Capítulo

Introdução ao Protocolo HART

HART

Introdução:

O protocolo Hart foi introduzido pela Fisher Rosemount em 1980. Hart é um acrônimo de "*Highway Addressable Remote Transducer*". Em 1990 o protocolo foi aberto à comunidade e um grupo de usuários foi fundado.

A grande vantagem oferecida por este protocolo é possibilitar o uso de instrumentos inteligentes em cima dos cabos 4-20 mA tradicionais. Como a velocidade é baixa, os cabos normalmente usados em instrumentação podem ser mantidos. Os dispositivos capazes de executarem esta comunicação híbrida são denominados *smart*.

O sinal HART

O sinal Hart é modulado em FSK (*Frequency Shift Key*) e é sobreposto ao sinal analógico de 4..20 mA. Para transmitir 1 é utilizado um sinal de 1 mA pico a pico na freqüência de 1200 Hz e para transmitir 0 a freqüência de 2400 Hz é utilizada. A comunicação é bidirecional.

Figura 1: Sinal Hart sobreposto ao sinal 4..20 mA

Este protocolo permite que além do valor da PV outros valores significativos sejam transmitidos como parâmetros para o instrumento, dados de configuração do dispositivo, dados de calibração e diagnóstico.

O sinal FSK é contínuo em fase, não impondo nenhuma interferência sobre o sinal analógico. A padronização obedece ao padrão *Bell 202 Frequency Shift Keying*.

Topologia

A topologia pode ser ponto a ponto ou *multi drop*. O protocolo permite o uso de até dois mestres. O mestre primário é um computador ou CLP ou multiplexador. O mestre secundário é geralmente representado por terminais *hand-held* de configuração e calibração.

Deve haver uma resistência de no mínimo 230 ohms entre a fonte de alimentação e o instrumento para a rede funcionar. O terminal *handheld* deve ser inserido sempre entre o resistor e o dispositivo de campo conforme mostrado na Figura 2.

Figura 2: Conexão de uma entrada a um instrumento HART [Berge 2002]

O resistor em série em geral já é parte integral de cartões de entrada de controladores *single loop* e cartões de entrada de remotas e portanto não necessita ser adicionado. Outros dispositivos de medição são inseridos em série no loop de corrente, o que causa uma queda de tensão em cada dispositivo.

Para a ligação de dispositivos de saída a uma saída analógica, não é necessário um resistor de shunt.

Figura 3: Conexão de uma saída HART

Figura 4 Protocolo HART com dois mestres

Figura 5: Configurador HART: HPC301 e HP311 HART Pocket Interface

Figura 6: Terminal de calibração multifunção Fluke 744 e calibrador de loop de corrente Fluke 707 para instrumentos HART.

Modos de Comunicação

O protocolo HART pode utilizar diversos modos de comunicação. O modo básico é o mecanismo mestre-escravo. Cada ciclo de pedido e recebimento de valor dura cerca de 500 ms, o que implica na leitura de dois valores por segundo.

Master / Slave or Poll / Response Slave

Analog + Digital or Digital Only Communication Analog signal is not interrupted "Slave" responds to Commands/Requests from "Master" Typical 500 ms response (2 values per second)

Figura 7: Comunicação HART em modo mestre escravo (default)

Na topologia ponto a ponto um segundo mecanismo de transferência de dados é possível. O instrumento pode enviar de forma autônoma e periódica o valor de uma variável, por exemplo a PV. No intervalo entre estes envios o mestre pode executar um ciclo de pergunta e resposta. A taxa de transmissão neste caso se eleva para 3 ou 4 por segundo. Este modo é denominado burst ou broadcast mode. O mestre pode enviar uma mensagem para interromper este envio contínuo de mensagens de reply, segundo sua conveniência.

Cada mensagem pode comunicar o valor de até quatro variáveis. Cada dispositivo HART pode ter até 256 variáveis.

All Digital Communication Mode. Continuous transmission of a Selected Standard Reply Message such as PV. Gaps between Messages allow "Master" to change Command or mode 3 to 4 updates per second typical

Figura 8: Comunicação HART em modo, suportada por alguns dispositivos

Quando usando uma topologia do tipo multidrop, a rede HART suporta até 15 instrumentos de campo. Apenas o modo mestre escravo pode ser utilizado. Neste caso o valor da corrente é mantido no seu nível mínimo de 4 mA e o valor da PV deve ser lido através de uma mensagem explícita.

Figura 9: Rede HART em topologia multidrop

A grande deficiência da topologia multidrop é que o tempo de ciclo para leitura de cada device é de cerca de meio segundo podendo alcançar um segundo. Neste caso para 15 dispositivos o tempo será de 7,5 a 15 segundos, o que é muito lento para grande parte das aplicações.

Cabos

A distância máxima do sinal HART é de cerca de 3000 m com cabo com um par trançado blindado e de 1500 m com cabo múltiplo com blindagem simples. Existem barreiras de segurança intrínseca especiais que permitem o tráfego do sinal HART.

- Mesmo cabo usados hoje
- Limitações de comprimento similares
- Compatibilidade com sistema telefônico para grandes distâncias

	Distância máxima	Tipo de cabo	mm ² (AWG)
)	1534 m	Cabo de par trançado com blindagem única	0.2 (24)
	3048 m	Cabo de par trançado com blindagem	0.5 (20)

Figura 10: O protocolo HART utiliza o mesmo cabeamento para instrumentação de campo convencional.

O fator mais limitante do comprimento do cabo é sua capacitância. Quanto maior a capacitância e o número de dispositivos, menor a distância máxima permitida:

Instrumentos/	65 nF/km	95 nF/km	160 nF/km	225 nF/km
Capacitância				
1	2800	2000	1300	1000
5	2500	1800	1100	900
10	2200	1600	1000	800
15	1800	1400	900	700

Tabela 1: Comprimento máximo do cabo em função da capacitância do cabo

Comandos Hart

Todo dispositivo HART deve aceitar um repertório mínimo de comandos denominados comandos universais ou *common practice commands*. Para cada dispositivo existirão comandos particulares denominados *device specific commands*. Os comandos universais asseguram a interoperabilidade entre os dispositivos de campo.

A Tabela 2 mostra exemplos de comando universais e específicos:

Comandos universais	Comandos específicos do dispositivo
Leitura de variáveis	Funções específicas do modelo
Mudança de limite inferior e superior	Opções especiais de calibração
Ajuste de zero e span	Iniciar, parar e resetar totalizador
Inicia auto teste	Selecionar variável primária
Número de série	Habilitar PID, mudar Set Point
Valores de constantes de tempo	Ajustar parâmetros de sintonia

Tabela 2: Comandos HART

Todos os comandos específicos são opcionais, mas se existentes devem ser implementados segundo a específicação.

Device Description Language

Todo dispositivo HART é acompanhado de um *device description* (DD) que descreve todos os parâmetros e funções do dispositivo. O objetivo final é reunir todas as características para que um *host* possa comunicar plenamente com o dispositivo assegurando desta forma a total interoperabilidade entre os dispositivos.

Multiplexadores

Os multiplexadores fazem parte de todo novo projeto envolvendo redes HART. Os multiplexadores funciona como um mestre primário que realiza a leitura de todas as variáveis de processo e informação de status de todos os transmissores periodicamente, de forma independente do hospedeiro. O *host* por sua vez lê as variáveis de processo do multiplexador. O *host* também pode enviar comando e estabelecer uma conversação diretamente com um dispositivo de campo. O multiplexador é essencial quando um dos objetivos do projeto é o controle dos ativos de instrumentação (*Instrumentation Asset Management*). Em sistemas antigos onde se deseja implantar esta feature, multiplexadores podem ser colocados em paralelo com as ligações convencionais para proporcionar a função de diagnóstico contínuo dos instrumentos.

Figura 11: Multiplexador da Emerson utilizado para buscar dados para SW de gerenciamento de ativos AMS

Exemplo:

Figura 12: Uso não convencional do protocolo HART segundo [Smar 2002]

Na figura acima é ilustrado um uso não convencional do protocolo HART. O instrumento é programado tal que o sinal de 4..20 mA forneça o valor da variável manipulada, saída do algoritmo PID do bloco implementado pelo instrumento. Este sinal é usado para comandar diretamente a válvula. O canal HART é usado para realizar a supervisão da malha.

A Figura 13 enfatiza a ligação em série do instrumento e do atuador.

Figura 13: Interconexão entre instrumento e atuador HART

Exercícios

1) Procure na Internet data sheets dos seguintes tipos de equipamentos:

Componente	Fabricante	Características técnicas
Transmissor de pressão		
Transmissor de temperatura		
Scanner HART		
Calibrador HART		
Válvula com interface HART		

2) Marque Verdadeiro ou Falso:		e Verdadeiro ou Falso:	
	()	O protocolo HART transmite os sinais digitais nos intervalos da transmissão dos sinais analógicos.
	()	Todo instrumento com transmissor HART suporta transmissão em modo <i>burst</i> .
	()	A transmissão em modo <i>burst</i> propicia um melhor aproveitamento de banda do canal de transmissão.
	()	É possível utilizar o modo <i>burst</i> em redes multidrop.
	()	Quando em topologia multidrop, o valor da PV de cada instrumento não pode ser lido a partir da corrente de 420 mA.
	()	Um dispositivo de campo HART deve responder a todos os comandos universais.
	()	Instrumentos colocados em paralelo em um segmento HART trazem como beneficio um menor tempo de scan.
	()	Ë impossível para um instrumento HART possuir um módulo PID e atuar diretamente sobre um atuador no campo.
	()	Instrumentos HART são pouco disseminados no mundo, isto é sua base instalada é muito pequena em 2003.

- 3) Compare as funcionalidades da rede HART e Foundation Fieldbus.
- 4) Quinze dispositivos HART estão conectados em uma linha multidrop. Cada dispositivo requer 12 Volts para operar e consome 4 mA de corrente. Estão sendo utilizados 1 km de cabo com resistência de 22 ohms por quilômetro em cada condutor. Calcular o valor mínimo da tensão de alimentação da fonte e a potência do resistor em série (considere 250 ohms). Qual deve ser a capacitância máxima por metro do cabo ?

Bibliografia

Hart Tutorial-Smar, 2002 [Smar 2002]

HART Field Communication Protocol – Fisher Rosemount, 2nd edition, Aug 1997. [Fisher 2002]

[HartBook 2003] HART overview,

http://www.thehartbook.com/technical.htm

[Berge 2002] Jonas Berge, Fieldbuses for Process Control:

Engineering, Operation and Maintenance, ISA 2002.

Sites a serem visitados

www.hartcomm.org Hart Communication Foundation

www.thehartbook.com The Hart book