The Language of Set Theory

February 22, 2017

1 Basic

1.1 Empty Set

$$S_1 = \{\}$$
 or $S_1 = \emptyset$

1.2 "is in" and "is not in"

Let $S_1 = \{a, b, c\}$. a is an element of set S_1 , which denoted as $a \in S_1$. However d is not in the set S_1 which denoted as $d \notin S_1$.

1.3 Subset

Let $S_1 = \{a, b, c\}$, $a, S_2 = \{b, c\}$ and $S_3 = \{a, b, c\}$. S_2 is the subset of S_1 , which denoted as $S_2 \subset S_1$, and S_1 is the subset of S_3 which denoted as $S_3 \subseteq S_1$.

1.4 Equal Sets

Let
$$S_3 = \{a, b, c\}$$
,
Then $S_1 = S_3 \Leftrightarrow S_1 \subset S_3$ and $S_1 \supset S_3$.

1.5 Union Set

 $S_1 \cup S_2$

1.6 Intersection Set

 $S_1 \cap S_2$

1.7 Difference Set

 $S_1 \setminus S_2$

2 Span of a Set of Vectors

Definition For a nonempty set $S = \{\underline{u_1}, \underline{u_2}, \dots, \underline{u_k}\}$ of vectors in \mathbb{R}^n , we define the span of S to be the set of all linear combinations of $\underline{u_1}, \underline{u_2}, \dots, \underline{u_k}$ in \mathbb{R}^n . This set is denoted by $Span\ S$ or $Span\ \{u_1, u_2, \dots, u_k\}$.

Span
$$S = \{c_1\underline{u_1} + c_2\underline{u_2} + \dots + c_k\underline{u_k} | \forall c_1, c_2, \dots, c_k \in R\}$$

or

$$Span S = \{A\underline{v}|v \in R^k, A = [\underline{u_1} \cdots \underline{u_k}]\}$$

When we want to say vector \underline{v} is the linear combination of vectors $\underline{u_1}, \underline{u_2}, \cdots, \underline{u_k}$, we could denote it by

$$\underline{v} \in Span \ S$$

2.1 Properties

- $Span \{0\} = \{0\}$
- Span $\{\underline{u}\}$ is the set of all scalar multiples of vector \underline{u} .
- If S contains a nonzero vector, then Span S has infinitely many vectors.

2.2 $v \in Span \ S$ or not?

Let $\underline{v} = [a_1 \cdots a_k]^T$ and $S = [\underline{u_1} \cdots \underline{u_k}]$ then $\underline{v} \in Span \ S \Leftrightarrow$ the solution set of $[\underline{u_1} \cdots \underline{u_k} \ \underline{v}]$ is consistent.

2.3 Definition of Generating Set

If $S, V \subset \mathbb{R}^n$ and Span S = V, then we say "S is a generating set for V" or "S generates V".

If we don't know the actual vector \underline{v} , how to determine?

The answer is resolve it by rank A.

For any $\underline{v} \in R^n$, let $[R \underline{c}]$ whose $R \in M_{m \times n}$ and $\underline{c} \in R^n$ be the reduced row echelon form of $[A \underline{v}], A \in M_{m \times n}, \underline{v} \in R^n$.

If the rank R = n, then A is the generating set of R^n (i.e. $Span\{a_1, \dots, a_n\} = R^n | [a_1 \dots a_n] = A$).

Theorem1 The following statements about an $m \times n$ matrix A are equivalent.

- The span of the columns of A is R^m .
- The equation $A\underline{x} = \underline{b}$ has at least one solution.(i.e. $A\underline{x} = \underline{b}$ is consistent, for each $\underline{b} \in \mathbb{R}^m$)

- The rank of A is m, the number of rows of A.
- \bullet The reduced row echelon form of A has no zero rows.
- There is a pivot position in each row of A.

Theorem2 Let $S = \{\underline{u_1}, \underline{u_2}, \dots, \underline{u_k}\}$ be a set of vectors from \mathbb{R}^n and let \underline{v} be a vector in \mathbb{R}^n . Then $Span \ S = Span \ (S \cup \{\underline{v}\})$ if and only if \underline{v} belongs to the span of S. The S is the smallest generating set for $Span \ S$.

Proof Since $Span \ S \subseteq Span \ (S \cup \{\underline{v}\})$, only need to show

Let
$$\underline{v} \in Span \ S \Rightarrow \underline{v} = c_1\underline{u_1} + \dots + c_n\underline{u_n} \mid c_1, \dots, c_n \in R \ and \ \underline{u_1}, \dots, \underline{u_n} \in S$$

Then $\forall x \in Span \ (S \cup \underline{v}) \Rightarrow d_1\underline{u_1} + \dots + d_n\underline{u_n} + d_k\underline{v} \mid d_1, \dots, d_k \in R \ and \ \underline{u_1}, \dots, \underline{u_n} \in S$

$$= (d_1 + c_1d_k)\underline{u_1} + \dots + (d_n + c_nd_k)\underline{u_n}$$

$$= k_1\underline{u_1} + \dots + k_n\underline{u_n} \mid k_1, \dots, k_n \in R$$

= Span S

 $Span (S \cup \{v\}) \subseteq Span S \Leftrightarrow v \in Span S$

3 Linear Dependence and Linear Independence