

Unimodal Strategies in Density-Based Clustering

Oron Nir^{1,2}, Jay Tenenbaum², and Ariel Shamir¹

¹ CANVAS Lab, Reichman University ² Microsoft

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

DBSCAN

- Dataset: $X \in \mathbb{R}^{N \times D}$
- DBSCAN Parameters:
 - d-a distance metric
 - $\varepsilon \in \mathbb{R}_{>0}$ the radius
 - $MinPts \in \mathbb{N}_{\geq 2}$
- Core and Border Points:
 - A core point p has at least MinPts neighbors
 - A border point b is:
 - $d(b,p) \le \varepsilon$ for some core point p
 - not a core point
 - A noise point is neither a core nor a border point

Prior works on ε tuning

Our contribution

- We identify a key property of the relation between the number of clusters (k) and the radius (ε)
 - ≽it is unimodal
- We find that the mode (ε^*) yields a good solution
 - rically and support it theoretically and empirically
- We devise an efficient algorithm to tune arepsilon
 - >using the Ternary Search algorithm

The Unimodality Property

Low ε : k=0

Increasing ε : k=2

Good ε : k=3

Oversized ε : k=2

Way too large ε : k=1

The Unimodality Property

Method

Method: Ternary Search

Our task is to efficiently find the mode of $k(\epsilon)$,

Bajwa et al. Ternary search algorithm: Improvement of binary search. In Indiacom, 2015. IEEE

Method: Ternary Search

Our task is to efficiently find the mode of $k(\epsilon)$,

Bajwa et al. Ternary search algorithm: Improvement of binary search. In Indiacom, 2015. IEEE

Method: Ternary Search

Our task is to efficiently find the mode of $k(\varepsilon)$,

Bajwa et al. Ternary search algorithm: Improvement of binary search. In Indiacom, 2015. IEEE

Algorithm 1 TS(X, LB, UB, MinPts, itr)

```
1: for i=0 to itr do
2: m_l \leftarrow \frac{2LB+UB}{3}
3: m_r \leftarrow \frac{LB+2UB}{3}
4: C_l \leftarrow \mathbf{DBSCAN}(X, m_l, MinPts)
5: C_r \leftarrow \mathbf{DBSCAN}(X, m_r, MinPts)
6: k_l \leftarrow |\{c \in C_l\}|
7: k_r \leftarrow |\{c \in C_r\}|
8: \langle LB, UB \rangle \leftarrow TSConditions(LB, UB, m_l, m_r, k_l, k_r)
9: end for
10: return \frac{m_l+m_r}{2}
```

Upper Bound Motivation

Ternary Search over *X*

Sub-sampling X by α

Ternary Search over αX

Sub-sampling yield larger radii

Upper Bound

By sub-sampling αN points

Lower Bound

By sub-sampling αD dimensions In lower dimensions points are closer and ε^* is underestimated

Results

Evaluation over Classification Datasets

Face Recognition

Labeled Faces in the Wild (LFW)

N=13,233; #Classes = 1,680

Audio Effect Classification

ESC-50

N=1,024; #Classes = 50

	Major Categories								
). 	Animals	Natural Soundscapes and Water Sounds	Human, Non-Speech Sounds	Interior/Domestic Sounds	Exterior/Urban Noises				
	Dog	Rain	Crying baby	Door knock	Helicopter				
	Rooster	Sea waves	Sneezing	Mouse click	Chainsaw				
	Pig	Crackling fire	Clapping	Keyboard typing	Siren				
	Cow	Crickets	Breathing	Door, wood creaks	Car horn				
	Frog	Chirping birds	Coughing	Can opening	Engine				
	Cat	Water drops	Footsteps	Washing machine	Train				
	Hen	Wind	Laughing	Vacuum cleaner	Church bells				
	Insects (flying)	Pouring water	Brushing teeth	Clock alarm	Airplane				
	Sheep	Toilet flush	Snoring	Clock tick	Fireworks				
	Crow	Thunderstorm	Drinking, sipping	Glass breaking	Hand saw				

Document Classification

Reuters document classification

N=21,578; #Classes = 135

Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In Workshop on faces in 'Real-Life' Images: detection, alignment, and recognition.

Karol J. Piczak. ESC: Dataset for Environmental Sound Classification. In ACM MM, Brisbane, Australia, (2015).

David Lewis. Reuters-21578 text categorization test collection. Distribution 1.0, AT&T Labs-Research, 1, (1997).

Results: Unimodality in Animation

Results: Unimodality across 24 domains

- 1. Varying #classes or labels: [50, 1680]
- 2. Large datasets of up to N = 60,000 points
- 3. High dimensional with up to D = 2,048

- 4. 24 domains e.g., NLP, CV, Audio, Animation
- 5. DIP Test was found insignificant for all, i.e., for all datasets a unimodal distribution was observed(!)

Dataset	Labels	N	Embed.	D	Task	$\mid p_{val}^{DIP} \mid$	Dataset	Labels	N	Embed.	D	Task	$\left p_{val}^{DIP} \right $
$\overline{ ext{LFW}}$	1,680	13,233	DNet	256	Face	>99.9%	AMCDv5	N/A	13,406	CAST	2,048	Anim	14.9%
ImNet1k	1,000	50,000	CLIP	512	OD	> 99.9%	AMCDv6	N/A	14,372	CAST	2,048	Anim	6.4%
ImNet1k	1,000	50,000	Hiera	1,000	OD	33.8%	AMCDv7	N/A	14,460	CAST	2,048	Anim	8.4%
CIFAR	100	60,000	CLIP	512	OD	8.9%	AMCDv8	N/A	14,748	CAST	2,048	Anim	14.8%
CIFAR	100	60,000	Hiera	1,000	OD	> 99.9%	CASTv1	N/A	2,648	CAST	2,048	Anim	6.4%
Reuters	135	21,578	ADA2	1,536	Doc	99.8%	CASTv2	N/A	4,215	CAST	2,048	Anim	79.1%
ESC-50	50	1,024	CLAP	1,024	Audio	41.3%	CASTv3	N/A	4,633	CAST	2,048	Anim	14.8%
FACE	N/A	45,207	DNet	256	Face	> 99.9%	CASTv4	N/A	4,163	CAST	2,048	Anim	99.4%
AMCDv1	N/A	15,395	CAST	2,048	Anim	29.3%	CASTv5	N/A	4,959	CAST	2,048	Anim	14.8%
AMCDv2	2 N/A	13,102	CAST	2,048	Anim	52.5%	CASTv6	N/A	5,639	CAST	2,048	Anim	99.4%
AMCDv3	B N/A	14,676	CAST	2,048	Anim	79.0%	CASTv7	N/A	4,795	CAST	2,048	Anim	52.5%
AMCDv4	l N/A	14,676	CAST	2,048	Anim	29.4%	Urban8k	N/A	8,732	CLAP	1,024	Audio	99.6%

Results: Clustering Quality

	Reuters (k=135)			LFW (k=1,680) ●				ESC (k=50) ◄							
Method	$NMI\uparrow$	$ARI\uparrow$	\hat{k}	$Noise \downarrow$	$T[s] \downarrow$	$NMI\uparrow$	$ARI\uparrow$	\hat{k}	$Noise \downarrow$	$T[s] \downarrow$	$NMI\uparrow$	$ARI\uparrow$	\hat{k}	$Noise \downarrow$	$T[s] \downarrow$
KMeans+Elbow	58.5%	19.9%	41	0.0%	1,917	78.0%	78.1%	773	0.2%	17,315	95.1%	83.3%	43	0.0%	306
HDBSCAN	62.0%	2.4%	1,247	61.4%	240	72.1%	36.3%	393	56.8%	105	86.2%	44.6%	$\bf 52$	17.3%	8
VDBSCAN	55.4%	0.3%	2,296	27.5%	246	92.3%	12.0%	2,661	38.0%	84	78.7%	20.9%	447	23.3%	10
OPTICS	61.3%	20.5%	37	97.1%	505	64.1%	24.5%	390	65.8%	202	56.3%	3.8%	53	59.7%	16
SS-DBSCAN	0.0%	0.0%	1	22.9%	230	13.5%	4.6%	2	52.7%	252	85.9%	46.6%	43	16.0%	9
AMD-DBSCAN	41.1%	28.3%	134	6.2%	69	71.7%	20.4%	281	34.0%	29	83.4%	31.5%	93	18.3%	13
AEDBSCAN	49.8%	4.5%	974	24.6%	144	91.8%	23.6%	1,944	48.7%	53	83.9%	46.7%	230	20.8%	7
AutoEps	66.4%	67.1%	646	67.5%	2,377	11.9%	1.7%	56	57.1%	82	91.8%	77.3%	144	36.0%	24
TS (ours)	77.5%	93.9%	138	55.2%	152	99.0%	96.8%	1,697	30.5%	60	97.4%	90.3%	57	32.3%	5
TSE (ours)	77.8%	92.9%	150	38.0%	24	99.0%	96.7%	1,694	30.4%	41	96.7%	85.2%	48	14.7%	2

Conclusions

- Observe the **Unimodality property** in density-based clustering
 - ➤ Back it theoretically and empirically with the DIP test
- A Ternary Search-based method to automatically set epsilon
 - Experiment over NLP, Vision, and Audio classification datasets
- Our code is available on GitHub

Unimodal Strategies in Density-Based Clustering

Oron Nir^{1,2}, Jay Tenenbaum², and Ariel Shamir¹

¹ CANVAS Lab, Reichman University

² Microsoft

Our code is available on GitHub:

The Unimodality Property – A counter example

Theory

- Theorem 1: For uniform 1D data $X \sim U[0,1]$, $\mathrm{E}_{\mathrm{X}}[k(\varepsilon)]$ is unimodal.
 - Tools: order statistics $x_1 \leq \cdots \leq x_n$, and spacings analysis $s_i = x_i x_{i-1}$.
- Theorems 2/3: WHP $\underset{\epsilon}{\operatorname{argmax}} \ \mathrm{k}(\varepsilon) \in \left| \frac{1}{2} \sqrt[d]{\frac{MinPts}{n}}, \sqrt{d} \cdot \frac{1}{2} \sqrt[d]{\frac{MinPts}{n}} \right|$
 - Tools: divide $[0,1]^D$ to cubes, Hoeffding over #points in each cube.

Algorithm

TS(X, LB, UB, MinPts, itr)

1:
$$\mathbf{for} = 0 \text{ to itr } \mathbf{do}$$

2:
$$m_l \leftarrow \frac{2LB + UB}{3}$$

2:
$$m_l \leftarrow \frac{2LB + UB}{3}$$

3: $m_r \leftarrow \frac{LB + 2UB}{3}$

4:
$$C_l \leftarrow \mathbf{DBSCAN}(X, m_l, MinPts)$$

5:
$$C_r \leftarrow \mathbf{DBSCAN}(X, m_r, MinPts)$$

6:
$$\langle LB, UB \rangle \leftarrow Cond(LB, UB, \dots$$

7:
$$m_l, m_r, \mathbf{K}(\mathcal{C}_l), \mathbf{K}(\mathcal{C}_r)$$
)

8: end for

9: return
$$\frac{m_l+m_r}{2}$$

1 Algorithm

 $Cond(LB, UB, m_l, m_r, k_l, k_r)$

1: if $k_l == 1$ and $k_r == 1$ then

return $\langle LB, m_l \rangle$

3: else if $k_l == 0$ and $k_r == 1$ then

4: **return** $\langle m_l, m_r \rangle$

5: else if $k_l == 0$ and $k_r == 0$ then

6: **return** $\langle m_r, UB \rangle$

7: else if $k_l > k_r$ then

8: **return** $\langle LB, m_r \rangle$

9: **else**

return $\langle m_l, UB \rangle$ 10:

11: **end if**

Method: TS Clustering

Algorithm 3 TSClustering(X, MinPts, itr)

- 1: $UB^0 \leftarrow max_{i \in \{2,...,N\}} d(X_1, X_i)$
- $2: LB^0 \leftarrow 0$
- 3: $\mathcal{R} \leftarrow \text{sample } \lceil \alpha N \rceil \text{ points from } X$
- 4: $\mathcal{T} \leftarrow \text{sample } \lceil \alpha D \rceil \text{ dimensions from } X$
- 5: $UB \leftarrow TS(X_{\mathcal{R},1:D}, LB^0, UB^0, MinPts, itr)$
- 6: $LB \leftarrow TS(X_{1:N,\mathcal{T}}, LB^0, UB, MinPts, itr)$
- 7: $\varepsilon^* \leftarrow TS(X, LB, UB, MinPts, itr)$
- 8: **return** $DBSCAN(X, \varepsilon^*, MinPts)$

Ablations: α sampling ratio vs. [LB, UB]

Ablations: Setting itr and convergence to k^*

Ternary Search Estimator (TSE)

- We propose an estimator (TSE) for ε^* obtained by sampling an α fraction of the data and dimensions simultaneously
- The intuition is that the opposite influences of sampling the data and dimensions on ε^* should roughly cancel out
- We average this estimator over m=30 iterations

$$\varepsilon^* = \frac{1}{m} \sum_{i=1}^{m} TS_i(X_{\mathcal{R},\mathcal{T}}, LB^0, UB, MinPts, itr)$$

Limitations: OPTICS

OPTICS takes the max- ε and supports multi-resolution clustering for clusters of different densities.

Resulting a non-unimodal relation.

NMI and ARI

Aspect	Normalized Mutual Information (NMI)	Adjusted Rand Index (ARI)
Definition	Based on information theory ; measures mutual dependence between two clusterings normalized by entropy.	Based on pairwise counting ; measures agreement of sample pairs assigned to clusters, adjusted for chance.
Formula	$NMI(U,V) = \frac{2MI(U,V)}{H(U) + H(V)}$	$ARI = \frac{\sum_{ij} \binom{n_{ij}}{2} - \left[\sum_{i} \binom{a_i}{2} \sum_{j} \binom{b_j}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{a_i}{2} + \sum_{j} \binom{b_j}{2}\right] - \left[\sum_{i} \binom{a_i}{2} \sum_{j} \binom{b_j}{2}\right] / \binom{n}{2}}$
Range	[0, 1]	$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$
Interpretation	0 → independent clusterings; 1 → perfect agreement.	$0 \rightarrow$ random labeling; $1 \rightarrow$ perfect agreement; negative \rightarrow worse than random.
Sensitivity	Captures distributional similarity ; tolerant of label permutation.	Captures pairwise assignments ; highly sensitive to exact pair matching.
Bias	Not adjusted for chance; tends to give higher scores for unbalanced partitions.	Adjusted for chance; penalizes trivial solutions (e.g., all points in one cluster).
Use Cases	Comparing overall information overlap between partitions (e.g., topic clustering, community detection).	Comparing fine-grained consistency of partitions, especially where pairwise relations matter (e.g., ReID, MOT tracking, clustering evaluation).