Three phase power measurement

Date:	18/11/2021	Name:	Dhruv Karmokar	
Experiment No:	5	Reg. No:	21BAI1604	

Aim:

To measure the power consumed by a given three phase AC load.

Software required: LTSpice

Apparatus required:

S.No.	Apparatus Name	Type	Range	Qty
1	Voltmeter	MI	(0-600)V	1
2	Ammeter	MI	(0-10)A	1
3	Wattmeter	UPF	600V, 10A	2
4	Three phase resistive load	Tubular	7kW	1
5	Connecting wires	Multi strand	-	As required

Circuit diagram:

FORMULAE

Power factor = $\cos \phi$

$$\cos \phi = \cos \left[tan^{-1} \left[\sqrt{3} \frac{W_1 - W_2}{W_1 + W_2} \right] \right]$$

LTSpice circuit diagram:

Procedure:

- 1. Open a new file
- 2. Select voltage source from components list and convert into AC voltage source by selecting 'advanced' option while feeding the parameter to the source.
- 3. Choose sine
- 4. Feed amplitude, frequency and delay time
- 5. In small signal analysis (right side), feed amplitude and phase angle value.
- 6. In a 3-phase circuit, the delay time for R-phase is zero
- 7. For Y-phase, the delay angle is 6.67 ms as in Figure 3 for a frequency of 50 Hz which is corresponding to 120 degree phase shift with respect to R-phase.
- 8. For B-phase, the delay angle is 13.22 ms as in Figure 4 for a frequency of 50 Hz which is corresponding to 240 degree phase shift with respect to R-phase
- 9. Connect the sources at one end and further connect it to ground.

- 10. Connect 3-phase resistive load to the circuit.
- 11. Save the file
- 12. Edit simulate cmd
- 13. Choose transient
- 14. Specify the stop time (0.1 s)
- 15. Run the file
- 16. Measure all line voltages and phase currents
- 17. To measure the instantaneous power dissipated or supplied by a component, hold the "alt" key and click on the component to be measured.
- 18. After selecting the instantaneous power of a component, hold the "ctrl" button and click on the name of the measurement in the measurement window. A new window will open displaying the average power and energy
- 19. Measure the power and energy for different load values and tabulate it.

Screenshot of waveforms and results:

For 10 ohms power:

For 150 ohms power:

Tabular column for balanced Resistive load:

S.No.	Voltage	Current	W ₁ (Watts)		W ₂ (Watts)		Real Power	Power
	Volts	Amperes	Observed	Actual = Obs*MF	Observed	Actual= Obs*MF	(W ₁ +W ₂) Watts	factor Cos φ
1	415V	2A	300	600	320	640	1240	0.9984
2	415V	2.8A	480	960	500	1000	1960	0.9994
3	415V	5A	840	1680	840	1680	3360	1
4	415V	6.9A	1160	2320	1200	2400	4720	0.9995

Theoretical calculations for balanced load:

Result & Inference:

- The power consumed by a 3-phase AC load is calculated theoretically
- The power consumed by a 3-phase AC load is measured practically
- The power and energy consumed by a 3-phase AC load is verified by LTspice simulation

Therefore it can be concluded that:

- 2-wattmeter method efficiently measures the power in a three-phase system.
- LTspice can also be used for measuring power.
- Error could be due to overheating of the circuit or due to leaking current.