

<u>Gameboard</u>

Maths

Algebra

Manipulation Partial Fractions 1

Partial Fractions 1

A Level

Pre-Uni Maths for Sciences A5.1

The function
$$\dfrac{2x-1}{(3x-2)(x-1)}$$
 can be written as $\dfrac{A}{3x-2}+\dfrac{B}{x-1}.$ Find A and $B.$

Find the constant A.

 ${\bf Part \, B} \qquad {\bf Find} \ B$

Find the constant B.

Created for isaacphysics.org Julia Riley

<u>Gameboard</u>

Maths

Algebra Manipulation

Partial Fractions 2

Partial Fractions 2

Pre-Uni Maths for Sciences A5.2

The function $\frac{w+2}{(w-1)(w+1)(2w+1)}$ can be written as $\frac{A}{(w-1)}+\frac{B}{(w+1)}+\frac{C}{(2w+1)}$. Using the substitution method find the constants A,B and C.

Part A Find A

Find the constant A.

The following symbols may be useful: A

Part B Find B

Find the constant B.

The following symbols may be useful: B

Part C Find C

Find the constant C.

The following symbols may be useful: c

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Single Maths 26 - Partial fractions & Proof

by Contradiction

<u>Home</u> <u>Gameboard</u>

Maths

Algebra

Manipulation

Partial Fractions 3

Partial Fractions 3

The function $\frac{24t^2+31t+2}{(2t+1)^2(t+3)}$ can be written as $\frac{A}{(2t+1)^2}+\frac{B}{(2t+1)}+\frac{C}{(t+3)}$. Find the constants A,B and C.

Part A Find A

Find the constant A.

The following symbols may be useful: A

Part B Find B

Find the constant B.

The following symbols may be useful: B

Part C Find C

Find the constant C.

The following symbols may be useful: c

Gameboard:

STEM SMART Single Maths 26 - Partial fractions & Proof by Contradiction

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

Home Gar

<u>Gameboard</u>

Maths

Algebra

Manipulation

Partial Fractions 4

Partial Fractions 4

The function $\frac{8a^2}{(x-a)(x+a)^2}$, where a is a constant, can be written as $\frac{A}{(x+a)^2}+\frac{B}{x+a}+\frac{C}{x-a}$. Find the constants A, B and C.

Find the constant A.

The following symbols may be useful: A, a

Part B Find B

Find the constant B.

The following symbols may be useful: B, a

Part C Find C

Find the constant C.

The following symbols may be useful: C, a

Gameboard:

STEM SMART Single Maths 26 - Partial fractions & Proof by Contradiction

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Home</u> <u>Ga</u>

<u>Gameboard</u>

Maths Algebra

Manipulation

Improper Partial Fractions 1

Improper Partial Fractions 1

Pre-Uni Maths for Sciences A5.3

Express
$$\dfrac{-6x^3+15x^2+x-11}{2x^2-5x-3}$$
 as partial fractions.

Created for isaacphysics.org by Matthew Rihan

Gameboard:

STEM SMART Single Maths 26 - Partial fractions & Proof by Contradiction

<u>Gameboard</u>

Maths

Number Arithmetic

Proof and Odd Perfect Numbers

Proof and Odd Perfect Numbers

The **proper divisors** of a number are those factors which are not equal to the number itself. For the number 6,

- The divisors of 6 are 1, 2, 3 and 6.
- The proper divisors of 6 are 1, 2 and 3.

The number 6 is an example of a **perfect number**. A perfect number is a number for which the sum of its proper divisors is equal to the number itself. For the number 6,

$$1 + 2 + 3 = 6$$

In this question you will use proof by contradiction to show that an odd perfect number cannot be a square number.

Assumption:

We will assume that there is an odd perfect number, n, that is also a square number. Then $n=m^2$, where m is an integer.

Part A Reasoning: odd and even factors
An even number multiplied by an even number is always an number.
An even number multiplied by an odd number is always an number.
An odd number multiplied by an odd number is always an number.
Therefore, as n is an $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$
Items:
odd even

Part B Reasoning: sum of proper divisors

As $n=m^2$, m is a factor of n.

Consider another factor of n. Call this factor p. As p is a factor of n, q= is also a factor of n. As

$$n=m^2$$
 , $q=rac{m^2}{p}$. Hence,

- If p < m, q m.
- ullet If $p>m,\,q$ m

Therefore, with the exception of m, the factors of n occur in pairs. One factor in the pair is smaller than m, and the other factor is larger than m. Including m, the total number of factors of n is therefore an number.

For any value of n, one of the factor pairs is 1 and n. The number of proper divisors (factors other than n itself) is therefore an n number. As we have shown in part A that all of the factors of n are numbers, the sum of the proper divisors of n is therefore an n number.

Items:

$$\left[egin{array}{c} rac{n}{p} \end{array}
ight] \left[egin{array}{c} \operatorname{odd} \end{array}
ight] \left[>
ight] \left[\operatorname{even}
ight] \left[<
ight]$$

Part C Conclusion		
Our starting assumption was that n is an odd perfect number and also a square number.		
The definition of a perfect number means that the sum of the proper divisors of n is equal to a . The		
sum of the proper divisors must therefore be an number.		
However, in part B we have shown that if n is an odd number which is also a square number, the sum of the proper divisors has to be an n number.		
Therefore, we have arrived at a contradiction. We conclude that there are no odd perfect numbers that are also square numbers.		
Items:		
$oxed{2n} egin{pmatrix} n & oxed{even} & oxed{odd} & oxed{n^2} \end{pmatrix}$		

Created for isaacphysics.org by Jonathan Waugh

Gameboard:

STEM SMART Single Maths 26 - Partial fractions & Proof by Contradiction

<u>Gameboard</u>

Maths

Number Arithmetic

Proof Applied to Surface Areas

Proof Applied to Surface Areas

Consider a sphere with a radius r cm, where r is a rational number. Using proof by contradiction, show that the side length of a cube with the same surface area cannot also be a rational number of cm.

Once you have worked out a proof yourself, consider the model proof below. Drag and drop answers into the blank spaces to complete the proof. You may use the same answer more than once.

_	
Accum	ntion:
Assum	puon.

Consider a sphere of radius r cm, where r is a rational number. Let the side length of a cube with the same surface area as the sphere be a cm. Assume that a is a rational number, in which case $a=\frac{b}{c}$, where b and c are integers with no common factor.

Reasoning:

The surface area of the sphere is $\overline{}$. Because r is a rational number, $r=rac{p}{q}$, where p and q are integers
with no common factor. Hence, the surface area of the sphere may be written as
The surface area of the cube is $$. Using $a=rac{b}{c}$, the surface area may be written as $$.
The surface area of the sphere and the cube are equal. Hence, $4\pi\left(rac{p}{q} ight)^2=6\left(rac{b}{c} ight)^2$. Re-arranging this equation
to give an expression for produces
As b,c,p and q are all integers, $oxedown$ must be $oxedown$ number. However, π is not $oxedown$ number.

Conclusion:

The assumption that a is rational has resulted in a contradiction. Hence, the assumption cannot be true.

Therefore, the side length of a cube with the same surface area as a sphere of radius r cm, where r is a rational number, cannot be a rational number of cm.

Items:

 $6a^2$

 $\boxed{\frac{3b^2q^2}{2c^2p^2}}$

an irrational

a rational

 $4\pi \left(\frac{p}{q}\right)^2$

 π π

a real

 $\boxed{6\left(\frac{b}{c}\right)^2}$

Created for isaacphysics.org by J.Waugh

Gameboard:

STEM SMART Single Maths 26 - Partial fractions & Proof by Contradiction

<u>Gameboard</u>

Maths

Algebra

Manipulation

Partial Fractions Applied to Other Functions

Partial Fractions Applied to Other Functions

A Level

Pre-Uni Maths for Sciences A5.5, A5.6 & A5.7

Express the following functions in partial fraction form.

Part A A trigonometric function

Express the function
$$\frac{\cos y}{(\cos y+1)(2\cos y+1)}$$
 in the form $\frac{A}{\cos y+1}+\frac{B}{2\cos y+1}$, where A and B are constants.

The following symbols may be useful: cos(), sin(), tan(), y

Part B An exponential function

Express the function $\frac{\mathrm{e}^{2x}+5}{(\mathrm{e}^x-1)(\mathrm{e}^x-2)(\mathrm{e}^x-3)}$ in the form $\frac{A}{\mathrm{e}^x-1}+\frac{B}{\mathrm{e}^x-2}+\frac{C}{\mathrm{e}^x-3}$, where A, B and C are constants.

The following symbols may be useful: e, x

Part C A logarithmic function

Express the function $\frac{5\ln z + 20}{(\ln z)^2 + \ln(z^2) + 1}$ in the form $\frac{A}{(\ln z + 1)^2} + \frac{B}{\ln z + 1}$, where A and B are constants.

The following symbols may be useful: ln(), log(), z

Created for isaacphysics.org by Jonathan Waugh