

### Markov modeling, discrete-event simulation – Exercises module B2

**5XIEO Computational Modeling** 

Twan Basten, Marc Geilen, Jeroen Voeten Electronic Systems Group, Department of Electrical Engineering

## module B - submodules and dependencies



$$\frac{1}{b} = 1 \quad -\infty \quad 2$$

$$-\infty \quad 3 \quad -\alpha$$

**B.2** – Markov chains

### Markov chains – exercises

- Section B.2 in the course notes
  - Exercise B.4 (Transition diagram to matrix)
  - Exercise B.5 (Matrix to transition diagram)
  - Exercise B.6 (Markov chains dependent and non-identically distributed variables)
  - Exercise B.7 (Gambler's ruin probability distributions)
    - use CMWB (DTMC) to double check your answers
      - select 'Create a new DTCM model' in 'General Operations', enter the Gambler's ruin model and save
      - select 'View Transition Diagram' in 'Operations on Markov chains' to inspect the transition diagram
      - selected 'Transient Distribution' and enter a number (say 2) of steps to analyze
      - 4. distribution vectors are provided in 'Analysis Output' pane
  - Exercise B.8 (Markov chains independent identically distributed variables)
    - use CMWB (DTMC) to double check your answers to (a)
      - select 'Create a new DTCM model' in 'General Operations' enter the model and save
      - 2. select 'Transient Distribution' and enter the number of steps to analyze
- answers are provided in Section B.8 of the course notes





## **Exercise B.4 (Transition diagram to matrix)**

Exercise B.4 (Transition diagram to matrix). Consider the transition diagram of the three-state Markov chain depicted in Figure B.4. Give the transition probability matrix of this chain.



Figure B.4: Transition diagram of three-state Markov chain

Exercise B.4 (Transition diagram to matrix). The transition probability matrix is given by

$$\begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}$$

$$P(X_{n+1} = j \mid X_n = i) = P_{ij}$$
(B.9)

## **Exercise B.5 (Matrix to transition diagram)**

Exercise B.5 (Matrix to transition diagram). Draw the transition diagram corresponding the Markov chain with transition probability matrix

$$\begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{8} & \frac{3}{4} & \frac{1}{8} \end{bmatrix}$$

Exercise B.5 (Matrix to transition diagram). The transition diagram is depicted in Figure B.14.



Figure B.14: Transition diagram of three-state Markov chain

# Exercise B.6 (Markov chain – dependent and non-identically distributed variables) Exercise B.6 (Markov chains - dependent and non-identically distributed variables)

Exercise B.6 (Markov chains - dependent and non-identically distributed variables). Consider a Markov chain  $X_0, X_1, \cdots$  with two states, 1 and 2. At times  $0, 2, \cdots$  the process visits state 1 and at times  $1, 3, \cdots$  it visits state 2.

- (a) Give the transition probability matrix of this chain and draw the transition diagram.
- (b) Give the initial distribution at time 0, i.e.  $\pi^{(0)}$ .
- (c) Determine the distribution at time 1.
- (d) Show that  $X_0$  and  $X_1$  are not identically distributed.
- (e) Show that  $X_0$  and  $X_1$  are dependent variables.

Exercise B.6 (Markov chains - dependent and non-identically distributed variables).

- (a) When the chain is in state 1, it will transition to state 2 with probability 1. Vice versa, when the chain is in state state 2, it will transition to state 1 with probability 1. Hence the transition probability matrix is given  $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ . The corresponding transition diagram is shown in Figure B.15.
- (b) At time 0, the chain visits state 0 with probability 1. Therefore  $\pi^{(0)} = [1, 0]$ .
- (c) After visiting state 0, the chain jumps to state 1 with probability 1. At time 1, the chain thus visits state 1 with probability 1 and therefore  $\pi^{(1)} = [0, 1]$ .
- (d) Distributions  $\pi^{(0)}$  and  $\pi^{(1)}$  are different and therefore  $X_0$  and  $X_1$  are not identically distributed.
- (e) Assume  $X_1$  and  $X_0$  are independent. Then for all  $i, j \in \{1, 2\}$ ,  $P(X_1 = j \mid X_0 = i) = P(X_1 = j)$ . In particular, for i = 2 and j = 2, we then have  $P(X_1 = 2 \mid X_0 = 2) = P(X_1 = 2)$ . But  $P(X_1 = 2 \mid X_0 = 2) = P_{22} = 0$  and  $P(X_1 = 2) = \pi_2^{(1)} = 1$ , so we have a contradiction. Therefore  $X_1$  and  $X_0$  are dependent variables.



Figure B.15: Transition diagram of two-state Markov chain

$$P(X_{n+1} = j \mid X_n = i) = P_{ij}$$
 (B.9)

$$X_n$$
 and  $X_m$  are independent if  $P(X_n = i \mid X_m = j) = P(X_n = i)$  for all  $i, j \in \mathcal{S}$  (B.7)

## Exercise B.7 (Gambler's ruin – probability distributions)

Exercise B.7 (Gambler's ruin - probability distributions). Consider Markov chain  $X_0, X_1, \cdots$  corresponding to transition diagram of the gambler's ruin in Figure B.3 and assume  $\pi^{(0)} = [0, 1, 0, 0]$ .

- (a) Determine  $\pi^{(1)}$ .
- (b) Determine  $\pi^{(2)}$ .



Figure B.3: Transition diagram of the gambler's ruin

#### Use CMWB (DTMC) to double check your answers

- select 'Create a new DTCM model' in 'General Operations', enter the Gambler's ruin model and save
- 2. select 'View Transition Diagram' in 'Operations on Markov chains' to inspect the transition diagram
- 3. selected 'Transient Distribution' and enter a number (say 2) of steps to analyze
- 4. distribution vectors are provided in 'Analysis Output' pane

#### Exercise B.7 (Gambler's ruin - probability distributions).

- (a) The chain starts in state 2 (with probability 1). After one transition, it will be in state 1 with probability  $\frac{1}{2}$  and in state 3 with probability  $\frac{1}{2}$ . Therefore  $\pi^{(1)} = [\frac{1}{2}, 0, \frac{1}{2}, 0]$ .
- (b) The probability that the chain is in state 1 at time 2 equals the probability that the chain is in state 1 at time 1 times 1 plus the probability that the chain is in state 2 at time 1 times  $\frac{1}{2}$ . Hence  $\pi_1^{(2)} = \pi_1^{(1)} \cdot 1 + \pi_2^{(1)} \cdot \frac{1}{2} = \frac{1}{2}$ . With a similar line of thought we obtain  $\pi_2^{(2)} = \frac{1}{4}$ ,  $\pi_3^{(2)} = 0$  and  $\pi_4^{(2)} = \frac{1}{4}$ . Hence  $\pi^{(2)} = \left[\frac{1}{2}, \frac{1}{4}, 0, \frac{1}{4}\right]$ .

# Exercise B.8 (Markov chains – independent identically distributed variables)

Exercise B.8 (Markov chains - independent identically distributed variables). Consider Markov chain  $X_0, X_1, \cdots$  with state-space  $\{1, 2\}$ , initial distribution  $\pi^{(0)} = \left[\frac{1}{2}, \frac{1}{2}\right]$  and transition probability matrix

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- (a) Show that  $X_n$  and  $X_{n+1}$  are identically distributed for all  $n=0,1,\cdots$ .
- (b) Show that  $X_n$  and  $X_{n+1}$  are independent for all all  $n = 0, 1, \dots$

#### Use CMWB (DTMC) to double check your answers to (a)

- 1. select 'Create a new DTCM model' in 'General Operations' enter the model and save
- 2. select 'Transient Distribution' and enter the number of steps to analyze

#### Exercise B.8 (Markov chains - independent identically distributed variables).

- (a) Using a similar line of thought as used in Exercise B.7, we find that  $\pi^{(n)} = [\frac{1}{2}, \frac{1}{2}]$  for all  $n = 0, 1, \cdots$ . Therefore  $X_n$  and  $X_{n+1}$  are identically distributed for all  $n = 0, 1, \cdots$ .
- (b) We have to show that  $P(X_{n+1} = j \mid X_n = i) = P(X_{n+1} = j)$  for all  $i, j \in \{1, 2\}$ . Now  $P(X_{n+1} = j \mid X_n = i) = P_{ij} = \frac{1}{2}$  and  $P(X_{n+1} = j) = \pi_j^{(n+1)} = \frac{1}{2}$  (for all  $i, j \in \{1, 2\}$ ) from which the result follows.

$$X_n$$
 and  $X_m$  are independent if  $P(X_n = i \mid X_m = j) = P(X_n = i)$  for all  $i, j \in \mathcal{S}$  (B.7)

