**Tutorial 2 - Analysis of electrical power architecture for a typical 130-150 PAX aircraft** 



The AC voltage at the P.O.R (Point Of Regulation) is 230 V.

#### 2 types of loads:

- non-essential electrical loads
- essential electrical loads => supplied even in the event of failure

|                | Taxi                  |                  | Cruise          |                 | Landing              |                 |
|----------------|-----------------------|------------------|-----------------|-----------------|----------------------|-----------------|
|                | Non-essential         | essential        | Non-essential   | essential       | Non-essential        | essential       |
| Environment    | 105 kW                | 5 kW             | 105 kW          | 5 kW            | 10 kW                | 5 kW            |
| Conditioning   | 230 VAC               | 28 VDC           | 230 VAC         | 28 VDC          | 230 VAC              | 28 VDC          |
| System (ECS)   | CF = 400 Hz           |                  | CF = 400 Hz     |                 | CF = 400 Hz          |                 |
|                | $\cos \varphi = 0.8$  |                  | cos φ = 0,8     |                 | $\cos \varphi = 0.8$ |                 |
| Ice Protection | 5 kW                  | 5 kW             | 40 kW           | 5 kW            | 5 kW                 | 5 kW            |
| System (IPS)   | 270 VDC               | 28 VDC           | 270 VDC         | 28 VDC          | 270 VDC              | 28 VDC          |
| Navigation &   |                       | 5 kW             |                 | 5 kW            |                      | 5 kW            |
| communication  |                       | 28 VDC           |                 | 28 VDC          |                      | 28 VDC          |
| Cabin          | 2 kW                  |                  | 20 kW           |                 | 2 kW                 |                 |
| equipment      | 230 VAC               |                  | 230 VAC         |                 | 230 VAC              |                 |
|                | CF = 400 Hz           |                  | CF = 400 Hz     |                 | CF = 400 Hz          |                 |
|                | $\cos \varphi = 0.9$  |                  | cos φ = 0,9     |                 | cos φ = 0,9          |                 |
| APU starter    | 0 kW                  | 10 kW            | 0 kW            | 0 kW            | 0 kW                 | 0 kW            |
|                |                       | 28 VDC           |                 |                 |                      |                 |
| Actuation      | 5 kW                  | 10 kW            | 20 kW           | 75 kW           | 10 kW                | 30 kW           |
| system         | 230 VAC               | 230 VAC          | 230 VAC         | 230 VAC         | 230 VAC              | 230 VAC         |
|                | VF = 400→800 Hz       | VF = 400 →800 Hz | VF = 400→800 Hz | VF = 400→800 Hz | VF = 400→800 Hz      | VF = 400→800 Hz |
|                | $\cos \varphi = 0.95$ | cos φ = 0,95     | cos φ = 0,95    | cos φ = 0,95    | cos φ = 0,95         | cos φ = 0,95    |
| Landing gear   | 0 kW                  | 5 kW             | 0 kW            | 0 kW            | 0 kW                 | 30 kW           |
|                |                       | 230 VAC VF =     |                 |                 |                      | 230 VAC VF =    |
|                |                       | 400→800 Hz       |                 |                 |                      | 400→800 Hz      |
|                |                       | cos φ = 0,95     |                 |                 |                      | cos φ = 0,95    |

CF : constant frequency VF : variable frequency

# Question 1

| Power types   | kW                   | kVAR                        | kVA                                      |
|---------------|----------------------|-----------------------------|------------------------------------------|
| 28 VDC loads  | 15 kW                | 0                           |                                          |
| 270 VDC loads | 40 kW                | 0                           |                                          |
| 230V CF loads | 20 KW @ cos φ = 0,9  | $Q = Ptan\phi = 9.7 kVAR$   |                                          |
|               | 105 KW @ cos φ = 0,8 | $Q = Ptan \phi = 78.8 kVAR$ |                                          |
| 230V VF loads | 95 KW @ cos φ = 0,95 | 31.2                        |                                          |
| Total         | 275 kW               | 119.7 <u>kVAR</u>           | $S = \sqrt{P^2 + Q^2} = 300 \text{ kVA}$ |

Power from generators = 300/0.8 = 375 kVA

# Question 2

Essential loads

#### Croisière

| Power types   | kW                   | kVAR             | kVA                                     |
|---------------|----------------------|------------------|-----------------------------------------|
| 28 VDC loads  | 15 kW                | 0                |                                         |
| 230V VF loads | 75 KW @ cos φ = 0,95 | 24.6 kVA         |                                         |
| Total         | 90 kW                | 24.6 <u>kVAR</u> | $S = \sqrt{P^2 + Q^2} = 93 \text{ kVA}$ |

## Atterrissage

| Power types   | kW                   | kVAR             | kVA                                       |
|---------------|----------------------|------------------|-------------------------------------------|
| 28 VDC loads  | 15 kW                | 0                |                                           |
| 230V VF loads | 60 KW @ cos φ = 0,95 | 19.7 <u>kVAR</u> |                                           |
|               | 75                   | 19.7 <u>kVAR</u> | $S = \sqrt{P^2 + Q^2} = 77.5 \text{ kVA}$ |

## **Question 3** - Engine failure

#### Distribution de puissance dans le cas d'une panne moteur



## **Question 3** - Failure of one engine + AC bus

Distribution de puissance dans le cas de double panne moteur et de panne du bus AC



### **Battery pack:**

Apparent power during the cruise: 93 kVA

Apparent power during the landing: 77.5 kVA

=> Required energy : 93 \* 25 + 77.5 \* 5 = 2712.5 kVA.min

: 
$$93 * \frac{25}{60} + 77.5 * \frac{5}{60} = 45.2 \text{ kVAh}$$

=> Battery weight : 150 Kg

### **Question 4** - RAT



### **Question 5** - Current in feeder

| Power types   | kW                   | kvar                        | kVA                                                             |
|---------------|----------------------|-----------------------------|-----------------------------------------------------------------|
| 230V CF loads | 20 KW @ cos φ = 0,9  | $Q = Ptan \phi = 9.7 kVAR$  |                                                                 |
|               | 105 KW @ cos φ = 0,8 | $Q = Ptan \phi = 78.8 kVAR$ |                                                                 |
| 230V VF loads | 20 KW @ cos φ = 0,95 | $Q = Ptan\phi = 6.6 kVAR$   |                                                                 |
| Total         | 145                  | 95.1                        | $S_{POR} = \sqrt{P_{POR}^2 + Q_{POR}^2}$ $= 173.4 \text{ kVA}.$ |

$$I_g = \frac{S_{POR}}{3.V_p} = 173.4/3/230 = 251.3 \text{ A}$$