字符串及模式匹配

吉林大学计算机学院 谷方明 fmgu2002@sina.com

字符串基本定义

- □字符串:一个由字符组成的有限序列,简称串
 - ✓ string 和 char
 - ✓ 字符串可认为是由字符构成的线性表
- □一般把字符串记作: S="a₀a₁… a_{n-1}", S是串名, 引号中的字符序列是串值, 字符个数n是串长度。
- □空串:长度为零的串称为空串。
 - ✓ 空串与空格字符

字符串术语

- □ 子串: 串中任意个连续的字符组成的子序列被 称为子串。相对于子串该串称为主串。
 - ✓ 规定: 空串是任意字符串的子串
- □前缀: 若字符串 x = wy, 则称w是x的前缀
- □后缀: 若字符串 x = yw, 则称w是x的后缀

- □规定:空串是任何字符串的前缀和后缀
- □前缀后缀关系都具有传递性

字符串的顺序存储

□顺序存储: 把一个串所包含的字符序列相继存

入连续的内存中

□ 一个存储单元存放一个字符 ¹

•

n-1

•

$\mathbf{a_0}$
$\mathbf{a_1}$
•
a _{n-1}
• •

□ 压缩存储:一个存储单元存放多个字符

字符串的链接存储

- □ 串的链接存储:每个结点的结构为: (str, link),通过链接或指针寻找后继,不要求空间连续。
 - ✓ 结点大小为1的链串

✓ 结点大小为4的链串

字符串的基本操作

- □求长度
- 口比较
- □复制
- □ 连接(+, strcat)
- □取子串
- □查找
-

模式匹配

- □ 模式匹配问题: 在文本文件中查找字符串。
 - ✓ 文本串(text): 文本文件,也称母串
 - ✓ 模式串(pattern): 要查找的字符串,也称子串
 - ✓ 文本串T, n个字符, 模式串P, m个字符
 - ✓ 结果:成功,返回匹配成功的起始位置;失败,返回-1

□应用

- ✓ 文本编辑器(文本文件)中的查找和替换功能
- ✓ DNA中的特定序列搜索
- **√**

朴素模式匹配算法 (BruteForce)

T :	a	b	a	a	a	b	a	b
P:	a	b	a	b				
		a	b	a	b			
			a	b	a	b		
				a	b	a	b	
					a	b	a	b

参考代码 |


```
int bfmatch( char s[], char p[]) {
  int i = 0, j = 0, n=strlen(s), m=strlen(p);
  if (n < 1 || m < 1 || n < m) return -1;
  for(i=0; i<=n-m; i++){
      j = 0;
      while(j<m && s[i]==p[j]) i++,j++;
      if(j==m) return i-m;
      i = i- j ;
  return -1;
```

参考代码 Ⅱ


```
int bfmatch( char s[], char p[]) {
  int i = 0, j = 0, n=strlen(s), m=strlen(p);
  if (n < 1 || m < 1 || n < m) return -1;
  while ( i != n && j != m ) {
      if (s[i] == p[j]) ++i, ++j;
      else i = i - j + 1, j = 0;
  return j == m ? i - j : -1;
```

朴素模式匹配算法分析

□ 在最坏情况下,该算法要匹配n-m+1次,每次匹配做m次比较,因此最坏情况下的比较次数是m(n-m+1)次,时间复杂性为O(mn)。

□ 期望时间复杂度也为O(m)。

□朴素模式匹配算法的优点是简单,缺点是效率低。

一种改进思想

S: a b a a				E	比较	4		
S:	a	q	a	a	a	b	a	þ
		=	=	#				
P:	a	b	a	b				

\bullet

	第二次 S: a h a				比较次数			
S:	a	b	a	a	a	b	a	b
		#						
P:		а	b	а	b			

- $\square S_1 = P_1, P_1 \neq P_0$
- □第二次比较必然失败

$\bullet \bullet \bullet \bullet \bullet$

第三次 S:aba			比较次数				2	
S:	a	b	a	a	a	b	a	b
			=	≠				
P:			а	b	а	b		

- \square $S_3 \neq P_3$, $P_3 = P_1$
- □第三次比较必然失败

□ 第一次比较完成后,直接进行第四次比较即可,即令朴素算法的指针i=3不变,指针j=0;

KMP算法思想

- □ 朴素模式匹配算法需要进行5次匹配
- □ 通过对模式P结构的研究,只需要进行第4、5次 比较就可以匹配成功。

- □ 改进关键:对模式P进行分析可一次向右移多位
- □ 改进目标: 让模式P向右滑得尽可能远

目标形式化

S:	S ₀	 S _{i-j}	S _{i-j+1}		Si	S _{i+1}	 S _{n-1}
			=	=	=	≠	
P:		p ₀	p ₁		p _j	p _{j+1}	

□寻找最大的k,使得

$$p_0...p_k = p_{j-k}...p_j \perp p_0...p_{k+1} \neq p_{j-k}...p_{j+1}$$

□ k是:到 j 字符串的最长公共前缀和后缀的前缀下标。匹配失败时,j最远能到k。

失败函数

□ 定义失败函数f(j),用来确定k.

失败函数的计算f(j)

设
$$f(0) = -1$$
 ,设已知 $f(j) = k \Longrightarrow f(j+1) = ?$

 \blacktriangleright 如果 $p_{k+1} = p_{j+1}$

$$p_0$$
 p_1 p_2 p_3 p_{j-2} p_{j+1} p_{j} p_{j+1} p_j p_{j+1} p_j p_{j+1} p_j p_j p_{j+1} p_j p_j

 \blacktriangleright 如果 $p_{k+1} \neq p_{j+1}$

则必有
$$f(j+1) \le f(j) = k$$

寻找h, 使它满足h < k, 且

$$\begin{array}{l} p_{0}p_{1}\cdots p_{h}=p_{j-h}p_{j-k+1}\cdots p_{j} \\ p_{j-h}p_{j-h+1}\cdots p_{j}=p_{k-h}p_{k-h+1}\cdots p_{k} \end{array} \Rightarrow p_{0}p_{1}\cdots p_{h}=p_{k-h}p_{k-h+1}\cdots p_{k} \\ \Rightarrow h=f(k)$$
 寻找h,满足h

- ▶ 如果h不存在,说明 $p_0p_1\cdots p_jp_{j+1}$ 中没有前后相等的子串,因此f(j+1)=-1
- ightharpoonup 如果h存在,再检验 $p_{h+1} = p_{j+1}$ 是否成立
 - 若成立,说明已找到 $p_0 p_1 \cdots p_i p_{i+1}$ 中最大的前后相等的子串,即:

$$p_0 p_1 \cdots p_h p_{h+1} = p_{j-h} p_{j-h+1} \cdots p_{j+1}$$

于是
$$f(j+1) = h+1 = f(k)+1 = f(f(j))+1 = f^{(2)}(j)+1$$
.

再在 $p_0 p_1 \cdots p_h$ 中寻找最大的前后相等的子串 $p_0 p_1 \cdots p_l$,

其中
$$l = f(h) = f(f(k)) = f^{(2)}(k) = f^{(2)}(f(j)) = f^{(3)}(j)$$
,

检验是否有 $p_{l+1} = p_{j+1}$.

如此类推,如果找到了某个t,使得

$$t = f^{(x)}(j) \perp p_{t+1} = p_{j+1}$$

则
$$f(j+1) = t+1 = f^{(x)}(j)+1$$
.

$$f(j+1) = \begin{cases} f^{(x)}(j) + 1, & \text{若能找到最小的整数x, 使得} p_{f^{(x)}(j)+1} = p_{j+1} \\ -1, & \text{若上述的} x$$
不存在


```
int f[MAXL];
void cal_fail (char p[]) {
  int i, j, m=strlen(p);
  f[0]=-1; j=-1;
  for(i=1;i<m;i++){
      while(j \ge 0 \&\& p[j+1]!=p[i]) j=f[j];
      if(p[j+1]==p[i]) j++;
      f[i]=j;
```

a	b	c	a	a	a	b	c
p_0	p_1	p_2	p_3	p_4	p_5	p_6	p_7
i=0				f (0)=	-1		

1-0				
<i>i</i> =1	<i>j</i> =−1	f(1) = -1		
<i>i</i> =2	<i>j</i> =−1	f(2) = -1		
<i>i</i> =3	<i>j</i> =−1	f(3) = 0		
<i>i</i> =4	j = 0	j = -1	$p_4 = p_0 = ''a''$	f(4) = 0
<i>i</i> =5	j = 0	<i>j</i> =−1	$p_5 = p_0 = ''a''$	f(5) = 0
<i>i</i> =6	j = 0	$p_6 = p_1 = ''b''$	f(6) = 1	
<i>i</i> =7	j = 1	$p_7 = p_2 = ''c''$	f(7) = 2	


```
int fast_find(char s[],char p[]) {
  int i, j, n=strlen(s), m=strlen(p);
  if (n < 1 || m < 1 || n < m) return -1;
  cal_fail(p);
  j=-1;
  for(i=0;i<n;i++){
     while(j \ge 0 \& p[j+1]! = s[i]) j = f[j];
     if(p[j+1]==s[i]) j++;
     if(j==m-1) return i-j; //p[j+1]==s[i]
  return -1;
```



```
int f[MAXL];
void cal_fail(char p[]){
  f[0] = -1;
 while(i<m-1)
    if(p[i+1]==p[j+1]) f[++i]=++j;
   else if(j > -1) j = f[j]; else f[++i] = -1;
```

KMP算法参考实现II

```
int kmp(char s[],char p[]) {
  int i=0,j=0,n=strlen(s),m=strlen(p);
  while(i<n && j<m){
    if(j==-1 || s[i]==p[j]) i++,j++;
    else if(j>0) j = f[j-1] + 1; else j=-1;
  return j==m ? i-j : -1;
```

KMP算法分析

- □摊还分析(聚集分析)
 - ✓ i 或者增1,或者不变
 - ✓ j 或者增1,或者减少。

- □ 预处理: 计算fail, O(m)
- □ KMP算法: O(n)

□整体时间复杂度O(n+m)

next数组

- □ next[j]: j前字符串的最长公共前缀后缀的长度
- □ 下标从0开始,j = next[j] 即可
 - ✓ 有些教材下标从1开始
- □ 模式串向右移了 j next[j]位

参考代码


```
int kmp(char s[],char p[]) {
     int i=0,j=0,n=strlen(s),m=strlen(p);
     if (n < 1 || m < 1 || n < m) return -1;
     while(i<n && j<m)
       if(j==-1 || s[i]==p[j]) i++,j++;
       else j = next[j] ;
     return j==m ? i-j : -1;
```



```
void cal_next(char p[]){
     int i=0,j=-1,m=strlen(p); //k是前缀 , j是后缀
     next[0] = -1;
     while(i<m-1)
       if(j==-1 || p[i]==p[j]) i++,j++,next[i] = j;
       else j = next [j];
```

KMP算法的改进

	KN	ИP			比较	次数		2
S:	а	b	а	a	а	b	а	b
	а	b	а	b				
P:			а	b	а	b		

	实际	最远			比较	次数		*
S:	а	b	а	a	а	b	а	b
	а	b	а	b				
P:				a	b	а	b	

改进措施

□控制KMP

- ✓ j赋值时直接比较1次, p[j] == p[k];
- ✓ 直观,效率低

□控制next(推荐)

- ✓ if (p[j]!= p[k]) next[j] = k; //之前只有这一行
- else next[j] = next[k];
- ✓ 有些书定位为nextval

拓展: 模式匹配的其它算法

Rabin-Karp

✓ 编码+hash,可多模匹配

□ Boyer-Moore算法(BM)

- ✓ 从后向前
- ✓ 坏字符规则
- ✓ 好后缀规则

□ Sunday算法

✓ 从前向后,失配时考虑串尾。如果该字符没有在模式串中出现,则直接跳过,即移动位数 = 匹配串长度 + 1; 否则,其移动位数 = 模式串中最右端的该字符到末尾的距离+1。