Revised Version of Homework 2

CS626 Data Analysis and Simulation

Name: Sidi Chang Due: 12:30 p.m., Tuesday, 5/31

1 Question 1

1.1 The first trace: $wdev_0.csv$

(a). [inter arrival] If I follow the equation from the slides shown $r_i = a_i - a_{i-1}$, I will start from the first number as 0 since 1.281664e+17 is too big. Then using R to do the calculation, we can find that:

Table 1: metrics for $wdev_0$

Mean	Var	SD	C.V.
5290159	5.767035e + 14	24014653	4.539496

The transient of the mean is below:

The graph is as blow:

(b). First, I draw the histograms of the whole graph and it is blow using bins 60:

We can see the graph is so ugly and there is no meaning to draw pdf and cdf for this graph, then I find a solution, I get rid of the first big data and also just make the data restricted to (0,50000000) which contains 90% of the numbers. Then I draw the graph with different bins:

The first bin is 60 and the second bin is 40, we can see 60 is better. Then I draw the pdf and cdf of inter-arrival:

Then I also do something for the service time, first I draw the graph for it to see what will happen:

Also we can see the graph is terrible like this. So I also do some cut and only take (0,100000) and bins=330, we can get histogram below:

Then we can get the pdf and cdf of the service time:

[Autocorrection function] There is a function in R called acf:

1.2 Trace 2: $Proj_3$

(a) First the mean, var, SD and C.V. As I learned from the first trace, I decided to start with arrival[1], which means when the first arrival comes, I start to record the time. Inter-arrival Time: Mean is 3664617, Var is 5.9327e+17, SD is 770240222, C.V. is 210.18. Then the transient measure:

Service time: Mean is 13247, Var is 572198941, SD is 23921, C.V. is 1.8058. The transient measure is as below:

(b) It is as shown below: (Above inter-arrival, below service)

(c) As below:

Series interarrival2

Series service2

2 Question 2

2.1 Several metrics

Firstly, I have to make the program starts at 0 cause the first number is too big, then retrieve the first 50,000 data sets out to do this question (Increase the efficiency of computing). I use the program ssq1.c and acs.c to get the result.

Table 2: metrics for $wdev_0$

Mean delay time	system utilization	Average waiting queue length
69209.26	0.0058	0.002424

(b) I found a code on the website from Richmond University, he made the C code into R. Running his R program, I got the data below:

The original service time is as below, I just use the data from 1:380000 and got the graph:

Table 3: metrics for $wdev_0$ with exponential

Mean delay time	system utilization	Average waiting queue length
76491.77	0.0058	0.0032

(c) I will choose the data from 100 to 100000, I will firstly show the data with trace data, then show the graph with exponential service times in the last question. So the graph is below:

Then in R, with the command hold on, we can plot several lines in one graph together, then I plot the line for utility 0.1-0.9 which is shown below:

Comment:

- 1. I found that using exponential service time, we can find that the system utility in the beginning has higher system usage, then it just goes down and in the end to a stable value. (This is the end of the first trace)
- 2. Using exponential service time and arrival time, obviously the delay time is smaller than the original track.
- 3. From the autocorrelation of departure figure, we can find out that when j becomes larger, the autocorrelation becomes smaller but always bigger than 0.