TRT Machine Learning Particle ID

Doug Davis, Matthew Epland, Sourav Sen

Duke University Feb 2018

Introduction

- R&D study of e- μ particle ID (PID) in the ATLAS TRT sub-detector using machine learning techniques
- Try to improve on the existing eProbabilityHT likelihood function
- Tested Support Vector Machines (SVM), Boosted Decision Trees (BDT), and Neural Networks (NN)
 - Continuation of Doug's SVM work last semester
- Supervised learning using Monte Carlo (MC) truth PID
- Implemented with scikit-learn and Keras+TensorFlow

Davis, Epland, Sen TRT ML PID Feb 2018 2 / 17

Data Preparation

- MC16 $Z \rightarrow ll$ events
- $e \& \mu$ selections:
 - Lepton and track p and $p_T > 5$ GeV
 - ≥ 1 pixel hit
 - \bullet > 6 silicon hits
 - > 12 TRT hits
 - \bullet Truth matched to a Z decay
- Also require ≥ 1 precision hit for muons
- Results in a training set of $m=1.4 \mathrm{M}$ leptons
 - Testing on 0.29M leptons, 20% of total
 - Test set split 50-50 between e & μ
- Reweight events to have a flat p_T , η distribution
 - Try to avoid biasing results based on energy or location in detector, while still allowing $p_{\rm T}$ and η to be used

Input Variables / Features

- Primarily using track based variables:
 - p, p_T, η
 - nTRT: Number of TRT hits from TrackSummary
 - Precision + tube, no outliers
 - nTRT outliers: Number of outlier hits (outside of straw)
 - Fraction HTMB: Fraction of high threshold hits
 - · Fraction Ar: Fraction of Ar hits
 - PHF: Fraction of precision hits
 - Track Occupancy
 - $\sum L$: \sum all track L in straws
 - $\sum {
 m ToT}/\sum L$: \sum all time over thresholds $/\sum$ all track L in straws
- Also use existing eProbabilityHT, for n=12 variables in total
- ullet Scale each to [0,1] to help convergence (particularly for SVM)
 - Scale based on training data, apply to training and testing
 - Keep η symmetric [-1,1]

Input Variables

Support Vector Machines

- ullet Draw hyper-plane in n dimensional space to separate classes
- ullet Optimize margin d between the classes

See here and here for more

SVM Results

- Use default configuration from sklearn
- Equivalent performance to eProbabilityHT alone
 - For this ROC curve the lower right corner / smaller area is better
- Limit number of training events to $m=50 \mathrm{k}$
 - For practicality as SVM training time goes like $\sim n \, m \log m$

Boosted Decision Trees

- Start with a simple decision tree, i.e. ordered set of cuts on features
 - Split values are chosen to maximize S and B separation
- Assign each event to a leaf with weight $w_i < 0$ for B, > 0 for S
- Iterativly add additional trees to complement earlier trees (boosting)
- Sum the individual w_j an event recieves from each tree
- See here, here, and here for more

BDT Results

- Use sklearn's AdaBoostClassifier
- Equivalent performance to eProbabilityHT alone

Neural Networks

- Network of connected neurons arranged in layers
- Each neuron defined by weights and a non-linear activation function
- Train network over numerous example to classify high-dimensional data
- Use a flavor of gradient descent (Adam) to find weights by optimizing the loss function (binary cross-entropy) over many iterations (epochs)

Davis, Epland, Sen TRT ML PID Feb 2018 10/17

NN Setup

- Default: 2 layer network of 12 & 8 nodes, 1 output layer
 - Also tried wider and deeper networks, had very similar performance
- Use ReLU activation function and sigmoid to get [0, 1] output

```
model_default = Sequential()
model_default.add(Dense(12, input_dim=input_ndimensions, activation='relu'))
model_default.add(Dense(8, activation='relu'))
model_default.add(Dense(1, activation='sigmoid'))
model_default.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
```


NN Results

- Slightly better performance than eProbabilityHT, SVM, and BDT
- Interesting feature around output scores of 0.35

Davis, Epland, Sen TRT ML PID Feb 2018 12 / 17

Wider and Deeper Networks

- Try doubling layer width, and adding additional fully connected layers
- No notable differences from the default network

NN Convergence

• Want to avoid under and overfitting to our particular training data

Overfit Accuracy (Source)

• Are slightly overfitting, but this can be fixed with regularization

Davis, Epland, Sen TRT ML PID Feb 2018 14 / 17

k-fold Cross-Validation

- Goal: Generalize away choice of training and validation data
- Randomly partition training set into k=5 subsets
 - Stratified: Keep e/μ ratio similar in each subset
- ullet Train network k times, using each subset for validation once
- Average accuracy and loss results Doesn't appear as overfit

Results without eProbabilityHT

- ullet Training without using eProbabilityHT, just the n=11 track variables
- NN can recreate eProbabilityHT's performance, SVM & BDT fall short

Summary

- No results at this stage substantially surpassed eProbabilityHT
- Without using eProbabilityHT, NN can learn enough to match it
- Future Work:
 - Try adding dropout layer or L2 regularization to address slight overfitting
 - Try other sets of input variables
 - Try deeper BDTs
 - Try other sets of input variables
 - Try training with tagged data
 - Mix J/ψ events into dataset
 - Try a recurrent neural network (RNN) with long short-term memory (LSTM) layers to utilize the underlying hits information, including raw bitstream

• Code can be found at github.com/dukeatlas/trtmachana

Davis, Epland, Sen TRT ML PID Feb 2018 17 / 17