MACHINE LEARNING FOR WEB VULNERABILITY DETECTION

A MINI PROJECT REPORT
Submitted by

APPIDI GIRIDHAR REDDY

(20841A0546)

PATHAPATI BHANUTEJA

(20841A0532)

S SAI SREEKAR

(20841A0560)

GUIDED BY

Mrs. V. APARNA VARALAKSHMI

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

AURORA'S TECHNOLOGICAL AND RESEARCH INSTITUTE

(Affiliated to JNTU, Hyderabad and Accredited by NAAC with 'A' grade)

Parvathapur, Uppal, Hyderabad - 500039

2023 - 2024

AURORA'S TECHNOLOGICAL AND RESEARCH INSTITUTE

(Affiliated to JNTU, Hyderabad and Accredited by NAAC with 'A' grade)
Parvathapur, Uppal, Hyderabad - 500 039

DECLARATION

We hereby declare that the work described in this project, entitled "MACHINE LEARNING FOR WEB VULNERABILITY DETECTION" which is being submitted by us in partial fulfilment for the award of Bachelor of Technology in Computer Science and Engineering to AURORA'S TECHNOLOGICAL AND RESEARCH INSTITUTE is the result of investigation carried by us under the guidance of Mrs. V. Aparna Varalakshmi, Associate Professor, CSE.

The work is original and has not been submitted for any degree of this or any other university.

Place: Hyderabad

Date:

Appidi Giridhar Reddy (20841A0546)

Pathapati Bhanuteja (20841A0532)

S Sai Sreekar (20841A0560)

AURORA'S TECHNOLOGICAL AND RESEARCH INSTITUTE

(Affiliated to JNTU, Hyderabad and Accredited by NAAC with 'A' grade)
Parvathapur, Uppal, Hyderabad - 500 039

CERTIFICATE

Certified that this project report "MACHINE LEARNING FOR WEB VULNERABILITY DETECTION" is the bonafide work of "APPIDI GIRIDHAR REDDY - 20841A0546, PATHAPATI BHANUTEJA-20841A0532, S SAI SREEKAR - 20841A0560" who carried out the project work under my supervision.

GUIDE MINI PROJECT COORDINATOR

Mrs. V. Aparna Varalakshmi Dr. B. T. R. Naresh Reddy

Associate Professor Associate Professor

Department of CSE / IT

HEAD OF THE DEPARTMENT PRINCIPAL

Mrs. A. Durga Pavani Dr. A. Mahesh Babu

Department of CSE

EXTERNAL EXAMINAR

ACKNOWLEDGMENT

This work has been done during the project period and it was a very good opportunity to put theoretical knowledge into planned exercise with an aim to solve a real time problem and also to develop confidence to face various practical situations.

We convey thanks to our project guide **Mrs. V. Aparna Varalakshmi,** Department of Computer Science and Engineering, for providing encouragement, constant support and guidance which was of great help to complete this project successfully.

We express our sincere thanks to our Project Coordinator **Dr. B. T. R.**Naresh Reddy for helping us to complete our project work by giving valuable suggestions.

We express our sincere thanks to Head of the Department Mrs. A. Durga Pavani for giving us the support and her kind attention and valuable guidance to us throughout this course.

We would also like to express our gratitude to **Dr. A. Mahesh Babu**, **Principal**, Aurora's Technological and Research Institute for providing us with a congenial atmosphere and encouragement.

Finally, we would also like to thank the people who have directly or indirectly helped us, our parents, and our friends for their cooperation in completing the Mini Project work.

Appidi Giridhar Reddy (20841A0546) Pathapati Bhanuteja (20841A0532) S Sai Sreekar (20841A0560)

ABSTRACT

In this project, we propose a methodology to leverage Machine Learning (ML) for the detection of web application vulnerabilities. Web applications are particularly challenging to analyses, due to their diversity and the widespread adoption of custom programming practices. ML is thus very helpful for web application security: it can take advantage of manually labeled data to bring the human understanding of the web application semantics into automated analysis tools. We use our methodology in the design of Mitch, the first ML solution for the black-box detection of Cross-Site Request Forgery (CSRF) vulnerabilities. Mitch allowed us to identify 35 new CSRFs on 20 major websites and 3 new CSRFs on production software. Web applications have become an integral part of modern digital interactions, yet they remain susceptible to a wide range of security vulnerabilities that can compromise user data and system integrity. This project presents an innovative approach to enhancing web application security through the application of machine learning techniques for web vulnerability detection. By leveraging a diverse dataset of simulated attack scenarios and legitimate interactions, a robust and adaptive model is developed to identify and classify vulnerabilities such as SQL injection, cross-site scripting (XSS), and crosssite request forgery (CSRF). Feature engineering, selection, and extraction methods are employed to effectively capture intricate patterns indicative of vulnerabilities.

TABLE OF CONTENTS

CHAPTER NO.	TITLE	PAGE NO.
	ACKNOWLEDGEMENT	IV
	ABSTRACT	V
	LIST OF TABLES	VIII
	LIST OF FIGURES	IX
	LIST OF ABBREVATIONS	X
1	INTRODUCTION	1
	1.1 Overview	1
	1.2 Scope	2
	1.3 Definitions	3
	1.4 User Needs	4
	1.5 Objective	4
2	REQUIREMENT SPECIFICATIONS	5
	2.1 Software Requirements	5
	2.2 Hardware Requirements	5
3	LITERATURE SURVEY	6
	3.1 Surviving the Web: A Journey into Web	
	Session Security	6
	3.2 Large Scale Analysis a& Detection of	
	Authentication CSRF	7
	3.3 State of the Art: Automated Blackbox Web	
	Application Vulnerability Testing	8
	3.4 Why johnny can't pentest: An analysis	
	of black-box web vulnerability scanners	10

4	SOFTWARE REQUIREMENT		
	ANALYSIS	11	
	4.1 Problem Definition	11	
	4.2 Functional Requirement	12	
	4.3 Non-Functional Requirements	13	
5	SOFTWARE DESIGN	14	
	5.1 Architectural Design	14	
	5.2 Modules	15	
	5.3 UML Diagrams	17	
6	SOURCE CODE	22	
7	TESTING	40	
	7.1 Testing Methodologies	40	
8	OUTPUT SCREENS	43	
9	CONCLUSIONS	53	
10	REFERENCES	54	

LIST OF TABLES

TABLE NO.	TABLE NAME	PAGE NO.
1.1	Definitions	3
7.1	Test Cases	43

LIST OF FIGURES

FIGURE NO.	FIGURE NAME	PAGE NO.
5.1.1	Architectural Diagram	14
5.3.1	Use – Case Diagram	18
5.3.2	Sequence Diagram	19
5.3.3	Class Diagram	20
5.3.4	Activity Diagram	21
8.1	Home Page	43
8.2	User Registration Page	43
8.3	User Login Page	44
8.4	User Home Page	44
8.5	Getting Website CSRFs	45
8.6	Scanning URLs	45
8.7	CSRF Token	46
8.8	Given website CSRF results	46
8.9	MD5 Token	47
8.10	Mitch Detected Sites	47
8.11	Machine Learning Results	48
8.12	Admin Login	48
8.13	Admin Home Page	49
8.14	View Registered Users	49
8.15	Admin View all CSRFS	50
8.16	CSRFS	50
8.17	Post Data View	51
8.18	Get Data	51
8.19	Attribute Descriptions	52

LIST OF ABBREVATIONS

ML - Machine Learning

CSRF - Cross Site Request Forgery

MySQL - My Structured Query Language

HTML - Hypertext Markup Language

CSS - Cascading Style Sheets

GUI - Graphical User Interface

XSS - Cross Site Scripting

HTTP - Hypertext Transfer Protocol

WAF - Web Application Firewall