

Analyse Numérique

Serie d'exercices Nº1 : Résolution numérique des systèmes d'équations linéaires

Niveau : 3A & 3 B Année universitaire : 2021-2022

Exercice 1

On considère le système d'équations linéaires (S), dont l'écriture matricielle est donnée par : AX = b avec :

$$A = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 4 \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \ et \ b = \begin{pmatrix} 1 \\ 6 \\ 9 \end{pmatrix}$$

Partie I:

- 1. Montrer que (S) admet une unique solution.
- 2. Montrer que A admet une décomposition LU.
- 3. Justifier la convergence de la méthode itérative du Jacobi pour la résolution du (S)

Partie II:

- 1. Résoudre (S) par la méthode du pivot de Gauss.
- 2. Donner le schéma itératif de la méthode de Jacobi associé au système (S).
- 3. Pour le vecteur $X^{(0)} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, donner les résultats des deux premières itérations de la méthode de Jacobi pour résolution du (S).

Exercice 2 On considère le système d'équations linéaires (S_{α}^{θ}) : AX = b avec

$$A = \begin{pmatrix} 3\theta & 4 & -2 \\ 1 & 2\theta & 1 \\ 0 & 2 & \alpha \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad et \ b = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \quad et \ \alpha \in \mathbb{R}$$

Partie $I: \theta = 1$

- 1. Déterminer les valeurs de α pour lesquelles le système (S^1_{α}) admet une unique solution.
- 2. Sachant que pour $\theta = 1$ et $\alpha = 6$ la matrice A peut être décomposée en un produit LU, résoudre le système (S_6^1) en utilisant cette décomposition.
- 3. Sans calculer A^2 ni L^2 proposer un raisonnement pour résoudre le système d'équation linéaires $A^2X=b$.

Partie II : $\theta \in \mathbb{R}$

- 1. Déterminer une condition suffisante sur θ et α pour que la méthodes de Jacobi et de Gauss-Seidel soient convergentes.
- 2. Pour un vecteur initial $X^{(0)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, donner le résultat des deux premières itérations de la méthode de Jacobi appliquée au système (S^{θ}_{α}) pour $\theta = 3$ et $\alpha = 6$.
- 3. Pour un vecteur initial $X^{(0)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, donner le résultat des deux premières itérations de la méthode de Gauss Seidel appliquée au système (S^{θ}_{α}) pour $\theta = 3$ et $\alpha = 6$.

Exercice 3 (Examen Janvier 2019)

On considère le système d'équations linéaire $(S_{\alpha}): AX = b$ avec $\alpha \in \mathbb{R}$,

$$A = \begin{pmatrix} \alpha & 1 & 0 \\ 1 & \alpha & 1 \\ 0 & 1 & \alpha \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad et \ b = \begin{pmatrix} 5 \\ 10 \\ 11 \end{pmatrix}$$

- 1. Déterminer les valeurs de α pour lesquelles A est inversible.
- 2. Déterminer une condition suffisante sur α assurant la convergence de la méthode de Jacobi pour la résolution du système (S_{α}) .
- 3. Pour $\alpha = 3$,
 - (a) Résoudre (S₃) par la méthode de Gauss.
 - (b) Donner le schéma itératif de la méthode de Jacobi.
 - (c) Pour le vecteur initial $X^{(0)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, donner les résultats des deux premières itérations de la méthode de Jacobi pour la résolution du (S_3) .

Exercice 4 (Asynchrone)

On considère le système d'équations linéaires (S_{α}) : $A_{\alpha}X = b$ avec $\alpha \in \mathbb{R}$,

$$A = \begin{pmatrix} \alpha & 1 & 1 \\ 1 & -3 & 1 \\ 1 & 1 & -\alpha \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad et \ b = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$$

$Partie\ I:$

- 1. Pour quelles valeurs du paramètre réel α , le système (S_{α}) est de Cramer : il admet unique solution?
- 2. Pour quelles valeurs du paramètre réel α , la matrice A_{α} est à diagonale strictement dominante ?

Dans la suite, on considère $\alpha = 4$.

Partie II:

- 1. Justifier l'existence d'une unique décomposition LU de la matrice A_4 .
- 2. Réaliser la factorisation LU de la matrice A_4 .
- 3. Résoudre le système (S_4) avec une méthode directe de votre choix, vue en cours.
- 4. Établir le schéma itératif de la méthode de Gauss Seidel pour la résolution de S_4 tout en justifiant sa convergence.
- 5. En partant du vecteur initial, $X^{(0)} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, donner les résultats des trois premières itérations de la méthode de Gauss Seidel pour la résolution de (S_3) .