违者按零分计)

密封线内不准答题,

密封线外不要写姓名、

考试方式: __**闭卷**__

)

)

太原理工大学 高等数学 E(一)

适用专业 <u>软件专业</u>考试日期: <u>2020-01-10</u> 时间: <u>120</u>分钟

题	号	_	1	三	总 分
得	分				

一. 单项选择题(每小题 2 分, 共 10 分)

1. 设 $f(x) = \arctan \frac{1}{1}$ 在 x = 0 处没定义,则 x = 0 是函数 f(x) 的)

B. 跳跃间断点: C. 可去间断点: D. 第二类间断点. A. 连续点:

2. 下列叙述正确的是

A. 如果函数 f(x) 和 g(x) 都在区间 (a,b) 内可导,且 $f(x) \ge g(x)$,则必有 $f'(x) \ge g'(x), x \in (a,b);$

B. 如果 f'(0) = 0 , 则 f(0) = 0;

C. 如果函数 f(x) 在 x_0 处可导,则曲线 y = f(x) 在 x_0 处必有切线;

D. 如果函数 f(x) 在 x_0 处不可导,则曲线 y = f(x) 在 x_0 处没有切线.

3. 下列反常积分发散的是

A. $\int_{e}^{+\infty} \frac{dx}{x \ln^2 x}$; B. $\int_{-2}^{2} \frac{dx}{\sqrt{4-x^2}}$; C. $\int_{2}^{3} \frac{1}{\sqrt{x-2}} dx$; D. $\int_{0}^{+\infty} \frac{dx}{r^p}$, 其中 p 是任意的实数.

4. 摆线 x = a(t-sint), y = a(1-cost) (a > 0) 的一拱 $(0 \le t \le 2\pi)$ 与横轴所围图形的面积

A.
$$\int_{0}^{2\pi} a^2 (1 - \cos t)^2 dt$$
;

B.
$$\int_0^{2\pi a} a^2 (1-\cos t)^2 dt$$
;

C.
$$\int_0^{2\pi} \pi a^2 (1 - \cos t)^2 dt$$
;

C.
$$\int_0^{2\pi} \pi a^2 (1 - \cos t)^2 dt$$
; D. $\int_0^{2\pi a} \pi a^2 (1 - \cos t)^2 dt$.

5. 设 $f(x) \neq 0$, 又 y_1, y_2, y_3 是 y'' + P(x)y' + Q(x)y = f(x) 的解,则该方程必定有解

A.
$$y_1 + y_2 + y_3$$
; B. $y_1 + y_2 - y_3$; C. $y_1 - y_2 - y_3$; D. $-y_1 - y_2 - y_3$.

二.填空题(每小题2分,共10分)

6. 设函数 y = y(x) 由方程 $y = 2x^2 - 3xe^y$ 所确定,则 $\frac{dy}{dx} =$ ______.

7. 设函数 $f(x) = 2x^3 + ax^2 + bx$ 在 x = 1 处取得极大值 1,则(a,b)=____

8. 曲线 $f(x) = \frac{x^3}{x^2-4}$ 的渐近线的条数总共有_____条.

9. 设
$$f(x) = \arcsin x$$
, 则 $df(x^3) =$ ______.

10. 设
$$f(x) = \begin{cases} \frac{2ax}{\sin x}, & x < 0 \\ e^x, & x \ge 0 \end{cases}$$
, 若要使 $\lim_{x \to 0} f(x)$ 存在,则常数 $a = \underline{\qquad}$.

三. 解答题与证明题 (每小题 8 分, 共 80 分)

11. 求极限
$$\lim_{x\to 0} \frac{e^{\sin^3 x} - 1}{x(1-\cos x)}$$
.

12. 已知
$$y = f(x)$$
 由参数方程
$$\begin{cases} x = \arctan t \\ y = t - \ln(1 + t^2) \end{cases}$$
 确定, 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

13. 求椭圆
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
在点 $(2, \frac{3}{2}\sqrt{3})$ 处的切线方程和法线方程.

14. 若
$$f(x) = \begin{cases} \ln(1+x) & x \ge 0 \\ \frac{1}{2+x} & x < 0 \end{cases}$$
, 求定积分 $\int_0^2 f(x-1)dx$.

15. 求不定积分
$$\int x \tan^2 x dx$$
.

16. 求函数
$$v = \ln(x^2 + 1)$$
 的单调区间、极值、凹凸区间及拐点.

17. 求拋物线
$$y = -x^2 + 4x - 3$$
 与其在点 $(0, -3)$ 和 $(3, 0)$ 之间的弦所围成图形的面积.

18. 设函数
$$F(x) = (x-1)f(x)$$
, 其中 $f(x)$ 在 [1,2] 上具有一阶连续导数,在 (1,2) 内二阶可导,且 $f(1) = f(2) = 0$,试用罗尔中值定理证明:在 (1,2) 内至少存在一点 ξ ,使得 $F''(\xi) = 0$ 成立.

19. 证明: 当
$$x > 1$$
时,不等式 $\ln x > \frac{2(x-1)}{x+1}$ 成立.

20. 求微分方程
$$y'' - 7y' + 12y = -12x + 19$$
 的通解.