ETSE de Telecomunicació Probabilitat i Processos Control

4 de desembre de 2006

Codi prova: 230-11479-01-0-grup Temps: 1h. 20m.

- Si X es una variable aleatoria geométrica, la probabilidad
 - de que tome un valor par es:

 (a) $\frac{p}{1+p}$ $P_{k}(k) = q^{k-1}p$; k=1,2,3,...
 - (b) $\frac{p}{1+q}$ $P(X PARELL) = p(q+q^3+...) = pq(1+q^2+...)$
 - = 19 1-92 = 3
- 2. Si X es una variable aleatoria uniforme en [0, 2], la variable aleatória condicionada $X|X > x_0, x_0 \in (0,2)$, tiene

 - ble aleatoria condicionada $X \mid X \geq x_0, x_0 \in (0, 2)$, tiene una función de densidad que satisface

 (a) $f_{X\mid X \geq x_0}(1 + \frac{x_0}{2}) = \frac{1}{2-x_0}$ (b) $f_{X\mid X \geq x_0}(0) = \frac{1}{2}$ (c) $f_{X\mid X \geq x_0}(0) = \frac{1}{4-x_0^2}$ (d) $f_{X\mid X \geq x_0}(x_0) = \frac{1}{2+x_0}$ $f_{X\mid X \geq x_0}(x_0) = \frac{1}{2+x_0}$ $f_{X\mid X \geq x_0}(x_0) = \frac{1}{2-x_0}$ $f_{X\mid X \geq x_0}(x_0) = \frac{1}{2-x_0}$ Un jugador apuesta que, al lanzar n veces un dado, sacará
- 3. Un jugador apuesta que, al lanzar n veces un dado, sacará al menos un 6. Entonces, el mínimo valor de n para que juegue con ventaja es:
 - X: mº de 6's (a) 3
 - $P(X \ge 1) = 1 P(X = 0) = 1 \left(\frac{5}{6}\right)^m \ge \frac{1}{2}$ (b) 4
 - per m=4: P(X>1)=0.52
 - (d) 6
- 4. De un lote de 10 piezas, 7 son correctas y 3 defectuosas. Se elige aleatoriamente un conjunto de 6 piezas del lote. La probabilidad de que en dicho conjunto haya exactamente 2 piezas defectuosas es:
 - $P(1 \text{ PIRTAL DEF.}) = \frac{\binom{3}{2}\binom{7}{4}}{\binom{10}{1}} = \frac{1}{2}$ (a) 0.324 • (b) 1/2
 - (c) 1/10
 - (d) $\binom{6}{2}(0.3)^2$
- 5. Un experimento aleatorio consiste en:
 - (1) Seleccionar un entero positivo N con probabilidad $P(N = n) = e^{-n}, n = 1, 2, 3, ...;$
 - (2) Lanzar una moneda con probabilidad de cara e^{-N} .

Entonces, la probabilidad de que el resultado del experimento sea cruz es:

- (a) $1 e^{-2n}$
- (b) $1/e^2$ P(croz) = 1 P(cara)
- = $1 \sum_{n=0}^{\infty} P(CARA/N=n) P(N=n)$
- = 1 \sum e^-m e^-m = 1 \sum \frac{1}{e^{2m}} $=1-\frac{1}{e^2-1}=\frac{e^2-2}{e^2-1}$

- **6.** Sea A, B, C sucesos independientes con $P(A) = \frac{1}{n-1}$, $P(B) = \frac{1}{n}$, $P(C) = \frac{n}{n+1}$, n > 2. Entonces, la probabilidad $P(\overline{A} \cup \overline{B} \cup C)$ vale
 - (a) $\frac{n^3-n-1}{n(n^2-1)}$ $P(\overrightarrow{A}\overrightarrow{VB}\overrightarrow{UC}) = f(\overrightarrow{A}) + P(\overrightarrow{B}) + P(C) f(\overrightarrow{A}) + P(\overrightarrow{B})$
 - P(A)P(C)-P(B)P(C)+P(A)P(B)P(C)=...
 o també:
 - (c) $1 + \frac{1}{n(n^2+1)} P(A \cup B \cup C) = P(A \cap B \cap C) = 1 P(A)P(B)P(C)$
- suma es 8, entonces la probabilidad de que dos de los dados saque una puntuación mayor o igual a 3 es:
 - (a) 4/7 S=8: 1+1+6 2+1+5 3+1+9 9+1+3 5+1+2 6+1+1(b) 3/7 1+2+5 2+2+9 3+2+3 4+2+2 5+2+1(c) 1/7 1+4+3 2+4+2 3+4+1 4+3+1 4+3+1 1+5+2 2+5+1 1+5+2 2+5+1 1+5+2 1+5+2 1+5+2
 - (b) 3/7
 - P(0:23 (12)23 | 508) = # Con. Sour. # car. possible (d) 2/7
- 8. Sea X una variable aleatoria gaussiana de media nula y $= \frac{q'}{21} = \frac{3}{7}$ desviación típica σ ¿Cúal es la función de densidad de la variable aleatoria $Y = X^2$, para $y \ge 0$?
 - ariable aleatoria $Y = X^2$, para $y \ge 0$?

 (a) $\frac{1}{\sqrt{2\pi}\sigma y}e^{-\frac{t}{2}(\frac{y}{\sigma^2})}$ $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{t}{2}(\frac{x}{\sigma})^2}$, $f_Y=x^2$; $f_Y=t\sqrt{y}$
- - (d) $\frac{1}{2\sqrt{2\pi y}\sigma}e^{-\frac{1}{2}(\frac{y}{\sigma^2})} = 2\frac{1}{\sqrt{2\pi}\sigma}\frac{1}{2\sqrt{2}}e^{-\frac{y}{2}\frac{y}{\sigma^2}} = \frac{1}{\sqrt{2\pi}y}e^{-\frac{y}{2}(\frac{y}{\sigma^2})}$
 - Sea X es una variable aleatoria definida en el intervalo [1,2], en el que se cumple que $f_X(x)F_X(x) = \frac{1}{2}$. Entonces, el valor de $P(X \le \frac{3}{2})$ es:
 - y= (x) = dy = (x); y dy = 1; 2y dy = dx
 - y2=x+c; y=Fx(x)=Vx+c; Fx(1)=0=V4+c; C=-1
 - $\rho(c) \frac{1}{\sqrt{2}} \int_{X} [x] = \sqrt{x-1} ; P(x \le \frac{3}{2}c) = \int_{X} [\frac{3}{2}c] = \sqrt{\frac{3}{2}-1} = \frac{1}{\sqrt{2}}$ (d) $\frac{1}{2}$
 - 10. Considérense familias con 3 hijos, y supóngase que las 8 configuraciones posibles VVV, VVH, VHV, etc, son equiprobables. Sea A el suceso que una familia escogida al azar tenga como máximo un varón, y B el suceso que tenga al menos un hijo de cada sexo. Entonces, se cumple:
 - (a) $P(A) + P(B) = P(A \cup B)$
 - (b) A y B son sucesos independientes
 - (c) P(A|B) = P(B|A)
 - (d) Ninguna de las otras

ETSE de Telecomunicació Probabilitat i Processos Control

4 de desembre de 2006

Codi prova: 230-11479-01-1-grup Temps: 1h. 20m.

1. Sea X es una variable aleatoria definida en el intervalo [1, 2], en el que se cumple que $f_X(x)F_X(x) = \frac{1}{2}$. Entonces, el valor de $P(X \leq \frac{5}{4})$ es:

F_(x)=Vx-1 (vewe #9-0)

(c) ½

(d) $\frac{\pi}{4}$

2. Considérense familias con 3 hijos, y supóngase que las 8 configuraciones posibles VVV, VVH, VHV, etc, son equiprobables. Sea A el suceso que una familia escogida al azar tenga como máximo un varón, y B el suceso que tenga al menos un hijo de cada sexo. Entonces, se cumple:

(a) $P(A) + P(B) = P(A \cup B)$ P(ANB)=P(A)P(B) => IND

(veure \$40,-0) (b) P(A|B) = P(B|A)

(c) Ninguna de las otras

- (d) A y B son sucesos independientes
- 3. De un lote de 10 piezas, 7 son correctas y 3 defectuosas. Se elige aleatoriamente un conjunto de 6 piezas del lote. La probabilidad de que en dicho conjunto haya exactamente 2 piezas defectuosas es:

 $P(2 \text{ NEMF } \text{ MET}) = \frac{\binom{2}{2}\binom{4}{7}}{\binom{10}{6}} = \frac{1}{2}$

- (c) 0.324
- (d) $\binom{6}{2}(0.3)^2$
- 4. Un experimento aleatorio consiste en:
 - Seleccionar un entero positivo N con probabilidad $P(N = n) = e^{-n}, n = 1, 2, 3, ...;$
 - Lanzar una moneda con probabilidad de cara e^{-N}.

Entonces, la probabilidad de que el resultado del experimento sea cara es:

• (a) $\frac{1}{e^2-1}$

 $\begin{array}{ll} (a) & \frac{e^{2}-1}{e^{2}-1} \\ (b) & \frac{e^{2}-2}{e^{2}-1} \\ (c) & 1-e^{-2n} \\ (d) & 1/e^{2} \end{array} \qquad \begin{array}{ll} P(\text{CARA}) = \sum_{m=1}^{N} P(\text{CARA}|N=m) P(N=m) \\ = \dots = \underbrace{1}_{e^{2}-1} \left(\text{Veure}(\#5)-0 \right) \end{array}$

- 5. Sea A, B, C sucesos independientes con $P(A) = \frac{1}{n-1}$ $P(B) = \frac{1}{n}$, $P(C) = \frac{n}{n+1}$, n > 2. Entonces, la probabilidad $P(\overline{A} \cup \overline{B} \cup C)$ vale
 - (a) ninguna de las otras

 \bullet (d) $\frac{n^3-n-1}{n(n^2-1)}$

(b) $\frac{3n}{p^{2}-1}$ $P(\overline{A} \cup \overline{B} \cup C) = P(\overline{A} \cap B \cap \overline{C}) = 1 - P(A \cap B \cap \overline{C})$ (c) $1 + \frac{1}{n(n^{2}+1)}$ $P(\overline{A} \cup \overline{B} \cup C) = P(\overline{A} \cap B \cap \overline{C}) = 1 - P(A \cap B \cap \overline{C})$ (d) $\frac{n^{3}-n-1}{n(n^{2}-1)}$ $P(\overline{A} \cup \overline{B} \cup C) = 1 - P(A \cap B \cap \overline{C}) = 1 - P(A \cap B \cap \overline{C})$ $= 1 - P(A) P(B) P(\overline{C}) = \cdots$ $= \frac{n^{3}-m-1}{n(m^{2}-1)}$

 Si X es una variable aleatoria geométrica, la probabilidad de que tome un valor impar es:

P(X SEVAR) = 1-P(X PARELL)

 $=1-\frac{9}{1+9}$ (voure (P)-0)

7. Si X es una variable aleatoria uniforme en [0, 2], la variable aleatoria condicionada $X|X \geq x_0, x_0 \in (0,2)$, tiene una función de densidad que satisface

(a) $f_{X|X \ge x_0}(0) = \frac{1}{2}$ (b) $f_{X|X \ge x_0}(0) = \frac{1}{4 - x_0^2}$ (c) $f_{X|X \ge x_0}(1 + \frac{x_0}{2}) = \frac{1}{2 - x_0}$ (verification of $f_{X|X \ge x_0}(1 + \frac{x_0}{2}) = \frac{1}{2 - x_0}$ (d) $f_{X|X \ge x_0}(x_0) = \frac{1}{2+x_0}$

8. Un jugador apuesta que, al lanzar n veces un dado, sacará al menos un 6. Entonces, el mínimo valor de n para que juegue con ventaja es:

X: Mª de 6's P(X71) = 1-(5) (vene \$3-0)
i el valor minimi per el qual

P(X21) 2 1/2 er m=4: P(X21) =0.52

9. Se lanzan simultáneamente tres dados normales. Si la suma es 8, entonces la probabilidad de que dos de los dados saque una puntuación mayor o igual a 3 es:

P(D:23 1) Dj:13/S=8) = #(aras fav. = 9 = 37 #(aras fos. / reuse #7.0)

- **e**(c) 3/7
- (d) 4/7

 Sea X-una variable aleatoria gaussiana de media nula y desviación típica σ ¿Cúal es la función de densidad de la variable aleatoria $Y=X^2$, para $y\geq 0$?

(a) $\frac{1}{\sqrt{2\pi y}\sigma}e^{-\frac{1}{2}(\frac{y}{\sigma})}$ $\bullet \text{ (b) } \frac{1}{\sqrt{2\pi y}\sigma}e^{-\frac{1}{2}(\frac{y}{\sigma^2})}$ $\text{ (c) } \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}(\frac{y}{\sigma^2})}$ $\text{ (d) } \frac{1}{2\sqrt{2\pi y}\sigma}e^{-\frac{1}{2}(\frac{y}{\sigma^2})}$ $\text{ (Example 1) } \frac{1}{\sqrt{2\pi y}\sigma}e^{-\frac{1}{2}(\frac{y}{\sigma^2})}$ $\text{ (Example 2) } \frac{1}{\sqrt{2\pi y}\sigma}e^{-\frac{1}{2}(\frac{y}{\sigma^2})}$ $\text{ (Fig. 1) } \frac{1}{\sqrt{2\pi y}\sigma}e^{-\frac{1}{2}(\frac{y}{\sigma^2})}$ $\text{ (Fig. 2) } \frac{1}{\sqrt{2\pi y}\sigma}e^{-\frac{1}{2}(\frac{y}{\sigma^2})}$