انجينئري حساب

خالد خان بوسفرنگی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹینالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

V	ابکاد يباچي	میری پہلی کتا
1	اول ساده تفرقی مساوات	1 ورجها
2	نمونه کشی	1.1
13	y'=f(x,y) کاجیومیٹریائی مطلب۔میدان کی ست اور ترکیب بولرہ $y'=f(x,y)$	1.2
	•	1.3
40		1.4
52	خطی ساده تفرقی مساوات به رنولی	1.5
70	عمودي خطوط کې نسلیں	1.6
74		1.7
0.1	7 . .	•
81	دوم ساده تفرقی مساوات • • • • • • • • • • • • • • • • • • •	2 ננجה
		2.1
		2.2
		2.3
		2.4
	· · · · · · · · · · · · · · · · · · ·	2.5
		2.6
150		2.7
		2.8
168	2.8.1 بر قرار حال حل کا حیطه- عملی گمک	
172	ېرقی اد وار کې نمونه کشي	2.9
183	بر قی ادوار کی نمونہ کثی	.10
101	: h\$ a	
191	ر جی خطعی ساده تفرقی مساوات : نخا	
191	متحانين خطی ساده تفرقی مساوات	
203	مستقل عدد ی سروالے متجانس خطی سادہ تفرقی مساوات	3.2

غیر متجانس خطی سادہ تفر قی مساوات		
غرقی مساوات قالب اور سمتیہ کے بنیاد ک حقائق	4.1	4
سادہ تفر تی مساوات کے نظام بطورانحییئری مسائل کے نمونے	4.2	
أبوت 173	اضا فی ب	1

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

جمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ حاصل کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں کی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال سختال کئے جائیں۔ جہاں ایسے الفاظ موجود نہ سخے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی ڈلی ہیں البتہ اسے درست بنانے میں بہت لوگوں کا ہاتھ ہے۔ میں ان سب کا شکر یہ ادا کرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور کمل ہونے یر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر کی

28 اكتوبر 2011

باب4

نظامِ تفرقی مساوات

گزشتہ باب میں آپ نے بلند درجی سادہ تفرقی مساوات کو حل کرنا سیما۔ اس باب میں سادہ تفرقی مساوات حل کرنے کا نیا طریقہ دکھایا جائے گا جس میں n درجی سادہ تفرقی مساوات سے n عدد درجہ اول سادہ تفرقی مساوات کا نظام حاصل کیا جائے گا۔ اس نظام کو حل کرنا بھی سیمایا جائے گا۔ تفرقی مساوات کے نظام کو قالب اور سمتیے کی صورت میں لکھنا زیادہ مفید ثابت ہوتا ہے للذا حصہ 4.1 میں قالب اور سمتیے کے بنیادی حقائق پر خور کیا جائے گا۔

اس باب میں تفرقی مساوات کے نظام کو حل کرنے کی بجائے تمام مساوات کی مجموعی طرز عمل پر غور کیا جائے گا جس سے نظام کے حل کی توازن نظام اہمیت رکھتے جس سے نظام میں کسی لیحے پر معمولی تبدیلی، بعد کے لمحات پر معمولی تبدیلی ہی پیدا کرتی ہے۔اس ترکیب سے مساوات کا اصل حل دریافت نہیں ہوتا لہذا اس کو کیفی ترکیب 2 کہتے ہیں۔ جس ترکیب سے نظام کا اصل حل حاصل ہوتا ہو اس کو مقداری ترکیب گے ہیں۔

 $\begin{array}{c} {\rm stability}^1 \\ {\rm qualitative} \ {\rm method}^2 \\ {\rm quantitative} \ {\rm method}^3 \end{array}$

4.1 قالب اور سمتیے کے بنیادی حقائق

تفرقی مساوات کے نظام پر غور کے دوران قالب اور سمتیات استعال کئے جائیں گے۔

دو عدد خطی سادہ تفرقی مساوات کے نظام

(4.1)
$$y'_1 = a_{11}y_1 + a_{12}y_2 y'_2 = a_{21}y_1 + a_{22}y_2$$

$$y'_1 = 2y_1 - 7y_2 y'_2 = 5y_1 + y_2$$

میں دو عدد نا معلوم تفاعل $y_1(t)$ اور $y_2(t)$ یائے جاتے ہیں۔ان مساوات میں دائیں جانب اضافی تفاعل میں دو عدد نا معلوم تفاعل $y_1(t)$ اور $y_2(t)$ بھی موجود ہو سکتے ہیں۔اسی طرح $y_2(t)$ عدد درجہ اول سادہ تفرقی مساوات پر بمنی نظام $y_2(t)$

$$y'_{1} = a_{11}y_{1} + a_{12}y_{2} + \dots + a_{1n}y_{n}$$

$$y'_{2} = a_{21}y_{1} + a_{22}y_{2} + \dots + a_{2n}y_{n}$$

$$\vdots$$

$$y'_{n} = a_{n1}y_{1} + a_{n2}y_{2} + \dots + a_{nn}y_{n}$$

میں $y_1(t)$ تا $y_1(t)$ نا معلوم تفاعل پائے جائیں گے۔درخ بالا ہر مساوات میں دائیں جانب اضافی تفاعل بھی پائے جا سکتے ہیں۔

تكنيكي اصطلاحات

قالب

نظام 4.1 کے عددی سر (جو مستقل یا متغیرات ممکن ہیں) کو 2×2 قالب 4 کی صورت میں کھا جا سکتا ہے۔

(4.3)
$$\mathbf{A} = \begin{bmatrix} a_{jk} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \mathbf{L} \quad \mathbf{A} = \begin{bmatrix} a_{jk} \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ -1 & \frac{2}{3} \end{bmatrix}$$

 matrix^4

اسی طرح نظام $4.2 \ {
m d} = 3$ عددی سر کو $n \times n$ قالب کی صورت میں کھا جا سکتا ہے۔

(4.4)
$$\mathbf{A} = [a_{jk}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

قالب میں درج a_{11} ، a_{12} ، a_{12} ، a_{21} ، a_{21} ، a_{31} ، میں درج a_{21} ، a_{21} ،

$$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \quad \mathbf{L} \quad \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

ارکان کی علامتی اظہار میں دو گنا زیر نوشت کا پہلا عدد صف کو ظاہر کرتا ہے جبکہ دوسرا عدد قطار کو ظاہر کرتا ہے۔ یوں a_{11} اور a_{22} بیلی قطار کا رکن ہے۔ قالب 4.3 کا موکزی و تو a_{11} اور a_{22} پر بنی ہے جبکہ قالب 4.4 کا مرکزی و تر a_{11} اور a_{22} ، a_{21} بی بینی ہے۔ ہمیں یہاں صرف مربع قالب a_{22} ، a_{22} ، a_{23} ، a_{24} تالب سے مراد ایسی قالب ہے جس میں صفول کی تعداد قطاروں کی تعداد کے برابر ہو۔ قالب 4.4 اور قالب 4.4 مربع قالب ہیں۔

سمتیہ۔ ایک قطار اور n ارکان کا سمتیہ قطار 10 درج ذیل ہے۔

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$

اسی طرح ایک صف اور n ارکان کا سمتیہ صف 11 درج ذیل ہے۔

$$\boldsymbol{v} = \begin{bmatrix} v_1 & v_2 & v_3 & \cdots & v_n \end{bmatrix}$$

entry⁵

row⁶

 $column^7$

main diagonal⁸

square matrix⁹

column vector¹⁰

 ${\rm row}\ {\rm vector}^{11}$

قالب اور سمتیات کا حساب

برابر ی مساوات

دو عدد $n \times n$ قالب صرف اور صرف اس صورت برابر ہوں گے جب ان کے تمام نظیری 12 ارکان بوابو ہوں۔ ظاہر ہے کہ دو قالب کی برابری کے لئے لازم ہے کہ ان میں صفوں کی تعداد کیساں ہو اور ان میں قطاروں کی تعداد کیساں ہو۔یوں n=2 کی صورت میں

$$m{A} = egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$$
 let $m{B} = egin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix}$

صرف اور صرف اس صورت برابر (A=B) ہول گے جب

$$a_{11} = b_{11}, \quad a_{12} = b_{12}$$

$$a_{21} = b_{21}, \quad a_{22} = b_{22}$$

ہوں۔ دو عدد سمتیہ صف (یا دو عدد سمتیہ قطار) صرف اور صرف اس صورت برابو ہوں گے جب دونوں میں ارکان کی تعداد n برابر ہو اور ان کے تمام نظیری ارکان بوابو ہول ۔ یول

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 of $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

کی صورت میں $oldsymbol{v}=oldsymbol{x}$ صرف اور صرف تب ہو گا جب $oldsymbol{v}$

$$v_1 = x_1 \quad \text{let} \quad v_2 = x_2$$

ہوں۔

مجمويه

مجموعہ حاصل کرنے کی خاطر دونوں قالب کے نظیری ارکان کا مجموعہ لیا جاتا ہے۔دونوں قالب یکساں $m \times n$ ہونا $m \times n$ لازم ہے۔اسی طرح دونوں سمتیہ صف (یا دونوں سمتیہ قطار) میں برابر ارکان ہونا لازم ہے۔یوں 2×2 قالب کا مجموعہ درج ذیل ہو گا۔

(4.5)
$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{bb} \end{bmatrix}, \quad v + x = \begin{bmatrix} v_1 + x_1 \\ v_2 + x_2 \end{bmatrix}$$

corresponding¹²

غيرسمتي ضرب

c فیر سمتی ضرب یعنی مستقل c سے قالب کا ضرب حاصل کرنے کی خاطر قالب کے تمام ارکان کو c سے ضرب دیا جاتا ہے۔ مثلاً

$$A = \begin{bmatrix} 2 & -3 \\ 5 & 1 \end{bmatrix}$$
, $-4A = \begin{bmatrix} -8 & 12 \\ -20 & -4 \end{bmatrix}$

اور

$$v = \begin{bmatrix} 9 \\ -4 \end{bmatrix}$$
, $3v = \begin{bmatrix} 27 \\ -12 \end{bmatrix}$

قالب ضرب قالب

(اتی ترتیب میں)، C=AB قالب $B=[b_{jk}]$ اور $B=[b_{jk}]$ اور $A=[a_{jk}]$ وعدد n imes n قالب $C=[c_{jk}]$ واکان n imes n کا ارکان n imes n

(4.6)
$$c_{jk} = \sum_{m=1}^{n} a_{jm} b_{mk} \qquad j = 1, \dots, n, \qquad k = 1, \dots, n$$

ہوں گے یعنی A قالب کے j صف کے ہر رکن کو B قالب کے j قطار کے نظیری رکن کے ساتھ ضرب دریتے ہوئے n حاصل ضرب کا مجموعہ لیں۔ ہم کہتے ہیں کہ قالب کے ضرب سے مراد صف ضرب قطار ہے۔ مثلاً

$$\begin{bmatrix} 2 & 1 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} 7 & 1 \\ 2 & -4 \end{bmatrix} = \begin{bmatrix} 2 \cdot 7 + 1 \cdot 2 & 2 \cdot 1 + 1 \cdot (-4) \\ (-3) \cdot 7 + 0 \cdot 2 & (-3) \cdot 1 + 0 \cdot (-4) \end{bmatrix} = \begin{bmatrix} 16 & -2 \\ -21 & -3 \end{bmatrix}$$

یہاں دھیان رہے کہ ضرب قالب غیر مستبدل 14 ہے للذا عموماً $AB \neq BA$ ہو گا۔ یوں دو قالب کو آپس میں ضرب دیتے ہوئے قالبوں کی ترتیب تبدیل نہیں کی جا عتی۔اس حقیقت کی وضاحت کی خاطر درج بالا مثال میں قالبوں کی ترتیب بدلتے ہوئے ان کو آپس میں ضرب دیتے ہیں۔

$$\begin{bmatrix} 7 & 1 \\ 2 & -4 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -3 & 0 \end{bmatrix} = \begin{bmatrix} 7 \cdot 2 + 1 \cdot (-3) & 7 \cdot 1 + 1 \cdot 0 \\ 2 \cdot 2 + (-4) \cdot (-3) & 2 \cdot 1 + (-4) \cdot 0 \end{bmatrix} = \begin{bmatrix} 11 & 7 \\ 16 & 2 \end{bmatrix}$$

scalar product¹³

 $non\ commutative^{14}$

n imes n قالب A کو n ارکان کی سمتیہ قطار x سے ضرب بھی اسی قاعدے کے تحت حاصل کی جاتی n imes n ہے۔ یوں A کے v = Ax عدد ارکان درج ذیل ہوں گے۔

(4.7)
$$v_{j} = \sum_{m=1}^{n} a_{jm} x_{m} \qquad j = 1, \dots, n$$

نوں

$$\begin{bmatrix} 7 & -3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 7x_1 - 3x_2 \\ x_1 + 4x_2 \end{bmatrix}$$

ہو گا۔

سادہ تفرقی مساوات کے نظام کااظہار بذریعہ سمتیات

تفرق

قالب یا سمتیه کا تفرق، تمام ارکان کا تفرق حاصل کرنے سے حاصل ہوتا ہے۔

$$\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 5t^3 \\ 6\cos 2t \end{bmatrix}, \quad \mathbf{y}'(t) = \begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} = \begin{bmatrix} 15t^2 \\ -12\sin 2t \end{bmatrix}$$

قالب کی تفرق اور ضرب کو استعال کرتے ہوئے مساوات 4.1 کو درج ذیل لکھا جا سکتا ہے۔

اسی طرح مساوات 4.2 کو درج ذیل y = Ax صورت میں کھا جا سکتا ہے۔

(4.9)
$$\begin{bmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

مزيداعمال اوراصطلاحات

تبديل محل

تبدیلی محل 15 کے عمل سے قالب کے قطاروں کو صفوں کی جگہ لکھا جاتا ہے۔یوں 2×2 قالب A سے تبدیلی محل 16 کے ذریعہ تبدیلی محل 17 ماصل ہو گا۔

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 2 & -11 \\ 4 & 3 \end{bmatrix}, \qquad A^T = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -11 & 3 \end{bmatrix}$$

 v^T سمتیہ صف x کا تبدیلی محل سمتیہ x^T سمتیہ قطار ہو گا۔ای طرح سمتیہ قطار v کا تبدیلی محل سمتیہ صف ہو گا۔

$$m{x} = egin{bmatrix} x_1 & x_2 \end{bmatrix} & m{x}^T = egin{bmatrix} x_1 \\ x_2 \end{bmatrix}, & m{v} = egin{bmatrix} v_1 \\ v_2 \end{bmatrix} & m{v}^T = egin{bmatrix} v_1 & v_2 \end{bmatrix}$$

قالب كامعكوس

 I^{-18} ایسا $n \times n$ قالب جس کے مرکزی وتر کے تمام ارکان اکائی $n \times n$ اور بقایا ارکان صفر ہوں کو اکائی قالب $n \times n$ ایسا $n \times n$ تیں۔

(4.10)
$$I = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

transposition¹⁵

transposition¹⁶

transpose matrix¹⁷

unit matrix¹⁸

A قالب، جس کا A قالب کے ساتھ حاصل ضرب اکائی قالب ہو B قالب ہو ایالہ ہو ایالہ B قالب B قالب کا معکوس قالب کہلاتا ہے جب A^{-1} کی معکوس قالب کہلاتا ہے جب کہ ایس صورت میں A غیر نادر قالب A^{-1} کہلاتا ہے۔ یہاں A اور B دونوں B قالب ہیں۔

$$(4.11) A^{-1}A = AA^{-1} = I$$

قالب A کا معکوس تب پایا جاتا ہے جب A کی حتی قیمت غیر صفر $|A|\neq 0$ ہو۔اگر A کا معکوس نہ پایا جاتا ہو تب A نادر 20 قالب کہلاتا ہے۔ مربع 2×2 قالب کا معکوس

(4.12)
$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{22} \end{bmatrix}$$

ے جہاں A کی حتی قیت |A| درج ذیل ہے۔

(4.13)
$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

خطى طور تابعت

 $v^{(r)}$ عدد سمتیات $v^{(1)}$ تا $v^{(r)}$ جہاں ہر سمتیہ $v^{(r)}$ ارکان پر مشتمل ہو، اس صورت خطی طور غیر تابع $v^{(r)}$ بیار جب سلسلہ $v^{(r)}$ یا خطی طور غیر تابع کہلاتے ہیں جب

(4.14)
$$c_1 v^{(1)} + \dots + c_r v^{(r)} = 0$$

non singular matrix¹⁹

singular²⁰

linearly independent set²¹

zero $vector^{22}$

linearly dependent $vector^{23}$

بقایا سمتیات کی مدد سے لکھا جا سکتا ہے، مثلاً $c_1 \neq 0$ کی صورت میں مساوات 4.14 کو c_1 سے تقسیم کرتے ہوئے

$$v^{(1)} = -\frac{1}{c_1} \left[c_2 v^{(2)} + \dots + c_r v^{(r)} \right]$$

لکھا جا سکتا ہے۔

آ مُكَّنى قدراور آ مُكَّنى سمتيات

آئگنی قدر 24 اور آئگنی سمتیات 25 انتہائی اہم ہیں جو کو انتہ میکانیات 26 میں کلیدی کردار ادا کرتے ہیں۔ماوات $Ax = \lambda x$

میں $A=[a_{jk}]$ معلوم n imes n قالب ہے جبہہ λ نا معلوم مستقل (جو حقیقی یا مخلوط مقدار ہو سکتا ہے) اور x=0 نا معلوم سمتیہ ہے جنہیں حاصل کرنا در کار ہے۔ کسی بھی λ کے لئے مساوات 4.15 کا ایک حل x=0 ممکن ہے۔ ایکی غیر سمعتی x=0 جو x=0 کی صورت میں مساوات 4.15 پر پورا اترتی ہو، x=0 کی آنگنی قدر x=0 کہتے ہیں۔ x=0 کی نظیری، x=0 کی آنگنی سمتیہ x=0 کہتے ہیں۔

 $Ax - \lambda x = 0$ کو $Ax - \lambda x = 0$ یا

$$(4.16) (A - \lambda I)x = 0$$

(4.17)
$$\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Eigenvalues²⁴

Eigenvectors²⁵

quantum mechanics²⁶

 $scalar^{27}$

Eigenvalue²⁸

Eigenvector²⁹

لکھتے ہیں جو درج ذیل مساوات کو ظاہر کرتی ہے۔

(4.18)
$$(a_{11} - \lambda)x_1 + a_{12}x_2 = 0$$
$$a_{21}x_1 + (a_{22} - \lambda)x_2 = 0$$

اب نادر قالب کی حتمی قیمت صفر ہوتی ہے لہذا $A - \lambda I$ اس صورت نادر قالب ہو گا جب اس قالب کی حتمی قیمت $A = \lambda I$ عندر جس کی امتیازی حتمی قیمت A = A اس صفر ہو۔

(4.19)
$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix}$$
$$= (a_{12} - \lambda)(a_{22} - \lambda) - a_{12}a_{21}$$
$$= \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}a_{21} = 0$$

A کی امتیازی مساوات A کی آگئی قدر یا آگئی قدر یا آگئی قدر ماصل کریں۔اس کے بعد A کو مساوات A کی آگئی سمتیہ A کا آگئی سمتیہ A کا آگئی سمتیہ ہوگا جہاں کے سے۔

مثال 4.1: ورج ذیل قالب کی آنگنی قیمتیں اور آنگنی سمتیات وریافت کریں۔

$$\mathbf{A} = \begin{bmatrix} -3 & 3\\ -0.8 & 0.4 \end{bmatrix}$$

حل:امتبازی مساوات

$$\begin{vmatrix} -3 - \lambda & 3 \\ -0.8 & 0.4 - \lambda \end{vmatrix} = \lambda^2 + 2.6\lambda + 1.2 = 0$$

characteristic determinant³⁰ characteristic equation³¹ $\lambda = \lambda_1 = -0.6$ اور $\lambda_2 = -2$ ملتے ہیں۔ آنگنی قیمت $\lambda_1 = -0.6$ کو ماوات $\lambda_1 = \lambda_1 = -0.6$ اور $\lambda_1 = \lambda_1 = -0.6$ کو مساوات $\lambda_1 = -0.6$ کو مساوات کو

$$(-3+0.6)x_1 + 3x_2 = 0$$
$$-0.8x_1 + (0.4+0.6)x_2 = 0$$

ان دونوں مساوات کو $x_2=0.8$ کی تا جا سکتا ہے۔ یوں اگر $x_1=1$ چننا جائے تو $x_2=0.8$ حاصل ہو گالبذا، $\lambda_1=-0.6$ کی نظیری، $\lambda_2=0.8$ کا آنگنی سمتیے

$$\boldsymbol{x}^{(1)} = \begin{bmatrix} 1 \\ 0.8 \end{bmatrix}$$

ہو گا۔ اسی طرح $\lambda = \lambda_2 = -2$ کو مساوات 4.18 میں پر کرتے ہیں۔

$$(-3+2)x_1 + 3x_2 = 0$$
$$-0.8x_1 + (0.4+2)x_2 = 0$$

ان دونوں مساوات کو $x_1=3$ کھا جا سکتا ہے۔یوں اگر $x_2=1$ چننا جائے تو $x_1=3$ حاصل ہو گا لہذا، $\lambda_2=-2$ کی نظیری، $\lambda_3=3$ کا آنگنی سمتیہ

$$x^{(2)} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

ہو گا۔ جیسا پہلے ذکر کیا گیا، آگلنی سمتیات کو کسی بھی غیر صفر عدد سے ضرب دیا جا سکتا ہے۔

4.2 سادہ تفرقی مساوات کے نظام بطور انجینئری مسائل کے نمونے