Punctuation Prediction using Conditional Random Fields

Suvir Jain,
Computer Science
Department
University of California, San
Diego
sui011@cs.ucsd.edu

Gaurav Saxena
Computer Science
Department
University of California, San
Diego
gsaxena@cs.ucsd.edu

Kashyap Tumkur
Computer Science
Department
University of California, San
Diego
gsaxena@cs.ucsd.edu

ABSTRACT

- 1. INTRODUCTION
- 2. PRELIMINARIES

2.1 Assumptions

Tag: SPACE to show No punctuation Tag START to mark the beginning of the tag sequence Tag: PERIOD, QUES-TION MARK to mark the end of the tag sequence

3. IMPLEMENTATION

3.1 Algorithms for CRF

Viterbi path algorithm for Inference Proof of correctness

Forward and Backward Vectors Proof of correctness. Find Z using both α and β vectors

3.1.1 Learning using SGD

Proof of correctness. Prove derivatives are correct

3.2 Learning using Collins Perceptron

Proof of correctness

3.2.1 Feature Functions

- 1. -ing words
- $2.\ \, {\rm interrogative\ words},\, {\rm subject\text{-}verb\ inversion}$
- 3. connectives like however
- 4. conjunctions
- 5. Interjections

3.3 Data cleaning

3.4 Overfitting

- 3.4.1 Validation
- 3.4.2 Regularization?
- 3.4.3 Feature Scaling?
- 3.4.4 Randomization

Can we have our feature functions output only values between 0 and 1

4. EXPERIMENTS

4.1 Experiment 1: Learning using SGD

Charts proving convergence of SGD Charts showing accuracy on training, validation and test set

4.2 Experiment 2: Learning using Collins Perceptron

Charts proving convergence of CP Charts showing accuracy on training, validation and test set

5. OPTIMIZATIONS

Optimizations done to the algorithm to improve running time like:

- 1. Run the algorithms on a random smaller subset to speed up implementation
- 2. Use MATLAB profiler to find bottlenecks and remove them

6. CONCLUSION

6.1 Lessons Learnt

6.2 Discussion

Comparison of two approaches in terms of time to converge, their accuracies on training, validation and test sets

7. REFERENCES