Assignment 5

Topology (KSM1C03)

Submission Deadline: 5th October, 2025

- 1) Show the following implications.
 - a) Sequentially compact \Rightarrow countably compact.
 - b) Countably compact \Rightarrow limit point compact.

6 + 4 = 10

2) Show that the lower limit topology is first countable, but not second countable.

Hint: For each $x \in \mathbb{R}$, consider $x \in [x, \infty)$, and get basic open sets to derive contradiction.

$$4 + 6 = 10$$

3) Given any compact space X, show that the cone CX, and the suspension ΣX are compact. Justify that the n-shpere \mathbb{S}^n and the n-disc \mathbb{D}^n are compact.

$$4 + 4 + 2 = 10$$

4) Suppose $\mathcal{F} \subset \mathcal{P}(X)$ is a family of subsets, such that $\emptyset \not\in \mathcal{F}$. Suppose \mathcal{F} has the finite intersection property (FIP): for any $A_1, \ldots, A_n \in \mathcal{F}$, we have $\bigcap_{i=1}^n A_i \neq \emptyset$. Construct a filter \mathfrak{F} containing \mathcal{F} . Show that \mathcal{F} is contained in an ultrafilter \mathfrak{U} .

$$3 + 2 = 5$$

5) A filter \mathcal{F} is called *maximal* if $\mathcal{F} \subset \mathcal{G}$ for any filter \mathcal{G} implies $\mathcal{F} = \mathcal{G}$. Show that a filter is an ultrafilter if and only if it is a maximal filter.

Hint: If $S \notin \mathcal{F}, X \setminus S \notin \mathcal{F}$, then check that $\mathcal{F} \cup \{S\}$ has FIP.

$$5 + 5 = 10$$

6) Show that a space X is Hausdorff if and only if every ultrafilter on X converges to at most one point.

Hint: If X is not Hausdorff, there are points $x \neq y$ such that every open nbd of x intersects every open nbd of y. Consider the collection

$$\mathcal{A} \coloneqq \{U \mid x \in U, U \text{ is open}\} \cup \{V \mid y \in V, V \text{ is open}\}.$$

Close it under supersets to get a filter, and then get an ultrafilter containing it.

7) Let $f:X \to Y$ be a set map, $\mathfrak U$ be a filter on X. Define the *pushforward* as

$$f_*\mathfrak{U} := \{A \subset Y \mid f^{-1}(A) \in \mathfrak{U}\}.$$

Then, show that $\mathfrak U$ is a filter on Y. If $\mathfrak U$ is an ultrafilter, then show that $f_*\mathfrak U$ is an ultrafilter.

$$3 + 2 = 5$$

8) Show that the product space $[0,1]^{[0,1]}$ is not first countable.

Hint: If $\{U_n\}$ is any countable collection of open sets, verify that there exists some $\alpha \in [0,1]$, for which $\pi_{\alpha}(U_n) = [0,1]$ for all $n \geq 1$, where $\pi_{\alpha} : [0,1]^{[0,1]} \to [0,1]$ is the α^{th} -component projection.

10