$11n_{82} (K11n_{82})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -30181087379u^{14} - 63482369835u^{13} + \dots + 286209328348b - 329512457510, \\ & 222459805170u^{14} + 486064128543u^{13} + \dots + 286209328348a + 3182822169919, \\ & u^{15} + 2u^{14} + \dots + 10u - 1 \rangle \\ I_2^u &= \langle b^2 - 2, \ a - u - 1, \ u^2 + u + 1 \rangle \\ I_3^u &= \langle b, \ a + u + 1, \ u^2 + u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 21 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3.02 \times 10^{10} u^{14} - 6.35 \times 10^{10} u^{13} + \cdots + 2.86 \times 10^{11} b - 3.30 \times 10^{11}, \ 2.22 \times 10^{11} u^{14} + 4.86 \times 10^{11} u^{13} + \cdots + 2.86 \times 10^{11} a + 3.18 \times 10^{12}, \ u^{15} + 2 u^{14} + \cdots + 10 u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.777263u^{14} - 1.69828u^{13} + \dots - 20.7871u - 11.1206 \\ 0.105451u^{14} + 0.221804u^{13} + \dots + 3.04137u + 1.15130 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.777263u^{14} - 1.69828u^{13} + \dots - 20.7871u - 11.1206 \\ 0.0983887u^{14} + 0.190365u^{13} + \dots + 2.38106u + 1.29506 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1.21619u^{14} + 2.44009u^{13} + \dots + 22.7698u + 12.4895 \\ -0.0983778u^{14} - 0.210858u^{13} + \dots - 1.81717u - 1.45285 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1.42791u^{14} - 2.95841u^{13} + \dots - 31.0375u - 14.0034 \\ 0.156497u^{14} + 0.304479u^{13} + \dots + 2.72370u + 1.69949 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.671811u^{14} - 1.47648u^{13} + \dots + 2.72370u + 1.69949 \\ 0.105451u^{14} + 0.221804u^{13} + \dots + 3.04137u + 1.15130 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.29506u^{14} + 2.68850u^{13} + \dots + 27.7863u + 15.3316 \\ -0.150085u^{14} - 0.291905u^{13} + \dots - 3.03487u - 1.79788 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.29506u^{14} + 2.68850u^{13} + \dots + 27.7863u + 15.3316 \\ -0.150085u^{14} - 0.291905u^{13} + \dots - 3.03487u - 1.79788 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{127706987601}{286209328348}u^{14} - \frac{268342154629}{286209328348}u^{13} + \dots - \frac{2023089158227}{286209328348}u - \frac{132460189755}{71552332087}u^{13} + \dots + \frac{2023089158227}{286209328348}u^{13} + \dots + \frac{202308915827}{286209328348}u^{13} + \dots + \frac{202308915827}{28620932848}u^{13} + \dots + \frac{2023089158}{28620932848}u^{13} + \dots + \frac{2023089158}{2862093284}u^{13} + \dots + \frac{2023089158}{2862093284}u^{13} +$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_5	$u^{15} - 2u^{14} + \dots + 10u + 1$
c_2	$u^{15} + 26u^{14} + \dots + 130u - 1$
<i>c</i> ₃	$u^{15} - 27u^{13} + \dots - 294u + 181$
c_4	$u^{15} + 2u^{14} + \dots - 26u - 29$
c_{6}, c_{9}	$u^{15} - 3u^{14} + \dots + 11u + 7$
c_7, c_8, c_{11}	$u^{15} + u^{14} + \dots - 12u + 4$
c_{10}	$u^{15} + 2u^{14} + \dots + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^{15} + 26y^{14} + \dots + 130y - 1$
c_2	$y^{15} - 70y^{14} + \dots + 19426y - 1$
c_3	$y^{15} - 54y^{14} + \dots + 330786y - 32761$
c_4	$y^{15} + 18y^{14} + \dots - 5646y - 841$
c_{6}, c_{9}	$y^{15} + y^{14} + \dots - 61y - 49$
c_7, c_8, c_{11}	$y^{15} - 25y^{14} + \dots + 112y - 16$
c_{10}	$y^{15} + 2y^{14} + \dots + 10y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.803098 + 0.748670I		
a = 0.646315 + 0.226464I	0.89161 - 2.83187I	-3.17067 + 6.54660I
b = -0.574139 - 0.064590I		
u = -0.803098 - 0.748670I		
a = 0.646315 - 0.226464I	0.89161 + 2.83187I	-3.17067 - 6.54660I
b = -0.574139 + 0.064590I		
u = 0.289457 + 0.470166I		
a = -1.237560 - 0.324915I	-1.172960 - 0.777601I	-6.04145 + 2.77158I
b = 0.565034 + 0.450274I		
u = 0.289457 - 0.470166I		
a = -1.237560 + 0.324915I	-1.172960 + 0.777601I	-6.04145 - 2.77158I
b = 0.565034 - 0.450274I		
u = -0.231441 + 0.401782I		
a = -1.51486 - 1.67785I	1.80414 - 1.09347I	2.23827 - 2.22165I
b = -0.280610 + 0.385572I		
u = -0.231441 - 0.401782I		
a = -1.51486 + 1.67785I	1.80414 + 1.09347I	2.23827 + 2.22165I
b = -0.280610 - 0.385572I		
u = 0.31482 + 1.53771I		
a = 0.672510 + 0.519039I	-7.20728 - 4.71372I	-5.60542 + 4.01319I
b = -1.36446 - 0.54656I		
u = 0.31482 - 1.53771I		
a = 0.672510 - 0.519039I	-7.20728 + 4.71372I	-5.60542 - 4.01319I
b = -1.36446 + 0.54656I		
u = -0.70342 + 1.47150I		
a = -0.520487 + 0.299718I	-6.05090 - 1.57623I	-5.49718 + 1.52700I
b = 1.49730 - 0.27028I		
u = -0.70342 - 1.47150I		
a = -0.520487 - 0.299718I	-6.05090 + 1.57623I	-5.49718 - 1.52700I
b = 1.49730 + 0.27028I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.0846656		
a = -13.3666	-3.38897	-2.51440
b = 1.46557		
u = 0.44610 + 2.10573I		
a = 0.766270 - 0.413924I	-19.5760 + 1.0165I	-5.21772 + 0.08752I
b = -1.95777 + 0.08885I		
u = 0.44610 - 2.10573I		
a = 0.766270 + 0.413924I	-19.5760 - 1.0165I	-5.21772 - 0.08752I
b = -1.95777 - 0.08885I		
u = -0.35476 + 2.19036I		
a = -0.628878 - 0.529570I	-18.8095 - 8.6900I	-4.44865 + 3.93161I
b = 1.88186 + 0.21032I		
u = -0.35476 - 2.19036I		
a = -0.628878 + 0.529570I	-18.8095 + 8.6900I	-4.44865 - 3.93161I
b = 1.88186 - 0.21032I		

II.
$$I_2^u = \langle b^2 - 2, a - u - 1, u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u+1 \\ b \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u+1 \\ b+u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u-1 \\ -b \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} b-u+1 \\ -bu-u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} b+u+1 \\ b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -bu-b-1 \\ -2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -bu-b-1 \\ -2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_{10}	$(u^2+u+1)^2$
c_3	$u^4 - 2u^3 + 5u^2 + 2u + 1$
C4	$u^4 + 2u^3 + 5u^2 - 2u + 1$
<i>C</i> ₅	$(u^2 - u + 1)^2$
<i>C</i> ₆	$(u-1)^4$
c_7, c_8, c_{11}	$(u^2-2)^2$
<i>c</i> ₉	$(u+1)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_{10}	$(y^2 + y + 1)^2$
c_3, c_4	$y^4 + 6y^3 + 35y^2 + 6y + 1$
c_6, c_9	$(y-1)^4$
c_7, c_8, c_{11}	$(y-2)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.500000 + 0.866025I	-3.28987 - 2.02988I	-2.00000 + 3.46410I
b = 1.41421		
u = -0.500000 + 0.866025I		
a = 0.500000 + 0.866025I	-3.28987 - 2.02988I	-2.00000 + 3.46410I
b = -1.41421		
u = -0.500000 - 0.866025I		
a = 0.500000 - 0.866025I	-3.28987 + 2.02988I	-2.00000 - 3.46410I
b = 1.41421		
u = -0.500000 - 0.866025I		
a = 0.500000 - 0.866025I	-3.28987 + 2.02988I	-2.00000 - 3.46410I
b = -1.41421		

III.
$$I_3^u = \langle b, a + u + 1, u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u-1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u-1 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u-1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u+1 \\ u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u-1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u + 2

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4	$u^2 + u + 1$
c_5,c_{10}	$u^2 - u + 1$
	$(u+1)^2$
c_7, c_8, c_{11}	u^2
<i>c</i> ₉	$(u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_{10}	$y^2 + y + 1$
c_6, c_9	$(y-1)^2$
c_7, c_8, c_{11}	y^2

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -0.500000 - 0.866025I	1.64493 - 2.02988I	0. + 3.46410I
b = 0		
u = -0.500000 - 0.866025I		
a = -0.500000 + 0.866025I	1.64493 + 2.02988I	0 3.46410I
b = 0		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 + u + 1)^3)(u^{15} - 2u^{14} + \dots + 10u + 1)$
c_2	$((u^2 + u + 1)^3)(u^{15} + 26u^{14} + \dots + 130u - 1)$
<i>c</i> ₃	$(u^{2} + u + 1)(u^{4} - 2u^{3} + \dots + 2u + 1)(u^{15} - 27u^{13} + \dots - 294u + 181)$
C4	$(u^{2} + u + 1)(u^{4} + 2u^{3} + \dots - 2u + 1)(u^{15} + 2u^{14} + \dots - 26u - 29)$
<i>C</i> ₅	$((u^2 - u + 1)^3)(u^{15} - 2u^{14} + \dots + 10u + 1)$
c_6	$((u-1)^4)(u+1)^2(u^{15}-3u^{14}+\cdots+11u+7)$
c_7, c_8, c_{11}	$u^{2}(u^{2}-2)^{2}(u^{15}+u^{14}+\cdots-12u+4)$
<i>c</i> ₉	$((u-1)^2)(u+1)^4(u^{15}-3u^{14}+\cdots+11u+7)$
c_{10}	$(u^{2} - u + 1)(u^{2} + u + 1)^{2}(u^{15} + 2u^{14} + \dots + 2u - 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$((y^2 + y + 1)^3)(y^{15} + 26y^{14} + \dots + 130y - 1)$
c_2	$((y^2 + y + 1)^3)(y^{15} - 70y^{14} + \dots + 19426y - 1)$
<i>c</i> ₃	$(y^{2} + y + 1)(y^{4} + 6y^{3} + 35y^{2} + 6y + 1)$ $\cdot (y^{15} - 54y^{14} + \dots + 330786y - 32761)$
c_4	$(y^2 + y + 1)(y^4 + 6y^3 + \dots + 6y + 1)(y^{15} + 18y^{14} + \dots - 5646y - 841)$
c_6, c_9	$((y-1)^6)(y^{15}+y^{14}+\cdots-61y-49)$
c_7, c_8, c_{11}	$y^{2}(y-2)^{4}(y^{15}-25y^{14}+\cdots+112y-16)$
c_{10}	$((y^2 + y + 1)^3)(y^{15} + 2y^{14} + \dots + 10y - 1)$