Transform and Conquer

(Chapter 6)

Transform and Conquer:

This technique solves a problem by a transformation to

- 1. Instance simplification
 a more convenient instance of the same
 problem
- 2. Representation change a different representation of the same instance

Transform and Conquer:

1. Instance simplification (Pre-sorting)

- Checking element uniqueness in an array
- Computing a mode

2. Representation change

- Heap
 - Implementation
 - Insert and Delete
 - Construction
- Heap sort

Element Uniqueness in an Array

- extriciency: $O(n^2)$ What is a better implementation?

 Instance simplification (presorting)

 Stage 1: sort by effer
 - Stage 2: scan array to check pairs of adjacent elements

Element uniqueness in an array

ALGORITHM PresortElementUniqueness(A[0..n-1])

```
//Solves the element uniqueness problem by sorting the array first //Input: An array A[0..n-1] of orderable elements //Output: Returns "true" if A has no equal elements, "false" otherwise sort the array A for i \leftarrow 0 to n-2 do

if A[i] = A[i+1] return false
```

return true

```
What is the efficiency?

Sort? + scanning array?

O(nlog n) + O(n) = ?

= O(nlog n)
```

Transform and Conquer:

1. Instance simplification (Pre-sorting)

- Checking element uniqueness in an array
- Computing a mode

2. Representation change

- Heap
 - Implementation
 - Insert and Delete
 - Construction
- Heap sort

• A *mode* is a value that occurs most often in a given list of numbers.

5 1 6	7	6	5	7	6
-------	---	---	---	---	---

Mode: 6

- Brute Force:
 - Scan the list
 - Compute the frequencies of all distinct values
 - Find the value with the largest frequency.

5 1 6 7 6 5 7 6

• Brute Force:

Data

Frequencies

, **1**

• Brute Force:

Data

Frequencies

j 1

• Brute Force:

5	1	6	7	6	5	7	6
		i T					

Data

Frequencies

5	1	6
1	1	1

j

• Brute Force:

5	1	6	7	6	5	7	6
			i T				

Data

Frequencies

5	1	6	7
1	1	1	1

أ أ

• Brute Force:

5	1	6	7	6	5	7	6
				i			

Data

Frequencies

5	1	6	7
1	1	2	1

أ أ

• Brute Force:

5	1	6	7	6	5	7	6
					i t		

Data

Frequencies

5	1	6	7
2	1	2	1

, **1**

• Brute Force:

5	1	6	7	6	5	7	6
						i	

Data

Frequencies

5	1	6	7
2	1	2	2

1

• Brute Force:

5	1	6	7	6	5	7	6
							, 1

Data

Frequencies

5	1	6	7
2	1	3	2

Max

- Efficiency (worst-case):
 - A list with no equal elements
 - i^{th} element is compared with i-1 elements

Array

Data

Frequencies

Efficiency (worst-case):

- Creating count list: $0 + 1 + 2 + \cdots + n 1 = O(n^2)$

Efficiency (worst-case): O(n²) better way?

Is there a better count list

Isthere alon? tuse count list

Computing a mode(pre-sorting)

- Sort the input
- All equal values will be adjacent to each other
- Find the longest run of adjacent equal values in the Why is this better? sorted array

Computing a mode(pre-sorting)

```
ALGORITHM PresortMode(A[0..n-1])
    //Computes the mode of an array by sorting it first
    //Input: An array A[0..n-1] of orderable elements
    //Output: The array's mode
    sort the array A
    i \leftarrow 0
                               //current run begins at position i
    modefrequency \leftarrow 0 //highest frequency seen so far
    while i < n - 1 do
        runlength \leftarrow 1; \quad runvalue \leftarrow A[i]
        while i + runlength \le n - 1 and A[i + runlength] = runvalue
             runlength \leftarrow runlength + 1
        if runlength > modefrequency
             modefrequency \leftarrow runlength; modevalue \leftarrow runvalue
        i \leftarrow i + runlength
    return modevalue
```

• Brute Force:

Computing a mode(pre-sorting)

• Efficiency:

•
$$T(n) = T_{sort}(n) + T_{search}(n) = ?$$

$$(n \log n) + (n) = ?$$

$$(n \log n)$$

Is Pre-Sorting Always Better?

Problem: Search for a given K in A[0..<math>n-1]

Presorting-based algorithm:

Stage 1 Sort the array by an efficient sorting algorithm

Stage 2 Apply binary search

Efficiency: $O(n \log n) + O(\log n) = O(n \log n)$

Good or bad? (sequential search is O(n))

Why do we have our dictionaries, telephone directories, etc. sorted₃₁

Transform and Conquer:

1. Instance simplification (Pre-sorting)

- Checking element uniqueness in an array
- Computing a mode

2. Representation change

- Heap
 - Implementation
 - Insert and Delete
 - Construction
- Heap sort

Sample problem

- You're running a hospital
- patients are coming in with different priority
- How do you quickly decide who to treat next?
- Radio Lab Podcast
 - http://www.radiolab.org /story/playing-god/

Simple Implementations

- Arraylist
 - Insert: O(1)
 - deleteMax: O(n)

|--|

- SortedArraylist
 - Insert: O(logn + n)
 - deleteMax: O(n)

Anything Better?

Representation change

- Idea:
 - Given an array
 - Transform to a new data structure
 (Make a "heap" out of it)
- Efficiency of heap:
 - Insert an item: O(logn)
 - Delete an item with max priority: O(logn)

Heap definition

- Almost complete binary tree.
 - filled on all levels, except last, where filled from left to right
- Every parent is greater than (or equal to) child

Heap or No Heap?

NO NO YES

Heap properties

- Max element is in root.
- Heap with N elements has height = $\lfloor \log_2 N \rfloor$.

N = 6Height = 2

Heap Implementation

- Use an array: no need for explicit parent or child pointers.
 - Parent(i) = $\lfloor i/2 \rfloor$
 - Left(i) = 2i
 - Right(i) = 2i + 1

Heaps

• draw the tree representation of this heap

Parent(i) = $\lfloor i/2 \rfloor$ Left(i) = 2i Right(i) = 2i + 1

Index	1	2	3	4	5	6	7	8	9	10	11	12	13
value	17	11	12	9	8	10	5	1	4	6	2	3	7

Heaps

• draw the array representation of this heap

Index	1	2	3	4	5	6	7	8	9	10	11	12
value	24	13	17	9	6	11	15	5	7	2	4	10

Heap insertion

- Insert into next available slot.
- Bubble up until it's heap ordered (heapify)

10/4/2017

A = 17 18 10 14 15 9 3 2 8 1 7

Delete max from Heap

- Exchange root with rightmost leaf
- Delete element
- Bubble root down until it's heap ordered

A = 16 15 10 14 7 9 3 2 8 1

Heap Construction

Step 0: Initialize the structure with keys in the order given

Step 1: Starting with the last (rightmost) parental node, fix the heap rooted at it, if it doesn't satisfy the heap condition: keep exchanging it with its largest child until the heap condition holds

Step 2: Repeat Step 1 for the preceding parental node

Example of Heap Construction

Construct a heap for the list 2, 9, 7, 6, 5, 8

Step 0: Initialize the structure with keys in the order given

Step 1: Starting with the last (rightmost) parental node, fix the heap rooted at it, if it doesn't satisfy the heap condition: keep exchanging it with its largest child until the heap condition holds

Example of Heap Construction

Construct a heap for the list 2, 9, 7, 6, 5, 8

Transform and Conquer:

1. Instance simplification (Pre-sorting)

- Checking element uniqueness in an array
- Computing a mode

2. Representation change

- Heap
 - Implementation
 - Insert and Delete
 - Construction
- Heap sort

HeapSort

How can we use a Heap to sort an arbitrary array?

- 1. transform the array into a heap (Construct a heap)
- 2. call RemoveMax to get all array elements in sorted order

Example of Sorting by Heapsort

Sort the list 2, 9, 7, 6, 5, 8 by heapsort

Stage 1 (heap construction)

2 9 <u>7</u> 6 5 8 2 <u>9</u> 8 6 5 7 <u>2</u> 9 8 6 5 7 9 <u>2</u> 8 6 5 7 9 6 8 2 5 7

stage 2 (remove max)

2

1. Exchange root with rightmost leaf

- 2. Delete element
- 3. Bubble root down until it's heap ordered

Analysis of Heapsort

Stage 1: Build heap for a given list of *n* keys O(nlogn)

Stage 2: Repeat operation of root removal *n*-1 times (fix heap)

O(nlogn)

Try it/ homework

- 1. Chapter 6.1, page 205, questions 2, 3, 7
- 2. Chapter 6.4, page 233, question 1,2,7