Análisis Multivariado: Tarea 2

Distribuciones Multivariadas

Fecha de entrega: 29 de septiembre.

Distribución Normal Multivariada

- 1. (1 punto) Mostrar que si $\mathbf{x} \sim N_p(\mu, \Sigma)$, entonces $\mathbf{A}\mathbf{x}$ y $\mathbf{B}\mathbf{x}$ son independientes, si y solo si, $\mathbf{A}\Sigma\mathbf{B}^T = 0$.
- 2. (1 punto) Mostrar que si $\mathbf{y} \sim N_p(\mathbf{0}, \sigma^2 \mathbf{I})$ y $\mathbf{A}_{p \times p}$ es una matriz simétrica, entonces $\mathbf{y}^{\mathbf{T}} \mathbf{A} \mathbf{y} \sim \sigma^2 \chi_r^2$, si y solo si, \mathbf{A} es idempotente y tal que ran(A) = r. (Hint: Para la ida obtener la función característica de $\mathbf{y}^T \mathbf{A} \mathbf{y}$ y compararla con la de la χ_r^2 . Deducir que \mathbf{A} tiene r eigenvalores iguales a 1 y así \mathbf{A} es idempotente de rango r).
- 3. (1 punto) Mostrar que si $\mathbf{x}_n = (x_{n1}, \dots, x_{np})$ es una colección de vectores aleatorios independientes e idénticamente distribuidos, con vector de medias μ y matriz (finita) de covarianza Σ . Entonces,

$$\sqrt{n} \left(\bar{\mathbf{x}} - \mu \right) \rightarrow N_p \left(\mathbf{0}_p, \Sigma \right).$$

Distribución Wishart

- 4. (1 punto) Sea $\mathbf{x}_1, \dots, \mathbf{x}_n$ una colección iid de vectores aleatorios $N_p(\mu, \Sigma)$, $\mathbf{A}_{n \times n}$ una matriz simétrica de rango r y $\mathbf{b}_{n \times 1}$ un vector de constantes. Mostrar que $\mathbf{X}^T b \sim N_p$, $\mathbf{X}^T \mathbf{A} \mathbf{X} \sim W_p(r, \Sigma)$ y son independientes, si y solo si, $\mathbf{y}^T b \sim N_1$, $\mathbf{y}^T \mathbf{A} \mathbf{y} \sim \sigma_a^2 \cdot \chi_r^2$ y son independientes.
- 5. (1 punto) Sea $\mathbf{M} \sim W_p(n, \Sigma)$, entonces si consideramos la siguiente partición de \mathbf{M} y Σ ,

$$\mathbf{M} = \begin{pmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{M}_{21} & \mathbf{M}_{22} \end{pmatrix} \qquad \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}.$$

Demostrar que \mathbf{M}_{11} y \mathbf{M}_{22} son independientes si $\Sigma_{12} = \mathbf{0}$.

Distribuciones Elípticas y Esféricas

6. (1 punto) Si $\mathbf{y} \sim S(g)$ y si se considera la transformación a coordenadas polares dada por,

$$y_1 = r \sin(\theta_1)$$

$$y_2 = r \cos(\theta_1) \sin(\theta_2)$$

$$y_3 = r \cos(\theta_1) \cos(\theta_2) \sin(\theta_3)$$

$$\vdots$$

$$y_{p-1} = r \cos(\theta_1) \cos(\theta_2) \cdots \cos(\theta_{p-2}) \sin(\theta_{p-1})$$

$$y_p = r \cos(\theta_1) \cos(\theta_2) \cdots \cos(\theta_{p-2}) \cos(\theta_{p-1}),$$

mostrar lo siguiente:

i. La densidad del vector aleatorio $(R,\Theta_1,\dots,\Theta_{p-1})$ está dada por

$$r^{p-1}\cos(\theta_1)^{p-2}\cos(\theta_2)^{p-3}\cdots\cos(\theta_{p-2})g(r^2).$$

ii. La densidad marginal de R está dada por

$$\frac{2\pi^{\frac{p}{2}}r^{p-1}g(r^2)}{\Gamma\left(\frac{p}{2}\right)}.$$

iii. Las marginales de $\Theta_1,\dots,\Theta_{p-2}$ están dadas por

$$\frac{\Gamma\left(\frac{p-i}{2}\right)\cos(\theta_i)^{p-i-1}}{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{p-i-1}{2}\right)},$$

y la densidad de Θ_{p-1} está dada por

$$\frac{1}{2\pi}$$
.

Distribución Dirichlet

7. (1 punto) Sean $y_1, \ldots, y_p \stackrel{\text{ind}}{\sim} Ga(\alpha_i, \theta)$ mostrar que

$$(x_1,\ldots,x_p)=\left(\frac{y_1}{v},\ldots,\frac{y_p}{v}\right)\sim Dir(\alpha_1,\ldots,\alpha_p).$$

Además mostrar que,

i.
$$\mathbb{E}(x_i) = \frac{\alpha_i}{\alpha_0} = \tilde{\alpha}_i$$

ii.
$$\operatorname{Var}(x_i) = \frac{\tilde{\alpha}_i(1-\tilde{\alpha}_i)}{(1+\alpha_0)}$$

iii.
$$Cov(x_i, x_j) = \frac{-\alpha_i \alpha_j}{\alpha_0^2(\alpha_0 + 1)}$$

donde $\alpha_0 = \sum_i \alpha_i$.

Ejercicios Prácticos

- 8. (1 punto) Considera una urna con bolas de K diferentes colores, donde al tiempo 0, hay α_i bolas del i-ésimo color. Al tiempo n, se saca una bola y se regresa a la urna junto con una nueva bola de ese color y se repite el proceso N veces. Si $N \to \infty$, se puede demostrar que las proporciones de bolas en la urna seguirán una distribución Dirichlet.
 - i. Considerando $K=3,\ \alpha=c(2,5,1)$ y N "suficientemente grande", implementa este algoritmo y obtén una muestra de tamaño n.
 - ii. Diseña e implementa un algoritmo para generar vectores aleatorios Dirichlet a partir de la transformación de variables aleatorias gammas. Obtén una muestra de tamaño n.
 - iii. Para diferentes valores de N y n compara la media, el segundo momento y la covarianza muestral contra los resultados teóricos obtenidos en el ejercicio 7. ¿Cuál algoritmo es más eficiente?
- 9. (1 punto) Considera la base de datos *cork.txt* que contiene los pesos de corcho tomado de las 4 direcciones cardinales de 28 árboles. ¿Se puede asumir que los datos siguen una distribución normal multivariada?
- 10. (1 punto) Para la base de datos wine.txt asumir que las variables Alcohol y Malic acid siguen una distribución normal multivariada. Utilizando un $\alpha = .01$ realizar lo siguiente:
 - i. Probar la hipótesis de que el vino promedio difiera de 13 grados de alcohol y 2 unidades de ácido málico.
 - ii. Realizar los contrastes de hipótesis necesarios para verificar si existe o no una diferencia para los niveles de alcohol y ácido málico para las clases 1 y 2.