Vector space exercise

Tenemos una base de datos de documentos de 5 documentos con el siguiente contenido

Document 1(d1):"Information Retrieval Systems"

Document 2(d2):"Information Storage"

Document 3(d3):"Digital Speech Synthesis Systems"

Document 4(d4):"Speech Filtering"

Document 5(d5):"Speech Retrieval"

Queremos recuperar los documentos de esa base de datos que coincidan mejor con mis necesidades de información. Para eso, la consulta es: Information Speech Filtering, Speech Retrieval.

Pasos

- 1. Matriz de frecuencia
- 2. Frecuencia inversa del documento:
- 3. <u>Vector de consulta</u>
- 4. Función de similitud

1.-Matriz de frecuencia: calcular la frecuencia de cada término en cada documento

	Digital	Filtering	Information	Retrieval	Speech	Storage	Synthesis	Systems
d1	9	6	^	1	0	0	0	٨
d2	0	0	1	0	0	4	0	0
d3	1	0	0	0	1	0	1	1
d4	0	1	0	0	1	0	0	0
d5	0	0	0	1	1	0	0	0
sum	1	1	ما	2	3	1	1	2

2.-Frecuencia inversa de documentos (número de documentos / frecuencia de los términos en todos los documentos). IDF es una estadística numérica que está destinada a reflejar lo importante que es una palabra para un documento en una colección o corpus. ayuda a ajustarse al hecho de que algunas palabras aparecen con más frecuencia en general

<u>TERM</u>	DOC-FREQUENCY	<u>IDF</u>
Digital	1	log(5/1)=0.699
Filtering	1	log(5/1)=0.699
Information	2	log(ح ح)= ۵ ؛ ع و 7 log(5/2)=0.398
Retrieval	2	log(5/2)=0.398
Speech	3	log(5/3)= 0'221
Storage	1	log(5/1)=0.699
Synthesis	1	log(5/1)=0.699
Systems	2	log(5/1=0:397-

3.- Calcular la matriz tf.idf - multiplicar la frecuencia x el IDF del término y la longitud del vector (última columna)

Length of d1=sqrt(_____^2+____^2)= Length of d2=sqrt(____^2+____^2)=

Length of d3=sqrt(0.699^2+0.222^2+0.699^2+0.398^2)=1.088

Length of d4=sqrt(0.699^2+0.222^2)=0.733

Length of d5=sqrt(0.398^2+0.222^2)=0.456

	Digital	Filtering	Information	Retrieval	Speech	Storage	Synthesis	Systems	Length
d1	O	0	49510	0,348	0	J	6	かなし	
d2	6	0	0'397	0	0	0,640	0	9	
d3	1x0.699	0	0	0	1x0.222	0	1x0.699	0.398	1.088
d4	0	0.699	0	0	0.222	0	0	0	0.733
d5	0	0	0	0.398	0.222	0	0	0	0.456

4.-Vector de consulta y consulta

The Query is: Information Speech Filtering, Speech Retrieval

La frecuencia máxima de un término es ("Speech")=2

<u>Query vector</u>: frecuencia del término/frecuencia máxima de los términos de la consulta) X idf del término en la base de datos de documentos.

	Digital	Filtering	Information	Retrieval	Speech	Storage	Synthesis	Systems	Length
d1		(1/2)*0.699=0.349							0,501

7.-Función de similitud: multiplicar el vector de la consulta por el vector de cada documento dividido por la multiplicación de sus longitudes

$$similarity = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_{i} B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2} \sqrt{\sum_{i=1}^{n} B_{i}^{2}}}}$$

 $\begin{aligned} &\cos Sim(d1,q) = (& * & + & * &)/(& * &) = & \\ &\cos Sim(d2,q) = &(0.398*0.199)/(0.501*0.804) = &\textbf{0.197} \\ &\cos Sim(d3,q) = &(0.222*0.222)/(0.501*1.088) = &\textbf{0.090} \\ &\cos Sim(d4,q) = &(0.222*0.222+0.699*0.349)/(0.501*0.733) = &\textbf{0.799} \end{aligned}$

cosSim(d5,q)=(____*__+___*___)/(0.501*0.456)=_____

cuanto más grande el coseno más similar será le documento a la consulta. Así, el orden de presentación es: