

เลขที่ร	นั่งสอบ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 2 ปีการศึกษา 2555 วิชา ENE 311/Electronic Materials and Devices ภาควิ

สอบ วันจันทร์ที่ 4 มีนาคม พ.ศ. 2556

ภาควิชาวิศวฯอิเล็กฯ ปีที่ 3

เวลา 13:00 - 16:00 น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 5 ข้อ 6 หน้า (รวมใบปะหน้า)
- 2. แสดงวิธีทำลงใน<u>สมุดคำตอบ</u>เท่านั้น
- 3. แสดงวิธีทำทุกข้อโดยใช้เลขนับสำคัญ 4ตำแหน่ง
- 4. <u>ไม่อนญาต</u>ให้นำเอกสาร หรือหนังสือประกอบการเรียนเข้าห้องสอบ
- 5. <u>สามารถ</u>นำเครื่องคำนวณเข้าห้องสอบได้
- 6. สามารถฉีกสูตรออกจากตัวข้อสอบได้

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมีอบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ

ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ชื่อ-สกล		
รหัสประจำตัว	เลขที่นั่งสอบ	•••
	_	
อาจารย์อภิซัย ภัทรนันท์		
ผู้ออกซ้อสอบ		
0-2470-9063		

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(รศ.ดร.วุฒิชัย อัศวินชัยโชติ)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

1. (20 คะแนน) การทดลองผลกระทบของฮอลล์แสดงดังรูปที่ 1 มีพารามิเตอร์ดังนี้: L=0.1 cm, W=0.01 cm, d=0.001 cm, $I_x=1$ mA, $V_x=12.5$ V, $B_z=500$ Gauss, และ $V_H=-6.25$ mV.

จงหา ก) สนามไฟฟ้าฮอลล์ (E_H) ข) พาหะข้างมากของสารกึ่งตัวนำนี้คืออะไร จงอธิบายเหตุผล ค) ค่าความเข้มข้นของพาหะข้างมาก และค่าความคล่องตัวของพาหะนั้น (mobility).

รูปที่ 1 การทดลองผลกระทบฮอลล์

- 2. (20 คะแนน) อิเล็กตรอนถูกกักอยู่ในบ่อพลังงานสถิตย์อนันต์แบบมิติเดียว (one-dimensional infinite potential well) ที่มีความกว้าง 10 Å.
 - ก) จงคำนวณหาค่าระดับพลังงานต่ำสุดสามชั้นที่อิเล็กตรอนสามารถไปอยู่ได้
 - ข) ถ้าอิเล็กตรอนย้ายจากชั้นพลังงานที่สามมายังระดับที่สองโดยการคายพลังงานในรูปของโฟตอน โฟตอนดังกล่าวจะมีค่าความยาวคลื่นเท่าใด
- (20 คะแนน) จงหา
 - ก) คัชนีมิลเลอร์เพื่อใช้เรียกระนาบคังรูปที่ 2 และ 3 ถ้าเอ บี และซีสอดคล้องกับแกนเอ็กซ์ วาย และซี ตามลำดับ

ข) โครงสร้างของลูกบาศก์แสดงดังรูปที่ 4 คือโครงสร้างแบบใด และจงคำนวณหาค่าความหนาแน่น พื้นผิว (surface density) ของอะตอมในระนาบ (110) ในหน่วยของอะตอมต่อตารางเซนติเมตร ถ้าค่าคงที่ของผลึก (lattice constant) มีค่า 5 Å

รูปที่ 4

- (20 คะแนน) จงหา
 - ก) ความน่าจะเป็นที่ระดับพลังงาน 3kT เหนือระดับพลังงานเฟอร์มิ (E_F) จะถูกครอบครองโดย อิเล็กตรอน
 - ข) อุณหภูมิที่ทำให้ความน่าจะเป็นที่จะ<u>ไม่</u>เจออิเล็กตรอนที่ระดับพลังงาน 0.3 อิเล็กตรอนโวลท์ต่ำกว่า ระดับพลังงานเฟอร์มิเท่ากับร้อยละ 1
- (20 คะแนน)
 - ก) จงคำนวณหาค่าความเข้มข้นของโฮลในซิลิกอนที่อุณหภูมิ 400 เคลวิน โดยระดับพลังงานเพ่อร์มิ เท่ากับ 0.27 อิเล็กตรอนสูงกว่าแถบวาเลนซ์ (valence band)

- ข) จงคำนวณค่าความเข้มข้นของอิเล็กตรอนกับโยลที่อุณหภูมิห้องโดยมีค่าการโด๊ปดังนี้ $N_0=10^{16}~{
 m cm}^{-3}$ และ $N_A=0$
- ค) พิจารณาชิลิกอนที่อุณหภูมิห้องมีค่าการโด๊ป $N_D=8\times 10^{15}~{\rm cm}^{-3}$ และ $N_A=5\times 10^{15}{\rm cm}^{-3}$ จงหา ระดับพลังงานเฟอร์มิ

Properties of Si and GaAs at 300 K

Properties	Si	GaAs
Atoms/cm ³	5.02×10^{29}	4.42 × 10 ²²
Atomic weight	28.09	144.63
Breakdown field (V/cm)	$\sim 3 \times 10^{5}$	$\sim 4 \times 10^5$
Crystal structure	Diamond	Zinchlende
Density (g/cm³)	2.329	5.317
Dielectrie eonstant	11.9	12.4
Effective density of	2.86×10^{19}	4.7×10^{17}
states in conduction		
band, $N_C(\text{cm}^{-3})$		
Effective density of	2.66×10^{19}	7.0×10^{18}
states in valence		
band, N ₁ (cm ⁻³)		
Effective mass (conductivity)		
Electrons (m_n/m_0)		
Holes (m_p/m_0)		4.07
Electron affinity, $\chi(V)$	4.05	4.07
Energy gap (eV)	1.12	1.42
Index of refraction	3.42	3.3
Intrinsic carrier concentration(cm ⁻³)	9.65×10^{9}	2.25×10^{6}
Intrinsic resistivity (Ω-cm)	3.3×10^{5}	2.9×10^{8}
Lattice constant (Å)	5.43102	5.65325
Linear coefficient of	2.59×10^{-6}	5.75 × 10 ⁻⁶
thermal expansion,	2.50	
ΔL/L×T (°C-1)	1412	1240
Melting point (°C)	3×10^{-2}	~10-5
Minority-earner lifetime (s)	3 ^ 10	
Mobility (cm ^B /V·s)	1450	9200
μ, (electrons)	505	320
μ_p (holes)	0.7	0.35
Specific heat (J/g -°C)		0.46
Thermal conductivity(W/cm-K) Vapor pressure (Pa)	1.3J 1 at 1650°C	100 at 1050°C
	1 at 1650°C 10 ⁻⁶ at 900°C	1 at 900°C

Formula sheet (1/2)

 $N_A = Avogadro's number = 6.02 \times 10^{23} atoms/mole$

 $k = Boltzmann's constant = 1.38 \times 10^{-23} J/K$

 $q = electronic charge = 1.6 \times 10^{-19} C$

 $eV = electronvolt = 1.6 \times 10^{-19} J$

 $m_0 = \text{free electron mass} = 9.11 \times 10^{-31} \text{ kg}.$

 ε_0 = permittivity of free space = 8.85 x 10⁻¹² F/m = 8.85 x 10⁻¹⁴ F/cm

 μ_0 = permeability of free space = 1.26 x 10⁻⁶ H/m

 $h = Planck's constant = 6.63 \times 10^{-34} J.s$

 $c = light velocity (speed) = 3 \times 10^8 m/s$

 $1 \text{ Gauss} = 1 \times 10^{-4} \text{ Wb/m}^2 = 1 \times 10^{-4} \text{ Tesla}$

$$R = \frac{\rho l}{A} = \frac{1}{\sigma} \cdot \frac{l}{A}$$

$$J = \sigma E$$

$$v_D = \mu_e E$$

$$J = \sigma E$$
 $v_D = \mu_e E$ $J = N_e . q. v_D$

$$\sigma = \sigma_e + \sigma_h$$

$$\rho = \frac{1}{qn\mu_e + qp\mu_h}$$

$$E_H = \frac{B.J}{N_e q}$$

$$\frac{1}{\mu} = \frac{1}{\mu_L} + \frac{1}{\mu_I}$$

$$\frac{1}{\mu} = \frac{1}{\mu_I} + \frac{1}{\mu_I}$$
 $R_H = -\frac{1}{qN_e} = \frac{1}{N_e e}$

$$V_H = E_H L$$

$$J_e = -qF = qD_n \frac{dn}{dx} \qquad \qquad D_n = \left(\frac{kT}{q}\right)\mu_e$$

$$D_{n} = \left(\frac{kT}{q}\right)\mu_{e}$$

$$\lambda = \frac{h}{p}$$

$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} (E - V)\psi = 0$$

$$E_n = \frac{n^2 h^2}{8mL^2}$$

$$E_n = \frac{n^2 h^2}{8mL^2} \qquad E = hv = \frac{hc}{\lambda}$$

$$T \cong \exp\left\{-2d\sqrt{\frac{2m_{\epsilon}^{\bullet}(qV_0 - E)}{\hbar^2}}\right\}$$

$$\rho = \left(\frac{nM}{N_A}\right) \cdot \frac{1}{a^3}$$

$$\cos(ka) = \frac{P\sin(\alpha a)}{\alpha a} + \cos(\alpha a) \qquad P = \frac{maV_0w}{\hbar^2} \qquad \alpha = \frac{1}{\hbar}\sqrt{2mE}$$

$$P = \frac{maV_0 w}{\hbar^2}$$

$$\alpha = \frac{1}{\hbar} \sqrt{2mE}$$

Formula sheet (2/2)

$$E_{n} = -\frac{mq^{4}}{8\varepsilon_{0}^{2}h^{2}} \cdot \frac{1}{n^{2}} = -\frac{13.6 \text{ eV}}{n^{2}} \qquad n = \int_{0}^{\infty} n(E)d(E) = \int_{0}^{\infty} N(E)F(E)dE$$

$$N(E) = 4\pi \left(\frac{2m}{h^{2}}\right)^{3/2} E^{1/2} \qquad F(E) = \frac{1}{1 + e^{(E - E_{F})/kT}}$$

$$n = N_{C} \exp\left[-(E_{C} - E_{F})/kT\right] \qquad p = N_{V} \exp\left[-(E_{F} - E_{V})/kT\right]$$

$$n_{i} = \sqrt{N_{C}N_{V}} \exp\left(-E_{g}/2kT\right) \qquad n.p = n_{i}^{2}$$

$$N_{C} = 2\left(2\pi m_{e}^{*}kT/h^{2}\right)^{3/2} \qquad N_{V} = 2\left(2\pi m_{h}^{*}kT/h^{2}\right)^{3/2}$$

$$E_{F} = E_{i} = (E_{C} + E_{V})/2 + (kT/2)\ln\left(N_{V}/N_{C}\right)$$

$$E = \frac{-m^{*}e^{4}}{8(\varepsilon_{0}\varepsilon_{r})^{2}h^{2}} \qquad N_{D}^{+} = N_{D}\left[1 - F(E_{D})\right] \qquad N_{A}^{-} = N_{A}F(E_{A})$$

$$n = n_{i} \exp\left[\left(E_{F} - E_{i}\right)/kT\right] \qquad p = n_{i} \exp\left[\left(E_{i} - E_{F}\right)/kT\right]$$

Good luck for all your midterm exams -