HW of Regression Diagnostics

1. Consider the computer repair problem discussed in Section 2.3. In a second sampling period, 10 more observations on the variable Minutes and Units were obtained. Since all observations were collected by the same method from a fixed environment, all 24 observations were pooled to form one data set. The data appear in Table 4.6.

Table 4.6 Expanded Computer Repair Times Data: Length of Service Calls (Minutes) and Number of Units Repaired (Units)

Row	Units	Minutes	Row	Units	Minutes
1	1	23	13	10	154
2	2	29	14	10	166
3	3	49	15	11	162
4	4	64	16	11	174
5	4	74	17	12	180
6	5	87	18	12	176
7	6	96	19	14	179
8	6	97	20	16	193
9	7	109	21	17	193
10	8	119	22	18	195
11	9	149	23	18	198
12	9	145	24	20	205

- (a) Fit a linear regression model relating Minutes to Units.
- (2) Check each of the standard regression assumptions and indicate which assumption(s) seems to be violated.
- 2. Consider the data in Table 4.8, which consist of a response variable Y and six predictor variables. Consider fitting a linear model relating Y to all six X-variables.
- (a) What least squares assumptions (if any) seem to be violated?
- (b) Compute r_i , C_i , $DFITS_i$.
- (c) Construct the index plots of r_i , C_i , $DFITS_i$.
- (d) Identify all unusual observations in the data and classify each according to type (i.e., outliers, leverage points, etc.)

Suppose that we fit a linear model relating Y to the first three X-variables. Justify your answer to each of the following questions with the appropriate added-variable plot:

- (e) Should we add X_4 to the above model? If yes, keep X_4 in the model.
- (f) Should we add $X_{\!\scriptscriptstyle 5}$ to the above model? If yes, keep $X_{\!\scriptscriptstyle 5}$ in the model.

- (g) Should we add $X_{\!\scriptscriptstyle 6}$ to the above model?
- (h) Which model(s) would you recommend as the best possible description of Y? Use the above results and/or perform additional analysis if needed.

Table 4.8 Data for Exercises 4.12-4.14

Row	Y	X_1	X_2	X_3	X_4	X_5	X_6
1	443	49	79	76	8	15	205
1 2 3	290	27	70	31	6	6	129
3	676	115	92	130	0	9	339
4	536	92	62	92	5	8	247
4 5	481	67	42	94	16	3	202
6	296	31	54	34	14	11	119
7	453	105	60	47	5	10	212
8	617	114	85	84	17	20	285
9	514	98	72	71	12	-1	242
10	400	15	59	99	15	11	174
11	473	62	62	81	9	1	207
12	157	25	11	7	9	9	45
13	440	45	65	84	19	13	195
14	480	92	75	63	9	20	232
15	316	27	26	82	4	17	134
16	530	111	52	93	11	13	256
17	610	78	102	84	5	7	266
18	617	106	87	82	18	7	276
19	600	97	98	71	12	8	266
20	480	67	65	62	13	12	196
21	279	38	26	44	10	8	110
22	446	56	32	99	16	8	188
23	450	54	100	50	11	15	205
24	335	53	55	60	8	0	170
25	459	61	53	79	6	5	193
26	630	60	108	104	17	8	273
27	483	83	78	71	11	8	233
28	617	74	125	66	16	4	265
29	605	89	121	71	8	8	283
30	388	64	30	81	10	10	176
31	351	34	44	65	7	9	143
32	366	71	34	56	8	9	162
33	493	88	30	87	13	0	207
34	648	112	105	123	5	12	340
35	449	57	69	72	5	4	200
36	340	61	35	55	13	0	152
37	292	29	45	47	13	13	123
38	688	82	105	81	20	9	268
39	408	80	55	61	11	1	197
40	461	82	88	54	14	7	225

Source: Chatterjee and Hadi (1988)