Questions de cours.

- (a) Deux DL en 0 parmi exp, $x \mapsto \ln(1+x)$, $x \mapsto \ln(1-x)$, cos, sin, tan, arctan, cosh, sinh, $x \mapsto \frac{1}{1-x}$, $x \mapsto \frac{1}{1+x}$, $x \mapsto \frac{1}{1+x^2}$, $x \mapsto (1+x)^{\alpha}$ ($\alpha \in \mathbf{R}$)
- (b) i. DL de tan en 0 à l'ordre 5
 - ii. Limite de $\left(1+\frac{x}{n}\right)^n$
 - iii. Formule de Taylor pour les polynômes
 - iv. DL à l'ordre 3 en 0 de sinh⁻¹. (On montrera que sinh est bijective avant de calculer ce DL.)

Exercices.

Exercice 1. Quelques DL:

- (a) A l'ordre 3 en $x = 0 : \sqrt{1 + \sin(x)}$
- (b) A l'ordre 6 en x = 0: $\sin(x)\cos(2x)$
- (c) A l'ordre 2 en $x = 1 : \exp(\sqrt{x})$
- (d) A l'ordre 4 en $x = 0 : \frac{1}{x^2 + x + 1}$
- (e) A l'ordre 3 en $x = 0 : (1+x)^{\frac{1}{x}}$
- (f) A l'ordre 5 en $x = 0 : \cos(x)^{\sin(x)}$

Exercice 2. Déterminer les limites suivantes en $+\infty$

- (a) $n\left(\left(1+\frac{1}{n}\right)^{\pi}-1\right)$
- (b) $(n+1)(n^{\frac{1}{n}}-1)$

Exercice 3. Déterminer les limites suivantes.

- (a) $\lim_{x \to 1} \frac{\ln(x)}{x-1}$
- (b) $\lim_{x \to 0} \left(\frac{1}{\sin^2(x)} \frac{1}{x^2} \right)$
- (c) $\lim_{x \to +\infty} \left(\cos\left(\frac{1}{x}\right)\right)^{x^2}$

Exercice 4. Étude d'une suite implicite.

On considère pour tout entier $n \in \mathbb{N}$ l'équation $x + \ln(x) = n$.

- (a) Montrer que cette équation admet une unique solution dans \mathbf{R}_{+}^{\star} pour tout n. On la note x_n . Montrer que la suite (x_n) est strictement croissante. En déduire sa limite.
- (b) Montrer que $x_n \sim n$ en $+\infty$
- (c) Montrer que $x_n = n \ln(n) + o(\ln(n))$

(d) Montrer que $x_n = n - \ln(n) + \ln(n)/n + o(\ln(n)/n)$

Exercice 5. Déterminer un équivalent de la suite définie par

$$\forall n \in \mathbf{N} \quad u_n = \int_{n^2}^{n^3} \frac{\mathrm{d}t}{1 + t^2}$$

Exercice 6. Déterminer un équivalent de arccos en 1⁻

Exercice 7. Soit (u_n) une suite réelle décroissante telle que

$$u_n + u_{n+1} \underset{\infty}{\sim} \frac{1}{n}$$

Cherchez un équivalent simple de (u_n)

Exercice 8. Montrer que pour tout $\theta \in \mathbf{R}$:

$$\left(1 + \frac{\mathrm{i}\theta}{n}\right)^n \xrightarrow[n \to \infty]{} \mathrm{e}^{\mathrm{i}\theta}$$

Exercice 9. Constante d'Euler-Mascheroni. On pose pour $n \geq 1$:

$$a_n = \sum_{k=1}^n \frac{1}{k} - \ln(n+1)$$
 et $b_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$

(a) Montrer par la méthode de votre choix que :

$$\forall x \in]-1, \infty[\ln(x+1) \le x$$

- (b) Justifier que (a_n) et (b_n) sont adjacentes. On notera γ^1 leur limite commune.
- (c) Déterminer un développement asymptotique à deux termes de la suite $\left(\sum_{k=1}^n \frac{1}{k}\right)_{n>1}$. En déduire que cette suite diverge.

Exercice 10. Chercher un développement limité à l'ordre 3 en 0 de la fonction

$$x \mapsto \arctan(e^x)$$

. Tracer l'allure de la courbe de cette fonction au voisinage de x=0

Exercice 11. Intégrales de Wallis.

Pour $n \in \mathbb{N}$, on pose

$$I_n = \int_0^{\pi/2} \sin^n(x) \mathrm{d}x$$

^{1.} γ est appelé la constante d'Euler-Mascheroni.

- (a) Montrer que la suite (u_n) définie pour tout $n \in \mathbf{N}^*$ par $u_n = (n+1)I_nI_{n+1}$ est constante.
- (b) En déduire un équivalent simple de (I_n) .

Exercice 12. Soient a, b deux réels positifs. Étudiez

$$\lim_{n \to \infty} \left(\frac{a^{1/n} + b^{1/n}}{2} \right)^n$$

Exercice 13. Une autre suite implicite.

On introduit pour tout entier naturel n le polynôme $P_n = X(X-1)(X-2)\cdots(X-n)$

- (a) Montrer que P'_n admet une unique racine de [0,1]. On la note x_n . Ceci détermine une suite (x_n) .
- (b) Étudiez la monotonie de cette suite.
- (c) Montrer que pour tout $x \neq 0, 1, 2, \dots, n$:

$$\frac{P'_n(x)}{P_n(x)} = \sum_{k=0}^{n} \frac{1}{x - k}$$

(d) Déterminez un équivalent de la suite (x_n) . On admettra le résultat de l'exercice 9, à savoir

$$\sum_{k=1}^{n} \frac{1}{n} \approx \ln(n)$$