Comprehensive Analysis of Diwali Sales Trends

Introduction:

Diwali, India's festival of lights, is a peak shopping season marked by significant consumer spending. This project analyses Diwali sales data to uncover trends in consumer behaviour, highlighting key demographics, popular products, and spending patterns. By exploring data across factors like age, gender, and occupation, the study provides actionable insights for businesses to optimize their festive strategies.

import python libraries

import numpy as np import pandas as pd import matplotlib.pyplot as plt # visualizing data %matplotlib inline import seaborn as sns

import csv file

df = pd.read_csv('/content/Diwali Sales Data.csv', encoding= 'unicode_escape')

df.shape

```
→ (11251, 15)
```

df.head()

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11251 entries, 0 to 11250
Data columns (total 15 columns):
# Column Non-Null Count Dtype
     User_ID 11251 non-null int64
Cust_name 11251 non-null object
Product_ID 11251 non-null object
Gender 11251 non-null object
Age Group 11251 non-null int64
Marital_Status 11251 non-null int64
State 11251 non-null object
      User_ID
 0
                                    11251 non-null
                                                             int64
 6
       State 11251 non-null
Zone 11251 non-null
Occupation 11251 non-null
      Zone
                                                             object
                                                             object
 10 Product_Category 11251 non-null
                                                             object
 11
      Orders
                                    11251 non-null
                                                              int64
      Amount
                                    11239 non-null
                                                              float64
 12
       Status
                                                              float64
 13
                                    0 non-null
      unnamed1
                                                              float64
 14
                                    0 non-null
dtypes: float64(3), int64(4), object(8)
memory usage: 1.3+ MB
```

#drop unrelated/blank columns

df.drop(['Status', 'unnamed1'], axis=1, inplace=True)

#check for null values

pd.isnull(df).sum()

drop null values

df.dropna(inplace=True)

change data type

df['Amount'] = df['Amount'].astype('int')

df['Amount'].dtypes

df.columns

#rename column

df.rename(columns= {'Marital_Status':'Shaadi'})

describe() method returns description of the data in the DataFrame (i.e. count, mean, std, etc)

df.describe()

		User_ID	Age	Marital_Status	Orders	Amount
	count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
	mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
	std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
	min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
	25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
	50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
	75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
	max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

use describe() for specific columns

df[['Age', 'Orders', 'Amount']].describe()

LL.	<i>O</i> ,	,	<u> </u>	
₹		Age	Orders	Amount
	count	11239.000000	11239.000000	11239.000000
	mean	35.410357	2.489634	9453.610553
	std	12.753866	1.114967	5222.355168
	min	12.000000	1.000000	188.000000
	25%	27.000000	2.000000	5443.000000
	50%	33.000000	2.000000	8109.000000
	75%	43.000000	3.000000	12675.000000
	max	92.000000	4.000000	23952.000000

Exploratory Data Analysis

GENDER

plotting a bar chart for Gender and it's count

ax = sns.countplot(x = 'Gender',data = df, palette='pastel', hue='Gender') for bars in ax.containers:

ax.bar label(bars)

plotting a bar chart for gender vs total amount

 $sales_gen = df.groupby(['Gender'],$

as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.barplot(x = 'Gender', y = 'Amount', data = sales_gen, palette='Blues', hue='Gender')

From above graphs we can see that most of the buyers are females and even the purchasing power of females are greater than men

AGE

plotting a bar chart for Age Group and Gender

ax = sns.countplot(data = df, x = 'Age Group', hue = 'Gender', palette='Set2') for bars in ax.containers:

ax.bar label(bars)

Total Amount vs Age Group

sales_age = df.groupby(['Age Group'],
as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.barplot(x = 'Age Group', y = 'Amount', data = sales_age, palette='viridis', hue='Age Group')

From above graphs we can see that most of the buyers are of age group between 26-35 yrs female

STATE

total number of orders from top 10 states

sales_state = df.groupby(['State'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)

sns.set(rc={'figure.figsize':(20,8)})

sns.barplot(data = sales_state, x = 'State', y = 'Orders', palette='coolwarm', hue='State')

total amount/sales from top 10 states

sales_state = df.groupby(['State'],

as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10) sns.set(rc={'figure.figsize':(18,5)})

sns.barplot(data = sales_state, x = 'State', y = 'Amount', palette='magma', hue='State')

From above graphs we can see that most of the orders & total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively

MARITAL STATUS

Marital Status count plot

ax = sns.countplot(data = df, x = 'Marital_Status', palette='crest', hue='Marital_Status') for bars in ax.containers:

ax.bar label(bars)

Marital Status vs Amount by Gender

sales_state = df.groupby(['Marital_Status', 'Gender'],
as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.set(rc={'figure.figsize':(6,5)})
sns.barplot(data = sales_state, x = 'Marital_Status', y = 'Amount', hue='Gender',
palette='cubehelix')

From above graphs we can see that most of the buyers are married (women) and they have high purchasing power

OCCUPATION

Occupation count plot

ax = sns.countplot(data = df, x = 'Occupation', palette='cool', hue='Occupation') sns.set(rc={'figure.figsize':(22,8)})

for bars in ax.containers:

ax.bar label(bars)

Occupation vs Amount

sales_state = df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False) sns.set(rc={'figure.figsize':(20,5)}) sns.barplot(data = sales_state, x = 'Occupation', y = 'Amount', palette='cividis', hue='Occupation')

From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector

PRODUCT CATEGORY

Product Category count plot

sns.set(rc={'figure.figsize':(30,10)})

ax = sns.countplot(data = df, x = 'Product_Category', palette='Set2', hue='Product_Category') for bars in ax.containers:

ax.bar label(bars)

Product Category vs Amount

sales_state = df.groupby(['Product_Category'],

as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10)

sns.set(rc={'figure.figsize':(22,5)})
sns.barplot(data = sales_state, x = 'Product_Category', y = 'Amount', palette='pastel',
hue='Product_Category')

From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category

Top 10 most sold products

sales_state = df.groupby(['Product_ID'],
as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_ID', y = 'Orders', palette='YlGnBu',
hue='Product_ID')

top 10 most sold products (same thing as above)

fig1, ax1 = plt.subplots(figsize=(12,7)) df.groupby('Product_ID')['Orders'].sum().nlargest(10).sort_values(ascending=False).plot(kind ='bar', color='skyblue')

Conclusion:

The analysis reveals that married women aged 26-35 years, especially from Uttar Pradesh, Maharashtra, and Karnataka, are prominent buyers, favoring food, clothing, and electronics. Professionals in IT, healthcare, and aviation contribute significantly to sales. These insights can help businesses refine their marketing strategies and better target customers during festive seasons.