Familienname:	Bsp.	1	2	3	4	$\sum /40$
Vorname:						-
Matrikelnummer:						
Studienkennzahl(en):		Note:				

Prüfung zu Grundbegriffe der Topologie

Sommerersemester 2015, Roland Steinbauer 4. Termin, 1.4.2015

1. Konstruktion topologischer Räume

- (a) Produkt- und Boxtopologie. Seien (X_i, \mathcal{O}_i) , $i \in I$ eine beliebige Familie topologischer Räume. Wie sind die Produkttopologie und die Boxtopologie auf $X := \prod_{i \in I} X_i$ definiert ? (2 Punkte)
- (b) Initiale Topologie. Sei X eine Menge und (X_i, \mathcal{O}_i) , $i \in I$ eine beliebige Familie topologischer Räume und $f_i: X \to X_i$ eine Familie von Abbildungen. Wie ist die initiale Topologie auf X bzgl. der f_i und (X_i, \mathcal{O}_i) definiert? Was hat diese mit der Stetigkeit der f_i zu tun? (2 Punkte)
- (c) Produkttopologie als initiale Topologie. Wie kann die Produkttopologie auf X als initiale Topologie aufgefasst werden? (3 Punkte)
- (d) Produkttopologie vs. Boxtopologie. Begründe warum die Produkttopologie die "richtige" Topologie auf dem Produkt $X := \prod_{i \in I} X_i$ ist. Zitiere (genau) das entsprechende Resultat aus der Vorlesung. (3 Punkte)

2. Konvergenz

- (a) Definiere die Begriffe Netz und Konvergenz von Netzen in topologischen Räumen. (2 Punkte)
- (b) Die Abgeschlossenheit einer Menge A im topologischen Raum (X, \mathcal{O}) kann mittels konvergenter Netze charakterisiert werden. Formuliere das einschlägige Resultat exakt und beweise es. (4 Punkte)
- (c) Beweise: Besitzt ein Netz in einem topologischen Raum einen Häufungswert x, dann besitzt es eine gegen x konvergente Verfeinerung. (4 Punkte)

Bitte umblättern!

3. Vermischtes

- (a) Kompaktheit. In kompakten topologischen Räumen kann in vielen Situationen von lokalen auf globale Eigenschaften geschlossen werden. Erkläre die einschlägige Vorgehensweise und gib ein Beispiel. (5 Punkte)
- (b) Topologie via (Sub)-Basen. Beschreibe den Zugang zur Definition einer Topologie via der Vorgabe einer Basis (ohne Beweise). Vergleiche diesen Zugang mit dem Zugang über Subbasen; was ist der große technische Vorteil bei letzterem? (5 Punkte)

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib ein (möglichst explizites und einfaches) Gegenbeispiel an oder argumentiere für oder gegen die Richtigkeit der Aussage. (je 2 Punkte)

- (a) Ist \mathcal{B} eine Basis einer Topologie \mathcal{O} , dann kann \mathcal{B} auch nicht offene Mengen enthalten.
- (b) Ist ein topologischer Raum (X, \mathcal{O}) zusammenhängend, so sind X und \emptyset die einzigen offenen und abgeschlossenen Teilmengen von X.
- (c) Sei (X, \mathcal{O}) topologischer Raum und sei $A \subseteq X$. Ist A abgeschlossen, so ist A auch schon kompakt.
- (d) Ein topologischer Raum mit der Klumpentopologie ist nicht T_2 .
- (e) Das Umgebungssystem eines Punktes x in einem topologischen Raum ist auch eine Umgebungsbasis von x.

Prinfungsoles or beily (1. 1 ermin

(1) (a) Die Produkttop ist die von der Subbosis

5:= 15= 17: / 4:= X: fir elle bis of an ise I

Tie Dis beliebig

crampte Top. Die Box top ist die von du Bosis

() := { ITY: /7: co; belieby }

Cryenje Top.

(b) X - X:

Die inihole Top out X ist definict oh

ti. X; die durt die Seelbosis

T:= { f (0;) / ie I, O; & O; {

erzeugte Top. Sie ist (offen sichthich) die prohote Top. for die olle fi sletig sind.

(C) Die Produkt top ist die inihiste Top out X hijl der Projektiona $P_{0}: X= \underset{i \in \mathbb{I}}{\cancel{\parallel}} X_{i} \rightarrow X= (X_{i})_{i \in \mathbb{I}} \longmapsto X_{i} \in X_{i}.$

Denn noch (b) ist diese initiale Top erstagt von der

I = { P; (O;) / j = I, O, ED;].

Espill obe 7; (0;) = { x=(xi); &x | x; &0; }

oho sind die Jubhasis mengen noch (o) pener jene der Produktog.

(d) Die Produkt top ist penou die 10,0 de koordinalenvaien Konsepant, d.h. out $X = II \times i$ mit de Produkttop gilt für Nohe $(X_I)_{A \in A}$

 $(X_1 \rightarrow X \leftarrow) \xrightarrow{f_1 \in T} p_1(x_1) \xrightarrow{p_1(x_1)} p_2(x_1)$ $i_2(X_1, \mathcal{O}_L)$

Augusten ist obic Box topologie im Folle unendlarle

Produkte (III # k frest) on | Lile op =)

fair, denn sei x = (x,x,...) & X

line konstante Folge, down gill

in de Box top 1/2 x for.

(a) Ein Nel + out don TP(X,8) ist and Abb X: 1->X, vobei lanc perichtete Meyerst.

Ein Netz (X) in X honorgiel paper x & X, folls

If U Umpohing von x Floet Holdo: x & U.

Do PhLx hant som an armover von (Xx), ; diese mus

night andaly sen!

(b) Sa: A=(X,0), donnpill

A obj (=) + Nehe(X,)in Amil X, ->X

=> x ∈ A

Borrer, "=" Soi (xx) in A mit xx -> x. Indir og x & A

=> A offene Umgolg von x mit ole Eig, doss

Xx & A of the => Xx -> x Vi)

(c) Si X HY der Neho (x1) => FX & A ...

[Topping and (x1) => FVering (yn)

[Topping and (x1) => FVering (yn)

[Topping and (x1) => FVering (yn)

(c) Si X HY des Nehw (x1) =) of Veleiny (yp),

mit yn -) X

Bares: Si Vx Umjebysheisis von x und de hiniex

X == {(IV) | IeA, VeVx, XieV} mil

de Pelotion

de Relation (d., Vn) = (d, Vn): (=) d16d2, Vn=V2.

Donnid $(K_1 \leq)$ parishful Playe, denn (R), (T), (R) sind blancal (not) pilt wega: (d_1, V_1) , $(d_2, V_2) \in \mathcal{K}$ $\stackrel{\wedge}{=} \mathcal{F}(d_3) \quad \mathcal{F}$

and sout (da. V), (d., V2) = (d3, V3).

Nan definice dos Netz $y(A, V) := X_1$, d.h. penour $4: K \rightarrow \Lambda$, $(A, V) \mapsto \lambda$ and $y = X_0 \cdot \ell$. Down ist $y(A, V) \cdot V \cdot \ell \ell i y - V \cdot k$ and $y(A, V) \mapsto \lambda$, down so: $U \in U_X$, down worke $V \in V_X$: $V \in U$. So: $A \in \Lambda$ beliebely $\Rightarrow A_0 \in \Lambda$, $A_0 := A_1 := X_1 \in V_2 \Rightarrow (A_0, V_0) \in X$ and $P \mapsto (A, V) \ge (b_0, V_0)$ gill down $y(A, V) = X_1 \in V = V_2 = U$.

13 (a) Si X ain top. R. und (E) line Eipenschoft, Lie offene Mayon in X hoben lunan cend stabil ante (end.) Va ainipuy on ist, J.h.

U, V hober (E) => UoV hot (E).

Donn pilt auf la Rouman folgende Aussofe: (ilt (E) lokal (d.h. jedes x e X hat aine affence Umgaby mit (G)), donn pill (G) schon platool, d.h. X hat (E).

Busis: * * * So: Ux aire offenc (Impohy vo x mil (E).

" Espile X = UUx; X bp => Jin., in (not) mil

X = Ux, v... v Ux

Dosich(E) out endl. Verainipuja übe hospt (Indubis), hat X die Eipenschoft (E).

- BSJ: f:X-> IN ledus baschröndt (d.h. fxcX f UxeUx mil fly baschröndt, d.h. JNx: Ifasil = 17x +xeUx) and X kp => f baschröndt, d.h. JN: Ifasilen fxeX.
- (b) Awfeine Menge X konn eine Topologie erzeugh verden, indem mon ein peeignetes Mengensysken obs Bosis festlegt. Genous:

 Sei X eine Menge und B ei Teilsyslem du Polentmenge 2 x dus die beiden Eipenschoffen

 (B1) UB = X
 360

(e) JA, priviolevese not Daf.