Reg. No.:

Name :

Continuous Assessment Test II - March 2023

Programme	: B.Tech (ECE/ECM)	Semester	:	WS 2022-23
Course	: Analog Circuits	Code	:	BECE206L
		Class Nbr	:	CH2022235002479
Faculty	: Dr.Sangeetha R.G	Slot	:	F1+TF1
Time	: 90 Minutes	Max. Marks	:	50

Answer ALL the questions

Q.No. Sub. Sec.

1.

Questions

Marks

The transistor parameters for the differential amplifier shown in Figure 1 are $V_{TN} = 0.5$ V, $k_n = 80 \,\mu\text{A/V}^2$, W/L = 4, and $\lambda = 0$. (a) Find R_D and I_Q such that $I_{D1} = I_{D2} = 80 \,\mu\text{A}$ and $v_{O2} = 2$ V when $v_1 = v_2 = 0$. (b) Draw the dc load line, and plot the Q point for M_2 . (c) What is the maximum common-mode input voltage?

Figure 1

Find an expression for the output V_0 of the amplifier circuit of Figure 2. Assume an ideal op-amp. What mathematical operation does the circuit perform?

15

10

Figure 2

Calculate the output voltage in terms input voltages V_1 and V_2 for the circuit shown below

3.

Figure 3

The following component values are used in the circuit of op-amp astable multivibrator $C = 0.1 \ \mu F$, $R = 50 \ k\Omega$, $R1 = 10 \ k\Omega$, $R2 = 50 \ k\Omega$. The output voltage is bounded to the limits $+10 \ V$ and $-5 \ V$. Calculate the timing periods t_1 and t_2 .

10

Design a square wave generator for f=1kHz and DC supply voltage $\pm 12V$.

5

Total

50

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$