

Алгоритмы. Позиционная система счисления.

Позиционная система счисления

Позиционная система счисления — система счисления, в которой значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда).

Позиционная система счисления определяется целым числом n > 1, называемым основанием системы счисления. Система счисления с основанием n также называется n-ичной.

n = 10 — десятичная

n = 2 — двоичная

n = 16 - шестнадцатеричная

Способ записи числа в позиционной системе счисления

Целое число без знака (обозначим например как x) в n-ичной системе счисления записывается как линейная комбинация степеней числа n.

$$x = \sum_{i=0}^{k-1} a_i \cdot n^i$$

- a_i Цифры (используемые в данной системе счисления) удовлетворяющие условию $0\!\leqslant\! a_i\!<\! n$
- n^{i} Основание системы счисления в степени i
- і Позиция цифры при записи
- k Количество разрядов в записи числа

Десятичная система счисления

Основанием десятичной системы счисления является число 10 (предположительно связанно с количеством пальцев на руках). Цифрами являются [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].

$$x = \sum_{i=0}^{k-1} a_i \cdot 10$$

Сложение чисел в позиционных системах счисления

- 1)Выровнять их по позициям (для меньшего числа заполнить недостающие позиции нулями).
- 2)Установить начальное значение позиции (в дальнейшем s) равной нулю.
- 3)Выполнить сложение цифр первого и второго числа на позиции s. В случае если сумма цифр равна или больше основания, то заменяем сумму на остаток от деления суммы на основание, и переносим единицу в сумму следующего разряда. Записываем результат на s позицию суммы.
- 4)Если s = количеству разрядов и нет единицы с переноса. Алгоритм окончен. В противном случае увеличить s на единицу. Перейти к 3.

Пример сложения в десятичной системе счисления

Умножение чисел в позиционных системах счисления

- 1)Для умножения чисел нужно выровнять их по позициям (для меньшего числа заполнить недостающие позиции нулями).
- 2)Выбрать в качестве начальной позиции (в дальнейшем s) нуль.
- 3)Выполнить умножение цифры на s позиции второго числа на цифры во всех позициях первого числа. В случае если произведение цифр равно или больше основания, то заменяем произведение на остаток от деления произведения на основание, и переносим неполное частное в следующий разряд. Полученное в результате число записываем начиная с позиции s.
- 4) Если s=количеству разрядов и нет значения на перенос. Сложить полученные числа. Алгоритм закончен. В противном случае увеличить s на единицу и перейти к пункту 3.

Пример умножения в десятичной системе счисления

Запись числа в позиционной системе счисления

Запись числа в позиционной системе счисления с произвольным основанием п можно выполнить по следующему алгоритму.

- 1)Выполнить целочисленное деление на основание системы счисления. Вычислить остаток. Установить позицию равную нулю.
- 2) Если неполное частное равно 0. Записать остаток на текущую позицию. Закончить алгоритм.
- 3) В качестве числа использовать неполное частное. Увеличить позицию на единицу. Перейти к пункту 2.

Пример записи числа в десятичной системе счисления

Двоичная система счисления

Двоичная система счисления — позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах. Цифрами являются [0,

1]

$$x = \sum_{i=0}^{k-1} a_i \cdot 2$$

Получение значения числа в двоичной системе счисления

```
10010111 = 1*2^{0} + 1*2^{1} + 1*2^{2} + 0*2^{3} + 1*2^{4} + 0*2^{5} + 0*2^{6} + 1*2^{7} = 1+2+4+0+16+0+0+128=151
```


Пример сложения в двоичной системе счисления

Значения в десятичной системе счисления 1001 = 9 111 = 7 10000 = 16

Пример умножения в двоичной системе счисления

Значения в десятичной системе счисления 1001 = 9 111 = 7 111111 = 63

Пример записи числа в двоичной системе счисления

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления — позиционная система счисления по целочисленному основанию 16. Цифры данной системы счисления [0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F].

Буквы обозначают следующие числовые значения A = 10, B=11, C=12, D=13, E=14, F=15.

$$x = \sum_{i=0}^{k-1} a_i \cdot 16^i$$

Таблица умножения в этой системе счисления

	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
2	0	2	4	6	8	Α	С	Е	10	12	14	16	18	1A	1C	1E
3	0	3	6	9	С	F	12	15	18	1B	1E	21	24	27	2A	2D
4	0	4	8	С	10	14	18	1C	20	24	28	2C	30	34	38	3C
5	0	5	Α	F	14	19	1E	23	28	2D	32	37	3C	41	46	4B
6	0	6	С	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
7	0	7	Е	15	1C	23	2A	31	38	3F	46	4D	54	5B	62	69
8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	0	9	12	1B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
Α	0	Α	14	1E	28	32	3C	46	50	5A	64	6E	78	82	8C	96
В	0	В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
С	0	С	18	24	30	3C	48	54	60	6C	78	84	90	9C	A8	B4
D	0	D	1A	27	34	41	4E	5B	68	75	82	8F	9C	A9	В6	C3
Е	0	Е	1C	2A	38	46	54	62	70	7E	8C	9A	A8	В6	C4	D2
F	0	F	1E	2D	3C	48	5A	69	78	87	96	A5	B4	C3	D2	E1

Получение значения числа в шестнадцатеричной системе счисления

```
7C3 = 3*16<sup>0</sup> + C*16<sup>1</sup>+ 7*16<sup>2</sup> = 3 + 12*16 + 7*256 = 1987
```


Пример сложения в шестнадцатеричной системе счисления

Значения в десятичной системе счисления 7C3 = 1987 A1 = 161 864 = 2148

Пример умножения в шестнадцатеричной системе счисления

Значения в десятичной системе счисления 7A = 122 1B = 27 CDE = 3294

Пример записи числа в шестнадцатеричной системе счисления

125
$$\longrightarrow \begin{cases} 125 = 7 \cdot 16 + 13 \\ r = 7, q = D \\ i = 0 \end{cases} \longrightarrow \begin{cases} 7 = 0 \cdot 16 + 7 \\ r = 0, q = 7 \\ i = 1 \end{cases}$$

D

TD

O

10

Список литературы

1) Р. Курант, Г. Роббинс: Что такое математика? — 3-е изд., испр. и доп. — М.: ЦНМО, 2001. — 568 с.