- Primer Trabajo de Control Parcial
 - Ejercicios
 - Problema 1
 - Problema 2
 - Problema 3
 - Soluciones
 - Solución 2
 - Función
 - Demostración (Somoza)
 - Demostración (Temas escogidos de Teoría de Números)
 - Demostración (Youtube)

Primer Trabajo de Control Parcial

Ejercicios

Problema 1

Demuestre o refute:

- 1. El número $2^{2^n} 1$ tiene al menos n divisores primos distintos.
- 2. La suma de los elementos de un sistema residual reducido modulo n es divisible entre n para todo n meyor o igual que 2.
- 3. Demuestra que si p es primo y $p \equiv 5 \mod(8)$ y $p \div (a^4 + b^4) \implies p \div a$ y $p \div b$.

Problema 2

Demuestre que la funcion $\varphi(n)$ es multiplicativa por una via distinta a la vista en clase.

Problema 3

Demostrar que para cualquier a, b, c enteros, si $mcd(a, b) = 1 \implies$ existen infinitos n enteros tal que mcd(a + bn, c) = 1

Soluciones

Solución 2

Función $\varphi(n)$

Para demostrar este teorema haremos uso de los siguientes lemas:

Lema 1:

Sean $a, b, m \in \mathbb{N} \implies$ se cumple que $mcd(ab, m) = 1 \iff mcd(a, m) = 1$ y mcd(b, m) = 1

La demostración en el sentido \Leftarrow es obvia. En el otro caso, supongamos que no se cumple, sin pérdida de generalidad sea $mcd(a,m)=d>1 \implies \exists \ p \ \text{primo}$ tal que $p\div m \ \text{y} \ p\div a \implies p\div ab \implies p\div mcd(ab,m)$ contradicción porque mcd(ab,m)=1

Lema 2:

Sean $a, b \in \mathbb{Z}_+^*$ coprimos, entonces se cumple que $mcd(ax, b) = 1 \iff mcd(x, b) = 1$

(⇒) Supongamos que mcd(ax,b) = 1 y mcd(x,b) = d > 1 ⇒ ∃ p primo tal que $p \div b$ y $p \div x$ ⇒ $p \div ax$ ⇒ $p \div mcd(ax,b)$ contradicción porque mcd(ax,b) = 1. Por tanto d = 1

(\Leftarrow) Supongamos que mcd(x,b)=1 y $mcd(ax,b)=d>1 \implies \exists \ p$ primo tal que $p\div b$ y $p\div ax$, pero como $mcd(a,b)=1 \implies p\div x$ porque p no puede dividir a a. Luego $p\div mcd(b,x)=1$ contradicción, por lo que d=1

Lema 3:

Sean $k, l \in \mathbb{Z}_+^*$ coprimos. Si x y y recorren respectivamente sistemas completos de restos módulos k y l, entonces xl+yk recorre un sistema completo de restos módulo kl

No es dificil ver que existen exactamente kl números de la forma xl + yk. Supongamos que xl + yk no recorre el sistema completos de restos módulo kl, entonces:

$$x_1l + y_1k \equiv x_2l + y_2k \ mod(kl)$$

Por propiedades de congruencia se cumple que:

$$x_1l + y_1k \equiv x_2l + y_2k \mod(k)$$
$$x_1l \equiv x_2l \mod(k)$$

Como mcd(k, l) = 1 entonces:

$$x_1 \equiv x_2 \mod(k)$$

Contradicción porque x recorre un SRC módulo k. Análogamente se hace el análisis con l

Lema 4:

Sean $a, n \in \mathbb{N}$. Se cumple que $mcd(a, n) = 1 \iff mcd(x, n) = 1$ siendo $a \equiv x \mod(n)$

Nótese que ambas expresiones son análogas, ya que $a \equiv x \mod(n)$ es equivalente a $x \equiv a \mod(n)$ por lo que basta demostrar en un solo sentido de la doble implicación.

Supongamos que dado mcd(a,n)=1 se cumpe que $mcd(x,n)=d>1 \implies \exists \ p$ primo tal que $p\div x$ y $p\div n$ pero como $a\equiv x \ mod(n)$ se cumple que $n\div (a-x) \implies p\div (a-x)$ y como $p\div x \implies p\div a \implies p\div mcd(a,n)=1$ contradicción porque mcd(a,n)=1

Demostración (Somoza)

Agrupemos los números desde 1 hasta *mn* de la siguiente forma:

Según el **Lema 1** para saber cuántos números hay coprimos con mn basta calcular cuántos números son coprimos con m y coprimos con n simultáneamente.

Nótese que en una fila, si un elemento deja resto k módulo m entonces todos los elementos de esa fila dejan resto k módulo n

Por cada columna tenemos un SRC módulo m, en el cual hay $\varphi(m)$ números primos relativos con m, ya que su resto módulo m es primo relativo con m

Analicemos ahora las filas, nótese que si tenemos un SRC módulo n, al multiplicarlo por m, como son coprimos seguiremos teniendo un SRC, y al sumarle una constante k igual el resultado será un SRC, luego, si en la matriz buscamos en la fila k observamos que es exactamente lo que tenemos, por lo cual, en cada fila de la matriz hay un SRC módulo n, en el cual hay $\varphi(n)$ números primos relativos con n

Por último, como tenemos en cada columna $\varphi(m)$ coprimos con m y en cada fila $\varphi(n)$ primos relativos con n, la cantidad total de números coprimos con m y n a la vez son $\varphi(m)\varphi(n)$

Demostración (Temas escogidos de Teoría de Números)

Sean a y b enteros positivos coprimos. Supongamos que x y y recorren sistemas completos de restos módulos a y b respectivamente. Por el **Lema 3** xb+ya recorre un sistema completo de restos módulo ab, luego aplicando el **Lema 1** y **Lema 2** se cumple que:

$$(xb + ya, ab) = 1 \iff (xb + ya, a) = 1, (xb + ya, b) = 1 \iff (xb, a) = 1, (ya, b) = 1 \iff (x, a) = 1, (y, b) = 1$$

Esto significa que xb + ya es primo relativo con ab si y solo si x es coprimo con a y y es primo relativo con b, entonces $\varphi(ab) = \varphi(a)\varphi(b)$

Demostración (Youtube)

Queremos probar que la función $\varphi(n)$ es multiplicativa, o sea, $\varphi(mn) = \varphi(m)\varphi(n)$.

Sean $M=\{m_1,m_2,\ldots,m_p\}$ y $N=\{n_1,n_2,\ldots,n_q\}$ los sistemas de restos reducidos de m y n respectivamente. Si hallamos una función f biyectiva entre el producto cartesiano de ambos conjuntos y los números que son primos relativos con mn menores que mn habríamos demostrado que la cardinalidad tanto del producto cartesiano $(\varphi(m)\varphi(n))$ como la de $\varphi(mn)$ son iguales.

Apoyándonos en el **Lema 1** y **Lema 4** basta encontrar todos restos primos relativos con m y con n y los números que cumplen con esos restos simultáneamente, por lo que serán coprimos con mn, por tanto, nuestra función f será sobreyectiva. Utilizando el *Teorema Chino del Resto* dados m_i , n_j restos de m, n respectivamente, como $mcd(m,n)=1 \implies$ el sistema de congruencia:

$$x \equiv m_i \bmod(m)$$
$$x \equiv n_i \bmod(n)$$

Tiene solución y es única, por tanto, garantizamos que la función f es total (abarca todos los elementos del producto cartesiano de ambos conjuntos) y es inyectiva (porque la solución proporcionada por el *Teorema Chino del Resto* es única). Por tanto, podemos concluir que la función f es biyectiva, lo que implica que el producto cartesiano tiene tantos elementos como coprimos menores que $mn \implies \varphi(mn) = \varphi(m)\varphi(n)$