MA 372 : Stochastic Calculus for Finance

July - November 2023

Department of Mathematics, Indian Institute of Technology Guwahati Exercises 3

September 13, 2023

1. a) Prove that $\mathbb{E}[\exp\{iuW(t)\}] = \exp(-\frac{1}{2}u^2t)$

b) Deduce that $\mathbb{E}[W^4(t)] = 3t^2$ and more generally $\mathbb{E}[W^{2k}(t)] = \frac{(2k)!}{2^k k!} t^k$, $k \in \mathbb{N}$. Find $\mathbb{E}[W^6(t)]$.

c) Compute the moment generating function of $(W(t_1), W(t_2), \dots, W(t_m))$, i.e., find $\mathbb{E}[\exp\{u_1W(t_1) + u_2W(t_2) + \dots + u_mW(t_m)\}]$.

Hint: $u_1W(t_1) + u_2W(t_2) + \dots + u_mW(t_m) = u_m(W(t_m) - W(t_{m-1}) + (u_{m-1} + u_m)(W(t_{m-1}) - W(t_{m-2})) + \dots + (u_1 + u_2 + \dots + u_m)W(t_1)$

2. Let (X, Y) be jointly normal with the density

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{\left[-\frac{1}{2(1-\rho^2)} \left\{ \frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right\} \right]},$$

where $\sigma_1 > 0, \sigma_2 > 0, |\rho| < 1$, and μ_1, μ_2 are real numbers. Define $W = Y - \frac{\rho \sigma_2}{\sigma_1} X$. Then show that X and W are independent. Find joint density function of X and W.

3. Let W(t) be a Brownian motion and let $\mathcal{F}(t), t \geq 0$, be an associated filtration

a) For $\mu \in \mathbb{R}$, consider the Brownian motion with drift μ :

$$X(t) = \mu t + W(t).$$

Prove that X(t), $t \ge 0$ is a Markov process by showing that for any Borel-measurable function f, and for any $0 \le s < t$,

$$\mathbb{E}[f(X(t))|\mathcal{F}(s)] = g(X(s)),$$

where $g(x) = \int_{-\infty}^{\infty} f(y)p(\tau, x, y)dy$, $\tau = t - s$ and $p(\tau, x, y) = \frac{1}{\sqrt{2\pi\tau}} \exp\{-\frac{-(y - x - \mu\tau)^2}{2\tau}\}$ b) For $\nu \in \mathbb{R}$, $\sigma > 0$, consider the geometric Brownian motion

$$S(t) = S(0) \exp\{\nu t + \sigma W(t)\}.$$

Prove that S(t), $t \ge 0$ is a Markov process by showing that for any Borel-measurable function f, and for any $0 \le s < t$,

$$\mathbb{E}[f(S(t))|\mathcal{F}(s)] = g(S(s)),$$

where $g(x) = \int_{-\infty}^{\infty} f(y)p(\tau, x, y)dy$, $\tau = t - s$ and $p(\tau, x, y) = \frac{1}{\sigma y \sqrt{2\pi\tau}} \exp\{-\frac{-(\ln(y/x) - \nu \tau)^2}{2\sigma^2 \tau}\}$

4. Let X_n be a symmetric random walk, that is

$$X_n = Y_1 + Y_2 + \dots + Y_n,$$

where Y_1, Y_2, \cdots is a sequence of independent identical distributed random variables such that $\mathbb{P}(Y_n = 1) = \mathbb{P}(Y_n = -1) = 1/2$.

- a) Show that $X_n^2 n$ is a martingale with respect to the filtration $\mathcal{F}_n = \sigma(Y_1, \dots, Y_n)$.
- b) Show that $Z_n = (-1)^n cos(\pi X_n)$ is a martingale with respect to the filtration \mathcal{F}_n
- c) Show that $Z_n = (-1)^n cos(\pi(X_n + 100))$ is a martingale with respect to the filtration \mathcal{F}_n
- d)Let τ be a stopping time with respect to the filtration \mathcal{F}_n . Then the stopped process X^{τ} is defined for $t \geq 0$ and $w \in \Omega$ by

$$X_n^{\tau}(w) := X_{\{n \land \tau(w)\}}(w).$$

Show that X^{τ} is adapted to the filtration \mathcal{F}_n .

- e) Find $\mathbb{E}[(-1)^{\tau}]$, where τ the smallest n such that $|X_n| = 100$.
- 5. Show that $W^2(t) t$ is a martingale with respect to the Brownian filtration.
- 6. Let W(t) be a Brownian motion. Check whether the process X(t) = 2W(t) + 4t is a martingale with respect to Brownian. filtration.
- 7. Assume that $\lim_{t\to\infty}\frac{W(t)}{t}=0$, a.s. Then prove that

$$Y(t) = \begin{cases} tW(1/t) & \text{if } 0 < t < \infty \\ 0 & \text{if } t = 0 \end{cases}$$

is a Brownian motion if W(t) is.

- 8. Let c > 0. Show that $X(t) = \frac{1}{c}W(c^2t); 0 \le t < \infty$ is a Brownian motion if W(t) is.
- 9. Show that for any fixed T > 0

$$X(t) = W(t+T) - W(T), t > 0$$

is a Brownian motion if W(t) is.

10. Let Y be a real valued random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ such that

$$\mathbb{E}[|Y|] < \infty$$
.

Let $\mathcal{F}(t)$, $t \geq 0$, be any filtration. Define

$$M(t) = \mathbb{E}[Y|\mathcal{F}(t)], \ t \ge 0.$$

Show that M(t) is a martingale with respect to the filtration $\mathcal{F}(t)$, $t \geq 0$.

- 11. Show that $W^3(t) 3tW(t)$ is a martingale with respect to the Brownian filtration.
- 12. Show that if M(t) is a martingale with respect to the filtration $\mathcal{F}(t)$, $t \geq 0$, then

$$\mathbb{E}[M(t)] = \mathbb{E}[M(0)]$$

for all $t \geq 0$. Give an example of a stochastic process M(t) satisfying

$$\mathbb{E}[M(t)] = \mathbb{E}[M(0)], \ \forall t \ge 0$$

and which is not a martingale with respect to its own filtration, (i.e., $\mathcal{F}(t) := \sigma\{M(s)|s \leq t\}$).

- 13. Suppose that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $\{(X_n, \mathcal{F}_n) : n \geq 0\}$ is a supermartingale and $\mathbb{E}(X_n) = c \in \mathbb{R}, \ \forall \ n$. Then show that $\{(X_n, \mathcal{F}_n) : n \geq 0\}$ is a martingale.
- 14. Suppose that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $\{(X_n, \mathcal{F}_n) : n \geq 0\}$ is a martingale such that $|X_n| \leq M$ \mathbb{P} -almost everywhere on Ω for all $n \geq 0$. We define $Y_n := \sum_{k=1}^n \frac{1}{k} (X_k X_{k-1})$ for all n. Show that $\{(Y_n, \mathcal{F}_n) : n \geq 0\}$ is a martingale.
- 15. Let X_n be simple symmetric random walk, with $X_0 = 0$. Let $\tau = \inf\{n \ge 5 : X_{n+1} = X_n + 1\}$ be the first time after 4 which is just before the chain increases. Let $\rho = \tau + 1$
 - (a) Is τ a stopping time?
 - (b) Is ρ a stopping time?