Finding Absolute Maxima and Minima of f on a (closed bounded) region R

Evaluate *f* at the

1) critical points inside R

2) **boundary points** of R where f has maxima and minima

and choose the highest and the lowest value.

Example

Find all the absolute maxim and minimum of

$$f(x, y) = 2 + 2x + 4y - x^2 - y^2$$

$$f_x = 2 - 2x \qquad f_y = 4 - 2y$$

on the triangular region bounded by the lines x = 0, y = 0, and y = 9-x.

1) Critical points in R: (1,2); f(1,2) = 7

2) Boundary points.

One side at a time:
i)
$$OA(y=0)$$

$$f(x,0) = 2 + 2x - x^2$$

Extreme values of g on [0,9]:
$$g(1) = 3$$

$$g'(x) = 2 - 2x = 0$$
 iff $x = 1$ $g(0) = 2$

$$g(0) = 2$$
$$g(9) = -61$$

$$h'(y) = 4 - 2y =$$

ii)
$$OB(x=0)$$
 $f(0,y) = 2 + 4y - y^2 = h(y)$

Extreme values of h on [0,9]: h(2) = 6

$$h'(y) = 4 - 2y = 0$$
 iff $y = 2$ $h(0) = 2$ (covered in i))

$$h(9) = -43 = f(0,9)$$

iii)
$$AB \quad (y = 9 - x) \quad f(.$$

iii)
$$AB (y = 9 - x) f(x, y) = 2 + 2x + 4(9 - x) - x^2 - (9 - x)^2 = -43 + 16x - 2x^2$$

Extreme values of k on [0,9]

$$k'(x) = 16 - 4x = 0$$
 iff $x = 4$ $k(4) = -11$ $(k(0), k(9) \text{ covered in i) and ii))$

1) Critical points in R: (1,2); f(1,2) = 7 Max

i) OA
$$(y = 0)$$
 $f(x,0) = 2 + 2x - x^2$

Extreme values of g on [0,9]:
$$g(1) = 3$$

$$g'(x) = 2 - 2x = 0$$
 iff $x = 1$ $g(0) = 2$

$$g(9) = -61 = f(9,0)$$
 Min

Max: f(1,2) = 7

$$f(9,0)$$
 Min $f(9,0) = -61$

Picture the level curves of f:

$$L_c = \{(x, y) | f(x, y) = c\}$$

e.g. $L_7 = \{(1,2)\}$ (a point),

for c > 7, $L_c = \emptyset$ (the empty set),

for c < 7, L_c is the circle centered at (1, 2) with radius $\sqrt{7-c}$.

$$f(x,y) = 2 + 2x + 4y - x^{2} - y^{2} = c$$
$$x^{2} - 2x + y^{2} - 4y = 2 - c$$

$$(x-1)^2 + (y-2)^2 = 7 - c$$

Max: f(1,2) = 7**Min**: f(9,0) = -61

Observation

The extreme values occur where the two level curves of fcorresponding to the two extreme values (c = 7, -61) touch region R.

