Miniaturisierte Gassensoren für den Einsatz in Kraftfahrzeugen

14. 2.1996

T. Doll, I. Eisele

Mikrosystemtechnik Institut für Physik

Universität der Bundeswehr München

Verbrennung im Motor: $C_xH_y + O2 \Rightarrow ...CO_2 + ...H_2O + CO + NO_x + HC + SO_2$

Die Nebenprodukte wie NO und CO können im Katalysator verringert werden, z.B. nach $2CO + 2 NO \Rightarrow 2CO_2 + N_2$, wenn sich im Abgasstrom oxydierende und reduzierende Komponenten genau die Waage halten, was bei jeder Temperatur einem Sauerstoff - Restdruck

entspricht: Die $\begin{tabular}{ll} Lambdasonde mißt das \\ Luftverhältnis λ \end{tabular}$

$$\lambda = \frac{\frac{m_{Luft}}{m_{Kraftst.}}}{\left(\frac{m_{Luft}}{m_{Kraftst.}}\right)_{Stoich}}$$

Stand der Technik aktueller Lamda - Regelungen ist λ = 1 ± 0,04, was einer 90 % Reduktion der Nebenkomponenten ent-

spricht. Eine Abweichung $\Delta\lambda$ von 1% verringert die Katalysatorwirkung von 98% auf bis zu > 85% . Die effektiv geringere Gesamtwirkung von nur 90% ergibt sich z.B. während der Warmlaufphasen und im Lastwechselbetrieb.

T. Doll

Mikrosystemtechnik Uni Bw München

Miniaturisierte Gassensoren für den Einsatz im Kfz

neue Normen

Mit den Clean Air Acts (CAA, '70, '77, '90 RCAA) gelten in den USA gegnwärtig die umfassendendsten Kraftfahrzeug - Richtlininen. Bis 2003 sollen z.B. alle langreichweitigen Emissionen um bis zu 90% reduziert werden. Die Kalifornische CARB verlangt für 1994 die Einführung von On Board Diagnosis - Systemen (OBD II), für die Funktionsüberwachung aller abgasrelevanten KomponentenBauteile, wie auch das Erkennen z.B. der 1,5-fachen Emissions - Grenzwertüberschreitung. Für neu auf den Markt kommende Fahrzeuge sollen nach einem Stufenplan die Gesamtemissionen auf 10% des Stades von 1992 abgesenkt werden. (Low Emission Vehicle LEV - ULEV ab '97). Mit Grenzwerten für den Ausstoß in g/km besteht Verbrauchsabhängigkeit, z.T. gelten Hersteller- Flottendurchschnitte. In der EG besteht ein ähnlicher Stufenplan ('92 / '96 / '99) zur Verringerung von Otto- und Dieselemissionen um bis zu 80%.

T. Doll

Mikrosystemtechnik Uni Bw München

Konsequenzen

Verbesserte Regelung innerhalb λ = 1 ± 0,02. Dazu besteht Bedarf an optimierten Sensorkennlinien. Für ein verbessertes Kaltstartverhalten wird einVorheizen von λ -Sonden und Katalysator notwendig. Lastwechsel und zylinderselektives Messen benötigen ein schnelles Ansprechen der Lamdasonden im Millisekundenbereich.

Metalloxid-Gassensorik

T. Doll

Mikrosystemtechnik Uni Bw München physikalisch-chemische Grundlagen

Temperaturbereiche der Gasreaktionen (schematisches TDS - Spektrum für O₂ auf ZnO (101'0) nach Göp. Surf. Sci. 1977 / 165):

Physisorption Chemisorption Oberflächendefekte Volumendefekte

Bis auf die Physisorption führen die Gasreaktionen zu veränderten Ladungsträgerdichten in den Metalloxiden, die als Bandverbiegungen ($\Delta\Phi$), Leitfähigkeit σ oder Nernstspannungen (Ionenleitung z.B. ZrO₂ der Lamdasonden) gemessen werden.

Miniaturisierte Gassensoren für den Einsatz im Kfz

Metalloxid-Gassensorik

T. Doll

Mikrosystemtechnik Uni Bw München

Meßmethoden

Bauelemente: HSGFET, CCFET, SnO₂- gate FET

Lamdasonde, Hochtemp. - O2- Sonde

Leitfähigkeit

Bauelemente sind hier die SnO₂-Sensoren.und alle neuere Metalloxidsensoren für den

mittleren Temperaturbereich. Bei Leitfähigkeitsmessungen spie-

len nebenOberflächen- und Volumenlanteilen auch Korngrenzeneffekte eine Rollen, die man durch Verkleinerung der Kristallitradien unter \mathbf{x}_0 einschränken kann.

Einsatz in Kfz

T. Doll

Mikrosystemtechnik Uni Bw München

aktuelle Motor - Regelungskonzepte

Miniaturisierte Gassensoren für den Einsatz im Kfz

Leistungsfähigkeit neuer Sensoren

Ansprechzeit:

1³ (x)₂) = 10⁻⁴ bar 4,5ms

... im Motor:

Q: Meixner et. al., SAB 23, '95

Material: $SrTiO_3$ Sensitivitätseinstellung mit TiO_3 - Überschuß.

Meßbereich:

Selective Catalytic Reduction (SCR)

Prinzip: NO / NO₂ - Reduktion zu N₂ + ...

Harnstoff aus dem Tank $CO(NH_2)_2 + H_2O \rightarrow CO_2 + 2 NH_3$ ggf. Tank für

Reaktion des Ammoniak 4 NH₃ + 6 NO -> 5 N₂ + 6 H₂O Harnsäure

Harnstoff - freier Ansatz: Diesel - Einspritzung in das Abgas als Reduktionsmittel

Leistungsfähigkeit...

Problem: Detektion von NO und NH3 an den Grenzwerten von 5 ppm

Vorschlag einer erweiterten Luftklappensteuerung ohne Aktivkohlefilter

wird verlängert

Sensorherstellung

MBE

Dünnfilm

Dickfilm

z.B. Ozone enhanced

reaktives Sputtern

Pastendruck

Prozeßentwicklung von hochreinen Forschungsmaterialien zu günstigen Verfahren

Tempern: Verringerung von Sensordriften (Alterung) und Stoichiometrieausgleich katalytische Aktivierung: meist Sandwich (keine Gitterplätze !) Pt, Pd, Ni, auch A Kat - Temperung: Aktivierung ist abhängig von den Temperaturrampen

Screening

Vergleich von Herstellungsverfahren am Beispiel NiO Austrittsarbeitsmessungen für "Fingerprints " bei 30 °C und 130 °C

-> Voruntersuchungen zu neuen Materialien gelingen mit Austrittsarbeits messungen an einfach hergestellten Pulverproben

Literatur:

- H. Meixner, J. Gerblinger, U. Lampe, M. Fleischer, Thin film Gas Sensors Based on Semiconducting Metal Oxides, Sens. Act. B, 23, (1995) 119-125
- C. Plog, W. Maunz, P. Kurzweil, E. Obermeier, C. Scheibe, Combustion Gas Sensitivity of Zeolite Layers on Thin Film Capacitors, V IMCS, 1994 Proc., Rome
- M. Fleischer, H. Meixner, Sensing Reducing Gases at High Temperatures Using Long-term Stable Ga₂O3 Thin Films, Sens. Act. B, 6, (1992), 257-261
- B. Flietner, I. Eisele, Work Function Measurements For Gas Detection Using Tin Oxide Layers with a Thickness between 1 and 200 nm, Thin Solid Films, 250, (1994), 258-262
- T. Doll, I. Eisele, Mikrosysteme für die Umweltmeßtechnik, in: Mikrosystemtechnik in der industriellen Anwendung, VDI Bildungswerk, BW39-10-02, Düsseldorf, 1995 E. Haefele, U. Schönauer, W. Seeger, Sensorsysteme für Low-Emission-Fahrzeuge mit Katalysator-Überwachung, Automobiltechnische Z., 95, Frankh-Kosmos, Stuttgart (1993)

Firmenschriften ROTH-Technik, Gaggenau

Bericht über Untersuchungen von Pkw-Innenräumen auf flüchtige organische Verbindungen, TÜV Norddeutschland, 1985, Hamburg

- U. Kiencke, Sensorik im Kraftfahrzeug vom Senssor zum System, VDI Berichte 939, 1992
- U. Lampe, J. Gerblinger, H. Meixner, Vergleich der Ansprechgeschwindigkeit von Kfz-Abgassensoren zur schnellen Lambdamessung auf der Grundlage von ausgewählten Metalloxiddünnfilmen, VDI Berichte 939, 1992
- T. Doll, I. Eisele, Ozone Detection in the ppb-range withWorkfunctionSensors Operating at Room Temperature, Sens. Act. B, 1996-
- T. Doll, D. Mutschall, R. Winter, A. Fuchs, A. Neubecker, s. Farag, E. Obermeier, I. Eisle, Development of New Metal-oxide Thin Film Gas Sensors by Conductivity and Workfunction Correlations, VI IMCS, -1996-