Unsupervised Meta-Learning for Few-Shot Image Classification

Siavash Khodadadeh, Ladislau Bölöni and Mubarak Shah

Contributions

- Unsupervised meta-learning algorithm by
 - Generating synthetic tasks
 - Studying the relationship between validation set and train set of a task
- Results evaluated on different dominas:
 - Few-shot learning benchmarks
 - Videos
 - Face Recognition

Background

- Meta-learning
 - Look at a lot of tasks:
 - \blacksquare T₁, T₂, ..., T_n
 - Update parameters such that we can learn them with fewer examples and faster
 - Target learning phase:
 - Unseen task T_{n+1}

Few-shot learning approaches

- Model-agnostic meta-learning.
- Label efficient learning of transferable representations across domains and tasks.
- Memory augmented neural networks.
- Optimization as a model.
- etc.

Preparing data for meta-learning (1-shot)

Intuition

- Meta Learning
 - Tasks
 - Tasks are created with supervision

Photo by Tanaphong Toochinda on Unsplash

- Unsupervised meta-learning
- Can we generate tasks in an unsupervised manner?

Unsupervised Meta-learning with Tasks constructed by Random sampling and Augmentation (UMTRA)

Few-shot learning benchmarks

					1				
		Omniglot			Mini-Imagenet				
Algorithm (N, K)	Clustering	(5,1)	(5,5)	(20,1)	(20,5)	(5,1)	(5,5)	(5,20)	(5,50)
Training from scratch	N/A	52.50	74.78	24.91	47.62	27.59	38.48	51.53	59.63
k_{nn} -nearest neighbors	BiGAN	49.55	68.06	27.37	46.70	25.56	31.10	37.31	43.60
linear classifier	BiGAN	48.28	68.72	27.80	45.82	27.08	33.91	44.00	50.41
MLP with dropout	BiGAN	40.54	62.56	19.92	40.71	22.91	29.06	40.06	48.36
cluster matching	BiGAN	43.96	58.62	21.54	31.06	24.63	29.49	33.89	36.13
CACTUs-MAML	BiGAN	58.18	78.66	35.56	58.62	36.24	51.28	61.33	66.91
CACTUs-ProtoNets	BiGAN	54.74	71.69	33.40	50.62	36.62	50.16	59.56	63.27
k_{nn} -nearest neighbors	ACAI / DC	57.46	81.16	39.73	66.38	28.90	42.25	56.44	63.90
linear classifier	ACAI / DC	61.08	81.82	43.20	66.33	29.44	39.79	56.19	65.28
MLP with dropout	ACAI / DC	51.95	77.20	30.65	58.62	29.03	39.67	52.71	60.95
cluster matching	ACAI/DC	54.94	71.09	32.19	45.93	22.20	23.50	24.97	26.87
CACTUs-MAML	ACAI / DC	68.84	87.78	48.09	73.36	39.90	53.97	63.84	69.64
CACTUs-ProtoNets	ACAI / DC	68.12	83.58	47.75	66.27	39.18	53.36	61.54	63.55
UMTRA (ours)	N/A	83.80	95.43	74.25	92.12	39.93	50.73	61.11	67.15
MAML (Supervised)	N/A	94.46	98.83	84.60	96.29	46.81	62.13	71.03	75.54
ProtoNets (Supervised)	N/A	98.35	99.58	95.31	98.81	46.56	62.29	70.05	72.04

UCF-101 results

Algorithm	Test Accuracy / F1-Score
Training from scratch	29.30 / 20.48
Pre-trained on Kinetics	45.51 / 42.49
UMTRA on unlabeled Kinetics (ours)	60.33 / 58.47
Supervised MAML on Kinetics	71.08 / 69.44

CelebA results

Algorithm (N, K)	(5, 1)	(5,5)	(5, 10)
Training from scratch	26.86	39.65	50.61
UMTRA (ours)	33.43	50.19	58.84
Supervised MAML	72.26	84.90	88.26

Thank you!

This research is based upon work supported in parts by the National Science Foundation under Grant numbers IIS-1409823 and IIS-1741431 and Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA R&D Contract No. D17PC00345. The views, findings, opinions, and conclusions or recommendations contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the NSF, ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.