Intelligent User Interfaces

Xiaojun Bi
Stony Brook University
Xiaojun@cs.stonybrook.edu

Definition:

 Intelligent user interfaces are human-machine interfaces that aim to improve the efficiency, effectiveness, and naturalness of human-machine interaction by representing, reasoning, and acting on models of the user, domain, task, discourse, and media.

IUI range of approaches:

- Personalized, proactive interfaces
 - Personalization
 - User modeling/user profiling
 - Adaptive interfaces (machine learning)
 - Recommender systems
 - Software agents
 - **—** ...
- Interfaces to mimic human-to-human interaction
 - Conversational interfaces, natural language techniques in interfaces
 - Interface that plan and reason

Main conference: annual IUI conference

Intelligence in commercial applications

- Recommendation systems are ubiquitous
- Typo & grammar correction
- Spam filters
- More, better speech interfaces
- •

Intelligent User Interfaces

Event pages

A4

Collate

User Preference Elicitation

(a) An example of a query used during the active elicitation part of the preference elicitation.

Model Motor Abilities

(b) Four task types used to measure participants' motor capabilities

AB02 MI02 MI04

baseline AB03 MI09

Evaluation

Sikuli - GUI Screenshots for Search and Automation

Inferring Identity using Accelerometers in Television Remote Controls

Fig. 1: Snapshots of different hand motion patterns as captured in our plausibility study. In comparison to (a), the participant in (b) holds the remote with different orientation, and the participant in (c) leans his arm on the sofa, which stabilizes his movements.

Fitts' Law:
$$T = a + b \log_2 \left(\frac{A}{W} + 1\right)$$

Fitts' Law:
$$T = a + b \log_2 \left(\frac{A}{W} + 1\right)$$

Effective Width of Fitts' Law

$$T = a + b \log_2 \left(\frac{A}{W_e} + 1\right)$$

$$W_e = \sqrt{2\pi e} \ \sigma$$

Fitts' Law for Finger Touch

Fitts' Law for Finger Touch

FFitts Law

$$T = a + b \log_2 \left(\frac{A}{\sqrt{2\pi e(\sigma^2 - \sigma_a^2)}} + 1 \right)$$

FFitts Law

$$T = a + b \log_2 \left(\frac{A}{\sqrt{2\pi e(\sigma^2 - \sigma_a^2)}} + 1 \right)$$
 Standard deviation of touch points Absolute precision of input finger

$$X_r \sim N(\mu_r, \sigma_r^2)$$
 $X_a \sim N(\mu_a, \sigma_a^2)$

$$X_a \sim N(\mu_a, \sigma_a^2)$$

$$X \sim N(\mu, \sigma^2)$$

$$T = a + b \log_2 \left(\frac{A}{\sqrt{2\pi e}\sigma_r} + 1 \right)$$
 Eq. 1

$$T = a + b \log_2 \left(\frac{A}{\sqrt{2\pi e}\sigma_r} + 1 \right)$$
 Eq. 1

$$\sigma^2 = \sigma_r^2 + \sigma_a^2$$
 Eq. 2

$$T = a + b \log_2 \left(\frac{A}{\sqrt{2\pi e} \sigma_r} + 1 \right)$$
 Eq. 1

$$\sigma^2 = \sigma_r^2 + \sigma_a^2$$
 Eq. 2

$$T = a + b \log_2 \left(\frac{A}{\sqrt{2\pi e(\sigma^2 - \sigma_a^2)}} + 1 \right)$$

Computing σ_a via Calibration Expt.

Computing σ_a via Calibration Expt.

Computing σ_a via Calibration Expt.

FFitts Law

$$T = a + b \log_2 \left(\frac{A}{\sqrt{2\pi e(\sigma^2 - \sigma_a^2)}} + 1 \right)$$

Index Finger: σ_a =0.94 mm (1D), σ_a = 1.5 mm (2D)

Mean Completion Time (ms)

$$ID_n = \log_2\left(\frac{A}{W} + 1\right)$$

$$ID_e = \log_2\left(\frac{A}{\sqrt{2\pi e}\sigma} + 1\right)$$

Mean Completion Time (ms)

$$ID_n = \log_2\left(\frac{A}{W} + 1\right)$$

$$ID_e = \log_2\left(\frac{A}{\sqrt{2\pi e}\sigma} + 1\right)$$

$$ID_f = \log_2\left(\frac{A}{\sqrt{2\pi e(\sigma^2 - \sigma_a^2)}} + 1\right)$$

Expt 2. 2D Fitts' Law

Expt 2. 2D Fitts' Law

Mean Completion Time (ms)

$$ID_n = \log_2\left(\frac{A}{W} + 1\right)$$

$$ID_e = \log_2\left(\frac{A}{\sqrt{2\pi e}\sigma} + 1\right)$$

Expt 2. 2D Fitts' Law

Mean Completion Time (ms)

$$ID_{e} = \log_{2} \left(\frac{A}{\sqrt{2\pi e}\sigma} + 1 \right)$$

$$ID_f = \log_2\left(\frac{A}{\sqrt{2\pi e(\sigma^2 - \sigma_a^2)}} + 1\right)$$

Expt 3. FFitts Model in Text Input

Expt 3. Text Entry Study

Text Entry Study

$$ID_n = \log_2\left(\frac{A}{W} + 1\right)$$

$$ID_e = \log_2\left(\frac{A}{\sqrt{2\pi e}\sigma} + 1\right)$$

Expt 3. Text Entry Study

Text Entry Study

Mean Completion Time (ms)

$$ID_n = \log_2\left(\frac{A}{W} + 1\right)$$

$$ID_e = \log_2\left(\frac{A}{\sqrt{2\pi e}\sigma} + 1\right)$$

$$ID_f = \log_2\left(\frac{A}{\sqrt{2\pi e(\sigma^2 - \sigma_a^2)}} + 1\right)$$

FFitts Law

$$T = a + b \log_2 \left(\frac{A}{\sqrt{2\pi e(\sigma^2 - \sigma_a^2)}} + 1 \right)$$

 σ : the standard deviation of touch points

 σ_a : the absolute precision of the input finger Index Finger: σ_a =0.94 mm (1D), σ_a = 1.5 mm (2D)