	(Pages : 3)	6658
Reg. No. :		
Name :	***************************************	
Fifth Semester B.Tech. Degree Examination, November 2013 (2008 Scheme) 08.502 : DIGITAL SIGNAL PROCESSING (TA)		
Time: 3 Hours		Max. Marks: 100
•	PART-A	
Answer all questions. Eac		
Explain how DFT is use	ful in linear filtering.	
m 2. What is meant by leaka	ge ? Explain.	N
For a system defined by delay and group delay.	y(n) = 0.25 x(n) + x(n-1) + 0.25 x (n-1)	-2), evaluate phase
the number of computat	phase factor W _N are exploited in FFT a ions ?	lgorithms to reduce
いって、Explain FIR filters using	window method.	
۲۸3,45 6. Compare the characteri	istics of FIR and IIR filters.	
7. Prove that ideal high pa	ss filter is not physically realizable.	
€ Mb S. Discuss round off errors	5 .	
9. Explain sub band coding	ງ .	
્રા List the important featur	res of a DSP architecture.	(4×10=40 Marks)

P.T.O.

PART-B

Answer any two full questions from each Module.

MODULE-I

- 11. Let x_a(t) be an analog signal with a bandwidth of 3 KHz. We wish to use N point DFT to compute the spectrum of the signal with a resolution less than or equal to 50 Hz. Determine a) the minimum sampling rate b) the minimum number of required samples, and c) the minimum length of analog signal record. (3+4+3)
- 12. Let x₁(n) and x₂(n) be two finite length sequences of length 5 each. If y₁(n) and y₂(n) denote the linear and 5-point circular convolutions of x₁(n) and x₂(n) respectively, express y₂(n) in terms of y₁(n).
 10
 - 13. Draw 8-pt DIF-IDFT algorithm. Use the algorithm to evaluate the inverse of

$$X(K) = \begin{cases} 20, -5.828 - j 2.414, 0, -0.171 - j 0.41 \\ 0, -0.171 + j 0.41, 0, -5.828 + j 2.414 \end{cases}.$$
10

MODULE - II

14. Obtain the direct form 2 and transposed direct form 2 of a system described by the difference equation

$$y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + x(n-1).$$
 (4+6)

Design an IIR filter using bilinear transformation. Specifications are – 3dB at 500 Hz

Monotonic passband and stopband response.

Attenuation of 15 dB at 750 Hz

Sampling rate 2000/sec.

10

6. Design an FIR filter with the following specifications :

$$\begin{aligned} \text{Hd}(e^{jw}) &= e^{-j\omega\alpha}; \ 0 \leq |\omega| \leq 1 \& \\ &\quad 2 \leq |\omega| \leq \pi \\ &= 0 \qquad ; \text{elsewhere} \end{aligned}$$

Choose N = 7 and Hann window for the design.

10

MODULE - III

7. Draw the block diagram of TMS320C6713 DSP processor and explain its architecture.

10

18. Explain the effect of quantization of filter coefficients on a digital filter.

6

b) Write short note on transmultiplexers.

4

Discuss the concept of multirate signal processing.

b) A CD player operates with a sampling rate of 44.1 KHz while DAI drives have a sampling rate of 48 KHz. Draw a block diagram for performing this sampling rate conversion. Obtain the conversion factors and cut-off frequency of the filter employed. (5+5)

 $(10\times6=60 \text{ Marks})$