Тест «Дробные рациональные неравенства» составлен учителем математики ГБОУ СОШ № 1358 г. Москвы Епифановой Татьяной Николаевной на основе стабильного учебника «Алгебра 9» под редакцией С.А. Теляковского.

Пояснительная записка.

Тесты являются одной из самых популярных форм контроля знаний учащихся. Они обеспечивают простоту проверки ответов учеников и позволяют выявить пробелы в их знаниях. Тесты - это достаточно краткие испытания и предназначены для того, чтобы оценить успешность овладения конкретными знаниями, как отдельных разделов программы, так и всего курса в целом (итоговые тесты). Грамотно составленные тесты являются объективными показателями обученности школьников.

Задания теста, составленные автором согласно теории по теме «Дробные рациональные неравенства» в пределах учебного материала для учащихся 9 класса, предназначены для проверки уровня знаний, умений и навыков учащихся по данной теме и могут помочь выпускникам при подготовке к ГИА и ЕГЭ. При решении заданий этого теста необходимо уметь применять на практике формулу дискриминанта и общую формулу корней квадратного уравнения, а также хорошо знать алгоритмы решения дробных рациональных неравенств методом интервалов. В тесте представлены два варианта, в каждом из которых десять дробных рациональных неравенств, и ответы к ним.

Тест «Дробные рациональные неравенства»

Вариант 1		<u>Вариант 2</u>	
1	$\frac{25x^2 - 60x + 27}{10x^2 + 21x + 8} \le 0$	1	$\frac{25x^2 - 15x + 2}{10x^2 + 37x + 30} \le 0$
2	$\frac{-2x^2 + 3x - 1}{5x^2 + 2x - 3} \ge 0$	2	$\frac{-2x^2 - x + 1}{5x^2 - 8x + 3} \ge 0$
3	$\frac{6x^2 - 7x + 1}{2x^2 + 5x + 3} > 0$	3	$\frac{6x^2 + x - 1}{-2x^2 + 7x - 3} > 0$
4	$\frac{-5x^2 + 8x + 4}{8x^2 + 10x - 3} \le 0$	4	$\frac{-5x^2 + 3x + 2}{8x^2 - 7x - 1} \le 0$
5	$\frac{8-5x-3x^2}{24-34x+5x^2} \ge 0$	5	$\frac{2+5x-3x^2}{16-42x+5x^2} \ge 0$
6	$\frac{12x^2 + 8x + 1}{5x^2 + 3x - 2} \le 0$	6	$\frac{12x^2 + 20x - 25}{5x^2 + 8x - 4} \le 0$
7	$\frac{9x^2 + 15x - 60}{25x^2 + 25x + 6} > 0$	7	$\frac{9x^2 + 26x - 3}{25x^2 + 25x + 4} > 0$
8	$\frac{5x^2 + 42x + 16}{100x^2 - 100x + 21} < 0$	8	$\frac{5x^2 + 34x + 24}{100x^2 - 100x + 9} < 0$
9	$\frac{2x^2 + 7x + 3}{4x^2 + 16x + 15} \le 0$	9	$\frac{2x^2 - 3x + 10}{4x^2 - 4x - 3} \le 0$
10	$\frac{2x^2 - 5x + 3}{8x^2 - 10x - 3} \ge 0$	10	$\frac{2x^2 - x - 1}{8x^2 + 7x - 1} \ge 0$

Ответы к тесту по теме «Дробные рациональные неравенства»

Вариант 1		<u>Вариант 2</u>	
1	(-1,6;-0,5)\(-\)[0,6;1,8]	1	$(-2,5;-1,2) \cup [0,2;0,4]$
2	$(-1;0,5] \cup (0,6;1]$	2	$[-1;0,5] \cup (0,6;1)$
3	$(-\infty;-1,5)\cup\left(-1;\frac{1}{6}\right)\cup\left(1;+\infty\right)$	3	$\left(-\frac{1}{2};\frac{1}{3}\right) \cup \left(\frac{1}{2};3\right)$
4	$(-\infty;-1,5)\cup[-0,4;0,25)\cup[2;+\infty)$	4	$(-\infty; -0,4] \cup (-0,125;1) \cup (1;+\infty)$
5	$\left[-2\frac{2}{3};0,8\right] \cup \left[1;6\right)$	5	$\left[-\frac{1}{3};0,4\right) \cup \left[2;8\right)$
6	$(-1;-0,5] \cup \left[-\frac{1}{6};0,4\right]$	6	$\left[-2,5;-2\right) \cup \left[0,4;\frac{5}{6}\right]$
7	$\left(-\infty; -2\frac{1}{3}\right) \cup \left(-0,6; -0,3\right) \cup \left(\frac{2}{3}; +\infty\right)$	7	$(-\infty; -3) \cup (-0,4; -0,2) \cup \left(\frac{1}{9}; +\infty\right)$
8	(-8;-0,4)\(-(0,3;0,7)\)	8	(-6;-0,8)\(-(0,1; 0,9)\)
9	[-3;-2,5] \(\big(-1,5;-0,5] \)	9	$(-0,5;0,5] \cup [1;1,5)$
10	$(-\infty;-0,25)\cup[1;1,5)\cup(1,5;+\infty)$	10	$(-\infty;-1)\cup[-0,5;0,125)\cup[1;+\infty)$