# Quantitative

- Fintech in Investment Management
- Correlation and Regression
- Multiple Regression and Issues in Regression Analysis
- Time-series Analysis
- Probabilistic Approaches: Scenarios analysis, decision trees, and simulations

# Fintech in Investment Management

# **Correlation and Regression**

## **Summaries**

- Correlation test
- Linear regression coefficient (t-test with n k 1 degree of freedom)
  - Hypothesis test, confidence interval, p-value
- ANOVA
  - o SSE, F(one-tailed), R<sup>2</sup>, R<sup>2</sup><sub>aiust</sub>

## **Covariance and Correlation**

• Sample Variance 样本方差

o 
$$Cov(X, Y) = C_{XY} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n-1}$$

Sample Correlation Coefficient

#### **Correlation Limitation**

- Outliers
- Spurious Correlation
  - Correlated by chance with no economic explanation
- **Nonlinear Relationships**

## **Correlation Hypothesis Test**

- $H_0: \rho = 0$  versus  $H_a: \rho \neq 0$
- Assume two populations are normally distributed

- o mean r
- $\quad \text{o} \quad \text{variance } 1-r^2 \text{, standard deviation} \\ \sigma = \sqrt{1-r^2}$
- o degree of freedom df = n 2
- $\circ \quad \text{standard error } \frac{\sigma}{\sqrt{df}} = \frac{\sqrt{1-r^2}}{\sqrt{n-2}}$

## **Linear Regression Variables**

- dependent: explained/endogenous/predicted
- independent: explanatory/exogenous/predicting

#### **Linear Regression Assumptions**

- linear relationship exists between the dependent and independent variable
- independent variable is **uncorrelated** with the residuals
- the expected value of residual terms is zero
- the variance of the residual term is constant for all observations
  - Heteroskedasticity
- the residual term is **independently** distributed
  - Auto Correlation
- The residual term is **normally** distributed

# **Linear Regression Model**

- $\bullet \quad Y = b_0 + b_1 X + \epsilon$ 
  - o  $b_0$ : intercept term
  - o b<sub>1</sub>: slope coefficient
  - $\circ$   $\epsilon$ : residual

# **Linear Regression Parameter Estimation**

- Sum of squared errors (SSE) SSE =  $\sum_{i} \epsilon_{i}^{2}$ 
  - o Ordinary least squares (OLS) and least squares estimates
- slope coefficient  $b_1 = \frac{c_{XY}}{s_X^2}$
- intercept term  $b_0 = \overline{Y} b_1 \overline{X}$  (using mean point)

# **Regression Coefficient**

- Distribution
  - $\circ$  T-distribution with degree of freedom n k 1 = n 2
- Confidence Interval
  - $\circ \quad \widehat{b_1} \pm t_c \times \widehat{s_i}$
  - o t<sub>c</sub> is the critical two-tailed value
- Test statistic
  - $\circ \quad t = \frac{\widehat{b_l} b_i}{\widehat{s_l}}$
  - o Reject: t > critical value
- p-value
  - Smallest level of significance
  - o Reject: p-value < significance level

#### **Predicting**

- $\bullet \quad \widehat{Y} = \widehat{b_0} + \widehat{b_1}X$
- Confidence interval  $\widehat{Y} \pm t_c \times \widehat{s_f}$ 
  - $\circ$   $\widehat{s_f}$ : standard error of the forecast
  - $\circ \quad s_f^2 = SEE^2 \left(1 + \frac{1}{n} + \frac{(X \bar{X})^2}{(n-1)s_X^2}\right)$
  - o Degree of freedom n k 1

#### **ANOVA**

Total sum of squares (SST)

$$\circ \quad SST = \sum (Y_i - \bar{Y})^2$$

• Regression sum of squares (RSS)

$$\circ RSS = \sum (\widehat{Y}_i - \overline{Y})^2$$

• Sum of squared errors (SEE)

$$\circ \quad SEE = \sum (Y_i - \widehat{Y}_i)^2$$

• Equation

$$\circ$$
  $SST = RSS + SEE$ 

Figure 7.8: Components of the Total Variation



| Degree of | Sum of                      | Mean sum of squares                                                          | Squared                                                                                                                                                                                                                              |
|-----------|-----------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| freedom   | squares                     |                                                                              |                                                                                                                                                                                                                                      |
| k         | RSS                         | $MSR = \frac{RSS}{k}$                                                        |                                                                                                                                                                                                                                      |
| n-k-1     | SSE                         | SSE SSE                                                                      | SEE                                                                                                                                                                                                                                  |
|           |                             | $MSE = \frac{1}{n-k-1}$                                                      | $=\sqrt{MSE}$                                                                                                                                                                                                                        |
| n-1       | SST                         | $MST = \frac{SST}{n-1}$ (one-tailed test)                                    |                                                                                                                                                                                                                                      |
|           | $R^2 = \frac{RSS}{SST}$     | $F = \frac{MSR}{MSE}$                                                        |                                                                                                                                                                                                                                      |
|           | $R^2 = 1 - \frac{SSE}{SST}$ | $R_a^2 = 1 - \frac{MSE}{MST}$ $= 1 - \frac{SSE}{SSE} \times \frac{n-1}{n-1}$ |                                                                                                                                                                                                                                      |
|           | freedom<br>k<br>n-k-1       | freedomsquareskRSSn-k-1SSEn-1SST $R^2 = \frac{RSS}{R}$                       | freedomsquareskRSS $MSR = \frac{RSS}{k}$ n-k-1SSE $MSE = \frac{SSE}{n-k-1}$ n-1SST $MST = \frac{SST}{n-1}$ (one-tailed test) $R^2 = \frac{RSS}{SST}$ $F = \frac{MSR}{MSE}$ $R^2 = 1 - \frac{SSE}{SST}$ $R_a^2 = 1 - \frac{MSE}{MST}$ |

## Standard Error of Estimates (SSE) 标准误

- degree of variability of the actual and predicted Y-values
- SSE = **standard deviation** of error terms
- SEE =  $\sqrt{MSE}$
- Standard error of estimates/residual/regression

## Coefficient of Determination (R<sup>2</sup>)

- Percentage of total variation in the dependent variable explained by the variation of independent variable
- $\bullet \quad R^2 = \frac{RSS}{SST} = 1 \frac{SSE}{SST}$
- $R^2 = \rho^2$  for on independent variable
- Increases as more variables are added

## **Multiple R**

- Correlation between actual and predicted Y
- square root of  $R^2$ , that's multiple  $R = \sqrt{R^2}$
- The correlation between X and Y for only one independent variable

# Adjusted R<sup>2</sup>

• 
$$R_a^2 = 1 - \frac{MSE}{MST} = 1 - \frac{SSE}{SST} \times \frac{n-1}{n-k-1} = 1 - (1 - R^2) \times \frac{n-1}{n-k-1}$$

## F-statistic

- Measures how well a set of independent variables (at least one independent variable) explains the variation in the dependent variable.
- $\bullet \quad F = \frac{MSR}{MSE}$
- It is always a one-tailed test.
- Hypothesis:  $H_0$ :  $b_i = 0 \ \forall i \in 1 \cdots n$  (all **slopes** equal to zero)
- Degree of freedom (k, n-k-1)
- Decision rule: reject  $H_0$  if  $F > F_c$
- F and t in simple regression

$$\circ \quad F = t_{b_1}^2$$

# **Linear Regression Limitation**

- Change over time
  - o Parameter instability
- Assumptions may not hold
  - o Heteroskedastic
  - Autocorrelation

# **Multiple Regression and Issues in Regression Analysis**

#### **Summary**

- Qualitative Independent
  - n class with n-1 dummy variables
- Qualitative Dependent
  - Probit or logbit or discriminant variables
- Heteroskedasticity error trend
  - o standard errors are affected, t-test and F-test are unreliable
  - o Breusch-Pagan Chi-square  $test = n \times R_{res}^2 \sim X^2(k)$  one-tailed test
  - o Correction: Robust standard errors or generalized least squares
- Auto/Serial Correlation error correlation
  - H<sub>0</sub>: no positive correlation
  - o **Durbin Watson** test  $DW = 2(1-r) \sim DW(n,k)$
  - less than lower -> reject H<sub>0</sub> and positive correlation
  - o middle: inconclusive
  - o larger than upper -> fail to reject
  - o Correction: Hansen-Corrected errors or
- Multicollinearity
  - $\circ$  High  $R^2$  and significant F-test but no t-tests are significant
  - Pairwise correlation
  - Correction: exclude one or more variables

#### Model

- Intercept term
- Partial slope coefficients
  - Holding others constant

#### **Qualitative Independent Variables - Dummy Variable**

- Dummy variable: value equals to 0 or 1
- n classes use n-1 dummy variables
- A model with four quarters
  - $O Y = b_0 + b_1 Q_1 + b_2 Q_2 + b_3 Q_3 + \epsilon$
  - o  $Q_1 = 1$  if it is the first quarter and 0 otherwise
- Parameters
  - o Reference point: the omitted class the fourth quarter
  - o Intercept: average value for the **fourth** guarter
  - Slope: difference between the current quarter and the fourth quarter
- Test
  - o  $b_i = 0$  means the current quarter = fourth quarter

# **Qualitative Dependent Variable – Other models**

- Probit and logit models
  - o Probit: normal distribution
  - Logit: logistic distribution
- Discriminant models
  - No assumptions about independent variables
  - o A linear function similar to an ordinary regression

## Score or rank -> classify

#### **Linear Regression Assumptions**

- linear relationship exists between the dependent and independent variable
- independent variable is uncorrelated with the residuals
- independent variables are not random
- independent variables have no exact linear relationship
  - Multicollinearity (Correlation test)
- the expected value of residual terms is zero
- the variance of the residual term is constant for all observations
  - Heteroskedasticity (Chi-Square test)
- the residual term is independently distributed
  - Auto Correlation (DW test)
- The residual term is normally distributed

## Heteroskedasticity 异方差 - Error Trend

- What is it?
  - Variance across observations are not the same
- Classification
  - o Unconditional
    - not related to level of independent variables
    - no major problems
  - Conditional
    - related to level of independent variables
    - cause significant problems
- Effect
  - o Coefficient: consistency not affected
  - Standard errors: unreliable
    - Too small -> t large -> reject often -> type I error 拒真
    - Too large -> t small -> not reject -> type II error 受假
  - o T-test: unreliable
  - o F-test: unreliable
- Detect
  - o Residual plot: residual vs independent variables
  - Breusch-Pagan Chi-square test (X<sup>2</sup>)
    - Residual vs independent variables regression
      - The R-squared is R<sub>res</sub><sup>2</sup>
    - $X^2$  with degree of freedom k (the number of independent variables)
    - $test = n \times R_{res}^2 \sim X^2(k)$
    - One-tailed test
- Correct
  - Robust (White-corrected) standard errors
    - Use them to recalculate the t-statistics with the original coefficients
  - Generalized least squares
    - Modify original equation

#### **Serial Correlation – Error Correlation**

- What is it?
  - Residual terms are correlated with one another
- Classification
  - o Positive correlation
  - Negative correlation
- Effect
  - Positive correlation -> Type I error
    - Small standard errors -> reject more -> Type I error
  - Negative correlation -> type II error
    - Large standard errors -> reject less -> Type II error
- Detect
  - Residual plot: residual vs time



- o Durbin-Watson Statistic (DW)
  - $DW = \frac{\sum (\epsilon_t \epsilon_{t-1})^2}{\sum \epsilon_t^2} \sim DW(n, k)$
- o **Positive** Correlation: When sample size is large
  - $DW \approx 2 \times (1-r) \sim DW(n,k)$
  - $r = correlation between \epsilon_t and \epsilon_{t-1}$
- o DW
  - ≈ 2 if homoscedastic and no serially correlated
  - < 2 if positively serially corrected</p>
  - > 2 if negatively serially corrected
- DW has two values
  - Positive correlation  $d_{lower}$  and  $d_{upper}$
  - lacktriangle Negative correlation  $4-d_{upper}$  and  $4-d_{lower}$
- Hypothesis
  - $H_0$ : no positive correlation
- o Decision rule



- Correct
  - Hansen-Corrected standard errors
    - Use White-corrected only when heteroskedasticity
    - Use Hanse for serial or both situations
  - o Improve the specification of the model

Include time-series nature of the data

## Multicollinearity

- What's it?
  - two or more variables or their combinations are highly correlated with each other
- Effect
  - o Coefficient
    - Unreliable
    - Consistency
  - Standard errors
    - Inflated -> type II error
- Detect
  - F-test and T-test
    - $\blacksquare$  R<sup>2</sup> is high
    - F-test is significant
    - But T-test indicate no coefficients are significantly different from zero
  - o Pairwise Correlation
    - High correlation among independent variables is a sign
    - Two variables
      - If correlation > 0.7, is a potential problem
    - More than two
      - High -> possibility of multicollinearity
      - Low -> does not indicate it is not present
- Correct
  - Omit one or more variables
    - Stepwise regression

| Violation   | Conditional<br>Heteroskedasticity                                                        | Serial Correlation                                                                                              | Multicollinearity                                                                                         |
|-------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| What is it? | Residual variance<br>related to level of<br>independent variables                        | Residuals are correlated                                                                                        | Two or more independent variables are correlated                                                          |
| Effect?     | Coefficients are consistent. Standard errors are underestimated. Too many Type I errors. | Coefficients are consistent. Standard errors are underestimated. Too many Type I errors (positive correlation). | Coefficients are consistent (but unreliable). Standard errors are overestimated. Too many Type II errors. |
| Detection?  | Breusch-Pagan chi-<br>square test = $n \times R^2$                                       | Durbin-Watson test $\approx 2(1 - r)$                                                                           | Conflicting $t$ and $F$ statistics; correlations among independent variables if $k = 2$                   |
| Correction? | Use White-corrected standard errors                                                      | Use the Hansen method to adjust standard errors                                                                 | Drop one of the correlated variables                                                                      |

## **Model Misspecification**

- Classification
  - Function form
    - Important variables are omitted
    - Variables should be transformed
      - Z-score, log, square, squared
    - Data is improperly pooled
      - Relationship changes over time
  - Variables are serial corrected (time series models)
    - A lagged dependent variable is used as an independent variable
    - a function of dependent variables is used as an independent variable
      - predicting the past
    - independent variables are measured with error
  - o **nonstationary** caused by other time-series misspecifications

#### Effects

 Misspecification -> coefficients are biased and/or inconsistent -> unreliable hypothesis testing and inaccurate predictions



#### **Supervised Machine Learning**

Big data

- o Structed and unstructured data
- Data analytics
  - Measure correlation
  - Make prediction
  - Make casual inferences
  - Classify
  - Clustering
  - o Reduce dimension
- Classification
  - o Supervised: classification, prediction
  - o Unsupervised: clustering
- Supervised
  - o Regression models
    - Penalized regression (overfitting)
  - Classification and Regression Trees (CART)
  - o Random forest
  - Neural networks
    - Activation function (nonlinear)
- Unsupervised
  - o Clustering
  - o Dimension reduction
    - PCA

## **Time-series Analysis**

## **Summary**

- Trend Model: linear, log-linear 趋势模型
- Autoregressive Model AR(p)
- Serial Correlation 残差自相关
  - Residual Autocorrelations test 残差相关性检验
    - degree of freedom T-2
    - $t = \rho_{\epsilon_1 \epsilon_2 \downarrow \nu} \sqrt{T} \sim T(T-2)$
    - Residual standard error  $1/\sqrt{T}$
  - o Correction: add lagged values
- Conditional Heteroskedasticity (ARCH) 残差异方差
  - $\circ \quad \epsilon_t^2 = a_0 + a_1 \epsilon_{t-1}^2 + u_t$
  - $\circ$  T-Test  $H_0$ :  $a_1 = 0$
  - o Correction: generalized least squares
- Seasonality Model 季节性模型
  - o Effects: AR model is mis-specified
  - o Correction: add additional lag of dependent variable
- Covariance Stationary 协方差稳定
  - o Mean constant, variance constant, covariance constant
- Mean Reversion 均值回归
  - o covariance stationary times series -> mean reversion
  - o AR(1) model with lag coefficient less than 1 -> mean reversion
  - $0 \quad \mu = \frac{b_0}{1 b_1} \text{ if } |b_1| < 1$
- Unit Root Time Series/ Random Walk Process -> Covariance Nonstationary 非稳态
  - Test: Dickey Fuller-Test
    - $H_0$ :  $g = 0 \rightarrow b_1 = 1 \rightarrow unit root$
  - o Correction: first difference and model it with AR model
- Cointegration
  - o Transform: linear regression error term
  - Hypothesis: error term timer series should be covariance stationary
  - Test: **DF-EG** test for unit root problem
- Nonstationary Characteristics
  - Non-constant mean: unit root
  - Non-constant variance: conditional heteroskedasticity
  - Non-constant correlation: serial correlation
  - Seasonality: lagged correlation
  - Structural change: different models

#### **Trend Model**

- Linear trend
  - $\circ \quad \mathbf{y_t} = b_0 + b_1 t + \epsilon_t$
  - o Time begins with 1
  - Variable increases over time by a constant amount
- Log-linear trend
  - $\log y_t = b_0 + b_1 t + \epsilon_t \to y_t = \exp(b_0 + b_1 t)$

- o Variable grows at a constant rate
- Exponential growth
- Limitations
  - Autocorrelation
    - use DW test
    - consider AR models

## **Autoregressive Model (AR)**

Model

$$\circ \quad \mathbf{x_t} = b_0 + b_1 \mathbf{x_{t-1}} + \epsilon_t$$

AR(p)

$$o x_{t} = b_{0} + b_{1}x_{t-1} + \dots + b_{p}x_{t-p} + \epsilon_{t}$$

- Forecasting
  - Chain rule of forecasting
- Serial Correlation
  - o the residuals should have no serial correlation
- Conditional Heteroskedasticity
  - o The residuals should have no conditional heteroskedasticity
- Covariance stationary
  - Statistical Inferences based on OLS may be invalid unless the time series is Covariance stationary

## Model Fit Steps - T-test

- Estimate the AR model using linear regression
  - Start with AR(1), and then increase it by 1
- Calculate the autocorrelation of residuals
- **Test** whether the **autocorrelations** are significantly different from zero

#### Residual Autocorrelations Test 残差的自相关性检验— T-test

- Residuals are correlated at different lags
- Idea
  - o Calculate residual correlation for different lags 不同 lag 的相关系数
  - Test the correlation significance
- For each lag  $k = 1, 2, \dots, p$
- H<sub>0</sub>: correlations of residuals are zero
- Mean  $\rho_{\varepsilon_t \varepsilon_{t-k}}$  , the correlation of error term t with the kth lagged error term
- Standard deviation of residual is 1 (normal distribution).
- Number of samples T
- **Residual** Standard error is  $\frac{1}{\sqrt{T}}$
- ullet T-test with degree of freedom T-2
- $t = \frac{\rho_{\epsilon_t \epsilon_{t-k}}}{1/\sqrt{T}} = \rho_{\epsilon_t \epsilon_{t-k}} \sqrt{T}$
- larger absolute t, reject the null hypothesis
- correction: add lagged values

## Autoregressive conditional heteroskedasticity (ARCH) 残差平方的线性相关检验 – T-test

- Variance of residuals depends on the variance of residuals in a previous period
- Idea
  - Residual variance time series -> apply AR(1)
- ARCH(1) time series
  - $\circ \quad \epsilon_t^2 = a_0 + a_1 \epsilon_{t-1}^2 + u_t$
  - $\circ$   $u_t$  is an error term
- T-Test
  - $\circ$  If  $a_1$  is statistically different from zero, it is ARCH(1) and heteroskedasticity
- Correction: generalized least squares
- Application: predict variance of future residuals

## Seasonality

- A pattern tends to repeat from year to year
  - o  $x_t$  is related to  $x_{t-12}$  for monthly data
  - The correlation between them is quite high
- Correcting
  - $\circ \quad x_t = b_0 + b_1 x_{t-1} + \epsilon_t \to x_t = b_0 + b_1 x_{t-1} + b_2 x_{t-12} + \epsilon_t$
  - o Add an additional lagged variable

#### **Forecast Error**

- In-sample forecast
- Out-of-sample forecast
- Root mean squared error (RMSE) for out-of-sample data
  - Square root of the average of the squared errors
- Lower RMSE for out-of-sample data will have more predictive power

#### **Coefficients Stability**

- Instability or nonstationary
- Dynamic conditions
- Shorter time series are more **stable** in coefficients
- Longer time series are more statistical reliability
- The underlying economic processes
  - Regulatory changes? Dramatic change in the underlying economic environment

#### **Covariance Stationary**

- Constant and finite expected value mean reverting level
- Constant and finite variance
  - o Volatility around its mean does not change over time
- Constant and finite covariance between values at any given lag
  - The covariance with leading or lagging values of itself is constant

#### **Covariance Stationary -> Mean Reversion**

- All covariance stationary time series will have a mean-reverting level
- $x_t = b_0 + b_1 x_t \to x_t = \frac{b_0}{1 b_1}$ 
  - It has mean-reverting level if  $|b_1| < 1$

- Predicts the next value will be the same as its current value
  - $\hat{x_t} = x_{t-1}$  用当前值估计

# Unit Root Time Series / Random Walk Process -> Covariance Nonstationary

- Unit root time series
  - The coefficient  $b_1 = 1$
  - Least squares regression will not work without transforming the data
  - Cannot be fit using AR model
- Random walk  $x_t = x_{t-1} + \epsilon_t$ 
  - o Best estimate of  $x_t$  is  $x_{t-1}$
  - $\circ$   $E(\epsilon_t)=0$ : the expected value of each error term is zero
  - o  $E(\epsilon_t^2) = \sigma^2$ : the variance of the error terms is constant
  - o  $E(\epsilon_i \epsilon_j) = 0$  if  $i \neq j$ : no serial correlation in error terms
- Random walk with drift  $x_t = b_0 + x_{t-1} + \epsilon_t$ 
  - o  $b_0$ : constant drift
- Covariance Nonstationary
  - $\circ \quad \text{Because } b_1 = 1 \to \frac{b_0}{1 b_*} \ undefined$

## **Covariance Nonstationary Test - DF Test**

- $\bullet \quad \mathbf{x_t} = b_0 + b_1 \mathbf{x_{t-1}} + \epsilon_t$ 
  - $o \rightarrow x_t x_{t-1} = b_0 + (b_1 1)x_{t-1} + \epsilon_t$
  - $\circ \rightarrow y_t = b_0 + \boldsymbol{g} \ x_{t-1} + \epsilon_t$
- Dickey and Fuller Test
  - o Null hypothesis  $H_0$ : g=0 (the time series has a unit root) 假定是非稳定的
  - o  $g = b_1 1$
  - o If the model can be rejected, it does not have a unit root

#### **Covariance Nonstationary Correction - First Differencing**

- A random walk can be transformed into a covariance stationary time series using first differencing
- A new time series with  $y_t = x_t x_{t-1} = \epsilon_t$

$$\begin{array}{ll} \circ & y_t = b_0 + b_1 y_{t-1} + \epsilon_t = \epsilon_t \\ \circ & \rightarrow b_0 = b_1 = 0 \end{array}$$

$$0 \rightarrow h_0 = h_1 = 0$$

- Mean revering level is  $\frac{b_0}{1-b_1} = 0$
- Steps: difference -> lag -> regression

## Two Time Series - Linear Regression

- Both are covariance stationary
  - -> linear regression
- Dependent variable is covariance stationary
  - o -> not reliable
- Independent variable is covariance stationary
  - -> not reliable
- Neither is covariance stationary

- Not cointegrated
- They are cointegrated
  - -> linear regression

#### Cointegration

- They are linked or follow the same **trend** and that relationship is not expected to change
- If cointegrated
  - o Error term from regressing one on the other is **covariance stationary**
  - o T-tests are reliable
- Test
- DF-EG test
  - Residuals are tested for a unit root using Dickey Fuller test with critical tvalues calculated by Engle and Granger
  - o If rejected the unit root, then they are cointegrated

## **Nonstationary Characteristics**

- Non-constant mean: unit root
- Non-constant variance: conditional heteroskedasticity
- Non-constant correlation: seasonality
- Seasonality: lagged correlation
- Structural change

## Steps

- No seasonality or structural shift -> trend model (linear or log-linear)
- Residuals -> serial correlation with **Durbin Watson** test
  - o No: use the trend model
  - Yes: use another model (AR)
- Check stationarity before running an AR model
- If not stationary
  - Linear trend -> first-difference the data
  - Log-Linear trend -> first-difference the log of the data
  - Structure change -> two separate models
  - Seasonal component -> add lagged variable
- After first-differencing
  - o If no serial correlation and seasonality -> use the model
  - Otherwise, add seasonality
- Test for ARCH
  - Coefficient not significantly from zero -> use the model
  - Otherwise -> use generalized least squares
- Two models -> lower out-of-sample RMSE

#### Probabilistic Approaches: Scenarios analysis, decision trees, and simulations

#### **Simulations**

- Determine the probabilistic variables
- Define probability distributions for these variables
  - Historical data
  - Cross-sectional data
  - Pick a distribution and estimate the parameters
    - Subjective specification
- Check for correlations among variables
  - Use historical data to determine whether they are related
  - Solutions
    - Allow one variable to vary and others can be computed
    - Build the rules of correlation into simulation
- Run the simulation
  - o Randomly draw variables
  - Use them to generate estimated values
  - Number of simulations
    - Number of uncertain variables
    - Types of distributions
    - The range of outcomes
- Advantages
  - Better input quality
  - o Provides a **distribution** of expected value rather than a point estimate
- Constraints
  - Book Value constraints
    - Regulatory capital requirements
    - Negative equity
  - Earnings and cash flow constraints
    - Can be imposed internally to meet analyst expectations or to achieve bonus targets.
    - Can be imposed externally, such as a loan covenant.
  - Market value constraints
    - Minimize the likelihood of financial distress or bankruptcy
- Limitations
  - Input quality
  - Inappropriate statistical distributions
  - Non-stationary distributions
  - Dynamic correlation

#### **Risk-Adjusted Value**

- Cash-flow are not risk-adjusted, should not be discounted at risk-free rate
- Do not double count risk

#### Simulation, Scenario analysis, and Decision trees

- Simulation -> continuous risk
- Scenario analysis and decisions trees -> discrete risk

- Scenario analysis Correlation
  - o A finite set of scenarios (best, worst and most likely cases)
- Decision trees **Sequential** 
  - o Discrete and sequential risks
  - Cannot include correlation

| Appropriate<br>method | Distribution of<br>risk | Sequential?        | Accommodates Correlated Variables? |
|-----------------------|-------------------------|--------------------|------------------------------------|
| Simulations           | Continuous              | Does not<br>matter | Yes                                |
| Scenario analysis     | Discrete                | No                 | Yes                                |
| Decision trees        | Discrete                | Yes                | No                                 |