Statistical Theory and Modeling (ST2601) Joint distributions

Mattias Villani

Department of Statistics Stockholm University

Overview

- Joint, marginal and conditional distributions for discrete variables
- Double integrals
- Joint, marginal and conditional distributions for continuous variables
- Independent variables
- Covariance and Correlation
- Conditional expectation

Joint distribution - discrete variables

Joint probability function for two discrete X and Y

$$p(x, y) = \Pr(X = x, Y = y)$$

- Example: Roll two dice.
 - \triangleright X = the number of dice with 5
 - $ightharpoonup Y = \operatorname{sum} \operatorname{of} \operatorname{two} \operatorname{dice}$

	2							9	10	11	12
0	$\begin{array}{c} \frac{1}{36} \\ 0 \\ \end{array}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\begin{array}{r} \frac{3}{36} \\ \frac{2}{36} \end{array}$	$\frac{2}{36}$	$\begin{array}{c} \frac{2}{36} \\ 0 \end{array}$	$\frac{0}{36}$	1 36
1	0	0	0	0	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	0	$\frac{2}{36}$	0
2	0	0	0	0	0	0	0	0	$\frac{1}{36}$	0	0

Joint distribution - discrete variables

Marginal distribution - discrete variables

■ Marginal distribution $p_X(x)$ for X: probability distribution for X regardless of what happens to Y.

$$p_X(x) = \sum_{\text{all } y} p(x, y)$$

Marginal distribution $p_Y(y)$ for Y

$$p_Y(y) = \sum_{\text{all } x} p(x, y)$$

	$X \setminus Y$	2	3	4	5	6	7	8	9	10	11	12
	0	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{\frac{3}{36}}{\frac{2}{36}}$	$\frac{2}{36}$	$\frac{2}{36}$	0	$\frac{1}{36}$
	1	0	0	0	0	$\frac{\frac{3}{36}}{\frac{2}{36}}$	$\frac{4}{36}$ $\frac{2}{36}$	$\frac{2}{36}$	$\frac{\frac{2}{36}}{\frac{2}{36}}$	0	$\frac{2}{36}$	0
	2	0	0	0	0	0	0	0	0	$\frac{1}{36}$	0	0
_	$p_Y(y)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Marginal distribution - discrete variables

$$p_X(x) = \sum_{y} p(x, y) = \begin{cases} \frac{25}{36} & \text{for } x = 0\\ \frac{10}{36} & \text{for } x = 1\\ \frac{1}{36} & \text{for } x = 2 \end{cases}$$
 (1)

Marginal distribution - discrete variables

Single integral for function f(x)

Integral = area under curve y = f(x)

Double integral for bivariate function f(x, y)

Double integral = **volume** under **surface** z = f(x, y)

Bivariate integrals

$$(x_i^\star, y_j^\star)$$

$$f(x_i^\star, y_j^\star)$$

$$\Delta x_i$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{i}^{\star}, y_{j}^{\star}) \Delta x_{i} \Delta y_{j} \rightarrow \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

Double integrals in action

- Two-step approach:
 - ▶ first integrate with respect to *x* while treating *y* as a constant
 - ▶ then integrate with respect to y.
- **Example:** $f(x,y) = x^2y$, integrate over $(x,y) \in (0,1) \times (0,1)$

$$\int_0^1 \int_0^1 x^2 y dx dy = \int_0^1 \left[\frac{1}{3} x^3 y \right]_0^1 dy = \int_0^1 \left(\frac{1}{3} y \right) dy = \left[\frac{1}{2 \cdot 3} y^2 \right]_0^1 = \frac{1}{6}$$

Double integrals - non-rectangular integration region

- Integration region may not be rectangular.
- $f(x,y) = x^2y$, integrate over triangular region:

$$(x,y) \in (0,1) \times (0,1)$$
 and $x \le y$

$$\int_0^1 \int_0^y x^2 y dx dy = \int_0^1 \left[\frac{1}{3} x^3 y \right]_0^y dy = \int_0^1 \left(\frac{1}{3} y^4 \right) dy = \left[\frac{1}{5 \cdot 3} y^5 \right]_0^1 = \frac{1}{15}$$

General notation where R is some region in (x, y)-space

$$\iint_{R} f(x, y) \mathrm{d}x \mathrm{d}y$$

Joint cumulative distribution function

Joint cumulative distribution for two random variables X and Y

$$F(x, y) = \Pr(X \le x, Y \le y)$$

Marginal distributions are special cases:

$$F(x,\infty) = \Pr(X \le x, Y \le \infty) = F_X(x)$$

$$F(\infty,y)=\Pr(X\leq\infty,\,Y\leq y)=F_Y(y)$$

Other properties

$$F(-\infty, y) = F(x, -\infty) = F(-\infty, -\infty) = 0$$
 and $F(\infty, \infty) = 1$

Joint density function

■ Joint density function for two random variables X and Y

$$\Pr(a \le X \le b, c \le Y \le d) = \int_a^d \int_a^b f(x, y) dx dy$$

Properties $f(x, y) \ge 0$ and

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \mathrm{d}x \mathrm{d}y = 1$$

Example: $f(x, y) = 6x^2y$ for $0 \le x \le 1$ and $0 \le y \le 1$. Check:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} 6x^2 y \, dx dy = \int_{0}^{1} \left[6x^2 \frac{1}{2} y^2 \right]_{0}^{1} \, dx$$
$$= \int_{0}^{1} 3x^2 \, dx = \left[x^3 \right]_{0}^{1} = 1$$

Joint density function

Marginal distributions

Marginal density for X

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \mathrm{d}y$$

■ Marginal density for *Y*

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

 \blacksquare Example: Marginal density for X

$$f_X(x) = \int 6x^2 y \, dy = \left[6x^2 \frac{1}{2} y^2 \right]_0^1 = 3x^2$$

 \blacksquare Example: Marginal density for Y

$$f_Y(y) = \int 6x^2y \, dx = \left[2x^3y\right]_0^1 = 2y$$

Conditional distributions

Conditional probability events for Pr(B) > 0

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

Conditional distribution of X given Y = y

$$p_{X|Y}(x|Y=y) = \frac{p(x,y)}{p_Y(y)}$$

Continuous X and Y

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

Example: $f(x,y) = 6x^2y$ and $f_Y(y) = 2y$

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{6x^2y}{2y} = 3x^2$$

Independent random variables

Independent events if and only if

$$\Pr(A|B) = \Pr(A)$$

alternatively

$$\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$$

- Knowing that B has occurred has no affect on my beliefs about A.
- Two random variables are independent if and only if

$$p_{X|Y}(x|Y=y)=p_X(x)$$

alternatively

$$p(x, y) = p_X(x) \cdot p_Y(y)$$

Example: $f(x,y) = 6x^2y$, with $f_X(x) = 3x^2$ and $f_Y(y) = 2y$. X and Y are independent since

$$f_X(x)f_Y(y) = 3x^2 \cdot 2y = 6x^2y = f(x, y)$$

Multivariate distributions

Joint probability density for X_1, X_2, \dots, X_n

$$f(x_1, x_2, \ldots, x_n)$$

 \blacksquare Marginal distribution for X_1

$$f_{X_1}(x_1) = \underbrace{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, x_2, \dots, x_n)}_{n-1 \text{ integrals}} \underbrace{dx_2 \cdots dx_n}_{\text{all except } dx_1}$$

Marginal distribution for (X_1, X_2)

$$f_{X_1,X_2}(x_1,x_2) = \underbrace{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1,x_2,\ldots,x_n)}_{n-2 \text{ integrals}} \underbrace{dx_3 \cdots dx_n}_{\text{all except } dx_1 \text{ and } dx}$$

Conditional distribution for X_1

$$f(x_1|X_2=x_2,\ldots,X_n=x_n)=\frac{f(x_1,x_2,\ldots,x_n)}{f(x_2,\ldots,x_n)}$$

Covariance and Correlation

Covariance between *X* and *Y*

$$Cov(X, Y) = \mathbb{E}((X - \mu_X)(Y - \mu_Y))$$

where $\mu_X = \mathbb{E}(X)$ and $\mu_Y = \mathbb{E}(Y)$.

Correlation between X and Y

$$\rho_{XY} = \frac{\mathrm{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

■ Covariance/Correlation - measures linear dependence.

Conditional expectation

Conditional expectation

$$\mathbb{E}(Y|X=x) = \begin{cases} \sum_{y} y \cdot p(y|x) & \text{if } x \text{ and } y \text{ discrete} \\ \int y \cdot f(y|x) \mathrm{d}y & \text{if } x \text{ and } y \text{ continuous} \end{cases}$$

- Regression and classification models the conditional expectation.
- Computing the expectation $\mathbb{E}(Y)$ directly is sometimes hard.
- But the conditional expectation $\mathbb{E}(Y|X=x)$ may be simpler.
- Two-step approach:
 - **1** Compute conditional expectation $\mathbb{E}(Y|X)$
 - **2** Undo the conditioning on X with \mathbb{E}_X
- Law of iterated expectation

$$\mathbb{E}(Y) = \mathbb{E}_X \left(\mathbb{E}_{Y|X}(Y|X) \right)$$