Після мінімізації визначили кожну з функцій в формі І/АБО.

 $f1_{MDH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (X3X2X1) \ v \ (X4X3\overline{X2}) \ v \ (\overline{X2}\overline{X1})$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (X3X2X1)$

 $f3_{MJH\phi} = (X3X2X1) \ v \ (\overline{X3}\overline{X1}) \ v \ (\overline{X2}\overline{X1})$

Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ. Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.7). Побудуємо таблицю покриття (таблиця 4.6).

KO	<i>K1</i>	<i>K2</i>
0001 (3)	00X1 (3)	X0X1 (3)
0011 (1,2,3)	<i>0X01 (3)</i>	XX01 (3)
0100 (-1,2)	X001 (3)	X0X1 (3)
0101 (1,2,3)	OX11 (1,2)	XX01 (3)
0110 (-2,-3)	X011 (1,2,3)	01XX (2)
0111 (-1,-2)	010X (1,2)	X10X (2)
1001 (1,2,3)	01X0 (2)	01XX (2)
1010 (1,2)	X100 (2)	X1X0 (2)
1011 (1,2,3)	01X1 (1,2)	X10X (2)
1100 (-2)	X101 (2,3)	X1X0 (2)
1101 (2,3)	011X (2)	_
1110 (1,2,3)	X110 (2,3)	
	10X1 (1,2,3)	
	1X01 (2,3)	
	101X (1,2)	-
	1X10 (1,2)	
	110X (2)	
	11X0 (2)	

Рисунок 4.7 Склеювання і поглинання термів системи

3м.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.6 Таблиця покриття системи

	0011/F1/	01011F11	1001F1	1010IF1)	1011/F1)	1110/F1)	0011F2J	0100lF2J	01011F2)	1001/F2/	1010IF2)	1011/F2/	1101/F2/	1110/F2/	0001/F3/	0011/F3/	01011F3/	1001/F3/	1011/F3/	1101(F3)	1110/F3/
0101 (1,2,3)																					
1110 (1,2,3)																					
OX11 (1,2)																					
X011 (1,2,3)	+				+		+					+				+			+		
010X (1,2)		+						+	+												
01X1 (1,2)																					
X101 (2,3)																					
X110 (2,3)																					
10X1 (1,2,3)																					
1X01 (2,3)										+			+					+		+	
101X (1,2)																					
1X10 (1,2)				+		+					+										
X0X1 (3)																					
XX01 (3)															+						
01XX (2)																					
X10X (2)																					
X1X0 (2)																					

Після мінімізації визначили кожну з функцій в формі І/АБО-НЕ.

f1_{MJHO}= (\overline{X}3X2X1) v (\overline{X}4X3\overline{X}2) v (X4\overline{X}3X1) v (X4X2\overline{X}1)

f2_{MDHФ}= (\overline{X}3X2X1) v (X4\overline{X}3X2) v (X4\overline{X}3X2\overline{X}1) v (\overline{X}3\overline{X}2)

 $f3_{MJH\phi} = (\overline{X3}X2X1) \ v \ (\overline{X2}X1) \ v \ (X3X2\overline{X1})$

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальны форми I/AБО, I/AБО-НЕ. Розглянемо програмування ПЛМ для системи перемикальних функції, що подана в формі I/AБО.

Зм.	Арк.	№ докум.	Підп.	Дата

IA/ILI.463626.004

 $f1_{MDH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (X3X2X1) \ v \ (X4X3\overline{X2}) \ v \ (\overline{X2}\overline{X1})$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (X3X2X1)$

 $f3_{MJH\phi} = (X3X2X1) \ v \ (\overline{X3}\overline{X1}) \ v \ (\overline{X2}\overline{X1})$

Позначимо терми системи:

 $P1 = \overline{X4}\overline{X3}\overline{X2}$

P2 = X3X2X1

 $P3 = \overline{X4}X2\overline{X1}$

 $P4 = \overline{X2X1}$

P5 = \bar{X3}\bar{X1}

P6 = X4X3\(\overline{X}2\)

P7 = \bar{X}3\bar{X}2\bar{X}1

Тоді функції виходів описуються системою:

 $f1_{MDH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (X3X2X1) \ v \ (X4X3\overline{X2}) \ v \ (\overline{X2}\overline{X1}) = P1 \ v \ P2 \ v \ P3 \ v$ $P6 \ v \ P4$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (X3X2X1) = P1 \ v \ P3 \ v \ P7 \ v \ P2$

 $f3_{MJH\phi} = (X3X2X1) \ v \ (\overline{X3}\overline{X1}) \ v \ (\overline{X2}\overline{X1}) = P2 \ v \ P5 \ v \ P4$

Визначимо мінімальні параметри ПЛМ:

n = 4 — число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

р = 7 — число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

т = 3 — число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему ПЛМ(4,7,3) (рисунок 4.8).

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.8 Мнемонічна схема ПЛМ Складемо карту програмування ПЛМ(4,10,3) (таблиця 4.7).

Nº		Вх	оди	Виходи			
ШИНИ	<i>X1</i>	<i>X2</i>	<i>X3</i>	<i>X</i> 4	f1	<i>f2</i>	<i>f3</i>
<i>P1</i>	-	0	0	0	1	1	0
<i>P2</i>	1	1	1	-	1	1	1
<i>P3</i>	0	1	-	0	1	1	0
P4	0	0	-	-	1	0	1
<i>P5</i>	0	-	0	-	0	0	1
<i>P6</i>	-	0	1	1	1	0	0
P7	0	0	0	ı	0	1	0

Покажемо умовне графічне позначення даної П/ІМ (рисунок 4.8).

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.8 – умовне графічне позначення ПЛМ

Зм.	Арк.	№ докум.	Підп.	Дата

4. Висновок

У даній курсовій роботі на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ» був виконаний синтез керуючого автомата, а також синтез комбінаційних схем. Функціональна схема автомата приведена у документі «Керуючий автомат. Схема електрична функціональна» і виконана згідно з вимогами єдиної системи конструкторської документації.

При синтезі комбінаційних схем у роботі була виконана мінімізація функції різними методами, а також мінімізована методом Квайна— Мак-Класкі система функцій. В результаті було отримано дві форми представлення системи функцій, одна з яких була реалізована на програмувальній логічній матриці (ПЛМ).

Під час виконання роботи були закріплені знання теоретичного курсу, отримані навички їх практичного застосування, а також навички роботи зі стандартами та пошуку інформації.

Зм.	Арк.	№ докцм.	Підп.	Дата

IA/ILI.463626.004

5. Список літератури

1. Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів. Київ: книжкове видавництво НАУ, 2007 р. 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2014р.

Зм.	Арк.	№ докум.	Підп.	Дата