Mechanická práce a energie - Teoretický přehled

Fyzika - opakování a prohloubení

1 Mechanická práce

1.1 Definice

Obecná definice:

Mechanická práce je energie přenesená silou, která působí na těleso po určité dráze.

Rovnice:

$$W = F \cdot s \cdot \cos \alpha$$

Speciální případy:

- $\alpha = 0$ (síla ve směru pohybu): $W = F \cdot s$
- $\alpha = 90$ (síla kolmá k pohybu): W = 0
- $\alpha = 180$ (síla proti pohybu): $W = -F \cdot s$

Popis veličin:

Veličina	Popis	Jednotka
\overline{W}	Mechanická práce	J (Joule)
F	Síla	N
s	Dráha	m
α	Úhel mezi silou a dráhou	° nebo rad

Fyzikální význam:

- Práce je skalární veličina (může být kladná, záporná i nulová)
- Kladná práce: síla koná práci (přidává energii)
- Záporná práce: síla brzdí (odebírá energii)
- Nulová práce: síla nekoná práci (kolmá k pohybu)

2 Výkon

2.1 Průměrný výkon

Definice:

Průměrný výkon je práce vykonaná za jednotku času.

Rovnice:

$$P_p = \frac{W}{t}$$

2.2 Okamžitý výkon

Rovnice:

$$P = F \cdot v$$

Popis veličin:

Veličina	Popis	Jednotka
\overline{P}	Výkon	W (Watt)
W	Práce	J
t	Čas	S
F	Síla	N
v	Rychlost	$\mathrm{m/s}$

Jednotka:

- 1 W (Watt) = 1 J/s
- 1 kW = 1000 W
- 1 MW = 1000000 W

2.3 Účinnost

Definice:

Účinnost vyjadřuje poměr užitečné energie (výkonu) k celkové dodané energii (výkonu).

Rovnice:

$$\eta = \frac{P_{vst}}{P_{vst}} = \frac{W_{vst}}{W_{vst}}$$

Vyjádření:

- V desetinném tvaru: $0 < \eta < 1$
- V procentech: $0\% < \eta < 100\%$

Fyzikální význam:

- Vždy $\eta < 1$ (nebo $\eta < 100\%$)
- Část energie se vždy ztratí (nejčastěji jako teplo třením)
- Ideální stroj by měl $\eta = 1$ (neexistuje)

3 Mechanická energie

3.1 Kinetická energie

Definice:

Kinetická energie je energie pohybujícího se tělesa.

Rovnice:

$$E_k = \frac{1}{2}mv^2$$

Popis veličin:

Veličina	Popis	Jednotka
E_k m v	Kinetická energie Hmotnost Rychlost	$egin{array}{c} J \ kg \ m/s \end{array}$

Fyzikální význam:

- Závisí na druhé mocnině rychlosti
- \bullet Zdvojnásobení rychlosti \to zčtyřnásobení energie
- Vždy kladná hodnota (rychlost je na druhou)

3.2 Potenciální energie

Definice:

Potenciální energie je energie polohy tělesa v gravitačním poli.

Rovnice:

$$E_p = mgh$$

Popis veličin:

Veličina	Popis	Jednotka
E_p	Potenciální energie	J
m	Hmotnost	kg
g	Tíhové zrychlení	$\mathrm{m/s^2}$
h	Výška nad referenční hladinou	m

Fyzikální význam:

- Závisí na výběru nulové hladiny (referenční úrovně)
- Čím výše, tím větší potenciální energie
- Při pádu se mění na kinetickou energii

3.3 Celková mechanická energie

Rovnice:

$$E = E_k + E_p = \frac{1}{2}mv^2 + mgh$$

3

4 Zákony zachování

4.1 Zákon zachování mechanické energie

Formulace:

V konzervativním systému (bez třecích sil) zůstává celková mechanická energie konstantní.

Rovnice:

$$E_k + E_p = \text{konst.}$$

$$\frac{1}{2}mv^2 + mgh = \text{konst.}$$

Aplikace na volný pád:

V nejvyšším bodě (h = h_{max} , v = 0):

$$E = E_p = mgh_{max}$$

Při dopadu (h = 0, v = v_{max}):

$$E = E_k = \frac{1}{2}mv_{max}^2$$

Rovnost:

$$mgh_{max} = \frac{1}{2}mv_{max}^2$$

Rychlost při volném pádu:

$$v = \sqrt{2gh}$$

4.2 Zákon zachování hybnosti

Formulace:

V izolované soustavě je celková hybnost konstantní.

Rovnice:

$$\vec{p}_{ped} = \vec{p}_{po}$$

Pro dvě tělesa:

$$m_1\vec{v}_1 + m_2\vec{v}_2 = m_1\vec{v}_1' + m_2\vec{v}_2'$$

Aplikace:

- Srážky těles
- Výbuch
- Raketový pohon

Důležité:

- Platí vždy (i při nepružných srážkách)
- Zachovává se i v případech, kdy se nezachovává mechanická energie

5 Druhy srážek

5.1 Pružná srážka

Charakteristika:

- Zachovává se hybnost
- Zachovává se kinetická energie
- Dokonale pružné tělesa (idealizace)

Zákony:

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2$$

5.2 Nepružná srážka

Charakteristika:

- Zachovává se hybnost
- Nezachovává se kinetická energie (část se mění na teplo, deformaci)
- Reálné srážky

Zákon:

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

Dokonale nepružná srážka:

- Tělesa se po srážce spojí
- Pohybují se společnou rychlostí

$$m_1v_1 + m_2v_2 = (m_1 + m_2)v'$$

6 Praktické vztahy

6.1 Vztah mezi prací a energií

Práce jako změna kinetické energie:

$$W = \Delta E_k = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2$$

Práce tíhové síly:

$$W_g = -\Delta E_p = -(mgh_2 - mgh_1) = mg(h_1 - h_2)$$

6.2 Brzdná dráha

Z kinetické energie:

$$E_k = W_{ten}$$

$$\frac{1}{2}mv^2 = F_t \cdot s$$

$$s = \frac{mv^2}{2F_t} = \frac{v^2}{2a}$$

Kde $a = F_t/m$ je brzdné zrychlení.

Závislost na rychlosti:

- \bullet Zdvojnásobení rychlosti \to zčtyřnásobení brzdné dráhy
- Proto je rychlost kritická pro bezpečnost

7 Fyzikální konstanty

Konstanta	Symbol	Hodnota	Jednotka
Tíhové zrychlení (Země) Tíhové zrychlení (Měsíc)	$g \\ g_M$	9,81 1,62	m/s^2 m/s^2

8 Souhrn jednotek v SI

Veličina	Jednotka SI	Odvození	Poznámka
Práce Energie Výkon Účinnost	J (Joule) J (Joule) W (Watt)	o ,	$1~\mathrm{J}=$ práce síly $1~\mathrm{N}$ po dráze $1~\mathrm{m}$ Stejná jako práce $1~\mathrm{W}=1~\mathrm{J/s}$ Bezrozměrná veličina (0-1 nebo 0-100%)

Běžné násobky:

- $\bullet \ 1 \ kJ = 1000 \ J$
- $\bullet \ 1 \ \mathrm{MJ} = 1000\,000 \ \mathrm{J}$
- $\bullet \ 1 \ kW = 1000 \ W$
- $\bullet~1~\mathrm{MW} = 1\,000\,000~\mathrm{W}$
- 1 kWh = $3\,600\,000$ J = 3,6 MJ

Poznámky

- Konzervativní síla: Síla, u které práce nezávisí na dráze, ale jen na počáteční a koncové poloze (gravitační síla, elektrická síla)
- Nekonzervativní síla: Síla, u které práce závisí na dráze (třecí síla)
- Energetická bilance: Součet všech energií zůstává konstantní (ale může se měnit forma energie)
- Práce a teplo: Jsou to formy přenosu energie, ne druhy energie
- Perpetuum mobile: Stroj s účinností 100% nebo větší neexistuje (porušoval by termodynamické zákony)
- Vztah práce a výkonu: Stejná práce může být vykonána s různým výkonem (záleží na čase)
- Elastická potenciální energie: $E_{pel}=\frac{1}{2}kx^2$ (pružina, kde k je tuhost a x je prodloužení)