Inverse encodin/ Inverse transform / Decoding categorical variables

Inverse encoding is the process of converting the encoded data back to its original form. This is done by using the inverse_transform() method. This method is available for the following encoders:

LabelEncoder

OrdinalEncoder

OneHotEncoder

```
In [1]: # import Libraries
    import pandas as pd
    import numpy as numpy
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import LabelEncoder, OneHotEncoder

In [2]: # Load the data
    df = sns.load_dataset('titanic')
    df.head()
```

7/25/24, 8:02 PM 26_inverse_transform

Out[2]:		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alon
	0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
	1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	Tru
	3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	Tru
	4															+
In [3]:	df	['age'].f	illna(d	f['age'].med:	ian(),	inplac	e=True)	own and dec	k						

```
In [3]: # impute missing values for age, embarked, embark_town and deck

df['age'].fillna(df['age'].median(), inplace=True)

df['embarked'].fillna(df['embarked'].mode()[0], inplace=True)

df['embark_town'].fillna(df['embark_town'].mode()[0], inplace=True)

# drop deck column

df.drop('deck', axis=1, inplace=True)
```

```
C:\Users\ustb\AppData\Local\Temp\ipykernel_10192\741017295.py:2: FutureWarning: A value is trying to be set on a copy
of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which
we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or d
f[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
  df['age'].fillna(df['age'].median(), inplace=True)
C:\Users\ustb\AppData\Local\Temp\ipykernel 10192\741017295.py:3: FutureWarning: A value is trying to be set on a copy
of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which
we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or d
f[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
 df['embarked'].fillna(df['embarked'].mode()[0], inplace=True)
C:\Users\ustb\AppData\Local\Temp\ipykernel_10192\741017295.py:4: FutureWarning: A value is trying to be set on a copy
of a DataFrame or Series through chained assignment using an inplace method.
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which
we are setting values always behaves as a copy.
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or d
f[col] = df[col].method(value) instead, to perform the operation inplace on the original object.
  df['embark_town'].fillna(df['embark_town'].mode()[0], inplace=True)
```

```
In [4]: # encode all categorical variables and object variables

le_sex = LabelEncoder()
le_embarked = LabelEncoder()
le_class = LabelEncoder()
le_who = LabelEncoder()
le_embark_town = LabelEncoder()
le_alive = LabelEncoder()

df['sex'] = le_sex.fit_transform(df['sex'])
df['embarked'] = le_embarked.fit_transform(df['embarked'])
```

7/25/24, 8:02 PM 26_inverse_transform

```
df['class'] = le_class.fit_transform(df['class'])
df['who'] = le_who.fit_transform(df['who'])
df['embark_town'] = le_embark_town.fit_transform(df['embark_town'])
df['alive'] = le_alive.fit_transform(df['alive'])
df.head()
```

Out[4]: survived pclass sex age sibsp parch fare embarked class who adult male embark town alive alone 2 0 1 22.0 7.2500 2 2 0 False 0 True 1 0 38.0 0 71.2833 False 0 False 1 0 2 2 1 0 2 2 2 False 3 0 26.0 7.9250 1 True 3 2 2 2 1 1 0 35.0 1 0 53.1000 0 False 1 False 4 1 35.0 8.0500 0 3 2 2 2 True 0 1 True 0

```
In [5]: # inverse transform the data

df['sex'] = le_sex.inverse_transform(df['sex'])
    df['embarked'] = le_embarked.inverse_transform(df['embarked'])
    df['class'] = le_class.inverse_transform(df['class'])
    df['who'] = le_who.inverse_transform(df['who'])
    df['embark_town'] = le_embark_town.inverse_transform(df['embark_town'])
    df['alive'] = le_alive.inverse_transform(df['alive'])
    df.head()
```

Out[5]:		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	embark_town	alive	alone
	0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	Southampton	no	False
	1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	Cherbourg	yes	False
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	Southampton	yes	True
	3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	Southampton	yes	False
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	Southampton	no	True

one hot encoding

7/25/24, 8:02 PM

```
In [6]: from sklearn.preprocessing import OneHotEncoder

df = sns.load_dataset('titanic')

cat_columns = ['sex', 'embarked']

encoder = OneHotEncoder(sparse=False)
 encoded_df = pd.DataFrame(encoder.fit_transform(df[cat_columns]))

# concatenate the dataframes

df = pd.concat([df, encoded_df], axis=1)

# df.drop(cat_columns, axis=1, inplace=True)

df.head()
```

Out[6]:		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	•••	deck	embark_town	alive	alone	0	
	0	0	3	male	22.0	1	0	7.2500	S	Third	man		NaN	Southampton	no	False	0.0	1.
	1	1	1	female	38.0	1	0	71.2833	С	First	woman		С	Cherbourg	yes	False	1.0	0.
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman		NaN	Southampton	yes	True	1.0	0.
	3	1	1	female	35.0	1	0	53.1000	S	First	woman		С	Southampton	yes	False	1.0	0.
	4	0	3	male	35.0	0	0	8.0500	S	Third	man		NaN	Southampton	no	True	0.0	1.

5 rows × 21 columns

```
In [7]: # We need to extract the original categories for each encoded column
    original_categories = {col: encoder.categories_[i] for i, col in enumerate(cat_columns)}
    # Manual creation of feature names
    feature_names = []
    for i, col in enumerate(cat_columns):
        for category in encoder.categories_[i]:
            feature_names.append(f"{col}_{category})")
```

7/25/24, 8:02 PM 26_inverse_transform

```
encoded_df = pd.DataFrame(encoded_df, columns=feature_names)

df.head()
```

Out[7]:		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	•••	deck	embark_town	alive	alone	0	
	0	0	3	male	22.0	1	0	7.2500	S	Third	man		NaN	Southampton	no	False	0.0	1.
	1	1	1	female	38.0	1	0	71.2833	С	First	woman		С	Cherbourg	yes	False	1.0	0.
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman		NaN	Southampton	yes	True	1.0	0.
	3	1	1	female	35.0	1	0	53.1000	S	First	woman		C	Southampton	yes	False	1.0	0.
	4	0	3	male	35.0	0	0	8.0500	S	Third	man		NaN	Southampton	no	True	0.0	1.

5 rows × 21 columns

◆

In []: