Lösungen zur schriftlichen Prüfung aus VO Energieversorgung am 28.04.2015

<u>Hinweis:</u> Bei den Berechnungen wurden alle Zwischenergebnisse in der technischen Notation¹ (Format ENG) dargestellt und auf drei Nachkommastellen gerundet. Für die weitere Rechnung wurde das gerundete Ergebnis verwendet.

Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen!

1. Leitungsgleichungen

a. Wie groß ist die komplexe Ausbreitungskonstante γ der Freileitung?

$$\underline{\gamma} = \alpha + j \cdot \beta = j \cdot 0,0012 \frac{\text{rad}}{\text{km}}$$
 (1.1)

b. Welche Spannung stellt sich am Ende der leerlaufenden Leitung ein, wenn am Anfang Nennspannung herrscht?

$$U_2 = 458,699 \, kV \tag{1.2}$$

b. Berechnen sie die Kompensationsimpedanz, welche am Ende der leerlaufenden Leitung zugeschaltet werden muss, damit sich am Ende der Leitung ein Spannungsanstieg von 105% der Nennspannung einstellt.

$$\underline{Z}_2 = j \cdot 1,14 \cdot 10^3 \,\Omega \tag{1.3}$$

c. Für welche Scheinleistung muss die Kapazität bzw. Induktivität des **Bauelements für die Kompensation** der Leitung nach Punkt c. dimensioniert werden?

$$\underline{S} = -j \cdot 139,636 \cdot 10^6 \, Va \tag{1.4}$$

d. Wie sollte diese Impedanz mit der Leitung verschaltet werden (mit Begründung)?

$$P_2 < P_{nat} \tag{1.5}$$

Parallelschaltung → Verkleinerung der Kapazität (induktive Parallelkompensation ist günstiger bei Höchstspannungsleitungen aufgrund des geringeren Leitungswinkel im Vergleich zur Serienschaltung einer Induktivität)

e. Berechnen Sie die **Spannung am Leitungsende** nach dem Kompensations-vorgang, wenn am Anfang der Leitung Nennspannung herrscht.

$$U_2 = 391,278 \, kV \tag{1.6}$$

f. Die thermisch zulässige Leistung dieser Leitung soll der doppelten natürlichen Leistung entsprechen. Wie groß ist in diesem Fall der zulässige Strom eines <u>Einzelleiters</u>?

$$I_{th \ Finzelleiter} = 579,684 A \tag{1.7}$$

¹ http://de.wikipedia.org/wiki/Wissenschaftliche Notation

g. Wie groß ist die **Blindleistung am Anfang** der Leitung, wenn diese mit dem **Wellenwiderstand** abgeschlossen ist?

Wenn die Leitung mit dem Wellenwiderstand abgeschlossen ist, wird nur Wirkleistung übertragen → Der Blindleistungsbedarf ist Null

2. Barwertvergleich zweier Kraftwerke

a. Wie groß sind die jährlichen Aufwendungen für das Pumpspeicherkraftwerk?

$$K_{\text{oes} Pump} = 47,465 \cdot 10^6 \in$$
 (2.1)

b. Wie groß ist der **Barwert des Pumpspeicherkraftwerks** zum Zeitpunkt der Inbetriebnahme in Hinblick auf die Versorgungsaufgabe?

$$B_{Pump} = 1,368 \cdot 10^9 \in \tag{2.2}$$

c. Wie groß sind die jährlichen Aufwendungen für das Gasturbinenkraftwerk?

$$K_{\text{nes Gas}} = 72,396 \cdot 10^6 \in$$
 (2.3)

d. Wie groß ist der **Barwert des Gasturbinenkraftwerks** zum Zeitpunkt der Inbetriebnahme in Hinblick auf die Versorgungsaufgabe?

$$B_{\text{Gas}} = 1{,}310 \cdot 10^9 \, \text{(2.4)}$$

e. Nach 35 Jahren wird das Gasturbinenkraftwerk um 25 Mio. € generalsaniert, sodass sich die Nutzungsdauer um weitere 15 Jahre erhöht. Wie groß ist unter diesen Umständen der Barwert des Gasturbinen-KW zum Zeitpunkt der ursprünglichen Inbetriebnahme? Die übrigen laufenden jährlichen Aufwendungen bleiben trotz der Generalsanierung konstant.

$$B_{\text{Gas, peu}} = 1,404 \cdot 10^9 \, \text{(2.5)}$$

f. Welches Kraftwerk ist **wirtschaftlich günstiger** bezogen auf die errechneten Barwerte für eine Nutzungsdauer von 50 Jahren.

$$B_{Pump} = 1{,}368 \cdot 10^9 \in , B_{Gas\ neu} = 1{,}404 \cdot 10^9 \in$$

Das Pumpspeicherkraftwerk ist günstiger, da der Barwert geringer ist

3. Drehstromkomponenten

a. Ermitteln Sie für den Punkt A die **Null-, Mit- und Gegenimpedanz** ($\underline{Z}_{(0)}$, $\underline{Z}_{(1)}$, $\underline{Z}_{(2)}$).

$$Z_{(0)} = 9\Omega \tag{3.1}$$

$$Z_{(1)} = Z_{(2)} = 6\Omega \tag{3.2}$$

b. Wie groß sind die **Phasenströme** \underline{I}_a , \underline{I}_b , \underline{I}_c , **Phasenspannungen** \underline{U}_{aN} , \underline{U}_{bN} , \underline{U}_{cN} und die **Leistung** an der Last bei symmetrischer Spannung $\underline{U}_{(0)} = 0kV$, $\underline{U}_{(1)} = 10kV$, $\underline{U}_{(2)} = 0kV$?

$$l_a = 1,667kA$$
 (3.3)

$$\underline{I}_{b} = -0.833 \, kA - j \cdot 1.443 \, kA = 1.667 \, kA \angle -120^{\circ}$$
 (3.4)

$$\underline{I}_{c} = -0.833 \, kA + j \cdot 1.443 \, kA = 1.667 \, kA \angle 120^{\circ}$$
 (3.5)

$$U_{\rm aN} = 10 \, kV \tag{3.6}$$

$$\underline{U}_{bN} = -5 \, kV - j \cdot 8,660 \, kV = 10 \, kV \angle -120^{\circ}$$
 (3.7)

$$U_{CN} = -5 kV + j \cdot 8,660 kV = 10 kV \angle 120^{\circ}$$
(3.8)

$$P_{Last} = 50 MW ag{3.9}$$

c. Berechnen Sie die **original Phasenspannungen** im Punkt A \underline{U}_{aN} , \underline{U}_{bN} , \underline{U}_{cN} bei unsymmetrischer Spannung $\underline{U}_{(0)} = 2kV$, $\underline{U}_{(1)} = 10kV$, $\underline{U}_{(2)} = 1kV$.

$$\underline{U}_{aN} = 13 \, kV \tag{3.10}$$

$$U_{bN} = -3.5 \, kV - j \cdot 7.794 \, kV = 8.54 \, kV \angle -114.18^{\circ}$$
 (3.11)

$$\underline{U}_{CN} = -3.5 \, kV + j \cdot 7.794 \, kV = 8.54 \, kV \angle 114.18^{\circ}$$
 (3.12)

d. Berechnen Sie die **original Phasenströme** <u>I</u>_a, <u>I</u>_b, <u>I</u>_c bei dieser unsymmetrischen Spannung.

$$L = 2,056kA$$
 (3.13)

$$\underline{I}_b = -0.694 \, kA - j \cdot 1.299 \, kA = 1.473 \, kA \angle -118.128^{\circ}$$
 (3.14)

$$\underline{f} = -0,694 \, kA + j \cdot 1,299 \, kA = 1,473 \, kA \angle 118,128^{\circ}$$
(3.15)

e. Wie groß ist der Spannungsabfall an der Neutralleiterimpedanz?

$$U_{MN} = 666,667V \tag{3.16}$$

f. Wie groß ist die Leistung der Last im gegebenen Betriebspunkt?

$$P_{Last} = 51,389 MW (3.17)$$

4. Fünf Sicherheitsregeln

Siehe Skriptum

5. Theoriefragen

Richtige Lösungen: 1a, 2a, 3c, 4c, 5b, 6b, 7b, 8a, 9a, 10b, 11b, 12c, 13c, 14a, 15c, 16c, 17a, 18a, 19a, 20-1c, 20-2c, 20-3a, 21a, 22b,