### **Table of Contents**

| Learning AlgorithmLearning Algorithm      | 1 |
|-------------------------------------------|---|
| Deep Deterministic Policy Gradient (DDPG) |   |
| Code Walk-through                         |   |
| Model Architecture for Neural Network     |   |
| Hyper-parameters                          |   |
| Results                                   |   |
| Ideas for Future Work                     |   |
| References                                | _ |

## **Learning Algorithm**

## **Deep Deterministic Policy Gradient (DDPG)**

#### Algorithm 1 DDPG algorithm

Randomly initialize critic network  $Q(s, a|\theta^Q)$  and actor  $\mu(s|\theta^\mu)$  with weights  $\theta^Q$  and  $\theta^\mu$ .

Initialize target network Q' and  $\mu'$  with weights  $\theta^{Q'} \leftarrow \theta^Q$ ,  $\theta^{\mu'} \leftarrow \theta^\mu$ 

Initialize replay buffer R

for episode = 1, M do

Initialize a random process  $\mathcal{N}$  for action exploration

Receive initial observation state  $s_1$ 

for t = 1, T do

Select action  $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$  according to the current policy and exploration noise

Execute action  $a_t$  and observe reward  $r_t$  and observe new state  $s_{t+1}$ 

Store transition  $(s_t, a_t, r_t, s_{t+1})$  in R

Sample a random minibatch of N transitions  $(s_i, a_i, r_i, s_{i+1})$  from R

Set 
$$y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss:  $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$ 

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$

$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

end for end for

## **Code Walk-through**

File: Tennis.ipynb

- 1. Instantiate ddpg\_agent
- 2. Initialize Variables
- 3. Outer Loop (2000 Episodes)
  - a. Reset the Tennis Environment
  - b. Retrieve the Initial State from the Environment
  - c. Reset the Learning Agent
  - d. Inner Loop (1 Full Episode)
    - i. Get Action for Given State from Agent
    - ii. Send the Action to the Environment
    - iii. Get the New State
    - iv. Get the Reward
    - v. Check if Episode is Done
    - vi. For Each Agent Loop
      - Transition to the next state
    - vii Accumulate rewards for the Episode
    - vii. Exit Loop when Done
  - e. Store each Episode's Score for the last 100 Episodes
  - f. Store each Episode's Score for Plotting

#### Model Architecture for Neural Network

#### Actor Model:

Three layer Neural Network

1<sup>st</sup> Layer takes as input the number of STATES, 128 units as output

 $2^{nd}$  Layer – 128 units as input, 128 units as output

3<sup>rd</sup> Layer – 128 units as input, output is the number of ACTIONS

Rectified Linear Units connect the Layers together with a Batch Normalization for the first layer.

#### Critic Model:

Three layer Neural Network

1<sup>st</sup> Layer takes as input the number of STATES, 128 units as output

2<sup>nd</sup> Layer – 128 units + number of ACTIONS as input, 128 units as output

 $3^{rd}$  Layer – 128 units as input, output is 1

Rectified Linear Units connect the Layers together with a Batch Normalization for the first layer.

# **Hyper-parameters**

| Hyper Parameter | Value                | Description                          |
|-----------------|----------------------|--------------------------------------|
| BUFFER_SIZE     | 1 x 10 <sup>6</sup>  | replay buffer size                   |
| BATCH_SIZE      | 1024                 | Mini batch size                      |
| GAMMA           | 0.99                 | discount factor                      |
| TAU             | 1 x 10 <sup>-3</sup> | for soft update of target parameters |
| LR_ACTOR        | 2 x 10 <sup>-4</sup> | learning rate of the actor           |
| LR_CRITIC       | 2 x 10 <sup>-4</sup> | learning rate of the critic          |
| WEIGHT_DECAY    | 0                    | L2 weight decay                      |
| THETA           | 0.15                 |                                      |
| SIGMA           | 0.1                  |                                      |

# Results

(Goal: Average Score of .5 over 100 episodes)



| Episode 100                          | Average Score: 0.00 |
|--------------------------------------|---------------------|
| Episode 200                          |                     |
| Episode 300                          | Average Score: 0.01 |
| Episode 400                          | Average Score: 0.01 |
| Episode 500                          |                     |
| Episode 600                          |                     |
| Episode 700                          |                     |
| Episode 800                          |                     |
| Episode 900                          | Average Score: 0.10 |
| Episode 1000                         | Average Score: 0.08 |
| Episode 1100                         | Average Score: 0.11 |
| Episode 1200                         |                     |
| Episode 1242                         |                     |
| Environment solved in 1242 episodes! | 9                   |

## **Ideas for Future Work**

| Further tuning and optimization of parameters to solve the problem in less episodes |
|-------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------|

## References

```
@misc{lillicrap2015continuous,
    title={Continuous control with deep reinforcement learning},
    author={Timothy P. Lillicrap and Jonathan J. Hunt and Alexander Pritzel and Nicolas Heess and
Tom Erez and Yuval Tassa and David Silver and Daan Wierstra},
    year={2015},
    eprint={1509.02971},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```