电磁场笔记

板栗

2024年12月11日

目录

第一章	矢量分析	1
1.1	矢量的代数运算	1
1.2	矢量的微分与积分	3
1.3	梯度、旋度与散度	3
1.4	矢量公式总结	5
1.5	并 矢运算法则	6
1.6	Three Basic Orthogonal Coordinate / 一般形式	7
第二章	· 静电场	9
2.1	电荷和电场	9
	2.1.1 库仓定律	9
	2.1.2 高斯定理和电场的散度	9
	2.1.3 静电场的旋度	10
2.2	介质的极化	10
	2.2.1 电极化强度	10
	2.2.2 电位移矢量	11
2.3	边值关系	11
2.4	静电场的标势及其微分方程	11
	2.4.1 静电场的标势	11
	2.4.2 电偶极子	12
	2.4.3 电多极矩展开	12
	2.4.4 静电势的微分方程	13
	2.4.5 静电势的边值关系	13
2.5	导体系的能量、固有能和相互作用能	13
2.6	唯一性定理	14
2.7	拉普拉斯方程和分离变量法	14
2.8	镜像法	16
第三章	静磁场	17
3.1	电流和磁场	17
	3.1.1 电荷守恒定律	17
	3.1.2 毕奥-萨法尔定律	18
	3.1.3 磁场的环量和旋度	18
	3.1.4 磁场的散度	18
3.2		19
3.3	<u> 边值关系 </u>	20
3.4	磁矢势及其微分方程	20

目录 ii

	3.4.1 矢势	20
	3.4.2 矢势微分方程	21
	3.4.3 矢势边值关系	21
	3.4.4 圆环和线圈的磁场和矢势	21
	3.4.5 磁偶极子	21
3.5	磁标势	22
<i>^</i>	da 7#17	20
第四章	电磁场	23
4.1	麦克斯韦方程组....................................	23
	4.1.1 电磁感应定律	23
4.0	4.1.2 位移电流	24
4.2	守恒定律	24
	4.2.1 能量	25
4.0	4.2.2 动量	26
4.3	势和场	27
	4.3.1 势表述	27
	4.3.2 连续分布	28
华工产	电磁波的传播	30
第五章	电磁水的均衡	30
第五早 5.1	一维波	3 0
5.1	一维波	30
5.1	一维波	30 30
5.1	一维波	30 30 30
5.1	一维波 电磁波在非导电介质中的传播 5.2.1 单色平面电磁波 5.2.2 球面波解	30 30 30 31
5.1 5.2	一维波电磁波在非导电介质中的传播5.2.1 单色平面电磁波5.2.2 球面波解5.2.3 电磁波的偏振	30 30 30 31 31
5.1 5.2	一维波电磁波在非导电介质中的传播5.2.1 单色平面电磁波5.2.2 球面波解5.2.3 电磁波的偏振金属的等效介电常数	30 30 31 31 31
5.1 5.2	一维波.电磁波在非导电介质中的传播.5.2.1 单色平面电磁波.5.2.2 球面波解.5.2.3 电磁波的偏振.金属的等效介电常数.5.3.1 色散介质的本构关系.	30 30 30 31 31 31
5.1 5.2	一维波 电磁波在非导电介质中的传播 5.2.1 单色平面电磁波 5.2.2 球面波解 5.2.3 电磁波的偏振 金属的等效介电常数 5.3.1 色散介质的本构关系 5.3.2 金属的有效电导率 5.3.3 金属有效介电常数	30 30 31 31 31 31 31
5.1 5.2 5.3	一维波 . 电磁波在非导电介质中的传播 . 5.2.1 单色平面电磁波 . 5.2.2 球面波解 . 5.2.3 电磁波的偏振 . 金属的等效介电常数 . 5.3.1 色散介质的本构关系 . 5.3.2 金属的有效电导率 . 5.3.3 金属有效介电常数 .	30 30 31 31 31 31 31 32
5.1 5.2 5.3	一维波 电磁波在非导电介质中的传播 5.2.1 单色平面电磁波 5.2.2 球面波解 5.2.3 电磁波的偏振 金属的等效介电常数 5.3.1 色散介质的本构关系 5.3.2 金属的有效电导率 5.3.3 金属有效介电常数 电磁波在导电介质中的传播	30 30 31 31 31 31 32 32
5.1 5.2 5.3 5.4 5.5	一维波 电磁波在非导电介质中的传播 5.2.1 单色平面电磁波 5.2.2 球面波解 5.2.3 电磁波的偏振 金属的等效介电常数 5.3.1 色散介质的本构关系 5.3.2 金属的有效电导率 5.3.3 金属有效介电常数 电磁波在导电介质中的传播 电磁波在介质面上的反射和折射	30 30 30 31 31 31 31 32 32
5.1 5.2 5.3 5.4 5.5 5.6 5.7	一维波 电磁波在非导电介质中的传播 5.2.1 单色平面电磁波 5.2.2 球面波解 5.2.3 电磁波的偏振 金属的等效介电常数 5.3.1 色散介质的本构关系 5.3.2 金属的有效电导率 5.3.3 金属有效介电常数 电磁波在导电介质中的传播 电磁波在介质面上的反射和折射 波导 谐振腔	30 30 31 31 31 31 32 32 33 36 38
5.1 5.2 5.3 5.4 5.5 5.6 5.7 第六章	一维波 电磁波在非导电介质中的传播 5.2.1 单色平面电磁波 5.2.2 球面波解 5.2.3 电磁波的偏振 金属的等效介电常数 5.3.1 色散介质的本构关系 5.3.2 金属的有效电导率 5.3.3 金属有效介电常数 电磁波在导电介质中的传播 电磁波在介质面上的反射和折射 波导 谐振腔 电磁波的辐射	30 30 31 31 31 31 32 32 33 36 38
5.1 5.2 5.3 5.4 5.5 5.6 5.7 第六章 6.1	一维波 电磁波在非导电介质中的传播 5.2.1 单色平面电磁波 5.2.2 球面波解 5.2.3 电磁波的偏振 金属的等效介电常数 5.3.1 色散介质的本构关系 5.3.2 金属的有效电导率 5.3.3 金属有效介电常数 电磁波在导电介质中的传播 电磁波在介质面上的反射和折射 波导 谐振腔 电磁波的辐射	30 30 31 31 31 31 32 32 33 36 38

第一章 矢量分析

1.1 矢量的代数运算

Einstein 求和约定

1. 不写 \sum

2. 重复指标自动求和

3. 和式相乘指标不能相同

$$\left(\sum_i a_i b_i\right) imes \left(\sum_j c_j d_j\right) = a_i b_i c_j d_j$$

Kronecker 符号

 $\delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$

性质: (标准正交基: \overrightarrow{e}_1 \overrightarrow{e}_2 \overrightarrow{e}_3)

 $\bullet \quad \overrightarrow{a} \cdot \overrightarrow{b} = a_i b_i = \delta_{ij} a_i b_j$

• $\delta_{ij} = \delta_{ji}$

• $\delta_{ij} = \vec{e}_i \cdot \vec{e}_j$

 $\bullet \quad \overrightarrow{I} = \begin{pmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33} \end{pmatrix}$

• $\delta_{im}\delta_{mj}=\delta_{ij}$ (注意 m 需要求和)

 $\bullet \quad \overrightarrow{e}_{i} = \begin{pmatrix} \delta_{i1} \\ \delta_{i2} \\ \delta_{i3} \end{pmatrix}$

Levi-Cevita 符号

 $\varepsilon_{ijk} = \begin{cases} 1 & ijk = 123, 231, 312 \\ -1 & ijk = 321, 213, 132 \\ 0 & \pm 44, (\pm \frac{\pi}{12} + \frac{\pi}{12$

1

 $\bullet \quad \overrightarrow{a} \times \overrightarrow{b} = \varepsilon_{ijk} a_i b_j \overrightarrow{e}_k$

 $\bullet \ \varepsilon_{ijk} = \overrightarrow{e}_i \cdot (\overrightarrow{e}_j \times \overrightarrow{e}_k) = \begin{vmatrix} \delta_{1i} & \delta_{2i} & \delta_{3i} \\ \delta_{1j} & \delta_{2j} & \delta_{3j} \\ \delta_{1k} & \delta_{2k} & \delta_{3k} \end{vmatrix}$ $\bullet \ \varepsilon_{ijk} \varepsilon_{lmn} = \begin{vmatrix} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \\ \delta_{kl} & \delta_{km} & \delta_{kn} \end{vmatrix}$

• $\varepsilon_{ijk} = -\varepsilon_{jik}$

1.1 矢量的代数运算 2

$$-\varepsilon_{ijk}\varepsilon_{mnk} = \begin{vmatrix} 0 & \delta_{im} & \delta_{in} \\ 0 & \delta_{jm} & \delta_{jn} \\ 1 & 0 & 0 \end{vmatrix} = \delta_{im}\delta_{jn} - \delta_{jm}\delta_{in} \qquad -\varepsilon_{ijk}\varepsilon_{mjk} = 2\delta_{im} \\ -\varepsilon_{ijk}\varepsilon_{ijk} = 6$$

$$\bullet \ \vec{e}_i \times \vec{e}_j = \varepsilon_{ijk}\vec{e}_k$$

表达形式:

•
$$\vec{a} = a_i \vec{e}_i = |\vec{a}| \hat{a}$$

•
$$|\vec{a}| = \sqrt{a_i a_i} = \sqrt{\delta_{ij} a_i a_j}$$

运算:

1. 加法(平行四边形/三角形)

$$\vec{a} + \vec{b} = (a_i + b_i)\vec{e}_i$$

2. 乘法

• 数乘:
$$\lambda \vec{a} = \lambda(a_i \vec{e}_i) = (\lambda a_i) \vec{e}_i$$

• 内积:
$$\vec{a} \cdot \vec{b} = a_i b_i = \delta_{ij} a_i b_j$$

• 叉积:
$$\vec{a} \times \vec{b} = \varepsilon_{ijk} a_i b_j \vec{e}_k = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

• 叉积:
$$\vec{a} \times \vec{b} = \varepsilon_{ijk} a_i b_j \vec{e}_k = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
• 并积: $\vec{a} \cdot \vec{b} = a_i b_j \vec{e}_i \vec{e}_j = \begin{pmatrix} a_1 b_1 & a_1 b_2 & a_1 b_3 \\ a_2 b_1 & a_2 b_2 & a_2 b_3 \\ a_3 b_1 & a_3 b_2 & a_3 b_3 \end{pmatrix}$

$$- \vec{e}_i \vec{e}_j = \begin{pmatrix} \delta_{i1} \\ \delta_{i2} \\ \delta_{i3} \end{pmatrix} \left(\delta_{j1} \delta_{j2} \delta_{j3} \right)$$

3. 三重标积

$$\bullet \quad \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = a_l \overrightarrow{e}_l \cdot \varepsilon_{ijkb_ic_j} \overrightarrow{e}_j = \varepsilon_{ijk} a_l b_i c_j (\overrightarrow{e}_l \cdot \overrightarrow{e}_k) = \varepsilon_{ijk} a_k b_i c_j = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$\bullet \ \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{b} \cdot (\overrightarrow{c} \times \overrightarrow{a}) = \overrightarrow{c} \cdot (\overrightarrow{a} \times \overrightarrow{b})$$

4. 三重矢积

$$\vec{a} \times (\vec{b} \times \vec{c}) = \varepsilon_{ijk} a_i (\vec{b} \times \vec{c})_j \vec{e}_k = \varepsilon_{ijk} a_i (\varepsilon_{mnj} b_m c_n) \vec{e}_k$$

$$= -\varepsilon_{ikj} \varepsilon_{mnj} a_i b_m c_n \vec{e}_k = -(\delta_{im} \delta_{kn} - \delta_{in} \delta_{km}) a_i b_m c_n \vec{e}_k$$

$$= \delta_{in} \delta_{km} a_i b_m c_n \vec{e}_k - \delta_{im} \delta_{kn} a_i b_m c_n \vec{e}_k = a_i c_i b_k \vec{e}_k - a_i b_i c_k \vec{e}_k$$

$$= (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

5. 单位矢量运算

•
$$\vec{e}_i \cdot \vec{e}_i = \delta_{ii}$$

•
$$\vec{e}_i \times \vec{e}_j = \varepsilon_{ijk} \vec{e}_k$$

•
$$\vec{e}_i \cdot (\vec{e}_i \times \vec{e}_k) = \varepsilon_{iik}$$

•
$$\vec{b} = (\vec{b} \cdot \vec{e})\vec{e} + \vec{e} \times (\vec{b} \times \vec{e})$$

1.2 矢量的微分与积分

1. 微分

(a) 一元:

$$\frac{d\vec{A}}{dt} = \frac{d}{dt}(a_i \vec{e}_i) = \frac{da_i}{dt} \vec{e}_i$$

• 要求 \vec{e}_i 是常矢量 (下同)

(b) 多元:

$$\frac{\partial \vec{A}}{\partial x_i} = \frac{\partial}{\partial x_i} (a_i \vec{e}_i) = \frac{\partial a_i}{\partial x_i} \vec{e}_i$$

(c) 全微分:

$$d\vec{A} = \frac{\partial a_i}{\partial x_j} dx_j \, \vec{e}_i$$

2. 积分(矢量求和,还是矢量)

$$\int_a^b \overrightarrow{A}(t) \mathrm{d}t = \int_a^b (a_i \overrightarrow{e}_i) \, \mathrm{d}t = \left(\int_a^b a_i \mathrm{d}t \right) \overrightarrow{e}_i$$

3. 结论

•
$$\overrightarrow{A} \cdot d\overrightarrow{A} = (a_i \overrightarrow{e}_i) \cdot d(a_j \overrightarrow{e}_j) = a_i da_j (\overrightarrow{e}_i \cdot \overrightarrow{e}_j) = a_i da_i = \frac{1}{2} d(a_i a_i) = \frac{1}{2} d|\overrightarrow{A}|^2 = |\overrightarrow{A}| d|\overrightarrow{A}|$$

• 分部求导

$$- d(\vec{u} \cdot \vec{v}) = d(u_i v_i) = (du_i)v_i + u_i(dv_i) = d\vec{u} \cdot \vec{v} + \vec{u} \cdot d\vec{v}$$

$$- d(\overrightarrow{u} \times \overrightarrow{v}) = d(\varepsilon_{ijk}u_iv_j\overrightarrow{e}_k) = \varepsilon_{ijk}(du_i)v_j\overrightarrow{e}_k\varepsilon_{ijk}u_i(dv_j)\overrightarrow{e}_k = d\overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u} \times d\overrightarrow{v}$$

$$- d(f\vec{u}) = d(fu_i\vec{e}_i) = (df)u_i\vec{e}_i + f(du_i)\vec{e}_i = (df)\vec{u} + f(d\vec{u})$$

1.3 梯度、旋度与散度

如何描述一个场的变化特性?

标量场的变化速度: 梯度

1. 定义:

$$\operatorname{grad} V \equiv \hat{\boldsymbol{n}} \frac{\mathrm{d}V}{\mathrm{d}n}$$

从方向导数出发,表示沿着最大的方向

2. Nabla 算符:

$$\vec{\nabla} \equiv \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{pmatrix} = \partial_i \vec{e}_i \qquad \text{ ξ \text{\sharp t $ \sharp t } + \text{ $\%$ f t }}$$

3. 笛卡尔坐标系下, $\operatorname{grad} f = \overrightarrow{\nabla} f$ $(f 与 \overrightarrow{\nabla} \text{ 进行数乘})$

4. 性质: $(r = \sqrt{x_1^2 + x_2^2 + x_3^2})$

•
$$\mathrm{d}f = \partial_i f \mathrm{d}x_i = \overrightarrow{\nabla} f \cdot \mathrm{d}\overrightarrow{r}$$

•
$$\vec{\nabla}(\alpha f + \beta g) = \alpha \vec{\nabla} f + \beta \vec{\nabla} g$$

$$\bullet \ \, \vec{\nabla} f \cdot \vec{e}_i = \frac{\partial f}{\partial x_i}$$

•
$$\vec{\nabla}(fg) = f\vec{\nabla}g + g\vec{\nabla}f$$

1.3 梯度、旋度与散度

•
$$\vec{\nabla} f(r) = \frac{\partial f}{\partial r} \vec{\nabla} r$$

•
$$\oint \vec{\nabla} f \cdot d\vec{r} = \oint df = 0$$

•
$$\int_{A}^{B} \vec{\nabla} f \cdot d\vec{r} = f_{B} - f_{A}$$

$$\bullet \quad \overrightarrow{\nabla} r = \frac{\overrightarrow{r}}{r} = \hat{r}$$

•
$$\overrightarrow{\nabla}(\overrightarrow{a}\cdot\overrightarrow{r}) = \overrightarrow{a}$$

矢量场的奇性: 散度

1. 定义:

$$\mathrm{div} \overrightarrow{A} \equiv \lim_{\Delta V \to 0} \frac{\oint_{S} \overrightarrow{A} \cdot \mathrm{d} \overrightarrow{S}}{\Delta V}$$

一个场空间散度的积分等于包含于此空间闭合曲面上的通量

2. Gauss 公式:

$$\oint_{S} \overrightarrow{F} \cdot d\overrightarrow{S} = \int_{V} (\operatorname{div} \overrightarrow{F}) \, dV$$

3. 笛卡尔坐标系下,
$$\operatorname{div} \vec{F} \equiv \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + \frac{\partial F_3}{\partial x_3} = \partial_i F_i = \vec{\nabla} \cdot \vec{F}$$

4. 意义: 有源/无源

•
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

5. 性质:

•
$$\vec{\nabla} \cdot (\alpha \vec{F} + \beta \vec{G}) = \alpha \vec{\nabla} \cdot \vec{F} + \beta \vec{\nabla} \cdot \vec{G}$$

$$\overrightarrow{\nabla} \cdot (f\overrightarrow{F}) = \overrightarrow{\nabla} f \cdot \overrightarrow{F} + f \overrightarrow{\nabla} \cdot \overrightarrow{F}$$

•
$$\vec{\nabla} \cdot \vec{F}(r) = \vec{\nabla} r \cdot \frac{\partial \vec{F}}{\partial r}$$

•
$$\vec{\nabla} \cdot \vec{r} = 3$$

矢量场的保守性: 旋度

1. 定义:

$$\operatorname{curl} \overrightarrow{A} \equiv \lim_{\Delta S \to 0} \frac{1}{\Delta S} \left[\hat{n} \oint_{C} \overrightarrow{A} \cdot \operatorname{d} \overrightarrow{l} \right]_{\max}$$

2. Stokes 公式:

$$\oint_C \overrightarrow{F} \, \mathrm{d} \, \overrightarrow{l} = \int_S (\mathrm{rot} \overrightarrow{F}) \cdot \mathrm{d} \overrightarrow{S}$$

3.
$$\operatorname{rot} \vec{F} = \operatorname{curl} \vec{F} \equiv \begin{pmatrix} \frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3} \\ \frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1} \\ \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \end{pmatrix} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \partial_1 & \partial_2 & \partial_3 \\ F_1 & F_2 & F_3 \end{vmatrix} = \varepsilon_{ijk} \partial_i F_j \vec{e}_k = \vec{\nabla} \times \vec{F}$$

4. 性质:

$$\bullet \quad \overrightarrow{\nabla} \times (\alpha \overrightarrow{F} + \beta \overrightarrow{G}) = \alpha \overrightarrow{\nabla} \times \overrightarrow{F} + \beta \overrightarrow{\nabla} \times \overrightarrow{G}$$

$$\bullet \quad \left[\overrightarrow{\nabla} \times (f\overrightarrow{F}) = \overrightarrow{\nabla} f \times \overrightarrow{F} + f \overrightarrow{\nabla} \times \overrightarrow{F} \right]$$

•
$$|\overrightarrow{\nabla} \times (f\overrightarrow{F})| = \overrightarrow{\nabla} f \times \overrightarrow{F} + f\overrightarrow{\nabla} \times \overrightarrow{F}$$

•
$$\vec{\nabla} \times \vec{F}(r) = \vec{\nabla}r \times \frac{\partial \vec{F}}{\partial r}$$

•
$$\vec{\nabla} \times \vec{r} = 0$$

1.4 矢量公式总结 5

▽ 算子

1. 与矢量并积

$$\vec{\nabla} \vec{F} = \begin{pmatrix} \partial_1 \\ \partial_2 \\ \partial_3 \end{pmatrix} \left(F_1 \, F_2 \, F_3 \right) = \partial_i F_j \, \vec{e}_i \, \vec{e}_j$$

2. Laplace 算符

$$\Delta \equiv \vec{\nabla}^2 = \vec{\nabla} \cdot \vec{\nabla} = \delta_{ij} \partial_i \partial_j = \partial_i \partial_i$$

• 对标量来说是梯度的散度

$$\vec{\nabla}^2 f = \vec{\nabla} \cdot (\vec{\nabla} f)$$

• 对矢量来说是并积的散度

$$\vec{\nabla}^2 \vec{F} = \vec{\nabla} \cdot (\vec{\nabla} \vec{F})$$

1.4 矢量公式总结

1. 梯度场无旋

$$\vec{\nabla} \times (\vec{\nabla} f) \equiv 0$$

- 证明 1: $= \varepsilon_{ijk} \partial_i \partial_j f \overrightarrow{e}_k$
- 证明 2: $\oint_C \vec{\nabla} f \cdot d\vec{r} = 0 = \int_S \vec{\nabla} \times (\vec{\nabla} f) \cdot d\vec{S}$
- $\vec{B} : \vec{E} = -\vec{\nabla}\varphi$
- 2. 旋度场无源

$$\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{F}) \equiv 0$$

- 证明 1: $= \partial_k (\varepsilon_{ijk} \partial_i F_j \vec{e}_k)_k = \partial_k \varepsilon_{ijk} \partial_i F_j$
- 证明 2: $\oint_S (\vec{\nabla} \times \vec{F}) \cdot d\vec{S} = 0 = \int_V \vec{\nabla} \cdot (\vec{\nabla} \times \vec{F}) dV$
- 例: $\vec{\nabla} \cdot \vec{B} = 0$
- 3. 旋度的旋度

$$\overrightarrow{\nabla} \times (\overrightarrow{\nabla} \times \overrightarrow{F}) = \overrightarrow{\nabla} (\overrightarrow{\nabla} \cdot \overrightarrow{F}) - \overrightarrow{\nabla}^2 \overrightarrow{F}$$

- 证明: $= \varepsilon_{ijk} \partial_i (\varepsilon_{mnj} \partial_m F_n \vec{e}_j)_j \vec{e}_k = -\varepsilon_{ikj} \varepsilon_{mnj} \partial_i \partial_m F_n \vec{e}_k$
- 4. 点乘的梯度

$$\overrightarrow{\nabla}(\overrightarrow{a}\cdot\overrightarrow{b}) = (\overrightarrow{a}\cdot\overrightarrow{\nabla})\overrightarrow{b} + (\overrightarrow{b}\cdot\overrightarrow{\nabla})\overrightarrow{a} + \overrightarrow{a}\times(\overrightarrow{\nabla}\times\overrightarrow{b}) + \overrightarrow{b}\times(\overrightarrow{\nabla}\times\overrightarrow{a})$$

- 证明: 左边 = $(\partial_i \vec{e}_i)(a_j b_j) = \partial_i a_j b_j \vec{e}_i = (\partial_i a_j) b_j \vec{e}_i + (\partial_i b_j) a_j \vec{e}_i$
- 证明: 右边 = $a_i \partial_i b_j \vec{e}_j + b_i \partial_i a_j \vec{e}_j + a_i (\partial_k b_i \partial_i b_k) \vec{e}_k + b_i (\partial_k a_i \partial_i a_k) \vec{e}_k$
- $\diamondsuit \vec{a} = \vec{b}$:

$$\vec{a} \times (\vec{\nabla} \times \vec{a}) = \frac{1}{2} \vec{\nabla} \vec{a}^2 - (\vec{a} \cdot \vec{\nabla}) \vec{a}$$

5. 叉乘的散度

$$|\overrightarrow{\nabla} \cdot (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{b} \cdot (\overrightarrow{\nabla} \times \overrightarrow{a}) - \overrightarrow{a} \cdot (\overrightarrow{\nabla} \times \overrightarrow{b})|$$

• 证明: $= \partial_k \varepsilon_{ijk}(a_i b_j) = \varepsilon_{ijk} b_j (\partial_k a_i) + \varepsilon_{ijk} a_i (\partial_k b_j)$

1.5 并矢运算法则 6

6. 叉乘的旋度

$$\overrightarrow{\nabla} \times (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{a} (\overrightarrow{\nabla} \cdot \overrightarrow{b}) - \overrightarrow{b} (\overrightarrow{\nabla} \cdot \overrightarrow{a}) + (\overrightarrow{b} \cdot \overrightarrow{\nabla}) \overrightarrow{a} - (\overrightarrow{a} \cdot \overrightarrow{\nabla}) \overrightarrow{b}$$

• 证明:

$$\begin{split} &= \varepsilon_{ijk} \partial_i (\varepsilon_{mnj} a_m b_n) \overrightarrow{e}_k \\ &= - (\delta_{im} \delta_{kn} - \delta_{in} \delta_{km}) \partial_i (a_m b_n) \overrightarrow{e}_k \\ &= (\partial_i b_i) (a_k \overrightarrow{e}_k) + (b_i \partial_i) (a_k \overrightarrow{e}_k) - (\partial_i a_i) (b_k \overrightarrow{e}_k) - (a_i \partial_i) (b_k \overrightarrow{e}_k) \end{split}$$

- 7. 关于 \vec{r} 的运算
 - *ā* 是常矢量

- $r = \sqrt{x^2 + y^2 + z^2}$
- $\overrightarrow{A}(r)$ 是关于 r 变化的矢量

(a)
$$\vec{\nabla} \cdot (\vec{a} \times \vec{r}) = \vec{r} \cdot (\vec{\nabla} \times \vec{a}) - \vec{a} \cdot (\vec{\nabla} \times \vec{r}) = 0$$

(b)
$$\vec{\nabla} \times (\vec{a} \times \vec{r}) = \vec{a} (\vec{\nabla} \cdot \vec{r}) - \vec{r} (\vec{\nabla} \cdot \vec{a}) + (\vec{r} \cdot \vec{\nabla}) \vec{a} - (\vec{a} \cdot \vec{\nabla}) \vec{r} = 2\vec{a}$$

(c)
$$(\vec{a} \cdot \vec{\nabla})\vec{r} = \begin{pmatrix} \vec{a} \cdot \vec{\nabla}x \\ \vec{a} \cdot \vec{\nabla}y \\ \vec{a} \cdot \vec{\nabla}z \end{pmatrix} = \vec{a}$$

- (d) $\vec{\nabla}(\vec{a} \cdot \vec{r}) = \vec{a}$
- (e) $\vec{\nabla} \vec{r} = \vec{I}$
- (f) $\vec{\nabla} \cdot \vec{r} = 3$
- (g) $\vec{\nabla} \times \vec{r} = 0$

(h)
$$\vec{\nabla} r = \frac{\vec{r}}{r} = \hat{r}$$

(i)
$$\vec{\nabla} \frac{1}{r} = -\frac{\vec{r}}{r^3}$$

$$(j) \ \overrightarrow{\nabla}^2 \frac{1}{r} = -4\pi \delta(\overrightarrow{r})$$

证明.
$$\overrightarrow{\nabla}^2 \frac{1}{r} = \partial_i \partial_i \frac{1}{r} = \frac{-3}{r^3} + \frac{3x_i x_i}{r^5} = 0$$
 但 $\overrightarrow{r} = 0$ 点处除外。
利用 $\oint_S \left(\overrightarrow{\nabla} \frac{1}{r} \right) \cdot d\overrightarrow{S} = \int_V \nabla \cdot \left(\overrightarrow{\nabla} \frac{1}{r} \right) dV$,取一个固定球面,左边有 $-\frac{1}{r^2} 4\pi r^2 = -4\pi$,因此

$$(\mathbf{k}) \ \overrightarrow{\nabla} \cdot (\overrightarrow{r} \times \overrightarrow{A}(r)) = \overrightarrow{A} \cdot (\overrightarrow{\nabla} \times \overrightarrow{r}) - \overrightarrow{r} \cdot (\overrightarrow{\nabla} \times \overrightarrow{A}) = -\overrightarrow{r} \cdot (\overrightarrow{\nabla} r \times \frac{\mathrm{d}\overrightarrow{A}}{\mathrm{d}r}) = 0$$

(1)
$$\vec{\nabla} \times (\vec{r} \times \vec{A}(r)) = \vec{r}(\vec{\nabla} \cdot \vec{A}) - \vec{A}(\vec{\nabla} \cdot \vec{r}) + (\vec{A} \cdot \vec{r}) - (\vec{r} \cdot \vec{\nabla})\vec{A} = \vec{r} \cdot (\hat{r} \cdot \frac{d\vec{A}}{dr}) - 2\vec{A} - r\frac{d\vec{A}}{dr}$$

(m)
$$(\vec{r} \cdot \vec{\nabla})\vec{A} = \begin{pmatrix} \vec{r} \cdot \vec{\nabla}A_1 \\ \vec{r} \cdot \vec{\nabla}A_2 \\ \vec{r} \cdot \vec{\nabla}A_3 \end{pmatrix} = r\frac{d\vec{A}}{dr}$$

(n)
$$\vec{r} \cdot \vec{\nabla} A_1 = \vec{r} \cdot \frac{\mathrm{d}A_1}{\mathrm{d}r} \vec{\nabla} r = r \frac{\mathrm{d}A_1}{\mathrm{d}r}$$

1.5 并矢运算法则

- 1. 定义
 - $\overrightarrow{A}\overrightarrow{B} = a_i b_j \overrightarrow{e}_i \overrightarrow{e}_j$

•
$$\vec{I} = \vec{e}_1 \vec{e}_1 + \vec{e}_2 \vec{e}_2 + \vec{e}_3 \vec{e}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2. 矢量点乘并矢

$$\bullet \ \ \, \overrightarrow{A} \cdot (\overrightarrow{B}\overrightarrow{C}) = \left(A_1 \, A_2 \, A_3\right) \begin{pmatrix} B_1 \\ B_2 \\ B_3 \end{pmatrix} \left(C_1 \, C_2 \, C_3\right) = (\overrightarrow{A} \cdot \overrightarrow{B}) \overrightarrow{C}$$

$$\bullet \ (\vec{B}\vec{C}) \cdot \vec{A} = \begin{pmatrix} B_1 \\ B_2 \\ B_3 \end{pmatrix} \begin{pmatrix} C_1 \, C_2 \, C_3 \end{pmatrix} \begin{pmatrix} A_1 \\ A_2 \\ A_3 \end{pmatrix} = \vec{B}(\vec{C} \cdot \vec{A})$$

- 3. 双点积
 - 定义:

$$(\overrightarrow{A}\overrightarrow{B}):(\overrightarrow{C}\overrightarrow{D})=(\overrightarrow{B}\cdot\overrightarrow{C})(\overrightarrow{A}\cdot\overrightarrow{D})$$

•
$$\vec{r} \cdot \vec{r} : \vec{\nabla} \vec{\nabla} = (\vec{r} \cdot \vec{\nabla})^2$$

- 4. 叉积
 - $\vec{A} \times (\vec{e}_i \vec{e}_j) = (\vec{A} \times \vec{e}_i) \vec{e}_j$
 - $(\vec{e}_i \vec{e}_j) \times \vec{A} = \vec{e}_i (\vec{e}_j \times \vec{A})$
- 5. 旋度与散度
 - $\vec{\nabla} \times (\vec{A}\vec{B}) = (\vec{\nabla} \times \vec{A})\vec{B} (\vec{A} \times \vec{\nabla})\vec{B}$
 - $\bullet \ \ \, \vec{\nabla} \cdot (\vec{A}\vec{B}) = (\vec{\nabla} \cdot \vec{A})\vec{B} + (\vec{A} \cdot \vec{\nabla})\vec{B}$
- 6. 梯度

$$\vec{\nabla}\varphi = \vec{\nabla} \cdot (\varphi \vec{\vec{I}})$$

1.6 Three Basic Orthogonal Coordinate / 一般形式

Relations

Coordinate System Ralations	(x, y, z)	(r,ϕ,z)	(R, θ, ϕ)
Base vvtor	$\hat{m{x}},\hat{m{y}},\hat{m{z}}$	$\hat{m{r}},\hat{m{\phi}},\hat{m{z}}$	$\hat{\boldsymbol{R}},\hat{\boldsymbol{\theta}},\hat{\boldsymbol{\phi}}$
Metric coefficients $h_1/h_2/h_3$	1 / 1 / 1	$1\ /\ r\ /\ 1$	$1 / R / R \sin \theta$
Differential volume $\mathrm{d}v$	$\mathrm{d}x\mathrm{d}y\mathrm{d}z$	$r\mathrm{d}r\mathrm{d}\phi\mathrm{d}z$	$R^2 \sin \theta \mathrm{d}R \mathrm{d}\theta \mathrm{d}\phi$

•
$$\partial \hat{r}/\partial \phi = \hat{\phi}$$

•
$$\partial \hat{\phi}/\partial \phi = -\hat{r}$$

Gradient of a Scalar Field

$$\vec{\nabla} \equiv \vec{e}_{u_i} \frac{\partial}{h_i \partial u_i}$$

• Spherical coordinates

$$\vec{\nabla} \equiv \hat{R} \frac{\partial}{\partial R} + \hat{\theta} \frac{\partial}{R \partial \theta} + \hat{\phi} \frac{\partial}{R \sin \theta \partial \phi}$$

• Cylindrical coordinates

$$\overrightarrow{\nabla} \equiv \hat{r} \frac{\partial}{\partial r} + \hat{\phi} \frac{\partial}{r \partial \phi} + \hat{z} \frac{\partial}{\partial z}$$

Divergence of a vvtor Field

$$\overrightarrow{\nabla} \cdot \overrightarrow{A} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} (h_2 h_3 A_1) + \frac{\partial}{\partial u_2} (h_1 h_3 A_2) + \frac{\partial}{\partial u_3} (h_1 h_2 A_3) \right]$$

• Spherical coordinates

$$\vec{\nabla} \cdot \vec{A} = \frac{1}{R^2} \frac{\partial}{\partial R} (R^2 A_R) + \frac{1}{R \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_\theta) + \frac{1}{R \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

• Cylindrical coordinates

$$\vec{\nabla} \cdot \vec{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

Curl of a Vector

$$\vec{\nabla} \times \vec{A} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} \vec{e}_{u_1} h_1 & \vec{e}_{u_2} h_2 & \vec{e}_{u_1} h_3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 A_1 & h_2 A_2 & h_3 A_3 \end{vmatrix}$$

• Spherical coordinates

$$\vec{\nabla} \times \vec{A} = \frac{1}{R^2 \sin \theta} \begin{vmatrix} \hat{R} & R \hat{\theta} & R \sin \theta \hat{\phi} \\ \frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_R & R A_{\theta} & R \sin \theta A_{\phi} \end{vmatrix}$$

• Cylindrical coordinates

$$\vec{\nabla} \times \vec{A} = \frac{1}{r} \begin{vmatrix} \hat{r} & r \, \hat{\phi} & \hat{z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_r & r A_{\phi} & A_z \end{vmatrix}$$

Laplace Operator

$$\Delta \equiv \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} (\frac{h_2 h_3}{h_1} \frac{\partial}{\partial u_1}) + \frac{\partial}{\partial u_2} (\frac{h_1 h_3}{h_2} \frac{\partial}{\partial u_2}) + \frac{\partial}{\partial u_3} (\frac{h_1 h_2}{h_3} \frac{\partial}{\partial u_3}) \right]$$

• Spherical coordinates

$$\Delta \equiv \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

• Cylindrical coordinates

$$\Delta \equiv \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2}$$

第二章 静电场

2.1 电荷和电场

(真空)

2.1.1 库仑定律

表述: 真空中静止点电荷 Q 对另一个静止点电荷 Q' 的作用力为

$$\vec{F} = rac{QQ'}{4\piarepsilon_0 r^3} \vec{r}$$
 所激发的场强为 $\vec{E} = rac{Q \vec{r}}{4\piarepsilon_0 r^3}$

r: 点电荷间的径矢

ε₀: 真空介电常数

静电场的电场强度分布:

$$\overrightarrow{E} = \sum_{i} \frac{Q_{i} \overrightarrow{r}_{i}}{4\pi\varepsilon_{0} r_{i}^{3}} \quad \xrightarrow{\mathrm{d}Q = \rho(\overrightarrow{x}') \mathrm{d}V'} \quad \overrightarrow{E}(\overrightarrow{x}) = \int_{V'} \frac{\rho(\overrightarrow{x}') \cdot \overrightarrow{r}}{4\pi\varepsilon_{0} r^{3}} \mathrm{d}V'$$

源点: x̄'

场点: x

• \vec{r} : 源点到场点的矢径

$$\vec{r} = \vec{x} - \vec{x}'$$

2.1.2 高斯定理和电场的散度

高斯定理:

$$\oint_S \vec{E} \cdot \mathrm{d}\vec{S} = \frac{Q}{\varepsilon_0} \xrightarrow{\text{\neq d}\tilde{E} \notin \mathcal{G} \cap \tilde{E}} = \frac{1}{\varepsilon_0} \int_{V'} \rho \mathrm{d}V' \qquad \leftrightarrow \qquad \boxed{\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}}$$

- V' 为 S 所包围的体积, Q 为闭合曲面内的总电荷
- 电荷连续分布在空间中,第一项是 \vec{E} 对闭合曲面 S 的通量
- 电荷是电场的源, 电场线从正电荷出发而终止于负电荷
- 在 $\rho = 0$ 处, 无电场线发出或终止, 但可以有电场线连续通过
- 反映了电荷对电场的局域性质:
 - 某点邻域上场的散度只与该点处的电荷密度有关,在没有电荷分布的空间中电场散度为零
 - 电荷激发邻近的场,远处通过场内部作用传递

证明. 设曲面内有一电荷 Q,其电场强度通过面元 $d\vec{S}$ 的通量为 $\vec{E} \cdot d\vec{S} = E \cos\theta dS = \frac{Q}{4\pi\varepsilon_0 r^2} \cos\theta dS$ 。 $\cos\theta dS/r^2$ 为面元 $d\vec{S}$ 对 Q 所张开的立体角 $\delta\Omega$,因此有 $\oint_S \vec{E} \cdot d\vec{S} = \frac{Q}{4\pi\varepsilon_0} \oint d\Omega = \frac{Q}{\varepsilon_0}$

2.2 介质的极化 10

2.1.3 静电场的旋度

安培环路定理:

$$\oint_{L} \vec{E} \cdot d\vec{l} = 0 \qquad \leftrightarrow \qquad \boxed{\vec{\nabla} \times \vec{E} = 0}$$

- 静电场的无旋性,即没有漩涡状,且只在静电情况下成立
- 保守场
- 可定义标量势

证明. 一个点电荷 Q 所激发的电场强度 \vec{E} 对任一闭合回路 L 的环量为 $\oint_L \vec{E} \cdot \mathrm{d} \vec{l} = \frac{Q}{4\pi\varepsilon_0} \oint_L \frac{\vec{r}}{r^3} \cdot \mathrm{d} \vec{l}$ 。 设 $\mathrm{d} \vec{l}$ 与 \vec{r} 的夹角为 θ ,则 $\vec{r} \cdot \mathrm{d} \vec{l} = r \cos \theta \mathrm{d} l = r \mathrm{d} r$,则上式 $\to -\frac{Q}{4\pi\varepsilon_0} \oint_L \mathrm{d} \left(\frac{1}{r}\right)$ 。 因为全微分的积分回路为零,所以

2.2 介质的极化

2.2.1 电极化强度

极化电荷:极化过程中正负电荷发生相对位移,呈现出束缚在介质中的宏观电荷,也叫束缚电荷。宏观电偶极矩分布描述:

$$\overrightarrow{P} = \frac{\sum_{i} \overrightarrow{p_{i}}}{\Delta V}$$

- P: 电极化强度
- \vec{p} : 分子电偶极矩(设每个分子由相距为 \vec{l} 的一对 $\pm q$ 构成)

$$\overrightarrow{p} = q \, \overrightarrow{l}$$

介质极化后,穿出 \overrightarrow{dS} 外面的正电荷为

$$nq \vec{l} \cdot d\vec{S} = n \vec{p} \cdot d\vec{S} = \vec{P} \cdot d\vec{S}$$

• n: 单位体积分子数

对闭合界面 S 积分, 对 V 内净余的负电荷有

$$\int_{V} \rho_{P} \mathrm{d}V = -\oint_{S} \overrightarrow{P} \cdot \mathrm{d}\overrightarrow{S} = -\int_{V} (\overrightarrow{\nabla} \cdot \overrightarrow{P}) \mathrm{d}V \quad \leftrightarrow \quad \boxed{\rho_{P} = -\overrightarrow{\nabla} \cdot \overrightarrow{P}}$$

当电场随时间改变时,极化过程中的正负电荷的相对位移改变,产生极化电流 \hat{J}_P

$$\vec{J}_P = \frac{\partial \vec{P}}{\partial t}$$

• 满足流守恒定律

$$\vec{\nabla} \cdot \vec{J}_P + \frac{\partial \rho_P}{\partial t} = \vec{\nabla} \cdot \frac{\partial \vec{P}}{\partial t} - \frac{\partial}{\partial t} \vec{\nabla} \cdot \vec{P} \equiv 0$$

考虑两介质分界面有

$$\sigma_P dS = -(\vec{P}_2 - \vec{P}_1) \cdot d\vec{S} \qquad \Rightarrow \qquad \sigma_P = -\vec{e}_n \cdot (\vec{P}_2 - \vec{P}_1),$$

- ρ_P: 束缚电荷体密度
- σ_P: 束缚电荷面密度
- \vec{e}_n : 分界面上由介质 1 指向介质 2 的法向单位矢量
- 介质对宏观电场的作用就是通过束缚电荷激发电场

2.3 边值关系 11

2.2.2 电位移矢量

在介质内

$$\begin{split} \varepsilon_0 \vec{\nabla} \cdot \vec{E} &= \rho_f + \rho_P \ \Rightarrow \ \vec{\nabla} \cdot (\varepsilon_0 \vec{E} + \vec{P}) = \rho_f \\ \vec{D} &\equiv \varepsilon_0 \vec{E} + \vec{P} \quad \ \rightarrow \quad \ \left[\vec{\nabla} \cdot \vec{D} = \rho_f \right] \end{split}$$

ρ_f: 自由电荷密度

• È: 总宏观电场强度, 是电场的基本物理量

D: 电位移矢量,辅助场量

对于一般各向同性介质有

$$\vec{P} = \chi_e \varepsilon_0 \vec{E} \qquad \rightarrow \qquad \vec{D} = \varepsilon \vec{E}$$

χ_e: 介质极化率

ε: 介质的电容率

• ε_r : 相对电容率

$$\varepsilon = \varepsilon_r \varepsilon_0, \qquad \varepsilon_r = 1 + \chi_e$$

2.3 边值关系

1. 法向分量的跃变 两介质边界上的一个扁平状主体

$$\varepsilon_0 \oint_S \vec{E} \cdot d\vec{S} = q_f + q_P \qquad \text{the side integral tends to zero} \begin{cases} \varepsilon_0(E_{2n} - E_{1n}) = \sigma_f + \sigma_P \\ P_{2n} - P_{1n} = -\sigma_P \\ D_{2n} - D_{1n} = \sigma_f \end{cases}$$

$$\overrightarrow{e}_n \cdot (\overrightarrow{D}_2 - \overrightarrow{D}_1) = \sigma$$

- σ: 自由电荷密度(除特别声明,以下笔记都是)
- 2. 切向分量的跃变

$$\oint_{L} \vec{E} \cdot d\vec{l} = 0 \qquad \Rightarrow \qquad \left[\vec{e}_{n} \times (\vec{E}_{2} - \vec{E}_{1}) = 0 \right]$$

2.4 静电场的标势及其微分方程

2.4.1 静电场的标势

$$\vec{E}(\vec{x}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{x}')dV'}{r^3} \vec{r}$$

$$= -\frac{1}{4\pi\varepsilon_0} \int \rho(\vec{x}')dV' \cdot \vec{\nabla} \left(\frac{1}{r}\right)$$

$$= -\vec{\nabla} \left[\frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{x}')}{r} dV'\right]$$

$$= \left[-\vec{\nabla}\varphi(\vec{x})\right]$$

电势差的定义: 把单位正电荷由 P_1 点移至 P_2 点, 电场所作的功

$$\varphi(P_2) - \varphi(P_1) = -\int_{P_1}^{P_2} \vec{E} \cdot d\vec{l}$$

给定电荷分布所激发的电势:

$$\varphi(\vec{x}) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho(\vec{x}')}{r} dV' \text{ with } \varphi(\infty) = 0$$

- 给定电荷分布所激发了电场,电场作用到导体的自由电子上,引起运动,重新分布,在总电场作用下达到平衡静止状态
- 平衡静止下,导体表面感应电荷分布密度确定,同时电场确定
- 静电场的环路定理

$$\oint \vec{E} \cdot d\vec{l} = -\oint \vec{\nabla}\varphi(\vec{x}) \cdot d\vec{l} = -\oint (\partial\varphi/\partial l) \cdot dl \equiv 0$$

$$\Leftrightarrow \qquad \vec{\nabla} \times \vec{E} = -\vec{\nabla} \times \vec{\nabla}\varphi \equiv 0$$

2.4.2 电偶极子

• 定义: 两个相聚很近的带等电量的正负电荷组成的体系, 电偶极距为

$$\vec{p} = q \vec{l}$$

方向: 负电荷指向正电荷

• 电势:

$$\begin{split} \varphi(\overrightarrow{x}) &= \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r_+} - \frac{1}{r_-} \right) \approx \frac{q}{4\pi\varepsilon_0} \frac{r_- - r_+}{r^2} \approx \frac{q}{4\pi\varepsilon_0} \frac{l\cos\theta}{r^2} \\ &= \frac{\overrightarrow{p} \cdot \overrightarrow{r}}{4\pi\varepsilon_0 r^3} \end{split}$$

• 电场:

$$\begin{split} \overrightarrow{E}(\overrightarrow{x}) &= -\overrightarrow{\nabla}\varphi = -\frac{1}{4\pi\varepsilon_0} \left[\frac{\overrightarrow{\nabla}(\overrightarrow{p}\cdot\overrightarrow{r})}{r^3} + \overrightarrow{p}\cdot\overrightarrow{r}\overrightarrow{\nabla} \left(\frac{1}{r^3}\right) \right] \\ &= -\frac{1}{4\pi\varepsilon_0} \left[\frac{\overrightarrow{p}-3(\overrightarrow{p}\cdot\widehat{r})\widehat{r}}{r^3} \right] \end{split}$$

2.4.3 电多极矩展开

(注意符号改变) 考虑一个电荷体系在远场, $\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} dV'$, 展开

$$\frac{1}{|\vec{r} - \vec{r}'|} = \frac{1}{r} + \frac{1}{1!} \partial_i \frac{1}{|\vec{r} - \vec{r}'|} \Big|_{\vec{r}' = 0} (-x_i') + \frac{1}{2!} \partial_i \partial_j \frac{1}{|\vec{r} - \vec{r}'|} \Big|_{\vec{r}' = 0} (-x_i') (-x_j') + \cdots$$

$$= \frac{1}{r} - x_i' \partial_i \frac{1}{r} + \frac{1}{6} (3x_i' x_j' - \delta_{ij} r'^2) \partial_i \partial_j \frac{1}{r}$$

代入得

$$\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{1}{r} \int \rho(\vec{r}') dV' + \frac{1}{4\pi\varepsilon_0} \frac{x_i}{r^3} \int x_i' \rho(\vec{r}') dV' + \frac{1}{4\pi\varepsilon_0} \frac{1}{6} \frac{3x_i x_j - \delta_{ij} r^2}{r^5} \int dV' \rho(\vec{r}') (3x_i' x_j' - \delta_{ij} r'^2) + \cdots$$

$$= \frac{1}{4\pi\varepsilon_0} \left[\frac{Q}{r} + \frac{\vec{r} \cdot \vec{p}}{r^3} + \frac{1}{6} \frac{3x_i x_j - \delta_{ij} r^2}{r^5} Q_{ij} + \cdots \right]$$

- 其中总电荷 $Q = \int \rho(\vec{r}') dV'$,电偶极矩 $\vec{p} = \int \vec{r}' \rho(\vec{r}') dV'$,电四极矩 $Q_{ij} = \int (3x_i' x_j' \delta_{ij} r'^2) \rho(\vec{r}') dV'$
- $\vec{E} \sim \frac{1}{r^2} + \frac{1}{r^3} + \frac{1}{r^5}$

2.4.4 静电势的微分方程

泊松方程

$$\vec{\nabla}^2 \varphi = -\frac{\rho}{\varepsilon} \qquad \Leftarrow \qquad \begin{cases} \vec{\nabla} \cdot \vec{D} = \rho \\ \vec{D} = \varepsilon \vec{E} \\ \vec{E} = -\vec{\nabla} \varphi \end{cases}$$

2.4.5 静电势的边值关系

在界面上静电势所满足的边值关系 第一类:

$$\vec{e}_n \times (\vec{E}_2 - \vec{E}_1) = 0 \qquad \leftrightarrow \qquad \varphi_1 = \varphi_2$$

第二类:

$$\vec{e}_n \cdot (\vec{D}_2 - \vec{D}_1) = \sigma \qquad \leftrightarrow \qquad \varepsilon_2 \frac{\partial \varphi_2}{\partial n} - \varepsilon_1 \frac{\partial \varphi_1}{\partial n} = -\sigma$$

导体的静电条件:

• 静电场无电流,导体内部电场为零,则内部不带净电荷,电荷只能分布于导体表面

$$\vec{J} = \sigma \vec{E} = 0 \quad \Rightarrow \quad \vec{E}_0 = 0 \quad \Rightarrow \quad \vec{\nabla} \cdot \vec{E} = \rho = 0$$

• 导体表面上电场必沿法线方向, 因此导体表面为等势面(边界条件一类)

$$\varphi = 常量$$

• 垂直于导体表面电场为零,平行于导体不为零(边界条件二类)

$$\overrightarrow{E}_{\perp} = \frac{\sigma}{\varepsilon} \cdot \overrightarrow{n} \quad \Rightarrow \quad \varepsilon \frac{\partial \varphi}{\partial n} = -\sigma \quad \text{or} \quad -\oint \frac{\partial \varphi}{\partial n} \mathrm{d}S = \frac{Q}{\varepsilon}$$

- ε: 导体外的介质电容率

2.5 导体系的能量、固有能和相互作用能

能量定域于电场所在空间(无界边界条件)

$$\begin{split} u &= \frac{1}{2}\varepsilon_0 \int \vec{E}^2 \mathrm{d}V = \frac{1}{2}\varepsilon_0 \int -\varphi(\partial_i \partial_i \varphi) \mathrm{d}V = \frac{1}{2} \int \rho \varphi \mathrm{d}V = \frac{1}{2} \iint \mathrm{d}V_1 \mathrm{d}V_2 \frac{1}{4\pi\varepsilon_0} \frac{\rho(\vec{r}_1)\rho(\vec{r}_2)}{|\vec{r}_1 - \vec{r}_2|} \\ &= \sum_{\text{对} \mathcal{F}} \frac{1}{4\pi\varepsilon_0} \frac{q_i q_j}{|\vec{r}_i - \vec{r}_j|} + \text{电荷自身能量} \end{split}$$

- 第一项即为相互作用能
- u 是一个数, φ 是一个场

考虑电荷体系在场外, 其静电能为, 且外场变化缓慢

$$u = \int \rho(\vec{r}')\varphi_e(\vec{r}')dV' = \varphi_0(0)$$

力可展开为 力矩可展开为 2.6 唯一性定理 14

利用静电势来表示静电能量

$$W = \frac{1}{2} \int \left(\overrightarrow{E} \cdot \overrightarrow{D} \right) \mathrm{d}V = -\frac{1}{2} \int (\overrightarrow{\nabla} \varphi) \cdot \overrightarrow{D} \mathrm{d}V = -\frac{1}{2} \int \overrightarrow{\nabla} \cdot \left(\varphi \overrightarrow{D} \right) \mathrm{d}V + \frac{1}{2} \int \varepsilon \overrightarrow{\nabla} \cdot \overrightarrow{D} \mathrm{d}V = -\frac{1}{2} \oint \varphi \overrightarrow{D} \cdot \mathrm{d}\overrightarrow{S} + \frac{1}{2} \int \varphi \rho \mathrm{d}V$$

因为第一项在无穷面积上积分为零,另一项在导体中势能为常数,因此

$$W = \frac{1}{2} \sum_{i} \phi_i Q_i$$

其中 ϕ_i , Q_i 为第 i 个导体的势和总电荷。

2.6 唯一性定理

静电问题的唯一性定理

设区域 V 内给定自由电荷分布 $\rho(\vec{x})$, 在 V 的边界 S 上给定以下二者之一

- 1. 电势 $\varphi|_S$
- 2. 电势的法线方向偏导数 $\left. \frac{\partial \varphi}{\partial n} \right|_{S}$

即在每个均匀区域内满足

$$\vec{\nabla}^2 \varphi = -\frac{\rho}{\varepsilon_i}$$

且在两均匀区域分界面上满足边值关系,

$$\varphi_i = \varphi_j$$

$$\varepsilon_i \left(\frac{\partial \varphi}{\partial n}\right)_i = \varepsilon_j \left(\frac{\partial \varphi}{\partial n}\right)_j$$

并在 V 的边界 S 上满足给定的 φ 或 $\partial \varphi/\partial n$, 则 V 内电场唯一地确定

有导体存在时的唯一性定理

- 第一类: 给定每个导体上的电势 φ
- 第二类: 给定每个导体上的总电荷 Q_i

设区域 V 内有一些导体,给定导体之外的电荷分布 ρ ,给定各导体上的总电荷 Q_i 以及 V 的边界 S 上的 φ 或者 $\partial \varphi/\partial n$,则 V 内的电场唯一确定,它在导体以外满足

$$\vec{\nabla}^2 \varphi = -\frac{\rho}{\varepsilon}$$

在第 i 个导体上满足总电荷条件

$$-\oint_{S_{\epsilon}} \frac{\partial \varphi}{\partial n} dS = \frac{Q_i}{\varepsilon}$$

和等势面条件

$$\varphi|_{S_i} = \varphi_i =$$
常量

2.7 拉普拉斯方程和分离变量法

拉普拉斯方程

$$\overrightarrow{\nabla}^2 \varphi = 0$$

• 产生电场的自由电荷分布在导体表面(区域 V 的边界)

- 在V内部 $\rho=0$
- 1. 直角坐标
 - 拉普拉斯方程

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0$$

解1

$$\varphi(x) = Ax + B$$

• 解 2

$$\varphi(x,y) = (Ae^{kx} + Be^{-kx})(C\sin ky + D\cos ky)$$

• 解 3

$$X(x) = Ae^{\sqrt{k^2 + l^2}x} + Be^{-\sqrt{k^2 + l^2}x}$$
$$Y(y) = C\sin ky + D\cos ky$$

$$Z(z) = E\sin lz + F\cos lz$$

- 2. 柱坐标
 - 拉普拉斯方程

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\varphi}{\partial r}\right)+\frac{1}{r^2}\frac{\partial^2\varphi}{\partial\phi^2}+\frac{\partial^2\varphi}{\partial z^2}=0$$

• 解 1

$$\varphi(r) = A \ln r + B$$

• 解 2

$$\varphi(r,\phi) = \sum_{n} r^{n} (A_{n} \sin n\phi + B_{n} \cos n\phi)$$
$$+ \sum_{n} r^{-n} (C_{n} \sin n\phi + D_{n} \cos n\phi)$$

- 3. 球坐标
 - 拉普拉斯方程

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\varphi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\varphi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\varphi}{\partial\phi^2} = 0$$

解1

$$\varphi(r) = A + \frac{B}{r}$$

• 解 2

$$\varphi(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

• 解 3

$$\varphi(r,\theta,\phi) = \sum_{l,m} \left(A_{lm} r^l + \frac{B_{lm}}{r^{l+1}} \right) P_l^m(\cos\theta) \cos m\phi$$
$$+ \sum_{l,m} \left(C_{lm} r^l + \frac{D_{lm}}{r^{l+1}} \right) P_l^m(\cos\theta) \sin m\phi$$

2.8 镜像法 16

2.8 镜像法

问题: 空间某区域 V 内有一个点电荷,V 的边界上具有一定的边界条件 原来的电势分布:

$$\varphi = \varphi_0 + \varphi' = \frac{1}{4\pi\varepsilon} \int \frac{\rho(\vec{x}')}{r} dV' + \frac{1}{4\pi\varepsilon} \int \frac{\sigma_b(\vec{x}')}{r} dS'$$

• σ_b: 边界处电荷密度(未知)

解决方法:

区域外部的虚拟电荷等价于边界处的电荷密度分布

$$\varphi = \varphi_0 + \varphi_{image} = \frac{1}{4\pi\varepsilon} \int \frac{\rho(\vec{x}')}{r} dV' + \frac{1}{4\pi\varepsilon} \int \frac{\rho_{image}(\vec{x''})}{r} dV''$$

- 故有 $\vec{\nabla}^2 \varphi_{image} \equiv 0$
- 任有 $\vec{\nabla}^2 \varphi = -\rho/\varepsilon$

使 φ 满足所给边界条件,便找到了问题的解。

第三章 静磁场

3.1 电流和磁场

3.1.1 电荷守恒定律

通过任一曲面 S 的总电流 I 为

$$I = \int_{S} \vec{J} \cdot d\vec{S} \leftarrow dI = JdS \cos \theta = \vec{J} \cdot d\vec{S}$$

• \vec{J} : 电流密度(数值等于单位之间垂直通过单位面积的电荷量)

$$J = rac{\Delta q}{\Delta t \Delta S}$$

$$\begin{cases} -$$
种运动带电粒子 $\vec{J} = \rho \vec{v} \\$ 多种运动带电粒子 $\vec{J} = \sum_i \rho_i \vec{v}_i$

- ρ,ρ_i: 电荷密度

 $-\vec{v}, \vec{v}_i$: 平均速度

电荷守恒定律:

$$\oint_{S} \overrightarrow{J} \cdot d\overrightarrow{S} = -\int_{V} \frac{\partial \rho}{\partial t} dV \qquad \leftrightarrow \qquad \boxed{\overrightarrow{\nabla} \cdot \overrightarrow{J} + \frac{\partial \rho}{\partial t} = 0}$$

• 电流的连续性

• 微分形式也称连续性方程

• 恒定电流是无源的, 其流线必为闭合曲线

• 在 V 是全空间,任意变化电流情况下:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_V \rho \mathrm{d}V = 0 \quad (表示全空间的总电荷守恒)$$

• 在恒定电流情况下:

$$\frac{\partial \rho}{\partial t} = 0 \qquad \Rightarrow \qquad \vec{\nabla} \cdot \vec{J} = 0$$

• 非稳恒时, 电流线的汇聚/发散总是伴随着电荷的积累

• 守恒律的普遍表达形式:

$$\vec{\nabla} \cdot \hat{\mathbf{m}} \hat{\mathbf{m}} \hat{\mathbf{g}} + \frac{\partial}{\partial t} \hat{\mathbf{m}} \hat{\mathbf{m}} \hat{\mathbf{g}} = 0$$

3.1 电流和磁场 18

3.1.2 毕奥-萨法尔定律

一个电流元 $Id\vec{l}$ 在磁场中受力可表示为

$$d\vec{F} = Id\vec{l} \times \vec{B}$$

恒定电流激发的磁场分布规律

$$\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{x}') \times \vec{r}}{r^3} dV'$$

- *B*: 磁感应强度
- μ₀: 真空磁导率

若细导线上恒定电流激发磁场,有 $\vec{J} dV' = \vec{J} dS_n dl = J dS_n d\vec{l}$,对导线截面积分后得 $I d\vec{l}$,因此

$$\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \oint_L \frac{I d\vec{l} \times \vec{r}}{r^3}$$

• dS_n : 导线横截面元

3.1.3 磁场的环量和旋度

安培环路定理(恒定电流):

$$\oint_L \vec{B} \cdot \mathrm{d} \, \vec{l} = \mu_0 I \xrightarrow{\text{if } \notin \text{enish} \pi} = \mu_0 \int_S \vec{J} \cdot \mathrm{d} \vec{S} \qquad \leftrightarrow \qquad \boxed{\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}}$$

- 磁场沿闭合曲线的环量与通过闭合曲线所围曲面的电流成正比
- I 为通过闭合曲线 L 所围曲面的总电流,在 S 以外流过的电流没有贡献

3.1.4 磁场的散度

$$\oint_{S} \vec{B} \cdot d\vec{S} = 0 \qquad \leftrightarrow \qquad \boxed{\vec{\nabla} \cdot \vec{B} = 0}$$

- 无源场
- 在一般变化的磁场下也成立
- 是否存在磁荷?

证明.
$$\vec{B} = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{x}') \times \vec{r}}{r^3} dV' = -\frac{\mu_0}{4\pi} \int_V \vec{J}(\vec{x}') \times \nabla \frac{1}{r} dV', \ \nabla$$
 是对 \vec{x} 的微分算符,有 $\nabla \left[\vec{J}(\vec{x}') \frac{1}{r} \right] = \left(\nabla \frac{1}{r} \right) \times \vec{J}(\vec{x}')$ 。

因此,
$$\vec{B} = \frac{\mu_0}{4\pi} \vec{\nabla} \times \int_V \frac{\vec{J}(\vec{x}')}{r} dV' \equiv \vec{\nabla} \times \vec{A}$$
。因为有 $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$,所以 $\vec{\nabla} \cdot \vec{B} = 0$

其中

$$\vec{A} = \frac{\mu_0}{4\pi} \int_{V'} \frac{\vec{J}(\vec{x}') dV'}{r}$$

证明. 再有
$$\vec{\nabla} \times \vec{B} = \vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \nabla(\vec{\nabla} \cdot \vec{A}) - \nabla^2 \vec{A}$$
。
$$\vec{A} = \frac{\mu_0}{4\pi} \int_V \vec{J}(\vec{x}') \cdot \nabla \frac{1}{r} \mathrm{d}V' \quad \text{or} \quad \vec{\nabla} \cdot \vec{A} = \frac{\mu_0}{4\pi} \int_V \vec{J}(\vec{x}') \cdot \nabla' \frac{1}{r} \mathrm{d}V', \quad \text{因为 } \vec{r} = \vec{x} - \vec{x}', \quad \nabla \text{ 对 } \vec{x} \text{ 与对 } \vec{x}' \text{ 微分只 } \text{ 相差—个符号。得$$

$$\vec{\nabla} \cdot \vec{A} = -\frac{\mu_0}{4\pi} \int_V \nabla' \cdot \left[\vec{J}(\vec{x}') \frac{1}{r} \right] dV' + \frac{\mu_0}{4\pi} \int_V \frac{1}{r} \nabla' \cdot \vec{J}(\vec{x}') dV'$$

3.2 介质的磁化 19

第一项由于 V' 内无电流通过区域的界面,面积分为零;第二项恒定电流和连续性, $\overrightarrow{\nabla}\cdot\overrightarrow{J}(\overrightarrow{x}')=0$,因此有 $\overrightarrow{\nabla}\cdot\overrightarrow{A}=0$ 。有

$$\nabla^2 \vec{A} = \frac{\mu_0}{4\pi} \int_V \vec{J}(\vec{x}') \nabla^2 \frac{1}{r} dV' = -\frac{\mu_0}{4\pi} \int_V \vec{J}(\vec{x}') \vec{\nabla} \cdot \frac{\vec{r}}{r^3} dV'$$

当 $r \neq 0$ 有 $\nabla \cdot \frac{\vec{r}}{r^3}$, 所以只在 $\vec{x} = \vec{x}'$ 点上不为零,在对 \vec{x} 包围的小球积分,并有 $\vec{J}(\vec{x}') = \vec{J}(\vec{x})$,则

$$\int_{V} \vec{\nabla} \cdot \frac{\vec{r}}{r^{3}} dV' = -\int_{V} \nabla' \cdot \frac{\vec{r}}{r^{3}} dV' = -\oint_{S} \frac{\vec{r}}{r^{3}} \cdot d\vec{S}' = \oint_{S} \frac{1}{r^{2}} dS' = \oint d\Omega = 4\pi$$

因此得 $\nabla^2 \vec{A} = -\mu_0 \vec{J}$ \Rightarrow $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$

3.2 介质的磁化

- 磁化电流: 介质被磁化后产生束缚于磁介质上的电流
- 极化电流: 极化过程中正负电荷的相对位移改变引起的电流

宏观磁偶极矩分布描述:

$$\overrightarrow{M} = \frac{\sum_{i} \overrightarrow{m}_{i}}{\Lambda V}$$

- *M*: 磁化强度
- \vec{m} : 分子磁偶极矩 (面积矢量 \vec{a} , 电流 i 的小线圈)

$$\vec{m} = i\vec{a}$$

从 S 的背面流向前面的总磁化电流 I_M :

$$I_{M} = \oint_{L} ni \, \vec{a} \cdot \mathrm{d} \, \vec{l} = \int_{L} n \vec{m} \cdot \mathrm{d} \, \vec{l} = \oint_{L} \vec{M} \cdot \mathrm{d} \, \vec{l} \qquad \Rightarrow$$

$$\int_{S} \vec{J}_{M} \cdot \mathrm{d} \, \vec{S} = \oint_{L} \vec{M} \cdot \mathrm{d} \, \vec{l} = \int_{S} (\vec{\nabla} \times \vec{M}) \cdot \mathrm{d} \, \vec{S} \qquad \leftrightarrow \qquad \vec{\vec{J}_{M}} = \vec{\nabla} \times \vec{M} \qquad \Rightarrow \vec{\nabla} \cdot \vec{J}_{M} = 0$$

- $\vec{a} \cdot d\vec{l}$: 分子中心位于的柱体
- L: S 的边界线
- \vec{J}_M : 磁化电流密度。磁化电流不引起电流的累积,因此电场不考虑磁化电荷

在介质中

$$\begin{split} \frac{1}{\mu_0} \vec{\nabla} \times \vec{B} &= \vec{J}_f + \vec{J}_M \qquad \Rightarrow \qquad \vec{\nabla} \times \left(\frac{\vec{B}}{\mu_0} - \vec{M} \right) = \vec{J}_f \\ \vec{H} &\equiv \frac{\vec{B}}{\mu_0} - \vec{M} \qquad \rightarrow \qquad \vec{\nabla} \times \vec{H} = \vec{J}_f \end{split}$$

- *H*: 磁场强度(辅助物理量)
- B: 介质内的总宏观磁场(基本物理量)

对于各向非铁磁物质有

$$\overrightarrow{M} = \frac{1}{\mu_0} \frac{\chi_M}{1 + \chi_M} \overrightarrow{B} = \chi_M \overrightarrow{H} \qquad \overrightarrow{B} = \mu \overrightarrow{H}$$

- χ_M: 磁化率
- μ: 磁导率
- μ_r: 相对磁导率

$$\mu = \mu_r \mu_0 \qquad \mu_r = 1 + \chi_M$$

3.3 边值关系 20

3.3 边值关系

1. 法向分量的跃变边界上扁平状区域

$$\oint_{S} \vec{B} \cdot d\vec{S} = 0 \qquad \Rightarrow \qquad \boxed{\vec{e}_{n} \cdot (\vec{B}_{2} - \vec{B}_{1}) = 0}$$

2. 切向分量的跃变在狭长形回路上,流过 $\Delta \vec{l}$ 的自由电流为

$$I_f = \vec{\alpha}_f \times \vec{e}_n \cdot \Delta \vec{l}$$

回路宽度无限小, 因此

$$(\overrightarrow{H}_2 - \overrightarrow{H}_1) \cdot \Delta \overrightarrow{l} = \oint_L \overrightarrow{H} \cdot \mathrm{d} \overrightarrow{l} = I_f + \frac{\mathrm{d}}{\mathrm{d}t} \int_S \overrightarrow{D} \cdot \mathrm{d} \overrightarrow{S} = I_f \quad \Rightarrow \quad \boxed{\overrightarrow{e}_n \times (\overrightarrow{H}_2 - \overrightarrow{H}_1) = \overrightarrow{\alpha}_f}$$

• α: 自由电流线密度(除特别申明,以下笔记都是)

3.4 磁矢势及其微分方程

3.4.1 矢势

将磁场改写为

$$\begin{split} \overrightarrow{B}(\overrightarrow{x}) &= \frac{\mu_0}{4\pi} \int_V \frac{\overrightarrow{J}(\overrightarrow{x}') \times \overrightarrow{r}}{r^3} \mathrm{d}V' \\ &= -\frac{\mu_0}{4\pi} \int_V \overrightarrow{J}(\overrightarrow{x}') \times \nabla \left(\frac{1}{r}\right) \mathrm{d}V' \\ &= \frac{\mu_0}{4\pi} \int_V \overrightarrow{\nabla} \times \left(\frac{\overrightarrow{J}(\overrightarrow{x}')}{r}\right) \mathrm{d}V' \\ &= \overrightarrow{\nabla} \times \left[\frac{\mu_0}{4\pi} \int_V \frac{\overrightarrow{J}(\overrightarrow{x}')}{r} \mathrm{d}V'\right] \\ &= \left[\overrightarrow{\nabla} \times \overrightarrow{A}\right] \end{split}$$

矢势 \overrightarrow{A} 为

$$\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{x}')}{r} dV'$$

• 磁场的散度

$$\vec{\nabla} \cdot \vec{B}(\vec{x}) = \vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) \equiv 0$$

• 磁场的旋度

$$\vec{\nabla} \times \vec{B}(\vec{x}) = \vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \nabla (\vec{\nabla} \cdot \vec{A}) - \nabla^2 \vec{A}$$

A 的物理意义

$$\int_{S} \vec{B} \cdot d\vec{S} = \int_{S} (\vec{\nabla} \times \vec{A}) \cdot d\vec{S} = \oint_{L} \vec{A} \cdot d\vec{l}$$

- $-\overrightarrow{A}$ 沿任一闭合回路的环量代表通过以该回路为界的任一曲面的磁通量
- \vec{A} 可以确定 \vec{B} ,但是反过来不行

$$\vec{\nabla} \times (\vec{A} + \nabla \varphi) = \vec{\nabla} \times \vec{A}$$

• \vec{A} 的库仑规范条件 (对所有 \vec{A})

$$\overrightarrow{\nabla} \cdot \overrightarrow{A} = 0$$

3.4.2 矢势微分方程

在线性均匀介质内和库伦规范条件下有

$$\vec{\nabla} \times \vec{H} = \vec{J} \qquad \Rightarrow \qquad \nabla^2 \vec{A} = -\mu \vec{J}$$

特解:

$$\vec{A}(\vec{x}) = \frac{\mu}{4\pi} \int_{V} \vec{J}(\vec{x}') dV' \qquad \Rightarrow \qquad \vec{B} = \vec{\nabla} \times \vec{A} = \frac{\mu}{4\pi} \int_{V} \nabla \left(\frac{1}{r}\right) \times \vec{J} dV' \\ = \frac{\mu}{4\pi} \int_{V} \vec{J} \times \vec{r} dV'$$

3.4.3 矢势边值关系

$$\int_{S} \vec{B} \cdot d\vec{S} = \oint_{L} \vec{A} \cdot d\vec{l} = (A_{2t} - A_{1t})\Delta l \to 0 \qquad \Rightarrow \qquad A_{2t} = A_{1t}
\vec{\nabla} \cdot \vec{A} = 0 \qquad \Rightarrow \qquad A_{2n} = A_{1n}$$

• 即在两介质分界面上, 矢势连续

3.4.4 圆环和线圈的磁场和矢势

圆环

$$\vec{A}(\vec{r}) = \frac{\mu_0 T}{4\pi} \int \frac{d\vec{l}'}{|\vec{r} - \vec{r}'|} =$$

$$\vec{B}(\vec{r}) =$$

$$\vec{B}_z = \frac{\mu_0 I a^2}{2} \frac{1}{(z^2 + a^2)^{3/2}}$$

3.4.5 磁偶极子

(真空下)

- 定义: 施加外磁场, 电子在洛伦兹力作用下做回旋运动, 形成分子环流
- *就* 产生的势:

$$\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \cdot \frac{\vec{m} \times \vec{r}}{r^3}$$
证明. $\vec{A}(\vec{x}) = \frac{\mu_0 I}{4\pi} \oint \frac{1}{r} d\vec{l}$, $\frac{1}{r} = \frac{1}{|\vec{x} - \vec{x}'|} = \frac{1}{(x^2 + x'^2 - 2xx')^{\frac{1}{2}}} \approx \frac{1}{x} + \frac{\vec{x} \cdot \vec{x}'}{x^3} + \cdots$ \Rightarrow $\vec{A}(\vec{x}) = \frac{\mu_0 I}{4\pi x^3} \oint (\vec{r} \cdot \vec{r}') d\vec{l}$

• 磁场:

$$\vec{B}(\vec{x}) = \vec{\nabla} \times \vec{A} = -\frac{\mu_0}{4\pi} \left[\frac{\vec{m} - 3(\vec{m} \cdot \hat{r})\hat{r}}{r^3} \right]$$

3.5 磁标势 22

3.5 磁标势

在某区域内能引入磁标势的条件

- 1. 该区域的任何回路都不被自由电流所链环
- 2. 该区域是没有自由电流分布的单连通区域

在 $\vec{J} = 0$ 的区域内,磁场满足

$$\vec{\nabla} \times \vec{H} = 0 \qquad \Rightarrow \vec{H} \equiv -\nabla \varphi_m$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{B} = \mu_0 (\vec{H} + \vec{M})$$

$$\Rightarrow \vec{\nabla} \cdot \vec{H} \equiv \frac{\rho_m}{\mu_0} = -\vec{\nabla} \cdot \vec{M}$$

$$\Rightarrow \nabla^2 \varphi_m = -\frac{\rho_m}{\mu_0}$$

ρ_m: 磁荷密度

φ_m: 磁标势

• 将分子电流看作由一对假想磁荷组成的磁偶极子

第四章 电磁场

4.1 麦克斯韦方程组

4.1.1 电磁感应定律

 $\mathscr{E} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{S} \vec{B} \cdot \mathrm{d}\vec{S}$

ℰ: 感应电动势; Φ: 磁通量

• 大小关系: 闭合线圈中的感应电动势与通过该线圈内部的磁通量成正比

• 方向关系: 规定线圈 L 的围绕方向与 $\mathrm{d}S$ 的法线方向成右手螺旋关系,通过 S 的磁通量增加时, $\mathcal E$ 方向与规定 围绕方向相反;负号为能量守恒的表现

• 实质: 变化磁场在其周围空间中激发电场

法拉第方程:

$$\mathscr{E} = \frac{\Delta W}{q} = \oint_L \frac{\overrightarrow{F}_{\not | h}}{q} \cdot \operatorname{d} \overrightarrow{l} = \oint_L \overrightarrow{E}_k \cdot \operatorname{d} \overrightarrow{l} = \int \left(\overrightarrow{\nabla} \times \overrightarrow{E}_k \right) \cdot \operatorname{d} \overrightarrow{S} = - \int_S \frac{\partial \overrightarrow{B}}{\partial t} \cdot \operatorname{d} \overrightarrow{S} \qquad \leftrightarrow \qquad \overrightarrow{\nabla} \times \overrightarrow{E} = - \frac{\partial \overrightarrow{B}}{\partial t}$$

感生电动势:

$$\mathcal{E} = \oint \vec{E} \cdot d\vec{l} = -\frac{\partial}{\partial t} \iint \vec{B} \cdot d\vec{S}$$

动生电动势:

$$\mathrm{d}\Phi = -\int_{\mathrm{d}S} \vec{B} \cdot \mathrm{d}\vec{S} = \int_{\mathrm{d}S} \vec{B} \cdot \left(\vec{v} \, \mathrm{d}t \times \mathrm{d}\vec{\,l} \right) \quad \Rightarrow \quad \frac{\mathrm{d}\Phi}{\mathrm{d}t} = \int \vec{B} \cdot \left(\vec{v} \times \mathrm{d}l \right) = -\int \left(\vec{v} \times \vec{B} \right) \cdot \mathrm{d}\vec{\,l} = -\mathscr{E}$$

- 感应电场 \vec{E}_k 是有旋场
- 静电场是无旋场
- 电感:

$$LI = \Phi = \int \vec{B} \cdot d\vec{S} = \int (\vec{\nabla} \times \vec{A}) \cdot d\vec{S} = \oint \vec{A} \cdot d\vec{l}$$

另外一种方法推导:

$$\mathcal{E} = \oint \left(\overrightarrow{E} d \overrightarrow{l} + \overrightarrow{v} \times \overrightarrow{B} d \overrightarrow{l} \right)$$
$$= -\frac{d}{dt} \iint \overrightarrow{B} \cdot d \overrightarrow{S}$$

4.2 守恒定律 24

4.1.2 位移电流

非稳恒电流情况下,需要满足 $\vec{\nabla} \times \vec{B} = \mu_0 \vec{G}$ 。因为 $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{B}) \equiv 0$,所以需要找到满足 $\vec{\nabla} \cdot \vec{G} \equiv 0$ 。已知

$$\begin{vmatrix} \vec{\nabla} \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0 \\ \vec{\nabla} \cdot (\vec{J} + \vec{J}_D) \equiv 0 \\ \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \end{vmatrix} \Rightarrow \begin{vmatrix} \vec{J}_D = \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \\ \vec{\nabla} \times \vec{B} = \mu_0 (\vec{J} + \vec{J}_D) = \mu_0 \vec{J} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \end{vmatrix}$$

- \vec{J}_D : 位移电流密度(假设)(与运动电荷无关)
- 电流的非稳恒性与电荷的积累 $\dot{\rho}$ 通过流守恒定律相互关联,而后者又反映到空间电场的变化

麦克斯韦方程组

不管 ρ 和 \vec{J} 的来源,只要是电荷或电流,都将在空间激发电场或磁场

1. 真空中

$$\begin{split} \vec{\nabla} \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\ \vec{\nabla} \times \vec{B} &= \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \\ \vec{\nabla} \cdot \vec{E} &= \frac{\rho}{\varepsilon_0} \\ \vec{\nabla} \cdot \vec{B} &= 0 \end{split}$$

2. 介质中,有 $\vec{J}_P = \partial \vec{P} \Big/ \partial t$, $\vec{J}_M = \vec{\nabla} \times \vec{M}$, $\rho_P = -\vec{\nabla} \times \vec{P}$

$$\begin{cases} \vec{\nabla} \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\ \vec{\nabla} \times \vec{B} &= \mu_0 (\vec{J} + \vec{J}_P + \vec{J}_M + \vec{J}_D) \\ \vec{\nabla} \cdot \vec{E} &= \frac{1}{\varepsilon_0} (\rho + \rho_P) \\ \vec{\nabla} \cdot \vec{B} &= 0 \end{cases} \Rightarrow \begin{cases} \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ \vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \\ \vec{\nabla} \cdot \vec{D} = \rho \\ \vec{\nabla} \cdot \vec{B} = 0 \end{cases}$$

3. 电磁性质方程(本构关系)

$$\overrightarrow{D} = \varepsilon \overrightarrow{E}$$
 $\overrightarrow{B} = \mu \overrightarrow{H}$ $\overrightarrow{J} = \sigma \overrightarrow{E}$

- σ: 电导率
- 反映各向同性线性介质的宏观电磁性质
- 边界条件

$$\vec{n} \times (\vec{E}_1 - \vec{E}_2) = 0 \qquad \vec{n} \cdot (\vec{D}_1 - \vec{D}_2) = \sigma_f$$

$$\vec{n} \times (\vec{H}_1 - \vec{H}_2) = \alpha_f \qquad \vec{n} \cdot (\vec{B}_1 - \vec{B}_2) = 0$$

- $-\sigma_f$: 面自由电荷密度; α_f : 面自由电流密度
- 无自由面电荷(流)分布(绝大多数情况): \vec{E}, \vec{H} 切向分量连续, \vec{D}, \vec{B} 法向分量连续
- 有自由面电荷(流)分布: \vec{D}, \vec{B} 不连续

4.2 守恒定律

注: 符号稍有不同

4.2 守恒定律 25

4.2.1 能量

坡印廷定理

1. 真空中 洛伦兹力

$$\vec{F} = \int_{\mathcal{V}} \rho(\vec{E} + \vec{v} \times \vec{B}) d\tau$$

电磁场对电荷 (传导电流) 做的微功

$$\vec{F} \cdot d\vec{l} = q(\vec{E} + \vec{v} \times \vec{B}) \cdot \vec{v} dt = q\vec{E} \cdot \vec{v} dt$$

利用 $\vec{\nabla} \cdot (\vec{E} \times \vec{B}) = \vec{B} \cdot (\vec{\nabla} \times \vec{E}) - \vec{E} \cdot (\vec{\nabla} \times \vec{B})$,考虑功率密度 $\vec{f} \cdot \vec{v}$:

$$\begin{split} \overrightarrow{f} \cdot \overrightarrow{v} &= \left(\rho \overrightarrow{E} + \rho \overrightarrow{v} \times \overrightarrow{B} \right) \cdot \overrightarrow{v} = \rho \overrightarrow{v} \cdot \overrightarrow{E} = \overrightarrow{E} \cdot \overrightarrow{J} = \overrightarrow{E} \cdot \left(\frac{1}{\mu_0} \overrightarrow{\nabla} \times \overrightarrow{B} - \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t} \right) \\ &= -\frac{1}{\mu_0} \nabla \cdot \left(\overrightarrow{E} \times \overrightarrow{B} \right) + \frac{1}{\mu} \overrightarrow{B} \cdot \left(\overrightarrow{\nabla} \times \overrightarrow{E} \right) - \varepsilon_0 \overrightarrow{E} \cdot \frac{\partial \overrightarrow{E}}{\partial t} \\ &= -\frac{1}{\mu_0} \nabla \cdot \left(\overrightarrow{E} \times \overrightarrow{B} \right) - \frac{1}{\mu} \overrightarrow{B} \cdot \frac{\partial \overrightarrow{B}}{\partial t} - \varepsilon_0 \overrightarrow{E} \cdot \frac{\partial \overrightarrow{E}}{\partial t} \\ &= -\frac{1}{\mu_0} \nabla \cdot \left(\overrightarrow{E} \times \overrightarrow{B} \right) - \frac{1}{2} \varepsilon_0 \frac{\partial \overrightarrow{E}^2}{\partial t} - \frac{1}{2\mu_0} \frac{\partial \overrightarrow{B}^2}{\partial t} \end{split}$$

于是有, 坡印廷定理(功能原理)

$$\frac{\mathrm{d}W}{\mathrm{d}t} = \vec{E} \cdot \vec{v} \int_{\mathcal{V}} \rho \mathrm{d}\tau = \int_{\mathcal{V}} (\vec{E} \cdot \vec{J}) \mathrm{d}\tau = -\int_{\mathcal{V}} \frac{1}{2} \frac{\partial}{\partial t} \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) \mathrm{d}\tau - \oint_{\mathcal{S}} \frac{1}{\mu_0} (\vec{E} \times \vec{B}) \cdot \mathrm{d}\vec{a}$$

- S 为 V 的边界
- 表示电磁场对 V 内所有电荷做的总功等于电磁场能量的减少减去从边界流出的能量
- 也可写作

$$\overrightarrow{f}\cdot\overrightarrow{v}+\frac{\partial}{\partial t}\bigg(\frac{1}{2}\varepsilon_0E^2+\frac{1}{2\mu_0}B^2\bigg)=-\frac{1}{\mu_0}\overrightarrow{\nabla}\cdot\left(\overrightarrow{E}\times\overrightarrow{B}\right)$$

- 能流密度:

$$w = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2\mu_0} B^2$$

- 坡印廷矢量:

$$\vec{S} \equiv \frac{1}{\mu_0} (\vec{E} \times \vec{B})$$

- * 物理意义: 单位时间内电磁场通过单位表面积向外传递的能量
- 电磁场具有的总能量:

$$U_{\rm em} = \frac{1}{2} \int \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) d\tau$$

• 对电荷做功增加机械能(动能、势能等)

$$\frac{\mathrm{d}W}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathcal{V}} u_{\mathrm{mech}} \mathrm{d}\tau \\
u_{\mathrm{em}} = \frac{1}{2} \left(\varepsilon_0 E^2 + \frac{1}{u_0} B^2 \right) \quad \Rightarrow \quad \frac{\partial}{\partial t} \int_{\mathcal{V}} (u_{\mathrm{mech}} + u_{\mathrm{em}}) = -\oint_{\mathcal{S}} \vec{S} \cdot \mathrm{d}\vec{a} \quad \Rightarrow \quad \boxed{\frac{\partial}{\partial t} (u_{\mathrm{mech}} + u_{\mathrm{em}}) = -\vec{\nabla} \cdot \vec{S}}$$

- u_{mech}: 表示机械能能量密度
- u_{em}: 表示电磁场能量密度
- 若 W=0, 则 $\frac{\partial u_{\rm em}}{\partial t}=-\vec{\nabla}\cdot\vec{S}$; 对比连续性方程 $\frac{\partial \rho}{\partial t}=-\vec{\nabla}\cdot\vec{J}$

4.2 守恒定律 26

2. 线性介质中

将电磁场和电磁介质看成一体,计算场对自由电荷/电流的功率

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = \int_{\mathcal{V}} (\vec{E} \cdot \vec{J}) \mathrm{d}\tau$$

利用

$$\begin{split} \overrightarrow{\nabla} \cdot (\overrightarrow{H} \times \overrightarrow{B}) &= \overrightarrow{B} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) - \overrightarrow{H} \cdot (\overrightarrow{\nabla} \cdot \overrightarrow{B}) \\ \overrightarrow{\nabla} \times \overrightarrow{E} &= -\frac{\partial \overrightarrow{B}}{\partial t} \\ \overrightarrow{\nabla} \times \overrightarrow{H} &= \mu_0 \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t} \end{split} \Rightarrow \begin{aligned} \frac{\mathrm{d}Q}{\mathrm{d}t} &= -\int_{\mathcal{V}} \left(\overrightarrow{E} \cdot \frac{\partial \overrightarrow{D}}{\partial t} + \overrightarrow{H} \cdot \frac{\partial \overrightarrow{B}}{\partial t} \right) \mathrm{d}\tau - \oint_{\mathcal{S}} (\overrightarrow{E} \times \overrightarrow{H}) \cdot \mathrm{d}\overrightarrow{a} \\ &= -\frac{\partial}{\partial t} \int_{\mathcal{V}} u \mathrm{d}\tau - \oint_{\mathcal{S}} \overrightarrow{S} \cdot \mathrm{d}\overrightarrow{a} \end{aligned}$$

或者写成

$$\vec{E} \cdot \vec{J} = -\vec{\nabla} \cdot \vec{S} - \frac{\partial u}{\partial t}$$

- Q 为传导电荷的机械能,或者与环境交换出去的热能
- 坡印廷矢量:

$$\vec{S} \equiv \vec{E} \times \vec{H}$$

- 物理意义: 电磁场以及附属于电磁场的极磁化场单位时间内流过单位面积的能量
- 能量密度:

$$u = \frac{1}{2}(\vec{E} \cdot \vec{D} + \vec{B} \cdot \vec{H})$$

- 电磁场能量加上电磁介质中储存的能量

4.2.2 动量

电动力学中的牛三:在电磁场中,两个完全相同的电荷分别固定在不同导轨上,当它们只能以恒定方向恒定速度运动时,两个电荷受力大小相等,方向并不指向相反方向,牛三不成立

麦克斯韦应力张量

带电体机械动量的变化率为

$$\frac{\partial \, \overrightarrow{p}_{\, \mathrm{mech}}}{\partial t} = \int (\rho \mathrm{d} \tau \, \overrightarrow{E} + \rho \mathrm{d} \tau \, \overrightarrow{v} \times \overrightarrow{B}) = \int (\rho \overrightarrow{E} + \overrightarrow{J} \times \overrightarrow{B}) \mathrm{d} \tau = \int \overrightarrow{f} \, \mathrm{d} \tau$$

力密度:

$$\overrightarrow{f} = \rho \overrightarrow{E} + \overrightarrow{J} \times \overrightarrow{B}$$

利用 ↓ 消去 ρ , \vec{J}

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{B}}{\partial t}$$

$$\frac{\partial}{\partial t} (\vec{E} \times \vec{B}) = \left(\frac{\partial \vec{E}}{\partial t} \times \vec{B} \right) + \left(\vec{E} \times \frac{\partial \vec{B}}{\partial t} \right)$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\Rightarrow \vec{F} = \varepsilon_0 \left(\vec{\nabla} \cdot \vec{E} \right) \vec{E} + \left(\frac{1}{\mu_0} \vec{\nabla} \times \vec{B} - \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right) \times \vec{B}$$

$$= \varepsilon_0 \left[(\vec{\nabla} \cdot \vec{E}) \vec{E} - \vec{E} \times (\vec{\nabla} \cdot \vec{E}) \right] - \frac{1}{\mu_0} \left[\vec{B} \times (\vec{\nabla} \times \vec{B}) \right] - \varepsilon_0 \frac{\partial}{\partial t} (\vec{E} \times \vec{B})$$

利用 $\vec{\nabla}(E^2) = 2(\vec{E} \cdot \nabla)\vec{E} + 2\vec{E} \times (\vec{\nabla} \times \vec{E}), \vec{\nabla} \cdot \vec{B} = 0$, 得

$$\overrightarrow{f} = \varepsilon_0 \left[(\overrightarrow{\nabla} \cdot \overrightarrow{E}) \overrightarrow{E} + (\overrightarrow{E} \cdot \nabla) \overrightarrow{E} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] - \frac{1}{2} \nabla \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) - \varepsilon_0 \frac{\partial}{\partial t} \left(\overrightarrow{E} \times \overrightarrow{B} \right) + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] - \frac{1}{2} \nabla \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) - \varepsilon_0 \frac{\partial}{\partial t} \left(\overrightarrow{E} \times \overrightarrow{B} \right) + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} + (\overrightarrow{B} \cdot \nabla) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{\nabla} \cdot \overrightarrow{B}) \overrightarrow{B} \right] + \frac{1}{\mu_0} \left[(\overrightarrow{$$

4.3 势和场 27

引入麦克斯韦应力张量:

$$T_{ij} \equiv \varepsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2 \right) + \frac{1}{\mu_0} \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2 \right)$$

$$\vec{T} = \frac{1}{2} \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) \vec{T} - \varepsilon_0 \vec{E} \vec{E} - \frac{1}{\mu_0} \vec{B} \vec{B}$$

则可写作

$$\vec{f} = -\vec{\nabla} \cdot \vec{T} - \varepsilon_0 \mu_0 \frac{\partial \vec{S}}{\partial t}$$

体积 V 内所有电荷所受合力

$$\vec{F} = -\oint_{\mathcal{S}} \vec{\vec{T}} \cdot d\vec{a} - \varepsilon_0 \mu_0 \frac{d}{dt} \int_{\mathcal{V}} \vec{S} d\tau$$

若考虑线性介质,则

$$\overrightarrow{f} = \rho \overrightarrow{E} + \overrightarrow{J} \times \overrightarrow{B} = -\overrightarrow{\nabla} \cdot \overrightarrow{T}' - \frac{\partial \overrightarrow{g}'}{\partial t}$$

•
$$\vec{T}' = \frac{1}{2} (\vec{D} \cdot \vec{E} + \vec{B} \cdot \vec{H}) \vec{\hat{I}} - \vec{D} \cdot \vec{E} - \vec{B} \cdot \vec{H}$$

•
$$\vec{g}' = \vec{D} \times \vec{B}$$

动量守恒

根据牛二

$$\vec{F} = \frac{\mathrm{d}\vec{p}_{\mathrm{mech}}}{\mathrm{d}t}$$

- **p**_{mech}: 代表体积内所有粒子的总(机械)动量
- $\vec{p}_{\rm em} = \varepsilon_0 \mu_0 \frac{\partial \vec{S}}{\partial t}$: 代表电磁场自身具有的动量
- P_{mech}: 表示机械动量密度
- $\mathcal{P}_{\mathrm{em}} = \varepsilon_0 \mu_0 \vec{S}$: 表示电磁场的动量密度
- ³
 _T: 表示动量流密度

动量守恒另外一种形式

$$\frac{\partial}{\partial t}(\mathcal{P}_{\mathrm{mech}} + \mathcal{P}_{\mathrm{em}}) = -\vec{\nabla} \cdot \vec{\vec{T}}$$

角动量

4.3 势和场

(真空中)

4.3.1 势表述

标势与矢势

由 $\vec{\nabla} \cdot \vec{B} = 0$,可得 $\vec{B} = \vec{\nabla} \times \vec{A}$,代入 $\vec{\nabla} \times \vec{E} = -\partial \vec{B} / \partial t$,且 $\vec{\nabla} \times (\vec{\nabla} \varphi) = 0$,可以有

$$\vec{E} = -\vec{\nabla}\phi - \frac{\partial \vec{A}}{\partial t}$$

且电磁势 $\phi = \phi(\vec{r}, t)$, $\vec{A} = \vec{A}(\vec{r}, t)$,再代入 $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$,得到

$$\nabla^2 \phi + \frac{\partial}{\partial t} \vec{\nabla} \cdot \vec{A} = -\frac{\rho}{\varepsilon_0}$$

4.3 势和场 28

又因为 $\nabla(\vec{\nabla}\cdot\vec{A}) - \nabla^2\vec{A} = \vec{\nabla}\times\vec{B} = \mu_0\vec{J} + \mu_0\varepsilon_0\frac{\partial\vec{E}}{\partial t}$,所以有

$$\left(\nabla^2 \vec{A} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{A}}{\partial t^2}\right) - \nabla \left(\vec{\nabla} \cdot \vec{A} + \mu_0 \varepsilon_0 \frac{\partial \phi}{\partial t}\right) = -\mu_0 \vec{J}$$

库仑规范与洛伦兹规范

由于电磁势的选择不唯一,引入规范条件:必须在某一个条件的约束下才可能唯一确定下来的条件规范变换:

$$\begin{cases} \overrightarrow{A}' = \overrightarrow{A} + \nabla \lambda \\ \phi' = \phi - \frac{\partial \lambda}{\partial t} \end{cases}$$

库仑规范 (静磁学):

$$\vec{\nabla} \cdot \vec{A} = 0$$

洛伦兹规范 ⇒ 非齐次波动方程(有源波动方程)

$$\boxed{\vec{\nabla} \cdot \vec{A} = -\mu_0 \varepsilon_0 \frac{\partial \phi}{\partial t}} \quad \Rightarrow \quad \boxed{ \Box^2 \phi = -\frac{1}{\varepsilon_0} \rho \\ \Box^2 \vec{A} = -\mu_0 \vec{J} }$$

• 达朗贝尔算子

$$\Box^2 \equiv \nabla^2 - \mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2}$$

4.3.2 连续分布

推迟势

达朗贝尔方程静态解

$$V(\vec{x}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{x}')}{r} d\tau' \qquad \vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{x}')}{r} d\tau'$$

非静态解(推迟势)

$$V(\vec{x},t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{x}',t_r)}{r} d\tau' \qquad \vec{A}(\vec{x},t) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{x}',t_r)}{r} d\tau'$$

• 电磁波传播推迟的时间

$$t_r \equiv t - \frac{r}{c}$$

- $\rho(\vec{x}',t_r)$: 表示推迟 t_r 时在点 \vec{x}' 处的电荷密度
- 满足非齐次波动方程和洛伦兹条件
- 库仑定律和萨法尔定律不可做相同推广
- 物理根据: 因果关系
- 用[]表示

$$V(\overrightarrow{x},t) = \frac{1}{4\pi\varepsilon_0} \int \frac{[\rho]}{r} \mathrm{d}\tau' \qquad \overrightarrow{A}(\overrightarrow{x},t) = \frac{\mu_0}{4\pi} \int \frac{[\overrightarrow{J}]}{r} \mathrm{d}\tau'$$

4.3 势和场 29

杰斐缅柯方程

麦克斯方程的普遍解 (依赖于时间)

$$\overrightarrow{\vec{E}}(\overrightarrow{x},t) = \frac{1}{4\pi\varepsilon_0} \int \left(\frac{[\rho]}{r^2} \hat{\overrightarrow{r}} + \frac{[\dot{\rho}]}{cr} \hat{\overrightarrow{r}} - \frac{[\dot{\overline{J}}]}{c^2 r} \right) d\tau'$$

$$\overrightarrow{\vec{B}}(\overrightarrow{x},t) = \frac{\mu_0}{4\pi} \int \left(\frac{[\overrightarrow{J}]}{r^2} + \frac{[\dot{\overline{J}}]}{cr} \right) \times \hat{\overrightarrow{r}} d\tau'$$

•
$$c^2 = \frac{1}{\mu_0 \varepsilon_0}$$

- 依赖时间的毕奥萨法尔定律
- 推导难点:

$$- \vec{\nabla} \times \left(\frac{[\vec{J}]}{r} \right) = \nabla \left(\frac{1}{r} \right) \times [\vec{J}] + \frac{1}{r} (\vec{\nabla} \times [\vec{J}])$$
$$- \vec{\nabla} \times [\vec{J}])_x = \frac{\partial [J_z]}{\partial y} - \frac{\partial [J_y]}{\partial z} = \frac{1}{c} ([\vec{J}] \times \hat{r})_x$$
$$- \frac{\partial [J_z]}{\partial y} = \frac{\partial [J_z]}{\partial t_r} \frac{\partial t_r}{\partial y} = -\frac{1}{c} \frac{\partial [J_z]}{\partial t} \frac{\partial r}{\partial y}$$

第五章 电磁波的传播

5.1 一维波

齐次波动方程(无源波动方程)(亥姆霍兹方程)

$$\frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2} \qquad \Rightarrow \qquad f(z,t) = g(z-vt) + h(z+vt)$$

• v: 表示波的传播速度

• 一: 正方向传播

• +: 负方向传播

5.2 电磁波在非导电介质中的传播

在无限大的无源非导电均匀介质中(没有电荷和电流的空间),此时

$$\nabla \cdot \mathbf{D} = 0 \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad \mathbf{D} = \varepsilon \mathbf{E}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} \quad \mathbf{B} = \mu \mathbf{H}$$

$$\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = \nabla \times (\nabla \times \mathbf{E}) = \nabla \times \left(-\frac{\partial \mathbf{B}}{\partial t} \right) = -\frac{\partial}{\partial t} (\nabla \times \mathbf{B}) = -\mu \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

$$\nabla (\nabla \cdot \mathbf{B}) - \nabla^2 \mathbf{B} = \nabla \times (\nabla \times \mathbf{B}) = \nabla \times \left(\mu \varepsilon \frac{\partial \mathbf{E}}{\partial t} \right) = \mu \varepsilon \frac{\partial}{\partial t} (\nabla \times \mathbf{E}) = -\mu \varepsilon \frac{\partial^2 \mathbf{B}}{\partial t^2}$$

$$\nabla^{2}\mathbf{E} = \frac{1}{v^{2}}\frac{\partial^{2}\mathbf{E}}{\partial t^{2}} \qquad \nabla^{2}\mathbf{B} = \frac{1}{v^{2}}\frac{\partial^{2}\mathbf{B}}{\partial t^{2}}$$

•
$$v^2 = \frac{1}{\varepsilon \mu}$$

• 用达朗贝尔算子表示: $\Box^2 \mathbf{E} = 0$ $\Box^2 \mathbf{B} = 0$

5.2.1 单色平面电磁波

$$\begin{pmatrix} \mathbf{E}(\mathbf{x},t) \\ \mathbf{B}(\mathbf{x},t) \end{pmatrix} = \begin{pmatrix} \mathbf{E}_0 \\ \mathbf{B}_0 \end{pmatrix} \cos{(\mathbf{k} \cdot \mathbf{x} - \omega t + \varphi)}$$

代入波动方程,得到色散关系

$$k^2 = \frac{\omega^2}{v^2} \qquad \leftrightarrow \qquad k = \pm \omega \sqrt{\varepsilon \mu}$$

• **E**₀, **B**₀: 波的振幅

• 等相位面: 给定时刻, $\mathbf{k} \cdot \mathbf{x} = \text{constant}$

• 波速(相速度): 等相位面的传播速度 $v = \frac{\omega}{k} = \frac{1}{\sqrt{\varepsilon\mu}}$

• 折射率: $n = \sqrt{\varepsilon_r} \cdot \sqrt{\mu_r}$ \rightarrow $k = \frac{\omega}{c} \cdot n$

• 阻抗: $Z = \sqrt{\frac{\mu}{\varepsilon}}$

• 頻率/周期: $T = \frac{2\pi}{\omega}$ $f = \frac{\omega}{2\pi}$

复数形式(取实部作为物理解)

$$\begin{pmatrix} \mathbf{E}(\mathbf{x},t) \\ \mathbf{B}(\mathbf{x},t) \end{pmatrix} = \begin{pmatrix} \mathbf{E}_0 \\ \mathbf{B}_0 \end{pmatrix} e^{i(\mathbf{k}\cdot\mathbf{x} - \omega t)}$$

• 再带回散度方程,得到

$$\mathbf{k} \cdot \mathbf{E}_0 = 0 \qquad \mathbf{k} \cdot \mathbf{B}_0 = 0$$

- 电磁场振动的方向与传播方向 k 相互垂直——电磁波是横波
- 再带回旋度方程,得到

$$\left. \begin{array}{l} \mathbf{k} \times \mathbf{E}_0 = \omega \mathbf{B}_0 \\ \mathbf{k} \times \mathbf{B}_0 = -\varepsilon \mu \omega \mathbf{E}_0 \end{array} \right\} \Rightarrow \quad |E_0| = \frac{1}{\sqrt{\varepsilon \mu}} |B_0| = \frac{\omega}{k} |B_0| = v|B_0|$$

5.2.2 色散介质的本构关系

金属(导电介质)静态时的本构关系(欧姆定律)

$$\mathbf{J} = \sigma_c \mathbf{E}$$

当外场随时间谐变

$$\mathbf{E}(\mathbf{x},t) = \mathbf{E}(\mathbf{x})e^{-i\omega t} \quad \Rightarrow \begin{cases} \mathbf{J}(\mathbf{x},t) = \mathbf{J}(\mathbf{x})e^{-i\omega t} \\ \mathbf{D}(\mathbf{x},t) = \mathbf{D}(\mathbf{x})e^{-i\omega t} \end{cases} \quad \Rightarrow \begin{cases} \mathbf{J}(\mathbf{x}) = \sigma(\omega)\mathbf{E}(\mathbf{x}) \\ \mathbf{D}(\mathbf{x}) = \varepsilon(\omega)\mathbf{E}(\mathbf{x}) \end{cases}$$

- 电导率: σ(ω)
- 介电常数: ε(ω)
- "色散"介质: ε, μ 依赖于频率的电磁介质

5.2.3 金属的有效电导率

单频电磁波施加在等离子体中,电子受电场力的同时受其他粒子的散射力,其运动方程为

$$\mathbf{v}(t) = \mathbf{v}_0 e^{-i\omega t}$$
 \Rightarrow $m \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = e\mathbf{E} - \frac{m\mathbf{v}}{\tau}$ \Rightarrow $\mathbf{v}(t) = \frac{-e\mathbf{E}_0 e^{-i\omega t}}{im(\omega + i/\tau)}$

比较得到

$$\mathbf{J}(\mathbf{x},t) = n_e e \mathbf{v}(\mathbf{x},t)$$
 \Rightarrow $\sigma(\omega) = -\frac{n_e e^2}{i m(\omega + i/\tau)}$

- 当 $\omega \to 0$,直流电导率 $\sigma_c = \frac{n_e e^2}{m} \tau$
- 对于一般良导体有 $\tau \sim 10^{-14}$ s
 - 在 GHz 以下波段 (微波), $1/\tau \gg \omega \Rightarrow \sigma \approx \sigma_c$
 - 在可见光波段, $1/\tau \ll \omega \Rightarrow \sigma(\omega) \approx i \frac{n_e e^2}{m_{\odot}}$

5.2.4 金属有效介电常数

- 在静电、静磁条件下,"传导电流"作"自由电流"处理,介电响应与真空无异($\varepsilon = \varepsilon_0$)
- 在交变条件下,通常将金属作为一种电介质,把"传导电流"作为金属中的"束缚电流"考虑

对单频条件下的电介质

$$\nabla \times \mathbf{H} = \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

$$= [\sigma(\omega) - i\omega \varepsilon_0] \mathbf{E}$$

$$= -i\omega \varepsilon(\omega) \mathbf{E}$$

$$\varepsilon(\omega) = \varepsilon_0 + i \frac{\sigma(\omega)}{\omega} = \varepsilon_0 \varepsilon_r(\omega) \quad \Rightarrow \quad \varepsilon_r(\omega) = 1 + i \frac{\sigma(\omega)}{\varepsilon_0 \omega}$$

• 金属的有效介电函数: 描述了从 $\omega=0$ (直流)到 $\omega>10$ Hz(紫外)的整个频谱介电行为

$$\varepsilon_r(\omega) = 1 - \frac{\omega_p^2}{\omega(\omega + i/\tau)}$$

• 等离子共振频率: 描述自由电子气在外场下的的一个集体震荡共振的行为

$$\omega_p = \sqrt{\frac{n_e e^2}{\varepsilon_0 m}}$$

• 典型金属的介电行为:

$$\varepsilon_r(\omega) \approx \frac{i\sigma_c}{\varepsilon\omega}$$
 - 光波段(对金、银金属)
$$\varepsilon_r(\omega) \approx 10 \frac{\omega_p^2}{\omega}$$

5.3 电磁波在导电介质中的传播

时谐场

$$(\mathbf{E}(\mathbf{x},t),\mathbf{H}(\mathbf{x},t),\rho(\mathbf{x},t),\mathbf{J}(\mathbf{x},t)) = (\mathbf{E}(\mathbf{x}),\mathbf{H}(\mathbf{x}),\rho(\mathbf{x}),\mathbf{J}(\mathbf{x}))\mathrm{e}^{-i\omega t}$$

代入得

$$\nabla \cdot (\varepsilon_{0}\mathbf{E}) = \rho$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}$$

$$\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0$$

$$\Rightarrow \nabla \times \mathbf{H} = -i\omega\varepsilon(\omega)\mathbf{E}$$

$$\Rightarrow -\nabla^{2}\mathbf{H} = \omega^{2}\varepsilon(\omega)\mu_{0}\mathbf{H}$$

$$\nabla \times \mathbf{H} = -i\omega\varepsilon(\omega)\mathbf{E}$$

将平面波解 $\mathbf{H}(\mathbf{x}) = \mathbf{H}_0 e^{i\mathbf{k}\cdot\mathbf{x}}$ 代入 ↑, 得到色散关系

$$k^2 = \left(\frac{\omega}{c}\right)^2 \varepsilon_r(\omega)$$

1. 良导体在 GHz 及以下波段

$$\varepsilon_r(\omega) \approx \frac{i\sigma_c}{\varepsilon_0 \omega} \quad \Rightarrow k = \frac{\omega}{c} \sqrt{\varepsilon_r} = (1+i)\alpha \quad \text{with} \quad \alpha = \sqrt{\frac{\sigma_c \mu_0 \omega}{2}}$$

$$\Rightarrow \quad \mathbf{k} = (1+i)\alpha \cdot \mathbf{e} \quad \Rightarrow \quad \mathbf{E} = \mathbf{E}_0 e^{-\alpha z} e^{i(\alpha z - \omega t)}$$

• 透入深度 (趋肤深度): r=0 处的振幅的 1/e 倍处的距离

$$\delta = \frac{1}{\alpha} = \sqrt{\frac{2}{\sigma_c \mu \omega}}$$

• 金属中的电磁场边振动(传播),边衰减

2. 良导体在光波段

$$\varepsilon_r(\omega) \approx 1 - \frac{\omega_p^2}{\omega^2} \qquad \Rightarrow \qquad k^2 = \frac{1}{c^2}(\omega^2 - \omega_p^2)$$

$$k = \frac{i}{\delta}$$
 with $\delta = \sqrt{\frac{c^2}{\omega_p^2 - \omega^2}}$ \Rightarrow $E \sim E_0 e^{ikx} = E_0 e^{-x/\delta}$

- δ : 由空气入射金属, 电磁波的透入深度
- 倏逝波: 金属中的电磁场纯指数衰减

5.4 电磁波在介质面上的反射和折射

电磁波边界条件

$$\mathbf{n} \times (\mathbf{E}_1(\mathbf{x}, t) - \mathbf{E}_2(\mathbf{x}, t)) = 0$$

$$\mathbf{n} \times (\mathbf{H}_1(\mathbf{x}, t) - \mathbf{H}_2(\mathbf{x}, t)) = 0$$

- 金属作为电介质处理, 传导电流在高频下作为束缚电流, 无须考虑面自由电流
- 电场和磁场在交界面时时且处处相等

反射、折射的基本定律——斯涅尔定律

考虑一单色平面波入射到交界面上, 其电场为

$$\mathbf{E} = \mathbf{E}_0 e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}$$

假设介质 1 和 2 都是各向同性, 电磁波通解为平面波

反射波
$$\mathbf{E}_r = \sum_{\mathbf{k}'} \mathbf{E}'_0(\mathbf{k}') e^{i(\mathbf{k}' \cdot \mathbf{x} - \omega t)}$$
折射波
$$\mathbf{E}_t = \sum_{\mathbf{k}''} \mathbf{E}''_0(\mathbf{k}'') e^{i(\mathbf{k}'' \cdot \mathbf{x} - \omega t)}$$

• 要求 1: 满足色散关系

$$k' = \frac{\omega}{c} \cdot n_1$$
 $k'' = \frac{\omega}{c} \cdot n_2$

• 要求 2: 满足电磁场在交界面上处处相等

$$\left. \begin{array}{c} \mathrm{e}^{i\mathbf{k}_{\parallel}\cdot\mathbf{x}} = \mathrm{e}^{i(k_{x}x+k_{y}y)} \\ \mathbf{k}_{\parallel}' = \mathbf{k}_{\parallel}'' = \mathbf{k}_{\parallel} \end{array} \right\} \Rightarrow \qquad \begin{array}{c} k_{z}' = +\sqrt{k'^{2}-k_{\parallel}^{2}} = k_{z} \\ k_{z}'' = -\sqrt{k''^{2}-k_{\parallel}^{2}} \end{array}$$

• 根据能量传播方向, k_z' 取负根, k_z'' 取正根

反射、折射基本规律:

1. 时间平移不变性: 三波频率等

- 2. 界面空间平移不变性: 三线同平面(入射面: k 方向与交界面垂直方向构成的平面)
- 3. 因果关系: 反射负、折射正
- 4. 入射角等于反射角

$$k_x = k_x' \leftrightarrow k \sin \theta = k' \sin \theta'$$
 (两波同介质) $k = k'$

5. 折射定律

$$k_x = k_x'' \quad \Rightarrow k \sin \theta = k'' \sin \theta'' \quad \Rightarrow \frac{\sin \theta}{\sin \theta''} = \frac{k''}{k} = \frac{\sqrt{\varepsilon_2 \mu_2}}{\sqrt{\varepsilon_1 \mu_1}} = \frac{n_2}{n_1}$$

振幅关系——菲涅尔定律

将沿 \hat{k} 方向传播的平面电磁波,分解为两个偏振方向相互垂直的波的叠加

S波/TE(横电)波

入射波电场垂直入射面

$$\begin{aligned} \mathbf{E}_i &= \hat{y} E_0 \mathrm{e}^{i(k_x x + k_z z - \omega t)} \\ \mathbf{E}_r &= \hat{y} E_0' \mathrm{e}^{i(k_x x - k_z z - \omega t)} \\ \mathbf{E}_t &= \hat{y} E_0'' \mathrm{e}^{i(k_x x + k_z' z - \omega t)} \\ \mathbf{H} &= \frac{1}{Z} \Big(\hat{k} \times \mathbf{E} \Big) \end{aligned} \Rightarrow \qquad \begin{aligned} \mathbf{H}_i &= \frac{E_0}{Z_1} \frac{k_x \hat{z} - k_z \hat{x}}{k} \mathrm{e}^{i(k_x x + k_z z - \omega t)} \\ \mathbf{H}_r &= \frac{E_0'}{Z_1} \frac{k_x \hat{z} + k_z \hat{x}}{k} \mathrm{e}^{i(k_x x - k_z z - \omega t)} \\ \mathbf{H}_t &= \frac{E_0''}{Z_2} \frac{k_x \hat{z} - k_z'' \hat{x}}{k''} \mathrm{e}^{i(k_x x + k_z'' z - \omega t)} \end{aligned}$$

在 z=0 的交界面上,场切向值相等 \Rightarrow 菲涅尔公式 1

$$\frac{k_z}{Z_1 k} E_0 - \frac{k_z}{Z_1 k} E_0' = \frac{k_z''}{Z_2 k''} E_0'' \qquad \Rightarrow \qquad E_0' = \frac{Z_2 \cos \theta - Z_1 \cos \theta''}{Z_2 \cos \theta + Z_1 \cos \theta''} E_0 \\
k_z = k \cos \theta \qquad k_z'' = k'' \cos \theta'' \qquad \Rightarrow \qquad E_0'' = \frac{2Z_2 \cos \theta}{Z_2 \cos \theta + Z_1 \cos \theta''} E_0$$

P波/TM(横磁)波

入射波磁场垂直于入射面,且在z=0,场切向值相等 \Rightarrow 菲涅尔公式 2

反射率及透射率

反射率: 反射波平均能流与入射波平均能流在法线方向的分量之比(即振幅之比)

$$R_S = \left| \frac{Z_2 \cos \theta - Z_1 \cos \theta''}{Z_2 \cos \theta + Z_1 \cos \theta''} \right|^2$$

$$R_P = \left| \frac{Z_2 \cos \theta'' - Z_1 \cos \theta}{Z_2 \cos \theta'' + Z_1 \cos \theta} \right|^2$$

透射率:

$$T = \frac{\langle \mathbf{S}_t \cdot \hat{z} \rangle}{\langle \mathbf{S}_i \cdot \hat{z} \rangle} = \begin{cases} \frac{|E_0''|^2 \cos \theta'' / Z_2}{|E_0|^2 \cos \theta / Z_1} & \text{S wave} \\ \frac{Z_2 |H_0''|^2 \cos \theta''}{Z_1 |H_0|^2 \cos \theta} & \text{P wave} \end{cases}$$

5.5 波导 35

• 正入射条件下, 反射率:

$$R = \left| \frac{Z_2 - Z_1}{Z_2 + Z_1} \right|^2$$

- 反射系数:

$$r = \frac{Z-1}{Z+1} = \frac{E_0'}{E_0}$$
 with $Z = \frac{Z_2}{Z_1} = \frac{Z_2}{Z_0} = \sqrt{\frac{\mu_r}{\varepsilon_r}}$

布鲁斯特角

因常规介质不显现磁性,可令 $\mu_1 = \mu_2 \approx \mu_0$

$$\frac{\sin \theta}{\sin \theta''} = \frac{n_2}{n_1} = \frac{Z_1}{Z_2} = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} \qquad \Rightarrow \qquad R_S = \frac{\sin^2(\theta - \theta'')}{\sin^2(\theta + \theta'')}$$
$$R_P = \frac{\tan^2(\theta - \theta'')}{\tan^2(\theta + \theta'')}$$

 $\stackrel{\omega}{=} \theta + \theta'' = \pi/2 \qquad \Rightarrow \qquad R_P = 0$

- 当反射波与折射波相互垂直时, P 极化电磁波完全不被反射
- 布鲁斯特角: 满足条件的入射角

$$\theta_B = \arctan\left(\frac{n_2}{n_1}\right) = \arcsin\left(\sqrt{\frac{\varepsilon_2}{\varepsilon_1 + \varepsilon_2}}\right)$$

全反射临界角

考虑电磁波从光密介质入射到光疏介质中 $n_2 < n_1 \Rightarrow \sin \theta'' > \sin \theta$

$$\cos \theta'' \to \frac{k_z''}{k''} = \frac{\sqrt{(k_0 n_2)^2 - (k_0 n_1 \sin \theta)^2}}{k_0 n_2}$$
$$= \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta\right)^2} = \sqrt{1 - \left(\frac{\sin \theta}{\sin \theta_c}\right)^2}$$

当 $\theta > \theta_c$, 上式记 $i\alpha$, 其 r 中 $\alpha \equiv \sqrt{\left(\frac{\sin \theta}{\sin \theta_c}\right)^2 - 1}$, 便有:

$$E'_{0S} = \frac{Z_2 \cos \theta - i\alpha Z_1}{Z_2 \cos \theta + i\alpha Z_1} E_{0S}$$

$$H'_{0P} = \frac{Z_1 \cos \theta - i\alpha Z_2}{Z_1 \cos \theta + i\alpha Z_2} H_{0P}$$

$$\Rightarrow R_S = R_P = 1$$

• 全反射临界角:

$$\theta_c = \arcsin\left(\frac{n_2}{n_1}\right)$$

• 此时折射波为倏逝波

5.5 波导

波导管:

- 无限长中空金属管(壁是导体)
- 电磁场只能在管内沿轴传播
- 金属体内没有波、电流、电荷, 但在表面上有 σ , α
- 以下金属外介质为真空

5.5 波导 36

边界条件

理想:

$$\mathbf{n} \cdot \mathbf{B} = 0$$
 $\mathbf{n} \times \mathbf{E} = 0$

• 场量在金属表面(介质一侧)测到

场方程

研究截面任意、单连通、沿长度方向相同的直波导管,且管中无源、真空

电磁场满足波动方程:
$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix} = 0$$

选择 z 为波导管的长度方向,沿 z 方向传播的解设为,并带入↑

$$\begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix} = \begin{pmatrix} \mathbf{E}_0(x,y) \\ \mathbf{B}_0(x,y) \end{pmatrix} e^{i(k_z z - \omega t)} \qquad \Rightarrow \qquad \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k_c^2 \right) \begin{pmatrix} \mathbf{E}_0 \\ \mathbf{B}_0 \end{pmatrix} = 0$$

- $k_0^2 = \frac{\omega^2}{c^2}$ $k_c^2 = k_0^2 k_z^2$
- 得到六个亥姆霍兹方程, 场分量间并不独立

利用旋度方程, 在 x, y 上投影, 将场的横向分量用纵向分量表示:

$$\begin{cases} \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \times \mathbf{B} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} \end{cases} \Rightarrow \begin{cases} E_{0x} = \frac{i}{k_c^2} [k_0 \partial_y (cB_{0z}) + k_z \partial_x E_{0z}] \\ E_{0y} = -\frac{i}{k_c^2} [k_0 \partial_x (cB_{0z}) - k_z \partial_y E_{0z}] \\ cB_{0x} = -\frac{i}{k_c^2} [k_0 \partial_y E_{0z} - k_z \partial_x (cB_{0z})] \\ cB_{0y} = \frac{i}{k_c^2} [k_0 \partial_x E_{0z} + k_z \partial_y (cB_{0z})] \end{cases}$$

• 只需在法向边界条件下计算 z 分量的亥姆霍兹方程即可

波的模式 (偏振)

- 横电波 (TE 波): $B_{0z} \neq 0$ 且 $E_{0z} = 0$
- 横磁波(TM 波) $B_{0z} = 0$ 且 $E_{0z} \neq 0$

矩形波导

截面为矩形, x 方向边界为 a, y 方向边界为 b

TE 波

已知:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k_c^2\right) B_{0z} = 0$$

$$\left. \frac{\partial}{\partial x} B_{0z} \right|_{x=0,a} = 0 \qquad \left. \frac{\partial}{\partial y} B_{0z} \right|_{y=0,b} = 0$$

初解:

$$B_{0z} = B_0 \cos(k_x x) \cos(k_y y) = B_0 \cos\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right)$$
$$k_c^2 = k_x^2 + k_y^2 = \pi^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right) \qquad m, n = 0, 1, 2, \dots$$

5.6 谐振腔 37

再代入即得到全部场分量

TE 波
$$\begin{cases} E_x = -ik_y \frac{ck_0}{k_c^2} B_0 \cos(k_x x) \sin(k_y y) e^{i(k_z z - \omega t)} \\ E_y = ik_x \frac{ck_0}{k_c^2} B_0 \sin(k_x x) \cos(k_y y) e^{i(k_z z - \omega t)} \\ E_z = 0 \\ B_x = -ik_x \frac{k_z}{k_c^2} B_0 \sin(k_x x) \cos(k_y y) e^{i(k_z z - \omega t)} \\ B_y = -ik_y \frac{k_z}{k_c^2} B_0 \cos(k_x x) \sin(k_y y) e^{i(k_z z - \omega t)} \\ B_z = B_0 \cos(k_x x) \cos(k_y y) e^{i(k_z z - \omega t)} \end{cases}$$

• 色散关系

$$k_z = \sqrt{k_0^2 - k_c^2} = \frac{\omega}{c} \sqrt{1 - \left(\frac{ck_c}{\omega}\right)^2}$$
$$= \frac{\omega}{c} \sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2} \quad \text{with} \quad \omega_c = ck_c$$

- 截止频率
 - $-\omega < \omega_c$, k_z 纯虚数, 电磁波不能传播, 这种模式为衰逝波
 - $\omega>\omega_c$, k_z 实数,波导类似一个常规电解质,可以传播,这种模式为传播模式。可定义波导的有效介电常数为 $\varepsilon_r=1-\left(\frac{\omega_c}{\omega}\right)^2$
 - $-\omega = \omega_c$, 截止频率, 电磁波可以传播的最低频率
- 模式
 - m,n 不能全为 0
 - 基模: TE_{01} (a < b), TE_{10} (a > b)

TM 波

已知:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k_c^2\right) E_{0z} = 0$$

$$E_{0z} \Big|_{x=0,a} = 0 \qquad E_{0z} \Big|_{y=0,b} = 0$$

解:

TM 波
$$\begin{cases} E_x = i \frac{n\pi}{b} \frac{k_z}{k_c^2} E_0 \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{i(k_z z - \omega t)} \\ E_y = i \frac{m\pi}{a} \frac{k_z}{k_c^2} E_0 \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{i(k_z z - \omega t)} \\ E_z = E_0 \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{i(k_z z - \omega t)} \\ B_x = -i \frac{n\pi}{b} \frac{k_0}{ck_c^2} E_0 \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{i(k_z z - \omega t)} \\ B_y = -\frac{m\pi}{a} \frac{k_0}{ck_c^2} E_0 \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{i(k_z z - \omega t)} \\ B_z = 0 \end{cases}$$

5.6 谐振腔

由理想导体所围成的封闭腔体

5.6 谐振腔 38

场方程和边界条件

$$\nabla \cdot \mathbf{E} = 0 \qquad \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = i\omega \mathbf{B} \qquad \nabla \times \mathbf{B} = -i\frac{\omega}{c^2} \mathbf{E}$$

$$\mathbf{n} \times \mathbf{E} = 0 \qquad \mathbf{n} \cdot \mathbf{B} = 0$$

矩形谐振腔

尺寸为 $a \times b \times d$,看作长度为 d 的空腔波导两端加上 PEC 端面取 $TE_{\rm mn}$ 模式,z 轴有两个方向的波

$$B_z = [B_0 \cos(k_x x) \cos(k_y y) e^{ik_z z} + B'_0 \cos(k_x x) \cos(k_y y) e^{-ik_z z}] e^{-i\omega t}$$

新边界条件

$$B_z \Big|_{z=0,d} = 0 \qquad \Rightarrow \qquad \begin{cases} B_0' = -B_0 \\ B_z \Big|_{z=d} = 2iB_0 \sin(k_z z) \cos(k_x x) \cos(k_y y) \end{cases} \Rightarrow k_z = \frac{p\pi}{d} \qquad p = 1, 2, 3, \dots$$

解:

TE 波
$$\begin{cases} B_{0x} = -2iB_0k_xk_z \frac{1}{k_c^2} \sin(k_x x)\cos(k_y y)\cos(k_z z) \\ B_{0y} = -2iB_0k_yk_z \frac{1}{k_c^2} \cos(k_x x)\sin(k_y y)\cos(k_z z) \\ B_{0z} = 2iB_0\cos(k_x x)\cos(k_y y)\sin(k_z z) \\ E_{0x} = 2B_0k_y \frac{ck_0}{k_c^2}\cos(k_x x)\sin(k_y y)\sin(k_z z) \\ E_{0y} = -2B_0k_x \frac{ck_0}{k_c^2}\sin(k_x x)\cos(k_y y)\sin(k_z z) \\ E_{0z} = 0 \end{cases}$$

- 电场和磁场相差 i,表面存在 $\frac{\pi}{2}$ 的相位差
- 谐振频率和波长

$$\omega = c\pi \sqrt{\frac{m^2}{a^2} + \frac{n^2}{b^2} + \frac{p^2}{d^2}}$$

$$\lambda = 2/\sqrt{\frac{m^2}{a^2} + \frac{n^2}{b^2} + \frac{p^2}{d^2}}$$

- TE 模式, p 不能为 0
- TM 模式, p 可以为 0, 但 m, n 不能为 0

第六章 电磁波的辐射

真空中

6.1 麦克斯韦方程组的解

6.2 偶极辐射

辐射的定义

- 如何产生电磁波——如何产生辐射——从源(电荷、电流分布)产生
- 静止的源不产生辐射

电偶极子的辐射

振荡的电偶极子

$$q(t) = q_0 \cos(\omega t)$$
 $\mathbf{p}(t) = p_0 \cos(\omega t)\hat{z}$ $p_0 \equiv q_0 d$

1. 推迟势

$$V(\mathbf{R},t) = \frac{1}{4\pi\varepsilon_0} \left\{ \frac{q_0 \cos[\omega(t - r_+/c)]}{r_+} - \frac{q_0 \cos[\omega(t - r_-/c)]}{r_-} \right\}$$
$$r_+ = \sqrt{R^2 \mp Rd \cos\theta + (d/2)^2}$$

• 近似 $1: d \ll R$ (正负电荷间距非常小)

$$r_{\pm} \cong R \left(1 \mp \frac{d}{2R} \cos \theta \right) \qquad \frac{1}{r_{\pm}} \cong \frac{1}{R} \left(1 \pm \frac{d}{2R} \cos \theta \right)$$

• 近似 $2: d \ll \frac{c}{\omega}, d \ll \lambda$ (包含近似 1)

$$\cos[\omega(t - r_{\pm}/c)] \cong \cos[\omega(t - R/c)] \mp \frac{\omega d}{2c} \cos\theta \sin[\omega(t - R/c)]$$

$$V(R, \theta, t) = \frac{p_0 \cos \theta}{4\pi\varepsilon_0 R} \left\{ -\frac{\omega}{c} \sin[\omega(t - R/c)] + \frac{1}{R} \cos[\omega(t - R/c)] \right\}$$

• 近似 $3: R \gg \frac{c}{\omega}, R \gg \lambda \ (d \ll \lambda \ll R) \ (远离源处)$

$$V(R, \theta, t) = -\frac{p_0 \omega}{4\pi\varepsilon_0 c} \left(\frac{\cos \theta}{R}\right) \sin[\omega(t - R/c)]$$

2. 矢势

$$\mathbf{I}(t) = \frac{\mathrm{d}q}{\mathrm{d}t}\hat{\mathbf{z}} = -q_0\omega\sin(\omega t)\hat{\mathbf{z}}$$
$$\mathbf{A}(\mathbf{R}, t) = \frac{\mu_0}{4\pi} \int_{-d/2}^{d/2} \frac{-q_0\omega\sin[\omega(t - R/c)]\hat{\mathbf{z}}}{R} \mathrm{d}z$$

6.2 偶极辐射 40

• 近似 1, 2 后

$$\mathbf{A}(R, \theta, t) = -\frac{\mu_0 p_0 \omega}{4\pi R} \sin[\omega(t - R/c)]\hat{\mathbf{z}}$$

$$-$$
 注意: $\hat{z} = \cos\theta \hat{R} - \sin\theta \hat{\theta}$

3. 场强

• 近似 3 后

4. 坡印廷矢量

$$\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B}) = \frac{\mu_0}{c} \left\{ \frac{p_0 \omega^2}{4\pi} \left(\frac{\sin \theta}{R} \right) \cos[\omega (t - R/c)] \right\}^2 \hat{\mathbf{R}}$$
$$\langle \mathbf{S} \rangle = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c} \right) \frac{\sin^2 \theta}{R^2} \hat{\mathbf{R}}$$

5. 辐射总功率

$$\langle P \rangle = \int \langle \mathbf{S} \rangle \cdot \mathrm{d}\mathbf{a} = \frac{\mu_0 p_0^2 \omega^4}{32 \pi^2 c} \int \frac{\sin^2 \theta}{R^2} R^2 \sin \theta \mathrm{d}\theta \mathrm{d}\phi = \frac{\mu_0 p_0^2 \omega^4}{12 \pi c}$$