Probabilistic Algorithms

Paul Cotofrei

information management institute

PA 2016

Outline

Deterministic search and optimization

Optimization for simple problems
Optimization for complex problems

Complexity of optimization problems

- Low complexity = easy problem; high complexity = hard problem
- Several factors influence the "degree of complexity" of an optimization problem
 - ▶ Dimension of domain **D**: low dimension -> low complexity
 - Knowledge about the structure of energy landscape (image of L(d)): more knowledge (i.e. gradient) -> less complexity
 - Shape of domain D: non-convex -> high complexity

Algorithms and Data for Optimization problems

Outline

Deterministic search and optimization Optimization for simple problems Optimization for complex problems

Direct Search

Hypothesis

- One dimensional continuous function
- ightharpoonup D = [a, b] (convex domain)
- L(·) can be evaluated in any point d

Direct Search methods: use only loss function values to locate the minimum point

- Exhaustive Search use a sequence of equally spaced points
- Step 1 Set *n* the number of intermediate points and calculate $\delta = (b-a)/n$
- Step 2 Find the point(s) $d_i = a + (i 1)\delta$, i = 0..n minimizing $L(d_i)$

Bracketing Methods

Supplementary knowledge: there is a single minima of L() in [a,b], i.e. L() is unimodal

Idea: find a lower and an upper bound of an interval containing the minimum

Step 1 Set n the number of intermediate points and calculate $\delta = (b-a)/n$

Step 2 Set
$$d_1 = a$$
, $d_2 = d_1 + \delta$, $d_3 = d_2 + \delta$

Step 3 If
$$L(d_1) \ge L(d_2) \le L(d_3)$$

THEN return (d_1, d_3)
ELSE $d_1 = d_2, d_2 = d_3, d_3 = d_2 + \delta$

Step 4 If
$$d_3 \le b$$

THEN goto Step 3
ELSE?

Region-Elimination Methods

- Improve the accuracy of the solution when the (unique) global minimum belongs to (a, b)
- Let be $d_1 < d_2$ two points in (a, b).

The fundamental rules for region-elimination methods are:

- ▶ **R1**: if $L(d_1) > L(d_2)$ then the minimum does not lie in (a, d_1)
- **R2**: if $L(d_1) < L(d_2)$ then the minimum does not lie in (d_2, b)
- ▶ **R3**: if $L(d_1) = L(d_2)$ then the minimum does not lie in (a, d_1) and (d_2, b)

A typical single-variable unimodal function with function values at two distinct points.

Bisection method

- ▶ Three points d_1 , d_m , d_2 are chosen in the interval (a, b)
- ▶ The search space (i.e. (a, b)) is divided in four regions
- The region-elimination rules are used to eliminate a portion of the search space based on function values at the three chosen points
- ▶ If all the points $\{a, d_1, d_m, d_2, b\}$ are equidistant, then the eliminated portion represents 50% of the search space
- \blacktriangleright End condition: the length of the search space is less than a given ϵ

Three points θ_1 , θ_m , and θ_2 used in the interval halving method.

An implementation

- Step 1 Set $\Delta = b a$, $d_m = (a + b)/2$ and calculate $L(d_m)$; Set the precision value ε
- Step 2 Set $d_1 = a + \Delta/4$, $d_2 = b \Delta/4$; Calculate $L(d_1)$ and $L(d_2)$
- Step 3 If $L(d_1) < L(d_m)$ THEN $b = d_m$, $d_m = d_1$; Goto Step 5
- Step 4 If $L(d_2) < L(d_m)$ THEN $a = d_m, d_m = d_2$; Goto Step 5 ELSE $a = d_1, b = d_2, d_m = (a + b)/2$;
- Step 5 $\Delta = b a$; If $\Delta \ge \varepsilon$ THEN Goto Step 2 ELSE return (a, b)

Remark: The best convergence rate is obtained if the length ratio between two successive search spaces (a, b) is $(1 + \sqrt{(5)})/2$ (known as golden number).

Successive Quadratic Estimation Method

- For uni-modal function, only the relative function values $L(d_i)$ were used to guide the search
- A new piece of knowledge: a quadratic polynomial is also an uni-modal function
- ▶ Idea:
 - use the magnitude and sign of function values to estimate the quadratic polynomial fitting these points
 - take the minimum of the fitted function as an estimate of the minimum of L()
 - To determine the quadratic polynomial, only three points are necessary

Mathematical background

- Consider three points $(d_1, L(d_1))$, $(d_2, L(d_2))$ and $(d_3, L(d_3))$ in \mathbb{R}^2 , with $d_1 < d_2 < d_3$
- \blacktriangleright The minimum point \bar{d} for the quadratic polynomial determined by these points is defined by

$$\bar{d} = \frac{d_1 + d_2}{2} - \frac{a_1}{2a_2}$$

where

$$a_1 = \frac{L(d_2) - L(d_1)}{d_2 - d_1}$$

and

$$a_2 = \frac{1}{d_3 - d_2} \left(\frac{L(d_3) - L(d_1)}{d_3 - d_1} - a_1 \right)$$

Powell's Algorithm

- Step 1 Set Δ the step size, $d_1 = (a+b)/2$ and $d_2 = d_1 + \Delta$
- Step 2 If $L(d_1) > L(d_2)$ THEN $d_3 = d_1 + 2\Delta$ ELSE $d_3 = d_1 \Delta$
- Step 3 Calculate $L_{min} = \min(L(d_1), L(d_2), L(d_3))$ and d_{min} the point d_i that corresponds to L_{min}
- Step 5 Use the points d_1 , d_2 and d_3 to calculate \bar{d}
- Step 6 If $|L_{min} L(\bar{d})| > \varepsilon$ THEN
 - Among the four points $(d_1, d_2, d_3, \overline{d})$ save the best point and two bracketing it, if possible; otherwise, save the best three points. Relabel them according to $d_1 < d_2 < d_3$ and goto Step 3

ELSE *d** is the best of current four points

Gradient-based Methods

- ▶ The loss function L() is continuous and defined on R^n , $n \ge 1$
- ▶ New information about *L*(): the gradient information is available
- ▶ The gradient $g(\mathbf{d})$ of $L(\mathbf{d})$ is the vector of first order derivatives

$$g(\mathbf{d}) = rac{\partial L(\mathbf{d})}{\partial \mathbf{d}} = egin{bmatrix} rac{\partial L(\mathbf{d})}{\partial d_1} \ rac{\partial L(\mathbf{d})}{\partial d_2} \ dots \ rac{\partial L(\mathbf{d})}{\partial d_n} \end{bmatrix}$$

where **d** =
$$[d_1, ..., d_n]^T$$

First-order condition for unconstrained local minimization problem: $g(\mathbf{d}^*) = 0$ (optimization problem type P2)

Gradient-based Methods

Hessian matrix H(d) of L(d) is the matrix of second order derivatives

$$\mathbf{H}(\mathbf{d}) = \frac{\partial^2 L(\mathbf{d})}{\partial \mathbf{d} \partial \mathbf{d}^T} = \begin{pmatrix} \frac{\partial^2 L(\mathbf{d})}{\partial d_1 \partial d_1} & \frac{\partial^2 L(\mathbf{d})}{\partial d_2 \partial d_1} & \cdots & \frac{\partial^2 L(\mathbf{d})}{\partial d_1 \partial d_n} \\ \frac{\partial^2 L(\mathbf{d})}{\partial d_2 \partial d_1} & \frac{\partial^2 L(\mathbf{d})}{\partial d_2 \partial d_2} & \cdots & \frac{\partial^2 L(\mathbf{d})}{\partial d_2 \partial d_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 L(\mathbf{d})}{\partial d_n \partial d_1} & \frac{\partial^2 L(\mathbf{d})}{\partial d_n \partial d_2} & \cdots & \frac{\partial^2 L(\mathbf{d})}{\partial d_n \partial d_n} \end{pmatrix}$$

Hessian matrix useful in characterizing the shape of L and to distinguish, among the zeros of gradient g(d), the minimum points, the maximum points and the inflexion points;

Gradient and Hessian in practice

- Calculate the gradient of
 - $L(t) = t \sin(2t + \pi)$
 - $L(\theta) = \frac{2}{3}t_1^3 4t_1t_2 + 2t_2^2 3t_1 + t_2 + 6$, where $\theta = (t_1, t_2)^T$
 - ▶ $L(\theta) = t_1^2 + 2t_2^2 + 3t_3^2 + 3t_1t_2 + 4t_1t_3 3t_2t_3$, where $\theta = (t_1, t_2, t_3)^T$
- Calculate the Hessian of
 - $L(\theta) = (t_1 2)^4 + (t_1 2t_2)^2$
 - $L(\theta) = t_1^2 + 2t_2^2 + 3t_3^2 + 3t_1t_2 + 4t_1t_3 3t_2t_3$

Steepest Descent Update

- ▶ Descend direction: a vector $\mathbf{v} \in R^n$ such that $g(\mathbf{d})^T \cdot \mathbf{v} < 0$
- ▶ If **v** descend direction, then $L(\mathbf{d} + \lambda \mathbf{v}) < L(\mathbf{d})$, for any $\lambda \in (0, u), u > 0$
- Steepest descent direction: $\mathbf{v} = -g(\mathbf{d})$
- ► Recursion: $\hat{\mathbf{d}}_{k+1} = \hat{\mathbf{d}}_k a_k g(\hat{\mathbf{d}}_k)$
- $a_k > 0$ is the step size
 - 1. a_k is constant;
 - 2. a_k is the minimum of the function $h(a) = L(\hat{\mathbf{d}}_k ag(\hat{\mathbf{d}}_k));$
 - 3. a_k is a predefined sequence depending only on the index k
- ▶ Stopping criteria: $||\hat{\mathbf{d}}_{k+1} \hat{\mathbf{d}}_k|| \le \varepsilon_1$, $||g(\hat{\mathbf{d}}_k)|| \le \varepsilon_2$ or reaching maximum number of iterations M

Cauchy's Steepest Descent Method

- Step 1 Choose M, ε_1 , ε_2 and $\hat{\mathbf{d}}_0$; Set k=0
- Step 2 Calculate $g(\hat{\mathbf{d}}_k)$; IF $||g(\hat{\mathbf{d}}_k)|| \le \varepsilon_1$ or $k \ge M$ return $\hat{\mathbf{d}}_k$;
- Step 3 Consider the new loss function $h(\alpha) = L(\hat{\mathbf{d}}_k \alpha g(\hat{\mathbf{d}}_k))$ defined on [0,b) and estimate the minimum $\alpha^* = a_k$ using any optimization method for univariate and unimodal functions
 - one stopping criterion for this subproblem is $|g(\hat{\mathbf{d}}_k \alpha^* g(\hat{\mathbf{d}}_k))g(\hat{\mathbf{d}}_k)| \leq \varepsilon_2$
- Step 4 Calculate $\hat{\mathbf{d}}_{k+1} = \hat{\mathbf{d}}_k a_k g(\hat{\mathbf{d}}_k)$.

 If $\frac{||\hat{\mathbf{d}}_{k+1} \hat{\mathbf{d}}_k||}{||\hat{\mathbf{d}}_k||} > \varepsilon_1$ THEN k = k+1; goto Step 2

 ELSE return $\hat{\mathbf{d}}_{k+1}$

Convergence issues

- ▶ To avoid the second optimisation problem (for linear function $h(\alpha)$, the step size a_k may be defined in advance.
- ▶ But a sequence of estimates $\hat{\mathbf{d}}_k$ such that $L(\hat{\mathbf{d}}_{k+1}) < L(\hat{\mathbf{d}}_k)$ is not guarantee to converge towards the minimum θ^*
- ► The steps a_k may be "too long" or "too shorts"

There exist specific conditions to prevent too long or too short steps.

Steepest Descent in multiple dimensions

- ▶ Long steps $(a_k = 1)$:
 - the vicinity of θ^* is reached very fast;
 - but then the estimates oscillate around the minimum;
- ▶ Small steps ($a_k = 0.001$)
 - ▶ long time to reach the vicinity of θ^*
 - ▶ may freeze near θ^*

Steepest Descent in multiple dimensions

- ▶ If the cost of calculating $g(\hat{\mathbf{d}}_k)$ is too expensive
 - 1. determine a direction of search from one local gradient calculation $(g(\hat{\mathbf{d}}_0))$
 - 2. search along this direction until a local minimum is found (i.e., until $L(\hat{\mathbf{d}}_{k+1}) > L(\hat{\mathbf{d}}_k)$)
 - 3. calculate a new local gradient (i.e. $g(\hat{\mathbf{d}}_k)$)
 - 4. search along these new direction a second local minimum
 - 5. repeat until the gradient is sufficiently close to zero

Newton-Raphson Method

Remark: Steepest descent method is sensitive to transformations and scaling.

Use Hessian matrix for scaling:

$$\hat{\theta}_{k+1} = \hat{\theta}_k - H(\hat{\theta}_k)^{-1}g(\hat{\theta}_k), k = 0, 1, 2, \dots$$

- If L quadratic, the algorithm converges in one step!
- Modifications to the basic algorithm need for nonlinear loss functions having H not positive definite at d away from d*
- Algorithm is transform invariant and unaffected by large scaling difference in the d elements.

Behavior of Steepest Descent and Newton-Raphson

Relative Convergence Rates

- ► Theoretical analysis based on convergence rates of iterates d̂_k where k is iteration counter
- Let d* represent optimal value of d
- For deterministic optimization, a standard rate result is:

$$\|\hat{\mathbf{d}}_{k+1} - \mathbf{d}^*\| = O(\|\hat{\mathbf{d}}_k - \mathbf{d}^*\|^c), c \ge 1$$

- Steepest descent: c = 1
- ▶ Newton-Raphson: c = 2
- Stochastic rate inherently slower in theory and practice

Outline

Deterministic search and optimization Optimization for simple problems Optimization for complex problems

Exact optimization for complex problems

- Complex problem
 - ▶ Constrained domain $\mathbf{D} \in R^n$
 - ▶ Discrete domain **D** ∈ Rⁿ
- Linear problem: $L(\mathbf{d}) = \sum_{i=1}^{n} c_i d_i + \vartheta = \mathbf{c}^T \mathbf{d} + \vartheta$, under the constraints $d_i \geq 0$ and $\mathbf{Ad} \leq \mathbf{b}$, with $\mathbf{A} \in R^{m \times n}$, $\mathbf{d} \in R^n$, $\mathbf{b} \in R^m$, $\mathbf{b} > 0$
- L() also called objective function; {d₁, ..., d_n} also called decision variables

Min
$$L(d_1, d_2) = 3d_1 - 4d_2 + 12$$
, under the constraints
$$\begin{cases}
6d_1 + d_2 & \leq 10 \\
-d_1 + 3d_2 & \leq 4 \\
-3d_1 - d_2 & \leq 9
\end{cases}$$

$$\mathbf{A}_{3\times 2} = \begin{pmatrix} 6 & 2 \\ -1 & 3 \\ -3 & -1 \end{pmatrix}, \mathbf{b} = (10, 4, 9)^T, \mathbf{c} = (3, -4), \vartheta = 12$$

- SIMPLEX algorithm (1945, Danzig)
- ► The constraints determine a multidimensional polytope (an *n* simplex). It can be proved mathematically that the optimal solution **d*** (if exists) is one of the vertex of the simplex.

Basic concepts and principles

- Standard form: min(c^Td) under the constraints
 - **Ad** = **b** and **d** > 0, where
 - ▶ $\mathbf{A} = M_{m \times (m+n)}, \mathbf{b} \in R^m, \mathbf{b} > 0, \mathbf{d} \in R^{m+n}$ and $rank(\mathbf{A}) = m$
- Consider m linearly independent columns of matrix \mathbf{A} . Denote \mathbf{B} the matrix formed by these columns (so $det(\mathbf{B}) \neq 0$), and \mathbf{N} the matrix formed by all other columns. Re-index the coordinates of \mathbf{d} in order to re-position the columns of \mathbf{A} such that $\mathbf{A} = [\mathbf{B}, \mathbf{N}]$. Denote \mathbf{d}_B and \mathbf{d}_N the corresponding sub-vectors $(\mathbf{d} = [\mathbf{d}_B, \mathbf{d}_N])$.
- Th. 1 If the linear problem has a finite optimal solution \mathbf{d}^* then \mathbf{d}^* belongs to the set of extreme points (the vertices) of the simplex Θ .
- Th. 2 Any extreme point of the simplex corresponds to a solution $\mathbf{d} = [\mathbf{B}^{-1}\mathbf{b}, \mathbf{0}]^T$ for a given matrix \mathbf{B} .
- Th. 3 If a vertex v_i of the simplex Θ is not the optimal solution, then there is at least a neighbor vertex v_i (connected with v_i by an edge) for which the objective function has a lower value.
- Th. 4 If **d** is an extreme point and the criterion $\mathbf{d}_N^T \mathbf{d}_B^T \mathbf{B}^{-1} \mathbf{N} \ge 0$ (denoted the *optimality criterion*) holds, then **d** is the optimal solution.

An overview of the SIMPLEX algorithm

The simplex algorithm idea: iterate between the extreme points (vertices) of the simplex Θ , each such point being determined by a particular squared sub-matrix of the constraints matrix, until one of them meets the optimality criterion.

- Step 1 Select an extreme point $\hat{\mathbf{d}}_0$ of the simplex (using Th. 2); k=0
- Step 2 Check the optimality criterion for $\hat{\mathbf{d}}_k$ (Th. 4). If holds, THEN return $\mathbf{d}^* = \hat{\mathbf{d}}_k$
- Step 3 Check criteria for the unbound/infeasible case. If hold, STOP
- Step 4 Select another extreme point $\hat{\mathbf{d}}_{new}$ (Th. 1), neighbor of $\hat{\mathbf{d}}_k$ and having a lower value for L() (Th. 3); Set k=k+1 and $\hat{\mathbf{d}}_k=\hat{\mathbf{d}}_{new}$. Goto Step 2.

Possible cases

Finite optimal solution

Infinite optimal solutions

No solution

Simplex algorithm

Step 0 (Initialization) Transform inequalities constraints in equalities constraints by introducing slack variables d_{n+j} , $j = 1 \dots m$.

$$\begin{array}{rcl} a_{11}d_1 + a_{12}d_2 + \cdots + a_{1n}d_n + d_{n+1} & = & b_1 \\ a_{21}d_1 + a_{22}d_2 + \cdots + a_{2n}d_n + d_{n+2} & = & b_2 \\ & \vdots & & & \vdots \\ a_{m1}d_1 + a_{m2}d_2 + \cdots + a_{mn}d_n + d_{n+m} & = & b_m \end{array}$$

Consider the index vector $\sigma(i) = i, i = 1...n + m$. Denote $d_1, ..., d_n$ the decision variables and $d_{n+1}, ..., d_{n+m}$ the basis variables.

Fill the simplex table

	d_1	 d_s	 d_n		
d_{n+1}	a ₁₁	 a_{1s}	 a_{1n}	<i>b</i> ₁	b_1/a_{1s}
÷	:	÷	÷	:	
d_{n+r}	a_{r1}	 a_{rs}	 a_{rn}	b _r	: b _r /a _{rs}
:	:	÷	:	:	:
d_{n+m}	a _{m1}	 a_{ms}	 a_{mn}	b_m	b _r /a _{ms}
	C ₁	 Cs	 Cn	ϑ	

Note: $\hat{\mathbf{d}}_0$ is defined by $\{d_1 = 0, ..., d_n = 0, d_{n+1} = b_1, ..., d_{n+m} = b_m\}$

Simplex algorithm (cont.)

Step 1 If $c_j \ge 0, \forall j = 1..n$ then STOP. $L(\mathbf{d}^*) = \vartheta$, where

$$\mathbf{d}_{\sigma(i)}^* = \left\{ \begin{array}{ll} 0 & \text{if } 1 \leq i \leq n \\ b_{i-n} & \text{if } n+1 \leq i \leq n+m \end{array} \right.$$

- Step 2 Select the *pivot column s* such that $c_s = min\{c_j | c_j < 0, 1 \le j \le n\}$
- Step 3 If $a_{is} \le 0, \forall i = 1..m$ then STOP (no finite solution)
- Step 4 Select the *pivot row r* such that $\frac{b_r}{a_{rs}} = min\left\{\frac{b_i}{a_{is}}|a_{is}>0, 1\leq i\leq m\right\}$

Note: Two extreme points $\hat{\mathbf{d}}_i$ and $\hat{\mathbf{d}}_j$ are neighbors if their sets of basic variables differs only in one coordinates

Step 5 Refresh the simplex tableau:

$$(a_{ij})_{new} = \begin{cases} a_{ij} - \frac{a_{is}a_{rj}}{a_{rs}}, & i \neq r, j \neq s \\ \frac{1}{a_{rs}}, & i = r, j = s \\ -\frac{a_{is}}{a_{rs}}, & i \neq r, j = s \\ \frac{a_{rj}}{a_{rs}}, & i = r, j \neq s \end{cases}$$

$$(b_i)_{new} = \begin{cases} b_i - \frac{b_r a_{is}}{a_{rs}}, & i \neq r \\ \frac{b_r}{a_{rs}}, & i = r \end{cases}$$

$$(c_j)_{new} = \begin{cases} c_j - \frac{c_s a_{rj}}{a_{rs}}, & j \neq s \\ -\frac{c_s}{a_{rs}}, & j = s \end{cases}$$

$$\vartheta_{new} = \vartheta + \frac{c_s b_r}{a_{rs}}$$

Simplex algorithm (cont.)

Step 6 Interchange $\sigma(s)$ with $\sigma(n+r)$ (the decision variable $d_{\sigma(s)}$ is exchanged with the basis variable $d_{\sigma(n+r)}$);

Goto Step 1

For a maximization problem, the changes are:

- ▶ The STOP condition becomes $c_i \le 0, \forall j$
- ▶ The pivot column s is given by $c_s = max\{c_i|c_i > 0\}$

Remark 1: For particular instances the algorithm may infinitely cycle, but several methods (as Blands' rule) were proposed to eliminate this behavior.

Remark 2: The worst-cas complexity of Simplex algorithm is exponential time, but in practice the most cases can be solved in a polynomial time.

Example

$$\operatorname{Min} L(x_1, x_2) = -x_1 - 2x_2, \\
\begin{cases}
x_1 & \leq 4 \\
x_1 + x_2 & \leq 6 \\
-x_1 + x_2 & \leq 1
\end{cases}$$

▶ Initial Simplex table and σ vector of index

	d ₁	d_2	b	b _i /a _{is}	
d_3	1	0	4		
d_4	1	1	6		$\sigma = (1, 2, 3, 4, 5)$
d ₃ d ₄ d ₅	-1	1	1		,
	-1	-2	0		

- ► Step 1: $\exists j = 1$ such that $c_j = -1 < 0$
- ▶ Step 2: s = 2;
- ▶ Step 3: $\exists i = 2$ such that $a_{is} = 1 > 0$
- ► Step 4: *r* = 3

	d ₁	d_2	b	b_i/a_{is}
d_3	1	0	4	∞
d₃ d₄	1	1	6	6
d_5	-1	1	1	1
	-1	$\overline{-2}$	0	

Step 5 and 6: New simplex table and σ vector (σ_2 and σ_5 were exchanged)

	d_1	d_5	b	b_i/a_{is}	
d_3	1	0	4		
d_4	2	-1	5		$\sigma = (1, 5, 3, 4, 2)$
d_2	-1	1	1		,
	-3	2	-2		

- ▶ Step 1: $\exists i = 1$ such that $c_1 = -3 < 0$
- Step 2: s = 1
- ▶ Step 3: $\exists i = 1$ such that $a_{is} = 1 > 0$
- ▶ Step 4: *r* = 2

	d_1	<i>d</i> ₅	b	b_i/a_{is}
d_3	1	0	4	4
d_4 d_2	2	-1	5	2.5
d_2	-1	1	1	∞
	-3	2	-2	

▶ Step 5 and 6: New simplex table and σ vector (σ_1 and σ_4 were exchanged):

	d_4	d_5		
d_3	-0.5	0.5	1.5	
d_1	0.5	-0.5	2.5	$\sigma = (4, 5, 3, 1, 2)$
d_2	0.5	0.5	3.5	
	1.5	0.5	-9.5	

▶ Step 1: $\forall j = 1...2, c_j > 0$; STOP; The optimal solution: $d_{\sigma_1} = d_4 = 0$, $d_{\sigma_2} = d_5 = 0, \ d_{\sigma_3} = d_3 = 1.5, \ d_{\sigma_4} = d_1 = 2.5, \ d_{\sigma_5} = d_2 = 3.5$

Integer optimization

- Constraint: all or some of d coordinates must take integer values (or values from a finite, discrete set).
- Special case: integer linear optimization problem
- ▶ Heuristic approach: solve the relaxed linear problem (without the constraint on integer); for all i = 1..n, if d_i^* is integer: ok; if not, take the rounded d_i^* . No guarantee to find the optimal solution!
- The Gomory algorithm
- Step 1 Solve the relaxed problem (with Simplex algorithm).
- Step 2 If some coordinates of **d*** are not integer, then add a new constraint such that
 - 1. The solution **d*** becomes non feasible
 - Each feasible integer solution of the integer linear problem fulfills the new constraint
- Step 3 Consider the enlarged problem $(m \leftarrow m+1)$ and return to Step 1

Gomory cup

- ▶ Consider a feasible solution $\mathbf{d} = [d_1, ..., d_n]$ (d_i integer, $\forall i = 1..n$) and the constraint $a_1d_1 + ... + a_nd_n = b$, with $a_i, b \in R$
- ▶ If $\lfloor x \rfloor$ is the smaller integer $\leq x$, then we can express a_i as $\lfloor a_i \rfloor + (a_i \lfloor a_i \rfloor) = \lfloor a_i \rfloor + f_i$, and b as $\lfloor b \rfloor + (b \lfloor b \rfloor) = \lfloor b \rfloor + f$.
- Therefore,

$$\sum_{i=1}^{n} a_i d_i = b \Leftrightarrow \sum_{i=1}^{n} (\lfloor a_i \rfloor + f_i) d_i = \lfloor b \rfloor + f \Leftrightarrow \sum_{i=1}^{n} f_i d_i - f = \lfloor b \rfloor - \sum_{i=1}^{n} \lfloor a_i \rfloor d_i$$

- ▶ In the last equality, the right-hand side is integer; consequently, $\sum_{i=1}^{n} f_i d_i f$ is also integer
- ▶ Because $\sum_{i=1}^{n} f_i d_i \ge 0$ and $0 \le f < 1$, necessary $\sum_{i=1}^{n} f_i d_i f$ is positive, e.g.

$$f_1 d_1 + ... + f_n d_n \ge f$$

for every feasible solution.

Branch & Bound

- Combinatorial optimization problems
- If not expressed as linear problems, simplex algorithm can't be applied
- The only way: searching through the set of feasible solutions
- To avoid a complete search create an appropriate search tree

Branch & Bound (cont.)

Branching step:

- All the leaves of one subbranch of a given node have one/more properties in common, different from all configurations of all others subbranches starting from the same node
- Splitting procedure for all nodes at level a: based on the same property
 - Ex: if d_i takes values in $\{v_1, v_2, v_3\}$, then the left subbranch will contain all feasible solutions having $d_i = v_1$, the middle subbranch those having $d_i = v_2$ and the last subbranch the solutions having $d_i = v_3$
- ► Each node is equivalent with a particular optimization problem. The branching step split this problem in several sub-problems.

Search Problem Tree

Branch & Bound (cont.)

Bounding step:

- Evaluation procedure: a node contains sufficient information to allow the estimation, by only examining the node, of a local lower bound for the loss function values of all leaves of outgoing subtree
- A global upper bound for the optimum value may be given by
 - 1. a good solution already known
 - 2. an approximate solution returned by an heuristic, or
 - 3. the loss function value for the first node
- During the search process, better solutions may be found; the upper bound is consequently adjusted (decreased)

Pruning step:

- If the global upper bound is smaller than the local lower bound at a specific branching node, then all the outgoing subbranches can be "cut off"
 - its impossible for any configuration in one of the subbranches going out to be the optimum solution.

General algorithm

```
Init List of active sub-problems (nodes) L_P = \{ \mathbf{P} \};
Set the upper bound for the optimal solution UB(\mathbf{P}) as \infty or as L(\mathbf{d}) for a particular \mathbf{d} (so L(\mathbf{d}^*) \leq UB(\mathbf{P}))
```

Step 1 WHILE $L_P \neq \emptyset$:

- Select an active sub-problem P_i from L_P
- ► Calculate the lower bound $LB(\mathbf{P}_i)$ satisfying $L(\mathbf{d})_{\mathbf{d} \in \mathbf{P}_i} \ge LB(\mathbf{P}_i)$
- ▶ If $LB(\mathbf{P}_i) \geq UB(\mathbf{P})$, delete \mathbf{P}_i from L_P
- If not, either solve P_i and update U(P) if necessary, or split P_i in sub-problems and add them to L_P

Example: Linear Integer Optimization

P: Min
$$L(x_1, x_2) = x_1 - 2x_2$$
, u.c.
$$\begin{cases} -4x_1 + 6x_2 & \leq 9 \\ x_1 + x_2 & \leq 4 \\ x_1, x_2 & \geq 0 \\ x_1, x_2 & \text{integers} \end{cases}$$

- ▶ The lower bound $LB(\mathbf{P_i})$ is $L(x^*)$, where x^* is the optimal solution of the relaxed linear problem
- If $x^* = (x_1^*, x_2^*)$ has real coordinates, take one of these $(x_i^*, i \in \{1, 2\})$ and split the linear problem in two sub-problems:
 - ▶ **P**₁: the initial problem **P** with a supplementary constraint $x_i \ge \lceil x_i^* \rceil$
 - ▶ P_2 : the initial problem P with a supplementary constraint $x_i \le |x_i^*|$
 - Remark: x* is not a feasible solution for none of two sub-problems!

Init
$$L_P = \{\mathbf{P}\}; UB = \infty$$

Step1
$$x^* = (1.5, 2.5), LB(\mathbf{P}) = -3.5 < UB$$

Step2 $\mathbf{P}_1 = \mathbf{P}$ with new constraint $x_2 \ge \lceil x_2^* \rceil = 3$; $\mathbf{P}_2 = \mathbf{P}$ with new constraint $x_2 \le \lfloor x_2^* \rfloor = 2$; $L_P = \{\mathbf{P}_1, \mathbf{P}_2\}$

Step3 \mathbf{P}_1 has no feasible solution solution; $L_P = \{\mathbf{P}_2\}$

Step4 x^* for P_2 is (0.75, 2), and $LB(P_2) = -3.25 < UB = \infty$

Step5 $\mathbf{P}_{21} = \mathbf{P}_2$ with new constraint $x_1 \geq \lceil x_1^* \rceil = 1$; $\mathbf{P}_{22} = \mathbf{P}_2$ with new constraint $x_1 \leq \lfloor x_1^* \rfloor = 0$; $L_P = \{\mathbf{P}_{21}, \mathbf{P}_{22}\}$

Step6 x^* for \mathbf{P}_{21} is (1,2); $LB(\mathbf{P}_{21}) = -3$ and UB = -3 (we have a sol. with integer coordinates); $L_P = {\mathbf{P}_{22}}$

Step7 x^* for P_{22} is (0, 1.5); $LB(P_{22}) = -3 \ge UB = -3$; P_{22} is deleted.

Step7 $L_P = \{\}$, the optimal solution for **P** is $x^* = (1,2)$

