* 5

LCC

Análise

Escola de Ciências

2019/2020 -

Ficha de exercícios 5

• Funções vetoriais

1. Descreva a curva definida por cada uma das seguintes funções vetoriais:

(a)
$$\mathbf{r}(t) = (t-2, 2t+3), t \in \mathbb{R}$$
;

(b)
$$\mathbf{r}(t) = (2\cos t, 5\sin t), t \in [0, 2\pi];$$

(c)
$$\mathbf{r}(t) = (2\cos t, 5\sin t), t \in [0, \pi];$$

(d)
$$\mathbf{r}(t) = t \, \vec{i} + t^2 \, \vec{j}, \, t \in \mathbb{R};$$

(e)
$$\mathbf{r}(t) = (t, |t|), t \in \mathbb{R};$$

(f)
$$\mathbf{r}(t) = (2\cos t, 2\sin t), t \in \mathbb{R}$$
;

(g)
$$\mathbf{r}(t) = (3\cos t, 3\sin t, 2), t \in [0, 2\pi];$$

(h)
$$\mathbf{r}(t) = (\cos t, \sin t, t), t \in [0, 5\pi].$$

2. Determine parametrizações para as trajetórias:

(a)
$$y = 2x + 1$$
, em \mathbb{R}^2 ;

(b)
$$y = x^3 + 1$$
, em \mathbb{R}^2 ;

(c)
$$y^2 = x$$
, em \mathbb{R}^2 ;

(d)
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
, em \mathbb{R}^2 ;

(e)
$$\{(x,y): y=e^x\}$$
;

(f)
$$x^2 + y^2 = 25$$
, $z = 2$ descrita no sentido direto.

3. Determine uma parametrização para a elipse que resulta da interseção da superfície cilíndrica $x^2 + y^2 = 1$ com o plano y + z = 2.

4. Para as funções apresentadas no exercício 1 determine $\lim_{t\to 0} \mathbf{r}(t)$.

5. Determine o vetor velocidade e o versor tangente de cada um dos seguintes caminhos num ponto à sua escolha:

(a)
$$\mathbf{v}: [-2,2] \longrightarrow \mathbb{R}^2$$
, dado por $\mathbf{v}(t) = (t,t^2)$;

(b)
$$\mathbf{v}: [0, 4\pi] \longrightarrow \mathbb{R}^2$$
, dado por $\mathbf{v}(t) = e^t \vec{i} + \cos t \vec{j}$;

(c)
$$\mathbf{v}: [0, 2\pi] \longrightarrow \mathbb{R}^3$$
, dado por $\mathbf{v}(t) = \operatorname{sen} 3t \, \vec{i} + \cos 3t \, \vec{i} + t^{3/2} \, \vec{k}$.

6. Considere o caminho $\gamma:[0,2\pi]\longrightarrow\mathbb{R}^2$ dado por $\gamma(t)=(a\cos t,a\sin t)$, onde a>0 é uma constante.

- (a) Verifique que $\|\gamma(t)\| = a$ e que $\gamma'(t)$ é ortogonal a $\gamma(t)$.
- (b) Mostre que, em geral, se um caminho $\gamma(t)=\big(f(t),g(t)\big)$ é diferenciável e $\|\gamma(t)\|$ é constante, então $\gamma'(t)$ e $\gamma(t)$ são ortogonais.

7. Determine a equação da reta tangente à curva descrita pelo caminho $\gamma(t) = \text{sen}(3t)\vec{i} + \cos(3t)\vec{j} + t^{3/2}\vec{k}$ em t=0.

8. Determine as equações paramétricas da reta tangente à hélice com equaçõe paramétridas $x=2\cos t$, $y=\sin t$ e z=t, no ponto $(0,1,\frac{\pi}{2})$.

9. Determine um caminho diferenciável γ tal que $\gamma(0)=(0,-5,1)$ e $\gamma'(t)=(t,e^t,t^2)$.

10. Um partícula em movimento começa na posição inicial $\mathbf{r}(0)=(1,0,0)$ com velocidade inicial $\mathbf{v}(0)=(1,-1,1)$. A sua aceleração é $\mathbf{a}(t)=(4t,6t,1),\ t\geq 0$. Determine a sua posição e velocidade em cada instante t.

1

 ${f 11.}\,$ Sabendo que a posição de uma partícula no espaço é dada, no instante $t\in\mathbb{R}$, por

$$\mathbf{s}(t) = \cos t \, \vec{i} - \mathsf{e}^{2t} \, \vec{j} + \left(\frac{t}{5} - 1\right)^5 \, \vec{k}$$

determine os vetores posição, velocidade e aceleração da partícula no instante t=0.

12. O vetor posição de um objecto em movimento no plano é dado por

$$\mathbf{r}(t) = t^3 \vec{i} + t^2 \vec{j}, \quad t \ge 0.$$

Determine o vetor velocidade, a velocidade escalar e o vetor aceleração quando t=1.

13. Determine, para cada instante t, o vetor velocidade, a velocidade escalar e o vetor aceleração de uma partícula cuja posição no espaço é dada por

$$\mathbf{r}(t) = (t^2, e^t, t e^t), \quad t > 0.$$

• Comprimento de arco e curvatura

14. Calcule o comprimento de arco da curva parametrizada por

(a)
$$\mathbf{r}(t) = (3\cos 2t, 3\sin 2t), \quad 0 \le t \le \pi$$
;

(a)
$$\mathbf{r}(t) = (3\cos 2t, 3\sin 2t), \quad 0 \le t \le \pi;$$
 (d) $\mathbf{r}(t) = (e^t, e^t \sin t, e^t \cos t), \quad 0 \le t \le 2\pi;$

(b)
$$\mathbf{r}(t) = (e^t \operatorname{sen} t, e^t \cos t), \quad 0 \le t \le 1;$$

(e)
$$\mathbf{r}(t) = (6t, 3\sqrt{2}t^2, 2t^3), \quad 0 \le t \le 1;$$

(c)
$$\mathbf{r}(t) = (2\cos t, 2\sin t, t), \quad a \le t \le b;$$
 (f) $\mathbf{r}(t) = (t^2, 2t, \ln t), \quad 1 \le t \le e.$

(f)
$$\mathbf{r}(t) = (t^2, 2t, \ln t), \quad 1 \le t \le e$$

 ${f 15}.$ Reparametrize com respeito ao comprimento de arco medido a partir do ponto onde $t={f 0}$ na direção de tcrescente.

(a)
$$\mathbf{r}(t) = (e^t \operatorname{sen} t, e^t \cos t)$$
 (b) $\mathbf{r}(t) = (1 + 2t, 3 + t, -5t)$ (c) $\mathbf{r}(t) = (3 \operatorname{sen} t, 4t, 3 \cos t)$

(b)
$$\mathbf{r}(t) = (1+2t, 3+t, -5t)$$

(c)
$$\mathbf{r}(t) = (3 \operatorname{sen} t, 4t, 3 \operatorname{cos} t)$$

16. Determine o vetor unitário \mathbf{T} e use a fórmula $\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}$ para determinar a curvatura quando

(a)
$$\mathbf{r}(t) = (\text{sen } 4t, 3t, \cos 4t);$$

(c)
$$\mathbf{r}(t) = (\sqrt{2}\cos t, \sin t, \sin t);$$

(b)
$$\mathbf{r}(t) = (6t, 3\sqrt{2}t^2, 2t^3);$$

(d)
$$\mathbf{r}(t) = (t^2, 2t, \ln t)$$
.

17. Determine a curvatura das curvas parametrizadas por

(a)
$$\mathbf{r}(t) = (a\cos 2t, a\sin 2t, 3), \ a > 0 \text{ constante};$$
 (d) $\mathbf{r}(t) = (1 + t, 1 - t, 3t^2);$

(d)
$$\mathbf{r}(t) = (1+t, 1-t, 3t^2)$$

(b)
$$\mathbf{r}(t) = (1, t, t^2);$$

(e)
$$\mathbf{r}(t) = (\operatorname{sen} t, \cos t, \operatorname{sen} t);$$

(c)
$$\mathbf{r}(t) = (t^2 + 2, t^2 - 4t, 2t);$$

(f)
$$\mathbf{r}(t) = (1, t, t^3)$$
.

18. Mostre que se y=f(x) é a equação de uma curva em \mathbb{R}^2 , então a curvatura κ satisfaz

$$\kappa(x) = \frac{|f''(x)|}{\left[1 + (f'(x))^2\right]^{3/2}}.$$

19. Encontre a curvatura da parábola $y=x^2$ nos pontos (-1,1), (0,0), (1,1) e (2,4). Em que ponto (x,x^2) a curvatura é máxima?

2

- 20. Determine a equação de uma parábola que tenha curvatura 4 na origem.
- **21.** Determine a curvatura das curvas em \mathbb{R}^2 de equações:

(a)
$$y = \operatorname{sen} x$$
;

(b)
$$y = x^4$$
;

(c)
$$y = e^x$$

22. Mostre que a curvatura de uma curva plana de equações paramétricas x=f(t) e y=g(t) é dada por

$$\kappa = \frac{|x'y'' - y'x''|}{\left[(x')^2 + (y')^2 \right]^{3/2}}.$$

23. Use a fórmula do exercício anterior para determinar a curvatura das curvas com equações paramétricas

(a)
$$x = t^3$$
, $y = t^2$,

(b)
$$x = t \operatorname{sen} t$$
, $y = t \cos t$.

• Vetores tangente, normal e binormal

24. Para as funções vetoriais seguintes determine os vetores unitários tangente, normal e binormal, T, N e B.

(a)
$$\mathbf{r}(t) = (\text{sen } 4t, 3t, \cos 4t)$$

(c)
$$\mathbf{r}(t) = (\sqrt{2}\cos t, \sin t, \sin t)$$

(b)
$$\mathbf{r}(t) = (6t, 3\sqrt{2}t^2, 2t^3)$$

(d)
$$\mathbf{r}(t) = (t^2, 2t, \ln t)$$

25. Determine os vetores T, N e B no ponto indicado.

(a)
$$\mathbf{r}(t) = (t^2, \frac{2}{3}t^3, t), \quad (1, \frac{2}{3}, 1)$$

(c)
$$\mathbf{r}(t) = (1, t, t^2), (1, 0, 0)$$

(b)
$$\mathbf{r}(t) = (e^t, e^t \operatorname{sen} t, e^t \cos t), \quad (1, 0, 1)$$

- **26.** Determine as equações do plano normal e do plano osculador das curvas do exercício anterior, nos pontos indicados.
- 27. Em que ponto da curva parametrizada por $\mathbf{r}(t)=(t^3,3t,t^4)$ é o plano normal paralelo ao plano de equação 6x+6y-8z=1?
- 28. Determine as equações dos planos normal e osculador da curva no ponto indicado.

(a)
$$x = 2 \sin 3t$$
, $y = t$, $z = 2 \cos 3t$; $(0, \pi, -2)$

(b)
$$x = t$$
, $y = t^2$, $z = t^3$; $(1, 1, 1)$

29. Mostre que a curvatura κ está relacionada com os vetores tangente ${f T}$ e normal ${f N}$ pela equação

$$\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}.$$

30. A *torsão* de uma curva parametrizada por uma função ${f r}$ é definida por

$$\tau = \frac{(\mathbf{r}' \times \mathbf{r}'') \cdot \mathbf{r}'''}{\|\mathbf{r}' \times \mathbf{r}''\|^2}.$$

Calcule a torsão da curva $\mathbf{r}(t) = (t, \frac{1}{2}t^2, \frac{1}{2}t^3)$.

31. Mostre que a hélice circular $\mathbf{r}(t) = (a\cos t, a\sin t, bt)$, onde a e b são constantes positivas, tem curvatura e torsão constantes.

3