CSE 3400/CSE 5850 - Introduction to Cryptography and Cybersecurity/ Introduction to Cybersecurity

Lecture 2
Encryption – Part I

Ghada Almashaqbeh UConn

Adapted from the textbook slides

Outline

- Introduction and motivation.
- Ancient ciphers.
- Kerckhoffs' Principle.
- Encryption attacker models.

Encryption

- Prevention of exposure of secret information
- Earliest and `basic' tool of cryptology
- Related terms:
 - Cryptography: `secret writing'
 - Cryptanalysis: `breaking' encryption
 - Encryption scheme = Cryptosystem = Cipher

The Encryption World: basic terms

- Goal: encrypt plaintext into ciphertext
- Only legit-recipient can decrypt ciphertext to plaintext
 - Adversary cannot learn <u>anything</u> from ciphertext

- Variants of encryption schemes:
 - Keyed or unkeyed?
 - Shared key (symmetric) or public/private keys (asymmetric)?
 - Stateful / stateless ? Randomized ? Input size ?

Symmetric Encryption Scheme

Ancient, Keyless Ciphers

- Ancient ciphers were simple, naive
 - No key: secrecy is in the algorithm
- Monoalphabetic ciphers: encrypt/decrypt one character at a time
 - Plaintext, ciphertext are both single letters
 - A set {<E,D>} of permutation + inverse: m=D(E(m))

Az-By Cipher

- Az-By Cipher
 - Substitute the first letter of alphabet by the last... and so on:
- Mathematically: Let A be 0, B be 1, ..., Z be 25. Let m denote plaintext and c denote ciphertext.
 - c = Enc(m) = 25 m
 - m = Dec(c) = 25 c

(Unkeyed) Caesar Cipher

- Used by Julius Caesar
- Rotate the 26 letters of the alphabet by 3:

ABCDEFGHIJKLMNOPQ ...

- ABCDEFGHIJKLMNOPQ...
 - As formula:

$$c = E(m) = m+3 \pmod{26}$$

 $m = D(c) = c-3 \pmod{26}$

- Ceasar and AzBy are trivial to cryptanalyze
 - No key algorithm itself is `secret`
 - 'Security by obscurity'

Monoalphabetic Substitution Ciphers

- Generalize Caesar and Az-By:
 - Other permutations of letters
 - To letters or to other symbols (no real difference)
 - Keyed: Given key k, cipher E_k is a permutation
 - Or: the 'key' is simply the permutation (table)
 - Classical, `elementary school' cryptosystem
 - Examples:

Vulnerable to letter-frequency cryptanalysis

Letter frequencies (in English)

Given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

Count relative letter frequencies:

Α	В	С	D	Е	F	G	Н	I	J	K	L	M
2												
N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
0												

Given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

Sorted:

Р	Z	S	U	0	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
е												
Q	Т	Α	В	G	Y		J	C	K	L	N	R
		A 2									N 0	

Most frequent letter is e, so: P=E(e)

Second frequent is t, so: Z=E(t) ... let's replace...

Given ciphertext:

UtQSOVUOHXMOeVGeOteEVSGtWStOeFeESXUDBMETSXAIt
VUEeHtHMDtSHtOWSFeAeeDTSVeQUtWYMXUtUHSX
EeYEeOeDtStUFeOMBtweFUetHMDJUDTMOHMQ

Sorted:

P	Z	S	U	0	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
е	t											
Q	Т	Α	В	G	Υ	1	J	C	K	L	N	R
Q 3	T 3	A 2	B 2	G 2	Y 2	1	J	C	K	L	N 0	R 0

In English texts, 't' is often followed by 'h'. Count chars following Z (t): Twice: W, H, U and O; once: Q, V, D & S. Pick W, since this gives 'the'...

Given ciphertext:

UtQSOVUOHXMOeVGeOteEVS@thStOeFeESXUDBMETSXAIt
VUEeHtHMDtSHtOhSFeAeeDTSVeQUthYMXUtUHSX
EeYEeOeDtStUFeOMBtheFUetHMDJUDTMOHMQ

Sorted:

Р	Z	S	U	O	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
	t											h
Q	Т	Α	В	G	Y	I	J	С	K	L	N	R
3	3	2									0	

We have thSt with S being third-most common. After e and t, most common letters are: aoinshr (in this order). Only `a` fits, so...

Given ciphertext:

UtQaOVUOHXMOeVGeOteEVaGthatOeFeEaXUDBMETaXAIt
VUEeHtHMDtaHtOhaFeAeeDTaVeQUthYMXUtUHaX
EeYEeOeDtatUFeOMBtheFUetHMDJUDTMOHMQ

Sorted:

P	Z	S	U	0	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
	t											h
Q	Т	Α	В	G	Υ	1	J	С	K	L	N	R
3	3	2	2	2	2	1	1	0	0	0	0	0

Next common in ciphertext is U and in English are oinshr (in this order). Few, rare words begin with `ot' (and not `oth'), but `it` is common, so: U=E(i)!

Given ciphertext:

```
itQaOViOHXMOeVGeOteEVaGthatOeFeEaXiDBMETaXAIt
ViEeHtHMDtaHtOhaFeAeeDTaVeQithYMXitiHaX
EeYEeOeDtatiFeOMBtheFietHMDJiDTMOHMQ
```

Sorted:

Р	Z	S	U	0	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
	t											h
Q	Т	Д	В	G	Υ		J	C	K	L	N	R
		7 -			_	_						
		2										

Next common in ciphertext are OMH and in English are onsr (in this order). 'O'=E('o') is unlikely since it gives `that oeFeEa…` → try 'M'=E('o')…

Given ciphertext:

```
itQaOViOHXoOeVGeOteEVaGthatOeFeEaXiDBoETaXAIt
ViEeHtHoDtaHtOhaFeAeeDTaVeQithYoXitiHaX
EeYEeOeDtatiFeOoBtheFietHoDJiDToOHoQ
```

Sorted:

P	Z	S	U	0	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
		а										h
Q	Т	A	В	G	Y	1	J	С	K	L	N	R
3	3	2	2	2	2	1	1	0	0	0	0	0

Next common in ciphertext is O and in English is s... go for it: O=E(s)!

Given ciphertext:

```
itQasVisHXoseVGesteEV&G that seFeEaXiDBoETaXAIt
ViEeHtHoDtaHtshaFeAeeDTaVeQithYoXitiHaX
EeYEeseDtatiFesoBtheFietHoDJiDTosHoQ
```

Sorted:

P	Z	S	U	0	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
		а										h
Q	Т	Α	В	G	Y	1	J	С	K	L	N	R
3	3	2	2	2	2	1	1	0	0	0	0	0

^{&#}x27;that' is mostly one word. Most common last-letter not assigned yet is 'y', which is not a common word, so: G=E(y)...

Given ciphertext:

```
itQasVisHXoseVvesteEVay that seFeEaXiDBoETaXAIt
ViEeHtHoDtaHtshaFeAeeDTaVeQithYoXitiHaX
EeYEeseDtatiFesoBtheFietHoDJiDTosHoQ
```

Sorted:

P	Z	S	U	0	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
	t	а	i	S	0							h
Q	Т	Α	В	G	Y	1	J	С	K	L	N	R
3	3	2	2	2	2	1	1	0	0	0	0	0
				У								

We now simply recognize the (quite common) word 'yesterday', so: E=E(r), V=E(d)...

Given ciphertext:

```
itQasdisHXosed yesterday that seFeraXiDBorTaXAIt
direHtHoDtaHtshaFeAeeDTadeQithYoXitiHaX
reYreseDtatiFesoBtheFietHoDJiDTosHoQ
```

Sorted:

Р	Z	S	U	0	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
				S					d			h
Q	Т	Α	В	G	Y		J	С	K	L	N	R
Q 3	T 3	A 2	B 2	G 2								

Next unused common letter is n (by far). But H doesn't seem to fit... so D=E(n)...

Given ciphertext:

```
itQasdisHXosed yesterday that seFeraXinBorTaXAIt
    direHtHontaHtshaFeAeenTadeQithYoXitiHaX
    reYresentatiFesoBtheFietHonJinTosHoO
```

Sorted:

Р	Z	S	U	O	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
				S								h
Q	T	Α	В	G	Υ	1	J	C	K	L	N	R
3	3	2	2	2	2	1	1	0	0	0	0	0
				W								

Long string with only one cipher-letter, H... only c fits so: H=E(c)...

Given ciphertext:

itQasdiscXosed yesterday that seFeraXinBorTaXAIt
direct contacts haFeAeenTadeQithYoXiticaX
reYresentatiFesoBtheFietconJinToscoQ

Sorted:

P	Z	S	U	O	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
			i	S	0	С	n	r	d			h
Q	Т	Α	В	G	Y	1	J	С	K	L	N	R
3	3	2	2	2	2	1	1	0	0	0	0	0
				У								

Next common cipher-letter is X and plain-letter is I, and it indeed fits: X=E(I)!

Given ciphertext:

```
itQas disclosed yesterday that seFeralinBorTalAIt
direct contacts haFeAeenTadeQithYolitical
reYresentatiFesoBtheFietconJinToscoQ
```

Sorted:

Р	Z	S	U	0	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
	t	а	i	S	0	С	n	r	d	1		h
Q	Т	Α	В	G	Y	I	J	C	K	L	N	R
Q 3	T	A 2	B 2	G 2								R 0

Next identify text begins with `it was' and also two quite common words so : Q=E(w), Y=E(p), F=E(v)!

Given ciphertext:

it was disclosed yesterday that several inBorTalAIt direct contacts have AeenTade with political representatives oBthevietconJinToscow

Sorted:

P	Z	S	U	0	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
	t	а	i	S	0	С	n	r	d	1	V	h
Q	T	Α	В	G	Υ	1	J	C	K	L	N	R
3	3	2	2	2	2	1	1	0	0	0	0	0
W				У	p							

Next: `oB'->`of', 'Aeen'->been, `Tade'->made, `vietconJ'->Vietcong, ...

Given ciphertext:

it was disclosed yesterday that several informal bIt direct contacts have been made with political representatives of the vietcong in moscow

Sorted:

P	Z	S	U	0	M	Н	D	Е	V	X	F	W
16	14	10	10	9	8	7	6	6	5	5	4	4
е	t	а	i	S	0	С	n	r	d	1	V	h
Q	T	Α	В	G	Υ	1	J	C	K	L	N	R
3	3	2	2	2	2	1	1	0	0	0	0	0
W	m	b	f	У	p		g					

(finally: I=E(u))

Security-by-Obscurity Ciphers

- Previous ciphers' security relied on obscurity
 - I.e., hope attacker does not know cipher
- Used extensively until 1883
 - Usually cryptanalyzed especially after encryption devices were captured
- What happened in 1883??
 - A conceptual leap in cryptography and security

Kerckhoffs' Known Design Principle [1883]

- Assume adversary knows the design everything except the secret keys
- No `security by obscurity'
 - Although attacking obscure design <u>is</u> harder
- Why assume/use public design?
 - No need to replace system once design is exposed
 - Usually stronger
 - Establish standards for multiple applications:
 - Efficiency of production and of test attacks / cryptanalysis
- Secrecy is based only on secrecy of key

Exhaustive Key Search

- Kerckhoffs: Secrecy ≤ secrecy of key k
- **Exhaustive Key Search:** try all keys $k' \in \{0,1\}^{|k|}$
- How to identify correct key k = k'??
- Depends on attacker capability (model)
 - Critical element of security analysis!!
 - Attack models we will study:
 - Cipher-Text Only (COA) attack
 - Known-plaintext attack (KPA)
 - Chosen-plaintext attack (CPA)
 - Chosen-ciphertext attack (CCA)

Cipher-Text Only (COA) attack

- Adversary have previous knowledge about all possible plaintexts, like their distribution.
- Attacker's goal is to infer info about the challenge plaintext m* beyond the initial info it has.
 - This is given only ciphertexts and the plaintext distribution

Exhaustive Key Search and COA

- **Exhaustive Key Search:** try all keys $k' \in \{0,1\}^{|k|}$
- How to identify correct key k = k' given COA??
 - Decrypt ciphertexts, then check resulting `plaintext'
 - Let m_1 , m_2 , ... be a set of random plaintext samples (adversary does not know these)
 - Let $c_1 = E_k(m_1)$, $c_2 = E_k(m_2)$, ... be corresponding ciphertexts
 - To test if the key is k', compute set $M' = \{D_{k'}(c_1), D_{k'}(c_2), ...\}$
 - If M' fits plaintext distribution: k' is probably the key
 - Otherwise: k' is probably not the key
 - Challenge: test often is inconclusive

Known Plaintext Attack (KPA)

- Sample messages M={m₁, m₂,...} from a given distribution.
- Give M <u>and</u> ciphertexts c₁=E(m₁), c₂ =E(m₂), ... to the attacker who is trying to infer more info about the challenge.

Exhaustive Key Search and KPA

- **Exhaustive Key Search:** try all keys $k' \in \{0,1\}^{|k|}$
- How to identify correct key k = k' given KPA??
 - Attacker obtains known plaintext, ciphertext pairs: $(m_1, c_1=E_k(m_1))$, $(m_2, c_2=E_k(m_2))$, ...
 - To test if the key is k', compute $m'_1 = D_{k'}(c_1)$, $m'_2 = D_{k'}(c_2)$,
 - If for every pair i holds $m'_i=m_i$ then k' is probably the key
 - Otherwise: k' is probably not the key
 - COA and KPA attacks must test about half the keys.
 - On average, the attacker will find the key after trying half of all possible keys.

Chosen Plaintext Attack (CPA)

- Beside the plaintext distribution/initial info, attacker can <u>choose</u> messages m₁, m₂,...
- Give ciphertexts of these plaintext messages to the attacker who is trying to obtain more info about the challenge.

Exhaustive Key Search and CPA

- Generic CPA: Table-Lookup
 - Choose some fixed plaintext m
 - E.g., some default message: `good morning!'
 - Quite common in practice... e.g., in web (http), GSM,...
 - Offline: fill a table T. For every key k, compute $T(k')=E_{k'}(m)$
 - Online: select plaintext m, obtain c=E_k(m)
 - If T(k') = c then k' probably the key: k' = k
 - Otherwise: k' is probably not the key
 - Time complexity t=O(1) lookup time, requires $2^{|k|}$ memory
- More advanced: Time/Memory tradeoffs (e.g., rainbow tables)
 - Use hash functions, so we can't yet discuss

Chosen Ciphertext Attack (CCA)

- Beside being able to choose plaintexts and obtain their encryptions, attacker can select <u>ciphertexts</u> c₁, c₂,..., and receive decryptions (but not the challenge).
- Again, attacker tries to infer more info about the challenge.

The Attack Models Championship

- We discussed several attack models:
 - COA, KPA, CPA, CCA
- Model A is stronger than model B, if a cipher secure against A is also secure against B
 - Notation: A > B
 - Example: KPA > COA [why?]
- KPA vs. CPA?
- KPA vs. CCA?
- CPA vs. CCA?

Sufficient Effective Key Length

Sufficient Effective Key Length Principle:

- Keys should be long enough to make attacks infeasible, for best adversary resources expected, during `sensitivity period` of data
- Exhaustive search or other attacks
- Large key-space is necessary, but not sufficient
 - □ Monoalphabetic substitution cipher, with permutation as key: $26! = 4 \cdot 10^{26}$ keys... yet insecure!
 - Effective key length: log of number of trials by the most effective attack
 - Same as number of bits for exhaustive search
 - Defined for specific attack models

Covered Material From the Textbook

Chapter 2:

- From the chapter beginning until the end of section 2.4 except:
 - Section 2.1.3,
 - Section 2.2.5,
 - Section 2.4.2,
 - Any ancient ciphers from 2.2.1 that we did not study in class,

Thank You!

