

### Kanditutkielma

Tietojenkäsittelytieteen kandiohjelma

## Tekstipohjaiset vastakkaishyökkäykset NLP-malleja vastaan

Akira Taguchi

22.8.2022

MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA
HELSINGIN YLIOPISTO

### Ohjaaja(t)

Prof. Nikolaj Tatti

### Yhteystiedot

PL 68 (Pietari Kalmin katu 5) 00014 Helsingin yliopisto

Sähkopostiosoite: info@cs.helsinki.fi URL: http://www.cs.helsinki.fi/

#### HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI

| Tiedekunta — Fakultet — Faculty                           |                   | Koulutusohjelma — Utbildningsprogram — Study programme |                                         |  |
|-----------------------------------------------------------|-------------------|--------------------------------------------------------|-----------------------------------------|--|
| Matemaattis-luonnontieteellinen t                         | iedekunta         | Tietojenkäsittelytieteen kandiohjelma                  |                                         |  |
| Tekijä — Författare — Author                              |                   |                                                        |                                         |  |
| Akira Taguchi                                             |                   |                                                        |                                         |  |
| Työn nimi — Arbetets titel — Title                        |                   |                                                        |                                         |  |
| Tekstipohjaiset vastakkaishyökkäykset NLP-malleja vastaan |                   |                                                        |                                         |  |
| Ohjaajat — Handledare — Supervisors                       |                   |                                                        |                                         |  |
| Prof. Nikolaj Tatti                                       |                   |                                                        |                                         |  |
| Työn laji — Arbetets art — Level                          | Aika — Datum — Mo | onth and year                                          | Sivumäärä — Sidoantal — Number of pages |  |
| Kanditutkielma                                            | 22.8.2022         |                                                        | 15 sivua                                |  |

Tiivistelmä — Referat — Abstract

Tässä tutkimuksessa käsitellään tekstipohjaisia vastakkaishyökkäyksiä NLP-malleja vastaan. Tutkielmassa tutustutaan hyökkäystaksonomiaan sekä puolustusmetodeihin yleisimmillä osaalueilla. Lisäksi tarkoituksena on tarkastella vastakkaishyökkäysten tulevaisuutta teknologian ja yhteiskunnallisten rakenteiden kehittyessä, ja pohtia mahdollisia tulevaisuuden skenaarioita.

Tutkielmassa tulee myös tunnistamaan vastakkaishyökkäysten roolin nykyteknologiassa, sekä syyt merkittävyyteen koneoppimismallien käytössä. Huomaamaan myös hyökkäyspinta-alan kattavan laajemman alueen puolustuspinta-alaan verrattuna vastakkaishyökkäyksissä. Työssä tullaan myös huomaamaan hyökkäyspinta-alan kattavan laajemman alueen puolustuspinta-alaan verrattuna vastakkaishyökkäyksissä. Lopuksi todetaan syyn olevan jo-valjastettu, mutta reunatapauksissa hallitsematon tekoälyn voima.

#### ACM Computing Classification System (CCS)

Security and privacy  $\rightarrow$  Human and societal aspects of security and privacy Computing methodologies  $\rightarrow$  Artificial Intelligence  $\rightarrow$  Natural language processing

Avainsanat — Nyckelord — Keywords

Luonnolllisen kielen käsittely, vastakkaishyökkäys, koneoppiminen, tekoäly, ladonta, sensuuri

Säilytyspaikka — Förvaringsställe — Where deposited

Helsingin yliopiston kirjasto

 ${\it Muita\ tietoja--\"ovriga\ uppgifter---Additional\ information}$ 

# Sisältö

| 1        | Joh   | danto                           | 1  |
|----------|-------|---------------------------------|----|
| <b>2</b> | Tek   | stin automaattinen luokitus     | 3  |
|          | 2.1   | Roskapostien suodatus           | 3  |
|          | 2.2   | Vihapuheen sensurointi          | 4  |
|          | 2.3   | Valearviointien tunnistus       | 4  |
|          | 2.4   | Sentimenttianalyysi             | 4  |
|          | 2.5   | Manuaalinen luokitus            | 4  |
| 3        | Hyö   | ökkäystyypit                    | 5  |
|          | 3.1   | Roskapostisuodatuksen ohitus    | 5  |
|          | 3.2   | Sensuurin ohitus                | 6  |
|          | 3.3   | Näkymättömät merkit             | 6  |
|          | 3.4   | Homoglyfit                      | 7  |
|          | 3.5   | Uudelleenjärjestelyt            | 8  |
|          | 3.6   | Poistatukset                    | 8  |
| 4        | Hyö   | ökkäyksiltä suojautuminen       | 10 |
|          | 4.1   | OCR-puolustus                   | 10 |
|          | 4.2   | Suorituskykykeskeinen puolustus | 10 |
| 5        | Yht   | seenveto                        | 12 |
| Τέ       | ihtee | rt.                             | 14 |

### 1 Johdanto

Koneoppimisen käyttötarkoitusten määrä kasvaa vuosi vuodelta suuremmaksi. Tätä teknologiaa voidaan hyödyntää muun muassa ihmisten puhuman kielen käsittelyy. Luonnollisen kielen käsittely (eng. Natural Language Processing, NLP) on alati kasvavassa kuluttajakäytössä johtuen seuraavista syistä:

- laskentatehon kasvu
- suurien tietomäärien saatavuus
- onnistuneiden koneoppimismenetelmien kehitys
- sekä laajempi ihmiskielen ymmärrys ja sen käyttö eri konteksteissa (Hirschberg ja Manning, 2015).

Luonnollisen kielen käsittelyä voidaan hyödyntää kohdennetussa mainonnassa. Analysoimalla NLP-mallin avulla esimerkiksi käyttäjien lähettämiä viestejä toisilleen, voidaan saada selville tuote, jota kannattaa mainostaa mainoskohdennetulle yksilöllle. Viesti ystävälle mainoskohdennetussa viestipalvelussa antaa työstettävän datan NLP-mallille: "Mikä elokuva meidän pitäisi katsoa viikonloppuna? " NLP-mallin avulla automaattinen mainostaja ymmärtää mainostaa kyseiselle käyttäjälle miltei välittömästi sarjalippuja mainostavasta elokuvateatterista, suoratoistopalvelua tai mainostavaa aktiviteettikeskusta kyseiselle viikonlopulle. Tämän rahanarvoisen tarpeen löytäminen datasta automaation avulla edellyttää kaikkia neljää aikaisemmin mainittua teknologista edistystä kultakin osa-alueelta.

Kaikkien neljän osa-alueen kehittyminen mahdollistaa luonnollisen kielen käsittelyn yleistymisen. Ihmiskielen ymmärtäminen tietokoneen tasolla on kehittynyt huomattavasti, kun ihmisen käyttämää kieltä, virkkeitä ja sanoja on alettu pilkkomaan helpommin ymmärrettäviksi paloiksi (Chowdhury, 2003). Jotta luonnollisen kielen käsittelyn malli olisi rakennettu älykkäästi, tarvitsemme edistyneitä koneoppimismetodeita. Tämä on tullut kehityksen saatossa mahdolliseksi (Jordan ja Mitchell, 2015). Koska datan määrä on kasvanut ja dataa on helpompaa hankkia (Gopalakrishnan, 2018), pystymme kouluttamaan mallin toimimaan mahdollisimman monessa eri tilanteessa. Laskentatehon huomattava kasvu vuosien mittaan (Moore et al., 1965) on alkanut mahdollistaa suurempien datamäärän käsittelyä kuin aikaisemmin.

Tässä tutkielmassa tarkastellaan NLP-hyökkäysten käyttökohteita. Tähän kuuluu hyökkäystaksonomia, puolustusmenetelmät sekä NLP-mallien sekä niihin kohdistuvien hyökkäysten tulevaisuus. Hyökkäystaksonomiassa käymme läpi erilaisia tapoja hyökätä NLP-malleja vastaan, hyökkäysten tarkoituksiin ja onnistumisen todennäköisyyksiin. Puolustusmenetelmät ovat tärkeässä osassa, jotta haavoittuvuuteen kohdistuvat yritykset saavat ohjeita vahingon mitigointiin ja ennaltaehkäisyyn. On tärkeää myös spekuloida mahdollisia kehityksiä koneoppimisessa sekä tästä syntyviä haavoittuvuuksia. Lopuksi käymme läpi mahdollisia luonnollisen kielen käyttökohteita tulevaisuudessa sekä näistä aiheutuvia seurauksia eri osa-alueisiin sekä akateemisella että kaupallisella puolella.

### 2 Tekstin automaattinen luokitus

NLP-luokittimia, eli NLP-malleja käytetään analysoimaan tekstiä, joissa on tehokkaampaa korvata ihmisen manuaalisesti tekemä analysointityö. Ensin käydään läpi neljä yleistä tapausta tekstin automaattisesta luokituksesta. Nämä neljä tapausta ovat roskapostin suodatus sähköposteista, vihapuheen sensurointi sosiaalisesta mediasta, valearviointien tunnistus nettikauppojen arvosteluosiosista sekä sentimenttianalyysi. Lopuksi käydään läpi tekstin automaattisen luokituksen edut verrattuna manuaaliseen, ihmisen tekemään luokitustyöhön.

### 2.1 Roskapostien suodatus

Sähköpostien automaattinen luokitus roskaposteiksi tai kelpoposteiksi onnistuu NLP-mallien avulla. Noin 70% liiketoiminnan sähköposteista on roskapostia. Näiden roskapostien tarkoitus voi muun muassa olla petkutusta, ärsyttämistä tai loukkaamista (Garg ja Girdhar, 2021).

Roskapostin vaikutukset käyttäjästä riippuen ovat niin vakavia, että sähköpostipalvelun tarjoajan intresseissä on implementoida roskapostisuodatin. Roskapostit saattavat sisältää viestin avaajaa järkyttävää tai provosoivaa mediaa. Roskaposti saattaa sisältää myös kalasteluyrityksen. Kalasteluhyökkäyksessä tarkoituksena on petkuttaa käyttäjää antamaan erilaisia tunnus-salasana-yhdistelmiä liittämällä roskapostiin esimerkiksi linkin viralliselta näyttävältä sivulle. Sivulla käyttäjää kehotetaan kirjautumaan tunnuksillaan tuttuun palveluun, mutta oikeasti palvelu vain varastaa käyttäjän tunnukset. Roskaposti saattaa myös sisältää haittaohjelmia, joita käyttäjä voi saada koneelleen muun muassa lataamalla ja suorittamalla sähköpostin tiedostoja tai vierailemalla pahantahtoisella sivustolla. Tämä pahantahtoinen sivusto usein sisältää koodia, joka hyväksikäyttää usein jotain selaimen haavoittuvaisuutta esimerkiksi asentaakseen tietokoneelle haittaohjelmia. Myös kiristysviestejä sekä sähköposteja eteenpäinlähettäviä haittaohjelmia kulkee roskapostien mukana, joita sähköpostipalvelun tarjoajat pyrkivät estämään roskapostisuodattimilla.

### 2.2 Vihapuheen sensurointi

Vihapuheen riittävään sensurointiin tarvitaan luonnollisen kielen käsittelyä. Suodattimen rakentaminen vihapuhetta vastaan pelkkien avainsanojen perusteella ei tuota toivottuja tuloksia, koska katsotun vihapuheen sensuroinnille tarvitaan muun muassa meneillään olevan keskustelun suunta, tarkka ajanhetki, ajankohtaiset maailman tapahtumat, lähettäjän sekä vastaanottajan henkilöllisyys sekä kontekstuaaliset mediat, esimerkiksi kuvat, videot tai ääni (Schmidt ja Wiegand, 2017).

#### 2.3 Valearviointien tunnistus

### 2.4 Sentimenttianalyysi

#### 2.5 Manuaalinen luokitus

Tämä kaikki tarkastustyö voitaisiin tehdä manuaalisesti, mutta tarkastettavan sisällön määrän vuoksi tämä ei ole käytännössä mahdollista. Tietoteknistaitoinen ihminen pystyisi tarkastamaan vastaanotetusta sähköpostista, mikäli kyseinen sähköposti olisi esimerkiksi kalasteluroskapostia. Koska roskapostia lähetetään automaattisesti jokaiseen olemassa olevaan sähköpostiosoitteeseen päivittäin, menisi roskapostien tunnistamiseen ihmiseltä liian kauan aikaa päivittäin. Tämän takia useimmissa sähköpostiohjelmissa tulee mukana automaattisesti roskapostia suodattava NLP-malli, joka päästää läpi vain sähköpostit, joista NLP-malli ei ole varma, onko se roskapostia. Perehdytään seuraavassa kappaleessa tarkemmin tämän suodattimen ohitukseen. Tämä haavoittuvaisuus on läsnä myös muissa sovelluksissa, joissa käytetään NLP-mallia.

## 3 Hyökkäystyypit

Tässä kappaleessa käydään läpi hyökkästaksonomia, eli hyökkäysrajapinta, NLP-malleja vastaan. Ensin käydään läpi roskapostisuodatuksen roskapostisuodatuksen ohitus, joka on NLP-hyökkäysten keskiössä. Sitten esittelen neuroverkkohyökkäykset, sensuuriohituksen sekä ladontahyökkäykset.

### 3.1 Roskapostisuodatuksen ohitus

Vastakkaishyökkäyksiä voidaan käyttää sähköposteissa roskapostisuodattimien ohitukseen. Roskapostisuodattimet toimivat koulutettujen NLP-mallien mukaan. Nämä mallit merkkaavat vastaanotetut sähköpostit joko hyväntahtoisiksi tai pahantahtoisiksi, eli roskaposteiksi (Kuchipudi et al., 2020).

Suodattimia vastaan toimii kolme vastakkaishyökkäystä: (1) Synonyymin korvaus, (2) kelposanan injektointi sekä (3) roskapostisanojen väljennys. Sana "kelpo" tarkoittaa tässä yhteydessä tekstiä, jonka roskapostisuodatin on merkinnyt hyväntahtoiseksi. Synonyymin korvauksessa tarkoitus on korvata pahantahtoiset sanat hyväntahtoisiksi luokitelluilla synonyymeillä. Lauseiden samankaltaisuuksien vertailua demonstroidaan taulukossa 3.1. Pahantahtoisissa lauseissa pyritään nostattamaan samankaltaisuusastetta vaihtamalla sanoja synonyymeihin, kunnes NLP-malli tunnistaa viestin olevan kelpopostia. Kelposanan injektoinnissa kelposanoja lisätään sähköpostiin niin paljon, kunnes NLP-malli tunnistaa roskapostiin olevan kelpopostia. Kelposanoja voidaan injektoida tietokannoista roskaposteihin muuttamatta viestin tarkoitusta rajusti. Roskapostisanojen väljennyksessä roskapostisanoihin sisällytetään välilyöntejä, jotta NLP-malli ei tunnistaisi näitä sanoja roskasanoiksi. Kun väljennystä on harjoitettu tarpeeksi, muuttuu roskaposti NLP-mallin näkökulmasta kelpopostiksi. (Kuchipudi et al., 2020)

Kelposanan injektoinnille ja roskasanojen väljennykselle on olemassa erilaisia implementaatioita. Seuraavissa alaluvuissa tutustutaan ladontapohjaisiin vastakkaishyökkäyksiin. Muun muassa näitä hyökkäysmetodeita voidaan käyttää kahdessa aiemmin mainitussa roskapostisuodattimeen kohdistetussa hyökkäyksessä. Implementaatioita yhdistelemällä ja vaihtelemalla, saattaa NLP-mallin pahantahtoisuuden havaitseminen heikentyä entisestään, taaten hyökkääjälle varmemman onnistumisen.

| Muokattu viesti                                                | Samankaltaisuus | Ennustus    |
|----------------------------------------------------------------|-----------------|-------------|
| Ringtone Club: Get the UK singles chart on your                | 1               | roskapostia |
| mobile each week and choose any top quality                    |                 |             |
| ringtone! This message is free of charge.                      |                 |             |
| Ringtone Club: acquire the UK single graph on                  | 0,583           | roskapostia |
| your Mobile_River each hebdomad and take any                   |                 |             |
| top_side caliber ringtone! This content is                     |                 |             |
| free_people of charge.                                         |                 |             |
| Ringtone Club: <b>become</b> the UK <b>bingle graph</b> on     | 0,583           | roskapostia |
| your <b>nomadic</b> each <b>workweek</b> and <b>select</b> any |                 |             |
| upper_side caliber ringtone! This                              |                 |             |
| subject_matter is liberate of charge.                          |                 |             |
| Ringtone Club: go the UK one graph on your                     | 0,583           | kelpopostia |
| peregrine each calendar_week and pick_out any                  |                 |             |
| upside character ringtone! This substance is                   |                 |             |
| release of charge.                                             |                 |             |

Taulukko 3.1: Synonyymin korvaus. Vanhan viestin korvatut osat on lihavoitu. (Kuchipudi et al., 2020)

### 3.2 Sensuurin ohitus

Koska sensuuria voidaan soveltaa hyödyntäen koneoppimismalleja, voidaan sensuuri myös ohittaa hyödyntäen koneoppimismallin heikkouksia. Vastakkaishyökkäys voisi tunnistaa sensurointia aiheuttavia pikseliyhdistelmiä, ja tässä tutkimuksessa esiteltyjä hyökkäystapoja käyttäen sensuurin laukaiseminen voidaan estää. Tällöin kyseessä ei kuitenkaan enää ole puhdas merkintä (eng. clean label), sillä vastakkaishyökkäyksen todellinen tarkoitus näkyy käyttäjälle silmintarkasteltavana (Gan et al., 2021). Puhtaan merkinnän uupuessa esimerkiksi tekstipohjaisessa vastakkaishyökkäyksessä mahdollissta myös helpomman puolustautumisen (Pruthi et al., 2019).

### 3.3 Näkymättömät merkit

Näkymättömät merkit vaikuttavat tietokoneen NLP-mallin ymmärtämään sisältöön. Kyseinen hyökkäys perustuu Unicode-merkistöstandardiin, joka sisältää yksilöivät koodiarvot kirjoitushetkellä yli 100 000 kirjoitusmerkille, tähän kuuluvat myös aakkoset sekä erikois-

merkit.

Esimerkki tällaisesta erikoismerkistä on nollatilavuuden välilyönti -merkki, jonka Unicode merkintä on U+200B. Tällä merkillä voimme esimerkiksi vaikuttaa pelichattiin lähetettävän myrkyllissuodatettavaan merkkijonoon "olet huono"niin, että merkkijono menisi NLP-mallin läpi chätistä. Merkkijono olu+200Bet huu+200Bono saattaisi mennä läpi chatin suodattimesta, mutta vastapuolelle viesti olisi edelleen olet huono.

Kontekstin poistamisen lisäksi näkymättömillä merkeillä voidaan myös tuoda ja syrjäyttää konteksteja toisilla. Esimerkiksi:

Mikä pyhäinhäväistyksen rakennus!

Miten onnistuit tekemään tämän näin laiskasti? -tekstin negatiivisuus voidaan syrjäyttää positiivisuudella syöttämällä NLP-mallille sen sijaan teksti:

Mikä pyU+200BhäinhävU+200BäistyU+200BksenU+200B rakennus!

Miten onnistuit tekemään tämän U+200BnäU+200Bin laU+200BiskasU+200Bti?.

Kuva 3.1 on esimerkki kontekstin syrjäyttämisestä näkymättömillä merkeillä. Esimerkissä tapahtuu käännös englannin kielestä ranskan kieleen.



Kuva 3.1: Hyökkäys näkymättömillä merkeillä (Boucher et al., 2021)

### 3.4 Homoglyfit

Homoglyfihyökkäykset NLP-malleja vastaan pohjautuvat siihen, että pahantahtoisten merkkien viralliset esitysmuodot näyttäytyvät hyväntahtoisilta merkkien virallisilta esityksiltä. Joissain kielissä tekstin merkitys muuttuu täysin yhden merkin vaihtuessa. Esimerkkinä homoglyfistä on  $A \rightarrow A$ , missä viimeinen kirjain on todellisuudessa kyrillinen kirjain A. Kuvassa 3.3 homoglyfihyökkäys on muuntanut englanninkielisen tekstin

I just can't belive where she was ranskankieliseen käännökseen

I guess I can't underestimate the location of the scribe and.



Kuva 3.2: Homoglyfihyökkäys (Boucher et al., 2021)

Näkymättömien merkkien lailla homoglyfihyökkäyksen toteutus riippuu ympäristön fontista. (Boucher et al., 2021)

### 3.5 Uudelleenjärjestelyt

Uudelleenjärjestelyhyökkäys pohjautuu näennäisen tekstin uudelleenjärjestämiseen pahantahtoisesti. Pankkitilinumeron 1234567 pystyy esimerkiksi vaihtamaan kaksisuuntaisellaalgoritmilla tilinumeroksi 7654321 pankin palvelinpuolella maksajan huomaamatta mitään. Unicode-merkintä tälle suunnanvaihdolle on U+200F. Uudelleenjärjestelyjä käytetään myös NLP-mallin sekoittamiseen, jolloin tulokset NLP-mallista ovat käyttökelvottomia. Kuvassa 3.4 uudelleenjärjestelyhyökkäys merkeissä 1a aiheuttaa ranskankielisen käännöksen järjettömyyden. Tämänlaista hyökkäystä voisi käyttää digitaalista sanakirjaa tai kääntäjää vastaan. (Boucher et al., 2021) U+200F ladotaan näkymättömänä näkymättömien merkkien tapaan.

### 3.6 Poistatukset

Viimeisenä käydään läpi poistatushyökkäykset. Poistatushyökkäyksiä on vaikeampi toteuttaa aikaisempiin metodeihin verrattuna. Tämä johtuu useimpien käyttöjärjestelmien estosta kopioida poistatusta sisältävää tekstiä leikepöydälle suoraviivaisilla tavoilla, joilla uhri sen tekisi. Onnistuakseen poistatushyökkäyksessä, hyökkääjän tarvitsee yleisesti



A black box in your car?



Une boîte noire dans votre voiture ?



A black box in your car?



Abchachach achachacha chache?

Kuva 3.3: Homoglyfihyökkäys (Boucher et al., 2021)



This really is a must for our nation.



C'est vraiment une nécessité pour notre nation.



is a must for our nation.



Cette réalyya est un incontournable pour la naissance de l'amour.

Kuva 3.4: Poistatushyökkäys (Boucher et al., 2021)

injektoida NLP-malliin poistatus itse. Esimerkkejä poistatusmerkeistä ovat askelpalautin (BS, eng. backspace), delete (DEL) sekä vaununpalautus (CR, eng. carriage return). (Boucher et al., 2021) Kuva 3.5 havainnollistaa poistatushyökkäystä käytännössä.

## 4 Hyökkäyksiltä suojautuminen

Tässä kappaleessa käydään läpi erilaisia puolustusmenetelmiä NLP-hyökkäyksiä vastaan. Ensiksi esitellään OCR-puolustus, sitten kuvataan suorituskeskeinen puolustautuminen.

### 4.1 OCR-puolustus

NLP-hyökkäykset voidaan torjua korkean tason abstraktiolla korkealla yleisrasituksella sekä alemman tason abstraktiolla alemmalla yleisrasituksella. Näytöltäluvun (eng. OCR, On-Screen-Reading) avulla epäselvyydet tekstin aidosta luonteesta voidaan hahmontaa uudelleen tulkitsemalla aineisto uudestaan visuaalisesti. Tämä menetelmä lisää yleisrasitusta huomattavasti riippuen käyttötarkoituksesta, mutta poistaa pahantahtoiset merkit ilman NLP-mallin uudelleenkoulutusta. (Boucher et al., 2021)

### 4.2 Suorituskykykeskeinen puolustus

Keskitymme seuraavaksi näkymättömiin merkkeihin, -homoglyfeihin, uudelleenjärjestelyihin -ja poistatuksiin perustuvien hyökkyksien puolustamiseen. Suorituskykykeskeiset puolustusmenetelmät ovat kuitenkin laskennallisesti kalliita, eivätkä koneoppimismallin ulkoistaneet yritykset yleensä pysty kustantamaan kyseisiä metodeita (Huang et al., 2019).

Näkymättöimen merkkein tapauksessa, tietyt näkymättömät merkit voidaan poistaa suoraan syötteestä. Mikäli sovelluksessa näitä merkkejä ei voida poistaa, voidaan ne korvata ei-<urk> upotuksilla. Korvaus tapahtuu lähdekielisanakirjassa, jonne kuvataan tuntematon merkki "ei-tuntemattomaksi tokeniksi". Näin tuntemattomat merkit eivät voi häiritä ladontaa merkeillä, joista ladontamoottori ei ole aivan varma. (Boucher et al., 2021)

Homoglyfihyökkäysten torjuminen OCR-menetelmällä on ymmärrettävästi vaikeampaa verrattuina muihin merkkeihin. Paras keino torjua tällaisia hyökkäyksiä olisi kuvata osa homoglyfeistä niiden yleisemmin tunnettuihin vastineisiin. NLP-mallin ylläpitäjä joutuu tekemään tässä siis suurimman työn. (Boucher et al., 2021)

Uudelleenjärjestelyhyökkäykset voidaan torjua riisumalla kaksisuuntais-ohjausmerkit syötteestä, varoittamalla käyttäjää kaksisuuntais-ohjausmerkkien ilmestyessä syötteeseen

tai käyttämällä kaksisuuntais-algoritmia halutun syötteen selvittämiseen. Puolustusmenetelmän valinta riippuu kontekstista, sillä esimerkiksi latinaa tai arabiaa kirjoittaessa ohjelma toimisi väärin pakottamalla käyttäjän syötteestä pois kaksisuuntais-ohjausmerkin U+200F. (Boucher et al., 2021)

Poistatukset yleensä havaitaan NLP-mallien ulkopuolella syötteen annon alkuvaiheessa. NLP-mallin tasolla tähän tarvitsee harvemmin puuttua ja käyttäjälle voidaan pahimmassa tapauksessa lähettää varoitus poistatusmerkkien olemassaolosta syötteessä. On silti tärkeää tiedostaa poistatuksien puolustus, mikäli käyttöjärjestelmä unohtaa puuttua kyseiseen hyökkäysrajapintaan. (Boucher et al., 2021)

### 5 Yhteenveto

Kävimme läpi tässä tutkimuksessa tekijöitä luonnollisen kielen käsittelyn kehitykseen, joita ovat laskentateho, tietomäärä, koneoppiminen sekä ihmiskielen ymmärrys. Kävimme läpi hyökkäyspinta-alan ja puolustusmahdollisuudet NLP-malleista johtuvia tietoturvauhkia vastaan. Lopuksi käytiin myös läpi tekstipohjaisten vastakkaishyökkäysten tulevaisuutta NLP-malleja vastaan.

Kuten aikaisemmin mainittiin, neljä mahdollistajaa luonnollisen kielen käsittelyyn kuluttajakäytössä ovat laskentatehon kasvu, suurien tietomäärien saatavuus, onnistuneiden koneoppimismenetelmien kehittäminen sekä laajempi ihmiskielen ymmärrys ja käyttö eri konteksteissa. NLP-mallin mahdollistajien kehittyessä arvaamattomasti, on loogista tutkia myös NLP-hyökkäysten tulevaisuutta.

Vastakkaishyökkäysten motiivit muovautuvat siis ajan myötä ja kasvattavat tahtomattaan näin hyökkäystaksonomiaa.

Hyökkäystaksonomia laajentuu tulevaisuudessa eri formaatteihin. Koneoppimisen kukoistaessa voidaan NLP-malleja soveltaa tiedon ääni-tai videoformaatteihin. Tämä antaa puolestaan mahdollisuuden vastakkaishyökätä kyseiseen koneoppimismallia vastaan. Formaattien sisältäkin löytyy erinäisiä hyökkäysrajapintoja. Esimerkiksi ääniformaateissa käytetään kuhunkin käyttötarkoitukseen sopivaa enkoodausta. Ei siis riitä, että hyökättävää ja puolustettavaa tulee uusien formaattien myötä, sillä formaattien sisälläkin tulee tapahtumaan jatkuvasti huomattavaa kehitystä.

Lisäksi haavoittuvuuksien löytö ruokkii itse itseään. Ensimmäisten vastakkaishyökkäysten kohdistuessa uuteen tietoformaattiin, syntyy tarve puolustukseen tätä vastaan. Toteutuksesta riippuen puolustusmenetelmän selvittäminen saattaa avata uusia ovia, jotka hyödyttävät hyökkääjiä. Usein haavoittuvuuden tarkastelu vastakkaishyökkäyksissä avaa enemmän mahdollisuuksia uusille hyökkäyksille kuin vanhojen hyökkäysten puolustuksille.

Luonnolisen kielen käsittely on muovautunut tärkeäksi osaksi tietokoneteollisuutta. Koneoppimisen avulla kuluttajan käyttämästä ihmiskielestä saadaan käyttöön rahanarvoista mainontatietoa, jota yritys pystyy käyttämään joko itse tai myymään sen eniten tarjoavalle taholle. Tarve ihmiskielen koneelliseen ymmärrykseen on tuonut mukanaan kiinnostuksen lisäksi tietoturvatietoisuutta aiheesta.

Koneoppiminen on todennäköisesti vasta kehitysvaiheen alkupuolella. Jo nyt näkemämme vastakkaishyökkäykset osoittavat useampia haavoittuvaisuuksia, kuin mitä vastaan pystymme puolustautumaan. Selvästi suurin syy tälle on tekoälyn valjastettu voima, jota emme vielä pysty hallitsemaan kaikissa reunatapauksissa.

### Lähteet

- Boucher, N., Shumailov, I., Anderson, R. ja Papernot, N. (2021). *Bad Characters: Imperceptible NLP Attacks.* arXiv: 2106.09898 [cs.CL].
- Chowdhury, G. G. (2003). "Natural language processing". Annual Review of Information Science and Technology 37.1, s. 51–89. DOI: https://doi.org/10.1002/aris.1440370103. eprint: https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/aris.1440370103. URL: https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/aris.1440370103.
- Gan, L., Li, J., Zhang, T., Li, X., Meng, Y., Wu, F., Guo, S. ja Fan, C. (2021). "Triggerless Backdoor Attack for NLP Tasks with Clean Labels". *CoRR* abs/2111.07970. arXiv: 2111.07970. URL: https://arxiv.org/abs/2111.07970.
- Garg, P. ja Girdhar, N. (2021). "A Systematic Review on Spam Filtering Techniques based on Natural Language Processing Framework". Teoksessa: 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), s. 30–35. DOI: 10.1109/Confluence51648.2021.9377042.
- Gopalakrishnan, K. (2018). "Deep learning in data-driven pavement image analysis and automated distress detection: A review". *Data* 3.3, s. 28.
- Hirschberg, J. ja Manning, C. D. (2015). "Advances in natural language processing". Science 349.6245, s. 261–266. DOI: 10.1126/science.aaa8685. eprint: https://www.science.org/doi/pdf/10.1126/science.aaa8685. URL: https://www.science.org/doi/abs/10.1126/science.aaa8685.
- Huang, X., Alzantot, M. ja Srivastava, M. (2019). NeuronInspect: Detecting Backdoors in Neural Networks via Output Explanations. DOI: 10.48550/ARXIV.1911.07399. URL: https://arxiv.org/abs/1911.07399.
- Jordan, M. I. ja Mitchell, T. M. (2015). "Machine learning: Trends, perspectives, and prospects". *Science* 349.6245, s. 255–260.
- Kuchipudi, B., Nannapaneni, R. T. ja Liao, Q. (2020). "Adversarial Machine Learning for Spam Filters". Teoksessa: *Proceedings of the 15th International Conference on Availability, Reliability and Security*. ARES '20. Virtual Event, Ireland: Association for Computing Machinery. ISBN: 9781450388337. DOI: 10.1145/3407023.3407079. URL: https://doi.org/10.1145/3407023.3407079.
- Moore, G. E. et al. (1965). Cramming more components onto integrated circuits.

- Pruthi, D., Dhingra, B. ja Lipton, Z. C. (heinäkuu 2019). "Combating Adversarial Misspellings with Robust Word Recognition". Teoksessa: *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*. Florence, Italy: Association for Computational Linguistics, s. 5582–5591. DOI: 10.18653/v1/P19-1561. URL: https://aclanthology.org/P19-1561.
- Schmidt, A. ja Wiegand, M. (huhtikuu 2017). "A Survey on Hate Speech Detection using Natural Language Processing". Teoksessa: *Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media*. Valencia, Spain: Association for Computational Linguistics, s. 1–10. DOI: 10.18653/v1/W17-1101. URL: https://aclanthology.org/W17-1101.