## Cauchy Sequence

Claudiu Rediu 07-08-2019



Figure 1: Representation for the Cauchy Sequence  $\{\frac{1}{2^x}\}$ 

## **Definition.** Cauchy Sequence

A sequence  $\{a_n\}$  is called a **Cauchy Sequence** if for every  $\epsilon > 0$  there is a natural number N such that, for all m and n,

if 
$$m, n > N$$
 then  $|a_n - a_m| < \epsilon$ 

(This condition is usually written  $\lim_{m,n\to+\infty} |a_m-a_n|=0$ )

**Theorem 1.** A sequence  $\{a_n\}$  converges if and only if it is a Cauchy sequence.

*Proof.* The first part of the proof is satisfied by the Bolzano-Weierstrass Theorem (every bounded sequence has a convergent subsequence). What is needed to prove the converse assertion is that every Cauchy sequence  $\{a_n\}$  is bounded. If we take  $\epsilon = 1$  in the definition of a Cauchy sequence we find that there is some N such that

$$|a_m - a_n| < 1$$
 for  $m, n > N$ 

In particular, this means that

$$|a_m - a_{N+1}| < 1 \text{ for all } m > N$$

Thus  $\{a_m : m > N\}$  is bounded; since there are only finitely many other  $a_i$ s such that the whole sequence is bounded. Suppose that a subsequence of a Cauchy sequence converges. Taking into consideration that the difference between the elements of a Cauchy sequence is very small and some subsequence of it converges, then for every  $\epsilon > 0$  there is a natural number N such that, for all m and n,

if 
$$m, n > N$$
 then  $|a_n - a_m| < \epsilon$