Домашняя работа №6

по дисциплине "Дифференциальная геометрия и топология"

Винницкая Дина Сергеевна

Группа: Б9122-02.03.01сцт

1 Задание

- 1. Образ сверху плотно или нет при сюръекции. Например, образ открытого всегда плотен?
- 2. Непрерывна ли в топологии, индуцирующей каноническую топологию на \mathbb{R} , эта функция?

$$f: \{0,2\} \to \{0,2\}, \quad f(x) = \begin{cases} x, & x \in [0,1] \\ 3-x, & x \in [1,2] \end{cases}$$

Почему?

3. Может ли минимум быть одновременно сверху плотным и снизу не плотным?

2 Образ всюду плотного множества при сюръективном и непрерывном отображении также будет всюду плотным.

Решение

Пусть $f: X \to Y$ — непрерывное и сюръективное отображение. Из этого следует, что для любого непустого открытого множества U в Y, прообраз $f^{-1}(U)$ является непустым открытым множеством в X. Пусть $f^{-1}(U) = K$ и f(A) = B.

Рассмотрим два важных свойства:

- 1. $K \cap A \neq \emptyset$, поскольку если $K \cap A$ было бы пустым, то $X \setminus K$ было бы замкнутым множеством, и $A \in X \setminus K$, что противоречит тому, что замыкание A должно быть равно X.
- 2. Для всех $x \in K \cap A$ имеем $x \in A$ и $x \in K$, что влечёт $f(x) \in B$ и $x \in f(K) \subset U$, а значит, $f(x) \in B \cap U$.

Из этих свойств следует, что $B \cap U \neq \emptyset$, и, следовательно, B не содержится в замкнутом дополнении $Y \setminus U$. Таким образом, любое замкнутое подмножество Y, кроме самого Y, не содержит B.

Следовательно, единственным замкнутым множеством, которое включает B, является всё пространство Y, то есть

$$Cl(B) = Y \Rightarrow B = f(A)$$

Таким образом, B является всюду плотным.

3 Условие

Определить, является ли отображение $f:[0,2]\to [0,2]$ непрерывным в топологическом пространстве с топологией, индуцированной из канонической топологии на \mathbb{R} , где

$$f(x) = \begin{cases} x, & x \in [0, 1) \\ 3 - x, & x \in [1, 2] \end{cases}$$

Решение

Функция $f: X \to Y$ является непрерывной тогда и только тогда, когда прообраз любого открытого множества в Y также открыт.

Каноническая топология на \mathbb{R} определяется как топология, базой которой являются открытые интервалы, то есть

$$U \in T \iff \forall x \in U \ \exists V : V = \{x \mid |x - x_0| < \varepsilon\} \implies V \subset U, \quad U = \emptyset$$

Предположим, что $x \in [0, 1)$.

Пусть $V_{f(x)}$ — окрестность точки f(x) в пространстве Y.

Предположим также, что часть этой окрестности $K\subset V_{f(x)}$ лежит в другой части отрезка, то есть $K\subset [1,2].$

Теперь возьмем $V_{f(x)} \neq Y$. Тогда прообраз множества $f^{-1}(V_{f(x)}\backslash K)$ будет подмножеством некоторой окрестности U_x точки x в X.

Однако $f^{-1}(K) \cup f^{-1}(V_{f(x)} \setminus K) \notin T_X$ по построению (между $f^{-1}(K)$ и $f^{-1}(V_{f(x)} \setminus K)$ существует некоторое непустое множество P = [1, a), где a — прообраз правой границы $V_{f(x)}$; кроме того, $f^{-1}(K) \cap U_x \neq f^{-1}(K)$).

Следовательно, если прообраз $V_{f(x)}$ не является открытым, то, по определению непрерывности, функция f не является непрерывной.

4 Может ли множество быть всюду плотным и нигде не плотным

Решение

Переформулируем условие: Существует ли множество $A \subset X$ такое, что Cl(A) = X и $Cl(Int(X \setminus A)) = X$? Рассмотрим условия, которые должны выполняться для A:

- $A \neq X$, так как $Cl(Int(X \setminus A)) = Cl(\emptyset) = \emptyset \neq X$.
- $A \neq \emptyset$, так как $Cl(A) = \emptyset \neq X$.
- A не является замкнутым, иначе $Cl(A) = A \neq X$.
- A не является открытым, иначе $Cl(Int(X \setminus A)) = X \setminus A$.

Предположим, что существует $A \subset X$ такое, что A = X и $Cl(Int(X \setminus A)) = X$.

• Тогда $A \neq \emptyset$, и это влечет за собой, что $X \setminus A \notin T$.

Предположим, что существует $U \in T, U \neq \emptyset$, такое, что $U \subset X \setminus A$, иначе $Int(X \setminus A) = \emptyset$ и $Cl(Int(X \setminus A)) = \emptyset \neq X$. Значит, $X \setminus A$ — непустое.

Тогда $A\subset X\setminus U\Rightarrow Cl(A)\subset X\setminus U$ (так как $X\setminus U$ — замкнутое), что приводит к $Cl(A)\neq X.$

Возникает противоречие.

Следовательно, не существует множества, удовлетворяющего этим условиям.