

RAICES DE POLINOMIOS

Raíces de polinomios

Métodos numéricos Universidad San Buenaventura Cali

RAICES DE POLINOMIOS

La raíz de un polinomio es un número tal que hace que el polinomio valga cero. Es decir que, cuando resolvamos un polinomio a cero, las soluciones son las raíces del polinomio.

Ejemplo

$$f(x) = x^2 + x - 12$$

Cuando lo igualamos a cero y lo resolvemos tenemos:

$$x^2 + x - 12 = 0$$
 igualando a cero

$$(x + 4)(x - 3) = 0$$
 factorizando

$$x_1 = -4$$

$$x_2 = 3$$

Puesto que $x_1 = -4$ y $x_2 = 3$ son soluciones de f(x) entonces f(-4) = 0 y f(3) = 0, decimos que $x_1 = -4$ y $x_2 = 3$ son raíces del polinomio $f(x) = x^2 + x - 12$.

MÉTODO DE HORNER:

Es un algoritmo para evaluar de forma eficiente polinomios de una forma monomial.

Dado el polinomio

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

Donde $a_0, ..., a_n$ son números reales, queremos evaluar el polinomio a un valor específico de x, digamos x_0 .

Para llevar a cabo el procedimiento, definimos una nueva secuencia de constantes como se muestra a continuación:

$$b_n = a_n$$

$$b_{n-1} = a_{n-1} + b_n x_0$$

$$b_0 = a_0 + b_1 x_0$$

Entonces b_0 es el valor de $f(x_0)$.

Para ver cómo funciona esto, nótese que el polinomio puede escribirse de la forma

$$P(x) = a_0 + x(a_1 + x(a_2 + x(a_{n-1} + a_n x) ...))$$

Después, sustituyendo iterativamente la b_0 en la expresión (después de: " a_1 +" va a_0 y no x.

$$P(x) = a_0 + x_0(a_1 + x_0(a_2 + \dots x_0(a_{n-1} + b_n x_0) \dots))$$

$$= a_0 + x_0(a_1 + x_0(a_2 + \dots x_0(b_{n-1}) \dots))$$

$$= a_0 + x_0(b_1)$$

$$= b_0$$

EJEMPLO:

Encontraremos las raíces de $P(x) = 1 + 3x + 5x^2 + 6x^3$ mediante el método de Horner.

SOLUCIÓN:

Para encontrar las raíces del polinomio debemos primero ver en que intervalo se encuentran. El intervalo se puede encontrar por medio de un "anillo", dado por la siguiente fórmula:

$$|a_0|/(|a_0| + am) \le |x| \le (|an| + am)/|an|$$

Al aplicarla resulta
$$\frac{1}{1+6} \le |x| \le \frac{6+6}{6}$$
 \longrightarrow $\frac{1}{7} \le |x| \le 2$ \longrightarrow $0.142 \le |x| \le 2$

Entonces el intervalo que contiene a las raíces del polinomio es

$$I = \left[-2; \frac{1}{7}\right] U \left[\frac{1}{7}; 2\right] = I_1 U I_2$$

Ahora hacemos un "barrido" en los 2 sub intervalos.

SUB INTERVALO I₁

$$P(-2) = -33$$

$$P(-1.2) = -5.768$$

$$P(-0.6) = -0.296$$

$$P(-0.4) = 0.216$$

$$P\left(-\frac{1}{7}\right) \cong 0.6559767$$

SUB INTERVALO I2

$$P\left(\frac{1}{7}\right) \cong 1.548105$$

$$P(0.4) = 3.384$$

$$P(0.6) = 5.896$$

$$P(1.2) = 22.168$$

$$P(2) = 75$$

Según la derivada $P'^{(x)} = 3 + 10x + 18x^2$ P'(x) > 0, $\forall x \in I$. La función es creciente en el intervalo I. En el intervalo existe una raíz α .

Ahora aplicamos el método de Horner

Considerado el punto inicial de iteración como $x_0 = -0.45$

- Primera iteración:

$$x_1 = -0.45 - \frac{0.11575}{2.145} = -0.503962703927$$
$$x_1 = -0.503962703927$$

- Segunda iteración:

	6	5	3	1
x_1		-3.02377622378	-0.995943077901	-1.00996994536
	6	1.97622377622	2.0040569221	-0.009969945356 = R
x_1		-3.02377622378	0.527927364013	
	6	-1.04755244756	2.5319842861 = S	

$$x_2 = -0.503962703927 - \frac{(-0.009969945356)}{(2.5319842861)} = -0.50002510237065$$

 $x_2 = -0.50002510237065$

Tercera iteración:

	6	5	3	1
x_2		-3.00015061422	-0.999974893849	-1.00006275845
	6	1.99984938578	2.00002510615	-0.000062758447= R
x_2		-3.000015061422	0.500175724154	
				•

$$x_3 = -0.50002510237065 - \frac{(-0.000062758447)}{(2.5002008303)} = -0.5000000010083$$

 $x_3 = -0.5000000010083$

- Cuarta iteración:

	6	5	3	1
x_2		-3.00000000605	0.99999998992	1.00000000252
	6	1.9999999395	2.00000000101	-0.000000002521= R
x_2		-3.00000000605	0.500000007058	

-1.0000000121 2.50000000807=S

$$x_4 = -0.5000000010083 - \frac{(-0.000000002521)}{(2.500000000807)} = -0.5$$

$$x_4 = -0.5$$

$$x_4 = \alpha \cong -0.5$$

El error absoluto de x_3 es:

$$E_A(x_3) = |x_4 - x_3| = |-0.5 - (-0.5000000010083) = 1.0083 * 10^{-9}$$

$$E_A(x_3) = 1.0083 * 10^{-9} < \varepsilon = 10^{-8}$$

Después de 4 iteraciones se llegó a que $x_4=lpha\cong\ -0.5$ que es una aproximación a la primera raíz de P(x) con un $E_{\rm A} < \varepsilon = 10^{-8}$

$$P(\alpha \cong -0.5) = 0$$
 $\longrightarrow \alpha = -0.5$ es la raíz del polinomio