Basic Concepts

Data Structures

Ching-Fang Hsu

Department of Computer Science and Information Engineering

National Cheng Kung University

Overview: System Life Cycle

- Tools and techniques necessary to design and implement large-scale computer systems
 - □ Data abstraction
 - ☐ Algorithm specification
 - ☐ Performance analysis and measurement
 - ☐ Recursive programming
- The system life cycle -- the development process of programs; five highly interrelated phases

Overview: System Life Cycle (contd.)

- □ Requirements
 - ◆ Describing the information that we are given (input) and the results that we must produce (output)
- □ Analysis
 - ◆ Breaking the problem down into manageable pieces
 - ◆ Bottom-up & top-down
- □ Design
 - ◆ The creation of abstract data types
 - The specification of algorithms and a consideration of algorithm design strategies
 - Coding details are ignored!

Overview: System Life Cycle (contd.)

- Refinement and coding
 - Choosing representations for our data objects and writing algorithms for each operation on them
- □ Verification
 - ◆ Correctness proofs
 - The same techniques used in mathematics; timeconsuming
 - ◆ Testing
 - Good test data should verify that every piece of code runs correctly.
 - ◆ Error removal

Algorithm Specification

- Definition: An algorithm is a finite set of instructions that, if followed, accomplishes a particular task and must satisfy the following criteria:
 - ☐ Input
 - Output
 - □ Definiteness
 - ☐ Finiteness
 - □ Effectiveness

Algorithm Specification (contd.)

- ❖ cf. a program
 - ☐ A program does not have to satisfy finiteness condition.
- How to describe an algorithm?
 - ☐ In a natural language
 - ◆ No violation of definiteness is allowed.
 - □ By flowcharts
 - ◆ Working well only if the algorithm is small and simple

Algorithm Specification (contd.)

- Example: Selection Sort (p. 5)
 - ☐ Description statements; not an algorithm

From those integers that are currently unsorted, find the smallest and place it next in the sorted list.

☐ A selection sort algorithm (p. 5, Program 1.1)

```
for (i=0; i<n; i++) {
   Examine list[i] to list[n-1] and
   suppose that the smallest integer is
   at list [min];
   Interchange list[i] and list[min];
}</pre>
```

Algorithm Specification (contd.)

- Example: Binary search (p. 6)
 - ☐ Given a sorted array *list* with $n \ge 1$ distinct integers, figure out if an integer *searchnum* is in list.
 - ☐ Binary search algorithm (p. 6, Program 1.4)

```
while (there are more integers to check) {
  middle = (left + right) / 2;
  if (searchnum < list[middle])
    right = middle - 1;
  else if (searchnum == list[middle])
    return middle;
    else left = middle + 1;
}</pre>
```

Recursive Algorithms

- Direct recursion
 - ☐ Functions call themselves.
- Indirect recursion
 - ☐ Functions may call other functions that invoke the calling function again.
- Any function that we can write using assignment, if-else, and while statements can be written recursively.
 - □ Easier to understand

Recursive Algorithms (contd.)

- When should we express an algorithm recursively?
 - ☐ The problem itself is defined recursively.
 - ☐ Example: factorials, Fibonacci numbers, and binomial coefficients
- Example: Binary search
 - ☐ Recursive version (p. 11, Program 1.7)

```
int binsearch(int list[], int searchnum, int left,
                               int right)
/* search list[0] <= list[1] <= ... <= list[n-1] for</pre>
   searchnum. Return its position if found. Otherwise
   return -1 */
  int middle:
  if (left <= right) {
     middle = (left + right)/2;
     switch (COMPARE(list[middle], searchnum)) {
    case -1: return
      binsearch(list, searchnum, middle + 1, right);
        case 0 : return middle;
        case 1 : return
          binsearch(list, searchnum, left, middle - 1);
  return -1:
```

Program 1.8: Recursive implementation of binary search

Data Abstraction

- Definition: A data type is a collection of objects and a set of operations that act on those objects.
 - ☐ Example: int and arithmetic operations
- All programming languages provide at least a minimal set of predefined data types, plus the ability to construct user-defined types.
- Knowing the representation of the objects of a data type can be useful and dangerous.

Data Abstraction (contd.)

- ❖ Definition: An abstract data type (ADT) is a data type whose specification of the objects and the operations on the objects is separated from the representation of the objects and the implementation of the operations.
- Specification vs. Implementation (of the operations of an ADT)
 - ☐ The former consists of the names of every function, the type of its arguments, and the type of its result.

Data Abstraction (contd.)

- Categories of functions of a data type
 - ☐ Creator/constructor
 - □ Transformers
 - □ Observers/reporters
 - ☐ Example: p. 17, Structure 1.1

Performance Analysis

- Criteria of performance evaluation can be divided into two distinct fields.
 - ☐ Performance analysis -- Obtaining estimates of time and space that are machine-independent
 - □ Performance measurement -- Obtaining machinedependent times

Performance Analysis -- Space Complexity

- ❖ Definition: The space complexity is the amount of memory that it needs to run to completion.
- Equal to the sum of the following components
 - ☐ Fixed space requirements
 - ◆ Do not depend on the number and size of the program's inputs and outputs
 - ◆ Including the instruction space, space for simple variables, fixed-size structured variables, and constants

Performance Analysis - Space Complexity (contd.)

- ☐ Variable space requirements
 - ◆ The space needed by structured variables whose size depends on the particular instance, I, of the problem and the additional space required when a function uses recursion
 - $igspace S_P(I)$: The variable space requirement of a program P working on an instance I
 - ⇒ Usually a function of some characteristics of the instance I
 - ★ The number, size, and values of the inputs and outputs associated with *I*
- \clubsuit The total space requirement S(P)
 - $\Box S(P) = c + S_P(I)$, where c is a constant representing the fixed space requirements

Performance Analysis -- Time Complexity

- ❖ The time, T(P), taken by a program P is the sum of its *compile time* and its *run/execution time*.
 - ☐ Compile time
 - ◆ Similar to the fixed space component
 - Does not depend on the instance characteristics
 - \square Execution time T_P
 - ◆ Machine-independent estimate
 - ◆ Counting the number of operations performed in *P*
 - ◆ A problem: How is P divided into distinct steps?

Performance Analysis -- Time Complexity (contd.)

- Definition: A program step is a syntactically meaningful program segment whose execution time is independent of the instance characteristics.
 - ☐ The amount of computing represented by one program step may be different from that represented by another step.
- How to determine the number of steps?
 - ☐ Creating a global variable (p.23~25)
 - ☐ A tabular method (p.26~27)

Performance Analysis -- Time Complexity (contd.)

- The best case step count
 - ☐ The minimum number of steps that can be executed for the given parameters
- The worst case step count
 - ☐ The maximum number of steps that can be executed for the given parameters
- The average step count
 - ☐ The average number of steps executed on instances with the given parameters

Performance Analysis -Asymptotic Notation $(0, \Omega, \Theta)$

- ❖ Because of the inexactness of what a step stands for, the exact step count isn't very useful for comparative purposes.
- ❖ Definition: f(n) = O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$.
 - □ p.31, Example 1.15
 - \square O(1) \Rightarrow constant computing time, O(n) \Rightarrow linear, O(n^2) \Rightarrow quadratic, O(2^n) \Rightarrow exponential

Performance Analysis -Asymptotic Notation (0, Ω, Θ) (contd.)

- ❖ f(n) = O(g(n)) only states that g(n) is an upper bound on the value of f(n) for all n, $n ≥ n_0$ instead of implying how good this bound is.
 - \square So, $n = O(n^2)$, $n = O(n^{2.5})$, $n = O(n^3)$, $n = O(2^n)$, etc.
 - ☐ To be informative, g(n) should be as small a function of n as one can come up with for which f(n) = O(g(n)).
- **Theorem 1.2:** If $f(n) = a_m n^m + ... + a_1 n + a_0$, then $f(n) = O(n^m)$.
 - **□** of> p. 31

Performance Analysis -Asymptotic Notation (0, Ω, Θ) (contd.)

- ❖ Definition: $f(n) = \Omega(g(n))$ iff there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n, n \ge n_0$.
 - **□** To be informative, g(n) should be as large a function of n as possible for which the statement f(n) = Ω(g(n)) is true.
- **Theorem 1.3:** If $f(n) = a_m n^m + ... + a_1 n + a_0$ and $a_m > 0$, then $f(n) = \Omega(n^m)$.

Performance Analysis -Asymptotic Notation (0, Ω, Θ) (contd.)

- ❖ Definition: $f(n) = \Theta(g(n))$ iff there exist positive constants c_1 , c_2 , and n_0 such that $c_1g(n) \leq f(n)$ $\leq c_2g(n)$ for all n, $n \geq n_0$.
- ❖ Theorem 1.4: If $f(n) = a_m n^m + ... + a_1 n + a_0$ and $a_m > 0$, then $f(n) = Θ(n^m)$.
- ❖ Example: Figure 1.5, p. 33
 - ☐ Since the number of lines is a constant, then we can take the maximum of the line complexities as the asymptotic complexity of the function