LIE GROUPS 2013 FALL PROBLEM SET 3

- (1) Suppose G acts on M smoothly.
 - (a) Prove: The infinitesimal action $d\tau: \mathfrak{g} \to \Gamma^{\infty}(M)$ defined in lecture 13 is linear.
 - (b) Suppose the action is effective, i.e. $\cap_{m\in M}G_m=\{e\}$. Prove: $d\tau$ is injective.
 - (c) Suppose the action is transitive. Prove: the linear map

$$(dev_m)_e: \mathfrak{g} \to T_m M, \qquad X \mapsto X_M(m)$$

is onto for all m. In particular, dim $G \ge \dim M$.

(2) Let H be a closed Lie subgroup of G. Consider the three actions of H on G via

$$\tau_h(g) = hg, \quad \rho_h(g) = gh^{-1}, \quad \pi_h(g) = hgh^{-1}.$$

Justify whether these actions are proper or free or transitive or effective.

- (3) Suppose G acts on M smoothly.
 - (a) Prove: The formula

$$(g \cdot \varphi)(x) := \varphi(g^{-1} \cdot x)$$

defines a linear action of G on $C^{\infty}(M)$.

A fixed point of the above induced action of G on $C^{\infty}(M)$ is called an *invariant* of the G-action on M. The set of invariants is thus denoted by $C^{\infty}(M)^G$.

- (b) Prove: If G is connected, then $f \in C^{\infty}(M)^G$ if and only if $X_M f = 0$ for all $X \in \mathfrak{g}$.
- (c) Suppose G acts on M properly and freely. Prove: $C^{\infty}(M)^G \simeq C^{\infty}(M/G)$.
- (d) What are the invariants for the standard O(n) action on \mathbb{R}^n ?
- (e) What are the invariants for the adjoint action (c.f. lecture 13) of $\mathrm{GL}(n,\mathbb{C})$ on $\mathfrak{gl}(n,\mathbb{C})$?
- (4) Recall that SO(3) is a 3-dimensional Lie group whose Lie algebra $\mathfrak{so}(3)$ consists of all 3×3 real anti-symmetric matrices. We identify $\mathfrak{so}(3)$ with \mathbb{R}^3 via

$$A = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix} \quad \mapsto \quad \vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}.$$

Prove: Under this identification, the adjoint action of SO(3) on $\mathfrak{so}(3)$ is just the usual SO(3) action on \mathbb{R}^3 . What are the orbits of this action? What is the orbit space?

(5) Let \mathcal{H} be the vector space of all $n \times n$ hermitian matrices. For each $\lambda = (\lambda_1, \dots, \lambda_n)$, where $\lambda_i \in \mathbb{R}$ and $\lambda_1 \leq \dots \leq \lambda_n$, let \mathcal{H}_{λ} be the set of all $n \times n$ hermitian matrices whose eigenvalues are $\lambda_1, \dots, \lambda_n$. Note that \mathcal{H} can be identified with the Lie algebra of the unitary group U(n), and thus U(n) acts on \mathcal{H} the adjoint action:

For
$$A \in U(n), \ \xi \in \mathcal{H}: A \cdot \xi := A\xi A^{-1}$$

- (a) Prove: The orbits of the U(n)-action are H_{λ} 's. (In particular, each \mathcal{H}_{λ} is a smooth compact manifold!)
- (b) Describe the infinitesimal action of $\mathfrak{u}(n)$ associated to this action.

- (c) For each $\xi \in \mathcal{H}$, describe the stabilizer $U(n)_{\xi}$ and its Lie algebra $\mathfrak{u}(n)_{\xi}$.
- (6) Consider the action of $SL(2,\mathbb{R})$ on the upper half plane $H = \{z \in \mathbb{C} \mid Im(z) \geq 0\}$ by the Möbius transformation:

$$A \cdot z := \frac{az+b}{cz+d}$$
 for $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2,\mathbb{R}).$

- (a) Show that the action is transitive.
- (b) What is the stabilizer of $\sqrt{-1} \in H$?
- (c) Show that the action above is equivalent to the adjoint action of $SL(2,\mathbb{R})$ on the adjoint orbit $\mathcal{O}(B)$ of $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
- (d) Find explicitly an $SL(2,\mathbb{R})$ -equivariant diffeomorphism $f: H \to \mathcal{O}(B)$.
- (7) Let $G = SL(2,\mathbb{C})$. Let $M = P_n$ be the linear space of homogeneous polynomials of degree n of two variables z_1 and z_2 .
 - (a) Prove: The formula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot f(z_1, z_2) := f(az_1 + cz_2, bz_1 + dz_2)$$

defines a smooth action of $SL(2,\mathbb{R})$ on M.

(b) Prove:

2

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

form a basis of $\mathfrak{sl}(2,\mathbb{R})$, and the corresponding infinitesimal action are

$$X_M(f) = z_1 \frac{\partial f}{\partial z_2}, \quad Y_M(f) = z_2 \frac{\partial f}{\partial z_1}, \quad H_M(f) = z_1 \frac{\partial f}{\partial z_1} - z_2 \frac{\partial f}{\partial z_2}.$$