Problème. Matrice d'adjacence d'un graphe et dénombrement de chemins.

......

L'écriture de ce problème a été inspirée par la série de trois articles intitulée <u>Que sait-on compter sur un graphe?</u> par Pierre-Louis Giscard, et publiée sur Images des mathématiques. Ce site, hébergé par le CNRS, met à la disposition du public de nombreux textes de difficultés variées et toujours de grande qualité.

On appelle **graphe orienté** un couple (S, \mathcal{A}) où S est un ensemble (de **sommets**) et \mathcal{A} un ensemble d'arcs, un **arc** étant un couple $(a, b) \in S^2$ tel que $a \neq b$. L'appartenance à \mathcal{A} d'un couple (a, b) de S^2 s'interprète en considérant qu'il existe un chemin de longueur 1 de a vers b. Dans notre définition, il ne peut pas exister d'arc allant d'un sommet vers lui-même.

Dans ce problème, on travaillera avec un graphe fini (S, \mathcal{A}) , où $S = \llbracket 1, n \rrbracket$, avec n un entier naturel supérieur ou égal à 2. On appelle **matrice d'adjacence** du graphe la matrice de $M_n(\mathbb{R})$ telle que le coefficient à la position (i, j) vaut 1 si $(i, j) \in \mathcal{A}$ et 0 sinon.

Prenons un exemple en taille n=4: voici la matrice d'adjacence d'un graphe et sa représentation avec des sommets (entourés) et les arcs représentés avec des flèches.

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

On appelle **chemin** de longueur $\ell \in \mathbb{N}^*$ dans le graphe (S, \mathcal{A}) un $(\ell+1)$ -uplet $(i_0, i_1, \dots, i_\ell)$ tel que $\forall k \in [1, \ell]$ $(i_{k-1}, i_k) \in \mathcal{A}$. On dit alors que ce chemin va de i_0 à i_ℓ . Si $i_0 = i_\ell$, on parle de **cycle** de longueur ℓ .

Dans le graphe de l'exemple, (1, 4, 1, 2, 3) est un chemin de longueur 4 qui va de 1 à 3, et (1, 4, 1, 3, 4, 1) est un cycle de longueur 5.

Partie A. Nombre de chemins et puissances de la matrice d'adjacence.

Soit (S, A) un graphe orienté, avec S = [1, n]. On note A sa matrice d'adjacence. Le coefficient d'une matrice X à la position (i, j) sera noté $[X]_{i,j}$.

Pour $(i,j) \in S^2$ et $\ell \in \mathbb{N}^*$, on note $c_{i,j}^{(\ell)}$ le nombre de chemins de longueur ℓ qui vont de i à j dans le graphe (S, A).

1. Soit $(i, j) \in S^2$ et ℓ un entier supérieur à 2. Justifier que

$$c_{i,j}^{(\ell)} = \sum_{k=1}^{n} [A]_{i,k} \cdot c_{k,j}^{(\ell-1)}.$$

2. Démontrer que pour tout $\ell \in \mathbb{N}^*$,

$$\forall (i,j) \in S^2 \quad c_{i,j}^{(\ell)} = [A^{\ell}]_{i,j}.$$

3. Montrer que le nombre total de cycles de longueur $\ell \in \mathbb{N}^*$ est donné par

$$\operatorname{Tr}(A^{\ell}).$$

Partie B. Un exemple en taille 3 avec diagonalisation.

En notant $\varphi = \frac{1+\sqrt{5}}{2}$ et $\psi = \frac{1-\sqrt{5}}{2}$, on définit les matrices

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad P = \begin{pmatrix} 0 & \psi & \varphi \\ -1 & \psi & \varphi \\ 1 & 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \psi & 0 \\ 0 & 0 & \varphi \end{pmatrix}.$$

- 1. Représenter le graphe dont A est la matrice d'adjacence.
- 2. Démontrer que P est inversible et calculer son inverse.
- 3. On admet que $A = PDP^{-1}$ (vous pouvez faire le calcul si vous y tenez). Démontrer que pour tout $\ell \in \mathbb{N}^*$, on a $\text{Tr}(A^{\ell}) = \text{Tr}(D^{\ell})$. Exprimer alors le nombre de cycles de longueur ℓ en fonction de ℓ .

Partie C. Compter des choses dans un graphe non orienté.

Dans cette partie, nous travaillons avec un graphe (S, A) où S est toujours l'ensemble $[\![1,n]\!]$ et pour lequel nous supposons que la matrice d'adjacence est symétrique : le graphe est alors dit **non orienté**

On appelle **arête** du graphe une paire $\{i, j\}$ pour laquelle (i, j) (et donc (j, i)!) appartient à \mathcal{A} . L'idée est que les arêtes du graphe sont des traits (et non plus des flèches) entre les sommets.

On appelle **degré** d'un sommet i de S, noté d_i , le nombre d'arêtes dont i est un élément (le nombre d'arêtes « auxquelles i participe »).

On appelle **triangle** dans le graphe (S, A) un ensemble de trois sommets $\{i, j, k\}$ tel que $\{i, j\}, \{j, k\}$ et $\{k, i\}$ sont des arêtes du graphe.

On appelle **carré** dans le graphe (S, A) un ensemble de quatre sommets $\{i, j, k, l\}$ tel que $\{i, j\}, \{j, k\}, \{k, l\}$ et $\{l, i\}$ sont des arêtes du graphe.

- 1. Soit $i \in [1, n]$. Démontrer que $d_i = [A^2]_{i,i}$.
- 2. Démontrer que le nombre d'arêtes dans le graphe vaut

$$\frac{1}{2}\mathrm{Tr}(A^2).$$

3. Démontrer que le nombre de triangles dans le graphe vaut

$$\frac{1}{6}\operatorname{Tr}(A^3).$$

4. (facultatif) Démontrer que le nombre de carrés dans le graphe vaut

$$\frac{1}{8}\text{Tr}(A^4) - \frac{1}{2}\sum_{i \in S} {d_i \choose 2} - \frac{1}{8}\text{Tr}(A^2).$$

Partie D. L'exemple du graphe complet.

Le graphe complet à 7 sommets

Dans cette partie, on travaille avec le **graphe complet** : toutes les paires de $[\![1,n]\!]$ sont des arêtes.

- 1. Exprimer la matrice d'adjacence A de ce graphe à l'aide de J et I_n , où J est la matrice de $M_n(\mathbb{R})$ dont tous les coefficients sont égaux à 1.
- 2. Pour tout $\ell \in \mathbb{N}^*$, exprimer A^{ℓ} comme une combinaison linéaire de J et I_n . (on donnera une expression explicite des deux coefficients de cette combinaison linéaire, en fonction de ℓ).
- 3. Exprimer le nombre de cycles de longueur ℓ dans le graphe complet, en fonction de ℓ et n.
- 4. Exprimer le nombre de triangles dans le graphe complet. Retrouver ce résultat à l'aide d'un argument simple de dénombrement.