Estadística II Tercero del grado en Matemáticas, UAM, 2019-2020

Examen parcial 2, 18-12-2019

Apellidos, nombre

Ejercicio 1. Para analizar la longevidad Y (en años) de una cierta especie de tortuga marina, se seleccionan las siguientes cuatro variables regresoras:

- X_1 , el peso de cada individuo, en kilogramos,
- X_2 , el sexo de cada individuo (macho= 1, hembra = 0),
- X₃, la concentración de calcio en la sangre del individuo (medida en mg/dl),
- X_4 , la salinidad de las aguas en las que viven (niveles de salinidad: 1, 2, 3 y 4).

Se propone el habitual modelo de regresión lineal múltiple para muestras de tamaño n:

$$Y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \beta_4 x_{i,4} + \varepsilon_i$$
, para $i = 1, ..., n$,

donde las ε_i son variables normales independientes, de media 0 y varianza σ^2 .

Se ha analizado una población de 15 tortugas, y se han obtenido las siguientes estimaciones:

- $\widehat{\beta}_0 = 25,$
- $\hat{\beta}_1 = 0.4$, con desviación típica estimada de 0.04,
- $\hat{\beta}_2 = 10$, con desviación típica estimada de 3,
- $\hat{\beta}_3 = -0.8$, con desviación típica estimada de 0.3,
- $\widehat{\beta}_4 = -3$, con desviación típica estimada de 1.
- (a) (1 punto) ¿Hay evidencia estadística suficiente como para afirmar que la concentración de calcio en la sangre influye (linealmente) en la longevidad? Argumenta calculando el p-valor de la muestra para el contraste adecuado.
- (b) (1 punto) Se ha contrastado la hipótesis nula de que las cuatro variables **no** influyen conjuntamente en la longevidad de la tortuga. Se ha obtenido un p-valor del 0.7%. ¿Que valor de R^2 tiene el modelo de regresión?
- (c) (0.5 puntos) De una tortuga que pesa 85 kg, con 9 mg/dl de calcio en sangre, y que vive en aguas de salinidad 3, se ha predicho una longevidad de 52.8 años. La tortuga, ¿era macho o hembra?

Ejercicio 2. Sean Y_1, Y_2 e Y_3 tres variables aleatorias independientes con distribución normal y varianza σ^2 . Supongamos que μ es la media de Y_1 , λ es la media de Y_2 y $\mu + 2\lambda$ es la media de Y_3 , donde $\lambda, \mu \in \mathbb{R}$.

- (a) (0.5 puntos) Comprueba que el vector $\mathbb{Y} = (Y_1, Y_2, Y_3)^{\mathsf{T}}$ verifica un modelo de regresión múltiple $\mathbb{Y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$. Para ello, determina la matriz de diseño X, el vector de parámetros $\boldsymbol{\beta}$ y la distribución del vector de variables de error $\boldsymbol{\epsilon}$.
- (b) (1 punto) Calcula los estimadores $\hat{\lambda}$ y $\hat{\mu}$ de máxima verosimilitud (equivalentemente, de mínimos cuadrados) de λ y μ .
- (c) (1 punto) Determina la distribución conjunta del vector $\hat{\boldsymbol{\beta}} = (\hat{\lambda}, \hat{\mu})^{\mathsf{T}}$, formado por los estimadores calculados en el apartado anterior.

Ejercicio 3. (2.5 puntos) Considera las dos siguientes funciones de densidad, correspondientes a la distribución de un par de variables (X_1, X_2) en dos poblaciones π_0 y π_1 :

- $f_0(x_1, x_2) = \frac{e}{\pi(e-1)} e^{-(x_1^2 + x_2^2)}$, para $x_1^2 + x_2^2 \le 1$.
- $f_1(x_1, x_2)$ es la función de densidad de un vector bidimensional que se distribuye uniformemente en el el disco $D(\mathbf{0}, 8/9)$ (centrado en el origen, y de radio 8/9).

Ponemos $p_0 = p_1$. Identifica las regiones (óptimas) R_0 y R_1 de clasificación en π_0 y π_1 , respectivamente.

Ejercicio 4. (2.5 puntos) Suponemos que una variable respuesta Y depende linealmente de una única variable regresora X. La muestra va a ser de tamaño n, del tipo $(x_1, y_1), \ldots, (x_n, y_n)$.

Proponemos el siguiente modelo:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$
 para $i = 1, \dots, n,$

donde las ε_i son variables aleatorias idénticas e independientes, cada una de las cuales se distribuye como una uniforme en el intervalo $[-\sigma, \sigma]$.

Los parámetros del modelo son $\beta_0, \beta_1 \in \mathbb{R}$ y $\sigma > 0$.

Como estimador de β_1 elegimos el habitual $\widehat{\beta}_1$ de mínimos cuadrados.

- a) (1 punto) Comprueba si $\widehat{\beta}_1$ es un estimador insesgado de β_1 , y en caso contrario, calcula su sesgo.
- b) (1 punto) Calcula la varianza de $\widehat{\beta}_1$.
- b) (0.5 puntos) Supongamos que hay solo dos observaciones, a saber, $x_1 = 1$ y $x_2 = 3$, y que $\sigma = 1$. ¿Cuál es la distribución de $\hat{\beta}_1$ en este caso?

1. Percentiles de la t de Student con 10 grados de libertad

α	0.1%	0.2%	0.3%	0.4%	0.5%	0.6%	0.7%	0.8%	0.9%	1.0%
$t_{\{10;\alpha\}}$	4.144	3.716	3.472	3.301	3.169	3.062	2.972	2.894	2.825	2.764
α	1.1 %	1.2%	1.3%	1.4%	1.5%	1.6%	1.7%	1.8%	1.9%	2.0%
$t_{\{10;\alpha\}}$	2.708	2.658	2.611	2.568	2.527	2.490	2.454	2.421	2.389	2.359
α	2.1%	2.2%	2.3%	2.4%	2.5%	2.6%	2.7%	2.8%	2.9%	3.0%
$t_{\{10;\alpha\}}$	2.331	2.303	2.277	2.252	2.228	2.205	2.183	2.161	2.140	2.120
α	3.1%	3.2%	3.3%	3.4%	3.5%	3.6%	3.7%	3.8%	3.9%	4.0%
$t_{\{10;\alpha\}}$	2.101	2.082	2.063	2.046	2.028	2.011	1.995	1.979	1.963	1.948
α	4.1%	4.2%	4.3%	4.4%	4.5%	4.6%	4.7%	4.8%	4.9%	5. %
$t_{\{10;\alpha\}}$	1.933	1.919	1.904	1.890	1.877	1.863	1.850	1.837	1.825	1.812

2. Percentiles de la F de Fisher con 4 y 10 grados de libertad

α	0.1%	0.2%	0.3%	0.4%	0.5%	0.6%	0.7%	0.8%	0.9%	1.0%
$F_{\{4;10;\alpha\}}$	11.283	9.432	8.461	7.817	7.343	6.970	6.665	6.409	6.188	5.994
α	1.1 %	1.2%	1.3%	1.4%	1.5%	1.6%	1.7%	1.8%	1.9%	2.0%
$F_{\{4;10;\alpha\}}$	5.823	5.669	5.530	5.402	5.286	5.178	5.078	4.985	4.898	4.816
α	2.1%	2.2%	2.3%	2.4%	2.5%	2.6%	2.7%	2.8%	2.9%	3.0%
$F_{\{4;10;\alpha\}}$	4.738	4.665	4.596	4.531	4.468	4.409	4.352	4.298	4.245	4.195
α	3.1%	3.2%	3.3%	3.4%	3.5%	3.6%	3.7%	3.8%	3.9%	4.0%
$F_{\{4;10;\alpha\}}$	4.147	4.101	4.056	4.013	3.972	3.931	3.893	3.855	3.818	3.783
α	4.1%	4.2%	4.3%	4.4%	4.5%	4.6%	4.7%	4.8%	4.9%	5. %
$F_{\{4;10;\alpha\}}$	3.749	3.715	3.683	3.651	3.620	3.591	3.561	3.533	3.505	3.478