

Escuela de Ingeniería Informática Métodos Estadísticos, Curso 2019-20 Ejercicios Prácticos Lab7

Ejercicio 1: El fichero "*Aloe_Vera.txt*" contiene datos de cuatro variedades de plantas de Aloe obtenidas de una plantación experimental.

- a) Estudiar las variedades que dan más rendimiento desde el punto de vista de su masa y masa seca.
- b) Analizar las dependencias entre la masa y la altura de la variedad "barbadensis"
- c) Estimar el modelo de regresión con la función *lm*.
- d) Analizar el modelo estimado con la función *summary* y obtener un posible intervalo de confianza para las conclusiones de los distintos parámetros.
- e) Evaluar una predicción para una masa de x_0 =5.1 gramos y encontrar un intervalo de confianza para la misma.
- f) Encontrar el coeficiente de determinación R²
- g) Realizar un análisis de varianza para estudiar la bondad del ajuste y la linealidad de la regresión. Explicar los resultados obtenidos.
- h) (Opcional) Analizar si fuera posible aplicar el estudio anterior y la suposición de homocedasticidad (varianza constante a lo largo de las observaciones) al caso de analizar las relaciones entre la masa y la masa seca para la variedad "saponaria".
 Utilizar el test de White (variedad del test de Breusch-Pagan bptest, del paquete Imtest). Explicar las conclusiones.

Ejercicio 2. (Opcional) Un comerciante minorista de la zona de Triana quiere analizar la influencia de los costos de publicidad en sus ventas. Durante 3 meses evalúa los costos semanales correspondientes, que se detallan en la siguiente tabla:

Costos de Publicidad (€)	40	20	25	30	30	50	40	20	50	40	25	50
Ventas/Semana (€)	385	400	395	365	475	440	490	420	560	525	480	510

a) Visualizar los datos para disponer de una visión clara de su evolución y estimar posibles relaciones entre las variables implicadas.

- b) Calcular la ecuación de la recta de regresión para pronosticar las ventas semanales a partir de los gastos de publicidad.
- c) Analizar el modelo estimado con la función *summary* y obtener un posible intervalo de confianza para las conclusiones de los distintos parámetros.
- d) Evaluar una predicción para unos costes de publicidad de 35€ y encontrar un intervalo de confianza para la misma.
- e) Visualizar los intervalos de confianza para la respuesta media y las predicciones del modelo establecido en b)
- f) Realizar un análisis de varianza para estudiar la bondad del ajuste y la linealidad de la regresión. Explicar los resultados.

Ejercicio 3 (Opcional). El data set "**Seatbelts**" de la librería "**glmnet**" contiene datos de series temporales referidas a conductores fallecidos o con lesiones graves en UK entre los años 1966 y 1984. En enero de 1983 entró en vigor la ley que obliga a la utilización del cinturón de seguridad. Entre otras variables se dispone de las siguientes:

- DriversKilled : conductores de automóvil muertos.
- front: Pasajeros asientos delanteros muertos o gravemente heridos.
- rear: Pasajeros asientos delanteros muertos o gravemente heridos.
- VanKilled: número de conductores de furgonetas
- law: vigencia (0/1) de obligatoriedad del cinturón

Se pide:

- a) Analizar la serie temporal de fallecidos en accidentes, encontrar sus zonas de máximo valor y visualizar el efecto de entrada en vigor de la ley.
- b) Analizar las relaciones existentes entre los conductores fallecidos y las víctimas según estuvieran en los asientos delanteros o traseros. Explicar y estudiar en detalle el alcance de las suposiciones establecidas en los posibles modelos.
- c) Realizar un análisis de varianza para estudiar la bondad del ajuste y la linealidad de la regresión. Explicar los resultados
- d) Analizar y evaluar el efecto que tienen las furgonetas ligeras (tipo Van) en el conjunto de accidentes mortales antes y después de la aplicación de la ley. Justificar las respuestas