

PSG COLLEGE OF TECHNOLOGY DEPARTMENT OF BIOMEDICAL ENGINEERING

19D620 - INNOVATION PRACTICES LAB SECOND REVIEW

AI BASED TOOL FOR PRELIMINARY DIAGNOSIS OF DERMATOLOGICAL DISEASES

PROJECT GUIDE:

MS. SHRINITHI S, ASSISTANT PROFESSOR

DEPT. OF BIOMEDICAL ENGINEERING.,

PSG COLLEGE OF TECHNOLOGY

PRESENTED BY:
ATHISH A S -21D211
KARTHIK K-21D226
NINA CHARLES J- 21D235
SANKAR HARIHARAN G-21D243

INTRODUCTION

- Skin disorders are contagious; poor living standards and increasing population are major threats.
- Scarcity of physicians and laboratory services in the dermatological field and lack of dermatological care in resource-poor regions.
- Skin cancer is increasing globally and is ranked 6th among the other types of cancer.
- Cancer is caused due to the abnormal or uncontrolled growth of the cells in the corresponding tissues or to the other adjacent tissues.
- Melanoma and carcinoma are the most cancerous skin diseases.

Type of skin cancer

Fig 1 - Types of Skin Cancer

LITERATURE SURVEY

S. No.	TITLE	AUTHOR	YEAR OF PUBLICATION	JOURNAL & PUBLISHER	CONTRIBUTION	INFERENCES
1	Skin Disease Detection Using Image Processing with Data Mining and Deep Learning	Mrs. Jayashree Hajgude et al.	2019	Journal: International Research Journal of Engineering and Technology (IRJET).	 Image Processing Unit - Work Flow - Acquisition, pre- processing, segmentation and feature extraction. Data Mining Unit – Support Vector Machine (SVM) and Convolutional Neural Network (CNN) 	 Diseases analysed – Eczema, Impetigo, Melanoma and a 'no disease' condition SVM – 90.7% accuracy CNN – 99.1% accuracy
2	Skin Disease Diagnosis System using Image Processing and Data Mining	R. S. Gound et al.	2019	Journal: International Journal of Computer Applications.	 Image processing – preprocessing and segmentation, segmentation (Thresholding, color-based, discontinuity based, region based and soft computing), feature extraction (GLCM, first order histogram features, dermoscopic features, color features). Feature classification – SVM, C4.5. 	 Recognised and classified lesions as benign and malignant lesions App based image capturing SVM – 90.7% accuracy

Survey			Tippireumons	Classification model and skin disease predication.	for Impetigo and 85% for Melanoma.
Deep Neighbor Information Learning From Evolution Trees for Phylogenetic Likelihood Estimates	Cheng Ling1, Wenhao Cheng, Haoyu Zhang, Hanhao Zhu, And Hua Zhang	2020	IEEE	 To minimize the parameters of the variance of the phylogenetic tree Non linear prediction model Enhanced accuracies 	 Model prediction can be done by goodness of fit Varying the parameters for the enhanced accuracies
24-01-2024					4

PUBLISHER

International

Applications

Journal of

Computer

CONTRIBUTUION

segmentation

(thresholding

segmentation).

feature extraction.

INFERENCES

This expert system

recognition accuracy of

85% for Eczema, 95%

pertain disease

S.NO

TITLE

Skin Diseases

using Image

Processing: A

Detection Models

AUTHOR

Nisha Yadav,

Virender Kumar

Narang, Utpal

shrivastava

YEAR OF

N

2019

Processing Technique			Technology	extraction • Classification – K-means Clustering and KNN (K- Nearest Neighbours)	 Training set accuracy – 80% Testing set accuracy-89% overall accuracy – 89.92% The algorithm used for this result is not clearly mentioned (possibly KNN)
Skin Disease Detection Using Image Processing and Neural Networks	Divya Shree D V et al.	2020	Journal:International Journal of Progressive Research in Science and Engineering Volume-1	 Image processing – pre-processing and segmentation, feature extraction(texture –GLCM – entropy, energy, contrast, invere difference moment, homogeneity, correlation, variance, RMS, S.D etc) Classifier – SVM, CNN and PNN 	 Accuracy varies from dataset to data set GLCM – Gray Level Co-occurrence Matrix – relation between two neighbouring pixels – used for feature extraction
24-01-2024					5

PUBLISHER

Journal:International

Research Journal of

Engineering and

CONTRIBUTION

• Image processing –

segmentation (active

delineation) and feature

INFERENCES

• Two features for

identification –

Color and texture

S. No.

TITLE

Image

Skin Disease

Detection using

AUTHOR

al.

Prem J. Patil et

YEAR OF

2020

Intelligence in Cosmetic Dermatology: A Systematic Literature Review	Vatiwutipong1, Sirawich Vachmanus, Thanapon Noras, And Suppawong Tuarob			 identification are done in ML and DL in different approaches Accuracies of each algorithm is tested Optimization of the algorithm in better results. 	optimized by means of adjusting the least square values and estimation of the values for the desired accuracy.
Computer-Aided Diagnosis for Skin Diseases using Deep Neural Networks	Muhammad Naseer Bajwa, et al.,	2020	IEEE	 Image dataset are from DermNet, and ISIC and IMAGENET. These models were pretrained using IMAGENET dataset has 1.5 million images with 1000 subclasses. 	 Architecture used for classification are ResNet-152, DenseNet-161. K-fold cross validation (statistical method) is done to ensure the classifiers performance. With 23 trained classes, 77.5% od top-1 accuracy and 93.87% of top-5 accuracy
24-01-2024					6

PUBLISHER

IEEE

CONTRIBUTIONS

Dermatological disease

INFERENCE

The ML algorithm can be

S.NO

TITLE

Artificial

AUTHOR

Pat

YEAR OF

2020

A machine learning approach for skin disease detection and classification	Mostafiz Ahammed , Md. Al Mamun, Mohammad	2022	The healthcare analytics	•	To build a model for removing hair using Black-Hat Transformation and Image Inpainting algorithm. To develop a powerful	•	Addresses the need for automated systems in skin disease diagnosis.
using image segmentation	Shorif Uddin			•	segmentation model using the Grabcut technique that detects the lesion without losing any information and makes the images more suitable for further processing. To develop an automatic classification model for skin diseases classification based on a sufficient number of relevant features with high accuracy.	•	Introduces advanced preprocessing and machine learning for effective disease classification. Validates models with diverse datasets and compares their performance with existing methods, showcasing advancements in skin disease analysis.
24-01-2024							7

PUBLISHER

CONTRIBUTIONS

INFERENCE

S.NO

TITLE

AUTHOR

YEAR OF

Intelligence in Dermatology: Current Uses, Shortfalls, and Potential Opportunities for Further Implementation in Diagnostics and Care	Akunuri Koka, and Craig G. Burkhart	Dermatology Journal	•	dermatology is tele- dermatology. image analysis is an AI- powered tool that can be utilized to recognize and distinguish lesions. The process includes analysis of each pixel in the image and validation and cross-checking with a certified dermatologist. In general, Deep Learning (CNN) is utilized to analyze the data through a neural network that mimics the human brain	•	had a specificity of 82.5%, while the dermatologists had a specificity of 65.2%. This suggests that the AI algorithm was better able to correctly rule out cases that were not melanoma.
24-01-2024						8

PUBLISHER

The Open

CONTRIBUTIONS

A major AI component in

INFERENCE

The AI algorithm

S.NO

10

TITLE

Artificial

AUTHOR

Sanjay Satya-

YEAR OF

2023

PROBLEM STATEMENT

• Automated detection of dermatological diseases for early diagnosis and false positive reduction.

OBJECTIVE:

- To develop a Computer Aided Diagnosis (CAD) system for the early diagnosis of the dermatological disease using artificial intelligence with the aim of improving the healthcare outcomes and patient's health.
- To innovate the CAD system as a real-time processing, user-friendly interface, clinical validation tool and self-assessment system to improve the accuracy and reliability.

METHODOLOGY

24-01-2024 Fig 2.1: Flowchart

HARDWARE BLOCK DIAGRAM

Fig2.2:Hardware Block Diagram

WORK DONE

DATASET DESCRIPTION

- ISIC 2016 Dataset [ISIC: The International Skin Imaging Collaboration]
- It consists of Benign and Malignant skin lesion images.
- Total number of images collected

• Benign skin lesion -400 images

• Malignant (cancerous)

• Melanoma -400 images

• Carcinoma

• Basal cell carcinoma -200 images

• Squamous cell carcinoma -200 images

SAMPLE IMAGES

Fig 3 : Melanoma

Fig 5: Squamous Cell Carcinoma

Fig 4 : Basal Cell Carcinoma

Fig 6: Benign

SKIN ABNORMALITIES CONSIDERED

TYPES	DIFFERENCE			
1. Melanoma	Dark, irregularly shaped, multicolored spot or mole that can be larger than normal moles.			
2. Basal cell carcinoma	Raised, pearly or waxy bump that is pink, flesh colored or light brown.			
3. Squamous cell carcinoma	Rough, scaly or crush patch on skin maybe red, pink or flesh colored.			
4. Benign tumors	Smooth Surface, Regular Shape, Uniform Color, Cystic Structures, Encapsulation			

Table 1 : Comparison of Skin Tumors

PREPROCESSING

GRAYSCALE CONVERSION

With Hair

Fig 7 : Original Image

Without Hair

Fig 9: original image

Fig 8 : Grayscale Image

Fig 10: Grayscale image

HAIR REMOVAL

- DULL RAZOR method is used for the hair removal.
- Technique includes
 - Blackhat transformation.
 - Mask for inpainting technique.

With Hair

Without Hair

Fig 11 : Grayscale image

Fig 13 : Grayscale image

Fig 12: Hair removed image

Fig 14: Hair removed image

DULL RAZOR METHOD STEPS

Fig 15: Grayscale image

Fig 16: Black-Hat image

Fig 17: Mask image

Fig 18: Hair Removed image

NOISE REMOVAL

With hair

Fig 19: Hair removed image

Fig 21: Hair removed image

Fig 20: Noise removed image

Fig 22: Noise removed image

Without hair

NOISE REMOVAL

- > It improves the accuracy and reliability of the diagnostic process.
- Major noise present in images are Random noise
- > Filters suited for Random noise,
 - > Gaussian Filter
 - > Median Filter
 - Geometric Mean Filter
 - > Harmonic Mean Filter
 - > Contra Harmonic Filter
 - > Simple Average Filter
- ➤ High PSNR is recorded in contra harmonic filter and harmonic filter when compared to other filters

METHODS	PSNR	
Gaussian Filter	25.6618	
Median Filter	25.6209	
Geometric Mean Filter	25.6167	
Harmonic Filter	33.1756	
Contra Harmonic Filter	33.2503	
Simple Average Filter	24.9032	

Table 2 : Comparison of Noise Removal Methods

SEGMENTATION

- > It isolates the region of interest within an image, and separates it from the surrounding skin.
- > Otsu's thresholding technique automatically determines the threshold value that separates the foreground and background of an image.

With hair

Fig 23: Noise removed image

Without hair

Fig 25: Noise removed image

Fig 24 : Segmented image

Fig 26 : Segmented image

SEGMENTATION

Fig 27 : Segmented image

Fig 28 : Color inverted image

Fig 29: Blob removed image

Fig 30: Edge Detected Image

Fig 33 : Lesion retained image (Pseudocoloured)

Fig 34 : Lesion retained image (Original color)

IMAGES USED TO EXTRACT FEATURES

Fig 35: Blob removed Image

Fig 36 : Lesion retained image (Grayscale image)

Fig 37: Lesion retained image (Pseudo colored)

Fig 38 : Lesion retained image ₂₄₋₀₁₋₂₀₂₄(Original color)

Fig 39 : Edge Detected Image

FEATURE EXTRACTION

METHOD	DESCRIPTION	WORKING	ADVANTAGES
COLOR	Color feature extraction often involves converting images into these different color spaces to extract meaningful information	Color feature extraction involves converting the image to a specific color space and then calculating the average value of each color channel within that space	Color features can often help discriminate between objects or regions in images that have similar texture or shape characteristics
GLCM	Gray-level co-occurrence matrix is a texture analysis method.	Computes the co-occurrence matrix of intensity values for pairs of pixels in an image. The matrix is then used to extract statistical measures of texture such as contrast, homogeneity and energy	Good at capturing texture information
Histogram Based Features	Histogram-based features represent the distribution of intensity or color values.	Computes the histogram of intensity values in an image. The histogram is used to describe the distribution of values in the image.	Simple to compute, robust to changes in illumination.

Table 3 : Comparison Of Feature Extraction Methods

FEATURE EXTRACTION

METHOD	DESCRIPTION	WORKING	ADVANTAGES
SURF	Speeded-Up Robust Feature is a patented local feature detector and descriptor.	It can be used for tasks such as object recognition, image registration, classification, or 3D reconstruction.	Reduced in Computational Complexity.
KAZE	KAZE Features is a novel 2D feature detection and description method. Operates completely in a nonlinear scale space	KAZE features have been developed by detecting and describing image features in a nonlinear scale space through the application of nonlinear diffusion filters.	Features can be detected in non linear spaces by keeping important details and removing noises.
SIFT	Scale Invariant Feature Transform	Detects local features in an image and describe them using a set of features that are invariant to scale and orientation changes. The features are then used to match features between different images.	Good at describing local features and their relative positions

FEATURE EXTRACTION

METHOD	DESCRIPTION	WORKING	ADVANTAGES
GABOR	Features derived from Gabor filters, which are mathematical functions used in image processing and computer vision.	Gabor filters convolve with an image to extract texture features at different scales and orientations, capturing edges, corners, and texture orientation information.	Gabor features are sensitive to texture patterns, robust to illumination and noise, and provide interpretable representations of image textures.
AREA, PERIMETER AND COMPACT INDEX	Area represents the extent of space within the boundary of a shape. Perimeter measures the total length of the boundary of a shape. Compactness Index quantifies the compactness, by comparing its area to the square of its perimeter.	Area provides information about the size of the shape. Perimeter is the boundary length. Compactness index combines area and perimeter to provide a relative measure of how tightly or loosely packed the shape is.	Area, perimeter, and compactness index are measures that are easy to interpret, making them useful for communicating shape characteristics
LBP	Local Binary Pattern Used to describe texture characteristics of the surfaces.	The pixel value from segmented images are compared with central pixel value to compute a threshold.	It represent the local feature in images. Possible to get great results.

COLOR

- IMAGES USED
 - 1)Lesion retained Color Image
 - 2)Lesion retained Pseudo-Colored Image
- Average of each layers of the images are calculated,
 - 1)Red
 - 2)Green
 - 3)Blue

Fig 40 : Lesion retained image (Original color)

Fig 41 : Lesion retained image (Pseudo colored)

COLOR

- r_avg average value of red pixels in the image
- g_avg average value of red pixels in the image
- b_avg average value of red pixels in the image

	Α	В	С		
1	r_avg	g_avg	b_avg		
2	25.85717	18.43539	17.71654		
3	37.32883	25.50543	18.58989		
4	88.65539	58.57129	41.18547		
5	48.22332	26.59266	16.40176		
6	81.26141	43.62158	28.58519		
7	23.34026	17.29861	16.73439		
8	59.44619	32.2748	12.90756		
9	17.28204	11.29464	7.929543		
10	30.40899	19.30288	13.87181		
11	134.6191	95.57082	74.70828		
12	21.47735	12.19093	8.978693		
13	18.58036	12.81106	11.7866		
14	46.4921	31.22241	28.87958		
15	43.01986	24.53831	16.38505		

Fig 42 : Extracted Feature (Original color)

	Α	В	С		
1	r_avg	g_avg	b_avg		
2	19.40715	46.0853	28.13144		
3	32.8076	53.59014	22.8522		
4	91.02651	113.4039	29.81575		
5	33.23714	70.50281	39.14297		
6	14.64177	124.2379	139.5096		
7	11.11907	45.53511	36.24106		
8	28.52804	87.53843	61.71148		
9	13.99571	26.82002	15.04392		
10	6.095615	52.86457	55.77467		
11	144.079	89.40566	4.608976		
12	7.15781	33.7712	32.98252		
13	13.39982	28.90796	17.56375		
14	22.54776	82.59103	64.9199		
15	7.66718	68.16883	85.22115		

Fig 43 : Extracted Feature (Pseudo colored)

HISTOGRAM BASED FEATURES

- Image used Lesion retained image (Grayscale image)
- **SKEWNESS** is the measure of the asymmetry of a frequency distribution (Histogram).
- **STANDARD DEVIATION** is a measure of the "typical" deviation from the mean for the values in the data set.
- **MEAN** is also called the average. It is the average of the data found by dividing the sum of the observations by the total number of observations.

Fig 44 : Lesion retained image (Grayscale image)

	Α	В	C		
1	MEAN	SD	SKEW		
2	22.15179	47.49806	1.775037		
3	28.35611	55.1018	1.496141		
4	65.55889	72.57668	0.247469		
5	34.80091	56.58114	1.086035		
6	53.17681	45.61065	-0.06465		
7	19.89064	42.50535	1.767198		
8	39.92114	55.24746	0.732669		
9	13.68216	39.72467	2.712247		
10	21.95951	39.6322	1.358702		
11	105.177	91.19131	-0.25361		
12	14.98373	36.0806	2.206315		
13	14.5935	40.77048	2.621506		
14	36.87337	53.07748	0.898387		
15	29.85171	41.30526	0.861041		

Fig 45: Histogram-based Feature

AREA, PERIMETER & COMPACT INDEX

- Image used for Area **Blob removed image**
- Image used for Perimeter Edge detected image
- COMPACT INDEX Border Irregularity is calculated using Compact Index . It is Calculated with the formula $CI = (4\pi A)/P^2$

Fig 46: Blob removed Image

Fig 47 : Edge Detected Image

1	AREA	PERI	CI
2	8433	1823	0.031887
3	10002	2640	0.018034
4	21623	8870	0.003454
5	12890	2263	0.03163
6	26682	2942	0.038739
7	8591	1758	0.034931
8	16103	3464	0.016864
9	5269	1481	0.030188
10	11310	2695	0.019568
11	25926	6788	0.007071
12	7258	1825	0.027384
13	5640	1466	0.032978
14	15556	2783	0.02524
15	16419	2995	0.023002

Fig 48 : APC Feature

GABOR

• Image used - Lesion retained (Grayscale image)

Fig 49: Lesion retained image (Grayscale image)

2	29.44193	118.1976
3	42.50338	147.4382
4	134.4601	232.7253
5	38.57921	122.2656
6	52.83928	107.8438
7	27.33302	102.8119
8	51.67419	125.1922
9	24.0648	97.40004
10	35.20155	95.15238
11	124.8234	241.4293
12	26.37729	97.80935
13	26.73841	111.1135
14	51.82902	134.3297
15	43.96154	107.9988

Fig 50 : GABOR Feature

SIFT - SURF - KAZE

- Strongest features selected -80%(0.8), 90%(0.9) and 100%(1.0)
- Vocabulary sizes taken 200 and 500
- Image used- Lesion retained image (Grayscale image)

Fig 51: Lesion retained image (Grayscale image)

24-01-2024 33

1	SIFT									
2	0.126345	0.007019	0.077211	0	0	0.042115	0.049134	0	0.105287	0
3	0.162492	0	0.116994	0.025999	0.0065	0.025999	0.058497	0.0065	0.032498	0.012999
4	0.039282	0.029461	0.039282	0.024551	0.024551	0.054013	0.024551	0.00491	0.049102	0.073653
5	0.230367	0.006062	0.115183	0	0	0.07881	0.012125	0	0.096996	0
6	0.065331	0.007259	0.003629	0	0.007259	0.032665	0	0	0.036295	0.010888
7	0.080941	0	0.074196	0	0.006745	0.053961	0.087686	0	0.080941	0
8	0.133331	0.057142	0.050793	0.006349	0.006349	0.06984	0.019047	0.050793	0.082538	0
9	0.077364	0.029012	0.125717	0	0	0.116046	0.038682	0	0.067694	0
10	0.102882	0.034294	0.027435	0	0.013718	0.178329	0.041153	0.006859	0.075447	0.013718

Fig 52 : SIFT Feature

1	SURF									
2	0.005851	0.00351	0.00468	0.970024	0.030423	0.00117	0	0.00351	0	0.008191
3	0.004703	0.014108	0.003135	0.942101	0.043892	0.003135	0.003135	0.003135	0	0.009405
4	0.018578	0	0.003096	0.795761	0.018578	0.003096	0.108372	0	0.037156	0.003096
5	0.026693	0.006673	0.001668	0.920898	0.036702	0.003337	0.006673	0.001668	0	0.006673
6	0.041161	0	0.018997	0.34512	0.031662	0.015831	0	0.015831	0	0.003166
7	0.010144	0.032687	0.001127	0.967095	0.034942	0	0.004509	0.002254	0	0.004509
8	0.014963	0	0.006413	0.908452	0.038476	0.010688	0.006413	0.012825	0	0.002138
9	0	0.016012	0.001779	0.990103	0.012454	0	0	0.00089	0	0.006227
10	0.023842	0.005109	0.008515	0.934945	0.05109	0.006812	0.003406	0.001703	0	0.008515

Fig 53 : SURF Feature

1	KAZE									
2	0.009909	0	0.108994	0.118902	0	0.03468	0.014863	0.03468	0	0
3	0.00492	0.019682	0.127933	0.113172	0	0.083648	0.019682	0.019682	0	0
4	0	0	0	0.038492	0.021996	0	0.005499	0.010998	0.010998	0.054989
5	0	0.013254	0.053016	0.110451	0	0.02209	0.017672	0.013254	0	0.004418
6	0	0.037712	0.041141	0.010285	0	0.006857	0.113137	0.013714	0.030855	0.037712
7	0.014713	0	0.255025	0.102991	0	0.024522	0	0.044139	0	0
8	0	0.015271	0.066176	0.050905	0	0.066176	0.045814	0.020362	0.010181	0.035633
9	0.089166	0	0.139322	0.072447	0	0.055729	0	0.022291	0	0
10	0.018828	0.004707	0.164748	0.056485	0	0.018828	0.014121	0.047071	0	0.004707

Fig 54 : KAZE Feature

GLCM

- Images used Lesion retained image (Grayscale image)
- **CONTRAST** measures the spatial frequency of an image and is a different moment of GLCM.
- **CORRELATION** measures the joint probability occurrence of the specified pixel pairs
- **ENERGY** returns the sum of squared elements in the GLCM
- **HOMOGENEITY** measures the closeness of the distribution of elements in the GLCM to the GLCM diagonal.
- **ENTROPY** measures the randomness in neighborhood intensity values.

1	GLCM	GLCM	GLCM	GLCM	GLCM
2	0.151725	0.956355	0.675235	0.983264	0.882088
3	0.258823	0.944524	0.627065	0.976804	0.908359
4	1.26136	0.849897	0.377864	0.90828	0.912999
5	0.225681	0.953999	0.545103	0.9787	0.927972
6	0.223243	0.925944	0.328524	0.961891	0.96911
7	0.141561	0.947218	0.674386	0.979758	0.95675
8	0.315113	0.932648	0.467794	0.963881	0.95675
9	0.149694	0.938151	0.789213	0.986053	0.931812
10	0.148175	0.932629	0.593922	0.977321	0.920681
11	1.28639	0.906139	0.297816	0.915683	0.961764
12	0.125777	0.933451	0.718411	0.984514	0.976446
13	0.166405	0.934848	0.775085	0.984095	0.96251
14	0.275477	0.933919	0.458581	0.964152	0.944848
15	0.193444	0.921807	0.451101	0.963544	0.938713

Fig 55 : GLCM Features

LBP

• Image used - Lesion retained image (Grayscale image)

Fig 56 : Lesion retained image (Grayscale image)

1	LBP									
2	0.022049	0.004003	0.000813	0.004706	0.001085	0.003347	0.001133	0.004818	0.00094	0.001603
3	0.03423	0.00771	0.001412	0.006476	0.001546	0.006346	0.001398	0.007148	0.001729	0.002087
4	0.121928	0.017916	0.004519	0.024376	0.00424	0.01884	0.004814	0.023335	0.003306	0.004035
5	0.030042	0.005434	0.001147	0.006118	0.001711	0.006386	0.001357	0.005774	0.000985	0.002014
6	0.096513	0.025535	0.00258	0.040287	0.003474	0.026454	0.002793	0.042497	0.003379	0.010337
7	0.025639	0.004523	0.001263	0.005238	0.000955	0.004779	0.001449	0.005095	0.001212	0.001714
8	0.053136	0.010874	0.001842	0.011687	0.002358	0.010533	0.001824	0.011325	0.00179	0.003047
9	0.01744	0.002028	0.000768	0.003062	0.000685	0.002894	0.001127	0.003034	0.000584	0.001195
10	0.041821	0.008636	0.00104	0.009564	0.001889	0.00781	0.001761	0.010181	0.001794	0.002989

Fig 57: LBP Feature

FEATURE SELECTION & FUSION METHOD

ANOVA (Analysis of Variance)	A statistical method used to compare the means of two or more groups to determine if there is a significant difference between them. The F-statistic and p-value are considered significant.	
PCA (Principal Component Analysis)	Data was transformed into a new coordinate system where the principal components represent the directions of maximum variance in the data.It is also used to reduce the dimensionality of the data and extract the most relevant information from the original features.	
SERIAL LEVEL FUSION	Different feature vectors from different images can be concatenated or averaged to generate a single feature vector for the classification. For example, Information from the features such as SIFT and SURF at the same level of processing were combined.	

Table 4: Description of Feature Selection and Fusion Method

CLASSIFICATION

CLASSIFIER	DESCRIPTION
1.SVM (SUPPORT VECTOR MACHINES)	Particular linear classifiers which are based on the margin maximization principle. It can handle both classification and regression on linear and non-linear data.
2. DECISION TREE	A non-parametric supervised learning algorithm, which is utilized for both classification and regression tasks.
3. RANDOM FOREST	Combines the output of multiple decision trees to reach a single result. It can perform both regression and classification tasks.
4. LOGISTIC REGRESSION	It is used to calculate or predict the probability of a binary event occurring.
5. GRADIENT BOOSTING	Gradient Boosting is a tree-based algorithm, it can be used for both classification and regression problems
6. KNN (K NEAREST NEIGHBORS)	It classifies the data point on how its neighbor is classified. KNN classifies the new data points based on the similarity measure of the earlier stored data points.

Table 5 : Descriptions of Classifiers

DECISION LEVEL FUSION

- Decision level fusion combine the results from the different classifiers
- In this technique, each classifier applies a threshold on the match score and renders its decision regarding the presence or absence of a genuine individual. The decisions from multiple classifiers are then fused in order to generate the final decision.
- It is high level information fusion technique that contributes to the accuracy of the model.

HARD LEVEL VOTING

• Hard Voting: In hard voting, the predicted output class is a class with the highest majority of votes that is the class which had the highest probability of being predicted by each of the classifiers.

Fig 59: Depiction of Hard Voting in Ensemble Machine Learnin

SOFT LEVEL VOTING

• Soft Voting: In soft voting, the output class is the prediction based on the average of probability given to that class.

Fig 60 :Depiction of Soft Voting in Ensemble Machine Learning

```
Decision level fusion accuracy_2 is: 84 %
SVM Confusion Matrix_5
 [[73 6 1]
  4 63 13]
     6 66]]
             precision
                        recall f1-score
                                          support
                 0.86
                          0.91
                                   0.88
                                               80
                 0.84
                          0.79
                                   0.81
                                               80
                 0.82
                          0.82
                                   0.82
                                               80
                                   0.84
                                              240
   accuracy
                          0.84
                                   0.84
                                              240
                 0.84
  macro avg
weighted avg
                 0.84
                          0.84
                                   0.84
                                              240
```

Fig 61: Output of Decision Level Fusion

CONFUSION MATRIX & PERFORMANCE METRICS

CLASS	0	1	2
0	73	6	1
1	4	63	13
2	8	6	66

Table 6 : Confusion Matrix

CLASS	PRECISION	RECALL	FI-SCORE	SUPPORT
0	0.86	0.91	0.88	80
1	0.84	0.79	0.81	80
2	0.82	0.82	0.82	80
ACCURACY	-	-	0.84	240
MACRO AVG	0.84	0.84	0.84	240
WEIGHTED	0.84	0.84	0.84	240
AVG				

Table 7: Performance Metrics

HARDWARE MODELLING

HARDWARE MODELLING

Camera module:

2MP pixel camera, IIR filter, 30fps, Auto focus, exposure control automatic, Optical image stabilisation & 150 grams

Illumination source: To provide enough illumination across the diseased skin condition

ESTIMATED COST

• OV 5647 5MP camera board module: Rs. 500/-

• Raspberry Pi board : Rs. 600/-

• Illumination source : Rs. 200/-

TOTAL : Rs.1300/-

TIME LINE OF ACTIVITY

ACTIVITIES	DEC	JAN	FEB	MAR	APR
LITERATURE SURVEY					
DATASET COLLECTION					
COMPONENTS FINALIZATION					
IMAGE PROCESSING ALGORITHM					
FEATURE EXTRACTION					
STUDY OF MATHEMATICAL MODEL					
FEATURE SELECTION					
MACHINE LEARNING ALGORITHM					
TRAINING THE MODEL					
TESTING AND VALIDATION					
REPORT PREPARTION					

REFERENCES

- [1] Mrs. Jayashree Hajgude et al., "Skin Disease Detection Using Image Processing with Data Mining and Deep Learning", Journal: International Research Journal of Engineering and Technology (IRJET), 2019.
- [2] R. S. Gound et al., "Skin Disease Diagnosis System using Image Processing and Data Mining", Journal: International Journal of Computer Applications Publisher: Elsevier, 2019.
- [3] Nisha Yadav ,Virender Kumar Narang , Utpal shrivastava , "Skin Diseases Detection Models using Image Processing: A Survey, International Journal of Computer Applications , March 2019.
- [4] Prem J. Patil et al., "Skin Disease Detection using Image Processing Technique", Journal:International Research Journal of Engineering and Technology, 2020.
- [5] Divya Shree D V et al., "Skin Disease Detection Using Image Processing and Neural Networks", Journal:International Journal of Progressive Research in Science and Engineering Volume-1, 2020.
- [6] PAT VATIWUTIPONG1, SIRAWICH VACHMANUS, THANAPON NORAS, AND SUPPAWONG TUAROB., "Artificial Intelligence in Cosmetic Dermatology: A Systematic Literature Review", IEEE Access, Jan 2020.
- [7] CHENG LING1, WENHAO CHENG, HAOYU ZHANG, HANHAO ZHU, AND HUA ZHANG, "Deep Neighbor Information Learning From Evolution Trees for Phylogenetic Likelihood Estimates", IEEE Access, DEC 2020.
- [8] Mostafiz Ahammed, Md. Al Mamun, Mohammad Shorif Uddin, "A machine learning approach for skin disease detection and classification using image segmentation", The Healthcare analytics, OCT 2022.

THANK YOU