

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/31, C07K 14/35, A61K 39/04, 48/00, 49/00, C12N 15/62, C07K 19/00, G01N 33/50, 33/60, 33/569, C12N 1/19, 1/20, 1/21, 5/10

(11) International Publication Number:

WO 98/16646

(43) International Publication Date:

23 April 1998 (23.04.98)

(21) International Application Number:

PCT/US97/18293

(22) International Filing Date:

7 October 1997 (07.10.97)

(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).

(30) Priority Data:

08/730,510 08/818,112 11 October 1996 (11.10.96) 13 March 1997 (13.03.97)

US US

(71) Applicant: CORIXA CORPORATION [US/US]; 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: REED, Steven, G.; 2843 – 122nd Place N.E., Bellevue, WA 98005 (US). SKEIKY, Yasir, A., W.; 8327 – 25th Avenue N.W., Seattle, WA 98107 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US). CAMPOS-NETO, Antonio; 9308 Midship Court N.E., Bainbridge Island, WA 98021 (US). HOUGHTON, Raymond; 2636 – 242nd Place S.E., Bothell, WA 98021 (US). VEDVICK, Thomas, S.; 124 South 300th Place, Federal Way, WA 98003 (US). TWARDZIK, Daniel, R.; 10195 South Beach Drive, Bainbridge Island, WA 98110 (US). LODES, Michael, J.; 9223 – 36th Avenue S.W., Seattle, WA 98126 (US).

(81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: COMPOUNDS AND METHODS FOR IMMUNOTHERAPY AND DIAGNOSIS OF TUBERCULOSIS

(57) Abstract

Compounds and methods for inducing protective immunity against tuberculosis are disclosed. The compounds provided include polypeptides that contain at least one immunogenic portion of one or more *M. tuberculosis* proteins and DNA molecules encoding such polypeptides. Such compounds may be formulated into vaccines and/or pharmaceutical compositions for immunization against *M. tuberculosis* infection, or may be used for the diagnosis of tuberculosis.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

\mathbf{AL}	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
\mathbf{BE}	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
\mathbf{BF}	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	$\mathbf{U}\mathbf{Z}$	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
\mathbf{CU}	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	\mathbf{LC}	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	$\mathbf{s}\mathbf{G}$	Singapore		

1

COMPOUNDS AND METHODS FOR IMMUNOTHERAPY AND DIAGNOSIS OF TUBERCULOSIS

5 TECHNICAL FIELD

10

15

20

25

30

The present invention relates generally to detecting, treating and preventing *Mycobacterium tuberculosis* infection. The invention is more particularly related to polypeptides comprising a *Mycobacterium tuberculosis* antigen, or a portion or other variant thereof, and the use of such polypeptides for diagnosing and vaccinating against *Mycobacterium tuberculosis* infection.

BACKGROUND OF THE INVENTION

Tuberculosis is a chronic, infectious disease, that is generally caused by infection with *Mycobacterium tuberculosis*. It is a major disease in developing countries, as well as an increasing problem in developed areas of the world, with about 8 million new cases and 3 million deaths each year. Although the infection may be asymptomatic for a considerable period of time, the disease is most commonly manifested as an acute inflammation of the lungs, resulting in fever and a nonproductive cough. If left untreated, serious complications and death typically result.

Although tuberculosis can generally be controlled using extended antibiotic therapy, such treatment is not sufficient to prevent the spread of the disease. Infected individuals may be asymptomatic, but contagious, for some time. In addition, although compliance with the treatment regimen is critical, patient behavior is difficult to monitor. Some patients do not complete the course of treatment, which can lead to ineffective treatment and the development of drug resistance.

Inhibiting the spread of tuberculosis requires effective vaccination and accurate, early diagnosis of the disease. Currently, vaccination with live bacteria is the most efficient method for inducing protective immunity. The most common Mycobacterium employed for this purpose is *Bacillus* Calmette-Guerin (BCG), an avirulent strain of *Mycobacterium bovis*. However, the safety and efficacy of BCG is a source of controversy and some countries, such as the United States, do not vaccinate

2

the general public. Diagnosis is commonly achieved using a skin test, which involves intradermal exposure to tuberculin PPD (protein-purified derivative). Antigen-specific T cell responses result in measurable induration at the injection site by 48-72 hours after injection, which indicates exposure to Mycobacterial antigens. Sensitivity and specificity have, however, been a problem with this test, and individuals vaccinated with BCG cannot be distinguished from infected individuals.

While macrophages have been shown to act as the principal effectors of M tuberculosis immunity, T cells are the predominant inducers of such immunity. The essential role of T cells in protection against M. tuberculosis infection is illustrated by the frequent occurrence of M. tuberculosis in AIDS patients, due to the depletion of CD4 T cells associated with human immunodeficiency virus (HIV) infection. Mycobacterium-reactive CD4 T cells have been shown to be potent producers of gamma-interferon (IFN-y), which, in turn, has been shown to trigger the antimycobacterial effects of macrophages in mice. While the role of IFN-y in humans is less clear, studies have shown that 1,25-dihydroxy-vitamin D3, either alone or in combination with IFN-y or tumor necrosis factor-alpha, activates human macrophages to inhibit M. tuberculosis infection. Furthermore, it is known that IFN-y stimulates human macrophages to make 1,25-dihydroxy-vitamin D3. Similarly, IL-12 has been shown to play a role in stimulating resistance to M. tuberculosis infection. For a review of the immunology of M. tuberculosis infection see Chan and Kaufmann in Tuberculosis: Pathogenesis, Protection and Control, Bloom (ed.), ASM Press, Washington, DC, 1994.

Accordingly, there is a need in the art for improved vaccines and methods for preventing, treating and detecting tuberculosis. The present invention fulfills these needs and further provides other related advantages.

SUMMARY OF THE INVENTION

10

15

20

25

30

Briefly stated, this invention provides compounds and methods for preventing and diagnosing tuberculosis. In one aspect, polypeptides are provided comprising an immunogenic portion of a soluble *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. In

5

10

15

20

25

one embodiment of this aspect, the soluble antigen has one of the following N-terminal sequences:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (SEQ ID No. 120)
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser; (SEQ ID No. 121)
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg; (SEQ ID No. 122)
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro; (SEQ ID No. 123)
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val; (SEQ ID No. 124)
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro; (SEQ ID No. 125)
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser; (SEQ ID No. 126)
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly; (SEQ ID No. 127)
- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn; (SEQ ID No. 128)
- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 134)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 135) or
- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 136)

wherein Xaa may be any amino acid.

In a related aspect, polypeptides are provided comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of such an antigen that

4

differs only in conservative substitutions and/or modifications, the antigen having one of the following N-terminal sequences:

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 137) or
- (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 129)

wherein Xaa may be any amino acid.

5

10

15

20

25

30

In another embodiment, the soluble *M. tuberculosis* antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101 or a complement thereof under moderately stringent conditions.

In a related aspect, the polypeptides comprise an immunogenic portion of a *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications, wherein the antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 26-51, 138, 139, 163-183 and 201, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 26-51, 138, 139, 163-183 and 201 or a complement thereof under moderately stringent conditions.

In related aspects, DNA sequences encoding the above polypeptides, expression vectors comprising these DNA sequences and host cells transformed or transfected with such expression vectors are also provided.

In another aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, an inventive polypeptide and a known *M. tuberculosis* antigen.

Within other aspects, the present invention provides pharmaceutical compositions that comprise one or more of the above polypeptides, or a DNA molecule encoding such polypeptides, and a physiologically acceptable carrier. The invention

5

also provides vaccines comprising one or more of the polypeptides as described above and a non-specific immune response enhancer, together with vaccines comprising one or more DNA sequences encoding such polypeptides and a non-specific immune response enhancer.

In yet another aspect, methods are provided for inducing protective immunity in a patient, comprising administering to a patient an effective amount of one or more of the above polypeptides.

5

10

15

20

25

In further aspects of this invention, methods and diagnostic kits are provided for detecting tuberculosis in a patient. The methods comprise contacting dermal cells of a patient with one or more of the above polypeptides and detecting an immune response on the patient's skin. The diagnostic kits comprise one or more of the above polypeptides in combination with an apparatus sufficient to contact the polypeptide with the dermal cells of a patient.

In yet other aspects, methods are provided for detecting tuberculosis in a patient, such methods comprising contacting dermal cells of a patient with one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203; and detecting an immune response on the patient's skin. Diagnostic kits for use in such methods are also provided.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE IDENTIFIERS

Figure 1A and B illustrate the stimulation of proliferation and interferon-30 γ production in T cells derived from a first and a second *M. tuberculosis*-immune donor, respectively, by the 14 Kd, 20 Kd and 26 Kd antigens described in Example 1. Figure 2 illustrates the stimulation of proliferation and interferon- γ production in T cells derived from an *M. tuberculosis*-immune individual by the two representative polypeptides TbRa3 and TbRa9.

Figures 3A-D illustrate the reactivity of antisera raised against secretory 5 *M. tuberculosis* proteins, the known *M. tuberculosis* antigen 85b and the inventive antigens Tb38-1 and TbH-9, respectively, with *M. tuberculosis* lysate (lane 2), *M. tuberculosis* secretory proteins (lane 3), recombinant Tb38-1 (lane 4), recombinant TbH-9 (lane 5) and recombinant 85b (lane 5).

Figure 4A illustrates the stimulation of proliferation in a TbH-9-specific T cell clone by secretory *M. tuberculosis* proteins, recombinant TbH-9 and a control antigen, TbRa11.

Figure 4B illustrates the stimulation of interferon- γ production in a TbH-9-specific T cell clone by secretory *M. tuberculosis* proteins, PPD and recombinant TbH-9.

Figures 5A and B illustrate the stimulation of proliferation and interferon-γ production in TbH9-specific T cells by the fusion protein TbH9-Tb38-1.

Figures 6A and B illustrate the stimulation of proliferation and interferon-γ production in Tb38-1-specific T cells by the fusion protein TbH9-Tb38-1.

Figures 7A and B illustrate the stimulation of proliferation and 20 interferon-γ production in T cells previously shown to respond to both TbH-9 and Tb38-1 by the fusion protein TbH9-Tb38-1.

Figures 8A and B illustrate the stimulation of proliferation and interferon-γ production in T cells derived from a first *M. tuberculosis*-immune individual by the representative polypeptides XP-1, RDIF6, RDIF8, RDIF10 and RDIF11.

Figures 9A and B illustrate the stimulation of proliferation and interferon-γ production in T cells derived from a second *M. tuberculosis*-immune individual by the representative polypeptides XP-1, RDIF6, RDIF8, RDIF10 and RDIF11.

25

	SEQ. ID NO. 1 is the DNA sequence of TbRa1.
	SEQ. ID NO. 2 is the DNA sequence of TbRa10.
	SEQ. ID NO. 3 is the DNA sequence of TbRa11.
	SEQ. ID NO. 4 is the DNA sequence of TbRa12.
5	SEQ. ID NO. 5 is the DNA sequence of TbRa13.
	SEQ. ID NO. 6 is the DNA sequence of TbRa16.
	SEQ. ID NO. 7 is the DNA sequence of TbRa17.
	SEQ. ID NO. 8 is the DNA sequence of TbRa18.
	SEQ. ID NO. 9 is the DNA sequence of TbRa19.
10	SEQ. ID NO. 10 is the DNA sequence of TbRa24.
	SEQ. ID NO. 11 is the DNA sequence of TbRa26.
	SEQ. ID NO. 12 is the DNA sequence of TbRa28.
	SEQ. ID NO. 13 is the DNA sequence of TbRa29.
	SEQ. ID NO. 14 is the DNA sequence of TbRa2A.
15	SEQ. ID NO. 15 is the DNA sequence of TbRa3.
	SEQ. ID NO. 16 is the DNA sequence of TbRa32.
	SEQ. ID NO. 17 is the DNA sequence of TbRa35.
	SEQ. ID NO. 18 is the DNA sequence of TbRa36.
	SEQ. ID NO. 19 is the DNA sequence of TbRa4.
20	SEQ. ID NO. 20 is the DNA sequence of TbRa9.
	SEQ. ID NO. 21 is the DNA sequence of TbRaB.
	SEQ. ID NO. 22 is the DNA sequence of TbRaC.
	SEQ. ID NO. 23 is the DNA sequence of TbRaD.
	SEQ. ID NO. 24 is the DNA sequence of YYWCPG
25	SEQ. ID NO. 25 is the DNA sequence of AAMK.
	SEQ. ID NO. 26 is the DNA sequence of TbL-23.
	SEQ. ID NO. 27 is the DNA sequence of TbL-24.
	SEQ. ID NO. 28 is the DNA sequence of TbL-25.
	SEQ. ID NO. 29 is the DNA sequence of TbL-28.
30	SEQ. ID NO. 30 is the DNA sequence of TbL-29.

8

SEQ. ID NO. 31 is the DNA sequence of TbH-5. SEQ. ID NO. 32 is the DNA sequence of TbH-8. SEQ. ID NO. 33 is the DNA sequence of TbH-9. SEQ. ID NO. 34 is the DNA sequence of TbM-1. 5 SEQ. ID NO. 35 is the DNA sequence of TbM-3. SEQ. ID NO. 36 is the DNA sequence of TbM-6. SEQ. ID NO. 37 is the DNA sequence of TbM-7. SEQ. ID NO. 38 is the DNA sequence of TbM-9. SEQ. ID NO. 39 is the DNA sequence of TbM-12. 10 SEQ. ID NO. 40 is the DNA sequence of TbM-13. SEQ. ID NO. 41 is the DNA sequence of TbM-14. SEQ. ID NO. 42 is the DNA sequence of TbM-15. SEQ. ID NO. 43 is the DNA sequence of TbH-4. SEQ. ID NO. 44 is the DNA sequence of TbH-4-FWD. 15 SEQ. ID NO. 45 is the DNA sequence of TbH-12. SEQ. ID NO. 46 is the DNA sequence of Tb38-1. SEQ. ID NO. 47 is the DNA sequence of Tb38-4. SEQ. ID NO. 48 is the DNA sequence of TbL-17. SEQ. ID NO. 49 is the DNA sequence of TbL-20. 20 SEQ. ID NO. 50 is the DNA sequence of TbL-21. SEQ. ID NO. 51 is the DNA sequence of TbH-16. SEQ. ID NO. 52 is the DNA sequence of DPEP. SEQ. ID NO. 53 is the deduced amino acid sequence of DPEP. SEQ. ID NO. 54 is the protein sequence of DPV N-terminal Antigen. 25 SEQ. ID NO. 55 is the protein sequence of AVGS N-terminal Antigen. SEQ. ID NO. 56 is the protein sequence of AAMK N-terminal Antigen. SEQ. ID NO. 57 is the protein sequence of YYWC N-terminal Antigen. SEQ. ID NO. 58 is the protein sequence of DIGS N-terminal Antigen. SEQ. ID NO. 59 is the protein sequence of AEES N-terminal Antigen. 30 SEQ. ID NO. 60 is the protein sequence of DPEP N-terminal Antigen.

SEQ. ID NO. 61 is the protein sequence of APKT N-terminal Antigen. SEQ. ID NO. 62 is the protein sequence of DPAS N-terminal Antigen. SEQ. ID NO. 63 is the deduced amino acid sequence of TbRa1. SEQ. ID NO. 64 is the deduced amino acid sequence of TbRa10. 5 SEQ. ID NO. 65 is the deduced amino acid sequence of TbRa11. SEQ. ID NO. 66 is the deduced amino acid sequence of TbRa12. SEQ. ID NO. 67 is the deduced amino acid sequence of TbRa13. SEQ. ID NO. 68 is the deduced amino acid sequence of TbRa16. SEQ. ID NO. 69 is the deduced amino acid sequence of TbRa17. 10 SEQ. ID NO. 70 is the deduced amino acid sequence of TbRa18. SEQ. ID NO. 71 is the deduced amino acid sequence of TbRa19. SEQ. ID NO. 72 is the deduced amino acid sequence of TbRa24. SEQ. ID NO. 73 is the deduced amino acid sequence of TbRa26. SEQ. ID NO. 74 is the deduced amino acid sequence of TbRa28. 15 SEQ. ID NO. 75 is the deduced amino acid sequence of TbRa29. SEQ. ID NO. 76 is the deduced amino acid sequence of TbRa2A. SEQ. ID NO. 77 is the deduced amino acid sequence of TbRa3. SEQ. ID NO. 78 is the deduced amino acid sequence of TbRa32. SEQ. ID NO. 79 is the deduced amino acid sequence of TbRa35. 20 SEQ. ID NO. 80 is the deduced amino acid sequence of TbRa36. SEQ. ID NO. 81 is the deduced amino acid sequence of TbRa4. SEQ. ID NO. 82 is the deduced amino acid sequence of TbRa9. SEQ. ID NO. 83 is the deduced amino acid sequence of TbRaB. SEQ. ID NO. 84 is the deduced amino acid sequence of TbRaC. 25 SEQ. ID NO. 85 is the deduced amino acid sequence of TbRaD. SEQ. ID NO. 86 is the deduced amino acid sequence of YYWCPG. SEQ. ID NO. 87 is the deduced amino acid sequence of TbAAMK. SEQ. ID NO. 88 is the deduced amino acid sequence of Tb38-1. SEQ. ID NO. 89 is the deduced amino acid sequence of TbH-4. 30 SEQ. ID NO. 90 is the deduced amino acid sequence of TbH-8.

30

SEQ. ID NO. 91 is the deduced amino acid sequence of TbH-9. SEQ. ID NO. 92 is the deduced amino acid sequence of TbH-12. SEQ. ID NO. 93 is the amino acid sequence of Tb38-1 Peptide 1. SEQ. ID NO. 94 is the amino acid sequence of Tb38-1 Peptide 2. 5 SEQ. ID NO. 95 is the amino acid sequence of Tb38-1 Peptide 3. SEQ. ID NO. 96 is the amino acid sequence of Tb38-1 Peptide 4. SEQ. ID NO. 97 is the amino acid sequence of Tb38-1 Peptide 5. SEQ. ID NO. 98 is the amino acid sequence of Tb38-1 Peptide 6. SEQ. ID NO. 99 is the DNA sequence of DPAS. 10 SEQ. ID NO. 100 is the deduced amino acid sequence of DPAS. SEQ. ID NO. 101 is the DNA sequence of DPV. SEQ. ID NO. 102 is the deduced amino acid sequence of DPV. SEQ. ID NO. 103 is the DNA sequence of ESAT-6. SEQ. ID NO. 104 is the deduced amino acid sequence of ESAT-6. 15 SEQ. ID NO. 105 is the DNA sequence of TbH-8-2. SEQ. ID NO. 106 is the DNA sequence of TbH-9FL. SEQ. ID NO. 107 is the deduced amino acid sequence of TbH-9FL. SEQ. ID NO. 108 is the DNA sequence of TbH-9-1. SEQ. ID NO. 109 is the deduced amino acid sequence of TbH-9-1. 20 SEQ. ID NO. 110 is the DNA sequence of TbH-9-4. SEQ. ID NO. 111 is the deduced amino acid sequence of TbH-9-4. SEQ. ID NO. 112 is the DNA sequence of Tb38-1F2 IN. SEQ. ID NO. 113 is the DNA sequence of Tb38-2F2 RP. SEQ. ID NO. 114 is the deduced amino acid sequence of Tb37-FL. 25 SEQ. ID NO. 115 is the deduced amino acid sequence of Tb38-IN. SEQ. ID NO. 116 is the DNA sequence of Tb38-1F3. SEQ. ID NO. 117 is the deduced amino acid sequence of Tb38-1F3. SEQ. ID NO. 118 is the DNA sequence of Tb38-1F5. SEQ. ID NO. 119 is the DNA sequence of Tb38-1F6.

SEQ. ID NO. 120 is the deduced N-terminal amino acid sequence of DPV.

- SEQ. ID NO. 121 is the deduced N-terminal amino acid sequence of AVGS.
- SEQ. ID NO. 122 is the deduced N-terminal amino acid sequence of AAMK.
- SEQ. ID NO. 123 is the deduced N-terminal amino acid sequence of YYWC.
- SEQ. ID NO. 124 is the deduced N-terminal amino acid sequence of DIGS.
- 5 SEQ. ID NO. 125 is the deduced N-terminal amino acid sequence of AEES.
 - SEQ. ID NO. 126 is the deduced N-terminal amino acid sequence of DPEP.
 - SEQ. ID NO. 127 is the deduced N-terminal amino acid sequence of APKT.
 - SEQ. ID NO. 128 is the deduced amino acid sequence of DPAS.
 - SEQ. ID NO. 129 is the protein sequence of DPPD N-terminal Antigen.
- SEQ ID NO. 130-133 are the protein sequences of four DPPD cyanogen bromide fragments.
 - SEQ ID NO. 134 is the N-terminal protein sequence of XDS antigen.
 - SEQ ID NO. 135 is the N-terminal protein sequence of AGD antigen.
 - SEQ ID NO. 136 is the N-terminal protein sequence of APE antigen.
- SEQ ID NO. 137 is the N-terminal protein sequence of XYI antigen.
 - SEQ ID NO. 138 is the DNA sequence of TbH-29.
 - SEQ ID NO. 139 is the DNA sequence of TbH-30.
 - SEQ ID NO. 140 is the DNA sequence of TbH-32.
 - SEQ ID NO. 141 is the DNA sequence of TbH-33.
- SEQ ID NO. 142 is the predicted amino acid sequence of TbH-29.
 - SEQ ID NO. 143 is the predicted amino acid sequence of TbH-30.
 - SEQ ID NO. 144 is the predicted amino acid sequence of TbH-32.
 - SEQ ID NO. 145 is the predicted amino acid sequence of TbH-33.
- SEQ ID NO: 146-151 are PCR primers used in the preparation of a fusion protein containing TbRa3, 38 kD and Tb38-1.
 - SEQ ID NO: 152 is the DNA sequence of the fusion protein containing TbRa3, 38 kD and Tb38-1.
 - SEQ ID NO: 153 is the amino acid sequence of the fusion protein containing TbRa3, 38 kD and Tb38-1.
- 30 SEQ ID NO: 154 is the DNA sequence of the *M. tuberculosis* antigen 38 kD.

25

SEQ ID NO: 155 is the amino acid sequence of the *M. tuberculosis* antigen 38 kD.

SEQ ID NO: 156 is the DNA sequence of XP14.

SEQ ID NO: 157 is the DNA sequence of XP24.

5 SEQ ID NO: 158 is the DNA sequence of XP31.

SEQ ID NO: 159 is the 5' DNA sequence of XP32.

SEQ ID NO: 160 is the 3' DNA sequence of XP32.

SEQ ID NO: 161 is the predicted amino acid sequence of XP14.

SEQ ID NO: 162 is the predicted amino acid sequence encoded by the reverse

10 complement of XP14.

SEQ ID NO: 163 is the DNA sequence of XP27.

SEQ ID NO: 164 is the DNA sequence of XP36.

SEQ ID NO: 165 is the 5' DNA sequence of XP4.

SEQ ID NO: 166 is the 5' DNA sequence of XP5.

SEQ ID NO: 167 is the 5' DNA sequence of XP17.

SEQ ID NO: 168 is the 5' DNA sequence of XP30.

SEQ ID NO: 169 is the 5' DNA sequence of XP2.

SEQ ID NO: 170 is the 3' DNA sequence of XP2.

SEQ ID NO: 171 is the 5' DNA sequence of XP3.

SEQ ID NO: 172 is the 3' DNA sequence of XP3.

SEQ ID NO: 173 is the 5' DNA sequence of XP6.

SEQ ID NO: 174 is the 3' DNA sequence of XP6.

SEQ ID NO: 175 is the 5' DNA sequence of XP18.

SEQ ID NO: 176 is the 3' DNA sequence of XP18.

SEQ ID NO: 177 is the 5' DNA sequence of XP19.

SEQ ID NO: 178 is the 3' DNA sequence of XP19.

SEQ ID NO: 179 is the 5' DNA sequence of XP22.

SEQ ID NO: 180 is the 3' DNA sequence of XP22.

SEQ ID NO: 181 is the 5' DNA sequence of XP25.

SEQ ID NO: 182 is the 3' DNA sequence of XP25.

13

SEQ ID NO: 183 is the full-length DNA sequence of TbH4-XP1.

SEQ ID NO: 184 is the predicted amino acid sequence of TbH4-XP1.

SEQ ID NO: 185 is the predicted amino acid sequence encoded by the reverse complement of TbH4-XP1.

5 SEQ ID NO: 186 is a first predicted amino acid sequence encoded by XP36.

SEQ ID NO: 187 is a second predicted amino acid sequence encoded by XP36.

SEQ ID NO: 188 is the predicted amino acid sequence encoded by the reverse complement of XP36.

SEQ ID NO: 189 is the DNA sequence of RDIF2.

SEQ ID NO: 190 is the DNA sequence of RDIF5.

SEQ ID NO: 191 is the DNA sequence of RDIF8.

SEQ ID NO: 192 is the DNA sequence of RDIF10.

SEQ ID NO: 193 is the DNA sequence of RDIF11.

SEQ ID NO: 194 is the predicted amino acid sequence of RDIF2.

SEQ ID NO: 195 is the predicted amino acid sequence of RDIF5.

SEQ ID NO: 196 is the predicted amino acid sequence of RDIF8.

SEQ ID NO: 197 is the predicted amino acid sequence of RDIF10.

SEQ ID NO: 198 is the predicted amino acid sequence of RDIF11.

SEQ ID NO: 199 is the 5' DNA sequence of RDIF12.

SEQ ID NO: 200 is the 3' DNA sequence of RDIF12.

SEQ ID NO: 201 is the DNA sequence of RDIF7.

SEQ ID NO: 202 is the predicted amino acid sequence of RDIF7.

SEQ ID NO: 203 is the DNA sequence of DIF2-1.

SEQ ID NO: 204 is the predicted amino acid sequence of DIF2-1.

SEQ ID NO: 205-212 are PCR primers used in the preparation of a fusion protein containing TbRa3, 38 kD, Tb38-1 and DPEP (hereinafter referred to as TbF-2).

SEQ ID NO: 213 is the DNA sequence of the fusion protein TbF-2.

SEQ ID NO: 214 is the amino acid sequence of the fusion protein TbF-2.

14

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

As noted above, the present invention is generally directed to compositions and methods for preventing, treating and diagnosing tuberculosis. The compositions of the subject invention include polypeptides that comprise at least one immunogenic portion of a M. tuberculosis antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. Polypeptides within the scope of the present invention include, but are not limited to, immunogenic soluble A "soluble M. tuberculosis antigen" is a protein of M. tuberculosis antigens. M. tuberculosis origin that is present in M. tuberculosis culture filtrate. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins (i.e., antigens), wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising an immunogenic portion of one of the above antigens may consist entirely of the immunogenic portion, or may contain The additional sequences may be derived from the native additional sequences. M. tuberculosis antigen or may be heterologous, and such sequences may (but need not) be immunogenic.

"Immunogenic," as used herein, refers to the ability to elicit an immune response (e.g., cellular) in a patient, such as a human, and/or in a biological sample. In particular, antigens that are immunogenic (and immunogenic portions or other variants of such antigens) are capable of stimulating cell proliferation, interleukin-12 production and/or interferon-γ production in biological samples comprising one or more cells selected from the group of T cells, NK cells, B cells and macrophages, where the cells are derived from an M. tuberculosis-immune individual. Polypeptides comprising at least an immunogenic portion of one or more M. tuberculosis antigens may generally be used to detect tuberculosis or to induce protective immunity against tuberculosis in a patient.

The compositions and methods of this invention also encompass variants of the above polypeptides. A "variant," as used herein, is a polypeptide that differs from the native antigen only in conservative substitutions and/or modifications, such that the ability of the polypeptide to induce an immune response is retained. Such variants may generally be identified by modifying one of the above polypeptide

sequences, and evaluating the immunogenic properties of the modified polypeptide using, for example, the representative procedures described herein.

A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

5

10

15

20

25

30

Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

In a related aspect, combination polypeptides are disclosed. A "combination polypeptide" is a polypeptide comprising at least one of the above immunogenic portions and one or more additional immunogenic *M. tuberculosis* sequences, which are joined via a peptide linkage into a single amino acid chain. The sequences may be joined directly (*i.e.*, with no intervening amino acids) or may be joined by way of a linker sequence (*e.g.*, Gly-Cys-Gly) that does not significantly diminish the immunogenic properties of the component polypeptides.

In general, *M. tuberculosis* antigens, and DNA sequences encoding such antigens, may be prepared using any of a variety of procedures. For example, soluble antigens may be isolated from *M. tuberculosis* culture filtrate by procedures known to those of ordinary skill in the art, including anion-exchange and reverse phase chromatography. Purified antigens are then evaluated for their ability to elicit an

5

10

15

20

25

30

appropriate immune response (e.g., cellular) using, for example, the representative methods described herein. Immunogenic antigens may then be partially sequenced using techniques such as traditional Edman chemistry. See Edman and Berg, Eur. J. Biochem. 80:116-132, 1967.

Immunogenic antigens may also be produced recombinantly using a DNA sequence that encodes the antigen, which has been inserted into an expression vector and expressed in an appropriate host. DNA molecules encoding soluble antigens may be isolated by screening an appropriate *M. tuberculosis* expression library with anti-sera (e.g., rabbit) raised specifically against soluble *M. tuberculosis* antigens. DNA sequences encoding antigens that may or may not be soluble may be identified by screening an appropriate *M. tuberculosis* genomic or cDNA expression library with sera obtained from patients infected with *M. tuberculosis*. Such screens may generally be performed using techniques well known to those of ordinary skill in the art, such as those described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989.

DNA sequences encoding soluble antigens may also be obtained by screening an appropriate *M. tuberculosis* cDNA or genomic DNA library for DNA sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated soluble antigens. Degenerate oligonucleotide sequences for use in such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989 (and references cited therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.

Alternatively, genomic or cDNA libraries derived from *M. tuberculosis* may be screened directly using peripheral blood mononuclear cells (PBMCs) or T cell lines or clones derived from one or more *M. tuberculosis*-immune individuals. In general, PBMCs and/or T cells for use in such screens may be prepared as described

10

15

20

25

30

below. Direct library screens may generally be performed by assaying pools of expressed recombinant proteins for the ability to induce proliferation and/or interferon- γ production in T cells derived from an *M. tuberculosis*-immune individual. Alternatively, potential T cell antigens may be first selected based on antibody reactivity, as described above.

17

Regardless of the method of preparation, the antigens (and immunogenic portions thereof) described herein (which may or may not be soluble) have the ability to induce an immunogenic response. More specifically, the antigens have the ability to induce proliferation and/or cytokine production (i.e., interferon-y and/or interleukin-12 production) in T cells, NK cells, B cells and/or macrophages derived from an M. tuberculosis-immune individual. The selection of cell type for use in evaluating an immunogenic response to a antigen will, of course, depend on the desired response. For example, interleukin-12 production is most readily evaluated using preparations containing B cells and/or macrophages. An M. tuberculosis-immune individual is one who is considered to be resistant to the development of tuberculosis by virtue of having mounted an effective T cell response to M. tuberculosis (i.e., substantially free of disease symptoms). Such individuals may be identified based on a strongly positive (i.e., greater than about 10 mm diameter induration) intradermal skin test response to tuberculosis proteins (PPD) and an absence of any signs or symptoms of tuberculosis disease. T cells, NK cells, B cells and macrophages derived from M. tuberculosisimmune individuals may be prepared using methods known to those of ordinary skill in the art. For example, a preparation of PBMCs (i.e., peripheral blood mononuclear cells) may be employed without further separation of component cells. PBMCs may generally be prepared, for example, using density centrifugation through FicollTM (Winthrop Laboratories, NY). T cells for use in the assays described herein may also be purified directly from PBMCs. Alternatively, an enriched T cell line reactive against mycobacterial proteins, or T cell clones reactive to individual mycobacterial proteins, may be employed. Such T cell clones may be generated by, for example, culturing PBMCs from M. tuberculosis-immune individuals with mycobacterial proteins for a period of 2-4 weeks. This allows expansion of only the mycobacterial protein-specific

WO 98/16646

10

15

20

25

30

18

PCT/US97/18293

T cells, resulting in a line composed solely of such cells. These cells may then be cloned and tested with individual proteins, using methods known to those of ordinary skill in the art, to more accurately define individual T cell specificity. In general, antigens that test positive in assays for proliferation and/or cytokine production (*i.e.*, interferon-γ and/or interleukin-12 production) performed using T cells, NK cells, B cells and/or macrophages derived from an *M. tuberculosis*-immune individual are considered immunogenic. Such assays may be performed, for example, using the representative procedures described below. Immunogenic portions of such antigens may be identified using similar assays, and may be present within the polypeptides described herein.

The ability of a polypeptide (e.g., an immunogenic antigen, or a portion or other variant thereof) to induce cell proliferation is evaluated by contacting the cells (e.g., T cells and/or NK cells) with the polypeptide and measuring the proliferation of the cells. In general, the amount of polypeptide that is sufficient for evaluation of about 10⁵ cells ranges from about 10 ng/mL to about 100 µg/mL and preferably is about 10 µg/mL. The incubation of polypeptide with cells is typically performed at 37°C for about six days. Following incubation with polypeptide, the cells are assayed for a proliferative response, which may be evaluated by methods known to those of ordinary skill in the art, such as exposing cells to a pulse of radiolabeled thymidine and measuring the incorporation of label into cellular DNA. In general, a polypeptide that results in at least a three fold increase in proliferation above background (i.e., the proliferation observed for cells cultured without polypeptide) is considered to be able to induce proliferation.

The ability of a polypeptide to stimulate the production of interferon-γ and/or interleukin-12 in cells may be evaluated by contacting the cells with the polypeptide and measuring the level of interferon-γ or interleukin-12 produced by the cells. In general, the amount of polypeptide that is sufficient for the evaluation of about 10⁵ cells ranges from about 10 ng/mL to about 100 μg/mL and preferably is about 10 μg/mL. The polypeptide may, but need not, be immobilized on a solid support, such as a bead or a biodegradable microsphere, such as those described in U.S. Patent Nos. 4,897,268 and 5,075,109. The incubation of polypeptide with the cells is typically

10

15

20

25

30

19

performed at 37°C for about six days. Following incubation with polypeptide, the cells are assayed for interferon-γ and/or interleukin-12 (or one or more subunits thereof), which may be evaluated by methods known to those of ordinary skill in the art, such as an enzyme-linked immunosorbent assay (ELISA) or, in the case of IL-12 P70 subunit, a bioassay such as an assay measuring proliferation of T cells. In general, a polypeptide that results in the production of at least 50 pg of interferon-γ per mL of cultured supernatant (containing 10⁴-10⁵ T cells per mL) is considered able to stimulate the production of interferon-γ. A polypeptide that stimulates the production of at least 10 pg/mL of IL-12 P70 subunit, and/or at least 100 pg/mL of IL-12 P40 subunit, per 10⁵ macrophages or B cells (or per 3 x 10⁵ PBMC) is considered able to stimulate the production of IL-12.

In general, immunogenic antigens are those antigens that stimulate proliferation and/or cytokine production (*i.e.*, interferon-γ and/or interleukin-12 production) in T cells, NK cells, B cells and/or macrophages derived from at least about 25% of *M. tuberculosis*-immune individuals. Among these immunogenic antigens, polypeptides having superior therapeutic properties may be distinguished based on the magnitude of the responses in the above assays and based on the percentage of individuals for which a response is observed. In addition, antigens having superior therapeutic properties will not stimulate proliferation and/or cytokine production *in vitro* in cells derived from more than about 25% of individuals that are not *M. tuberculosis*-immune, thereby eliminating responses that are not specifically due to *M. tuberculosis*-responsive cells. Those antigens that induce a response in a high percentage of T cell, NK cell, B cell and/or macrophage preparations from *M. tuberculosis*-immune individuals (with a low incidence of responses in cell preparations from other individuals) have superior therapeutic properties.

Antigens with superior therapeutic properties may also be identified based on their ability to diminish the severity of *M. tuberculosis* infection in experimental animals, when administered as a vaccine. Suitable vaccine preparations for use on experimental animals are described in detail below. Efficacy may be determined based on the ability of the antigen to provide at least about a 50% reduction

5

10

15

20

20

in bacterial numbers and/or at least about a 40% decrease in mortality following experimental infection. Suitable experimental animals include mice, guinea pigs and primates.

Antigens having superior diagnostic properties may generally be identified based on the ability to elicit a response in an intradermal skin test performed on an individual with active tuberculosis, but not in a test performed on an individual who is not infected with *M. tuberculosis*. Skin tests may generally be performed as described below, with a response of at least 5 mm induration considered positive.

Immunogenic portions of the antigens described herein may be prepared and identified using well known techniques, such as those summarized in Paul, Fundamental Immunology, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for immunogenic properties. The representative proliferation and cytokine production assays described herein may generally be employed in these screens. An immunogenic portion of a polypeptide is a portion that, within such representative assays, generates an immune response (e.g., proliferation, interferon-γ production and/or interleukin-12 production) that is substantially similar to that generated by the full length antigen. In other words, an immunogenic portion of an antigen may generate at least about 20%, and preferably about 100%, of the proliferation induced by the full length antigen in the model proliferation assay described herein. An immunogenic portion may also, or alternatively, stimulate the production of at least about 20%, and preferably about 100%, of the interferon-γ and/or interleukin-12 induced by the full length antigen in the model assay described herein.

Portions and other variants of *M. tuberculosis* antigens may be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. *See* Merrifield, *J. Am. Chem. Soc.*

21

85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Applied BioSystems, Inc., Foster City, CA, and may be operated according to the manufacturer's instructions. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Sections of the DNA sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.

Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a DNA sequence encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.

10

15

20

25

Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line such as COS or CHO. The DNA sequences expressed in this manner may encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof.

In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in substantially pure form. Preferably, the polypeptides are at least about 80% pure, more preferably at least about 90% pure and most preferably at least about 99% pure. In certain preferred embodiments, described in

5

10

15

20

25

detail below, the substantially pure polypeptides are incorporated into pharmaceutical compositions or vaccines for use in one or more of the methods disclosed herein.

In certain specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a soluble *M. tuberculosis* antigen having one of the following N-terminal sequences, or a variant thereof that differs only in conservative substitutions and/or modifications:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (SEQ ID No. 120)
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser; (SEQ ID No. 121)
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg; (SEQ ID No. 122)
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro; (SEQ ID No. 123)
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val; (SEQ ID No. 124)
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro; (SEQ ID No. 125)
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala-Ala-Ser-Pro-Pro-Ser; (SEQ ID No. 126)
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly; (SEQ ID No. 127)
- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn; (SEQ ID No. 128)
- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 134)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 135) or

23

(l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 136)

wherein Xaa may be any amino acid, preferably a cysteine residue. A DNA sequence encoding the antigen identified as (g) above is provided in SEQ ID No. 52, and the polypeptide encoded by SEQ ID No. 52 is provided in SEQ ID No. 53. A DNA sequence encoding the antigen defined as (a) above is provided in SEQ ID No. 101; its deduced amino acid sequence is provided in SEQ ID No. 102. A DNA sequence corresponding to antigen (d) above is provided in SEQ ID No. 24 a DNA sequence corresponding to antigen (c) is provided in SEQ ID No. 25 and a DNA sequence corresponding to antigen (i) is provided in SEQ ID No. 99; its deduced amino acid sequence is provided in SEQ ID No. 99; its deduced amino acid sequence is provided in SEQ ID No. 100.

In a further specific embodiment, the subject invention discloses polypeptides comprising at least an immunogenic portion of an *M. tuberculosis* antigen having one of the following N-terminal sequences, or a variant thereof that differs only in conservative substitutions and/or modifications:

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No 137) or
- (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 129)
- wherein Xaa may be any amino acid, preferably a cysteine residue.

10

15

25

30

In other specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a soluble *M. tuberculosis* antigen (or a variant of such an antigen) that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID Nos.: 1, 2, 4-10, 13-25 and 52; (b) the complements of such DNA sequences, or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In further specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a *M. tuberculosis* antigen (or a variant of such an antigen), which may or may not be soluble, that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID

24

Nos.: 26-51, 138, 139, 163-183 and 201, (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In the specific embodiments discussed above, the *M. tuberculosis* antigens include variants that are encoded by DNA sequences which are substantially homologous to one or more of DNA sequences specifically recited herein. "Substantial homology," as used herein, refers to DNA sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the case of cross-species homology at 45°C, 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS). Such hybridizing DNA sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing DNA sequence.

10

15

20

25

In a related aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, a polypeptide of the present invention and a known *M tuberculosis* antigen, such as the 38 kD antigen described in Andersen and Hansen, *Infect. Immun.* 57:2481-2488, 1989, (Genbank Accession No. M30046) or ESAT-6 (SEQ ID Nos. 103 and 104), together with variants of such fusion proteins. The fusion proteins of the present invention may also include a linker peptide between the first and second polypeptides.

A DNA sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding the first and second polypeptides into an appropriate expression vector. The 3' end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

5

10

15

20

25

25

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA 83:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide sequences are not required when the first and second polypeptides have nonessential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons require to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

In another aspect, the present invention provides methods for using one or more of the above polypeptides or fusion proteins (or DNA molecules encoding such polypeptides) to induce protective immunity against tuberculosis in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with a disease, or may be free of detectable disease and/or infection. In other words, protective immunity may be induced to prevent or treat tuberculosis.

5

10

15

20

25

30

26

In this aspect, the polypeptide, fusion protein or DNA molecule is generally present within a pharmaceutical composition and/or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. Vaccines may comprise one or more of the above polypeptides and a non-specific immune response enhancer, such as an adjuvant or a liposome (into which the polypeptide is incorporated). Such pharmaceutical compositions and vaccines may also contain other *M. tuberculosis* antigens, either incorporated into a combination polypeptide or present within a separate polypeptide.

Alternatively, a vaccine may contain DNA encoding one or more polypeptides as described above, such that the polypeptide is generated in situ. In such vaccines, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacterial and viral expression systems. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., Science 259:1745-1749, 1993 and reviewed by Cohen, Science 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

In a related aspect, a DNA vaccine as described above may be administered simultaneously with or sequentially to either a polypeptide of the present invention or a known *M. tuberculosis* antigen, such as the 38 kD antigen described above. For example, administration of DNA encoding a polypeptide of the present

5

10

15

20

25

30

27

invention, either "naked" or in a delivery system as described above, may be followed by administration of an antigen in order to enhance the protective immune effect of the vaccine.

Routes and frequency of administration, as well as dosage, will vary from individual to individual and may parallel those currently being used in immunization using BCG. In general, the pharmaceutical compositions and vaccines may be administered by injection (*e.g.*, intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (*e.g.*, by aspiration) or orally. Between 1 and 3 doses may be administered for a 1-36 week period. Preferably, 3 doses are administered, at intervals of 3-4 months, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that, when administered as described above, is capable of raising an immune response in an immunized patient sufficient to protect the patient from *M. tuberculosis* infection for at least 1-2 years. In general, the amount of polypeptide present in a dose (or produced *in situ* by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 µg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactic galactide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Any of a variety of adjuvants may be employed in the vaccines of this invention to nonspecifically enhance the immune response. Most adjuvants contain a

WO 98/16646

10

15

20

28

PCT/US97/18293

substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a nonspecific stimulator of immune responses, such as lipid A, *Bortadella pertussis* or *Mycobacterium tuberculosis*. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Freund's Complete Adjuvant (Difco Laboratories) and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ). Other suitable adjuvants include alum, biodegradable microspheres, monophosphoryl lipid A and quil A.

In another aspect, this invention provides methods for using one or more of the polypeptides described above to diagnose tuberculosis using a skin test. As used herein, a "skin test" is any assay performed directly on a patient in which a delayed-type hypersensitivity (DTH) reaction (such as swelling, reddening or dermatitis) is measured following intradermal injection of one or more polypeptides as described above. Such injection may be achieved using any suitable device sufficient to contact the polypeptide or polypeptides with dermal cells of the patient, such as a tuberculin syringe or 1 mL syringe. Preferably, the reaction is measured at least 48 hours after injection, more preferably 48-72 hours.

The DTH reaction is a cell-mediated immune response, which is greater in patients that have been exposed previously to the test antigen (*i.e.*, the immunogenic portion of the polypeptide employed, or a variant thereof). The response may be measured visually, using a ruler. In general, a response that is greater than about 0.5 cm in diameter, preferably greater than about 1.0 cm in diameter, is a positive response, indicative of tuberculosis infection, which may or may not be manifested as an active disease.

The polypeptides of this invention are preferably formulated, for use in a skin test, as pharmaceutical compositions containing a polypeptide and a physiologically acceptable carrier, as described above. Such compositions typically contain one or more of the above polypeptides in an amount ranging from about 1 μg to about 100 μg, preferably from about 10 μg to about 50 μg in a volume of 0.1 mL. Preferably, the carrier employed in such pharmaceutical compositions is a saline solution with appropriate preservatives, such as phenol and/or Tween 80TM.

29

In a preferred embodiment, a polypeptide employed in a skin test is of sufficient size such that it remains at the site of injection for the duration of the reaction period. In general, a polypeptide that is at least 9 amino acids in length is sufficient. The polypeptide is also preferably broken down by macrophages within hours of injection to allow presentation to T-cells. Such polypeptides may contain repeats of one or more of the above sequences and/or other immunogenic or nonimmunogenic sequences.

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

EXAMPLE 1

15 <u>Purification and Characterization of Polypeptides</u>

25

FROM M. TUBERCULOSIS CULTURE FILTRATE

This example illustrates the preparation of *M. tuberculosis* soluble polypeptides from culture filtrate. Unless otherwise noted, all percentages in the following example are weight per volume.

M. tuberculosis (either H37Ra, ATCC No. 25177, or H37Rv, ATCC No. 25618) was cultured in sterile GAS media at 37°C for fourteen days. The media was then vacuum filtered (leaving the bulk of the cells) through a 0.45 μ filter into a sterile 2.5 L bottle. The media was next filtered through a 0.2 μ filter into a sterile 4 L bottle and NaN₃ was added to the culture filtrate to a concentration of 0.04%. The bottles were then placed in a 4°C cold room.

The culture filtrate was concentrated by placing the filtrate in a 12 L reservoir that had been autoclaved and feeding the filtrate into a 400 ml Amicon stir cell which had been rinsed with ethanol and contained a 10,000 kDa MWCO membrane.

WO 98/16646

5

10

15

20

30

PCT/US97/18293

The pressure was maintained at 60 psi using nitrogen gas. This procedure reduced the 12 L volume to approximately 50 ml.

The culture filtrate was dialyzed into 0.1% ammonium bicarbonate using a 8,000 kDa MWCO cellulose ester membrane, with two changes of ammonium bicarbonate solution. Protein concentration was then determined by a commercially available BCA assay (Pierce, Rockford, IL).

The dialyzed culture filtrate was then lyophilized, and the polypeptides resuspended in distilled water. The polypeptides were dialyzed against 0.01 mM 1,3 bis[tris(hydroxymethyl)-methylamino]propane, pH 7.5 (Bis-Tris propane buffer), the initial conditions for anion exchange chromatography. Fractionation was performed using gel profusion chromatography on a POROS 146 II Q/M anion exchange column 4.6 mm x 100 mm (Perseptive BioSystems, Framingham, MA) equilibrated in 0.01 mM Bis-Tris propane buffer pH 7.5. Polypeptides were eluted with a linear 0-0.5 M NaCl gradient in the above buffer system. The column eluent was monitored at a wavelength of 220 nm.

The pools of polypeptides eluting from the ion exchange column were dialyzed against distilled water and lyophilized. The resulting material was dissolved in 0.1% trifluoroacetic acid (TFA) pH 1.9 in water, and the polypeptides were purified on a Delta-Pak C18 column (Waters, Milford, MA) 300 Angstrom pore size, 5 micron particle size (3.9 x 150 mm). The polypeptides were eluted from the column with a linear gradient from 0-60% dilution buffer (0.1% TFA in acetonitrile). The flow rate was 0.75 ml/minute and the HPLC eluent was monitored at 214 nm. Fractions containing the eluted polypeptides were collected to maximize the purity of the individual samples. Approximately 200 purified polypeptides were obtained.

The purified polypeptides were then screened for the ability to induce T-cell proliferation in PBMC preparations. The PBMCs from donors known to be PPD skin test positive and whose T-cells were shown to proliferate in response to PPD and crude soluble proteins from MTB were cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 μg/ml gentamicin. Purified polypeptides were added in duplicate at concentrations of 0.5 to 10 μg/mL. After six

5

10

15

20

25

31

days of culture in 96-well round-bottom plates in a volume of 200 μ l, 50 μ l of medium was removed from each well for determination of IFN- γ levels, as described below. The plates were then pulsed with 1 μ Ci/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that resulted in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone were considered positive.

IFN-γ was measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates were coated with a mouse monoclonal antibody directed to human IFN-γ (PharMingen, San Diego, CA) in PBS for four hours at room temperature. Wells were then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates were then washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates were incubated overnight at room temperature. The plates were again washed and a polyclonal rabbit anti-human IFN-y serum diluted 1:3000 in PBS/10% normal goat serum was added to each well. The plates were then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Sigma Chemical So., St. Louis, MO) was added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates were washed and TMB substrate added. The reaction was stopped after 20 min with 1 N sulfuric acid. Optical density was determined at 450 nm using 570 nm as a reference wavelength. Fractions that resulted in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, were considered positive.

For sequencing, the polypeptides were individually dried onto Biobrene™ (Perkin Elmer/Applied BioSystems Division, Foster City, CA) treated glass fiber filters. The filters with polypeptide were loaded onto a Perkin Elmer/Applied BioSystems Division Procise 492 protein sequencer. The polypeptides were sequenced from the amino terminal and using traditional Edman chemistry. The amino acid sequence was determined for each polypeptide by comparing the retention time of the PTH amino acid derivative to the appropriate PTH derivative standards.

5

10

15

Using the procedure described above, antigens having the following N-terminal sequences were isolated:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Xaa-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (SEQ ID No. 54)
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser; (SEQ ID No. 55)
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg; (SEQ ID No. 56)
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro; (SEQ ID No. 57)
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val; (SEQ ID No. 58)
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro; (SEQ ID No. 59)
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala-Ala-Ala-Pro-Pro-Ala; (SEQ ID No. 60) and
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly; (SEQ ID No. 61)

wherein Xaa may be any amino acid.

An additional antigen was isolated employing a microbore HPLC purification step in addition to the procedure described above. Specifically, 20 µl of a fraction comprising a mixture of antigens from the chromatographic purification step previously described, was purified on an Aquapore C18 column (Perkin Elmer/Applied Biosystems Division, Foster City, CA) with a 7 micron pore size, column size 1 mm x 100 mm, in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted from the column with a linear gradient of 1%/minute of acetonitrile (containing 0.05% TFA) in water (0.05% TFA) at a flow rate of 80 µl/minute. The eluent was monitored at 250 nm. The original fraction was separated into 4 major peaks plus other smaller components and a polypeptide was obtained which was shown to

33

have a molecular weight of 12.054 Kd (by mass spectrometry) and the following N-terminal sequence:

(i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Gln-Thr-Ser-Leu-Leu-Asn-Asn-Leu-Ala-Asp-Pro-Asp-Val-Ser-Phe-Ala-Asp (SEQ ID No. 62).

This polypeptide was shown to induce proliferation and IFN-γ production in PBMC preparations using the assays described above.

5

10

15

25

30

Additional soluble antigens were isolated from *M. tuberculosis* culture filtrate as follows. *M. tuberculosis* culture filtrate was prepared as described above. Following dialysis against Bis-Tris propane buffer, at pH 5.5, fractionation was performed using anion exchange chromatography on a Poros QE column 4.6 x 100 mm (Perseptive Biosystems) equilibrated in Bis-Tris propane buffer pH 5.5. Polypeptides were eluted with a linear 0-1.5 M NaCl gradient in the above buffer system at a flow rate of 10 ml/min. The column eluent was monitored at a wavelength of 214 nm.

The fractions eluting from the ion exchange column were pooled and subjected to reverse phase chromatography using a Poros R2 column 4.6 x 100 mm (Perseptive Biosystems). Polypeptides were eluted from the column with a linear gradient from 0-100% acetonitrile (0.1% TFA) at a flow rate of 5 ml/min. The eluent was monitored at 214 nm.

Fractions containing the eluted polypeptides were lyophilized and resuspended in 80 µl of aqueous 0.1% TFA and further subjected to reverse phase chromatography on a Vydac C4 column 4.6 x 150 mm (Western Analytical, Temecula, CA) with a linear gradient of 0-100% acetonitrile (0.1% TFA) at a flow rate of 2 ml/min. Eluent was monitored at 214 nm.

The fraction with biological activity was separated into one major peak plus other smaller components. Western blot of this peak onto PVDF membrane revealed three major bands of molecular weights 14 Kd, 20 Kd and 26 Kd. These polypeptides were determined to have the following N-terminal sequences, respectively:

(j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 134) WO 98/16646

34

(k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 135) and

PCT/US97/18293

- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 136), wherein Xaa may be any amino acid.
- 5 Using the assays described above, these polypeptides were shown to induce proliferation and IFN-γ production in PBMC preparations. Figs. 1A and B show the results of such assays using PBMC preparations from a first and a second donor, respectively.

DNA sequences that encode the antigens designated as (a), (c), (d) and (g) above were obtained by screening a genomic *M. tuberculosis* library using ³²P end labeled degenerate oligonucleotides corresponding to the N-terminal sequence and containing *M. tuberculosis* codon bias. The screen performed using a probe corresponding to antigen (a) above identified a clone having the sequence provided in SEQ ID No. 101. The polypeptide encoded by SEQ ID No. 101 is provided in SEQ ID No. 102. The screen performed using a probe corresponding to antigen (g) above identified a clone having the sequence provided in SEQ ID No. 52. The polypeptide encoded by SEQ ID No. 52 is provided in SEQ ID No. 53. The screen performed using a probe corresponding to antigen (d) above identified a clone having the sequence provided in SEQ ID No. 24, and the screen performed with a probe corresponding to antigen (c) identified a clone having the sequence provided in SEQ ID No: 25.

The above amino acid sequences were compared to known amino acid sequences in the gene bank using the DNA STAR system. The database searched contains some 173,000 proteins and is a combination of the Swiss, PIR databases along with translated protein sequences (Version 87). No significant homologies to the amino acid sequences for antigens (a)-(h) and (l) were detected.

25

30

The amino acid sequence for antigen (i) was found to be homologous to a sequence from *M. leprae*. The full length *M. leprae* sequence was amplified from genomic DNA using the sequence obtained from GENBANK. This sequence was then used to screen the *M. tuberculosis* library described below in Example 2 and a full length copy of the *M. tuberculosis* homologue was obtained (SEQ ID No. 99).

35

The amino acid sequence for antigen (j) was found to be homologous to a known *M. tuberculosis* protein translated from a DNA sequence. To the best of the inventors' knowledge, this protein has not been previously shown to possess T-cell stimulatory activity. The amino acid sequence for antigen (k) was found to be related to a sequence from *M. leprae*.

In the proliferation and IFN- γ assays described above, using three PPD positive donors, the results for representative antigens provided above are presented in Table 1:

10 <u>TABLE 1</u>

<u>RESULTS OF PBMC PROLIFERATION AND IFN-γ ASSAYS</u>

5

Sequence	Proliferation	IFN-γ
(a)	+ .	. =
(c)	+++	+++
(d)	++	++
(g)	+++	+++
(h)	+++	+++

In Table 1, responses that gave a stimulation index (SI) of between 2 and 4 (compared to cells cultured in medium alone) were scored as +, an SI of 4-8 or 2-4 at a concentration of 1 μg or less was scored as ++ and an SI of greater than 8 was scored as +++. The antigen of sequence (i) was found to have a high SI (+++) for one donor and lower SI (++ and +) for the two other donors in both proliferation and IFN-γ assays. These results indicate that these antigens are capable of inducing proliferation and/or interferon-γ production.

EXAMPLE 2

USE OF PATIENT SERA TO ISOLATE M. TUBERCULOSIS ANTIGENS

This example illustrates the isolation of antigens from *M. tuberculosis*5 lysate by screening with serum from *M. tuberculosis*-infected individuals.

Dessicated *M. tuberculosis* H37Ra (Difco Laboratories) was added to a 2% NP40 solution, and alternately homogenized and sonicated three times. The resulting suspension was centrifuged at 13,000 rpm in microfuge tubes and the supernatant put through a 0.2 micron syringe filter. The filtrate was bound to Macro Prep DEAE beads (BioRad, Hercules, CA). The beads were extensively washed with 20 mM Tris pH 7.5 and bound proteins eluted with 1M NaCl. The 1M NaCl elute was dialyzed overnight against 10 mM Tris, pH 7.5. Dialyzed solution was treated with DNase and RNase at 0.05 mg/ml for 30 min. at room temperature and then with α-D-mannosidase, 0.5 U/mg at pH 4.5 for 3-4 hours at room temperature. After returning to pH 7.5, the material was fractionated via FPLC over a Bio Scale-Q-20 column (BioRad). Fractions were combined into nine pools, concentrated in a Centriprep 10 (Amicon, Beverley, MA) and then screened by Western blot for serological activity using a serum pool from *M. tuberculosis*-infected patients which was not immunoreactive with other antigens of the present invention.

10

15

30

The most reactive fraction was run in SDS-PAGE and transferred to PVDF. A band at approximately 85 Kd was cut out yielding the sequence:

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 137), wherein Xaa may be any amino acid.
- Comparison of this sequence with those in the gene bank as described above, revealed no significant homologies to known sequences.

A DNA sequence that encodes the antigen designated as (m) above was obtained by screening a genomic *M. tuberculosis* Erdman strain library using labeled degenerate oligonucleotides corresponding to the N-terminal sequence of SEQ ID NO:137. A clone was identified having the DNA sequence provided in SEQ ID NO:

37

203. This sequence was found to encode the amino acid sequence provided in SEQ ID NO: 204. Comparison of these sequences with those in the genebank revealed some similarity to sequences previously identified in *M. tuberculosis* and *M. bovis*.

5

10

15

20

25

30

EXAMPLE 3

PREPARATION OF DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

This example illustrates the preparation of DNA sequences encoding *M. tuberculosis* antigens by screening a *M. tuberculosis* expression library with sera obtained from patients infected with *M. tuberculosis*, or with anti-sera raised against soluble *M. tuberculosis* antigens.

A. PREPARATION OF M. TUBERCULOSIS SOLUBLE ANTIGENS USING RABBIT ANTI-SERA RAISED AGAINST M. TUBERCULOSIS SUPERNATANT

Genomic DNA was isolated from the *M. tuberculosis* strain H37Ra. The DNA was randomly sheared and used to construct an expression library using the Lambda ZAP expression system (Stratagene, La Jolla, CA). Rabbit anti-sera was generated against secretory proteins of the *M. tuberculosis* strains H37Ra, H37Rv and Erdman by immunizing a rabbit with concentrated supernatant of the *M. tuberculosis* cultures. Specifically, the rabbit was first immunized subcutaneously with 200 µg of protein antigen in a total volume of 2 ml containing 10 µg muramyl dipeptide (Calbiochem, La Jolla, CA) and 1 ml of incomplete Freund's adjuvant. Four weeks later the rabbit was boosted subcutaneously with 100 µg antigen in incomplete Freund's adjuvant. Finally, the rabbit was immunized intravenously four weeks later with 50 µg protein antigen. The anti-sera were used to screen the expression library as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones deduced.

Thirty two clones were purified. Of these, 25 represent sequences that have not been previously identified in human *M. tuberculosis*. Recombinant antigens

5

10

15

were expressed and purified antigens used in the immunological analysis described in Example 1. Proteins were induced by IPTG and purified by gel elution, as described in Skeiky et al., *J. Exp. Med.* 181:1527-1537, 1995. Representative sequences of DNA molecules identified in this screen are provided in SEQ ID Nos.: 1-25. The corresponding predicted amino acid sequences are shown in SEQ ID Nos. 63-87.

On comparison of these sequences with known sequences in the gene bank using the databases described above, it was found that the clones referred to hereinafter as TbRA2A, TbRA16, TbRA18, and TbRA29 (SEQ ID Nos. 76, 68, 70, 75) show some homology to sequences previously identified in *Mycobacterium leprae* but not in *M. tuberculosis*. TbRA11, TbRA26, TbRA28 and TbDPEP (SEQ ID Nos.: 65, 73, 74, 53) have been previously identified in *M. tuberculosis*. No significant homologies were found to TbRA1, TbRA3, TbRA4, TbRA9, TbRA10, TbRA13, TbRA17, TbRa19, TbRA29, TbRA32, TbRA36 and the overlapping clones TbRA35 and TbRA12 (SEQ ID Nos. 63, 77, 81, 82, 64, 67, 69, 71, 75, 78, 80, 79, 66). The clone TbRa24 is overlapping with clone TbRa29.

The results of PBMC proliferation and interferon- γ assays performed on representative recombinant antigens, and using T-cell preparations from several different *M. tuberculosis*-immune patients, are presented in Tables 2 and 3, respectively.

TABLE 2
RESULTS OF PBMC PROLIFERATION TO REPRESENTATIVE SOLUBLE ANTIGENS

	7		1	T	$\overline{}$		Т—		_					_		_	_		
	13	•	ļ.,	nt	'	nt		Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Į ta	ti	nt	ŧ	'
	12	+1		nt	+1	+1		t	ti	nt	nt	‡	nt	Ħ	Ħ	+1	+	+	
		+	,	nt	+1	‡	+	nt	nt	nt	nt	‡	nt	nt	nt	nt) ti	+	
	10	,		nt	+	‡	•	nt	nt	nt	nt	‡	nt	nt	Ħ		,	+	
	6	•	+1	nt		+	+1	Ħ	nt	Ħ	nt	‡	Ħ	nt	Ħ			+1	
	8	+1	++	nt	+1	•	+1	nt	nt	nt	ut	‡	nt	nt	nt	'	•	‡	
Patient	7	+1	•	nt	nt	nt	+	nt	nt	nt	nt	nt	nt	nt	nt	Ħ	Ħ	Ħ	,
	9	•	,	+	+	+	‡	+	1	-		‡	,	•	•	,	,		•
	5	•	+1	‡	+1	+	+1	-	-	•	-	+	-	-		•		,	ı
	4	‡	•	nt	+1	#	+	nt	nt	nt	nt	+	nt	nt	nt	•		‡	
	3	+1	‡	nt	+1	+	+	nt	nt	nt	nt	‡	ut	Ħ	nt	+1		•	
	2	-	+1	•	•	+1	ı	nt	nt	+	nt	nt	nt	nt	nt		•	+	1
	1	•	'	•	•	+1	,	nt	nt		nt	‡	ti	t	nt		•		,
Antigen		TbRa1	TbRa3	TbRa9	TbRa10	TbRa11	TbRa12	TbRa16	TbRa24	TbRa26	TbRa29	TbRa35	TbRaB	TbRaC	TbRaD	AAMK	YY	DPEP	Control

nt = not tested

RESULTS OF PBMC INTERFERON-Y PRODUCTION TO REPRESENTATIVE SOLUBLE ANTIGENS

	13			nt	'	Ħ		Ħ	Ħ	ti	nt	nt	ııt	nt	Ħ	nt	ta	T T	
	12	+1		Ħ	+1	+1		nt	nt	nt	nt	‡	II	Ħ	nt	+1	+	+1	
	=======================================	+		nt	+1	‡	+	nt	ıt	nt	nt	++++	Ħ	ti	nt	Ħ	nt	+1	
	10	•	,	nt	+	‡	,	nt	nt	Ħ	nt	+++	ti	ut	nt			+	
	6		+1	nt		++	+1	nt	nt	nt	Ħ	‡	nt	ut	nt		•	+1	
	∞	+1	+	nt	+1	•	+1	nt	nt	nt	ut	‡	nt	nt	Ħ			‡	
Patient	7		,	nt	nt	nt	+	Ħ	nt	nt	nt	nt	nt	nt	ıı	Ħ	Ħ	Ħ	
	9		,		+	+	+ + +	+	-	+		++++	+	+	+		1	,	
	5	+	+1	‡	+1	++	+1	+	+	+	+	‡	+	+	+		•	+	1
	4	++++	•	nt	+1	‡	+	nt	nt	nt	nt	+	nt	nt	nt	•		+ + +	
	3		+ +	nt	+1	+	+	nt	nt	nt	nt	‡	nt	nt	nt	+1		+	
	2	‡	+1	+	+	+1		nt	nt	+	nt	nt	nt	nt	nt	ı	,	+	•
	-	+	-	++	+		•	nt	nt	‡	nt	#	nt	nt	nt	,	1	+	•
Antigen		TbRa1	TbRa3	TbRa9	TbRa10	TbRa11	TbRa12	TbRa16	TbRa24	TbRa26	TbRa29	TbRa35	TbRaB	TbRaC	TbRaD	AAMK	YY	DPEP	Control

In Tables 2 and 3, responses that gave a stimulation index (SI) of between 1.2 and 2 (compared to cells cultured in medium alone) were scored as \pm , a SI of 2-4 was scored as \pm , as SI of 4-8 or 2-4 at a concentration of 1 μ g or less was scored as \pm and an SI of greater than 8 was scored as \pm . In addition, the effect of concentration on proliferation and interferon- γ production is shown for two of the above antigens in the attached Figure. For both proliferation and interferon- γ production, TbRa3 was scored as \pm and TbRa9 as \pm .

These results indicate that these soluble antigens can induce proliferation and/or interferon- γ production in T-cells derived from an *M. tuberculosis*-immune individual.

10

15

20

25

30

B. USE OF SERA FROM PATIENTS HAVING PULMONARY OR PLEURAL TUBERCULOSIS TO IDENTIFY DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

The genomic DNA library described above, and an additional H37Rv library, were screened using pools of sera obtained from patients with active tuberculosis. To prepare the H37Rv library, *M. tuberculosis* strain H37Rv genomic DNA was isolated, subjected to partial *Sau*3A digestion and used to construct an expression library using the Lambda Zap expression system (Stratagene, La Jolla, Ca). Three different pools of sera, each containing sera obtained from three individuals with active pulmonary or pleural disease, were used in the expression screening. The pools were designated TbL, TbM and TbH, referring to relative reactivity with H37Ra lysate (*i.e.*, TbL = low reactivity, TbM = medium reactivity and TbH = high reactivity) in both ELISA and immunoblot format. A fourth pool of sera from seven patients with active pulmonary tuberculosis was also employed. All of the sera lacked increased reactivity with the recombinant 38 kD *M. tuberculosis* H37Ra phosphate-binding protein.

All pools were pre-adsorbed with *E. coli* lysate and used to screen the H37Ra and H37Rv expression libraries, as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones deduced.

42

Thirty two clones were purified. Of these, 31 represented sequences that had not been previously identified in human *M. tuberculosis*. Representative sequences of the DNA molecules identified are provided in SEQ ID Nos.: 26-51 and 105. Of these, TbH-8-2 (SEQ. ID NO. 105) is a partial clone of TbH-8, and TbH-4 (SEQ. ID NO. 43) and TbH-4-FWD (SEQ. ID NO. 44) are non-contiguous sequences from the same clone. Amino acid sequences for the antigens hereinafter identified as Tb38-1, TbH-4, TbH-8, TbH-9, and TbH-12 are shown in SEQ ID Nos.: 88-92. Comparison of these sequences with known sequences in the gene bank using the databases identified above revealed no significant homologies to TbH-4, TbH-8, TbH-9 and TbM-3, although weak homologies were found to TbH-9. TbH-12 was found to be homologous to a 34 kD antigenic protein previously identified in *M. paratuberculosis* (Acc. No. S28515). Tb38-1 was found to be located 34 base pairs upstream of the open reading frame for the antigen ESAT-6 previously identified in *M. bovis* (Acc. No. U34848) and in *M. tuberculosis* (Sorensen et al., *Infec. Immun. 63*:1710-1717, 1995).

10

15

30

Probes derived from Tb38-1 and TbH-9, both isolated from an H37Ra library, were used to identify clones in an H37Rv library. Tb38-1 hybridized to Tb38-1F2, Tb38-1F3, Tb38-1F5 and Tb38-1F6 (SEQ. ID NOS. 112, 113, 116, 118, and 119). (SEQ ID NOS. 112 and 113 are non-contiguous sequences from clone Tb38-1F2.) Two open reading frames were deduced in Tb38-IF2; one corresponds to Tb37FL (SEQ. ID. NO. 114), the second, a partial sequence, may be the homologue of Tb38-1 and is called Tb38-IN (SEQ. ID NO. 115). The deduced amino acid sequence of Tb38-1F3 is presented in SEQ. ID. NO. 117. A TbH-9 probe identified three clones in the H37Rv library: TbH-9-FL (SEQ. ID NO. 106), which may be the homologue of TbH-9 (R37Ra), TbH-9-1 (SEQ. ID NO. 108), and TbH-9-4 (SEQ. ID NO. 110), all of which are highly related sequences to TbH-9. The deduced amino acid sequences for these three clones are presented in SEQ ID NOS. 107, 109 and 111.

Further screening of the *M. tuberculosis* genomic DNA library, as described above, resulted in the recovery of ten additional reactive clones, representing seven different genes. One of these genes was identified as the 38 Kd antigen discussed

5

10

above, one was determined to be identical to the 14Kd alpha crystallin heat shock protein previously shown to be present in *M. tuberculosis*, and a third was determined to be identical to the antigen TbH-8 described above. The determined DNA sequences for the remaining five clones (hereinafter referred to as TbH-29, TbH-30, TbH-32 and TbH-33) are provided in SEQ ID NO: 138-141, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 142-145, respectively. The DNA and amino acid sequences for these antigens were compared with those in the gene bank as described above. No homologies were found to the 5' end of TbH-29 (which contains the reactive open reading frame), although the 3' end of TbH-29 was found to be identical to the *M. tuberculosis* cosmid Y227. TbH-32 and TbH-33 were found to be identical to the previously identified *M. tuberculosis* insertion element IS6110 and to the *M. tuberculosis* cosmid Y50, respectively. No significant homologies to TbH-30 were found.

43

Positive phagemid from this additional screening were used to infect *E. coli* XL-1 Blue MRF', as described in Sambrook et al., *supra*. Induction of recombinant protein was accomplished by the addition of IPTG. Induced and uninduced lysates were run in duplicate on SDS-PAGE and transferred to nitrocellulose filters. Filters were reacted with human *M. tuberculosis* sera (1:200 dilution) reactive with TbH and a rabbit sera (1:200 or 1:250 dilution) reactive with the N-terminal 4 Kd portion of lacZ. Sera incubations were performed for 2 hours at room temperature. Bound antibody was detected by addition of ¹²⁵I-labeled Protein A and subsequent exposure to film for variable times ranging from 16 hours to 11 days. The results of the immunoblots are summarized in Table 4.

44

TABLE 4

5	Antigen	Human M. tb <u>Sera</u>	Anti-lacZ <u>Sera</u>
	ТьН-29	45 Kd	45 Kd
	TbH-30	No reactivity	29 Kd
	TbH-32	12 Kd	12 Kd
	TbH-33	16 Kd	16 Kd

10

15

25

Positive reaction of the recombinant human *M. tuberculosis* antigens with both the human *M. tuberculosis* sera and anti-lacZ sera indicate that reactivity of the human *M. tuberculosis* sera is directed towards the fusion protein. Antigens reactive with the anti-lacZ sera but not with the human *M. tuberculosis* sera may be the result of the human *M. tuberculosis* sera recognizing conformational epitopes, or the antigen-antibody binding kinetics may be such that the 2 hour sera exposure in the immunoblot is not sufficient.

The results of T-cell assays performed on Tb38-1, ESAT-6 and other representative recombinant antigens are presented in Tables 5A, B and 6, respectively, below:

TABLE 5A
RESULTS OF PBMC PROLIFERATION TO REPRESENTATIVE ANTIGENS

Antigen						Donor					
	1	2	3	4	5	6	7	8	9	10	11
Tb38.1	+++	+	-	-	-	++	-	+	-	++	+++
ESAT-6	+++	+	+	+	-	+	-	+	+	++	+++
TbH-9	++	++	-	++	±	±	++	++	++	++	++

TABLE 5B
RESULTS OF PBMC Interferon-γ Production to Representative Antigens

Antigen				<u> </u>		Donor					
	1	2	3	4	5	6	7	8	9	10	11
Tb38.1	+++	+	-	+	+	+++	-	++	-	+++	+++
ESAT-6	+++	+	+	+	+-	+	-	+	+	+++	+++
Тън-9	++	++	-	+++	±	±	+++	+++	++	+++	++

5

TABLE 6
SUMMARY OF T-CELL RESPONSES TO REPRESENTATIVE ANTIGENS

	I	Proliferation	n		Interferon-	у	
Antigen	patient 4	patient 5	patient 6	patient 4	patient 5	patient 6	total
ТъН9	++	++	++	+++	++	++	13
TbM7	-	+	-	++	+	_	4
ТьН5	-	+	+	++	++	++	8
TbL23	-	+	±	++	++	+	7.5
ТъН4		++	±	++	++	±	7
- control	-	-	-	-	-	-	0

10

These results indicate that both the inventive *M. tuberculosis* antigens and ESAT-6 can induce proliferation and/or interferon-γ production in T-cells derived from an *M. tuberculosis*-immune individual. To the best of the inventors' knowledge, ESAT-6 has not been previously shown to stimulate human immune responses

15 the sequence Nos.

20

A set of six overlapping peptides covering the amino acid sequence of the antigen Tb38-1 was constructed using the method described in Example 6. The sequences of these peptides, hereinafter referred to as pep1-6, are provided in SEQ ID Nos. 93-98, respectively. The results of T-cell assays using these peptides are shown in Tables 7 and 8. These results confirm the existence, and help to localize T-cell epitopes within Tb38-1 capable of inducing proliferation and interferon-γ production in T-cells derived from an *M. tuberculosis* immune individual.

TABLE 7
RESULTS OF PBMC PROLIFERATION TO TB38-1 PEPTIDES

Peptide							Patient						
	1	2	3	4	5	9	7	8	6	10	11	12	13
	,	•	1	1	+1	-		1	,	+1	ı	1	+
	+1	•	ı	ı	+1	,	-		+1	+1			+
	1	,	1	ı	•	,	1		+1	,		,	+1
	‡			ı	1	1	+	-	+1	+1	ı	•	+
	+++	+1	1	1	ı	,	+	ı	+1			1	+
	•	++	-	,	,	1	+1		+1	+	,	,	+
	ı	•	•		,	,	•	1			•	•	

TABLE 8
RESULTS OF PBMC INTERFERON-γ PRODUCTION TO TB38-1 PEPTIDES

	13	+	+	+1	+	+	+	•
	12	ı	-	-	-			,
	11		1	,				1
	10	+1	+1	t	+1		+	,
	6		+1	+1	+1	+1	+1	,
	8	,		-	,	•		
Patient	7	,		ı	+	+	+1	
	9	,			•		ı	
	5	+1	+	ı	ı		•	ı
	4	-	-	1	•	1	-	1
	3	-	•	r		-	-	
	2		ı	1	1	+1	+	•
	-	+		ı	‡	++	+	1
Peptide		pep1	pep2	pep3	pep4	pep5	9dəd	Control

48

Studies were undertaken to determine whether the antigens TbH-9 and Tb38-1 represent cellular proteins or are secreted into *M. tuberculosis* culture media. In the first study, rabbit sera were raised against A) secretory proteins of *M. tuberculosis*, B) the known secretory recombinant *M. tuberculosis* antigen 85b, C) recombinant Tb38-1 and D) recombinant TbH-9, using protocols substantially the same as that as described in Example 3A. Total *M. tuberculosis* lysate, concentrated supernatant of *M. tuberculosis* cultures and the recombinant antigens 85b, TbH-9 and Tb38-1 were resolved on denaturing gels, immobilized on nitrocellulose membranes and duplicate blots were probed using the rabbit sera described above.

10

15

20

25

30

The results of this analysis using control sera (panel I) and antisera (panel II) against secretory proteins, recombinant 85b, recombinant Tb38-1 and recombinant TbH-9 are shown in Figures 3A-D, respectively, wherein the lane designations are as follows: 1) molecular weight protein standards; 2) 5 µg of *M. tuberculosis* lysate; 3) 5 µg secretory proteins; 4) 50 ng recombinant Tb38-1; 5) 50 ng recombinant TbH-9; and 6) 50 ng recombinant 85b. The recombinant antigens were engineered with six terminal histidine residues and would therefore be expected to migrate with a mobility approximately 1 kD larger that the native protein. In Figure 3D, recombinant TbH-9 is lacking approximately 10 kD of the full-length 42 kD antigen, hence the significant difference in the size of the immunoreactive native TbH-9 antigen in the lysate lane (indicated by an arrow). These results demonstrate that Tb38-1 and TbH-9 are intracellular antigens and are not actively secreted by *M. tuberculosis*.

The finding that TbH-9 is an intracellular antigen was confirmed by determining the reactivity of TbH-9-specific human T cell clones to recombinant TbH-9, secretory *M. tuberculosis* proteins and PPD. A TbH-9-specific T cell clone (designated 131TbH-9) was generated from PBMC of a healthy PPD-positive donor. The proliferative response of 131TbH-9 to secretory proteins, recombinant TbH-9 and a control *M. tuberculosis* antigen, TbRa11, was determined by measuring uptake of tritiated thymidine, as described in Example 1. As shown in Figure 4A, the clone 131TbH-9 responds specifically to TbH-9, showing that TbH-9 is not a significant component of *M. tuberculosis* secretory proteins. Figure 4B shows the production of IFN-γ by a second TbH-9-specific T cell clone

49

(designated PPD 800-10) prepared from PBMC from a healthy PPD-positive donor, following stimulation of the T cell clone with secretory proteins, PPD or recombinant TbH-9. These results further confirm that TbH-9 is not secreted by *M. tuberculosis*.

5 <u>C. Use of Sera From Patients Having Extrapulmonary Tuberculosis to Identify</u> <u>DNA Sequences Encoding M. Tuberculosis Antigens</u>

Genomic DNA was isolated from M. tuberculosis Erdman strain, randomly sheared and used to construct an expression library employing the Lambda ZAP expression system (Stratagene, La Jolla, CA). The resulting library was screened using pools of sera obtained from individuals with extrapulmonary tuberculosis, as described above in Example 3B, with the secondary antibody being goat anti-human IgG + A + M (H+L) conjugated with alkaline phosphatase.

10

Eighteen clones were purified. Of these, 4 clones (hereinafter referred to as XP14, XP24, XP31 and XP32) were found to bear some similarity to known sequences. The determined DNA sequences for XP14, XP24 and XP31 are provided in SEQ ID Nos.: 156-158, respectively, with the 5' and 3' DNA sequences for XP32 being provided in SEQ ID Nos.: 159 and 160, respectively. The predicted amino acid sequence for XP14 is provided in SEQ ID No: 161. The reverse complement of XP14 was found to encode the amino acid sequence provided in SEQ ID No.: 162.

Comparison of the sequences for the remaining 14 clones (hereinafter referred to as XP1-XP6, XP17-XP19, XP22, XP25, XP27, XP30 and XP36) with those in the genebank as described above, revealed no homologies with the exception of the 3' ends of XP2 and XP6 which were found to bear some homology to known *M. tuberculosis* cosmids.

The DNA sequences for XP27 and XP36 are shown in SEQ ID Nos.: 163 and 164, respectively, with the 5' sequences for XP4, XP5, XP17 and XP30 being shown in SEQ ID Nos: 165-168, respectively, and the 5' and 3' sequences for XP2, XP3, XP6, XP18, XP19, XP22 and XP25 being shown in SEQ ID Nos: 169 and 170; 171 and 172; 173 and 174; 175 and 176; 177 and 178; 179 and 180; and 181 and 182, respectively. XP1 was found to overlap with the DNA sequences for TbH4, disclosed above. The full-length DNA sequence for TbH4-XP1 is provided in SEQ ID No.: 183. This DNA sequence was found to contain an

50

open reading frame encoding the amino acid sequence shown in SEQ ID No: 184. The reverse complement of TbH4-XP1 was found to contain an open reading frame encoding the amino acid sequence shown in SEQ ID No.: 185. The DNA sequence for XP36 was found to contain two open reading frames encoding the amino acid sequence shown in SEQ ID Nos.: 186 and 187, with the reverse complement containing an open reading frame encoding the amino acid sequence shown in SEQ ID No.: 188.

5

10

25

30

Recombinant XP1 protein was prepared as described above in Example 3B, with a metal ion affinity chromatography column being employed for purification. As illustrated in Figures 8A-B and 9A-B, using the assays described herein, recombinant XP1 was found to stimulate cell proliferation and IFN- γ production in T cells isolated from an M. tuberculosis-immune donors.

D. PREPARATION OF M. TUBERCULOSIS SOLUBLE ANTIGENS USING RABBIT ANTI-SERA RAISED AGAINST M. TUBERCULOSIS FRACTIONATED PROTEINS

M. tuberculosis lysate was prepared as described above in Example 2. The resulting material was fractionated by HPLC and the fractions screened by Western blot for serological activity with a serum pool from M. tuberculosis-infected patients which showed little or no immunoreactivity with other antigens of the present invention. Rabbit anti-sera was generated against the most reactive fraction using the method described in Example 3A.
The anti-sera was used to screen an M. tuberculosis Erdman strain genomic DNA expression library prepared as described above. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the M. tuberculosis clones determined.

Ten different clones were purified. Of these, one was found to be TbRa35, described above, and one was found to be the previously identified *M. tuberculosis* antigen, HSP60. Of the remaining eight clones, seven (hereinafter referred to as RDIF2, RDIF5, RDIF8, RDIF10, RDIF11 and RDIF 12) were found to bear some similarity to previously identified *M. tuberculosis* sequences. The determined DNA sequences for RDIF2, RDIF5, RDIF8, RDIF10 and RDIF11 are provided in SEQ ID Nos.: 189-193, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID Nos: 194-198, respectively. The 5' and 3' DNA sequences for RDIF12 are provided in SEQ ID Nos.: 199

PCT/US97/18293

51

and 200, respectively. No significant homologies were found to the antigen RDIF-7. The determined DNA and predicted amino acid sequences for RDIF7 are provided in SEQ ID Nos.: 201 and 202, respectively. One additional clone, referred to as RDIF6 was isolated, however, this was found to be identical to RDIF5.

Recombinant RDIF6, RDIF8, RDIF10 and RDIF11 were prepared as described above. As shown in Figures 8A-B and 9A-B, these antigens were found to stimulate cell proliferation and IFN- γ production in T cells isolated from *M. tuberculosis*-immune donors.

10 EXAMPLE 4

5

PURIFICATION AND CHARACTERIZATION OF A POLYPEPTIDE FROM TUBERCULIN PURIFIED PROTEIN DERIVATIVE

An *M. tuberculosis* polypeptide was isolated from tuberculin purified protein derivative (PPD) as follows.

PPD was prepared as published with some modification (Seibert, F. et al., Tuberculin purified protein derivative. Preparation and analyses of a large quantity for standard. The American Review of Tuberculosis 44:9-25, 1941).

M. tuberculosis Rv strain was grown for 6 weeks in synthetic medium in roller bottles at 37°C. Bottles containing the bacterial growth were then heated to 100° C in water vapor for 3 hours. Cultures were sterile filtered using a 0.22 μ filter and the liquid phase was concentrated 20 times using a 3 kD cut-off membrane. Proteins were precipitated once with 50% ammonium sulfate solution and eight times with 25% ammonium sulfate solution. The resulting proteins (PPD) were fractionated by reverse phase liquid chromatography (RP-HPLC) using a C18 column (7.8 x 300 mM; Waters, Milford, MA) in a Biocad HPLC system (Perseptive Biosystems, Framingham, MA). Fractions were eluted from the column with a linear gradient from 0-100% buffer (0.1% TFA in acetonitrile). The flow rate was 10 ml/minute and eluent was monitored at 214 nm and 280 nm.

Six fractions were collected, dried, suspended in PBS and tested individually in *M. tuberculosis*-infected guinea pigs for induction of delayed type hypersensitivity (DTH)

52

reaction. One fraction was found to induce a strong DTH reaction and was subsequently fractionated further by RP-HPLC on a microbore Vydac C18 column (Cat. No. 218TP5115) in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted with a linear gradient from 5-100% buffer (0.05% TFA in acetonitrile) with a flow rate of 80 µl/minute. Eluent was monitored at 215 nm. Eight fractions were collected and tested for induction of DTH in *M. tuberculosis*-infected guinea pigs. One fraction was found to induce strong DTH of about 16 mm induration. The other fractions did not induce detectable DTH. The positive fraction was submitted to SDS-PAGE gel electrophoresis and found to contain a single protein band of approximately 12 kD molecular weight.

5

20

This polypeptide, herein after referred to as DPPD, was sequenced from the amino terminal using a Perkin Elmer/Applied Biosystems Division Procise 492 protein sequencer as described above and found to have the N-terminal sequence shown in SEQ ID No.: 129. Comparison of this sequence with known sequences in the gene bank as described above revealed no known homologies. Four cyanogen bromide fragments of DPPD were isolated and found to have the sequences shown in SEQ ID Nos.: 130-133.

The ability of the antigen DPPD to stimulate human PBMC to proliferate and to produce IFN- γ was assayed as described in Example 1. As shown in Table 9, DPPD was found to stimulate proliferation and elicit production of large quantities of IFN- γ ; more than that elicited by commercial PPD.

53

TABLE 9

RESULTS OF PROLIFERATION AND INTERFERON-γ ASSAYS TO DPPD

PBMC Donor	Stimulator	Proliferation (CPM)	IFN-γ (OD ₄₅₀)
A	Medium	1,089	0.17
	PPD (commercial)	8,394	1.29
	DPPD	13,451	2.21
В	Medium	450	0.09
	PPD (commercial)	3,929	1.26
	DPPD	6,184	1.49
C	Medium	541	0.11
	PPD (commercial)	8,907	0.76
	DPPD	23,024	>2.70

5

15

EXAMPLE 5

This example illustrates the effectiveness of several representative

USE OF REPRESENTATIVE ANTIGENS FOR DIAGNOSIS OF TUBERCULOSIS

polypeptides in skin tests for the diagnosis of *M. tuberculosis* infection.

Individuals were injected intradermally with 100 μ l of either PBS or PBS plus Tween 20^{TM} containing either 0.1 μ g of protein (for TbH-9 and TbRa35) or 1.0 μ g of protein (for TbRa38-1). Induration was measured between 5-7 days after injection, with a response of 5 mm or greater being considered positive. Of the 20 individuals tested, 2 were PPD negative and 18 were PPD positive. Of the PPD positive individuals, 3 had active tuberculosis, 3 had been previously infected with tuberculosis and 9 were healthy. In a second study, 13 PPD positive individuals were tested with 0.1 μ g TbRa11 in either PBS or PBS plus Tween 20^{TM} as described above. The results of both studies are shown in Table 10.

54

TABLE 10
RESULTS OF DTH TESTING WITH REPRESENTATIVE ANTIGENS

	TbH-9 Pos/Total	Tb38-1 Pos/Total	TbRa35 Pos/Total	Cumulative Pos/Total	TbRa11 Pos/Total
PPD negative	0/2	0/2	0/2	0/2	
PPD positive					
healthy	5/9	4/9	4/9	6/9	1/4
prior TB	3/5	2/5	2/5	4/5	3/5
active	3/4	3/4	0/4	4/4	1/4
TOTAL	11/18	9/18	6/18	14/18	5/13

5

EXAMPLE 6 SYNTHESIS OF SYNTHETIC POLYPEPTIDES

Polypeptides may be synthesized on a Millipore 9050 peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.

EXAMPLE 7

PREPARATION AND CHARACTERIZATION OF M. TUBERCULOSIS FUSION PROTEINS

A fusion protein containing TbRa3, the 38 kD antigen and Tb38-1 was prepared as follows.

10

15

20

25

Each of the DNA constructs TbRa3, 38 kD and Tb38-1 were modified by PCR in order to facilitate their fusion and the subsequent expression of the fusion protein TbRa3-38 kD-Tb38-1. TbRa3, 38 kD and Tb38-1 DNA was used to perform PCR using the primers PDM-64 and PDM-65 (SEQ ID NO: 146 and 147), PDM-57 and PDM-58 (SEQ ID NO: 148 and 149), and PDM-69 and PDM-60 (SEQ ID NO: 150 and 151), respectively. In each case, the DNA amplification was performed using 10 μl 10X Pfu buffer, 2 μl 10 mM dNTPs, 2 μl each of the PCR primers at 10 μM concentration, 81.5 μl water, 1.5 μl Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 μl DNA at either 70 ng/μl (for TbRa3) or 50 ng/μl (for 38 kD and Tb38-1). For TbRa3, denaturation at 94°C was performed for 2 min, followed by 40 cycles of 96°C for 15 sec and 72°C for 1 min, and lastly by 72°C for 4 min. For 38 kD, denaturation at 96°C was performed for 2 min, followed by 40 cycles of 96°C for 30 sec, 68°C for 15 sec and 72°C for 3 min, and finally by 72°C for 4 min. For Tb38-1 denaturation at 94°C for 2 min was followed by 10 cycles of 96°C for 15 sec, 68°C for 15 sec and 72°C for 1.5 min, 30 cycles of 96°C for 15 sec, 64°C for 15 sec and 72°C for 1.5, and finally by 72°C for 4 min.

The TbRa3 PCR fragment was digested with NdeI and EcoRI and cloned directly into pT7^L2 IL 1 vector using NdeI and EcoRI sites. The 38 kD PCR fragment was digested with Sse8387I, treated with T4 DNA polymerase to make blunt ends and then digested with EcoRI for direct cloning into the pT7^L2Ra3-1 vector which was digested with StuI and EcoRI. The 38-1 PCR fragment was digested with Eco47III and EcoRI and directly subcloned into pT7^L2Ra3/38kD-17 digested with the same enzymes. The whole fusion was then transferred to pET28b — using NdeI and EcoRI sites. The fusion construct was confirmed by DNA sequencing.

The expression construct was transformed into BLR pLys S *E. coli* (Novagen, 30 Madison, WI) and grown overnight in LB broth with kanamycin (30 µg/ml) and chloramphenicol (34 µg/ml). This culture (12 ml) was used to inoculate 500 ml 2XYT with

56

the same antibiotics and the culture was induced with IPTG at an OD560 of 0.44 to a final concentration of 1.2 mM. Four hours post-induction, the bacteria were harvested and sonicated in 20 mM Tris (8.0), 100 mM NaCl, 0.1% DOC, 20 µg/ml Leupeptin, 20 mM PMSF followed by centrifugation at 26,000 X g. The resulting pellet was resuspended in 8 M urea, 20 mM Tris (8.0), 100 mM NaCl and bound to Pro-bond nickel resin (Invitrogen, Carlsbad, CA). The column was washed several times with the above buffer then eluted with an imidazole gradient (50 mM, 100 mM, 500 mM imidazole was added to 8 M urea, 20 mM Tris (8.0), 100 mM NaCl). The eluates containing the protein of interest were then dialzyed against 10 mM Tris (8.0).

The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbRa3-38 kD-Tb38-1) are provided in SEQ ID NO: 152 and 153, respectively.

A fusion protein containing the two antigens TbH-9 and Tb38-1 (hereinafter referred to as TbH9-Tb38-1) without a hinge sequence, was prepared using a similar procedure to that described above. The DNA sequence for the TbH9-Tb38-1 fusion protein is provided in SEQ ID NO: 156.

15

20

25

The ability of the fusion protein TbH9-Tb38-1 to induce T cell proliferation and IFN-γ production in PBMC preparations was examined using the protocol described above in Example 1. PBMC from three donors were employed: one who had been previously shown to respond to TbH9 but not Tb38-1 (donor 131); one who had been shown to respond to Tb38-1 but not TbH9 (donor 184); and one who had been shown to respond to both antigens (donor 201). The results of these studies (Figs. 5-7, respectively) demonstrate the functional activity of both the antigens in the fusion protein.

A fusion protein containing TbRa3, the antigen 38kD, Tb38-1 and DPEP was prepared as follows.

Each of the DNA constructs TbRa3, 38 kD and Tb38-1 were modified by PCR and cloned into vectors essentially as described above, with the primers PDM-69 (SEQ ID NO:150 and PDM-83 (SEQ ID NO: 205) being used for amplification of the Tb38-1A fragment. Tb38-1A differs from Tb38-1 by a DraI site at the 3' end of the coding region that

57

keeps the final amino acid intact while creating a blunt restriction site that is in frame. The TbRa3/38kD/Tb38-1A fusion was then transferred to pET28b using NdeI and EcoR1 sites.

DPEP DNA was used to perform PCR using the primers PDM-84 and PDM-85 (SEQ ID NO: 206 and 207, respectively) and 1 µl DNA at 50 ng/µl. Denaturation at 94 °C was performed for 2 min, followed by 10 cycles of 96 °C for 15 sec, 68 °C for 15 sec and 72 °C for 1.5 min; 30 cycles of 96 °C for 15 sec, 64 °C for 15 sec and 72 °C for 1.5 min; and finally by 72 °C for 4 min. The DPEP PCR fragment was digested with EcoRI and Eco72I and clones directly into the pET28Ra3/38kD/38-1A construct which was digested with DraI and EcoRI. The fusion construct was confirmed to be correct by DNA sequencing. Recombinant protein was prepared as described above. The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbF-2) are provided in SEQ ID NO: 208 and 209, respectively.

The reactivity of the fusion protein TbF-2 with sera from *M. tuberculosis*infected patients was examined by ELISA using the protocol described above. The results of
these studies (Table 11) demonstrate that all four antigens function independently in the
fusion protein.

 $\label{thm:combinant} Table \, 11$ Reactivity of TbF-2 Fusion Recombinant with TB and Normal Sera

Serum ID	Status	TbF OD450	Status	TbF-2 OD450	Status		ELISA	Reactivity	
						38 kD	TbRa3	Tb38-1	DPEP
B931-40	TB	0.57	+	0.321	+	-	+	-	+
B931-41	TB	0.601	+	0.396	+	+	+	+	-
B931-109	TB	0.494	+	0.404	+	+	+	±	-
B931-132	TB	1.502	+	1.292	+	+	+	+	±
5004	TB	1.806	+	1.666	+	±	±	+	-
15004	TB	2.862	+	2.468	+	+	+	+	-
39004	TB	2.443	+	1.722	+	+	+	+	 -
68004	TB	2.871	+	2.575	+	+	+	+	T-
99004	TB	0.691	+	0.971	+	-	±	+	-
107004	TB	0.875	+	0.732	+	T -	±	+	T-
92004	TB	1.632	+	1.394	+	+	<u> </u>	±	_
97004	TB	1.491	+	1.979	+	+	±	-	+
118004	TB	3.182	+	3.045	+	+	±	-	-
173004	TB	3.644	+	3.578	+	+	+	+	-
175004	TB	3.332	+	2.916	+	+	+	 	-
274004	TB	3.696	+	3.716	+	-	+	-	+
276004	TB	3.243	+	2.56	+	-	-	+	
282004	TB	1.249	+	1.234	+	+	-	_	-
289004	TB	1.373	+	1.17	+	† -	+	_	-
308004	TB	3.708	+	3.355	+	-	1-	+	-
314004	TB	1.663	+	1.399	+	-	-	+	-
317004	TB	1.163	+	0.92	+	+	-	-	-
312004	TB	1.709	+	1.453	+	-	+	-	-
380004	TB	0.238	-	0.461	+	-	±	-	+
451004	TB	0.18	-	0.2	-	-	-	-	±
478004	TB	0.188	-	0.469	+	-	-	-	±
410004	TB	0.384	+	2.392	+	±	 -	-	+
411004	TB	0.306	+	0.874	+	-	+	-	+
421004	TB	0.357	+	1.456	+	1-	+	-	+
528004	TB	0.047	-	0.196	-	-	-	-	+
A6-87	Normal	0.094	-	0.063	-	-	-	-	-
A6-88	Normal	0.214	-	0.19	-	-	-	-	-
A6-89	Normal	0.248	-	0.125	-	-	-	-	_
A6-90	Normal	0.179	-	0.206	-	-	1-	-	-
A6-91	Normal	0.135	~	0.151	-	-	-	-	_
A6-92	Normal	0.064	-	0.097	-		-	-	-
A6-93	Normal	0.072	-	0.098	-	-	-	-	-
A6-94	Normal	0.072	-	0.064	-	-	_	_	-
A6-95	Normal	0.125	-	0.159	-	-	_	_	-
A6-96	Normal	0.121	-	0.12	-	-	-	-	_
Cut-off		0.284		0.266			<u> </u>		

59

One of skill in the art will appreciate that the order of the individual antigens within the fusion protein may be changed and that comparable activity would be expected provided each of the epitopes is still functionally available. In addition, truncated forms of the proteins containing active epitopes may be used in the construction of fusion proteins.

5

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

SEOUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANTS: Reed, Steven G. Skeiky, Yasir A.W. Dillon, Davin C. Campos-Neto, Antonio Houghton, Raymond Vedvick, Thomas S. Twardzik, Daniel R. Lodes, Michael J.
- (ii) TITLE OF INVENTION: COMPOUNDS AND METHODS FOR IMMUNOTHERAPY AND DIAGNOSIS OF TUBERCULOSIS
- (iii) NUMBER OF SEQUENCES: 214
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SEED and BERRY LLP
 - (B) STREET: 6300 Columbia Center, 701 Fifth Avenue
 - (C) CITY: Seattle
 - (D) STATE: Washington

 - (E) COUNTRY: USA (F) ZIP: 98104-7092
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 01-OCT-1997
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Maki, David J.

 - (B) REGISTRATION NUMBER: 31,392 (C) REFERENCE/DOCKET NUMBER: 210121.411C7
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (206) 622-4900
 - (B) TELEFAX: (206) 682-6031
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 766 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

61

CGAGGCACCG	GTAGTTTGAA	CCAAACGCAC	AATCGACGGG	CAAACGAACG	GAAGAACACA	60
ACCATGAAGA	TGGTGAAATC	GATCGCCGCA	GGTCTGACCG	CCGCGGCTGC	AATCGGCGCC	120
GCTGCGGCCG	GTGTGACTTC	GATCATGGCT	GGCGGCCCGG	TCGTATACCA	GATGCAGCCG	180
GTCGTCTTCG	GCGCGCCACT	GCCGTTGGAC	CCGGCATCCG	CCCCTGACGT	CCCGACCGCC	240
GCCCAGTTGA	CCAGCCTGCT	CAACAGCCTC	GCCGATCCCA	ACGTGTCGTT	TGCGAACAAG	300
GGCAGTCTGG	TCGAGGGCGG	CATCGGGGGC	ACCGAGGCGC	GCATCGCCGA	CCACAAGCTG	360
AAGAAGGCCG	CCGAGCACGG	GGATCTGCCG	CTGTCGTTCA	GCGTGACGAA	CATCCAGCCG	420
GCGGCCGCCG	GTTCGGCCAC	CGCCGACGTT	TCCGTCTCGG	GTCCGAAGCT	CTCGTCGCCG	480
GTCACGCAGA	ACGTCACGTT	CGTGAATCAA	GGCGGCTGGA	TGCTGTCACG	CGCATCGGCG	540
ATGGAGTTGC	TGCAGGCCGC	AGGGNAACTG	ATTGGCGGGC	CGGNTTCAGC	CCGCTGTTCA	600
GCTACGCCGC	CCGCCTGGTG	ACGCGTCCAT	GTCGAACACT	CGCGCGTGTA	GCACGGTGCG	660
GTNTGCGCAG	GGNCGCACGC.	ACCGCCCGGT	GCAAGCCGTC	CTCGAGATAG	GTGGTGNCTC	720
GNCACCAGNG	ANCACCCCN	NNTCGNCNNT	TCTCGNTGNT	GNATGA		766

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 752 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ATGCATCACC	ATCACCATCA	CGATGAAGTC	ACGGTAGAGA	CGACCTCCGT	CTTCCGCGCA	60
GACTTCCTCA	GCGAGCTGGA	CGCTCCTGCG	CAAGCGGGTA	CGGAGAGCGC	GGTCTCCGGG	120
GTGGAAGGGC	TCCCGCCGGG	CTCGGCGTTG	CTGGTAGTCA	AACGAGGCCC	CAACGCCGGG	180
TCCCGGTTCC	TACTCGACCA	AGCCATCACG	TCGGCTGGTC	GGCATCCCGA	CAGCGACATA	240
TTTCTCGACG	ACGTGACCGT	GAGCCGTCGC	CATGCTGAAT	TCCGGTTGGA	AAACAACGAA	300
TTCAATGTCG	TCGATGTCGG	GAGTCTCAAC	GGCACCTACG	TCAACCGCGA	GCCCGTGGAT	360
TCGGCGGTGC	TGGCGAACGG	CGACGAGGTC	CAGATCGGCA	AGCTCCGGTT	GGTGTTCTTG	420
ACCGGACCCA	AGCAAGGCGA	GGATGACGGG	AGTACCGGGG	GCCCGTGAGC	GCACCCGATA	480
GCCCGCGCT	GGCCGGGATG	TCGATCGGGG	CGGTCCTCCG	ACCTGCTACG	ACCGGATTTT	540
CCCTGATGTC	CACCATCTCC	AAGATTCGAT	TCTTGGGAGG	CTTGAGGGTC	NGGGTGACCC	600
CCCCGCGGC	CTCATTCNGG	GGTNTCGGCN	GGTTTCACCC	CNTACCNACT	GCCNCCCGGN	660

TTGCNAATTC NTTCTTCNCT GCCCNNAAAG GGACCNTTAN CTTGCCGCTN GAAANGGTNA	720
TCCNGGGCCC NTCCTNGAAN CCCCNTCCCC CT	752
(2) INFORMATION FOR SEQ ID NO:3:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 813 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
CATATGCATC ACCATCACCA TCACACTTCT AACCGCCCAG CGCGTCGGGG GCGTCGAGCA	60
CCACGCGACA CCGGGCCCGA TCGATCTGCT AGCTTGAGTC TGGTCAGGCA TCGTCGTCAG	120
CAGCGCGATG CCCTATGTTT GTCGTCGACT CAGATATCGC GGCAATCCAA TCTCCCGCCT	180
GCGGCCGGCG GTGCTGCAAA CTACTCCCGG AGGAATTTCG ACGTGCGCAT CAAGATCTTC	240
ATGCTGGTCA CGGCTGTCGT TTTGCTCTGT TGTTCGGGTG TGGCCACGGC CGCGCCCAAG	300
ACCTACTGCG AGGAGTTGAA AGGCACCGAT ACCGGCCAGG CGTGCCAGAT TCAAATGTCC	360
GACCCGGCCT ACAACATCAA CATCAGCCTG CCCAGTTACT ACCCCGACCA GAAGTCGCTG	420
GAAAATTACA TCGCCCAGAC GCGCGACAAG TTCCTCAGCG CGGCCACATC GTCCACTCCA	480
CGCGAAGCCC CCTACGAATT GAATATCACC TCGGCCACAT ACCAGTCCGC GATACCGCCG	540
CGTGGTACGC AGGCCGTGGT GCTCAMGGTC TACCACAACG CCGGCGGCAC GCACCCAACG	600
ACCACGTACA AGGCCTTCGA TTGGGACCAG GCCTATCGCA AGCCAATCAC CTATGACACG	660
CTGTGGCAGG CTGACACCGA TCCGCTGCCA GTCGTCTTCC CCATTGTTGC AAGGTGAACT	720
GAGCAACGCA GACCGGGACA ACWGGTATCG ATAGCCGCCN AATGCCGGCT TGGAACCCNG	780
FGAAATTATC ACAACTTCGC AGTCACNAAA NAA	813
(2) INFORMATION FOR SEQ ID NO:4:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 447 base pairs	

- (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: CGGTATGAAC ACGGCCGCGT CCGATAACTT CCAGCTGTCC CAGGGTGGGC AGGGATTCGC 60

CATTCCGATC	GGGCAGGCGA	TGGCGATCGC	GGGCCAGATC	CGATCGGGTG	GGGGGTCACC	120
CACCGTTCAT	ATCGGGCCTA	CCGCCTTCCT	CGGCTTGGGT	GTTGTCGACA	ACAACGGCAA	180
CGGCGCACGA	GTCCAACGCG	TGGTCGGGAG	CGCTCCGGCG	GCAAGTCTCG	GCATCTCCAC	240
CGGCGACGTG	ATCACCGCGG	TCGACGGCGC	TCCGATCAAC	TCGGCCACCG	CGATGGCGGA	300
CGCGCTTAAC	GGGCATCATC	CCGGTGACGT	CATCTCGGTG	AACTGGCAAA	CCAAGTCGGG	360
CGGCACGCGT	ACAGGGAACG	TGACATTGGC	CGAGGGACCC	CCGGCCTGAT	TTCGTCGYGG	420
ATACCACCCG	CCGGCCGGCC	AATTGGA				447

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 604 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GTCCCACTGC	GGTCGCCGAG	TATGTCGCCC	AGCAAATGTC	TGGCAGCCGC	CCAACGGAAT	60
CCGGTGATCC	GACGTCGCAG	GTTGTCGAAC	CCGCCGCCGC	GGAAGTATCG	GTCCATGCCT	120
AGCCCGGCGA	CGGCGAGCGC	CGGAATGGCG	CGAGTGAGGA	GGCGGGCAAT	TTGGCGGGGC	180
CCGGCGACGG	NGAGCGCCGG	AATGGCGCGA	GTGAGGAGGT	GGNCAGTCAT	GCCCAGNGTG	240
ATCCAATCAA	CCTGNATTCG	GNCTGNGGGN	CCATTTGACA	ATCGAGGTAG	TGAGCGCAAA	300
TGAATGATGG	AAAACGGGNG	GNGACGTCCG	NTGTTCTGGT	GGTGNTAGGT	GNCTGNCTGG	360
NGTNGNGGNT	ATCAGGATGT	TCTTCGNCGA	AANCTGATGN	CGAGGAACAG	GGTGTNCCCG	420
NNANNCCNAN	GGNGTCCNAN	CCCNNNNTCC	TCGNCGANAT	CANANAGNCG	NTTGATGNGA	480
NAAAAGGGTG	GANCAGNNNN	AANTNGNGGN	CCNAANAANC	NNNANNGNNG	NNAGNTNGNT	540
NNNTNTTNNC	ANNNNNNTG	NNGNNGNNCN	NNNCAANCNN	NTNNNNGNAA	NNGGNTTNTT	600
NAAT						604

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 633 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear

PCT/US97/18293 WO 98/16646

64

(XI) S	EQUENCE DESC	CRIPTION: SI	FO ID NO:0:			
TTGCANGTCG	AACCACCTCA	CTAAAGGGAA	CAAAAGCTNG	AGCTCCACCG	CGGTGGCGGC	60
CGCTCTAGAA	CTAGTGKATM	YYYCKGGCTG	CAGSAATYCG	GYACGAGCAT	TAGGACAGTC	120
TAACGGTCCT	GTTACGGTGA	TCGAATGACC	GACGACATCC	TGCTGATCGA	CACCGACGAA	180
CGGGTGCGAA	CCCTCACCCT	CAACCGGCCG	CAGTCCCGYA	ACGCGCTCTC	GGCGGCGCTA	240
CGGGATCGGT	TTTTCGCGGY	GTTGGYCGAC	GCCGAGGYCG	ACGACGACAT	CGACGTCGTC	300
ATCCTCACCG	GYGCCGATCC	GGTGTTCTGC	GCCGGACTGG	ACCTCAAGGT	AGCTGGCCGG	360
GCAGACCGCG	CTGCCGGACA	TCTCACCGCG	GTGGGCGGCC	ATGACCAAGC	CGGTGATCGG	420
CGCGATCAAC	GGCGCCGCGG	TCACCGGCGG	GCTCGAACTG	GCGCTGTACT	GCGACATCCT	480
GATCGCCTCC	GAGCACGCCC	GCTTCGNCGA	CACCCACGCC	CGGGTGGGGC	TGCTGCCCAC	540
CTGGGGACTC	AGTGTGTGCT	TGCCGCAAAA	GGTCGGCATC	GGNCTGGGCC	GGTGGATGAG	600
CCTGACCGGC	GACTACCTGT	CCGTGACCGA	CGC			633

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1362 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CGACGACGAC	GGCGCCGGAG	AGCGGGCGCG	AACGGCGATC	GACGCGGCCC	TGGCCAGAGT	60
CGGCACCACC	CAGGAGGGAG	TCGAATCATG	AAATTTGTCA	ACCATATTGA	GCCCGTCGCG	120
CCCCGCCGAG	CCGGCGGCGC	GGTCGCCGAG	GTCTATGCCG	AGGCCCGCCG	CGAGTTCGGC	180
CGGCTGCCCG	AGCCGCTCGC	CATGCTGTCC	CCGGACGAGG	GACTGCTCAC	CGCCGGCTGG	240
GCGACGTTGC	GCGAGACACT	GCTGGTGGGC	CAGGTGCCGC	GTGGCCGCAA	GGAAGCCGTC	300
GCCGCCGCCG	TCGCGGCCAG	CCTGCGCTGC	CCCTGGTGCG	TCGACGCACA	CACCACCATG	360
CTGTACGCGG	CAGGCCAAAC	CGACACCGCC	GCGGCGATCT	TGGCCGGCAC	AGCACCTGCC	420
GCCGGTGACC	CGAACGCGCC	GTATGTGGCG	TGGGCGGCAG	GAACCGGGAC	ACCGGCGGGA	480
CCGCCGGCAC	CGTTCGGCCC	GGATGTCGCC	GCCGAATACC	TGGGCACCGC	GGTGCAATTC	540
CACTTCATCG	CACGCCTGGT	CCTGGTGCTG	CTGGACGAAA	CCTTCCTGCC	GGGGGGCCCG	600
CGCGCCCAAC	AGCTCATGCG	CCGCGCCGGT	GGACTGGTGT	TCGCCCGCAA	GGTGCGCGCG	660
GAGCATCGGC	CGGGCCGCTC	CACCCGCCGG	CTCGAGCCGC	GAACGCTGCC	CGACGATCTG	720

PCT/US97/18293 WO 98/16646

65

GCATGGGCAA	CACCGTCCGA	GCCCATAGCA	ACCGCGTTCG	CCGCGCTCAG	CCACCACCTG	780
GACACCGCGC	CGCACCTGCC	GCCACCGACT	CGTCAGGTGG	TCAGGCGGGT	CGTGGGGTCG	840
TGGCACGGCG	AGCCAATGCC	GATGAGCAGT	CGCTGGACGA	ACGAGCACAC	CGCCGAGCTG	900
CCCGCCGACC	TGCACGCGCC	CACCCGTCTT	GCCCTGCTGA	CCGGCCTGGC	CCCGCATCAG	960
GTGACCGACG	ACGACGTCGC	CGCGGCCCGA	TCCCTGCTCG	ACACCGATGC	GGCGCTGGTT	1020
GGCGCCCTGG	CCTGGGCCGC	CTTCACCGCC	GCGCGGCGCA	TCGGCACCTG	GATCGGCGCC	1080
GCCGCCGAGG	GCCAGGTGTC	GCGGCAAAAC	CCGACTGGGT	GAGTGTGCGC	GCCCTGTCGG	1140
TAGGGTGTCA	TCGCTGGCCC	GAGGGATCTC	GCGGCGGCGA	ACGGAGGTGG	CGACACAGGT	1200
GGAAGCTGCG	CCCACTGGCT	TGCGCCCCAA	CGCCGTCGTG	GGCGTTCGGT	TGGCCGCACT	1260
GGCCGATCAG	GTCGGCGCCG	GCCCTTGGCC	GAAGGTCCAG	CTCAACGTGC	CGTCACCGAA	1320
GGACCGGACG	GTCACCGGGG	GTCACCCTGC	GCGCCCAAGG	AA		1362

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1458 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GCGACGACCC	CGATATGCCG	GGCACCGTAG	CGAAAGCCGT	CGCCGACGCA	CTCGGGCGCG	60
GTATCGCTCC	CGTTGAGGAC	ATTCAGGACT	GCGTGGAGGC	CCGGCTGGGG	GAAGCCGGTC	120
TGGATGACGT	GGCCCGTGTT	TACATCATCT	ACCGGCAGCG	GCGCGCCGAG	CTGCGGACGG	180
CTAAGGCCTT	GCTCGGCGTG	CGGGACGAGT	TAAAGCTGAG	CTTGGCGGCC	GTGACGGTAC	240
TGCGCGAGCG	CTATCTGCTG	CACGACGAGC	AGGGCCGGCC	GGCCGAGTCG	ACCGGCGAGC	300
TGATGGACCG	ATCGGCGCGC	TGTGTCGCGG	CGGCCGAGGA	CCAGTATGAG	CCGGGCTCGT	360
CGAGGCGGTG	GGCCGAGCGG	TTCGCCACGC	TATTACGCAA	CCTGGAATTC	CTGCCGAATT	420
CGCCCACGTT	GATGAACTCT	GGCACCGACC	TGGGACTGCT	CGCCGGCTGT	TTTGTTCTGC	480
CGATTGAGGA	TTCGCTGCAA	TCGATCTTTG	CGACGCTGGG	ACAGGCCGCC	GAGCTGCAGC	540
GGGCTGGAGG	CGGCACCGGA	TATGCGTTCA	GCCACCTGCG	ACCCGCCGGG	GATCGGGTGG	600
CCTCCACGGG	CGGCACGGCC	AGCGGACCGG	TGTCGTTTCT	ACGGCTGTAT	GACAGTGCCG	660
CGGGTGTGGT	CTCCATGGGC	GGTCGCCGGC	GTGGCGCCTG	TATGGCTGTG	CTTGATGTGT	720
CGCACCCGGA	TATCTGTGAT	TTCGTCACCG	CCAAGGCCGA	ATCCCCCAGC	GAGCTCCCGC	780

PCT/US97/18293 WO 98/16646

66

ATTTCAACCT	ATCGGTTGGT	GTGACCGACG	CGTTCCTGCG	GGCCGTCGAA	CGCAACGGCC	840
TACACCGGCT	GGTCAATCCG	CGAACCGGCA	AGATCGTCGC	GCGGATGCCC	GCCGCCGAGC	900
TGTTCGACGC	CATCTGCAAA	GCCGCGCACG	CCGGTGGCGA	TCCCGGGCTG	GTGTTTCTCG	960
ACACGATCAA	TAGGGCAAAC	CCGGTGCCGG	GGAGAGGCCG	CATCGAGGCG	ACCAACCCGT	1020
GCGGGGAGGT	CCCACTGCTG	CCTTACGAGT	CATGTAATCT	CGGCTCGATC	AACCTCGCCC	1080
GGATGCTCGC	CGACGGTCGC	GTCGACTGGG	ACCGGCTCGA	GGAGGTCGCC	GGTGTGGCGG	1140
TGCGGTTCCT	TGATGACGTC	ATCGATGTCA	GCCGCTACCC	CTTCCCCGAA	CTGGGTGAGG	1200
CGGCCCGCGC	CACCCGCAAG	ATCGGGCTGG	GAGTCATGGG	TTTGGCGGAA	CTGCTTGCCG	1260
CACTGGGTAT	TCCGTACGAC	AGTGAAGAAG	CCGTGCGGTT	AGCCACCCGG	CTCATGCGTC	1320
GCATACAGCA	GGCGGCGCAC	ACGGCATCGC	GGAGGCTGGC	CGAAGAGCGG	GGCGCATTCC	1380
CGGCGTTCAC	CGATAGCCGG	TTCGCGCGGT	CGGGCCCGAG	GCGCAACGCA	CAGGTCACCT	1440
CCGTCGCTCC	GACGGGCA					1458

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 862 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ACGGTGTAAT	CGTGCTGGAT	CTGGAACCGC	GTGGCCCGCT	ACCTACCGAG	ATCTACTGGC	60
GGCGCAGGGG	GCTGGCCCTG	GGCATCGCGG	TCGTCGTAGT	CGGGATCGCG	GTGGCCATCG	120
TCATCGCCTT	CGTCGACAGC	AGCGCCGGTG	CCAAACCGGT	CAGCGCCGAC	AAGCCGGCCT	180
CCGCCCAGAG	CCATCCGGGC	TCGCCGGCAC	CCCAAGCACC	CCAGCCGGCC	GGGCAAACCG	240
AAGGTAACGC	CGCCGCGGCC	CCGCCGCAGG	GCCAAAACCC	CGAGACACCC	ACGCCCACCG	300
CCGCGGTGCA	GCCGCCGCCG	GTGCTCAAGG	AAGGGGACGA	TTGCCCCGAT	TCGACGCTGG	360
CCGTCAAAGG	TTTGACCAAC	GCGCCGCAGT	ACTACGTCGG	CGACCAGCCG	AAGTTCACCA	420
TGGTGGTCAC	CAACATCGGC	CTGGTGTCCT	GTAAACGCGA	CGTTGGGGCC	GCGGTGTTGG	480
CCGCCTACGT	TTACTCGCTG	GACAACAAGC	GGTTGTGGTC	CAACCTGGAC	TGCGCGCCCT	540
CGAATGAGAC	GCTGGTCAAG	ACGTTTTCCC	CCGGTGAGCA	GGTAACGACC	GCGGTGACCT	600
GGACCGGGAT	GGGATCGGCG	CCGCGCTGCC	CATTGCCGCG	GCCGGCGATC	GGGCCGGGCA	660
CCTACAATCT	CGTGGTACAA	CTGGGCAATC	TGCGCTCGCT	GCCGGTTCCG	TTCATCCTGA	720

67

ATCAGCCGCC GCCCCCCCC GGGCCGGTAC CCGCTCCGGG TCCAGCGCAG GCGCCTCCGC	780
CGGAGTCTCC CGCGCAAGGC GGATAATTAT TGATCGCTGA TGGTCGATTC CGCCAGCTGT	840
GACAACCCCT CGCCTCGTGC CG	862
(2) INFORMATION FOR SEQ ID NO:10:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 622 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
TTGATCAGCA CCGGCAAGGC GTCACATGCC TCCCTGGGTG TGCAGGTGAC CAATGACAAA	60
GACACCCCGG GCGCCAAGAT CGTCGAAGTA GTGGCCGGTG GTGCTGCCGC GAACGCTGGA	120
GTGCCGAAGG GCGTCGTTGT CACCAAGGTC GACGACCGCC CGATCAACAG CGCGGACGCG	180
TTGGTTGCCG CCGTGCGGTC CAAAGCGCCG GGCGCCACGG TGGCGCTAAC CTTTCAGGAT	240
CCCTCGGGCG GTAGCCGCAC AGTGCAAGTC ACCCTCGGCA AGGCGGAGCA GTGATGAAGG	300
TCGCCGCGCA GTGTTCAAAG CTCGGATATA CGGTGGCACC CATGGAACAG CGTGCGGAGT	360
TGGTGGTTGG CCGGGCACTT GTCGTCGTCG TTGACGATCG CACGGCGCAC GGCGATGAAG	420
ACCACAGCGG GCCGCTTGTC ACCGAGCTGC TCACCGAGGC CGGGTTTGTT GTCGACGGCG	480
TGGTGGCGGT GTCGGCCGAC GAGGTCGAGA TCCGAAATGC GCTGAACACA GCGGTGATCG	540
GCGGGGTGGA CCTGGTGGTG TCGGTCGGCG GGACCGGNGT GACGNCTCGC GATGTCACCC	600
CGGAAGCCAC CCGNGACATT CT	622
(2) INFORMATION FOR SEQ ID NO:11:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1200 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(aci) analyzing programmen and the second	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
GGCGCAGCGG TAAGCCTGTT GGCCGCCGGC ACACTGGTGT TGACAGCATG CGGCGGTGGC	60
ACCAACAGCT CGTCGTCAGG CGCAGGCGGA ACGTCTGGGT CGGTGCACTG CGGCGGCAAG	120
AAGGAGCTCC ACTCCAGCGG CTCGACCGCA CAAGAAAATG CCATGGAGCA GTTCGTCTAT	180

WO 98/16646

68

PCT/US97/18293

GCCTACGTGC	GATCGTGCCC	GGGCTACACG	TTGGACTACA	ACGCCAACGG	GTCCGGTGCC	240
GGGGTGACCC	AGTTTCTCAA	CAACGAAACC	GATTTCGCCG	GCTCGGATGT	CCCGTTGAAT	300
CCGTCGACCG	GTCAACCTGA	CCGGTCGGCG	GAGCGGTGCG	GTTCCCCGGC	ATGGGACCTG	360
CCGACGGTGT	TCGGCCCGAT	CGCGATCACC	TACAATATCA	AGGGCGTGAG	CACGCTGAAT	420
CTTGACGGAC	CCACTACCGC	CAAGATTTTC	AACGGCACCA	TCACCGTGTG	GAATGATCCA	480
CAGATCCAAG	CCCTCAACTC	CGGCACCGAC	CTGCCGCCAA	CACCGATTAG	CGTTATCTTC	540
CGCAGCGACA	AGTCCGGTAC	GTCGGACAAC	TTCCAGAAAT	ACCTCGACGG	TGTATCCAAC	600
GGGGCGTGGG	GCAAAGGCGC	CAGCGAAACG	TTCAGCGGGG	GCGTCGGCGT	CGGCGCCAGC	660
GGGAACAACG	GAACGTCGGC	CCTACTGCAG	ACGACCGACG	GGTCGATCAC	CTACAACGAG	720
TGGTCGTTTG	CGGTGGGTAA	GCAGTTGAAC	ATGGCCCAGA	TCATCACGTC	GGCGGGTCCG	780
GATCCAGTGG	CGATCACCAC	CGAGTCGGTC	GGTAAGACAA	TCGCCGGGGC	CAAGATCATG	840
GGACAAGGCA	ACGACCTGGT	ATTGGACACG	TCGTCGTTCT	ACAGACCCAC	CCAGCCTGGC	900
TCTTACCCGA	TCGTGCTGGC	GACCTATGAG	ATCGTCTGCT	CGAAATACCC	GGATGCGACG	960
ACCGGTACTG	CGGTAAGGGC	GTTTATGCAA	GCCGCGATTG	GTCCAGGCCA	AGAAGGCCTG	1020
GACCAATACG	GCTCCATTCC	GTTGCCCAAA	TCGTTCCAAG	CAAAATTGGC	GGCCGCGGTG	1080
AATGCTATTT	CTTGACCTAG	TGAAGGGAAT	TCGACGGTGA	GCGATGCCGT	TCCGCAGGTA	1140
GGGTCGCAAT	TTGGGCCGTA	TCAGCTATTG	CGGCTGCTGG	GCCGAGGCGG	GATGGGCGAG	1200

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1155 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCAAGCAGCT	GCAGGTCGTG	CTGTTCGACG	AACTGGGCAT	GCCGAAGACC	AAACGCACCA	60
AGACCGGCTA	CACCACGGAT	GCCGACGCGC	TGCAGTCGTT	GTTCGACAAG	ACCGGGCATC	120
CGTTTCTGCA	ACATCTGCTC	GCCCACCGCG	ACGTCACCCG	GCTCAAGGTC	ACCGTCGACG	180
GGTTGCTCCA	AGCGGTGGCC	GCCGACGGCC	GCATCCACAC	CACGTTCAAC	CAGACGATCG	240
CCGCGACCGG	CCGGCTCTCC	TCGACCGAAC	CCAACCTGCA	GAACATCCCG	ATCCGCACCG	300
ACGCGGGCCG	GCGGATCCGG	GACGCGTTCG	TGGTCGGGGA	CGGTTACGCC	GAGTTGATGA	360
CGGCCGACTA	CAGCCAGATC	GAGATGCGGA	TCATGGGGCA	CCTGTCCGGG	GACGAGGGCC	420

TCATCGAGGC	GTTCAACACC	GGGGAGGACC	TGTATTCGTT	CGTCGCGTCC	CGGGTGTTCG	480
GTGTGCCCAT	CGACGAGGTC	ACCGGCGAGT	TGCGGCGCCG	GGTCAAGGCG	ATGTCCTACG	540
GGCTGGTTTA	CGGGTTGAGC	GCCTACGGCC	TGTCGCAGCA	GTTGAAAATC	TCCACCGAGG	600
AAGCCAACGA	GCAGATGGAC	GCGTATTTCG	CCCGATTCGG	CGGGGTGCGC	GACTACCTGC	660
GCGCCGTAGT	CGAGCGGGCC	CGCAAGGACG	GCTACACCTC	GACGGTGCTG	GGCCGTCGCC	720
GCTACCTGCC	CGAGCTGGAC	AGCAGCAACC	GTCAAGTGCG	GGAGGCCGCC	GAGCGGGCGG	780
CGCTGAACGC	GCCGATCCAG	GGCAGCGCGG	CCGACATCAT	CAAGGTGGCC	ATGATCCAGG	840
TCGACAAGGC	GCTCAACGAG	GCACAGCTGG	CGTCGCGCAT	GCTGCTGCAG	GTCCACGACG	900
AGCTGCTGTT	CGAAATCGCC	CCCGGTGAAC	GCGAGCGGGT	CGAGGCCCTG	GTGCGCGACA	960
AGATGGGCGG	CGCTTACCCG	CTCGACGTCC	CGCTGGAGGT	GTCGGTGGGC	TACGGCCGCA	1020
GCTGGGACGC	GGCGGCGCAC	TGAGTGCCGA	GCGTGCATCT	GGGGCGGAA	TTCGGCGATT	1080
TTTCCGCCCT	GAGTTCACGC	TCGGCGCAAT	CGGGACCGAG	TTTGTCCAGC	GTGTACCCGT	1140
CGAGTAGCCT	CGTCA					1155

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1771 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GAGCGCCGTC TGGTGTTTGA	ACGGTTTTAC	CGGTCGGCAT	CGGCACGGGC	GTTGCCGGGT	60
TCGGGCCTCG GGTTGGCGAT	CGTCAAACAG	GTGGTGCTCA	ACCACGGCGG	ATTGCTGCGC	120
ATCGAAGACA CCGACCCAGG	CGGCCAGCCC	CCTGGAACGT	CGATTTACGT	GCTGCTCCCC	180
GGCCGTCGGA TGCCGATTCC	GCAGCTTCCC	GGTGCGACGG	CTGGCGCTCG	GAGCACGGAC	240
ATCGAGAACT CTCGGGGTTC	GGCGAACGTT	ATCTCAGTGG	AATCTCAGTC	CACGCGCGCA	300
ACCTAGTTGT GCAGTTACTG	TTGAAAGCCA	CACCCATGCC	AGTCCACGCA	TGGCCAAGTT	360
GGCCCGAGTA GTGGGCCTAG	TACAGGAAGA	GCAACCTAGC	GACATGACGA	ATCACCCACG	420
GTATTCGCCA CCGCCGCAGC	AGCCGGGAAC	CCCAGGTTAT	GCTCAGGGGC	AGCAGCAAAC	480
GTACAGCCAG CAGTTCGACT	GGCGTTACCC	ACCGTCCCCG	CCCCGCAGC	CAACCCAGTA	540
CCGTCAACCC TACGAGGCGT	TGGGTGGTAC	CCGGCCGGGT	CTGATACCTG	GCGTGATTCC	600
GACCATGACG CCCCCTCCTG	GGATGGTTCG	CCAACGCCCT	CGTGCAGGCA	TGTTGGCCAT	660

CGGCGCGGTG	ACGATAGCGG	TGGTGTCCGC	CGGCATCGGC	GGCGCGGCCG	CATCCCTGGT	720
CGGGTTCAAC	CGGGCACCCG	CCGGCCCCAG	CGGCGGCCCA	GTGGCTGCCA	GCGCGGCGCC	780
AAGCATCCCC	GCAGCAAACA	TGCCGCCGGG	GTCGGTCGAA	CAGGTGGCGG	CCAAGGTGGT	840
GCCCAGTGTC	GTCATGTTGG	AAACCGATCT	GGGCCGCCAG	TCGGAGGAGG	GCTCCGGCAT	900
CATTCTGTCT	GCCGAGGGC	TGATCTTGAC	CAACAACCAC	GTGATCGCGG	CGGCCGCCAA	960
GCCTCCCCTG	GGCAGTCCGC	CGCCGAAAAC	GACGGTAACC	TTCTCTGACG	GGCGGACCGC	1020
ACCCTTCACG	GTGGTGGGG	CTGACCCCAC	CAGTGATATC	GCCGTCGTCC	GTGTTCAGGG	1080
CGTCTCCGGG	CTCACCCCGA	TCTCCCTGGG	TTCCTCCTCG	GACCTGAGGG	TCGGTCAGCC	1140
GGTGCTGGCG	ATCGGGTCGC	CGCTCGGTTT	GGAGGGCACC	GTGACCACGG	GGATCGTCAG	1200
CGCTCTCAAC	CGTCCAGTGT	CGACGACCGG	CGAGGCCGGC	AACCAGAACA	CCGTGCTGGA	1260
CGCCATTCAG	ACCGACGCCG	CGATCAACCC	CGGTAACTCC	GGGGGCGCGC	TGGTGAACAT	1320
GAACGCTCAA	CTCGTCGGAG	TCAACTCGGC	CATTGCCACG	CTGGGCGCGG	ACTCAGCCGA	1380
TGCGCAGAGC	GGCTCGATCG	GTCTCGGTTT	TGCGATTCCA	GTCGACCAGG	CCAAGCGCAT	1440
CGCCGACGAG	TTGATCAGCA	CCGGCAAGGC	GTCACATGCC	TCCCTGGGTG	TGCAGGTGAC	1500
CAATGACAAA	GACACCCCGG	GCGCCAAGAT	CGTCGAAGTA	GTGGCCGGTG	GTGCTGCCGC	1560
GAACGCTGGA	GTGCCGAAGG	GCGTCGTTGT	CACCAAGGTC	GACGACCGCC	CGATCAACAG	1620
CGCGGACGCG	TTGGTTGCCG	CCGTGCGGTC	CAAAGCGCCG	GGCGCCACGG	TGGCGCTAAC	1680
CTTTCAGGAT	CCCTCGGGCG	GTAGCCGCAC	AGTGCAAGTC	ACCCTCGGCA	AGGCGGAGCA	1740
GTGATGAAGG	TCGCCGCGCA	GTGTTCAAAG	C			1771

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1058 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CTCCACCGCG	GTGGCGGCCG	CTCTAGAACT	AGTGGATCCC	CCGGGCTGCA	GGAATTCGGC	60
ACGAGGATCC	GACGTCGCAG	GTTGTCGAAC	CCGCCGCCGC	GGAAGTATCG	GTCCATGCCT	120
AGCCCGGCGA	CGGCGAGCGC	CGGAATGGCG	CGAGTGAGGA	GGCGGGCAAT	TTGGCGGGGC	180
CCGGCGACGG	CGAGCGCCGG	AATGGCGCGA	GTGAGGAGGC	GGGCAGTCAT	GCCCAGCGTG	240
ATCCAATCAA	CCTGCATTCG	GCCTGCGGGC	CCATTTGACA	ATCGAGGTAG	TGAGCGCAAA	300

71

TGAATGATGG	AAAACGGGCG	GTGACGTCCG	CTGTTCTGGT	GGTGCTAGGT	GCCTGCCTGG	360
CGTTGTGGCT	ATCAGGATGT	TCTTCGCCGA	AACCTGATGC	CGAGGAACAG	GGTGTTCCCG	420
TGAGCCCGAC	GGCGTCCGAC	CCCGCGCTCC	TCGCCGAGAT	CAGGCAGTCG	CTTGATGCGA	480
CAAAAGGGTT	GACCAGCGTG	CACGTAGCGG	TCCGAACAAC	CGGGAAAGTC	GACAGCTTGC	540
TGGGTATTAC	CAGTGCCGAT	GTCGACGTCC	GGGCCAATCC	GCTCGCGGCA	AAGGGCGTAT	600
GCACCTACAA	CGACGAGCAG	GGTGTCCCGT	TTCGGGTACA	AGGCGACAAC	ATCTCGGTGA	660
AACTGTTCGA	CGACTGGAGC	AATCTCGGCT	CGATTTCTGA	ACTGTCAACT	TCACGCGTGC	720
TCGATCCTGC	CGCTGGGGTG	ACGCAGCTGC	TGTCCGGTGT	CACGAACCTC	CAAGCGCAAG	780
GTACCGAAGT	GATAGACGGA	ATTTCGACCA	CCAAAATCAC	CGGGACCATC	CCCGCGAGCT	840
CTGTCAAGAT	GCTTGATCCT	GGCGCCAAGA	GTGCAAGGCC	GGCGACCGTG	TGGATTGCCC	900
AGGACGGCTC	GCACCACCTC	GTCCGAGCGA	GCATCGACCT	CGGATCCGGG	TCGATTCAGC	960
TCACGCAGTC	GAAATGGAAC	GAACCCGTCA	ACGTCGACTA	GGCCGAAGTT	GCGTCGACGC	1020
GTTGNTCGAA	ACGCCCTTGT	GAACGGTGTC	AACGGNAC			1058

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 542 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAATTCGGCA	CGAGAGGTGA	TCGACATCAT	CGGGACCAGC	CCCACATCCT	GGGAACAGGC	60
GGCGGCGGAG	GCGGTCCAGC	GGGCGCGGGA	TAGCGTCGAT	GACATCCGCG	TCGCTCGGGT	120
CATTGAGCAG	GACATGGCCG	TGGACAGCGC	CGGCAAGATC	ACCTACCGCA	TCAAGCTCGA	180
AGTGTCGTTC	AAGATGAGGC	CGGCGCAACC	GCGCTAGCAC	GGGCCGGCGA	GCAAGACGCA	240
AAATCGCACG	GTTTGCGGTT	GATTCGTGCG	ATTTTGTGTC	TGCTCGCCGA	GGCCTACCAG	300
GCGCGGCCCA	GGTCCGCGTG	CTGCCGTATC	CAGGCGTGCA	TCGCGATTCC	GGCGGCCACG	360
CCGGAGTTAA	TGCTTCGCGT	CGACCCGAAC	TGGGCGATCC	GCCGGNGAGC	TGATCGATGA	420
CCGTGGCCAG	CCCGTCGATG	CCCGAGTTGC	CCGAGGAAAC	GTGCTGCCAG	GCCGGTAGGA	480
AGCGTCCGTA	GGCGGCGGTG	CTGACCGGCT	CTGCCTGCGC	CCTCAGTGCG	GCCAGCGAGC	540
GG						542

(2) INFORMATION FOR SEQ ID NO:16:

72

(i	SEQUENCE	CHARACTERISTICS
		CHAINCIPITATION

(A) LENGTH: 913 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CGGTGCCGCC	CGCGCCTCCG	TTGCCCCCAT	TGCCGCCGTC	GCCGATCAGC	TGCGCATCGC	60
CACCATCACC	GCCTTTGCCG	CCGGCACCGC	CGGTGGCGCC	GGGGCCGCCG	ATGCCACCGC	120
TTGACCCTGG	CCGCCGGCGC	CGCCATTGCC	ATACAGCACC	CCGCCGGGG	CACCGTTACC	180
GCCGTCGCCA	CCGTCGCCGC	CGCTGCCGTT	TCAGGCCGGG	GAGGCCGAAT	GAACCGCCGC	240
CAAGCCCGCC	GCCGGCACCG	TTGCCGCCTT	TTCCGCCCGC	CCCGCCGGCG	CCGCCAATTG	300
CCGAACAGCC	AMGCACCGTT	GCCGCCAGCC	CCGCCGCCGT	TAACGGCGCT	GCCGGGCGCC	360
GCCGCCGGAC	CCGCCATTAC	CGCCGTTCCC	GTTCGGTGCC	CCGCCGTTAC	CGGCGCCGCC	420
GTTTGCCGCC	AATATTCGGC	GGGCACCGCC	AGACCCGCCG	GGGCCACCAT	TGCCGCCGGG	480
CACCGAAACA	ACAGCCCAAC	GGTGCCGCCG	GCCCCGCCGT	TTGCCGCCAT	CACCGGCCAT	540
TCACCGCCAG	CACCGCCGTT	AATGTTTATG	AACCCGGTAC	CGCCAGCGCG	GCCCCTATTG	600
CCGGGCGCCG	GAGNGCGTGC	CCGCCGGCGC	CGCCAACGCC	CAAAAGCCCG	GGGTTGCCAC	660
CGGCCCCGCC	GGACCCACCG	GTCCCGCCGA	TCCCCCGTT	GCCGCCGGTG	CCGCCGCCAT	720
TGGTGCTGCT	GAAGCCGTTA	GCGCCGGTTC	CGCSGGTTCC	GGCGGTGGCG	CCNTGGCCGC	780
CGGCCCCGCC	GTTGCCGTAC	AGCCACCCC	CGGTGGCGCC	GTTGCCGCCA	TTGCCGCCAT	840
TGCCGCCGTT	GCCGCCATTG	CCGCCGTTCC	CGCCGCCACC	GCCGGNTTGG	CCGCCGGCGC	900
CGCCGGCGGC	CGC					913

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1872 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GACTACGTTG GTGTAGAAAA ATCCTGCCGC CCGGACCCTT AAGGCTGGGA CAATTTCTGA 60

TAGCTACCCC GACACAGGAG GTTACGGGAT GAGCAATTCG CGCCGCCGCT CACTCAGGTG 120

73

GTCATGGTTG	CTGAGCGTGC	TGGCTGCCGT	CGGGCTGGGC	CTGGCCACGG	CGCCGGCCCA	180
GGCGGCCCCG	CCGGCCTTGT	CGCAGGACCG	GTTCGCCGAC	TTCCCCGCGC	TGCCCCTCGA	240
CCCGTCCGCG	ATGGTCGCCC	AAGTGGCGCC	ACAGGTGGTC	AACATCAACA	CCAAACTGGG	300
CTACAACAAC	GCCGTGGGCG	CCGGGACCGG	CATCGTCATC	GATCCCAACG	GTGTCGTGCT	360
GACCAACAAC	CACGTGATCG	CGGGCGCCAC	CGACATCAAT	GCGTTCAGCG	TCGGCTCCGG	420
CCAAACCTAC	GGCGTCGATG	TGGTCGGGTA	TGACCGCACC	CAGGATGTCG	CGGTGCTGCA	480
GCTGCGCGGT	GCCGGTGGCC	TGCCGTCGGC	GGCGATCGGT	GGCGGCGTCG	CGGTTGGTGA	540
GCCCGTCGTC	GCGATGGGCA	ACAGCGGTGG	GCAGGGCGGA	ACGCCCCGTG	CGGTGCCTGG	600
CAGGGTGGTC	GCGCTCGGCC	AAACCGTGCA	GGCGTCGGAT	TCGCTGACCG	GTGCCGAAGA	660
GACATTGAAC	GGGTTGATCC	AGTTCGATGC	CGCAATCCAG	CCCGGTGATT	CGGGCGGGCC	720
CGTCGTCAAC	GGCCTAGGAC	AGGTGGTCGG	TATGAACACG	GCCGCGTCCG	ATAACTTCCA	780
GCTGTCCCAG	GGTGGGCAGG	GATTCGCCAT	TCCGATCGGG	CAGGCGATGG	CGATCGCGGG	840
CCAAATCCGA	TCGGGTGGGG	GGTCACCCAC	CGTTCATATC	GGGCCTACCG	CCTTCCTCGG	900
CTTGGGTGTT	GTCGACAACA	ACGGCAACGG	CGCACGAGTC	CAACGCGTGG	TCGGAAGCGC	960
TCCGGCGGCA	AGTCTCGGCA	TCTCCACCGG	CGACGTGATC	ACCGCGGTCG	ACGGCGCTCC	1020
GATCAACTCG	GCCACCGCGA	TGGCGGACGC	GCTTAACGGG	CATCATCCCG	GTGACGTCAT	1080
CTCGGTGAAC	TGGCAAACCA	AGTCGGGCGG	CACGCGTACA	GGGAACGTGA	CATTGGCCGA	1140
GGGACCCCCG	GCCTGATTTG	TCGCGGATAC	CACCCGCCGG	CCGGCCAATT	GGATTGGCGC	1200
CAGCCGTGAT	TGCCGCGTGA	GCCCCGAGT	TCCGTCTCCC	GTGCGCGTGG	CATTGTGGAA	1260
GCAATGAACG	AGGCAGAACA	CAGCGTTGAG	CACCCTCCCG	TGCAGGGCAG	TTACGTCGAA	1320
GGCGGTGTGG	TCGAGCATCC	GGATGCCAAG	GACTTCGGCA	GCGCCGCCGC	CCTGCCCGCC	1380
GATCCGACCT	GGTTTAAGCA	CGCCGTCTTC	TACGAGGTGC	TGGTCCGGGC	GTTCTTCGAC	1440
GCCAGCGCGG	ACGGTTCCGN	CGATCTGCGT	GGACTCATCG	ATCGCCTCGA	CTACCTGCAG	1500
TGGCTTGGCA	TCGACTGCAT	CTGTTGCCGC	CGTTCCTACG	ACTCACCGCT	GCGCGACGGC	1560
GGTTACGACA	TTCGCGACTT	CTACAAGGTG	CTGCCCGAAT	TCGGCACCGT	CGACGATTTC	1620
GTCGCCCTGG	TCGACACCGC	TCACCGGCGA	GGTATCCGCA	TCATCACCGA	CCTGGTGATG	1680
AATCACACCT	CGGAGTCGCA	CCCCTGGTTT	CAGGAGTCCC	GCCGCGACCC	AGACGGACCG	1740
TACGGTGACT	ATTACGTGTG	GAGCGACACC	AGCGAGCGCT	ACACCGACGC	CCGGATCATC	1800
TTCGTCGACA	CCGAAGAGTC	GAACTGGTCA	TTCGATCCTG	TCCGCCGACA	GTTNCTACTG	1860
GCACCGATTC	TT					1872

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1482 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CTTCGCCGAA	ACCTGATGCC	GAGGAACAGG	GTGTTCCCGT	GAGCCCGACG	GCGTCCGACC	60
CCGCGCTCCT	CGCCGAGATC	AGGCAGTCGC	TTGATGCGAC	AAAAGGGTTG	ACCAGCGTGC	120
ACGTAGCGGT	CCGAACAACC	GGGAAAGTCG	ACAGCTTGCT	GGGTATTACC	AGTGCCGATG	180
TCGACGTCCG	GGCCAATCCG	CTCGCGGCAA	AGGGCGTATG	CACCTACAAC	GACGAGCAGG	240
GTGTCCCGTT	TCGGGTACAA	GGCGACAACA	TCTCGGTGAA	ACTGTTCGAC	GACTGGAGCA	300
ATCTCGGCTC	GATTTCTGAA	CTGTCAACTT	CACGCGTGCT	CGATCCTGCC	GCTGGGGTGA	360
CGCAGCTGCT	GTCCGGTGTC	ACGAACCTCC	AAGCGCAAGG	TACCGAAGTG	ATAGACGGAA	420
TTTCGACCAC	CAAAATCACC	GGGACCATCC	CCGCGAGCTC	TGTCAAGATG	CTTGATCCTG	480
GCGCCAAGAG	TGCAAGGCCG	GCGACCGTGT	GGATTGCCCA	GGACGGCTCG	CACCACCTCG	540
TCCGAGCGAG	CATCGACCTC	GGATCCGGGT	CGATTCAGCT	CACGCAGTCG	AAATGGAACG	600
AACCCGTCAA	CGTCGACTAG	GCCGAAGTTG	CGTCGACGCG	TTGCTCGAAA	CGCCCTTGTG	660
AACGGTGTCA	ACGGCACCCG	AAAACTGACC	CCCTGACGGC	ATCTGAAAAT	TGACCCCCTA	720
GACCGGGCGG	TTGGTGGTTA	TTCTTCGGTG	GTTCCGGCTG	GTGGGACGCG	GCCGAGGTCG	780
CGGTCTTTGA	GCCGGTAGCT	GTCGCCTTTG	AGGGCGACGA	CTTCAGCATG	GTGGACGAGG	840
CGGTCGATCA	TGGCGGCAGC	AACGACGTCG	TCGCCGCCGA	AAACCTCGCC	CCACCGGCCG	900
AAGGCCTTAT	TGGACGTGAC	GATCAAGCTG	GCCCGCTCAT	ACCGGGAGGA	CACCAGCTGG	960
AAGAAGAGGT	TGGCGGCCTC	GGGCTCAAAC	GGAATGTAAC	CGACTTCGTC	AACCACCAGG	1020
AGCGGATAGC	GGCCAAACCG	GGTGAGTTCG	GCGTAGATGC	GCCCGGCGTG	GTGAGCCTCG	1080
GCGAACCGTG	CTACCCATTC	GGCGGCGGTG	GCGAACAGCA	CCCGATGACC	GGCCTGACAC	1140
GCGCGTATCG	CCAGGCCGAC	CGCAAGATGA	GTCTTCCCGG	TGCCAGGCGG	GGCCCAAAAA	1200
CACGACGTTA	TCGCGGGCGG	TGATGAAATC	CAGGGTGCCC	AGATGTGCGA	TGGTGTCGCG	1260
TTTGAGGCCA	CGAGCATGCT	CAAAGTCGAA	CTCTTCCAAC	GACTTCCGAA	CCGGGAAGCG	1320
GGCGGCGCGG	ATGCGGCCCT	CACCACCATG	GGACTCCCGG	GCTGACACTT	CCCGCTGCAG	1380
GCAGGCGGCC	AGGTATTCTT	CGTGGCTCCA	GTTCTCGGCG	CGGGCGCGAT	CGGCCAGCCG	1440
GGACACTGAC	TCACGCAGGG	TGGGAGCTTT	CAATGCTCTT	GT		1482

75

(:	21	INFORMATION	FOR	SEO	TD	NO ·	10.

(i) SEQUENCE CHARACTERISTIC	CS:
-----------------------------	-----

- (A) LENGTH: 876 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GAATTCGGCA	CGAGCCGGCG	ATAGCTTCTG	GGCCGCGGCC	GACCAGATGG	CTCGAGGGTT	60
CGTGCTCGGG	GCCACCGCCG	GGCGCACCAC	CCTGACCGGT	GAGGGCCTGC	AACACGCCGA	120
CGGTCACTCG	TTGCTGCTGG	ACGCCACCAA	CCCGGCGGTG	GTTGCCTACG	ACCCGGCCTT	180
CGCCTACGAA	ATCGGCTACA	TCGNGGAAAG	CGGACTGGCC	AGGATGTGCG	GGGAGAACCC	240
GGAGAACATC	TTCTTCTACA	TCACCGTCTA	CAACGAGCCG	TACGTGCAGC	CGCCGGAGCC	300
GGAGAACTTC	GATCCCGAGG	GCGTGCTGGG	GGGTATCTAC	CGNTATCACG	CGGCCACCGA	360
GCAACGCACC	AACAAGGNGC	AGATCCTGGC	CTCCGGGGTA	GCGATGCCCG	CGGCGCTGCG	420
GGCAGCACAG	ATGCTGGCCG	CCGAGTGGGA	TGTCGCCGCC	GACGTGTGGT	CGGTGACCAG	480
TTGGGGCGAG	CTAAACCGCG	ACGGGGTGGT	CATCGAGACC	GAGAAGCTCC	GCCACCCGA	540
TCGGCCGGCG	GGCGTGCCCT	ACGTGACGAG	AGCGCTGGAG	AATGCTCGGG	GCCCGGTGAT	600
CGCGGTGTCG	GACTGGATGC	GCGCGGTCCC	CGAGCAGATC	CGACCGTGGG	TGCCGGGCAC	660
ATACCTCACG	TTGGGCACCG	ACGGGTTCGG	TTTTTCCGAC	ACTCGGCCCG	CCGGTCGTCG	720
TTACTTCAAC	ACCGACGCCG	AATCCCAGGT	TGGTCGCGGT	TTTGGGAGGG	GTTGGCCGGG	780
TCGACGGGTG	AATATCGACC	CATTCGGTGC	CGGTCGTGGG	CCGCCCGCCC	AGTTACCCGG	840
ATTCGACGAA	GGTGGGGGGT	TGCGCCCGAN	TAAGTT			876

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1021 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

ATCCCCCCGG GCTGCAGGAA TTCGGCACGA GAGACAAAAT TCCACGCGTT AATGCAGGAA 60 CAGATTCATA ACGAATTCAC AGCGGCACAA CAATATGTCG CGATCGCGGT TTATTTCGAC 120

AGCGAAGACC	TGCCGCAGTT	GGCGAAGCAT	TTTTACAGCC	AAGCGGTCGA	GGAACGAAAC	180
CATGCAATGA	TGCTCGTGCA	ACACCTGCTC	GACCGCGACC	TTCGTGTCGA	AATTCCCGGC	240
GTAGACACGG	TGCGAAACCA	GTTCGACAGA	CCCCGCGAGG	CACTGGCGCT	GGCGCTCGAT	300
CAGGAACGCA	CAGTCACCGA	CCAGGTCGGT	CGGCTGACAG	CGGTGGCCCG	CGACGAGGGC	360
GATTTCCTCG	GCGAGCAGTT	CATGCAGTGG	TTCTTGCAGG	AACAGATCGA	AGAGGTGGCC	420
TTGATGGCAA	CCCTGGTGCG	GGTTGCCGAT	CGGGCCGGGG	CCAACCTGTT	CGAGCTAGAG	480
AACTTCGTCG	CACGTGAAGT	GGATGTGGCG	CCGGCCGCAT	CAGGCGCCCC	GCACGCTGCC	540
GGGGGCCGCC	TCTAGATCCC	TGGGGGGGAT	CAGCGAGTGG	TCCCGTTCGC	CCGCCCGTCT	600
TCCAGCCAGG	CCTTGGTGCG	GCCGGGGTGG	TGAGTACCAA	TCCAGGCCAC	CCCGACCTCC	660
CGGNAAAAGT	CGATGTCCTC	GTACTCATCG	ACGTTCCAGG	AGTACACCGC	CCGGCCCTGA	720
GCTGCCGAGC	GGTCAACGAG	TTGCGGATAT	TCCTTTAACG	CAGGCAGTGA	GGGTCCCACG	780
GCGGTTGGCC	CGACCGCCGT	GGCCGCACTG	CTGGTCAGGT	ATCGGGGGGT	CTTGGCGAGC	840
AACAACGTCG	GCAGGAGGGG	TGGAGCCCGC	CGGATCCGCA	GACCGGGGGG	GCGAAAACGA	900
CATCAACACC	GCACGGGATC	GATCTGCGGA	GGGGGGTGCG	GGAATACCGA	ACCGGTGTAG	960
GAGCGCCAGC	AGTTGTTTTT	CCACCAGCGA	AGCGTTTTCG	GGTCATCGGN	GGCNNTTAAG	1020
f T						1021

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 321 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

C	GTGCCGACG	AACGGAAGAA	CACAACCATG	AAGATGGTGA	AATCGATCGC	CGCAGGTCTG	60
A	CCGCCGCGG	CTGCAATCGG	CGCCGCTGCG	GCCGGTGTGA	CTTCGATCAT	GGCTGGCGGN	120
С	CGGTCGTAT	ACCAGATGCA	GCCGGTCGTC	TTCGGCGCGC	CACTGCCGTT	GGACCCGGNA	180
Т	CCGCCCCTG	ANGTCCCGAC	CGCCGCCCAG	TGGACCAGNC	TGCTCAACAG	NCTCGNCGAT	240
С	CCAACGTGT	CGTTTGNGAA	CAAGGGNAGT	CTGGTCGAGG	GNGGNATCGG	NGGNANCGAG	300
G	GNGNGNATC	GNCGANCACA	A				321

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 373 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear									
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:									
TCTTATCGGT TCCGGTTGGC GACGGGTTTT GGGNGCGGGT GGTTAACCCG CTCGGCCAGC	60								
CGATCGACGG GCGCGGAGAC GTCGACTCCG ATACTCGGCG CGCGCTGGAG CTCCAGGCGC	120								
CCTCGGTGGT GNACCGGCAA GGCGTGAAGG AGCCGTTGNA GACCGGGATC AAGGCGATTG	180								
ACGCGATGAC CCCGATCGGC CGCGGGCAGC GCCAGCTGAT CATCGGGGAC CGCAAGACCG	240								
CCAAAAAACCC COCHCHCHCHCH CCCACACACACACACACACACACACACAC	300								
CCMCCAMMON AND AND AND COMMON MARKET THE COMMON AND AND AND AND AND AND AND AND AND AN	360								
CHIMIN COLUMNS AND	373								
(2) INFORMATION FOR SEQ ID NO:23:	0,0								
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 352 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 									
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:									
GTGACGCCGT GATGGGATTC CTGGGCGGGG CCGGTCCGCT GGCGGTGGTG GATCAGCAAC	60								
	120								
	180								
	240								
	300								
TTGACGACGA NCCATATCGG NGATTCCCNC ACATNCGAAG TTCCGANGGA GA	352								
(2) INFORMATION FOR SEQ ID NO:24:									
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 726 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 									

78

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ΙD	NO:24:	
------	----------	--------------	-----	----	--------	--

GAAATCCGCG	TTCATTCCGT	TCGACCAGCG	GCTGGCGATA	ATCGACGAAG	TGATCAAGCC	60
GCGGTTCGCG	GCGCTCATGG	GTCACAGCGA	GTAATCAGCA	AGTTCTCTGG	TATATCGCAC	120
CTAGCGTCCA	GTTGCTTGCC	AGATCGCTTT	CGTACCGTCA	TCGCATGTAC	CGGTTCGCGT	180
GCCGCACGCT	CATGCTGGCG	GCGTGCATCC	TGGCCACGGG	TGTGGCGGGT	CTCGGGGTCG	240
GCGCGCAGTC	CGCAGCCCAA	ACCGCGCCGG	TGCCCGACTA	CTACTGGTGC	CCGGGGCAGC	300
CTTTCGACCC	CGCATGGGGG	CCCAACTGGG	ATCCCTACAC	CTGCCATGAC	GACTTCCACC	360
GCGACAGCGA	CGGCCCCGAC	CACAGCCGCG	ACTACCCCGG	ACCCATCCTC	GAAGGTCCCG	420
TGCTTGACGA	TCCCGGTGCT	GCGCCGCCGC	CCCCGGCTGC	CGGTGGCGGC	GCATAGCGCT	480
CGTTGACCGG	GCCGCATCAG	CGAATACGCG	TATAAACCCG	GGCGTGCCCC	CGGCAAGCTA	540
CGACCCCCGG	CGGGGCAGAT	TTACGCTCCC	GTGCCGATGG	ATCGCGCCGT	CCGATGACAG	600
AAAATAGGCG	ACGGTTTTGG	CAACCGCTTG	GAGGACGCTT	GAAGGGAACC	TGTCATGAAC	660
GGCGACAGCG	CCTCCACCAT	CGACATCGAC	AAGGTTGTTA	CCCGCACACC	CGTTCGCCGG	720
ATCGTG						726

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

CGCGACGACG	ACGAACGTCG	GGCCCACCAC	CGCCTATGCG	TTGATGCAGG	CGACCGGGAT	60
GGTCGCCGAC	CATATCCAAG	CATGCTGGGT	GCCCACTGAG	CGACCTTTTG	ACCAGCCGGG	120
CTGCCCGATG	GCGGCCCGGT	GAAGTCATTG	CGCCGGGGCT	TGTGCACCTG	ATGAACCCGA	180
ATAGGGAACA	ATAGGGGGGT	GATTTGGCAG	TTCAATGTCG	GGTATGGCTG	GAAATCCAAT	240
GGCGGGGCAT	GCTCGGCGCC	GACCAGGCTC	GCGCAGGCGG	GCCAGCCCGA	ATCTGGAGGG	300
AGCACTCAAT	GGCGGCGATG	AAGCCCCGGA	CCGGCGACGG	TCCTTTGGAA	GCAACTAAGG	360
AGGGGCGCGG	CATTGTGATG	CGAGTACCAC	TTGAGGGTGG	CGGTCGCCTG	GTCGTCGAGC	420
TGACACCCGA	CGAAGCCGCC	GCACTGGGTG	ACGAACTCAA	AGGCGTTACT	AGCTAAGACC	480
AGCCCAACGG	CGAATGGTCG	GCGTTACGCG	CACACCTTCC	GGTAGATGTC	CAGTGTCTGC	540
TCGGCGATGT	ATGCCCAGGA	GAACTCTTGG	ATACAGCGCT			580

PCT/US97/18293

(2) INFORMATION FOR SEQ ID NO:26:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 160 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
AACGGAGGC CCGGGGGTTT TGGCGGGGCC GGGGCGGTCG GCGGCAACGG CGGGCCGGC	60
GGTACCGCCG GGTTGTTCGG TGTCGGCGGG GCCGGTGGGG CCGGAGGCAA CGGCATCGCC	120
GGTGTCACGG GTACGTCGGC CAGCACACCG GGTGGATCCG	160
(2) INFORMATION FOR SEQ ID NO:27:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 272 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
GACACCGATA CGATGGTGAT GTACGCCAAC GTTGTCGACA CGCTCGAGGC GTTCACGATC	60
CAGCGCACAC CCGACGGCGT GACCATCGGC GATGCGGCCC CGTTCGCGGA GGCGGCTGCC	120
AAGGCGATGG GAATCGACAA GCTGCGGGTA ATTCATACCG GAATGGACCC CGTCGTCGCT	180
GAACGCGAAC AGTGGGACGA CGGCAACAAC ACGTTGGCGT TGGCGCCCGG TGTCGTTGTC	240
GCCTACGAGC GCAACGTACA GACCAACGCC CG	272
(2) INFORMATION FOR SEQ ID NO:28:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 317 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
GCAGCCGGTG GTTCTCGGAC TATCTGCGCA CGGTGACGCA GCGCGACGTG CGCGAGCTGA	60
AGCGGATCGA CCAGACGGAT CCCCTGCCGC GGTTCATGCG CTACCTGCCC GCTATCACCG	120

PCT/US97/18293

CGCAGGAGCT GAACGTGGCC GAAGCGGCGC GGGTCATCGG	GGTCGACGCG	GGGACGATCC	180
GTTCGGATCT GGCGTGGTTC GAGACGGTCT ATCTGGTACA	TCGCCTGCCC	GCCTGGTCGC	240
GGAATCTGAC CGCGAAGATC AAGAAGCGGT CAAAGATCCA	CGTCGTCGAC	AGTGGCTTCG	300
CGGCCTGGTT GCGCGGG			317
(2) INFORMATION FOR SEQ ID NO:29:			
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 182 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29	:		
GATCGTGGAG CTGTCGATGA ACAGCGTTGC CGGACGCGCG	GCGGCCAGCA	CGTCGGTGTA	60
GCAGCGCCGG ACCACCTCGC CGGTGGGCAG CATGGTGATG	ACCACGTCGG	CCTCGGCCAC	120
CGCTTCGGGC GCGCTACGAA ACACCGCGAC ACCGTGCGCG	GCGGCGCCGG	ACGCCGCCGT	180
GG			182
(2) INFORMATION FOR SEQ ID NO:30:			
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 308 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30	:		
GATCGCGAAG TTTGGTGAGC AGGTGGTCGA CGCGAAAGTC	TGGGCGCCTG	CGAAGCGGGT	60
CGGCGTTCAC GAGGCGAAGA CACGCCTGTC CGAGCTGCTG	CGGCTCGTCT	ACGGCGGGCA	120
GAGGTTGAGA TTGCCCGCCG CGGCGAGCCG GTAGCAAAGC	TTGTGCCGCT	GCATCCTCAT	180
GAGACTCGGC GGTTAGGCAT TGACCATGGC GTGTACCGCG	TGCCCGACGA	TTTGGACGCT	240
CCGTTGTCAG ACGACGTGCT CGAACGCTTT CACCGGTGAA	GCGCTACCTC	ATCGACACCC	300
ACGTTTGG			308

- (2) INFORMATION FOR SEQ ID NO:31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 267 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

81

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31: CCGACGACGA GCAACTCACG TGGATGATGG TCGGCAGCGG CATTGAGGAC GGAGAGAATC 60 CGGCCGAAGC TGCCGCGGG CAAGTGCTCA TAGTGACCGG CCGTAGAGGG CTCCCCCGAT 120 GGCACCGGAC TATTCTGGTG TGCCGCTGGC CGGTAAGAGC GGGTAAAAGA ATGTGAGGGG 180 ACACGATGAG CAATCACACC TACCGAGTGA TCGAGATCGT CGGGACCTCG CCCGACGGCG 240 TCGACGCGGC AATCCAGGGC GGTCTGG 267

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1539 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

CTCGTGCCGA AAGAATGTGA	GGGGACACGA	TGAGCAATCA	CACCTACCGA	GTGATCGAGA	60
TCGTCGGGAC CTCGCCCGAC	GGCGTCGACG	CGGCAATCCA	GGGCGGTCTG	GCCCGAGCTG	120
CGCAGACCAT GCGCGCGCTG	GACTGGTTCG	AAGTACAGTC	AATTCGAGGC	CACCTGGTCG	180
ACGGAGCGGT CGCGCACTTC	CAGGTGACTA	TGAAAGTCGG	CTTCCGCTGG	AGGATTCCTG	240
AACCTTCAAG CGCGGCCGAT	AACTGAGGTG	CATCATTAAG	CGACTTTTCC	AGAACATCCT	300
GACGCGCTCG AAACGCGGTT	CAGCCGACGG	TGGCTCCGCC	GAGGCGCTGC	CTCCAAAATC	360
CCTGCGACAA TTCGTCGGCG	GCGCCTACAA	GGAAGTCGGT	GCTGAATTCG	TCGGGTATCT	420
GGTCGACCTG TGTGGGCTGC	AGCCGGACGA	AGCGGTGCTC	GACGTCGGCT	GCGGCTCGGG	480
GCGGATGGCG TTGCCGCTCA	CCGGCTATCT	GAACAGCGAG	GGACGCTACG	CCGGCTTCGA	540
TATCTCGCAG AAAGCCATCG	CGTGGTGCCA	GGAGCACATC	ACCTCGGCGC	ACCCCAACTT	600
CCAGTTCGAG GTCTCCGACA	TCTACAACTC	GCTGTACAAC	CCGAAAGGGA	AATACCAGTC	660
ACTAGACTTT CGCTTTCCAT	ATCCGGATGC	GTCGTTCGAT	GTGGTGTTTC	TTACCTCGGT	720
GTTCACCCAC ATGTTTCCGC	CGGACGTGGA	GCACTATCTG	GACGAGATCT	CCCGCGTGCT	780
GAAGCCCGGC GGACGATGCC	TGTGCACGTA	CTTCTTGCTC	AATGACGAGT	CGTTAGCCCA	840
CATCGCGGAA GGAAAGAGTG	CGCACAACTT	CCAGCATGAG	GGACCGGGTT	ATCGGACAAT	900

82

CCACAAGAAG	CGGCCCGAAG	AAGCAATCGG	CTTGCCGGAG	ACCTTCGTCA	GGGATGTCTA	960
TGGCAAGTTC	GGCCTCGCCG	TGCACGAACC	ATTGCACTAC	GGCTCATGGA	GTGGCCGGGA	1020
ACCACGCCTA	AGCTTCCAGG	ACATCGTCAT	CGCGACCAAA	ACCGCGAGCT	AGGTCGGCAT	1080
CCGGGAAGCA	TCGCGACACC	GTGGCGCCGA	GCGCCGCTGC	CGGCAGGCCG	ATTAGGCGGG	1140
CAGATTAGCC	CGCCGCGGCT	CCCGGCTCCG	AGTACGGCGC	CCCGAATGGC	GTCACCGGCT	1200
GGTAACCACG	CTTGCGCGCC	TGGGCGGCGG	CCTGCCGGAT	CAGGTGGTAG	ATGCCGACAA	1260
AGCCTGCGTG	ATCGGTCATC	ACCAACGGTG	ACAGCAGCCG	GTTGTGCACC	AGCGCGAACG	1320
CCACCCCGGT	CTCCGGGTCT	GTCCAGCCGA	TCGAGCCGCC	CAAGCCCACA	TGACCAAACC	1380
CCGGCATCAC	GTTGCCGATC	GGCATACCGT	GATAGCCAAG	ATGAAAATTT	AAGGGCACCA	1440
ATAGATTTCG	ATCCGGCAGA	ACTTGCCGTC	GGTTGCGGGT	CAGGCCCGTG	ACCAGCTCCC	1500
GCGACAAGAA	CCGTATGCCG	TCGATCTCGC	CTCGTGCCG			1539

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 851 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CTGCAGGGTG	GCGTGGATGA	GCGTCACCGC	GGGGCAGGCC	GAGCTGACCG	CCGCCCAGGT	60
CCGGGTTGCT	GCGGCGGCCT	ACGAGACGGC	GTATGGGCTG	ACGGTGCCCC	CGCCGGTGAT	120
CGCCGAGAAC	CGTGCTGAAC	TGATGATTCT	GATAGCGACC	AACCTCTTGG	GGCAAAACAC	180
CCCGGCGATC	GCGGTCAACG	AGGCCGAATA	CGGCGAGATG	TGGGCCCAAG	ACGCCGCCGC	240
GATGTTTGGC	TACGCCGCGG	CGACGGCGAC	GGCGACGGCG	ACGTTGCTGC	CGTTCGAGGA	300
GGCGCCGGAG	ATGACCAGCG	CGGGTGGGCT	CCTCGAGCAG	GCCGCCGCGG	TCGAGGAGGC	360
CTCCGACACC	GCCGCGGCGA	ACCAGTTGAT	GAACAATGTG	CCCCAGGCGC	TGAAACAGTT	420
GGCCCAGCCC	ACGCAGGGCA	CCACGCCTTC	TTCCAAGCTG	GGTGGCCTGT	GGAAGACGGT	480
CTCGCCGCAT	CGGTCGCCGA	TCAGCAACAT	GGTGTCGATG	GCCAACAACC	ACATGTCGAT	540
GACCAACTCG	GGTGTGTCGA	TGACCAACAC	CTTGAGCTCG	ATGTTGAAGG	GCTTTGCTCC	600
GGCGGCGGCC	GCCCAGGCCG	TGCAAACCGC	GGCGCAAAAC	GGGGTCCGGG	CGATGAGCTC	660
GCTGGGCAGC	TCGCTGGGTT	CTTCGGGTCT	GGGCGGTGGG	GTGGCCGCCA	ACTTGGGTCG	720
GGCGGCCTCG	GTACGGTATG	GTCACCGGGA	TGGCGGAAAA	TATGCANAGT	CTGGTCGGCG	780

GAACGGTGGT CCGGCGTAAG GTTTACCCCC GTTTTCTGGA TGCGGTGAAC TTCGTCAACG	840
GAAACAGTTA C	851
(2) INFORMATION FOR SEQ ID NO:34:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 254 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
GATCGATCGG GCGGAAATTT GGACCAGATT CGCCTCCGGC GATAACCCAA TCAATCGAAC	60
CTAGATTTAT TCCGTCCAGG GGCCCGAGTA ATGGCTCGCA GGAGAGGAAC CTTACTGCTG	120
CGGGCACCTG TCGTAGGTCC TCGATACGGC GGAAGGCGTC GACATTTTCC ACCGACACCC	180
CCATCCAAAC GTTCGAGGGC CACTCCAGCT TGTGAGCGAG GCGACGCAGT CGCAGGCTGC	240
GCTTGGTCAA GATC	254
(2) INFORMATION FOR SEQ ID NO:35:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1227 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
GATCCTGACC GAAGCGGCCG CCGCCAAGGC GAAGTCGCTG TTGGACCAGG AGGGACGGGA	60
CGATCTGGCG CTGCGGATCG CGGTTCAGCC GGGGGGGTGC GCTGGATTGC GCTATAACCT	120
TTTCTTCGAC GACCGGACGC TGGATGGTGA CCAAACCGCG GAGTTCGGTG GTGTCAGGTT	180
GATCGTGGAC CGGATGAGCG CGCCGTATGT GGAAGGCGCG TCGATCGATT TCGTCGACAC	240
TATTGAGAAG CAAGGTTCAC CATCGACAAT CCCAACGCCA CCGGCTCCTG CGCGTGCGGG	300
GATTCGTTCA ACTGATAAAA CGCTAGTACG ACCCCGCGGT GCGCAACACG TACGAGCACA	360
CCAAGACCTG ACCGCGCTGG AAAAGCAACT GAGCGATGCC TTGCACCTGA CCGCGTGGCG	420
GGCCGCCGGC GGCAGGTGTC ACCTGCATGG TGAACAGCAC CTGGGCCTGA TATTGCGACC	480
AGTACACGAT TTTGTCGATC GAGGTCACTT CGACCTGGGA GAACTGCTTG CGGAACGCGT	540
CGCTGCTCAG CTTGGCCAAG GCCTGATCGG AGCGCTTGTC GCGCACGCCG TCGTGCATAC	600

84

CGCACAGCGC	ATTGCGAACG	ATGGTGTCCA	CATCGCGGTT	CTCCAGCGCG	TTGAGGTATC	660
CCTGAATCGC	GGTTTTGGCC	GGTCCCTCCG	AGAATGTGCC	TGCCGTGTTG	GCTCCGTTGG	720
TGCGGACCCC	GTATATGATC	GCCGCCGTCA	TAGCCGACAC	CAGCGCGAGG	GCTACCACAA	780
TGCCGATCAG	CAGCCGCTTG	TGCCGTCGCT	TCGGGTAGGA	CACCTGCGGC	GGCACGCCGG	840
GATATGCGGC	GGGCGGCAGC	GCCGCGTCGT	CTGCCGGTCC	CGGGGCGAAG	GCCGGTTCGG	900
CGGCGCCGAG	GTCGTGGGGG	TAGTCCAGGG	CTTGGGGTTC	GTGGGATGAG	GGCTCGGGGT	960
ACGGCGCCGG	TCCGTTGGTG	CCGACACCGG	GGTTCGGCGA	GTGGGGACCG	GGCATTGTGG	1020
TTCTCCTAGG	GTGGTGGACG	GGACCAGCTG	CTAGGGCGAC	AACCGCCCGT	CGCGTCAGCC	1080
GGCAGCATCG	GCAATCAGGT	GAGCTCCCTA	GGCAGGCTAG	CGCAACAGCT	GCCGTCAGCT	1140
CTCAACGCGA	CGGGGCGGC	CGCGGCGCCG	ATAATGTTGA	AAGACTAGGC	AACCTTAGGA	1200
ACGAAGGACG	GAGATTTTGT	GACGATC				1227

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 181 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GCGGTGTCGG CGGATCCGGC GGGTGGTTGA ACGGCAACGG CGGGGCCGGC GGGGCCGGCG GGACCGGCG TAACGGTGGT GCCGGCGCA ACGCCTGGTT GTTCGGGGCC GGCGGGTCCG 120
GCGGNGCCGG CACCAATGGT GGNGTCGGCG GGTCCGGCGG ATTTGTCTAC GGCAACGGCG 180

181

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 290 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

WO 98/16646	PCT/US97/18293

Ω	_
a	

GCGGCGGCTC CACCGGCGGC AACGGCGGTC TTGGCGGCGC GGGCGGTGGC GGAGGCAACG	180
CCCCGGACGG CGGCTTCGGT GGCAACGGCG GTAAGGGTGG CCAGGGCGGN ATTGGCGGCG	240
GCACTCAGAG CGCGACCGGC CTCGGNGGTG ACGGCGGTGA CGGCGGTGAC	290
(2) INFORMATION FOR SEQ ID NO:38:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
GATCCAGTGG CATGGNGGGT GTCAGTGGAA GCAT	34
(2) INFORMATION FOR SEQ ID NO:39:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 155 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	60
TGGCGTGGTC GCCAGCACCC CCGGCACCGC CGACGCCGGA GTCGAACAAT GGCACCGTCG	120
TATCCCACC ATTGCCGCCG GNCCCACCGG CACCG	155
(2) INFORMATION FOR SEQ ID NO:40:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 53 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
ATGGCGTTCA CGGGGCCCG GGGACCGGGC AGCCCGGNGG GGCCGGGGG TGG	53
(2) INFORMATION FOR SEQ ID NO:41:	00
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 132 base pairs	

PCT/US97/18293

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
GATCCACCGC GGGTGCAGAC GGTGCCCGCG GCGCCACCCC GACCAGCGGC GGCAACGGCG	60
GCACCGGCGG CAACGCCGC AACGCCACCG TCGTCGGNGG GGCCGGCGGG GCCGGCGGCA	120
AGGGCGGCAA CG	132
(2) INFORMATION FOR SEQ ID NO:42:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
GATCGGCGGC CGGNACGGNC GGGGACGGCG GCAAGGGCGG NAACGGGGGC GCCGNAGCCA	60
CCNGCCAAGA ATCCTCCGNG TCCNCCAATG GCGCGAATGG CGGACAGGGC GGCAACGGCG	120
GCANCGGCGG CA	132
(2) INFORMATION FOR SEQ ID NO:43:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 702 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
CGGCACGAGG ATCGGTACCC CGCGGCATCG GCAGCTGCCG ATTCGCCGGG TTTCCCCACC	60
CGAGGAAAGC CGCTACCAGA TGGCGCTGCC GAAGTAGGGC GATCCGTTCG CGATGCCGGC	120
ATGAACGGGC GGCATCAAAT TAGTGCAGGA ACCTTTCAGT TTAGCGACGA TAATGGCTAT	180
AGCACTAAGG AGGATGATCC GATATGACGC AGTCGCAGAC CGTGACGGTG GATCAGCAAG	240
AGATTTTGAA CAGGGCCAAC GAGGTGGAGG CCCCGATGGC GGACCCACCG ACTGATGTCC	300
CCATCACACC GTGCGAACTC ACGGNGGNTA AAAACGCCGC CCAACAGNTG GTNTTGTCCG	360

O	
×	•

CCGACAACAT	GCGGGAATAC	CTGGCGGCCG	GTGCCAAAGA	GCGGCAGCGT	CTGGCGACCT	420
CGCTGCGCAA	CGCGGCCAAG	GNGTATGGCG	AGGTTGATGA	GGAGGCTGCG	ACCGCGCTGG	480
ACAACGACGG	CGAAGGAACT	GTGCAGGCAG	AATCGGCCGG	GGCCGTCGGA	GGGGACAGTT	540
CGGCCGAACT	AACCGATACG	CCGAGGGTGG	CCACGGCCGG	TGAACCCAAC	TTCATGGATC	600
TCAAAGAAGC	GGCAAGGAAG	CTCGAAACGG	GCGACCAAGG	CGCATCGCTC	GCGCACTGNG	660
GGGATGGGTG	GAACACTTNC	ACCCTGACGC	TGCAAGGCGA	CG		702

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 298 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GAAGCCGCAG CGCTGTCGGG CGACGTGGCG GTCAAAGCGG CATCGCTCGG TGGCGGTGGA 60
GGCGGCGGGG TGCCGTCGGC GCCGTTGGGA TCCGCGATCG GGGGCGCCGA ATCGGTGCGG 120
CCCGCTGGCG CTGGTGACAT TGCCGGCTTA GGCCAGGGAA GGGCCGCGG CGGCGCCGCG 180
CTGGGCGGCG GTGGCATGGG AATGCCGATG GGTGCCGCC ATCAGGGACA AGGGGGCGCC 240
AAGTCCAAGG GTTCTCAGCA GGAAGACGAG GCGCTCTACA CCGAGGATCC TCGTGCCG 298

(2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1058 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

CGGCACGAGG ATCGAATCGC GTCGCCGGGA GCACAGCGTC GCACTGCACC AGTGGAGGAG 60

CCATGACCTA CTCGCCGGGT AACCCCGGAT ACCCGCAAGC GCAGCCCGCA GGCTCCTACG 120

GAGGCGTCAC ACCCTCGTTC GCCCACGCCG ATGAGGGTGC GAGCAAGCTA CCGATGTACC 180

TGAACATCGC GGTGGCAGTG CTCGGTCTGG CTGCGTACTT CGCCAGCTTC GGCCCAATGT 240

TCACCCTCAG TACCGAACTC GGGGGGGGTG ATGGCGCAGT GTCCGGTGAC ACTGGGCTGC 300

CGGTCGGGGT GGCTCTGCTG GCTGCGCTGC TTGCCGGGGT GGTTCTGGTG CCTAAGGCCA 360

AGAGCCATGT	GACGGTAGTT	GCGGTGCTCG	GGGTACTCGG	CGTATTTCTG	ATGGTCTCGG	420
CGACGTTTAA	CAAGCCCAGC	GCCTATTCGA	CCGGTTGGGC	ATTGTGGGTT	GTGTTGGCTT	480
TCATCGTGTT	CCAGGCGGTT	GCGGCAGTCC	TGGCGCTCTT	GGTGGAGACC	GGCGCTATCA	540
CCGCGCCGGC	GCCGCGGCCC	AAGTTCGACC	CGTATGGACA	GTACGGGCGG	TACGGGCAGT	600
ACGGGCAGTA	CGGGGTGCAG	CCGGGTGGGT	ACTACGGTCA	GCAGGGTGCT	CAGCAGGCCG	660
CGGGACTGCA	GTCGCCCGGC	CCGCAGCAGT	CTCCGCAGCC	TCCCGGATAT	GGGTCGCAGT	720
ACGGCGGCTA	TTCGTCCAGT	CCGAGCCAAT	CGGGCAGTGG	ATACACTGCT	CAGCCCCCGG	780
CCCAGCCGCC	GGCGCAGTCC	GGGTCGCAAC	AATCGCACCA	GGGCCCATCC	ACGCCACCTA	840
CCGGCTTTCC	GAGCTTCAGC	CCACCACCAC	CGGTCAGTGC	CGGGACGGGG	TCGCAGGCTG	900
GTTCGGCTCC	AGTCAACTAT	TCAAACCCCA	GCGGGGGCGA	GCAGTCGTCG	TCCCCCGGGG	960
GGGCGCCGGT	CTAACCGGGC	GTTCCCGCGT	CCGGTCGCGC	GTGTGCGCGA	AGAGTGAACA	1020
GGGTGTCAGC	AAGCGCGGAC	GATCCTCGTG	CCGAATTC			1058

(2) INFORMATION FOR SEQ ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 327 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

CGGCACGAGA	GACCGATGCC	GCTACCCTCG	CGCAGGAGGC	AGGTAATTTC	GAGCGGATCT	60
CCGGCGACCT	GAAAACCCAG	ATCGACCAGG	TGGAGTCGAC	GGCAGGTTCG	TTGCAGGGCC	120
AGTGGCGCGG	CGCGGCGGGG	ACGGCCGCCC	AGGCCGCGGT	GGTGCGCTTC	CAAGAAGCAG	180
CCAATAAGCA	GAAGCAGGAA	CTCGACGAGA	TCTCGACGAA	TATTCGTCAG	GCCGGCGTCC	240
AATACTCGAG	GGCCGACGAG	GAGCAGCAGC	AGGCGCTGTC	CTCGCAAATG	GGCTTCTGAC	300
CCGCTAATAC	GAAAAGAAAC	GGAGCAA				327

(2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
CGGTCGCGAT GATGGCGTTG TCGAACGTGA CCGATTCTGT ACCGCCGTCG TTGAGATCAA	60
CCAACAACGT GTTGGCGTCG GCAAATGTGC CGNACCCGTG GATCTCGGTG ATCTTGTTCT	120
TCTTCATCAG GAAGTGCACA CCGGCCACCC TGCCCTCGGN TACCTTTCGG	170
(2) INFORMATION FOR SEQ ID NO:48:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 127 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
GATCCGGCGG CACGGGGGGT GCCGGCGGCA GCACCGCTGG CGCTGGCGGC AACGGCGGGG	60
CCGGGGGTGG CGGCGGAACC GGTGGGTTGC TCTTCGGCAA CGGCGGTGCC GGCGGGCACG	120
GGGCCGT	127
(2) INFORMATION FOR SEQ ID NO:49:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 81 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
CGGCGGCAAG GGCGGCACCG CCGGCAACGG GAGCGGCGCG GCCGGCGGCA ACGGCGGCAA	60
CGGCGGCTCC GGCCTCAACG G	81
(2) INFORMATION FOR SEQ ID NO:50:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 149 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	

GATCAGGGCT GGCCGGCTCC GGCCAGAAGG GCGGTAACGG AGGAGCTGCC GGATTGTTTG 60

GCAACGGCGG GGCCGGNGGT GCCGGCGGT CCAACCAAGC CGGTAACGGC GGNGCCGGCG	120										
GAAACGGTGG TGCCGGTGGG CTGATCTGG	149										
(2) INFORMATION FOR SEQ ID NO:51:											
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 355 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 											
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:											
CGGCACGAGA TCACACCTAC CGAGTGATCG AGATCGTCGG GACCTCGCCC GACGGTGTCG	60										
ACGCGGNAAT CCAGGGCGGT CTGGCCCGAG CTGCGCAGAC CATGCGCGCG CTGGACTGGT	120										
TCGAAGTACA GTCAATTCGA GGCCACCTGG TCGACGGAGC GGTCGCGCAC TTCCAGGTGA	180										
CTATGAAAGT CGGCTTCCGC CTGGAGGATT CCTGAACCTT CAAGCGCGGC CGATAACTGA	240										
GGTGCATCAT TAAGCGACTT TTCCAGAACA TCCTGACGCG CTCGAAACGC GGTTCAGCCG	300										
ACGGTGGCTC CGCCGAGGCG CTGCCTCCAA AATCCCTGCG ACAATTCGTC GGCGG	355										
(2) INFORMATION FOR SEQ ID NO:52:											
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 999 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 											
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:											
ATGCATCACC ATCACCATCA CATGCATCAG GTGGACCCCA ACTTGACACG TCGCAAGGGA	60										
CGATTGGCGG CACTGGCTAT CGCGGCGATG GCCAGCGCCA GCCTGGTGAC CGTTGCGGTG	120										
CCCGCGACCG CCAACGCCGA TCCGGAGCCA GCGCCCCGG TACCCACAAC GGCCGCCTCG	180										
CCGCCGTCGA CCGCTGCAGC GCCACCCGCA CCGGCGACAC CTGTTGCCCC CCCACCACCG	240										
GCCGCCGCCA ACACGCCGAA TGCCCAGCCG GGCGATCCCA ACGCAGCACC TCCGCCGGCC	300										
GACCCGAACG CACCGCCGC ACCTGTCATT GCCCCAAACG CACCCCAACC TGTCCGGATC	360										
GACAACCCGG TTGGAGGATT CAGCTTCGCG CTGCCTGCTG GCTGGGTGGA GTCTGACGCC	420										
GCCCACTTCG ACTACGGTTC AGCACTCCTC AGCAAAACCA CCGGGGACCC GCCATTTCCC	480										
GGACAGCCGC CGCCGGTGGC CAATGACACC CGTATCGTGC TCGGCCGGCT AGACCAAAAG	540										

WO 98/16646

91

CTTTACGCCA	GCGCCGAAGC	CACCGACTCC	AAGGCCGCGG	CCCGGTTGGG	CTCGGACATG	600
GGTGAGTTCT	ATATGCCCTA	CCCGGGCACC	CGGATCAACC	AGGAAACCGT	CTCGCTCGAC	660
GCCAACGGGG	TGTCTGGAAG	CGCGTCGTAT	TACGAAGTCA	AGTTCAGCGA	TCCGAGTAAG	720
CCGAACGGCC	AGATCTGGAC	GGGCGTAATC	GGCTCGCCCG	CGGCGAACGC	ACCGGACGCC	780
GGGCCCCCTC	AGCGCTGGTT	TGTGGTATGG	CTCGGGACCG	CCAACAACCC	GGTGGACAAG	840
GGCGCGGCCA	AGGCGCTGGC	CGAATCGATC	CGGCCTTTGG	TCGCCCCGCC	GCCGGCGCCG	900
GCACCGGCTC	CTGCAGAGCC	CGCTCCGGCG	CCGGCGCCGG	CCGGGGAAGT	CGCTCCTACC	960
CCGACGACAC	CGACACCGCA	GCGGACCTTA	CCGGCCTGA			999

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 332 amino acids
 (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

165

Met 1	His	His	His	His 5	His	His	Met	His	Gln 10	Val	Asp	Pro	Asn	Leu 15	Thr
Arg	Arg	Lys	Gly 20	Arg	Leu	Ala	Ala	Leu 25	Ala	Ile	Ala	Ala	Met 30	Ala	Ser
Ala	Ser	Leu 35	Val	Thr	Val	Ala	Val 40	Pro	Ala	Thr	Ala	Asn 45	Ala	Asp	Pro
Glu	Pro 50	Ala	Pro	Pro	Val	Pro 55	Thr	Thr	Ala	Ala	Ser 60	Pro	Pro	Ser	Thr
Ala 65	Ala	Ala	Pro	Pro	Ala 70	Pro	Ala	Thr	Pro	Val 75	Ala	Pro	Pro	Pro	Pro 80
Ala	Ala	Ala	Asn	Thr 85	Pro	Asn	Ala	Gln	Pro 90	Gly	Asp	Pro	Asn	Ala 95	Ala
Pro	Pro	Pro	Ala 100	Asp	Pro	Asn	Ala	Pro 105	Pro	Pro	Pro	Val	Ile 110	Ala	Pro
Asn	Ala	Pro 115	Gln	Pro	Val	Arg	Ile 120	Asp	Asn	Pro	Val	Gly 125	Gly	Phe	Ser
Phe	Ala 130	Leu	Pro	Ala	Gly	Trp 135	Val	Glu	Ser	Asp	Ala 140	Ala	His	Phe	Asp
Tyr 145	Gly	Ser	Ala	Leu	Leu 150	Ser	Lys	Thr	Thr	Gly 155	Asp	Pro	Pro	Phe	Pro 160
		_													

Gly Gln Pro Pro Pro Val Ala Asn Asp Thr Arg Ile Val Leu Gly Arg

92

Ala Ala Arg Leu Gly Ser Asp Met Gly Glu Phe Tyr Met Pro Tyr Pro 200

Gly Thr Arg Ile Asn Gln Glu Thr Val Ser Leu Asp Ala Asn Gly Val 210

Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys Phe Ser Asp Pro Ser Lys

Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu Ala Thr Asp Ser Lys Ala

Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys Phe Ser Asp Pro Ser Lys 225 230 235 240

Pro Asn Gly Gln Ile Trp Thr Gly Val Ile Gly Ser Pro Ala Ala Asn 245 250 255

Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp Phe Val Val Trp Leu Gly 260 265 270

Thr Ala Asn Asn Pro Val Asp Lys Gly Ala Ala Lys Ala Leu Ala Glu 275 280 285

Ser Ile Arg Pro Leu Val Ala Pro Pro Pro Ala Pro Ala Pro 290 295 300

Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala Gly Glu Val Ala Pro Thr 305 310 315 320

Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu Pro Ala 325 330

(2) INFORMATION FOR SEQ ID NO:54:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

Asp Pro Val Asp Ala Val Ile Asn Thr Thr Xaa Asn Tyr Gly Gln Val 1 5 10 15

Val Ala Ala Leu 20

- (2) INFORMATION FOR SEQ ID NO:55:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

93

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser

- (2) INFORMATION FOR SEQ ID NO:56:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys

Glu Gly Arg

- (2) INFORMATION FOR SEQ ID NO:57:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid

 - (C) STRANDEDNESS:
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro

- (2) INFORMATION FOR SEO ID NO:58:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid(C) STRANDEDNESS:

 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val

(2) INFORMATION FOR SEQ ID NO:59:

94

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

Ala Glu Glu Ser Ile Ser Thr Xaa Glu Xaa Ile Val Pro

- (2) INFORMATION FOR SEQ ID NO:60:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

Asp Pro Glu Pro Ala Pro Pro Val Pro Thr Ala Ala Ala Ala Pro Pro

Ala

- (2) INFORMATION FOR SEQ ID NO:61:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 (C) STRANDEDNESS:

 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly 5 10

- (2) INFORMATION FOR SEQ ID NO:62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

95

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Gln Thr Ser

1 10 15

Leu Leu Asn Asn Leu Ala Asp Pro Asp Val Ser Phe Ala Asp 20 25 30

- (2) INFORMATION FOR SEQ ID NO:63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 187 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

Thr Gly Ser Leu Asn Gln Thr His Asn Arg Arg Ala Asn Glu Arg Lys

10 15

Asn Thr Thr Met Lys Met Val Lys Ser Ile Ala Ala Gly Leu Thr Ala 20 25 30

Ala Ala Ala Ile Gly Ala Ala Ala Gly Val Thr Ser Ile Met Ala 35 40 45

Gly Gly Pro Val Val Tyr Gln Met Gln Pro Val Val Phe Gly Ala Pro 50 55 60

Leu Pro Leu Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln 65 70 75 80

Leu Thr Ser Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala 85 90 95

Asn Lys Gly Ser Leu Val Glu Gly Gly Ile Gly Gly Thr Glu Ala Arg 100 105 110

Ile Ala Asp His Lys Leu Lys Lys Ala Ala Glu His Gly Asp Leu Pro 115 120 125

Leu Ser Phe Ser Val Thr Asn Ile Gln Pro Ala Ala Ala Gly Ser Ala 130 135 140

Thr Ala Asp Val Ser Val Ser Gly Pro Lys Leu Ser Ser Pro Val Thr 145 150 150 155

Gln Asn Val Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser Arg Ala 165 170 175

Ser Ala Met Glu Leu Leu Gln Ala Ala Gly Xaa 180 185

(2) INFORMATION FOR SEQ ID NO:64:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 148 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:
- Asp Glu Val Thr Val Glu Thr Thr Ser Val Phe Arg Ala Asp Phe Leu
- Ser Glu Leu Asp Ala Pro Ala Gln Ala Gly Thr Glu Ser Ala Val Ser
- Gly Val Glu Gly Leu Pro Pro Gly Ser Ala Leu Leu Val Val Lys Arg
- Gly Pro Asn Ala Gly Ser Arg Phe Leu Leu Asp Gln Ala Ile Thr Ser
- Ala Gly Arg His Pro Asp Ser Asp Ile Phe Leu Asp Asp Val Thr Val
- Ser Arg Arg His Ala Glu Phe Arg Leu Glu Asn Asn Glu Phe Asn Val
- Val Asp Val Gly Ser Leu Asn Gly Thr Tyr Val Asn Arg Glu Pro Val 105
- Asp Ser Ala Val Leu Ala Asn Gly Asp Glu Val Gln Ile Gly Lys Leu
- Arg Leu Val Phe Leu Thr Gly Pro Lys Gln Gly Glu Asp Asp Gly Ser 135 140

Thr Gly Gly Pro

- (2) INFORMATION FOR SEQ ID NO:65:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 230 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:
 - Thr Ser Asn Arg Pro Ala Arg Arg Gly Arg Arg Ala Pro Arg Asp Thr
 - Gly Pro Asp Arg Ser Ala Ser Leu Ser Leu Val Arg His Arg Arg Gln

PCT/US97/18293

Asn Leu Pro Pro Ala Ala Gly Gly Ala Ala Asn Tyr Ser Arg Asn

Gln Arg Asp Ala Leu Cys Leu Ser Ser Thr Gln Ile Ser Arg Gln Ser

Phe Asp Val Arg Ile Lys Ile Phe Met Leu Val Thr Ala Val Val Leu

Leu Cys Cys Ser Gly Val Ala Thr Ala Ala Pro Lys Thr Tyr Cys Glu

Glu Leu Lys Gly Thr Asp Thr Gly Gln Ala Cys Gln Ile Gln Met Ser

Asp Pro Ala Tyr Asn Ile Asn Ile Ser Leu Pro Ser Tyr Tyr Pro Asp

Gln Lys Ser Leu Glu Asn Tyr Ile Ala Gln Thr Arg Asp Lys Phe Leu

Ser Ala Ala Thr Ser Ser Thr Pro Arg Glu Ala Pro Tyr Glu Leu Asn 150 155

Ile Thr Ser Ala Thr Tyr Gln Ser Ala Ile Pro Pro Arg Gly Thr Gln

Ala Val Val Leu Xaa Val Tyr His Asn Ala Gly Gly Thr His Pro Thr

Thr Thr Tyr Lys Ala Phe Asp Trp Asp Gln Ala Tyr Arg Lys Pro Ile

Thr Tyr Asp Thr Leu Trp Gln Ala Asp Thr Asp Pro Leu Pro Val Val

Phe Pro Ile Val Ala Arg 225

(2) INFORMATION FOR SEQ ID NO:66:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 132 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly Phe

Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser 25

Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly 40

- Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val
- Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val
- Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala
- Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp 105
- Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu 120
- Gly Pro Pro Ala 130
- (2) INFORMATION FOR SEQ ID NO:67:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 100 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:
 - Val Pro Leu Arg Ser Pro Ser Met Ser Pro Ser Lys Cys Leu Ala Ala 10
 - Ala Gln Arg Asn Pro Val Ile Arg Arg Arg Leu Ser Asn Pro Pro
 - Pro Arg Lys Tyr Arg Ser Met Pro Ser Pro Ala Thr Ala Ser Ala Gly
 - Met Ala Arg Val Arg Arg Ala Ile Trp Arg Gly Pro Ala Thr Xaa
 - Ser Ala Gly Met Ala Arg Val Arg Arg Trp Xaa Val Met Pro Xaa Val
 - Ile Gln Ser Thr Xaa Ile Arg Xaa Xaa Gly Pro Phe Asp Asn Arg Gly 90

Ser Glu Arg Lys

- (2) INFORMATION FOR SEQ ID NO:68:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 163 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

Met Thr Asp Asp Ile Leu Leu Ile Asp Thr Asp Glu Arg Val Arg Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Thr Leu Asn Arg Pro Gln Ser Arg Asn Ala Leu Ser Ala Ala Leu 20 25 30

Arg Asp Arg Phe Phe Ala Xaa Leu Xaa Asp Ala Glu Xaa Asp Asp Asp 35 40 45

Ile Asp Val Val Ile Leu Thr Gly Ala Asp Pro Val Phe Cys Ala Gly 50 55 60

Leu Asp Leu Lys Val Ala Gly Arg Ala Asp Arg Ala Ala Gly His Leu 65 70 75 80

Thr Ala Val Gly Gly His Asp Gln Ala Gly Asp Arg Arg Asp Gln Arg 85 90 95

Arg Arg Gly His Arg Arg Ala Arg Thr Gly Ala Val Leu Arg His Pro 100 105 110

Asp Arg Leu Arg Ala Arg Pro Leu Arg Arg His Pro Arg Pro Gly Gly 115 120 125

Ala Ala Ala His Leu Gly Thr Gln Cys Val Leu Ala Ala Lys Gly Arg 130 135 140

His Arg Xaa Gly Pro Val Asp Glu Pro Asp Arg Arg Leu Pro Val Arg 145 150 155 160

Asp Arg Arg

(2) INFORMATION FOR SEQ ID NO:69:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 344 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

Met Lys Phe Val Asn His Ile Glu Pro Val Ala Pro Arg Arg Ala Gly $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gly Ala Val Ala Glu Val Tyr Ala Glu Ala Arg Arg Glu Phe Gly Arg 20 25 30

Leu Pro Glu Pro Leu Ala Met Leu Ser Pro Asp Glu Gly Leu Leu Thr 35 40 45

- Ala Gly Trp Ala Thr Leu Arg Glu Thr Leu Leu Val Gly Gln Val Pro Arg Gly Arg Lys Glu Ala Val Ala Ala Ala Val Ala Ala Ser Leu Arg Cys Pro Trp Cys Val Asp Ala His Thr Thr Met Leu Tyr Ala Ala Gly Gln Thr Asp Thr Ala Ala Ala Ile Leu Ala Gly Thr Ala Pro Ala Ala 105 Gly Asp Pro Asn Ala Pro Tyr Val Ala Trp Ala Ala Gly Thr Gly Thr Pro Ala Gly Pro Pro Ala Pro Phe Gly Pro Asp Val Ala Ala Glu Tyr Leu Gly Thr Ala Val Gln Phe His Phe Ile Ala Arg Leu Val Leu Val 150 Leu Leu Asp Glu Thr Phe Leu Pro Gly Gly Pro Arg Ala Gln Gln Leu Met Arg Arg Ala Gly Gly Leu Val Phe Ala Arg Lys Val Arg Ala Glu 185 His Arg Pro Gly Arg Ser Thr Arg Arg Leu Glu Pro Arg Thr Leu Pro Asp Asp Leu Ala Trp Ala Thr Pro Ser Glu Pro Ile Ala Thr Ala Phe 215 Ala Ala Leu Ser His His Leu Asp Thr Ala Pro His Leu Pro Pro 230 235 Thr Arg Gln Val Val Arg Arg Val Val Gly Ser Trp His Gly Glu Pro Met Pro Met Ser Ser Arg Trp Thr Asn Glu His Thr Ala Glu Leu Pro Ala Asp Leu His Ala Pro Thr Arg Leu Ala Leu Leu Thr Gly Leu Ala Pro His Gln Val Thr Asp Asp Val Ala Ala Ala Arg Ser Leu Leu 295 Asp Thr Asp Ala Ala Leu Val Gly Ala Leu Ala Trp Ala Ala Phe Thr Ala Ala Arg Arg Ile Gly Thr Trp Ile Gly Ala Ala Ala Glu Gly Gln Val Ser Arg Gln Asn Pro Thr Gly 340
- (2) INFORMATION FOR SEQ ID NO:70:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 485 amino acids
 - (B) TYPE: amino acid

101

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

Asp Asp Pro Asp Met Pro Gly Thr Val Ala Lys Ala Val Ala Asp Ala 1 10 15

Leu Gly Arg Gly Ile Ala Pro Val Glu Asp Ile Gln Asp Cys Val Glu 20 25 30

Ala Arg Leu Gly Glu Ala Gly Leu Asp Asp Val Ala Arg Val Tyr Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ile Tyr Arg Gln Arg Arg Ala Glu Leu Arg Thr Ala Lys Ala Leu Leu 50 60

Gly Val Arg Asp Glu Leu Lys Leu Ser Leu Ala Ala Val Thr Val Leu 65 70 75 80

Arg Glu Arg Tyr Leu Leu His Asp Glu Gln Gly Arg Pro Ala Glu Ser 85 90 95

Thr Gly Glu Leu Met Asp Arg Ser Ala Arg Cys Val Ala Ala Glu 100 105 110

Asp Gln Tyr Glu Pro Gly Ser Ser Arg Arg Trp Ala Glu Arg Phe Ala 115 120 125

Thr Leu Leu Arg Asn Leu Glu Phe Leu Pro Asn Ser Pro Thr Leu Met 130 135 140

Asn Ser Gly Thr Asp Leu Gly Leu Leu Ala Gly Cys Phe Val Leu Pro 145 150 155 160

Ile Glu Asp Ser Leu Gln Ser Ile Phe Ala Thr Leu Gly Gln Ala Ala 165 170 175

Glu Leu Gln Arg Ala Gly Gly Gly Thr Gly Tyr Ala Phe Ser His Leu 180 185 190

Arg Pro Ala Gly Asp Arg Val Ala Ser Thr Gly Gly Thr Ala Ser Gly 195 200 205

Pro Val Ser Phe Leu Arg Leu Tyr Asp Ser Ala Ala Gly Val Val Ser 210 215 220

Met Gly Gly Arg Arg Gly Ala Cys Met Ala Val Leu Asp Val Ser 225 230 230 235

His Pro Asp Ile Cys Asp Phe Val Thr Ala Lys Ala Glu Ser Pro Ser 245 250 255

Glu Leu Pro His Phe Asn Leu Ser Val Gly Val Thr Asp Ala Phe Leu 260 265 270

Arg Ala Val Glu Arg Asn Gly Leu His Arg Leu Val Asn Pro Arg Thr 275 280 285

102

Gly Lys Ile Val Ala Arg Met Pro Ala Ala Glu Leu Phe Asp Ala Ile Cys Lys Ala Ala His Ala Gly Gly Asp Pro Gly Leu Val Phe Leu Asp 310 Thr Ile Asn Arg Ala Asn Pro Val Pro Gly Arg Gly Arg Ile Glu Ala Thr Asn Pro Cys Gly Glu Val Pro Leu Leu Pro Tyr Glu Ser Cys Asn Leu Gly Ser Ile Asn Leu Ala Arg Met Leu Ala Asp Gly Arg Val Asp 360 Trp Asp Arg Leu Glu Glu Val Ala Gly Val Ala Val Arg Phe Leu Asp 375 Asp Val Ile Asp Val Ser Arg Tyr Pro Phe Pro Glu Leu Gly Glu Ala 385 390 Ala Arg Ala Thr Arg Lys Ile Gly Leu Gly Val Met Gly Leu Ala Glu Leu Leu Ala Ala Leu Gly Ile Pro Tyr Asp Ser Glu Glu Ala Val Arg Leu Ala Thr Arg Leu Met Arg Arg Ile Gln Gln Ala Ala His Thr Ala 440 Ser Arg Arg Leu Ala Glu Glu Arg Gly Ala Phe Pro Ala Phe Thr Asp Ser Arg Phe Ala Arg Ser Gly Pro Arg Arg Asn Ala Gln Val Thr Ser 470 475 Val Ala Pro Thr Gly

(2) INFORMATION FOR SEQ ID NO:71:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 267 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:
- Gly Val Ile Val Leu Asp Leu Glu Pro Arg Gly Pro Leu Pro Thr Glu

 10 15
- Ile Tyr Trp Arg Arg Gly Leu Ala Leu Gly Ile Ala Val Val Val 20 25 30
- Val Gly Ile Ala Val Ala Ile Val Ile Ala Phe Val Asp Ser Ser Ala 35 40 45

- Gly Ala Lys Pro Val Ser Ala Asp Lys Pro Ala Ser Ala Gln Ser His Pro Gly Ser Pro Ala Pro Gln Ala Pro Gln Pro Ala Gly Gln Thr Glu Gly Asn Ala Ala Ala Pro Pro Gln Gly Gln Asn Pro Glu Thr Pro Thr Pro Thr Ala Ala Val Gln Pro Pro Pro Val Leu Lys Glu Gly Asp Asp Cys Pro Asp Ser Thr Leu Ala Val Lys Gly Leu Thr Asn Ala Pro Gln Tyr Tyr Val Gly Asp Gln Pro Lys Phe Thr Met Val Val Thr Asn Ile Gly Leu Val Ser Cys Lys Arg Asp Val Gly Ala Ala Val Leu Ala 145 150 Ala Tyr Val Tyr Ser Leu Asp Asn Lys Arg Leu Trp Ser Asn Leu Asp 170 Cys Ala Pro Ser Asn Glu Thr Leu Val Lys Thr Phe Ser Pro Gly Glu Gln Val Thr Thr Ala Val Thr Trp Thr Gly Met Gly Ser Ala Pro Arg 200 Cys Pro Leu Pro Arg Pro Ala Ile Gly Pro Gly Thr Tyr Asn Leu Val Val Gln Leu Gly Asn Leu Arg Ser Leu Pro Val Pro Phe Ile Leu Asn 225 Gln Pro Pro Pro Pro Gly Pro Val Pro Ala Pro Gly Pro Ala Gln Ala Pro Pro Pro Glu Ser Pro Ala Gln Gly Gly
- (2) INFORMATION FOR SEQ ID NO:72:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:
 - Leu Ile Ser Thr Gly Lys Ala Ser His Ala Ser Leu Gly Val Gln Val 1 5 10 15
 - Thr Asn Asp Lys Asp Thr Pro Gly Ala Lys Ile Val Glu Val Val Ala 20 25 30

104

Gly Gly Ala Ala As
n Ala Gly Val Pro Lys Gly Val Val Val Thr $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$

Lys Val Asp Asp Arg Pro Ile Asn Ser Ala Asp Ala Leu Val Ala Ala 50 55 60

Val Arg Ser Lys Ala Pro Gly Ala Thr Val Ala Leu Thr Phe Gln Asp 65 70 75 80

Pro Ser Gly Gly Ser Arg Thr Val Gln Val Thr Leu Gly Lys Ala Glu 85 90 95

Gln

(2) INFORMATION FOR SEQ ID NO:73:

- (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 364 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

Gly Ala Ala Val Ser Leu Leu Ala Ala Gly Thr Leu Val Leu Thr Ala
1 10 15

Cys Gly Gly Gly Thr Asn Ser Ser Ser Ser Gly Ala Gly Gly Thr Ser 20 25 30

Gly Ser Val His Cys Gly Gly Lys Lys Glu Leu His Ser Ser Gly Ser 35 40 45

Thr Ala Gln Glu Asn Ala Met Glu Gln Phe Val Tyr Ala Tyr Val Arg 50 55 60

Ser Cys Pro Gly Tyr Thr Leu Asp Tyr Asn Ala Asn Gly Ser Gly Ala 65 70 75 80

Gly Val Thr Gln Phe Leu Asn Asn Glu Thr Asp Phe Ala Gly Ser Asp $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Val Pro Leu Asn Pro Ser Thr Gly Gln Pro Asp Arg Ser Ala Glu Arg 100 105 110

Cys Gly Ser Pro Ala Trp Asp Leu Pro Thr Val Phe Gly Pro Ile Ala 115 120 125

Ile Thr Tyr Asn Ile Lys Gly Val Ser Thr Leu Asn Leu Asp Gly Pro 130 135

Thr Thr Ala Lys Ile Phe Asn Gly Thr Ile Thr Val Trp Asn Asp Pro 145 150 155 160

Gln Ile Gln Ala Leu Asn Ser Gly Thr Asp Leu Pro Pro Thr Pro Ile 165 170 175

105

 Ser
 Val
 Ile
 Phe 180
 Arg
 Ser
 Asp 180
 Lys
 Ser 185
 Gly
 Thr
 Ser
 Asp 190
 Phe 311

 Lys
 Tyr
 Leu 195
 Asp 290
 Val
 Gly
 Ala
 Trp 200
 Gly
 Ala
 Gly
 Ala
 Ser 200
 Gly
 Ala
 Gly
 Ala
 Ala

(2) INFORMATION FOR SEQ ID NO:74:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 309 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

Gln Ala Ala Ala Gly Arg Ala Val Arg Arg Thr Gly His Ala Glu Asp

5 10 . 15

Gln Thr His Gln Asp Arg Leu His His Gly Cys Arg Arg Ala Ala Val

Val Val Arg Gln Asp Arg Ala Ser Val Ser Ala Thr Ser Ala Arg Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$

Pro Arg Arg His Pro Ala Gln Gly His Arg Arg Arg Val Ala Pro Ser 50 55 60

106

Gly Gly Arg Arg Pro His Pro His His Val Gln Pro Asp Asp Arg Arg Asp Arg Pro Ala Leu Leu Asp Arg Thr Gln Pro Ala Glu His Pro Asp Pro His Arg Arg Gly Pro Ala Asp Pro Gly Arg Val Arg Gly Arg 105 Gly Arg Leu Arg Arg Val Asp Asp Gly Arg Leu Gln Pro Asp Arg Asp Ala Asp His Gly Ala Pro Val Arg Gly Arg Gly Pro His Arg Gly Val Gln His Arg Gly Gly Pro Val Phe Val Arg Arg Val Pro Gly Val Arg Cys Ala His Arg Arg Gly His Arg Arg Val Ala Ala Pro Gly Gln Gly Asp Val Leu Arg Ala Gly Leu Arg Val Glu Arg Leu Arg Pro Val Ala 185 Ala Val Glu Asn Leu His Arg Gly Ser Gln Arg Ala Asp Gly Arg Val Phe Arg Pro Ile Arg Arg Gly Ala Arg Leu Pro Ala Arg Arg Ser Arg Ala Gly Pro Gln Gly Arg Leu His Leu Asp Gly Ala Gly Pro Ser Pro Leu Pro Ala Arg Ala Gly Gln Gln Pro Ser Ser Ala Gly Gly Arg Arg Ala Gly Gly Ala Glu Arg Ala Asp Pro Gly Gln Arg Gly Arg His 265 His Gln Gly Gly His Asp Pro Gly Arg Gln Gly Ala Gln Arg Gly Thr Ala Gly Val Ala His Ala Ala Ala Gly Pro Arg Arg Ala Ala Val Arg 295 Asn Arg Pro Arg Arg 305

(2) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

Ser Ala Val Trp Cys Leu Asn Gly Phe Thr Gly Arg His Arg His Gly Arg Cys Arg Val Arg Ala Ser Gly Trp Arg Ser Ser Asn Arg Trp Cys Ser Thr Thr Ala Asp Cys Cys Ala Ser Lys Thr Pro Thr Gln Ala Ala Ser Pro Leu Glu Arg Arg Phe Thr Cys Cys Ser Pro Ala Val Gly Cys Arg Phe Arg Ser Phe Pro Val Arg Arg Leu Ala Leu Gly Ala Arg Thr Ser Arg Thr Leu Gly Val Arg Arg Thr Leu Ser Gln Trp Asn Leu Ser Pro Arg Ala Gln Pro Ser Cys Ala Val Thr Val Glu Ser His Thr His 100 105 Ala Ser Pro Arg Met Ala Lys Leu Ala Arg Val Val Gly Leu Val Gln Glu Glu Gln Pro Ser Asp Met Thr Asn His Pro Arg Tyr Ser Pro Pro 135 Pro Gln Gln Pro Gly Thr Pro Gly Tyr Ala Gln Gly Gln Gln Gln Thr 150 155 Tyr Ser Gln Gln Phe Asp Trp Arg Tyr Pro Pro Ser Pro Pro Pro Gln Pro Thr Gln Tyr Arg Gln Pro Tyr Glu Ala Leu Gly Gly Thr Arg Pro 180 185 Gly Leu Ile Pro Gly Val Ile Pro Thr Met Thr Pro Pro Pro Gly Met Val Arg Gln Arg Pro Arg Ala Gly Met Leu Ala Ile Gly Ala Val Thr Ile Ala Val Val Ser Ala Gly Ile Gly Gly Ala Ala Ala Ser Leu Val 230 235 Gly Phe Asn Arg Ala Pro Ala Gly Pro Ser Gly Gly Pro Val Ala Ala Ser Ala Ala Pro Ser Ile Pro Ala Ala Asn Met Pro Pro Gly Ser Val 260 Glu Gln Val Ala Ala Lys Val Val Pro Ser Val Val Met Leu Glu Thr Asp Leu Gly Arg Gln Ser Glu Glu Gly Ser Gly Ile Ile Leu Ser Ala Glu Gly Leu Ile Leu Thr Asn Asn His Val Ile Ala Ala Ala Lys 310 Pro Pro Leu Gly Ser Pro Pro Pro Lys Thr Thr Val Thr Phe Ser Asp

108

325 330 335 Gly Arg Thr Ala Pro Phe Thr Val Val Gly Ala Asp Pro Thr Ser Asp Ile Ala Val Val Arg Val Gln Gly Val Ser Gly Leu Thr Pro Ile Ser 360 Leu Gly Ser Ser Ser Asp Leu Arg Val Gly Gln Pro Val Leu Ala Ile Gly Ser Pro Leu Gly Leu Glu Gly Thr Val Thr Thr Gly Ile Val Ser Ala Leu Asn Arg Pro Val Ser Thr Thr Gly Glu Ala Gly Asn Gln Asn 405 Thr Val Leu Asp Ala Ile Gln Thr Asp Ala Ala Ile Asn Pro Gly Asn Ser Gly Gly Ala Leu Val Asn Met Asn Ala Gln Leu Val Gly Val Asn Ser Ala Ile Ala Thr Leu Gly Ala Asp Ser Ala Asp Ala Gln Ser Gly Ser Ile Gly Leu Gly Phe Ala Ile Pro Val Asp Gln Ala Lys Arg Ile 475 Ala Asp Glu Leu Ile Ser Thr Gly Lys Ala Ser His Ala Ser Leu Gly 485 Val Gln Val Thr Asn Asp Lys Asp Thr Pro Gly Ala Lys Ile Val Glu Val Val Ala Gly Gly Ala Ala Ala Asn Ala Gly Val Pro Lys Gly Val Val Val Thr Lys Val Asp Asp Arg Pro Ile Asn Ser Ala Asp Ala Leu 535 Val Ala Ala Val Arg Ser Lys Ala Pro Gly Ala Thr Val Ala Leu Thr 555 Phe Gln Asp Pro Ser Gly Gly Ser Arg Thr Val Gln Val Thr Leu Gly 570 Lys Ala Glu Gln

(2) INFORMATION FOR SEQ ID NO:76:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 233 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:
- Met Asn Asp Gly Lys Arg Ala Val Thr Ser Ala Val Leu Val Val Leu 1 5 10 15
- Gly Ala Cys Leu Ala Leu Trp Leu Ser Gly Cys Ser Ser Pro Lys Pro 20 25 30
- Asp Ala Glu Glu Gly Val Pro Val Ser Pro Thr Ala Ser Asp Pro 35 40 45
- Ala Leu Leu Ala Glu Ile Arg Gln Ser Leu Asp Ala Thr Lys Gly Leu 50 55 60
- Thr Ser Val His Val Ala Val Arg Thr Thr Gly Lys Val Asp Ser Leu 70 75 80
- Leu Gly Ile Thr Ser Ala Asp Val Asp Val Arg Ala Asn Pro Leu Ala 85 90 95
- Ala Lys Gly Val Cys Thr Tyr Asn Asp Glu Gln Gly Val Pro Phe Arg 100 105 110
- Val Gln Gly Asp Asn Ile Ser Val Lys Leu Phe Asp Asp Trp Ser Asn 115 120 125
- Leu Gly Ser Ile Ser Glu Leu Ser Thr Ser Arg Val Leu Asp Pro Ala 130 135 140
- Ala Gly Val Thr Gln Leu Leu Ser Gly Val Thr Asn Leu Gln Ala Gln 145 150 155 160
- Gly Thr Glu Val Ile Asp Gly Ile Ser Thr Thr Lys Ile Thr Gly Thr 165 170 175
- Ile Pro Ala Ser Ser Val Lys Met Leu Asp Pro Gly Ala Lys Ser Ala 180 185
- Arg Pro Ala Thr Val Trp Ile Ala Gln Asp Gly Ser His His Leu Val 195 200 205
- Arg Ala Ser Ile Asp Leu Gly Ser Gly Ser Ile Gln Leu Thr Gln Ser 210 220
- Lys Trp Asn Glu Pro Val Asn Val Asp 225 230
- (2) INFORMATION FOR SEQ ID NO:77:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 66 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:
 - Val Ile Asp Ile Ile Gly Thr Ser Pro Thr Ser Trp Glu Gln Ala Ala

110

5 1 10 15

Ala Glu Ala Val Gln Arg Ala Arg Asp Ser Val Asp Asp Ile Arg Val

Ala Arg Val Ile Glu Gln Asp Met Ala Val Asp Ser Ala Gly Lys Ile

Thr Tyr Arg Ile Lys Leu Glu Val Ser Phe Lys Met Arg Pro Ala Gln

Pro Arg 65

- (2) INFORMATION FOR SEQ ID NO:78:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 69 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

Val Pro Pro Ala Pro Pro Leu Pro Pro Leu Pro Pro Ser Pro Ile Ser

Cys Ala Ser Pro Pro Ser Pro Pro Leu Pro Pro Ala Pro Pro Val Ala

Pro Gly Pro Pro Met Pro Pro Leu Asp Pro Trp Pro Pro Ala Pro Pro 40

Leu Pro Tyr Ser Thr Pro Pro Gly Ala Pro Leu Pro Pro Ser Pro Pro

Ser Pro Pro Leu Pro

- (2) INFORMATION FOR SEQ ID NO:79:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 355 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

Met Ser Asn Ser Arg Arg Ser Leu Arg Trp Ser Trp Leu Leu Ser

Val Leu Ala Ala Val Gly Leu Gly Leu Ala Thr Ala Pro Ala Gln Ala 25

WO 98/16646

111

PCT/US97/18293

Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Ala Pro Gln Val Val Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn His Val Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser Val Gly Ser Gly Gln 105 Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala Val Leu Gln Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile Gly 135 Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser Gly 155 Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu Thr 185 Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly Asp Ser Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr 210 215 Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu 265 Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp 315 Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly 345 Pro Pro Ala

355

(2) INFORMATION FOR SEQ ID NO:80:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 205 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

Ser Pro Lys Pro Asp Ala Glu Glu Glu Gly Val Pro Val Ser Pro Thr 1 5101015151015101

Ala Ser Asp Pro Ala Leu Leu Ala Glu Ile Arg Gln Ser Leu Asp Ala 20 25 30

Thr Lys Gly Leu Thr Ser Val His Val Ala Val Arg Thr Thr Gly Lys 35 40 45

Val Asp Ser Leu Leu Gly Ile Thr Ser Ala Asp Val Asp Val Arg Ala 50 55 60

Asn Pro Leu Ala Ala Lys Gly Val Cys Thr Tyr Asn Asp Glu Gln Gly 65 70 75 80

Val Pro Phe Arg Val Gln Gly Asp Asn Ile Ser Val Lys Leu Phe Asp 85 90 95

Asp Trp Ser Asn Leu Gly Ser Ile Ser Glu Leu Ser Thr Ser Arg Val 100 105 110

Leu Asp Pro Ala Ala Gly Val Thr Gln Leu Leu Ser Gly Val Thr Asn 115 120 125

Leu Gln Ala Gln Gly Thr Glu Val Ile Asp Gly Ile Ser Thr Thr Lys 130 135 140

Ile Thr Gly Thr Ile Pro Ala Ser Ser Val Lys Met Leu Asp Pro Gly 145 150 155 160

Ala Lys Ser Ala Arg Pro Ala Thr Val Trp Ile Ala Gln Asp Gly Ser 165 170 175

His His Leu Val Arg Ala Ser Ile Asp Leu Gly Ser Gly Ser Ile Gln 180 185 190

Leu Thr Gln Ser Lys Trp Asn Glu Pro Val Asn Val Asp 195 200 205

(2) INFORMATION FOR SEQ ID NO:81:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 286 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:
- Gly Asp Ser Phe Trp Ala Ala Ala Asp Gln Met Ala Arg Gly Phe Val 1 5 10 15
- Leu Gly Ala Thr Ala Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu Gln 20 25 30
- His Ala Asp Gly His Ser Leu Leu Leu Asp Ala Thr Asn Pro Ala Val $35 \\ 40 \\ 45$
- Val Ala Tyr Asp Pro Ala Phe Ala Tyr Glu Ile Gly Tyr Ile Xaa Glu 50 60
- Ser Gly Leu Ala Arg Met Cys Gly Glu Asn Pro Glu Asn Ile Phe Phe 65 70 75 80
- Tyr Ile Thr Val Tyr Asn Glu Pro Tyr Val Gln Pro Pro Glu Pro Glu 85 90 95
- Asn Phe Asp Pro Glu Gly Val Leu Gly Gly Ile Tyr Arg Tyr His Ala 100 105 110
- Ala Thr Glu Gln Arg Thr Asn Lys Xaa Gln Ile Leu Ala Ser Gly Val 115 120 125
- Ala Met Pro Ala Ala Leu Arg Ala Ala Gln Met Leu Ala Ala Glu Trp 130 135 140
- Asp Val Ala Ala Asp Val Trp Ser Val Thr Ser Trp Gly Glu Leu Asn 145 150 155 160
- Arg Asp Gly Val Val Ile Glu Thr Glu Lys Leu Arg His Pro Asp Arg 165 170 175
- Pro Ala Gly Val Pro Tyr Val Thr Arg Ala Leu Glu Asn Ala Arg Gly 180 185 190
- Pro Val Ile Ala Val Ser Asp Trp Met Arg Ala Val Pro Glu Gln Ile 195 200 205
- Arg Pro Trp Val Pro Gly Thr Tyr Leu Thr Leu Gly Thr Asp Gly Phe 210 215 220
- Gly Phe Ser Asp Thr Arg Pro Ala Gly Arg Arg Tyr Phe Asn Thr Asp 225 230 235 240
- Ala Glu Ser Gln Val Gly Arg Gly Phe Gly Arg Gly Trp Pro Gly Arg 245 250 255
- Arg Val Asn Ile Asp Pro Phe Gly Ala Gly Arg Gly Pro Pro Ala Gln 260 265 270
- Leu Pro Gly Phe Asp Glu Gly Gly Gly Leu Arg Pro Xaa Lys 275 280 285
- (2) INFORMATION FOR SEQ ID NO:82:

114

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 173 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

Thr Lys Phe His Ala Leu Met Gln Glu Gln Ile His Asn Glu Phe Thr

Ala Ala Gln Gln Tyr Val Ala Ile Ala Val Tyr Phe Asp Ser Glu Asp

Leu Pro Gln Leu Ala Lys His Phe Tyr Ser Gln Ala Val Glu Glu Arg

Asn His Ala Met Met Leu Val Gln His Leu Leu Asp Arg Asp Leu Arg

Val Glu Ile Pro Gly Val Asp Thr Val Arg Asn Gln Phe Asp Arg Pro

Arg Glu Ala Leu Ala Leu Asp Gln Glu Arg Thr Val Thr Asp

Gln Val Gly Arg Leu Thr Ala Val Ala Arg Asp Glu Gly Asp Phe Leu

Gly Glu Gln Phe Met Gln Trp Phe Leu Gln Glu Gln Ile Glu Glu Val

Ala Leu Met Ala Thr Leu Val Arg Val Ala Asp Arg Ala Gly Ala Asn 135

Leu Phe Glu Leu Glu Asn Phe Val Ala Arg Glu Val Asp Val Ala Pro 145

Ala Ala Ser Gly Ala Pro His Ala Ala Gly Gly Arg Leu 165

(2) INFORMATION FOR SEQ ID NO:83:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 107 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

Arg Ala Asp Glu Arg Lys Asn Thr Thr Met Lys Met Val Lys Ser Ile 10

115

Ala Ala Gly Leu Thr Ala Ala Ala Ala Ile Gly Ala Ala Ala Gly 20 25 30

Val Thr Ser Ile Met Ala Gly Gly Pro Val Val Tyr Gln Met Gln Pro 35 40 45

Val Val Phe Gly Ala Pro Leu Pro Leu Asp Pro Xaa Ser Ala Pro Xaa 50 55 60

Val Pro Thr Ala Ala Gln Trp Thr Xaa Leu Leu Asn Xaa Leu Xaa Asp 65 70 75 80

Pro Asn Val Ser Phe Xaa Asn Lys Gly Ser Leu Val Glu Gly Gly Ile 85 90 95

Gly Gly Xaa Glu Gly Xaa Xaa Arg Arg Xaa Gln 100 105

- (2) INFORMATION FOR SEQ ID NO:84:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 125 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

Val Leu Ser Val Pro Val Gly Asp Gly Phe Trp Xaa Arg Val Val Asn

5 10 15

Pro Leu Gly Gln Pro Ile Asp Gly Arg Gly Asp Val Asp Ser Asp Thr

Arg Arg Ala Leu Glu Leu Gln Ala Pro Ser Val Val Xaa Arg Gln Gly 35 40 45

Val Lys Glu Pro Leu Xaa Thr Gly Ile Lys Ala Ile Asp Ala Met Thr 50 60

Pro Ile Gly Arg Gly Gln Arg Gln Leu Ile Ile Gly Asp Arg Lys Thr 65 70 75 80

Gly Lys Asn Arg Arg Leu Cys Arg Thr Pro Ser Ser Asn Gln Arg Glu 85 90 95

Glu Leu Gly Val Arg Trp Ile Pro Arg Ser Arg Cys Ala Cys Val Tyr 100 105 110

Val Gly His Arg Ala Arg Arg Gly Thr Tyr His Arg Arg 115 120 125

- (2) INFORMATION FOR SEQ ID NO:85:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

116

- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

Cys Asp Ala Val Met Gly Phe Leu Gly Gly Ala Gly Pro Leu Ala Val 1 5 10 15

Val Asp Gln Gln Leu Val Thr Arg Val Pro Gln Gly Trp Ser Phe Ala 20 25 30

Gln Ala Ala Ala Val Pro Val Val Phe Leu Thr Ala Trp Tyr Gly Leu 35 40 45

Ala Asp Leu Ala Glu Ile Lys Ala Gly Glu Ser Val Leu Ile His Ala 50 55 60

Gly Thr Gly Gly Val Gly Met Ala Ala Val Gln Leu Ala Arg Gln Trp 65 70 75 80

Gly Val Glu Val Phe Val Thr Ala Ser Arg Gly Lys Trp Asp Thr Leu 85 90 95

Arg Ala Xaa Xaa Phe Asp Asp Xaa Pro Tyr Arg Xaa Phe Pro His Xaa 100 105 110

Arg Ser Ser Xaa Gly 115

- (2) INFORMATION FOR SEQ ID NO:86:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 103 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

Met Tyr Arg Phe Ala Cys Arg Thr Leu Met Leu Ala Ala Cys Ile Leu 1 5 10 15

Ala Thr Gly Val Ala Gly Leu Gly Val Gly Ala Gln Ser Ala Ala Gln 20 25 30

Thr Ala Pro Val Pro Asp Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp 35 40 45

Pro Ala Trp Gly Pro Asn Trp Asp Pro Tyr Thr Cys His Asp Asp Phe 50 55 60

His Arg Asp Ser Asp Gly Pro Asp His Ser Arg Asp Tyr Pro Gly Pro 65 70 75 80

Ile Leu Glu Gly Pro Val Leu Asp Asp Pro Gly Ala Ala Pro Pro

117

85 90 95

Pro Ala Ala Gly Gly Gly Ala 100

- (2) INFORMATION FOR SEQ ID NO:87:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 88 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

Val Gln Cys Arg Val Trp Leu Glu Ile Gln Trp Arg Gly Met Leu Gly

Ala Asp Gln Ala Arg Ala Gly Gly Pro Ala Arg Ile Trp Arg Glu His

Ser Met Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala

Thr Lys Glu Gly Arg Gly Ile Val Met Arg Val Pro Leu Glu Gly Gly

Gly Arg Leu Val Val Glu Leu Thr Pro Asp Glu Ala Ala Ala Leu Gly

Asp Glu Leu Lys Gly Val Thr Ser 85

- (2) INFORMATION FOR SEQ ID NO:88:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 95 amino acids(B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn Phe Glu Arg Ile 10

Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala Gly

Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln Ala

Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu Leu

118

Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg 65 70 75 80

Ala Asp Glu Glu Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 85 90 95

- (2) INFORMATION FOR SEQ ID NO:89:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 166 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

Met Thr Gln Ser Gln Thr Val Thr Val Asp Gln Glu Ile Leu Asn 1 5

Arg Ala Asn Glu Val Glu Ala Pro Met Ala Asp Pro Pro Thr Asp Val 20 25 30

Pro Ile Thr Pro Cys Glu Leu Thr Xaa Xaa Lys Asn Ala Ala Gln Gln 35 40 45

Xaa Val Leu Ser Ala Asp Asn Met Arg Glu Tyr Leu Ala Ala Gly Ala 50 60

Lys Glu Arg Gln Arg Leu Ala Thr Ser Leu Arg Asn Ala Ala Lys Xaa 65 70 75 80

Tyr Gly Glu Val Asp Glu Glu Ala Ala Thr Ala Leu Asp Asn Asp Gly 85 90 95

Glu Gly Thr Val Gln Ala Glu Ser Ala Gly Ala Val Gly Gly Asp Ser 100 105 110

Ser Ala Glu Leu Thr Asp Thr Pro Arg Val Ala Thr Ala Gly Glu Pro 115 120 125

Asn Phe Met Asp Leu Lys Glu Ala Ala Arg Lys Leu Glu Thr Gly Asp 130 135 140

Gln Gly Ala Ser Leu Ala His Xaa Gly Asp Gly Trp Asn Thr Xaa Thr 145 150 155 160

Leu Thr Leu Gln Gly Asp 165

- (2) INFORMATION FOR SEQ ID NO:90:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

119

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

Arg Ala Glu Arg Met

(2) INFORMATION FOR SEQ ID NO:91:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 263 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

- Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu Thr Ala Ala 1 5 10 15
- Gln Val Arg Val Ala Ala Ala Ala Tyr Glu Thr Ala Tyr Gly Leu Thr 20 25 30
- Val Pro Pro Pro Val Ile Ala Glu Asn Arg Ala Glu Leu Met Ile Leu 35 40 45
- Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile Ala Val Asn 50 60
- Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Ala Met Phe 65 70 75 80
- Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leu Leu Pro Phe 85 90 95
- Glu Glu Ala Pro Glu Met Thr Ser Ala Gly Gly Leu Leu Glu Gl
n Ala 100 105 110
- Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Ala As
n Gln Leu Met 115 120 125
- Asn Asn Val Pro Gln Ala Leu Lys Gln Leu Ala Gln Pro Thr Gln Gly 130 135 140
- Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr Val Ser Pro 145 150 155 160
- His Arg Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn Asn His Met 165 170 175
- Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu Ser Ser Met 180 185 190
- Leu Lys Gly Phe Ala Pro Ala Ala Ala Ala Gln Ala Val Gln Thr Ala 195 200 205

120

Ala Gln Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser Ser Leu Gly 210 220

Ser Ser Gly Leu Gly Gly Gly Val Ala Ala Asn Leu Gly Arg Ala Ala 225 230 235 240

Ser Val Arg Tyr Gly His Arg Asp Gly Gly Lys Tyr Ala Xaa Ser Gly 245 250 255

Arg Arg Asn Gly Gly Pro Ala 260

(2) INFORMATION FOR SEQ ID NO:92:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 303 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

Met Thr Tyr Ser Pro Gly Asn Pro Gly Tyr Pro Gln Ala Gln Pro Ala 1 5 10 15

Gly Ser Tyr Gly Gly Val Thr Pro Ser Phe Ala His Ala Asp Glu Gly 20 25 30

Ala Ser Lys Leu Pro Met Tyr Leu Asn Ile Ala Val Ala Val Leu Gly 35 40 45

Leu Ala Ala Tyr Phe Ala Ser Phe Gly Pro Met Phe Thr Leu Ser Thr 50 60

Glu Leu Gly Gly Gly Asp Gly Ala Val Ser Gly Asp Thr Gly Leu Pro 65 70 75 80

Val Gly Val Ala Leu Leu Ala Ala Leu Leu Ala Gly Val Val Leu Val 85 90 95

Pro Lys Ala Lys Ser His Val Thr Val Val Ala Val Leu Gly Val Leu 100 105 110

Gly Val Phe Leu Met Val Ser Ala Thr Phe Asn Lys Pro Ser Ala Tyr 115 120 125

Ser Thr Gly Trp Ala Leu Trp Val Val Leu Ala Phe Ile Val Phe Gln 130 135 140

Ala Val Ala Ala Val Leu Ala Leu Leu Val Glu Thr Gly Ala Ile Thr 145 150 155 160

Ala Pro Ala Pro Arg Pro Lys Phe Asp Pro Tyr Gly Gln Tyr Gly Arg 165 170 175

Tyr Gly Gln Tyr Gly Gln Tyr Gly Val Gln Pro Gly Gly Tyr Tyr Gly
180 185 190

121

- Gln Gln Gly Ala Gln Gln Ala Ala Gly Leu Gln Ser Pro Gly Pro Gln
- Gln Ser Pro Gln Pro Pro Gly Tyr Gly Ser Gln Tyr Gly Gly Tyr Ser 215
- Ser Ser Pro Ser Gln Ser Gly Ser Gly Tyr Thr Ala Gln Pro Pro Ala
- Gln Pro Pro Ala Gln Ser Gly Ser Gln Gln Ser His Gln Gly Pro Ser 250
- Thr Pro Pro Thr Gly Phe Pro Ser Phe Ser Pro Pro Pro Pro Val Ser 265
- Ala Gly Thr Gly Ser Gln Ala Gly Ser Ala Pro Val Asn Tyr Ser Asn
- Pro Ser Gly Gly Glu Gln Ser Ser Ser Pro Gly Gly Ala Pro Val 295
- (2) INFORMATION FOR SEQ ID NO:93:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEO ID NO:93:
 - Gly Cys Gly Glu Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn
 - Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile 20
- (2) INFORMATION FOR SEQ ID NO:94:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:
 - Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly
- (2) INFORMATION FOR SEQ ID NO:95:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

Gly Cys Gly Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly Ala

Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg

- (2) INFORMATION FOR SEQ ID NO:96:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

Gly Cys Gly Gly Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu

Ala Ala Asn Lys Gln Lys Gln Glu Leu Asp Glu 20

- (2) INFORMATION FOR SEQ ID NO:97:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

Gly Cys Gly Ala Asn Lys Gln Lys Gln Glu Leu Asp Glu Ile Ser Thr 10

Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg

- (2) INFORMATION FOR SEQ ID NO:98:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids
 - (B) TYPE: amino acid

123

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

Gly Cys Gly Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu 10

Glu Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 20 25

- (2) INFORMATION FOR SEQ ID NO:99:
 - (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 507 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

ATGAAGATGG	TGAAATCGAT	CGCCGCAGGT	CTGACCGCCG	CGGCTGCAAT	CGGCGCCGCT	60
GCGGCCGGTG	TGACTTCGAT	CATGGCTGGC	GGCCCGGTCG	TATACCAGAT	GCAGCCGGTC	120
GTCTTCGGCG	CGCCACTGCC	GTTGGACCCG	GCATCCGCCC	CTGACGTCCC	GACCGCCGCC	180
CAGTTGACCA	GCCTGCTCAA	CAGCCTCGCC	GATCCCAACG	TGTCGTTTGC	GAACAAGGGC	240
AGTCTGGTCG	AGGGCGGCAT	CGGGGGCACC	GAGGCGCGCA	TCGCCGACCA	CAAGCTGAAG	300
AAGGCCGCCG	AGCACGGGGA	TCTGCCGCTG	TCGTTCAGCG	TGACGAACAT	CCAGCCGGCG	360
GCCGCCGGTT	CGGCCACCGC	CGACGTTTCC	GTCTCGGGTC	CGAAGCTCTC	GTCGCCGGTC	420
ACGCAGAACG	TCACGTTCGT	GAATCAAGGC	GGCTGGATGC	TGTCACGCGC	ATCGGCGATG	480
GAGTTGCTGC	AGGCCGCAGG	GAACTGA				507

- (2) INFORMATION FOR SEQ ID NO:100:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 168 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

124

Met 1	Lys	Met	Val	Lys 5	Ser	Ile	Ala	Ala	Gly 10	Leu	Thr	Ala	Ala	Ala 15	Ala
Ile	Gly	Ala	Ala 20	Ala	Ala	Gly	Val	Thr 25	Ser	Ile	Met	Ala	Gly 30	Gly	Pro
Val	Val	Tyr 35	Gln	Met	Gln	Pro	Val 40	Val	Phe	Gly	Ala	Pro 45	Leu	Pro	Leu
Asp	Pro 50	Ala	Ser	Ala	Pro	Asp 55	Val	Pro	Thr	Ala	Ala 60	Gln	Leu	Thr	Ser
Leu 65	Leu	Asn	Ser	Leu	Ala 70	Asp	Pro	Asn	Val	Ser 75	Phe	Ala	Asn	Lys	Gly 80
Ser	Leu	Val	Glu	Gly 85	Gly	Ile	Gly	Gly	Thr 90	Glu	Ala	Arg	Ile	Ala 95	Asp
His	Lys	Leu	Lys 100	Lys	Ala	Ala	Glu	His 105	Gly	Asp	Leu	Pro	Leu 110	Ser	Phe
Ser	Val	Thr 115	Asn	Ile	Gln	Pro	Ala 120	Ala	Ala	Gly	Ser	Ala 125	Thr	Ala	Asp
Val	Ser 130	Val	Ser	Gly	Pro	Lys 135	Leu	Ser	Ser	Pro	Val 140	Thr	Gln	Asn	Val
Thr 145	Phe	Val	Asn	Gln	Gly 150	Gly	Trp	Met	Leu	Ser 155	Arg	Ala	Ser	Ala	Met 160
Glu	Leu	Leu	Gln	Ala 165	Ala	Gly	Asn								

(2) INFORMATION FOR SEQ ID NO:101:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 500 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

CGTGGCAATG	TCGTTGACCG	TCGGGGCCGG	GGTCGCCTCC	GCAGATCCCG	TGGACGCGGT	60
CATTAACACC	ACCTGCAATT	ACGGGCAGGT	AGTAGCTGCG	CTCAACGCGA	CGGATCCGGG	120
GGCTGCCGCA	CAGTTCAACG	CCTCACCGGT	GGCGCAGTCC	TATTTGCGCA	ATTTCCTCGC	180
CGCACCGCCA	CCTCAGCGCG	CTGCCATGGC	CGCGCAATTG	CAAGCTGTGC	CGGGGGCGC	240
ACAGTACATC	GGCCTTGTCG	AGTCGGTTGC	CGGCTCCTGC	AACAACTATT	AAGCCCATGC	300
GGGCCCCATC	CCGCGACCCG	GCATCGTCGC	CGGGGCTAGG	CCAGATTGCC	CCGCTCCTCA	360
ACGGGCCGCA	TCCCGCGACC	CGGCATCGTC	GCCGGGGCTA	GGCCAGATTG	CCCCGCTCCT	420
CAACGGGCCG	CATCTCGTGC	CGAATTCCTG	CAGCCCGGGG	GATCCACTAG	TTCTAGAGCG	480

125

GCCGCCACCG CGGTGGAGCT	500
(2) INFORMATION FOR SEQ ID NO:102:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 96 amino acids(B) TYPE: amino acid	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

Val Ala Met Ser Leu Thr Val Gly Ala Gly Val Ala Ser Ala Asp Pro

Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val Val Ala

Ala Leu Asn Ala Thr Asp Pro Gly Ala Ala Ala Gln Phe Asn Ala Ser

Pro Val Ala Gln Ser Tyr Leu Arg Asn Phe Leu Ala Ala Pro Pro Pro

Gln Arg Ala Ala Met Ala Ala Gln Leu Gln Ala Val Pro Gly Ala Ala

Gln Tyr Ile Gly Leu Val Glu Ser Val Ala Gly Ser Cys Asn Asn Tyr

(2) INFORMATION FOR SEQ ID NO:103:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 154 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEO ID NO:103:

ATGACAGAGC AGCAGTGGAA TTTCGCGGGT ATCGAGGCCG CGGCAAGCGC AATCCAGGGA 60 AATGTCACGT CCATTCATTC CCTCCTTGAC GAGGGGAAGC AGTCCCTGAC CAAGCTCGCA 120 GCGGCCTGGG GCGGTAGCGG TTCGGAAGCG TACC 154

(2) INFORMATION FOR SEQ ID NO:104:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

PCT/US97/18293 WO 98/16646

126

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:
Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu Ala Ala Ala Ser 1 5 10
Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu Leu Asp Glu Gly 20 25 30
Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly Gly Ser Gly Ser 35 40 45
Glu Ala Tyr 50
(2) INFORMATION FOR SEQ ID NO:105:
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 282 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:
MOLT COORDE COORDE LOCKED TO THE COORDE CONTROL OF THE COORDE CONT
COMMON TRACE COCCURATE COC
NOTICE OF THE PROPERTY OF THE
ACCTGTGTGG TCTGNAGCCG GACGAAGCGG TGCTCGACGT CG 282 (2) INFORMATION FOR SEQ ID NO:106:
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3058 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:
GATCGTACCC GTGCGAGTGC TCGGGCCGTT TGAGGATGGA GTGCACGTGT CTTTCGTGAT 60
GGCATACCCA GAGATGTTGG CGGCGGCGGC TGACACCCTG CAGAGCATCG GTGCTACCAC 120
TGTGGCTAGC AATGCCGCTG CGGCGGCCCC GACGACTGGG GTGGTGCCCC CCGCTGCCGA 180

180

WO 98/16646

TGAGGTGTCG	GCGCTGACTG	CGGCGCACTT	CGCCGCACAT	GCGGCGATGT	ATCAGTCCGT	240
GAGCGCTCGG	GCTGCTGCGA	TTCATGACCA	GTTCGTGGCC	ACCCTTGCCA	GCAGCGCCAG	300
CTCGTATGCG	GCCACTGAAG	TCGCCAATGC	GGCGGCGGCC	AGCTAAGCCA	GGAACAGTCG	360
GCACGAGAAA	CCACGAGAAA	TAGGGACACG	TAATGGTGGA	TTTCGGGGCG	TTACCACCGG	420
AGATCAACTC	CGCGAGGATG	TACGCCGGCC	CGGGTTCGGC	CTCGCTGGTG	GCCGCGGCTC	480
AGATGTGGGA	CAGCGTGGCG	AGTGACCTGT	TTTCGGCCGC	GTCGGCGTTT	CAGTCGGTGG	540
TCTGGGGTCT	GACGGTGGGG	TCGTGGATAG	GTTCGTCGGC	GGGTCTGATG	GTGGCGGCGG	600
CCTCGCCGTA	TGTGGCGTGG	ATGAGCGTCA	CCGCGGGGCA	GGCCGAGCTG	ACCGCCGCCC	660
AGGTCCGGGT	TGCTGCGGCG	GCCTACGAGA	CGGCGTATGG	GCTGACGGTG	CCCCCGCCGG	720
TGATCGCCGA	GAACCGTGCT	GAACTGATGA	TTCTGATAGC	GACCAACCTC	TTGGGGCAAA	780
ACACCCCGGC	GATCGCGGTC	AACGAGGCCG	AATACGGCGA	GATGTGGGCC	CAAGACGCCG	840
CCGCGATGTT	TGGCTACGCC	GCGGCGACGG	CGACGGCGAC	GGCGACGTTG	CTGCCGTTCG	900
AGGAGGCGCC	GGAGATGACC	AGCGCGGGTG	GGCTCCTCGA	GCAGGCCGCC	GCGGTCGAGG	960
AGGCCTCCGA	CACCGCCGCG	GCGAACCAGT	TGATGAACAA	TGTGCCCCAG	GCGCTGCAAC	1020
AGCTGGCCCA	GCCCACGCAG	GGCACCACGC	CTTCTTCCAA	GCTGGGTGGC	CTGTGGAAGA	1080
CGGTCTCGCC	GCATCGGTCG	CCGATCAGCA	ACATGGTGTC	GATGGCCAAC	AACCACATGT	1140
CGATGACCAA	CTCGGGTGTG	TCGATGACCA	ACACCTTGAG	CTCGATGTTG	AAGGGCTTTG	1200
CTCCGGCGGC	GGCCGCCCAG	GCCGTGCAAA	CCGCGGCGCA	AAACGGGGTC	CGGGCGATGA	1260
GCTCGCTGGG	CAGCTCGCTG	GGTTCTTCGG	GTCTGGGCGG	TGGGGTGGCC	GCCAACTTGG	1320
GTCGGGCGGC	CTCGGTCGGT	TCGTTGTCGG	TGCCGCAGGC	CTGGGCCGCG	GCCAACCAGG	1380
CAGTCACCCC	GGCGGCGCGG	GCGCTGCCGC	TGACCAGCCT	GACCAGCGCC	GCGGAAAGAG	1440
GGCCCGGGCA	GATGCTGGGC	GGGCTGCCGG	TGGGGCAGAT	GGGCGCCAGG	GCCGGTGGTG	1500
GGCTCAGTGG	TGTGCTGCGT	GTTCCGCCGC	GACCCTATGT	GATGCCGCAT	TCTCCGGCGG	1560
CCGGCTAGGA	GAGGGGGCGC	AGACTGTCGT	TATTTGACCA	GTGATCGGCG	GTCTCGGTGT	1620
TTCCGCGGCC	GGCTATGACA	ACAGTCAATG	TGCATGACAA	GTTACAGGTA	TTAGGTCCAG	1680
GTTCAACAAG	GAGACAGGCA	ACATGGCCTC	ACGTTTTATG	ACGGATCCGC	ACGCGATGCG	1740
GGACATGGCG	GGCCGTTTTG	AGGTGCACGC	CCAGACGGTG	GAGGACGAGG	CTCGCCGGAT	1800
GTGGGCGTCC	GCGCAAAACA	TTTCCGGTGC	GGGCTGGAGT	GGCATGGCCG	AGGCGACCTC	1860
GCTAGACACC	ATGGCCCAGA	TGAATCAGGC	GTTTCGCAAC	ATCGTGAACA	TGCTGCACGG	1920
GGTGCGTGAC	GGGCTGGTTC	GCGACGCCAA	CAACTACGAG	CAGCAAGAGC	AGGCCTCCCA	1980
GCAGATCCTC	AGCAGCTAAC	GTCAGCCGCT	GCAGCACAAT	ACTTTTACAA	GCGAAGGAGA	2040

WO 98/16646

128

ACAGGTTCGA	TGACCATCAA	CTATCAATTC	GGGGATGTCG	ACGCTCACGG	CGCCATGATC	2100
CGCGCTCAGG	CCGGGTTGCT	GGAGGCCGAG	CATCAGGCCA	TCATTCGTGA	TGTGTTGACC	2160
GCGAGTGACT	TTTGGGGCGG	CGCCGGTTCG	GCGGCCTGCC	AGGGGTTCAT	TACCCAGTTG	2220
GGCCGTAACT	TCCAGGTGAT	CTACGAGCAG	GCCAACGCCC	ACGGGCAGAA	GGTGCAGGCT	2280
GCCGGCAACA	ACATGGCGCA	AACCGACAGC	GCCGTCGGCT	CCAGCTGGGC	CTGACACCAG	2340
GCCAAGGCCA	GGGACGTGGT	GTACGAGTGA	AGTTCCTCGC	GTGATCCTTC	GGGTGGCAGT	2400
CTAAGTGGTC	AGTGCTGGGG	TGTTGGTGGT	TTGCTGCTTG	GCGGGTTCTT	CGGTGCTGGT	2460
CAGTGCTGCT	CGGGCTCGGG	TGAGGACCTC	GAGGCCCAGG	TAGCGCCGTC	CTTCGATCCA	2520
TTCGTCGTGT	TGTTCGGCGA	GGACGGCTCC	GACGAGGCGG	ATGATCGAGG	CGCGGTCGGG	2580
GAAGATGCCC	ACGACGTCGG	TTCGGCGTCG	TACCTCTCGG	TTGAGGCGTT	CCTGGGGGTT	2640
GTTGGACCAG	ATTTGGCGCC	AGATCTGCTT	GGGGAAGGCG	GTGAACGCCA	GCAGGTCGGT	2700
GCGGGCGGTG	TCGAGGTGCT	CGGCCACCGC	GGGGAGTTTG	TCGGTCAGAG	CGTCGAGTAC	2760
CCGATCATAT	TGGGCAACAA	CTGATTCGGC	GTCGGGCTGG	TCGTAGATGG	AGTGCAGCAG	2820
GGTGCGCACC	CACGGCCAGG	AGGGCTTCGG	GGTGGCTGCC	ATCAGATTGG	CTGCGTAGTG	2880
GGTTCTGCAG	CGCTGCCAGG	CCGCTGCGGG	CAGGGTGGCG	CCGATCGCGG	CCACCAGGCC	2940
GGCGTGGGCG	TCGCTGGTGA	CCAGCGCGAC	CCCGGACAGG	CCGCGGGCGA	CCAGGTCGCG	3000
GAAGAACGCC	AGCCAGCCGG	CCCCGTCCTC	GGCGGAGGTG	ACCTGGATGC	CCAGGATC	3058

(2) INFORMATION FOR SEQ ID NO:107:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 391 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

Met Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met 1 5 10 15 15 10

Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Gl
n Met Trp $20 \\ 25 \\ 30$

Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35 40 45

Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 55 60

Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr

129

65					70					75					80
Ala	Gly	Gln	Ala	Glu 85	Leu	Thr	Ala	Ala	Gln 90	Val	Arg	Val	Ala	Ala 95	Ala
Ala	Tyr	Glu	Thr 100	Ala	Tyr	Gly	Leu	Thr 105	Val	Pro	Pro	Pro	Val 110	Ile	Ala
Glu	Asn	Arg 115	Ala	Glu	Leu	Met	Ile 120	Leu	Ile	Ala	Thr	Asn 125	Leu	Leu	Gly
Gln	Asn 130	Thr	Pro	Ala	Ile	Ala 135	Val	Asn	Glu	Ala	Glu 140	Tyr	Gly	Glu	Met
Trp 145	Ala	Gln	Asp	Ala	Ala 150	Ala	Met	Phe	Gly	Tyr 155	Ala	Ala	Ala	Thr	Ala 160
Thr	Ala	Thr	Ala	Thr 165	Leu	Leu	Pro	Phe	Glu 170	Glu	Ala	Pro	Glu	Met 175	Thr
Ser	Ala	Gly	Gly 180	Leu	Leu	Glu	Gln	Ala 185	Ala	Ala	Val	Glu	Glu 190	Ala	Ser
Asp	Thr	Ala 195	Ala	Ala	Asn	Gln	Leu 200	Met	Asn	Asn	Val	Pro 205	Gln	Ala	Leu
Gln	Gln 210	Leu	Ala	Gln	Pro	Thr 215	Gln	Gly	Thr	Thr	Pro 220	Ser	Ser	Lys	Leu
Gly 225	Gly	Leu	Trp	Lys	Thr 230	Val	Ser	Pro	His	Arg 235	Ser	Pro	Ile	Ser	Asn 240
Met	Val	Ser	Met	Ala 245	Asn	Asn	His	Met	Ser 250	Met	Thr	Asn	Ser	Gly 255	Val
Ser	Met	Thr	Asn 260	Thr	Leu	Ser	Ser	Met 265	Leu	Lys	Gly	Phe	Ala 270	Pro	Ala
Ala	Ala	Ala 275	Gln	Ala	Val	Gln	Thr 280	Ala	Ala	Gln	Asn	Gly 285	Val	Arg	Ala
Met	Ser 290	Ser	Leu	Gly	Ser	Ser 295	Leu	Gly	Ser	Ser	Gly 300	Leu	Gly	Gly	Gly
Val 305	Ala	Ala	Asn	Leu	Gly 310	Arg	Ala	Ala	Ser	Val 315	Gly	Ser	Leu	Ser	Val 320
Pro	Gln	Ala	Trp	Ala 325	Ala	Ala	Asn	Gln	Ala 330	Val	Thr	Pro	Ala	Ala 335	Arg
Ala	Leu	Pro	Leu 340	Thr	Ser	Leu	Thr	Ser 345	Ala	Ala	Glu	Arg	Gly 350	Pro	Gly
Gln	Met	Leu 355	Gly	Gly	Leu	Pro	Val 360	Gly	Gln	Met	Gly	Ala 365	Arg	Ala	Gly
Gly	Gly 370	Leu	Ser	Gly	Val	Leu 375	Arg	Val	Pro	Pro	Arg 380	Pro	Tyr	Val	Met
Pro 385	His	Ser	Pro	Ala	Ala 390	Gly									

PCT/US97/18293

(2) INFORMATION FOR SEQ ID NO:108:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1725 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

GACGTCAGCA	CCCGCCGTGC	AGGGCTGGAG	CGTGGTCGGT	TTTGATCTGC	GGTCAAGGTG	60
ACGTCCCTCG	GCGTGTCGCC	GGCGTGGATG	CAGACTCGAT	GCCGCTCTTT	AGTGCAACTA	120
ATTTCGTTGA	AGTGCCTGCG	AGGTATAGGA	CTTCACGATT	GGTTAATGTA	GCGTTCACCC	180
CGTGTTGGGG	TCGATTTGGC	CGGACCAGTC	GTCACCAACG	CTTGGCGTGC	GCGCCAGGCG	240
GGCGATCAGA	TCGCTTGACT	ACCAATCAAT	CTTGAGCTCC	CGGGCCGATG	CTCGGGCTAA	300
ATGAGGAGGA	GCACGCGTGT	CTTTCACTGC	GCAACCGGAG	ATGTTGGCGG	CCGCGGCTGG	360
CGAACTTCGT	TCCCTGGGGG	CAACGCTGAA	GGCTAGCAAT	GCCGCCGCAG	CCGTGCCGAC	420
GACTGGGGTG	GTGCCCCCGG	CTGCCGACGA	GGTGTCGCTG	CTGCTTGCCA	CACAATTCCG	480
TACGCATGCG	GCGACGTATC	AGACGGCCAG	CGCCAAGGCC	GCGGTGATCC	ATGAGCAGTT	540
TGTGACCACG	CTGGCCACCA	GCGCTAGTTC	ATATGCGGAC	ACCGAGGCCG	CCAACGCTGT	600
GGTCACCGGC	TAGCTGACCT	GACGGTATTC	GAGCGGAAGG	ATTATCGAAG	TGGTGGATTT	660
CGGGGCGTTA	CCACCGGAGA	TCAACTCCGC	GAGGATGTAC	GCCGGCCCGG	GTTCGGCCTC	720
GCTGGTGGCC	GCCGCGAAGA	TGTGGGACAG	CGTGGCGAGT	GACCTGTTTT	CGGCCGCGTC	780
GGCGTTTCAG	TCGGTGGTCT	GGGGTCTGAC	GGTGGGGTCG	TGGATAGGTT	CGTCGGCGGG	840
TCTGATGGCG	GCGGCGGCCT	CGCCGTATGT	GGCGTGGATG	AGCGTCACCG	CGGGGCAGGC	900
CCAGCTGACC	GCCGCCCAGG	TCCGGGTTGC	TGCGGCGGCC	TACGAGACAG	CGTATAGGCT	960
GACGGTGCCC	CCGCCGGTGA	TCGCCGAGAA	CCGTACCGAA	CTGATGACGC	TGACCGCGAC	1020
CAACCTCTTG	GGGCAAAACA	CGCCGGCGAT	CGAGGCCAAT	CAGGCCGCAT	ACAGCCAGAT	1080
GTGGGGCCAA	GACGCGGAGG	CGATGTATGG	CTACGCCGCC	ACGGCGGCGA	CGGCGACCGA	1140
GGCGTTGCTG	CCGTTCGAGG	ACGCCCCACT	GATCACCAAC	CCCGGCGGGC	TCCTTGAGCA	1200
GGCCGTCGCG	GTCGAGGAGG	CCATCGACAC	CGCCGCGGCG	AACCAGTTGA	TGAACAATGT	1260
GCCCCAAGCG	CTGCAACAGC	TGGCCCAGCC	AGCGCAGGGC	GTCGTACCTT	CTTCCAAGCT	1320
GGGTGGGCTG	TGGACGGCGG	TCTCGCCGCA	TCTGTCGCCG	CTCAGCAACG	TCAGTTCGAT	1380
AGCCAACAAC	CACATGTCGA	TGATGGGCAC	GGGTGTGTCG	ATGACCAACA	CCTTGCACTC	1440

GATGTTGAAG	GGCTTAGCTC	CGGCGGCGGC	TCAGGCCGTG	GAAACCGCGG	CGGAAAACGG	1500
GGTCTGGGCG	ATGAGCTCGC	TGGGCAGCCA	GCTGGGTTCG	TCGCTGGGTT	CTTCGGGTCT	1560
GGGCGCTGGG	GTGGCCGCCA	ACTTGGGTCG	GGCGGCCTCG	GTCGGTTCGT	TGTCGGTGCC	1620
GCCAGCATGG	GCCGCGGCCA	ACCAGGCGGT	CACCCGGCG	GCGCGGGCGC	TGCCGCTGAC	1680
CAGCCTGACC	AGCGCCGCCC	AAACCGCCCC	CGGACACATG	CTGGG		1725

(2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 359 amino acids

 (B) TYPE: amino acid

 (C) STRANDEDNESS:

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

Val 1	Val	Asp	Phe	Gly 5	Ala	Leu	Pro	Pro	Glu 10	Ile	Asn	Ser	Ala	Arg 15	Met
Tyr	Ala	Gly	Pro 20	Gly	Ser	Ala	Ser	Leu 25	Val	Ala	Ala	Ala	Lys 30	Met	Trp
Asp	Ser	Val 35	Ala	Ser	Asp	Leu	Phe 40	Ser	Ala	Ala	Ser	Ala 45	Phe	Gln	Ser
Val	Val 50	Trp	Gly	Leu	Thr	Val 55	Gly	Ser	Trp	Ile	Gly 60	Ser	Ser	Ala	Gly
Leu 65	Met	Ala	Ala	Ala	Ala 70	Ser	Pro	Tyr	Val	Ala 75	Trp	Met	Ser	Val	Thr 80
Ala	Gly	Gln	Ala	Gln 85	Leu	Thr	Ala	Ala	Gln 90	Val	Arg	Val	Ala	Ala 95	Ala
Ala	Tyr	Glu	Thr 100	Ala	Tyr	Arg	Leu	Thr 105	Val	Pro	Pro	Pro	Val 110	Ile	Ala
Glu	Asn	Arg 115	Thr	Glu	Leu	Met	Thr 120	Leu	Thr	Ala	Thr	Asn 125	Leu	Leu	Gly
Gln	Asn 130	Thr	Pro	Ala	Ile	Glu 135	Ala	Asn	Gln	Ala	Ala 140	Tyr	Ser	Gln	Met
Trp 145	Gly	Gln	Asp	Ala	Glu 150	Ala	Met	Tyr	Gly	Tyr 155	Ala	Ala	Thr	Ala	Ala 160
Thr	Ala	Thr	Glu	Ala 165	Leu	Leu	Pro	Phe	Glu 170	Asp	Ala	Pro	Leu	Ile 175	Thr
Asn	Pro	Gly	Gly 180	Leu	Leu	Glu	Gln	Ala 185	Val	Ala	Val	Glu	Glu 190	Ala	Ile
Asp	Thr	Ala 195	Ala	Ala	Asn	Gln	Leu 200	Met	Asn	Asn	Val	Pro 205	Gln	Ala	Leu

PCT/US97/18293 WO 98/16646

132

Gln	Gln 210	Leu	Ala	Gln	Pro	Ala 215	Gln	Gly	Val	Val	Pro 220	Ser	Ser	Lys	Leu
Gly 225	Gly	Leu	Trp	Thr	Ala 230	Val	Ser	Pro	His	Leu 235	Ser	Pro	Leu	Ser	Asn 240
Val	Ser	Ser	Ile	Ala 245	Asn	Asn	His	Met	Ser 250	Met	Met	Gly	Thr	Gly 255	Val
Ser	Met	Thr	Asn 260	Thr	Leu	His	Ser	Met 265	Leu	Lys	Gly	Leu	Ala 270	Pro	Ala
Ala	Ala	Gln 275	Ala	Val	Glu	Thr	Ala 280	Ala	Glu	Asn	Gly	Val 285	Trp	Ala	Met
Ser	Ser 290	Leu	Gly	Ser	Gln	Leu 295	Gly	Ser	Ser	Leu	Gly 300	Ser	Ser	Gly	Leu
Gly 305	Ala	Gly	Val	Ala	Ala 310	Asn	Leu	Gly	Arg	Ala 315	Ala	Ser	Val	Gly	Ser 320
Leu	Ser	Val	Pro	Pro 325	Ala	Trp	Ala	Ala	Ala 330	Asn	Gln	Ala	Val	Thr 335	Pro
Ala	Ala	Arg	Ala 340	Leu	Pro	Leu	Thr	Ser 345	Leu	Thr	Ser	Ala	Ala 350	Gln	Thr
Ala	Pro	Gly 355	His	Met	Leu	Gly									

(2) INFORMATION FOR SEQ ID NO:110:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 3027 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

AGTTCAGTCG	AGAATGATAC	TGACGGGCTG	TATCCACGAT	GGCTGAGACA	ACCGAACCAC	60
CGTCGGACGC	GGGGACATCG	CAAGCCGACG	CGATGGCGTT	GGCCGCCGAA	GCCGAAGCCG	120
CCGAAGCCGA	AGCGCTGGCC	GCCGCGGCGC	GGGCCCGTGC	CCGTGCCGCC	CGGTTGAAGC	180
GTGAGGCGCT	GGCGATGGCC	CCAGCCGAGG	ACGAGAACGT	CCCCGAGGAT	ATGCAGACTG	240
GGAAGACGCC	GAAGACTATG	ACGACTATGA	CGACTATGAG	GCCGCAGACC	AGGAGGCCGC	300
ACGGTCGGCA	TCCTGGCGAC	GGCGGTTGCG	GGTGCGGTTA	CCAAGACTGT	CCACGATTGC	360
CATGGCGGCC	GCAGTCGTCA	TCATCTGCGG	CTTCACCGGG	CTCAGCGGAT	ACATTGTGTG	420
GCAACACCAT	GAGGCCACCG	AACGCCAGCA	GCGCGCCGCG	GCGTTCGCCG	CCGGAGCCAA	480
GCAAGGTGTC	ATCAACATGA	CCTCGCTGGA	CTTCAACAAG	GCCAAAGAAG	ACGTCGCGCG	540

TGTGATCGAC	AGCTCCACCG	GCGAATTCAG	GGATGACTTC	CAGCAGCGGG	CAGCCGATTT	600
CACCAAGGTT	GTCGAACAGI	CCAAAGTGGT	' CACCGAAGGC	ACGGTGAACG	CGACAGCCGT	660
CGAATCCATG	AACGAGCATT	CCGCCGTGGT	GCTCGTCGCG	GCGACTTCAC	GGGTCACCAA	720
TTCCGCTGGG	GCGAAAGACG	AACCACGTGC	GTGGCGGCTC	AAAGTGACCG	TGACCGAAGA	780
GGGGGGACAG	TACAAGATGT	CGAAAGTTGA	GTTCGTACCG	TGACCGATGA	CGTACGCGAC	840
GTCAACACCG	AAACCACTGA	CGCCACCGAA	GTCGCTGAGA	TCGACTCAGC	CGCAGGCGAA	900
GCCGGTGATT	CGGCGACCGA	GGCATTTGAC	ACCGACTCTG	CAACGGAATC	TACCGCGCAG	960
AAGGGTCAGC	GGCACCGTGA	CCTGTGGCGA	ATGCAGGTTA	CCTTGAAACC	CGTTCCGGTG	1020
ATTCTCATCC	TGCTCATGTT	GATCTCTGGG	GGCGCGACGG	GATGGCTATA	CCTTGAGCAA	1080
TACGACCCGA	TCAGCAGACG	GACTCCGGCG	CCGCCCGTGC	TGCCGTCGCC	GCGGCGTCTG	1140
ACGGGACAAT	CGCGCTGTTG	TGTATTCACC	CGACACGTCG	ACCAAGACTT	CGCTACCGCC	1200
AGGTCGCACC	TCGCCGGCGA	TTTCCTGTCC	TATACGACCA	GTTCACGCAG	CAGATCGTGG	1260
CTCCGGCGGC	CAAACAGAAG	TCACTGAAAA	CCACCGCCAA	GGTGGTGCGC	GCGGCCGTGT	1320
CGGAGCTACA	TCCGGATTCG	GCCGTCGTTC	TGGTTTTTGT	CGACCAGAGC	ACTACCAGTA	1380
AGGACAGCCC	CAATCCGTCG	ATGGCGGCCA	GCAGCGTGAT	GGTGACCCTA	GCCAAGGTCG	1440
ACGGCAATTG	GCTGATCACC	AAGTTCACCC	CGGTTTAGGT	TGCCGTAGGC	GGTCGCCAAG	1500
TCTGACGGGG	GCGCGGGTGG	CTGCTCGTGC	GAGATACCGG	CCGTTCTCCG	GACAATCACG	1560
GCCCGACCTC	AAACAGATCT	CGGCCGCTGT	CTAATCGGCC	GGGTTATTTA	AGATTAGTTG	1620
CCACTGTATT	TACCTGATGT	TCAGATTGTT	CAGCTGGATT	TAGCTTCGCG	GCAGGGCGGC	1680
TGGTGCACTT	TGCATCTGGG	GTTGTGACTA	CTTGAGAGAA	TTTGACCTGT	TGCCGACGTT	1740
GTTTGCTGTC	CATCATTGGT	GCTAGTTATG	GCCGAGCGGA	AGGATTATCG	AAGTGGTGGA	1800
CTTCGGGGCG	TTACCACCGG	AGATCAACTC	CGCGAGGATG	TACGCCGGCC	CGGGTTCGGC	1860
CTCGCTGGTG	GCCGCCGCGA	AGATGTGGGA	CAGCGTGGCG	AGTGACCTGT	TTTCGGCCGC	1920
GTCGGCGTTT	CAGTCGGTGG	TCTGGGGTCT	GACGACGGGA	TCGTGGATAG	GTTCGTCGGC	1980
GGGTCTGATG	GTGGCGGCGG	CCTCGCCGTA	TGTGGCGTGG	ATGAGCGTCA	CCGCGGGGCA	2040
GGCCGAGCTG	ACCGCCGCCC	AGGTCCGGGT	TGCTGCGGCG	GCCTACGAGA	CGGCGTATGG	2100
GCTGACGGTG	CCCCCGCCGG	TGATCGCCGA	GAACCGTGCT	GAACTGATGA	TTCTGATAGC	2160
GACCAACCTC	TTGGGGCAAA	ACACCCGGC	GATCGCGGTC	AACGAGGCCG	AATACGGGGA	2220
GATGTGGGCC	CAAGACGCCG	CCGCGATGTT	TGGCTACGCC	GCCACGGCGG	CGACGGCGAC	2280
CGAGGCGTTG	CTGCCGTTCG	AGGACGCCCC	ACTGATCACC	AACCCCGGCG	GGCTCCTTGA	2340
GCAGGCCGTC	GCGGTCGAGG	AGGCCATCGA	CACCGCCGCG	GCGAACCAGT	TGATGAACAA	2400

TGTGCCCCAA	GCGCTGCAAC	AACTGGCCCA	GCCCACGAAA	AGCATCTGGC	CGTTCGACCA	2460
ACTGAGTGAA	CTCTGGAAAG	CCATCTCGCC	GCATCTGTCG	CCGCTCAGCA	ACATCGTGTC	2520
GATGCTCAAC	AACCACGTGT	CGATGACCAA	CTCGGGTGTG	TCGATGGCCA	GCACCTTGCA	2580
CTCAATGTTG	AAGGGCTTTG	CTCCGGCGGC	GGCTCAGGCC	GTGGAAACCG	CGGCGCAAAA	2640
CGGGGTCCAG	GCGATGAGCT	CGCTGGGCAG	CCAGCTGGGT	TCGTCGCTGG	GTTCTTCGGG	2700
TCTGGGCGCT	GGGGTGGCCG	CCAACTTGGG	TCGGGCGGCC	TCGGTCGGTT	CGTTGTCGGT	2760
GCCGCAGGCC	TGGGCCGCGG	CCAACCAGGC	GGTCACCCCG	GCGGCGCGGG	CGCTGCCGCT	2820
GACCAGCCTG	ACCAGCGCCG	CCCAAACCGC	CCCCGGACAC	ATGCTGGGCG	GGCTACCGCT	2880
GGGCAACTG	ACCAATAGCG	GCGGCGGGTT	CGGCGGGGTT	AGCAATGCGT	TGCGGATGCC	2940
GCCGCGGGCG	TACGTAATGC	CCCGTGTGCC	CGCCGCCGGG	TAACGCCGAT	CCGCACGCAA	3000
TGCGGGCCCT	CTATGCGGGC	AGCGATC				3027

(2) INFORMATION FOR SEQ ID NO:111:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 396 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

Val Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Lys Met Trp 20 25 30

Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35 40 45

Val Val Trp Gly Leu Thr Thr Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 60

Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr 65 70 75 80

Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala 85 90 . 95

Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Val Ile Ala 100 105 110

Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly 115 120 125

Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met

PCT/US97/18293 WO 98/16646

135

	130					135					140				
Trp 145	Ala	Gln	Asp	Ala	Ala 150	Ala	Met	Phe	Gly	Tyr 155	Ala	Ala	Thr	Ala	Ala 160
Thr	Ala	Thr	Glu	Ala 165	Leu	Leu	Pro	Phe	Glu 170	Asp	Ala	Pro	Leu	Ile 175	Thr
Asn	Pro	Gly	Gly 180	Leu	Leu	Glu	Gln	Ala 185	Val	Ala	Val	Glu	Glu 190	Ala	Ile
Asp	Thr	Ala 195	Ala	Ala	Asn	Gln	Leu 200	Met	Asn	Asn	Val	Pro 205	Gln	Ala	Leu
Gln	Gln 210	Leu	Ala	Gln	Pro	Thr 215	Lys	Ser	Ile	Trp	Pro 220	Phe	Asp	Gln	Leu
Ser 225	Glu	Leu	Trp	Lys	Ala 230	Ile	Ser	Pro	His	Leu 235	Ser	Pro	Leu	Ser	Asn 240
Ile	Val	Ser	Met	Leu 245	Asn	Asn	His	Val	Ser 250	Met	Thr	Asn	Ser	Gly 255	Val
Ser	Met	Ala	Ser 260	Thr	Leu	His	Ser	Met 265	Leu	Lys	Gly	Phe	Ala 270	Pro	Ala
Ala	Ala	Gln 275	Ala	Val	Glu	Thr	Ala 280	Ala	Gln	Asn	Gly	Val 285	Gln	Ala	Met
Ser	Ser 290	Leu	Gly	Ser	Gln	Leu 295	Gly	Ser	Ser	Leu	Gly 300	Ser	Ser	Gly	Leu
Gly 305	Ala	Gly	Val	Ala	Ala 310	Asn	Leu	Gly	Arg	Ala 315	Ala	Ser	Val	Gly	Ser 320
Leu	Ser	Val	Pro	Gln 325	Ala	Trp	Ala	Ala	Ala 330	Asn	Gln	Ala	Val	Thr 335	Pro
Ala	Ala	Arg	Ala 340	Leu	Pro	Leu	Thr	Ser 345	Leu	Thr	Ser	Ala	Ala 350	Gln	Thr
Ala	Pro	Gly 355	His	Met	Leu	Gly	Gly 360	Leu	Pro	Leu	Gly	Gln 365	Leu	Thr	Asn
Ser	Gly 370	Gly	Gly	Phe	Gly	Gly 375	Val	Ser	Asn	Ala	Leu 380	Arg	Met	Pro	Pro
Arg 385	Ala	Tyr	Val	Met	Pro 390	Arg	Val	Pro	Ala	Ala 395	Gly				

(2) INFORMATION FOR SEQ ID NO:112:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1616 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) S	EQUENCE DES	CRIPTION: S	EQ ID NO:11	2:		
CATCGGAGGG	AGTGATCACC	ATGCTGTGGC	ACGCAATGCC	ACCGGAGTAA	ATACCGCACG	60
GCTGATGGCC	GGCGCGGGTC	CGGCTCCAAT	GCTTGCGGCG	GCCGCGGGAT	GGCAGACGCT	120
TTCGGCGGCT	CTGGACGCTC	AGGCCGTCGA	GTTGACCGCG	CGCCTGAACT	CTCTGGGAGA	180
AGCCTGGACT	GGAGGTGGCA	GCGACAAGGC	GCTTGCGGCT	GCAACGCCGA	TGGTGGTCTG	240
GCTACAAACC	GCGTCAACAC	AGGCCAAGAC	CCGTGCGATG	CAGGCGACGG	CGCAAGCCGC	300
GGCATACACC	CAGGCCATGG	CCACGACGCC	GTCGCTGCCG	GAGATCGCCG	CCAACCACAT	360
CACCCAGGCC	GTCCTTACGG	CCACCAACTT	CTTCGGTATC	AACACGATCC	CGATCGCGTT	420
GACCGAGATG	GATTATTTCA	TCCGTATGTG	GAACCAGGCA	GCCCTGGCAA	TGGAGGTCTA	480
CCAGGCCGAG	ACCGCGGTTA	ACACGCTTTT	CGAGAAGCTC	GAGCCGATGG	CGTCGATCCT	540
TGATCCCGGC	GCGAGCCAGA	GCACGACGAA	CCCGATCTTC	GGAATGCCCT	CCCCTGGCAG	600
CTCAACACCG	GTTGGCCAGT	TGCCGCCGGC	GGCTACCCAG	ACCCTCGGCC	AACTGGGTGA	660
GATGAGCGGC	CCGATGCAGC	AGCTGACCCA	GCCGCTGCAG	CAGGTGACGT	CGTTGTTCAG	720
CCAGGTGGGC	GGCACCGGCG	GCGGCAACCC	AGCCGACGAG	GAAGCCGCGC	AGATGGGCCT	780
GCTCGGCACC	AGTCCGCTGT	CGAACCATCC	GCTGGCTGGT	GGATCAGGCC	CCAGCGCGGG	840
CGCGGGCCTG	CTGCGCGCGG	AGTCGCTACC	TGGCGCAGGT	GGGTCGTTGA	CCCGCACGCC	900
GCTGATGTCT	CAGCTGATCG	AAAAGCCGGT	TGCCCCTCG	GTGATGCCGG	CGGCTGCTGC	960
CGGATCGTCG	GCGACGGGTG	GCGCCGCTCC	GGTGGGTGCG	GGAGCGATGG	GCCAGGGTGC	1020
GCAATCCGGC	GGCTCCACCA	GGCCGGGTCT	GGTCGCGCCG	GCACCGCTCG	CGCAGGAGCG	1080
TGAAGAAGAC	GACGAGGACG	ACTGGGACGA	AGAGGACGAC	TGGTGAGCTC	CCGTAATGAC	1140
AACAGACTTC	CCGGCCACCC	GGGCCGGAAG	ACTTGCCAAC	ATTTTGGCGA	GGAAGGTAAA	1200
GAGAGAAAGT	AGTCCAGCAT	GGCAGAGATG	AAGACCGATG	CCGCTACCCT	CGCGCAGGAG	1260
GCAGGTAATT	TCGAGCGGAT	CTCCGGCGAC	CTGAAAACCC	AGATCGACCA	GGTGGAGTCG	1320
ACGGCAGGTT	CGTTGCAGGG	CCAGTGGCGC	GGCGCGGCGG	GGACGGCCGC	CCAGGCCGCG	1380
GTGGTGCGCT	TCCAAGAAGC	AGCCAATAAG	CAGAAGCAGG	AACTCGACGA	GATCTCGACG	1440
AATATTCGTC	AGGCCGGCGT	CCAATACTCG	AGGGCCGACG	AGGAGCAGCA	GCAGGCGCTG	1500
TCCTCGCAAA	TGGGCTTCTG	ACCCGCTAAT	ACGAAAAGAA	ACGGAGCAAA	AACATGACAG	1560
AGCAGCAGTG	GAATTTCGCG	GGTATCGAGG	CCGCGGCAAG	CGCAATCCAG	GGAAAT	1616

(2) INFORMATION FOR SEQ ID NO:113:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 432 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

137

(D) TOPOLOGY: linear

(xi) S	EQUENCE DES	CRIPTION: SI	EQ ID NO:113	3:		
CTAGTGGATG	GGACCATGGC	CATTTTCTGC	AGTCTCACTG	CCTTCTGTGT	TGACATTTTG	60
GCACGCCGGC	GGAAACGAAG	CACTGGGGTC	GAAGAACGGC	TGCGCTGCCA	TATCGTCCGG	120
AGCTTCCATA	CCTTCGTGCG	GCCGGAAGAG	CTTGTCGTAG	TCGGCCGCCA	TGACAACCTC	180
TCAGAGTGCG	CTCAAACGTA	TAAACACGAG	AAAGGGCGAG	ACCGACGGAA	GGTCGAACTC	240
GCCCGATCCC	GTGTTTCGCT	ATTCTACGCG	AACTCGGCGT	TGCCCTATGC	GAACATCCCA	300
GTGACGTTGC	CTTCGGTCGA	AGCCATTGCC	TGACCGGCTT	CGCTGATCGT	CCGCGCCAGG	360
TTCTGCAGCG	CGTTGTTCAG	CTCGGTAGCC	GTGGCGTCCC	ATTTTTGCTG	GACACCCTGG	420
TACGCCTCCG	AA					432

(2) INFORMATION FOR SEQ ID NO:114:

115

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 368 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

Met Leu Trp His Ala Met Pro Pro Glu Xaa Asn Thr Ala Arg Leu Met 10 Ala Gly Ala Gly Pro Ala Pro Met Leu Ala Ala Ala Gly Trp Gln Thr Leu Ser Ala Ala Leu Asp Ala Gln Ala Val Glu Leu Thr Ala Arg 40 Leu Asn Ser Leu Gly Glu Ala Trp Thr Gly Gly Gly Ser Asp Lys Ala Leu Ala Ala Ala Thr Pro Met Val Val Trp Leu Gln Thr Ala Ser Thr Gln Ala Lys Thr Arg Ala Met Gln Ala Thr Ala Gln Ala Ala Tyr 90 Thr Gln Ala Met Ala Thr Thr Pro Ser Leu Pro Glu Ile Ala Ala Asn 105

His Ile Thr Gln Ala Val Leu Thr Ala Thr Asn Phe Phe Gly Ile Asn

120

Thr	Ile 130	Pro	Ile	Ala	Leu	Thr 135	Glu	Met	Asp	Tyr	Phe 140	Ile	Arg	Met	Trp
Asn 145	Gln	Ala	Ala	Leu	Ala 150	Met	Glu	Val	Tyr	Gln 155	Ala	Glu	Thr	Ala	Val 160
Asn	Thr	Leu	Phe	Glu 165	Lys	Leu	Glu	Pro	Met 170	Ala	Ser	Ile	Leu	Asp 175	Pro
Gly	Ala	Ser	Gln 180	Ser	Thr	Thr	Asn	Pro 185	Ile	Phe	Gly	Met	Pro 190	Ser	Pro
Gly	Ser	Ser 195	Thr	Pro	Val	Gly	Gln 200	Leu	Pro	Pro	Ala	Ala 205	Thr	Gln	Thr
Leu	Gly 210	Gln	Leu	Gly	Glu	Met 215	Ser	Gly	Pro	Met	Gln 220	Gln	Leu	Thr	Gln
Pro 225	Leu	Gln	Gln	Val	Thr 230	Ser	Leu	Phe	Ser	Gln 235	Val	Gly	Gly	Thr	Gly 240
Gly	Gly	Asn	Pro	Ala 245	Asp	Glu	Glu	Ala	Ala 250	Gln	Met	Gly	Leu	Leu 255	Gly
Thr	Ser	Pro	Leu 260	Ser	Asn	His	Pro	Leu 265	Ala	Gly	Gly	Ser	Gly 270	Pro	Ser
Ala	Gly	Ala 275	Gly	Leu	Leu	Arg	Ala 280	Glu	Ser	Leu	Pro	Gly 285	Ala	Gly	Gly
Ser	Leu 290	Thr	Arg	Thr	Pro	Leu 295	Met	Ser	Gln	Leu	Ile 300	Glu	Lys	Pro	Val
Ala 305	Pro	Ser	Val	Met	Pro 310	Ala	Ala	Ala	Ala	Gly 315	Ser	Ser	Ala	Thr	Gly 320
Gly	Ala	Ala	Pro	Val 325	Gly	Ala	Gly	Ala	Met 330	Gly	Gln	Gly	Ala	Gln 335	Ser
Gly	Gly	Ser	Thr 340	Arg	Pro	Gly	Leu	Val 345	Ala	Pro	Ala	Pro	Leu 350	Ala	Gln
Glu	Arg	Glu 355	Glu	Asp	Asp	Glu	Asp 360	Asp	Trp	Asp	Glu	Glu 365	Asp	Asp	Trp

(2) INFORMATION FOR SEQ ID NO:115:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 100 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

Met Ala Glu Met Lys Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly 10

Asn	Phe	Glu	Arg 20	Ile	Ser	Gly	Asp	Leu 25	Lys	Thr	Gln	Ile	Asp 30	Gln	Val
Glu	Ser	Thr 35	Ala	Gly	Ser	Leu	Gln 40	Gly	Gln	Trp	Arg	Gly 45	Ala	Ala	Gly
Thr	Ala 50	Ala	Gln	Ala	Ala	Val 55	Val	Arg	Phe	Gln	Glu 60	Ala	Ala	Asn	Lys
Gln 65	Lys	Gln	Glu	Leu	Asp 70	Glu	Ile	Ser	Thr	Asn 75	Ile	Arg	Gln	Ala	Gly 80
Val	Gln	Tyr	Ser	Arg 85	Ala	Asp	Glu	Glu	Gln 90	Gln	Gln	Ala	Leu	Ser 95	Ser
Gln	Met	Gly	Phe 100												

- (2) INFORMATION FOR SEQ ID NO:116:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 396 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

GATCTCCGGC	GACCTGAAAA	CCCAGATCGA	CCAGGTGGAG	TCGACGGCAG	GTTCGTTGCA	60
GGGCCAGTGG	CGCGGCGCGG	CGGGGACGGC	CGCCCAGGCC	GCGGTGGTGC	GCTTCCAAGA	120
AGCAGCCAAT	AAGCAGAAGC	AGGAACTCGA	CGAGATCTCG	ACGAATATTC	GTCAGGCCGG	180
CGTCCAATAC	TCGAGGCCG	ACGAGGAGCA	GCAGCAGGCG	CTGTCCTCGC	AAATGGGCTT	240
CTGACCCGCT	AATACGAAAA	GAAACGGAGC	AAAAACATGA	CAGAGCAGCA	GTGGAATTTC	300
GCGGGTATCG	AGGCCGCGGC	AAGCGCAATC	CAGGGAAATG	TCACGTCCAT	TCATTCCCTC	360
CTTGACGAGG	GGAAGCAGTC	CCTGACCAAG	CTCGCA			396

- (2) INFORMATION FOR SEQ ID NO:117:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 80 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

Ile Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala

PCT/US97/18293 WO 98/16646

140

	1				5					10					15		
	Gly	Ser	Leu	Gln 20	Gly	Gln	Trp	Arg	Gly 25	Ala	Ala	Gly	Thr	Ala 30	Ala	Gln	
	Ala	Ala	Val 35	Val	Arg	Phe	Gln	Glu 40	Ala	Ala	Asn	Lys	Gln 45	Lys	Gln	Glu	
	Leu	Asp 50	Glu	Ile	Ser	Thr	Asn 55	Ile	Arg	Gln	Ala	Gly 60	Val	Gln	Tyr	Ser	
	Arg 65	Ala	Asp	Glu	Glu	Gln 70	Gln	Gln	Ala	Leu	Ser 75	Ser	Gln	Met	Gly	Phe 80	
(2)	INFOF	RMATI	ON I	FOR S	SEQ 1	D NC	:118	3:									
	(i)	(A) (B) (C)	LEN TYN STN	NGTH: PE: r RANDE	: 387 nucle EDNES	TERIS 7 bas eic a SS: s inea	se pa scid singl	airs									
	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q II	NO:	118:	:						
GTGG	ATCCC	G AT	'CCCG	TGTT	TCG	CTAT	TCT	ACGC	GAAC	TC G	GCGT	TGCC	C TA	TGCG	SAACA		60
TCCCA	AGTGA	C GI	'TGCC	TTCG	GTC	GAAG	CCA	TTGC	CTGA	CC G	GCTT	CGCT	G AT	CGTC	CGCG		120
CCAG	STTCT	G CA	.GCGC	GTTG	TTC	AGCT	CGG	TAGO	CGTG	GC G	STCCC	ATTT	T TG	CTGG	ACAC		180
CCTG	GTACG	С СТ	CCGA	ACCG	CTA	.CCGC	CCC	AGGC	CGCT	GC G	SAGCT	TGGT	C AG	GGAC	TGCT		240
TCCCC	CTCGT	C AA	.GGAC	GGAA	TGA	ATGG	ACG	TGAC	ATTT	CC C	CTGGA	TTGC	G CT	TGCC	GCGG		300
CCTC	GATAC	C CG	CGAA	ATTC	CAC	TGCT	GCT	CTGT	CATG	тт т	TTGC	TCCG	т тт	CTTT	TCGT		360
ATTAC	GCGGG	T CA	.GAAG	CCCA	TTT	GCGA											387
(2)	NFOR	MATI	ON F	OR S	EQ I	D NO	:119	:									
	(i)	(A) (B) (C)	LEN TYP STR	GTH: E: n ANDE	272 ucle DNES	ERIS bas ic a S: s inea	e pa cid ingl	irs									
											-						
((xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	119:							
CGGCA	CGAG	G AT	CTCG	GTTG	GCC	CAAC	GGC	GCTG	GCGA	GG G	CTCC	GTTC	C GG	GGGC	GAGC		60
TGCGC	GCCG	G AT	GCTT	CCTC	TGC	CCGC	AGC	CGCG	CCTG	GA T	GGAT	GGAC	C AG	TTGC'	TACC		120
TTCCC	GACG'	г тт	CGTT	CGGT	GTC'	TGTG	CGA	TAGC	GGTG	AC C	CCGG	CGCG	C AC	GTCG	GGAG		180

141

240

272

TGTTGGGGGG CAGGCCGGGT CGGTGGTTCG GCCGGGGACG CAGACGGTCT GGACGGAACG GGCGGGGTT CGCCGATTGG CATCTTTGCC CA (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120: Asp Pro Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val Val Ala Ala Leu (2) INFORMATION FOR SEQ ID NO:121: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:121: Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser (2) INFORMATION FOR SEQ ID NO:122: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122: Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys 10 Glu Gly Arg

142

- (2) INFORMATION FOR SEQ ID NO:123:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro 10

- (2) INFORMATION FOR SEQ ID NO:124:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid

 - (C) STRANDEDNESS:
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val

- (2) INFORMATION FOR SEQ ID NO:125:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid(C) STRANDEDNESS:

 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

Ala Glu Glu Ser Ile Ser Thr Xaa Glu Xaa Ile Val Pro 5 10

- (2) INFORMATION FOR SEQ ID NO:126:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids(B) TYPE: amino acid

 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

Asp Pro Glu Pro Ala Pro Pro Val Pro Thr Ala Ala Ser Pro Pro 10

Ser

- (2) INFORMATION FOR SEQ ID NO:127:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly

- (2) INFORMATION FOR SEQ ID NO:128:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Leu Thr Ser • 5 10

Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala Asn 25

- (2) INFORMATION FOR SEQ ID NO:129:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

Asp Pro Pro Asp Pro His Gln Xaa Asp Met Thr Lys Gly Tyr Tyr Pro 10

144

Gly Gly Arg Arg Xaa Phe 20

- (2) INFORMATION FOR SEQ ID NO:130:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

Asp Pro Gly Tyr Thr Pro Gly

- (2) INFORMATION FOR SEQ ID NO:131:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
- (D) OTHER INFORMATION: /note= "The Second Residue Can Be Either a Pro or Thr"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

Xaa Xaa Gly Phe Thr Gly Pro Gln Phe Tyr 1 5 10

- (2) INFORMATION FOR SEQ ID NO:132:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
- (D) OTHER INFORMATION: / note = "The Third Residue Can Be Either a Gln or Leu"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

(2) INFORMATION FOR SEQ ID NO:133:

PCT/US97/18293 WO 98/16646

145

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

Xaa Xaa Xaa Glu Lys Pro Phe Leu Arg

- (2) INFORMATION FOR SEQ ID NO:134:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

Xaa Asp Ser Glu Lys Ser Ala Thr Ile Lys Val Thr Asp Ala Ser

- (2) INFORMATION FOR SEQ ID NO:135:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid

 - (C) STRANDEDNESS:
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

Ala Gly Asp Thr Xaa Ile Tyr Ile Val Gly Asn Leu Thr Ala Asp

- (2) INFORMATION FOR SEQ ID NO:136:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear

146

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

Ala Pro Glu Ser Gly Ala Gly Leu Gly Gly Thr Val Gln Ala Gly 10

- (2) INFORMATION FOR SEQ ID NO:137:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

Xaa Tyr Ile Ala Tyr Xaa Thr Thr Ala Gly Ile Val Pro Gly Lys Ile

Asn Val His Leu Val 20

- (2) INFORMATION FOR SEQ ID NO:138:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 882 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEO ID NO:138:

60	GCGGTGGCGG	GCTGGCGGTG	GTTTCGCCTC	GCGGTGATCG	CGTGGCCTTT	GCAACGCTGT
120	GCCCAGCCAG	ACACCAAAAC	CGGTAGAGGG	GCCTCAAAAC	ACCGACCGCG	TCACCATCCG
180	CCTCCGCCCG	GGTCCCGCCG	AGCAGGCGCC	CCGACGCAAC	GCCGTTGTTG	GGAAGTTCAT
240	GTGGTGCCGC	TGTACAGAAC	CCATTCCGGC	CAGGGCGGCA	CGCTGGATTC	ATGATCCCAC
300	GAAGCGCCGG	GCCTGCGCCG	CGCCGGCTTC	GTGGGTGGGA	CTCACCCGGG	GGCCGGGTAC
360	ATTCCCCCGT	CCCGATCATC	CAATCCCGGT	GCCCCGGTGC	TGTTGTGCCT	CCGTGCCCGG
420	ACGCCGGTGA	ACCGCCGACG	TCCCCACCGC	ATGCCGACCA	GCAGCCTGGA	TCCCGGGTTG
480	ACGCCGCCAA	GCCGGTGACC	CGCCGACCAC	CCGACCACGC	GACGACGCCG	CCACGTCGGC
540	ACGCCGGTGA	GCCGCCGACC	CGCCAACGAC	GTGACCACGC	GACCACGCCG	CGACGCCGCC
600	GCTCCGACCA	GACGACGGTC	CCGTCGCCCC	GCCCGACGA	AACGACCGTC	CCACGCCACC
660	GCTCCGCAGC	GACGACCGTC	CCGCCACGCC	GCTCCAGCCA	GACCACGGTC	CCGTCGCCCC

WO 98/16646

147

PCT/US97/18293

CGACGCAGCA	GCCCACGCAA	CAACCAACCC	AACAGATGCC	AACCCAGCAG	CAGACCGTGG	720
CCCCGCAGAC	GGTGGCGCCG	GCTCCGCAGC	CGCCGTCCGG	TGGCCGCAAC	GGCAGCGGCG	780
GGGGCGACTT	ATTCGGCGGG	TTCTGATCAC	GGTCGCGGCT	TCACTACGGT	CGGAGGACAT	840
GGCCGGTGAT	GCGGTGACGG	TGGTGCTGCC	CTGTCTCAAC	GA		882

(2) INFORMATION FOR SEQ ID NO:139:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 815 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

CCATCAACCA	ACCGCTCGCG	CCGCCCGCGC	CGCCGGATCC	GCCGTCGCCG	CCACGCCCGC	60
CGGTGCCTCC	GGTGCCCCCG	TTGCCGCCGT	CGCCGCCGTC	GCCGCCGACC	GGCTGGGTGC	120
CTAGGGCGCT	GTTACCGCCC	TGGTTGGCGG	GGACGCCGCC	GGCACCACCG	GTACCGCCGA	180
TGGCGCCGTT	GCCGCCGGCG	GCACCGTTGC	CACCGTTGCC	ACCGTTGCCA	CCGTTGCCGA	240
CCAGCCACCC	GCCGCGACCA	CCGGCACCGC	CGGCGCCGCC	CGCACCGCCG	GCGTGCCCGT	300
TCGTGCCCGT	ACCGCCGGCA	CCGCCGTTGC	CGCCGTCACC	GCCGACGGAA	CTACCGGCGG	360
ACGCGGCCTG	CCCGCCGGCG	CCGCCCGCAC	CGCCATTGGC	ACCGCCGTCA	CCGCCGGCTG	420
GGAGTGCCGC	GATTAGGGCA	CTGACCGGCG	CAACCAGCGC	AAGTACTCTC	GGTCACCGAG	480
CACTTCCAGA	CGACACCACA	GCACGGGGTT	GTCGGCGGAC	TGGGTGAAAT	GGCAGCCGAT	540
AGCGGCTAGC	TGTCGGCTGC	GGTCAACCTC	GATCATGATG	TCGAGGTGAC	CGTGACCGCG	600
CCCCCGAAG	GAGGCGCTGA	ACTCGGCGTT	GAGCCGATCG	GCGATCGGTT	GGGGCAGTGC	660
CCAGGCCAAT	ACGGGGATAC	CGGGTGTCNA	AGCCGCCGCG	AGCGCAGCTT	CGGTTGCGCG	720
ACNGTGGTCG	GGGTGGCCTG	TTACGCCGTT	GTCNTCGAAC	ACGAGTAGCA	GGTCTGCTCC	780
GGCGAGGGCA	TCCACCACGC	GTTGCGTCAG	CTCGT			815

(2) INFORMATION FOR SEQ ID NO:140:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1152 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

		0:	EQ ID NO:14	CRIPTION: S	EQUENCE DES	(xi) S
60	GCGGTTCAGC	ACTCACCGGG	GAGTCTCCGG	TCAGATCAGA	GGCTGAGGTC	ACCAGCCGCC
120	TTTGACGCTC	CAGGCGCTGA	GCCCGCGAAA	GAAGATCCTC	AACAACTGCT	CTTCTCCCAG
180	GGGCTAACAG	TGGCACCGCT	CAGATTGATA	GATCATCCGG	TGAACGACGA	TATGACCGGT
240	CTTTGCCGAC	CGCGGATCAG	GACTCCGTGT	GTATGTCTCG	TGGTGCAGCT	GTGCGCAAGA
300	CGAGACGCTG	AGTATCCGAT	GGCGAGAGCC	CGAGGAGCTC	TCGTGTGGAG	GGCCGGGTGA
360	TGAGATGCTC	CCTTCATCGT	ATGACAACGC	GCGGCCGACG	CGCTGTTTGG	GACGGCATCA
420	CCGGATCTCA	ACTACCAGGG	ACCGACGGCC	GCTCTTCACG	GCGACATCCA	AAGCGTGAGC
480	CGACGATCCT	TTCACCGCAC	CGTCAGCAAG	GCCGCGGCTC	TGTCATACGC	ACACCCGACG
540	TCAGCAGGCC	AGATCCTGAA	GTGTCGAGGA	CAAGCGGATC	TGTCGTTAAG	GCGTTCTGCC
600	GATGAAGCAC	GCATCCGCAC	GTTGCTGAGA	GGGGCAAGAC	CACACACGTC	TTGATTCGGG
660	CGAGGGAAAT	TGAACGGGTT	CTGGCGGAGT	ATCGGGCTCC	GGGTCGATCG	TCGCTGGCCT
720	CGCATTCCAG	CGCAGGAGTT	CATCTCGTCC	CGCGCTGGGG	CATACTTCAC	GCCGCAAAGG
780	CGGCTATTCG	TGGTCAGCCT	TTCAACTCGA	GTTGGACGCC	CTCGGCCGCC	GGCCGCTCGA
840	GTATATCGGT	GCCTGAACGC	GAGCGTCACA	AGGGGCGATC	AGAACATCAT	CTGCTGTACA
900	CACGAGCTCC	CCGAATTCGG	ACGTCTCGTG	AGGGCACGCA	AGGATTCACG	TTCCTACACC
960	CAGGCCGGCC	CCGCTGCGCC	CGTACGTAAT	GCTCAGTGCC	CTGGCCGGCT	GCTGAAACCG
1020	GGAGCCGTGC	CCAGCCGGTT	GAATTGCCGC	ATCGGACAGC	ATACCAGCAG	CGCCGGCCGA
1080	GCCGGTGTCC	CCGTGGCGGC	AGGCCTGGCA	GGCAGCGAAC	CACACTCACC	ATACCGCCGG
1140	CATTGCCTGC	GCCCGACTTC	TGACACGTCG	CATCACGTAG	CGACACCGCC	GCGTCTACTT
1152					AG	GTTCGGCACG

(2) INFORMATION FOR SEQ ID NO:141:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 655 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

CTCGTGCCGA TTCGGCAGG	G TGTACTTGCC	GGTGGTGTAN	GCCGCATGAG	TGCCGACGAC	60
CAGCAATGCG GCAACAGCA	C GGATCCCGGT	CAACGACGCC	ACCCGGTCCA	CGTGGGCGAT	120

149

CCGCTCGAGT	CCGCCCTGGG	CGGCTCTTTC	CTTGGGCAGG	GTCATCCGAC	GTGTTTCCGC	180
CGTGGTTTGC	CGCCATTATG	CCGGCGCGCC	GCGTCGGGCG	GCCGGTATGG	CCGAANGTCG	240
ATCAGCACAC	CCGAGATACG	GGTCTGTGCA	AGCTTTTTGA	GCGTCGCGCG	GGGCAGCTTC	300
GCCGGCAATT	CTACTAGCGA	GAAGTCTGGC	CCGATACGGA	TCTGACCGAA	GTCGCTGCGG	360
TGCAGCCCAC	CCTCATTGGC	GATGGCGCCG	ACGATGGCGC	CTGGACCGAT	CTTGTGCCGC	420
TTGCCGACGG	CGACGCGGTA	GGTGGTCAAG	TCCGGTCTAC	GCTTGGGCCT	TTGCGGACGG	480
TCCCGACGCT	GGTCGCGGTT	GCGCCGCGAA	AGCGGCGGGT	CGGGTGCCAT	CAGGAATGCC	540
TCACCGCCGC	GGCACTGCAC	GGCCAGTGCC	GCGGCGATGT	CAGCCATCGG	GACATCATGC	600
TCGCGTTCAT	ACTCCTCGAC	CAGTCGGCGG	AACAGCTCGA	TTCCCGGACC	GCCCA	655

(2) INFORMATION FOR SEQ ID NO:142:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 267 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

Ash Ala Val Val S Phe Ala Val Val S Phe Ala Val Ile Gly Phe Ala Ser Leu Ala Val Ala Val Ala Val Ala Val S Pro S Pr

Thr Pro Pro Thr Thr Pro Pro Thr Thr Pro Val Thr Thr Pro Pro Thr

150

145 150 155 160 Thr Pro Pro Thr Thr Pro Val Thr Thr Pro Pro Thr Thr Pro Pro Thr 165 170 Thr Pro Val Thr Thr Pro Pro Thr Thr Val Ala Pro Thr Thr Val Ala 185 Pro Thr Thr Val Ala Pro Thr Thr Val Ala Pro Thr Thr Val Ala Pro 195 200 Ala Thr Ala Thr Pro Thr Thr Val Ala Pro Gln Pro Thr Gln Gln Pro Thr Gln Gln Pro Thr Gln Gln Met Pro Thr Gln Gln Gln Thr Val Ala Pro Gln Thr Val Ala Pro Ala Pro Gln Pro Pro Ser Gly Gly Arg Asn 245 250 Gly Ser Gly Gly Gly Asp Leu Phe Gly Gly Phe

(2) INFORMATION FOR SEQ ID NO:143:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 174 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:

151

Ala Pro Pro Leu Ala Pro Pro Ser Pro Pro Ala Gly Ser Ala Ala Ile 130 $$135\$

Arg Ala Leu Thr Gly Ala Thr Ser Ala Ser Thr Leu Gly His Arg Ala 145 150 155 160

Leu Pro Asp Asp Thr Thr Ala Arg Gly Cys Arg Arg Thr Gly 165 170

- (2) INFORMATION FOR SEQ ID NO:144:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

Gln Pro Pro Ala Glu Val Ser Asp Gln Arg Val Ser Gly Leu Thr Gly

10 15

Ala Val Gln Pro Ser Pro Arg Thr Thr Ala Glu Asp Pro Arg Pro Arg 20 25 30

Asn Arg Arg 35

- (2) INFORMATION FOR SEQ ID NO:145:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 104 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:

Arg Ala Asp Ser Ala Gly Cys Thr Cys Arg Trp Cys Xaa Pro His Glu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Cys Arg Arg Pro Ala Met Arg Gln Gln His Gly Ser Arg Ser Thr Thr 20 25 30

Pro Pro Gly Pro Arg Gly Arg Ser Ala Arg Val Arg Pro Gly Arg Leu 35 40 45

Phe Pro Trp Ala Gly Ser Ser Asp Val Phe Pro Pro Trp Phe Ala Ala 50 55 60

Ile Met Pro Ala Arg Arg Val Gly Arg Pro Val Trp Pro Xaa Val Asp 65 70 75 80

152

Gln His Thr Arg Asp Thr Gly Leu Cys Lys Leu Phe Glu Arg Arg Ala 85 90 95

Gly Gln Leu Arg Arg Gln Phe Tyr
100

- (2) INFORMATION FOR SEQ ID NO:146:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 53 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:

- (A) DESCRIPTION: /desc = "PCR primer"
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
- GGATCCATAT GGGCCATCAT CATCATCATC ACGTGATCGA CATCATCGGG ACC

53

- (2) INFORMATION FOR SEQ ID NO:147:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "PCR Primer"
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

CCTGAATTCA GGCCTCGGTT GCGCCGGCCT CATCTTGAAC GA

- (2) INFORMATION FOR SEQ ID NO:148:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "PCR Primer"
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis

153

	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:148:	
GGA	TCCT	SCA GGCTCGAAAC CACCGAGCGG T	31
(2)	INFO	RMATION FOR SEQ ID NO:149:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PCR primer"	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosis	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:149:	
CTC	ГGAAТ	TC AGCGCTGGAA ATCGTCGCGA T	31
(2)	INFO	RMATION FOR SEQ ID NO:150:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PCR primer"	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosis	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:150:	
GGAT	'CCAG	CG CTGAGATGAA GACCGATGCC GCT	33
(2)	INFO	RMATION FOR SEQ ID NO:151:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PCR primer"	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosis	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

GAGAGAATTC TCAGAAGCCC ATTTGCGAGG ACA										33						
(2)	INF	ORMA	MOITA	I FOF	R SEÇ] ID	NO:1	52:								
	(i	(A) I B) T C) S	ENGT YPE: TRAN	CHARA TH: 1 nuc IDEDN LOGY:	993 leic ESS:	base aci sin	pai .d	rs.							
	(ii) MC	LECU	LE I	YPE:	DNA	(ge	nomi	.c)							
	(vi) OR			OURC		obac	teri	um t	uber	culo	sis				
	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1521273															
	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:15	2:					
TGT	TCTT	CGA	CGGC	AGGC	TG G	TGGA	GGAA	G GG	CCCA	CCGA	ACA	GCTG	TTC	TCCT	CGCCGA	60
AGC.	ATGC	GGA .	AACC	GCCC	GA T	ACGT	CGCC	g ga	CTGT	CGGG	GGA	CGTC	AAG	GACG	CCAAGC	120
GCG	GAAA	TTG .	AAGA	GCAC	AG A	AAGG'	TATG							CAT . His		172
CTG Leu	TTG Leu	GCC Ala 10	GTG Val	TTG Leu	ACC Thr	GCT Ala	GCG Ala 15	CCG Pro	CTG Leu	CTG Leu	CTA Leu	GCA Ala 20	GCG Ala	GCG Ala	GGC Gly	220
TGT Cys	GGC Gly 25	TCG Ser	AAA Lys	CCA Pro	CCG Pro	AGC Ser 30	GGT Gly	TCG Ser	CCT Pro	GAA Glu	ACG Thr 35	GGC Gly	GCC Ala	GGC Gly	GCC Ala	268
GGT Gly 40	ACT Thr	GTC Val	GCG Ala	ACT Thr	ACC Thr 45	CCC Pro	GCG Ala	TCG Ser	TCG Ser	CCG Pro 50	GTG Val	ACG Thr	TTG Leu	GCG Ala	GAG Glu 55	316
ACC Thr	GGT Gly	AGC Ser	Thr	Leu	CTC Leu	Tyr	Pro	Leu	Phe	Asn	CTG Leu	TGG Trp	GGT Gly	CCG Pro 70	GCC Ala	364
TTT Phe	CAC His	GAG Glu	AGG Arg 75	TAT Tyr	CCG Pro	AAC Asn	GTC Val	ACG Thr 80	ATC Ile	ACC Thr	GCT Ala	CAG Gln	GGC Gly 85	ACC Thr	GGT Gly	412
TCT Ser	GGT Gly	GCC Ala 90	GGG Gly	ATC Ile	GCG Ala	CAG Gln	GCC Ala 95	GCC Ala	GCC Ala	GGG Gly	ACG Thr	GTC Val 100	AAC Asn	ATT Ile	GGG Gly	460
GCC Ala	TCC Ser 105	GAC Asp	GCC Ala	TAT Tyr	CTG Leu	TCG Ser 110	GAA Glu	GGT Gly	GAT Asp	ATG Met	GCC Ala 115	GCG Ala	CAC His	AAG Lys	GGG Gly	508
CTG Leu 120	ATG Met	AAC Asn	ATC Ile	GCG Ala	CTA Leu 125	GCC Ala	ATC Ile	TCC Ser	GCT Ala	CAG Gln 130	CAG Gln	GTC Val	AAC Asn	TAC Tyr	AAC Asn 135	556

CTG Leu	CCC Pro	GGA Gly	GTG Val	AGC Ser 140	Glu	CAC His	CTC Leu	AAG Lys	CTG Leu 145	AAC Asn	GGA Gly	AAA Lys	GTC Val	CTG Leu 150		604
GCC Ala	ATG Met	TAC Tyr	CAG Gln 155	GGC Gly	ACC Thr	ATC Ile	AAA Lys	ACC Thr 160	TGG Trp	GAC Asp	GAC Asp	CCG Pro	CAG Gln 165	ATC Ile	GCT Ala	652
GCG Ala	CTC Leu	AAC Asn 170	CCC Pro	GGC Gly	GTG Val	AAC Asn	CTG Leu 175	CCC Pro	GGC Gly	ACC Thr	GCG Ala	GTA Val 180	GTT Val	CCG Pro	CTG Leu	700
CAC His	CGC Arg 185	TCC Ser	GAC Asp	GGG Gly	TCC Ser	GGT Gly 190	GAC Asp	ACC Thr	TTC Phe	TTG Leu	TTC Phe 195	ACC Thr	CAG Gln	TAC Tyr	CTG Leu	748
TCC Ser 200	AAG Lys	CAA Gln	GAT Asp	CCC Pro	GAG Glu 205	GGC Gly	TGG Trp	GGC Gly	AAG Lys	TCG Ser 210	CCC Pro	GGC Gly	TTC Phe	GGC Gly	ACC Thr 215	796
ACC Thr	GTC Val	GAC Asp	TTC Phe	CCG Pro 220	GCG Ala	GTG Val	CCG Pro	GGT Gly	GCG Ala 225	CTG Leu	GGT Gly	GAG Glu	AAC Asn	GGC Gly 230	AAC Asn	844
GGC Gly	GGC Gly	ATG Met	GTG Val 235	ACC Thr	GGT Gly	TGC Cys	GCC Ala	GAG Glu 240	ACA Thr	CCG Pro	GGC Gly	TGC Cys	GTG Val 245	GCC Ala	TAT Tyr	892
ATC Ile	GGC Gly	ATC Ile 250	AGC Ser	TTC Phe	CTC Leu	GAC Asp	CAG Gln 255	GCC Ala	AGT Ser	CAA Gln	CGG Arg	GGA Gly 260	CTC Leu	GGC Gly	GAG Glu	940
GCC Ala	CAA Gln 265	CTA Leu	GGC Gly	AAT Asn	AGC Ser	TCT Ser 270	GGC Gly	AAT Asn	TTC Phe	TTG Leu	TTG Leu 275	CCC Pro	GAC Asp	GCG Ala	CAA Gln	988
AGC Ser 280	ATT Ile	CAG Gln	GCC Ala	GCG Ala	GCG Ala 285	GCT Ala	GGC Gly	TTC Phe	GCA Ala	TCG Ser 290	AAA Lys	ACC Thr	CCG Pro	GCG Ala	AAC Asn 295	1036
CAG Gln	GCG Ala	ATT Ile	TCG Ser	ATG Met 300	ATC Ile	GAC Asp	GGG Gly	CCC Pro	GCC Ala 305	CCG Pro	GAC Asp	GGC Gly	TAC Tyr	CCG Pro 310	ATC Ile	1084
ATC Ile	AAC Asn	TAC Tyr	GAG Glu 315	TAC Tyr	GCC Ala	ATC Ile	GTC Val	AAC Asn 320	AAC Asn	CGG Arg	CAA Gln	AAG Lys	GAC Asp 325	GCC Ala	GCC Ala	1132
ACC Thr	GCG Ala	CAG Gln 330	ACC Thr	TTG Leu	CAG Gln	GCA Ala	TTT Phe 335	CTG Leu	CAC His	TGG Trp	GCG Ala	ATC Ile 340	ACC Thr	GAC Asp	GGC Gly	1180
AAC Asn	AAG Lys 345	GCC Ala	TCG Ser	TTC Phe	CTC Leu	GAC Asp 350	CAG Gln	GTT Val	CAT His	TTC Phe	CAG Gln 355	CCG Pro	CTG Leu	CCG Pro	CCC Pro	1228
GCG Ala 360	GTG Val	GTG Val	AAG Lys	TTG Leu	TCT Ser 365	GAC Asp	GCG Ala	TTG Leu	Ile	GCG Ala 370	ACG Thr	ATT Ile	TCC Ser	AGC Ser		1273
TAGO	CTCG	TT G	ACCA	CCAC	G CG	ACAG	CAAC	CTC	CGTC	GGG	CCAT	CGGG	CT G	CTTT	GCGGA	1333

GCATGCTGGC	CCGTGCCGGT	GAAGTCGGCC	GCGCTGGCCC	GGCCATCCGG	TGGTTGGGTG	1393
GGATAGGTGC	GGTGATCCCG	CTGCTTGCGC	TGGTCTTGGT	GCTGGTGGTG	CTGGTCATCG	1453
AGGCGATGGG	TGCGATCAGG	CTCAACGGGT	TGCATTTCTT	CACCGCCACC	GAATGGAATC	1513
CAGGCAACAC	CTACGGCGAA	ACCGTTGTCA	CCGACGCGTC	GCCCATCCGG	TCGGCGCCTA	1573
CTACGGGGCG	TTGCCGCTGA	TCGTCGGGAC	GCTGGCGACC	TCGGCAATCG	CCCTGATCAT	1633
CGCGGTGCCG	GTCTCTGTAG	GAGCGGCGCT	GGTGATCGTG	GAACGGCTGC	CGAAACGGTT	1693
GGCCGAGGCT	GTGGGAATAG	TCCTGGAATT	GCTCGCCGGA	ATCCCCAGCG	TGGTCGTCGG	1753
TTTGTGGGGG	GCAATGACGT	TCGGGCCGTT	CATCGCTCAT	CACATCGCTC	CGGTGATCGC	1813
TCACAACGCT	CCCGATGTGC	CGGTGCTGAA	CTACTTGCGC	GGCGACCCGG	GCAACGGGGA	1873
GGGCATGTTG	GTGTCCGGTC	TGGTGTTGGC	GGTGATGGTC	GTTCCCATTA	TCGCCACCAC	1933
CACTCATGAC	CTGTTCCGGC	AGGTGCCGGT	GTTGCCCCGG	GAGGGCGCGA	TCGGGAATTC	1993

(2) INFORMATION FOR SEQ ID NO:153:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 374 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

Val Lys Ile Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala Ala Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Leu Leu Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser
20 25 30

Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser 35 40 45

Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu 50 55 60

Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr 65 70 75 80

Ile Thr Ala Gl
n Gly Thr Gly Ser Gly Ala Gly Ile Ala Gl
n Ala Ala 85 90 95

Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly 100 105 110

Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 115 120 125

Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys 130

157

- Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro 170 Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly 200 Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp Gln Ala 250 Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser Gly Asn Phe Leu Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Gly Phe 280 Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp Gly Pro Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile Val Asn Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala Phe Leu 330 His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp Gln Val His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp Ala Leu Ile Ala Thr Ile Ser Ser 370
- (2) INFORMATION FOR SEQ ID NO:154:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1993 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

TGTTCTTCGA CGGCAGGCTG GTGGAGGAAG GGCCCACCGA ACAGCTGTTC TCCTCGCCGA

AGCATGCGGA	AACCGCCCGA	TACGTCGCCG	GACTGTCGGG	GGACGTCAAG	GACGCCAAGC	120
GCGGAAATTG	AAGAGCACAG	AAAGGTATGG	CGTGAAAATT	CGTTTGCATA	CGCTGTTGGC	180
CGTGTTGACC	GCTGCGCCGC	TGCTGCTAGC	AGCGGCGGGC	TGTGGCTCGA	AACCACCGAG	240
CGGTTCGCCT	GAAACGGGCG	CCGGCGCCGG	TACTGTCGCG	ACTACCCCCG	CGTCGTCGCC	300
GGTGACGTTG	GCGGAGACCG	GTAGCACGCT	GCTCTACCCG	CTGTTCAACC	TGTGGGGTCC	360
GGCCTTTCAC	GAGAGGTATC	CGAACGTCAC	GATCACCGCT	CAGGGCACCG	GTTCTGGTGC	420
CGGGATCGCG	CAGGCCGCCG	CCGGGACGGT	CAACATTGGG	GCCTCCGACG	CCTATCTGTC	480
GGAAGGTGAT	ATGGCCGCGC	ACAAGGGGCT	GATGAACATC	GCGCTAGCCA	TCTCCGCTCA	540
GCAGGTCAAC	TACAACCTGC	CCGGAGTGAG	CGAGCACCTC	AAGCTGAACG	GAAAAGTCCT	600
GGCGGCCATG	TACCAGGGCA	CCATCAAAAC	CTGGGACGAC	CCGCAGATCG	CTGCGCTCAA	660
CCCCGGCGTG	AACCTGCCCG	GCACCGCGGT	AGTTCCGCTG	CACCGCTCCG	ACGGGTCCGG	720
TGACACCTTC	TTGTTCACCC	AGTACCTGTC	CAAGCAAGAT	CCCGAGGGCT	GGGGCAAGTC	780
GCCCGGCTTC	GGCACCACCG	TCGACTTCCC	GGCGGTGCCG	GGTGCGCTGG	GTGAGAACGG	840
CAACGGCGGC	ATGGTGACCG	GTTGCGCCGA	GACACCGGGC	TGCGTGGCCT	ATATCGGCAT	900
CAGCTTCCTC	GACCAGGCCA	GTCAACGGGG	ACTCGGCGAG	GCCCAACTAG	GCAATAGCTC	960
TGGCAATTTC	TTGTTGCCCG	ACGCGCAAAG	CATTCAGGCC	GCGGCGGCTG	GCTTCGCATC	1020
GAAAACCCCG	GCGAACCAGG	CGATTTCGAT	GATCGACGGG	CCCGCCCCGG	ACGGCTACCC	1080
GATCATCAAC	TACGAGTACG	CCATCGTCAA	CAACCGGCAA	AAGGACGCCG	CCACCGCGCA	1140
GACCTTGCAG	GCATTTCTGC	ACTGGGCGAT	CACCGACGGC	AACAAGGCCT	CGTTCCTCGA	1200
CCAGGTTCAT	TTCCAGCCGC	TGCCGCCCGC	GGTGGTGAAG	TTGTCTGACG	CGTTGATCGC	1260
GACGATTTCC	AGCTAGCCTC	GTTGACCACC	ACGCGACAGC	AACCTCCGTC	GGGCCATCGG	1320
GCTGCTTTGC	GGAGCATGCT	GGCCCGTGCC	GGTGAAGTCG	GCCGCGCTGG	CCCGGCCATC	1380
CGGTGGTTGG	GTGGGATAGG	TGCGGTGATC	CCGCTGCTTG	CGCTGGTCTT	GGTGCTGGTG	1440
GTGCTGGTCA	TCGAGGCGAT	GGGTGCGATC	AGGCTCAACG	GGTTGCATTT	CTTCACCGCC	1500
ACCGAATGGA	ATCCAGGCAA	CACCTACGGC	GAAACCGTTG	TCACCGACGC	GTCGCCCATC	1560
CGGTCGGCGC	CTACTACGGG	GCGTTGCCGC	TGATCGTCGG	GACGCTGGCG	ACCTCGGCAA	1620
ICGCCCTGAT	CATCGCGGTG	CCGGTCTCTG	TAGGAGCGGC	GCTGGTGATC	GTGGAACGGC	1680
IGCCGAAACG	GTTGGCCGAG	GCTGTGGGAA	TAGTCCTGGA	ATTGCTCGCC	GGAATCCCCA	1740
		GGGGCAATGA				1800
		GCTCCCGATG				1860
		TTGGTGTCCG				1920

159

TTATCGCCAC CACCACTCAT GACCTGTTCC GGCAGGTGCC GGTGTTGCCC CGGGAGGGCG 1980
CGATCGGGAA TTC 1993

- (2) INFORMATION FOR SEQ ID NO:155:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 374 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:

Met Lys Ile Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala Ala Pro 1 10 15

Leu Leu Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser 20 25 30

Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser 35 40 45

Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu 50 60

Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr 70 75 80

Ile Thr Ala Gl
n Gly Thr Gly Ser Gly Ala Gly Ile Ala Gl
n Ala Ala 85 90 95

Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly 100 105 110

Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 115 120 125

Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys 130 135 140

Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr 145 150 155 160

Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro 165 170 175

Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr 180 185 190

Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly 195 200 205

Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly 210 215 220

Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu 225 230 235 240

160

Thr	Pro	Gly	Cys	Val 245	Ala	Tyr	Ile	Gly	Ile 250	Ser	Phe	Leu	Asp	Gln 255	Ala
Ser	Gln	Arg	Gly 260	Leu	Gly	Glu	Ala	Gln 265	Leu	Gly	Asn	Ser	Ser 270	Gly	Asn
Phe	Leu	Leu 275	Pro	Asp	Ala	Gln	Ser 280	Ile	Gln	Ala	Ala	Ala 285	Ala	Gly	Phe
Ala	Ser 290	Lys	Thr	Pro	Ala	Asn 295	Gln	Ala	Ile	Ser	Met 300	Ile	Asp	Gly	Pro
Ala 305	Pro	Asp	Gly	Tyr	Pro 310	Ile	Ile	Asn	Tyr	Glu 315	Tyr	Ala	Ile	Val	Asn 320
Asn	Arg	Gln	Lys	Asp 325	Ala	Ala	Thr	Ala	Gln 330	Thr	Leu	Gln	Ala	Phe 335	Leu
His	Trp	Ala	Ile 340	Thr	Asp	Gly	Asn	Lys 345	Ala	Ser	Phe	Leu	Asp 350	Gln	Val
His	Phe	Gln 355	Pro	Leu	Pro	Pro	Ala 360	Val	Val	Lys	Leu	Ser 365	Asp	Ala	Leu
Ile	Ala 370	Thr	Ile	Ser	Ser										

(2) INFORMATION FOR SEQ ID NO:156:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1777 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:

GGTCTTGACC	ACCACCTGGG	TGTCGAAGTC	GGTGCCCGGA	TTGAAGTCCA	GGTACTCGTG	60
GGTGGGGCGG	GCGAAACAAT	AGCGACAAGC	ATGCGAGCAG	CCGCGGTAGC	CGTTGACGGT	120
GTAGCGAAAC	GGCAACGCGG	CCGCGTTGGG	CACCTTGTTC	AGCGCTGATT	TGCACAACAC	180
CTCGTGGAAG	GTGATGCCGT	CGAATTGTGG	CGCGCGAACG	CTGCGGACCA	GGCCGATCCG	240
CTGCAACCCG	GCAGCGCCCG	TCGTCAACGG	GCATCCCGTT	CACCGCGACG	GCTTGCCGGG	300
CCCAACGCAT	ACCATTATTC	GAACAACCGT	TCTATACTTT	GTCAACGCTG	GCCGCTACCG	360
AGCGCCGCAC	AGGATGTGAT	ATGCCATCTC	TGCCCGCACA	GACAGGAGCC	AGGCCTTATG	420
ACAGCATTCG	GCGTCGAGCC	CTACGGGCAG	CCGAAGTACC	TAGAAATCGC	CGGGAAGCGC	480
ATGGCGTATA	TCGACGAAGG	CAAGGGTGAC	GCCATCGTCT	TTCAGCACGG	CAACCCCACG	540
TCGTCTTACT	TGTGGCGCAA	CATCATGCCG	CACTTGGAAG	GGCTGGGCCG	GCTGGTGGCC	600

161

TGCGATCTGA	TCGGGATGGG	CGCGTCGGAC	AAGCTCAGCC	CATCGGGACC	CGACCGCTAT	660
AGCTATGGCG	AGCAACGAGA	CTTTTTGTTC	GCGCTCTGGG	ATGCGCTCGA	CCTCGGCGAC	720
CACGTGGTAC	TGGTGCTGCA	CGACTGGGGC	TCGGCGCTCG	GCTTCGACTG	GGCTAACCAG	780
CATCGCGACC	GAGTGCAGGG	GATCGCGTTC	ATGGAAGCGA	TCGTCACCCC	GATGACGTGG	840
GCGGACTGGC	CGCCGGCCGT	GCGGGGTGTG	TTCCAGGGTT	TCCGATCGCC	TCAAGGCGAG	900
CCAATGGCGT	TGGAGCACAA	CATCTTTGTC	GAACGGGTGC	TGCCCGGGGC	GATCCTGCGA	960
CAGCTCAGCG	ACGAGGAAAT	GAACCACTAT	CGGCGGCCAT	TCGTGAACGG	CGGCGAGGAC	1020
CGTCGCCCCA	CGTTGTCGTG	GCCACGAAAC	CTTCCAATCG	ACGGTGAGCC	CGCCGAGGTC	1080
GTCGCGTTGG	TCAACGAGTA	CCGGAGCTGG	CTCGAGGAAA	CCGACATGCC	GAAACTGTTC	1140
ATCAACGCCG	AGCCCGGCGC	GATCATCACC	GGCCGCATCC	GTGACTATGT	CAGGAGCTGG	1200
CCCAACCAGA	CCGAAATCAC	AGTGCCCGGC	GTGCATTTCG	TTCAGGAGGA	CAGCGATGGC	1260
GTCGTATCGT	GGGCGGCGC	TCGGCAGCAT	CGGCGACCTG	GGAGCGCTCT	CATTTCACGA	1320
GACCAAGAAT	GTGATTTCCG	GCGAAGGCGG	CGCCCTGCTT	GTCAACTCAT	AAGACTTCCT	1380
GCTCCGGGCA	GAGATTCTCA	GGGAAAAGGG	CACCAATCGC	AGCCGCTTCC	TTCGCAACGA	1440
GGTCGACAAA	TATACGTGGC	AGGACAAAGG	TCTTCCTATT	TGCCCAGCGA	ATTAGTCGCT	1500
GCCTTTCTAT	GGGCTCAGTT	CGAGGAAGCC	GAGCGGATCA	CGCGTATCCG	ATTGGACCTA	1560
TGGAACCGGT	ATCATGAAAG	CTTCGAATCA	TTGGAACAGC	GGGGGCTCCT	GCGCCGTCCG	1620
ATCATCCCAC	AGGGCTGCTC	TCACAACGCC	CACATGTACT	ACGTGTTACT	AGCGCCCAGC	1680
GCCGATCGGG	AGGAGGTGCT	GGCGCGTCTG	ACGAGCGAAG	GTATAGGCGC	GGTCTTTCAT	1740
FACGTGCCGC	TTCACGATTC	GCCGGCCGGG	CGTCGCT			1777

(2) INFORMATION FOR SEQ ID NO:157:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 324 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:

GAGATTGAAT CGTACCGGTC	TCCTTAGCGG	CTCCGTCCCG	TGAATGCCCA	TATCACGCAC	60
GGCCATGTTC TGGCTGTCGA	CCTTCGCCCC	ATGCCCGGAC	GTTGGTAAAC	CCAGGGTTTG	120
ATCAGTAATT CCGGGGGACG	GTTGCGGGAA	GGCGGCCAGG	ATGTGCGTGA	GCCGCGGCGC	180
CGCCGTCGCC CAGGCGACCG	CTGGATGCTC	AGCCCCGGTG	CGGCGACGTA	GCCAGCGTTT	240

162

GGCGCGTGTC	GTCCACAGTG	GTACTCCGGT	GACGACGCGG	CGCGGTGCCT	GGGTGAAGAC	300
CGTGACCGAC	GCCGCCGATT	CAGA				324

(2) INFORMATION FOR SEQ ID NO:158:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1338 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:

GCGGTACCGC	CGCGTTGCGC	TGGCACGGGA	CCTGTACGAC	CTGAACCACT	TCGCCTCGCG	60
AACGATTGAC	GAACCGCTCG	TGCGGCGGCT	GTGGGTGCTC	AAGGTGTGGG	GTGATGTCGT	120
CGATGACCGG	CGCGGCACCC	GGCCACTACG	CGTCGAAGAC	GTCCTCGCCG	CCCGCAGCGA	180
GCACGACTTC	CAGCCCGACT	CGATCGGCGT	GCTGACCCGT	CCTGTCGCTA	TGGCTGCCTG	240
GGAAGCTCGC	GTTCGGAAGC	GATTTGCGTT	CCTCACTGAC	CTCGACGCCG	ACGAGCAGCG	300
GTGGGCCGCC	TGCGACGAAC	GGCACCGCCG	CGAAGTGGAG	AACGCGCTGG	CGGTGCTGCG	360
GTCCTGATCA	ACCTGCCGGC	GATCGTGCCG	TTCCGCTGGC	ACGGTTGCGG	CTGGACGCGG	420
CTGAATCGAC	TAGATGAGAG	CAGTTGGGCA	CGAATCCGGC	TGTGGTGGTG	AGCAAGACAC	480
GAGTACTGTC	ATCACTATTG	GATGCACTGG	ATGACCGGCC	TGATTCAGCA	GGACCAATGG	540
AACTGCCCGG	GGCAAAACGT	CTCGGAGATG	ATCGGCGTCC	CCTCGGAACC	CTGCGGTGCT	600
GGCGTCATTC	GGACATCGGT	CCGGCTCGCG	GGATCGTGGT	GACGCCAGCG	CTGAAGGAGT	660
GGAGCGCGGC	GGTGCACGCG	CTGCTGGACG	GCCGGCAGAC	GGTGCTGCTG	CGTAAGGGCG	720
GGATCGGCGA	GAAGCGCTTC	GAGGTGGCGG	CCCACGAGTT	CTTGTTGTTC	CCGACGGTCG	780
CGCACAGCCA	CGCCGAGCGG	GTTCGCCCCG	AGCACCGCGA	CCTGCTGGGC	CCGGCGGCCG	840
CCGACAGCAC	CGACGAGTGT	GTGCTACTGC	GGGCCGCAGC	GAAAGTTGTT	GCCGCACTGC	900
CGGTTAACCG	GCCAGAGGGT	CTGGACGCCA	TCGAGGATCT	GCACATCTGG	ACCGCCGAGT	960
CGGTGCGCGC	CGACCGGCTC	GACTTTCGGC	CCAAGCACAA	ACTGGCCGTC	TTGGTGGTCT	1020
CGGCGATCCC	GCTGGCCGAG	CCGGTCCGGC	TGGCGCGTAG	GCCCGAGTAC	GGCGGTTGCA	1080
CCAGCTGGGT	GCAGCTGCCG	GTGACGCCGA	CGTTGGCGGC	GCCGGTGCAC	GACGAGGCCG	1140
CGCTGGCCGA	GGTCGCCGCC	CGGGTCCGCG	AGGCCGTGGG	TTGACTGGGC	GGCATCGCTT	1200
GGGTCTGAGC	TGTACGCCCA	GTCGGCGCTG	CGAGTGATCT	GCTGTCGGTT	CGGTCCCTGC	1260
TGGCGTCAAT	TGACGGCGCG	GGCAACAGCA	GCATTGGCGG	CGCCATCCTC	CGCGCGGCCG	1320

GCGCCCACCG CTACAACC	1338
(2) INFORMATION FOR SEQ ID NO:159:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 321 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:	
CCGGCGGCAC CGGCGCACC GGCGGTACCG GCGGCAACGG CGCTGACGCC GCTGCTGTGG	60
TGGGCTTCGG CGCGAACGGC GACCCTGGCT TCGCTGGCGG CAAAGGCGGT AACGGCGGAA	120
TAGGTGGGGC CGCGGTGACA GGCGGGGTCG CCGGCGACGG CGGCACCGGC GGCAAAGGTG	180
GCACCGGCGG TGCCGGCGGC GCCGGCAACG ACGCCGGCAG CACCGGCAAT CCCGGCGGTA	240
AGGGCGGCGA CGGCGGGATC GGCGGTGCCG GCGGGGCCGGC GGCACCGGCA	300
ACGGCGGCCA TGCCGGCAAC C	321
(2) INFORMATION FOR SEQ ID NO:160:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 492 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:	
GAAGACCCGG CCCCGCCATA TCGATCGGCT CGCCGACTAC TTTCGCCGAA CGTGCACGCG	60
GCGGCGTCGG GCTGATCATC ACCGGTGGCT ACGCGCCCAA CCGCACCGGA TGGCTGCTGC	120
CGTTCGCCTC CGAACTCGTC ACTTCGGCGC AAGCCCGACG GCACCGCCGA ATCACCAGGG	180
CGGTCCACGA TTCGGGTGCA AAGATCCTGC TGCAAATCCT GCACGCCGGA CGCTACGCCT	240
ACCACCCACT TGCGGTCAGC GCCTCGCCGA TCAAGGCGCC GATCACCCCG TTTCGTCCGC	300
SAGCACTATC GGCTCGCGGG GTCGAAGCGA CCATCGCGGA TTTCGCCCGC TGCGCGCAGT	360
FGGCCCGCGA TGCCGGCTAC GACGGCGTCG AAATCATGGG CAGCGAAGGG TATCTGCTCA	420
ATCAGTTCCT GGCGCCGCGC ACCAACAAGC GCACCGACTC GTGGGGCGGC ACACCGGCCA	480
ACCGTCGCCG GT	492
(2) INFORMATION FOR SEQ ID NO:161:	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 536 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:

Phe Ala Gln His Leu Val Glu Gly Asp Ala Val Glu Leu Trp Arg Ala

5 10 15

Asn Ala Ala Asp Gln Ala Asp Pro Leu Gln Pro Gly Ser Ala Arg Arg 20 25 30

Gln Arg Ala Ser Arg Ser Pro Arg Arg Leu Ala Gly Pro Asn Ala Tyr 35 40 45

His Tyr Ser Asn Asn Arg Ser Ile Leu Cys Gln Arg Trp Pro Leu Pro 50 60

Ser Ala Ala Gln Asp Val Ile Cys His Leu Cys Pro His Arg Gln Glu 65 70 75 80

Pro Gly Leu Met Thr Ala Phe Gly Val Glu Pro Tyr Gly Gln Pro Lys 85 90 95

Tyr Leu Glu Ile Ala Gly Lys Arg Met Ala Tyr Ile Asp Glu Gly Lys 100 105 110

Gly Asp Ala Ile Val Phe Gln His Gly Asn Pro Thr Ser Ser Tyr Leu 115 120 125

Trp Arg Asn Ile Met Pro His Leu Glu Gly Leu Gly Arg Leu Val Ala 130 140

Cys Asp Leu Ile Gly Met Gly Ala Ser Asp Lys Leu Ser Pro Ser Gly 145 150 155

Pro Asp Arg Tyr Ser Tyr Gly Glu Gln Arg Asp Phe Leu Phe Ala Leu 165 170 175

Trp Asp Ala Leu Asp Leu Gly Asp His Val Val Leu Val Leu His Asp 180 185 190

Trp Gly Ser Ala Leu Gly Phe Asp Trp Ala Asn Gln His Arg Asp Arg 195 200 205

Val Gln Gly Ile Ala Phe Met Glu Ala Ile Val Thr Pro Met Thr Trp 210 215 220

Ala Asp Trp Pro Pro Ala Val Arg Gly Val Phe Gln Gly Phe Arg Ser 225 230 235 240

Pro Gln Gly Glu Pro Met Ala Leu Glu His Asn Ile Phe Val Glu Arg 245 250 255

Val Leu Pro Gly Ala Ile Leu Arg Gln Leu Ser Asp Glu Glu Met Asn 260 265 270

His	Tyr	Arg 275	Arg	Pro	Phe	Val	Asn 280		Gly	Glu	Asp	Arg 285	Arg	Pro	Th
Leu	Ser 290	Trp	Pro	Arg	Asn	Leu 295	Pro	Ile	Asp	Gly	Glu 300	Pro	Ala	Glu	Va.
Val 305	Ala	Leu	Val	Asn	Glu 310	Tyr	Arg	Ser	Trp	Leu 315	Glu	Glu	Thr	Asp	Met 320
Pro	Lys	Leu	Phe	Ile 325	Asn	Ala	Glu	Pro	Gly 330		Ile	Ile	Thr	Gly 335	Arg
Ile	Arg	Asp	Tyr 340	Val	Arg	Ser	Trp	Pro 345	Asn	Gln	Thr	Glu	Ile 350	Thr	Val
Pro	Gly	Val 355	His	Phe	Val	Gln	Glu 360	Asp	Ser	Asp	Gly	Val 365	Val	Ser	Trp
Ala	Gly 370	Ala	Arg	Gln	His	Arg 375	Arg	Pro	Gly	Ser	Ala 380	Leu	Ile	Ser	Arg
Asp 385	Gln	Glu	Cys	Asp	Phe 390	Arg	Arg	Arg	Arg	Arg 395	Pro	Ala	Cys	Gln	Leu 400
Ile	Arg	Leu	Pro	Ala 405	Pro	Gly	Arg	Asp	Ser 410	Gln	Gly	Lys	Gly	His 415	Gln
Ser	Gln	Pro	Leu 420	Pro	Ser	Gln	Arg	Gly 425	Arg	Gln	Ile	Tyr	Val 430	Ala	Gly
Gln	Arg	Ser 435	Ser	Tyr	Leu	Pro	Ser 440	Glu	Leu	Val	Ala	Ala 445	Phe	Leu	Trp
Ala	Gln 450	Phe	Glu	Glu	Ala	Glu 455	Arg	Ile	Thr	Arg	Ile 460	Arg	Leu	Asp	Leu
Trp 465	Asn	Arg	Tyr	His	Glu 470	Ser	Phe	Glu	Ser	Leu 475	Glu	Gln	Arg	Gly	Leu 480
Leu	Arg	Arg	Pro	Ile 485	Ile	Pro	Gln	Gly	Cys 490	Ser	His	Asn	Ala	His 495	Met
Tyr	Tyr	Val	Leu 500	Leu	Ala	Pro	Ser	Ala 505	Asp	Arg	Glu	Glu	Val 510	Leu	Ala
 Arg	Leu	Thr 515	Ser	Glu	Gly	Ile	Gly 520	Ala	Val	Phe	His	Tyr 525	Val	Pro	Leu
His	Asp 530	Ser	Pro	Ala	Gly	Arg 535	Arg								

(2) INFORMATION FOR SEQ ID NO:162:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 284 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:
- Asn Glu Ser Ala Pro Arg Ser Pro Met Leu Pro Ser Ala Arg Pro Arg

 10 15
- Tyr Asp Ala Ile Ala Val Leu Leu Asn Glu Met His Ala Gly His Cys 20 25 30
- Asp Phe Gly Leu Val Gly Pro Ala Pro Asp Ile Val Thr Asp Ala Ala 35 40 45
- Gly Asp Asp Arg Ala Gly Leu Gly Val Asp Glu Gln Phe Arg His Val 50 60
- Gly Phe Leu Glu Pro Ala Pro Val Leu Val Asp Gln Arg Asp Asp Leu 65 70 75 80
- Gly Gly Leu Thr Val Asp Trp Lys Val Ser Trp Pro Arg Gln Arg Gly 85 90 95
- Ala Thr Val Leu Ala Ala Val His Glu Trp Pro Pro Ile Val Val His 100 105 110
- Phe Leu Val Ala Glu Leu Ser Gln Asp Arg Pro Gly Gln His Pro Phe 115 120 125
- Asp Lys Asp Val Val Leu Gln Arg His Trp Leu Ala Leu Arg Arg Ser 130 135 140
- Glu Thr Leu Glu His Thr Pro His Gly Arg Arg Pro Val Arg Pro Arg 145 150 155 160
- His Arg Gly Asp Asp Arg Phe His Glu Arg Asp Pro Leu His Ser Val 165 170 175
- Ala Met Leu Val Ser Pro Val Glu Ala Glu Arg Arg Ala Pro Val Val 180 185 190
- Gln His Gln Tyr His Val Val Ala Glu Val Glu Arg Ile Pro Glu Arg 195 200 205
- Glu Gln Lys Val Ser Leu Leu Ala Ile Ala Ile Ala Val Gly Ser Arg 210 215 220
- Trp Ala Glu Leu Val Arg Arg Ala His Pro Asp Gln Ile Ala Gly His 225 230 235 240
- Gln Pro Ala Gln Pro Phe Gln Val Arg His Asp Val Ala Pro Gln Val 245 250 255
- Arg Arg Gly Val Ala Val Leu Lys Asp Asp Gly Val Thr Leu Ala 260 265 270
- Phe Val Asp Ile Arg His Ala Leu Pro Gly Asp Phe 275 280
- (2) INFORMATION FOR SEQ ID NO:163:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 264 base pairs

167

(B)	TYPE: nucleic	acid
(C)	STRANDEDNESS:	single
(D)	TOPOLOGY: line	ar

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:

ATGAACATGT	CGTCGGTGGT	GGGTCGCAAG	GCCTTTGCGC	GATTCGCCGG	CTACTCCTCC	60
GCCATGCACG	CGATCGCCGG	TTTCTCCGAT	GCGTTGCGCC	AAGAGCTGCG	GGGTAGCGGA	120
ATCGCCGTCT	CGGTGATCCA	CCCGGCGCTG	ACCCAGACAC	CGCTGTTGGC	CAACGTCGAC	180
CCCGCCGACA	TGCCGCCGCC	GTTTCGCAGC	CTCACGCCCA	TTCCCGTTCA	CTGGGTCGCG	240
GCAGCGGTGC	TTGACGGTGT	GGCG				264

(2) INFORMATION FOR SEQ ID NO:164:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1171 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:

TAGTCGGCGA	CGATGACGTC	GCGGTCCAGG	CCGACCGCTT	CAAGCACCAG	CGCGACCACG	60
AAGCCGGTGC	GATCCTTACC	CGCGAAGCAG	TGGGTGAGCA	CCGGGCGTCC	GGCGGCAAGC	120
AGTGTGACGA	CACGATGTAG	CGCGCGCTGT	GCTCCATTGC	GCGTTGGGAA	TTGGCGATAC	180
TCGTCGGTCA	TGTAGCGGGT	GGCCGCGTCA	TTTATCGACT	GGCTGGATTC	GCCGGACTCG	240
CCGTTGGACC	CGTCATTGGT	TAGCAGCCTC	TTGAATGCGG	TTTCGTGCGG	CGCTGAGTCG	300
TCGGCGTCAT	CATCGGCGAG	GTCGGGGAAC	GGCAGCAGGT	GGACGTCGAT	GCCGTCCGGA	360
ACCCGTCCTG	GACCGCGGCG	GGCAACCTCC	CGGGACGACC	GCAGGTCGGC	AACGTCGGTG	420
ATCCCCAGCC	GGCGCAGCGT	TGCCCCTCGT	GCCGAATTCG	GCACGAGGCT	GGCGAGCCAC	480
CGGGCATCAC	CAAGCAACGC	TTGCCCAGTA	CGGATCGTCA	CTTCCGCATC	CGGCAGACCA	540
ATCTCCTCGC	CGCCCATCGT	CAGATCCCGC	TCGTGCGTTG	ACAAGAACGG	CCGCAGATGT	600
GCCAGCGGGT	ATCGGAGATT	GAACCGCGCA	CGCAGTTCTT	CAATCGCTGC	GCGCTGCCGC	660
ACTATTGGCA	CTTTCCGGCG	GTCGCGGTAT	TCAGCAAGCA	TGCGAGTCTC	GACGAACTCG	720
CCCCACGTAA	CCCACGGCGT	AGCTCCCGGC	GTGACGCGGA	GGATCGGCGG	GTGATCTTTG	780
CCGCCACGCT	CGTAGCCGTT	GATCCACCGC	TTCGCGGTGC	CGGCGGGGAG	GCCGATCAGC	840

168

TTATCGACCT CGGCGTATGC CGACGGCAAG CTGGGCGCGT TCGTCGAGGT CAAGAACTCC	900						
ACCATCGGCA CCGGCACCAA GGTGCCGCAC CTGACCTACG TCGGCGACGC CGACATCGGC	960						
GAGTACAGCA ACATCGGCGC CTCCAGCGTG TTCGTCAACT ACGACGGTAC GTCCAAACGG	1020						
CGCACCACCG TCGGTTCGCA CGTACGGACC GGGTCCGACA CCATGTTCGT GGCCCCAGTA	1080						
ACCATCGGCG ACGGCGCGTA TACCGGGGGCC GGCACAGTGG TGCGGGAGGA TGTCCCGCCG	1140						
GGGGCGCTGG CAGTGTCGGC GGGTCCGCAA C	1171						
(2) INFORMATION FOR SEQ ID NO:165:							
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 227 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 							
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:							
GCAAAGGCGG CACCGGCGGG GCCGGCATGA ACAGCCTCGA CCCGCTGCTA GCCGCCCAAG	60						
ACGGCGGCCA AGGCGGCACC GGCGCACCG GCGCACCACCT	120						
TCACCCAAGG CGCCGACGGC AACGCCGGCA ACGGCGGTGA CGGCGGGGTC GGCGGCAACG	180						
GCGGAAACGG CGGAAACGC GCAGACAACA CCACCACCGC CGCCGCC	227						
(2) INFORMATION FOR SEQ ID NO:166:							
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 304 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear							
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:							
CCTCGCCACC ATGGGCGGCC AGGGCGGTAG CGGTGGCGCC GGCTCTACCC CAGGCGCCAA	60						
GGGCGCCCAC GGCTTCACTC CAACCAGCGG CGGCGACGGC GGCGACGGCG GCAACGGCGG	120						
CAACTCCCAA GTGGTCGGCG GCAACGGCGG CGACGGCGGC AATGGCGGCA ACGGCGGCAG	180						
CGCCGGCACG GGCGGCAACG GCGGCCGCGG CGCCGACGC GCGTTTGGTG GCATGAGTGC	240						
CAACGCCACC AACCCTGGTG AAAACGGGCC AAACGGTAAC CCCGGCGGCA ACGGTGGCGC	300						
CGGC	304						

304

(2) INFORMATION FOR SEQ ID NO:167:

169

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1439 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:

GTGGGACGCT	GCCGAGGCTG	TATAACAAGG	ACAACATCGA	CCAGCGCCGG	CTCGGTGAGC	60
TGATCGACCT	ATTTAACAGT	GCGCGCTTCA	GCCGGCAGGG	CGAGCACCGC	GCCCGGGATC	120
TGATGGGTGA	GGTCTACGAA	TACTTCCTCG	GCAATTTCGC	TCGCGCGGAA	GGGAAGCGGG	180
GTGGCGAGTT	CTTTACCCCG	CCCAGCGTGG	TCAAGGTGAT	CGTGGAGGTG	CTGGAGCCGT	240
CGAGTGGGCG	GGTGTATGAC	CCGTGCTGCG	GTTCCGGAGG	CATGTTTGTG	CAGACCGAGA	300
AGTTCATCTA	CGAACACGAC	GGCGATCCGA	AGGATGTCTC	GATCTATGGC	CAGGAAAGCA	360
TTGAGGAGAC	CTGGCGGATG	GCGAAGATGA	ACCTCGCCAT	CCACGGCATC	GACAACAAGG	420
GGCTCGGCGC	CCGATGGAGT	GATACCTTCG	CCCGCGACCA	GCACCCGGAC	GTGCAGATGG	480
ACTACGTGAT	GGCCAATCCG	CCGTTCAACA	TCAAAGACTG	GGCCCGCAAC	GAGGAAGACC	540
CACGCTGGCG	CTTCGGTGTT	CCGCCCGCCA	ATAACGCCAA	CTACGCATGG	ATTCAGCACA	600
TCCTGTACAA	CTTGGCGCCG	GGAGGTCGGG	CGGGCGTGGT	GATGGCCAAC	GGGTCGATGT	660
CGTCGAACTC	CAACGGCAAG	GGGGATATTC	GCGCGCAAAT	CGTGGAGGCG	GATTTGGTTT	720
CCTGCATGGT	CGCGTTACCC	ACCCAGCTGT	TCCGCAGCAC	CGGAATCCCG	GTGTGCCTGT	780
GGTTTTTCGC	CAAAAACAAG	GCGGCAGGTA	AGCAAGGGTC	TATCAACCGG	TGCGGGCAGG	840
TGCTGTTCAT	CGACGCTCGT	GAACTGGGCG	ACCTAGTGGA	CCGGGCCGAG	CGGGCGCTGA	900
CCAACGAGGA	GATCGTCCGC	ATCGGGGATA	CCTTCCACGC	GAGCACGACC	ACCGGCAACG	960
CCGGCTCCGG	TGGTGCCGGC	GGTAATGGGG	GCACTGGCCT	CAACGGCGCG	GGCGGTGCTG	1020
GCGGGGCCGG	CGGCAACGCG	GGTGTCGCCG	GCGTGTCCTT	CGGCAACGCT	GTGGGCGGCG	1080
ACGGCGGCAA	CGGCGGCAAC	GGCGGCCACG	GCGGCGACGG	CACGACGGC	GGCGCCGGCG	1140
GCAAGGGCGG	CAACGGCAGC	AGCGGTGCCG	CCAGCGGCTC	AGGCGTCGTC	AACGTCACCG	1200
CCGGCCACGG	CGGCAACGGC	GGCAATGGCG	GCAACGGCGG	CAACGGCTCC	GCGGGCGCCG	1260
GCGGCCAGGG	CGGTGCCGGC	GGCAGCGCCG	GCAACGGCGG	CCACGGCGGC	GGTGCCACCG	1320
GCGGCGCCAG	CGGCAAGGGC	GGCAACGGCA	CCAGCGGTGC	CGCCAGCGGC	TCAGGCGTCA	1380
TCAACGTCAC	CGCCGGCCAC	GGCGGCAACG	GCGGCAATGG	CCGCAACGGC	GGCAACGGC	1439
(2) INFORMA	TION FOR SE	O ID NO:168	:			

(2) INFORMATION FOR SEQ ID NO:168:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 329 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:	
GGGCCGGCGG GGCCGGATTT TCTCGTGCCT TGATTGTCGC TGGGGATAAC GGCGGTGATG	60
GTGGTAACGG CGGGATGGGC GGGGCTGGCG GGGCTGGCGG CCCCGGCGGG GCCGGCGCC	120
TGATCAGCCT GCTGGGCGGC CAAGGCGCCG GCGGGCCGGC CGGGACCGGC GGGGCCGGCG	180
GTGTTGGCGG TGACGGCGGG GCCGGCGGCC CCGGCAACCA GGCCTTCAAC GCAGGTGCCG	240
GCGGGGCCGG CGCCTGATC AGCCTGCTGG GCGGCCAAGG CGCCGGCGGG GCCGGCGGA	300
CCGGCGGGGC CGGCGGTGTT GGCGGTGAC	329
(2) INFORMATION FOR SEQ ID NO:169:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 80 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:	
GCAACGGTGG CAACGGCGGC ACCAGCACGA CCGTGGGGAT GGCCGGAGGT AACTGTGGTG	60
CCGCCGGGCT GATCGGCAAC	80
(2) INFORMATION FOR SEQ ID NO:170:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 392 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:	
GGGCTGTGTC GCACTCACAC CGCCGCATTC GGCGACGTTG GCCGCCCAAT ATCCAGCTCA	60
AGGCCTACTA CTTACCGTCG GAGGACCGCC GCATCAAGGT GCGGGTCAGC GCCCAAGGAA	120
TCAAGGTCAT CGACCGCGAC GGGCATCGAG GCCGTCGTCG CGCGGCTCGG GCAGGATCCG	180

4	~	
- 1		ı
- 1		ı

CCCCGGCGCA	CTTCGCGCGC	CAAGCGGGCT	CATCGCTCCG	AACGGCGGCG	ATCCTGTGAG	240	
CACAACTGAT	GGCGCGCAAC	GAGATTCGTC	CAATTGTCAA	GCCGTGTTCG	ACCGCAGGGA	300	
CCGGTTATAC	GTATGTCAAC	CTATGTCACT	CGCAAGAACC	GGCATAACGA	TCCCGTGATC	360	
CGCCGACAGC	CCACGAGTGC	AAGACCGTTA	CA			392	
(2) INFORMATION FOR SEC ID NO:171:							

(2) INFORMATION FOR SEQ ID NO:171:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 535 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:

ACCGGCGCCA	CCGGCGGCAC	CGGGTTCGCC	GGTGGCGCCG	GCGGGGCCGG	CGGGCAGGGC	60
GGTATCAGCG	GTGCCGGCGG	CACCAACGGC	TCTGGTGGCG	CTGGCGGCAC	CGGCGGACAA	120
GGCGGCGCCG	GGGGCGCTGG	CGGGGCCGGC	GCCGATAACC	CCACCGGCAT	CGGCGGCGCC	180
GGCGGCACCG	GCGGCACCGG	CGGAGCGGCC	GGAGCCGGCG	GGGCCGGTGG	CGCCATCGGT	240
ACCGGCGGCA	CCGGCGGCGC	GGTGGGCAGC	GTCGGTAACG	CCGGGATCGG	CGGTACCGGC	300
GGTACGGGTG	GTGTCGGTGG	TGCTGGTGGT	GCAGGTGCGG	CTGCGGCCGC	TGGCAGCAGC	360
GCTACCGGTG	GCGCCGGGTT	CGCCGGCGGC	GCCGGCGGAG	AAGGCGGACC	GGGCGGCAAC	420
AGCGGTGTGG	GCGGCACCAA	CGGCTCCGGC	GGCGCCGGCG	GTGCAGGCGG	CAAGGGCGGC	480
ACCGGAGGTG	CCGGCGGGTC	CGGCGCGGAC	AACCCCACCG	GTGCTGGTTT	CGCCG	535

(2) INFORMATION FOR SEQ ID NO:172:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 690 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:

CCGACGTCGC	CGGGGCGATA	CGGGGGTCAC	CGACTACTAC	ATCATCCGCA	CCGAGAATCG	60
GCCGCTGCTG	CAACCGCTGC	GGGCGGTGCC	GGTCATCGGA	GATCCGCTGG	CCGACCTGAT	120
CCAGCCGAAC	CTGAAGGTGA	TCGTCAACCT	GGGCTACGGC	GACCCGAACT	ACGGCTACTC	180
GACGAGCTAC	GCCGATGTGC	GAACGCCGTT	CGGGCTGTGG	CCGAACGTGC	CGCCTCAGGT	240

CATCGCCGAT GCCCTGGCCG CCGGAACACA AGAAGGCATC CTTGACTTCA CGGCCGACCT	300
GCAGGCGCTG TCCGCGCAAC CGCTCACGCT CCCGCAGATC CAGCTGCCGC AACCCGCCGA	360
TCTGGTGGCC GCGGTGGCCG CCGCACCGAC GCCGGCCGAG GTGGTGAACA CGCTCGCCAG	420
GATCATCTCA ACCAACTACG CCGTCCTGCT GCCCACCGTG GACATCGCCC TCGCCTGGTC	480
ACCACCCTGC CGCTGTACAC CACCCAACTG TTCGTCAGGC AACTCGCTGC GGGCAATCTG	540
ATCAACGCGA TCGGCTATCC CCTGGCGGCC ACCGTAGGTT TAGGCACGAT CGATAGCGGG	600
CGGCGTGGAA TTGCTCACCC TCCTCGCGGC GGCCTCGGAC ACCGTTCGAA ACATCGAGGG	660
CCTCGTCACC TAACGGATTC CCGACGGCAT	690
(2) INFORMATION FOR SEQ ID NO:173:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 407 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:	
ACGGTGACGG CGGTACTGGC GGCGCCACG GCGCAACGG CGGGAATCCC GGGTGGCTCT	60
TGGGCACAGC CGGGGGTGGC GGCAACGGTG GCGCCGGCAG CACCGGTACT GCAGGTGGCG	120
GCTCTGGGGG CACCGGCGGC GACGGCGGGA CCGGCGGCG TGGCGGCCTG TTAATGGGCG	180
CCGGCGCCGG CGGGCACGGT GGCACTGGCG GCGCGGGCGG TGCCGGTGTC GACGGTGGCG	240
GCGCCGGCGG GGCCGGCGGCGCA ACGGCGGCGC CGGGGGTCAA GCCGCCCTGC	300
IGTTCGGGCG CGGCGGCACC GGCGGAGCCG GCGGCTACGG CGGCGATGGC GGTGGCGGCG	360
GTGACGGCTT CGACGGCACG ATGGCCGGCC TGGGTGGTAC CGGTGGC	407
(2) INFORMATION FOR SEQ ID NO:174:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 468 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:174:	
GATCGGTCAG CGCATCGCCC TCGGCGGCAA GCGATTCCGC GGTCTCACCG AAGAACATCG	60
TGCACGCGGC GGCGCGGACC AGCCCGCTGC GCTGCGGCGC GTCGAACGCC TCCAGCAGGC	120

173

ACAGCCAGTC	CTTGGCGGCC	TGCGAGGCGA	ACACGTCGGT	GTCACCGGTG	TAGATCGCCG	180	
GGATGCCCGC	CTCCGCCAAC	GCATTCCGGC	ACGCCCGCGC	GTCTTTGTGA	TGCTCGACGA	240	
TCACCGCGAT	GTCTGCGGCC	ACCACGGGCC	GCCCGGCGAA	GGTGGCCCCG	CTGGCCAGTA	300	
GCGCCGCGAC	GTCGGCGGCC	AGGTCGTCGG	GGATGTGCCG	GCGCAGCGCT	CCGGCGCGAC	360	
GCCCGAAAAA	CGACCCCTCA	CCCAGCTGGG	TCCCGCTGGC	ATATCCCTTG	CCGTCCTGGG	420	
CGATATTGGA	CGCGCATGCC	CCGACCGCGT	ACAGGCCGGC	CACCACCG		468	
(2) INFORMATION FOR SEC ID NO.175.							

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 219 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

GGTGGTAACG	GCGGCCAGGG	TGGCATCGGC	GGCGCCGGCG	AGAGAGGCGC	CGACGGCGCC	60
GGCCCCAATG	CTAACGGCGC	AAACGGCGAG	AACGGCGGTA	GCGGTGGTAA	CGGTGGCGAC	120
GGCGGCGCCG	GCGGCAATGG	CGGCGCGGC	GGCAACGCGC	AGGCGGCCGG	GTACACCGAC	180
GGCGCCACGG	GCACCGGCGG	CGACGGCGGC	AACGGCGGC			219

(2) INFORMATION FOR SEQ ID NO:176:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 494 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:

TAGCTCCGGC	GAGGGCGGCA	AGGGCGGCGA	CGGTGGCCAC	GGCGGTGACG	GCGTCGGCGG	60
CAACAGTTCC	GTCACCCAAG	GCGGCAGCGG	CGGTGGCGGC	GGCGCCGGCG	GCGCCGGCGG	120
CAGCGGCTTT	TTCGGCGGCA	AGGGCGGCTT	CGGCGGCGAC	GGCGGTCAGG	GCGGCCCAA	180
CGGCGGCGGT	ACCGTCGGCA	CCGTGGCCGG	TGGCGGCGGC	AACGGCGGTG	TCGGCGGCCG	240
GGGCGGCGAC	GGCGTCTTTG	CCGGTGCCGG	CGGCCAGGGC	GGCCTCGGTG	GGCAGGGCGG	300
CAATGGCGGC	GGCTCCACCG	GCGGCAACGG	CGGCCTTGGC	GGCGCGGGCG	GTGGCGGAGG	360
CAACGCCCCG	GCTCGTGCCG	AATCCGGGCT	GACCATGGAC	AGCGCGGCCA	AGTTCGCTGC	420

CATCGCATCA GGCGCGTACT GCCCCGAACA CCTGGAACAT CACCCGAGTT AGCGGGGCGC	480
ATTTCCTGAT CACC	494
(2) INFORMATION FOR SEQ ID NO:177:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 220 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:	
GGGCCGGTGG TGCCGCGGGC CAGCTCTTCA GCGCCGGAGG CGCGGCGGGT GCCGTTGGGG	60
TTGGCGGCAC CGGCGGCCAG GGTGGGGCTG GCGGTGCCGG AGCGGCCGGC GCCGACGCCC	120
CCGCCAGCAC AGGTCTAACC GGTGGTACCG GGTTCGCTGG CGGGGCCGGC GGCGTCGGCG	180
GCCAGAGCGG CAACGCCATT GCCGGCGGCA TCAACGGCTC	220
(2) INFORMATION FOR SEQ ID NO:178:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 388 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:	
ATGGCGGCAA CGGGGGCCCC GGCGGTGCTG GCGGGGCCGG CGACTACAAT TTCCAACGGC	60
GGGCAGGGTG GTGCCGGCGG CCAAGGCGGC CAAGGCGGCC TGGGCGGGC AAGCACCACC	120
IGATCGGCCT AGCCGCACCC GGGAAAGCCG ATCCAACAGG CGACGATGCC GCCTTCCTTG	180
CCGCGTTGGA CCAGGCCGGC ATCACCTACG CTGACCCAGG CCACGCCATA ACGGCCGCCA	240
AGGCGATGTG TGGGCTGTGT GCTAACGGCG TAACAGGTCT ACAGCTGGTC GCGGACCTGC	300
GGGACTACAA TCCCGGGCTG ACCATGGACA GCGCGGCCAA GTTCGCTGCC ATCGCATCAG	360
GCGCGTACTG CCCCGAACAC CTGGAACA	388
(2) INFORMATION FOR SEQ ID NO:179:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 400 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	

(xi)	SEQUENCE DES	CRIPTION: SI	EQ ID NO:17	9:		
GCAAAGGCG	G CACCGGCGGG	GCCGGCATGA	ACAGCCTCGA	CCCGCTGCTA	GCCGCCCAAG	60
ACGGCGGCC	A AGGCGGCACC	GGCGGCACCG	GCGGCAACGC	CGGCGCCGGC	GGCACCAGCT	120
TCACCCAAG	G CGCCGACGGC	AACGCCGGCA	ACGGCGGTGA	CGGCGGGGTC	GGCGGCAACG	180
GCGGAAACG	G CGGAAACGGC	GCAGACAACA	CCACCACCGC	CGCCGCCGGC	ACCACAGGCG	240
GCGACGGCG	G GGCCGGCGGG	GCCGGCGGAA	CCGGCGGAAC	CGGCGGAGCC	GCCGGCACCG	300
GCACCGGCG	G CCAACAAGGC	AACGGCGGCA	ACGGCGGCAC	CGGCGGCAAA	GGCGGCACCG	360
GCGGCGACG	G TGCACTCTCA	GGCAGCACCG	GTGGTGCCGG			400

(2) INFORMATION FOR SEQ ID NO:180:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 538 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

GGCAACGGCG	GCAACGGCGG	CATCGCCGGC	ATTGGGCGGC	AACGGCGTTC	CGGGACGGC	60
AGCGGCAACG	GCGGCCAACG	GCGGCAGCGG	CGGCAACGGC	GGCAACGCCG	GCATGGGCGG	120
CAACAGCGGC	ACCGGCAGCG	GCGACGGCGG	TGCCGGCGGG	AACGGCGGCG	CGGCGGCAC	180
GGGCGCACC	GGCGGCGACG	GCGGCCTCAC	CGGTACTGGC	GGCACCGGCG	GCAGCGGTGG	240
CACCGGCGGT	GACGGCGGTA	ACGGCGGCAA	CGGAGCAGAT	AACACCGCAA	ACATGACTGC	300
GCAGGCGGGC	GGTGACGGTG	GCAACGGCGG	CGACGGTGGC	TTCGGCGGCG	GGGCCGGGGC	360
CGGCGGCGGT	GGCTTGACCG	CTGGCGCCAA	CGGCACCGGC	GGGCAAGGCG	GCGCCGGCGG	420
CGATGGCGGC	AACGGGGCCA	TCGGCGGCCA	CGGCCCACTC	ACTGACGACC	CCGGCGGCAA	480
CGGGGGCACC	GGCGGCAACG	GCGGCACCGG	CGGCACCGGC	GGCGCGGCA	TCGGCAGC	538

(2) INFORMATION FOR SEQ ID NO:181:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 239 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SE	EQ ID NO:181	L:				
GGGCCGGTGG TGCCGCGGGC CAGCTCTTCA	GCGCCGGAGG	CGCGGCGGGT	GCCGTTGGGG	60		
TTGGCGGCAC CGGCGGCCAG GGTGGGGCTG	GCGGTGCCGG	AGCGGCCGGC	GCCGACGCCC	120		
CCGCCAGCAC AGGTCTAACC GGTGGTACCG	GGTTCGCTGG	CGGGGCCGGC	GGCGTCGGCG	180		
GCCACGGCGG CAACGCCATT GCCGGCGGCA	TCAACGGCTC	CGGTGGTGCC	GGCGGCACC	239		
(2) INFORMATION FOR SEQ ID NO:182:						

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 985 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:

AGCAGCGCTA	CCGGTGGCGC	CGGGTTCGCC	GGCGGCGCCG	GCGGAGAAGG	CGGAGCGGGC	60
GGCAACAGCG	GTGTGGGCGG	CACCAACGGC	TCCGGCGGCG	CCGGCGGTGC	AGGCGGCAAG	120
GGCGGCACCG	GAGGTGCCGG	CGGGTCCGGC	GCGGACAACC	CCACCGGTGC	TGGTTTCGCC	180
GGTGGCGCCG	GCGGCACAGG	TGGCGCGGCC	GGCGCCGGCG	GGGCCGGCGG	GGCGACCGGT	240
ACCGGCGGCA	CCGGCGGCGT	TGTCGGCGCC	ACCGGTAGTG	CAGGCATCGG	CGGGGCCGGC	300
GGCCGCGGCG	GTGACGGCGG	CGATGGGGCC	AGCGGTCTCG	GCCTGGGCCT	CTCCGGCTTT	360
GACGGCGGCC	AAGGCGGCCA	AGGCGGGGCC	GGCGGCAGCG	CCGGCGCCGG	CGGCATCAAC	420
GGGGCCGGCG	GGGCCGGCGG	CAACGGCGGC	GACGGCGGGG	ACGGCGCAAC	CGGTGCCGCA	480
GGTCTCGGCG	ACAACGGCGG	GGTCGGCGGT	GACGGTGGGG	CCGGTGGCGC	CGCCGGCAAC	540
GGCGGCAACG	CGGGCGTCGG	CCTGACAGCC	AAGGCCGGCG	ACGGCGCCC	CGCGGGCAAT	600
GGCGGCAACG	GGGGCGCCGG	CGGTGCTGGC	GGGGCCGGCG	ACAACAATTT	CAACGGCGGC	660
CAGGGTGGTG	CCGGCGGCCA	AGGCGGCCAA	GGCGGCTTGG	GCGGGGCAAG	CACCACCTGA	720
TCGGCCTAGC	CGCACCCGGG	AAAGCCGATC	CAACAGGCGA	CGATGCCGCC	TTCCTTGCCG	780
CGTTGGACCA	GGCCGGCATC	ACCTACGCTG	ACCCAGGCCA	CGCCATAACG	GCCGCCAAGG	840
CGATGTGTGG	GCTGTGTGCT	AACGGCGTAA	CAGGTCTACA	GCTGGTCGCG	GACCTGCGGG	900
AATACAATCC	CGGGCTGACC	ATGGACAGCG	CGGCCAAGTT	CGCTGCCATC	GCATCAGGCG	960
CGTACTGCCC	CGAACACCTG	GAACA				985

(2) INFORMATION FOR SEQ ID NO:183:

177

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2138 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

CGGCACGAGG	ATCGGTACCC	CGCGGCATCG	GCAGCTGCCG	ATTCGCCGGG	TTTCCCCACC	60
CGAGGAAAGC	CGCTACCAGA	TGGCGCTGCC	GAAGTAGGGC	GATCCGTTCG	CGATGCCGGC	120
ATGAACGGGC	GGCATCAAAT	TAGTGCAGGA	ACCTTTCAGT	TTAGCGACGA	TAATGGCTAT	180
AGCACTAAGG	AGGATGATCC	GATATGACGC	AGTCGCAGAC	CGTGACGGTG	GATCAGCAAG	240
AGATTTTGAA	CAGGGCCAAC	GAGGTGGAGG	CCCCGATGGC	GGACCCACCG	ACTGATGTCC	300
CCATCACACC	GTGCGAACTC	ACGGCGGCTA	AAAACGCCGC	CCAACAGCTG	GTATTGTCCG	360
CCGACAACAT	GCGGGAATAC	CTGGCGGCCG	GTGCCAAAGA	GCGGCAGCGT	CTGGCGACCT	420
CGCTGCGCAA	CGCGGCCAAG	GCGTATGGCG	AGGTTGATGA	GGAGGCTGCG	ACCGCGCTGG	480
ACAACGACGG	CGAAGGAACT	GTGCAGGCAG	AATCGGCCGG	GGCCGTCGGA	GGGGACAGTT	540
CGGCCGAACT	AACCGATACG	CCGAGGGTGG	CCACGGCCGG	TGAACCCAAC	TTCATGGATC	600
TCAAAGAAGC	GGCAAGGAAG	CTCGAAACGG	GCGACCAAGG	CGCATCGCTC	GCGCACTTTG	660
CGGATGGGTG	GAACACTTTC	AACCTGACGC	TGCAAGGCGA	CGTCAAGCGG	TTCCGGGGGT	720
TTGACAACTG	GGAAGGCGAT	GCGGCTACCG	CTTGCGAGGC	TTCGCTCGAT	CAACAACGGC	780
AATGGATACT	CCACATGGCC	AAATTGAGCG	CTGCGATGGC	CAAGCAGGCT	CAATATGTCG	840
CGCAGCTGCA	CGTGTGGGCT	AGGCGGGAAC	ATCCGACTTA	TGAAGACATA	GTCGGGCTCG	900
AACGGCTTTA	CGCGGAAAAC	CCTTCGGCCC	GCGACCAAAT	TCTCCCGGTG	TACGCGGAGT	960
ATCAGCAGAG	GTCGGAGAAG	GTGCTGACCG	AATACAACAA	CAAGGCAGCC	CTGGAACCGG	1020
TAAACCCGCC	GAAGCCTCCC	CCCGCCATCA	AGATCGACCC	GCCCCGCCT	CCGCAAGAGC	1080
AGGGATTGAT	CCCTGGCTTC	CTGATGCCGC	CGTCTGACGG	CTCCGGTGTG	ACTCCCGGTA	1140
CCGGGATGCC	AGCCGCACCG	ATGGTTCCGC	CTACCGGATC	GCCGGGTGGT	GGCCTCCCGG	1200
CTGACACGGC	GGCGCAGCTG	ACGTCGGCTG	GGCGGGAAGC	CGCAGCGCTG	TCGGGCGACG	1260
TGGCGGTCAA .	AGCGGCATCG	CTCGGTGGCG	GTGGAGGCGG	CGGGGTGCCG	TCGGCGCCGT	1320
TGGGATCCGC	GATCGGGGGC	GCCGAATCGG	TGCGGCCCGC	TGGCGCTGGT	GACATTGCCG	1380
GCTTAGGCCA	GGGAAGGGCC	GGCGGCGGCG	CCGCGCTGGG	CGGCGGTGGC	ATGGGAATGC	1440
CGATGGGTGC	CGCGCATCAG	GGACAAGGGG	GCGCCAAGTC	CAAGGGTTCT	CAGCAGGAAG	1500

ACGAGGCGCT	CTACACCGAG	GATCGGGCAT	GGACCGAGGC	CGTCATTGGT	AACCGTCGGC	1560
GCCAGGACAG	TAAGGAGTCG	AAGTGAGCAT	GGACGAATTG	GACCCGCATG	TCGCCCGGGC	1620
GTTGACGCTG	GCGGCGCGGT	TTCAGTCGGC	CCTAGACGGG	ACGCTCAATC	AGATGAACAA	1680
CGGATCCTTC	CGCGCCACCG	ACGAAGCCGA	GACCGTCGAA	GTGACGATCA	ATGGGCACCA	1740
GTGGCTCACC	GGCCTGCGCA	TCGAAGATGG	TTTGCTGAAG	AAGCTGGGTG	CCGAGGCGGT	1800
GGCTCAGCGG	GTCAACGAGG	CGCTGCACAA	TGCGCAGGCC	GCGGCGTCCG	CGTATAACGA	1860
CGCGGCGGGC	GAGCAGCTGA	CCGCTGCGTT	ATCGGCCATG	TCCCGCGCGA	TGAACGAAGG	1920
AATGGCCTAA	GCCCATTGTT	GCGGTGGTAG	CGACTACGCA	CCGAATGAGC	GCCGCAATGC	1980
GGTCATTCAG	CGCGCCCGAC	ACGGCGTGAG	TACGCATTGT	CAATGTTTTG	ACATGGATCG	2040
GCCGGGTTCG	GAGGGCGCCA	TAGTCCTGGT	CGCCAATATT	GCCGCAGCTA	GCTGGTCTTA	2100
GGTTCGGTTA	CGCTGGTTAA	TTATGACGTC	CGTTACCA			2138

(2) INFORMATION FOR SEQ ID NO:184:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 460 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

Asn Phe Met Asp Leu Lys Glu Ala Ala Arg Lys Leu Glu Thr Gly Asp

Gln 145	Gly	Ala	Ser	Leu	Ala 150	His	Phe	Ala	Asp	Gly 155		Asn	Thr	Phe	Asn 160
Leu	Thr	Leu	Gln	Gly 165	Asp	Val	Lys	Arg	Phe 170	Arg	Gly	Phe	Asp	Asn 175	Trp
Glu	Gly	Asp	Ala 180	Ala	Thr	Ala	Cys	Glu 185	Ala	Ser	Leu	Asp	Gln 190	Gln	Arg
Gln	Trp	Ile 195	Leu	His	Met	Ala	Lys 200	Leu	Ser	Ala	Ala	Met 205	Ala	Lys	Gln
Ala	Gln 210	Tyr	Val	Ala	Gln	Leu 215	His	Val	Trp	Ala	Arg 220	Arg	Glu	His	Pro
Thr 225	Tyr	Glu	Asp	Ile	Val 230	Gly	Leu	Glu	Arg	Leu 235	Tyr	Ala	Glu	Asn	Pro 240
Ser	Ala	Arg	Asp	Gln 245	Ile	Leu	Pro	Val	Tyr 250	Ala	Glu	Tyr	Gln	Gln 255	Arg
Ser	Glu	Lys	Val 260	Leu	Thr	Glu	Tyr	Asn 265	Asn	Lys	Ala	Ala	Leu 270	Glu	Pro
Val	Asn	Pro 275	Pro	Lys	Pro	Pro	Pro 280	Ala	Ile	Lys	Ile	Asp 285	Pro	Pro	Pro
Pro	Pro 290	Gln	Glu	Gln	Gly	Leu 295	Ile	Pro	Gly	Phe	Leu 300	Met	Pro	Pro	Ser
Asp 305	Gly	Ser	Gly	Val	Thr 310	Pro	Gly	Thr	Gly	Met 315	Pro	Ala	Ala	Pro	Met 320
Val	Pro	Pro	Thr	Gly 325	Ser	Pro	Gly	Gly	Gly 330	Leu	Pro	Ala	Asp	Thr 335	Ala
Ala	Gln	Leu	Thr 340	Ser	Ala	Gly	Arg	Glu 345	Ala	Ala	Ala	Leu	Ser 350	Gly	Asp
Val	Ala	Val 355	Lys	Ala	Ala	Ser	Leu 360	Gly	Gly	Gly	Gly	Gly 365	Gly	Gly	Val
Pro	Ser 370	Ala	Pro	Leu	Gly	Ser 375	Ala	Ile	Gly	Gly	Ala 380	Glu	Ser	Val	Arg
Pro 385	Ala	Gly	Ala	Gly	Asp 390	Ile	Ala	Gly	Leu	Gly 395	Gln	Gly	Arg	Ala	Gly 400
Gly	Gly	Ala	Ala	Leu 405	Gly	Gly	Gly	Gly	Met 410	Gly	Met	Pro	Met	Gly 415	Ala
Ala	His	Gln	Gly 420	Gln	Gly	Gly	Ala	Lys 425	Ser	Lys	Gly	Ser	Gln 430	Gln	Glu
Asp	Glu	Ala 435	Leu	Tyr	Thr	Glu	Asp 440	Arg	Ala	Trp	Thr	Glu 445	Ala	Val	Ile
Gly	Asn 450	Arg	Arg	Arg	Gln	Asp 455	Ser	Lys	Glu	Ser	Lys 460				

(2) INFORMATION FOR SEQ ID NO:185:

WO 98/16646

PCT/US97/18293

- 180
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 277 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

Ala Gly Asn Val Thr Ser Ala Ser Gly Pro His Arg Phe Gly Ala Pro 1 5 10 15

Asp Arg Gly Ser Gln Arg Arg Arg His Pro Ala Ala Ser Thr Ala 20 25 30

Thr Glu Arg Cys Arg Phe Asp Arg His Val Ala Arg Gln Arg Cys Gly 35 40 45

Phe Pro Pro Ser Arg Arg Gln Leu Arg Arg Arg Val Ser Arg Glu Ala 50 55 60

Thr Thr Arg Arg Ser Gly Arg Arg Asn His Arg Cys Gly Trp His Pro 65 70 75 80

Gly Thr Gly Ser His Thr Gly Ala Val Arg Arg Arg His Gln Glu Ala 85 90 95

Arg Asp Gln Ser Leu Leu Leu Arg Arg Gly Arg Val Asp Leu Asp 100 105 110

Gly Gly Arg Leu Arg Arg Val Tyr Arg Phe Gln Gly Cys Leu Val 115 120 125

Val Val Phe Gly Gln His Leu Leu Arg Pro Leu Leu Ile Leu Arg Val 130 135 140

His Arg Glu Asn Leu Val Ala Gly Arg Arg Val Phe Arg Val Lys Pro 145 150 155 160

Phe Glu Pro Asp Tyr Val Phe Ile Ser Arg Met Phe Pro Pro Ser Pro 165 170 175

His Val Gln Leu Arg Asp Ile Leu Ser Leu Leu Gly His Arg Ser Ala 180 185 190

Gln Phe Gly His Val Glu Tyr Pro Leu Pro Leu Leu Ile Glu Arg Ser 195 200 205

Leu Ala Ser Gly Ser Arg Ile Ala Phe Pro Val Val Lys Pro Pro Glu 210 215 220

Pro Leu Asp Val Ala Leu Gln Arg Gln Val Glu Ser Val Pro Pro Ile 225 230 235 240

Arg Lys Val Arg Glu Arg Cys Ala Leu Val Ala Arg Phe Glu Leu Pro 245 250 255

Cys Arg Phe Phe Glu Ile His Glu Val Gly Phe Thr Gly Arg Gly His

181

260 265 270

Pro Arg Arg Ile Gly 275

(2) INFORMATION FOR SEQ ID NO:186:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 192 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

Arg Val Ala Ala Ser Phe Ile Asp Trp Leu Asp Ser Pro Asp Ser Pro 1 10 15

Leu Asp Pro Ser Leu Val Ser Ser Leu Leu Asn Ala Val Ser Cys Gly 20 25 30

Ala Glu Ser Ser Ala Ser Ser Ser Ala Arg Ser Gly Asn Gly Ser Arg 35 40 45

Trp Thr Ser Met Pro Ser Gly Thr Arg Pro Gly Pro Arg Arg Ala Thr 50 60

Ser Arg Asp Asp Arg Arg Ser Ala Thr Ser Val Ile Pro Ser Arg Arg 65 70 75 80

Ser Val Ala Pro Arg Ala Glu Phe Gly Thr Arg Leu Ala Ser His Arg 85 90 95

Ala Ser Pro Ser Asn Ala Cys Pro Val Arg Ile Val Thr Ser Ala Ser 100 105 110

Gly Arg Pro Ile Ser Ser Pro Pro Ile Val Arg Ser Arg Ser Cys Val 115 120 125

Asp Lys Asn Gly Arg Arg Cys Ala Ser Gly Tyr Arg Arg Leu Asn Arg 130 140

Ala Arg Ser Ser Ser Ile Ala Ala Arg Cys Arg Thr Ile Gly Thr Phe 145 150 155 160

Arg Arg Ser Arg Tyr Ser Ala Ser Met Arg Val Ser Thr Asn Ser Pro 165 170 175

His Val Thr His Gly Val Ala Pro Gly Val Thr Arg Arg Ile Gly Gly 180 185 190

(2) INFORMATION FOR SEQ ID NO:187:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 196 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:

182

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:187: Gln Glu Arg Pro Gln Met Cys Gln Arg Val Ser Glu Ile Glu Pro Arg Thr Gln Phe Phe Asn Arg Cys Ala Leu Pro His Tyr Trp His Phe Pro Ala Val Ala Val Phe Ser Lys His Ala Ser Leu Asp Glu Leu Ala Pro Arg Asn Pro Arg Arg Ser Ser Arg Arg Asp Ala Glu Asp Arg Arg Val Ile Phe Ala Ala Thr Leu Val Ala Val Asp Pro Pro Leu Arg Gly Ala Gly Gly Glu Ala Asp Gln Leu Ile Asp Leu Gly Val Cys Arg Arg Gln Ala Gly Arg Val Arg Arg Gly Gln Glu Leu His His Arg His Arg His 105 Gln Gly Ala Ala Pro Asp Leu Arg Arg Arg Arg His Arg Arg Val Gln Gln His Arg Arg Leu Gln Arg Val Arg Gln Leu Arg Arg Tyr Val Gln Thr Ala His His Arg Arg Phe Ala Arg Thr Asp Arg Val Arg His 155 His Val Arg Gly Pro Ser Asn His Arg Arg Arg Arg Val Tyr Arg Gly Arg His Ser Gly Ala Gly Gly Cys Pro Ala Gly Gly Ala Gly Ser Val 1.80 185 Gly Gly Ser Ala 195

(2) INFORMATION FOR SEQ ID NO:188:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 311 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:

Val Arg Cys Gly Thr Leu Val Pro Val Pro Met Val Glu Phe Leu Thr

183

1				5					10					15	
Ser	Thr	Asn	Ala 20	Pro	Ser	Leu	Pro	Ser 25	Ala	Tyr	Ala	Glu	Val 30	Asp	Lys
Leu	Ile	Gly 35	Leu	Pro	Ala	Gly	Thr 40	Ala	Lys	Arg	Trp	Ile 45	Asn	Gly	Tyr
Glu	Arg 50	Gly	Gly	Lys	Asp	His 55	Pro	Pro	Ile	Leu	Arg 60	Val	Thr	Pro	Gly
Ala 65	Thr	Pro	Trp	Val	Thr 70	Trp	Gly	Glu	Phe	Val 75	Glu	Thr	Arg	Met	Leu 80
Ala	Glu	Tyr	Arg	Asp 85	Arg	Arg	Lys	Val	Pro 90	Ile	Val	Arg	Gln	Arg 95	Ala
Ala	Ile	Glu	Glu 100	Leu	Arg	Ala	Arg	Phe 105	Asn	Leu	Arg	Tyr	Pro 110	Leu	Ala
His	Leu	Arg 115	Pro	Phe	Leu	Ser	Thr 120	His	Glu	Arg	Asp	Leu 125	Thr	Met	Gly
Gly	Glu 130	Glu	Ile	Gly	Leu	Pro 135	Asp	Ala	Glu	Val	Thr 140	Ile	Arg	Thr	Gly
Gln 145	Ala	Leu	Leu	Gly	Asp 150	Ala	Arg	Trp	Leu	Ala 155	Ser	Leu	Val	Pro	Asn 160
Ser	Ala	Arg	Gly	Ala 165	Thr	Leu	Arg	Arg	Leu 170	Gly	Ile	Thr	Asp	Val 175	Ala
Asp	Leu	Arg	Ser 180	Ser	Arg	Glu	Val	Ala 185	Arg	Arg	Gly	Pro	Gly 190	Arg	Val
Pro	Asp	Gly 195	Ile	Asp	Val	His	Leu 200	Leu	Pro	Phe	Pro	Asp 205	Leu	Ala	Asp
Asp	Asp 210	Ala	Asp	Asp	Ser	Ala 215	Pro	His	Glu	Thr	Ala 220	Phe	Lys	Arg	Leu
Leu 225	Thr	Asn	Asp	Gly	Ser 230	Asn	Gly	Glu	Ser	Gly 235	Glu	Ser	Ser	Gln	Ser 240
Ile	Asn	Asp	Ala	Ala 245	Thr	Arg	Tyr	Met	Thr 250	Asp	Glu	Tyr	Arg	Gln 255	Phe
Pro	Thr	Arg	Asn 260	Gly	Ala	Gln	Arg	Ala 265	Leu	His	Arg	Val	Val 270	Thr	Leu
Leu	Ala	Ala 275	Gly	Arg	Pro	Val	Leu 280	Thr	His	Cys	Phe	Ala 285	Gly	Lys	Asp
Arg	Thr 290	Gly	Phe	Val	Val	Ala 295	Leu	Val	Leu	Glu	Ala 300	Val	Gly	Leu	Asp
Arg 305	Asp	Val	Ile	Val	Ala 310	Asp									

- (2) INFORMATION FOR SEQ ID NO:189:
 - (i) SEQUENCE CHARACTERISTICS:

184

(A) LENGTH: 2072 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:

CTCGTGCCGA	TTCGGCACGA	GCTGAGCAGC	CCAAGGGGCC	GTTCGGCGAA	GTCATCGAGG	60
CATTCGCCGA	CGGGCTGGCC	GGCAAGGGTA	AGCAAATCAA	CACCACGCTG	AACAGCCTGT	120
CGCAGGCGTT	GAACGCCTTG	AATGAGGGCC	GCGGCGACTT	CTTCGCGGTG	GTACGCAGCC	180
TGGCGCTATT	CGTCAACGCG	CTACATCAGG	ACGACCAACA	GTTCGTCGCG	TTGAACAAGA	240
ACCTTGCGGA	GTTCACCGAC	AGGTTGACCC	ACTCCGATGC	GGACCTGTCG	AACGCCATCC	300
AGCAATTCGA	CAGCTTGCTC	GCCGTCGCGC	GCCCGTTCTT	CGCCAAGAAC	CGCGAGGTGC	360
TGACGCATGA	CGTCAATAAT	CTCGCGACCG	TGACCACCAC	GTTGCTGCAG	CCCGATCCGT	420
TGGATGGGTT	GGAGACCGTC	CTGCACATCT	TCCCGACGCT	GGCGGCGAAC	ATTAACCAGC	480
TTTACCATCC	GACACACGGT	GGCGTGGTGT	CGCTTTCCGC	GTTCACGAAT	TTCGCCAACC	540
CGATGGAGTT	CATCTGCAGC	TCGATTCAGG	CGGGTAGCCG	GCTCGGTTAT	CAAGAGTCGG	600
CCGAACTCTG	TGCGCAGTAT	CTGGCGCCAG	TCCTCGATGC	GATCAAGTTC	AACTACTTTC	660
CGTTCGGCCT	GAACGTGGCC	AGCACCGCCT	CGACACTGCC	TAAAGAGATC	GCGTACTCCG	720
AGCCCCGCTT	GCAGCCGCCC	AACGGGTACA	AGGACACCAC	GGTGCCCGGC	ATCTGGGTGC	780
CGGATACGCC	GTTGTCACAC	CGCAACACGC	AGCCCGGTTG	GGTGGTGGCA	CCCGGGATGC	840
AAGGGGTTCA	GGTGGGACCG	ATCACGCAGG	GTTTGCTGAC	GCCGGAGTCC	CTGGCCGAAC	900
TCATGGGTGG	TCCCGATATC	GCCCCTCCGT	CGTCAGGGCT	GCAAACCCCG	CCCGGACCCC	960
CGAATGCGTA	CGACGAGTAC	CCCGTGCTGC	CGCCGATCGG	TTTACAGGCC	CCACAGGTGC	1020
CGATACCACC	GCCGCCTCCT	GGGCCCGACG	TAATCCCGGG	TCCGGTGCCA	CCGGTCTTGG	1080
CGGCGATCGT	GTTCCCAAGA	GATCGCCCGG	CAGCGTCGGA	AAACTTCGAC	TACATGGGCC	1140
TCTTGTTGCT	GTCGCCGGGC	CTGGCGACCT	TCCTGTTCGG	GGTGTCATCT	AGCCCCGCCC	1200
GTGGAACGAT	GGCCGATCGG	CACGTGTTGA	TACCGGCGAT	CACCGGCCTG	GCGTTGATCG	1260
CGGCATTCGT	CGCACATTCG	TGGTACCGCA	CAGAACATCC	GCTCATAGAC	ATGCGCTTGT	1320
TCCAGAACCG	AGCGGTCGCG	CAGGCCAACA	TGACGATGAC	GGTGCTCTCC	CTCGGGCTGT	1380
TTGGCTCCTT	CTTGCTGCTC	CCGAGCTACC	TCCAGCAAGT	GTTGCACCAA	TCACCGATGC	1440
AATCGGGGGT	GCATATCATC	CCACAGGGCC	TCGGTGCCAT	GCTGGCGATG	CCGATCGCCG	1500
GAGCGATGAT	GGACCGACGG	GGACCGGCCA	AGATCGTGCT	GGTTGGGATC	ATGCTGATCG	1560

CTC	GCGGGGTT	GGGCACCTTC	GCCTTTGGTG	TCGCGCGGCA	AGCGGACTAC	TTACCCATTC	1620
TGC	CCGACCGG	GCTGGCAATC	ATGGGCATGG	GCATGGGCTG	CTCCATGATG	CCACTGTCCG	1680
GGG	GCGGCAGT	GCAGACCCTG	GCCCCACATC	AGATCGCTCG	CGGTTCGACG	CTGATCAGCG	1740
TCF	AACCAGCA	GGTGGGCGGT	TCGATAGGGA	CCGCACTGAT	GTCGGTGCTG	CTCACCTACC	1800
AGI	TCAATCA	CAGCGAAATC	ATCGCTACTG	CAAAGAAAGT	CGCACTGACC	CCAGAGAGTG	1860
GCG	CCGGGCG	GGGGGCGGCG	GTTGACCCTT	CCTCGCTACC	GCGCCAAACC	AACTTCGCGG	1920
CCC	CAACTGCT	GCATGACCTT	TCGCACGCCT	ACGCGGTGGT	ATTCGTGATA	GCGACCGCGC	1980
TAG	TGGTCTC	GACGCTGATC	CCCGCGGCAT	TCCTGCCGAA	ACAGCAGGCT	AGTCATCGAA	2040
GAG	CACCGTT	GCTATCCGCA	TGACGTCTGC	TT			2072

(2) INFORMATION FOR SEQ ID NO:190:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1923 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

TCACCCGGA	GAAGTCGTTC	GTCGACGACC	TGGACATCGA	CTCGCTGTCG	ATGGTCGAGA	60
TCGCCGTGCA	GACCGAGGAC	AAGTACGGCG	TCAAGATCCC	CGACGAGGAC	CTCGCCGGTC	120
TGCGTACCGT	CGGTGACGTT	GTCGCCTACA	TCCAGAAGCT	CGAGGAAGAA	AACCCGGAGG	180
CGGCTCAGGC	GTTGCGCGCG	AAGATTGAGT	CGGAGAACCC	CGATGCGGCA	CGAGCAGATC	240
GGTGCGTTTC	ACCCACATCG	CAAGCTCGAG	ACGCCCGTCG	TCCTCTTGCA	CGCTCAGCCA	300
GGTTGGCGTG	TCGCCGCCTT	CCAGCAAGTG	TTCCCACCAC	ACGAAGGGAC	CCTCGCGAAA	360
GGTGACTGAT	CCGCGGACCA	CATAGTCGAT	GCCACCGTGG	CTGACAATTG	CGCCGGGTCC	420
GAGTTGGCGG	GGGCCGAATT	GCGGCATTGC	GTCGAAGGCC	AGCGGATCCC	GGCGCCCGCC	480
CGGCGTGGCT	GGTGTTTTGG	GCCGCCGGAT	GGCCACGACG	AGAACGACGA	TGGCGGCGAT	540
GAACAGCGCC	ACGGCAATCA	CGACCAGCAG	ATTTCCCACG	CATACCCTCT	CGTACCGCTG	600
CGCCGCGGTT	GGTCGATCGG	TCGCATATCG	ATGGCGCCGT	TTAACGTAAC	AGCTTTCGCG	660
GGACCGGGGG	TCACAACGGG	CGAGTTGTCC	GGCCGGGAAC	CCGGCAGGTC	TCGGCCGCGG	720
TCACCCCAGC	TCACTGGTGC	ACCATCCGGG	TGTCGGTGAG	CGTGCAACTC	AAACACACTC	780
AACGGCAACG	GTTTCTCAGG	TCACCAGCTC	AACCTCGACC	CGCAATCGCT	CGTACGTTTC	840
GACCGCGCGC	AGGTCGCGAG	TCAGCAGCTT	TGCGCCGGCA	GCTTTCGCCG	TGAAGCCGAC	900

186

CAGGGCATCG	TAGGTTGCGC	CACCGGTGAC	ATCGTGCTCG	GCGAGGTGGT	CGGTCAAGCC	960
GCGATATGAG	CAGGCATCCA	GTGCCAGGTA	GTTGCTGGAG	GTGATGTCCG	CCAAGTAGGC	1020
GTGGACGGCA	ACAGGGGCAA	TACGATGCGG	CGGTGGTAGC	CGGGTCAAGA	CCGAATAGGT	1080
TTCCACAGCC	GCGTGCGCGA	TCAGATGGAC	GCCACGGTTG	AGCGCGCGCA	CGGCGGCCTC	1140
GTGCCCTTCG	TGCCAGGTCG	CGAATCCGGC	AACCAGCACG	CTGGTGTCTG	GTGCGATCAC	1200
CGCCGTGTGC	GATCGAGCGT	TTCCCGAACG	ATTTCGTCGG	TCAACGGGGG	CAGGGGACGT	1260
TCTGGCCGTG	CGACGAGAAC	CGAGCCTTCC	CGAACGAGTT	CGACACCGGT	CGGGGCCGGC	1320
TCAATCTCGA	TGCGCCCATC	GCGCTCGGTG	ATCTCCACCT	GGTCGTTCCC	GCGCAAGCCA	1380
AGGCGCTCGC	GAATCCGCTT	GGGAATCACC	AGACGTCCTG	CGACATCGAT	GGTTGTTCGC	1440
ATGGTAGGAA	ATTTACCATC	GCACGTTCCA	TAGGCGTGTC	CTGCGCGGGA	TGTCGGGACG	1500
ATCCGCTAGC	GTATCGAACG	ATTGTTTCGG	AAATGGCTGA	GGGAGCGTGC	GGTGCGGGTG	1560
ATGGGTGTCG	ATCCCGGGTT	GACCCGATGC	GGGCTGTCGC	TCATCGAGAG	TGGGCGTGGT	1620
CGGCAGCTCA	CCGCGCTGGA	TGTCGACGTG	GTGCGCACAC	CGTCGGATGC	GGCCTTGGCG	1680
CAGCGCCTGT	TGGCCATCAG	CGATGCCGTC	GAGCACTGGC	TGGACACCCA	TCATCCGGAG	1740
GTGGTGGCTA	TCGAACGGGT	GTTCTCTCAG	CTCAACGTGA	CCACGGTGAT	GGGCACCGCG	1800
CAGGCCGGCG	GCGTGATCGC	CCTGGCGGCG	GCCAAACGTG	GTGTCGACGT	GCATTTCCAT	1860
ACCCCCAGCG	AGGTCAAGGC	GGCGGTCACT	GGCAACGGTT	CCGCAGACAA	GGCTCAGGTC	1920
ACC						1923

(2) INFORMATION FOR SEQ ID NO:191:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1055 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

CTGGCGTGCC	AGTGTCACCG	GCGATATGAC	GTCGGCATTC	AATTTCGCGG	CCCCGCCGGA	60
CCCGTCGCCA	CCCAATCTGG	ACCACCCGGT	CCGTCAATTG	CCGAAGGTCG	CCAAGTGCGT	120
GCCCAATGTG	GTGCTGGGTT	TCTTGAACGA	AGGCCTGCCG	TATCGGGTGC	CCTACCCCA	180
AACAACGCCA	GTCCAGGAAT	CCGGTCCCGC	GCGGCCGATT	CCCAGCGGCA	TCTGCTAGCC	240
GGGGATGGTT	CAGACGTAAC	GGTTGGCTAG	GTCGAAACCC	GCGCCAGGGC	CGCTGGACGG	300
GCTCATGGCA	GCGAAATTAG	AAAACCCGGG	ATATTGTCCG	CGGATTGTCA	TACGATGCTG	360

187

AGTGCTTGGT	GGTTCGTGTT	TAGCCATTGA	GTGTGGATGT	GTTGAGACCC	TGGCCTGGAA	420
GGGGACAACG	TGCTTTTGCC	TCTTGGTCCG	CCTTTGCCGC	CCGACGCGGT	GGTGGCGAAA	480
CGGGCTGAGT	CGGGAATGCT	CGGCGGGTTG	TCGGTTCCGC	TCAGCTGGGG	AGTGGCTGTG	540
CCACCCGATG	ATTATGACCA	CTGGGCGCCT	GCGCCGGAGG	ACGGCGCCGA	TGTCGATGTC	600
CAGGCGGCCG	AAGGGGCGGA	CGCAGAGGCC	GCGGCCATGG	ACGAGTGGGA	TGAGTGGCAG	660
GCGTGGAACG	AGTGGGTGGC	GGAGAACGCT	GAACCCCGCT	TTGAGGTGCC	ACGGAGTAGC	720
AGCAGCGTGA	TTCCGCATTC	TCCGGCGGCC	GGCTAGGAGA	GGGGGCGCAG	ACTGTCGTTA	780
TTTGACCAGT	GATCGGCGGT	CTCGGTGTTC	CCGCGGCCGG	CTATGACAAC	AGTCAATGTG	840
CATGACAAGT	TACAGGTATT	AGGTCCAGGT	TCAACAAGGA	GACAGGCAAC	ATGGCAACAC	900
GTTTTATGAC	GGATCCGCAC	GCGATGCGGG	ACATGGCGGG	CCGTTTTGAG	GTGCACGCCC	960
AGACGGTGGA	GGACGAGGCT	CGCCGGATGT	GGGCGTCCGC	GCAAAACATC	TCGGGNGCGG	1020
GCTGGAGTGG	CATGGCCGAG	GCGACCTCGC	TAGAC			1055

(2) INFORMATION FOR SEQ ID NO:192:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 359 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

CCGCCTCGTT GTTGGCATA	TCCGCCGCGG	CCGCCTCGAC	CGCACTGGCC	GTGGCGTGTG	60
TCCGGGCTGA CCACCGGGAT	CGCCGAACCA	TCCGAGATCA	CCTCGCAATG	ATCCACCTCG	120
CGCAGCTGGT CACCCAGCCA	CCGGGCGGTG	TGCGACAGCG	CCTGCATCAC	CTTGGTATAG	180
CCGTCGCGCC CCAGCCGCAC	GAAGTTGTAG	TACTGGCCCA	CCACCTGGTT	ACCGGGACGG	240
GAGAAGTTCA GGGTGAAGGT	CGGCATGTCG	CCGCCGAGGT	AGTTGACCCG	GAAAACCAGA	300
TCCTCCGGCA GGTGCTCGGG	CCCGCGCCAC	ACGACAAACC	CGACGCCGGG	ATAGGTCAG	359

(2) INFORMATION FOR SEQ ID NO:193:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 350 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

188

(xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:193:
------	----------	--------------	-----	----	---------

AACGGGCCCG	TGGGCACCGC	TCCTCTAAGG	GCTCTCGTTG	GTCGCATGAA	GTGCTGGAAG	60
GATGCATCTT	GGCAGATTCC	CGCCAGAGCA	AAACAGCCGC	TAGTCCTAGT	CCGAGTCGCC	120
CGCAAAGTTC	CTCGAATAAC	TCCGTACCCG	GAGCGCCAAA	CCGGGTCTCC	TTCGCTAAGC	180
TGCGCGAACC	ACTTGAGGTT	CCGGGACTCC	TTGACGTCCA	GACCGATTCG	TTCGAGTGGC	240
TGATCGGTTC	GCCGCGCTGG	CGCGAATCCG	CCGCCGAGCG	GGGTGATGTC	AACCCAGTGG	300
GTGGCCTGGA	AGAGGTGCTC	TACGAGCTGT	CTCCGATCGA	GGACTTCTCC		350

(2) INFORMATION FOR SEQ ID NO:194:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 679 amino acids
 - (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

Glu 1	Gln	Pro	Lys	Gly 5	Pro	Phe	Gly	Glu	Val 10	Ile	Glu	Ala	Phe	Ala 15	Asp
Gly	Leu	Ala	Gly 20	Lys	Gly	Lys	Gln	Ile 25	Asn	Thr	Thr	Leu	Asn 30	Ser	Leu
Ser	Gln	Ala 35	Leu	Asn	Ala	Leu	Asn 40	Glu	Gly	Arg	Gly	Asp 45	Phe	Phe	Ala
Val	Val 50	Arg	Ser	Leu	Ala	Leu 55	Phe	Val	Asn	Ala	Leu 60	His	Gln	Asp	Asp
Gln 65	Gln	Phe	Val	Ala	Leu 70	Asn	Lys	Asn	Leu	Ala 75	Glu	Phe	Thr	Asp	Arg 80
Leu	Thr	His	Ser	Asp 85	Ala	Asp	Leu	Ser	Asn 90	Ala	Ile	Gln	Gln	Phe 95	Asp
Ser	Leu	Leu	Ala 100	Val	Ala	Arg	Pro	Phe 105	Phe	Ala	Lys	Asn	Arg 110	Glu	Val
Leu	Thr	His 115	Asp	Val	Asn	Asn	Leu 120	Ala	Thr	Val	Thr	Thr 125	Thr	Leu	Leu
Gln	Pro 130	Asp	Pro	Leu	Asp	Gly 135	Leu	Glu	Thr	Val	Leu 140	His	Ile	Phe	Pro
Thr 145	Leu	Ala	Ala	Asn	Ile 150	Asn	Gln	Leu	Tyr	His 155	Pro	Thr	His	Gly	Gly 160
Val	Val	Ser	Leu	Ser	Ala	Phe	Thr	Asn	Phe	Ala	Asn	Pro	Met	Glu	Phe

165 170 175

189

Ile Cys Ser Ser Ile Gln Ala Gly Ser Arg Leu Gly Tyr Gln Glu Ser Ala Glu Leu Cys Ala Gln Tyr Leu Ala Pro Val Leu Asp Ala Ile Lys Phe Asn Tyr Phe Pro Phe Gly Leu Asn Val Ala Ser Thr Ala Ser Thr 215 Leu Pro Lys Glu Ile Ala Tyr Ser Glu Pro Arg Leu Gln Pro Pro Asn 235 Gly Tyr Lys Asp Thr Thr Val Pro Gly Ile Trp Val Pro Asp Thr Pro Leu Ser His Arg Asn Thr Gln Pro Gly Trp Val Val Ala Pro Gly Met Gln Gly Val Gln Val Gly Pro Ile Thr Gln Gly Leu Leu Thr Pro Glu Ser Leu Ala Glu Leu Met Gly Gly Pro Asp Ile Ala Pro Pro Ser Ser Gly Leu Gln Thr Pro Pro Gly Pro Pro Asn Ala Tyr Asp Glu Tyr Pro Val Leu Pro Pro Ile Gly Leu Gln Ala Pro Gln Val Pro Ile Pro Pro Pro Pro Pro Gly Pro Asp Val Ile Pro Gly Pro Val Pro Pro Val Leu 345 Ala Ala Ile Val Phe Pro Arg Asp Arg Pro Ala Ala Ser Glu Asn Phe Asp Tyr Met Gly Leu Leu Leu Ser Pro Gly Leu Ala Thr Phe Leu Phe Gly Val Ser Ser Ser Pro Ala Arg Gly Thr Met Ala Asp Arg His 390 Val Leu Ile Pro Ala Ile Thr Gly Leu Ala Leu Ile Ala Ala Phe Val Ala His Ser Trp Tyr Arg Thr Glu His Pro Leu Ile Asp Met Arg Leu 425 Phe Gln Asn Arg Ala Val Ala Gln Ala Asn Met Thr Met Thr Val Leu 435 440 Ser Leu Gly Leu Phe Gly Ser Phe Leu Leu Pro Ser Tyr Leu Gln Gln Val Leu His Gln Ser Pro Met Gln Ser Gly Val His Ile Ile Pro Gln Gly Leu Gly Ala Met Leu Ala Met Pro Ile Ala Gly Ala Met Met 490 Asp Arg Arg Gly Pro Ala Lys Ile Val Leu Val Gly Ile Met Leu Ile 500 505

190

 Ala
 Ala
 Gly
 Leu
 Gly
 Thr
 Phe
 Ala
 Phe
 Gly
 Val
 Ala
 Arg
 Gln
 Ala
 Asp

 Tyr
 Leu
 Pro
 Ile
 Leu
 Pro
 Thr
 Gly
 Leu
 Ala
 Ile
 Met
 Gly
 Met

 Gly
 Cys
 Ser
 Met
 Met
 Pro
 Leu
 Ser
 Gly
 Ala
 Ala
 Ala
 Val
 Gln
 Thr
 Leu
 Ala
 Ala

(2) INFORMATION FOR SEQ ID NO:195:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 120 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

Thr Pro Glu Lys Ser Phe Val Asp Asp Leu Asp Ile Asp Ser Leu Ser 1 10 15

Met Val Glu Ile Ala Val Gln Thr Glu Asp Lys Tyr Gly Val Lys Ile 20 25 30

Pro Asp Glu Asp Leu Ala Gly Leu Arg Thr Val Gly Asp Val Val Ala 35 40 45

Tyr Ile Gln Lys Leu Glu Glu Glu Asn Pro Glu Ala Ala Gln Ala Leu 50 55 60

Arg Ala Lys Ile Glu Ser Glu Asn Pro Asp Ala Ala Arg Ala Asp Arg 65 70 75 80

191

Cys Val Ser Pro Thr Ser Gln Ala Arg Asp Ala Arg Arg Pro Leu Ala

Arg Ser Ala Arg Leu Ala Cys Arg Arg Leu Pro Ala Ser Val Pro Thr 105

Thr Arg Arg Asp Pro Arg Glu Arg 115

- (2) INFORMATION FOR SEQ ID NO:196:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 89 amino acids
 - (B) TYPE: amino acid(C) STRANDEDNESS:

 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:
 - Leu Ala Cys Gln Cys His Arg Arg Tyr Asp Val Gly Ile Gln Phe Arg
 - Gly Pro Ala Gly Pro Val Ala Thr Gln Ser Gly Pro Pro Gly Pro Ser
 - Ile Ala Glu Gly Arg Gln Val Arg Ala Gln Cys Gly Ala Gly Phe Leu
 - Glu Arg Arg Pro Ala Val Ser Gly Ala Leu Pro Pro Asn Asn Ala Ser
 - Pro Gly Ile Arg Ser Arg Ala Ala Asp Ser Gln Arg His Leu Leu Ala

Gly Asp Gly Ser Asp Val Thr Val Gly

- (2) INFORMATION FOR SEQ ID NO:197:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 119 amino acids
 - (B) TYPE: amino acid(C) STRANDEDNESS:

 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:
 - Ala Ser Leu Leu Ala Tyr Ser Ala Ala Ala Ala Ser Thr Ala Leu Ala
 - Val Ala Cys Val Arg Ala Asp His Arg Asp Arg Arg Thr Ile Arg Asp 25

192

His Leu Ala Met Ile His Leu Ala Gln Leu Val Thr Gln Pro Pro Gly 35 40 45

Gly Val Arg Gln Arg Leu His His Leu Gly Ile Ala Val Ala Pro Gln 50 60

Pro Gln Glu Val Val Leu Ala His His Leu Val Thr Gly Thr Gly 70 75 80

Glu Val Gln Gly Glu Gly Arg His Val Ala Ala Glu Val Val Asp Pro 85 90 95

Glu Asn Gln Ile Leu Arg Gln Val Leu Gly Pro Ala Pro His Asp Lys
100 105 110

Pro Asp Ala Gly Ile Gly Gln 115

- (2) INFORMATION FOR SEQ ID NO:198:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 116 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

Arg Ala Arg Gly His Arg Ser Ser Lys Gly Ser Arg Trp Ser His Glu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Val Leu Glu Gly Cys Ile Leu Ala Asp Ser Arg Gln Ser Lys Thr Ala 20 25 30

Pro Gly Ala Pro Asn Arg Val Ser Phe Ala Lys Leu Arg Glu Pro Leu 50 60

Glu Val Pro Gly Leu Leu Asp Val Gln Thr Asp Ser Phe Glu Trp Leu 65 70 75 80

Ile Gly Ser Pro Arg Trp Arg Glu Ser Ala Ala Glu Arg Gly Asp Val 85 90 95

Asn Pro Val Gly Gly Leu Glu Glu Val Leu Tyr Glu Leu Ser Pro Ile 100 105 110

Glu Asp Phe Ser 115

- (2) INFORMATION FOR SEQ ID NO:199:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 811 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

193

(D) TOPOLOGY: linear

	(xi)	SE	EQUENCE	DESC	CRIPTION: SI	EQ ID NO:19	9:		
TGC	racgc:	AG	CAATCGC	TTT	GGTGACAGAT	GTGGATGCCG	GCGTCGCTGC	TGGCGATGGC	60
GTGA	AAAGC	CG	CCGACGT	GTT	CGCCGCATTC	GGGGAGAACA	TCGAACTGCT	CAAAAGGCTG	120
GTG	CGGGC	CG	CCATCGA	TCG	GGTCGCCGAC	GAGCGCACGT	GCACGCACTG	TCAACACCAC	180
GCC	GGTGT	ГC	CGTTGCC	GTT	CGAGCTGCCA	TGAGGGTGCT	GCTGACCGGC	GCGGCCGGCT	240
TCA	rcggg:	ГС	GCGCGTG	GAT	GCGGCGTTAC	GGGCTGCGGG	TCACGACGTG	GTGGGCGTCG	300
ACG	CGCTG	CT	GCCCGCC	GCG	CACGGGCCAA	ACCCGGTGCT	GCCACCGGGC	TGCCAGCGGG	360
TCGA	ACGTG	CG	CGACGCC	AGC	GCGCTGGCCC	CGTTGTTGGC	CGGTGTCGAT	CTGGTGTGTC	420
ACCA	AGGCC	GC	CATGGTG	GGT	GCCGGCGTCA	ACGCCGCCGA	CGCACCCGCC	TATGGCGGCC	480
ACA	ACGAT	Т	CGCCACC	ACG	GTGCTGCTGG	CGCAGATGTT	CGCCGCCGGG	GTCCGCCGTT	540
TGGI	GCTG	ЭC	GTCGTCG	ATG	GTGGTTTACG	GGCAGGGGCG	CTATGACTGT	CCCCAGCATG	600
GACC	CGGTC	ŝΑ	CCCGCTG	CCG	CGGCGGCGAG	CCGACCTGGA	CAATGGGGTC	TTCGAGCACC	660
GTTG	GCCGG	G G	GTGCGGC	GAG	CCAGTCATCT	GGCAATTGGT	CGACGAAGAT	GCCCCGTTGC	720
GCCC	CGCGC	AG	CCTGTAC	GCG	GCAGCAAGAC	CGCGCAGGAG	CACTACGCGC	TGGCGTGGTC	780
GGAA	AACGAA	AΤ	GGCGGTT	CCG	TGGTGGCGTT	G			811

(2) INFORMATION FOR SEQ ID NO:200:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 966 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:

GTCCCGCGAT	GTGGCCGAGC	ATGACTTTCG	GCAACACCGG	CGTAGTAGTC	GAAGATATCG	60
GACTTTGTGG	TCCCGGTGGC	GGGATAGAGC	ACCTGTCGGC	GTTGGTCAGC	GTCACCCGTT	120
GCTCGGACGC	CGAACCCATG	CTTTCAACGT	AGCCTGTCGG	TCACACAAGT	CGCGAGCGTA	180
ACGTCACGGT	CAAATATCGC	GTGGAATTTC	GCCGTGACGT	TCCGCTCGCG	GACAATCAAG	240
GCATACTCAC	TTACATGCGA	GCCATTTGGA	CGGGTTCGAT	CGCCTTCGGG	CTGGTGAACG	300
TGCCGGTCAA	GGTGTACAGC	GCTACCGCAG	ACCACGACAT	CAGGTTCCAC	CAGGTGCACG	360

194

CCAAGGACAA	CGGACGCATC	CGGTACAAGC	GCGTCTGCGA	GGCGTGTGGC	GAGGTGGTCG	420
ACTACCGCGA	TCTTGCCCGG	GCCTACGAGT	CCGGCGACGG	CCAAATGGTG	GCGATCACCG	480
ACGACGACAT	CGCCAGCTTG	CCTGAAGAAC	GCAGCCGGGA	GATCGAGGTG	TTGGAGTTCG	540
TCCCCGCCGC	CGACGTGGAC	CCGATGATGT	TCGACCGCAG	CTACTTTTTG	GAGCCTGATT	600
CGAAGTCGTC	GAAATCGTAT	GTGCTGCTGG	CTAAGACACT	CGCCGAGACC	GACCGGATGG	660
CGATCGTGGA	TCGCCCCACC	GGCCGTGAAT	GCAGGAAAAA	TAAGAGCCGC	TATCCACAAT	720
TCGGCGTCGA	GCTCGGCTAC	CACAAACGGT	AGAACGATCG	AGACATTCCC	GAGCTGAAGT	780
GCGGCGCTAT	AGAAGCCGCT	CTGCGCGATT	ATCAAACGCA	AAATACGCTT	ACTCATGCCA	840
TCGGCGCTGC	TCACCCGATG	CGACGTTTTT	GCCACGCTCC	ACCGCCTGCC	GCGCGACCTC	900
AAGTGGGCAT	GCATCCCACC	CGTTCCCGGA	AACCGGTTCC	GGCGGGTCGG	CTCATCGCTT	960
CATCCT						966

(2) INFORMATION FOR SEQ ID NO:201:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2367 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

CCGCACCGCC GGCA	AATACCG CCAGCGCCA	C CGTTACCGCC	GTTTGCGCCG	TTGCCCCCGT	60
TGCCGCCCGT CCCG	GCCGGCC CCGCCGATG	G AGTTCTCATC	GCCAAAAGTA	CTGGCGTTGC	120
CACCGGAGCC GCCG	GTTGCCG CCGTCACCG	C CAGCCCCGCC	GACTCCACCG	GCCCCACCGA	180
CTCCGCCGCT GCCA	ACCGTTG CCGCCGTTG	C CGATCAACAT	GCCGCTGGCG	CCACCCTTGC	240
CACCCACGCC ACCC	GCTCCG CCCACCCCG	C CGACACCAAG	CGAGCTGCCG	CCGGAGCCAC	300
CATCACCACC TACG	GCCACCG ACCGCCCAG	A CACCAGCGAC	CGGGTCTTCG	TGAAACGTCG	360
CGGTGCCACC ACCG	GCCGCCG TTACCGCCA	A CCCCACCGGC	AACGCCGGCG	CCGCCATCCC	420
CGCCGGCCCC GGCG	STTGCCG CCGTTGCCG	C CGTTGCCGAA	CAACAACCCG	CCGGCGCCGC	480
CGTTGCCGCC CGCG	GCCGCCG GTCCCGCCG	G CGCCGCCGAC	GCCAAGGCCG	CTGCCGCCCT	540
TGCCGCCATC ACCA	ACCCTTG CCGCCGACC	A CATCGGGTTC	TGCCTCGGGG	TCTGGGCTGT	600
CAAACCTCGC GATG	SCCAGCG TTGCCGCCG	C TTCCCCCGGG	CCCCCCGTG	GCGCCGTCAC	660
CACCGATACC ACCC	CGCGCCA CCGGCGCCA	C CGTTGCCGCC	ATCACCGAAT	AGCAACCCGC	720
CGGCGCCACC ATTG	GCCGCCA GCTCCCCCT	G CGCCACCGTC	GGCGCCGGAG	GCGGCACTGG	780

CAGCCCCGTT	ACCACCGAAA	CCGCCGCTAC	CACCGGTAGA	GGTGGCAGTG	GCGATGTGTA	840
CGAAAGCGCC	GCCTCCGGCG	CCGCCGCTAC	CACCCCCACT	GCCGGCGGCT	ACACCGTCGG	900
ACCCGTTGCC	ACCATCACCG	CCAAAGGCGC	TCGCAATGTC	GCCCTGCGCG	ACTCCGCCGT	960
CGCCGCCGTT	GCCGCCGCCG	CCACCGGCAG	CGGCGGTACC	GCCGTCACCA	CCGGCACCGC	1020
CGGTGGCCTT	GCCCGAGCCT	GCCGTCGCGG	TGGCACCGTC	GCCGCCGGTG	CCACCGGTCG	1080
GCGTGCCGGC	AGTGCCATGG	CCGCCCGTGC	CGCCGTCGCC	GCCGGTTTGA	TCACCGATGC	1140
CGGACACATC	TGCCGGGCTG	TCCCCGGTGC	TGGCCGCGGG	GCCGGGCGTG	GGATTGACCC	1200
CGTTTGCCCC	GGCGAGGCCG	GCGCCGCCGG	TACCACCGGC	GCCGCCATGG	CCGAACAGCC	1260
CGGCGTTGCC	GCCGTTACCG	CCCGCACCCC	CGATGCCTGC	GGCCACGCTG	GTGCCGCCGA	1320
CACCGCCGTT	GCCGCCGTTG	CCCCACAACC	ACCCCCGTT	CCCACCGGCA	CCGCCGGCCG	1380
CGCCGGTACC	ACCGGCCCCG	CCGTTGCCGC	CGTTGCCGAT	CAACCCGGCC	GCGCCTCCGC	1440
TGCCGCCGGT	TTGACCGAAC	CCGCCAGCCG	CGCCGTTGCC	ACCGTTGCCA	AACAGCAACC	1500
CGCCGGCCGC	GCCAGGCTGC	CCGGGTGCCG	TCCCGTCGGC	GCCGTTTCCG	ATCAACGGGC	1560
GCCCCAAAAG	CGCCTCGGTG	GGCGCATTCA	CCGCACCCAG	CAGACTCCGC	TCAACAGCGG	1620
CTTCAGTGCT	GGCATACCGA	CCCGCGGCCG	CAGTCAACGC	CTGCACAAAC	TGCTCGTGAA	1680
ACGCTGCCAC	CTGTACGCTG	AGCGCCTGAT	ACTGCCGAGC	ATGGGCCCCG	AACAACCCCG	1740
CAATCGCCGC	CGACACTTCA	TCGGCAGCCG	CAGCCACCAC	TTCCGTCGTC	GGGATCGCCG	1800
CGGCCGCATT	AGCCGCGCTC	ACCTGCGAAC	CAATAGTCGA	TAAATCCAAA	GCCGCAGTTG	1860
CCAGCAGCTG	CGGCGTCGCG	ATCACCAAGG	ACACCTCGCA	CCTCCGGATA	CCCCATATCG	1920
CCGCACCGTG	TCCCCAGCGG	CCACGTGACC	TTTGGTCGCT	GGCTGGCGGC	CCTGACTATG	1980
GCCGCGACGG	CCCTCGTTCT	GATTCGCCCC	GGCGCGCAGC	TTGTTGCGCG	AGTTGAAGAC	2040
GGGAGGACAG	GCCGAGCTTG	GTGTAGACGT	GGGTCAAGTG	GGAATGCACG	GTCCGCGGCG	2100
AGATGAATAG	GCGGACGCCG	ATCTCCTTGT	TGCTGAGTCC	CTCACCGACC	AGTAGAGCCA	2160
CCTCAAGCTC	TGTCGGTGTC	AACGCGCCCC	AGCCACTTGT	CGGGCGTTTC	CGTGCACCGC	2220
GCCTCGTTG	CGCGTACGCG	ATCGCCTCAT	CGATCGATAA	CGCAGTTCCT	TCGGCCCAGG	2280
CATCGTCGAA	CTCGCTGTCA	CCCATGGATT	TTCGAAGGGT	GGCTAGCGAC	GAGTTACAGC	2340
CCGCCTGGTA	GATCCCGAAG	CGGACCG		-		2367

(2) INFORMATION FOR SEQ ID NO:202:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 376 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear

WO 98/16646

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202: Gln Pro Ala Gly Ala Thr Ile Ala Ala Ser Ser Pro Cys Ala Thr Val Gly Ala Gly Gly Thr Gly Ser Pro Val Thr Thr Glu Thr Ala Ala Thr Thr Gly Arg Gly Gly Ser Gly Asp Val Tyr Glu Ser Ala Ala Ser Gly Ala Ala Ala Thr Thr Pro Thr Ala Gly Gly Tyr Thr Val Gly Pro Val Ala Thr Ile Thr Ala Lys Gly Ala Arg Asn Val Ala Leu Arg Asp Ser Ala Val Ala Ala Val Ala Ala Ala Ala Thr Gly Ser Gly Gly Thr Ala Val Thr Thr Gly Thr Ala Gly Gly Leu Ala Arg Ala Cys Arg Arg Gly Gly Thr Val Ala Ala Gly Ala Thr Gly Arg Arg Ala Gly Ser Ala Met Ala Ala Arg Ala Ala Val Ala Ala Gly Leu Ile Thr Asp Ala Gly 135 His Ile Cys Arg Ala Val Pro Gly Ala Gly Arg Gly Ala Gly Arg Gly Ile Asp Pro Val Cys Pro Gly Glu Ala Gly Ala Ala Gly Thr Thr Gly Ala Ala Met Ala Glu Gln Pro Gly Val Ala Ala Val Thr Ala Arg Thr 185 Pro Asp Ala Cys Gly His Ala Gly Ala Ala Asp Thr Ala Val Ala Ala Val Ala Pro Gln Pro Pro Pro Val Pro Thr Gly Thr Ala Gly Arg Ala Gly Thr Thr Gly Pro Ala Val Ala Ala Val Ala Asp Gln Pro Gly Arg Ala Ser Ala Ala Gly Leu Thr Glu Pro Ala Ser Arg Ala Val Ala 250 -Thr Val Ala Lys Gln Gln Pro Ala Gly Arg Ala Arg Leu Pro Gly Cys 265 Arg Pro Val Gly Ala Val Ser Asp Gln Arg Ala Pro Gln Lys Arg Leu Gly Gly Arg Ile His Arg Thr Gln Gln Thr Pro Leu Asn Ser Gly Phe 295

197

Ser 305	Ala	Gly	Ile	Pro	Thr 310	Arg	Gly	Arg	Ser	Gln 315	Arg	Leu	His	Lys	Leu 320
Leu	Val	Lys	Arg	Cys 325	His	Leu	Tyr	Ala	Glu 330	Arg	Leu	Ile	Leu	Pro 335	Ser
Met	Gly	Pro	Glu 340	Gln	Pro	Arg	Asn	Arg 345	Arg	Arg	His	Phe	Ile 350	Gly	Ser
Arg	Ser	His 355	His	Phe	Arg	Arg	Arg 360	Asp	Arg	Arg	Gly	Arg 365	Ile	Ser	Arg
Ala	His 370	Leu	Arg	Thr	Asn	Ser 375	Arg								

(2) INFORMATION FOR SEQ ID NO:203:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2852 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:

GGCCAAAACG	CCCCGGCGAT	CGCGGCCACC	GAGGCCGCCT	ACGACCAGAT	GTGGGCCCAG	60
GACGTGGCGG	CGATGTTTGG	CTACCATGCC	GGGGCTTCGG	CGGCCGTCTC	GGCGTTGACA	120
CCGTTCGGCC	AGGCGCTGCC	GACCGTGGCG	GGCGGCGGTG	CGCTGGTCAG	CGCGGCCGCG	180
GCTCAGGTGA	CCACGCGGGT	CTTCCGCAAC	CTGGGCTTGG	CGAACGTCCG	CGAGGGCAAC	240
GTCCGCAACG	GTAATGTCCG	GAACTTCAAT	CTCGGCTCGG	CCAACATCGG	CAACGGCAAC	300
ATCGGCAGCG	GCAACATCGG	CAGCTCCAAC	ATCGGGTTTG	GCAACGTGGG	TCCTGGGTTG	360
ACCGCAGCGC	TGAACAACAT	CGGTTTCGGC	AACACCGGCA	GCAACAACAT	CGGGTTTGGC	420
AACACCGGCA	GCAACAACAT	CGGGTTCGGC	AATACCGGAG	ACGGCAACCG	AGGTATCGGG	480
CTCACGGGTA	GCGGTTTGTT	GGGGTTCGGC	GGCCTGAACT	CGGGCACCGG	CAACATCGGT	540
CTGTTCAACT	CGGGCACCGG	AAACGTCGGC	ATCGGCAACT	CGGGTACCGG	GAACTGGGGC	600
ATTGGCAACT	CGGGCAACAG	CTACAACACC	GGTTTTGGCA	ACTCCGGCGA	CGCCAACACG	660
GGCTTCTTCA	ACTCCGGAAT	AGCCAACACC	GGCGTCGGCA	ACGCCGGCAA	CTACAACACC	720
GGTAGCTACA	ACCCGGGCAA	CAGCAATACC	GGCGGCTTCA	ACATGGGCCA	GTACAACACG	780
GGCTACCTGA	ACAGCGGCAA	CTACAACACC	GGCTTGGCAA	ACTCCGGCAA	TGTCAACACC	840
GGCGCCTTCA	TTACTGGCAA	CTTCAACAAC	GGCTTCTTGT	GGCGCGGCGA	CCACCAAGGC	900
CTGATTTTCG	GGAGCCCCGG	CTTCTTCAAC	TCGACCAGTG	CGCCGTCGTC	GGGATTCTTC	960

PCT/US97/18293

AACAGCGGTG	CCGGTAGCGC	GTCCGGCTTC	CTGAACTCCG	GTGCCAACAA	TTCTGGCTTC	1020
TTCAACTCTT	CGTCGGGGGC	CATCGGTAAC	TCCGGCCTGG	CAAACGCGGG	CGTGCTGGTA	1080
TCGGGCGTGA	TCAACTCGGG	CAACACCGTA	TCGGGTTTGT	TCAACATGAG	CCTGGTGGCC	1140
ATCACAACGC	CGGCCTTGAT	CTCGGGCTTC	TTCAACACCG	GAAGCAACAT	GTCGGGATTT	1200
TTCGGTGGCC	CACCGGTCTT	CAATCTCGGC	CTGGCAAACC	GGGGCGTCGT	GAACATTCTC	1260
GGCAACGCCA	ACATCGGCAA	TTACAACATT	CTCGGCAGCG	GAAACGTCGG	TGACTTCAAC	1320
ATCCTTGGCA	GCGGCAACCT	CGGCAGCCAA	AACATCTTGG	GCAGCGGCAA	CGTCGGCAGC	1380
TTCAATATCG	GCAGTGGAAA	CATCGGAGTA	TTCAATGTCG	GTTCCGGAAG	CCTGGGAAAC	1440
TACAACATCG	GATCCGGAAA	CCTCGGGATC	TACAACATCG	GTTTTGGAAA	CGTCGGCGAC	1500
TACAACGTCG	GCTTCGGGAA	CGCGGGCGAC	TTCAACCAAG	GCTTTGCCAA	CACCGGCAAC	1560
AACAACATCG	GGTTCGCCAA	CACCGGCAAC	AACAACATCG	GCATCGGGCT	GTCCGGCGAC	1620
AACCAGCAGG	GCTTCAATAT	TGCTAGCGGC	TGGAACTCGG	GCACCGGCAA	CAGCGGCCTG	1680
TTCAATTCGG	GCACCAATAA	CGTTGGCATC	TTCAACGCGG	GCACCGGAAA	CGTCGGCATC	1740
GCAAACTCGG	GCACCGGGAA	CTGGGGTATC	GGGAACCCGG	GTACCGACAA	TACCGGCATC	1800
CTCAATGCTG	GCAGCTACAA	CACGGGCATC	CTCAACGCCG	GCGACTTCAA	CACGGGCTTC	1860
TACAACACGG	GCAGCTACAA	CACCGGCGGC	TTCAACGTCG	GTAACACCAA	CACCGGCAAC	1920
TTCAACGTGG	GTGACACCAA	TACCGGCAGC	TATAACCCGG	GTGACACCAA	CACCGGCTTC	1980
TTCAATCCCG	GCAACGTCAA	TACCGGCGCT	TTCGACACGG	GCGACTTCAA	CAATGGCTTC	2040
TTGGTGGCGG	GCGATAACCA	GGGCCAGATT	GCCATCGATC	TCTCGGTCAC	CACTCCATTC	2100
ATCCCCATAA	ACGAGCAGAT	GGTCATTGAC	GTACACAACG	TAATGACCTT	CGGCGGCAAC	2160
ATGATCACGG	TCACCGAGGC	CTCGACCGTT	TTCCCCCAAA	CCTTCTATCT	GAGCGGTTTG	2220
TTCTTCTTCG	GCCCGGTCAA	TCTCAGCGCA	TCCACGCTGA	CCGTTCCGAC	GATCACCCTC	2280
ACCATCGGCG	GACCGACGGT	GACCGTCCCC	ATCAGCATTG	TCGGTGCTCT	GGAGAGCCGC	2340
ACGATTACCT	TCCTCAAGAT	CGATCCGGCG	CCGGGCATCG	GAAATTCGAC	CACCAACCCC	2400
TCGTCCGGCT	TCTTCAACTC	GGGCACCGGT	GGCACATCTG	GCTTCCAAAA	CGTCGGCGGC	2460
GGCAGTTCAG	GCGTCTGGAA	CAGTGGTTTG	AGCAGCGCGA	TAGGGAATTC	GGGTTTCCAG	2520
AACCTCGGCT	CGCTGCAGTC	AGGCTGGGCG	AACCTGGGCA	ACTCCGTATC	GGGCTTTTTC	2580
AACACCAGTA	CGGTGAACCT	CTCCACGCCG	GCCAATGTCT	CGGGCCTGAA	CAACATCGGC	2640
ACCAACCTGT	CCGGCGTGTT	CCGCGGTCCG	ACCGGGACGA	TTTTCAACGC	GGGCCTTGCC	2700
AACCTGGGCC	AGTTGAACAT	CGGCAGCGCC	TCGTGCCGAA	TTCGGCACGA	GTTAGATACG	2760
GTTTCAACAA	TCATATCCGC	GTTTTGCGGC	AGTGCATCAG	ACGAATCGAA	CCCGGGAAGC	2820

199

GTAAGCGAAT AAACCGAATG GCGGCCTGTC AT

2852

- (2) INFORMATION FOR SEQ ID NO:204:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 943 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:
 - Gly Gln Asn Ala Pro Ala Ile Ala Ala Thr Glu Ala Ala Tyr Asp Gln

 5 10 15
 - Met Trp Ala Gln Asp Val Ala Ala Met Phe Gly Tyr His Ala Gly Ala 20 25 30
 - Ser Ala Ala Val Ser Ala Leu Thr Pro Phe Gly Gln Ala Leu Pro Thr 35 40 45
 - Val Ala Gly Gly Gly Ala Leu Val Ser Ala Ala Ala Gln Val Thr 50 55 60
 - Thr Arg Val Phe Arg Asn Leu Gly Leu Ala Asn Val Arg Glu Gly Asn 65 70 75 80
 - Val Arg Asn Gly Asn Val Arg Asn Phe Asn Leu Gly Ser Ala Asn Ile 85 90 95
 - Gly Asn Gly Asn Ile Gly Ser Gly Asn Ile Gly Ser Ser Asn Ile Gly 100 105 110
 - Phe Gly Asn Val Gly Pro Gly Leu Thr Ala Ala Leu Asn Asn Ile Gly 115 120 125
 - Phe Gly Asn Thr Gly Ser Asn Asn Ile Gly Phe Gly Asn Thr Gly Ser 130 140
 - Asn Asn Ile Gly Phe Gly Asn Thr Gly Asp Gly Asn Arg Gly Ile Gly 145 150 155 160
 - Leu Thr Gly Ser Gly Leu Leu Gly Phe Gly Gly Leu Asn Ser Gly Thr 165 170 175
 - Gly Asn Ile Gly Leu Phe Asn Ser Gly Thr Gly Asn Val Gly Ile Gly 180 185 190
 - Asn Ser Gly Thr Gly Asn Trp Gly Ile Gly Asn Ser Gly Asn Ser Tyr 195 200 205
 - Asn Thr Gly Phe Gly Asn Ser Gly Asp Ala Asn Thr Gly Phe Phe Asn 210 215 220
 - Ser Gly Ile Ala Asn Thr Gly Val Gly Asn Ala Gly Asn Tyr Asn Thr 225 230 235 240
 - Gly Ser Tyr Asn Pro Gly Asn Ser Asn Thr Gly Gly Phe Asn Met Gly

200

245 250 255 Gln Tyr Asn Thr Gly Tyr Leu Asn Ser Gly Asn Tyr Asn Thr Gly Leu Ala Asn Ser Gly Asn Val Asn Thr Gly Ala Phe Ile Thr Gly Asn Phe Asn Asn Gly Phe Leu Trp Arg Gly Asp His Gln Gly Leu Ile Phe Gly Ser Pro Gly Phe Phe Asn Ser Thr Ser Ala Pro Ser Ser Gly Phe Phe 315 Asn Ser Gly Ala Gly Ser Ala Ser Gly Phe Leu Asn Ser Gly Ala Asn 330 Asn Ser Gly Phe Phe Asn Ser Ser Ser Gly Ala Ile Gly Asn Ser Gly Leu Ala Asn Ala Gly Val Leu Val Ser Gly Val Ile Asn Ser Gly Asn Thr Val Ser Gly Leu Phe Asn Met Ser Leu Val Ala Ile Thr Thr Pro 375 Ala Leu Ile Ser Gly Phe Phe Asn Thr Gly Ser Asn Met Ser Gly Phe 390 395 Phe Gly Gly Pro Pro Val Phe Asn Leu Gly Leu Ala Asn Arg Gly Val Val Asn Ile Leu Gly Asn Ala Asn Ile Gly Asn Tyr Asn Ile Leu Gly 425 Ser Gly Asn Val Gly Asp Phe Asn Ile Leu Gly Ser Gly Asn Leu Gly Ser Gln Asn Ile Leu Gly Ser Gly Asn Val Gly Ser Phe Asn Ile Gly Ser Gly Asn Ile Gly Val Phe Asn Val Gly Ser Gly Ser Leu Gly Asn Tyr Asn Ile Gly Ser Gly Asn Leu Gly Ile Tyr Asn Ile Gly Phe Gly Asn Val Gly Asp Tyr Asn Val Gly Phe Gly Asn Ala Gly Asp Phe Asn 505 Gln Gly Phe Ala Asn Thr Gly Asn Asn Ile Gly Phe Ala Asn Thr Gly Asn Asn Asn Ile Gly Ile Gly Leu Ser Gly Asp Asn Gln Gly 535 Phe Asn Ile Ala Ser Gly Trp Asn Ser Gly Thr Gly Asn Ser Gly Leu Phe Asn Ser Gly Thr Asn Asn Val Gly Ile Phe Asn Ala Gly Thr Gly 565 570

PCT/US97/18293

Asn	Val	Gly	Ile 580		Asn	Ser	Gly	Thr 585		Asn	Trp	Gly	Ile 590	_	' Asn
Pro	Gly	Thr 595	Asp	Asn	Thr	Gly	Ile 600	Leu	Asn	Ala	Gly	Ser 605		Asn	Thr
Gly	Ile 610	Leu	Asn	Ala	Gly	Asp 615	Phe	Asn	Thr	Gly	Phe 620	Tyr	Asn	Thr	Gly
Ser 625	Tyr	Asn	Thr	Gly	Gly 630	Phe	Asn	Val	Gly	Asn 635	Thr	Asn	Thr	Gly	Asn 640
Phe	Asn	Val	Gly	Asp 645	Thr	Asn	Thr	Gly	Ser 650	Tyr	Asn	Pro	Gly	Asp 655	Thr
Asn	Thr	Gly	Phe 660	Phe	Asn	Pro	Gly	Asn 665	Val	Asn	Thr	Gly	Ala 670	Phe	Asp
Thr	Gly	Asp 675	Phe	Asn	Asn	Gly	Phe 680	Leu	Val	Ala	Gly	Asp 685	Asn	Gln	Gly
Gln	Ile 690	Ala	Ile	Asp	Leu	Ser 695	Val	Thr	Thr	Pro	Phe 700	Ile	Pro	Ile	Asn
Glu 705	Gln	Met	Val	Ile	Asp 710	Val	His	Asn	Val	Met 715	Thr	Phe	Gly	Gly	Asn 720
Met	Ile	Thr	Val	Thr 725	Glu	Ala	Ser	Thr	Val 730	Phe	Pro	Gln	Thr	Phe 735	Tyr
Leu	Ser	Gly	Leu 740	Phe	Phe	Phe	Gly	Pro 745	Val	Asn	Leu	Ser	Ala 750	Ser	Thr
Leu	Thr	Val 755	Pro	Thr	Ile	Thr	Leu 760	Thr	Ile	Gly	Gly	Pro 765	Thr	Val	Thr
Val	Pro 770	Ile	Ser	Ile	Val	Gly 775	Ala	Leu	Glu	Ser	Arg 780	Thr	Ile	Thr	Phe
Leu 785	Lys	Ile	Asp	Pro	Ala 790	Pro	Gly	Ile	Gly	Asn 795	Ser	Thr	Thr	Asn	Pro 800
Ser	Ser	Gly	Phe	Phe 805	Asn	Ser	Gly	Thr	Gly 810	Gly	Thr	Ser	Gly	Phe 815	Gln
Asn	Val	Gly	Gly 820	Gly	Ser	Ser	Gly	Val 825	Trp	Asn	Ser	Gly	Leu 830	Ser	Ser
Ala	Ile	Gly 835	Asn	Ser	Gly	Phe	Gln 840	Asn	Leu	Gly	Ser	Leu 845	Gln	Ser	Gly
Trp	Ala 850	Asn	Leu	Gly	Asn	Ser 855	Val	Ser	Gly	Phe	Phe 860	Asn	Thr	Ser	Thr
Val 865	Asn	Leu	Ser	Thr	Pro 870	Ala	Asn	Val	Ser	Gly 875	Leu	Asn	Asn	Ile	Gly 880
Thr	Asn	Leu	Ser	Gly 885	Val	Phe	Arg	Gly	Pro 890	Thr	Gly	Thr	Ile	Phe 895	Asn
Ala	Gly	Leu	Ala 900	Asn	Leu	Gly	Gln	Leu 905	Asn	Ile	Gly	Ser	Ala 910	Ser	Cys

202

	Arg	Ile	Arg 915	His	Glu	Leu	Asp	Thr 920	Val	Ser	Thr	Ile	Ile 925	Ser	Ala	Phe	
	Cys	Gly 930	Ser	Ala	Ser	Asp	Glu 935	Ser	Asn	Pro	Gly	Ser 940	Val	Ser	Glu		
(2)	INFO	RMATI	ON I	FOR S	SEQ I	ID NO	205	ō:									
	(i)	(B) (C)	LEI TYI STI	NGTH: PE: r RANDI	: 53 nucle EDNES	rERIS base eic a SS: s Linea	e pai acid singl	irs									
	(xi)	SEQU	JENCE	E DES	SCRIE	MOITS	ı: SE	EQ II	NO:	205:							
GGAT	CCATA	AT GO	GCCF	ATCAI	CAI	CATC	CATC	ACGI	GATC	GA C	ATCA	TCG	G AC	CC			53
(2)	INFOF	ITAM	ON E	FOR S	SEQ I	D NC	:206	5:									
	(i)	(B) (C)	LEN TYE STF	GTH: PE: r RANDE	42 nucle DNES	ERIS base ic a S: s inea	pai cid ingl	.rs									
	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	206:							
CCTG	AATTC	A GG	CCTC	GGTT	GCG	CCGG	CCT	CATC	TTGA	AC G	A						42
(2")"	INFOR	ITAM	ON F	OR S	EQ I	D NO	:207	:									
.**	(i)	(A) (B) (C)	LEN TYP STR	GTH: E: n ANDE	31 ucle DNES	ERIS base ic a S: s inea	pai cid ingl	rs									
	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	207:							
GGAT	CCTGC.	A GG	CTCG	AAAC	CAC	CGAG	CGG	T			-						31
(2)	INFOR	MATI	ON F	OR S	EQ I	D NO	:208	:									
	(i)	(B) (C)	LEN TYP STR	GTH: E: n ANDE	31 ucle DNES	ERIS'baseic ac	pai: cid ingl	rs									

203

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:	
CTCTGAATTC AGCGCTGGAA ATCGTCGCGA T	31
(2) INFORMATION FOR SEQ ID NO:209:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:	
GGATCCAGCG CTGAGATGAA GACCGATGCC GCT	33
(2) INFORMATION FOR SEQ ID NO:210:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:210: GGATATCTGC AGAATTCAGG TTTAAAGCCC ATTTGCGA	38
(2) INFORMATION FOR SEQ ID NO:211:	30
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:211:	
CCGCATGCGA GCCACGTGCC CACAACGGCC	30
(2) INFORMATION FOR SEQ ID NO:212:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: pucleic acid	

204

(C)	STRANDEDNE	ESS:	single
(D)	TOPOLOGY:	line	ear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:

CTTCATGGAA TTCTCAGGCC GGTAAGGTCC GCTGCGG

37

(2) INFORMATION FOR SEQ ID NO:213:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7676 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:213:

TGGCGAATGG GACGCGCCCT	GTAGCGGCGC	ATTAAGCGCG	GCGGGTGTGG	TGGTTACGCG	60
CAGCGTGACC GCTACACTTG	CCAGCGCCCT	AGCGCCCGCT	CCTTTCGCTT	TCTTCCCTTC	120
CTTTCTCGCC ACGTTCGCCG	GCTTTCCCCG	TCAAGCTCTA	AATCGGGGGC	TCCCTTTAGG	180
GTTCCGATTT AGTGCTTTAC	GGCACCTCGA	CCCCAAAAAA	CTTGATTAGG	GTGATGGTTC	240
ACGTAGTGGG CCATCGCCCT	GATAGACGGT	TTTTCGCCCT	TTGACGTTGG	AGTCCACGTT	300
CTTTAATAGT GGACTCTTGT	TCCAAACTGG	AACAACACTC	AACCCTATCT	CGGTCTATTC	360
TTTTGATTTA TAAGGGATTT	TGCCGATTTC	GGCCTATTGG	TTAAAAAAATG	AGCTGATTTA	420
ACAAAAATTT AACGCGAATT	TTAACAAAAT	ATTAACGTTT	ACAATTTCAG	GTGGCACTTT	480
TCGGGGAAAT GTGCGCGGAA	CCCCTATTTG	TTTATTTTTC	TAAATACATT	CAAATATGTA	540
TCCGCTCATG AATTAATTCT	TAGAAAAACT	CATCGAGCAT	CAAATGAAAC	TGCAATTTAT	600
TCATATCAGG ATTATCAATA	CCATATTTTT	GAAAAAGCCG	TTTCTGTAAT	GAAGGAGAAA	660
ACTCACCGAG GCAGTTCCAT	AGGATGGCAA	GATCCTGGTA	TCGGTCTGCG	ATTCCGACTC	720
GTCCAACATC AATACAACCT	ATTAATTTCC	CCTCGTCAAA	AATAAGGTTA	TCAAGTGAGA	780
AATCACCATG AGTGACGACT	GAATCCGGTG	AGAATGGCAA	AAGTTTATGC	ATTTCTTTCC	840
AGACTTGTTC AACAGGCCAG	CCATTACGCT	CGTCATCAAA	ATCACTCGCA	TCAACCAAAC	900
CGTTATTCAT TCGTGATTGC	GCCTGAGCGA	GACGAAATAC	GCGATCGCTG	TTAAAAGGAC	960
AATTACAAAC AGGAATCGAA	TGCAACCGGC	GCAGGAACAC	TGCCAGCGCA	TCAACAATAT	1020
TTTCACCTGA ATCAGGATAT	TCTTCTAATA	CCTGGAATGC	TGTTTTCCCG	GGGATCGCAG	1080
TGGTGAGTAA CCATGCATCA	TCAGGAGTAC	GGATAAAATG	CTTGATGGTC	GGAAGAGGCA	1140

WO 98/16646

PCT/US97/18293

TAAATTCCGT	CAGCCAGTTT	AGTCTGACCA	TCTCATCTGT	AACATCATTG	GCAACGCTAC	1200
CTTTGCCATG	TTTCAGAAAC	AACTCTGGCG	CATCGGGCTT	CCCATACAAT	CGATAGATTG	1260
TCGCACCTGA	TTGCCCGACA	TTATCGCGAG	CCCATTTATA	CCCATATAAA	TCAGCATCCA	1320
TGTTGGAATT	TAATCGCGGC	CTAGAGCAAG	ACGTTTCCCG	TTGAATATGG	CTCATAACAC	1380
CCCTTGTATT	ACTGTTTATG	TAAGCAGACA	GTTTTATTGT	TCATGACCAA	AATCCCTTAA	1440
CGTGAGTTTT	CGTTCCACTG	AGCGTCAGAC	CCCGTAGAAA	AGATCAAAGG	ATCTTCTTGA	1500
GATCCTTTTT	TTCTGCGCGT	AATCTGCTGC	TTGCAAACAA	AAAAACCACC	GCTACCAGCG	1560
GTGGTTTGTT	TGCCGGATCA	AGAGCTACCA	ACTCTTTTTC	CGAAGGTAAC	TGGCTTCAGC	1620
AGAGCGCAGA	TACCAAATAC	TGTCCTTCTA	GTGTAGCCGT	AGTTAGGCCA	CCACTTCAAG	1680
AACTCTGTAG	CACCGCCTAC	ATACCTCGCT	CTGCTAATCC	TGTTACCAGT	GGCTGCTGCC	1740
AGTGGCGATA	AGTCGTGTCT	TACCGGGTTG	GACTCAAGAC	GATAGTTACC	GGATAAGGCG	1800
CAGCGGTCGG	GCTGAACGGG	GGGTTCGTGC	ACACAGCCCA	GCTTGGAGCG	AACGACCTAC	1860
ACCGAACTGA	GATACCTACA	GCGTGAGCTA	TGAGAAAGCG	CCACGCTTCC	CGAAGGGAGA	1920
AAGGCGGACA	GGTATCCGGT	AAGCGGCAGG	GTCGGAACAG	GAGAGCGCAC	GAGGGAGCTT	1980
CCAGGGGGAA	ACGCCTGGTA	TCTTTATAGT	CCTGTCGGGT	TTCGCCACCT	CTGACTTGAG	2040
CGTCGATTTT	TGTGATGCTC	GTCAGGGGGG	CGGAGCCTAT	GGAAAAACGC	CAGCAACGCG	2100
GCCTTTTTAC	GGTTCCTGGC	CTTTTGCTGG	CCTTTTGCTC	ACATGTTCTT	TCCTGCGTTA	2160
ICCCCTGATT	CTGTGGATAA	CCGTATTACC	GCCTTTGAGT	GAGCTGATAC	CGCTCGCCGC	2220
AGCCGAACGA	CCGAGCGCAG	CGAGTCAGTG	AGCGAGGAAG	CGGAAGAGCG	CCTGATGCGG	2280
PATTTTCTCC	TTACGCATCT	GTGCGGTATT	TCACACCGCA	TATATGGTGC	ACTCTCAGTA	2340
CAATCTGCTC	TGATGCCGCA	TAGTTAAGCC	AGTATACACT	CCGCTATCGC	TACGTGACTG	2400
GGTCATGGCT	GCGCCCGAC	ACCCGCCAAC	ACCCGCTGAC	GCGCCCTGAC	GGGCTTGTCT	2460
GCTCCCGGCA	TCCGCTTACA	GACAAGCTGT	GACCGTCTCC	GGGAGCTGCA	TGTGTCAGAG	2520
GTTTTCACCG	TCATCACCGA	AACGCGCGAG	GCAGCTGCGG	TAAAGCTCAT	CAGCGTGGTC	2580
GTGAAGCGAT	TCACAGATGT	CTGCCTGTTC	ATCCGCGTCC	AGCTCGTTGA	GTTTCTCCAG	2640
AAGCGTTAAT	GTCTGGCTTC	TGATAAAGCG	GGCCATGTTA	AGGGCGGTTT	TTTCCTGTTT	2700
GGTCACTGAT	GCCTCCGTGT	AAGGGGGATT	TCTGTTCATG	GGGGTAATGA	TACCGATGAA	2760
ACGAGAGAGG	ATGCTCACGA	TACGGGTTAC	TGATGATGAA	CATGCCCGGT	TACTGGAACG	2820
TTGTGAGGGT	AAACAACTGG	CGGTATGGAT	GCGGCGGGAC	CAGAGAAAA	TCACTCAGGG	2880
rcaatgccag	CGCTTCGTTA	ATACAGATGT	AGGTGTTCCA	CAGGGTAGCC	AGCAGCATCC	2940
TGCGATGCAG	ATCCGGAACA	TAATGGTGCA	GGGCGCTGAC	TTCCGCGTTT	CCAGACTTTA	3000

CGAAACACGG	AAACCGAAGA	CCATTCATGT	TGTTGCTCAG	GTCGCAGACG	TTTTGCAGCA	3060
GCAGTCGCTT	CACGTTCGCT	CGCGTATCGG	TGATTCATTC	TGCTAACCAG	TAAGGCAACC	3120
CCGCCAGCCT	AGCCGGGTCC	TCAACGACAG	GAGCACGATC	ATGCGCACCC	GTGGGGCCGC	3180
CATGCCGGCG	ATAATGGCCT	GCTTCTCGCC	GAAACGTTTG	GTGGCGGGAC	CAGTGACGAA	3240
GGCTTGAGCG	AGGGCGTGCA	AGATTCCGAA	TACCGCAAGC	GACAGGCCGA	TCATCGTCGC	3300
GCTCCAGCGA	AAGCGGTCCT	CGCCGAAAAT	GACCCAGAGC	GCTGCCGGCA	CCTGTCCTAC	3360
GAGTTGCATG	ATAAAGAAGA	CAGTCATAAG	TGCGGCGACG	ATAGTCATGC	CCCGCGCCCA	3420
CCGGAAGGAG	CTGACTGGGT	TGAAGGCTCT	CAAGGGCATC	GGTCGAGATC	CCGGTGCCTA	3480
ATGAGTGAGC	TAACTTACAT	TAATTGCGTT	GCGCTCACTG	CCCGCTTTCC	AGTCGGGAAA	3540
CCTGTCGTGC	CAGCTGCATT	AATGAATCGG	CCAACGCGCG	GGGAGAGGCG	GTTTGCGTAT	3600
TGGGCGCCAG	GGTGGTTTTT	CTTTTCACCA	GTGAGACGGG	CAACAGCTGA	TTGCCCTTCA	3660
CCGCCTGGCC	CTGAGAGAGT	TGCAGCAAGC	GGTCCACGCT	GGTTTGCCCC	AGCAGGCGAA	3720
AATCCTGTTT	GATGGTGGTT	AACGGCGGGA	TATAACATGA	GCTGTCTTCG	GTATCGTCGT	3780
ATCCCACTAC	CGAGATATCC	GCACCAACGC	GCAGCCCGGA	CTCGGTAATG	GCGCGCATTG	3840
CGCCCAGCGC	CATCTGATCG	TTGGCAACCA	GCATCGCAGT	GGGAACGATG	CCCTCATTCA	3900
GCATTTGCAT	GGTTTGTTGA	AAACCGGACA	TGGCACTCCA	GTCGCCTTCC	CGTTCCGCTA	3960
TCGGCTGAAT	TTGATTGCGA	GTGAGATATT	TATGCCAGCC	AGCCAGACGC	AGACGCGCCG	4020
AGACAGAACT	TAATGGGCCC	GCTAACAGCG	CGATTTGCTG	GTGACCCAAT	GCGACCAGAT	4080
GCTCCACGCC	CAGTCGCGTA	CCGTCTTCAT	GGGAGAAAAT	AATACTGTTG	ATGGGTGTCT	4140
GGTCAGAGAC	ATCAAGAAAT	AACGCCGGAA	CATTAGTGCA	GGCAGCTTCC	ACAGCAATGG	4200
CATCCTGGTC	ATCCAGCGGA	TAGTTAATGA	TCAGCCCACT	GACGCGTTGC	GCGAGAAGAT	4260
TGTGCACCGC	CGCTTTACAG	GCTTCGACGC	CGCTTCGTTC	TACCATCGAC	ACCACCACGC	4320
TGGCACCCAG	TTGATCGGCG	CGAGATTTAA	TCGCCGCGAC	AATTTGCGAC	GGCGCGTGCA	4380
GGGCCAGACT	GGAGGTGGCA	ACGCCAATCA	GCAACGACTG	TTTGCCCGCC	AGTTGTTGTG	4440
CCACGCGGTT	GGGAATGTAA	TTCAGCTCCG	CCATCGCCGC	TTCCACTTTT	TCCCGCGTTT	4500
TCGCAGAAAC	GTGGCTGGCC	TGGTTCACCA	CGCGGGAAAC	GGTCTGATAA	GAGACACCGG	4560
CATACTCTGC	GACATCGTAT	AACGTTACTG	GTTTCACATT	CACCACCCTG	AATTGACTCT	4620
CTTCCGGGCG	CTATCATGCC	ATACCGCGAA	AGGTTTTGCG	CCATTCGATG	GTGTCCGGGA	4680
TCTCGACGCT	CTCCCTTATG	CGACTCCTGC	ATTAGGAAGC	AGCCCAGTAG	TAGGTTGAGG	4740
CCGTTGAGCA	CCGCCGCCGC	AAGGAATGGT	GCATGCAAGG	AGATGGCGCC	CAACAGTCCC	4800
CCGGCCACGG	GGCCTGCCAC	CATACCCACG	CCGAAACAAG	CGCTCATGAG	CCCGAAGTGG	4860

CGAGCCCGAT	CTTCCCCATC	GGTGATGTCG	GCGATATAGG	CGCCAGCAAC	CGCACCTGTG	4920
GCGCCGGTGA	TGCCGGCCAC	GATGCGTCCG	GCGTAGAGGA	TCGAGATCTC	GATCCCGCGA	4980
AATTAATACG	ACTCACTATA	GGGGAATTGT	GAGCGGATAA	CAATTCCCCT	CTAGAAATAA	5040
TTTTGTTTAA	CTTTAAGAAG	GAGATATACA	TATGGGCCAT	CATCATCATC	ATCACGTGAT	5100
CGACATCATC	GGGACCAGCC	CCACATCCTG	GGAACAGGCG	GCGGCGGAGG	CGGTCCAGCG	5160
GGCGCGGGAT	AGCGTCGATG	ACATCCGCGT	CGCTCGGGTC	ATTGAGCAGG	ACATGGCCGT	5220
GGACAGCGCC	GGCAAGATCA	CCTACCGCAT	CAAGCTCGAA	GTGTCGTTCA	AGATGAGGCC	5280
GGCGCAACCG	AGGGGCTCGA	AACCACCGAG	CGGTTCGCCT	GAAACGGGCG	CCGGCGCCGG	5340
TACTGTCGCG	ACTACCCCCG	CGTCGTCGCC	GGTGACGTTG	GCGGAGACCG	GTAGCACGCT	5400
GCTCTACCCG	CTGTTCAACC	TGTGGGGTCC	GGCCTTTCAC	GAGAGGTATC	CGAACGTCAC	5460
GATCACCGCT	CAGGGCACCG	GTTCTGGTGC	CGGGATCGCG	CAGGCCGCCG	CCGGGACGGT	5520
CAACATTGGG	GCCTCCGACG	CCTATCTGTC	GGAAGGTGAT	ATGGCCGCGC	ACAAGGGGCT	5580
GATGAACATC	GCGCTAGCCA	TCTCCGCTCA	GCAGGTCAAC	TACAACCTGC	CCGGAGTGAG	5640
CGAGCACCTC	AAGCTGAACG	GAAAAGTCCT	GGCGGCCATG	TACCAGGGCA	CCATCAAAAC	5700
CTGGGACGAC	CCGCAGATCG	CTGCGCTCAA	CCCCGGCGTG	AACCTGCCCG	GCACCGCGGT	5760
AGTTCCGCTG	CACCGCTCCG	ACGGGTCCGG	TGACACCTTC	TTGTTCACCC	AGTACCTGTC	5820
CAAGCAAGAT	CCCGAGGGCT	GGGGCAAGTC	GCCCGGCTTC	GGCACCACCG	TCGACTTCCC	5880
GGCGGTGCCG	GGTGCGCTGG	GTGAGAACGG	CAACGGCGGC	ATGGTGACCG	GTTGCGCCGA	5940
GACACCGGGC	TGCGTGGCCT	ATATCGGCAT	CAGCTTCCTC	GACCAGGCCA	GTCAACGGGG	6000
ACTCGGCGAG	GCCCAACTAG	GCAATAGCTC	TGGCAATTTC	TTGTTGCCCG	ACGCGCAAAG	6060
CATTCAGGCC	GCGGCGGCTG	GCTTCGCATC	GAAAACCCCG	GCGAACCAGG	CGATTTCGAT	6120
GATCGACGGG	CCCGCCCCGG	ACGGCTACCC	GATCATCAAC	TACGAGTACG	CCATCGTCAA	6180
CAACCGGCAA	AAGGACGCCG	CCACCGCGCA	GACCTTGCAG	GCATTTCTGC	ACTGGGCGAT	6240
CACCGACGGC	AACAAGGCCT	CGTTCCTCGA	CCAGGTTCAT	TTCCAGCCGC	TGCCGCCCGC	6300
GGTGGTGAAG	TTGTCTGACG	CGTTGATCGC	GACGATTTCC	AGCGCTGAGA	TGAAGACCGA	6360
TGCCGCTACC	CTCGCGCAGG	AGGCAGGTAA	TTTCGAGCGG	ATCTCCGGCG	ACCTGAAAAC	6420
CCAGATCGAC	CAGGTGGAGT	CGACGGCAGG	TTCGTTGCAG	GGCCAGTGGC	GCGGCGCGC	6480
GGGGACGGCC	GCCCAGGCCG	CGGTGGTGCG	CTTCCAAGAA	GCAGCCAATA	AGCAGAAGCA	6540
GGAACTCGAC	GAGATCTCGA	CGAATATTCG	TCAGGCCGGC	GTCCAATACT	CGAGGGCCGA	6600
CGAGGAGCAG	CAGCAGGCGC	TGTCCTCGCA	AATGGGCTTT	GTGCCCACAA	CGGCCGCCTC	6660
GCCGCCGTCG	ACCGCTGCAG	CGCCACCCGC	ACCGGCGACA	CCTGTTGCCC	CCCCACCACC	6720

208

GGCCGCCGCC	AACACGCCGA	ATGCCCAGCC	GGGCGATCCC	AACGCAGCAC	CTCCGCCGGC	6780
CGACCCGAAC	GCACCGCCGC	CACCTGTCAT	TGCCCCAAAC	GCACCCCAAC	CTGTCCGGAT	6840
CGACAACCCG	GTTGGAGGAT	TCAGCTTCGC	GCTGCCTGCT	GGCTGGGTGG	AGTCTGACGC	6900
CGCCCACTTC	GACTACGGTT	CAGCACTCCT	CAGCAAAACC	ACCGGGGACC	CGCCATTTCC	6960
CGGACAGCCG	CCGCCGGTGG	CCAATGACAC	CCGTATCGTG	CTCGGCCGGC	TAGACCAAAA	7020
GCTTTACGCC	AGCGCCGAAG	CCACCGACTC	CAAGGCCGCG	GCCCGGTTGG	GCTCGGACAT	7080
GGGTGAGTTC	TATATGCCCT	ACCCGGGCAC	CCGGATCAAC	CAGGAAACCG	TCTCGCTTGA	7140
CGCCAACGGG	GTGTCTGGAA	GCGCGTCGTA	TTACGAAGTC	AAGTTCAGCG	ATCCGAGTAA	7200
GCCGAACGGC	CAGATCTGGA	CGGGCGTAAT	CGGCTCGCCC	GCGGCGAACG	CACCGGACGC	7260
CGGGCCCCCT	CAGCGCTGGT	TTGTGGTATG	GCTCGGGACC	GCCAACAACC	CGGTGGACAA	7320
GGCGCGGCC	AAGGCGCTGG	CCGAATCGAT	CCGGCCTTTG	GTCGCCCCGC	CGCCGGCGCC	7380
GGCACCGGCT	CCTGCAGAGC	CCGCTCCGGC	GCCGGCGCCG	GCCGGGGAAG	TCGCTCCTAC	7440
CCCGACGACA	CCGACACCGC	AGCGGACCTT	ACCGGCCTGA	GAATTCTGCA	GATATCCATC	7500
ACACTGGCGG	CCGCTCGAGC	ACCACCACCA	CCACCACTGA	GATCCGGCTG	CTAACAAAGC	7560
CCGAAAGGAA	GCTGAGTTGG	CTGCTGCCAC	CGCTGAGCAA	TAACTAGCAT	AACCCCTTGG	7620
GCCTCTAAA	CGGGTCTTGA	GGGGTTTTTT	GCTGAAAGGA	GGAACTATAT	CCGGAT	7676

(2) INFORMATION FOR SEQ ID NO:214:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 802 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:

Met Gly His His His His His Val Ile Asp Ile Ile Gly Thr Ser

Pro Thr Ser Trp Glu Gln Ala Ala Ala Glu Ala Val Gln Arg Ala Arg

Asp Ser Val Asp Asp Ile Arg Val Ala Arg Val Ile Glu Gln Asp Met

Ala Val Asp Ser Ala Gly Lys Ile Thr Tyr Arg Ile Lys Leu Glu Val

Ser Phe Lys Met Arg Pro Ala Gln Pro Arg Gly Ser Lys Pro Pro Ser 75

Gly	Ser	Pro	Glu	Thr 85	Gly	Ala	Gly	Ala	Gly 90	Thr	Val	Ala	Thr	Thr 95	Pro
Ala	Ser	Ser	Pro 100	Val	Thr	Leu	Ala	Glu 105	Thr	Gly	Ser	Thr	Leu 110	Leu	Tyr
Pro	Leu	Phe 115	Asn	Leu	Trp	Gly	Pro 120	Ala	Phe	His	Glu	Arg 125	Tyr	Pro	Asn
Val	Thr 130	Ile	Thr	Ala	Gln	Gly 135	Thr	Gly	Ser	Gly	Ala 140	Gly	Ile	Ala	Gln
Ala 145	Ala	Ala	Gly	Thr	Val 150	Asn	Ile	Gly	Ala	Ser 155	Asp	Ala	Tyr	Leu	Ser 160
Glu	Gly	Asp	Met	Ala 165	Ala	His	Lys	Gly	Leu 170	Met	Asn	Ile	Ala	Leu 175	Ala
Ile	Ser	Ala	Gln 180	Gln	Val	Asn	Tyr	Asn 185	Leu	Pro	Gly	Val	Ser 190	Glu	His
Leu	Lys	Leu 195	Asn	Gly	Lys	Val	Leu 200	Ala	Ala	Met	Tyr	Gln 205	Gly	Thr	Ile
Lys	Thr 210	Trp	Asp	Asp	Pro	Gln 215	Ile	Ala	Ala	Leu	Asn 220	Pro	Gly	Val	Asn
Leu -225	Pro	Gly	Thr	Ala	Val 230	Val	Pro	Leu	His	Arg 235	Ser	Asp	Gly	Ser	Gly 240
Asp	Thr	Phe	Leu	Phe 245	Thr	Gln	Tyr	Leu	Ser 250	Lys	Gln	Asp	Pro	Glu 255	Gly
Trp	Gly	Lys	Ser 260	Pro	Gly	Phe	Gly	Thr 265	Thr	Val	Asp	Phe	Pro 270	Ala	Val
Pro	Gly	Ala 275	Leu	Gly	Glu	Asn	Gly 280	Asn	Gly	Gly	Met	Val 285	Thr	Gly	Cys
Ala	Glu 290	Thr	Pro	Gly	Cys	Val 295	Ala	Tyr	Ile	Gly	Ile 300	Ser	Phe	Leu	Asp
Gln 305	Ala	Ser	Gln	Arg	Gly 310	Leu	Gly	Glu	Ala	Gln 315	Leu	Gly	Asn	Ser	Ser 320
Gly	Asn	Phe	Leu	Leu 325	Pro	Asp	Ala	Gln	Ser 330	Ile	Gln	Ala	Ala	Ala 335	Ala
Gly	Phe	Ala	Ser 340	Lys	Thr	Pro	Ala	Asn 345	Gln	Ala	Ile	Ser	Met 350	Ile	Asp
Gly	Pro	Ala 355	Pro	Asp	Gly	Tyr	Pro 360	Ile	Ile	Asn	Tyr	Glu 365	Tyr	Ala	Ile
Val	Asn 370	Asn	Arg	Gln	Lys	Asp 375	Ala	Ala	Thr	Ala	Gln 380	Thr	Leu	Gln	Ala
Phe 385	Leu	His	Trp	Ala	Ile 390	Thr	Asp	Gly	Asn	Lys 395	Ala	Ser	Phe	Leu	Asp 400
Gln	Val	His	Phe	Gln 405	Pro	Leu	Pro	Pro	Ala 410	Val	Val	Lys	Leu	Ser 415	Asp

210

A]	.a Le	u Il	e Ala 420		Ile	Ser	Ser	Ala 425		Met	Lys	Thr	Asp 430		Ala
Tł	r Le	u Al. 43	a Gln 5	Glu	Ala	Gly	Asn 440	Phe	Glu	Arg	Ile	Ser 445	_	Asp	Leu
Ly	s Th 45		n Ile	Asp	Gln	Val 455	Glu	Ser	Thr	Ala	Gly 460	Ser	Leu	Gln	Gly
G1 46	n Tr	p Ar	g Gly	Ala	Ala 470	Gly	Thr	Ala	Ala	Gln 475	Ala	Ala	Val	Val	Arg 480
Ph	ne Gl	n Gli	u Ala	Ala 485	Asn	Lys	Gln	Lys	Gln 490	Glu	Leu	Asp	Glu	Ile 495	Ser
Th	ır As:	n Ile	e Arg 500		Ala	Gly	Val	Gln 505	Tyr	Ser	Arg	Ala	Asp 510	Glu	Glu
Gl	n Gl:	n Gli 51!	n Ala 5	Leu	Ser	Ser	Gln 520	Met	Gly	Phe	Val	Pro 525	Thr	Thr	Ala
Al	.a Se: 53		o Pro	Ser	Thr	Ala 535	Ala	Ala	Pro	Pro	Ala 540	Pro	Ala	Thr	Pro
Va 54		a Pro	o Pro	Pro	Pro 550	Ala	Ala	Ala	Asn	Thr 555	Pro	Asn	Ala	Gln	Pro 560
G1	y Ası	o Pro	Asn	Ala 565	Ala	Pro	Pro	Pro	Ala 570	Asp	Pro	Asn	Ala	Pro 575	Pro
Pr	o Pro	o Val	l Ile 580	Ala	Pro	Asn	Ala	Pro 585	Gln	Pro	Val	Arg	Ile 590	Asp	Asn
Pr	o Vai	L Gl ₃ 595	y Gly	Phe	Ser	Phe	Ala 600	Leu	Pro	Ala	Gly	Trp 605	Val	Glu	Ser
As	p Ala 610		a His	Phe	Asp	Tyr 615	Gly	Ser	Ala	Leu	Leu 620	Ser	Lys	Thr	Thr
Gl 62		Pro) Pro	Phe	Pro 630	Gly	Gln	Pro	Pro	Pro 635	Val	Ala	Asn	Asp	Thr 640
Ar	g Ile	e Val	Leu	Gly 645	Arg	Leu	Asp	Gln	Lys 650	Leu	Tyr	Ala	Ser	Ala 655	Glu
Al	a Thi	Asp	Ser 660	Lys	Ala	Ala	Ala	Arg 665	Leu	Gly	Ser	Asp	Met 670	Gly	Glu
Ph	е Туі	675	Pro	Tyr	Pro	Gly	Thr 680	Arg	Ile	Asn	Gln	Glu 685	Thr	Val	Ser
Le	u Asr 690		a Asn	Gly	Val	Ser 695	Gly	Ser	Ala	Ser	Tyr 700	Tyr	Glu	Val	Lys
Ph 70		Asp	Pro	Ser	Lys 710	Pro	Asn	Gly	Gln	Ile 715	Trp	Thr	Gly	Val	Ile 720
Gl	y Sei	r Pro	Ala	Ala 725	Asn	Ala	Pro	Asp	Ala 730	Gly	Pro	Pro	Gln	Arg 735	Trp
Ph	e Val	. Val	Trp	Leu	Gly	Thr	Ala	Asn	Asn	Pro	Val	Asp	Lys	Gly	Ala

211

 Ala
 Lys
 Ala
 Leu
 Ala
 Glu
 Ser
 Ile
 Arg
 Pro
 Leu
 Val
 Ala
 Pro
 Pro
 Pro

 Ala
 Pro
 Ala
 Pro
 Ala
 Pro
 Ala
 Pro
 Ala
 Pro
 Ala

 Gly
 Glu
 Val
 Ala
 Pro
 Thr
 Pro
 Pro
 Pro
 Pro
 Pro
 P

212

CLAIMS

- 1. A polypeptide comprising an immunogenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:
 - (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (SEQ ID No. 120)
 - (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser; (SEQ ID No. 121)
 - (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg; (SEQ ID No. 122)
 - (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro; (SEQ ID No. 123)
 - (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val; (SEQ ID No. 124)
 - (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro; (SEQ ID No. 125)
 - (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser; (SEQ ID No. 126)
 - (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly; (SEQ ID No. 127)
 - (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn; (SEQ ID No. 128) and
 - (j) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 136)

wherein Xaa may be any amino acid.

2. A polypeptide comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative

substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:

- (a) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 129) and
- (b) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 137), wherein Xaa may be any amino acid.
- 3. A polypeptide comprising an immunogenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101 or a complement thereof under moderately stringent conditions.
- 4. A polypeptide comprising an immunogenic portion of a *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 26-51, 138, 139, 163-183 and 201, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 26-51, 138, 139, 163-183 and 201 or a complement thereof under moderately stringent conditions.
- 5. A DNA molecule comprising a nucleotide sequence encoding a polypeptide according to any one of claims 1-4.
- 6. An expression vector comprising a DNA molecule according to claim 5.
 - 7. A host cell transformed with an expression vector according to claim 6.

214

- 8. The host cell of claim 7 wherein the host cell is selected from the group consisting of *E. coli*, yeast and mammalian cells.
- 9. A pharmaceutical composition comprising one or more polypeptides according to any one of claims 1-4 and a physiologically acceptable carrier.
- 10. A pharmaceutical composition comprising one or more DNA molecules according to claim 5 and a physiologically acceptable carrier.
- 11. A pharmaceutical composition comprising one or more DNA sequences recited in SEQ ID Nos.: 3, 11, 12, 140 and 141; and a physiologically acceptable carrier.
- 12. A vaccine comprising one or more polypeptides according to any one of claims 1-4 and a non-specific immune response enhancer.

13. A vaccine comprising:

a polypeptide having an N-terminal sequence selected from the group consisting of sequences recited in SEQ ID NO: 134 and 135; and

a non-specific immune response enhancer.

14. A vaccine comprising:

one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140 and 141, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140 and 141; and

a non-specific immune response enhancer.

15. The vaccine of claims 12-14 wherein the non-specific immune response enhancer is an adjuvant.

215

- 16. A vaccine comprising one or more DNA molecules according to claim 5 and a non-specific immune response enhancer.
- 17. A vaccine comprising one or more DNA sequences recited in SEQ ID Nos.: 3, 11, 12, 140 and 141; and a non-specific immune response enhancer.
- 18. The vaccine of claims 16 or 17 wherein the non-specific immune response enhancer is an adjuvant.
- 19. A pharmaceutical composition according to any one of claims 9-11, for use in the manufacture of a medicament for inducing protective immunity in a patient.
- 20. A vaccine according to any one of claims 12-18, for use in the manufacture of a medicament for inducing protective immunity in a patient.
- 21. A fusion protein comprising two or more polypeptides according to any one of claims 1-4.
- 22. A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and ESAT-6.
- 23. A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and the *M. tuberculosis* antigen 38 kD (SEQ ID NO:155).
- 24. A pharmaceutical composition comprising a fusion protein according to any one of claims 21-23 and a physiologically acceptable carrier.
- 25. A vaccine comprising a fusion protein according to any one of claims 21-23 and a non-specific immune response enhancer.
- 26. The vaccine of claim 25 wherein the non-specific immune response enhancer is an adjuvant.

216

- 27. A pharmaceutical composition according to claim 24, for use in the manufacture of a medicament for inducing protective immunity in a patient.
- 28. A vaccine according to claims 25 or 26, for use in the manufcture of a medicament for inducing protective immunity in a patient.
 - 29. A method for detecting tuberculosis in a patient, comprising:
- (a) contacting dermal cells of a patient with one or more polypeptides according to any one of claims 1-4; and
- (b) detecting an immune response on the patient's skin and therefrom detecting tuberculosis in the patient.
 - 30. A method for detecting tuberculosis in a patient, comprising:
- (a) contacting dermal cells of a patient with a polypeptide having an N-terminal sequence selected from the group consisting of sequences recited in SEQ ID NO: 134 and 135; and
- (b) detecting an immune response on the patient's skin and therefrom detecting tuberculosis in the patient.
 - 31. A method for detecting tuberculosis in a patient, comprising:
- (a) contacting dermal cells of a patient with one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203; and
- (b) detecting an immune response on the patient's skin and therefrom detecting tuberculosis in the patient.
- 32. The method of any one of claims 29-31 wherein the immune response is induration.

217

- 33. A diagnostic kit comprising:
- (a) a polypeptide according to any one of claims 1-4; and
- (b) apparatus sufficient to contact said polypeptide with the dermal cells of a patient.
 - 34. A diagnostic kit comprising:
- (a) a polypeptide having an N-terminal sequence selected from the group consisting of sequences recited in SEQ ID NO: 134 and 135; and
- (b) apparatus sufficient to contact said polypeptide with the dermal cells of a patient.
 - 35. A diagnostic kit comprising:
- (a) a polypeptide encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203; and
- (b) apparatus sufficient to contact said polypeptide with the dermal cells of a patient.
 - 36. A diagnostic kit comprising:
 - (a) a fusion protein according to any one of claims 21-23; and
 - (b) apparatus sufficient to contact said fusion protein with the dermal cells of a patient.
- 37. A fusion protein according to claim 23 comprising an amino acid sequence selected from the group consisting of sequences recited in SEQ ID NO: 153 and 209.

Fig. 1A-1

Fig. 1A-2

2/11

Fig. 1B-1

Fig. 1B-2

SUBSTITUTE SHEET (RULE 26)

Fig. 2A

Fig. 2B

SUBSTITUTE SHEET (RULE 26)

Fig. 4B

Fig. 5A

Fig. 5B

Fig. 6A

Fig. 6B

Fig. 7A

Fig. 7B

Fig. 8A

Fig. 8B

Fig. 9A

Fig. 9B