Assignment 1 ECO481

University of Toronto

Instructor: Marlène Koffi

Fall 2022

1 Exercise 1 (25%)

- 1. Your friend Albert builds a classification algorithm on the following data. It has 10,000 features and 100 observations. As the newest machine learning expert in your group of friends, he decided to ask you for help. (10 points)
 - Clearly explain to Albert what his model is likely to suffer from.
 - In fact, Albert has implemented the model and finds an accuracy rate of 99% on the training sample. Unfortunately, when it evaluates the model on a new dataset (the test sample), you have 50% accuracy. Explain to Albert what it means to have 50% accuracy.
 - Suggest a step you would take to fix the problem Albert is having.
 - After correcting the problem, you get two models. First, you use logistic regression and get an error rate of 10% on training data and 15% on test data. Then we use the 1-nearest neighbors (i.e. K=1) and get an average error rate (simple average over test and training datasets) of 9%. Based on these results, what method would you recommend to Albert for his classification exercise? Clearly explain why.
- 2. For each decision boundary, explain which classifier between the logistic regression and KNN is likely to have generated it. (5 points)

Panel B

- 3. After training a logistic regression classifier, Anne and Bryan have one of the data point that is properly classifier and far away from the decision boundary. Bryan thinks that removing this point will not affect the decision boundary. Anne disagrees and think that it may affect the decision boundary. Who is right? Explain. (5 points)
- 4. You have a set of three data points with only one predictor and an output: $x_1 = 4$ and $y_1 = 1$, $x_2 = -2$ and $y_2 = 0$, $x_3 = 1$ and $y_3 = 1$. Suppose you use it as a training sample. In a logistic regression, what will be the value of the parameter β associated with x? Give a short explanation for your choice. (5 points)
 - a) $\beta = 1$
 - b) $\beta = 0$
 - c) $\beta = \infty$

2 Exercise 2: (10%)

You work as a data analyst at Twitter. Because of all the scandals and growing fake news on social media, Twitter would like to improve its algorithm to detect fake news. As the junior analyst, you are in charge of analyzing the past "fake news" data.

You are given the following information:

- \bullet 10 out of 10000 tweets are classified as fake by the current twitter algorithm.
- With some human checks, we realize that 20% of the tweets classified as fake by the algorithm are not.
- 10% of tweets classified as "non fake" by the algorithm are.
- 1. Your boss asks you to build the confusion matrix for 1,000,000 tweets (roughly the number of tweets per 5 minutes in 2021).(5 points)

2. You have a talk in front of your team. How would you summarize in a very meaningful way how well the current algorithm is performing? (show your calculation and explain your decision). (5 points)

3 Exercise 3: Application... (65%)

"Mobile money (m-money) refers to the use of mobile phones to perform financial and banking functions." (IFC Mobile Money Study 2011: Summary Report).

In low-income countries, mobile money is a substitute for banking access. In fact, individuals do not need a bank account to perform financial transactions (send and receive money) via their mobile service. One of its biggest advantages is that it can reach the most remote and vulnerable populations. Many observers agree that this new financial tool has an important role in widening financial inclusion in low-income countries (See Jack and Suri 2011 and Suri 2017 for a review).

Therefore, it is crucial to understand the mobile money users and non-users characteristics. In this application, we want to analyze the determinants of mobile money adoption using (real) data from a survey of 2,282 households in Kenya on M-PESA ("M" for Mobile and "Pesa" for Money in Swahili), one of the most successful mobile money applications.

1. First, you have access to the following table:

Personal ID	Large household size	Have a cell phone	Have a mattress at home	M-pesa user
1	False	True	False	True
2	False	False	False	False
3	False	True	False	True
4	True	False	False	False
5	True	False	True	True
6	True	False	False	False

- Using the table and an entropy-based information gain, construct a decision tree (by hand, i.e make the calculus and find the relevant splits) that would predict the use of M-pesa for an individual. (NB: the logarithm to use in the entropy measurement is the logarithm to the base 2.) (15 points)
- What will be the prediction generated by the tree for: "Large Household" = false, "Have a cell phone" = False and "Have a mattress at home" = true.(1.5 points)
- What will be the prediction generated by the tree for: "Large Household" = True, "Have a cell phone" = True and "Have a mattress at home" = true.(1.5 points)

- 2. Now, you have access to a more complete database. Read the file "mobile_money.csv" in Python. (2 points)
- 3. Present descriptive statistics on the outcome variable mpesa_user. Comment.(3 points)
- 4. Present descriptive statistics on the following variables depending on the mpesa_user status. (10 points: 5 points for each label)
 - Own Cell Phone
 - Per Capita Consumption
 - Per Capita Food Consumption
 - Total Wealth
 - Household Size
 - Education of Head (Years)
 - Positive Shock
 - Negative Shock
 - Weather/Agricultural shock
 - Illness Shock
 - Send Remittances
 - Receive Remittances
 - Bank account
 - Mattress
 - Savings & Credit Cooperative (SACCO)
 - Merry Go Round/ ROSCA
 - Farmer
 - Public Service
 - Professional Occupation
 - Househelp
 - Run a Business
 - Sales
 - In Industry
 - Other Occupation

- Unemployed
- 5. Comment on the descriptive statistics' main takeaways in question 3 (no more than 3 lines).(2 points)
- 6. Construct the following classifiers using the outcome variable mpesa_user (11 points):
 - Logistic Classifier
 - Decision Tree Classifier
 - Random Forest classifier

NB: Consider a train-test split of 80-20. Consider also standardizing the data before.

- 7. Comparing the accuracy rate and the area under the curve (AUC) criteria, find the best classifier among those in question 5.(6 points: 2-2-2)
- 8. What are the top 3 predictors based on the best classifier found in question 6? (3 points)
- 9. Consider now a KNN classifier. Using a loop "for", consider a value of K from 1 to 10 by step of 1. In the ML jargon, we are doing a grid search. It aims to tune (find) the value of the hyperparameter "K"). Using cross-validation methods on the training data set, for each value of K, find the optimal value of neighbours K. (5 points)
- 10. Is the optimal KNN classifier, as found in question 8, outperforming the one found in 6?(2 points)
- 11. Based on what you have found, what is the key recommendation that you can make to a government that would like to foster the use of M-PESA among the population? (no more than 3 lines).(3 points)

References:

Jack, W., & Suri, T. (2011). Mobile money: The economics of M-PESA (No. w16721). National Bureau of Economic Research.

Jack, W., & Suri, T. (2014). Risk sharing and transactions costs: Evidence from Kenya's mobile money revolution. American Economic Review, 104(1), 183-223.

Suri, T. (2017). Mobile money. Annual Review of Economics, 9, 497-520.

Variables Labels

hhid	Unique household identifier
cellphone	Own Cell Phone
wealth	Total Wealth
size	HH Size
education_ye	Education (Yrs)
education_ot	Dummy for Other Education (vocational/adult/other)
bank_acct	Bank account
mattress	Mattress
sacco	SACCO
merry	Merry Go Round
mean_sent_nm	Mean value of non-mpesa remittances sent (Ksh)
number_sent	Numb Remittances Sent non-MPESA
totsent_nm	Total Value Sent non-MPESA
number_sent	Numb Remittances Sent by MPESA
totsent_m	Total Value Sent by MPESA
sendd	Send Remittances
number_sent	Numb Remittances Sent
totsent	total value of remittances sent last 6 months (domestic)
mean_recd_n	Mean value of non-mpesa remittances received (Ksh)
totrecd_nm	Total Value Received non-MPESA
number_recd	Numb Remittances Sent non-MPESA
totrecd_m	Total Value Received by MPESA
number_recd	Numb Remittances Received by MPESA
recdd	Receive Remittances
mean_recd	Mean Remittance Received
totrecd	Total Remittances Received (KSh)
number_recd	Numb Remittances Received
netremit	Net Value Remitted
mpesa_user	M-PESA User
round	Survey Round
weight	Weight
mean_sentdi	Average Distance Sent non-MPESA
mean_sentdi	Average Distance Sent by MPESA
mean_sentdist	Average Distance Sent
mean_recddi	Average Distance Received non-MPESA
mean_recddi	Average Distance Received by MPESA
mean_recddist	Average Distance Received
frac_recd	Fraction of Network HH Received From
period	Period
agents1	Agents w/in 1km
agents2	Agents w/in 2km
agents5	Agents w/in 5km

agents10	Agents w/in 10km
agents20	Agents w/in 20km
agents_d	Dist to Closest Agent
totexp	Total HH Consumption
Itotexp	Log Consumption
totexppc	Consumption per Capita
Itotexppc	Log Consumption per Capita
wkexppc	Food Consumption per Capita
lwkexppc	Log Food Consumption per Capita
totexppc_no	Consumption per Capita (Without Health)
ltotexppc_no	Log Consumption per Capita (Without Health)
lwealth	Log Wealth
rural	Rural Dummy
province	Province
district	Distict
location	Location
village	Village
totrecd_c	Total Value Received/Consumption
totsent_c	Total Value Sent/Consumption
totrecd2	Total Remittances Received (Sq root)
networksize	Number of Different Senders
mean_recd2	Mean Remittance Received (Sq root)
occ_farmer	Main Occ: Farmer
occ_public	Main Occ: Public
occ_prof	Main Occ: Professional
occ_help	Main Occ: Househelp
occ_ue	Unemployed
occ_bus	Main Occ: Business
occ_sales	Main Occ: Sales
occ_ind	Main Occ: Industry
occ_other	Main Occ: Other
lagents_d	Log Distance to Closest Agent (m)
agents1s	Agents w/in 1km (Sq root)
agents2s	Agents w/in 2km (Sq root)
agents5s	Agents w/in 5km (Sq root)
agents 10s	Agents w/in 10km (Sq root)
agents 20s	Agents w/in 20km (Sq root)
neg	Negative Shock Dummy
sick	Illness Shock Dummy
ag	Weather Shock Dummy
pos	Positve Shock Dummy
user_neg	MPESA User*Negative Shock

user_sick	MPESA User*Illness Shock
agents1s_neg	Agents1s*Negative Shock
agents1s_sick	Agents1s*Illness Shock
agents2s_neg	Agents2s*Negative Shock
agents2s_sick	Agents2s*Illness Shock
agents5s_neg	Agents5s*Negative Shock
agents5s_sick	Agents5s*Illness Shock
agents10s_neg	Agents10s*Negative Shock
agents10s_sick	Agents10s*Illness Shock
agents20s_neg	Agents20s*Negative Shock
agents20s_sick	Agents20s*Illness Shock
lagents_d_neg	Agent Distance*Negative Shock
lagents_d_sick	Agent Distance*Illness Shock
distance	Distance Travelled by Remittances
panel	Indicator for Panel HH
mpesa_status	MPESA Status
lowattrit	Dummy for Low Attrition Village
wealthtile	Period 1 Wealth Quintile
d1	Fraction HH = boys 16 or less
d2	Fraction of HH = girls 16 or less
d3	Fraction of HH = males ages 17-39
d4	Fraction of HH = females ages 17-39
d5	Fraction of HH = males ages 40 or above
false	Dummy for Falsification Test Sample
lmean_recddist	
Idistance	Log Distance Travelled by Remittances
urban	Urban Dummy
mweight	Survey Weight Accounting for Attrition (FGM)