers can be constructed for a class of grammars called LL(1).
 - L->Left to right scanning
 - L->Leftmost derivation
 - 1->One input symbol (lookahead symbol) at each step
- No left recursive or ambiguous grammar can be LL(1)

Introduction

- To construct a predictive parser we must know
 - Input symbol a
 - Non terminal A to be expanded i.e. which one of the alternatives of production $A\rightarrow \alpha 1$ | $\alpha 2$ |.... | αn is the unique alternative that derives a string beginning with a
 - Proper alternative must be detectable by looking at only first symbol it derives.
- Flow of control constructs with their distinguishing keywords are usually detected.
- Keywords tells us which alternative is the one that could find the statement.

Non recursive Predictive Parsing

- The predictive parser has :-
- input contains string to be parsed followed by \$
- stack sequence of grammar symbols preceded with \$.
 Initially the stack contains the start symbol S on top of \$
- parsing table two
 dimensional array M[A,a]
 where A is a nonterminal and
 a is the terminal or the symbol
 \$
- output

Non recursive Predictive Parsing

- The parser is controlled by a program that behaves as follows:
- If X=a=\$, parser halts and announces successful completion of parsing.
- If X=a≠\$, parser pops X off the stack and advances the input pointer to next input symbol.
- If X is non terminal, program consults entry M[X,a]of the parsing table, M
 - If M[X,a]={X→UVW}, the parser replaces X on top of the stack with WVU (U on top)
 - If M[X,a]=error, the parser calls an error recovery routine

```
Algorithm for nonrecursive predictive parsing:
```

Input: A string w and a parsing table M for grammar G.

Output: If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Method: Initially, the parser has \$S on the stack with S, the start symbol of G on top, and w\$ in the input buffer. The program that utilizes the predictive parsing table M to produce a parse for the input is as follows:

set ip to point to the first symbol of w\$;

repeat

until X = S

```
let X be the top stack symbol and a the symbol pointed to by ip;
if X is a terminal or $ then
        if X = a then
                pop X from the stack and advance ip
        else error()
                        /* X is a non-terminal */
else
    if M[X, a] = X \rightarrow YIY2 \dots Yk then begin
     pop X from the stack;
     push Yk, Yk-1, ..., YI onto the stack, with YI on top;
     output the production X \rightarrow Y1 \ Y2 \dots Yk
end
else error()
```

Grammar

Input: id + id * id \$

Stack: E

MATCHED	STACK	INPUT	ACTION	
	\$ E	id+id * id\$		
	\$ E' T	id+id * id\$	E->TE'	
	\$ E' T' F	id+id * id\$	T->FT'	
	\$ E' T' id	id+id * id\$	F->id	
id	\$ E' T'	+id * id\$	Match id	
id	\$ E'	+id * id\$	T'->E	
id	\$ E' T +	+id * id\$	E'-> +TE'	
id+	\$ E' T	id * id\$	Match +	
id+	\$ E' T' F	id * id\$	T-> FT'	
id+	\$ E' T' id	id * id\$	F-> id	
id+id	\$ E' T'	* id\$	Match id	
id+id	\$ E' T' F*	* id\$	T'-> *FT'	
id+id*	\$ E' T' F	id\$	Match *	
id+id*	\$ E' T' id	id\$	F-> id	
id+id*id	\$ E' T'	\$	Match id	
id+id*id	\$ E'	\$	T′-> €	
id+id*id	\$	\$	E'-> €	

FIRST and FOLLOW

- To construct the parsing table, we need two functions associated with grammar G
 - FIRST
 - FOLLOW
- If α is any string of grammar symbols, FIRST(α) is any set of terminal symbols that begin the strings derived from α .
- If $\alpha \stackrel{*}{\Longrightarrow} \epsilon$, then ϵ is also in FIRST(α)
- FOLLOW(A) is the set of all terminals that can appear immediately to the right of A (i.e. follow A) in some sentential form,
 - i.e. the set of all terminals a in S $\stackrel{*}{\Longrightarrow}$ αAaβ for some α and β.
- If A can be the rightmost symbol in some sentential form, then \$ is in FOLLOW(A)

FIRST (X)

Rules

- 1. If X is a terminal, then FIRST(X) is {X}.
- 2. If $X \rightarrow \epsilon$ is a production, then add ϵ to FIRST(X)
- 3. If $X \to Y_1Y_2...Y_k$ is a production, then place 'a' in FIRST(X), if for some i, a is in Y_i and ϵ is in all of FIRST(Y_1),, FIRST(Y_{i-1}), i.e. $Y_1Y_2...Y_{i-1} \stackrel{*}{\Rightarrow} \epsilon$
 - If ϵ is in FIRST(Y_j) for all j=1,2,...,k, then add ϵ to FIRST(X)
 - Everything in FIRST (Y₁) is in FIRST(X).
 - IF Y_1 does not derive ϵ , then we add nothing more to FIRST(X), but if $Y_1 \stackrel{*}{\Rightarrow} \epsilon$, then we add FIRST(Y_2) to FIRST(X) and so on

FIRST (X)

- We compute FIRST $(X_1X_2...X_n)$ as follows:
 - − Add to FIRST $(X_1X_2...X_n)$ all non ϵ symbols of FIRST (X_1)
 - If ϵ is in FIRST(X1), add all non ϵ symbols of FIRST(X₂)
 - Also add non ϵ symbols of FIRST(X₃) if ϵ is in both FIRST(X₁) and FIRST(X₂)
 - Finally add ∈ in FIRST (X₁X₂...X_n) if for all i, FIRST(X_i) contains
 €

Example: Rule 3

$$X \rightarrow Y_1 Y_2 Y_3$$

 $Y1 \rightarrow a \mid \epsilon$
 $Y2 \rightarrow b \mid \epsilon$
 $Y3 \rightarrow c \mid \epsilon$

Case 1:

 $X \Rightarrow Y_1Y_2Y_3$ $\Rightarrow aY_2Y_3$

Case 2:

 $X \Rightarrow Y_1 Y_2 Y_3$ $\Rightarrow Y_2 Y_3$ $\Rightarrow bY_3$

Case 3:

 $X \Rightarrow Y_1 Y_2 Y_3$ $\Rightarrow Y_2 Y_3$ $\Rightarrow Y_3$ $\Rightarrow c$

Case 4:

 $X \Rightarrow Y_1 Y_2 Y_3$ $\Rightarrow Y_2 Y_3$ $\Rightarrow Y_3$ $\Rightarrow \varepsilon$

• FIRST(X)={a,b,c,ε}

Production Rules:

```
E -> TE'
E' -> +TE'|E
T -> FT'
T' -> *FT' | E
F -> (E) | id
```

FIRST(F)=FIRST((E)) U FIRST(id) ={(, id}

Production Rules:

- FIRST(F)=FIRST((E)) U FIRST(id) ={(, id}
- FIRST(T)= FIRST(FT') =FIRST(F) ={(, id}
- FIRST(E)= FIRST(TE') =FIRST(T) ={(, id}

• Production Rules:

- FIRST(F)=FIRST(T) = FIRST(E)= {(, id}
- FIRST(E')=FIRST(+TE') U FIRST(€) ={+, €}

- FIRST(F)=FIRST(T) = FIRST(E)= {(, id}
- FIRST(E')=={+, €}

```
E -> TE'
E' -> +TE'|€
T -> FT'
T' -> *FT' | €
F -> (E) | id
```

• FIRST(T')=FIRST(*FT') U FIRST(€) ={*, €}

```
FIRST(E)= FIRST(T)= FIRST(F)={ (, id}
FIRST(E')={+, ∈}
FIRST(T')={*, ∈}
```

FOLLOW(A)

1. Place \$ in FOLLOW(S) where S is the start symbol and \$ is the right end marker

2. If $A \rightarrow \alpha B\beta$ is a production, then everything in FIRST(β) except ϵ is in FOLLOW(B).

3. If there is a production $A \rightarrow \alpha B$ or a production $A \rightarrow \alpha B\beta$, where FIRST(β) contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B).

Example

- Rule 2
- S→aAB
- A →c
- $B \rightarrow b \mid d$ FIRST(B)= $\{b,d\}$

- $S \Rightarrow aAB \Rightarrow aAb$
- $S \Rightarrow aAB \Rightarrow aAd$

Example

- Rule 3
- $S \rightarrow aAd \mid Aa \quad FOLLOW(A) = \{d,a\}$
- A \rightarrow cB [of the form A $\rightarrow \alpha B$]
- B →b

- $S \Rightarrow aAd \Rightarrow acBd$
- S ⇒Aa ⇒cBa

FOLLOW(E)

1. Put \$ in FOLLOW(E) by rule 1

2. Production $F \rightarrow (E)$

- Apply rule 2
- A=F, α =(, B=E, β =)
 - Add ')' to FOLLOW(E)
- FOLLOW(E)={\$,)}

1. Place \$ in FOLLOW(S) where S is the start symbol and \$ is the right end marker

2. If A -> αBβ is a production, then everything in FIRST(β) except € is in FOLLOW(B).

FOLLOW(E')

Production $E \rightarrow TE'$

Apply rule 3

If there is a production $A \rightarrow \alpha B$ or a production $A \rightarrow \alpha B\beta$, where FIRST(β) contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B).

- E \rightarrow TE' of the form A $\rightarrow \alpha$ B, where A=E, α =T and B=E',
- Everything in FOLLOW(E) is in FOLLOW(E')
- FOLLOW(E')=FOLLOW(E)={\$,)}

FOLLOW(E')

Production $E' \rightarrow +TE'$

- Apply rule 3
- E' \rightarrow +TE' of the form A $\rightarrow \alpha$ B, where A=E', α =+T and B=E',
- Everything in FOLLOW(E') is in FOLLOW(E')

• FOLLOW(E')= {\$,)}

FOLLOW(T)

Production $E \rightarrow TE'$

Apply rule 2

- If $A \rightarrow \alpha B\beta$ is a production, then everything in FIRST(β) except ϵ is in FOLLOW(B).
- E \rightarrow TE' of the form A-> α B β , where A=E, α = ϵ and B=T and β =E',
- Everything in FIRST(E') except ϵ is in FOLLOW(T)

Add {+} to FOLLOW(T)

 $FIRST(E')=\{+, \in\}$

FOLLOW(T)

Production $E \rightarrow TE'$

If there is a production $A \rightarrow \alpha B$ or a production $A \rightarrow \alpha B\beta$, where FIRST(β) contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B).

- Apply rule 3
- E \rightarrow TE' of the form A $\rightarrow \alpha$ B β , where A=E, α = ϵ and B=T and β =E',
- FIRST(E') contains ε, hence everything in FOLLOW(E) is in FOLLOW(T)
- Add {\$,)} to FOLLOW(T)

FOLLOW(T)

Production $E' \rightarrow +TE'$

- Apply rule 2
- Everything in FIRST(E')- € is in FOLLOW(T)
- Apply rule 3
- Everything in FOLLOW(E') is in FOLLOW(T)

- 2. If $A \rightarrow \alpha B\beta$ is a production, then everything in FIRST(β) except ϵ is in FOLLOW(B).
- 3. If there is a production $A \rightarrow \alpha B$ or a production $A \rightarrow \alpha B\beta$, where FIRST(β) contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B).

• FOLLOW(T)={\$,), +}

FOLLOW(T')

Production $T \rightarrow FT'$

- Apply rule 3
- T → FT' of the form A→αB, where A=T, α=F and B=T', everything in FOLLOW(T) is in FOLLOW(T')

FOLLOW(T')=FOLLOW(T) = {\$,), +}

FOLLOW(T')

Production T' \rightarrow *FT'

- Apply rule 3
- T' \rightarrow *FT' of the form A $\rightarrow \alpha$ B, where A=T, α =*F and B=T',
- Everything in FOLLOW(T') is in FOLLOW(T')

• FOLLOW(T')={\$,), +}

FOLLOW(F)

Production $T \rightarrow FT'$

- Apply rule 2
- T \rightarrow FT' of the form A $\rightarrow \alpha B\beta$, where A=T, α = ϵ and B=F and β =T'
- Everything in FIRST(T') except ∈ is in FOLLOW(F)

Add {*} to FOLLOW(F)

 $FIRST(T')=\{*, \in\}$

FOLLOW(F)

Production $T \rightarrow FT'$

- Apply rule 3
- T \rightarrow FT' of the form A-> α B β , where A=T, α = ϵ and B=F and β =T',
- FIRST(T') contains ∈, hence everything in FOLLOW(T)
 is in FOLLOW(F)
- Add {\$,), +} to FOLLOW(F)

FOLLOW(F)

Production $T' \rightarrow *FT'$

- Apply rule 2
- Everything in FIRST(T')- ∈ is in FOLLOW(F)
- Apply rule 3
- Everything in FOLLOW(T') is in FOLLOW(F)
- FOLLOW(F)= {\$,), +, *}

FIRST and FOLLOW

```
FIRST(E)= FIRST(T)= FIRST(F)={ (, id}
FIRST(E')=\{+, \in\}
FIRST(T')=\{*, \in\}
FOLLOW(E)=FOLLOW(E')=\{\$, \}
FOLLOW(T)=FOLLOW(T')=\{\$, \}
FOLLOW(F) = \{\$, \}, +, *\}
```

Construction of Predictive Parsing Table

- INPUT: Grammar G.
- OUTPUT: Parsing table M.
- METHOD: For each production $A \rightarrow \alpha$ of the grammar, do the following:
- 1. For each terminal a in FIRST(α), add $A \rightarrow \alpha$ to M[A,a]
- 2. If ∈ is in FIRST(α), add A→α to M[A, b] for each terminal b in FOLLOW(A). If ∈ is in FIRST(α) and \$ is in FOLLOW(A), add A→α to M[A, \$] as well.
- 3. Make each undefined entry of M to be error

Construction of Predictive Parsing

Table

E -> TE' E' -> +TE'|E T -> FT' T' -> *FT' | E F -> (E) | id

1. $E \rightarrow TE'$

FIRST(TE')=FIRST(T)={(,id}

Add the production $E \rightarrow TE'$ to M[E,(] and M[E,id]

2. $E' \rightarrow +TE'$

FIRST(+TE')={+}

Add the production $E' \rightarrow +TE'$ to M[E',+]

3. $E' \rightarrow E$

Add $E' \rightarrow E$ to M[E',)] and M[E',\$] since FOLLOW(E')={),\$}

Construction of Predictive Parsing Table

```
4. T \rightarrow FT'
FIRST(FT')=FIRST(F)={(,id}
Add the production T \rightarrow FT' to M[T,(] and M[T,id]
5. T' \rightarrow *FT'
FIRST(*FT')={*}
Add the production T' \rightarrow *FT' to M[T',*]
6. T' \rightarrow€
Add T' \rightarrow E to M[T',)], M[T',+] and M[T',$] since
FOLLOW(T')={),$, +}
```

Construction of Predictive Parsing Table

7.
$$F \rightarrow (E)$$

Add $F \rightarrow (E)$ to M[F, (]

8.
$$F \rightarrow id$$

Add $F \rightarrow id$ to M[F, id]

Predictive Parsing Table

Non Terminal	Terminals							
	id	+	*	()	\$		
E	E -> TE'			E -> TE'				
E'		E'->+TE'			Ε' -> ε	Ε' -> ε		
Т	T -> FT'			T -> FT'				
T'		Τ' -> ε	T' -> *FT'		Τ΄ -> ε	Τ΄ -> ε		
F	F -> id			F -> (E)				

 For every LL(1) grammar, each parsing-table entry uniquely identifies a production or signals an error.

 For some grammars, however, M may have some entries that are multiply defined.

For example, if G is left-recursive or ambiguous, then
 M will have at least one multiply defined entry.

- $S \rightarrow iCtSS' \mid a$
- S' \rightarrow eS | ϵ
- $C \rightarrow b$
- FIRST(S)={i,a}
- FIRST(S')={e, ε}
- FIRST(C)={b}
- FOLLOW(S)={e,\$}
- FOLLOW(S')={e,\$}
- FOLLOW(C)={t}

$$S \rightarrow iCtSS'|a$$

 $S' \rightarrow eS |\epsilon$
 $C \rightarrow b$

- FIRST(S)={i,a}
- FIRST(S')= $\{e, \epsilon\}$
- FIRST(C)={b}

- FOLLOW(S)={e,\$}
- FOLLOW(S')={e,\$}
- FOLLOW(C)={t}

	а	b	е	i	t	\$
S	$S \rightarrow a$			$S \rightarrow iCtSS'$		
S'			$S' \rightarrow eS$ $S' \rightarrow \epsilon$			S' → ε
			$S \rightarrow \varepsilon$			
С		C →b				

LL(1) Grammar

- A grammar whose parsing table has no multiply defined entries is said to be LL(1).
- No left recursive or ambiguous grammar can be LL(1)
- A grammar G is LL(1) if whenever A→α|β are two distinct productions of G, the following conditions hold
 - For no α , do α and β derive strings beginning with α
 - At most one of α and β can derive the empty string
 - If $\beta \xrightarrow{*} \epsilon$, then α does not derive any string beginning with a terminal in FOLLOW(A)