Едно оптимално разпределение на мандатите на партиите за

40. Народно събрание по избирателни райони

Задача за разпределение на мандатите по партии

Дадени са p партии (p=7), които събират повече от 4% от действителните гласове на изборите за 40. Народно събрание. Означаваме партиите с 3@, 6@, 8@, 12@, 14@, 17@ и 19@. Мандатите за тези партии се определят пропорционално на получените гласове (Метод на Д'Ондт). Нека i-тата партия е получила v_i гласа в цялата страна. Броят на мандатите на партиите n_i ($i=1,2,\ldots,p$) е решение на следната оптимизационна задача:

$$\min_i \frac{v_i}{n_i} \rightarrow \max_i \left(\max_i \frac{n_i}{v_i} \rightarrow \min_i \right)$$

$$\sum_{i=1}^{p} n_i = M, \quad (M = 240),$$

където n_i са цели неотрицателни числа и решението е:

No	партия	гласове	мандати
i		v_i	$\mid n_i \mid$
1	3@	1129196	82
2	6@	725314	53
3	8@	234778	17
4	12@	189268	13
5	14@	296848	21
6	17@	467400	34
7	19@	280323	20
	Общо		240

Задача за разпределение на мандатите на партиите по райони

Дадени са r избирателни района (r=31), като за всеки район е определен предварително броят на мандатите m_j в този район (по закон пропорционално на населението му).

No	Избирателен	мандати
$\mid j \mid$	район	$m_j \mid$
01:	Благоевград	10
02:	Бургас	13
03:	Варна	14
04:	Велико Търново	9
05:	Враца	7
07:	Габрово	4
08:	Добрич	7
09:	Кърджали	5
10:	Кюстендил	5
11:	Ловеч	5
12:	Монтана	6
13:	Пазарджик	9
14:	Перник	5
15:	Плевен	10
16:	Пловдив град	10

No	Избирателен	мандати
$\mid j \mid$	район	m_{j}
17:	Пловдив окръг	11
18:	Разград	5
19:	Pyce	8
20:	Силистра	4
21:	Сливен	7
22:	Смолян	4
23:	София 1	13
24:	София 2	11
25:	София окръг	8
27:	Стара Загора	11
28:	Търговище	4
29:	Хасково	8
30:	Шумен	6
31:	Ямбол	5
	Общо:	240

Задачата е да се разпределят получените мандати на партиите по избирателните райони.

Нека $X = \left\{x_{ij}\right\}_{i,j}$ са разпределените мандати на i-тата партия в j-тия район. Тогава трябва да бъдат изпълнени равенствата:

$$\sum_{j=1}^{r} x_{ij} = n_i, \quad i = 1, 2, \dots, p, \qquad \sum_{i=1}^{p} x_{ij} = m_j, \quad j = 1, 2, \dots, r,$$
 (1)

като x_{ij} са *цели неотрицателни* числа. Тези ограничения са същите както при целочислена транспортна задача. Известна ни е и матрицата на вота с елементи v_{ij} — броят на гласовете на i-тата партия в j-тия район, $i=1,2,\ldots,p;\ j=1,2,\ldots,r$. Ще решаваме задачата при следните две предположения за разглежданите партии:

- регистрация във всички избирателни райони с достатъчно дълга партийна листа;
- $-v_{ij}>0$, т.е. всяка партия получава поне един глас във всеки избирателен район.

Преди да формулираме оптимизационни задачи, ще дадем разпределението X_0 на мандатите според ЦИК, т.е. според методиката на ЦИК. Ще отбележим, че по тази методика са разпределяни мандатите на всички парламентарни избори от 1991 г. до сега.

01234:5678901123456789011234567890111111111111111111111111111111111111	3 @23333523033443423121321135512142 8	6 0 2 2 4 2 1 2 2 2 0 2 0 2 2 2 2 2 2 2 2 2 2 1 5 5 5 5 5 5 5 5 5	8@1111000000000000000000000000000000000	12@ 11100000000001111010101010010101010101	14@02210000100000101110010212110011021 21	17@231000001500001011114131110000032304 34	19@212100000000101220100002220100000 20	n_{j} $134947475556950011584743128148650$ 240
21: 22: 23: 24: 25: 26: 27: 28: 29: 31: m_i	3 1 1 3 5 5 1 2 1 4 82	2 1 2 2 2 2 2 0 2 1 53	0 0 5 4 2 0 1 0 0 0 17	0 0 1 1 0 1 0 0 13	1 0 2 1 2 1 0 1 0 21	1 0 0 0 0 3 2 3 0 34	0 0 2 2 0 1 0 0 0 20	7 4 13 11 12 8 11 4 8 6 5 240

Накратко, методиката е следната: най-напред мандатите на всяка партия се разпределят пропорционално на получените гласове по районите (по Д'Ондт). Тъй като сумата от мандатите на различните партии в един район (изобщо) не е равна на определените мандати за този район, то се прави преразпределение на мандатите по районите в рамките на всяка партия. Решението на ЦИК означаваме с X_0 .

Защо това разпределение не ни харесва?

Пример по райони:

	3@		6@		8@		17@		
09:	17746	0	-	_	-	-	63570	5	
23:	62206	1	43311	2	36536	5	_	_	
24:	47318	1	36011	2	29869	4	_	_	

Пример по партии:

	3@		6@	
06:	38996	5	19679	2
17:	54575	3	33498	3
23:	62206	1	43311	2

Кое е "хубаво" разпределение?

Няма най-добър критерий за това - зависи от модела.

Модел 7 (К. Иванов)

Най-използваният модел за намиране на решение, удовлетворяващо някакви ограничения, най-близко до идеалното решение (без ограничения) е минимизация с l_2 норма (най-малки квадрати).

$$F_7(X) = \sum_{i=1}^p \sum_{j=1}^r \left(\frac{v_{ij}}{v_i} - \frac{x_{ij}}{n_i}\right)^2 + \sum_{j=1}^r \sum_{i=1}^p \left(\frac{v_{ij}}{w_j} - \frac{x_{ij}}{m_j}\right)^2 \to \min$$
 (2)

Линеаризация на задачата (Н. Янев)

За всяка двойка $(i,j), i=1,\ldots,p; j=1,\ldots,r$ полагаме:

$$x_{ij} = x_{ij1} + 2x_{ij2} + \dots + qx_{ijq} = \sum_{k=1}^{q} kx_{ijk}$$

$$\left(\frac{v_{ij}}{v_i} - \frac{k}{n_i}\right)^2 = f_{ijk}^{(1)}, \quad \left(\frac{v_{ij}}{w_j} - \frac{k}{m_j}\right)^2 = f_{ijk}^{(2)}, k = 0, 1, \dots, q.$$

Целевата функция е:

$$F(X) = \sum_{i=1}^{p} \sum_{j=1}^{r} \sum_{k=0}^{q} \left(f_{ijk}^{(1)} + f_{ijk}^{(2)} \right) x_{ijk}.$$
 (3)

Търсим $\min F(X)$ при ограничения:

$$\sum_{j=1}^{r} \sum_{k=1}^{q} kx_{ijk} = n_i, \quad i = 1, 2, \dots, p; \quad \sum_{i=1}^{p} \sum_{k=1}^{q} kx_{ijk} = m_j, \quad j = 1, 2, \dots, r;$$

$$\sum_{k=0}^q x_{ijk} = 1, \quad i = 1, 2, \dots, p, \quad j = 1, 2, \dots, r; \quad x_{ijk} \in \{0, 1\},$$
 за всяко $i, j, k.$

Размери на задачата: (p = 7, r = 31, q = 6)

- неизвестни: pr(q+1) = 1519;
- събираеми в целевата функция: pr(q+1) = 1519;
- ограничения: p+r=38 от първия вид и pr=217 от втория вид.

	3@	6@	8@	12@	14@	17@	19@	
01:	3	2	1	1		2	1	
02:	4	2	1	1	1	3	1	
03:	4	4	1 1	1	1	2	1	
04. 05:	3 2	∠ 1	Ų	U	U	1	U	
06:	3	2	Ô	1	1	Ō	0	
07:	ĭ	$\bar{\overline{1}}$	Ŏ	Ō	$ar{1}$	Ŏ	ĺ	
08:	3	2	0	0	1	1	0	
09:	1	0	0	0	0	4	0	
10:	2	2	0	0	U 1	U 1	I	
12.	∠ 3	2	8@111100000000001011010000322110	0	Ü	232010014010101111312111010	1	
13:	3	2	Ŏ	$\overset{\mathtt{o}}{1}$	$\tilde{1}$	1	$\overline{1}$	
14:	2	1	1	0	0	0	1	
15:	4	2	0	1	1	1	1	
16:	3	3	1 1	0	1	1	1	
17. 18:	4 1	∠ 1	Ų	Ų	U	3	Ų	
19:	2	2	$\overset{\circ}{1}$	Ö	1	1	1	
20:	1	1	0	Ō	0	2	0	
21:	3	1	0	0	1	1	1	
22:	$\frac{1}{4}$	1	0	0	0	1	1	
∠3. 24:	4 3	3 2	3 2	1	1 1	1	1 1	
2 1 . 25:	4	3	2	1	1	Ō	1	
26:	3	2	$\overline{1}$	Ō	$\bar{1}$	Ö	$\bar{1}$	
27:	4	2	1	1	1	1	1	
28:	1	1	0	0	0	2	0	
∠9: 30:	ა 2	⊥ 1	0	U T	1 1	2	0	
01: 02: 03: 05: 06: 07: 11: 13: 14: 15: 17: 18: 19: 21: 22: 23: 24: 25: 26: 27: 28: 28: 28: 28: 28: 28: 28: 28: 28: 28	3@34432313122333243412131434341323	6 0 2 2 4 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	0	111101000000101010000001111010100	01110011010101010111111011111111111111	0 1 2 2 2 0	111100100101111111111111111111111111111	

Това решение е единствено! За да докажем това твърдение, към ограниченията на задачата добавяме още едно:

$$\sum_{\substack{x_{ijk}^{(0)}=1}} x_{ijk} \le pr - 1,$$

където $x_{ijk}^{(0)}$ е намереното решение. Тъй като очевидно

$$\sum_{\substack{x_{ijk}^{(0)}=1}} x_{ijk}^{(0)} = \sum_{i=1}^{p} \sum_{j=1}^{r} \sum_{k=0}^{q} x_{ijk}^{(0)} = \sum_{i=1}^{p} \sum_{j=1}^{r} 1 = pr,$$

то решението на новата задача ще бъде друго. За стойност на целевата функция за новото решение получаваме

$$0.7030951292 > F_7(X_7) = 0.7020591912.$$

За решението на ЦИК X_0 получаваме $F_7(X_0) = 2.04346$.

Защо това разпределение е по-добро?

Пример по райони:

	3@		6@		8@		17@	
09:	17746	1	_	-	_	-	63570	4
23:	62206	4	43311	3	36536	3	_	-
24:	47318	3	36011	2	29869	2	_	-

Пример по партии:

	3@		6@	
06:	38996	3	19679	2
17:	54575	4	33498	2
23:	62206	4	43311	3

Заключение

GLPK, BSD, AMD64, 2GHZ

Анализ на резултатите:

- най-лоши случаи;
- тегла на двете суми в целевата функция $F_7(X_7) = 0,0576 + 0,644;$
- сравнение с резултата на И. Божинов;
- сравнение с другите модели ...

Получаване на резултати за предишни избори.

http://www.math.bas.bg/~nkirov/2005/izb_s.pdf

http://www.math.bas.bg/~nkirov/2005/izb_s1.pdf

Благодаря за вниманието:)