Supplements: Differentially Private Selection using Smooth Sensitivity

This provides the omitted proofs in the main paper.

I. PROOFS

A. Theorem 3

Theorem 3. If Z_r are derived from g, the smooth private selection mechanism satisfies $\left(\left(k + \frac{|\mathcal{R}| - 1}{2} \cdot l\right) \cdot \epsilon\right)$ -differential privacy.

Proof. We let $\mathcal{R}=\{1,2,\ldots,m\}$ as in the proof of Theorem 2. It is sufficient to show that, for all neighboring datasets $x,y\in D^n$,

$$\Pr[M(x) = 1] \le \exp\left(\left(k + \frac{m-1}{2} \cdot l\right) \cdot \epsilon\right) \cdot \Pr[M(y) = 1]. \quad (1)$$

Here, the relations

$$\Pr[M(x) = 1] = \int_{v \in (-\infty, \infty)} \Pr\left[Z_1 = \frac{\alpha'(v - u(x, 1))}{S(x)}\right]$$

$$\cdot \Pr\left[Z_2 \le \frac{\alpha'(v - u(x, 2))}{S(x)}\right]$$

$$\cdot \cdot \cdot \Pr\left[Z_m \le \frac{\alpha'(v - u(x, m))}{S(x)}\right] \quad (2)$$

and

$$\Pr[M(y) = 1]$$

$$\geq \int_{v \in (-\infty, \infty)} \Pr\left[Z_1 = \frac{\alpha'(v - u(y, 1) + S(x))}{S(y)}\right]$$

$$\cdot \Pr\left[Z_2 \leq \frac{\alpha'(v - u(x, 2))}{S(y)}\right]$$

$$\cdots \Pr\left[Z_m \leq \frac{\alpha'(v - u(x, m))}{S(y)}\right]$$
(3)

hold as in the proof of Theorem 2, and in particular, we should note $u(x,1)-u(y,1)+S(x)\geq 0$.

(I) When $S(x) \geq S(y)$:

Because $\forall r \in \{2, 3, \dots, m\}$:

$$\Pr\left[Z_r \le \frac{\alpha'(v - u(x, r))}{S(y)}\right] \ge \Pr\left[Z_r \le \frac{\alpha'(v - u(x, r))}{S(x)}\right],$$
[: the property of g]

$$(3) \geq \int_{v \in (-\infty,\infty)} \Pr \left[Z_1 = \frac{\alpha'(v - u(y,1) + S(x))}{S(y)} \right] \cdot \Pr \left[Z_2 \leq \frac{\alpha'(v - u(x,2))}{S(x)} \right] \cdot \dots \Pr \left[Z_m \leq \frac{\alpha'(v - u(x,m))}{S(x)} \right]. \tag{4}$$

From (2) and (4), the following relation holds:

$$\Pr[M(x) = 1] \le \exp\left(\left(k + \frac{l}{2}\right) \cdot \epsilon\right) \cdot \Pr[M(y) = 1].$$

(II) When S(x) < S(y):

Because

$$\Pr\left[Z_1 = \frac{\alpha'(v - u(y, 1) + S(x))}{S(y)}\right]$$

$$\geq \Pr\left[Z_1 = \frac{\alpha'(v - u(y, 1) + S(x))}{S(x)}\right],$$
[: the property of g]

(3)
$$\geq \int_{v \in (-\infty,\infty)} \Pr \left[Z_1 = \frac{\alpha'(v - u(y,1) + S(x))}{S(x)} \right]$$

$$\cdot \Pr \left[Z_2 \leq \frac{\alpha'(v - u(x,2))}{S(y)} \right]$$

$$\cdot \cdot \cdot \Pr \left[Z_m \leq \frac{\alpha'(v - u(x,m))}{S(y)} \right].$$
 (5)

From (2) and (5), the relation (1) holds.

B. Theorem 5

Theorem 5. Given a threshold T, we let the set of x satisfying $LS_f(x) > T$ be U. For any β (> 0) satisfying

$$\beta \le \min_{x \notin U} \frac{1}{ud(x)} \cdot \ln \left(\frac{GS_f}{LS_f(x)} \right), \tag{6}$$

where $ud(x) := \min_{y \in U} d(y, x)$ represents the shortest distance between x and U, the following function S is a β -smooth upper bound:

$$S(x) = GS_f \cdot e^{-\beta \cdot ud(x)} .$$

Proof. From (6), for all $x \notin U$,

$$\beta \le \frac{1}{ud(x)} \cdot \ln\left(\frac{GS_f}{LS_f(x)}\right)$$

$$\iff LS_f(x) \le GS_f \cdot e^{-\beta \cdot ud(x)}.$$

Therefore, from Definition 4 (for β -smooth upper bound), it is sufficient to show that

$$\forall x, y, d(x, y) = 1: \quad S(x) \le e^{\beta} \cdot S(y). \tag{7}$$

(I) When $x, y \in U$:

Because $S(x) = S(y) = GS_f$, the relation (7) holds.

(II) When $x \in U$ and $y \notin U$:

Because $S(x) = GS_f$ and

$$S(y) = GS_f \cdot e^{-\beta}, \quad [\because ud(y) = d(x, y) = 1]$$

the relation (7) holds.

(III) When $x \notin U$ and $y \in U$:

Similar to Case (II), $S(x) = GS_f \cdot e^{-\beta}$ and $S(y) = GS_f$; therefore, the relation (7) holds.

(IV) When $x, y \notin U$:

Where X satisfies $X \in U$ and d(X,x) = ud(x), and Y satisfies $Y \in U$ and d(Y, y) = ud(y),

$$\begin{array}{lcl} e^{\beta} \cdot S(y) & = & e^{\beta} \cdot GS_f \cdot e^{-\beta \cdot d(Y,y)} \\ & \geq & e^{\beta} \cdot GS_f \cdot e^{-\beta \cdot d(X,y)} \quad [\because d(Y,y) \leq d(X,y)] \\ & \geq & e^{\beta} \cdot GS_f \cdot e^{-\beta (d(X,x) + d(x,y))} \\ & \qquad \qquad [\because d(X,y) \leq d(X,x) + d(x,y)] \\ & = & GS_f \cdot e^{-\beta \cdot d(X,x)} = S(x). \quad [\because d(x,y) = 1] \end{array}$$

Therefore, the relation (7) holds.

C. Lemma 2

Lemma 2. (b,c) satisfies $LS_{\chi^2_{TDT}}((b,c)) > 6$ when

$$\begin{split} 0 & \leq c < \frac{b-8}{7} \ \lor \ 2 \leq b < \frac{c+8}{7} \\ \lor \ 0 & \leq b < \frac{c-8}{7} \ \lor \ 2 \leq c < \frac{b+8}{7} \ . \end{split}$$

Proof. $LS_{\chi^2_{TDT}}(x)>6$ can be satisfied only if x=(b,c) and $y=(b-2,c+2)\vee(b+2,c-2).$

When y = (b-2, c+2) is possible, $b \ge 2$ and $c \ge 0$. In this case,

$$= \frac{\chi_{TDT}^2(b,c) - \chi_{TDT}^2(b-2,c+2)}{\frac{(b-c)^2}{b+c} - \frac{(b-c-4)^2}{b+c}} = \frac{8(b-c-2)}{b+c}.$$
 (8)

 $\begin{array}{l} |(8)|>6\iff c<\frac{b-8}{7}\vee b<\frac{c+8}{7}; \text{ therefore, } (b,c) \text{ satisfies}\\ LS_{\chi^2_{TDT}}((b,c))>6 \text{ when } 0\leq c<\frac{b-8}{7}\vee 2\leq b<\frac{c+8}{7}.\\ \text{Similarly when } y=(b+2,c-2) \text{ is possible, we can obtain}\\ 0\leq b<\frac{c-8}{7}\vee 2\leq c<\frac{b+8}{7}. \end{array}$

D. Lemma 3

Lemma 3. The Hamming distance for TDT datasets can be

$$d(T(b,c), T(b',c')) = \begin{cases} \left\lceil \frac{|(b+c)-(b'+c')|}{2} \right\rceil & ((b-b')\cdot(c-c') \ge 0) \\ \left\lceil \frac{\max\{|b-b'|, |c-c'|\}}{2} \right\rceil & ((b-b')\cdot(c-c') < 0) \end{cases},$$

where T(b,c) represents a table that can be formed as the following table:

		Non-Transmitted Allele		Total
		A_1	A_2	Total
Transmitted	A_1	a	b	a+b c+d
Allele	A_2	c	d	c+d
Total		a+c	b+d	2N

Proof. The possible changes in (b,c) between neighboring datasets are

$$\begin{array}{l} (b,c) \\ \rightarrow & (b-2,c), \ (b-2,c+1), \ (b-2,c+2), \\ (b-1,c-1), \ (b-1,c), \ (b-1,c+1), \ (b-1,c+2), \\ (b,c-2), \ (b,c-1), \ (b,c), \ (b,c+1), \ (b,c+2), \\ (b+1,c-2), \ (b+1,c-1), \ (b+1,c), \ (b+1,c+1), \\ (b+2,c-2), \ (b+2,c-1), \ (b+2,c). \end{array}$$

Therefore, the maximum change in the value of b + c is 2; when $(b-b')\cdot(c-c')\geq 0$, the Hamming distance can be

$$d(T(b,c), T(b',c')) = \left\lceil \frac{|(b+c) - (b'+c')|}{2} \right\rceil.$$

When $(b-b')\cdot(c-c')<0$, using the changes $(b,c)\to$ (b-2,c), (b-2,c+1), (b-2,c+2), (b+2,c-2), (b+2,c-2),(2, c-1), (b+2, c), the Hamming distance can be

$$d(T(b,c), T(b',c')) = \left\lceil \frac{\max\{|b-b'|, |c-c'|\}}{2} \right\rceil.$$