Chapter Twenty-One

Cost Curves

Types of Cost Curves

- ◆ A total cost curve is the graph of a firm's total cost function.
- ◆ A variable cost curve is the graph of a firm's variable cost function.
- ◆ An average total cost curve is the graph of a firm's average total cost function.

Types of Cost Curves

- ◆ An average variable cost curve is the graph of a firm's average variable cost function.
- ◆ An average fixed cost curve is the graph of a firm's average fixed cost function.
- A marginal cost curve is the graph of a firm's marginal cost function.

Types of Cost Curves

- How are these cost curves related to each other?
- How are a firm's long-run and shortrun cost curves related?

Fixed, Variable & Total Cost Functions

- ◆ F is the total cost to a firm of its shortrun fixed inputs. F, the firm's fixed cost, does not vary with the firm's output level.
- $c_v(y)$ is the total cost to a firm of its variable inputs when producing y output units. $c_v(y)$ is the firm's variable cost function.
- c_v(y) depends upon the levels of the fixed inputs.

Fixed, Variable & Total Cost Functions

 c(y) is the total cost of all inputs, fixed and variable, when producing y output units. c(y) is the firm's total cost function;

$$c(y) = F + c_v(y)$$
.

Av. Fixed, Av. Variable & Av. Total Cost Curves

♦ The firm's total cost function is $c(y) = F + c_v(y)$.

For y > 0, the firm's average total cost function is

$$AC(y) = \frac{F}{y} + \frac{c_{\mathbf{v}}(y)}{y}$$
$$= AFC(y) + AVC(y).$$

Av. Fixed, Av. Variable & Av. Total Cost Curves

What does an average fixed cost curve look like?

$$\mathbf{AFC}(\mathbf{y}) = \frac{\mathbf{F}}{\mathbf{y}}$$

AFC(y) is a rectangular hyperbola so its graph looks like ...

Av. Fixed, Av. Variable & Av. Total Cost Curves

In a short-run with a fixed amount of at least one input, the Law of Diminishing (Marginal) Returns must apply, causing the firm's average variable cost of production to increase eventually.

\$/output unit ATC(y) = AFC(y) + AVC(y)ATC(y) AVC(y) AFC(y)

0

V

\$/output unit AFC(y) = ATC(y) - AVC(y)ATC(y) AVC(y) **AFC** AFC(y)

0

V

Since AFC(y) \rightarrow 0 as y $\rightarrow \infty$, ATC(y) \rightarrow AVC(y) as y $\rightarrow \infty$.

And since short-run AVC(y) must eventually increase, ATC(y) must eventually increase in a short-run.

ATC(y)

AVC(y)

AFC(y)

Marginal Cost Function

Marginal cost is the rate-of-change of variable production cost as the output level changes. That is,

$$\mathbf{MC}(\mathbf{y}) = \frac{\partial \mathbf{c}_{\mathbf{v}}(\mathbf{y})}{\partial \mathbf{y}}.$$

Marginal Cost Function

♦ The firm's total cost function is $c(y) = F + c_v(y)$

and the fixed cost F does not change with the output level y, so

$$\mathbf{MC}(\mathbf{y}) = \frac{\partial \mathbf{c}_{\mathbf{v}}(\mathbf{y})}{\partial \mathbf{y}} = \frac{\partial \mathbf{c}(\mathbf{y})}{\partial \mathbf{y}}.$$

MC is the slope of both the variable cost and the total cost functions.

Marginal and Variable Cost Functions

♦ Since MC(y) is the derivative of $c_v(y)$, $c_v(y)$ must be the integral of MC(y). That is, $MC(y) = \frac{\partial c_v(y)}{\partial y}$ $\Rightarrow c_v(y) = \int MC(z) dz.$

Marginal and Variable Cost Functions

How is marginal cost related to average variable cost?

Since
$$AVC(y) = \frac{c_V(y)}{y}$$
,

$$\frac{\partial AVC(y)}{\partial y} = \frac{y \times MC(y) - 1 \times c_V(y)}{y^2}$$

Therefore,

$$\frac{\partial AVC(y)}{\partial y} = 0 \quad \text{as} \quad y \times MC(y) = c_v(y).$$

$$\frac{\partial AVC(y)}{\partial y} \stackrel{>}{=} 0$$
 as $MC(y) \stackrel{>}{=} \frac{c_v(y)}{y} = AVC(y)$.

$$\frac{\partial AVC(y)}{\partial y} = 0$$
 as $MC(y) = AVC(y)$.

$$MC(y) < AVC(y) \Rightarrow \frac{\partial AVC(y)}{\partial y} < 0$$

$$MC(y)$$

$$AVC(y)$$

$$MC(y) > AVC(y) \Rightarrow \frac{\partial AVC(y)}{\partial y} > 0$$

$$AVC(y)$$

$$AVC(y)$$

$$MC(y) = AVC(y) \Rightarrow \frac{\partial AVC(y)}{\partial y} = 0$$

$$MC(y)$$

$$AVC(y)$$

$$MC(y) = AVC(y) \Rightarrow \frac{\partial AVC(y)}{\partial y} = 0$$

The short-run MC curve intersects the short-run AVC curve from below at the AVC curve's minimum.

MC(y)

AVC(y)

Similarly, since
$$ATC(y) = \frac{c(y)}{y}$$
,
$$\frac{\partial ATC(y)}{\partial y} = \frac{y \times MC(y) - 1 \times c(y)}{v^2}$$
.

Similarly, since
$$ATC(y) = \frac{c(y)}{y}$$
,
$$\frac{\partial ATC(y)}{\partial y} = \frac{y \times MC(y) - 1 \times c(y)}{v^2}$$
.

Therefore,

$$\frac{\partial \text{ATC}(y)}{\partial y} = 0 \quad \text{as} \quad y \times \text{MC}(y) = c(y).$$

Similarly, since
$$ATC(y) = \frac{c(y)}{y}$$
, $\frac{\partial ATC(y)}{\partial y} = \frac{y \times MC(y) - 1 \times c(y)}{v^2}$.

Therefore,

$$\frac{\partial \operatorname{ATC}(y)}{\partial y} = 0 \quad \text{as} \quad y \times \operatorname{MC}(y) = c(y).$$

$$\frac{\partial \text{ ATC}(y)}{\partial y} \stackrel{>}{=} 0 \text{ as } \text{MC}(y) \stackrel{>}{=} \frac{c(y)}{y} = \text{ATC}(y).$$

- ◆ The short-run MC curve intersects the short-run AVC curve from below at the AVC curve's minimum.
- And, similarly, the short-run MC curve intersects the short-run ATC curve from below at the ATC curve's minimum.

Short-Run & Long-Run Total Cost Curves

- A firm has a different short-run total cost curve for each possible shortrun circumstance.
- Suppose the firm can be in one of just three short-runs;

$$x_2 = x_2'$$

or $x_2 = x_2''$ $x_2' < x_2'' < x_2'''$.
or $x_2 = x_2'''$.

\$

$$F' = W_2 X_2'$$

 $F'' = W_2 X_2''$

A larger amount of the fixed input increases the firm's fixed cost.

 $c_s(y;x_2')$

 $c_s(y;x_2'')$

F"

F'

\$

$$F' = W_2 X_2'$$

 $F'' = W_2 X_2''$

A larger amount of the fixed input increases the firm's fixed cost.

 $c_s(y;x_2^{\prime\prime})$

 $c_s(y;x_2')$

Why does a larger amount of the fixed input reduce the slope of the firm's total cost curve?

F"

0

V

MP₁ is the marginal physical productivity of the variable input 1, so one extra unit of input 1 gives MP₁ extra output units. Therefore, the extra amount of input 1 needed for 1 extra output unit is

MP₁ is the marginal physical productivity of the variable input 1, so one extra unit of input 1 gives MP₁ extra output units. Therefore, the extra amount of input 1 needed for 1 extra output unit is 1/MP₁ units of input 1.

MP₁ is the marginal physical productivity of the variable input 1, so one extra unit of input 1 gives MP₁ extra output units. Therefore, the extra amount of input 1 needed for 1 extra output unit is 1/MP₁ units of input 1. Each unit of input 1 costs w₁, so the firm's extra cost from producing one extra unit of output is

MP₁ is the marginal physical productivity of the variable input 1, so one extra unit of input 1 gives MP₁ extra output units. Therefore, the extra amount of input 1 needed for 1 extra output unit is 1/MP₁ units of input 1. Each unit of input 1 costs w₁, so the firm's extra cost from producing one extra unit of output is MC =

$$\frac{MC}{MP_1}$$
 is the slope of the firm's total cost curve.

$$\frac{MC}{MP_1}$$
 is the slope of the firm's total cost curve.

If input 2 is a complement to input 1 then MP_1 is higher for higher x_2 . Hence, MC is lower for higher x_2 .

That is, a short-run total cost curve starts higher and has a lower slope if x_2 is larger.

- The firm has three short-run total cost curves.
- In the long-run the firm is free to choose amongst these three since it is free to select x₂ equal to any of x₂', x₂", or x₂".
- How does the firm make this choice?


```
For 0 \le y \le y', choose x_2 = x_2'. c_s(y;x_2')
For y' \le y \le y'', choose x_2 = x_2''.
For y'' < y, choose x_2 = x_2'''.
                                             c_s(y;x_2'')
     c_s(y;x_2^{\prime\prime\prime})
                                       c(y), the
                                       firm's long-
                                       run total
                                        cost curve.
```

◆ The firm's long-run total cost curve consists of the lowest parts of the short-run total cost curves. The long-run total cost curve is the lower envelope of the short-run total cost curves.

If input 2 is available in continuous amounts then there is an infinity of short-run total cost curves but the long-run total cost curve is still the lower envelope of all of the short-run total cost curves.

Short-Run & Long-Run Average Total Cost Curves

- For any output level y, the long-run total cost curve always gives the lowest possible total production cost.
- ◆ Therefore, the long-run av. total cost curve must always give the lowest possible av. total production cost.
- ◆ The long-run av. total cost curve must be the lower envelope of all of the firm's short-run av. total cost curves.

Short-Run & Long-Run Average Total Cost Curves

 E.g. suppose again that the firm can be in one of just three short-runs;

$$x_2 = x_2'$$

or $x_2 = x_2''$ $(x_2' < x_2'' < x_2''')$
or $x_2 = x_2'''$
then the firm's three short-run
average total cost curves are ...

\$/output unit

Short-Run & Long-Run Average Total Cost Curves

◆ The firm's long-run average total cost curve is the lower envelope of the short-run average total cost curves ...

\$/output unit

The long-run av. total cost curve is the lower envelope of the short-run av. total cost curves.

• Q: Is the long-run marginal cost curve the lower envelope of the firm's short-run marginal cost curves?

- Q: Is the long-run marginal cost curve the lower envelope of the firm's short-run marginal cost curves?
- ◆A: No.

The firm's three short-run average total cost curves are ...

\$/output unit

◆ For any output level y > 0, the longrun marginal cost of production is the marginal cost of production for the short-run chosen by the firm.

- ◆ For any output level y > 0, the longrun marginal cost is the marginal cost for the short-run chosen by the firm.
- ◆ This is always true, no matter how many and which short-run circumstances exist for the firm.

- ◆ For any output level y > 0, the longrun marginal cost is the marginal cost for the short-run chosen by the firm.
- ◆ So for the continuous case, where x₂ can be fixed at any value of zero or more, the relationship between the long-run marginal cost and all of the short-run marginal costs is ...

\$/output unit

◆For each y > 0, the long-run MC equals the MC for the short-run chosen by the firm.