Probabilidad: Transformación de Variables *

García Prado, Sergio sergio@garciparedes.me

17 de septiembre de 2017

1. Transformación de la Función de Densidad

Para realizar obtener la función de densidad de la transformación se utiliza la ecuación (1), que relaciona una variable con su transformación. Se denomina X a la variable aleatoria de origen, Y = g(X) a la variable obtenida tras la transformación definida por la función g, cuya inversa es g^{-1} . Las funciones de densidad de X e Y se denominan f_X y f_Y respectivamente.

La ecuación (1) se define como una suma de funciones a trozos, particionadas de tal manera que cada tramo sea una función inyectiva. Nótese que (por la definición de función de densidad) la imagen de esta función deberá pertenecer al intervalor [0,1], eliminando del soporte de Y los casos en que esta restricción no se cumpla.

$$f_Y(y) = \sum f_X\left(g^{-1}(y)\right) \left| \frac{d}{dy}g^{-1}(y) \right| \tag{1}$$

2. Ejercicios

2.1. Sea X una v. a. normal con media $\mu=0$ y varianza $\sigma^2=1$, es decir, $X\sim N(0,1)$. Hallar la función de densidad de la v.a. $Y=X^2$

Para obtener la función de densidad de la variable transformada se seguirá la ecuación (1), por lo tanto, lo primero es definir $f_X(x)$, g(x), $g^{-1}(x)$ y $\left|\frac{d}{dx}g^{-1}(x)\right|$:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \ x \in \mathbb{R}$$
 (2)

$$g(x) = x^2 \tag{3}$$

$$g^{-1}(x) = \pm \sqrt{x} \tag{4}$$

$$\left| \frac{d}{dx} g^{-1}(x) \right| = \left| \pm \frac{1}{2\sqrt{x}} \right| = \frac{1}{2\sqrt{x}} \tag{5}$$

Tal y como se puede apreciar en la figura 1, g(x) puede representarse a partir de dos funciones inyectivas, que además son simétricas entre sí. Lo cual es útil en el proceso de obtención de la función f_Y siguiendo la ecuación (1), la cual se realiza en las ecuaciónes (6) - (13). En la ecuación (8) simplemente se sustituyen todas las variables por las indicadas anteriormente. En (9) se utiliza la propiedad de simetría.

^{*}URL: https://github.com/garciparedes/probability-variable-transformations

0,6 0,5 0,4 0,3 0,2 0,1 0 -8 -6 -4 -2 0 2 4 6 8 $-f_X(x)$ $-f_Y(x)$

Figura 1

Figura 2

$$f_Y(y) = \tag{6}$$

$$= \sum f_X \left(g^{-1}(y) \right) \left| \frac{d}{dy} g^{-1}(y) \right| \tag{7}$$

$$= f_X\left(\sqrt{y}\right) \left| \frac{d}{dy} g^{-1}(y) \right| + f_X\left(-\sqrt{y}\right) \left| \frac{d}{dy} g^{-1}(y) \right| \tag{8}$$

$$=2f_X\left(\sqrt{y}\right)\left|\frac{d}{dy}g^{-1}(y)\right|\tag{9}$$

$$=2f_X\left(\sqrt{y}\right)\left|\pm\frac{1}{2\sqrt{y}}\right|\tag{10}$$

$$=2f_X\left(\sqrt{y}\right)\frac{1}{2\sqrt{y}}\tag{11}$$

$$=2\frac{1}{\sqrt{2\pi}}e^{-\frac{y}{2}}\frac{1}{2\sqrt{y}}\tag{12}$$

$$= \frac{e^{-\frac{y}{2}}}{\sqrt{2\pi}\sqrt{y}} \qquad 0 < y < \infty \tag{13}$$

El resto de cálculos se basan en simplifación hasta llegar a (13), donde se ha indicado el soporte de la variable Y (todos los reales positivos sin el cero). Se podría haber llegado a esta conclusión estudiando las función g puesto que su imagen es \mathbb{R}^* . En la figura 2 se puede visualizar de manera gráfica la relación entre f_X y f_Y .

2.2. Sea X una v. a. uniformemente distribuida en $[0,2\pi]$, es decir, con función de densidad $f(x)=\frac{1}{2\pi},\ x\in(0,2\pi)$. Hallar la función de densidad de la v.a. $Y=\cos(X)$

Al igual que en el ejercicio anterior, para obtener la función de densidad de la variable transformada se seguirá la ecuación (1), por lo tanto, lo primero es definir $f_X(x)$, g(x), $g^{-1}(x)$ y $\left|\frac{d}{dx}g^{-1}(x)\right|$:

$$f_X(x) = \frac{1}{2\pi}, \ 0 < x < 2\pi$$
 (14)

$$g(x) = \cos(x) \tag{15}$$

$$g^{-1}(x) = \arccos(x) \tag{16}$$

$$\left| \frac{d}{dx} g^{-1}(x) \right| = \left| -\frac{1}{\sqrt{1 - x^2}} \right| = \frac{1}{\sqrt{1 - x^2}}$$
 (17)

Tal y como se puede apreciar en la figura 1, g(x) puede representarse a partir de dos funciones inyectivas, que además son simétricas entre sí. Lo cual es útil en el proceso de obtención de la función f_Y siguiendo la ecuación (1), la cual se realiza en las ecuaciónes (18) - (10). En (8) se utiliza la propiedad de simetría.

$$f_Y(y) = \tag{18}$$

$$= \sum f_X \left(g^{-1}(y) \right) \left| \frac{d}{dy} g^{-1}(y) \right| \tag{19}$$

$$=2\frac{1}{2\pi} \left| \frac{d}{dy} g^{-1}(y) \right| \tag{20}$$

$$=2\frac{1}{2\pi} * \frac{1}{\sqrt{1-y^2}} \tag{21}$$

$$= \frac{1}{\pi\sqrt{1-y^2}} -1 < y < 1 \tag{22}$$

El resto de cálculos se basan en simplifación hasta llegar a (22), donde se ha indicado el soporte de la variable Y (el intervalor (-1,1)). Se podría haber llegado a esta conclusión estudiando las función g puesto que su imagen es (-1,1). En la figura 4 se puede visualizar de manera gráfica la relación entre f_X y f_Y .

Referencias

[RdT18] María Pilar Rodríguez del Tío. Probabilidad, 2017/18.