Last name $_$	
First name	

LARSON—MATH 601—HOMEWORK WORKSHEET h14 The Determinant of a Linear Transformation

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x_1, x_2) = (3x_1 + x_2, x_2)$. $\mathcal{B} = \{\alpha_1, \alpha_2\} = (1, 1), (-1, 1)$ is a basis for \mathbb{R}^2 . $\mathcal{B}' = \{\alpha'_1, \alpha'_2\} = (1, 2), (2, 1)$ is another basis.

- 1. Check that T is a linear transformation.
- 2. Find $[T]_{\mathcal{B}} = [[T(\alpha_1)]_{\mathcal{B}} T(\alpha_2)]_{\mathcal{B}}].$
- 3. Find $[T]_{\mathcal{B}'} = [[T(\alpha'_1)]_{\mathcal{B}} T(\alpha'_2)]_{\mathcal{B}'}].$
- 4. Find $P = [[\alpha_1]_{\mathcal{B}'} [\alpha_1]_{\mathcal{B}'}].$
- 5. Find P^{-1} .
- 6. Check that $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{B}'}$ are similar by showing that $[T]_{\mathcal{B}} = P^{-1}[T]_{\mathcal{B}'}P$.
- 7. Find $\det([T]_{\mathcal{B}})$.
- 8. Find $\det P$.
- 9. Find det P^{-1} .
- 10. Find $\det([T]_{\mathcal{B}'})$.
- 11. Find $\det(P^{-1}[T]_{\mathcal{B}'}P)$.
- 12. Find $\det T$.
- 13. Find any characteristic values of T. For each characteristic value c, find a corresponding characteristic vector α .
- 14. Argue that \mathbb{R}^2 has a basis consisting of characteristic vectors of T.