Reinforcement Learning for the Asymmetric Traveling Salesperson Problem with Precedence Constraints

Elisabeth Bankl

March 4, 2025

Problem Statement 1

- A set of tasks that need to be completed after another
- Some tasks need to be finished before starting others (precedence constraints)
- ► The execution time of a task depends on the task before it (transition time)
- Objective: Find the best order to execute the tasks that minimizes the total execution time and follows all precedence constraints
- Asymmetric Travelling Salesperson Problem with Precedence Constraints: nodes represent tasks, distances represent transition times

Problem Statement 1

Figure: Graph visualization of the problem

MDP Formulation

- State Space: The state includes:
 - Distance Matrix (D): Represents the distances between nodes.
 - Precedence Matrix (P): Indicates which nodes must be visited before others.
 - **Cost Matrix (C)**: Contains the cost of starting at a node and the cost of traveling between nodes.
 - ► Visited Nodes Vector (V): A binary vector indicating which nodes have been visited.
- ► **Action Space**: The actions are the nodes that the agent can visit next. However, actions are restricted:
 - ▶ Nodes with unfulfilled precedence constraints are not allowed.
 - Nodes that have already been visited are not allowed.
- Reward Function: The reward is calculated based on the action taken:
 - ► If the action violates precedence constraints, a large negative reward is given.
 - ► If the action is valid, the reward is the negative of the distance between the current node and new node.

Reinforcement Learning Algorithm

- ► **Algorithm**: Proximal Policy Optimization (PPO)
- ► Network Architecture: MLP

Dataset

- ▶ Problem instances randomly generated during training
- Randomly sample distances between nodes, precedence constraints and node costs

Reward Curve for RL Agent

Figure: Reward curve for the reinforcement learning agent during training

Comparison with simple algorithms

Algorithm	Average Reward
Random Algorithm	-137.5
Greedy Algorithm	-85
Reinforcement Learning Agent	-123

Table: Performance comparison of different algorithms