The Reactions of the German Stock Market to COVID-19 and Containment Policies: A Vector Autoregressive Analysis

6. Descriptive Statistics full sample

```
In [1]:
         # Importing the necessary python packages
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import numpy as np
         import datetime as dt
         %matplotlib inline
         plt.style.use(['science', 'no-latex'])
In [2]:
         # Load in the previosuly prepared dataset
         df = pd.read csv("prepared data.csv", parse dates=["date"])
         # Drop unnecessary columns and dummy columns for this sheet
         df = df.loc[:,:"stringency index"].drop(columns=["hdax open","total cases"])
         #saving sample dates in variables
         sample 1 start = pd.to datetime("2020-03-03")
         sample 1 end = pd.to datetime("2020-05-30")
         sample 2 start = pd.to datetime("2020-10-01")
         sample 2 end = pd.to datetime("2021-06-30")
In [3]:
         # Generate descriptive statistics
         pd.options.display.float format = "{:.2f}".format
         df = df[(df["date"]<=sample 2 end) & (df["date"]>=sample 1 start)]
         df.describe()
         # df.loc[:,"hdax close":"stringency index"].drop(columns=["total cases"]).describe()
         # df.loc[:,"hdax close":"stringency index"].drop(columns=["total cases"]).describe()
Out[3]:
              hdax_close new_cases stringency_index
        count
                  336.00
                            336.00
                                            336.00
```

	ndax_close	new_cases	stringency_index
mean	7245.44	8662.63	66.59
std	912.62	9931.07	12.33
min	4658.54	16.00	25.00
25%	6814.13	1154.75	59.72
50%	7231.09	4500.50	67.59
75%	7858.30	13239.75	76.85
max	8694.16	49044.00	85.19

7. Data Plotting and Sample Selection

```
In [4]:
         # Loading the column names in a list
         columns = list(df.drop(columns=["date"]).columns)
In [5]:
         #plotting the different datapoints and highlighting the two sample areas
         fig, axes = plt.subplots(3, 1, tight layout = True, figsize=(8,10), sharex=True, dpi=300)
         #plotting and highlighting samples
         for column, ax in zip(columns, axes.reshape(-1)):
             sns.lineplot(x=df.date, y=column, data=df, ax=ax, color="black")
             ax.yaxis.set label coords(-0.1,0.5)
             for tick in ax.get xticklabels():
                 tick.set rotation(45)
             # highlight the first wave sample
             ax.axvline(x = sample 1 start, color = 'red', ls=":")
             ax.axvline(x = sample 1 end, color = 'red', ls=":")
             ax.axvspan(sample 1 start, sample 1 end, alpha=0.15, color='red', hatch="....", fill=False)
             # highlight the second wave sample
             ax.axvline(x = sample 2 start, color = 'blue', ls=":")
             ax.axvline(x = sample 2 end, color = 'blue', ls=":")
             ax.axvspan(sample 2 start, sample 2 end, alpha=0.15, color='blue', hatch="....", fill=False)
```

```
axes[0].set_ylabel("Daily HDAX Close Price")
axes[1].set_ylabel("Daily New Covid-19 Cases")
axes[2].set_ylabel("Daily Policy Stringency Index Level");
fig.savefig('all_charts_marked.pdf', format='pdf')
```



```
axes[0].set_ylabel("Daily HDAX Close Price")
axes[1].set_ylabel("Daily New Covid-19 Cases")
axes[2].set_ylabel("Daily Policy Stringency Index Level")
fig.savefig('all_charts.pdf', format='pdf')
```


15/10/2021, 09:29

8. Descriptive Statistics with two sub-samples

```
In [7]:
#generate descriptive statistics of first wave sub-sample
df = pd.read_csv("prepared_data.csv", parse_dates=["date"])
df_1 = df[(df["date"]<=sample_1_end) & (df["date"]>=sample_1_start)].copy(deep=True)
df_1.loc[:,"hdax_close":"stringency_index"].describe()
```

:	hdax_close	total_cases	new_cases	stringency_index
count	61.00	61.00	61.00	61.00
mean	5774.65	107517.39	2146.08	63.01
std	483.03	69802.31	2010.07	16.89
min	4658.54	196.00	37.00	25.00
25%	5484.82	32986.00	600.00	59.72
50%	5823.93	137698.00	1268.00	64.35
75%	6045.76	170588.00	3394.00	76.85
max	6772.21	182922.00	6933.00	76.85
#gen	= df[(df["	date"]<=sar	mple_2_end)	second wave sub & (df["date"]> index"].describ
#gen	= df[(df[" .loc[:,"hda	date"]<=sar x_close":":	mple_2_end) stringency_	& (df["date"]>
#gen df_2 df_2	= df[(df[" .loc[:,"hda	date"]<=sar x_close":":	mple_2_end) stringency_	& (df["date"]> _index"].describ
#gendf_2df_2	= df[(df[".loc[:,"hda	date"]<=sar x_close":"s total_cases	mple_2_end) stringency_ new_cases	& (df["date"]> _index"].describ stringency_index
#gendf_2df_2	= df[(df[".loc[:,"hdahax_close	date"]<=sar x_close":"s total_cases	nple_2_end) stringency_ new_cases 188.00	& (df["date"]> _index"].describ stringency_index
#gendf_2df_2	= df[(df[".loc[:,"hda hdax_close 188.00 7831.60	date"]<=sar x_close":"s total_cases 188.00 2219262.78	nple_2_end) stringency_ new_cases 188.00 14312.72	& (df["date"]> _index"].describ stringency_index 188.00 72.35
#gendf_2df_2 count mean	= df[(df[".loc[:,"hda hdax_close 188.00 7831.60 569.41	date"]<=sar x_close":"s total_cases 188.00 2219262.78 1137482.19	nple_2_end) stringency_ new_cases 188.00 14312.72 10104.21	<pre>stringency_index 188.00 72.35 9.36</pre>
#gendf_2df_2 count mean std	= df[(df[".loc[:,"hda hdax_close 188.00 7831.60 569.41 6398.20	date"]<=sar x_close":"s total_cases 188.00 2219262.78 1137482.19 295539.00	nple_2_end) stringency_ new_cases 188.00 14312.72 10104.21 341.00	& (df["date"]> index"].describ stringency_index 188.00 72.35 9.36 49.54
#gendf_2df_2df_2 count mean std min 25%	= df[(df[".loc[:,"hda hdax_close 188.00 7831.60 569.41 6398.20 7366.11	date"]<=sar x_close":"s total_cases 188.00 2219262.78 1137482.19 295539.00 1189383.00	nple_2_end) stringency_ new_cases 188.00 14312.72 10104.21 341.00 6117.00	* (df["date"]> index"].describ stringency_index 188.00 72.35 9.36 49.54 67.59

The descriptive statistics clearly show that the first and second waves are very different!

9. Saving both samples seperately for further statistical analysis

In [9]:

file:///Users/maximbuz/Desktop/02-data-descriptive.html

```
# Saving first wave sample
df_1.set_index("date", inplace=True, drop=True)
df_1.to_csv("prepared_data_sample_1.csv")

# Saving second wave sample
df_2.set_index("date", inplace=True, drop=True)
df_2.to_csv("prepared_data_sample_2.csv")

# Saving full sample timeframe
df_3 = df[(df["date"]<=sample_2.end) & (df["date"]>=sample_1_start)].copy(deep=True)
df_3.to_csv("prepared_data_sample_full.csv")
```

In []:

In []: