Abstract

$\begin{array}{c} {\bf Measurement~of~total~hadronic~differential~cross}\\ {\bf sections~in~the~LArIAT~experiment} \end{array}$

Elena Gramellini 2018

Abstract goes here. Limit 750 words.

Measurement of total hadronic differential cross sections in the LArIAT experiment

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy

by Elena Gramellini

Dissertation Director: Bonnie T. Fleming

Date you'll receive your degree

Copyright © 2017 by Elena Gramellini $\label{eq:copyright} \mbox{All rights reserved}.$

Contents

Acknowledgements				V
0	Uncertainty budget			1
	0.1	Pure l	beam of pions	1
		0.1.1	Uncertainty on E_{Beam}^{kin}	2
		0.1.2	E_{loss}	2
		0.1.3	Uncertainty on dE/dx and pitch	5
		0.1.4	Uncertainty on track end, aka efficiency correction	5

Acknowledgements

A lot of people are awesome, especially you, since you probably agreed to read this when it was a draft.

Chapter 0

Uncertainty budget

Measuring an hadronic cross section in LArIAT translates into counting how many hadrons impinged on a slab of argon at a given energy and how many of those hadrons interacted at said energy. So, the key questions here are:

- a) how well do we know the kinetic energy at each point of the tracking?
- b) how well do we know when the tracking stops?
- c) are there any systematic shifts?

In order to answer this question, will discuss first a simple scenario were our beam is 100% made of pions which arrive as primaries in the TPC (no decay in the beam and no inelastic interaction before the TPC front face). We will then add a layer of complexity by discussing how we handle beamline contamination.

0.1 Pure beam of pions

Assuming a beam of pure pions gets to the TPC, let us explicit some of the variables in the kinetic energy equation ?? to point out the important quantities in the uncertainty budget,

$$E_j^{kin} = E_{Beam}^{kin} - E_{loss} - \sum_{i < j} \frac{dE_i}{dx_i} * dx_i \tag{1}$$

$$= \sqrt{p_{Beam}^2 - m_{Beam}^2 - m_{Beam} - E_{loss}} - \sum_{i < j} \frac{dE_i}{dx_i} * dx_i.$$
 (2)

0.1.1 Uncertainty on E_{Beam}^{kin}

Let us start by discussing the uncertainty on E_{Beam}^{kin} . Since we are assuming a beam of pions, the uncertainty on the value of mass of the pion (m_{Beam}) as given by the pdg is irrelevant compared to the momentum uncertainties, thus $\delta E_{Beam}^{kin} = \delta p_{Beam}^{kin}$. We estimate the momentum uncertainty as follows.

We estimate the uncertainty on a 4-point track. In case of 3-points track, we add an additional 2% coming from Greg's study. Uncertainty on a 4-point track:

- Alignment surveys. 1mm misalignment translates to 3% in overall
- Doug study dp/p = 2% based on field map (docdb 1710)
- Minerva test beam paper

0.1.2 E_{loss}

We derive an estimate of the energy loss between the beamline momentum measurement and the TPC (E_{loss}) from the Monte Carlo using the DDMC pion sample, since this quantity is not measurable directly on data. We shoot pions from WC4 with the same momentum distribution as in the beamline data and plot the true E_{loss} for that sample. The E_{loss} distribution for the 60A and 100A pion sample is shown in figure 1, left and right respectively. A clear double peaked structure is visible, which is due to the particles either missing or hitting the HALO paddle: a schematic rendering of this occurrence is shown in figure 2. The kinematic at WC4 determines the trajectory

of a particle and whether or not it will hit the halo paddle. In figure 3, we plot the true X component of the momentum versus the true X position at WC4 for pions missing the halo paddle (left) and for pions hitting the halo paddle (right) for the 60A MC simulation runs – analogous plots are obtained with the 100A simulation. These distributions can be separated drawing a line in this position-momentum space. We use a logistic regression [?] as a classifier to find the best separating line, shown in both plots as the red line. We classify as "hitting the halo paddle" all pions whose P_x and X are such that

$$P_r + 0.02 * X - 0.4 < 0$$

and as "missing the halo paddle" all pions whose P_x and X are such that

$$P_x + 0.02 * X - 0.4 > 0$$

where the coefficients of the line are empirically found by the logistic regression estimation. Overall, this simple classifier classifies in the right category (hit or miss) about 86% of the pion events. We apply the same classifier on data. We assign $E_{loss} = 32 \pm 4$ MeV for events classified as "hitting the halo paddle"; we assign $E_{loss} = 24 \pm 3$ MeV for events classified as "missing the halo paddle".

Systematics Discrepancies between the real TPC geometry and the simulated geometry can lead to a systematic in the E_{loss} calculation. In particular, we found a difference in the depth of the un-instrumented argon upstream to the TPC front face, the MC geometry reporting ~ 3.3 cm more un-instrumented argon than the TPC survey. For a pion MIP, this depth corresponds to 7.4 MeV which we account for as a double sided systematic in the determination of the pion kinetic energy.

Figure 1: True energy loss between WC4 and the TPC front face according to the MC simulation of the 60A runs (left) and of the 100A runs (right). The distribution for the whole data sample is shown in blue, the distribution for the pions missing the halo is shown in red, and the distribution for the pions hitting the halo is shown in green.

Figure 2: Schematic rendering of the particle path between WC4 and the TPC front face. The paddle with the hollow central circle represents the Halo paddle. We illustrate two possible trajectories: in black, a trajectory that miss the paddle and goes through the hole in the Halo, in blue a trajectory that hits the Halo paddle and goes through the scintillation material.

Figure 3: Horizontal component of the true momentum vs the horizontal position at WC4 for MC simulated pions of the 60A runs. The plot on the left shows the distribution for pion that miss the halo paddle and the plot on the right shows the distributions for pions that hit the halo. The form of the classifier is overlaid to both plots (red line).

0.1.3 Uncertainty on dE/dx and pitch

We obtain the uncertainty on dE/dx and track pitch by comparing the dE/dx and pitch distributions in data and MC. Currently, MPV MC = 1.70 and MPV DATA = 1.72 MeV/cm (3% higher). TO DO HERE: calculate Argon density from mid-RTD temperature. Compare this density with MC Argon density. Density change affects dE/dx (in MeV/cm!). Try changing MC density up to "real one" and see if dEdX agrees between DATA and MC

0.1.4 Uncertainty on track end, aka efficiency correction

From the MC, we obtain an efficiency correction on the interacting and incident distributions separately. This is done by comparing the MC reconstructed with the true MC deposition on an event by event basis. This correction is applied bin by bin on the data interacting and incident distributions. The better our tracking, the smaller this efficiency correction will be. So, step number one is improving the tracking. Need

to talk to Bruce about this. I don't understand the angle cut that Dave Schmitz and Jon Paley were so vocal about.

Now, the key question remains: does the tracking behave in the same way in data and MC? We can compare some key plots between reconstructed data and MC which gives us confidence this is true: the track pitch, the tracks straightness and the goodness of fit in data and MC. Does such a variable as "goodness of fit" exists in the tracking? We should ask Bruce.

Bibliography

- [1] Precision electroweak measurements on the z resonance. *Physics Reports*, 427(5):257-454, 2006.
- [2] K. Abe, J. Amey, C. Andreopoulos, M. Antonova, S. Aoki, A. Ariga, D. Autiero, S. Ban, M. Barbi, G. J. Barker, G. Barr, C. Barry, P. Bartet-Friburg, M. Batkiewicz, V. Berardi, S. Berkman, S. Bhadra, S. Bienstock, A. Blondel, S. Bolognesi, S. Bordoni, S. B. Boyd, D. Brailsford, A. Bravar, C. Bronner, M. Buizza Avanzini, R. G. Calland, T. Campbell, S. Cao, S. L. Cartwright, M. G. Catanesi, A. Cervera, C. Checchia, D. Cherdack, N. Chikuma, G. Christodoulou, A. Clifton, J. Coleman, G. Collazuol, D. Coplowe, A. Cudd, A. Dabrowska, G. De Rosa, T. Dealtry, P. F. Denner, S. R. Dennis, C. Densham, D. Dewhurst, F. Di Lodovico, S. Di Luise, S. Dolan, O. Drapier, K. E. Duffy, J. Dumarchez, M. Dziewiecki, S. Emery-Schrenk, A. Ereditato, T. Feusels, A. J. Finch, G. A. Fiorentini, M. Friend, Y. Fujii, D. Fukuda, Y. Fukuda, V. Galymov, A. Garcia, C. Giganti, F. Gizzarelli, T. Golan, M. Gonin, D. R. Hadley, L. Haegel, M. D. Haigh, D. Hansen, J. Harada, M. Hartz, T. Hasegawa, N. C. Hastings, T. Hayashino, Y. Hayato, R. L. Helmer, A. Hillairet, T. Hiraki, A. Hiramoto, S. Hirota, M. Hogan, J. Holeczek, F. Hosomi, K. Huang, A. K. Ichikawa, M. Ikeda, J. Imber, J. Insler, R. A. Intonti, T. Ishida, T. Ishii, E. Iwai, K. Iwamoto, A. Izmaylov, B. Jamieson, M. Jiang, S. Johnson, P. Jonsson, C. K. Jung, M. Kabirnezhad, A. C. Kaboth, T. Kajita, H. Kakuno, J. Kameda,

D. Karlen, T. Katori, E. Kearns, M. Khabibullin, A. Khotjantsev, H. Kim, J. Kim, S. King, J. Kisiel, A. Knight, A. Knox, T. Kobayashi, L. Koch, T. Koga, A. Konaka, K. Kondo, L. L. Kormos, A. Korzenev, Y. Koshio, K. Kowalik, W. Kropp, Y. Kudenko, R. Kurjata, T. Kutter, J. Lagoda, I. Lamont, M. Lamoureux, E. Larkin, P. Lasorak, M. Laveder, M. Lawe, M. Licciardi, T. Lindner, Z. J. Liptak, R. P. Litchfield, X. Li, A. Longhin, J. P. Lopez, T. Lou, L. Ludovici, X. Lu, L. Magaletti, K. Mahn, M. Malek, S. Manly, A. D. Marino, J. F. Martin, P. Martins, S. Martynenko, T. Maruyama, V. Matveev, K. Mavrokoridis, W. Y. Ma, E. Mazzucato, M. McCarthy, N. McCauley, K. S. McFarland, C. McGrew, A. Mefodiev, C. Metelko, M. Mezzetto, P. Mijakowski, A. Minamino, O. Mineev, S. Mine, A. Missert, M. Miura, S. Moriyama, Th. A. Mueller, J. Myslik, T. Nakadaira, M. Nakahata, K. G. Nakamura, K. Nakamura, K. D. Nakamura, Y. Nakanishi, S. Nakayama, T. Nakaya, K. Nakayoshi, C. Nantais, C. Nielsen, M. Nirkko, K. Nishikawa, Y. Nishimura, P. Novella, J. Nowak, H. M. O'Keeffe, K. Okumura, T. Okusawa, W. Oryszczak, S. M. Oser, T. Ovsyannikova, R. A. Owen, Y. Oyama, V. Palladino, J. L. Palomino, V. Paolone, N. D. Patel, P. Paudyal, M. Pavin, D. Payne, J. D. Perkin, Y. Petrov, L. Pickard, L. Pickering, E. S. Pinzon Guerra, C. Pistillo, B. Popov, M. Posiadala-Zezula, J.-M. Poutissou, R. Poutissou, P. Przewlocki, B. Quilain, T. Radermacher, E. Radicioni, P. N. Ratoff, M. Ravonel, M. A. Rayner, A. Redij, E. Reinherz-Aronis, C. Riccio, P. A. Rodrigues, E. Rondio, B. Rossi, S. Roth, A. Rubbia, A. Rychter, K. Sakashita, F. Sánchez, E. Scantamburlo, K. Scholberg, J. Schwehr, M. Scott, Y. Seiya, T. Sekiguchi, H. Sekiya, D. Sgalaberna, R. Shah, A. Shaikhiev, F. Shaker, D. Shaw, M. Shiozawa, T. Shirahige, S. Short, M. Smy, J. T. Sobczyk, H. Sobel, M. Sorel, L. Southwell, J. Steinmann, T. Stewart, P. Stowell, Y. Suda, S. Suvorov, A. Suzuki, S. Y. Suzuki, Y. Suzuki, R. Tacik, M. Tada. A. Takeda, Y. Takeuchi, H. K. Tanaka, H. A. Tanaka, D. Terhorst, R. Terri,

- T. Thakore, L. F. Thompson, S. Tobayama, W. Toki, T. Tomura, C. Touramanis, T. Tsukamoto, M. Tzanov, Y. Uchida, M. Vagins, Z. Vallari, G. Vasseur, T. Vladisavljevic, T. Wachala, C. W. Walter, D. Wark, M. O. Wascko, A. Weber, R. Wendell, R. J. Wilkes, M. J. Wilking, C. Wilkinson, J. R. Wilson, R. J. Wilson, C. Wret, Y. Yamada, K. Yamamoto, M. Yamamoto, C. Yanagisawa, T. Yano, S. Yen, N. Yershov, M. Yokoyama, K. Yoshida, T. Yuan, M. Yu, A. Zalewska, J. Zalipska, L. Zambelli, K. Zaremba, M. Ziembicki, E. D. Zimmerman, M. Zito, and J. Żmuda. Combined analysis of neutrino and antineutrino oscillations at t2k. *Phys. Rev. Lett.*, 118:151801, Apr 2017.
- [3] R Acciarri, C Adams, J Asaadi, B Baller, T Bolton, C Bromberg, F Cavanna, E Church, D Edmunds, A Ereditato, S Farooq, B Fleming, H Greenlee, G Horton-Smith, C James, E Klein, K Lang, P Laurens, D McKee, R Mehdiyev, B Page, O Palamara, K Partyka, G Rameika, B Rebel, M Soderberg, J Spitz, A M Szelc, M Weber, M Wojcik, T Yang, and G P Zeller. A study of electron recombination using highly ionizing particles in the argoneut liquid argon tpc. Journal of Instrumentation, 8(08):P08005, 2013.
- [4] R Acciarri, M Antonello, B Baibussinov, M Baldo-Ceolin, P Benetti, F Calaprice, E Calligarich, M Cambiaghi, N Canci, F Carbonara, F Cavanna, S Centro, A G Cocco, F Di Pompeo, G Fiorillo, C Galbiati, V Gallo, L Grandi, G Meng, I Modena, C Montanari, O Palamara, L Pandola, G B Piano Mortari, F Pietropaolo, G L Raselli, M Roncadelli, M Rossella, C Rubbia, E Segreto, A M Szelc, S Ventura, and C Vignoli. Effects of nitrogen contamination in liquid argon. Journal of Instrumentation, 5(06):P06003, 2010.
- [5] R. Acciarri et al. Design and Construction of the MicroBooNE Detector. JINST, 12(02):P02017, 2017.

- [6] R. Acciarri et al. First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber. Phys. Rev., D95(7):072005, 2017. [Phys. Rev.D95,072005(2017)].
- [7] M Adamowski, B Carls, E Dvorak, A Hahn, W Jaskierny, C Johnson, H Jostlein, C Kendziora, S Lockwitz, B Pahlka, R Plunkett, S Pordes, B Rebel, R Schmitt, M Stancari, T Tope, E Voirin, and T Yang. The liquid argon purity demonstrator. *Journal of Instrumentation*, 9(07):P07005, 2014.
- [8] C. Adams et al. The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe. 2013.
- [9] P. Adamson, L. Aliaga, D. Ambrose, N. Anfimov, A. Antoshkin, E. Arrieta-Diaz, K. Augsten, A. Aurisano, C. Backhouse, M. Baird, B. A. Bambah, K. Bays, B. Behera, S. Bending, R. Bernstein, V. Bhatnagar, B. Bhuyan, J. Bian, T. Blackburn, A. Bolshakova, C. Bromberg, J. Brown, G. Brunetti, N. Buchanan, A. Butkevich, V. Bychkov, M. Campbell, E. Catano-Mur, S. Childress, B. C. Choudhary, B. Chowdhury, T. E. Coan, J. A. B. Coelho, M. Colo, J. Cooper, L. Corwin, L. Cremonesi, D. Cronin-Hennessy, G. S. Davies, J. P. Davies, P. F. Derwent, R. Dharmapalan, P. Ding, Z. Djurcic, E. C. Dukes, H. Duyang, S. Edayath, R. Ehrlich, G. J. Feldman, M. J. Frank, M. Gabrielyan, H. R. Gallagher, S. Germani, T. Ghosh, A. Giri, R. A. Gomes, M. C. Goodman, V. Grichine, R. Group, D. Grover, B. Guo, A. Habig, J. Hartnell, R. Hatcher, A. Hatzikoutelis, K. Heller, A. Himmel, A. Holin, J. Hylen, F. Jediny, M. Judah, G. K. Kafka, D. Kalra, S. M. S. Kasahara, S. Kasetti, R. Keloth, L. Kolupaeva, S. Kotelnikov, I. Kourbanis, A. Kreymer, A. Kumar, S. Kurbanov, K. Lang, W. M. Lee, S. Lin, J. Liu, M. Lokajicek, J. Lozier, S. Luchuk, K. Maan, S. Magill, W. A. Mann, M. L. Marshak, K. Matera, V. Matveev, D. P. Méndez, M. D. Messier, H. Meyer, T. Miao, W. H. Miller, S. R. Mishra, R. Mohanta, A. Moren,

- L. Mualem, M. Muether, S. Mufson, R. Murphy, J. Musser, J. K. Nelson, R. Nichol, E. Niner, A. Norman, T. Nosek, Y. Oksuzian, A. Olshevskiy, T. Olson, J. Paley, P. Pandey, R. B. Patterson, G. Pawloski, D. Pershey, O. Petrova, R. Petti, S. Phan-Budd, R. K. Plunkett, R. Poling, B. Potukuchi, C. Principato, F. Psihas, A. Radovic, R. A. Rameika, B. Rebel, B. Reed, D. Rocco, P. Rojas, V. Ryabov, K. Sachdev, P. Sail, O. Samoylov, M. C. Sanchez, R. Schroeter, J. Sepulveda-Quiroz, P. Shanahan, A. Sheshukov, J. Singh, J. Singh, P. Singh, V. Singh, J. Smolik, N. Solomey, E. Song, A. Sousa, K. Soustruznik, M. Strait, L. Suter, R. L. Talaga, M. C. Tamsett, P. Tas, R. B. Thayyullathil, J. Thomas, X. Tian, S. C. Tognini, J. Tripathi, A. Tsaris, J. Urheim, P. Vahle, J. Vasel, L. Vinton, A. Vold, T. Vrba, B. Wang, M. Wetstein, D. Whittington, S. G. Wojcicki, J. Wolcott, N. Yadav, S. Yang, J. Zalesak, B. Zamorano, and R. Zwaska. Constraints on oscillation parameters from ν_e appearance and ν_μ disappearance in nova. *Phys. Rev. Lett.*, 118:231801, Jun 2017.
- [10] A. Aguilar-Arevalo et al. Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam. *Phys. Rev.*, D64:112007, 2001.
- [11] A. A. Aguilar-Arevalo et al. Improved Search for $\bar{\nu}_{\mu} \to \bar{\nu}_{e}$ Oscillations in the MiniBooNE Experiment. *Phys. Rev. Lett.*, 110:161801, 2013.
- [12] S. Amoruso et al. Study of electron recombination in liquid argon with the ICARUS TPC. Nucl. Instrum. Meth., A523:275–286, 2004.
- [13] C. Anderson et al. The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab. JINST, 7:P10019, 2012.
- [14] C. Andreopoulos et al. The GENIE Neutrino Monte Carlo Generator. Nucl. Instrum. Meth., A614:87–104, 2010.

- [15] M. Antonello, B. Baibussinov, P. Benetti, E. Calligarich, N. Canci, S. Centro, A. Cesana, K. Cieslik, D. B. Cline, A. G. Cocco, A. Dabrowska, D. Dequal, A. Dermenev, R. Dolfini, C. Farnese, A. Fava, A. Ferrari, G. Fiorillo, D. Gibin, S. Gninenko, A. Guglielmi, M. Haranczyk, J. Holeczek, A. Ivashkin, J. Kisiel, I. Kochanek, J. Lagoda, S. Mania, A. Menegolli, G. Meng, C. Montanari, S. Otwinowski, A. Piazzoli, P. Picchi, F. Pietropaolo, P. Plonski, A. Rappoldi, G. L. Raselli, M. Rossella, C. Rubbia, P. Sala, A. Scaramelli, E. Segreto, F. Sergiampietri, D. Stefan, J. Stepaniak, R. Sulej, M. Szarska, M. Terrani, F. Varanini, S. Ventura, C. Vignoli, H. Wang, X. Yang, A. Zalewska, and K. Zaremba. Precise 3d track reconstruction algorithm for the ICARUS t600 liquid argon time projection chamber detector. Advances in High Energy Physics, 2013:1–16, 2013.
- [16] M. Antonello et al. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam. 2015.
- [17] D. Ashery, I. Navon, G. Azuelos, H. K. Walter, H. J. Pfeiffer, and F. W. Schlepütz. True absorption and scattering of pions on nuclei. *Phys. Rev. C*, 23:2173–2185, May 1981.
- [18] C. Athanassopoulos et al. Evidence for $nu(mu) \rightarrow nu(e)$ neutrino oscillations from LSND. *Phys. Rev. Lett.*, 81:1774–1777, 1998.
- [19] Borut Bajc, Junji Hisano, Takumi Kuwahara, and Yuji Omura. Threshold corrections to dimension-six proton decay operators in non-minimal {SUSY} su(5) {GUTs}. Nuclear Physics B, 910:1 – 22, 2016.
- [20] B. Baller. Trajcluster user guide. Technical report, apr 2016.
- [21] Gary Barker. Neutrino event reconstruction in a liquid argon TPC. *Journal of Physics: Conference Series*, 308:012015, jul 2011.

- [22] J B Birks. Scintillations from organic crystals: Specific fluorescence and relative response to different radiations. *Proceedings of the Physical Society. Section A*, 64(10):874, 1951.
- [23] A. Bodek and J. L. Ritchie. Further studies of fermi-motion effects in lepton scattering from nuclear targets. *Phys. Rev. D*, 24:1400–1402, Sep 1981.
- [24] Mark G. Boulay and A. Hime. Direct WIMP detection using scintillation time discrimination in liquid argon. 2004.
- [25] D. V. Bugg, R. S. Gilmore, K. M. Knight, D. C. Salter, G. H. Stafford, E. J. N. Wilson, J. D. Davies, J. D. Dowell, P. M. Hattersley, R. J. Homer, A. W. O'dell, A. A. Carter, R. J. Tapper, and K. F. Riley. Kaon-nucleon total cross sections from 0.6 to 2.65 gev/c. Phys. Rev., 168:1466–1475, Apr 1968.
- [26] W. M. Burton and B. A. Powell. Fluorescence of tetraphenyl-butadiene in the vacuum ultraviolet. *Applied Optics*, 12(1):87, jan 1973.
- [27] A. S. Carroll, I. H. Chiang, C. B. Dover, T. F. Kycia, K. K. Li, P. O. Mazur, D. N. Michael, P. M. Mockett, D. C. Rahm, and R. Rubinstein. Pion-nucleus total cross sections in the (3,3) resonance region. *Phys. Rev. C*, 14:635–638, Aug 1976.
- [28] D. Casper. The nuance neutrino physics simulation, and the future. Nuclear Physics B - Proceedings Supplements, 112(1-3):161–170, nov 2002.
- [29] A. Cervera, A. Donini, M.B. Gavela, J.J. Gomez Cádenas, P. Hernández, O. Mena, and S. Rigolin. Golden measurements at a neutrino factory. Nuclear Physics B, 579(1-2):17-55, jul 2000.
- [30] E. Church. LArSoft: A Software Package for Liquid Argon Time Projection Drift Chambers. 2013.

- [31] ATLAS Collaboration. Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC. *Physics Letters B*, 716(1):1–29, sep 2012.
- [32] CMS Collaboration. Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. *Physics Letters B*, 716(1):30 61, 2012.
- [33] The LArIAT Collaboration. The liquid argon in a testbeam (lariat) experiment.

 Technical report, In Preparation 2018.
- [34] Stefano Dell'Oro, Simone Marcocci, Matteo Viel, and Francesco Vissani. Neutrinoless double beta decay: 2015 review. Advances in High Energy Physics, 2016:1–37, 2016.
- [35] S.E. Derenzo, A.R. Kirschbaum, P.H. Eberhard, R.R. Ross, and F.T. Solmitz. Test of a liquid argon chamber with 20 m rms resolution. *Nuclear Instruments and Methods*, 122:319 – 327, 1974.
- [36] Savas Dimopoulos, Stuart Raby, and Frank Wilczek. Proton Decay in Supersymmetric Models. *Phys. Lett.*, B112:133, 1982.
- [37] D. Drakoulakos et al. Proposal to perform a high-statistics neutrino scattering experiment using a fine-grained detector in the NuMI beam. 2004.
- [38] A Ereditato, C C Hsu, S Janos, I Kreslo, M Messina, C Rudolf von Rohr, B Rossi, T Strauss, M S Weber, and M Zeller. Design and operation of argontube: a 5 m long drift liquid argon tpc. *Journal of Instrumentation*, 8(07):P07002, 2013.
- [39] Torleif Ericson and Wolfram Weise. Pions and Nuclei (The International Series of Monographs on Physics). Oxford University Press, 1988.

- [40] A.A. Aguilar-Arevalo et al. The miniboone detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 599(1):28 – 46, 2009.
- [41] Antonio Bueno et al. Nucleon decay searches with large liquid argon TPC detectors at shallow depths: atmospheric neutrinos and cosmogenic backgrounds.

 Journal of High Energy Physics, 2007(04):041–041, apr 2007.
- [42] A.S. Clough et al. Pion-nucleus total cross sections from 88 to 860 MeV. *Nuclear Physics B*, 76(1):15–28, jul 1974.
- [43] B.W. Allardyce et al. Pion reaction cross sections and nuclear sizes. Nuclear Physics A, 209(1):1-51, 1973.
- [44] C Athanassopoulos et al. The liquid scintillator neutrino detector and LAMPF neutrino source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 388(1-2):149–172, mar 1997.
- [45] F. Binon et al. Scattering of negative pions on carbon. Nuclear Physics B, 17(1):168-188, 1970.
- [46] P. Vilain et al. Coherent single charged pion production by neutrinos. *Physics Letters B*, 313(1-2):267–275, aug 1993.
- [47] R. Acciarri et al. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber. *Journal of Instrumentation*, 12(03):P03011, 2017.
- [48] R. Acciarri et al. Design and construction of the MicroBooNE detector. *Journal of Instrumentation*, 12(02):P02017–P02017, feb 2017.

- [49] C. E. Aalseth et al.l. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. The European Physical Journal Plus, 133(3), mar 2018.
- [50] H Fesbach. Theoretical nuclear physics: Nuclear reactions. 1992.
- [51] J. A. Formaggio and G. P. Zeller. From ev to eev: Neutrino cross sections across energy scales. *Rev. Mod. Phys.*, 84:1307–1341, Sep 2012.
- [52] E. Friedman et al. K+ nucleus reaction and total cross-sections: New analysis of transmission experiments. *Phys. Rev.*, C55:1304–1311, 1997.
- [53] V.M. Gehman, S.R. Seibert, K. Rielage, A. Hime, Y. Sun, D.-M. Mei, J. Maassen, and D. Moore. Fluorescence efficiency and visible re-emission spectrum of tetraphenyl butadiene films at extreme ultraviolet wavelengths. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 654(1):116 121, 2011.
- [54] Howard Georgi and S. L. Glashow. Unity of all elementary-particle forces. Phys. Rev. Lett., 32:438–441, Feb 1974.
- [55] D.Y. Wong (editor) G.L. Shaw (Editor). Pion-nucleon Scattering. John Wiley & Sons Inc, 1969.
- [56] D S Gorbunov. Sterile neutrinos and their role in particle physics and cosmology. *Physics-Uspekhi*, 57(5):503, 2014.
- [57] C. Green, J. Kowalkowski, M. Paterno, M. Fischler, L. Garren, and Q. Lu. The Art Framework. J. Phys. Conf. Ser., 396:022020, 2012.
- [58] J. Harada. Non-maximal θ_{23} , large θ_{13} and tri-bimaximal θ_{12} via quark-lepton complementarity at next-to-leading order. *EPL (Europhysics Letters)*, 103(2):21001, 2013.

- [59] Peter W. Higgs. Broken symmetries and the masses of gauge bosons. *Physical Review Letters*, 13(16):508–509, oct 1964.
- [60] P.W. Higgs. Broken symmetries, massless particles and gauge fields. *Physics Letters*, 12(2):132–133, sep 1964.
- [61] H J Hilke. Time projection chambers. Reports on Progress in Physics, 73(11):116201, 2010.
- [62] N. Ishida, M. Chen, T. Doke, K. Hasuike, A. Hitachi, M. Gaudreau, M. Kase, Y. Kawada, J. Kikuchi, T. Komiyama, K. Kuwahara, K. Masuda, H. Okada, Y.H. Qu, M. Suzuki, and T. Takahashi. Attenuation length measurements of scintillation light in liquid rare gases and their mixtures using an improved reflection suppresser. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 384(2-3):380–386, jan 1997.
- [63] George Jaffé. Zur theorie der ionisation in kolonnen. Annalen der Physik, 347(12):303–344, 1913.
- [64] C. Jarlskog. A basis independent formulation of the connection between quark mass matrices, CP violation and experiment. Zeitschrift für Physik C Particles and Fields, 29(3):491–497, sep 1985.
- [65] B J P Jones, C S Chiu, J M Conrad, C M Ignarra, T Katori, and M Toups. A measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level. *Journal of Instrumentation*, 8(07):P07011, 2013.
- [66] Benjamin J. P. Jones. Sterile Neutrinos in Cold Climates. PhD thesis, MIT, 2015.

- [67] Cezary Juszczak, Jarosław A. Nowak, and Jan T. Sobczyk. Simulations from a new neutrino event generator. Nuclear Physics B - Proceedings Supplements, 159:211–216, sep 2006.
- [68] D. I. Kazakov. Beyond the standard model: In search of supersymmetry. In 2000 European School of high-energy physics, Caramulo, Portugal, 20 Aug-2 Sep 2000: Proceedings, pages 125–199, 2000.
- [69] Dae-Gyu Lee, R. N. Mohapatra, M. K. Parida, and Merostar Rani. Predictions for the proton lifetime in minimal nonsupersymmetric so(10) models: An update. Phys. Rev. D, 51:229–235, Jan 1995.
- [70] M A Leigui de Oliveira. Expression of Interest for a Full-Scale Detector Engineering Test and Test Beam Calibration of a Single-Phase LAr TPC. Technical Report CERN-SPSC-2014-027. SPSC-EOI-011, CERN, Geneva, Oct 2014.
- [71] W. H. Lippincott, K. J. Coakley, D. Gastler, A. Hime, E. Kearns, D. N. McK-insey, J. A. Nikkel, and L. C. Stonehill. Scintillation time dependence and pulse shape discrimination in liquid argon. *Phys. Rev. C*, 78:035801, Sep 2008.
- [72] Jorge L. Lopez and Dimitri V. Nanopoulos. Flipped SU(5): Origins and recent developments. In 15th Johns Hopkins Workshop on Current Problems in Particle Theory: Particle Physics from Underground to Heaven Baltimore, Maryland, August 26-28, 1991, pages 277-297, 1991.
- [73] Vincent Lucas and Stuart Raby. Nucleon decay in a realistic so(10) susy gut. Phys. Rev. D, 55:6986–7009, Jun 1997.
- [74] Ettore Majorana. Teoria simmetrica dell'elettrone e del positrone. *Il Nuovo Cimento*, 14(4):171–184, apr 1937.

- [75] Hisakazu Minakata and Alexei Yu. Smirnov. Neutrino mixing and quark-lepton complementarity. Phys. Rev. D, 70:073009, Oct 2004.
- [76] M. Mooney. The microboone experiment and the impact of space charge effects. 2015.
- [77] E. Morikawa, R. Reininger, P. Gürtler, V. Saile, and P. Laporte. Argon, krypton, and xenon excimer luminescence: From the dilute gas to the condensed phase. The Journal of Chemical Physics, 91(3):1469–1477, aug 1989.
- [78] Emmy Noether. Invariant variation problems. Transport Theory and Statistical Physics, 1(3):186–207, jan 1971.
- [79] I. Nutini. Study of charged particles interaction processes on ar in the 0.2 2.0 GeV energy range through combined information from ionization free charge and scintillation light. Technical report, jan 2015.
- [80] D. R. Nygren. The time projection chamber: A new 4 π detector for charged particles. Technical report, 1974.
- [81] L. Onsager. Initial recombination of ions. Phys. Rev., 54:554–557, Oct 1938.
- [82] S. Pascoli, S.T. Petcov, and A. Riotto. Leptogenesis and low energy cp-violation in neutrino physics. *Nuclear Physics B*, 774(1):1 52, 2007.
- [83] C. Patrignani et al. Review of Particle Physics. Chin. Phys., C40(10):100001, 2016.
- [84] B. Pontecorvo. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Sov. Phys. JETP, 26:984–988, 1968. [Zh. Eksp. Teor. Fiz.53,1717(1967)].
- [85] T. Yang R. Acciarri, M. Stancari. Determination of the electron lifetime in lariat. Technical report, March 2016.

- [86] Martti Raidal. Relation between the neutrino and quark mixing angles and grand unification. *Phys. Rev. Lett.*, 93:161801, Oct 2004.
- [87] Steve Ritz et al. Building for Discovery: Strategic Plan for U.S. Particle Physics in the Global Context. 2014.
- [88] C. Rubbia. The Liquid Argon Time Projection Chamber: A New Concept for Neutrino Detectors. 1977.
- [89] L.M. Saunders. Electromagnetic production of pions from nuclei. *Nucl. Phys.*, B7: 293-310(1968).
- [90] Qaisar Shafi and Zurab Tavartkiladze. Neutrino democracy, fermion mass hierarchies, and proton decay from 5d su(5). *Phys. Rev. D*, 67:075007, Apr 2003.
- [91] R. K. Teague and C. J. Pings. Refractive index and the lorentz-lorenz function for gaseous and liquid argon, including a study of the coexistence curve near the critical state. The Journal of Chemical Physics, 48(11):4973-4984, jun 1968.
- [92] J. Thomas and D. A. Imel. Recombination of electron-ion pairs in liquid argon and liquid xenon. *Phys. Rev. A*, 36:614–616, Jul 1987.
- [93] D.R.O. Morrison N. Rivoire V. Flaminio, W.G. Moorhead. Compilation of Cross Sections I: π^+ and π^- Induced Reactions. *CERN-HERA*, pages 83–01, 1983.
- [94] D.R.O. Morrison N. Rivoire V. Flaminio, W.G. Moorhead. Compilation of Cross Sections II: K^+ and K^- Induced Reactions. *CERN-HERA*, pages 83–02, 1983.
- [95] Hermann Weyl. Gravitation and the electron. Proceedings of the National Academy of Sciences of the United States of America, 15(4):323–334, 1929.

- [96] Colin et al Wilkin. A comparison of pi+ and pi- total cross-sections of light nuclei near the 3-3 resonance. *Nucl. Phys.*, B62:61–85, 1973.
- [97] D. H. Wright and M. H. Kelsey. The Geant4 Bertini Cascade. Nucl. Instrum. Meth., A804:175–188, 2015.
- [98] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson. Experimental test of parity conservation in beta decay. *Phys. Rev.*, 105:1413–1415, Feb 1957.
- [99] N Yahlali, L M P Fernandes, K Gonzlez, A N C Garcia, and A Soriano. Imaging with sipms in noble-gas detectors. *Journal of Instrumentation*, 8(01):C01003, 2013.
- [100] T. Yanagida. Horizontal symmetry and masses of neutrinos. *Progress of Theoretical Physics*, 64(3):1103–1105, sep 1980.