FS-STBP 融合结构测试总结

一、说明

本阶段的工作基于 Optimized spiking neurons can classify images with high accuracy through temporal coding with two spikes 和 Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks 两篇文献,将第一篇文章的 FS 神经元模型和第二篇文章的 STBP 梯度替代算法相融合。实现了基于 FS 神经元的直接监督学习。

(1) K 值和 alpha 值的改进情况

原本的 FS 神经元模型每一层的 K 值和 alpha 值为定值,但是实际上,各层神经元平均发射脉冲数(平均单个神经元发的脉冲数)的分布是不均匀的。某些层数发射的脉冲数较少,一般呈现出前层多后层少的特点。在 FS 网络中 K 值如果过大,则平均脉冲数一般会增大,从而使 SNN 芯片能耗增大。同时,由于 FS 神经元编码的误差为 alpha/2^k,K 值过小也会导致误差的增大。

```
K = [4, 3, 3, 3, 2]
alpha = [1, 3, 4, 2, 1]

d1 = H1 = T1 = alpha[0] * 2 ** (-K[0]) * np.array([float(2 ** (K[0] -
i)) for i in range(1, K[0] + 1)]).astype(np.float32)

d2 = H2 = T2 = alpha[1] * 2 ** (-K[1]) * np.array([float(2 ** (K[1] -
i)) for i in range(1, K[1] + 1)]).astype(np.float32)

d3 = H3 = T3 = alpha[2] * 2 ** (-K[2]) * np.array([float(2 ** (K[2] -
i)) for i in range(1, K[2] + 1)]).astype(np.float32)

d4 = H4 = T4 = alpha[3] * 2 ** (-K[3]) * np.array([float(2 ** (K[3] -
i)) for i in range(1, K[3] + 1)]).astype(np.float32)

d5 = H5 = T5 = alpha[4] * 2 ** (-K[4]) * np.array([float(2 ** (K[4] -
i)) for i in range(1, K[4] + 1)]).astype(np.float32)
```

因此我对融合后的代码进行了修改,使得每一层的 K 值和 alpha 值都可以灵活调控,从而寻找更优的超参数设置方案。

(2) 脉冲发射函数的修改情况

原论文中的一个例子是这样的

$$z(t) = \Theta(v(t) - T(t)) = \Theta\left(\left(x - \sum_{j=1}^{t-1} h(j)z(j)\right) - T(t)\right)$$
$$t = 1, ..., K,$$

K=10, $T(t)=h(t)=d(t)=2^{k-t}$, 先以 x=10 为例:

$$z(1)=\Theta(10-0-2^{10-1})=0, \rightarrow d(1)z(1)=0;$$

$$z(2)=\Theta(10-0-2^{10-2})=0, \rightarrow d(2)z(2)=0;$$

.....

$$z(6)=\Theta(10-0-\ 2^{10-6})=0, \rightarrow d(6)z(6)=0;$$

$$z(7)=\Theta(10-0-2^{10-7})=1, \rightarrow d(7)z(7)=8;$$

$$z(8)=\Theta(10-8-\ 2^{10-8})=0, \rightarrow d(8)z(8)=0;$$

$$z(9)=\Theta(10-8-\ 2^{10-9})=1, \rightarrow d(9)z(9)=2;$$

$$z(10)=\Theta(10-8-2-2^{10-10})=0, \rightarrow d(10)z(10)=0;$$

$$\hat{f}(x) = \sum_{t=1}^{10} d(t)z(t) = d(7)z(7) + d(9)z(9) = 10 = f(x)$$

原来的 FS 神经元代码中,每一个 step 权重都要乘 0.5(原论文中 T(t)=h(t)=d(t)=

$\alpha 2^{-t}$,在代码中 d(t)体现为每个 step 中 weight \star 0.5)

```
# fs-neuron 更新膜电位
def fs_mem_update(ops, x, mem): # self.fc1, h0_spike, h1(zeros)
    mem = mem + ops(x)
    return mem # h1

# fs-neuron 编码
def fs_coding(mem, decay, th): # h0, h[step], T[step]
    z = act_fun(mem - th)
    mem = mem - decay * z
    return mem, z # h0, h0_spike
```

```
for step in range(K[0]):
# 输入值编码
h0, h0_spike = fs_coding(h0, H1[step], T1[step])
# 更新 c1_mem
h1 = fs_mem_update(self.fc1, h0_spike, h1)
self.fc1.weight.data = self.fc1.weight.data * 0.5
```

但是如果加入 STBP 算法会使反传失败,无法训练 SNN,测试得到的准确率只有 11%。(目前为什么这样写代码无法训练的原因还没有找到)

所以此次代码进行了修改:

```
# fs-neuron 更新膜电位

def fs_mem_update(ops, x, mem): # self.fc1, h0_spike, h1(zeros)

mem = mem + ops(x)

return mem # h1

# fs-neuron 编码

def fs_coding(mem, decay, th): # h0, h[step], T[step]

z = act_fun(mem - th) 0.5

mem = mem - decay * z

return mem, z # h0, h0_spike
```

```
for step in range(K[0]):
# 输入值编码
h0, h0_spike = fs_coding(h0, H1[step], T1[step])
# 更新 c1_mem
h1 = fs_mem_update(self.fc1, h0_spike, h1)
# self.fc1.weight.data = self.fc1.weight.data * 0.5
#在 weight 上乘 0.5 会使 SNN 无法训练, 因此改为 0.5 乘到 act_fun 后面
for step in range(K[1]):
# c1_mem 编码
h1, h1_spike = fs_coding(h1, H2[step], T2[step])
h1_spikes += h1_spike
# x = F.avg_pool2d(h1_spike, 2)
# 更新 c2_mem
h2 = fs_mem_update(self.fc2, h1_spike, h2)
# self.fc2.weight.data = self.fc2.weight.data * 0.5
```

每个 step 都要调用一次 act_fun()函数来产生 z(t),因此在脉冲序列上面乘以 0.5,使得脉冲序列由原来的 0,1 变成现在的 0,0.5,相当于原本每个 step 用 weight*0.5 代替 d(t),改为 z(t) * 0.5 代替 d(t)。

这样一来,反传成功,SNN 网络可以得到训练。

注:本段前传代码基于 convert_wo_train_v3.py 文件改写,个人感觉这个代码对 FS 神经元的前传模型表达的不是很透彻,因为传递的是膜电压而不是 f(x)。以后可以参考唐林学长的 Fs 神经元代码进行改进。

(3) 训练方式的改进情况

与常用的 SNN 训练方法 STDP、ANN 转化法不同的是,FS-STBP 融合结构采用的是 STBP 的反向传播方法,使用脉冲发射函数导数的近似处理函数进行<mark>梯度近似</mark>,解决了脉冲发射函数发射处不可导的问题。

```
class ActFun(torch.autograd.Function):
///
```

```
Approaximation function of spike firing rate function

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()

()()
```

可以在不使用 ANN 进行预训练的前提下,实现 SNN 网络的直接监督学习。同时,与大多数采用 LIF-BP 算法的 SNN 相比,FS-STBP 融合结构采用的 FS 神经元具有更加优良的脉冲稀疏性和准确性,(此处说法不是太严谨,需要进一步搭建相同网络结构的 LIF-STBP,用控制变量法进行验证)有望进一步改进 SNN 芯片性能。

二、测试结果

MLP结构: 121-64-124-64	-124-10				
			Epoch=80		
			SNN_FS-STBP结果		
alpha/K	[1, 1, 1, 1, 1]/[8, 7, 6, 5, 4]	[1, 1, 1, 1, 1]/[4, 4, 3, 2, 1]		11, 1, 0.5, 0.5, 0.25]/[4, 4, 3, 2, 1	[1.2, 1, 0.5, 0.5, 0.25]/[4, 4, 3, 2, 1]
acc	96.35	96.81	96.95	96.88	96.86
ave_spikes_1st/121-64	1.42083	0.71889	0.68621	0.69189	0.60811
ave_spikes_2ed/64-124 0.66967		0.39054	0.39547	0.45264	0.47685
ave_spikes_3rd/124-64 0.69528		0.34917	0.34454	0.35987	0.33601
ave_spikes_4th/64-124 0.11507		0.07364	0.08644	0.08654	0.09057
ave_spikes_5th/124-10	0	0	0	0	0
alpha/K	, 0.75, 0.5, 0.5, 0.25]/[4, 3, 3, 2	, [1, 2, 2, 1, 1]/[4, 5, 5, 4, 4]	[1, 2, 3, 1, 1]/[4, 5, 6, 4, 4]	[1, 1, 2, 1, 1]/[4, 4, 5, 4, 4]	[1, 1, 2, 1, 2]/[4, 4, 5, 4, 5]
acc	96.74	97.21	97.1	96.96	96.98
ave_spikes_1st/121-64	0.50559	0.82659	0.84291	0.70354	0.68876
ave_spikes_2ed/64-124	0.41834	0.54722	0.57198	0.51098	0.53501
ave_spikes_3rd/124-64	0.34448	0.42147	0.41611	0.37637	0.50321
ave_spikes_4th/64-124	0.08858	0.0655	0.07137	0.06272	0.06222
ave_spikes_5th/124-10	0	0	0	0	0
alpha/K	[1, 1, 2, 1, 1]/[3, 4, 5, 4, 3]	[1, 1, 1, 1, 1]/[4, 4, 5, 4, 4]	[1, 1, 1, 1, 1]/[4, 5, 6, 5, 4]	[1, 2, 3, 2, 1]/[4, 5, 6, 5, 4]	[1, 1.25, 1.5, 1.25, 1]/[4, 5, 6, 5, 4]
acc	96.83	96.94	96.81	97.34	96.98
ave_spikes_1st/121-64	0.66011	0.65485	0.86493	0.74747	0.88943
ave_spikes_2ed/64-124	0.51814	0.53684	0.69544	0.58867	0.72808
ave_spikes_3rd/124-64	0.47871	0.48003	0.54291	0.47204	0.52753
ave_spikes_4th/64-124	0.0663	0.06109	0.11393	0.06605	0.13155
ave_spikes_5th/124-10	0	0	0	0	0
alpha/K	[1, 2, 3, 2, 1]/[3, 4, 5, 4, 3]	.75, 1, 1.25, 1, 0.75]/[3, 4, 5, 4	[1, 2, 2, 2, 1]/[3, 4, 5, 4, 3]	[1, 3, 3, 3, 1]/[3, 4, 5, 4, 3]	[1, 3, 4, 3, 1]/[3, 4, 5, 4, 3]
acc	96.99	96.8	96.91	96.98	97.06
ave_spikes_1st/121-64	0.64621	0.60871	0.6198	0.54058	0.52484
ave_spikes_2ed/64-124	0.47926	0.54905	0.57825	0.49151	0.4877
ave_spikes_3rd/124-64	0.33317	0.4897	0.35096	0.31728	0.32821
ave_spikes_4th/64-124	0.06262	0.06589	0.0705	0.05516	0.0658
ave_spikes_5th/124-10	0	0	0	0	0

alpha/K		[1, 3, 6, 2, 1]/[4, 4, 4, 3, 1]	[1, 2, 3, 2, 1]/[4, 3, 3, 3, 2]	[1, 2, 2, 2, 1]/[4, 3, 3, 3, 2]	[1, 3, 3, 2, 1]/[4, 3, 3, 3, 2]	[1,3,2,2,1]/[4,3,3,3,2]
acc		97.24	97.38	97.04	97.37	97.36
ave_spikes_1st/:	121-64	0.57567	0.50722	0.52828	0.44699	0.43627
ave_spikes_2ed/	64-124	0.28961	0.26196	0.29765	0.27613	0.30752
ave_spikes_3rd/124-64 ave_spikes_4th/64-124		0.32581	0.30885	0.29728	0.29826	0.3122
		0.08829	0.0668	0.05502	0.06339	0.06329
ave_spikes_5th/	124-10	0	0	0	0	0
alpha/K		[1, 2, 2, 2, 1]/[4, 3, 3, 3, 2]	[1, 3, 4, 2, 1]/[4, 3, 3, 3, 2]	[1, 3, 4, 2, 1]/[4, 3, 3, 4, 1]	[1, 3, 4, 2, 1]/[4, 4, 3, 3, 1]	[1, 3, 4, 2, 1]/[4, 4, 4, 3, 1]
acc		97	97.28	97.17	97.37	97.38
ave_spikes_1st/121-64		0.50469	0.47745	0.45777	0.63857	0.56089
ave_spikes_2ed/	64-124	0.32554	0.24289	0.22454	0.24125	0.37373
ave_spikes_3rd/	e_spikes_3rd/124-64 0		0.30288	0.4039	0.32652	0.33521
ave_spikes_4th/64-124		0.05299	0.06687	0.10406	0.09616	0.10257
ave_spikes_5th/124-10		0	0	0	0	0

每一层的 K 值和 alpha 值设置测试数据如上图。

经过测试可以看到:

第一层 K 值设为 4, 后层 K 值非严格单调递减; (例如 4, 3, 3, 3, 1)

第一层 alpha 值设为 1,alpha 按照"小大小"排列; (例如 1,3,3,2,1)

这样的训练效果较好, acc 可以达到 97.3%左右, 而且每层每个神经元的平均脉

冲数降至 0.5 以下,呈现出由前到后平均脉冲数越来越小的趋势。

两个比较好的结果的参数配置如下:

alpha/K=[1,3,3,2,1]/[4,3,3,3,2]时准确率为 97.37%,

[1	, 3, 3, 2, 1]/[4, 3, 3, 3, 2]
	97.37
	0.44699
	0.27613
	0.29826
	0.06339
	0

alpha/K=[1,2,3,2,1]/[4,3,3,3,2]时准确率为 97.38%。

[1	1, 2, 3, 2, 1]/[4, 3, 3, 3, 2]
	97.38
	0.50722
	0.26196
	0.30885
	0.0668
	0