MCXA153, A152, A143, A142 Data Sheet

32-bit Arm Cortex-M33 core at 48MHz (A14x) or 96MHz (A15x)

Rev. 3 — 01/2024

2-bit Arm Cortex®-M33 MCU for Industrial and Consumer IoT Applications

MCXA14x

MCXA15x

32-bit Arm Cortex®-M33 MCU for Industrial and Consumer IoT Applications with USB FS, Serial Interface, 32-bit counter/timers, FlexPWM, 12-bit 4.0 Msamples/sec ADC, Comparator, Temperature Sensor

- Single Arm Cortex-M33 Core. No FPU, no DSP extension instruction set, no TrustZone, no MPU
- Industrial Strength: Industrial communication protocol support, BLDC/ PMSM Motor Control support, integrated sensor interfaces (MIPI-I3C, I2C, SPI)
- Power-efficient: 59 μA/MHz active current, 6.5 μA power-down mode with all SRAM retention, 394 nA Deep Power-down mode

	111070 110%	
NO INC.	N/O	NO
64LQFP	32HVQFN	48HVQFN
10 x 10 x 1. 4 mm, 0.5 mm	- 71 - 71 - 010	7 x 7 x 0.9 mm, 0.5 mm

Data Sheet: Technical Data

Target Applications

- · Industrial and Consumer IoT
- · Industrial Communications
- · Smart Metering
- Motor Control
- · Automation & Control
- Sensors

CPU Core Platform

- · CPU: Cortex-M33
- Multilayer Bus Matrix
- · One 4-CH DMA, supports asynchronous DMA

Memories and memory expansion

- Single-bank Flash: Up to 128 KB FLASH with ECC (support one bit correction and two bits detection)
- · Cache Engine with 4 KB RAM
- Up to 32 KB RAM, configurable as up to 8 KB RAM with ECC (support single bit correction, two bits detection)
- · All RAM can be retained down to deep power down mode
- 16 KB ROM

Security

- · Life cycle management
- Flash read/write/execute permission protect by MBC and lockable
- 128-bit Universal Unique Identifier (UUID) per device in accordance with IETF's RFC4122 version 5 specification
- · Code Watchdog for code flow integrity checking
- Read Out Protection (RoP) from flash with 3 levels of factory access control to customize returns handling
- Glitch attack resistant keyed access (Glikey) to security sensitive registers

Analog modules

- 1x 12-bit ADC
 - 4 Msps in 12-bit mode
 - Up to 24 ADC Input channels (depending on the package)
 - Reduced bandwidth 16b mode
 - Integrated temperature sensor
- Two High-speed Comparators with 8 input pins and a 8-bit DAC as internal reference

Low-Power Performance

Active

— 59 μ A/MHz in Active Mode (CoreMark executing from flash, 3.3 V @25 °C)

· Deep Sleep

— 20.28 μA, 7.4 μs wake-up (3.3 V @25 °C)

Power Down

— 6.5 μA, 17.1 μs wake-up (full SRAM retention, 3.3 V@ 25 $^{\circ}\text{C}$

· Deep Power Down

 394 nA, 2.36 ms wake-up (wakeup timer disabled, reset pin enabled, all SRAM off, 3.3 V @25 °C)

Flexible System and Clocks

- 192 MHz MHz free-running oscillator (FRO-192M)
- 12 MHz free-running oscillator (FRO-12M)
- 16 kHz free-running oscillator (FRO-16k)
- · Up to 50 MHz crystal oscillator

Inputs Supply Voltage options:

- Integrated voltage regulator or support for external voltage regulator
 - LVD for VDD_CORE and VDD
 - HVD for VDD
 - Core LDO, other LDOs
 - Operating voltage: 1.71 V to 3.6 V
 - IOs: 1.71 V 3.6 V full-performance

Operating Characteristics

Temperature range (junction): -40 °C to 125 °C

— 1x CMP is functional down to DPD mode

Communication interfaces

- · USB Full-speed (Device) with on-chip FS PHY
- · 2x LPSPI, 1x LPI2C, 3x LPUART, 1x I3C

Motor Control Subsys

- 1x FlexPWM each with 3 submodules, providing 9 PWM outputs (no Nanoedge module)
- 1x Quadrature Encoder/Decoder (QDC)
- 1x AOI

Timers

- Three 32-bit standard general-purpose asynchronous timers/counters, which support up to four capture inputs and four compare outputs, PWM mode, and external count input. Specific timer events can be selected to generate DMA requests
- LPTimer
- · Frequency measurement timer
- · Windowed Watchdog Timer
- · Wake Timer
- · Micro Timer
- OS Event Timer

НМІ

- Up to 52 GPIOs
 - Up to eight 20 mA IO
 - 50 MHz IO on P1 and P3
 - Up to 19-pin wake-up sources function down to deep power-down mode
 - Support 1.71 V~3.6 V IO supply range

Table 1. Ordering Information

Orderable Part	Part Number ²	Embedo	led Memory	Core	Core	-	Package			
Number ¹		Flash (KB)	SRAM (KB)	Cortex- M33 (MHz)			Cache (KB)		Pin Count	Туре
MCXA143	MCXA143VLH	128	32	48	4	52	64	LQFP		
MCXA143	MCXA143VFT	128	32	48	4	41	48	HVQFN		
MCXA143	MCXA143VFM	128	32	48	4	26	32	HVQFN		
MCXA142	MCXA142VLH	64	16	48	4	52	64	LQFP		
MCXA142	MCXA142VFT	64	16	48	4	41	48	HVQFN		

Table 1. Ordering Information (continued)

Orderable Part	Part Number ²	Embedo	led Memory	Core	Core	GPIO	Package	
Number ¹		Flash (KB)	SRAM (KB)	Cortex- M33 (MHz)	Cache (KB)		Pin Count	Туре
MCXA142	MCXA142VFM	64	16	48	4	26	32	HVQFN
MCXA153	MCXA153VLH	128	32	96	4	52	64	LQFP
MCXA153	MCXA153VFT	128	32	96	4	41	48	HVQFN
MCXA153	MCXA153VFM	128	32	96	4	26	32	HVQFN
MCXA152	MCXA152VLH	64	16	96	4	52	64	LQFP
MCXA152	MCXA152VFT	64	16	96	4	41	48	HVQFN
MCXA152	MCXA152VFM	64	16	96	4	26	32	HVQFN

^{1.} To confirm current availability of orderable part numbers, go to http://www.nxp.com and perform a part number search.

Table 2. Device Revision Number

Device Mask Set Number	DIE_ID	JTAG ID Register[PRN]		
0P07H	0x0055F1A0	0x0726602B		

Table 3. Related Resources

Туре	Description	Resource
Fact Sheet	The Fact Sheet gives overview of the product key features and its uses.	MCXAFS
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	MCXAP64M96FS3RM
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	This document
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	MCXA153_P07H
Package drawing	Package dimensions are provided in package drawings.	LQFP 64-pin: 98ASS23234WHVQFN 48-pin: 98ASA01637DHVQFN 32-pin:98ASA02110D
Software development kit	MCUXpresso SDK. An open source software development kit (SDK) built specifically for your processor and evaluation board selections.	http://www.nxp.com/mcuxpresso

Data Sheet: Technical Data 3/75

^{2.} As marked on package

Data Sheet: Technical Data 4/75

Contents

1	Feature Comparison7	4.3.1	Flash electrical specifications	
2	Ratings7	4.3.1.1	Timing specifications	31
2.1	Thermal handling ratings7	4.3.1.2	Flash high voltage current behavior	33
2.2	Moisture handling ratings8	4.3.1.3	Flash reliability specifications	
2.3	ESD handling ratings8	4.4	Analog	34
2.4	Voltage and current maximum ratings8	4.4.1	ADC electrical specifications	34
2.4.1	Voltage and current maximum ratings8	4.4.1.1	ADC operating conditions	34
2.5	Required Power-On-Reset (POR) Sequencing	4.4.1.2	ADC electrical characteristics	
	9	4.4.2	Comparator and 8-bit DAC electrical	
3	General9		specifications	40
3.1	AC electrical characteristics9	4.5	Timers	43
3.2	Nonswitching electrical specifications10	4.6	Communication interfaces	44
3.2.1	Voltage and current operating requirement 10	4.6.1	LPUART	44
3.2.2	HVD, LVD, and POR operating requirements	4.6.2	LPSPI switching specifications	44
	11	4.6.2.1	LPSPI master mode timing	44
3.2.2.1	VDD supply HVD, LVD, and POR Operating	4.6.2.2	LPSPI slave mode timing	46
	Requirements11	4.6.3	LPI2C timing	49
3.2.3	Voltage and current operating behaviors 12	4.6.4	I2C 1 Mbps timing	
3.2.4	On-chip regulator electrical specifications 14	4.6.5	I2C HS mode timing	
3.2.4.1	LDO_CORE electrical specifications14	4.6.6	I3C Push-Pull Timing Parameters for SDF	
3.2.5	Power mode transition operating behaviors14		Mode	
3.2.5.1	Power mode transition operating behaviors14	4.6.7	USB Full-speed device electrical specifica	ations
3.2.6	Power consumption operating behaviors 15			
3.2.6.1	Power consumption operating behaviors15	4.7	Human Machine Interface (HMI) modules.	57
3.2.7	EMC radiated emissions operating behaviors	4.7.1	General Purpose Input/Output (GPIO)	
	18	5	Package dimensions	
3.2.8	Designing with radiated emissions in mind 18	5.1	Obtaining package dimensions	
3.2.9	Capacitance attributes	6	Pinout	
3.3	Switching specifications19	6.1	MCXA143, A142, A153, A152 Signal	
3.3.1	Device clock specs		Multiplexing and Pin Assignments	57
3.3.2	General switching specifications19	6.2	MCXA143, A142, A153, A152 Pinouts	65
3.3.2.1	General switching specifications19	6.3	Recommended connection for unused and	alog
3.4	Thermal specifications21		and digital pins	66
3.4.1	Thermal operating requirements22	7	Ordering parts	
3.4.2	Thermal attributes22	7.1	Determining valid orderable parts	
4	Peripheral operating requirements and behaviors	8	Part identification	67
	22	8.1	Description	67
4.1	Core modules22	8.2	Part number format	67
4.1.1	Debug trace operating behaviors22	8.3	Example	68
4.1.2	JTAG Debug Interface Timing	8.4	Small package marking	
4.1.3	Serial Wire Debug (SWD) Timing 26	8.4.1	Package marking information	
4.2	Clock modules27	9	Terminology and guidelines	
4.2.1	Reference Oscillator Specification28	9.1	Definitions	
4.2.1.1	System Crystal Oscillator Specification 28	9.2	Examples	69
4.2.1.2	System Oscillator Crystal Specifications28	9.3	Typical-value conditions	
4.2.1.3	System Oscillator Crystal Specifications29	9.4	Relationship between ratings and operatir	
4.2.2	FRO-192M specifications30		requirements	-
4.2.3	FRO-12M specifications31	9.5	Guidelines for ratings and operating	
4.2.4	FRO-16K specifications31		requirements	70
4.3	Memories and memory interfaces31	9.6	Specification Test Methods	

1 Feature Comparison

Table 4. Feature Comparison

	Part Number	MCXA143	MCXA142	MCXA153	MCXA152
	Lead package	LQFP64, HVQFN32, HVQFN48	LQFP64, HVQFN32, HVQFN48	LQFP64, HVQFN32, HVQFN48	LQFP64, HVQFN32, HVQFN48
Core Platform	Core #1 Cortex-M33	48 MHz	48 MHz	96 MHz	96 MHz
	Core #1 Cache	4k	4k	4k	4k
Flash	Flash	128 kB	64 kB	128 kB	64 kB
SRAM	SRAM	32 kB	16 kB	32 kB	16 kB
Connectivity	LPI2C	1	1	1	1
	LPUART	3	3	3	3
	LPSPI	2	2	2	2
	I3C	1	1	1	1
	USB FS	1	1	1	1
Analog	Comparator	2	2	2	2
	ADC	1	1	1	1
Motor Control	FlexPWM	1	1	1	1
	AOI	1	1	1	1
	QDC	1	1	1	1
Timers	Wake Timer	1	1	1	1
	32b	3	3	3	3
	LPTimer	1	1	1	1
	uTICK timer	1	1	1	1
	WWDT	1	1	1	1
	OS Timer	1	1	1	1

2 Ratings

2.1 Thermal handling ratings

Table 5. Thermal handling ratings

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
TSTG	Storage temperature ¹	- 55	_	150	°C	_	_
TSDR	Solder temperature, lead-free ²	_	_	260	°C	_	_

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

2.2 Moisture handling ratings

Table 6. Moisture handling ratings

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
MSL	Moisture sensitivity level ¹	_	_	3	_	_	_

Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

2.3 ESD handling ratings

Table 7. ESD handling ratings

Description	Rating	Unit	Notes
Electrostatic discharge voltage, human body model	+/-2000	V	1
Electrostatic discharge voltage, charged-device model	+/-500	V	2
Electrostatic discharge voltage, charged device model (corner pins)	+/-750	V	2
Latch-up immunity level (Class II at 125 °C junction temperature)	Immunity Level A	_	3

- Determined according to ANSI/ESDA/JEDEC Standard JS-001-2023, For Electrostatic Discharge Sensitivity Testing, Human Body Model (HBM) - Device Level.
- Determined according to ANSI/ESDA/JEDEC Standard JS-002-2022, For Electrostatic Discharge Sensitivity Testing, Charged Device Model (CDM) - Device Level.
- 3. Determined according JEDEC Standard JESD78F, IC Latch-Up Test.

2.4 Voltage and current maximum ratings

The table below shows the absolute minimum and maximum ratings for the device. If the values are violated, the device could be damaged. See Voltage and current operating requirements for operating requirements, and Terminology and guidelines for definitions of terms.

2.4.1 Voltage and current maximum ratings

Table 8. Voltage and current maximum ratings

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VDD	Supply voltage for Port 0, Port 1, Port 2 and Port 3	-0.3	_	3.63	V	_	_

Table 8. Voltage and current maximum ratings (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VDD_ANA	Supply voltage for ADC	-0.3	_	3.63	V	_	_
VDD_USB	Supply voltage for USB analog	-0.3	_	3.63	V	_	_
VUSB0_Dx	USB0_DP and USB0_DM input voltage	-0.3	_	3.63	V	_	_
VDIO	Digital input voltage	-0.3	_	VDD + 0.3	V	_	_
VDIO_5VTOL	Digital input voltage for 5V tolerant I/O pins	-0.3	_	min(VDD + 3.6V, 5.5V)	V	_	_
VAIO	Analog input voltageAnalog pins are defined as pins that do not have an associated general- purpose I/O port function. 1	-0.3	_	VDD_ANA + 0.3	V		
IDD	Digital supply current ²	_	_	100	mA	_	_
ID	Maximum current single pin limit (digital output pins)	-25	_	25	mA	_	_

- 1. Analog pins are defined as pins that do not have an associated general-purpose I/O port function.
- 2. This limit is per supply pin. This includes all power pins, including VDD, VDD_ANA and VDD_USB

2.5 Required Power-On-Reset (POR) Sequencing

• VDD and VDD_ANA must be same voltage

3 General

3.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

3.2 Nonswitching electrical specifications

3.2.1 Voltage and current operating requirement

Table 9. Voltage and current operating requirement

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VDD	Supply Voltage for IO, LDO, Flash, and CMPx	1.71	_	3.6	V	_	_
VDD_ANA	Supply voltage for ADC	VDD - 0. 1	_	VDD + 0.	V	_	_
VSS - VSS_ANA	VSS-to-VSS_ANA differential voltage	-0.1	_	0.1	V	_	_
VDD_USB	Supply voltage for USB analog	3.0	_	3.6	V	_	_
VIH	Input high voltage	0.7 × VDD	_	_	V	1.71 V ≤ VDD ≤ 3.6 V	_
VIH_5VTOL	Input high voltage of 5V tolerant IO	0.7 x VDD	_	_	V	1.71 V ≤ VDD ≤ 3.6 V	_
VIL	Input low voltage	_	_	0.3 × VDD	V	1.71 V ≤ VDD ≤ 3.6 V	_
VIL_5VTOL	Input low voltage of 5 V tolerant IO	_	_	0.3 x VDD	V	1.71 V ≤ VDD ≤ 3.6 V	_
VHYS	Input hysteresis	0.1 × VDD	_	_	V	_	_
VHYS_5VTOL	Input hysteresis of 5V tolerant IO	0.1 x VDD	_	_	V	_	_
IICIO	IO pin DC injection current — per pin ¹	-3	_	_	mA	VIN < VSS-0.3 V (negative current injection)	_

Table 9. Voltage and current operating requirement (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
IICIO	IO pin DC injection current — per pin ¹	_	_	3	mA	VIN > VDD+0.3 V (positive current injection)	
IICcont	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins	-25	_	_	mA	Negative current injection	_
IICcont	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins	_	_	25	mA	Positive current injection	_
VODPU	Open drain pullup voltage level ²	VDD	_	VDD	V	_	_

^{1.} All I/O pins are internally clamped to VSS and VDD through an ESD protection diode. If VIN is greater than VDD_MIN(=VSS-0.3 V) or is less than VDD_MAX(=VDD+ 0.3 V), then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed, then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (-0.3 - VIN)/(-IICIOmin). The positive injection current limiting resistor is calculated as R=(VIN-VDD_MAX)/IICIOmax. The actual resistor should be an order of magnitude higher to tolerate transient voltages

3.2.2 HVD, LVD, and POR operating requirements

The device includes low-voltage detection (LVD) and high-voltage detection (HVD) power supervisor circuits for following power supplies:

VDD

3.2.2.1 VDD supply HVD, LVD, and POR Operating Requirements

Table 10. VDD supply HVD, LVD, and POR Operating Requirements

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VHVDH_VDD	VDD Rising high- voltage detect threshold (HVD assertion)	3.730	3.810	3.890	V	_	_
VHVDH_HYS_VDD	VDD High-voltage inhibit reset/recover hysteresis	_	38	_	mV	_	_

^{2.} Open drain outputs must be pulled to whichever supply voltage corresponds to that IO, VDD as appropriate.

Table 10. VDD supply HVD, LVD, and POR Operating Requirements (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VLVDH_VDD	VDD Falling low- voltage detect threshold (LVD assertion) - high range	2.567	2.619	2.673	V		_
VLVDH_HYS_VDD	VDD Low-voltage inhibit reset/recover hysteresis - high range	_	27	_	mV	_	_
VLVDL_VDD	VDD Falling low- voltage detect threshold (LVD assertion) - low range	1.618	1.651	1.684	V	_	_
VLVDL_HYS_VDD	VDD Low-voltage inhibit reset/recover hysteresis - low range	_	16	_	mV	_	_

3.2.3 Voltage and current operating behaviors

Table 11. Voltage and current operating behaviors

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VOH	Output high voltage — Normal drive strength 1	VDD – 0. 5	_	_	V	2.7 V ≤ VDD ≤ 3.6 V, IOH = 4 mA	_
VOH	Output high voltage — Normal drive strength 1	VDD – 0. 5	_	_	V	1.71 V ≤ VDD < 2.7 V, IOH = 2.5 mA	_
VOH	Output high voltage — High drive strength 1,2	VDD – 0. 5	_	_	V	2.7 V ≤ VDD ≤ 3.6 V, IOH = 6 mA	_
VOH	Output high voltage — High drive strength 1,2	VDD – 0. 5	_	_	V	1.71 V ≤ VDD < 2.7 V, IOH = 3.75 mA	_
IOHT	Output high current total for all ports	_	_	100	mA	_	_
VOL	Output low voltage — Normal drive strength 1,3	_	_	0.5	V	2.7 V ≤ VDD ≤ 3.6 V, IOL = 4 mA	_

Table 11. Voltage and current operating behaviors (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VOL	Output low voltage — Normal drive strength 1,3	_	_	0.5	V	1.71 V ≤ VDD < 2.7 V, IOL = 2.5 mA	_
VOL	Output low voltage — High drive strength 1,2,3	_	_	0.5	V	2.7 V ≤ VDD ≤ 3.6 V, IOL = 6 mA	_
VOL	Output low voltage — High drive strength 1,2,3	_	_	0.5	V	1.71 V ≤ VDD < 2.7 V, IOL = 3.75 mA	_
IOLT	Output low current total for all ports	_	_	100	mA	_	_
IIN	Input leakage current (per pin) for full temperature range ⁴	_	0.02	1	μΑ	_	_
IIN	Input leakage current (per pin) at 25 °C ⁴	_	0.001	0.025	μА	_	_
IIN	Input leakage current (total all pins) for full temperature range ⁴	_	0.025	41	μА	_	_
IOZ	Hi-Z (off-state) leakage current (per pin)	_	0.02	1	μА	_	_
RPU	Internal pullup resistors	33	50	75	kΩ	_	_
RPU (I3C)	Internal pullup resistors ⁵	(VDD - 0.27 V)/3 mA	1.75	_	kΩ	_	_
RPD	Internal pulldown resistors	33	50	75	kΩ	_	_
RHPU	High-resistance pullup option (PCRx[PV] = 1) ⁶	0.67	_	1.5	ΜΩ	_	_
RHPD	High-resistance pulldown option (PCRx[PV] = 1) ⁶	0.67	_	1.5	ΜΩ	_	_
VBG	Bandgap voltage reference voltage	0.98	1.0	1.02	V	_	_

- 1. For the HD pads, when setting DSE1=1, the IOH/IOL are four times higher at the same VOH/VOL.
- RST pins are always configured in high drive mode
 Open drain outputs must be pulled to VDD

- 4. Measured at VDD = 3.6 V.
- 5. Only I3C pins support this option
- 6. Only RST pins support this option.

3.2.4 On-chip regulator electrical specifications

3.2.4.1 LDO_CORE electrical specifications

Table 12. LDO_CORE electrical specifications

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VDD	LDO_CORE input supply voltage	1.71	_	3.6	V	_	_
ILOAD	LDO_CORE max load current	_	_	16	mA	Normal drive strength	_
ILOAD	LDO_CORE max load current	_	_	2	mA	Low drive strength	_
IDD	LDO_CORE current consumption	_	_	250	μΑ	Normal drive strength	_
IDD	LDO_CORE current consumption	_	_	500	nA	Low drive strength	_
IINRUSH	LDO_CORE inrush current	_	_	10	mA	_	_

3.2.5 Power mode transition operating behaviors

All specifications in the following table assume this clock configuration:

- CPU clock = 48 MHz
- AHB clock = 48 MHz
- Clock source = FIRC

3.2.5.1 Power mode transition operating behaviors

Table 13. Power mode transition operating behaviors

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tPOR	After a POR event, amount of time to execution of the first instruction (measured from the point where VDD reach 1.8V) across the operating temperature range of the chip. 1,2	_	2.31	2.38	ms		

Table 13. Power mode transition operating behaviors (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tSLEEP	SLEEP → ACTIVE 1,2,3,4	_	0.21	0.25	μs		_
tDSLEEP	DEEP SLEEP → ACTIVE 1,2,3,4	_	7.4	8.7	μs	_	_
tPWDN	Power DOWN → ACTIVE 1,2,3,5	_	17.1	20.6	μs	_	_
tDPWDN	Deep Power DOWN → ACTIVE 1,2,3,4	_	2.36	2.45	ms	_	_

- 1. Max value is mean+3 × sigma of tested values at the worst case of ambient temperature range and VDD 1.71 V to 3.6 V. Max values are based on characterization but not covered by test limits in production.
- 2. Typical value is the average of values tested at Temperature=25 °C and VDD=3.3 V
- 3. WFE used for low-power mode entry
- 4. SPC->LPWKUP_DELAY[LPWKUP_DELAY] = 0x00 and the Core voltage level is configured as same level for active and low power mode (SPC->ACTIVE_CFG[CORELDO_VDD_LVL]=SPC->LP_CFG[CORELDO_VDD_LVL] = 01b).
- 5. SPC->LPWKUP_DELAY[LPWKUP_DELAY] = 0x5B and the Core voltage level is configured as different level for active and low power mode (SPC->ACTIVE_CFG[CORELDO_VDD_LVL] = 01b for active mode, SPC->LP_CFG[CORELDO_VDD_LVL] = 00b for low power mode)

3.2.6 Power consumption operating behaviors

The maximum values stated in the following sections represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

3.2.6.1 Power consumption operating behaviors

Table 14. Power consumption operating behaviors

Symbol	Description	Condition ¹	Min	Тур	Max	Unit
IDD_ACT-MD_1 ²	` ` ` .	25 °C	_	2.54	_	mA
	internal flash, All peripheral clocks disabled, CPU_CLK	105 °C	_	2.85	_	mA
	= 48 MHz; AHB_CLK = 48 MHz; SLOW_CLK = 12 MHz, CPU_CLK from FRO192M; Flash is configured to LP mode. VDD_CORE (1.0 V)	125 °C	_	3.11	_	mA
IDD_ACT-MD_2	While(1) loop executing from	25 °C	_	2.97	_	mA
	internal flash, All peripheral clocks enabled, CPU_CLK =	105 °C	_	3.29	_	mA
	48 MHz; AHB_CLK = 48 MHz; SLOW_CLK = 12 MHz, CPU_CLK from FRO192M. VDD_CORE (1.0 V).	125 °C	_	3.56	_	mA
IDD_ACT-MD-CM_1	Coremark executing from	25 °C	_	2.82	_	mA
	internal flash, All peripheral clocks disabled, CPU_CLK	105 °C	_	3.13	_	mA
	= 48 MHz; AHB_CLK = 48	125 °C	_	3.38	_	mA

Table 14. Power consumption operating behaviors (continued)

Symbol	Description	Condition ¹	Min	Тур	Max	Unit
	MHz; SLOW_CLK = 12 MHz, CPU_CLK from FRO192M. Flash is configured to LP mode. VDD_CORE (1.0 V).					
IDD_ACT-MD-CM_2	Coremark executing from	25 °C	_	3.25	_	mA
	internal flash, All peripheral clocks enabled, CPU_CLK =	105 °C	_	3.57	_	mA
	48 MHz; AHB_CLK = 48 MHz; SLOW_CLK = 12 MHz, CPU_CLK from FRO192M. VDD_CORE (1.0 V).	125 °C	_	3.84	_	mA
DD_ACT_SD_1	While(1) loop executing from	25 °C	_	5.44	_	mA
	internal flash, All peripheral clocks disabled, CPU_CLK	105 °C	_	5.85	_	mA
	= 96 MHz; AHB_CLK = 96 MHz; SLOW_CLK = 24 MHz, CPU_CLK from FRO192M. VDD_CORE (1.1 V)	125 °C	_	6.17	_	mA
DD_ACT_SD_2	While(1) loop executing from	25 °C	_	6.92	_	mA
	internal flash, All peripheral clocks enabled, CPU_CLK =	105 °C	_	7.36	_	mA
	96 MHz; AHB_CLK = 96 MHz; SLOW_CLK = 24 MHz, FRO192M output is 192MHz. VDD_CORE (1.1 V)	125 °C	_	7.68	_	mA
DD_ACT_SD_CM_1	Coremark executing from	25 °C	_	5.94	_	mA
	internal flash, All peripheral clocks disabled, CPU_CLK	105 °C	_	6.33	_	mA
	= 96 MHz; AHB_CLK = 96 MHz; SLOW_CLK = 24 MHz, CPU_CLK from FRO192M. VDD_CORE (1.1 V)	125 °C	_	6.64	_	mA
DD_ACT_SD_CM_2	Coremark executing from	25 °C	_	7.42		mA
	internal flash, All peripheral clocks enabled, CPU_CLK =	105 °C		7.84	_	mA
	96 MHz; AHB_CLK = 96 MHz; SLOW_CLK = 24 MHz, CPU_CLK from FRO192M. FRO192M output is 192MHz. VDD_CORE (1.1 V)	125 °C		8.14		mA
IDD_SLEEP_SD		25 °C	_	2.92	_	mA
	= OFF, All peripheral clocks disabled, AHB_CLK	105 °C	_	3.29	_	mA
	= 96 MHz; SLOW_CLK = 24 MHz,AHB_CLK from FRO192M, LDO_CORE	125 °C	-	3.60	-	mA

Table 14. Power consumption operating behaviors (continued)

Symbol	Description	Condition ¹	Min	Тур	Max	Unit
	drive strenth is normal. VDD_CORE (1.1 V)					
DD_SLEEP_MD	Core in WFI; CPU_CLK =	25 °C	_	0.34	_	mA
	OFF, All peripheral clocks disabled, AHB_CLK = 12	105 °C	_	0.60	_	mA
	MHz; SLOW_CLK = 3 MHz, AHB_CLK from FRO-12M. LDO_CORE drive strenth is low. VDD_CORE (1.0 V)	125 °C	_	0.85	_	mA
IDD_DEEP_SLEEP_SD	Core in WFI; CPU_CLK	25 °C	_	242.05	_	μΑ
	= OFF, All peripheral clocks disabled, AHB_CLK	105 °C	_	537.99	<u> </u>	μA
	= OFF; SLOW_CLK = OFF, FRO-12M disabled, all on- chip SRAM in deep sleep. LDO_CORE drive strenth is normal.VDD_CORE (1.1 V)	125 °C	_	800.22	_	μА
DD_DEEP_SLEEP_MD1	Core in WFI; CPU_CLK	25 °C	_	20.28	<u> </u>	μA
	= OFF, All peripheral clocks disabled, AHB CLK	105 °C	_	251.85	<u> </u>	μΑ
	= OFF; SLOW_CLK = OFF, FRO-12M disabled, all on- chip SRAM in deep sleep. LDO_CORE drive strenth is low. VDD_CORE (1.0 V)	125 °C	_	472.36	_	μА
DD_DEEP_SLEEP_MD2	Core in WFI; CPU_CLK	25 °C	_	90.44	_	μA
	= OFF, All peripheral clocks disabled, AHB_CLK	105 °C	_	320.75	_	μΑ
	= OFF; SLOW_CLK = OFF, FRO-12M enabled. VDD_CORE (1.0 V).	125 °C	_	541.68	_	μА
DD_POWER_DOWN	Core in WFI; CPU_CLK	25 °C	_	6.47	_	μΑ
	= OFF, all VDD_CORE domains power static,	105 °C	_	134.69	_	μA
AHB_CLK = OFF; SLOW_CLK = OFF; FRO-16K disabled; Flash is OFF.	125 °C	_	267.54	_	μА	
DOWN_1	Core in WFI; CPU_CLK	25 °C	_	0.39	_	μΑ
	= OFF, all VDD_CORE domains power gated,	105 °C	_	3.66	_	μΑ
	domains power gated, AHB_CLK = OFF; SLOW_CLK = OFF; FRO-16K disabled. Wakeup timer is OFF. SRAM is OFF		_	8.06	_	μА

Table 14. Power consumption operating behaviors (continued)

Symbol	Description	Condition ¹	Min	Тур	Max	Unit
IDD_DEEP_POWER_	Core in WFI; CPU_CLK	25 °C	_	0.52	_	μΑ
DOWN_2	= OFF, all VDD_CORE domains power gated, AHB_CLK = OFF; SLOW_CLK = OFF, FRO-16K enabled. Wakeup timer is ON. SRAM is OFF	105 °C	_	3.78	_	μΑ
		125 °C	_	8.18	_	μΑ
IDD_DEEP_POWER_	Core in WFI; CPU_CLK	25 °C	_	0.72	_	μΑ
DOWN_3	= OFF, all VDD_CORE domains power gated,	105 °C	_	6.47	_	μΑ
	AHB_CLK = OFF; SLOW_CLK = OFF, FRO-16K enabled. Wakeup timer is ON. RAM A0 retained	125 °C	_	13.87	_	μΑ

^{1.} Ambient Temperature

3.2.7 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

3.2.8 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to nxp.com.
- 2. Perform a keyword search for "EMC design".

3.2.9 Capacitance attributes

Table 15. Capacitance attributes

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
CIN_A	Input capacitance: analog pins	_	_	7	pF	_	_
CIN_D	Input capacitance: digital pins	_	_	7	pF	_	_

^{2.} SD: standard drive, core voltage is 1.1V. MD: middle drive, core voltage is 1.0V

3.3 Switching specifications

3.3.1 Device clock specs

Table 16. Device clock specs

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
fCPU	CPU clock (CPU_ CLK)	_	_	96	MHz	VDD_CORE = 1.1 V	_
fSYSTEM	SYSTEM clock (SYSTEM_CLK)	_	_	96	MHz	VDD_CORE = 1.1 V	_
fSLOW	Slow clock (SLOW_ CLK)	_	_	24	MHz	VDD_CORE = 1.1 V	_
fCPU	CPU clock (CPU_ CLK)	_	_	48	MHz	VDD_CORE = 1.0 V	_
fSYSTEM	SYSTEM clock (SYSTEM_CLK)	_	_	48	MHz	VDD_CORE = 1.0 V	_
fSLOW	Slow clock (SLOW_ CLK)	_	_	12	MHz	VDD_CORE = 1.0 V	_

3.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO, LPUART, LPI2C, LPI3C, LPSPI functions.

3.3.2.1 General switching specifications

NOTERefer to attached pinout spreadsheet.

Table 17. General switching specifications

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
_	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path ¹	1.5	_	_	SYSTEM clock cycles	The synchronous and asynchronous timing must be met.	
_	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	150	_	_	ns	_	_
_	GPIO pin interrupt pulse width (digital glitch filter disabled, analog	50	_	_	ns	_	_

Table 17. General switching specifications (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
	filter disabled) — Asynchronous path						
_	External RST pin interrupt pulse width — Asynchronous path ²	330	_	_	ns	This is the shortest pulse that is guaranteed to be recognized.	_
_	GPIO pin interrupt pulse width — Asynchronous path ²	16	_	_	ns	_	_
_	Port rise/fall time for slow I/O pins ^{3,4}	1	_	7	ns	2.7 ≤ VDD ≤ 3.6 V, Fast slew rate (SRE = 0; DSE = 0)	_
_	Port rise/fall time for slow I/O pins ^{3,4}	3.5	_	15	ns	2.7 ≤ VDD≤ 3.6 V, Slow slew rate (SRE = 1; DSE = 0)	_
_	Port rise/fall time for slow I/O pins ^{3,4}	1	_	7	ns	1.71 ≤ VDD < 2.7 V, Fast slew rate (SRE = 0; DSE = 1)	_
_	Port rise/fall time for slow I/O pins ^{3,4}	3.5	_	25	ns	1.71 ≤ VDD < 2.7 V, Slow slew rate (SRE = 1; DSE = 1)	_
	Port rise/fall time for slow I/O pins, 5V Tolerant ^{3,4}	1	_	7	ns	2.7 ≤ VDD ≤ 3.6 V, Fast slew rate (SRE = 0; DSE = 0)	_
_	Port rise/fall time for slow I/O pins, 5V Tolerant ^{3,4}	3.5	_	15	ns	2.7 ≤ VDD≤ 3.6 V, Slow slew rate (SRE = 1; DSE = 0)	_
_	Port rise/fall time for slow I/O pins, 5V Tolerant ^{3,4}	1	_	7	ns	1.71 ≤ VDD < 2.7 V, Fast slew rate (SRE = 0; DSE = 1)	_
_	Port rise/fall time for slow I/O pins, 5V Tolerant ^{3,4}	3.5	_	25	ns	1.71 ≤ VDD < 2.7 V, Fast slew rate (SRE = 1; DSE = 1)	_
_	Port rise/fall time for medium I/O pins ^{5,6}	0.8	_	4	ns	2.7 ≤ VDD ≤ 3.6 V, Fast slew rate (SRE = 0; DSE = 0)	_
_	Port rise/fall time for medium I/O pins ^{5,6}	1	_	7	ns	2.7 ≤ VDD ≤ 3.6 V, Slow slew rate (SRE = 1; DSE = 0)	_
_	Port rise/fall time for medium I/O pins ^{5,6}	0.8	_	4	ns	1.71 ≤ VDD < 2.7 V, Fast slew rate (SRE = 0; DSE = 1)	_

Table 17. General switching specifications (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
_	Port rise/fall time for medium I/O pins ^{5,6}	1	_	7	ns	1.71 ≤ VDD < 2.7 V, Slow slew rate (SRE = 1; DSE = 1)	_
_	HD pins ⁷	2.2	_	7	ns	2.7 ≤ VDD≤ 3.6 V, Normal drive, fast slew rate (SRE = 0; DSE = 0)	_
_	Port rise/fall time for HD pins ⁷	1	_	7	ns	1.71 ≤ VDD < 2.7 V, High drive (DSE = 1), Fast slew rate (SRE = 0)	_
_	Port rise/fall time for HD pins ⁷	3.5	_	25	ns	1.71 ≤ VDD < 2.7 V, High drive (DSE = 1), Slow slew rate (SRE = 1)	_
_	Port rise/fall time for HD pins ⁷	1	_	7	ns	2.7 ≤ VDD ≤ 3.6 V, Normal drive (DSE = 0), Fast slew rate (SRE = 0)	_
_	Port rise/fall time for HD pins ⁷	3.5	_	15	ns	2.7 ≤ VDD ≤ 3.6 V, Normal drive (DSE = 0), Slow slew rate (SRE = 1)	_
_	RST pins ³	3	_	8	ns	2.7 ≤ VDD ≤ 3.6 V	_
_	RST pins ³	3.6	_	20	ns	1.71 ≤ VDD < 2.7 V	_

- 1. The synchronous and asynchronous timing must be met.
- 2. This is the shortest pulse that is guaranteed to be recognized
- 3. Load is 25 pF.
- 4. For the HD I/O pins, setting DSE1 = 1 will support the same rise/fall time at 4x the load capacitance. For the 5VTOL I/O pins, setting DSE1=1 will support the same fall time at 2x the load capacitance, but the rise time will increase due to the increased loading
- 5. Assumes default values in CALIB1 and CALIB0 in PORTS
- 6. 25 pF lumped load
- 7. Load is 25 pF for DSE=0. Load is 100 pF for DSE=2 or DSE=3. Drive strength and slew rate are configured using PORTx_PCRn[DSE1], PORTx_PCRn[DSE], and PORTx_PCRn[SRE].

3.4 Thermal specifications

3.4.1 Thermal operating requirements

Table 18. Thermal operating requirements

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
ТА	Ambient temperature ¹	-40	25	125	°C	_	_
TJ	Die junction temperature ^{2,3,4}	_	_	125	°C	_	_

- 1. The device may operate at maximum T_A rating as long as T_J maximum of 125 °C is not exceeded. The simplest method to determine T_J is: $T_J = T_A + R_{\theta J A}$ *chip power dissipation.
- 2. The device operating specification is not guaranteed beyond 125 °C T_J.
- 3. The maximum operating requirement applies to all chapters unless otherwise specifically stated.
- 4. Operating at maximum conditions for extended periods may affect device reliability. Refer to Product Lifetime Usage Estimates application note (AN14194)

3.4.2 Thermal attributes

Table 19. Thermal attributes

Rating	Board Type ¹	Symbol	32 HVQFN	48 HVQFN	64	Unit
			111 4111	111 0111	LQFP	
Junction to Ambient Thermal Resistance ²	JESD51-7, 2s2p	R _{θJA}	37.4	35.0	55.9	°C/W
Junction-to-Top of Package Thermal Characterization Parameter ²	JESD51-7, 2s2p	$\Psi_{ m JT}$	3.3	3.5	6.1	°C/W

- 1. Thermal test board meets JEDEC specification for this package (JESD51-7)
- 2. Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment

4 Peripheral operating requirements and behaviors

4.1 Core modules

4.1.1 Debug trace operating behaviors

Table 20. Debug trace operating behaviors

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
_	Frequency of operation	_	_	36	MHz	SD mode	_
_	Frequency of operation	_	_	25	MHz	MD mode	_
T1	Clock period	27.78	_	_	ns	SD mode	_

Table 20. Debug trace operating behaviors (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
T1	Clock period	40	_	_	ns	MD mode	_
T2	Low pulse width	2	_	_	ns	_	_
Т3	High pulse width	2	_	_	ns	_	_
Т4	Clock and data rise time	_	_	3	ns	_	_
Т5	Clock and data fall time	_	_	3	ns	_	_
Т6	Data setup	1.5	_	_	ns	_	_
T7	Data hold	1.0	_		ns	_	_

4.1.2 JTAG Debug Interface Timing

The following table gives the JTAG specifications in debug interface mode.

Table 21. JTAG Debug Interface Timing

	Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
_		Operating voltage	1.71	_	3.6	V	_	_
J1		TCLK frequency of operation	_	_	25	MHz	Boundary Scan (SD mode)	_

Table 21. JTAG Debug Interface Timing (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
J1	TCLK frequency of operation	_	_	12.5	MHz	Boundary Scan (MD mode)	_
J1	TCLK frequency of operation	_	_	25	_	JTAG-DP/TAP (SD mode)	_
J1	TCLK frequency of operation	_	_	12.5	_	JTAG-DP/TAP (MD mode)	_
J2	TCLK cycle period	1000/J1	_	_	ns	_	_
J3	TCLK clock pulse width	J2/2	_	_	ns	_	_
J4	TCLK rise and fall times	_	_	3	ns	_	_
J5	Boundary scan input data setup time to TCLK rise	8	_	_	ns	SD mode	_
J5	Boundary scan input data setup time to TCLK rise	16	_	_	ns	MD mode	_
J6	Boundary scan input data hold time after TCLK rise	-1	_	_	ns	SD mode	_
J6	Boundary scan input data hold time after TCLK rise	-1	_	_	ns	MD mode	_
J7	TCLK low to boundary scan output data valid	_	_	18	ns	SD mode	_
J7	TCLK low to boundary scan output data valid	_	_	38	_	MD mode	_
J8	TCLK low to boundary scan output high-Z	_	_	18	ns	SD mode	_
J8	TCLK low to boundary scan output high-Z	_	_	38	_	MD mode	_
19	JTAG-DP/TAP TMS, TDI input data setup time to TCLK rise	8	_	_	ns	SD mode	_
J9	JTAG-DP/TAP TMS, TDI input data setup time to TCLK rise	16	_	_	_	MD mode	_

Table 21. JTAG Debug Interface Timing (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
J10	JTAG-DP/TAP TMS, TDI input data hold time after TCLK rise	1	_	_	ns	SD mode	_
J10	JTAG-DP/TAP TMS, TDI input data hold time after TCLK rise	1	_	_	_	MD mode	_
J11	TCLK low to JTAG- DP/TAP TDO data valid	_	_	18	_	SD mode	_
J11	TCLK low to JTAG- DP/TAP TDO data valid	_	_	38	ns	MD mode	_
J12	TCLK low to JTAG- DP/TAP TDO high-Z	_	_	18	ns	SD mode	_
J12	TCLK low to JTAG- DP/TAP TDO high-Z	_	_	38	_	MD mode	_

TDOC represents the TDO bit frame of the scan packet in compact JTAG 2-wire mode.

4.1.3 Serial Wire Debug (SWD) Timing

The following table gives the Serial Wire Debug specifications for the device.

Table 22. Serial Wire Debug (SWD) Timing

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
_	Operating voltage	1.71	_	3.6	V	_	_
S1	SWD_CLK frequency of operation	_	_	25	MHz	SD mode	_
S1	SWD_CLK frequency of operation	_	_	20	MHz	MD mode	_
S2	SWD_CLK cycle period	1000/S1	_	_	ns	SD mode	_
S2	SWD_CLK cycle period	1000/S1	_	_	ns	MD mode	_
S3	SWD_CLK clock pulse width	20	_	_	ns	SD mode	_
S3	SWD_CLK clock pulse width	25	_	_	ns	MD mode	_
S4	SWD_CLK rise and fall times	_	_	3	ns	_	_
S5	SWD_DIO input data setup time to SWD_CLK rise	10	_	_	ns	SD mode	_

27 / 75

Table 22. Serial Wire Debug (SWD) Timing (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
S5	SWD_DIO input data setup time to SWD_ CLK rise	12.5	_	_	ns	MD mode	_
S6	SWD_DIO input data hold time after SWD_CLK rise	0	_	_	ns	SD mode	_
S6	SWD_DIO input data hold time after SWD_CLK rise	0	_	_	ns	MD mode	_
S7	SWD_CLK high to SWD_DIO data valid	_	_	25	ns	SD mode	_
S7	SWD_CLK high to SWD_DIO data valid	_	_	30	ns	MD mode	_
S8	SWD_CLK high to SWD_DIO high-Z	25	_	_	ns	SD mode	_
S8	SWD_CLK high to SWD_DIO high-Z	30	_	_	ns	MD mode	_

4.2 Clock modules

4.2.1 Reference Oscillator Specification

This chip is designed to meet targeted specifications with a ±40 ppm frequency error over the life of the part, which includes the temperature, mechanical, and aging excursions.

The table below shows typical specifications for the Crystal Oscillator.

4.2.1.1 System Crystal Oscillator Specification

Table 23. System Crystal Oscillator Specification

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
fosc	Crystal Frequency	8	_	50	MHz	_	_
Tol	Frequency tolerance	_	±10	±40	ppm	_	_
Jitosc	Jitter	_	70	_	_	Period jitter (RMS)	_
Vpp	Peak-to-peak amplitude of oscillation ¹	_	0.6	_	V	_	_
fec	Externally provided input clock frequency ²	0	_	50	MHz	_	_
tDC_EXTAL	External clock duty cycle	45	50	55	%	_	_
Vec	Externally provided input clock amplitude ²	Refer to Table 9 for VIH and VILlevels	_	_	_	_	_

^{1.} When a crystal is being used with the oscillator, the EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

4.2.1.2 System Oscillator Crystal Specifications.

Table 24. System Oscillator Crystal Specifications.

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
СР	Shunt Capacitance	_	1	2	pF	_	_
ESR	Crystal equivalent series resistance ¹	_	20	50	Ω	_	_
Cpara	Parasitic capacitance of EXTAL	_	_	8	pF	_	_
Cpara	Parasitic capacitance of XTAL	_	_	10	pF	_	_

^{2.} This specification is for an externally supplied clock driven to EXTAL and does not apply to any other clock input.

Table 24. System Oscillator Crystal Specifications. (continue

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
Cm	Motional capacitance Cm	2.05	2.05	2.665	fF	_	_
Lm	Motional inductance Lm	7.7	_	_	mH	_	_
tstart	Crystal start-up time ²	_	350	500	μs	_	_
IOSC	Current consumption	_	270	_	μΑ	Normal mode	_
IOSC	Current consumption	_	1	465	_	Sleep mode	_

- 1. Maximum crystal equivalent series resistance for 16 MHz is 80 ohms with 2 pF shunt capacitance.
- 2. Dependent on crystal specifications, proper PC board layout procedures must be followed to achieve specifications

4.2.1.3 System Oscillator Crystal Specifications

Table 25. System Oscillator Crystal Specifications.

Freq	R _m (ohms)	C _p (pF)	C _{load} (pF)	C _m (pF)	L _m (mH)	Typical	Typical	Drive level	(µW)
Crystal (MHz)						startup (µs)¹	Current consumpti on (µA) ¹	min	max
8	100	5.00	18.0	0.008	49.47	1240	168	24	34
16	80	2.00	8.00	0.008	12.37	215	168.3	16	22
16	200	1.00	8.00	0.008	12.37	186	200.4	31	46
25	60	3.00	11.0	0.008	5.07	224	245.6	70	93
25	60	2.00	10.0	0.008	5.07	128	232.5	61	80
25	100	1.00	8.00	0.008	5.07	73.6	232.7	62	82
32	60	3.00	9.00	0.008	3.09	233	269.6	71	95
32	60	2.00	8.00	0.008	3.09	116	253.2	59	80
32	100	1.00	8.00	0.008	3.09	52.4	289.3	91	123
40	50	2.00	8.00	0.008	1.98	80.4	296.9	73	99

Table 25. System Oscillator Crystal Specifications. (continued)

40	60	3.00	9.00	0.008	1.98	162	333.2	99	135
48	50	2.00	8.00	0.008	1.37	73.1	359.6	104	140
48	60	3.00	9.00	0.008	1.37	155	407.9	138	188

^{1.} This is based on simulation

4.2.2 FRO-192M specifications

Table 26. FRO-192M specifications

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
ffro192m	FRO-192M frequency (nominal)	_	192	_	MHz	_	_
Δffro192m	Frequency deviation (Ta = 0 °C – 85 °C)	_	_	±1.5	%	Open loop	_
Δffro192m	Frequency deviation (Ta = -40 °C - 125 °C)	_	_	±3	%	Open loop	_
Δffro192m	Frequency deviation (Ta = -40 °C - 125 °C)	_	_	±0.25	%	Closed loop (using accurate clock source as reference)	_
tstartup	Start-up time	_	2	_	μs	Oscillation time with initial accuracy of -20 % to +2 % of enable signal assertion	_
tstartup	Start-up time	_	_	20	μs	Oscillation time within +/- 2 % from enable signal assertion	_
fos	Frequency overshoot during startup	_	_	2	%	_	_
jitper	Period jitter RMS ¹	_	70	_	ps	_	_
jitper	Accumulated jitter over 10K cycles ¹	_	800	_	ps	_	_
jitcyc	Cycle to cycle jitter ¹	_	100	_	ps	_	_
lfro192m_vdd1p8	Current consumption for vdd1p8	_	70	_	μΑ	_	_
lfro192m_vddlv	Current consumption for vddlv	_	35		μΑ	_	

^{1.} Tested at 96 MHz

4.2.3 FRO-12M specifications

Table 27. FRO-12M specifications

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
ffro12m	FRO-12M frequency (nominal)	_	12	_	MHz	_	_
Δffro12m	Frequency deviation	_	_	±3	%	open loop	_
Δffro12m	Frequency deviation	_	_	±0.6	%	closed loop (using accurate clock source as reference)	_
tstartup	Start-up time	_	5	_	μs	_	_
fos	Frequency overshoot during startup	_	10	20	%	_	_
Ifro12m	Current consumption	_	7	_	μΑ	_	_

4.2.4 FRO-16K specifications

Table 28. FRO-16K specifications

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
ffro16k	FRO-16K frequency (nominal)	_	16.384	_	kHz	_	_
Δffro16k	Frequency deviation over –40 °C to 105 °C Ta	_	_	±6	%	open loop	_
TRIMstep	Trimming step	_	1.5	_	%	_	_
tstartup	Start-up time	_	310	_	μs	_	_
lfro16k	Current consumption	_	50	_	nA	_	_

4.3 Memories and memory interfaces

4.3.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

4.3.1.1 Timing specifications

The following command times assume a flash bus clock frequency of 24 MHz. Command times will be increased by up to 10 μ s at 24 MHz if the module is exiting sleep mode when the command is launched. The time to abort a command is not included in the following table.

4.3.1.1.1 Flash command time specifications

Table 29. Flash command time specifications

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
trd1all128k	Read 1s All execution time (128 KB)	_	_	940	μs	_	_
trd1blk128k	Read 1s Block execution time (128 KB)	_	_	750	μs	_	_
trd1scr	Read 1s Sector execution time ¹	_	_	50	μs	_	-
trd1pg	Read 1s Page execution time ¹	_	_	4.4	μs	_	_
trd1pglv	Read 1s Page at low voltage execution time ¹	_	_	5.8	μs	_	_
trd1phr	Read 1s Phrase execution time ¹	_	_	3.8	μs	_	_
trdphrlv	Read 1s Phrase at low voltage execution time ¹	_	_	4.8	_	_	_
trdmisr8k	Read into MISR (8 KB) ¹	_	_	50	μs	_	_
trdmisr128k	Read into MISR (128 KB) ¹	_	_	750	μs	_	_
trd1iscr	Read 1s IFR Sector execution time ¹	_	_	50	μs	_	_
trd1ipg	Read 1s IFR Page execution time ¹	_	_	4.4	μs	_	_
trdipglv	Read 1s IFR Page execution time at low voltage execution time ¹	_	_	5.8	μs	_	_
trd1iphr	Read 1s IFR Phrase execution time ¹	_	_	3.8	μs	_	_
trd1iphlv	Read 1s IFR Phrase execution time at low voltage execution time 1	_	_	4.8	μs	_	_
trdimisr8k	Read IFR into MISR (8 KB) ¹	_	_	50	μs	_	_

Table 29. Flash command time specifications (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
trdimisrk32k	Read IFR into MISR (32 KB) ¹	_	_	190	μs	_	_
tpgmpg_initial	Program Page execution time at <1k cycles ^{2,3}	_	450	600	μs	_	_
tpgmpg_lifetime	Program Page execution time at >1k cycles ^{2,3}	_	450	750	μs	_	_
tpgmphr_initial	Program Phrase execution time at <1k cycles ^{2,3}	_	135	180	μs	_	_
tpgmphr_lifetime	Program Phrase execution time at >1k cycles ^{2,3}	_	135	225	μs	_	_
tersall128k	Erase All execution time (128 KB)	_	_	400	ms	_	_
tmasers128k	Mass Erase execution time (128 KB)	_	_	400	ms	_	_
terrscr	Erase Sector execution time ³	_	2	22	ms	_	_

- 1. Time based on simulation
- 2. Based on simulation with 3 pulse programming for typ, 6 pulse programming for max.
- 3. Based on TSMC specification for erase sector time with no added time for verification and overhead.

4.3.1.2 Flash high voltage current behavior

Table 30. Flash high voltage current behavior

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
IDD_IO_PGM	Average current adder to VDD during flash programming operation ¹	_	_	6	mA	_	_
IDD_IO_ERS	Average current adder to VDD during flash erase operation ¹	_	_	4	mA	_	_

1. See the Power Management chapter in the reference manual for the specific VDD voltage supply powering the flash array.

4.3.1.3 Flash reliability specifications

Table 31. Flash reliability specifications

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tnvmretp10k	Data retention after up to 10 K cycles	10	50	_	years	Program Flash	_
nnvmcycscr	Sector cycling endurance ¹	10 K	500 K	_	cycles	Program Flash	_
tnvmretp1k	Data retention after up to 1 K cycles	20	100	_	years	Program Flash	_
tnvmretp100k	Data retention after up to 100 K cycles	5	50	_	years	Program Flash	_
nnvmcyc256k	Sector cycling endurance for 256 KB ²	100 K	500 K	_	cycles	Program Flash	_

- 1. Sector cycling endurance represents the number of Program/Erase cycles on a single sector at -40°C ≤ Tj ≤ 125°C.
- 2. For devices with a single flash block, sectors must be located within the last 256 KB of the flash main memory. For devices with two flash blocks, sectors must be located within the last 256 KB of each flash main memory but must not total more than 256 KB per device.

4.4 Analog

4.4.1 ADC electrical specifications

ADC operating conditions apply when the ADC is used in differential mode.

All other ADC channels meet the 12-bit single-ended accuracy specifications.

4.4.1.1 ADC operating conditions

Table 32. ADC operating conditions

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VDDAD	Supply voltage	1.71	_	3.6	V	_	_
VSSAD	Ground voltage	-0.1	0	0.1	V	_	_
ΔVDD	1	-0.1	0	0.1	V	_	_
ΔVSS	1	0.1	0	0.1	V	_	_
VREFH	Reference Voltage High ²	0.99	VDDAD	VDDAD	V	_	_
VREFL	Reference Voltage Low ³	VSSAD	VSSAD	VSSAD	V	_	_

Table 32. ADC operating conditions (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VADIN	Input Voltage 3,4,5	VREFL	_	VREFH	V	_	_
FADCK	ADC conversion clock frequency	6	_	24	MHz	Low-power mode, PWRSEL=0	_
FADCK	ADC conversion clock frequency	6	_	60	MHz	Normal Mode, 16b, PWRSEL=1	_
FADCK	ADC conversion clock frequency	6	_	64	MHz	Normal Mode, 12b , PWRSEL=1	_
RAS	Analog source resistance (external) ⁶	_	_	5	kΩ	_	_
RADIN	Input Resistance ADC channels 7:0 7,8	_	_	1.65	kΩ	VDDAD ≥ 1.71 V	_
RADIN	Input Resistance ADC channels 7:0 7,8	_	_	1.525	kΩ	VDDAD ≥ 2.1 V	_
RADIN	Input Resistance ADC channels 7:0 7,8	_	0.925	1.35	kΩ	VDDAD ≥ 2.5 V	_
CADIN	Input Capacitance	_	1.92	2.4	pF	_	

- 1. DC potential difference
- 2. Minimum VDDAD/VREFH is 2.4 V in high-speed mode
- 3. For devices that do not have a dedicated VREFL and VSS_ANA pins, VREFL and VSS_ANA are tied to VSS internally.
- 4. If VREFH is less than VDD_ANA, then voltage inputs greater than VREFH but less than VDD_ANA are allowed but result in a full-scale conversion result
- 5. ADC selected inputs and unselected dedicated inputs must not exceed VDD_ANA during an ADC conversion. Unselected muxed inputs may exceed VDD_ANA but must not exceed the IO supply associated with the inputs (VDD) when a conversion is in progress. If an ADC input may exceed these levels, then a minimum of 1 K series resistance must be used between the source and the ADC input pin.
- 6. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible.
- 7. There are several types of ADC inputs. To see which channels correspond to which type of ADC inputs, see channel index map in reference manual
- 8. If the input come through a mux in the IO pad, add the IO Mux Resistance Adder value to the resistance for the channel type.Please refer to RM ADC analog channel input connections table for the detailed ADC channels that come through I/O mux.

Table 33. I/O mux resistance table

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
RIOMUX	I/O MUX Resistance			5.35	kΩ	VDD ≥ 1.71v	_

Table 33. I/O mux resistance table (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
RIOMUX	I/O MUX Resistance			1	kΩ	VDD ≥ 2.1 v	_
RIOMUX	I/O MUX Resistance		0.35	0.66	kΩ	VDD ≥ 2.5 v	_

4.4.1.2 ADC electrical characteristics

Table 34. ADC electrical characteristics

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
_	Supply current ¹	_	7	_	_	PWREN=0, Conversions triggered at 10 kS/s	_
IDDAD	Supply current ¹	_	60	_	μΑ	PWREN=1, No Conversions	_
IDDAD	Supply current ¹	_	200	_	μΑ	Low-power mode, 6 MHz Clock, PWRSEL=0	_

Table 34. ADC electrical characteristics (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
IDDAD	Supply current ¹	_	230	_	μА	Low-power mode, 24 MHz clock, PWRSEL=0	_
IDDAD	Supply current ¹	_	550	_	μΑ	Normal Mode, 60 MHz, PWRSEL=1	_
IDDAD	Supply cuurent	_	625	_	μА	High Speed Mode, 60 MHz Clock, PWRSEL=1, HS=1	_
IDDTS	Temp Sensor Supply Current	_	50	_	μΑ	Temperature Sensor Adder	_
CSMP	ADC Sample cycles ²	3.5	_	131.5	cycles	Low-power mode and High speed mode	_
Fconv	ADC conversion rate ³	_	_	4.0	MS/s	12b mode, (HS=1)	_
Fconv	ADC conversion rate ⁴	_	_	3.0	MS/s	16b mode, (HS=1)	_
TSMP_REQ	Required Sample Time ⁵	_	_	_	ns	Use equation based on RAS, RIOMUX, RADIN, CADIN, RAS, CAS, CP and desired accuracy (B)	_
TSMP	Sample Time ⁶	145.8	TSMP_R EQ	_	ns	Low-power mode	_
TSMP	Sample Time ⁷	58.3	TSMP_R EQ	_	ns	High-speed 16b mode	_
TSMP	Sample Time ⁸	54.7	TSMP_R EQ	_	ns	High-speed 12b mode	_
TSMPINT	Internal channel sample time inputs 9	2.0	_	_	μs	_	_
DNL	Differential non- linearity ^{10,11}	_	±1	_	12b LSB	_	_
INL	Integral non- linearity ^{10,11}	_	±1	_	12b LSB	_	_
ZSE	Zero-scale error (V_ADIN = V_ REFL) 10,11	_	±1	_	12b LSB	_	_
FSE	Full-scale error (V_ADIN = V_ REFH) 10,11	_	±2	_	12b LSB	_	_

Table 34. ADC electrical characteristics (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
TUE	Total Unadjusted Error ^{10,11}	_	±3	_	12b LSB	_	_
ENOB16	Effective number of bits, 16b Mode, 1 kHz input ^{11,12}	_	14.1	_	bits	23.4 kS/s (FADCK = 60 MHz, HS =1, AVGS=0111)	_
ENOB16	Effective number of bits, 16b Mode, 1 kHz input ^{11,12}	_	13.2	_	bits	187 kS/s (FADCK = 60 MHz, HS=1, AVGS = 0100)	_
ENOB16	Effective number of bits, 16b Mode, 1 kHz input	_	12.6	_	bits	750 kS/s (FADCK = 60 MHz, HS=1, AVGS =0010)	_
ENOB16	Effective number of bits, 16b Mode, 1 kHz input	_	12.0	_	bits	3.0 MS/s (FADCK = 60 MHz, HS=1, AVGS =0000)	_
ENOB12	Effective number of bits, 12b Mode, 1 kHz input ^{11,12}	_	11.5	_	bits	1.0 MS/s (FADCK = 64 MHz, HS =1, AVGS=0010)	_
ENOB12	Effective number of bits, 12b Mode, 1 kHz input ^{11,12}	_	11.0	_	bits	4.0 MS/s (FADCK = 64 MHz, HS =1,AVGS=0000)	_
SNDR16	Signal-to-noise plus distortion, 16b Mode, 1 kHz input ^{11,12}	_	86.6	_	dB	23.4 kS/s (FADCK=60 MHz, HS=1, AVGS=0111)	_
SNDR16	Signal-to-noise plus distortion, 16b Mode, 1 kHz input ^{11,12}	_	81.2	_	dB	187.5 kS/s (FADCK=60 MHz, HS=1, AVGS=0100)	_
SNDR16	Signal-to-noise plus distortion, 16b Mode, 1 kHz input ^{11,12}	_	77.6	_	dB	750 kS/s (FADCK=60MHz, HS=1, AVGS=0010)	_
SNDR16	Signal-to-noise plus distortion, 16b Mode, 1 kHz input	_	74	_	dB	3.0 MS/s (FADCK=60 MHz, HS=1, AVGS=0000)	_
SNDR12	Signal-to-noise plus distortion, 12b Mode, 1 kHz input ^{11,12}	_	71.0	_	dB	1.0 MS/s (FADCK=64 MHz, HS=1, AVGS=0010)	_
SNDR12	Signal-to-noise plus distortion, 12b	_	68.0	_	dB	4.0 MS/s (FADCK=64 MHz, HS=1, AVGS=0000)	_

Table 34. ADC electrical characteristics (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
	Mode, 1 kHz input ^{11,12}						
SFDR	Spurious free dynamic range 11,12	_	88.0	_	dB	12b/16b Mode, 1kHz input, AVGS =0010	_
SFDR	Spurious free dynamic range 11,12	_	82.0	_	dB	12b/16b Mode, 1kHz input, AVGS =0000	_
Tsu	Start-up time ¹³	5	_	_	μs	_	_
E_TS	Temperature sensor error ¹⁴	_	±1	±3	°C	Tj =-40 to 105 °C	_
E_TS	Temperature sensor error ¹⁴	_	±2	±4	°C	Tj=-40 to 125 °C	_
А	Temp Sensor Slope Constant ¹⁵	_	738	_	°C	_	_
В	Temp Sensor Offset Constant ¹⁵	_	287.5	_	°C	_	-
α	Temp Sensor Bandgap Constant ¹⁵	_	10.06	_	°C	_	_

- 1. The ADC supply current depends on the ADC conversion clock speed, conversion rate, and power mode. Typical value show is at 6 MHz, 24 MHz, and 48 MHz. For lowest power operation, PWRSEL should be set to 00.
- 2. Must meet minimum TSMP requirement
- 3. fADCK=64 MHz (HS Mode)
- 4. fADCK=60 MHz (HS Mode)
- 5. Required sample time is dictated by external components RAS, CAS, internal components RADIN, CADIN, CP, and desired sample accuracy in bits (B). Calculate it with formula: TSMP_REQ = B*In(2)*[RAS*(CAS+CP)+ (RAS + RIOMUX + RADIN)* CADIN(typ). RIOMUX=0 unless the ADC input channel goes through an analog mux in the IO"
- 6. Min based on 3.5 cycles @ 24 MHz
- 7. Min based on 3.5 cycles @ 60 MHz
- 8. Min based on 3.5 cycles @ 64 MHz
- 9. Internal channel inputs are those that do not come from external source (temperature sensor, bandgap).
- 10. 1 LSB = (VREFH VREFL)/2N (N=14 bits), for 16- bit specifications, multiply by 4.
- 11. All accuracy numbers assume that the ADC is calibrated with VREFH=VDD_ANA and using a high- speed- dedicated input channel. Typical values assume VDD_ANA = 3.0 V, Temp = 25 °C, fADCK = 24 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 12. Dynamic results assume Fin=1 kHz sinewave, no averaging unless otherwise specified
- 13. Delay required if PWREN=0
- 14. The temperature sensor can be calibrated to a +/- 1 % precision after board assembly by using a 3-temperature calibration flow with accurate ± 0.15 % temperature chamber
- 15. $T(^{\circ}C) = A^{*}[^{\circ}\alpha(Vbe8 Vbe1)/(Vbe8 + \alpha(Vbe8 Vbe1))] B$ where
 - · Vbe1 is the first value stored to the FIFO as a result of the temperature sensor channel conversion
 - · Vbe8 is the second value stored to the FIFO as a result of the temperature sensor channel conversion
 - · A is the slope factor
 - · B is the offset factor
 - α is the bandgap coefficient

Set the power-up delay (PUDLY) according to the ADC start-up time if PWREN=0.

4.4.2 Comparator and 8-bit DAC electrical specifications

Table 35. Comparator and 8-bit DAC electrical specifications

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VDD	Supply voltage	1.71	_	3.6	V	_	_
VREFH	8-bit DAC reference voltage high	0.97	_	VDD	V		_

Table 35. Comparator and 8-bit DAC electrical specifications (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
IDD_CMP	Supply current	_	200	_	μА	High speed mode (EN=1, HPMD=1)	_
IDD_CMP	Supply current	_	10	_	μА	Normal mode (EN=1, HPMD=0, NPMD=0)	_
IDD_CMP	Supply current	_	400	_	nA	Low-power mode (EN=1, HPMD=0, NPMD=1)	_
VAIN	Analog input voltage	VSS	_	VDD	V	<u> </u>	_
VAIO	Analog input offset voltage	_	_	20	mV	High speed mode	_
VAIO	Analog input offset voltage	_	_	20	mV	Normal mode	_
VAIO	Analog input offset voltage	_	_	40	mV	Low-power mode	_
VH	Analog comparator hysteresis ¹	_	0	_	mV	CR0[HYSTCTR] = 00	_
VH	Analog comparator hysteresis ¹	_	10	_	mV	CR0[HYSTCTR] = 01	_
VH	Analog comparator hysteresis ¹	_	20	_	mV	CR0[HYSTCTR] = 10	_
VH	Analog comparator hysteresis ¹	_	30	_	mV	CR0[HYSTCTR] = 11	_
VCMPOh	Output high	VDD - 0. 2	_	_	V	_	_
VCMPOI	Output low	_	_	0.2	V	_	_
tD	Propagation delay ²	_	_	25	ns	High speed mode, 100 mV overdrive, power > 1.71V	_
tD	Propagation delay ²	_	_	50	ns	High speed mode, 30 mV overdrive, power > 1.71V	_
tD	Propagation delay ²	_	_	600	ns	Normal mode, 30 mV overdrive, power > 1. 71V	_
tD	Propagation delay ²	_	_	5	μs	Low-power mode, 30 mV overdrive, power > 1.71V	_
tinit	Analog comparator initialization delay ³	_	_	40	μs	_	_

Table 35. Comparator and 8-bit DAC electrical specifications (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
IDAC8b	8-bit DAC current adder (enabled)	_	10	_	μΑ	High power mode (EN=1, PMODE=1)	_
IDAC8b	8-bit DAC current consumption	_	1	_	μΑ	Low power mode (EN=1, PMODE=0)	_
INL	8-bit DAC integral non-linearity ⁴	-1	_	+1.0	LSB	Low/High power mode, supply power > 1.71V	_
DNL	8-bit DAC differential non-linearity	-1	_	+1.0	LSB	Low/High power mode, power > 1.71V	_

- 1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD_ANA-0.6 V.
- 2. Overdrive does not include input offset voltage or hysteresis. The propagation delay is defined as the time delay between the change of the voltage on input pin and the output change of the comparator analog part
- 3. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
- 4. 1 LSB = Vreference/256

4.5 Timers

See General switching specifications.

4.6 Communication interfaces

4.6.1 LPUART

See General switching specifications.

4.6.2 LPSPI switching specifications

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes.

4.6.2.1 LPSPI master mode timing

Table 36. LPSPI master mode timing

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
LP1	Frequency of operation ¹	_	_	_	MHz	_	_
LP1	LPSPI10 ~ LPSPI1 medium speed pad	_	_	50	MHz	Master in SD mode	_
LP1	LPSPI10 ~ LPSPI1 slow speed pad	_	_	25	MHz	Master in SD mode	_
LP1	LPSPI10 ~ LPSPI1 medium speed pad	_	_	25	MHz	Master in MD mode	_
LP1	LPSPI10 ~ LPSPI1 slow speed pad	_	_	25	MHz	Master in MD mode	_
LP2	SPSCK period	1000/LP1	_	_	ns	_	_
LP3	Enable lead time ²	1/2	_	_	tperiph	_	_
LP4	Enable lag time ²	1/2	_	_	tperiph	_	_
LP5	Clock (SPSCK) high or low time	tSCK/2-3	_	tSCK/2	ns	_	_
LP6	Data setup time (inputs)	_	_	_	ns	_	_
LP6	LPSPI10 ~ LPSPI1 medium speed pad	7.2	_	_	ns	Master in SD mode	_
LP6	LPSPI10 ~ LPSPI1 slow speed pad	14.4	_	_	ns	Master in SD mode	_
LP6	LPSPI10 ~ LPSPI1 medium speed pad	14.4	_	_	ns	Master in MD mode	_
LP6	LPSPI10 ~ LPSPI1 slow speed pad	14.4	_	_	ns	Master in MD mode	_
LP7	Data hold time (inputs)	_	_	_	ns	_	_

Table 36. LPSPI master mode timing (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
LP7	LPSPI10 ~ LPSPI1 medium speed pad	0	_	_	ns	Master in SD mode	_
LP7	LPSPI10 ~ LPSPI1 slow speed pad	0	_	_	ns	Master in SD mode	_
LP7	LPSPI10 ~ LPSPI1 medium speed pad	0	_	_	ns	Master in MD mode	_
LP7	LPSPI10 ~ LPSPI1 slow speed pad	0	_	_	ns	Master in MD mode	_
LP8	Data valid (after SPSCK edge)	_	_	_	ns	_	_
LP8	LPSPI10 ~ LPSPI1 medium speed pad	_	_	7.2	ns	Master in SD mode	_
LP8	LPSPI10 ~ LPSPI1 slow speed pad	_	_	14.4	ns	Master in SD mode	_
LP8	LPSPI10 ~ LPSPI1 medium speed pad	_	_	14.4	ns	Master in MD mode	_
LP8	LPSPI10 ~ LPSPI1 slow speed pad	_	_	14.4	ns	Master in MD mode	_
LP9	Data hold time (outputs)	_	_	_	ns	_	_
LP9	LPSPI10 ~ LPSPI1 medium speed pad	_	_	-1	ns	Master in SD mode	_
LP9	LPSPI10 ~ LPSPI1 slow speed pad	_	_	-1	ns	Master in SD mode	_
LP9	LPSPI10 ~ LPSPI1 medium speed pad	_	_	-1	ns	Master in MD mode	_
LP9	LPSPI10 ~ LPSPI1 slow speed pad	_	_	-1	ns	Master in MD mode	_

^{1.} The frequency of operation is also limited to a minimum of fperiph/2048 and a max of fperiph/2, where fperiph is the LPSPI peripheral functional clock.

^{2.} tperiph = 1/fperiph

4.6.2.2 LPSPI slave mode timing

Table 37. LPSPI slave mode timing

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
LP1	Frequency of operation in OD mode ¹	_	_	_	_	_	_

Table 37. LPSPI slave mode timing (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
LP1	Ipspi0~Ipspi1 medium speed pad ¹	_	_	25	MHz	Slave Tx in SD mode	_
LP1	Ipspi0~Ipspi1 slow speed pad ¹	_	_	12.5	MHz	Slave Tx in SD mode	_
LP1	Ipspi0~Ipspi1 medium speed pad ¹	_	_	50	MHz	Slave Rx in SD mode	_
LP1	Ipspi0~lpspi1 slow speed pad	_	_	25	MHz	Slave Rx in SD mode	_
LP1	Ipspi0~Ipspi1 medium speed pad	_	_	12.5	MHz	Slave Tx in MD mode	_
LP1	Ipspi0~Ipspi1 slow speed pad	_	_	12.5	MHz	Slave Tx in MD mode	_
LP1	Ipspi0~Ipspi1 medium speed pad	_	_	12.5	MHz	Slave Rx in MD mode	_
LP1	Ipspi0~Ipspi1 slow speed pad	_	_	12.5	MHz	Slave Rx in MD mode	_
LP2	SPSCK period	4 x tperiph	_	2048 x tperiph	ns	_	_
LP3	Enable lead time ²	1	_	_	tperiph	_	_
LP4	Enable lag time ²	1	_	_	tperiph	_	_
LP5	Clock (SPSCK) high or low time	tSPSCK/ 2 - 5	_	tSPSCK/	ns	_	_
LP6	Data setup time (inputs)	_	_	_	_	_	_
LP6	Ipspi0~Ipspi1 medium speed pad	3.6	_	-	ns	Slave Rx in SD mode	_
LP6	lpspi0~lpspi1 slow speed pad	7.2	_	_	ns	Slave Rx in SD mode	_
LP6	Ipspi0~Ipspi1 medium speed pad	14.4	_	_	ns	Slave Rx in MD mode	_
LP6	lpspi0~lpspi1 slow speed pad	14.4	_	_	ns	Slave Rx in MD mode	_
LP7	Data hold time (inputs)	_	_	_	ns	_	_
LP7	Ipspi0~Ipspi1 medium speed pad	0	_	_	ns	Slave Rx in SD mode	_
LP7	lpspi0~lpspi1 slow speed pad	0	_	-	ns	Slave Rx in SD mode	_

Table 37. LPSPI slave mode timing (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
LP7	Ipspi0~lpspi1 medium speed pad	0	_	_	ns	Slave Rx in MD mode	_
LP7	Ipspi0~lpspi1 slow speed pad	0	_	_	ns	Slave Rx in MD mode	_
LP8	Slave access time ^{2,3}	_	_	tperiph	ns	_	_
LP9	Slave MISO disable time ^{2,4}	_	_	tperiph	ns	_	_
LP10	Data valid (after SPSCK edge)	_	_	_	ns	_	_
LP10	Ipspi0~lpspi1 medium speed pad	_	_	15.6	ns	Slave Tx in SD mode	_
LP10	Ipspi0~lpspi1 slow speed pad	_	_	31.2	ns	Slave Tx in SD mode	_
LP10	Ipspi0~lpspi1 medium speed pad	_	_	31.2	ns	Slave Tx in MD mode	_
LP10	Ipspi0~lpspi1 slow speed pad	_	_	31.2	ns	Slave Tx in MD mode	_
LP11	Data hold time (outputs)	_	_	_	ns	_	_
LP11	Ipspi0~lpspi1 medium speed pad	_	_	-1	ns	Slave Tx in SD mode	_
LP11	Ipspi0~lpspi1 slow speed pad	_	_	-1	ns	Slave Tx in SD mode	
LP11	lpspi0~lpspi1 medium speed pad	_	_	-1	ns	Slave Tx in MD mode	
LP11	lpspi0~lpspi1 slow speed pad	_	_	-1	ns	Slave Tx in MD mode	

^{1.} The frequency of operation is also limited to a minimum of fperiph/2048 and a max of fperiph/4, where fperiph is the LPSPI peripheral functional clock.

^{2.} tperiph = 1/fperiph

^{3.} Time to data active from high-impedance state

^{4.} Hold time to high-impedance state

4.6.3 LPI2C timing

Table 38. LPI2C timing

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
fSCL	SCL Clock Frequency in standard mode	0	_	100	kHz	_	_

Table 38. LPI2C timing (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
fSCL	SCL Clock Frequency in fast mode	0	_	400	kHz	_	_
tHD; STA	Hold time (repeated) START condition. After this period, the first clock pulse is generated in standard mode	4	_	_	μѕ	_	_
tHD; STA	Hold time (repeated) START condition. After this period, the first clock pulse is generated in fast mode	0.6	_	_	μѕ	_	_
tLOW	LOW period of the SCL clock in standard mode	4.7	_	_	μs	_	_
tLOW	LOW period of the SCL clock in fast mode	1.25	_	_	μs	_	_
tHIGH	HIGH period of the SCL clock in standard mode	4	_	_	μs	_	_
tHIGH	HIGH period of the SCL clock in fast mode	0.6	_	_	μs	_	_
tSU; STA	Set-up time for a repeated START condition in standard mode	4.7	_	_	μs	_	_
tSU; STA	Set-up time for a repeated START condition in fast mode	0.6	_	_	μs	_	_
tHD; DAT	Data hold time for I2C bus devices in standard mode 1,2	0	_	3.45	μs	_	_
tHD; DAT	Data hold time for I2C bus devices in fast mode ^{1,3}	0	_	0.9	μs	_	_
tSU; DAT	Data set-up time in standard mode ⁴	250	_	_	ns	_	_

Table 38. LPI2C timing (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tSU; DAT	Data set-up time in fast mode ^{2,5}	100A	_	-	ns	_	_
tr	Rise time of SDA and SCL signals in standard mode ⁶	_	_	1000	ns	_	_
tr	Rise time of SDA and SCL signals in fast mode ⁶	20 +0. 1Cb	_	300	ns	_	_
tf	Fall time of SDA and SCL signals in standard mode ⁵	_	_	300	ns	_	_
tf	Fall time of SDA and SCL signals in fast mode ⁵	20 +0. 1Cb	_	300	ns	_	_
tSU; STO	Set-up time for STOP condition in standard mode	4	_	_	μs	_	_
tSU; STO	Set-up time for STOP condition in fast mode	0.6	_	_	μs	_	_
tBUF	Bus free time between STOP and START condition in standard mode	4.7	_	_	μs	_	_
tBUF	Bus free time between STOP and START condition in fast mode	1.3	_	_	μs	_	_
tSP	Pulse width of spikes that must be suppressed by the input filter in standard mode	N/A	_	N/A	ns	_	_
tSP	Pulse width of spikes that must be suppressed by the input filter in fast mode	0	_	50	ns	_	_

The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
lines.

^{2.} The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal

^{3.} Input signal Slew = 10 ns and Output Load = 50 pF

^{4.} Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.

- 5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.
- 6. Cb = total capacitance of the one bus line in pF.

4.6.4 I2C 1 Mbps timing

Table 39. I2C 1 Mbps timing

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
fSCL	SCL Clock Frequency	0	_	1	MHz	_	_
tHD; STA	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	0.26	_	_	μs	_	_
tLOW	LOW period of the SCL clock	0.5	_	_	μs	_	_
tHIGH	HIGH period of the SCL clock	0.26	_	_	μs	_	_
tSU; STA	Set-up time for a repeated START condition	0.26	_	_	μs	_	_
tHD; DAT	Data hold time for I2C bus devices	0	_	_	μs	_	_
tSU; DAT	Data set-up time	50	_	_	ns	_	_
tr	Rise time of SDA and SCL signals ¹	20 +0. 1Cb	_	120	ns	_	_
tf	Fall time of SDA and SCL signals ¹	20 +0. 1Cb	_	120	ns	_	_
tSU; STO	Set-up time for STOP condition	0.26	_	_	μs	_	_
tBUF	Bus free time between STOP and START condition	0.5	_	_	μs	_	_
tSP	Pulse width of spikes that must be suppressed by the input filter	0	_	50	ns	_	_

1. Cb = total capacitance of the one bus line in pF for maximum value

4.6.5 I2C HS mode timing

Table 40. I2C HS mode timing

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
fSCL	SCL Clock Frequency	0	_	3.4	MHz	_	_
tHD; STA	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	0.26	_	_	μs		_
tLOW	LOW period of the SCL clock	0.5	_	_	μs	_	_
tHIGH	High period of the SCL clock	0.26	_	_	μs	_	_
tSU; STA	Set-up time for a repeated START condition	0.26	_	_	μs	_	_
tHD; DAT	Data hold time for I2C bus devices ¹	0	_	_	μs	_	_
tSU; DAT	Data setup time	34	_	_	ns	_	_
tr	Rise time of SDA and SCL signals ²	20 +0.1Cb	_	120	ns	_	_
tf	Fall time of SDA and SCL signals ²	20 +0.1Cb	_	120	ns	_	_
tSU; STO	Setup time for STOP condition	0.26	_	_	μs	_	_
tBUF	Bus free time between STOP and START condition	0.5	_	_	μs	_	_
tSP	Pulse width of spikes that must be	0	_	50	ns	_	_

Table 40. I2C HS mode timing (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
	suppressed by the input filter						

- A device must internally provide a data hold time to bridge the undefined part between VIH and VIL of the falling edge of the SCLH signal. An input circuit with a threshold as low as possible for the falling edge of the SCLH signal minimizes this hold time in maximum value.
- 2. Cb = total capacitance of the one bus line in pF. The max Cb value is 50 pF. Applicable for maximum value.

NOTE
Only PTB4/5, PTA18/19, PTC0/1, PTC4/5 pin can support Fast+ (3 MHz) mode

4.6.6 I3C Push-Pull Timing Parameters for SDR Mode

I3C interface is not supported on GPIO-Standard-plus pad type for 5 V operation. Measurements are with maximum output load of 30 pf, input transition of 1 ns. GPIO-Standard-plus pad configured with DSE = 1'b1 and GPIO-Medium pad with DSE = 1'b1 and SRE = 1'b1. SCL, SDA and PUR combination should be of same pad type. For e.g. I3C medium Data Pads to be used with I3C Medium Clock and PUR Pads Only. I3C Standard plus Data Pads to be used with I3C standard plus Clock and PUR pads only.

Table 41. I3C Push-Pull Timing Parameters for SDR Mode

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
fSCL	SCL Clock Frequency	0.01	12.5	12.9	MHz	FSCL = 1 / (tDIG_L + tDIG_H)	_
tDIG_L	SCL Clock Low Period ^{1,2}	32	_	_	ns	_	_
tDIG_H	SCL Clock High Period ¹	32	_	_	ns	_	_
tSCO	Clock in to Data Out for Slave ^{3,4}	_	_	12	ns	_	_
tCR	SCL Clock Rise Time ⁵	_	_	150e06 * 1 / fSCL (capped at 60)	ns	_	_
tCF	SCL Clock Fall Time ⁵	_	_	150e06 * 1 / fSCL (capped at 60)	ns	_	_
tHD_PP	SDA Signal Data Hold in Push-Pull Mode, Slave ⁶	0	_	_	_	Applicable for slave and master loopback modes	_
tSU_PP	SDA Signal Data Setup in Push-Pull Mode	3	_	N/A	ns	Applicable for slave and master loopback modes.	_

^{1.} tDIG_L and tDIG_H are the clock Low and High periods as seen at the receiver end of the I3C Bus using VIL and VIH (see Figure 30)

Data Sheet: Technical Data 54 / 75

- 2. As both edges are used, the hold time needs to be satisfied for the respective edges; i.e., tCF + 3 for falling edge clocks, and tCR + 3 for rising edge clocks.
- 3. Pad delay based on 90 Ω / 4 mA driver and 50 pF load. Note that Master may be a Slave in a multi-Master system, and thus shall also adhere to this requirement
- 4. Devices with more than 12ns of tSCO delay shall set the limitation bit in the BCR, and shall support the GETMXDS CCC to allow the Master to read this value and adjust computations accordingly. For purposes of system design and test conformance, this parameter should be considered together with pad delay, bus capacitance, propagation delay, and clock triggering points.
- 5. The clock maximum rise/fall time is capped at 60 ns. For lower frequency rise and fall the maximum value is limited at 60 ns, and is not dependent upon the clock frequency.
- 6. tHD_PP is a Hold time parameter for Push-Pull Mode that has a different value for Master mode vs. Slave mode. In SDR Mode the Hold time parameter is referred to as tHD_SDR.

4.6.7 USB Full-speed device electrical specifications

This section describes the USB0 port Full Speed/Low Speed transceiver. The USB0 (FS/LS Transceiver) meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 Specification with the amendments below.

- USB ENGINEERING CHANGE NOTICE
 - Title: 5 V Short Circuit Withstand Requirement Change
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
 - Title: Pull-up/Pull-down resistors
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: Suspend Current Limit Changes
 - Applies to: Universal Serial Bus Specification, Revision 2.0

This SoC does not have a dedicated pin to monitor the state of the USB VBUS signal. Please refer to the USBFS chapter in the Reference Manual for methods which can be used for VBUS Session_Valid detection with either a P4-12/ALT1 pin using an external resistive divider.

4.7 Human Machine Interface (HMI) modules

4.7.1 General Purpose Input/Output (GPIO)

See General switching specifications.

5 Package dimensions

5.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
64-pin LQFP	98ASS23234W
48-pin HVQFN	98ASA01637D
32-pin HVQFN	98ASA02110D

6 Pinout

6.1 MCXA143, A142, A153, A152 Signal Multiplexing and Pin Assignments

The signal multiplexing and pin assignments are provided in an Excel file attached to this document:

- 1. Click the paperclip symbol on the left side of the PDF window.
- 2. Double-click on the Excel file to open it.
- 3. Select the "Pinout" tab.

The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

However, pinout table is also given below:

Table 42. pinmux

Pin Name	MCXA14x15x 64LQFP	MCXA14x15x 48HVQFN	MCXA14x15x 32HVQFN	Pinmux Assignment	Pad Settings	Alternate Functions
P1_8	2	1	1	ALT0 - P1_8	IO Supply - VDD	ISP - I2C_SDA
				ALT2 - LPUART1_RXD	Pad type - HD+I3C	VDD SYS - WUU0_IN10
				ALT3 - LPI2C0_SDA	Default - DIS	
				ALT4 - CT_INP8		
				ALT5 - CT0_MAT2		
				ALT10 - I3C0_SDA		
P1_9	3	2	2	ALT0 - P1_9	IO Supply - VDD	ISP - I2C_SCL
				ALT2 - LPUART1_TXD	Pad type - HD	
				ALT3 - LPI2C0_SCL	Default - DIS	
				ALT4 - CT_INP9		
				ALT5 - CT0_MAT3		
				ALT10 - I3C0_SCL		
P1_10	4	3		ALT0 - P1_10	IO Supply - VDD	ANALOG - ADC0_A8
				ALT2 - LPUART1_RTS_B	Pad type - SLOW	
				ALT3 - LPI2C0_SDAS	Default - DIS	
				ALT4 - CT2_MAT0		
P1_11	5	4		ALT0 - P1_11	IO Supply - VDD	ANALOG - ADC0_A9
				ALT1 - TRIG_OUT2	Pad type - SLOW	VDD SYS - WUU0_IN11
				ALT2 - LPUART1_CTS_B	Default - DIS	
				ALT3 - LPI2C0_SCLS		
				ALT4 - CT2_MAT1		
				ALT10 - I3C0_PUR		
P1_12	6			ALT0 - P1_12	IO Supply - VDD	ANALOG - ADC0_A10
				ALT3 - LPUART2_RXD	Pad type - SLOW	VDD SYS - WUU0_IN12
				ALT4 - CT2_MAT2	Default - DIS	
P1_13	7			ALT0 - P1_13	IO Supply - VDD	ANALOG - ADC0_A11
				ALT1 - TRIG_IN3	Pad type - SLOW	
				ALT3 - LPUART2_TXD	Default - DIS	
				ALT4 - CT2_MAT3		
P1_29	8	5	3	ALT0 - P1_29	IO Supply - VDD	VDD SYS - RESET_B
				ALT1 - RESET_B	Pad type - RST	
				ALT2 - SPC_LPREQ	Default - ALT1	
P1_30	9	6	4	ALT0 - P1_30	IO Supply - VDD	ANALOG - XTAL48M
				ALT1 - TRIG_OUT3	Pad type - HD+I3C	
				ALT3 - LPI2C0_SDA	Default - DIS	

Table 42. pinmux (continued)

Pin Name	MCXA14x15x 64LQFP	MCXA14x15x 48HVQFN	MCXA14x15x 32HVQFN	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT4 - CT_INP16		
				ALT10 - I3C0_SDA		
P1_31	10	7	5	ALT0 - P1_31	IO Supply - VDD	ANALOG - EXTAL48M
				ALT1 - TRIG_IN4	Pad type - HD	
				ALT3 - LPI2C0_SCL	Default - DIS	
				ALT4 - CT_INP17		
				ALT10 - I3C0_SCL		
VSS	11	0	0		IO Supply - VDD	
VDD_ANA	12	8	6		IO Supply - VDD	
VDD	13	9	7		IO Supply - VDD	
P2_0	14	10		ALT0 - P2_0	IO Supply - VDD	ANALOG - ADC0_A0
				ALT1 - TRIG_IN6	Pad type - SLOW	VDD SYS - WUU0_IN18
				ALT2 - LPUART0_RXD	Default - DIS	
				ALT4 - CT_INP16		
				ALT5 - CT2_MAT0		
P2_1	15	11		ALT0 - P2_1	IO Supply - VDD	ANALOG - ADC0_A1
				ALT1 - TRIG_IN7	Pad type - SLOW	
				ALT2 - LPUART0_TXD	Default - DIS	
				ALT4 - CT_INP17		
				ALT5 - CT2_MAT1		
P2_2	16	12	8	ALT0 - P2_2	IO Supply - VDD	ANALOG -
				ALT1 - TRIG_IN6	Pad type - SLOW	ADC0_A4/CMP0_IN0
				ALT2 - LPUART0_RTS_B	Default - DIS	
				ALT3 - LPUART2_TXD		
				ALT4 - CT_INP12		
				ALT5 - CT2_MAT2		
P2_3	17	13	9	ALT0 - P2_3	IO Supply - VDD	ANALOG -
				ALT1 - TRIG_IN7	Pad type - SLOW	ADC0_A2/CMP1_IN0
				ALT2 - LPUART0_CTS_B	Default - DIS	VDD SYS - WUU0_IN19
				ALT3 - LPUART2_RXD		
				ALT4 - CT_INP13		
				ALT5 - CT2_MAT3		
P2_4	18			ALT0 - P2_4	IO Supply - VDD	
				ALT4 - CT_INP14	Pad type - SLOW	
				ALT5 - CT1_MAT0	Default - DIS	

Table 42. pinmux (continued)

Pin Name	MCXA14x15x 64LQFP	MCXA14x15x 48HVQFN	MCXA14x15x 32HVQFN	Pinmux Assignment	Pad Settings	Alternate Functions
P2_5	19			ALT0 - P2_5	IO Supply - VDD	
				ALT4 - CT_INP15	Pad type - SLOW	
				ALT5 - CT1_MAT1	Default - DIS	
P2_6	20	14		ALT0 - P2_6	IO Supply - VDD	ANALOG - ADC0_A3
				ALT1 - TRIG_OUT4	Pad type - SLOW	
				ALT2 - LPSPI1_PCS1	Default - DIS	
				ALT4 - CT_INP18		
				ALT5 - CT1_MAT2		
P2_7	21	15	10	ALT0 - P2_7	IO Supply - VDD	
				ALT1 - TRIG_IN5	Pad type - SLOW	
				ALT4 - CT_INP19	Default - DIS	
				ALT5 - CT1_MAT3		
P2_7	21	15	10		IO Supply - VDD	ANALOG - VREFI/ADC0_A7
					Pad type - ANA	
P2_12	22	16	11	ALT0 - P2_12	IO Supply - VDD	ISP - USB0_VBUS_DET
				ALT1 - USB0_VBUS_DET	Pad type - SLOW	ANALOG - ADC0_A5
				ALT2 - LPSPI1_SCK	Default - DIS	VDD SYS - WUU0_IN20
				ALT3 - LPUART1_RXD		
				ALT5 - CT0_MAT0		
P2_13	23	17		ALT0 - P2_13	IO Supply - VDD	
				ALT1 - TRIG_IN8	Pad type - SLOW	
				ALT2 - LPSPI1_SDO	Default - DIS	
				ALT3 - LPUART1_TXD		
				ALT5 - CT0_MAT1		
P2_16	24	18		ALT0 - P2_16	IO Supply - VDD	ANALOG - ADC0_A6
				ALT2 - LPSPI1_SDI	Pad type - SLOW	
				ALT3 - LPUART1_RTS_B	Default - DIS	
				ALT5 - CT0_MAT2		
VDD_USB	25	19	12		IO Supply - VDD_USB	
USB0_DM	26	20	13		IO Supply - VDD_USB	ANALOG - USB0_DM
					Pad type - ANA	VDD SYS - WUU0_IN28
USB0_DP	27	21	14		IO Supply - VDD_USB	ANALOG - USB0_DP
					Pad type - ANA	VDD SYS - WUU0_IN29
VSS	28	0	0		IO Supply - VDD	

Table 42. pinmux (continued)

Pin Name	MCXA14x15x 64LQFP	MCXA14x15x 48HVQFN	MCXA14x15x 32HVQFN	Pinmux Assignment	Pad Settings	Alternate Functions
VDD	29	22			IO Supply - VDD	
P3_31	30	23		ALT0 - P3_31	IO Supply - VDD	ANALOG - ADC0_A12
				ALT1 - TRIG_IN10	Pad type - SLOW	VDD SYS - LPTMR0_ALT2
				ALT4 - CT0_MAT3	Default - DIS	
P3_30	31	24		ALT0 - P3_30	IO Supply - VDD	ANALOG - ADC0_A13
				ALT1 - TRIG_OUT6	Pad type - SLOW	
				ALT4 - CT0_MAT2	Default - DIS	
P3_29	32	25	15	ALT0 - P3_29	IO Supply - VDD	ISP - ISPMODE_N
				ALT1 - ISPMODE_N	Pad type - SLOW	ANALOG - ADC0_A14
				ALT4 - CT_INP3	Default - ALT1	VDD SYS - WUU0_IN27
P3_28	33	26	16	ALT0 - P3_28	IO Supply - VDD	VDD SYS - WUU0_IN26
				ALT1 - TRIG_IN11	Pad type - 5VTOL	
				ALT2 - LPI2C0_SDA	Default - DIS	
				ALT4 - CT_INP12		
P3_27	34	27	17	ALT0 - P3_27	IO Supply - VDD	
				ALT1 - TRIG_OUT7	Pad type - 5VTOL	
				ALT2 - LPI2C0_SCL	Default - DIS	
				ALT4 - CT_INP13		
P3_15	35			ALT0 - P3_15	IO Supply - VDD	
				ALT2 - LPUART2_TXD	Pad type - SLOW	
				ALT4 - CT_INP7	Default - DIS	
P3_14	36	28		ALT0 - P3_14	IO Supply - VDD	VDD SYS - WUU0_IN25
				ALT2 - LPUART2_RXD	Pad type - SLOW	
				ALT4 - CT_INP6	Default - DIS	
				ALT5 - PWM0_X2		
P3_13	37	29		ALT0 - P3_13	IO Supply - VDD	
				ALT2 - LPUART2_CTS_B	Pad type - SLOW	
				ALT4 - CT1_MAT3	Default - DIS	
				ALT5 - PWM0_X1		
P3_12	38	30		ALT0 - P3_12	IO Supply - VDD	
				ALT2 - LPUART2_RTS_B	Pad type - SLOW	
				ALT4 - CT1_MAT2	Default - DIS	
				ALT5 - PWM0_X0		
P3_11	39	31	18	ALT0 - P3_11	IO Supply - VDD	VDD SYS - WUU0_IN24

Data Sheet: Technical Data

Table 42. pinmux (continued)

Pin Name	MCXA14x15x 64LQFP	MCXA14x15x 48HVQFN	MCXA14x15x 32HVQFN	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT1 - TRIG_IN6	Pad type - MED	
				ALT2 - LPSPI1_PCS0	Default - DIS	
				ALT3 - LPUART1_CTS_B		
				ALT4 - CT1_MAT1		
				ALT5 - PWM0_B2		
P3_10	40	32	19	ALT0 - P3_10	IO Supply - VDD	
				ALT1 - TRIG_IN5	Pad type - MED	
				ALT2 - LPSPI1_SCK	Default - DIS	
				ALT3 - LPUART1_RTS_B		
				ALT4 - CT1_MAT0		
				ALT5 - PWM0_A2		
P3_9	41	33	20	ALT0 - P3_9	IO Supply - VDD	
				ALT1 - TRIG_IN4	Pad type - MED	
				ALT2 - LPSPI1_SDI	Default - DIS	
				ALT3 - LPUART1_TXD		
				ALT4 - CT_INP5		
				ALT5 - PWM0_B1		
P3_8	42	34	21	ALT0 - P3_8	IO Supply - VDD	VDD SYS - WUU0_IN23
				ALT1 - TRIG_IN3	Pad type - MED	
				ALT2 - LPSPI1_SDO	Default - DIS	
				ALT3 - LPUART1_RXD		
				ALT4 - CT_INP4		
				ALT5 - PWM0_A1		
				ALT12 - CLKOUT		
P3_7	43			ALT0 - P3_7	IO Supply - VDD	
				ALT1 - TRIG_IN2	Pad type - MED	
				ALT2 - LPSPI1_PCS2	Default - DIS	
				ALT5 - PWM0_B0		
P3_6	44			ALT0 - P3_6	IO Supply - VDD	
				ALT1 - CLKOUT	Pad type - MED	
				ALT2 - LPSPI1_PCS3	Default - DIS	
				ALT5 - PWM0_A0		
				ALT12		
				- FREQME_CLK_OUT1		
P3_1	45	35	22	ALT0 - P3_1	IO Supply - VDD	
				ALT1 - TRIG_IN1	Pad type - HD	

Table 42. pinmux (continued)

Pin Name	MCXA14x15x 64LQFP	MCXA14x15x 48HVQFN	MCXA14x15x 32HVQFN	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT4 - CT_INP17	Default - DIS	
				ALT5 - PWM0_B0		
				ALT12		
				- FREQME_CLK_OUT0		
P3_0	46	36	23	ALT0 - P3_0	IO Supply - VDD	VDD SYS - WUU0_IN22
				ALT1 - TRIG_IN0	Pad type - HD	
				ALT4 - CT_INP16	Default - DIS	
				ALT5 - PWM0_A0		
VSS	47	0	0		IO Supply - VDD	
VDD	48	37	24		IO Supply - VDD	
P0_0	49	38	25	ALT0 - P0_0	IO Supply - VDD	
				ALT1 - TMS/SWDIO	Pad type - MED	
				ALT2 - LPUART0_RTS_B	Default - ALT1	
				ALT3 - LPSPI0_PCS0		
				ALT4 - CT_INP0		
P0_1	50	39	26	ALT0 - P0_1	IO Supply - VDD	
				ALT1 - TCLK/SWCLK	Pad type - MED	
				ALT2 - LPUART0_CTS_B	Default - ALT1	
				ALT3 - LPSPI0_SDI		
				ALT4 - CT_INP1		
P0_2	51	40	27	ALT0 - P0_2	IO Supply - VDD	ISP - UART_RXD
				ALT1 - TDO/SWO	Pad type - MED	
				ALT2 - LPUART0_RXD	Default - ALT1	
				ALT3 - LPSPI0_SCK		
				ALT4 - CT0_MAT0		
				ALT5 - UTICK_CAP0		
				ALT10 - I3C0_PUR		
P0_3	52	41	28	ALT0 - P0_3	IO Supply - VDD	ISP - UART_TXD
				ALT1 - TDI	Pad type - MED	ANALOG - CMP1_IN1
				ALT2 - LPUART0_TXD	Default - ALT1	
				ALT3 - LPSPI0_SDO		
				ALT4 - CT0_MAT1		
				ALT5 - UTICK_CAP1		
				ALT8 - CMP0_OUT		
P0_6	53	42		ALT0 - P0_6	IO Supply - VDD	ANALOG - ADC0_A15

Table 42. pinmux (continued)

Pin Name	MCXA14x15x 64LQFP	MCXA14x15x 48HVQFN	MCXA14x15x 32HVQFN	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT2 - LPI2C0_HREQ	Pad type - SLOW	
				ALT3 - LPSPI0_PCS1	Default - DIS	
				ALT4 - CT_INP2		
				ALT8 - CMP1_OUT		
				ALT12 - CLKOUT		
P0_16	54	43		ALT0 - P0_16	IO Supply - VDD	VDD SYS - WUU0_IN2
				ALT2 - LPI2C0_SDA	Pad type - HD+I3C	
				ALT3 - LPSPI0_PCS2	Default - DIS	
				ALT4 - CT0_MAT0		
				ALT5 - UTICK_CAP2		
				ALT10 - I3C0_SDA		
P0_17	55	44		ALT0 - P0_17	IO Supply - VDD	
				ALT2 - LPI2C0_SCL	Pad type - HD	
				ALT3 - LPSPI0_PCS3	Default - DIS	
				ALT4 - CT0_MAT1		
				ALT5 - UTICK_CAP3		
				ALT10 - I3C0_SCL		
P1_0	56	45	29	ALT0 - P1_0	IO Supply - VDD	ISP - SPI_SDO
				ALT1 - TRIG_IN0	Pad type - MED+I2C_FILT	ANALOG -
				ALT2 - LPSPI0_SDO	Default - DIS	ADC0_A16/CMP0_IN3
				ALT3 - LPI2C0_SDA		VDD SYS -
				ALT4 - CT_INP4		WUU0_IN6/LPTMR0_ALT3
				ALT5 - CT0_MAT2		
P1_1	57	46	30	ALT0 - P1_1	IO Supply - VDD	ISP - SPI_SCK
				ALT1 - TRIG_IN1	Pad type - MED+I2C_FILT	ANALOG -
				ALT2 - LPSPI0_SCK	Default - DIS	ADC0_A17/CMP1_IN3
				ALT3 - LPI2C0_SCL		
				ALT4 - CT_INP5		
				ALT5 - CT0_MAT3		
P1_2	58	47	31	ALT0 - P1_2	IO Supply - VDD	ISP - SPI_SDI
				ALT1 - TRIG_OUT0	Pad type - MED	ANALOG - ADC0_A18
				ALT2 - LPSPI0_SDI	Default - DIS	
				ALT3 - LPI2C0_SDAS		
				ALT4 - CT1_MAT0		
				ALT5 - CT_INP0		

64 / 75 Data Sheet: Technical Data

Table 42. pinmux (continued)

Pin Name	MCXA14x15x 64LQFP	MCXA14x15x 48HVQFN	MCXA14x15x 32HVQFN	Pinmux Assignment	Pad Settings	Alternate Functions
P1_3	59	48	32	ALT0 - P1_3 ALT1 - TRIG_OUT1 ALT2 - LPSPI0_PCS0 ALT3 - LPI2C0_SCLS ALT4 - CT1_MAT1 ALT5 - CT_INP1	IO Supply - VDD Pad type - MED Default - DIS	ISP - SPI_PCS ANALOG - ADC0_A19/CMP0_IN1 VDD SYS - WUU0_IN7
VDD	60				IO Supply - VDD	
VSS	61				IO Supply - VDD	
P1_4	62			ALT0 - P1_4 ALT1 - FREQME_CLK_IN0 ALT2 - LPSPI0_PCS3 ALT3 - LPUART2_RXD ALT4 - CT1_MAT2	IO Supply - VDD Pad type - MED Default - DIS	ANALOG - ADC0_A20/CMP0_IN2 VDD SYS - WUU0_IN8
P1_5	63			ALT0 - P1_5 ALT1 - FREQME_CLK_IN1 ALT2 - LPSPI0_PCS2 ALT3 - LPUART2_TXD ALT4 - CT1_MAT3	IO Supply - VDD Pad type - MED Default - DIS	ANALOG - ADC0_A21/CMP1_IN2
P1_6	64			ALT0 - P1_6 ALT1 - TRIG_IN2 ALT2 - LPSPI0_PCS1 ALT3 - LPUART2_RTS_B ALT4 - CT_INP6	IO Supply - VDD Pad type - MED Default - DIS	ANALOG - ADC0_A22
P1_7	1			ALT0 - P1_7 ALT1 - TRIG_OUT2 ALT3 - LPUART2_CTS_B ALT4 - CT_INP7	IO Supply - VDD Pad type - MED Default - DIS	ANALOG - ADC0_A23 VDD SYS - WUU0_IN9

6.2 MCXA143, A142, A153, A152 Pinouts

The pinout diagrams are provided in an Excel file attached to this document:

- 1. Click the paperclip symbol on the left side of the PDF window.
- 2. Double-click on the Excel file to open it.
- 3. Select the respective package tab.

Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, refer to the "Pinout" tab in the Excel file.

6.3 Recommended connection for unused analog and digital pins

Table 43 shows the recommended connections for pins if those pins are not used in the customer's application

Table 43. Recommended connection for unused interfaces

Pin Type	Pin Function	Recommendation	Comments
Power	VDD	Must be powered	VDD powers the mux logic for PORT 0, PORT 1, PORT 2, and PORT 3. It must be powered during POR. The recommendation is to keep it powered, but it can be connected to the output of the Smart Power Switch and be left floating in shelf storage mode.
Power	VDD_ANA	Must be powered	
Power	VDD_USB	Tie to ground through a 10 $k\Omega$ resistor if VDD_ USB is an independent pin in the package version used	
Power	VREFH	Always connect to VDD_ANA potential	Always connect to VDD_ANA potential
Power	VREFL	Always connect to VSS potential	Always connect to VSS potential
Power	VSS_ANA	Always connect to VSS potential	Always connect to VSS potential
Power	VSS_USB	Always connect to VSS potential	Always connect to VSS potential
Analog/non-GPIO	ADC <i>n_x</i>	Float	
Analog/non-GPIO	ADC <i>n_x</i> /DAC <i>n_</i> OUT	Float	
Analog/non-GPIO	EXTAL	Float	
Analog/non-GPIO	XTAL	Float	Analog output - Float
Analog/non-GPIO	USB0_DP	Float	Float
Analog/non-GPIO	USB0_DM	Float	Float
GPIO/Analog	Px/ADC <i>n_x</i>	Float	Float (default is analog input)
GPIO/Analog	Px/CMPn_INx	Float	Float (default is analog input)
GPIO/Digital	JTAG_TCLK	Float	Float (default is JTAG with pulldown)
GPIO/Digital	JTAG_TDI	Float	Float (default is JTAG with pullup)
GPIO/Digital	JTAG_TDO	Float	Float (default is JTAG with pullup)
GPIO/Digital	JTAG_TMS	Float	Float (default is JTAG with pullup)
GPIO/Digital	Px	Float	Float (default is disabled)

7 Ordering parts

7.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to nxp.com and perform a part number search for the following device numbers: MCXA143VFM

8 Part identification

Part numbers for the device have fields that identify the specific part. Use the values of these fields to determine the specific part.

8.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

8.2 Part number format

Part numbers for this device have the following format:

BPSFDFSTPGSRPT

Table 44. Part number fields descriptions

Field	Description	Values
В	Brand	• MCX
PS	Product series name	• A
F	Family	• 1 = Baseline
		• 2 = Baseline Enhance
		• 3 = Analog
С	Core Features	• 4 = 48MHz, Motor PWM, USB FS
		• 5 = 96MHz, Motor PWM, USB FS
FS	Flash Size	• 1 = 32 KB, 48 MHz
		• 2 = 64 KB, 48 MHz
		• 3 = 128 KB, 48 MHz
		• 4 = 256 KB, 96 MHz
		• 5 = 512 KB, 96 MHz
		• 6 = 1024 KB, 96 MHz
Т	Junction Temperature range (°C)	• V = -40 to 125
PG	Package	• LH = 64 LQFP
		• FT = 48 HVQFN
		• FM = 32 HVQFN

Table continues on the next page...

Data Sheet: Technical Data 67 / 75

Table 44. Part number fields descriptions (continued)

Field	Description	Values
SR	Silicon Revision	A = Initial Mask set
		B = 1st Major spin
		• C = 2nd Major spin
PT	Package Type	R = Tape and Reel
		• T = Tray

8.3 Example

This is an example part number:

MCXA143VLH

8.4 Small package marking

8.4.1 Package marking information

Table 45. Package marking

	32HVQFN 5*5	48HVQFN 7*7	64LQFP 10*10
First line	AAAAA	AAAAA	AAAAAA
Second line	МММММ	МММММ	AAA MMMMM
Third line	XXYWXX	XXXYWXX	XXXXYYWWXX

Identifier	Description
а	Part number code, refer to Ordering Information
m	Mask set
у	Year
W	Work week
х	NXP internal use

9 Terminology and guidelines

9.1 Definitions

Key terms are defined in the following table:

Term	Definition
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

Table continued from the previous page...

Term	Definition
	Operating ratings apply during operation of the chip.
	Handling ratings apply when the chip is not powered.
	NOTE
	The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions
Typical value	A specified value for a technical characteristic that:
	Lies within the range of values specified by the operating behavior
	Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions
	NOTE
	Typical values are provided as design guidelines and are neither tested nor guaranteed.

9.2 Examples

Operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

Operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

Operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
lwp	Digital I/O weak pullup/pulldown current	10 tank	70	130	μΑ

9.3 Typical-value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	°C
V_{DD}	Supply voltage	3.3	V

9.4 Relationship between ratings and operating requirements

9.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- · Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

9.6 Specification Test Methods

Each specification is tested using one of these methods.

Code	Method	Description
P	Production direct	On every chip during production, testing the specification
I	Production indirect	On every chip during production, testing parts of a module that affect whether

71 / 75

Table continued from the previous page...

Code	Method	Description
		the chip meets the specification but not testing the specification itself
С	Characterization on a production tester	
L	Characterization on lab equipment or a nonproduction tester	number of sample chips across process (matrix lot), voltage, and temperature
		NOTE Typical values are not necessarily characterized across process.
D	Guaranteed by design	Specification based on scientific and engineering principles
0	Other	Using methods such as: Performing silicon simulations Performing package thermal simulations Calculating specifications using reliability data

10 Revision history

The following table lists the changes in this document.

Table 46. Revision History

Rev. No.	Date	Substantial Changes
3	Jan 2024	Initial public release

MCXA153, A152, A143, A142 Data Sheet, Rev. 3, 01/2024

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- 2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V may appear when operating this product, depending on settings and application. Customers incorporating or otherwise using these products in applications where such high voltages may appear during operation, assembly, test etc. of such application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60 950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.

Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers.

NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.

All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department.

AEC unqualified products — This product has not been qualified to the appropriate Automotive Electronics Council (AEC) standard Q100 or Q101 and should not be used in automotive applications, including but not limited to applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is for the customer's own risk

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

ESD protection devices — These products are only intended for protection against ElectroStatic Discharge (ESD) pulses and are not intended for any other usage including, without limitation, voltage regulation applications. NXP Semiconductors accepts no liability for use in such applications and therefore such use is at the customer's own risk.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile— are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade

12C-bus - logo is a trademark of NXP B.V.

MCX — is a trademark of NXP B.V.

secrets. All rights reserved.

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2024.

All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 01/2024 Document identifier: MCXAP64M96FS3