PyMTL3

CSE 293 Final Project Farzaneh Rabiei

PyMTL3 is a Python-based hardware modeling framework digital systems.

Motivation:

- Productivity and Readability
- Modularity and Compositionality
- Simulation and Verification
- Integration with Python Ecosystem
- Education and Research

PyMTL3: Multi-Level Modeling

Some of the PyMTL3 features:

- InPort and OutPort classes
- Wire class
- Update_ff → on every rising clock edge
- Update → one or more times within a clock cycle
- Structural composition to connect child components
- Parameterized components
- Line tracing and Waveforms
- Verification with Unit Testing

Lab1: PyMTL3 Low-Level Modeling

Part1: Adder

- FullAdder
- 4-bit Ripple Carry Adder using FullAdder

- Learning Outcome:
 - Syntax of new language
 - Low-level modeling
 - Combinational logic

Lab1: PyMTL3 High-Level Modeling and RTL-Level

Part 2: Finding a MinMax of 3 inputs

- Write a PyMTL3 code to find the min and Max between 3 inputs in high-level
- Create an RTL version of the code
- Create the systemVerilog code
 - Use VerilogTranslationPass
- Visualize their designs
 - textWave
- Learning Outcome:
 - Structural RTL model
 - High-level modeling

Lab1: PyMTL3 High-Level Modeling

- Part 3: Double Queue Function-Level
 - QueueFL
 - DoubleQueueFL
 - o ram_1r1w_sync
 - FIFO_ram

- Learning Outcome:
 - Features of High-level modeling
 - Clearly separate the sequential child components from the combinational child components

Lab2: Function-Level / Cycle-level Modeling

Part1: Sort

SortFL

- Change the code to accept any arbitrary array size
- Change the code to use merge sort instead of quick sort
- Add a random test case for a sort unit

SortCL

- Change the code to accept any arbitrary array size
- Change the code to 4-stage pipeline currently it has 3-stage pipeline

Learning Outcome:

FL\CL 0

out [0...3]

Lab2: Big Data in PyMTL3

Part2: Matrix

- Multiplication
- A huge data streaming input and finding the most frequent value

- Learning Outcome:
 - Optimize the design
 - Fit the design into target hardware

Lab2:

Part 3:

- Counter for seven segment
 - Implement a Counter that count one in every 4 cycles
 - Show the result on the seven Segment

- Learning Outcome:
 - Change the clock cycle
 - Sequential logic

References

- [1] S. Jiang, P. Pan, Y. Ou, and C. Batten, "PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification," *IEEE Micro*, vol. 40, no. 4, pp. 58–66, Jul. 2020, doi: 10.1109/MM.2020.2997638.
- [2] "ece5745-tut3-pymtl.pdf." Accessed: Jun. 04, 2023. [Online]. Available: https://www.csl.cornell.edu/courses/ece5745/2022sp/handouts/ece5745-tut3-pymtl.pdf
- [3] "pymtl-tutorial-overview-isca2019.pdf." Accessed: Jun. 04, 2023. [Online]. Available: https://www.csl.cornell.edu/pymtl2019/pymtl-tutorial-overview-isca2019.pdf

questions?