1. Известные сведения об алгоритмах SSA и MSSA

В этом разделе приведены описания алгоритмов SSA и MSSA, а также некоторые их свойства и важные определения.

1.1. SSA

Все определения и утверждения из этого раздела можно найти в книге [1]. Пусть дан временной ряд X длины N

$$X = (x_1, x_2, \dots, x_N).$$

Определение 1.1 (Оператор вложения). Оператором вложения \mathcal{H}_L с длиной окна L будем называть отображение, переводящее временной ряд $\mathsf{X}=(x_1,x_2,\ldots,x_N),\,N\geqslant L$, в ганкелеву матрицу $\mathbf{X}\in\mathbb{R}^{L\times K},\,K=N-L+1$, такую, что $\mathbf{X}_{lk}=x_{l+k-1}$. Результирующая матрица имеет вид

$$\mathcal{H}_L(\mathsf{X}) = \mathbf{X} = \begin{pmatrix} x_1 & x_2 & \dots & x_K \\ x_2 & x_3 & \dots & x_{K+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & \dots & x_N \end{pmatrix}.$$

Определение 1.2 (Траекторная матрица). Траекторной матрицей ряда X с длиной окна L < N называют матрицу X, полученную применением оператора вложения \mathcal{H}_L , к ряду X.

Пусть временной ряд X представим в виде суммы временных рядов X_k и шума E:

$$X = \sum_{k=1}^{m} X_k + E.$$

В алгоритме 1 описан метод SSA для разделения компонент сигнила, то есть нахождения рядов X_k . В алгоритме 2 описан метод SSA для выделения сигнала, то есть нахождения $\sum_{k=1}^{m} X_k$. Первые два шага в алгоритме 2 совпадают с соответствующими шагами алгоритма 1, поэтому описание алгоритма начинается с шага 3.

Определение 1.3 (SSA-ранг временного ряда). Число d называется SSA-рангом временного ряда X длины N, если $d \leq (N+1)/2$ и для любой допустимой длины окна L, то есть такой, что $d \leq \min(L, N-L+1)$, ранг траекторной матрицы X этого ряда, построенной по длине окна L, равен d.

Алгоритм 1 SSA для разделения компонент сигнала.

Входные данные: X, L: 1 < L < N, где N-длина $X, m, R: m \leqslant R \leqslant \min(L, N-L+1)$,

 $\mathfrak{S}_1,\ldots,\mathfrak{S}_m$:

$$\{1, 2, \ldots, R\} = \bigcup_{k=1}^{m} \mathfrak{S}_{k}, \qquad \mathfrak{S}_{k} \cap \mathfrak{S}_{l} = \emptyset, \ k \neq l.$$

Результат: $\widetilde{\mathsf{X}}_1,\,\widetilde{\mathsf{X}}_2,\,\ldots,\,\widetilde{\mathsf{X}}_m$ — оценки рядов $\mathsf{X}_1,\,\mathsf{X}_2,\,\ldots,\,\mathsf{X}_m$.

- 1: Вложение: построение траекторной матрицы ${\bf X}$ по длине окна L.
- 2: Разложение: проведение SVD траекторной матрицы ${f X}$, получение её представления в виде

$$\mathbf{X} = \sum_{i=1}^{d} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}, \quad R \leqslant d \leqslant \min(L, N - L + 1).$$

3: Группировка: построение матриц

$$\mathbf{X}_k = \sum_{i \in \mathfrak{S}_k} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}.$$

4: Восстановление: вычисление рядов $\widetilde{\mathsf{X}}_k$ по матрицам \mathbf{X}_k посредством их усреднения вдоль побочных диагоналей $i+j=\mathrm{const}$:

$$\tilde{x}_n^{(k)} = \frac{1}{\#\mathfrak{M}_n} \sum_{(i,j)\in\mathfrak{M}_n} (\mathbf{X}_k)_{ij}, \qquad n \in \overline{1:N},$$

$$\mathfrak{M}_n = \left\{ (i,j) \mid 1 \leqslant i \leqslant L, \ 1 \leqslant j \leqslant N - L + 1, \ i+j-1 = n \right\}.$$

Алгоритм 2 SSA для выделения сигнала.

Входные данные: X, L: 1 < L < N, где N-длина X, $R: 1 \leqslant R \leqslant \min(L, N-L+1)$.

Результат: $\widetilde{\mathsf{X}}$ — оценка сигнала $\sum_{k=1}^m \mathsf{X}_k$.

3: Группировка: построение матрицы

$$\widetilde{\mathbf{X}} = \sum_{i=1}^{R} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}.$$

4: Восстановление ряда $\widetilde{\mathbf{X}}$ по матрице $\widetilde{\mathbf{X}}$ посредством её усреднения вдоль побочных диагоналей $i+j=\mathrm{const.}$

3амечание. В качестве параметра R в алгоритмах 1 и 2 рекомендуется выбирать SSA-ранг сигнала.

Пример 1.1. Ниже приведены примеры некоторых рядов, имеющих конечные SSA-

ранги.

- Ранг полиномиального ряда $x_n = Q_d(n)$, где Q_d многочлен степени d, равен d+1.
- Ранг экспоненциального ряда $x_n=Ce^{\alpha n},$ где $\alpha\in\mathbb{C}$ и $C\neq 0,$ равен 1.
- Ранг суммы экспоненциальных рядов

$$x_n = \sum_{j=1}^M C_j e^{\alpha_j n},$$

где $\alpha_j \in \mathbb{C}$ и $C_j \neq 0$ при всех j, равен количеству уникальных значений α_j .

• Ранг экспоненциально-модулированного гармонического ряда

$$x_n = Ce^{\alpha n}\cos(2\pi n\omega + \psi),$$

где $C \neq 0$, $\alpha \in \mathbb{R}$ и $\omega \in [0, 1/2]$, равен $r(\omega)$, где

$$r(\omega) = \begin{cases} 1, & \omega \in \{0, 1/2\}, \\ 2, & \omega \in (0, 1/2). \end{cases}$$
 (1)

• Ранг суммы экспоненциально-модулированных гармоник

$$x_n = \sum_{j=1}^{M} Ce^{\alpha_j n} \cos(2\pi n\omega_j + \psi_j)$$

равен

$$\sum_{(\omega,\alpha)\in\Omega}r(\omega),$$

где Ω — множество уникальных пар (ω_i, α_i) , представленных в данном временном ряде.

Определение 1.4 (Слабая SSA-разделимость). Временные ряды $\widehat{X} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_N)$ и $\widetilde{X} = (\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_N)$ называют слабо L-разделимыми в терминах SSA, если выполнены следующие условия:

1.
$$\sum_{k=0}^{L-1} \hat{x}_{i+k} \tilde{x}_{j+k} = 0, \quad \forall i, j \in \overline{1 : (N-L+1)},$$

2.
$$\sum_{k=0}^{N-L} \hat{x}_{i+k} \tilde{x}_{j+k} = 0, \quad \forall i, j \in \overline{1:L}.$$

Утверждение 1.1. Пусть $X = \widehat{X} + \widetilde{X}$, а X, \widehat{X} и \widetilde{X} — траекторные матрицы с длиной окна L рядов X, \widehat{X} и \widetilde{X} соответственно. Тогда сумма SVD матриц \widehat{X} и \widetilde{X} является SVD матрицы X тогда и только тогда, когда ряды \widehat{X} и \widetilde{X} слабо L-разделимы в терминах SSA.

Утверждение 1.1 позволяет выделить множество временных рядов, которые возможно разделить алгоритмом 1, а именно: слабо разделимые с некоторой длиной окна.

1.2. MSSA

Все определения и утверждения из этого раздела можно найти в работах [2, 3, 4]. Пусть дан P-мерный временной ряд X длины N

$$X = (X_1 : X_2 : \dots : X_P),$$
 $X_p = (x_1^{(p)}, x_2^{(p)}, \dots, x_N^{(p)})^{\mathrm{T}}.$

Определение 1.5 (Траекторная матрица многомерного временного ряда). Пусть $\mathbf{X}_1, \ \mathbf{X}_2, \ \dots, \ \mathbf{X}_P$ — траекторные матрицы рядов $\mathsf{X}_1, \ \mathsf{X}_2, \ \dots, \ \mathsf{X}_P$ соответственно, построенные по длине окна L. Траекторной матрицей многомерного временного ряда X называется матрица $\mathbf{X} \in \mathbb{R}^{L \times KP}, \ K = N - L + 1$, построенная соединением матриц \mathbf{X}_p по столбцам, то есть

$$\mathbf{X} = [\mathbf{X}_1 : \mathbf{X}_2 : \ldots : \mathbf{X}_P].$$

Методы MSSA для разделения компонент и выделения сигнала совпадают с алгоритмами 1 и 2 соответственно, с точностью до изменения шагов вложения и восстановления в соответствии с определением траекторной матрицы многомерного ряда (процедура восстановления временного ряда по матрице должна быть обратной к шагу вложения).

Определение 1.6 (MSSA-ранг временного ряда). Число d называется MSSA-рангом P-мерного временного ряда X длины N, если $d \leq P(N+1)/(P+1)$, и для любой допустимой длины окна L, то есть такой, что $d \leq \min(L, P(N-L+1))$, ранг траекторной матрицы X этого ряда, построенной по длине окна L, равен d.

Замечание. Как и в SSA, в алгоритме MSSA рекомендуется в качестве параметра количества компонент, относимых к сигналу, выбирать ранг сигнала. **Пример 1.2.** Рассмотрим P-мерный временной ряд X длины N с элементами вида

$$x_n^{(p)} = \sum_{i=1}^{R(p)} a_i^{(p)} e^{-\alpha_i^{(p)} n} \cos\left(2\pi\omega_i^{(p)} n + \varphi_i^{(p)}\right). \tag{2}$$

MSSA-ранг такого ряда равен

$$\sum_{(\omega,\alpha)\in\Omega} r(\omega),\tag{3}$$

где функция $r(\omega)$ определена в уравнении (1), а $\Omega-$ множество уникальных пар $\left(\omega_i^{(p)},\alpha_i^{(p)}\right)$, представленных в данном временном ряде.

Замечание. В дальнейшем в работе будут проведены сравнения методов SSA и MSSA с их тензорными модификациями HO-SSA и HOSVD-MSSA на многомерных сигналах вида (2). Это обосновано тем, что такая модель, а точнее её частный случай, в котором параметры R(p), $\omega_i^{(p)}$ и $\alpha_i^{(p)}$ не зависят от номера ряда p, применяется в спектроскопии ядерного магнитного резонанса [5]. Кроме того, в работе [6] также рассматривается этот частный случай модели.

Определение 1.7 (Слабая MSSA-разделимость). P-мерные временные ряды $\widehat{\mathsf{X}}$ и $\widetilde{\mathsf{X}}$ длины N называются слабо L-разделимыми, если выполнены следующие условия:

1.
$$\sum_{k=0}^{L-1} \hat{x}_{i+k}^{(p)} \tilde{x}_{j+k}^{(p')} = 0, \quad \forall i, j \in \overline{1:(N-L+1)}, p, p' \in \overline{1:P},$$

2.
$$\sum_{p=1}^{P} \sum_{i=0}^{K-1} \hat{x}_{k+i}^{(p)} \tilde{x}_{m+i}^{(p)} = 0, \quad \forall k, m \in \overline{1:L}.$$

Утверждение 1.2. Пусть $X = \widehat{X} + \widetilde{X}$, а X, \widehat{X} и \widetilde{X} — траекторные матрицы с длиной окна L рядов X, \widehat{X} и \widetilde{X} соответственно. Тогда сумма SVD матриц \widehat{X} и \widetilde{X} является SVD матрицы X тогда и только тогда, когда ряды \widehat{X} и \widetilde{X} слабо L-разделимы в терминах MSSA.

Как и в одномерном случае, это утверждение позволяет определять множество рядов, которые возможно разделить с помощью метода MSSA.

1.3. ESPRIT

Оригинальное описание алгоритма и его обоснование можно найти в статьях [7, 6]. Пусть элементы многомерного временного ряда X имеют вид

$$x_n^{(p)} = \sum_{j=1}^R a_j^{(p)} e^{\alpha_j n} e^{i(2\pi\omega_j n + \varphi_j^{(p)})}, \tag{4}$$

где і обозначает мнимую единицу, а параметрами модели являются амплитуды $a_j^{(p)} \in \mathbb{R} \setminus \{0\}$, фазы $\varphi_j^{(p)} \in [0, 2\pi)$, частоты $\omega_j \in [0, 1/2]$ и степени затухания $\alpha_j \in \mathbb{R}$.

Замечание. В статье [7] приводится алгоритм ESPRIT для модели временного ряда вида

$$x_n^{(p)} = \sum_{j=1}^R s_j(n) e^{i\omega_0 \Delta \sin \theta_j/c} a^{(p)}(\theta_j),$$

где оцениваемые параметры обозначены θ_j , но в работе будет рассматриваться модель вида (4) по причине, указанной в замечании к примеру 1.2.

Замечание. В силу того, что

$$\cos(2\pi\omega n + \varphi_n) = \frac{e^{2\pi\mathrm{i}\omega n + \varphi_n} + e^{-2\pi\mathrm{i}\omega n - \varphi_n}}{2},$$

вещественнозначный временной ряд из примера 1.2 при $R(p)=R,\,\omega_j^{(p)}=\omega_j$ и $\alpha_j^{(p)}=\alpha_j$ является частным случаем ряда (4).

Алгоритм ESPRIT (Estimation of signal parameters via rotational invariance technique), как и SSA, относится к классу методов, основанных на подпространстве сигнала. В отличие от SSA, ESPRIT применяется для решения задачи оценки параметров степеней затухания α_i и частот ω_i многомерного комплекснозначного сигнала в модели (4).

В алгоритме 3 описан метод ESPRIT для оценки параметров сигнала (4). Первые два шага в алгоритме 3 совпадают с соответствующими шагами алгоритма 1, поэтому описание алгоритма начинается с шага 3.

Замечание. Как и в методах SSA и MSSA, в качестве параметра алгоритма R рекомендуется выбирать ранг ряда (4).

3амечание. Алгоритм 3 применим и для одномерных временных рядов (P=1).

2. Описание метода HO-SSA

Пусть дан временной ряд X длины N

$$X = (x_1, x_2, \dots, x_N).$$

Определение 2.1 (Траекторный тензор ряда). Траекторным тензором ряда X с параметрами I,L:1< I,L< N,I+L< N+1 будем называть тензор $\mathcal X$ размера $I\times L\times J,\,J=N-I-L+2,$ элементы которого удовлетворяют равенству

$$\mathcal{X}_{ilj} = x_{i+l+j-2}$$
 $i \in \overline{1:I}, l \in \overline{1:L}, j \in \overline{1:J}.$

Алгоритм 3 ESPRIT для оценки параметров комплекснозначного сигнала.

Входные данные: X, L: 1 < L < N, где N—длина $X, R: 1 \leqslant R \leqslant \min(L, N-L+1)$.

Результат: $(\widehat{\alpha}_1, \widehat{\omega}_1), (\widehat{\alpha}_2, \widehat{\omega}_2), \dots, (\widehat{\alpha}_R, \widehat{\omega}_R)$ — оценки параметров сигнала (4).

3: Решение уравнения

$$\mathbf{U}^{\uparrow} = \mathbf{U}_{\perp}\mathbf{Z}$$

относительно матрицы ${\bf Z}$, где ${\bf U}=[U_1:U_2:\ldots:U_d]$, запись ${\bf U}^{\uparrow}$ обозначает матрицу ${\bf U}$ без первой строки, а запись ${\bf U}_{\downarrow}$ — без последней.

4: Нахождение первых R в порядке неубывания собственных чисел λ_j матрицы \mathbf{Z} . Полученные собственные числа $\lambda_{j'}$ считаются оценками экспонент $e^{\alpha_j + 2\pi \mathrm{i}\omega_j}$, возможно с точностью до некоторой перестановки j = S(j'), через которые можно выразить оценки искомых параметров:

$$\widehat{\alpha}_j = \log(|\lambda_{j'}|), \qquad \widehat{\omega}_j = \frac{\operatorname{Arg}(\lambda_{j'})}{2\pi}.$$

Замечание. Траекторный тензор ${\cal X}$ является ганкелевым [8].

Введём обозначения для сечений произвольного трёхмерного тензора \mathcal{A} :

$$\mathcal{A}_{k\cdot\cdot} = \mathcal{A}_{i_1=k}, \quad \mathcal{A}_{\cdot k\cdot} = \mathcal{A}_{i_2=k}, \quad \mathcal{A}_{\cdot \cdot k} = \mathcal{A}_{i_3=k}.$$

Тогда в терминах оператора вложения 1.1 сечения траекторного тензора ряда X с параметрами I,L имеют следующий вид

$$\mathcal{X}_{\cdot \cdot j} = \mathcal{H}_I\Big((x_j, x_{j+1}, \dots, x_{j+I+L-2})\Big),$$

$$\mathcal{X}_{\cdot l \cdot} = \mathcal{H}_I\Big((x_l, x_{l+1}, \dots, x_{l+L+J-2})\Big),$$

$$\mathcal{X}_{i \cdot \cdot} = \mathcal{H}_L\Big((x_i, x_{i+1}, \dots, x_{i+L+J-2})\Big).$$

На вход алгоритму подаётся временной ряд X и параметры I,L:1 < I,L < N,I+L < N+1. Так как при замене одного из этих параметров на J=N-I-L+2 или при замене их между собой получаются те же самые траекторные тензоры с точностью до перестановки их направлений, то имеет смысл при рассмотрении нескольких наборов параметров рассматривать только те, которые дают уникальные тройки (I,L,J) без учёта порядка. В зависимости от целей определяются разные формулировки алгоритма.

2.1. HO-SSA для разделения компонент сигнала

Пусть временной ряд X представим в виде суммы временных рядов X_k и шума E:

$$\mathsf{X} = \sum_{k=1}^m \mathsf{X}_k + \mathsf{E}.$$

Алгоритм HO-SSA для разделения компонент сигнала сводится к представлению HOSVD траекторного тензора ряда X в виде суммы HOSVD траекторных тензоров рядов X_k . Метод HOSVD-SSA для разделения компонент сигнала представлен в алгоритме 4.

Алгоритм 4 HOSVD-SSA для разделения компонент сигнала.

Входные данные: X, I,L:1 < I,L < N, I+L < N+1, где N-длина X, $m,R:m\leqslant R\leqslant \min(I,L,N-I-L+2),\ \mathfrak{S}_1^{(p)},\dots,\mathfrak{S}_m^{(p)}$:

$$\{1, 2, \ldots, R\} = \bigcup_{k=1}^{m} \mathfrak{S}_{k}^{(p)} \qquad \mathfrak{S}_{k}^{(p)} \cap \mathfrak{S}_{l}^{(p)} = \emptyset, \ k \neq l, \ p \in \{1, 2, 3\}.$$

Результат: $\widetilde{\mathsf{X}}_1,\,\widetilde{\mathsf{X}}_2,\,\ldots,\,\widetilde{\mathsf{X}}_m$ — оценки рядов $\mathsf{X}_1,\,\mathsf{X}_2,\,\ldots,\,\mathsf{X}_m$.

- 1: Вложение: построение траекторного тензора $\mathcal X$ по параметрам I,L.
- 2: Разложение: проведение HOSVD траекторного тензора ${\cal X}$, получение его представления в виде

$$\mathcal{X} = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{j=1}^{J} \mathcal{Z}_{ilj} U_i^{(1)} \circ U_l^{(2)} \circ U_j^{(3)}.$$
 (5)

3: Группировка: построение тензоров

$$\mathcal{X}^{(k)} = \sum_{i \in \mathfrak{S}_k^{(1)}} \sum_{l \in \mathfrak{S}_k^{(2)}} \sum_{j \in \mathfrak{S}_k^{(3)}} \mathcal{Z}_{ilj} U_i^{(1)} \circ U_l^{(2)} \circ U_j^{(3)}.$$

4: Восстановление: получение рядов $\widetilde{\mathsf{X}}_k$ по тензорам $\mathcal{X}^{(k)}$ посредством их усреднения вдоль плоскостей $i+l+j=\mathrm{const}$:

$$\tilde{x}_n^{(k)} = \frac{1}{\#\mathfrak{M}_n} \sum_{(i,l,j) \in \mathfrak{M}_n} \mathcal{X}_{ilj}^{(k)}, \qquad n \in \overline{1:N},$$

$$\mathfrak{M}_n = \left\{ (i, l, j) \mid 1 \leqslant i \leqslant I, \ 1 \leqslant l \leqslant L, \ 1 \leqslant j \leqslant J, \ i+l+j-2 = n \right\}.$$

2.2. HO-SSA для выделения сигнала из ряда

Алгоритм HO-SSA для выделения в ряде сигнала из шума сводится к получению как можно более точного приближения траекторного тензора тензором меньших n-рангов, заданных пользователем, и может быть проведён двумя различными способами.

Первый способ заключается в приближении траекторного тензора путём усечения его HOSVD (HOSVD-SSA). Благодаря свойству ?? такое приближение можно считать достаточно точным, хоть оно и не оптимально. Первые два шага этого алгоритма совпадают с алгоритмом 4, поэтому опишем его, начиная с третьего шага. Описание приведено в алгоритме 5.

Второй способ использует алгоритм HOOI для приближения траекторного тензора ряда некоторым тензором меньших *п*-рангов, причём результатом выполнения HOOI будет HOSVD этого приближения (HOOI-SSA). Первый шаг этого алгоритма совпадает с первым шагом алгоритма 4, поэтому опишем его начиная со второго шага. Описание приведено в алгоритме 6.

Алгоритм 5 HOSVD-SSA для выделения сигнала.

Входные данные: X, I,L:1 < I,L < N, I+L < N+1, где N-длина X, $R_1 \in \overline{1:I},$ $R_2 \in \overline{1:L},$ $R_3 \in \overline{1:J}.$

Результат: \widehat{X} .

- 3: По параметрам R_1, R_2, R_3 и разложению траекторного тензора \mathcal{X} в виде (5), в тензоре \mathcal{Z} проводится замена сечений $\mathcal{Z}_{i_m=k}$ при $k>R_m$ на нулевые, и по полученному тензору $\widehat{\mathcal{Z}}$ строится приближение траекторного тензора $\widehat{\mathcal{X}}$.
- 4: Усреднение тензора $\widehat{\mathcal{X}}$ вдоль плоскостей $i+l+j=\mathrm{const},$ в результате чего получается оценка сигнала $\widehat{\mathsf{X}}.$

3. Описание метода HOSVD-MSSA

В данном разделе приведены описания алгоритмов HOSVD-MSSA для выделения сигнала из ряда и для разделения компонент сигнала.

Алгоритм 6 HOOI-SSA

Входные данные: X, I, L: 1 < I, L < N, I+L < N+1, где N-длина X, $R_1 \in \overline{1:I}$, $R_2 \in \overline{1:L}$, $R_3 \in \overline{1:J}$.

Результат: \widehat{X} .

- 2: Применение к построенному на первом шаге траекторному тензору \mathcal{X} метода HOOI с набором n-рангов (R_1, R_2, R_3) . Результат применения HOOI: тензор $\widehat{\mathcal{X}}$, имеющий заданные n-ранги.
- 3: Восстановление сигнала, совпадает с шагом 4 алгоритма 5.

3.1. HOSVD-MSSA для выделения сигнала

Пусть дан P-мерный временной ряд X длины N

$$X = (X_1 : X_2 : \dots : X_P),$$

 $X_p = (x_1^{(p)}, x_2^{(p)}, \dots, x_N^{(p)})^{\mathrm{T}}.$

Определение 3.1 (Траекторный тензор многомерного ряда). Траекторным тензором ряда X с длиной окна L: 1 < L < N будем называть тензор $\mathcal X$ размерности $L \times K \times P$, K = N - L + 1, элементы которого удовлетворяют равенству

$$\mathcal{X}_{lkp} = x_{l+k-1}^{(p)}$$
 $l \in \overline{1:L}, k \in \overline{1:K}, p \in \overline{1:P}.$

Из определения следует, что сечение $\mathcal{X}_{\cdot\cdot\cdot p}$ траекторного тензора с длиной окна L является траекторной матрицей ряда $\mathsf{X}^{(p)}$, построенной по длине окна L. Пользуясь определением 1.1 оператора вложения, можно записать следующее представление

$$\mathcal{X}_{\cdot \cdot p} = \mathcal{H}_L\left(\mathsf{X}^{(p)}\right)$$
 .

Метод HOSVD-MSSA для выделения в ряде сигнала из шума, по аналогии с алгоритмом HOSVD-SSA, сводится к получению как можно более точного приближения траекторного тензора тензором меньших, заданных пользователем, *n*-рангов. Для получения такого приближения используется усечение HOSVD траекторного тензора. Описание метода приведено в алгоритме 7.

3.2. HOSVD-MSSA для разделения компонент сигнала

Пусть есть два P-мерных временных ряда $\widehat{\mathsf{X}}$ и $\widetilde{\mathsf{X}}$ длины N и $\mathsf{X} = \widehat{\mathsf{X}} + \widetilde{\mathsf{X}}$. Их траекторные тензоры с длиной окна L обозначим $\widehat{\mathcal{X}}$, $\widetilde{\mathcal{X}}$, \mathcal{X} соответственно.

Алгоритм 7 HOSVD-MSSA для выделения сигнала

Входные данные: $X = (X^{(1)}, \dots, X^{(P)})^T$, L: 1 < L < N, где N-длина $X, R_1 \in \overline{1:L}$, $R_2 \in \overline{1:K}, R_3 \in \overline{1:P}$, где K=N-L+1.

Результат: X.

- 1: Построение по ряду X траекторного тензора \mathcal{X} с длиной окна L.
- 2: Вычисление HOSVD \mathcal{X} , получение его представления в виде

$$\mathcal{X} = \sum_{l=1}^{L} \sum_{k=1}^{K} \sum_{p=1}^{P} \mathcal{Z}_{lkp} U_l^{(1)} \circ U_k^{(2)} \circ U_p^{(3)}.$$
 (6)

3: Построение по параметрам R_1, R_2, R_3 усечения HOSVD

$$\widetilde{\mathcal{X}} = \sum_{l=1}^{R_1} \sum_{k=1}^{R_2} \sum_{p=1}^{R_3} \mathcal{Z}_{lkp} U_l^{(1)} \circ U_k^{(2)} \circ U_p^{(3)}.$$

4: Восстановление многомерного ряда $\widetilde{\mathsf{X}} = \left(\widetilde{\mathsf{X}}^{(1)}, \dots, \widetilde{\mathsf{X}}^{(P)}\right)$ по тензору $\widetilde{\mathcal{X}}$, которое происходит следующим образом: ряды $\widetilde{\mathsf{X}}^{(p)}$ получаются усреднением сечений $\widetilde{\mathcal{X}}_{\cdot p}$ вдоль побочных диагоналей $l+k=\mathrm{const.}$

Метод HOSVD-MSSA для разделения компонент сигнала сводится к получению представления HOSVD траекторного тензора наблюдаемого сигнала X в виде суммы HOSVD траекторных тензоров компонент \widehat{X} и \widetilde{X} . Первые два шага этого алгоритма совпадают с первыми двумя шагами алгоритма 7, поэтому описание алгоритма приводится, начиная с 3 шага. Описание метода приведено в алгоритме 8.

4. Описание метода HO-ESPRIT

Пусть $\mathsf{X}-$ одномерный (P=1) или многомерный (P>1) комплекснозначный временной ряд вида (4). Обозначим

$$\overline{L} = \begin{cases} (I, L), & P = 1, \\ L, & P > 1, \end{cases}$$

Алгоритм 8 HOSVD-MSSA для разделения компонент сигнала.

Входные данные: $X, L: 1 < L < N, K = N - L + 1, \widehat{\mathfrak{S}}, \widetilde{\mathfrak{S}} \subseteq \overline{1: \min(L, K)} : \widehat{\mathfrak{S}} \cap \widetilde{\mathfrak{S}} = \emptyset,$ $\widehat{\mathfrak{P}}, \widetilde{\mathfrak{P}} \subseteq \overline{1:P}$

Результат: $\tilde{\hat{X}}$, $\tilde{\tilde{X}}$ — оценки \hat{X} и \tilde{X} соответственно.

3: Группировка: построение тензоров

$$\widehat{\mathcal{X}} = \sum_{l \in \widehat{\mathfrak{S}}} \sum_{k \in \widehat{\mathfrak{S}}} \sum_{p \in \widehat{\mathfrak{P}}} \mathcal{Z}_{lkp} U_l^{(1)} \circ U_k^{(2)} \circ U_p^{(3)},$$

$$\widetilde{\mathcal{X}} = \sum_{l \in \widetilde{\mathfrak{S}}} \sum_{k \in \widetilde{\mathfrak{S}}} \sum_{p \in \widetilde{\mathfrak{P}}} \mathcal{Z}_{lkp} U_l^{(1)} \circ U_k^{(2)} \circ U_p^{(3)}.$$

4: Восстановление рядов \hat{X} и \hat{X} по тензорам $\hat{\mathcal{X}}$ и $\hat{\mathcal{X}}$ соответственно путём применения к каждому из этих тензоров шага 4 алгоритма 7.

а \mathcal{X} — траекторный тензор ряда X, построенный с длиной (длинами) окна из \overline{L} . Также определим область допустимых параметров \overline{L} :

$$\mathcal{D} = \begin{cases} \left\{ (I, L) : \ 1 < I, L < N, \ I + L < N + 1 \right\}, & P = 1, \\ \left\{ L : \ 1 < L < N \right\}, & P > 1. \end{cases}$$

Описание метода HO-ESPRIT приведено в алгоритме 9.

5. Численные сравнения в задаче оценки параметров

В этом разделе приведены сравнения методов ESPRIT и HO-ESPRIT по точности оценки параметров сигнала вида (4) в случае одномерных и многомерных рядов. В качестве показателя точности оценки была выбрана метрика относительного среднеквадратичного отклонения (RRMSE)

RRMSE =
$$\frac{100}{|\gamma|} \sqrt{\frac{1}{m} \sum_{j=1}^{m} |\gamma - \widehat{\gamma}_j|^2 (\%)},$$
 (7)

где m— количество реализаций шума, γ — оцениваемый параметр, $\widehat{\gamma}_j$ — оценка параметра γ по ряду с j-й реализацией шума. Такой выбор был сделан для того, чтобы в дальнейшем сравнить результаты с результатами работы [6], в которой использовалась именно такая метрика для определения точности оценивания параметров.

Алгоритм 9 HO-ESPRIT для оценки параметров комплекснозначного сигнала.

Входные данные: X, $\overline{L} \in \mathcal{D}$, $R: 1 \leqslant R \leqslant \min(L, N-L+1)$, $d \in \{1,2,3\}$ — номер направления сингулярных векторов, используемых для оценки параметров.

Результат: $(\widehat{\alpha}_1, \widehat{\omega}_1), (\widehat{\alpha}_2, \widehat{\omega}_2), \dots, (\widehat{\alpha}_R, \widehat{\omega}_R)$ — оценки параметров сигнала (4).

- 1: Построение траекторного тензора $\mathcal{X} \in \mathbb{C}^{I_1 \times I_2 \times I_3}$ по ряду X с параметрами из \overline{L} . Если P=1, то $I_1=I$, $I_2=L$, $I_3=N-I-L+2$, а если P>1, то $I_1=L$, $I_2=N-L+1$, $I_3=P$.
- 2: Вычисление HOSVD \mathcal{X} , получение его представления в виде

$$\mathcal{X} = \sum_{i_1=1}^{I_1} \sum_{i_2=1}^{I_2} \sum_{i_3=1}^{I_3} \mathcal{Z}_{i_1 i_2 i_3} U_{i_1}^{(1)} \circ U_{i_2}^{(2)} \circ U_{i_3}^{(3)},$$

построение матрицы $\mathbf{U} = \left[U_1^{(d)} : U_2^{(d)} : \dots : U_{I_D}^{(d)} \right].$

3: Решение уравнения

$$\mathbf{U}^{\uparrow} = \mathbf{U}_{\perp} \mathbf{Z}$$

относительно матрицы ${\bf Z}$, где запись ${\bf U}^{\uparrow}$ обозначает матрицу ${\bf U}$ без первой строки, а запись ${\bf U}_{\downarrow}-$ без последней.

4: Нахождение первых R в порядке неубывания собственных чисел λ_j матрицы \mathbf{Z} . Полученные собственные числа $\lambda_{j'}$ считаются оценками экспонент $e^{\alpha_j + 2\pi \mathrm{i}\omega_j}$, возможно с точностью до некоторой перестановки j = S(j'), через которые можно выразить оценки искомых параметров:

$$\widehat{\alpha}_{j} = \log(|\lambda_{j'}|), \qquad \widehat{\omega}_{j} = \frac{\operatorname{Arg}(\lambda_{j'})}{2\pi}.$$

5.1. Одномерный случай

Пусть P=1 и R=2, то есть одномерный временной ряд $\mathsf{X}=(x_0,x_1,\ldots,x_{24})$ состоит из элементов вида

$$x_n = e^{\alpha_1 n} e^{2\pi i \omega_1 n} + e^{\alpha_2 n} e^{2\pi i \omega_2 n} + \varepsilon_n,$$

где $n \in \overline{0:24}$, а ε_n — последовательность независимых случайных величин из распределения $N(0,\sigma^2)$, $\sigma=0.04$. Также пусть $\omega_1=0.2$, $\omega_2=0.22$. Ниже приведены рассматриваемые варианты степеней затухания.

1.
$$\alpha_1 = \alpha_2 = 0$$
.

- 2. $\alpha_1 = \alpha_2 = -0.01$.
- 3. $\alpha_1 = \alpha_2 = -0.02$.

4.
$$\alpha_1 = -0.01$$
, $\alpha_2 = -0.02$.

Во всех случаях ранг сигнала с такими параметрами будет равен 2, поэтому для оценки параметров использовались только первые два собственных числа матрицы **Z** из алгоритмов 3 и 9. В этом разделе RRMSE считалось по 500 реализациям шума.

Ниже представлены графики зависимости RRMSE оценок частот и степеней затухания, полученных методом HO-ESPRIT, от размеров траекторного тензора (ось x) и выбора направления оценивания (цвет и тип линий). Чёрной пунктирной линией на рисунках изображены наименьшие по выбору длины окна значения RRMSE соответствующего параметра, полученные методом ESPRIT.

Рисунки 1 соответствуют случаю 1. Графики с RRMSE оценок степеней затухания не приводятся в этом случае, так как для них RRMSE не определено. Рисунки 2, 3 и 4 соответствуют случаям 2, 3 и 4 соответственно.

Рис. 1. Зависимость RRMSE оценок параметров одногомерного ряда от длины окна и направления восстановления, случай 1.

Выводы из численных сравнений В случае одномерных сигналов оценки методом HO-ESPRIT при оптимальном подборе параметров оказались не менее точными, чем оптимальные оценки стандартным методом ESPRIT. Кроме того, в некоторых ситуациях оптимальные оценки методом HO-ESPRIT оказываются точнее оптимальных оценок методом ESPRIT. Однако множество длин окна в алгоритме HO-ESPRIT, при которых

Рис. 2. Зависимость RRMSE оценок параметров одногомерного ряда от длины окна и направления восстановления, случай 2.

точность оценок параметров сигнала близка к оптимальной, очень мало, и нам пока неизвестны способы их выбора кроме перебора. С другой стороны, для стандартного алгоритма ESPRIT требуется меньший набор параметров, а множество длин окна, при которых точность оценки близка к оптимальной, довольно велико. С учётом этих замечаний, и того, что разница в точности оптимальных параметров между методами невелика, использование метода НО-ESPRIT в текущем виде не обосновано.

Стоит заметить, что во всех случаях выбор номера направления d из алгоритма 9, соответствующего направлению наименьшего размера траекторного тензора, давал наиболее точные результаты.

Рис. 3. Зависимость RRMSE оценок параметров одногомерного ряда от длины окна и направления восстановления, случай 3.

5.2. Многомерный случай

Пусть P=12 и R=2, то есть многомерный временной ряд

$$X = (X^{(1)}, X^{(2)}, \dots, X^{(12)}),$$
$$X^{(p)} = (x_0^{(p)}, x_1^{(p)}, \dots, x_{24}^{(p)})$$

состоит из элементов вида

$$x_n^{(p)} = a_1^{(p)} e^{\alpha_1 n} e^{2\pi \mathrm{i} \omega_1 n} + a_2^{(p)} e^{\alpha_2 n} e^{2\pi \mathrm{i} \omega_2 n} + \varepsilon_n^{(p)},$$

где $n \in \overline{0:24}$, а ε_n — последовательность независимых случайных величин из распределения $N(0, \sigma^2)$, $\sigma = 0.2$. Значения частот и варианты степеней затухания были взяты такими же, как в одномерном случае в разделе 5.1. Как и в одномерном случае, рани сигналов с каждым набором параметров равен 2, поэтому для оценки параметров использовались только первые два собственных числа матрицы \mathbf{Z} из алгоритмов 3 и 9.

Рис. 4. Зависимость RRMSE оценок параметров одногомерного ряда от длины окна и направления восстановления, случай 4.

Ниже представлены графики зависимости RRMSE оценок параметров, полученных методами ESPROT и HO-ESPRIT, от значения длины окна L.

Рисунки 5 соответствуют случаю 1. Графики с RRMSE оценок степеней затухания не приводятся в этом случае, так как для них RRMSE не определено. Рисунки 6, 7 и 8 соответствуют случаям 2, 3 и 4 соответственно.

Рис. 5. Зависимость RRMSE оценок параметров многомерного ряда от длины окна, случай 1.

Рис. 6. Зависимость RRMSE оценок параметров многомерного ряда от длины окна, случай 2.

Рис. 7. Зависимость RRMSE оценок параметров многомерного ряда от длины окна, случай 3.

Рис. 8. Зависимость RRMSE оценок параметров многомерного ряда от длины окна, случай 4.

Список литературы

- Golyandina N., Nekrutkin V., Zhigljavsky A. Analysis of Time Series Structure. Chapman and Hall/CRC, 2001.
- 2. Степанов Д.В., Голяндина Н.Э. Варианты метода «Гусеница»—SSA для прогноза многомерных временных рядов // Труды IV Международной конференции «Идентификация систем и задачи управления». 2005. С. 1831—1848.
- 3. Multivariate and 2D Extensions of Singular Spectrum Analysis with theRssaPackage / Golyandina N., Korobeynikov A., Shlemov A., and Usevich K. // Journal of Statistical Software. 2015. Vol. 67, no. 2.
- 4. Golyandina N., Zhigljavsky A. Singular Spectrum Analysis for Time Series. 2 ed. Springer Berlin Heidelberg, 2020.
- 5. Algorithm for Time-Domain NMR Data Fitting Based on Total Least Squares / Van Huffel S., Chen H., Decanniere C., and Van Hecke P. // Journal of Magnetic Resonance, Series A. 1994. Vol. 110, no. 2. P. 228–237.
- 6. Papy J.M., De Lathauwer L., Van Huffel S. Exponential data fitting using multilinear algebra: the single-channel and multi-channel case // Numerical Linear Algebra with Applications. 2005. Vol. 12, no. 8. P. 809–826.
- 7. Roy R., Paulraj A., Kailath T. Estimation of Signal Parameters via Rotational Invariance Techniques ESPRIT // MILCOM 1986 IEEE Military Communications Conference: Communications-Computers: Teamed for the 90's.—IEEE.—1986.—P. 41.6.1–41.6.5.
- 8. Nie J., Ye K. Hankel tensor decompositions and ranks. 2017.