Lemme de Borel-Cantelli

Soit $\{E_k\}_{k=1}^\infty$ une famille dénombrable de sous-ensembles mesurables de \mathbb{R}^d tel que

$$\sum_{k=1}^{\infty} m(E_k) < \infty$$

et soit $E=\{x\in\mathbb{R}^d:x\in E_k \text{ pour une infinité de }k\}.$ Alors E est mesurable et de plus m(E)=0.

Preuve: Tout d'abord, nous remarquons que

$$E = \limsup_{k \to \infty} E_k = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k,$$

un fait bien connu. Cette réécriture de E nous révèle que E est un ensemble mesurable. Ensuite, nous posons $B_n = \bigcup_{k \geq n} E_k$; alors $(B_n)_{n=1}^\infty$ est une suite décroissante (pour l'inclusion) d'ensembles mesurables. Nous notons que pour chaque n, la mesure $m(B_n)$ est majorée par $\sum_{k=n}^\infty m(E_k)$, un reste de série convergente, et donc que $m(B_n)$ tend vers zéro lorsque n devient grand. En particulier, $m(B_1) < \infty$ et puisque $B_n \searrow \bigcap_{k=1}^\infty B_k$, la continuité à droite de m implique que

$$m\left(\bigcap_{k=1}^{\infty} B_k\right) = \lim_{n \to \infty} m(B_n) = 0.$$

Nous concluons la preuve en constatant que $\bigcap_{k=1}^{\infty} B_k = E$.

1 Approximations par des nombres rationnels

Étant donné un nombre réel x, je me demande à quel point il est possible de l'approximer efficacement. Par exemple, si x est déjà rationnel, alors c'est clair que x possède une approximation excellente, c'est-à-dire x lui-même. D'un autre côté, si x est irrationnel, alors par densité de $\mathbb Q$ dans $\mathbb R$ je sais qu'il existe une suite $(r_n)_{n=1}^\infty$ qui converge vers x, i.e. telle que pour tout $\varepsilon>0$, je peux trouver un N tel que pour tout $n\geq N$, j'ai que $|x-r_n|\leq \varepsilon$. Par contre, je veux une approximation efficace et la suite $(r_n)_n$ ne va pas nécessairement l'être. Pour le voir, je dois préciser ce que je veux dire

Théorème d'approximation 1 (Dirichlet)

Soit α un nombre irrationnel quelconque. Alors il existe une infinité de fractions p/q avec p et q relativements premiers tel que $|\alpha - p/q| \le 1/q^2$.

Preuve: Fixons un entier positif n et considérons les n+1 nombres $x_i=i\alpha$ pour $0\leq i\leq n$. Chaque x_i peut s'écrire comme une partie entière et une partie fractionnaire : $x_i=e_i+\phi_i$ avec $0<\phi_i<1$. Nous découpons maintenant l'intervalle [0,1) en n sous-intervalles de longueur 1/n. Comme il y a n+1 nombres ϕ_i mais seulement n sous-intervalles de longueur 1/n, alors par le principe des tiroirs il existe i,j distincts tel que

$$|\phi_i - \phi_j| \le \frac{1}{n}$$

. Notons que $|\phi_i-\phi_j|$ est la même chose que $|\alpha(i-j)-(e_i-e_j)|$, donc en posant $p:=e_i-e_j$ et q:=i-j, nous obtenons que

$$|\alpha q - p| \le \frac{1}{n} \le \frac{1}{q}$$

et en divisant des deux côtés par q, l'énoncé est prouvé.

Pour voir qu'il existe une infinité de solutions p/q essentiellement différentes (c'està-dire avec p et q relativement premiers), nous procédons par contradiction. Supposons qu'il n'y aie qu'un nombre fini de solutions p_1/q_1 , ..., p_k/q_k . Nous choisissons un j tel que la quantité $m:=|\alpha q_j-p_j|$ soit minimale. Nous remarquons que parce que α est irrationnel, m est strictement positif. Il est alors possible de choisir un n tel que 1/n < m. En procédant comme précédemment, nous trouvons alors une nouvelle solution p/q telle que $|\alpha q-p| \le 1/n < m$, ce qui contredit la minimalité de m.

1.1 Il n'y a pas beaucoup de réels qui s'approximent mieux que q^{-2}

Étant donné un réel x, je peux toujours l'approximer très bien avec des rationnels. En effet, si x est déjà rationnel, alors il existe une excellente approximation de x, c'est-à-dire x lui-même. Si toutefois x est irrationnel, par ce que j'ai démontré précédemment je peux l'approximer d'aussi près que je le veux (erreur ε) par une fraction p/q qui, bien que je ne puisse pas la choisir, je me suis garanti qu'elle existe, et que la taille de son dénominateur q n'est pas plus gros que la racine carrée de l'inverse de l'erreur d'approximation commise, c'est-à-dire que si e=|x-p/q|, alors je suis certain que : (i) $e\le \varepsilon$; et que : (ii) $q\le \sqrt{1/e}$.

Soit $\varepsilon>0$. Étant donné un entier $t\in\mathbb{Z}$ et un nombre rationnel p/q avec q>0, nous définissons l'ensemble

$$E_{p/q}^t = \left\{ x \in [t, t+1) : \left| x - \frac{p}{q} \right| \le \frac{1}{q^{2+\varepsilon}} \right\}$$

qui contient les réels qui sont approximables de façon $(2+\varepsilon)$ -économique par un rationnel donné, c'est-à-dire que le dénominateur du nombre rationnel n'est pas trop grand parrapport à la précision de l'approximation qu'il procure. Il est clair que $E^t_{p/q}$ est mesurable puisque ce n'est qu'une boule fermée dans [t,t+1) de rayon $q^{-2-\varepsilon}$. Sa mesure est donc égale à $2q^{-2-\varepsilon}$. De plus, nous posons

$$E_{\infty}^t = \{x \in [t,t+1) : x \in E_r^t \text{ pour une infinité de rationnels } r\}$$

et nous réalisons que $x\in E_\infty^t$ si et seulement si il existe une infinité de nombres rationnels p/q tel que $|x-p/q|\leq q^{-2-\varepsilon}$.

Concentrons-nous maintenant sur le cas particulier où t=0. Dans ce cas, nous remarquons que $E_{p/q}^0$ est vide si et seulement si |p|>q. Donc,

$$\sum_{r \in \mathbb{Q}} m(E_r^0) = \sum_{q=1}^{\infty} \sum_{p=0}^{q} m(E_{p/q}^0)$$

et puisque

$$\sum_{p=0}^{q} m(E_{p/q}^{0}) = \frac{2(q+1)}{q^{2+\varepsilon}} \le \frac{3q}{q^{2+\varepsilon}}$$

nous concluons que

$$\sum_{r\in\mathbb{O}} m(E_r^0) \le 3\sum_{q=1}^\infty \frac{1}{q^{1+\varepsilon}} = 3\,\zeta(1+\varepsilon) < \infty$$

où ζ est la fonction zêta de Riemann, qui est convergente sur $(1,+\infty)$. Cela nous permet d'appliquer le lemme de Borel-Cantelli pour conclure que $m(E^0_\infty)=0$.

Maintenant, je montre que $E^0_\infty+t=E^t_\infty$ par double inclusion. Supposons que $x\in E^0_\infty+t$. Alors il existe une infinité de p/q tel que

$$\left| x - t - \frac{p}{q} \right| = \left| x - \frac{p + qt}{q} \right| \le \frac{1}{q^2}$$

et donc clairement $x \in E_{\infty}^t$. D'un autre côté, supposons que $x \in E_{\infty}^t$. Donc $x \in [t, t+1)$ peut s'écrire comme y+t avec $y \in [0,1)$ et il existe une infinité de p/q tel que

$$\left| x - \frac{p}{q} \right| = \left| y - \frac{p + qt}{q} \right| \le \frac{1}{q^2}$$

d'où nous concluons que $y\in E^0_\infty$ et donc que $x=y+t\in E^0_\infty+t$. Par invariance de la mesure par translation, cela nous permet de dire que pour tout entier t, nous avons que $m(E^t_\infty)=m(E^0_\infty)=0$.

Si nous dénotons par E l'ensemble des $x\in\mathbb{R}$ tel qu'il existe une infinité de rationnels p/q avec $|x-p/q|\leq 1/q^{2+\varepsilon}$, alors il est clair que

$$E = \bigcup_{t \in \mathbb{Z}} E_{\infty}^t$$

et donc que $m(E) = \sum_{t \in \mathbb{Z}} m(E_{\infty}^t) = 0$.