Raisonnement par récurrence

Capacités attendues :

- Raisonnement par récurrence pour étudier les suites
- Étude de sommes
- Arithmétique

Le Raisonnement par récurrence ne peut s'utiliser que lorsque l'on cherche à démontrer qu'une proposition est vraie pour tout entier naturel n supérieur ou égal à un entier naturel n_0 .

Illustration:

Principe :

<u>Initialisation</u>: Le premier domino est renversé

Notre proposition ici est la suivante « Tous les dominos se renversent ».

Pour que notre Proposition soit vraie : il faut conditions :

- 1. Renverser le premier domino
- **2.** s'assurer que chaque domino renverse le suivant. Si les deux étapes ci-dessus (initialisation et hérédité) sont vérifiées alors on en déduit que notre propriété est vraie : tous les dominos se renversent.

Hérédité :La chutte du ne domino entraine la chutte du (n+1)e

🦪 Axiome :

Soit $n \in \mathbb{N}$. On considère la proposition \mathscr{P}_n définie pour tout entier $n \ge n_0$.

Si les deux conditions suivantes sont vérifiées :

- **1.** \mathscr{P}_n est vraie pour l'entier n_0 ;
- **2.** pour tout entier $k \ge n_0$, « \mathcal{P}_k est vraie » implique « \mathcal{P}_{k+1} est vraie »; alors on peut conclure que, pour tout $n \ge n_0$, la proposition \mathcal{P}_n est vraie.

Remarque:

Cet axiome est en fait un théorème qui se démontre avec les axiomes de Péano

Application nº 1 Raisonnements par récurrence pour étudier les suites

On considère la suite (u_n) définie par $u_0 = 100$ et $u_{n+1} = \frac{2}{3}u_n + 3$. Démontrez par récurrence que $\forall n \in$ $\mathbb{N}: u_n = 91\left(\frac{2}{3}\right)^n + 9.$

Correction :

1. On appelle \mathscr{P}_n la propriété : $u_n = 91 \left(\frac{2}{3}\right)^n + 9$.

Donc la propriété est vraie au rang n + 1. \mathcal{P}_{n+1} est vraie.

- 2. **Initialisation**: Montrons que \mathscr{P}_0 est vraie: $u_0 = 100$ et $91 \times \left(\frac{2}{3}\right)^0 + 9 = 91 + 9 = 100$ donc \mathscr{P}_0 est vraie.
- 3. **Hérédité** : Supposons qu'il existe un entier n tel que \mathcal{P}_n soit vraie. Démontrons que \mathcal{P}_{n+1} est vraie. On sait par hypothèse que $u_{n+1} = \frac{2}{3}u_n + 3$ or par hypothèse de récurrence : $u_n = 91\left(\frac{2}{3}\right)^n + 9$, donc en $u_{n+1} = \frac{2}{3} \left(\left(\frac{2}{3} \right)^n + 9 \right) + 3 = 91 \left(\frac{2}{3} \right)^{n+1} + 6 + 3 = 91 \left(\frac{2}{3} \right)^{n+1} + 9.$
- 4. **Conclusion**: La propriété est vraie pour n = 0 et est héréditaire donc par récurrence on a : $u_n = 91\left(\frac{2}{3}\right)^n + 9.$

Montrer que $\forall n \in \mathbb{N}^*$ $\sum_{k=1}^n k = \frac{n(n+1)}{2}$

Application nº 2 Étude de somme

$$\sum_{k=1}^{\infty}$$
 2

🚀 Correction :

- 1. On appelle \mathcal{P}_n l'égalité $\sum_{k=1}^n k = \frac{n(n+1)}{2}$
- 2. Initialisation : Montrons que P_1 est vraie $\sum_{k=1}^{1} k = 1$ et $\frac{1 \times 2}{2} = 1$ donc P_1 est vraie 3. **Hérédité** : Supposons qu'il existe un entier n tel que \mathcal{P}_n soit vraie , montrons que \mathcal{P}_{n+1} est vraie :
- $\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + n + 1$ Or d'après l'Hypothèse de récurrence $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ donc $\sum_{k=1}^{n+1} k = \frac{n(n+1)}{2} + n + 1$ $= \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{n+1}{2}(n+2) = \frac{(n+1)(n+2)}{2}$ Soit P_{n+1} est vraie
- 4. Conclusion : La propriété est vraie pour n = 1 et est héréditaire donc par récurrence on a : $\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \quad \forall n \in \mathbb{N}^*$

$7^n - 1$ est un multiple de 6.

Application nº 3 Arithmétique Montrer que $\forall n \in \mathbb{N}$

Alphaomegacours.fr

- Correction : 1. On appelle \mathcal{P}_n la propriété 7^n-1 est un multiple de 6.
 - 2. **Initialisation :** Montrons que \mathcal{P}_0 est vraie. $7^0 - 1 = 0$ et 0 est bien un multiple de 6 car $6 \times 0 = 0$.

3. **Hérédité** : Supposons qu'il existe un entier n pour tel que \mathcal{P}_{n+1} soit vraie.

Ceci implique qu'il existe $k \in \mathbb{N}$ tel que $7^n - 1 = 6k$.

 $7^{n+1} - 1 = 7 \times 7^n - 1 = 7 \times (6k+1) - 1 = 7 \times 6k + 7 - 1 = 6(7k+1)$. Donc $7^{n+1} - 1$ est un multiple de 6 et

P(n+1) est vraie.

4. Conclusion : La propriété est vraie pour n = 1 et est héréditaire donc par récurrence on a $7^n - 1$ est un multiple de 6 $\forall n \in \mathbb{N}$

1