Scalable Personalised Item Ranking through Parametric Density Estimation

Riku Togashi, Masahiro Kato, Mayu Otani, Tetsuya Sakai and Shin'ichi Satoh

SIGIR '21, July 11-15, 2021

Problem Definition

 ${\bf Two\text{-}class\ problem}$

Problem Definition

Two-class problem

One-class problem

Problem Definition

Learning from implicit feedback

Learning from one-class problem, i.e. we are given only positive examples.

Pointwise approach Solve a binary classification problem to predict if a user prefers an item Model: trying to estimate p(y = +1|u,i)

- Pointwise approach Solve a binary classification problem to predict if a user prefers an item Model: trying to estimate p(y = +1|u, i)
 - Advantage: efficiency
 - Disadvantage: ranking ineffectiveness

- Pointwise approach Solve a binary classification problem to predict if a user prefers an item Model: trying to estimate p(y = +1|u, i)
 - Advantage: efficiency
 - Disadvantage: ranking ineffectiveness
- Pairwise ranking:
 A binary classification problem to predict which of any given two items a user will prefer

- Pointwise approach
 - Solve a binary classification problem to predict if a user prefers an item Model: trying to estimate p(y = +1|u,i)
 - Advantage: efficiency
 - Disadvantage: ranking ineffectiveness
- ► Pairwise ranking:

A binary classification problem to predict which of any given two items a user will prefer

- Advantage: ranking effectiveness
- Disadvantage: severely inefficient due to the quadratic computational cost (i.e. problematic in large-scale setting)

- Pointwise approach
 - Solve a binary classification problem to predict if a user prefers an item Model: trying to estimate p(y = +1|u, i)
 - ► Advantage: efficiency
 - Disadvantage: ranking ineffectiveness
- Pairwise ranking:

A binary classification problem to predict which of any given two items a user will prefer

- Advantage: ranking effectiveness
- Disadvantage: severely inefficient due to the quadratic computational cost (i.e. problematic in large-scale setting)
- Special case: IRGAN
 - ► Advantage: provides an optimized negative sampler using SGD
 - Disadvantages:
 - (1) difficult to tune hyper-parameters (2) inefficient training

This paper

Bayes rule

$$p(y = +1|u, i) = \frac{p(i|u, y = +1)p(y = +1|u)}{p(i|u)}$$

This paper

Bayes rule

$$p(y = +1|u, i) = \frac{p(i|u, y = +1)p(y = +1|u)}{p(i|u)}$$

Estimating pdf of positive items for each user using MLE

Advantages: is efficient and effective in ranking

```
L This Work
```

☐ Problem Formulation

Notation

```
\mathcal{U}: users; \mathcal{U} = \{u_j\}_{j=1}^N
\mathcal{I}: items; \mathcal{I} = \{i_j\}_{j=1}^N
data: N i.i.d user feedback logs (u_1, i_1, y_1), \ldots, (u_N, i_N, y_N)
y: binary labels, y \in \{+1, -1\}. But here y_j = 1 for all j.
In implicit feedback we can observe only positive samples.
task: Given a user, a ranker sorts items in the order in which they are most likely to interact with the user.

model: modelling p(i|u, y = +1) or simply p(i|u).
```

LThis Work

Personalized Ranking

Modelling the problem (personalized ranking)

Using exponential family of distributions

$$p_f(i|u) := p_0(i)e^{f_u(i)-A(f_u)}$$

LThis Work

Personalized Ranking

Modelling the problem (personalized ranking)

Using exponential family of distributions

$$p_f(i|u) := p_0(i)e^{f_u(i)-A(f_u)}$$

parameterized by f_u .

 \triangleright p_0 : prior density function on \mathcal{I} ,

Using exponential family of distributions

$$p_f(i|u) := p_0(i)e^{f_u(i)-A(f_u)}$$

- \triangleright p_0 : prior density function on \mathcal{I} ,
- $ightharpoonup f_u(i)$: the scoring function to learn (u's preference score for i),

Using exponential family of distributions

$$p_f(i|u) := p_0(i)e^{f_u(i)-A(f_u)}$$

- \triangleright p_0 : prior density function on \mathcal{I} ,
- $ightharpoonup f_u(i)$: the scoring function to learn (u's preference score for i),
- $ightharpoonup A(f_u) = \log \int_{\mathcal{I}} p_0(i) e^{f_u(i)} di \text{ (normalization: } \int_{\mathcal{I}} p_f(i|u) di = 1),$

Using exponential family of distributions

$$p_f(i|u) := p_0(i)e^{f_u(i)-A(f_u)}$$

- \triangleright p_0 : prior density function on \mathcal{I} ,
- $ightharpoonup f_u(i)$: the scoring function to learn (u's preference score for i),
- $ightharpoonup A(f_u) = \log \int_{\mathcal{I}} p_0(i) e^{f_u(i)} di \text{ (normalization: } \int_{\mathcal{I}} p_f(i|u) di = 1),$
- \triangleright Assumption: p_0 uniform distribution,

Using exponential family of distributions

$$p_f(i|u) := p_0(i)e^{f_u(i)-A(f_u)}$$

- \triangleright p_0 : prior density function on \mathcal{I} ,
- $ightharpoonup f_u(i)$: the scoring function to learn (u's preference score for i),
- $ightharpoonup A(f_u) = \log \int_{\mathcal{I}} p_0(i) e^{f_u(i)} di \text{ (normalization: } \int_{\mathcal{I}} p_f(i|u) di = 1),$
- Assumption: p₀ uniform distribution,

$$R(f) = \mathbb{E}_{u} \left[\underbrace{\hat{\mathbb{E}}_{+} \left[-\log p_{f}(i|u) \right] + \underbrace{KLD \left(p_{f}(\cdot|u) || p_{0}(\cdot) \right)}_{\text{Personalization term}} \right]}_{\hat{\mathbb{E}}_{p(i|u,y=+1)}}$$

$$R(f) = \mathbb{E}_{u} \left[\underbrace{\hat{\mathbb{E}}_{+} \left[-\log p_{f}(i|u) \right] + \underbrace{KLD \left(p_{f}(\cdot|u) || p_{0}(\cdot) \right)}_{\text{Personalization term}} \right]}_{\hat{\mathbb{E}}_{p(i|u,y=+1)}}$$

$$R(f) = \mathbb{E}_{u} \left[\hat{\mathbb{E}}_{+} \left[-f_{u}(i) \right] + \underbrace{\mathbb{E}_{p_{f}(i|u)} \left[f_{u}(i) \right]}_{\text{personalization term}} \right]$$

$$R(f) = \mathbb{E}_{u} \left[\underbrace{\hat{\mathbb{E}}_{+} \left[-\log p_{f}(i|u) \right] + \underbrace{\mathit{KLD} \left(p_{f}(\cdot|u) || p_{0}(\cdot) \right)}_{\text{Personalization term}} \right]}_{\hat{\mathbb{E}}_{p(i|u,y=+1)}}$$

$$R(f) = \mathbb{E}_{u} \Big[\hat{\mathbb{E}}_{+}[-f_{u}(i)] + \underbrace{\mathbb{E}_{p_{f}(i|u)}[f_{u}(i)]}_{} \Big]$$

 $\ensuremath{\rightarrow}$ negative instances in pairwise and pointwise

$$R(f) = \mathbb{E}_{u} \Big[\hat{\mathbb{E}}_{+} [-f_{u}(i)] + \frac{\mathbb{E}_{p_{0}} [f_{u}(i)e^{f_{u}(i)}]}{\mathbb{E}_{p_{0}} [e^{f_{u}(i)}]} \Big]$$

Risk

$$R(f) = \mathbb{E}_{u} \left[\underbrace{\hat{\mathbb{E}}_{+} \left[-\log p_{f}(i|u) \right] + \underbrace{\mathit{KLD} \left(p_{f}(\cdot|u) || p_{0}(\cdot) \right)}_{\text{Personalization term}} \right]}_{\hat{\mathbb{E}}_{p(i|u,y=+1)}}$$

$$R(f) = \mathbb{E}_{u} \Big[\hat{\mathbb{E}}_{+}[-f_{u}(i)] + \underbrace{\mathbb{E}_{p_{f}(i|u)}[f_{u}(i)]}_{} \Big]$$

→negative instances in pairwise and pointwise

$$R(f) = \mathbb{E}_{u} \Big[\hat{\mathbb{E}}_{+} [-f_{u}(i)] + \frac{\mathbb{E}_{p_{0}} [f_{u}(i)e^{f_{u}(i)}]}{\mathbb{E}_{p_{0}} [e^{f_{u}(i)}]} \Big]$$

Risk Approximation

$$\hat{R}(f, \mathcal{U}_B, \mathcal{I}_B) = \underbrace{\frac{1}{|\mathcal{U}_B|} \sum_{u \in \mathcal{U}_B} \left(\underbrace{-\frac{1}{|\mathcal{I}_u^+|} \sum_{i \in \mathcal{I}_u^+} f_u(i)}_{\hat{\mathbb{E}}_+[-f_u(i)]} + \frac{\sum_{i \in \mathcal{I}_B} f_u(i) e^{f_u(i)}}{\sum_{i \in \mathcal{I}_B} e^{f_u(i)}} \right)}$$

```
_This Work
```

Relation to IRWGAN

Min-Max objective of IRWGAN for user *u*:

$$\min_{q_u \in \mathcal{P}} \mathit{KLD}(q_u||p_0) + \mathit{WD}(P_u||Q_u)$$

Min-Max objective of IRWGAN for user *u*:

$$\begin{split} & \min_{q_u \in \mathcal{P}} KLD(q_u||p_0) + WD(P_u||Q_u) \\ &= \min_{q_u \in \mathcal{P}} \left\{ KLD(q_u||p_0) + \sup_{f_u \in \mathcal{F}} \left[\hat{\mathbb{E}}_+[f_u(i)] - \mathbb{E}_{q_u(i)}[f_u(i)] \right] \right\} \end{split}$$

Min-Max objective of IRWGAN for user *u*:

$$\begin{aligned} & \min_{q_u \in \mathcal{P}} \mathit{KLD}(q_u||p_0) + \mathit{WD}(P_u||Q_u) \\ &= \min_{q_u \in \mathcal{P}} \left\{ \mathit{KLD}(q_u||p_0) + \sup_{f_u \in \mathcal{F}} \left[\hat{\mathbb{E}}_+[f_u(i)] - \mathbb{E}_{q_u(i)}[f_u(i)] \right] \right\} \\ & \stackrel{\text{duality}}{=} \sup_{f_u \in \mathcal{F}} \left\{ \hat{\mathbb{E}}_+[f_u(i)] + \min_{q_u \in \mathcal{P}} \left[\mathit{KLD}(q_u||p_0) - \mathbb{E}_{q_u(i)}[f_u(i)] \right] \right\} \end{aligned}$$

Min-Max objective of IRWGAN for user u:

$$\begin{aligned} \min_{q_u \in \mathcal{P}} \mathit{KLD}(q_u||p_0) + \mathit{WD}(P_u||Q_u) \\ &= \min_{q_u \in \mathcal{P}} \left\{ \mathit{KLD}(q_u||p_0) + \sup_{f_u \in \mathcal{F}} \left[\hat{\mathbb{E}}_+[f_u(i)] - \mathbb{E}_{q_u(i)}[f_u(i)] \right] \right\} \\ &\stackrel{\text{duality}}{=} \sup_{f_u \in \mathcal{F}} \left\{ \hat{\mathbb{E}}_+[f_u(i)] + \min_{q_u \in \mathcal{P}} \left[\mathit{KLD}(q_u||p_0) - \mathbb{E}_{q_u(i)}[f_u(i)] \right] \right\} \end{aligned}$$

 ${\mathcal P}$: probability measures supported in ${\mathcal I}$

 \mathcal{F} : a convex subset of 1-Lipschitz functions

Min-Max objective of IRWGAN for user *u*:

$$\begin{split} \min_{q_u \in \mathcal{P}} \mathit{KLD}(q_u||p_0) + \mathit{WD}(P_u||Q_u) \\ &= \min_{q_u \in \mathcal{P}} \left\{ \mathit{KLD}(q_u||p_0) + \sup_{f_u \in \mathcal{F}} \left[\hat{\mathbb{E}}_+[f_u(i)] - \mathbb{E}_{q_u(i)}[f_u(i)] \right] \right\} \\ &\stackrel{\text{duality}}{=} \sup_{f_u \in \mathcal{F}} \left\{ \hat{\mathbb{E}}_+[f_u(i)] + \min_{q_u \in \mathcal{P}} \left[\mathit{KLD}(q_u||p_0) - \mathbb{E}_{q_u(i)}[f_u(i)] \right] \right\} \end{split}$$

 ${\mathcal P}$: probability measures supported in ${\mathcal I}$

 \mathcal{F} : a convex subset of 1-Lipschitz functions

$$R_{WGAN}(f) = \mathbb{E}_{u} \left[\hat{\mathbb{E}}_{+}[-f_{u}(i)] + \underbrace{\mathbb{E}_{p_{f}(i|u)}[f_{u}(i)]}_{optimal\ q_{u}^{*}(i) = p_{f}(i|u)} \right]$$

Min-Max objective of IRWGAN for user u:

$$\begin{split} \min_{q_u \in \mathcal{P}} \mathit{KLD}(q_u||p_0) + \mathit{WD}(P_u||Q_u) \\ &= \min_{q_u \in \mathcal{P}} \left\{ \mathit{KLD}(q_u||p_0) + \sup_{f_u \in \mathcal{F}} \left[\hat{\mathbb{E}}_+[f_u(i)] - \mathbb{E}_{q_u(i)}[f_u(i)] \right] \right\} \\ &\stackrel{\text{duality}}{=} \sup_{f_u \in \mathcal{F}} \left\{ \hat{\mathbb{E}}_+[f_u(i)] + \min_{q_u \in \mathcal{P}} \left[\mathit{KLD}(q_u||p_0) - \mathbb{E}_{q_u(i)}[f_u(i)] \right] \right\} \end{split}$$

 ${\mathcal P}$: probability measures supported in ${\mathcal I}$

 \mathcal{F} : a convex subset of 1-Lipschitz functions

$$R_{WGAN}(f) = \mathbb{E}_{u} \left[\hat{\mathbb{E}}_{+}[-f_{u}(i)] + \underbrace{\mathbb{E}_{p_{f}(i|u)}[f_{u}(i)]}_{optimal\ q_{u}^{*}(i) = p_{f}(i|u)} \right]$$

$$R_{WGAN}^{*}(f) = R(f)$$

Datasets statistics and effectiveness (nDCG)

Dataset	User #	Item #	Interaction #	Density
Gowalla	29, 858	40, 981	1, 027, 370	0.00084
Yelp2018	31,668	38, 048	1, 561, 406	0.00130
Amazon-Book	52, 643	91, 599	2, 984, 108	0.00062

Datasets statistics and effectiveness (nDCG)

Dataset	User #	Item #	Interaction #	Density
Gowalla	29, 858	40, 981	1, 027, 370	0.00084
Yelp2018	31,668	38,048	1, 561, 406	0.00130
Amazon-Book	52, 643	91, 599	2, 984, 108	0.00062

Method	Gowalla		Yelp2018		Amazon-Book	
	R@20	nDCG@20	R@20	nDCG@20	R@20	nDCG@20
NGCF	0.1567	0.1325	0.0575	0.0474	0.0342	0.0262
Mult-VAE	0.1644	0.1340	0.0589	0.0458	0.0413	0.0306
ENMF	0.1512	0.1306	0.0628	0.0515	0.0344	0.0272
LightGCN	0.1828	0.1551	0.0651	0.0532	0.0421	0.0324
DREGN-CF	0.1828	0.1551	0.0685	0.0564	0.0506	0.0395
PDE-LGCN	0.1871	0.1575	0.0706	0.0582	0.0542	0.0422
WD-LGCN	0.1859	0.1567	0.0719	0.0594	0.0580	0.0466

Efficiency

nDCG in terms of clipping *n*

nDCG in terms of clipping n

▶ We can learn from only positive labels (i.e. implicit feedback)!

- ▶ We can learn from only positive labels (i.e. implicit feedback)!
- Density functions can help to learn efficiently and effectively.

- We can learn from only positive labels (i.e. implicit feedback)!
- Density functions can help to learn efficiently and effectively.
- Exponential family of distributions is a powerful tool for learning to rank.

- ▶ We can learn from only positive labels (i.e. implicit feedback)!
- Density functions can help to learn efficiently and effectively.
- Exponential family of distributions is a powerful tool for learning to rank.
- Personalized term in loss functions can be done through KLD with uniform distribution which simultaneously encodes + and
 - examples implicitly.

QUESTIONS?