

Mathematical Statistics and Data Analysis

Lecture 7: Statistics and their distributions

Lyu Ni

DaSE@ECNU (Ini@dase.ecnu.edu.cn)

October 19, 2019

Outlines

- Sample
- 2 The Empirical Cumulative Distribution Function
- 3 Statistic
 - Sample Mean
 - Sample Variance & Sample Standard Deviation
 - Sample Moment
 - **Order Statistics**
 - Sample Quantiles & Sample Median
- 4 Distributions Derived from the Normal Distribution χ^2 Distributions

 F Distribution

Reading Material

Textbook:

• Rice: Chapter 3.7, 6, 7, 10;

Mao: Chapter 5;

Sample

Sample

Definition

The random variables x_1, x_2, \dots, x_n are called a **simple random sample** of size n from the population F(x) if x_1, x_2, \dots, x_n are mutually independent random variables and the marginal c.d.f. of each X_i is the same function F(x).

Remark

• x_1, x_2, \dots, x_n are independently and identically distributed. The joint c.d.f. of (x_1, x_2, \dots, x_n) is

$$F(x_1, x_2, \cdots, x_n) = \prod_{i=1}^n F(x_i)$$

• F(x) is also called **population distribution**.

Question:

How to find the population distribution F(x)?

Definition

Suppose that x_1, x_2, \dots, x_n are a simple random sample. $x_{(1)} \leq x_{(2)} \leq \dots \leq x_{(n)}$ is called the **ordered sample** if the sample are sorted from the smallest to the largest, that is,

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}.$$

Question:

How to find the population distribution F(x)?

Definition

Suppose that x_1, x_2, \cdots, x_n are a simple random sample. $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$ is called the **ordered sample** if the sample are sorted from the smallest to the largest, that is,

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}.$$

Definition

The empirical cumulative distribution function (e.c.d.f.) $F_n(x)$ is defined by

$$F_n(x) = \begin{cases} 0, & \text{if } x < x_{(1)}; \\ k/n, & \text{if } x_{(k)} \le x < x_{(k+1)}, k = 1, 2, \cdots, n-1; \\ 1, & \text{if } x \ge x_{(n)}; \end{cases}$$

Property

The e.c.d.f. $F_n(x)$ is a c.d.f., that is, $F_n(x)$ satisfies that

- $F_n(x)$ is non-decreasing and right-continuous;
- $F_n(-\infty) = 0$ and $F_n(\infty) = 1$;

Example

- Aim of study: to investigate chemical methods for detecting the presence of synthetic waxes that had been added to beeswax.
- The addition of microcrystalline wax raises the melting point of beeswax.
- All pure beeswax had the same melting point;
- However, the melting point and other chemical properties of beeswax vary from one beehive to another.

Example (Con'd)

- Samples of pure beeswax are obtained from 59 sources.
- The 59 melting points (in °C) are listed as follows:

```
63.78
       63.45
               63.58
                       63.08
                               63.40
                                       64.42
                                               63.27
                                                       63.10
63 34
       63.50
               63.83
                       63.63
                               63.27
                                       63.30
                                               63.83
                                                       63.50
       63.86
63.36
               63.34
                      63.92
                               63.88
                                       63.36
                                               63.36
                                                      63.51
63 51
       63.84
               64.27
                      63.50
                               63.56
                                       63.39
                                               63.78
                                                      63.92
63.92
       63.56
               63.43
                      64.21
                              64.24
                                       64.12
                                               63.92
                                                      63.53
       63.30
63.50
               63.86
                      63.93
                               63.43
                                       64.40
                                               63.61
                                                       63.03
63 68
       63.13
               63.41
                       63 60
                               63 13
                                                       62 85
                                       63 69
                                               63 05
63.31
       63.66
               63.60
```

Example (Con'd)

• The e.c.d.f. is plotted as follows:

 $F_n(x)$ has another formula:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{(-\infty,x)}(x_i)$$

where

$$I_{(-\infty,x)}(x_i) = \begin{cases} 1, & x_i \le x; \\ 0, & x_i > x; \end{cases}$$

The random variables $I_{(-\infty,x)}(x_i)$ are independent Bernoulli random variables:

$$I_{(-\infty,x)}(x_i) = \begin{cases} 1, & \text{with probability } F(x) \\ 0, & \text{with probability } 1 - F(x); \end{cases}$$

Thus, $nF_n(x)$ is a binomial random variable b(n, F(x)) and so

$$E(F_n(x)) = F(x)$$

$$Var(F_n(x)) = \frac{1}{n}F(x)(1 - F(x))$$

Theorem

Suppose that x_1, x_2, \dots, x_n are a sample from a population c.d.f F(x) and $F_n(x)$ is e.c.d.f. Then,

$$P\left(\sup_{-\infty < x < \infty} |F_n(x) - F(x)| \to 0\right) = 1$$

as $n \to \infty$

Statistic

Definition

Suppose that x_1, x_2, \cdots, x_n are a sample from an unknown population. A **statistic** T is defined by a function of the sample $T = T(x_1, x_2, \cdots, x_n)$ without any unknown parameters.

Remark:

- Statistics: $\sum_{i=1}^{n} x_i$, $\sum_{i=1}^{n} x_i^2$ and $F_n(x)$;
- A statistic does not depend on unknown parameters;
- The distribution of the statistic often depend on unknown parameters;

Sample Mean

Definition

Let x_1, x_2, \dots, x_n be a sample. The **sample mean** \bar{x} is defined as the arithmetic mean of a sample, i.e.

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Property

- $\sum_{i=1}^{n} (x_i \bar{x}) = 0;$
- $\bar{x} = \underset{c}{\operatorname{argmin}} \sum_{i=1}^{n} (x_i c)^2$, where c is a constant;

Sample Mean

Example

Suppose that x_1, x_2, \dots, x_{10} from a uniform distribution U(0, 1). At the i sampling, calculate the sample mean as

$$\bar{x}_i = \frac{\sum_{j=1}^{10} x_{i,j}}{10}, i = 1, 2, \dots, 500.$$

What is the distribution of the sample mean?

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

 $\overline{\mathtt{x}}$

Sample Mean

Theorem

Suppose that $\{x_i\}_{i=1}^n$ are a sample and \bar{x} is the sample mean.

- If the population distribution is $N(\mu, \sigma^2)$, then the exact distribution of \bar{x} is $N(\mu, \sigma^2/n)$;
- Suppose the population distribution is unknown. But $E(x) = \mu$ and $Var(x) = \sigma^2$. The asymptotic distribution of \bar{x} is $N(\mu, \sigma^2/n)$. Denote $\bar{x} \sim N(\mu, \sigma^2/n)$.

Proof:

• Since $\sum_{i=1}^{n} x_i \sim N(n\mu, n\sigma^2)$, we have

$$\bar{x} \sim N(\mu, \sigma^2/n)$$
.

■ By CLT, $\sqrt{n}(\bar{x} - \mu)/\sigma \xrightarrow{L} N(0, 1)$. Thus, the asymptotic distribution of \bar{x} is $N(\mu, \sigma^2/n)$.

Sample Variance

Definition

Suppose that x_1, x_2, \dots, x_n are a sample. The sample variance is defined by

$$s_*^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \text{ or } s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

Remark:

- s^2 is also called **unbiased variance**;
- The different formula for the sample variance is

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n} = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$$

Sample Variance

Theorem

Suppose that the population X has first- and second- order moment, that is, $E(X)=\mu$ and $Var(X)=\sigma^2<\infty$. Let x_1,x_2,\cdots,x_n be a sample from the population. \bar{x} and s^2 are, respectively, the sample mean and sample variance. Then,

$$E(\bar{x}) = \mu$$
, $Var(\bar{x}) = \sigma^2/n$, $E(s^2) = \sigma^2$.

Proof: It is obvious that

$$E(\bar{x}) = \frac{1}{n} E\left(\sum_{i=1}^{n} x_i\right) = \frac{n\mu}{n} = \mu,$$

$$Var(\bar{x}) = \frac{1}{n^2} Var\left(\sum_{i=1}^{n} x_i\right) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}.$$

Sample Variance

Theorem (Con'd)

We know

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i^2 - 2\bar{x}x_i + \bar{x}^2)$$
$$= \sum_{i=1}^{n} x_i^2 - 2\bar{x}\sum_{x_i} + n\bar{x}^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2.$$

Since
$$E(x_i^2) = Var(x_i) + (E(x_i))^2 = \sigma^2 + \mu^2$$
 and $E(\bar{x}^2) = Var(\bar{x}) + (E\bar{x})^2 = \sigma^2/n + \mu^2$, we have

$$E\left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right) = n(\mu^2 + \sigma^2) - n(\mu^2 + \sigma^2/n) = (n-1)\sigma^2.$$

Thus,
$$E(s^2) = \sigma^2$$
.

Sample Standard Deviation

Definition

Suppose that x_1, x_2, \dots, x_n are a sample. The **sample** standard deviation is defined by

$$s_* = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

or

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Sample Moment

Definition

Suppose that x_1, x_2, \dots, x_n are a sample.

• The kth-order sample moment is defined by

$$a_k = \frac{1}{n} \sum_{i=1}^n x_i^k$$

Particularly, $a_1 = \bar{x}$.

• The kth-order sample central moment is defined by

$$b_k = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Particularly, $b_2 = s_*^2$.

Sample Moment

Definition

Suppose that x_1, x_2, \dots, x_n are a sample.

The sample coefficient of skewness is

$$\hat{\beta}_s = \frac{b_3}{b_2^{3/2}}$$

The sample kurtosis is defined by

$$\hat{\beta}_k = \frac{b_4}{b_2^2} - 3$$

Definition

Suppose that x_1, \dots, x_n are a sample. The *i*th order statistic is defined by $x_{(i)}$. Particularly,

- the minimum statistic is defined by $x_{(1)} = \min\{x_1, \dots, x_n\}$;
- the maximum statistic is defined by $x_{(n)} = \max\{x_1, \cdots, x_n\}$.

Theorem

Suppose the p.d.f. is f(x) and the c.d.f. is F(x). Let x_1, x_2, \dots, x_n be a sample. Then the p.d.f. of the kth order statistic $x_{(k)}$ is

$$f_k(x) = \frac{n!}{(k-1)!(n-k)!} (F(x))^{k-1} (1 - F(x))^{n-k} f(x).$$

Proof: For any x, the event $x \leq x_{(k)} \leq x + \Delta x$ occurs.

Theorem (Con'd)

This is equivalent to that k-1 observations are less than x, one observation is in the interval $[x,x+\Delta x]$, and n-k observations are greater than $x+\Delta x$.

Then, for each $x_{(i)}$, we have

$$P(x_{(i)} \le x) = F(x)$$

$$P(x < x_{(i)} \le x + \Delta x) = F(x + \Delta x) - F(x)$$

$$P(x_{(i)} > x + \Delta x) = 1 - F(x + \Delta x)$$

Theorem (Con'd)

There are $\frac{n!}{(k-1)!1!(n-k)!}$ such arrangements. Let $F_k(x)$ be the c.d.f. of $x_{(k)}$. Thus, by the multinomial distribution,

$$F_k(x + \Delta x) - F_k(x) \approx \frac{n!}{(k-1)!(n-k)!} (F(x))^{k-1} \cdot (F(x + \Delta x) - F(x)) (1 - F(x + \Delta x))^{n-k}$$

Both sides are divided by Δx , and let $\Delta x \to 0$, that is,

$$f_k(x) = \lim_{\Delta x \to 0} \frac{F_k(x + \Delta x) - F_k(x)}{\Delta x}$$

= $\frac{n!}{(k-1)!(n-k)!} (F(x))^{k-1} f(x) (1 - F(x))^{n-k},$

where the non-zero intervals of $f_k(x)$ and f(x) are the same.

Remark:

• The p.d.f. of $x_{(1)}$ is

$$f_1(x) = n(1 - F(x))^{n-1} f(x);$$

• The p.d.f. of $x_{(n)}$ is

$$f_n(x) = n(F(x))^{n-1} f(x).$$

Theorem

The p.d.f. of the order statistics $(x_{(i)}, x_{(j)})$ is

$$f_{i,j}(y,z) = \frac{n!}{(i-1)!(j-i-1)!(n-j)!} (F(y))^{i-1} \cdot (F(z) - F(y))^{j-i-1} (1 - F(z))^{n-j} f(y) f(z), y \le z$$

Example

Suppose that x_1, x_2, \cdots, x_n are a sample from a uniform distribution U(0,1). Then the p.d.f. of the kth order statistic is

$$f_k(x) = \frac{n!}{(k-1)!(n-k)!} x^{k-1} (1-x)^{n-k}, 0 < x < 1.$$

Thus, $x_{(k)} \sim Be(k, n-k+1)$ and $E(x_{(k)}) = \frac{k}{n+1}$. The joint p.d.f. of $(Y, Z) = (x_{(1)}, x_{(n)})$ is

$$f(y,z) = n(n-1)(z-y)^{n-2}, 0 < y < z < 1,$$

Let R = Z - Y. Since R > 0 and 0 < Y < Z < 1

$$0 < Y = Z - R \le 1 - R$$
.

Example

Suppose that x_1,x_2,\cdots,x_n are a sample from a uniform distribution U(0,1). Then the p.d.f. of the kth order statistic is

$$f_k(x) = \frac{n!}{(k-1)!(n-k)!} x^{k-1} (1-x)^{n-k}, 0 < x < 1.$$

Thus, $x_{(k)} \sim Be(k, n-k+1)$ and $E(x_{(k)}) = \frac{k}{n+1}$. The joint p.d.f. of $(Y, Z) = (x_{(1)}, x_{(n)})$ is

$$f(y,z) = n(n-1)(z-y)^{n-2}, 0 < y < z < 1.$$

Let R = Z - Y. Since R > 0 and 0 < Y < Z < 1,

$$0 < Y = Z - R \le 1 - R$$
.

Example (Con'd)

The joint p.d.f. of R is

$$f(y,r) = n(n-1)r^{n-2}, y > 0, r > 0, y + r < 1,$$

Then the marginal p.d.f. of R is

$$f(r) = \int_0^{1-r} n(n-1)r^{n-2} dy$$

= $n(n-1)r^{n-2}(1-r), 0 < r < 1$

Thus, $R \sim Be(n-1,2)$.

Sample Quantiles & Sample Median

Definition

Suppose that $x_{(1)}, x_{(2)}, \cdots, x_{(n)}$ are a ordered sample. The pth sample quantile is defined by

$$m_p = \begin{cases} x_{([np+1])}, & \text{if } np \text{ is not an integer}; \\ \frac{1}{2}(x_{(np)} + x_{(np+1)}), & \text{if } np \text{ is an integer}; \end{cases}$$

Particularly, the sample median is defined by

$$m_{0.5} = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, & \text{if } n \text{ is odd}; \\ \frac{1}{2} \left(x_{\left(\frac{1}{2}\right)} + x_{\left(\frac{1}{2}+1\right)}\right), & \text{if } n \text{ is even}; \end{cases}$$

Sample Quantiles & Sample Median

Theorem

Suppose that the p.d.f. of a population is f(x) and x_p is the pth sample quantile. f(x) is continuous at the point $x=x_p$ and $f(x_p)>0$. The asymptotic distribution of the pth sample quantile m_p is

$$m_p \sim N\left(x_p, \frac{p(1-p)}{n \cdot f^2(x_p)}\right).$$

Particularly, the asymptotic distribution of the sample median is

$$m_{0.5} \sim N\left(x_{0.5}, \frac{1}{4n \cdot f^2(x_{0.5})}\right)$$

Sample Quantiles & Sample Median

Example

The population distribution is Cauchy distribution. The p.d.f. is

$$f(x) = \frac{1}{\pi(1 + (x - \theta))^2}, -\infty < x < \infty$$

Then the c.d.f. is

$$F(x) = \frac{1}{2} + \frac{1}{\pi}\arctan(x - \theta)$$

It is obvious that θ is the median of the Cauchy distribution, that is, $x_{0.5}=\theta$. Let x_1,x_2,\cdots,x_n be a sample. Then, the asymptotic distribution of the sample median is

$$m_{0.5} \stackrel{\cdot}{\sim} N(\theta, \frac{\pi^2}{4n}).$$

χ^2 Distributions

Review The p.d.f. of Z is

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.$$

Since $U=Z^2\geq 0$, $F_U(u)=0$ if $u\leq 0$. Thus, $f_U(u)=0$ if u<0. If u>0, we have

$$F_U(u) = P(U \le u) = P(Z^2 \le u) = P(-\sqrt{u} \le Z \le \sqrt{u})$$

= $2\Phi(\sqrt{y}) - 1$

Then, the c.d.f. of U is

$$F_U(u) = \begin{cases} 2\Phi(\sqrt{y}) - 1, & y > 0, \\ 0, & y \le 0. \end{cases}$$

χ^2 Distributions

Review (Con'd)

The p.d.f. of Y is

$$f_U(u) = \begin{cases} \phi(\sqrt{y})y^{-1/2}, & y > 0, \\ 0, & y \le 0, \end{cases}$$
$$= \begin{cases} \frac{1}{\sqrt{2\pi}}y^{-1/2}e^{-y/2}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

Thus, $U \sim Ga(1/2, 1/2)$.

Definition

If Z is a standard normal r.v., the distribution of $U=Z^2$ is called **Chi-squared** (χ^2) distribution with 1 degree of freedom.

Review (Con'd)

The p.d.f. of Y is

$$f_{U}(u) = \begin{cases} \phi(\sqrt{y})y^{-1/2}, & y > 0, \\ 0, & y \le 0, \end{cases}$$
$$= \begin{cases} \frac{1}{\sqrt{2\pi}}y^{-1/2}e^{-y/2}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

Thus, $U \sim Ga(1/2, 1/2)$.

Definition

If Z is a standard normal r.v., the distribution of $U=Z^2$ is called **Chi-squared** (χ^2) distribution with 1 degree of freedom.

Review

If $U_1 \sim Ga(\alpha_1, \lambda)$, $U_2 \sim Ga(\alpha_2, \lambda)$ and U_1 and U_2 are independent, then $V = U_1 + U_2 \sim Ga(\alpha_1 + \alpha_2, \lambda)$.

Since $V=U_1+U_2\geq 0$, the p.d.f. of V is $f_V(v)=0$ if $v\leq 0$. If v>0, the p.d.f. of

$$\begin{split} f_V(v) &= \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^z (z-y)^{\alpha_1 - 1} e^{-\lambda(z-y)} y^{\alpha_2 - 1} e^{-\lambda y} \mathrm{d}y \\ &= \frac{\lambda^{\alpha_1 + \alpha_2} e^{-\lambda z}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^z (z-y)^{\alpha_1 - 1} y^{\alpha_2 - 1} \mathrm{d}y \\ &= \frac{\lambda^{\alpha_1 + \alpha_2} e^{-\lambda z}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} z^{\alpha_1 + \alpha_2 - 2} \int_0^z \left(1 - \frac{y}{z}\right)^{\alpha_1 - 1} \left(\frac{y}{z}\right)^{\alpha_2 - 1} \mathrm{d}y \\ &= \frac{\lambda^{\alpha_1 + \alpha_2} e^{-\lambda z}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} z^{\alpha_1 + \alpha_2 - 1} \int_0^1 \left(1 - t\right)^{\alpha_1 - 1} (t)^{\alpha_2 - 1} \mathrm{d}t \end{split}$$

Review (Con'd)

$$f_{V}(v) = \frac{\lambda^{\alpha_{1}+\alpha_{2}}e^{-\lambda z}}{\Gamma(\alpha_{1}+\alpha_{2})}z^{\alpha_{1}+\alpha_{2}-1}$$

$$\cdot \int_{0}^{1} \frac{\Gamma(\alpha_{1}+\alpha_{2})}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} (1-t)^{\alpha_{1}-1} (t)^{\alpha_{2}-1} dt$$

$$= \frac{\lambda^{\alpha_{1}+\alpha_{2}}e^{-\lambda z}}{\Gamma(\alpha_{1}+\alpha_{2})}z^{\alpha_{1}+\alpha_{2}-1}$$

Thus, $V \sim Ga(\alpha_1 + \alpha_2, \lambda)$.

• Z_i 's are independently and identically distributed Gamma random variables $Ga(\alpha_i, \lambda)$. Then, $\sum_{i=1}^n Z_i \sim Ga(\sum_{i=1}^n \alpha_i, \lambda)$.

Definition

If Z_1, Z_2, \dots, Z_n are independently and identically distributed standard normal r.v.s, then $Z_1^2 + Z_2^2 + \dots + Z_n^2$ is distributed as **Chi-squared** (χ^2) distribution with n degrees of freedom.

Remarks

- In fact, $Z_1^2 + Z_2^2 + \cdots + Z_n^2 \sim Ga(n/2, 1/2)$.
- The χ^2 distribution is a special case of the Gamma distribution.
- Properties:

$$E(Z_1^2 + Z_2^2 + \dots + Z_n^2) = n$$

and

$$Var(Z_1^2 + Z_2^2 + \dots + Z_n^2) = 2n.$$

Example

Suppose that x_1, x_2, \cdots, x_n is a sample from a normal population $N(\mu, \sigma^2)$, where the expectation μ is known. What is the distribution of

$$T = \sum_{i=1}^{n} (x_i - \mu)^2.$$

Solution: Let $y_i = (x_i - \mu)/\sigma, i = 1, 2, \dots, n$. Then y_1, y_2, \dots, y_n are independently and identically distributed random variables. The distribution of y_1 is N(0, 1). From the definition,

$$\frac{T}{\sigma^2} = \sum_{i=1}^n \left(\frac{x_i - \mu}{\sigma}\right)^2 = \sum_{i=1}^n y_i^2 \sim \chi^2(n).$$

Example (Con'd)

Then, the p.d.f. of T is

$$f_T(t) = \frac{1}{(2\sigma^2)^{n/2}\Gamma(n/2)} \exp\left\{-\frac{t}{2\sigma^2}\right\} t^{\frac{n}{2}-1}$$

So,

$$T \sim Ga\left(\frac{n}{2}, \frac{1}{2\sigma^2}\right).$$

Theorem

Suppose that x_1, x_2, \cdots, x_n is a sample from a normal distribution $N(\mu, \sigma^2)$. The sample mean and sample variance is respectively

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ and } s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Then,

- \bar{x} and s^2 are independent;
- $\bar{x} \sim N(\mu, \sigma^2/n)$;
- $\bullet \quad \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1).$

Theorem (Con'd)

Proof: The joint p.d.f. of

$$f(x_1, x_2, \dots, x_n) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}\right\}$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{\sum_{i=1}^n x_i^2 - 2\bar{x}n\mu + n\mu^2}{2\sigma^2}\right\}$$

Let $x = (x_1, x_2, \cdots, x_n)'$.

Theorem (Con'd)

Proof:

$$A = \begin{pmatrix} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} \\ \frac{1}{\sqrt{2} \cdot 1} & \frac{1}{\sqrt{2} \cdot 1} & 0 & \cdots & 0; \\ \frac{1}{1} & \frac{1}{\sqrt{3} \cdot 2} & \frac{1}{\sqrt{3} \cdot 2} & \frac{1}{\sqrt{3} \cdot 2} & \cdots & 0; \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ \frac{1}{\sqrt{n \cdot (n-1)}} & \frac{1}{\sqrt{n \cdot (n-1)}} & \frac{1}{\sqrt{n \cdot (n-1)}} & \cdots & \frac{1}{\sqrt{n \cdot (n-1)}} \end{pmatrix}$$

As we know, the matrix A is orthogonal. Let y = Ax. The Jacobian determinant is 1. Then,

$$ar{x} = rac{1}{\sqrt{n}}y$$
 and $\sum_{i=1}^n y_i^2 = m{y}'y == m{x}'A'Ax$

Theorem (Con'd)

The joint p.d.f. of y_1, y_2, \dots, y_n is

$$f(y_1, y_2, \dots, y_n) = (2\pi\sigma)^{-n/2} \exp\left\{-\frac{\sum_{i=1}^n y_i - 2\sqrt{n}y_1\mu + n\mu^2}{2\sigma^2}\right\}$$
$$= (2\pi\sigma)^{-n/2} \exp\left\{-\frac{\sum_{i=2}^n y_i + (y_1 - \sqrt{n}\mu)^2}{2\sigma^2}\right\}$$

Then, y_1, y_2, \cdots, y_n are independent and are distributed as a normal distribution with the variance σ^2 . Thus, the mean of y_2, y_3, \cdots, y_n is 0 and the mean of y_1 is $\sqrt{n}\mu$.

Theorem (Con'd)
Since

$$(n-1)s^{2} = \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \sum_{i=1}^{n} x_{i}^{2} - (\sqrt{n}\bar{x})^{2}$$
$$= \sum_{i=1}^{n} y_{1}^{2} - y_{1}^{2} = \sum_{i=2}^{n} y_{i}^{2}.$$

Then, y_2, \dots, y_n are independent and identically distributed. And X_i 's are distribution N(0,1). Therefore,

$$\frac{(n-1)s^2}{\sigma^2} = \sum_{i=0}^n \left(\frac{y_i}{\sigma}\right)^2 \sim \chi^2(n-1)/2$$

Definition

Let U and V be independent Chi-square random variables with m and n degrees of freedom, respectively. The distribution of

$$F = \frac{U/m}{V/n}$$

is called the F distribution with m and n degrees of freedom and is denoted by $F_{m,n}$ or F(m,n).

Proposition

The p.d.f. of F is given by

$$f(y) = \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} \left(\frac{m}{n}\right)^{\frac{m}{2}} y^{\frac{m}{2}-1} \left(1 + \frac{m}{n}y\right)^{-\frac{m+n}{2}}, w > 0$$

How to derive the p.d.f. of the F distribution?

First, we derive the p.d.f. of $Z = \frac{U}{V}$. Let the $f_U(u)$ and $f_V(v)$ be respectively the p.d.f. of U and V. Then, the p.d.f. of Z is

$$f_{Z}(z) = \int_{0}^{\infty} v f_{U}(zv) f_{V}(v) dv$$

$$= \frac{z^{\frac{m}{2} - 1}}{\Gamma(m/2) \Gamma(n/2) \cdot 2^{\frac{m+n}{2}}} \int_{0}^{\infty} v^{\frac{m+n}{2} - 1} e^{-\frac{v}{2}(1+z)} dv$$

$$= \frac{z^{\frac{m}{2} - 1}}{\Gamma(m/2) \Gamma(n/2) \cdot 2^{\frac{m+n}{2}}} \frac{\Gamma((m+n)/2)}{((1+z)/2)^{\frac{m+n}{2}}}$$

$$= \frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2}) \Gamma(\frac{n}{2})} z^{\frac{m}{2} - 1} (1+z)^{-\frac{m+n}{2}}, z > 0$$

How to derive the p.d.f. of the F distribution? (Con'd)

Second, let $F = \frac{n}{m}Z$. For any w > 0, we have

$$f_{F}(y) = p_{Z}\left(\frac{m}{n}y\right) \cdot \frac{m}{n}$$

$$= \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \left(\frac{m}{n}y\right)^{\frac{m}{2}-1} \left(1 + \left(\frac{m}{n}y\right)\right)^{-\frac{m+n}{2}} \cdot \frac{m}{n}$$

$$= \frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{\frac{m}{2}}}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} y^{\frac{m}{2}-1} \left(1 + \frac{m}{n}y\right)^{-\frac{m+n}{2}}$$

The p.d.f.s of F distribution are shown as follows:

Proposition

Suppose that x_1,x_2,\cdots,x_m is a sample from $N(\mu_1,\sigma_1^2)$ and y_1,y_2,\cdots,y_n is a sample from $N(\mu_2,\sigma_2^2)$. Two samples are independent. Let

$$s_x^2 = \frac{1}{m-1} \sum_{i=1}^m (x_i - \bar{x})^2, \quad s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2$$

where $\bar{x} = \frac{1}{m} \sum_{i=1}^m x_i$ and $\bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$. Then

$$F = \frac{s_x^2/\sigma_1^2}{s_y^2/\sigma_2^2} \sim F(m-1, n-1).$$

Particularly, if $\sigma_1^2 = \sigma_2^2$, then $F = s_x^2/s_y^2 \sim F(m-1,n-1)$.

Definition

If $Z \sim N(0,1)$ and $U \sim \chi^2_n$ and Z and U are independent, then the distribution of

$$t = \frac{Z}{\sqrt{U/n}}$$

is called the t distribution with n degrees of freedom.

How to derive the t distribution?

How to derive the p.d.f. of the t distribution?

Z and -Z are identically distributed for the p.d.f. of a standard normal distribution is symmetric. Then, t and -t are also identically distributed. For any y,

$$P(0 < t < y) = P(0 < -t < y) = P(-y < -t < 0)$$

Thus,

$$P(0 < t < y) = \frac{1}{2}P(t^2 < y^2)$$

where

$$t^2 = \frac{Z^2}{U/n} \sim F(1, n).$$

How to derive the p.d.f. of the t distribution? (Con'd)

$$f_t(y) = y f_F(y^2) = \frac{\Gamma\left(\frac{1+n}{2}\right) \left(\frac{1}{n}\right)^{\frac{1}{2}}}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)} (y^2)^{\frac{1}{2}-1} \left(1 + \frac{1}{n}y^2\right)^{-\frac{1+n}{2}} \cdot y$$
$$= \frac{\Gamma\left(\frac{1+n}{2}\right) \left(\frac{1}{n}\right)^{\frac{1}{2}}}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{1}{n}y^2\right)^{-\frac{1+n}{2}}, -\infty < y < \infty$$

Remark

- If n = 1, then it is a standard Cauchy distribution:
- If n > 1, then the expectation exists and equals 0;
- If n > 2, then the variance exists and equals n/(n-2);
- If $n \geq 30$, then N(0,1) can be used as an approximate distribution.

The p.d.f.s of t distribution are shown as follows:

Proposition

Suppose that x_1,x_2,\cdots,x_n is a sample from a normal population $N(\mu,\sigma^2)$, and \bar{x} and s^2 are respectively the sample mean and sample variance. Then

$$t = \frac{\sqrt{n}(\bar{x} - \mu)}{s} \sim t(n - 1)$$

Proof: Since

$$\frac{\sqrt{n}(\bar{x}-\mu)}{\sigma} \sim N(0,1)$$

then

$$\frac{\sqrt{n}(\bar{x}-\mu)}{s} = \frac{\frac{\sqrt{n}(\bar{x}-\mu)}{\sigma}}{\sqrt{\frac{(n-1)s^2/\sigma^2}{n-1}}} \sim t(n-1)$$

Proposition

Suppose that $\sigma_1^2 = \sigma_2^2 = \sigma^2$. Let

$$s_w^2 = \frac{(m-1)s_x^2 + (n-1)s_y^2}{m+n-2} = \frac{\sum_{i=1}^m (x_i - \bar{x})^2 + \sum_{i=1}^n (y_i - \bar{y})^2}{m+n-2}.$$

Then

$$\frac{(\bar{x} - \bar{y}) - (\mu_1 - \mu_2)}{s_w \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t(m + n - 2)$$

Proof: Since $\bar{x} \sim N(\mu_1, \sigma^2/m)$, $\bar{y} \sim N(\mu_2, \sigma^2/n)$ and \bar{x} and \bar{y} are independent. Then,

$$\bar{x} - \bar{y} \sim N\left(\mu_1 - \mu_2, \left(\frac{1}{m} + \frac{1}{n}\right)\sigma^2\right).$$

Proposition (Con'd)

Thus,

$$\frac{(\bar{x} - (\bar{y})) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim N(0, 1).$$

As we know, $\frac{(m-1)s_x^2}{\sigma^2}\sim \chi^2(m-1)$, $\frac{(n-1)s_y^2}{\sigma^2}\sim \chi^2(n-1)$ and they are independent. Then,

$$\frac{(m+n-2)s_w^2}{\sigma^2} = \frac{(m-1)s_x^2 + (n-1)s_y^2}{\sigma^2} \sim \chi^2(m+n-2)$$

Because $\bar{x} - \bar{y}$ and s^2 are independent,

$$\frac{(\bar{x} - \bar{y}) - (\mu_1 - \mu_2)}{s_w \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t(m + n - 2)$$

χ^2 distribution, F distribution & t distribution

Remark

- If $F \sim F(m,n)$, then $\frac{1}{F} \sim F(n,m)$.
- If $t \sim t(n)$, then $t^2 \sim F(1, n)$.
- If $X \sim F_{m,n}$, then $\frac{(m/n)X}{1+(m/n)X} \sim Be(m/2, n/2)$.
- Suppose that x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_m are two independent samples from the standard normal population.

Distribution	Structure	Expectation	Variance
$\chi^2(n)$	$x_1^2 + x_2^2 + \dots + x_n^2$	n	2n
F(m,n)	$\frac{y_1^2\!+\!y_2^2\!+\!\cdots\!+\!y_m^2}{x_1^2\!+\!x_2^2\!+\!\cdots\!+\!x_n^2}$	(n > 2)	$\frac{\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}}{(n>4)}$
t(n)	$\frac{y_1}{\sqrt{(x_1^2 + x_2^2 + \dots + x_n^2)/n}}$	$0 \ (n > 1)$	$\frac{\frac{n}{n-2}}{(n>2)}$