

Prozedurale Generierung von Wirbeltierskeletten

Masterarbeit von

Nina Zimbel

an der Fakultät für Informatik Lehrstuhl für Computergrafik

Erstgutachter: Prof. Dr.-Ing. Carsten Dachsbacher

Zweitgutachter: Prof. ?

Betreuender Mitarbeiter: Dr. Johannes Schudeiske

xx. Month 20XX - xx. Month 20XX

1. Bisherige Arbeiten

(TODO: LATEXVORLAGE CG?)

1.1. **Ziva**

- Ziva VFX Maya Plugin zur Erstellung von Charakteren und Simulation von biomechanischen Bewegungen https://zivadynamics.com/
- Charaktererstellung in Ziva beginnt mit der Modellierung des Skeletts. Knochen mit Animationen werden als Alembic-Datei gespeichert und dann in "Ziva-Knochen" konvertiert. https://discover.therookies.co/2019/06/01/vfx-in-9-steps/

1.2. ZSpheres in Zbrush

- http://docs.pixologic.com/user-guide/3d-modeling/modeling-basics/creating-meshes/ zspheres/,
 - Beispielvideo: https://www.youtube.com/watch?v=Wl0XK6ggUOA
- Möglichkeit ein "Skelett" aus Kugeln zu erstellen. Definiert aber eher die grobe Außenhaut mit Zusatzinformationen dazu wo die Gelenke sind.

1.3. 3DS MAX Biped

- https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/ cloudhelp/2019/ENU/3DSMax-Character-Animation/files/GUID-2F6BC5D1-DD45-4C2E-AC3A-D8C6E0F5DEB1-htm.html
- Möglichkeit Skelett in einen fertig modellierten Körper einzupassen.
- Skelette sind schon vorgefertigt.
- v.a. für menschliche Skelette, aber auch (limitiert) anpassbar auf Tiere

1.4. Forensik und Archäologie

• forensische Gesichstrekonstruktion ist spezialisiert auf Menschen und verwendet Zusatzinformationen wie Stockfotos von Gesichtsmerkmalen (https://en.wikipedia.org/wiki/Forensic_facial_reconstruction)

• Rekonstruktion von Tieren in der Archäologie anhand des Skeletts v.a. durch Künstler (?)

1.5. No Man's Sky

- Webseite [3]
- "For creatures, basic templates of creatures that exist on the Earth were created and then manipulated by the system, changing everything from height, weight, bone density, voice pitch, what it eats, and its behaviors, even creating variation within the species." (https://nomanssky.fandom.com/wiki/Biology)
- "Creatures were often generated by mixing and matching random parts from a library, and then adjusting the underlying skeleton so that the creature appeared realistic; a creature with a tiny body could not support a giant head, for example." (https://en.wikipedia.org/wiki/Development_of_No_Man%27s_Sky)
- Zunächst Generierung von äußerem 3D-Modell, dann Anpassung der Knochen.

2. Biologie

- "Wirbeltiere (Vertebrata) [...] Von vielen Zoologen wird heute der Begriff Schädeltiere (Craniota) für dieses Taxon bevorzugt. Diese Auffassung berücksichtigt, dass die Rundmäuler, wie auch einige andere Wirbeltiere, als Achsenskelett keine Wirbelsäule, sondern eine Chorda dorsalis haben. Doch allen Wirbeltieren gemein ist ein verknöcherter oder knorpeliger Schädel; sein Vorhandensein gehört somit zu den gemeinsam abgeleiteten Merkmalen (Synapomorphien) dieser Chordaten-Gruppe." (https://de.wikipedia.org/wiki/Wirbeltiere) → Beschränkung auf Schädeltiere mit Wirbelsäule
- "Dem Skelett der Wirbeltiere sind viele Gemeinsamkeiten ansehbar, trotzdem unterscheidet es sich, je nach Lebensraum und Anforderungen, teilweise erheblich. Mit diesen Gemeinsamkeiten und Unterschieden beschäftigt sich die Vergleichende Anatomie." (https://de.wikipedia.org/wiki/Skelett#Wirbeltiere) Notizen zu [2] siehe Anhang A.
- Das Skelett eines Wirbeltiers ist nicht unbedingt zusammenhängend. (TODO: REPRÄ-SENTATION / ERZEUGUNG?)

3. Idee

- 1. Erzeugung eines Wirbeltierskeletts
- 2. Erzeugung von Muskeln (future work)
- 3. Erzeugung von Haut (future work / kurz ausprobieren)
- 4. Erzeugung von vielen Skelettvarianten bei Eingabe eines Skeletts (nur wenn es relativ leicht möglich ist)

3.1. Skelett

- Iterative Erzeugung eines Skeletts durch eine probabilistische kontextfreie (?) Grammatik, die so erweitert ist, dass sie nicht ein einfaches Wort erzeugt, sondern einen Baum von Zeichen (nötig für Extremitäten). Verwendung von paramterischen L-Systemen [1] könnte sinnvoll sein.
- Regeln sind nicht wirklich eine Grammatik, da fast jedes nichtterminale Literal nur einmal vorkommt, wenn es für jedes Körperteil andere Regeln gibt. Oder ist es möglich so zu abstrahieren, dass z.B. Arme und Beine den gleichen/ähnlichen Regeln unterliegen? Ist das sinnvoll? (TODO: Abstraktionsgrad, Art der Regeln)
 Außerdem ist das Skelett nicht unbedingt zusammenhängend (siehe Biologie). Muss es das? Wenn ja, unzusammenhängende Fälle ausschließen. (TODO: Wann ist Skelett unzusammenhängend?)
- Regeln wichtig, die dafür sorgen, dass das Tier am Ende auch funktional ist.
- Darstellung des Skeletts in "sinnvoller" Pose.
- Beachte, dass Tier nicht umfällt: Schwerpunkte sinnvoll,... → Algorithmus überlegen (dafür sind auch Gelenkinformationen wichtig!)
- Der Zufall ist eingeschränkt durch Eingabeparameter oder Benutzereingabe (siehe Interaktivität). Ähnliche Parameter sollten zu ähnlichem Tier führen. Parameter könnten folgendes beschreiben:
 - äußere Einflüsse (Klima, Terrain, Lebensraum,...)
 - Proportionen (länge der Extremitäten, Kopfgröße,...)
 - Anzahl vorhandener Gliedmaßen / Zehen / ...

- Ein Skelett besteht aus Knochen, Gelenken und deren (relativen) Positionen und Orientierungen.
- Ein Knochen ist im einfachsten Fall ein Zylinder (Strecke) mit Länge und Radius, kann aber auch eine konvexe Kurve mit einem Radius sein.
- Ein Gelenk hat keine Ausdehnung (?). Es ist das Verbindungsstück zwischen zwei oder mehr Knochen und legt fest wie die Knochen sich relativ zueinander bewegen können. Werden mehr als zwei Knochen verbunden ist es einfach eine feste Verbindung.
- Skelett darf nicht zu abstrakt sein, da es sonst zu wenig Informationen zum konkreten Tier liefert.
- Ein detailliertes Skelett ist für Wesen sinnvoll, die es so noch nicht gibt bzw. wo man keine richtige Vorstellung davon hat wie es "funktioniert", z.B. bei mehr Gliedmaßen.
- Köpfe sind kompliziert → Auswahl an Köpfen bereitstellen (evtl. leicht skalier-/verformbar oder ineinander überführbar)

3.1.1. Extremitäten

- https://de.wikipedia.org/wiki/Extremit%C3%A4tenevolution
- "Die paarigen Flossen von Fischen und Extremitäten von Tetrapoden sind insofern homologe Skelettelemente, als sie bei beiden an Schulter- und Beckengürtel ansetzen und die Extremitäten aus den paarigen Flossen evolutionär hervorgegangen sind.[4] Sie unterschieden sich jedoch im Knochenaufbau und in der Embryonalentwicklung, so dass ein evolutionärer Übergang aus den Einzelelementen schwer erklärbar ist."
 - → einfach ignorieren und trotzdem (erstmal) so modellieren?

3.2. Muskeln

- Die "Hauptmuskeln" verlaufen bei Wirbeltieren wahrscheinlich ähnlich, relativ zu den Knochen. Trotzdem unterscheiden sie sich recht stark.
- Knochen/Gelenke bekommen Zusatzattribute für Start- und Zielpunkte der Muskeln.
- Muskeln haben eine "Dicke" und aus Start- und Zielpunkt muss Kurve des Muskels generiert werden.
- Wie wird die genaue Form festgelegt? Muskeln irgendwie auf ihre "Dicke" aufblähen + Interaktion mit vorhandenen Elementen (andere Muskeln und Knochen) → future work

3.3. Haut

- Was für Algorithmen gibt es, die zu einem vorhandenen 3D-Modell eine Hülle mit gewissen Eigenschaften generieren?
 es gibt eine solche Funktion z.B. in AutoCAD https://knowledge.autodesk.com/de/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/DEU/AutoCAD-Core/files/GUID-B7F99810-765E-4E7E-ABDD-275C64147CCC-htm.html
- Einfach nur eine Hülle mit gewissem Abstand sieht wahrscheinlich sehr unrealistisch aus. "Bony Landmarks" (Stellen an denen das Gewebe über den Knochen sehr dünn ist) könnten helfen (siehe https://www.proko.com/landmarks-of-the-human-body/) oder "bone weights"

3.4. Interaktivität

- Eine Anwendung, bei der nach Eingabe von Parametern sofort das komplette Tier generiert wird, ist weniger hilfreich als eine, bei der schrittweise Teile davon generiert werden können (und auch rückgängig gemacht werden können)
- Teile, die einem nicht gefallen, sollten geändert werden können
- Änderungen können Auswirkungen auf den Rest des Körpers haben (durch Regeln) bzw. manche Änderungen sind nicht möglich
- Könnte verwendet werden um schnell verschiedene Möglichkeiten zu testen

4. Technische Umsetzung

- Repräsentation des Zustands als Baum von einzelnen Zeichen (terminale sowie nichtterminale). (TODO: Andere Darstellung Besser?)
- Programmiersprache: Rust (?)
- Übersetzung in ein 3D-Modell: zunächst .obj, später Verwendung von OpenGL mit vertex shadern etc.

4.1. Dateiformate

- Einfachstes Format (nur für die Darstellung von 3D-Objekten ohne Zusatzinformationen): obj
- Erster Schritt: einfaches .obj erzeugen und mit Blender darstellen; einfach: Knoten/Gelenke mit Linien verbinden (TODO: GRUNDGERÜST MIT RUST AUFSETZEN)
- Jeder Editor geht mit Muskeln und Gelenken anders um. Gibt es ein Dateiformat, das nicht speziell zu einem Editor gehört, dass Bedingungen an die Rotation von Gelenken speichern kann?
- Eigenes Format erzeugen? Dann bräuchte man Plugins um es in verschiedenen Editoren laden zu können. Viel verwendeter Editor: Houdini (kostenlos für Studenten aber nicht Open Source). Oder selbst darstellen (siehe Interaktivität).
- Vorschlag von Jo: "Memory dumps", also direkt die structs aus dem speicher auf platte rausschreiben. Am besten wenn sie am Stueck liegen mit einem fwrite() und zurücklesen mit einem fread(). Es ist nuetzlich dazu am Anfang der Datei ein bisschen Metadaten zu speichern (magic number, version, array size etc).

4.1.1. OpenSim

- https://simtk-confluence.stanford.edu:8443/display/OpenSim/OpenSim+Documentation
- Open Source Software Platform f
 ür die Modellierung uns Simulation von Menschen, Tieren, etc.
 aber vor allem gedacht zur Auswertung von experimentellen Daten
- Import von .obj Dateien möglich. Außerdem zusätzliche Daten wie Winkel von Gelenken über .mot oder .sto Dateien (eigenes Format von OpenSim, siehe https://simtk-confluence.stanford.edu:8443/display/OpenSim/Preparing+Your+Data)

- Export in andere Dateiformate nicht möglich (?)
- für Download und Zugang zur "Community" Account nötig
- für Windows und Mac OS (Linux Support gibt es auch, ist aber schwieriger: https://simtk-confluence.stanford.edu:8443/display/OpenSim/Linux+Support)

4.1.2. OBJ

- Beschreibung des Formats: https://www.fileformat.info/format/wavefrontobj/egff.
- Erzeugung mit Rust: obj_exporter https://docs.rs/obj-exporter/0.2.0/obj_exporter/index.html
- Reicht wahrscheinlich für die ersten Dinge aus. Finetuning wird sowieso mit anderer Software gemacht

4.1.3. FBX

- Verwendung am besten über Autodesk FBX SDK für C++.
- Dokumentation: http://help.autodesk.com/view/FBX/2019/ENU/ und http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/index.html
- Es gibt auch fbxcel, eine FBX library für Rust. Ist aber relativ low level und nicht ganz offensichtlich wie zu verwenden.
- Einschränkungen für Gelenke können in FBX nicht gespeichert werden http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/index.html?url=cpp_ref/class_fbx_constraint.html,topicNumber=cpp_ref_class_fbx_constraint_htmlc57a3f99-513a-44a0-a24f-445e9077c99f

4.1.4. Alembic

- www.alembic.io
- Wird u.a. dafür verwendet Knochen (+ Animationen) in Ziva zu importieren
- Es kann mit Python (PyAlembic) und C++ verwendet werden.

 PyAlembic Doku: http://docs.alembic.io/python/examples.html#pyalembic-intro
 C++ API Refernce (enthält sehr wenig Infos): http://docs.alembic.io/reference/index.
 html
- Für Rust gibt es keine Bibliothek (?)

4.2. Interaktivität

- Verwendung von imgui (opengl/vulcan/3D view integriert): https://github.com/ocornut/imgui (TODO: IN OPENGL UND IMGUI EINARBEITEN)
- OpenGL scene → imgui: https://gamedev.stackexchange.com/questions/140693/how-can-i-render-an-opengl-scene-into-an-imgui-window
- OpenGL und Imgui für Rust: https://nercury.github.io/rust/opengl/tutorial/2018/ 02/08/opengl-in-rust-from-scratch-00-setup.html, https://github.com/michaelfairley/rust-imgui-sdl2
- SDL + OpenGL Tutorials http://headerphile.com/sdl2/opengl-part-1-sdl-opengl-awesome/, http://www.sdltutorials.com/sdl-opengl-tutorial-basics

Literatur

- [1] James Scott Hanan. "Parametric L-systems and Their Application to the Modelling and Visualization of Plants". AAINN83871. Diss. 1992. ISBN: 0-315-83871-X.
- [2] Milton Hildebrand und George E. Goslow. *Vergleichende und funktionelle Anatomie der Wirbeltiere*. Springer-Verlag Berlin Heidelberg New York, 2004.
- [3] No Man's Sky. URL: https://www.nomanssky.com/ (besucht am 08.10.2019).
- [4] Lennart Olsson und Uwe Hoßfeld. "Homology, Genes, and Evolutionary Innovation.— Günter P. Wagner." In: *Systematic Biology* 64.2 (Dez. 2014), S. 365–367. ISSN: 1063-5157. DOI: 10.1093/sysbio/syu127. eprint: http://oup.prod.sis.lan/sysbio/article-pdf/64/2/365/24587311/syu127.pdf. URL: https://doi.org/10.1093/sysbio/syu127.
- [5] D'Arcy Wentworth Thompson. *On growth and form / by D'Arcy Wentworth Thompson.* 2nd ed. Cambridge University Press Cambridge, Eng, 1942. ISBN: 0521066220.

A. Vergleichende Anatomie

Notizen aus "Vergleichende und funktionelle Anatomie der Wirbeltiere" [2]:

Kapitel 1 - Einleitung

- "Nichts anderes in der Natur hat eine herrlichere Struktur als der Körper der Wirbeltiere."
 (S. 1)
- Anpassung des Körpers an äußere Gegebenheiten (S. 3). → Eingabeparameter?
- (phylogenetische) Homologie von Strukturen: gemeinsame Abstammung (meist auch gleiche Funktion) (S. 4 und 6)
- Analogie von Strukturen: gleiche Funktion aber nicht gleiche phylogenetische Herkunft (S. 6)
- serielle Homologie: homologe Gene an verschiedenen Körperteilen aktiviert (z. B. Wirbel)
 (S. 7) → gleiche/sehr ähnliche Regeln
- rudimentäre/degenerierte Organe: haben keine Funktion mehr, waren aber bei Vorfahren funktionell (z. B. Beckengürtel des Finnwals) (S. 9/10)
- Veränderungen von Körperproportionen (z. B. Schädelknochen) können durch eine fortschreitende Verzerrung eines Gitters beschrieben werden (S. 18/19), siehe auch [5] und https://en.wikipedia.org/wiki/On_Growth_and_Form (TODO: ANSCHAUEN)

Kapitel 2 - Charakterisierung, Ursprung und Einteilung der Vertebraten

- "[…] ein Tier mit einem Cranium, also einer skelettartigen Schädelkapsel, [ist] ein Vertebrat." (S. 27)
- Teil der allgeime Beschreibung der (meisten) Vertebraten (S. 27):
 - "Der Körper ist bilateralsymmetrisch, d. h. er weist eine rechte und eine linke Seite, ein anteriores und ein posteriores Ende und eine dorsale und eine ventrale Oberfläche auf."
 - Sie haben ein inneres Skelett.

Kapitel 3 - Fische

• Agnathen (Kieferlose): erste bekannte Vertebraten und einzige ohne Kiefer. Einzige rezente Arten: Neunauge und Schleimaal (S. 41/42)

- Kiefertragende Fische: 1. Kiemenbogen entwickelte sich zu Kiefer, haben paarige Flossen (S. 45/46)
 - Knorpelfische: Haie, Rochen, Chimären; verkalkte Knorpel aber wenige/keine Knochen (S. 47) (Unterschied Knochen/Knorpel ignorieren oder nur Knochenfischskelette generieren?)
 - Knochenfische: Strahlenflosser (Flossen mit knöchernen Strahlen), Fleischflosser (Flossen mit fleischigen Stielen) (S. 52/53)

Kapitel 4 - Tetrapoden

- an Land ist Stromlinienform und sind Flossen kein Vorteil mehr, ein Hals ist nützlich und der Körper muss von Beinen getragen werden → Extremitätengürtel fester mit Axialskelett verbunden (S. 59)
- Amphibien: nicht vollkommen terrestrisch (Haut feucht, Eier im Wasser / feucht). Unterklasse Lissamphibia (dazu gehören alle rezenten Amphibien) haben nur vier Zehen am Vorderfuß. Es gibt drei Ordnungen: Anura (Schwanzlose), Urodela (Schwanzlurche) und Apoda (Beinlose) (S. 61)
- Reptilien: erste Klasse mit allen Strukturen für vollkommen landgebundenes Leben, leben aber auch teilweise wieder im Wasser (S. 62)
- Vögel: alle rezenten Vögel fliegen oder sind Nachkommen von Fliegern. Erste Zehe ist opponiert (siehe Diagramm S. 71). (S. 67)

Kapitel 8 - (Kopfskelett)

- "Das innere, gelenkige Skelettsystem der Vertebraten ist einzigartig im Tierreich. Es ist das wichtigste aller Organsysteme für das Studium der Wirbeltiermorphologie." (S. 131)
- Muskeln haben Ansatzstellen an Knochen, die Lage und Ausmaße zeigen. (S. 131)

Kapitel 9 - Körperskelett

- "Die Wirbelsäule ist älter als jeder andere Teil des postcranialen Skeletts mit Ausnahme der Chorda dorsalis. Dennoch ist sie nicht so alt wie die Hauptmerkmale der weichen Organsysteme, und sie fehlt praktisch bei den ältesten, bekannten Vertebraten." (S. 163)
- Wirbel können viele verschiedene Merkmale haben, z.B. Dornfortsatz, Ansatz der Rippe (siehe Bild S. 165) (S. 163)
- Evolution der Wirbelsäule: zunächst Chorda dorsalis mit stützenden Knorpeln (S. 166)
- Rippen
 - ursprünglich über die gesamte Länge der Wirbelsäule vorhanden. Zwei Arten: Dorsalrippen und Ventralrippen (siehe Abb. S. 173) (S. 172)
 - keine Rippen bei kieferlosen Vertebraten und Placodermi

- Mediane Flossen (175 f)
 - Dorsalflosse, Analflosse und Schwanzflosse
 - treten bei fast allen Agnatha und kiefertragenden Fischen auf
 - Wirbelsäule kann unterschiedlich in Schwanzflosse liegen (gerade, nach oben/unten geknickt oder sie hört davor auf), meistens nach oben abgeknickt (heterocerk).
- Schultergürtel der Fische ist mit Kopf verbunden (S. 178) (also kein Hals)
- Beckengürtel der Tetrapoden viel größer als bei Fischen. Bei verschiednene Gruppen unterschiedlich aber speziell (z. B. Vogel, Säugetier,...) (S. 180 f) → diskret repräsentieren?
- S. 183 Abbildung zur Evolution der Vordergliedmaßen
- Amphibien haben meistens kurze Gliedmaßen, die seitlich des Körpers nach außen gestellt sind (S. 187)
- Gliedmaßen der Reptilien oft seitlich aber manche auch unter dem Körper (wie bei Säugetieren) (S. 188 f)

Kapitel 21 - Strukturelemente des Körpers

- "allgemein nützliche" Strukturen: Kiefer, zwei Paare von Extremitäten (S. 433)
- Skelett kann nicht einfach "groß skaliert" werden. Belastung ist sonst möglicherweise zu groß (S. 444, siehe auch S. 478 und S. 481)
- Knochen halten am besten Druckkraft aus → Minimierung anderer Kräfte (S. 444)(schlecht bei Zug oder seitlicher Belastung)

Kapitel 22 - Mechanik von Stützung und Bewegung

• Balance und Gegenmoment (S. 466)