Section 6.3: Classification

Duration: 2.5 hours

Concepts:

Logistic regression
Bayes classifier
Linear discriminant analysis
Quadratic discriminant analysis
Naive Bayes
K-nearest neighbours

Textbook section: An Introduction to Statistical Learning, Chapter 4 & Section 2.2.3

Materials and Resources	Learning Goals
 Computers for students with R Studio Classification Slides Classification Exercises R Markdown file 	 Classification methods theory Bias-variance trade off Implementation of classification methods in R

Duration	Lesson Section	Learning Objectives
20 mins	Go through the introduction and logistic regression section of the slide deck.	 Logistic regression model Odds and log odds Making predictions Multiple predictors
20 mins	Go through the R Markdown Getting Started and Logistic Regression Sections as a class.	 Use `glm()` to fit a logistic regression Interpret summary Use `predict()` to find the training and test error rate
30 mins	Go through the linear discriminant analysis section of the slide deck.	 Bayes classifier LDA Confusion matrix Threshold ROC
15 mins	Go through the R Markdown "Linear Discriminant Analysis" section as a class.	 Use `lda()` to fit an LDA model Interpret the results `predict()` on test set Calculate test error rate
8 mins	Go through the Quadratic Discriminant Analysis section of the slide deck.	LDA vs QDA
15 mins	Go through the R Markdown Quadratic Discriminant Analysis secion as a class.	Use `qda()` to fit a a QDA
5 mins	Go through the Naive Bayes section of the slide deck.	Naive Bayes

15 mins	Go through the R Markdown Naive Bayes section as a class.	Use `naiveBayes()` to fit a naive Bayes model
8 mins	Go through the K-Nearest Neighbour section of the slide deck.	KNNIndicator variable
15 mins	Go through the R Markdown K- Nearest Neighbours section as a class.	 Use `knn()` to fit a KNN model Compare results for different values of K