F-128 – Física Geral I – 2º Semestre 2012

Respostas às Listas do Capítulo 9

1)a)
$$x = \frac{L}{2}$$
 $y = \frac{7L}{18}$; b) Demonstração.

2)
$$x_{CM} = \frac{2a}{3}$$
, $y_{CM} = \frac{b}{3}$.

3)
$$x = 0$$
, $y = \frac{4R}{3\pi}$.

4) Desce até um mínimo e sobe até
$$H/2$$
; b) $x = \frac{MH}{m} (\sqrt{1 + \frac{m}{M}} - 1)$.

5)
$$\Delta x = 0.42$$
 m.

6)
$$v = \frac{4M}{m} \sqrt{gl}$$
.

7)
$$v_f = v_0 + \frac{m}{m+M} v_{rel}$$
.

8) a) 100 m/s; b) 374 J; c)
$$I = 1.5$$
 N.s, $F_{\text{m\'e}ida} = 1500$ N.

9) a)
$$mg \frac{2h}{L}$$
; b) $mg(3 + \frac{2h}{L})$.

11)
$$v_i = 4,84 \text{ m/s}, v_f = 4,15 \text{ m/s}, \alpha_1 = \arctan(4,38) = 77^\circ, \alpha_2 = \arctan(-4,38) = (180 - 77)^\circ.$$

12)
$$150\sqrt{3}$$
 N.

13) a)
$$3.3 \times 10^7$$
 N; b) 2 m/s²; c) 31 m/s²; d) 0.

14) a) 13,5 kg.m/s; b)
$$9 \times 10^3$$
 N; c) 18×10^3 N.

15) a) 1,0 kg.m/s; b) 250 J; c) 10 N; d)
$$1,67 \times 10^3$$
 N.

18)
$$v = \sqrt{\frac{2m^2gh\cos^2\theta}{(M+m)(M+m\sin^2\theta)}}.$$

Respostas às Listas do Capítulo 9

20) 1,2 kg.

21) a) 7,1 m/s; b) $v_3 > v_{1a}$; c) $K_3 < K_{1a}$; d) $p_3 < p_{1a}$.

22) 2,74*L*.

23) $v_{1a} = 6$ m/s, $v_{1d} = -2$ m/s (o bloco 1 volta depois da colisão), $v_{2d} = 4$ m/s; b) 0,2 m.

24) a) 25 cm; b) 28,6%.

25) a) 1,92 m; b) 0,64 m.

26) $v = 6 \times 10^{-1} \, \text{lm/s} \cong 1,89 \, \text{mm/ano}$.

27) a) -1,7 m/s; b) 0,17 m; c) 0,87 m/s; d) 0,25 m.

28)
$$v = \sqrt{\left(\frac{mv_0}{m+M}\right)^2 + 2gh}$$
.

29) bola 1: 2,0 m/s, 180°; bola 2: 6,9 m/s, 30°; bola 3: 6,9 m/s, -30°.

30) a)
$$p_{1d} = 1.5$$
 kg.m/s, $p_{2d} = 1.0$ kg.m/s; b) $\frac{m_{projetil}}{m_{abso}} = \sqrt{3}$.

31) a) massa
$$m: \sqrt{2}v_i$$
, massa $3m: \sqrt{\frac{2}{3}}v_i$; b) $\arctan\left(\frac{\sqrt{2}}{2}\right) \cong 35^o$.

32) a) 55°; b)
$$\frac{v_{1,f}}{v_{2,f}} \approx 0.7$$

33) Resposta no livro.

34) Resposta no livro.

35) Resposta no livro.

36) Resposta no livro.

37)
$$\overrightarrow{v_3} = -(9,33\hat{i} + 8,33\hat{j}) \text{ m/s}; \text{ b) } 0,44 \times 10^{-12} \text{ J}.$$

38)
$$h = \frac{(M-m)v^2}{2gM}$$
.