accredian

September 20, 2024

0.0.1 1. Data Cleaning (Missing Values, Outliers, Multicollinearity)

• Libraries:

- Pandas: Handling missing values (isnull(), fillna()) and data manipulation.
- NumPy: For numerical operations.
- Seaborn/Matplotlib: For visualizing outliers using boxplots, histograms, or scatter plots.
- Scikit-learn: VarianceInflationFactor (VIF) from statsmodels to check multicollinearity.

Steps:

- Check and handle missing values (data.isnull().sum()).
- Identify and handle outliers using boxplots or Z-scores.
- Check for multicollinearity using VIF.

0.0.2 2. Fraud Detection Model Description

• Libraries:

- XGBoost, LightGBM, RandomForestClassifier: Suitable tree-based models for fraud detection.
- Logistic Regression: For understanding linear relationships, though it may not be optimal for imbalanced datasets.
- ${\tt Scikit-learn:}$ For model training, classification reports, confusion matrix, and metrics.

Steps:

- Use ensemble models like XGBoost or LightGBM and describe the approach (tree-based boosting, handling imbalanced datasets).
- Highlight important features (e.g., transaction amount ratios, balance differences, merchant flag).

0.0.3 3. Variable Selection

• Libraries:

- Scikit-learn: For feature selection using SelectKBest, Recursive Feature Elimination (RFE).
- SHAP: For feature importance and explainability.

Steps:

- Use SHAP values to explain the contribution of each feature.
- Perform correlation analysis (heatmaps) and use VIF to filter out redundant or correlated variables.

0.0.4 4. Model Performance Demonstration

• Libraries:

- Scikit-learn: For metrics like accuracy, ROC-AUC score, confusion matrix, and classification report.
- Matplotlib/Seaborn: For visualizing the confusion matrix and ROC curve.

Steps:

- Train the model using train-test split and evaluate the results.
- Present metrics such as precision, recall, F1-score, and the ROC-AUC score.

0.0.5 5. Key Factors for Predicting Fraudulent Customers

• Libraries:

- SHAP: For feature importance and visualizing the most significant factors.
- Scikit-learn: For model feature importance (e.g., feature importance for RandomForest, XGBoost).

Steps:

Use SHAP summary plots to identify top predictors like amount_ratio_org,
 balance_diff_org, and whether the transaction involves a merchant.

0.0.6 6. Validation of Factors

• Libraries:

- Pandas/Matplotlib: To explore and explain factors by plotting relationships.
- Seaborn: To visualize trends like fraud probability versus certain features.

Steps:

- Analyze if the factors make logical sense in the context of fraud (e.g., high transaction amounts, balance discrepancies, or merchant involvement).

0.0.7 7. Fraud Prevention Infrastructure Recommendations

To enhance a company's fraud prevention infrastructure, both technical and operational strategies must be adopted. These suggestions aim to proactively reduce fraud risk:

• Libraries:

 None specific: This is more of a technical infrastructure and process improvement rather than coding.

Recommendations:

- Real-time Transaction Monitoring: Implement real-time monitoring systems using streaming platforms such as Apache Kafka or Apache Flink. This allows for immediate detection of suspicious activities, minimizing fraud occurrence time.
- Multi-factor Authentication (MFA): For high-risk transactions (e.g., large amounts or international transfers), require an additional authentication step such as SMS or biometric verification.
- Behavioral Analytics: Leverage machine learning models that monitor user behavior to detect deviations from normal patterns. Anomalies like unusual login times or IP addresses can trigger investigations.
- Anomaly Detection Algorithms: Implement advanced anomaly detection algorithms
 like Isolation Forest or Autoencoders to spot unusual transaction patterns. This can
 help detect fraud before it occurs.

- Encryption and Data Protection: Ensure sensitive data (transaction details, customer information) is encrypted both at rest and in transit. Update encryption protocols regularly to match evolving security standards.
- Employee Training & Awareness: Regularly train employees to recognize and avoid phishing attacks and social engineering tactics that could lead to insider fraud.
- System Audit & Access Controls: Implement strict access controls and perform regular audits to limit data access to authorized personnel only, thus reducing the risk of internal fraud.

0.0.8 8. Validation of Prevention Effectiveness

Once fraud prevention measures are in place, it's essential to validate their effectiveness. Use a combination of metrics and feedback to monitor performance:

• Libraries:

- Pandas/Matplotlib: For tracking key metrics over time and plotting trends.
- Scikit-learn: For evaluating model performance both before and after the infrastructure updates.

Validation Process:

- 1. **Set Baseline Metrics**: Before implementing changes, establish baseline performance metrics:
 - Fraud rate (percentage of fraudulent transactions detected)
 - False positive rate (legitimate transactions flagged as fraudulent)
 - False negative rate (fraudulent transactions not detected)

2. Monitor Key Indicators:

- Transaction Volume: Check if transaction volumes are affected. A drop could indicate friction caused by false positives.
- Fraud Rate: Compare pre- and post-implementation fraud rates. A decrease suggests the new measures are working effectively.
- Time to Detection: Measure how long it takes to detect and flag fraud. A faster detection time is a positive indicator of the system's efficiency.

3. Feedback Loop:

- Customer Feedback: Collect feedback from customers to identify issues related to false positives or missed fraud cases. Too many false positives might indicate an overly aggressive system.
- Security Audits: Conduct regular audits to ensure that the implemented infrastructure changes are correctly enforced and working as intended.

4. A/B Testing:

- Control vs. Updated System: Run A/B tests by splitting transactions between the old system and the updated one. Compare fraud detection accuracy, false positive rates, and customer satisfaction between the two systems.
- **Prevention Impact**: Analyze fraud rate reductions and other metrics in both systems to evaluate the updated infrastructure's performance.

5. Regular Model Retraining:

 Continuously monitor model performance to track drift in transaction data. If fraud patterns evolve, retrain models to maintain detection accuracy. _____

0.0.9 Summary

By monitoring key performance indicators (KPIs) such as fraud rates, false positive rates, and customer feedback, the effectiveness of fraud prevention measures can be validated. A/B testing and model retraining further ensure that the new infrastructure is responsive to evolving fraud tactics.

0.0.10 Summary of Libraries:

- Data Handling: Pandas, NumPy
- Visualization: Matplotlib, Seaborn
- Modeling: XGBoost, LightGBM, RandomForestClassifier, LogisticRegression
- Metrics & Validation: Scikit-learn
- Explainability: SHAP
- Feature Selection: Scikit-learn, VIF (from statsmodels)

```
[49]: # Data manipulation and analysis
     import pandas as pd
     import numpy as np
      # Data visualization
     import matplotlib.pyplot as plt
     import seaborn as sns
     # Machine learning libraries
     from sklearn.model selection import train test split
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.metrics import classification report, roc auc score,
       from xgboost import XGBClassifier
     from sklearn.metrics import roc_curve, auc
     from sklearn.metrics import accuracy_score, precision_score, recall_score,_
       →f1_score
      # Handling categorical data
     from sklearn.preprocessing import LabelEncoder
      # SHAP for explainability
     import shap
      # Gradient boosting
     import lightgbm as lgb
      # Ignore warnings
```

```
import warnings
      warnings.filterwarnings("ignore")
      # Record time
      import time
[50]: # Load the dataset from CSV file
      data = pd.read_csv('Fraud.csv')
      # Display the first few rows of the data
      data.head()
[50]:
        step
                          amount
                                     nameOrig oldbalanceOrg newbalanceOrig \
                  type
      0
           1
               PAYMENT
                         9839.64 C1231006815
                                                     170136.0
                                                                    160296.36
      1
               PAYMENT
                          1864.28 C1666544295
                                                      21249.0
                                                                     19384.72
            1
            1 TRANSFER
      2
                          181.00 C1305486145
                                                        181.0
                                                                         0.00
      3
                           181.00
                                                        181.0
                                                                         0.00
           1 CASH_OUT
                                   C840083671
      4
               PAYMENT 11668.14 C2048537720
                                                      41554.0
                                                                     29885.86
           nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud
      0 M1979787155
                                0.0
                                                0.0
                                                0.0
                                                                            0
      1 M2044282225
                                 0.0
                                                            0
      2
         C553264065
                                0.0
                                                0.0
                                                            1
                                                                            0
                                                 0.0
      3
           C38997010
                             21182.0
                                                            1
                                                                            0
      4 M1230701703
                                0.0
                                                 0.0
                                                            0
                                                                            0
[51]: # Check for missing values
      print(data.isnull().sum())
      # Handling missing values - if needed
      # data.fillna(0, inplace=True)
      # Convert 'type' from categorical to numerical
      le = LabelEncoder()
      data['type'] = le.fit_transform(data['type'])
                       0
     step
                       0
     type
                       0
     amount
                       0
     nameOrig
     oldbalanceOrg
                       0
     newbalanceOrig
                       0
     nameDest
                       0
     oldbalanceDest
                       0
     newbalanceDest
     isFraud
     isFlaggedFraud
```

dtype: int64

```
[52]: # Transaction amount ratios (to capture how much of the balance was used)
      data['amount_ratio_org'] = data['amount'] / (data['oldbalanceOrg'] + 1)
      data['amount_ratio_dest'] = data['amount'] / (data['oldbalanceDest'] + 1)
      # Balance differences between old and new balances for origin and destination_
       \rightarrowaccounts
      data['balance_diff_org'] = data['oldbalanceOrg'] - data['newbalanceOrig']
      data['balance_diff_dest'] = data['oldbalanceDest'] - data['newbalanceDest']
      # Identifying merchant transactions (where 'nameDest' starts with 'M')
      data['isMerchant'] = data['nameDest'].apply(lambda x: 1 if x.startswith('M'),
       ⇔else 0)
      # Large transfer feature (flagging transactions over $200,000)
      data['large_transfer'] = data['amount'].apply(lambda x: 1 if x > 200000 else 0)
      # Display updated dataset
      data.head()
[52]:
                                             oldbalanceOrg newbalanceOrig \
         step
               type
                       amount
                                  nameOrig
                      9839.64 C1231006815
                                                  170136.0
      0
            1
                  3
                                                                 160296.36
      1
            1
                  3
                      1864.28 C1666544295
                                                   21249.0
                                                                  19384.72
      2
            1
                                                                       0.00
                       181.00 C1305486145
                                                     181.0
      3
                       181.00
                                C840083671
                                                     181.0
                                                                       0.00
                  1
      4
                  3 11668.14 C2048537720
                                                                  29885.86
            1
                                                   41554.0
            nameDest oldbalanceDest newbalanceDest isFraud
                                                                isFlaggedFraud
      0 M1979787155
                                 0.0
                                                  0.0
      1 M2044282225
                                 0.0
                                                  0.0
                                                             0
                                                                              0
      2
          C553264065
                                 0.0
                                                  0.0
                                                             1
                                                                              0
                             21182.0
                                                  0.0
                                                                              0
      3
           C38997010
                                                             1
      4 M1230701703
                                 0.0
                                                  0.0
                                                             0
                                                                              0
         amount_ratio_org
                           amount_ratio_dest balance_diff_org
                                                                 balance_diff_dest \
      0
                 0.057834
                                  9839.640000
                                                        9839.64
                                                                                0.0
                 0.087731
                                                        1864.28
                                                                                0.0
      1
                                  1864.280000
      2
                 0.994505
                                   181.000000
                                                         181.00
                                                                                0.0
      3
                                                         181.00
                                                                            21182.0
                 0.994505
                                     0.008545
      4
                 0.280788
                                 11668.140000
                                                       11668.14
                                                                                0.0
         isMerchant large_transfer
      0
                  1
                                  0
      1
                                  0
      2
                  0
      3
                  0
                                  0
```

4 1

0

```
[54]: # Fraud rate
      fraud_rate = data['isFraud'].mean() * 100
      print(f"Fraud Rate: {fraud_rate:.2f}%")
      # Transaction type distribution with respect to fraud
      plt.figure(figsize=(8, 5))
      sns.countplot(x='type', hue='isFraud', data=data, palette='coolwarm')
      plt.title('Transaction Types vs Fraud')
      plt.xlabel('Transaction Type')
      plt.ylabel('Count')
      plt.legend(title='Is Fraud', loc='upper right')
      plt.show()
      # Box plot: transaction amount vs fraud (consider clipping large values for
       ⇔visualization)
      plt.figure(figsize=(10, 6))
      sns.boxplot(x='isFraud', y='amount', data=data)
      plt.ylim(0, data['amount'].quantile(0.95)) # Limit to 95th percentile for
       ⇔better visualization
      plt.title('Transaction Amount vs Fraud')
      plt.xlabel('Fraud (0 = Non-Fraud, 1 = Fraud)')
      plt.ylabel('Transaction Amount')
      plt.show()
      # Histogram for transaction amount
      plt.figure(figsize=(10, 6))
      data[data['isFraud'] == 1]['amount'].hist(alpha=0.7, label='Fraud', bins=50,__
      data[data['isFraud'] == 0]['amount'].hist(alpha=0.7, label='Non-Fraud', |
       ⇒bins=50, color='blue')
      plt.title('Transaction Amount Distribution for Fraud vs Non-Fraud')
      plt.xlabel('Transaction Amount')
      plt.ylabel('Frequency')
      plt.xlim(0, data['amount'].quantile(0.95)) # Again, limit to 95th percentile_
       ⇔for visualization
      plt.legend()
      plt.show()
      # Correlation matrix (excluding non-numeric columns)
      numeric_columns = data.select_dtypes(include=[np.number]) # Select only_
       ⇔numeric columns
      plt.figure(figsize=(12, 8))
      sns.heatmap(numeric_columns.corr(), annot=True, cmap='coolwarm', fmt=".2f")
```

```
plt.title('Correlation Matrix (Numeric Columns Only)')
plt.show()
```

Fraud Rate: 0.13%


```
nameOrig oldbalanceOrg newbalanceOrig \
         step type
                      9839.64 C1231006815
                                                 170136.0
                                                                 160296.36
     0
            1
                  3
      1
            1
                  3
                      1864.28 C1666544295
                                                  21249.0
                                                                  19384.72
      2
                  4
                      181.00 C1305486145
                                                    181.0
                                                                      0.00
      3
                  1
                       181.00
                              C840083671
                                                    181.0
                                                                      0.00
                  3 11668.14 C2048537720
                                                                  29885.86
                                                  41554.0
            nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud
      0 M1979787155
                                 0.0
                                                 0.0
                                                            0
                                                                             0
      1 M2044282225
                                 0.0
                                                 0.0
                                                            0
                                                                             0
      2
          C553264065
                                 0.0
                                                 0.0
                                                             1
                                                                             0
      3
           C38997010
                             21182.0
                                                 0.0
                                                            1
                                                                             0
                                                 0.0
      4 M1230701703
                                 0.0
                                                            0
                                                                             0
                                                                balance_diff_dest \
         amount_ratio_org amount_ratio_dest balance_diff_org
     0
                 0.057834
                                 9839.640000
                                                       9839.64
      1
                 0.087731
                                 1864.280000
                                                       1864.28
                                                                               0.0
      2
                 0.994505
                                  181.000000
                                                        181.00
                                                                               0.0
      3
                 0.994505
                                    0.008545
                                                        181.00
                                                                          21182.0
                                                                               0.0
      4
                 0.280788
                                11668.140000
                                                     11668.14
         isMerchant large transfer
      0
                  1
                  1
                                  0
      1
      2
                  0
                                  0
      3
                  0
                                  0
      4
                                  0
                  1
[56]: # Defining the features (X) and target (y)
      X = data.drop(columns=['isFraud', 'nameOrig', 'nameDest', 'isFlaggedFraud'])
      y = data['isFraud']
      # Train-test split
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,_
       →random_state=42)
[57]: # Initialize the XGBoost model
      model = XGBClassifier()
      model.fit(X_train, y_train)
      # Make predictions
      y_pred = model.predict(X_test)
[58]: # Classification report
      print("Classification Report:\n", classification_report(y_test, y_pred))
      # Confusion matrix
```

[55]:

amount

```
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title('Confusion Matrix')
plt.show()

# ROC-AUC score
auc_score = roc_auc_score(y_test, y_pred)
print(f"ROC-AUC Score: {auc_score:.2f}")
```

Classification Report:

	precision	recall	f1-score	support
0 1	1.00 0.95	1.00 0.92	1.00 0.93	1906351 2435
accuracy macro avg weighted avg	0.98 1.00	0.96 1.00	1.00 0.97 1.00	1908786 1908786 1908786

ROC-AUC Score: 0.96

```
[59]: # Calculating evaluation metrics
      accuracy = accuracy_score(y_test, y_pred)
      precision = precision_score(y_test, y_pred)
      recall = recall_score(y_test, y_pred)
      f1 = f1_score(y_test, y_pred)
      print(f"Accuracy: {accuracy:.2f}")
      print(f"Precision: {precision:.2f}")
      print(f"Recall: {recall:.2f}")
      print(f"F1-Score: {f1:.2f}")
     Accuracy: 1.00
     Precision: 0.95
     Recall: 0.92
     F1-Score: 0.93
[60]: # Predict probabilities for ROC Curve
      y_pred_proba = model.predict_proba(X_test)[:, 1]
      # Calculate ROC Curve and AUC
      fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
      roc_auc = auc(fpr, tpr)
      # Plot ROC Curve
      plt.figure(figsize=(8, 6))
      plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (AUC = {roc_auc:.2f})')
      plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
      plt.xlim([0.0, 1.0])
      plt.ylim([0.0, 1.05])
      plt.xlabel('False Positive Rate')
      plt.ylabel('True Positive Rate')
      plt.title('Receiver Operating Characteristic (ROC) Curve')
      plt.legend(loc="lower right")
```

plt.grid(True)
plt.show()


```
[22]: # SHAP explainability
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X_test)

# Plot feature importance
shap.summary_plot(shap_values, X_test, plot_type="bar")
shap.summary_plot(shap_values, X_test)
```



```
# Function to predict if a transaction is fraudulent
def predict_fraud(transaction_data):
    # Ensure the transaction data is in the correct format (e.q., DataFrame)
   input_data = pd.DataFrame(transaction_data, index=[0])
    # Preprocess input data the same way as training data
   input_data['amount_ratio_org'] = input_data['amount'] /__
 input_data['amount_ratio_dest'] = input_data['amount'] /__
 input_data['balance_diff_org'] = input_data['oldbalanceOrg'] -__
 →input data['newbalanceOrig']
    input_data['balance_diff_dest'] = input_data['oldbalanceDest'] -__
 →input_data['newbalanceDest']
    input_data['isMerchant'] = input_data['nameDest'].apply(lambda x: 1 if x.
 ⇔startswith('M') else 0)
    input_data['large_transfer'] = input_data['amount'].apply(lambda x: 1 if x_
 →> 200000 else 0)
    # Encode the categorical fields (assume nameDest only for this function)
   input_data['nameDest'] = label_encoder.transform(input_data['nameDest'])
   # Ensure the input_data has the same columns as the training data
   input_data = input_data.reindex(columns=X.columns, fill_value=0)
   # Use the trained model to predict
   prediction = model.predict(input_data)
   return prediction[0]
# User input for transaction details with added print statements
transaction = {
    'oldbalanceOrg': float(input("Enter the old balance of origin account: ")),
    'newbalanceOrig': float(input("Enter the new balance of origin account: ")),
    'oldbalanceDest': float(input("Enter the old balance of destination account:
    'newbalanceDest': float(input("Enter the new balance of destination account:
 → ")),
    'amount': float(input("Enter the transaction amount: ")),
    'nameDest': input("Enter the name of destination: ")
}
# Print the values entered by the user
print("\nUser-entered transaction details:")
print(f"Old balance of origin account: {transaction['oldbalanceOrg']}")
print(f"New balance of origin account: {transaction['newbalanceOrig']}")
```

```
print(f"Old balance of destination account: {transaction['oldbalanceDest']}")
print(f"New balance of destination account: {transaction['newbalanceDest']}")
print(f"Transaction amount: {transaction['amount']}")
print(f"Destination name: {transaction['nameDest']}\n")

# Predict fraud
result = predict_fraud(transaction)

# Output the result
if result == 1:
    print("The transaction is predicted to be fraudulent.")
else:
    print("The transaction is predicted to be non-fraudulent.")
```

```
User-entered transaction details:
```

```
Old balance of origin account: 50000.0
New balance of origin account: 40000.0
Old balance of destination account: 10000.0
New balance of destination account: 20000.0
Transaction amount: 10000.0
```

Transaction amount: 10000.0 Destination name: M1979787155

The transaction is predicted to be non-fraudulent.

0.0.11 6. Do These Factors Make Sense?

Yes, these factors make sense based on established fraud detection patterns:

- Large Transaction Amounts: Fraudulent transactions tend to involve unusually high amounts to maximize the payout from a compromised account.
- Transaction Type: Fraudsters often target account types that allow easy transfers or cashouts.
- Balance Differences: Large withdrawals or sudden transfers, especially to previously inactive or unknown accounts, are strong indicators of fraud.
- Merchant Transactions: Some fraudulent activities involve setting up fake businesses or hacking into merchant accounts.
- **High Ratios of Amount to Balance:** Fraudulent transactions often use a significant portion of the available balance, which stands out as anomalous behavior.

0.0.12 7. What Kind of Prevention Should Be Adopted While the Company Updates Its Infrastructure?

When updating infrastructure for fraud detection, it is essential to adopt several security and preventive measures:

• Data Encryption: Encrypt sensitive transaction and customer data to prevent unauthorized access.

- Multi-Factor Authentication (MFA): Implement MFA for customers and employees to prevent account takeovers.
- Real-Time Fraud Monitoring: Deploy machine learning models to detect suspicious activity in real-time and stop fraudulent transactions before they complete.
- Behavioral Analytics: Use behavioral models to detect anomalous patterns in customer behavior that could indicate fraud.
- Transaction Limits: Implement customizable transaction limits based on the customer's profile to limit potential damage in case of fraud.
- Continuous Model Training: Continuously retrain fraud detection models with updated data to adapt to new fraud tactics.

0.0.13 8. Assuming These Actions Have Been Implemented, How Would You Determine If They Work?

To determine if the implemented actions work, you should adopt the following approaches:

- Track Key Fraud Metrics: Monitor metrics like the fraud rate, false positive rate, and false negative rate before and after implementing new fraud detection measures. A reduction in fraud rate and false negatives would indicate improvement.
- A/B Testing: Conduct A/B testing to compare the performance of the new system against the old one in detecting fraud. A significant improvement in fraud detection would validate the changes.
- Audit Reports: Perform regular audits of high-risk transactions to ensure the new systems are correctly identifying and blocking fraud attempts.
- Customer Feedback: Gather customer feedback on security improvements and monitor complaints related to fraud.
- **Performance Dashboards:** Set up real-time dashboards to track the performance of fraud detection systems and infrastructure updates.
- **Simulation of Fraud Scenarios:** Test the system by simulating fraud scenarios and verifying that it responds appropriately to detect and block fraudulent activities.

19