

# MVO-32 - Lista de Exercícios 2

# Antônio Bernardo Guimarães Neto antonio@ita.br

29 de setembro de 2020

## Instruções

### LEIA COM ATENÇÃO:

- enviar a solução até as 23:59 de **30 de outubro de 2020**; o desconto por atraso (de 0,05 por hora) começa a contar a partir das 00:00. A solução consiste de:
  - documento com respostas, gráficos e análises em formato .pdf
  - todos os códigos utilizados em cada item, numa única pasta compactada em formato .zip, com subpastas para cada item (ex.: 1A, 1B, 2A etc.)
  - observação: o tamanho total dos anexos não deve exceder 5 MB
- é permitido resolver em duplas; um único trio é também permitido
- é permitido discutir resultados com outros colegas/outras duplas
- porém, não é permitido ler a solução de outros colegas/outras duplas, seja da turma atual, seja de turmas passadas
- esta lista responde por 1/3 da nota do 2° bimestre

# **Dados**

Nesta lista, você irá programar o modelo do GNBA (*Generic Narrow-Body Airliner*, ou avião genérico de fuselagem estreita). A aeronave foi desenvolvida na seguinte tese de doutorado, com a finalidade de estudar a dinâmica do voo de aeronaves flexíveis:

GUIMARÃES NETO, Antônio Bernardo. **Flight dynamics of flexible aircraft using general body axes**: a theoretical and computational study. Instituto Tecnológico de Aeronáutica. São José dos Campos: ITA, 2014. 450 p. (DCTA/ITA/TD-032/2014). Disponível em: http://www.bdita.bibl.ita.br/tesesdigitais/lista\_resumo.php?num\_tese=67648. Acesso em: 29 set. 2020.



Figura 1: GNBA: Generic Narrow-Body Airliner.

## Dados gerais

| Descrição                                            | Símbolo       | Valor                 | Unidade        |
|------------------------------------------------------|---------------|-----------------------|----------------|
| Área da asa                                          | S             | 116                   | $\mathrm{m}^2$ |
| Corda média aerodinâmica                             | $ar{c}$       | 3,862                 | $\mathbf{m}$   |
| Envergadura                                          | b             | 32,757                | $\mathbf{m}$   |
| Massa                                                | m             | 55788                 | kg             |
| Momento de inércia em $y$                            | $I_{yy}$      | $3,344 \times 10^{6}$ | ${ m kg.m^2}$  |
| Ponto de aplicação do empuxo total                   | $(x_p, z_p)$  | (4,899, 1,435)        | $\mathbf{m}$   |
| Máximo empuxo total ao nível do mar <b>por motor</b> | $T_{\rm max}$ | 100000                | N              |

#### Condição de operação

| Condição | V [m/s] | Mach | h [m]   | $\gamma  [\mathrm{deg}]$ |
|----------|---------|------|---------|--------------------------|
| Cruzeiro | 230,15  | 0,78 | 11582,4 | 0,0                      |

#### Dados do modelo propulsivo

Adote o seguinte modelo para o empuxo de cada motor, T, em função do controle propulsivo, throttle:

$$T = throttle \ T_{\text{max}} \left(\frac{\rho}{\rho_0}\right)^{n_\rho},$$

sendo  $T_{\rm max}$  o máximo empuxo ao nível do mar,  $\rho$  a densidade atmosférica na altitude atual,  $\rho_0=1,225~{\rm kg/m^3}$  a densidade ao nível do mar, e  $n_\rho=0,8$ .

Além disso, considere que a força de empuxo **total** no sistema de coordenadas do corpo seja expressa pela equação:

$$\mathbf{F}_{\text{prop},b} = 2T \begin{bmatrix} \cos \tau_p \cos \iota_p \\ 0 \\ -\sin \iota_p \end{bmatrix},$$

sendo  $\iota_p=2.0^\circ$  e  $\tau_p=1.5^\circ.$ 

#### Dados do modelo aerodinâmico

Derivadas de estabilidade e controle longitudinais:

Tabela 1: Coeficiente de sustentação

| $\overline{C_{L_0}}$ | $C_{L_{\alpha}}$ [1/deg] | $C_{L_q}$ [1/rad] | $C_{L_{i_t}}$ [1/deg] | $C_{L_{\delta_e}}$ [1/deg] |
|----------------------|--------------------------|-------------------|-----------------------|----------------------------|
| 0,308                | $0,\!133$                | 16,7              | 0,0194                | 0,00895                    |

$$C_L = C_{L_0} + C_{L_\alpha}\alpha + C_{L_q}\frac{q\bar{c}}{2V} + C_{L_{i_t}}i_t + C_{L_{\delta_e}}\delta_e$$

Tabela 2: Coeficiente de momento de arfagem

| $C_{m_0}$ | $C_{m_{\alpha}}$ [1/deg] | $C_{m_q}$ [1/rad] | $C_{m_{i_t}}$ [1/deg] | $C_{m_{\delta_e}}$ [1/deg] |
|-----------|--------------------------|-------------------|-----------------------|----------------------------|
| 0,0170    | -0,0402                  | -57,0             | -0,0935               | -0,0448                    |

$$C_m = C_{m_0} + C_{m_\alpha} \alpha + C_{m_q} \frac{q\bar{c}}{2V} + C_{m_{i_t}} i_t + C_{m_{\delta_e}} \delta_e$$

Tabela 3: Coeficiente de arrasto

|           | $C_{D_{\alpha}}$ | $C_{D_{\alpha 2}}$    | $C_{D_{q2}}$         | $C_{D_{i_t}}$          | $C_{D_{i_t2}}$        | $C_{D_{\delta_e 2}}$  |
|-----------|------------------|-----------------------|----------------------|------------------------|-----------------------|-----------------------|
| $C_{D_0}$ | $[1/\deg]$       | $[1/\mathrm{deg^2}]$  | $[1/\mathrm{rad}^2]$ | $[1/\deg]$             | $[1/\mathrm{deg^2}]$  | $[1/\mathrm{deg^2}]$  |
| 0,02207   | 0,00271          | $6,03 \times 10^{-4}$ | 35,904               | $-4,20 \times 10^{-4}$ | $1,34 \times 10^{-4}$ | $4,61 \times 10^{-5}$ |

$$C_D = C_{D_0} + C_{D_\alpha}\alpha + C_{D_{\alpha 2}}\alpha^2 + C_{D_{q2}} \left(\frac{q\bar{c}}{2V}\right)^2 + C_{D_{i_t}}i_t + C_{D_{i_t 2}}i_t^2 + C_{D_{\delta_{e2}}}\delta_e^2$$

O coeficiente de momento de arfagem tem como ponto de referência o CG da aeronave na condição nominal de cruzeiro. Além disso, a velocidade angular de arfagem q também é aquela em torno do CG nominal. Finalmente, observe que as derivadas aerodinâmicas com respeito a  $\frac{q\bar{c}}{2V}$  consideram esta adimensionalização em radianos, não em graus.

## Exercícios

Escreva uma função em MATLAB que represente a dinâmica do movimento longitudinal da aeronave, no formato exigido para poder ser integrada no tempo pela função ode4xy:

Variáveis de estado:

$$\mathbf{X} = \begin{bmatrix} V & \alpha & q & \theta & h & x \end{bmatrix}^T$$

Variáveis de controle:

$$\mathbf{U} = \begin{bmatrix} throttle & i_t & \delta_e \end{bmatrix}^T$$

Variáveis de saída:

$$\mathbf{Y} = \left[ \begin{array}{ccc} \gamma & T & \text{Mach} & C_D & C_L & C_m \end{array} \right]^T$$

#### Exercício 1

- a) (1,0 ponto) Calcule e tabele o ângulo de ataque, a incidência de empenagem horizontal (assuma deflexão nula do profundor), o controle propulsivo e a força de empuxo que devem ser usados para equilibrar a aeronave na condição de cruzeiro.
- **b)** (1,0 ponto) Calcule a margem estática a manche fixo.
- c) (1,0 ponto) Calcule a frequência natural em Hz e a razão de amortecimento do período curto e da fugoide, explicando o procedimento usado para identificar os modos.
- d) (1,0 ponto) Admita que o CG do avião pode agora ser deslocado de  $\Delta \bar{x}_{\text{CG}} = \Delta x_{\text{CG}}/\bar{c}$ , sendo esse deslocamento convencionado positivo em direção à cauda e negativo em direção ao nariz da aeronave (convenção adotada nos Capítulos 01 e 02 do curso).

Obtenha, então, a equação que relaciona  $\Delta \bar{x}_{\text{CG}}$  e  $C_{L_{\alpha}}$  com a variação  $\Delta C_{m_{\alpha}}$  da derivada do coeficiente de momento de arfagem com respeito ao ângulo de ataque, assim como a equação que relaciona  $\Delta \bar{x}_{\text{CG}}$  e  $C_{L_0}$  com a variação  $\Delta C_{m_0}$  do coeficiente de momento de arfagem para ângulo de ataque nulo.

Calcule também qual deve ser o deslocamento  $\Delta \bar{x}_{\rm CG}$  tal que a margem estática se anule.

e) As derivadas  $C_{L_q}$ ,  $C_{m_q}$ ,  $C_{m_{i_t}}$  e  $C_{m_{\delta_e}}$  são modificadas pelo deslocamento do CG de acordo com as seguintes equações:

$$C'_{L_q} = C_{L_q} - \Delta \bar{x}_{\text{CG}} C_{L_{\alpha}},$$

$$C'_{m_q} = C_{m_q} - \Delta \bar{x}_{\text{CG}} \left( -C_{L_q} + C_{m_{\alpha}} \right) - \Delta \bar{x}_{\text{CG}}^2 C_{L_{\alpha}},$$

$$C'_{m_{i_t}} = C_{m_{i_t}} + \Delta \bar{x}_{\text{CG}} C_{L_{i_t}},$$

$$C'_{m_{\delta_e}} = C_{m_{\delta_e}} + \Delta \bar{x}_{\text{CG}} C_{L_{\delta_e}},$$

nas quais as derivadas no segundo membro de todas as equações são as derivadas originais, sem deslocamento do CG. Cuidado para não misturar derivadas em 1/rad com derivadas em 1/deg, sem fazer as conversões necessárias.

Considerando também as equações obtidas no item (d) e desprezando (por simplificação) a variação do momento de inércia  $I_{yy}$  da aeronave com o deslocamento do CG:

e1) (1,0 ponto) Calcule o ângulo de ataque, a incidência de empenagem horizontal, o controle propulsivo e a força de empuxo para equilibrar a aeronave na condição de cruzeiro, porém com margem estática de -10%.

Calcule e tabele os autovalores e os autovetores da dinâmica linearizada.

O avião é dinamicamente estável nessa condição? Por quê?

**e2)** (1,0 ponto) Calcule o equilíbrio na condição de cruzeiro com valores de margem estática entre -10% e +30%, em passos de no máximo 5%.

Apresente como resultado um gráfico com a evolução do empuxo total ou do controle propulsivo necessários para o equilíbrio, em função da margem estática.

Explique fisicamente o comportamento observado no gráfico, apoiando-se em gráficos adicionais de ângulo de ataque de equilíbrio e de incidência de empenagem horizontal de equilíbrio, em função da margem estática.

Admitindo que o consumo de combustível de cada motor seja proporcional ao empuxo, existiria para esse avião algum benefício da estabilidade estática "relaxada" (reduzida) no que se refere ao consumo de combustível?

#### Exercício 2

Para a condição de cruzeiro nominal, sem deslocamento de CG, considere o modelo linearizado numericamente:

$$\Delta \dot{\mathbf{X}} = \mathbf{A} \Delta \mathbf{X} + \mathbf{B} \Delta \mathbf{U}$$

bem como a dinâmica não linear.

- a) (1,5 ponto) Apresente gráficos comparando as respostas das perturbações  $\Delta V$ ,  $\Delta \alpha$ ,  $\Delta q$ ,  $\Delta \theta$ ,  $\Delta h$  e  $\Delta \gamma$  para a dinâmica não linear e para a dinâmica linearizada da aeronave, na simulação de um comando doublet no **profundor**, iniciando em t=1 s com um pulso de  $+1^{\circ}$  por 1 s, seguido de um pulso de  $-1^{\circ}$  por 1 s e, finalmente, retornando à deflexão nula. Simule os primeiros 15 s. Os comportamentos linear e não linear são próximos? Explique.
- **b)** (1,0 ponto) Aumente a amplitude do comando para  $+/-5^{\circ}$  e, juntamente, a duração de cada pulso para 2 s. Compare as dinâmicas não linear e linearizada na simulação dos primeiros 30 s. Analise as diferenças com respeito ao item (a).

#### Exercício 3

(1,5 ponto) Extraia das matrizes  $\mathbf{A}$  e  $\mathbf{B}$  anteriormente obtidas as partições referentes à dinâmica reduzida de período curto (estados  $\alpha$  e q) e repita a simulação do **Exercício 2** item (a) considerando apenas essa dinâmica simplificada.

Reproduza, então, os gráficos das simulações do **Exercício 2** item (a) apenas para as respostas de  $\Delta \alpha$  e  $\Delta q$ , adicionando a esses dois gráficos uma terceira curva referente à simulação com a dinâmica simplificada de período curto. Analise os resultados.