Probability Inequalities

Thm 1 (Gaussian Tail Inequality): Let $X \sim \mathcal{N}(0,1)$. Then

$$\mathbb{P}(|X| > \epsilon) \le \frac{2}{\epsilon} e^{-\epsilon^2/2} \tag{1}$$

Additionally:

$$\mathbb{P}(|\overline{X}_n| > \epsilon) \le \frac{1}{\sqrt{n\epsilon}} e^{-n\epsilon^2/2} \tag{2}$$

Proof

Note that
$$f_X(x) = (2\pi)^{-1/2}e^{-x^2/2}$$
 (pdf for $\mathcal{N}(0,1)$)

$$\Longrightarrow \mathbb{P}(X > \epsilon) = \int_{\epsilon}^{\infty} f_X(s)ds$$
 (taking upper range w.l.o.g)
$$\leq \frac{1}{\epsilon} \int_{\epsilon}^{\infty} sf_X(s)ds$$
 (Since $\frac{s}{\epsilon} > \frac{s}{s}$ in $[\epsilon, \infty)$)
$$= \frac{1}{\epsilon} \int_{\epsilon}^{\infty} f_X'(s)ds$$
 (taking derivative)
$$= \frac{1}{\epsilon} f_X(\epsilon) \leq \frac{1}{\epsilon} e^{-\epsilon^2/2}$$
 (f.t.c. and bound pdf)
$$\Longrightarrow \mathbb{P}(|X| > \epsilon) \leq \frac{2}{\epsilon} e^{-\epsilon^2/2}$$
 (by symmetry of pdf)

For
$$X_1, \ldots, X_n \sim \mathcal{N}(0, 1)$$
, $\overline{X}_n = n^{-1} \sum_i X_i \sim \mathcal{N}(0, 1/n)$
 $\Longrightarrow \overline{X}_n \stackrel{d}{=} n^{-1/2} Z$, where $Z \sim \mathcal{N}(0, 1)$ (sample mean identity)
 $\Longrightarrow \mathbb{P}(|\overline{X}_n| > \epsilon) = \mathbb{P}(n^{-1/2}|Z| > \epsilon)$
 $= \mathbb{P}(|Z| > n^{1/2} \epsilon) \le \frac{2}{\sqrt{n}\epsilon} e^{-n\epsilon^2/2}$ (using thm for $X \sim \mathcal{N}(0, 1)$)

Thm 2 (Markov Inequality): Let X be a non-negative random variable s.t. $\mathbb{E}(X)$ exists. Then $\forall t > 0$

$$\mathbb{P}(X > t) \le \frac{\mathbb{E}(X)}{t} \tag{3}$$

Proof

Since
$$X > 0$$
, $\mathbb{E}(X) = \int_0^\infty x f_X(x) dx$ (def of $\mathbb{E}(X)$)
$$= \int_0^t x f_X(x) dx + \int_t^\infty x f_X(x) dx$$
 (split up integral)
$$\geq \int_t^\infty x f_X(x) dx$$
 (keep upper part only)
$$\geq t \int_t^\infty f_X(x) dx$$
 ($t \leq x \text{ for } x \in [t, \infty)$)
$$= t \mathbb{P}(X > t)$$

Thm 3 (Chebyshev's Inequality): Let $\mu = \mathbb{E}(X)$ and $\sigma^2 =$ Var(X). Then

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2} \tag{4}$$

$$\mathbb{P}(|(X - \mu)/\sigma| \ge t) \le \frac{1}{t^2} \tag{5}$$

Proof

$$\mathbb{P}(|X - \mu| \ge t) = \mathbb{P}(|X - \mu|^2 \ge t^2)$$
 (square both sides)
$$\le \frac{\mathbb{E}[(X - \mu)^2]}{t^2} = \frac{\sigma^2}{t^2}$$
 (using Markov's inequality)

The second part follows by setting $t = t\sigma$.