

EN 1438

Document And Report Documentation Page Submitted as edoc_1075732948

Report Doci	Form Approved OMB No. 0704-0188				
reviewing the collection of informati information, including suggestions to Operations and Reports 1215 Leffers	on. Send comments regarding this bor reducing this burden, to Washington Davis Highway, Suite 1204, Arl	urden es on Head ington V	I hour per response, including the time for ug the data needed, and completing and stimate or any other aspect of this collection of equarters Services, Directorate for Information (A 22202-4302. Respondents should be aware enalty for failing to comply with a collection		
1. REPORT DATE 13 MAR 2003	2. REPORT TYPE N/A	3. DA	. DATES COVERED		
4. TITLE AND SUBTITLE Detection and Classification from Hyperspectral Imagery Using the Normal Compositional Model			5a. CONTRACT NUMBER F19628-00-C-0002		
			5b. GRANT NUMBER		
			5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d. PROJECT NUMBER		
			5e. TASK NUMBER		
			5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION I Department of the Defense		8. PERFORMING ORGANIZATION REPORT NUMBER			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
	1	11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAILABILITY Approved for public release,	STATEMENT distribution unlimited				
13. SUPPLEMENTARY NOTES Also see: ADM001520, The	original document contain	ıs colo	or images.		
14. ABSTRACT					
15. SUBJECT TERMS					
6. SECURITY CLASSIFICATION OF: 17. 18. 19a. NAME OF RESPONSIBLE					

a. REPORT unclassified	b. ABSTRACT unclassified		LIMITATION OF ABSTRACT UU	OF PAGES	PERSON Patricia Mawby, EM 1438 PHONE:(703) 767-9038 EMAIL:pmawby@dtic.mil
---------------------------	-----------------------------	--	------------------------------------	-------------	---

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

pwd: cannot determine current directory!

Detection and Classification from Hyperspectral Imagery Using the Normal Compositional Model

David Stein

ASAP 2003

11-13 March 2003

Opinions, interpretations, conclusions, and recommendations are those of the author and are not This work was sponsored by the Department of the Defense under Contract F19628-00-C-0002. necessarily endorsed by the United States government.

MIT Lincoln Laboratory

20040317 140

Outline

Hyperspectral Imaging (HSI) aka Imaging Spectrometry

Descriptive models of HSI

The Normal Compositional Model

Applications

Summary

Future Work

Hyperspectral Imaging or Imaging Spectrometry

NASA: ER2 AVIRIS

Hyperspectral Imager

NASA: E01 HYPERION

NRL: HYDICE 0.4-2.4 nm

Dispersing element

Entrance slit

Detector array

Spatial axis

Sensor FOV

Scan direction (platformotion or mirror)

Spatial dimension

308 pixels

MIT Lincoln Laboratory

reflectance spectra of various soils

eonotoeiter O 4

NCM_ASAP-3 DWJS 4/28/2003

Detection of a Known Target

HSI: Blind Unmixing

MIT Lincoln Laboratory

Outline

Hyperspectral Imaging (HSI) aka Imaging Spectrometry

Descriptive models of HSI

Characteristics of HSI

Modeling intra-class variability

Common approaches to modeling HSI

Applications

Summary

Conclusions

Important Characteristics of HSI

Different materials occlude each other

Materials not well modeled by a single spectrum

Random Models of Spectral Variability: First and Second Order Statistics

AVIRIS
(400-2400 nm)
Southern CA
multiple roof
reflectance

radiance spectra

(400-900 nm)

AVIRIS

Tampa Bay

identified with

phytoplankton

class

Correlation matrix is independent of radiance-to-reflectance transformation

500 500 700 wavelength (nm)

- Correlation matrix is class dependent
- MIT Lincoln Laboratory Significance of modeling variability judged by impact on performance

NCM_ASAP-8 DWJS 4/28/2003

Subspace Models of Spectral Variability

- Subspace model:
- Define a low-dimensional subspace such that target signatures may be replaced, with bounded error, by projection onto subspace
- Eigenvector construction

Given observations
$$\{x_i,\ldots,x_m\}\subset R^n$$
 define $T=\sum_{i=1}^m x_i\cdot x_i^*=UDU^i$

Relative magnitude of the error vector obtained by ignoring the last N-p eigenvectors, where N=rank(T), is

Applied to the roof data above to the roof da

$err^2(p)$	6000'0	0.0001
u O		
Dimension (p)	LO.	2
Ē		
		-

Convex Models of Spectral Variability

- as a convex mixture (linear combination such that coefficients are Find simplex such that every target is approximately represented positive and sum to 1) of the vertices
- Construction of maximum volume inscribed n-simplex
- Project samples onto first n eigenvectors of correlation matrix
- Select n+1 affine independent samples
- apply determinant update equations to maximize volume

roof data

AVIRIS

- * Endmember
- Projected data

Common Approaches to Modeling HSI

Local Normal model

$$x \in Neigh(z) \Rightarrow x \sim N(\mu_z, \Gamma_z)$$

Normal mixture model

$$x \sim \sum_{j=1}^{m} \rho_j N(\mu_j, \Gamma_j), \rho_j \geq 0 \text{ and } \sum_{j=1}^{m} \rho_j = 1$$

Subspace models (linear)

$$x_i = A\alpha_i + n, n \sim N(\mu, \Gamma)$$

Linear mixture models (convex)

$$x_i = \sum_{j=1}^m a_{ij} s_j + n; a_{ij} \ge 0 \text{ and } \sum_{j=1}^m a_{ij} = 1; n \sim N(\mu, \Gamma)$$

· None of these models accounts for 1) occlusion, 2) intra-class variability, and 3) subpixel mixing

Outline

- Hyperspectral Imaging (HSI) aka Imaging Spectrometry
- Descriptive models of HSI
- The Normal Compositional Model
- Applications
- Classification
- Summary
- Future Work

Normal Compositional Model

• Observation \vec{x}_i is modeled as

$$\vec{x}_i = \vec{e}_0 + \sum_{j=1}^m a_{ij} \vec{e}_j$$
 such that $\vec{e}_0 \sim N(\vec{u}_0, \Gamma_0)$ and $\vec{e}_j \sim N(\vec{u}_j, \Gamma_j)$

subject to constraints

$$0 \le a_{ij}$$
 for $j \le r$, and either $\sum_{j=1}^{r} a_{ij} = 1$ or $\sum_{j=1}^{r} a_{ij} \le 1$; $r \le m$.

Features:

Estimates of class parameters converge under appropriate hypotheses to Models subpixel mixing and random variation within a class Class parameters $\{(\mu_j,\Gamma_j)\}_{10} \le J \le m\}$ estimated as scene wide aggregates

Abundance values $\{a_v \mid 1 \le j \le m, 1 \le i \le N\}$ estimated at every pixel

Additive components, e.g. noise and path radiance

Accommodates (fat) subspace as well as (fat) simplex models.

Special Cases: Linear mixture, Gaussian mixture and subspace models

NCM Blind Unmixing

NCM_ASAP-14 DWJS 4/28/2003

NCM Detection

Nested Expectation Maximization Estimation of NCM Parameters:

Complete Likelihood function:

N observations x, and abundance vectors $\alpha_i = (a_{i1}, \dots, a_{im})$

$$p(x_1,...,x_N,a_{11},...a_{1m},...,a_{N1},...,a_{Nm} | \{(\mu_j,\Gamma_j)\}\} = \prod_{i=1}^N N(x_i;\mu(\alpha_i) + \mu_0,\Gamma(\alpha_i) + \Gamma_0)p(\alpha_i)$$

where

$$\mu(\alpha_i) = \sum_{j=1}^m a_{ij}\mu_j$$
 and $\Gamma(\alpha_i) = \sum_{j=1}^m a_{ij}^2\Gamma_j$

Abundance values are hidden parameters

0. Initialize class parameters $\{(\mu, 0, \Gamma, 0) | 0 \le j \le m\}$

Linear mixture model techniques to identify initial endmembers (HSI) Vertices of convex hull (low dimensional, e.g., multispectral, data)

1. Sample hidden parameters $a_n | 0 \le j \le m, 1 \le i \le N$

Optimization of likelihood function (currently)

Monte Carlo Markov Chain (in progress)

2. Optimize class parameters for given values of hidden parameters Expectation-Maximization Algorithm $\{(\mu^{[\mu^*]} | \Gamma^{\lambda})| 0 \le j \le m\}$

3. Repeat 1 and 2 until a convergence criterion is met

Updating Class Parameters Using **Expectation Maximization**

Class parameters after iteration &

$$\Omega' = \{(\mu'_j, \Gamma'_j) | 0 \le j \le m\}$$

Class mean update:
$$\mu_{k} = \frac{1}{N} \sum_{i=1}^{N} E(e_{k} \mid x_{i}, \{a_{ij}^{r}\} \Omega^{s})$$

$$= \mu_{k} + \frac{1}{N} \sum_{i=1}^{N} a_{ki} \left[\Gamma_{k}^{s} \right] \left[\Gamma(\alpha_{i}) + \Gamma_{0}^{s} \right] \left(x_{i} - \mu^{s}(\alpha_{i}) - \mu_{0}^{s} \right)$$

Class covariance update

$$\Gamma_{\kappa}^{\prime+1} = \frac{1}{N} \sum_{i=1}^{N} \mathsf{cov}(e_{\kappa} \mid x_i, \Omega^{\ell}) + \left[E(e_{\kappa} \mid x_i, \Omega^{\ell}) - \mu_{\kappa}^{\ell+1} \right] E(e_{\kappa} \mid x_i, \Omega^{\ell}) - \mu_{\kappa}^{\ell+1} \right]$$

Parameter updates are averages over expected values that are calculable from current parameters and abundance values

Outline

- Hyperspectral Imaging (HSI) aka Imaging Spectrometry
- **Descriptive models of HSI**
- The Normal Compositional Model
- Generalization of common models
- **Estimation**
- Classification
- Detection
- **Applications**
- Summary
- **Future Work**

AVIRIS Imagery of Cuprite, Nevada

AVIRIS: RGB Cuprite, NV

centers created 7.6-6.2 million years ago (hot sulfuric acid laden water Acid sulfate hydrothermal alteration

Complex well studied scene used for evaluating algorithms

Mineral classification maps and spectral library available from US Geological Survey

USGS airborne hyperspectral identifications confirmed using ground spectrometry and laboratory analysis of field samples

19 minerals plus 4 mixtures identifiable using SWIR data over 189 km² area

crystalline structure, temperature of formation Subtle shifts in signatures due to variations in constituent elements

Validate NCM estimation and blind DUXING

Sensor: AVIRIS

Spectral region: 50 bands (2-2.5μm) Area covered: 42 km², 350 by 300 pixels extracted from a 189 km² image

Initial number of classes:

Identification of Spectra: Matching Absorption Features

Alunite Group:

 $(Na, K)Al_3(SO_4)_2(OH)_6$

- **Absorption Features:**
- 2.17 μ: Al-O-H fundamental
 Higher formation temperature
 implies deeper and wider toward
 short end
- Shoulder: O-H stretch+Al-O-H bend
- Increasing concentration of Na shifts shoulder longer, and main band narrows
- 2.31 μ : O-H stretch+Al-O-H bend

and moderate temperature mixed alunite (1) using USGS feature matching technique (correlation coefficients 0.99 and 0.98, respectively) NCM mean spectra identified with high temperature K-alunite (10)

MIT Lincoln Laboratory

NCM_ASAP-20 DWJS 4/28/2003

USGS Class Map and NCM Alunite Abundance Plane

NCM_ASAP-21 DWJS 4/28/2003

ife Vests in Ocean HSI **Detection Experiment:**

- Compare detection performance of Gaussian mixture, linear mixture, and NCM based known target and anomaly detection algorithms
- **Background Data**
- -125-by-125 2 m² pixels
- 24 band VNIR HSI (415-830 nm) from LASH sensor
 - Target description
- Life vest signature combined with background data from 1000 randomly selected pixels at 5% pixel fill fraction
 - -1 target class (mean given, covariance estimated as noise covariance)
 - Model Parameters
- -5 background classes

NCM_ASAP-22 DWJS 4/28/2003

Mean Class Spectra: Normal Mixture and Normal Compositional Models

NCM_ASAP-23 DWJS 4/28/2003

Comparative Detection Performance

Summary and Conclusions

Described a normal compositional model (NCM)

simultaneously treats mixed pixels and intra-class variability

accommodates subspace, convex, and random class variability

generalizes and synthesizes normal mixture, linear mixture, and subspace models

Applied NCM to Cuprite data

Class means identified with spectra of materials in scene

Abundance estimates qualitatively corresponded with USGS classification maps

Application to ocean data

NCM estimation method identified classes where pure-pixel methods failed

NCM offered superior detection performance in comparison with LMM and GMM based models

Future Work

Speed up the software

Applications to real time HSI systems

Applications to HSI performance models

NCM_ASAP-26 DWJS 4/28/2003