Lógica 2/2

Álgebra y Geometría I (LM, PM, LF, PF, LCC)

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

26 de abril de 2021

Cuantificadores

Recordemos que al principio dijimos que oraciones del estilo $x^2+1=0$ no son consideradas proposiciones (a menos que sepamos qué valor toma x). En este caso x se considera una variable y a continuación estudiaremos este tipo de situaciones.

Definición

Una afirmación es una proposición abierta si

- contiene una o más variables;
- no es una proposición, pero
- ▶ se convierte en una proposición cuando las variables que aparecen se reemplazan por ciertos "valores permitidos".

Notación para proposiciones abiertas

$$p(x)$$
, $q(x)$, $r(x,y)$, $\neg p(x)$, $p(x) \rightarrow q(x)$, etc.

Sigamos con nuestro ejemplo, $p(x): x^2 + 1 = 0$.

- ightharpoonup p(1) = 0 es FALSA
- \blacktriangleright "Hay un número real x tal que p(x)" es (una proposición y es) FALSA
- \triangleright p(i) es VERDADERA
- ightharpoonup "Hay un número complejo z tal que p(z)" es VERDADERA
- "Todo número complejo z satisface p(z)" es FALSA

Cuantificador existencial

 $\exists x \, p(x)$ (existe un x tal que p(x) es VERDADERA)

Cuantificador universal

 $\forall x \, p(x)$ (para todo x, p(x) es VERDADERA)

Consideremos las siguientes proposiciones abiertas con $x \in \mathbb{R}$.

$$p(x): x \ge 0$$
 $q(x): x^2 \ge 0$ $r(x): x^2 - 3x - 4 = 0$ $s(x): x^2 - 3 > 0$

- $ightharpoonup \exists x [p(x) \land q(x)] \text{ es VERDADERA (por ejemplo } x = 1)$
- $\blacktriangleright \ \forall x [p(x) \rightarrow q(x)] \text{ es VERDADERA}$
- ▶ $\forall x [q(x) \rightarrow s(x)]$ es FALSA (contraejemplo: x = 0)
- $ightharpoonup orall x \left[r(x)
 ightarrow p(x)
 ight]$ es FALSA (contraejemplo: x=-1)

Importante

Siempre hay que prestar atención al contexto para determinar en qué *universo* toman valores nuestras variables. Por ejemplo,

$$\exists x \, x^2 + 1 = 0$$

es una ambigüedad, pues si x toma valores en $\mathbb R$ es FALSA pero si x toma valores en $\mathbb C$ entonces es verdadera. Es común expresar el universo después del cuantificador:

- $ightharpoonup \exists x \in \mathbb{R}, x^2 + 1 = 0 \text{ (FALSO)}$
- $ightharpoonup \exists x \in \mathbb{C}, x^2 + 1 = 0 \text{ (VERDADERO)}$

Implicación lógica

Es un concepto análogo a la equivalencia lógica. Decimos que p implica lógicamente q, en símbolos, $p \implies q$, si $p \rightarrow q$ es una tautología.

Ejemplo

- $\forall x \, p(x) \implies \exists x \, p(x)$ (sutileza: en este caso hay que suponer que el universo para x es no vacío)
- ▶ $\exists x \, p(x)$ no implica lógicamente $\forall x \, p(x)$ (en general)

Ejemplo (Cuantificadores implícitos)

Consideremos las proposiciones (informales) sobre el universo de los números reales

- ► Si un número es racional, entonces es real
- ► Si x es racional, entonces x es real

Podemos formalizar estos enunciados (equivalentes) usando el cuantificador universal: consideramos las proposiciones

$$p(x): x \in \mathbb{Q}$$
 $q(x): x \in \mathbb{R}$

Una versión más precisa de lo anterior es

$$\forall x [p(x) \rightarrow q(x)]$$

Eiemplo (cont.)

Consideremos la proposición (con universo los naturales):

1729 se puede expresar como suma de cubos de dos maneras distintas.

Usando cuantificadores existenciales:

$$\exists m_1, n_1, m_2, n_2 [(\{m_1, n_1\} \neq \{m_2, n_2\}) \land (m_1^3 + n_1^3 = m_2^3 + n_2^3 = 1729)]$$

Btw, la proposición anterior es verdadera: $1729=1^3+12^3=9^3+10^3$ (es el número de Hardy-Ramanujan)

Definición

Sean p(x) y q(x) proposiciones abiertas para un universo dado.

▶ Decimos que p(x) y q(x) son *lógicamente equivalentes* cuando el bicondicional $p(a) \leftrightarrow q(a)$ es verdadero para cada a en el universo dado. En este caso se escribe

$$\forall x [p(x) \iff q(x)]$$

▶ Decimos que p(x) implica lógicamente q(x) si $p(a) \rightarrow q(a)$ es verdadera para cada a en el universo dado. En este caso escribimos

$$\forall x [p(x) \implies q(x)]$$

Observar que se puede hacer una definición análoga para proposiciones que tengan dos o más variables.

Definición

Para las proposiciones abiertas p(x) y q(x) y la proposición cuantificada en forma universal $\forall x [p(x) \rightarrow q(x)]$ definimos

- ▶ La contrapositiva: $\forall x [\neg q(x) \rightarrow \neg p(x)]$
- ▶ La recíproca: $\forall x [q(x) \rightarrow p(x)]$
- ▶ La inversa: $\forall x [\neg p(x) \rightarrow \neg q(x)]$

Equivalencias e implicaciones lógicas para proposiciones cuantificadas

- 1. $\exists x [p(x) \land q(x)] \implies [\exists x p(x) \land \exists x q(x)]$ (no vale la recíproca)
- 2. $\exists x [p(x) \lor q(x)] \iff [\exists x p(x) \lor \exists x q(x)]$
- 3. $\forall x [p(x) \land q(x)] \iff [\forall x p(x) \land \forall x q(x)]$
- 4. $[\forall x \, p(x) \lor \forall x \, q(x)] \implies \forall x \, [p(x) \lor q(x)]$ (no vale la recíproca)

Eiercicio

5. etc.

- 1. $\forall x [p(x) \land (q(x) \land r(x))] \iff \forall x [(p(x) \land (q(x)) \land r(x))]$

 - $\forall x \neg [p(x) \land q(x)] \iff \forall x [\neg p(x) \lor \neg q(x)]$ $\blacktriangleright \forall x \neg [p(x) \lor q(x)] \iff \forall x [\neg p(x) \land \neg q(x)]$
 - 3. $\forall x \neg \neg p(x) \iff \forall x p(x)$
- - 2. $\exists x [p(x) \rightarrow q(x)] \implies \exists x [\neg p(x) \lor q(x)]$

4. El ítem anterior también es cierto reemplazando todos los \forall por \exists

Negación de cuantificadores

Hay dos reglas fundamentales para negar los cuantificadores existenciales y universales

- 1. $\neg [\exists x \, p(x)] \iff \forall x \, \neg p(x)$
- 2. $\neg [\forall x p(x)] \iff \exists x \neg p(x)$

Ejemplo

Usando las reglas anteriores:

- 1. $\neg [\exists x \neg p(x)] \iff \forall x \neg \neg p(x) \iff \forall x p(x)$
- 2. $\neg [\forall x \neg p(x)] \iff \exists x \neg \neg p(x) \iff \exists x p(x)$

Consideremos la proposición (con universo los enteros):

Si x es impar, entonces $x^2 - 1$ es par

la cual en símbolos puede representarse por

$$orall x \left[p(x) o q(x)
ight] \qquad en en endownde \left\{ egin{align*} p(x) : x ext{ es impar} \ q(x) : x^2 - 1 ext{ es par} \end{array}
ight.$$

Para determinar la negación:

$$\neg(\forall x [p(x) \to q(x)]) \iff \exists x \neg[p(x) \to q(x)] \iff \exists x \neg[\neg p(x) \lor q(x)]$$
$$\iff \exists x [\neg \neg p(x) \land \neg q(x)] \iff \exists x [p(x) \land \neg q(x)]$$

En palabras:

Existe un x tal que x es impar y $x^2 - 1$ es impar.

Observación

Si p(x, y) es una proposición abierta en dos variables, entonces

$$\forall x \, \forall y \, p(x,y) \iff \forall y \, \forall x \, p(x,y)$$

- ▶ De hecho, en general simplificamos los cuantificadores anteriores escribiendo simplemente $\forall x, y \ p(x, y)$.
- ► El resultado anterior también es cierto para cuantificadores universales sobre proposiciones con un número arbitrario de variables (y para cualquier permutación de las variables cuantificadas).
- Ejercicio: ¿es cierto lo anterior para cuantificadores existenciales?

Reglas de inferencia

- Las reglas de inferencia nos permiten decidir cuándo un argumento es válido sin tener que recurrir a extensas tablas de verdad (es lo que usamos en la práctica, de manera más coloquial cuando demostramos teoremas o resolvemos ejercicios).
- Un argumento válido es una tautología

$$(p_1 \wedge p_2 \wedge \cdots \wedge p_k) \rightarrow q$$

- ightharpoonup premisas: p_1, p_2, \ldots, p_k
- conclusión: *q*
- ► En un argumento válido, si sabemos que todas las premisas son verdaderas, automáticamente sabremos que la conclusión es verdadera.

Demostrar la siguiente implicación lógica:

$$[(p \to r) \land (r \to s) \land (t \lor \neg s) \land (\neg t \lor u) \land \neg u] \implies \neg p.$$

Hay que probar que el condicional

$$[(p \to r) \land (r \to s) \land (t \lor \neg s) \land (\neg t \lor u) \land \neg u] \to \neg p \tag{*}$$

es una tautología.

- ightharpoonup Si usáramos tablas de verdad, necesitaríamos $2^5=32$ filas y varias columnas...
- ➤ Sin embargo, podemos tratar de probar que (*) siempre toma el valor verdadero sin usar tablas de verdad.

Ejemplo (cont.)

- ▶ Para que (*) sea falso debemos tener que el *antecedente* es verdadero y el *consecuente* es falso:
 - \blacktriangleright $(p \rightarrow r) \land (r \rightarrow s) \land (t \lor \neg s) \land (\neg t \lor u) \land \neg u$ es verdadero, o sea,

$$p \rightarrow r$$
, $r \rightarrow s$, $t \lor \neg s$, $\neg t \lor u$, $\neg u$

son todas verdaderas.

- ightharpoonup falso, o sea p verdadero.
- ▶ Si p verdadero v $p \rightarrow r$ verdadero, r debe ser verdadero.
- ightharpoonup Si r verdadero y $r \rightarrow s$ verdadero, dice que s verdadero.
- \blacktriangleright s verdadero dice que $\neg s$ es falso, y como $t \lor \neg s$ es verdadero, t debe ser verdadero.
- ightharpoonup Ídem, t verdadero y $\neg t \lor u$ verdadero nos dice que u es verdadero.
- Luego tenemos que u y $\neg u$ deben ser ambas verdaderas, lo cual sabemos que no es cierto.
- Es decir, no hay ninguna posibilidad de que si hiciéramos la tabla de verdad, en la última columna nos aparezca algún falso, jen ninguna fila!

Modus Ponens

Sabemos (ejercicio) que

$$(p \land (p \rightarrow q)) \rightarrow q$$

es una tautología. Esto nos dice que si sabemos que p es verdadera y $p \to q$ es verdadera, entonces q debe ser verdadera. Esta regla de inferencia suele representarse con una tabla:

$$p o q$$
 q

A veces también se escribe como

$$egin{array}{ccc} p
ightarrow q & p \ \hline q & \end{array}$$

Modus Tollens

Regla de inferencia:

$$egin{array}{c} p
ightarrow q \ rac{
eg p}{
eg p} \end{array}$$

- ▶ Tautología asociada: $[(p \rightarrow q) \land \neg q] \rightarrow \neg p$ (ejercicio).
- Para probar que el condicional anterior es una tautología podemos usar las reglas de sustitución con la equivalencia lógica $(p \to q) \iff (\neg q \to \neg p)$ y luego la regla de inferencia Modus Ponens.
- Informalmente el Modus Tollens se usa del siguiente modo: cuando queremos probar la implicación lógica $p \implies q$, uno supone que q es falso y prueba que p es falso también.

Más reglas de inferencia

Ley de silogismo

► Regla de inferencia:

$$egin{array}{c} p
ightarrow q \ q
ightarrow r \ \hline p
ightarrow r \end{array}$$

► Tautología asociada

$$[(p \to q) \land (q \to r)] \to (p \to r)$$

Reglas de conjunción/disyunción

$$egin{array}{ccccc} p & & & p \lor q & & p \lor q \ \hline q & & \lnot p & & \lnot q \ \hline p \land q & & & \hline p & & \hline \end{array}$$

Reglas de inferencia sobre bicondicionales

Introducción del bicondicional

► Regla de inferencia

$$egin{array}{c} p
ightarrow q \ q
ightarrow p \ \hline p \leftrightarrow q \end{array}$$

▶ Tautología asociada: $[(p \rightarrow q) \land (q \rightarrow p)] \rightarrow (p \leftrightarrow q)$

Eliminación del bicondicional

► Reglas de inferencia:

etc.

Tautologías asociadas: ejercicio.

Reducción al absurdo

► Regla de inferencia:

$$\frac{p \to F_0}{\neg p}$$

► Tautología asociada: $(p \rightarrow F_0) \rightarrow \neg p$

p	$ F_0 $	$p \rightarrow F_0$	$ \neg p $
0	0	1	1
1	0	0	0

► Este tipo de argumentos son muy comunes en matemática: cuando queremos probar que "algo" es cierto, suponemos que es falso y tratamos de llegar a una contradicción.

Las reglas de inferencia se pueden combinar para obtener argumentos válidos. Volvamos al ejemplo que dimos al principio de esta sección.

$$[(p \to r) \land (r \to s) \land (t \lor \neg s) \land (\neg t \lor u) \land \neg u] \implies \neg p$$

Usando las reglas de inferencia y las reglas de sustitución lo podemos pensar del siguiente modo.

Usamos: Ley de silogismo, las Leyes lógicas $p' \lor q' \iff q' \lor p'$ y $p \to q \iff \neg p \lor q$ y finalmente Modus Tollens

Ejemplo de la vida real

Analicemos la demostración de que $\sqrt{2}$ es un número irracional.

- ▶ Queremos ver $\sqrt{2} \notin \mathbb{Q}$.
- ▶ Suponemos $\sqrt{2} \in \mathbb{Q}$.
- Escribimos $\sqrt{2} = \frac{m}{n}$, con $m, n \in \mathbb{Z}$, $n \neq 0$, fracción irreducible.
- Caso 1: m impar, sigue que $m^2 = 2n^2$ es par. Absurdo.
- Caso 2: m par, sigue que n es impar (pues la fracción es irreducible) y que m^2 es múltiplo de 4, pero $m^2 = 2n^2$ no es divisible por 4. Absurdo.
- $ightharpoonup \sqrt{2} \in \mathbb{Q} \implies F_0$
- ► Concluimos que $\sqrt{2} \notin \mathbb{Q}$. QED

$$rac{\neg p \to F_0}{p}$$

- Reglas de sustitución
- Análisis por casos

$$\begin{array}{c}
p \to r \\
q \to r \\
\hline
p \lor q \\
\hline
r
\end{array}$$

Ejercicio: probar que esta es una regla de inferencia válida.

Ley de silogismo