

Ecuaciones

- 1. Resolver las siguientes ecuaciones y determinar en qué campo numérico tienen solución: a) $x^2+4=0$; b) $x^2-9=0$; c) $x^2+1=0$. sol: a) ± 2 ; b) ± 3 ; c) ± 1
- 2. Resolver las ecuaciones: a) $x^2-2x+5=0$; b) $x^2-6x+13=0$; c) $x^2-4x+5=0$. Sol: a) $1\pm 2i$; b) $3\pm 2i$; c) $2\pm i$
- 3. Encontrar los puntos de intersección de la circunferencia x²+y²=2 y la recta y=x. ¿Son soluciones reales o imaginarias?.
- 4. Encontrar los puntos de intersección de la circunferencia $x^2+y^2=1$ y la recta y=x-3. ¿Son soluciones reales o imaginarias?.
- 5. ¿A qué campo numérico pertenecen las soluciones de estas ecuaciones?. a) x^2 -3x+2=0 b) x^2 -2x+2=0 c) $2x^2$ -7x+3=0 d) $(x^2/2)$ +8=0. Sol: a) Real, x=2, x=1; b) Imaginaria x=1 \pm i; c) Real, x=1/2, x=3; d) Imaginaria, x= \pm 4i
- 6. Calcular los puntos de intersección de la elipse $(x^2/4)+(y^2/9)=1$ con la recta x=5. soi: \pm 9/4 i
- 7. Resolver las ecuaciones siguientes indicando el campo numérico al que pertenecen las soluciones: a) $x^2-4=0$ b) $x^2-5=0$; c) $x^2+1=0$. sol: a) ± 2 ; b) $\pm \sqrt{5}$; c) $\pm i$
- 8. Resolver las ecuaciones: a) $x^2-10x+29=0$ b) $x^2-6x+10=0$ c) $x^2-4x+13=0$. Sol: a) $5 \pm 2i$; b) $3 \pm i$; c) $2 \pm 3i$
- 9. Representar gráficamente las raíces de las ecuaciones: a) $x^2+4=0$ b) $x^2+1=0$; c) $x^2-9=0$ d) $x^2+9=0$.

a) $x^2+4=0$ b) $x^2+1=0$; c) $x^2-9=0$ d) $x^2+9=0$. Sol: a) $\pm 2i$; b) $\pm i$; c) ± 3 ; d) $\pm 3i$ 10. Escribir una ecuación de segundo grado cuyas raíces sean 2+2i y 2-2i.

(Recuerda: x1+x2=(-b/a); x1.x2=(c/a). Sol: x²-4x+8=0

- 11. Resolver la ecuación $x^3+27=0$. Representa gráficamente todas sus soluciones. Sol: $x=3_{180^\circ}$, $x=3_{300^\circ}$, $x=3_{60^\circ}$
- 12. Resolver la ecuación de segundo grado x²-2x+17=0. Tiene dos raíces complejas. ¿Cómo son entre sí?. ¿Se puede generalizar el resultado?.
- 13. Resolver las ecuaciones: a) x^3 -8=0; b) x^5 -32=0; c) x^4 -81=0; d) x^3 -1=0. Sol: a) $x=2_{120\%}$ k=0,1,2; b) $x=2_{72\%}$ k=0,1,2,3,4; c) $x=\pm 3$; $x=\pm 3$; d) x=1, $x=1_{120\%}$, $x=1_{240\%}$
- 14. Resolver la ecuación x²-4x+5=0 y comprueba que, en efecto, las raíces obtenidas verifican dicha ecuación.
- 15. Resolver las ecuaciones $x^6+64=0$ y $x^4+81=0$. Sol: a) $x=2_{90^0+60^0k}$ k=0,1,2,3,4,5; b) $x=3_{45^0+90^0k}$ k=0,1,2,3
- 16. Escribir una ecuación de raíces 1+3i, 1-3i.

17. Probar que 3+i y 3-i son raíces de la ecuación x²-6x+10. sol: [x-(3+i)][x-(3-i)]=x²-6x+10

18. Resolver la ecuación: a) $x^4+1=-35$. Sol: $x=\sqrt{3}\pm\sqrt{3}$ i; $x=-\sqrt{3}\pm\sqrt{3}$ i

Potencias, raíces, mixtos

1. Calcular las potencias: a) (2-3i)³; b) (3+i)²; c) i²³; d) (2+2i)⁴. Sol: a) -46-9i; b) 8+6i; c) -i; d) -64

2. Calcular: a) i²⁷; b) i⁴⁸; c) i⁷; d) i¹²; e) i³³; f) i³⁵. Sol: a) -i; b) 1; c) -i; d) 1; e) i; f) -i

3. Sabemos que z1=3-2i, que z2=4-3i y que z3=-3i. Calcular:
a) z1+2z2-z3
b) z1(z2+z3)
c) z2
d) 2z1-z2+z3.
Sol: a) 11-5i; b) -26i; c) 7-24i; d) 2-4i

4. Calcular: a) $(1+2i)^3$; b) $(-3-i)^4$; c) $(1-3i)^2$. Sol: a) -11-2i; b) 28+96i; c) -8-6i

5. Calcular: a) i^{210} ; b) i^{312} ; c) i^{326} ; d) i^{1121} .

Sol: a) -1; b) 1; c) -1; d) i

6. Calcular: a) $(1+i)^3$; b) $(1-i)^3$; c) $(-1+i)^3$; d) $(-1-i)^3$. Sol: a) -2+2i; b) -2-2i; c) 2+2i; d) 2-2i 7. Calcular: a) $1/i^3$ b) $1/i^4$ c) i^{-1} d) i^{-2} . Sol: a) -2+2i; b) -2-2i; c) 2+2i; d) 2-2i

Sol: x^2 -2x+10=0

Departamento de Matemáticas

- 8. Dados los complejos: z₁=3_{45°}; z₂=2_{30°} y z₃=-2i. Calcular:
 - a) z₁z₃
- b) $z_1/(z_2)^2$
- c) $(z_1)^2/[z_2(z_3)^3]$.

Sol: a) 6_{315°}; b) (3/4)_{-15°}; c) (9/16)_{330°}

- 9. Calcular, expresando el resultado en forma polar:
 - a) $(1+i)^6$

- b) $[(-1/2)+(\sqrt{2}/2)i]^8$
- c) $(1-i)^4$.

- 10. Calcular las potencias: a) [2(cos45°+isen45°)]⁴
 - b) $(\sqrt{2} \text{ 30°})^6$ c) $[\sqrt[4]{3} \text{ (cos 10°+isen 10°)}]^8$.
- Sol: a) 16_{180°}; b) 8_{180°}=-8; c) 9_{80°} 11. Calcular las raíces quintas de la unidad. Hacerlo expresando 1 como complejo en forma polar.
- Sol: 10°; 172°; 1144<u>°; 1</u>216°; 1288° 12. Calcular: a) $\sqrt{-i}$; b) $\sqrt[3]{l+i}$; c) $\sqrt{-16}$

Sol: a) 1_{135° ; 1_{315° ; b) $\sqrt[6]{2}_{15^\circ}$, $\sqrt[5]{2}_{135^\circ}$; $\sqrt[6]{2}_{255^\circ}$; c) 4_{90} , 4_{270}

13. Calcular $\sqrt[3]{\frac{1-i}{1-\sqrt{3}i}}$

- Sol: $1/\sqrt[6]{2}_{5^{\circ}+120^{\circ}k}$ k=0,1,2
- 14. Calcular las raíces siguientes y representar gráficamente las soluciones: a) $\sqrt{-4}$; b) $\sqrt[3]{-27}$;
 - c) $\sqrt[3]{\frac{1+i}{1+i}}$; d) $\sqrt[3]{\frac{-27}{i}}$

- Sol: a) 2_{90° , 2_{270° ; b) 3_{60° , 3_{180° , 3_{300° ; c) 1_{30° , 1_{150° , 1_{270° ; d) 3_{30° , 3_{150° , 3_{270°
- 15. Calcular las raíces: a) $\sqrt{4(\cos 60^{\circ} + isen 60^{\circ})}$; b) $\sqrt[3]{27(\cos 180^{\circ} + isen 180^{\circ})}$; c) $\sqrt[4]{81(\cos 120^{\circ} + isen 120)}$;
 - d) $\sqrt[6]{i}$

- Sol: a) $2_{30^{\circ}}$, $2_{210^{\circ}}$; b) $3_{60^{\circ}}$, $3_{180^{\circ}}$, $3_{300^{\circ}}$; c) $_{340^{\circ}+90^{\circ}k}$ $_{k}=0,1,2,3;$ d) $1_{15^{\circ}+60^{\circ}k}$ $_{k}=0,1,2,3,4,5$
- 16. ¿De qué número es (2+3i) raíz cúbica?.

Sol: -46+9i

- 17. a) Operar la expresión $(1+3i)^2(3-4i)$
 - b) calcular las raíces cúbicas del resultado.

- Sol: a) 50i; b) $\sqrt[3]{50}$ 30°+120°k k=0,1,2
- 18. Calcular el valor de (i⁴-i³)/8i y encontrar sus raíces cúbicas.
- Sol: $(1/2)_{105^{\circ}+120^{\circ}k}$ k=0,1,2
- 19. Calcular: a) $(1+i)^8$; b) $(-1+i)^6$; c) $(1+\sqrt{3}i)^2$; d) $(-2-2i)^4$.
- Sol: a) 16₀; b) 8₉₀; c) 10₁₂₀; d) 64₁₈₀ Sol: 1_{315°}
- 20. Calcular (i^4+i^5)/ $\sqrt{2}$ i. Escribir el resultado en forma polar. 21. a) Si una raíz cúbica de un número es 2i, calcular las otras dos raíces y ese número.
- b) Calcular (cos10°+isen10°)8 Sol:a) $2_{210^{\circ}}$, $2_{330^{\circ}}$; $-8i=8_{270^{\circ}}$; b) $1_{80^{\circ}}$ 22. Hallar las raíces cúbicas de los complejos: a) 2+2i; b) 1+ $\sqrt{3}$; c) -2+2 $\sqrt{3}$ i.
 - Sol: a) $\sqrt{2}_{15^\circ}$, $\sqrt{2}_{135^\circ}$, $\sqrt{2}_{255^\circ}$; b) $\sqrt[6]{2}$ $20_{^\circ+120^\circ k}$ k=0,1,2,3,4,5; c) $\sqrt[3]{2}_{40^\circ+120^\circ k}$ k=0,1,2
- 23. Calcular: $z = \sqrt[3]{\frac{8}{2-2i}}$

Sol: $\sqrt{2}_{15^{\circ}+120^{\circ}k}$ k=0,1,2

24. Hallar las raíces cúbicas de a) -1 y b) -i.

- Sol: a) 1_{60°}, 1_{180°}, 1_{300°}; b) 1_{90°}, 1_{210°}, 1_{330°}
- 25. Calcular las tres raíces de $\sqrt[3]{\frac{3+3i}{-3+3i}}$ en foma polar:

Sol: 190°; 1210°; 1330°

- 26. a) Calcular: i¹⁴, i¹⁸, i³³
 - b) Si $z_1 = 2-2i$; $z_2 = 1+3i$; $y z_3 = 2i$. Hallar: $2z_1 z_2 + 2z_3$; $z_1 \cdot (z_2 z_3)$; $(z_1)^2$.
 - c) Hallar: (1+2i)3
 - d) Hallar x para que se verifique que (x-i)/(2+i) = 1-i.
- Sol: a) -1, -1, i; b) 3-3i, 4, -8i; c) -11-2i; d) x=3

27. Calcular $\sqrt[3]{-27i}$.

- Sol: 390°, 3210°, 3330°
- 28. Calcular las siguientes potencias: a) $[2(\cos 25 + i \sin 25)]^4$. b) $(\sqrt{3} \cos)^8$.
- Sol: a) 16_{100°}; b) 81_{240°} Sol: z=-1-2i; $|z| = \sqrt{5}$

29. Hallar el módulo de: 5.(i²+i⁻³)/(i²-3i). 30. Calcular (-2+2i)⁶⁴

Sol: $8^{32}_{8640^{\circ}} = 8^{32}$

31. Calcular el valor de (i3-i-3)/(2i) y hallar sus raíces cúbicas.

Sol: a) -1; b) 1_{60°}, 1_{180°}, 1_{300°}

32. a) Calcular el valor de la fracción (z3+z)/(z2+2) para z=1+i b) Dar el valor de la misma fracción para \bar{z} =1-i.

Sol: a) 1/2+i; b) 1/2-i

Complejos 1º Bachillerato
Departamento de Matemáticas
http://selectividad.intergranada.com

- 33. Calcular sin desarrollar los binomios y expresar el resultado en forma binómica:
 - a) (1+i)⁴
- b) $(1+\sqrt{3}i)^6$

- Sol: a) $4_{180^{\circ}}=-4$; b) $64_{0^{\circ}}=64$
- 34. Hallar el conjugado del opuesto de a) (1-2i)³; b) 25/(3+4i); c) ((2+i)/(1-2i))². sol: a) 11+2i; b) -3-4i; c) 1
- 35. Calcular el valor de $(z^2+z-1)/(z^2-2z)$ para z=1+i.

- Sol: -3/2 i
- 36. Hallar: a) $(1+i)^{20}$, b) $(2\sqrt{3} 2i)^{30}$, c) $(-\sqrt{3} i)^{12}$ y expresar el resultado en forma polar y binómica. Sol: a) $2^{10}_{180^{\circ}} = -2^{10}$; b) $4^{30}_{180^{\circ}} = -4^{30}$; c) $2^{12}_{0^{\circ}} = 4096$
- 37. Hallar z=(cos20°+isen20°)¹⁰, w=(cos50°-isen50°)³⁰ y expresar el resultado en forma binómica. Hallar z⁻¹ y el conjugado de w. Sol: z=(cos200°+isen200°); w=(cos300°+i sen300°)=1/2- √3 /2 i; z⁻¹=1_{160°}; w =1/2+ √3 /2 i
- 38. Hallar el módulo y el argumento de $\left(\frac{2+2i}{2-2i}\right)^2$

Sol: 1_{360°} = 1

39. Hallar las raíces quintas de: a) 1, b) -1, c) 1/32, d) 243i, e) -32i, f) $\sqrt{3}$ +i.

Sol: a) $1_{0^{\circ}+72^{\circ}k}$; b) $1_{36^{\circ}+72^{\circ}k}$; c) $(1/2)_{0^{\circ}+72^{\circ}k}$; d) $3_{18^{\circ}+72^{\circ}k}$; e) $2_{36^{\circ}+72^{\circ}k}$; f) $\sqrt[5]{2}_{6^{\circ}+72^{\circ}k}$ k=0,1,2,3,4

- 40. Hallar la raíz cuadrada de los complejos: a) 5+12i y b) 1/(3+4i.) sol: a) 3+2i; -3-2i; b) 2/5-1/5i; -2/5+1/5i
- 41. Calcular y representar los afijos de las raíces cúbicas de $\frac{2i^9 + i^{-7}}{3i}$. Expresar el resultado en forma binómica.

Incógnitas reales o complejas

- 1. ¿Cuánto debe valer x para que el número $(1+xi)^2$ sea imaginario puro?. Sol: $x=\pm 1$
- 2. Calcular los números x e y para que se verifique la igualdad: (3+xi)+(y+3i)=5+2i. sol: x=-1; y=2
- 3. Determinar el valor de x para que se verifique la igualdad: (x-i)/(1-i)=(2+i).
- 4. Calcular los números reales x e y para que se verifique (-4+xi)/(2-3i)=(y-2i). sol: x=-7; y=1
- 5. Determinar x para que el producto (3+2i)(6+xi) sea: a) un número real b) un número imaginario puro.

 Sol: a) x=-4; b) x=9
- 6. Determinar los números reales x e y para que se cumpla: $\frac{x+2i}{1-i} + yi = 1$. Sol:x=4; y=3
- 7. Calcular a para que el complejo z = (4+ai)/(1-i) sea: a) Imaginario puro. b) Real. sol: a) a=4; b) a=-4
- 8. Hallar el módulo y el argumento del número complejo: z=(x+i)/(x-i), x perteneciente a R.soi: |z|=1
- 9. Determinar x para que el módulo del complejo z=(x+i)/(1+i) sea $\sqrt{5}$.

Sol: $x = \pm 3$

- 10. Resolver: (4+xi)/(2+i) = y+2i.

 Sol: x=7, y=3
- 11. Hallar el valor de x para que la operación (2-xi)/(1-3i) tenga sólo parte real, sólo parte imaginaria y para que su representación esté en la bisectriz del primer y tercer cuadrante, es decir, la parte real e imaginaria sean iguales.
- 12. Hallar x para que el número (3-xi)(2+i) esté representado en la bisectriz del primer y tercer cuadrante.
- 13. Hallar x e y para que se cumpla: a) (x-i).(y+2i)=4x+i; b) (-4+xi)/(2+2i)=y+3i. Sol: a) x=2, y=3; b) x=8, y=1
- 14. Hallar x, para que la expresión: z = (4+xi)/(2+i) sea: a) real, b) imaginario puro. sol: a) x=2; b) x=-8
- <mark>15. Hallar k, para</mark> que |z-2| = 3, siendo z=k+3i.

Sol: k=2

- 16. Determinar el valor real de x de modo que el afijo del producto de los números complejos 3+xi y 4+2i sea un punto de la bisectriz del primer cuadrante.
- 17. Resolver el siguiente sistema: $\begin{cases} (1-i)x + iy = 0 \\ (2+i)x + 2y = 1 + 7i \end{cases}$ Sol: x=1+i; y=2i

- 18. Resolver las ecuaciones siguientes en el campo complejo. En todos los casos z es un número
 - complejo; despejar y calcular su valor:
- a) (2-2i)z=10-2i;
- b) $\frac{z}{3+i} = 2-i;$
- c) $\frac{z}{3+4i} + \frac{2z+5i}{1-2i} = 2+2i$ d) $\frac{z}{1-i} + \frac{2z-2i}{1-i} = 3-2i$
- Sol: a) 3+2i; b) 7-i; c) 4-3i; d) 1-2i
- 19. Despejar z y calcular su valor en las ecuaciones siguientes: a) [z/(1+i)]+(2-3i)=(4-4i);
 - b) (3+i)/z=(1+2i); c) (2+2i)z=(10+2i).

- Sol: a) 3+i; b) 1-i; c) 3-2i
- 20. Resolver los sistemas de ecuaciones siguientes, en los que α y β son números complejos:
- b) $\begin{cases} \alpha(1+i) + (1+i)\beta = 5 + 5i \\ (2+i)\alpha + i\beta = 2 + 2i \end{cases}$
- a) $\begin{cases} \alpha i + (2+i)\beta = -3 + 7i \\ (2-i)\alpha + (2+i)\beta = 5 + 3i \end{cases}$ c) $\begin{cases} (1+i)\alpha + (2+i)\beta = 9 + 2i \\ 2\alpha i\beta = 5 4i \end{cases}$

- Sol: a) α =3+i; β =2i; b) α =1-i; β =3+i; c) α =3-i; β =2-i
- 21. Calcular z en las ecuaciones siguientes: a) $\frac{z}{1-2i}+1-i=2+i$; b) $\frac{z}{2+i}+\frac{z-i}{2-i}=3-2i$ Sol: a) 5;b) 7/2-2i
- 22. Resolver el sistema (x e y son números complejos): $\begin{cases} (2+i)x + (1+i)y = 2+3i \\ (2-i)x iy = 0 \end{cases}$
- 23. Hallar el número complejo z que cumpla: [z/(2-i)]+[(2z-5)/(2-i)]=1+2i
- Sol: z=3+i

24. Hallar z tal que z³ sea igual al conjugado de z.

Sol: z=i, z=1, z=-1, z=0

25. Resolver la ecuación (1-i)z²-7=i.

Sol: z=2+i y z=-2-i

Problemas y método de Moivre

- 1. Si el producto de dos números complejos es -18 y dividiendo uno de ellos entre el otro, obtenemos de resultado 2i. ¿Cuánto valen el módulo y el argumento de cada uno?.
- 2. El cociente de dos números complejos es 1/2 y el dividendo es el cuadrado del divisor. Calcular sus módulos y sus argumentos. Sol: (1/2)_{0°}; (1/4)_{0°}
- 3. Aplicar un giro de 90° sobre el punto A(3,1). Determinar, utilizando el cálculo de números complejos, las coordenadas del punto que obtienes. Sol: a) (-1,3)
- La suma de dos números complejos conjugados es 6 y la suma de sus módulos 10. ¿De qué números complejos se trata?.
- 5. La resta de dos números complejos es 2+6i, y el cuadrado del segundo dividido por el primero es 2. Hallarlos. Sol: 4+2i, 6+8i; 4i, -2-2i
- 6. Hallar dos números complejos sabiendo que: su diferencia es real, su suma tiene de parte real 8 y su producto vale 11-16i. Sol: (3-2i); 2i
- El producto de dos números complejos es -27. Hallarlos sabiendo que uno de ellos es el cuadrado del otro.
- 8. La suma de dos números complejos es -5+5i; la parte real de uno de ellos es 1. Determinar dichos números sabiendo que su cociente es imaginario puro. Sol: (1+3i) y (-6+2i) ó (1+2i) y (-6+3i)
- La suma de dos complejos es 5-i y su producto es 8+i. Hallar los números. Sol: 3-2i, 2+i
- 10. La suma de dos complejos conjugados es 8 y la suma de sus módulos 10 ¿Cuáles son los números complejos?. Sol: (4+3i), (4-3i)
- 11. El producto de dos números complejos es -2 y el cubo de unos de ellos dividido por el otro es 1/2. Calcular módulos y argumentos. Sol: 1_{45°}, 2_{135°}; 1_{135°}, 2_{45°}; 1_{225°}, 2_{315°}; 1_{315°}, 2_{225°}

Complejos 1º Bachillerato
Departamento de Matemáticas
http://selectividad.intergranada.com

- 12. Hallar z tal que: a) el conjugado de z sea igual a -z. b) el conjugado de z sea igual a z-1. c) la suma del conjugado de z más z sea igual a 2. d) z menos el conjugado de z sea igual a 2i. Sol: a) z=ki; b) a+bi/a²+b²=1; c) 1+ki; d) k+i
- 13. El complejo de argumento 70° y módulo 8 es el producto de dos complejos, uno de ellos tiene de argumento 40° y módulo 2. Escribir en forma binómica el otro complejo. Sol: 830° = 4 $\sqrt{3}$ +41°
- 14. Determinar el número complejo sabiendo que si después de multiplicarlo por (1-i) se le suma al resultado (-3+5i) y se divide lo obtenido por 2+3i se vuelve al complejo de partida.

 Sol: 1+

 Figuras geométricas
- 15. Sabiendo que los puntos P, Q y R son los afijos de las raíces cúbicas de un número complejo, siendo las coordenadas polares de P 3_{30° . Hallar las coordenadas polares y cartesianas de Q y R y el número complejo.
- 16. Hallar las coordenadas de los vértices de un hexágono regular, de centro el origen sabiendo que uno de los vértices es el afijo del número complejo 2₁₁/2. sol: 2₁₅₀, 2₂₁₀, 2₂₇₀, 2₃₃₀, 2₃₀
- 17. Hallar las coordenadas de los vértices de un cuadrado (de centro el origen de coordenadas) sabiendo que uno de sus vértices es el afijo del número complejo 1₁₂₀. sol: 1_{30°}, 1_{210°}, 1_{300°}
- 18. Hallar las coordenadas polares y cartesianas de los vértices de un hexágono regular de radio 3 u, sabiendo que un vértice está situado en el eje OX.

 sol: 30, 360, 3120, 3180, 3240, 3300
- 19. Los afijos de las raíces de un complejo son vértices de un octógono regular inscrito en una circunferencia de radio 2 u; el argumento de una de las raíces es 45º. Hallar el número complejo y las restantes raíces.

 Sol: 256; 245, 290, 2135, 2180, 2225, 2270, 2315, 20
- 20. Hallar las coordenadas de los vértices de un cuadrado, inscrito en una circunferencia de centro el origen de coordenadas, sabiendo que uno de los vértices es el afijo del complejo 1+2i.

Método de Moivre

- 21. Expresa en función de $\cos \alpha$ y sen α y utilizando la fórmula de Moivre:
 - a) $\cos 2\alpha$ y $\sec 2\alpha$; b) $\cos 3\alpha$ y $\sec 3\alpha$. Sol: a) $\sec 2\alpha = 2 \sec \alpha \cos \alpha$; $\cos 2\alpha = \cos^2 \alpha \sec^2 \alpha$; b)
 - b) $\operatorname{sen3} \alpha = 3\cos^2 \alpha \operatorname{sen} \alpha \operatorname{sen}^3 \alpha$; $\cos 3 \alpha = \cos^3 \alpha \alpha 3\cos \alpha \operatorname{sen}^2 \alpha$
- 22. Encuentra las fórmulas para calcular sen 4α y $\cos 4\alpha$ en función de $\sin \alpha$ y $\cos \alpha$. Sol: $\sin 4\alpha = 4\sin \alpha \cos^3 \alpha 4\cos \alpha \sin^3 \alpha$; $\cos 4\alpha = \cos^4 \alpha + \sin^4 \alpha 6\cos^2 \alpha \sin^2 \alpha$
- 23. Hallar sen³5a y \cos^2 5a sabiendo que sen a = 1/2 y a pertenece al primer cuadrante. Sol: sen³5a=1/8; \cos^2 5a=3/4
- 24. Si sen x = 1/3 y $0 < x < \pi/2$. Hallar sen 6x y cos 6x.

Sol: sen6x=460 $\sqrt{2}$ /729; cos6x=-329/729

Área de Ciencias

http://selectividad.intergranada.com