Populism On The Rise Micro Analysis of Italian Election Results (2018 - 2019)

Alessandro Valfré, Chiara Marino Statistical Learning and Large Data I, II

May 8, 2024

- Introduction
- Unsupervised Analysis
- Supervised Regularization
- 4 Supervised Analysis
- 5 Future Paths

Motivation and Background

The Rise of Populism in Italy

- National and European elections results (2018 2019) ¹
- Fragility index dataset $^2 \rightarrow$ socio-economic features
- Exploring Root Causes for the Success of Populist Parties

¹https://elezioni.interno.gov.it/

²https://www.istat.it/

Data and Pre-processing

- 7903 observations \rightarrow harmonizing for recent unions of municipalities
- Main Variables
 - Fragility Index:synthetic measure of the level of fragility of the municipalities
 - 2 Employment Rate
 - Income per capita
 - Middle Education
 - Abstention Rate
- Main Parties
 - **1** Winning Parties \rightarrow Lega and M5S
 - ② Controls → Forza Italia, Fratelli d'Italia, PD and Other

- Introduction
- Unsupervised Analysis
- Supervised Regularization
- 4 Supervised Analysis
- Future Paths

Principal Component Analysis (PCA)

Dimension Reduction and Exploratory Data Analysis

PCA on subsamples by fragility index

PCA subgroups by fragility index

- Introduction
- Unsupervised Analysis
- Supervised Regularization
- 4 Supervised Analysis
- 5 Future Paths

Ridge Lega and M5S

Lasso Lega and M5S

Feature Selection

- Introduction
- Unsupervised Analysis
- Supervised Regularization
- Supervised Analysis
- 5 Future Paths

Classification - Confusion Matrices

```
Confusion Matrix and Statistics
                                               Confusion Matrix and Statistics
          Reference
Prediction 0 1
                                                         Reference
                                               Prediction 0 1
        0 971 269
                                                        0 822 284
        1 228 507
                                                        1 219 650
              Accuracy: 0.7484
                                                              Accuracy: 0.7453
                95% CI : (0.7286, 0.7674)
                                                               95% CI: (0.7255, 0.7644)
   No Information Rate: 0.6071
                                                   No Information Rate : 0.5271
   P-Value [Acc > NIR] : < 2e-16
                                                   P-Value [Acc > NIR] : < 2.2e-16
                 Kappa : 0.4675
                                                                 Kappa : 0.4873
 Mcnemar's Test P-Value : 0.07277
                                                Mcnemar's Test P-Value : 0.004322
            Sensitivity: 0.8098
                                                           Sensitivity: 0.7896
           Specificity: 0.6534
                                                           Specificity: 0.6959
        Pos Pred Value : 0.7831
                                                        Pos Pred Value : 0.7432
        Neg Pred Value : 0.6898
                                                        Neg Pred Value : 0.7480
             Prevalence: 0.6071
                                                            Prevalence : 0.5271
        Detection Rate : 0.4916
                                                        Detection Rate : 0.4162
  Detection Prevalence : 0.6278
                                                  Detection Prevalence : 0.5600
      Balanced Accuracy : 0.7316
                                                     Balanced Accuracy : 0.7428
       'Positive' Class: 0
                                                      'Positive' Class . A
```

Confusion Matrices Lega and M5S

Classification

LDA Partimat Comparison Lega - M5S

OLS Model - Parties Percentage of Votes

Table 1: results for ols models parties 2018

	Dependent variable:	
	lega18perc	m5s18perc
	(1)	(2)
income_adj18	0.489*** (0.040)	-0.186**** (0.038)
emp_rate18	0.782*** (0.014)	-0.735***(0.014)
middle_edu18	0.385*** (0.014)	-0.137**** (0.013)
Constant	-54.454*** (1.082)	83.404*** (1.029)
Observations	7,903	7,903
\mathbb{R}^2	0.479	0.450
Adjusted R ²	0.479	0.450
Residual Std. Error $(df = 7899)$	8.490	8.080
F Statistic ($df = 3; 7899$)	2,422.504***	2,158.237***

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 2: results for abst.rate models 2018

	Dependent variable:		
	lega18perc (1)	m5s18perc (2)	
income_adj18	0.334*** (0.039)	-0.201*** (0.038)	
emp_rate18	0.649*** (0.015)	-0.748**** (0.015)	
middle_edu18	0.413*** (0.013)	-0.135**** (0.013)	
abst_rate2018	-0.421****(0.018)	-0.041** (0.017)	
Constant	-33.148***(1.377)	85.461*** (1.356)	
Observations	7,903	7,903	
\mathbb{R}^2	0.514	0.451	
Adjusted R ²	0.514	0.451	
Residual Std. Error $(df = 7898)$	8.202	8.077	
F Statistic ($df = 4$; 7898)	2,087.637***	1,620.943***	

Note:

*p<0.1; **p<0.05; ***p<0.01

OLS Model - Parties Percentage of Votes by Fragility Index

Table 3: results for fragility models 2018

	Dependent variable:		
	lega18perc (1)	m5s18perc (2)	
income_adj18	0.266*** (0.040)	-0.142*** (0.040)	
emp_rate18	0.593*** (0.016)	-0.716***(0.016)	
middle_edu18	0.423*** (0.014)	-0.145**** (0.014)	
abst_rate2018	-0.398****(0.018)	-0.040**(0.018)	
frag_ind182	0.530 (0.413)	1.697*** (0.408)	
frag_ind183	1.093*** (0.417)	1.300*** (0.412)	
frag_ind184	0.508 (0.421)	1.826*** (0.416)	
frag_ind185	-0.032(0.426)	2.091*** (0.421)	
frag_ind186	0.669 (0.434)	1.453*** (0.429)	
frag_ind187	-0.783*(0.456)	2.262*** (0.451)	
frag_ind188	-1.960***(0.478)	2.805*** (0.473)	
frag_ind189	-2.713***(0.507)	3.408*** (0.500)	
frag_ind1810	-2.390***(0.555)	2.433*** (0.549)	
Constant	-28.843****(1.545)	80.877*** (1.526)	
Observations	7,903	7,903	
\mathbb{R}^2	0.520	0.455	
Adjusted R ²	0.519	0.454	
Residual Std. Error ($df = 7889$)	8.154	8.053	
F Statistic ($df = 13$; 7889)	657.951***	506.279***	

Note:

*p<0.1; **p<0.05; ***p<0.01

- Introduction
- Unsupervised Analysis
- Supervised Regularization
- 4 Supervised Analysis
- Future Paths

Future Paths I

Future Paths II

Bibliography I

- Borghese, S. (2021, May 15). Europee 2019: Un Primo Bilancio. YouTrend. https://www.youtrend.it/2019/05/27/elezioni-europee-2019-analisi-bilancio/
- Chiaramonte, A., De Sio, L., Emanuele, V. (2020). Salvini's success and the collapse of the Five-star Movement: The European elections of 2019. Contemporary Italian Politics, 12(2), 140-154.
- Istat Data. Data browser. https://esploradati.istat.it/databrowser// (IFC)
- Gareth, J., Daniela, W., Trevor, H., Robert, T. (2013). An introduction to statistical learning: with applications in R. Spinger.
- Levi, E., Patriarca, F. (2020). An exploratory study of populism: the municipality-level predictors of electoral outcomes in Italy. Economia politica, 37, 833-875.
- Ministero dell'Interno. (n.d.). Eligendo Ministero dell'interno DAIT. https://elezioni.interno.gov.it/
- Rooduijn, M., Pauwels, T. (2011). Measuring populism: Comparing two methods of content analysis. West European Politics, 34(6), 1272-1283.