

(12) NACH DEM VERTRÄG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
1. Juli 2004 (01.07.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/055242 A1

- (51) Internationale Patentklassifikation⁷: C25B 1/12, (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): GESELLSCHAFT FÜR HOCHLEISTUNGSELEKTROLYSEURE ZURWASSERSTOFFERZUGUNG MBH [DE/DE]; Ludwig-Bölkow-Allee, Tor 2, 85521 Ottobrunn (DE).
- (21) Internationales Aktenzeichen: PCT/EP2003/013993 (72) Erfinder; und
- (22) Internationales Anmeldedatum: 10. Dezember 2003 (10.12.2003) (75) Erfinder/Anmelder (*nur für US*): BRAND, Rolf, August [DE/DE]; Heufelder Strasse 76, 83052 Bruckmühl (DE). WALLEVIK, Oddmund [NO/NO]; Enggravhaegda 26, N-3711 Skien (NO).
- (25) Einreichungssprache: Deutsch (74) Anwalt: WINTER, Josef; MTU Friedrichshafen GmbH, Abt. ZJ-P, Maybachplatz 1, 88045 Friedrichshafen (DE).
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität: 102 58 525.3 14. Dezember 2002 (14.12.2002) DE

[Fortsetzung auf der nächsten Seite]

(54) Title: PRESSURE ELECTROLYZER AND METHOD FOR SWITCHING OFF A PRESSURE ELECTROLYZER

(54) Bezeichnung: DRUCKELEKTROLYSEUR UND VERFAHREN ZUR ABSCHALTUNG EINES DRUCKELEKTROLYSEURS

Sauerstoffabscheider

(57) Abstract: The invention relates to a pressure electrolyzer and a method for switching off said pressure electrolyzer. The pressure electrolyzer comprises a pressure reservoir (12) and an electrolytic cell block (13) which contains a plurality of electrolytic cells (14) and is arranged in the pressure reservoir (12), the electrolytic cells (14) including respective anodes and cathodes. An electrolyte circulation system supplies the anodes and cathodes with the electrolyte. An oxygen separator (21) separates the gaseous oxygen produced during operation of the pressure electrolyzer (11) and a hydrogen separator (22) separates the gaseous hydrogen produced during operation of the pressure electrolyzer (11). A supply of an inert gas, especially hydrogen, is used to render the pressure electrolyzer (11) inert when it is switched off. The invention is particularly characterized in that the inert gas supply is supplied to the oxygen separator (21) and that the electrolyte circulation system comprises a pipe connection (23a; 23b) via which a part of the electrolyte can be displaced in the sense of a displacement of the gaseous hydrogen from the hydrogen separator (22) when the oxygen separator (21) is impinged upon with the inert gas.

(57) Zusammenfassung: Es wird ein Druckelektrolyseur und ein Verfahren zum Abschalten eines solchen beschrieben. Der Druckelektrolyseur umfasst einen Druckbehälter (12) und einen eine Anzahl von Elektrolysezellen (14) enthaltenden, in dem Druckbehälter (12) angeordneten Elektrolysezellenblock (13), wobei die Elektrolysezellen (14) jeweilige Anoden und Kathoden enthalten und ein Elektrolytkreislaufsystem zur Zuführung von Elektrolyt zu den Anoden und Kathoden vorgesehen ist, einen

[Fortsetzung auf der nächsten Seite]

Express Label No.
EV342540217US

WO 2004/055242 A1

(81) Bestimmungsstaaten (*national*): CA, CN, IN, JP, NO, RU, US.

— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

(84) Bestimmungsstaaten (*regional*): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

— mit internationalem Recherchenbericht

(21) zum Abscheiden des beim Betrieb des Druckelektrolyseurs (11) entstehenden gasförmigen Sauerstoffs und einem Wasserstoffabscheider (22) zum Abscheiden des beim Betrieb des Druckelektrolyseurs (11) entstehenden gasförmigen Wasserstoffs, sowie einen Vorrat eines inerten Gases, insbesondere Stickstoff, zum Inertisieren des Druckelektrolyseurs (11) bei seiner Abschaltung. Erfindungsgemäß ist es vorgesehen, dass der Inertgasvorrat dem Sauerstoffabscheider (21) zuführbar ist, und dass das Elektrolytkreislaufsystem eine Leitungsverbindung (23a; 23b) enthält, über die bei Beaufschlagung des Sauerstoffabscheidens (21) mit dem Inertgas ein Teil des Elektrolyten im Sinne einer Verdrängung des gasförmigen Wasserstoffs aus dem Wasserstoffabscheider (22) verschiebbar ist.

Express Label No.
EV342540217US

5 Druckelektrolyseur und Verfahren zur Abschaltung eines
 Druckelektrolyseurs

10 Die Erfindung betrifft einen Druckelektrolyseur nach dem Oberbegriff des Anspruchs 1, sowie ein Verfahren zur Abschaltung eines Druckelektrolyseurs nach dem Oberbegriff des Anspruchs 9.

15 Zur elektrolytischen Aufspaltung von Wasser in Wasserstoff und Sauerstoff sind Druckelektrolyseure bekannt, die einen Druckbehälter und einen eine Anzahl von in Form eines Stapels zusammengefassten Elektrolysezellen enthaltenden, in dem Druckbehälter angeordneten Elektrolysezellenblock umfassen. Die Elektrolysezellen enthalten jeweilige Anoden und Kathoden und es ist ein Elektrolytkreislaufsystem zur Zuführung von Elektrolyt zu den Anoden und Kathoden vorgesehen. Ein Sauerstoffabscheider dient zum Abscheiden des beim Betrieb des Druckelektrolyseurs entstehenden gasförmigen Sauerstoffs und ein Wasserstoffabscheider dient zum Abscheiden des beim Betrieb des Druckelektrolyseurs entstehenden gasförmigen Wasserstoffs. Zum Inertisieren des Druckelektrolyseurs bei dessen Abschaltung ist ein Vorrat eines inerten Gases, insbesondere Stickstoff, vorgesehen.

20

25 Ein Druckelektrolyseur herkömmlicher Art ist beispielsweise aus der DE 25 48 699 C3 bekannt.

Bei Druckelektrolyseuren der genannten Art besteht eine wesentliche Sicherheitsanforderung in der Fähigkeit zu einer

schnellen, zuverlässigen und umfassenden Inertisierung, das heißt, einer Entfernung des Wasserstoffs aus dem Druckbehälter und aus dem Wasserstoffabscheider, so dass der Restgehalt an Wasserstoff deutlich unter der unteren Explosionsgrenze
5 von 4 Vol.% liegt.

Herkömmlich werden zum Inertisieren größere Mengen an Inertgas, typischerweise Stickstoff, vorgehalten, mit dem der Wasserstoff beim Abschalten, etwa bei einer Notabschaltung, aus
10 dem Wasserstoffabscheider gespült wird. Hierzu kann entweder der Druck im Druckelektrolyseur beibehalten oder im Zuge der Spülung mit dem Inertgas ein Druckabbau auf den Umgebungsdruck erfolgen. In jedem Fall muss wegen der Vermischung der Gase ein Vielfaches des Gasvolumens des Wasserstoffabschei-
15 ders in Form von Inertgas vorgehalten werden.

Da bei einer schnellen Dekompression des Elektrolyseurs durch das Ausgasen von Wasserstoff bzw. von Sauerstoff in versteckten Kavernen typischerweise Schäden in den Dichtungen und
20 Baukomponenten der Zellen entstehen und ein späteres Wiederauffahren der drucklosen Anlage mit großem Aufwand verbunden ist, sollte eine Dekompression des Elektrolyseurs möglichst auf drei Arten von Störfällen beschränkt werden, bei denen sie tatsächlich unumgänglich ist: Leckage von Elektrolyt, Leckage von Produktgas und kritische Verunreinigung von Produktgas. Sonst sollte der Druck beim Abschalten immer beibehalten werden.
25

Die Aufgabe der Erfindung ist es einen Druckelektrolyseur und
30 ein Verfahren zur Abschaltung eines Druckelektrolyseurs zu schaffen, bei denen mit einer möglichst geringen Menge an Inertgas eine zuverlässige Inertisierung des Elektrolyseurs möglich ist. Insbesondere, jedoch nicht ausschließlich, soll

eine Abschaltung des Elektrolyseurs auch ohne Dekompression möglich sein.

5 Vorrichtungsmäßig wird die gestellte Aufgabe durch einen Druckelektrolyseur mit den Merkmalen des Anspruchs 1 gelöst.

Verfahrensmäßig wird die gestellte Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 9 gelöst.

10 Vorteilhafte Ausgestaltungen der Erfindung sind in den jeweiligen Unteransprüchen angegeben.

Durch die Erfindung wird ein Druckelektrolyseur mit einem Druckbehälter und einem eine Anzahl von Elektrolysezellen 15 enthaltenden, in dem Druckbehälter angeordneten Elektrolysezellenblock geschaffen. Die Elektrolysezellen enthalten jeweilige Anoden und Kathoden und es ist ein Elektrolysekreislaufsystem zur Zuführung von Elektrolyt zu den Anoden und Kathoden vorgesehen. Zum Abscheiden des beim Betrieb des Druckelektrolyseurs entstehenden gasförmigen Sauerstoffs ist ein Sauerstoffabscheider vorgesehen und zum Abscheiden des beim Betrieb des Druckelektrolyseurs entstehenden gasförmigen Wasserstoffs ist ein Wasserstoffabscheider vorgesehen. Ein Vorrat eines inerten Gases, insbesondere Stickstoff, dient zum 20 Inertisieren des Druckelektrolyseurs bei seiner Abschaltung. Erfindungsgemäß ist der Inertgasvorrat dem Sauerstoffabscheider zuführbar und das Elektrolytkreislaufsystem enthält eine Leitungsverbindung, über die bei Beaufschlagung des Sauerstoffabscheidens mit dem Inertgas ein Teil des Elektrolyten 25 im Sinne einer Verdrängung des gasförmigen Wasserstoffs aus dem Wasserstoffabscheider verschiebbar ist.

Gemäß einer Ausführungsform des erfindungsgemäßen Druckelektrolyseurs ist der Sauerstoffabscheider und/oder der Was-

serstoffabscheider außerhalb des Druckbehälters vorgesehen, und bei Beaufschlagung des Sauerstoffabscheiders mit dem Inertgas ist ein Teil des Elektrolyten zur Verdrängung des Wasserstoffs aus dem Wasserstoffabscheider von dem Druckbe-
5 hälter und/oder von dem Sauerstoffabscheider in den Wasser-
stoffabscheider verschiebbar.

Gemäß einer anderen bevorzugten Ausführungsform der Erfindung ist der Sauerstoffabscheider und/oder der Wasserstoffabschei-
10 der durch einen Teil des Volumens innerhalb des Druckbehäl-
ters gebildet, und bei Beaufschlagung des Sauerstoffabschei-
ders mit dem Inertgas ist ein Teil des Elektrolyten zur Ver-
drängung des Wasserstoffs, insbesondere innerhalb des Druck-
behälters, in den den Wasserstoffabscheider bildenden Teil
15 des Druckbehältervolumens verschiebbar.

Gemäß einer Ausführungsform der Erfindung ist die Leitungs-
verbindung, über die ein Teil des Elektrolyten im Sinne einer
Verdrängung des Wasserstoffs aus dem Wasserstoffabscheider
20 verschiebbar ist, außerhalb des Druckbehälters vorgesehen.

Hierbei kann die Leitungsverbindung durch eine unterhalb des
Flüssigkeitsspiegels des Elektrolyten verlaufende, den Sauer-
stoffabscheider mit dem Wasserstoffabscheider verbindende
25 Pendelleitung gebildet sein.

Gemäß einer alternativen Ausführungsform des erfindungsgemä-
ßen Druckelektrolyseurs ist die Leitungsverbindung, über die
ein Teil des Elektrolyten im Sinne einer Verdrängung des Was-
30 serstoffs aus dem Wasserstoffabscheider verschiebbar ist, in-
nerhalb des Druckbehälters vorgesehen.

Gemäß einer vorteilhaften Ausführungsform des erfindungsgemä-
ßen Druckelektrolyseurs bildet das Gehäuse des Elektrolyse-

zellenblocks zusammen mit dem Druckbehälter mindestens zwei voneinander getrennte Räume, welche Bestandteil des Elektrolytkreislaufssystems sind und die durch das Gehäuse gegen die Elektrolysezellen und durch den Druckbehälter gegen die Umgebung begrenzt sind, wobei einer der voneinander getrennten Räume Bestandteil eines Anolytkreisläufs und mit dem Sauerstoffabscheider verbunden ist und ein anderer der voneinander getrennten Räume Bestandteil eines Katholytkreisläufs und mit dem Wasserstoffabscheider verbunden ist.

10

Hierbei können die voneinander getrennten Räume durch Trennwände voneinander getrennt sein, die sich zwischen dem Gehäuse des Elektrolysezellenblocks und dem Druckbehälter erstrecken, und die Leitungsverbindung, über die ein Teil des Elektrolyten im Sinne einer Verdrängung des Wasserstoffs aus dem Wasserstoffabscheider verschiebbar ist, kann durch einen Durchgang in einem unterhalb des Flüssigkeitsspiegels des Elektrolyten liegenden Bereich der Trennwände gebildet sein.

20 Weiterhin wird durch die Erfindung ein Verfahren zum Abschalten eines Druckelektrolyseurs geschaffen, wobei der Druckelektrolyseur einen Druckbehälter und einen eine Anzahl von Elektrolysezellen umfassenden, in dem Druckbehälter angeordneten Elektrolysezellenblock enthält und die Elektrolysezellen jeweilige Anoden und Kathoden enthalten und ein Elektrolytkreislaufsystem zur Zuführung von Elektrolyt zu den Anoden und Kathoden vorgesehen ist. Ein Sauerstoffabscheider dient zum Abscheiden des beim Betrieb des Druckelektrolyseurs entstehenden gasförmigen Sauerstoffs und ein Wasserstoffabscheider dient zum Abscheiden des beim Betrieb des Druckelektrolyseurs entstehenden gasförmigen Wasserstoffs. Zum Inertisieren wird dem Druckelektrolyseur bei seiner Abschaltung ein inertes Gas, insbesondere Stickstoff, zugeführt. Erfindungsgemäß wird das Inertgas dem Sauerstoffabscheider zugeführt, und bei

Beaufschlagung des Sauerstoffabscheiders mit dem Inertgas wird ein Teil des Elektrolyten über eine in dem Elektrolytkreislaufsystem vorgesehene Leitungsverbindung im Sinne einer Verdrängung des gasförmigen Wasserstoffs aus dem Wasserstoffabscheider verschoben.

Gemäß einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens ist der Sauerstoffabscheider und/oder der Wasserstoffabscheider außerhalb des Druckbehälters vorgesehen, und bei Beaufschlagung des Sauerstoffabscheiders mit dem Inertgas wird ein Teil des Elektrolyten zur Verdrängung des Wasserstoffs aus dem Wasserstoffabscheider von dem Druckbehälter und/oder von dem Sauerstoffabscheider in den Wasserstoffabscheider verschoben.

Gemäß einer anderen vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens ist der Sauerstoffabscheider und/oder der Wasserstoffabscheider durch einen Teil des Volumens innerhalb des Druckbehälters gebildet, und bei Beaufschlagung des Sauerstoffabscheiders mit dem Inertgas wird ein Teil des Elektrolyten zur Verdrängung des Wasserstoffs, insbesondere innerhalb des Druckbehälters, in den den Wasserstoffabscheider bildenden Teil des Druckbehältervolumens verschoben.

Im folgenden werden Ausführungsbeispiele der Erfindung anhand der Zeichnung erläutert.

Es zeigen:

Figur 1a) und 1b) in schematisierter Darstellung einen erfindungsgemäßen Druckelektrolyseur im Betriebszustand (Figur 1a)) bzw. im Abschaltzustand (Figur 1b));

Figur 2a) und 2b) in schematisierter Darstellung einen erfindungsgemäßen Druckelektrolyseur im Betriebszustand (Figur 2a)) bzw. im Abschaltzustand (Figur 2b)).

5 In den Figuren 1a), 1b), 2a) und 2b) umfasst ein insgesamt mit dem Bezugszeichen 11 bzw. 31 bezeichneter Druckelektrolyseur, der zur elektrolytischen Aufspaltung von Wasser in Wasserstoff und Sauerstoff dient, einen Druckbehälter 12 bzw. 32, in welchem ein Elektrolysezellenblock 13 bzw. 33 angeordnet ist. Der Elektrolysezellenblock 13 bzw. 33 besteht aus 10 einer Anzahl von in Form eines Stapels zusammengefasste Elektrolysezellen 14 bzw. 34, welche in den Figuren lediglich angedeutet sind. Die Elektrolysezellen 4 enthalten, was in den Figuren nicht eigens dargestellt ist, jeweils eine Anode 15 und eine Kathode. Ein Elektrolytkreislaufsystem, welches in den Figuren nur teilweise dargestellt ist, dient der Zuführung von Elektrolyt zu den Anoden und Kathoden. Ein derartiger Elektrolyseur ist beispielsweise in der unveröffentlichten deutschen Patentanmeldung mit dem amtlichen Aktenzeichen 20 101 50 557.4 dargestellt.

Bei dem in den Figuren 1a) und 1b) dargestellten Ausführungsbeispiel sind außerhalb des Druckbehälters 12 ein Sauerstoffabscheider 21 zum Abscheiden des beim Betrieb des Druckelektrolyseurs 11 entstehenden gasförmigen Sauerstoffs und ein Wasserstoffabscheider 22 zum Abscheiden des beim Betrieb des Druckelektrolyseurs 11 entstehenden gasförmigen Wasserstoffs vorgesehen.

30 Bei dem in den Figuren 2a) und 2b) dargestellten Ausführungsbeispiel bildet das Gehäuse 35 des Elektrolysezellenblockes 33 zusammen mit dem Druckbehälter 32 zwei voneinander getrennte Räume 37, 38, die durch Trennwände 39, 40 voneinander getrennt sind, welche sich zwischen dem Gehäuse 35 des Elekt-

rolysezellenblocks 33 und dem Druckbehälter 32 erstrecken. Die beiden voneinander getrennten Räume 37, 38 sind Bestandteile des Elektrolytkreislaufsystems und sind durch das Gehäuse 35 gegen die Elektrolysezellen 34 und durch den Druckbehälter 32 gegen die Umgebung begrenzt.

Durch einen Teil des Volumens innerhalb des Druckbehälters 32, welches über dem Elektrolysezellenblock 33 befindlich ist, ist ein Sauerstoffabscheider 41 zum Abscheiden des beim 10 Betrieb des Druckelektrolyseurs 31 entstehenden gasförmigen Sauerstoffs gebildet und durch einen Teil des Volumens innerhalb des Druckbehälters 32, der ebenfalls über den Elektrolysezellenblock 33 befindlich ist, ist ein Wasserstoffabscheider 42 zum Abscheiden des beim Betrieb des Druckelektrolyseurs 31 entstehenden gasförmigen Wasserstoffs gebildet.

Von den beiden vorher genannten voneinander getrennten Räumen 37, 38, welche Bestandteil des Elektrolytkreislaufs sind, ist einer, nämlich der Raum 37 Bestandteil eines Anolytkreislaufs 20 und mit dem dem Sauerstoffabscheider 41 bildenden Teil des Volumens innerhalb des Druckbehälters 32 verbunden, und der andere Raum 38 ist Bestandteil eines Katholytkreislaufs und mit dem den Wasserstoffabscheider 42 bildenden Teil des Volumens innerhalb des Druckbehälters 32 verbunden.

Bei allen dargestellten Ausführungsbeispielen ist ein Vorrat eines inerten Gases, insbesondere Stickstoff, zum Inertisieren des Druckelektrolyseurs 11 bzw. 31 bei seiner Abschaltung vorgesehen, der in den Figuren jedoch nicht eigens dargestellt ist. Dieses Inertgas dient dazu, den Druckelektrolyseur und insbesondere den Wasserstoffabscheider 22 bzw. 42 von Wasserstoff frei zu machen, zumindest soweit, dass der Wasserstoffgehalt unter der unteren Explosionsgrenze von 4 Vol.% liegt. Dieser Inertgasvorrat bzw. das vorgehaltene I-

nertgas ist allgemein gesprochen zu diesem Zwecke dem Sauerstoffabscheider 21 bzw. 41 in der Weise zuführbar, dass bei Beaufschlagung des Sauerstoffabscheidens 21 bzw. 41 mit dem Inertgas ein Teil des Elektrolyten innerhalb des Elektrolytkreislaufs so verschoben wird, dass der gasförmige Wasserstoff aus dem Wasserstoffabscheider 22 bzw. 42 verdrängt wird. Der verdrängte Wasserstoff wird dabei beispielsweise an die Umgebung abgeführt, gespeichert oder in anderer Weise entfernt.

10

Damit der Elektrolyt innerhalb des Elektrolytkreislaufsystems in dem oben beschriebenen Sinne einer Verdrängung des gasförmigen Wasserstoffs aus dem Wasserstoffabscheider 22 bzw. 42 verschiebbar ist, ist in dem Elektrolytkreislaufsystem eine Leitungsverbindung 23a; 23b; 43a; 43b vorgesehen, welche auf unterschiedliche Art ausgeführt sein kann.

Bei dem in den Figuren 1a) und 1b) dargestellten Ausführungsbeispiel ist die genannte Leitungsverbindung außerhalb des Druckbehälters 12 vorgesehen, wobei zwei verschiedene Varianten gleichzeitig dargestellt sind. So kann die außerhalb des Druckbehälters 12 verlaufende Leitungsverbindung entweder durch eine Leitungsverbindung 23a gebildet sein, welche einen dem Wasserstoffabscheider 21 zugeordneten Volumenbereich innerhalb des Druckbehälters 12 mit einem dem Wasserstoffabscheider 22 zugeordneten Volumenbereich innerhalb des Druckbehälters 12 verbindet, oder sie kann durch eine den Wasserstoffabscheider 21 mit dem Wasserstoffabscheider verbindende Pendelleitung 23b gebildet sein, welche unterhalb des Flüssigkeitsspiegels des Elektrolyten verläuft. Schließlich kann die genannte Leitungsverbindung auch innerhalb des Druckbehälters 12 einen dem Wasserstoffabscheider 21 zugeordneten Bereich des Elektrolytkreislaufs mit einem dem Wasserstoffabscheider 22 zugeordneten Bereich des Elektrolytkreislaufs

verbinden, was in den Figuren 1a) und 1b) jedoch nicht dargestellt ist.

In dem in Figur 1a) dargestellten normalen Betriebszustand
5 des Druckelektrolyseurs 11 wird der entstehende Sauerstoff im
Sauerstoffabscheider 21 gesammelt und der entstehende Wasser-
stoff wird im Wasserstoffabscheider 22 gesammelt. Sowohl der
Sauerstoffabscheider 21 als auch der Wasserstoffabscheider 22
sind jeweils teilweise, nämlich in einem unteren Bereich, mit
10 dem Elektrolyten gefüllt, im oberen Bereich der Abscheider
21, 22 sammelt sich das jeweilige Produktgas.

Wenn nun der Druckelektrolyseur 11 abgeschaltet werden soll,
wird dem Sauerstoffabscheider 21, typischerweise in dem zum
15 Sammeln des gasförmigen Sauerstoffs vorgesehenen oberen Volu-
menbereich desselben, das vorgehaltene Inertgas, also typi-
scherweise Stickstoffgas, zugeführt. Über die in dem Elektro-
lytkreislauf vorgesehene Leitungsverbindung 23a bzw. 23b er-
folgt eine Verschiebung eines Teils des Elektrolyten aus dem
20 Sauerstoffabscheider 21 und/oder aus dem Druckbehälter 12 in
den Wasserstoffabscheider 22 und bewirkt eine Verdrängung des
gasförmigen Wasserstoffs aus demselben, wodurch eine Inerti-
sierung des Druckelektrolyseurs 11 und des Wasserstoffab-
scheidens 22 erfolgt. Sinnvollerweise erfolgt diese Inerti-
25 sierung erst, wenn im wesentlichen der gesamte gasförmige
Wasserstoff aus dem Druckbehälter 12 in den Wasserstoffab-
scheider 22 aufgestiegen ist. Figur 1b) zeigt den Druck-
elektrolyseur 11 in abgeschaltetem, inertisiertem Zustand.

30 Bei dem in den Figuren 2a) und 2b) dargestellten Ausführungs-
beispiel ist die Leitungsverbindung 43a; 43b, über welche ein
Teil des Elektrolyten im Sinne einer Verdrängung des gasför-
migen Wasserstoffs aus dem den Wasserstoffabscheider 42 bil-
denden Volumenbereich des Druckbehälters 32 verschiebbar ist,

entweder durch eine außerhalb des Druckbehälters 32 verlaufende Leitungsverbindung 43a gebildet, die einen dem Sauerstoffabscheider 41 zugeordneten Volumenbereich des Druckbehälters 32, nämlich den einen Bestandteil des Anolytkreislaufs bildenden Raum 37, mit einem dem Wasserstoffabscheider 42 zugeordneten Volumenbereich des Druckbehälters 32, nämlich dem einen Teil des Katholytkreislaufs bildenden Raum 38, verbindet, oder es ist eine Leitungsverbindung 43b innerhalb des Druckbehälters 32 vorgesehen, welche einen dem Sauerstoffabscheider 41 zugeordneten Volumenbereich des Druckbehälters 32, nämlich den einen Bestandteil des Anolytkreislaufs bildenden Raum 37, mit einem dem Wasserstoffabscheider 42 zugeordneten Volumenbereich des Druckbehälters 32, nämlich dem einen Teil des Katholytkreislaufs bildenden Raum 38, miteinander verbindet. Diese Leitungsverbindung 43b ist typischerweise in der unterhalb des Elektrolysezellenblocks 33 vorgesehenen Trennwand 40 vorgesehen.

Bei einer Inertisierung des Elektrolyseurs 31 wird der den Sauerstoffabscheider 41 bildende Volumenbereich des Druckbehälters 32 mit dem vorgehaltenen Inertgas, typischerweise Stickstoff, beaufschlagt, wodurch der Elektrolyt über die Leitungsverbindung 43a bzw. 43b aus dem dem Sauerstoffabscheider 41 zugeordneten Volumenbereich des Druckbehälters 32, also aus dem Raum 37 des Anolytkreislaufs, in den dem Wasserstoffabscheider 42 zugeordneten Volumenbereich des Druckbehälters 32, also in den Raum 38 des Katholytkreislaufs, übergeführt wird bis der Wasserstoff vollständig aus dem den Wasserstoffabscheider 42 bildenden Volumenbereich des Druckbehälters 32 entfernt ist. Auch hier erfolgt die Inertisierung sinnvollerweise erst dann, wenn im wesentlichen der gesamte gebildete Wasserstoff im Wasserstoffabscheider 42, d.h. in dem entsprechenden Volumenbereich des Druckbehälters 32 gesammelt ist.

Das Verschieben des Elektrolytniveaus in den Wasserstoffabscheider 22 bzw. 42 kann bei allen Ausführungsbeispielen durch geeignete Mittel überwacht werden, beispielsweise durch Niveauwächter, welche einen Anstieg der Füllhöhe des Elektrolyten im Wasserstoffabscheider 22 bzw. 42 bis auf ein vorgegebenes Niveau überwachen.

Der bei der Inertisierung des Wasserstoffabscheiders 22 bzw. 42 verdrängte Wasserstoff kann gespeichert und weiter verwendet werden, er muss nicht verworfen werden, da er nicht mit dem zugeführten Inertgas vermischt ist.

Eine Anwendung der Erfindung ist bei allen Typen von Elektrolyseuren möglich, so zum Beispiel auch beim PEM-Elektrolyseur, der Wasser als Elektrolyt verwendet.

20

25

30

Bezugszeichenliste

- 11; 31 Druckelektrolyseur
5 12; 32 Druckbehälter
13; 33 Elektrolysezellenblock
14; 34 Elektrolysezellen
15; 35 Gehäuse
17; 37 Raum für Anolytkreislauf
10 18; 38 Raum für Katholytkreislauf
29 Trennwand
40 Trennwand
21; 41 Sauerstoffabscheider
22; 42 Wasserstoffabscheider
15 23a; 43a Leitungsverbindung
23b; 43b Leitungsverbindung

20

25

30

Patentansprüche

1. Druckelektrolyseur mit einem Druckbehälter (12; 32) und
10 einem eine Anzahl von Elektrolysezellen (14; 34) enthalten-
den, in dem Druckbehälter (12; 32) angeordneten Elektrolyse-
zellenblock (13; 33), wobei die Elektrolysezellen (14; 34)
jeweilige Anoden und Kathoden enthalten und ein Elektrolyt-
kreislaufsystem zur Zuführung von Elektrolyt zu den Anoden
15 und Kathoden vorgesehen ist, mit einem Sauerstoffabscheider
(21; 41) zum Abscheiden des beim Betrieb des Druckelektroly-
seurs (11; 31) entstehenden gasförmigen Sauerstoffs und einem
Wasserstoffabscheider (22; 42) zum Abscheiden des beim Be-
trieb des Druckelektrolyseurs (11; 31) entstehenden gasförmig-
20 gen Wasserstoffs, und mit einem Vorrat eines inerten Gases,
insbesondere Stickstoff, zum Inertisieren des Druckelektroly-
seurs (11; 31) bei seiner Abschaltung, dadurch gekennzeich-
net, dass der Inertgasvorrat dem Sauerstoffabscheider (21;
41) zuführbar ist, und dass das Elektrolytkreislaufsystem ei-
25 ne Leitungsverbindung (23a; 23b; 43a; 43b) enthält, über die
bei Beaufschlagung des Sauerstoffabscheidens (21; 41) mit dem
Inertgas ein Teil des Elektrolyten im Sinne einer Verdrängung
des gasförmigen Wasserstoffs aus dem Wasserstoffabscheider
(22; 42) verschiebbar ist.

30

2. Druckelektrolyseur nach Anspruch 1, dadurch gekennzeich-
net, dass der Sauerstoffabscheider (21) und/oder der Wasser-
stoffabscheider (22) außerhalb des Druckbehälters (12) vorge-
sehen ist, und dass bei Beaufschlagung des Sauerstoffabschei-

ders (21) mit dem Inertgas ein Teil des Elektrolyten zur Verdrängung des Wasserstoffs aus dem Wasserstoffabscheider (22) von dem Druckbehälter (12) und/oder von dem Sauerstoffabscheider (21) in den Wasserstoffabscheider (22) verschiebbar
5 ist.

3. Druckelektrolyseur nach Anspruch 1, dadurch gekennzeichnet, dass der Sauerstoffabscheider (41) und/oder der Wasserstoffabscheider (42) durch einen Teil des Volumens innerhalb
10 des Druckbehälters (32) gebildet ist, und dass bei Beaufschlagung des Sauerstoffabscheidens (41) mit dem Inertgas ein Teil des Elektrolyten zur Verdrängung des Wasserstoffs in den den Wasserstoffabscheider (42) bildenden Teil des Druckbehältervolumens verschiebbar ist.

15

4. Druckelektrolyseur nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Leitungsverbindung (23a; 23b; 43a), über die ein Teil des Elektrolyten im Sinne einer Verdrängung des Wasserstoffs aus dem Wasserstoffabscheider (22; 42) verschiebbar ist, außerhalb des Druckbehälters (12; 32) vorgesehen ist.

5. Druckelektrolyseur nach Anspruch 4 in Verbindung mit Anspruch 2, dadurch gekennzeichnet, dass die Leitungsverbindung (23b) durch eine unterhalb des Flüssigkeitsspiegels des Elektrolyten verlaufende, den Sauerstoffabscheider (21) mit dem Wasserstoffabscheider (22) verbindende Pendelleitung (23b) gebildet ist.
25

30 6. Druckelektrolyseur nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Leitungsverbindung (43b), über die ein Teil des Elektrolyten im Sinne einer Verdrängung des Wasserstoffs aus dem Wasserstoffabscheider (42) verschiebbar ist, innerhalb des Druckbehälters (32) vorgesehen ist.

7. Druckelektrolyseur nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Gehäuse (35) des Elektrolysezellenblocks (33) zusammen mit dem Druckbehälter (32) mindestens zwei voneinander getrennte Räume (37, 38) bildet, welche
5 Bestandteil des Elektrolytkreislaufssystems sind und die durch das Gehäuse (35) gegen die Elektrolysezellen (34) und durch den Druckbehälter (32) gegen die Umgebung begrenzt sind, wobei einer der voneinander getrennten Räume (37) Bestandteil eines Anolytkreislaufs und mit dem Sauerstoffabscheider (41) verbunden ist und ein anderer der voneinander
10 getrennten Räume (38) Bestandteil eines Katholytkreislaufs und mit dem Wasserstoffabscheider (42) verbunden ist.

8. Druckelektrolyseur nach Anspruch 7, dadurch gekennzeichnet, dass die voneinander getrennten Räume (37, 38) durch Trennwände (39, 40) voneinander getrennt sind, die sich zwischen dem Gehäuse (35) des Elektrolysezellenblocks (33) und dem Druckbehälter (32) erstrecken, und dass die Leitungsverbindung (43b), über die ein Teil des Elektrolyten im Sinne
15 einer Verdrängung des Wasserstoffs aus dem Wasserstoffabscheider (42) verschiebbar ist, durch einen Durchgang in einem unterhalb des Flüssigkeitsspiegels des Elektrolyten bildenden Bereich der Trennwände (39, 40) gebildet ist.

25 9. Verfahren zum Abschalten eines Druckelektrolyseurs, der einen Druckbehälter (12, 32) und einen eine Anzahl von Elektrolysezellen (14; 34) enthaltenden, in dem Druckbehälter (12; 22) angeordneten Elektrolysezellenblock (13; 33) umfasst, wobei die Elektrolysezellen (14; 34) jeweilige Anoden und Kathoden enthalten und ein Elektrolytkreislaufsystem zur Zuführung von Elektrolyt zu den Anoden und Kathoden und ein Sauerstoffabscheider (21; 41) zum Abscheiden des beim Betrieb des Druckelektrolyseurs (11; 31) entstehenden gasförmigen Sauerstoffs und ein Wasserstoffabscheider (22; 42) zum Abscheiden

des beim Betrieb des Druckelektrolyseurs (11; 31) entstehenden gasförmigen Wasserstoffs vorgesehen ist, wobei dem Druckelektrolyseur (11; 31) zum Inertisieren bei seiner Abschaltung ein inertes Gas, insbesondere Stickstoff, zugeführt wird, dadurch gekennzeichnet, dass das Inertgas dem Sauerstoffabscheider (21; 41) zugeführt wird, und dass bei Beaufschlagung des Sauerstoffabscheiders (21; 41) mit dem Inertgas ein Teil des Elektrolyten über eine in dem Elektrolytkreislaufsystem (23a; 23b; 43a; 43b) enthaltene Leitungsverbindung im Sinne einer Verdrängung des gasförmigen Wasserstoffs aus dem Wasserstoffabscheider (22; 42) verschoben wird.

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Sauerstoffabscheider (21) und/oder der Wasserstoffabscheider (22) außerhalb des Druckbehälters (12) vorgesehen ist, und dass bei Beaufschlagung des Sauerstoffabscheiders (21) mit dem Inertgas ein Teil des Elektrolyten zur Verdrängung des Wasserstoffs aus dem Wasserstoffabscheider (22) von dem Druckbehälter (12) und/oder von dem Sauerstoffabscheider (21) in den Wasserstoffabscheider (22) verschoben wird.

11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Sauerstoffabscheider (41) und/oder der Wasserstoffabscheider (42) durch einen Teil des Volumens innerhalb des Druckbehälters (32) gebildet ist, und dass bei Beaufschlagung des Sauerstoffabscheiders (41) mit dem Inertgas ein Teil des Elektrolyten zur Verdrängung des Wasserstoffs in den den Wasserstoffabscheider (42) bildenden Teil des Druckbehältervolumens verschoben wird.

Fig. 1a)

Fig. 1b)

Fig. 2a)

Fig. 2 b)

