

525,903

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局(43)国際公開日
2004年3月11日 (11.03.2004)

PCT

(10)国際公開番号
WO 2004/021075 A1(51)国際特許分類⁷:

G02F 1/03

(21)国際出願番号:

PCT/JP2003/011012

(22)国際出願日:

2003年8月29日 (29.08.2003)

(25)国際出願の言語:

日本語

(26)国際公開の言語:

日本語

(30)優先権データ:

特願2002-254938 2002年8月30日 (30.08.2002) JP

(71)出願人(米国を除く全ての指定国について):住友大阪セメント株式会社 (SUMITOMO OSAKA CEMENT CO., LTD) [JP/JP]; 〒102-8465 東京都 千代田区 六番町 6 番地 28 Tokyo (JP).

(72)発明者; および

(75)発明者/出願人(米国についてのみ):市川潤一郎 (ICHIKAWA,Junichiro) [JP/JP]; 〒102-8465 東京都 千代田区 六番町 6 番地 28 住友大阪セメント株式会社内 Tokyo (JP). 市岡雅之 (ICHIOKA,Masayuki) [JP/JP]; 〒102-8465 東京都 千代田区 六番町 6 番地 28 住友大阪セメント株式会社内 Tokyo (JP). 原徳隆 (HARA,Tokutaka) [JP/JP]; 〒102-8465 東京都 千代田区 六番町 6 番地 28 住友大阪セメント株式会社内 Tokyo (JP). 山根裕治 (YAMANE,Yuji) [JP/JP]; 〒102-8465 東京都 千代田区 六番町 6 番地 28 住友大阪セメント株式会社内 Tokyo (JP).

(74)代理人:田村爾 (TAMURA,Chikashi); 〒107-0052 東京都 港区 赤坂1丁目4番10号 赤坂三鈴ビル4階 Tokyo (JP).

(81)指定国(国内):CN, US.

[続葉有]

(54)Title: OPTICAL MODULATOR

(54)発明の名称:光変調器

(57) Abstract: An optical modulator restricted in a photorefractive phenomenon caused by a stray light in an optical modulator, and improved in the quenching ratio characteristics of a signal light. The optical modulator comprises a substrate consisting of a material having an electro-optic effect, an optical waveguide formed on the substrate, and a modulating electrode for allowing an electric field to work on the optical waveguide and changing the phase of light passing through the optical waveguide, characterized in that stray light removing means (11-22) are provided on the surface of the substrate.

(57)要約: 本発明は、光変調器内の迷光に起因したフォトリラクティブ現象を抑制し、信号光の消光比特性を改善した光変調器を提供することを目的としたものである。本発明は、電気光学効果を有する材料からなる基板と、該基板上に形成された光導波路と、該光導波路に電界を作成させ、該光導波路内を通過する光の位相を変化させるための変調用電極とを有する光変調器において、該基板の表面に迷光除去手段11～22を設けることを特徴とする。

WO 2004/021075 A1

(84) 指定国(広域): ヨーロッパ特許(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

添付公開書類:

— 国際調査報告書

明細書

光変調器

技術分野

本発明は、光源からの光を変調するため、光源の外部に設けられた光変調器に関し、特に、光変調器内におけるフォトリフラクティブ現象を抑制する光変調器に関する。

背景技術

近年の高速、大容量の情報通信に係る需要の高まり対応して、光通信の高密度波長多重（D W D M）化や高速通信化が進展しており、特に、光変調器の変調周波数は、現在では 1 0 G H z が主流であるが、今後は 4 0 G H z 以上の高速変調も求められている。

高速変調に対応する光変調器としては、C W（Continuous Wave）レーザと、ニオブ酸リチウム（L N）などの電気光学効果を有する材料を用いたマッハツエンダー（M Z）型の外部光変調器（以下、L N 光変調器という）との組み合わせが提唱され、実用化されてきている。

L N 光変調器は、波長依存性が少ないとからD W D M 方式の光変調の用途に適しており、また、誘電体損依存の変調帯域限界（limit）がないため、非常に高速度な変調が可能である。

40 GHz の光変調器などのように、長距離伝送のために LN 光変調器に光入力パワーを大きくした際には、消光比の劣化、光損失の増大、バイアス点の変動などが問題となっており、特に、光入力パワーが 10 mW 以上になると、このような問題が顕著となる。本発明者らによる研究の結果、特に、光変調器にレーザ光を入力する入力部及び光変調器内の光導波路などから発生する迷光と、光導波路内を導波する信号光とが相互に干渉し、フォトリフラクティブ現象が発生し、光導波路部にグレーティングを形成していることが、大きな原因であることがわかった。

このような光導波路部に形成されたグレーティングは、光導波路内を進行する信号光を、進行方向とは逆方向に戻す、若しくは、光導波路外へ反射させることにより、信号光の消光比劣化を引起すこととなる。

フォトリフラクティブ現象とは、光が当ることにより物質の屈折率が変化する現象であるが、具体的には、光により物質中の電荷移動が発生する特性から、光干渉などにより空間的な光の強度分布が生じると、該光の強度分布に応じて電荷の再分布が起こり、この電荷の偏在により内部電場が局所的に変化する。内部電場は物質の屈折率を変化させるため、結果として、光の強度分布に対応した物質の屈折率分布が形成される。

しかも、フォトリフラクティブ現象は、物質に光を当て続けると、次第に屈折率が変化し、散乱が時間と共に強くなる

という特性を有するため、長時間に渡る光変調器の駆動に際しては、特に、消光比の劣化や光損失の増大など光変調器特性の悪化が顕著となる。

本発明の目的は、上述した問題を解決し、光変調器内の迷光に起因したフォトリフラクティブ現象を抑制し、信号光の消光比や光損失などに係る特性を改善した光変調器を提供することである。

特に、マッハツエンダー型光導波路を有する光変調器は、分岐光導波路の分岐点からの漏れ光の発生や、光導波路内を通過する信号光に位相変調を作用させる光導波路作用部が長いため、迷光と干渉する機会が多くなるなど、フォトリフラクティブ現象が発生し易い。しかも、複数の光導波路作用部を独立した変調用電極で個別に駆動制御する、所謂、デュアル電極構造を有する光変調器では、変調用電極間のクロストークを防止するため、該電極間の間隔を充分に確保することが必要となり、これに伴い分岐光導波路の分岐点後の導波路長が長くなる。これは、迷光との干渉の機会を増加させ、フォトリフラクティブ現象が発生易くなる。

本発明は、上述のようなマッハツエンダー型光導波路を有する光変調器に係る問題を解決することも、主な目的としている。

発明の開示

上記課題を解決するために、請求の範囲第1項に係る発明

では、電気光学効果を有する材料からなる基板と、該基板上に形成された光導波路と、該光導波路に電界を作用させ、該光導波路内を通過する光の位相を変化させるための変調用電極とを有する光変調器において、該基板の表面に迷光除去手段を設けることを特徴とする。

請求の範囲第1項に係る発明により、光変調器の基板上に形成された光導波路から漏れた迷光のうち、特に、基板表面と平行な方向に散乱する迷光に対し、迷光除去手段が迷光の拡散を防止する。このため、基板内の他の光導波路に迷光が再入射し、迷光と該光導波路内を進行する信号光とが相互に干渉し、干渉縞を生じることがなく、フォトリフラクティブ現象を抑制することが可能となる。

また、請求の範囲第2項に係る発明では、請求の範囲第1項に記載の光変調器において、該迷光除去手段は、迷光除去溝からなり、該迷光除去溝の少なくとも一部が該光導波路の近傍に形成されていることを特徴とする。

請求の範囲第2項に係る発明により、迷光除去手段を基板表面に形成した溝で構成するため、エッチング、レーザ加工、サンドblastなどの切削加工等のように既存の微細加工技術が利用でき、容易に、迷光除去手段が形成できる。しかも、このような迷光除去溝が光導波路の近傍に形成されているため、例えば、迷光が出射する光導波路に関しては、光導波路から出た迷光を拡散前に除去でき、また、迷光が入射する光導波路に関しては、光導波路内を進行する信号光と迷光と干

渉を未然に防止することが可能となる。

また、請求の範囲第3項に係る発明では、請求の範囲第2項に記載の光変調器において、該迷光除去溝と該光導波路との間の距離は、最も接近している距離が $10\sim100\mu m$ であることを特徴とする。

請求の範囲第3項に係る発明では、迷光除去溝と光導波路との間の距離を、最も接近している距離で $10\mu m$ 以上とすることにより、迷光除去溝を光導波路を傷つけることなく精度良く形成でき、特に、機械的な加工方法で溝を形成する場合には、加工時の機械的ストレスを光導波路（または光導波路が形成される基板部位）に与えることがないため、光導波路の特性を安定的に維持することが可能となる。また、最も接近している距離を $100\mu m$ 以下とすることにより、迷光の光導波路からの拡散や、迷光の光導波路への入射を効果的に除去でき、フォトリフラークティブ現象を抑制することが可能となる。

また、請求の範囲第4項に係る発明では、請求の範囲第2項又は第3項に記載の光変調器において、該迷光除去溝の深さは、該光導波路の深さと略同等以上であることを特徴とする。

請求の範囲第4項に係る発明により、迷光除去溝の深さが光導波路の深さと略同等以上であるため、光導波路の最深部から迷光の拡散や、迷光の光導波路の最深部への入射に対しても効果的に迷光を除去することが可能となる。

「略同等」とは、深さが同じ状態、または、深さが同じである状態と比較して実質的に遜色のない効果が得られる深さを意味する。

また、請求の範囲第5項に係る発明では、請求の範囲第2項乃至第4項のいずれかに記載の光変調器において、該迷光除去溝には、光吸収材料を充填することを特徴とする。

請求の範囲第5項に係る発明により、迷光除去溝に光吸収材料を充填しているため、該溝自体による迷光の進路を遮断するだけでなく、光吸収材料により、溝表面における迷光の散乱も防止することができるため、迷光除去の効果を一層向上させることが可能となる。

また、請求の範囲第6項に係る発明では、請求の範囲第1項乃至第5項のいずれかに記載の光変調器において、該光導波路が分岐光導波路を有し、該迷光除去手段の少なくとも一部は、該分岐光導波路の近傍に設けることを特徴とする。

請求の範囲第6項に係る発明では、マッハツエンダー型光導波路のように分岐光導波路を有する光変調器において、分岐光導波路の近傍に設けた迷光除去手段により、迷光の原因となる分岐光導波路の分岐点からの漏れ光の拡散を防止するだけでなく、光変調器の外部からレーザ光を入力する入力部における散乱光が、分岐光導波路の分岐した光導波路に入射し、干渉縞を発生することを抑制することが可能となる。

また、請求の範囲第7項に係る発明では、請求の範囲第1項乃至第5項のいずれかに記載の光変調器において、該迷光

除去手段の少なくとも一部は、該変調用電極の電界が作用する光導波路と該光導波路に近い基板側面との間に設けることを特徴とする。

請求の範囲第7項に係る発明のように、変調用電極の電界が作用する光導波路と該光導波路に近い基板側面との間に迷光除去手段を設けることにより、特に、マッハツエンダー型光導波路を有する光変調器のように、光導波路内を通過する信号光に位相変調を作用させる光導波路の作用部（以下「光導波路作用部」という）が、光導波路全体に対して比較的長い距離を有する場合には、該光導波路作用部に入射する迷光を効果的に除去することが可能となる。

また、請求の範囲第8項に係る発明では、電気光学効果を有する材料からなる基板と、該基板上に形成された光導波路と、該光導波路に電界を作用させ、該光導波路内を通過する光の位相を変化させるための変調用電極とを有する光変調器において、該光導波路の少なくとも下部側及び側部側を含む光導波路の周辺領域の一部に、迷光が光導波路に入射するのを防止するために、該基板よりも屈折率の低い低屈折率領域を設けることを特徴とする。

請求の範囲第8項に係る発明により、光変調器の基板上に形成された光導波路から漏れた迷光のうち、特に、基板の裏面方向に散乱する迷光に対し、低屈折率領域が迷光の光導波路への再入射を防止し、迷光と該光導波路内を進行する信号光とが相互に干渉し、干渉縞を生じることがなく、フォトリ

フラクティブ現象を抑制することが可能となる。

これは、基板よりも屈折率の低い低屈折率領域を設けることにより、低屈折率領域の表面（基板内の基板材料と低屈折率領域を形成する材料との境界面）において、基板材料側から入射した迷光を反射することが可能となるためである。特に、光導波路からの漏れ光は通過させ、低屈折率領域外（低屈折率領域を境に光導波路が形成される側とは反対側）から低屈折率領域に入射しようとする迷光のみを効果的に除去し、光導波路内に迷光が入射することを阻止することが可能となる。基板の裏面側から入射する迷光をより効果的に阻止するには、光導波路の下部側及び側部側などに、低屈折率領域を形成することが望ましい。

また、請求の範囲第9項に係る発明では、請求の範囲第8項に記載の光変調器において、該低屈折率領域は、該基板表面から基板の厚み方向に、該光導波路の深さ以上の厚みを有すると共に、該低屈折率領域の最深部から該基板裏面の間の屈折率は、該低屈折率領域よりも高い屈折率であることを特徴とする。

請求の範囲第9項に係る発明により、低屈折率領域の厚みが、基板表面から基板の厚み方向に、光導波路の深さ以上の厚みであるため、光導波路の最深部に向かって入射しようとする迷光に対しても、入射を阻止することが可能となる。光導波路に入射する迷光の入射角のうち、該低屈折率領域により阻止可能な範囲は、低屈折率領域の屈折率、配置に依存す

る。特に、光導波路の下側部に低屈折率領域を配置することが効果的であるが、望ましくは、光導波路全体を低屈折率領域で包み込む方が、光導波路に入射する迷光を効果的に阻止することが可能となる。

さらに、基板表面から一定の深さまでの基板全体を低屈折率領域とすることで、低屈折率領域を形成する際に、フォトリソグラフィーなどによる光導波路の形状に合わせたパターン形成を行う必要がなく、より簡便に低屈折率領域を形成することが可能となる。

また、低屈折率領域の最深部から基板の裏面との間における屈折率を、該低屈折率領域よりも高屈折率とすることにより、基板の裏面で反射した迷光を、低屈折率領域の表面で阻止、又は、低屈折率領域に向かって逆進すること阻止することが可能となり、迷光の光導波路への入射を効果的に抑制することが可能となる。しかも、低屈折率領域の最深部から基板の裏面との間における屈折率の分布に関しては、基板の裏面方向に向かって、屈折率が高屈折率で一定状態または高屈折率へ増加状態とすることにより、より効果的に基板の裏面で反射した迷光を除去することが可能となる。

また、請求の範囲第10項に係る発明では、請求の範囲第8項又は第9項に記載の光変調器において、該低屈折率領域は、該基板よりも低屈折率である低屈折率材料を、該基板に拡散することにより形成されていることを特徴とする。

請求の範囲第10項に係る発明により、光変調器の製造工

程において多用されている物質拡散による屈折率調整手段が利用でき、特別な装置や複雑な処理工程を付加することなく、既存の光変調器の製造工程に、低屈折率領域を形成するための拡散工程を設けるだけ、低屈折率領域を有する光変調器が容易に製造可能となる。

また、請求の範囲第11項に係る発明では、請求の範囲第8項乃至第10項のいずれかに記載の光変調器において、該低屈折率領域は、低屈折率材料としてMgOまたはZnOを含有していることを特徴とする。

請求の範囲第11項に係る発明により、基板への物質拡散による屈折率調整において、

物質の拡散制御が容易なMgOまたはZnOを利用することにより、より均質な低屈折率領域が形成できる。特に、現在の主流であるLN光変調器の低屈折率調整には、好適に利用可能である。

また、請求の範囲第12項に係る発明では、電気光学効果を有する材料からなる基板と、該基板上に形成された光導波路と、該光導波路に電界を作用させ、該光導波路内を通過する光の位相を変化させるための変調用電極とを有する光変調器において、該基板の裏面又は側面に、該基板よりも屈折率の高い高屈折率領域を設けることを特徴とする。

請求の範囲第12項に係る発明により、基板内の基板材料と高屈折率領域を形成する材料との境界面において、基板の裏面又は側面で反射した迷光を反射させ、光導波路が形成さ

れた基板表面に向かう迷光を効果的に抑制することが可能となる。

また、請求の範囲第13項に係る発明では、請求の範囲第1項乃至第12項のいずれかに記載の光変調器において、該基板の裏面又は側面に、反射防止処理が施されていることを特徴とする。

請求の範囲第13項に係る発明により、基板の裏面又は側面における迷光の反射を阻止でき、これらの迷光が光導波路に入射することを抑制することが可能となる。

また、請求の範囲第14項に係る発明では、請求の範囲第1項乃至第13項のいずれかに記載の光変調器において、変調駆動の周波数は、40GHz以上であることを特徴とする。

請求の範囲第14項に係る発明により、フォトリフラクティブ現象の影響が顕著となる、特に、40GHz以上の変調駆動の周波数で光変調器を駆動するものにおいて、迷光を除去し、光導波路内を進行する信号光と迷光との相互干渉を抑制することで、優れた消光比の維持や光損失の増加防止などを実現することが可能となる。

また、請求の範囲第15項に係る発明では、請求の範囲第1項乃至第14項のいずれかに記載の光変調器において、該光変調器に入力する光の入力パワーが10mW以上であることを特徴とする。

請求の範囲第15項に係る発明により、フォトリフラクティブ現象の影響が顕著となる、特に、10mW以上の光入力

パワーを有する光を光変調器に導入する場合においても、迷光を除去し、光導波路内を進行する信号光と迷光との相互干渉を抑制することで、優れた消光比の維持や光損失の増加防止などを実現することが可能となる。

図面の簡単な説明

第1図は、従来の光変調器における迷光の発生状況を説明する図である。

第2図は、本発明の迷光除去手段を設けた光変調器の概略図である。

第3図は、光導波路と迷光除去手段との位置関係を示す図である。

第4図は、従来の光変調器における基板の厚み方向に進行する迷光の発生状況を説明する図である。

第5図は、光導波路の周囲にのみ低屈折率領域を形成した状態を示す図である。

第6図は、光変調器の基板の一定の厚みまでを低屈折率領域とした状態を示す図である。

第7図は、光変調器の基板の裏面及び側面に高屈折率領域を形成した状態を示す図である。

発明を実施するための最良の形態

以下、本発明を好適例を用いて詳細に説明する。

光変調器を構成する基板としては、電気光学効果を有する

材料、例えば、ニオブ酸リチウム (LiNbO_3 ; 以下、LN という)、タンタル酸リチウム (LiTaO_3)、PLZT (ジルコン酸チタン酸鉛ランタン) から構成され、特に、光導波路デバイスとして構成しやすく、かつ異方性が大きいという理由から、 LiNbO_3 結晶、 LiTaO_3 結晶、又は LiNbO_3 及び LiTaO_3 からなる固溶体結晶を用いることが好ましい。本実施例では、ニオブ酸リチウム (LN) を用いた例を中心に説明する。

光変調器を製造する方法としては、LN 基板上に Ti を熱拡散させて光導波路を形成し、次いで基板の一部又は全体に渡りバッファ層を設けずに、LN 基板上に電極を直接形成する方法や、光導波路中の光の伝搬損失を低減させるために、LN 基板上に誘電体 SiO_2 等のバッファ層を設け、さらにその上に Ti・Au の電極パターンの形成及び金メッキ方法などにより数十 μm の高さの変調用電極及び接地電極を形成する方法がある。

一般に、一枚の LN ウエハに複数の光変調器を作り込み、最後に個々の光変調器のチップに切り離すことにより、光変調器が製造される。

第 1 図は、従来の LN 光変調器の概略を説明する図である。1 は、LN 基板であり、上述のように Ti 内部拡散等により、その基板表面に導波路を形成している。2 は入力導波路であり、不図示の CW レーザ光源からの光が導光され、かつ偏光保持機能を有するファイバ 3 と接続されている。

導波路 2 を伝播した光は第 1 の分岐光導波路である 3 dB 分岐光導波路 4 にて等分割され、それぞれマッハツエンダー (MZ) 型光導波路のアームを構成する光導波路作用部 5 に入る。

該光導波路作用部 5 の近傍には、不図示の変調用電極及び接地電極が配置され、変調用電極に印加した信号に応じて光導波路作用部 5 を伝播する光は位相変調を受ける。位相変調後、各導波光は、第 2 の分岐光導波路 6 において合波され、相互に干渉して強度変調された信号光を生成する。

信号光は、出力導波路 7 を伝播し出力ファイバ 8 からモジュールの外部に取り出される。

従来の光変調器においては、第 1 図が示すように、ファイバ 3 と光変調器の入力導波路 2 との接合部から迷光 a, b が漏れ、また、第 1 の分岐光導波路 4 の分岐点から迷光 c, d が漏れ、各迷光が第 1 の分岐光導波路 4、光導波路作用部 5、第 2 の分岐光導波路 6 などに入射し、該光導波路内を通過する光と干渉し、干渉縞を発生させていた。この干渉縞は、フォトリフラクティブ現象を引起し、信号光の消光比の劣化を招く原因となっている。また、入力導波路 2、出力導波路 7 においても、干渉縞が発生すれば、同様に、光導波路内を通過する光を散乱させるため、消光比の劣化に繋がる。

このような迷光の影響を排除するため、本発明では、第 2 図に示すように、迷光除去手段 11～22 を、光導波路に近接して配置し、迷光と光導波路内を通過する光との相互干渉

を抑制するように構成している。具体的には、迷光 e を手段 1 1 で除去、手段 1 1 で除去できない（あるいは手段 1 1 がない場合の）迷光 f, g は手段 1 3, 1 4 で除去、迷光 h は手段 1 2, 1 7 で除去、迷光 i は手段 1 8 で除去、迷光 j, k は、手段 1 8 又は手段 1 9, 2 0 で除去するように、各々の配置・形状が設定されている。

迷光除去手段としては、基板 1 の表面に光導波路の深さと同程度（50 μm 程度）の溝を形成し、溝の壁面における光の散乱を利用して、迷光が光導波路に到達するのを阻止するものである。

溝の形成方法は、簡便な方法としてはレーザ加工により基板材料を部分的に除去し、溝を形成する方法があるが、これに限らず、エッティングにより基板を侵食する化学的加工法や、サンドブラストなどの機械的切削法など、当該分野において周知の加工技術が適用できる。

上記溝の迷光除去の機能を強化する方法としては、該溝にカーボンブラックなどの光吸収材料を充填し、該溝を通過する迷光を遮断する方法がある。

また、一般的に、第 3 図に示すように、光導波路（図では入力導波路 2）と迷光除去手段（溝 1 1, 1 2）とは近接して配置するほど、除去効果は高くなるが、製造工程においては、光導波路を傷つけることなく精度良く形成できる技術的限界が存在し、また、切削加工などの機械的な加工時における光導波路（または光導波路が形成される基板部位）への機

械的ストレスの軽減などにも配慮する必要がある。光導波路の線幅は通常、 $7 \mu m$ 程度であり、迷光除去手段の先端と光導波路との距離は、図3の $15 \mu m$ のように $10 \mu m$ 以上とするのが望ましい。

他方、上記距離を $100 \mu m$ より大きくすると、迷光の光導波路からの拡散や、迷光の光導波路への入射を効果的に抑制できず、期待する迷光除去効果が得られない可能性がある。

迷光除去手段の幅は、第3図では $80 \mu m$ に設定しているが、基本的には溝が形成されれば良く、以下に説明するように種々の観点を考慮の上、形成すべきである。

溝などの迷光除去手段の配置・形状としては各種のものが提案できるが、主に次のような観点を中心として、迷光除去手段の配置・形状を決定している。

1. 迷光の拡散を主として防止すること

- (1)光変調器の入力端部からの迷光を直接遮断するもの（第1図の11，12，13～16など）
- (2)光変調器の第1の分岐光導波路の分岐点からの迷光を直接遮断するもの（第1図の18，19，20など）
- (3)光変調器の基板側面から反射する迷光を遮断するもの（第1図の13～16，17など）

これ以外に、第2の分岐光導波路や光導波路の曲線部分などでも漏れ光が発生する場合もあり、必要に応じて、これらの状況へも対応する必要がある。

2. 迷光の光導波路への侵入を防止すること

迷光の侵入を防止すべき光導波路の周囲に近接して、迷光除去手段を配置するもの（第1図の17，19，20など）

3. 変調用電極及び接地電極の形状・導線の考慮

第1図の11と12、13～16と17のように、変調用電極や接地電極の形状・導線を考慮して、迷光除去手段の配置・形状を調整することも可能である。

本発明の第2の実施例について説明する。

第4図に示すように、光変調器の迷光は、第1図のように基板表面に平行な方向のものばかりではなく、基板の厚み方向にベクトル成分を有する迷光 l, m も存在する。

迷光 l, m のような基板の厚み方向に進む迷光は、基板の底面30又は基板の側面で反射し、光導波路に侵入し、光導波路内を進行する光と干渉する可能性がある。

このような迷光を除去するために、第5図に示すように、光導波路を取り囲むように低屈折率領域40を形成する。

低屈折率領域の屈折率は、基板の屈折率より低い値とすることにより、低屈折率領域外の放出された迷光 n, o は、基板と低屈折率領域との境界面で反射され、低屈折率領域内に配置された光導波路への迷光の侵入を防止することができる。

光導波路に対する低屈折率領域の配置としては、第5図のように光導波路全てを取り囲むもの以外に、光導波路の下部側又は側部側に選択的に配置し、不必要的な迷光のみを除去するように構成することも可能である。好ましくは、光導波路の下部側及び側部側を含む光導波路の周辺領域に、低屈折率

領域を形成することが望ましい。

なお、第5（b）図は、第5（a）図の一点鎖線Aにおける断面形状を示す。

低屈折率領域の他の形状としては、第6図のように、基板表面から光導波路を含む一定の深さまで低屈折率領域とすることも可能である。この場合には、第5図のように光導波路に沿う形状で低屈折率領域を形成するには、別途、低屈折率領域形成用のフォトマスクを用意する必要があり（ただし、以下に述べるように光導波路用のマスクパターンを兼用することも可能）、製造工程が若干複雑化・高コスト化する。これに対し、図6のように基板表面全体に渡り低屈折率領域を形成する場合には、このような工程を省略することが可能となる。

低屈折率領域の形成方法としては、LN基板材料より低屈折率を有するMgOやZnO, Na₂O, Li₂O, B₂O₃, K₂Oなどの物質を該基板に拡散することにより形成できる。なお、屈折率を低下させる不純物として、Fe₂O₃, NiO, Cu₂Oなどもあるが、LN結晶の光損傷感受性を高めるため、望ましくない。

拡散方法は、例えば、熱拡散法などを用いる。具体的には、光導波路形成時に利用するマスクパターンを使用して、光導波路形成領域に低屈折率材料を所定の厚みまで積み上げ、所定の温度に基板を加熱し、低屈折率材料を基板中に熱拡散する。

このような熱拡散は、光導波路形成工程の前後いずれかにおいて実施することが可能であるが、低屈折率材料の熱拡散処理により、既に形成されている光導波路が悪影響を受けないように、光導波路形成工程前に行なうことが望ましい。

なお、第6図のような低屈折率領域を形成する場合には、上述のマスクパターンは不要となる。

低屈折率領域の厚みについては、基板表面から基板の厚み方向に、光導波路の深さ以上の厚みとした場合では、光導波路の最深部に向かって入射しようとする迷光に対しても、入射を阻止することが可能となる。

しかも、光導波路に入射する迷光の入射角のうち、該低屈折率領域により阻止可能な範囲は、低屈折率領域の屈折率やその配置に依存する。特に、光導波路の下側部に低屈折率領域を配置することが効果的であるが、望ましくは、第5図、第6図のように光導波路全体を低屈折率領域で包み込む方が、光導波路に入射する迷光を効果的に阻止することが可能となる。

また、低屈折率領域の最深部から基板の裏面との間における屈折率は、該低屈折率領域よりも高い屈折率とすることにより、基板の裏面で反射した迷光を、低屈折率領域の表面で阻止、又は、低屈折率領域に向かって逆進すること阻止することが可能となり、迷光の光導波路への入射を効果的に抑制することが可能となる。第5図、第6図では、低屈折率領域の最深部から基板の裏面との間における屈折率の分布が一定

状態のものを示している。このように屈折率分布を一定状態とするものに限らず、屈折率分布を、基板の裏面方向に向かって屈折率が高屈折率へ増加状態とすることにより、より効果的に基板の裏面で反射した迷光を除去することが可能となる。

なお、上述の増加状態とするには、基板の裏面から高屈折率を有する材料である Ti, Ta, Fe, Ag, La, Yなどを基板内にドープさせることにより形成可能である。

光導波路と低屈折率領域との間の空間については、第 5 図、第 6 図のように光導波路と低屈折率領域を近接して配置し、該空間を形成しないように構成することが望ましい。これは、仮に、光導波路と低屈折率領域とが離れて形成されている場合には、低屈折率領域の光導波路側の境界面において、光導波路から漏れた迷光が反射されるため、迷光を光導波路を含む空間に閉じ込めるという弊害を生じることとなるためである。

次に、第 3 の実施例について説明する。

第 7 図に示すように、基板の裏面（底面）又は側面に、高屈折率領域 42 を形成する。高屈折領域の形成方法としては、上記の高屈折率を有する材料を熱拡散などにより基板内にドープすることで形成可能である。

高屈折率領域により、基板の裏面又は側面で反射した迷光は、高屈折率領域に閉じ込めることができとなり、迷光が再び光導波路に向かうのを阻止することが可能となる。

さらに、光変調器の基板の底面や側面などからの迷光反射をより効果的に除去するためには、カーボンブラックなどの光吸収材料や、反射防止膜などでこれらの面を被覆するなど、反射防止処理を施すことも可能である。

また、上述した各種の実施例を、必要に応じて組み合わせて用いることにより、迷光除去の効果を、より一層高めることが可能となる。

以上、本発明の実施例について述べたが、本発明は上述の実施例の範囲に限定されるものではなく、光変調器の迷光除去を実現する上で、上述した技術的構成を当該技術分野において周知の技術で代替したものについても、本発明の範囲内に含むものである。

産業上の利用可能性

以上、説明したように、本発明の光変調器によれば、光導波路からの漏れ光の拡散防止、光導波路へ迷光の進入抑制を行うため、光変調器内の迷光に起因したフォトリフレクティブ現象を抑制でき、信号光の消光比や光損失などに係る特性を改善した光変調器を提供することができる。

特に、マッハツエンダー型光導波路を有する光変調器において、40GHz以上の駆動や10mW以上の光入力パワーを有する場合に顕著に現れる、消光比劣化などの原因となるフォトリフレクティブ現象を抑制することが可能となる。

請求の範囲

1. 電気光学効果を有する材料からなる基板と、該基板上に形成された光導波路と、該光導波路に電界を作用させ、該光導波路内を通過する光の位相を変化させるための変調用電極とを有する光変調器において、
該基板の表面に迷光除去手段を設けることを特徴とする光変調器。
2. 請求の範囲第1項に記載の光変調器において、該迷光除去手段は、迷光除去溝からなり、該迷光除去溝の少なくとも一部が該光導波路の近傍に形成されていることを特徴とする光変調器。
3. 請求の範囲第2項に記載の光変調器において、該迷光除去溝と該光導波路との間の距離は、最も接近している距離が $10 \sim 100 \mu m$ であることを特徴とする光変調器。
4. 請求の範囲第2項又は第3項に記載の光変調器において、該迷光除去溝の深さは、該光導波路の深さと略同等以上であることを特徴とする光変調器。
5. 請求の範囲第2項乃至第4項のいずれかに記載の光変調器において、該迷光除去溝には、光吸収材料を充填することを特徴とする光変調器。
6. 請求の範囲第1項乃至第5項のいずれかに記載の光変調器において、該光導波路が分岐光導波路を有し、該迷光除去手段の少なくとも一部は、該分岐光導波路の近傍に設ける

ことを特徴とする光変調器。

7. 請求の範囲第1項乃至第5項のいずれかに記載の光変調器において、該迷光除去手段の少なくとも一部は、該変調用電極の電界が作用する光導波路と該光導波路に近い基板側面との間に設けることを特徴とする光変調器。

8. 電気光学効果を有する材料からなる基板と、該基板上に形成された光導波路と、該光導波路に電界を作用させ、該光導波路内を通過する光の位相を変化させるための変調用電極とを有する光変調器において、

該光導波路の少なくとも下部側及び側部側を含む光導波路の周辺領域の一部に、迷光が光導波路に入射するのを防止するために、該基板よりも屈折率の低い低屈折率領域を設けることを特徴とする光変調器。

9. 請求の範囲第8項に記載の光変調器において、該低屈折率領域は、該基板表面から基板の厚み方向に、該光導波路の深さ以上の厚みを有すると共に、該低屈折率領域の最深部から該基板裏面との間の屈折率は、該低屈折率領域よりも高い屈折率であることを特徴とする光変調器。

10. 請求の範囲第8項又は第9項に記載の光変調器において、該低屈折率領域は、該基板よりも低屈折率である低屈折率材料を、該基板に拡散することにより形成されていることを特徴とする光変調器。

11. 請求の範囲第8項乃至第10項のいずれかに記載の光変調器において、該低屈折率領域は、低屈折率材料として

MgOまたはZnOを含有していることを特徴とする光変調器。

12. 電気光学効果を有する材料からなる基板と、該基板上に形成された光導波路と、該光導波路に電界を作用させ、該光導波路内を通過する光の位相を変化させるための変調用電極とを有する光変調器において、

該基板の裏面又は側面に、該基板よりも屈折率の高い高屈折率領域を設けることを特徴とする光変調器。

13. 請求の範囲第1項乃至第12項のいずれかに記載の光変調器において、該基板の裏面又は側面に、反射防止処理が施されていることを特徴とする光変調器。

14. 請求の範囲第1項乃至第13項のいずれかに記載の光変調器において、変調駆動の周波数は、40GHz以上であることを特徴とする光変調器。

15. 請求の範囲第1項乃至第14項のいずれかに記載の光変調器において、該光変調器に入力する光の入力パワーが10mW以上であることを特徴とする光変調器。

第1図

第2図

第3図

第4図

第5図

(a)

(b)

第6図

第7図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/11012

A. CLASSIFICATION OF SUBJECT MATTER
Int.C1' G02F1/03

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.C1' G02F1/03, G02B6/12

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2003
Kokai Jitsuyo Shinan Koho 1971-2003 Jitsuyo Shinan Toroku Koho 1996-2003

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
USPTO Web Patent Database

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 06-186451 A (NEC Engineering Kabushiki	1-4,12,13
Y	Kaisha), 08 July, 1994 (08.07.94), (Family: none)	5-7,14,15
X	JP 04-333829 A (NEC Corp.), 20 November, 1992 (20.11.92), (Family: none)	1-4 5-7,13-15
X	JP 07-181045 A (Tokimec Inc.), 18 July, 1995 (18.07.95), (Family: none)	1-4,6,13 5-7,14,15
X	JP 02-081005 A (NEC Corp.), 22 March, 1990 (22.03.90), (Family: none)	8,10,11 9,14,15

Further documents are listed in the continuation of Box C. See patent family annex.

• Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document but published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search 23 October, 2003 (23.10.03)	Date of mailing of the international search report 04 November, 2003 (04.11.03)
--	--

Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Facsimile No.	Telephone No.

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/JP03/11012**C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT**

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 01-126605 A (NEC Corp.), 18 May, 1989 (18.05.89), (Family: none)	1, 7 6, 12-15

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C1' G02F1/03

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C1' G02F1/03 G02B6/12

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2003年
日本国登録実用新案公報	1994-2003年
日本国実用新案登録公報	1996-2003年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

USPTO Web Patent Database

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X Y	JP 06-186451 A(日本電気エンジニアリング株式会社) 1994.07.08 (ファミリーなし)	1-4, 12, 13 5-7, 14, 15
X Y	JP 04-333829 A(日本電気株式会社) 1992.11.20 (ファミリーなし)	1-4 5-7, 13-15
X Y	JP 07-181045 A(株式会社トキメック) 1995.07.18 (ファミリーな し)	1-4, 6, 13 5, 7, 14, 15

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

23. 10. 03

国際調査報告の発送日

04.11.03

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

佐藤 宙子

2 X 9316

電話番号 03-3581-1101 内線 3293

C (続き) 関連すると認められる文献		関連する請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
X	JP 02-081005 A(日本電気株式会社)1990. 03. 22 (ファミリーなし)	8, 10, 11
Y		9, 14, 15
X	JP 01-126605 A(日本電気株式会社)1989. 05. 18 (ファミリーなし)	1, 7
Y		6, 12-15