

Pàgina 1 de 7 Tecnologia industrial

Proves d'accés a la Universitat 2021, convocatòria extraordinària. Criteri d'avaluació

SÈRIE 1

Exercici 1

- **Q1** d
- **Q2** a
- **Q3** d
- **Q4** b
- **Q5** c

Pàgina 2 de 7 **Tecnologia industrial**

Proves d'accés a la Universitat 2021, convocatòria extraordinària. Criteri d'avaluació

Exercici 2

a)

p	f	1	t	а
0	0	0	<i>t</i>	0
0	0 0	0	1	0
0	0	1	0	0
0	0	1	0	1
0	1	0	0	0
0	1	0	1	1
0	1		0	1
0	1		1	1
1	0		0	1
1		0	1	1
1	0	1	0	1
		:	1	1
1			0	1
1	1		1	1
1	1		0	1
1	1		1	1

Pàgina 3 de 7

Tecnologia industrial

Proves d'accés a la Universitat 2021, convocatòria extraordinària. Criteri d'avaluació

b)

$$a=(p+f+l+t)(p+f+l+\bar{t})\big(p+f+\bar{l}+t\big)\big(p+\bar{f}+l+t\big)$$
 simplificant:
$$a=p+lt+ft+fl$$

c)

Pàgina 4 de 7

Tecnologia industrial

Proves d'accés a la Universitat 2021, convocatòria extraordinària. Criteri d'avaluació

Exercici 3

a)

b)

$$E = \frac{\sigma_e}{\varepsilon} = 69 \text{ GPa}$$

c)

$$F = \sigma_F \pi \frac{d^2}{4} = 10,05 \text{ kN};$$

 $\varepsilon = \frac{\sigma_F}{E} = 2,899 \times 10^{-3}; \quad \Delta L = \varepsilon L_0 = 362,3 \times 10^{-3} \text{mm}$

d)

Si es sotmet la proveta a 300 MPa no recuperarà la longitud inicial perquè aquesta tensió està per sobre del límit elàstic del material.

Pàgina 5 de 7

Tecnologia industrial

Proves d'accés a la Universitat 2021, convocatòria extraordinària. Criteri d'avaluació

Exercici 4

a)

$$P_{\rm cons} = c \, \rho_{\rm gasoil} \, p_c = 14,81 \, {\rm kW}$$

b)

$$\eta = \frac{P_{\text{mot}}}{P_{\text{cons}}} = 24,17\%$$

c)

$$v = \omega \frac{d}{2} = n \frac{2\pi}{60} \frac{d}{2} = 79,17 \text{ m/s} = 285 \text{ km/h}$$

d)

$$m_{CO_2} = c FE t = 1,339 \text{ kg de CO}_2$$

Pàgina 6 de 7

Tecnologia industrial

Proves d'accés a la Universitat 2021, convocatòria extraordinària. Criteri d'avaluació

Exercici 5

a)

$$h = \sqrt{L^2 - x^2}$$

c)

$$\frac{\sum F_{\text{verticals}} = 0}{\sum M(G) = 0} \rightarrow N_{p} = mg$$

$$\rightarrow Fh - N_{p}x = 0$$

$$F = \frac{mgx}{h} = \frac{mgx}{\sqrt{L^{2} - x^{2}}}$$

d)

$$\sum F_{\text{horitzontals}} = 0 \quad \rightarrow \quad N_{\text{G}} = F = \frac{mgx}{h} = \frac{mgx}{\sqrt{L^2 - x^2}}$$

$$\sum F_{\text{verticals}} = 0 \quad \rightarrow \quad N_{\text{P}} = mg$$

Pàgina 7 de 7

Tecnologia industrial

Proves d'accés a la Universitat 2021, convocatòria extraordinària. Criteri d'avaluació

Exercici 6

a)

$$E_{\text{VSAP}} = n P_{\text{VSAP}} t 365 = 123,66 \text{ MWh} = 445,2 \times 10^3 \text{ MJ}$$

 $c_{\text{VSAP}} = c_{\text{elrctr}} E_{\text{VSAP}} = 16941 \text{ }$

b)

$$\begin{split} E_{\text{\tiny LED}} &= \frac{P_{\text{\tiny LED}}}{P_{\text{\tiny VSAP}}} E_{\text{\tiny VSAP}} = 44,52 \text{ MWh} = 1603 \times 10^3 \text{MJ} \\ c_{\text{\tiny estalvi}} &= c_{\text{\tiny VSAP}} + c_{\text{\tiny mant}} - c_{\text{\tiny LED}} = c_{\text{\tiny VSAP}} + c_{\text{\tiny mant}} - c_{\text{\tiny electr}} E_{\text{\tiny LED}} = 24842 \, \pounds \end{split}$$

c)

$$c_{\text{inv}} = n c_{\text{Ilum}} + c_{\text{inst}} = 197000$$

$$\Delta t = \frac{c_{\text{inv}}}{c_{\text{estalvi}}} = 7.9 \text{ anys; es recuperaria en 8 anys.}$$