Dual representations of vector spaces

Two important ways to represent a vector space \mathcal{V} :

How to transform between these two representations?

From left to right: Given system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$, find generators $\mathbf{b}_1, \dots, \mathbf{b}_n$ for solution set

Equivalently, given matrix A, find B such that Row B = Null A

From right to left: Given generators $\mathbf{b}_1, \dots, \mathbf{b}_n$, find system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$ whose solution set equals Span $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$

Equivalently, given matrix B, find matrix A such that Null A = Row B

Dual representations of vector spaces

Two important ways to represent a vector space:

As the solution set of homogeneous linear system

$$\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$$

Equivalently, Null

As Span $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$

Equivalently, Row Row

How to transform between these two representations?

From left to right: Given homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$, find generators $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set

From right to left:

Given generators $\mathbf{b}_1, \dots, \mathbf{b}_k$, find homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$ whose solution set equals Span $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}$

The dual of a vector space

From left to right: Given system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$, find generators $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set

Solution set is the set of vectors \mathbf{u} such that $\mathbf{a}_1 \cdot \mathbf{u} = 0, \dots, \mathbf{a}_m \cdot \mathbf{u} = 0$

$$\underbrace{\begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}}_{A} \begin{bmatrix} \mathbf{x} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Equivalent: Given rows of a matrix A, find generators for Null A

rows of a matrix A \downarrow Algorithm X

generators for Null A

If ${\boldsymbol u}$ is such a vector then

$$\mathbf{u} \cdot (\alpha_1 \, \mathbf{a}_1 + \dots + \alpha_m \, \mathbf{a}_m) = 0$$
 for any coefficients $\alpha_1, \dots, \alpha_m$.

Definition: The set of vectors \mathbf{u} such that $\mathbf{u} \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in \mathcal{V} is called the *dual* of \mathcal{V} . Dual is written as \mathcal{V}^* .

Example: The dual of Span $\{a_1, \ldots, a_m\}$ is the solution set for $a_1 \cdot \mathbf{x} = 0, \ldots, a_m \cdot \mathbf{x} = 0$

generators for a vector space $\mathcal V$

generators for dual space \mathcal{V}^*

Dual of a vector space

Definition: For a subspace V of \mathbb{F}^n , the *dual space* of V, written V^* , is

$$\mathcal{V}^* = \{ \mathbf{u} \in \mathbb{F}^n : \mathbf{u} \cdot \mathbf{v} = 0 \text{ for every vector } \mathbf{v} \in \mathcal{V} \}$$

- **Example over** \mathbb{R} : Let $\mathcal{V} = \text{Span } \{[1,0,1],[0,1,0]\}$. Then $\mathcal{V}^* = \text{Span } \{[1,0,-1]\}$:
 - Note that $[1,0,-1] \cdot [1,0,1] = 0$ and $[1,0,-1] \cdot [0,1,0] = 0$. Therefore $[1,0,-1] \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in Span $\{[1,0,1],[0,1,0]\}$.
 - ▶ For any scalar β ,

$$\beta \, [1,0,-1] \cdot \mathbf{v} = \beta \, ([1,0,-1] \cdot \mathbf{v}) = 0$$
 for every vector \mathbf{v} in Span $\{[1,0,1],[0,1,0]\}$.

- ▶ Which vectors \mathbf{u} satisfy $\mathbf{u} \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in Span $\{[1,0,1],[0,1,0]\}$? Only scalar multiples of [1,0,-1].
- **Example over** GF(2): Let $\mathcal{V} = \text{Span } \{[1,0,1],[0,1,0]\}$. Then $\mathcal{V}^* = \text{Span } \{[1,0,1]\}$:
 - Note that $[1,0,1] \cdot [1,0,1] = 0$ (remember GF(2) addition) and $[1,0,1] \cdot [0,1,0] = 0$.
 - ▶ Therefore $[1,0,1] \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in Span $\{[1,0,1],[0,1,0]\}$.
 - $\qquad \qquad \text{Of course } [0,0,0] \cdot \textbf{v} = 0 \text{ for every vector } \textbf{v} \text{ in Span } \{[1,0,1],[0,1,0]\}.$
 - \blacktriangleright [1, 0, 1] and [0, 0, 0] are the only such vectors.

Dual space

```
Example over \mathbb{R}: Let \mathcal{V} = \operatorname{Span} \{[1,0,1],[0,1,0]\}. Then \mathcal{V}^* = \operatorname{Span} \{[1,0,-1]\} dim \mathcal{V} + \operatorname{dim} \mathcal{V}^* = 3

Example over GF(2): Let \mathcal{V} = \operatorname{Span} \{[1,0,1],[0,1,0]\}. Then \mathcal{V}^* = \operatorname{Span} \{[1,0,1]\}. dim \mathcal{V} + \operatorname{dim} \mathcal{V}^* = 3

Example over \mathbb{R}: Let \mathcal{V} = \operatorname{Span} \{[1,0,1,0],[0,1,0,1]\}. Then \mathcal{V}^* = \operatorname{Span} \{[1,0,-1,0],[0,1,0,-1]\}. dim \mathcal{V} + \operatorname{dim} \mathcal{V}^* = 4

Dual Dimension Theorem: dim \mathcal{V} + \operatorname{dim} \mathcal{V}^* = n

Proof: Let \mathbf{a}_1, \ldots, \mathbf{a}_m be generators for \mathcal{V}.
```

Let
$$A = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}$$

Rank-Nullity Theorem states that rank A + nullity A = n dim \mathcal{V} + dim \mathcal{V}^* = n

Then $\mathcal{V}^* = \text{Null } A$.

QED

The dual of a vector space

Definition: For a subspace \mathcal{V} of \mathbb{F}^n , the dual space of \mathcal{V} , written \mathcal{V}^* , is

$$\mathcal{V}^* = \{ \mathbf{u} \in \mathbb{F}^n : \mathbf{u} \cdot \mathbf{v} = 0 \text{ for every vector } \mathbf{v} \in \mathcal{V} \}$$

rows of a matrix A Algorithm X

Algorithm X

generators for a vector space \mathcal{V}

generators for dual space \mathcal{V}^*

generators for Null A

From left to right: Given system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$, find generators $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set

Algorithm X solves left-to-right problem....

what about right-to-left problem?

The dual of a vector space

From left to right: Given system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$, find generators $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set

generators for a vector space ${\mathcal V}$

generators for dual space \mathcal{V}^*

What happens if we apply Algorithm X to generators for dual space V^* ?

generators for dual space \mathcal{V}^*

generators for dual of dual space $(\mathcal{V}^*)^*$

From right to left: Given generators $\mathbf{b}_1, \dots, \mathbf{b}_k$, find system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$ whose solution set equals Span $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$

generators for dual space \mathcal{V}^{\ast}

generators for original space ${\mathcal V}$

Theorem: $(\mathcal{V}^*)^* = \mathcal{V}$ (The dual of the dual is the original space.)

Theorem shows:

 $\mathsf{Algorithm}\ \mathsf{X} = \mathsf{Algorithm}\ \mathsf{Y}$

We still must prove the Theorem...

Dual space

Theorem: $(\mathcal{V}^*)^* = \mathcal{V}$ (The dual of the dual is the original space.)

Proof:

Let $\mathbf{a}_1, \dots, \mathbf{a}_m$ be a basis for \mathcal{V} . Let $\mathbf{b}_1, \dots, \mathbf{b}_k$ be a basis for \mathcal{V}^* .

Since $\mathbf{b}_1 \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in \mathcal{V} ,

$$\mathbf{b}_1 \cdot \mathbf{a}_1 = 0, \mathbf{b}_1 \cdot \mathbf{a}_2 = 0, \dots, \mathbf{b}_1 \cdot \mathbf{a}_m = 0$$

Similarly $\mathbf{b}_i \cdot \mathbf{a}_1 = 0, \mathbf{b}_i \cdot \mathbf{a}_2 = 0, \dots, \mathbf{b}_i \cdot \mathbf{a}_m = 0$ for $i = 1, 2, \dots, k$.

Reorganizing,

$$\mathbf{a}_1 \cdot \mathbf{b}_1 = 0, \mathbf{a}_1 \cdot \mathbf{b}_2 = 0, \dots, \mathbf{a}_1 \cdot \mathbf{b}_k = 0$$

which implies that $\mathbf{a}_1 \cdot \mathbf{u} = \mathbf{0}$ for every vector \mathbf{u} in $\underbrace{\mathsf{Span}\ \{\mathbf{b}_1, \dots, \mathbf{b}_k\}}_{\mathcal{V}^*}$

This shows \mathbf{a}_1 is in $(\mathcal{V}^*)^*$. Similarly \mathbf{a}_2 is in $(\mathcal{V}^*)^*$, \mathbf{a}_4 is in $(\mathcal{V}^*)^*$, ..., \mathbf{a}_m is in $(\mathcal{V}^*)^*$.

Therefore every vector in Span $\{a_1, a_2, \dots, a_m\}$ is in $(V^*)^*$.

Thus Span $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ is a subspace of $(\mathcal{V}^*)^*$.

To show that these are equal, we must show that
$$\dim \mathcal{V} = \dim(\mathcal{V}^*)^*$$
.

Dual space

Theorem: $(\mathcal{V}^*)^* = \mathcal{V}$ (The dual of the dual is the original space.)

Proof:

Reorganizing,

$$\mathbf{a}_1 \cdot \mathbf{b}_1 = 0, \mathbf{a}_1 \cdot \mathbf{b}_2 = 0, \dots, \mathbf{a}_1 \cdot \mathbf{b}_k = 0$$

which implies that $\mathbf{a}_1 \cdot \mathbf{u} = 0$ for every vector \mathbf{u} in $\underbrace{\mathsf{Span} \; \{\mathbf{b}_1, \dots, \mathbf{b}_k\}}_{\mathcal{V}^*}$

This shows \mathbf{a}_1 is in $(\mathcal{V}^*)^*$. Similarly \mathbf{a}_2 is in $(\mathcal{V}^*)^*$, \mathbf{a}_4 is in $(\mathcal{V}^*)^*$, ..., \mathbf{a}_m is in $(\mathcal{V}^*)^*$.

Therefore every vector in Span $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ is in $(V^*)^*$.

Thus $\underbrace{\mathsf{Span}\ \{\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_m\}}_{\mathcal{V}}$ is a subspace of $(\mathcal{V}^*)^*$.

To show that these are equal, we must show that $\dim \mathcal{V} = \dim(\mathcal{V}^*)^*$.

By Dual Dimension Theorem, $\dim \mathcal{V} + \dim \mathcal{V}^* = n$.

By Dual Dimension Theorem applied to V^* , dim $V^* + \dim(V^*)^* = n$.

Together these equations show dim $\mathcal{V} = \dim(\mathcal{V}^*)^*$