

Logically Equivalent Proposional Formulae

Definisi:

 Formula proposisi A dan B merupakan logically equivalent, dinotasikan A ≡ B, jika setiap nilai kebenaran dari variable yang ada di dalamnya, akan memperoleh nilai kebenaran yang sama.

Lanjutan

 Proposisi A dan B logically equivalent jika dan hanya jika A ↔ B tautology.

• Proposisi A dan B **logically equivalent** jika dan hanya jika $A \models B$ dan $B \models A$.

Contoh Equivalences

- Hukum-hukum dalam logika (Ingat Kembali)
- Ekuivalen yang berhub dengan Aljabar
 - Idempotency: $p \land p \equiv p \text{ and } p \lor p \equiv p$.
 - Commutativity: $p \land q \equiv q \land p \text{ and } p \lor q \equiv q \lor p$.
 - Associativity: $(p \land (q \land r)) \equiv ((p \land q) \land r)$ and $(p \lor (q \lor r)) \equiv ((p \lor q) \lor r)$.
 - Absorption: $p \land (p \lor q) \equiv p \text{ and } p \lor (p \land q) \equiv p$.
 - Distributivity: $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ and $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Hukum-hukum Logika

Disebut juga hukum-hukum aljabar proposisi.

	1
1. Hukum identitas:	2. Hukum <i>null</i> /dominasi:
$-p \vee \mathbf{F} \Leftrightarrow p$	$-p \wedge \mathbf{F} \Leftrightarrow \mathbf{F}$
$-p \wedge \mathbf{T} \Leftrightarrow p$	$-p \vee \mathbf{T} \Leftrightarrow \mathbf{T}$
3. Hukum negasi:	4. Hukum idempoten:
$p \lor \sim p \Leftrightarrow \mathbf{T}$	$- p \lor p \Leftrightarrow p$
$-p \land \sim p \Leftrightarrow \mathbf{F}$	$-p \land p \Leftrightarrow p$
5. Hukum involusi (negasi	6. Hukum penyerapan
ganda):	(absorpsi):
$-\sim(\sim p) \Leftrightarrow p$	$- p \lor (p \land q) \Leftrightarrow p$
	$-p \land (p \lor q) \Leftrightarrow p$

7. Hukum komutatif:

- $p \lor q \Leftrightarrow q \lor p$
- $p \wedge q \Leftrightarrow q \wedge p$

8. Hukum asosiatif:

- $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$
- $p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$

- 9. Hukum distributif:
 - $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
 - $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
- 10. Hukum De Morgan:
 - $\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$
 - $\sim (p \vee q) \Leftrightarrow \sim p \wedge \sim q$

Ekuivalen berhub dengan logical connective

- $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$.
- $A \lor B \equiv \neg (\neg A \land \neg B)$.
- $A \wedge B \equiv \neg (\neg A \vee \neg B)$.
- $A \rightarrow B \equiv \neg A \lor B \equiv \neg (A \land \neg B)$.
- $A \lor B \equiv \neg A \rightarrow B$.
- $A \wedge B \equiv \neg (A \rightarrow \neg B)$.

Contoh lain

- $A \lor \neg A \equiv T; A \land \neg A \equiv \bot$
- $A \land T \equiv A; A \land \bot \equiv \bot$
- $A \lor T \equiv T; A \lor \bot \equiv A$
- $A \rightarrow \neg B \equiv B \rightarrow A$ (Every implication is equivalent to its contrapositive.)

Cara membuktikan logically ekuivalen

- Dengan Tabel Kebenaran
- Berdasarkan Hukum hukum logika yang ada
- $A \equiv B$, membuktikan $A \leftrightarrow B$ tautology, bisa dengan Tabel kebenaran, Indirect Proof atau dengan Tablo Semantik

Contoh: Tunjukkan bahwa $p \lor \sim (p \lor q)$ dan $p \lor \sim q$ keduanya ekivalen secara logika.

Penyelesaian:

$$p \lor \sim (p \lor q) \Leftrightarrow p \lor (\sim p \land \sim q)$$
 (Hukum De Morgan)
 $\Leftrightarrow (p \lor \sim p) \land (p \lor \sim q)$ (Hukum distributif)
 $\Leftrightarrow T \land (p \lor \sim q)$ (Hukum negasi)
 $\Leftrightarrow p \lor \sim q$ (Hukum identitas)

Contoh: Buktikan hukum penyerapan: $p \land (p \lor q) \Leftrightarrow p$ <u>Penyelesaian</u>:

$$p \land (p \lor q) \Leftrightarrow (p \lor F) \land (p \lor q)$$
 (Hukum Identitas)
 $\Leftrightarrow p \lor (F \land q)$ (Hukum distributif)
 $\Leftrightarrow p \lor F$ (Hukum $Null$)
 $\Leftrightarrow p$ (Hukum Identitas)

Latihan

Buktikan ekuivalensi berikut ini!

•
$$(p \rightarrow q) \ V(p \rightarrow r) \equiv p \rightarrow (q \ Vr)$$

•
$$((p \ Vq) \rightarrow r) \equiv (p \rightarrow r) \land (q \rightarrow r)$$

•
$$\neg (p \leftrightarrow q) \equiv (p \land \neg q) \lor (q \land \neg p)$$

•
$$\neg (p \leftrightarrow q) \equiv \neg p \leftrightarrow q \equiv p \leftrightarrow \neg q$$

•
$$p \leftrightarrow (q \leftrightarrow r) \equiv (p \leftrightarrow q) \leftrightarrow r$$

Negating propositional formulae

- Digunakan untuk membentuk negation normal form
 - Negasi yang hanya terjadi di depan variabel proposisi
- $\neg \neg A \equiv A$
- $\neg (A \land B) \equiv \neg A \lor \neg B$
- $\neg (A \lor B) \equiv \neg A \land \neg B$
- $\neg (A \rightarrow B) \equiv A \land \neg B$
- $\neg (A \leftrightarrow B) \equiv (A \land \neg B) \lor (B \land \neg A)$

Contoh:

 Bentuklah ke dalam bentuk negation normal form:

$$\neg((A \lor \neg B) \to (\neg C \land D))$$

$$\equiv (A \lor \neg B) \land \neg(\neg C \land D)$$

$$\equiv (A \lor \neg B) \land (\neg \neg C \lor \neg D)$$

$$\equiv (A \lor \neg B) \land (C \lor \neg D)$$

KUIS

1. Apakah pasangan formula berikut merupakan ekuivalen?

a)
$$p \rightarrow \neg q$$
, $q \rightarrow \neg p$

b)
$$\neg (p \rightarrow \neg q), p \land q$$

c)
$$(p \rightarrow r) \land (q \rightarrow r), (p \land q) \rightarrow r$$

d)
$$((p \land q) \rightarrow r), (p \rightarrow r) \lor (q \rightarrow r)$$

e)
$$p \rightarrow (q \rightarrow r), (p \rightarrow q) \rightarrow (p \rightarrow r)$$

KUIS

2. Negasikan masing-masing formula proposisi berikut dan ubahlah hasilnya ke formula ekuivalen dalam *negation normal form*.

(a) $(p \ V \neg q) \land \neg p$

(b) $(p \rightarrow \neg q) \rightarrow p$

(c) $p \rightarrow (\neg q \rightarrow p)$

(d) $(p \leftrightarrow \neg q) \rightarrow \neg r$

(e) $p \rightarrow (\neg q \leftrightarrow r)$

KUIS

3. Buatlah 2 contoh argumen dan ekuivalennya dalam bentuk bahasa alami (kalimat sehari hari)