

Algorithmen und Datenstrukturen

- Sortieralgorithmen -

Prof. Dr. Klaus Volbert

Wintersemester 2018/19 Regensburg, 22. Oktober 2018

Überblick Sortieralgorithmen

- Nichts ist besser verstanden als das Sortieren...
- Einfache Sortieralgorithmen
 - Sortieren durch Einfügen (Insertion Sort)
 - Sortieren durch Vertauschen (Bubble Sort)
 - Sortieren durch Auswählen (Selection Sort)

- Fortgeschrittene Sortieralgorithmen
 - Sortieren durch Divide & Conquer (Quicksort)
 - Sortieren durch Mischen (Merge Sort)
 - Sortieren durch Bäume (Heap Sort)
- Spezielle Sortieralgorithmen
 - Sortieren durch Zählen (Count Sort)
 - Sortieren durch Abbilden (Map Sort)
- Untere Schranke für vergleichsbasierte Sortieralgorithmen

Quicksort (C.A.R. Hoare, 1962)

```
void PreparePartition(int a[], int f, int l, int &p)
                                           void swap(int &a,int &b)
   // Pivot-Element
   int pivot = a[f]; p = f-1;
                                               int h=b;
   for (int i = f; i <= l; i++)</pre>
                                               b=a;
                                               a=h;
       if (a[i] <= pivot)</pre>
           p++; swap(a[i],a[p]);
                              void Quicksort(int a[], int f, int l)
   // Pivot an die
                                 int part;
   // richtige Stelle
                                 if (f<1) {
   swap(a[f],a[p]);
                                    PreparePartition(a,f,l,part);
                                    Quicksort(a,f,part-1);
                                    Quicksort(a,part+1,1);
  Divide & Conquer
  Gruppierung nach
   Pivot- bzw. Split-Element
```


Beispiel Quicksort I

34	45	12	34	23	18	38	17	43	7
34	45	12	34	23	18	38	17	43	7
34	12	45	34	23	18	38	17	43	7
34	12	34	45	23	18	38	17	43	7
34	12	34	23	45	18	38	17	43	7
34	12	34	23	18	45	38	17	43	7
34	12	34	23	18	45	38	17	43	7
34	12	34	23	18	17	38	45	43	7
34	12	34	23	18	17	38	45	43	7
34	12	34	23	18	17	7	45	43	38

Beispiel Quicksort II

7	12	34	23	18	17	<u>34</u>	45	43	38	
7	12	34	23	18	17	<u>34</u>	45	43	38	
7	12	34	23	18	17	<u>34</u>	45	43	38	
7	12	34	23	18	17	<u>34</u>	45	43	38	
7	12	34	23	18	17	<u>34</u>	45	43	38	
7	12	34	23	18	17	<u>34</u>	45	43	38	
7	12	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	12	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	12	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	12	34	23	18	17	<u>34</u>	45	43	38	

Beispiel Quicksort III

<u>7</u>	12	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	12	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	12	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	17	23	18	<u>34</u>	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	<i>17</i>	23	18	<u>34</u>	<u>34</u>	45	43	38	

Beispiel Quicksort IV

<u>7</u>	<u>12</u>	<i>17</i>	23	18	<u>34</u>	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	<i>17</i>	23	18	<u>34</u>	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	<u>17</u>	23	18	<u>34</u>	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	<u>17</u>	<i>23</i>	18	<u>34</u>	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	<u>17</u>	23	18	<u>34</u>	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	<u>17</u>	<u>18</u>	<u>23</u>	<u>34</u>	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	<u>17</u>	<u>18</u>	<u>23</u>	<u>34</u>	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	<u>17</u>	<u>18</u>	<u>23</u>	<u>34</u>	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	<u>17</u>	<u>18</u>	<u>23</u>	<u>34</u>	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	<u>17</u>	<u>18</u>	<u>23</u>	<u>34</u>	<u>34</u>	38	43	<u>45</u>	

Beispiel Quicksort V

7 1	2 1	7 18	23	34	34	<i>38</i>	43	45
-----	-----	------	----	----	----	-----------	----	----

Beispiel Quicksort (kompakt)

34	45	12	34	23	18	38	17	43	7	
7	12	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	12	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	34	23	18	17	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	17	23	18	<u>34</u>	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	<u>17</u>	23	18	<u>34</u>	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	<u>17</u>	<u>18</u>	<u>23</u>	<u>34</u>	<u>34</u>	45	43	38	
<u>7</u>	<u>12</u>	<u>17</u>	<u>18</u>	<u>23</u>	<u>34</u>	<u>34</u>	38	43	<u>45</u>	
<u>7</u>	<u>12</u>	<u>17</u>	<u>18</u>	<u>23</u>	<u>34</u>	<u>34</u>	<u>38</u>	43	<u>45</u>	
<u>7</u>	<u>12</u>	<u>17</u>	<u>18</u>	<u>23</u>	<u>34</u>	<u>34</u>	<u>38</u>	<u>43</u>	<u>45</u>	

Laufzeit Quicksort I

- · Anzahl der Schritte hängt von der Wahl des Pivot-Elements ab
- Best Case (Halbierung mit jedem Rekursionsaufruf)

$$T(n) = 2T\left(\frac{n}{2}\right) + n = \Theta(n\log n)$$

Worst Case (Je Rekursionsaufruf wird nur 1 Element bearbeitet)

$$T(n) = T(n-1) + T(0) + n = \Theta(n^2)$$

Average Case

$$T_i(n) = T(i-1) + T(n-i) + n$$
(Anzahl der Schritte bei Trennwert $i \in \{1, ..., n\}$)

- Annahme: Alle Positionen sind gleichwahrscheinlich, dann gilt:

$$T(n) = \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i) + n)$$

Laufzeit Quicksort II

Es gilt:

$$T(n) = \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i) + n)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(T(i-1) + T(n-i) \right) + \frac{1}{n} \sum_{i=1}^{n} n$$

$$= \frac{1}{n}(T(0) + T(n-1) + T(1) + T(n-2) + \dots + T(n-1) + T(0)) + \frac{n^2}{n}$$

$$= \frac{2}{n} \sum_{i=0}^{n-1} T(i) + n$$

Laufzeit Quicksort III

Weiter gilt:

$$n \cdot T(n) = 2 \sum_{i=0}^{n-1} T(i) + n^2$$

• Für n-1 gilt also:

$$(n-1) \cdot T(n-1) = 2 \sum_{i=0}^{n-2} T(i) + (n-1)^2$$

Differenz der unteren Gleichung von der oberen liefert:

$$n \cdot T(n) - (n-1) \cdot T(n-1) = 2 \sum_{i=0}^{n-1} T(i) + n^2 - \left(2 \sum_{i=0}^{n-2} T(i) + (n-1)^2\right)$$

Umformung ergibt:

$$2\sum_{i=0}^{n-1} T(i) + n^2 - \left(2\sum_{i=0}^{n-2} T(i) + (n-1)^2\right) = 2T(n-1) + 2n - 1$$

Laufzeit Quicksort IV

Insgesamt folgt:

$$n \cdot T(n) - (n-1) \cdot T(n-1) = 2T(n-1) + 2n - 1$$

• D.h.:

$$n \cdot T(n) - (n+1) \cdot T(n-1) = 2n-1$$

· Teilung durch n(n+1) liefert:

$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{2n-1}{n(n+1)}$$

• Substitution $\widehat{T}(n) = \frac{T(n)}{n+1}$ liefert:

$$\widehat{T}(n) = \widehat{T}(n-1) + \frac{2n-1}{n(n+1)} = \widehat{T}(n-2) + \frac{2(n-1)-1}{(n-1)((n-1)+1)} + \frac{2n-1}{n(n+1)}$$

... =
$$\hat{T}(1) + \sum_{i=2}^{n} \frac{2i-1}{i(i+1)} = \hat{T}(1) + \sum_{i=2}^{n} \frac{3}{i+1} - \sum_{i=2}^{n} \frac{1}{i}$$

Laufzeit Quicksort V

Erinnerung Harmonische Reihe:

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \Theta(\log n)$$

Damit folgt:

$$\widehat{T}(n) = \widehat{T}(1) + \sum_{i=2}^{n} \frac{3}{i+1} - \sum_{i=2}^{n} \frac{1}{i} = \widehat{T}(1) + \left(\frac{3}{3} - \frac{1}{2}\right) + \left(\frac{3}{4} - \frac{1}{3}\right) + \left(\frac{3}{5} - \frac{1}{4}\right) + \cdots$$

$$= \hat{T}(1) - \frac{1}{2} + 2\sum_{i=3}^{n} \frac{1}{i} + \frac{3}{n+1} = \Theta(\log n)$$

· Rücksubstitution $T(n) = \hat{T}(n) \cdot (n+1)$ liefert für die Laufzeit von Quicksort:

$$T(n) = \Theta(n \log n)$$

Anmerkungen Quicksort

- Quicksort gilt in der Praxis als
 - Schnell, berühmt und breit einsetzbar (Laufzeit ideal)
 - In vielen Programmiersprachen ist die Sortierung von Objekten über Standard-Bibliotheken realisiert und verfügbar
 - Bei Verwendung kann/muss eine individuelle Vergleichsfunktion implementiert werden (siehe z.B. Comparable in Java oder C#)
- Varianten für die Wahl des Pivot-Elements:
 - Erstes, letztes, i.tes Element des Feldes
 - Median aus erstes, letztes, i.tes Element des Feldes
 - Ein zufälliges Element des Feldes (Zufallszahl)
- Die letzten beiden Varianten sind in der Praxis auch gut bei fast sortierten Folgen

Sortieren durch Mischen (Merge Sort)

```
void Merge(int a[], int f, int l, int m) {
   int i, n = 1 - f + 1;
                               void MergeSort(int a[], int f, int l)
   int alf = f, all = m-1;
                                { if (f<1) {
   int a2f = m_{i} a21 = 1;
                                       int m = (f+1+1)/2;
   int *anew = new int[n];
                                       MergeSort (a, f, m-1);
                                       MergeSort(a, m, 1);
   for (i = 0; i < n; i++)
                                       Merge(a,f,l,m); }
       if (alf <= all) {</pre>
            if (a2f <= a21)
               if (a[a1f] <= a[a2f]) anew[i]=a[a1f++];
                else anew[i]=a[a2f++]; }
            else anew[i]=a[a1f++]; }
        else anew[i]=a[a2f++]; }
                                          Zwei sortierte Teilfolgen werden
   for (i=0;i<n;i++) a[f+i]=anew[i];</pre>
                                          unter Verwendung eines neuen
                                          Feldes zum Umspeichern zu
   delete [] anew; }
                                          einer sortierten Folge "gemischt"
```


Rekursionsbaum über die Aufrufe

Beispiel Merge Sort I

<u>34</u>	45	12	34	23	18	38	17	43		Teilen
<u>34</u>	45	12	34	23	18	38	17	43	7	Teilen
<u>34</u>	45	12	34	23	18	38	17	43	7	Teilen
<u>34</u>	45	12	34	23	18	38	17	43	7	Mischen
34	45	<u>12 </u>	34	23	18	38	17	43	7	Teilen
34	45	12	34	23	18	38	17	43	7	Teilen
34	45	12	23	34	18	38	17	43	7	Mischen
34	45	12	23	34	18	38	17	43	7	Mischen
12	23	34	34	45	18	38	17	43	7	Mischen
12	23	34	34	45	18	38	17	43		Teilen

Beispiel Merge Sort II

12	23	34	34	45	18	38	17	43	7	Teilen
12	23	34	34	45	18	38	17	43	7	Mischen
12	23	34	34	45	18	38	<u>17</u>	43	7	Teilen
12	23	34	34	45	18	38	17	<u>43</u>	7	Teilen
12	23	34	34	45	18	38	17	7	43	Mischen
12	23	34	34	45	18	38	7	17	43	Mischen
12	23	34	34	45	7	17	18	38	43	Mischen
7	12	17	18	23	34	34	38	43	45	Mischen

Laufzeit Merge Sort

Laufzeit (Best Case, Average Case, Worst Case):

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

- Lösen der Rekursionsgleichung durch
 - Iterationsmethode, oder
 - Master-Methode
- Liefert:

$$T(n) = \Theta(n \log n)$$

- · Wir sagen:
 - In jeder Rekursionsstufe werden alle Zahlen gemischt: $\Theta(n)$
 - Halbierung hat $\Theta(\log n)$ Rekursionsstufen, also folgt $\Theta(n \log n)$

Anmerkungen Merge Sort

- Merge Sort geht nach dem Divide-&-Conquer-Entwurfsprinzip vor
- Merge Sort eignet sich ideal zum externen Sortieren, wenn die Daten nicht in den Hauptspeicher passen
 - Teilfolgen können in Dateien vorliegen
 - Folge wird in einer weiteren Datei gemischt
 - Zeitaufwand ist auch hier linear
- Time-Space-Tradeoff (Mehr Platz kann Laufzeit verbessern):
 - Mischen mit Umspeichern (ex situ) hat lineare Komplexität
 - Mischen ohne Umspeichern (in situ) hat quadratische Komplexität
- · Merge Sort ist stabil bzgl. der Laufzeit (gleiche Laufzeit in allen Fällen)
- Viele Varianten/Implementierungsarten (z. B. Natural Merge Sort)

Stabilität von Sortieralgorithmen

- Ein Sortieralgorithmus ist stabil, wenn die relative Ordnung der Elemente mit gleichen Schlüsseln durch den Sortierprozess nicht verändert wird
- Beispiel: Sortierung nach Anfangsbuchstaben (1-26)

- Eingabe: Markus, Sven, Walter, Michael, Franz

13, 19, 23, 13, 6

- Ausgabe 1: Franz, Markus, Michael, Sven, Walter

6, 13, 13, 19, 23

Ausgabe 2: Franz, Michael, Markus, Sven, Walter

6, 13, 13, 19, 23

- · Welche der Ausgaben kommt von einem stabilen Sortieralgorithmus?
 - Ausgabe 1: Markus steht weiterhin vor Michael
- · Welche Sortieralgorithmen sind stabil?

Einfache: Insertion Sort, Bubble Sort

Fortgeschrittene: Merge Sort