Oblig 2 - MAT 2300

Fredrik Meyer

15. oktober 2009

I begge oppgavene har vi at $f(z) = \frac{1}{1+z^2}$.

Oppgave 1

Vi lar $r \in \mathbb{R}^+$, og L_r være linjen fra -r til r $\in \mathbb{C}$. Vi lar også $\gamma_r = \{z \in \mathbb{C} | |z| = r, \text{Im } z \geq 0\}$

a)

Vi skal regne ut $I=\int_{L_r}f(z)dz$. Dette er gitt ved $I=\int_a^bf(r(t))r'(t)dt$ der r(t) er en parametrisering av kurven. I dette tilfellet er "kurven" kun det reelle intervallet [-r,r]. En parametrisering er gitt ved r(t)=t der $t\in [-r,r]$. Med andre ord: $I=\int_{-r}^r\frac{1}{1+t^2}\cdot 1dt=\arctan r-\arctan(-r)=2\arctan r$.

b)

f har poler for $z=\pm i$. I denne oppgaven er r<1, så f er analytisk innenfor $L_r+\gamma_r$, som er en lukket kurve. Vi har derfor at $\oint_{L_r+\gamma_r} f(z)dz=0$ ved Cauchys integralteorem. Men vi har også at $\int_{\gamma_1+\gamma_2} fdz=\int_{\gamma_1} fdz+\int_{\gamma_2} fdz$ for vilkårlige kurver. Det følger at

$$\int_{\gamma_r} f(z)dz = -\int_{L_r} f(z)dz = -2\arctan(r)$$

c)

Vi skal regne ut $\int_{\gamma_r} f(z)dz$ når r > 1. La oss først regne ut $\int_{\gamma_r + L_r} fdz$ som er et integral over en lukket kurve. Vi kan da tillate oss å titte på Cauchys

integralformel. Skriver vi $\frac{1}{1+z^2}=\frac{1}{(z+i)(z-i)},$ og velger $g(z)=\frac{1}{z+i},$ så er g
 analytisk innenfor den lukkede kurven $\gamma_r+L_r.$ Vi har altså at

$$\int_{\gamma_r + L_r} \frac{1}{1 + z^2} dz = \int_{\gamma_r + L_r} \frac{g(z)}{z - i} dz$$

Dette er en funksjon på formen vi finner i Cauchys integralformel, og det følger ved den at

$$\int_{\gamma_r + L_r} \frac{1}{1 + z^2} dz = \int_{\gamma_r + L_r} \frac{g(z)}{z - i} dz = g(i) 2\pi i = \frac{1}{2i} 2\pi i = \pi$$

Av samme grunn som i b) finner vi at

$$\int_{\gamma_r} f(z)dz = \pi - \int_{L_r} f(z)dz = \pi - 2\arctan r$$

Oppgave 2

 \mathbf{a}

Vi skal vise at $f(z) = \frac{1}{2} \left[\frac{1}{1+iz} + \frac{1}{1-iz} \right]$. Nå kunne vi vært flinke og delbrøkoppspaltet f(z) - men vi kan jo gjøre ting enkelt: vi trekker sammen og ser hva vi ender opp med:

$$\frac{1}{2} \left[\frac{1}{1+iz} + \frac{1}{1-iz} \right] = \frac{1}{2} \left[\frac{1-iz}{(1+iz)(1-iz)} + \frac{1+iz}{(1+iz)(1-iz)} \right]
= \frac{1}{2} \left[\frac{1+1+iz-iz}{(1-iz)(1+iz)} \right]
= \frac{1}{2} \left[\frac{2}{1^2 - (iz)^2} \right]
= \frac{1}{1+z^2}$$

Som var akkurat det vi skulle vise.

b)

Vi skal finne Taylor-serien til f
 rundt z=0. Vi vet at Taylor-serien til funksjonen $\frac{1}{1-u}=\sum_{j=0}^{\infty}u^{j}.$ Setter vi
 $u=-z^{2}$ får vi at $\frac{1}{1-u}=\frac{1}{1-(z^{2})}=\frac{1}{1+z^{2}}=\sum_{j=0}^{\infty}(-z^{2})j=\sum_{j=0}^{\infty}(-1)^{j}z^{2j}=1-z^{2}+z^{4}-z^{6}+z^{8}+\dots$ Og vi er ferdige.