

Esolution

Place student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Circuit Theory

Exam: 1203 / EDE Date: Tuesday 25th July, 2023

Examiner: Dr.-Ing. Michael Joham **Time:** 15:00 – 16:40

	P 1	P 2	P 3	P 4	P 5	P 6	P 7
Ι							

Working instructions

- This exam consists of **18 pages** with a total of **7 problems**. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 90 credits.
- Detaching pages from the exam is prohibited.
- Allowed resources:
 - 5 double-sided DIN A4 pages of notes
 - one analog dictionary English \leftrightarrow native language
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

T 0:		,	B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Left room from	_ to	/	Early submission at	

Problem 1 Circuit Analysis (17 credits)

Consider the following circuit with a CCCS, three resistors, and a voltage source.

0	
1	
2	

a)* What is the number of nodes n and the number of branches b of this circuit?

$$n = 3 \checkmark b = 5 \checkmark$$

b) Give the number of node voltages for above circuit.

$$n-1=2$$
 \checkmark

c) What is the number of linearly independent KCL equations in nullspace representation?

$$n-1=2$$

0

d) Give the number of linearly independent KVL equations in nullspace representation.

$$b - (n-1) = 3 \checkmark$$

1

e)* Define the branch voltage vector \boldsymbol{u} and the branch current vector \boldsymbol{i} .

$$\mathbf{u} = [u_1, u_2, u_3, u_4, u_5]^{\mathrm{T}} \mathbf{v}$$
 $\mathbf{i} = [i_1, i_2, i_3, i_4, i_5]^{\mathrm{T}} \mathbf{v}$

f)* Give the number of equations for the KVL in rangespace representation.

$$b=5 \checkmark$$

$$u_1 + u_3 + u_2 = 0$$
$$-u_2 + u_4 = 0$$
$$-u_4 + u_5 = 0$$

$$\boldsymbol{B}\boldsymbol{u} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \boldsymbol{u} \sqrt{\checkmark} \sqrt{\checkmark}$$

h)* Determine the node incidence matrix A.

$$-i_1 + i_3 = 0$$

$$-i_3 + i_2 + i_4 + i_5 = 0$$

$$-i_1 + i_3 = 0
-i_3 + i_2 + i_4 + i_5 = 0 Ai = \begin{bmatrix} -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 1 \end{bmatrix} i \sqrt{\checkmark}$$

i) Based on \boldsymbol{A} and \boldsymbol{B} , show that the Tellegen's theorem is fulfilled.

$$\mathbf{A}\mathbf{B}^{\mathrm{T}} = \mathbf{0} \checkmark$$

$$\mathbf{A}\mathbf{B}^{\mathrm{T}} = \begin{bmatrix} -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \checkmark$$

j) Find i_3 depending on u_4 .

KCL:
$$i_3 = i_2 + i_4 + i_5$$

KVL: $u_5 = u_4$
Ohm: $i_4 = \frac{u_4}{R}$
 $i_5 = Gu_4 \checkmark$
 $i_3 = \beta Gu_4 + \frac{u_4}{R} + Gu_4 \checkmark$

Problem 2 Resistor Network (10 credits)

The following circuit with four resistors and a current source is given.

0	
1	

a)* Give the current i_R depending on u_0 .

$$i_R = \frac{1}{R} u_0 \checkmark$$

b)* Determine the overall conductance G_{overall} of the parallel connection of R with G_1 .

$$G_{\text{overall}} = \frac{1}{R} + G_1 \sqrt{\phantom{\frac{1}{R}}}$$

c)* Find the voltage u_2 depending on i_2 .

$$u_2 = R_2 i_2 \checkmark$$

 ${0 \atop 1}$

d)* What is the overall resistance R_{overall} of the series connection of R_2 and R_3 ?

$$R_{\text{overall}} = R_2 + R_3 \sqrt{\phantom{\frac{1}{1}}}$$

e) Hence, what are the voltages u_2 and u_3 depending on u_0 ?

voltage divider:
$$u_2 = \frac{R_2}{R_{\text{overall}}} u_0 = \frac{R_2}{R_2 + R_3} u_0 \checkmark u_3 = \frac{R_3}{R_{\text{overall}}} u_0 = \frac{R_3}{R_2 + R_3} u_0 \checkmark$$

g) Determine i_2 depending on i_0 .

current divider:
$$i_2 = \frac{\frac{1}{R_{\text{overall}}}}{\frac{1}{R} + G_1 + \frac{1}{R_{\text{overall}}}} i_0 \sqrt{\checkmark}$$

 $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

Problem 3 Linearization of a One-Port (7 credits)

The characteristic of the one-port \mathcal{D} is given by

$$u = r_{\mathcal{D}}(i) = U_0 + U_0 \sin\left(\frac{i - I_0}{I_0}\right)$$

with the constants U_0 and I_0 .

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

a)* Give the port-quantities that control \mathcal{D} .

$$i$$
 (but not u) \checkmark

In the operating point, the current is $I = 2I_0$.

 $\frac{0}{1}$

b)* Find the operating point value U of the voltage across \mathcal{D} .

$$U = r_{\mathcal{D}}(I_0) = U_0 + U_0 \sin(\frac{2I_0 - I_0}{I_0}) = U_0 + U_0 \sin(1) \checkmark$$

In following, consider the different operating point $(U,I) = (U_0,I_0)$.

c)* Determine the linearization $r_{\mathcal{D},\text{lin}}(i)$ of \mathcal{D} in the given operating point $(U,I)=(U_0,I_0)$.

$$R_{\mathcal{D}} = \frac{dr_{\mathcal{D}}(i)}{di} \Big|_{i=I_0} = \frac{U_0}{I_0} \cos(\frac{i-I_0}{I_0}) \Big|_{i=I_0} \checkmark$$

$$R_{\mathcal{D}} = \frac{U_0}{I_0} \checkmark$$

$$r_{\mathcal{D},\text{lin}}(i) = U + R_{\mathcal{D}}(i-I) \checkmark$$

$$r_{\mathcal{D},\text{lin}}(i) = U_0 + \frac{U_0}{I_0}(i-I_0) = \frac{U_0}{I_0} i \checkmark$$

d) Draw the equivalent circuit diagram of $r_{\mathcal{D},\text{lin}}(i)$.

Problem 4 Linear Two-Port (9 credits)

The resistance matrix of the two-port $\mathcal S$ reads as

$$oldsymbol{R}_{\mathcal{S}} = egin{bmatrix} 0 & -rac{1}{G_{
m d}} \ rac{1}{G_{
m d}} & 0 \end{bmatrix}$$

with finite G_d .

$$r_{12} = -r_{21}$$

Thus, $r_{12} \neq r_{21}$. \checkmark

$$_0 \square$$
 b)* What special two-port is S ?

gyrator
$$\sqrt{}$$

$$(0 \square c)^*$$
 Determine the conductance matrix G_S of S .

$$G_{\mathcal{S}} = \begin{bmatrix} 0 & G_{\mathrm{d}} \\ -G_{\mathrm{d}} & 0 \end{bmatrix} \checkmark$$

A different two-port \mathcal{Z} has got the conductance matrix

$$oldsymbol{G}_{\mathcal{Z}} = egin{bmatrix} 0 & -G_{
m d} \ 2G_{
m d} & 0 \end{bmatrix}.$$

d)* Why is
$$\mathcal{Z}$$
 lossy?

$$oldsymbol{G}_{\mathcal{Z}}^{ ext{T}} = egin{bmatrix} 0 & 2G_{ ext{d}} \ -G_{ ext{d}} & 0 \end{bmatrix}
eq -egin{bmatrix} 0 & -G_{ ext{d}} \ 2G_{ ext{d}} & 0 \end{bmatrix} = -oldsymbol{G}_{\mathcal{Z}} \ \checkmark$$

The two-ports $\mathcal S$ and $\mathcal Z$ are connected in parallel to get the two-port $\mathcal X$.

e) Find a two-port matrix for the two-port
$$\mathcal{X}$$
.

$$egin{aligned} oldsymbol{G}_{\mathcal{X}} &= oldsymbol{G}_{\mathcal{S}} + oldsymbol{G}_{\mathcal{Z}} \ oldsymbol{G}_{\mathcal{X}} &= egin{bmatrix} 0 & 0 \ G_{
m d} & 0 \end{bmatrix} oldsymbol{\checkmark} \end{aligned}$$

f)	Give	expressions	for u	and i.	of \mathcal{X}
1) Give	expressions	for u_1	and i_1	OIA

g) What special two-port is \mathcal{X} ?

voltage-controlled current source with gain factor $G_{\rm d}$ \checkmark

Problem 5 Complex Phasor Analysis (16 credits)

Given is the following circuit with two capacitors.

The angular frequency of the sinusoidal excitation $u_{\rm in}(t)$ is $\omega > 0$.

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

a)* Give $i_{C1}(t)$ depending on $u_{C1}(t)$.

$$i_{C1}(t) = C_1 \dot{u}_{C1}(t) \checkmark$$

Let I_{C1} denote the phasor corresponding to $i_{C1}(t)$ and U_{C1} the phasor for $u_{C1}(t)$.

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

b) What is the current phasor I_{C1} depending on the voltage phasor U_{C1} ?

$$I_{C1} = \mathrm{j}\,\omega C_1 U_{C1} \,\,\checkmark$$

 $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

c)* Find the voltage phasor U_{C1} depending on the voltage phasor U_{out} (independent of other current or voltage phasors) taking into account that $I_{\text{out}} = 0$.

KVL:
$$-U_{C1} + RI_{R2} + U_{\text{out}} = 0 \checkmark$$

 $U_{C1} = j \omega RC_2 U_{\text{out}} + U_{\text{out}} \checkmark$

1 =

d) Determine the current phasor I_{R1} depending on the voltage phasor U_{out} .

KCL:
$$I_{R1} = I_{C1} + I_{R2} \checkmark$$

 $I_{R1} = j \omega C_1 U_{C1} + j \omega C_2 U_{\text{out}}$
 $I_{R1} = (j \omega)^2 R C_1 C_2 U_{\text{out}} + j \omega C_1 U_{\text{out}} + j \omega C_2 U_{\text{out}} \checkmark$

$$U_{C1} = U_{\rm in} - RI_{R1} \checkmark$$

With the time constant τ , the transfer function of another circuit can be written as

$$H(\mathbf{j}\,\omega) = \frac{U_{\mathrm{out}}(\mathbf{j}\,\omega)}{U_{\mathrm{in}}(\mathbf{j}\,\omega)} = \frac{1}{(\mathbf{j}\,\omega\tau)^2 + \frac{3}{2}\,\mathbf{j}\,\omega\tau + 1}.$$

f)* Investigate $|H(j\omega)|$ at $\omega = 0$, $\omega = \frac{1}{\tau}$, and $\omega \to \infty$.

 $\begin{bmatrix} 0\\1\\2\\3 \end{bmatrix}$

g) What filter type (lowpass, highpass, bandpass, bandstop, all pass) is the transfer function $H(j\omega)$? Justify your answer based on above results.

Since
$$|H(\mathrm{j}\,0)|=1$$
 and $\lim_{\omega\to\infty}|H(\mathrm{j}\,\omega)|=0$, it is a lowpass. \checkmark

The input voltage is given by $u_{\rm in}(t) = 6 \, {\rm V} \, \cos(\frac{2}{\tau} \, t + \frac{\pi}{4})$.

h)* Give the phasor U_{in} corresponding to the given $u_{\text{in}}(t)$.

$$U_{\rm in} = 6 \,\mathrm{V} \,\mathrm{e}^{\mathrm{j} \,\frac{\pi}{4}} \,\mathrm{v}$$

i) Find the output phasor U_{out} in polar form, i.e., as the product of magnitude and the exponential depending on the phase.

 $\begin{bmatrix} 0\\1\\2\\3 \end{bmatrix}$

$$U_{\text{out}} = H(j\frac{2}{\tau})U_{\text{in}} H(j\frac{2}{\tau}) = \frac{1}{(j2)^2 + 3j + 1} = \frac{1}{-3 + 3j} \checkmark H(j\frac{2}{\tau}) = \frac{1}{3\sqrt{2}} e^{j\frac{-3\pi}{4}} \checkmark U_{\text{out}} = \sqrt{2} \text{ V } e^{-j\frac{\pi}{2}} \checkmark$$

$$U_{\rm out} = 2 \, {\rm V} \, {\rm e}^{{\rm j} \, \frac{\pi}{3}} \, .$$

 $\begin{array}{c}
0\\1
\end{array}$

j)* Give the time-signal $u_{\text{out}}(t)$ corresponding to the phasor U_{out} .

$$u_{\text{out}}(t) = \text{Re}\{U_{\text{out}} e^{j\omega t}\} = 2 V \cos(\omega t + \frac{\pi}{3}) \sqrt{\phantom{\frac{1}{3}}}$$

Problem 6 Second-Order Circuit (16 credits)

Given is the following second-order circuit with the two inductors L_1 and L_2 connected to a CCCS and two resistors.

 $i_{L1}, i_{L2} \checkmark$

b) Define the state vector \boldsymbol{x} .

$$oldsymbol{x} = egin{bmatrix} i_{L1} \ i_{L2} \end{bmatrix} oldsymbol{\sqrt{}}$$

c)* Find u_{L1} depending on u_{L2} and i_R .

$$u_{L1} = u_{L2} + Ri_R \checkmark$$

d)* Give i_{L2} depending on i_R .

$$i_{L2} = i_R \sqrt{}$$

e)* Determine u_{L1} depending on u_G .

$$u_{L1} = u_G \checkmark$$

f) Express u_{L1} depending on i_{L1} without using any time derivatives.

KCL:
$$-i_{L2} + G_1 u_G + i_{L1} + i_R = 0 \checkmark$$

 $u_{L1} = -\frac{1}{G_1} i_{L1} \checkmark$

 $oldsymbol{\mathsf{H}}_1^0$

$$u_{L2} = -\frac{1}{G_1} i_{L1} - Ri_{L2} \sqrt{}$$

0 1 2 h) Give the state equations for the given circuit.

$$\dot{i}_{L1} = -\frac{1}{G_1 L_1} i_{L1} \checkmark
\dot{i}_{L2} = -\frac{1}{G_1 L_2} i_{L1} - \frac{R}{L_2} i_{L2} \checkmark$$

The state equations for another second-order system read as

$$\dot{x}_1 = -2x_1$$

$$\dot{x}_2 = -3x_1 + x_2$$

with the state vector $\boldsymbol{x} = [x_1, x_2]^{\mathrm{T}}$.

 $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

i)* Find the state matrix \boldsymbol{A} .

$$\mathbf{A} = \begin{bmatrix} -2 & 0 \\ -3 & 1 \end{bmatrix} \sqrt{\checkmark}$$

 $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

j) Determine the eigenvalues of \boldsymbol{A} .

$$\det(\mathbf{A} - \lambda \mathbf{1}) = (-2 - \lambda)(1 - \lambda) = 0 \checkmark$$

$$\lambda_1 = -2 \text{ and } \lambda_2 = 1 \checkmark$$

 $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

k) Investigate both eigenvalues and explain why the circuit is unstable.

 $\lambda_1 = -2$: stable eigenvalue $\lambda_2 = 1$: unstable eigenvalue Due to λ_2 , the circuit is unstable. $\sqrt{\checkmark}$

Problem 7 Non-Linear Two-Port (15 credits)

The current-controlled characteristic of the non-linear two-port $\mathcal T$ can be written as

$$oldsymbol{u} = egin{bmatrix} u_1 \ u_2 \end{bmatrix} = oldsymbol{r}_{\mathcal{T}}(oldsymbol{i}) = egin{bmatrix} U_0(rac{i_1}{I_0} + rac{i_2^2}{I_0^2}) \ R_0i_1 + 2R_0i_2 \end{bmatrix}$$

with the constants U_0 , I_0 , and $R_0 = \frac{U_0}{I_0}$.

a)* Find u_1 and u_2 of the two-port \mathcal{T} for $i_1 = 0$ and $i_2 = 0$.

 $u_1 = 0$ and $u_2 = 0$ \checkmark

b) Argue why the two-port is sourcefree.

The origin is part of the characteristic as $r_{\mathcal{T}}(\mathbf{0}) = \mathbf{0}$. \checkmark

c)* Determine $\boldsymbol{r}_{\mathcal{T}}([i_2,i_1]^{\mathrm{T}}).$

 $\mathbf{r}_{\mathcal{T}}([i_2, i_1]^{\mathrm{T}}) = \begin{bmatrix} R_0 i_2 + R_0 \frac{i_1^2}{I_0} \\ R_0 i_2 + 2R_0 i_1 \end{bmatrix} \checkmark$

d) Argue why the two-port \mathcal{T} is not symmetric.

 $m{r}_{\mathcal{T}}([i_2,i_1]^{\mathrm{T}})
eq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} m{r}_{\mathcal{T}}(m{i}) \end{v}$

e)* Why does the hybrid-controlled characteristic of \mathcal{T} not exist?

 u_1 and i_1 depend on i_2^2 . \checkmark It is impossible to find a unique expression for i_2 depending on the i_1 and u_2 . \checkmark

f)* Find the inverse hybrid representation of \mathcal{T} .

$$i_1 = \frac{u_1}{R_0} - \frac{i_2^2}{I_0} \checkmark$$

$$u_2 = u_1 + 2R_0i_2 - U_0\frac{i_2^2}{I_0^2} \checkmark$$

lacksquare

Assume that the two-port \mathcal{T} is connected to a short circuit at port one and to the current source I_0 at port two.

g) Determine the corresponding operating point (U_1, U_2, I_1, I_2) .

short circuit:
$$U_1 = 0 \checkmark$$

current source: $I_2 = I_0 \checkmark$
 $I_1 = -\frac{I_0^2}{I_0} = -I_0 \checkmark$
 $U_2 = U_0 \checkmark$

Now the two-port is connected to the voltage source U_0 at port two as illustrated below.

0 h)

h)* What is u_2 depending on U_0 ?

$$u_2 = U_0 \checkmark$$

0

i) Express i_2 depending on i_1 and I_0 . Remember that $R_0 = \frac{U_0}{I_0}$.

$$i_2 = -\frac{1}{2}i_1 + \frac{I_0}{2} \checkmark$$

0

j) What is the power p_2 at port two?

$$p_2 = u_2 i_2 = -\frac{1}{2} U_0 i_1 + \frac{U_0 I_0}{2} \checkmark$$

Additional space for solutions—clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

