Лабораторна робота №1

ТОЧКОВІ ОЦІНКИ ЧИСЛОВИХ ХАРАКТЕРИСТИК ВИПАДКОВИХ ВЕЛИЧИН. ДИСПЕРСІЙНА ТАБЛИЦЯ. ПОБУДОВА ДОВІРЧОГО ІНТЕРВАЛУ ДЛЯ МАТЕМАТИЧНОГО ОЧІКУВАННЯ У ВИПАДКУ ВІДОМОЇ ТА НЕВІДОМОЇ ДИСПЕРСІЙ

Мета роботи – навчитися розраховувати точкові та інтервальні оцінки числових характеристик випадкових величин.

Після виконання роботи студент повинен:

ЗНАТИ принципи побудови довірчих інтервалів; етапи алгоритму побудови довірчого інтервалу математичного очікування у випадку відомої дисперсії; співвідношення між довірчою ймовірністю і рівнем значущості; етапи алгоритму побудови довірчого інтервалу математичного очікування у випадку невідомої дисперсії.

УМІТИ будувати дисперсійну таблицю, обчислювати точкові оцінки, будувати довірчі інтервали числових характеристик випадкових величин, користуватися статистичними таблицями.

Завдання:

- 1. Побудувати дисперсійну таблицю.
- 2. Визначити точкові оцінки числових характеристик випадкових величин:
 - -математичного очікування;
 - -дисперсії (зміщену, незміщену);
 - -середньоквадратичного відхилення (зміщену, незміщену).
- 3. Знайти довірчий інтервал для математичного очікування у випадку відомої дисперсії.
- 4. Знайти довірчий інтервал для математичного очікування у випадку невідомої дисперсії.

Хід роботи:

1 Знайдемо оцінку математичного очікування \bar{x} , зміщену $\bar{\sigma}_x^2$ та незміщену $\hat{\sigma}_x^2$ оцінки дисперсії, зміщену $\bar{\sigma}_x$ та незміщену $\hat{\sigma}_x$ оцінки середньоквадратичного відхилення за формулами:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i},$$

$$\bar{\sigma}_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2},$$

$$\hat{\sigma}_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2},$$

$$\hat{\sigma}_{x} = \sqrt{\hat{\sigma}_{x}^{2}},$$

$$\bar{\sigma}_{x} = \sqrt{\bar{\sigma}_{x}^{2}}.$$

2 Побудуємо дисперсійну таблицю, яка має вигляд, наведений у табл. 1.1:

Таблиця 1.1 – Дисперсійна таблиця

		1 1	<u> </u>	
i	X_i	y_i	x_i^2	y_i^2
1				
2				
••				
n				
Сума	$\sum x_i$	$\sum y_i$	$\sum x_i^2$	$\sum y_i^2$
Середнє значення	\overline{x}	\overline{y}		

- 3 Для знаходження довірчого інтервалу математичного очікування у випадку відомої дисперсії виконаємо наступні дії:
- а) розрахуємо за допомогою дисперсійної таблиці оцінне значення математичного очікування \overline{x} за формулою

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- б) установимо довірчу ймовірність α або рівень значущості $q = 1 \alpha$;
- в) за таблицею нормального закону розподілу (додаток A) знайдемо всередині таблиці ймовірність $\frac{\alpha+1}{2}$, після чого ε_{α} буде визначатись за номерами рядка та стовпчика. Елемент першого стовпчика дає цілі та десяті дані ε_{α} , елемент першого рядка соті ε_{α} ;
 - г) запишемо довірчий інтервал:

$$\left(\bar{x} - \varepsilon_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + \varepsilon_{\alpha} \cdot \frac{\sigma}{\sqrt{n}} \right)$$

або

$$x \pm \varepsilon_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}$$
.

- 4 Для побудови довірчого інтервалу математичного очікування у випадку невідомої дисперсії виконаємо наступні дії:
- а) розрахуємо точкові оцінки основних характеристик випадкових величин за допомогою дисперсійної таблиці:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

$$\overline{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2;$$

- б) задамо α довірчу ймовірність або $q = 1 \alpha$ рівень значущості;
- в) для ймовірності α та (n-1) степені свободи за таблицею розподілу Стьюдента (додаток Б) знайдемо $t_{q,n-1}$. Перший стовпчик таблиці відповідає кількості ступенів свободи (n-1), перший рядок ймовірності q. На перетині (n-1) рядка та q стовпчика знаходимо шукане значення $t_{q,n-1}$;
 - г) запишемо довірчий інтервал:

$$\bar{x} \mp t_{q,n-1} \cdot \frac{\bar{\sigma}}{\sqrt{n-1}}$$
.

Приклад

Дана вибірка X = (1,0,-1,0,1,0). Знайти точкову оцінку математичного очікування, a також зміщену i незміщену оцінки дисперсії середньоквадратичного відхилення. Побудувати довірчий інтервал ймовірністю 95% при $\sigma = 1$ і довірчий інтервал у випадку невідомої дисперсії з ймовірністю 95%. Порівняти побудовані довірчі інтервали.

Розв'язання:

1. Зведемо вихідні дані до дисперсійної таблиці та виконаємо відповідні обчислення (табл. 1.2).

n	χ_i	x_i^2
1	1	1
2	0	0
3	-1	1
4	0	0
5	1	1
6	0	0
Σ	1	3

Таблиця 1.2 – Дисперсійна таблиця до прикладу 1

2. За даними, одержаними з табл. 1.2, розрахуємо:

-математичне очікування \bar{x} :

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{6} \cdot 1 = \frac{1}{6};$$

-зміщену та незміщену оцінки дисперсії

$$\bar{\sigma}_{x}^{2} = \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} \right) - \frac{1}{n^{2}} \left(\sum_{i=1}^{n} x_{i} \right)^{2} = \frac{1}{6} \cdot 3 - \frac{1}{6^{2}} \cdot 1^{2} = \frac{17}{36},$$

$$\hat{\sigma}_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} x_{i} \right)^{2} = \frac{1}{5} \cdot 3 - \frac{1}{6 \cdot 5} \cdot 1^{2} = \frac{17}{30},$$

-зміщену та незміщену оцінки середньоквадратичного відхилення

$$\bar{\sigma}_{x} = \sqrt{\sigma_{x}^{2}} = \sqrt{\frac{17}{36}} = \frac{\sqrt{17}}{6};$$

$$\hat{\sigma}_{x} = \sqrt{\sigma_{x}^{2}} = \sqrt{\frac{17}{30}}.$$

3, Знайдемо довірчий інтервал у випадку відомої дисперсії $\sigma=1$ з довірчою ймовірністю 95%. За таблицями нормального розподілу знайдемо всередині таблиці значення $\frac{0,95+1}{2}=0,975$ та проведемо перпендикуляри: горизонтальний перпендикуляр показує цілі та десяті значення $\varepsilon_{\alpha}=1.9$, а вертикальний — соті значення $\varepsilon_{\alpha}=0.06$. В результаті $\varepsilon_{\alpha}=1,90+0,06=1,96$. Тоді довірчий інтервал матиме вигляд

$$\left(\frac{1}{6} - 1.96 \frac{1}{\sqrt{6}}; \frac{1}{6} + 1.96 \frac{1}{\sqrt{6}}\right); (-0.63; 0.97).$$

4. Знайдемо довірчий інтервал для математичного очікування у випадку невідомої дисперсії з довірчою ймовірністю 95%.

Для рівня зі значущістю 5% та п'ятьма ступенями свободи за таблицею розподілу Стьюдента знаходимо $t_{ma\delta n} \left(0.05, 5\right)$. Перший стовпчик таблиці показує число ступенів свободи, перший рядок — рівень значущості. На перетині знаходимо табличне значення $t_{ma\delta n} \left(0.05, 5\right)$. Тоді довірчий інтервал матиме вигляд

$$\left(\frac{1}{6} - 2,015 \frac{\sqrt{17}/6}{\sqrt{6-1}}; \frac{1}{6} + 2,015 \frac{\sqrt{17}/6}{\sqrt{6-1}}\right); (-0,45; 0,78).$$

Вихідні дані для самостійного виконання лабораторної роботи №1 подані у додатку. Номер варіанта обирається за номером студента в журналі.

ДОДАТОК Вихідні дані для лабораторної роботи №1

Варіант 1										
X_i	5,4	7,6	2,3	5,9	11	12,6	10,4	4,9	2,4	1,6
Y_i	13,7	18	6,2	15,5	24,1	24,8	25	13	8,1	6,7
Варіант 2										
X_i	5,5	7,1	2,6	5,4	10	11,6	12,4	2,9	2,4	1,6
Yi	17,7	14	4,2	12,5	29,1	25,8	22	9	4,1	3,7
Варіант 3										
X_i	13,7	18	6,2	15,5	24,1	24,8	25	13	8,1	6,7
Yi	5,4	7,6	2,3	5,9	11	12,6	10,4	4,9	2,4	1,6
Варіант 4										
X_{i}	5,1	7,4	2,3	5,9	11	12,6	10,4	4,9	2,4	1,6
Yi	16,7	13	7,2	14,5	20,1	21,8	23	11	7,1	4,7
Варіант 5										
Xi	5,4	7,6	2,3	5,9	11	12,6	10,4	4,9	2,4	1,6
Yi	13,7	18	6,2	15,5	24,1	24,8	25	13	8,1	6,7
Варіант 6										
Xi	15,4	17,6	12,3	15,9	11	12,6	10,4	4,9	2,4	1,6
Yi	13,7	18	16,2	19,5	14,1	14,8	15	9	5,1	3,7
Варіант 7										
Xi	5,1	7,2	2,4	5,1	11,2	12,2	10,1	4,8	2,3	1,5
Yi	18,7	28	16,2	25,5	34,1	44,2	35	23	8,1	10,7
Варіант 8										
Xi	5,4	7,6	2,3	5,9	11	12,6	10,4	4,9	2,4	1,6
Yi	11,7	14	5,2	13,5	20,1	21,8	24	12	7,1	6,7
Варіант 9	,		1	1	,	ľ	,	ľ	ľ	
Xi	5,3	7,4	2,4	5,6	11,1	12,2	10,3	4,8	2,3	1,5
Yi	33,1	38	162	40,5	54,1	64,8	55	53	15,1	10,7
Варіант 10	,		1	1	,	ľ	,	ľ	ľ	
X_{i}	5,4	7,6	2,3	5,9	11	12,6	10,4	4,9	2,4	1,6
Yi	3,7	8	1,2	3,5	9,1	8,8	9,2	3	1,1	0,7
Варіант 11	ı	T	1	1	1		ı			
X_{i}	3,4	5,96	1,3	3,9	8	10,6	9,4	3,9	1,4	1
Yi	13,7	18	6,2	15,5	24,1	24,8	25	13	8,1	6,7
Варіант 12	1	T	1	1						
Xi	5,4	7,6	2,3	5,9	11	12,6	10,4	4,9	2,4	1,6
Yi	1,7	1,8	1,6	2,5	7,1	6,8	5	2	1,7	0,7
Варіант 13				1						
Xi	3,4	7,6	2,3	5,9	11	12,6	10,4	4,9	2,4	1,6
Yi	13,7	28	9,7	19,5	44,1	54,8	55	43	18,1	16,7
Варіант 14	Т	1	T	T				Г	Г	
Xi	2,4	7,8	2,1	5,8	11,2	12,5	10,3	4,8	2,3	1,5
Yi	13,7	38	16,2	35,5	54,1	64,8	55	23	15,1	10,7
Варіант 15	-	ı			ı	г	т			
X_i	0,4	0,6	0,3	0,9	1	1,6	1,4	0,6	0,3	0,6
Yi	13,7	18	6,2	15,5	24,1	24,8	25	13	8,1	16,7

Варіант 16										
Xi	5,2	7,6	2,4	5,9	11	12,6	10,6	4,9	2,4	1,6
Yi	13,7	17,8	6,2	15,5	24,1	24,9	25	13	8,1	6,7
Варіант 17	•	•	•	•	•		•	'		-
Xi	3,5	7,1	2,6	5,4	10	11,8	12,4	2,9	2,5	1,6
Yi	17,7	14,3	4,2	12,5	29,1	25,8	22	9	4,1	1,6 3,7
Варіант 18	· •	· .		· · · · · ·		· <u>,</u>		<u>'</u>	· <u>,</u>	·
Xi	11,7	18,3	6,2	15,5	24,1	23,8	25	13	8,1	9,7
Yi	5,4	7,6	2,3	5,9	11	12,6	10,4	4,6	2,4	9,7
Варіант 19										
Xi	6,1	7,4	2,3	5,9	11	11,6	10,4	4,9	2,4	1,6
Yi	16,7	13	7,2	14,5	20,1	21,8	23	11	7,1	1,6 8,7
Варіант 20										
X_i	9,4	7,6	2,3	5,9	11	12,6	10,4	5,9	2,4	1,6 6,7
Yi	13,7	18	6,2	15,5	21,1	24,8	25	13	8,1	6,7
Варіант 21										
Xi	8,4	17,6	12,3	15,9	10,5	12,6	10,4	4,9	2,4 5,1	1,6 3,7
Yi	13,7	18	16,2	19,5	14,1	14,8	15	9	5,1	3,7
Варіант 22										
X_{i}	7,1	7,2	2,4	5,1	11,2	12,2	10,1	4,8	2,3	1,5 10,7
Yi	18,7	28	16,2	25,5	34,1	44,2	35	23	8,1	10,7
Варіант23										
X_{i}	5,4	7,6	2,3	5,9	11	12,6	10,4	4,9	2,4	1,6
Yi	11,7	14	5,2	13,5	20,1	21,8	24	12	7,1	6,7
Варіант 24										
Xi	5,3	7,4	2,4	5,6	11,1	12,2	10,3	4,8	2,3	1,5 10,7
Yi	30,1	38,1	16,2	40,5	54,1	64,8	55	53	15,1	10,7
Варіант 25										
Xi	5,4	7,6	2,3	5,9	11	12,6	10,4	4,9	2,4	2,6
Yi	3,7	8	1,2	5,5	9,1	8,8	9,2	3,6	1,1	0,7
Варіант 26			1	<u> </u>		ľ		Ţ	ľ	
Xi	4,4	5,96	1,3	3,9	8	15,6	9,4	3,9	1,4	1,8
Yi	23,7	18	6,2	15,5	24,1	24,8	25	13	8,1	6,7
Варіант 27	1	1	T	Т				т	Г	
Xi	5,4	7,6	6,3	5,9	11	12,6	10,4	4,9	2,4	1,6
Yi	1,7	1,8	1,6	2,5	7,1	6,8	5,2	2,1	1,7	0,7
Варіант 28			T					T		
Xi	3,4	7,6	7,3	5,9	11	12,6	10,4	4,9	2,4	1,6
Yi	15,7	28	9,7	19,5	44,1	54,8	55	43	17,1	16,7
Варіант 29	. 1					1	1	1		
Xi	6,4	7,8	2,1	3,8	11,2	12,5	10,3	4,8	2,3	1,5
Yi	13,7	38	16,2	35,5	54,1	64,8	55	23	12,1	10,7
Варіант 30	1					Г				
Xi	1,4	0,6	0,3	0,9	1	1,6	1,4	0,6	0,3	0,6
Yi	13,7	18	6,2	15,5	14,1	24,8	15,6	13	8,1	16,7