${\mathcal T}_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{2i\sqrt{2}k}{a_0(2+k^2)}$	$-\frac{ik(4+k^2)}{a_0(2+k^2)^2}$	$\frac{i k (6+5 k^2)}{\sqrt{6} a_0 (2+k^2)^2}$	$-\frac{i\sqrt{\frac{5}{6}}k}{a_0(2+k^2)}$	$\frac{2 i k (3 + k^2)}{\sqrt{3} a_0 (2 + k^2)^2}$	$-\frac{i\sqrt{\frac{2}{3}}k}{a_0(2+k^2)}$	$\frac{2k^2}{a_0(2+k^2)^2}$
$\Delta_{1^{-}}^{\#6}{}_{\alpha}$	0	0	0	0	$-\frac{k^2}{\sqrt{6} \ a_0 (2+k^2)}$	$\frac{1}{-2a_0 - \frac{8a_0}{2+3k^2}}$	$\frac{\sqrt{5}}{6a_0}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a_0 (2+k^2)}$	340	$i\sqrt{\frac{2}{3}} k$ $2a_0 + a_0 k^2$
$\Delta_{1}^{\#5}{}_{\alpha}$	0	0	0	$\frac{\sqrt{\frac{2}{3}} k^2}{a_0 (2+k^2)}$	$\frac{k^2 (5+2k^2)}{\sqrt{3} a_0 (2+k^2)^2}$	$\frac{-2+k^2}{3\sqrt{2} a_0 (2+k^2)^2}$	$-\frac{\sqrt{\frac{5}{2}}}{6a_0+3a_0k^2}$	$\frac{2(17+14k^2+3k^4)}{3a_0(2+k^2)^2}$	$-\frac{\sqrt{2} (7+3k^2)}{3 a_0 (2+k^2)}$	$-\frac{2ik(3+k^2)}{\sqrt{3}a_0(2+k^2)^2}$
$\Delta_{1^-}^{\#4}{}_{\alpha}$	0	0	0	0	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{\sqrt{5} (10+3 k^2)}{12 a_0 (2+k^2)}$	$\frac{1}{12 a_0}$	$-\frac{\sqrt{\frac{5}{2}}}{6a_0+3a_0k^2}$	$\frac{\sqrt{5}}{6a_0}$	$i \sqrt{\frac{5}{6}} k$ $2a_0 + a_0 k^2$
$\Delta_{1}^{\#3}{}_{\alpha}$	0	0	0	$-\frac{2k^2}{\sqrt{3}a_0(2+k^2)}$	$\frac{k^2 (-2+k^2)}{2 \sqrt{6} a_0 (2+k^2)^2}$	$-\frac{76+52k^2+3k^4}{12a_0(2+k^2)^2}$	$\frac{\sqrt{5} (10+3 k^2)}{12 a_0 (2+k^2)}$	$\frac{-2+k^2}{3\sqrt{2}\ a_0\ (2+k^2)^2}$	$\frac{1}{-2 a_0 - \frac{8 a_0}{2 + 3 k^2}}$	$-\frac{ik(6+5k^2)}{\sqrt{6}a_0(2+k^2)^2}$
$\Delta_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$\frac{(4+k^2)^2}{2 a_0 (2+k^2)^2}$	$\frac{k^2 (-2+k^2)}{2 \sqrt{6} a_0 (2+k^2)^2}$	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{k^2 (5+2k^2)}{\sqrt{3} a_0 (2+k^2)^2}$	$-\frac{k^2}{\sqrt{6}(2a_0+a_0k^2)}$	$\frac{i k (4+k^2)}{a_0 (2+k^2)^2}$
$\Delta_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$-\frac{2k^2}{\sqrt{3}(2a_0+a_0k^2)}$	0	$\sqrt{\frac{2}{3}} k^2$ $2 a_0 + a_0 k^2$	0	$\frac{2i\sqrt{2}k}{2a_0 + a_0k^2}$
$\Delta_{1}^{\#3}{}_{\alpha\beta}$	0	0	$\frac{4}{a_0}$	0	0	0	0	0	0	0
$\Delta_{1}^{\#1}_{\alpha\beta} \; \Delta_{1}^{\#2}_{\alpha\beta} \; \Delta_{1}^{\#3}_{\alpha\beta}$	$-\frac{2\sqrt{2}}{a_0}$	2 a ₀	0	0	0	0	0	0	0	0
$\Delta_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
	$\Delta_1^{\#1} + \alpha^{\beta}$	$\Delta_{1}^{\#2} \dagger^{\alpha \beta}$	$\Delta_{1}^{\#3} +^{\alpha\beta}$	$\Delta_{1}^{\#1} +^{\alpha}$	$\Delta_{1}^{#2} +^{\alpha}$	$\Delta_1^{\#3} +^{lpha}$	$\Delta_{1}^{\#4} +^{\alpha}$	$\Delta_{1}^{\#5} +^{\alpha}$	$\Delta_{1}^{\#6} +^{lpha}$	${\cal T}_{1^{\text{-}}}^{\#1} +^{\alpha}$

$\Delta_3^{\#1}_{\alpha\beta\chi}$	Γ ₃ -1 αβχ
$\Delta_{3}^{\#1} \dagger^{\alpha\beta\chi} \boxed{-\frac{2}{a_0}}$	$\Gamma_3^{\#1} + \alpha \beta \chi \qquad -\frac{a_0}{2}$

$\Delta_{0}^{\#1}$	0	0 0 0		0	0	0	$-\frac{2}{a_0}$
$\mathcal{T}_{0}^{\#2}$	$-\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	$\frac{72ik}{a_0(16+3k^2)^2}$	$-\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2}$	$\frac{4i\sqrt{2}k(10+3k^2)}{a_0(16+3k^2)^2}$	$\frac{4\sqrt{3}}{16a_0 + 3a_0 k^2}$	$-\frac{36k^2}{a_0(16+3k^2)^2}$	0
${\mathcal T}_{0}^{\#1}$		$-\frac{8i\sqrt{3}}{16a_0k+3a_0k^3}$	$\frac{8i}{\sqrt{3}(16a_0k+3a_0k^3)}$	$8^{i} \sqrt{\frac{2}{3}}$ $16a_0 k + 3a_0 k^{3}$	4 a0 k ²	$\frac{4\sqrt{3}}{16a_0 + 3a_0 k^2}$	0
$\Delta_{0}^{\#4}$	$-\frac{8}{\sqrt{3}(16a_0+3a_0k^2)}$	$-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$	$\frac{32(13+3k^2)}{3a_0(16+3k^2)^2}$	$-\frac{8i\sqrt{\frac{2}{3}}}{16a_0k+3a_0k^3}$	$-\frac{4i\sqrt{2}k(10+3k^2)}{a_0(16+3k^2)^2}$	0
$\Delta_{0}^{\#3}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{16(19+3k^2)}{a_0(16+3k^2)^2}$	$-\frac{16(35+6k^2)}{3a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$	$\frac{8i}{\sqrt{3}(16a_0k+3a_0k^3)}$	$\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2}$	0
$\Delta_{0}^{\#2}$	$4\sqrt{6}$ $16a_0 + 3a_0 k^2$	$-\frac{144}{a_0(16+3k^2)^2}$	$\frac{16(19+3k^2)}{a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$	$8i \sqrt{3} \\ 16a_0 k + 3a_0 k^3$	$-\frac{72ik}{a_0(16+3k^2)^2}$	0
$\Delta_{0}^{\#1}$	0	$\frac{4 \sqrt{6}}{16a_0 + 3a_0 k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{8}{\sqrt{3} (16a_0 + 3a_0 k^2)}$	2 i √2 a 0 k	$\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	0
	$\Delta_{0}^{#1}$ †	Δ#2+	Δ#3+	Δ#4 +	T#1+	$T_{0}^{#2} +$	$\Delta_{0}^{\#1} \uparrow$

Source constraints	
SO(3) irreps	#
$2 \mathcal{T}_{0^{+}}^{\#2} - i k \Delta_{0^{+}}^{\#2} == 0$	1
$\Delta_{0^{+}}^{\#3} + 2 \Delta_{0^{+}}^{\#4} + 3 \Delta_{0^{+}}^{\#2} == 0$	1
$6 \mathcal{T}_{1}^{\#1\alpha} - i k (3 \Delta_{1}^{\#2\alpha} - \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha}) == 0$	3
$2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0$	3
Total #:	8

Lagrangian density
$\frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta\chi}$
$\frac{1}{4} a_0 h_{\chi}^{\chi} \partial_{\beta} \Gamma_{\alpha}^{\alpha\beta} + \frac{1}{4} a_0 h_{\chi}^{\chi} \partial_{\beta} \Gamma_{\alpha}^{\alpha\beta} -$
$\frac{1}{2} a_0 h_{\alpha \chi} \partial_{\beta} \Gamma^{\alpha \beta \chi} + \frac{1}{2} a_0 h_{\beta \chi} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha}$
Added source term: $h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi}$

							×			
$h_{1^-}^{\#1}$	0	0	0	$-\frac{ia_0k}{4\sqrt{2}}$	0	$\frac{i a_0 k}{4 \sqrt{6}}$	$-\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$	$\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0
$\Gamma_{1}^{\#6}$	0	0	0	0	0	$\frac{9}{0v}$	$-\frac{\sqrt{5} a_0}{6}$	$\frac{a_0}{6\sqrt{2}}$	$\frac{5a_0}{12}$	$-\frac{i a_0 k}{4 \sqrt{6}}$
$\Gamma_{1}^{\#5}$	0	0	0	0	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6}\sqrt{\frac{5}{2}}a_0$	8 0v	$\frac{a_0}{6\sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$
$\Gamma_{1^{-}}^{\#4}$	0	0	0	0	0	$\frac{\sqrt{5} a_0}{6}$	8 3	$-\frac{1}{6}\sqrt{\frac{5}{2}}a_0$	$-\frac{\sqrt{5} a_0}{6}$	$\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$
$\Gamma_{1}^{\#3}{}_{\alpha}$	0	0	0	0	0	- <u>a0</u>	$\sqrt{5} a_0$	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{a_0}{6}$	$-\frac{ia_0k}{4\sqrt{6}}$
$\Gamma_{1}^{\#2}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\Gamma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	- <u>a_0</u> 4	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	$\frac{i a_0 k}{4 \sqrt{2}}$
$\Gamma_1^{\#3}$	0	0	<u>a0</u> 4	0	0	0	0	0	0	0
	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
$\Gamma_1^{\#1}_{+}$ $\Gamma_1^{\#2}_{+}$	$-\frac{a_0}{4}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0
	$\Gamma_1^{\#\frac{1}{4}} + \alpha \beta$	$\Gamma_1^{\#_2} + \alpha \beta$	$\Gamma_1^{\#3} + \alpha \beta$	$\Gamma_{1}^{\#1} +^{lpha}$	$\Gamma_1^{\#^2} + \alpha$	$\Gamma_1^{\#3} + ^{\alpha}$	$\Gamma_{1}^{\#4} + ^{lpha}$	$\Gamma_{1}^{\#5}+^{lpha}$	$\Gamma_1^{\#6} + ^{lpha}$	$h_1^{\#1} +^{\alpha}$

$_{\alpha\beta}$ $\Gamma^{\#2}_{2}$ $_{\alpha\beta}$	$\Gamma_{2}^{#3} \alpha \beta$	$h_{2}^{\#1}{}_{lphaeta}$	$\Gamma_{2}^{\#1}_{\alpha\beta\chi}$	Γ ₂ - αβχ	
0	0	$\frac{i a_0 k}{4 \sqrt{2}}$	0	0	
$-\frac{a_0}{2}$	0	$\frac{i a_0 k}{4 \sqrt{3}}$	0	0	
0	<u>a₀</u> 4	$-\frac{i a_0 k}{4 \sqrt{6}}$	0	0	
$\frac{k}{2} - \frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	0	0	
0	0	0	<u>a₀</u> 4	0	
0	0	0	0	<u>a₀</u> 4	
	$ \begin{array}{c} 0 \\ -\frac{a_0}{2} \\ 0 \\ \frac{k}{2} - \frac{i a_0 k}{4 \sqrt{3}} \\ 0 \end{array} $	$ \begin{array}{c c} 0 & 0 \\ -\frac{a_0}{2} & 0 \\ 0 & \frac{a_0}{4} \\ \hline \frac{k}{2} & -\frac{ia_0k}{4\sqrt{3}} & \frac{ia_0k}{4\sqrt{6}} \\ 0 & 0 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $\Delta_{2}^{\#2} \dagger^{\alpha\beta}$

 $\Delta_{2}^{\#3}$ † $^{\alpha\beta}$

 ${\mathcal T}_{\mathtt{2}^{+}}^{\mathtt{#1}}\dagger^{lphaeta}$

 $\Delta_2^{\#1} \dagger^{\alpha\beta\chi}$

 $\frac{4i}{\sqrt{3} a_0 k}$

0

						,			
	Γ ₀ ^{#4} †	0	$-\frac{a_0}{2\sqrt{2}}$	$-\frac{a_0}{2\sqrt{2}}$	<u>a₀</u> 2	$-\frac{i a_0}{4 \sqrt{6}}$	$\frac{i a_0 k}{4 \sqrt{2}}$		
	$h_0^{\#1}$ †	$\frac{i a_0 k}{2 \sqrt{2}}$	0	$-\frac{i a_0 k}{4 \sqrt{3}}$	<i>ia</i> 0 / 4 √6	0	0		
	$h_0^{\#2}$ †	0	0	<u>i a ₀ k</u> 4	$-\frac{ia_0}{4}$	$\frac{k}{2}$ 0	0		
	Γ ₀ -1 †	0	0	0	0	0	0		
Δ	$\Delta^{\#2}_{2^{+}lphaeta}\;\;\Delta^{\#3}_{2^{+}lphaeta}\;\;\mathcal{T}^{\#1}_{2^{+}lphaeta}\;\;\Delta^{\#1}_{2^{-}lphaeta\chi}\;\Delta^{\#2}_{2^{-}lphaeta\chi}$								
-	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$\frac{4}{\sqrt{3}}a_0$	4 i √2 a ₀ k	O)	0			
-	$\frac{8}{3a_0}$	$-\frac{2\sqrt{2}}{3a_0}$	$-\frac{4i}{\sqrt{3} a_0}$	O		0			
	$\frac{2\sqrt{2}}{3a_0}$	$\frac{8}{3a_0}$				0			

 $\Gamma_{0^{+}}^{\#1}$ $\Gamma_{0^{+}}^{\#2}$ $\Gamma_{0^{+}}^{\#3}$ $\Gamma_{0^{+}}^{\#4}$

<u>a₀</u> 2

0

 $\frac{a_0}{2\sqrt{2}}$

 $-\frac{a_0}{2\sqrt{2}}$

 $\frac{i a_0 k}{4 \sqrt{3}}$

0

 $\frac{4}{a_0}$

?		
? k^{μ}	Quadratic pole	;
	Pole residue:	$-\frac{1}{a_0} > 0$
?	Polarisations:	2
?		

 $\frac{\text{Unitarity conditions}}{a_0 < 0}$

(No massive particles)