MAE116 – Noções de Estatística Grupo B/D - 2º semestre de 2020 – Gabarito

Lista de exercícios 10 – Teste de hipóteses II - C L A S SE

Exercício 1

Em um relatório de uma companhia afirma-se que 40% de toda a água obtida através de poços artesianos no Nordeste é salobra. Há muitas controvérsias sobre essa informação, pois alguns dizem que a proporção é maior, outros que é menor. Para dirimir as dúvidas, 200 poços foram sorteados e observou-se, em 65 deles, água salobra.

(a) Formule esse problema como um problema de teste de hipóteses.

 H_0 : p = 0.4

p: proporção de água salobra obtida em poços

 $H_1: p \neq 0.4$

artesianos no Nordeste

(b) Qual é o significado dos erros tipo I e tipo II?

Erro tipo I. Rejeitar H_0 , sendo H_0 verdadeira

Dizer que a porcentagem de água salobra obtida através de poços artesianos no Nordeste é diferente de 0,4 quando isso não é verdade

Erro tipo II. Não rejeitar H_0 , sendo H_0 falsa

Dizer que a porcentagem de água salobra obtida através de poços artesianos no Nordeste é 0,4 quando na verdade é diferente de 0,4.

(c) Com base no nível descritivo, qual é a conclusão ao nível de significância de 5%?

Amostra: 200 poços dos quais 65 tem água salobra

$$n = 200$$
 $\hat{p}_{obs} = \frac{65}{200} = 0.325$ $\alpha = 0.05$

Como o \hat{p}_{obs} é menor que 0,4, então

$$valor - p = 2 \times P(\hat{p} \le 0.325 \mid p = 0.4)$$
 Sob Ho,
$$\hat{p} \sim N(0.4; \frac{0.4(1-0.4)}{200})$$

$$= 2 \times P\left(Z \le \frac{0.325 - 0.4}{\sqrt{\frac{0.4 \times (1-0.4)}{200}}}\right) = 2 \times P(Z \le -2.1651) = 2 \times \left(1 - P(Z \le 2.1651)\right)$$

$$\approx 2 \times (1 - 0.9850) = 0.0150.$$

Note que $valor - p < \alpha$. Portanto, rejeitamos H_0 ao nível de 5% de significância. Isto é, há evidências amostrais suficientes para dizer que a porcentagem de água salobra obtida através de poços artesianos no Nordeste é diferente de 0,4.

Segunda decimal de z

						- 09 a	aa acc	iiiiai a	-			
			0	1	2	3	4	5	6	7	8	9
		0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
		0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
		0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
		0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
		0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
		0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
		0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
		0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
		8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
		0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
	7	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
	e	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
		1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
	<u>a</u>	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
	decimal	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	မ	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
	0	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
	<u>ত</u>	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
	-ਲ	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
	inteira e primeira	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
		2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
		2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
		2.2	0.9861	0.9864			0.9875	0.9878		0.9884	0.9887	0.9890
		2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
		2.4	0.9918	0.9920	0.9922	0.9925	0.9927				0.9934	0.9936
	.⊆	2.5	0.9938	0.9940	0.9941		0.9945		0.9948	0.9949	0.9951	0.9952
	Parte	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960		0.9962	0.9963	0.9964
	<u>=</u>	2.7	0.9965	0.9966		0.9968		0.9970		0.9972	0.9973	0.9974
	ک	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
		2.9	0.9981	0.9982			0.9984		0.9985	0.9985	0.9986	0.9986
		3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
		3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
		3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
		3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
		3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
		3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
		3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
		3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
		3.8	0.9999	0.9999	0.9999		0.9999	0.9999	0.9999		0.9999	0.9999
		3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Volta

MAE116 – Noções de Estatística Grupo B/D - 2º semestre de 2020 – Gabarito

Lista de exercícios 10 – Teste de hipóteses II - C L A S SE

Exercício 2

A inserção do idoso no contexto acadêmico é uma das funções sociais da universidade pública. Com o intuito de possibilitar o acesso dessa população à educação superior, uma universidade tem oferecido vagas em cursos voltados à terceira idade. Para conferir se a idade média dos inscritos, em cursos voltados à terceira idade, aumentou em relação ao ano passado, que foi de 65,2 anos, o diretor do programa selecionou aleatoriamente 41 inscritos, obtendo na amostra uma média de 67,6 anos e um desvio padrão 6,03 anos. Sabe-se que idade do idoso dessa população segue uma distribuição normal.

(a) Formule esse problema como um problema de teste de hipóteses

 H_0 : $\mu = 65,2$

 μ : idade média dos inscritos em cursos para a terceira idade na

 H_1 : $\mu > 65,2$

universidade pública no presente ano

- (b) Calcule o valor-p e conclua adotando um nível de significância de 10%.
 - ✓ Variância populacional σ^2 desconhecida
 - ✓ Idade do idoso segue uma distribuição normal

$$n = 41; \quad \bar{x} = 67,5; s = 6,03$$

$$valor - p = P(\bar{X} \ge 67,6 \mid \mu = 65,2)$$

$$= P\left(T \ge \frac{67,6 - 65,2}{\frac{6,03}{\sqrt{41}}}\right) \qquad T \sim t_{40}$$

$$= P(T \ge 2,5485) = 1 - P(T \le 2,5485) \approx 1 - 0,9925 = 0,0075$$

Note que $valor - p < \alpha$. Portanto, rejeitamos H_0 ao nível de 10% de significância, ou seja, concluímos que a idade média dos idosos nos cursos oferecidos na universidade pública aumentou em relação ao ano passado.

Distribuição *t-Student*

Graus de liberdade

•	,			I (A, D)			
				Α			
ν	.60	.70	.80	.85	.90	.95	.975
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179
13	0.259	0.537	0.870	1.079	1.350	1.771	2.160
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980
00	0.253	0.524	0.842	1.036	1.282	1.645	1.960

				A			
ν	.98	.985	.99	.9925	.995	.9975	.9995
1	15.895	21.205	31.821	42.434	63.657	127.322	636,590
2	4.849	5.643	6.965	8.073	9.925	14.089	31.598
3	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	2.359	2.527	2.764	2.932	3.169	3.581	4.587
11	2.328	2.491	2.718	2.879	3.106	3.497	4.437
12	2.303	2.461	2.681	2.836	3.055	3.428	.4.318
13	2.282	2.436	2.650	2.801	3.012	3.372	4.221
14	2.264	2.415	2.624	2.771	2.977	3.326	4.140
15	2.249	2.397	2.602	2.746	2.947	3.286	4.073
16	2.235	2.382	2.583	2.724	2.921	3.252	4.015
17	2.224	2.368	2.567	2.706	2.898	3.222	3.965
18	2.214	2.356	2.552	2.689	2.878	3.197	3.922
19	2.205	2.346	2.539	2.674	2.861	3.174	3.883
20	2.197	2.336	2.528	2.661	2.845	3.153	3.849
21	2.189	2.328	2.518	2.649	2.831	3.135	3.819
22	2.183	2.320	2.508	2.639	2.819	3.119	3.792
23	2.177	2.313	2.500	2.629	2.807	3.104	3.768
24	2.172	2.307	2.492	2.620	2.797	3.091	3.745
25	2.167	2.301	2.485	2.612	2.787	3.078	3.725
26	2.162	2.296	2.479	2.605	2.779	3.067	3.707
27	2.158	2.291	2.473	2.598	2.771	3.057	3.690
28	2.154	2.286	2.467	2.592	2.763	3.047	3,674
29	2.150	2.282	2.462	2.586	2.756	3.038	3.659
30	2.147	2.278	2.457	2.581	2.750	3.030	3.646
40	2.123	2,250	2.423	2.542	2.704	2.971	3.551
60	2.099	2.223	2.390	2.504	2.660	2.915	3.460
120	2.076	2.196	2.358	2.468	2.617	2.860	3.373
00	2.054	2.170	2.326	2.432	2.576	2.807	3.291

MAE116 – Noções de Estatística Grupo B/D - 2º semestre de 2020 – Gabarito

Lista de exercícios 1 – Estatística Descritiva I - C L A S SE

Exercício 3

Suponha que as drogas usuais para leucemia <u>provoquem efeitos colaterais em</u> 70% dos pacientes. Um laboratório consegue eliminar de certo medicamento um radical acetil e, com isso, supõe estar diante de uma nova droga com o mesmo poder de cura. No entanto, o laboratório espera que <u>a proporção de indivíduos sem efeitos colaterais</u>, tratados com essa nova droga, seja maior do que com as drogas usuais. O laboratório resolve testar essa afirmação aplicando a nova droga em alguns pacientes.

(a) Formule este problema como um problema de teste de hipóteses. Especifique o parâmetro de interesse.

$$H_0$$
: $p = 0.30$

$$H_1$$
: $p > 0.30$

Parâmetro de interesse: p- proporção de indivíduos sem efeitos colaterais, tratados com a nova droga.

(b) Dentre 50 pacientes que foram tratados com a nova droga, 30 apresentaram efeitos colaterais. Forneça uma estimativa pontual do parâmetro de interesse. Calcule o valor-p do teste e conclua ao nível de significância de 5%.

$$n = 50$$
; $\hat{p}_{obs} = \frac{20}{50} = 0.4$; $\alpha = 0.05$

$$valor - p = P(\hat{p} \ge 0.4 | p = 0.3) = P\left(Z \ge \frac{0.4 - 0.3}{\sqrt{\frac{0.3 \times 0.7}{50}}}\right) = P(Z \ge 1.543)$$

$$= 1 - P(Z \le 1,543) = 1 - 0,9382 = 0,0618$$

Note que $valor - p > \alpha$. Portanto, não rejeitamos H_0 ao nível de 5% de significância.

Segunda decimal de z

						- 09 a	aa acc	iiiiai a	-			
			0	1	2	3	4	5	6	7	8	9
		0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
		0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
		0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
		0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
		0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
		0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
		0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
		0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
		8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
		0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
	7	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
	e	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
		1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
	<u>a</u>	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
	decimal	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	မ	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
	0	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
	<u>ত</u>	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
	-ਲ	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
	inteira e primeira	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
		2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
		2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
		2.2	0.9861	0.9864			0.9875	0.9878		0.9884	0.9887	0.9890
		2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
		2.4	0.9918	0.9920	0.9922	0.9925	0.9927				0.9934	0.9936
	.⊆	2.5	0.9938	0.9940	0.9941		0.9945		0.9948	0.9949	0.9951	0.9952
	Parte	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960		0.9962	0.9963	0.9964
	<u>=</u>	2.7	0.9965	0.9966		0.9968		0.9970		0.9972	0.9973	0.9974
	ک	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
		2.9	0.9981	0.9982			0.9984		0.9985	0.9985	0.9986	0.9986
		3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
		3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
		3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
		3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
		3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
		3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
		3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
		3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
		3.8	0.9999	0.9999	0.9999		0.9999	0.9999	0.9999		0.9999	0.9999
		3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Volta

(c) Considere que de 180 pacientes tratados com a nova droga, 108 apresentam efeitos colaterais. Repita o item (b) para essa nova amostra.

$$n = 180$$
; $\hat{p}_{obs} = \frac{72}{180} = 0.4$; $\alpha = 0.05$

$$valor - p = P(\hat{p} \ge 0.4 | p = 0.3) = P\left(Z \ge \frac{0.4 - 0.3}{\sqrt{\frac{0.3 \times 0.7}{180}}}\right) = P(Z \ge 2.9277)$$

$$= 1 - P(Z \le 2,9277) \approx 1 - 0,9983 = 0,0017$$

Note que $valor - p < \alpha$. Portanto, rejeitamos H_0 ao nível de 5% de significância.

(d) Compare os resultados dos itens (b) e (c) e comente.

Nota-se que em ambas amostras a proporção de indivíduos sem efeitos colaterais, tratados com essa nova droga, é 40%. No entanto, quando temos uma amostra menor (n=50) não temos evidência suficiente para rejeitar a hipótese nula, já com uma amostra maior (n=180) há evidência suficiente para rejeitar a hipótese nula, isto é, dizer que a proporção de indivíduos sem efeitos colaterais, tratados com essa nova droga, é maior do que quando tratados com as drogas usuais.

10