Nom, prénom	: Signature :
co	pondre sur ce document uniquement. La qualité de la présentation sera prise en mpte dans la notation. Aucune copie supplémentaire ne sera acceptée. Pour les cons à choix multiples, le nombre de réponses correctes peut varier de 0 au nombre maximal de réponses proposées. Le barème indiqué est seulement indicatif.
beaucoup de Le Le La La 2. 4 points Re	ans quels cas peut-on s'attendre à ce qu'une méthode d'apprentissage flexible (comporta paramètres) ait de meilleures performances qu'une méthode simple avec peu de paramètres nombre N d'exemples d'apprentissage est très grand, et le nombre p de prédicteurs est peti nombre p de prédicteurs est très grand, et le nombre N d'exemples d'apprentissage est peti relation entre la variables à expliquer Y et les prédicteurs X_j est fortement non linéaire. variance des erreurs $\sigma^2 = \text{Var}(\epsilon)$ est très grande. eprésenter l'allure typique du biais, de la variance et de l'erreur de test, en fonction du nombres d'une méthode d'apprentissage. (Faire trois courbes sur le même graphique).
explicatives 2	n considère un problème de régression linéaire avec une variable à expliquer Y et deux variable X_1 et X_2 . On suppose que X_1 est une variable quantitative, et que X_2 est une variable qualitatis A , B et C . Ecrivez un modèle de régression linéaire pour ce problème.
4. On a obtenu	les résultats suivants en appliquant la régression linéaire à un ensemble de données :
Call: lm(formula Coefficient	= y ~ x1 + x2 + x3)
	Estimate Std. Error t value Pr(> t)
(Intercept) x1	0.7597102
x2	0.0102298 0.0002026 50.504 < 2e-16 ***
x3	-0.0131784 0.1738365 -0.076 0.939729
Multiple R-	andard error: 0.5429 on 96 degrees of freedom squared: 0.9646, Adjusted R-squared: 0.9635 :: 873.1 on 3 and 96 DF, p-value: < 2.2e-16

	(a) 1 point Donnez un intervalle de confian	ce approché à 95% sur le coefficient de la variable X_2 .
	(b) 4 points Cocher la ou les bonnes répons \square La variable X_1 a plus d'influence \square Les coefficients des variables X_1 \square Une variation de X_3 a très peu	ce sur Y que la variable X_2 . 1 et X_2 sont significativement non nuls.
		t à un meilleur modèle, donc à une augmentation du \mathbb{R}^2 .
5.	5. 6 points On considère un problème de classiparamètres à estimer dans les méthodes suivar(a) Régression logistique.	ification à 2 classes, avec 5 prédicteurs. Combien y a-t-il de ntes :
		(a)
	(b) Analyse discriminante linéaire.	` '
	· ,	(1)
	(-) Al	(b)
	(c) Analyse discriminante quadratique.	
		(c)
	(d) Classifieur bayésien naïf (naive Bayes)	
		(d)
	(e) Règle des k plus proches voisins	· ,
		(-)
	(f) Págagy da nauronag ayag 2 nauronag ayah	(e)
	(f) Réseau de neurones avec 3 neurones cache	es.
		(f)
6.	6. 6 points La régression logistique	
	\Box est basée sur la méthode du maximu	ım de vraisemblance;
	\square nécessite un algorithme de programm	
	\square suppose que les classes sont linéairer	-
	\square suppose que les classes sont gaussien	
	□ estime les probabilités a priori des cl	
	produit des résultats facilement inter	rprétables.
7.		
	sélectionner un ensemble optimal de	
	\Box En régression linéaire, la méthode de p de prédicteurs est supérieur au non	e sélection ascendante n'est pas applicable lorsque le nombre mbre n d'exemples.
	\square La méthode de sélection descendante	e nécessite d'évaluer $1 + p(p+1)/2$ modèles.
	\square Le R^2 ajusté croît de manière mono	
		ionner les variables dans un modèle de régression.
		ctionner les variables dans un modèle de régression.
	☐ La pénalisation lasso permet d'amé d'apprentissage est petit relativemen	éliorer l'erreur de prédiction lorsque le nombre d'exemples au nombre de prédicteurs.
8.	T V	
	$\hfill \square$ Maximize le rapport de la variance i	
	☐ Maximize le rapport de la variance i	
	\square Permet d'extraire au plus $\max(N, K)$ le nombre de vecteurs d'apprentissag	(K-1) nouvelles variables, K étant le nombre de classes et N ge.

	que C_1 a de meilleures performances que C_2 . Tracer l'allure des courbes COR des deux classifieurs. c_2 la signification des axes.
0. 4 points	
	l est utilisée pour choisir un modèle ayant la plus petite erreur de prédiction;
	r
	généralise la méthode leave-one-out;
	a une plus grande variance, mais un biais plus faible, lorsque le nombre de blocs est plus grand. Cochez la ou les bonnes réponses :
	Une spline cubique avec un seul noeud a 5 degrés de libertés.
	Une spline cubique est une fonction partout dérivable jusqu'à l'ordre 3.
	Les splines de lissage ont deux hyperparamètres : le nombre de noeuds et le paramètre λ de régularisation.
	Les modèles additifs généralisés peuvent représenter les interactions entre prédicteurs.
	Les modèles additifs généralisés peuvent représenter des fonctions non linéaires.
2. 5 points	L'algorithme EM :
	Converge vers un minimum local de la fonction de vraisemblance.
	Converge vers un maximum global de la fonction de vraisemblance.
	Augmente à chaque étape la vraisemblance.
	Est basé sur la minimisation à chaque étape d'une fonction majorante.
	Est basé sur la maximisation à chaque étape d'une fonction minorante.
1	Cochez la ou les bonnes réponses : L'apprentissage des réseaux de neurones nécessite de résoudre un problème d'optimisation non linéaire sous contraintes linéaires.
	l L'algorithme de rétropropagation du gradient consiste à propager l'erreur de la couche de sortie vers la couche d'entrée.
Г	La méthode de descente de gradient converge vers un minimum global de l'erreur.
	La régression logistique correspond à un réseau de neurones sans couche cachée.

	 □ Dans l'apprentissage en ligne, les poids sont mis à jour à chaque présentation d'un nouvel exemple. □ L'avantage des réseaux de neurones est qu'ils sont facilement interprétables, car ils modélisent le fonctionnement des neurones biologiques.
14.	5 points Expliquez le principe de la méthode "Mixture of Regressions". Ecrivez le modèle en explicitant toutes les notations.
	toutes les notations.
15.	5 points Représentez un réseau de neurones avec trois entrées, deux neurones cachés et une sortie linéaire. Ecrivez les équations de propagation dans le réseau. (Explicitez les notations sur le graphique).
16.	4 points Cochez la ou les bonnes réponses : □ L'apprentissage des SVM consiste à minimiser la marge.
	$\hfill \Box$ L'apprentissage des SVM nécessite de résoudre un problème d'optimisation linéaire.
	\square Avec les SVM, la fonction de décision s'exprime en fonction des produits scalaires entre l'entrée X et les vecteurs de support.
	☐ Les SVM avec une fonction noyau non linéaire consistent à rechercher une frontière de décision linéaire dans un nouvel espace de dimension plus faible que l'espace initial

- 17. On considère la régression à vecteurs de supports (Support Vector Regression).
 - (a) | 1 point | La fonction de coût optimisée par cette méthode est :
 - \square min(0, $|f(x) y| \epsilon$).
 - $\square \max(\epsilon, |f(x) y|).$
 - $\square \max(\epsilon, |f(x) y| + \epsilon).$
 - $\square \max(\epsilon, |f(x) y| \epsilon).$
 - (b) 2 points Représentez graphiquement le coût en fonction de la différence f(x) y.

L			_
poi	nts L'ACP à novaux (Kernel PCA)		

- - \square nécessite de diagonaliser une matrice de taille $N \times N$, où N est le nombre d'exemples.
 - \square nécessite de diagonaliser une matrice de taille $p \times p$, où p est le nombre de variables.
 - \Box permet de construire q nouvelles variables, $q \leq p.$
 - □ revient à faire une ACP dans un nouvel espace de représentation défini par une fonction de noyau.
 - \square permet de construire de nouvelles variables, fonctions linéaires de variables initiales.
- 19. | 5 points | On considère les données suivantes :

obs.	1	2	3	4	5	6	7
$\overline{X_1}$	3	2	4	1	2	4	4
X_2	4	2	4	4	1	3	1
classe	+1	+1	+1	+1	-1	-1	-1

Représentez ces données. Tracez l'hyperplan séparateur optimal, et indiquez les vecteurs de support. Exprimez la fonction de décision sous la forme $f(X) = \text{sign}(\beta^T X + \beta_0)$, où $X = (X_1, X_2)^T$ et (β, β_0) le vecteur de paramètres que l'on précisera. Que vaut la marge?

20.	On (a)	considère un modèle de mélange gaussien à $K=2$ composantes en dimension $p=2$. 3 points Représentez graphiquement la forme des classes dans les trois cas suivants : (a) classes de même forme mais de volumes et orientations différents (b) classes de mêmes forme et orientation mais de volumes différents ; (c) classes de mêmes forme et volume mais d'orientations différentes.					
	(b)	2 naints Daur chaque des modèles présédents dannes le nambre de navamètre	og à ogtimon (proportions				
	(b)	3 points Pour chacun des modèles précédents, donnez le nombre de paramètr comprises): (a) Même forme, volumes et orientations différents.	es a estimer (proportions				
		(b) Mêmes forme et orientation, volumes différents.	(a)				
			(b)				
		(c) Mêmes forme et volume, orientations différentes.	(c)				
21.	noya	oints Vous disposez d'un ensemble de $N=1000$ exemples et souhaitez ent au gaussien. Quels sont les hyperparamètres? Comment les déterminez-vous? estimation sans biais de la probabilité du meilleur classifieur obtenu?	raîner un SVM avec un				