January 2005

6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks
1.	(a) $M(A)$ $W \times 4a = T \times 8a \sin \theta$ Using a value of $\sin \theta$ and solving $T = \frac{5}{6}W * CSO$ (b) $\rightarrow X = T \cos \theta$ $= \frac{2}{3}W$	M1 A1 M1 A1 <u>4</u> M1 A1 A1 <u>3</u> 7
2.	(a) circle rectangle plate Mass ratios 9π 200; $200-9\pi$ Centres of mass 6 10 \overline{x} $9\pi \times 6 + (200-9\pi)\overline{x} = 200 \times 10$ $\overline{x} \approx 10.7 \text{ (cm)}$ cao	B1; B1ft B1 M1 A1 <u>5</u>
	(b) $\tan \theta = \frac{5}{10.7}$ ft their \overline{x} $\theta \approx 25^{\circ}$ cao	M1 A1ft A1 3 8

Question Number	Scheme	Marks
3.	(a) KE lost is $\frac{1}{2} \times 0.6 \times (10^2 - 9^2)$ (= 5.7 J)	B1
	PE lost is $0.6 \times 9.8 \times 12 \sin 30^{\circ} (= 35.28 \text{ J})$	B1
	Total loss in energy is 41.0 (J) accept 41	M1 A1 4
	(b) $R = 0.6 \times 9.8 \times \cos 30^{\circ} (\approx 5.09)$	B1
	WE $40.98 = \mu \times 0.6 \times 9.8 \times \cos 30^{\circ} \times 12$ ft their (a)	M1 A1ft
	$\mu \approx 0.67$ or 0.671	M1 A1 <u>5</u> 9
	Alternative for (b)	
	$a = \frac{9^2 - 10^2}{2 \times 12} \left(= \left(-\right) \frac{19}{24} \right)$ awrt 0.79	B1
	N2L $mg \sin 30^{\circ} - \mu mg \cos 30^{\circ} = m\left(-\frac{19}{24}\right)$ ft their $a = 1$	M1 A1ft
	$\mu \approx 0.67 \text{ or } 0.671$	M1 A1 <u>5</u>
4.	(a) $\ddot{\mathbf{r}} = 6\mathbf{i} + (2t+3)\mathbf{j}$	B1
	F = 0.4(6i+11j) 0.4×something obtained by	M1
	differentiation, with $t = 4$	1411
	$ \mathbf{F} = \sqrt{(2.4^2 + 4.4^2)}$ modulus of a vector	M1
	≈ 5.0 accept more accurate answers	A1 <u>4</u>
	(b) $\mathbf{r} = (3t^2 + 4t)\mathbf{i} + (\frac{1}{3}t^3 + \frac{3}{2}t^2)\mathbf{j} (+\mathbf{C})$	M1
	Using boundary values, $\mathbf{r} = (3t^2 + 4t - 3)\mathbf{i} + (\frac{1}{3}t^3 + \frac{3}{2}t^2 + 4)\mathbf{j}$	A1
	$t=4, \qquad \mathbf{r}=61\mathbf{i}+49\frac{1}{3}\mathbf{j}$	A1
	$OS = \sqrt{\left(61^2 + 49\frac{1}{3}^2\right)} \approx 78$ (m) accept more accurate answers	M1 A1 <u>5</u> 9

.

.

Question Number	Scheme	Marks
5.	(a) $50000 = F \times 25 (F = 2000)$ or equivalent $\rightarrow F = R + 750$ cso	M1 M1 A1 <u>3</u>
	(b) N2L $1500 + 2000 = 2500a$ ignore sign of a $a = 1.4 \text{ (m s}^{-2}\text{)}$ cao	M1 A1 A1 <u>3</u>
	(c) Trailer: $T + R = 1500 \times 1.4$ or Car: $T - 1500 - 750 = 1000 \times -1.4$ T = 850 (N)	M1 A1 <u>2</u>
	(d) $25^2 = 2 \times 1.4 \times s (s = 223.2)$ $W = 1500 \times s \text{ft their } s$ $= 335 \text{ (kJ)}$ accept 330 (e) Resistances <u>vary</u> with <u>speeds</u>	M1 M1 A1ft A1 4
6.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1 B1 M1 A1 5
	x y (b) Solving to $x = \frac{2}{5}u(2-3e)$ oe $x < 0 \Rightarrow e > \frac{2}{3}$ $\frac{2}{3} < e \mid 1$ ft their e for glb	M1 A1 M1 A1 A1ft 5
	(c) $2m\left[\frac{1}{5}u(9e+4)+u\right] = \frac{32}{5}mu$ Solving to $e = \frac{7}{9}$ awrt 0.78	M1 A1 M1 A1 <u>4</u> 14

Question Number	Scheme	Marks
7.	(a) $\uparrow u_y = 32 \times \frac{3}{5} (=19.2)$	B1
	$-20 = 19.2t - 4.9t^2$ —1 each error	M1 A2(1, 0)
	$t \approx 4.8 \text{ or } 4.77 \text{ (s)}$	A1 <u>5</u>
	(b) $\rightarrow u_x = 32 \times \frac{4}{5} \ (=25.6)$	B1
	$d = 25.6 \times 4.77$	M1
	$\approx 120 \text{ or } 122 \text{ (m)}$	A1 <u>3</u>
	(c) $\uparrow v_y^2 = 19.2^2 + 2 \times 9.8 \times 4 [v_y^2 = 447.04, v_y \approx 21.14]$	M1
	$V^2 = 447.04 + 25.6^2$	M1 A1
	$V = 33 \text{ or } 33.2 \text{ (m s}^{-1})$	A1 <u>4</u>
	(d) $\tan \theta = \frac{21.14}{25.6}$ (or $\cos \theta = \frac{25.6}{33.2}$,) If their components	M1 A1ft
	or resultant $\theta \approx 40^{\circ}$ or 39.6°	A1 <u>3</u>
		A1 <u>3</u>
	Alternative for (c)	
	$\frac{1}{2}m(V^2-32^2)=mg\times 4$	M1 A1
	$V^2 = 1102.4$	M1
	$V = 33 \text{ or } 33.2 \text{ (ms}^{-1})$	A1 <u>4</u>
	There is a maximum penalty of one mark per question for not rounding to appropriate accuracy.	