Homogenious Transformations

Prof. Dr. Daniel Göhring

November 5, 2017

FOR INTERNAL USE ONLY

Table of contents

- 1 Homogenious Transformations
 - Coordinate Frames
 - Rotation Matrix
 - Mapping with Rotation and Translation

Right-Handed Coordinate Frames

We use right-handed coordinate frames¹:

¹image source: SAE J1733 [2]

Homogenious Transformations

Coordinate transformations

At first we want to focus on how to **transform coordinates** from one frame to another.

Rigid Body Configuration - Cartesian Frames

• if the orientation of the coordinate frame changes (and the origin stays the same), the vector is the same, but components of the vector will change

Rigid Body Configuration

- how to describe frame $\{B\}$ with respect to fixed frame $\{A\}$?
- ^{A}P defines the origin of frame $\{B\}$ represented in frame $\{A\}$

Rigid Body Configuration

- the orientation of frame {B} relative to frame {A} is defined as the rotations of base vectors of frame B with respect to frame A
- one idea is, to have a mathematical structure, a rotation matrix, representing that orientation of frame {B} with respect to frame {A}

Rotation Matrix

- we want a matrix $R \in \mathbb{R}^{n \times n}$ which maps a vector $P_B \in \mathbb{R}^n$ in frame $\{B\}$ to a vector P_A in frame $\{A\} \in \mathbb{R}^n$
- this rotation matrix is denoted as ^A_BR
- the new vector is calculated as $P_A = {}^A_B R P_B$
- How can ${}_{B}^{A}R$ be inferred from $\{A\}$ and $\{B\}$?

Let's recall: Scalar Product (Dot Product)

- the scalar product, when applied on unit vectors, can be interpreted as the projected distance of a vector P on another vector Q, or vice versa
- equals $cos(\alpha)$, where α is the enclosed angle

$$P \cdot Q = P_1 Q_1 + \dots + P_n Q_n$$
$$= \sum_{i=1}^n P_i Q_i$$

Mapping Coordinates

- to map a vector from one frame $\{B\}$ to another frame $\{A\}$ we have to map its components X_B, Y_B, Z_B into frame $\{A\}$
- e.g., and assuming there is a reference frame {O}:

$${}^{A}X_{B} = \begin{bmatrix} {}^{O}X_{A} \cdot {}^{O}X_{B} \\ {}^{O}Y_{A} \cdot {}^{O}X_{B} \\ {}^{O}Z_{A} \cdot {}^{O}X_{B} \end{bmatrix}$$

Properties of the Rotation Matrix

$${}_{B}^{A}R = ({}^{A}X_{B}, {}^{A}Y_{B}, {}^{A}Z_{B})$$

$${}_{B}^{A}R = \begin{bmatrix} X_{A} \cdot X_{B} & X_{A} \cdot Y_{B} & X_{A} \cdot Z_{B} \\ Y_{A} \cdot X_{B} & Y_{A} \cdot Y_{B} & Y_{A} \cdot Z_{B} \\ Z_{A} \cdot X_{B} & Z_{A} \cdot Y_{B} & Z_{A} \cdot Z_{B} \end{bmatrix}$$

- elements of R are cosines of angles enclosed by coordinate frame axes
- thus, rotation matrices are often referred to as direction cosines

Properties of the Rotation Matrix

the rotation matrix is an orthonormal matrix, its transpose is its inverse:

$$\begin{array}{rcl}
{}^{A}_{B}R & = & \begin{bmatrix} {}^{A}X_{B} & {}^{A}Y_{B} & {}^{A}Z_{B} \end{bmatrix} = \begin{bmatrix} {}^{B}_{A}X_{A}^{T} \\ {}^{B}Y_{A}^{T} \\ {}^{B}Z_{A}^{T} \end{bmatrix} \\
& = & \begin{bmatrix} {}^{B}X_{A} & {}^{B}Y_{A} & {}^{B}Z_{A} \end{bmatrix}^{T} = {}^{B}_{A}R^{T} \\
{}^{A}_{B}R & = & {}^{B}_{A}R^{T} \\
{}^{A}_{B}R^{-1} & = & {}^{B}_{A}R = {}^{A}_{B}R^{T}
\end{array}$$

$$\begin{array}{lll}
{}_{B}^{A}R & = & \begin{bmatrix} X_{A} \cdot X_{B} & X_{A} \cdot Y_{B} & X_{A} \cdot Z_{B} \\ Y_{A} \cdot X_{B} & Y_{A} \cdot Y_{B} & Y_{A} \cdot Z_{B} \\ Z_{A} \cdot X_{B} & Z_{A} \cdot Y_{B} & Z_{A} \cdot Z_{B} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} {}_{B}^{B}X_{A}^{T} \\ {}_{B}^{B}Y_{A}^{T} \\ {}_{B}^{T}Z_{A}^{T} \end{bmatrix} \\
& = & ({}^{A}X_{B}, {}^{A}Y_{B}, {}^{A}Z_{B})
\end{array}$$

Full Description of a Frame

Translations

Homogenious Transformation

$${}^{A}P = {}^{A}_{B} R \cdot {}^{B} P + {}^{A} P_{Borg}$$

$${}^{A}P \begin{bmatrix} {}^{A}P \\ {}^{1} \end{bmatrix} = {}^{A}\begin{bmatrix} {}^{A}R & {}^{A}P_{Borg} \\ {}^{0} & {}^{0} & {}^{0} & {}^{1} \end{bmatrix} {}^{B}P \begin{bmatrix} {}^{B}P \\ {}^{1} \end{bmatrix}}$$

How does a homogenious transformation matrix \mathcal{T} look, which does not perform any rotation, only translation by vector?

$$T = egin{bmatrix} 1 & 0 & 0 & t_1 \ 0 & 1 & 0 & t_2 \ 0 & 0 & 1 & t_3 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

How does a homogenious transformation matrix T look, which does not perform any translation, only rotation with angle α around the z-axis?

$$T = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

How does a homogenious transformation matrix \mathcal{T} look, which does not perform any rotation or translation?

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Literature

- [1] John J. Craig, Introduction to Robotics Mechanics and Control, 3rd edition, Pearson Prentice Hall, 2005.
- [2] SAE J1733: Sign Convention for Vehicle Crash Testinghttps://law.resource.org/pub/us/cfr/ibr/005/sae.j1733.1994.pdf