Measure- and Integration theory - Assignment 01

Duc (395220), Viktor (392636), Jacky (391049) April 28, 2020

Aufgabe 1

Let (X, \mathcal{A}, μ) be a measure space. Show that $\mathcal{B} = \{A \in \mathcal{A} : \mu(A) = 0 \text{ or } \mu(A^c) = 0\}$ is a σ algebra on X.

Proof. We show the three properties from definition 3.3.

- (i) We have $\mu(X^{\complement}) = \mu(\emptyset) = 0$ by definition 3.4, implying $X \in \mathcal{B}$.
- (ii) Let $A \in \mathcal{B}$. Then either $\mu(A) = 0$ or $\mu(A^{\complement}) = 0$ holds. In the first case $A^{\complement} \in \mathcal{B}$ as $\mu((A^{\complement})^{\complement}) = \mu(A) = 0$ holds. In the second case $A^{\complement} \in \mathcal{B}$ is immediate.
- (iii) Let $(A_k)_{k\in\mathbb{N}}\subset\mathcal{B}$. We first show that μ is monotone, i.e. $A\subset B\Longrightarrow \mu(A)\leq \mu(B)$ for $A,B\in\mathcal{A}$. As $B=(B\setminus A)\cup A$ is a disjoint union, we have $\mu(B)=\mu(B\setminus A)+\mu(A)\geq \mu(A)$ as $\mu(C)\geq 0$ for all $C\in\mathcal{A}$. (We have $B\setminus A=B\cap A^{\complement}=\left(B^{\complement}\cup A\right)^{\complement}\in\mathcal{A}$ by properties two and three). This argument holds for countable families, too.

Next we show that $\mu\left(\bigcup_{k\in\mathbb{N}}A_k\right)\leq\sum_{k\in\mathbb{N}}\mu(A_k)$. We can rewrite

$$\bigcup_{k\in\mathbb{N}} A_k = \bigcup_{k\in\mathbb{N}} \left(A_k \setminus \bigcup_{j=1}^{k-1} A_k \right)$$

as a disjoint union, implying the statement by the monotonicity of μ .

Case 1: $\mu(A_k) = 0$ for all $k \in \mathbb{N}$. We have

$$0 \le \mu\left(\bigcup_{k \in \mathbb{N}} A_k\right) \le \sum_{k \in \mathbb{N}} \mu(A_k) = 0.$$

Case 2: There exists $A \subset \mathbb{N}$ such that $\mu(A_k^{\complement}) = 0$ for $k \in A$ and $\mu(A_k) = 0$ for $k \notin A$. By DEMORGANS laws and the monotonicity of μ

$$\mu\left(\left(\bigcup_{k\in\mathbb{N}}A_k\right)^{\complement}\right) = \mu\left(\bigcap_{k\in\mathbb{N}}A_k^{\complement}\right) \le \mu(A_k^{\complement}) = 0$$

holds for some $k \in A$ as $\bigcap_{k \in \mathbb{N}} B_k \subset B_i$ holds for all $i \in \mathbb{N}$ and arbitrary sets $(B_k)_{k \in \mathbb{N}}$.

Let (X,\mathcal{A}) be a measurable space and $X_0\subset X$ a non-emptyset. Show that the trace σ algebra $\mathcal{B}\coloneqq\left\{A\cap X_0:A\in\mathcal{A}\right\}$ is a σ -algebra.

Proof. We show the three properties from definition 3.3.

- (i) We have $X_0 = X \cap X_0 \in \mathcal{B}$, as $X \in \mathcal{A}$ as \mathcal{A} is a σ algebra (\star) .
- (ii) For $B := A \cap X_0 \in \mathcal{B}$ with $A \in \mathcal{A}$

$$X_0 \setminus B = X_0 \setminus (A \cap X_0) = X_0 \setminus A = X_0 \cap A^{\complement} \in \mathcal{B}$$

holds, as by (\star) , $A^{\complement} \in \mathcal{A}$.

(iii) For $(B_k := A_k \cap X_0)_{k \in \mathbb{N}} \subset \mathcal{B}$ with $(A_k)_{k \in \mathbb{N}} \subset \mathcal{A}$

$$\bigcup_{k\in\mathbb{N}} B_k = \bigcup_{k\in\mathbb{N}} (A_k \cap X_0) = X_0 \cap \bigcup_{k\in\mathbb{N}} A_k \in \mathcal{B},$$

holds, as $\bigcup_{k\in\mathbb{N}} A_k \in \mathcal{A}$ by (\star) .

Aufgabe 2

To show:

$$\mu(\liminf_{n\to\infty} A_n) \stackrel{(1)}{\leq} \liminf_{n\to\infty} \mu(A_n) \stackrel{(2)}{\leq} \limsup \mu(A_n) \stackrel{(3)}{\leq} \mu(\limsup A_n).$$

Zur Erinnerung:

$$\liminf_{n \to \infty} A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n = \lim_{n \to \infty} \bigcap_{i=n}^{\infty} A_i$$

Proof. Seien $A_i \in \mathcal{A}$ für alle $i \in \mathbb{N}$.

(1) Sei $B_n := \bigcap_{i=n}^{\infty} A_i$. Dann ist die Folge $(B_n)_{n \in \mathbb{N}}$ aufsteigend: $B_n \subset B_{n+1}$ gilt für alle $n \in \mathbb{N}$. Aus Satz 3.7 (a) folgt

$$\lim_{n \to \infty} \mu(B_n) = \mu(\lim_{n \to \infty} B_n) = \mu(\liminf_{n \to \infty} A_n).$$

Nun ist $B_n = \bigcap_{i=n}^{\infty} A_i \subset A_k$ für alle $k \geq n$. Daher $\mu(B_n) \leq \mu(A_k)$ für alle $k \geq n$. Somit auch $\mu(B_n) \leq \inf_{k \geq n} \mu(A_k)$. Grenzwertbildung ergibt

$$\mu(\liminf_{n\to\infty} A_n) \le \liminf_{n\to\infty} \mu(A_k).$$

(2) Das ist klar aus der Definition des Limes superiors und Limes inferiors, da für alle $\varepsilon > 0$ und für fast alle Folgenglieder einer Folge $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}$

$$\liminf_{n \to \infty} x_n - \varepsilon < x_n < \limsup_{n \to \infty} x_n + \varepsilon$$

gilt.

(3) Das Maß ist endlich. Daher ist $\mu(A_i)$ endlich für alle Mengen A_i . Damit können wir die Stetigkeit von oben von μ ausnutzen (*). Definiere die Menge $B_n := \bigcup_{i=n}^{\infty} A_i$. Aus der Definition folgt, dass $(B_n)_{n \in \mathbb{N}}$ absteigend ist. Damit folgt

$$\lim_{n \to \infty} \mu(B_n) \stackrel{(*)}{=} \mu(\lim_{n \to \infty} B_n) = \mu\left(\bigcap_{i=1}^{\infty} \bigcup_{n=i}^{\infty} A_n\right).$$

Nun ist $B_n \supset A_i$ für alle $i \ge n$. Damit ist $\mu(B_n) \ge \mu(A_i)$ für alle $i \ge n$. Sodann haben wir $\mu(B_n) \ge \sup_{i \ge n} \mu(A_i)$. Grenzwertbildung ergibt dann

$$\limsup_{n \to \infty} \mu(A_n) \le \mu\left(\bigcap_{i=1}^{\infty} \bigcup_{n=i}^{\infty} A_n\right).$$

Zum Schluss noch ein Beispiel, wo $\mu(\liminf_{n\to\infty}A_n)<\liminf_{n\to\infty}\mu(A_n)$ gilt. Betrachte die Lebesge-messbaren Mengen mit dem Lebesguemaß in \mathbb{R}^2 . Sei $A_i=[0,1]^2$, falls i gerade ist; andernfalls sei $A_i=[42,43]^2$. $\mu(\liminf_{n\to\infty}A_n)=0$, da $\liminf_{n\to\infty}A_n$ die leere Menge ist. Wir sehen, dass $\liminf_{n\to\infty}\mu(A_n)=1$ ist.