ACM/CS 114 Parallel algorithms for scientific applications

Michael A. G. Aïvázis

California Institute of Technology

Spring 2012

A python script

Recall the code for the π estimator using Monte Carlo integration

```
1 # get access to the random munber generator functions
2 import random
4 N = 10 * *5
5 # initialize the interior point counter
6 interior = 0
7 # integrate by sampling some number of times
8 for i in range(N):
    # build a random point
  x = random.random()
   v = random.random()
  # check whether it is inside the unit quarter circle
  if (x*x + y*y) \le 1.0: # no need to waste time computing the sgrt
        interior += 1
  # print the result:
17 print("pi: {0:.8f}".format(4*interior/N))
```

simple, fast but inflexible

Accuracy and cost of the python script

N	π_N	Δ	t(sec)
10^{0}	0	1	.014
10^{1}	3.6	1.46×10^{-1}	.014
10^{2}	3.36	6.95×10^{-2}	.014
10^{3}	3.076	2.09×10^{-2}	.015
10^{4}	3.156	4.59×10^{-3}	.027
10^{5}	3.14496	1.07×10^{-3}	.144
10^{6}	3.144028	7.75×10^{-4}	1.265
10^{7}	3.142112	1.65×10^{-4}	12.624
10^{8}	3.14170136	3.46×10^{-5}	130.430

The equivalent c++ code

```
| #include <iostream>
2 #include <qsl/qsl rnq.h>
4 int main(int, char*[]) {
     const int N = 1.0e7:
     int interior = 0:
     gsl_rng * generator = gsl_rng_alloc(gsl_rng_ranlxs2);
     for (int i=0; i<N; ++i) {
        double x = qsl rnq uniform(generator);
        double y = qsl_rnq_uniform(generator);
        if ((x*x + y*y) \le 1.0) { // no square roots
           interior++;
     std::cout << "pi: " << 4. * interior / N << std::endl;
     return 0:
26
```

Accuracy and cost of the c++ code

N	π_N	Δ	t(sec)
10^{0}	0	1	.002
10^{1}	3.2	1.86×10^{-2}	.002
10^{2}	3.16	5.86×10^{-3}	.002
10^{3}	3.2	1.86×10^{-2}	.002
10^{4}	3.1456	1.28×10^{-3}	.004
10^{5}	3.13528	2.01×10^{-3}	.026
10^{6}	3.140756	2.66×10^{-4}	.230
10^{7}	3.141948	1.13×10^{-4}	2.277
10^{8}	3.1417769	5.86×10^{-5}	22.749
10^{9}	3.1415631	9.41×10^{-6}	227.735

- ▶ it appears that C++ is about six or seven times faster
- ▶ but you have to compile and link every time you make a change
- where does the speed difference come from?

The hunt for objects

perhaps you can be productive without any extra complexity, but that's very rare

```
2 import random
 # sample size
4 N = 10 * * 5
5 # initialize the interior point counter
6 interior = 0
7 # integrate by sampling some number of times
8 for i in range(N):
  # build a random point
  x = random.random()
   v = random.random()
  # check whether it is inside the unit quarter circle
  if (x*x + y*y) \le 1.0: # no need to waste time computing the sgrt
        # update the interior point counter
        interior += 1
  # print the result:
17 print("pi: {0:.8f}".format(4*interior/N))
```

what flexibility do we need?

Base class for the random number generator

the base class, in PointCloud.py

Encapsulating the built-in python RNG

an example implementation, in Mersenne.py

```
import random
from PointCloud import PointCloud
class Mersenne (PointCloud):
   # interface
   def point(self, box):
      # unpack the bounding box
      tail, head = box
      intervals = tuple(zip(tail, head))
      p = [ random.uniform(left, right) for left, right in intervals ]
      # and return it
      return p
```