

Variabilidade

Felipe Figueiredo

aula passada

de dados numéricos

Aprofundamento

Variabilidade

Incertezas de dados numéricos

Felipe Figueiredo

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Variabilidade de dados numéricos
 - Fontes de Variabilidade
 - Visualizando a variabilidade com histogramas
 - Média e a mediana
 - Quantificando com percentis
 - Quantificando com variância e DP
 - N ou N-1?
 - Interpretação do DP
- Aprofundamento
 - Aprofundamento

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Variabilidade de dados numéricos
 - Fontes de Variabilidade
 - Visualizando a variabilidade com histogramas
 - Média e a mediana
 - Quantificando com percentis
 - Quantificando com variância e DP
 - N ou N-1?
 - Interpretação do DP
- Aprofundamento
 - Aprofundamento

Variabilidade

Felipe Figueiredo

aula passada

Discussão da aula

Variabilidade de dados

Discussão da aula passada

Variabilidade

Felipe Figueiredo

aula passada Discussão da aula passada

Variabilidade

Aprofundamen

Discussão da leitura obrigatória da aula passada

Variabilidade

Feline

HHS Public Access

Author manuscript

Clin Neurophysiol. Author manuscript; available in PMC 2016 September 01.

Published in final edited form as:

Clin Neurophysiol. 2015 September; 126(9): 1790-1796. doi:10.1016/j.clinph.2014.11.017.

Inter-session reliability of electrical impedance myography in children in a clinical trial setting

Tom R. Geisbush, BA¹, Nicole Visyak, BA², Lavanya Madabusi, BA², Seward B. Rutkove, MD¹, and Basil T. Darras, MD²

¹Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

²Department of Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

Objetivo

Variabilidade

Felipe Figueiredo

Discussão d

Abstract

Objective—High reliability is a prerequisite for any test to be useful as a biomarker in a clinical trial. Here we assessed the reproducibility of electrical impedance myography (EIM) in children by comparing data obtained by different evaluators on separate days.

Methods—Healthy boys and boys with Duchenne muscular dystrophy (DMD) aged 2-14 years underwent EIM of multiple muscles performed by two evaluators on two visits separated by 3-7 days. Single and multifrequency data were analyzed. Reliability was assessed via calculation of the percent relative standard deviation (% RSD), Bland-Altman analysis, and the intraclass correlation coefficient (ICC).

Desvio padrão?

RESULTS

Subjects

A total of 22 healthy boys and 14 boys with DMD and underwent repeated measurements 3 - 7 days after the first measurement. The age ranges for the DMD and healthy groups were 2.2 - 13.2 and 2.1 - 12.4 years, respectively. The mean age \pm the standard deviations were 7.7 \pm 3.0 for the DMD group and 7.1 \pm 3.2 for the healthy group.

A idade média \pm desvio padrão do grupo DMD é 7.7 \pm 3.0.

- O que significa este 3.0?
- Como estas descrições se comparam com as do grupo controle?
- Os grupos têm medidas médias diferentes?
- Os grupos têm variabilidades diferentes?
- Que outras informações você precisa para responder?

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a

Visualizando a variabilidade com histogramas

Quantificando com percentis Quantificando com

N ou N-1? Interpretação do DP

Medidas Sumárias

Variabilidade Felipe

Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade

Visualizando a variabilidade com

histogramas Média e a median

Quantificando com percentis

Quantificando com variância e DP

N ou N-1? Interpretação do D

- Medidas sumárias resumem a informação contida nos dados em um pequeno conjunto de números.
- Medidas sumárias de populações se chamam parâmetros, e são representadas por letras gregas (μ, σ², σ, etc).
- Medidas sumárias de amostras se chamam estatísticas e são representadas por letras comuns (\bar{x} , s^2 , s, etc).
- Geralmente trabalhamos com estatísticas descritivas.

Medidas Sumárias

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de

Variabilidade

Visualizando a variabilidade co

variabilidade com histogramas

Quantificando cor

percentis Quantificando cor

rariância e DP N ou N-1?

N ou N-1? Interpretação do DF

Aprofundament

Tipos de medidas sumárias

Os dois principais tipos de medidas sumárias utilizadas na literatura são:

- Medidas de Tendência Central
- Medidas de Variabilidade (ou Dispersão)

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Variabilidade de dados numéricos
 - Fontes de Variabilidade
 - Visualizando a variabilidade com histogramas
 - Média e a mediana
 - Quantificando com percentis
 - Quantificando com variância e DP
 - N ou N-1?
 - Interpretação do DP
- 3 Aprofundamento
 - Aprofundamento

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade

Visualizando a variabilidade com histogramas

Média e a mediana
Quantificando com
percentis
Quantificando com

N ou N-1? Interpretação do DF

Interpretação do DP

Variabilidade em Medições

Figura: Variabilidade da medição de uma esfera metálica de 1000g. Balança A, "imprecisão" de 50g, balança B, "imprecisão" de 100g (Fonte: Reis, Reis, 2002)

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade

Visualizando a variabilidade com histogramas

Média e a mediana Quantificando con

ercentis Quantificando com ariáncia e DP

N ou N-1? Interpretação do

Fontes comuns de variabilidade

- Imprecisão ou erro experimental
- Variabilidade biológica
- "Mancadas" experimentais

Conceito de Erro na Estatística

No contexto acadêmico, **erro** não tem o mesmo significado do cotidiano.

Erro se refere a todas as fontes de variabilidade acima.

Outro nome comum é dispersão (scatter).

Variabilidade

Felipe Figueiredo

Fontes de Variabilidade

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Variabilidade de dados numéricos
 - Fontes de Variabilidade
 - Visualizando a variabilidade com histogramas
 - Média e a mediana
 - Quantificando com percentis
 - Quantificando com variância e DP
 - N ou N-1?
 - Interpretação do DP
- Aprofundamento
 - Aprofundamento

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade

Visualizando a variabilidade com histogramas

Media e a mediana Quantificando com percentis Quantificando com

N ou N-1? Interpretação do DF

Variabilidade

Felipe Figueiredo

Visualizando a variabilidade com

histogramas

Exemplo

100 estudantes de [insira aqui um curso da área da saúde] trabalharam em pares, e mediram a pressão sistólica de seu parceiro(a).

Ao final do exercício, a turma obteve 100 valores de pressão sistólica.

Pergunta

Como "entender" essa listagem de 100 números?

O histograma

Quantas barras?

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Variabilidade
Visualizando a
variabilidade com

histogramas

Média e a mediana

Quantificando com

Quantificando com percentis Quantificando com variância e DP

N ou N-1? Interpretação do D

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Variabilidade de dados numéricos
 - Fontes de Variabilidade
 - Visualizando a variabilidade com histogramas
 - Média e a mediana
 - Quantificando com percentis
 - Quantificando com variância e DP
 - N ou N-1?
 - Interpretação do DP
- 3 Aprofundamento
 - Aprofundamento

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Variabilidade Visualizando a variabilidade con

histogramas Média e a mediana

Quantificando com variância e DP

N ou N-1? Interpretação do DF

Média

Exemplo

Foram observados os seguintes níveis de colesterol de uma amostra de pacientes. Qual é o nível médio de colesterol nestes pacientes?

 $x_1 = 142$

 $x_2 = 144$

 $x_3 = 176$

 $x_4 = 203$

 $x_5 = 134$

 $x_6 = 191$

$$\bar{x} = \frac{990}{6} = 165$$

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Variabilidade
Visualizando a
variabilidade com

Média e a mediana

Quantificando com percentis

Quantificando com variância e DP

N ou N-1? Interpretação do D

interpretação do Dr

Percentis e a Mediana

Definition

A mediana é o dado que ocupa o percentil de 50% dados (posição central).

- Para se calcular a mediana, deve-se ordenar os dados.
- Encontrar o valor do meio se n for ímpar.
- Encontrar a média dos dois valores do mejo se n for par.

Variabilidade

Felipe Figueiredo

Média e a mediana

Mediana

Variabilidade

Felipe Figueiredo

Discussão da aula passada

de dados numéricos

Fontes de Variabilidade

Visualizando a variabilidade com

Média e a mediana Quantificando com

Quantificando com percentis

variância e DP N ou N-1?

N ou N-1? Interpretação do D

Aprofundament

Mediani

Exemplo

Conforme no exemplo anterior

 $x_5 = 134$

 $x_1 = 142$

 $x_2 = 144$

 $x_3 = 176$

 $x_6 = 191$

 $x_4 = 203$

 $M_d = \frac{144 + 176}{2} = 160$

Qual é a diferença?

O que acontece com a média, na presença de um valor extremo (muito grande, ou muito pequeno em relação aos outros)?

Exemplo

O que acontece se você digitar 20 ao invés de 203?

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade

variabilidade com histogramas

histogramas Média e a mediana

Quantificando com percentis

Quantificando com variância e DP

N ou N-1? Interpretação do DF

Comparação entre as Medidas Centrais

Exemplo

Considere o seguinte dataset

$$\{1, 1, 2, 4, 7\}$$

- N = 5
- As medidas descritivas centrais para estes dados são:

$$\bullet \ \mu = \frac{1+1+2+4+7}{5} = \frac{15}{5} = 3$$

• $M_d = 2$

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com

Média e a mediana

Quantificando com percentis

N ou N-1?

Interpretação do DF

Comparação entre as Medidas Centrais

Exemplo

Considere agora este outro dataset

$$\{1, 1, 2, 4, 32\}$$

- N = 5
- As medidas descritivas centrais para estes dados são:

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a

variabilidade com histogramas Média e a mediana

Quantificando com percentis

variância e DP N ou N-1?

Interpretação do DF

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Variabilidade de dados numéricos
 - Fontes de Variabilidade
 - Visualizando a variabilidade com histogramas
 - Média e a mediana
 - Quantificando com percentis
 - Quantificando com variância e DP
 - N ou N-1?
 - Interpretação do DP
- 3 Aprofundamento
 - Aprofundamento

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a

variabilidade com histogramas Média e a mediana

Quantificando com percentis

N ou N-1? Interpretação do D

Interpretação do DF

RESEARCH ARTICLE

Physical Fitness Percentiles of German Children Aged 9–12 Years: Findings from a Longitudinal Study

Kathleen Golle1*, Thomas Muehlbauer1, Ditmar Wick2, Urs Granacher1

1 Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany, 2 University of Applied Science in Sport and Management, Potsdam, Germany

* kathleen.golle@uni-potsdam.de

G OPENACCESS

Citation: Golle K, Muehlbauer T, Wick D, Granacher U (2015) Physical Fitness Percentiles of German Children Aged 9–12 Years: Findings from a Longitudinal Study. PLoS ONE 10(11): e0142393. doi:10.1371/journal.pone.0142393

Editor: Jennifer L. Baker, Institute of Preventive Medicine, DENMARK

Received: April 17, 2015

Abstract Background

Generating percentile values is helpful for the identification of children with specific fitness characteristics (i.e., low or high fitness level) to set appropriate fitness goals (i.e., fitness/health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9–12 years and to compute sex- and age-specific percentile values.

Methods

Two-hundred and forty children (88 girls, 152 boys) participated in this study and were

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com

Média e a mediana Quantificando com percentis

Quantificando com variância e DP N ou N-1?

N ou N-1? Interpretação do DI

Table 2. Smoothed age- and sex-specific percentile values for the 50-m-sprint (s), ball push test (m), and triple hop test (m).

Age (yrs)	P ₁₀	P ₂₀	P ₃₀	P ₄₀	Pso	P ₆₀	P ₇₀	Pso	P ₉₀
				50-m s	print (s)				
Boys [1/2/10]									
9	10.8	10.3	10.0	9.8	9.5	9.3	9.1	9.0	8.6
10	10.4	10.0	9.7	9.5	9.3	9.1	8.9	8.7	8.3
11	10.1	9.7	9.4	9.2	9.0	8.8	8.6	8.5	8.1
12	9.8	9.4	9.1	8.9	8.7	8.5	8.3	8.2	7.8
Girls [1/2/10]									
9	11.1	10.6	10.2	10.0	9.8	9.6	9.4	9.1	8.8
10	10.7	10.2	9.9	9.7	9.5	9.3	9.1	8.8	8.5
11	10.3	9.9	9.6	9.3	9.1	8.9	8.7	8.5	8.3
12	10.0	9.5	9.2	9.0	8.8	8.6	8.4	8.2	8.0
				ball pu	ısh (m)				
Boys [4/2/10]									
9	5.93	6.51	6.67	6.98	7.29	7.63	8.03	8.55	9.39
10	6.67	7.52	7.74	8.13	8.51	8.89	9.31	9.81	10.52
11	7.72	8.63	8.86	9.30	9.73	10.17	10.67	11.27	12.15
12	8.79	9.74	9.99	10.47	10.95	11.45	12.03	12.74	13.83
Girls [0/4/1r]									
9	4.85	5.37	5.74	6.06	6.35	6.65	6.97	7.34	7.86
10	5.42	5.99	6.41	6.76	7.09	7.42	7.78	8.19	8.77
11	6.45	7.13	7.63	8.05	8.44	8.84	9.26	9.75	10.44
12	7.23	7.99	8.55	9.02	9.46	9.91	10.38	10.93	11.70
				triple h	iop (m)				
Boys [0/2/10]									
9	6.06	6.73	6.89	7.19	7.47	7.75	8.04	8.39	8.88
10	6.61	7.34	7.52	7.84	8.15	8.45	8.78	9.16	9.69
11	7.16	7.95	8.15	8.50	8.83	9.16	9.51	9.92	10.49
12	7.71	8.56	8.77	9.15	9.51	9.86	10.24	10.69	11.30
Girls [0/2/2o]									
9	5.65	6.16	6.53	6.85	7.14	7.44	7.75	8.12	8.63
10	6.26	6.79	7.17	7.50	7.81	8.11	8.44	8.82	9.36
11	6.89	7.43	7.82	8.16	8.47	8.79	9.12	9.52	10.06
12	7.53	8.08	8.48	8.82	9.14	9.46	9.80	10.20	10.75

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Quantificando com percentis

Quantificando com variância e DP

> N ou N-1? nterpretação do DP

Interpretação do DP

Uma criança (9 anos) faz o sprint de 50m em 10s.

- Qual é o percentil de um menino com este tempo?
- 2 Qual é o percentil de uma menina com este tempo?
- O que isto significa?

Variabilidade

Felipe Figueiredo

Discussão da aula passada

de dados numéricos Fontes de

Table 2. Smoothed age- and sex-specific percentile values for the 50-m-sprint (s), ball push test (m), and triple hop test (m).

Age (yrs)	P ₁₀	P ₂₀	P ₃₀	P ₄₀	P ₅₀	P ₆₀	P ₇₀	P ₈₀	P ₉₀
				50-m sp	orint (s)				
Boys [1/2/10]									
9	10.8	10.3	10.0	9.8	9.5	9.3	9.1	9.0	8.6
10	10.4	10.0	9.7	9.5	9.3	9.1	8.9	8.7	8.3
11	10.1	9.7	9.4	9.2	9.0	8.8	8.6	8.5	8.1
12	9.8	9.4	9.1	8.9	8.7	8.5	8.3	8.2	7.8
Girls [1/2/10]									
9	11.1	10.6	10.2	10.0	9.8	9.6	9.4	9.1	8.8
10	10.7	10.2	9.9	9.7	9.5	9.3	9.1	8.8	8.5
11	10.3	9.9	9.6	9.3	9.1	8.9	8.7	8.5	8.3
12	10.0	9.5	9.2	9.0	8.8	8.6	8.4	8.2	8.0

O boxplot

- "Caixa e bigodes"
- A caixa representa os percentis de 25% e 75%
- Barra interna que representa a mediana (percentil 50%)
- Barras verticais indicam a amplitude dos dados
 - Mínimo e Máximo
 - Regras para "a maioria"

"Regras para a maioria"

Variabilidade

Felipe Figueiredo

Variabilidade

Quantificando com percentis

variância e DP

Figura: Boxplots para dois grupos de dados (Fonte: Reis, Reis, 2002)

Sumário

- - Discussão da aula passada
- Variabilidade de dados numéricos
 - Fontes de Variabilidade
 - Visualizando a variabilidade com histogramas
 - Média e a mediana
 - Quantificando com percentis
 - Quantificando com variância e DP
 - N ou N-1?
 - Interpretação do DP
- - Aprofundamento

Variabilidade

Felipe Figueiredo

Quantificando com variância e DP

Desvios em relação à média

Variabilidade

Felipe Figueiredo

Quantificando com

variância e DP

Uma maneira de entender a variabilidade do dataset é analisar os desvios em relação à média.

 Cada desvio é a diferença entre o valor do dado e a média.

A seguir, você verá...

Variabilidade

Felipe Figueiredo

Quantificando com variância e DP

uma cadência de ideias (todas relacionadas)

- o que uma significa em relação à próxima.
- prós e contras de cada uma
- do mais simples, ao mais aplicado.

De volta ao exemplo

Variabilidade

Feline

HHS Public Access

Author manuscript

Clin Neurophysiol. Author manuscript; available in PMC 2016 September 01.

Published in final edited form as:

Clin Neurophysiol. 2015 September; 126(9): 1790-1796. doi:10.1016/j.clinph.2014.11.017.

Inter-session reliability of electrical impedance myography in children in a clinical trial setting

Tom R. Geisbush, BA 1 , Nicole Visyak, BA 2 , Lavanya Madabusi, BA 2 , Seward B. Rutkove, MD 1 , and Basil T. Darras, MD 2

¹Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

²Department of Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

Dados

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

```
Fontes de
Variabilidade
```

```
Visualizando a variabilidade con histogramas
```

variabilidade com histogramas Média e a mediana

percentis

Quantificando com variância e DP

N ou N-1? Interpretação do DE

```
medida do músculo (N = 32, média = 90)
```

```
"91.84" "89.33" "88.99" "83.59" "91.71"
"90.30" "81.25" "93.80" "93.33" "90.65"
"90.30" "87.10" "90.83" "99.40" "91.84"
"83.74" "85.85" "85.87" "89.03" "89.40"
"89.35" "96.48" "97.20" "91.00" "90.04"
"86.98" "93.12" "93.72" "85.37" "96.26"
"91.33" "83.32"
```

Desvios em relação à média

Exemplo

$$\{1, 2, 3, 4, 5\}$$

•
$$\bar{x} = 3$$

$$\{2,3,4,5\}$$

$$\mathbf{0} \ D_1 = 1 - 3 = -2$$

$$D_2 = 2 - 3 = -1$$

3
$$D_3 = 3 - 3 = 0$$

$$\mathbf{Q} D_4 = 4 - 3 = 1$$

6
$$D_5 = 5 - 3 = 2$$

Variabilidade

Felipe Figueiredo

Média e a mediana percentis

Quantificando com variância e DP

Desvios em relação à média

medida do músculo (N = 32, média = 90)

```
"91.84" "89.33" "88.99" "83.59" "91.71" "90.30" "81.25" "93.80" "93.33" "90.65" ...
```

Desvios em relação à média

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade

Visualizando a

variabilidade com histogramas Média e a mediana

Quantificando com percentis

Quantificando com variância e DP

N ou N-1? Interpretação do DF

Desvios em relação à média

Mas os desvios...

- são tão numerosos quanto os dados
- 2 têm sinal (direção do desvio)
- SEMPRE têm soma nula, portanto o desvio médio é sempre 0

Pense...

Uma fórmula que dá o mesmo resultado para qualquer dataset... serve para resumir seus dados?

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade

Variabilidade Visualizando a

variabilidade com histogramas Média e a mediana

Quantificando cor percentis

Quantificando com variância e DP

N ou N-1? Interpretação do DP

Soma dos desvios

Exemplo

Somando tudo:

$$\sum D = D_1 + D_2 + D_3 + D_4 + D_5 =$$

$$(-2) + (-1) + 0 + 1 + 2 = 0$$

Pense...

Uma fórmula que dá o mesmo resultado para qualquer dataset... serve para resumir seus dados?

Variabilidade

Felipe Figueiredo

Como proceder?

- Como extrair alguma informação útil (e sumária!) dos desvios?
- Problema: sinais

Pergunta

Como tirar os sinais dos desvios?

Variabilidade

Felipe Figueiredo

Variabilidade

percentis

Desvios absolutos

Tomando-se o módulo dos desvios temos:

Definition

Desvio médio absoluto (MAD) é a média dos desvios absolutos

- É uma medida de dispersão robusta (pouco influenciada por outliers)
- Módulo não tem boas propriedades matemáticas (analíticas e algébricas).
- Pouco usado para inferência (apesar da robustez)

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade

Visualizando a variabilidade com histogramas

Quantificando con percentis

Quantificando com variância e DP

N ou N-1? Interpretação do DF

Desvio médio absoluto (MAD)

Exemplo

$$\{1,2,3,4,5\}, \bar{x}=3$$

$$|D_1| = |1 - 3| = 2$$

$$|D_2| = |2-3| = 1$$

$$|D_3| = |3-3| = 0$$

$$|D_4| = |4-3| = 1$$

$$|D_5| = |5-3| = 2$$

$MAD = \frac{\sum |D_i|}{5} = \frac{6}{5} = 1.2$

No exemplo do paper

$$MAD = 3.24$$

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade

Visualizando a variabilidade com

variabilidade com histogramas Média e a mediana

Quantificando com ercentis

Quantificando com variância e DP

N ou N-1? Interpretação do DP

Uma proposta "melhor"

Variabilidade

Felipe Figueiredo

- Uma outra maneira de eliminar os sinais é elevar ao quadrado cada desvio.
- Preserva boas propriedades matemáticas
- Calculando a média dos quadrados dos desvios (desvios quadráticos) temos ...

Variância

Definition

A variância é a média dos desvios quadráticos.

Variância populacional

$$\sigma^2 = \frac{\sum (x_j - \mu)^2}{N}$$

Variância amostral

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

- Conveniente do ponto de vista matemático (boas propriedades algébricas e analíticas).
- Unidade quadrática, pouco intuitiva para interpretação de resultados.

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

ontes de Variabilidade Visualizando a variabilidade com

ariabilidade com iistogramas Média e a mediana

percentis

Quantificando com

variância e DP N ou N-1?

Interpretação do DP

Variância

Exemplo

$$\{1,2,3,4,5\}, \bar{x}=3$$

$$D_1^2 = (1-3)^2 = (-2)^2 = 4$$

$$D_3^2 = (3-3)^2 = 0^2 = 0$$

$$D_5^2 = (5-3)^2 = 2^2 = 4$$

$$s^2 = \frac{\sum D_i^2}{4} = 2.5$$

No exemplo do paper

$$VAR = 18.14$$

Variabilidade

Felipe Figueiredo

Desvio Padrão

Definition

O desvio padrão é a raiz quadrada da variância.

Desvio padrão populacional

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

Desvio padrão amostral

$$s = \sqrt{s^2} = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade

Visualizando a variabilidade com histogramas Média e a mediana

Quantificando con percentis

Quantificando com variância e DP

N ou N-1? Interpretação do D

Desvio Padrão

Variabilidade

Felipe Figueiredo

Quantificando com variância e DP

• É a medida mais usada, por estar na mesma escala (unidade) dos dados.

- Boas propriedades matemáticas
- Boas propriedades como estimador (Inferência)

Desvio Padrão

Example

$$\{1, 2, 3, 4, 5\}, \bar{x} = 3$$

 $s^2 = 2.5$
 $s = \sqrt{s^2} = \sqrt{2.5} = 1.58$

No exemplo do paper

$$DP = 4.26$$

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade

Variabilidade Visualizando a

variabilidade com histogramas Média e a mediana

Quantificando com percentis

Quantificando com variância e DP

N ou N-1? Interpretação do DP

Como comparar o DP de dois grupos?

Variabilidade

Felipe Figueiredo

aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade

Variabilidade Visualizando

variabilidade com histogramas

Média e a mediana Quantificando com

percentis Quantificando com

variância e DP

N ou N-1? nterpretação do DP

Aprofundament

Não podemos comparar diretamente o valor do DP de dois grupos.

Por que?

O Desvio Padrão Relativo

Desvio Padrão Relativo

O desvio padrão relativo é uma medida de dispersão normalizada.

Ela ignora a escala da mensuração.

$$DPR = \frac{DP}{\bar{x}}$$

Sinônimos

- Desvio padrão relativo (DPR)
- Coeficiente de Variação (CV)
- Relative Standard Deviation (RSD)

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade

Visualizando a variabilidade con

histogramas Média e a mediana

> uantificando com ercentis

Quantificando com variância e DP

N ou N-1? Interpretação do DF

Amustinadonas

O Desvio Padrão Relativo

	50/200 kHz						
	Phase		Reactance		Resistance		
	ICC	% RSD	ICC	% RSD	ICC	% RSD	N
Trans. 6-Muscle	0.88	3.1 ± 2.5	0.92	3.6 ± 2.7	0.97	0.9 ± 1.0	28
Long. 6-Muscle	0.93	2.5 ± 1.9	0.96	2.8 ± 2.0	0.99	0.6 ± 0.5	31
Trans. Upper Extremity	0.80	3.8 ± 3.8	0.89	4.4 ± 3.8	0.98	1.1 ± 0.9	31
Long. Upper Extremity	0.90	3.1 ± 2.2	0.94	3.3 ± 2.3	0.98	0.8 ± 0.7	29
Trans. Lower Extremity	0.89	3.1 ± 2.7	0.91	3.9 ± 2.6	0.94	1.2 ± 1.1	32
Long. Lower Extremity	0.88	3.2 ± 2.8	0.92	3.5 ± 2.9	0.97	0.8 ± 0.7	33

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas Média e a mediana Quantificando com

percentis Quantificando com variância e DP

l ou N-1? nterpretação do DP

Aprofundament

Dos nossos dados

CV = 4.7%

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Variabilidade de dados numéricos
 - Fontes de Variabilidade
 - Visualizando a variabilidade com histogramas
 - Média e a mediana
 - Quantificando com percentis
 - Quantificando com variância e DP
 - N ou N-1?
 - Interpretação do DP
- 3 Aprofundamento
 - Aprofundamento

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Variabilidade
Visualizando a
variabilidade com
histogramas

Quantificando com percentis Quantificando com

N ou N-1?

Interpretação do DI

N ou N-1?

Fórmula com N

Usada apenas para cálculos com dados de toda a população.

Fórmula com N-1

Usada para cálculos com dados de uma amostra.

Pense...

Você tem acesso a toda a população, ou apenas a uma amostra?

Variabilidade

Felipe Figueiredo

N ou N-1?

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Variabilidade de dados numéricos
 - Fontes de Variabilidade
 - Visualizando a variabilidade com histogramas
 - Média e a mediana
 - Quantificando com percentis
 - Quantificando com variância e DP
 - N ou N-1?
 - Interpretação do DP
- Aprofundamento
 - Aprofundamento

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Variabilidade
Visualizando a
variabilidade com
histogramas

Média e a mediana
Quantificando com
percentis

N ou N-1?

Interpretação do DP

Interpretação do DP

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Fontes de Variabilidade

Variabilidade Visualizando

variabilidade com histogramas

> viedia e a mediai Quantificando co

ercentis Quantificando com

N ou N-1?

Interpretação do DP

Aprofundamento

"Um pouco mais da metade" dos valores está a 1 DP da média (considerando amdos os lados)

"Quase todos" os dados estão a 2 DP da média (considerando ambos os lados)

Cenas dos próximos capítulos

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Variabilidade de dados numéricos
 - Fontes de Variabilidade
 - Visualizando a variabilidade com histogramas
 - Média e a mediana
 - Quantificando com percentis
 - Quantificando com variância e DP
 - N ou N-1?
 - Interpretação do DP
- Aprofundamento
 - Aprofundamento

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Aprofundament Aprofundamento

Aprofundamento

Leitura obrigatória

Capítulo 3.

Pular as seções:

- Calculando o DP numa calculadora
- Exercício 1
- Exercício 2
- Exercício 3 (R: 34.64503)
- Exercício 4 (R: 219.4131)
- Exercício 5

Variabilidade

Felipe Figueiredo

Discussão da aula passada

Variabilidade de dados numéricos

Aprofundament Aprofundamento