Magnetic flux density inside a bar magnet. Using the magnetization vector, \mathbf{M} , of the bar magnet from the previous question, the magnetic flux density vector inside the magnet can be expressed as

- (A) $\mathbf{B} = \nabla \times \mathbf{M}$.
- (B) $\mathbf{B} = -\mathbf{M}$.
- (C) $\mathbf{B} = \mathbf{M}a^2$.
- (D) $B = \mu_0 M$.
- (E) $\mathbf{B} = -\mu_0 \mathbf{M}$.
- (F) B = 0.

Note: there is not external magnetic field.

Solution: (D) Answer: (D)