

Topic 4. K-MAP

Prepared by Nabila Husna Shabrina

Contact: nabila.husna@umn.ac.id

Subtopic

4.1 Basic K-MAP 4.2 K-MAP Implementation

4.1 Basic K-MAP

4.1 Basic K-MAP

- K-Map stands for Karnaugh Map, it is developed by Karnaugh in 1953
- Used to simplify Boolean algebraic expression without having to use Boolean algebra theorems and Laws
- It use pictorial method to solve the Boolean expression

4.1 Basic K-MAP

Example of K-MAP

Out =
$$\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

2 Variable K-MAP

- Number of cells = 2^n where n= number of variable
- For 2 variable k-map, the number of cells is $2^2 = 4$
- Put "1" in the represented cell

3 Variable K-MAP

Can be represented horizontally or vertically

For 3 variable k-map, the number of cells is $2^3 = 8$

Only 1 bit change

Another representation on K-Map with 3 Variable

4 Variable K-MAP

For 4 variable k-map, the number of cells is $2^4 = 16$

00 01 11 10

Only 1 bit change

AB

00

01

11

10

Representation using K-MAP

Output: A'B'C'D+A'B'C'D+A'B'CD

AB CD	00	01	11	10
00	1			
01	1			
11	1			
10				

Rules for K-MAP Simplification (For SOP Expression)

- Groups may not contain 0 (in POS groups may not contain 1)
- We can group 1,2,4,8, or 2^n cells
- Each group should be as large as possible
- Cells containing 1 must be grouped
- Groups may overlap
- Opposite grouping and corner grouping is allowed
- There should be as few groups as possible

Example.

A'B'+A'C'D'

Example corner grouping

Example opposite grouping

Example.

In the sum of products function $f(x, y, z) = \sum m(2,3,4,5)$, find the prime implicants

Example.

K-MAP for Boolean example is attached. Find the number of essential prime implicants

Number of prime implicants = 4

AB				
CD	00	01	11	10
00	1	1	0	1
01	0	0	0	1
11	1	0	0	0
10	1	0	0	1

Example.

Find the minimized form of A'B'C'+A'BC'+A'BC+ABC' 000 010 011 110

= A'C'+A'B+BC'

Don't Care

- A don't care cell can be represented by a cross (X) or minus (-)
- We can consider a don't care cell as 1 or 0

Don't care cell

Example.

Find the number of product terms in the minimized sum of product (SOP) expression obtained through the following K-MAP → 2

Example.

Minimize the following Boolean expression using K-MAP

$$Y = A'B'C'D + A'BCD' + AB'C'D + ABC'D'$$

ABC'D'

There are 3 prime implicants Therefore, the answer is

$$Y = A'BCD' + ABC'D' + B'C'D$$

Example for Product of Sum

Find the Boolean expression for the given truth table

Α	В	C	OUTPUT
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

In POS consider 0 (instead of 1)

$$\rightarrow B(A' + C')(A + C)$$

5 Variable K-MAP

- For 5 variable, we use 2 adjacent Kmaps
- Example for ABCDE variable

It can also be represented as the following K-MAP

A = 0				
00	01	11	10	
B,C,D,E,0	B'C'D'E	B'C'DE 3	B'C'DE'	
B'CD'E'	B'CD'E	B'CDE	B'CDE'	
BCD'E'	BCD'E	BCDE 15	BCDE, 14	
BC'D'E'	BC'D'E	BC'DE 11	BC'DE'	
	B'C'D'E' B'CD'E' BCD'E' 8	B'C'D'E' B'C'D'E B'C'D'E B'CD'E' B'CD'E BCD'E' BCD'E 8 9	B'C'D'E' B'C'D'E B'C'DE B'C'D'E' B'CD'E B'CDE B'CD'E' B'CDE BCD'E' BCD'E BCDE 8 9 11	

DE	A = 1			
BC DE	00	01	11	10
00	B'C'D'E'	B'C'D'E	B'C'DE 19	B'C'DE' 18
01	B'CD'E' 20	B'CD'E 21	B'CDE 23	B'CDE' 22
11	BCD'E' 28	BCD'E 29	BCDE 31	BCDE, 30
10	BC'D'E' 24	BC'D'E 25	BC'DE 27	BC'DE' 26
Ĺ				

Example.

Simplify F(A, B, C, D, E) = \sum m (0, 5, 6, 8, 9, 10, 11, 16, 20, 42, 25, 26, 27)

References

M. Morris Mano, Digital Design, 5th ed, Prentice Hall, 2012, Chapter 3

Next Topic: Tabular Method