

智能航运感知数据集整理

王永才 中国人民大学 信息学院 计算机系 ycw@ruc.edu.cn 2024年12月8日

内容提要

• 智能航运感知问题分类

• 智能航运感知数据集分类与整理

• 后续研究问题与计划

1. 目标检测任务

• 从图像中检测目标

1.1 船舶目标检测任务

1.2 其它目标检测任务

2. SLAM与视觉里程计任务

2.1 同时完成自身定位和环境建图

2.2 通过视觉和惯导数据计算船舶的准确行驶轨迹

H05_7_Sequence_160_270

Duration: 110s

Trajectory Length: 138m

Weather: Rain

3. 语义分割任务

- 3.1. 场景**语义分割任务**
 - 通过图像分割、理解前视图
- 3.2 **水岸分割任务**
 - 分割图像中的水面区域
- 3.3. **实例分割任务**
 - 对图中的目标对象进行语义 分割

4. 船舶分类任务

• 确定检测到的船只究竟是什么类型的船只

5. 雷达目标检测任务

• 基于雷达数据进行目标检测

6. SAR目标检测任务

• 基于SAR数据进行目标检测

7. AIS数据集相关任务

• 基于AIS数据进行船舶轨迹预测

• 融合AIS和视觉的目标追踪

- 8. 多源信息融合类任务
 - 1. 基于视觉数据与雷达融合进行目标检测

2. 基于视觉数据与雷达融合进行 SLAM

我们整理的智能航运感知数据集

数据集类别	数据集数量
目标检测数据集	11
船舶分类数据集	2
SLAM与视觉里程计数据集	3
语义分割数据集	4
RADAR目标检测数据集	1
AIS数据集	7
SAR目标检测数据集	4
多模态融合数据集	3
总计	35

一. 目标检测数据集

- 1) 船舶检测数据集
 - 1. ABOShips
 - 2. Seaships
 - 3. McShips
 - 4. MVDD13
 - **5. Singapore Maritime Dataset (SMD)**
- 2) 目标检测数据集
 - 1. FloW(漂浮物检测数据集)
 - 2. Water Surface Object Detection Dataset (WSODD 数据集)
 - 3. Marine Image Dataset (MID)
 - 4. Multi-modal Marine Obstacle Detection Dataset (MODD 2)
 - **5. Marine Obstacle Detection Dataset (MODD)**
 - 6. Sea Situational Awareness (SeaSAw) Dataset (超大规模数据集,但未开源)

船舶检测的几个数据集对比

Datasets	for	Ship	Detection
-----------------	-----	------	-----------

Name	Total Images	otal Images Annotations	
SeaShips	31,455	40,077	6
Singapore	17,450	192,980	6
MCShips	14,709	26,529	13
ABOShips	9880	41,967	9

以ABOShips数据集为例,数据集中各类船舶的数量

Class	Images	Percentage	Objects	Percentage	
Seamark	3744	37.89%	7670	18.27%	
Boat	2034	20.58%	2913	6.94%	
Sailboat	3842	38.88%	8147	19.41%	
Motorboat	4062	41.11%	7092	16.89%	
Passengership	2639	26.71%	4464	10.63%	
Cargoship	157	1.58%	161	0.38%	
Ferry	945	9.56%	1046	2.49%	
Miscboat	2797	28.30%	4642	11.06%	
Miscellaneous	129	1.30%	200	0.47%	
Militaryship	2559	25.90%	4128	9.83%	
Cruiseship	1347	13.63%	1504	3.58%	

常用目标检测算法在ABOShips数据集上对船舶检测的准确性

Detection	on Performance of Diffe	rent Detec	tors on the A	BOships Da	taset	
Method	Feature Extractor	AP_S	AP_{M}	AP_L	AP	
	Inception ResNet V2	23.16	30.86	46.84	35.18	
Faster RCNN	ResNet50 V1	9.76	20.94	41.65	26.49	
	ResNet101	18.42	25.07	38.17	30.26	
	ResNet101 V1 FPN	21.39	31.18	42.07	30.03	
SSD	MobileNet V1 FPN	12.34	27.61	37.83	28.59	
	MobileNet V2	3.01	17.05	27.37	17.48	
EfficientDet	EfficientNet D1	10.94	29.68	55.48	33.83	
RFCN	ResNet101	18.05	26.20	41.61	32.46	
	0.3 1. 2000 () DD-200 () 200 ()		0.000000	81_21 050018		

检测的准确度普遍不高

常用目标检测算法在ABOShips数据集上对船舶检测示例

b

(二)目标检测数据集

- 1. FloW (漂浮物检测数据集)
- 2. Water Surface Object Detection Dataset (WSODD 数据集)
- 3. Marine Image Dataset (MID) (海事目标检测数据集)
- 4. Marine Obstacle Detection Dataset (MODD)
- 5. Multi-modal Marine Obstacle Detection Dataset (MODD 2)
- 6. Sea Situational Awareness (SeaSAw) Dataset (超大规模数据集,但未开源)

以WSODD为例,介绍目标检测数据集

Dataset	Dataset's type	Main categories	Main environments	Weather conditions	Shooting time	Images
MSCOCO	Generic	1	Sea	Sunny	Daytime	3,146
			Lake	Cloudy		
ImageNet		4	Sea	Sunny	Daytime	1,996
			Lake	Foggy		
Places2		5	Lake	Sunny	Daytime	6,514
			River			
Boat-types-recognition	Specialized	3	Sea	Sunny	Daytime	1,462
			Lake		Twilight	
			River		Night	
WSODD		14	Sea	Sunny	Daytime	7,467
			Lake	Foggy	Twilight	
			River	Cloudy	Night	

The main categories refer to the number of categories related to water surface object detection. The boat-types-recognition dataset includes many kinds of boats, which are all considered as boat here. Similarly. Images in this Table refer to the number of images related to water surface object detection.

WSODD有7467张标注图像,有14中水面物体类别,包含三种天气情况

以WSODD为例,介绍目标检测数据集

不同环境

不同天气

不同时间

主要的水面目标类别14种

Label	Images	Instances
Boat	4,325	8,179
Ship	1,832	3,423
Ball	652	2,609
Bridge	1,827	2,014
Rock	696	1,540
Person	357	695
Rubbish	461	669
Mast	177	354
Buoy	153	167
Platform	480	614
Harbor	1,211	1,224
Tree	72	219
Grass	103	110
Animal	50	94
Total	7,467	21,911

测试的17种目标检测方法的性能

Method	FPS	mAP (%)							A	NP ₅₀	P ₅₀					
			Boat (%)	Ship (%)	Ball (%)	Bridge (%)	Rock (%)	Person (%)	Rubbish (%)	Mast (%)	Buoy (%)	Platform (%)	Harbor (%)	Tree (%)	Grass (%)	Animal (%)
DPM	42.16	21.9	9	28	12	34	17	27	29	14	29	32	40	19	15	2
RANSAC-SVM	43.51	27.1	11	49	6	32	33	29	34	7	41	31	27	36	23	20
Faster R-CNN	19.42	32.3	1	73	19	70	14	13	24	14	29	44	53	50	14	4
Mask R-CNN	17.79	35.7	7	79	18	88	27	16	40	22	28	42	61	46	17	8
Cascade R-CNN	29.56	41.1	6	82	22	91	31	19	42	34	31	37	67	63	38	12
TridentNet	10.16	62.2	51	77	37	93	47	57	48	57	66	71	77	70	58	62
SSD	43.02	41.5	41	78	7	79	28	13	28	20	31	47	64	72	29	45
RetinaNet	33.84	27.9	54	73	12	62	26	18	20	7	17	28	31	26	4	11
Yolov3	45.34	56.1	0	83	25	95	40	59	45	60	56	65	89	71	49	48
RFBNet	44.61	35.7	45	69	6	77	24	12	24	15	35	36	56	25	14	62
M2Det	40.63	39.3	0	73	5	83	22	22	25	28	39	46	74	74	20	39
CenterNet	43.42	53.5	70	85	19	93	44	12	44	20	46	61	82	73	48	53
EfficientDet	30.83	31.3	50	75	14	49	26	20	21	16	30	41	25	58	12	0
Yolov4	46.25	57.2	0	85	39	94	51	61	46	60	60	62	83	65	51	45
Yolov3-2SMA	50.46	56.9	0	84	25	92	47	62	46	57	55	69	88	73	44	54
ShipYolo	49.81	58.4	0	87	41	93	52	66	45	63	59	71	78	59	57	56
CRB-Net	43.76	65.0	0	90	69	96	70	71	49	49	59	75	88	72	47	74

The last 14 columns show the AP₅₀ for each category on WSODD. The first two methods are traditional machine learning method, the middle four methods belong to two-stage object detection method and the last nine methods are dedicated to one-stage object detection method.

识别难度比较大的物体:

垃圾 桅栏

草

三. SAR目标检测数据集

合成孔径雷达(SAR)是一种微波传感器,通过向目标发射射频信号并接收反射信号来获取 SAR 图像。由于具有全天候成像、不受天气影响、观测范围广、高成像分辨率等特点,SAR 船舶检测在海洋开发、海洋监测、海上交通监控等民用和军事领域的重要性,成为当前研究的热点问题。

Method	Year	Experiment Datasets	Results(mAP)
SSDD [33]	2017	1,160	2,456
SAR-Ship-Dataset [34]	2019	43,819	59,535
AIR-SARShip-1.0 [35]	2019	31	461
HRSID [36]	2020	5,604	16,951
RSDD-SAR [37]	2022	7,000	10,263
MSAR [38]	2022	28,449	39,858
SARDet-100k [39]	2024	1,165,988	119,261

SARDet-100k 是目前最大的SAR目标检测数据集

三. SAR目标检测数据集

SAR具有全天候的优势,但是是黑白图,有噪声

三. SAR目标检测数据集

SARDet-100k数据集可视化

■ Ship ■ Tank ■ Bridge ■ Harbour ■ Aircraft ■ Car

不同检测算法在SAR数据集上检测效果

	Detectors	Open	Year	mAP ₅₀ ↑		
	Detectors	Source	Teal	SSDD	HRSID	
	Grid R-CNN [43]	✓	2019	88.9	79.4	
	Faster R-CNN [53]	1	2015	89.7	80.7	
C1	Cascade R-CNN [4]	1	2019	90.5	81.3	
General	Free-Anchor [87]	1	2019	91.0	81.8	
Detectors	Double-Head R-CNN [72]	✓	2020	91.1	82.1	
	PANET [40]	1	2018	91.2	81.6	
	DCN [14]	1	2017	92.3	<u>82.1</u>	
	NNAM [7]	X	2019	79.8	-	
	DCMSNM [25]	×	2018	89.6	<u>=</u> 1	
	ARPN [89]	×	2020	89.9	81.8	
	DAPN [13]	×	2019	90.6	81.8	
SAR	HR-SDNet [70]	×	2020	90.8	82.5	
Detectors	SER Faster R-CNN [37]	×	2018	91.5	81.5	
	FBR-Net [20]	×	2020	94.1	-	
	NRENet [44]	×	2024	94.6	75.6	
	CenterNet++ [21]	×	2021	95.1	-	
	CRTransSar [74]	×	2022	97.0	-	
	SARATR-X [77]	×	2024	<u>97.3</u>	80.3	
Fas	ter R-CNN + VAN-B	1	2023	92.9	81.8	
MSFA (Faster R-CNN + VAN-B)	1	2024	97.9(+5.0)	83.7(+1.9)	

视觉AIS融合

FVessel [TITS 2023] (视觉 AIS融合的船舶检测与追踪)

视觉与雷达融合

WaterScenes [TITS 2024] (图像与4D雷达融合的多任务数据集)

WaterScenes [TITS 2024] (图像与4D雷达融合的多任务数据集)

Name	Year	Camera	Radar	GPS, IMU	Tasks	Annotations	Classes †	Annotated Frames	Adverse Lighting	Adverse Weather
MODD [41]	2015	Mono	=	-	OD, LS	2D Box, 2D Line	2	4,454	✓	-
MODD2 [42]	2018	Stereo	-	GPS, IMU	OD, LS	2D Box, 2D Line	2	11,675	\checkmark	✓
SMD [43]	2019	Mono			OD, OT	2D Box	10	31,653	✓	<u>~</u> 3
MaSTr1325 [4]	2019	Mono	22	IMU	SS	2D Pixel	4	1,325	\checkmark	✓
MODS [3]	2021	Stereo	-	IMU	OD, SS	2D Box, 2D Line	3	24,090	✓	✓
MID [44]	2021	Mono	5.	₹.	OD	2D Box	2	2,655	✓	✓
USVInland [19]	2021	Stereo	-	GPS, IMU	SS, FS	2D Line	1	700	✓	✓
FloW [27]	2021	Mono	3D	=	OD	2D Box	1	2,000	✓	-
LaRS [45]	2023	Mono	-	-	SS, PS	2D Line	11	4,006	·	
MVDD13 [46]	2024	Mono	=	-	OD	2D Box	13	35,474	\checkmark	✓
WaterScenes (Ours)	2023	Mono	4D	GPS, IMU	OD, IS, SS, FS, LS, PP	2D Box, 2D Pixel, 2D Line, 3D Point	7	54,120	✓	✓

WaterScenes数据集与同类型数据集的对比:多任务的、多标签的、更大规模

WaterScenes [TITS 2024] (图像与4D雷达融合的多任务数据集)

BENCHMARK RESULTS OF PANOPTIC PERCEPTION ON WATERSCENES. IN THE MODALITIES COLUMN, C DENOTES THE IMAGE MODALITY FROM THE CAMERA SENSOR, AND R DENOTES A SINGLE FRAME POINT CLOUD MODALITY FROM THE 4D RADAR SENSOR

Medal	***	Danieria (M)	Object Detection		Free-Space Segmentation		Waterline Segmentation		FPS
Model	Modalities	Params (M)	mAP ₅₀	mAP ₅₀ mAP ₅₀₋₉₅		OA mIoU		OA mIoU	
YOLOP [70]	С	7.9	68.0	42.6	99.5	99.0	67.6	72.1	50.5
HybridNets [71]	С	12.8	69.8	49.5	97.2	98.0	65.3	69.8	45.8
Achelous-MV-GDF-S0 [72]	C + R	1.6	81.1	51.0	99.6	99.3	68.3	65.0	70.3
Achelous-MV-GDF-S1 [72]	C + R	2.8	83.5	54.1	99.6	99.4	69.5	68.7	69.6
Achelous-MV-GDF-S2 [72]	C + R	5.3	85.5	56.0	99.7	99.6	70.3	72.2	68.5

现有方法在WaterScenes数据集上,在多种任务上的效果

WaterScenes [TITS 2024] (图像与4D雷达融合的多任务数据集)

总结

- 智能感知是智慧航运的基础。
- 感知数据集是研究智能感知方法的基础。
- 虽然现有多种智能航运感知数据集出现,但是规模仍然较小,数量较少,是限制智能航运感知快速发展的主要瓶颈之一。
- 智能航运感知的仿真平台也较少,如何构建智能航运感知的大数据平台,仍然是急需解决的问题。

谢谢, Q&A

<u>ycw@ruc.edu.cn</u> 18910215881

http://www.yongcaiwang.cn