

1 CCCACCGGTC CGCATAATC AGCACGGGG CGGAGAACCC CGCAATCTCT GGGCCCCAAA AATACACCGA CGATGCCGA TCTACTTAA GGGGTGAAAC  
 GGGTGGGAG GCGTATTAG TCCTGCGCCG GCCTCTGGG GCGTTAGAGA CGCGGTGTT TTATGTGGT GCTACGGCT AGATGAATT CCCGACTTTG  
 101 CCACGGCT GAGAGACTAT AAGAGGTTTC CCTAACGCCA TGGAACAAACG GGGACAGAAC GCCCCGGCG CTTCGGGGC CCGGAAAGG CACGGCCAG  
 GGTGGGAGA CTCTCTGATA TTCTCGCAAG GGATGGGGT ACCTTGTTGC CCCTGCTTG CGGGGGCG GAACCCCCGG GCCTTTTCC GTGCCGGTC  
 1 MetGluGlnAr gGlyGlnAsn AlaProAlaA laSerGlyAl aArgLysArg HisGlyProGly

201 GACCAGGGA GGCAGGGGA GCCAGGCTG GGCTCCGGGT CCCAAGGACC CTTGTGCTG TTGTGCGCC GGTCCTGCTG TTGGTCTAG CTGAGTCTGC  
 CTGGGTCCCT CGGGCCCCCT CGGTCCGGAC CGGAGGGCCA AACACGAGC CCAGGACGAC AACAGAGTC GACTAGACG  
 22 ProArgG1 WalaArgG1Y AlaArgProG lLeuArgVa lProlysThr LeuValLeuAlaAlaAl aValAlaAl aValLeuLeu LeuValSerAla

301 TCTGATCACC CAAACAAGAC TAGCTCCCCA GCAGAGAGCG GCCCCACAAAC AAAAGAGGTC CAGCCCTCA GAGGGATTGT GTCCACCTGG ACACCATATC  
 AGACTAGTGG GTTGTCTGG ATCGAGGGT CGTCTCTCGC CGGGGTTTG TTTTCTCCAG GTGGGGAGT CTCCCTAACAA CAGGTGGACC TGTGGTAG  
 55 LeuIleThr GluGlnAspL euAlaProG1 nGlnArgAla AlaProGlnG lnyLysArgSe rSerProSer GluGlyLeuC ysProProG1 yHishisile

401 TCAGAGACG GTAGAGATTG CATCTCTGC AATATGGAC AGGACTATAG CACTACTGG AATGACCTCC TTTTCTGCTT GCGTGCACC AGGTGTGATT  
 AGTCTCTGC CATCTTAAC GTAGAGGACG TTTATACCTG TCCTGTATATC GTGAGTGAAC TTACTGGGG AAAAGACGAA CGCGACGTGG TCCACACTAA

88 SerGluAspG lYArgAspCys sIleSerCys LysTyrGlyG lnAspTyrSe rThrHisTrp AsnAspLeuL eupheCysLe WargCysthr ArgCysAspSer

501 CAGGTGAAGT GGAGCTAAGT CCCTGCACCA CGACCAGAAA CACAGTGTGT CAGTGGAAAG AAGGACCTT CGGGGAGAA GATTCTCCTG AGATGTGCCG  
 GTCCACTTCA CCTCGATTCA GGGACGGGGT GCTGGTCTT GTGTCAACAA GTCACGCTC TTICCGTGGAA GGCCCCTCTT CTAAAGGGAC TCTACACGGC

122 GlyGluVa 1GluLeuSer ProCysThr hrThrArgAs nThrValCys GlnCysGluG luGlyThrPh eArgGluGlu AspSerProG luMetCysArg

601 GAAAGTGCAG ACAGGGCAT GGTCAAGGTC GGTGATTGTA CACCTGGAG TGACATCGAA TGTGTCCACA AAGAACAGG CATCATCATA  
 CTTCACGGCG TGTCCCCACAG GGTCTCCCTA CCAGTTCAG CCACTAACAT GTGGGACCTC ACTGTAGCTT ACACAGGTGT TTCTTAGTCC GTAGTAGTAT

155 LysCysArg ThrGlyCysP roArgGlyMe tVallysVal GlyAspCysT hrProTrpSe rAspIleGlu CysValHisL ySgluSerG1 yIleIleIle

701 GGAGTCACAG TTGAGCCAG AGTCTTGATT GTGCTGTGT GTCTTACTG TGGAGAAAG TCCTTCCTTA CCTGAAAGGC ATCTGGTCAG  
 CCTCAGTGTCAACGTC AACGTCGGCA TCAGAACTAA CACGACACA AACAAACGTT CAGAAATGAC ACCTTCTTCC AGGAACGAAT GGACTTTCCG TAGACGAGTC

188 GlyValThrV alAlaAlaVa lValLeuIle ValAlaValP heValCysL sSerLeuLeu TriPlysLysV alLeuProTy rleuLysGly IleCysSerG1

**FIG.\_ 1A**

801 GTGGGGTGG GGACCTGAG CGTGTGGACA GAAGCTCACA ACGACCTGG GCTGAGGACA ATGTCCCAA TGAGATCGTG AGTATCTTCGC AGCCCACCCA  
 CACCAACC CCTGGACTC GCACACCTGT CTTCGAGTGT TGCTGGACCC CGACTCCTGT TACAGGAGTT ACTCTAGCAC TCATAGAACG TCGGGTGGGT  
 222 GlyGly1 YasProGlu ArgValAsp rgsSerSerG1 nArgProGly AlaGluAsp snValLeuAs nGluLeuVal SerIleLeuG InProThrGln  
  
 901 GGTCCCTGAG CAGGAATGG AAGTCAGGA GCAACAGGGT TCAACATGTT GTCCCCGGG GAGTCAGAGC ATCTGCTGGA ACCGGAGAA  
 CCAGGGACTC GTCCTTAC CGTCAGTCTT TTCAAGTCCAC AGTTGTACAA CAGGGGGCC CTCAGTCTCG TAGACGACTT TGGCCGTCTT  
 255 ValProGlu GlnGluMetG luValGlnG1 uProAlaGlu ProThrGlyV alaSmMetLe uSerProGly GluSerGluH isLeuLeuG1 uProAlaGlu  
  
 1001 GTGAAAGGT CTCAGAGG GAGGCTGCTG GTTCCAGCAA ATGAGGTGA TCCCACTGAG ACTCTGAGAC AGTGTGCTCGA TGACTTGGCA GACTTGGTC  
 CGACTTCCA GAGTCTCCTC CTCCGACGAC CAAGGTCGTT TACTTCCACT AGGGTGACTC TGAGACTCTG TCACGAAAGCT ACTGAAACGT CTGAACCAAG  
 288 AlaGluArgS ergInArgArg gArgLeuLeu ValProAlaAa snGluGlyAs pProThrGlu ThrLeuArgG InCysPheAs pAspPheAla AspLeuValPro  
  
 1101 CCTTTGACTC CTGGGAGCCG CTCTATGAGGA AGTTGGCCCT CATGGACAAAT GAGATAAAGG TGGCTAAAGC TGAGGAGACT TGACCTTGTGA  
 GGAAACTGAG GACCCCTGGC GAGTAACCTCT TCAACCCGGA GTACCTGTTA CTCTATTCC ACCGATTTCG ACTCCGTCG CCGGTGCTCC TGTGGAAACAT  
 322 PheAspSe rTrpGluPro LeuMetArgL ysLeuGlyLe uMetAspAsn GluIleLysV alaIaLys1 aGluAlaAla GlyHiSArgA spThrLeuTy  
  
 1201 CACGATGCTG ATAAAGTGGG TCAACAAAAC CGGGCGAGAT GCCTCTGTCC ACACCTGCT GGATGCCCTTG GAGACGCTGG GAGAGAGACT TGCCAAAGCAG  
 GTGCTACGAC TATTTCACCC AGTTGTGTTG CCCGCTCTA CGGAGACAGG TGTGGACCA CCTACGGAAC CTCTGGACC CTCTCTCTGA ACGGTTGCTG  
 355 ThrMetLeu IleLeuTrpV alaSmLysTh rGlyArgAsp AlaSerValH isThrLeuL uAspAlaLeu GluThrLeuG lyGluArgLe uAlaLysGln  
  
 1301 AAGATGAGG ACCACTTGTG GAGGCTCTGAA AAGTTCATGT ATCTAGAAGG TAATGAGAC TCTGCCWTGT CCTAAGTGTG ATTCTCTTCGA CGAAAGTGAGA  
 TTCTTACTCC TGTTGAACAA CTCGAGGACCT TTCAAGTACA TAGATCTTC ATTACGTCTG AGACGGAAACA GGATTACAC TAAGAGAAGT CCTTCACCT  
 388 LysIleGluA sphisLeuLe uSerSerGly LysPheMetT yrLeuGluG1 yAsnAlaAsp SerAlaXaaS eroC\*  
  
 1401 CCTTCCCTGG TTACCTTT TCTGGAAA AGCCAACTG GACTCCAGTC AGTAGGAAAG TGCCACAAATT GTCACATGAC CGGTACTGGA AGAAACTCTC  
 GGAGGGACC AAATGGAAA AAGACCTTT TCAGGGTGCAG TCATCCTTTC ACAGGTGTTAA CAGTGTACTG GCATGACCT TCTTTGAGAG  
  
 1501 CCATCCAAACA TCACCCAGTG GATGGAACAT CCTGTAACCTT TTGGGATTAT TTTTATAAAC TGAATGTGAT AATAAGGACA CTATGGAAT  
 GGTAGTTGT AGTGGGTCACT ACACCTTGAA GGACATTGAA AAGTGAATG AACTGACTG AACCGTAATA AAAATATTG ACTTACACTA TTATTCCGT GATAACCTTA

**FIG. - 1B**

1601 GTCTGGATCA TTCCGTTTGT GCGTACTTTG AGATTGGTT TGGGATGTCA TTGTTTCAC AGCACTTTT TATCCTAATG TAATGCTTT ATTATTAT  
 CAGACCTAGT AAGGAAACA CGCATGAAAC TCTAAACCA ACCCTACAGT AACAAAAGT TCGTAAAAA ATAGGATTAC ATTACGAAA TAAATTAATA

1701 TTGGGCTACA TTGTAAGATC CATCTACAAA AAAAAGG GCGGCCGCG ACTCTAGAGT CGACCTGCAG AAGCTTGGC GCCATGGCC  
 AACCCGATGT AACATTCTAG GTAGATGTTT TTTTTTTT CCGCCGGCGC TAGAGATCTCA GCTGGACGTC TTCGAACCG CGGTACCGG

## FIG.-1C

1 MEQORGQMAPAASGARKRHGPGLPREGARPGLRVPKTLVLLVVAESELITQQD  
 61 LAPQQRAAPQQKRSSPSEGLCPPGHHISEDGRDCISCKYQDYSWHDNLFCRLCTRCD  
 121 SGEVELSPCTTTRNTYCOQCEEGTFREEDSPEMCRKCRTPGMYKVGDCTPWSDIECVH  
 181 KESGIIIGTVAAVVLIVAVFVCKSILMKVLPYLYKGICSGGGGDPERVDRSSQRPGQAED  
 241 NVLNEIVSILQPTQVPEQMEVQEPAEPTGVMMILSPGESEHLLPEAEAERSQRRLIVPA  
 301 NEGDPTEILRQCFFDFADLVPPFDSEPLMRKLGLMDNEIKVAKAAAGHRDTLYTMILKW  
 361 VNKTGRIDASVHTLDALETLGERLAKQKTEDHILLSSGKFWMYLEGNADSALS

## FIG.-2A

|            |                                                                                                    |                                                      |                                                                              |                                      |               |
|------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|---------------|
| Apo2       | FADLVPFDSSWEPLM <b>R</b><br>FANIVPFDSSWD <b>Q</b> LMR                                              | <b>*</b><br>QLDITKNEIDVVRAGTA                        | <b>L</b><br>TGLR <small>E</small> AEI <small>E</small> AVEV <small>E</small> | <b>G</b><br>DNEIKVAKAAAGHRDTLYTMILKW | -<br>-GHRDTLY |
| DR4        | VM <b>D</b> AVPARRWKEFVRT <b>L</b> GLR <small>E</small> AEI <small>E</small> AVEV <small>E</small> | <b>Q</b><br>DHEIDR <small>E</small> ELQNGR           | <b>T</b><br>LQNGR                                                            | <b>A</b><br>-FRDQQ                   |               |
| APO3 / DR3 | VVNVPPLRWKEFVRR <b>L</b> GLS <b>D</b> HEIDR <small>E</small> ELQNGR                                | <b>R</b><br>DHEIDR <small>E</small> ELQNGR           | <b>E</b><br>-CLREAQ                                                          |                                      |               |
| TNFR1      | TAGVMTLSQV <b>K</b> GEV <b>R</b> NGVNEAKID <b>E</b> IKNDNQDTAEQKV                                  | <b>I</b><br>DEIKNDNQDTAEQKV                          | <b>I</b><br>-CLREAQ                                                          |                                      |               |
| Fas / Apo1 | YTMLIKWYNNK <b>T</b> GRD - ASVHTLDALETLGERLAKQKIED                                                 | <b>S</b><br>ASIRTLDDALEERMEERHAREKIQD                | <b>A</b><br>-AGLGAVYAALEERMGLDGCVEDLRS                                       |                                      |               |
|            | YAMLLMKWVNK <b>T</b> GRN - ASIRTLDDALEERMEERHAREKIQD                                               | <b>R</b><br>-ATLELIGRVRDMPLLGCLLEDIE                 |                                                                              |                                      |               |
|            | YEMILKRWRRQQQP -- AGLGAVYAALEERMGLDGCVEDLRS                                                        | <b>T</b><br>-QILERNWHLHGKKEAY-DTLLIKDLKKAMCTLAEEKIQT |                                                                              |                                      |               |

## FIG.-2B

+

***FIG.\_3******FIG.\_4A******FIG.\_4B***



**FIG.- 14B**

**FIG.-14C**



| 16E2 gD form |               |                |  |
|--------------|---------------|----------------|--|
|              | VALUE         | ERROR          |  |
| m1           | 1.2927        | 0.031233       |  |
| m2           | 1.0515        | 0.12327        |  |
| <b>m3</b>    | <b>0.0529</b> | <b>0.00630</b> |  |
| m4           | 0.038924      | 0.028704       |  |
| Chisq        | 0.0099802     | NA             |  |
| R            | 0.99812       | NA             |  |

  

| Apo-2L STANDARD |               |                |  |
|-----------------|---------------|----------------|--|
|                 | VALUE         | ERROR          |  |
| m1              | 1.3125        | 0.025484       |  |
| m2              | 1.5904        | 0.11161        |  |
| <b>m3</b>       | <b>0.0384</b> | <b>0.00201</b> |  |
| m4              | -0.018045     | 0.020658       |  |
| Chisq           | 0.0039739     | NA             |  |
| R               | 0.99916       | NA             |  |

ATGACCATGA TTACGCCAAG CTTTGGAGCC TTTTTTTGG AGATTTCAA 50  
CGTAAAAAAA TTATTATTCG CAATTCTTT AGTTGTTCTT TTCTATGCGG 100  
CCCAGCCGGC CATGGCCGAG GTGCAGCTGG TGCAGTCTGG GGGAGGTGTG 150  
GAACGGCCGG GGGGGTCCCT GAGACTCTCC TGTGCAGCCT CTGGATTAC 200  
CTTTGATGAT TATGGCATGA GCTGGTCCG CCAAGCTCCA GGAAGGGC 250  
TGGAGTGGGT CTCTGGTATT AATTGGAATG GTGGTAGCAC AGGATATGCA 300  
GAECTCTGTGA AGGGCCGAGT CACCATCTCC AGAGACAACG CCAAGAACTC 350  
CCTGTATCTG CAAATGAACA GCCTGAGAGC CGAGGACACG GCCGTATATT 400  
ACTGTGCGAA AATCCTGGGT GCCGGACGGG GCTGGTACTT CGATCTCTGG 450  
GGGAAGGGGA CCACGGTCAC CGTCTCGAGT GGTGGAGGCG GTTCAGGCGG 500  
AGGTGGCAGC GGCAGTGGCG GATCGTCTGA GCTGACTCAG GACCCTGCTG 550  
TGTCTGTGGC CTTGGGACAG ACAGTCAGGA TCACATGCCA AGGAGACAGC 600  
CTCAGAAGCT ATTATGCAAG CTGGTACCAAG CAGAAGCCAG GACAGGCC 650  
TGTACTTGTC ATCTATGGTA AAAACAACCG GCCCTCAGGG ATCCCAGACC 700  
GATTCTCTGG CTCCAGCTCA GGAAACACAG CTTCTTGAC CATCACTGGG 750  
GCTCAGGCAG AAGATGAGGC TGACTATTAC TGTAACTCCC GGGACAGCAG 800  
TGGTAACCAT GTGGTATTCG GCAGGAGGGAC CAAGCTGACC GTCTAGGTG 850  
CGGCCGCACA TCATCATCAC CATCACGGGG CCGCAGAACAA AAAACTCATC 900  
TCAGAAAGAGG ATCTGAATGG GGCGCATAG 930

## FIG.\_ 15A

ATGACCATGA TTACGCCAAG CTTTGGAGCC TTTTTTTGG AGATTTCAA 50  
CGTAAAAAAA TTATTATTCG CAATTCTTT AGTTGTTCTT TTCTATGCGG 100  
CCCAGCCGGC CATGGCCGAG GTGCAGCTGG TGGAGTCTGG GGGAGGCTTG 150  
GTCCAGCCTG GGGGGTCCCT GAGACTCTCC TGTGCAGCCT CTGGATTAC 200  
CTTAGTAGC TATTGGATGA GCTGGTCCG CCAGGCTCCA GGGAAAGGGC 250  
TGGAGTGGGT GGCAACATA AAGCAAGATG GAAGTGAGAA ATACTATGTG 300  
GAECTCTGTGA AGGGCCGATT CACCATCTCC AGAGACAACG CCAAGAACTC 350  
ACTGTATCTG CAAATGAACA GCCTGAGAGC CGAGGACACG GCTGTGTATT 400  
ACTGTGCGAG AGATCTTTA AAGGTCAAGG GCAGCTCGTC TGGGTGGTTC 450  
GACCCCTGGG GGAGAGGGAC CACGGTCACC GTCTCGAGTG GTGGAGGCGG 500  
TTCAGGCAGA GGTGGTAGCG GCAGGAGGGC ATCGTCTGAG CTGACTCAGG 550  
ACCCCTGCTGT GTCTGTGGC TTGGGACAGA CAGTCAGGAT CACATGCCA 600  
GGAGACAGCC TCAGAAAGCTA TTATGCAAGC TGGTACCAAGC AGAAGCCAGG 650  
ACAGGCCCCCT GTACTTGTC TCTATGGTAA AAACAACCGG CCCTCAGGG 700  
TCCCAGACCG ATTCTCTGGC TCCAGCTCAG GAAACACAGC TTCCTTGACC 750  
ATCACTGGGG CTCAGGCGGA AGATGAGGCT GACTATTACT GTAACTCCC 800  
GGACAGCAGT GGTAACCATG TGGTATTCGG CGGAGGGACCA AAGCTGACCG 850  
TCCTAGGTGC GGCGCACAT CATCATCACC ATCACGGGGC CGCAGAACAA 900  
AAACTCATCT CAGAAGAGGA TCTGAATGGG GCCGCATAG 939

## FIG.\_ 15B

ATGACCATGA TTACGCCAAG CTTTGGAGCC TTTTTTTGG AGATTTCAA 50  
CGTGAAAAAA TTATTATTCTG CAATTCTTT AGTTGTCCT TTCTATGCGG 100  
CCCAGCCGGC CATGGCCGAG GTGCAGCTGG TGCAGTCTGG GGGAGGTGTG 150  
AACGGCCGG GGGGGTCCCT GAGACTCTCC TGTGCAGCCT CTGGATTAC 200  
CTTGATGAT TATGGCATGA GCTGGTCCG CCAAGCTCCA GGGAAAGGGC 250  
TGGAGTGGGT CTCTGGTATT AATTGGAATG GTGGTAGCAC AGGATATGCA 300  
GACTCTGTGA AGGGCCGAGT CACCCTCTCC AGAGACAACG CCAAGAACTC 350  
CCTGTATCTG CAAATGAACA GCCTGAGAGC CGAGGACACG GCCGTATATT 400  
ACTGTGCGAA AACCTGGGT GCCGGACGGG GCTGGTACTT CGATCTCTGG 450  
GGGAAGGGGA CCACGGTCAC CGTCTCGAGT GGTGGAGGCG GTTCAGGC GG 500  
AGGTGGCAGC GGCGGTGGCG GATCGTCTGA GCTGACTCAG GACCCTGCTG 550  
TGTCTGTGGC CTTGGGACAG ACAGTCAGGA TCACATGCCA AGGAGACAGC 600  
CTCAGAAGCT ATTATGCAAG CTGGTACCAAG CAGAAGCCAG GACAGGCC 650  
TGTACTTGTC ATCTATGGTA AAAACAACCG GCCCTCAGGG ATCCCAGACC 700  
GATTCTCTGG CTCCAGCTCA GGAAACACAG CTTCCCTGAC CATCACTGGG 750  
GCTCAGGC GG AAGATGAGGC TGACTATTAC TGAACTCCC GGGACAGCAG 800  
TGGTAACCAT GTGGTATTCTG GCGGAGGGAC CAAGCTGACC GTCCTAGGTG 850  
CGGCCGCACA TCATCATCAC CATCACGGGG CCGCAGAACAA AAAACTCATC 900  
TCAGAAGAGGG ATCTGAATGG GGCGCATAG 930

## FIG.\_ 15A

ATGACCATGA TTACGCCAAG CTTTGGAGCC TTTTTTTGG AGATTTCAA 50  
CGTGAAAAAA TTATTATTCTG CAATTCTTT AGTTGTCCT TTCTATGCGG 100  
CCCAGCCGGC CATGGCCGGG GTGCAGCTGG TGGAGTCTGG GGGAGGCTTG 150  
GTCCAGCCTG GGGGGTCCCT GAGACTCTCC TGTGCAGCCT CTGGATTAC 200  
CTTAGTAGC TATTGGATGA GCTGGTCCG CCAGGCTCCA GGGAAAGGGC 250  
TGGAGTGGGT GGCAACATA AAGCAAGATG GAAGTGAGAA ATACTATGTG 300  
GACTCTGTGA AGGGCCGATT CACCCTCTCC AGAGACAACG CCAAGAACTC 350  
ACTGTATCTG CAAATGAACA GCCTGAGAGC CGAGGACACG GCTGTGTATT 400  
ACTGTGCGAG AGATCTTTA AAGGTCAAGG GCAGCTCGTC TGGGTGGTTC 450  
GACCCCTGGG GGAGAGGGAC CACGGTCACC GTCTCGAGTG GTGGAGGC GG 500  
TTCAGGC GGA GGTGGTAGCG GCGGTGGCGG ATCGTCTGAG CTGACTCAGG 550  
ACCCCTGCTGT GTCTGTGGCC TTGGGACAGA CAGTCAGGAT CACATGCCA 600  
GGAGACAGCC TCAGAAGCTA TTATGCAAGC TGGTACCAAGC AGAAGCCAGG 650  
ACAGGCCCT GTACTTGTC TCTATGGTAA AAACAACCGG CCCTCAGGG 700  
TCCCAGACCG ATTCTCTGGC TCCAGCTCAG GAAACACAGC TTCCTTGAC 750  
ATCACTGGGG CTCAGGC GGA AGATGAGGCT GACTATTACT GTAACTCCC 800  
GGACAGCAGT GGTAAACCAGT TGGTATTCTGG CGGAGGGAC AAGCTGACCG 850  
TCCCTAGGTGC GGCGCACAT CATCATCACC ATCACGGGGC CGCAGAACAA 900  
AAACTCATCT CAGAAGAGGA TCTGAATGGG GCCGCATAG 939

## FIG.\_ 15B

ATGACCATGA TTACGCCAAG CTTTGGAGCC TTTTTTTGG AGATTTCAA 50  
CGTGAAAAAA TTATTATTAG CAATTCTTT AGTTGTTCTT TTCTATGCGG 100  
CCCAGCCGGC CATGGCCCAG GTGCAGCTGG TGCAGTCTGG GGGAGGCGTG 150  
GTCCAGCCTG GGCGGTCCCT GAGACTCTCC TGTGCAGCTT CTGGGTTCAT 200  
TTTCAGTAGT TATGGGATGC ACTGGGTCCG CCAGGCTCCA GGCAAGGGC 250  
TGGAGTGGGT GGCAGGTATT TTTTATGATG GAGGTAATAA ATACTATGCA 300  
GACTCCGTGA AGGGCCGATT CACCATCTCC AGAGACAATT CCAAGAACAC 350  
GCTGTATCTG CAAATGAACA GCCTGAGAGC TGAGGACACG GCTGTGTATT 400  
ACTGTGCGAG AGATAGGGC TACTACTACA TGGACGTCTG GGGCAAAGGG 450  
ACCACGGTCA CCGTCTCCTC AGGTGGAGGC GGTCAGGCG GAGGTGGCTC 500  
TGGCGGTGGC GGATCGCAGT CTGTGTTGAC GCAGCCGCC TCAGTGTCTG 550  
GGGCCCCAGG ACAGAGGGTC ACCATCTCCT GCACTGGGAG AAGCTCCAAC 600  
ATCGGGGCAG GTCATGATGT ACACTGGTAC CAGCAACTTC CAGGAACAGC 650  
CCCCAAACTC CTCATCTATG ATGACAGCAA TCGGCCCTCA GGGGTCCCTG 700  
ACCGATTCTC TGGCTCCAGG TCTGGCACCT CAGCCTCCCT GGCCATCACT 750  
GGGCTCCAGG CTGAAGATGA GGCTGATTAT TACTGCCAGT CCTATGACAG 800  
CAGCCTGAGG GGTCGGTAT TCGGCGGAGG GACCAAGGTC ACTGTCCCTAG 850  
GTGCGGCCGC ACATCATCAT CACCATCACG GGGCCGCAGA ACAAAAACTC 900  
ATCTCAGAAG AGGATCTGAA TGGGGCCGCA TAG 933

## **FIG.\_ 15C**

| signal         |                                                        | Heavy chain |      |  |
|----------------|--------------------------------------------------------|-------------|------|--|
| Apo-2.16E2.his | 1 MTMITPSFGAFILEIFNVKKLLFAIPLVVFYAAQPAMAEVQLVQSGGV     |             |      |  |
| Apo-2.20E6.his | 1 MTMITPSFGAFILEIFNVKKLLFAIPLVVFYAAQPAMAAGVQLVESGGGL   |             |      |  |
| Apo-2.24C4.his | 1 MTMITPSFGAFILEIFNVKKLLFAIPLVVFYAAQPAMAQVQLVQSGGV     |             |      |  |
|                |                                                        | CDR1        | CDR2 |  |
| Apo-2.16E2.his | 51 ERPGGSLRLSCAASGFTDDGMSWVRQAFGKGLEWVSGINWGGSTGYA     |             |      |  |
| Apo-2.20E6.his | 51 VQPGGSLRLSCAASGFTSSYMMWSWVRQAFGKGLEWVANIKQDGSEKYYV  |             |      |  |
| Apo-2.24C4.his | 51 VQPGRSLRLSCAASGFIFSSYGMHWRQAFGKGLEWVAGIFYDGGNKYYA   |             |      |  |
|                |                                                        | CDR3        |      |  |
| Apo-2.16E2.his | 101 DSVKGRVTISRDNAKNSLYLQMNSLRAEDTAVYYCAKIL---GAGRHWY  |             |      |  |
| Apo-2.20E6.his | 101 DSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDLKVKGSSSGWN- |             |      |  |
| Apo-2.24C4.his | 101 DSVKGRFTISRDNSRNLYLQMNSLRAEDTAVYYCARD----RGYY      |             |      |  |
|                |                                                        | Light chain |      |  |
| Apo-2.16E2.his | 147 F-DLNGKGTTTVTSSGGGGSGGGSGGGGS-SELTQDPAVSVALGQTVR   |             |      |  |
| Apo-2.20E6.his | 150 F-DFVNGRGTITVTVSSGGGGSGGGSGGGGS-SELTQDPAVSVALGQTVR |             |      |  |
| Apo-2.24C4.his | 143 YMDVNGKGTTTVTSSGGGGSGGGSGGGGSQSVLTQPPSVSGAPGQRVTTI |             |      |  |
|                |                                                        | CDR1        | CDR2 |  |
| Apo-2.16E2.his | 195 TCQGDSSLR---SYASWYQQKPGQAPVVLVIYGNRPSGIPDRFSGSSSG  |             |      |  |
| Apo-2.20E6.his | 198 TCQGDSSLR---SYASWYQQKPGQAPVVLVIYGNRPSGIPDRFSGSSSG  |             |      |  |
| Apo-2.24C4.his | 193 SCTGRSSNITGAGHDVWYQQLPGTAPKLIIYDDSNRPSGVPDRFSGSRSG |             |      |  |
|                |                                                        | CDR3        |      |  |
| Apo-2.16E2.his | 242 NTASLTITGAQAEDEADYYCNSRDSSGNHVVFGGGTKLTVLGAAAHHHHH |             |      |  |
| Apo-2.20E6.his | 245 NTASLTITGAQAEDEADYYCNSRDSSGNHVVFGGGTKLTVLGAAAHHHHH |             |      |  |
| Apo-2.24C4.his | 243 TSASLAITGLQAEDADYYCQSYDSSLRGSVFGGGTAKTVLGAAGHHHH   |             |      |  |
|                |                                                        |             |      |  |
| Apo-2.16E2.his | 292 HGAAEQKLISEEDLNAA                                  |             |      |  |
| Apo-2.20E6.his | 295 HGAAEQKLISEEDLNAA                                  |             |      |  |
| Apo-2.24C4.his | 293 HGAAEQKLISEEDLNAA                                  |             |      |  |

FIG.- 16