Harsh Seksaria

2048011

2 - MDS

Machine Learning Lab 10

Naive Bayes Classifier

15 April, 2021

CHRIST (Deemed to be University)

In [17]: import pandas as pd

```
In [18]:
    from sklearn.datasets import load_breast_cancer
    cancer = load_breast_cancer()
    fl = pd.DataFrame(cancer['data'], columns=cancer['feature_names'])
    fl.head()
```

Out[18]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius	worst texture	worst perimeter	worst area
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 25.38	17.33	184.60	2019.0
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 24.99	23.41	158.80	1956.0
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	 23.57	25.53	152.50	1709.0
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	 14.91	26.50	98.87	567.7
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 22.54	16.67	152.20	1575.0

5 rows × 30 columns

```
In [19]: x = fl
y = pd.DataFrame(cancer['target'], columns = ['CancerType'])
x.shape, y.shape
```

```
Out[19]: ((569, 30), (569, 1))
```

```
In [20]: #Dividing dataset into training and testing set
    from sklearn.model_selection import train_test_split
    X_train, X_test, Y_train, Y_test = train_test_split(x, y, test_size=0.25, random_state=11)
```

Gaussian NB

```
In [21]: from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(X_train, Y_train)

y_pred = gnb.predict(X_test)

from sklearn import metrics
print("Model accuracy:", metrics.accuracy_score(Y_test, y_pred)*100)

Model accuracy: 95.1048951048951

D:\Anaconda3\lib\site-packages\sklearn\utils\validation.py:72: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n samples, ), for example using ravel().
```

Multinomial NB

return f(**kwargs)

```
In [22]: from sklearn.naive_bayes import MultinomialNB
gnb = MultinomialNB()
gnb.fit(X_train, Y_train)

y_pred = gnb.predict(X_test)

from sklearn import metrics
print("Model accuracy:", metrics.accuracy_score(Y_test, y_pred)*100)
```

Model accuracy: 90.9090909090909

D:\Anaconda3\lib\site-packages\sklearn\utils\validation.py:72: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel(). return f(**kwargs)

Bernoulli NB

```
In [23]: from sklearn.naive_bayes import BernoulliNB
gnb = BernoulliNB()
gnb.fit(X_train, Y_train)

y_pred = gnb.predict(X_test)

from sklearn import metrics
print("Model accuracy:", metrics.accuracy_score(Y_test, y_pred)*100)
```

Model accuracy: 65.03496503496503

D:\Anaconda3\lib\site-packages\sklearn\utils\validation.py:72: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel(). return f(**kwargs)

Conclusion

We can clearly see that the Gaussian NB algorithm gave the highest accuracy among the other algorithms, which is above 95%.