FNLP Lanuage Modelling

Yansong Feng fengyansong@pku.edu.cn

Wangxuan Institute of Computer Technology Peking University

March 6, 2025

Outline

- What are Language Models?
 - Why do we need language models?
- N-gram Language Models
 - Markov Assumptions
 - N-gram Language Models
 - Parameter Estimations
 - Evaluation
- Deal with Unseen Events
 - Linear Interpolation
 - Smoothing
- Beyond N-gram Language Models

Outline

- What are Language Models?
 - Why do we need language models?
- 2 N-gram Language Models
 - Markov Assumptions
 - N-gram Language Models
 - Parameter Estimations
 - Evaluation
- - Linear Interpolation
 - Smoothing
- 4 Beyond N-gram Language Models

- How likely is a string of English words good English?
 - the dog barks
 - the dog laughs
 - dog the dog bark a laugh smile

- How likely is a string of English words good English?
 - the dog barks
 - the dog laughs
 - dog the dog bark a laugh smile
- What about Chinese ? German ? ...

- How likely is a string of English words good English?
 - the dog barks
 - the dog laughs
 - dog the dog bark a laugh smile
- What about Chinese ? German ? ...
- How likely is a string of words in a certain language an expression in that language?

- How likely is a string of English words good English ?
 - the dog barks
 - the dog laughs
 - dog the dog bark a laugh smile
- What about Chinese ? German ? ...
- How likely is a string of words in a certain language an expression in that language?
 - lexicons: lexical analysis?
 - syntax: grammars, syntactic analysis?
 - pragmatics?...

- How likely is a string of English words good English?
 - the dog barks
 - the dog laughs
 - dog the dog bark a laugh smile
- What about Chinese ? German ? ...
- How likely is a string of words in a certain language an expression in that language?
 - lexicons: lexical analysis?
 - syntax: grammars, syntactic analysis?
 - pragmatics?...
 - how about relying on data solely?

Formally (sort of)

Given a finite size of vocabulary:

$$V = \{a, an, dog, cat, bite, bark, zoo, ...\}$$

- we can have an infinite set of strings of words, S:
 - the dog barks.
 - the dog laughs .
 - dog the bark a laugh smile .
 - ...

FNLP March 6, 2025 4 / 48 Y Feng (wcst@pku)

Formally (sort of)

• Given a finite size of vocabulary:

$$V = \{a, an, dog, cat, bite, bark, zoo, ...\}$$

- we can have an infinite set of strings of words, S:
 - ullet the dog barks . ightarrow good
 - the dog laughs . \rightarrow good
 - ullet dog the bark a laugh smile . ightarrow bad
 - ...

Y Feng (wcst@pku) FNLP March 6, 2025 4 / 48

There is a probability distribution p over S:

$$\sum_{s \in \mathcal{S}} p(s) = 1, p(s) \geq 0, \text{for all } s \in \mathcal{S}$$

that is:

- p(the dog barks .)
- p(the dog laughs .)
- p(dog the bark a laugh smile)
- ...

FNLP March 6, 2025 5 / 48 Y Feng (wcst@pku)

There is a probability distribution p over S:

$$\sum_{s \in \mathcal{S}} p(s) = 1, p(s) \geq 0, \text{for all } s \in \mathcal{S}$$

that is:

- $p(\mathsf{the\ dog\ barks}\ .\) \to \mathsf{large}$
- $p(\text{the dog laughs .}) \rightarrow \text{large}$
- $p(\text{dog the bark a laugh smile }.) \rightarrow \text{very small}$
- ...

FNLP March 6, 2025 5 / 48 Y Feng (wcst@pku)

There is a probability distribution p over \mathcal{S} :

$$\sum_{s \in \mathcal{S}} p(s) = 1, p(s) \geq 0, \text{for all } s \in \mathcal{S}$$

that is:

- $p(\mathsf{the\ dog\ barks}\ .\) \ \to \mathsf{large}\ \to \mathsf{good}$
- $p(\mathsf{the\ dog\ laughs}\ .\) \ \to \mathsf{large}\ \to \mathsf{good}$
- ullet $p(\operatorname{dog\ the\ bark\ a\ laugh\ smile\ }.\) o \operatorname{very\ small\ } o \operatorname{bad}$

...

Y Feng (wcst@pku) FNLP March 6, 2025 5 / 48

There is a probability distribution p over \mathcal{S} :

$$\sum_{s \in \mathcal{S}} p(s) = 1, p(s) \geq 0, \text{for all } s \in \mathcal{S}$$

that is:

- ullet $p(\mathsf{the\ dog\ barks\ }.\)\ o \mathsf{large}\ o \mathsf{good}$
- $p(\mathsf{the\ dog\ laughs}\ .\) \ \to \mathsf{large}\ \to \mathsf{good}$
- $p(\text{dog the bark a laugh smile }.) \rightarrow \text{very small } \rightarrow \text{bad}$
- ...

p: possibly what we want!

Outline

- What are Language Models?
 - Why do we need language models?
- 2 N-gram Language Models
 - Markov Assumptions
 - N-gram Language Models
 - Parameter Estimations
 - Evaluation
- Deal with Unseen Events
 - Linear Interpolation
 - Smoothing
- 4 Beyond N-gram Language Models

- Speech Recognition
- Optical Character Recognition (OCR)
- Handwriting Recognition
- Word Segmentation (whatdoesthismean?)
- Machine Translation
- Language Generation
- Question Answering/Dialogue/Chat

Y Feng (wcst@pku) FNLP March 6, 2025 6 / 48

- Speech Recognition
- Optical Character Recognition (OCR)
- Handwriting Recognition
- Word Segmentation (whatdoesthismean?)
- Machine Translation
- Language Generation
- Question Answering/Dialogue/Chat

Example (Speech Recognition)

- o recognize speech
- wreck a nice beach

- Speech Recognition
- Optical Character Recognition (OCR)
- Handwriting Recognition
- Word Segmentation (whatdoesthismean?)
- Machine Translation
- Language Generation
- Question Answering/Dialogue/Chat

Example (Speech Recognition)

- recognize speech
- wreck a nice beach

Faithfulness(signals, words) + Fluency(words)

- Speech Recognition
- Optical Character Recognition (OCR)
- Handwriting Recognition
- Word Segmentation (whatdoesthismean?)
- Machine Translation
- Language Generation
- Question Answering/Dialogue/Chat

Example (Speech Recognition)

- recognize speech
- wreck a nice beach

 $words^* = \arg\max_{words} \mathsf{Faithfulness}(signals, words) + \mathsf{Fluency}(words)$

Y Feng (wcst@pku) FNLP March 6, 2025 6 / 48

Statistical Machine Translation

[from Philipp Koehn]

Statistical Machine Translation

[from Philipp Koehn]

Y Feng (wcst@pku) FNLP March 6, 2025 7 / 48

Text Generation

today the price of gold per ton , while production of shoe lasts and shoe industry , the bank intervened just after it considered and rejected an imf demand to rebuild depleted european stocks , sept 30 end primary 76 cts a share .

[from Chris Manning]

Text Generation

today the price of gold per ton , while production of shoe lasts and shoe industry , the bank intervened just after it considered and rejected an imf demand to rebuild depleted european stocks , sept 30 end primary 76 cts a share .

[from Chris Manning]

Looks good?

Y Feng (wcst@pku) FNLP March 6, 2025 8 / 48

Text Generation

today the price of gold per ton , while production of shoe lasts and shoe industry , the bank intervened just after it considered and rejected an imf demand to rebuild depleted european stocks , sept 30 end primary 76 cts a share .

[from Chris Manning]

- Looks good?
- Locally good?
- Globally not...

Y Feng (wcst@pku) FNLP March 6, 2025 8/48

Text Generation

today the price of gold per ton , while production of shoe lasts and shoe industry , the bank intervened just after it considered and rejected an imf demand to rebuild depleted european stocks , sept 30 end primary 76 cts a share .

[from Chris Manning]

But, from ChatGPT help me write a short passage that begins with "today the price of gold per ton"

Today the price of gold per ton is on the rise, with experts predicting a surge in demand for the precious metal. As the global economy continues to recover from the pandemic, investors are turning to gold as a safe haven asset to protect their wealth from market fluctuations. This has led to a spike in gold prices, with many analysts projecting that the trend will continue in the coming months. Despite the volatility in the market, gold remains a reliable store of value and a popular choice among investors looking to diversify their portfolios.

Again, for all the above scenarios:

$$words^* = \arg\max_{words} \mathsf{Faithfulness}(signals, words) + \mathsf{Fluency}(words)$$

Y Feng (wcst@pku) FNLP March 6, 2025 9 / 48

Sentence Completion [MS SCC]

- That is his _ fault, but on the whole he's a good worker.
 - generous
 - mother's
 - successful
 - favorite
 - main
- Was she his _, his friend, or his mistress?
 - client
 - musings
 - discomfiture
 - choice
 - opportunity
- All red-headed men who are above the age of _ years, are eligible.
 - seven
 - twenty-one
 - 1,200
 - 60,000
 - 800

Y Feng (wcst@pku) FNLP March 6, 2025 10 / 48

How surprise you see the next/masked word given the context?

 $\mathsf{Surprise}(context, answer_1) < \mathsf{Surprise}(context, answer_2)$

Y Feng (wcst@pku) FNLP March 6, 2025 11 / 48

How surprise you see the next/masked word given the context?

$$\mathsf{Surprise}(context, answer_1) < \mathsf{Surprise}(context, answer_2)$$

- $\bullet \; \mathsf{Surprisal}(w) = -\log_2 p(w|\mathsf{history}_w)$
- the difficulty of a word is proportional to its surprisal (its negative log-probability) in the context within which it appears.

Y Feng (wcst@pku) FNLP March 6, 2025 11 / 48

How surprise you see the next/masked word given the context?

 $Surprise(context, answer_1) < Surprise(context, answer_2)$

- Surprisal $(w) = -\log_2 p(w|\mathsf{history}_w)$
- the difficulty of a word is proportional to its surprisal (its negative log-probability) in the context within which it appears.
- the so-called surprisal theory (Hale, 2001; Levy, 2008)

Y Feng (wcst@pku) FNLP March 6, 2025 11 / 48

How surprise you see the next/masked word given the context?

 $\mathsf{Surprise}(context, answer_1) < \mathsf{Surprise}(context, answer_2)$

- Surprisal $(w) = -\log_2 p(w|\mathsf{history}_w)$
- the difficulty of a word is proportional to its surprisal (its negative log-probability) in the context within which it appears.
- the so-called surprisal theory (Hale, 2001; Levy, 2008)
- words are easier to comprehend in contexts where they are highly predictable than in unconstraining contexts

Y Feng (wcst@pku) FNLP March 6, 2025 11/48

Outline

- What are Language Models?
 - Why do we need language models?
- N-gram Language Models
 - Markov Assumptions
 - N-gram Language ModelsParameter Estimations
 - Evaluation
- Deal with Unseen Events
 - Linear Interpolation
 - Smoothing
- 4 Beyond N-gram Language Models

If we treat every possible sentence s as a single point in a huge space S,

• there are |S| sentences in S:

•

$$p(s) = \frac{count(s)}{|\mathcal{S}|}$$

where count(s) is number of times we see sentence s in S.

If we treat every possible sentence s as a single point in a huge space S,

- there are |S| sentences in S:

$$p(s) = \frac{count(s)}{|\mathcal{S}|}$$

where count(s) is number of times we see sentence s in S.

Problematic!

If we treat every possible sentence s as a single point in a huge space S,

- there are |S| sentences in S:

$$p(s) = \frac{count(s)}{|\mathcal{S}|}$$

where count(s) is number of times we see sentence s in S.

- Problematic!
 - how big is the S?
 - s can be in various forms
 - can we collect count(s) as before?
 - can we properly estimate p(s)?

If we treat every possible sentence s as a single point in a huge space \mathcal{S} ,

- there are |S| sentences in S:
- •

$$p(s) = \frac{count(s)}{|\mathcal{S}|}$$

where count(s) is number of times we see sentence s in S.

- Problematic!
 - how big is the S?
 - s can be in various forms
 - can we collect count(s) as before?
 - can we properly estimate p(s)?
- Break down?

Another Point of View

- Sentence as a sequence of words $w_1, w_2, w_3, ..., w_n$
- Sentence as a sequence of random variables $X_1, X_2, X_3, ..., X_n$
- The model : $P(X_1 = w_1, X_2 = w_2, X_3 = w_3, ..., X_n = STOP)$
 - This is a **sequence**, not a set!
 - $P(X_1 = I, X_2 = love)$ and $P(X_1 = love, X_2 = I)$ are different
 - STOP and, sometimes, START

A bit Probabilistic

$$P(X_1 = w_1, X_2 = w_2, X_3 = w_3, ..., X_n = STOP)$$

= $P(X_1 = w_1) \prod_{i=2}^{n} P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1})$

Chain Rule

A bit Probabilistic

$$P(X_1 = w_1, X_2 = w_2, X_3 = w_3, ..., X_n = STOP)$$

$$= P(X_1 = w_1) \prod_{i=2}^{n} P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1})$$
(1)

- Chain Rule
- \bullet when n is big, ...

Outline

- What are Language Models?
 - Why do we need language models?
- N-gram Language Models
 - Markov Assumptions
 - N-gram Language ModelsParameter Estimations

 - Evaluation
- 3 Deal with Unseen Events
 - Linear Interpolation
 - Smoothing
- 4 Beyond N-gram Language Models

$$P(X_1 = w_1, X_2 = w_2, X_3 = w_3, ..., X_n = STOP)$$

$$= P(X_1 = w_1) \prod_{i=2}^{n} P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1})$$

Chain Rule

- do we always need the big n ?
- only previous history matters, in most cases
- ullet the size of the history? maybe previous k words

$$P(X_1 = w_1, X_2 = w_2, X_3 = w_3, ..., X_n = STOP)$$

= $P(X_1 = w_1) \prod_{i=2}^{n} P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1})$

- Chain Rule
- when n is big, ...

- do we always need the big n?
- only previous history matters, in most cases
- the size of the history? maybe previous k words

$$P(X_1 = w_1, X_2 = w_2, X_3 = w_3, ..., X_n = STOP)$$

= $P(X_1 = w_1) \prod_{i=2}^{n} P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1})$

- Chain Rule
- when n is big, ...
- Let's make ASSUMPTIONS!

FNLP March 6, 2025 15 / 48 Y Feng (wcst@pku)

- ullet do we always need the big n ?
- only previous history matters, in most cases
- ullet the size of the history? maybe previous k words

$$P(X_1 = w_1, X_2 = w_2, X_3 = w_3, ..., X_n = STOP)$$

$$= P(X_1 = w_1) \prod_{i=2}^{n} P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1})$$

$$\approx P(X_1 = w_1) \prod_{i=2}^{n} P(X_i = w_i | X_{i-1} = w_{i-1})$$

- Chain Rule
- when n is big, ...
- Let's make ASSUMPTIONS! ⇒ First-order Markov assumption:

$$P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1}) \approx P(X_i = w_i | X_{i-1} = w_{i-1})$$

Let's make stronger ASSUMPTIONS! \Rightarrow no history at all:

$$P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1}) \approx P(X_i = w_i)$$

- Unigram Language Model
- under MLE estimations:

$$P(X_i = w_i) = \frac{count(w_i)}{\sum_{w_*} count(w_*)}$$

- seems weird, but rather simple, easy to understand
- cheap!

Let's make stronger ASSUMPTIONS! \Rightarrow no history at all:

$$P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1}) \approx P(X_i = w_i)$$

- Unigram Language Model
- under MLE estimations:

$$P(X_i = w_i) = \frac{count(w_i)}{\sum_{w_*} count(w_*)}$$

- seems weird, but rather simple, easy to understand
- cheap!
- This is actually bag-of-words (BoW), definitely not good enough

Markov Assumption

$$P(X_1 = w_1, X_2 = w_2, X_3 = w_3, ..., X_n = STOP)$$

$$= P(X_1 = w_1) \prod_{i=1}^{n} P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1})$$

Markov Assumption

$$P(X_1 = w_1, X_2 = w_2, X_3 = w_3, ..., X_n = STOP)$$

$$= P(X_1 = w_1) \prod_{i=2}^{n} P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1})$$

$$\approx P(X_1 = w_1) P(X_2 = w_2 | X_1 = w_1)$$

$$\times \prod_{i=2}^{n} P(X_i = w_i | X_{i-2} = w_{i-2}, X_{i-1} = w_{i-1})$$

Second-order Markov assumption:

$$P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1})$$

$$\approx P(X_i = w_i | X_{i-2} = w_{i-2}, X_{i-1} = w_{i-1})$$

FNLP March 6, 2025 17 / 48 Y Feng (wcst@pku)

Markov Assumption

• Widely used in many applications!

$$P(X_1 = w_1, X_2 = w_2, X_3 = w_3, ..., X_n = STOP)$$

$$=P(X_1 = w_1) \prod_{i=2}^{n} P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1})$$

$$\approx P(X_1 = w_1) P(X_2 = w_2 | X_1 = w_1)$$

$$\times \prod_{i=3}^{n} P(X_i = w_i | X_{i-2} = w_{i-2}, X_{i-1} = w_{i-1})$$

Second-order Markov assumption:

$$P(X_i = w_i | X_1 = w_1, ..., X_{i-1} = w_{i-1})$$

$$\approx P(X_i = w_i | X_{i-2} = w_{i-2}, X_{i-1} = w_{i-1})$$

Outline

- What are Language Models?
 - Why do we need language models?
- N-gram Language Models
 - Markov AssumptionsN-gram Language Models
 - Parameter Estimations
 - Evaluation
- Deal with Unseen Events
 - Linear Interpolation
 - Smoothing
- 4 Beyond N-gram Language Models

Bigram and Trigram LMs

- Widely used in many applications!
- No history assumption → Unigram LM
- First-order Markov assumption → Bigram LM
- ullet Second-order Markov assumption o Trigram LM
- 4-gram LM, 5-gram LM, ...

Trigram LM

- ullet A finite vocabulary ${\cal V}$
- Parameters p(a|b,c), where b, c, a is an arbitrary trigram $a \in \mathcal{V} \cup \{STOP\}$ and $b,c \in \mathcal{V}$
- For a new sentence $w_1, w_2, ... w_n$

$$p(w_1, w_2, ...w_n) = p(w_1)p(w_2|w_1) \prod_{i=2}^n p(w_i|w_{i-2}, w_{i-1})$$

A Toy Example

For the sentence:

given a trigram LM, we have:

$$p(\mathsf{the \ cat \ laughs} \ . \ \mathsf{STOP}) = p(\mathsf{the}) \\ \times p(\mathsf{cat}|\mathsf{the}) \\ \times p(\mathsf{laughs}|\mathsf{the, \ cat}) \\ \times p(.|\mathsf{cat, \ laughs}) \\ \times p(\mathsf{STOP}|\mathsf{laughs, \ .})$$

Outline

- What are Language Models?
 - Why do we need language models?
- N-gram Language Models
 - Markov Assumptions
 - N-gram Language Models
 - Parameter Estimations
 - Evaluation
- Deal with Unseen Events
 - Linear Interpolation
 - Smoothing
- 4 Beyond N-gram Language Models

How to Estimate Parameters from Corpora

The **CORE** is:

- $p(w_i|w_{i-1})$ for bigram LM
- $p(w_i|w_{i-2},w_{i-1})$ for trigram LM

How to Estimate Parameters from Corpora

The CORE is:

- $p(w_i|w_{i-1})$ for bigram LM
- $p(w_i|w_{i-2},w_{i-1})$ for trigram LM

Intuitively, given a large corpora:

$$p(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

and,

$$p(w_i|w_{i-2}, w_{i-1}) = \frac{count(w_{i-2}, w_{i-1}, w_i)}{count(w_{i-2}, w_{i-1})}$$

How to Estimate Parameters from Corpora

The **CORE** is:

- $p(w_i|w_{i-1})$ for bigram LM
- $p(w_i|w_{i-2},w_{i-1})$ for trigram LM

Intuitively, given a large corpora:

$$p(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

and,

$$p(w_i|w_{i-2}, w_{i-1}) = \frac{count(w_{i-2}, w_{i-1}, w_i)}{count(w_{i-2}, w_{i-1})}$$

- Maximum likelihood estimation
- More data lead to better model?

- 10 million sentences from English newswire data (Gigaword)
- 275 million words

- 10 million sentences from English newswire data (Gigaword)
- 275 million words

- the unigram LM needs to store 716,706 probabilities (at most)
- bigram LM: 12,537,755
- trigram LM: 22,174,483
- •

How Big is Our Model?

- 10 million sentences from English newswire data (Gigaword)
- 275 million words

- the unigram LM needs to store 716,706 probabilities (at most)
- bigram LM: 12,537,755
- trigram LM : 22,174,483
- ...

- 12,537,755 v.s. 51,505,109,010,436 ($\sim 1/4,000,000$)
- Data sparsity: most are zeros
- Trigram LMs are often good enough

Outline

- What are Language Models?
 - Why do we need language models?
- N-gram Language Models
 - Markov Assumptions
 - N-gram Language ModelsParameter Estimations
 - Evaluation
- 3 Deal with Unseen Events
 - Linear Interpolation
 - Smoothing
- 4 Beyond N-gram Language Models

Intuition: a good LM model should assign a real sentence of that language a high probability.

Intuition: a good LM model should assign a real sentence of that language a high probability.

 \rightarrow the best LM should best predict an unseen test set.

Intuition: a good LM model should assign a real sentence of that language a high probability.

ightarrow the best LM should best predict an unseen test set.

For a test set \mathcal{D} , we can use a language model to

• compute the probability for a sentence: $p(s) = p(w_1, w_2, ..., w_n)$

Intuition: a good LM model should assign a real sentence of that language a high probability.

ightarrow the best LM should best predict an unseen test set.

For a test set \mathcal{D} , we can use a language model to

- compute the probability for a sentence: $p(s) = p(w_1, w_2, ..., w_n)$
- and for the whole dataset, $\prod_{s \in \mathcal{D}} p(s)$
- normalize over all M words in \mathcal{D} , $\sqrt[M]{\prod_{s\in\mathcal{D}}p(s)}$

Intuition: a good LM model should assign a real sentence of that language a high probability.

ightarrow the best LM should best predict an unseen test set.

For a test set \mathcal{D} , we can use a language model to

- compute the probability for a sentence: $p(s) = p(w_1, w_2, ..., w_n)$
- and for the whole dataset, $\prod_{s \in \mathcal{D}} p(s)$
- normalize over all M words in \mathcal{D} , $\sqrt[M]{\prod_{s \in \mathcal{D}} p(s)}$
- simplify with \log , $\frac{1}{M} \sum_{s \in \mathcal{D}} \log p(s)$
- also the cross entropy: $-\frac{1}{M}\sum_{s\in\mathcal{D}}\log p(s)$

Intuition: a good LM model should assign a real sentence of that language a high probability.

ightarrow the best LM should best predict an unseen test set.

For a test set \mathcal{D} , we can use a language model to

- compute the probability for a sentence: $p(s) = p(w_1, w_2, ..., w_n)$
- ullet and for the whole dataset, $\prod_{s\in\mathcal{D}}p(s)$
- normalize over all M words in \mathcal{D} , $\sqrt[M]{\prod_{s \in \mathcal{D}} p(s)}$
- simplify with \log , $\frac{1}{M} \sum_{s \in \mathcal{D}} \log p(s)$
- also the cross entropy: $-\frac{1}{M}\sum_{s\in\mathcal{D}}\log p(s)$
- now the perplexity of \mathcal{D} :

$$Perplexity(\mathcal{D}) = 2^{-\frac{1}{M}\sum_{s \in \mathcal{D}} \log p(s)}$$

Intuition: a good LM model should assign a real sentence of that language a high probability.

ightarrow the best LM should best predict an unseen test set.

For a test set \mathcal{D} , we can use a language model to

- compute the probability for a sentence: $p(s) = p(w_1, w_2, ..., w_n)$
- and for the whole dataset, $\prod_{s \in \mathcal{D}} p(s)$
- normalize over all M words in \mathcal{D} , $\sqrt[M]{\prod_{s\in\mathcal{D}}p(s)}$
- simplify with \log , $\frac{1}{M} \sum_{s \in \mathcal{D}} \log p(s)$
- also the cross entropy: $-\frac{1}{M} \sum_{s \in \mathcal{D}} \log p(s)$
- now the perplexity of \mathcal{D} :

$$Perplexity(\mathcal{D}) = 2^{-\frac{1}{M} \sum_{s \in \mathcal{D}} \log p(s)}$$

• the lower perplexity, the better LM

Perplexity

For a dataset \mathcal{D} , with vocabulary \mathcal{V} ,

- if for any trigram, we have $p(a|b,c)=\frac{1}{|\mathcal{V}|+1}$ (a uniform distribution over $\mathcal{V} \cup STOP$) for all $b, c \in \mathcal{V} \cup \{*\}$
- what is the perplexity of D ??

23 / 48 Y Feng (wcst@pku)

Perplexity

For a dataset \mathcal{D} , with vocabulary \mathcal{V} ,

- if for any trigram, we have $p(a|b,c)=\frac{1}{|\mathcal{V}|+1}$ (a uniform distribution over $\mathcal{V}\cup STOP$) for all $b,c\in\mathcal{V}\cup\{*\}$
- ullet what is the perplexity of $\mathcal D$??
- Perplexity $=|\mathcal{V}|+1$

Perplexity

For a dataset \mathcal{D} , with vocabulary \mathcal{V} ,

- if for any trigram, we have $p(a|b,c)=\frac{1}{|\mathcal{V}|+1}$ (a uniform distribution over $\mathcal{V} \cup STOP$) for all $b, c \in \mathcal{V} \cup \{*\}$
- what is the perplexity of D ??
- Perplexity $= |\mathcal{V}| + 1$

- Perplexity is a measure of branching factor
- Considered as the *effective size of the vocabulary*
- Also, to evaluate how hard an NLP task is?

FNLP March 6, 2025 23 / 48 Y Feng (wcst@pku)

Evaluating Language Models

- use the Training dataset to estimate the n-grams, possibly tuned
- compute perplexity on the Test dataset

However,

- Better to use test sets that are widely accepted by the community.
- **Perplexity** scores should be compared against the same \mathcal{V} .
- Perplexity is NOT a universal metric for downstream applications.

Unigram v.s. Bigram v.s. Trigram ...

Intuitively, which one is better?

25 / 48

Unigram v.s. Bigram v.s. Trigram ...

Intuitively, which one is better?

- if n is smaller, ...
 - Does your model learn about the language?
- \bullet if n is bigger, ...
 - The cost!
 - The engineering thing! (zeros)

...

25 / 48 Y Feng (wcst@pku)

Unigram v.s. Bigram v.s. Trigram ...

Intuitively, which one is better?

- if n is smaller, ...
 - Does your model learn about the language?
- if n is bigger, ...
 - The cost!
 - The engineering thing! (zeros)
 - ...
- if you have more training data, ...
 - perform better
 - generalize better
 - take a look at Google's N-gram

FNLP March 6, 2025 25/48Y Feng (wcst@pku)

[from Noah Smith]

Y Feng (wcst@pku) FNLP March 6, 2025 26 / 48

An Example

Training set

- i love pku .
- i like thu .
- you love pku .
- you do not like thu .
- Can you estimate a bigram LM from the training data?
 - p(thu|like)
 - p(like|i)

Y Feng (wcst@pku) FNLP March 6, 2025 27 / 48

An Example

Training set

- i love pku .
- i like thu .
- you love pku .
- you do not like thu .
- Can you estimate a bigram LM from the training data?
 - p(thu|like)
 - $ullet p(\mathsf{like}|\mathsf{i})$

Test set

- you like pku .
- i hate thu .

An Example

Training set

- i love pku .
- i like thu .
- you love pku .
- you do not like thu .
- Can you estimate a bigram LM from the training data?
 - $p(\mathsf{thu}|\mathsf{like})$
 - p(like|i)

Test set

- you like pku .
- i hate thu .
- Can you compute the perplexity using the bigram LM?
 - p(you, like, pku, ..., STOP)
 - p(i, hate, thu, ..., STOP)

Y Feng (wcst@pku) FNLP March 6, 2025

27 / 48

Outline

- What are Language Models?
 - Why do we need language models?
- 2 N-gram Language Models
 - Markov Assumptions
 - N-gram Language Models
 - Parameter Estimations
 - Evaluation
- Deal with Unseen Events
 - Linear Interpolation
 - Smoothing
- 4 Beyond N-gram Language Models

- New words
 - hate
- New n-grams
 - you like, like pku

- New words
 - hate
- New n-grams
 - you like, like pku

Recall the MLE estimation ...

MLE yields bad estimations for Unseen Events

many Zeros

MLE yields bad estimations for Unseen Events

many Zeros

Brain Storm

• What can we do?

MLE yields bad estimations for Unseen Events

many Zeros

Brain Storm

We should give some probability mass to those unseen events! This will inevitably reduce the mass for seen events.

MLE yields bad estimations for Unseen Events

many Zeros

Brain Storm

We should give some probability mass to those unseen events! This will inevitably reduce the mass for seen events.

- back-off to a lower order estimations
- produce a pseudo word UNKNOWN
- smooth our raw estimations

Outline

- What are Language Models?
 - Why do we need language models?
- 2 N-gram Language Models
 - Markov AssumptionsN-gram Language Models
 - Parameter Estimations
 - Evaluation
- Deal with Unseen Events
 - Linear Interpolation
 - Smoothing
- 4 Beyond N-gram Language Models

Y Feng (wcst@pku) FNLP March 6, 2025 30 / 48

Intuition

If we do not have a higher-order ngram, can we use less context, i.e., related lower-order ngrams?

Intuition

If we do not have a higher-order ngram, can we use less context, i.e., related lower-order ngrams?

- Back-off
 - use higher-order estimators if you have enough counts
 - otherwise lower-order, ...
- Interpolation
 - just combine estimators of different orders:

$$\begin{aligned} p_{il}(w_i|w_{i-2},w_{i-1}) &= & \lambda_1 p_{ml}(w_i|w_{i-2},w_{i-1}) \\ &+ & \lambda_2 p_{ml}(w_i|w_{i-1}) \\ &+ & \lambda_3 p_{ml}(w_i) \end{aligned}$$

where $\lambda_1 + \lambda_2 + \lambda_3 = 1$ and $\lambda_i \geq 0$ for all i

does it still yield a distribution?

Y Feng (wcst@pku) FNLP March 6, 2025 30 / 48

Yes!

Y Feng (wcst@pku) FNLP March 6, 2025 31 / 48

Yes! But why?

Y Feng (wcst@pku) FNLP March 6, 2025 31 / 48

How to figure out those λs ?

- hold out part of training data as a validation set
- choose λ s to maximize the loglikelihood of the validation set, in the trigram case:

$$\sum_{w_1, w_2, w_3} count_{dev}(w_1, w_2, w_3) \log p_{il}(w_3 | w_1, w_2)$$

where
$$\sum_{i} \lambda_{i} = 1$$
 and $\lambda_{i} \geq 0$ for all i

FNLP March 6, 2025 32 / 48Y Feng (wcst@pku)

How to figure out those λs ?

- hold out part of training data as a validation set
- choose λ s to maximize the loglikelihood of the validation set, in the trigram case:

$$\sum_{w_1, w_2, w_3} count_{dev}(w_1, w_2, w_3) \log p_{il}(w_3 | w_1, w_2)$$

where
$$\sum_{i} \lambda_{i} = 1$$
 and $\lambda_{i} \geq 0$ for all i

- using an iterative approach to estimate λ s
- may allow λ s to vary according to specific counts

FNLP March 6, 2025 32 / 48Y Feng (wcst@pku)

Step 1: Initialization: randomly pick values for λ_1 , λ_2 , and λ_3

Step 2: Calculating

$$c_1 = \sum_{w_1, w_2, w_3} \frac{count_{dev}(w_1, w_2, w_3)\lambda_1 \cdot p_{ml}(w_3|w_1, w_2)}{\lambda_1 \cdot p_{ml}(w_3|w_1, w_2) + \lambda_2 \cdot p_{ml}(w_3|w_2) + \lambda_3 \cdot p_{ml}(w_3)}$$

$$c_2 = \sum_{w_1, w_2, w_3} \frac{count_{dev}(w_1, w_2, w_3)\lambda_2 \cdot p_{ml}(w_3|w_2)}{\lambda_1 \cdot p_{ml}(w_3|w_1, w_2) + \lambda_2 \cdot p_{ml}(w_3|w_2) + \lambda_3 \cdot p_{ml}(w_3)}$$

$$c_1 = \sum_{w_1, w_2, w_3} \frac{count_{dev}(w_1, w_2, w_3)\lambda_3 \cdot p_{ml}(w_3)}{\lambda_1 \cdot p_{ml}(w_3|w_1, w_2) + \lambda_2 \cdot p_{ml}(w_3|w_2) + \lambda_3 \cdot p_{ml}(w_3)}$$

Step 3: Re-calculate: $\lambda_i = \frac{c_i}{c_1 + c_2 + c_3}$ Step 4: if $\Delta \lambda_i > \theta$, go to Step 2

Y Feng (wcst@pku) FNLP March 6, 2025 33 / 48

• for a fixed vocabulary at a web scale, we have trigrams :

$$s(w_i|w_{i-2},w_{i-1}) = \begin{cases} \frac{count(w_{i-2},w_{i-1},w_i)}{count(w_{i-2},w_{i-1})} & count(w_{i-2},w_{i-1},w_i) > 0\\ \frac{0.4s(w_i|w_{i-1})}{0.4s(w_i|w_{i-1})} & \text{otherwise} \end{cases}$$

Brants et al. 2007 (Google)

Y Feng (wcst@pku) FNLP March 6, 2025 34 / 48

• for a fixed vocabulary at a web scale, we have trigrams :

$$s(w_i|w_{i-2},w_{i-1}) = \begin{cases} \frac{count(w_{i-2},w_{i-1},w_i)}{count(w_{i-2},w_{i-1})} & count(w_{i-2},w_{i-1},w_i) > 0\\ \frac{0.4s(w_i|w_{i-1})}{0.4s(w_i|w_{i-1})} & \text{otherwise} \end{cases}$$

- Brants et al. 2007 (Google)
- is this model a probabilistic one?

34 / 48 Y Feng (wcst@pku)

• for a fixed vocabulary at a web scale, we have trigrams :

$$s(w_i|w_{i-2},w_{i-1}) = \begin{cases} \frac{count(w_{i-2},w_{i-1},w_i)}{count(w_{i-2},w_{i-1})} & count(w_{i-2},w_{i-1},w_i) > 0\\ \frac{0.4s(w_i|w_{i-1})}{0.4s(w_i|w_{i-1})} & \text{otherwise} \end{cases}$$

- Brants et al. 2007 (Google)
- is this model a probabilistic one?
- NO! s()s do not sum to 1

Y Feng (wcst@pku) FNLP March 6, 2025 34 / 48

Outline

- What are Language Models?
 - Why do we need language models?
- 2 N-gram Language Models
 - Markov Assumptions
 - N-gram Language Models
 - Parameter Estimations
 - Evaluation
- Deal with Unseen Events
 - Linear Interpolation
 - Smoothing
- 4 Beyond N-gram Language Models

Y Feng (wcst@pku) FNLP March 6, 2025 35 / 48

A Basic Smoothing Solution

Just add one count for all possible n-grams!

Y Feng (wcst@pku) **FNLP** March 6, 2025 35 / 48

A Basic Smoothing Solution

Just add one count for all possible n-grams!

- Does this work ?
- Any side effect you could imagine?

Y Feng (wcst@pku) **FNLP** March 6, 2025 35 / 48

Intuition

For all possible n-grams, just add an extra count.

$$p_{add1}(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i) + 1}{count(w_{i-1}) + |\mathcal{V}|}$$

Y Feng (wcst@pku) **FNLP** March 6, 2025 36 / 48

Intuition

For all possible n-grams, just add an extra count.

$$p_{add1}(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i) + 1}{count(w_{i-1}) + |\mathcal{V}|}$$

also called Laplace-smoothing

Y Feng (wcst@pku) **FNLP** March 6, 2025 36 / 48

Intuition

For all possible n-grams, just add an extra count.

$$p_{add1}(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i) + 1}{count(w_{i-1}) + |\mathcal{V}|}$$

also called Laplace-smoothing

Example

- $|\mathcal{V}| = 12$, $\mathcal{V} = \{\text{horse, cat, dog, dunkey, the, ...}\}$
- seen: p(horse|the) = 0.5, p(cat|the) = 0.5
- 0 for the unseen
- after Add-one
 - previously seen: $p_{add1}(horse|the) = 0.18$, $p_{add1}(cat|the) = 0.18$
 - \circ previously unseen: $p_{add1}(\text{dog}|\text{the}) = 0.09$, $p_{add1}(\text{dunkey}|\text{the}) = 0.09$, ...

- p(SEEN EVENTS|the) from 1 to 0.36
- $p(\mathsf{UNSEEN}\ \mathsf{EVENTS}|the)$ from 0 to 0.64

Y Feng (wcst@pku) **FNLP** March 6, 2025 37 / 48

- p(SEEN EVENTS|the) from 1 to 0.36
- $p(\mathsf{UNSEEN}\ \mathsf{EVENTS}|the)$ from 0 to 0.64
- are we putting too much probability mass on unseen events?

FNLP March 6, 2025 37 / 48 Y Feng (wcst@pku)

- p(SEEN EVENTS|the) from 1 to 0.36
- $p(\mathsf{UNSEEN}\ \mathsf{EVENTS}|the)$ from 0 to 0.64
- are we putting too much probability mass on unseen events?
- too many zeros in our example
- suit cases where #(UNSEEN) is not that huge

Y Feng (wcst@pku) FNLP March 6, 2025 37 / 48

Good-Turing Discounting

Intuition: Use the counts of n-grams that are **seen once** to help estimate the counts of unseen events

Y Feng (wcst@pku) **FNLP** March 6, 2025 38 / 48 **Intuition**: Use the counts of n-grams that are **seen once** to help estimate the counts of unseen events

- count of count : N_r , number of words with frequency r
- Translate real counts r into adjusted counts r*:

$$r^* = (r+1)\frac{N_{r+1}}{N_r}$$

- The probability mass reserved for unseen events is N_1/N_{all}
- For larger r (where N_{r-1} is often 0), various other methods can be applied (curve fitting or linear regression).

FNLP March 6, 2025 38 / 48 Y Feng (wcst@pku)

During testing, how possible we see a word that appears r times in the training set? Imagine we can randomly delete a word from the training set to construct a **new but pseudo** training set:

- ullet everytime, we delete a word w
 - we know w appears r+1 times in the original set
 - ullet now it is supposed to appear r times in the new training set
- ullet the total apearances of r+1 words in the original set is $N_{r+1}(r+1)$
- ullet after many times of deletion, the number of those words in the new set could be considered as N_r
- ullet the possible/average counts of those words should be $N_{r+1}(r+1)/N_r$

Good-Turing Example

Trained on 22m words of AP News (Church and Gale, 1991)

r	r^*	$r - r^*$
0	0.000027	
1	0.446	0.554
2	1.26	0.74
3	2.24	0.76
4	3.24	0.76
5	4.22	0.78
6	5.19	0.81
7	6.21	0.79
8	7.24	0.76

Y Feng (wcst@pku) FNLP March 6, 2025 40 / 48

In Good-Turing discounting,

• It looks like $r^* = r - 0.75$, in most cases

So, we may

Subtract a fixed number d from each count

$$p_{abd}(w_2|w_1) = \frac{count(w_1, w_2) - d}{count(w_1)} + \lambda(w_1)p(w_2)$$

- Typical counts 1 and 2 are treated differently
- $\lambda(*)$: a weighting function

Kneser-Ney Smoothing

- Popular in the traditional category
- Combines various smoothing method
 - absolute discounting
 - considers diversity of history, predicted words
 - interpolation

FNLP March 6, 2025 42 / 48 Y Feng (wcst@pku)

Outline

- What are Language Models?
 - Why do we need language models?
- 2 N-gram Language Models
 - Markov Assumptions
 - N-gram Language Models
 - Parameter Estimations
 - Evaluation
- Deal with Unseen Events
 - Linear Interpolation
 - Smoothing
- Beyond N-gram Language Models

More in LM

- Language modeling is definitely an active field of research
- There are many back-off and interpolation methods
- Skip n-gram models: e.g., back-off to $p(w_n|w_{n-2}), \dots$
- Factored language models: back-off to word stems, part-of-speech tags, ...
- Syntactic language models: using parse trees

More in LM

- Language modeling is definitely an active field of research
- There are many back-off and interpolation methods
- Skip n-gram models: e.g., back-off to $p(w_n|w_{n-2}), \dots$
- Factored language models: back-off to word stems, part-of-speech tags, ...
- Syntactic language models: using parse trees
- Language models trained on billions and trillions of words

- Really easy to build, on billions of words
- Smoothing helps generalize to new data
- (Probablistic) scoring fits many downstream tasks

- Really easy to build, on billions of words
- Smoothing helps generalize to new data
- (Probablistic) scoring fits many downstream tasks
- Synonyms: car, van, vehicle, ...
- Only capture short distance context
- Sparsity
- Storage
- Speed

- Really easy to build, on billions of words
- Smoothing helps generalize to new data
- (Probablistic) scoring fits many downstream tasks
- Synonyms: car, van, vehicle, ...
- Only capture short distance context
- Sparsity
- Storage
- Speed

- Really easy to build, on billions of words
- Smoothing helps generalize to new data
- (Probablistic) scoring fits many downstream tasks
- Synonyms: car, van, vehicle, ...
- Only capture short distance context
- Sparsity
- Storage
- Speed

Language Modelling Research

[from Noah Smith]

Y Feng (wcst@pku) FNLP March 6, 2025

45 / 48

The Magic

modeling the context

The Magic

modeling the context

• history: 1-4 words

• history: 3-5-7 words window

The Magic

modeling the context

history: 1-4 words

history: 3-5-7 words window

Seems that we are always counting words

Now

Questions

Questions

- can we go beyond counting words?
- can we use something else learned before?
- can we train on *much more words*?

Questions

- can we go beyond counting words?
- can we use something else learned before? *classification*?
- can we train on *much more words*?

Readings

- Chapter 3, Speech and Language Processing (3rd. SLP)
- SRI Language Modeling Toolkit, http://www.speech.sri.com/projects/srilm/manpages/
- Improved backing-off for m-gram language modeling, Reinhard Kneser and Hermann Ney, ICASSP 1995.
- A comparison of the enhanced Good-Turing and deleted estimation methods for estimating probabilities of English bigrams, Kenneth W.Church and William A.Gale, Computer Speech & Language, 1991, V5-1, pp19-54
- Large Language Models in Machine Translation, Thorsten Brants,
 Ashok C. Popat, Peng Xu, Franz J. Och, Jeffrey Dean, EMNLP 2007
- Google N-grams: https://blog.research.google/2006/08/all-our-n-gram-are-belong-to-you.html
- Google Book N-grams: https://books.google.com/ngrams/