AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Prabal Ghosh Côte d'Azur University

AIQDSC34 - ECUE More on Deep Learning Algorithms 28/03/2024

Outline

- Motivation for Vision Transformer
- Vision Transformer architecture
- Training Vision Transformer
- Result Discussion
- Conclusion

Motivation and idea:

- The encoder-decoder architecture of Transformer achieved state of the art performance on machine translation tasks, by allowing significantly more parallelization (i.e less time to train).
- RestNet (CNN) was the best solution for image classification.

- Can we apply Transformers to images and get state-of-the-art results?
- Use the Transformer Encoder architecture with fewest possible modifications and apply on image classification tasks.

Vision Transformers Architecture: Uses Popular BERT Architecture

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021.

Standard Transformer on Patches

<u>Dog image</u> is free for use

Standard Transformer on Patches

Split Image into Patches

- Here, the patches do not overlap.
- User specifies:
 - patch size, e.g., 16×16;

9 input patches, each of shape 3x16x16

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021 Image Ref. http://wangshusen.github.io/

Vectorization

If the patches are H×W×C tensors, then the vectors are HWC×1.

Linear projection to D-dimensional vector N input patches, each of shape Cx16x16

Add positional embedding vectors to $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$.

Add positional encoding vectors to $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$. (Why?)

- 3% drop in accuracy is observed, if we do not apply positional.
- Positional embedding can be 1D or 2D, but no significant improvement is found in using 2D embedding, hence the paper uses 1D position embedding.

Image Ref. http://wangshusen.github.io/

Vision Transformer Architecture

Image Patches \equiv Tokens (Words) in NLP $x \in \mathbb{R}^{H \times W \times C} \to \text{image}$ $x_p \in \mathbb{R}^{N \times (P^2C)} \to \text{sequence of flattened 2D patches (reshape } x)$ $P \times P \rightarrow \text{resolution of each image patch}$ $N = \frac{HW}{P^2} \rightarrow \text{resulting number of patches}$ $D \to \text{latent vector size}$

The MLP contains two layers with a GELU non-linearity.

$$\mathbf{z}_0 = [\mathbf{x}_{\text{class}}; \, \mathbf{x}_p^1 \mathbf{E}; \, \mathbf{x}_p^2 \mathbf{E}; \cdots; \, \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}, \, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$
(1)

$$\mathbf{z}'_{\ell} = \text{MSA}(\text{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, \qquad \ell = 1 \dots L$$
 (2)

$$\mathbf{z}_{\ell} = \text{MLP}(\text{LN}(\mathbf{z}'_{\ell})) + \mathbf{z}'_{\ell}, \qquad \ell = 1 \dots L$$
 (3)

$$\mathbf{y} = \mathrm{LN}(\mathbf{z}_L^0) \tag{4}$$

Lx

MLP

Norm

Multi-Head

Attention

Norm

Embedded Patches

Training Dataset Vision Transformer

Datasets

Vision Transformer(ViT) was pre-trained on 3 datasets of varying size and scale.

Pre-Training Vision Transformer

Vision Transformer(ViT) was pre-trained with same configurations of as BERT.

Model	Layers	${\it Hidden \ size \ } D$	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Table 1: Details of Vision Transformer model variants.

All the models are pre-trained using ADAM optimizer with batch size of 4096

Fine-Tuning Vision Transformer

 All the models are fine tuned using SGD optimizer with monentum and batch size of 512 for ViT-L/16 and 518 for ViT-H/14.

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Image Classification Accuracies

- Pretrained on ImageNet (small), ViT is slightly worse than ResNet.
- Pretrained on ImageNet-21K (medium), ViT is comparable to ResNet.
- Pretrained on JFT (large), ViT is slightly better than ResNet.

Self-supervision:

Most of Transformers success in NLP is the result of large-scale self-supervised pre-training where Transformer is trained on massive unlabelled data from the web.

Using masked work prediction technique that were used in BERT(randomly masking words in input sentence), ViT designers also tried the same technique where they masked 50% of patches(masked patch prediction) but achieved less performance than supervised pretraining(79.9% ACC on ImageNet while supervised pre-training is ~85%).

Masked-word prediction in BERT Transformer is an efficient deep learning architecture Transformer Encoder Transformer is an efficient deep learning architecture

Masked patch prediction ViT

Vision Transformer vs SOTA CNN(ResNet)

B: Base, L: Large, H: Huge

14, 16, 32: Patch size(the smaller patch size, the more the patches,

and the bigger the model) >> **N = HW/PP**

Ex: ViT-B/16: Base ViT with 16x16 patch size

Results

- On small pre-training dataset(ImageNet-1k, 1.3M images), ResNet performs better than ViT due to CNN spatial inductive biases that compensate for small dataset.
- On medium pre-training dataset(Imagenet-21k, 14M images), ViTs and ResNet performance are almost similar although ViTs perform slightly better.
- On large pre-training dataset(JFT, 303M images), large ViT outperforms ResNet and show no sign of plateau.

Vision Transformer vs SOTA CNN(ResNet)

Pre-training compute(in ExaFLOPs)

1 FLOP = 1 multiply-add(wx+b) per second FLOPs: floating point operations per second

Pre-training compute

- ViT clearly outperforms ResNet on performance/compute trade-off.
- ViT uses approximately 2-4x less compute to achieve the same transfer accuracy(average of all downstream datasets).
- Hybrid(CNN+ViT) slightly outperforms
 ViT on relatively small compute, but
 vanishes on large compute budget.
- ViT shows extreme scaling behavior. Its performance doesn't seem to saturate for increased compute.

Inspecting ViT Representation

Vision Transformer shows remarkable performance when trained on massive datasets.

RGB embedding filters (first 28 principal components)

The visualized linear embedding of flattened patches shows that the first layer of ViT(linear projection) learns the low level features(such as edges, blobs) of the input image much like ConvNets do!

Inspecting ViT Representation

Vision Transformer shows remarkable performance when trained on massive datasets. How does it processes images internally?

On global level, ViT attends to the meaningful part of the image and ignore the rest.

Conclusion

Vison Transformer matches or exceeds the state of art on many image classification datasets, while being relatively cheap to pre-train.

While initial results are encouraging, we need to analyse the performane of ViT on other computer vison tasks, such as detection and segmentation.

Thank You!