

Ecole Nationale d'ingénieurs de Carthage Département de Génie Informatique

Rapport de Mini Projet Sujet:

Projet : Analyse ACP et classification K-means d'une base de données « Heart disease »

Membres de Groupe:

Oumayma SAIDI Chaima MEZGAR Emna OUERGHI Oumayma REDISSI

Année Universitaire: 2021-2022

Projet Analyse des données Heart disease

Introduction:

Dans le cadre d'un projet analyse des données de la deuxième année cycle ingénieur en génie informatique à l'école nationale d'ingénieur de Carthage et pour appliquer les connaissances acquises pendant le cours de "Analyse des données", nous sommes amenés à réaliser un projet basé sur les méthode de l'ACP et de la classification K-means.

```
Importation des données et bibliothèques
```

```
In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from pandas.plotting import scatter matrix
import seaborn as sns
from sklearn.decomposition import PCA
import numpy
In [2]:
df=pd.read csv("heart cleveland upload.csv") #lecture du dataset
#Référence dataset : https://www.kaggle.com/datasets/cherngs/heart-disease-cleveland-uci?
resource=download
In [4]:
df
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	condition
0	69	1	0	160	234	1	2	131	0	0.1	1	1	0	0
1	69	0	0	140	239	0	0	151	0	1.8	0	2	0	0
2	66	0	0	150	226	0	0	114	0	2.6	2	0	0	0
3	65	1	0	138	282	1	2	174	0	1.4	1	1	0	1
4	64	1	0	110	211	0	2	144	1	1.8	1	0	0	0
292	40	1	3	152	223	0	0	181	0	0.0	0	0	2	1
293	39	1	3	118	219	0	0	140	0	1.2	1	0	2	1
294	35	1	3	120	198	0	0	130	1	1.6	1	0	2	1
295	35	0	3	138	183	0	0	182	0	1.4	0	0	0	0
296	35	1	3	126	282	0	2	156	1	0.0	0	0	2	1

```
297 rows x 14 columns
```

```
In [5]:
df.shape
Out[5]:
```

Out[4]:

Elimination des valeurs nulles, incohérents inexploitables et colonnes dupliquées.

```
In [6]:
```

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 297 entries, 0 to 296
Data columns (total 14 columns):

#	Column	Non-	-Null Count	Dtype
0	age	297	non-null	int64
1	sex	297	non-null	int64
2	ср	297	non-null	int64
3	trestbps	297	non-null	int64
4	chol	297	non-null	int64
5	fbs	297	non-null	int64
6	restecg	297	non-null	int64
7	thalach	297	non-null	int64
8	exang	297	non-null	int64
9	oldpeak	297	non-null	float64
10	slope	297	non-null	int64
11	ca	297	non-null	int64
12	thal	297	non-null	int64
13	condition	297	non-null	int64
dtyp	es: float64	(1),	int64(13)	

memory usage: 32.6 KB

age: age in years

sex: sex (1 = male; 0 = female)

cp: chest pain type

Value 0: typical angina

Value 1: atypical angina

Value 2: non-anginal pain

Value 3: asymptomatic

trestbps: resting blood pressure (in mm Hg on admission to the hospital)

chol: serum cholestoral in mg/dl

fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)

restecg: resting electrocardiographic results

Value 0: normal

Value 1: having ST-T wave abnormality(T wave inversions and/or ST elevation or depression of > 0.05 mV)

Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria

thalach: maximum heart rate achieved

exang: exercise induced angina (1 = yes; 0 = no)

oldpeak = ST depression induced by exercise relative to rest

slope: the slope of the peak exercise ST segment

Value 0: upsloping Value 1: flat Value 2: downsloping ca: number of major vessels (0-3) colored by flourosopy

thal: A blood disorder called thalassemia

0 = normal; 1 = fixed defect; 2 = reversable defect Condition:

Value 0 = No Disease; Value 1 = Disease;

In [7]:

df.describe()

Out[7]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpe
count	297.000000	297.000000	297.000000	297.000000	297.000000	297.000000	297.000000	297.000000	297.000000	297.0000
mean	54.542088	0.676768	2.158249	131.693603	247.350168	0.144781	0.996633	149.599327	0.326599	1.0555
std	9.049736	0.468500	0.964859	17.762806	51.997583	0.352474	0.994914	22.941562	0.469761	1.1661
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.0000
25%	48.000000	0.000000	2.000000	120.000000	211.000000	0.000000	0.000000	133.000000	0.000000	0.0000
50%	56.000000	1.000000	2.000000	130.000000	243.000000	0.000000	1.000000	153.000000	0.000000	0.8000
75%	61.000000	1.000000	3.000000	140.000000	276.000000	0.000000	2.000000	166.000000	1.000000	1.6000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.2000
										F.

In [8]:

df.rename(columns = {'condition':'target'}, inplace = True)

In [9]:

df

Out[9]:

0 69 1 0 160 234 1 2 131 0 0.1 1 1 0 1 69 0 0 140 239 0 0 151 0 1.8 0 2 0 2 66 0 0 150 226 0 0 114 0 2.6 2 0 0 3 65 1 0 138 282 1 2 174 0 1.4 1 1 0 4 64 1 0 110 211 0 2 144 1 1.8 1 0 0 .		al target
2 66 0 0 150 226 0 0 114 0 2.6 2 0 0 3 65 1 0 138 282 1 2 174 0 1.4 1 1 0 4 64 1 0 110 211 0 2 144 1 1.8 1 0 0 .	0	0 0
3 65 1 0 138 282 1 2 174 0 1.4 1 1 0 4 64 1 0 110 211 0 2 144 1 1.8 1 0 0 .	1	0 0
4 64 1 0 110 211 0 2 144 1 1.8 1 0 0	2	0 0
	3	0 1
	4	0 0
202 40 1 2 152 222 0 0 191 0 00 0 2		
252 40 1 3 132 223 0 0 161 0 0.0 0 0 2	292	2 1
293 39 1 3 118 219 0 0 140 0 1.2 1 0 2	293	2 1
294 35 1 3 120 198 0 0 130 1 1.6 1 0 2	294	2 1
295 35 0 3 138 183 0 0 182 0 1.4 0 0 0	295	0 0
296 35 1 3 126 282 0 2 156 1 0.0 0 0 2	296	2 1

297 rows x 14 columns

In [10]:

df.describe()

Out[10]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpe
coun	t 297.000000 297	7.000000 297	.000000 297.	000000 297.0	000000 297.0000	000 297.00000	0 297.0000	00 297.000000	297.0000	
mear	54.542088	0.676768	2.158249	131.693603	247.350168	0.144781	0.996633	149.599327	0.326599	1.0555

```
std
        9.049736
                 0.468500
                           0.96485B
                                   17rZ9£18p9
                                             51.997c5h8c3
                                                       0.352464
                                                                 0r8948dd
                                                                          22th4156A
                                                                                    0.46%276g
                                                                                              101616
       29.000000
                 0.000000
                           0.000000
                                   94.000000
                                            126.000000
                                                       0.00000
                                                                 0.000000
                                                                          71.000000
                                                                                    0.000000
                                                                                              0.0000
  min
 25%
       48.000000
                 0.000000
                           2.000000 120.000000
                                            211.000000
                                                       0.000000
                                                                 0.000000
                                                                         133.000000
                                                                                    0.000000
                                                                                              0.0000
       56.000000
                 1.000000
                           2.000000 130.000000
                                            243.000000
                                                       0.000000
                                                                         153.000000
                                                                                    0.000000
                                                                                              0.8000
 50%
                                                                 1.000000
       61.000000
                 1.000000
                           3.000000 140.000000
                                            276.000000
                                                       0.000000
                                                                 2.000000
                                                                         166.000000
                                                                                    1.000000
                                                                                              1.6000
 75%
 max
       77.000000
                 1.000000
                           3.000000 200.000000
                                            564.000000
                                                       1.000000
                                                                 2.000000
                                                                         202.000000
                                                                                    1.000000
                                                                                              6.2000
                                                                                                F
In [11]:
df["target"].unique() #returns all unique values
Out [11]:
array([0, 1], dtype=int64)
In [12]:
scatter matrix(df, figsize=(10,10))
Out[12]:
array([[<AxesSubplot:xlabel='age', ylabel='age'>,
         <AxesSubplot:xlabel='sex', ylabel='age'>,
        <AxesSubplot:xlabel='cp', ylabel='age'>,
        <AxesSubplot:xlabel='trestbps', ylabel='age'>,
        <AxesSubplot:xlabel='chol', ylabel='age'>,
        <AxesSubplot:xlabel='fbs', ylabel='age'>,
        <AxesSubplot:xlabel='restecg', ylabel='age'>,
        <AxesSubplot:xlabel='thalach', ylabel='age'>,
        <AxesSubplot:xlabel='exang', ylabel='age'>,
        <AxesSubplot:xlabel='oldpeak', ylabel='age'>,
        <AxesSubplot:xlabel='slope', ylabel='age'>,
        <AxesSubplot:xlabel='ca', ylabel='age'>,
        <AxesSubplot:xlabel='thal', ylabel='age'>,
        <AxesSubplot:xlabel='target', ylabel='age'>],
       [<AxesSubplot:xlabel='age', ylabel='sex'>,
        <AxesSubplot:xlabel='sex', ylabel='sex'>,
        <AxesSubplot:xlabel='cp', ylabel='sex'>,
        <AxesSubplot:xlabel='trestbps', ylabel='sex'>,
        <AxesSubplot:xlabel='chol', ylabel='sex'>,
        <AxesSubplot:xlabel='fbs', ylabel='sex'>,
        <AxesSubplot:xlabel='restecg', ylabel='sex'>,
        <AxesSubplot:xlabel='thalach', ylabel='sex'>,
        <AxesSubplot:xlabel='exang', ylabel='sex'>,
        <AxesSubplot:xlabel='oldpeak', ylabel='sex'>,
        <AxesSubplot:xlabel='slope', ylabel='sex'>,
        <AxesSubplot:xlabel='ca', ylabel='sex'>,
        <AxesSubplot:xlabel='thal', ylabel='sex'>,
        <AxesSubplot:xlabel='target', ylabel='sex'>],
       [<AxesSubplot:xlabel='age', ylabel='cp'>,
        <AxesSubplot:xlabel='sex', ylabel='cp'>,
        <AxesSubplot:xlabel='cp', ylabel='cp'>,
        <AxesSubplot:xlabel='trestbps', ylabel='cp'>,
        <AxesSubplot:xlabel='chol', ylabel='cp'>,
        <AxesSubplot:xlabel='fbs', ylabel='cp'>,
        <AxesSubplot:xlabel='restecg', ylabel='cp'>,
        <AxesSubplot:xlabel='thalach', ylabel='cp'>,
        <AxesSubplot:xlabel='exang', ylabel='cp'>,
        <AxesSubplot:xlabel='oldpeak', ylabel='cp'>,
        <AxesSubplot:xlabel='slope', ylabel='cp'>,
        <AxesSubplot:xlabel='ca', ylabel='cp'>,
        <AxesSubplot:xlabel='thal', ylabel='cp'>,
        <AxesSubplot:xlabel='target', ylabel='cp'>],
       [<AxesSubplot:xlabel='age', ylabel='trestbps'>,
        <AxesSubplot:xlabel='sex', ylabel='trestbps'>,
        <AxesSubplot:xlabel='cp', ylabel='trestbps'>,
        <AxesSubplot:xlabel='trestbps', ylabel='trestbps'>,
        <AxesSubplot:xlabel='chol', ylabel='trestbps'>,
```

```
<AxesSubplot:xlabel='fbs', ylabel='trestbps'>,
<AxesSubplot:xlabel='restecg', ylabel='trestbps'>,
<AxesSubplot:xlabel='thalach', ylabel='trestbps'>,
<AxesSubplot:xlabel='exang', ylabel='trestbps'>,
<AxesSubplot:xlabel='oldpeak', ylabel='trestbps'>,
<AxesSubplot:xlabel='slope', ylabel='trestbps'>,
<AxesSubplot:xlabel='ca', ylabel='trestbps'>,
<AxesSubplot:xlabel='thal', ylabel='trestbps'>,
<AxesSubplot:xlabel='target', ylabel='trestbps'>],
[<AxesSubplot:xlabel='age', ylabel='chol'>,
<AxesSubplot:xlabel='sex', ylabel='chol'>,
<AxesSubplot:xlabel='cp', ylabel='chol'>,
<AxesSubplot:xlabel='trestbps', ylabel='chol'>,
<AxesSubplot:xlabel='chol', ylabel='chol'>,
<AxesSubplot:xlabel='fbs', ylabel='chol'>,
<AxesSubplot:xlabel='restecg', ylabel='chol'>,
<AxesSubplot:xlabel='thalach', ylabel='chol'>,
<AxesSubplot:xlabel='exang', ylabel='chol'>,
<AxesSubplot:xlabel='oldpeak', ylabel='chol'>,
<AxesSubplot:xlabel='slope', ylabel='chol'>,
<AxesSubplot:xlabel='ca', ylabel='chol'>,
<AxesSubplot:xlabel='thal', ylabel='chol'>,
<AxesSubplot:xlabel='target', ylabel='chol'>],
[<AxesSubplot:xlabel='age', ylabel='fbs'>,
<AxesSubplot:xlabel='sex', ylabel='fbs'>,
<AxesSubplot:xlabel='cp', ylabel='fbs'>,
<AxesSubplot:xlabel='trestbps', ylabel='fbs'>,
<AxesSubplot:xlabel='chol', ylabel='fbs'>,
<AxesSubplot:xlabel='fbs', ylabel='fbs'>,
<AxesSubplot:xlabel='restecg', ylabel='fbs'>,
<AxesSubplot:xlabel='thalach', ylabel='fbs'>,
<AxesSubplot:xlabel='exang', ylabel='fbs'>,
<AxesSubplot:xlabel='oldpeak', ylabel='fbs'>,
<AxesSubplot:xlabel='slope', ylabel='fbs'>,
<AxesSubplot:xlabel='ca', ylabel='fbs'>,
<AxesSubplot:xlabel='thal', ylabel='fbs'>,
<AxesSubplot:xlabel='target', ylabel='fbs'>],
[<AxesSubplot:xlabel='age', ylabel='restecg'>,
<AxesSubplot:xlabel='sex', ylabel='restecg'>,
<AxesSubplot:xlabel='cp', ylabel='restecg'>,
<AxesSubplot:xlabel='trestbps', ylabel='restecg'>,
<AxesSubplot:xlabel='chol', ylabel='restecg'>,
<AxesSubplot:xlabel='fbs', ylabel='restecg'>,
<AxesSubplot:xlabel='restecg', ylabel='restecg'>,
<AxesSubplot:xlabel='thalach', ylabel='restecg'>,
<AxesSubplot:xlabel='exang', ylabel='restecg'>,
<AxesSubplot:xlabel='oldpeak', ylabel='restecg'>,
<AxesSubplot:xlabel='slope', ylabel='restecg'>,
<AxesSubplot:xlabel='ca', ylabel='restecg'>,
<AxesSubplot:xlabel='thal', ylabel='restecg'>,
<AxesSubplot:xlabel='target', ylabel='restecg'>],
[<AxesSubplot:xlabel='age', ylabel='thalach'>,
<AxesSubplot:xlabel='sex', ylabel='thalach'>,
<AxesSubplot:xlabel='cp', ylabel='thalach'>,
<AxesSubplot:xlabel='trestbps', ylabel='thalach'>,
<AxesSubplot:xlabel='chol', ylabel='thalach'>,
<AxesSubplot:xlabel='fbs', ylabel='thalach'>,
<AxesSubplot:xlabel='restecg', ylabel='thalach'>,
<AxesSubplot:xlabel='thalach', ylabel='thalach'>,
<AxesSubplot:xlabel='exang', ylabel='thalach'>,
<AxesSubplot:xlabel='oldpeak', ylabel='thalach'>,
<AxesSubplot:xlabel='slope', ylabel='thalach'>,
<AxesSubplot:xlabel='ca', ylabel='thalach'>,
<AxesSubplot:xlabel='thal', ylabel='thalach'>,
<AxesSubplot:xlabel='target', ylabel='thalach'>],
[<AxesSubplot:xlabel='age', ylabel='exang'>,
<AxesSubplot:xlabel='sex', ylabel='exang'>,
<AxesSubplot:xlabel='cp', ylabel='exang'>,
<AxesSubplot:xlabel='trestbps', ylabel='exang'>,
<AxesSubplot:xlabel='chol', ylabel='exang'>,
<AxesSubplot:xlabel='fbs', ylabel='exang'>,
<AxesSubplot:xlabel='restecg', ylabel='exang'>,
```

```
<AxesSubplot:xlabel='thalach', ylabel='exang'>,
<AxesSubplot:xlabel='exang', ylabel='exang'>,
<AxesSubplot:xlabel='oldpeak', ylabel='exang'>,
<AxesSubplot:xlabel='slope', ylabel='exang'>,
<AxesSubplot:xlabel='ca', ylabel='exang'>,
<AxesSubplot:xlabel='thal', ylabel='exang'>,
<AxesSubplot:xlabel='target', ylabel='exang'>],
[<AxesSubplot:xlabel='age', ylabel='oldpeak'>,
<AxesSubplot:xlabel='sex', ylabel='oldpeak'>,
<AxesSubplot:xlabel='cp', ylabel='oldpeak'>,
<AxesSubplot:xlabel='trestbps', ylabel='oldpeak'>,
<AxesSubplot:xlabel='chol', ylabel='oldpeak'>,
<AxesSubplot:xlabel='fbs', ylabel='oldpeak'>,
<AxesSubplot:xlabel='restecg', ylabel='oldpeak'>,
<AxesSubplot:xlabel='thalach', ylabel='oldpeak'>,
<AxesSubplot:xlabel='exang', ylabel='oldpeak'>,
<AxesSubplot:xlabel='oldpeak', ylabel='oldpeak'>,
<AxesSubplot:xlabel='slope', ylabel='oldpeak'>,
<AxesSubplot:xlabel='ca', ylabel='oldpeak'>,
<AxesSubplot:xlabel='thal', ylabel='oldpeak'>,
<AxesSubplot:xlabel='target', ylabel='oldpeak'>],
[<AxesSubplot:xlabel='age', ylabel='slope'>,
<AxesSubplot:xlabel='sex', ylabel='slope'>,
<AxesSubplot:xlabel='cp', ylabel='slope'>,
<AxesSubplot:xlabel='trestbps', ylabel='slope'>,
<AxesSubplot:xlabel='chol', ylabel='slope'>,
<AxesSubplot:xlabel='fbs', ylabel='slope'>,
<AxesSubplot:xlabel='restecg', ylabel='slope'>,
<AxesSubplot:xlabel='thalach', ylabel='slope'>,
<AxesSubplot:xlabel='exang', ylabel='slope'>,
<AxesSubplot:xlabel='oldpeak', ylabel='slope'>,
<AxesSubplot:xlabel='slope', ylabel='slope'>,
<AxesSubplot:xlabel='ca', ylabel='slope'>,
<AxesSubplot:xlabel='thal', ylabel='slope'>,
<AxesSubplot:xlabel='target', ylabel='slope'>],
[<AxesSubplot:xlabel='age', ylabel='ca'>,
<AxesSubplot:xlabel='sex', ylabel='ca'>,
<AxesSubplot:xlabel='cp', ylabel='ca'>,
<AxesSubplot:xlabel='trestbps', ylabel='ca'>,
<AxesSubplot:xlabel='chol', ylabel='ca'>,
<AxesSubplot:xlabel='fbs', ylabel='ca'>,
<AxesSubplot:xlabel='restecg', ylabel='ca'>,
<AxesSubplot:xlabel='thalach', ylabel='ca'>,
<AxesSubplot:xlabel='exang', ylabel='ca'>,
<AxesSubplot:xlabel='oldpeak', ylabel='ca'>,
<AxesSubplot:xlabel='slope', ylabel='ca'>,
<AxesSubplot:xlabel='ca', ylabel='ca'>,
<AxesSubplot:xlabel='thal', ylabel='ca'>,
<AxesSubplot:xlabel='target', ylabel='ca'>],
[<AxesSubplot:xlabel='age', ylabel='thal'>,
<AxesSubplot:xlabel='sex', ylabel='thal'>,
<AxesSubplot:xlabel='cp', ylabel='thal'>,
<AxesSubplot:xlabel='trestbps', ylabel='thal'>,
<AxesSubplot:xlabel='chol', ylabel='thal'>,
<AxesSubplot:xlabel='fbs', ylabel='thal'>,
<AxesSubplot:xlabel='restecg', ylabel='thal'>,
<AxesSubplot:xlabel='thalach', ylabel='thal'>,
<AxesSubplot:xlabel='exang', ylabel='thal'>,
<AxesSubplot:xlabel='oldpeak', ylabel='thal'>,
<AxesSubplot:xlabel='slope', ylabel='thal'>,
<AxesSubplot:xlabel='ca', ylabel='thal'>,
<AxesSubplot:xlabel='thal', ylabel='thal'>,
<AxesSubplot:xlabel='target', ylabel='thal'>],
[<AxesSubplot:xlabel='age', ylabel='target'>,
<AxesSubplot:xlabel='sex', ylabel='target'>,
<AxesSubplot:xlabel='cp', ylabel='target'>,
<AxesSubplot:xlabel='trestbps', ylabel='target'>,
<AxesSubplot:xlabel='chol', ylabel='target'>,
<AxesSubplot:xlabel='fbs', ylabel='target'>,
<AxesSubplot:xlabel='restecg', ylabel='target'>,
<AxesSubplot:xlabel='thalach', ylabel='target'>,
<AxesSubplot:xlabel='exang', ylabel='target'>,
```

```
<AxesSubplot:xlabel='oldpeak', ylabel='target'>,
<AxesSubplot:xlabel='slope', ylabel='target'>,
<AxesSubplot:xlabel='ca', ylabel='target'>,
<AxesSubplot:xlabel='thal', ylabel='target'>,
<AxesSubplot:xlabel='target', ylabel='target'>]], dtype=object)
```


Matrice de Covariance

In [13]:

cov=df.cov()
cov

Out[13]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slo
age	81.897716	-	0.964601	46.693682	95.356834	0.421251	1.349804	-81.917201	0.410194	2.080255	0.8917
sex	-0.391755 0.:	219492 0.00	04027	-0.552075	-4.825621	0.006416	0.015800	-0.650218	0.031600	0.058221	0.0096
ср	0.964601	0.004027 0.	930954	-0.633782	3.616696	0.019611	0.061345	-7.510704	0.171114	0.228679	0.0901
trestbps	46.693682	0.552075	- 0.633782	315.517290	121.489410	1.132348	2.637478	-20.011694	0.556488	3.961336	1.3305
chol	95.356834	4.825621	3.616696 <i>1</i>	121.489410	2703.748589	0.232915	8.538345	-0.088953	1.449438	2.340278	0.2962
fbs	0.421251	0.006416	0.019611	1.132348	0.232915	0.124238	0.024138	-0.063416	0.000148	0.003416	0.0104
restecg	1.349804	0.015800	0.061345	2.637478	8.538345	0.024138	0.989853	-1.650002	0.038266	0.131944	0.0831
thalach	- 81.917201	0.650218	- 7.510704	-20.011694	-0.088953	0.063416	1.650002	526.315270	- 4.142347	9.300300	5.5212

Ayand	n 410194 (า กราคก็ก ก	₁₇₁₁₁₄ cp	trestbps 0.556488	c hol 1 <i>ለለ</i> ዐለ3ጸ	fbs -0.000148	resteca n naraar	thalach -∆ 1∆23∆7 (exang 1 22067571	oldpeak 158483 0 0	₇₉₇ slo
oldpeak	2.080255	0.058221	0.228679	3.961336	2.340278	0.003416	0.131944	-9.300300	0.158483	1.359842	0.4174
slope	0.891778	0.009657	0.090113	1.330558	-0.296217	0.010420	0.083117	-5.521214	0.072766	0.417417	0.3821
ca	3.077839	0.040438	0.213486	1.633736	5.660865	0.050334	0.120530	-5.788732	0.065384	0.322410	0.0637
thal	1.045819	0.166087	0.245791	2.219549	1.166075	0.017210	0.012956	-5.671057	0.145282	0.375751	0.1538
target	1.026128	0.065145	0.197027	1.361407	2.084550	0.000557	0.082639	-4.855094	0.098837	0.246922	0.1028

Centrer et réduire les données

In [14]:

from sklearn import preprocessing
df_cr = preprocessing.scale(df)

Matrice de corrélation

In [15]:

corr=df.corr()

In [16]:

corr

Out[16]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope
age	1.000000	0.092399	0.110471	0.290476 0	.202644 0.1	32062 0.14	9917	0.394563	0.096489	0.197123 0	.159405 0.362
se	x 0.092399	1.000000	0.008908	0.066340	0.198089	0.038850	0.033897	0.060496	0.143581	0.106567 0	.033345 0.091
cţ	0.110471	0.008908	1.000000	0.036980	0.072088	0.057663	0.063905	0.339308	0.377525	0.203244 0	.151079 0.235
trestbps	0.290476	0.066340	- 0.036980	1.000000	0.131536		0.149242	- 0.049108	0.066691	0.191243 0	.121172 0.097
cho	0.202644	0.198089	0.072088 0	.131536 1.0	000000	0.012708	0.165046	0.000075	0.059339	0.038596	- 0.115 0.009215
fbs	0.132062	0.038850	0.057663	0.180860 0	.012708	1.000000	0.068831	0.007842	0.000893	0.008311	0.047819 0.152
restecç	j 0.149917 0.	033897 0.0	63905 0.14	9242 0.165	046 0.0688	31 1.000000)	0.072290	0.081874	0.113726 0	.135141 0.129
thalac	h 0.394563	0.060496	0.339308	0.049108	0.000075	0.007842	0.072290	1.000000	0.384368	0.347640	- 0.389307 0.268
exanç	j 0.096489 0.	143581 0.3	77525 0.06	6691 0.059	339	0.000893	0.081874	0.384368	1.000000	0.289310 0	.250572 0.148
oldpeak	0.197123	0.106567	0.203244	0.191243	0.038596	0.008311	0.113726	0.347640	0.289310	1.000000 0	.579037 0.294
slone	a በ 159 <u>4</u> በ5 በ	በ333 <u>4</u> 5 በ 1	51079 N 12	1179	0.009215	በ በፈ7ጸ1ዓ (າ 1351⊿1	0.389307	N 25N572	N 579N37 1	ᲘᲘᲘᲘᲘ
Ca	a 0.362210	0.091925	0.235644	0.097954	0.115945	0.152086	0.129021	0.268727	0.148232 0	.294452 0.1	09761 1.000
tha	I 0.120795	0.370556	0.266275	0.130612	0.023441	0.051038	0.013612	0.258386	0.323268 0	.336809 0.2	60096 0.248
targe	t 0.227075	0.278467	0.408945	0.153490	0.080285	0.003167	0.166343	0.423817	0.421355 0	.424052 0.3	33049 0.463

```
•
```

```
In [17]:
```

```
plt.figure(figsize=(14,14))
sns.heatmap(corr,annot=True,cmap="magma",fmt='.2f')
```

Out[17]:

<AxesSubplot:>

In [18]:

```
eig_vals, eig_vecs = np.linalg.eig(corr)
```

Les valeurs et les vecteurs propres

```
In [19]:
```

```
eig_vals
```

Out[19]:

```
In [20]:
eig vecs
Out[20]:
array([[ 0.24053549, -0.44322858, 0.01590806, -0.0741482 , -0.18610381,
          0.28517679, 0.48703716, -0.05519485, 0.14096228,
          0.278374 , 0.33506525, 0.21103358, 0.0890432 ],
        [ 0.1308981 , 0.42802017, -0.49694338, -0.18694807,
                                                                     0.13624242,
          0.07845948, -0.00207369, -0.55990004, -0.0125279, -0.15053874,
          0.31516329, 0.15831411, 0.13298534, 0.12106471],
        [ 0.27378965, 0.13821378, 0.39789082, -0.290084 ,
                                                                     0.10135065,
          0.03437627, 0.15210894, -0.39909199, 0.45044502,
                                                                     0.03629891,
         -0.40503255, -0.04041831, -0.3137967, -0.03512005],
        [ 0.14100437, -0.40381088, -0.30705922, 0.15706847,
                                                                     0.18841602,
         -0.04806602, -0.21575188, -0.17109722, -0.03776823, -0.13025715,
         -0.3685335 , 0.44205594, -0.01710464, -0.48430184],
        [ 0.07194476, -0.41319209, 0.2421796 , -0.28332722,
                                                                     0.05886525,
         -0.03436179, -0.15520753, -0.19739628, 0.01576559, -0.39128305,
        0.45344171, -0.38467918, 0.11729685, -0.31108435],
[ 0.05329646, -0.2526208 , -0.51315072, -0.05307562, -0.14813721,
         -0.0371158 , -0.033591 , -0.02035814, 0.08412007,
                                                                    0.2754091 ,
          0.09947589, -0.37429105, -0.63928579, 0.02710342],
         \hbox{\tt [ 0.12980794, -0.26954322, -0.07889399, -0.0538794, 0.01037296, } 
        -0.12746657, 0.07508644, 0.16499134, 0.09208818, -0.62155422, -0.07816095, 0.19141162, -0.17265118, 0.62031266],
        [-0.35044615, -0.00688387, -0.23558664, -0.11135087, -0.09971641,
           0.45894129, \quad 0.489587 \quad , \quad -0.00064329, \quad -0.08455421, \quad -0.32913401, 
         -0.34180522, -0.27404459, 0.08917915, -0.18333285],
        [ 0.31004575, 0.1784161 , 0.19630072, -0.06704487,
                                                                     0.08099023,
          0.09999471, 0.26386412, 0.12567729, -0.62872779, -0.11829656,
          0.1641371 , 0.18404435, -0.46368647, -0.20474805],
        [0.35426644, 0.01165261, -0.02174672, 0.4317407, -0.35376447,
         -0.45755952, 0.30934834, -0.27759188, -0.16782489, -0.08153079,
         -0.14226281, -0.29226711, 0.19879453, -0.01524413],
        [ 0.30531715, 0.01528699, 0.03750405, 0.61465013, 0.37890029,
          0.51851505, -0.08610981, 0.02324582, 0.15585185, -0.07168975,
        0.094237 , -0.24452961, -0.0245327 , 0.09089249],

[ 0.29279267, -0.1616287 , -0.11186481, -0.35947467, -0.0279748 , -0.03602805, 0.07608814, -0.3695096 ,
                                                                     0.44051808,
                                                                     0.26644248,
        -0.3075966 , -0.29120856, 0.30642656, 0.2522744 ], [ 0.32774835, 0.24230132, -0.24875965, -0.13829209, 0.15403102,
         -0.22711695, 0.23272462, 0.55418818, 0.40849276, -0.10170505,
        0.1001274 , -0.04154491, 0.12604021, -0.33380266],
[ 0.41771765, 0.11789585, -0.04102758, -0.18789179, -0.61033944,
          0.37284162, -0.44086169, 0.14835147, -0.03916411, -0.08180995,
         -0.15545243, -0.01394969, 0.11791075, -0.01561952]])
```

array([3.60824442, 1.62477356, 1.24279546, 1.14396226, 0.33018872,

0.69627709, 0.77991321, 0.85726734, 0.88054134])

0.36787669, 0.43369218, 0.46465627, 0.56815364, 1.00165783,

les valeurs propres superieurs a 1 sont 4: 3.60824442, 1.62477356, 1.24279546, 1.14396226 donc on va choisir 4 axes

Analyse ACP

```
In [21]:

pca = PCA(4)
acp = pca.fit_transform(df_cr)
```

```
In [22]:
pd.DataFrame(acp)
```

Out[22]:

```
0
                                 2
                                           3
                                           3
  0 -0.268497
                         2.775324
                2.642831
     -1.084386
                2.067849
                          0.143596
                                    0.499909
    0.071588
               1.631391 -0.343179
                                    3.919528
      0.092195
               2.091091
                          2.726380
                                    0.363654
  4 -0.315354 -0.208030
                          0.194892
                                    1.573849
292 -0.757877 -1.616296
                          0.939875 -1.084579
     0.426856 -2.520544 -0.088533
                                    0.284633
 293
294
     1.243018 -3.225847 -0.462855
                                    0.503797
 295 -2.451173 -0.853468 -0.736412
                                    0.631335
296 0.289072 -1.829236 -0.293664 -1.725770
297 rows x 4 columns
```

In [23]:

```
array([[ 0.24053549,
                     0.1308981 ,
                                 0.27378965,
                                               0.14100437,
                                                            0.07194476,
                     0.12980794, -0.35044615,
        0.05329646,
                                               0.31004575,
                                                            0.35426644,
        0.30531715,
                    0.29279267, 0.32774835, 0.41771765],
       [ 0.44322858, -0.42802017, -0.13821378,
                                              0.40381088, 0.41319209,
         \hbox{0.2526208 , 0.26954322, 0.00688387, -0.1784161 , -0.01165261, } 
                     0.1616287 , -0.24230132, -0.11789585],
       -0.01528699,
                     0.49694338, -0.39789082, 0.30705922, -0.2421796,
       [-0.01590806,
        0.51315072, 0.07889399, 0.23558664, -0.19630072, 0.02174672,
       -0.03750405, 0.11186481, 0.24875965, 0.04102758],
       [-0.0741482, -0.18694807, -0.290084, 0.15706847, -0.28332722,
       -0.05307562, -0.0538794 , -0.11135087, -0.06704487,
        0.61465013, -0.35947467, -0.13829209, -0.18789179]])
```

In [24]:

```
pca = PCA(n_components=14)
pca.fit(df_cr)
X_pca = pca.transform(df_cr)
# Calculate cumulative explained variance across all PCs

cum_exp_var = []
var_exp = 0
for i in pca.explained_variance_ratio_:
    var_exp += i
    cum_exp_var.append(var_exp)

# Plot cumulative explained variance for all PCs

fig, ax = plt.subplots(figsize=(8,6))
ax.bar(list(range(1,15)), cum_exp_var)
ax.set_xlabel('# Principal Components')
ax.set_ylabel('% Cumulative Variance Explained');
```


La contribtion commutative des 14 axes

```
In [25]:
```

```
def plot circle(df,axe1,axe2):
  # Plot a variable factor map for the first two dimensions.
  (fig, ax) = plt.subplots(figsize=(8, 8))
  for i in range(0, pca.components .shape[1]):
      ax.arrow(0,
                  # Start the arrow at the origin
              0,
              pca.components_[axe1, i], #0 for PC1
              pca.components_[axe2, i],
                                         #1 for PC2
              head_width=0.0\overline{5},
              head length=0.1)
      plt.text(pca.components [axe1, i] + 0.05,
              pca.components [axe2, i] + 0.08,
              df.columns.values[i])
  an = np.linspace(0, 2 * np.pi, 100)
  plt.plot(np.cos(an), np.sin(an)) # Add a unit circle for scale
  plt.axis('equal')
  ax.set title('Variable factor map')
  plt.show()
```

In [26]:

```
plot_circle(df,0,1)
```



```
In [27]:
```

```
plot circle(df,1,3)
```


In [28]:

```
def plot_scatter(df,axe1,axe2,hue):
    return sns.scatterplot(data=df, x=axe1, y=axe2, hue=hue)
```

In [29]:

```
acp = pd.DataFrame(acp , columns=['axe1', 'axe2', 'axe3', 'axe4'])
```

In [30]:

acp

Out[30]:

	axe1	axe2	axe3	axe4
0	-0.268497	2.642831	2.775324	0.891532
1	-1.084386	2.067849	0.143596	0.499909
2	0.071588	1.631391	-0.343179	3.919528
3	0.092195	2.091091	2.726380	0.363654
4	-0.315354	-0.208030	0.194892	1.573849
292	-0.757877	-1.616296	0.939875	-1.084579
293	0.426856	-2.520544	-0.088533	0.284633
294	1.243018	-3.225847	-0.462855	0.503797
295	-2.451173	-0.853468	-0.736412	0.631335
296	0.289072	-1.829236	-0.293664	-1.725770

297 rows x 4 columns

```
In [31]:
plot_scatter(acp, "axe2", "axe4", df["slope"])
```

Out[31]:

<AxesSubplot:xlabel='axe2', ylabel='axe4'>

In [32]:

plot_circle(df,0,3)

Interpretation:

slope et old peak sont les plus représentés sur l'axe 4 sachant que le sens positive de l'axe 4 est vers le haut.

In [33]:

```
plot_scatter(acp, "axe1", "axe4", df["thalach"])
Out[33]:
```

<AxesSubplot:xlabel='axe1', ylabel='axe4'>

Interpretation:

thalach est bien représenté sur l'axe1 et le sens positive de l'axe 1 est dirigé vers la gauche

Clustering K-means

```
In [34]:
```

```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3, random_state=0).fit(acp)
```

In [35]:

```
from sklearn.metrics import accuracy_score
```

```
In [36]:
```

```
print(plot_scatter(acp, 'axe1', 'axe2', list(df['target'])))
```

AxesSubplot(0.125,0.125;0.775x0.755)


```
In [37]:
```

```
print(plot_scatter(acp, 'axe1', 'axe2', kmeans.labels_))
```

AxesSubplot(0.125,0.125;0.775x0.755)

Conclusion:

En conclusion, ce projet nous a permis de nous servir de nos connaissances théoriques en analyse de données, de maîtriser l'aspect technique (programmation python) et de les mettre dans le cadre pratique. Ça nous a permis d'approfondir nos connaissances en Python et d'assimiler sa puissance qui est d'une syntaxe claire. Enfin, ce projet était le résultat d'une analyse d'une base de données Heart_Diseases et un partage des connaissances entre tous les membres de notre ce qui nous a permis d'absorber la pression et de constituer un noyau solide.

Réalisé par: Oumayma SAIDI Chaima MEZGAR Emna OUERGHI Oumayma REDISSI