	SEQUENCE LISTING	
<110>	Cosenza, Lawrence W.	
<120>	SACROMASTIGOPHORIC THERAPEUTIC AGENT DELIVERY SYSTEM	
<130>	DSI-10402/22	
<140> <141>	US 10/735,203 2003-12-12	
<150> <151>	us 60/433,269 2002-12-13	
<160>	31	
<170>	PatentIn version 3.4	
<210> <211> <212> <213>	1 58 DNA Artificial	
<220> <223>	Primer for echovirus 1 VP1 protein	
<400> aattat	1 tcga attagcaaga agatattgta ccgaaattaa tacgactcac tatagggg	58
<210> <211> <212> <213>	2 69 DNA · Artificial	
<220> <223>	Primer for echovirus 1 VP1 protein	
<400> taaata	2 aagc ggccgcttat tactagtctt tatctccttt gattgtaaat aaaatgtaat	60
ttacag	tat	69
<210> <211> <212> <213>	3 42 DNA Artificial	
<220> <223>	Primer for echovirus 1 VP3 protein	
<400> atagca	3 tggt accaccgaaa ttaatacgac tcactatagg gg	42
<210> <211> <212> <213>	4 70 DNA Artificial	
<220> <223>	Primer for echovirus 1 VP3 protein	

DST10402 ST25 tyt

400	DS110402_S125.TXT	
<400> aatact	4 agtt cgaaggtagg tagctagcgt atatctcctt tgattgtaaa taaaatgtaa	60
tttaca	gtat	70
<210> <211> <212> <213>	5 43 DNA Artificial	
<220> <223>	Primer for echovirus 1 VP2 protein	
<400> atatta	5 ggcg cgccaccgaa attaatacga ctcactatag ggg	43
<210> <211> <212> <213>	6 67 DNA Artificial	
<220> <223>	Primer for echovirus 1 VP2 protein	
<400> attaat	6 ctgc agatttatag gcgccgtata tctcctttga ttgtaaataa aatgtaattt	60
acagta	t	67
<210> <211> <212> <213>	7 50 DNA Artificial	
<220> <223>	Vectorial cloning primer for echovirus 1 VP1	
<400> gcttca	7 ctag ttctgactgc taagcatggg tgatgtgcag aatgctgtcg	50
<210> <211> <212> <213>	8 38 DNA Artificial	
<220> <223>	Vectorial cloning primer for echovirus 1 VP1	
<400> caaggt	8 tgcg gccgcgatga tcgttgttat tatgttgg	38
<210> <211> <212> <213>	9 41 DNA Artificial	
<220> <223>	Vectorial cloning primer for echovirus 1 VP3	

-100-	DSI10402_ST25.txt	
<400> gcttcg	g uctag catgggacta ccgaccatga acacccctgg c	41
<210> <211> <212> <213>	10 39 DNA Artificial	
<220> <223>	Vectorial cloning primer for echovirus 1 VP3	
<400> cggcca	10 ttcg aactactatt ggtaaaaaga tgtttgctc	39
<210> <211> <212> <213>	11 35 DNA Artificial	
<220> <223>	Vectorial cloning primer for echovirus 1 VP2	
<400> gcttcg	11 gcgc catgtctcca acggttgaag agtgc	35
<210> <211> <212> <213>	12 37 DNA Artificial	
<220> <223>	Vectorial cloning primer for echovirus 1 VP2	
<400> gccgga	12 actg cagctactat tggtgtccag ctagtcg	37
<210> <211> <212> <213>	13 40 DNA Artificial	
<220> <223>	Vectorial cloning primer for echovirus 1 VP4	
<400> gcttca	13 gata teggtatcaa cacagaagac eggggegeac	40
<210> <211> <212> <213>	14 96 DNA Artificial	
<220> <223>	Vectorial cloning primer for echovirus 1 VP4	
<400> gccatc	14 Egga gatototact acgaattoag ogotggoagg gtttttatoa tgacatottt	60
cattgg	tca gtaaacttcc cggggtcttg ggtgaa	96

<210> <211> <212> <213>	15 30 DNA Artificial	
<220> <223>	Vectorial cloning primer containing spe1 restriction site	
<400> gcgcga	15 ctag tctgatggac tgcgacatcg	30
<210> <211> <212> <213>	16 35 DNA Artificial	
<220> <223>	Vectorial cloning primer containing bpu1102I restriction site	
<400> caccca	16 tgct tagcgcgtgt tctttagtgc ccatc	35
<210> <211> <212> <213>	17 27 DNA Artificial	
<220> <223>	Vectorial cloning primer containing avri restriction site	
<400> gctcgc	17 ccgg gatggactgc gacatcg	27
<210> <211> <212> <213>	18 34 DNA Artificial	
<220> <223>	Vectorial cloning primer containing bgl ii restriction site	
<400> gccatc	18 cgga gatctctagt gttctttagt gccc	34
<210> <211> <212> <213>	19 28 DNA Artificial	
<220> <223>	Vectorial cloning primer containing eco ri restriction site	
<400> gcgctg	19 aatt cgatggactg cgacat c g	28
<210> <211>	20 945	

<212> DNA <213> Artificial

<220>
<223> Recombinant echovirus 1 VP1 shell protein

<400> 20 60 atgggtgatg tgcagaatgt tgtcgaaggg gctatggtca gggtggcaga tacagtgcaa acttcagcca caaactcaga gagggtgcct aacttgacag cagtagaaac tggtcacact 120 togcaggtag tacctggtga taccatgcag accagacatg tgatcaacaa tcacgtgagg 180 240 tcagaatcta caattgagaa cttccttgcc agatcagcgt gtgttttctt gctagagtac aagacaggga ccaaagagga ttccaatagc ttgaacaatg gggtgattac aaccaggcga 300 gtgggtcaac tacgtataaa actggaaatg tttacttacc tacggtttga catggaaatc 360 420 accordorca tracagore ocaagateag teracateae aaaaccagaa tocaccagto ctaacacacc agataatgta tgtaccacca gggggaccca tacccataag cgtggatgat 480 tacagctggc aaacattcac caaccccagt atcttttgga ccgaagggaa cgctccggca 540 cocatotcaa ttccatttat taacataggc aatgcotata gtaatttcta coatgggtog 600 totcacttot cocaggotgg cgtgtatggc ttcactactc tgaacaacat gggtcaattg 660 720 ttcttccggc acgtaaacaa gcccaaccca gccgctatta caagtgtggc gcgcatttac 780 ttcaaaccga aacatgtacg cgcttgggtg cctagaccac cgcgcttgtg tccatacatc aatagcacga atgtcaactt tgaacccaag ccagtgactg aagtacgtac caacataata 840 900 acaacgatca tcgcggccgc acagctgtat acacgtgcaa gccagccaga actcgccccg gaagaccccg aggatctcga gcaccaccat caccatcacc atcac 945

<210> 21 <211> 843 <212> DNA <213> Echovirus 1

<220> <221> gene <222> (1)..(843) <223> Native VP1 shell protein

<400> 21 ggtgatgtc agaatgctgt cgaaggggct atggtcaggg tggcagatac agtgcaaact 60 tcagccacaa actcaggag ggtgcctaac ttgacagcag tagaaactgg tcacacttcg 120 caggcagtac ctggtgatac catgcagact agacatgtga tcaacaatca cgtgaggtca ggaactcacaa ttgagaactt ccttgccaga tcagcgtgtg ttttcacct agagtacaag 240 acagggacca aagaggattc caatagcttc aacaattggg tgattacaac caggcgagtg 300 gctcaactac gtagaaaact ggaaatgttt acttacctac ggttgaca tggaaatcacc 360

gtggtcatta ca	agctcgca	agatcagtct	DSI10402_S acatcacaaa		accagtgcta	420
acacaccaga ta	atgtatgt	accaccaggg	ggacccatac	ccgtaagcgt	ggatgattac	480
agctggcaaa ca	tccaccaa	ccccagtatc	ttttggaccg	aagggaacgc	tccggcacgc	540
atgtcaattc ca	itttattag	cataggcaat	gcgtatagta	atttctacga	tgggtggtct	600
cacttctccc ag	gctggcgt	gtatggcttc	actactctga	acaacatggg	tcaattgttc	660
ttccggcacg ta	aacaagcc	caacccagcc	gctattacaa	gtgtggcgcg	catttacttc	720
aaaccgaaac at	gtacgcgc	ttgggtgcct	agaccaccgc	gcttgtgtcc	atacatcaat	780
agcacgaatg to	aactttga	acccaagcca	gtgactgaag	tacgtaccaa	cataataaca	840
acg						843
<210> 22 <211> 792 <212> DNA <213> Artifi <220>						
	inant ech	ovirus 1 VF	2 shell pro	otein		
<400> 22 atgtctccaa cg	gttgaaga	gtgcgggtac	agtgacaggg	tcaggtcaat	cacacttggg	60
aactccacta tt	acaactca	agagtgtgcc	aatgtggtgg	tggggtacgg	tgaatggcct	120
gagtatctga gt	gataacga	ggcaactgct	gaggaccaac	caacgcagcc	ggacgtggcc	180
acttgccgtt tt	tacaccct	agactcagtc	caatgggaga	atgggtcacc	aggttggtgg	240
tggaagtttc cc	gacgctct	aagggatatg	ggattatttg	gccaaaatat	gtactaccat	300
tacttaggca ga	gccgggta	taccatccac	gtacaatgca	atgcttccaa	gtttcatcaa	360
ggctgtatcc tg	gtagtgtg	tgtccctgag	gcggagatgg	gaagtgccca	aacctcaggg	420
gtggtcaact ac	gaacacat	tagtaagggt	gagatcgcat	caaggttcac	taccacgaca	480
acagcagaag ac	catggcgt	gcaggccgcg	gtatggaatg	ctggtatggg	cgttggagtt	540
gggaacttga cg	atcttccc	gcaccaatgg	atcaaccttc	gcaccaacaa	cagcgccaca	600
attgttatgc ca	tacgtaaa ·	tagtgtacca	atggacaata	tgtatagaca	tcacaacttt	660
acactaatga ta	ataccctt ·	tgtgcctctg	gatttcagcg	cgggtgcatc	cacatacgtg	720
cccataacgg tg	acagtggc	ccccatgtgt	gccgagtaca	atggactacg	actagctgga	780

792

<210> 23 <211> 783 <212> DNA <213> Echovirus 1

caccaatagt ag

<221> gene (1)..(783) <777> Native VP2 shell protein <400> 23 60 tctccaacoo ttgaaqagtq cqqqtacaqt qacaqqqtca ggtcaatcac acttgggaac tccactatta caactcaaga gtgtgccaat gtggtggtgg ggtacggtga atggcctgag 1.20 180 tatctgagtg ataacgaggc aactgctgag gaccaaccaa cgcagccgga cgtggccact 240 tgccgttttt acaccctaga ctcagtccaa tgggagaatg ggtcaccagg ttggtggtgg 300 aagtttcccg acgctctaag ggatatggga ttatttggcc aaaatatgta ctaccattac 360 totatcctqq tagtqtqtt ccctgaggcg gagatgggaa gtgcccaaac ctcaggggtg 420 480 gtcaactacg aacacattag taagggtgag atcgcatcaa ggttcactac cacgacaaca 540 gcagaagacc atggcgtgca ggccgcggta tggaatgctg gtatgggcgt tggagttggg 600 aacttgacga tottcccgca ccaatggatc aaccttcgca ccaacaacag cgccacaatt 660 qttatgccat acgtaaatag tgtaccaatg gacaatatgt atagacatca caactttaca 720 ctaatqataa taccctttqt qcctctqqat ttcaqcqcgq gtgcatccac atacgtgccc ataacggtga cagtggcccc catgtgtgcc gagtacaatg gactacgact agctggacac 780 783 caa <210> 24 937 <211> <212> DNA <213> Artificial <220> Recombinant echovirus 1 VP3 shell protein <223> <400> 24 atgtgcagaa tgttgtcgaa ggggctatgg tcagggtggc agatacagtg caaacttcag 60 ccacaaactc agagaggtgc ctaacttgac agcagtagaa actggtcaca cttcgcaggt 120 180 agtacctggt gataccatgc agaccagaca tgtgatcaac aatcacgtga ggtcagaatc tacaattgag aacttccttg ccagatcagc gtgtgttttc ttgctagagt acaagacagg 240 gaccaaagag gattccaata gcttgaacaa tggggtgatt acaaccaggc gagtgggtca 300 actacgtata aaactggaaa tgtttactta cctacggttt gacatggaaa tcaccgtggt 360 cattacaagc tcgcaagatc agtctacatc acaaaaccag aatgcaccag tgctaacaca 420 ccagataatg tatgtaccac cagggggacc catacccata agcgtggatg attacagctg 480 540 gcaaacattc accaacccca gtatcttttq gaccgaaggg aacgctccgg cacgcatgtc aattocattt attaacatag gcaatgogta tagtaattto tacgatgggt ggtotcactt 660 ctcccaggct ggcgtgtatg gcttcactac tctgaacaac atgggtcaat tgttcttccg

gcacgta	aaac aagcccaac	cagccgctat	tacaagtgtg	gcgcgcattt	acttcaaacc	72
gaaaca	tgta cgcgcttgg	tgcctagacc	accgcgcttg	tgtccataca	tcaatagcac	780
gaatgt	caac tttgaaccc	agccagtgac	tgaagtacgt	accaacataa	taacaacgat	840
catcgc	ggcc gcacagctg	atacacgtgc	aagccagcca	gaactcgccc	cggaagaccc	900
cgagga	tctc gagcaccac	atcaccatca	ccatcac			937
<210> <211> <212> <213>	25 843 DNA Echovirus 1					
<220> <221> <222> <223>	gene (1)(843) Native VP3 she	:11 protein				
<400> ggtgatg	25 gtgc agaatgctg1	cgaaggggct	atggtcaggg	tggcagatac	agtgcaaact	60
tcagcca	acaa actcagagag	ggtgcctaac	ttgacagcag	tagaaactgg	tcacacttcg	120
caggcag	gtac ctggtgata	catgcagact	agacatgtga	tcaacaatca	cgtgaggtca	180
gaatcta	acaa ttgagaacti	ccttgccaga	tcagcgtgtg	ttttctacct	agagtacaag	240
acaggga	acca aagaggatto	caatagcttc	aacaattggg	tgattacaac	caggcgagtg	300
gctcaa	ctac gtagaaaaci	ggaaatgttt	acttacctac	ggtttgacat	ggaaatcacc	360
gtggtca	atta caagctcgca	agatcagtct	acatcacaaa	accagaatgc	accagtgcta	420
acacac	caga taatgtatg1	accaccaggg	ggacccatac	ccgtaagcgt	ggatgattac	480
agctgg	caaa catccaccaa	ccccagtatc	ttttggaccg	aagggaacgc	tccggcacgc	540
atgtcaa	attc catttattag	cataggcaat	gcgtatagta	atttctacga	tgggtggtct	600
cacttct	tccc aggctggcgt	gtatggcttc	actactctga	acaacatggg	tcaattgttc	660
ttccgg	cacg taaacaagc	caacccagcc	gctattacaa	gtgtggcgcg	catttacttc	720
aaaccga	aaac atgtacgcg	ttgggtgcct	agaccaccgc	gcttgtgtcc	atacatcaat	780
agcacga	aatg tcaactttga	acccaagcca	gtgactgaag	tacgtaccaa	cataataaca	840
acg						843
<210> <211> <212> <213>	26 213 DNA Artificial					
<220> <223>	Recombinant ed	hovirus 1 V	P4 shell pro	otein		

<400> 26

DST10402_ST25_txt

DSI10402_ST25.txt atggcgatat cggtatcaac acagaagacc ggggcgcacg agactagctt gagcgctact 60
ggcaactcca taatacacta cacgaacatt aattattaca aagatgcagc ctctaactct 120
gccaatagac aagatttcac ccaagacccc gggaagttta ctgaaccaat gaaagatgtc 180
atgataaaaa ccctgccagc gctgaattcg tag 213
<210> 27 <211> 207 <212> DNA <213> Echovirus 1
<220> <221> gene <222> (1)(207) <223> Native VP4 shell protein
<400> 27 atgggagcac aggtatcaac acagaagacc ggggcgcacg agactagctt gagcgctact 60
ggcaactcca taatacacta cacgaatatt aattattaca aagatgcagc ctctaactct 120
gccaatagac aagatttcac ccaagaccct ggtaagttta ctgaaccaat gaaagatgtc 180
atqataaaaa ccctgccagc gctgaat 207
<210> 28 <211> 1047 <212> DNA <213> Homo sapiens
<300>
<pre><300> <301></pre>
<pre>-301></pre>
 Altada, S., Seed, J.R., Barker, C., Hajduk, S.L., Black, S. and Maeda, N. No trypanosome lytic activity in the sera of mice producing human (303) Mol. Biochem. Parasitol. 2304) 119 2305) 2 291-294 2002-02-01 2313> (1)(1047) 2400> 28
Altada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and Maeda,N.
Altada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and Maeda,N.
Altada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and Maeda,N.
-301> Hatada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and Madda,N. -302> No trypanosome lytic activity in the sera of mice producing human dollar line. -303> Mol. Biochem. Parasitol. -304> 119 -305> 2 -307> 20 -313> (1)(1047) <400> 28 atatcagaca atgatgtcac tgggagctgt catttccctc ctgctctggg gacgacagct ttttgcactg 60 tactcaggca atgatgtcac ggatatttca gatgaccgct tcccgaagcc ccctgagatt 120 gcaaatggct atgtggagca cttgtttcgc taccagtgta agaactacta cagactgcc 180 acagaaggag atggggtata caccttaaat gataagaagc agtggataaa taaggctgtt 240
Asia Hatada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and Madda,N. Aloca No trypanosome lytic activity in the sera of mice producing human value of the pr
Addisonal season seed, J.R., Barker, C., Hajduk, S.L., Black, S. and Madda, N. All Seed, N. All Se

DOLLO TOLLOTEST CAC
caccctaact accaccaggt agatattggg ctcatcaaac tcaaacagaa ggtgcttgtt 600
aatgagagag tgatgcccat ctgcctacct tcaaagaatt atgcagaagt agggcgtgtg 660
ggttacgtgt ctggctgggg acaaagtgac aactttaaac ttactgacca tctgaagtat 720
gtcatgctgc ctgtggctga ccaatacgat tgcataacgc attatgaagg cagcacatgc 780
cccaaatgga aggcaccgaa gagccctgta ggggtgcagc ccatactgaa cgaacacacc 840
ttctgtgtcg gcatgtctaa gtaccaggaa gacacctgct atggcgatgc gggcagtgcc 900
tttgccgttc acgacctgga ggaggacacc tggtacgcgg ctgggatcct aagctttgat 960
aagagctgtg ctgtggctga gtatggtgtg tatgtgaagg tgacttccat ccaggactgg 1020
gttcagaaga ccatagctga gaactaa 1047
<210> 29 <211> 348 <212> PRT <213> Homo sapiens
<300> <301> Hatada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and
Maeda, N. <302> No trypanosome lytic activity in the sera of mice producing human <303> Mol. Biochem. Parasitol. <304> 119 <305> 2 <305> 2 <306> 291-294 <307> 2002-02-01 <313> (1)(348)
<400> 29
Met Ser Asp Leu Gly Ala Val Ile Ser Leu Leu Leu Trp Gly Arg Gln 15 $^{\circ}$
Leu Phe Ala Leu Tyr Ser Gly Asn Asp Val Thr Asp Ile Ser Asp Asp 25 30
Arg Phe Pro Lys Pro Pro Glu Ile Ala Asn Gly Tyr Val Glu His Leu $\frac{35}{40}$
Phe Arg Tyr Gln Cys Lys Asn Tyr Tyr Arg Leu Arg Thr Glu Gly Asp $50 \hspace{0.25cm} \text{60}$
Gly Val Tyr Thr Leu Asn Asp Lys Lys Gln Trp Ile Asn Lys Ala Val 70
Gly Asp Lys Leu Pro Glu Cys Glu Ala Val Cys Gly Lys Pro Lys Asn 95
Pro Ala Asn Pro Val Gln Arg Ile Leu Gly Gly His Leu Asp Ala Lys 100 105

Gly Ser Phe Pro Trp Gln Ala Lys Met Val Ser His His Asn Leu Thr Thr Gly Ala Thr Leu Ile Asn Glu Gln Trp Leu Leu Thr Thr Ala Lys 130 135 140 Asn Leu Phe Leu Asn His Ser Glu Asn Ala Thr Ala Lys Asp Ile Ala 145 150 155 160 Pro Thr Leu Thr Leu Tyr Val Gly Lys Lys Gln Leu Val Glu Ile Glu 165 170 175 Lys Val Val Leu His Pro Asn Tyr His Gln Val Asp Ile Gly Leu Ile 180 185 190 Lys Leu Lys Gln Lys Val Leu Val Asn Glu Arg Val Met Pro Ile Cys 195 200 205 Leu Pro Ser Lys Asn Tyr Ala Glu Val Gly Arg Val Gly Tyr Val Ser 210 215 220 Gly Trp Gly Gln Ser Asp Asn Phe Lys Leu Thr Asp His Leu Lys Tyr 225 230 235 240 Val Met Leu Pro Val Ala Asp Gln Tyr Asp Cys Ile Thr His Tyr Glu 245 250 255 Gly Ser Thr Cys Pro Lys Trp Lys Ala Pro Lys Ser Pro Val Gly Val 260 265 270 Gln Pro Ile Leu Asn Glu His Thr Phe Cys Val Gly Met Ser Lys Tyr $275 \hspace{1cm} 280 \hspace{1cm} 285 \hspace{1cm}$ Gln Glu Asp Thr Cys Tyr Gly Asp Ala Gly Ser Ala Phe Ala Val His 290 295 300 Asp Leu Glu Glu Asp Thr Trp Tyr Ala Ala Gly Ile Leu Ser Phe Asp 305 310 315 Lys Ser Cys Ala Val Ala Glu Tyr Gly Val Tyr Val Lys Val Thr Ser 325 330 335 Ile Gln Asp Trp Val Gln Lys Thr Ile Ala Glu Asn 340 345

<210> 30 <211> 4

Met Ala Ile Ser