Teoria da computação Problem set 1

Rodrigo Santos Universidade NOVA de Lisboa

Exercício 1

Sejam A, B, e C quaisquer conjuntos. Demonstre cada uma das seguintes igualdades:

(a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Comecemos por explicitar que para demonstrar a igualdade temos que provar que (1) $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$, e (2) $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$.

Vamos provar (1). Deste modo consideremos $x \in A \cup (B \cap C)$ arbitrário. Temos dois casos possíveis, (a) $x \in A$ ou (b) $x \in (B \cap C)$. (a) Se $x \in A$ então, $x \in (A \cup B)$ pela definição de união pois $A \subseteq (A \cup B)$. De forma análoga $x \in (A \cup C)$. Portanto $x \in (A \cup B) \cap (A \cup C)$ pela definição de interseção pois $x \in (A \cup B)$ e $x \in (A \cup C)$. Se $x \in (B \cap C)$ então, $x \in B$ e $x \in C$ pela definição de interseção. Portanto como $x \in B$, $x \in (A \cup B)$ pela definição de união pois $B \subseteq (A \cup B)$. Similarmente $x \in C$, $x \in (A \cup C)$. Concluimos que $x \in (A \cup B) \cap (A \cup C)$ pela definição de interseção pois $x \in (A \cup B)$ e $x \in (A \cup C)$. Juntando (a) e (b) percebemos que se $x \in A \cup (B \cap C)$, $x \in (A \cup B) \cap (A \cup C)$. Portanto $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

Vamos provar (2). Deste modo consideremos $x \in (A \cup B) \cap (A \cup C)$ arbitrário. $x \in (A \cup B) \cap (A \cup C) \Leftrightarrow (x \in A \lor x \in B) \land (x \in A \lor x \in C)$. Temos dois casos possíveis, (c) $x \in A$ ou (d) $x \notin A$. Comecemos por (c), se $x \in A$ então $x \in A \cup (B \cap C)$ pela definição de união pois $A \subseteq A \cup (B \cap C)$. Segue-se (d), se $x \notin A$ então $x \in B$ e $x \in C$. Pela definição de interseção se $x \in B$ e $x \in C$ então $x \in (B \cap C)$. Como $(B \cap C) \subseteq A \cup (B \cap C)$ e $x \in (B \cap C)$ implica que $x \in A \cup (B \cap C)$. Juntando (c) e (d), se $x \in (A \cup B) \cap (A \cup C)$ então $x \in A \cup (B \cap C)$. Pelo que $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

Agregando (1) e (2) chegamos a conclusão que $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ e $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Logo $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

(b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Comecemos por explicitar que para demonstrar a igualdade temos que provar que (1) $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$, e (2) $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Vamos provar (1). Suponhamos $x \in A \cap (B \cup C)$ arbitrário. Deste modo $x \in A \wedge (x \in B \vee x \in C)$, portanto temos dois casos possíveis (a) $(x \in A \wedge x \in B)$ e (b) $(x \in A \wedge x \in C)$. (a) Sendo $(x \in A \wedge x \in B)$ então $x \in (A \cap B)$ pela definição de interseção. Se $x \in (A \cap B)$, $x \in ((A \cap B) \cup (A \cap C))$ pela definição de união pois $(A \cap B) \subseteq ((A \cap B) \cup (A \cap C))$. (b) Sendo $(x \in A \wedge x \in C)$ de forma análoga $x \in ((A \cap B) \cup (A \cap C))$. Portanto $x \in A \cap (B \cup C)$ implica que $x \in ((A \cap B) \cup (A \cap C))$ logo juntando (a) e (b), $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

Vamos provar (2). Suponhamos que $x \in ((A \cap B) \cup (A \cap C))$ arbitrário. Deste modo temos dois casos possíveis (c) $x \in (A \cap B)$ ou (d) $x \in (A \cap C)$. (c) Suponhamos que $x \in (A \cap B)$ então $x \in A \land x \in B$. Se $x \in B$ então $x \in (B \cup C)$ pela definição de união pois $B \subseteq (B \cup C)$. Portanto $x \in A \land x \in (B \cup C)$ o que pela definição de interseção é o mesmo que dizer que $x \in (A \cap (B \cup C))$. (d) Se $x \in (A \cap C)$, $x \in A \land x \in C$. Similarmente a (c) chegamos a conclusão que se $x \in (A \cap C)$ implica que $A \cap (B \cup C)$. Juntando (c) e (d), $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Juntando (1) e (2) concluimos que $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ e $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. Concluimos que $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

(c)
$$A \cap (A \cup B) = A$$

Comecemos por explicitar que para demonstrar a igualdade temos que provar que (1) $A \cap (A \cup B) \subseteq A$, e (2) $A \subseteq A \cap (A \cup B)$.

Vamos provar (1). Suponhamos que $x \in (A \cap (A \cup B))$ arbitrário. Se $x \in (A \cap (A \cup B))$ então $x \in A \land (x \in A \lor x \in B)$. Logo $x \in A$. Trivialmente $A \subseteq A$. Portanto se $x \in (A \cap (A \cup B))$ então $x \in A$. Logo (1).

Vamos provar (2). Suponhamos que $x \in A$ arbitrário. Se $x \in A$, $x \in (A \cup B)$ pela definição de união pois $A \subseteq (A \cup B)$. Deste modo $x \in A$ e $x \in (A \cup B)$ que pela definição de interseção é igual a $x \in (A \cap (A \cup B))$. Portanto se $x \in A$ então $x \in (A \cap (A \cup B))$. Concluimos (2).

Juntando (1) e (2) temos que $A \cap (A \cup B) \subseteq A$ e $A \subseteq A \cap (A \cup B)$. Logo $A \cap (A \cup B) = A$.

(d)
$$(A \setminus B) \cup (A \cap B) = A$$

Comecemos por explicitar que para demonstrar a igualdade temos que provar que (1) $(A \setminus B) \cup (A \cap B) \subseteq A$ e (2) $A \subseteq (A \setminus B) \cup (A \cap B)$.

Vamos provar (1). Suponhamos que $x \in (A \setminus B) \cup (A \cap B)$ arbitrário. Temos dois casos possíveis. $x \in (A \setminus B)$ ou $x \in (A \cap B)$. Se $x \in (A \setminus B)$ então por definição $x \in A \wedge x \notin B$, logo $x \in A$. Se $x \in (A \cap B)$ por definição de interseção $x \in A$ e $x \in B$ pelo que $x \in A$. Logo se $x \in (A \setminus B) \cup (A \cap B)$ então $x \in A$. Portanto (1).

Vamos provar (2). Suponhamos que $x \in A$ arbitrário. Temos dois casos possíveis $x \in B$ ou $x \notin B$. Se $x \in B$ então $x \in (A \cap B)$ pela definição de interseção pois $x \in A$ e $x \in B$. Se $x \in (A \cap B)$, $x \in (A \setminus B) \cup (A \cap B)$ pela definição de união pois $x \in (A \cap B)$ e $(A \cap B) \subseteq (A \setminus B) \cup (A \cap B)$. Se $x \notin B$ então $x \in (A \setminus B)$ pela definição de exclusão pois $x \in A$ e $x \notin B$. De forma análoga $x \in (A \setminus B) \cup (A \cap B)$. Portanto concluimos (2).

Juntando (1) e (2) temos que $(A \setminus B) \cup (A \cap B) \subseteq A$ e $A \subseteq (A \setminus B) \cup (A \cap B)$. Logo $(A \setminus B) \cup (A \cap B) = A$.

Exercício 2

Encontre o erro na seguinte "demonstração" de que 2=1

Resposta:

Na demonstração quando dividimos ambos os lados da equação por (a-b) temos que garantir que $(a-b) \neq 0 \Leftrightarrow a \neq b$. Quando escolhemos a=b=1 violamos esta restrição. O que invalida esta demonstração.

Exercício 3

Demonstre as seguintes asserções por indução:

(a)
$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
.

Passo base: n = 1

$$\sum_{i=0}^{1} i^2 = 0^2 + 1^2 = \frac{1(1+1)(2(1)+1)}{6} = \frac{6}{6} = 1$$

O caso base é verdadeiro.

Passo de indução: Suponhamos que a fórmula é verdadeira para n=k, ou seja

$$\sum_{i=0}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$$

Vamos provar que a fórmula é verdadeira para n = k + 1, ou seja:

$$\sum_{i=0}^{k+1} i^2 = \sum_{i=0}^{k} i^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6} = \frac{(k+1)[(k+2)(2k+3)]}{6}$$

Portanto a fórmula é verdadeira para n=k+1. Concluímos então por indução que:

$$\forall_n \in \mathbb{N} \sum_{i=0}^n i^2 = \frac{n(n+1)(2n+1)}{6}$$
 é valida.

(b)
$$\sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$
.

Passo base: n=1

$$\sum_{i=0}^{1} i^3 = 0^3 + 1^3 = \frac{1^2(1+1)^2}{4} = \frac{4}{4} = 1$$

O caso base é verdadeiro.

Passo de indução: Suponhamos que a fórmula é verdadeira para n=k, ou seja

$$\sum_{i=0}^{k} i^3 = \frac{k^2(k+1)^2}{4}$$

Vamos provar que a fórmula é verdadeira para n = k + 1, ou seja

$$\sum_{i=0}^{k+1} i^3 = \sum_{i=0}^{k} i^3 + (k+1)^3 = \frac{k^2(k+1)^2}{4} + (k+1)^3 = \frac{k^2(k+1)^2 + 4(k+1)^3}{4} = \frac{(k+1)^2[(k+2)^2]}{4}$$

Portanto a fórmula é verdadeira para n = k + 1. Concluímos então por indução que:

$$\forall_n \in \mathbb{N} \sum_{i=0}^n i^3 = \frac{n^2(n+1)^2}{4}$$
 é valida.

(c) $n^3 + 2n$ é divisível por 3 para todo o $n \in \mathbb{N}$.

Passo base: n = 1

$$1^3 + 2(1) = 1 + 2 = 3$$

Que é inequivocamente divisível por 3. Portanto o caso base é verdadeiro.

Passo de indução: Suponhamos que a fórmula é verdadeira para n=k, ou seja

$$k^3 + 2k$$
 é divisível por 3.

Vamos provar que a fórmula é verdadeira para n = k + 1, ou seja

$$(k+1)^3 + 2(k+1) = (k+1)(k+1)^2 + 2k + 2 = k^3 + 3k^2 + 3k + 2k + 3 = (k^3 + 2k) + (3k^2 + 3k + 3)$$

pelo passo de indução $k^3 + 2k$ é igual a 3m onde m é um número inteiro. Temos então:

$$3m + (3k^2 + 3k + 3) = 3(m + k^2 + k + 1)$$

Onde $(m+k^2+k+1)$ é um número inteiro. Provamos então por indução que:

 $\forall_n \in \mathbb{N} \ n^3 + 2n$ é divisível por 3 é valida.

(d) $9^n - 1$ é divisível por 8 para todo o $n \in \mathbb{N}^+$.

Passo base: n = 1

$$9^1 - 1 = 8$$

Que é inequivocamente divisível por 8. Portanto o caso base é verdadeiro.

Passo de indução: Suponhamos que a fórmula é verdadeira para n = k, ou seja

 $9^k - 1 = 8m$ em que m é um numero inteiro positivo maior que zero.

Vamos provar que a fórmula é verdadeira para n = k + 1, ou seja

$$9^{k+1} - 1 = 9^k 9^1 - 1 = 9(9^k - 1) + 8$$

Pelo passo de indução temos que $9^k - 1 = 8m$. Portanto

$$9(8m) + 8 = 8(9m + 1)$$

Onde 9m + 1 é um número inteiro positivo maior que zero. Logo $9^{k+1} - 1$ é divisível por 8.

Por indução provamos que

$$\forall_n \in \mathbb{N}^+ \ 9^n - 1$$
 é divisível por 8 é valida.

(e) $2^{n+1} > n^2$ para todo o $n \in \mathbb{N}^+$.

Passo base: n = 1

$$2^2 > 1^2 \Leftrightarrow 4 > 1$$

Portanto o caso base é verdadeiro.

Passo de indução: Suponhamos que a fórmula é verdadeira para n = k, ou seja

$$2^{k+1} > k^2$$

Vamos provar que a fórmula é verdadeira para n = k + 1, ou seja

$$2^{k+2} > (k+1)^2$$
$$2^{(k+1)+1} = 2 \times 2^{k+1}$$

Sabemos que $2^{k+1} > k^2$ pela hipotese de indução. Então

$$2 \times 2^{k+1} > 2 \times k^2$$

Queremos provar que $2 \times k^2 > (k+1)^2$. Expandindo $(k+1)^2$ obtemos:

$$2 \times k^2 > (k+1)^2 \leftrightarrow 2k^2 > k^2 + 2k + 1 \leftrightarrow k^2 > 2k + 1$$

Como $k^2 > 2k + 1$ para k > 1 que é verdade pois $(k-1)^2 > 0$.

Concluimos então que $2^{k+2} > (k+1)^2$, o que prova o passo de indução.

Por indução provamos que $2^{n+1} > n^2$ para todo o $n \in \mathbb{N}^+$

Exercício 4

Sejam $A, B, \in C$ conjuntos finitos quaisquer e $f: A \longmapsto B \in g: B \longmapsto C$ funções totais quaisquer. Denotamos por $g \circ f: A \longmapsto C$ a função composta $(g \circ f)(x) = g(f(x))$.

(a) Se f e g são injetivas, então $(g \circ f)$ também é injetiva.

Uma função é injetiva se, $h: x \mapsto y \ \forall_{x_1,x_2} \in x$ então se $h(x_1) = h(x_2) \Rightarrow x_1 = x_2$. Como g é injetiva, $f(x_1) = f(x_2)$. Visto que f é injetiva, $x_1 = x_2$. Portanto se $(g \circ f)(x_1) = (g \circ f)(x_2)$, então $x_1 = x_2$. Logo $(g \circ f)(x)$ é injetiva.

(b) Se f e q são sobrejetivas, então $q \circ f$ também é sobrejetiva.

A função $g \circ f$ é sobrejetiva se $\forall_c \in C$, $\exists_a \in A : (g \circ f)(a) = c$. Como g é sobrejetiva então $\forall_c \in C$, $\exists_b \in B : g(b) = c$. Como f é sobrejetiva então $\forall_b \in B$, $\exists_a \in A : f(a) = b$. Assim $(g \circ f)(a) = g(f(a)) = g(b) = c$. Portanto $(g \circ f)(x)$ é sobrejetiva.

(c) Se f e g são bijetivas, então $g \circ f$ também é bijetiva.

Usando as provas acima provamos que $g \circ f$ é injetiva e sobrejetiva. Logo $g \circ f$ é bijetiva.