DATA WAREHOUSE

Chapter I – Basics Data Warehouse

CHAPTER I - AIMS

- Learn what a Data Warehouse is.
- Classification of the terms OLAP and OLTP.
- Definition of the terms Business Intelligence,
- Data Warehouse, and Data Lake. Tool Presentation:
 - PostgreSQL
 - PowerBI
 - Pentaho

TASK WHAT IS DATA WAREHOUSE

- Search for the term on the internet.
- Explain what you understand by it.
- Time: 5 minutes.

WHAT IS A DATA WARHOUSE?

• A data warehouse is a database that stores and integrates large amounts of various data sources to enable comprehensive insights and informed decisions.

- Two different purposes of data usage in a company:
 - Operational purposes of data storage
 - Decision-making and business understanding

Analytical Decisions

Operational data storage

- Operational purposes
 - Data usage for order processing and fulfillment
 - Handling complaints and reacting to them Utilization of data for inventory replenishment and other operational tasks
 - Necessary to keep the business running

Operational data storage

- Decision-making and business understanding
 - Improvement of future decisions
 - Answers to questions such as the best product category, current sales figures compared to previous months, improvement opportunities in the company
 - Performance evaluation and decision-making for the future

- What is the best category?
- How are sales compared to last month?
- What can we improve?
- > Evaluation of own performance
- > Analytical decision

Analytical Decisions

- Analytical data preparation (OLAP)
 - Observation of operations and identification of improvement opportunities

- Take orders
- Respond to complaints
- Replenish inventory

Operational data storage

- Operational data storage (OLTP)
 - Used to maintain operations

TYPICAL STATEMENTS

- A lack of a data warehouse is often highlighted by statements like these:
 - We have a lot of data, but we can't really use it.
 - It's very complicated to access and analyze it because it's spread across different systems.
 - We just want to see what's relevant and have this data easily accessible and quickly available.
 - Ultimately, we want to make decision-based decisions and stop arguing over numbers.
- These statements emphasize the need and possibly the lack of a data warehouse.

2 REASONS BUT ALSO 2 TYPES OF REQUIREMENTS

- Thousands of records at once
- Fast query performance
- Historical context

Analytical Decisions

- Analytical data processing
 - Analysis and processing of large amounts of data simultaneously
 - Need for fast query performance for quick information delivery
 - Necessity of context for data interpretation over time or categories

- One record at a time
- Data input
- No long history

Operational data storage

- Operational data processing
 - Processing individual records to maintain operational functioning
 - Input or editing of data
 - Mainly interested in current data, hence no need for long data history

2 REASONS BUT ALSO 2 TYPES OF REQUIREMENTS

- Due to different requirements, it makes sense to keep operational and analytical systems separate.
- A data warehouse meets the needs of analytical data processing and serves as a data location for reporting and data analysis.
- It is a place for more comprehensive analysis and reporting compared to operational data processing.

DATA WAREHOUSE

- A data warehouse is a database designed and optimized for analytical purposes.
- Key features of a data warehouse include:
 - User-friendliness:
 - Simple and understandable user interface for data analysts
 - Technical complexity should be minimized
 - Fast query performance:
 - Required to quickly retrieve and process large amounts of data
 - Optimized for best data analysis:
 - All aspects of the database are aimed at facilitating and optimizing data analysis.

TYPICAL ENVIRONMENT OF A DATA WAREHOUSE

- Different data sources such as sales data, HR system, CRM system
- Different data formats and structures

CRM Systeme

- Process of data warehousing:
 - Merge relevant data from various sources and store it centrally
 - This process is called the ETL process (Extract, Transform, Load)
 - ETL process is crucial and takes the majority of the time when creating a data warehouse (approximately 80-90%)

ETL PROZESS

Extraktion

• Data is extracted from various sources to avoid impacting their query performance and resources.

Transformation

• Data is integrated and structured into a unified format to prepare it for further processing. Data may be aggregated or formatted.

Load

• The transformed data is loaded into the central data warehouse, optimized for data analysis.

OBJECTIVES OF A DATA WAREHOUSE

- Centralized location for data from various sources in a consistent form
- Fast access to the data for quick query results User-friendly data structure for easy analysis and utilization
- Necessity of extracting, copying, and transforming data in the ETL process
- Objective: Building reports and data visualizations based on the data warehouse

WAS MACHT DAS DATA WARHOUSE?

WHICH TERM IS USED TO DESCRIBE OPERATIONAL DATA PROCESSING?

- OLAP
- OLTP

WHAT IS NOT AN ESSENTIAL CHARACTERISTIC OF A DATA WAREHOUSE?

- Central location for data
- Fast query performance
- User-friendly
- Data backup system

WHICH TERM IS USED TO DESCRIBE OPERATIONAL DATA PROCESSING?

- OLAP
- OLTP

WHAT IS NOT AN ESSENTIAL CHARACTERISTIC OF A DATA WAREHOUSE?

- Central location for data
- Fast query performance
- User-friendly
- Data backup system

WHICH TERM IS USED TO DESCRIBE OPERATIONAL DATA PROCESSING?

- Transactional and operational
- Analytical and operational
- Analytical and transactional

WHAT IS NOT AN EXAMPLE OF OPERATIONAL DATA PROCESSING?

- A banking app receives and processes a transfer request from a user.
- An employee in a warehouse scans a product that has been ordered and is being picked.
- A regional manager calculates how many items an employee has selected on average per hour.
- A billing system calculates the monthly fees for a customer and sends the invoice via email.ail.

WHICH TERM IS USED TO DESCRIBE OPERATIONAL DATA PROCESSING?

- Transactional and operational
- Analytical and operational
- Analytical and transactional

WHAT IS NOT AN EXAMPLE OF OPERATIONAL DATA PROCESSING?

- A banking app receives and processes a transfer request from a user.
- An employee in a warehouse scans a product that has been ordered and is being picked.
- A regional manager calculates how many items an employee has selected on average per hour.
- A billing system calculates the monthly fees for a customer and sends the invoice via email.ail.

TASK WHAT IS BUSINESS INTELLIGENCE

- Search for the term on the internet.
- Explain what you understand by it.
- Time: 5 minutes.

BUSINESS INTELLIGENCE

- Business Intelligence (BI) is the use of data analytics to support business decisions and improve company performance.
- Data warehouses are created for business intelligence.

BUSINESS INTELLIGENCE

Strategies

Technologies

Infrastructures

Raw data

- Data gathering
- o Data storing
- o Reporting
- Data visualization
- Data mining
- o Predictive analytics

Transformation

Visualization as a basis for decision-making

BUSINESS INTELLIGENCE

- Business Intelligence consists of various strategies, processes, and technologies:
 - Data analysis tools:
 - Utilization of different tools to create meaningful insights
 - Data management and storage:
 - Capturing, managing, and storing data
 - Generating meaningful insights:
 - Reporting, data visualizations, data analysis such as data mining or predictive analytics
- Goal of Business Intelligence:
 - Utilize raw data and transform it into meaningful insights
 - Use the insights gained to better understand the business and improve future decisions

BUSINESS INTELLIGENCE ROLLE DES DATA WAREHOUSE

- The role of a data warehouse in Business Intelligence:
 - Key component for data storage and management
 - Central location for structured and transformed data
 - Utilization of data for data visualizations and reporting
- Difference between Data Lake and Data Warehouse:
 - Data Lake: Also used for data storage, but differences from the data warehouse
 - Desire to distinguish between both concepts

TASK WHAT IS DATA LAKE

- Search for the term on the internet.
- Explain what you understand by it.
- Time: 5 minutes.

Data Lake:

 Data is extracted from various systems and stored in the data lake without prior processing.

Data Warehouse:

- Data is transformed through the ETL process and stored in a database with structured data.
- Objective: User-friendly data for specific use cases.

Advantages of a Data Warehouse:

- Quick and easy creation of business intelligence solutions such as reporting and data analysis.
- High query performance and user-friendliness.

Often these terms are used interchangeably.

	Data Lake	Data Warehouse
Data	Raw	Edited

Data Lake:

- Raw data is stored without prior processing
- Data from various systems is stored directly in the data lake
- Data Warehouse:
 - Data is transformed through the ETL process to obtain clean data in a database
 - Structured data stored in tables in a database

	Data Lake	Data Warehouse
Data	Raw	Edited
Technologies	Big data	Databases

Data Warehouse:

- Focus on user-friendliness and specific use cases
- Creation of business intelligence solutions such as reporting and data analysis

Data Lake:

- Large volumes of data and various data types
- Utilization of big data technologies due to unstructured data like CSV, JSON files, images, and videos

	Data Lake	Data Warehouse
Data	Raw	Edited
Technologies	Big data	Databases
Structur	Non-structered	structured

- In a Data Lake, the data is unstructured.
- This differs from a Data Warehouse, where structured data is stored in tables.
- Data types in the Data Lake:
 - CSV files
 - JSON files
 - Videos
 - Images
- Indeterminate use cases due to the diversity of data types.

	Data Lake	Data Warehouse
Data	Raw	Edited
Technologies	Big data	Databases
Structur	Non-structered	structured
Usage	Not defined	Specified and Available

- Uncertainty about the exact use case:
 - All data is inserted into the Data Lake in raw format.
 - Doubt about how the data should be used.
 - Possibly the use cases are only intended for the future.
 - Different ideas about the use of the data.

	Data Lake	Data Warehouse
Data	Raw	Edited
Technologies	Big data	Databases
Structur	Non-structered	structured
Usage	Not defined	Specified and Available

- Data access and usage in the Data Lake:
 - Individuals can extract data when they have specific use cases.
 - Central storage location for all available enterprise data.
- Compared to Data Warehouse:
 - Clear end goals or even multiple goals are set from the beginning.
 - Data is processed, cleaned, and inserted into the database for specific use cases.

	Data Lake	Data Warehouse
Data	Raw	Edited
Technologies	Big data	Databases
Structur	Non-structered	structured
Usage	Not defined	Specified and Available
User	Data Scientists	Business User & IT

- Differences in data structure and data technologies:
 - More challenging to ensure data quality and manage data
 - Higher level of expertise required, especially for data scientists
- Data usage in the Data Lake:
 - Data scientists use the Data Lake for experiments and ideas

	Data Lake	Data Warehouse
Data	Raw	Edited
Technologies	Big data	Databases
Structur	Non-structered	structured
Usage	Not defined	Specified and Available
User	Data Scientists	Business User & IT

- Purpose of the Data Warehouse:
 - Providing user-friendly data for business users
- Processing and structuring data in the Data Warehouse:
 - Data is structured in a database and made available for easy use
 - The main differences between a Data Lake and a Data Warehouse lie in the data usage and accessibility for different user groups.

DATA LAKE VS. DATA WAREHOUSE FRAGEN

- When should we use which solution?
- Are Data Lake and Data Warehouse mutually exclusive?
- Is it better to use only one of the solutions or to use both?
- Answer: They are not mutually exclusive and can be used together.

- Disadvantages of a Data Lake
 - Risks related to data quality and user utilization
 - Potential issues with data usage and performance
- Advantages of a Data Lake in the Cloud
 - Scalability for large volumes of data
- Utilization of a Data Warehouse based on a Data Lake
 - Using a Data Warehouse for data analysis and business intelligence

- Using an ETL process to extract data from the Data Lake
- Data Warehouse as a user-friendly solution for Business Intelligence strategies
- Summary:
 - Differences between Data Lake and Data Warehouse, their non-exclusivity, and the possibility of complementation by a Data Warehouse.

YOU WORK IN A LOGISTICS COMPANY THAT USES VARIOUS IOT DEVICES IN UNSTRUCTURED FORMATS. WHAT WOULD YOU PREFER AS A CENTRAL STORAGE LOCATION FOR THE HUNDREDS OF MILLIONS OF RECORDS?

YOU WANT TO CREATE A REPORT FOR THE FINANCE DEPARTMENT. THE DATA COMES FROM VARIOUS SOURCES. WHAT WOULD YOU PREFER TO SET UP AS THE CENTRAL DATA SOURCE FOR THIS REPORT?

- Data lake
- Data warehouse

- Data lake
- Data warehouse

YOU WORK IN A LOGISTICS COMPANY THAT USES VARIOUS IOT DEVICES IN UNSTRUCTURED FORMATS. WHAT WOULD YOU PREFER AS A CENTRAL STORAGE LOCATION FOR THE HUNDREDS OF MILLIONS OF RECORDS?

YOU WANT TO CREATE A REPORT FOR THE FINANCE DEPARTMENT. THE DATA COMES FROM VARIOUS SOURCES. WHAT WOULD YOU PREFER TO SET UP AS THE CENTRAL DATA SOURCE FOR THIS REPORT?

- Data lake
- Data warehouse

- Data lake
- Data warehouse