A story of Algebra vs Geometry

Eloísa Grifo

UCR Graduate Open House 2020

Algebra ← → Geometry

$$xy = 0$$

$$x^2 + y^2 - 1 = 0$$

$$y - x^2 = 0$$

Algebra
$$\leftarrow$$
 Geometry

$$\begin{cases} xy = 0 \\ xz = 0 \\ yz = 0 \end{cases}$$

$$\begin{cases} x_1 - a_1 = 0 \\ \vdots \\ x_d - a_d = 0 \end{cases}$$

systems of polynomial equations in *d* variables

point (a_1, \ldots, a_d) in *d*-dimensional space

nice subsets of *d*-dimensional space

Definition (Variety)

A variety is a subset $V \subseteq \mathbb{C}^d$ that consists of precisely all the common zeroes of a system of polynomial equations.

Theorem (Hilbert's Basis Theorem)

Every system of polynomial equations in d variables with coefficients in \mathbb{R} , \mathbb{C} , or more generally any field can be described by a finite number of equations.

 f_1, f_2, \dots polynomials in d variables

$$\begin{cases} f_1 = 0 \\ f_2 = 0 \\ \vdots \end{cases}$$

variety V in d-space all common zeros of all f_i

all polynomials f with f(v) = 0 for all $v \in V$

Hilbert gives \int_{0}^{∞} finitely many f

$$I = \big(f_1, \dots, f_n\big) := \big\{g_1f_1 + \dots + g_nf_n : g_i \text{ polynomial}\big\}$$

<u>ideal</u>

Ideals

An **ideal** I of the **ring** of polynomials in d variables, $R = \mathbb{C}[x_1, \dots, x_d]$, is a nice set of polynomials with good algebraic properties.

- 0 ∈ I
- $a, b \in I \Rightarrow a + b \in I$
- $a \in I$ and $r \in R \Rightarrow ra \in I$

Algebra \longleftrightarrow Geometry \longleftrightarrow algebra of ideals \longleftrightarrow geometry of varieties algebra of $R=\mathbb{C}[x_1,\ldots,x_d]$ \longleftrightarrow geometry of \mathbb{C}^d $\frac{\mathrm{radical}}{(SR-d)} \mathrm{ideals}$ varieties

 $(f^n \in I \Rightarrow f \in I)$

Hilbert's Nullstellensatz

Geometry

$$(0) = \{0\}$$

variety \mathbb{C}^d

$$\mathbb{C}[x_1,\ldots,x_d]$$

variety \emptyset

$$(x_1-a_1,\ldots,x_d-a_d)$$

point
$$\{(a_1,\ldots,a_d)\}$$

smaller ideals

larger varieties

prime ideals
$$(fg \in I \Rightarrow f \in I \text{ or } g \in I)$$

irreducible varieties (not the union of smaller varieties) variety V \longleftrightarrow ideal of all polynomials f that vanish at every point $v \in V$

Question

How do we measure vanishing?

variety V \longleftrightarrow ideal of all polynomials f that vanish at every point $v \in V$

Question

How do we measure vanishing?

Example

The polynomial $f = x^3$ vanishes *more* at the point 0 than the polynomial g = x.

Definition (Algebraic Powers)

For an ideal I, its nth power I^n is the ideal

$$I^n=(f_1\cdots f_n:f_i\in I).$$

Example

In $\mathbb{C}[x, y]$, $(x, y)^2 = (x^2, xy, y^2)$.

Symbolic Powers

For an ideal I, its *nth symbolic power* $I^{(n)}$ can be defined via *primary decomposition*. Roughly speaking, primary decomposition is an ideal version of the fundamental theorem of algebra, which says (for \mathbb{Z}) that we can write things as products of primes.

Algebraic Powers

The algebraic powers I^n are very easy to describe algebraically, but have no clear geometric meaning.

Symbolic Powers

The symbolic powers $I^{(n)}$ are very hard to describe algebraically, even with a computer, but have a very important geometric meaning.

Theorem (Zariski–Nagata)

I ideal
$$\longleftrightarrow$$
 variety V

$$I^{(n)} = \{ f \in I : f \text{ vanishes to order } n \text{ at every } v \in V \}$$

13 / 16

- ② $I^{(n+1)} \subseteq I^{(n)}$ for all $n \ge 1$.

- ② $I^{(n+1)} \subseteq I^{(n)}$ for all $n \ge 1$.
- ① If I is generated by a subset of the variables, then $I^n = I^{(n)}$ for all n.

- $I^{(n+1)} \subseteq I^{(n)}$ for all $n \ge 1$.
- If I is generated by a subset of the variables, then $I^n = I^{(n)}$ for all n.
- In general, $I^n \neq I^{(n)}$.

• Given an ideal I (or the corresponding variety V), describe $I^{(n)}$. This can be very difficult to do, even with a powerful computer.

- Given an ideal I (or the corresponding variety V), describe $I^{(n)}$. This can be very difficult to do, even with a powerful computer.
- When is $I^n = I^{(n)}$? For which I is $I^n = I^{(n)}$ for all n? Given I, is $I^n = I^{(n)}$ for some n?

- Given an ideal I (or the corresponding variety V), describe $I^{(n)}$. This can be very difficult to do, even with a powerful computer.
- When is $I^n = I^{(n)}$? For which I is $I^n = I^{(n)}$ for all n? Given I, is $I^n = I^{(n)}$ for some n?
- **3** What is the smallest degree of an element in $I^{(n)}$? That is, what is the lowest degree of a polynomial that vanishes to order n on a given variety? There is a famous lower bound conjectured by Chudnovsky that is still open.

- Given an ideal I (or the corresponding variety V), describe $I^{(n)}$. This can be very difficult to do, even with a powerful computer.
- When is $I^n = I^{(n)}$? For which I is $I^n = I^{(n)}$ for all n? Given I, is $I^n = I^{(n)}$ for some n?
- **3** What is the smallest degree of an element in $I^{(n)}$? That is, what is the lowest degree of a polynomial that vanishes to order n on a given variety? There is a famous lower bound conjectured by Chudnovsky that is still open.
- **1** When is $I^{(a)} \subseteq I^b$? Compare symbolic and algebraic powers.

Thank you!

15 / 16

Symbolic Power

For a prime ideal P in $R=\mathbb{C}[x_1,\ldots,x_d]$, the n-th **symbolic power** of P is

$$P^{(n)} = \{ f \in R : sf \in P^n \text{ for some } s \notin P \}$$