theory problem on matrix inverse

Example 5 If A is 3×3 invertible matrix, then show that for any scalar k (non-zero),

kA is invertible and $(kA)^{-1} = \frac{1}{k}A^{-1}$

Solution We have

$$(kA)$$
 $\left(\frac{1}{k}A^{-1}\right) = \left(k.\frac{1}{k}\right)(A.A^{-1}) = 1 (I) = I$

Hence (kA) is inverse of $\left(\frac{1}{k}A^{-1}\right)$ or $(kA)^{-1} = \frac{1}{k}A^{-1}$

page-47

practice problem on row operations

67. On using elementary row operation $R_1 \rightarrow R_1 - 3R_2$ in the following matrix

equation
$$\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$
, we have

(a)
$$\begin{bmatrix} -5 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} -5 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & -3 \\ 1 & 1 \end{bmatrix}$

(c)
$$\begin{bmatrix} -5 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$
 (d) $\begin{bmatrix} 4 & 2 \\ -5 & -7 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & -3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$

Sol. (a) We have, $\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$

using elementary row operation $R_1 \rightarrow R_1 - 3R_2$

$$\begin{bmatrix} -5 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

Since, on using elementary row operation on X = AB, we apply these operation simultaneously on X and on the first matrix A of the product AB on RHS.

40. If
$$A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$$
, then find $A^2 - 5A - 14I$. Hence, obtain A^3 .
Sol. We have, $A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$ (i)

$$A^2 = A \cdot A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 29 & -25 \\ -20 & 24 \end{bmatrix}$$

$$A^2 - 5A - 14I = \begin{bmatrix} 29 & -25 \\ -20 & 24 \end{bmatrix} - \begin{bmatrix} 15 & -25 \\ -20 & 10 \end{bmatrix} - \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
Now, $A^2 - 5A - 14I = O$

$$A \cdot A^2 - 5A \cdot A = 14AI = O$$

$$A \cdot A^2 - 5A \cdot A = 14AI = O$$

$$A^3 - 5A^2 - 14A = O$$

$$A^3 - 5A^2 - 14A = O$$

$$A^3 - 5A^2 + 14A$$

$$A^3 - 5A^2 - 14A = O$$

$$A^3$$

page-58

NOTE: for topics covered in this lecture, there is very few problems in ncert. to practice concepts covered here, please solve problems from similar and past year ques pdfs.

Useful formulas and concepts

How to find the Rank of a Matrix?

To find the rank of a matrix, we will transform that matrix into its echelon form.

Then determine the rank by the number of non zero rows.

I have demoed a process in next page with an example.

The rank of a unit matrix of order m is m.

If A matrix is of order $m \times n$, then $\rho(A) \le \min\{m, n\} = \min\{m, n\}$

If A is of order $n \times n$ and $|A| \neq 0$, then the rank of A = n.

If A is of order $n \times n$ and |A| = 0, then the rank of A will be less than n.

There are three cases for system of linear equations:

Case-1

Consider Ax=b

rank(A)=rank(A|b)=n unique solution

Case-2

rank(A)=rank(A|b)=m<n infinte solutions</pre>

Case-3

rank(A)≠rank(A|b) no solution

Rank of a Matrix by Row - Echelon Form

We can transform a given non-zero matrix to a simplified form called a Row-echelon form, using the row elementary operations. In this form, we may have rows all of whose entries are zero. Such rows are called zero rows. A non-zero row is one in which at least one of the elements is not zero.

Example 3:

Find the rank of the matrix.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Solution:

Given

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$R_2 \rightarrow R_2 - R_1$$

$$R_3 \rightarrow R_3 - R_1$$

We get

Here number of non zero rows = 1

Hence the rank of the matrix = 1

TRICK:

If a matrix is in row-echelon form, then all elements below the leading diagonal are zeros.

SHORT TRICK TO FIND INVERSE OF 3 × 3 MATRIX

To find inverse of A = $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$

STEP 1

a b c a b d e f d e g h i g h Copy Ist column and IInd column

abcab

STEP 2

STEP 3

a b c a b

Neglect first row

d e f d e From up to down arrow take positive sign

b c a b From down to up arrow take negative sign

d e f d e

Neglect first row

$$A^{-1} = \frac{1}{\mid A \mid} \begin{bmatrix} ei - hf & fg - id & dh - eg \\ hc - bi & ai - cg & bg - ah \\ bf - ec & cd - af & ae - bd \end{bmatrix}^T = \begin{bmatrix} ei - hf & hc - bi & bf - ec \\ fg - id & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{bmatrix}$$