Klausur zum Modul

Algorithmen in der Bioinformatik

Sommersemester 2019 12.07.2019

Name:		 	
Matrikelnumr	ner:	 	
Studiengang:		 	

Geben Sie den Lösungsweg immer mit an!

Nur mit blauem oder schwarzem Kugelschreiber schreiben.

Schreiben Sie auf jeden Zettel Ihre Matrikelnummer.

Geben Sie für jede (Teil-)Aufgabe nur eine einzige Lösung ab. Bei mehreren, alternativen Lösungen zu einer Aufgabe wird die Schlechteste bewertet.

Teilnahme an der Klausur erfolgt unter Vorbehalt einer vorhandenen Zulassung.

Aufgabe Nr.:	Punktzahl:	Davon erreicht:
1	14	
2	11	
3	12	
4	13	
Σ	50	

Es sind keinerlei Hilfsmittel erlaubt. Bitte schreiben Sie deutlich mit einem schwarzen oder blauen Stift.

1. Sequenzalignments

14

3

3

5

4

8

Finden Sie *alle* besten (maximalen) lokalen Sequenzalignments der Sequenzen ATACTGGG und TGACTGAG mit dem Smith-Waterman-Algorithmus. Ein Match zählt hierbei +1, ein Mismatch -1 und eine Lücke (Gap) -2. Geben Sie die gesamte DP-Matrix mit den für die Alignments relevanten Backtracking-Zeigern an und erläutern Sie jeden Ihrer Schritte.

2. Genomassembly

Gegeben sind die folgenden vier Reads: TACAGT, CAGTC, AGTCAG und TCAGA.

- a) Wie viele 3-mere sind in diesen Reads (inklusive Duplikate)? Wie viele unterschiedliche 3-mere? Wie viele unterschiedliche 2-mere?
- b) Was ist die maximale Anzahl unterschiedlicher 2-mere in einer Menge von n Reads der Länge 100 bei einem Alphabet $\{A, C, G, T\}$?
- c) Zeichnen Sie den De-Bruijn-Graphen, in dem die Kanten 4-meren und die Knoten 3-meren entsprechen. Hat dieser Graph einen Eulerweg? Wenn ja, welcher Sequenz entspricht er? Wenn nein, wieso nicht?

3. Suffix-Bäume

Ein generalisierter Suffix-Baum ist ein Suffix-Baum für mehrere Strings s_1, \ldots, s_k . Hierbei wird für jeden String $s_i, 1 \le i \le k$, ein eigenes Terminierungszeichen s_i verwendet, außerdem wird in den Blättern zusätzlich zur Position notiert, aus welchem String das Suffix stammt. Sie können voraussetzen, dass sich ein generalisierter Suffix-Baum in Zeit $O(\sum_{i=1}^k |s_i|)$ aufbauen lässt.

- a) Zeichnen Sie einen generalisierten Suffix-Baum für die Strings $s_1=\mathtt{ALAAF}$ und $s_2=\mathtt{HELAU}.$
- b) Beschreiben Sie einen Algorithmus, der für zwei gegebene Strings s_1 und s_2 über einem Alphabet konstanter Größe den längsten gemeinsamen Substring in Zeit $O(|s_1| + |s_2|)$ ausgibt.

4. Clustering

Gegeben ist folgende Instanz eines k-Means-Clusteringproblems für k=2. Punkte sind zu clusternde Datenpunkte, Kreuze sind die initial gewählten Clusterzentren von Lloyds Algorithmus.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*<

- a) Welche Clusterzentren gibt Lloyds Algorithmus bei dieser Instanz zurück? Wie viele Schritte benötigt Lloyds Algorithmus dafür?
- b) Geben Sie nun Pseudocode für einen exakten Algorithmus für das k-Means-Clusteringproblem 5 mit k=2 an. Der Algorithmus soll auf vollständiger Enumeration aller Partitionen in zwei nichtleere Cluster basieren.
- c) Analysieren Sie nun die Laufzeit Ihres Algorithmus. Beweisen Sie dazu folgende Aussage, zum Beispiel mit Hilfe von vollständiger Induktion: Es gibt $2^{n-1} 1$ verschiedene Partitionen einer Menge von n Elementen in zwei nichtleere Cluster.

3