

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Эффект Холла в металлах

Работа №3.3.5; дата: 21.10.22

Семестр: 3

1. Аннотация

Цель работы:

Измерение подвижности и концентрации носителей заряда в металлах.

Схема установки:

Рис. 1: Схема установки

Рис. 2: Схема установки

В зазоре электромагнита (Рис. 1) создаётся постоянное магнитное поле, величину которого можно менять с помощью источника питания электромагнита. Разъём K1 позволяет менять направление тока в обмотках электромагнита. Ток питания электромагнита измеряется амперметром A1.

Градуировка электромагнита (связь тока с индукцией поля) проводится при помощи цифрового магнитометра.

Металлические образцы в форме тонких пластинок, смонтированные в специальных держателях, подключаются к блоку питания через разъём (Рис. 2). Ток через образец регулируется реостатом R2 и измеряется амперметром A2.

Для измерений ЭДС Холла используется микровольтметр, в котором высокая чувствительность по напряжению сочетается с малой величиной тока, потребляемого измерительной схемой.

В образце с током, помещённом в зазор электромагнита, между контактами 2 и 4 возникает холловская разность потенциалов U_{\perp} , которая измеряется с помощью микровольтметра, если переключатель K3 подключён к точке 2 образца. При подключении K3 к точке 3 микровольтметр измеряет омическое падение напряжения U_{34} , вызванное током через образец. При нейтральном положении ключа входная цепь микровольтметра разомкнута.

Kлюч K2 позволяет менять полярность напряжения, поступающего на вход микровольтметра.

Контакты 2 и 4 вследствие неточности подпайки могут лежать не на одной эквипотенциали. Тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения вдоль пластинки.

Можно исключить влияние омического падения напряжения, если при каждом значении тока через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остаётся неизменным. От него следует отсчитывать величину ЭДС Холла: $U_{\perp} = U_{24} - U_0$.

Проводимость образцов можно рассчитать по очевидной формуле:

$$\sigma = \frac{Il_{34}}{U_{34}al}$$

В работе используются:

Электромагнит с источником питания, источник постоянного тока, микровольтметр, амперметры, цифровой магнитометр, образцы из меди, серебра и цинка.

2. Теоретические сведения

В работе изучаются особенности проводимости металлов в геометрии мостика Холла. Ток пропускается по плоской прямоугольной металлической пластинке, помещённой в перпендикулярное пластинке магнитное поле. Измеряется разность потенциалов между краями пластинки в поперечном к току направлении. По измерениям определяется константа Холла, тип проводимости (электронный или дырочный) и вычисляется концентрация основных носителей заряда.

Рис. 3: Схема мостика Холла

В данной схеме ток вынуждают течь по оси x вдоль плоской пластинки (ширина пластинки a, толщина h, длина l). Сила Лоренца, действующая со стороны перпендикулярного пластинке магнитного поля, «прибивает» носители заряда к краям образца, что создаёт холловское электрическое поле, компенсирующее эту силу.

Запишем силу Лоренца, действующую на электрон:

$$\vec{F}_l = -e\vec{E} - e\left[\vec{v} \times \vec{B}\right] \Rightarrow F_{l,z} = -eE_z + e\overline{v}_x B_y$$

В установившемся режиме $F_{l,z} = 0$, потому:

$$E_z = \overline{v}B$$

При этом величина холловской ЭДС:

$$U_{\perp} = E_z a = \overline{v} B a$$

С учетом $I = en\overline{v}ah$:

$$U_{\perp} = \frac{IB}{neh} = R_x \frac{IB}{h}$$

Где R_x – постоянная Холла.

3. Ход работы

Градуировка электромагнита

Приведем в таблице градуировку и рассчитаем магнитный коэффициент:

I_a , A	B, T
0.00 ± 0.00	0.000 ± 0.000
0.20 ± 0.01	0.230 ± 0.010
0.35 ± 0.01	0.400 ± 0.020
0.50 ± 0.01	0.580 ± 0.030
0.65 ± 0.01	0.780 ± 0.040
0.80 ± 0.01	0.930 ± 0.050
0.96 ± 0.01	1.050 ± 0.055

Табл. 1: Градуировка электромагнита

Рис. 4: График зависимости B(I)

Методом линейной аппроксимации B = kI + b получаем:

$$k = (1.126 \pm 0.033) \,\text{T/A}$$
 $b = (0.011 \pm 0.019)$

Изучение образца из меди

Вначале по направлению ЭДС Холла определяем знак носителей проводимости – +.

Теперь приведем таблицу измерений:

$I = (0.4 \pm 0.1) \text{ A}$		$U_0 = (2.0 \pm 0.5) \text{ un}$	
I_m , A	B, T 0.236 ± 0.026	U_{24} , un	U_{\perp} , nV
0.20 ± 0.01	0.236 ± 0.026	3.0 ± 0.5	40 ± 40
0.39 ± 0.01	0.450 ± 0.032	5.0 ± 0.5	120 ± 40
0.60 ± 0.01	0.687 ± 0.039	7.0 ± 0.5	200 ± 40
0.80 ± 0.01	0.912 ± 0.045	9.0 ± 0.5	280 ± 40
1.01 ± 0.01	1.148 ± 0.052	10.0 ± 0.5	320 ± 40
1.20 ± 0.01	1.362 ± 0.059	11.0 ± 0.5	360 ± 40
I = (0.6)	$6 \pm 0.1) \text{ A}$	$U_0 = (3.0 \pm 0.5) \text{ un}$	
I_m , A	B, T	U_{24} , un	U_{\perp} , nV
0.20 ± 0.01	0.236 ± 0.026	5.0 ± 0.5	80 ± 40
0.40 ± 0.01	0.461 ± 0.032	9.0 ± 0.5	240 ± 40
0.60 ± 0.01	0.687 ± 0.039	13.0 ± 0.5	400 ± 40
0.80 ± 0.01	0.912 ± 0.045	15.0 ± 0.5	480 ± 40
1.00 ± 0.01	1.137 ± 0.052	17.0 ± 0.5	560 ± 40
1.20 ± 0.01	1.362 ± 0.059	19.0 ± 0.5	640 ± 40
$I = (0.8 \pm 0.1) \text{ A}$		$U_0 = (4.0 \pm 0.5) \text{ un}$	
I_m , A	B, T	U_{24} , un	U_{\perp}, nV
0.20 ± 0.01	0.236 ± 0.026	8.0 ± 0.5	160 ± 40
0.40 ± 0.01	0.461 ± 0.032	12.0 ± 0.5	
0.60 ± 0.01	0.687 ± 0.039	17.0 ± 0.5	
0.80 ± 0.01	0.912 ± 0.045	20.0 ± 0.5	640 ± 40
1.00 ± 0.01	1.137 ± 0.052	24.0 ± 0.5	800 ± 40
1.20 ± 0.01	1.362 ± 0.059	27.0 ± 0.5	920 ± 40
$I = (1.0 \pm 0.1) \text{ A}$		$U_0 = (5.0 \pm 0.5) \text{ un}$	
I_m , A	B, T	U_{24} , un	U_{\perp} , nV
0.20 ± 0.01	0.236 ± 0.026	9.0 ± 0.5	160 ± 40
0.40 ± 0.01	0.461 ± 0.032	15.0 ± 0.5	400 ± 40
0.60 ± 0.01	0.687 ± 0.039	21.0 ± 0.5	640 ± 40
0.80 ± 0.01	0.912 ± 0.045	27.0 ± 0.5	880 ± 40
1.00 ± 0.01	1.137 ± 0.052	30.0 ± 0.5	1000 ± 40
1.20 ± 0.01	1.362 ± 0.059	33.0 ± 0.5	1120 ± 40

Табл. 2: Исследование образца из меди

Выпишем соответствующие коэффициенты наклона и построим графики зависимости ЭДС Холла от индукции магнитного поля. Приведем также таблицу коэффициентов наклона:

I, A	$k, V/T \cdot 10^7$
0.40 ± 0.01	2.86 ± 0.22
0.60 ± 0.01	4.87 ± 0.44
0.80 ± 0.01	6.95 ± 0.35
1.00 ± 0.01	8.68 ± 0.66

Табл. 3: Зависимость коэффициента наклона от тока через образец

Рис. 5: Графики $U_{\perp}(I)$ для меди

Рис. 6: График k(I) для меди

Наконец, методом линейной аппроксимации получаем:

$$\gamma = (0.977 \pm 0.027) \cdot 10^{-6} \, \mathrm{Ohm/T}$$

Учитывая параметры образца $L_{34}=6\,mm,\,l=8\,mm,\,a=0.05\,mm,\,U_{34}=23\mu V$:

$$R_x = -\gamma a \approx -(4.9 \pm 0.2) \cdot 10^{-11} \, m^3 / C$$

Теперь рассчитаем концентрацию носителей проводимости, удельную проводимость и подвижность носителей:

$$n = \frac{1}{R_x e} \approx -(0.12 \pm 0.01) \cdot 10^{30} \, 1/m^3$$

$$\sigma = \frac{Il_{34}}{U_{34}al} \approx (0.63 \pm 0.06) \cdot 10^8 \, 1/Ohm \cdot m$$

$$b = R_x \sigma \approx (32 \pm 3) \, sm^2 / V \cdot s$$

Исследование образца из цинка

Вначале по направлению ЭДС Холла определяем знак носителей проводимости - -.

$I = (0.6 \pm 0.1) \text{ A}$		$U_0 = 10 \text{ nV}$	
I_m , A	B, T	U_{24} , un	U_{\perp} , nV
0.20 ± 0.01	0.236 ± 0.026	16.0 ± 0.5	240 ± 40
0.40 ± 0.01	0.461 ± 0.032	22.0 ± 0.5	480 ± 40
0.60 ± 0.01	0.687 ± 0.039	27.0 ± 0.5	680 ± 40
0.80 ± 0.01	0.912 ± 0.045	30.0 ± 0.5	800 ± 40
1.00 ± 0.01	1.137 ± 0.052	33.0 ± 0.5	920 ± 40
1.20 ± 0.01	1.362 ± 0.059	36.0 ± 0.5	1040 ± 40

Табл. 4: Исследование образца из цинка

Рис. 7: График $U_{\perp}(I)$ для цинка

Методом линейной аппроксимации получаем:

$$k = (6.90 \pm 0.56) \cdot 10^{-7} \, V/T$$

Учитывая параметры образца $L_{34}=4\,mm,\,l=10\,mm,\,a=0.08\,mm,\,U_{34}=26\mu V$:

$$R_x = \frac{Ba}{I} \approx (9.5 \pm 0.9) \cdot 10^{-11} m^3 / C$$

Теперь рассчитаем концентрацию носителей проводимости, удельную проводимость и подвижность носителей:

$$n = \frac{1}{R_x e} \approx (0.60 \pm 0.06) \cdot 10^{30} \, 1/m^3$$

$$\sigma = \frac{I l_{34}}{U_{34} a l} \approx (0.19 \pm 0.02) \cdot 10^8 \, 1/Ohm \cdot m$$

$$b = R_x \sigma \approx (18 \pm 2) \, sm^2 / V \cdot s$$

4. Выводы

Проведено исследование эффекта Холла на проводниках из меди и цинка. В результате работы определены знаки носителей проводимости (+ для меди и - для цинка), а также некоторые постоянные:

Постоянные Холла:

$$R_{x,Cu} = -(4.9 \pm 0.2) \cdot 10^{-11} \, m^3 / C$$
 $R_{x,Zn} = (9.5 \pm 0.9) \cdot 10^{-11} m^3 / C$

В сравнении с табличными значениями:

$$R_{x,Cu} = -5.3 \cdot 10^{-11} \, m^3 / C$$
 $R_{x,Zn} = 10.4 \cdot 10^{-11} m^3 / C$

Концентрации носителей проводимости:

$$n_{Cu} = -(0.12 \pm 0.01) \cdot 10^{30} \, 1/m^3$$
 $n_{Zn} = (0.60 \pm 0.006) \cdot 10^{30} 1/m^3$

Удельные проводимости:

$$\sigma_{Cu} = (0.63 \pm 0.06) \cdot 10^8 \, 1/Ohm \cdot m$$
 $\sigma_{Zn} = (0.19 \pm 0.02) \cdot 10^8/Ohm \cdot m$

В сравнении с табличными значениями:

$$\sigma_{Cu} = 0.56 \cdot 10^8 \, 1/Ohm \cdot m$$
 $\sigma_{Zn} = 0.16 \cdot 10^8/Ohm \cdot m$

Подвижности носителей:

$$b_{Cu} = (32 \pm 3) \, sm^2 / V \cdot s$$
 $b_{Zn} = (18 \pm 2) sm^2 / V \cdot s$

В сравнении с табличными значениями:

$$b_{Cu} = 32 \, sm^2 / V \cdot s \qquad b_{Zn} = 17.5 sm^2 / V \cdot s$$