

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - 2024

Práctica complementaria - Unidad 1

Gráfica de una función definida a partir de una función dada

Nota La intencionalidad del presente trabajo es la implementación de un software matemático como herramienta de visualización que nos ayude a buscar relaciones y comprender de manera más profunda lo que estudiamos. Todo el material utilizado corresponde al apunte de la Unidad Nº 1 apartado 2.5

Una segunda etapa será justificar analíticamente lo que hayamos observado en los gráficos. Una opción para realizar el presente trabajo es el software de acceso libre Geogebra.

Ejercicio 1.

a Grafica la función $f(x) = \sqrt{x-2}$ y completar.

$$Dom(f) = Im(f) =$$

b Sean p_1 , p_2 , p_3 y p_4 las funciones cuyas leyes son:

$$p_1(x) = f(x+\pi),$$
 $p_2(x) = f(x+\frac{3}{2}),$ $p_3(x) = f(x+(-4)),$ $p_4(x) = f(x+(-\frac{1}{2})).$

Luego de graficarlas, completar.

$$\operatorname{Dom}(p_1) = \operatorname{Im}(p_1) =$$
 $\operatorname{Dom}(p_2) = \operatorname{Im}(p_2) =$
 $\operatorname{Dom}(p_3) = \operatorname{Im}(p_3) =$
 $\operatorname{Dom}(p_4) = \operatorname{Im}(p_4) =$

¿Observas alguna relación con el dominio de f?, ¿y con el conjunto imagen de f?. Completa la siguiente frase para cada $i = 1 \dots 4$.

La gráfica p_i se obtiene trasladando horizontalmente ... unidades a la gráfica de f hacia la (izquierda o derecha).

Ejercicio 2. Replica el ejercicio 1 considerando la función:

$$f(x) = \frac{1}{x}$$
 con $Dom(f) = (0, 9].$

Ejercicio 3.

a Grafica la función $f(x) = \cos(x)$ y completa:

$$Dom(f) = Im(f) =$$

b Sean h_1 , h_2 , h_3 y h_4 las funciones cuyas leyes son:

$$h_1(x) = 4f(x)$$
 $h_2(x) = \frac{1}{4}f(x)$ $h_3(x) = f(4x)$ $h_4(x) = f(\frac{1}{4})$

Luego de graficarlas completa para cada i = 1.,4:

$$Dom(h_i) = Im(h_i) =$$

¿Observas alguna relación con el dominio de f?, ¿y con el conjunto imagen de f?. Completa la siguiente frase para cada i = 1.4.

La gráfica h_i se obtiene (dilatando o comprimiendo) (verticalmente u horizontalmente) a la gráfica de f.

Ejercicio 4. Replica el ejercicio 3 considerando la función:

$$f(x) = \frac{1}{x-1}$$
 con $Dom(f) = (0,1) \cup (1,9)$

Ejercicio 5.

a Grafica la función $f(x) = 2x^5 - x^3 + 3x + 3$ y completa:

$$Dom(f) = Im(f) =$$

b Sean j_1, j_2, j_3 y j_4 las funciones cuyas leyes son:

$$j_1(x) = -f(x)$$
 $j_2(x) = f(-x)$ $j_3(x) = |f(x)|$ $j_4(x) = f(|x|).$

Luego de graficarlas completa para cada i = 1.,4:

$$Dom(j_i) = Im(j_i) =$$

¿Observas alguna relación con el dominio de f?, ¿y con el conjunto imagen de f?.

Ejercicio 6. Replica el ejercicio 5 considerando la función:

$$\text{I} \quad f(x) = \frac{x-2}{x+4} \quad \text{ con } \quad \mathrm{Dom}(f) = [-20, -4) \cup (-4, 10].$$

II
$$f(x) = x^3 - 2x^2 - 5x + 6$$
 con $Dom(f) = [-3, 4)$.

Ejercicio 7. Sea $f:(-3,0)\cup(0,4)\to\mathbb{R}$ definida por

$$f(x) = \frac{1}{x}.$$

Sean g_1 , g_2 , g_3 y g_4 las funciones cuyas leyes son:

$$g_1(x) = f(x-2),$$
 $g_2(x) = 3g_1(x),$ $g_3(x) = g_2(x) - 5,$ $g_4(x) = (-1)g_3(x).$

Luego de graficarlas completa para cada $i = 1 \dots 4$:

$$Dom (g_i) = Im (g_i) =$$