# Reinforcement Learning

#### **Changing features?**

- Can an ML agent change features?
  - => Yes, provided it interacts with the environment that produces data
- Can features change every now and then by itself?
  - => When many entities participate and interact with environment (Al agents/Humans/Nature)
- What applications need this scenario?
  - => Where action is needed.
  - => Where environment / features are dynamically changing

Other Investigative Problems:

Sequence of suitable actions to be taken

- -Play a game
- -Explore a new city
- -Take a heritage walk

Any previous label? Experience based? Reward based?

# Reinforcement Q Learning

#### Real Life Applications of RL

- Autonomous car......What features does it change?
- Trading ..... does time series or regression analysis do this? What features change?
- Making decisions at real time using multimedia data ..... A swarm of robots operating
  - In manufacturing
  - In dangerous and unknown areas
- NLP Text summarization, machine translation, Question Answering, chat-box, dialogue generation
  - supervised DL models to predict words
  - RL through rewards when to look for more words / where to look for important words
  - Need to define reward I terms of linguistic quality parameters such as cohesiveness, understandability etc.
- Dynamic Healthcare diagnosis / treatment / drugs manufacture/ medical policies
- Auction bidding

# What is Reinforcement Learning?

- Agent interacts with Environment
- RL 

  Learning from interaction with an environment
- Environment state ☐ feature-vector
- Long term goal □ maximize rewards
- Agent must be able to partially/fully sense the environment state
- Take actions □ change environment state
- Tradeoff between exploration and exploitation

# RL is learning from interaction

RL is learning from interaction



# Markov Decision Process (MDP)

- Set of states S actually features vector
- Set of actions A
- Policy is mapping from States to possible actions P: S□A
- State transition probabilities p(s' | s, a).
- Immediate Reward Function R: S x A -> set of real numbers or discrete
- Discount factor  $\gamma$  in [0, 1] priority given to future experience
- Finite MDP if both S and A are finite

## Lodhi Garden visit –Immediate rewards

|                                         | S <sub>1</sub> Tomb,<br>hungry, tired | S <sub>2</sub> Garden,<br>hungry, fresh | S <sub>3</sub> Lake, filled,<br>tired | S <sub>4</sub> Eatery, filled, fresh | S <sub>5</sub> Gazebo,<br>hungry, fresh | S <sub>6</sub> Out, filled,<br>tired |
|-----------------------------------------|---------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|
| S <sub>1</sub> Tomb,<br>hungry, tired   | -10                                   | 50                                      | 70                                    | 100                                  | 50                                      | 0                                    |
| S <sub>2</sub> Garden,<br>hungry, fresh | 20                                    | 40                                      | 100                                   | 100                                  | 20                                      | 0                                    |
| S <sub>3</sub> Lake, filled, tired      | 0                                     | 70                                      | 20                                    | 0                                    | 0                                       | 50                                   |
| S <sub>4</sub> Eatery, filled, fresh    | 100                                   | 0                                       | 0                                     | 0                                    | 0                                       | 0                                    |
| S <sub>5</sub> Gazebo,<br>hungry, fresh | 0                                     | 0                                       | 100                                   | 100                                  | 0                                       | 0                                    |
| S <sub>6</sub> Out, filled, tired       | 0                                     | 0                                       | 60                                    | 0                                    | 0                                       | 100                                  |

# Q learning basics

- Q is a quality or utility or Value Function -> helps assess decisions
- Maximizes sum of
  - Immediate reward
  - Projected future reward
- Recursive in nature
- Q must be updated with experience
- Initial Q : all zeros

# Q learning algorithm

For each (s,a), initialize  $\hat{Q}(s,a)=0$ 

**Observe Current State** 

#### Do Forever:

- 1. Select action *a* and execute it
- 2. Receive Immediate Reward r
- 3. Observe new state s'
- 4. Update Utility Table for  $\hat{Q}(s, a)$  as:

$$\widehat{Q}(s,a) = r + \gamma \times Max_{a'}(s',a')$$

5. Enter New State

# **Learning Rate**

```
Q[state, action] =
Q[state, action] +
learning Rate *
(reward + Discount Factor * max<sub>i</sub>{Q[new_state, S<sub>i</sub>]}
— Q[state, action])
```

# Initial Utilities – all zeros. Initial State $S_3$ , Discount factor $\gamma = 0.8$

|                                         | S <sub>1</sub> Tomb,<br>hungry, tired | S <sub>2</sub> Garden,<br>hungry,<br>fresh | S <sub>3</sub> Lake, filled,<br>tired | S <sub>4</sub> Eatery,<br>filled, fresh | S <sub>5</sub> Gazebo,<br>hungry, fresh | S <sub>6</sub> Out, filled,<br>tired |
|-----------------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|
| S <sub>1</sub> Tomb,<br>hungry, tired   | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>2</sub> Garden,<br>hungry, fresh | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>3</sub> Lake, filled, tired      | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>4</sub> Eatery, filled, fresh    | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>5</sub> Gazebo,<br>hungry, fresh | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>6</sub> Out, filled, tired       | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |

# Learning by interacting – Episode 1

- Let first action randomly be  $P(S_3 \mid S_2)$  -> Go to Garden.
- Immediate reward = 70
- Q -> See next state  $S_2$  = Discount factor  $\gamma^*$ Max $\{0,0,0,0,0,0\}$  = 0
- Thus new  $Q(S_3,S_2) = 70$ , due to only instant reward

# **Updated Utility**

|                                         | S <sub>1</sub> Tomb,<br>hungry, tired | S <sub>2</sub> Garden,<br>hungry,<br>fresh | S <sub>3</sub> Lake,<br>filled, tired | S <sub>4</sub> Eatery,<br>filled, fresh | S <sub>5</sub> Gazebo,<br>hungry, fresh | S <sub>6</sub> Out, filled,<br>tired |
|-----------------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|
| S <sub>1</sub> Tomb,<br>hungry, tired   | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>2</sub> Garden,<br>hungry, fresh | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>3</sub> Lake, filled, tired      | 0                                     | 70                                         | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>4</sub> Eatery, filled, fresh    | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>5</sub> Gazebo,<br>hungry, fresh | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>6</sub> Out, filled, tired       | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |

# Episode 2: Initial state = S<sub>6</sub> Outside

- Randomly move to S<sub>3</sub>
- Reward = 60.
- $Q = 0.8 * max{70,0} = 56$
- Updated  $Q(S_6, S_3) = 60+56=116$
- Repeat episodes to reach convergence

# **Updated Utility**

|                                         | S <sub>1</sub> Tomb,<br>hungry, tired | S <sub>2</sub> Garden,<br>hungry,<br>fresh | S <sub>3</sub> Lake,<br>filled, tired | S <sub>4</sub> Eatery,<br>filled, fresh | S <sub>5</sub> Gazebo,<br>hungry, fresh | S <sub>6</sub> Out, filled,<br>tired |
|-----------------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|
| S <sub>1</sub> Tomb,<br>hungry, tired   | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>2</sub> Garden,<br>hungry, fresh | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>3</sub> Lake, filled, tired      | 0                                     | 70                                         | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>4</sub> Eatery, filled, fresh    | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>5</sub> Gazebo,<br>hungry, fresh | 0                                     | 0                                          | 0                                     | 0                                       | 0                                       | 0                                    |
| S <sub>6</sub> Out, filled, tired       | 0                                     | 0                                          | 116                                   | 0                                       | 0                                       | 0                                    |

## Deep Reinforcement Learning?

- A deep neural network is used to develop either a policy or a value function
- Deep neural networks require lots of real/simulated interaction with the environment to learn
- Lots of trials/interactions is possible in simulated environments
- We can easily parallelise the trials/interaction in simulated environments
- We cannot do this with robotics (no simulations) because action execution takes time, accidents/failures are expensive and there are safety concerns

### Model-free versus Model-based

- A model of the environment allows inferences to be made about how the environment will behave
- Example: Given a state and an action to be taken while in that state, the model could *predict the next state and the next reward*
- Models are used for planning, which means deciding on a course of action by considering possible future situations before they are experienced
- Model-based methods use models and planning. Think of this as modelling the dynamics  $p(s' \mid s, a)$
- Model-free methods learn exclusively from trial-and-error (i.e. no modelling of the environment)