

To play or not to play...

id	Rains	Temp	Homework	Team Members	Equipment	Ground	Played
1	0	38	1	15	0	600	1
2	0	25	1	15	1	800	1
3	0	26	1	15	1	1000	1
4	5	27	1	10	1	600	0
5	20	23	0	8	1	1800	0
6	30	22	0	6	0	600	0

□ Features:

- * Rains in millimeter
- ❖ Temperature in ° C
- ❖ Homework completed? 0 : No; 1: Yes
- Team members: How many team members are ready to play?
- Is cricket equipment available?
- ❖ Ground: per hour rent in Rupees/hour

Weights

- □ Each of the feature has different importance
- ☐ To assign importance to each of the feature, we use weights!
- □ Values of each features are in different order of magnitude
 - Summation is not going to work
 - Scale the features between 0 and 1

id	Rains	Temp	Homework	Team Members	Equipment	Ground	Played
1	0	38	1	15	0	600	1
2	0	25	1	15	1	800	1
3	0	26	1	15	1	1000	1
4	5	27	1	10	1	600	0
5	20	23	0	8	1	1800	0
6	30	22	0	6	0	600	0

- Note:
 - Variation in features have different bearing on the results
 - ❖ Team members → higher the better
 - ❖ Ground cost → lower the better

5/15/2024

pra-sâmi

5

Perceptron

- □ In MP Neuron Model,
 - All inputs had same weights
 - $life Threshold 'w_0'$ could take limited values
 - Every feature needed to be [0,1]
- □ Perceptron model introduced different weights to different inputs features
- □ Real values are also accepted
 - * Temperatures are in tens and ground rent is in hundreds.
 - Min Max Scaler to compensate for huge difference is values
- $\ \square$ Threshold ' w_0 ' can take any value
- □ Outputs are still [0, 1]

5/15/2024

Perceptron

- □ Loss Function:
 - * A correction is applied on the outputs
 - \star To adjust values of ' w_i ' to reach right results
 - * It would also give us indications of what weights to be fixed to arrive at the solution
- □ Activation function g(x) is applied as follows:

 - $\Rightarrow \ \text{If } \sum x_i \cdot w_i < w_0 \Rightarrow \hat{y} = 0$

5/15/2024

pra-sâmi

Perceptron – Data Preprocessing

□ Lets consider "Ground" and "Team Members" as features and its associated weights to arrive at the solution.

id	Rains	Temp	Homework	Team Members	Equipment	Ground	Played
1	0	38	1	15	0	600	1
2	0	25	1	15	1	800	1
3	0	26	1	15	1	1000	1
4	5	27	1	10	1	600	0
5	20	23	0	8	1	1800	0
6	30	22	0	6	0	600	0

5/15/2024

Perceptron – Data Preprocessing

□ Scaled Data (all columns to be between 0 and 1)

id	Rains	Temp	Homework	Team Members	Equipment	Ground	Played
1	0.00	0.00	1.00	1.00	0.00	1.00	1
2	0.00	0.81	1.00	1.00	1.00	0.83	1
3	0.00	0.75	1.00	1.00	1.00	0.67	1
4	-0.17	0.69	1.00	0.44	1.00	1.00	0
5	-0.67	0.94	0.00	0.22	1.00	0.00	0
6	-1.00	1.00	0.00	0.00	0.00	1.00	0

- What about reverse correlation
- ☐ Two option to address reverse correlation
 - ❖ Take negative of values
 - Use negative weight

5/15/2024

pra-sâmi

10

Perceptron – Weights

□ Weights – consider importance of each of the feature

id	Threshold	Team N	Team Members		Ground		Likely	Played	Loss
	w0	x1	w1	x2	w2	w0+x1*w1+x 2*w2	(y_hat)	(y)	(y-y_hat)^2
1	-1.00	1.00	1.10	1.00	1.00	1.10	1	1	0
2	-1.00	1.00	1.10	0.83	1.00	0.93	1	1	0
3	-1.00	1.00	1.10	0.67	1.00	0.77	1	1	0
4	-1.00	0.44	1.10	1.00	1.00	0.49	1	0	1
5	-1.00	0.22	1.10	0.00	1.00	-0.76	0	0	0
6	-1.00	0.00	1.10	1.00	1.00	0.00	1	0	1

5/15/2024

Perceptron – Weights and Loss

- □ Our best solution would be where ground truth and predicted values are same
- □ Loss is some function of ground truth and predicted values
- ☐ And we want it to be cumulative, Square of difference looks promising

 - Our overall loss was 2.
- \square By adjusting weights (w_1, w_2) and threshold (w_0) we can bring the loss to minimum (zero in this case)

id	Threshold	Team Members		Ground		Calculations	Likely	Played	Loss
	w0	x1	w1	x2	w2	w0+x1*w1+x 2*w2	(y_hat)	(y)	(y-y_hat)^2
1	-2.00	1.00	1.10	1.00	1.40	0.50	1	1	0
2	-2.00	1.00	1.10	0.83	1.40	0.27	1	1	0
3	-2.00	1.00	1.10	0.67	1.40	0.03	1	1	0
4	-2.00	0.44	1.10	1.00	1.40	-0.11	0	0	0
5	-2.00	0.22	1.10	0.00	1.40	-1.76	0	0	0
6	-2.00	0.00	1.10	1.00	1.40	-0.60	0	0	0

Perceptron – Gradient Descent

- \square w₀, w₁, w₂ need to be adjusted to arrive at most optimal solution i.e. lowest point on the graph.
- \square Assume that w_0 is fixed at -2, and w_1 at 1.1 and w_2 varies from 0 to 3 (only one variable considered to make plotting simple)
- ☐ From point A to B, slope is positive hence w₂ value needs to be decreased
- $\ \square$ From point C to D slope is negative hence $\mathbf{w_2}$ needs to be increased.

5/15/2024

pra-sâmi

Perceptron – Activation Function

□ So we based our entire calculations on:

 $z = w_0 + x_1 * w_1 + x_2 * w_2$

But that's an equation of straight line! What happened to all those 'inhibitory' features?

Consider Single Path... Loss Function

- □ A function used to evaluate a candidate solution
- □ Helps to maximize or minimize the objective function

- □ Estimates how closely the distribution of predictions made by a model matches the ground truth (maximum likelihood)
- □ Under maximum likelihood framework , the error between two probability distributions is measured using cross-entropy
 - Hence $\ell(\hat{y}, y) = -[y * \log(\hat{y}) + (1 y) * \log(1 \hat{y})]$

5/15/2024

pra-sâmi

25

Cost Function

$$\Box \hat{y} = \sigma (\Sigma W * X + b)$$

- \Box Where σ (z) = $\frac{1}{1+e^{-z}}$
- □ Loss function:
 - A parameter which defines how good our outputs are i.e.
 - \Leftrightarrow How far our predicted values 'ŷ' (y hat) were from ground truth 'y'
- □ For logistic regression
 - * Loss(\hat{y} , y) = (y . log \hat{y} + (1 y) . log (1 \hat{y})
 - Loss function is for an instance
 - In case of binary classification, Loss(ŷ, y) = - y . log ŷ

 Cost Function: Its a sum of losses for all instances

$$\Rightarrow$$
 J (W, b)= $\frac{1}{m}$ (Σ Loss(\hat{y} , y))

• =
$$-\frac{1}{m}$$
 (Σ (y . log \hat{y} + (1 - y) . log (1 - \hat{y}))

☐ For binary classification:

$$\Rightarrow$$
 J (W, b) = $\frac{1}{m}$ (Σ Loss(\hat{y} , y))

$$= -\frac{1}{m} (\Sigma (y . \log \hat{y}))$$

5/15/2024

Reflect... ☐ How many type of layers Deep Learning □ Which of the following is/are Limitations of deep Algorithms have? learning? ❖ A. 2 * A. Data labeling * B. Obtain huge training datasets ❖ B. 3 . C. Both A and B ♦ C. 4 * D. None of the above ❖ D. 5 □ Answer : C □ Answer : B □ Deep learning algorithms are □ The first layer is called the? accurate than machine learning algorithm in ❖ A. Input Layer image classification. * B. Output Layer * A. 33% * C. Hidden Layer ❖ B. 37% * D. None of The Above . C. 40% * D. 41% □ Answer : A □ Answer: D 5/15/2024 pra-sâmi

Reflect... □ In which of the following applications can we use deep ■ What is a perceptron? learning to solve the problem * A. A type of neural network * A. Protein structure prediction . B. A reinforcement learning algorithm * B. Prediction of chemical reactions * C. A clustering algorithm . C. Detection of exotic particles . D. A regression algorithm * D. All of the above □ Answer : A □ Answer : D ☐ The number of nodes in the input layer is 10 and the □ Who is credited with the invention of the hidden layer is 5. The maximum number of connections perceptron? from the input layer to the hidden layer are: * A. Geoffrey Hinton ❖ A. 50 B. Yann LeCun * B. less than 50 * C. Frank Rosenblatt ❖ C. more than 50 . D. Andrew Ng . D. It is an arbitrary value □ Answer: C □ Answer: A 5/15/2024 pra-sâmi

Reflect...

- □ What is the basic building block of a perceptron?
 - . A. Neuron
 - . B. Weight
 - . C. Activation function
 - . D. Bias
- □ Answer: A
- In a perceptron, what is the purpose of the activation function?
 - . A. To compute the weighted sum of inputs
 - . B. To introduce non-linearity
 - . C. To adjust the weights during training
 - D. To add a bias to the output
- □ Answer: B

What is the primary purpose of training a perceptron?

- * A. To optimize the activation function
- . B. To minimize the error in the output
- . C. To increase the number of neurons
- . D. To add more layers to the network
- □ Answer: B
- In a binary classification problem, what is the output of a perceptron?
 - A. Real number
 - . B. Probability
 - ❖ C. Binary value (0 or 1)
 - * D. Vector
- Answer: C

5/15/2024 **pra-sâmi**

Reflect...

- □ What is the perceptron learning rule used for?
- A. Updating weights to reduce prediction error
 - . B. Adjusting the learning rate during training
 - * C. Initializing weights in the network
 - $\ensuremath{ \bullet}$ D. Selecting the appropriate activation function
- Answer: A
- □ What happens if a perceptron is unable to learn a linearly separable function?
 - * A. It converges quickly
 - ❖ B. It converges slowly
 - C. It never converges
 - D. It always converges
- □ Answer: C

- Which of the following statements about the perceptron is true?
 - A. It can only be used for linearly separable problems
 - . B. It is suitable for any type of problem
 - . C. It can only have one layer
 - * D. It has no weights
- □ Answer: A
- □ What is the main limitation of a single-layer perceptron?
 - A. It cannot learn non-linearly separable functions
 - B. It requires a large amount of training data
 - . C. It is computationally expensive
 - D. It is not suitable for classification tasks
- □ Answer: A

Reflect...

- □ What is a deep neural network?
 - . A) A neural network with a single layer
 - . B) A neural network with more than one layer
 - . C) A neural network with no layers
 - D) A neural network with only input and output layers
- □ Answer: B
- What is the purpose of the backpropagation algorithm in training deep neural networks?
 - A) To compute the gradient of the loss function with respect to the weights
 - . B) To initialize the weights of the network
 - ❖ C) To regularize the network
 - D) To activate neurons in the network
- □ Answer: A

- What is the primary function of the input layer in a deep neural network?
 - * A) Extracting features from the input data
 - . B) Normalizing the input data
 - C) Propagating the output to the next layer
 - . D) Receiving input data and passing it to the hidden layers
- Answer: D) Receiving input data and passing it to the hidden layers
- Which term refers to the number of neurons in the hidden layer of a neural network?
 - A) Depth
 - & B) Width
 - ♦ C) Length
 - ❖ D) Breadth
- □ Answer: B) Width

5/15/2024

pra-sâmi

3

Reflect...

- □ What does the term "backpropagation" refer to in the context of neural networks?
 - A) The process of adjusting the weights of the network based on the prediction error
 - B) The process of training the network using labeled data
 - C) The process of selecting the optimal hyperparameters for the network
 - D) The process of initializing the weights of the network
- Answer: A) The process of adjusting the weights of the network based on the prediction error

- What is the primary purpose of using multiple hidden layers in a deep neural network?
 - * A) To increase the computational efficiency
 - * B) To decrease the complexity of the network
 - * C) To learn hierarchical features from the input data
 - ❖ D) To reduce the training time
- Answer: C) To learn hierarchical features from the input data
- Which type of neural network architecture is commonly used for image recognition tasks?
 - A) Recurrent Neural Network (RNN)
 - . B) Convolutional Neural Network (CNN)
 - C) Feedforward Neural Network (FNN)
 - * D) Long Short-Term Memory (LSTM)
- ☐ Answer: B) Convolutional Neural Network (CNN)

5/15/2024

Reflect... □ What is the purpose of regularization techniques in □ What is the primary disadvantage of using deep deep neural networks? neural networks? * A) To increase the complexity of the model * A) They require large amounts of labeled data for training * B) To reduce the computational cost of training $\ensuremath{\diamondsuit}$ B) They are computationally expensive to train * C) To prevent overfitting ❖ C) They are prone to overfitting * D) To speed up the convergence of the training process * D) They are difficult to interpret ☐ Answer: C) To prevent overfitting ☐ Answer: B) They are computationally expensive to □ Which term describes the process of evaluating the train performance of a neural network on unseen data? A) Training ♦ B) Testing ❖ C) Validation ❖ D) Optimization □ Answer: B) Testing 5/15/2024 pra-sâmi

Applications

- Stock market prediction
 - "Technical trading" refers to trading based solely on known statistical parameters; e.g. previous price
 - Neural networks have been used to attempt to predict changes in prices.
 - Difficult to assess success or otherwise
 - > Since companies using these techniques are reluctant to disclose information.

□ Mortgage assessment

- Assess risk of lending to an individual
- Difficult to decide on marginal cases
- Neural networks have been trained to make decisions, based upon the opinions of expert underwriters
- ❖ Neural network produced a 12% reduction in delinquencies compared with human experts

5/15/2024

Applications Description Engine management The behavior of a car engine is influenced by a large number of parameters temperature at various points fuel/air mixture lubricant viscosity. Major companies have used neural networks to dynamically tune an engine depending on current settings.

 $\hfill \square$ Signature recognition

- Each person's signature is different.
- There are structural similarities which are difficult to quantify.
- * Recognizes signatures to a high level of accuracy.
- Considers speed in addition to gross shape
- Makes forgery even more difficult.

Wharme.

Derivation of Sigmoid

$$\begin{split} \partial a &= \partial \sigma(z) \\ &= \frac{\partial}{\partial z} \left[\frac{1}{1 + e^{-z}} \right] \\ &= \frac{\partial}{\partial z} \left(1 + e^{-z} \right)^{-1} \\ &= -(1 + e^{-z})^{-2} (-e^{-z}) \\ &= \frac{e^{-z}}{(1 + e^{-z})^2} \\ &= \frac{1}{1 + e^{-z}} \circ \frac{e^{-z}}{1 + e^{-z}} \\ &= \frac{1}{1 + e^{-z}} \circ \frac{(1 + e^{-z}) - 1}{1 + e^{-z}} \\ &= \frac{1}{1 + e^{-z}} \circ \left[\frac{1 + e^{-z}}{1 + e^{-z}} - \frac{1}{1 + e^{-z}} \right] \\ &= \frac{1}{1 + e^{-z}} \circ \left[1 - \frac{1}{1 + e^{-z}} \right] \\ &= \sigma(z) \circ (1 - \sigma(z)) \\ &= a \circ (1 - a) \end{split}$$

5/15/2024