The group G is isomorphic to the group labelled by [40, 11] in the Small Groups library. Ordinary character table of $G \cong C5 \times Q8$:

	1a	4a	4b	5a	2a	4c	20a	20b	5b	10a	20c	20d	20e	5c	10b	20f	20g	20h	5d	10c	20 <i>i</i>	20 <i>j</i>	20k	10d	20l
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1
χ_3	1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1	-1
χ_4	1	1	-1	1	1	-1	1	-1	1	1	-1	1	-1	1	1	-1	1	-1	1	1	-1	1	-1	1	-1
χ_5	1	-1	-1	$E(5)^{4}$	1	1	$-E(5)^4$	$-E(5)^4$	$E(5)^{3}$	$E(5)^4$	$E(5)^{4}$	$-E(5)^{3}$	$-E(5)^{3}$	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{3}$	$-E(5)^2$	$-E(5)^{2}$	E(5)	$E(5)^{2}$	$E(5)^{2}$	-E(5)	-E(5)	E(5)	E(5)
χ_6	1	-1	-1	$E(5)^{3}$	1	1	$-E(5)^{3}$	$-E(5)^{3}$	E(5)	$E(5)^{3}$	$E(5)^{3}$	-E(5)	-E(5)	$E(5)^{4}$	E(5)	E(5)	$-E(5)^4$	$-E(5)^4$	$E(5)^{2}$	$E(5)^4$	$E(5)^{4}$	$-E(5)^2$	$-E(5)^{2}$	$E(5)^{2}$	$E(5)^2$
χ_7	1	-1	-1	$E(5)^{2}$	1	1	$-E(5)^2$	$-E(5)^2$	$E(5)^{4}$	$E(5)^{2}$	$E(5)^{2}$	$-E(5)^4$	$-E(5)^4$	E(5)	$E(5)^4$	$E(5)^{4}$	-E(5)	-E(5)	$E(5)^{3}$	E(5)	E(5)	$-E(5)^{3}$	$-E(5)^{3}$	$E(5)^{3}$	$E(5)^3$
χ_8	1	-1	-1	E(5)	1	1	-E(5)	-E(5)	$E(5)^{2}$	E(5)	E(5)	$-E(5)^{2}$	$-E(5)^{2}$	$E(5)^{3}$	$E(5)^{2}$	$E(5)^{2}$	$-E(5)^{3}$	$-E(5)^{3}$	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{3}$	$-E(5)^4$	$-E(5)^4$	$E(5)^{4}$	$E(5)^4$
χ_9	1	-1	1	$E(5)^{4}$	1	-1	$-E(5)^4$	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{4}$	$-E(5)^4$	$-E(5)^{3}$	$E(5)^{3}$	$E(5)^{2}$	$E(5)^{3}$	$-E(5)^{3}$	$-E(5)^{2}$	$E(5)^{2}$	E(5)	$E(5)^{2}$	$-E(5)^{2}$	-E(5)	E(5)	E(5)	-E(5)
χ_{10}	1	-1	1	$E(5)^{3}$	1	-1	$-E(5)^{3}$	$E(5)^{3}$	E(5)	$E(5)^{3}$	$-E(5)^{3}$	-E(5)	E(5)	$E(5)^{4}$	E(5)	-E(5)	$-E(5)^4$	$E(5)^{4}$	$E(5)^{2}$	$E(5)^{4}$	$-E(5)^4$	$-E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$-E(5)^{2}$
χ_{11}	1	-1	1	$E(5)^{2}$	1	-1	$-E(5)^2$	$E(5)^{2}$	$E(5)^4$	$E(5)^{2}$	$-E(5)^2$	$-E(5)^4$	$E(5)^{4}$	E(5)	$E(5)^4$	$-E(5)^4$	-E(5)	E(5)	$E(5)^{3}$	E(5)	-E(5)	$-E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$-E(5)^{3}$
χ_{12}	1	-1	1	E(5)	1	-1	-E(5)	E(5)	$E(5)^{2}$	E(5)	-E(5)	$-E(5)^{2}$	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{2}$	$-E(5)^{2}$	$-E(5)^{3}$	$E(5)^{3}$	$E(5)^4$	$E(5)^{3}$	$-E(5)^{3}$	$-E(5)^4$	$E(5)^{4}$	$E(5)^4$	$-E(5)^4$
χ_{13}	1	1	-1	$E(5)^4$	1	-1	$E(5)^4$	$-E(5)^4$	$E(5)^{3}$	$E(5)^4$	$-E(5)^4$	$E(5)^{3}$	$-E(5)^{3}$	$E(5)^{2}$	$E(5)^{3}$	$-E(5)^{3}$	$E(5)^{2}$	$-E(5)^{2}$	E(5)	$E(5)^{2}$	$-E(5)^{2}$	E(5)	-E(5)	E(5)	-E(5)
χ_{14}	1	1	-1	$E(5)^{3}$	1	-1	$E(5)^{3}$	$-E(5)^{3}$	E(5)	$E(5)^{3}$	$-E(5)^{3}$	E(5)	-E(5)	$E(5)^{4}$	E(5)	-E(5)	$E(5)^{4}$	$-E(5)^4$	$E(5)^{2}$	$E(5)^{4}$	$-E(5)^4$	$E(5)^{2}$	$-E(5)^{2}$	$E(5)^{2}$	$-E(5)^{2}$
χ_{15}	1	1	-1	$E(5)^{2}$	1	-1	$E(5)^{2}$	$-E(5)^{2}$	$E(5)^{4}$	$E(5)^{2}$	$-E(5)^2$	$E(5)^4$	$-E(5)^4$	E(5)	$E(5)^4$	$-E(5)^4$	E(5)	-E(5)	$E(5)^{3}$	E(5)	-E(5)	$E(5)^{3}$	$-E(5)^{3}$	$E(5)^{3}$	$-E(5)^{3}$
χ_{16}	1	1	-1	E(5)	1	-1	E(5)	-E(5)	$E(5)^{2}$	E(5)	-E(5)	$E(5)^{2}$	$-E(5)^{2}$	$E(5)^{3}$	$E(5)^{2}$	$-E(5)^{2}$	$E(5)^{3}$	$-E(5)^{3}$	$E(5)^4$	$E(5)^{3}$	$-E(5)^{3}$	$E(5)^{4}$	$-E(5)^4$	$E(5)^4$	$-E(5)^4$
χ_{17}	1	1	1	$E(5)^4$	1	1	$E(5)^4$	$E(5)^4$	$E(5)^{3}$	$E(5)^4$	$E(5)^4$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{2}$	$E(5)^{2}$	E(5)	$E(5)^{2}$	$E(5)^{2}$	E(5)	E(5)	E(5)	E(5)
χ_{18}	1	1	1	$E(5)^{3}$	1	1	$E(5)^{3}$	$E(5)^{3}$	E(5)	$E(5)^{3}$	$E(5)^{3}$	E(5)	E(5)	$E(5)^4$	E(5)	E(5)	$E(5)^4$	$E(5)^{4}$	$E(5)^{2}$	$E(5)^4$	$E(5)^4$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$
χ_{19}	1	1	1	$E(5)^{2}$	1	1	$E(5)^{2}$	$E(5)^{2}$	$E(5)^4$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^4$	$E(5)^4$	E(5)	$E(5)^4$	$E(5)^4$	E(5)	E(5)	$E(5)^3$	E(5)	E(5)	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^3$
χ_{20}	1	1	1	E(5)	1	1	E(5)	E(5)	$E(5)^{2}$	E(5)	E(5)	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^4$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^4$	$E(5)^4$	$E(5)^4$	$E(5)^4$
χ_{21}	2	0	0	2	-2	0	0	0	2	-2	0	0	0	2	-2	0	0	0	2	-2	0	0	0	-2	0
χ_{22}	2	0	0	$2 * E(5)^4$	-2	0	0	0	$2 * E(5)^3$	$-2*E(5)^4$	0	0	0	$2 * E(5)^2$	$-2*E(5)^3$	0	0	0	2 * E(5)	$-2*E(5)^2$	0	0	0	-2*E(5)	0
χ_{23}	2	0	0	$2*E(5)^3$	-2	0	0	0	2 * E(5)	$-2*E(5)^3$	0	0	0	$2 * E(5)^4$	-2*E(5)	0	0	0	$2*E(5)^2$	$-2*E(5)^4$	0	0	0	$-2*E(5)^2$	0
χ_{24}	2	0	0	$2 * E(5)^2$	-2	0	0	0	$2*E(5)^4$	$-2*E(5)^2$	0	0	0	2 * E(5)	$-2*E(5)^4$	0	0	0	$2*E(5)^3$	-2*E(5)	0	0	0	$-2*E(5)^3$	0
χ_{25}	2	0	0	2 * E(5)	-2	0	0	0	$2 * E(5)^2$	-2 * E(5)	0	0	0	$2*E(5)^3$	$-2 * E(5)^2$	0	0	0	$2*E(5)^4$	$-2*E(5)^3$	0	0	0	$-2*E(5)^4$	0

Normalisers N_i								
Troffications 117			N_1			N_2		
p-subgroups of G up to conjugacy in G			P_1			P_2		
Representatives $n_j \in N_i$	1a	4a	ab 2a	4c	1a 4	b - 4a	2a	4c
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 $	25 5	5	5 5	5	0 (0	0	0
$ \left \ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{10} \right $	$_{25}$ 5	-5	-5 5	5	0 (0	0	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} $	$_{25} 5$	-5	$5 \qquad 5$	-5	0 (0	0	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} $	$_{25}$ 5	5 -	-5 5	-5	0 (0	0	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 1 \cdot \chi_{24} + 1 \cdot \chi_{25} \right $	$_{25}$ 10	0	0 - 10	0	0 (0	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 $	25 1	1	1 1	1	1	1	1	1
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{10} \right $	$_{25}$ 1	1 -	-1 1	-1	1 -	1 1	1	-1
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} $	$_{25} \mid 1$	-1	1 1	-1	1	-1	1	-1
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	$_{25}$ 1	-1	-1 1	1	1 -	-1	1	1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	$_{25} 2$	0	0 - 2	0	2 (0	-2	0

 $P_2 = Group([(1,4,11,19,27)(2,7,15,23,31)(3,9,17,25,33)(5,12,20,28,35)(6,13,21,29,36)(8,16,24,32,38)(10,18,26,34,39)(14,22,30,37,40)]) \cong C5$

 $N_1 = Group([(1,2,5,8)(3,14,10,6)(4,7,12,16)(9,22,18,13)(11,15,20,24)(17,30,26,21)(19,23,28,32)(25,37,34,29)(27,31,35,38)(33,40,39,36), (1,3,5,10)(2,6,8,14)(4,9,12,18)(7,13,16,22)(11,17,20,26)(15,21,24,30)(19,25,28,34)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,4,11,19,27)(2,7,15,23,31)(3,9,17,25,33)(5,12,20,28,35)(6,13,21,29,36)(8,16,24,32,38)(10,18,26,34,39)(14,22,30,37,40), (1,5,12,20,28,35)(6,13,21,29,36)(8,16,24,32,38)(10,18,26,34,39)(14,22,30,37,40), (1,2,5,8)(3,14,10,6)(4,7,12,16)(9,22,18,13)(11,15,20,24)(17,30,26,21)(19,23,28,32)(25,37,34,29)(27,31,35,38)(33,40,39,36), (1,3,5,10)(2,6,8,14)(4,9,12,18)(7,13,16,22)(11,17,20,26)(15,24,20,28,35)(6,13,21,29,36)(8,16,24,32,38)(10,18,26,34,39)(14,22,30,37,40), (1,2,5,8)(3,14,10,6)(4,7,12,16)(9,22,18,13)(11,15,20,24)(17,30,26,21)(19,23,28,32)(25,37,34,29)(27,31,35,38)(33,40,39,36), (1,3,5,10)(2,6,8,14)(4,9,12,18)(7,13,16,22)(11,17,20,26)(15,24,24,30)(19,25,28,34)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(2,6,8,14)(4,9,12,18)(7,13,16,22)(11,17,20,26)(15,24,24,30)(19,25,28,34)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(2,6,8,14)(4,9,12,18)(7,13,16,22)(11,17,20,26)(15,24,24,30)(19,25,28,34)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(2,6,8,14)(4,9,12,18)(7,13,16,22)(11,17,20,26)(15,24,24,30)(19,25,28,34)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(2,6,8,14)(4,9,12,18)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(2,6,8,14)(4,9,12,18)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(2,6,8,14)(4,9,12,18)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(2,6,8,14)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(23,29,32,37)(27,33,35,39)(31,36,38,40), (1,3,5,10)(23,29,32,37)(27,33,35,39)(27,33,35,39)(27,33,35,39)(27,33,35,39)$