June 15

- Use opendemand to run chapter_2_2021.ipynb
- Did it run without any errors?
- If not, send a message in Teams

Chapter 2

- 2. Exploratory Univariate Data Analysis
- a. Examining time series of data
- b. Data Distributions and Histograms
- c. Central value, spread, and symmetry
- d. Transforming Data
- e. Exploratory Univariate Analysis of Fluid Velocity
- f. Check Your Understanding

Exploratory Empirical Analyses

- Objective is to reduce the complexity (dimensionality) within a large data set
- What is a value commonly observed?
- How much variability is there among all the values?
- What are extreme cases that have been observed?

Exploring Data: What is the Objective?

- Summarizing some of the typical characteristics of the data
- How often are critical thresholds for specific applications reached?
 - Road temperature below freezing point
 - Hot, dry, windy conditions potentially leading to wildfires
- Approach to be used will depend on what is considered important to know to address the objective

NASA Worldview

Great Salt Lake

Great Salt Lake

Great Salt Lake level

Great Salt Lake Level

- Where did this data come from?
- What format?
- Understanding IO is the most critical step

• https://waterdata.usgs.gov/nwis/uv?site_no=1001 0000

Great Salt Lake level

Climate Division Data

• https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-divisions.php

Utah Precipitation and Temperature

Utah Temperature and Precipitation

- Where did this data come from?
- What format?
- IO is the most critical step
- http://www.wrcc.dri.edu/cgibin/divplot1 form.pl?4203

b. Data Distributions and Histograms

- Be careful with time series data- using histograms (frequency distributions) and cumulative frequency distributions loses the sense of time dependence of the underlying data
- Every observation in a time series is not likely independent of the others, yet that is a common misinterpretation of data distributions

Historgrams: Lake level

Empirical Cumulative Frequency Distribution Lake Level

c. Central Value, Spread, and Symmetry

- central value (central tendency or typical value)
- **spread** (variation or dispersion about the central or typical value)
- symmetry (degree to which the values tend to be larger or smaller than the central value)

What we want...

Metrics that are:

- *robust* which means not overly sensitive to the characteristics of the entire sample of data values. In other words, we want the measure to perform reasonably well no matter how the data values are distributed.
- *resistant* not unduly influenced by outliers in the sample. For example, the range is not resistant to outliers.

Quantiles

- Quantiles: percentage thresholds of the data
- q₂₅ lower quartile- 25% of the sample lies below that value and 75% lies above
- q₅₀ median- 50% of the sample lies below that value and 50% lies above
- q₇₅ upper quartile- 75% of the sample lies below that value and 25% lies above
- **Median** is a very good measure of the central tendency of the data, i.e., the typical value.

Box and whiskers plots

Box: 75th, 50th, 25th percentiles

Whiskers: 90th and 10th percentiles

Circles: outliers

Metrics

Central tendency

- Median
- Mode
- Mean
- Trimmed mean

Spread

- Range
- Interquartile Range
- Median absolute

deviation

- Standard deviation
- Variance

Mode, Mean, Trimmed Mean

- Mode- most common values
- Mean- not robust or reliant- sensitive to outliers

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

 Trimmed mean- robust and reliant but throwing away data: k values on either end of the distribution

$$\overline{X_{\alpha}} = \frac{1}{n-2k} \sum_{i=k+n}^{n-k} x_i$$

Spread

- Range- very sensitive to outliers
- •IQR- 75th 25th percentiles (ignores 50% of the data)
- MAD = median $| x_i q_{.5} |$ robust and reliant
- standard deviation, s, is the most commonly used measure of spread, but not resistant to outliers or robust

Standard Deviation/Variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Standard deviation, s, is not resistant to outliers or robust **Variance**, s², an **unbiased estimate of the population variance**

Why n-1 rather than n???

Estimating Population Variance

- lacktriangle Assume population has a mean of zero and variance σ^2
- Sample variance is s_x² (note: dividing by n)

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} = \overline{x^{2}}$$

$$s_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$s_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \frac{2}{n} \sum_{i=1}^{n} (x_{i} \overline{x}) + \frac{1}{n} \sum_{i=1}^{n} (\overline{x})^{2}$$

$$\sum_{i=1}^{n} a = na$$

$$\sum_{i=1}^{n} ax_{i} = na\overline{x}$$

$$s_x^2 = \overline{x^2} - \frac{2}{n} \overline{x} \sum_{i=1}^{n} (x_i) + \frac{1}{n} \overline{x^2} n = \overline{x^2} - 2\overline{x} \overline{x} + \overline{x}^2 = \overline{x^2} - \overline{x}^2$$

For a large sample

$$\overline{x^2} = \frac{1}{n} \overline{x}^2$$
 from Central Limit theorem

$$s_x^2 = \overline{x^2} - \frac{1}{n} \overline{x^2} = \frac{n-1}{n} \overline{x^2} = \frac{n-1}{n} \sigma^2$$

$$s^2 = \frac{n}{n-1} s_x^2 = \sigma^2$$

- Much ado about nothing? Yes if n is large!!
- Sample variance: what we measureuse it
- Population estimate: use when assessing statistical significance

Symmetry

Skewness- a measure of how the values are symmetric or asymmetric

$$\gamma = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^3}{S^3}$$

What you should be doing

- Make sure you can run the chapter 2 python notebook
- Read all of Chapter 2 notes
- Begin Check Your Understanding #2