

ESZA019 – Visão Computacional <u>Laboratório 5 – Extração de Características</u>

Features

1) Objetivos:

- Entender os conceitos de features e extração de caracterísiticas.
- Realizar experimentos de extração de caracterísiticas e sua detecção em duas imagens.
- Elaborar o relatório em equipe de alunos.
- 2) PARTE 1: Estudo da teoria sobre detecção de caracterísiticas e descrição. Estudar detalhadamente os seguintes itens (não é necessário executar). Utilize estas na Introdução do seu relatório.

Página sumário: Feature Detection and Description:

https://docs.opencv.org/4.x/db/d27/tutorial_py_table_of_contents_feature2d.html

- Entendento sobre Features:
 - https://docs.opencv.org/4.x/df/d54/tutorial_py_features_meaning.html.
- Detector de Harris :
 - https://docs.opencv.org/4.x/dc/d0d/tutorial py features harris.html>
- Detector de Shi-Tomasi :
 - https://docs.opencv.org/4.x/d4/d8c/tutorial_py_shi_tomasi.html
- Introdução ao SIFT (Scale-Invariant Feature Transform):
 https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html>.

3) PARTE 2: SIFT.

- (A) Elaborar um programa OpenCV, que realize a operação "Feature Matching + Homography to find Objects", deste tutorial:
 - https://docs.opencv.org/4.x/d1/de0/tutorial_py_feature_homography.html
- este programa deverá ler duas imagens previamente gravadas que contenham o mesmo objeto em posições distintas. No final mostrar conforme o tutorial, as correspondências obtidas,.
- (B) Elaborar outro programa OpenCV, modificando o codigo acima, para fazer a leitura de duas webcams da camera estereoscópica calibrada, mostrando o resultado em video.

4) PARTE 3: Hough Transform.

- (C) Elaborar um programa OpenCV, que realize a operação "Hough Transform", deste tutorial: https://learnopencv.com/hough-transform-with-opencv-c-python/
- este programa deverá várias imagens previamente gravadas que contenham linhas e circulos. No final mostrar, conforme o tutorial, as linhas e circulos obtidas.
- (D) Elaborar outro programa OpenCV, modificando o codigo acima, para fazer a leitura de duas webcams da camera estereoscópica calibrada, mostrando o resultado em video.
- 5) Análise: Pesquise referencias sobre aplicações da Detecção de Features, e analise como utilizar estas técnicas no seu trabalho T1.
- **6) Relatório**: Elaborar o relatório em formato HTML, e hospedar no github, conforme instruções em aulas anteriores.

O relatório deverá conter pelo menos os seguintes tipos de Seções:

- Título do relatório
- Nome completo dos autores do relatório
- Data de realização dos experimentos
- Data de publicação do relatório
- Introdução apresentando o que será descrito e relatado, bem como uma breve introdução ao assunto
- Procedimentos experimentais explicando como realizar e executar as atividades
- Análise e discussão dos estudos realizados
- Conclusões
- Referências consultadas e indicadas.

Cada relatório deverá ser colocado numa pasta separada, junto com os arquivos pertinentes.

A página HTML da equipe deverá conter um índice das aulas de laboratório, com um link para cada relatório.