## Computational Analytical Mechanics

## Fuerzas de ligadura | Multiplicadores de Lagrange

#### 1. Péndulo rígido ideal

Calcule la tensión de la cuerda con el método de multiplicadores de Lagrange. La restricción es que la pesa se mantiene siempre en  $\vec{r} = \ell \hat{\rho}$ , ergo la función que expresa esto es  $f(\rho) = \rho - \ell = 0$ .



# 2. Cilindro que rueda por un plano inclinado [Marion (e) ex. 7.5]

- (a) Encuentre las ecuaciones de movimiento,
- (b) la aceleración angular,
- (c) y la fuerzas de ligadura.



## 3. Doble máquina de Atwood [Marion (e) ej. 7.8 y 7-37]

Utilice el sistema de coordenadas indicadas. Para este sistema de poleas determine:

- (a) las ecuaciones de movimiento,
- (b) y las tensiones de ambas cuerdas utilizando el método de multipli- $y_i$ cadores de Lagrange.



Resultados: 
$$Q_1 = \frac{g\left(32m_1m_2m_3 + 8m_1m_2m_p + 20m_1m_3m_p + 4m_1m_p^2 + 8m_2m_3m_p + 2m_2m_p^2 + 4m_3m_p^2 + m_p^3\right)}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 6m_2m_p + 14m_3m_p + 3m_p^2}$$

$$Q_2 = \frac{gm_3 \cdot \left(16m_1m_2 + 6m_1m_p + 4m_2m_p - m_p^2\right)}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 6m_2m_p + 14m_3m_p + 3m_p^2}$$

$$Q_2 = \frac{gm_3 \cdot \left(16m_1m_2 + 6m_1m_p + 4m_2m_p - m_p^2\right)}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 6m_2m_p + 14m_3m_p + 3m_p^2}$$



# 4. Pesos enlazados por una cuerda [Taylor 7.50]

Una partícula de de masa m posada sobre una mesa horizontal está atada a otra de masa M con una cuerda de longitud l que atraviesa un hueco en una mesa que no ofrece fricción. La última pende vertical con una distancia a la mesa  $y = \ell - \rho$  función de la distancia de la primera al hueco  $\rho$ .



(a) Asumiendo que  $\theta$  no es necesariamente constante obtenga las ecuaciones de Lagrange para  $\rho$ e y. Resultado:

$$-Mg + M\ddot{y} + \lambda_1 = 0 \qquad \lambda_1 - m\rho\dot{\theta}^2 + m\ddot{\rho} = 0$$

(b) Resuélva el sistema para  $\rho, y$  y el multiplicador de Lagrange  $\lambda_1$  encontrando las fuerzas de tensión sobre ambas masas. Resultado:  $Q_{\rho}=\frac{Mm(g+\rho\dot{\theta}^2)}{M+m}$ 

Resultado: 
$$Q_{\rho} = \frac{Mm(g+\rho\dot{\theta}^2)}{M+m}$$

5. Partícula deslizando sobre una semi-esfera [Marion (e) ex. 7.10] La partícula de masa m, considerada puntual, desliza sobre una semiesfera de radio R sin fricción.



- (a) Encuentre la fuerza de la ligadura. Resultado:  $F_{\rho}^{\text{ligadura}} = m \left( -R\dot{\theta}^2 + g\cos(\theta) \right)$
- (b) Calcule el ángulo en que la partícula se despega de la semi-esfera. Resultado:  $\approx 48.19^{\circ}$

## Computational Analytical Mechanics



Para llegar al ángulo de despegue debe resolver la ecuación diferencial a la que arribará tras resolver la problemática de las fuerzas de ligadura, que será  $\ddot{\theta} = \frac{g \sin(\theta)}{R}$ . Esta expresión es integrable para el recorrido que hace la partícula. Para facilitar esto se intercala por regla de la cadena derivaciones en función de  $\theta$  en la definición de la aceleración.

$$\ddot{\theta} = \frac{d\dot{\theta}}{dt} = \frac{d\theta}{dt}\frac{d\dot{\theta}}{d\theta} = \dot{\theta}\frac{d\dot{\theta}}{d\theta}$$

Como la partícula parte de  $\theta(t=0)=0$  con  $\dot{\theta}(t=0)=0$ .

$$\ddot{\theta} = \dot{\theta} \frac{d\dot{\theta}}{d\theta} = \frac{g}{R} \sin(\theta)$$

$$\dot{\theta} d\dot{\theta} = \frac{g}{R} \sin(\theta) d\theta$$

$$\int_{0}^{\dot{\theta}_{\text{despegue}}} \dot{\theta} d\dot{\theta} = \frac{g}{R} \int_{0}^{\theta_{\text{despegue}}} \sin \theta d\theta$$

$$\frac{\dot{\theta}^{2}}{2} \Big|_{0}^{\dot{\theta}_{\text{despegue}}} = \frac{g}{R} (-\cos \theta) \Big|_{0}^{\theta_{\text{despegue}}}$$

$$\frac{\dot{\theta}^{2}_{\text{despegue}}}{2} = \frac{g}{R} (-\cos(\theta_{\text{despegue}}) + 1)$$

Con esto hay que substituir  $\dot{\theta}^2$  en una expresión de  $F_{\rho}^{\mathrm{ligadura}}$ , que debe ser nula en el momento de despegue.