PCA

Background

Projecting $x^{(i)}$ onto unit vector v: $x_p^{(i)} = \underbrace{(x^{(i)T}v)}_{distance}\underbrace{v}_{direction}$

SVD decomposition: $X = USV^T$

Symmetric matrix $A = XX^T = (VSU^T)(USV^T) = VDV^T$

(S diagonal \rightarrow SS = D still diagonal)

PCA ideas:

1. For each feature, computer the mean or zero center the training examples.

2. Find k < d vectors in \mathbb{R}^d : $v^{(1)}, v^{(2)}, ..., v^{(k)}$ which are orthogonal unit (orthonormal) vectors.

3. Project the training examples.

PCA algorithm:

Input: the zero-centered data matrix X and $k \geq 1$

- 1. Compute the SVD of $X{:}\left[U,S,V
 ight]=svd(X)$
- 2. Choose the first k columns of V: $V_k = [v^{(1)},...,v^{(k)}]$
- 3. The PCA-feature matrix is $Z=XV_k$

$$\hat{X} = X V_k V_k^T$$

PCA linearly projects examples into a lower dimensional space N imes d into N imes k , k < d

PCA maintains as much of the original variance (and minimizes least square reconstruction error).

Computing variance of the points $var=rac{1}{N}\Sigma_{i=1}^N(x^{(i)T}v)^2=rac{1}{N}v^TX^TXv$ Let $A=X^TX=VDV^T$, we need to find $rg\max_{v:||v||=1}v^TAv$ $v=Ve^{(1)}=\lambda_1$

PCA v.s. Ordinary Least Squares (OLS)

PCA — minimize orthogonal error

OLS R Graphics: Device 2 (ACT)

PCA

