MCQ 19MA201- UNIT V

Prepared by Vinaya Acharya

1) One dimensional heat equation is

(a)
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$

(b)
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial u}{\partial x}$$

(c)
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

(d)
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial u}{\partial x}$$

2) One dimensional wave equation is_____

(a)
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$

(b)
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial u}{\partial x}$$

(c)
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

(d)
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial u}{\partial x}$$

3) $3xy \frac{\partial z}{\partial y} + 2x^3y \frac{\partial^2 z}{\partial x^2} = 9$ is a partial differential equation of order ______.

(a) 1

(b) 2

(c) 3

(d) 4

4) $x \frac{\partial z}{\partial y} + \frac{\partial^2 z}{\partial x^2} = 5 \frac{\partial^3 z}{\partial y^3}$ is a partial differential equation of order ______.

(a) 2

(b) 1

(c) 3

(d) 4

5) $\cos(5x+6y)\frac{\partial^3 z}{\partial y^3} + \frac{\partial^2 z}{\partial x^2} - xy = 0$ is a partial differential equation of degree

(a) 1

(b) 2

(c) 3

(d) 4

6)	
0)	$5 \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial x^2}$ is a partial differential equation of order
	(a) 1
	(b) 2
	(c) 3 (d) 4
7)	The partial differential equation formed by eliminating arbitrary constants from the equation
	z = ax + by is
	(a) $z = px + qy$
	(b) $z = px - qy$
	(c) $2z = px + qy$
	(d) 2z = px - qy
	$\begin{pmatrix} u \end{pmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
8)	The partial differential equation formed by eliminating arbitrary constants from the equation
	$z = ax^3 - by$ is
	(a) 3z = px + 3qy
	(b) $z = 3 px - qy$
	(c) 2 z = px + 3 qy
	(d) z = px - 2qy
9)	The partial differential equation formed by eliminating arbitrary constants from the equation
	$z = 3 ax^2 + 2 by^2$ is
	(a) $2z = px + qy$
	(b) $z = 2 px - 2 qy$
	(c) 2z = px - qy
	(d) z = px - 2qy
	(a) = pw = qy
10)	$\partial^3 z$ $\partial^2 z$
	The partial differential equation $3 xy \frac{\partial^3 z}{\partial y^3} + x^3 y \frac{\partial^2 z}{\partial x^2} = 2$ is
	(a) linear
	(b) non linear
	(c) of order 1
	(d) of order 2

11)	The partial differential equation $z \left(\frac{\partial z}{\partial y} \right) + \frac{\partial^2 z}{\partial x^2} = 2$ is
	(a) linear(b) non linear(c) of order 1(d) of order 3
12)	The partial differential equation $z^2 \frac{\partial z}{\partial y} + x^3 y \frac{\partial^3 z}{\partial x^2 \partial y} = 0$ is
	(a) linear (b) non linear (c) of order 1 (d) of order 2
13)	The partial differential equation $\frac{\partial z}{\partial y} + x^3 y \frac{\partial^3 z}{\partial x^2 \partial y} = 25$ is
	(a) linear(b) non linear(c) of order 1(d) of order 2
14)	The partial differential equation $z + \frac{\partial^3 z}{\partial x^2 \partial y} + 7 y = 0$ is
	(a) linear (b) non linear (c) of order 1 (d) of order 2
15)	The partial differential equation $\frac{\partial^3 z}{\partial y^3} + 4z^3 \frac{\partial z}{\partial y} = 25$ is
	(a) of order 1(b) non linear(c) of order 2(d) of order 3
16)	Solution of the partial differential equation $\frac{\partial z}{\partial x} + \cos(3x - 2y) = 0$ by direct integration is
	(a) $z + \frac{\sin(3x - 2y)}{3} = xf_1(y)$.

(b)
$$z - \frac{\sin(3x - 2y)}{3} = f_1(y)$$

$$column{1}{c} \cos z + \frac{\sin(3x - 2y)}{3} = f_1(y)$$

(d)
$$z - \frac{\sin(3x - 2y)}{3} = f_1(x)$$

Solution of the partial differential equation $\frac{\partial^2 z}{\partial y^2} + 7 x^2 y^3 = 5$ by direct integration is

(a)
$$z + \frac{7 x^2 y^5}{20} = (2.5) y^2 + y f_1(x) + f_2(x)$$

(b)
$$z + \frac{7x^2y^5}{20} = (3.5)y^2 + y f_1(x) + f_2(x)$$

(c)
$$z + \frac{7 x^2 y^5}{20} = (2.5) y^2 + y f_1(y) + f_2(y)$$

(d)
$$z + \frac{7 x^2 y^5}{20} = (2.5) y^2 + y f_1(x) + f_2(y)$$

Solution of the partial differential equation $8 \frac{\partial z}{\partial y} + 3 x^2 y^3 = 9 xy$ by direct integration is

(a)
$$8z + \frac{x^2y^4}{4} = x\frac{y^2}{2} + f_1(x)$$
.

(b)
$$8z + \frac{3x^2y^4}{4} = 9x\frac{y^2}{2} + f_1(y)$$

(c)
$$8z + \frac{3x^2y^4}{4} = 9x\frac{y^2}{2} + f_1(x)$$

(d)
$$8z + \frac{3x^2y^3}{4} = 9x\frac{y^2}{2} + f_1(y)$$

19)	Solution of the partial differential equation	$\frac{\partial u}{\partial x}$ +	8 xy 5	=	у	by direct integration is

(a)
$$u + 4 x^2 y^5 = xy + f_1(y)$$
.
(b) $u + 4 x^2 y^5 = xy + f_1(x)$

(b)
$$u + 4 x^2 y^5 = xy + f_1(x)$$

(c)
$$u + 2 x^2 y^5 = xy + f_1(y)$$

(d)
$$u + 2 x^2 y^5 = xy + f_1(x)$$

Solution of the partial differential equation
$$e^{-x} \frac{\partial u}{\partial y} + y^3 + x^2 y = 10$$
 by direct integration is _____

(a)
$$e^x u + \frac{y^4}{4} + \frac{y^2 x^2}{2} + f(x) = 10 y$$
.

(b)
$$e^x u + \frac{y^4}{4} + \frac{y^2 x^2}{2} + f(x) = 10 x$$

(c)
$$e^x u + \frac{y^4}{4} + \frac{y^2 x^2}{2} + f(y) = 10 y$$

(d)
$$e^x u + \frac{y^4}{4} + \frac{y^2 x^2}{2} + f(y) = 10 x$$

The order of the partial differential equation obtained by eliminating
$$f$$
 from $z = f(x^2 + y^2)$ is _____

- (a) 4
- (b) 2
- (c)3
- (d) 1

The degree of the partial differential equation obtained by eliminating
$$f$$
 from $z = f(x^3 - y^3)$ is _____

- (a) 1
- (b) 2
- (c) 3
- (d) 4

23) The order of the partial differential equation obtained by eliminating
$$f$$
 from

 $f(x^2 + y^2, z - xy) = 0$ is (a) 1 (b) 2 (c) 3(d) 4 24) Solution of the partial differential equation $\frac{\partial^2 z}{\partial x \partial y} = 2y^5$ by direct integration is (a) $z = (\frac{1}{3})xy^6 + f_1(y) + f_2(x)$ (b) $z = (\frac{1}{3}) xy^6 + f_1(y)$ $c_{(c)} z = (\frac{1}{3}) x y^6 + f_2(x)$ (d) $z = (\frac{1}{3})xy^5 + f_1(y) + f_2(x)$ 25) A non linear partial differential equation of form two is (a) f(z, x, q) = 0(b) f(x, p, q) = 0(c) f(z, p, q) = 0(d) z = f(x, y, q)26) A non linear partial differential equation of form three is _ (a) g(y,q) = f(p)(b) g(y,q) = f(x)(c) g(y,q) = f(x,p)(d) z = f(x, y, q)The partial differential equation 5 pqz = 2 p + 2 q is (a) nonlinear of form 3 (b) *linear* (c) of order 2 (d) nonlinear of form 2

- (a) nonlinear of form 2
- (b) linear
- (c) of order 2
- (d) nonlinear of form 3

On solving the non-linear partial differential equation
$$p^3 + q^3 = 27 z$$
 of form second

taking q = ap ,we obtain p =

(a)
$$p = \frac{z(-a \pm \sqrt{a^2 + 4})}{2}$$

(b)
$$p = \frac{z(-a \pm \sqrt{a^2 + 3})}{2}$$

(c)
$$p = \frac{z(-a \pm \sqrt{a^2 + 2})}{2}$$

(d)
$$p = \frac{z(-a \pm \sqrt{a^2 + 1})}{2}$$

On solving the non-linear partial differential equation
$$p^2z^2 + q^2 = p^2q$$
 of form second taking $q = ap$, we obtain $p = ap$

(a)
$$p = \frac{z^2 + a^2}{a}$$

(b)
$$p = \frac{z(a^2 + 2)}{2}$$

(c)
$$p = \frac{z^2 (a^2 + 2)}{2}$$

(d)
$$p = \frac{(a^2 + 2)}{2}$$

The partial differential equation
$$yp + xq + p + q = 0$$
 is _____

- (a) nonlinear
- of form 2
- (b) linear

	(c) of order 2
	(d) nonlinear of form 3
32)	On solving the non-linear partial differential equation $yp + xq + pq = 0$
	taking $f(x, p) = g(y, q) = a$,we obtain $p = $ and $q = $
	(a) $p = \frac{x}{a-1}, q = \frac{-y}{a}$
	(b) $p = \frac{x}{a - 1}, q = \frac{y}{a}$
	(c) $p = \frac{x^2}{a-1}$, $q = \frac{-y}{a}$
	(d) $p = \frac{x}{a-1}$, $q = \frac{-y^2}{a}$
33)	On solving the non-linear partial differential equation $p^2 + q^2 = x + y$
,	On solving the non-linear partial differential equation $p + q - x + y$
	taking $f(x, p) = g(y, q) = a$,we obtain $p = $ and $q = $
	(a) $p = \sqrt{x + a}, q = \sqrt{y - a}$
	(b) $p = \sqrt{x - a}, q = \sqrt{3y - a}$
	(c) $p = \sqrt{x - a}$, $q = \sqrt{y + a}$
	(c) $p = \sqrt{x} + a$, $q = \sqrt{y} + a$ (d) $p = \sqrt{x - a}$, $q = \sqrt{3y - a}$
	(d) $p = \sqrt{x - a}$, $q = \sqrt{3}y - a$
34)	Solution of the partial differential equation $\frac{\partial^3 z}{\partial x^3} = 0$ by direct integration is
	$f(x) = f(x) + xf(x) + x^2 f(x)$
	(a) $z = f_1(y) + xf_2(y) + x^2 f_3(y)$.
	(b) $z = f_1(y) + xf_2(y)$
	(c) $z = xf_2(y) + x^2 f_3(y)$
	$ (d) z = f_1(y) + f_2(x)$
35)	The partial differential equation formed by eliminating arbitrary constant from the equation
	$z = (a + x)^2 + y$ is
	(a) $4z = p^2 + 4y$
	(b) $z = px - 4y$

```
(c) 2z = p + 4y^2
      (d) 2z = p - y
36)
     On solving u_x - u_y = 0 by method of separation of variables by substituting u = XY
     ,we obtain
     (a) u = e^{a(x+y)}C_1C_2
     (b) u = e^{a(x-y)}C_1C_2
     (c) u = ye^{-a(x)}C_1C_2
     (d) u = xe^{-a(y)}C_1C_2
     On solving u_x - 2u_t = u by method of separation of variables by substituting u = XY
     ,we obtain
     (a) u = e^{-ax} e^{(\frac{a-1}{2})t} C_1 C_2
     (b) u = e^{ax} e^{(\frac{a-1}{2})t} C_1 C_2
     (c) u = e^{\frac{ax}{3}} e^{(\frac{a-1}{2})} C_1 C_2
     (d) u = e^{a} e^{(\frac{a-1}{2})t} C_{1} C_{2}
     On solving 2 z_x = 3 z_y by method of separation of variables by substituting z = XY
     ,we obtain
     (a) z = e^{a(2x+y)}C_1C_2
     (b) z = e^{a(2x-3y)}C_1C_2
     (c) z = 2 xye^{-a(x+3)}C_1C_2
     (d) z = e^{a(\frac{3x+2y}{6})}C_1C_2
39)
     On solving u_x - u_y = 0 by method of separation of variables by substituting u = XY
     (a) u = e^{a(x+y)}C_1C_2
     (b) u = e^{a(x-y)}C_1C_2
     (c) u = ye^{-a(x)}C_1C_2
     (d) u = xe^{-a(y)}C_1C_2
     On solving 3 u_x - 2 u_t = 5 u by method of separation of variables by substituting
      u = XY
     ,we obtain
     (a) u = e^{-ax} e^{(\frac{a-1}{2})t} C_1 C_2
     (b) u = e^{ax} e^{(\frac{a-1}{2})t} C_1 C_2
```

(c)
$$u = e^{\frac{ax}{3}} e^{(\frac{a-5}{2})t} C_1 C_2$$

(d) $u = e^a e^{(\frac{a-1}{2})t} C_1 C_2$

41)

The solution of $\frac{\partial^3 z}{\partial x^2 \partial y} + \cos(x + y) = 0$ is _____

(a)
$$z - \sin(x + y) = [f_3(y)]x + g(y) + h(x)$$

(b)
$$z + \sin(x + y) = [f_3(y)]x + g(y)x + h(x)$$

(c)
$$z + \sin(x + y) = [f_3(y)]x + g(y) + h(x)$$

(d)
$$z - \sin(x + y) = [f_3(y)]x + g(y) + yh(x)$$

42)

The solution of $\frac{\partial^2 u}{\partial x \partial y} - y^2 = 0$ is ______

(a)
$$u = [f_3(y)]x + g(y) + h(x)$$

(b)
$$z - \frac{xy^3}{3} + g(y) + h(x) = 0$$

(c)
$$z - \frac{xy^3}{3} + g(y) + yh(x) = 0$$

$$(d) z = x + g(y) + yh(x)$$

43)

The solution of $\frac{\partial^2 z}{\partial x^2} + 3x^5 + 9xy = 0$ is _____

(a)
$$z + \frac{x^7}{14} + \frac{3}{2}yx^3 = xg(y) + h(y)$$

(b)
$$z - \frac{xy^{-7}}{14} + g(y) + h(x) = 0$$

(c)
$$z - \frac{x^7}{14} + g(y) + h(x) = 0$$

(d)
$$z - \frac{xy^{-7}}{14} + g(y) + yh(x) = 0$$

44)

The solution of $\frac{\partial^3 z}{\partial x^3} + \sin(2x + y) = 0$ is _____

(a)
$$z + \frac{\sin(x + 3y)}{27} + \frac{y^2 f_1(x)}{2} + \frac{xy^3}{6} = yf_2(x) + f_3(x)$$

(b)
$$z + \frac{\sin(x+3y)}{27} + \frac{y^2 f_1(x)}{2} - \frac{xy^3}{6} = yf_2(x) + f_3(y)$$

(c)
$$z - \frac{\sin(x + 3y)}{27} + \frac{y^2 f_1(x)}{2} - \frac{xy^3}{6} = yf_2(x) + f_3(x)$$

(d)
$$z + \frac{\sin(x + 3y)}{27} + \frac{y^2 f_1(x)}{2} - \frac{xy^3}{6} = yf_2(x) + f_3(x)$$

45)

The solution of $\frac{\partial^3 z}{\partial v^3} = \cos(x + 3y)$ is ______

(a)
$$z - \frac{\cos(2x + y)}{8} + \frac{x^2 f_1(y)}{2} = xg(y) + h(y)$$

(b)
$$z + \frac{\cos(2x + y)}{8} + \frac{x^3 f_1(y)}{2} = xg(y) + h(y)$$

(c)
$$z + \frac{\cos(2x + y)}{8} + \frac{x^2 f_1(y)}{2} = xg(y) + h(y)$$

(d)
$$z + \frac{\cos(2x + 2y)}{8} + \frac{x^2 f_1(y)}{2} = xg(y) + h(y)$$

46) The partial differential equation obtained by eliminating arbitrary constants from the equation

$$z = (x - a)^2 + (y - b)^2 + 5$$
 is _____

(a)
$$2 z = p^2 x + qy$$

(b)
$$2z = p^2 - q^2$$

(c)
$$4z = p^2 + q^2$$

(d)
$$z = px - 2qy$$

47) The partial differential equation obtained by eliminating arbitrary constants from the equation

	$2 z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ is
	(a) $2z = px + qy$
	(b) $z = 2 px - 2 qy$
	(c) 2 z = px - qy
	(d) z = px - 2 qy
48)	The partial differential equation obtained by eliminating arbitrary constants from the equation
	$z = a \log \left[\frac{b(y-1)}{(1-x)} \right] $ is
	(a) $2z = px + qy$
	(b) $z = 2 px - 2 qy$
	(c) $p = px - qy$
	(d) p + q = qy + px
49)	The partial differential equation obtained by eliminating arbitrary function from the equation
	$z + x + y = f(x^2 + y^2 + z^2)$ is
	(1 + p)(1 + p) = (1 + q)(1 + p)
	(a) $(1 + p)(y + zq) = (1 + q)(x + zp)$
	(b) z = 2 px - 2 qy
	(c) $p = px - 2qy$ (d) $(1 + 2xp)(3y + zq) = (1 + 5q)(x + zp)$
	(a) $(1 + 2xp)(3y + 2q) = (1 + 3q)(x + 2p)$
50)	The partial differential equation obtained by eliminating arbitrary functions from the equation
	$z = f(x) + e^{y}g(x) \text{ is } \underline{\hspace{1cm}}.$
	(a) $Z_x = Z_y$
	(b) $z_x = 2 z_y$
	(c) $z_{yy} = z_y$
	(d) $Z_{xx} = Z_y$
	ANSWERS
	1.a
	2.c 3.b
	4.c
	5.a 6.b
	0.0

7.a
8.a
9.a
10.a
11.b
11.0
12.b
13.a
14.a
15.d
16.c
17.a
18.c
19.a
20.0
20.a
21.d
22.a
23.a
24.a
25.0
25.c
26.c
27.d
28.a
29.a
30.a
31.d
31.u
32.a
33.a
34.a
35.a
36.a
37.b
38.d
39.a
40.c
41.a
42.b
172.0 42.0
43.a
44.c
45.d
46.c
47.a
48.d
49.a
50.c