Problems for Exam 2

- **1.** Let Let $A \in \mathbb{R}^{n \times n}$ have eigenvalues $1, 3, 5, \dots, (2n-1)$. What is the trace of A? What is det(A)?
- **2.** Let $H \in \mathbb{R}^{4\times 4}$ be any Householder matrix, $\mathbf{x} = [-1, 1, -3, 5]^t$, what is $||H\mathbf{x}||_2$?
- 3. Let $R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ & & \\ \sin \theta & \cos \theta \end{bmatrix}$, Find $Sup_{\theta}\{\|R_{\theta}\|_2\}$ and $Sup_{\theta}\{\|R_{\theta}\|_1\}$.
- **4.** Let q > 1, define

$$y_q = \frac{1}{q + \frac{1}{q + \dots}}$$

What is y_q ? In particular, evaluate y_2 and y_6 .

- **5.** Let $H \in \mathbb{R}^{n \times n}$ be a Householder matrix, show that det(H) = -1.
- **6.** Prove that I AB has the same eigenvalues as I BA if either A or B is nonsingular.
- 7. Give an algorithm based on Newton method to approximate the root of $f(x) = 0.5e^{x/3} 5x^2 + 3\sin(\pi x) = 0$ located in [0, 1] which is accurate to within 10^{-5} . Does your algorithm guarantee finding the root in [0, 1]? Explain.
- 8. Given

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -3 & 1 \\ 0 & 1 & -3 \end{bmatrix}.$$

- (a) Find the characteristic polynomials of A and B, respectively.
- (b) What are the eigenvalues of matrix A?
- (c) Write down a spectrum decomposition of matrix A.
- (d) What are the singular values of matrix B?
- (e) Evaluate $||A||_1 + ||A||_2 + ||B||_2$.
- (f) Evaluate $det(e^A \cdot e^B)$.