CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGGATCCTCTAGAGATCCCT CGACCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGA CAGGCCAGGCAGGTGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCCTGAGGCCCCAGC AAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGCCACCATGGCCACGCCTGGGC TCCAGCAGCATCAGCAGCCCCCAGGACCGGGGGGGGCACAGGTGGCCCCCACCACCCGGAGG AGCAGCTCCTGCCCCTGTCCGGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGA AGGCCACCCGCCTGGAGGCACAGGCCATGAGGGGCTCTCAGGAGGTGCTGCTGATGTGGCT TCTGGTGTTGGCAGTGGGCGCACAGAGCACGCCTACCGGCCCGGCCGTTAGGGTGTGTGCT GTCCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCC TCACCACCTGCGACGGCCACCGGGCCTGCAGCACCTACCGAACCATTTATAGGACCGCCTAC CGCCGCAGCCCTGGGCTGGCCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAG GACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAG GGAGCTGTGTCCAGCCTGGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAG TCAGATGTGGATGAATGCAGTGCTAGGAGGGGGGGCTGTCCCCAGCGCTGCATCAACACCGC CGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTG TGCCCAAGGGAGGCCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAG GAAGAAGTGCAGAGCTGCAGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCT GGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCC CTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGCCCCAACATGCTGGGGGTC CCACCCTGGCTACCCCACCCTGGTTACCCCAACGGCATCCCAAGGCCAGGTGGGCCCTCA GCTGAGGGAAGGTACGAGTTCCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCC CGGAGGCTGGGTGGGGCCTCAGTGGGGGCTGCCTGACCCCCAGCACAATAAAAATGAAA AGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGT TACAAAT

MTDSPPPGHPEEKATPPGGTGHEGLSGGAADVASGVGSGRHRARLPARPLGCVLSRAHGDPV SESFVQRVYQPFLTTCDGHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGAC GAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCW EGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLAS QALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 93-97, 270-274

N-myristoylation sites.

amino acids 19-25, 78-84, 97-103, 100-106, 103-109, 157-163, 191-197, 265-271

Amidation site.

amino acids 26-30

Aspartic acid and asparagine hydroxylation site.

amino acids 152-164

Cell attachment sequence.

amino acids 130-133

EGF-like domain cysteine pattern signature.

amino acids 123-135

 $\tt GTCAGCCCACGGGGGGACT{\color{red} ATG} GTGAAATTCCCGGCGCTCACGCACTACTGGCCCCTGATC{\color{red} CCCCCTGATC } {\color{red} CCCCTGATC } {\color{red} CCCCCTGATC } {\color{red} CCCCTGATC } {\color{red} CCCTGATC } {\color{red} CCCTGATC } {\color{red} CCCTGATC } {\color{red} CCCTGATC } {\color{red} CCCTTGATC } {\color{red} CCCTGATC } {\color{red} CCC$ CGGTTCTTGGTGCCCCTGGGCATCACCAACATAGCCATCGACTTCGGGGAGCAGGCCTTGAA CCGGGGCATTGCTGCTGTCAAGGAGGATGCAGTCGAGATGCTGGCCAGCTACGGGCTGGCGT ACTCCCTCATGAAGTTCTTCACGGGTCCCATGAGTGACTTCAAAAATGTGGGCCTGGTGTTT GTGAACAGCAAGAGACAGGACCAAAGCCGTCCTGTGTATGGTGGTGGCAGGGGCCATCGC TGCCGTCTTTCACACACTGATAGCTTATAGTGATTTAGGATACTACATTATCAATAAACTGC ACCATGTGGACGAGTCGGTGGGGAGCAAGACGAGAAGGGCCTTCCTGTACCTCGCCGCCTTT CCTTTCATGGACGCAATGGCATGGACCCATGCTGGCATTCTCTTAAAACACAAATACAGTTT CCTGGTGGGATGTGCCTCAATCTCAGATGTCATAGCTCAGGTTGTTTTTGTAGCCATTTTGC TTCACAGTCACCTGGAATGCCGGGAGCCCCTGCTCATCCCGATCCTCTCCTTGTACATGGGC GCACTTGTGCGCTGCACCACCCTGTGCCTGGGCTACTACAAGAACATTCACGACATCATCCC GGCCTTTGGCTCTAATTCTGGCCACACAGAGAATCAGTCGGCCTATTGTCAACCTCTTTGTT TCCCGGGACCTTGGTGGCAGTTCTGCAGCCACAGAGGCAGTGGCGATTTTGACAGCCACATA CCCTGTGGGTCACATGCCATACGGCTGGTTGACGGAAATCCGTGCTGTGTATCCTGCTTTCG ACAAGAATAACCCCAGCAACAAACTGGTGAGCACGAGCAACACAGTCACGGCAGCCCACATC AAGAAGTTCACCTTCGTCTGCATGGCTCTGTCACTCACGCTCTGTTTCGTGATGTTTTGGAC ACCCAACGTGTCTGAGAAAATCTTGATAGACATCATCGGAGTGGACTTTGCCTTTGCAGAAC TCTGTGTTGTTCCTTTGCGGATCTTCTCCTTCTTCCCAGTTCAGTGAGGGCGCAT CTCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTCCTTGCCCCCAGCTCTGTGCTGCG GATCATCGTCCTCATCGCCAGCCTCGTGGTCCTACCCTACCTGGGGGTGCACGGTGCGACCC TGGGCGTGGGCTCCCTCCTGGCGGGCTTTGTGGGAGAATCCACCATGGTCGCCATCGCTGCG TGCTATGTCTACCGGAAGCAGAAAAAGAAGATGGAGAATGAGTCGGCCACGGAGGGGGAAGA GAAAGAGGCCTTGATTTAAAGGTTTCGTGTCAATTCTCTAGCATACTGGGTATGCTCACACT TTCATACCCCTGCCTCACGAAAACCCAAAAGACACAGCTGCCTCACGGTTGACGTTGTCCC TCCTCCCTGGACAATCTCCTCTTGGAACCAAAGGACTGCAGCTGTGCCATCGCGCCTCGGT CACCCTGCACAGCAGGCCACAGACTCTCCTGTCCCCCTTCATCGCTCTTAAGAATCAACAGG TTAAAACTCGGCTTCCTTTGATTTGCTTCCCAGTCACATGGCCGTACAAAGAGATGGAGCCC CGGTGGCCTCTTAAATTTCCCTTCTGCCACGGAGTTCGAAACCATCTACTCCACACATGCAG GAGGCGGTGGCACGCTGCAGCCCGGAGTCCCCGTTCACACTGAGGAACGGAGACCTGTGAC CACAGCAGGCTGACAGATGGACAGAATCTCCCGTAGAAAGGTTTGGTTTGAAATGCCCCGGG GGCAGCAAACTGACATGGTTGAATGATAGCATTTCACTCTGCGTTCTCCTAGATCTGAGCAA GCTGTCAGTTCTCACCCCCCACCGTGTATATACATGAGCTAACTTTTTTAAATTGTCACAAAA $\tt CTTTCCTGAAGGTCGCATTAGAGCGAGTCACATGGAGCATCCTAACTTTGCATTTTAGTTTT$ TACAGTGAACTGAAGCTTTAAGTCTCATCCAGCATTCTAATGCCAGGTTGCTGTAGGGTAAC TTTTGAAGTAGATATTACCTGGTTCTGCTATCCTTAGTCATAACTCTGCGGTACAGGTAA TTGAGAATGTACTACGGTACTTCCCTCCCACACCATACGATAAAGCAAGACATTTTATAACG ATACCAGAGTCACTATGTGGTCCTCCCTGAAATAACGCATTCGAAATCCATGCAGTGCAGTA TATTTTCTAAGTTTTGGAAAGCAGGTTTTTTCCTTTAAAAAAATTATAGACACGGTTCACT AAATTGATTTAGTCAGAATTCCTAGACTGAAAGAACCTAAACAAAAAAATATTTTAAAGATA TAAATATATGCTGTATATGTTATGTAATTTATTTTAGGCTATAATACATTTCCTATTTTCGC ATTTTCAATAAAATGTCTCTAATACAAAAA

MVKFPALTHYWPLIRFLVPLGITNIAIDFGEQALNRGIAAVKEDAVEMLASYGLAYSLMKFF
TGPMSDFKNVGLVFVNSKRDRTKAVLCMVVAGAIAAVFHTLIAYSDLGYYIINKLHHVDESV
GSKTRRAFLYLAAFPFMDAMAWTHAGILLKHKYSFLVGCASISDVIAQVVFVAILLHSHLEC
REPLLIPILSLYMGALVRCTTLCLGYYKNIHDIIPDRSGPELGGDATIRKMLSFWWPLALIL
ATQRISRPIVNLFVSRDLGGSSAATEAVAILTATYPVGHMPYGWLTEIRAVYPAFDKNNPSN
KLVSTSNTVTAAHIKKFTFVCMALSLTLCFVMFWTPNVSEKILIDIIGVDFAFAELCVVPLR
IFSFFPVPVTVRAHLTGWLMTLKKTFVLAPSSVLRIIVLIASLVVLPYLGVHGATLGVGSLL
AGFVGESTMVAIAACYVYRKQKKKMENESATEGEDSAMTDMPPTEEVTDIVEMREENE

Transmembrane domains:

amino acids 86-106, 163-179, 191-205, 237-253, 327-343, 357-374, 408-423, 431-445

CCTGACAGAAGTGCCCCGGAGCTGGGGGAGATNCAACATTAAGAAGATGCTGAGCTTCTGGT
GCCNTTTGGCTCTAATTCTGGCCACACAGAGAANCAGTCGGCCTATTGTCAACCTCTTTGTT
TCCCGGGACCTTGGTGGCAGTTCTGCAGCCACAGAGGCAGTGGCGATTTTGACAGCCACATA
CCCTGTGGGTCACATGCCATACGGCTGGTTGACGGAAATCCGTGCTGTGTATCCTGCTTTCG
ACAAGAATAACCCCAGCAACAAACTGGTGAGCACCAGAGCAACACAGTCACGGCGGCCCACATC
AAGAAGTTCACCTTCGTCTGCATGGCTCTGTCACTCACGCTCTGTTTCGTGATGTTTTGGAC
ACCCAACGTGTCTGNGAAAATCTTGATAGACATCATCGGAGTGGACTTTGCCTTTTGCAGAAC
TCTGTGTTGTTCCTTTGCGGATCTTCTCCCTTCTTCCCAGTTCCAGTGAGGGCGCAT
CTCACCGGGTGGCTGATGACACCTGAAGAAAACCTTCGTC

TGACGGAATCCCGGGCTGGGTATCCTGGTTTNGACAAGATAAACCCCCAGCAANAAATTGGG
GAGCAGGCAAAACAGTNACGGGCAGCCCACATCAAGAAGTTCACCTTNGTTTGNATGGNTC
TGTCAACTCACGCTNTGTTTCGTGATGTTTTGGACACCCAAAGTGTTTGAGAAAATTTTGAT
AGACATNATCGGAGTGGANTTTGCCTTTGCAGAANTTTGNGNTGTTCCTTTGCGGATTTTCT
CCTTTTTCCCAGTTCCAGTCACAGNGAGGGCGCATCTCACCGGGNGGNTGATGACANTGAAG
AAAACCTTTGTCCTTGCCCCCAGCTNTTTGGTGCGGATCATTGTCCTNATNGCCAGCCTTGT
GGTCCTACCCTACCTGGGGGTGCACGGTGCGACCCTGGGCGTGGGTTCCCTCCTGGCGGGCA

GCCTGCTCCCTGCTCAGCTGCGCGTCCTGCGGCTCTGCCCCCTGCATCCTGTGCAG CTGCTGCCCGCCAGCCGCAACTCCACCGTGAGCCGCCTCATCTTCACGTTCTTCCTCTTCC TGGGGGTGCTGGTCCATCATTATGCTGAGCCCGGGCGTGGAGAGTCAGCTCTACAAGCTG CCCTGGGTGTGAGGGGGGGCCGGGATCCCCACCGTCCTGCAGGGCCACATCGACTGTGG CTCCCTGCTTGGCTACCGCGCTGTCTACCGCATGTGCTTCGCCACGGCGGCCTTCTTCTTCT TCTTTTTCACCCTGCTCATGCTCTGCGTGAGCAGCCGGGACCCCCGGGCTGCCATCCAG AATGGGTTTTGGTTCTTTAAGTTCCTGATCCTGGTGGGCCTCACCGTGGGTGCCTTCTACAT TCCTCATCCAGCTGGTGCTCATCGACTTTGCGCACTCCTGGAACCAGCGGTGGCTGGGC AAGGCCGAGGAGTGCGATTCCCGTGCCTGGTACGCAGGCCTCTTCTTCTTCACTCTCTT CTACTTGCTGTCGATCGCGGCCGTGGCGCTGATGTTCATGTACTACACTGAGCCCAGCGGCT GCCACGAGGCCAAGGTCTTCATCAGCCTCAACCTCACCTTCTGTGTCTGCGTGTCCATCGCT GCTGTCCTGCCCAAGGTCCAGGACGCCCAACTCGGGTCTGCTGCAGGCCTCGGTCAT CACCCTCTACACCATGTTTGTCACCTGGTCAGCCCTATCCAGTATCCCTGAACAGAAATGCA ACCCCCATTTGCCAACCCAGCTGGGCAACGAGACAGTTGTGGCAGGCCCCGAGGGCTATGAG ACCCAGTGGTGGGATGCCCCGAGCATTGTGGGCCTCATCATCTTCCTCCTGTGCACCCTCTT CATCAGTCTGCGCTCCTCAGACCACCGGCAGGTGAACAGCCTGATGCAGACCGAGGAGTGCC CACCTATGCTAGACGCCACACAGCAGCAGCAGCAGCAGGTGGCAGCCTGTGAGGGCCGGGCC TTTGACAACGAGCAGGACGGCGTCACCTACAGCTACTCCTTCTTCCACTTCTGCCTGGTGCT GGCCTCACTGCACGTCATGATGACGCTCACCAACTGGTACAAGCCCGGTGAGACCCCGGAAGA TGATCAGCACGTGGACCGCCGTGTGGGTGAAGATCTGTGCCAGCTGGGCAGGGCTGCTCCTC ${\tt TACCTGTGGACCCTGGTAGCCCCACTCCTGCGCAACCGCGACTTCAGC\underline{{\tt TGA}}{\tt GGCAGCCT}}$ CACAGCCTGCCATCTGGTGCCTCCTGCCACCTGGTGCCTCTCGGCTCGGTGACAGCCAACCT GCCCCCTCCCCACACCAATCAGCCAGGCTGAGCCCCCACCCCTGCCCCAGCTCCAGGACCTG CCCCTGAGCCGGGCCTTCTAGTCGTAGTGCCTTCAGGGTCCGAGGAGCATCAGGCTCCTGCA TGCCCATACTCAGCATCTCGGATGAAAGGGCTCCCTTGTCCTCAGGCTCCACGGGAGCGGGG CTGCTGGAGAGCGGGGAACTCCCACCACAGTGGGGCATCCGGCACTGAAGCCCTGGTGTT CCTGGTCACGTCCCCAGGGGACCCTGCCCCCTTCCTGGACTTCGTGCCTTACTGAGTCTCT AAGACTTTTTCTAATAAACAAGCCAGTGCGTGTAAAAAAA

MGACLGACSLLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVE
SQLYKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFTLLMLCVSSSRD
PRAAIQNGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQLVLLIDFAHSW
NQRWLGKAEECDSRAWYAGLFFFTLLFYLLSIAAVALMFMYYTEPSGCHEGKVFISLNLTFC
VCVSIAAVLPKVQDAQPNSGLLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVA
GPEGYETQWWDAPSIVGLIIFLLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQVA
ACEGRAFDNEQDGVTYSYSFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICAS
WAGLLLYLWTLVAPLLLRNRDFS

Signal sequence:

amino acids 1-20

Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257, 272-283, 324-340, 391-406, 428-444

GAGCGAGGCCGGGGACTGAAGGTGTGGGTGTCGAGCCCTCTGGCAGAGGGTTAACCTGGGTC AAATGCACGGATTCTCACCTCGTACAGTTACGCTCTCCCGCGGGCACGTCCGCGAGGACTTGA AGTCCTGAGCGCTCAAGTTTGTCCGTAGGTCGAGAGAGGCCATGGAGGTGCCGCCACCGGC ACCGCGGAGCTTTCTCTGTAGAGCATTGTGCCTATTTCCCCGAGTCTTTGCTGCCGAAGCTG TGACTGCCGATTCGGAAGTCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCC TATTACCCGGAATCTGGATGGGACCGCCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAG AATTTCAAAGGACCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGG TGTATGGGGGAATACCAGCTTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGCA GAAATTTATCATAACCGGTTTGATGCTGTGCAATCTGCACATCGTGCTGCCACACGAGGCTT CATTCGTTATGGCTGGCGCTGGGGTTGGAGAACTGCAGTGTTTGTGACTATATTCAACACAG TGAACACTAGTCTGAATGTATACCGAAATAAAGATGCCTTAAGCCATTTTGTAATTGCAGGA AATTGGAGCCTTGCTGGGCACTCCTGTAGGAGGCCTGCTGATGGCATTTCAGAAGTACGCTG GTGAGACTGTTCAGGAAAGAAAACAGAAGGATCGAAAGGCACTCCATGAGCTAAAACTGGAA GAGTGGAAAGGCAGACTACAAGTTACTGAGCACCTCCCTGAGAAAATTGAAAGTAGTTTACG GGAAGATGAACCTGAGAATGATGCTAAGAAAATTGAAGCACTGCTAAACCTTCCTAGAAACC $\tt CTTCAGTAATAGATAAACAAGACAAGGAC{\color{blue}{\textbf{TGA}}} AAGTGCTCTGAACTTGAAACTCACTGGAGA$ TGACAAATTTAAGTGCTGGTACCTGTGGTGGCAGTGGCTTGCTCTTGTCTTTTCTT GCAGTAAATAAAACATTTCGCAAAAGATTAAAGTTGAATTTTACAGTTT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA23318</pre>

><subunit 1 of 1, 285 aa, 1 stop

><MW: 32190, pI: 9.03, NX(S/T): 2

MEVPPPAPRSFLCRALCLFPRVFAAEAVTADSEVLEERQKRLPYVPEPYYPESGWDRLRELF GKDEQQRISKDLANICKTAATAGIIGWVYGGIPAFIHAKQQYIEQSQAEIYHNRFDAVQSAH RAATRGFIRYGWRWGWRTAVFVTIFNTVNTSLNVYRNKDALSHFVIAGAVTGSLFRINVGLR GLVAGGIIGALLGTPVGGLLMAFQKYAGETVQERKQKDRKALHELKLEEWKGRLQVTEHLPE KIESSLREDEPENDAKKIEALLNLPRNPSVIDKQDKD

Important Features:

Signal Peptide:

amino acids 1-24

Transmembrane domains:

amino acids 76-96 and 171-195

N-glycosylation site:

amino acids 153-156

CGGAAGTCCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATCTGGATGGGACCGCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAGAATTTCAAAGGA
CCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGGTGTATGGGGGAA
TACCAGCTTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGCAGAAATTTATCAT
AACCGGTTTGATGCTGTGCAATCTGCACATCGTGCTGCCACACGAGGCTTCATTCGTTCATG
GCTGGCGCCGAACC

TCAAGTTTGTCCGTAGGTCGAGAGAAGGCCATGGAGGTGCCGCCACCGGCACCGCGAGCTT
TTTTCTGTAGAGCATTGTGCCTATTTCCCCGAGTTTTTGCTGCCGAAGCTGTGACTGCCGAT
TCGGAAGTCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATTTGGATGGGACCGCCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAGAATTTCAAAGG
ACCTTGCTGATATNTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGGTGTATGGGGGA
ATACCAGCTTTTATTCATGNTAAACAACAATACATTGAGCAGAGCCAGGCAGAAATTTATNA
TAACC

GCGTTGCTGCCCCGCCTGGGCCAGGCCCCAAAGGCAAGGACAAAGCAGCTGTCAGGGAACCT CCGCCGGAGTCGAATTTACGTGCAGCTGCCGGCAACCACAGGTTCCAAGATGGTTTGCGGGG GCTTCGCGTGTTCCAAGAACTGCCTGTGCGCCCTCAACCTGCTTTACACCTTGGTTAGTCTG ${\tt CTGCTAATTGGAATTGCTGCGTGGGGCATTGGCTTCGGGCTGATTTCCAGTCTCCGAGTGGT}$ CGGCGTGGTCATTGCAGTGGGCATCTTCTTGTTCCTGATTGCTTTAGTGGGTCTGATTGGAG GTTCAGTTTTCTGTATCTTGCGCTTGTTTAGCCCTGAACCAGGAGCAACAGGGTCAGCTTCT GGAGGTTGGTTGGAACAATACGGCAAGTGCTCGAAATGACATCCAGAGAAATCTAAACTGCT GTGGGTTCCGAAGTGTTAACCCAAATGACACCTGTCTGGCTAGCTGTGTTAAAAGTGACCAC TCGTGCTCGCCATGTGCTCCAATCATAGGAGAATATGCTGGAGAGGTTTTGAGATTTGTTGG TGGCATTGGCCTGTTCTTCAGTTTTACAGAGATCCTGGGTGTTTTGGCTGACCTACAGATACA GGAACCAGAAAGACCCCCGCGCGAATCCTAGTGCATTCCTT**TGA**TGAGAAAACAAGGAAGAT TTCCTTTCGTATTATGATCTTGTTCACTTTCTGTAATTTTCTGTTAAGCTCCATTTGCCAGT TTAAGGAAGGAAACACTATCTGGAAAAGTACCTTATTGATAGTGGAATTATATATTTTTACT CTATGTTTCTCACATGTTTTTTTTTTCTTCCGTTGCTGAAAAATATTTGAAACTTGTGGTCTC TGAAGCTCGGTGGCACCTGGAATTTACTGTATTCATTGTCGGGCACTGTCCACTGTGGCCTT TCTTAGCATTTTTACCTGCAGAAAAACTTTGTATGGTACCACTGTGTTGGTTATATGGTGAA TCTGAACGTACATCTCACTGGTATAATTATATGTAGCACTGTGCTGTGTAGATAGTTCCTAC TGGAAAAAGAGTGGAAATTTATTAAAATCAGAAAGTATGAGATCCTGTTATGTTAAGGGAAA TCCAAATTCCCAATTTTTTTTGGTCTTTTTAGGAAAGATTGTTGTGGTAAAAAGTGTTAGTA TAAAAATGATAATTTACTTGTAGTCTTTTATGATTACACCAATGTATTCTAGAAATAGTTAT GTCTTAGGAAATTGTGGTTTAATTTTTGACTTTTACAGGTAAGTGCAAAGGAGAAGTGGTTT CATGAAATGTTCTAATGTATAATAACATTTACCTTCAGCCTCCATCAGAATGGAACGAGTTT TGAGTAATCAGGAAGTATATCTATATGATCTTGATATTGTTTTATAATAATTTGAAGTCTAA AAGACTGCATTTTTAAACAAGTTAGTATTAATGCGTTGGCCCACGTAGCAAAAAGATATTTG ATTATCTTAAAAATTGTTAAATACCGTTTTCATGAAATTTCTCAGTATTGTAACAGCAACTT GTCAAACCTAAGCATATTTGAATATGATCTCCCATAATTTGAAATTGAAATCGTATTGTGTG ATTAAAAGAAAGTAATGGAAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA39979</pre>

><subunit 1 of 1, 204 aa, 1 stop

><MW: 22147, pI: 8.37, NX(S/T): 3

MVCGGFACSKNCLCALNLLYTLVSLLLIGIAAWGIGFGLISSLRVVGVVIAVGIFLFLIALV GLIGAVKHHQVLLFFYMIILLLVFIVQFSVSCACLALNQEQQGQLLEVGWNNTASARNDIQR NLNCCGFRSVNPNDTCLASCVKSDHSCSPCAPIIGEYAGEVLRFVGGIGLFFSFTEILGVWL TYRYRNQKDPRANPSAFL

Signal Peptide:

amino acids 1-34

Transmembrane domains:

amino acids 47-63, 72-95 and 162-182

AATCCCAAATTCCCCAATTTTTTTGGNCTTTTTAGGGAAAGATGTGTTGTGGTAAAAAGTGT
TAGTATAAAAAATGATAATTTACTTGTAGTCTTTTATGATTACACCAATGTATTCTAGAATAG
TTATGTCTTAGGAAATTGTGGTTTAATTTTTGACTTTTACAGGTAAGTGCAAAGGAGAAGTG
GTTTCATGAAATGTTCTAATGTATAATAACATTTACCTTCAGCCTCCCATCAGAATGGAACG
AGTTTTGAGTAATCCAGGAAGTATATCTATATGATCTTGATATTGTTTTATATAATTTGAAG
TCTAAAAGACTGCATTTTTAAACAAGTTAGTATTAATGCGTTGGCCCACGTAGCAAAAAGAT
ATTTGATTATCTTAAAAAATTGTTAAATACCGTTTTCATGAAAGTTCTCAGTATTGTAACAGC
AACTTGTCAAACCTAAGCATATTTGAATATGATCTCCCATAATTTGAAATTGAAATCGTATT
GTGTGGAGGAAATGGCAATCTTATGTGTGCTGAAGGACACAGTAAGAGCACCAAGTTGTGCC
CCACTTGC

ATGATTATTCTGTTACTTGTATTTATTGTTCAGTTTTATGGTATCTTGCGCTTGTTTAGCCC
CTGAAACCAGGAGCAACAGGGNNCAGCTTCCTGGAGGTTGGTTGGCAACAATCACGGCCAAG
TGACTCCGCAAATGACATCCCAGAGAAATCCTAAACTGCTGTGGGTTCCGAAGTGTTAACCC
AAATGACACCTGTCTGGCTNGCTGTGTTAAAAGTGACCACTCGTGCTCGCCATGTGCTCCAA
TCATAGGAGAATATGC

CAGTCACCATGAAGCTGGGCTGTGTCCTCATGGCCTGGGCCCTCTACCTTTCCCTTGGTGTG CTCTGGGTGGCCCAGATGCTACTGGCTGCCAGTTTTGAGACGCTGCAGTGTGAGGGACCTGT CTGCACTGAGGAGCAGCTGCCACACGGAGGATGACTTGACTGATGCAAGGGAAGCTGGCT TCCAGGTCAAGGCCTACACTTTCAGTGAACCCTTCCACCTGATTGTGTCCTATGACTGGCTG ATCCTCCAAGGTCCAGCCAAGCCAGTTTTTGAAGGGGACCTGCTGGTTCTGCGCTGCCAGGC CTGGCAAGACTGGCCACTGACTCAGGTGACCTTCTACCGAGATGGCTCAGCTCTGGGTCCCC CCGGGCCTAACAGGGAATTCTCCATCACCGTGGTACAAAAGGCAGACAGCGGGCACTACCAC TGCAGTGGCATCTTCCAGAGCCCTGGTCCTGGGATCCCAGAAACAGCATCTGTTGTGGCTAT CACAGTCCAAGAACTGTTTCCAGCGCCAATTCTCAGAGCTGTACCCTCAGCTGAACCCCAAG CAGGAAGCCCCATGACCCTGAGTTGTCAGACAAAGTTGCCCCTGCAGAGGTCAGCTGCCCGC CTCCTCTTCTCCTCTACAAGGATGGAAGGATAGTGCAAAGCAGGGGGCTCTCCTCAGAATT CCAGATCCCCACAGCTTCAGAAGATCACTCCGGGTCATACTGGTGTGAGGCCACTGAGG ACAACCAAGTTTGGAAACAGAGCCCCCAGCTAGAGATCAGAGTGCAGGGTGCTTCCAGCTCT GCTGCACCTCCCACATTGAATCCAGCTCCTCAGAAATCAGCTGCTCCAGGAACTGCTCCTGA GGAGGCCCTGGGCCTCCGCCGCCGCCAACCCCATCTTCTGAGGATCCAGGCTTTTCTT CTCCTCTGGGGATGCCAGATCCTCATCTGTATCACCAGATGGGCCTTCTTCTCAAACACATG CAGGATGTGAGAGTCCTCCTCGGTCACCTGCTCATGGAGTTGAGGGAATTATCTGGCCACCA GAAGCCTGGGACCACAAAGGCTACTGCTGAATAGAAGTAAACAGTTCATCCATGATCTCACT TAACCACCCCAATAAATCTGATTCTTTATTTTCTCTTCCTGTCCTGCACATATGCATAAGTA CTTTTACAAGTTGTCCCAGTGTTTTGTTAGAATAATGTAGTTAGGTGAGTGTAAATAAATTT ATATAAAGTGAGAATTAGAGTTTAGCTATAATTGTGTATTCTCTCTTAACACAACAGAATTC TGCTGTCTAGATCAGGAATTTCTATCTGTTATATCGACCAGAATGTTGTGATTTAAAGAGAA CTAATGGAAGTGGATTGAATACAGCAGTCTCAACTGGGGGCAATTTTGCCCCCCAGAGGACA TTGGGCAATGTTTGGAGACATTTTGGTCATTATACTTGGGGGGGTTGGGGGATGGTGGGATGT GTGTCTACTGGCATCCAGTAAATAGAAGCCAGGGGTGCCGCTAAACATCCTATAATGCACAG GGCAGTACCCCACAACGAAAAATAATCTGGCCCAAAATGTCAGTTGTACTGAGTTTGAGAAA CCCCAGCCTAATGAAACCCTAGGTGTTGGGCTCTGGAATGGGACTTTGTCCCTTCTAATTAT TATCTCTTTCCAGCCTCATTCAGCTATTCTTACTGACATACCAGTCTTTAGCTGGTGCTATG GTCTGTTCTTTAGTTCTAGTTTGTATCCCCTCAAAAGCCATTATGTTGAAATCCTAATCCCC AAGGTGATGGCATTAAGAAGTGGGCCTTTGGGAAGTGATTAGATCAGGAGTGCAGAGCCCTC ATGATTAGGATTAGTGCCCTTATTTAAAAAGGCCCCAGAGAGCTAACTCACCCTTCCACCAT ATGAGGACGTGGCAAGAAGATGACATGTATGAGAACCAAAAAACAGCTGTCGCCAAACACCG ACTCTGTCGTTGCCTTGATCTTGAACTTCCAGCCTCCAGAACTATGAGAAATAAAATTCTGG TTGTTTGTAGCCTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40594</pre>

><subunit 1 of 1, 359 aa, 1 stop

><MW: 38899, pI: 5.21, NX(S/T): 0

MKLGCVLMAWALYLSLGVLWVAQMLLAASFETLQCEGPVCTEESSCHTEDDLTDAREAGFQV
KAYTFSEPFHLIVSYDWLILQGPAKPVFEGDLLVLRCQAWQDWPLTQVTFYRDGSALGPPGP
NREFSITVVQKADSGHYHCSGIFQSPGPGIPETASVVAITVQELFPAPILRAVPSAEPQAGS
PMTLSCQTKLPLQRSAARLLFSFYKDGRIVQSRGLSSEFQIPTASEDHSGSYWCEAATEDNQ
VWKQSPQLEIRVQGASSSAAPPTLNPAPQKSAAPGTAPEEAPGPLPPPPTPSSEDPGFSSPL
GMPDPHLYHQMGLLLKHMQDVRVLLGHLLMELRELSGHQKPGTTKATAE

Signal sequence:

amino acids 1-17

Leucine zipper pattern sequence:

amino acids 12-33

Protein kinase C phosphorylation site:

amino acids 353-355

CCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCGGGCCACCAGAAGTT TGAGCCTCTTTGGTAGCAGGAGGCTGGAAGAAAGGACAGAAGTAGCTCTGGCTGTG**ATG**GGG ATCTTACTGGGCCTGCTACTCCTGGGGCACCTAACAGTGGACACTTATGGCCGTCCCATCCT GGAAGTGCCAGAGAGTGTAACAGGACCTTGGAAAGGGGATGTGAATCTTCCCTGCACCTATG ACCCCCTGCAAGGCTACACCCAAGTCTTGGTGAAGTGGCTGGTACAACGTGGCTCAGACCCT GTCACCATCTTTCTACGTGACTCTTCTGGAGACCATATCCAGCAGGCAAAGTACCAGGGCCG CCTGCATGTGAGCCACAAGGTTCCAGGAGATGTATCCCTCCAATTGAGCACCCTGGAGATGG ATGACCGGAGCCACTACACGTGTGAAGTCACCTGGCAGACTCCTGATGGCAACCAAGTCGTG AGAGATAAGATTACTGAGCTCCGTGTCCAGAAACTCTCTGTCTCCAAGCCCACAGTGACAAC GGGGTTCTCCCCATCAGTTATATTTGGTATAAGCAACAGACTAATAACCAGGAACCCATC AAAGTAGCAACCCTAAGTACCTTACTCTTCAAGCCTGCGGTGATAGCCGACTCAGGCTCCTA TTTCTGCACTGCCAAGGGCCAGGTTGGCTCTGAGCAGCACAGCGACATTGTGAAGTTTGTGG TCAAAGACTCCTCAAAGCTACTCAAGACCAAGACTGAGGCACCTACAACCATGACATACCCC TGGAGAGACCAGTGCTGGGCCAGGAAAGAGCCTGCCTGTCTTTGCCATCATCCTCATCATCT CCTTGTGCTGTATGGTGTTTTTACCATGGCCTATATCATGCTCTGTCGGAAGACATCCCAA ${\tt CAAGAGCATGTCTACGAAGCAGCCAGG} \underline{{\tt TAA}}{\tt GAAAGTCTCTCCTCTTCCATTTTTGACCCCGT}$ CCCTGCCCTCAATTTTGATTACTGGCAGGAAATGTGGAGGAGGGGGGGTGTGGCACAGACCC AATCCTAAGGCCGGAGGCCTTCAGGGTCAGGACATAGCTGCCTTCCCTCTCTCAGGCACCTT CTGAGGTTGTTTTGGCCCTCTGAACACAAAGGATAATTTAGATCCATCTGCCTTCTGCTTCC AGAATCCCTGGGTGGTAGGATCCTGATAATTAATTGGCAAGAATTGAGGCAGAAGGGTGGGA AACCAGGACCACAGCCCCAAGTCCCTTCTTATGGGTGGTGGGCCTCTTGGGCCCATAGGGCACA TGCCAGAGAGGCCAACGACTCTGGAGAAACCATGAGGGTGGCCATCTTCGCAAGTGGCTGCT CCAGTGATGAGCCAACTTCCCAGAATCTGGGCAACAACTACTCTGATGAGCCCTGCATAGGA TCTGGATTATGAGTTTCTGGCCACTGAGGGCAAAAGTGTCTGTTAAAAATGCCCCATTAGGC CAGGATCTGCTGACATAATTGCCTAGTCAGTCCTTGCCTTCTGCATGGCCTTCTTCCCTGCT ACCTCTCTTCCTGGATAGCCCAAAGTGTCCGCCTACCAACACTGGAGCCGCTGGGAGTCACT GGCTTTGCCCTGGAATTTGCCAGATGCATCTCAAGTAAGCCAGCTGCTGGATTTGGCTCTGG GCCCTTCTAGTATCTCTGCCGGGGGCTTCTGGTACTCCTCTCTAAATACCAGAGGGAAGATG CCCATAGCACTAGGACTTGGTCATCATGCCTACAGACACTATTCAACTTTGGCATCTTGCCA CCAGAAGACCCGAGGGAGGCTCAGCTCTGCCAGCTCAGAGGACCAGCTATATCCAGGATCAT TTCTCTTCTCAGGGCCAGACAGCTTTTAATTGAAATTGTTATTTCACAGGCCAGGGTTCA ATCATAACAGC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45416</pre>

><subunit 1 of 1, 321 aa, 1 stop

><MW: 35544, pI: 8.51, NX(S/T): 0

MGILLGLLLGHLTVDTYGRPILEVPESVTGPWKGDVNLPCTYDPLQGYTQVLVKWLVQRGS
DPVTIFLRDSSGDHIQQAKYQGRLHVSHKVPGDVSLQLSTLEMDDRSHYTCEVTWQTPDGNQ
VVRDKITELRVQKLSVSKPTVTTGSGYGFTVPQGMRISLQCQARGSPPISYIWYKQQTNNQE
PIKVATLSTLLFKPAVIADSGSYFCTAKGQVGSEQHSDIVKFVVKDSSKLLKTKTEAPTTMT
YPLKATSTVKQSWDWTTDMDGYLGETSAGPGKSLPVFAIILIISLCCMVVFTMAYIMLCRKT
SQQEHVYEAAR

Signal Sequence:

amino acids 1-19

Glycosaminoglycan attachment site:

amino acids 149-152

Transmembrane domain:

amino acids 282-300

GGCTGCAGCCACCTCGCGCGCACCCCGAGGCGCCCCAGCTCGCCCGAGGTCCGTCGGA GGCGCCCGGCCCCCGGAGCCAAGCAGCAACTGAGCGGGGAAGCGCCCGCGTCCGGGGATC GGG<u>ATG</u>TCCCTCCTCCTCCTCTTGCTAGTTTCCTACTATGTTGGAACCTTGGGGACTCA CACTGAGATCAAGAGGGCAGAGGAAAAGGTCACTTTGCCCTGCCACCATCAACTGGGGC TTCCAGAAAAAGACACTCTGGATATTGAATGGCTGCTCACCGATAATGAAGGGAACCAAAAA GTGGTGATCACTTACTCCAGTCGTCATGTCTACAATAACTTGACTGAGGAACAGAAGGGCCG AGTGGCCTTTGCTTCCAATTTCCTGGCAGGAGATGCCTCCTTGCAGATTGAACCTCTGAAGC CCAGTGATGAGGCCGGTACACCTGTAAGGTTAAGAATTCAGGGCGCTACGTGTGGAGCCAT GTCATCTTAAAAGTCTTAGTGAGACCATCCAAGCCCAAGTGTGAGTTGGAAGGAGAGCTGAC AGAAGGAAGTGACCTGACTTTGCAGTGTGAGTCATCCTCTGGCACAGAGCCCATTGTGTATT ACTGGCAGCGAATCCGAGAGAAAGAGGGAGAGGATGAACGTCTGCCTCCCAAATCTAGGATT GACTACAACCACCCTGGACGAGTTCTGCTGCAGAATCTTACCATGTCCTACTCTGGACTGTA CCAGTGCACAGCAGCAACGAAGCTGGGAAGGAAAGCTGTGTGGGGGGTAACTGTACAGT ATGTACAAAGCATCGGCATGGTTGCAGGAGCAGTGACAGGCATAGTGGCTGGAGCCCTGCTG ATTTTCCTCTTGGTGTGCTGCTAATCCGAAGGAAGAAGAAGAAGATATGAGGAAGAAGA GAGACCTAATGAAATTCGAGAAGATGCTGAAGCTCCAAAAGCCCGTCTTGTGAAACCCAGCT CCTCTTCCTCAGGCTCTCGGAGCTCACGCTCTGGTTCTTCCTCCACTCGCTCCACAGCAAAT ACGGTCTGAATTACAATGGACTTGACTCCCACGCTTTCCTAGGAGTCAGGGTCTTTGGACTC TTCTCGTCATTGGAGCTCAAGTCACCAGCCACACAACCAGATGAGAGGTCATCTAAGTAGCA GTGAGCATTGCACGGAACAGATTCAGATGAGCATTTTCCTTATACAATACCAAACAAGCAAA AGGATGTAAGCTGATTCATCTGTAAAAAGGCATCTTATTGTGCCTTTAGACCAGAGTAAGGG AAAGCAGGAGTCCAAATCTATTTGTTGACCAGGACCTGTGGTGAGAAGGTTGGGGAAAGGTG AGGTGAATATACCTAAAACTTTTAATGTGGGATATTTTGTATCAGTGCTTTGATTCACAATT TTCAAGAGGAAATGGGATGCTGTTTGTAAATTTTCTATGCATTTCTGCAAACTTATTGGATT ATTAGTTATTCAGACAGTCAAGCAGAACCCACAGCCTTATTACACCTGTCTACACCATGTAC TGAGCTAACCACTTCTAAGAAACTCCAAAAAAGGAAACATGTGTCTTCTATTCTGACTTAAC TTCATTTGTCATAAGGTTTGGATATTAATTTCAAGGGGAGTTGAAATAGTGGGAGATGGAGA AGAGTGAATGAGTTTCTCCCACTCTATACTAATCTCACTATTTGTATTGAGCCCAAAATAAC TATGAAAGGAGACAAAAATTTGTGACAAAGGATTGTGAAGAGCTTTCCATCTTCATGATGTT ATGAGGATTGTTGACAAACATTAGAAATATATAATGGAGCAATTGTGGATTTCCCCTCAAAT CAGATGCCTCTAAGGACTTTCCTGCTAGATATTTCTGGAAGGAGAAAATACAACATGTCATT TATCAACGTCCTTAGAAAGAATTCTTCTAGAGAAAAAGGGATCTAGGAATGCTGAAAGATTA CCCAACATACCATTATAGTCTCTTCTTTCTGAGAAAATGTGAAACCAGAATTGCAAGACTGG ${ t TGGTGCCAGGCACCTGTAGGAAAATCCAGCAGGTGGAGGTTGCAGTGAGCCGAGATTATGCC}$ ATTGCACTCCAGCCTGGGTGACAGAGCGGGACTCCGTCTC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45419</pre>

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41281, pI: 8.33, NX(S/T): 3

MSLLLLLLVSYYVGTLGTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGNQKV VITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRYVWSHV ILKVLVRPSKPKCELEGELTEGSDLTLQCESSSGTEPIVYYWQRIREKEGEDERLPPKSRID YNHPGRVLLQNLTMSYSGLYQCTAGNEAGKESCVVRVTVQYVQSIGMVAGAVTGIVAGALLI FLLVWLLIRRKDKERYEEEERPNEIREDAEAPKARLVKPSSSSSGSRSSRSGSSSTRSTANS ASRSQRTLSTDAAPQPGLATQAYSLVGPEVRGSEPKKVHHANLTKAETTPSMIPSQSRAFQTV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 232-251

GTCGTTCCTTTGCTCTCGCGCCCAGTCCTCCTCCTGGTTCTCCTCAGCCGCTGTCGGAGGAGAGCACCCGGA GACGCGGCTGCAGTCGCGGCGCTTCTCCCCGCCTGGGCGGCCTCGCCGCTGGGCAGGTGCTGAGCGCCCCTAG AGCCTCCCTTGCCGCCTCCTCTGCCCGGCCGCAGCAGTGCACATGGGGTGTTGGAGGTAGATGGGCTCCCG GCCCGGGAGGCGGCGGTGGATGCGGCGCTGGGCAGAAGCAGCCGCCGATTCCAGCTGCCCCGCGCGCCCCGGGCG $\tt CCCCTGCGAGTCCCCGGTTCAGCC\underline{ATC} GGGACCTCTCCGAGCAGCAGCAGCCGCCTCGCCTCCTGCAGCCGCATC$ GCCCGCCGAGCCACGACGATGATCGCGGGCTCCCTTCTCCTGCTTGGATTCCTTAGCACCACCACACGCTCAG CCAGAACAGAAGGCCTCGAATCTCATTGGCACATACCGCCATGTTGACCGTGCCACCGGCCAGGTGCTAACCTGT GACAAGTGTCCAGCAGGAACCTATGTCTCTGAGCATTGTACCAACACACGCCTGCGCGTCTGCAGCAGTTGCCCT GTGGGGACCTTTACCAGGCATGAGAATGGCATAGAGAAATGCCATGACTGTAGTCAGCCATGCCCATGGCCAATG ATTGAGAAATTACCTTGTGCTGCCTTGACTGACCGAGAATGCACTTGCCCACCTGGCATGTTCCAGTCTAACGCT ${\tt TGTAAGCAGTGTGCTCGGGGTACCTTCTCAGATGTCCCTTCTAGTGTGATGAAATGCAAAGCATACACAGACTGT}$ $\tt CTGAGTCAGAACCTGGTGGTGATCAAGCCGGGGACCAAGGAGACAACGTCTGTGGCACACTCCCGTCCTTC$ TCCAGCTCCACCTTCCCCTGGCACAGCCATCTTTCCACGCCCTGAGCACATGGAAACCCATGAAGTCCCT TCCTCCACTTATGTTCCCAAAGGCATGAACTCAACAGAATCCAACTCTTCTGCCTCTGTTAGACCAAAGGTACTG GCCACTGGGGGCGAGAAGTCCAGCACGCCCATCAAGGGCCCCAAGAGGGGACATCCTAGACAGAACCTACACAAG CATTTTGACATCAATGAGCATTTGCCCTGGATGATTGTGCTTTTTCCTGCTGCTGGTGCTTGTGGTGATTGTGGTG TGCAGTATCCGGAAAAGCTCGAGGACTCTGAAAAAGGGGCCCCGGCAGGATCCCAGTGCCATTGTGGAAAAGGCA GGGCTGAAGAATCCATGACTCCAACCCAGAACCGGGAGAAATGGATCTACTACTGCAATGGCCATGGTATCGAT AGGGAGGTTGCTGCTTTCTCCAATGGGTACACAGCCGACCACGAGCGGGCCTACGCAGCTCTGCAGCACTGGACC ATCCGGGGCCCCGAGGCCAGCCTCGCCCAGCTAATTAGCGCCCTGCGCCAGCACCGGAGAAACGATGTTGTGGAG AAGATTCGTGGGCTGATGGAAGACACCACCCAGCTGGAAACTGACAAACTAGCTCTCCCGATGAGCCCCAGCCCG CTTAGCCCGAGCCCCATCCCCAGCCCCAACGCGAAACTTGAGAATTCCGCTCTCCTGACGGTGGAGCCTTCCCCA CAGGACAAGAACAAGGGCTTCTTCGTGGATGAGTCGGAGCCCCTTCTCCGCTGTGACTCTACATCCAGCGGCTCC TCCGCGCTGAGCAGGAACGGTTCCTTTATTACCAAAGAAAAGAAGACACAGTGTTGCGGCAGGTACGCCTGGAC CCCTGTGACTTGCAGCCTATCTTTGATGACATGCTCCACTTTCTAAATCCTGAGGAGCTGCGGGTGATTGAAGAG ${ t TCTCTCTTTTTTTTTTAAATAACTCTTCTGGGAAGTTGGTTTATAAGCCTTTGCCAGGTGTAACTGTTGTGAA$ ATACCCACCACTAAAGTTTTTTAAGTTCCATATTTTCTCCATTTTTGCCTTCTTATGTATTTTCAAGATTATTCTG $\tt TTCTTAAAAGTATAATGGCATCTTGTGAATCCTATAAGCAGTCTTTATGTCTCTTAACATTCACACCTACTTTTT$ AAAAACAAATATTATTACTATTTTTATTATTGTTCCTTTATAAATTTTCTTAAAGATTAAGAAAATTTAAGA $\tt CCCCATTGAGTTACTGTAATGCAATTCAACTTTGAGTTATCTTTTAAATATGTCTTGTATAGTTCATATTCATGG$ CTGAAACTTGACCACACTATTGCTGATTGTATGGTTTTCACCTGGACACCGTGTAGAATGCTTGATTACTTGTAC TCTTCTTATGCTAATATGCTCTGGGCTGGAGAAATGAAATCCTCAAGCCATCAGGATTTGCTATTTAAGTGGCTT GACAACTGGGCCACAAGAACTTGAACTTCACCTTTTAGGATTTGAGCTGTTCTGGAACACATTGCTGCACTTT GGAAAGTCAAAATCAAGTGCCAGTGGCGCCCTTTCCATAGAGAATTTGCCCAGCTTTGCTTTAAAAGATGTCTTG TTTTTTATATACACATAATCAATAGGTCCAATCTGCTCTCAAGGCCTTGGTCCTGGTGGGGATTCCTTCACCAATT ACTTTAATTAAAAATGGCTGCAACTGTAAGAACCCTTGTCTGATATATTTTGCAACTATGCTCCCATTTACAAATG AAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52594</pre>

><subunit 1 of 1, 655 aa, 1 stop

><MW: 71845, pI: 8.22, NX(S/T): 8

MGTSPSSSTALASCSRIARRATATMIAGSLLLLGFLSTTTAQPEQKASNLIGTYRHVDRATG
QVLTCDKCPAGTYVSEHCTNTSLRVCSSCPVGTFTRHENGIEKCHDCSQPCPWPMIEKLPCA
ALTDRECTCPPGMFQSNATCAPHTVCPVGWGVRKKGTETEDVRCKQCARGTFSDVPSSVMKC
KAYTDCLSQNLVVIKPGTKETDNVCGTLPSFSSSTSPSPGTAIFPRPEHMETHEVPSSTYVP
KGMNSTESNSSASVRPKVLSSIQEGTVPDNTSSARGKEDVNKTLPNLQVVNHQQGPHHRHIL
KLLPSMEATGGEKSSTPIKGPKRGHPRQNLHKHFDINEHLPWMIVLFLLLVLVVIVVCSIRK
SSRTLKKGPRQDPSAIVEKAGLKKSMTPTQNREKWIYYCNGHGIDILKLVAAQVGSQWKDIY
QFLCNASEREVAAFSNGYTADHERAYAALQHWTIRGPEASLAQLISALRQHRRNDVVEKIRG
LMEDTTQLETDKLALPMSPSPLSPSPIPSPNAKLENSALLTVEPSPQDKNKGFFVDESEPLL
RCDSTSSGSSALSRNGSFITKEKKDTVLRQVRLDPCDLQPIFDDMLHFLNPEELRVIEEIPQ
AEDKLDRLFEIIGVKSQEASQTLLDSVYSHLPDLL

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 350-370

ATGGGAAGCCAGTAACACTGTGGCCTACTATCTCTTCCGTGGTGCCATCTACATTTTTGGGA CTCGGGAATTATGAGGTAGAGGTGGAGGCGGAGCCGGATGTCAGAGGTCCTGAAATAGTCAC CATGGGGGAAAATGATCCGCCTGCTGTTGAAGCCCCCTTCTCATTCCGATCGCTTTTTGGCC TTGATGATTTGAAAATAAGTCCTGTTGCACCAGATGCAGATGCTGTTGCTGCACAGATCCTG TCACTGCTGCCATTGAAGTTTTTTCCAATCATCGTCATTGGGATCATTGCATTGATATTAGC ACTGGCCATTGGTCTGGGCATCCACTTCGACTGCTCAGGGAAGTACAGATGTCGCTCATCCT TTAAGTGTATCGAGCTGATAGCTCGATGTGACGGAGTCTCGGATTGCAAAGACGGGGAGGAC GAGTACCGCTGTGTCCGGGTGGGTGGTCAGAATGCCGTGCTCCAGGTGTTCACAGCTGCTTC GTGGAAGACCATGTGCTCCGATGACTGGAAGGGTCACTACGCAAATGTTGCCTGTGCCCAAC TGGGTTTCCCAAGCTATGTGAGTTCAGATAACCTCAGAGTGAGCTCGCTGGAGGGGCAGTTC CGGGAGGAGTTTGTCTCCATCGATCACCTCTTGCCAGATGACAAGGTGACTGCATTACACCA CTCAGTATATGTGAGGGAGGGATGTGCCTCTGGCCACGTGGTTACCTTGCAGTGCACAGCCT TGGCCCTGGCAGGCCAGCCTTCAGTTCCAGGGCTACCACCTGTGCGGGGGCTCTGTCATCAC GCCCCTGTGGATCATCACTGCTGCACACTGTGTTTATGACTTGTACCTCCCCAAGTCATGGA CCATCCAGGTGGGTCTAGTTTCCCTGTTGGACAATCCAGCCCCATCCCACTTGGTGGAGAAG ATTGTCTACCACAGCAAGTACAAGCCAAAGAGGCTGGGCAATGACATCGCCCTTATGAAGCT GGCCGGCCACTCACGTTCAATGAAATGATCCAGCCTGTGTGCCCTGCCCAACTCTGAAGAGA ACTTCCCCGATGGAAAAGTGTGCTGGACGTCAGGATGGGGGGCCACAGAGGATGGAGGTGAC GCCTCCCCTGTCCTGAACCACGCGGCCGTCCCTTTGATTTCCAACAAGATCTGCAACCACAG GGACGTGTACGGTGGCATCATCTCCCCCTCCATGCTCTGCGCGGGCTACCTGACGGGTGGCG TGGACAGCTGCCAGGGGGACAGCGGGGGCCCCTGGTGTGTCAAGAGAGGGGGGTGTGGAAG TTAGTGGGAGCGACCAGCTTTGGCATCGGCTGCGCAGAGGTGAACAAGCCTGGGGTGTACAC GAGGAAGGGGACAAGTAGCCACCTGAGTTCCTGAGGTGATGAAGACAGCCCGATCCTCCCCT GGACTCCCGTGTAGGAACCTGCACACGAGCAGACACCCTTGGAGCTCTGAGTTCCGGCACCA GTAGCAGGCCCGAAAGAGGCACCCTTCCATCTGATTCCAGCACAACCTTCAAGCTGCTTTTT GTTTTTTTTTTTGAGGTGGAGTCTCGCTCTGTTGCCCAGGCTGGAGTGCAGTGGCGAAA TCCCTGCTCACTGCAGCCTCCGCTTCCCTGGTTCAAGCGATTCTCTTGCCTCAGCTTCCCCA GTAGCTGGGACCACAGGTGCCCGCCACCACACCAACTAATTTTTGTATTTTAGTAGAGAC AGGGTTTCACCATGTTGGCCAGGCTGCTCTCAAACCCCTGACCTCAAATGATGTGCCTGCTT CAGCCTCCCACAGTGCTGGGATTACAGGCATGGGCCACCACGCCTAGCCTCACGCTCCTTTC TGATCTTCACTAAGAACAAAAGAAGCAGCAACTTGCAAGGGCGGCCTTTCCCACTGGTCCAT CTGGTTTTCTCCAGGGTCTTGCAAAATTCCTGACGAGATAAGCAGTTATGTGACCTCACG TGCAAAGCCACCAACAGCCACTCAGAAAAGACGCACCAGCCCAGAAGTGCAGAACTGCAGTC TTTCACATGTGGGGAGGTTAATCTAGGAATGACTCGTTTAAGGCCTATTTTCATGATTTCTT CATTGTCTGGCGTGTCTGCGTGGACTGGTGAATCAAAATCATCCACTGAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45234</pre>

><subunit 1 of 1, 453 aa, 1 stop

><MW: 49334, pI: 6.32, NX(S/T): 1

MGENDPPAVEAPFSFRSLFGLDDLKISPVAPDADAVAAQILSLLPLKFFPIIVIGIIALILA
LAIGLGIHFDCSGKYRCRSSFKCIELIARCDGVSDCKDGEDEYRCVRVGGQNAVLQVFTAAS
WKTMCSDDWKGHYANVACAQLGFPSYVSSDNLRVSSLEGQFREEFVSIDHLLPDDKVTALHH
SVYVREGCASGHVVTLQCTACGHRRGYSSRIVGGNMSLLSQWPWQASLQFQGYHLCGGSVIT
PLWIITAAHCVYDLYLPKSWTIQVGLVSLLDNPAPSHLVEKIVYHSKYKPKRLGNDIALMKL
AGPLTFNEMIQPVCLPNSEENFPDGKVCWTSGWGATEDGGDASPVLNHAAVPLISNKICNHR
DVYGGIISPSMLCAGYLTGGVDSCQGDSGGPLVCQERRLWKLVGATSFGIGCAEVNKPGVYT
RVTSFLDWIHEQMERDLKT

Signal Peptide:

amino acids 1-20

Transmembrane domain:

amino acids 240-284

GCTCAGCGGCGCGCGCGCGCGCGAGGGCTCCGGAGCTGACTCGCCGAGGCAGAAATCCCTCCGGTCGCGA GCTCGCGCCCTGCGAGGGCCCGAGGGGTGAGCTTATGGAACCAAGGAAGAGCTGATGAAGTTGTCAGTGCCTCTGT CCACTATCTGCAAGACGGTACTGATGTCTCCCTCGCTCGAAATTACACGGGTCACTGTTACTACCATGGACATGT ACGGGGATATTCTGATTCAGCAGTCAGTCTCAGCACGTGTTCTGGTCTCAGGGGGACTTATTGTGTTTGAAAATGA AAGCTATGTCTTAGAACCAATGAAAAGTGCAACCAACAGATACAAACTCTTCCCAGCGAAGAAGCTGAAAAGCGT CCGGGGATCATGTGGATCACATCACAACACCAAACCTCGCTGCAAAGAATGTGTTTCCACCACCCTCTCAGAC ATGGGCAAGAAGGCATAAAAGAGAGCCCTCAAGGCAACTAAGTATGTGGAGCTGGTGATCGTGGCAGACAACCG AGAGTTTCAGAGGCAAGGAAAAGATCTGGAAAAAGTTAAGCAGCGATTAATAGAGATTGCTAATCACGTTGACAA GTTTTACAGACCACTGAACATTCGGATCGTGTTGGTAGGCGTGGAAGTGTGGAATGACATGGACAAATGCTCTGT AAGTCAGGACCCATTCACCAGCCTCCATGAATTTCTGGACTGGAGGAAGATGAAGCTTCTACCTCGCAAATCCCA TGACAATGCGCAGCTTGTCAGTGGGGTTTATTTCCAAGGGACCACCATCGGCATGGCCCCAATCATGAGCATGTG CACGGCAGACCAGTCTGGGGGAATTGTCATGGACCATTCAGACAATCCCCTTGGTGCAGCCGTGACCCTGGCACA TGAGCTGGGCCACAATTTCGGGATGAATCATGACACACTGGACAGGGGCTGTAGCTGTCAAATGGCGGTTGAGAA GGAGACCAGCCTGGAGAAAGGAATGGGGGTGTGCCTGTTTAACCTGCCGGAAGTCAGGGAGTCTTTCGGGGGCCA GAAGTGTGGGAACAGATTTGTGGAAGAAGGAGGAGTGTGACTGTGGGGAGCCAGAGGAATGTATGAATCGCTG CTGCAATGCCACCACCTGTACCCTGAAGCCGGACGCTGTGTGCGCACATGGGCTGTGCTGTGAAGACTGCCAGCT GAAGCCTGCAGGAACAGCGTGCAGGGACTCCAGCAACTCCTGTGACCTCCCAGAGTTCTGCACAGGGGCCAGCCC TCACTGCCCAGCCAATGTGTACCTGCACGATGGGCACTCATGTCAGGATGTGGACGGCTACTGCTACAATGGCAT CTGCCAGACTCACGAGCAGCAGTGTGTCACGCTCTGGGGACCAGGTGCTAAACCTGCCCCTGGGATCTGCTTTGA GAGAGTCAATTCTGCAGGTGATCCTTATGGCAACTGTGGCAAAGTCTCGAAGAGTTCCTTTGCCAAATGCGAGAT GAGAGATGCTAAATGTGGAAAAATCCAGTGTCAAGGAGGTGCCAGCCGGCCAGTCATTGGTACCAATGCCGTTTC CATAGAAACAACATCCCTCTGCAGCAAGGAGGCCGGATTCTGTGCCGGGGGACCCACGTGTACTTGGGCGATGA CATGCCGGACCCAGGGCTTGTGCTTGCAGGCACAAAGTGTGCAGATGGAAAAATCTGCCTGAATCGTCAATGTCA AAATATTAGTGTCTTTGGGGTTCACGAGTGTGCAATGCAGTGCCACGGCAGAGGGGGTGTGCAACAACAGGAAGAA CATCCGGCAAGCAGAAGCAAGGCAGGAAGCTGCAGAGTCCAACAGGGAGCGCGGCCAGGAGCCCGTGGG ${\tt ATCGCAGGAGCATGCGTCTACTGCCTCACTGACACTCATC}_{{\tt TGA}}{\tt GCCCTCCCATGACATGGAGACCGTGACCAGTG}$ $\tt CTGCTGCAGAGGGTCACGCGTCCCCAAGGCCTCCTGTGACTGGCAGCATTGACTCTGTGGCTTTGCCATCGTT$ TCCATGACAACAGACACACACTTCTCGGGGCTCAGGAGGGGAAGTCCAGCCTACCAGGCACGTCTGCAGAAA AGAGTAGCAGGTTACCACTCTGGCAGGCCCCAGCCCTGCAGCAAGGAGGAAGAGGACTCAAAAGTCTGGCCTTTC ACTGAGCCTCCACAGCAGTGGGGGAGAAGCAAGGGTTGGGCCCAGTGTCCCCTTTCCCCAGTGACACCTCAGCCT TGGCAGCCCTGATGACTGGTCTCTGGCTGCAACTTAATGCTCTGATATGGCTTTTAGCATTTATTATATGAAAAT AGCAGGGTTTTAGTTTTAATTTATCAGAGACCCTGCCACCCATTCCATCTCATCCAAGCAAACTGAATGGCAA TGAAACAACTGGAGAAGAAGGTAGGAGAAAGGGCGGTGAACTCTGGCTCTTTGCTGTGGACATGCGTGACCAGC AGTACTCAGGTTTGAGGGTTTGCAGAAAGCCAGGGAACCCACAGAGTCACCCATCATTTAACAAGTAAGAA TGTTAAAAAGTGAAAACAATGTAAGAGCCTAACTCCATCCCCCGTGGCCATTACTGCATAAAATAGAGTGCATTT GAAAT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49624</pre>

><subunit 1 of 1, 735 aa, 1 stop

><MW: 80177, pI: 7.08, NX(S/T): 5

MAARPLPVSPARALLLALAGALLAPCEARGVSLWNQGRADEVVSASVRSGDLWIPVKSFDSK
NHPEVLNIRLQRESKELIINLERNEGLIASSFTETHYLQDGTDVSLARNYTGHCYYHGHVRG
YSDSAVSLSTCSGLRGLIVFENESYVLEPMKSATNRYKLFPAKKLKSVRGSCGSHHNTPNLA
AKNVFPPPSQTWARRHKRETLKATKYVELVIVADNREFQRQGKDLEKVKQRLIEIANHVDKF
YRPLNIRIVLVGVEVWNDMDKCSVSQDPFTSLHEFLDWRKMKLLPRKSHDNAQLVSGVYFQG
TTIGMAPIMSMCTADQSGGIVMDHSDNPLGAAVTLAHELGHNFGMNHDTLDRGCSCQMAVEK
GGCIMNASTGYPFPMVFSSCSRKDLETSLEKGMGVCLFNLPEVRESFGGQKCGNRFVEEGEE
CDCGEPEECMNRCCNATTCTLKPDAVCAHGLCCEDCQLKPAGTACRDSSNSCDLPEFCTGAS
PHCPANVYLHDGHSCQDVDGYCYNGICQTHEQQCVTLWGPGAKPAPGICFERVNSAGDPYGN
CGKVSKSSFAKCEMRDAKCGKIQCQGGASRPVIGTNAVSIETNIPLQQGGRILCRGTHVYLG
DDMPDPGLVLAGTKCADGKICLNRQCQNISVFGVHECAMQCHGRGVCNNRKNCHCEAHWAPP
FCDKFGFGGSTDSGPIRQAEARQEAAESNRERGQGQEPVGSQEHASTASLTLI

Signal peptide:

amino acids 1-28

TCCCAAGGCTTCTTGGATGGCAGATGATTNTGGGGTTTTGCATTGTTTCCCTGACAACGAAA
ACAAAACAGTTTTGGGGGTTCAGGAGGGGAANTCCAGCCTACCCAGGAAGTTTGCAGAAACA
GTGCAAGGAAGGGCAGGANTTCCTGGTTGAGNTTTTTGNTAAAACATGGACATGNTTCAGTG
CTGCTCNTGAGAGAGTAGCAGGTTACCACTTTTGGCAGGCCCCAGCCCTGCAGCAAGGAGGA
AGAGGACTCAAAAGTTTGGCCTTTCACTGAGCCTCCACAGCAGTGGGGGAGAAGCAAGGGTT
GGGCCCAGTGTCCCCTTTCCCCAGTGACACCTCAGCCTTGGCAGCCCTGATAACTGGTNTNT
GGCTGCAANTTAATGCTNTGATATGGCTTTTAGCATTTATTATATGAAAATAGCAGGGTTTT
AGTTTTTAATTTATCAGAGACCCTGCCACCCATTCCATNTCCATCCAAG

CATCCTGCAACATGGTGAAACCACGCCTGGCTAATTTTGTTGTATTTTTGGTAGAGATGGGA TTTCACCGTGTTAGCCAGGATTGTCTCAATCTGACCTCATGATCTGCCCGCCTCGGCCTCCC AAAGTGCTGGGATTACAGGCGAGTGCAACCACACCCGGCCACAAACTTTTTAAGAAGTTAAT GAAACCATACCTTTTACATTTTTAATGACAGGAAAATGCTCACAATAATTGTTAACCCAAAA TTCTGGATACAAAGTACAATCTTTACTGTGTAAATACATGTATATGTACTATATGAAAATA TACCAAATATCAATAATACTTATCTCTGGGTAAAAACCTCTTCTCATACCCTGTGCTAACAA CTTTTAACAAAAATTTGCATCACTTTTAAGAATCAAGAAAAATTTCTGAAGGTCATATGGG ACAGAAAAAAACCAAGGGAAAAATCACGCCACTTGGGAAAAAAGATTCGAAATCTGCCT TTTTATAGATTTGTAATTAATGGTCCAGGCTTTCTAAGCAACTTAAATGTTTTGTTTCGA AACAAAGTACTTGTCTGGATGTAGGAGGAAAGGGAGTGATGTCACTGCCATTATGATGCCCC ACACTGAGCAGCAAGCTGGACACACGGCACACTGATCCAAATGGGTAAGGGGATGGTGGCGA TGCTCATTCTGGGTCTCCTACCCGTGCAGGTTTCTTCATTTGTT CCTTTAACCAGTATGCCGGAAGCTACTGCAGCCGAAACCACAAAGCCCTCCAACAGTGCCCT ACAGCCTACAGCCGGTCTCCTTGTGGTCTTGCTTGCCCTTCTACATCTCTACCAT**TAA**GAGG CAGGTCAAGAACAGCTACAGTTCTCCAACCCATACACTAAAACCGAATCCAAATGGTGCCT AGAAGTTCAATGTGGCAAGGAAAAAACCAGGTCTTCATCAAATCTACTAATTTCACTCCTT GACTAGATGATAAATGCCTGTACTCCCAGTACTTTGGGAGGCCTAGGCCGGCGGATCACCTG AGGTCAGGAGTTTGAGACTAACCTGGCCAAAATGGTGAAACCCCCATCTGTACTAAAAATACA AATATTGACTGGGCGTGGTGAGTGCCTGTGATCCCAGCTACTCAGGTGGCTGAAGCAGG ACAATCACTTGAACTCAGGAGGCAGAGGTTGCAGTGAGCTGAGATCGCGCTACTGCACTCTA CACGCCTGTAATCCCGGCACTTTGGGAGGCCGAGGTGGGCGGATCACGAGGTCAGGAGATCA AGACCATCCTGGCTAATACAGTGAAACCCTGTCTCTACTAAAAATACAAAAAATTAGCCGGG GATGGTGGCAGCACCTGGAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATAGCGTGAA CTCAGGAGGCGGAGCTTGCAGTGAGCCGAGATTGCGCTACTGCACTCCAGCCTGGGCGACAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48309</pre>

><subunit 1 of 1, 67 aa, 1 stop

>< MW: 6981, pI: 7.47, NX(S/T): 0

 ${\tt MGKGMVAMLILGLLLLALLLPVQVSSFVPLTSMPEATAAETTKPSNSALQPTAGLLVVLLAL}$

LHLYH

Signal peptide:

amino acids 15-27

CGGCGGCCCTGACTGCGCTGCTGCTGCTGCTGGCCATGGCGGCGGGGGGCGCTGGGGCGCCCGGGCCCAGG AGGCGGCGGCGGCGGCGGCCCCCCCGCGCAGACGGCGAGGACGGACAGGACCCGCACAGCAAGCACC TGTACACGGCCGACATGTTCACGCACGGGATCCAGAGCGCCGCGCACTTCGTCATGTTCTTCGCGCCCTGGTGTG GACACTGCCAGCGGCTGCAGCCGACTTGGAATGACCTGGGAGACAAATACAACAGCATGGAAGATGCCAAAGTCT ATGTGGCTAAAGTGGACTGCACGGCCCACTCCGACGTGTGCTCCGCCCAGGGGGTGCGAGGATACCCCACCTTAA AGCTTTTCAAGCCAGGCCAAGAAGCTGTGAAGTACCAGGGTCCTCGGGACTTCCAGACACTGGAAAACTGGATGC GGCTGTATGAGCTCTCAGCAAGCAACTTTGAGCTGCACGTTGCACAAGGCGACCACTTTATCAAGTTCTTCGCTC CGTGGTGTCACTGCAAAGCCCTGGCTCCAACCTGGGAGCAGCTGGCTCTGGGCCTTGAACATTCCGAAACTG TCAAGATTGGCAAGGTTGATTGTACACAGCACTATGAACTCTGCTCCGGAAACCAGGTTCGTGGCTATCCCACTC TTCTCTGGTTCCGAGATGGGAAAAAGGTGGATCAGTACAAGGGAAAGCGGGATTTGGAGTCACTGAGGGAGTACG TGGAGTCGCAGCTGCAGCGCACAGAGACTGGAGCGACGGAGACCGTCACGCCCTCAGAGGCCCCGGTGCTGGCAG AAAAGGAATTCCCTGGTCTGGCGGGGGTCAAGATCGCCGAAGTAGACTGCACTGCAGCAGAACGGAATATCTGCAGCA AGTATTCGGTACGAGGCTACCCCACGTTATTGCTTTTCCGAGGAGGAGAAAAGTCAGTGAGCACAGTGGAGGCA GAGACCTTGACTCGTTACACCGCTTTGTCCTGAGCCAAGCGAAAGACGAACTTTAGGAACACAGTTGGAGGTCAC $\tt CTCTCCTGCCCAGCTCCGCACCCTGCGTTTAGGAGTTCAGTCCCACAGAGGCCACTGGGTTCCCAGTGGTGGCT$ ATTCTTTATTAAGTTAAGTTTCTCTAAGTAAATGTGTAACTCATGGTCACTGTGTAAACATTTTCAGTGGCGATA TATCCCCTTTGACCTTCTTGATGAAATTTACATGGTTTCCTTTGAGACTAAAATAGCGTTGAGGGAAATGAAA TTGCTGGACTATTTGTGGCTCCTGAGTTGAGTGATTTTGGTGAAAGAAGCACATCCAAAGCATAGTTTACCTGC CCACGAGTTCTGGAAAGGTGGCCTTGTGGCAGTATTGACGTTCCTCTGATCTTAAGGTCACAGTTGACTCAATAC TGTGTTGGTCCGTAGCATGGAGCAGATTGAAATGCAAAAACCCACACCTCTGGAAGATACCTTCACGGCCGCTGC TGGAGCTTCTGTTGCTGTGAATACTTCTCTCAGTGTGAGAGGGTTAGCCGTGATGAAAGCAGCGTTACTTCTGACC GTGCCTGAGTAAGAGAATGCTGATGCCATAACTTTATGTGTCGATACTTGTCAAATCAGTTACTGTTCAGGGGAT CCTTCTGTTTCTCACGGGGTGAAACATGTCTTTAGTTCCTCATGTTAACACGAAGCCAGAGCCCACATGAACTGT TGGATGTCTTCCTTAGAAAGGGTAGGCATGGAAAATTCCACGAGGCTCATTCTCAGTATCTCATTAACTCATTGA AAGATTCCAGTTGTATTTGTCACCTGGGGTGACAAGACCAGACAGGCTTTCCCAGGCCTGGGTATCCAGGGAGGC TCTGCAGCCCTGCTGAAGGGCCCTAACTAGAGTTCTAGAGTTTCTGATTCTCAGTAGTCCTTTTAGAGG CTTGCTATACTTGGTCTGCTTCAAGGAGGTCGACCTTCTAATGTATGAAGAATGGGATGCATTTGATCTCAAGAC CAAAGACAGATGTCAGTGGGCTGTGGCCCTGGTGTGCACGGCTGTGGCAGCTGTTGATGCCAGTGTCCTCTA ACTCATGCTGTCCTTGTGATTAAACACCTCTATCTCCCTTGGGAATAAGCACATACAGGCTTAAGCTCTAAGATA CCCATACGCAAGGGGATGTGGATACTTGGCCCAAAGTAACTGGTGGTAGGAATCTTAGAAACAAGACCACTTATA $\tt CTGTCTGAGGCAGAAGATAACAGCAGCATCTCGACCAGCCTCTGCCTTAAAGGAAATCTTTATTAATCACG$ TATGGTTCACAGATAATTCTTTTTTAAAAAAACCCAACCTCCTAGAGAGCACAACTGTCAAGAGTCTTGTACA GATACTTTCTAAATAAACTCTTTTTTTTTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA46776</pre>

><subunit 1 of 1, 432 aa, 1 stop

><MW: 47629, pI: 5.90, NX(S/T): 0

MPARPGRLLPLLARPAALTALLLLLLGHGGGGRWGARAQEAAAAAADGPPAADGEDGQDPHS
KHLYTADMFTHGIQSAAHFVMFFAPWCGHCQRLQPTWNDLGDKYNSMEDAKVYVAKVDCTAH
SDVCSAQGVRGYPTLKLFKPGQEAVKYQGPRDFQTLENWMLQTLNEEPVTPEPEVEPPSAPE
LKQGLYELSASNFELHVAQGDHFIKFFAPWCGHCKALAPTWEQLALGLEHSETVKIGKVDCT
QHYELCSGNQVRGYPTLLWFRDGKKVDQYKGKRDLESLREYVESQLQRTETGATETVTPSEA
PVLAAEPEADKGTVLALTENNFDDTIAEGITFIKFYAPWCGHCKTLAPTWEELSKKEFPGLA
GVKIAEVDCTAERNICSKYSVRGYPTLLLFRGGKKVSEHSGGRDLDSLHRFVLSQAKDEL

Signal sequence:

amino acids 1-32

 $\tt CTTTTCTGAGGAACCACAGCA{\color{blue} \textbf{A}} {\color{blue} \textbf{T}} {\color{blue} \textbf{G}} {\color{blue} \textbf{A}} {\color{blue} \textbf{T}} {\color{blue} \textbf{G}} {\color{blue} \textbf{C}} {\color{blue} \textbf{T}} {\color{blue} \textbf{T}} {\color{blue} \textbf{C}} {\color{blue} \textbf{A}} {\color{blue} \textbf{C}} {\color{blue} \textbf{A}} {\color{blue} \textbf{C}} {\color{blue} \textbf{A}} {\color{blue} \textbf{T}} {\color{blue} \textbf{T}} {\color{blue} \textbf{T}} {\color{blue} \textbf{C}} {\color{blue} \textbf{A}} {\color{blue} \textbf{A}} {\color{blue} \textbf{C}} {\color{blue} \textbf{A}} {\color{blue} \textbf{A}} {\color{blue} \textbf{C}} {\color{blue} \textbf{C}} {\color{blue} \textbf{A}} {\color{blue} \textbf{C}} {\color{blue} \textbf{$ CCTCCTGGTACTATTTCTTTTGCAAATTCAGAGTCTGGGTCTGGATATTGATAGCCGTCCTA CCGCTGAAGTCTGTGCCACACACACAATTTCACCAGGACCCAAAGGAGATGATGGTGAAAAA GGAGATCCAGGAGAAGGGAAAGCATGGCAAAGTGGGACGCATGGGGCCGAAAGGAATTAA AGGAGAACTGGGTGATATGGGAGATCAGGGCCAATATTGGCAAGACTGGGCCCATTGGGAAGA AGGGTGACAAAGGGAAAAAGGTTTGCTTGGAATACCTGGAGAAAAAGGCAAAGCAGGTACT GTCTGTGATTGTGGAAGATACCGGAAATTTGTTGGACAACTGGATATTAGTATTGCTCGGCT CAAGACATCTATGAAGTTTGTCAAGAATGTGATAGCAGGGATTAGGGAAACTGAAGAGAAAT TCTACTACATCGTGCAGGAAGAAGAACTACAGGGAATCCCTAACCCACTGCAGGATTCGG GGTGGAATGCTAGCCAAGGATGAAGCTGCCAACACACTCATCGCTGACTATGTTGC TGTCCACAGACACTCCACTGCAGAACTATAGCAACTGGAATGAGGGGGAACCCAGCGAC CCCTATGGTCATGAGGACTGTGGGAGATGCTGAGCTCTGGCAGATGGAATGACACAGAGTG CCATCTTACCATGTACTTTGTCTGTGAGTTCATCAAGAAGAAAAG**TAA**CTTCCCTCATCCT ATTGTACTACATTTGATCTGAGTCAACATAGCTAGAAAATGCTAAACTGAGGTATGGAGCCT CCATCATCAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50980</pre>

><subunit 1 of 1, 277 aa, 1 stop

>< MW: 30645, pI: 7.47, NX(S/T): 2

MNGFASLLRRNQFILLVLFLLQIQSLGLDIDSRPTAEVCATHTISPGPKGDDGEKGDPGEEG KHGKVGRMGPKGIKGELGDMGDQGNIGKTGPIGKKGDKGEKGLLGIPGEKGKAGTVCDCGRY RKFVGQLDISIARLKTSMKFVKNVIAGIRETEEKFYYIVQEEKNYRESLTHCRIRGGMLAMP KDEAANTLIADYVAKSGFFRVFIGVNDLEREGQYMSTDNTPLQNYSNWNEGEPSDPYGHEDC VEMLSSGRWNDTECHLTMYFVCEFIKKKK

Signal peptide:

amino acids 1-25

GGTTCTATCGATTCGAATTCGGCCACACTGGCCGGATCCTCTAGAGATCCCTCGACCTCGAC GCCAGCGCACGCGCTCCCTGGAAGGAGAGTCTCAGCTAGAACGAGCGGCCCTAGGTTTT CGGAAGGGAGGATCAGGGATGTTTGCGAGCGGCTGGAACCAGACGGTGCCGATAGAGGAAGC AGCTACACCTCTGGCCGCAGTTGCGCTGGCTTCCGGCGGACTTGGCCTTTGCGGTGCGAGCT CTGTGCTGCAAAAGGGCTCTTCGAGCTCGCGCCCTGGCCGCGGCTGCCGCCGACCCGGAAGG ACACCTTTCTCATTCACGGCTCGCGGCGCTTTAGCTACTCAGAGGCGGAGGCGCGAGAGTAAC AGGGCTGCACGCGCCTTCCTACGTGCGCTAGGCTGGGACTGGGGACCCGACGGCGACAG CGGCGAGGGGAGCGCTGGAGAAGGCGAGCGGGGCGCGGGAGCCGGAGATGCAGCGGCCG GAAGCGGCGCGGAGTTTGCCGGAGGGGGACGGTGCCGCCAGAGGTGGAGGAGCCGCCCCCT CTGTCACCTGGAGCAACTGTGGCGCTGCTCCCCGCTGGCCCAGAGTTTCTGTGGCTCTG GTTCGGGCTGGCCAAGGCCGGCCTGCGCACTGCCTTTGTGCCCACCGCCCTGCGCCGGGGCC CCCTGCTGCACTGCCGCAGCTGCGGCGCGCGCGCGCTGGTGCTGCCAGAGTTTCTG GAGTCCCTGGAGCCGGACCTGCCCGCCCTGAGAGCCATGGGGCTCCACCTGTGGGCTGCAGG GGCCAGTGCCAGGATACCTCTCTCCCCCCAGAGCATAACAGACACGTGCCTGTACATCTTC ACCTCTGGCACCACGGCCTCCCCAAGGCTGCTCGGATCATCTGAAGATCCTGCAATG CCAGGGCTTCTATCAGCTGTGTGTGTCCACCAGGAAGATGTGATCTACCTCGCCCTCCCAC TCTACCACATGTCCGGTTCCCTGCTGGGCATCGTGGGCTGCATGGGGCATTGGGGCCACAGTG GTGCTGAAATCCAAGTTCTCGGCTGGTCAGTTCTGGGAAGATTGCCAGCAGCACAGGGTGAC GGTGTTCCAGTACATTGGGGAGCTGTGCCGATACCTTGTCAACCAGCCCCCGAGCAAGGCAG AACGTGGCCATAAGGTCCGGCTGGCAGTGGGCAGCGGGCTGCGCCCAGATACCTGGGAGCGT TTTGTGCGGCCCTTCGGGCCCCTGCAGGTGCTGGAGACATATGGACTGACAGAGGGCAACGT ATATCTTCCCCTTCTCCTTGATTCGCTATGATGTCACCACAGGAGAGCCAATTCGGGACCCC CAGGGGCACTGTATGGCCACATCTCCAGGTGAGCCAGGGCTGCTGGTGGCCCCGGTAAGCCA GCAGTCCCCATTCCTGGGCTATGCTGGCGGGCCCAGAGCTGGCCCAGGGGAAGTTGCTAAAGG ATGTCTTCCGGCCTGGGGATGTTTTCTTCAACACTGGGGACCTGCTGGTCTGCGATGACCAA GGTTTTCTCCGCTTCCATGATCGTACTGGAGACACCTTCAGGTGGAAGGGGGAGAATGTGGC CACAACCGAGGTGGCAGAGGTCTTCGAGGCCCTAGATTTTCTTCAGGAGGTGAACGTCTATG GAGTCACTGTGCCAGGGCATGAAGGCAGGGCTGGAATGGCAGCCCTAGTTCTGCGTCCCCC CACGCTTTGGACCTTATGCAGCTCTACACCCACGTGTCTGAGAACTTGCCACCTTATGCCCG GCCCCGATTCCTCAGGCTCCAGGAGTCTTTGGCCACCACAGAGACCTTCAAACAGCAGAAAG TTCGGATGGCAAATGAGGGCTTCGACCCCAGCACCCTGTCTGACCCACTGTACGTTCTGGAC CAGGCTGTAGGTGCCTACCTGCCCCTCACAACTGCCCGGTACAGCGCCCTCCTGGCAGGAAA CCTTCGAATC<u>TGA</u>GAACTTCCACACCTGAGGCACCTGAGAGAGGAACTCTGTGGGGTGGGG CCGTTGCAGGTGTACTGGGCTGTCAGGGATCTTTTCTATACCAGAACTGCGGTCACTATTT AAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGTAGGGATAACAGGGTAATAAGC TTGGCCGCCATGGCCCAACTTGTTTATTGCAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50913</pre>

><subunit 1 of 1, 730 aa, 1 stop

><MW: 78644, pI: 7.65, NX(S/T): 2

Type II transmembrane domain:

amino acids 45-65

Other transmembrane domain:

amino acids 379-398

cAMP- and cGMP-dependent protein kinase phosphorylation site starting at amino acid 136

CUB domain protein motif

amino acids 254-261

putative AMP-binding domain siganture

amino acids 332-343

N-glycosylation sites

amino acids 37-40 and 483-486

CCTGTGTTAAGCTGAGGTTTCCCCTAGATCTCGTATATCCCCAACACATACCTCCACGCACA CACATCCCCAAGAACCTCGAGCTCACACCAACAGACACGCGCGCATACACACTCGCTCTC GCTTGTCCATCTCCCTCCCGGGGGGGGCGCGCGCGCGCCCCACCTTTGCCGCACACTCCGGC GAGCCGAGCCCAGCGCTCCAGGATTCTGCGGCTCGGAACTCGGATTGCAGCTCTGAACCC CCATGGTGGTTTTTTAAACACTTCTTTTCCTTCTCTCTCGTTTTGATTGCACCGTTTCCA CCATCTGGCTTATAAAAGTTTGCTGAGCGCAGTCCAGAGGGCTGCGCTGCTCGTCCCCTCGG CGGCTTGAGGGGCAAGGTGAAGAGCGCACCGGCCGTGGGGTTTACCGAGCTGGATTTGTATG ${
m TTGCACC} {
m ATG} {
m CCTTCTTGGATCGGGGCTGTGATTCTTCCCCTCTTGGGGCTGCTGCTCTCCC$ TCCCCGCCGGGGCGGATGTGAAGGCTCGGAGCTGCGGAGAGGTCCGCCAGGCGTACGGTGCC AAGGGATTCAGCCTGGCGGACATCCCCTACCAGGAGATCGCAGGGGAACACTTAAGAATCTG TCCTCAGGAATATACATGCTGCACCACAGAAATGGAAGACAAGTTAAGCCAACAAAGCAAAC TCGAATTTGAAAACCTTGTGGAAGAGACAAGCCATTTTGTGCGCACCACTTTTGTGTCCAGG CATAAGAAATTTGACGAATTTTTCCGAGAGCTCCTGGAGAATGCAGAAAAGTCACTAAATGA TATGTTTGTACGGACCTATGGCATGCTGTACATGCAGAATTCAGAAGTCTTCCAGGACCTCT TCACAGAGCTGAAAAGGTACTACACTGGGGGTAATGTGAATCTGGAGGAAATGCTCAATGAC TTTTGGGCTCGGCTCCTGGAACGGATGTTTCAGCTGATAAACCCTCAGTATCACTTCAGTGA AGACTACCTGGAATGTGTGAGCAAATACACTGACCAGCTCAAGCCATTTGGAGACGTGCCCC GGAAACTGAAGATTCAGGTTACCCGCGCCTTCATTGCTGCCAGGACCTTTGTCCAGGGGCTG ACTGTGGGCAGAGAAGTTGCAAACCGAGTTTCCAAGGTCAGCCCAACCCCAGGGTGTATCCG TGCCCTCATGAAGATGCTGTACTGCCCATACTGTCGGGGGCCTTCCCACTGTGAGGCCCTGCA ACAACTACTGTCTCAACGTCATGAAGGGCTGCTTGGCAAATCAGGCTGACCTCGACACAGAG TGGAATCTGTTTATAGATGCAATGCTCTTGGTGGCAGAGCGACTGGAGGGGCCATTCAACAT TGAGTCGGTCATGGACCCGATAGATGTCAAGATTTCTGAAGCCATTATGAACATGCAAGAAA ACAGCATGCAGGTGTCTGCAAAGGTCTTTCAGGGATGTGGTCAGCCCAAACCTGCTCCAGCC CTCAGATCTGCCCGCTCAGCTCCTGAAAATTTTAATACACGTTTCAGGCCCTACAATCCTGA GGAAAGACCAACAACTGCTGCAGGCACAAGCTTGGACCGGCTGGTCACAGACATAAAAGAGA AATTGAAGCTCTCTAAAAAGGTCTGGTCAGCATTACCCTACACTATCTGCAAGGACGAGAGC GTGACAGCGGCACGTCCAACGAGGAGGAATGCTGGAACGGGCACAGCAAAGCCAGATACTT GCCTGAGATCATGAATGGGCTCACCAACCAGATCAACAATCCCGAGGTGGATGTGGACA TCACTCGGCCTGACACTTTCATCAGACAGCAGATTATGGCTCTCCGTGTGATGACCAACAAA CTAAAAAACGCCTACAATGGCAATGATGTCAATTTCCAGGACACAAGTGATGAATCCAGTGG CTCAGGGAGTGGCAGTGCATGGATGACGTGTCCCACGGAGTTTGAGTTTGTCACCA CAGAGGCCCCGCAGTGGATCCCGACCGGAGAGAGGTGGACTCTTCTGCAGCCCAGCGTGGC CACTCCCTGCTCTCTCTCACCTGCATTGTCCTGGCACTGCAGAGACTGTGCAGATA ${f \underline{A}}$ TCTTGGGTTTTTGGTCAGATGAAACTGCATTTTAGCTATCTGAATGGCCAACTCACTTCTT TTCTTACACTCTTGGACAATGGACCATGCCACAAAAACTTACCGTTTTCTATGAGAAGAGAG CAGTAATGCAATCTGCCTCCCTTTTTGTTTTCCCAAAGAGTACCGGGTGCCAGACTGAACTG CTTCCTCTTCCTCAGCTATCTGTGGGGACCTTGTTTATTCTAGAGAGAATTCTTACTCAA ATTTTTCGTACCAGGAGATTTTCTTACCTTCATTTGCTTTATGCTGCAGAAGTAAAGGAAT CTCACGTTGTGAGGGTTTTTTTTTTTTTCTCATTTAAAAT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50914

><subunit 1 of 1, 555 aa, 1 stop

><MW: 62736, pI: 5.36, NX(S/T): 0

MPSWIGAVILPLLGLLLSLPAGADVKARSCGEVRQAYGAKGFSLADIPYQEIAGEHLRICPQ
EYTCCTTEMEDKLSQQSKLEFENLVEETSHFVRTTFVSRHKKFDEFFRELLENAEKSLNDMF
VRTYGMLYMQNSEVFQDLFTELKRYYTGGNVNLEEMLNDFWARLLERMFQLINPQYHFSEDY
LECVSKYTDQLKPFGDVPRKLKIQVTRAFIAARTFVQGLTVGREVANRVSKVSPTPGCIRAL
MKMLYCPYCRGLPTVRPCNNYCLNVMKGCLANQADLDTEWNLFIDAMLLVAERLEGPFNIES
VMDPIDVKISEAIMNMQENSMQVSAKVFQGCGQPKPAPALRSARSAPENFNTRFRPYNPEER
PTTAAGTSLDRLVTDIKEKLKLSKKVWSALPYTICKDESVTAGTSNEEECWNGHSKARYLPE
IMNDGLTNQINNPEVDVDITRPDTFIRQQIMALRVMTNKLKNAYNGNDVNFQDTSDESSGSG
SGSGCMDDVCPTEFEFVTTEAPAVDPDRREVDSSAAQRGHSLLSWSLTCIVLALQRLCR

Signal peptide:

amino acids 1-23

FIGURE 42A

CGGACGCGTGGGCGACGCGTGGGCAAAAGAACTCGGAGTGCCAAAGCTAAATAAGTTAGCTGAGAAAACGCACG CAGTTTGCAGCGCCTGCGCCGGGTGCGCCAACTACGCAAAGACCAAGCGGGCTCCGCGCGGGACCGGCGGGGGC ${\tt TAGGGACCCGGCTTTGGCCTTCAGGCTCCCTAGCAGCGGGGAAAAGGAATTGCTGCCCGGAGTTTCTGCGGAGGT}$ GGAGGGAGATCAGGAAACGGCTTCTTCCTCACTTCGCCGCCTGGTGAGTGTCGGGGAGATTGGCAAACGCCTAGG AAAGGACTGGGGAAAATAGCCCTGGGAAAGTGGAGAAGGTGATCAGGAGGCCGGTCCACTACGGCAGTTTATCTG $\tt CGGACATGGTGACAGCTGAGAGGAGGAGGAGTTTCTTGCCAGGTGGAGAGTCTTCACCGTCTGTTGGGTGCATG$ AAGAAGGGCCCTTACTAGCTCAAGCTGGAGAGAAACTAGAGCCCAGCACAACTTCCACCTCCCAGCCCCATCTCA TTTTCATCCTAGCGGATGATCAGGGATTTAGAGATGTGGGTTACCACGGATCTGAGATTAAAACACCTACTCTTG ACAAGCTCGCTGCCGAAGGAGTTAAACTGGAGAACTACTATGTCCAGCCTATTTGCACACCATCCAGGAGTCAGT TTATTACTGGAAAGTATCAGATACACCCGGACTTCAACATTCTATCATAAGACCTACCCAACCCAACTGTTTAC $\tt CTCTGGACAATGCCACCCTACCTCAGAAACTGAAGGAGGTTGGATATTCAACGCATATGGTCGGAAAATGGCACT$ TGGGTTTTAACAGAAAAGAATGCATGCCCACCAGAAGAGGATTTGATACCTTTTTTGGTTCCCTTTTTGGGAAGTG GGGATTACTATACACACTACAAATGTGACAGTCCTGGGATGTGTGGCTATGACTTGTATGAAAACGACAATGCTG CCTGGGACTATGACAATGGCATATACTCCACAGAGATGTACACTCAGAGAGTACAGCAAATCTTAGCTTCCCATA TCGAACACTACCGATCCATTATCAACATAAACAGGAGAAGATATGCTGCCATGCTTTCCTGCTTAGATGAAGCAA TCAACAACGTGACATTGGCTCTAAAGACTTATGGTTTCTATAACAACAGCATTATCATTTACTCTTCAGATAATG GTGGCCAGCCTACGGCAGGAGGAGTAACTGGCCTCTCAGAGGTAGCAAAGGAACATATTGGGAAGGAGGATCC GGGCTGTAGGCTTTGTGCATAGCCCACTTCTGAAAAACAAGGGAACAGTGTGTAAGGAACTTGTGCACATCACTG ACTGGTACCCCACTCTCATTTCACTGGCTGAAGGACAGATTGATGAGGACATTCAACTAGATGGCTATGATATCT AAAAAATGGCTCCTGGGCAGCAGCCTATGGGATCTGGAACACTGCAATCCAGTCAGCCATCAGAGTGCAGCACTG GAAATTGCTTACAGGAAATCCTGGCTACAGCGACTGGGTCCCCCCTCAGTCTTTCAGCAACCTGGGACCGAACCG GTGGCACAATGAACGGATCACCTTGTCAACTGGCAAAAGTGTATGGCTTTTCAACATCACAGCCGACCCATATGA ${\tt GAGGGTGGACCTATCTAACAGGTATCCAGGAATCG\underline{\textbf{TGA}}{\tt AGAAGCTCCTACGGAGGCTCTCACAGTTCAACAAAAC}$ TGCAGTGCCGGTCAGGTATCCCCCCAAAGACCCCAGAAGTAACCCTAGGCTCAATGGAGGGGTCTGGGGACCATG GAAGAAGAAACAGCAGAAAGCAGTCTCAGGTAAACCAGCAAATTTGGCTCGATAATATCGCTGGCCTAAGCGTCA GGCTTGTTTCATGCTGTGCCACTCCAGAGACTTCTGCCACCTGGCCGCCACACTGAAAACTGTCCTGCTCAGTG ${\tt CCAAGGTGCTACTCTTGCAAGCCACACTTAGAGAGAGTGGAGATGTTTATTTCTCTCGCTCCTTTAGAAAACGTG}$ GTGAGTCCTGAGTTCCACTGCTGTGCTTCAGTCAACTGACCAAACACTGCTTTGAATTATAGGAGGAGAACAATA ACCTACCATCCGCAAGCATGCTAATTTGATGGAAGTTACAGGGTAGCATGATTAAAACTACCTTTGATAAATTAC

FIGURE 42B

ATTTTATTCATTTCTTCAAATTATCAAGCACTGTAATACTATAAATTAATGTAATACTGTGTGAATTCAGACTA ATTACTTGGAAATTCAATGTTTGTGCAGAGTTGAGACAACTTTATTGTTTCTATCATAAACTATTTATGTATCTT AATTATTAAAATGATTTACTTTATGGCACTAGAAAATTTACTGTGGCTTTTCTGATCTAACTTCTAGCTAAAATT GTATCATTGGTCCTAAAAAATAAAAATCTTTACTAATAGGCAATTGAAGGAATGGTTTGCTAACAACCACAGTAA TATAATATGATTTTACAGATAGATGCTTCCCCTTGGCTATGACATGGAGAAAGATTTTCCCATAATAATAACTAA TATTTATATTAGGTTGGTGCAAAACTAGTTGCGGTTTTTCCCATTAAAAGTAATAACCTTACTCTTATACAAAGT ACATGCAAACGTCATGAGGAGAATTAAAGGAGTATTATCAGTAATGAAGTTTATCATGGGTCATCAATGAGCATA GATTGGTGTGGATCCTGTAGACCCTGGTGTTTTCTTTGAAGTGCCCTCTCCTAATGCAGAGGCCTTGAAGCTTAC AGTATACACTTGAAAAGTCACAGATAGCTAGAATTATGATCTTTGAAGTTATAACTGTGATCTGAAAATGTGTGT GGTGGTATGACAGCATACCATTAAATACATTACATCACAGCTCAAAGGACTGTGATATAATCCATTTATATCAC AACTCAAAGGACTGTGATATAATCCATTTATATCACAGCTCACAGTTTCTGAAAATGTATAAAAGAATCTATAAT CTAGTACTGAAATTACTAAATTGGGTAAGATGATTTAAATGATTTTAACATTTTATTTCTAGAATATAT GGCTCCATTTTATTTTATAGTGTAAAGTTGTATTTCCTAAAGTTTGTGTGTTTTGTCGACAGTATCTTTTAAATGAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48296</pre>

><subunit 1 of 1, 515 aa, 1 stop

><MW: 56885, pI: 6.49, NX(S/T): 5

MAPRGCAGHPPPPSPQACVCPGKMLAMGALAGFWILCLLTYGYLSWGQALEEEEEGALLAQA
GEKLEPSTTSTSQPHLIFILADDQGFRDVGYHGSEIKTPTLDKLAAEGVKLENYYVQPICTP
SRSQFITGKYQIHTGLQHSIIRPTQPNCLPLDNATLPQKLKEVGYSTHMVGKWHLGFNRKEC
MPTRRGFDTFFGSLLGSGDYYTHYKCDSPGMCGYDLYENDNAAWDYDNGIYSTQMYTQRVQQ
ILASHNPTKPIFLYTAYQAVHSPLQAPGRYFEHYRSIININRRRYAAMLSCLDEAINNVTLA
LKTYGFYNNSIIIYSSDNGGQPTAGGSNWPLRGSKGTYWEGGIRAVGFVHSPLLKNKGTVCK
ELVHITDWYPTLISLAEGQIDEDIQLDGYDIWETISEGLRSPRVDILHNIDPYTPRQKMAPG
QQAMGSGTLQSSQPSECSTGNCLQEILATATGSPLSLSATWDRTGGTMNGSPCQLAKVYGFS
TSQPTHMRGWTYLTGIQES

Important Features:

Signal Peptide:

amino acids 1-37

Sulfatases signature 1.

amino acids 120-132

Sulfatases signature 2.

amino acids 168-177

Tyrosine kinase phosphorylation site.

amino acids 163-169

N-glycosylation sites.

amino acids 157-160, 306-309 and 318-321

CGGACGCGTGGGTGCGAGTGGAGCGGAGGACCCGAGCGGCTGAGGAGAGAGGAGGCGGCGGC GTGGTTTCGGGAACGCGGCCAGTGCAAGGCATCACGGGTTGTTAGCATCGGCACGTCAGCCT GGGGTCTGTCACTATGGAACTAAACTGGCCTGCTGCTACGGCTGGAGAAGAACAGCAAGGG GCAGATGCTTTCCAGGATACACCGGGAAAACCTGCAGTCAAGATGTGAATGAGTGTGGAATG AAACCCCGGCCATGCCAACACAGATGTGTGAATACACACGGAAGCTACAAGTGCTTTTGCCT CAGTGGCCACATGCTCATGCCAGATGCTACGTGTGAACTCTAGGACATGTGCCATGATAA ACTGTCAGTACAGCTGTGAAGACACAGAAGAAGGCCCACAGTGCCTGTGTCCATCCTCAGGA CTCCGCCTGGCCCCAAATGGAAGAGTGTCTAGATATTGATGAATGTGCCTCTGGTAAAGT CATCTGTCCCTACAATCGAAGATGTGTGAACACATTTGGAAGCTACTACTGCAAATGTCACA ATGGATAGCCATACGTGCAGCCACCATGCCAATTGCTTCAATACCCAAGGGTCCTTCAAGTG TAAATGCAAGCAGGGATATAAAGGCAATGGACTTCGGTGTTCTGCTATCCCTGAAAATTCTG AAAAACAGCATGAAAAAGAAGGCAAAAATTAAAAATGTTACCCCAGAACCCACCAGGACTCC TACCCCTAAGGTGAACTTGCAGCCCTTCAACTATGAAGAGATAGTTTCCAGAGGCGGGAACT CTCATGGAGGTAAAAAAGGGAATGAAGAGAAAATGAAAAGAGGGGGCTTGAGGATGAGAAAAGAG AAGAGAAAGCCCTGAAGAATGACATAGAGGAGCGAAGCCTGCGAGGAGATGTGTTTTTCCCT AAGGTGAATGAAGCAGGTGAATTCGGCCTGATTCTGGTCCAAAGGAAAGCGCTAACTTCCAA ACTGGAACATAAAGATTTAAATATCTCGGTTGACTGCAGCTTCAATCATGGGATCTGTGACT GGAAACAGGATAGAGAAGATGATTTTGACTGGAATCCTGCTGATCGAGATAATGCTATTGGC TTCTATATGGCAGTTCCGGCCTTGGCAGGTCACAAGAAGACATTGGCCGATTGAAACTTCT CCTACCTGACCTGCAACCCCAAAGCAACTTCTGTTTGCTCTTTGATTACCGGCTGGCCGGAG ACAAAGTCGGGAAACTTCGAGTGTTTGTGAAAAACAGTAACAATGCCCTGGCATGGGAGAAG ACCACGAGTGAGGATGAAAAGTGGAAGACAGGGAAAATTCAGTTGTATCAAGGAACTGATGC TACCAAAAGCATCATTTTTGAAGCAGAACGTGGCAAGGGCAAAACCGGCGAAATCGCAGTGG ATGGCGTCTTGCTTCTCAGGCTTATGTCCAGATAGCCTTTTATCTGTGGATGACTGAATG TTACTATCTTTATATTTGACTTTGTATGTCAGTTCCCTGGTTTTTTTGATATTGCATCATAG GACCTCTGGCATTTTAGAATTACTAGCTGAAAAATTGTAATGTACCAACAGAAATATTATTG TAAGATGCCTTTCTTGTATAAGATATGCCAATATTTGCTTTAAATATCATATCACTGTATCT TCTCAGTCATTTCTGAATCTTTCCNCATTATATATAAAATNTGGAAANGTCAGTTTATCTC CCCTCCTCNGTATATCTGATTTGTATANGTANGTTGATGNGCTTCTCTCTACAACATTTCTA GAAAATAGAAAAAAAGCACAGAGAAATGTTTAACTGTTTGACTCTTATGATACTTCTTGGA AACTATGACATCAAAGATAGACTTTTGCCTAAGTGGCTTAGCTGGGTCTTTCATAGCCAAAC TTGTATATTAATTCTTTGTAATAATAA

MPLPWSLALPLLLSWVAGGFGNAASARHHGLLASARQPGVCHYGTKLACCYGWRRNSKGVCE
ATCEPGCKFGECVGPNKCRCFPGYTGKTCSQDVNECGMKPRPCQHRCVNTHGSYKCFCLSGH
MLMPDATCVNSRTCAMINCQYSCEDTEEGPQCLCPSSGLRLAPNGRDCLDIDECASGKVICP
YNRRCVNTFGSYYCKCHIGFELQYISGRYDCIDINECTMDSHTCSHHANCFNTQGSFKCKCK
QGYKGNGLRCSAIPENSVKEVLRAPGTIKDRIKKLLAHKNSMKKKAKIKNVTPEPTRTPTPK
VNLQPFNYEEIVSRGGNSHGGKKGNEEK

Signal peptide:

amino acids 1-21

EGF-like domain cysteine pattern signature.

amino acids 80-91

Calcium-binding EGF-like domains

amino acids 103-124, 230-251 and 185-206

GGGAGCTGCTGTGGCTGCTGCTGCTGCTGCTCCTGCTCTTGGTGCAGCTGCTG CGCTTCCTGAGGGCTGACGGCGACCTGACGCTACTATGGGCCGAGTGGCAGGGACGACGCCC AGAATGGGAGCTGACTGAT**ATG**GTGGTGTGGGTGACTGGAGCCTCGAGTGGAATTGGTGAGG AGCTGGCTTACCAGTTGTCTAAACTAGGAGTTTCTCTTGTGCTGTCAGCCAGAAGAGTGCAT GAGCTGGAAAGGGTGAAAAGAAGATGCCTAGAGAATGGCAATTTAAAAGAAAAAGATATACT TGTTTTGCCCCTTGACCTGACCGACACTGGTTCCCATGAAGCGGCTACCAAAGCTGTTCTCC AGGAGTTTGGTAGAATCGACATTCTGGTCAACAATGGTGGAATGTCCCAGCGTTCTCTGTGC ATGGATACCAGCTTGGATGTCTACAGAAAGCTAATAGAGCTTAACTACTTAGGGACGGTGTC CTTGACAAAATGTGTTCTGCCTCACATGATCGAGAGGAAGCAAGGAAAGATTGTTACTGTGA CTCCGGGGTTTTTTTAATGGCCTTCGAACAGAACTTGCCACATACCCAGGTATAATAGTTTC TAACATTTGCCCAGGACCTGTGCAATCAAATATTGTGGAGAATTCCCTAGCTGGAGAAGTCA CAAAGACTATAGGCAATAATGGAGACCAGTCCCACAAGATGACAACCAGTCGTTGTGTGCGG CTGATGTTAATCAGCATGGCCAATGATTTGAAAGAAGTTTGGATCTCAGAACAACCTTTCTT GTTAGTAACATATTTGTGGCAATACATGCCAACCTGGGCCTGGTGGATAACCAACAAGATGG GGAAGAAAGGATTGAGAACTTTAAGAGTGGTGTGGATGCAGACTCTTCTTATTTTAAAATC GAAAACATGAAAACAGCAATCTTCTTATGCTTCTGAATAATCAAAGACTAATTTGTGATTTT ATTGCCATGAATCTTGCAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA36343</pre>

><subunit 1 of 1, 289 aa, 1 stop

><MW: 32268, pI: 9.21, NX(S/T): 0

MVVWVTGASSGIGEELAYQLSKLGVSLVLSARRVHELERVKRRCLENGNLKEKDILVLPLDL TDTGSHEAATKAVLQEFGRIDILVNNGGMSQRSLCMDTSLDVYRKLIELNYLGTVSLTKCVL PHMIERKQGKIVTVNSILGIISVPLSIGYCASKHALRGFFNGLRTELATYPGIIVSNICPGP VQSNIVENSLAGEVTKTIGNNGDQSHKMTTSRCVRLMLISMANDLKEVWISEQPFLLVTYLW QYMPTWAWWITNKMGKKRIENFKSGVDADSSYFKIFKTKHD

Important Features:

Signal Peptide:

amino acids 1-31

Transmembrane domain:

amino acids 136-157

Tyrosine kinase phosphorylation site.

106-113 and 107-114

Homologous region to Short-chain alcohol dehydrogenase amino acids 80-90, 131-168, 1-13 and 176-185

GCGACGTGGGCACCGCCATCAGCTGTTCGCGCGTCTTCTCCTCCAGGTGGGGCAGGGGTTTC TTGCATCTTCTACACACTACAGCTATTGTTAGGTTGCCTGCGGACACGCTGGGCCTCTGTCC ${\tt TG} {\tt ATG} {\tt CTGCTGAGCTCCCTGGTGTCTCGCTGGTTCTGTCTACCTGGCCTGGATCCTGTTC}$ TTCGTGCTCTATGATTTCTGCATTGTTTGTATCACCACCTATGCTATCAACGTGAGCCTGAT GTGGCTCAGTTTCCGGAAGGTCCAAGAACCCCAGGGCAAGGCTAAGAGGCACTGAGCCCTCA ACCCAAGCCAGGCTGACCTCATCTGCTTTGCTTTTGGTCTTCAAGCCGCTCAGCGTGCCTGTG GACAGCGTGGCCCCGGCCCCCCAAGCCTCAGGAGGGCAACACAGTCCCTGGCGAGTGGCCC TGGCAGGCCAGTGTGAGGAGGCAAGGAGCCCACATCTGCAGCGGCTCCCTGGTGGCAGACAC CTGGGTCCTCACTGCTGCCCACTGCTTTGAAAAGGCAGCAGCAACAGAACTGAATTCCTGGT CAGTGGTCCTGGGGTTCTCTGCAGCGTGAGGGACTCAGCCCTGGGGCCGAAGAGGTGGGGGTG GCTGCCTGCAGTTGCCCAGGGCCTATAACCACTACAGCCAGGGCTCAGACCTGGCCCTGCT CCTTTGGAGCCTCCTGGGCCACTGGCTGGGATCAGGACACCAGTGATGCTCCTGGGACC CTACGCAATCTGCGCCTGCGTCTCATCAGTCGCCCCACATGTAACTGTATCTACAACCAGCT GCACCAGCGACACCTGTCCAACCCGGCCCGGCCTGGGATGCTATGTGGGGGCCCCCAGCCTG GGGTGCAGGGCCCCTGTCAGGGAGATTCCGGGGGCCCTGTGCTGTGCCTCGAGCCTGACGGA CACTGGGTTCAGGCTGGCATCATCAGCTTTGCATCAAGCTGTGCCCAGGAGGACGCTCCTGT GCTGCTGACCAACACGCTGCTCACAGTTCCTGGCTGCAGGCTCGAGTTCAGGGGGCAGCTT TCCTGGCCCAGAGCCCCAGAGACCCCGGAGATGAGTGATGAGGACAGCTGTGTAGCCTGTGGA TCCTTGAGGACAGCAGGTCCCCAGGCAGGAGCACCCTCCCCATGGCCCTGGGAGGCCAGGCT GATGCACCAGGGACAGCTGGCCTGTGGCGGAGCCCTGGTGTCAGAGGAGGCGGTGCTAACTG CTGCCCACTGCTTCATTGGGCGCCAGGCCCCAGAGGAATGGAGCGTAGGGCTGGGGACCAGA TCTGCCTGCCCTATCCTGACCACCACCTGCCTGATGGGGAGCGTGGCTGGGTTCTGGGACGG GCCCGCCCAGGAGCAGCATCAGCTCCCTCCAGACAGTGCCCGTGACCCTCCTGGGGCCTAG GGCCTGCAGCCGGCTGCATGCAGCTCCTGGGGGTGATGGCAGCCCTATTCTGCCGGGGATGG TGTGTACCAGTGCTGTGGGTGAGCTGCCCAGCTGTGAGGGCCTGTCTGGGGCCACCACTGGTG CATGAGGTGAGGGCACATGGTTCCTGGCCGGGCTGCACAGCTTCGGAGATGCTTGCCAAGG CCCCGCCAGGCCGCGGTCTTCACCGCGCTCCCTGCCTATGAGGACTGGGTCAGCAGTTTGG ACTGGCAGGTCTACTTCGCCGAGGAACCAGAGCCCGAGGCTGAGCCTGGAAGCTGCCTGGCC AACATAAGCCAACCAACCAGCTGCTGACAGGGGACCTGGCCATTCTCAGGACAAGAGAATGC AGGCAGGCAAATGGCATTACTGCCCCTGTCCTCCCCACCCTGTCATGTGATTCCAGGCAC CAGGGCAGGCCCAGCAGCTGTGGGAAGGAACCTGCCTGGGGCCACAGGTGCCCA CTCCCCACCTGCAGGACAGGGGTGTCTGTGGACACTCCCACACCCAACTCTGCTACCAAGC AAAATAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40571</pre>

MLLSSLVSLAGSVYLAWILFFVLYDFCIVCITTYAINVSLMWLSFRKVQEPQGKAKRHGNTV
PGEWPWQASVRRQGAHICSGSLVADTWVLTAAHCFEKAAATELNSWSVVLGSLQREGLSPGA
EEVGVAALQLPRAYNHYSQGSDLALLQLAHPTTHTPLCLPQPAHRFPFGASCWATGWDQDTS
DAPGTLRNLRLRLISRPTCNCIYNQLHQRHLSNPARPGMLCGGPQPGVQGPCQGDSGGPVLC
LEPDGHWVQAGIISFASSCAQEDAPVLLTNTAAHSSWLQARVQGAAFLAQSPETPEMSDEDS
CVACGSLRTAGPQAGAPSPWPWEARLMHQGQLACGGALVSEEAVLTAAHCFIGRQAPEEWSV
GLGTRPEEWGLKQLILHGAYTHPEGGYDMALLLLAQPVTLGASLRPLCLPYPDHHLPDGERG
WVLGRARPGAGISSLQTVPVTLLGPRACSRLHAAPGGDGSPILPGMVCTSAVGELPSCEGLS
GAPLVHEVRGTWFLAGLHSFGDACQGPARPAVFTALPAYEDWVSSLDWQVYFAEEPEPEAEP
GSCLANISQPTSC

Important features:

Signal peptide:

amino acids 1-15

Homologous region to Serine proteases, trypsin family amino acids 79-95, 343-359 and 237-247

N-glycosylation sites.

amino acids 37-40 and 564-567

Kringle domains

amino acids 79-96, 343-360 and 235-247

CGGGCCGCCCCGGCCCCATTCGGGCCGGGCCTCGCTGCGGCGGCGACTGAGCCAGGCTGG GCCGCGTCCCTGAGTCCCAGAGTCGGCGCGCGCGCGGCAGGCCAGCCTTCCACCACGGGGAG $\tt CCCAGCTGTCAGCCGCCTCACAGGAAG{\color{red} ATG} CTGCGTCGGCGGGGCAGCCCTGGCATGGGTGT$ GCATGTGGGTGCAGCCCTGGGAGCACTGTGGTTCTGCCTCACAGGAGCCCTGGAGGTCCAGG TCCCTGAAGACCCAGTGGTGGCACTGGTGGGCACCGATGCCACCCTGTGCTGCTCTCCC CCTGAGCCTGGCTCAGCCTGGCACAGCTCATCTGGCAGCTGACAGATACCAAACA GCTGGTGCACAGCTTTGCTGAGGGCCAGGACCAGGGCAGCGCCTATGCCAACCGCACGGCCC GACGAGGCCAGCCTTCACCTGCTTCGTGAGCATCCGGGATTTCGGCAGCGCTGCCGTCAGCCT GCAGGTGGCCGCTCCCTACTCGAAGCCCAGCATGACCCTGGAGCCCAACAAGGACCTGCGGC CAGGGGACACGGTGACCATCACGTGCTCCAGCTACCAGGGCTACCCTGAGGCTGAGGTGTTC TGGCAGGATGGGCAGGTGTGCCCCTGACTGGCAACGTGACCACGTCGCAGATGGCCAACGA GCAGGGCTTGTTTGATGTGCACAGCGTCCTGCGGGTGCTGCTGGGTGCGAATGGCACCTACA GCTGCCTGGTGCGCAACCCCGTGCTGCAGCAGGATGCGCACRGCTCTGTCACCATCACAGGG TGCACTGCTGGTGGCCCTGGCTTTCGTGTGCTGGAGAAAGATCAAACAGAGCTGTGAGGAGG AGAATGCAGGAGCTGAGGACCAGGATGGGGAGGGGAGAAGGCTCCAAGACAGCCCTGCAGCCT CTGAAACACTCTGACAGCAAAGAAGATGATGGACAAGAAATAGCC**TGA**CCATGAGGACCAGG GAGCTGCTACCCCTACAGCTCCTACCCTCTGGCTGCAATGGGGCTGCACTGTGAGCCC TGCCCCCAACAGATGCATCCTGCTCTGACAGGTGGGCTCCTTCTCCAAAGGATGCGATACAC AGACCACTGTGCAGCCTTATTTCTCCAATGGACATGATTCCCAAGTCATCCTGCTGCCTTTT GCCTTATTTCACAGTACATACATTTCTTAGGGACACAGTACACTGACCACATCACCACCCTC TTCTTCCAGTGCTGCGTGGACCATCTGGCTGCCTTTTTTCTCCAAAAGATGCAATATTCAGA CTGACTGACCCCTGCCTTATTTCACCAAAGACACGATGCATAGTCACCCCGGCCTTGTTTC TCCAATGGCCGTGATACACTAGTGATCATGTTCAGCCCTGCTTCCACCTGCATAGAATCTTT TCTTCTCAGACAGGGACAGTGCGGCCTCAACATCTCCTGGAGTCTAGAAGCTGTTTCCTTTC CCCTCCTTCCTCCCCGAGTGAAGACAGGGCAGGGCCAGGAATGCTTTGGGGACACCG AGGGGACTGCCCCCACCCCCACCATGGTGCTATTCTGGGGCTGGGGCAGTCTTTTCCTGGC TTGCCTCTGGCCAGCTCCTGGCCTCTGGTAGAGTGAGACTTCAGACGTTCTGATGCCTTCCG GATGTCATCTCCCTGCCCCAGGAATGGAAGATGTGAGGACTTCTAATTTAAATGTGGGAC AAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41386</pre>

><subunit 1 of 1, 316 aa, 1 stop, 1 unknown

><MW: -1, pI: 4.62, NX(S/T): 4

MLRRRGSPGMGVHVGAALGALWFCLTGALEVQVPEDPVVALVGTDATLCCSFSPEPGFSLAQ
LNLIWQLTDTKQLVHSFAEGQDQGSAYANRTALFPDLLAQGNASLRLQRVRVADEGSFTCFV
SIRDFGSAAVSLQVAAPYSKPSMTLEPNKDLRPGDTVTITCSSYQGYPEAEVFWQDGQGVPL
TGNVTTSQMANEQGLFDVHSVLRVVLGANGTYSCLVRNPVLQQDAHXSVTITGQPMTFPPEA
LWVTVGLSVCLIALLVALAFVCWRKIKQSCEEENAGAEDQDGEGEGSKTALQPLKHSDSKED
DGQEIA

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 251-270

N-glycosylation site.

amino acids 91-94, 104-107, 189-192 and 215-218

Homologous region to Immunoglobulins and MHC

amino acids 217-234

TTCGTGACCCTTGAGAAAGAGTTGGTGGTAAATGTGCCACGTCTTCTAAGAAGGGGGAGTC CTGAACTTGTCTGAAGCCCTTGTCCGTAAGCCTTGAACTACGTTCTTAAATCTATGAAGTCG ${\tt AGGGACCTTTCGCTGCTTTTGTAGGGACTTCTTTCCTTGCTTCAGCAAC \textbf{ATG} AGGCCTTTTCT}$ TGTGGAACGCGGTCTTGACTCTGTTCGTCACTTCTTTGATTGGGGCCTTTGATCCCTGAACCA GAAGTGAAAATTGAAGTTCTCCAGAAGCCATTCATCTGCCATCGCAAGACCAAAGGAGGGGGA TTTGATGTTGGTCCACTATGAAGGCTACTTAGAAAAGGACGGCTCCTTATTTCACTCCACTC ACAAACATAACAATGGTCAGCCCATTTGGTTTACCCTGGGCCATCCTGGAGGCTCTCAAAGGT TGGGACCAGGGCTTGAAAGGAATGTGTGTAGGAGAGAAGAGAAAGCTCATCATTCCTCCTGC TCTGGGCTATGGAAAAGAAGGAAAAGGTAAAATTCCCCCAGAAAGTACACTGATATTTAATA TTGATCTCCTGGAGATTCGAAATGGACCAAGATCCCATGAATCATTCCAAGAAATGGATCTT AATGATGACTGGAAACTCTCTAAAGATGAGGTTAAAGCATATTTAAAGAAGGAGTTTGAAAA ACATGGTGCGGTGAATGAAAGTCATCATGATGCTTTGGTGGAGGATATTTTTGATAAAG AAGATGAAGACAAAGATGGGTTTATATCTGCCAGAGAATTTACATATAAACACGATGAGTTA **TAG**AGATACATCTACCCTTTTAATATAGCACTCATCTTTCAAGAGAGGGCAGTCATCTTTAA AGAACATTTTATTTTATACAATGTTCTTTCTTGCTTTGTTTTTTTATTTTTATATATTTTTT GGGAAGAAAAGCTAATTGGTCTTTGAATAGAAGACTTCTGGACAATTTTTCACTTTCACAG ATATGAAGCTTTGTTTTACTTTCTCACTTATAAATTTAAAATGTTGCAACTGGGAATATACC ACGACATGAGACCAGGTTATAGCACAAATTAGCACCCTATATTTCTGCTTCCCTCTATTTTC TCCAAGTTAGAGGTCAACATTTGAAAAGCCTTTTGCAATAGCCCAAGGCTTGCTATTTTCAT GTTATAATGAAATAGTTTATGTGTAACTGGCTCTGAGTCTCTGCTTGAGGACCAGAGGAAAA TGGTTGTTGGACCTGACTTGTTAATGGCTACTGCTTTACTAAGGAGATGTGCAATGCTGAAG TTAGAAACAAGGTTAATAGCCAGGCATGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAG GCTGAGGCGGGCGGATCACCTGAGGTTGGGAGTTCGAGACCAGCCTGACCAACACGGAGAAA CCCTATCTCTACTAAAAATACAAAGTAGCCCGGCGTGGTGATGCGTGCCTGTAATCCCAGCT ACCCAGGAAGGCTGAGGCGGCAGAATCACTTGAACCCGAGGCCGAGGTTGCGGTAAGCCGAG ATCACCTNCAGCCTGGACACTCTGTCTCGAAAAAAGAAAGAACACGGTTAATACCATATNA ATATGTATGCATTGAGACATGCTACCTAGGACTTAAGCTGATGAAGCTTGGCTCCTAGTGAT TGGTGGCCTATTATGATAAATAGGACAAATCATTTATGTGTGAGTTTCTTTGTAATAAAATG TATCAATATGTTATAGATGAGGTAGAAAGTTATATTTATATTCAATATTTACTTCTTAAGGC TAGCGGAATATCCTTCCTGGTTCTTTAATGGGTAGTCTATAGTATATTATACTACAATAACA TTGTATCATAAGATAAAGTAGTAAACCAGTCTACATTTTCCCCATTTCTGTCTCATCAAAAAC TGAAGTTAGCTGGGTGTGGCTCATGCCTGTAATCCCAGCACTTTGGGGGGCCAAGGAGGG TGGATCACTTGAGATCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCTTGTCTCTA CTAAAAATACAAAAATTAGCCAGGCGTGGTGGTGCACACCTGTAGTCCCAGCTACTCGGGAG GCTGAGACAGGAGATTTGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCAAGATTGTGCC CCTACAGCAGCTACTATTGAATAAATACCTATCCTGGATTTT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44194</pre>

><subunit 1 of 1, 211 aa, 1 stop

><MW: 24172, pI: 5.99, NX(S/T): 1

MRLFLWNAVLTLFVTSLIGALIPEPEVKIEVLQKPFICHRKTKGGDLMLVHYEGYLEKDGSL FHSTHKHNNGQPIWFTLGILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEGKGKIPPEST LIFNIDLLEIRNGPRSHESFQEMDLNDDWKLSKDEVKAYLKKEFEKHGAVVNESHHDALVED IFDKEDEDKDGFISAREFTYKHDEL

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 176-179

Casein kinase II phosphorylation site.

amino acids 143-146, 156-159, 178-181 and 200-203

Endoplasmic reticulum targeting sequence.

amino acids 208-211

FKBP-type peptidyl-prolyl cis-trans isomerase

amino acids 78-114 and 118-131

EF-hand calcium-binding domain.

amino acids 191-203, 184-203 and 140-159

S-100/ICaBP type calcium binding domain

amino acids 183-203

CCAACCATTCCTCCCTTGTAGTTCTCGCCCCCTCAAATCACCCTCTCCCGTAGCCCACCCGA $\tt CTAACATCTCAGTCTCTGAAA{\color{red} ATG} CACAGAGATGCCTGGCTACCTCGCCCTGCCTTCAGCCT$ CACGGGGCTCAGTCTCTTTTCTCTTTTGGTGCCACCAGGACGGAGCATGGAGGTCACAGTAC CTGCCACCTCAACGTCCTCAATGGCTCTGACGCCCGCCTGCCCTGCACCTTCAACTCCTGC TACACAGTGAACCACAAACAGTTCTCCCTGAACTGGACTTACCAGGAGTGCAACAACTGCTC TGAGGAGATGTTCCTCCAGTTCCGCATGAAGATCATTAACCTGAAGCTGGAGCGGTTTCAAG ACCGCGTGGAGTTCTCAGGGAACCCCAGCAAGTACGATGTGTCGGTGATGCTGAGAAACGTG CAGCCGGAGGATGAGGGGATTTACAACTGCTACATCATGAACCCCCCTGACCGCCACCGTGG CCATGGCAAGATCCATCTGCAGGTCCTCATGGAAGAGCCCCCTGAGCGGGACTCCACGGTGG CCGTGATTGTGGGTGCCTCCGTCGGGGGCTTCCTGGCTGTTGGTCATCTTGGTGCTGATGGTG GTCAAGTGTGTGAGGAGAAAAAAAGAGCAGAAGCTGAGCACAGATGACCTGAAGACCGAGGA GGAGGGCAAGACGGACGGTGAAGGCAACCCGGATGATGGCGCCCAAG<u>TAG</u>TGGGTGGCCGGCC CTCTTGGTGTGCTTCCCGTGACCTAGGACCCCAGGGCCCACCTGGGGCCTCCTGAACCCCCG ACTTCGTATCTCCCACCCTGCACCAAGAGTGACCCACTCTCTTCCATCCGAGAAACCTGCCA TGCTCTGGGACGTGTGGGCCCTGGGGAGAGAGAAAGGGCTCCCACCTGCCAGTCCCTGG GGAGGGCCGCTGTCACCTGCCCAGTGCTTGCCTGGCAGTGGCTTCAGAGAGGACCTGGTGG GGAGGGAGGGCTTTCCTGTGCTGACAGCGCTCCCTCAGGAGGGCCTTGGCCTGGCACGGCTG TGCTCCTCCCTGCTCCCAGCCCAGAGCAGCCATCAGGCTGGAGGTGACGATGAGTTCCTGA AACTTGGAGGGCATGTTAAAGGGATGACTGTGCATTCCAGGGCACTGACGGAAAGCCAGGG CTGCAGGCAAAGCTGGACATGTGCCCTGGCCCAGGAGGCCATGTTGGGCCCTCGTTTCCATT GCTAGTGGCCTCCTTGGGGCTCCTGTTGGCTCCTAATCCCTTAGGACTGTGGATGAGGCCAG ACTGGAAGAGCAGCTCCAGGTAGGGGGCCATGTTTCCCAGCGGGGACCCACCAACAGAGGCC AGTTTCAAAGTCAGCTGAGGGGCTGAGGGGTGGGGCTCCATGGTGAATGCAGGTTGCTGCAG GCTCTGCCTTCTCCATGGGGTAACCACCCTCGCCTGGGCAGGGGGGGCAGCCAAGGCTGGGAAAT GAGGAGGCCATGCACAGGGTGGGGCAGCTTTCTTTGGGGCCTTCAGTGAGAACTCTCCCAGTT GCCCTTGGTGGGGTTTCCACCTGGCTTTTGGCTACAGAGAGGGGAAAGCCTGAGGCCG GCATAAGGGGAGGCCTTGGAACCTGAGCTGCCAATGCCAGCCCTGTCCCATCTGCGGCCACG $\tt CTACTCGCTCTCCCAACAACTCCCTTCGTGGGGACAAAGTGACAATTGTAGGCCAGGC$ ACAGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCGGGTGGATTACCTCCAT CTGTTTAGTAGAAATGGGCAAAACCCCATCTCTACTAAAAATACAAGAATTAGCTGGGCGTG GTGGCGTGTGCCTGTAATCCCAGCTATTTGGGAGGCTGAGGCAGGAGAATCGCTTGAGCCCG GGAAGCAGAGGTTGCAGTGAACTGAGATAGTGATAGTGCCACTGCAATTCAGCCTGGGTGAC ATAGAGAGACTCCATCTCAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45415</pre>

<subunit 1 of 1, 215 aa, 1 stop</pre>

<MW: 24326, pI: 6.32, NX(S/T): 4

MHRDAWLPRPAFSLTGLSLFFSLVPPGRSMEVTVPATLNVLNGSDARLPCTFNSCYTVNHKQ FSLNWTYQECNNCSEEMFLQFRMKIINLKLERFQDRVEFSGNPSKYDVSVMLRNVQPEDEGI YNCYIMNPPDRHRGHGKIHLQVLMEEPPERDSTVAVIVGASVGGFLAVVILVLMVVKCVRRK KEQKLSTDDLKTEEEGKTDGEGNPDDGAK

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 161-179

Immunoglobulin-like fold:

amino acids 83-127

N-glycosylation sites.

amino acids 42-45, 66-69 and 74-77

GTTGTATATGTCCTGAAGTACATCCGTGCATTTTTTTTTAGCATCCAACCATCCTCCCTTGTA
GTTCTCGCCCCCTCAAATCACCTTCTCCCTTAGCCCACCCNACTAACATCTCAGTCTCTGAA
AATGCACAGAGATGCCTGGCTACCTCGCCCTGCCTTCAGCCTCACGGGGCTCAGTCTCTTT
TCTCTTTGGTGCCACCAGGACGGAGCATGGAGGTCCACAGTACCTGNCCACCCTCAACGTCC
TCAATGGCTCTGACGCCCGCCTGCCCTTCAACTCCTGCTACACAGTGAACCACAAAC
AGTTCTCCCTGAACTGGACTTACCAGGAGTGCAACAACTGCTCTGAGGAGATGTTCCTCCAG
TTCCGCATGAAGATCATTAACCTGAAGCTGGAGCGGTTTCAAGACCGCGTGGAGTTCTCAGG
GAACCCCAGCAAGTACGATGTGTCGGTGATGCTGAGAAACGTGCAGCCGGAGGATGAGGGGA
TTTACAACTGCTACATCATGAACCCCCC

CTGGTGATTTGGGTAACCAACTGGAAGCCAAGCTGGACAAGCCGACAGTGGTGCACTACCTCTGCTCCAAGAAGA CCGAAAGCTACTTCACAATCTGGCTGAACCTGGAACTGCTGCTGCTGTCATCATTGACTGCTGGATTGACAATA TCAGGCTGGTTTACAACAAAACATCCAGGGCCACCCAGTTTCCTGATGGTGTGGATGTACGTGTCCCTGGCTTTG GGAAGACCTTCTCACTGGAGTTCCTGGACCCCAGCAAAAGCAGCGTGGGTTCCTATTTCCACACCATGGTGGAGA GCCTTGTGGGCTGGGGCTACACACGGGGTGAGGATGTCCGAGGGGCTCCCTATGACTGGCGCCGAGCCCCAAATG AAAACGGGCCCTACTTCCTGGCCCTCCGCGAGATGATCGAGGAGATGTACCAGCTGTATGGGGGCCCCGTGGTGC TGGTTGCCCACAGTATGGGCAACATGTACACGCTCTACTTTCTGCAGCCGCAGCCGCAGGCCTGGAAGGACAAGT ACAACAACCGGATCCCAGTCATCGGGCCCCTGAAGATCCGGGGAGCAGCGGTCAGCTGTCTCCACCAGCTGGC TGCTGCCCTACAACTACACATGGTCACCTGAGAAGGTGTTCGTGCAGACACCCCACAATCAACTACACACTGCGGG AAGCCACGATGCCACCTGGCGTGCAGCTGCACTGCCTCTATGGTACTGGCGTCCCCACACCAGACTCCTTCTACT ATGAGAGCTTCCCTGACCGTGACCCTAAAATCTGCTTTGGTGACGGCGATGGTACTGTGAACTTGAAGAGTGCCC TGCAGTGCCAGGCCTGGCAGAGCCGCCAGGAGCACCAAGTGTTGCTGCAGGAGCTGCCAGGCAGCGAGCACATCG ${f AGATGCTGGCCAACGCCACCACCCTGGCCTATCTGAAACGTGTGCTCCTTGGGCCC{f TGA}{CTCCTGTGCCACAGGA}$ CTCCTGTGGCTCGGCCGTGGACCTGCTGTTGGCCTCTGGGGCTGTCATGGCCCACGCGTTTTGCAAAGTTTGTGA GTGGCAGTGAAGAAGGAAGAATGAGAGTCTAGACTCAAGGGACACTGGATGGCAAGAATGCTGCTGATGGTGGA TGTCCCCCTATTCCTGTGGGCTTTTCATACTTGCCTACTGGGCCCTGGCCCCGCAGCCTTCCTATGAGGGATGTT GCCACAGATAGGCCTGCCACTGGTCATGGGTAGCTAGAGCTGCTGGCTTCCCTGTGGCTTAGCTGGTGGCCAGCC ${\tt CCTGGGACATCTCACTCCACTCCCTTACCACCAGGAGCATTCAAGCTCTGGATTGGGCAGCAGATGTG}$ CCCCCAGTCCCGCAGGCTGTTTCCAGGGGCCCTGATTTCCTCGGATGTGCTATTGGCCCCAGGACTGAAGCTGC CTCCCTTCACCCTGGGACTGTGGTTCCAAGGATGAGAGCAGGGGTTGGAGCCATGGCCTTCTGGGAACCTATGGA GAAAGGGAATCCAAGGAAGCAGGCCAAGGCTGCTCGCAGCTTCCCTGAGCTGCACCTCTTGCTAACCCCACCATCA $\verb|CCTGGCCAGCACCCAGCTTAGTGCTGGGACTAGCCCAGAAACTTGAATGGGACCCTGAGAGAGCCAGGGGTCCCC||$ TGAGGCCCCCTAGGGGCTTTCTGTCTGCCCCAGGGTGCTCCATGGATCTCCCTGTGGCAGCAGGCATGGAGAGT CAGGGCTGCCTTCATGGCAGTAGGCTCTAAGTGGGTGACTGGCCACAGGCCGAGAAAAGGGTACAGCCTCTAGGT GGGGTTCCCAAAGACGCCTTCAGGCTGGACTGAGCTGCTCTCCCACAGGGTTTCTGTGCAGCTGGATTTTCTCTG TTGCATACATGCCTGGCATCTGTCTCCCCTTGTTCCTGAGTGGCCCCACATGGGGCTCTGAGCAGGCTGTATCTG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44189</pre>

><subunit 1 of 1, 412 aa, 1 stop

><MW: 46658, pI: 6.65, NX(S/T): 4

MGLHLRPYRVGLLPDGLLFLLLLMLLADPALPAGRHPPVVLVPGDLGNQLEAKLDKPTVVH
YLCSKKTESYFTIWLNLELLLPVIIDCWIDNIRLVYNKTSRATQFPDGVDVRVPGFGKTFSL
EFLDPSKSSVGSYFHTMVESLVGWGYTRGEDVRGAPYDWRRAPNENGPYFLALREMIEEMYQ
LYGGPVVLVAHSMGNMYTLYFLQRQPQAWKDKYIRAFVSLGAPWGGVAKTLRVLASGDNNRI
PVIGPLKIREQQRSAVSTSWLLPYNYTWSPEKVFVQTPTINYTLRDYRKFFQDIGFEDGWLM
RQDTEGLVEATMPPGVQLHCLYGTGVPTPDSFYYESFPDRDPKICFGDGDGTVNLKSALQCQ
AWQSRQEHQVLLQELPGSEHIEMLANATTLAYLKRVLLGP

Important features:

Signal peptide:

amino acids 1-28

Potential lipid substrate binding site:

amino acids 147-164

N-glycosylation sites.

amino acids 99-102, 273-276, 289-292 and 398-401

Lipases, serine proteins

amino acids 189-201

Beta-transducin family Trp-Asp repeat

amino acids 353-365

GCCTACGGCGCGGCCAAGGCGGGCGCTCCTTCGACCTGCGGCGCTTCCTGACGCAGCCGCA GGTGGTGGCGCGCGCGTGTGCTTGGTCTTCGCCTTGATCGTGTTCTCCTGCATCTATGGTG AGGGCTACAGCAATGCCCACGAGTCTAAGCAGATGTACTGCGTGTTCAACCGCAACGAGGAT GCCTGCCGCTATGGCAGTGCCATCGGGGTGCTGGCCTTCCTGGCCTTCTTCTTGGT GGTCGACGCGTATTTCCCCCAGATCAGCAACGCCACTGACCGCAAGTACCTGGTCATTGGTG ACCTGCTCTTCTCAGCTCTCTGGACCTTCCTGTGGTTTGTTGGTTTCTGCTTCCTCACCAAC CAGTGGGCAGTCACCAACCCGAAGGACGTGCTGGTGGGGGGCCGACTCTGTGAGGGCAGCCAT ${\tt CACCTTCAGCTTCTTCTCCTGGGGTGTGCTGGCCTCCCTGGCCTACCAGCGCT}$ ACAAGGCTGGCGTGGACGACTTCATCCAGAATTACGTTGACCCCACTCCGGACCCCAACACT GCCTACGCCTCCTACCCAGGTGCATCTGTGGACAACTACCAACAGCCACCCTTCACCCAGAA $\tt CGCGGAGACCACCGAGGGCTACCAGCCGCCCCCTGTGTAC{\color{red}{\bf TGA}}GTGGCGGTTAGCGTGGGAA$ GGGGGACAGAGGGCCCTCCCCTCTGCCCTGGACTTTCCCATCAGCCTCCTGGAACTGCCA GCCCCTCTCTTTCACCTGTTCCATCCTGTGCAGCTGACACACAGCTAAGGAGCCTCATAGCC CACTCCTCCAGGGCACTTTTAGGAAAGGGTTTTTAGCTAGTGTTTTTCCTCGCTTTTAATGA CCTCAGCCCCGCCTGCAGTGGCTAGAAGCCAGCAGGTGCCCATGTGCTACTGACAAGTGCCT CAGCTTCCCCCGGGCCGGGTCAGGCCGTGGGAGCCGCTATTATCTGCGTTCTCTGCCAAAG ACTCGTGGGGGCCATCACACCTGCCCTGTGCAGCGGAGCCGGACCAGGCTCTTGTGTCCTCA CTCAGGTTTGCTTCCCCTGTGCCCACTGCTGTATGATCTGGGGGCCACCACCCTGTGCCGGT GGCCTCTGGGCTGCCTCCCGTGGTGTGAGGGCGGGGCTGGTGCTCATGGCACTTCCTCCTTG CTCCCACCCTGGCAGCAGGGAAGGGCTTTGCCTGACAACACCCCAGCTTTATGTAAATATTC TGCAGTTGTTACTTAGGAAGCCTGGGGAGGGCAGGGGTGCCCCATGGCTCCCAGACTCTGTC TGTGCCGAGTGTATTATAAAATCGTGGGGGGAGATGCCCGGCCTGGGATGCTGTTTGGAGACG GAATAAATGTTTTCTCATTCAAAG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48304</pre>

<subunit 1 of 1, 224 aa, 1 stop</pre>

<MW: 24810, pI: 4.75, NX(S/T): 1

MESGAYGAAKAGGSFDLRRFLTQPQVVARAVCLVFALIVFSCIYGEGYSNAHESKQMYCVFN RNEDACRYGSAIGVLAFLASAFFLVVDAYFPQISNATDRKYLVIGDLLFSALWTFLWFVGFC FLTNQWAVTNPKDVLVGADSVRAAITFSFFSIFSWGVLASLAYQRYKAGVDDFIQNYVDPTP DPNTAYASYPGASVDNYQQPPFTQNAETTEGYQPPPVY

Important features:

Type II Transmembrane domain:

amino acids 1-45

Other transmembrane domains:

amino acids 74-90, 108-126 and 145-161

N-glycosylation site.

amino acids 97-100

CCCGTGGCCGAGGCCCCCAGGTGGCTGGCGGGCAGGGGGACGGAGGTGATGGCGAGGAGCGGAGCCAGAGGGG ATGTTCAAGGCCTGTGAGGACTCCAAGAGAAAAGCCCGGGGCTACCTCCGCCTGGTGCCCCTGTTTGTGCTGCTG GCCCTGCTCGTGCTGGCTCGGCGGGGGTGCTACTCTGGTATTTCCTAGGGTACAAGGCGGAGGTGATGGTCAGC CAGGTGTACTCAGGCAGTCTGCGTGTACTCAATCGCCACTTCTCCCAGGATCTTACCCGCCGGGAATCTAGTGCC AACTCCAGCTCCGTCTATTCCTTTGGGGAGGGACCCCTCACCTGCTTCTTCTGGTTCATTCTCCAAATCCCCGAG CACCGCCGGCTGATGCTGAGCCCCGAGGTGGTGCAGGCACTGCTGGTGGAGGAGCTGCTGTCCACAGTCAACAGC TCGGCTGCCGTCCCCTACAGGGCCGAGTACGAAGTGGACCCCGAGGGCCTAGTGATCCTGGAAGCCAGTGTGAAA GACATAGCTGCATTGAATTCCACGCTGGGTTGTTACCGCTACAGCTACGTGGGCCAGGGCCAGGTCCTCCGGCTG AAGGGGCCTGACCACCTGCCTGCCTGTGGCACCTGCAGGGCCCCAAGGACCTCATGCTCAAACTCCGG $\tt CTGGAGTGGACGCTGGCAGAGTGCCGGGACCGACTGGCCATGTATGACGTGGCCGGGCCCCTGGAGAAGAGGGCTC$ GTCTGGAAGAGGGCCTGCACAGCTACTACGACCCCTTCGTGCTCCCGTGCAGCCGGTGGTCTTCCAGGCCTGT GAAGTGAACCTGACGCTGGACAACAGGCTCGACTCCCAGGGCGTCCTCAGCACCCCGTACTTCCCCAGCTACTAC TATGCACTGAGGAGGCAGAAGTATGATTTGCCGTGCACCCAGGGCCAGTGGACGATCCAGAACAGGAGGCTGTGT TCCCAGATCTCCCTCACCGGGCCCGGTGTGCGGGTGCACTATGGCTTGTACAACCAGTCGGACCCCTGCCCTGGA GAGAGAAACTGCGTTTGCAGAGCCACATTCCAGTGCAAAGAGGACAGCACATGCATCTCACTGCCCAAGGTCTGT GATGGCCAGCCTGATTGTCTCAACGGCAGCGATGAAGAGCAGTGCCAGGAAGGGGTGCCATGTGGGACATTCACC TTCCAGTGTGAGGACCGGAGCTGCGTGAAGAAGCCCAACCCGCAGTGTGATGGGCGGCCCGACTGCAGGGACGGC TCGGATGAGGAGCACTGTGACTGTGGCCTCCAGGGCCCCTCCAGCCGCATTGTTGGTGGAGCTGTGTCCTCCGAG GGTGAGTGGCCATGGCAGGCCAGCCTCCAGGTTCGGGGGTCGACACATCTGTGGGGGGGCCCTCATCGCTGACCGC TGGGTGATAACAGCTGCCCACTGCTTCCAGGAGGACAGCATGGCCTCCACGGTGCTGTGGACCGTGTTCCTGGGC AAGGTGTGGCAGAACTCGCGCTGGCCTGGAGAGGTGTCCTTCAAGGTGAGCCGCCTGCTCCTGCACCCGTACCAC GAAGAGGACAGCCATGACTACGACGTGGCGCTGCTGCAGCTCGACCACCCGGTGGTGCGCTCGGCCGCCGTGCGC $\tt CCCGTCTGCCTGCCCGCGCTCCCACTTCTTCGAGCCCGGCCTGCACTGCTGGATTACGGGCTGGGGCGCCTTG$ CGCGAGGGCGCCCCATCAGCAACGCTCTGCAGAAAGTGGATGTGCAGTTGATCCCACAGGACCTGTGCAGCGAG GCCTATCGCTACCAGGTGACGCCACGCATGCTGTGTGCCGGCTACCGCAAGGGGCAAGAAGGATGCCTGTCAGGGT GACTCAGGTGGTCCGCTGGTGCCAAGGCACTCAGTGGCCGCTGGTTCCTGGCGGGGCTGGTCAGCTGGGGCCTG GGCTGTGGCCGGCCTAACTACTTCGGCGTCTACACCCGCATCACAGGTGTGATCAGCTGGATCCAGCAAGTGGTG ACC<u>TGA</u>GGAACTGCCCCCTGCAAAGCAGGGCCCACCTCCTGGACTCAGAGAGCCCAGGGCAACTGCCAAGCAGG GGGACAAGTATTCTGGCGGGGGGGGGGGGAGAGAGCAGGCCCTGTGGTGGCAGGAGGTGGCATCTTGTCTCGTCC GCAGTGGCTCAGCAGCAAGAATGCTGGTTCTACATCCCGAGGAGTGTCTGAGGTGCGCCCCACTCTGTACAGAGG GGAAGGTGCTCCCATCGGAGGGGACCCTCAGAGCCCTGGAGACTGCCAGGTGGGCCTGCTGCCACTGTAAGCCAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49152</pre>

><subunit 1 of 1, 802 aa, 1 stop

><MW: 88846, pI: 6.41, NX(S/T): 7

MPVAEAPQVAGGQGDGGEEAEPEGMFKACEDSKRKARGYLRLVPLFVLLALLVLASAGVL
LWYFLGYKAEVMVSQVYSGSLRVLNRHFSQDLTRRESSAFRSETAKAQKMLKELITSTRLGT
YYNSSSVYSFGEGPLTCFFWFILQIPEHRRLMLSPEVVQALLVEELLSTVNSSAAVPYRAEY
EVDPEGLVILEASVKDIAALNSTLGCYRYSYVGQGQVLRLKGPDHLASSCLWHLQGPKDLML
KLRLEWTLAECRDRLAMYDVAGPLEKRLITSVYGCSRQEPVVEVLASGAIMAVVWKKGLHSY
YDPFVLSVQPVVFQACEVNLTLDNRLDSQGVLSTPYFPSYYSPQTHCSWHLTVPSLDYGLAL
WFDAYALRRQKYDLPCTQGQWTIQNRRLCGLRILQPYAERIPVVATAGITINFTSQISLTGP
GVRVHYGLYNQSDPCPGEFLCSVNGLCVPACDGVKDCPNGLDERNCVCRATFQCKEDSTCIS
LPKVCDGQPDCLNGSDEEQCQEGVPCGTFTFQCEDRSCVKKPNPQCDGRPDCRDGSDEEHCD
CGLQGPSSRIVGGAVSSEGEWPWQASLQVRGRHICGGALIADRWVITAAHCFQEDSMASTVL
WTVFLGKVWQNSRWPGEVSFKVSRLLLHPYHEEDSHDYDVALLQLDHPVVRSAAVRPVCLPA
RSHFFEPGLHCWITGWGALREGGPISNALQKVDVQLIPQDLCSEAYRYQVTPRMLCAGYRKG
KKDACQGDSGGPLVCKALSGRWFLAGLVSWGLGCGRPNYFGVYTRITGVISWIQQVVT

Important features:

Type II transmembrane domain:

amino acids 46-67

Serine proteases, trypsin family, histidine active site.

amino acids 604-609

N-glycosylation sites.

amino acids 127-130, 175-178, 207-210, 329-332, 424-427, 444-447 and 509-512

Kringle domains.

amino acids 746-758 and 592-609

Homologous region to Kallikrein Light Chain:

amino acids 568-779

Homologous region to Low-density lipoprotein receptor:

amino acids 451-567

GCACCCAGGGCCAGTGGACGATCCAGAACAGGAGGCTGTGTGGCTTGCGCATCCTGCAGCCC TACGCCGAGAGGATCCCCGTGGTGGCCACGGCCGGGATCACCATCAACTTCACCTCCCAGAT CTCCCTCACCGGGCCCGGTGTGCGGGTGCACTATGGCTTGTACAACCAGTCGGACCCCTGCC TGCCCCAACGGCCTGGATGAGAGAAACTGCGTTTGCAGAGCCACATTCCAGTGCAAAGAGGA CAGCACATGCATCTCACTGCCCAAGGTCTGTGATGGGCAGCCTGATTGTCTCAACGGCAGCG ATGAAGAGCAGTGCCAGGAAGGGGTGCCATGTGGGACATTCACCTTCCAGTGTGAGGACCGG AGCTGCGTGAAGAAGCCCAACCCGCAGTGTGATGGGCGGCCCGACTGCAGGGACGGCTCGGA TGAGGAGCACTGTGACTGTGGCCTCCAGGGCCCCTCCAGCCGCATTGTTGGTGGAGCTGTGT CCTCCGAGGGTGAGTGGCCATGGCAGGCCAGCCTCCAGGTTCGGGGTCGACACATCTGTGGG GGGGCCCTCATCGCTGACCGCTGGGTGATAACAGCTGCCCACTGCTTCCAGGAGGACAGCAT GGCCTCCACGGTGCTGTGGACCGTGTTCCTGGGCAAGGTGTGGCAGAACTCGCGCTGGCCTG GAGAGGTGTCCTTCAAGGTGAGCCGCCTGCTCCTGCACCGTACCACGAAGAGGACAGCCAT GACTACGACGTGGCGCTGCAGCTCGACCACCCGGTGGTGCGCTCGGCCGCCGTGCGCCC CGTCTGCCTGCCGCGCTCCCACTTCTTCGAGCCCGGCCTGCACTGCTGGATTACGGGCT GGGGCGCCTTGCGCGAGGGCGCCCCATCAGCAACGCTCTGCAGAAAGTGGATGTGCAGTTG ATCCCACAGGACCTGTGCAGCGAGGCCTATCGCTACCAGGTGACGCCACGCATGCTGTGTGC CGGCTACCGCAAGGGCAAGAAGGATGCCTGTCAGGGTGACTCAGGTGGTCCGCTGGTGTGCA AGGCACTCAGTGGCCGGTTCCTGGCGGGGCTGGTCAGCTGGGGCCTGGGCCGG CCTAACTACTTCGGCGTCTACACCCGCATCACAGGTGTGATCAGCTGGATCCAGCAAGTGGT GACCTGAGGAACTGCCCCCCTGCAAAGCAGGGCCCACCTCCTGGACTCAGAGAGCCCAGGGC AACTGCCAAGCAGGGGGACAAGTAT

GGACGAGGCAGATCTCGTTCTGGGGCAAGCCGTTGACACTCGCTCCCTGCCACCGCCCGGG CTCCGTGCCGCCAAGTTTTCCATTTTCCACCTTCTCTGCCTCCAGTCCCCCAGCCCCTGGCCG TTTCTGGAGCCTCTGCTATTGCTTTGCTGCGGGGAGCCCCGTACCTTTTGGTCCAGAGGGAC GGCTGGAAGATAAGCTCCACAAACCCAAAGCTACACAGACTGAGGTCAAACCATCTGTGAGG TTTAACCTCCGCACCTCCAAGGACCCAGAGCATGAAGGATGCTACCTCTCCGTCGGCCACAG CCAGCCCTTAGAAGACTGCAGTTTCAACATGACAGCTAAAACCTTTTTCATCATCACGGAT GGACGATGAGCGGTATCTTTGAAAACTGGCTGCACAAACTCGTGTCAGCCCTGCACAAGA GAGAAAGACGCCAATGTAGTTGTGGTTGACTGGCTCCCCCTGGCCCACCAGCTTTACACGGA AGAAGGACGATTTTTCTCTCGGGAATGTCCACTTGATCGGCTACAGCCTCGGAGCGCACGTG GCCGGGTATGCAGGCAACTTCGTGAAAGGAACGGTGGGCCGAATCACAGGTTTGGATCCTGC CGGGCCCATGTTTGAAGGGGCCGACATCCACAAGAGGCTCTCTCCGGACGATGCAGATTTTG TGGATGTCCTCCACACCTACACGCGTTCCTTCGGCTTGAGCATTGGTATTCAGATGCCTGTG TCCACCTCTTTGTTGACTCTCTGGTGAATCAGGACAAGCCGAGTTTTGCCTTCCAGTGCACT GACTCCAATCGCTTCAAAAAGGGGATCTGTCTGAGCTGCCGCAAGAACCGTTGTAATAGCAT TGGCTACAATGCCAAGAAAATGAGGAACAAGGAACAGCAAAATGTACCTAAAAACCCGGG CAGGCATGCCTTTCAGAGGTAACCTTCAGTCCCTGGAGTGTCCCTGAGGAAGGCCCTTAATA CCTCCTTCTTAATACCATGCTGCAGAGCAGGGCACATCCTAGCCCAGGAGAAGTGGCCAGCA CAATCCAATCAAATCGTTGCAAATCAGATTACACTGTGCATGTCCTAGGAAAGGGAATCTTT AAAAAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49646</pre>

><subunit 1 of 1, 354 aa, 1 stop

><MW: 39362, pI: 8.35, NX(S/T): 2

MSNSVPLLCFWSLCYCFAAGSPVPFGPEGRLEDKLHKPKATQTEVKPSVRFNLRTSKDPEHE GCYLSVGHSQPLEDCSFNMTAKTFFIIHGWTMSGIFENWLHKLVSALHTREKDANVVVVDWL PLAHQLYTDAVNNTRVVGHSIARMLDWLQEKDDFSLGNVHLIGYSLGAHVAGYAGNFVKGTV GRITGLDPAGPMFEGADIHKRLSPDDADFVDVLHTYTRSFGLSIGIQMPVGHIDIYPNGGDF QPGCGLNDVLGSIAYGTITEVVKCEHERAVHLFVDSLVNQDKPSFAFQCTDSNRFKKGICLS CRKNRCNSIGYNAKKMRNKRNSKMYLKTRAGMPFRGNLQSLECP

Important features:

Signal peptide:

amino acids 1-16

Lipases, serine active site.

amino acids 163-172

N-glycosylation sites.

amino acids 80-83 and 136-139

CGGCAAAGTTTGGCCCGAAGAGGAAGTGGTCTCAAACCCCGGCAGGTGGCGACCAGGCCAGACCAGGGGGCGCTCG CTGCCTGCGGGCGGCTGTAGGCGAGGCCCCCAGTGCCGAGACCCGGGGCTTCAGGAGCCGGCCCCGGGAG AGAAGAGTGCGGCGGCGGACGGAAAACAACTCCAAAGTTGGCGAAAGGCACCGCCCCTACTCCCGGGCTGCCG CACCAGGGAGCCTGGGCGCCGGGGCTCCGCCGCGACCCCATCGGGTAGACCACAGAAGCTCCGGGACCCTTCCG GCACCTCTGGACAGCCCAGG<u>ATG</u>CTGTTGGCCACCCTCCTCCTCCTCCTTGGAGGCGCTCTGGCCCATCCAG GGCCCCTGGTCCGGGACAGCCGCACCTCCCCTGCCAACTGCACCTGGCTCATCCTGGGCAGCAAGGAACAGACTG TCACCATCAGGTTCCAGAAGCTACACCTGGCCTGTGGCTCAGAGCGCTTAACCCTACGCTCCCCTCTCCAGCCAC TGATCTCCCTGTGTGAGGCACCTCCCAGCCCTCTGCAGCTGCCCGGGGGCAACGTCACCATCACTTACAGCTATG CTGGGGCCAGAGCACCCATGGGCCAGGGCTTCCTGCTCTCCTACAGCCAAGATTGGCTGATGTGCCTGCAGGAAG AGTTTCAGTGCCTGAACCACCGCTGTGTATCTGCTGTCCAGCGCTGTGATGGGGTTGATGCCTGTGGCGATGGCT ${ t TCACCTTGGAGGACTTCTATGGGGTCTTCTCCTCTGGATATACACACCTAGCCTCAGTCTCCCACCCCCAGT$ CCTGCCATTGGCTGCACCCCCATGATGGCCGGCGGCTGCCCTTCACAGCCCTGGACTTGGGCTTTG GAGATGCAGTGCATGTGTATGACGGCCCTGGGCCCCTGAGAGCTCCCGACTACTGCGTAGTCTCACCCACTTCA GCAATGGCAAGGCTGTCACTGTGGAGACACTGTCTGGCCAGGCTGTTGTGTCCTACCACACTGCTTGGAGCA $\tt CTGGCCTGGGAGCCTAGGTGAGCGCTGCTACAGTGAGGCACAGCGCTGTGACGGCTCATGGGACT$ GTGCTGACGGCACAGATGAGGAGGACTGCCCAGGCTGCCCACCTGGACACTTCCCCTGTGGGGCTGCTGGCACCT CTGGTGCCACAGCCTGCTACCTGCTGACCGCTGCAACTACCAGACTTTCTGTGCTGATGGAGCAGATGAGA GACGCTGTCGGCATTGCCAGCCTGGCAATTTCCGATGCCGGGACGAGAAGTGCGTGTATGAGACGTGGGTGTGCG ATGGGCAGCCAGACTGTGCGGACGGCAGTGATGAGTGGGACTGCTCCTATGTTCTGCCCCGCAAGGTCATTACAG TTCGCACCCAGGAGTACAGCATCTTTGCCCCCCTCTCCCGGATGGAGGCTGAGATTGTGCAGCAGCAGCACCCC CTTCCTACGGGCAGCTCATTGCCCAGGGTGCCATCCCACCTGTAGAAGACTTTCCTACAGAGAATCCTAATGATA ACTCAGTGCTGGGCAACCTGCGTTCTCTGCTACAGATCTTACGCCAGGATATGACTCCAGGAGGTGGCCCAGGTG CCCGCCGTCGTCAGCGGGGCCGCTTGATGCGACGCCTGGTACGCCGTCTCCGCCGCTGGGCCTTGCTCCCTCGAA AGGCTCCCCTCCCATCTGCTAGCACGTCTCCAGCCCCCACTACTGTCCCTGAAGCCCCAGGGCCACTGCCCTCAC TGCCCCTAGAGCCATCACTATTGTCTGGAGTGGTGCAGGCCCTGCGAGGCCGCCTGTTGCCCAGCCTGGGGCCCC CAGGACCAACCCGGAGCCCCCTGGACCCCACACAGCAGTCCTGGCCCTGGAAGATGAGGACGATGTGCTACTGG ${\tt ACCACTTCCTTCCCTGGGTTTCAGGGGACTTGGTGGGCCTCCCGTTGACCCTATGTAGCTGCTATAAAGT}$ TAAGTGTCCCTCAGGCAGGGGGGGGGCTCACAGAGTCTCCTCTGTACGTGGCCATGGCCAGACACCCCAGTCCCT TCACCACCACCTGCTCCCCACGCCACCATTTGGGTGGCTGTTTTTAAAAAGTAAAGTTCTTAGAGGATCATA GGTCTGGACACTCCATCCTTGCCAAACCTCTACCCAAAAGTGGCCTTAAGCACCGGAATGCCAATTAACTAGAGA $\verb|CCCTCCAGCCCCAAGGGGAGGATTTGGGCAGAACCTGAGGTTTTGCCATCCACAATCCCTCCTACAGGGCCTGG|\\$ CTCACAAAAAGAGTGCAACAAATGCTTCTATTCCATAGCTACGGCATTGCTCAGTAAGTTGAGGTCAAAAATAAA **GGAATCATACATCTC**

</usr/seqdb2/sst/DNA/Dnasegs.min/ss.DNA49631</pre>

<subunit 1 of 1, 713 aa, 1 stop</pre>

<MW: 76193, pI: 5.42, NX(S/T): 4

MLLATLLLLLGGALAHPDRIIFPNHACEDPPAVLLEVQGTLQRPLVRDSRTSPANCTWLIL GSKEQTVTIRFQKLHLACGSERLTLRSPLQPLISLCEAPPSPLQLPGGNVTITYSYAGARAP MGQGFLLSYSQDWLMCLQEEFQCLNHRCVSAVQRCDGVDACGDGSDEAGCSSDPFPGLTPRP VPSLPCNVTLEDFYGVFSSPGYTHLASVSHPQSCHWLLDPHDGRRLAVRFTALDLGFGDAVH VYDGPGPPESSRLLRSLTHFSNGKAVTVETLSGQAVVSYHTVAWSNGRGFNATYHVRGYCLP WDRPCGLGSGLGAGEGLGERCYSEAQRCDGSWDCADGTDEEDCPGCPPGHFPCGAAGTSGAT ACYLPADRCNYQTFCADGADERRCRHCQPGNFRCRDEKCVYETWVCDGQPDCADGSDEWDCS YVLPRKVITAAVIGSLVCGLLLVIALGCTCKLYAIRTQEYSIFAPLSRMEAEIVQQQAPPSY GQLIAQGAIPPVEDFPTENPNDNSVLGNLRSLLQILRQDMTPGGGPGARRQRGRLMRRLVR RLRRWGLLPRTNTPARASEARSQVTPSAAPLEALDGGTGPAREGGAVGGQDGEQAPPLPIKA PLPSASTSPAPTTVPEAPGPLPSLPLEPSLLSGVVQALRGRLLPSLGPPGPTRSPPGPHTAV LALEDEDDVLLVPLAEPGVWVAEAEDEPLLT

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 442-462

LDL-receptor class A (LDLRA) domain proteins amino acids 411-431, 152-171, 331-350 and 374-393

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49645</pre>

><subunit 1 of 1, 152 aa, 1 stop

><MW: 17170, pI: 9.62, NX(S/T): 1

MDNVQPKIKHRPFCFSVKGHVKMLRLALTVTSMTFFIIAQAPEPYIVITGFEVTVILFFILL YVLRLDRLMKWLFWPLLDIINSLVTTVFMLIVSVLALIPETTTLTVGGGVFALVTAVCCLAD GALIYRKLLFNPSGPYQKKPVHEKKEVL

Important features:

Potential type II transmembrane domain:

amino acids 26-42

Other potential transmembrane domain:

amino acids 44-65, 81-101 and 109-129

Leucine zipper pattern

amino acids 78-99 and 85-106

N-myristoylation site.

amino acids 110-115

Ribonucleotide reductase large subunit protein

amino acids 116-127

GGGCGAGAAGTAGGGGAGGGCGTGTTCCGCCGCGGTGGCGGTTGCTATCGTTTTGCAGAACC
TACTCAGGCAGCCAGNTGAGAAGAGTTGAGGGAAAGTGCTGCTGCTGGGTCTGCAGACGCGA
TGGATAACGTGCAGCCGAAAATAAAACATCGCCCCTTCTGCTTCAGTGTGAAAGGCCACGTG
AAGATGCTGCGGCTGGCACTAACTGNGACATCTATGACCTTTTTTTATNATCGCACAAGCCCC
TGAACCATATATTGTTATCACTGGATTTGAAGTCACCGTTATCTTATTTTTCATACTTTTAT
ATGTACTCAGACTTGATCGATTAATGAAGTGGTTATTTTTGGCCTTTGCTTGATATTATCAAC
TCACTGGTAACAACAGTATTCATGCTCATCGTATCTGTTTGGCACTGATACCAGAAACCAC
AACATTGACAGTTGGTGGAGGGGTGTTTGCACTTGTGACAGCAGTATCCTGTNTTGCCGAC

CAGCCCGCGCGCCGAGTCGCTGAGCCGCGGCTGCCGGACGGGACGGGACCGGCTAGG CTGGGCGCCCCCGGGCCCGCCGTGGGCATGGCCACTGGCCCGGGCGCTGCTGC CTCTGCTGGCCCAGTGGCTCCTGCGCGCCCCCGGAGCTGGCCCCCGCGCCCTTCACGCTG CCCCTCCGGGTGGCCGCGCCACGAACCGCGTAGTTGCGCCCACCCCGGGACCCGGGACCCC TGCCGAGCGCCACGCCGACGGCTTGGCGCTCGCCCTGGAGCCTGCCCTGGCGTCCCCCGCGG GCGCCGCCAACTTCTTGGCCATGGTAGACAACCTGCAGGGGGACTCTGGCCGCGGCTACTAC CTGGAGATGCTGATCGGGACCCCCCCGCAGAAGCTACAGATTCTCGTTGACACTGGAAGCAG TAACTTTGCCGTGGCAGGAACCCCGCACTCCTACATAGACACGTACTTTGACACAGAGAGGT CTAGCACATACCGCTCCAAGGGCTTTGACGTCACAGTGAAGTACACACAAGGAAGCTGGACG GGCTTCGTTGGGGAAGACCTCGTCACCATCCCCAAAGGCTTCAATACTTCTTTTCTTGTCAA CATTGCCACTATTTTTGAATCAGAGAATTTCTTTTTGCCTGGGATTAAATGGAATGGAATAC TTGGCCTAGCTTATGCCACACTTGCCAAGCCATCAAGTTCTCTGGAGACCTTCTTCGACTCC CTGGTGACACAAGCAACATCCCCAACGTTTTCTCCATGCAGATGTGTGGAGCCGGCTTGCC ATAAAGGAGACATCTGGTATACCCCTATTAAGGAAGAGTGGTACTACCAGATAGAAATTCTG AAATTGGAAATTGGAGGCCAAAGCCTTAATCTGGACTGCAGAGAGTATAACGCAGACAAGGC CATCGTGGACAGTGCACCACGCTGCTGCGCCCCAGAAGGTGTTTGATGCGGTGGTGG AAGCTGTGGCCCGCGCATCTCTGATTCCAGAATTCTCTGATGGTTTCTGGACTGGGTCCCAG CTGGCGTGCTGGACGAATTCGGAAACACCTTGGTCTTACTTCCCTAAAATCTCCATCTACCT GAGAGACGAGAACTCCAGCAGGTCATTCCGTATCACAATCCTGCCTCAGCTTTACATTCAGC CCATGATGGGGGCCGGCCTGAATTATGAATGTTACCGATTCGGCATTTCCCCCATCCACAAAT GCGCTGGTGATCGGTGCCACGGTGATGGAGGGCTTCTACGTCATCTTCGACAGAGCCCAGAA GAGGGTGGGCTTCGCAGCGAGCCCCTGTGCAGAAATTGCAGGTGCTGCAGTGTCTGAAATTT CCGGGCCTTTCTCAACAGAGGATGTAGCCAGCAACTGTGTCCCCGCTCAGTCTTTGAGCGAG CCCATTTTGTGGATTGTCCTATGCGCTCATGAGCGTCTGTGGAGCCATCCTCCTTGTCTT AATCGTCCTGCTGCTGCCGTTCCGGTGTCAGCGTCGCCCCCGTGACCCTGAGGTCGTCA ATGATGAGTCCTCTCGGTCAGACATCGCTGGAAA**TGA**ATAGCCAGGCCTGACCTCAAGCAA CCATGAACTCAGCTATTAAGAAAATCACATTTCCAGGGCAGCAGCCGGGATCGATGGTGGCG $\tt CTTTCTCCTGTGCCCACCCGTCTTCAATCTCTGTTCTGCTCCCAGATGCCTTCTAGATTCAC$ TGTCTTTGATTCTTGATTTTCAAGCTTTCAAATCCTCCCTACTTCCAAGAAAAATAATTAA AAAAAAACTTCATTCTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45493</pre>

><subunit 1 of 1, 518 aa, 1 stop

><MW: 56180, pI: 5.08, NX(S/T): 2

MGALARALLLPLLAQWLLRAAPELAPAPFTLPLRVAAATNRVVAPTPGPGTPAERHADGLAL
ALEPALASPAGAANFLAMVDNLQGDSGRGYYLEMLIGTPPQKLQILVDTGSSNFAVAGTPHS
YIDTYFDTERSSTYRSKGFDVTVKYTQGSWTGFVGEDLVTIPKGFNTSFLVNIATIFESENF
FLPGIKWNGILGLAYATLAKPSSSLETFFDSLVTQANIPNVFSMQMCGAGLPVAGSGTNGGS
LVLGGIEPSLYKGDIWYTPIKEEWYYQIEILKLEIGGQSLNLDCREYNADKAIVDSGTTLLR
LPQKVFDAVVEAVARASLIPEFSDGFWTGSQLACWTNSETPWSYFPKISIYLRDENSSRSFR
ITILPQLYIQPMMGAGLNYECYRFGISPSTNALVIGATVMEGFYVIFDRAQKRVGFAASPCA
EIAGAAVSEISGPFSTEDVASNCVPAQSLSEPILWIVSYALMSVCGAILLVLIVLLLLPFRC
QRRPRDPEVVNDESSLVRHRWK

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 466-494

N-glycosylation sites.

amino acids 170-173 and 366-369

Leucine zipper pattern.

amino acids 10-31 and 197-118

Eukaryotic and viral aspartyl proteases

amino acids 109-118, 252-261 and 298-310

CGCCTCCGCCTTCGGAGGCTGACGCGCCCGGGCGCCCTTCCAGGCCTGTGCAGGGCGGATCG GCAGCCGCCTGGCGGCGATCCAGGGCGGTGCGGGGCCTGGGCGGGGGCCGGGAGGCGCGGCC GGC**ATG**GAGGCGCTGCTGGGCGCGGGGTTGCTGGGGCGCTTACGTGCTTGTCTACTA CAACCTGGTGAAGGCCCGGCGTGCGGCGGCATGGGCAACCTGCGGGGCCGCACGGCCGTGG TCACGGGCGCCAACAGCGGCATCGGAAAGATGACGGCGCTGGAGCTGGCGCGCGGGGAGCG GGAGAGTGGGAACAATGAGGTCATCTTCATGGCCTTGGACTTGGCCAGTCTGGCCTCGGTGC GGGCCTTTGCCACTGCCTTTCTGAGCTCTGAGCCACGGTTGGACATCCTCATCCACAATGCC GGTATCAGTTCCTGTGGCCGGACCCGTGAGGCGTTTAACCTGCTGCTTCGGGTGAACCATAT TGGTGGTGGTAGCCTCAGCTGCCCACTGTCGGGGACGTCTTGACTTCAAACGCCTGGACCGC CCAGTGGTGGCGGCGGGGGGCTGCGGGCATATGCTGACACTAAGCTGGCTAATGTACT GTTTGCCCGGGAGCTCGCCAACCAGCTTGAGGCCACTGGCGTCACCTGCTATGCAGCCCACC CAGGGCCTGTGAACTCGGAGCTGTTCCTGCGCCATGTTCCTGGATGGCTGCGCCCACTTTTG CGCCCATTGGCTTGGCTGGTGCTCCGGGCACCAAGAGGGGGTGCCCAGACACCCCTGTATTG TGCTCTACAAGAGGGCATCGAGCCCCTCAGTGGGAGATATTTTGCCAACTGCCATGTGGAAG AGGTGCCTCCAGCTGCCCGAGACGACCGGCCAGCCATCGGCTATGGGAGGCCAGCAAGAGG CTGGCAGGGCTTGGGCCTGGGGAGGATGCTGAACCCCGATGAAGACCCCCAGTCTGAGGACTC AGAGGCCCCATCTTCTCTAAGCACCCCCCACCCTGAGGAGCCCACAGTTTCTCAACCTTACC CCAGCCCTCAGAGCTCACCAGATTTGTCTAAGATGACGCACCGAATTCAGGCTAAAGTTGAG CCTGAGATCCAGCTCTCCTAACCCTCAGGCCAGGATGCTTGCCATGGCACTTCATGGTCCTT GAAAACCTCGGATGTGTGAGGCCATGCCCTGGACACTGACGGGTTTGTGATCTTGACCTC CGTGGTTACTTTCTGGGGCCCCAAGCTGTGCCCTGGACATCTCTTTTCCTGGTTGAAGGAAT AATGGGTGATTATTTCTTCCTGAGAGTGACAGTAACCCCAGATGGAGAGATAGGGGTATGCT AGACACTGTGCTTCTCGGAAATTTGGATGTAGTATTTTCAGGCCCCACCCTTATTGATTCTG ATCAGCTCTGGAGCAGAGGCAGGGAGTTTGCAATGTGATGCACTGCCAACATTGAGAATTAG TGAACTGATCCCTTTGCAACCGTCTAGCTAGGTAGTTAAATTACCCCCCATGTTAATGAAGCG GAATTAGGCTCCCGAGCTAAGGGACTCGCCTAGGGTCTCACAGTGAGTAGGAGGAGGGCCTG GGATCTGAACCCAAGGGTCTGAGGCCAGGGCCGACTGCCGTAAGATGGGTGCTGAGAAGTGA GTCAGGGCAGGCAGCTGGTATCGAGGTGCCCCATGGGAGTAAGGGGACGCCTTCCGGGCGG ATGCAGGGCTGGGGTCATCTGTATCTGAAGCCCCTCGGAATAAAGCGCGTTGACCGCCAAAA AAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48227</pre>

<subunit 1 of 1, 377 aa, 1 stop</pre>

<MW: 40849, pI: 7.98, NX(S/T): 0

MEALLLGAGLLLGAYVLVYYNLVKAPPCGGMGNLRGRTAVVTGANSGIGKMTALELARRGAR VVLACRSQERGEAAAFDLRQESGNNEVIFMALDLASLASVRAFATAFLSSEPRLDILIHNAG ISSCGRTREAFNLLLRVNHIGPFLLTHLLLPCLKACAPSRVVVVASAAHCRGRLDFKRLDRP VVGWRQELRAYADTKLANVLFARELANQLEATGVTCYAAHPGPVNSELFLRHVPGWLRPLLR PLAWLVLRAPRGGAQTPLYCALQEGIEPLSGRYFANCHVEEVPPAARDDRAAHRLWEASKRL AGLGPGEDAEPDEDPQSEDSEAPSSLSTPHPEEPTVSQPYPSPQSSPDLSKMTHRIQAKVEP EIQLS

Important features:

Signal peptide:

amino acids 1-16

Glycosaminoglycan attachment site.

amino acids 46-49

Short-chain alcohol dehydrogenase family

amino acids 37-49 and 114-124

GACTCCCCGCCCAGATCCTAGTCCACCCCCAGGACCAGCTGTTCCAGGGCCCTGCCAGGATGAGCTGC CCACACCACCTCCTGCCTGATGGGACCCTTCTGCTGCTACAGCCCCCTGCCCGGGGACATGCCCACGATGGCCAG GCCCTGTCCACAGACCTGGGTGTCTACACATGTGAGGCCAGCAACCGGCTTGGCACGGCAGTCAGCAGAGGCGCT TTTACTCTGGAATGTGGGCCGCCTGGGGCCCACGAGCCCACAGTCTCATGGTGGAAAGATGGGAAACCCCTG GCCCTCCAGCCCGGAAGGCACACAGTGTCCGGGGGGTCCCTGCTGATGGCAAGAGCAGAGAAGAGTGACGAAGGG CAGGACTACACGGAGCCTGTGGAGCTTCTGGCTGTGCGAATTCAGCTGGAAAATGTGACACTGCTGAACCCGGAT GGCTGGCAGAGCGCAGAGCTTGGAGGCCTCCACTGGGGCCAAGACTACGAGTTCAAAGTGAGACCATCCTCTGGC CGGGCTCGAGGCCCTGACAGCAACGTGCTGCTCCTGAGGCTGCCGGAAAAAGTGCCCCAGTGCCCCACCTCAGGAA GTGACTCTAAAGCCTGGCAATGGCACTGTCTTTGTGAGCTGGGTCCCACCACCTGCTGAAAACCACAATGGCATC ATCCGTGGCTACCAGGTCTGGAGCCTGGGCAACACATCACTGCCACCAGCCAACTGGACTGTAGTTGGTGAGCAG ACCCAGCTGGAAATCGCCACCCATATGCCAGGCTCCTACTGCGTGCAAGTGGCTGCAGTCACTGGTGCTGGAGCT GGTCCCTGGACCCTGGAGCAGCTGAGGGCTACCTTGAAGCGGCCTGAGGTCATTGCCACCTGCGGTGTTGCACTC TGGCTGCTTCTGGGCACCGCCGTGTGTATCCACCGCCGGCGGGCCGAGCTAGGGTGCACCTGGGCCCAGGTCTG TGGCGTTCCACCTCTGGCTCTCGGGACCTGAGCAGCAGCAGCCTCAGCAGTCGGCTGGGGGGCGGATGCCCGG GACCCACTAGACTGTCGTCGCTCCTTGCTCTCCTGGGACTCCCGAAGCCCCGGCGTGCCCCTGCTTCCAGACACC AGCACTTTTTATGGCTCCCTCATCGCTGAGCTGCCCTCCAGTACCCCAGGCCAGGCCAAGTCCCCAGGTCCCAGCT GTCAGGCGCCTCCCACCCCAGCTGGCCCAGCTCTCCAGCCCTGTTCCAGCTCAGACAGCCTCTGCAGCCGCAGG GGACTCTCTCCCCCGCTTGTCTCTGGCCCCTGCAGAGGCTTGGAAGGCCAAAAAGAAGCAGGAGCTGCAGCAT GCCAACAGTTCCCCACTGCTCCGGGGCAGCCACTCCTTGGAGCTCCGGGCCTGTGAGTTAGGAAATAGAGGTTCC AAGAACCTTTCCCAAAGCCCAGGAGCTGTGCCCCAAGCTCTGGTTGCCTGGCGGGCCCTGGGACCGAAACTCCTC AGCTCCTCAAATGAGCTGGTTACTCGTCATCTCCCTCCAGCACCCCTCTTTCCTCATGAAACTCCCCCAACTCAG CTTAGCCCCTGCAGTCCCCCTAGCCCCCAGGCCTCTTCCCTCTCTGGCCCCAGCCCAGCTTCCAGTCGCCTGTCC AGCTCCTCACTGTCATCCCTGGGGGAGGATCAAGACAGCGTGCTGACCCCTGAGGAGGTAGCCCTGTGCTTGGAA CTCAGTGAGGGTGAGGAGACTCCCAGGAACAGCGTCTCTCCCATGCCAAGGGCTCCTTCACCCCCCACCACCTAT GGAGTCTTGCTGTGCCCACCTCGGCCCTGCCTCACCCCCACCCCAGCGAGGGCTCCTTAGCCAATGGTTGGGGC GCTCACTTTGCCCGGGCCCTGGCAGTGGCTGTGGATAGCTTTGGTTTCGGTCTAGAGCCCAGGGAGGCAGACTGC GTCTTCATAGATGCCTCATCACCTCCCTCCCCACGGGATGAGATCTTCCTGACCCCCAACCTCTCCCTGCCCTG ${\tt TGGGAGTGGAGGCCAGACTGGTTGGAAGACATGGAGGTCAGCCACCCAGCGGCTGGGAAGGGGGATGCCTCCC}$ TGGCCCCTGACTCTCAGATCTCTTCCCAGAGAAGTCAGCTCCACTGTCGTATGCCCAAGGCTGGTGCTTCTCCT ACCTGGGCTGTGTGTGGGCTTTGGCCTGTGTTTCTCTGCAGCTGGGGTCCACCTTCCCAAGCCTCCAGAGAG TTCTCCCTCCACGATTGTGAAAACAAATGAAAACAAAATTAGAGCAAAGCTGACCTGGAGCCTCAGGGAGCAAA ACATCATCTCCACCTGACTCCTAGCCACTGCTTTCTCCTCTGTGCCATCCACCACCACCACGGTTGTTTTGGC GTGGAGGACAGCAGTGGCTGCTGGAGAGGGCTGTGGAGGAGGAGCTTCTCGGAGCCCCCTCTCAGCCTTACCT ${\tt TATGAGACCGTAGGTCAAAAGCACCATCCTCGTACTGTTGTCACTATGAGCTTAAGAAATTTGATACCATAAAAT}$

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41404</pre>

<subunit 1 of 1, 985 aa, 1 stop

<MW: 105336, pI: 6.55, NX(S/T): 7

 ${\tt MGGMAQDSPPQILVHPQDQLFQGPGPARMSCQASGQPPPTIRWLLNGQPLSMVPPDPHHLLP}$ DGTLLLLQPPARGHAHDGQALSTDLGVYTCEASNRLGTAVSRGARLSVAVLREDFOIOPRDM VAVVGEQFTLECGPPWGHPEPTVSWWKDGKPLALQPGRHTVSGGSLLMARAEKSDEGTYMCV ATNSAGHRESRAARVSIQEPQDYTEPVELLAVRIQLENVTLLNPDPAEGPKPRPAVWLSWKV SGPAAPAQSYTALFRTQTAPGGQGAPWAEELLAGWQSAELGGLHWGODYEFKVRPSSGRARG PDSNVLLLRLPEKVPSAPPQEVTLKPGNGTVFVSWVPPPAENHNGIIRGYOVWSLGNTSLPP ANWTVVGEQTQLEIATHMPGSYCVQVAAVTGAGAGEPSRPVCLLLEQAMERATQEPSEHGPW TLEQLRATLKRPEVIATCGVALWLLLLGTAVCIHRRRRARVHLGPGLYRYTSEDAILKHRMD HSDSQWLADTWRSTSGSRDLSSSSSLSSRLGADARDPLDCRRSLLSWDSRSPGVPLLPDTST FYGSLIAELPSSTPARPSPQVPAVRRLPPQLAQLSSPCSSSDSLCSRRGLSSPRLSLAPAEA WKAKKKQELQHANSSPLLRGSHSLELRACELGNRGSKNLSQSPGAVPQALVAWRALGPKLLS SSNELVTRHLPPAPLFPHETPPTQSQQTQPPVAPQAPSSILLPAAPIPILSPCSPPSPQASS LSGPSPASSRLSSSSLSSLGEDQDSVLTPEEVALCLELSEGEETPRNSVSPMPRAPSPPTTY GYISVPTASEFTDMGRTGGGVGPKGGVLLCPPRPCLTPTPSEGSLANGWGSASEDNAASARA SLVSSSDGSFLADAHFARALAVAVDSFGFGLEPREADCVFIDASSPPSPRDEIFLTPNLSLP LWEWRPDWLEDMEVSHTQRLGRGMPPWPPDSQISSQRSQLHCRMPKAGASPVDYS

Important features:

Transmembrane domain:

amino acids 448-467

N-glycosylation sites:

amino acids 224-227, 338-341, 367-370, 374-377, 658-661 and 926-929

N-myristoylation sites.

amino acids 47-52, 80-85, 88-93, 99-104, 105-110, 181-186, 272-277, 290-295, 355-360, 403-408, 462-467, 561-566, 652-657, 849-854 and 876-881

Phosphotyrosine interaction domain proteins

amino acids 740-753

 $\tt CTCCCACGGTGTCCAGCGCCCAGA{\color{blue} \textbf{ATG}} CGGCTTCTGGTCCTGCTATGGGGTTGCCTGCTGCT$ CCCAGGTTATGAAGCCCTGGAGGGCCCAGAGGAAATCAGCGGGTTCGAAGGGGACACTGTGT CCCTGCAGTGCACCTACAGGGAAGAGCTGAGGGACCACCGGAAGTACTGGTGCAGGAAGGGT GGGATCCTCTCTCTCGCTGCTCTGGCACCATCTATGCAGAAGAAGAAGACCAGGAGACAAT GAAGGGCAGGGTGTCCATCCGTGACAGCCGCCAGGAGCTCTCGCTCATTGTGACCCTGTGGA ACCTCACCCTGCAAGACGCTGGGGAGTACTGGTGTGGGGTCGAAAAACGGGGCCCCGATGAG TCTTTACTGATCTCTGTTCGTCTTTCCAGGACCCTGCTGTCCTCCCCTCCCCTTCTCCCAC CTTCCAGCCTCTGGCTACAACACGCCTGCAGCCCAAGGCAAAAGCTCAGCAAACCCAGCCCC CAGGATTGACTTCTCCTGGGCTCTACCCGGCAGCCACCACAGCCAAGCAGGGGAAGACAGGG GCTGAGGCCCCTCCATTGCCAGGGACTTCCCAGTACGGGCACGAAAGGACTTCTCAGTACAC AGGAACCTCTCCTCACCCAGCGACCTCTCCTCCTGCAGGGAGCTCCCGCCCCCCCATGCAGC TGGACTCCACCTCAGCAGAGGACACCAGTCCAGCTCTCAGCAGTGGCAGCTCTAAGCCCAGG GTGTCCATCCCGATGGTCCGCATACTGGCCCCAGTCCTGGTGCTGAGCCTTCTGTCAGC CGCAGGCCTGATCGCCTTCTGCAGCCACCTGCTCCTGTGGAGAAAGGAAAGCTCAACAGGCCA CGGAGACACAGAGGAACGAGAAGTTCTGGCTCTCACGCTTGACTGCGGAGGAAAAGGAAGCC CCTTCCCAGGCCCCTGAGGGGGACGTGATCTCGATGCCTCCCCTCCACACATCTGAGGAGGA GCTGGGCTTCTCGAAGTTTGTCTCAGCGTAGGGCAGGAGGCCCTCCTGGCCAGGCCAGCAGT GAAGCAGTATGGCTGGCTGGATCAGCACCGATTCCCGAAAGCTTTCCACCTCAGCCTCAGAG TCCAGCTGCCCGGACTCCAGGGCTCTCCCCACCCTCCCCAGGCTCTCCTCTTGCATGTTCCA GCCTGACCTAGAAGCGTTTGTCAGCCCTGGAGCCCAGAGCGGTGGCCTTGCTCTTCCGGCTG GAGACTGGGACATCCCTGATAGGTTCACATCCCTGGGCAGAGTACCAGGCTGCTGACCCTCA GCAGGGCCAGACAAGGCTCAGTGGATCTGGTCTGAGTTTCAATCTGCCAGGAACTCCTGGGC TGGCGTCCTCAGACTTAGTCCCACGGTCTCCTGCATCAGCTGGTGATGAAGAGAGCATGCT GGGGTGAGACTGGGATTCTGGCTTCTCTTTGAACCACCTGCATCCAGCCCTTCAGGAAGCCT GTGAAAAACGTGATTCCTGGCCCCACCAAGACCCACCAAAACCATCTCTGGGCTTGGTGCAG GACTCTGAATTCTAACAATGCCCAGTGACTGTCGCACTTGAGTTTGAGGGCCAGTGGGCCTG ATGAACGCTCACACCCTTCAGCTTAGAGTCTGCATTTGGGCTGTGACGTCTCCACCTGCCC CAATAGATCTGCTCTGCGACACCAGATCCACGTGGGGACTCCCCTGAGGCCTGCTAAG TCCAGGCCTTGGTCAGGTCAGGTGCACATTGCAGGATAAGCCCAGGACCGGCACAGAAGTGG TTGCCTTTNCCATTTGCCCTCCCTGGNCCATGCCTTCTTGCCTTTGGAAAAAATGATGAAGA AAACCTTGGCTCCTTGTCTGGAAAGGGTTACTTGCCTATGGGTTCTGGTGGCTAGAGA GAAAAGTAGAAAACCAGAGTGCACGTAGGTGTCTAACACAGAGGAGAGTAGGAACAGGGCGG ATACCTGAAGGTGACTCCGAGTCCAGCCCCTGGAGAAGGGGTCGGGGGTGGTGGTAAAGTA GCACAACTACTATTTTTTTTTTTCCATTATTATTGTTTTTTAAGACAGAATCTCGTGCT GCTGCCCAGGCTGGAGTGCACGATCTGCAAACTCCGCCTCCTGGGTTCAAGTGATT TTTGTACTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTGAC CTCAAATGAGCCTCCTGCTTCAGTCTCCCAAATTGCCGGGATTACAGGCATGAGCCACTGTG TCTGGCCCTATTTCCTTTAAAAAGTGAAATTAAGAGTTGTTCAGTATGCAAAACTTGGAAAG ATGGAGGAGAAAAGGAAAGGAAGAAAAAATGTCACCCATAGTCTCACCAGAGACTATCAT TATTTCGTTTTGTTGTACTTCCTTCCACTCTTTTCTTCTTCACATAATTTGCCGGTGTTCTT TTTACAGAGCAATTATCTTGTATATACAACTTTGTATCCTGCCTTTTCCACCTTATCGTTCC GCTGCATAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44196</pre>

<subunit 1 of 1, 332 aa, 1 stop</pre>

<MW: 36143, pI: 5.89, NX(S/T): 1

MRLLVLLWGCLLLPGYEALEGPEEISGFEGDTVSLQCTYREELRDHRKYWCRKGGILFSRCS
GTIYAEEEGQETMKGRVSIRDSRQELSLIVTLWNLTLQDAGEYWCGVEKRGPDESLLISLFV
FPGPCCPPSPSPTFQPLATTRLQPKAKAQQTQPPGLTSPGLYPAATTAKQGKTGAEAPPLPG
TSQYGHERTSQYTGTSPHPATSPPAGSSRPPMQLDSTSAEDTSPALSSGSSKPRVSIPMVRI
LAPVLVLLSLLSAAGLIAFCSHLLLWRKEAQQATETQRNEKFWLSRLTAEEKEAPSQAPEGD
VISMPPLHTSEEELGFSKFVSA

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 248-269

N-glycosylation site.

amino acids 96-99

Fibrinogen beta and gamma chains C-terminal domain.

amino acids 104-113

Ig like V-type domain:

amino acids 13-128

TTGTGACTAAAAGCTGGCCTAGCAGGCCAGGGAGTGCAGCTGCAGGCGTGGGGGTGGCAGGA GCCGCAGAGCCAGACCAGCCGAGAAACAGGTGGACAGTGTGAAAGAACCAGTGGTCTC GCTCTGTTGCCCAGGCTAGAGTGTACTGGCGTGATCATAGCTCACTGCAGCCTCAGACTCCT GGACTTGAGAAATCCTCCTGCCTTAGCCTCCTGCATATCTGGGACTCCAGGGGTGCACTCAA GCCCTGTTTCTCCTCTGTGAGTGGACCACGGAGGCTGGTGAGCTGCCTGTCATCCCAA AGCTCAGCTCTGAGCCAGAGTGGTGGTGGCTCCACCTCTGCCGCCGGCATAGAAGCCAGGAG ${\tt CAGGGCTCTCAGAAGGCGGTGGTGCCCAGCTGGGATC} {\tt ATG} {\tt TTGTTGGCCCTGGTCTGTCTGC}$ TCAGCTGCCTGCTCCAGTGAGGCCAAGCTCTACGGTCGTTGTGAACTGGCCAGAGTG CTACATGACTTCGGGCTGGACGGATACCGGGGATACAGCCTGGCTGACTGGGTCTGCCTTGC TTATTTCACAAGCGGTTTCAACGCAGCTGCTTTGGACTACGAGGCTGATGGGAGCACCAACA ACGGGATCTTCCAGATCAACAGCCGGAGGTGGTGCAGCAACCTCACCCCGAACGTCCCCAAC GTGTGCCGGATGTACTGCTCAGATTTGTTGAATCCTAATCTCAAGGATACCGTTATCTGTGC CATGAAGATAACCCAAGAGCCTCAGGGTCTGGGTTACTGGGAGGCCTGGAGGCATCACTGCC AGGGAAAAGACCTCACTGAATGGGTGGATGGCTGTGACTTCCAGCAGGCTGGGAAATGTGGTTTCGTTCCTGACCTAGGCTTGGGAAGACAAGCCAGCGAATA AAGGATGGTTGAACGTGAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52187
<subunit 1 of 1, 146 aa, 1 stop
<MW: 16430, pI: 5.05, NX(S/T): 1
MLLALVCLLSCLLPSSEAKLYGRCELARVLHDFGLDGYRGYSLADWVCLAYFTSGFNAAALD
YEADGSTNNGIFQINSRRWCSNLTPNVPNVCRMYCSDLLNPNLKDTVICAMKITQEPQGLGY
WEAWRHHCQGKDLTEWVDGCDF</pre>

Important features:

Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 67-72

Homolgous region to Alpha-lactalbumin / lysozyme C proteins. amino acids 34-58 (catalytic domain), 111-132 and 66-107

 $\texttt{AGCCGCTGCCCCGGGGCGCCCCGCGGCGCGCACC} \underline{\textbf{ATG}} \\ \texttt{AGTCCCCGCTCGTGCCTGCGTTC}$ GCTGCGCCTCCTCGTCTTCGCCGTCTTCTCAGCCGCCGCGAGCAACTGGCTGTACCTGGCCA AGCTGTCGTCGGTGGGGAGCATCTCAGAGGAGGAGACGTGCGAGAAACTCAAGGGCCTGATC CAGAGGCAGGTGCAGATGTGCAAGCGGAACCTGGAAGTCATGGACTCGGTGCGCCGCGGTGC TCGACTCCTTGCCCGTCTTCGGCAAGGTGGTGACGCAAGGGACTCGGGAGGCGGCCTTCGTG TACGCCATCTCTTCGGCAGGTGTGGCCTTTGCAGTGACGCGGGCGTGCAGCAGTGGGGAGCT GGAGAAGTGCGGCTGTGACAGGACAGTGCATGGGGTCAGCCCACAGGGCTTCCAGTGGTCAG GATGCTCTGACAACATCGCCTACGGTGTGGCCTTCTCACAGTCGTTTGTGGATGTGCGGGAG AGAAGCAAGGGGGCCTCGTCCAGCAGAGCCCTCATGAACCTCCACAACAATGAGGCCGGCAG GAAGGCCATCCTGACACACATGCGGGTGGAATGCAAGTGCCACGGGGTGTCAGGCTCCTGTG AGGTAAAGACGTGCTGGCGAGCCGTGCCGCCCTTCCGCCAGGTGGGTCACGCACTGAAGGAG AAGTTTGATGGTGCCACTGAGGTGGAGCCACGCCGCGTGGGCTCCTCCAGGGCACTGGTACC ACGCAACGCACAGTTCAAGCCGCACACAGATGAGGACCTGGTGTACTTGGAGCCTAGCCCCG ACTTCTGTGAGCAGGACATGCGCAGCGGCGTGCTGGGCACGAGGGGCCCGCACATGCAACAAG GGTGGAGCTGGAACGCTGCAGCTGCAAATTCCACTGGTGCTGCTTCGTCAAGTGCCGGC ${\tt AGTGCCAGCGGCTCGTGGAGTTGCACACGTGCCGA}{\tt TGA}{\tt CCGCCTGCCTAGCCCTGCGCCGGC}$ AACCACCTAGTGGCCCAGGGAAGGCCGATAATTTAAACAGTCTCCCACCACCTACCCCAAGA ACCAGGCAGCCAACCCAACCAGGGCCTCCCCAAAGCCTGGGCCTTTGTGGCT GCCACTGACCAAAGGGACCTTGCTCGTGCCGCTGCCGCCTGTGGCTGCCACTGACCA CTCAGTTGTTATCTGTGTCCGTTTTTCTACTTGCAGACCTAAGGTGGAGTAACAAGGAGTAT TACCACCACATGGCTACTGACCGTGTCATCGGGGAAGAGGGGGCCTTATGGCAGGGAAAATA GGTACCGACTTGATGGAAGTCACACCCTCTGGAAAAAAGAACTCTTAACTCTCCAGCACACA TACACATGGACTCCTGGCAGCTTGAGCCTAGAAGCCATGTCTCTCAAATGCCCTGAGAAAGG GAACAAGCAGATACCAGGTCAAGGGCACCAGGTTCATTTCAGCCCTTACATGGACAGCTAGA GGTTCGATATCTGTGGGTCCTTCCAGGCAAGAAGAGGGGAGATGAGAGCAAGAGACGACTGAA GTCCCACCCTAGAACCCAGCCTGCCCCAGCCTGCCCCTGGGAAGAGGAAACTTAACCACTCC CCAGACCCACCTAGGCAGGCATATAGGCTGCCATCCTGGACCAGGGATCCCGGCTGTGCCTT ACACACACACACACACACACACACACACACACACGGACACACACACACCTGCGAGA GAGAGGGAGAAAGGGCTGTGCCTTTGCAGTCATGCCCGAGTCACCTTTCACAGCACTGTTCCTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48328</pre>

<subunit 1 of 1, 351 aa, 1 stop</pre>

<MW: 39052, pI: 8.97, NX(S/T): 2

MSPRSCLRSLRLLVFAVFSAAASNWLYLAKLSSVGSISEEETCEKLKGLIQRQVQMCKRNLE
VMDSVRRGAQLAIEECQYQFRNRRWNCSTLDSLPVFGKVVTQGTREAAFVYAISSAGVAFAV
TRACSSGELEKCGCDRTVHGVSPQGFQWSGCSDNIAYGVAFSQSFVDVRERSKGASSSRALM
NLHNNEAGRKAILTHMRVECKCHGVSGSCEVKTCWRAVPPFRQVGHALKEKFDGATEVEPRR
VGSSRALVPRNAQFKPHTDEDLVYLEPSPDFCEQDMRSGVLGTRGRTCNKTSKAIDGCELLC
CGRGFHTAQVELAERCSCKFHWCCFVKCRQCQRLVELHTCR

Important features:

Signal peptide:

amino acids 1-22

N-glycosylation sites.

amino acids 88-91 and 297-300

Wnt-1 family signature.

amino acids 206-215

Homologous region to Wnt-1 family proteins

amino acids 183-235, 305-350, 97-138, 53-92 and 150 -174

 $\tt CGGACGCGTGGGCGGACGCGTGGGCGGACGCGTGGGCTGGGTGCCTGCAT$ CCTGGGGACGCTGGGTGCACTGGAGCAGGAGACCCCTCTTCTTGGCCCTGGCTGTCCTGGTC ACCACAGTCCTTTGGGCTGTGATTCTGAGTATCCTATTGTCCAAGGCCTCCACGGAGCGCGC GGCGCTGCTTGACGGCCACGACCTGCTGAGGACAAACGCCTCGAAGCAGACGGCGCGCTGG GTGCCCTGAAGGAGGTCGGAGACTGCCACAGCTGCTCGGGGACGCAGGCGCAGCTG CAGACCACGCGCGCGGAGCTTGGGGAGGCGCAGGCGAAGCTGATGGAGCAGGAGAGCGCCCT GCGGGAACTGCGTGAGCGCTGACCCAGGGCTTGGCTGAAGCCGGCAGGGGCCGTGAGGACG TCCGCACTGAGCTGTTCCGGGCGCTGGAGGCCGTGAGGCTCCAGAACAACTCCTGCGAGCCG GTGGGCGCGCGCGCAGATCACTGCGCAGATGCCAGCGCGCACCTGGTGATCGTTGGGGGCC CAGCCACTGGAACCAGGGAGAGCCCAATGACGCTTGGGGGGCGCGAGAACTGTGTCATGATGC TGCACACGGGGCTGTGGAACGACGCACCGTGTGACAGCGAGAAGGACGGCTGGATCTGTGAG ${\tt AAAAGGCACAACTGC}{{\tt TGA}}{\tt CCCCGCCCAGTGCCCTGGAGCCGCGCCCATTGCAGCATGTCGTA$ TCCTGGGGGCTGCTCACCTCCCTGGCTCCTGGAGCTGATTGCCAAAGAGTTTTTTTCTTCCT CATCCACCGCTGCTGAGTCTCAGAAACACTTGGCCCAACATAGCCCTGTCCAGCCCAGTGCC TGGGCTCTGGGACCTCCATGCCGACCTCATCCTAACTCCACTCACGCAGACCCAACCTAACC TCCACTAGCTCCAAAATCCCTGCTCCTGCGTCCCCGTGATATGCCTCCACTTCTCTCCCTAA CCAAGGTTAGGTGACTGAGGACTGGAGCTGTTTGGTTTTCTCGCATTTTCCACCAAACTGGA AGCTGTTTTTGCAGCCTGAGGAAGCATCAATAAATATTTGAGAAATGAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56352</pre>

<subunit 1 of 1, 293 aa, 1 stop</pre>

<MW: 32562, pI: 6.53, NX(S/T): 2

MDTTRYSKWGGSSEEVPGGPWGRWVHWSRRPLFLALAVLVTTVLWAVILSILLSKASTERAA LLDGHDLLRTNASKQTAALGALKEEVGDCHSCCSGTQAQLQTTRAELGEAQAKLMEQESALR ELRERVTQGLAEAGRGREDVRTELFRALEAVRLQNNSCEPCPTSWLSFEGSCYFFSVPKTTW AAAQDHCADASAHLVIVGGLDEQGFLTRNTRGRGYWLGLRAVRHLGKVQGYQWVDGVSLSFS HWNQGEPNDAWGRENCVMMLHTGLWNDAPCDSEKDGWICEKRHNC

Important features:

Type II transmembrane domain:

amino acids 31-54

N-glycosylation sites.

amino acids 73-76 and 159-162

Leucine zipper pattern.

amino acids 102-123

N-myristoylation sites.

amino acids 18-23, 133-138 and 242-247

C-type lectin domain signature.

amino acids 264-287

GCCAGGGGAAGAGGTGATCCGACCCGGGGAAGGTCGCTGGGCAGGGCGAGTTGGGAAAGCG GCAGCCCCGCCGCCCCCCCCTTCTCCTCTTTTCTCCCACGTCCTATCTGCCTCTCG CGCGCTCCCGCTGCCCGGGTG**ATG**GAAAACCCCAGCCCGGCCGCCCCTGGGCAAG GCCCTCTGCGCTCTCCTGGCCACTCTCGGCGCCGCCGGCCAGCCTCTTGGGGGAGAGTC CATCTGTTCCGCCAGAGCCCCGGCCAAATACAGCATCACCTTCACGGGCAAGTGGAGCCAGA CGGCCTTCCCCAAGCAGTACCCCCTGTTCCGCCCCCTGCGCAGTGGTCTTCGCTGCTGGGG GCCGCGCATAGCTCCGACTACAGCATGTGGAGGAAGAACCAGTACGTCAGTAACGGGCTGCG CGACTTTGCGGAGCGCGGGGGGCGCTGATGAAGGAGATCGAGGCGGCGGGGGAGG CGCTGCAGAGCGTGCACGAGGTGTTTTCGGCGCCCGCCGTCCCCAGCGGCACCGGGCAGACG TCGGCGGAGCTGGAGCTCAGCGCAGCCACTCGCTGGTCTCGTTTGTGGTGCGCATCGTGCC CAGCCCGACTGGTTCGTGGGCGTGGACAGCCTGTGCGACGGGGACCGTTGGCGGG TCCCCCAACTTCGCCACCATCCCGCAGGACACGGTGACCGAGATAACGTCCTCCTCTCCCAG CCACCCGGCCAACTCCTTCTACTACCCGCGGCTGAAGGCCCTGCCTCCCATCGCCAGGGTGA AGGGACAATGAGATTGTAGACAGCGCCTCAGTTCCAGAAACGCCGCTGGACTGCGAGGTCTC CCTGTGGTCGTCCTGGGGACTGTGCGGAGGCCACTGTGGGAGGCTCGGGACCAAGAGCAGGA CTCGCTACGTCCGGGTCCAGCCCGCCAACAACGGGAGCCCCTGCCCCGAGCTCGAAGAAGAG GCTGAGTGCGTCCCTGATAACTGCGTC**TAA**GACCAGAGCCCCGCAGCCCCTGGGGCCCCCCG GAGCCATGGGGTGTCGGGGGCTCCTGTGCAGGCTCATGCTGCAGGCGGCCGAGGGCACAGGG GGTTTCGCGCTGCTCCTGACCGCGGTGAGGCCGCCGCCGACCATCTCTGCACTGAAGGGCCCT CTGGTGGCCGGCACGGCATTGGGAAACAGCCTCCTCCTTTCCCAACCTTGCTTCTTAGGGG CCCCCGTGTCCCGTCTCCTCAGCCTCCTCCTCCTGCAGGATAAAGTCATCCCCAAGGCTC CAGCTACTCTAAATTATGTCTCCTTATAAGTTATTGCTGCTCCAGGAGATTGTCCTTCATCG TCCAGGGGCCTGGCTCCCACGTGGTTGCAGATACCTCAGACCTGGTGCTCTAGGCTGTGCTG AGCCCACTCTCCCGAGGGCGCATCCAAGCGGGGCCACTTGAGAAGTGAATAAATGGGGCGG TTTCGGAAGCGTCAGTGTTTCCATGTTATGGATCTCTCTGCGTTTGAATAAAGACTATCTCT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53971</pre>

><subunit 1 of 1, 331 aa, 1 stop

><MW: 35844, pI: 5.45, NX(S/T): 2

MENPSPAAALGKALCALLLATLGAAGQPLGGESICSARAPAKYSITFTGKWSQTAFPKQYPL FRPPAQWSSLLGAAHSSDYSMWRKNQYVSNGLRDFAERGEAWALMKEIEAAGEALQSVHEVF SAPAVPSGTGQTSAELEVQRRHSLVSFVVRIVPSPDWFVGVDSLDLCDGDRWREQAALDLYP YDAGTDSGFTFSSPNFATIPQDTVTEITSSSPSHPANSFYYPRLKALPPIARVTLLRLRQSP RAFIPPAPVLPSRDNEIVDSASVPETPLDCEVSLWSSWGLCGGHCGRLGTKSRTRYVRVQPA NNGSPCPELEEEAECVPDNCV

Important features:

Signal peptide:

amino acids 1-26

GGCGGCGTCCGTGAGGGGCTCCTTTGGGCAGGGGTAGTGTTTGGTGTCCCTGTCTTGCGTGA TATTGACAAACTGAAGCTTTCCTGCACCACTGGACTTAAGGAAGAGTGTACTCGTAGGCGGA CAGCTTTAGTGGCCGGCCGCCCCTCATCCCCCGTAAGGAGCAGAGTCCTTTGTACTGAC CAAGATGAGCAACATCTACATCCAGGAGCCTCCCACGAATGGGAAGGTTTTATTGAAAACTA CAGCTGGAGATATTGACATAGAGTTGTGGTCCAAAGAAGCTCCTAAAGCTTGCAGAAATTTT ATCCAACTTTGTTTGGAAGCTTATTATGACAATACCATTTTTCATAGAGTTGTGCCTGGTTT CATTCAAAGATGAATTTCATTCACGGTTGCGTTTTAATCGGAGAGGACTGGTTGCCATGGCA AATGCTGGTTCTCATGATAATGGCAGCCAGTTTTTCTTCACACTGGGTCGAGCAGATGAACT TAACAATAAGCATACCATCTTTGGAAAGGTTACAGGGGATACAGTATATAACATGTTGCGAC TGTCAGAAGTAGACATTGATGATGACGAAAGACCACATAATCCACACAAAATAAAAAGCTGT GAGGTTTTGTTTAATCCTTTTGATGACATCATTCCAAGGGAAATTAAAAGGCTGAAAAAAGA GAAACCAGAGGAGGAAGTAAAGAAATTGAAACCCAAAGGCACAAAAAATTTTAGTTTACTTT CATTTGGAGAGCAGCTGAGGAAGAAGAGGAGGAAGTAAATCGAGTTAGTCAGAGCATGAAG GGCAAAAGCAAAAGTAGTCATGACTTGCTTAAGGATGATCCACATCTCAGTTCTGTTCCAGT TGTAGAAAGTGAAAAGGTGATGCACCAGATTTAGTTGATGATGAGAAGATGAAAGTGCAG TTAAAAAAGGACACAAGTGCGAATGTTAAATCAGCTGGAGAAGGAGAAGTGGAGAAGAAATC AGTCAGCCGCAGTGAAGAGCTCAGAAAAGAAGCAAGACAATTAAAACGGGAACTCTTAGCAG CAAAACAAAAAAAGTAGAAAATGCAGCAAAACAAGCAGAAAAAAGAAGTGAAGAGGAAGAA GCCCCTCCAGATGGTGCTGTTGCCGAATACAGAAGGAAAAAGCAAAAGTATGAAGCTTTGAG GAAGCAACAGTCAAAGAAGGGAACTTCCCGGGAAGATCAGACCCTTGCACTGCTGAACCAGT TTAAATCTAAACTCACTCAAGCAATTGCTGAAACACCTGAAAATGACATTCCTGAAACAGAA GTAGAAGATGATGAAGGATGGATGTCACATGTACTTCAGTTTGAGGATAAAAGCAGAAAAGT GAAAGATGCAAGCATGCAAGACTCAGATACATTTGAAATCTATGATCCTCGGAATCCAGTGA GAGAATAATGATAACCAGAACTTGCTGGAAATGTGCCTACAATGGCCTTGTAACAGCCATTG TTCCCAACAGCATCACTTAGGGGTGTGAAAAGAAGTATTTTTGAACCTGTTGTCTGGTTTTG AAAAACAATTATCTTGTTTTGCAAATTGTGGAATGATGTAAGCAAATGCTTTTGGTTACTGG TACATGTGTTTTTTCCTAGCTGACCTTTTATATTGCTAAATCTGAAATAAAATAACTTTCCT TCCACAAAAAAAAAAAAAAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50919</pre>

><subunit 1 of 1, 472 aa, 1 stop

><MW: 53847, pI: 5.75, NX(S/T): 2

MSNIYIQEPPTNGKVLLKTTAGDIDIELWSKEAPKACRNFIQLCLEAYYDNTIFHRVVPGFI
VQGGDPTGTGSGGESIYGAPFKDEFHSRLRFNRRGLVAMANAGSHDNGSQFFFTLGRADELN
NKHTIFGKVTGDTVYNMLRLSEVDIDDDERPHNPHKIKSCEVLFNPFDDIIPREIKRLKKEK
PEEEVKKLKPKGTKNFSLLSFGEEAEEEEEEVNRVSQSMKGKSKSSHDLLKDDPHLSSVPVV
ESEKGDAPDLVDDGEDESAEHDEYIDGDEKNLMRERIAKKLKKDTSANVKSAGEGEVEKKSV
SRSEELRKEARQLKRELLAAKQKKVENAAKQAEKRSEEEEAPPDGAVAEYRREKQKYEALRK
QQSKKGTSREDQTLALLNQFKSKLTQAIAETPENDIPETEVEDDEGWMSHVLQFEDKSRKVK
DASMQDSDTFEIYDPRNPVNKRRREESKKLMREKKERR

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 109-112 and 201-204

Cyclophilin-type peptidyl-prolyl cis-trans isomerase signature. amino acids 49-66

Homologous region to Cyclophilin-type peptidyl-prolyl cis-trans isomerase

amino acids 96-140, 49-89 and 22-51

 $\verb|CCCGCCTCGGCTTTGAGGCGAGAGAGTGTCCCAGACCCATTTCGCCTTGCTGACGGCGTCG|\\$ AGCCCTGGCCAGAC<u>ATG</u>TCCACAGGGTTCTCCTTCGGGTCCGGGACTCTGGGCTCCACCACC GTGGCCGCCGGCGGACCACACACGCGGCGTTTTCTCCTTCGGAACGGGAACGTCTAGCAA CCCTTCTGTGGGGCTCAATTTTGGAAATCTTGGAAGTACTTCAACTCCAGCAACTACATCTG $\tt CTCCTTCAAGTGGTTTTGGAACCGGGCTCTTTGGATCTAAACCTGCCACTGGGTTCACTCTA$ GGAGGAACAATACAGGTGCCTTGCACACCAAGAGGCCTCAAGTGGTCACCAAATATGGAAC CCTGCAAGGAAAACAGATGCATGTGGGGAAGACACCCATCCAAGTCTTTTTAGGAGTCCCCT TCTCCAGACCTCCTCTAGGTATCCTCAGGTTTGCACCTCCAGAACCCCCGGAGCCCTGGAAA GGAATCAGAGATGCTACCACCTACCCGCCTGGATGGAGTCTCGCTCTGTCGCCAGGCTGGAG TGCAGTGGCACGATCTCGGCTCACTGCAACCTCCGCCTCCCGGGTTCAAGCGAGTCTCCTGC CTCAGCCTCTGAGTGTCTGGGGCTACAGGTGCCTGCAGGAGTCCTGGGGCCAGCTGGCCTCG GAACGTGTACGCGCCGCGCGCGCCCCGGGGATCCCCAGCTGCCAGTGATGGTCTGGTTCC CGGGAGGCGCCTTCATCGTGGGCGCTGCTTCTTCGTACGAGGGCTCTGACTTGGCCGCCGC GAGAAAGTGGTGCTGGTTTTCTGCAGCACAGGCTCGGCATCTTCGGCTTCCTGAGCACGGA CGACAGCCACGCGCGCGGAACTGGGGGCTGCTGGACCAGATGGCGGCTCTGCGCTGGGTGC AGGAGAACATCGCAGCCTTCGGGGGAGACCCAGGAAATGTGACCCTGTTCGGCCAGTCGGCG GGGGCCATGAGCATCTCAGGACTGATGATGTCACCCCTAGCCTCGGGTCTCTTCCATCGGGC CATTTCCCAGAGTGGCACCGCGTTATTCAGACTTTTCATCACTAGTAACCCACTGAAAGTGG CCAAGAAGGTTGCCCACCTGGCTGGATGCAACCACAACAGCACACAGATCCTGGTAAACTGC CTGAGGGCACTATCAGGGACCAAGGTGATGCGTGTGTCCAACAAGATGAGATTCCTCCAACT GAACTTCCAGAGAGACCCGGAAGAGATTATCTGGTCCATGAGCCCTGTGGTGGATGGTGTG TGATCCCAGATGACCCTTTGGTGCTCCTGACCCAGGGGAAGGTTTCATCTGTGCCCTACCTT CTAGGTGTCAACAACCTGGAATTCAATTGGCTCTTGCCTTATAATATCACCAAGGAGCAGGT ACCACTTGTGGTGGAGGAGTACCTGGACATGTCAATGAGCATGACTGGAAGATGCTACGAA ACCGTATGATGGACATAGTTCAAGATGCCACTTTCGTGTATGCCACACTGCAGACTGCTCAC TACCACCGAGAAACCCCAATGATGGGAATCTGCCCTGCTGGCCACGCTACAACAAGGATGAA AAGTACCTGCAGCTGGATTTTACCACAAGAGTGGGCA<u>TGA</u>AGCTCAAGGAGAAGAAGATGGC TTTTTGGATGAGTCTGTACCAGTCTCAAAGACCTGAGAAGCAGAGGCAATTCTAAGGGTGGC TATGCAGGAAGGAGCCAAAGAGGGGTTTGCCCCCACCATCCAGGCCCTGGGGAGACTAGCCA TGGACATACCTGGGGACAAGAGTTCTACCCACCCCAGTTTAGAACTGCAGGAGCTCCCTGCT GCCTCCAGGCCAAAGCTAGAGCTTTTGCCTGTTGTGTGGGACCTGCACTGCCCTTTCCAGCC TGACATCCCATGATGCCCCTCTACTTCACTGTTGACATCCAGTTAGGCCAGGCCCTGTCAAC ACCACACTGTGCTCAGCTCTCCAGCCTCAGGACAACCTCTTTTTTTCCCTTCTTCAAATCCT CCCACCCTTCAATGTCTCCTTGTGACTCCTTCTTATGGGAGGTCGACCCAGACTGCCACTGC TCACATTGGCCTGGAGGCCTAGGGCAGGTTGTGACATGGAGCAAACTTTTGGTAGTTTGGGA TCTTCTCCCACCACACTTATCTCCCCCAGGGCCACTCCAAAGTCTATACACAGGGGTGG TCTCTTCAATAAAGAAGTGTTGATTAGAAAAAAAAAAA

</usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA44179</pre>

<subunit 1 of 1, 545 aa, 1 stop

<MW: 58934, pI: 9.45, NX(S/T): 4

MSTGFSFGSGTLGSTTVAAGGTSTGGVFSFGTGTSSNPSVGLNFGNLGSTSTPATTSAPSSG FGTGLFGSKPATGFTLGGTNTGALHTKRPQVVTKYGTLQGKQMHVGKTPIQVFLGVPFSRPP LGILRFAPPEPPEPWKGIRDATTYPPGWSLALSPGWSAVARSRLTATSASRVQASLLPQPLS VWGYRCLQESWGQLASMYVSTRERYKWLRFSEDCLYLNVYAPARAPGDPQLPVMVWFPGGAF IVGAASSYEGSDLAAREKVVLVFLQHRLGIFGFLSTDDSHARGNWGLLDQMAALRWVQENIA AFGGDPGNVTLFGQSAGAMSISGLMMSPLASGLFHRAISQSGTALFRLFITSNPLKVAKKVA HLAGCNHNSTQILVNCLRALSGTKVMRVSNKMRFLQLNFQRDPEEIIWSMSPVVDGVVIPDD PLVLLTQGKVSSVPYLLGVNNLEFNWLLPYNITKEQVPLVVEEYLDNVNEHDWKMLRNRMMD IVQDATFVYATLQTAHYHRETPMMGICPAGHATTRMKSTCSWILPQEWA

Important features:

Signal peptide:

amino acids 1-29

Carboxylesterases type-B serine active site.

amino acids 312-327

Carboxylesterases type-B signature 2.

amino acids 218-228

N-glycosylation sites.

amino acids 318-321, 380-383 and 465-468

GAGAACAGGCCTGTCTCAGGCAGGCCCTGCGCCTCCTATGCGGAGATGCTACTGCCACTGCT GCTGTCCTCGCTGCGGGGGTCCCAGGCTATGGATGGGAGATTCTGGATACGAGTGCAGG AGTCAGTGATGGTGCCGGAGGGCCTGTGCATCTCTGTGCCCTGCTCTTTCTCCTACCCCCGA CAAGACTGGACAGGGTCTACCCCAGCTTATGGCTACTGGTTCAAAGCAGTGACTGAGACAAC CAAGGGTGCTCCTGTGGCCACAAACCACCAGAGTCGAGAGGTGGAAATGAGCACCCGGGGCC GATTCCAGCTCACTGGGGATCCCGCCAAGGGGAACTGCTCCTTGGTGATCAGAGACGCGCAG ATGCAGGATGAGTCACAGTACTTCTTTCGGGTGGAGAGGGAAGCTATGTGACATATAATTT CATGAACGATGGGTTCTTTCTAAAAGTAACAGTGCTCAGCTTCACGCCCAGACCCCAGGACC ACAACACCGACCTCACCTGCCATGTGGACTTCTCCAGAAAGGGTGTGAGCGCACAGAGGACC GTCCGACTCCGTGTGGCCTATGCCCCCAGAGACCTTGTTATCAGCATTTCACGTGACAACAC GCCAGCCCTGGAGCCCCAGCCCCAGGGAAATGTCCCATACCTGGAAGCCCAAAAAGGCCAGT TCCTGCGGCTCCTCTGTGCTGACAGCCAGCCCCCTGCCACACTGAGCTGGGTCCTGCAG AACAGAGTCCTCTCCTCGTCCCATCCCTGGGGCCCTAGACCCCTGGGGCTGGAGCTGCCCGG GGTGAAGGCTGGGGATTCAGGGCGCTACACCTGCCGAGCGGAGAACAGGCTTGGCTCCCAGC AGCGAGCCCTGGACCTCTCTGTGCAGTATCCTCCAGAGAACCTGAGAGTGATGGTTTCCCAA GCAAACAGGACAGTCCTGGAAAACCTTGGGAACGGCACGTCTCTCCCAGTACTGGAGGGCCA GGGGACAGGTTCTGAGCCCCTCCCAGCCCTCAGACCCCGGGGTCCTGGAGCTGCCTCGGGTT CAAGTGGAGCACGAAGGAGAGTTCACCTGCCACGCTCGGCACCCACTGGGCTCCCAGCACGT CTCTCTCAGCCTCTCCGTGCACTATAAGAAGGGACTCATCTCAACGGCATTCTCCAACGGAG CGTTTCTGGGAATCGGCATCACGGCTCTTCTTTTCCTCTGCCTGGCCCTGATCATCATGAAG ATTCTACCGAAGACGGACTCAGACAGAAACCCCGAGGCCCAGGTTCTCCCGGCACAGCAC GATCCTGGATTACATCAATGTGGTCCCGACGGCTGGCCCCTGGCTCAGAAGCGGAATCAGA AAGAACCAGAAAAGCAGTATCAGTTGCCCAGTTTCCCAGAACCCAAATCATCCACTCAAGC CCCAGAATCCCAGGAGAGCCAAGAGGAGCTCCATTATGCCACGCTCAACTTCCCAGGCGTCA GACCCAGGCCTGAGGCCCGGATGCCCAAGGGCACCCAGGCGGATTATGCAGAAGTCAAGTTC CAA<u>TGA</u>GGGTCTCTTAGGCTTTAGGACTGGGACTTCGGCTAGGGAAGGTAGAGTAAGAG CTCTCTTTCTCTCTCTTTTAAAAAAACATCTGGCCAGGGCACAGTGGCTCACGCCTGTAATC CCAGCACTTTGGGAGGTTGAGGTGGGCAGATCGCCTGAGGTCGGGAGTTCGAGACCAGCCTG GCCAACTTGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGCATGGTGGCAGG CGCCTGTAATCCTACCTACTTGGGAAGCTGAGGCAGGAGAATCACTTGAACCTGGGAGACGG AGGTTGCAGTGAGCCAAGATCACACCATTGCACGCCAGCCTGGGCAACAAAGCGAGACTCCA TCTCAAAAAAAATCCTCCAAATGGGTTGGGTGTCTGTAATCCCAGCACTTTGGGAGGCTA AGGTGGGTGGATTGCTTGAGCCCAGGAGTTCGAGACCAGCCTGGGCAACATGGTGAAACCCC ATCTCTACAAAAATACAAAACATAGCTGGGCTTGGTGGTGTGTGCCTGTAGTCCCAGCTGT CAGACATTTAAACCAGAGCAACTCCATCTGGAATAGGAGCTGAATAAAATGAGGCTGAGACC TACTGGGCTGCATTCTCAGACAGTGGAGGCATTCTAAGTCACAGGATGAGACAGGAGGTCCG ATCCCACCAAAACCAAGTTGGCCACGAGAGTGACCTCTGGTCGTCCTCACTGCTACACTCCT GACAGCACCATGACAGTTTACAAATGCCATGGCAACATCAGGAAGTTACCCGATATGTCCCA AAAGGGGGAGGAATGAATAATCCACCCCTTGTTTAGCAAATAAGCAAGAAATAACCATAAAA GTGGGCAACCAGCAGCTCTAGGCGCTGCTCTTGTCTATGGAGTAGCCATTCTTTTGTTCCTT TACTTTCTTAATAAACTTGCTTTCACCTTAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA54002</pre>

><subunit 1 of 1, 544 aa, 1 stop

><MW: 60268, pI: 9.53, NX(S/T): 3

MLLPLLLSSLLGGSQAMDGRFWIRVQESVMVPEGLCISVPCSFSYPRQDWTGSTPAYGYWFK
AVTETTKGAPVATNHQSREVEMSTRGRFQLTGDPAKGNCSLVIRDAQMQDESQYFFRVERGS
YVTYNFMNDGFFLKVTVLSFTPRPQDHNTDLTCHVDFSRKGVSAQRTVRLRVAYAPRDLVIS
ISRDNTPALEPQPQGNVPYLEAQKGQFLRLLCAADSQPPATLSWVLQNRVLSSSHPWGPRPL
GLELPGVKAGDSGRYTCRAENRLGSQQRALDLSVQYPPENLRVMVSQANRTVLENLGNGTSL
PVLEGQSLCLVCVTHSSPPARLSWTQRGQVLSPSQPSDPGVLELPRVQVEHEGEFTCHARHP
LGSQHVSLSLSVHYKKGLISTAFSNGAFLGIGITALLFLCLALIIMKILPKRRTQTETPRPR
FSRHSTILDYINVVPTAGPLAQKRNQKATPNSPRTPPPPGAPSPESKKNQKKQYQLPSFPEP
KSSTQAPESQESQEELHYATLNFPGVRPRPEARMPKGTQADYAEVKFQ

Important features:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 100-103, 297-300 and 306-309

Immunoglobulins and major histocompatibility complex proteins signature.

amino acids 365-371

AAGTCAAGCAGCCAGTGCGATCTCATTTGAGAGTGAAGCGTGGCTGGGTGTGGAACCAATTT TTTGTACCAGAGGAAATGAATACGACTAGTCATCACATCGGCCAGCTAAGATCTGATTTAGA CAATGGAAACAATTCTTTCCAGTACAAGCTTTTGGGAGCTGGAAGCTACTTTTATCA TTGATGAAAGAACAGGTGACATATATGCCATACAGAAGCTTGATAGAGAGGAGCGATCCCTC TACATCTTAAGAGCCCAGGTAATAGACATCGCTACTGGAAGGGCTGTGGAACCTGAGTCTGA GTTTGTCATCAAAGTTTCGGATATCAATGACAATGAACCAAAATTCCTAGATGAACCTTATG AGGCCATTGTACCAGAGATGTCTCCAGAAGGAACATTAGTTATCCAGGTGACAGCAAGTGAT GCTGACGATCCCTCAAGTGGTAATAATGCTCGTCTCCTCTACAGCTTACTTCAAGGCCAGCC ATATTTTTCTGTTGAACCAACAACAGGAGTCATAAGAATATCTTCTAAAATGGATAGAGAAC TGCAAGATGAGTATTGGGTAATCATTCAAGCCAAGGACATGATTGGTCAGCCAGGAGCGTTG TCTGGAACAACAAGTGTATTAATTAAACTTTCAGATGTTAATGACAATAAGCCTATATTTAA AGAAAGTTTATACCGCTTGACTGTCTCTGAATCTGCACCCACTGGGACTTCTATAGGAACAA TCATGGCATATGATAATGACATAGGAGAGAATGCAGAAATGGATTACAGCATTGAAGAGGAT GATTCGCAAACATTTGACATTATTACTAATCATGAAACTCAAGAAGGAATAGTTATATTAAA AAAGAAAGTGGATTTTGAGCACCAGAACCACTACGGTATTAGAGCAAAAGTTAAAAACCATC ATGTTCCTGAGCAGCTCATGAAGTACCACACTGAGGCTTCCACCACTTTCATTAAGATCCAG GTGGAAGATGTTGATGAGCCTCCTCTTTTCCTCCTTCCATATTATGTATTTGAAGTTTTTGA AGAAACCCCACAGGGATCATTTGTAGGCGTGTGTCTGCCACAGACCCAGACAATAGGAAAT CTCCTATCAGGTATTCTATTACTAGGAGCAAAGTGTTCAATATCAATGATAATGGTACAATC ACTACAAGTAACTCACTGGATCGTGAAATCAGTGCTTGGTACAACCTAAGTATTACAGCCAC AGAAAAATACAATATAGAACAGATCTCTTCGATCCCACTGTATGTGCAAGTTCTTAACATCA ATGATCATGCTCCTGAGTTCTCTCAATACTATGAGACTTATGTTTGTGAAAATGCAGGCTCT GGTCAGGTAATTCAGACTATCAGTGCAGTGGATAGAGATGAATCCATAGAAGAGCACCATTT TTACTTTAATCTATCTGTAGAAGACACTAACAATTCAAGTTTTACAATCATAGATAATCAAG ATAACACAGCTGTCATTTTGACTAATAGAACTGGTTTTAACCTTCAAGAAGAACCTGTCTTC TACATCTCCATCTTAATTGCCGACAATGGAATCCCGTCACTTACAAGTACAAACACCCTTAC CATCCATGTCTGTGACTGTGGTGACAGTGGGAGCACACAGACCTGCCAGTACCAGGAGCTTG TGCTTTCCATGGGATTCAAGACAGAAGTTATCATTGCTATTCTCATTTGCATTATGATCATA TTTGGGTTTATTTTTTGACTTTGGGTTTAAAACAACGGAGAAAACAGATTCTATTTCCTGA GAAAAGTGAAGATTTCAGAGAGAATATATTCCAATATGATGATGAAGGGGGTGGAGAAGAAG ATACAGAGGCCTTTGATATAGCAGAGCTGAGGAGTAGTACCATAATGCGGGAACGCAAGACT CGGAAAACCACAAGCGCTGAGATCAGGAGCCTATACAGGCAGTCTTTGCAAGTTGGCCCCGA CAGTGCCATATTCAGGAAATTCATTCTGGAAAAGCTCGAAGAAGCTAATACTGATCCGTGTG CCCCTCCTTTGATTCCCTCCAGACCTACGCTTTTGAGGGAACAGGGTCATTAGCTGGATCC CTGAGCTCCTTAGAATCAGCAGTCTCTGATCAGGATGAAAGCTATGATTACCTTAATGAGTT GGGACCTCGCTTTAAAAGATTAGCATGCATGTTTGGTTCTGCAGTGCAGTCAAATAAT<u>TAG</u>G GCTTTTTACCATCAAAATTTTTAAAAGTGCTAATGTGTATTCGAACCCAATGGTAGTCTTAA AGAGTTTTGTGCCCTGGCTCTATGGCGGGGAAAGCCCTAGTCTATGGAGTTTTCTGATTTCC CTGGAGTAAATACTCCATGGTTATTTTAAGCTACCTACATGCTGTCATTGAACAGAGATGTG GGGAGAAATGTAAACAATCAGCTCACAGGCATCAATACAACCAGATTTGAAGTAAAATAATG TAGGAAGATATTAAAAGTAGATGAGAGGACACAAGATGTAGTCGATCCTTATGCGATTATAT CATTATTTACTTAGGAAAGAGTAAAAATACCAAACGAGAAAATTTAAAGGAGCAAAAATTTG CAAGTCAAATAGAAATGTACAAATCGAGATAACATTTACATTTCTATCATATTGACATGAAA ATTGAAAATGTATAGTCAGAGAAATTTTCATGAATTATTCCATGAAGTATTGTTTCCTTTAT TTAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53906</pre>

><subunit 1 of 1, 772 aa, 1 stop

><MW: 87002, pI: 4.64, NX(S/T): 8

MNCYLLERFMLGIPLLWPCLGATENSQTKKVKQPVRSHLRVKRGWVWNQFFVPEEMNTTSHH
IGQLRSDLDNGNNSFQYKLLGAGAGSTFIIDERTGDIYAIQKLDREERSLYILRAQVIDIAT
GRAVEPESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTASDADDPSSGNNARL
LYSLLQGQPYFSVEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSD
VNDNKPIFKESLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHE
TQEGIVILKKKVDFEHQNHYGIRAKVKNHHVPEQLMKYHTEASTTFIKIQVEDVDEPPLFLL
PYYVFEVFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNINDNGTITTSNSLDREISA
WYNLSITATEKYNIEQISSIPLYVQVLNINDHAPEFSQYYETYVCENAGSGQVIQTISAVDR
DESIEEHHFYFNLSVEDTNNSSFTIIDNQDNTAVILTNRTGFNLQEEPVFYISILIADNGIP
SLTSTNTLTIHVCDCGDSGSTQTCQYQELVLSMGFKTEVIIAILICIMIIFGFIFLTLGLKQ
RRKQILFPEKSEDFRENIFQYDDEGGGEEDTEAFDIAELRSSTIMRERKTRKTTSAEIRSLY
RQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSLSSLESAVSDQD
ESYDYLNELGPRFKRLACMFGSAVQSNN

Important features:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 597-617

N-glycosylation sites.

amino acids 57-60, 74-77, 419-423, 437-440, 508-511, 515-518, 516-519 and 534-537

Cadherins extracellular repeated domain signature.

amino acids 136-146 and 244-254

ATTTCAAGGCCAGCCATATTTTTTTTGTTGAACCAACAACAGGAGTCATAAGAATATTTTNTA
AAATGGATAGAAACTGCAAGATGAGTATTGGGTAATCATTCAAGCCAAGGACATGATTGGT
CAGCCAGGAGCGTTGTNTGGAACAACAAGTGTATTAATTAAACTTTCAGATGTTAATGACAA
TAAGCCTATATTTAAAGAAAGTTTATACCGCTTGACTGTNTNTGAATCTGCACCCACTGGGA
NTTNTATAGGAACAATCATGGCATATGATAATGACATAGGAGAGAATGCAGAAATGGATTAC
AGCATTGAAGAGGATGATTCGCAAACATTTGACATTATT

GCAACCTCAGCTTCTAGTATCCAGACTCCAGCGCCGCCCCGGGCGCGGACCCCAACCCCGAC CCAGAGCTTCTCCAGCGGCGCGCGCGCGCGCGCGCCTTAACTTCCTCCGCGGGG CCCAGCCACCTTCGGGAGTCCGGGTTGCCCACCTGCAAACTCTCCGCCTTCTGCACCTGCCA $\tt CCCCTGAGCCAGCGGGCCCCCGAGCGAGTC{\textbf{ATG}} GCCAACGCGGGGCTGCAGCTGTTGGGC$ TTCATTCTCGCCTTCCTGGGATGGATCGCCCATCGTCAGCACTGCCCTGCCCCAGTGGAG GATTTACTCCTATGCCGGCGACAACATCGTGACCGCCCAGGCCATGTACGAGGGGCTGTGGA TGTCCTGCGTGTCGCAGAGCACCGGGCAGATCCAGTGCAAAGTCTTTGACTCCTTGCTGAAT CTGAGCACCATTGCAAGCAACCCGTGCCTTGATGGTGGTTGGCATCCTCCTGGGAGTGAT AGCAATCTTTGTGGCCACCGTTGGCATGAAGTGTATGAAGTGCTTGGAAGACGATGAGGTGC AGAAGATGAGGATGGCTGTCATTGGGGGTGCGATATTTCTTCTTGCAGGTCTGGCTATTTTA GTTGCCACAGCATGGTATGGCAATAGAATCGTTCAAGAATTCTATGACCCTATGACCCCAGT TTCTGGGAGGTGCCCTACTTTGCTGTTCCTGTCCCGAAAAACAACCTCTTACCCAACACCA AGGCCCTATCCAAAACCTGCACCTTCCAGCGGGAAAGACTACGTG**TGA**CACAGAGGCAAAAG GAGAAAATCATGTTGAAACAAACCGAAAATGGACATTGAGATACTATCATTAACATTAGGAC ACCCATGTGTTAAAATACTCAGTGCTAAACATGGCTTAATCTTATTTTATCTTCCTCA ATATAGGAGGGAAGATTTTTCCATTTGTATTACTGCTTCCCATTGAGTAATCATACTCAAAT GGGGGAAGGGGTGCTCCTTAAATATATATAGATATGTATATACATGTTTTTCTATTAAAA ATAGACAGTAAAATACTATTCTCATTATGTTGATACTAGCATACTTAAAATATCTCTAAAAT AGGTAAATGTATTTAATTCCATATTGATGAAGATGTTTATTGGTATATTTTCTTTTTCGTCC TTATATACATATGTAACAGTCAAATATCATTTACTCTTCTTCATTAGCTTTGGGTGCCTTTG CCACAAGACCTAGCCTAATTTACCAAGGATGAATTCTTTCAATTCTTCATGCGTGCCCTTTT CATATACTTATTTTTTTTTTTACCATAATCTTATAGCACTTGCATCGTTATTAAGCCCCTTAT TTGTTTTGTGTTTCATTGGTCTCTATCTCCTGAATCTAACACATTTCATAGCCTACATTTTA GTTTCTAAAGCCAAGAAGAATTTATTACAAATCAGAACTTTGGAGGCAAATCTTTCTGCATG ACCAAAGTGATAAATTCCTGTTGACCTTCCCACACAATCCCTGTACTCTGACCCATAGCACT CTTGTTTGCTTTGAAAATATTTGTCCAATTGAGTAGCTGCATGCTGTTCCCCCAGGTGTTGT AACACAACTTTATTGATTGAATTTTTAAGCTACTTATTCATAGTTTTATATCCCCCCTAAACT ACCTTTTTGTTCCCCATTCCTTAATTGTATTGTTTTCCCAAGTGTAATTATCATGCGTTTTA TATCTTCCTAATAAGGTGTGGTCTGTTTGTCTGAACAAGTGCTAGACTTTCTGGAGTGATA ${\tt ATCTGGTGACAAATATTCTCTCTGTAGCTGTAAGCAAGTCACTTAATCTTTCTACCTCTTTT}$ TTCTATCTGCCAAATTGAGATAATGATACTTAACCAGTTAGAAGAGGTAGTGTGAATATTAA TTAGTTTATTTCTTTTGAACATGAACTATGCCTATGTAGTGTCTTTATTTGCT CAGCTGGCTGAGACACTGAAGAAGTCACTGAACAAAACCTACACGCTACCTTCATGTGATT CACTGCCTTCCTCTCTACCAGTCTATTTCCACTGAACAAAACCTACACACATACCTTCAT GTGGTTCAGTGCCTTCTCTCTCTACCAGTCTATTTCCACTGAACAAAACCTACGCACATAC CTTCATGTGGCTCAGTGCCTTCTCTCTCTACCAGTCTATTTCCATTCTTTCAGCTGTGTCT GACATGTTTGTGCTCTGTTCCATTTTAACAACTGCTCTTACTTTTCCAGTCTGTACAGAATG CTATTTCACTTGAGCAAGATGATGTAATGGAAAGGGTGTTGGCACTGGTGTCTGGAGACCTG GATTTGAGTCTTGGTGCTATCAATCACCGTCTGTGTTTGAGCAAGGCATTTGGCTGCTGTAA GCTTATTGCTTCATCTGTAAGCGGTGGTTTGTAATTCCTGATCTTCCCACCTCACAGTGATG TTGTGGGGATCCAGTGAGATAGAATACATGTAAGTGTGGTTTTGTAATTTAAAAAGTGCTAT ACTAAGGGAAAGAATTGAGGAATTAACTGCATACGTTTTGGTGTTTGCTTTTCAAATGTTTGA AAATAAAAAAATGTTAAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52185</pre>

><subunit 1 of 1, 211 aa, 1 stop

><MW: 22744, pI: 8.51, NX(S/T): 1

MANAGLQLLGFILAFLGWIGAIVSTALPQWRIYSYAGDNIVTAQAMYEGLWMSCVSQSTGQI QCKVFDSLLNLSSTLQATRALMVVGILLGVIAIFVATVGMKCMKCLEDDEVQKMRMAVIGGA IFLLAGLAILVATAWYGNRIVQEFYDPMTPVNARYEFGQALFTGWAAASLCLLGGALLCCSC PRKTTSYPTPRPYPKPAPSSGKDYV

Important features:

Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-102, 118-142 and 161-187

N-glycosylation site.

amino acids 72-75

PMP-22 / EMP / MP20 family proteins

amino acids 70-111

ABC-2 type transport system integral membrane protein

amino acids 119-133

GGGCCCGACCATTATCCAACCGGGNTCACTGTTGGCTCATCTCCCTCCTGGATGAANCGCGC
CATCNTCAGACTCCCTGCCCCATGGAGATTTNNCCTATGCTGGCGACAACATCNTGACCCCC
AGCCATGTACGAGGGGCTTTGAACGTCNGCGTGTCGCAGANCACCGGGCAGATCCAGTGCAA
AGTCTTTGACTCCTTGCTGAATCTGNGCAGCACATTGCAGCAACCCNTGCCCTGATGGTGGT
TGGCATCCTCCTGGGAGTGATAGCAATCTTTGTGGCCACCGTTGGCATGAAGTGTATGAAGT
GCTTGGAAGACGATGAGGTGCAGAAGATGAGGATGGCTGTCATTGGGGGGCGCGATATTTCTT
CTTGCAGGTCTGGCTATTTNNNGTTGCCACAGCATGGTATGGCAATAGAATCGTTCAAGAAT
TCTATGACCCTATGACCCCAGTCAATGCCAGGTACGAATTTGGTCAGGCTCTCTTCACTGGC
TGGGCTGCTGCTTCTCTCTCCCTTCTGGGAGGTGCCCTACTTTGCTGTTCCTGCGA

 ${\tt TCATAGGGGGGGGGGGGTATTTTTTTTTTTTGCAGGTNTGGTTATTTTAGTTGCCACAGCATGGTA\\ {\tt TGGCAATAGAATCGTTCAAGAATTNTATGACCCTATGACCCCAGTCAATGCCAGGTACGAAT\\ {\tt TTGGTCAGGCTCTNTTCACTGGNTGGGCTGCTTCTNTNNGCCTTNTGGGAGGTGCCCTA\\ {\tt CTTTGCTGTTCCTG}\\$

GCGTGCCGTCAGCTCGCCGGGCACCGCGCCTCGCCCTCGCCCCTGCGCCTGCAC ACCGGTCCCCGCCTTTTTGTAAAACTTAAAGCGGGCGCAGCATTAACGCTTCCCGCCCCGGT GACCTCTCAGGGGTCTCCCCGCCAAAGGTGCTCCGCCGCTAAGGAACATGGCGAAGGTGGAG CAGGTCCTGAGCCTCGAGCCGCAGCACGAGCTCAAATTCCGAGGTCCCTTCACCGATGTTGT CACCACCAACCTAAAGCTTGGCAACCCGACAGACCGAAATGTGTGTTTTAAGGTGAAGACTA CAGCACCACGTAGGTACTGTGTGAGGCCCAACAGCGGAATCATCGATGCAGGGGCCTCAATT AATGTATCTGTGATGTTACAGCCTTTCGATTATGATCCCAATGAGAAAAGTAAACACAAGTT TATGGTTCAGTCTATGTTTGCTCCAACTGACACTTCAGATATGGAAGCAGTATGGAAGGAGG CAAAACCGGAAGACCTTATGGATTCAAAACTTAGATGTGTGTTTGAATTGCCAGCAGAGAAT GATAAACCACATGATGTAGAAATAAATAAAATTATATCCACAACTGCATCAAAGACAGAAAC ACCAATAGTGTCTAAGTCTCTGAGTTCTTTTTGGATGACACCGAAGTTAAGAAGGTTATGG AAGAATGTAAGAGGCTGCAAGGTGAAGTTCAGAGGCTACGGGAGGAGAACAAGCAGTTCAAG GAAGAAGATGGACTGCGGATGAGGAAGACAGTGCAGAGCAACAGCCCCATTTCAGCATTAGC CCCAACTGGGAAGAAGAAGGCCTTAGCACCCGGCTCTTGGCTCTGGTGGTTTTTGTTCTTTA ${\tt TCGTTGGTGTAATTATTGGGAAGATTGCCTTG} {\tt TAG} {\tt AGGTAGCATGCACAGGATGGTAAATTG}$ GATTGGTGGATCCACCATATCATGGGATTTAAATTTATCATAACCATGTGTAAAAAGAAATT AGATACACACACAAATATAATGTAACGATCTTTTAGAAAGTTAAAAATGTATAGTAACTG ATTGAGGGGGAAAAAGAATGATCTTTATTAATGACAAGGGAAACCATGAGTAATGCCACAAT GGCATATTGTAAATGTCATTTTAAACATTGGTAGGCCTTGGTACATGATGCTGGATTACCTC TCTTAAAATGACACCCTTCCTCGCCTGTTGGTGCTGGCCCTTTGGGGAGCTGGAGCCCAGCAT GCTGGGGAGTGCGGTCAGCTCCACAGTAGTCCCCACGTGGCCCACTCCCGGCCCAGGCTG CTTTCCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGACTGATGAACAGAGTCAGA AGCCCAAAGGAATTGCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTGTGT TGACTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCACTTAAAGGGACCAA GCTAAATTTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTCAGAGATGTTTAATGCATA TTTAACTTATTTAATGTATTTCATCTCATGTTTTCTTATTGTCACAAGAGTACAGTTAATGC TGCGTGCTGAACTCTGTTGGGTGAACTGGTATTGCTGCTGGAGGGCTGTGGGCTCCTCT GTCTCTGGAGAGTCTGGTCATGTGGAGGTGGGGTTTATTGGGATGCTGGAGAAGAGCTGCCA CCACCTCTCAACCATTACTCACACTTCCAGCGCCCAGGTCCAAGTCTGAGCCTGACCTCCCC TTGGGGACCTAGCCTGGAGTCAGGACAAATGGATCGGGCTGCAGAGGGTTAGAAGCGAGGGC ACCAGCAGTTGTGGGTGGGGAGCAAGGGAAGAGAGAAACTCTTCAGCGAATCCTTCTAGTAC TAGTTGAGAGTTTGACTGTGAATTAATTTTATGCCATAAAAGACCAACCCAGTTCTGTTTGA CTATGTAGCATCTTGAAAAGAAAATTATAATAAAGCCCCCAAAATTAAGAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53977</pre>

<subunit 1 of 1, 243 aa, 1 stop</pre>

<MW: 27228, pI: 7.43, NX(S/T): 2

MAKVEQVLSLEPQHELKFRGPFTDVVTTNLKLGNPTDRNVCFKVKTTAPRRYCVRPNSGIID AGASINVSVMLQPFDYDPNEKSKHKFMVQSMFAPTDTSDMEAVWKEAKPEDLMDSKLRCVFE LPAENDKPHDVEINKIISTTASKTETPIVSKSLSSSLDDTEVKKVMEECKRLQGEVQRLREE NKQFKEEDGLRMRKTVQSNSPISALAPTGKEEGLSTRLLALVVLFFIVGVIIGKIAL

Important features:

Transmembrane domain:

amino acids 224-239

N-glycosylation site.

amino acids 68-71

N-myristoylation site.

amino acids 59-64, 64-69 and 235-240

TATTGTAAAGGCCATTTTAAACCATTGGTAGGCCTTGGTACATGATGCTGGATTACCTCCTT

AAATGACACCNTTCCTCGCCTGTTGGTGCTGGCCNTTGGGGAGCCCCAGCATGCTG
GGGAGTGCGGTCAGCTCCACACAGTAGTCCCCACGTGGCCCACTCCCGGCCCAGGCTGCTTT
CCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGACTGATGAACAGAGTCAGAAGCC
CAAAGGAATTGCCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTGTTGA
CTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCACTTAAAGGGACCAAGCT
AAATTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTCAGAGATGTTTAATGCATATTTA
ACTTATTTAATGTATTTCATCTCATGTTTTCTTATTGTCACAAGAGTACAGTTAATGCTGCG
TGCTGCTGAACTCTGTTGGGTGAACTGGTATTGCTGCTGGAGGGCTG

CCCTGGTGGTTTTGTTCTTTAATTCGTTGGTGTAATTNTTGGGAAGATTGCTTGTAGAGGTA
GNATGCACCNGGCTGGTAAATTGGATTGGTGGATCCACCATATCCATGGGATTTAAATTTAT
CATAACCATGTGTAAAAAGAAATTAATGTATGATGACATNTCACAGGTATTGCCTTTAAATT
ACCCATCCCTGNANACACATACACAGATACACANANACAAATNTAATGTAACGATNTTTTAG
AAAGTTAAAAATGTATAGTAAC

TGCTTTCCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGACTTGATGAACAGAGTC
AGAAGCCCAAAGGAATTGCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTG
TGTTGACTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCACTTAAAGGGAC
CAAGCTAAATTTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTCAGAGATGTTAATGC
ATATTTAACTTATTTAATGTATTTCATCTCATGTTTTCTTATTGTCACAAGAGTACAGTTAA
TGCTGCGTGC

AAACCTTTAAAAGTTGAGGGGAAAAGAATGATCCTTTATTAATGACAAGGGAAACCNTGNGT
AATGCCACAATGGCATATTGTAAATGTCATTTTAAACATTGGTAGGCCTTGGTACATGATGC
TGGATTACCTCTCTTAAAATGACACCCTTCCTCGCCTGTTGGTGCCCTTGGGGAGCTN
GAGCCCAGCATGCTGGGGAGTGCGGTCTGCTCCACACAGTAGTCCCCANGTGGCCCANTCCC
GGCCCAGGCTGCTTTCCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGANTGATGA
ACAGAGTCAGAAGCCCAAAGGAATTGCANTGTGGCAGCATCAGANGTANTNGTCATAAGTGA
GAGGCGTGTTTGANTGATTGACCCAGCGCTTTTGGAAATAAATGGCAGTGCTTTGTTCANTT
AAAGGGNCCAAGNTAAATTTGTATTGGTTCATGTAGTGAAGTCAAANTGTTATTCAGAGATG
TTTAATGCATATTTAANTTATTTAATGTATTTCATNTCATGTTTTCTTATTGTCACAAGGGT
ACAGTTAATGCTGCTGCTGCAANTCTGTTGGGTGAANTGGTATTGCTG

GCGAGCTCCGGGTGCTGTGGCCGGCCTTGGCGGGGCGCCTCCGGCTCAGGCTGAGA GGCTCCCAGCTGCAGCGTCCCCGCCCGCCTCCTCGGGAGCTCTGATCTCAGCTGACAGTGCC $\tt CTCGGGGACCAAACAAGCCTGGCAGGTCTCACTTTGTTGCCCAGGCTGGAGTTCAGTGCCA$ ${\tt TGATCATGGTTTACTGCAGCCTTGACCTCCTGGGTTCAAGCGATCCTGCTGAGTAGCTGGGA}$ $\tt CTACAGGACAAAATTAGAAGATCAAA{\color{red} ATG} GAAAATATGCTGCTTTGGTTGATATTTTTCACC$ GGTACCCCGGATTGTCAGTGAAAGGACTTTCCATCTCACCAGCCCCGCATTTGAGGCAGATG CTTTCTGAATTGGAGGATTATCTTTCCTATGAGACTGTCTTTGAGAATGGCACCCGAACCTT AACCAGGGTGAAAGTTCAAGATTTGGTTCTTGAGCCGACTCAAAATATCACCACAAAGGGAG TATCTGTTAGGAGAAAGAGACAGGTGTATGGCACCGACAGCAGGTTCAGCATCTTGGACAAA AGGTTCTTAACCAATTTCCCTTTCAGCACAGCTGTGAAGCTTTCCACGGGCTGTAGTGGCAT TCTCATTTCCCCTCAGCATGTTCTAACTGCTGCCCACTGTGTTCATGATGGAAAGGACTATG TCAAAGGGAGTAAAAAGCTAAGGGTAGGGTTGTTGAAGATGAGGAATAAAAGTGGAGGCAAG AGAGGATTGCCGAAGGGAGGCCTTCCTTTCAGTGGACCCGGGTCAAGAATACCCACATTCCG AAGGGCTGGGCACGAGGAGGCATGGGGGACGCTACCTTGGACTATGACTATGCTCTTCTGGA GCTGAAGCGTGCTCACAAAAGAAATACATGGAACTTGGAATCAGCCCAACGATCAAGAAA TGCCTGGTGGAATGATCCACTTCTCAGGATTTGATAACGATAGGGCTGATCAGTTGGTCTAT CGGTTTTGCAGTGTCCGACGAATCCAATGATCTCCTTTACCAATACTGCGATGCTGAGTC GGGCTCCACCGGTTCGGGGGTCTATCTGCGTCTGAAAGATCCAGACAAAAAGAATTGGAAGC GCAAAATCATTGCGGTCTACTCAGGGCACCAGTGGGTGGATGTCCACGGGGTTCAGAAGGAC TACAACGTTGCTGTTCGCATCACTCCCCTAAAATACGCCCAGATTTGCCTCTGGATTCACGG GAACGATGCCAATTGTGCTTACGGCTAACAGAGACCTGAAACAGGGCGGTGTATCATCTAAA TCACAGAGAAAACCAGCTCTGCTTACCGTAGTGAGATCACTTCATAGGTTATGCCTGGACTT GAACTCTGTCAATAGCATTTCAACATTTTTCAAAAATCAGGAGATTTTCGTCCATTTAAAAAA TGTATAGGTGCAGATATTGAAACTAGGTGGGCACTTCAATGCCAAGTATATACTCTTCTTA CATGGTGATGAGTTTCATTTGTAGAAAAATTTTGTTGCCTTCTTAAAAATTAGACACACTTT AAACCTTCAAACAGGTATTATAAATAACATGTGACTCCTTAATGGACTTATTCTCAGGGTCC TACTCTAAGAAGAATCTAATAGGATGCTGGTTGTGTATTAAATGTGAAATTGCATAGATAAA GGTAGATGGTAAAGCAATTAGTATCAGAATAGAGACAGAAAGTTACAACACAGTTTGTACTA CTCTGAGATGGATCCATTCAGCTCATGCCCTCAATGTTTATATTGTGTTATCTGTTTGGGTCT CAAAACTAATAACTGTTTTACTGCTTTAAGAAATAACAATTACAATGTGTATTATTAAAAA TGGGAGAAATAGTTTGTTCTATGAAATAAACCTAGTTTAGAAATAGGGAAGCTGAGACATTT TAAGATCTCAAGTTTTTATTTAACTAATACTCAAAATATGGACTTTTCATGTATGCATAGGG AAGACACTTCACAAATTATGAATGATCATGTGTTGAAAGCCACATTATTTTATGCTATACAT CTTTTTCTCCTTGACAAAATCCAGCTTTTGTATGAGGACTATAGGGTGAATTCTCTGATTAG TAATTTTAGATATGTCCTTTCCTAAAAATGAATAAAATTTATGAATATGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57253</pre>

<subunit 1 of 1, 413 aa, 1 stop

< MW: 47070, pI: 9.92, NX(S/T): 3

MENMLLWLIFFTPGWTLIDGSEMEWDFMWHLRKVPRIVSERTFHLTSPAFEADAKMMVNTVC GIECQKELPTPSLSELEDYLSYETVFENGTRTLTRVKVQDLVLEPTQNITTKGVSVRRKRQV YGTDSRFSILDKRFLTNFPFSTAVKLSTGCSGILISPQHVLTAAHCVHDGKDYVKGSKKLRV GLLKMRNKSGGKKRRGSKRSRREASGGDQREGTREHLQERAKGGRRRKKSGRGQRIAEGRPS FQWTRVKNTHIPKGWARGGMGDATLDYDYALLELKRAHKKKYMELGISPTIKKMPGGMIHFS GFDNDRADQLVYRFCSVSDESNDLLYQYCDAESGSTGSGVYLRLKDPDKKNWKRKIIAVYSG HQWVDVHGVQKDYNVAVRITPLKYAQICLWIHGNDANCAYG

Important features:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 90-93, 110-113 and 193-196

Glycosaminoglycan attachment site.

amino acids 236-239

Serine proteases, trypsin family, histidine active site. amino acids 165-170

AATGTGAGAGGGGCTGATGGAAGCTGATAGGCAGGACTGGAGTGTTAGCACCAGTACTGGAT GTGACAGCAGGCAGAGGACCACTTAGCAGCTTATTCAGTGTCCGATTCTGATTCCGGCAAGG ATCCAAGC<u>ATG</u>GAATGCTGCCGTCGGGCAACTCCTGGCACACTGCTCCTCTTTCTGGCTTTC CTGCTCCTGAGTTCCAGGACCGCACGCTCCGAGGAGGACCGGGACGGCCTATGGGATGCCTG GCCTGAGCAGCAGGAGGAAGGAAGAATATCCGATACAGAACATGCAGTAATGTGGAC TGCCCACCAGAAGCAGGTGATTTCCGAGCTCAGCAATGCTCAGCTCATAATGATGTCAAGCA CCATGGCCAGTTTTATGAATGGCTTCCTGTGTCTAATGACCCTGACAACCCATGTTCACTCA AGTGCCAAGCCAAAGGAACAACCCTGGTTGTTGAACTAGCACCTAAGGTCTTAGATGGTACG CGTTGCTATACAGAATCTTTGGATATGTGCATCAGTGGTTTATGCCAAATTGTTGGCTGCGA TCACCAGCTGGGAAGCACCGTCAAGGAAGATAACTGTGGGGTCTGCAACGGAGATGGGTCCA CCTGCCGGCTGGTCCGAGGGCAGTATAAATCCCAGCTCTCCGCAACCAAATCGGATGATACT GTGGTTGCACTTCCCTATGGAAGTAGACATATTCGCCTTGTCTTAAAAGGTCCTGATCACTT ATATCTGGAAACCAAAACCCTCCAGGGGACTAAAGGTGAAAACAGTCTCAGCTCCACAGGAA CTTTCCTTGTGGACAATTCTAGTGTGGACTTCCAGAAATTTCCAGACAAAGAGATACTGAGA ATGGCTGGACCACTCACAGCAGATTTCATTGTCAAGATTCGTAACTCGGGCTCCGCTGACAG CTTGCTCAGCAACCTGTGGAGGAGGTTATCAGCTGACATCGGCTGAGTGCTACGATCTGAGG AGCAACCGTGTGGTTGCTGACCAATACTGTCACTATTACCCAGAGAACATCAAACCCAAACC CAAGCTTCAGGAGTGCAACTTGGATCCTTGTCCAGCCAGTGACGGATACAAGCAGATCATGC CTTATGACCTCTACCATCCCCTTCCTCGGTGGGAGGCCACCCCATGGACCGCGTGCTCCTCC TCGTGTGGGGGGGCATCCAGAGCCGGCAGTTTCCTGTGTGGAGGAGGACATCCAGGGGCA TGTCACTTCAGTGGAAGAGTGGAAATGCATGTACACCCCTAAGATGCCCATCGCGCAGCCCT GCAACATTTTTGACTGCCCTAAATGGCTGGCACAGGAGTGGTCTCCGTGCACAGTGACATGT GGCCAGGGCCTCAGATACCGTGTGGTCCTCTGCATCGACCATCGAGGAATGCACACAGGAGG CTGTAGCCCAAAAACAAGCCCCACATAAAAGAGGAATGCATCGTACCCACTCCCTGCTATA AACCCAAAGAGAAACTTCCAGTCGAGGCCAAGTTGCCATGGTTCAAACAAGCTCAAGAGCTA GAAGAAGGAGCTGCTGTCAGAGGAGCCCTCGTAAGTTGTAAAAGCACAGACTGTTCTATA TTTGAAACTGTTTTGTTTAAAGAAAGCAGTGTCTCACTGGTTGTAGCTTTCATGGGTTCTGA AAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58847</pre>

<subunit 1 of 1, 525 aa, 1 stop

<MW: 58416, pI: 6.62, NX(S/T): 1

MECCRRATPGTLLLFLAFLLLSSRTARSEEDRDGLWDAWGPWSECSRTCGGGASYSLRRCLS
SKSCEGRNIRYRTCSNVDCPPEAGDFRAQQCSAHNDVKHHGQFYEWLPVSNDPDNPCSLKCQ
AKGTTLVVELAPKVLDGTRCYTESLDMCISGLCQIVGCDHQLGSTVKEDNCGVCNGDGSTCR
LVRGQYKSQLSATKSDDTVVALPYGSRHIRLVLKGPDHLYLETKTLQGTKGENSLSSTGTFL
VDNSSVDFQKFPDKEILRMAGPLTADFIVKIRNSGSADSTVQFIFYQPIIHRWRETDFFPCS
ATCGGGYQLTSAECYDLRSNRVVADQYCHYYPENIKPKPKLQECNLDPCPASDGYKQIMPYD
LYHPLPRWEATPWTACSSSCGGGIQSRAVSCVEEDIQGHVTSVEEWKCMYTPKMPIAQPCNI
FDCPKWLAQEWSPCTVTCGQGLRYRVVLCIDHRGMHTGGCSPKTKPHIKEECIVPTPCYKPK
EKLPVEAKLPWFKQAQELEEGAAVSEEPS

Important features:

Signal peptide:

amino acids 1-25

N-glycosylation site.

amino acids 251-254

Thrombospondin 1

amino acids 385-399

von Willebrand factor type C domain proteins

amino acids 385-399, 445-459 and 42-56

CGGACGCGTGGGCGGCTGCGGAACTCCCGTGGAGGGCCGGTGGGCCCTCGGGCCTGAC GCCCGCCGGTTCGTGGGGCCCAGGGTCCAGCGGCTGCGCAGAGGCGGGGACCCCGGCCTCAT GCGCGGGTCAGCTCCGCCGCGAGCTCCGCCAGGCCGCGGAGTGCGGCCCAGAGCCTGGCGT CAGCGGGTGGCCGAGCTCATAGTCCGGGAGCTGGACCTCGCCTCGCTGCGCTCGGTGCGCG CCTTCTGCCAGGAAATGCTCCAGGAAGAGCCTAGGCTGGATGTCTTGATCAATAACGCAGGG ATCTTCCAGTGCCCTTACATGAAGACTGAAGATGGGTTTGAGATGCAGTTCGGAGTGAACCA TCTGGGGCACTTTCTACTCACCAATCTTCTCCTTGGACTCCTCAAAAGTTCAGCTCCCAGCA GGATTGTGGTAGTTTCTTCCAAACTTTATAAATACGGAGACATCAATTTTGATGACTTGAAC AGTGAACAAAGCTATAATAAAAGCTTTTGTTATAGCCGGAGCAAACTGGCTAACATTCTTTT TACCAGGGAACTAGCCCGCCGCTTAGAAGGCACAAATGTCACCGTCAATGTGTTGCATCCTG GTATTGTACGGACAAATCTGGGGAGGCACATACACATTCCACTGTTGGTCAAACCACTCTTC GGCCTCTTCACCTGAGGTAGAAGGAGTGTCAGGAAGATACTTTGGGGATTGTAAAGAGGAAG AACTGTTGCCCAAAGCTATGGATGAATCTGTTGCAAGAAAACTCTGGGATATCAGTGAAGTG ATGGTTGGCCTGCTAAAA**TAG**GAACAAGGAGTAAAAGAGCTGTTTATAAAACTGCATATCAG TTATATCTGTGATCAGGAATGGTGTGGGATTGAGAACTTGTTACTTGAAGAAAAAGAATTTTG ATATTGGAATAGCCTGCTAAGAGGTACATGTGGGTATTTTGGAGTTACTGAAAAATTATTTT GTACAATGAAAAATACAATTATATTGTAAAATTATAACTGGGCAAGCATGGATGACATATTA ATATTTGTCAGAATTAAGTGACTCAAAGTGCTATCGAGAGGTTTTTCAAGTATCTTTGAGTT TCATGGCCAAAGTGTTAACTAGTTTTACTACAATGTTTGGTGTTTGTGTGGAAATTATCTGC CTGGTGTGCACACAGTCTTACTTGGAATAAATTTACTGGTAC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58747</pre>

<subunit 1 of 1, 336 aa, 1 stop

<MW: 36865, pI: 9.15, NX(S/T): 2

MAVATAAAVLAALGGALWLAARRFVGPRVQRLRRGGDPGLMHGKTVLITGANSGLGRATAAE LLRLGARVIMGCRDRARAEEAAGQLRRELRQAAECGPEPGVSGVGELIVRELDLASLRSVRA FCQEMLQEEPRLDVLINNAGIFQCPYMKTEDGFEMQFGVNHLGHFLLTNLLLGLLKSSAPSR IVVVSSKLYKYGDINFDDLNSEQSYNKSFCYSRSKLANILFTRELARRLEGTNVTVNVLHPG IVRTNLGRHIHIPLLVKPLFNLVSWAFFKTPVEGAQTSIYLASSPEVEGVSGRYFGDCKEEE LLPKAMDESVARKLWDISEVMVGLLK

Important features:

Signal peptide:

amino acids 1-21

Short-chain alcohol dehydrogenase family protein amino acids 134-144, 44-56 and 239-248

N-glycosylation site.

amino acids 212-215 and 239-242

GAGAGGACGAGGTGCCGCTGCCTGGAGAATCCTCCGCTGCCGTCGGCTCCCGGAGCCCAGCC $\mathsf{CCCAGCGTTACC}$ GCTCCTGGTAACTTGGGTTTTTACTCCTGTAACAACTGAAATAACAAGTCTTGCTACAGAGA ATATAGATGAAATTTTAAACAATGCTGATGTTGCTTTAGTAAATTTTTATGCTGACTGGTGT CGTTTCAGTCAGATGTTGCATCCAATTTTTGAGGAAGCTTCCGATGTCATTAAGGAAGAATT TCCAAATGAAAATCAAGTAGTGTTTGCCAGAGTTGATTGTGATCAGCACTCTGACATAGCCC AGAGATACAGGATAAGCAAATACCCAACCCTCAAATTGTTTCGTAATGGGATGATGATGAAG AGAGAATACAGGGGTCAGCGATCAGTGAAAGCATTGGCAGATTACATCAGGCAACAAAAAG TGACCCCATTCAAGAAATTCGGGACTTAGCAGAAATCACCACTCTTGATCGCAGCAAAAGAA ATATCATTGGATATTTTGAGCAAAAGGACTCGGACAACTATAGAGTTTTTGAACGAGTAGCG AATATTTTGCATGATGACTGTGCCTTTCTTTCTGCATTTGGGGGATGTTTCAAAACCGGAAAG ATATAGTGGCGACAACATAATCTACAAACCACCAGGGCATTCTGCTCCGGATATGGTGTACT TGGGAGCTATGACAAATTTTGATGTGACTTACAATTGGATTCAAGATAAATGTGTTCCTCTT GTCCGAGAAATAACATTTGAAAATGGAGAGGAATTGACAGAAGAAGGACTGCCTTTTCTCAT ACTCTTTCACATGAAAGAAGATACAGAAAGTTTAGAAATATTCCAGAATGAAGTAGCTCGGC AATTAATAAGTGAAAAAGGTACAATAAACTTTTTACATGCCGATTGTGACAAATTTAGACAT CCTCTTCTGCACATACAGAAAACTCCAGCAGATTGTCCTGTAATCGCTATTGACAGCTTTAG GCATATGTATGTGTTTTGGAGACTTCAAAGATGTATTAATTCCTGGAAAACTCAAGCAATTCG TATTTGACTTACATTCTGGAAAACTGCACAGAGAATTCCATCATGGACCTGACCCAACTGAT ACAGCCCCAGGAGAGCCAAGATGTAGCAAGCAGTCCACCTGAGAGCTCCTTCCAGAA ACTAGCACCCAGTGAATATAGGTATACTCTATTGAGGGATCGAGATGAGCTT**TAA**AAACTTG AAAAACAGTTTGTAAGCCTTTCAACAGCAGCATCAACCTACGTGGTGGAAATAGTAAACCTA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57689</pre>

<subunit 1 of 1, 406 aa, 1 stop

<MW: 46927, pI: 5.21, NX(S/T): 0

MHPAVFLSLPDLRCSLLLLVTWVFTPVTTEITSLATENIDEILNNADVALVNFYADWCRFSQ
MLHPIFEEASDVIKEEFPNENQVVFARVDCDQHSDIAQRYRISKYPTLKLFRNGMMMKREYR
GQRSVKALADYIRQQKSDPIQEIRDLAEITTLDRSKRNIIGYFEQKDSDNYRVFERVANILH
DDCAFLSAFGDVSKPERYSGDNIIYKPPGHSAPDMVYLGAMTNFDVTYNWIQDKCVPLVREI
TFENGEELTEEGLPFLILFHMKEDTESLEIFQNEVARQLISEKGTINFLHADCDKFRHPLLH
IQKTPADCPVIAIDSFRHMYVFGDFKDVLIPGKLKQFVFDLHSGKLHREFHHGPDPTDTAPG
EQAQDVASSPPESSFQKLAPSEYRYTLLRDRDEL

Important features:

Signal peptide:

amino acids 1-29

Endoplasmic reticulum targeting sequence.

amino acids 403-406

Tyrosine kinase phosphorylation site.

amino acids 203-211

Thioredoxin family proteins

amino acids 50-66

ATTAAGGAAGAATTCCAAATGAAAATCAAGTAGTNTTTGCCAGAGTNGATTGTGATCAGCA CTCTGACATAGCCCAGAGATACAGGATAAGCAAATACCCAACCCTCAAATTGTTTCGTAATG GGATGATGATGAAGAGAGAATACAGGGGTCAGCGATCAGTGAAAGCATTGGCAGATTA

 ${\tt GCCCACGCGTCCG}$ CTGCCGCGCTCATCTTCTCGCCATTTGGCACATTATAGCATTTGATGAGCTGAAGACTGAT TACAAGAATCCTATAGACCAGTGTAATACCCTGAATCCCCTTGTACTCCCAGAGTACCTCAT CCACGCTTTCTTGTGTCATGTTTCTTTGTGCAGCAGAGTGGCTTACACTGGGTCTCAATA TGCCCCTCTTGGCATATCATATTTGGAGGTATATGAGTAGACCAGTGATGAGTGGCCCAGGA GTGCAAATTAGCTTTTTTTCTAGCATTTTTTTTTACTACCTATATGGCATGATCTATGTTT TGGTGAGCTCT**TAG**AACAACACACAGAAGAATTGGTCCAGTTAAGTGCATGCAAAAAGCCAC CAAATGAAGGGATTCTATCCAGCAAGATCCTGTCCAAGAGTAGCCTGTGGAATCTGATCAGT TACTTTAAAAAATGACTCCTTATTTTTTAAATGTTTCCACATTTTTTGCTTGTGGAAAGACTG TTTTCATATGTTATACTCAGATAAAGATTTTAAATGGTATTACGTATAAATTAATATAAAAT GATTACCTCTGGTGTTGACAGGTTTGAACTTGCACTTCTTAAGGAACAGCCATAATCCTCTG AATGATGCATTAATTACTGACTGTCCTAGTACATTGGAAGCTTTTGTTATAGGAACTTGTA GGGCTCATTTGGTTTCATTGAAACAGTATCTAATTATAAATTAGCTGTAGATATCAGGTGC TTCTGATGAAGTGAAAATGTATATCTGACTAGTGGGAAACTTCATGGGTTTCCTCATCTGTC ATGTCGATGATTATATGGATACATTTACAAAAATAAAAAGCGGGAATTTTCCCTTCGCTT GAATATTATCCCTGTATATTGCATGAATGAGAGATTTCCCATATTTCCATCAGAGTAATAAA TATACTTGCTTTAATTCTTAAGCATAAGTAAACATGATATAAAAATATATGCTGAATTACTT AAATTGGTTATTATGCTTACTGTTCTAATCTGGTGGTAAAGGTATTCTTAAGAATTTGCAGG TACTACAGATTTTCAAAACTGAATGAGAGAAAATTGTATAACCATCCTGCTGTTCCTTTAGT GCAATACAATAAAACTCTGAAATTAAGACTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA23330</pre>

<subunit 1 of 1, 144 aa, 1 stop

<MW: 16699, pI: 5.60, NX(S/T): 0

MAFTFAAFCYMLALLLTAALIFFAIWHIIAFDELKTDYKNPIDQCNTLNPLVLPEYLIHAFF CVMFLCAAEWLTLGLNMPLLAYHIWRYMSRPVMSGPGLYDPTTIMNADILAYCQKEGWCKLA FYLLAFFYYLYGMIYVLVSS

Important features:

Signal peptide:

amino acids 1-20

Type II transmembrane domain:

amino acids 11-31

Other transmembrane domain:

amino acids 57-77 and 123-143

ATTATAGCATTTGATGAGCTGAAGACTGATTACAAGATCCTATAGACCAGTGTAATACCCTG

AATCCCCTTGTACTCCCAGAGTACCTCATCCACGCTTTCTTCTGTGTCATGTTTCTTTGTGC

AGCAGAGTGGCTTACACTGGGTCTCAATATGCCCCTCTTGGCATATCATATTTTGGAGGTATA

TGAGTAGACCAGTGATGAGTGGCCCAGGACTCTATGACCCTACAACCATCATGAATGCAGAT

ATTCTAGCATATTGTCAGAAGGAAGGATGGTGCAAATTAGCTTTTTATCTTCTAGCATTTTT

TTACTACCTATATGGCATGATCTATGTTTTGGTGAGCTCTTAGAACAACACACAGAAGAATT

GGTCCAGTTAAGTGCATGCAAAAAGCCACCAAATGAAGGGATTCTATCCAGCAAGATCCTGT

CCAAGAGTAGCCTGTGGAATCTGATCAGTTACTTTAAAAAAATG

CGGACGCGTGGGGAAACCCTTCCGAGAAAACAGCAACAAGCTGAGCTGTGACAGAGGG GAACAAG**ATG**GCGGCGCCGAAGGGGAGCCTCTGGGTGAGGACCCAACTGGGGCTCCCGCCGC TGCTGCTGACCATGGCCTTGGCCGGAGGTTCGGGGACCGCTTCGGCTGAAGCATTTGAC ${\tt TCGGTCTTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCCTTGCACAC}$ CTACCCTAAGGAAGAGGAGTTGTACGCATGTCAGAGAGGTTGCAGGCTGTTTTCAATTTGTC AGTTTGTGGATGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACA GAAGCATATTCCCAATCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAATCAGCTGCC ATTCGCTGAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTC CTCTAACTCTGGTGAGGTCATTCTGGAGTGACATGATGGACTCCGCACAGAGCTTCATAACC TCTTCATGGACTTTTTATCTTCAAGCCGATGACGGAAAAATAGTTATATTCCAGTCTAAGCC AGAAATCCAGTACGCACCACATTTGGAGCAGGAGCCTACAAATTTGAGAGAATCATCTCTAA GCAAAATGTCCTATCTGCAAATGAGAAATTCACAAGCGCACAGGAATTTTCTTGAAGATGGA GAAAGTGATGGCTTTTTAAGATGCCTCTCTCTTAACTCTGGGTGGATTTTAACTACAACTCT TGTCCTCTCGGTGATGGTATTGCTTTGGATTTGTTGTGCAACTGTTGCTACAGCTGTGGAGC CTAAACAGATATCCAGCTTCTTCTCTTGTGGTTGTTAGATCTAAAACTGAAGATCATGAAGA AGCAGGGCCTCTACCTACAAAAGTGAATCTTGCTCATTCTGAAAT<u>TTA</u>AGCATTTTTCTTTT AAAAGACAAGTGTAATAGACATCTAAAATTCCACTCCTCATAGAGCTTTTAAAAATGGTTTCA TTGGATATAGGCCTTAAGAAATCACTATAAAATGCAAATAAAGTTACTCAAATCTGTG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA26847</pre>

<subunit 1 of 1, 323 aa, 1 stop</pre>

<MW: 36223, pI: 5.06, NX(S/T): 1

MAAPKGSLWVRTQLGLPPLLLLTMALAGGSGTASAEAFDSVLGDTASCHRACQLTYPLHTYP
KEEELYACQRGCRLFSICQFVDDGIDLNRTKLECESACTEAYSQSDEQYACHLGCQNQLPFA
ELRQEQLMSLMPKMHLLFPLTLVRSFWSDMMDSAQSFITSSWTFYLQADDGKIVIFQSKPEI
QYAPHLEQEPTNLRESSLSKMSYLQMRNSQAHRNFLEDGESDGFLRCLSLNSGWILTTTLVL
SVMVLLWICCATVATAVEQYVPSEKLSIYGDLEFMNEQKLNRYPASSLVVVRSKTEDHEEAG
PLPTKVNLAHSEI

Important features:

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 241-260

N-glycosylation site.

amino acids 90-93

TTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCCTTGCACACCTACCC
TAAGGAAGAGAGTTGTACGCATGTCAGAGAGGGTTGCAGGCTGTTTTCAATTTGTCAGTTTG
TGGATGATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACAGAAGCA
TATTCCCAATCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAATCAGCTGCCATTCGC
TGAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTCCTCTAA
CTCTGGTGAGGTCATTCTGGAGTGACATGATGGACTCCGC

CACACTGGCCGGATCTTTTAGAGTCCTTTGACCTTGACCAAGGGTCNGGAAAACAGCAACAA
GCTGAGCTGCTGTGACAGAGGGAACAAGATGGCGCGCCGCAAGGGAGCCTTTGGGTGAGGAC
CCAACTGGGGCTCCCGCCGCTGCTGCTGCTGACCATGGCCTTGGCCGGAGGTTCGGGGACCG
CTTCGGCTGAAGCATTTGACTCGGTCTTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAG
TTGACCTACCCCTTGCACACCCTAACGAAGAAGAGGAGTTGTACGCATGTCAGAAGAGTTG
CAGGCTGTTTTCAATTTGTCAGTTTGTGGATGATGAATTGACTTAAATCGAACTAAATTGG
AATGTGAATCTGCATGTACAGAAGCATATTCCCAATCTGATGAGCAATATGCTTGCCATCTT
GGTTGCCAGAATCAGCTGCCATTCGCTGAACTGAGACAAACTTATGTCCCTGATGCC
AAAAATGCACCTACTCTTTCCTCTAACTCTGGTGAGGTCATTCTGGAGTGACATGATGACT

GCGAGGTGGCGATCGCTGAGAGGCAGGAGGCCGAGGCGGCCTGGGAGGCCCGGAGGT GGGGCGCCGCTGGGGCCCGCACGGGCTTCATCTGAGGGCGCACGGCCCGCGACCGAGC GTGCGGACTGGCCTCCCAAGCGTGGGGCGACAAGCTGCCGGAGCTGCAATG GGGATTCTTGTTTGGCCTCCTGGGCGCCGTGTGGCTGCTCAGCTCGGGCCACGGAGAGGAGC AGCCCCGGAGACAGCGGCACAGAGGTGCTTCTGCCAGGTTAGTGGTTACTTGGATGATTGT ACCTGTGATGTTGAAACCATTGATAGATTTAATAACTACAGGCTTTTCCCAAGACTACAAAA ACTTCTTGAAAGTGACTACTTTAGGTATTACAAGGTAAACCTGAAGAGGCCGTGTCCTTTCT GGAATGACATCAGCCAGTGTGGAAGAAGGGACTGTGCTGAAACCATGTCAATCTGATGAA GTTCCTGATGGAATTAAATCTGCGAGCTACAAGTATTCTGAAGAAGCCAATAATCTCATTGA AGGCTGTTCTTCAGTGGACCAAGCATGATGATTCTTCAGATAACTTCTGTGAAGCTGATGAC ATTCAGTCCCCTGAAGCTGAATATGTAGATTTGCTTCTTAATCCTGAGCGCTACACTGGTTA CAAGGGACCAGATGCTTGGAAAATATGGAATGTCATCTACGAAGAAAACTGTTTTAAGCCAC AGACAATTAAAAGACCTTTAAATCCTTTGGCTTCTGGTCAAGGGACAAGTGAAGAGAACACT TTTTACAGTTGGCTAGAAGGTCTCTGTGTAGAAAAAAGAGCATTCTACAGACTTATATCTGG CCTACATGCAAGCATTAATGTGCATTTGAGTGCAAGATATCTTTTACAAGAGACCTGGTTAG AAAAGAAATGGGGACACAACATTACAGAATTTCAACAGCGATTTGATGGAATTTTGACTGAA GGAGAAGGTCCAAGAAGGCTTAAGAACTTGTATTTTCTCTACTTAATAGAACTAAGGGCTTT ATCCAAAGTGTTACCATTCTTCGAGCGCCCAGATTTTCAACTCTTTACTGGAAATAAAATTC AGGATGAGGAAAACAAAATGTTACTTCTGGAAATACTTCATGAAATCAAGTCATTTCCTTTG GTCTGTGGGGAAAGCTTCAGACTCAGGGTTTGGGCACTGCTCTGAAGATCTTATTTTCTGAG AAATTGATAGCAAATATGCCAGAAAGTGGACCTAGTTATGAATTCCATCTAACCAGACAAGA AATAGTATCATTATTCAACGCATTTGGAAGAATTTCTACAAGTGTGAAAGAATTAGAAAACT TCAGGAACTTGTTACAGAATATTCAT**TAA**AGAAAACAAGCTGATATGTGCCTGTTTCTGGAC AATGGAGGCGAAAGAGTGGAATTTCATTCAAAGGCATAATAGCAATGACAGTCTTAAGCCAA ACATTTTATATAAAGTTGCTTTTGTAAAGGAGAATTATATTGTTTTAAGTAAACACATTTTT AAAAATTGTGTTAAGTCTATGTATAATACTACTGTGAGTAAAAGTAATACTTTAATAATGTG AAAAAAAAAAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53974</pre>

<subunit 1 of 1, 468 aa, 1 stop

<MW: 54393, pI: 5.63, NX(S/T): 2

MGRGWGFLFGLLGAVWLLSSGHGEEQPPETAAQRCFCQVSGYLDDCTCDVETIDRFNNYRLF
PRLQKLLESDYFRYYKVNLKRPCPFWNDISQCGRRDCAVKPCQSDEVPDGIKSASYKYSEEA
NNLIEECEQAERLGAVDESLSEETQKAVLQWTKHDDSSDNFCEADDIQSPEAEYVDLLLNPE
RYTGYKGPDAWKIWNVIYEENCFKPQTIKRPLNPLASGQGTSEENTFYSWLEGLCVEKRAFY
RLISGLHASINVHLSARYLLQETWLEKKWGHNITEFQQRFDGILTEGEGPRRLKNLYFLYLI
ELRALSKVLPFFERPDFQLFTGNKIQDEENKMLLLEILHEIKSFPLHFDENSFFAGDKKEAH
KLKEDFRLHFRNISRIMDCVGCFKCRLWGKLQTQGLGTALKILFSEKLIANMPESGPSYEFH
LTRQEIVSLFNAFGRISTSVKELENFRNLLQNIH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 280-283 and 384-387

Amidation site.

amino acids 94-97

Glycosaminoglycan attachment site.

amino acids 20-23 and 223-226

Aminotransferases class-V pyridoxal-phosphate

amino acids 216-222

Interleukin-7 proteins

amino acids 338-343

GCTGGAAATATGGATGTCATCTACGAGAAACTGTTTTAAGCCACAGACAATTAAAAGACCTT
TAAATCCTTTGGCTTCTGGTCAAGGGACAAGTGAAGAGNACACTTTTTACAGTTGGCTAGAA
GGTCTCTGTGTAGAAAAAAAGAGCATTCTACAGACTTATATCTGGCCTACATGCAAGCATTAA
TGTGCATTTGAGTGCAAGATATCTTTTACAAGAGACCTGGTTAGAAAAGAAATGGGGACACA
ACATTACAGAATTTNAACAGCGATTTGATGGAATTTTGACTGAAGGAGAGGTCCAAGAAG
CTTAAGAACTTGTATTTTCTCTACTTAATAGAACTAAGGGCTTTATCCAAAGTGTTACCATT
CTTNGAGCGCCCAGATTTCAACTNTTTACTGGAAATAAAATTCAGGATGAGGNAAACAAAA
TGTTACTTTTGGAAATACTTCATGAAATCAAGTCATTTTGCTT

AGTGAAGAAAACAGAAAAGGAGAGGGACAGAGGCCAGAGGACTTCTCATACTGGACAGAAAC CGATCAGGCATGGAACTCCCCTTCGTCACTCACCTGTTCTTGCCCCTGGTGTTCCTGACAGG TCTCTGCTCCCCCTTTAACCTGGATGAACATCACCCACGCCTATTCCCCAGGGCCACCAGAAG GCCCCTGGGATGGCCTTCAGGCGACCGGAGGGGGGACGTTTATCGCTGCCCTGTAGGGGG GGCCCACAATGCCCCATGTGCCAAGGGCCACTTAGGTGACTACCAACTGGGAAATTCATCTC ATCCTGCTGTGAATATGCACCTGGGGATGTCTCTGTTAGAGACAGATGGTGATGGGGGGATTC ATGGTGAGCTAAGGAGAGGGTGGTGGCAGTGTCTCTGAAGGTCCATAAAAGAAAAAAAGAAA GTGTGGTAAGGGAAAATGGTCTGTGTGGAGGGGTCAAGGAGTTAAAAACCCTAGAAAGCAAA AGGTAGGTAATGTCAGGGAGTAGTCTTCATGCCTCCTTCAACTGGGAGCATGTTCTGAGGGT GCCCTCCCAAGCCTGGGAGTAACTATTTCCCCCATCCCCAGGCCTGTGCCCCTCTCTGGTCT CGTGCTTGTGGCAGCTCTGTCTTCAGTTCTGGGATATGTGCCCGTGTGGATGCTTCATTCCA GCCTCAGGGAAGCCTGGCACCCACTGCCCAACGTGAGCCAGAGGAAGGCTGAGTACTTGGTT CCCAGAAGGAGATACTGGGTGGGAAAAAGATGGGGCAAAGCGGTATGATGCCTGGCAAAGGG CCTGCATGGCTATCCTCATTGCTACCTAATGTGCTTGCAAAAGCTCCATGTTTCCTAACAGA TTCAGACTCCTGGCCAGGTGTGGTGGCCCACACCTGTAATTCTAGCACTTTGGGAGGCCAAG GTGGGCAGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACTCCAT CTCTACTAAAAAAAAAAAAATACAAAAATTAGCTGGGTGCGCTAGTGCATGCCTGTAATCTC ATCTACTCGGGAGGCTAAGACAGGAGACTCTCACTTCAACCCAGGAGGTGGAGGTTGCGGTG AGCCAAGATTGTGCCTCTGCACTCTAGCGTGGGTGACAGAGTAAGCGAGACTCCATCTCAAA AATAATAATAATAATTCAGACTCCTTATCAGGAGTCCATGATCTGGCCTGGCACAGTAA CTCATGCCTGTAATCCCAACATTTTGGGAGGCCAACGCAGGAGGATTGCTTGAGGTCTGGAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57039</pre>

><subunit 1 of 1, 124 aa, 1 stop

><MW: 13352, pI: 5.99, NX(S/T): 1

MELPFVTHLFLPLVFLTGLCSPFNLDEHHPRLFPGPPEAEFGYSVLQHVGGGQRWMLVGAPW DGPSGDRRGDVYRCPVGGAHNAPCAKGHLGDYQLGNSSHPAVNMHLGMSLLETDGDGGFMVS

Important features:

Signal peptide:

amino acids 1-22

Cell attachment sequence.

amino acids 70-73

N-glycosylation site.

amino acids 98-101

Integrins alpha chain proteins

amino acids 67-81

AAAGTTACATTTTCTCTGGAACTCTCCTAGGCCACTCCCTGCTGATGCAACATCTGGGTTTG GGCAGAAAGGAGGGTGCTTCGGAGCCCGCCCTTTCTGAGCTTCCTGGGCCGGCTCTAGAACA GAGATGGACAGAATGCTTTATTTTGGAAAGAAACAATGTTCTAGGTCAAACTGAGTCTACCA $\mathtt{A} \underline{\mathbf{ATG}}\mathtt{CAGACTTTCACAATGGTTCTAGAAGAATCTGGACAAGTCTTTTCATGTGGTTTTTCT$ TCTGTACTCTCAACCAACATGAAGCATCTCTTGATGTGGAGCCCAGTGATCGCGCCTGGAGA AACAGTGTACTATTCTGTCGAATACCAGGGGGGAGTACGAGGCCTGTACACGAGCCACATCT GGATCCCCAGCAGCTGGTGCTCACTCACTGAAGGTCCTGAGTGTGATGTCACTGATGACATC ACGGCCACTGTGCCATACAACCTTCGTGTCAGGGCCACATTGGGCTCACAGACCTCAGCCTG GAGCATCCTGAAGCATCCCTTTAATAGAAACTCAACCATCCTTACCCGACCTGGGATGGAGA TCACCAAAGATGGCTTCCACCTGGTTATTGAGCTGGAGGACCTGGGGCCCCAGTTTGAGTTC CTTGTGGCCTACTGGAGGAGGGAGCCTGGTGCCGAGGAACATGTCAAAATGGTGAGGAGTGG GGGTATTCCAGTGCACCTAGAAACCATGGAGCCAGGGGCTGCATACTGTGTGAAGGCCCAGA GGAGAGGCCATTCCCCTGGTACTGGCCCTGTTTGCCTTTGTTGGCTTCATGCTGATCCTTGT GGTCGTGCCACTGTTCGTCTGGAAAATGGGCCGGCTGCTCCAGTACTCCTGTTGCCCCGTGG TGGTCCTCCCAGACACCTTGAAAATAACCAATTCACCCCAGAAGTTAATCAGCTGCAGAAGG GAGGAGGTGGATGCCTGTGCCACGGCTGTGATGTCTCCTGAGGAACTCCTCAGGGCCTGGAT CTCA<u>TAG</u>GTTTGCGGAAGGGCCCAGGTGAAGCCGAGAACCTGGTCTGCATGACATGGAAACC ATGAGGGGACAAGTTGTGTTTCTGTTTTCCGCCACGGACAAGGGATGAGAGAAGTAGGAAGA GCCTGTTGTCTACAAGTCTAGAAGCAACCATCAGAGGCAGGGTGGTTTGTCTAACAGAACAC CTGGGAAAAGTGACTTCATCCCTTCGGTCCTAAGTTTTCTCATCTGTAATGGGGGAATTACC TGTTTCTGGAGAGCAGGACATAAATGTATGATGAGAATGATCAAGGACTCTACACACTGGGT GGCTTGGAGAGCCCACTTTCCCAGAATAATCCTTGAGAGAAAAGGAATCATGGGAGCAATGG TGTTGAGTTCACTTCAAGCCCAATGCCGGTGCAGAGGGGAATGGCTTAGCGAGCTCTACAGT AGGTGACCTGGAGGAAGGTCACAGCCACACTGAAAATGGGATGTGCATGAACACGGAGGATC TGTTGGTAAAGTACAGAATTCAGCAAATAAAAAGGGCCACCCTGGCCAAAAGCGGTAAAAAA AAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57033</pre>

<subunit 1 of 1, 311 aa, 1 stop

<MW: 35076, pI: 5.04, NX(S/T): 2

MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSVLSTNMKHLLMWSPVIAPGE TVYYSVEYQGEYESLYTSHIWIPSSWCSLTEGPECDVTDDITATVPYNLRVRATLGSQTSAW SILKHPFNRNSTILTRPGMEITKDGFHLVIELEDLGPQFEFLVAYWRREPGAEEHVKMVRSG GIPVHLETMEPGAAYCVKAQTFVKAIGRYSAFSQTECVEVQGEAIPLVLALFAFVGFMLILV VVPLFVWKMGRLLQYSCCPVVVLPDTLKITNSPQKLISCRREEVDACATAVMSPEELLRAWIS

Important features:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 230-255

N-glycosylation site.

amino acids 40-43 and 134-137

Tissue factor proteins.

amino acids 92-119

Integrins alpha chain proteins

amino acids 232-262

GAGGAGATGCGGAGACCTGGAGTTAGGTGGCTTGGGAGAGCTTAATGAAAAGAGAAC GGAGAGGAGGTGTGGGTTAGGAACCAAGAGGTAGCCCTGTGGGCAGCAGAAGGCTGAGAGGA GTAGGAAGATCAGGAGCTAGAGGGAGACTGGAGGGTTCCGGGAAAAGAGCAGAGGAAAGAGG AAAGACACAGAGAGACGGGAGAGAGAAGAGGGGTTTTGAAGGGCGGATCTCAGTCCCTG GCTGCTTTGGCATTTGGGGAACTGGGACTCCCTGTGGGGAGGAGGAGAGCTGGAAGTCCT GGAGGGACAGGGTCCCAGAAGGAGGGGGACAGAGGAGCTGAGAGAGGGGGGGCAGGGCGTTGGG CAGGGGTCCCTCGGAGCCTCCTGGGGATGGGGGCTGCAGCTCGTCTGAGCGCCCCTCGAGC GCTGGTACTCTGGGCTGCACTGGGGGCAGCAGCTCACATCGGACCAGCACCTGACCCCGAGG ACTGGTGGAGCTACAAGGATAATCTCCAGGGAAACTTCGTGCCAGGGCCTCCTTTCTGGGGC CTGGTGAATGCAGCGTGGAGTCTGTGTGCTGTGGGGAAGCGGCAGAGCCCCGTGGATGTGGA GCTGAAGAGGGTTCTTTATGACCCCTTTCTGCCCCCATTAAGGCTCAGCACTGGAGGAGAGA GTGGTCAATGTGTCTGGAGGTCCCCTCCTTTACAGCCACCGACTCAGTGAACTGCGGCTGCT GTTTGGAGCTCGCGACGGAGCCGGCTCGGAACATCAGATCAACCACCAGGGCTTCTCTGCTG AGGTGCAGCTCATTCACCTACAGCAGCACTCTACGGGAATTTCAGCGCTGCCTCCCGCGGC CCCAATGGCCTGGCCATTCTCAGCCTCTTTGTCAACGTTGCCAGTACCTCTAACCCATTCCT CAGTCGCCTCCTTAACCGCGACACCATCACTCGCATCTCCTACAAGAATGATGCCTACTTTC TTCAAGACCTGAGCCTGGAGCTCCTGTTCCCTGAATCCTTCGGCTTCATCACCTATCAGGGC TCTCTCAGCACCCCGCCCTGCTCCGAGACTGTCACCTGGATCCTCATTGACCGGGCCCTCAA TATCACCTCCCTTCAGATGCACTCCCTGAGACTCCTGAGCCAGAATCCTCCATCTCAGATCT AACAGGGACCCCCGGCACCCCGAGAGGCGCTGCCGAGGCCCCAACTACCGCCTGCATGTGGA ${\tt TGGTGTCCCCCATGGTCGC} \underline{{\tt TGA}} {\tt GACTCCCCTTCGAGGATTGCACCCGCCCGTCCTAAGCCTC}$ CCCACAAGGCGAGGGGAGTTACCCCTAAAACAAAGCTATTAAAGGGACAGAATACTTA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA34353</pre>

<subunit 1 of 1, 328 aa, 1 stop</pre>

<MW: 36238, pI: 9.90, NX(S/T): 3

MGAAARLSAPRALVLWAALGAAAHIGPAPDPEDWWSYKDNLQGNFVPGPPFWGLVNAAWSLC AVGKRQSPVDVELKRVLYDPFLPPLRLSTGGEKLRGTLYNTGRHVSFLPAPRPVVNVSGGPL LYSHRLSELRLLFGARDGAGSEHQINHQGFSAEVQLIHFNQELYGNFSAASRGPNGLAILSL FVNVASTSNPFLSRLLNRDTITRISYKNDAYFLQDLSLELLFPESFGFITYQGSLSTPPCSE TVTWILIDRALNITSLQMHSLRLLSQNPPSQIFQSLSGNSRPLQPLAHRALRGNRDPRHPER RCRGPNYRLHVDGVPHGR

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 177-199

N-glycosylation site.

amino acids 118-121, 170-173 and 260-263

Eukaryotic-type carbonic anhydrases proteins

amino acids 222-270, 128-164 and 45-92

GGCGCCTGGTTCTGCGCGTACTGGCTGTACGGAGCAGGAGCAAGAGGTCGCCGCCAGCCTCCGCCGCCGAGCCTC GTTCGTGTCCCCGCCCCTCGCTCCTGCAGCTACTGCTCAGAAACGCTGGGGCGCCCACCCTGGCAGACTAACGAA CGCAGAGGCGGAGGCTCGCGTATTCCTGCAGTCAGCACCCACGTCGCCCCCGGACGCTCGGTGCTCAGGCCCTTC CACCTCTCCCAGGAAACTTCACACTGGAGAGCCAAAAGGAGTGGAAGAGCCTGTCTTGGAGATTTTCCTGGGGAA ${\tt ATCCTGAGGTCATTCATT} \underline{{\tt ATG}} {\tt AAGTGTACCGCGCGCGGGAGTGGCTCAGAGTAACCACTGCTGTTCATGGCTAGA$ GCAATTCCAGCCATGGTGGTTCCCAATGCCACTTTATTGGAGAAACTTTTTGGAAAAATACATGGATGAGGATGGT GAGTGGTGGATAGCCAAACAACGAGGGAAAAGGGCCATCACAGACAATGACATGCAGAGTATTTTGGACCTTCAT AATAAATTACGAAGTCAGGTGTATCCAACAGCCTCTAATATGGAGTATATGACATGGGATGTAGAGCTGGAAAGA TTGGGAGCACACTGGGGAAGATATAGGCCCCCGACGTTTCATGTACAATCGTGGTATGATGAAGTGAAAGACTTT CAGGTCGTGTGGCCAACTAGTAACAGAATCGGTTGTGCCATTAATTTGTGTCATAACATGAACATCTGGGGGCAG ATATGGCCCAAAGCTGTCTACCTGGTGTGCAATTACTCCCCAAAGGGAAACTGGTGGGGGCCATGCCCCTTACAAA CATGGGCGGCCCTGTTCTGCCTGCCCACCTAGTTTTGGAGGGGGGCTGTAGAGAAAATCTGTGCTACAAAGAAGGG TCAGACAGGTATTATCCCCCTCGAGAAGAGGAAACAAATGAAATAGAACGACAGCAGTCACAAGTCCATGACACC CATGTCCGGACAAGATCAGATGATAGTAGCAGAAATGAAGTCATAAGCGCACAGCAAATGTCCCAAATTGTTTCT AGTAAAGCTAAAGTTATTGGCAGTGTACATTATGAAATGCAATCCAGCATCTGTAGAGCTGCAATTCATTATGGT ATAATAGACAATGATGGTGGCTGGGTAGATATCACTAGACAAGGAAGAAGCATTATTTCATCAAGTCCAATAGA AATGGTATTCAAACAATTGGCAAATATCAGTCTGCTAATTCCTTCACAGTCTCTAAAGTAACAGTTCAGGCTGTG ACTTGTGAAACAACTGTGGAACAGCTCTGTCCATTTCATAAGCCTGCTTCACATTGCCCAAGAGTATACTGTCCT CGTAACTGTATGCAAGCAAATCCACATTATGCTCGTGTAATTGGAACTCGAGTTTATTCTGATCTGTCCAGTATC TGCAGAGCAGCAGTACATGCTGGAGTGGTTCGAAATCACGGTGGTTATGTTGATGTAATGCCTGTGGACAAAAGA AAGACCTACATTGCTTCTTTCAGAATGGAATCTTCTCAGAAAGTTTACAGAATCCTCCAGGAGGAAAGGCATTC ${\tt AGAGTGTTTGCTGTTGTG} \underline{{\tt TGA}} {\tt AACTGAATACTTGGAAGAGGACCATAAAGACTATTCCAAATGCAATATTTCTGA}$ ATTTTGTATAAAACTGTAACATTACTGTACAGAGTACATCAACTATTTTCAGCCCAAAAAGGTGCCAAATGCATA TAAATCTTGATAAACAAAGTCTATAAAATAAAACATGGGACATTAGCTTTGGGAAAAGTAATGAAAATATAATGG TTTTAGAAATCCTGTGTTAAATATTGCTATATTTTCTTAGCAGTTATTTCTACAGTTAATTACATAGTCATGATT ${\tt GTTCTACGTTTCATATATTATTGGTGCTTTGTATATGCCACTAATAAAATGAATCTAAACATTGAATGTGAATG}$ TGTTAATTTAGGCATATAGAATATTAAATTCTGATATTGCACTTCTTATTTTATATAAAATAATCCTTTAATATC ${\tt ATGAAAACATTCCTAGTGATCATGTAGTAAATGTAGGGTTAAGCATGGACAGCCAGAGCTTTCTATGTACTGTTA}$ AAATTGAGGTCACATATTTTCTTTTGTATCCTGGCAAATACTCCTGCAGGCCAGGAAGTATAATAGCAAAAAGTT ATATTGCCATATCATGGTACCTATAATGGTGATATATTTGTTTCTATGAAAAATGTATTGTGCTTTGATACTAAA AATCTGTAAAATGTTAGTTTTTGGTAATTTTTTTTTCTGCTGGTGGATTTACATATTAAATTTTTTCTGCTGGTGGA TAAACATTAAAATTAATCATGTTTCAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45417</pre>

<subunit 1 of 1, 500 aa, 1 stop

<MW: 56888, pI: 8.53, NX(S/T): 2

MKCTAREWLRVTTVLFMARAIPAMVVPNATLLEKLLEKYMDEDGEWWIAKQRGKRAITDNDM QSILDLHNKLRSQVYPTASNMEYMTWDVELERSAESWAESCLWEHGPASLLPSIGQNLGAHW GRYRPPTFHVQSWYDEVKDFSYPYEHECNPYCPFRCSGPVCTHYTQVVWATSNRIGCAINLC HNMNIWGQIWPKAVYLVCNYSPKGNWWGHAPYKHGRPCSACPPSFGGGCRENLCYKEGSDRY YPPREEETNEIERQQSQVHDTHVRTRSDDSSRNEVISAQQMSQIVSCEVRLRDQCKGTTCNR YECPAGCLDSKAKVIGSVHYEMQSSICRAAIHYGIIDNDGGWVDITRQGRKHYFIKSNRNGI QTIGKYQSANSFTVSKVTVQAVTCETTVEQLCPFHKPASHCPRVYCPRNCMQANPHYARVIG TRVYSDLSSICRAAVHAGVVRNHGGYVDVMPVDKRKTYIASFQNGIFSESLQNPPGGKAFRV FAVV

Important features:

Signal peptide:

amino acids 1-20

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 protein amino acids 165-186, 196-218, 134-146, 96-108 and 58-77

N-glycosylation site

amino acids 28-31

GCGGAGACAAGCGCAGAGCGCACGGCCACAGACAGCCCTGGGCATCCACCGACGGCG CAGCCGGAGCCAGCAGAGCCGGAGGCGCCCCGGGCAGAGAAAGCCGAGCAGAGCTGGGT GGCGTCTCCGGGCCGCTCCGACGGCCCACGCCCCTCCCCATGCTCCCACGCCG ACACCGCGCGTGTGGACGGGTCCAAATGCAAGTGCTCCCGGAAGGGCCCAAGATCCGCTAC AGCGACGTGAAGAAGCTGGAAATGAAGCCAAAGTACCCGCACTGCGAGGAGAAGATGGTTAT AGAGCACCAAGCGCTTCATCAAGTGGTACAACGCCTGGAACGAGAAGCGCAGGGTCTACGAA GAATAGGGTGAAAAACCTCAGAAGGGAAAACTCCAAACCAGTTGGGAGACTTGTGCAAAGGA TTTCTCACAGGCATAAGACACAAATTATATATTGTTATGAAGCACTTTTTACCAACGGTCAG TTTTTACATTTTATAGCTGCGTGCGAAAGGCTTCCAGATGGGAGACCCATCTCTCTTGTGCT CCAGACTTCATCACAGGCTGCTTTTTATCAAAAAGGGGAAAACTCATGCCTTTCCTTTTTAA AAAATGCTTTTTTGTATTTGTCCATACGTCACTATACATCTGAGCTTTATAAGCGCCCGGGA GGAACAATGAGCTTGGTGGACACATTTCATTGCAGTGTTGCTCCATTCCTAGCTTGGGAAGC TTCCGCTTAGAGGTCCTGGCGCCTCGGCACAGCTGCCACGGGCTCTCCTGGGCTTATGGCCG GTCACAGCCTCAGTGTGACTCCACAGTGGCCCCTGTAGCCGGGCAAGCAGGAGCAGGTCTCT CTGCATCTGTTCTCTGAGGAACTCAAGTTTGGTTGCCAGAAAAATGTGCTTCATTCCCCCCT GGTTAATTTTTACACACCCTAGGAAACATTTCCAAGATCCTGTGATGGCGAGACAAATGATC CTTAAAGAAGGTGTGGGGTCTTTCCCAACCTGAGGATTTCTGAAAGGTTCACAGGTTCAATA TTTAATGCTTCAGAAGCATGTGAGGTTCCCAACACTGTCAGCAAAAACCTTAGGAGAAAACT TAAAAATATATGAATACATGCGCAATACACAGCTACAGACACACTTCTGTTGACAAGGGAA AACCTTCAAAGCATGTTTCTTTCCCTCACCACAACAGAACATGCAGTACTAAAGCAATATAT TTGTGATTCCCCATGTAATTCTTCAATGTTAAACAGTGCAGTCCTCTTTCGAAAGCTAAGAT GACCATGCGCCCTTCCTCTGTACATATACCCTTAAGAACGCCCCCTCCACACACTGCCCCC CAGTATATGCCGCATTGTACTGCTGTTTATATGCTATGTACATGTCAGAAACCATTAGCAT TGCATGCAGGTTTCATATTCTTTCTAAGATGGAAAGTAATAAAATATATTTGAAATGTAAAA AAAAAAAAAA

MSLLPRRAPPVSMRLLAAALLLLLLALYTARVDGSKCKCSRKGPKIRYSDVKKLEMKPKYPH CEEKMVIITTKSVSRYRGQEHCLHPKLQSTKRFIKWYNAWNEKRRVYEE

Signal sequence:

amino acids 1-34

 ${\tt GCCCCAGGGACTGCTATGGCTTCCTTTGTTGTTCACCCCGGTCTGCGTC} {\tt ATG}{\tt TTAAACTCCAATGTCCTCTGTG}$ $\overline{\texttt{GTTAACTGCTCTTGCCATCAAGTTCACCCTCATTGACAGCCAAGCACGTATCCAGTTGTCAACACAAATTATGG}$ TGCCTCACCCCCACTGGAGAGGGGGGTTTCAGCCCCCAGAACCCCCGTCCTCCTGGACTGGCATCCGAAATAC TACTCAGTTTGCTGCTGTGTGCCCCCAGCACCTGGATGAGAGATCCTTACTGCATGACATGCTGCCCATCTGGTT TACCGCCAATTTGGATACTTTGATGACCTATGTTCAAGATCAAAATGAAGACTGCCTTTACTTAAACATCTACGT GCCCACGGAAGATGGAGCCAACACAAAGAAAAACGCAGATGATATAACGAGTAATGACCGTGGTGAAGACGAAGA TATTCATGATCAGAACAGTAAGAAGCCCGTCATGGTCTATATCCATGGGGGATCTTACATGGAGGGCACCGGCAA CATGATTGACGGCAGCATTTTGGCAAGCTACGGAAACGTCATCGTGATCACCATTAACTACCGTCTGGGAATACT AGGGTTTTTAAGTACCGGTGACCAGCAGCAAAAGGCAACTATGGGCTCCTGGATCAGATTCAAGCACTGCGGTG GATTGAGGAGAATGTGGGAGCCTTTGGCGGGGACCCCAAGAGAGTGACCATCTTTGGCTCGGGGGCTGGGGCCTC CCTGTCCAGCTGGGCAGTGAACTACCAGCCGGCCAAGTACACTCGGATATTGGCAGACAAGGTCGGCTGCAACAT GCTGGACACCACGGACATGGTAGAATGCCTGCGGAACAAGAACTACAAGGAGCTCATCCAGCAGACCATCACCCC GGCCACCTACCACATAGCCTTCGGGCCGGTGATCGACGGCGACGTCATCCCAGACGACCCCCAGATCCTGATGGA GCAAGGCGAGTTCCTCAACTACGACATCATGCTGGGCGTCAACCAAGGGGAAGGCCTGAAGTTCGTGGACGGCAT GCACGCGCAGTACGGCTCCCCCACCTACTTCTATGCCTTCTATCATCACTGCCAAAGCGAAATGAAGCCCAGCTG GGCAGATTCGGCCCATGGTGATGAGGTCCCCTATGTCTTCGGCATCCCCATGATCGGTCCCACCGAGCTCTTCAG TTGTAACTTTTCCAAGAACGACGTCATGCTCAGCGCCGTGGTCATGACCTACTGGACGAACTTCGCCAAAACTGG GTCCAAGTATAATCCCAAAGACCAGCTCTATCTGCATATTGGCTTGAAACCCAGAGTGAGAGATCACTACCGGGC ${\tt AACGAAAGTGGCTTTCTGGTTGGAACTCGTTCCTCATTTGCACAACTTGAACGAGATATTCCAGTATGTTTCAAC}$ AACCACAAAGGTTCCTCCACCAGACATGACATCATTTCCCTATGGCACCCGGCGATCTCCCGCCAAGATATGGCC AACCACCAAACGCCCAGCAATCACTCCTGCCAACAATCCCAAACACTCTAAGGACCCTCACAAAACAGGGCCTGA GGACAACTGTCCTCATTGAAACCAAACGAGATTATTCCACCGAATTAAGTGTCACCATTGCCGTCGGGGCGTC GCTCCTCTCCTCAACATCTTAGCTTTTGCGGCGCTGTACTACAAAAAGGACAAGAGGCGCCATGAGACTCACAG GCGCCCCAGTCCCCAGAGAAACACCACAAATGATATCGCTCACATCCAGAACGAAGAGATCATGTCTCTGCAGAT GAAGCAGCTGGAACACGATCACGAGTGTGAGTCGCTGCAGGCACACGACACACTGAGGCTCACCTGCCCGCCAGA CTACACCCTCACGCTGCGCCGGTCGCCAGATGACATCCCACTTATGACGCCAAACACCATCACCATGATTCCAAA CACACTGACGGGGATGCAGCCTTTGCACACTTTTAACACCTTCAGTGGAGGACAAAACAGTACAAATTTACCCCA $\tt CGGACATTCCACCACTAGAGTA{\color{blue}{\textbf{TAG}}} CTTTGCCCTATTTCCCTTCCTATCCCTCTGCCCTACCCGCTCAGCAACAT$ ${\tt AGAAGAGGGAAAGAAGAAAGAAGAAAGAAAGAAAGTCTCCAGACCAGGAATGTTTTTGTCCCACT}$ AAGATCAACTTCTGACCCTGTGAAATGTGAGAAGTACACATTTCTGTTAAAATAACTGCTTTAAGATCTCTACCA CTCCAATCAATGTTTAGTGTGATAGGACATCACCATTTCAAGGCCCCGGGTGTTTCCAACGTCATGGAAGCAGCT GACACTTCTGAAACTCAGCCAAGGACACTTGATATTTTTTAATTACAATGGAAGTTTAAACATTTCTTTTCTGTGC ${\tt CACACAATGGATGGCTCTCCTTAAGTGAAGAAAGAGTCAATGAGATTTTGCCCAGCACATGGAGCTGTAATCCAG}$ GTGTTTTGCCAGCCTGAACTATATTTAAGAGACTTTGT

MLNSNVLLWLTALAIKFTLIDSQAQYPVVNTNYGKIRGLRTPLPNEILGPVEQYLGVPYASP
PTGERRFQPPEPPSSWTGIRNTTQFAAVCPQHLDERSLLHDMLPIWFTANLDTLMTYVQDQN
EDCLYLNIYVPTEDGANTKKNADDITSNDRGEDEDIHDQNSKKPVMVYIHGGSYMEGTGNMI
DGSILASYGNVIVITINYRLGILGFLSTGDQAAKGNYGLLDQIQALRWIEENVGAFGGDPKR
VTIFGSGAGASCVSLLTLSHYSEGLFQKAIIQSGTALSSWAVNYQPAKYTRILADKVGCNML
DTTDMVECLRNKNYKELIQQTITPATYHIAFGPVIDGDVIPDDPQILMEQGEFLNYDIMLGV
NQGEGLKFVDGIVDNEDGVTPNDFDFSVSNFVDNLYGYPEGKDTLRETIKFMYTDWADKENP
ETRRKTLVALFTDHQWVAPAVAADLHAQYGSPTYFYAFYHHCQSEMKPSWADSAHGDEVPYV
FGIPMIGPTELFSCNFSKNDVMLSAVVMTYWTNFAKTGDPNQPVPQDTKFIHTKPNRFEEVA
WSKYNPKDQLYLHIGLKPRVRDHYRATKVAFWLELVPHLHNLNEIFQYVSTTTKVPPPDMTS
FPYGTRRSPAKIWPTTKRPAITPANNPKHSKDPHKTGPEDTTVLIETKRDYSTELSVTIAVG
ASLLFLNILAFAALYYKKDKRRHETHRRPSPQRNTTNDIAHIQNEEIMSLQMKQLEHDHECE
SLQAHDTLRLTCPPDYTLTLRRSPDDIPLMTPNTITMIPNTLTGMQPLHTFNTFSGGQNSTN
LPHGHSTTRV

Signal sequence:

amino acids 1-24

Transmembrane domains:

amino acids 189-204, 675-692

GGGAAAG**ATG**GCGGCGACTCTGGGACCCCTTGGGTCGTGGCAGCAGTGGCGGCGATGTTTGT CGGCTCGGGATGGTCCAGGATGTTACTCCTTCTTCTTTGTTGGGGTCTGGGCAGGGGCCA CAGCAAGTCGGGGCGGGTCAAACGTTCGAGTACTTGAAACGGGAGCACTCGCTGTCGAAGCC CTACCAGGGTGTGGGCACAGGCAGTTCCTCACTGTGGAATCTGATGGCCATGCTGA TGACCCAGTATATCCGCCTTACCCCAGATATGCAAAGTAAACAGGGTGCCTTGTGGAACCGG GTGCCATGTTTCCTGAGAGACTGGGAGTTGCAGGTGCACTTCAAAATCCATGGACAAGGAAA GAAGAATCTGCATGGGGATGGCTTGGCAATCTGGTACACAAAGGATCGGATGCAGCCAGGGC CTGTGTTTGGAAACATGGACAAATTTGTGGGGGCTGGGAGTATTTGTAGACACCTACCCCAAT GAGGAGAAGCAGCAAGAGCGGGTATTCCCCTACATCTCAGCCATGGTGAACAACGGCTCCCT CAGCTATGATCATGAGCGGGATGGGCGGCCTACAGAGCTGGGAGGCTGCACAGCCATTGTCC GCAATCTTCATTACGACACCTTCCTGGTGATTCGCTACGTCAAGAGGCATTTGACGATAATG ATGGATATTGATGGCAAGCATGAGTGGAGGGACTGCATTGAAGTGCCCGGAGTCCGCCTGCC CCGCGGCTACTACTTCGGCACCTCCTCCATCACTGGGGATCTCTCAGATAATCATGATGTCA TTTCCTTGAAGTTGTTTGAACTGACAGTGGAGAGACCCCAGAAGAGGGAAAAGCTCCATCGA GATGTGTTCTTGCCCTCAGTGGACAATATGAAGCTGCCTGAGATGACAGCTCCACTGCCGCC CCTGAGTGGCCTGGCCCTCTTCCTCATCGTCTTTTTCTCCCTGGTGTTTTTCTGTATTTGCCA TAGTCATTGGTATCATACTCTACAACAAATGGCAGGAACAGAGCCGAAAGCGCTTCTAC<u>TGA</u> GCCCTCCTGCTGCCACCACTTTTGTGACTGTCACCCATGAGGTATGGAAGGAGCAGGCACTG GCCTGAGCATGCAGCCTGGAGAGTGTTCTTGTCTCTAGCAGCTGGTTGGGGGACTATATTCTG TCACTGGAGTTTTGAATGCAGGGACCCCGCATTCCCATGGTTGTGCATGGGGACATCTAACT CTGGTCTGGGAAGCCACCCACCCAGGGCAATGCTGCTGTGATGTGCCTTTCCCTGCAGTCC TTCCATGTGGGAGCAGAGGTGTGAAGAGAATTTACGTGGTTGTGATGCCAAAATCACAGAAC AGAATTTCATAGCCCAGGCTGCCGTGTTGTTTGACTCAGAAGGCCCTTCTACTTCAGTTTTG TCTTCCCTGCCTTACCTTCCTTTCACTCCATTCATTGTCCTCTCTGTGTGCAACCTGAGCTG GGAAAGGCATTTGGATGCCTCTCTGTTGGGGCCTGGGGCTGCAGAACACCCTGCGTTTCAC TGGCCTTCATTAGGTGGCCCTAGGGAGATGGCTTTCTGCTTTGGATCACTGTTCCCTAGCAT GGGTCTTGGGTCTATTGGCATGTCCATGGCCTTCCCAATCAAGTCTCTTCAGGCCCTCAGTG AAGTTTGGCTAAAGGTTGGTGTAAAAATCAAGAGAAGCCTGGAAGACATCATGGATGCCATG GATTAGCTGTGCAACTGACCAGCTCCAGGTTTGATCAAACCAAAAGCAACATTTGTCATGTG GTCTGACCATGTGGAGATGTTTCTGGACTTGCTAGAGCCTGCTTAGCTGCATGTTTTGTAGT TACGATTTTTGGAATCCCACTTTGAGTGCTGAAAGTGTAAGGAAGCTTTCTTCTTACACCTT TGCTGTTCTCATGTTCCAAGTCTGAGAGCAACAGACCCTCATCATCTGTGCCTGGAAGAGTT CACTGTCATTGAGCAGCACAGCCTGAGTGCTGGCCTCTGTCAACCCTTATTCCACTGCCTTA TTTGACAAGGGGTTACATGCTGCTCACCTTACTGCCCTGGGATTAAATCAGTTACAGGCCAG AGTCTCCTTGGAGGGCCTGGAACTCTGAGTCCTCCTATGAACCTCTGTAGCCTAAATGAAAT TCTTAAAATCACCGATGGAACCAAAAAAAAAAAAAAAAGGGCGGCCGCGACTCTAGAGTCG ACCTGCAGTAGGGATAACAGGGTAATAAGCTTGGCCGCCATGG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50911

><subunit 1 of 1, 348 aa, 1 stop

><MW: 39711, pI: 8.70, NX(S/T): 1

MAATLGPLGSWQQWRRCLSARDGSRMLLLLLLLGSGQGPQQVGAGQTFEYLKREHSLSKPYQ GVGTGSSSLWNLMGNAMVMTQYIRLTPDMQSKQGALWNRVPCFLRDWELQVHFKIHGQGKKN LHGDGLAIWYTKDRMQPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVFPYISAMVNNGSLSY DHERDGRPTELGGCTAIVRNLHYDTFLVIRYVKRHLTIMMDIDGKHEWRDCIEVPGVRLPRG YYFGTSSITGDLSDNHDVISLKLFELTVERTPEEEKLHRDVFLPSVDNMKLPEMTAPLPPLS GLALFLIVFFSLVFSVFAIVIGIILYNKWQEQSRKRFY

Signal sequence:

amino acids 1-38

Transmembrane domain:

amino acids 310-329

 $\tt CCGAGCCGGCCGCCGAGCGAGCTGGGGCCGGCCTGGGACCATGGGCGTGAGTGCAATCTACGGATCAGTCT$ GACATGTTCCCGATTTGAGGTGAAACCATGAAGAGAAAATAGAATACTTAATAATCTTTTCCGCAACCGCTTCT TGCTGCTGCTGGCCTGCCTGCTGGCCTTTGTGAGCCTCAGCCTGCAGTTCTTCCACCTGATCCCGGTGT CGACTCCTAAGAATGGAATGAGTAGCAAGAGTCGAAAGAGAATCATGCCCGACCCTGTGACGGAGCCCCTGTGA CAGACCCCGTTTATGAAGCTCTTTTGTACTGCAACATCCCCAGTGTGGCCGAGCGCAGCATGGAAGGTCATGCCC CGCATCATTTAAGCTGGTCTCAGTGCATGTGTTCATTCGCCACGGAGACAGGTACCCACTGTATGTCATTCCCA AAACAAAGCGACCAGAAATTGACTGCACTCTGGTGGCTAACAGGAAACCGTATCACCCAAAACTGGAAGCTTTCA TTAGTCACATGTCAAAAGGATCCGGAGCCTCTTTCGAAAGCCCCTTGAACTCCTTGCCTCTTTACCCAAATCACC CATTGTGTGAGATGGGAGAGCTCACACAGACAGGAGTTGTGCAGCATTTGCAGAACGGTCAGCTGCTGAGGGATA TCTATCTAAAGAACACAAACTCCTGCCCAATGATTGGTCTGCAGACCAGCTCTATTTAGAGACCACTGGGAAAA GGCACCAGCCAAGTGCGCTGTTCTGCTCTGGAAGCTGCTATTGCCCGGTAAGAAACCAGTATCTGGAAAAGGAGC ATGTCCCCACCAAGCAGCTTAGAGCTGCCAACCCCATAGACTCCATGCTCTGCCACTTCTGCCACAATGTCAGCT TTCCCTGTACCAGAAATGGCTGTTGTACATGGAGCACTTCAAGGTAATTAAGACCCATCAGATCGAGGATGAAA GGGAAAGACGGGAGAAAATTGTACTTCGGGTATTCTCTCTGGGTGCCCACCCCATCCTGAACCAAACCATCG GCCGGATGCAGCGTGCCACCGAGGCCAGGAAAGAAGAGCTCTTTGCCCTCTACTCTGCTCATGATGTCACTCTGT ${\tt CACCAGTTCTCAGTGCCTTGGGCCTTTCAGAAGCCAGGTTCCCAAGGTTTGCAGCCAGGTTGATCTTTGAGCTTT}$ ${\tt GGCAAGACAGAGAAAAGCCCAGTGAACATTCCGTCCGGATTCTTTACAATGGCGTCGATGTCACATTCCACACCT}$ CTTTCTGCCAAGACCACCACAAGCGTTCTCCCAAGCCCATGTGCCCGCTTGAAAACTTGGTCCGCTTTGTGAAAA TATGCAGTACAGCAGTATAGAATCCATGCCAATACAGAGCATAGGGAAAGGTCCACTTCTAGTTTTGTCTGTTAC AAGCACATTGCTGCAATGTGGTACGTGAATTGCTTGGTACAAAATGGCCAGTTCACAGAGGAATAGAAGGTACTT TATCATAGCCAGACTTCGCTTAGAATGCCAGAATAATATAGTTCAAGACCTGAAGTTGCCAATCCAAGTTTGCAC TTTACCTTGTCCTTGTTAAGAATTTCTTGAAGTGATTTATCTAAAATAAAGGTTGGCAAACTTTTTCTGTAAAGG GCCAGATTGTAAATATTTCAGACTGTGTGGACCAAAAGGCCACATACAGTCTCTGTCATAACTACTCAACTCTGT TTCTGAAGCAGGAAAGCCACCACAGACAGTACATAAAGGAATATGTGTAGCTGGGTTCCCAGGCCAGACAAAACA GATGGTGACCAGACTTGGCCCCTGGGCTGTAGTTTGCTGACCCCTCATCTAAAAAATAGGCTATACTACAATTGC ACTTCCAGCACTTTGAGAACGAGTTGAATACCAAGAATTATTCAATGGTTCCTCCAGTAACTTCTGCTAGAAACA AACTGATTAGAAGAATACTTGATGTTTATGATGATTGTTGTACAAGATAGTTTTAAGTATGTTCTAAATATTTGT CTGCTGTAGTCTATTTGCTGTATATGCTGAAATTTTTGTATGCCATTTAGTATTTTTATAGTTTAGGAAAATATT TTCTAAGACCAGTTTTAGATGACTCTTATTCCTGTAGTAATATTCAATTTGCTGTACCTGCTTGGTGGTTAGAAG GAGGCTAGAAGATGAATTCAGGCACTTTCTTCCAATAAAACTAATTATGGCTCATTCCCTTTGACAAGCTGTAGA AGAACTTTGCTATTAGGTAGTTTACAGATCTTTATAAGGTGTTTTATATATTAGAAGCAATTATAATTACATCTG TGATTTCTGAACTAATGGTGCTAATTCAGAGAAATGGAAAGTGAAAGTGAGATTCTCTGTTGTCATCGGCATTCC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48329</pre>

><subunit 1 of 1, 480 aa, 1 stop

><MW: 55240, pI: 9.30, NX(S/T): 2

MLFRNRFLLLLALAALLAFVSLSLQFFHLIPVSTPKNGMSSKSRKRIMPDPVTEPPVTDPVY
EALLYCNIPSVAERSMEGHAPHHFKLVSVHVFIRHGDRYPLYVIPKTKRPEIDCTLVANRKP
YHPKLEAFISHMSKGSGASFESPLNSLPLYPNHPLCEMGELTQTGVVQHLQNGQLLRDIYLK
KHKLLPNDWSADQLYLETTGKSRTLQSGLALLYGFLPDFDWKKIYFRHQPSALFCSGSCYCP
VRNQYLEKEQRRQYLLRLKNSQLEKTYGEMAKIVDVPTKQLRAANPIDSMLCHFCHNVSFPC
TRNGCVDMEHFKVIKTHQIEDERERREKKLYFGYSLLGAHPILNQTIGRMQRATEGRKEELF
ALYSAHDVTLSPVLSALGLSEARFPRFAARLIFELWQDREKPSEHSVRILYNGVDVTFHTSF
CQDHHKRSPKPMCPLENLVRFVKRDMFVALGGSGTNYYDACHREGF

Signal sequence:

amino acids 1-18

AAAAAAGCTCACTAAAGTTTCTATTAGAGCGAATACGGTAGATTTCCATCCCCTTTTGAAGAACAGTACTGTGGA GCTATTTAAGAGATAAAAACGAAATATCCTTTCTGGGAGTTCAAGATTGTGCAGTAATTGGTTAGGACTCTGAGC GCCGCTGTTCACCAATCGGGGAGAGAAAGCGGAGATCCTGCTCGCCTTGCACGCCCTGAAGCACAAAGCAGAT AGCTAGGAATGAACCATCCCTGGGAGTATGTGGAAACAACGGAGGAGCTCTGACTTCCCAACTGTCCCATTCTAT $\tt GGGCGAAGGAACTGCTCCTGACTTCAGTGGTTAAGGGCAGAATTGAAAATAATTCTGGAGGAAGATAAGA{\color{red}{\textbf{ATG}}} AT{\color{red}{\textbf{ATG}}} AT{\color{red}{\textbf{ATG}}$ TCCTGCGCGACTGCACCGGGACTACAAAGGGCTTGTCCTGCTGGGAATCCTCCTGGGGACTCTGTGGGAGACCGG ${\tt ATGCACCCAGATACGCTATTCAGTTCCGGAAGAGCTGGAGAAAGGCTCTAGGGTGGGCGACATCTCCAGGGACCT}$ GGGGCTGGAGCCCCGGGAGCTCGCGGAGCCCCGCATCATCCCCAGAGGTAGGACGCAGCTTTTCGCCCT GAATCCGCGCAGCGGCAGCTTGGTCACGGCGGGCAGGATAGACCGGGAGGAGCTCTGTATGGGGGCCATCAAGTG TCAATTAAATCTAGACATTCTGATGGAGGATAAAGTGAAAATATATGGAGTAGAAGTAGAAGTAAGGGACATTAA $\tt CGACAATGCGCCTTACTTTCGTGAAAGTGAATTAGAAATTAGAAATTAGTGAAAATGCAGCCACTGAGATGCGGTT$ CCCTCTACCCCACGCCTGGGATCCGGATATCGGGAAGAACTCTCTGCAGAGCTACGAGCTCAGCCCGAACACTCA $\tt GGAGAATCTGGCCTTGGGCACGCAGCTGCTTGTAGTCAACGCTACCGACCCTGACGAAGGAGTCAATGCGGAAGT$ GAGGTATTCCTTCCGGTATGTGGACGACAAGGCGGCCCAAGTTTTCAAACTAGATTGTAATTCAGGGACAATATC $\tt CGCCAGCTCGGTTCCCGAAAACTCTCCCAGAGGGACATTAATTGCCCTTTTAAATGTAAATGACCAAGATTCTGA$ GGAAAACGGACAGGTGATCTGTTTCATCCAAGGAAATCTGCCCTTTAAATTAGAAAAATCTTACGGAAATTACTA TAGTTTAGTCACAGACATAGTCTTGGATAGGGAACAGGTTCCTAGCTACAACATCACAGTGACCGCCACTGACCG GGGAACCCCGCCCTATCCACGGAAACTCATATCTCGCTGAACGTGGCAGACACCAACGACAACCCGCCGGTCTT CCCTCAGGCCTCCTATTCCGCTTATATCCCAGAGAACAATCCCAGAGGAGTTTCCCTCGTCTCTGTGACCGCCCA GTCCTACGTGTCCATCAACTCCGACACTGGGGTACTGTATGCGCTGAGCTCCTTCGACTACGAGCAGTTCCGAGA CTTGCAAGTGAAAGTGATGGCGCGGGACAACGGGCACCCGCCCTCAGCAGCAACGTGTCGTTGAGCCTGTTCGT GGCTCCCCGCTCCGCAGAGCCCGGCTACCTGGTGACCAAGGTGGTGGCGGTGGACAGAGACTCCGGCCAGAACGC $\verb|CCCTCTCCCGCCACTGTCACGCTGGCCGTGGCCGACAGCATCCCCCAAGTCCTGGCGGACCTCGGCAG| \\$ CCTCGAGTCTCCAGCTAACTCTGAAACCTCAGACCTCACTCTGTACCTGGTGGTAGCGGTGGCCGCGGTCTCCTG CGTCTTCCTGGCCTTCGTCATCTTGCTGCTGGCGCTCAGGCTGCGGCGCTGGCACAAGTCACGCCTGCTGCAGGC $\verb|CTATTCCCACGAGGTTTCCCTCACCACGGACTCGCGGAAGAGTCACCTGATCTTCCCCCAGCCCAACTATGCAGA| \\$ CATGCTCGTCAGCCAGGAGAGCTTTGAAAAAAGCGAGCCCCTTTTGCTGTCAGGTGATTCGGTATTTTCTAAAGA TGGAGTGCAGCGGTACGATCATAGCTCACTGCGGCCTCAAACTCCTAGGCTCAAGCAATTATCCCACCTTTGCCT $\tt CTATCTATCTATCTATTACTTTCTTGTACAGACGGGAGTCTCACGCCTGTAATCCCAGTACTTTGGGAGGC$ ${\tt CGAGGCGGGTGGATCACCTGAGGTTGGGAGTTTGAGACCAGCC}$ $\overline{\mathtt{AAAAATACAAAATTAGCCGGGCGTGGTGGTGCATGTCTGTAATCCCAGCTACTTGGGAGGCTGAGTCAGGAGAAT}$ TGCTTTAACCTGGGAGGTGGAGGTTGCAATGAGCTGAGATTGTGCCATTGCACTCCAGCCTGGGCAACAAGAGTG AAACTCTATCTCA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48306</pre>

><subunit 1 of 1, 916 aa, 1 stop

><MW: 100204, pI: 4.92, NX(S/T): 4

MIPARLHRDYKGLVLLGILLGTLWETGCTQIRYSVPEELEKGSRVGDISRDLGLEPRELAER
GVRIIPRGRTQLFALNPRSGSLVTAGRIDREELCMGAIKCQLNLDILMEDKVKIYGVEVEVR
DINDNAPYFRESELEIKISENAATEMRFPLPHAWDPDIGKNSLQSYELSPNTHFSLIVQNGA
DGSKYPELVLKRALDREEKAAHHLVLTASDGGDPVRTGTARIRVMVLDANDNAPAFAQPEYR
ASVPENLALGTQLLVVNATDPDEGVNAEVRYSFRYVDDKAAQVFKLDCNSGTISTIGELDHE
ESGFYQMEVQAMDNAGYSARAKVLITVLDVNDNAPEVVLTSLASSVPENSPRGTLIALLNVN
DQDSEENGQVICFIQGNLPFKLEKSYGNYYSLVTDIVLDREQVPSYNITVTATDRGTPPLST
ETHISLNVADTNDNPPVFPQASYSAYIPENNPRGVSLVSVTAHDPDCEENAQITYSLAENTI
QGASLSSYVSINSDTGVLYALSSFDYEQFRDLQVKVMARDNGHPPLSSNVSLSLFVLDQNDN
APEILYPALPTDGSTGVELAPRSAEPGYLVTKVVAVDRDSGQNAWLSYRLLKASEPGLFSVG
LHTGEVRTARALLDRDALKQSLVVAVQDHGQPPLSATVTLTVAVADSIPQVLADLGSLESPA
NSETSDLTLYLVVAVAAVSCVFLAFVILLLALRLRRWHKSRLLQASGGGLTGAPASHFVGVD
GVQAFLQTYSHEVSLTTDSRKSHLIFPQPNYADMLVSQESFEKSEPLLLSGDSVFSKDSHGL
IEVSLYQIFFLFFFNCSVSQAGVQRYDHSSLRPQTPRLKQLSHLCLRCNRDYRCKPPTVCLS
IYLSIYLSIYLLISCTDGSLTPVIPVLWEAEAGGSPEVGSLRPA

Signal sequence:

amino acids 1-30

Transmembrane domains:

amino acids 693-711, 809-823, 869-888

GCTCCAGAATCGTGTACCAGGCAGAGAACTGAAGTACTGGGGCCTCCTCCACTGGGTCCGAA TCAGTAGGTGACCCCGCCCTGGATTCTGGAAGACCTCACCATGGGACGCCCCCGACCTCGT ACAGGAGGACAAGGTGCTGGGGGGTCATGAGTGCCAACCCCATTCGCAGCCTTGGCAGGCGG CCTTGTTCCAGGGCCAGCAACTACTCTGTGGCGGTGTCCTTGTAGGTGGCAACTGGGTCCTT ACAGCTGCCCACTGTAAAAAACCGAAATACACAGTACGCCTGGGAGACCACAGCCTACAGAA TAAAGATGGCCCAGAGCAAGAAATACCTGTGGTTCAGTCCATCCCACACCCCTGCTACAACA GCAGCGATGTGGAGGACCACAACCATGATCTGATGCTTCTTCAACTGCGTGACCAGGCATCC CTGGGGTCCAAAGTGAAGCCCATCAGCCTGGCAGATCATTGCACCCAGCCTGGCCAGAAGTG CACCGTCTCAGGCTGGGGCACTGTCACCAGTCCCCGAGAGAATTTTCCTGACACTCTCAACT GTGCAGAAGTAAAAATCTTTCCCCAGAAGAAGTGTGAGGATGCTTACCCGGGGCAGATCACA GATGGCATGGTCTGTGCAGGCAGCAGCAAAGGGGCTGACACGTGCCAGGGCGATTCTGGAGG CCCCCTGGTGTGTGATGGTGCACTCCAGGGCATCACATCCTGGGGCTCAGACCCCTGTGGGA GGTCCGACAACCTGGCGTCTATACCAACATCTGCCGCTACCTGGACTGGATCAAGAAGATC ATAGGCAGCAAGGGC<u>TGA</u>TTCTAGGATAAGCACTAGATCTCCCTTAATAAACTCACAACTCT CTGGTTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48336</pre>

<subunit 1 of 1, 260 aa, 1 stop

<MW: 28048, pI: 7.87, NX(S/T): 1

MGRPRPRAAKTWMFLLLLGGAWAGHSRAQEDKVLGGHECQPHSQPWQAALFQGQQLLCGGVL VGGNWVLTAAHCKKPKYTVRLGDHSLQNKDGPEQEIPVVQSIPHPCYNSSDVEDHNHDLMLL QLRDQASLGSKVKPISLADHCTQPGQKCTVSGWGTVTSPRENFPDTLNCAEVKIFPQKKCED AYPGQITDGMVCAGSSKGADTCQGDSGGPLVCDGALQGITSWGSDPCGRSDKPGVYTNICRY LDWIKKIIGSKG

Important Features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 51-71

N-glycosylation site.

amino acids 110-113

Serine proteases, trypsin family, histidine active site.

amino acids 69-74 and 207-217

Tyrosine kinase phosphorylation site.

amino acids 182-188

Kringle domain proteins motif

amino acids 205-217

GGCGCCGGTGCACCGGGCGGGCTGAGCGCCTCCTGCGGCCCGGCCTGCGCGCCCCGGCCCGG GCCCGCGCCCAGGTGAGCGCTCCGCCCGCCGCGGAGGCCCCGGCCCGGCCCCGCCCCG CCCCGGCCGGCGGGAACCGGCGGATTCCTCGCGCGTCAAACCACCTGATCCCATAAAAC ATTCATCCTCCGGCGGCCCGCGCTGCGAGCGCCCGCCAGTCCGCGCCGCCGCCCCTCG TGCGGACCCGGCGGGGGAGACGGGCGCCCCGAAACGACTTTCAGTCCCCGACGCGC CTGTGGCTGCAGGCCTGGCAGGTGCCCATGCCCAGGTGCCTGCGTATGCTACAATGA GCCCAAGGTGACGACAAGCTGCCCCCAGCAGGGCCTGCAGGCTGTGCCCGTGGGCATCCCTG CTGCCAGCCAGCGCATCTTCCTGCACGGCAACCGCATCTCGCATGTGCCAGCTGCCAGCTTC CGTGCCTGCCGCAACCTCACCATCCTGTGGCTGCACTCGAATGTGCTGGCCCGAATTGATGC GGCTGCCTTCACTGGCCTGGCCCTCCTGGAGCAGCTGGACCTCAGCGATAATGCACAGCTCC GGTCTGTGGACCCTGCCACATTCCACGGCCTGGGCCGCCTACACACGCTGCACCTGGACCGC TGCGGCCTGCAGGAGCTGGGCCCGGGGCTGTTCCGCGGCCTGGCTGCCCTGCAGTACCTCTA CCTGCAGGACAACGCGCTGCAGGCACTGCCTGATGACACCTTCCGCGACCTGGGCAACCTCA CACACCTCTTCCTGCACGGCAACCGCATCTCCAGCGTGCCCGAGCGCGCCTTCCGTGGGCTG CACAGCCTCGACCGTCTCCTACTGCACCAGAACCGCGTGGCCCATGTGCACCCGCATGCCTT CCGTGACCTTGGCCGCCTCATGACACTCTATCTGTTTGCCAACAATCTATCAGCGCTGCCCA CTGAGGCCCTGCGTGCCCTGCAGTACCTGAGGCTCAACGACAACCCCTGGGTG TGTGACTGCCGGGCACGCCCACTCTGGGCCTGGCTGCAGAAGTTCCGCGGGCTCCTCCTCCGA GGTGCCCTGCAGCCTCCCGCAACGCCTGGCTGGCCGTGACCTCAAACGCCTAGCTGCCAATG ACTGGAGCCTGGAAGACCAGCTTCGGCAGGCAATGCGCTGAAGGGACGCGTGCCGCCCGGTG ACAGCCCGCCGGGCAACGGCTCTGGCCCACGGCACATCAATGACTCACCCTTTGGGACTCTG CCTGGCTCTGCTGAGCCCCCGCTCACTGCAGTGCGGCCCGAGGGCTCCGAGCCACCAGGGTT CCCCACCTCGGGCCCTCGCCGGAGGCCAGGCTGTTCACGCAAGAACCGCACCCGCAGCCACT GCCGTCTGGGCCAGGCAGCGGGGGGGTGGCGGGACTGGTGACTCAGAAGGCTCAGGTGCC CTACCCAGCCTCACCTGCAGCCTCACCCCCTGGGCCCTGGCGCTGGTGCTGTGGACAGTGCT ${\tt TGGGCCCTGC}{\tt \underline{TGA}}{\tt CCCCCAGCGGACACAAGAGCGTGCTCAGCAGCCAGGTGTGTACATAC$ GGGGTCTCTCTCCACGCCGCCAAGCCAGCCGGGCGGCCGACCCGTGGGGCAGGCCAGGCCAG GTCCTCCCTGATGGACGCCTGCCGCCCGCCACCCCCATCTCCACCCCATCATGTTTACAGGG GCATTTTATTTTACTTGTGTAAAAATATCGGACGACGTGGAATAAAGAGCTCTTTTCTTAAA AAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44184</pre>

><subunit 1 of 1, 473 aa, 1 stop

><MW: 50708, pI: 9.28, NX(S/T): 6

MKRASAGGSRLLAWVLWLQAWQVAAPCPGACVCYNEPKVTTSCPQQGLQAVPVGIPAASQRI FLHGNRISHVPAASFRACRNLTILWLHSNVLARIDAAAFTGLALLEQLDLSDNAQLRSVDPA TFHGLGRLHTLHLDRCGLQELGPGLFRGLAALQYLYLQDNALQALPDDTFRDLGNLTHLFLH GNRISSVPERAFRGLHSLDRLLLHQNRVAHVHPHAFRDLGRLMTLYLFANNLSALPTEALAP LRALQYLRLNDNPWVCDCRARPLWAWLQKFRGSSSEVPCSLPQRLAGRDLKRLAANDLQGCA VATGPYHPIWTGRATDEEPLGLPKCCQPDAADKASVLEPGRPASAGNALKGRVPPGDSPPGN GSGPRHINDSPFGTLPGSAEPPLTAVRPEGSEPPGFPTSGPRRRPGCSRKNRTRSHCRLGQA GSGGGGTGDSEGSGALPSLTCSLTPLGLALVLWTVLGPC

Important features:

Signal peptide:

amino acids 1-26

Leucine zipper pattern.

amino acids 135-156

Glycosaminoglycan attachment site.

amino acids 436-439

N-glycosylation site.

amino acids 82-85, 179-183, 237-240, 372-375 and 423-426

VWFC domain

amino acids 411-425

GGAAGTCCACGGGGAGCTTGGATGCCAAAGGGAGGACGGCTGGGTCCTCTGGAGAGGACTAC ${\tt AGTCCCACAGAACCGTCCTCCCAGGAAGCTGAATCCAGCAAGAACA{\color{red} {\bf ATG}}{\tt GAGGCCAGCGGGA}}$ AGCTCATTTGCAGACAAAGGCAAGTCCTTTTTTCCTTTTCTCTTTTTGGGCTTATCTCTGGCG CAATTTAGCAAAGGACCTGGGTCTGGAGCAGAGGGAATTCTCCAGGCGGGGGGTTAGGGTTG TTTCCAGAGGGAACAACTACATTTGCAGCTCAATCAGGAGACCGCGGATTTGTTGCTAAAT GAGAAATTGGACCGTGAGGATCTGTGCGGTCACACAGAGCCCTGTGTGCTACGTTTCCAAGT GTTGCTAGAGAGTCCCTTCGAGTTTTTTCAAGCTGAGCTGCAAGTAATAGACATAAACGACC ACTCTCCAGTATTTCTGGACAAACAAATGTTGGTGAAAGTATCAGAGAGCAGTCCTCCTGGG ACTACGTTTCCTCTGAAGAATGCCGAAGACTTAGATGTAGGCCAAAACAATATTGAGAACTA TATAATCAGCCCCAACTCCTATTTTCGGGTCCTCACCCGCAAACGCAGTGATGGCAGGAAAT ACCCAGAGCTGGTGCTGGACAAAGCGCTGGACCGAGAGGAAGAAGCTGAGCTCAGGTTAACA CTCACAGCACTGGATGGTGGCTCTCCGCCCAGATCTGGCACTGCTCAGGTCTACATCGAAGT CCTGGATGTCAACGATAATGCCCCTGAATTTGAGCAGCCTTTCTATAGAGTGCAGATCTCTG AGGACAGTCCGGTAGGCTTCCTGGTTGTGAAGGTCTCTGCCACGGATGTAGACACAGGAGTC AACGGAGAGATTTCCTATTCACTTTTCCAAGCTTCAGAAGAGATTGGCAAAACCTTTAAGAT CAATCCCTTGACAGGAGAAATTGAACTAAAAAAACAACTCGATTTCGAAAAACTTCAGTCCT ATGAAGTCAATATTGAGGCAAGAGATGCTGGAACCTTTTCTGGAAAATGCACCGTTCTGATT CAAGTGATAGATGTGAACGACCATGCCCCAGAAGTTACCATGTCTGCATTTACCAGCCCAAT ACCTGAGAACGCGCCTGAAACTGTGGTTGCACTTTTCAGTGTTTTCAGATCTTGATTCAGGAG AAAATGGGAAAATTAGTTGCTCCATTCAGGAGGATCTACCCTTCCTCCTGAAATCCGCGGAA AACTTTTACACCCTACTAACGGAGAGACCACTAGACAGAGAAAGCAGAGCGGAATACAACAT CACTATCACTGTCACTGACTTGGGGACCCCTATGCTGATAACACAGCTCAATATGACCGTGC TGATCGCCGATGTCAATGACAACGCTCCCGCCTTCACCCCAAACCTCCTACACCCTGTTCGTC CACCAACGCCCAGGTCACCTACTCGCTGCCGCCCCAGGACCCGCACCTGCCCCTCACAT CCCTGGTCTCCATCAACGCGGACAACGGCCACCTGTTCGCCCTCAGGTCTCTGGACTACGAG GCCCTGCAGGGGTTCCAGTTCCGCGTGGGCGCTTCAGACCACGGCTCCCCGGCGCTGAGCAG $\tt CGAGGCGCTGGTGCTGGTGCTGGACGCCAACGACAACTCGCCCTTCGTGCTGTACC$ CGCTGCAGAACGGCTCCGCGCCCTGCACCGAGCTGGTGCCCCGGGCGGCCGAGCCGGGCTAC CTGGTGACCAAGGTGGTGGCGGTGGACGGCGACTCGGGCCAGAACGCCTGGCTGTCGTACCA GCTGCTCAAGGCCACGGAGCTCGGTCTGTTCGGCGTGTGGGCGCACAATGGCGAGGTGCGCA AATGGCGAGCCTCCGCCTCGGCCACCGCCACGCTGCACGTGCTCCTGGTGGACGGCTTCTC CCAGCCTACCTGCCTCTCCCGGAGGCGGCCCCGACCCAGGCCCAGGCCGACTTGCTCACCG TCTACCTGGTGGCGTTGGCCTCGGTGTCTTCGCTCTTTTCGGTGCTCCTGTTC GTGGCGGTGCGGTGTGTAGGAGGAGCAGGCCGCCTCGGTGGGTCGCTGCTTGGTGCCCGA GGGCCCCCTTCCAGGGCATCTTGTGGACATGAGCGGCACCAGGACCCTATCCCAGAGCTACC AGTATGAGGTGTCTGGCAGGAGGCTCAGGGACCAATGAGTTCAAGTTCCTGAAGCCGATT ATCCCCAACTTCCCTCCCCAGTGCCCTGGGAAAGAAATACAAGGAAATTCTACCTTCCCCAA ${ t TAACTTTGGGTTCAATATTCAG{ t TGA} \\ { t CCATAGTTGACTTTTACATTCCATAGGTATTTTATTT}$ TTACTCTTGATTTTTCTCATGTTCTTTTCTCCCTTTGTTTTAAAGTGAACATTTACCTTTATT CCTGGTTCTT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48314</pre>

<subunit 1 of 1, 798 aa, 1 stop

<MW: 87552, pI: 4.84, NX(S/T): 5

MEASGKLICRQRQVLFSFLLLGLSLAGAAEPRSYSVVEETEGSSFVTNLAKDLGLEQREFSR RGVRVVSRGNKLHLQLNQETADLLLNEKLDREDLCGHTEPCVLRFQVLLESPFEFFQAELQV IDINDHSPVFLDKQMLVKVSESSPPGTTFPLKNAEDLDVGQNNIENYIISPNSYFRVLTRKR SDGRKYPELVLDKALDREEEAELRLTLTALDGGSPPRSGTAQVYIEVLDVNDNAPEFEQPFY RVQISEDSPVGFLVVKVSATDVDTGVNGEISYSLFQASEEIGKTFKINPLTGEIELKKQLDF EKLQSYEVNIEARDAGTFSGKCTVLIQVIDVNDHAPEVTMSAFTSPIPENAPETVVALFSVS DLDSGENGKISCSIQEDLPFLLKSAENFYTLLTERPLDRESRAEYNITITVTDLGTPMLITQ LNMTVLIADVNDNAPAFTQTSYTLFVRENNSPALHIRSVSATDRDSGTNAQVTYSLLPPQDP HLPLTSLVSINADNGHLFALRSLDYEALQGFQFRVGASDHGSPALSSEALVRVVVLDANDNS PFVLYPLQNGSAPCTELVPRAAEPGYLVTKVVAVDGDSGQNAWLSYQLLKATELGLFGVWAH NGEVRTARLLSERDAAKHRLVVLVKDNGEPPRSATATLHVLLVDGFSQPYLPLPEAAPTQAQ ADLLTVYLVVALASVSSLFLFSVLLFVAVRLCRRSRAASVGRCLVPEGPLPGHLVDMSGTRT LSQSYQYEVCLAGGSGTNEFKFLKPIIPNFPPQCPGKEIQGNSTFPNNFGFNIO

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 685-712

Cadherins extracellular repeated domain signature.

amino acids 122-132, 231-241, 336-346, 439-449 and 549-559

ATP/GTP-binding site motif A (P-loop).

amino acids 285-292

N-glycosylation site.

amino acids 418-421, 436-439, 567-570 and 786-789

ACCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCGCGCGTAGCCGTGC GCCGATTGCCTCTCGGCCTGGGCAATGGTCCCGGCTGCCGGTCGACGACCGCCCCCGCGTCAT GCGGCTCCTCGGCTGGCAAGTATTGCTGTGGGTGCTGGGACTTCCCGTCCGCGGCGTGG AGGTTGCAGAGGAAAGTGGTCGCTTATGGTCAGAGGAGCAGCCTGCTCACCCTCTCCAGGTG GGGGCTGTGTACCTGGGTGAGGAGGAGCTCCTGCATGACCCGATGGGCCAGGACAGGGCAGC AGAAGAGGCCAATGCGGTGCTGGGGCTGGACACCCAAGGCGATCACATGGTGATGCTGTCTG TGATTCCTGGGGAAGCTGAGGACAAAGTGAGTTCAGAGCCTAGCGGCGTCACCTGTGGTGCT GGAGGAGCGGAGGACTCAAGGTGCAACGTCCGAGAGAGCCTTTTCTCTCTGGATGGCGCTGG AGCACACTTCCCTGACAGAGAGAGAGGAGTATTACACAGAGCCAGAAGTGGCGGAATCTGACG CAGCCCCGACAGAGGACTCCAATAACACTGAAAGTCTGAAATCCCCCAAAGGTGAACTGTGAG GAGAGAAACATTACAGGATTAGAAAATTTCACTCTGAAAATTTTAAATATGTCACAGGACCT TATGGATTTTCTGAACCCAAACGGTAGTGACTGTACTCTAGTCCTGTTTTACACCCCGTGGT GCCGCTTTTCTGCCAGTTTGGCCCCTCACTTTAACTCTCTGCCCCGGGCATTTCCAGCTCTT CACTTTTTGGCACTGGATGCATCTCAGCACAGCATTTCTACCAGGTTTGGCACCGTAGC TGTTCCTAATATTTTATTTCAAGGAGCTAAACCAATGGCCAGATTTAATCATACAGATC GAACACTGGAAACACTGAAAATCTTCATTTTTAATCAGACAGGTATAGAAGCCAAGAAGAAT GTGGTGGTAACTCAAGCCGACCAAATAGGCCCTCTTCCCAGCACTTTGATAAAAAGTGTCGA $\tt CTGAGAGTATTCGGTGGCTAATTCCAGGACAAGAGCAGGAACATGTGGAG{\bf TAG}{\tt TGATGGTCT}$ GAAAGAAGTTGGAAAGAGGAACTTCAATCCTTCGTTTCAGAAATTAGTGCTACAGTTTCATA CATTTTCTCCAGTGACGTGTTGACTTGAAACTTCAGGCAGATTAAAAGAATCATTTGTTGAA CAACTGAATGTATAAAAAAATTATAAACTGGTGTTTTAACTAGTATTGCAATAAGCAAATGC AAAAATATTCAATAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48333</pre>

><subunit 1 of 1, 360 aa, 1 stop

><MW: 39885, pI: 4.79, NX(S/T): 7

MVPAAGRRPPRVMRLLGWWQVLLWVLGLPVRGVEVAEESGRLWSEEQPAHPLQVGAVYLGEE ELLHDPMGQDRAAEEANAVLGLDTQGDHMVMLSVIPGEAEDKVSSEPSGVTCGAGGAEDSRC NVRESLFSLDGAGAHFPDREEEYYTEPEVAESDAAPTEDSNNTESLKSPKVNCEERNITGLE NFTLKILNMSQDLMDFLNPNGSDCTLVLFYTPWCRFSASLAPHFNSLPRAFPALHFLALDAS QHSSLSTRFGTVAVPNILLFQGAKPMARFNHTDRTLETLKIFIFNQTGIEAKKNVVVTQADQ IGPLPSTLIKSVDWLLVFSLFFLISFIMYATIRTESIRWLIPGQEQEHVE

Important features:

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 321-340

Homologous region to dilsufide isomerase

amino acids 212-302

N-glycosylation site.

amino acids 165-168, 181-184, 187-190, 194-197, 206-209, 278-281 and 293-296

Thioredoxin domain

amino acids 211-227

CCCGGCTCCGCTCTGCCCCCTCGGGGTCGCGCGCCCACGATGCTGCAGGGCCCTGGCT CGCTGCTGCTCTCCTCGCCTCGCACTGCTGCCTGGGCTCGGCGCGCGGGCTCTTCCTC TTTGGCCAGCCGACTTCTCCTACAAGCGCAGCAATTGCAAGCCCATCCCGGTCAACCTGCA GCTGTGCCACGGCATCGAATACCAGAACATGCGGCTGCCCAACCTGCTGGGCCACGAGACCA TGAAGGAGGTGCTGGAGCAGGCCGGCGCTTGGATCCCGCTGGTCATGAAGCAGTGCCACCCG GACACCAAGAAGTTCCTGTGCTCGCTCTTCGCCCCCGTCTGCCTCGATGACCTAGACGAGAC CATCCAGCCATGCCACTCGCTCTGCGTGCAGGTGAAGGACCGCTGCGCCCCGGTCATGTCCG CCTTCGGCTTCCCCTGGCCCGACATGCTTGAGTGCGACCGTTTCCCCCAGGACAACGACCTT TGCATCCCCTCGCTAGCAGCGACCACCTCCTGCCAGCCACCGAGGAAGCTCCAAAGGTATG TGAAGCCTGCAAAAATAAAAATGATGATGACAACGACATAATGGAAACGCTTTGTAAAAATG ATTTTGCACTGAAAATAAAAGTGAAGGAGATAACCTACATCAACCGAGATACCAAAATCATC CTGGAGACCAAGAGCAATTTACAAGCTGAACGGTGTCCGAAAGGGACCTGAAGAA ATCGGTGCTGTGGCTCAAAGACAGCTTGCAGTGCACCTGTGAGGAGATGAACGACATCAACG CGCCCTATCTGGTCATGGGACAGAAACAGGGTGGGGGGGCTGGTGATCACCTCGGTGAAGCGG TGGCAGAAGGGGCAGAGAGATTCAAGCGCATCTCCCGCAGCATCCGCAAGCTGCAGTGCTA **G**TCCCGGCATCCTGATGGCTCCGACAGGCCTGCTCCAGAGCACGGCTGACCATTTCTGCTCC GGGATCTCAGCTCCCGTTCCCCAAGCACACTCCTAGCTGCTCCAGTCTCAGCCTGGGCAGCT TCCCCCTGCCTTTTGCACGTTTGCATCCCCAGCATTTCCTGAGTTATAAGGCCACAGGAGTG GATAGCTGTTTTCACCTAAAGGAAAAGCCCACCCGAATCTTGTAGAAATATTCAAACTAATA AAATCATGAATATTTTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50920</pre>

><subunit 1 of 1, 295 aa, 1 stop

><MW: 33518, pI: 7.74, NX(S/T): 0

MLQGPGSLLLLFLASHCCLGSARGLFLFGQPDFSYKRSNCKPIPVNLQLCHGIEYQNMRLPN LLGHETMKEVLEQAGAWIPLVMKQCHPDTKKFLCSLFAPVCLDDLDETIQPCHSLCVQVKDR CAPVMSAFGFPWPDMLECDRFPQDNDLCIPLASSDHLLPATEEAPKVCEACKNKNDDDNDIM ETLCKNDFALKIKVKEITYINRDTKIILETKSKTIYKLNGVSERDLKKSVLWLKDSLQCTCE EMNDINAPYLVMGQKQGGELVITSVKRWQKGQREFKRISRSIRKLQC

Important features:

Signal peptide:

amino acids 1-20

Cysteine rich domain, homolgous to frizzled N terminus amino acids 6-153

GTGGAGGCCGCGACGATGCCGGGGCCGACGGGGCCGAGACGGGGTTGGCCGAGCCCCGGG CCCTGTGCGCGCAGCGGGCCACCGCACCTACGCGCGCCGCTGGGTGTTCCTGCTCGCGATC AGCCTGCTCAACTGCTCCAACGCCACGCTGTGGCTCAGCTTTGCACCTGTGGCTGACGTCAT TGCTGAGGACTTGGTCCTGTCCATGGAGCAGATCAACTGGCTGTCACTGGTCTACCTCGTGG TATCCACCCCATTTGGCGTGGCGGCCATCTGGATCCTGGACTCCGTCGGGCTCCGTGCGGCG ACCATCCTGGGTGCGTGGCTGAACTTTGCCGGGAGTGTGCTACGCATGGTGCCCTGCATGGT TGTTGGGACCCAAAACCCATTTGCCTTCCTCATGGGTGGCCAGAGCCTCTGTGCCCTTGCCC AGAGCCTGGTCATCTTCTCCCAGCCAAGCTGGCTGCCTTGTGGTTCCCAGAGCACCAGCGA GCCACGGCCAACATGCTCGCCACCATGTCGAACCCTCTGGGCGTCCTTGTGGCCAATGTGCT GTCCCCTGTGCTGGTCAAGAAGGGTGAGGACATTCCGTTAATGCTCGGTGTCTATACCATCC CTGCTGGCGTCGTCTGCTGTCCACCATCTGCCTGTGGGAGAGTGTGCCCCCCACCCG CCCTCTGCCGGGGCTGCCAGCTCCACCTCAGAGAAGTTCCTGGATGGGCTCAAGCTGCAGCT CATGTGGAACAAGGCCTATGTCATCCTGGCTGTGTGCTTGGGGGGAATGATCGGGATCTCTG CCAGCTTCTCAGCCCTCTGGAGCAGATCCTCTGTGCAAGCGGCCACTCCAGTGGGTTTTCC GGCCTCTGTGGCGCTCTCTTCATCACGTTTGGGATCCTGGGGGCACTGGCTCTCGGCCCCTA TGTGGACCGGACCAAGCACTTCACTGAGGCCACCAAGATTGGCCTGTGCCTGTTCTCTCTGG ${\tt CCTGCGTGCCCTTGCCCTGGTGTCCCAGCTGCAGGGACAGACCCTTGCCCTGGCTGCCACC}$ TGCTCGCTGCTCGGCTGTTTGGCTTCTCGGTGGGCCCCGTGGCCATGGAGTTGGCGGTCGA GTGTTCCTTCCCCGTGGGGGGGGGGCTGCCACAGGCATGATCTTTGTGCTGGGGCAGGCCG AGGGAATACTCATCATGCTGGCAATGACGGCACTGACTGTGCGACGCTCGGAGCCGTCCTTG TCCACCTGCCAGCAGGGGGAGGATCCACTTGACTGGACAGTGTCTCTGCTGCTGATGGCCGG CCTGTGCACCTTCTTCAGCTGCATCCTGGCGGTCTTCTTCCACACCCCATACCGGCGCCTGC AGGCCGAGTCTGGGGAGCCCCCCTCCACCCGTAACGCCGTGGGCGGCGCAGACTCAGGGCCG GGTGTGGACCGAGGGGGCAGGAAGGGCTGGGGTCCTGGGGCCCAGCACGGCGACTCCGGA GCCACCGAGCGACTCCCCGTGCGCAAGGCCCAGCAGCACCGACGCGCCCTCCCGCCCCGGC AGACTCGCAGGCAGGGTCCAAGCGTCCAGGTTTATTGACCCGGCTGGGTCTCACTCCTT CTCCTCCCGTGGGTGATCACGTAGCTGAGCGCCTTGTAGTCCAGGTTGCCCGCCACATCGA TGGAGGCGAACTGGAACATCTGGTCCACCTGCGGGCGGGGGGGCGAAAGGGCTCCTTGCGGGCT CCGGGAGCGAATTACAAGCGCGCACCTGAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50988</pre>

><subunit 1 of 1, 560 aa, 1 stop

><MW: 58427, pI: 6.86, NX(S/T): 2

MAGPTEAETGLAEPRALCAQRGHRTYARRWVFLLAISLLNCSNATLWLSFAPVADVIAEDLV
LSMEQINWLSLVYLVVSTPFGVAAIWILDSVGLRAATILGAWLNFAGSVLRMVPCMVVGTQN
PFAFLMGGQSLCALAQSLVIFSPAKLAALWFPEHQRATANMLATMSNPLGVLVANVLSPVLV
KKGEDIPLMLGVYTIPAGVVCLLSTICLWESVPPTPPSAGAASSTSEKFLDGLKLQLMWNKA
YVILAVCLGGMIGISASFSALLEQILCASGHSSGFSGLCGALFITFGILGALALGPYVDRTK
HFTEATKIGLCLFSLACVPFALVSQLQGQTLALAATCSLLGLFGFSVGPVAMELAVECSFPV
GEGAATGMIFVLGQAEGILIMLAMTALTVRRSEPSLSTCQQGEDPLDWTVSLLLMAGLCTFF
SCILAVFFHTPYRRLQAESGEPPSTRNAVGGADSGPGVDRGGAGRAGVLGPSTATPECTARG
ASLEDPRGPGSPHPACHRATPRAQGPAATDAPSRPGRLAGRVQASRFIDPAGSHSSFSSPWVIT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 61-79, 98-112, 126-146, 169-182, 201-215, 248-268, 280-300, 318-337, 341-357, 375-387, 420-441

N-glycosylation site.

amino acids 40-43 and 43-46

Glycosaminoglycan attachment site.

amino acids 468-471

GTCCCACATCCTGCTCAACTGGGTCAGGTCCCTCTTAGACCAGCTCTTGTCCATCATTTGCTGAAGTGGACCAAC TAGTTCCCCAGTAGGGGGTCTCCCCTGGCAATTCTTGATCGGCGTTTTGGACATCTCAGATCGCTTCCAATGAAGA TGGCCTTGCGTTGGTTGTTTCATAATCATCTAACTATGGGACAAGGTTGTGCCGGCAGCTCTGGGGG ${\tt AAGGAGCACGGGGCTGATCAAGCCATCCAGGAAACACTGGAGGACTTGTCCAGCCTTGAAAGAACTCTAGTGGTT}$ GGCTCTGATCCATGTGGAGATCCAAGTGCTGGACATCAATGACCACCAGCCACGGTTTCCCAAAGGCGAGCAGGA GCTGGAAATCTCTGAGAGCGCCTCTCTGCGAACCCGGATCCCCCTGGACAGAGCTCTTGACCCAGACACAGGCCC TAACACCCTGCACACCTACACTCTGTCTCCCCAGTGAGCACTTTGCCTTGGATGTCATTGTGGGCCCTGATGAGAC $\tt CTATGACAATGGGAACCCCCCCAAGTCAGGTACCAGCTTGGTCAAGGTCAACGTCTTGGACTCCAATGACAATAGCAATAGCAATGACAATAGCAATGACAATAGCAATGACAATAGCAATGACAATAGCAATGACAATAGCAATGACAATAGCAATGACAATAGCAATGACAATAGCAATGACAATAGCAATGACAATAGCAATGACAATAGCAATGACAATAGCAATGACAATAGCAATGACAATAGACAATAGCAATGACAATAGACAATAGACAATAGACAATAGACAATAGACAATGACAATAGAATAGACAATAGACAATAGACAATAGA$ $\verb|CCCTGCGTTTGCTGAGAGTTCACTGGCACTGGAAATCCAAGAAGATGCTGCACCTGGTACGCTTCTCATAAAACT| \\$ GACCGCCACAGACCCTGACCAAGGCCCCAATGGGGAGGTGGAGTTCTTCCTCAGTAAGCACATGCCTCCAGAGGT GCTGGACACCTTCAGTATTGATGCCAAGACAGGCCAGGTCATTCTGCGTCGACCTCTAGACTATGAAAAGAACCC ${\tt TGCCTACGAGGTGGATGTTCAGGCAAGGGACCTGGGTCCCAATCCTATCCCAGCCCATTGCAAAGTTCTCATCAA}$ GGTTCTGGATGTCAATGACAACATCCCAAGCATCCACGTCACATGGGCCTCCCAGCCATCACTGGTGTCAGAAGC TCTTCCCAAGGACAGTTTTATTGCTCTTGTCATGGCAGATGACTTGGATTCAGGACACAATGGTTTGGTCCACTG CACACTGGACAGAGAGCAGTGGCCCAAATATACCCTCACTCTGTTAGCCCAAGACCAAGGACTCCAGCCCTTATC AGCCAAGAAACAGCTCAGCATTCAGATCAGTGACATCAACGACAATGCACCTGTGTTTTGAGAAAAGCAGGTATGA AGTCTCCACGCGGGAAAACAACTTACCCTCTCTTCACCTCATTACCATCAAGGCTCATGATGCAGACTTGGGCAT TAATGGAAAAGTCTCATACCGCATCCAGGACTCCCCAGTTGCTCACTTAGTAGCTATTGACTCCAACACAGGAGA GGTCACTGCTCAGAGGTCACTGAACTATGAAGAGATGGCCGGCTTTGAGTTCCAGGTGATCGCAGAGGACAGCGG GCAACCCATGCTTGCATCCAGTGTCTCTGTGTGGGTCAGCCTCTTGGATGCCCAATGATAATGCCCCAGAGGTGGT CCAGCCTGTGCTCAGCGATGGAAAAGCCAGCCTCTCCGTGCTTGTGAATGCCTCCACAGGCCACCTGCTGGTGCC ${\tt CATCGAGACTCCCAATGGCTTGGGCCCAGCGGGCACTGACACCTCCACTGGCCACTCACAGCTCCCGGCCATT}$ CCTTTTGACAACCATTGTGGCAAGAGTGCAGACTCGGGGGGCAAATGGAGAGCCCCTCTACAGCATCCGCAATGG AAATGAAGCCCACCTCTTCA1'CCTCAACCCTCATACGGGGCAGCTGTTCGTCAATGTCACCAATGCCAGCAGCCT CATTGGGAGTGAGTGGAGCTGGAGATAGTAGTAGTAGAGCCCAGGGAAGCCCCCCTTACAGACCCGAGCCCTGTT GAGGGTCATGTTTGTCACCAGTGTGGACCACCTGAGGGGACTCAGCCCGCAAGCCTGGGGCCTTGAGCATGTCGAT ${\tt GCTGACGGTGATCTGCCTGGCTGTACTGTTGGGCATCTTCGGGTTGATCCTGGCTTTGTTCATGTCCATCTGCCG}$ GACAGAAAAGAAGGACAACAGGGCCTACAACTGTCGGGAGGCCGAGTCCACCTACCGCCAGCAGCCCAAGAGGCC $\verb|CCACCTCACCCCGACCCTGTACAGGACGCTGCGTAATCAAGGCAACCAGGGAGGCACCGGGGGAGAGCCGAGAGGT| \\$ GCTGCAAGACACGGTCAACCTCCTTTTCAACCATCCCAGGCAGAGGAATGCCTCCCGGGAGAACCTGAACCTTCC TGGAGACCAGGGCAGTGAGGAAGCCCCACAGAGGCCACCAGCCTCCTCTGCAACCCTGAGACGGCAGCGACATCT AGGGCCTTTGGATCCTGAAGAGGACCTCTCTGTGAAGCAACTGCTAGAAGAAGAGCTGTCAAGTCTGCTGGACCC CACCAACTACCGTGACAATGTGATCTCCCCGGATGCTGCAGCCACGGAGGAGCCGAGGACCTTCCAGACGTTCGG ${\tt CAAGGCAGAGGCACCAGAGCCCAACAGGCACGAGGCTGGCCAGCACCTTTGTCTCGGAGATGAGCTCACT}$ GCTGGAGATGCTGCTGGAACAGCGCTCCAGCATGCCCGTGGAGGCCGCTCCGAGGCGCTGCGGCGCTCTCGGT CTGCGGGAGGACCCTCAGTTTAGACTTGGCCACCAGTGCAGCCTCAGGCATGAAAGTGCAAGGGGACCCAGGTGG ${\tt AAAGACGGGGACTGAGGGCAAGAGCAGCAGCAGCAGCAGCAGCAGCTGCCTG} {\color{blue}{\textbf{TGA}}} {\color{blue}{\textbf{ACATACCTCAGACGCCT}}}$ CGGCGGCCTGAGAACTTTAGGGTGACTGATGCTACCCCCACAGAGGGGGCAAGAGCCCCAGGACTAACAGCTGAC ${\tt TGACCAAAGCAGCCCCTTGTAAGCAGCTCTGAGTCTTTTGGAGGACAGGGACGGTTTGTGGCTGAGATAAGTGTT}$ ${\tt AAAGGGTGGCCTTCTTGGGTAGCAGGAGTCAGGGGGGCTGTACCCTGGGGGTGCCAGGAAATGCTCTCTGACCTAT}$

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48331</pre>

<subunit 1 of 1, 1184 aa, 1 stop</pre>

<MW: 129022, pI: 5.20, NX(S/T): 5

MMQLLQLLLGLLGPGGYLFLLGDCQEVTTLTVKYQVSEEVPSGTVIGKLSQELGREERRRQA GAAFQVLQLPQALPIQVDSEEGLLSTGRRLDREOLCROWDPCLVSFDVLATGDLALIHVEIO VLDINDHQPRFPKGEQELEISESASLRTRIPLDRALDPDTGPNTLHTYTLSPSEHFALDVIV GPDETKHAELIVVKELDREIHSFFDLVLTAYDNGNPPKSGTSLVKVNVLDSNDNSPAFAESS LALEIQEDAAPGTLLIKLTATDPDQGPNGEVEFFLSKHMPPEVLDTFSIDAKTGQVILRRPL DYEKNPAYEVDVQARDLGPNPIPAHCKVLIKVLDVNDNIPSIHVTWASQPSLVSEALPKDSF IALVMADDLDSGHNGLVHCWLSQELGHFRLKRTNGNTYMLLTNATLDREQWPKYTLTLLAQD QGLQPLSAKKQLSIQISDINDNAPVFEKSRYEVSTRENNLPSLHLITIKAHDADLGINGKVS YRIQDSPVAHLVAIDSNTGEVTAQRSLNYEEMAGFEFOVIAEDSGOPMLASSVSVWVSLLDA NDNAPEVVQPVLSDGKASLSVLVNASTGHLLVPIETPNGLGPAGTDTPPLATHSSRPFLLTT IVARDADSGANGEPLYSIRNGNEAHLFILNPHTGQLFVNVTNASSLIGSEWELEIVVEDQGS PPLQTRALLRVMFVTSVDHLRDSARKPGALSMSMLTVICLAVLLGIFGLILALFMSICRTEK KDNRAYNCREAESTYRQQPKRPQKHIQKADIHLVPVLRGQAGEPCEVGOSHKDVDKEAMMEA GWDPCLQAPFHLTPTLYRTLRNQGNQGAPAESREVLQDTVNLLFNHPRQRNASRENLNLPEP QPATGQPRSRPLKVAGSPTGRLAGDQGSEEAPQRPPASSATLRRQRHLNGKVSPEKESGPRQ ILRSLVRLSVAAFAERNPVEELTVDSPPVQQISQLLSLLHQGQFQPKPNHRGNKYLAKPGGS RSAIPDTDGPSARAGGQTDPEQEEGPLDPEEDLSVKQLLEEELSSLLDPSTGLALDRLSAPD PAWMARLSLPLTTNYRDNVISPDAAATEEPRTFQTFGKAEAPELSPTGTRLASTFVSEMSSL LEMLLEQRSSMPVEAASEALRRLSVCGRTLSLDLATSAASGMKVOGDPGGKTGTEGKSRGSS SSSRCL

Important features:

Signal peptide:

amino acids 1-13

Transmembrane domain:

amino acids 719-739

N-glycosylation site.

amino acids 415-418, 582-585, 659-662, 662-665 amd 857-860

Cadherins extracellular repeated domain signature.

amino acids 123-133, 232-242, 340-350, 448-458 and 553-563

CGGACGCGTGGGCGCGCGTGGGGGAGAGCCGCAGTCCCGGCTGCAGCACCTGGGAGAAGG CAGACCGTGTGAGGGGCCTGTGGCCCCAGCGTGCTGTGGCCTCGGGGAGTGGGAAGTGGAG GCAGGAGCCTTCCTTACACTTCGCCATGAGTTTCCTCATCGACTCCAGCATCATGATTACCT CCCAGATACTATTTTTTGGATTTGGGTGGCTTTTCTTCATGCGCCAATTGTTTAAAGACTAT GAGATACGTCAGTATGTTGTACAGGTGATCTTCTCCGTGACGTTTTGCATTTTCTTGCACCAT GTTTGAGCTCATCTTTGAAATCTTAGGAGTATTGAATAGCAGCTCCCGTTATTTTCACT GGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTTTCATGGTGCCTTTTTTACATTGGC ATGGCTGACCTTTATGTATTTCTTCTGGAAACTAGGAGATCCCTTTCCCATTCTCAGCCCAA AACATGGGATCTTATCCATAGAACAGCTCATCAGCCGGGTTGGTGATTGGAGTGACTCTC ATGGCTCTTCTTCTGGATTTGGTGCTGTCAACTGCCCATACACTTACATGTCTTACTTCCT CAGGAATGTGACTGACACGGATATTCTAGCCCTGGAACGGCGACTGCTGCAAACCATGGATA TGATCATAAGCAAAAAGAAAAGGATGGCAATGGCACGGAGAACAATGTTCCAGAAGGGGGGAA GTGCATAACAAACCATCAGGTTTCTGGGGAATGATAAAAAGTGTTACCACTTCAGCATCAGG TTTTTCTGGAAACAGCTGATCTATATGCTACCAAGGAGAAATAGAATACTCCAAAACCTTC AAGGGGAAATATTTTAATTTTCTTGGTTACTTTTTCTCTATTTACTGTGTTTCGAAAATTTT CATGGCTACCATCAATATTGTTTTTGATCGAGTTGGGAAAACGGATCCTGTCACAAGAGGCA TTGAGATCACTGTGAATTATCTGGGAATCCAATTTGATGTGAAGTTTTGGTCCCAACACATT TCCTTCATTCTTGTTGGAATAATCATCGTCACATCCATCAGAGGATTGCTGATCACTCTTAC CAAGTTCTTTTATGCCATCTCTAGCAGTAAGTCCTCCAATGTCATTGTCCTGCTATTAGCAC AGATAATGGGCATGTACTTTGTCTCCTCTGTGCTGATCCGAATGAGTATGCCTTTAGAA TACCGCACCATAATCACTGAAGTCCTTGGAGAACTGCAGTTCAACTTCTATCACCGTTGGTT TGATGTGATCTTCCTGGTCAGCGCTCTCTCTAGCATACTCTTCCTCTATTTGGCTCACAAAC AGGCACCAGAGAAGCAAATGGCACCT**TGA**ACTTAAGCCTACTACAGACTGTTAGAGGCCAGT GGTTTCAAAATTTAGATATAAGAGGGGGGAAAAATGGAACCAGGGCCTGACATTTTATAAAC AAACAAAATGCTATGGTAGCATTTTTCACCTTCATAGCATACTCCTTCCCCGTCAGGTGATA GCAGAGAGCATCCCGTGTGGATATGAGGCTGGTGTAGAGGCGGAGAGGAGCCAAGAAACTAA AGGTGAAAAATACACTGGAACTCTGGGGCAAGACATGTCTATGGTAGCTGAGCCAAACACGT AGGATTTCCGTTTTAAGGTTCACATGGAAAAGGTTATAGCTTTGCCTTGAGATTGACTCATT ACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATG

MSFLIDSSIMITSQILFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVTFAFSCTMFELIIFEI
LGVLNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTFMYFF
WKLGDPFPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPYTYMSYFLRNVTDTDI
LALERRLLQTMDMIISKKKRMAMARRTMFQKGEVHNKPSGFWGMIKSVTTSASGSENLTLIQ
QEVDALEELSRQLFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVF
DRVGKTDPVTRGIEITVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISS
SKSSNVIVLLLAQIMGMYFVSSVLLIRMSMPLEYRTIITEVLGELQFNFYHRWFDVIFLVSA
LSSILFLYLAHKQAPEKQMAP

Important features:

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398, 425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

CATGGGAAGTGGAGCCGGAGCCTTCCTTACACTCGCCATGAGTTTCCTCATCGACTCCAGCA
TCATGATTACCTCCCNGANACTATTTTTTGGATTTGGGTGGCTTTTCTTCNGCGCCAATGTT
TAAAGACTATGAGATACGTCAGTATGTTGTACNGGTGATCTTCTCCGTGACGTTTGCCATTT
CTTGCACCATGTTTGAGCTCATCATCTTTGAAATCTTNGGAGTATTGAATAGCAGCTCCCGT
TATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTNTCATGGTGCCTTT
TTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGACTGCTTTTTT
CCTGTCTCTTATGGCTGACCTTTATGTATTTCCAG

GTGTTGCCCTTGGGGAGGGAAGGGGAGCCNGGCCCTTTCCTAAAATTTGGCCAAGGGTTTC
TTTNTTGAATTCCGGGTTNNGNATACCTTCCCAGAAAATATTTTTTTGGATTTGGGTAGNTT
TTTTTCATGCGCCAATTGTTTAAAGACTATGAGATACGTCAGTATGTTGTACAGGTGATNTT
NTCCGTGACGTTTGCATTTTCTTGCACCATGTTTGAGCTCATCATNTTTGAAATNTTAGGAG
TATTGAATAGCAGCTCCCGTTATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATC
CTGGTTTTCATGGTGCCTTTTTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCA
TAAACAACGACTGCTTTTTTCCTGTCTNTTATGGCTGACCTTTTATGTATTTNTTNTGGAAAN
TAGGAGATCCCTTTCCCATTCTC

 $\tt CTCGCGCAGGGATCGTCCC\underline{\textbf{ATG}} GCCGGGGCTCGGAGCCGCGACCCTTGGGGGGCCTCCGGGATTTGCTACCTTTT$ TGGCTCCCTGCTCGAACTGCTCTTCTCACGGGCTGTCGCCTTCAATCTGGACGTGATGGGTGCCTTGCGCAA GGAGGCGAGCCAGGCAGCCTCTTCGGCTTCTCTGTGGCCCTGCACCGGCAGTTGCAGCCCCGACCCCAGAGCTG GCTGCTGGTGGTGCTCCCCAGGCCCTGGCTCTTCCTGGGCAGCAGGCGAATCGCACTGGAGGCCTCTTCGCTTG CCCGTTGAGCCTGGAGGAGACTGACTGCTACAGAGTGGACATCGACCAGGGAGCTGATATGCAAAAGGAAAGCAA GGAGAACCAGTGGTTGGGAGTCAGTGTTCGGAGCCAGGGGCCTGGGGGCAAGATTGTTACCTGTGCACACCGATA ${\tt CCTGGCCATCCGGGATGGATGGTGGGGGAATGGAAGTTCTGTGAGGGACGCCCCCAAGGCCATGAACAATT}$ TGGGTTCTGCCAGCAGCAGCACCCCCTGCTCTCCCCTGATAGCCACTACCTCCTCTTTGGGGCCCCAGGAAC CTATAATTGGAAGGCCACGGCCAGGGTGGAGCTCTGTGCACAGGGCTCAGCGGACCTGGCACACCTGGACGACGG TCCCTACGAGGCGGGGGGAGAAGGAGCAGGACCCCCGCCTCATCCCGGTCCCTGCCAACAGCTACTTTGGCTT CTCTATTGACTCGGGGAAAGGTCTGGTGCGTGCAGAAGAGCTGAGCTTTGTGGCTGGAGCCCCCGCGCCAACCA CAAGGGTGCTGTGGTCATCCTGCGCAAGGACAGCGCCAGTCGCCTGGTGCCCGAGGTTATGCTGTCTGGGGAGCG GGCTGGGATCTCCCCTCTCCGGCTCTGCGGCTCCCCTGACTCCATGTTCGGGATCAGCCTGGCTGTCCTGGGGGA $\verb|CCTCAACCAAGATGGCTTTCCAGATATTGCAGTGGGTGCCCCCTTTGATGGTGATGGGAAAGTCTTCATCTACCA| \\$ TGGGAGCCTGGGGGTTGTCGCCAAACCTTCACAGGTGCTGGAGGGCGAGGCTGTGGGCATCAAGAGCTTCGG CTACTCCCTGTCAGGCAGCTTGGATATGGATGGGAACCAATACCCTGACCTGCTGGTGGGCTCCCTGGCTGACAC $\tt CGCAGTGCTCTTCAGGGCCAGACCCATCCTCCATGTCTCCCATGAGGTCTCTATTGCTCCACGAAGCATCGACCT$ GGAGCAGCCCAACTGTGCTGGCGGCCACTCGGTCTGTGTGGACCTAAGGGTCTGTTTCAGCTACATTGCAGTCCC CAGCAGCTATAGCCCTACTGTGGCCCTGGACTATGTGTTAGATGCGGACACAGACCGGAGGCTCCGGGGCCAGGT TCCCCGTGTGACGTTCCTGAGCCGTAACCTGGAAGAACCCAAGCACCAGGCCTCGGGCACCGTGTGGCTGAAGCA CCAGCATGACCGAGTCTGTGGAGACGCCATGTTCCAGCTCCAGGAAAATGTCAAAGACAAGCTTCGGGCCATTGT AGTGACCTTGTCCTACAGTCTCCAGACCCCTCGGCTCCGGCGACAGGCTCCTGGCCAGGGGCTGCCTCCAGTGGC CCCCATCCTCAATGCCCACCAGCCCAGCACCCAGCGGGCAGAGATCCACTTCCTGAAGCAAGGCTGTGGTGAAGA TCTGCCCATGGATGTGGATGGAACAACAGCCCTGTTTGCACTGAGTGGGCAGCCAGTCATTGGCCTGGAGCTGAT ${\tt GGTCACCAACCTGCCATCGGACCCAGCCCCAGCCCCAGGCTGATGGGGATGATGCCCATGAAGCCCAGCTCCTGGT}$ ${\tt CATGCTTCCTGACTCACTGCACTACTCAGGGGTCCGGGCCCTGGACCCTGCGGAGAAGCCACTCTGCCTGTCCAA}$ ${\tt GGAGCTGCATCCAGTCTCTGCACGAGCCCGTGTCTTCATTGAGCTGCCACTGTCCATTGCAGGAATGGCCATTCCCATTCCATTCCATTGCAGGAATGGCCATTCCCATTGCAGGAATGGCCATTCCCATTGCAGGAATGGCCATTCCCATTGCAGGAATGGCCATTCCCATTGCAGGAATGGCCATTCCCATTGCAGGAATGGCCATTCCATTCCATTGCAGGAATGGCCATTCATTCCATTC$ GCCTCATGAGATTGCCAATGGGAAGTGGTTGCTGTACCCAATGCAGGTTGAGCTGGAGGGCCGGCAGGGGCCTGG GCAGAAAGGGCTTTGCTCTCCCAGGCCCAACATCCTCCACCTGGATGTGGACAGTAGGGATAGGAGGCGGCGGGA ${\tt GCTGGAGCCACCTGAGCAGCAGGAGCCTGGTGAGCGGCAGGAGCCCAGCATGTCCTGGTGGCCAGTGTCCTCTGC}$ TGAGAAGAAGAAAACATCACCCTGGACTGCGCCCGGGGCACGGCCAACTGTGTGGTGTTCAGCTGCCCACTCTA TGTGAAGTCCCTGGAAGTGATTGTCCGGGCCAACATCACAGTGAAGTCCTCCATAAAGAACTTGATGCTCCGAGA ${\tt CATCCTCCTGGCTGCTGGCTGCTGGTGCTAGCACTGCTGGTGCTGCTGGAAGATGGGATTCTT}$ CAAACGGGCGAAGCACCCCGAGGCCACCGTGCCCCAGTACCATGCGGTGAAGATTCCTCGGGAAGACCGACAGCA GTTCAAGGAGGAGAAGACGGGCACCATCCTGAGGAACAACTGGGGCAGCCCCCGGCGGGAGGGCCCGGATGCACA ${\tt CCCCATCCTGGCTGCTGACGGGCATCCCGAGCTGGGCCCCGATGGGCATCCAGGGCCAGGCACCGCC}$ CATGTCCCAGCCTGGCCTGTGGCTGCCCTCCATCCCTTCCCCAGAGATGGCTCCTTGGGATGAAGAGGGTAGAGT ${ t TCCTCCCACCCAACTTCCCCTTAGAGTGCTGTGAGATGAGAGTGGGTAAATCAGGGACAGGGCCATGGGGTAGGG}$ ${ t TGAGAAGGGCAGGGTGTCCTGATGCAAAGGTGGGGAGAAGGGATCCTAATCCCTTCCTCTCCCATTCACCCTGT$ $\tt CTCAGGCTGCTCTCTAGTTTCCCCTCTCATCTGACCTTAGTTTGCTGCCATCAGTCTAGTGGTTTCGTGGT$

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA55737</pre>

><subunit 1 of 1, 1141 aa, 1 stop

><MW: 124671, pI: 5.82, NX(S/T): 5

MAGARSRDPWGASGICYLFGSLLVELLFSRAVAFNLDVMGALRKEGEPGSLFGFSVALHRQL QPRPQSWLLVGAPQALALPGQQANRTGGLFACPLSLEETDCYRVDIDOGADMOKESKENOWL GVSVRSQGPGGKIVTCAHRYEARQRVDQILETRDMIGRCFVLSQDLAIRDELDGGEWKFCEG RPQGHEQFGFCQQGTAAAFSPDSHYLLFGAPGTYNWKGTARVELCAQGSADLAHLDDGPYEA GGEKEQDPRLIPVPANSYFGFSIDSGKGLVRAEELSFVAGAPRANHKGAVVILRKDSASRLV PEVMLSGERLTSGFGYSLAVADLNSDGWPDLIVGAPYFFERQEELGGAVYVYLNQGGHWAGI SPLRLCGSPDSMFGISLAVLGDLNQDGFPDIAVGAPFDGDGKVFIYHGSSLGVVAKPSOVLE GEAVGIKSFGYSLSGSLDMDGNQYPDLLVGSLADTAVLFRARPILHVSHEVSIAPRSIDLEO PNCAGGHSVCVDLRVCFSYIAVPSSYSPTVALDYVLDADTDRRLRGQVPRVTFLSRNLEEPK HQASGTVWLKHQHDRVCGDAMFQLQENVKDKLRAIVVTLSYSLQTPRLRRQAPGOGLPPVAP ILNAHQPSTQRAEIHFLKQGCGEDKICQSNLQLVHARFCTRVSDTEFQPLPMDVDGTTALFA LSGQPVIGLELMVTNLPSDPAQPQADGDDAHEAQLLVMLPDSLHYSGVRALDPAEKPLCLSN ENASHVECELGNPMKRGAQVTFYLILSTSGISIETTELEVELLLATISEOELHPVSARARVF IELPLSIAGMAIPQQLFFSGVVRGERAMQSERDVGSKVKYEVTVSNQGQSLRTLGSAFLNIM WPHEIANGKWLLYPMQVELEGGQGPGQKGLCSPRPNILHLDVDSRDRRRRELEPPEQOEPGE RQEPSMSWWPVSSAEKKKNITLDCARGTANCVVFSCPLYSFDRAAVLHVWGRLWNSTFLEEY SAVKSLEVIVRANITVKSSIKNLMLRDASTVIPVMVYLDPMAVVAEGVPWWVILLAVLAGLL VLALLVLLLWKMGFFKRAKHPEATVPQYHAVKIPREDRQQFKEEKTGTILRNNWGSPRREGP DAHPILAADGHPELGPDGHPGPGTA

Important features:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 1040-1062

N-glycosylation sites.

amino acids 86-89, 746-749, 949-952, 985-988 and 1005-1008

Integrins alpha chain proteins.

amino acids 1064-1071, 384-408, 1041-1071, 317-346, 443-465, 385-407, 215-224, 634-647, 85-99, 322-346, 470-479, 442-466, 379-408 and 1031-1047

AAGCAGCGAGTTGGCAGAGCAGGGCTGCATTTCCAGCAGGAGCTGCGAGCACAGTGCTGGCT TGGATGATAAACAATGGCTCACCACAATCTCTCAGTATGACAAGGAAGTCGGACAGTGGAAC AAATTCCGAGACGAAGTAGAGGATGATTATTTCCGCACTTGGAGTCCAGGAAAACCCTTCGA TCAGGCTTTAGATCCAGCTAAGGATCCATGCTTAAAGATGAAATGTAGTCGCCATAAAGTAT GCATTGCTCAAGATTCTCAGACTGCAGTCTGCATTAGTCACCGGAGGCTTACACACAGGATG AAAGAAGCAGGAGTAGACCATAGGCAGTGGAGGGGTCCCATATTATCCACCTGCAAGCAGTG ${\tt CCCAGTGGTCTATCCCAGCCCTGTTTGTGGTTCAGATGGTCATACCTACTCTTTTCAGTGCA}$ AACTAGAATATCAGGCATGTGTCTTAGGAAAACAGATCTCAGTCAAATGTGAAGGACATTGC CCATGTCCTTCAGATAAGCCCACCAGTACAAGCAGAAATGTTAAGAGAGCATGCAGTGACCT GGAGTTCAGGGAAGTGGCAAACAGATTGCGGGACTGGTTCAAGGCCCTTCATGAAAGTGGAA GTCAAAACAAGAAGACAAAAACATTGCTGAGGCCTGAGAGAAGCAGATTCGATACCAGCATC TTGCCAATTTGCAAGGACTCACTTGGCTGGATGTTTAACAGACTTGATACAAACTATGACCT GCTATTGGACCAGTCAGAGCTCAGAAGCATTTACCTTGATAAGAATGAACAGTGTACCAAGG CATTCTTCAATTCTTGTGACACATACAAGGACAGTTTAATATCTAATAATGAGTGGTGCTAC TGCTTCCAGAGACAGCAAGACCCACCTTGCCAGACTGAGCTCAGCAATATTCAGAAGCGGCA AGGGGTAAAGAAGCTCCTAGGACAGTATATCCCCCTGTGTGATGAAGATGGTTACTACAAGC CAACACAATGTCATGGCAGTGTTGGACAGTGCTGGTGTTGACAGATATGGAAATGAAGTC ATGGGATCCAGAATAAATGGTGTTGCAGATTGTGCTATAGATTTTGAGATCTCCGGAGATTT TGCTAGTGGCGATTTTCATGAATGGACTGATGATGAGGATGATGAAGACGATATTATGAATG CATGATGTATACATT**TGA**TTGATGACAGTTGAAATCAATAAATTCTACATTTCTAATATTTA CAAAAATGATAGCCTATTTAAAATTATCTTCTTCCCCAATAACAAAATGATTCTAAACCTCA CATATATTTTGTATAATTATTTGAAAAATTGCAGCTAAAGTTATAGAACTTTATGTTTAAAT AAGAATCATTTGCTTTGAGTTTTTATATTCCTTACACAAAAAGAAAATACATATGCAGTCTA GTCAGACAAATAAAGTTTTGAAGTGCTACTATAATAAATTTTTCACGAGAACAAACTTTGT AAATCTTCCATAAGCAAAATGACAGCTAGTGCTTGGGATCGTACATGTTAATTTTTTGAAAG ATAATTCTAAGTGAAATTTAAAATAAATATTTTTAATGACCTGGGTCTTAAGGATTTAGG AAAAATATGCATGCTTTAATTGCATTTCCAAAGTAGCATCTTGCTAGACCTAGATGAGTCAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49829</pre>

><subunit 1 of 1, 436 aa, 1 stop

><MW: 49429, pI: 4.80, NX(S/T): 0

MLKVSAVLCVCAAAWCSQSLAAAAAVAAAGGRSDGGNFLDDKQWLTTISQYDKEVGQWNKFR
DEVEDDYFRTWSPGKPFDQALDPAKDPCLKMKCSRHKVCIAQDSQTAVCISHRRLTHRMKEA
GVDHRQWRGPILSTCKQCPVVYPSPVCGSDGHTYSFQCKLEYQACVLGKQISVKCEGHCPCP
SDKPTSTSRNVKRACSDLEFREVANRLRDWFKALHESGSQNKKTKTLLRPERSRFDTSILPI
CKDSLGWMFNRLDTNYDLLLDQSELRSIYLDKNEQCTKAFFNSCDTYKDSLISNNEWCYCFQ
RQQDPPCQTELSNIQKRQGVKKLLGQYIPLCDEDGYYKPTQCHGSVGQCWCVDRYGNEVMGS
RINGVADCAIDFEISGDFASGDFHEWTDDEDDEDDIMNDEDEIEDDDEDEGDDDDGGDDHDVYI

Important features:

Signal peptide:

amino acids 1-16

Leucine zipper pattern.

amino acids 246-267

N-myristoylation sites.

amino acids 357-362, 371-376 and 376-381

Thyroglobulin type-1 repeat proteins

amino acids 353-365 and 339-352

CAGACTCCAGATTTCCCTGTCAACCACGAGGAGTCCAGAGAGGAAACGCGGAGCGAGACAACAGTACCTGACGC GCTCTGCCTCCGGTGCTGCCTGGGGCGGCCGGCTTCACACCTTCCCTCGATAGCGACTTCACCTTTACCCTT CCCGCCGGCCAGAAGGAGTGCTTCTACCAGCCCATGCCCCTGAAGGCCTCGCTGGAGATCGAGTACCAAGTTTTA GATGGAGCAGGATTAGATATTGATTTCCATCTTGCCTCTCCAGAAGGCAAAACCTTAGTTTTTGAACAAAGAAAA TCAGATGGAGTTCACACTGTAGAGACTGAAGTTGGTGATTACATGTTCTGCTTTGACAATACATTCAGCACCATT TCTGAGAAGGTGATTTTCTTTGAATTAATCCTGGATAATATGGGAGAACAGGCACAAGAACAAGAAGATTGGAAG AAATATATTACTGGCACAGATATATTGGATATGAAACTGGAAGACATCCTGGAATCCATCAACAGCATCAAGTCC AGACTAAGCAAAAGTGGGCACATACAAATTCTGCTTAGAGCATTTGAAGCTCGTGATCGAAACATACAAGAAAGC AACTTTGATAGAGTCAATTTCTGGTCTATGGTTAATTTAGTGGTCATGGTGGTGGTGTCAGCCATTCAAGTTTAT ATGCTGAAGAGTCTGTTTGAAGATAAGAGGAAAAGTAGAACT<u>TAA</u>AACTCCAAACTAGAGTACGTAACATTGAAA AATGAGGCATAAAAATGCAATAAACTGTTACAGTCAAGACCATTAATGGTCTTCTCCAAAATATTTTGAGATATA AAAGTAGGAAACAGGTATAATTTTAATGTGAAAATTAAGTCTTCACTTTCTGTGCAAGTAATCCTGCTGATCCAG AGTCTGTTTTAACAGGTTCTATTACCCAGAACTTTTTTGTAAATGCGGCAGTTACAAATTAACTGTGGAAGTTT TCAGTTTTAAGTTATAAATCACCTGAGAATTACCTAATGATGGATTGAATAAATCTTTAGACTACAAAAGCCCAA CTTTTCTCTATTTACATATGCATCTCTCTATAATGTAAATAGAATAATAGCTTTGAAATACAATTAGGTTTTTG AGATTTTTATAACCAAATACATTTCAGTGTAACATATTAGCAGAAAGCATTAGTCTTTGTACTTTGCTTACATTC CCAAAAGCTGACATTTTCACGATTCTTAAAAACACAAAGTTACACTTACTAAAATTAGGACATGTTTTCTCTTTG AAATGAAGAATATAGTTTAAAAGCTTCCTCCATAGGGACACATTTTCTCTAACCCTTAACTAAAGTGTAGGA TTTTAAAATTAAATGTGAGGTAAAATAAGTTTATTTTTAATAGTATCTGTCAAGTTAATATCTGTCAACAGTTAA TAATCATGTTATGTTAACTTTAACATGATTGCTGACTTGGATAATTCATTATTACCAGCAGTTATGAAGGAAATA TTGCTAAAATGATCTGGGCCTACCATAAATAAATATCTCCTTTTCTGAGCTCTAAGAATTATCAGAAAACAGGAA ${\tt AAACTTTGGCTGTAGGTTTTATTTTCTACAAGAATTCTGGTTTGAATTATTTTTTGTAAGCAGGTACATTTTATA}$ TAAAATGGCCTTTCTGAACACTTTATTTATTGATGTTGAAGTAAGGATTAGAAACATAGACTCCCAAGTTTTAAA CACCTAAATGTGAATAACCCATATATACAACAAAGTTTCTGCCATCTAGCTTTTTGAAGTCTATGGGGGTCTTAC TCAAGTACTAGTAATTTAACTTCATCATGAATGAACTATAATTTTTAAGTTATGCCCATTTATAACGTTGTTTAT ${\tt GACTACATTGTGAGTTAGAAACTTAAAATTTGGGGTATAGAACCCCTCAACAGGTTAGTAATGCTGGAATT}$ CTTGATGAGCAATAATGATAACCAGAGAGTGATTTCATTTACACTCATAGTAGTATAAAAAGAGATACATTTCCC TCTTAGGCCCCTGGGAGAAGAGCAGCTTAGATTTCCCTACTGGCAAGGTTTTTAAAAATGAGGTAAATGCCGTAT ATGATCAATTACCTTAATTGGCCAAGAAAATGCTTCAGGTGTCTAGGGGGTATCCTCTGCAACACTTGCAGAACAA AGGTCAATAAGATCCTTGCCTATGAATACCCCTCCCTTTTGCGCTGTTAAATTTGCAATGAGAAGCAAATTTACA $\tt GTACCATAACTAATAAAGCAGGGTACAGATATAAACTACTGCATCTTTTCTATAAAACTGTGATTAAGAATTCTA$ CCTCTCCTGTATGGCTGTTACTGTACTGTACTCTCTGACTCCTTACCTAACAATGAATTTGTTACATAATCTTCT ACATGTATGATTTGTGCCACTGATCTTAAACCTATGATTCAGTAACTTCTTACCATATAAAAACGATAATTGCTT TATTTGGAAAAGAATTTAGGAATACTAAGGACAATTATTTTTATAGACAAAGTAAAAAGACAGATATTTAAGAGG ${\tt CATAACCAAAAAGCAAAACTTGTAAACAGAGTAAAAATCTTTAATATTTCTAAAGACATACTGTTTATCTGCTT}$ CATATGCTTTTTTAATTTCACTATTCCATTTCTAAATTAAAGTTATGCTAAATTGAGTAAGCTGTTTATCACTT AACAGCTCATTTTGTCTTTTTCAATATACAAATTTTTAAAAATACTACAATATTTAACTAAGGCCCAACCGATTTC CATAATGTAGCAGTTACCGTGTTCACCTCACACTAAGGCCTAGAGTTTGCTCTGATATGCATTTGGATGATTAAT GTTATGCTGTTCTTCATGTGAATGTCAAGACATGGAGGGTGTTTGTAATTTTATGGTAAAATTAATCCTTCTTA CACATAATGGTGTCTTAAAATTGACAAAAAATGAGCACTTACAATTGTATGTCTCCTCAAATGAAGATTCTTTAT GTGAAATTTTAAAAGACATTGATTCCGCATGTAAGGATTTTTCATCTGAAGTACAATAATGCACAATCAGTGTTG CTCAAACTGCTTTATACTTATAAACAGCCATCTTAAATAAGCAACGTATTGTGAGTACTGATATGTATATAATAA AAATTATCAAAGGAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52196</pre>

><subunit 1 of 1, 229 aa, 1 stop

><MW: 26017, pI: 4.73, NX(S/T): 0

MGDKIWLPFPVLLLAALPPVLLPGAAGFTPSLDSDFTFTLPAGQKECFYQPMPLKASLEIEY QVLDGAGLDIDFHLASPEGKTLVFEQRKSDGVHTVETEVGDYMFCFDNTFSTISEKVIFFEL ILDNMGEQAQEQEDWKKYITGTDILDMKLEDILESINSIKSRLSKSGHIQILLRAFEARDRN IQESNFDRVNFWSMVNLVVMVVVSAIQVYMLKSLFEDKRKSRT

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 195-217

N-myristoylation site.

amino acids 43-48

Tyrosine kinase phosphorylation site.

amino acids 55-62

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56965</pre>

<subunit 1 of 1, 175 aa, 1 stop</pre>

<MW: 19330, pI: 7.25, NX(S/T): 1

MLPPMALPSVSWMLLSCLILLCQVQGEETQKELPSPRISCPKGSKAYGSPCYALFLSPKSWM DADLACQKRPSGKLVSVLSGAEGSFVSSLVRSISNSYSYIWIGLHDPTQGSEPDGDGWEWSS TDVMNYFAWEKNPSTILNPGHCGSLSRSTGFLKWKDYNCDAKLPYVCKFKD

Important features:

Signal peptide:

amino acids 1-26

C-type lectin domain signature.

amino acids 146-171

CCAGTCTGTCGCCACCTCACTTGGTGTCTGCTGTCCCCGCCAGGCAAGCCTGGGGTGAGAGC
ACAGAGGAGTGGGCCGGGACCATGCGGGGGACGCGGCTGGCGCTCTGGCGCTGGTGCTGGC
TGCCTGCGGAGAGCTGGCGCCGGCCCTGCGCTGCTACGTCTGTCCGGAGCCCACAGGAGTGT
CGGACTGTGCACCATCGCCACCTGCACCAACGAAACCATGTGCAAGACCACTCTAC
TCCCGGGAGATAGTGTACCCCTTCCAGGGGGACCCCACGGTGACCAAGTCCTGTGCCAGCAA
GTGTAAGCCCTCGGATGTGGATGGCATCGGCCAGACCCTGCCCGTGTCCTGCTGCAATACTG
AGCTGTGCAATGTAGACGGGGCCCCCCTCTGAACAGCCTCCACTGCGGGGCCCTCACGCTC
CTCCCACTCTTGAGCCTCCGACTGTAGACACCCCCCCATGGCCCTATGCGGCCCA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56405</pre>

<subunit 1 of 1, 125 aa, 1 stop

<MW: 13115, pI: 5.90, NX(S/T): 1

 ${\tt MRGTRLALLALVLAACGELAPALRCYVCPEPTGVSDCVTIATCTTNETMCKTTLYSREIVYP} \\ {\tt FQGDSTVTKSCASKCKPSDVDGIGQTLPVSCCNTELCNVDGAPALNSLHCGALTLLPLLSLRL} \\$

Important features:

Signal peptide:

amino acids 1-17

N-glycosylation site.

amino acids 46-49

CTGCAGTCAGGACTCTGGGACCGCAGGGGGCTCCCGGACCCTGACTCTGCAGCCGAACCGGC ${\tt ACGGTTTCGTGGGGACCCAGGCTTGCAAAGTGACGGTCATTTTCTCTTTTCTTCTCCCTCTT}$ GAGTCCTTCTGAGATGATGGCTCTGGGCGCAGCGGGAGCTACCCGGGTCTTTGTCGCGATGG TAGCGGCGGCTCTCGGCGGCCACCCTCTGCTGGGAGTGAGCGCCACCTTGAACTCGGTTCTC AATTCCAACGCTATCAAGAACCTGCCCCCACCGCTGGGCGCGCTGCGGGGCACCCAGGCTC TGCAGTCAGCGCCGCGCGGAATCCTGTACCCGGGCGGGAATAAGTACCAGACCATTGACA ACTACCAGCCGTACCCGTGCGCAGAGGACGAGGAGTGCGGCACTGATGAGTACTGCGCTAGT CCCACCGCGGAGGGGACGCAGGCGTGCAAATCTGTCTCGCCTGCAGGAAGCGCCGAAAACG CTGCATGCGTCACGCTATGTGCTGCCCCGGGAATTACTGCAAAAATGGAATATGTGTGTCTT CTGATCAAAATCATTTCCGAGGAGAAATTGAGGAAACCATCACTGAAAGCTTTGGTAATGAT CATAGCACCTTGGATGGGTATTCCAGAAGAACCACCTTGTCTTCAAAAATGTATCACACCAA AGGACAAGAAGGTTCTGTTTGTCTCCGGTCATCAGACTGTGCCTCAGGATTGTGTTGTGCTA GACACTTCTGGTCCAAGATCTGTAAACCTGTCCTGAAAGAAGGTCAAGTGTGTACCAAGCAT AGGAGAAAAGGCTCTCATGGACTAGAAATATTCCAGCGTTGTTACTGTGGAGAAGGTCTGTC TTGCCGGATACAGAAAGATCACCATCAAGCCAGTAATTCTTCTAGGCTTCACACTTGTCAGA GACACTAAACCAGCTATCCAAATGCAGTGAACTCCTTTTATATAATAGATGCTATGAAAACC TTTTATGACCTTCATCAACTCAATCCTAAGGATATACAAGTTCTGTGGTTTCAGTTAAGCAT TCCAATAACACCTTCCAAAAACCTGGAGTGTAAGAGCTTTGTTTCTTTATGGAACTCCCCTG TGATTGCAGTAAATTACTGTATTGTAAATTCTCAGTGTGGCACTTACCTGTAAATGCAATGA AACTTTTAATTATTTTCTAAAGGTGCTGCACTGCCTATTTTTCCTCTTGTTATGTAAATTT TTGTACACATTGATTGTTATCTTGACTGACAAATATTCTATATTGAACTGAAGTAAATCATT TCAGCTTATAGTTCTTAAAAGCATAACCCTTTACCCCATTTAATTCTAGAGTCTAGAACGCA AGGATCTCTTGGAATGACAAATGATAGGTACCTAAAATGTAACATGAAAATACTAGCTTATT TTCTGAAATGTACTATCTTAATGCTTAAATTATATTTCCCTTTAGGCTGTGATAGTTTTTGA AATAAAATTTAACATTTAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57530</pre>

<subunit 1 of 1, 266 aa, 1 stop</pre>

<MW: 28672, pI: 8.85, NX(S/T): 1

MMALGAAGATRVFVAMVAAALGGHPLLGVSATLNSVLNSNAIKNLPPPLGGAAGHPGSAVSA
APGILYPGGNKYQTIDNYQPYPCAEDEECGTDEYCASPTRGGDAGVQICLACRKRRKRCMRH
AMCCPGNYCKNGICVSSDQNHFRGEIEETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEG
SVCLRSSDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKGSHGLEIFQRCYCGEGLSCRIQ
KDHHQASNSSRLHTCQRH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 256-259

Fungal Zn(2)-Cys(6) binuclear cluster domain amino acids 110-126

GAGGAACCTACCGGTACCGCCGCGCGCGCTGGTAGTCGCCGGTGTGGCTGCACCTCACCAATCCCGTGCGCCGCG GGGTTTGAGGATGGGGGAGTAGCTACAGGAAGCGACCCCGCGATGGCAAGGTATATTTTTTGTGGAATGAAAAGGA AGTATTAGAAATGAGCTGAAGACCATTCACAGATTAATATTTTTTGGGGACAGATTTGTGATGCTTGATTCACCCT TGAAGTAATGTAGACAGAAGTTCTCAAATTTGCATATTACATCAACTGGAACCAGCAGTGAATCTTAATGTTCAC ${\tt GATCATTCTCTGTTTTCTGATAGTGTATATGGCCATTTTAGTGGGCACAGATCAGGATTTTTACAGTTTACTTGG}$ AGTGTCCAAAACTGCAAGCAGTAGAGAAATAAGACAAGCTTTCAAGAAATTGGCATTGAAGTTACATCCTGATAA TCTACGGAAAAGTATGACAAATATGGAGAAAAGGGACTTGAGGATAATCAAGGTGGCCAGTATGAAAGCTGGAA CTATTATCGTTATGATTTTTGGTATTTATGATGATCCTGAAATCATAACATTGGAAAGAAGAGAATTTGATGC TGCTGTTAATTCTGGAGAACTGTGGTTTGTAAATTTTTACTCCCCAGGCTGTTCACACTGCCATGATTTAGCTCC CACATGGAGAGACTTTGCTAAAGAAGTGGATGGGTTACTTCGAATTGGAGCTGTTAACTGTGGTGATGATAGAAT ${\tt GCTTTGCCGAATGAAAGGAGTCAACAGCTATCCCAGTCTCTTCATTTTTCGGTCTGGAATGGCCCCAGTGAAATA}$ TCATGGAGACAGATCAAAGGAGAGTTTAGTGAGTTTTGCAATGCAGCATGTTAGAAGTACAGTGACAGAACTTTG AGGAGGAGATTGTTTGACTTCACAGACACGACTCAGGCTTAGTGGCATGTTGTTTCTCAACTCATTGGATGCTAA AGAAATATATTTGGAAGTAATACATAATCTTCCAGATTTTGAACTACTTTCGGCAAACACACTAGAGGATCGTTT GGCTCATCATCGGTGGCTGTTATTTTTCATTTTGGAAAAAATGAAAATTCAAATGATCCTGAGCTGAAAAAACT AAAAACTCTACTTAAAAATGATCATATTCAAGTTGGCAGGTTTGACTGTTCCTCTGCACCAGACATCTGTAGTAA TCTGTATGTTTTTCAGCCGTCTCTAGCAGTATTTAAAGGACAAGGAACCAAAGAATATGAAATTCATCATGGAAA GAAGATTCTATATGATATACTTGCCTTTGCCAAAGAAAGTGTGAATTCTCATGTTACCACGCTTGGACCTCAAAA TTTTCCTGCCAATGACAAGAACCATGGCTTGTTGATTTCTTTGCCCCCTGGTGTCCACCATGTCGAGCTTTACT ACCAGAGTTACGAAGAGCATCAAATCTTCTTTATGGTCAGCTTAAGTTTGGTACACTAGATTGTACAGTTCATGA GGGACTCTGTAACATGTATAACATTCAGGCTTATCCAACAACAGTGGTATTCAACCAGTCCAACATTCATGAGTA TGAAGGACATCACTCTGCTGAACAAATCTTGGAGTTCATAGAGGATCTTATGAATCCTTCAGTGGTCTCCCTTAC ACCCACCACCTTCAACGAACTAGTTACACAAAGAAAACACAACGAAGTCTGGATGGTTGATTTCTATTCTCCGTG GTGTCATCCTTGCCAAGTCTTAATGCCAGAATGGAAAAGAATGGCCCGGACATTAACTGGACTGATCAACGTGGG ${\tt CAGTATAGATTGCCAACAGTATCATTCTTTTTGTGCCCAGGAAAACGTTCAAAGATACCCTGAGATAAGATTTTT}$ TCCCCCAAAATCAAATAAAGCTTATCAGTATCACAGTTACAATGGTTGGAATAGGGATGCTTATTCCCTGAGAAT CTGGGGTCTAGGATTTTTACCTCAAGTATCCACAGATCTAACACCTCAGACTTTCAGTGAAAAAGTTCTACAAGG GAAAAATCATTGGGTGATTGATTTCTATGCTCCTTGGTGTGGACCTTGCCAGAATTTTGCTCCAGAATTTGAGCT CTTGGCTAGGATGATTAAAGGAAAAGTGAAAAGCTGGAAAAGTAGACTGTCAGGCTTATGCTCAGACATGCCAGAA AGCTGGGATCAGGGCCTATCCAACTGTTAAGTTTTATTTCTACGAAAGAGCAAAGAGAAATTTTCAAGAAGAGCA GATAAATACCAGAGATGCAAAAGCAATCGCTGCCTTAATAAGTGAAAAATTGGAAACTCTCCGAAATCAAGGCAA ${\tt GAGGAATAAGGATGAACTT} \underline{{\tt TGA}} {\tt TAATGTTGAAGATGAAGAAAAAGTTTAAAAGAAATTCTGACAGATGACATCAG$ AAGACACCTATTTAGAATGTTACATTTATGATGGGAATGAACATTATCTTAGACTTGCAGTTGTACTGCCA GAATTATCTACAGCACTGGTGTAAAAGAAGGGTCTGCAAACTTTTTCTGTAAAGGGCCGGTTTATAAATATTTTA GACTTTGCAGGCTATAATATATGGTTCACACATGAGAACAAGAATAGAGTCATCATGTATTCTTTGTTATTTGCT ${\tt TTTAACAACCTTTAAAAAATATTAAAACGATTCTTAGCTCAGAGCCATACAAAAGTAGGCTGGATTCAGTCCATG}$ ATCTACATAAATGTCTAAGTTGTATAAAGTCCACTTTCCCTTCACGTTTTTTGGCTGACCTGAAAAGAGGGTAACT TAGTTTTTGGTCACTTGTTCTCCTAAAAATGCTATCCCTAACCATATATTTATATTTCGTTTTAAAAAACACCCAT AAATTTGAGCAACAGTAAGTGCACAAATTCTGTAGTTTGCTGTATCATCCAGGAAAACCTGAGGGAAAAAAATTA TAGCAATTAACTGGGCATTGTAGAGTATCCTAAATATGTTATCAAGTATTTAGAGTTCTATATTTTAAAGATATA TGTGTTCATGTATTTCTGAAATTGCTTTCATAGAAATTTTCCCACTGATAGTTGATTTTTTGAGGCATCTAATAT TTTTTCACTCCTGTCCAGTCTATTTATTATTCAAATAGGAAAAATTACTTTACAGGTTGTTTTACTGTAGCTTAT AATGATACTGTAGTTATTCCAGTTACTAGTTTACTGTCAGAGGGCTGCCTTTTTCAGATAAATATTGACATAATA ${\tt ACTGAAGTTATTTTATAAGAAAATCAAGTATATAAATCTAGGAAAGGGATCTTCTAGTTTCTGTGTTTTTAGA}$ CTCAAAGAATCACAAATTTGTCAGTAACATGTAGTTGTTTAGTTATAATTCAGAGTGTACAGAATGGTAAAAATT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56439</pre>

<subunit 1 of 1, 747 aa, 1 stop</pre>

<MW: 86127, pI: 7.46, NX(S/T): 2

MGVWLNKDDYIRDLKRIILCFLIVYMAILVGTDQDFYSLLGVSKTASSREIRQAFKKLALKL
HPDKNPNNPNAHGDFLKINRAYEVLKDEDLRKKYDKYGEKGLEDNQGGQYESWNYYRYDFGI
YDDDPEIITLERREFDAAVNSGELWFVNFYSPGCSHCHDLAPTWRDFAKEVDGLLRIGAVNC
GDDRMLCRMKGVNSYPSLFIFRSGMAPVKYHGDRSKESLVSFAMQHVRSTVTELWTGNFVNS
IQTAFAAGIGWLITFCSKGGDCLTSQTRLRLSGMLFLNSLDAKEIYLEVIHNLPDFELLSAN
TLEDRLAHHRWLLFFHFGKNENSNDPELKKLKTLLKNDHIQVGRFDCSSAPDICSNLYVFQP
SLAVFKGQGTKEYEIHHGKKILYDILAFAKESVNSHVTTLGPQNFPANDKEPWLVDFFAPWC
PPCRALLPELRRASNLLYGQLKFGTLDCTVHEGLCNMYNIQAYPTTVVFNQSNIHEYEGHHS
AEQILEFIEDLMNPSVVSLTPTTFNELVTQRKHNEVWMVDFYSPWCHPCQVLMPEWKRMART
LTGLINVGSIDCQQYHSFCAQENVQRYPEIRFFPPKSNKAYQYHSYNGWNRDAYSLRIWGLG
FLPQVSTDLTPQTFSEKVLQGKNHWVIDFYAPWCGPCQNFAPEFELLARMIKGKVKAGKVDC
QAYAQTCQKAGIRAYPTVKFYFYERAKRNFQEEQINTRDAKAIAALISEKLETLRNQGKRNKDEL

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 744-747

Cytochrome c family heme-binding site signature.

amino acids 158-163

Nt-dnaJ domain signature.

amino acids 77-96

N-glycosylation site.

amino acids 484-487

GCCATGAACATCATCCTAGAAATCCTTCTGCTTCTGATCACCATCATCTACTCCTACTTGGA GTCGTTGGTGAAGTTTTTCATTCCTCAGAGGAGAAAATCTGTGGCTGGGGAGATTGTTCTCA TTACTGGAGCTGGGCATGGAATAGGCAGGCAGACTACTTATGAATTTGCAAAACGACAGAGC ATATTGGTTCTGTGGGATATTAATAAGCGCGGTGTGGAGGAAACTGCAGCTGAGTGCCGAAA ACTAGGCGTCACTGCGCATGCGTATGTGGTAGACTGCAGCAACAGAGAAGAGATCTATCGCT CTCTAAATCAGGTGAAGAAGAAGTGGGTGATGTAACAATCGTGGTGAATAATGCTGGGACA GTATATCCAGCCGATCTTCTCAGCACCAAGGATGAAGAGATTACCAAGACATTTGAGGTCAA CATCCTAGGACATTTTTGGATCACAAAAGCACTTCTTCCATCGATGATGAGAGAAATCATG GCCACATCGTCACAGTGGCTTCAGTGTGCGGCCACGAAGGGATTCCTTACCTCATCCCATAT TGTTCCAGCAAATTTGCCGCTGTTGGCTTTCACAGAGGTCTGACATCAGAACTTCAGGCCTT GGGAAAAACTGGTATCAAAACCTCATGTCTCTGCCCAGTTTTTGTGAATACTGGGTTCACCA AAAATCCAAGCACAAGATTATGGCCTGTATTGGAGACAGATGAAGTCGTAAGAAGTCTGATA GATGGAATACTTACCAATAAGAAAATGATTTTTGTTCCATCGTATATCAATATCTTTCTGAG ACTACAGAAGTTTCTTCCTGAACGCGCCTCAGCGATTTTAAATCGTATGCAGAATATTCAAT TATGCATGATAATGATATGAATAGTTTCGAATCAATGCTGCAAAGCTTTATTTCACATTTTT TCAGTCCTGATAATATTAAAAACATTGGTTTGGCACTAGCAGCAGTCAAACGAACAAGATTA ATTACCTGTCTTCCTGTTTCTCAAGAATATTTACGTAGTTTTTCATAGGTCTGTTTTTCCTT TCATGCCTCTTAAAAACTTCTGTGCTTACATAAACATACTTAAAAGGTTTTCTTTAAGATAT TTTATTTTCCATTTAAAGGTGGACAAAAGCTACCTCCCTAAAAGTAAATACAAAGAGAACT TATTTACACAGGGAAGGTTTAAGACTGTTCAAGTAGCATTCCAATCTGTAGCCATGCCACAG ATCTCAACCTGGACATATTTTAAGATTCAGCATTTGAAAGATTTCCCTAGCCTCTTCCTTTT TCATTAGCCCAAAACGGTGCAACTCTATTCTGGACTTTATTACTTGATTCTGTCTTCTGTAT AACTCTGAAGTCCACCAAAAGTGGACCCTCTATATTTCCTCCCTTTTTATAGTCTTATAAGA TACATTATGAAAGGTGACCGACTCTATTTTAAATCTCAGAATTTTAAGTTCTAGCCCCATGA TAACCTTTTCTTTGTAATTTATGCTTTCATATATCCTTGGTCCCAGAGATGTTTAGACAAT TTTAGGCTCAAAAATTAAAGCTAACACAGGAAAAGGAACTGTACTGGCTATTACATAAGAAA CAATGGACCCAAGAGAAGAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56409</pre>

<subunit 1 of 1, 300 aa, 1 stop

<MW: 33655, pI: 9.31, NX(S/T): 1

MNIILEILLLITIIYSYLESLVKFFIPQRRKSVAGEIVLITGAGHGIGRQTTYEFAKRQSI LVLWDINKRGVEETAAECRKLGVTAHAYVVDCSNREEIYRSLNQVKKEVGDVTIVVNNAGTV YPADLLSTKDEEITKTFEVNILGHFWITKALLPSMMERNHGHIVTVASVCGHEGIPYLIPYC SSKFAAVGFHRGLTSELQALGKTGIKTSCLCPVFVNTGFTKNPSTRLWPVLETDEVVRSLID GILTNKKMIFVPSYINIFLRLQKFLPERASAILNRMQNIQFEAVVGHKIKMK

Important features:

Signal peptide:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 30-33 and 58-61

Short-chain alcohol dehydrogenase family protein amino acids 165-202, 37-49, 112-122 and 210-219

CGGCGGCGCGCGAGGTGAGGGGCGCGAGGTTCCCAGCAGG AGG<u>ATG</u>ACCAAGGCCCGGCTGTTCCGGCTGTGGCTGGTGCTGGGGTGTTCATGATCCT GCTGATCATCGTGTACTGGGACAGCGCAGGCGCGCGCACTTCTACTTGCACACGTCCTTCT $\tt CTAGGCCGCACACGGGGCCGCCCGCCCGGGCCGGACAGGGACAGGGAGCTCACG$ GCCGACTCCGATGTCGACGAGTTTCTGGACAAGTTTCTCAGTGCTGGCGTGAAGCAGAGCGA CCTTCCCAGAAAGGAGACGGAGCAGCCGCCTGCGCCGGGGAGCATGGAGGAGAGCGTGAGAG CGGAGGAGCGTGCTGCGGGGCTTCTGCGCCAACTCCAGCCTGGCCTTCCCCACCAAGGAGCG CGCATTCGACGACATCCCCAACTCGGAGCTGAGCCACCTGATCGTGGACGACCGGCACGGGG CCATCTACTGCTACGTGCCCAAGGTGGCCTGCACCAACTGGAAGCGCGTGATGATCGTGCTG AGCGGAAGCCTGCTGCACCGCGGTGCGCCCTACCGCGACCCGCTGCGCATCCCGCGCGAGCA CGTGCACAACGCCAGCGCGCACCTGACCTTCAACAAGTTCTGGCGCCGCTACGGGAAGCTCT $\verb|CCCGCCACCTCATGAAGGTCAAGCTCAAGAAGTACACCAAGTTCCTCTTCGTGCGCGACCCC|\\$ TTCGTGCGCCTGATCTCCGCCTTCCGCAGCAAGTTCGAGCTGGAGAACGAGGAGTTCTACCG CAAGTTCGCCGTGCCCATGCTGCGGCTGTACGCCAACCACCAGCCTGCCCGCCTCGGCGC GCGAGGCCTTCCGCCTCAAGGTGTCCTTCGCCAACTTCATCCAGTACCTGCTGGAC CCGCACACGGAGAAGCTGGCGCCCTTCAACGAGCACTGGCGGCAGGTGTACCGCCTCTGCCA CCCGTGCCAGATCGACTACGACTTCGTGGGGAAGCTGGAGACTCTGGACGAGGACGCCGCGC AGCTGCTGCAGCTACTCCAGGTGGACCGGCAGCTCCGCTTCCCCCCGAGCTACCGGAACAGG ACCGCCAGCAGCTGGGAGGAGGACTGGTTCGCCAAGATCCCCCTGGCCTGGAGGCAGCAGCT GTATAAACTCTACGAGGCCGACTTTGTTCTCTTCGGCTACCCCAAGCCCGAAAACCTCCTCC AGTTTTTTTATGACCTACGATTTTGCAATCTGGGCTTCTTGTTCACTCCACTGCCTCTATCC ATTGAGTACTGTATCGATATTGTTTTTTAAGATTAATATATTTCAGGTATTTAATACGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56112</pre>

<subunit 1 of 1, 414 aa, 1 stop

<MW: 48414, pI: 9.54, NX(S/T): 4

MTKARLFRLWLVLGSVFMILLIIVYWDSAGAAHFYLHTSFSRPHTGPPLPTPGPDRDRELTA
DSDVDEFLDKFLSAGVKQSDLPRKETEQPPAPGSMEESVRGYDWSPRDARRSPDQGRQQAER
RSVLRGFCANSSLAFPTKERAFDDIPNSELSHLIVDDRHGAIYCYVPKVACTNWKRVMIVLS
GSLLHRGAPYRDPLRIPREHVHNASAHLTFNKFWRRYGKLSRHLMKVKLKKYTKFLFVRDPF
VRLISAFRSKFELENEEFYRKFAVPMLRLYANHTSLPASAREAFRAGLKVSFANFIQYLLDP
HTEKLAPFNEHWRQVYRLCHPCQIDYDFVGKLETLDEDAAQLLQLLQVDRQLRFPPSYRNRT
ASSWEEDWFAKIPLAWRQQLYKLYEADFVLFGYPKPENLLRD

Important features:

Signal peptide:

amino acids 1-31

N-glycosylation sites.

amino acids 134-137, 209-212, 280-283 and 370-373

TNFR/NGFR family cysteine-rich region protein amino acids 329-332

TCGGGCCAGAATTCGGCACGAGGCGACGAGGGCGACGGCCTCACGGGGCTTTGGAGGTGA AAGAGGCCCAGAGTAGAGAGAGAGAGAGACCGACGTACACGGG<mark>ATG</mark>GCTACGGGAACGCGCT ATGCCGGGAAGGTGGTCGTGACCGGGGGCGCGCGCGCATCGGAGCTGGGATCGTGCGC GCCTTCGTGAACAGCGGGGCCCGAGTGGTTATCTGCGACAAGGATGAGTCTGGGGGCCGGGC CCTGGAGCAGGAGCTCCCTGGAGCTGTCTTTATCCTCTGTGATGTGACTCAGGAAGATGATG TGAAGACCCTGGTTTCTGAGACCATCCGCCGATTTGGCCGCCTGGATTGTGTTGTCAACAAC GCTGGCCACCACCCCCCACAGAGGCCTGAGGAGACCTCTGCCCAGGGATTCCGCCAGCT GCTGGAGCTGAACCTACTGGGGACGTACACCTTGACCAAGCTCGCCCTCCCCTACCTGCGGA AGAGTCAAGGGAATGTCATCAACATCTCCAGCCTGGTGGGGGCAATCGGCCAGGCCCAGGCA GTTCCCTATGTGGCCACCAAGGGGGCAGTAACAGCCATGACCAAAGCTTTGGCCCTGGATGA AAGTCCATATGGTGTCCGAGTCAACTGTATCTCCCCAGGAAACATCTGGACCCCGCTGTGGG AGGAGCTGGCAGCCTTAATGCCAGACCCTAGGGCCACAATCCGAGAGGGCATGCTGGCCCAG $\tt CCACTGGGCCGCATGGGCCAGCCCGCTGAGGTCGGGGCTGCGGCAGTGTTCCTGGCCTCCGA$ $\texttt{GCAAGGCCAGTCGGAGCACCCCGTGGACGCCCCCGATATCCCTTCC} \underline{\textbf{TGA}} \\ \texttt{TTTCTCTCATTT}$ CTACTTGGGGCCCCCTTCCTAGGACTCTCCCACCCCAAACTCCAACCTGTATCAGATGCAGC $\tt CCCCAAGCCCTTAGACTCTAAGCCCAGTTAGCAAGGTGCCGGGTCACCCTGCAGGTTCCCAT$ AAAAACGATTTGCAGCC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56045</pre>

<subunit 1 of 1, 270 aa, 1 stop

<MW: 28317, pI: 6.00, NX(S/T): 1

MATGTRYAGKVVVVTGGGRGIGAGIVRAFVNSGARVVICDKDESGGRALEQELPGAVFILCD VTQEDDVKTLVSETIRRFGRLDCVVNNAGHHPPPQRPEETSAQGFRQLLELNLLGTYTLTKL ALPYLRKSQGNVINISSLVGAIGQAQAVPYVATKGAVTAMTKALALDESPYGVRVNCISPGN IWTPLWEELAALMPDPRATIREGMLAQPLGRMGQPAEVGAAAVFLASEANFCTGIELLVTGG AELGYGCKASRSTPVDAPDIPS

Important features:

N-glycosylation site.

amino acids 138-141

Short-chain alcohol dehydrogenase family protein amino acids 10-22, 81-91, 134-171 and 176-185

AGGCGGCAGCAGCTGCAGGCTGACCTTGCAGCTTGGCGGAATGGACTGGCCTCACAACCTG
CTGTTTCTTCTTACCATTTCCATCTTCCTGGGGCTGGGCCAGCCCAGGAGCCCCAAAAGCAA
GAGGAAGGGGCAAGGGCGGCCTGGGCCCCTGGCCCCTCACCAGGTGCCACTGGACC
TGGTGTCACGGATGAAACCGTATGCCCGCATGGAGGAGTATGAGAGGAACATCGAGGAGATG
GTGGCCCAGCTGAGGAACAGCTCAGAGCTGGCCCAGAGAAAGTGTGAGGTCAACTTGCAGCT
GTGGATGTCCAACAAGAGGAGCCTGTCTCCCTGGGGCTACAGCATCAACCACGACCCCAGCC
GTATCCCCGTGGACCTGCCGGAGGCACGGTGCCTGTTCTGGGCTGTGTGAACCCCTTCACC
ATGCAGGAGGACCGCAGCATGGTGAGCGTGCCGGTGTTCAGCCAGGTTCCTGTGCGCCGCCG
CCTCTGCCCGCCACCGCCCCGCACAGGGCCTTGCCGCCAGCAGCCCAGCACCCCAGA
CCATCCTCCTTGCACCTTTCTTCTGAAACCCTGGCCCAGAAGCCAGGCCAGCCCCAGAA
CCATCCTCCTTGCACCTTTTTTGAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59294</pre>

<subunit 1 of 1, 180 aa, 1 stop</pre>

<MW: 20437, pI: 9.58, NX(S/T): 1

MDWPHNLLFLLTISIFLGLGQPRSPKSKRKGQGRPGPLAPGPHQVPLDLVSRMKPYARMEEY ERNIEEMVAQLRNSSELAQRKCEVNLQLWMSNKRSLSPWGYSINHDPSRIPVDLPEARCLCL GCVNPFTMQEDRSMVSVPVFSQVPVRRRLCPPPPRTGPCRQRAVMETIAVGCTCIF

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 75-78

Homologous region to IL-17

amino acids 96-180.

GCGCCGCCAGGCGTAGGCGGGTGGCCCTTGCGTCTCCCGCTTCCTTGAAAAACCCGGCGG GCGCCCAAC<u>ATG</u>GCGGGTGGGCGCTGCGGCCCGCAGCTAACGGCGCTCCTGGCCGCCTGGAT CGCGGCTGTGGCGGCGACGCCAGGCCCCGAGGAGCCGCGCGCCGCCGGAGCAGAGCCGGG TCCAGCCCATGACCGCCTCCAACTGGACGCTGGTGATGGAGGGCGAGTGGATGCTGAAATTT TACGCCCCATGGTGTCCATCCTGCCAGCAGACTGATTCAGAATGGGAGGCTTTTGCAAAGAA TGGTGAAATACTTCAGATCAGTGTGGGGAAGGTAGATGTCATTCAAGAACCAGGTTTGAGTG GCCGCTTCTTTGTCACCACTCTCCCAGCATTTTTTCATGCAAAGGATGGGATATTCCGCCGT TATCGTGGCCCAGGAATCTTCGAAGACCTGCAGAATTATATCTTAGAGAAGAAATGGCAATC AGTCGAGCCTCTGACTGGCTGGAAATCCCCAGCTTCTCTAACGATGTCTGGAATGGCTGGTC TTTTTAGCATCTCTGGCAAGATATGGCATCTTCACAACTATTTCACAGTGACTCTTGGAATT TCTGGTCTTGGTGGTAATATCAGAATGTTTCTATGTGCCACTTCCAAGGCATTTATCTGAGC GTTCTGAGCAGAATCGGAGATCAGAGGAGGCTCATAGAGCTGAACAGTTGCAGGATGCGGAG GAGGAAAAAGATGATTCAAATGAAGAAGAAAACAAAGACAGCCTTGTAGATGATGAAGAAGA GAAAGAAGATCTTGGCGATGAGGATGAAGCAGAGGAAGAAGAGGAGGAGGACAACTTGGCTG CTGGTGTGGATGAGGAGAGAGTGAGGCCAATGATCAGGGGCCCCCAGGAGAGGACGGTGTG ACCCGGGAGGAAGTAGAGCCTGAGGAGGCTGAAGAAGGCATCTCTGAGCAACCCTGCCCAGC TGACACAGAGGTGGTGGAAGACTCCTTGAGGCAGCGTAAAAGTCAGCATGCTGACAAGGGAC ${\tt TG}{f TAG}{\tt ATTTAATGATGCGTTTTCAAGAATACACACCAAAACAATATGTCAGCTTCCCTTTGG}$ CCTGCAGTTTGTACCAAATCCTTAATTTTTCCTGAATGAGCAAGCTTCTCTTAAAAGATGCT CTCTAGTCATTTGGTCTCATGGCAGTAAGCCTCATGTATACTAAGGAGAGTCTTCCAGGTGT GACAATCAGGATATAGAAAAACAAACGTAGTGTTGGGATCTGTTTGGAGACTGGGATGGGAA CAAGTTCATTTACTTAGGGGTCAGAGAGTCTCGACCAGAGGGGGCCATTCCCAGTCCTAATC AGCACCTTCCAGAGACAAGGCTGCAGGCCCTGTGAAATGAAAGCCAAGCAGGAGCCTTGGCT CCTGAGCATCCCCAAAGTGTAACGTAGAAGCCTTGCATCCTTTTCTTGTGTAAAGTATTTAT TTTTGTCAAATTGCAGGAAACATCAGGCACCACAGTGCATGAAAAATCTTTCACAGCTAGAA ATTGAAAGGGCCTTGGGTATAGAGAGCAGCTCAGAAGTCATCCCAGCCCTCTGAATCTCCTG TGCTATGTTTATTTCTTACCTTTAATTTTTCCAGCATTTCCACCATGGGCATTCAGGCTCT CCACACTCTTCACTATTATCTCTTGGTCAGAGGACTCCAATAACAGCCAGGTTTACATGAAC TGTGTTTGTTCATTCTGACCTAAGGGGTTTAGATAATCAGTAACCCATAACCCCTGAAGCTGT GACTGCCAAACATCTCAAATGAAATGTTGTGGCCATCAGAGACTCAAAAGGAAGTAAGGATT AAGTTTTCTAAGCAATATTTTTCAAGCCAGAAGTCCTCTAAGTCTTGCCAGTACAAGGTAGT CTTGTGAAGAAAGTTGAATACTGTTTTGTTTTCATCTCAAGGGGTTCCCTGGGTCTTGAAC TACTTTAATAATAACTAAAAAACCACTTCTGATTTTCCTTCAGTGATGTGCTTTTGGTGAAA GAATTAATGAACTCCAGTACCTGAAAGTGAAAGATTTGATTTTGTTTCCATCTTCTGTAATC TTCCAAAGAATTATATCTTTGTAAATCTCTCAATACTCAATCTACTGTAAGTACCCAGGGAG GCTAATTTCTTT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56433</pre>

<subunit 1 of 1, 349 aa, 1 stop</pre>

<MW: 38952, pI: 4.34, NX(S/T): 1

MAGGRCGPQLTALLAAWIAAVAATAGPEEAALPPEQSRVQPMTASNWTLVMEGEWMLKFYAP WCPSCQQTDSEWEAFAKNGEILQISVGKVDVIQEPGLSGRFFVTTLPAFFHAKDGIFRRYRG PGIFEDLQNYILEKKWQSVEPLTGWKSPASLTMSGMAGLFSISGKIWHLHNYFTVTLGIPAW CSYVFFVIATLVFGLFMGLVLVVISECFYVPLPRHLSERSEQNRRSEEAHRAEQLQDAEEEK DDSNEEENKDSLVDDEEEKEDLGDEDEAEEEEEEDNLAAGVDEERSEANDQGPPGEDGVTRE EVEPEEAEEGISEQPCPADTEVVEDSLRQRKSQHADKGL

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 191-211

N-glycosylation site.

amino acids 46-49

Thioredoxin family proteins. (homologous region to disulfide isomerase) amino acids 56-72

Flavodoxin proteins

amino acids 173-187

ATCTGGTTGAACTACTTAAGCTTAATTTGTTAAACTCCGGTAAGTACCTAGCCCACATGATT ${\tt CAAATGCTATTCTATTCAGGGGCTCTCAAGAACA} {\color{red} {\bf ATG}} {\tt GAATATCATCCTGATTTAGAAAAT}$ TTGGATGAAGATGGATATACTCAATTACACTTCGACTCTCAAAGCAATACCAGGATAGCTGT TGTTTCAGAGAAAGGATCGTGTGCTGCATCTCCTCCTTGGCGCCTCATTGCTGTAATTTTGG GAATCCTATGCTTGGTAATACTGGTGATAGCTGTGGTCCTGGGTACCATGGGGGTTCTTTCC AGCCCTTGTCCTCCTAATTGGATTATATATGAGAAGAGCTGTTATCTATTCAGCATGTCACT AAATTCCTGGGATGGAAGTAAAAGACAATGCTGGCAACTGGGCTCTAATCTCCTAAAGATAG ACAGCTCAAATGAATTGGGATTTATAGTAAAACAAGTGTCTTCCCAACCTGATAATTCATTT CTCTTCTAACTTATTTCAGATCAGAACCACAGCTACCCAAGAAAACCCATCTCCAAATTGTG TATGGATTCACGTGTCAGTCATTTATGACCAACTGTGTAGTGTGCCCTCATATAGTATTTGT GAGAAGAGTTTTCAATG<u>TAA</u>GAGGAAGGGTGGAGAAGGAGAGAAATATGTGAGGTAGTA AGGAGGACAGAAAACAGAAAAGAGTAACAGCTGAGGTCAAGATAAATGCAGAAAATG TTTAGAGAGCTTGGCCAACTGTAATCTTAACCAAGAAATTGAAGGGAGAGGCTGTGATTTCT CACTTTGTTACCCAGGCTGGAGTGCAGTGGCACAATCTCGACTCACTGCAGCTATCTCTCGC CTCAGCCCTCAAGTAGCTGGGACTACAGGTGCATGCCACCATGCCAGGCTAATTTTTGGTG TTTTTTGTAGAGACTGGGTTTTGCCATGTTGACCAAGCTGGTCTCTAACTCCTGGGCTTAAG TGATCTGCCCGCCTTGGCCTCCCAAAGTGCTGGGATTACAGATGTGAGCCACCACACCTGGC CCCAAGCTTGAATTTTCATTCTGCCATTGACTTGGCATTTACCTTGGGTAAGCCATAAGCGA ATCTTAATTTCTGGCTCTATCAGAGTTGTTTCATGCTCAACAATGCCATTGAAGTGCACGGT GTGTTGCCACGATTTGACCCTCAACTTCTAGCAGTATATCAGTTATGAACTGAGGGTGAAAT ATATTTCTGAATAGCTAAATGAAGAAATGGGAAAAAATCTTCACCAC>CAGAGCAATTTT ATTATTTTCATCAGTATGATCATAATTATGATTATCATCTTAGTAAAAAGCAGGAACTCCTA CTTTTTCTTTATCAATTAAATAGCTCAGAGAGTACATCTGCCATATCTCTAATAGAATCTTT TTTTTTTTTTTTTTTTGAGACAGAGTTTCGCTCTTGTTGCCCAGGCTGGAGTGCAACGG CACGATCTCGGCTCACCGCAACCTCCGCCCCCTGGGTTCAAGCAATTCTCCTGCCTCAGCCT CCCAAGTAGCTGGGATTACAGTCAGGCACCACCACCCGGCTAATTTTGTATTTTTTAGT AGAGACAGGGTTTCTCCATGTCGGTCAGGGTAGTCCCGAACTCCTGACCTCAAGTGATCTGC CTGCCTCGGCCTCCCAAGTGCTGGGATTACAGGCGTGAGCCACTGCACCCAGCCTAGAATCT TGTATAATATGTAATTGTAGGGAAACTGCTCTCATAGGAAAGTTTTCTGCTTTTTAAATACA ACAAGTATTAACATTTTGGAATATGTTTTATTAGTTTTTGTGATGTACTGTTTTACAATTTTT ACCATTTTTTCAGTAATTACTGTAAAATGGTATTATTGGAATGAAACTATATTTCCTCATG TGCTGATTTGTCTTATTTTTTCATACTTTCCCACTGGTGCTATTTTTATTTCCAATGGATA TTTCTGTATTACTAGGGAGGCATTTACAGTCCTCTAATGTTGATTAATATGTGAAAAGAAAT TGTACCAATTTTACTAAATTATGCAGTTTAAAATGGATGATTTTATGTTATGTGGATTTCAT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53912</pre>

<subunit 1 of 1, 201 aa, 1 stop

<MW: 22563, pI: 4.87, NX(S/T): 1

MEYHPDLENLDEDGYTQLHFDSQSNTRIAVVSEKGSCAASPPWRLIAVILGILCLVILVIAV VLGTMGVLSSPCPPNWIIYEKSCYLFSMSLNSWDGSKRQCWQLGSNLLKIDSSNELGFIVKQ VSSQPDNSFWIGLSRPQTEVPWLWEDGSTFSSNLFQIRTTATQENPSPNCVWIHVSVIYDQL CSVPSYSICEKKFSM

Important features:

Type II transmembrane domain:

amino acids 45-65

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 197-200

N-myristoylation sites.

amino acids 35-40 and 151-156

Homologous region to LDL receptor amino acids 34-67 and 70-200.

GGAAGGGGAGGACCACACAGGCACAGGCCGGTGAGGGACCTGCCCAGACCTGGAGGGTCTCGCTCTGTCA CACAGGCTGGAGTGCAGTGTGATCTTGGCTCATCGTAACCTCCACCTCCCGGGTTCAAGTGATTCTCATGCC ${\tt TCAGCCTCCGAGTAGCTGGGATTACAGGTGGTGACTTCCAAGAGTGACTCCGTCGGAGGAAA {\tt ATG} {\tt ACTCCCCAGGTCGCGAGGAAA {\tt ATG} {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCAGGAGAAA {\tt ACTCAGGAGAAA {\tt ACTCAGGAGAAAA {\tt ACTCAGGAGAAA {\tt ACTCAGGAGAAA {\tt ACTCAGGAGAAA {\tt ACTCAGGAGAAA {\tt ACTCAGGAGAAAA {\tt ACTCAGAAAA {$ TCGCTGCTGCAGACGACACTGTTCCTGCTGAGTCTGCTCTTCCTGGTCCAAGGTGCCCACGGCAGGGGCCACAGG GAAGACTTTCGCTTCTGCAGCCAGCGGAACCAGACACAGGAGCAGCCTCCACTACAAACCCACACCAGACCTG CGCATCTCCATCGAGAACTCCGAAGAGGCCCTCACAGTCCATGCCCCTTTCCCTGCAGCCCACCCTGCTTCCCGA TCCTTCCCTGACCCCAGGGGCCTCTACCACTTCTGCCTCTACTGGAACCGACATGCTGGGAGATTACATCTTCTC TATGGCAAGCGTGACTTCTTGCTGAGTGACAAAGCCTCTAGCCTCCTCTGCTTCCAGCACCAGGAGGAGAGCCTG GCTCAGGGCCCCCGCTGTTAGCCACTTCTGTCACCTCCTGGTGGAGCCCTCAGAACATCAGCCTGCCCAGTGCC GCCAGCTTCACCTTCTCCTCCACAGTCCTCCCCACACGCCGCTCACAATGCCTCGGTGGACATGTGCGAGCTC AAAAGGGACCTCCAGCTGCTCAGCCAGTTCCTGAAGCATCCCCAGAAGGCCTCAAGGAGGCCCTCGGCTGCCCC GCCAGCCAGCAGTTGCAGAGCCTGGAGTCGAAACTGACCTCTGTGAGATTCATGGGGGACATGGTGTCCTTCGAG GAGGACCGGATCAACGCCACGGTGTGGAAGCTCCAGCCCACAGCCGGCCTCCAGGACCTGCACATCCACTCCCGG CAGGAGGAGGAGCGAGATCATGGAGTACTCGGTGCTGCTCCTCGAACACTCTTCCAGAGGACGAAAGGC CGGAGCGGGGAGGCTGAGAAGAGACTCCTCCTGGTGGACTTCAGCAGCCCAAGCCCTGTTCCAGGACAAGAATTCC AGCCAAGTCCTGGGTGAGAAGGTCTTGGGGATTGTGGTACAGAACACCAAAGTAGCCAACCTCACGGAGCCCGTG GTGCTCACTTCCAGCACCAGCTACAGCCGAAGAATGTGACTCTGCAATGTGTGTCTCTGGGTTGAAGACCCCACA TTGAGCAGCCCGGGGCATTGGAGCAGTGCTGGGTGTGAGACCGTCAGGAGAGAAACCCAAACATCCTGCTTCTGC AACCACTTGACCTACTTTGCAGTGCTGATGGTCTCCTCGGTGGAGGTGGACGCCGTGCACAAGCACTACCTGAGC GTGCCCTGCCGTGCAGGAGGAAACCTCGGGACTACACCATCAAGGTGCACATGAACCTGCTGCTGGCCGTCTTC $\tt CTGCTGGACACGAGCTTCCTGCTCAGCGAGCCGGTGGCCCTGACAGGCTCTGAGGCTGCCGAGCCAGTGCCGAGCCAGTGCCGAGCCAGTGCCGAGCCAGTGCCGAGCCAGTGCCAGGCTGACAGGCTGGCCTGACAGGCTGGCCGAGCCAGTGCCAGTGCCAGGCTGACAGGCTGGCCTGACAGGCTGCCGAGCCAGTGCCAGGCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCA$ ATCTTCCTGCACTTCTCCCTGCTCACCTGCCTTTCCTGGATGGGCCTCGAGGGGGTACAACCTCTACCGACTCGTG GTGGAGGTCTTTGGCACCTATGTCCCTGGCTACCTACTCAAGCTGAGCGCCATGGGCTGGGGCTTCCCCATCTTT GGCGTCATCTACCCTTCCATGTGCTGGATCCGGGACTCCCTGGTCAGCTACATCACCAACCTGGGCCTCTTCAGC CTGGTGTTTCTGTTCAACATGGCCATGCTAGCCACCCATGGTGGTGCAGATCCTGCGGCTGCGCCCCCACACCCCAA AAGTGGTCACATGTGCTGACACTGCTGGGCCTCAGCCTGGTCCTTGGCCTGGGCCTTGATCTTCTTCTCCC TTTGCTTCTGGCACCTTCCAGCTTGTCGTCCTCTACCTTTTCAGCATCATCACCTCCTTCCAAGGCTTCCTCATC TTCATCTGGTACTGGTCCATGCGGCTGCAGGCCCGGGGTGGCCCCTCCCCTCTGAAGAGCAACTCAGACAGCGCC ${\tt AGGCTCCCCATCAGCTCGGGCAGCACCTCGTCCAGCCGCATC\underline{TAG}{\tt GCCTCCAGCCCACCTGCCCATGTGATGAAG}}$ GCCTTGGGGACTACTCGGCTCTCACTCAGCTCCCACGGGACTCAGAAGTGCGCCGCCATGCTGCCTAGGGTACTG TCCCCACATCTGTCCCAACCCAGCTGGAGGCCTGGTCTCTCCTTACAACCCCTGGGCCCAGCCCTCATTGCTGGG GTTGCTCTGTCTCTCGTGGTCACCCTGAGGGCACTCTGCATCCTCTGTCATTTTAACCTCAGGTGGCACCCAGGG GTGGTTTCCAGGAGCTGCCTGGTGTCTGCTGTAAATGTTTGTCTACTGCACAAGCCTCGGCCTGCCCCTGAGCCA GGCTCGGTACCGATGCGTGGGCTGGGCTAGGTCCCTCTGTCCATCTGGGCCTTTGTATGAGCTGCATTGCCCTTG CTCACCCTGACCAAGCACGCCTCAGAGGGGCCCTCAGCCTCTCCTGAAGCCCTCTTGTGGCAAGAACTGTGGA CCATGCCAGTCCGTCTGGTTTCCATCCCACCACTCCAAGGACTGAGCTGACCTCCTCTGGTGACACTGGCCTA GAGCCTGACACTCTCCTAAGAGGTTCTCTCCAAGCCCCCAAATAGCTCCAGGCGCCCTCGGCCGCCCATCATGGT GGGAGCCATCATTCCTGCCTGGGAATCCTGGAAGACTTCCTGCAGGAGTCAGCGTTCAATCTTGACCTTGAAGAT GGGAAGGATGTTCTTTTACGTACCAATTCTTTTGTCTTTTGATATTAAAAAGAAGTACATGTTCATTGTAGAGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50921</pre>

<subunit 1 of 1, 693 aa, 1 stop

<MW: 77738, pI: 8.87, NX(S/T): 7

MTPQSLLQTTLFLLSLLFLVQGAHGRGHREDFRFCSQRNQTHRSSLHYKPTPDLRISIENSE
EALTVHAPFPAAHPASRSFPDPRGLYHFCLYWNRHAGRLHLLYGKRDFLLSDKASSLLCFQH
QEESLAQGPPLLATSVTSWWSPQNISLPSAASFTFSFHSPPHTAAHNASVDMCELKRDLQLL
SQFLKHPQKASRRPSAAPASQQLQSLESKLTSVRFMGDMVSFEEDRINATVWKLQPTAGLQD
LHIHSRQEEEQSEIMEYSVLLPRTLFQRTKGRSGEAEKRLLLVDFSSQALFQDKNSSQVLGE
KVLGIVVQNTKVANLTEPVVLTFQHQLQPKNVTLQCVFWVEDPTLSSPGHWSSAGCETVRRE
TQTSCFCNHLTYFAVLMVSSVEVDAVHKHYLSLLSYVGCVVSALACLVTIAAYLCSRVPLPC
RRKPRDYTIKVHMNLLLAVFLLDTSFLLSEPVALTGSEAGCRASAIFLHFSLLTCLSWMGLE
GYNLYRLVVEVFGTYVPGYLLKLSAMGWGFPIFLVTLVALVDVDNYGPIILAVHRTPEGVIY
PSMCWIRDSLVSYITNLGLFSLVFLFNMAMLATMVVQILRLRPHTQKWSHVLTLLGLSLVLG
LPWALIFFSFASGTFQLVVLYLFSIITSFQGFLIFIWYWSMRLQARGGPSPLKSNSDSARLP
ISSGSTSSSRI

Important features:

Signal peptide:

amino acids 1-25

Putative transmembrane domains:

amino acids 382-398, 402-420, 445-468, 473-491, 519-537, 568-590 and 634-657

Microbodies C-terminal targeting signal.

amino acids 691-693

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 198-201 and 370-373

N-glycosylation sites.

amino acids 39-42, 148-151, 171-174, 234-237, 303-306, 324-327 and 341-344

G-protein coupled receptors family 2 proteins

amino acids 475-504

TCCTTTTCAAAAACTGGAGACACAGAAGAGGGCTCTAGGAAAAAGTTTTGGATGGGATTATGTGGAAACTACCCT GCGATTCTCTGCTGCCAGAGCAGGCTCGGCGCTTCCACCCCAGTGCAGCCTTCCCCTGGCGGTGGTGAAAGAGAC ${\tt TCGGGAGTCGCTGCTTCCAAAGTGCCCGCGTGAGTGAGCTCTCACCCCAGTCAGCCAA} \underline{{\tt ATG}} {\tt AGCCTCTTCGGGC}$ TTCTCCTGCTGACATCTGCCCTGGCCGGCCAGAGACAGGGGGACTCAGGCGGAATCCAACCTGAGTAGTAAATTCC AGTTTTCCAGCAACAAGGAACAGAACGGAGTACAAGATCCTCAGCATGAGAGAATTATTACTGTGTCTACTAATG GAAGTATTCACAGCCCAAGGTTTCCTCATACTTATCCAAGAAATACGGTCTTGGTATGGAGATTAGTAGCAGTAG AGGAAAATGTATGGATACAACTTACGTTTGATGAAAGATTTGGGCTTGAAGACCCAGAAGATGACATATGCAAGT ATGATTTTGTAGAAGTTGAGGAACCCAGTGATGGAACTATATTAGGGCGCTGGTGTGGTTCTGGTACTGTACCAG GAAAACAGATTTCTAAAGGAAATCAAATTAGGATAAGATTTGTATCTGATGAATATTTTCCTTCTGAACCAGGGT TCTGCATCCACTACAACATTGTCATGCCACAATTCACAGAAGCTGTGAGTCCTTCAGTGCTACCCCCTTCAGCTT TGCCACTGGACCTGCTTAATAATGCTATAACTGCCTTTAGTACCTTGGAAGACCTTATTCGATATCTTGAACCAG GAAAATCCAGAGTGGTGGATCTGAACCTTCTAACAGAGGAGGTAAGATTATACAGCTGCACACCTCGTAACTTCT CAGTGTCCATAAGGGAAGAACTAAAGAGAACCGATACCATTTTCTGGCCAGGTTGTCTCCTGGTTAAACGCTGTG ACCATGAGGAGTGTGACTGTGTGCAGAGGGAGCACAGGAGGAGCATCACCACCAGCAGCTCTTGCCCA ${\tt GAGCTGTGCAGTGCAGTGGCTGATTCTATTAGAGAACGTATGCGTTATCTCCATCCTTAATCTCAGTTGTTTGCT}$ TAAATAGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTTC GATACGGCTTAGGGTAATGTCAGTACAGGAAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCCTTAAC ATGTAAACCAGAACATTCTATGTACTACAAACCTGGTTTTTAAAAAGGAACTATGTTGCTATGAATTAAACTTGT GTCATGCTGATAGGACAGACTGGATTTTCATATTTCTTATTAAAATTTCTGCCATTTAGAAGAAGAGAACTACA TTCATGGTTTGGAAGAGATAAACCTGAAAAGAAGAGTGGCCTTATCTTCACTTTATCGATAAGTCAGTTTATTTG TTTCATTGTGTACATTTTTATATTCTCCTTTTGACATTATAACTGTTGGCTTTTCTAATCTTGTTAAATATATCT ATTTTTACCAAAGGTATTTAATATTCTTTTTTATGACAACTTAGATCAACTATTTTTTAGCTTGGTAAATTTTTCT AAACACAATTGTTATAGCCAGAGGAACAAAGATGATATAAAATATTGTTGCTCTGACAAAAATACATGTATTTCA TTCTCGTATGGTGCTAGAGTTAGATTAATCTGCATTTTAAAAAACTGAATTGGAATAGAATTGGTAAGTTGCAAA GACTTTTTGAAAATAATTAAATTATCATATCTTCCATTCCTGTTATTGGAGATGAAAATAAAAAGCAACTTATGA AAGTAGACATTCAGATCCAGCCATTACTAACCTATTCCTTTTTTTGGGGAAATCTGAGCCTAGCTCAGAAAAACAT AAAGCACCTTGAAAAAGACTTGGCAGCTTCCTGATAAAGCGTGCTGTGCTGTGCAGTAGGAACACATCCTATTTA TTGTGATGTTGTGGTTTTATTATCTTAAACTCTGTTCCATACACTTGTATAAATACATGGATATTTTTATGTACA GAAGTATGTCTCTTAACCAGTTCACTTATTGTACTCTGGCAATTTAAAAGAAAATCAGTAAAATATTTTGCTTGT AAAATGCTTAATATNGTGCCTAGGTTATGTGGTGACTATTTGAATCAAAAATGTATTGAATCATCAAATAAAAGA

MSLFGLLLTSALAGQRQGTQAESNLSSKFQFSSNKEQNGVQDPQHERIITVSTNGSIHSPR FPHTYPRNTVLVWRLVAVEENVWIQLTFDERFGLEDPEDDICKYDFVEVEEPSDGTILGRWC GSGTVPGKQISKGNQIRIRFVSDEYFPSEPGFCIHYNIVMPQFTEAVSPSVLPPSALPLDLL NNAITAFSTLEDLIRYLEPERWQLDLEDLYRPTWQLLGKAFVFGRKSRVVDLNLLTEEVRLY SCTPRNFSVSIREELKRTDTIFWPGCLLVKRCGGNCACCLHNCNECQCVPSKVTKKYHEVLQ LRPKTGVRGLHKSLTDVALEHHEECDCVCRGSTGG

Signal sequence:

amino acids 1-14

CCCATCTCAAGCTGATCTTGGCACCTCTCATGCTCTCTTCAACCAGACCTCTACATTCCATTTTGGAAGA AGACTAAAA<u>ATG</u>GTGTTTCCAATGTGGACACTGAAGAGACAAATTCTTATCCTTTTTAACATAATCCTAATTTCC AAACTCCTTGGGGCTAGATGGTTTCCTAAAACTCTGCCCTGTGATGTCACTCTGGATGTTCCAAAGAACCATGTG ATCGTGGACTGCACAGACAAGCATTTGACAGAAATTCCTGGAGGTATTCCCACGAACACCACGAACCTCACCCTC ACCATTAACCACATACCAGACATCTCCCCAGCGTCCTTTCACAGACTGGACCATCTGGTAGAGATCGATTTCAGA TGCAACTGTGTACCTATTCCACTGGGGTCAAAAAACAACATGTGCATCAAGAGGCTGCAGATTAAACCCAGAAGC CCTAGCTTACAGCTTCTCAGCCTTGAGGCCAACAACATCTTTTCCATCAGAAAAGAGAATCTAACAGAACTGGCC AACATAGAAATACTCTACCTGGGCCAAAACTGTTATTATCGAAATCCTTGTTATGTTTCATATTCAATAGAGAAA GATGCCTTCCTAAACTTGACAAAGTTAAAAGTGCTCTCCCTGAAAGATAACAATGTCACAGCCGTCCCTACTGTT TTGCCATCTACTTTAACAGAACTATATCTCTACAACAACATGATTGCAAAAATCCAAGAAGATGATTTAATAAC CTCAACCAATTACAAATTCTTGACCTAAGTGGAAATTGCCCTCGTTGTTATAATGCCCCATTTCCTTGTGCGCCG TGTAAAAATAATTCTCCCCTACAGATCCCTGTAAATGCTTTTGATGCGCTGACAGAATTAAAAGTTTTACGTCTA ${\tt CAAAACTTCTTGGCCAAAGAAATTGGGGATGCTAAATTTCTGCATTTTCTCCCCAGCCTCATCCAATTGGATCTG}$ TCTTTCAATTTTGAACTTCAGGTCTATCGTGCATCTATGAATCTATCACAAGCATTTTCTTCACTGAAAAGCCTG AAAATTCTGCGGATCAGAGGATATGTCTTTAAAGAGTTGAAAAGCTTTAACCTCTCGCCATTACATAATCTTCAA AATCTTGAAGTTCTTGATCTTGGCACTAACTTTATAAAAATTGCTAACCTCAGCATGTTTAAACAATTTAAAAGA CTGAAAGTCATAGATCTTTCAGTGAATAAAATATCACCTTCAGGAGATTCAAGTGAAGTTGGCTTCTGCTCAAAT GCCAGAACTTCTGTAGAAAGTTATGAACCCCAGGTCCTGGAACAATTACATTATTTCAGATATGATAAGTATGCA AGGAGTTGCAGATTCAAAAACAAAGAGGCTTCTTTCATGTCTGTTAATGAAAGCTGCTACAAGTATGGGCAGACC AATCTGTCAGGAAATCTCATTAGCCAAACTCTTAATGGCAGTGAATTCCAACCTTTAGCAGAGCTGAGATATTTG GACTTCTCCAACAACCGGCTTGATTTACTCCATTCAACAGCATTTGAAGAGCTTCACAAACTGGAAGTTCTGGAT ATAAGCAGTAATAGCCATTATTTTCAATCAGAAGGAATTACTCATATGCTAAACTTTACCAAGAACCTAAAGGTT ACTCTGGAATTCAGAGGAAATCACTTAGATGTTTTATGGAGAGAGGTGATAACAGATACTTACAATTATTCAAG AATCTGCTAAAATTAGAGGAATTAGACATCTCTAAAAATTCCCTAAGTTTCTTGCCTTCTGGAGTTTTTTGATGGT ATGCCTCCAAATCTAAAGAATCTCTCTTTTGGCCAAAAATGGGCTCAAATCTTTCAGTTGGAAGAAACTCCAGTGT AGAAGCCTCAAGAATCTGATTCTTAAGAATAATCAAATCAGGAGTCTGACGAAGTATTTTCTACAAGATGCCTTC CAGTTGCGATATCTGGATCTCAGCTCAAATAAAATCCAGATGATCCAAAAAGACCAGCTTCCCAGAAAATGTCCTC GTTAACCATACGGAGGTGACTATTCCTTACCTGGCCACAGATGTGACTTGTGTGGGGCCAGGAGCACACAAGGGC ${\tt CAAAGTGTGATCTCCCTGGATCTGTACACCTGTGAGTTAGATCTGACTAACCTGATTCTGTTCTCACTTTCCATA}$ TTCTGTAAGGCCAAGATAAAGGGGTATCAGCGTCTAATATCACCAGACTGTTGCTATGATGCTTTTATTGTGTAT GACACTAAAGACCCAGCTGTGACCGAGTGGGTTTTGGCTGAGCTGGTGGCCAAACTGGAAGACCCAAGAGAGAAA $\hbox{\tt CATTTAATTTATGTCTCGAGGAAAGGGACTGGTTACCAGGGCAGCCAGTTCTGGAAAACCTTTCCCAGAGCATA}$ ${\tt CAGCTTAGCAAAAAGACAGTGTTTGTGATGACAGACAAGTATGCAAAGACTGAAAATTTTAAGATAGCATTTTAC}$ TTGTCCCATCAGAGGCTCATGGATGAAAAAGTTGATGTGATTATCTTGATATTTCTTGAGAAGCCCTTTCAGAAG TCCAAGTTCCTCCAGCTCCGGAAAAGGCTCTGTGGGAGTTCTGTCCTTGAGTGGCCAACAAACCCGCAAGCTCAC CCATACTTCTGGCAGTGTCTAAAGAACGCCCTGGCCACAGACAATCATGTGGCCTATAGTCAGGTGTTCAAGGAA $\texttt{ACGGTC} \underline{\textbf{TAG}} \texttt{CCCTTCTTTGCAAAACACAACTGCCTAGTTTACCAAGGAGAGGCCTGGC}$

MVFPMWTLKRQILILFNIILISKLLGARWFPKTLPCDVTLDVPKNHVIVDCTDKHLTEIPGG I PTNTTNLTLTINHI PDISPASFHRLDHLVEIDFRCNCVPI PLGSKNNMCI KRLOIKPRSFS GLTYLKSLYLDGNQLLEIPQGLPPSLQLLSLEANNIFSIRKENLTELANIEILYLGQNCYYR NPCYVSYSIEKDAFLNLTKLKVLSLKDNNVTAVPTVLPSTLTELYLYNNMIAKIQEDDFNNL NQLQILDLSGNCPRCYNAPFPCAPCKNNSPLQIPVNAFDALTELKVLRLHSNSLQHVPPRWF KNINKLQELDLSQNFLAKEIGDAKFLHFLPSLIQLDLSFNFELQVYRASMNLSQAFSSLKSL KILRIRGYVFKELKSFNLSPLHNLQNLEVLDLGTNFIKIANLSMFKQFKRLKVIDLSVNKIS PSGDSSEVGFCSNARTSVESYEPQVLEQLHYFRYDKYARSCRFKNKEASFMSVNESCYKYGO TLDLSKNSIFFVKSSDFQHLSFLKCLNLSGNLISQTLNGSEFQPLAELRYLDFSNNRLDLLH STAFEELHKLEVLDISSNSHYFQSEGITHMLNFTKNLKVLQKLMMNDNDISSSTSRTMESES LRTLEFRGNHLDVLWREGDNRYLQLFKNLLKLEELDISKNSLSFLPSGVFDGMPPNLKNLSL AKNGLKSFSWKKLQCLKNLETLDLSHNQLTTVPERLSNCSRSLKNLILKNNQIRSLTKYFLQ DAFQLRYLDLSSNKIQMIQKTSFPENVLNNLKMLLLHHNRFLCTCDAVWFVWWVNHTEVTIP YLATDVTCVGPGAHKGQSVISLDLYTCELDLTNLILFSLSISVSLFLMVMMTASHLYFWDVW YIYHFCKAKIKGYQRLISPDCCYDAFIVYDTKDPAVTEWVLAELVAKLEDPREKHFNLCLEE RDWLPGQPVLENLSQSIQLSKKTVFVMTDKYAKTENFKIAFYLSHQRLMDEKVDVIILIFLE KPFQKSKFLQLRKRLCGSSVLEWPTNPQAHPYFWQCLKNALATDNHVAYSQVFKETV

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 840-860

 ${\tt GGGTACCATTCTGCGCTGCTGCAAGTTACGGAATGAAAAATTAGAACAACAGAAAC} {\color{blue} \underline{\textbf{ATG}}} {\tt GAAAACATGTTCCTTC}$ AGTCGTCAATGCTGACCTGCATTTTCCTGCTAATATCTGGTTCCTGTGAGTTATGCGCCGAAGAAAATTTTTCTA GAAGCTATCCTTGTGATGAGAAAAAGCAAAATGACTCAGTTATTGCAGAGTGCAGCAATCGTCGACTACAGGAAG CATTTCAAGGGCTGCAAAATCTCACTAAAATAAATCTAAACCACAACCCCAATGTACAGCACCAGAACGGAAATC CCGGTATACAATCAAATGGCTTGAATATCACAGACGGGGCATTCCTCAACCTAAAAAACCTAAGGGAGTTACTGC TTGAAGACAACCAGTTACCCCCAAATACCCTCTGGTTTGCCAGAGTCTTTGACAGAACTTAGTCTAATTCAAAACA ATATATACAACATAACTAAAGAGGGCATTTCAAGACTTATAAACTTGAAAAATCTCTATTTGGCCTGGAACTGCT ATTTTAACAAAGTTTGCGAGAAAACTAACATAGAAGATGGAGTATTTGAAACGCTGACAAATTTGGAGTTGCTAT CACTATCTTTCAATTCTCTTTCACACGTGCCACCCAAACTGCCAAGCTCCCTACGCAAACTTTTTCTGAGCAACA CCCAGATCAAATACATTAGTGAAGAAGATTTCAAGGGGATTGATAAATTTAACATTACTAGATTTAAGCGGGAACT GTCCGAGGTGCTTCAATGCCCCATTTCCATGCGTGCCTTGTGATGGTGCTTCAATTAATATAGATCGTTTTG CTTTTCAAAACTTGACCCAACTTCGATACCTAAACCTCTCTAGCACTTCCCTCAGGAAGATTAATGCTGCCTGGT TTAAAAATATGCCTCATCTGAAGGTGCTGGATCTTGAATTCAACTATTTAGTGGGAGAAATAGTCTCTGGGGCAT TTTTAACGATGCTGCCCCGCTTAGAAATACTTGACTTGTCTTTTAACTATATAAAGGGGAGTTATCCACAGCATA TCAGAGAGATGATTTCCAGCCCCTGATGCAGCTTCCAAACTTATCGACTATCAACTTGGGTATTAATTTTATTA AGCAAATCGATTTCAAACTTTTCCAAAATTTCTCCAATCTGGAAATTATTTACTTGTCAGAAAACAGAATATCAC CGTTGGTAAAAGATACCCGGCAGAGTTATGCAAATAGTTCCTCTTTTCAACGTCATATCCGGAAACGACGCTCAA CAGATTTTGAGTTTGACCCACATTCGAACTTTTATCATTTCACCCGTCCTTTAATAAAGCCACAATGTGCTGCTT ATGGAAAAGCCTTAGATTTAAGCCTCAACAGTATTTTCTTCATTGGGCCAAACCAATTTGAAAATCTTCCTGACA TTGCCTGTTTAAATCTGTCTGCAAATAGCAATGCTCAAGTGTTAAGTGGAACTGAATTTTCAGCCATTCCTCATG TCAAATATTTGGATTTGACAAACAATAGACTAGACTTTGATAATGCTAGTGCTCTTACTGAATTGTCCGACTTGG AAGTTCTAGATCTCAGCTATAATTCACACTATTTCAGAATAGCAGGCGTAACACATCATCTAGAATTTATTCAAA ATTTCACAAATCTAAAAGTTTTAAACTTGAGCCACAACAACATTTATACTTTAACAGATAAGTATAACCTGGAAA GCAAGTCCCTGGTAGAATTAGTTTTCAGTGGCAATCGCCTTGACATTTTGTGGAATGATGATGACAACAGGTATA TCTCCATTTTCAAAGGTCTCAAGAATCTGACACGTCTGGATTTATCCCTTAATAGGCTGAAGCACATCCCAAATG AAGCATTCCTTAATTTGCCAGCGAGTCTCACTGAACTACATATAAATGATAATATGTTAAAGTTTTTTAACTGGA TATCTGACTTTACATCTTCCCTTCGGACACTGCTGCTGAGTCATAACAGGATTTCCCACCTACCCTCTGGCTTTC TTTCTGAAGTCAGTAGTCTGAAGCACCTCGATTTAAGTTCCAATCTGCTAAAAACAATCAACAAATCCGCACTTG AAACTAAGACCACCAAATTATCTATGTTGGAACTACACGGAAACCCCTTTGAATGCACCTGTGACATTGGAG ATTTCCGAAGATGGATGGATCAAAATTCCCAGACTGGTAGATGTCATTTGTGCCAGTCCTG GGGATCAAAGAGGGAAGAGTATTGTGAGTCTGGAGCTAACAACTTGTGTTTCAGATGTCACTGCAGTGATATTAT ${\tt TTTTCTTCACGTTCTTTATCACCACCATGGTTATGTTGGCTGCCCTGGCTCACCATTTGTTTTACTGGGATGTTT}$ GGTTTATATATAATGTGTGTTTTAGCTAAGGTAAAAGGCTACAGGTCTCTTTCCACATCCCAAACTTTCTATGATG AGAGCCGAGACAAAACGTTCTCCTTTGTCTAGAGGAGGGGATTGGGACCCGGGATTGGCCATCATCGACAACC TCATGCAGAGCATCAACCAAAGCAAGAAAACAGTATTTGTTTTAACCAAAAAATATGCAAAAAGCTGGAACTTTA AAACAGCTTTTTACTTGGCTTTGCAGAGGCTAATGGATGAGAACATGGATGTGATTATATTTATCCTGCTGGAGC CAGTGTTACAGCATTCTCAGTATTTGAGGCTACGGCAGCGGATCTGTAAGAGCTCCATCCTCCAGTGGCCTGACA ACCCGAAGGCAGAAGGCTTGTTTTGGCAAACTCTGAGAAATGTGGTCTTGACTGAAAATGATTCACGGTATAACA ATATGTATGTCGATTCCATTAAGCAATAC<u>TAA</u>CTGACGTTAAGTCATGATTTCGCGCCATAATAAAGATGCAAAG GAATGACATTTCTGTATTAGTTATCTATTGCTATGTAACAAATTATCCCAAAACTTAGTGGTTTAAAACAACACA TTTGCTGGCCCACAGTTTTTGAGGGTCAGGAGTCCAGGCCCAGCATAACTGGGTCCTCTGCTCAGGGTGTCTCAG ATCAGAGCTAGCAAAAAAGAGAGGTTGCTAGCAAGATGAAGTCACAATCTTTTGTAATCGAATCAAAAAAGTGAT ATCTCATCACTTTGGCCATATTCTATTTGTTAGAAGTAAACCACAGGTCCCACCAGCTCCATGGGAGTGACCACC TCAGTCCAGGGAAAACAGCTGAAGACCAAGATGGTGAGCTCTGATTGCTTCAGTTGGTCATCAACTATTTTCCCT TGACTGCTGTCCTGGGATGCCTGCTATCTTGATGATAGATTGTGAATATCAGGAGGCAGGGATCACTGTGGACC ATCTTAGCAGTTGACCTAACACATCTTCTTTTCAATATCTAAGAACTTTTGCCACTGTGACTAATGGTCCTAATA ${\tt TTAAGCTGTTGTTTATATTTATCATATCTATGGCTACATGGTTATATTATGCTGTGGTTGCGTTCGGTTTTAT}$ TTACAGTTGCTTTTACAAATATTTGCTGTAACATTTGACTTCTAAGGTTTAGATGCCATTTAAGAACTGAGATGG ATAGCTTTTAAAGCATCTTTTACCTTCTTACCATTTTTTAAAAGTATGCAGCTAAATTCGAAGCTTTTGGTCTATA

MENMFLQSSMLTCIFLLISGSCELCAEENFSRSYPCDEKKQNDSVIAECSNRRLQEVPQTVG KYVTELDLSDNFITHITNESFQGLQNLTKINLNHNPNVQHQNGNPGIQSNGLNITDGAFLNL KNLRELLLEDNQLPQIPSGLPESLTELSLIQNNIYNITKEGISRLINLKNLYLAWNCYFNKV CEKTNIEDGVFETLTNLELLSLSFNSLSHVPPKLPSSLRKLFLSNTQIKYISEEDFKGLINL TLLDLSGNCPRCFNAPFPCVPCDGGASINIDRFAFONLTQLRYLNLSSTSLRKINAAWFKNM PHLKVLDLEFNYLVGEIVSGAFLTMLPRLEILDLSFNYIKGSYPQHINISRNFSKLLSLRAL HLRGYVFQELREDDFQPLMQLPNLSTINLGINFIKQIDFKLFQNFSNLEIIYLSENRISPLV KDTRQSYANSSSFQRHIRKRRSTDFEFDPHSNFYHFTRPLIKPQCAAYGKALDLSLNSIFFI GPNQFENLPDIACLNLSANSNAQVLSGTEFSAIPHVKYLDLTNNRLDFDNASALTELSDLEV LDLSYNSHYFRIAGVTHHLEFIQNFTNLKVLNLSHNNIYTLTDKYNLESKSLVELVFSGNRL DILWNDDDNRYISIFKGLKNLTRLDLSLNRLKHIPNEAFLNLPASLTELHINDNMLKFFNWT LLQQFPRLELLDLRGNKLLFLTDSLSDFTSSLRTLLLSHNRISHLPSGFLSEVSSLKHLDLS SNLLKTINKSALETKTTTKLSMLELHGNPFECTCDIGDFRRWMDEHLNVKIPRLVDVICASP GDQRGKSIVSLELTTCVSDVTAVILFFFTFFITTMVMLAALAHHLFYWDVWFIYNVCLAKVK GYRSLSTSQTFYDAYISYDTKDASVTDWVINELRYHLEESRDKNVLLCLEERDWDPGLAIID NLMQSINQSKKTVFVLTKKYAKSWNFKTAFYLALQRLMDENMDVIIFILLEPVLQHSQYLRL RQRICKSSILQWPDNPKAEGLFWQTLRNVVLTENDSRYNNMYVDSIKOY

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 826-848

CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGGATCCTCTAGAGATCCCT CGACCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGA CAGGCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCCTGAGGCCCCAGC AAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCGGCGGCCACCATGGCCACGCCTGGGC TCCAGCAGCATCAGCAGCCCCCAGGACCGGGGGGGCACAGGTGGCCCCCACCACCCGGAGGA GCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAA GGCCACCCGCCTGGAGGCACAGGCCATGAGGGGGCTCTCAGGAGGTGCTGATGTGGCTT ${\tt CCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCA}$ CCACCTGCGACGGCCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGC CGCAGCCCTGGGCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGAC CAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAGGGA GCTGTGTCCAGCCTGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAGTCA GATGTGGATGAATGCAGTGCTAGGAGGGGGGGCTGTCCCCAGCGCTGCATCAACACCGCCGG CAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGC CCAAGGGAGGCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAGGAA GAAGTGCAGAGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGC CCCACTGCACAGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCC GAGGAGCAGCTGGGGTCCTGCAAGAAAGACTCGTGACTGCCCAGCGCCCCAGGCTG GACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGCCCCAACATGCTGGGGGTCCAG AAGCCACCTCGGGGTGACTGAGCGGAAGGCCAGGCAGGCCTTCCTCCTCCTCCTCCCCC TTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCAC CCCTGGCTACCCCACCCTGGCTACCCCAACGCCAAGGCCAGGTGGGCCCTCAGCTG AGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCCCGGAG GCTGGGTGGGGCCTCAGTGGGGGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTGA CGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAAT

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC
STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR
CPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA
PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG
RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

GCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAG GGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGCCACCATGGCCACGCCTGGGCTCC AGCAGCATCAGAGCAGCCCCTGTGGTTGGCAGCAAAGTTCAGCTTGGCTGGGCCCGCTGTGA GGGGCTTCGCGCTACGCCCTGCGGTGTCCCGAGGGCTGAGGTCTCCTCATCTTCTCCCTAGC AAAGCCACATCTGTAGCCAGGATGAGCAGTGTGAATCCAGGCAGCCCCCAGGACCGGGGAGG TCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCCGCCTGGAGGCACAGGCCATGAGGGGC TCTCAGGAGGTGCTGATGTGGCTTCTGGTGTTGGCAGTGGGCGGCACAGAGCACGCCTA $\tt CCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCG$ TGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTAC CGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCTGCCAGGCCTCGCTA CGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGGGGCCCTGTGGAGCAGCAATAT GCCAGCCGCCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGGCCGCTGCCGCTGCCA GGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGGGGGCGGCTG TCCCCAGCGCTGCATCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCC TGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCG ACAGGAGTGGACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCT GGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGC ATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCATCGAC $\verb|CTCG| \textbf{TGA} \\ \texttt{CTGCCCAGCGCTCCAGGCTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATG}|$ CCCCTGCCCAACATGCTGGGGGTCCAGAAGCCACCTCGGGGTGACTGAGCGGAAGGCCAGGC AGGGCCTTCCTCCTCCTCCTCCCCTTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGAT GGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACCCCCACCCTGGCTACCCCAACGGCA TCCCAAGGCCAGGTGGACCCTCAGCTGAGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGAC CCATGGCACAGGCCAGCCCGGAGGCTGGGTGGGGCCTCAGTGGGGGGCTGCCTGAC CCCCAGCACAATAAAAATGAAACGTG

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR CPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

CCCACGCGTCCGAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGACAGGCCAGGCA GGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGCTAGGG TCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCACGCCTGGGCTCCAGCAGCAT CCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCGC $\tt CTGGAGGCACAGGCC{\color{blue}ATG}AGGGGCTCTCAGGAGGTGCTGCTGATGTGGCTTCTGGTGTTGGC{\color{blue}CTGGAGGCACAGGCC} \\$ AGTGGGCGGCACAGAGCACGCCTACCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACG GGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGAC GGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGG GCTGGCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTC CCTGGCCGCTGCCGTGCAGGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGA ATGCAGTGCTAGGAGGGCGGCTGTCCCCAGCGCTGCGTCAACACCGCCGGCAGTTACTGGT GCTGCAGTCCAGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACA GCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCC GGGGTCCTGCTGCAAGAAGACTCGTGACTGCCCAGCGCCCCAGGCTGGACTGAGCCCC TCACGCCGCCCTGCAGCCCCATGCCCCAACATGCTGGGGGTCCAGAAGCCACCTCG GGGTGACTGAGCGGAAGGCCAGGCAGGCCTTCCTCCTCTCCTCCCCCTTCCTCGGGAG GCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACC CCCACCTGGCTACCCCAACGCCATCCCAAGGCCAGGTGGGCCCTCAGCTGAGGGAAGGTAC CCTCAGTGGGGGCTGCTGCCTGACCCCAGCACAATAAAAATGAAACGTG

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC
STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR
CPAGWRGDTCQSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA
PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG
RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

GGTTGCCACAGCTGGTTTAGGGCCCCGACCACTGGGGCCCCTTGTCAGGAGAGACAGCCTCCCGGCCCGGGGAG AGTTGGGTCTCCGTGTTTCAGGCCGGCTCCCCCTTCCTGGTCTCCCCGCTGGGCCGGTTTATCGGGAGG AGATTGTCTTCCAGGGCTAGCAATTGGACTTTTGATGATGTTTTGACCCAGCGCAGGAATAGCAGGCAACGTGAT TTCAAAGCTGGGCTCAGCCTCTGTTTCTCTCTCGTGTAATCGCAAAACCCATTTTGGAGCAGGAATTCCAATCA ATGGCCGCGTCATGATGGCCCGGCAAAAGGGCATTTTCTACCTGACCCTTTTCCTCATCCTGGGGACATGTACAC TCTTCTTCGCCTTTGAGTGCCGCTACCTGGCTGTTCAGCTGTCTCCTGCCATCCCTGTATTTGCTGCCATGCTCT TCCTTTTCTCCATGGCTACACTGTTGAGGACCAGCTTCAGTGACCCTGGAGTGATTCCTCGGGCGCTACCAGATG AAGCAGCTTTCATAGAAATGGAGATAGAAGCTACCAATGGTGCGGTGCCCCAGGGCCAGCGACCACCGCCTCGTA TCAAGAATTTCCAGATAAACAACCAGATTGTGAAACTGAAATACTGTTACACATGCAAGATCTTCCGGCCTCCCC $\verb|CTCTCAACCAGACCAATGAAGACATCAAAGGATCATGGACAGGGAAGAATCGCGTCCAGAATCCCTACAGCC| \\$ ATGGCAATATTGTGAAGAACTGCTGTGAAGTGCTGTGTGGCCCCCTTGCCCCCAGTGTGCTGGATCGAAGGGGTA TTTTGCCACTGGAGGAAAGTGGAAGTCGACCTCCCAGTACTCAAGAGACCAGTAGCAGCCTCTTGCCACAGAGCC CAGCCCCCACAGAACACCTGAACTCAAATGAGATGCCGGAGGACAGCACCTCCCGAAGAGATGCCACCTCCAG TAATTAGGGCTATGAGAGATTTCAGGTGAGAAGTTAAACCTGAGACAGAGAGCAAGTAAGCTGTCCCTTTTAACT ${\tt GTTTTTCTTTGGTCTTTAGTCACCCAGTTGCACACTGGCATTTTCTTGCTGCAAGCTTTTTTTAAATTTCTGAACT}$ CAAGGCAGTGGCAGAAGATGTCAGTCACCTCTGATAACTGGAAAAATGGGTCTCTTGGGCCCTGGCACTGGTTCT TGGTCTCATTCTGGGGCTAAAAGTTTTTGAGACTGGCTCAAATCCTCCCAAGCTGCTGCACGTGCTGAGTCCAGA TGGGGTCAGAAGATTCTCCTGGCCACCAAGTGCCAGCATTGCCCACAAATCCTTTTAGGAATGGGACAGGTACCT TCCACTTGTTGTANNNNNNNNNNNNNNNNNNNNNNNTTGTTTTTCCTTTTGACTCCTGCTCCCATTAGGAG CAGGAATGCCAGTAATAAAAGTCTGCACTTTGGTCATTTCTTTTCCTCAGAGGAAGCCCGAGTGCTCACTTAAAC ACTATCCCCTCAGACTCCCTGTGTGAGGCCTGCAGAGGCCCTGAATGCACAAATGGGAAACCAAGGCACAGAGAG CGGCTGAGTGAGGGAAAGCCCAGCACTGCTGCCCTCTCGGGTAACTCACCCTAAGGCCTCGGCCCACCTCTGGCT ATGGTAACCACACTGGGGGCTTCCTCCAAGCCCCGCTCTTCCAGCACTTCCACCGGCAGAGTCCCAGAGCCACTT CACCCTGGGGGTGGGCCCCCAGTCAGCTCTGCTCAGGACCTGCTCTATTTCAGGGAAGAAGATTTATGT ATTATATGTGGCTATATTTCCTAGAGCACCTGTGTTTTCCTCTTTCTAAGCCAGGGTCCTGTCTGGATGACTTAT GCGGTGGGGGAGTGTAAACCGGAACTTTTCATCTATTTGAAGGCGATTAAACTGTGTCTAATGCA

MSVMVVRKKVTRKWEKLPGRNTFCCDGRVMMARQKGIFYLTLFLILGTCTLFFAFECRYLAV QLSPAIPVFAAMLFLFSMATLLRTSFSDPGVIPRALPDEAAFIEMEIEATNGAVPQGQRPPP RIKNFQINNQIVKLKYCYTCKIFRPPRASHCSICDNCVERFDHHCPWVGNCVGKRNYRYFYL FILSLSLLTIYVFAFNIVYVALKSLKIGFLETLKETPGTVLEVLICFFTLWSVVGLTGFHTF LVALNQTTNEDIKGSWTGKNRVQNPYSHGNIVKNCCEVLCGPLPPSVLDRRGILPLEESGSR PPSTQETSSSLLPQSPAPTEHLNSNEMPEDSSTPEEMPPPEPPPEPPQEAAEAEK

Putative transmembrane domains:

amino acids 36-55 (type II TM), 65-84, 188-208, 229-245

AAAACCCTGTATTTTTTACAATGCAAATAGACAATNANCCTGGAGGTCTTTGAATTAGGTAT
TATAGGGATGGTGGGGTTGATTTTTNTTCCTGGAGGCTTTTGGCTTTTGGACTCTCNCTTTCT
CCCACAGAGCNCTTCGACCATCACTGCCCCTGGGTGGGGAATTGTGTTGGAAAGAGGAACTA
CCGCTANTTCTACCTCTTCATCCTTTNTCTCTCCCNCCTCACAATCTATGTCTTCGCCTTCA
ACATCGT

GTTGTGTCCTTCAGCAAAACAGTGGATTTAAATCTCCTTGCACAAGCTTGAGAGCAACACAA AAAAAAATCATGAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTTGGGCAATCTTCAC GGGGCTGCTCTGTGTCTCTTCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTTCC CCAAAGCTATGGACAACGTGACGGTCCGGCAGGGGGGAGAGCGCCACCCTCAGGTGCACTATT GACAACCGGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCTCTATGCTGGGAATGA CAAGTGGTGCCTGGATCCTCGCGTGGTCCTTCTGAGCAACACCCCAAACGCAGTACAGCATCG CACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAGTATCTCCCAAAATTGTAGAGATTTC TTCAGATATCTCCATTAATGAAGGGAACAATATTAGCCTCACCTGCATAGCAACTGGTAGAC GAATACTTGGAAATTCAGGGCATCACCCGGGAGCAGTCAGGGGACTACGAGTGCAGTGCCTC CAATGACGTGGCCGCCCGTGGTACGGAGAGTAAAGGTCACCGTGAACTATCCACCATACA TTTCAGAAGCCAAGGGTACAGGTGTCCCCGTGGGACAAAAGGGGACACTGCAGTGTGAAGCC TCAGCAGTCCCCTCAGCAGAATTCCAGTGGTACAAGGATGACAAAAGACTGATTGAAGGAAA GAAAGGGGTGAAAGTGGAAAACAGACCTTTCCTCTCAAAACTCATCTTCTAATGTCTCTG AACATGACTATGGGAACTACACTTGCGTGGCCTCCAACAAGCTGGGCCACACCAATGCCAGC ATCATGCTATTTGGTCCAGGCGCCGTCAGCGAGGTGAGCAACGGCACGTCGAGGAGGGCAGG $\tt CTGCGTCTGGCTGCTTCTTGGTCTTGCACCTGCTTCTCAAATTT{\color{red}{TGA}} TGTGAGTGCC$ ACTTCCCCACCGGGAAAGGCTGCCGCCACCACCACCACCACAACACAGCAATGGCAACAC CGACAGCAACCAATCAGATATATACAAATGAAATTAGAAGAAACACAGCCTCATGGGACAGA AATTTGAGGGAGGGAACAAAGAATACTTTGGGGGGGAAAAGAGTTTTAAAAAAAGAAATTGAA AATTGCCTTGCAGATATTTAGGTACAATGGAGTTTTCTTTTCCCAAACGGGAAGAACACAGC ACACCCGGCTTGGACCCACTGCAAGCTGCATCGTGCAACCTCTTTGGTGCCAGTGTGGGCAA GGGCTCAGCCTCTCTGCCCACAGAGTGCCCCCACGTGGAACATTCTGGAGCTGGCCATCCCA AATTCAATCAGTCCATAGAGACGAACAGAATGAGACCTTCCGGCCCAAGCGTGGCGCTGCGG GCACTTTGGTAGACTGTGCCACCACGGCGTGTGTTGTGAAACGTGAAATAAAAAGAGCAAAA AAAA

MKTIQPKMHNSISWAIFTGLAALCLFQGVPVRSGDATFPKAMDNVTVRQGESATLRCTIDNR VTRVAWLNRSTILYAGNDKWCLDPRVVLLSNTQTQYSIEIQNVDVYDEGPYTCSVQTDNHPK TSRVHLIVQVSPKIVEISSDISINEGNNISLTCIATGRPEPTVTWRHISPKAVGFVSEDEYL EIQGITREQSGDYECSASNDVAAPVVRRVKVTVNYPPYISEAKGTGVPVGQKGTLQCEASAV PSAEFQWYKDDKRLIEGKKGVKVENRPFLSKLIFFNVSEHDYGNYTCVASNKLGHTNASIML FGPGAVSEVSNGTSRRAGCVWLLPLLVLHLLKF

Signal peptide:

amino acids 1-28

GAAAAAAATCATGAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGCAATCTTC
ACGGGGCTGGCTGTGTCTCTTCCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTT
CCCCAAAGCTATGGACAACGTGACGGTCCGGCAGGGGGGAGAGCGCCACCCTCAGGTGCACTA
TTGACAACCGGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCTCTATGCTGGGAAT
GACAAGTGGTGCCTGGATCCTCGCGTGGTCCTTCTGAGCAACACCCAAACGCAGTACAGCAT
CGAGATCCAGAACGTGGATGTTATGACGAGGGCCCTTACACCTGCTCGGTGCAGACAC
ACCACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAGTATCTCCCAAAATTGTAGAGATT
TCTTCAGATATCTCCATTAATGAAGGGAACAATATTAGCCTCACCTGCATAGCAACTGGTAG
ACCAGAG

ATGGCTGGTGACGGCGGGGCCGGGCAGGGGACCGGGGCCGGGCCGGGAGCCAGCTGCCGGGAGCCCTGA ATCACCGCCTGGCCCGACTCCACCATGAACGTCGCGCTGCAGGAGCTGGCAGCAGCAACGTGGGATTCCAG AAGGGGACAAGACAGCTGTTAGGCTCACGCACGCAGCTGGAGCTGGTCTTAGCAGGTGCCTCTACTGCTGGCT GCACTGCTTCTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGCCCATCCCACAGCACCTGCCTTACA GAGGCCTGCATTCGAGTGGCTGGAAAAATCCTGGAGTCCCTGGACCGAGGGGTGAGCCCCTGTGAGGACTTTTAC CAGTTCTCCTGTGGGGGCTGGATTCGGAGGAACCCCCTGCCCGATGGGCGTTCTCGCTGGAACACCTTCAACAGC CTCTGGGACCAAAACCAGGCCATACTGAAGCACCTGCTTGAAAACACCACCTTCAACTCCAGCAGTGAAGCTGAG CAGAAGACACAGCGCTTCTACCTATCTTGCCTACAGGTGGAGCGCATTGAGGAGCTGGGAGCCCACTGAGA GACCTCATTGAGAAGATTGGTGGTTGGAACATTACGGGGCCCTGGGACCAGGACAACTTTATGGAGGTGTTGAAG GCAGTAGCAGGGCCTACAGGGCCACCCCATTCTTCACCGTCTACATCAGTGCCGACTCTAAGAGTTCCAACAGC AATGTTATCCAGGTGGACCAGTCTGGGCTCTTTCTGCCCTCTCGGGATTACTACTTAAACAGAACTGCCAATGAG GAGCAGATGCAGCAGGTGCTGGAGTTGGAGATACAGCTGGCCAACATCACAGTGCCCCAGGACCAGCGCGGCGCGAC GAGGAGAAGATCTACCACAAGATGAGCATTTCGGAGCTGCAGGCTCTGGCGCCCTCCATGGACTGGCTTGAGTTC CAGGTGTCAGAGCTCATCAACCGCACGGAACCAAGCATCCTGAACAATTACCTGATCTGGAACCTGGTGCAAAAG ACAACCTCAAGCCTGGACCGACGCTTTGAGTCTGCACAAGAGAGCTGCTGGAGACCCTCTATGGCACTAAGAAG TCCTGTGTGCCGAGGTGGCAGACCTGCATCTCCAACACGGATGACGCCCTTGGCTTTGCTTTGGGGTCACTCTTC GTGAAGGCCACGTTTGACCGGCAAAGCAAAGAAATTGCAGAGGGGATGATCAGCGAAATCCGGACCGCATTTGAG GAGGCCCTGGGACAGCTGGTTTGGATGGATGAGAAGACCCGCCAGGCAGCCAAGGAGAAAGCAGATGCCATCTAT GATATGATTGGTTTCCCAGACTTTATCCTGGAGCCCAAAGAGCTGGATGATGTTTATGACGGGTACGAAATTTCT GAAGATTCTTTCTTCCAAAACATGTTGAATTTGTACAACTTCTCTGCCAAGGTTATGGCTGACCAGCTCCGCAAG GTCTTCCCCGCTGGCATCCTGCAGGCCCCCTTCTATGCCCGCAACCACCCCAAGGCCCTGAACTTCGGTGGCATC GGTGTGGTCATGGGCCATGAGTTGACGCATGCCTTTGATGACCAAGGGCGCGAGTATGACAAAGAAGGGAACCTG CGGCCCTGGTGGCAGAATGAGTCCCTGGCAGCCTTCCGGAACCACACGGCCTGCATGGAGGAACAGTACAATCAA TACCAGGTCAATGGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGGAGAACATTACTGACAACGGGGGGCTGAAG GCTGCCTACAATGCTTACAAAGCATGGCTGAGAAAGCATGGGGAGGAGCAGCAACTGCCAGCCGTGGGGCTCACC AACCACCAGCTCTTCTTCGTGGGATTTGCCCAGGTGTGGTGCTCGGTCCGCACACCAGAGAGCTCTCACGAGGGG CTGGTGACCGACCCCCACAGCCCTGCCCGCTTCCGCGTGCTGGCCACTCTCTCCAACTCCCGTGACTTCCTGCGG GAAATGGCCAGCTGTCACCAGACCTGGGGCAGCTCTCCTGACAAAGCTGTTTGCTCTTGGGTTGGGAGGAAGCAA ATGCAAGCTGGGCTGGGTCTAGTCCCTCCCCCCACAGGTGACATGAGTACAGACCCTCCTCAATCACCACATTG TGCCTCTGCTTTGGGGGTGCCCCTGCCTCCAGCAGAGCCCCCACCATTCACTGTGACATCTTTCCGTGTCACCCT

MNVALQELGAGSNVGFQKGTRQLLGSRTQLELVLAGASLLLAALLLGCLVALGVQYHRDPSH
STCLTEACIRVAGKILESLDRGVSPCEDFYQFSCGGWIRRNPLPDGRSRWNTFNSLWDQNQA
ILKHLLENTTFNSSSEAEQKTQRFYLSCLQVERIEELGAQPLRDLIEKIGGWNITGPWDQDN
FMEVLKAVAGTYRATPFFTVYISADSKSSNSNVIQVDQSGLFLPSRDYYLNRTANEKVLTAY
LDYMEELGMLLGGRPTSTREQMQQVLELEIQLANITVPQDQRRDEEKIYHKMSISELQALAP
SMDWLEFLSFLLSPLELSDSEPVVVYGMDYLQQVSELINRTEPSILNNYLIWNLVQKTTSSL
DRRFESAQEKLLETLYGTKKSCVPRWQTCISNTDDALGFALGSLFVKATFDRQSKEIAEGMI
SEIRTAFEEALGQLVWMDEKTRQAAKEKADAIYDMIGFPDFILEPKELDDVYDGYEISEDSF
FQNMLNLYNFSAKVMADQLRKPPSRDQWSMTPQTVNAYYLPTKNEIVFPAGILQAPFYARNH
PKALNFGGIGVVMGHELTHAFDDQGREYDKEGNLRPWWQNESLAAFRNHTACMEEQYNQYQV
NGERLNGRQTLGENITDNGGLKAAYNAYKAWLRKHGEEQQLPAVGLTNHQLFFVGFAQVWCS
VRTPESSHEGLVTDPHSPARFRVLGTLSNSRDFLRHFGCPVGSPMNPGQLCEVW

Type II Transmembrane domain:

amino acids 32-57

GCGGTGCCTGGGACCCGGGGCAGCCCCCGGGGCGCACACGGCGAGCTGGGCAGCGGCCTCCAGC CAAGCCCGTCCCCGCAGGCTGCACCTTCGGCGGGAAGGTCTATGCCTTGGACGAGACGTGGCACCCGGACCTAGG GGAGCCATTCGGGGTGATGCGCTGCGTGCTGTGCGCCTGCGAGGCGCAGTGGGGTCGCCGTACCAGGGGCCCTGG CAGGGTCAGCTGCAAGAACATCAAACCAGAGTGCCCAACCCCGGCCTGTGGGCAGCCGCCCAGCTGCCGGGACA AGTCTCGCTGCTGCGCTCTAGCCTCCGCTTCTCTATCTCCTACAGGCGGCTGGACCGCCCTACCAGGATCCGCTT $\tt CTCAGACTCCAATGGCAGTGTCCTGTTTGAGCACCCTGCAGCCCCAAGATGGCCTGGTCTGTGGGGTGTG$ CCCTTCAGGGGAGGTCTGGGGGCCTCTCATCCGGCACCGGGCCCTGTCCCCAGAGACCTTCAGTGCCATCCTGAC TCTAGAAGGCCCCCACCAGCAGGGCGTAGGGGGCATCACCCTGCTCACTCTCAGTGACACAGAGGACTCCTTGCA TTTTTTGCTGCTCTTCCGAGGCCTTGCAGGACTAACCCAGGTTCCCTTGAGGCTCCAGATTCTACACCAGGGGCA GCTACTGCGAGAACTTCAGGCCAATGTCTCAGCCCAGGAACCAGGCTTTGCTGAGGTGCTGCCCAACCTGACAGT CAGTGGACACATTGCTGCCAGGAAGAGCTGCGACGTCCTGCAAAGTGTCCTTTGTGGGGCTAATGCCCTGATCCC ${\tt GGTAGGGACAACCAGTGAGGTGGCCATGACACTGGAAACCAAGCCTCAGCGGAGGGATCAGCCCACTGTCCT}$ GTGCCACATGGCTGGCCTATCCTCCCCTGCCCCCAGGCCGTGGGTATCTGCCCTGGGCTGGGTGCCCGAGGGGC ACGTGGCTGCCCTACTGTGGGGCATAGCGCCCGCCCTGCCCGTGCCCCTAGCAGGAGCCCTGGTGCTACC $\tt CCCTGTGAAGAGCCAAGCAGGCAGGCCTGGCTTTCCTTGGATACCCACTGTCACCTGCACTATGAAGTGCT$ ${\tt GCTGGCTGGGCTCAGAACAAGGCACTGTCACTGCCCACCTCCTTGGGCCTCCTGGAACGCCAGGGCCAGGGCCCAGGGCCCAGGGCCCAGGGCCAGGGCCCAGGGCCCAGGGCCCAGGGCAGGGCCAGGGCAGGGCAGGGCAGGGCAGGGCAGGCAGGGCAGGGCAGGCAGGGCAGGGCAGGGCAGGGCAGGGCAGGGCAGGGCAGGGCAGGGCAGGCAGGGC$ GCACCTGGCAAAAGGCATGGCTTCCCTGATGATCACCACCAAGGTAGCCCCAGAGGGGAGCCTCCGAGGGCAGCCT CTCCTCCCAGGTGCACATAGCCAACCAATGTGAGGTTGGCGGACTGCGCCTGGAGGCGGCCGGGGCCGAGGGGGT GCGGGCGCTGGGGGCTCCGGATACAGCCTCTGCTGCGCCGCCTGTGGTGCCTGGTCTCCCGGCCCTAGCGCCCGC ${\tt TCGCTGGGCGCCCAACTACGACCCGCTCTGCTCACTCTGCACCTGCCAGAGACGAACGGTGATCTGTGACCCGGT}$ GGTGTGCCCACCGCCCAGCTGCCCACACCCGGTGCAGGCTCCCGACCAGTGCTGCCTGTTTGCCCTGGCTGCTA GTGTGCTGTCTGCACCTGCAAGCAGGGGGGCACTGGAGAGGTGCACTGTGAGAAGGTGCAGTGTCCCCGGCTGGC $\tt CTGTGCCCAGCCTGTGCGACCCCACCGACTGCTGCAAACAGTGTCCAGGTGAGGCCCACCCCCAGCTGGG$ GGACCCCATGCAGGCTGATGGGCCCCGGGGCTGCCGTTTTGCTGGGCAGTGGTTCCCAGAGAGTCAGAGCTGGCA CCCCTCAGTGCCCCGTTTGGAGAGATGAGCTGTATCACCTGCAGATGTGGGGGTAAGTGGGGAGCAGAGGCTTGT GTGAGGTGGGTACTGGGAGCCTGGTCTGGAGTAGGGAGACCTTCCCAGGGAGGTCCCTGAAGAAGCTGAAGGTCA GGGATGACTGTTCACTGCCACTGTCCTGTGGCTCGGGGAAGGAGGTCGATGCTGTTCCCGCTGCACGGCCCACC ACCTGGTGGAATTGTTATTATGACCTTTTCTTTACAAATGAGATTTCTGAAGCTCAGAGAAATTAAGCAACGAG ${\tt ATGAAGGTCACCCAGCTGTGTGCACTGACCTGTTTAGAAAATACTGGCCTTTCTGGGACCAAGGCAGGGATGCTT}$ AAGTGACCAAGAGGATGGGGCCTGAGCTGGGGAAGGGGTGGCATCGAGGACCTTCTTGCATTCTCCTGTGGGAAG CCCAGTGCCTTTGCTCCTGTCCTGCCTCTACTCCCACCCCCACTACCTCTGGGAACCACAGCTCCACAAGGGG GAGAGGCAGCTGGGCCAGACCGAGGTCACAGCCACTCCAAGTCCTGCCCTGCCACCCTCGGCCTCTGTCCTGGAA GCCCCACCCTTTCTTCCTGTACATATGTCACTGGCTTGTTGGGATTTTTAATTTATCTTCACTCAGCACCAAG ATTTCTTTTTCAGTCTTTGGGCATGAGGTTGGCTCTTTGTGGCCAGGAACCTGAGTGGGGCCTGGTGGAGAAGGG GCNGAGAGTAGGAGGTGAGAGAGGAGGTCTGACACTTGGGGAGCTGAAAGAGACCTGGAGAGGAGGATAG AATTTAGGGAAGTAGAAGCAGGATTTTGACTCAAGTTTAGTTTCCCACATCGCTGGCCTGTTTGCTGACTTCATG ${\tt TTTGAAGTTGCTCCAGAGAGAGAATCAAAGGTGTCACCAGCCCCTCTCTCCCTTCCCTTCCCTTTCT}$ TTCCCTCCCCTCCCCTCCCCTCC

GGCCGAGCGGGGTGCTGCGCGGCGGCCGTGATGGCTGACGGCGGGGCCGGGCAGGGGA CCGGGGCCGGGCCCGGGGCCCGGCCGCGGGGCCCTGAATCACCGCCTGGCCCGAC TCCACCATGAACGTCGCGCTGCAGGAGCTGGGAGCTGGCAACGTGGGATTCCAGAAGGG GACAAGACAGCTGTTAGGCTCACGCACGCAGCTGGAGCTGGTCTTAGCAGGTGCCTCTCTAC TGCTGGCTGCACTGCTTCTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGACCCA ${\tt TCCCACAGCACCTGCCTTACAGAGGCCTGCATTCGAGTGGCTGGAAAAATCCTGGAGTCCCT}$ GGACCGAGGGGTGAGCCCCTGTGAGGACTTTTACCAGTTCTCCTGTGGGGGCTGGATTCGGA GGAACCCCCTGCCCGATGGGCGTTCTCGCTGGAACACCTTCAACAGCCTCTGGGACCAAAAC CAGGCCATACTGAAGCACCTGCTTGAAAACACCACCTTCAACTCCAGCAGTGAAGCTGAGCA GAAGACACAGCGCTTCTACCTATCTTGCCTACAGGTGGAGCGCATTGAGGAGCTGGGAGCCC AGCCACTGAGAGACCTCATTGAGAAGATTGGTGGTTGGAACATTACGGGGCCCTGGGACCAG GACAACTTTATGGAGGTGTTGAAGGCAGTAGCAGGGACCTACAGGGCCACCCCATTCTTCAC CGTCTACATCAGTGCCGACTCTAAGAGTTCCAACAGCAATGTTATCCAGGTGGACCAGTCTG GGCTCTTTCTGCCCTCTCGGGATTACTACTTAAACAGAACTGCCAATGAGAAAGTAAGGAAC ATCTTCCGAACCCCCATCCCTACCCCTGGCTGAGCTGGGCTGATCCCTGTTGACTTTTCCCT TTGCCAAGGGTCAGAGCAGGGAAGGTGAGCCTATCCTGTCACCTAGTGAACAAACTGCCCCT CCTTTCTTCTTCTTCCTCCCTCCCTCCCTTTCTTCCCCTTTCCTTCCTTCC TCTTATTCTTCTAGTAGGTTTCATAGACACCTACTGTGTGCCAGGTCCAGTGGGGGAATTCG GAGATATAAGTTTCCGAGCCATTGCCACAGGAAGCGTTCAGTGTCGATGGGTTCATGGACCT AGATAGGCTGATAACAAAGCTCACAAGAGGGTCCTGAGGATTCAGGAGAGACTTATGGAGCC AGCAAAGTCTTCCTGAAGAGATTGCATTTGAGCCAGGTCCTGTAG

ATGCCTACTACCTTCCAACTAAGAATGAGATCGTCTTCCCCGCTGGCATCCTGCAGGCCCCC TTCTATGCCCGCAACCACCCCAAGGCCCTGAACTTCGGTGGCATCGGTGTGGTCATGGGCCA TGAGTTGACGCATGCCTTTGATGACCAAGGGCGCGAGTATGACAAAGAAGGGAACCTGCGGC CCTGGTGGCAGAATGAGTCCCTGGCAGCCTTCCGGAACCACACGGCCTGCATGGAGGAACAG TGCTGACAACGGGGGGCTGAAGGCTGCCTACAATGCTTACAAAGCATGGCTGAGAAAGCATG GGGAGGAGCACCACCAGCCGTGGGGCTCACCAACCACCAGCTCTTCTTCGTGGGATTT CCACAGCCCTGCCGCGTTCCGCGTGCTGGGCACTCTCTCCAACTCCCGTGACTTCCTGCGGC ACTTCGGCTGCCCTGTCGGCTCCCCCATGAACCCAGGGCAGCTGTGTGAGGTGTGGTAGACC TGGATCAGGGGAGAAATGGCCAGCTGTCACCAGACCTGGGGCAGCTCTCCTGACAAAGCTGT GGTGACATGAGTACAGACCCTCCTCAATCACCACATTGTGCCTCTGCTTTGGGGGTGCCCCT GTCTGGGTGGGGAGGCCAGTTCCCATAGGAAGGAGTCTGCCTCTTCTGTCCCCAGGCTCACT CAGCCTGGCGGCCATGGGGCCTGCCGTGCCCCCACTGTGACCCACAGGCCTGGGTGGTG TACCTCCTGGACTTCTCCCCAGGCTCACTCAGTGCGCACTTAGGGGTGGACTCAGCTCTGTC TGGCTCACCCTCACGGGCTACCCCCACCTCACCCTGTGCTCCTTGTGCCACTGCTCCCAGTG $\tt CTGCTGCTGACCTTCACTGACAGCTCCTAGTGGAAGCCCCAAGGGCCTCTGAAAGCCTCCTGC$ $\tt TGCCCACTGTTTCCCTGGGCTGAGAGGGGAAGTGCATATGTGTAGCGGGTACTGGTTCCTGT$ GTCTTAGGGCACAAGCCTTAGCAAATGATTGATTCTCCCTGGACAAAGCAGGAAAGCAGATA GAGCAGGGAAAAGGAAGAACAGAGTTTATTTTTACAGAAAAGAGGGTGGGAGGGTGTGGTCT TGGCCCTTATAGGACC

CCCACGCGTCCGAGCCCCCGAGAATTAGACACACTCCGGACGCGGCCAAAAGCAACCGAGA AAAAAAAAAATCCTGTGGCGCGCCGCCTGGTTCCCGGGAAGACTCGCCAGCACCAGGGGG $\tt TGGGGGAGTGCGAGCTGAAAGCTGCTGGAGAGTGAGCAGCCCTAGCAGGGATGGAC{\bf ATG}{\bf AT$ $\tt CTGCCTGCTACCCTCCTGCCTCCCGGCTGGACAGAGTGTGGACTTCCCCTGGGCGGCCGTGG$ ACAACATGATGGTCAGAAAAGGGGACACGGCGGTGCTTAGGTGTTATTTGGAAGATGGAGCT ${\tt TCAAAGGGTGCCTGAACCGGTCAAGTATTATTTTTGCGGGAGGTGATAAGTGGTCAGT}$ GGATCCTCGAGTTTCAACTTGAATAAAAGGGACTACAGCCTCCAGATACAGAATG ATGCAGGTGCATCTAACTGTGCAAGTTCCTCCTAAGATATATGACATCTCAAATGATATGAC CGTCAATGAAGGAACCAACGTCACTCTTACTTGTTTGGCCACTGGGAAACCAGAGCCTTCCA TTTCTTGGCGACACATCTCCCCATCAGCAAAACCATTTGAAAATGGACAATATTTGGACATT TATGGAATTACAAGGGACCAGGCTGGGGAATATGAATGCAGTGCGGAAAATGCTGTCATT CCCAGATGTGAGGAAAGTAAAAGTTGTTGTCAACTTTGCTCCTACTATTCAGGAAATTAAAT CTGGCACCGTGACCCCCGGACGCAGTGGCCTGATAAGATGTGAAGGTGCAGGTGTGCCGCCT CCAGCCTTTGAATGGTACAAAGGAGAGAAGAAGCTCTTCAATGGCCAACAAGGAATTATTAT TCAAAATTTTAGCACAAGATCCATTCTCACTGTTACCAACGTGACACAGGAGCACTTCGGCA CCAAGTACAGCCCAGTATGGAATTACCGGGAGCGCTGATGTTCTTTTCTCCTGCTGGTACCT TGTGTTGACACTGTCCTCTTTCACCAGCATATTCTACCTGAAGAATGCCATTCTACAATAA TTCAAAGACCCATAAAAGGCTTTTAAGGATTCTCTGAAAGTGCTGATGGCTGGATCCAATCT GGTACAGTTTGTTAAAAGCAGCGTGGGATATAATCAGCAGTGCTTACATGGGGATGATCGCC TTCTGTAGAATTGCTCATTATGTAAATACTTTAATTCTACTCTTTTTTTGATTAGCTACATTA CCTTGTGAAGCAGTACACATTGTCCTTTTTTTAAGACGTGAAAGCTCTGAAATTACTTTTAG AGGATATTAATTGTGATTTCATGTTTGTAATCTACAACTTTTCAAAAGCATTCAGTCATGGT CTGCTAGGTTGCAGGCTGTAGTTTACAAAAACGAATATTGCAGTGAATATGTGATTCTTTAA GGCTGCAATACAAGCATTCAGTTCCCTGTTTCAATAAGAGTCAATCCACATTTACAAAGATG CATTTTTTTTTTTTTGATAAAAAAGCAAATAATATTGCCTTCAGATTATTTCTTCAAAATA TAACACATATCTAGATTTTTCTGCTTGCATGATATTCAGGTTTCAGGAATGAGCCTTGTAAT ATAACTGGCTGTGCAGCTCTGCTTCTCTTTCCTGTAAGTTCAGCATGGGTGTGCCTTCATAC AATAATATTTTTCTCTTTGTCTCCAACTAATATAAAATGTTTTGCTAAATCTTACAATTTGA AAGTAAAAATAAACCAGAGTGATCAAGTTAAACCATACACTATCTCTAAGTAACGAAGGAGC TATTGGACTGTAAAAATCTCTTCCTGCACTGACAATGGGGTTTGAGAATTTTGCCCCACACT AACTCAGTTCTTGTGATGAGAGACAATTTAATAACAGTATAGTAAATATACCATATGATTTC TTTAGTTGTAGCTAAATGTTAGATCCACCGTGGGAAATCATTCCCTTTAAAATGACAGCACA GTCCACTCAAAGGATTGCCTAGCAATACAGCATCTTTTCCTTTCACTAGTCCAAGCCAAAAA TTTTAAGATGATTTGTCAGAAAGGCCACAAAGTCCTATCACCTAATATTACAAGAGTTGGTA AGCGCTCATCATTAATTTTATTTTGTGGCAGGTATTATGACAGTCGACCTGGAGGGTATGGA TATGGATATGGACGTTCCAGAGACTATAATGGCAGAAACCAGGGTGGTTATGACCGCTACTC AGGAGGAAATTACAGAGACAATTATGACAACTGAAATGAGACATGCACATAATATAGATACA CAAGGAATAATTTCTGATCCAGGATCGTCCTTCCAAATGGCTGTATTTATAAAGGTTTTTTGG AGCTGCACTGAAGCATCTTATTTTATAGTATATCAACCTTTTGTTTTTAAATTGACCTGCCA

MMLLVQGACCSNQWLAAVLLSLCCLLPSCLPAGQSVDFPWAAVDNMMVRKGDTAVLRCYLED GASKGAWLNRSSIIFAGGDKWSVDPRVSISTLNKRDYSLQIQNVDVTDDGPYTCSVQTQHTP RTMQVHLTVQVPPKIYDISNDMTVNEGTNVTLTCLATGKPEPSISWRHISPSAKPFENGQYL DIYGITRDQAGEYECSAENAVSFPDVRKVKVVVNFAPTIQEIKSGTVTPGRSGLIRCEGAGV PPPAFEWYKGEKKLFNGQQGIIIQNFSTRSILTVTNVTQEHFGNYTCVAANKLGTTNASLPL NPPSTAQYGITGSADVLFSCWYLVLTLSSFTSIFYLKNAILQ

Important features of the protein:

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 326-345

N-glycosylation sites.

amino acids 71-75, 153-157, 273-277, 284-288, 292-296, 305-309

Casein kinase II phosphorylation site.

amino acids 147-151, 208-212, 224-228

Tyrosine kinase phosphorylation site.

amino acids 178-186

N-myristoylation sites.

amino acids 7-13, 63-70, 67-73, 151-157, 239-245, 291-297, 302-308, 319-325

Myelin P0 protein:

amino acids 92-121

AGTGGTTCGATGGGAAGGATCTTTCTCCAAGTGGTTCCTCTTGAGGGGAGCATTTCTGCTGG CTCCAGGACTTTGGCCATCTATAAAGCTTGGCA**ATG**AGAAATAAGAAAATTCTCAAGGAGGA CGAGCTCTTGAGTGAGACCCAACAAGCTGCTTTTCACCAAATTGCAATGGAGCCTTTCGAAA TCAATGTTCCAAAGCCCAAGAGGAGAAATGGGGTGAACTTCTCCCTAGCTGTGGTGGTCATC ${\tt TACCTGATCCTGCTCACCGCTGGCGCTGGGCTGCTGGTGGTCCAAGTTCTGAATCTGCAGGC}$ GCGGCTCCGGGTCCTGGAGATGTATTTCCTCAATGACACTCTGGCGGCTGAGGACAGCCCGT CCTTCTCCTTGCTGCAGTCAGCACACCCTGGAGAACACCTGGCTCAGGGTGCATCGAGGCTG CAAGTCCTGCAGGCCCAACTCACCTGGGTCCGCGTCAGCCATGAGCACTTGCTGCAGCGGGT AGACAACTTCACTCAGAACCCAGGGATGTTCAGAATCAAAGGTGAACAAGGCGCCCCAGGTC TTCAAGGTCACAAGGGGGCCATGGGCATGCCTGGTGCCCTGGCCCGCGGGACCACCTGCT GAGAAGGGAGCCAAGGGGCTATGGGACGAGATGGAGCAACAGGCCCCTCGGGACCCCAAGG CCCACCGGGAGTCAAGGGAGGCGGGCCTCCAAGGACCCCAGGGTGCTCCAGGGAAGCAAG GAGCCACTGGCACCCCAGGACCCCAAGGAGAGAGGCCAGCAAAGGCGATGGGGGTCTCATT GGCCCAAAAGGGGAAACTGGAACTAAGGGAGAGAAAGGAGACCTGGGTCTCCCAGGAAGCAA AGGGGACAGGGGCATGAAAGGAGATGCAGGGGTCATGGGGCCCTCCTGGAGCCCAGGGGAGTA AAGGTGACTTCGGGAGGCCAGGCCCACCAGGTTTGGCTGGTTTTCCTGGAGCTAAAGGAGAT CAAGGACAACCTGGACTGCAGGGTGTTCCGGGCCCTCCTGGTGCAGTGGGACACCCAGGTGC CAAGGGTGAGCCTGGCAGTGCTCCCCTGGGCGAGCAGGACTTCCAGGGAGCCCCGGGA GTCCAGGAGCCACAGGCCTGAAAGGAAGCAAAGGGGACACAGGACTTCAAGGACAGCAAGGA AGAAAAGGAGAATCAGGAGTTCCAGGCCCTGCAGGTGTGAAGGGGAGAACAGGGGAGCCCAGG GCTGGCAGGTCCCAAGGGAGCCCCTGGACAAGCTGGCCAGAAGGGAGACCAGGGAGTGAAAG GATCTTCTGGGGAGCAAGGAGTAAAGGGAGAAAAAGGTGAAAGAGGTGAAAACTCAGTGTCC GTCAGGATTGTCGGCAGTAGTAACCGAGGCCGGGCTGAAGTTTACTACAGTGGTACCTGGGG GACAATTTGCGATGACGAGTGGCAAAATTCTGATGCCATTGTCTTCTGCCGCATGCTGGGTT GTTCAGTGTCGGGGCACGGAGAGTACCCTGTGGAGCTGCACCAAGAATAGCTGGGGCCATCA TGACTGCAGCCACGAGGAGGACGCAGGCGTGGAGTGCAGCGTC**TGA**CCCGGAAACCCTTTCA CTTCTCTGCTCCGAGGTGTCCTCGGGCTCATATGTGGGAAGGCAGAGGATCTCTGAGGAGT TCCCTGGGGACAACTGAGCAGCCTCTGGAGAGGGGCCATTAATAAAGCTCAACATCATTGA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA68886</pre>

><subunit 1 of 1, 520 aa, 1 stop

>< MW: 52658, pI: 9.16, NX(S/T): 3

MRNKKILKEDELLSETQQAAFHQIAMEPFEINVPKPKRRNGVNFSLAVVVIYLILLTAGAGL LVVQVLNLQARLRVLEMYFLNDTLAAEDSPSFSLLQSAHPGEHLAQGASRLQVLQAQLTWVR VSHEHLLQRVDNFTQNPGMFRIKGEQGAPGLQGHKGAMGMPGAPGPPGPPAEKGAKGAMGRD GATGPSGPQGPPGVKGEAGLQGPQGAPGKQGATGTPGPQGEKGSKGDGGLIGPKGETGTKGE KGDLGLPGSKGDRGMKGDAGVMGPPGAQGSKGDFGRPGPPGLAGFPGAKGDQGQPGLQGVPG PPGAVGHPGAKGEPGSAGSPGRAGLPGSPGSPGATGLKGSKGDTGLQGQQGRKGESGVPGPA GVKGEQGSPGLAGPKGAPGQAGQKGDQGVKGSSGEQGVKGEKGERGENSVSVRIVGSSNRGR AEVYYSGTWGTICDDEWQNSDAIVFCRMLGYSKGRALYKVGAGTGQIWLDNVQCRGTESTLW SCTKNSWGHHDCSHEEDAGVECSV

Transmembrane domain:

amino acids 47-66 (type II)

N-glycosylation sites.

amino acids 43-47, 83-87, 136-140

Tyrosine kinase phosphorylation site.

amino acids 432-440

N-myristoylation sites.

amino acids 41-47, 178-184, 253-259, 274-280, 340-346, 346-352, 400-406, 441-447, 475-481, 490-496, 515-521

Amidation site.

amino acids 360-364

Leucine zipper pattern.

amino acids 56-78

Speract receptor repeat

amino acids 422-471, 488-519

Clq domain proteins.

amino acids 151-184, 301-334, 316-349

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52758</pre>

<subunit 1 of 1, 98 aa, 1 stop</pre>

<MW: 11081, pI: 6.68, NX(S/T): 1

 ${\tt MKLMVLVFTIGLTLLLGVQAMPANRLSCYRKILKDHNCHNLPEGVADLTQIDVNVQDHFWDG} \\ {\tt KGCEMICYCNFSELLCCPKDVFFGPKISFVIPCNNQ}$

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 72-76

Tyrosine kinase phosphorylation site.

amino acids 63-71

CCCACGCGTCCGCGGACGCTGGGCTGGACCCCAGGTCTGGAGCGAATTCCAGCCTGCAGGG TAAAATCCTCCAATGAAGCTACTAACATTACTCCAAAGCATAATATGAAAGCATTTTTGGAT GAATTGAAAGCTGAGAACATCAAGAAGTTCTTACATAATTTTACACAGATACCACATTTAGC AGGAACAGAACAAAACTTTCAGCTTGCAAAGCAAATTCAATCCCAGTGGAAAGAATTTGGCC TGGATTCTGTTGAGCTAGCTCATTATGATGTCCTGTTGTCCTACCCAAATAAGACTCATCCC AACTACATCTCAATAATTAATGAAGATGGAAATGAGATTTTCAACACATCATTATTTGAACC ACCTCCTCCAGGATATGAAAATGTTTCGGATATTGTACCACCTTTCAGTGCTTTCTCTCCTC AAGGAATGCCAGAGGGCGATCTAGTGTATGTTAACTATGCACGAACTGAAGACTTCTTTAAA TTGGAACGGGACATGAAAATCAATTGCTCTGGGAAAATTGTAATTGCCAGATATGGGAAAGT TTTCAGAGGAAATAAGGTTAAAAATGCCCAGCTGGCAGGGGCCAAAGGAGTCATTCTCTACT CCGACCCTGCTGACTACTTTGCTCCTGGGGTGAAGTCCTATCCAGACGGTTGGAATCTTCCT GGAGGTGGTGTCCAGCGTGGAAATATCCTAAATCTGAATGGTGCAGGAGACCCTCTCACACC AGGTTACCCAGCAAATGAATATGCTTATAGGCGTGGAATTGCAGAGGCTGTTGGTCTTCCAA GTATTCCTGTTCATCCAATTGGATACTATGATGCACAGAAGCTCCTAGAAAAAATGGGTGGC TCAGCACCACCAGATAGCAGCTGGAGAGGAAGTCTCAAAGTGCCCTACAATGTTGGACCTGG CTTTACTGGAAACTTTTCTACACAAAAAGTCAAGATGCACATCCACTCTACCAATGAAGTGA CTGGGAGGTCACCGGGACTCATGGGTGTTTTGGTGGTATTGACCCTCAGAGTGGAGCAGCTGT CAATTTTGTTTGCAAGCTGGGATGCAGAAGAATTTGGTCTTCTTGGTTCTACTGAGTGGGCA GAGGAGAATTCAAGACTCCTTCAAGAGCGTGGCGTGGCTTATATTAATGCTGACTCATCTAT AGAAGGAAACTACACTCTGAGAGTTGATTGTACACCGCTGATGTACAGCTTGGTACACAACC TAACAAAAGAGCTGAAAAGCCCTGATGAAGGCTTTGAAGGCAAATCTCTTTATGAAAGTTGG ACTAAAAAAGTCCTTCCCCAGAGTTCAGTGGCATGCCCAGGATAAGCAAATTGGGATCTGG AAATGATTTTGAGGTGTTCTTCCAACGACTTGGAATTGCTTCAGGCAGAGCACGGTATACTA AAAATTGGGAAACAAACTCAGCGGCTATCCACTGTATCACAGTGTCTATGAAACATAT GAGTTGGTGGAAAAGTTTTATGATCCAATGTTTAAATATCACCTCACTGTGGCCCAGGTTCG AGGAGGGATGGTGTTTGAGCTAGCCAATTCCATAGTGCTCCCTTTTGATTGTCGAGATTATG CTGTAGTTTTAAGAAAGTATGCTGACAAAATCTACAGTATTTCTATGAAACATCCACAGGAA ATGAAGACATACAGTGTATCATTTGATTCACTTTTTTTCTGCAGTAAAGAATTTTACAGAAAT TGCTTCCAAGTTCAGTGAGAGACTCCAGGACTTTGACAAAAGCAACCCAATAGTATTAAGAA TGATGAATGATCAACTCATGTTTCTGGAAAGAGCATTTATTGATCCATTAGGGTTACCAGAC AGGCCTTTTTATAGGCATGTCATCTATGCTCCAAGCAGCCACAACAAGTATGCAGGGGAGTC ATTCCCAGGAATTTATGATGCTCTGTTTGATATTGAAAGCAAAGTGGACCCTTCCAAGGCCT ${\tt TTGAGTGAAGTAGCC}{\tt TAA}{\tt GAGGATTTTTTAGAGAATCCGTATTGAATTTGTGTGGTATGTCA}$ CTCAGAAAGAATCGTAATGGGTATATTGATAAATTTTAAAATTTGGTATATTTGAAATAAAGT TGAATATTATATAA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA52756</pre>

><subunit 1 of 1, 750 aa, 1 stop

><MW: 84305, pI: 6.93, NX(S/T): 10

MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEATNITPKHNMKAFL
DELKAENIKKFLHNFTQIPHLAGTEQNFQLAKQIQSQWKEFGLDSVELAHYDVLLSYPNKTH
PNYISIINEDGNEIFNTSLFEPPPPBGYENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFF
KLERDMKINCSGKIVIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDGWNL
PGGGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYYDAQKLLEKMG
GSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHSTNEVTRIYNVIGTLRGAVEPDRYV
ILGGHRDSWVFGGIDPQSGAAVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEW
AEENSRLLQERGVAYINADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYES
WTKKSPSPEFSGMPRISKLGSGNDFEVFFQRLGIASGRARYTKNWETNKFSGYPLYHSVYET
YELVEKFYDPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDYAVVLRKYADKIYSISMKHPQ
EMKTYSVSFDSLFSAVKNFTEIASKFSERLQDFDKSNPIVLRMMNDQLMFLERAFIDPLGLP
DRPFYRHVIYAPSSHNKYAGESFPGIYDALFDIESKVDPSKAWGEVKRQIYVAAFTVQAAAE
TLSEVA

Signal sequence:

amino acids 1-40

N-glycosylation sites.

amino acids 76-80, 121-125, 140-144, 153-157, 195-199, 336-340, 459-463, 476-480, 638-642

Tyrosine kinase phosphorylation sites.

amino acids 363-372, 605-613, 606-613, 617-626

N-myristoylation sites.

amino acids 85-91, 168-174, 252-258, 256-262, 282-288, 335-341, 360-366, 427-433, 529-535, 707-713