Ray Tracing: O Mundo Através De Raios de Luz XXXVI Jornada Giulio Massarani de Iniciação Científica, Tecnológica, Artística e Cultural

Thiago Barroso Perrotta Prof.º Ricardo G. marroquim

Universidade Federal do Rio de Janeiro

10 de outubro de 2014

Agenda

- Ray-tracer
 - O algoritmo
- Extração de primitivas em nuvens de pontos
- Resultados
- 4 Referências

O quê?

- Renderizar imagens
- Realismo

•

Defina alguns objetos

- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Defina uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - Atire um raio, a partir do centro do pixel, na direção dos objetos
 - Compute, dentre os pontos atingidos em cada objeto, o que está mais
 - Se o raio atingiu um objeto
 - Use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - Defina a cor do pixel como preta

Objetos Esferas

Objetos Retângulos

Objetos Triângulos

Objetos _{Toros}

Objetos Cilindros

Objetos Planos

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Defina uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - Atire um raio, a partir do centro do pixel, na direção dos objetos
 - Compute, dentre os pontos atingidos em cada objeto, o que está mais
 - Se o raio atingiu um objeto
 - Use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - Defina a cor do pixel como preta

Materiais

lluminação

Tipos

- Ambiente
- Difusa
- Especular

Materiais

Modelos

- Matte = Ambiente + Difusa
- Phong = Ambiente + Difusa + Especular

Matte

Phong

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Defina uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - Atire um raio, a partir do centro do pixel, na direção dos objetos
 - Compute, dentre os pontos atingidos em cada objeto, o que está mais
 - Se o raio atingiu um objeto
 - Use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - Defina a cor do pixel como preta

Fontes de luz

- Direcionais
- Pontuais

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Defina uma janela cuja superfície seja coberta com pixels
- - Atire um raio, a partir do centro do pixel, na direção dos objetos
 - Compute, dentre os pontos atingidos em cada objeto, o que está mais
 - Se o raio atingiu um objeto
 - Use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - Defina a cor do pixel como preta

Plano de visualização

- Número de pixels (ex.: 400x400)
 - Horizontal
 - Vertical
- Tamanho de cada pixel ⇒ zoom

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Defina uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - Atire um raio, a partir do centro do pixel, na direção dos objetos
 - Compute, dentre os pontos atingidos em cada objeto, o que está mais próximo
 - Se o raio atingiu um objeto
 - Use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - Defina a cor do pixel como preta

Interseção entre raio e objetos

• Função Hit para cada objeto

•

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Defina uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - Atire um raio, a partir do centro do pixel, na direção dos objetos
 - Compute, dentre os pontos atingidos em cada objeto, o que está mais próximo
 - Se o raio atingiu um objeto
 - Use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - Defina a cor do pixel como preta

ponto mais perto...

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Defina uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - Atire um raio, a partir do centro do pixel, na direção dos objetos
 - Compute, dentre os pontos atingidos em cada objeto, o que está mais próximo
 - Se o raio atingiu um objeto
 - Use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - Defina a cor do pixel como preta

Computar cores

- RGB (Vermelho, Verde e Azul)
- Extras
 - gamma
 - gamut

Extração de primitivas

Conceituando

- Primitivas
 - Cilindros...

RANSAC

explicar, esquema, ...

${\sf Alguns}\ resultados$

Ray-tracing

Alguns resultados

Extração de primitivas

Implementação

Detalhes

Linguagem de Programação	C++, com orientação a objetos
Kit gráfico	Qt 5
Gerenciamento de <i>build</i>	CMake
Framework de testes	Google Test

Plataforma

- Ubuntu 14.04 LTS 64-bit
- Intel Core i7 950 @ 3.07 GHz x 8 cores
- 15,7 GB de RAM

Benchmarking

Ideias Futuras

- Ideias futuras
 - Ray-tracer
 - Serialização
 - Paralelização
 - Extração de Primitivas
 - Melhorar algoritmos
- Conclusão

Referências

- Suffern, Kevin Geoffrey, and Suffern, Kevin. Ray Tracing from the Ground up. AK Peters, 2007.
- Schnabel, Ruwen, Roland Wahl, and Reinhard Klein. "Efficient RANSAC for Point-Cloud Shape Detection." Computer graphics forum. Vol. 26. No. 2. Blackwell Publishing Ltd, 2007.