Tema 6. Interfaces E/S

AUTOMATIZACIÓN. CURSO 2022-2023

Fernando R. Pardo Seco – fernando.pardo@usc.es

Introducción

SISTEMA DE MEDIDA

Introducción

Introducción. Interfaces E/S. Función

- Interfaces de aplicación general: Acoplamiento al PLC o AP las variables de entrada o salida, tanto digitales como analógicas.
- Interfaces de aplicación específica:
 Tareas concretas como puede ser leer
 un encoder, controlar motores paso a
 paso, PID,... Son módulos en los que
 los procesos a controlar pueden varias
 rápidamente (< ciclo de scan) y el PLC
 no sería capaz de llevar a cabo el
 control.

Módulo 8 entradas digitales S7-1200 SIEMENS

Controlador servomotor OMRON

Introducción. Interfaces E/S. Distancia

- Interfaces de E/S locales: Están situadas en el interior del PLC o en módulos situados a su lado.
- Interfaces de E/S remotas: Están situadas a una distancia considerable del PLC a cabo el control. La interfaz y el PLC necesitan un módulo de comunicaciones para transmitir la información a través de una red (bus field)

Interfaces E/S aplicación general. DIGITALES

- Señales todo-nada ó digitales: la variable sólo puede tomar dos valores ON-OFF:
- Tipo de variable: Entrada o Salida
- Alimentación: Continua (DC) o Alterna (AC)
- Acoplamiento:
 - Sin aislamiento galvánico: Conexión entre PLC y sensor tienen dos puntos unidos eléctricamente.
 - Con aislamiento galvánico: No existe conexión eléctrica entre PLC y sensor.
- Las señales todo-nada son generadas por los sensores todo-nada (Tema 2), que cierran o abren un contacto libre de potencial o hacen que un transistor, triac o tiristor alterne entre corte o saturación.

Interfaces E/S aplicación general. DIGITALES

INTERFACES DE ENTRADA TODO-NADA O DIGITALES								
	Sensores con salida tipo relé							
Alimentación DC	Sensores de 2 hilos							
	Sensores de 3 hilos	Salida transistor PNP						
	Sensores de 5 milos	Salida transistor NPN						
	Sensores con salida tipo relé							
Alimentación AC	Sensores de 2 hilos							
	Sensores de 3 hilos							

Interfaces E/S aplicación general. DIGITALES

INTERFACES DE SALIDA TODO-NADA O DIGITALES						
	Sensores con salida tipo relé					
Alimentación DC	Salida transistor PNP					
	Salida transistor NPN					
Alimentación AC	Sensores con salida tipo relé					
	Sensores con salida tipo relé estado sólido (TRIAC tiristor)					

Interfaces E/S aplicación general. ANALÓGICAS

VARIABLES ANALÓGICAS DE TENSIÓN

$$V_R = \frac{Z_i}{Z_i + Z_o} V_i$$

$$Z_i \gg Z_o \Longrightarrow V_R \approx V_i$$

$$Z_i > K\Omega$$

$$Z_o \sim \Omega$$

Interfaces E/S aplicación general. Analógicas

VARIABLES ANALÓGICAS DE CORRIENTE

$$I_R = \frac{Z_o}{Z_i + Z_o} I_G$$
 $Z_i \ll Z_o \Longrightarrow I_R \approx I_G$
 $Z_o > k\Omega$

 $Z_i \sim \Omega$

Interfaces Entrada digitales sin aislamiento galvánico.

Alimentación DC.

- R1 y C: Filtro paso bajo $(\tau \sim ms)$
- D: LED que indica el estado de la entrada (ON-OFF).
- Uso cuando no hay riesgo de sobretensiones y cable conexión reducido.

Interfaces Entrada digital con aislamiento galvánico. DC Tipo contacto

• Salida sensor: Contacto libre de potencial o dispositivo electrónico

Interfaces Entrada digital con aislamiento galvánico. DC Tipo contacto

- D2: Led luminoso que indica el estado de la entrada.
- D3: rectificador que protege de sobretensión a D1 y D2
- R2 y C: filtro paso bajo $(\tau \sim ms)$.
- La alimentación del diodo D1 la suele proporcionar una fuente de alimentación auxiliar.
- La entrada debe estar activa un tiempo mayor que T_{scan}.

Interfaces Entrada digital con aislamiento galvánico. **DC. Contacto**

Entradas con terminal común negativo fuente de alimentación

Entradas con terminal común positivo fuente de alimentación

Interfaces Entrada digital con aislamiento galvánico. DC 2 hilos.

- La alimentación se realiza a través de uno de los terminales de salida conectado a la carga (interfaz E del PLC).
- Corriente de alimentación del sensor debe ser menor que la corriente máxima por D1 para que no se interprete que la salida esté activada.
- Hay que consultar especificaciones del sensor y del PLC

Fuente: Automatización industrial. Roberto Sanchís, Julio Ariel Romero, Carlos Vicente Ariño. Universitat Jaume I

Interfaces Entrada digital con aislamiento galvánico: **DC 2 hilos**

Interfaces Entrada digital con aislamiento galvánico. DC 3 hilos

• La alimentación se realiza a través de un terminal distinto del de salida.

Fuente: Automatización industrial. Roberto Sanchís, Julio Ariel Romero, Carlos Vicente Ariño. Universitat Jaume I Interfaces Entrada digital con aislamiento galvánico. **DC 3 hilos**

Interfaces Entrada digital con aislamiento galvánico. AC

D1 y D2

Interfaces Salida digital. DC salida relé.

- Tiempo de conmutación (ms).
- Corrientes grandes
- Contactos NO ó NC (SPDT)
- Salidas libres de potencial (AC o DC)
- Las salidas suelen tener un terminal común (S7-1200) para reducir conexiones.

Interfaces Salida digital. DC transistor NPN.

- Tiempo de conmutación (us).
- R2, R3, R4 y R5: comparador

Interfaces Salida Todo-Nada. DC transistor PNP.

 Si tenemos una carga inductiva se debe eliminar la sobretensión que se produce (Ley Lenz) debido al corte de la corriente que circula por la bobina.

$$V_{c.e.m} = -L \frac{\Delta I}{\Delta t}$$

$$\Delta t$$
 = 10 ms ΔI = 5 A $V_{c.e.m} = -250 \,\mathrm{V}$ L = 500 mH

- Protección diodo rectificador:
 - Carga alimentada en DC.
 - Diodo polarizado en inversa
- Al abrirse el contacto la bobina se descarga a través del diodo
- Módulo más utilizado para variables de salida en DC.

- Protección diodo zéner:
 - Carga alimentada en DC.
 - Diodo zéner en paralelo con interruptor
- Al abrirse el contacto la bobina se descarga a través del diodo zéner y la fuente de alimentación.
- Cuando la tensión es menor que la tensión zéner la corriente se anula.

- Protección diodo zéner+diodo:
 - Carga alimentada en DC.
 - Diodo y diodo zéner en paralelo con carga
- Al abrirse el contacto la bobina se descarga a través del diodo zéner y el diodo.
- Se anula antes la corriente (tensión menor que tensión zéner).

Interfaces entrada analógicas

- Hay numerosos sensores que proporcionan una variable analógica (nivel llenado de un depósito) en forma de tensión o corriente.
- Rangos de tensión: 0 V a 5 V, 1 V a 5 V, 0 V a 10 V, -10V a +10 V, -1 V a +1 V....
- Rango de corriente: 0 a 20 mA, -20 mA a 20 mA y de 4 mA a 20 mA
- Podemos transformar un tipo de variable en otra, por ejemplo señal 4 mA a 20 mA se puede transformar en 1 V a 5 V con resistencia de 250 Ω .

Interfaces entrada analógicas. Tensión

- $Z_i \sim K\Omega$ ó $M\Omega$
- Sensibles a interferencias electromagnéticas.
- Ejemplo: Variable analógica de -10 V a 10 V:
 - 16 bits
 - Bit 15: signo
 - Magnitud: bits 3 a 14
 - 2048 a -2048: Rango -10 V a 10 V
 - Rebasamiento
 - Bit E: desbordamiento

** 1		15	14	13	12	11	10	9	8	8	6	5	5	3	2	1	0	Nº de Bit
	Entrada (V)	BS	2 ¹¹ 2048	2 ¹⁰ 1024	2 ⁹ 512	2 ⁸ 256	2 ⁷ 128	2 ⁶ 64	2 ⁵ 32	2 ⁴ 16	2 ³ 8	2 ² 4	2 ¹	2° 1		Е	D	Significado
≥4096	20,000	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	Desbordamiento
4095	19,995	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	Rebasamiento
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
2049	10,0048	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
2048	10,000	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2047	9,995	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
3	0,0156	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	Rango De Operación
2	0,0097	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	
1	0,0058	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-1	-0,0058	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	
-2	-0,0097	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	
-3	-0,0156	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	0	
-5	-0,0195	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-2048	-10,000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-2049	-10,0048	1	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	Rebasamiento
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-4095	-19,995	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
<-4096	-20,000	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	Desbordamiento

Interfaces entrada analógicas

- La *unidad de acoplamiento* selecciona a través del Multiplexor la variable analógica.
- El circuito de muestreo y retención mantiene el valor de la variable mientras se realiza la conversión A/D.
- El conversor A/D realiza la conversión de la variable analógica a un valor digital de n bits ($\sim \mu$ s)
- Cuanto mayor es el valor de n mayor precisión se tendrá en el proceso de conversión. Siemens: 12 a 16 bits.
- Ejemplo: Variable -1 V a +1 V y conversor A/D 12 bits:
 - Resolución = 2 /4096 = 0.58 mV/bit

Interfaces entrada analógicas

Interfaces salida analógica

Interfaces salida analógica

Interfaces aplicación específica

Interfaces aplicación específica

Contaje

FM 350

E/S remotas

NX-OMRON

Interfaces aplicación específica

Posicionamiento

Omron

PID

FM 455

$$r(t) = K_p e(t) + K_i \int e(t)dt + K_d \frac{de(t)}{dt}$$

BIBLIOGRAFÍA

- Sistemas de automatización y autómatas programables. Enrique Mandado, Jorge Acevedo, Celso Fernández, Ignacio Armesto, José Luis Rivas, José María Núñez. Ed. Marcombo.
- Autómatas Programables. Josep Barcells y José Luís Romeral. Ed. Marcombo.
- Automatización Industrial. Robero Sanchís, Julio Ariel Romero y Carlos Vicente Ariño. Ed. Universitat Jaume I.