Steuergerät als Hohlraumresonator

Steuergerät

- Quaderförmig
- Aluminium
- Leiterplatte
- PCB mit ICs

Quelle: Steuergerät für CNG-Systeme (bosch-mobility.com)

Problemursache

- Gehäuse als Wärmeableitung
- Kapazitive Kopplung

• Geometrie

In

Thermal Paste

PCB

Problembeschreibung

- EMI (Elektromagnetische Interferenzen)
- Global Navigation Satellite System (GLONASS) ca. 1.6GHz
- Verstärkung des Rauschens
- Elektromagnetische Emission z.B. durch einen Spalt

Hohlraumresonator

$$f_{mnl} = \frac{c}{2\sqrt{\mu_r \epsilon_r}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{l}{d}\right)^2}$$

m, n, l: Ordnung der Moden a, b, d: Geometrie des 'Körpers

 $1,65GHz f \ddot{u}r TE_{1,1,0} Mode$

TE Moden im Rechteck Hohlleiter

Quelle: Skript HF-Bauelemente Seite 12

Frequenzverlauf

Darstellung

freq = 0.000000Hz

Problemlösung

• Platzierung eines GND mit einer Feder

Feder neben der Noise Stelle

Frequenzverlauf nach der Optimierung

Frequenzverlauf nach der Optimierung

