Reflective photosensor (photoreflector) RPR-359F

The RPR-359F is a reflective photosensor. The emitter is a GaAs infrared light emitting diode and the detector is a high-sensitivity, silicon planar phototransistor. A plastic lens is used for high sensitivity. In addition, since it is molded in plastic with a visible light filter, there is almost no effect from stay light.

Application

Copiers, Compact disc players

Features

- 1) A plastic lens is used for high sensitivity.
- 2) A built-in visible light filter minimizes the influence of stray light.
- 3) Low collector-emitter saturation voltage.
- 4) Lightweight and compact.

●External dimensions (Units : mm)

● Absolute maximum ratings (Ta=25°C)

Parameter		Symbol	Limits	Unit
Input (LED)	Forward current	lF	50	mA
	Reverse voltage	VR	5	V
	Power dissipation	PD	80	mW
Output (Photo- transistor)	Collector-emitter voltage	Vceo	30	V
	Emitter-collector voltage	VECO	4.5	V
	Collector current	lc	30	mA
	Collector power dissipation	Pc	100	mW
Operating temperature		Topr	-25~+85	°C
Storage temperature		Tstg	Tstg -40~+100	

●Electrical and optical characteristics (Ta=25°C)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditions
Input characteristics	Forward voltage	VF	-	1.3	1.6	V	I==50mA
	Reverse current	IR	-	_	10	μΑ	V _R =5V
Output characteristics	Dark current	Iceo	-	_	0.5	μА	Vce=10V
	Peak sensitivity wavelength	λρ	-	800	_	nm	_
Transfer characteristics	Collector current	Ic*	200	500	1800	μΑ	Vcc=5V, I _F =20mA, R _L =100Ω, d=3.5mm
	Collector-emitter saturation voltage	V _{CE(sat)}	-	0.1	0.3	V	I _F =20mA, I _C =100μA
	Response time	tr-tf	-	10	_	μs	Vcc=10V, I=20mA, RL=100Ω

^{*} Standard paper (90% reflection)

•Electrical and optical characteristic curves

Fig.1 Power dissipation / collector power dissipation vs. ambient temperature

Fig.2 Forward current vs. forward voltage

Fig.3 Forward voltage vs. ambient tempereture

Fig.4 Collector current vs. forward current

Fig.5 Output characteristics

Fig.6 Dark current vs.ambient temperature

Fig.7 Relative output vs. distance

Fig.8 Relative output vs. ambient temperature

Fig.9 Forward current vs. ambient temperature

●Circuit for testing transfer characteristics

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.