Traitement du signal.

Partie traitement du signal numérique (durée 45 mn).

- 1. Signaux de base.
- 1.1. Question de cours.

En traitement du signal, qu'est-ce qu'une impulsion, qu'est-ce qu'un échelon.

1.2 Manipulation de la transformée de Laplace.

Un signal y(t) à comme transformée de Laplace
$$Y(p) = \frac{6}{p(p+2)(p+3)}$$
.

En vous aidant de la table qui vous est donnée en annexe, trouvez la forme analytique de ce signal.

- 1.3 Pourquoi dit-on que la transformée de Laplace est linéaire ?
- 2. Représentation temporelle et fréquentielle des signaux.
- 2.1. Filtrage.

Donnez deux techniques différente permettant d'obtenir un même filtrage (en théorie). Quels sont les différentes familles de filtres fréquentiels?

- 2.2• Qu'est ce qu'un diagramme de Bode. Que permet-il de représenter ? Dessinez qualitativement le diagramme de Bode de la fonction de transfert $F(p) = \frac{3}{(p+3)}$
- 2.3• Si y(t) est la sortie du filtre de fonction de transfert F(p), quel est le signal x(t) en entrée de ce filtre ?
- 2.4• Quelle différence y a t il entre la transformée de Laplace et celle de Fourier ?
- 3. Filtrage numérique des signaux.

On dispose d'un filtre numérique dont la fonction de transfert échantillonnée est

$$G(z) = \frac{z - 0.3}{(z - 0.1)(z - 0.2)z}$$
. Si on note (x_k) la série des échantillons en entrée du

filtre et (y_k) la série des échantillons en sortie du filtre, donnez l'algorithme récursif de ce filtre numérique. Ce filtre est-il causal ? pourquoi ?

4• Annexe

Tableau des transformées classiques

f(t)	F(p)	F(z)
$\delta(t)$	1	1
H(t)	1 p	$\frac{1}{1-z^{-1}}=\frac{z}{z-1}$
t.H(t)	$\frac{1}{p^2}$	$\frac{Tz^{-1}}{(1-z^{-1})^2} = \frac{Tz}{(z-1)^2}$
$\frac{t^2}{2}H(t)$	1 p ³	$\frac{T^2z(z+1)}{2(z-1)^3}$
Н(t).e ^{-at}	$\frac{1}{p+a}$	$\frac{z}{z - e^{-aT}}$
H(t).t.e ^{-at}	$\frac{1}{(p+a)^2}$	$\frac{Te^{-aT}z}{2(z-e^{-aT})^2}$