# Inverse problems for polynomial and rational matrices

D. Steven Mackey, Richard Hollister

Western Michigan University

ICIAM 2019 Valencia Spain

#### Rational matrices

Rational matrices have three main types of structural data (over algebraic closure):

- 1. poles (finite and infinite),
- 2. zeros (finite and infinite),
- 3. and minimal indices (left and right).

#### Rational matrices

Rational matrices have three main types of structural data (over algebraic closure):

- 1. poles (finite and infinite),
- 2. zeros (finite and infinite),
- 3. and minimal indices (left and right).

These data satisfy the *rational index sum condition* [Van Dooren 1979]:

$$\sum (\mathsf{pole}\ \mathsf{mult's}) - \sum (\mathsf{zero}\ \mathsf{mult's}) = \sum (\mathsf{min}\ \mathsf{indices})$$

Given a list  $\mathcal{L}$  of poles, zeros, and minimal indices, is there a rational matrix with that data?

Given a list  $\mathcal{L}$  of poles, zeros, and minimal indices, is there a rational matrix with that data?

Fundamental Realization Theorem (Anguas, Dopico, Hollister, Mackey 2019)

There is a rational matrix with given data if and only if  $\mathcal{L}$  satisfies the index sum condition.

Given a list  $\mathcal{L}$  of poles, zeros, and minimal indices, is there a rational matrix with that data?

Fundamental Realization Theorem (Anguas, Dopico, Hollister, Mackey 2019)

There is a rational matrix with given data if and only if  $\mathcal{L}$  satisfies the index sum condition.

Matrix constructed in proof is

- more than likely dense,
- ▶ and does *not* transparently display the given data.

Given a list  $\mathcal{L}$  of poles, zeros, and minimal indices, is there a rational matrix with that data?

Fundamental Realization Theorem (Anguas, Dopico, Hollister, Mackey 2019)

There is a rational matrix with given data if and only if  $\mathcal{L}$  satisfies the index sum condition.

Matrix constructed in proof is

- more than likely dense,
- and does not transparently display the given data.

The solution outlined in this talk corrects these deficiencies.

Our solution takes the form of a five-fold product

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

Each term is full rank, sparse, and the original data of  $\mathcal L$  is transparently revealed in the factors:

Our solution takes the form of a five-fold product

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

Each term is full rank, sparse, and the original data of  $\mathcal{L}$  is transparently revealed in the factors:

▶ Left minimal indices are stored in  $Z_{\ell}(\lambda)$ ;

Our solution takes the form of a five-fold product

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

Each term is full rank, sparse, and the original data of  $\mathcal{L}$  is transparently revealed in the factors:

- ▶ Left minimal indices are stored in  $Z_{\ell}(\lambda)$ ;
- ▶ Right minimal indices are stored in  $Z_r(\lambda)$ ;

Our solution takes the form of a five-fold product

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

Each term is full rank, sparse, and the original data of  $\mathcal{L}$  is transparently revealed in the factors:

- ▶ Left minimal indices are stored in  $Z_{\ell}(\lambda)$ ;
- ▶ Right minimal indices are stored in  $Z_r(\lambda)$ ;
- Finite poles and zeros are in  $T(\lambda)$ ;

Our solution takes the form of a five-fold product

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

Each term is full rank, sparse, and the original data of  $\mathcal{L}$  is transparently revealed in the factors:

- ▶ Left minimal indices are stored in  $Z_{\ell}(\lambda)$ ;
- ▶ Right minimal indices are stored in  $Z_r(\lambda)$ ;
- Finite poles and zeros are in  $T(\lambda)$ ;
- Infinite poles and zeros are revealed by  $D_{\ell}TD_{r}$  (D's are diagonal).

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$

The process has several steps:

(a) First steps build a template for  $T(\lambda)$ , called  $\widetilde{T}(\lambda,\omega)$ :

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$

- (a) First steps build a template for  $T(\lambda)$ , called  $T(\lambda, \omega)$ :
  - has the correct finite poles and zeros;

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$

- (a) First steps build a template for  $T(\lambda)$ , called  $\widetilde{T}(\lambda,\omega)$ :
  - has the correct finite poles and zeros;
  - lacktriangle placeholder symbol  $\omega$  related to infinite structure.

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$

- (a) First steps build a template for  $T(\lambda)$ , called  $T(\lambda, \omega)$ :
  - has the correct finite poles and zeros;
  - placeholder symbol  $\omega$  related to infinite structure.
- (b) Next,  $Z_{\ell}$ ,  $D_{\ell}$ ,  $Z_{r}$ ,  $D_{r}$  are constructed to realize minimal indices.

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$

- (a) First steps build a template for  $T(\lambda)$ , called  $T(\lambda, \omega)$ :
  - has the correct finite poles and zeros;
  - lacktriangle placeholder symbol  $\omega$  related to infinite structure.
- (b) Next,  $Z_{\ell}$ ,  $D_{\ell}$ ,  $Z_{r}$ ,  $D_{r}$  are constructed to realize minimal indices.
- (c) Finally, adjustments are made to  $T(\lambda, \omega)$ , and the  $\omega$ 's are removed to produce  $T(\lambda)$ .

Using poles and zeros (finite and infinite), construct an *extended Smith-McMillan form*.

Using poles and zeros (finite and infinite), construct an *extended Smith-McMillan form*.

#### Example

 $\mathcal L$  contains poles and zeros involving  $a=\lambda-\alpha$ ,  $b=\lambda-\beta$ , and  $\omega$ :

$$\left( \begin{array}{c} \mathsf{partial} \\ \mathsf{mult's} \end{array} \right) \quad \begin{array}{c} a: \quad -5, \quad -5, \quad -4, \quad -4, \quad -1, \quad -1 \\ b: \quad -1, \quad -1, \quad -1, \quad -1, \quad 1, \quad 5 \\ \omega: \quad -1, \quad -1, \quad -1, \quad 0, \quad 1, \quad 4 \end{array}$$

Using poles and zeros (finite and infinite), construct an *extended Smith-McMillan form*.

#### Example

 $\mathcal L$  contains poles and zeros involving  $a=\lambda-\alpha$ ,  $b=\lambda-\beta$ , and  $\omega$ :

$$\left( \begin{array}{c} \mathsf{partial} \\ \mathsf{mult's} \end{array} \right) \quad \begin{array}{c} a: \quad -5, \quad -5, \quad -4, \quad -4, \quad -1, \quad -1 \\ b: \quad -1, \quad -1, \quad -1, \quad -1, \quad 1, \quad 5 \\ \omega: \quad -1, \quad -1, \quad -1, \quad 0, \quad 1, \quad 4 \end{array}$$

producing extended S-M form

$$\operatorname{diag}\left\{\frac{1}{a^5b\omega},\frac{1}{a^5b\omega},\frac{1}{a^4b\omega},\frac{1}{a^4b},\frac{b\omega}{a},\frac{b^5\omega^4}{a}\right\}.$$



Step 2: Factor out LCM of denominators.

$$\begin{bmatrix} \frac{1}{a^5b\omega} & \frac{1}{a^5b\omega} & \frac{1}{a^4b\omega} & \frac{1}{a^4b} & \frac{b\omega}{a} & \frac{b^5\omega^4}{a} \end{bmatrix}$$

Step 2: Factor out LCM of denominators.

$$\begin{array}{c|c}
1 & & & \\
\hline
1 & & & \\
\hline
a^5 b\omega & & a\omega & \\
& & & a^4 b^2 \omega^2 \\
& & & & a^4 b^6 \omega^5
\end{array}$$

- Step 2: Factor out LCM of denominators.
- Step 3: "Spread out degree" using unimodular transformations

- Step 2: Factor out LCM of denominators.
- Step 3: "Spread out degree" using unimodular transformations and polynomial techniques.

$$\frac{1}{a^{5}b\omega} \begin{bmatrix}
a^{2}b^{2}\omega & b\omega & 1 \\
& a^{2}b\omega^{2} & a^{2}\omega \\
& & a^{2}b\omega & a\omega \\
& & & a^{2}\omega^{2} & a \\
& & & & a^{2}b^{2} & 1 \\
& & & & & b^{2}\omega^{2}
\end{bmatrix}$$

Step 2: Factor out LCM of denominators.

Step 3: "Spread out degree" using unimodular transformations

Step 4: Multiply back the LCM of denominators.

$$\frac{1}{a^{5}b\omega} \begin{bmatrix} a^{2}b^{2}\omega & b\omega & 1 \\ & a^{2}b\omega^{2} & a^{2}\omega \\ & & a^{2}b\omega & a\omega \\ & & & a^{2}\omega^{2} & a \\ & & & & a^{2}b^{2} & 1 \\ & & & & b^{2}\omega^{2} \end{bmatrix}$$

- Step 2: Factor out LCM of denominators.
- Step 3: "Spread out degree" using unimodular transformations
- Step 4: Multiply back the LCM of denominators.

$$\begin{bmatrix} \frac{b}{a^{3}} & \frac{1}{a^{5}} & \frac{1}{a^{5}b\omega} \\ \frac{\omega}{a^{3}} & \frac{1}{a^{3}b} \\ & \frac{1}{a^{3}} & \frac{1}{a^{4}b} \\ & \frac{\omega}{a^{3}b} & \frac{1}{a^{4}b\omega} \\ & \frac{b}{a^{3}\omega} & \frac{1}{a^{5}b\omega} \\ & \frac{b\omega}{a^{5}} \end{bmatrix}$$

Step 2: Factor out LCM of denominators.

Step 3: "Spread out degree" using unimodular transformations

Step 4: Multiply back the LCM of denominators.

$$\widetilde{T}(\lambda,\omega) = \begin{bmatrix} \frac{b}{a^3} & \frac{1}{a^5} & \frac{1}{a^5b\omega} \\ & \frac{\omega}{a^3} & \frac{1}{a^3b} \\ & & \frac{1}{a^3} & \frac{1}{a^4b} \\ & & \frac{\omega}{a^3b} & \frac{1}{a^4b\omega} \\ & & & \frac{b}{a^3\omega} & \frac{1}{a^5b\omega} \\ & & & \frac{b\omega}{a^5} \end{bmatrix}$$

The next few steps use direct sums of *zig-zag matrices* [De Teran, Dopico, Mackey, Van Dooren 2016].

The next few steps use direct sums of *zig-zag matrices* [De Teran, Dopico, Mackey, Van Dooren 2016].

► Full rank realization of left or right minimal indices.

The next few steps use direct sums of *zig-zag matrices* [De Teran, Dopico, Mackey, Van Dooren 2016].

- ► Full rank realization of left or right minimal indices.
- Sum of right minimal indices equals sum of row degrees.

The next few steps use direct sums of *zig-zag matrices* [De Teran, Dopico, Mackey, Van Dooren 2016].

- Full rank realization of left or right minimal indices.
- Sum of right minimal indices equals sum of row degrees.
- ▶ Sum of left minimal indices equals sum of col degrees.

The next few steps use direct sums of *zig-zag matrices* [De Teran, Dopico, Mackey, Van Dooren 2016].

- Full rank realization of left or right minimal indices.
- Sum of right minimal indices equals sum of row degrees.
- ▶ Sum of left minimal indices equals sum of col degrees.

#### Example

Suppose  $\mathcal{L}$  contains right min indices 6, 3.

Row degs 1, 1, 2, 2, 1, are forced (up to ordering).

$$\widetilde{Z}_r = \left[ egin{array}{cccccc} \lambda & 1 & & & & & & \\ & \lambda & 1 & & & & & & \\ & & \lambda^2 & 1 & & & & & \\ & & & \lambda^2 & 1 & & & & \\ & & & & 0 & \lambda^2 & 1 & & \\ & & & & & \lambda & 1 \end{array} 
ight].$$

## Step 5 cont.

#### Example

If  $\mathcal{L}$  has left minimal indices 5, 1, 1. Col degs 1, 1, 1, 1, 1, 2, are forced.

$$reve{Z_\ell} = \left[egin{array}{ccccc} \lambda & & & & & \ 1 & 0 & & & & \ & \lambda & & & & \ & 1 & \lambda & & & \ & & 1 & \lambda & & \ & & & 1 & \lambda^2 & \ & & & & \lambda & \ & & & 1 & \end{array}
ight]$$

## Step 5 cont.

#### Example

If  $\mathcal{L}$  has left minimal indices 5, 1, 1. Col degs 1, 1, 1, 1, 1, 2, are forced.

$$\widetilde{Z}_{\ell} = \left[ egin{array}{ccccc} \lambda & & & & & \ 1 & 0 & & & & \ & \lambda & & & & \ & 1 & \lambda & & & \ & & 1 & \lambda & & \ & & & 1 & \lambda^2 \ & & & & \lambda \ & & & & 1 \end{array} 
ight]$$

Multiplying on the left by  $\widetilde{Z}_{\ell}$  or on the right by  $\widetilde{Z}_{r}$  does not change finite spectral structure (truncated unimodular).

Now factor

$$\widetilde{Z}_r = D_r Z_r = \left[ egin{array}{cccc} \lambda & & & & & \\ & \lambda & & & & \\ & & \lambda^2 & & & \\ & & & \lambda^2 & & \\ & & & & \lambda^2 & & \\ & & & & \lambda \end{array} 
ight] \left[ egin{array}{cccc} 1 & 1/\lambda & & & & & \\ & 1 & 1/\lambda & & & & \\ & & & 1 & 1/\lambda^2 & & & \\ & & & & 1 & 1/\lambda^2 & & \\ & & & & & 1 & 1/\lambda \end{array} 
ight]$$

Now factor

$$\widetilde{Z}_r = D_r Z_r = \begin{bmatrix} \lambda & & & & \\ & \lambda & & & \\ & & \lambda^2 & & \\ & & & \lambda^2 & \\ & & & & \lambda^2 & \\ & & & & \lambda \end{bmatrix} \begin{bmatrix} 1 & 1/\lambda & & & & \\ & 1 & 1/\lambda & & & \\ & & & 1 & 1/\lambda^2 & & \\ & & & & 1 & 1/\lambda^2 & \\ & & & & & 1 & 1/\lambda^2 & \\ & & & & & 1 & 1/\lambda \end{bmatrix}$$

### Now factor

Multiplying  $Z_{\ell} Q Z_r$  does not change infinite spectral structure.



Recall the form of our product realization  $Z_{\ell} D_{\ell} T D_r Z_r$ .

Recall the form of our product realization  $Z_{\ell} D_{\ell} T D_r Z_r$ .

► When parsed as

$$(Z_{\ell} D_{\ell}) T (D_r Z_r) = \widetilde{Z}_{\ell} T \widetilde{Z}_r$$

middle factor reveals finite spectral structure.



Recall the form of our product realization  $Z_{\ell} D_{\ell} T D_r Z_r$ .

► When parsed as

$$(Z_{\ell} D_{\ell}) T (D_r Z_r) = \widetilde{Z}_{\ell} T \widetilde{Z}_r$$

middle factor reveals finite spectral structure.

▶ When parsed as

$$Z_{\ell}(D_{\ell} T D_r) Z_r$$

middle factor reveals infinite spectral structure.

Recall the form of our product realization  $Z_{\ell} D_{\ell} T D_r Z_r$ .

▶ When parsed as

$$(Z_{\ell} D_{\ell}) T (D_r Z_r) = \widetilde{Z}_{\ell} T \widetilde{Z}_r$$

middle factor reveals finite spectral structure.

When parsed as

$$Z_{\ell}(D_{\ell} T D_r) Z_r$$

middle factor reveals infinite spectral structure.

We now use the template  $\widetilde{T}(\lambda,\omega)$  to build  $T(\lambda)$ 



Multiply  $D_{\ell}(\lambda) \widetilde{T}(\lambda, \omega) D_{r}(\lambda)$ 

Multiply  $D_{\ell}(\lambda) \widetilde{T}(\lambda, \omega) D_{r}(\lambda)$ 

Example

$$\widetilde{T}(\lambda,\omega) = \begin{bmatrix} \frac{b}{a^3} & \frac{1}{a^5} & \frac{1}{a^5b\omega} \\ \frac{\omega}{a^3} & \frac{1}{a^3b} & \\ \frac{1}{a^3} & \frac{1}{a^4b} & \\ \frac{\omega}{a^3b} & \frac{1}{a^4b\omega} & \\ \frac{b}{a^3\omega} & \frac{1}{a^5b\omega} & \\ \frac{b\omega}{a^5} & \end{bmatrix}$$

Multiply  $D_{\ell}(\lambda) \widetilde{T}(\lambda, \omega) D_{r}(\lambda)$ 

Example

$$D_{\ell}\widetilde{T} D_{r} = \begin{bmatrix} \frac{b\lambda^{2}}{a^{3}} & \frac{\lambda^{2}}{a^{5}} & \frac{\lambda^{3}}{a^{5}b\omega} \\ \frac{\lambda^{2}\omega}{a^{3}} & \frac{\lambda^{3}}{a^{3}b} & \frac{\lambda^{3}}{a^{3}b} \\ & \frac{\lambda^{3}}{a^{3}} & \frac{\lambda^{3}}{a^{4}b} & \\ & \frac{\lambda^{3}\omega}{a^{3}b} & \frac{\lambda^{3}}{a^{4}b\omega} & \frac{b\lambda^{3}}{a^{5}b\omega} & \frac{\lambda^{2}}{a^{5}b\omega} \\ & \frac{b\lambda^{3}\omega}{a^{5}} & \frac{b\lambda^{3}\omega}{a^{5}} \end{bmatrix}$$

Multiply 
$$D_{\ell}(\lambda) \widetilde{T}(\lambda, \omega) D_{r}(\lambda)$$

Example

$$D_{\ell}\widetilde{T}D_{r} = \begin{bmatrix} \frac{b\lambda^{2}}{a^{3}} & \frac{\lambda^{2}}{a^{5}} & \frac{\lambda^{3}}{a^{5}b\omega} \\ \frac{\lambda^{2}\omega}{a^{3}} & \frac{\lambda^{3}}{a^{3}b} & \\ & \frac{\lambda^{3}}{a^{3}} & \frac{\lambda^{3}}{a^{4}b} & \\ & & \frac{\lambda^{3}\omega}{a^{3}b} & \frac{\lambda^{3}}{a^{4}b\omega} & \\ & & \frac{b\lambda^{3}}{a^{3}\omega} & \frac{\lambda^{2}}{a^{5}b\omega} & \\ & & \frac{b\lambda^{3}\omega}{a^{5}} & \frac{b\lambda^{3}\omega}{a^{5}} \end{bmatrix}$$

#### Notice that

▶ diagonal entries have rational deg 0 (biproper),

Multiply 
$$D_{\ell}(\lambda) \widetilde{T}(\lambda, \omega) D_{r}(\lambda)$$

### Example

$$D_{\ell}\widetilde{T}D_{r} = \begin{bmatrix} \frac{b\lambda^{2}}{a^{3}} & \frac{\lambda^{2}}{a^{5}} & \frac{\lambda^{3}}{a^{5}b\omega} \\ \frac{\lambda^{2}\omega}{a^{3}} & \frac{\lambda^{3}}{a^{3}b} & \\ & \frac{\lambda^{3}}{a^{3}} & \frac{\lambda^{3}}{a^{4}b} & \\ & \frac{\lambda^{3}\omega}{a^{3}b} & \frac{\lambda^{3}}{a^{4}b\omega} & \\ & \frac{b\lambda^{3}}{a^{5}b\omega} & \frac{b\lambda^{3}\omega}{a^{5}b\omega} \end{bmatrix}$$

#### Notice that

- diagonal entries have rational deg 0 (biproper),
- ▶ off-diagonal entries have rational deg  $\leq$  0 (proper).

$$\begin{bmatrix} \frac{b\lambda^2}{a^3} & \frac{\lambda^2}{a^5} & \frac{\lambda^3}{a^5b\omega} \\ & \frac{\lambda^2\omega}{a^3} & \frac{\lambda^3}{a^3b} \\ & & \frac{\lambda^3}{a^3} & \frac{\lambda^3}{a^4b} \\ & & \frac{\lambda^3\omega}{a^3b} & \frac{\lambda^3}{a^4b\omega} \\ & & \frac{b\lambda^3}{a^5\omega} & \frac{\lambda^2}{a^5b\omega} \\ & & & \frac{b\lambda^3\omega}{a^5} \end{bmatrix}$$

$$D_{\ell}(\lambda)\widetilde{T}(\lambda,\omega)D_{r}(\lambda)$$

$$\begin{bmatrix} \frac{b}{a^3} & \frac{1}{a^5} & \frac{1}{a^5b\omega} \\ & \frac{\omega}{a^3} & \frac{1}{a^3b} \\ & & \frac{1}{a^3} & \frac{1}{a^4b} \\ & & \frac{\omega}{a^3b} & \frac{1}{a^4b\omega} \\ & & \frac{b}{a^3\omega} & \frac{1}{a^5b\omega} \\ & & \frac{b\omega}{a^5} \end{bmatrix}$$

$$\widetilde{T}(\lambda,\omega)$$

$$\begin{bmatrix} \frac{b\lambda^2}{a^3} & \frac{\lambda^2}{a^5} & \frac{\lambda^3}{a^5b\omega} \\ & \frac{\lambda^2\omega}{a^3} & \frac{\lambda^3}{a^3b} & \\ & \frac{\lambda^3}{a^3} & \frac{\lambda^3}{a^4b} & \\ & & \frac{\lambda^3\omega}{a^3b} & \frac{\lambda^3}{a^4b\omega} \\ & & \frac{b\lambda^3}{a^3\omega} & \frac{\lambda^2}{a^5b\omega} \\ & & \frac{b\lambda^3\omega}{a^5} \end{bmatrix}$$

$$D_{\ell}(\lambda)\widetilde{T}(\lambda,\omega)D_{r}(\lambda)$$

$$\begin{bmatrix} \frac{b}{a^3} & \frac{1}{a^5} & \frac{1}{a^5b\omega} \\ \frac{\omega}{a^3} & \frac{1}{a^3b} & \frac{1}{a^4b} \\ & \frac{1}{a^3} & \frac{1}{a^4b\omega} & \frac{b}{a^3\omega} & \frac{1}{a^5b\omega} \\ & & \frac{b\omega}{a^5} \end{bmatrix}$$

$$\widetilde{T}(\lambda,\omega)$$

$$\begin{bmatrix} \frac{b\lambda^2}{a^3} & \frac{\lambda^2}{a^5} & \frac{\lambda^3}{a^5b\omega} \\ & \frac{\lambda^2\omega}{a^3} & \frac{\lambda^3}{a^3b} & \\ & \frac{\lambda^3}{a^3} & \frac{\lambda^3}{a^4b} & \\ & & \frac{\lambda^3\omega}{a^3b} & \frac{\lambda^3}{a^4b\omega} \\ & & \frac{b\lambda^3}{a^3\omega} & \frac{\lambda^2}{a^5b\omega} \\ & & \frac{b\lambda^3\omega}{a^5} \end{bmatrix}$$

$$D_{\ell}(\lambda)\widetilde{T}(\lambda,\omega)D_{r}(\lambda)$$

$$\begin{bmatrix} \frac{b}{a^3} & \frac{c^3}{a^5} & \frac{1}{a^5b\omega} \\ \frac{\omega}{a^3} & \frac{1}{a^3b} & \frac{1}{a^4b} \\ & \frac{a^3}{a^3b} & \frac{1}{a^4b\omega} \\ & \frac{b}{a^3\omega} & \frac{1}{a^5b\omega} \\ & \frac{b\omega}{a^5} \end{bmatrix}$$

$$\widetilde{T}(\lambda,\omega)$$

$$\begin{bmatrix} \frac{b\lambda^2}{a^3} & \frac{\lambda^2 c^3}{a^5} & \frac{\lambda^3}{a^5 b\omega} \\ & \frac{\lambda^2 \omega}{a^3} & \frac{\lambda^3}{a^3 b} & \\ & \frac{\lambda^3}{a^3} & \frac{\lambda^3}{a^4 b} & \\ & & \frac{\lambda^3 \omega}{a^3 b} & \frac{\lambda^3}{a^4 b\omega} \\ & & \frac{b\lambda^3}{a^3 \omega} & \frac{\lambda^2}{a^5 b\omega} \\ & & \frac{b\lambda^3 \omega}{a^5} \end{bmatrix}$$

$$D_{\ell}(\lambda)\widetilde{T}(\lambda,\omega)D_{r}(\lambda)$$

$$\begin{bmatrix} \frac{b}{a^3} & \frac{c^3}{a^5} & \frac{1}{a^5b\omega} \\ \frac{\omega}{a^3} & \frac{1}{a^3b} & \frac{1}{a^4b} \\ & \frac{1}{a^3} & \frac{1}{a^4b\omega} & \frac{b}{a^3\omega} & \frac{1}{a^5b\omega} \\ & & \frac{b\omega}{a^5} & \frac{b\omega}{a^5} \end{bmatrix}$$

$$\widetilde{T}(\lambda,\omega)$$

$$\begin{bmatrix} \frac{b\lambda^2}{a^3} & \frac{\lambda^2c^3}{a^5} & \frac{\lambda^3}{a^5b\omega} \\ & \frac{\lambda^2\omega}{a^3} & \frac{\lambda^3}{a^3b} & \\ & \frac{\lambda^3}{a^3} & \frac{\lambda^3}{a^4b} & \\ & & \frac{\lambda^3\omega}{a^3b} & \frac{\lambda^3}{a^4b\omega} \\ & & \frac{b\lambda^3}{a^5\omega} & \frac{\lambda^2}{a^5b\omega} \\ & & \frac{b\lambda^3\omega}{a^5} \end{bmatrix}$$

$$D_{\ell}(\lambda)\widetilde{T}(\lambda,\omega)D_{r}(\lambda)$$

$$\begin{bmatrix} \frac{b}{a^3} & \frac{c^3}{a^5} & \frac{c^4}{a^5b\omega} \\ & \frac{\omega}{a^3} & \frac{c}{a^3b} \\ & \frac{1}{a^3} & \frac{c^2}{a^4b} \\ & \frac{\omega}{a^3b} & \frac{c^3}{a^4b\omega} \\ & \frac{b}{a^3\omega} & \frac{c^5}{a^5b\omega} \\ & \frac{b\omega}{a^5} \end{bmatrix}$$

$$\widetilde{T}(\lambda,\omega)$$

$$\begin{bmatrix} \frac{b\lambda^2}{a^3} & \frac{\lambda^2c^3}{a^5} & \frac{\lambda^3c^4}{a^5b\omega} \\ & \frac{\lambda^2\omega}{a^3} & \frac{\lambda^3c}{a^3b} \\ & & \frac{\lambda^3}{a^3} & \frac{\lambda^3c^2}{a^4b} \\ & & \frac{\lambda^3\omega}{a^3b} & \frac{\lambda^3c^3}{a^4b\omega} \\ & & \frac{b\lambda^3}{a^3\omega} & \frac{\lambda^2c^5}{a^5b\omega} \\ & & \frac{b\lambda^3\omega}{a^5} \end{bmatrix}$$

$$D_{\ell}(\lambda)\widetilde{T}(\lambda,\omega)D_{r}(\lambda)$$

$$\begin{bmatrix} \frac{b}{a^{3}} & \frac{c^{3}}{a^{5}} & \frac{c^{4}}{a^{5}b\omega} \\ & \frac{\omega}{a^{3}} & \frac{c}{a^{3}b} \\ & \frac{1}{a^{3}} & \frac{c^{2}}{a^{4}b} \\ & \frac{\omega}{a^{3}b} & \frac{c^{3}}{a^{4}b\omega} \\ & \frac{b}{a^{3}\omega} & \frac{c^{5}}{a^{5}b\omega} \\ & \frac{b\omega}{a^{5}} \end{bmatrix}$$

$$\widetilde{T}(\lambda,\omega)$$

$$\begin{bmatrix} \frac{b\lambda^2}{a^3} & \frac{\lambda^2c^3}{a^5} & \frac{\lambda^3c^4}{a^5b\omega} \\ & \frac{\lambda^2\omega}{a^3} & \frac{\lambda^3c}{a^3b} \\ & & \frac{\lambda^3}{a^3} & \frac{\lambda^3c^2}{a^4b} \\ & & \frac{\lambda^3\omega}{a^3b} & \frac{\lambda^3c^3}{a^4b\omega} \\ & & \frac{b\lambda^3}{a^5b\omega} & \frac{b\lambda^3\omega}{a^5b\omega} \end{bmatrix}$$

$$D_{\ell}(\lambda)\widetilde{T}(\lambda,\omega)D_{r}(\lambda)$$

$$\begin{bmatrix} \frac{b}{a^3} & \frac{c^3}{a^5} & \frac{c^4}{a^5b\omega} \\ & \frac{\omega}{a^3} & \frac{c}{a^3b} \\ & & \frac{1}{a^3} & \frac{c^2}{a^4b} \\ & & \frac{\omega}{a^3b} & \frac{c^3}{a^4b\omega} \\ & & \frac{b}{a^3\omega} & \frac{c^5}{a^5b\omega} \\ & & \frac{b\omega}{a^5} \end{bmatrix}$$

$$\widetilde{T}(\lambda,\omega)$$

Erase the  $\omega$ 's from updated  $\widetilde{T}(\lambda, \omega)$  to produce  $T(\lambda)$ :

se the 
$$\omega$$
's from updated  $\widetilde{T}(\lambda,\omega)$  to produce  $T(\lambda)$ : 
$$\widetilde{T}(\lambda,\omega) = \begin{bmatrix} \frac{b}{a^3} & \frac{c^3}{a^5} & \frac{c^4}{a^5b\omega} \\ \frac{\omega}{a^3} & \frac{c}{a^3b} & \\ & \frac{1}{a^3} & \frac{c^2}{a^4b} & \\ & \frac{\omega}{a^3b} & \frac{c^3}{a^4b\omega} & \\ & \frac{b}{a^3\omega} & \frac{c^5}{a^5b\omega} & \\ & \frac{b\omega}{a^5} & \end{bmatrix}$$

Erase the  $\omega$ 's from updated  $\widetilde{T}(\lambda,\omega)$  to produce  $T(\lambda)$ :

the 
$$\omega$$
's from updated  $\widetilde{T}(\lambda,\omega)$  to produce  $T(\lambda)$ : 
$$T(\lambda) = \begin{bmatrix} \frac{b}{a^3} & \frac{c^3}{a^5} & \frac{c^4}{a^5b} \\ \frac{1}{a^3} & \frac{c}{a^3b} \\ & \frac{1}{a^3} & \frac{c^2}{a^4b} \\ & & \frac{1}{a^3b} & \frac{c^3}{a^4b} \\ & & \frac{b}{a^3} & \frac{c^5}{a^5b} \\ & & \frac{b}{a^5} \end{bmatrix}$$

$$R = Z_{\ell} D_{\ell} T D_r Z_r$$

Let's recap why...

$$R = \underbrace{Z_{\ell} D_{\ell}}_{r} T \underbrace{D_{r} Z_{r}}_{r}$$

Finite poles and zeros:

$$R = \underbrace{Z_{\ell} D_{\ell}}_{T} T \underbrace{D_{r} Z_{r}}_{T}$$

- Finite poles and zeros:
  - R has same finite poles and zeros as T

$$R = \underbrace{Z_{\ell} D_{\ell}}_{r} T \underbrace{D_{r} Z_{r}}_{r}$$

- Finite poles and zeros:
  - R has same finite poles and zeros as T
  - ► *T* realizes the finite spectral data by construction (neutral factors do not affect the finite spectrum).

$$R = Z_{\ell} \underbrace{D_{\ell} T D_{r}}_{r} Z_{r}$$

- Finite poles and zeros:
  - R has same finite poles and zeros as T
  - ► *T* realizes the finite spectral data by construction (neutral factors do not affect the finite spectrum).
- ▶ Poles and zeros at ∞:

$$R = Z_{\ell} \underbrace{D_{\ell} T D_{r}}_{r} Z_{r}$$

- Finite poles and zeros:
  - R has same finite poles and zeros as T
  - ► *T* realizes the finite spectral data by construction (neutral factors do not affect the finite spectrum).
- **▶** Poles and zeros at ∞:
  - ▶ R has same infinite poles and zeros as  $D_{\ell}TD_r$ .

$$R = Z_{\ell} \underbrace{D_{\ell} T D_{r}}_{r} Z_{r}$$

- Finite poles and zeros:
  - R has same finite poles and zeros as T
  - ► *T* realizes the finite spectral data by construction (neutral factors do not affect the finite spectrum).
- ▶ Poles and zeros at ∞:
  - ▶ R has same infinite poles and zeros as  $D_{\ell}TD_r$ .
  - ▶  $D_{\ell}TD_r$  realizes infinite spectral data by construction (neutral factors and placeholder).

$$R = Z_{\ell} D_{\ell} T D_{r} Z_{r}$$

- Finite poles and zeros:
  - R has same finite poles and zeros as T
  - T realizes the finite spectral data by construction (neutral factors do not affect the finite spectrum).
- **▶** Poles and zeros at ∞:
  - ▶ R has same infinite poles and zeros as  $D_{\ell}TD_r$ .
  - ▶  $D_{\ell}TD_r$  realizes infinite spectral data by construction (neutral factors and placeholder).
- ▶ Minimal indices: Each term full rank implies R has same left and right minimal indices as  $Z_{\ell}$  and  $Z_r$  respectively.

Without going into the details...

Recall

Without going into the details...

### Recall

the finite poles and zeros are recovered from T,

Without going into the details...

#### Recall

- the finite poles and zeros are recovered from T,
- ▶ the infinite poles and zeros are recovered from  $D_\ell TD_r$  (easy to compute product),

Without going into the details...

#### Recall

- the finite poles and zeros are recovered from T,
- ▶ the infinite poles and zeros are recovered from  $D_{\ell}TD_r$  (easy to compute product),
- ▶ and the minimal indices are recovered from  $Z_{\ell}$  and  $Z_r$

Without going into the details...

#### Recall

- the finite poles and zeros are recovered from T,
- ▶ the infinite poles and zeros are recovered from  $D_{\ell}TD_r$  (easy to compute product),
- ▶ and the minimal indices are recovered from  $Z_{\ell}$  and  $Z_r$  without doing any numerical computations.

The purely combinatorial manipulations are straightforward once you know the techniques, and only require  $\mathcal{O}(n)$  work.

# Thank you!

### References

L. M. Anguas, F. M. Dopico, R. Hollister, D. S. Mackey. Van Dooren's index sum theorem and rational matrices with perscribed structural data.

SIAM J. Matrix Anal. & Apps., 40, no.2:720-738, 2019.

F. De Terán, F. M. Dopico, and P. Van Dooren.

Matrix polynomials with completely prescribed eigenstructure.

SIAM J. Matrix Anal. & Apps., 36:302–328, 2015.

F. De Teran, F. Dopico, D. S. Mackey, and P. Van Dooren. Polynomial zigzag matrices, dual minimal bases, and the realization of completely singular polynomials. *Linear Algebra Appl.*, 488:460–504, 2016.

P. Van Dooren.
Eigenstructuur Van Polynome en Rationale Matrices
Toepassingen in de Systeemtheorie.
PhD Thesis, KU Leuven, May 1979.