These slides are being provided with permission from the copyright for in-class (CS2208B) use only. The slides must not be reproduced or provided to anyone outside of the class.

All download copies of the slides and/or lecture recordings are for personal use only. Students must destroy these copies within 30 days after receipt of final course evaluations.

# **Tutorial 02: Signed Numbers**

Computer Science Department

CS2208: Introduction to Computer Organization and Architecture

Winter 2021-2022

Instructor: Mahmoud R. El-Sakka

Office: MC-419

Email: elsakka@csd.uwo.ca

Phone: 519-661-2111 x86996



## **Signed Numbers**

- Computer designers have adopted various techniques to represent negative numbers, including
  - sign and magnitude,
  - biased representation, and
  - o two's complement.



■ Example 1: Convert –743<sub>8</sub> to binary using sign and magnitude method

```
743<sub>8</sub>

→ 111 100 011<sub>2</sub>

→ 111100011<sub>2</sub>
```

```
0 = 000

1 = 001

2 = 010

3 = 011

4 = 100

5 = 101

6 = 110

7 = 111
```

```
-743_{8}
```

**→** 1111100011<sub>2</sub>



■ Example 2: Convert –AB.BA<sub>16</sub> to binary using sign and magnitude method unsigned

AB.BA<sub>16</sub>

- **→**1010 1011.1011 1010<sub>2</sub>
- → 10101011.1011101<sub>2</sub>

-AB.BA<sub>16</sub>

**→**110101011.1011101<sub>2</sub>

```
0 = 0000
```

$$1 = 0001$$

$$2 = 0010$$

$$3 = 0011$$

$$4 = 0100$$

$$5 = 0101$$

$$6 = 0110$$

$$7 = 0111$$

$$8 = 1000$$

$$9 = 1001$$

$$A = 1010$$

$$B = 1011$$

$$C = 1100$$

$$D = 1101$$

$$E = 1110$$

$$F = 1111$$

value



■ Example 3: Convert –0.0A<sub>16</sub> to binary using sign and magnitude method unsigned

 $0.0A_{16}$ 

- $\rightarrow 0000.0000 \ 1010_2$
- $\rightarrow$  0.0000101<sub>2</sub>

 $-0.0A_{16}$ 

**→** 10.0000101<sub>2</sub>

```
1 = 0001
2 = 0010
3 = 0011
4 = 0100
5 = 0101
6 = 0110
7 = 0111
```

0 = 0000

8 = 1000

9 = 1001

A = 1010

B = 1011

C = 1100

D = 1101

E = 1110

value



## **Biased Representation**

■ **Example 4**: Encode −14<sub>10</sub> using **excess-32** representation method (a.k.a. **biased representation**)

To encode a number using *excess-32* method, you need to add 32 to that number.

$$\Box -14_{10} + 32_{10} = 18_{10}$$

 $\square$  18<sub>10</sub> is the *excess-32* representation of  $-14_{10}$ 

To decode an *excess-32* value to its original value, you need to subtract 32.

$$\square 18_{10} - 32_{10} = -14_{10}$$



### **Biased Representation**

■ <u>Example 5</u>: Encode 14<sub>10</sub> using <u>excess-127</u> representation method (a.k.a. <u>biased representation</u>)

To encode a number using *excess-127* method, you need to add 127 to that number.

$$\square 14_{10} + 127_{10} = 141_{10}$$

 $\square$  141<sub>10</sub> is the *excess-127* representation of 14<sub>10</sub>

To decode an *excess-127* value to its original value, you need to subtract 127.

$$\square 141_{10} - 127_{10} = 14_{10}$$



- ☐ In binary arithmetic, the *two's complement* of a number is formed by
  - Subtracting the number from  $2^n$ .

The *two* 's complement of  $01100101_2$  is  $100000000_2 - 01100101_2 = 10011011_2$ 

In binary system,
the sign is encoded as:
MSD = 0 → positive
MSD = 1→ negative

 $\circ$  Flipping (inverting) all the bits of the number and adding <u>1.</u>

The *two* 's complement of  $01100101_2$  is  $10011010_2 + 1_2 = 10011011_2$ .

Just for the sake of completeness, in radix R systems, the sign is encoded as: MSD < R/2 → positive MSD ≥ R/2→ negative,

- Processing all the bits of the number from the <u>least significant bit</u> (LSB) towards the <u>most significant bit</u> (MSB)
  - > copying all the zeros until the first 1 is reached,
  - > copying that 1,
  - > flipping (inverting) all the remaining bits.

The *two* 's complement of  $01100100_2$  is  $10011100_2$ . The *two* 's complement of  $01100101_2$  is  $10011011_2$ .



Example 6: Convert –AB.BA<sub>16</sub> to binary using 2's complement method

AB.BA<sub>16</sub>

- $\rightarrow$  1010 1011.1011 1010<sub>2</sub>
- $\rightarrow$  10101011.1011101<sub>2</sub>
- +AB.BA<sub>16</sub>
  - $\rightarrow$  010101011.1011101<sub>2</sub>
- -AB.BA<sub>16</sub>
  - $\rightarrow 101010100.0100011_2$

unsigned value

0 = 0000

1 = 0001

2 = 0010

3 = 0011

4 = 0100

5 = 0101

6 = 0110

7 = 0111

8 = 1000

9 = 1001

A = 1010

B = 1011

C = 1100

D = 1101

E = 1110

F = 1111



■ Example 7: Convert −0.0A<sub>16</sub> to binary using 2's complement method

 $0.0A_{16}$ 

- $\rightarrow 0000.0000 \ 1010_2$
- $\rightarrow$  0.0000101<sub>2</sub>

 $+0.0A_{16}$ 

- **→** 00.0000101<sub>2</sub>
- $-0.0A_{16}$ 
  - **→** 11.1111011<sub>2</sub>

unsigned value 3
4
5
6
7

0 = 0000

1 = 0001

2 = 0010

3 = 0011

4 = 0100

5 = 0101

6 = 0110

7 = 0111

8 = 1000

9 = 1001

A = 1010

B = 1011

C = 1100

D = 1101

E = 1110

F = 1111



## **Signed Numbers**

| Binary pattern | Unsigned | Signed-and-magnitude | 2's complement | Excess-8   |
|----------------|----------|----------------------|----------------|------------|
| 0000           | 0        | +0                   | +0             | <b>-8</b>  |
| 0001           | 1        | +1                   | +1             | <b>–</b> 7 |
| 0010           | 2        | +2                   | +2             | <b>-</b> 6 |
| 0011           | 3        | +3                   | +3             | <b>-</b> 5 |
| 0100           | 4<br>5   | +4                   | +4             | <b>-4</b>  |
| 0101           | 5        | +5                   | +5             | <b>–</b> 3 |
| 0110           | 6        | +6                   | +6             | -2         |
| 0111           | 7        | +7                   | +7             | <b>–</b> 1 |
| 1000           | 8        | -0                   | <b>-8</b>      | + 0        |
| 1001           | 9        | <b>–</b> 1           | <del>-</del> 7 | +1         |
| 1010           | 10       | -2                   | <del>-</del> 6 | +2         |
| 1011           | 11       | <b>–</b> 3           | <b>-</b> 5     | +3         |
| 1100           | 12       | <b>–</b> 4           | <b>–</b> 4     | +4         |
| 1101           | 13       | <b>–</b> 5           | <b>–</b> 3     | +5         |
| 1110           | 14       | <b>–</b> 6           | <b>–</b> 2     | +6         |
| 1111           | 15       | <b>–</b> 7           | <b>–</b> 1     | +7         |

#### For a given *n* bit binary pattern

What is the number of zeros for various values of n?

What is the range for various values of n?

$$\begin{array}{c} 1 \\ -(2^{n-1}) \longrightarrow 2^{n-1} - 1 \end{array}$$

1 2 1 1 0 
$$\rightarrow$$
 2<sup>n-1</sup> - 1  $-(2^{n-1} - 1) \rightarrow$  2<sup>n-1</sup> - 1  $-(2^{n-1}) \rightarrow$  2<sup>n-1</sup> - 1  $-(2^{n-1}) \rightarrow$  2<sup>n-1</sup> - 1



## **Unsigned**

**Example 8**: Convert 11011.11011<sub>2</sub> to decimal, <u>assuming</u> that it is an *unsigned* number.

$$11011_{2} \rightarrow 27_{10}$$
 $0.11011_{2} \rightarrow 0.84375_{10}$ 
 $11011.11011_{2} \rightarrow 27.84375_{10}$ 

## Another method:

$$11011.11011_{2} = 11011111011_{2} / 100000_{2}$$

$$= 891_{10} / 32_{10}$$

$$= 27.84375_{10}$$



■ Example 9: Convert 11011.11011<sub>2</sub> to decimal, assuming that it is encoded using sign and magnitude method.



## Another method:

11011.11011<sub>2</sub> 
$$\rightarrow$$
 -1011.11011<sub>2</sub>  
1011.11011<sub>2</sub> = 1011111011<sub>2</sub> / 100000<sub>2</sub>  
= 379<sub>10</sub> / 32<sub>10</sub> = 11.84375<sub>10</sub>  
11011.11011<sub>2</sub>  $\rightarrow$  -11.84375<sub>10</sub>



■ Example 10: Convert 11011.11011<sub>2</sub> to decimal, assuming that it is encoded using 2's complement method.

```
\begin{array}{c} 11011.11011_{2} \implies negative\ number \\ 11011.11011_{2} \implies -00100.00101_{2} \\ 00100_{2} \implies 4_{10} \\ 0.00101_{2} \implies 0.15625_{10} \\ 00100.00101_{2} \implies 4.15625_{10} \\ 11011.11011_{2} \implies -4.15625_{10} \end{array}
```

## Another method:

```
11011.11011<sub>2</sub> \rightarrow negative number

11011.11011<sub>2</sub> \rightarrow -00100.00101<sub>2</sub>

00100.00101<sub>2</sub> = 0010000101<sub>2</sub> / 100000<sub>2</sub>

= 133<sub>10</sub> / 32<sub>10</sub> = 4.15625<sub>10</sub>

11011.11011<sub>2</sub> \rightarrow -4.15625<sub>10</sub>
```



■ The following numbers represent the same value, which is  $+14_{10}$ 



■ By Converting these numbers into the *2's complement*, you get



■ Example 11: Convert 11011<sub>2</sub> to decimal, assuming that it is encoded using 2's complement method.

- $11011_2$  → negative number
- $\blacksquare 11011_2 \rightarrow -00101_2$
- $\bullet$  00101<sub>2</sub>  $\rightarrow$  5<sub>10</sub>
- $\blacksquare 11011_2 \rightarrow -5_{10}$



■ Example 12: Convert 1111011<sub>2</sub> to decimal, assuming that it is encoded using 2's complement method.

- $1111011_2$  → negative number
- $\blacksquare$  1111011<sub>2</sub>  $\rightarrow$  -0000101<sub>2</sub>
- $\bullet$  0000101<sub>2</sub>  $\rightarrow$  5<sub>10</sub>
- $\blacksquare$  1111011<sub>2</sub>  $\rightarrow$  -5<sub>10</sub>



■ Example 13: Convert 1111111011<sub>2</sub> to decimal, <u>assuming</u> that it is encoded using 2's complement method.

- 1111111011<sub>2</sub> → negative number
- $\blacksquare$  1111111011<sub>2</sub>  $\rightarrow$  -000000101<sub>2</sub>
- $\bullet$  000000101<sub>2</sub>  $\rightarrow$  5<sub>10</sub>
- $\blacksquare$  1111111011<sub>2</sub>  $\rightarrow$  -5<sub>10</sub>