Mining Social-Network Graphs

Hung Le

University of Victoria

March 10, 2019

Social-Network Graphs

Social networks become more and more popular now. Most popular social networks (as of January 2019) are:

• Facebook: 2.2 B active users.

Youtube: 1.9 B active users.

WhatsApp: 1.5 B active users

And more¹.

What is a Social Network

Some common characteristics:

- A set of entities in the network.
- At least one relationship between entities, so-called friend relationship. It may be:
 - Two-way: typical friend relationship.
 - One-way: following relationship.
 - Weighted: friends, family, acquaintances, etc.
- Locality or nonrandomness such as the formation of communities.

Representing Social Networks

We often represent social networks by graphs, call social graphs.

Figure: An example of a small social network.

Examples of Social Networks

Telephone Networks:

- Nodes: phone numbers.
- Edges: Calls placed between phones.
- Communities: groups of people communicate frequently, such as groups of friends, members of a club, or people working at the same company, etc.

Examples of Social Networks (Cont.)

Email Networks:

- Nodes: email addresses.
- Edges: (two-way) email exchanges between addresses.
- Communities: groups of people communicate frequently, such as groups of friends, members of a club, or people working at the same company, etc.

Examples of Social Networks (Cont.)

Collaboration Networks:

- Nodes: people who have published papers.
- Edges: people publishing papers jointly.
- Communities: groups of authors working on particular topics.

Examples of Social Networks (Cont.)

Many other types:

- Information Network (documents, web graphs, patents).
- Infrastructure networks (roads, planes, water pipes, powergrids).
- Biological networks (genes, proteins, food-webs of animals eating each other).
- Many more.

Graphs with more than one Node Types

Facebook has:

- Regular nodes: each node corresponds to a person.
- Group: each node correspond to a group of people sharing a common interest.

Our main goal in this lecture

Identify "communities" which are subset of nodes with unusually strong connections.

Clustering

We can use clustering techniques, such as HC or K-means.

• Distance measure: shortest path distances between nodes in graphs.

This typically produces undesirable or unstable results.

Edge Betweenness

Betweenness of an edge e, denoted by B(e), intuitively is the number of pairs of nodes (x, y) such that $e \in P(x, y)$, where P(x, y) is the shortest path between x, y.

Edge Betweenness

Betweenness of an edge e, denoted by B(e), intuitively is the number of pairs of nodes (x, y) such that $e \in P(x, y)$, where P(x, y) is the shortest path between x, y.

- There maybe more than one shortest path between two nodes x, y.
- Define $B_{xy}(e)$ to be the *fraction* of shortest paths between x, y going through e.

$$B(e) = \sum_{x=1}^{n} \sum_{y=x+1}^{n} B_{x,y}(e)$$
 (1)

assuming nodes are indexed from 1 to n.

Edge Betweenness - An example

High betweenness means the edge is likely between different communities.

Betweenness to Communities

Remove the edges by *decreasing order* of betweenness until we obtain a desired number of communities.

Computing Edge Betweenness

```
GIRVANNEWMAN(G(V, E))
      foreach node v \in V
            Find a BFS tree T_{\nu} rooted at \nu.
            NL_{\nu}[1,\ldots,n] \leftarrow \text{NodeLabeling}(T_{\nu},G)
            EL_{\nu}[1,\ldots,n] \leftarrow \text{EdgeLabeling}(T_{\nu},G,NL_{\nu})
      foreach edge e \in E
            B[e] \leftarrow 0
            foreach node v \in V
                  B[e] \leftarrow B[e] + EL_{\nu}[e]
            B[e] \leftarrow B[e]/2
     return B[1, \ldots, m]
```

- $NL_{\nu}[u]$ is the number of shortest paths from ν to u.
- $EL_{\nu}[e]$ is the contribution of shortest paths from ν to e's betwenness.

Computing Edge Betweenness (Cont.)

```
\label{eq:nodelastics}  \begin{aligned} &\text{NodeLabeling}(T_v, G(V, E)) \\ &v \leftarrow \text{ the root of } T \\ &\{0, 1 \dots L\} \text{ levels of nodes in } T \\ &NL_v[v] \leftarrow 1 \\ &\text{ for } \ell \leftarrow 1 \text{ to } L \\ &\text{ foreach node } u \text{ at level } \ell \\ &P_u = \{w : uw \in E \text{ and level}(w) = \ell - 1\} \\ &NL_v[u] \leftarrow \sum_{w \in P(u)} NL_v[w] \\ &\text{ return } NL_v[1, \dots, n] \end{aligned}
```

• $NL_v[u]$ is the number of shortest paths from v to u.

Computing Edge Betweenness (Cont.)

```
EDGELABELING (T_v, G(V, E), NL_v)
       v \leftarrow the root of T
       \{0,1\ldots L\} levels of nodes in T
      foreach node u at level L
             C[u] \leftarrow 1
      for \ell \leftarrow L down to 1
             foreach µ at level ℓ
                    P_u = \{w : uw \in E \text{ and } \operatorname{level}(w) = \ell - 1\}
                    W \leftarrow \sum_{w \in P_{\cdots}} NL_{v}[w]
                    foreach w \in P_u
                           EL_{v}[uw] \leftarrow \frac{C[u] \cdot NL_{v}[w]}{W}
             foreach w at level \ell-1
                    Pred_w = \{u : wu \in E \text{ and } level(u) = \ell\}
                    C[w] \leftarrow \sum_{u \in Pred_w} EL_v[wu]
      return EL_{\nu}[1,\ldots,n]
```

• $EL_{\nu}[e]$ is the contribution of shortest paths from ν to e's betwenness.

Computing Edge Betweenness (Cont.)

```
GIRVANNEWMAN(G(V, E))
     foreach node v \in V
           Find a BFS tree T_{\nu} rooted at \nu.
           NL_{\nu}[1,\ldots,n] \leftarrow \text{NodeLabeling}(T_{\nu},G)
           EL_{v}[1,...,n] \leftarrow \text{EdgeLabeling}(T_{v},G,NL_{v})
     foreach edge e \in E
           B[e] \leftarrow 0
           foreach node v \in V
                 B[e] \leftarrow B[e] + EL_{\nu}[e]
           B[e] \leftarrow B[e]/2
     return B[1, \ldots, m]
```

Running time: O(nm).

 In practice, we pick a subset of the nodes at random and use these as the roots of breadth-first searches to get an approximation of betweenness.

Graph Partitioning

Divide the graph into two parts so that the *cut*, the set of edges between two parts, is minimized.

• Typically want two parts have roughly equal size.

Figure: An example of a good cut.

Normalized Cut

Let $S \subset V$ and $T = V \setminus S$. Let E(S, T) be the set of edges with one endpoint in S and one endpoint in T.

$$\operatorname{Cut}(S,T) = |E(S,T)|$$

$$\operatorname{Vol}(S) = \sum_{u \in S} \deg_G(u) \quad \operatorname{Vol}(T) = \sum_{u \in T} \deg_G(u)$$
(2)

The *normalized cut value* for S, T, denoted by NC(S, T), is:

$$NC(S,T) = \frac{Cut(S,T)}{Vol(S)} + \frac{Cut(S,T)}{Vol(T)}$$
(3)

We want to find cut with minimum $\Phi(S, T)$.

Graphs as Matrices

Adjacency matrix $A_{n \times n}$ where:

$$A[i,j] = egin{cases} 1 & ext{if edge } i-j \in E \ 0 & ext{otherwise} \end{cases}$$

0	1	1	0	0	0	0]
1	0	1	1	0	0	0
1	1	0	0	0	0	0
0	1	0	0	1	1	1
0	0	0	1	0	1	0
0	0	0	1	1	0	1
0	0	0	1	0	1	0
_						_

Graphs as Matrices (Cont.)

Degree matrix $D_{n \times n}$ where:

$$D[i,j] = egin{cases} \deg_G[i] & \text{if edge } i = j \\ 0 & \text{otherwise} \end{cases}$$

[2		0	0	0	0	0
0	3	0	0	0	0	0
0	0	2	0	0	0	0
0	0	0	4	0	0	0
0	0	0	0	2	0	0
0	0	0	0	0	3	0
0	0	0	0	0	0	2

Graphs as Matrices (Cont.)

Laplacian Matrix L = D - A.

Eigenvalues and Eigenvectors of Laplacian Matrices

Laplacian L has an eigenvector $\mathbf{x} \in \mathbf{R}^n$ associated with an eigenvalue $\lambda \in \mathbf{R}$ if:

$$L\mathbf{x} = \lambda \mathbf{x} \tag{4}$$

Fact 1: *L* has *n* eigenvalues s.t $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_n$.

Eigenvalues and Eigenvectors of Laplacian Matrices

Laplacian L has an eigenvector $\mathbf{x} \in \mathbf{R}^n$ associated with an eigenvalue $\lambda \in \mathbf{R}$ if:

$$L\mathbf{x} = \lambda \mathbf{x} \tag{4}$$

Fact 1: *L* has *n* eigenvalues s.t $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_n$.

Fact 2: The eigenvector associated with λ_1 (= 0) of L is $\mathbf{1}_n$.

Eigenvalues and Eigenvectors of Laplacian Matrices

Laplacian L has an eigenvector $\mathbf{x} \in \mathbf{R}^n$ associated with an eigenvalue $\lambda \in \mathbf{R}$ if:

$$L\mathbf{x} = \lambda \mathbf{x} \tag{4}$$

Fact 1: *L* has *n* eigenvalues s.t $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_n$.

Fact 2: The eigenvector associated with λ_1 (= 0) of L is $\mathbf{1}_n$.

Fact 3: The second eigenvector, denoted by \mathbf{x}_2 , associated with λ_2 of L satisfies:

$$\mathbf{x}_2 = \arg\min \mathbf{x}^T L \mathbf{x} \tag{5}$$

subject to

$$\mathbf{x}_{2}^{T}\mathbf{1}_{n} = 0$$

$$\sum_{i=1}^{n} x_{2}[i]^{2} = 1$$
(6)

Understanding λ_2 and \mathbf{x}_2

$$\mathbf{x}^T L \mathbf{x} = \sum_{(i,j) \in E} (x[i] - x[j])^2 \tag{7}$$

Why? Let N[i] be the set of neighbors of i, including i.

$$\mathbf{x}^{T} L \mathbf{x} = \sum_{i=1}^{n} \sum_{j \in N[i]} x[i] L[i,j] x[j]$$

$$= \sum_{i=1}^{n} \sum_{j \in N[i]} x[i] (D[i,j] - A[i,j]) x[j]$$

$$= \sum_{i=1}^{n} d[i] x[i]^{2} - 2 \sum_{(i,j) \in E} x[i] x[j]$$

$$= \sum_{(i,i) \in E} (x[i] - x[j])^{2}$$
(8)

Understanding λ_2 and \mathbf{x}_2

$$\mathbf{x}^T L \mathbf{x} = \sum_{(i,j)\in E} (x[i] - x[j])^2 \tag{9}$$

Recall: The second eigenvector, denoted by \mathbf{x}_2 , associated with λ_2 of L satisfies:

$$\mathbf{x}_2 = \arg\min \mathbf{x}^T L \mathbf{x} \tag{10}$$

subject to

$$\mathbf{x}_{2}^{T}\mathbf{1}_{n} = 0$$

$$\sum_{i=1}^{n} x_{2}[i]^{2} = 1$$
(11)

Understanding λ_2 and \mathbf{x}_2

Eigenvalue	0	1	3	3	4	5
Eigenvector	1	1	-5	-1	-1	-1
	1	2	4	-2	1	0
	1	1	1	3	-1	1
	1	-1	-5	-1	1	1
	1	-2	4	-2	-1	0
	1	-1	1	3	1	-1