Assignments Lecture 2.2

Vũ Lê Mai

April 2020

P2.5

• Với ma trận $n \ge n$ $S = \operatorname{diag}(\lambda_1,\lambda_2,...,\lambda_n)$ và $x = \begin{bmatrix} x_1 \\ x_2 \\ ... \\ x_n \end{bmatrix}$ ta được kết quả là ma trận Sx được scale thành $\begin{bmatrix} \lambda_1 x_1 \\ \lambda_2 x_2 \\ ... \\ \lambda_n x_n \end{bmatrix}$

P2.6

- Với ma trận $m \times n$ A được chia thành q phần theo hàng và s phần theo cột và ma trận $n \times p$ B được chia thành s phần theo hàng và r phần theo cột. Khi đó tích nhân ma trận giữa các block $C_{qr} = \sum_{i=1}^{s} A_{qi}B_{ir}$.
- Với column view thì r = 1.
- Với row view thì q = 1.

P2.9

- Từ (I) suy ra: $rank(A^T) = rank(A^{TT}A^T) \text{ hay } rank(A^T) = rank(AA^T).$ Mà $rank(A) = rank(A^T)$ nên $rank(A) = rank(AA^T)$ II.
- Từ (I) và (II) ta có $rank(A) = rank(AA^T) = rank(A^TA)$ (đpcm).

P2.10

- $(ABC)^{-1} = [A(BC)]^{-1} = (BC)^{-1}A^{-1} = C^{-1}B^{-1}A^{-1}$ (dpcm).
- $(A^{-1})^T A^T = I => (A^{-1})^T A^T (A^T)^{-1} = I(A^T)^{-1} => (A^{-1})^T = (A^T)^{-1}$ (dpcm).

P2.11

- Với column view $Col(PQ) \subseteq ColP$ và với row view $Row(PQ) \subseteq RowQ$ nên $rank(PQ) \le rank(P)$ (1) và $rank(PQ) \le rank(Q)$. Suy ra $rank(PQ) \le min(rank(P), rank(Q))$ (2).
- Từ (I) ở bài P2.9 và (1) ta có $rank(A) = rank(A^TA) \leq rank(A^T)$ và tương tự với A^T ta có $rank(A^T) = rank(AA^T) \leq rank(A)$. Suy ra $rank(A) = rank(A^T)$ (3).
- Từ (2) và (3) ta có $rank(A) = rank(A^T) \le min(m, n)$ (đpcm).