

Teoría de las Comunicaciones

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Trabajo Práctico $N^{\circ}2$ Rutas en Internet

Conformación del grupo

Integrante	LU	Correo electrónico
Alvaro Jose Fernando	89/10	fer1578@gmail.com
Barbeito Nicolás	147/10	nicolasbarbeiton@gmail.com
Brum Raúl	199/98	brumraul@gmail.com
Nievas Yésica	340/05	yesica.nievas@gmail.com

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

${\bf \acute{I}ndice}$

1.	Intr	oducci	ión	2
2.	Des	arrollo		2
	2.1.	Tracer	route	2
		2.1.1.	Rutas alternativas	2
		2.1.2.	RTT acumulado	2
	2.2.	Estadí	ísticas	3
	2.3.	Geolog	calización	3
3.	Res	ultado	s y Análisis	3
	3.1.	Univer	rsidad de Tokyo	3
		3.1.1.	Datos	3
		3.1.2.	RTT y Δ RTT	4
		3.1.3.	Test de Grubbs	5
		3.1.4.	Geolocalización	5
4.	Con	clusio	nes	5

1. Introducción

2. Desarrollo

Para realizar las consignas planteadas en el presente trabajo práctico utilizaremos una serie de herramientas cuya descripción y detalles de implementación mostraremos a continuación.

2.1. Traceroute

Para la implementación una herramienta similar a traceroute utilizaremos la librería "scapy" de python a fin de generar paquetes "ICMP" variando el campo "TTL" y posteriormente analizaremos las respuestas recibidas.

El encabezado del paquete IP tiene un campo llamado "TTL" (Time To Live) y un limite superior de la cantidad de tiempo que un paquete IP puede permanecer en la red. El campo TTL es seteado por el remitente del paquete y es reducido por cada router por el que pasa el paquete para llegar a su destino. Si el campo llega a 0 antes de llegar a destino el paquete es descartado y un paquete ICMP "Time Exceeded" es enviado al remitente para notificarlo de lo sucedido. La IP fuente de ese paquete es la IP del router que descarto el paquete. En Teoría el campo TTL bajo IPv4 es medido en segundos y cada host por el que pasa el paquete debe reducirlo en al menos una unidad. En la practica el campo es reducido en una unidad por cada host.

Para determinar la ruta de paquete al host destino enviaremos varios paquetes IP incrementando el campo TTL en una unidad para ir recibiendo los "Time Exceeded" de cada router por el que pasa el paquete. EL "RTT" (Round Trip Time) se compondrá del tiempo que tarda el paquete en viajar hasta cada nodo mas el tiempo de encolamiento en cada nodo. A fin de homogeneizar el resultado obtenido y descartar "outliners" correremos nuestro algoritmo con varias iteraciones y tomaremos valores promedios.

Dada la decisión adoptada de correr el algoritmo en varias iteraciones, la forma de calcular la rutas y la naturaleza de internet se nos pueden plantear los siguientes casos.

2.1.1. Rutas alternativas

Dada la naturaleza de internet y el funcionamiento de los routers por los que pasa nuestro paquete puede suceder que un paquete a un mismo destino tome rutas distintas según el momento en que sea enviado. Esto puede suceder por ejemplo por la congestión de un router que decida forwardear un paquete por un puerto distinto y por lo tanto tomara una ruta distinta o puede suceder que un router se encuentre caído por lo que en router anterior envié el paquete por otra ruta. A los efectos de nuestra herramienta se nos planteara que en un determinado salto un paquete tiene rutas distintas por las que pasa, a fin de subsanar este inconveniente para cada salto tomaremos la ruta con mayor frecuencia de aparición en las diferentes corridas de nuestro algoritmo.

2.1.2. RTT acumulado

Pueden darse casos donde el RTT al salto i sea menor que el RTT al salto anterior. Parecería extraño que RTT_i sea menor que RTT_{i-1} pero esto aparece con frecuencia en la practica. Las razones para este comportamiento pueden ser por la congestión de los routers como así también por la

prioridad en la cola de los mismos. En este ultimo caso por ejemplo el router puede tener menor prioridad para la cola de paquetes ICMP y por lo tanto el tiempo de encolamiento en este router sera mayor cuando descarta el paquete y enviá un paquete ICMP "Time Exceed" que cuando forwardea el paquete al router siguiente. Esto generara que el RTT a ese router sea mayor que el RTT al router siguiente.

En la implementación de nuestra herramienta para obtener el Δ RTT correspondiente al RTT en el salto i usaremos la siguiente formula:

$$\Delta RTT_0 = 0$$

$$\Delta RTT_1 = RTT_1$$

$$\Delta RTT_i = \begin{cases} RTT_i - RTT_{i-1} & \text{Si } RTT_i > RTT_{i-1} \\ 0 & \text{Caso Contrario} \end{cases}$$

Esto es para evitar computar ΔRTT negativos que pueden generarse por lo comentado anteriormente.

2.2. Estadísticas

Para el cumplimiento de la consigna sobre estadísticas de las rutas utilizamos la librería "numpy" de python para el calculo de la media y el desvió estándar, la librería "scipy" de python para el calculo del test de normalidad sobre los ΔRTT y finalmente implementamos el "Test de Grubbs" sobre los ΔRTT a fin de detectar outliners para relacionarlos con la detección de enlaces submarinos en las rutas.

2.3. Geolocalización

3. Resultados y Análisis

En esta sección presentaremos y analizaremos los resultados obtenidos al correr los distintos test propuestos. Para ello correremos los mismos con una iteración de 100 repeticiones sobre los host de las siguientes universidades.

3.1. Universidad de Tokyo

El host de destino de la universidad de Tokyo sera el dominio "www.u-tokyo.ac.jp" cuya IP es "210.152.135.178". El host de la universidad de Tokyo se encuentra ubicado la ciudad de Tokyo, Japón. El origen sera un host ubicado en la Ciudad de Buenos Aires, Argentina utilizando como isp a Telecentro.

3.1.1. Datos

Los datos obtenidos para este caso fueron los siguientes:

$oxed{TTL}$	IP	E(RTT) (ms)	S(RTT) (ms)	Δ RTT (ms)
1	192.168.10.1	0.414	0.025	0.414
2	10.20.64.1	9.588	2.179	9.174
3	200.115.194.173	9.709	2.050	0.121
4	208.178.195.210	11.823	2.660	2.114
5	208.178.195.209	10.154	3.919	0.000
6	64.212.107.98	140.102	2.736	129.948
7	129.250.3.172	141.972	6.459	1.870
8	129.250.2.219	165.020	5.163	23.048
9	129.250.7.69	174.848	10.839	9.828
10	129.250.2.177	289.040	10.215	114.191
11	129.250.6.144	286.955	9.046	0.000
12	61.200.80.218	281.767	6.327	0.000
13	158.205.192.173	287.145	8.005	5.378
14	158.205.192.86	300.318	5.018	13.173
15	158.205.121.250	299.293	22.325	0.000
16	154.34.240.254	287.327	2.431	0.000
17	210.152.135.178	300.554	3.888	13.227

Cuadro 1: \overline{RTT} , σ RTT y Δ RTT para la ruta utilizada para llegar www.u-tokyo.ac.jp

Analizando la información aportada por la tabla 1 podemos notar que tanto el salto 6 como 10 sobresalen por sobre el resto en cuanto a sus tiempos de ΔRTT .

3.1.2. RTT y Δ RTT

Figura 1: www.u-tokyo.ac.jp - Δ RTT

Figura 2: www.u-tokyo.ac.jp - RTT y Δ RTT

Tanto en la figura 1 como en la figura 2 podemos comprobar los que habiamos notado en la tabla 1. Esto es que tanto el salto 6 como 10 se destacan por sobre el resto. En caso de existir algún enlace submarino seguramente este se correspondería con alguno de estos saltos. Esto lo analizaremos en las siguientes secciones.

3.1.3. Test de Grubbs

3.1.4. Geolocalización

4. Conclusiones