

United International University (UIU)

Department of Computer Science and Engineering

CSE 1325: DIGITAL LOGIC DESIGN, Final Summer 2023

Total Marks: **40** Duration: 2 hours

Answer ALL Questions

1	1. Implement a sequence recognizer using T or J-K flip-flops that can detect the "1010"							
1.	subsequences, while overlap will be supported between detected subsequences.							
	subsequences, while overlap will be supported between detected subsequences.							
	For this design:							
	A. Draw the state diagram by using gray code for assigning state.							
	B. Draw the state table with output and Flip Flop inputs.							
	C. Minimize the functions of output and Flip Flop inputs.							
	D. Draw the circuit diagram using the block diagram of Flip Flops and basic gates.							
	E. For an input bit sequence of x= "101010001101001010", what will be the output bit sequence?							
2.	A. Design a 3-bit universal shift register with the functions given in the function table below. Here two control bits X and Y determine the mode of operation. Use D Flip Flops for your design.							
		X	Y	Operation				
		0	0	Toggle				
		0	1	Parallel Load				
		1	0	Shift Right				
		1	1	Shift Left				
	B. Design a 4-bit asynchronous Downward Ripple Counter using negative edge J-K Flip Flops.							
3.	A sequential circuit has two D flip flops, one input X, and one output y is specified by the							
	following input equat	ions:		, ,				
			-	$1) = Ax \oplus B'x'$				
	B(t+1) = (A'+B)x							
	$y(t+1) = Ax' + (B' \oplus x)$ A. Draw the logic diagram of the circuit.							
	A. Draw the logic diagram of the circuit. B. Derive the state table.							
	C. Derive the state diagram.							
4.	You are tasked with designing an alarm system for a security application. The system has multiple sensors: Door Sensor, Window Sensor, Motion Sensor, and Fire Sensor. Design a priority encoder circuit that detects the highest priority event among these sensors. Assume that Fire Sensor has the highest priority, followed by Motion Sensor, Door Sensor, and Window Sensor.							

5.	Design a 16:1 MUX using 4:1 MUX (as many as you require) only.			
6.	Design an Octal to Binary Encoder.			
	A. Draw the function table			
	B. Write the equations for the output of your encoder.			
	C. Draw the logic diagram of the encoder.			
7.	Implement the following functions using a decoder and OR gates only.			
	$F(X,Y,Z) = \prod M(0,3,5,6)$			

Excitation Tables for different Flip-Flops

Q(†)	Q(†+1)	J	K	Operation
0	0	0	×	No change/reset
0	1	1	×	Set/complement
1	0	×	1	Reset/complement
1	1	×	0	No change/set

Q(†)	Q(†+1)	۲	Operation
0	0	0	No change
0	1	1	Complement
1	0	1	Complement
1	1	0	No change