Bag of Tricks for Image Classification with Convolutional Neural Networks

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, Mu Li

CVPR 2019

Yang Changeun

Introduction

 A large number of refinements, including changes in loss function, preprocessing, and optimization methods, has been proposed in the past years, but has received relatively less attention than model architecture

• In this paper, authors examined a collection of training procedure and model architecture refinements that improve model accuracy but barely change computational complexity

Model	FLOPs	top-1
ResNet-50 [9]	3.9 G	75.3
ResNeXt-50 [27]	4.2 G	77.8
SE-ResNet-50 [12]	3.9 G	76.71
SE-ResNeXt-50 [12]	4.3 G	78.90
DenseNet-201 [13]	4.3 G	77.42
ResNet-50 + tricks (ours)	4.3 G	79.29

Paper Outline

- 1) Baseline training procedure
- 2) Efficient training
- 3) Model architecture tweaks for ResNet
- 4) Training procedure refinements
- 5) Transfer Learning

1) Baseline Training Procedure

- 1. Randomly sample an image and decode it into 32-bit floating point raw pixel values in [0, 255].
- 2. Randomly crop a rectangular region whose aspect ratio is randomly sampled in [3/4, 4/3] and area randomly sampled in [8%, 100%], then resize the cropped region into a 224-by-224 square image.
- 3. Flip horizontally with 0.5 probability.
- 4. <u>Scale</u> hue, saturation, and brightness with coefficients uniformly drawn from [0.6, 1.4].
- 5. Add PCA noise with a coefficient sampled from a normal distribution $\mathcal{N}(0, 0.1)$.
- 6. Normalize RGB channels by subtracting 123.68, 116.779, 103.939 and dividing by 58.393, 57.12, 57.375, respectively.

Algorithm 1 Train a neural network with mini-batch stochastic gradient descent.

```
\begin{aligned} & \textbf{for } \texttt{epoch} = 1, \dots, K \ \textbf{do} \\ & \textbf{for } \texttt{batch} = 1, \dots, \#\texttt{images}/b \ \textbf{do} \\ & \texttt{images} \leftarrow \texttt{uniformly random sample } b \ \texttt{images} \\ & X, y \leftarrow \texttt{preprocess(images)} \\ & z \leftarrow \texttt{forward(net}, X) \\ & \ell \leftarrow \texttt{loss}(z, y) \\ & \texttt{grad} \leftarrow \texttt{backward}(\ell) \\ & \texttt{update(net, grad)} \\ & \textbf{end for} \end{aligned}
```

Model	Base	eline	Refe	rence
Model	Top-1	Top-5	Top-1	Top-5
ResNet-50 [9]	75.87	92.70	75.3	92.2
Inception-V3 [26]	77.32	93.43	78.8	94.4
MobileNet [11]	69.03	88.71	70.6	-

- Mini-batch SGD groups multiple samples to a mini-batch to increase parallelism and decrease communication costs
 - But using large batch size cause low convergence
 - Then How to make the convergence faster?
- 1. Linear scaling learning rate
 - Increasing the batch size reduces its variance
 - Less noise in the gradient, so it's okay to increase the learning rate
 - 0.1 as the initial learning rate for batch size 256.

$$lr = 0.1 * \frac{b}{256}$$
, b: batch size

2. Learning rate warmup

- All parameters are random value and far away from the optimal parameters at the beginning of the training
- Using a too large learning rate at the beginning may not be stable
- Increase the learning rate from 0 to the initial learning rate linearly

3. Zero γ

- The last layer of the residual block is BN(Batch Normalization) layer
- Initialize $\gamma = 0$ for BN layers in all residual blocks
- So that all residual blocks just return their inputs
- The network has less layers and is easier to train at the initial stage

- 4. No bias decay
 - The weight decay is often applied to all learnable parameters including both weights and bias.
 - Jia et al. recommended to only apply the regularization to weights to avoid overfitting.
 - The biases and γ and β in BN layers are left unregularized.

- 5. Low-precision training
 - Neural networks are commonly trained with 32-bit floating point(FP32) precision
 - New hardwares(ex. Nvidia V100) are much faster in FP16
 - But a reduced precision has a narrow range and it can disturb the training progress
 - Mickikevicius et al. proposed mixed training
 - FP16 for computing gradients, FP32 for parameter updating

FP16, BS=1024

FP32, BS=256

Model	Eff	Efficient		Baseline		
Wiodei	Time/epoch	Top-1	Top-5	Time/epoch	Top-1	Top-5
ResNet-50	4.4 min	76.21	92.97	13.3 min	75.87	92.70
Inception-V3	8 min	77.50	93.60	19.8 min	77.32	93.43
MobileNet	3.7 min	71.90	90.47	6.2 min	69.03	88.71

Heuristic	BS=256		BS=1024		
Tieuristic	Top-1	Top-5	Top-1	Top-5	_
Linear scaling	75.87	92.70	75.17	92.54	_
+ LR warmup	76.03	92.81	75.93	92.84	
+ Zero γ	76.19	93.03	76.37	92.96	
+ No bias decay	76.16	92.97	76.03	92.86],
+ FP16	76.15	93.09	76.21	92.97	

3) Model Tweaks

- ResNet-B: 1x1 Conv. with stride=2 loses data -> put stride=2 on 3x3 Conv. instead
- ResNet-C: 7x7 Conv. takes too much computational cost -> use three 3x3 Conv. instead
- ResNet-D: Replace 1x1 Conv. with stride=2 in Path B with Average Pooling

3) Model Tweaks

ResNet-50-D improves ResNet-50 by 1%

- Four models have the same model size
 - ResNet-50-D is only 3% slower in training throughput compared to ResNet-50

Model	#params	FLOPs	Top-1	Top-5
ResNet-50	25 M	3.8 G	76.21	92.97
ResNet-50-B	25 M	4.1 G	76.66	93.28
ResNet-50-C	25 M	4.3 G	76.87	93.48
ResNet-50-D	25 M	4.3 G	77.16	93.52

(a) Learning Rate Schedule

- 1. Cosine Learning Rate Decay
 - He et al. decreased the learning rate at 0.1 for every 30 epochs
 - => Step Decay
 - Loshchilov et al. proposed cosine decay: decreasing the learning rate from the initial value to 0 by following cosine function

$$\eta_t = \frac{1}{2} \left(1 + \cos \left(\frac{t\pi}{T} \right) \right) \eta,$$

- T : total number of batches(the warmup stage is ignored)
- t : current batch, η_t : learning rate
- η : the initial learning rate

1. Cosine Learning Rate Decay

(b) Validation Accuracy

2. Label Smoothing

• When the number of labels is K, the predicted score for class i is z_i , the softmax q_i is

$$q_i = \frac{\exp(z_i)}{\sum_{j=1}^K \exp(z_j)}.$$

• And its loss: cross entropy *l(p,q)* is

$$\ell(p,q) = -\sum_{i=1}^{K} q_i^{\mathsf{p}_{_i}} \log p_i^{\mathsf{q}_{_i}}$$

When p is a truth distribution

- 2. Label Smoothing
 - If *p* is one hot encoding, the cross entropy is

$$\ell(p,q) = -\log p_y^{\mathsf{q_y}} = -z_y + \log \left(\sum_{i=1}^K \exp(z_i)\right)$$

- And the optimal solution is $z^*_y=inf$, which can leads to overfitting
- In order to prevent this, change the true probability p_i to

$$\mathbf{y}_{i}^{\mathbf{p}_{-}\mathbf{i}} = \begin{cases} 1 - \varepsilon & \text{if } i = y, \\ \varepsilon/(K - 1) & \text{otherwise,} \end{cases}$$
 $\varepsilon = 0.1, K = 1000$

- 2. Label Smoothing
 - Then, the optimal solution becomes

$$z_i^* = \begin{cases} \log((K-1)(1-\varepsilon)/\varepsilon) + \alpha \\ \alpha \end{cases}$$

Where α is arbitrary real number

• This encourages a finite output from the fully-connected layer and can generalize better

smoothed labels

if
$$i = y$$
, otherwise,

- 3. Knowledge Distillation
 - A teacher model helps train the current model(student model)
 - ex) ResNet-152: teacher model, ResNet-50: student model
 - Distillation loss is used to penalize the difference between the softmax outputs from the teacher model and the student model

$$\frac{\ell(p, \operatorname{softmax}(z))}{\operatorname{original\ loss}} + T^2 \underbrace{\ell(\operatorname{softmax}(r/T), \operatorname{softmax}(z/T))}_{\text{distillation\ loss}}$$

• T = 20

4. Mixup Training

 Two random examples (x_i, y_i) and (x_j, y_j) are chosen and a new example is made by a weighted linear interpolation

$$\hat{x} = \lambda x_i + (1 - \lambda) x_j,$$
 $\hat{y} = \lambda y_i + (1 - \lambda) y_j,$
[1.0, 0.0] [0.0, 1.0] [0.7, 0.3]

- λ : a random number drawn from the Beta(α , α) distribution (α =0.2)
- In mixup training, only the new examples are used
- Mixup training asks for a longer training progress to converge better

They trained ResNet, Inception-V3 and MobileNet with these refinements

 By stacking cosine decay, label smoothing and mixup, those models were improved steadily

Refinements	ResNe	ResNet-50-D I		Inception-V3		MobileNet	
Kennements	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	
Efficient	77.16	93.52	77.50	93.60	71.90	90.53	
+ cosine decay	77.91	93.81	78.19	94.06	72.83	91.00	
+ label smoothing	78.31	94.09	78.40	94.13	72.93	91.14	
+ distill w/o mixup	78.67	94.36	78.26	94.01	71.97	90.89	
+ mixup w/o distill	79.15	94.58	78.77	94.39	73.28	91.30	
+ distill w/ mixup	79.29	94.63	78.34	94.16	72.51	91.02	

 These tricks are also used to train a ResNet-50-D on MIT Places365 dataset

 The refinements improve the top-5 accuracy consistently on both the validation and test set

Model	Val Top-1 Acc	Val Top-5 Acc	Test Top-1 Acc	Test Top-5 Acc
ResNet-50-D Efficient	56.34	86.87	57.18	87.28
ResNet-50-D Best	56.70	87.33	57.63	87.82

5) Transfer Learning

1. Object Detection

- VGG-19 base model in Faster-RCNN is replaced with pretrained model
- Keep other settings the same so the gain is solely from the base model

Refinement	Top-1	mAP
B-standard	76.14	77.54
D-efficient	77.16	78.30
+ cosine	77.91	79.23
+ smooth	78.34	80.71
+ distill w/o mixup	78.67	80.96
+ mixup w/o distill	79.16	81.10
+ distill w/ mixup	79.29	81.33

5) Transfer Learning

- 2. Semantic Segmentation
 - the base network of FCN is replaced
 - Cosine learning rate schedule improves the accuracy
 - But other refinements provide suboptimal results

Refinement	Top-1	PixAcc	mIoU
B-standard	76.14	78.08	37.05
D-efficient	77.16	78.88	38.88
+ cosine	77.91	79.25	39.33
+ smooth	78.34	78.64	38.75
+ distill w/o mixup	78.67	78.97	38.90
+ mixup w/o distill	79.16	78.47	37.99
+ mixup w/ distill	79.29	78.72	38.40

 Soften labels by label smoothing, distillation and mixup blurred pixel-level information and degraded overall accuracy?

Conclusion

 They survey a dozen tricks to train deep convolutional neural networks to improve model accuracy

 Results on ResNet-50, Inception-V3 and MobileNet indicate that these tricks improve model accuracy consistently

 These improved pre-trained models show strong advantages in transfer learning