Overview

- 1. Import mesh
- 2. Swak4foam-groovyBC
- 3. Residual
- 4. Sample

Example 2: Carotid bifurcation aneurysm

Geometry

Abbreviations

CCA: Common carotid artery

ECA: External carotid artery

ICA: Internal carotid artery

CB: Carotid bifurcation

D: Diameter

L: Length

h: Horizontal

v: Vertical

Assumptions and governing equations

Assumptions: Laminar, incompressible, steady, ignore gravity, Newtonian viscosity, 2-D

Mass conservation

$$\nabla \cdot \vec{V} = 0$$

Momentum conservation

$$\rho \nabla \cdot (\vec{V} \times \vec{V}) = -\nabla P + \nabla \cdot (\mu \nabla \vec{V})$$

Symbols

 \vec{V} : Velocity vector $(\frac{m}{s})$

| *P*: Pressure (*Pa*)

 ρ : Density $(\frac{kg}{m^3})$ μ : Dynamic viscosit

Dimension and Properties

Dimension

Name	Value
D_{CCA}	D
L_{CCA}	4D
D_{ECA}	D_{2}
L_{ECA}	4D
$ heta_{ECA}$	30
D_{ICA}	$^{D}/_{2}$
L_{ICA}	4D
$ heta_{ICA}$	10
D_h	2.5 <i>D</i>
D_{v}	2D
D	1 <i>cm</i>

Blood properties

Name	Value
ρ	1060
μ	4.24
U_{avg}	4.0

Boundary conditions

Abbreviations

BC: Boundary conditions

B.Cs of Velocity

	Inlet	Outlet	Walls
Туре	Uniform	Hydrodynamically developed	No slip
Value	$\vec{V}.\hat{n} = U_{avg} \left[1 - \left(\frac{r}{R}\right)^2 \right]$	$ abla ec{V}. \widehat{n} = 0$	\vec{V} =0

B.Cs of Pressure

	Inlet	Outlet	Walls
Туре	Developed	Atmosphere	Zero gradient
Value	$\nabla P.\hat{n}=0$	P = 0	$\nabla P.\hat{n}=0$

Residual

$$Res = \frac{\text{Previous} - \text{Now}}{\text{Previous}} = \frac{x^{n-1} - x^n}{x^{n-1}}$$

Under-relaxation

$$x^{n}_{m} = x^{n-1} + \alpha(x^{n} - x^{n-1}) = \alpha x^{n} + (1 - \alpha)x^{n-1}$$