CE 225: Dynamic of Structures

Fall 2025

Discussion 5: Response Spectrum - Applications

Instructor: Matthew DeJong GSI: Miguel A. Gomez

Announcements

• Solution for HW#4 is up on bCourses.

Summary of Central Difference and Newmark's Methods

	Scheme:	Central Difference	Newmark		
	Algorithm	Define Δt (see Stability)	Define Δt (See stability)		
		,	Define β and γ (See stability)		
		Initial Calculations $\ddot{u}_0, u_{-1}, \hat{k}, a, b$	Initial Calculations		
		For each time step $i = 1,, N - 1$	$\ddot{u}_0, a_1, a_2, a_3, \hat{k} = k + a_1$		
			For each time step $i = 1,, N - 1$		
		$-\hat{p}_i = p_i + au_{i-1} + bu_i$	$-\hat{p}_{i+1} = p_{i+1} + a_1 u_i + b \dot{u}_i + c \ddot{u}_i$		
Solv	nga ~	$ u_{i+1} = \frac{\hat{p}_i}{\hat{i}}$			
1 00	moblem		$-u_{i+1} = \frac{\hat{p}_{i+1}}{\hat{k}}$		
Lynea	ocran Kime &	$ \begin{array}{c c} & p_i - p_i + a u_{i-1} + b u_i \\ \hline & u_{i+1} = \frac{\hat{p}_i}{\hat{k}} \\ \hline & \text{Explicit} \end{array} $	- We need $\dot{u}_{i+1}, \ddot{u}_{i+1}$		
0	Type	Explicit	Implicit		
	G. 1:1:	- EOM enforced at time t_i	- EOM enforced at time t_{i+1}		
	Stability	Conditionally stable:	It depends on the chosen scheme:		
		$\frac{\Delta t}{T_n} \le \frac{1}{\pi}$	$\frac{\Delta t}{T_n} \leq \frac{1}{\pi\sqrt{2}} \frac{1}{\sqrt{\gamma - 2\beta}}$		
		$T_n = \pi$	$T_n = \pi\sqrt{2}\sqrt{\gamma} - 2\beta$		
			In practice:		
			Constant acceleration $(\beta = 1/4, \gamma = 1/2)$ - Unconditionally stable \rightarrow less accepte		
			- less accurate		
			Linear acceleration: $(\beta = 1/6, \gamma = 1/2)$		
			- Conditionally stable under: Δt		
			$\frac{\Delta t}{T_n} < 0.551$		
	Nonlinear	Modified \hat{p}_i to account $f_S(u_i)$	Incremental form of the EOM:		
	Systems				
		$\hat{p_i} = p_i - au_{i-1} + \frac{2m}{(\Delta t)^2} u_i - (f_S)_i$	$m\Delta \ddot{u}_i + c\Delta \dot{u}_i + \Delta (f_S)_i = \Delta p_i$		
		Unsktuku	2 Options: - Approximate $(f_S)_{i+1} \approx (k_T)_i u_{i+1}$		
		behavior of the	- Newton-Raphson Iterations		
		male an	£ 14.441		
	Table 0.1: Comparison between the schemes				
"state determination" block state determination, iterations required to get typically requires iterations.					
			fyoically regives iterations.		
					.00.50.0
			@ each time step		
			(3 (2007) 110 2 3 10)		

Some relevant concepts about the response spectrum

Some questions...

{**f** small C:

$$mi + ku = - mig(t)$$

$$\Rightarrow \qquad \qquad \text{ku} = -m \left(\text{iig(t)} + \text{ii(t)} \right)$$

$$\frac{k}{m}u = -\ddot{u}^{t}(t)$$

$$\Rightarrow \omega_n^2 u = - \ddot{v}^{t}(t)$$

ne get peak deformation $u_0 = D \Rightarrow con get estimate of$

peak TOTAL acceleration

Definition:

Pseudo-aueleration $A = w_n^2 D$

$$A = \omega_n^2 D$$

estimate of peak total acceleration

Response Spectrum Applications

Example 1 - Peak response

A 10-ft long vertical cantilever made of a steel pipe supports a 3000-lb weight attached at the tip, as shown in the Figure below. The properties of the pipe are: outside diameter = 6.625 in, inside diameter = 6.065 in, thickness = 0.280 in, second moment of cross-sectional area I = 28.1 in⁴, Young's modulus E = 29,000 ksi, and weight per unit length = 18.97 lb/ft. Determine the peak deformation and the bending stress in the cantilever due to the El Centro ground motion. Assume $\zeta = 5\%$. The peak ground acceleration (PGA) of the El Centro Ground motion is 0.319g, and the response spectrum is shown below.

$$K = \frac{3ET}{L^3} = \frac{3.29,000 \text{ (ksi)} \cdot 28.1 \text{ (in}^4)}{(10.12 \text{ in})^3} = 1.41 \text{ (Kips/in)}$$

$$\omega_n = \sqrt{\frac{k}{m}}$$
; $W = 19.97 \text{ (lb/ft)} \cdot 5\text{(ft)} + 3,000 \text{ (lb)} = 3095 \text{ (lb)}$

$$\Rightarrow \qquad \omega_n = - \sqrt{\frac{1,410 \; (16 | \text{lin}) \cdot 386 \; (\text{in}/\text{s}^2)}{3,09 \leq (16)}} = 13.26 \; (\text{rad | sec}) \Rightarrow \text{Tn} = \frac{2\pi}{13.26} = 0.47 \; (\text{sec})$$

From the response spectrum, with Tn = 0.47 (sec).

$$\frac{A}{\text{vigo}} \approx 2.7 \Rightarrow A = 2.7 \cdot \text{vigo} = 2.7 \cdot 0.3199$$

$$\Rightarrow A = 0.8619$$

by we want $p = A/m_0^2$

$$\Rightarrow D = \frac{0.86|\cdot386\,(\text{in}|?)}{(13.26)^2} = 1.9\,(\text{in}).$$

To get peak bending stress: $\sigma = \frac{M.\overline{y}}{L} \rightarrow M = \frac{3E^{\pm}}{L^2}.D$

$$\Rightarrow M_0 = \frac{3EE}{l^3} \cdot D = \frac{3 \cdot 29,000 \, (\text{kir}) \cdot 28 \cdot l \, (\text{in}^4)}{(10 \cdot 12 \, \text{in})^2} \cdot 1.9 \, (\text{in}) = 320 \, (\text{kir} \cdot \text{in}).$$

And the peak bending stress: $c_0 = \frac{M \cdot y}{t} = \frac{320 \cdot (6.625 | 2)}{28.1} = 37.31 \text{ (ksi)}$

20 (Kp)

Example 2

The braced frame in the Figure below is made of wo hinged columns and two wires. The columns do not participate in the lateral stiffness. The wires are prestressed to an initial tension of $p_o = 100$ kips. The properties of each wire are: cross-section area A = 1000 and E = 29,000 ksi. The structure supports a rigid beam, which supports a weight of 1000 kips. The structure is subjected to the El Centro ground motion. Will the wires become loose during the earthquake?

7 0.153 (in)

Recall:
$$K_{lod} = 2 \frac{\xi_{A}}{L} \cdot \cos^{2}(\alpha)$$
 and $A_{loot} = \frac{f}{\cos(\alpha)}$; $f: deformation on the wires.$

From the prestress
$$q_0 = 20$$
 (kips)
$$q_0 = \frac{tA}{L} \cdot J_0 \Rightarrow J_0 = \frac{q_0 \cdot L}{tA} = \frac{20 \left(\text{kips} \right) \cdot \left(10 \cdot 12 \text{ in} \right)}{29,000 \left(\text{kips} \right) \cdot \left(153 \text{ Lin}^3 \right)} = 0.541 \text{ (in)}.$$

How much lateral displacement this represents?

$$\Delta l \omega l = \frac{g}{cos(\omega)} = \frac{0.541}{0.9} = 0.676$$
 (in).

if
$$D > 0.676^{\circ}$$
 \Rightarrow lose densian on the wifes. -
$$\omega_{n} = \sqrt{\frac{k}{m}} \Rightarrow k = 47.33 \left(\frac{kip!}{in}\right) \qquad \omega_{n} = \sqrt{\frac{47.33 \cdot 386}{100}} = 13.52 \left(\frac{not |sec}{not |sec}\right)$$

$$T_{n} = \frac{2\pi}{\omega_{n}} = 0.465 \left(\frac{sec}{not}\right).$$

$$\frac{A}{\text{rigo}} = 2.7 \Rightarrow A = 0.8619 \Rightarrow D = \frac{0.861 \cdot 386}{(13.52)^2} = 1.91" > 0.676"$$

Mid-semester evaluation

I'd like to get your input on how you feel discussions and office hours are going so far. Your feedback is very much appreciated! Here's the link to my mid-semester evaluation. Your responses will remain anonymous.

https://tinyurl.com/ce225-gsi-eval

