Modélisation

Statistique descriptive bivariée

Couple de variables

Marie-Luce Taupin marie-luce.taupin@genopole.cnrs.fr

2015-2016

Objectifs

- **Statistique univariée** : analyse descriptive séparée de chaque variable d'un tableau *individus* × *variables*.
- Statistique bivariée : analyse descriptive des variables deux à deux :
 - étude d'un couple de variables statistiques
 - étude de la liaison entre deux variables quantitatives, qualitatives, quantitative/qualitative
 - étape indispensable de toute analyse de jeux de données : croisement systématique des variables 2 à 2.
- Statistique descriptive multivariée : Analyse des données.

Données brutes et données groupées

Étude de deux variables X et Y sur une $m\acute{e}me$ population de taille n:

- x_k et y_k : valeurs prises par X et Y pour un méme individu k, 1 < k < n.
- Données brutes $(x_k, y_k)_{k=1,\dots,n}$: les n couples d'observations

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

Exemple

Extrait des données brutes :

Individu	Sexe X	Salaire horaire Y
1	F	13.25
2	F	12.50
3	Н	14.00
4	F	13.00
5	Н	7.00
6	F	29.80
599	Н	14.50

• Le salaire horaire dépend-il du sexe des individus?

Exemple

Extrait des données brutes :

Employé	Catégorie de personnel	Age	Région
1	Α	58	NE
2	В	42	W
3	Α	35	S
4	В	26	NE
5	В	22	W
6	С	32	NW
7	Α	42	NE
597	С	41	S
598	C C C	33	NW
599	С	29	S

- La répartition des éges est-elle différente selon la catégorie de personnel (et dans quelle mesure)?
- La catégorie des employés est-elle liée à la région (et de quelle manière)?

Extrait des données

> head(Donnees)

	AGE	SEXE	REGION	STAT_MARI	SAL_HOR	SYNDICAT	CATEGORIE	NIV_ETUDES	NB_PERS	NB_ENF	REV_FOYER
1	58	F	NE	C	13.25	non	5	43	2	0	11
2	40	M	W	M	12.50	non	7	38	2	0	7
3	29	M	S	C	14.00	non	5	42	2	0	15
4	59	M	NE	D	10.60	oui	3	39	4	1	7
5	51	M	W	M	13.00	non	3	35	8	1	15
6	19	M	NW	C	7.00	non	3	39	6	0	16

> tail(Donnees)

	AGE	SEXE	REGION	STAT_MARI	SAL_HOR	SYNDICAT	CATEGORIE	NIV_ETUDES	NB_PERS	NB_ENF	REV_FOYER
594	63	M	NE	M	10.5	non	4	40	2	0	13
595	51	F	S	M	29.8	non	2	42	2	0	14
596	29	F	NE	C	27.0	oui	1	43	2	0	15
597	57	F	NW	D	21.0	non	4	40	1	0	14
598	29	F	W	M	13.0	oui	5	39	6	4	11
599	47	M	S	C	14.5	non	4	39	1	0	12

Description des données

```
> dim(Donnees)
[1] 599 11
> attach(Donnees)
> names(Donnees)
[1] "AGE" "SEXE" "REGION" "STAT_MARI" "SAL_HOR" "SYNDICAT" "CATEGORIE" "NIV_ETUDES"
"NB PERS" "NB ENF" "REV FOYER"
> str(Donnees)
'data.frame': 599 obs. of 11 variables:
$ AGE : int 58 40 29 59 51 19 64 23 47 66 ...
$ SEXE : Factor w/ 2 levels "F"."M": 1 2 2 2 2 2 1 1 2 1 ...
$ REGION : Factor w/ 4 levels "NE", "NW", "S"...: 1 4 3 1 4 2 3 1 2 3 ...
$ STAT_MARI : Factor w/ 5 levels "C", "D", "M", "S", ...: 1 3 1 2 3 1 3 1 3 2 ...
$ SAL_HOR : num 13.2 12.5 14 10.6 13 ...
$ SYNDICAT : Factor w/ 2 levels "non"."oui": 1 1 1 2 1 1 1 1 2 1 ...
$ CATEGORIE : int 5 7 5 3 3 3 9 1 8 5 ...
$ NIV_ETUDES: int 43 38 42 39 35 39 40 43 40 40 ...
$ NB PERS : int 2 2 2 4 8 6 3 2 3 1 ...
$ NB ENF : int 0 0 0 1 1 0 0 0 0 0 ...
$ REV FOYER: int. 11 7 15 7 15 16 13 11 12 8 ...
```

Description des données

```
## Modification du type des variables
Donnees$CATEGORIE=as factor(Donnees$CATEGORIE)
Donnees$NIV ETUDES=as.factor(Donnees$NIV ETUDES)
Donnees$REV FOYER=as.factor(Donnees$REV FOYER)
> str(Donnees)
'data frame': 599 obs. of 11 variables:
$ AGE.
         : int 58 40 29 59 51 19 64 23 47 66 ...
$ SEXE
           : Factor w/ 2 levels "F", "M": 1 2 2 2 2 2 1 1 2 1 ...
$ REGION : Factor w/ 4 levels "NE"."NW"."S"...: 1 4 3 1 4 2 3 1 2 3 ...
$ STAT MARI : Factor w/ 4 levels "C"."D"."M"."V": 1 3 1 2 3 1 3 1 3 2 ...
$ SAL HOR : num 13.2 12.5 14 10.6 13 ...
$ SYNDICAT : Factor w/ 2 levels "non". "oui": 1 1 1 2 1 1 1 1 2 1 ...
$ CATEGORIE : Factor w/ 10 levels "1", "2", "3", "4", ...: 5 7 5 3 3 3 9 1 8 5 ...
$ NIV_ETUDES: Factor w/ 15 levels "32", "33", "34",...: 12 7 11 8 4 8 9 12 9 9 ...
$ NB PERS : int 2 2 2 4 8 6 3 2 3 1 ...
$ NB ENF : int 0 0 0 1 1 0 0 0 0 0 ...
$ REV_FOYER : Factor w/ 16 levels "1", "2", "3", "4", ...: 11 7 15 7 15 16 13 11 12 8 ...
```

Résumé des données

> summary(Donnees)

AGE	SEXE	REGION	STAT_MARI	SAL_HOR	SYNDICAT	C	ATEGORIE	NIV	_ETUDES
Min. :16.00	F:297	NE:129	C:193	Min. : 2.0	non:496	2	:133	39	:187
1st Qu.:29.00	M:302	NW:122	D: 75	1st Qu.:10.5	oui:103	3	:125	40	:148
Median :42.00		S:200	M:325	Median :15.0		5	: 94	43	:114
Mean :41.85		W :148	V: 6	Mean :17.9		4	: 48	42	: 45
3rd Qu.:53.50				3rd Qu.:22.0		1	: 46	44	: 29
Max. :80.00				Max. :99.0		9	: 39	41	: 22
						(Ot	her):114	(Oth	er): 54

NB_PERS	NB_ENF	REV_FOYER
Min. : 1.00	Min. :0.0000	14 : 89
1st Qu.: 2.00	1st Qu.:0.0000	15 : 77
Median: 3.00	Median :0.0000	13 : 71
Mean : 3.11	Mean :0.5326	12 : 70
3rd Qu.: 4.00	3rd Qu.:1.0000	11 : 61
Max. :13.00	Max. :6.0000	16 : 48
		(Other):183

X et/ou Y qualitatives ou quantitatives discrétes

• $x_1, x_2, ..., x_i, ..., x_p$: les p modalités de X (p observations distinctes de X)

• $y_1, y_2, \dots, y_j, \dots, y_q$: les q modalités de Y (q observations distinctes de Y)

X et/ou Y quantitatives continues

• Valeurs de X regroupées en p classes

$$[e_0^X, e_1^X[, \dots, [e_{i-1}^X, e_i^X[, \dots, [e_{p-1}^X, e_p^X[$$

de centres $x_1, \dots, x_i, \dots, x_p$

ullet Valeurs de Y en q classes

$$[e_0^Y, e_1^Y[, \dots, [e_{j-1}^Y, e_j^Y[, \dots, [e_{q-1}^Y, e_q^Y[$$

de centres $y_1, \ldots, y_j, \ldots, y_q$

• Confusion parfois entre la classe $[e_{i-1}^X, e_i^X]$ et son centre x_i

Données groupées

• n_{ij} : nombre d'individus pour lesquels à la fois X prend la valeur x_i et Y la valeur y_i

$$n_{ij} = \#\{k = 1, \dots, n \mid x_k = x_i \text{ et } y_k = y_j\}$$

- Si X est continue, $x_k = x_i$ signifie $x_k \in [e_{i-1}^X, e_i^X]$ de centre x_i
- Données groupées : $(x_i, y_j, n_{ij})_{i=1,\dots,p, j=1,\dots,q}$

Tableaux statistiques et distribution d'une série bivariée

Distribution jointe - Tableau de contingence

• Distribution jointe en effectifs de X et de Y :

$$\{(x_i, y_j, n_{ij}) ; 1 \le i \le p, 1 \le j \le q\}$$

- Pour i = 1, ..., p et j = 1, ..., q
 - ▶ n_{ij} : nombre d'individus possédant la modalité x_i de X et la modalité y_j de Y.
 - ▶ $n_{i\bullet} = \sum_{j=1}^{q} n_{ij}$: nombre d'individus possédant la modalité x_i (∈ classe de centre x_i) de X
 - $n_{\bullet j} = \sum_{i=1}^{n} n_{ij}$: nombre d'individus possédant la modalité y_j de Y
 - ▶ $n = \sum_{i=1}^p \sum_{j=1}^q n_{ij} = \sum_{i=1}^p n_{i\bullet} = \sum_{j=1}^q n_{\bullet j}$; nombre total d'individus de la population.

Tableau de contingence en effectifs (p lignes, q colonnes)

Y	<i>y</i> ₁	У2	 Уј	 Уq	Total
X					
x_1	n ₁₁	n_{12}	 n_{1j}	 n_{1q}	n_{1ullet}
<i>x</i> ₂	n ₂₁	n_{22}	 n_{2j}	 n_{2q}	<i>n</i> ₂ •
:	:	:	÷	÷	:
x _i	n _{i1}	n_{i2}	 n _{ij}	 n _{iq}	n _i •
:	:	:	:	÷	:
X _p	n_{p1}	n_{p2}	 n _{pj}	 n _{pq}	n _{p●}
Total	$n_{\bullet 1}$	<i>n</i> •2	 n₀j	 n _{●q}	n

Tableau de contingence : SEXE x REGION

- > TabContEf<-table(SEXE, REGION)
- > print(TabContEf) # affiche le nom des variables

REGION

```
F 61 62 97 77
M 68 60 103 71
```

> addmargins(TabContEf)

REGION

SEXE	NE	NW	S	W	Sum
F	61	62	97	77	297
M	68	60	103	71	302
Sum	129	122	200	148	599

X : SEXE et Y : REGION

• X de type à p = modalités.

• Y de type 0 q = modalités.

• Mesures conjointes de X et Y sur $n = \dots$ individus.

Distribution jointe en fréquences

- Pour i = 1, ..., p et j = 1, ..., q
 - $f_{ij} = \frac{n_{ij}}{n}$: proportion d'individus possédant la modalité x_i de la variable X et la modalité y_j de la variable Y.
 - $f_{i\bullet} = \sum_{\substack{j=1 \ p}}^{q} f_{ij}$: fréquence de la modalité x_i de X
 - $f_{\bullet j} = \sum_{i=1}^{P} f_{ij}$: fréquence de la modalité y_j de Y
 - $1 = \sum_{i=1}^{p} \sum_{j=1}^{q} f_{ij} = \sum_{i=1}^{p} f_{i\bullet} = \sum_{j=1}^{q} f_{\bullet j}$
- Distribution jointe en fréquences de X et de Y :

$$\{(x_i, y_j, f_{ij}) ; 1 \le i \le p, 1 \le j \le q\}$$

Tableau de contingence en fréquences (p lignes, q colonnes)

Y	<i>y</i> ₁	<i>y</i> ₂	 Уј	 Уq	Total
X					
<i>x</i> ₁	f_{11}	f_{12}	 f_{1j}	 f_{1q}	f_{1ullet}
<i>x</i> ₂	f_{21}	f_{22}	 f_{2j}	 f_{2q}	$f_{2\bullet}$
	:	:	:	:	i
Xi	f_{i1}	f_{i2}	 f_{ij}	 f _{iq}	$f_{i\bullet}$
:	:	÷	:	:	:
x_p	f_{p1}	f_{p2}	 f_{pj}	 f_{pq}	$f_{p\bullet}$
Total	$f_{ullet 1}$	$f_{\bullet 2}$	 $f_{ullet j}$	 $f_{\bullet q}$	1

Tableau de contingence : SEXE x REGION

```
> TabContFr<-prop.table(TabContEf)
> print(TabContFr)
    REGION
SEXE.
            NF.
                       NW
   F 0.1018364 0.1035058 0.1619366 0.1285476
   M 0.1135225 0.1001669 0.1719533 0.1185309
> print(round(TabContFr,2))
    REGION
SEXE.
       NF.
            NW
   F 0.10 0.10 0.16 0.13
   M 0.11 0.10 0.17 0.12
> addmargins(round(TabContFr,2))
     REGION
SEXE
        NF.
             NW
                            S11m
      0.10 0.10 0.16 0.13 0.49
      0.11 0.10 0.17 0.12 0.50
  Sum 0.21 0.20 0.33 0.25 0.99
```

Tableau de contingence en % : SEXE x REGION

```
> TabContPr<-100*prop.table(TabContEf)
> print(TabContPr)
    REGION
SEXE
           NE
                    NW
   F 10.18364 10.35058 16.19366 12.85476
   M 11.35225 10.01669 17.19533 11.85309
> print(round(TabContPr,2))
    REGION
SEXE.
        NF.
              NW
   F 10.18 10.35 16.19 12.85
   M 11.35 10.02 17.20 11.85
> addmargins(round(TabContPr,2))
     REGION
SEXE.
         NF.
               NW
                      S
                                 Sum
      10.18 10.35 16.19 12.85 49.57
      11.35 10.02 17.20 11.85 50.42
  Sum 21.53 20.37 33.39 24.70 99.99
```

Tableau de contingence : Autre représentation

- > library(gplots)
- > balloonplot(t(TabContEf),dotsize=10,main="")

- > N1=nlevels(SEXE) # nombre de modalites (niveaux) du facteur Sexe
- > N2=nlevels(REGION) # nombre de modalites (niveaux) du facteur REGION
- > couleurs=rainbow(N1)
- > barplot(TabContFr, col=couleurs,2)
- > legend("topleft", legend=c("F", "H"), col=couleurs,pch=15)

- > barplot(TabContFr, beside=TRUE, col=couleurs, 2)
- > legend("topleft", legend=c("F", "H"), col=couleurs,pch=15)

A ne pas faire (sauf si les modalités sont équilibrées)!

- > couleurs=rainbow(N2)
- > mosaicplot(TabContEf,col=couleurs,main="")

Tableau de contingence : SEXE x SALAIRE

⇒ Tableau de contingence Qualitatif x Quantitatif.

- > Nclasse=4 # Nombre de classes
- > SALAIRE<-cut(SAL_HOR,breaks=Nclasse)
- > TabContEf<-table(SEXE,SALAIRE)
- > print(TabContEf)
 SALAIRE

> addmargins(TabContEf)

SALAIRE

```
SEXE
      (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1] Sum
  F
              262
                            31
                                          3
                                                       1 297
  М
              244
                                                       2 302
                            49
  Sum
              506
                            80
                                         10
                                                       3 599
```

Tableau de contingence : SEXE x SALAIRE

> TabContFr<-prop.table(TabContEf) > print(TabContFr) SALATRE. SEXE (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1] F 0.437395659 0.051752922 0.005008347 0.001669449 M 0.407345576 0.081803005 0.011686144 0.003338898 > print(round(TabContFr,2)) SALAIRE SEXE (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1] 0.44 0.05 0.01 0.00 0.41 0.08 0.01 0.00 > addmargins(round(TabContFr,2)) SALAIRE SEXE. (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1] Sum F 0.44 0.05 0.01 0.00 0.50 0.41 0.08 0.01 0.00 0.50 0.85 0.13 0.02 0.00 1.00 Sum

Tableau de contingence : Autre représentation

> balloonplot(t(TabContEf),dotsize=10,main="")

A ne pas faire (sauf si les modalités sont équilibrées)!

- > couleurs=rainbow(N2)
- > mosaicplot(TabContEf,col=couleurs,main="")

- > boxplot(SAL_HOR ~ SEXE,xlab="Sexe",ylab="SALAIRE")
- > abline(h=mean(SAL_HOR,na.rm=T),lty=2,col="red",lwd=2)

Tableau de contingence : AGE x SALAIRE

⇒ Tableau de contingence Quantitatif x Quantitatif.

	ége (ans)	[16;32[[32;48[[48;64[[64;80]	Total
Salaire	horaire					
[2;26[180	156	144	26	506
[26;50[11	28	40	1	80
[50;76[0	5	4	1	10
[76;100]		1	0	1	1	3
Total		192	189	189	29	599

- X à $p = \dots$ classes.
- Y à $q = \dots$ classes.
- Mesures conjointes de X et Y sur $n = \dots$ individus.
- 4

Tableau de contingence : AGE x SALAIRE

```
> NclasseS=4 # Nombre de classes : Salaire
> SALAIRE<-cut(SAL_HOR,breaks=NclasseS)
> NclasseA=4 # Nombre de classes : Age
> Age<-cut(AGE,breaks=NclasseA)</pre>
> TabContEf<-table(Age,SALAIRE) # Tableau de contingence : Effectif
> print(TabContEf)
           SALAIRE
            (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1]
Age
  (15.9,32]
                    180
                                  11
  (32,48]
                    156
                                  28
                                                5
                                                            0
  (48,64]
                    144
                                  40
                                                4
  (64,80.1]
                     26
> addmargins(TabContEf)
           SALAIRE
            (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1] Sum
Age
  (15.9,32]
                    180
                                  11
                                                            1 192
  (32,48]
                    156
                                  28
                                                5
                                                            0 189
  (48,64]
                    144
                                  40
                                                4
                                                            1 189
  (64,80.1]
                     26
                                                               29
```

506

Sum

10

80

3 599

Tableau de contingence : AGE x SALAIRE

```
> TabContFr<-prop.table(TabContEf) # Tableau de contingence : Frequence
> print(round(TabContFr,2))
         SALATRE.
          (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1]
Age
 (15.9,32]
                         0.02
                                   0.00
               0.30
                                             0.00
 (32,48]
              0.26
                      0.05
                                 0.01
                                             0.00
 (48,64]
            0.24 0.07
                                 0.01
                                             0.00
 (64.80.1]
              0.04
                         0.00
                                   0.00
                                             0.00
> addmargins(round(TabContFr,2))
         SALATRE.
          (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1] Sum
Age
 (15.9,32]
               0.30
                         0.02
                                   0.00
                                             0.00 0.32
 (32,48]
              0.26
                         0.05
                                   0.01
                                             0.00 0.32
 (48,64]
            0.24
                       0.07
                                 0.01 0.00 0.32
 (64,80.1]
                                  0.00
          0.04
                       0.00
                                            0.00 0.04
 Sum
               0.84
                       0.14
                                  0.02
                                             0.00 1.00
```

Représentation graphique plus appropriée

> plot(AGE,SAL_HOR,pch=20,xlab="Age",ylab="Salaire horaire",main="")

Probléme des points superposés

```
> # Solution 1 : Bruitage des points
> plot(jitter(AGE),jitter(SAL_HOR),pch=20,xlab="Age",
ylab="Salaire horaire",main="")
```


Probléme des points superposés

```
> # Solution 2 : symboles adapt\'es
> sunflowerplot(x=AGE,y=SAL_HOR,,xlab="Age",ylab="Salaire horaire",
main="")
```


Distributions marginales

• Distribution marginale de X en effectifs et en fréquences

$$\{(x_i, n_{i\bullet}) ; 1 \le i \le p\}$$
 $\{(x_i, f_{i\bullet}) ; 1 \le i \le p\}$

⇒ Derniére colonne du tableau de contingence en effectifs ou fréquences

• Distribution marginale de Y en effectifs et en fréquences

$$\{(y_j, n_{\bullet j}) \; ; \; 1 \leq j \leq q\}$$
 $\{(y_j, f_{\bullet j}) \; ; \; 1 \leq j \leq q\}$

⇒ Derniére ligne du tableau de contingence en effectifs ou fréquences

Tableaux des effectifs/fréquences de X et de Y

X	effectif	fréquence
<i>x</i> ₁ <i>x</i> ₂	n_{1ullet}	f_{1ullet}
<i>x</i> ₂	n _{2•}	f_{2ullet}
:	:	:
X _i	n _{i•}	f_{iullet}
:	:	:
X _p	n _{p•}	f_{pullet}
Total	$n=\sum_{i=1}^p n_{i\bullet}$	1

Dist. marginale de λ	(
en eff. et en fréq.	

Y	effectif	fréquence
<i>y</i> ₁	$n_{ullet 1}$	$f_{ullet 1}$
<i>y</i> ₂	$n_{\bullet 2}$	f _{•2}
:	:	:
Уј	$n_{ullet j}$	$f_{ullet j}$
:	:	:
y_q	n∙q	$f_{ullet q}$
Total	$n = \sum_{j=1}^{q} n_{\bullet j}$	1

Dist. marginale de Y en eff. et en fréq.

Distributions marginales : SEXE et REGION

Y	WE	NW	S	W	Total
Sexe X					
Femme	61	62	97	77	297
Homme	68	60	103	71	302
Total	129	122	200	148	599

```
> margin.table(TabContEf,1)
```

```
SEXE
F M
297 302
```

> margin.table(TabContEf,2)

REGION

NE NW S W 129 122 200 148

Distributions marginales: SEXE et REGION

Y	WE	NW	S	W	Total
Sexe X					
Femme	0.1018	0.1035	0.1619	0.1285	0.495
Homme	0.1135	0.1002	0.1720	0.1185	0.504
Total	0.215	0.203	0.333	0.247	1

> margin.table(TabContFr,1)

SEXE

F M 0.4958264 0.5041736

> margin.table(TabContFr,2)

REGION

NE NW S W 0.215 0.203 0.333 0.247

Distributions conditionnelles

- Distributions conditionnelles de X sachant Y (colonne fixée) et de Y sachant X (ligne fixée)
- En effectifs, pour tout i = 1, ..., p et j = 1, ..., q
 - $ightharpoonup n_{ij}$: nombre d'individus tq $X = x_i$ et $Y = y_i$
 - ▶ $n_{i/j}$: nombre d'individus tq $X = x_i$ parmi ceux pour lequels $Y = y_j$ $n_{i/j} = n_{ij}$ avec j fixé
 - $n_{j/i}$: nombre d'individus tq $Y = y_j$ parmi ceux pour lesquels $X = x_i$
 - $n_{j/i} = n_{ij}, \quad i \text{ fixé}$

- En fréquences, pour tout i = 1, ..., p et j = 1, ..., q,
 - f_{ij} : proportion d'individus tq $X = x_i$ et $Y = y_j$
 - $f_{i/j}$: proportion d'individus pour lesquels $X = x_i$ parmi ceux pour lesquels $Y = y_j$.

$$f_{i/j} = \frac{n_{ij}}{n_{\bullet j}}$$

• $f_{j/i}$: proportion d'individus pour lesquels $Y = y_j$ parmi ceux pour lesquels $X = x_i$

$$f_{j/i} = \frac{n_{ij}}{n_{i\bullet}}$$

Distributions conditionnelles en effectifs et fréquences

• Distribution conditionnelle en effectifs de X sachant $Y = y_j$

$$\{(x_i, n_{i/j}) ; 1 \leq i \leq p, j \text{ fixé}\}$$

(jème colonne du tableau de contingence en effectifs)

• Distribution conditionnelle en effectifs de Y sachant $X = x_i$

$$\{(y_j, n_{j/i}) ; 1 \leq j \leq q, i \text{ fixé}\}$$

(ièmeligne du tableau de contingence en effectifs).

• Distribution conditionnelle en fréquences de X sachant $Y = y_j$:

$$\{(x_i, f_{i/i}) ; 1 \le i \le p, j \text{ fixé}\}$$

• Distribution conditionnelle en fréquences de Y sachant $X = x_i$:

$$\{(y_i, f_{i/i}) ; 1 \le j \le q, i \text{ fixé}\}$$

$X/Y = y_j$	effectif	fréquence.
<i>x</i> ₁	$n_{1/j}=n_{1j}$	$f_{1/j} = \frac{n_{1j}}{n_{\bullet j}}$
X ₂	$n_{2/j}=n_{2j}$	$f_{2/j} = \frac{n_{2j}}{n_{\bullet j}}$
:	<u>:</u>	:
X _i	$n_{i/j}=n_{ij}$	$f_{i/j} = \frac{n_{ij}}{n_{\bullet j}}$
:		:
X _p	$n_{p/j}=n_{pj}$	$f_{p/j} = \frac{n_{pj}}{n_{\bullet j}}$
Total	$n_{\bullet j} = \sum_{i=1}^{p} n_{ij}$	1

Dist. cond. eff. et fréq. de X sachant $Y = y_i$

$Y/X = x_i$	effectif	fréquence
<i>y</i> ₁	$n_{1/i}=n_{i1}$	$f_{1/i} = \frac{n_{i1}}{n_{i\bullet}}$
<i>y</i> ₂	$n_{2/i}=n_{i2}$	$f_{2/i} = \frac{n_{i2}}{n_{i\bullet}}$
i i	:	:
Уј	$n_{j/i}=n_{ij}$	$f_{j/i} = \frac{n_{ij}}{n_{i\bullet}}$
:	:	:
Уq	$n_{q/i}=n_{iq}$	$f_{q/i} = \frac{n_{iq}}{n_{i\bullet}}$
Total	$n_{iullet} = \sum_{j=1}^q n_{ij}$	1

Dist. cond .eff. et fréq. de Y sachant $X = x_i$

• Il y a q distributions conditionnelles de X sachant $Y = y_j$ (autant que les q modalités ou classes de Y)

• Il y a p distributions conditionnelles de Y sachant $X = x_i$ (autant que les p modalités ou classes de X)

Tableau des q distributions conditionnelles de X sachant Y

Distribution conditionnelle de X sachant $Y = y_j$ dans la colonne j

Y	<i>y</i> ₁	<i>y</i> ₂	 Уј	 Уq
X				
<i>x</i> ₁	$f_{1/1}$	$f_{1/2}$	 $f_{1/j}$	 $f_{1/q}$
x ₂	$f_{2/1}$	$f_{2/2}$	 $f_{2/j}$	 $f_{2/q}$
:	:	:	:	:
X _i	$f_{i/1}$	$f_{i/2}$	 $f_{i/j}$	 $f_{i/q}$
:	:	:	÷	:
X _p	$f_{p/1}$	$f_{p/2}$	 $f_{p/j}$	 $f_{p/q}$
Total	1	1	 1	 1

Tableau des p distributions conditionnelles de Y sachant X

Distribution conditionnelle de Y sachant $X = x_i$ dans la ligne i

	Y	<i>y</i> ₁	<i>y</i> ₂	 Уј	 Уq	Total
X						
	x_1	$f_{1/1}$	$f_{2/1}$	 $f_{j/1}$	 $f_{q/1}$	1
	<i>x</i> ₂	$f_{1/2}$	$f_{2/2}$	 $f_{j/2}$	 $f_{q/2}$	1 1
	:	:	:	:	:	
	x _i	$f_{1/i}$	$f_{2/i}$	 $f_{j/i}$	 $f_{q/i}$	1
	:	:	:	:	:	
	X_p	$f_{1/p}$	$f_{2/p}$	 $f_{j/p}$	 $f_{q/p}$	1

Exemple : Distributions conditionnelles en effectifs de Y sachant X

	Salaire Y	[2;26[[26,50[[50,76[[76,100[Total
Sexe X						
Femme		262	31	3	1	297
Homme		244	49	7	2	302
Total		506	80	10	3	599

 Dist. cond. en effectifs du salaire horaire chez (sachant que) les hommes

Parmi les hommes, il y a personnes qui gagnent entre 2 et 26 dollars.

• Sur les personnes observées, ... sont des hommes et gagnent entre 2 et 26 dollars.

Exemple : Distributions conditionnelles en effectifs de X sachant Y

	Salaire Y	[2;26[[26,50[[50,76[[76,100[Total
Sexe X						
Femme		262	31	3	1	297
Homme		244	49	7	2	302
Total		506	80	10	3	599

• Dist. cond. en effectifs du sexe sachant que le salaire horaire est compris entre 2 et 26 dollars.

Parmi les ... personnes qui gagnent entre 2 et 26 dollars, il y a ... hommes.

• Sur les ... personnes observés, ... sont des hommes et gagnent entre 2 et 26 dollars.

Tableau des q=4 distributions conditionnelles en fréquences du sexe X sachant le salaire horaire Y

	Salaire Y	[2;26[[26,50[[50,76[[76,100[Total
Sexe X						
Femme		52%	39%	30%	33%	50%
Homme		48%	61%	70%	67%	50%
Total		100%	100%	100%	100%	100%

- Dist. cond. en fréquences du sexe sachant que le salaire horaire est compris entre 2 et 26 dollars.
- Parmi les ... personnes qui gagnent entre 2 et 26 dollars, il y en a ...% hommes.
- Sur les personnes observées,% sont des hommes et gagnent entre 2 et 26 dollars

Tableau des p = 3 distributions conditionnelles en fréquences du salaire horaire Y selon le sexe X

	Salaire Y	[2;26[[26,50[[50,76[[76,100[Total
Sexe X						
Femme		88%	10%	1%	1%	100%
Homme		81%	16%	2%	1%	100%
dist. marg. de Y		85%	13%	2%	0%	100%

- Dist. cond. en fréquences de l'ége sachant la catégorie de personnel.
- Parmi les ... hommes, il y a ...% des personnes qui gagnent entre 2 et 26 dollars.
- Sur les ... personnes observés, ...% sont des hommes et gagnent entre 2 et 26 dollars

Moyennes, variances marginales et conditionnelles

- UNIQUEMENT pour variables quantitatives.
- Données brutes : calculs similaires à ceux effectués en statistique univariée aprés extraction des individus d'intérét.
- Données groupées : à partir des tableaux de contingence.

Moyennes et variances marginales

• Distribution marginale de X en effectifs/fréquences

$$\{(x_i, n_{i\bullet}) \; ; \; 1 \leq i \leq p\} \qquad \{(x_i, f_{i\bullet}) \; ; \; 1 \leq i \leq p\}$$

• Distribution marginale de Y en effectifs/fréquences

$$\{(y_j, n_{\bullet j}) \; ; \; 1 \le j \le q\} \qquad \{(y_j, f_{\bullet j}) \; ; \; 1 \le j \le q\}$$

• Moyennes marginales $\overline{\mathbf{x}}$ et $\overline{\mathbf{y}}$

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{p} \mathbf{n_{i \bullet}} \mathbf{x_i} = \sum_{i=1}^{p} \mathbf{f_{i \bullet}} \mathbf{x_i}$$

$$\overline{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{q} \mathbf{n_{\bullet j}} \mathbf{y_j} = \sum_{i=1}^{q} \mathbf{f_{\bullet j}} \mathbf{y_j}$$

Moyennes marginales : AGE et SALAIRE

```
> print(TabContEf)
> addmargins(TabContEf)
           SALATRE.
            (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1] Sum
Age
  (15.9,32]
                    180
                                 11
                                                           1 192
                                               0
  (32.48]
                   156
                                 28
                                                           0 189
  (48,64]
                   144
                                 40
                                                           1 189
  (64,80.1]
                    26
                                                           1 29
                                              10
                                                           3 599
  Sum
                   506
                                 80
> margin.table(TabContEf,1)
Age
(15.9,32] (32,48] (48,64] (64,80.1]
      192
                189
                           189
                                      29
> margin.table(TabContEf,2)
SALAIRE
 (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1]
        506
                     80
                                  10
## A comparer avec :
> mean(AGE)
[1] 41.84975
> mean(SAL_HOR)
[1] 17.89835
```

• Variances marginales σ_{x}^{2} et σ_{y}^{2}

$$\begin{split} V(x) &= \sigma_{x}^{2} = \frac{1}{n} \sum_{i=1}^{p} n_{i\bullet} (x_{i} - \overline{x})^{2} = \sum_{i=1}^{p} f_{i\bullet} (x_{i} - \overline{x})^{2} \\ V(y) &= \sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{q} n_{\bullet j} (y_{j} - \overline{y})^{2} = \sum_{i=1}^{q} f_{\bullet j} (y_{j} - \overline{y})^{2} \end{split}$$

Soit aussi

$$\sigma_{x}^{2} = \frac{1}{n} \sum_{i=1}^{p} n_{i \bullet} x_{i}^{2} - (\overline{x})^{2} = \sum_{i=1}^{p} f_{i \bullet} x_{i}^{2} - (\overline{x})^{2}$$

$$\sigma_{y}^{2} = \frac{1}{n} \sum_{j=1}^{q} n_{\bullet j} y_{j}^{2} - (\overline{y})^{2} = \sum_{j=1}^{q} f_{\bullet j} y_{j}^{2} - (\overline{y})^{2}$$

Variances marginales : AGE et SALAIRE

```
> print(TabContEf)
> addmargins(TabContEf)
           SALATRE.
            (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1] Sum
Age
  (15.9,32]
                    180
                                 11
                                                           1 192
                                               0
  (32.48]
                   156
                                 28
                                                           0 189
  (48,64]
                   144
                                 40
                                                           1 189
  (64,80.1]
                    26
                                                           1 29
                                              10
                                                           3 599
  Sum
                   506
                                 80
> margin.table(TabContEf,1)
Age
(15.9,32] (32,48] (48,64] (64,80.1]
      192
                189
                           189
                                      29
> margin.table(TabContEf,2)
SALAIRE
 (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1]
        506
                     80
                                  10
## A comparer avec :
> var(AGE)
[1] 199.275
> var(SAL_HOR)
```

[1] 127,2247

Moyennes et variances conditionnelles

Pour $j = 1, \ldots, q$

• Dist. cond. de X en effectifs/fréquences sachant que $Y = y_j$

$$\{(x_i, n_{i/j}) ; 1 \le i \le p\}$$
 $\{(x_i, f_{i/j}) ; 1 \le i \le p\}$

avec

$$\mathbf{n}_{\mathbf{i}/\mathbf{j}} = \mathbf{n}_{\mathbf{i}\mathbf{j}} \quad \text{et} \quad \mathbf{f}_{\mathbf{i}/\mathbf{j}} = \frac{\mathbf{n}_{\mathbf{i}\mathbf{j}}}{\mathbf{n}_{ullet\mathbf{j}}}$$

• Moyenne conditionnelle de X sachant que $Y = y_j : \overline{\mathbf{x}}_{/\mathbf{j}}$

$$\overline{\boldsymbol{x}}_{/j} = \overline{\boldsymbol{x}}_{/Y=y_j} = \frac{1}{n_{\bullet j}} \sum_{i=1}^p n_{i/j} \boldsymbol{x}_i = \frac{1}{n_{\bullet j}} \sum_{i=1}^p n_{ij} \boldsymbol{x}_i = \sum_{i=1}^p f_{i/j} \boldsymbol{x}_i \; ;$$

• Variance conditionnelle de X sachant que $Y = y_j : \sigma_{\mathbf{x}/\mathbf{j}}^2$

$$\sigma_{x/j}^2 = V(x_{/Y=y_j}) = \frac{1}{n_{\bullet j}} \sum_{i=1}^p n_{i/j} \left(x_i - \overline{x}_{/j} \right)^2 = \sum_{i=1}^p f_{i/j} \left(x_i - \overline{x}_{/j} \right)^2 \ .$$

Pour
$$i = 1, \ldots, p$$

• Dist. cond. de Y en effectifs/fréquences sachant que $X = x_i$

$$\{(y_j, n_{j/i}) ; 1 \le j \le q\}$$
 $\{(y_j, f_{j/i}) ; 1 \le j \le q\}$

avec

$$n_{j/i} = n_{ij} \quad \text{et} \quad f_{j/i} = \frac{n_{ij}}{n_{i\bullet}}$$

• Moyenne conditionnelle de Y sachant que $X = x_i : \overline{y}_{/i}$

$$\overline{\boldsymbol{y}}_{/i} = \overline{\boldsymbol{y}}_{/X = x_i} = \frac{1}{n_{i\bullet}} \sum_{j=1}^q n_{j/i} y_j = \frac{1}{n_{i\bullet}} \sum_{j=1}^q n_{ij} y_j = \sum_{j=1}^q f_{j/i} y_j \; ;$$

• Variance conditionnelle de Y sachant que $X = x_i : \frac{\sigma_{y/i}^2}{\sigma_{y/i}^2}$

$$\sigma_{y/i}^2 = V(y_{/X=x_i}) = \frac{1}{n_{i\bullet}} \sum_{i=1}^q n_{j/i} \left(y_j - \overline{y}_{/i} \right)^2 = \sum_{i=1}^q f_{j/i} \left(y_j - \overline{y}_{/i} \right)^2 \ .$$

Autre écriture de la variance conditionnelle

$$\sigma_{x/j}^{2} = \frac{1}{n_{\bullet j}} \sum_{i=1}^{p} n_{i/j} (x_{i} - \overline{x}_{/j})^{2}$$

$$= \frac{1}{n_{\bullet j}} \sum_{i=1}^{p} n_{ij} x_{i}^{2} - (\overline{x}_{/j})^{2} = \sum_{i=1}^{p} f_{i/j} x_{i}^{2} - (\overline{x}_{/j})^{2}$$

$$\sigma_{y/i}^{2} = \frac{1}{n_{i\bullet}} \sum_{j=1}^{q} n_{j/i} (y_{j} - \overline{y}_{/i})^{2}$$

$$= \frac{1}{n_{i\bullet}} \sum_{i=1}^{q} n_{ij} y_{j}^{2} - (\overline{y}_{/i})^{2} = \sum_{i=1}^{q} f_{j/i} y_{j}^{2} - (\overline{y}_{/i})^{2}$$

Moyennes et variances conditionnelles du salaire par ége

```
> round(tapply(SAL_HOR, Age, mean),2)
(15.9,32] (32,48] (48,64] (64,80.1]
   14.14 18.62 20.83 18.97
> round(tapply(SAL_HOR, Age, var),2)
(15.9.32] (32.48] (48.64] (64.80.1]
   80.15 127.34 140.10 215.17
> tapply(SAL_HOR,Age,summary)
$'(15.9,32]'
  Min. 1st Qu. Median Mean 3rd Qu.
                                      Max.
  2.25
         9.00 12.00 14.14 16.34
                                     90.00
$'(32,481'
  Min. 1st Qu. Median Mean 3rd Qu.
                                    Max.
  2.00 10.75 15.00 18.62
                              22.11
                                     74.00
$'(48,64]'
  Min. 1st Qu. Median Mean 3rd Qu.
                                     Max.
  4.00 13.00 19.00 20.83
                              25.72
                                     99.00
$'(64.80.11'
  Min. 1st Qu. Median Mean 3rd Qu. Max.
  7.65 12.00 16.00
                     18.97
                              18.00
                                     75.00
```

Moyennes et variances conditionnelles de l'ége par tranche de salaire

```
> round(tapply(AGE, SALAIRE, mean),2)
 (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1]
     40.80
                47.06
                            50.30
                                       52.00
> round(tapply(AGE, SALAIRE, var),2)
 (1.9,26.2] (26.2,50.5] (50.5,74.8] (74.8,99.1]
    205.08
               123.86
                       131.12
                                      441.00
> tapply(AGE,SALAIRE,summary)
$'(1.9,26.2]'
  Min. 1st Qu. Median Mean 3rd Qu.
                                        Max.
  16.0
          28.0
                 40.0 40.8
                                52.0
                                        80.0
$'(26.2.50.51'
  Min. 1st Qu. Median Mean 3rd Qu.
                                       Max.
 25.00
         38.75
              49.00 47.06
                               56.25
                                       70.00
$'(50.5,74.8]'
  Min. 1st Qu. Median Mean 3rd Qu.
                                      Max.
 37.00 40.25 48.50
                        50.30
                               58.75
                                       70.00
$'(74.8.99.11'
  Min. 1st Qu. Median Mean 3rd Qu.
                                        Max.
  28.0
          44.5
                 61.0
                         52.0
                                64.0
                                        67.0
```

Lien entre moyennes marginales et conditionnelles

⇒ On peut retrouver la moyenne marginale (générale) en calculant la moyenne pondérée des moyennes conditionnelles.

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{j=1}^{q} n_{\bullet j} \overline{\mathbf{x}}_{/\mathbf{j}} = \sum_{j=1}^{q} \mathbf{f}_{\bullet j} \overline{\mathbf{x}}_{/\mathbf{j}}$$

$$\overline{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{p} n_{i \bullet} \overline{\mathbf{y}}_{/\mathbf{i}} = \sum_{i=1}^{p} \mathbf{f}_{i \bullet} \overline{\mathbf{y}}_{/\mathbf{i}}$$

Décomposition de la variance

⇒ On peut pas retrouver la variance marginale à partir des variances conditionnelles.

Variance marginale = variance des moyennes conditionnelles + moyenne des variances conditionnelles.

$$\sigma^{2}\mathbf{x} = \frac{1}{n} \sum_{j=1}^{q} n_{\bullet j} \left(\overline{\mathbf{x}}_{/\mathbf{j}} - \overline{\mathbf{x}}\right)^{2} + \frac{1}{n} \sum_{j=1}^{q} n_{\bullet j} \sigma_{\mathbf{x}/\mathbf{j}}^{2}$$

$$\sigma_{\mathbf{y}}^{2} = \frac{1}{n} \sum_{i=1}^{p} n_{i\bullet} \left(\overline{\mathbf{y}}_{/\mathbf{i}} - \overline{\mathbf{y}}\right)^{2} + \frac{1}{n} \sum_{i=1}^{p} n_{i\bullet} \sigma_{\mathbf{y}/\mathbf{i}}^{2}$$

Remarque

• On peut calculer les moyennes et les variances conditionnelles d'une variable quantitative sachant les modalités d'une variable qualitative.

Mais la réciproque est fausse! Evident!

Exemple:

	Salaire Y	[2;26[[26,50[[50,76[[76,100[Total
SEXE X						
Femme		88%	10%	1%	1%	100%
Homme		81%	16%	2%	1%	100%
dist. marg. de Y		85%	13%	2%	0%	100%

- Le salaire horaire moyen de l'ensemble des personnes observés est de 17,9 dollars $\Rightarrow \overline{y} = 17,9$
- Le salaire horaire moyen des femmes A est de 16,6 dollars $\Rightarrow \overline{y}_{/A} = 16,6$
- Le salaire horaire moyen des hommes B est de 19,17 dollars $\Rightarrow \overline{y}_{/B} = 19,17$
- 17, 9 = $\overline{y} = \sum_{i=1}^{p} f_{i\bullet} \overline{y}_{/i} = 0,4959 * 16,6 + 0,5041 * 19,17$ \implies voir Slide 52.

Exemple:

	Salaire Y	[2;26[[26,50[[50,76[[76,100[Total
SEXE X						
Femme		88%	10%	1%	1%	100%
Homme		81%	16%	2%	1%	100%
dist. marg. de Y		85%	13%	2%	0%	100%

- La variance marginale du salaire horaire est $\sigma_v^2 = 127, 22$.
- La variance du salaire horaire des femmes est $\sigma_{y/F}^2 = 105,84$.
- La variance du salaire horaire des hommes est $\sigma_{y/M}^2 = 145,39$.

Moyennes et variances conditionnelles du salaire horaire par sexe

```
> round(tapply(SAL_HOR, SEXE, mean),2)
16.60 19.17
> round(tapply(SAL_HOR, SEXE, var),2)
    F
105.84 145.39
> tapply(SAL_HOR,SEXE,summary)
$F
  Min. 1st Qu. Median Mean 3rd Qu.
                                       Max.
  2.25
         10.00 14.00
                        16.60
                               20.00
                                       90.00
$M
  Min. 1st Qu. Median Mean 3rd Qu.
                                      Max.
         11.00
              15.70
                      19.17 23.04
  2.00
                                       99.00
```