Towards Practical Alternating Least-Squares for CCA

Zhiqiang Xu Ping Li

Cognitive Computing Lab
Baidu Research
{xuzhiqiang04,liping11}@baidu.com

November 3, 2019

Canonical Correlation Analysis (CCA)

- ullet $\mathbf{X} \in \mathbb{R}^{d_{x} imes n}$ and $\mathbf{Y} \in \mathbb{R}^{d_{y} imes n}$: given data matrix pair
- Empirical cross-covariance matrix

$$\mathbf{C}_{xy} = \frac{1}{n} \mathbf{X} \mathbf{Y}^{\top}$$

• Two empirical auto-covariance matrices

$$\mathbf{C}_{xx} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top} + r_x \mathbf{I}, \quad \mathbf{C}_{yy} = \frac{1}{n} \mathbf{Y} \mathbf{Y}^{\top} + r_y \mathbf{I}$$

CCA

$$\max_{\boldsymbol{\Phi}^{\top}\boldsymbol{C}_{xx}\boldsymbol{\Phi}=\boldsymbol{\Psi}^{\top}\boldsymbol{C}_{yy}\boldsymbol{\Psi}=\boldsymbol{I}}\mathrm{tr}\big(\boldsymbol{\Phi}^{\top}\boldsymbol{C}_{xy}\boldsymbol{\Psi}\big)$$

where $\mathbf{\Phi} \in \mathbb{R}^{d_x \times k}$ and $\mathbf{\Psi} \in \mathbb{R}^{d_y \times k}$, $k \geq 1$

Canonical Correlation Analysis (CCA)

Optimal Solution

$$(\mathbf{\Phi}^{\star}, \mathbf{\Psi}^{\star}) = (\mathbf{C}_{xx}^{-\frac{1}{2}} \mathbf{P}, \mathbf{C}_{yy}^{-\frac{1}{2}} \mathbf{Q}) \triangleq (\mathbf{U}, \mathbf{V}),$$

• $\mathbf{P} \in \mathbb{R}^{d_x \times k}$ and $\mathbf{Q} \in \mathbb{R}^{d_y \times k}$: top-k left and right singular subspaces of $\mathbf{C} = \mathbf{C}_{xx}^{-\frac{1}{2}} \mathbf{C}_{xy} \mathbf{C}_{yy}^{-\frac{1}{2}}$ in Euclidean metrics, respectively,

$$\mathbf{C} \stackrel{\mathrm{SVD}}{=\!\!\!=} \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^{\top} + \mathbf{P}_{\perp} \mathbf{\Sigma}_{\perp} \mathbf{Q}_{\perp}^{\top},$$

where $\mathbf{\Sigma} = \operatorname{diag}(\sigma_1, \dots, \sigma_k)$ with σ_i being the *i*-th largest singular value, and $\mathbf{\Sigma}_{\perp} \in \mathbb{R}^{(r-k)\times (r-k)}$ is diagonal with $r = \operatorname{rank}(\mathbf{C})$.

• $\mathbf{U} \in \mathbb{R}^{d_x \times k}$ and $\mathbf{V} \in \mathbb{R}^{d_y \times k}$: top-k canonical subspaces, which are in metrics \mathbf{C}_{xx} and \mathbf{C}_{yy} , respectively,

$$\mathbf{C}_{xy} = \mathbf{C}_{xx} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \mathbf{C}_{yy} + \mathbf{C}_{xx} \mathbf{U}_{\perp} \mathbf{\Sigma}_{\perp} \mathbf{V}_{\perp}^{\top} \mathbf{C}_{yy}$$

Alternating Least-Squares (ALS)

Generalized Eigenvalue Problem Formulation

 $\mathbf{Aw} = \lambda \mathbf{Bw}$ (cca-stationarity)

where

$$\mathbf{A} = \begin{pmatrix} \mathbf{C}_{xy} & \mathbf{C}_{xy} \\ \mathbf{C}_{xy}^{\top} \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} \mathbf{C}_{xx} & \\ & \mathbf{C}_{yy} \end{pmatrix}$.

• (A, B)'s generalized eigenvectors

$$\frac{1}{\sqrt{2}}\left\{\begin{pmatrix}\mathbf{u}_1\\\mathbf{v}_1\end{pmatrix},\begin{pmatrix}\mathbf{u}_2\\\mathbf{v}_2\end{pmatrix},\cdots,\begin{pmatrix}\mathbf{u}_r\\\mathbf{v}_r\end{pmatrix},\begin{pmatrix}-\mathbf{u}_r\\\mathbf{v}_r\end{pmatrix},\begin{pmatrix}-\mathbf{u}_2\\\mathbf{v}_2\end{pmatrix},\cdots,\begin{pmatrix}-\mathbf{u}_1\\\mathbf{v}_1\end{pmatrix}\right\},$$

corresponding to generalized eigenvalues $\sigma_1, \sigma_2, \dots, \sigma_r, -\sigma_r, -\sigma_2, \dots, -\sigma_1$, respectively, where

$$\mathbf{U} = (\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k), \quad \mathbf{V} = (\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k)$$

Alternating Least-Squares (ALS)

Power Method for GEV

$$\tilde{\boldsymbol{\Omega}}_{t+1} = \boldsymbol{\mathsf{B}}^{-1}\boldsymbol{\mathsf{A}}\boldsymbol{\Omega}_t + \varsigma_t, \quad \boldsymbol{\Omega}_{t+1} = \tilde{\boldsymbol{\Omega}}_{t+1}(\tilde{\boldsymbol{\Omega}}_{t+1}^\top \boldsymbol{\mathsf{B}}\tilde{\boldsymbol{\Omega}}_{t+1})^{-\frac{1}{2}}$$

1

- Suppose $\Omega_t \in \mathbb{R}^{(d_x+d_y)\times j}$, where j is even.
- Column space of Ω_t converges to a top-j generalized eigenspace spanned by $\frac{1}{2}\left\{\begin{pmatrix} \mathbf{u}_1\\\mathbf{v}_1\end{pmatrix},\begin{pmatrix} -\mathbf{u}_1\\\mathbf{v}_1\end{pmatrix}\cdots,\begin{pmatrix} \mathbf{u}_{\frac{j}{2}}\\\mathbf{v}_{\frac{j}{2}}\end{pmatrix},\begin{pmatrix} -\mathbf{u}_{\frac{j}{2}}\\\mathbf{v}_{\frac{j}{2}}\end{pmatrix}\right\}$ corresponding to j largest generalized eigenvalues $\sigma_1,-\sigma_1,\cdots,\sigma_{\frac{j}{2}},-\sigma_{\frac{j}{2}}$ in magnitude.

¹Rong Ge et al. "Efficient Algorithms for Large-scale Generalized Eigenvector Computation and Canonical Correlation Analysis". In: *International Conference on Machine Learning*. 2016, pp. 2741–2750.

Alternating Least-Squares (ALS)

Update Equations

$$\begin{cases} \tilde{\mathbf{\Phi}}_t = \mathbf{C}_{xx}^{-1} \mathbf{C}_{xy} \mathbf{\Psi}_{t-1} + \xi_{t-1}, & \mathbf{\Phi}_t = \tilde{\mathbf{\Phi}}_t (\tilde{\mathbf{\Phi}}_t^\top \mathbf{C}_{xx} \tilde{\mathbf{\Phi}}_t + \tilde{\mathbf{\Psi}}_t^\top \mathbf{C}_{yy} \tilde{\mathbf{\Psi}}_t)^{-\frac{1}{2}} \\ \tilde{\mathbf{\Psi}}_t = \mathbf{C}_{yy}^{-1} \mathbf{C}_{xy}^\top \mathbf{\Phi}_{t-1} + \eta_{t-1}, & \mathbf{\Psi}_t = \tilde{\mathbf{\Psi}}_t (\tilde{\mathbf{\Phi}}_t^\top \mathbf{C}_{xx} \tilde{\mathbf{\Phi}}_t + \tilde{\mathbf{\Psi}}_t^\top \mathbf{C}_{yy} \tilde{\mathbf{\Psi}}_t)^{-\frac{1}{2}} \end{cases}$$

- To recover ${\bf U}$ and ${\bf V}$, one needs to first set j=2k for having ${\rm col}(\Omega_\infty)$ spanned by $\frac{1}{2}\left(egin{array}{ccc} {\bf U} & -{\bf U} \\ {\bf V} & {\bf V} \end{array} \right)$
- that is, $\Phi_t \in \mathbb{R}^{d_x \times 2k}$ and $\Psi_t \in \mathbb{R}^{d_y \times 2k}$
- ullet then do random projection with random Gaussian matrix ${f G} \in \mathbb{R}^{2k imes k}$,

$$\left\{ \begin{array}{l} \boldsymbol{\tilde{\tilde{\boldsymbol{\Phi}}}_{\mathcal{T}} = \boldsymbol{\Phi}_{\mathcal{T}}\boldsymbol{G}} \\ \boldsymbol{\tilde{\tilde{\boldsymbol{\Psi}}}_{\mathcal{T}} = \boldsymbol{\Psi}_{\mathcal{T}}\boldsymbol{G} \end{array} \right., \qquad \left\{ \begin{array}{l} \boldsymbol{\widehat{\boldsymbol{U}}} = \boldsymbol{\tilde{\tilde{\boldsymbol{\Phi}}}_{\mathcal{T}}} (\boldsymbol{\tilde{\tilde{\boldsymbol{\Phi}}}_{\mathcal{T}}^{\top}}\boldsymbol{C}_{xx}\boldsymbol{\tilde{\tilde{\boldsymbol{\Phi}}}_{\mathcal{T}}})^{-\frac{1}{2}} \\ \boldsymbol{\widehat{\boldsymbol{V}}} = \boldsymbol{\tilde{\boldsymbol{\Psi}}_{\mathcal{T}}} (\boldsymbol{\tilde{\tilde{\boldsymbol{\Psi}}}_{\mathcal{T}}^{\top}}\boldsymbol{C}_{yy}\boldsymbol{\tilde{\boldsymbol{\Psi}}_{\mathcal{T}}})^{-\frac{1}{2}} \end{array} \right.$$

Truly Alternating Least-Squares

Coupled Equations of Half the Size

$$\left\{ \begin{array}{l} \tilde{\mathbf{\Phi}}_t = \mathbf{C}_{\mathrm{xx}}^{-1} \mathbf{C}_{\mathrm{xy}} \mathbf{\Psi}_{t-1} + \boldsymbol{\xi}_{t-1}, & \mathbf{\Phi}_t = \tilde{\mathbf{\Phi}}_t (\tilde{\mathbf{\Phi}}_t^\top \mathbf{C}_{\mathrm{xx}} \tilde{\mathbf{\Phi}}_t)^{-\frac{1}{2}} \\ \tilde{\mathbf{\Psi}}_t = \mathbf{C}_{\mathrm{yy}}^{-1} \mathbf{C}_{\mathrm{xy}}^\top \mathbf{\Phi}_t + \boldsymbol{\eta}_t, & \mathbf{\Psi}_t = \tilde{\mathbf{\Psi}}_t (\tilde{\mathbf{\Psi}}_t^\top \mathbf{C}_{\mathrm{yy}} \tilde{\mathbf{\Psi}}_t)^{-\frac{1}{2}} \end{array} \right.$$

- $oldsymbol{\Phi}_t \in \mathbb{R}^{d_{\mathrm{X}} imes k}$ and $oldsymbol{\Psi}_t \in \mathbb{R}^{d_{\mathrm{y}} imes k}$, more memory-efficient
- No need of the random projection any more

$$\widehat{\boldsymbol{U}} = \boldsymbol{\Phi}_{\mathcal{T}} \text{ and } \widehat{\boldsymbol{V}} = \boldsymbol{\Psi}_{\mathcal{T}}$$

• Faster roughly by a factor of $\frac{\sigma_k}{\sigma_k + \sigma_{k+1}}$, especially for cases of a small singular value gap

Truly Alternating Least-Squares (TALS)

TALS-CCA

Algorithm 1: TALS-CCA

- 1: **Input:** T, k, data matrices **X**, **Y**
- 2: **Output:** approximate top-k canonical subspaces (Φ_T, Ψ_T)
- 3: $\Phi_0 = GS_{\mathbf{C}_{xx}}(\Phi_{\mathrm{init}})$, $\Phi_{\mathrm{init}} \in \mathbb{R}^{d_x \times k}$ is random Gaussian $\Psi_0 = GS_{\mathbf{C}_{yy}}(\Psi_{\mathrm{init}})$, $\Psi_{\mathrm{init}} \in \mathbb{R}^{d_y \times k}$ is random Gaussian
- 4: **for** $t = 1, 2, \dots, T$ **do**
- 5: $\tilde{\boldsymbol{\Phi}}_{t} \approx \arg\min I_{t}(\tilde{\boldsymbol{\Phi}}) = \frac{1}{2n} \|\boldsymbol{\mathsf{X}}^{\top} \tilde{\boldsymbol{\Phi}} \boldsymbol{\mathsf{Y}}^{\top} \boldsymbol{\Psi}_{t-1}\|_{F}^{2} + \frac{r_{x}}{2} \|\tilde{\boldsymbol{\Phi}}\|_{F}^{2}$ starting from $\tilde{\boldsymbol{\Phi}}^{(0)} = \boldsymbol{\Phi}_{t-1} (\boldsymbol{\Phi}_{t-1}^{\top} \mathbf{C}_{xx} \boldsymbol{\Phi}_{t-1})^{-1} (\boldsymbol{\Phi}_{t-1}^{\top} \mathbf{C}_{xy} \boldsymbol{\Psi}_{t-1})$
- 6: $\mathbf{\Phi}_t = \mathrm{GS}_{\mathbf{C}_{\mathsf{xx}}}(\mathbf{\tilde{\Phi}}_t)$
- 7: $\tilde{\mathbf{\Psi}}_t \approx \arg\min s_t(\tilde{\mathbf{\Psi}}) = \frac{1}{2n} \|\mathbf{Y}^\top \tilde{\mathbf{\Psi}} \mathbf{X}^\top \mathbf{\Phi}_t\|_F^2 + \frac{r_y}{2} \|\tilde{\mathbf{\Psi}}\|_F^2$ starting from $\tilde{\mathbf{\Psi}}^{(0)} = \mathbf{\Psi}_{t-1} (\mathbf{\Psi}_{t-1}^\top \mathbf{C}_{yy} \mathbf{\Psi}_{t-1})^{-1} (\mathbf{\Psi}_{t-1}^\top \mathbf{C}_{xy}^\top \mathbf{\Phi}_t)$
- 8: $\Psi_t = GS_{\mathbf{C}_{yy}}(\tilde{\Psi}_t)$
- 9: end for

Faster Alternating Least-Squares (FALS)

Momentum Acceleration

$$\begin{cases} \tilde{\mathbf{\Phi}}_t = \mathbf{C}_{xx}^{-1} \mathbf{C}_{xy} \mathbf{\Psi}_{t-1} - \beta \mathbf{\Phi}_{t-2} + \xi_{t-1}, & \mathbf{\Phi}_t = \tilde{\mathbf{\Phi}}_t (\tilde{\mathbf{\Phi}}_t^\top \mathbf{C}_{xx} \tilde{\mathbf{\Phi}}_t)^{-\frac{1}{2}} \\ \tilde{\mathbf{\Psi}}_t = \mathbf{C}_{yy}^{-1} \mathbf{C}_{xy}^\top \mathbf{\Phi}_t - \beta \mathbf{\Psi}_{t-1} + \eta_t, & \mathbf{\Psi}_t = \tilde{\mathbf{\Psi}}_t (\tilde{\mathbf{\Psi}}_t^\top \mathbf{C}_{yy} \tilde{\mathbf{\Psi}}_t)^{-\frac{1}{2}} \end{cases}$$

- Memory-efficient: $\mathbf{\Phi}_t \in \mathbb{R}^{d_{\mathsf{x}} \times k}$ and $\mathbf{\Psi}_t \in \mathbb{R}^{d_{\mathsf{y}} \times k}$
- ullet No need of the random projection: $\widehat{f U}=oldsymbol{\Phi}_{\mathcal T}$ and $\widehat{f V}=oldsymbol{\Psi}_{\mathcal T}$
- Least-squares becomes

$$\begin{cases} & \min I_t(\tilde{\mathbf{\Phi}}) = \frac{1}{2n} \|\mathbf{X}^\top (\tilde{\mathbf{\Phi}} + \beta \mathbf{\Phi}_{t-2}) - \mathbf{Y}^\top \mathbf{\Psi}_{t-1} \|_F^2 + \frac{r_{\mathbf{X}}}{2} \|\tilde{\mathbf{\Phi}} + \beta \mathbf{\Phi}_{t-2} \|_F^2, \\ & \min s_t(\tilde{\mathbf{\Psi}}) = \frac{1}{2n} \|\mathbf{Y}^\top (\tilde{\mathbf{\Psi}} + \beta \mathbf{\Psi}_{t-1}) - \mathbf{X}^\top \mathbf{\Phi}_t \|_F^2 + \frac{r_{\mathbf{Y}}}{2} \|\tilde{\mathbf{\Psi}} + \beta \mathbf{\Psi}_{t-1} \|_F^2 \end{cases}$$

Faster Alternating Least-Squares (FALS)

FALS-CCA

Algorithm 2: FALS-CCA

- 1: **Input:** T, k, momentum parameter β , data matrices **X**, **Y**
- 2: **Output:** approximate top-k canonical subspaces (Φ_T, Ψ_T)

3:
$$\Phi_{-1} = \mathbf{0} \in \mathbb{R}^{d_x \times k}$$

$$\mathbf{\Phi}_0 = \mathrm{GS}_{\mathbf{C}_{xx}}(\mathbf{\Phi}_{\mathrm{init}}), \; \mathbf{\Phi}_{\mathrm{init}} \in \mathbb{R}^{d_{\mathsf{x}} \times k}$$
 is random Gaussian

$$\Psi_0 = \mathrm{GS}_{\mathbf{C}_{yy}}(\Psi_{\mathrm{init}})$$
, $\Psi_{\mathrm{init}} \in \mathbb{R}^{d_y imes k}$ is random Gaussian

4: for
$$t = 1, 2, \cdots, T$$
 do

5:
$$\tilde{\boldsymbol{\Phi}}_{t} \approx \arg\min I_{t}(\tilde{\boldsymbol{\Phi}}) = \frac{1}{2n} \|\mathbf{X}^{\top}(\tilde{\boldsymbol{\Phi}} + \beta \boldsymbol{\Phi}_{t-2}) - \mathbf{Y}^{\top} \boldsymbol{\Psi}_{t-1}\|_{F}^{2} + \frac{r_{x}}{2} \|\tilde{\boldsymbol{\Phi}} + \beta \boldsymbol{\Phi}_{t-2}\|_{F}^{2}$$
starting from
$$\tilde{\boldsymbol{\Phi}}^{(0)} = \boldsymbol{\Phi}_{t-1}(\boldsymbol{\Phi}_{t-1}^{\top} \mathbf{C}_{xx} \boldsymbol{\Phi}_{t-1})^{-1}(\boldsymbol{\Phi}_{t-1}^{\top} \mathbf{C}_{xy} \boldsymbol{\Psi}_{t-1})$$

6:
$$\mathbf{\Phi}_t = \mathrm{GS}_{\mathbf{C}_{xx}}(\mathbf{\tilde{\Phi}}_t)$$

7:
$$\tilde{\mathbf{\Psi}}_{t} \approx \arg\min s_{t}(\tilde{\mathbf{\Psi}}) = \frac{1}{2n} \|\mathbf{Y}^{\top}(\tilde{\mathbf{\Psi}} + \beta\mathbf{\Psi}_{t-1}) - \mathbf{X}^{\top}\mathbf{\Phi}_{t}\|_{F}^{2} + \frac{r_{y}}{2} \|\tilde{\mathbf{\Psi}} + \beta\mathbf{\Psi}_{t-1}\|_{F}^{2}$$
starting from
$$\tilde{\mathbf{\Psi}}^{(0)} = \mathbf{\Psi}_{t-1}(\mathbf{\Psi}_{t-1}^{\top}\mathbf{C}_{yy}\mathbf{\Psi}_{t-1})^{-1}(\mathbf{\Psi}_{t-1}^{\top}\mathbf{C}_{xy}^{\top}\mathbf{\Phi}_{t})$$

8:
$$\Psi_t = GS_{\mathbf{C}_{yy}}(\tilde{\Psi}_t)$$

9: end for

Faster Alternating Least-Squares (FALS- T_{tals})

- Optimal² momentum parameter β should be around $\frac{\sigma_{k+1}^2}{4}$
- Σ estimates by $(\mathbf{U}^{\top}\mathbf{C}_{xx}\mathbf{U})^{-1}\mathbf{U}^{\top}\mathbf{C}_{xy}\mathbf{V} = \Sigma = (\mathbf{V}^{\top}\mathbf{C}_{yy}\mathbf{V})^{-1}\mathbf{V}^{\top}\mathbf{C}_{xy}^{\top}\mathbf{U}$:

$$\begin{split} & \boldsymbol{\Sigma}^{(t,1)} = (\boldsymbol{\Phi}_t^\top \mathbf{C}_{xx} \boldsymbol{\Phi}_t)^{-1} \boldsymbol{\Phi}_t^\top \mathbf{C}_{xy} \boldsymbol{\Psi}_t, \\ & \boldsymbol{\Sigma}^{(t,2)} = (\boldsymbol{\Psi}_{t-1}^\top \mathbf{C}_{yy} \boldsymbol{\Psi}_{t-1})^{-1} \boldsymbol{\Psi}_{t-1}^\top \mathbf{C}_{xy}^\top \boldsymbol{\Phi}_t \end{split}$$

• β estimates by TALS:

$$\hat{\beta} = \frac{1}{4} \min_{i} (\mathbf{\Sigma}_{ii}^{(T_{tals},1)})^2 \text{ or } \frac{1}{4} \min_{i} (\mathbf{\Sigma}_{ii}^{(T_{tals},2)})^2,$$

where T_{tals} is small.

Peng Xu et al. "Accelerated Stochastic Power Iteration". In: International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain. 2018, pp. 58–67. URL: http://proceedings.mlr.press/v84/xu18a.html.

Adaptive Alternating Least-Squares (AALS)

Adaptive Momentum Acceleration

$$\begin{cases} \tilde{\mathbf{\Phi}}_t = \mathbf{C}_{xx}^{-1} \mathbf{C}_{xy} \mathbf{\Psi}_{t-1} - \beta_{t-1}^{\phi} \mathbf{\Phi}_{t-2} + \xi_{t-1}, & \mathbf{\Phi}_t = \tilde{\mathbf{\Phi}}_t (\tilde{\mathbf{\Phi}}_t^{\top} \mathbf{C}_{xx} \tilde{\mathbf{\Phi}}_t)^{-\frac{1}{2}} \\ \tilde{\mathbf{\Psi}}_t = \mathbf{C}_{yy}^{-1} \mathbf{C}_{xy}^{\top} \mathbf{\Phi}_t - \beta_t^{\psi} \mathbf{\Psi}_{t-1} + \eta_t, & \mathbf{\Psi}_t = \tilde{\mathbf{\Psi}}_t (\tilde{\mathbf{\Psi}}_t^{\top} \mathbf{C}_{yy} \tilde{\mathbf{\Psi}}_t)^{-\frac{1}{2}} \end{cases}$$

Adaptive momentum parameters:

$$\beta_t^{\phi} = \frac{1}{4} \min_{i} (\mathbf{\Sigma}_{ii}^{(t,1)})^2 \text{ and } \beta_t^{\psi} = \frac{1}{4} \min_{i} (\mathbf{\Sigma}_{ii}^{(t,2)})^2$$

Least-squares becomes

$$\begin{cases} \min I_t(\tilde{\mathbf{\Phi}}) = \frac{1}{2n} \|\mathbf{X}^\top (\tilde{\mathbf{\Phi}} + \boldsymbol{\beta}_{t-1}^{\phi} \mathbf{\Phi}_{t-2}) - \mathbf{Y}^\top \mathbf{\Psi}_{t-1} \|_F^2 + \frac{r_x}{2} \|\tilde{\mathbf{\Phi}} + \boldsymbol{\beta}_{t-1}^{\phi} \mathbf{\Phi}_{t-2} \|_F^2, \\ \min s_t(\tilde{\mathbf{\Psi}}) = \frac{1}{2n} \|\mathbf{Y}^\top (\tilde{\mathbf{\Psi}} + \boldsymbol{\beta}_t^{\psi} \mathbf{\Psi}_{t-1}) - \mathbf{X}^\top \mathbf{\Phi}_t \|_F^2 + \frac{r_y}{2} \|\tilde{\mathbf{\Psi}} + \boldsymbol{\beta}_t^{\psi} \mathbf{\Psi}_{t-1} \|_F^2, \end{cases}$$

with initials $\tilde{\mathbf{\Phi}}^{(0)} = \mathbf{\Phi}_{t-1} \mathbf{\Sigma}^{(t-1,1)}$, $\tilde{\mathbf{\Psi}}^{(0)} = \mathbf{\Psi}_{t-1} \mathbf{\Sigma}^{(t-1,2)}$, respectively

Adaptive Alternating Least-Squares (AALS)

AALS-CCA

Algorithm 3: AALS-CCA

- 1: Input: T, k, data matrices X, Y
- 2: Output: approximate top-k canonical subspaces (Φ_T, Ψ_T)
- 3: $\Phi_{-1} = \mathbf{0} \in \mathbb{R}^{d_X \times k}$

 $\Phi_0 = \mathrm{GS}_{\mathbf{C}_{xx}}(\mathbf{\Phi}_{\mathrm{init}})$, $\mathbf{\Phi}_{\mathrm{init}} \in \mathbb{R}^{d_x imes k}$ is random Gaussian

$$\Psi_0 = \mathrm{GS}_{\mathbf{C}_{yy}}(\Psi_{\mathrm{init}})$$
, $\Psi_{\mathrm{init}} \in \mathbb{R}^{d_y imes k}$ is random Gaussian

- 4: **for** $t = 1, 2, \dots, T$ **do**
- 5: $\beta_{t-1}^{\phi} = \tfrac{1}{4} \min_{i} (\mathbf{\Sigma}_{ii}^{(t-1,1)})^2, \text{ where } \mathbf{\Sigma}^{(t-1,1)} = (\mathbf{\Phi}_{t-1}^{\top} \mathbf{C}_{xx} \mathbf{\Phi}_{t-1})^{-1} \mathbf{\Phi}_{t-1}^{\top} \mathbf{C}_{xy} \mathbf{\Psi}_{t-1}$
- 6: $\tilde{\mathbf{\Phi}}_t \approx \arg\min l_t(\tilde{\mathbf{\Phi}}) = \frac{1}{2n} \|\mathbf{X}^\top (\tilde{\mathbf{\Phi}} + \beta_{t-1}^{\phi} \mathbf{\Phi}_{t-2}) \mathbf{Y}^\top \mathbf{\Psi}_{t-1}\|_F^2 + \frac{r_x}{2} \|\tilde{\mathbf{\Phi}} + \beta_{t-1}^{\phi} \mathbf{\Phi}_{t-2}\|_F^2$ starting from $\tilde{\mathbf{\Phi}}^{(0)} = \mathbf{\Phi}_{t-1} \mathbf{\Sigma}^{(t-1,1)}$
- 7: $\Phi_t = GS_{C_{xx}}(\tilde{\Phi}_t)$
- 8: $\beta_t^{\psi} = \frac{1}{4} \min_i (\mathbf{\Sigma}_{ii}^{(t,2)})^2$, where $\mathbf{\Sigma}^{(t,2)} = (\mathbf{\Psi}_{t-1}^{\top} \mathbf{C}_{yy} \mathbf{\Psi}_{t-1})^{-1} \mathbf{\Psi}_{t-1}^{\top} \mathbf{C}_{xy}^{\top} \mathbf{\Phi}_t$
- 9:
 $$\begin{split} \tilde{\boldsymbol{\Psi}}_t &\approx \arg\min \boldsymbol{s}_t(\tilde{\boldsymbol{\Psi}}) = \frac{1}{2n} \|\boldsymbol{Y}^\top (\tilde{\boldsymbol{\Psi}} + \boldsymbol{\beta}_t^{\boldsymbol{\Psi}} \boldsymbol{\Psi}_{t-1}) \boldsymbol{X}^\top \boldsymbol{\Phi}_t \|_F^2 + \frac{r_y}{2} \|\tilde{\boldsymbol{\Psi}} + \boldsymbol{\beta}_t^{\boldsymbol{\Psi}} \boldsymbol{\Psi}_{t-1} \|_F^2 \\ &\text{starting from } \tilde{\boldsymbol{\Psi}}^{(0)} = \boldsymbol{\Psi}_{t-1} \boldsymbol{\Sigma}^{(t,2)} \end{split}$$
- 10: $\Psi_t = GS_{\mathbf{C}_{yy}}(\tilde{\Psi}_t)$
- 11: end for

Experiments

Data

DATA	Description	$d_{\scriptscriptstyle X}$	d_y	n
Memdiamill	images and its labels	100	120	30000
JW11	acoustic and articulation	273	112	30000
MNIST	left and right halves of images	392	392	60000

• Quality measures:

$$\sin^2 \theta_u \triangleq \sin^2 \theta_{\text{max}}(\boldsymbol{\Phi}_t, \mathbf{U}), \quad \sin^2 \theta_v \triangleq \sin^2 \theta_{\text{max}}(\boldsymbol{\Psi}_t, \mathbf{V})$$

Experiments

Experiments

Thank you!