Base-resolution models of transcription factor binding reveal soft motif syntax

Žiga Avsec¹, Melanie Weilert², Avanti Shrikumar³, Sabrina Krueger², Amr Alexandari³, Khyati Dalal^{2,5}, Robin Fropf², Charles McAnany², Julien Gagneur¹, Anshul Kundaje^{3,4*} and Julia Zeitlinger^{2,5*}

- ¹ Department of Informatics, Technical University of Munich, Garching, Germany
- ² Stowers Institute for Medical Research, Kansas City, MO, USA
- ³ Department of Computer Science, Stanford University, Stanford, CA, USA
- ⁴ Department of Genetics, Stanford University, Stanford, CA, USA
- ⁵ The University of Kansas Medical Center, Kansas City, KS, USA
- * correspondence: akundaje@stanford.edu, jbz@stowers.org

Wstęp teoretyczny: centralny dogmat biologii molekularnej

Wstęp teoretyczny: czynniki transkrypcyjne

Wstęp teoretyczny: składnia motywów

- Czynniki transkrypcyjne wiążąc się do genomu blisko siebie wchodzą ze sobą w interakcje.
- Rozłożenie motywów sekwencyjnych nazywamy składnią.
 - "Silna" składania to taka, gdzie motywy sekwencyjne oddziałują ze sobą w prosty sposób (np dwa motywy występują obok siebie). (b)
 - "Słaba" składnia to taka, gdzie ułożenie motywów na genomie jest bardziej skomplikowane bądź nieregularne. (c), (d), (e)

https://doi.org/10.1016/j.coisb.2020.08.002

Wstęp teoretyczny: znaczenie czynników transkrypcyjnych

- Czynniki transkrypcyjne regulują ekspresję genów.
- Dzięki temu komórki mogą:
 - Reagować na zmiany w ich otoczeniu (organizmu bądź komórki).
 - Różnicować się w różne typy komórek.
 - Kontrolować cykl komórkowy.
- Niektóre czynniki transkrypcyjne są (częściowo) odpowiedzialne za niekontrolowane różnicowanie się i wzrost komórek rakowych.
 - Na przykład czynnik transkrypcyjny Nanog występuje w komórkach raka piersi.
 - Lu, X., Mazur, S., Lin, T. *et al.* The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. *Oncogene* 33, 2655–2664 (2014). https://doi.org/10.1038/onc.2013.209

Rozszyfrowanie znaczenia tytułu

Base-resolution models	Modele z dokładnością co do nukleotydu
of transcription factor binding	wiązanie czynników transkrypcyjnych
reveal soft motif syntax	"słaba" składnia motywów

Architektura modelu – wejście i wyjście

Wejście:

Sekwencje DNA w postaci macierzy wektorów "one-hot".

Input: ~150,000 sequences of 1 kb

Wyjście:

- Profile częstotliwości wiązania czterech różnych czynników transkrypcyjnych w odcinku przed genem.
- Ogólna liczba przyłączonych się cząsteczek danego czynnika transkrypcyjnego na danym odcinku.

BPNet architecture

Architektura modelu

Kluczowe cechy modelu:

- Sieć konwolucyjna.
- Zastosowanie uczenia wielozadaniowego (multitask learning).
- Rezygnacja z poolingu.
- Kształt oraz łączna "masa" profilu częstotliwości są przewidywane oddzielnie. Pozwala na to niestandardowa funkcja straty.
- Używa pomocniczych danych o warunkach przeprowadzenia eksperymentu, żeby uniknąć biasu wynikającego z czynników losowych występujących w trakcie tworzenia zbioru danych.

$$Loss = -\log p_{mult.}(\mathbf{k}^{obs}|\mathbf{p}^{pred}, n^{obs}) + \lambda(\log(1 + n^{obs}) - \log(1 + n^{pred}))^2$$

Pipeline interpretacyjny

- Predykcja profilu wiązania czynników transkrypcyjnych dla danego fragmentu DNA.
- Profile kontrybucji dla każdego nukleotydu z sekwencji wejściowej.
- 3. Identyfikacja występowania konkretnych motywów w sekwencji wejściowej.

Interpretacja modelu - DeepLIFT

- Metoda gradientowa.
- Wyjaśniana jest różnica pomiędzy wyjściem sieci a wartością referencyjną ("neutralną").
 - Dla MNIST może to być biały obraz, dla sekwencji
 DNA można użyć wielu permutacji sekwencji
 wejściowej i uśrednić wyniki.
 - Potrzebna jest wiedza domenowa, żeby zdefiniować dobrą referencję.
- Na drugim wykładzie ta metoda była wspomniana jako analogia do SHAPa.
- https://github.com/kundajelab/deeplift

DeepLIFT

Input: trained BPnet model

Output: profile contribution scores for each TF

Interpretacja modelu – TF-MoDISco

(TF MOtif Discovery from Importance SCOres)

- Motywy sekwencyjne mogą się nieznacznie różnić od siebie, a mimo to być miejscami wiązań czynników transkrypcyjnych.
- TF-MoDISco pozwala na znalezienie konkretnych, znanych motywów sekwencyjnych w analizowanych sekwencjach.
 - Krótkie sekwencje z dużymi kontrybucjami są klastrowane.
 - Następnie dla każdego klastra jest obliczana reprezentacja CWM (contribution weight matrix), przedstawiająca kontrybucję każdego nukleotydu na każdej pozycji w klastrze.
 - Wejściowe sekwencje są skanowane z użyciem wyżej wspomnianej reprezentacji, żeby zidentyfikować wystąpienia konkretnych motywów w sekwencji.
- https://github.com/kundajelab/tfmodisco

b

cooperative TF binding

composite motif

Single and composite motif's CWM

Structural basis

Wyniki – "słaba" składania motywów

 Motywy Oct4-Sox2 i Sox2 wpływają na wiązanie czynnika transkrypcyjnego Nanog.

C

 Relacja jest jednokierunkowa – motyw Sox2 wpływa na wiązanie Nanog, ale motywy Nanog nie wpływają na wiązanie Sox2.

Wyniki – "słaba" składania motywów.

- Niesymetryczność wpływu motywów sekwencyjnych na wiązanie czynników transkrypcyjnych.
 - Okresowy charakter wiązania Nanog.

cooperative TF binding

Podsumowanie

- Konwolucyjne sieci neuronowe pozwalają na przewidywanie miejsc wiązania czynników transkrypcyjnych.
- Interpretacja modelu może nakierować badaczy na nowe fakty biologiczne.
- Wyniki pochodzące z modeli typu "black-box" mogą być "generatorem hipotez", które można potem weryfikować eksperymentalnie.