

Infra-red Spectroscopy Series Lecture - V

IR Spectroscopy - Interpretation

by

Prof. Ranjana Prakash

School of Chemistry and Biochemistry

Thapar Institute of Engineering and Technology

Patiala -147004, India

Ranjana Prakash

Learning Outcomes

At the end of this session participants should be able to:

• Interpret an IR spectra

SCBC-TIET

- The complexity of infrared spectra in the 1450 to 600 cm⁻¹ region makes it difficult to assign all the absorption bands, and because of the unique patterns found there, it is often called the <u>fingerprint</u> region.
- Absorption bands in the 4000 to 1450 cm⁻¹ region are usually due to stretching vibrations of diatomic units, and this is sometimes called the group frequency region.
- Group frequency region is also known as Peak Identification Area or <u>Functional Group</u> region.

For example:

- If the two samples have same functional group, they show similar absorption above 1450 cm⁻¹, but their spectra will differ in fingerprint region.
- If two samples are giving same spectra in fingerprint region, then they possess same structures or they are enantiomers.

THAPAR INSTITUTE OF EMINERATIVE A TELEPROLOGY (Deemed to be University) SCBC-TIET

Some General Concepts

- Stretching frequencies are higher than corresponding bending frequencies. (It is easier to bend a bond than to stretch or compress it)
- Triple bonds have higher stretching frequencies than corresponding double bonds, which in turn have higher frequencies than single bonds
- Bonds to hydrogen have higher stretching frequencies than those to heavier atoms
- Since most organic compounds have C-H bonds, a useful rule is that absorption in the 2850 to 3000 cm⁻¹ is due to sp³ C-H stretching; whereas, absorption above 3000 cm⁻¹ is from sp² C-H stretching or sp C-H stretching if it is near 3300 cm⁻¹

THAPAR INSTITUTE OF INSTITUTE OF INSTITUTE OF ENTIRE AT INSTITUTE OF I

Some General Concepts

- Presence of bands above 1500 cm⁻¹ indicates the presence of specific functional group in a compound
- Characteristic wave number of absorption in IR spectra for different groups present in various classes of organic compounds are already been identified and reported in literature
- Group frequency region is also known as Peak Identification Area or Functional Group region.

THAPAR INSTITUT OF ENGINEERING A TECHNOLO (Deemed to be University) SCBC-TIET

Carbon-Carbon Bonds

Increasing bond order leads to higher frequencies:

• C-C 1200 cm⁻¹ (fingerprint region)

• C=C 1600 - 1680 cm⁻¹

• C≡C 2200 cm⁻¹

Conjugation lowers the frequency:

• isolated C=C 1640-1680 cm⁻¹

• conjugated C=C 1620-1640 cm⁻¹

• aromatic C=C approx. 1600 cm⁻¹

Bonds with more s character absorb at a higher frequency.

O-H and N-H Bonds

- Alcohol O-H
 - broad with rounded tip when hydrogen bonding is present (sharp in the absence of hydrogen bonding)
- Secondary amine (R₂NH)
 - Broad (usually) with one sharp spike
- Primary amine (RNH₂)
 - Broad (usually) with two sharp spikes.

Carbonyls

Carbonyl stretches are generally strong:

• Aldehyde ~ 1710 cm⁻¹

• Ketone ~ 1710 cm⁻¹

• Carboxylic acid ~ 1710 cm⁻¹

• Ester ~ 1730 - 1740 cm⁻¹

• Amide ~ 1640-1680 cm⁻¹

Conjugation shifts all carbonyls to lower frequencies.

Ring strain shifts carbonyls to higher frequencies.

$$H_3C$$

$$1745 \text{ cm}^{-1}$$

$$H_3C$$

Infrared Absorption Frequencies

Functional Group	Range (cm ⁻¹)	Assignment	
Alkanes	2850-3000	CH ₃ , CH ₂ & CH	
		2 or 3 bands	
Alkenes	3020-3100	=C-H & =CH ₂	
	1630-1680	C=C	
	1900-2000	C=C asymmetric stretch	
Alkynes	3300	С-Н	
	2100-2250	C≡C	

THAPAR INSTITUTE OF ENUNERATION & TECHNOLOGY (Deemed to be University) SCBC-TIET

Infrared Absorption Frequencies

Functional Group	Range (cm ⁻¹)	Assignment	
Arenes 3030		C-H	
	1600 & 1500	C=C (in ring) (2 bands) (3 if conjugated)	
Alcohols &	Alcohols & 3580-3650 O-H (free), usually sharp		
Phenols 3200-3550 O-H (H-bonded), usually bro		O-H (H-bonded), usually broad	
	970-1250	C-O	
Amines	3400-3500	N-H (1°-amines), 2 bands	
	3300-3400	N-H (2°-amines)	
	1000-1250	C-N	
Aldehydes &	2690-2840(2 bands)	C-H (aldehyde C-H)	
Ketones	1720-1740	C=O (saturated aldehyde)	
	1710-1720	C=O (saturated ketone)	
	1690	aryl ketone	
	1675	α, β-unsaturation	
	1745	cyclopentanone	
	1780	cyclobutanone	

nanjana Prakash

THAPAR INSTITUTI OF ENGINEERING & TECHNOLOG (Deemed to be University)

SCBC-TIET

Infrared Absorption Frequencies

Functional Group	Range (cm ⁻¹)	Assignment
Carboxylic Acids & Derivatives	2500-3300 (acids) overlap C-H 1705-1720 (acids) 1210-1320 (acids)	O-H (very broad) C=O (H-bonded) O-C
	1785-1815 (acyl halides) 1750 & 1820 (anhydrides) 1040-1100 1735-1750 (esters) 1000-1300 1630-1695(amides)	C=O C=O (2-bands) O-C C=O O-C (2-bands) C=O (amide one band)
Nitriles	2240-2260	C≡N (sharp)
Isocyanates, Isothiocyanates, Diimides, Azides & Ketenes	2100-2270	-N=C=O, -N=C=S -N=C=N-, -N ₃ , C=C=O

In the next session.....

Applications of IR spectroscopy