Name
Physics 51M Section Box #
Problem Set 11
9 December 2019

Collaborators:

HRK E6.44 In the circuit shown in Fig 36-22, the switch has been in position a for a long time. It is now thrown to b. (a) Calculate the frequency of the resulting oscillating current. (b) What will be the amplitude of the current oscillations?

*[HRK E34.26] A stiff wire bent into a semicircle of radius a is rotated with a frequency f in a uniform magnetic field, as suggested in Fig. 34-51. What are (a) the frequency and (b) the amplitude of the emf induced in the loop?

HRK P38.4 A long, cylindrical conducting rod with radius R is centered on the x axis as shown in Fig. 38-26. A narrow saw cut is made in the rod at x = b. A conduction current i, increasing with time and given by $i = \alpha t$, flows toward the right in the rod; α is a (positive) proportionality constant. At t = 0, there is no charge on the cut faces near x = b. (a) Find the magnitude of the charge on these faces, as a function of time. (b) Use Eq. 1 in Table 38-1 to find E in the gap as a function of time. (c) Sketch the lines of E for E in the distance from the E axis. (d) Use Eq. IV in Table 38-1 to find E in the gap for E in the gap for E in the rod for E

A parallel plate capacitor has circular plates of radius R and separation d. The capacitor is connected to a battery of voltage V and then disconnected so that the charge ought to remain constant. The air is humid, however, and therefore slightly conducting; thus the stored charge leaks back across the air gap between the capacitor plates at rate i_{leak} . Assume that this leakage current is uniformly distributed across the area of the plates. Find the magnetic field everywhere between the plates.

In lecture we derived the wave equation for E using Maxwell's equations in free space. Use a similar procedure to derive a wave equation for B . Show that Maxwell's equations require that B must be transverse to the direction of propagation. (You may want to remember the vector calculus identity $\vec{\nabla} \times (\vec{\nabla} \times \vec{C}) = \vec{\nabla}(\vec{\nabla} \cdot \vec{C}) - \nabla^2 \vec{C}$ for any \vec{C} .)

HRK E38.16 The electric field associated with a pane electromagnetic wave is given by $E_x = 0$, $E_y = 0$, $E_z = E_0 sink(x - ct)$, where $E_0 = 2.34 \times 10^{-4}$ V/m and $k = 9.72 \times 10^6$ m^{-1} . The wave is propagating in the +x direction. (a) Write expressions for the components of the magnetic field of the wave. (b) Find the wavelength of the wave.

(a) Consider an electromagnetic wave in a vacuum with electric field $\vec{E} = E_0 \hat{y} sin(kx - \omega t)$. What is the propagation direction of this electromagnetic wave? (b) Consider an electromagnetic wave with electric field $\vec{E} = E_0(\hat{-z}) sin(ky + \omega t)$. What is the propagation direction of this electromagnetic wave? (c) Consider the electric field $\vec{E} = E_0 \hat{y} [sin(kx - \omega t) + sin(kx + \omega t)]$. Show that this electric field satisfies the wave equation $\frac{\partial^2 \vec{E}}{\partial x^2} + \frac{\partial^2 \vec{E}}{\partial y^2} + \frac{\partial^2 \vec{E}}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2}$ provided $\frac{\omega}{k} = c$.