

REVOLUTIONIZING REMOTE HEALTH MONITORING: AUTONOMOUS DETECTION OF CARDIAC ABNORMALITIES WITH CUSTOMIZED DIETARY PLANNING

R24-019

Status Document 2

IT21138386 – Wijeratne D.M.S.D

Supervisor: Dr. Dilshan De Silva

BSc (Hons) in Information Technology Specializing in Software

Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology

Sri Lanka

September 2024

Table of Contents

LIS	ST OF FIGURES	2
1.	TEST RESULTS	4
2.	SCREENSHOTS OF THE TEAMS MEETING HISTORY	13
3.	SCREENSHOTS OF THE WHATSAPP GROUP	21
4	EVIDENCE FOR DEVELOPMENT	23

LIST OF FIGURES

Figure 1: Applying DeepFace to detect facial region
Figure 2: Creating dataset consisting of facial recording and simultaneous ECG
capturing4
Figure 3: Applying dense optical flow
Figure 4: Obtained rPPG signal using HaarCascade and detected heart beat 6
Figure 5: Facial region identification using MediaPipe Facemesh7
Figure 6: rPPG from multiple ROIs
Figure 7: Combined rPPG from multiple ROIs
Figure 8: Peak detection for obtained rPPG signal
Figure 9: Heart rate over time from obtained rPPG signal
Figure 10: Palm based ECG acquisition device
Figure 11: Unfiltered Lead I ECG signal obtained from palms
Figure 12: Filtered Lead I ECG signal obtained from palms
Figure 13: Obtaining ECG from proposed device
Figure 14: Visualization of ECG on mobile app
Figure 15: Frequency spectrum comparison between Lead I ECG from proposed
device and PTB-XL dataset
Figure 16: Teams meeting history
Figure 17: Teams meeting history
Figure 18: Teams meeting history
Figure 19: Teams meeting history
Figure 20: Teams meeting history
Figure 21: Teams meeting history
Figure 22: Teams meeting history
Figure 23: Teams meeting history
Figure 24: CardioFit Dataset ECG visualization
Figure 25: CardioFit Dataset ECG visualization
Figure 26: Determining suitable filters
Figure 27:Heart rate calculated from PPG Signal

Figure 28: Ground truth heart rate	25
Figure 29: UBFC PPG signal visualization	25
Figure 30: Mobile App UI	26

1. TEST RESULTS

Figure 1: Applying DeepFace to detect facial region

Figure 2: Creating dataset consisting of facial recording and simultaneous ECG capturing

Figure 3: Applying dense optical flow

Figure 4: Obtained rPPG signal using HaarCascade and detected heart beat

Figure 5: Facial region identification using MediaPipe Facemesh

Figure 6: rPPG from multiple ROIs

Figure 7: Combined rPPG from multiple ROIs

Figure 8: Peak detection for obtained rPPG signal

Figure 9: Heart rate over time from obtained rPPG signal

Figure 10: Palm based ECG acquisition device

Figure 11: Unfiltered Lead I ECG signal obtained from palms

Figure 12: Filtered Lead I ECG signal obtained from palms

Figure 13: Obtaining ECG from proposed device

Figure 14: Visualization of ECG on mobile app

Frequency Spectrum Comparison

Figure 15: Frequency spectrum comparison between Lead I ECG from proposed device and PTB-XL dataset

2. SCREENSHOTS OF THE TEAMS MEETING HISTORY

Figure 16: Teams meeting history

Figure 17: Teams meeting history

Figure 18: Teams meeting history

Figure 19: Teams meeting history

Figure 20: Teams meeting history

Figure 21: Teams meeting history

Figure 22: Teams meeting history

Figure 23: Teams meeting history

3. SCREENSHOTS OF THE WHATSAPP GROUP

4. EVIDENCE FOR DEVELOPMENT

Figure 24: CardioFit Dataset ECG visualization

Figure 25: CardioFit Dataset ECG visualization

Figure 26: Determining suitable filters

Figure 27:Heart rate calculated from PPG Signal

Figure 28: Ground truth heart rate

Figure 29: UBFC PPG signal visualization

Figure 30: Mobile App UI

Figure 31: Visit to Gem Land Health Care

Figure 32: Visit to Gem Land Health Care

5. RESEARCH PAPER SUBMISSION

Figure 33: ICCSIT Research paper submission

Figure 34: ICCSIT research paper acceptance