MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 6th February 2018 D1 - Lecture 15

Random Attendance

1	170050089	Aditya Vavre
2	170070005	Diwan Anuj Jitendra
(3)	170070008	Anugole Sai Gaurav
4	170070014	Shriram Girish Lokhande Absent
5	170070039	Vishesh Verma
6	170070042	Pinnada Preetam
7	170070048	Bojja Sai Vamseedhar Reddy Absent
8	17D070026	Anubhav Agarwal
9	17D070041	Tanmay Goyal
10	170050095	Narisim Setti Charan Teja
①	170070006	Manav Sanjay Batavia
12	170070009	Anwesh Mohanty
13	170070020	Ghoderao Kusumit Sudesh
14	170070029	Chandra Shekhar Absent
15	170070040	Akshat Singhal
16	170070059	Ranjeet Patel
1	17D070004	Kavishwar Mihir Vikas
18	17D070038	Divyansh Ahuja Absent

Determinants and Invertibility

10. A is invertible if and only if $det(A) \neq 0$.

By elimination, we get an upper triangular matrix U, a lower triangular matrix L with diagonal entries 1, and a product of permutation matrices P, such that PA = LU.

Observation 1: If A is singular, then det(A) = 0.

This is because elimination produces a zero row in U and hence $det(A) = \pm det(U) = 0$.

Observation 2: If *A* is invertible, then $det(A) \neq 0$.

This is because elimination produces n pivots, say d_1, \ldots, d_n , which are non-zero. Then U is upper triangular, with diagonal entries $d_1, \ldots, d_n \Rightarrow \det(A) = \pm \det(U) = \pm d_1 \cdots d_n \neq 0$.

Thus we have: *A* invertible \Rightarrow det(*A*) = \pm (product of pivots).

Exercise: If AB is invertible, then so are A and B.

Determinants of Transposes

11.

$$\det(A) = \det(A^T)$$

With *U*, *L*, and *P*, as usual write

$$PA = LU \Rightarrow A^T P^T = U^T L^T$$

Since U and L are triangular, we get

$$det(U) = det(U^T)$$
 and $det(L) = det(L^T)$

Since $PP^T = I$ and $det(P) = \pm 1$, we get $det(P) = det(P^T)$.

Thus $det(A) = det(A^T)$.

Exercise: A is invertible if and only if A^T is invertible.

Formula for Determinant - 2 × 2 case

Write (a, b) = (a, 0) + (0, b), the sum of vectors in coordinate directions. Similarly write (c, d) = (c, 0) + (0, d). By linearity,

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} + \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix} + \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix}.$$

For an $n \times n$ matrix, each row splits into n coordinate directions, so the expansion of det(A) has n^n terms.

However, when two rows are in same coordinate direction, that term will be zero, e.g.,

$$\begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} = 0, \quad \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix} = 0, \quad \begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix} = -\begin{vmatrix} c & 0 \\ 0 & b \end{vmatrix} = -bc \Rightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad-bc$$

The non-zero terms have to come in different columns. So, there will be n! such terms in the $n \times n$ case.

Reading Slide - Defining Properties: 2×2 case

Known to us:
$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$
.

- 2 $\det \begin{pmatrix} c & d \\ a & b \end{pmatrix} = cb da = -(ad bc) = -\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
- $(ad-bc)+(a'd-b'c) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix}+\det\begin{pmatrix} a' & b' \\ c & d \end{pmatrix}$, and $\det \begin{pmatrix} ta & tb \\ c & d \end{pmatrix} = t(ad - bc) = t \det \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
- Similarly, check linearity property in second row.

Formula for Determinant: 3 × 3 case

If $A = (a_{ij})$ is 3×3 matrix, then

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\
= \begin{vmatrix} a_{11} & & & \\ & a_{22} & & \\ & & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & & & \\ & a_{23} & & \\ & & a_{32} \end{vmatrix} + \begin{vmatrix} a_{12} & & \\ & a_{21} & & \\ & & a_{33} \end{vmatrix} \\
+ \begin{vmatrix} a_{12} & & & \\ & a_{23} & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ &$$

Formula for Determinant: 3 × 3 case

$$egin{align*} &= a_{11} \, a_{22} \, a_{33} \, (1) + a_{11} \, a_{23} \, a_{32} \, (-1) + a_{12} \, a_{21} \, a_{33} \, (-1) \ &+ a_{12} \, a_{23} \, a_{31} \, (1) + a_{13} \, a_{21} \, a_{32} \, (1) + a_{13} \, a_{22} \, a_{31} \, (-1) \ &= \sum_{ ext{all permutations } P} (a_{1lpha} \, a_{2eta} \, a_{3\gamma}) \, \det(P) \ &= a_{11} \, a_{22} \, a_{33} \, (-1) \, a_{23} \, a_{33} \, (-1) \ &= a_{23} \, a_{33} \, (-1) \, a_{23} \, a_{33} \, (-1) \, a_{23} \, a_{33} \, (-1) \, a_{23} \, a_{33} \, (-1) \ &= a_{23} \, a_{33} \, (-1) \, a_{23} \, a_{23} \, a_{23} \, a_{23} \, (-1) \, a_{23} \, a_{23} \, a_{23} \, a_{23} \, (-1) \, a_{23} \, a_{23}$$

where P runs over all permutation matrices.

If
$$(\alpha, \beta, \gamma) = (2, 3, 1)$$
, then $P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = P_{13}P_{12}$.
Here $\det(P) = (-1)^2 = 1$.

Formula for Determinant: $n \times n$ case

For $n \times n$ matrix $A = (a_{ij})$,

$$\det(A) = \sum_{\text{all permutations } P} (a_{1\alpha_1} \, \ldots \, a_{n\alpha_n}) \det(P).$$

The sum is over n! permutations of numbers $(1, \ldots, n)$.

Here a permutation (i_1, i_2, \dots, i_n) of $(1, 2, \dots, n)$ corresponds to the

product of permutation matrices
$$P = \begin{bmatrix} e_{i_1}^T \\ \vdots \\ e_{i_n}^T \end{bmatrix}$$
.

Then det(P) = +1 if the number of row exchanges in P needed to get I is even, and -1 if it is odd.

Reading Slide - Cofactors: 3×3 Case

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11} a_{22} a_{33} (1) + a_{11} a_{23} a_{32} (-1) + a_{12} a_{21} a_{33} (-1)$$

$$+ a_{12} a_{23} a_{31} (1) + a_{13} a_{21} a_{32} (1) + a_{13} a_{22} a_{31} (-1)$$

$$= a_{11} (a_{22} a_{33} - a_{23} a_{32}) - a_{12} (a_{21} a_{33} - a_{23} a_{31})$$

$$+ a_{13} (a_{21} a_{32} - a_{22} a_{31})$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} (-1) \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13} \text{ where,}$$

$$C_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}, C_{12} = (-1) \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}, C_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Cofactors: $n \times n$ Case

Let C_{1j} be the coefficient of a_{1j} in the expansion

$$\det(A) = \sum_{\text{all permutations } P} (a_{1\alpha_1} \ldots a_{n\alpha_n}) \det(P)$$

Then
$$\left| \det(A) = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n} \right|$$
 where,
$$C_{1j} = \sum a_{2\beta_2} \dots a_{n\beta_n} \det(P)$$

$$= (-1)^{1+j} \det \begin{bmatrix} a_{21} & a_{2(j-1)} & a_{2(j+1)} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n(j-1)} & a_{j+1} & a_{nn} \end{bmatrix}$$

$$= (-1)^{1+j} \det(M_{1j}).$$

where M_{1j} is obtained from A by deleting the 1st row and j^{th} column.

Expansion of det(A) along its i-th row

If C_{ij} is the coefficient of a_{ij} in the formula of det(A), then

$$det(A) = a_{i1} C_{i1} + ... + a_{in} C_{in}$$
, where C_{ij} is determined as follows:

By i - 1 row exchanges on A, get the matrix

$$B = (A_{i*} \quad A_{1*} \quad .. \quad A_{(i-1)*} \quad A_{(i+1)*} \quad .. \quad A_{n*})^T$$

Since $det(A) = (-1)^{i-1} det(B)$, we get

$$C_{ij}(A) = (-1)^{i-1} C_{1j}(B) = (-1)^{i-1} (-1)^{j-1} \det(M)$$

where M is obtained from B by deleting 1st row and jth column. Here M is obtained from B by deleting its first row, and j-th column, and hence from A by deleting i-th row and j-th column. Write M as M_{ij} .

Then
$$C_{ij} = (-1)^{i+j} \det(M_{ij})$$

Expansion of det(A) along j-th column of A

Note that
$$C_{ij}(A^T) = C_{ji}(A)$$
.
Hence, if we write $A^T = (b_{ij})$, then $\det(A) = \det(A^T)$
 $= b_{j1} C_{j1}(A^T) + \ldots + b_{jn} C_{jn}(A^T)$
 $= a_{1j} C_{1j}(A) + \ldots + a_{nj} C_{nj}(A)$

This is the expansion of det(A) along j-th column of A.

Computing determinants: Exercise

Example: Let
$$F_n = \begin{vmatrix} 1 & -1 \\ 1 & 1 & -1 \\ & \ddots & \ddots & \ddots \\ & & 1 & 1 & -1 \\ & & & 1 & 1 \end{vmatrix}$$
 be a $(1, 1, -1)$ tri-diagonal

 $n \times n$ matrix. Expanding along the first row, we get

$$F_{n} = F_{n-1} + (-1)^{1+2}(-1) \begin{vmatrix} 1 & -1 & & & & \\ & 1 & -1 & & & \\ & 1 & 1 & -1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & 1 & 1 & -1 \\ & & & & 1 & 1 \end{vmatrix} = F_{n-1} + F_{n-2},$$

by expanding along first column.

Since $F_1 = ..., F_2 = ...$, the sequence F_n is ..., ..., ...

Computing determinants: Examples

Find the determinants for the following examples

$$\bullet \ E = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

Find the cofactor matrix C of E. Compute EC^T

$$C = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$

$$EC^{T} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Note:
$$det(E) = 4$$
 and $EC^T = 4I \Rightarrow E^{-1} = \frac{1}{det(E)}C^T$.