Danilo do Navemento Leite RA: 032109

30/04/2004

UNIVERSIDADE ESTADUAL DE CAMPINAS - UNICAMP FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO EA – 772 CIRCUITOS LÓGICOS

AVALIAÇÃO 2 - Peso: 2 - 30/04/2004 Turma U - Prof. Bassani

Questão 1

Projete o circuito de um FF-Master-Slave (Mestre-Escravo), baseado no FF - D. Explique o que está sendo feito.

Questão 2

Projete o circuito de um FF-RS com controle. Complete o diagrama temporal abaixo, explicando com base no circuito projetado:

Questão 3

Projete um circuito que ative (acenda) os segmentos do *display* abaixo, de acordo com as entradas binárias A, B e C, formando os números de **0** a **7**. Veja que os sinais para ativação de cada segmento são antes alimentados em um registrador (conjunto de 8 FFs). Que tipo de FF seria aconselhável para que o display ficasse estável, mesmo que as entradas variassem durante a fase **1** do sinal de controle? Explique. E no caso de evitar modificações apenas na fase **0** do sinal de controle? Explique.

- a)Defina Soma canônica e mintermo.
- b)Escreva a soma canônica, a função mínima obtida pelo mapa de Karnaugh e a função mínima obtida pelo método de Quine-McCluskey para função F(a,b,c) = S(2,3,6,7). Explique, indique claramente e não omita os passos.

Questão 5

- a) Um decodificador é um circuito combinacional com *n* entradas e 2ⁿ saídas. Cada saída só é "1" para apenas uma combinação das entradas. Projete um decodificador de 2 entradas.
- b) Defina circuito combinacional ou combinatório.

Nome: Danilo do Naximento Leite

RA: 032109

3010412004

Avaliações a.

De flip flops tem por bore de construção or cumitos chamados latel, que são apresentados a seguin:

D flip-flop tipo D, tem or seguintes circuitos: FF-TiPO-D FF-R5 (com CK)

Description de Flip-Flop Tipe D Master-Slave (mestre-escravo) é a união dos circuitos do FF-Tipo De FF-R5, com algumas modificações, todos os dois, construídos como pode-se perceber, a-través dos circuitos do laterh.

FF- TIPOD (MASTER-SLAVE)

* Diagrama Temporal; ver a folha de questos.

Respondendo as perguntas;

Pora que o des display permaneceme estável, memo as voriónes entrodas variamen durante a fase 1 do senal de controle, sería aconselhável utilizar um flip-flop tipo D-moster-slaves, pois que neste tipo de FF, ado o controle está em 1, a parte "slave" do flip-flop, esta bloqueada, não deixando que hajam modificações na saída.

foi para o outro coso serio interemente utilizar um flip-flop Tipo D som sottole, pois ele só é sensível à mudanças quando o controle voi para a ma fare 1.

* biento » ver folha de questos

(4) a) Soma canônica é definida como a soma de todos or mintermos da função, que resulta numa f a função móxima, não simplificada. É uma soma de mintermo é uma combinação produtos formados pelas variáveis da função...

lada produto que apavece na soma canônica é um mintermo. Esses produtos, ou melha, mintermos, nos informam onde De a função apresenta saída em nível lógico "1".

b) # F(a, b, c) = 5(2,3,6,7)

7	<u> </u>	reida	d	
	a	b	C	
(2)	0	1	0	
(3)	0	4	1	
(6)	1	4	٥	
(7)	1	1	1	

	Soma	conônico						
į	5 =	ābē +	ābc	+	abē	+	abel	

Função mínimo (Maparle Kornaugh)

		MAF) Д	DE	K	AR NAUC
)	ab	00	01	4.1	10	
	0		1/1	1,	ALL PROPERTY OF THE PARTY OF TH	~
•	1		`1	1)		
•		•				

65 + 60 6(5+0)

Método de Auine - McClurkey F(0,6,c) = 5(2,3,6,7)

1º Passo; Geração dos Prime Impliant

	CX	#	2	Ь	د	Tick
	1	2	0	1	0	
	2	3	0	1	1	1, ,,,,,,,,
many (sphage)	ઢ	6	4	1	0	?
	3	7	1	1	1	Canada sa

- Combinações entre os prime implicant

Brune Implicant	a	Ь	С	Tick
(2,3)	0	1	-	-
(2,6),	-	1	0	<u></u>
(3,7)		1	1	مصا
(6,7)	4	1	-	

				
brune Implicant	۵	Ь	, ·c	TICK
(23,6,7)	-	1	-	
The state of the s		/		

2º Pano; Cobertura dos mintermos

	min Termo				vou	ióves
Prime Implicant	<u>م</u>	3	6	7	a	Ь
(2,3,6,7)	×	×	×	×		1

Esta seta ao lado do brune Implicant, significa que essa combinação gerado é "enencial" na funças.

(5) a) Como folodo na definição, um decodificador é um curcuito com n entrados e 2º saídoo. Poros um curcuito decodificador de 2 entrados temos: n= 2 (entrado)

A B Á B

AB	51	52	53	54	
00,	4	0	0		ĀĒ
0 1	0	1		ن	ĀB
1 0	0	0	1	0	AB
1 1	ं	0	0	1	AB

b) flicutos combinacionais são circutos formados por combinações de postas lógicas, que expressam balores lógicos o aut na saída, dependendo