

EJEMPLO STATIS Datos del ejemplo de Vinos de Abdi et al. (2012)

Advanced Review

STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling

Hervé Abdi, 1* Lynne J. Williams, 2 Domininique Valentin 3 and Mohammed Bennani-Dosse 4

Abdi, H., Williams, L. J., Valentin, D., & Bennani-Dosse, M. (2012). STATIS and DISTATIS: Optimum multitable principal component analysis and three way metric multidimensional scaling. *Wiley Interdisciplinary Reviews: Computational Statistics*, 4(2), 124–167. https://doi.org/10.1002/wics.198

Se seleccionan doce vinos elaborados de uvas *Sauvignon Blanc* procedentes de tres regiones vitivinícolas (cuatro vinos de cada región): Nueva Zelanda, Francia y Canadá. Luego se solicita a 10 asesores expertos evaluar estos vinos. Los evaluadores se les pidieron dos cosas, primero, que evaluaran los vinos con una calificación de 9 puntos, utilizando cuatro variables consideradas como estándar para la evaluación de vinos (Pis de gato, maracuyá, pimiento verde y mineral). Y segundo, si sentían la necesidad los evaluadores tenian la libertad de añadir variables propias (algunos evaluadores no eligen ninguna, algunos eligen una, dos o más variables)

TABLE 1 Raw Data (Tables Y_[1] through Y_[10])

				Asses	ssor 1					Asses	ssor2		- }			Asse	ssor3				As	sessor	4				Asse	essor 5		
		V1	V2	V3	٧4	V5	٧6	V1	V2	V3	٧4	٧7	٧8	V1	V2	٧3	V4	V9	V10	V1	V2	V3	٧4	٧8	V1	V2	٧3	V4	V1 1	V12
	NZ ₁	8	6	7	4	1	6	8	6	8	3	7	5	8	6	8	3	7	2	9	5	8	2	6	9	6	9	3	8	2
Vino Nueva	NZ ₂	7	5	8	1	2	8	6	5	6	3	7	7	8	7	7	2	8	2	8	7	7	3	5	7	7	7	1	9	2
Zelanda	NZ_3	6	5	6	5	3	4	6	6	6	5	8	7	8	7	7	6	9	1	8	8	9	2	7	7	7	7	1	7	2
20101100	NZ_4	9	6	8	4	3	5	8	6	8	4	6	6	8	2	8	3	9	3	8	8	9	4	7	8	9	7	5	6	1
	FR ₁	2	2	2	8	7	3	2	3	1	7	4	3	3	4	3	6	4	6	4	2	2	4	3	4	4	4	2	4	4
Vino	FR ₂	3	4	4	9	6	1	4	3	4	9	3	5	4	3	4	8	3	9	3	2	2	6	2	4	5	5	6	1	5
Francia	FR₃	5	3	5	4	8	3	3	3	2	7	4	4	5	4	5	2	3	6	4	4	4	6	4	6	5	7	2	3	1
	FR ₄	5	2	4	8	7	4	4	3	5	5	3	3	6	3	7	7	1	7	5	2	2	9	4	6	6	5	8	4	5
	CA ₁	8	6	8	4	4	7	8	6	9	5	5	6	8	5	9	1	5	2	7	5	6	3	2	8	6	8	2	5	4
Vino	CA_2	4	6	2	5	3	4	5	5	5	6	5	8	5	5	4	6	5	1	5	6	6	4	4	6	6	6	4	6	3
Canadá	CA ₃	8	4	8	1	3	3	8	4	8	3	7	7	8	3	7	3	5	4	7	3	6	1	6	7	4	8	4	5	1
	CA_4	5	3	6	4	4	2	5	3	7	4	8	5	5	4	4	5	4	3	5	2	2	6	6	5	5	5	5	6	1

K= 10 Asesores

J= <u>diferentes variables</u> en cada k tabla

I= mismos individuos 12 vinos (3 regiones, 4 por

cada región)

V1 Cat Pee

V2 Passion Fruit

V3 Green Pepper

/4 Mineral

V5 Smoky

V6 Citrus

V7 Tropical

V8 Leafy V9 Grassy

V10 Flinty

V11 Vegetal

V12 Hay

V13 Melon

V14 Grass

V15 Peach

4	Α	В	С	D	Е	F	G	Н	1	ı	K	L	М	N
1	Asesor	Var	NZ1	NZ2	NZ3	NZ4	FR1	FR2	FR3	FR4	CA1	CA2	CA3	CA4
2	AS1	V1 Cat Pe		7	6	9	2	3	5	5	8	4	8	5
3	AS1	V2_Passio	6	5	5	6	2	4	3	2	6	6	4	3
4	AS1	V3_Green	7	8	6	8	2	4	5	4	8	2	8	6
5	AS1	V4_Miner	4	1	5	4	8	9	4	8	4	5	1	4
6	AS1	V5_Smoky	1	2	3	3	7	6	8	7	4	3	3	4
7	AS1	V6_Citrus	6	8	4	5	3	1	3	4	7	4	3	2
8	AS2	V1_Cat Pe	8	6	6	8	2	4	3	4	8	5	8	5
9	AS2	V2_Passio	6	5	6	6	3	3	3	3	6	5	4	3
10	AS2	V3_Green	8	6	6	8	1	4	2	5	9	5	8	7
11	AS2	V4_Miner	3	3	5	4	7	9	7	5	5	6	3	4
12	AS2	V7_Tropic	7	7	8	6	4	3	4	3	5	5	7	8
13	AS2	V8_Leafy	5	7	7	6	3	5	4	3	6	8	7	5
14	AS3	V1_Cat Pe	8	8	8	8	3	4	5	6	8	5	8	5
15	AS3	V2_Passio	6	7	7	2	4	3	4	3	5	5	3	4
16	AS3	V3_Green	8	7	7	8	3	4	5	7	9	4	7	4
17	AS3	V4_Miner	3	2	6	3	6	8	2	7	1	6	3	5
18	AS3	V9_Grassy	7	8	9	9	4	3	3	1	5	5	5	4
19	AS3	V10_Flinty	2	2	1	3	6	9	6	7	2	1	4	3
20	AS4	V1_Cat Pe	9	8	8	8	4	3	4	5	7	5	7	5

Para los análisis colocamos en las columnas los individuos (mismos para todas las k-tablas)

Ordenamos los datos según la variable que forma la tercera dimensión-vía, en este caso es Asesores

Trabajaremos con la librería ade4.

Para importar los datos, utilizamos el siguiente código en R:

Para estandarizar y formar las k-tablas se utiliza el siguiente código:

Estandarizamos los datos:

1.Aplicamos un PCA normalizado
a las columnas de la 3 a la 14 (las
que tienen los datos)

2.Utilizamos la variable
ASESORES para identificar las Ktablas.

3. Aplicar escalamiento TOTAL o PARTIAL de Bouroche (1975)

```
#---- Aplica componentes principales, normaliza las variables.
wpca = withinpca(wine[,c(3:14)], asesores,scaling = "total", scannf = F)
#---- Abre los objetos en K tablas para poder hacer el STATIS.
ktab1 = ktab.within(wpca,colnames = wine$Var)
```


Procesos de Estandarización de Bouroche (1975):

<u>Parcial:</u> Primero realiza una estandarización por variables (centra y normaliza). Segundo a esa matriz normalizada, le aplica una estandarización (centra y normaliza) cada k-tabla, de tal forma que cada tabla tendrá media 0 y varianza 1.

<u>Total</u>: Primero realiza una estandarización por variables (centra y normaliza). Segundo a esa matriz normalizada, le aplica un centrado a cada k-tabla, luego a esta nueva matriz centrada la normaliza (divide para la desviación estándar columna de la tabla total), de tal forma que cada k-tabla tendrá media 0 y la varianza total será igual a 1.

statis1 = statis(ktab1, scannf = F) #Aplicar el statis

No especificamos la cantidad de ejes a retener...es a su elección

corrplot(statis1\$RV)

Gráfico de correlaciones

coeficientes RV

los 10 asesores

Interestructura, indica las ktablas que presentan estructuras similares (opiniones similares)

K-tablas que más aportan con

la matriz consenso (cos2 altos)

información para construir la matriz

Interstructure Similares – altos coeficientes RV

Se grafican los pesos y el cos² de cada k-tabla

Tables Weights

Puntuaciones similares

Components (separate analyses)Opuestasd = 0.4

Coeficientes de correlación altos, indican estructura similar entre la opinión de los Asesores, esto se ve reflejado en el gráfico de la Inter-estructura

	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10
AS1	1.0000000	0.7621837	0.7233690	0.5698505	0.3196213	0.6566314	0.5451215	0.4587821	0.6727076	0.8063799
AS2	0.7621837	1.0000000	0.5150242	0.3853480	0.2312591	0.4428257	0.4321389	0.4226073	0.6080369	0.6390418
AS3	0.7233690	0.5150242	1.0000000	0.6636754	0.6048818	0.6798981	0.6646965	0.7218333	0.7513215	0.6671891
AS4	0.5698505	0.3853480	0.6636754	1.0000000	0.3612642	0.4920976	0.4587143	0.4862200	0.5066833	0.6726889
AS5	0.3196213	0.2312591	0.6048818	0.3612642	1.0000000	0.4431497	0.5444689	0.7184164	0.5483896	0.1951651
AS6	0.6566314	0.4428257	0.6798981	0.4920976	0.4431497	1.0000000	0.7310576	0.4400904	0.5520014	0.5230607
AS7	0.5451215	0.4321389	0.6646965	0.4587143	0.5444689	0.7310576	1.0000000	0.6963468	0.5782340	0.4215883
AS8	0.4587821	0.4226073	0.7218333	0.4862200	0.7184164	0.4400904	0.6963468	1.0000000	0.6859440	0.3442326
AS9	0.6727076	0.6080369	0.7513215	0.5066833	0.5483896	0.5520014	0.5782340	0.6859440	1.0000000	0.4983218
AS10	0.8063799	0.6390418	0.6671891	0.6726889	0.1951651	0.5230607	0.4215883	0.3442326	0.4983218	1.0000000

Coseno cuadrado

statis1\$cos2)

AS	cos2
AS1	0.8444117
AS2	0.6695396
AS3	0.9034202
AS4	0.7010952
AS5	0.6078350
AS6	0.7609272
AS7	0.7836120
AS8	0.7658789
AS9	0.8304622
AS10	0.7506780

Valores altos de Cos2, indican que el compromiso representa de mejor manera la opinión de esos Asesores (ktablas)

Pesos de las tablas

statis1\$RV.tabw

Asesor	Peso	
Asesor 1	0.3457081	Valores altos
Asesor 2	0.2865465	de pesos,
Asesor 3	0.3704914	indican que esas k-tablas
Asesor 4	0.2943041	aportan
Asesor 5	0.2572661	mayor información
Asesor 6	0.3153251	para contruir
Asesor 7	0.3200585	el compromiso
Asesor 8	0.3135103	
Asesor 9	0.3388892	ı
Asesor 10	0.3054677	

Interestructura: Valores propios

la primera componente principal explica el 60.2%, indicando una estructura similar entre las K-tablas (opiniones de los diferentes asesores).

Valores propios para la inter-estructura

statis1\$RV.eig

RVEig	Porc.Var	Porc.Var.Acum
6.0215557	0.6021556	0.6021556
1.3365891	0.1336589	0.7358145
0.6874537	0.0687454	0.8045599
0.6469985	0.0646999	0.8692597
0.3571411	0.0357141	0.9049738
0.3134076	0.0313408	0.9363146
0.2483262	0.0248326	0.9611472
0.1525745	0.0152574	0.9764046
0.1272438	0.0127244	0.9891290
0.1087098	0.0108710	1.0000000

En la interestructura los 2 primeros componentes explican un 73,58% de la varianza

Valores propios para el compromiso

statis1\$C.eig

CEig	Porc.Var	Porc.Var.Acum
2.2811198	0.5241446	0.5241446
0.7097760	0.1630889	0.6872334
0.4032558	0.0926581	0.7798916
0.2500076	0.0574455	0.8373371
0.1864172	0.0428340	0.8801711
0.1670185	0.0383767	0.9185478
0.1042215	0.0239475	0.9424953
0.0923323	0.0212157	0.9637110
0.0629073	0.0144545	0.9781655
0.0387673	0.0089078	0.9870733
0.0340663	0.0078276	0.9949008
0.0221920	0.0050992	1.0000000

En el compromiso los 2 primeros componentes explican un 68,72% de varianza

Intra-estructura, proyecta la información de cada k-tabla sobre la información del compromiso

Para la interpretación, nos basamos en el compromiso

Asesor 1: El vino Francés obtuvo puntuaciones por encima del valor promedio en Mineral y Smoky y por debajo del valor promedio en Passion Fruit y Citrus.

Los vinos de Nueva Zelanda y los 3 de Canadá (1, 3, y 4) obtuvieron puntuaciones por encima del valor promedio en Cat Pee y Green Pepper

El vino Canadá 2 obtuvo puntuaciones alrededor del valor promedio.

Este análisis se debe realizar para cada Asesor (k-tabla)

