Carefully PRINT your full name:

SOLUTIONS

CIRCLE your section: Section 1 (Tu) Section 2 (Tu) Section 3 (Hasselblatt)

MATH 135 Exam 1 October 17, 2022

(100 points) 12 noon–1:20 p.m.

Instructions: No books, notes, calculators, or external help from any person or device are allowed. Except in the true-false questions, justify all of your steps. Write only in the space provided and do not attach any extra page.

Please sign the following pledge: *I pledge that in this exam I have neither given nor received assistance or cheated in any other way.*

Signature:
DIVIDATULE.

- 1. (10 points) Circle either True or False. You do not need to justify your choice.
 - (a) True / False: \mathbb{Z} is dense in \mathbb{R} .
 - (b) True / False: Every function $f: \mathbb{Z} \to \mathbb{R}$ is continuous.
 - (c) **True** / **False**: The product of monotone sequences is monotone.
 - (d) **True** / **False:** $Q \cap [0,1]$ is a closed set in \mathbb{R} .
 - (e) True / False: An unbounded sequence does not converge.
 - (a) [1/3, 2/3] CONTAINS NO INTECHT. OR:
 NO INTECHT SEQUENCE CONSERVESTO 1/2.
 - (b) USE THE E-S CYCLIFRION WITH S=1. OR;

 LGMA: A CONVERLENT INTELER SHOUGHTE LS

 EVENTUALLY CONTRIVE.

 PROOF: E-N-DEFINITION WITH E=1.
 - (c) $a_n = b_n = n 10$
 - (d) By (SEQUENTIAL) DENSITY OF Q THERE IS A SEQUENCE IN

 IN Q \(\int_{0,1}\) WHICH CONTRACTO \(\frac{1}{2}\) \(\frac{1}{2}\) Q \(\int_{0,1}\).
 - (e) THEOREM: CONSTRUCT SEQUENCES ARE BOUNDED

Name:			
ivanie.			

2. (30 points)

(a) (5 pts) We learned that \mathbb{Q} is countable, so there is a sequence $\{a_n\}$ in which every rational number appears as a term.

Does this sequence necessarily have a monotone subsequence? Justify your answer by quoting the statement of a theorem.

YES. MEDRET: EUGRY SEQUENCE HAS A MONOTONE SUBSEQUENCE.

(b) (5 pts) Consider the function $f: [0,1] \to \mathbb{R}$ defined by $f(x) = x^8 + x^3 \sin 3 + \sqrt{5}$. Is this function uniformly continuous? Justify your answer by quoting statements of theorems.

YCS. O IF IS A POLYNOMIAL HOUCE CONTINUOUS]

THE DOMANTIS A CLOSED BOUNDED INTERVAL, SO & IS
UNIFORMLY CONTINUOUS.
[MBRIA: A CONTINUOUS FUNCTION ON A CLOSED BOUNDED INTERVAL
13 UNIFORMLY CONTINUOUS.]

(c) (10 pts) Let $f: D \to \mathbb{R}$. State the ϵ - δ -criterion for continuity at a point $x_0 \in D$.

 $4 \approx 0$ $3 \leq 0$ $4 \approx 0$ $|x-x_0| < \delta = > |fm - fm| < \epsilon$ on: $4 \approx 0$ $3 \leq 0$ such that $4 \approx 0$, $|x-x_0| < \delta = > |fm - fm| < \epsilon$

(d) (10 pts) Choose the statement to negate depending on your section. The following definition is implicit in our textbook:

(**Prof. Hasselblatt's section**) A sequence $\{a_n\}$ is said to *converge* if

 $\exists a \in \mathbb{R} \ \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \quad |a_n - a| < \epsilon.$

State a definition of "A sequence is said to diverge if..." by negating this statement

(**Prof. Tu's section**) Negate $\exists a \in \mathbb{R}$ such that $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $\forall n \geq N, |a_n - a| < \epsilon$.

Yaer Jero Suchthat Yngin, Ing N suchthat Ign-alze.

3. (10 points) Suppose $A \subset \mathbb{R}$ is a nonempty set which is bounded below. Prove that there is a sequence $\{a_n\}$ in A that converges to inf A .
FOR NEW THERE IS AN QUEA SUCH THAT
inf A = an < infA + 1
BECAUSE infA+ 1 15 NOT A LOWER BOUND
[IT IS GREATER THAN inf A, THE GREATEST LOWGE BOURD
Easwarthey, 05a, -infA = 1
This incluse a -> inf A BY THE CONFAMULON LEMMA,
OR BY TUE SANDMICH LEADED OR BY THE DEFINATION:
LETESO AND N > 1/E. IF NZN, THEN
lan-infAl=1 5 to < E.

Mama			
Nama			
Name:			
_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

4. (10 points) Suppose $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = \begin{cases} x & \text{if } x \notin \mathbb{Z} \\ -x & \text{if } x \in \mathbb{Z}. \end{cases}$ Using the definition of continuity at a point, prove that f is not continuous at x = 1.

$$\frac{f(x_n) = f(1 + \frac{1}{n}) = 1 + \frac{1}{n}}{f(x_n)} = \frac{f(1)}{f(1)}$$

5. (15 points) Prove the sandwich theorem (squeeze theorem): Let $L \in \mathbb{R}$ and let $\{x_n\}$ and $\{z_n\}$ be sequences that both converge to L . Assume $\{y_n\}$ is a sequence such that $\forall n \in \mathbb{N}, x_n \leq y_n \leq z_n$. Prove that $y_n \to L$ as $n \to \infty$ using the ϵ - N -definition of limit.
LET & > 0.
X> L =>]NEN YnzN -EcxL < E.
2 -> L => JNZEN YnzNz -E<2,-L < E.
LET N= max (N, No). THEN Yn=N
- E C X - L & Y - L & 2 - L & E

Name:			
i valite.			

6. (10 points) Assuming $\sin x$ is a continuous function of x, prove that there is a solution of the equation $x^7 + \sin x + 15 = 0$.

F(x)= x2+511x+15 IS (GNTNVOV) BELAUSE IT IS A SUM OF (ONTINUOUS FUNCTIONS (SILX AND A POLYNOMIAL).

f(0) = 15 > 0 $f(-2) = (-2)^{\frac{7}{4}} + 52(-2) + 15 < 0$ $= -2^{\frac{7}{4}} < -2^{\frac{7}{4}} = -16 < \frac{1}{4}$

BY THE INTERNEDIATE VANG THEOREM THERE IS AN

×ε (-ζο)	FOR MICH	f(x) = 0	<u>Fil</u>
,			

7. (15 points) Using the ϵ -N-definition of limit, prove that $\frac{n^2-4}{2n^2-n+1}$ converges to 1/2. (Hint: $2n^2 - n + 1 = n^2 + (n^2 - n) + 1$.)

NOTE FIRST THAT

SCRATCH WORK: WHEN N > 9 WE HAVE 05n-95n

FOR ANY n WE HAVE 2n2-n+1=n2+(n2n)+1 > n2

COMBINGO THERE GIVE DE 1 n-9

PROOF.

LETESO AND N = 9 SUCHTHAT N

(End of Exam)