WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATIO	N DIERI IGHED	UNDER THE PATENT COOPERATION TREATY (PCT)			
(51) International Patent Classification 6:	1 TODEISHED	T			
` '	1.0	(11) International Publication Number: WO 99/58558			
C07K 14/00	A2	(43) International Publication Date: 18 November 1999 (18.11.99)			
(21) International Application Number:	PCT/US99/105	YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). TANG, Y., Tom [CN/US]; 4230 Ranwich			
(22) International Filing Date: 13	3 May 1999 (13.05.	(US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago			
(30) Priority Data: 60/085,343 13 May 1998 (60/098,010 26 August 199		Road, San Leandro, CA 94577 (US). YANG, Junming [CN/US]; 7136 Clarendon Street, San Jose, CA 95129 (US).			
(63) Related by Continuation (CON) or Co (CIP) to Earlier Applications	ntinuation-in-Part	(74) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).			
US	60/085,343 (C	P)			
Filed on 13	3 May 1998 (13.05.9				
US	60/098,010 (C				
Filed on 26 A	.ugust 1998 (26.08.9	8) GH, GM, HR, HU, ID, IL, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,			
(71) Applicant (for all designated States e.	xcept US): INCY				
PHARMACEUTICALS, INC. [US/U					
Palo Alto, CA 94304 (US).		Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),			
		European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,			
(72) Inventors; and		GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,			
(75) Inventors/Applicants (for US only):					

Published

TD, TG).

Without international search report and to be republished upon receipt of that report.

(54) Title: CELL SIGNALING PROTEINS

(75) Inventors/Applicants (for US only): BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). HILLMAN, Jennifer, L. [US/US]; 230 Monroe

Drive #12, Mountain View, CA 94040 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US).

(57) Abstract

The invention provides human cell signaling proteins (CSIGP) and polynucleotides which identify and encode CSIGP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating or prevention disorders associated with expression of CSIGP.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazi)	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	ts	Iceland	MW	Malawi	us	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanks	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

CELL SIGNALING PROTEINS

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of cell signaling proteins 5 and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative and inflammatory disorders.

BACKGROUND OF THE INVENTION

Signal transduction is the process of biochemical events by which cells respond to extracellular signals. Extracellular signals are transduced through a biochemical cascade that begins with the binding of a signal molecule such as a hormone, neurotransmitter, or growth factor, to a cell membrane receptor and ends with the activation of an intracellular target molecule. The process of signal transduction regulates a wide variety of cell functions including cell 15 proliferation, differentiation, and gene transcription.

10

Signal transduction is the general process by which cells respond to extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc.) through a cascade of biochemical reactions that begins with the binding of the signaling molecule to a cell membrane receptor and ends with the activation of an intracellular target molecule. Intermediate steps in this process involve the activation of various cytoplasmic proteins by phosphorylation via protein kinases and the eventual translocation of some of these activated proteins to the cell nucleus where the transcription of specific genes is triggered. Thus, the signal transduction process regulates all types of cell functions including cell proliferation, differentiation, and gene transcription.

Protein kinases play a key role in the signal transduction process by phosphorylating and 25 activating various proteins involved in signaling pathways. The high energy phosphate which drives this activation is generally transferred from adenosine triphosphate molecules (ATP) to a particular protein by protein kinases and removed from that protein by protein phosphatases. Phosphorylation occurs in response to extracellular signals, cell cycle checkpoints, and environmental or nutritional stresses. Protein kinases are roughly divided into two groups; those 30 that phosphorylate tyrosine residues (protein tyrosine kinases, PTK) and those that phosphorylate serine or threonine residues (serine/threonine kinases, STK). A few protein kinases have dual specificity for serine/threonine and tyrosine residues. Almost all kinases contain a similar 250-300 amino acid catalytic domain containing specific residues and sequence motifs characteristic of the kinase family. (Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Books, Vol I:7-20

Academic Press, San Diego, CA.)

STKs include the second messenger dependent protein kinases such as the cyclic-AMP dependent protein kinases (PKA), which are involved in mediating hormone-induced cellular responses; calcium-calmodulin (CaM) dependent protein kinases, which are involved in regulation of smooth muscle contraction, glycogen breakdown, and neurotransmission; and the mitogenactivated protein kinases (MAP) which mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease. (Isselbacher, K.J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York, NY, pp. 416-431, 1887.)

PTKs are divided into transmembrane, receptor PTKs and nontransmembrane, non-receptor PTKs. Transmembrane protein-tyrosine kinases are receptors for most growth factors which include epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.

Non-receptor PTKs lack transmembrane regions and, instead, form complexes with the intracellular regions of cell surface receptors. Receptors that function through non-receptor PTKs include those for cytokines, hormones (growth hormone and prolactin) and antigen-specific receptors on T and B lymphocytes.

Many of these PTKs were first identified as the products of mutant oncogenes in cancer

cells where their activation was no longer subject to normal cellular controls. In fact, about one
third of the known oncogenes encode PTKs, and it is well known that cellular transformation
(oncogenesis) is often accompanied by increased tyrosine phosphorylation activity. (Charbonneau
H and Tonks NK (1992) Annu Rev Cell Biol 8:463-493.)

Protein phosphatases regulate the effects of protein kinases by removing phosphate groups
from molecules previously activated by kinases. The two principle categories of protein
phosphatases are the protein phosphatases (PPs) and the protein tyrosine phosphatases (PTPs).

PPs dephosphorylate phosphoserine/threonine residues and are important regulators of many
cAMP-mediated hormone responses in cells. (Cohen, P. (1989) Annu. Rev. Biochem. 58:453508.) PTPs reverse the effects of protein tyrosine kinases and play a significant role in cell cycle
and cell signaling processes. (Charbonneau and Tonks, supra.) In the process of cell division, for
example, a specific PTP (M-phase inducer phosphatase) plays a key role in the induction of
mitosis by dephosphorylating and activating a specific PTK (CDC2) leading to cell division.
(Sadu, K., et al. (1990) Proc. Natl. Acad. Sci. 87:5139-5143.)

Guanine nucleotide binding proteins (GTP-binding proteins) are critical mediators of the signal transduction pathway. Extracellular ligands such as hormones, growth factors,

neuromodulators, or other signaling molecules bind to transmembrane receptors, and the signal is propagated to effector molecules by intracellular signal transducing proteins. Many of these signal transduction proteins are GTP-binding proteins which regulate intracellular signaling pathways. GTP-binding proteins participate in a wide range of other regulatory functions including metabolism, growth, differentiation, cytoskeletal organization, and intracellular vesicle transport and secretion. Exchange of bound GDP for GTP followed by hydrolysis of GTP to GDP provides the energy that enables GTP-binding proteins to alter their conformation and interact with other cellular components. Two structurally distinct classes of GTP-binding proteins are recognized: heterotrimeric GTP-binding proteins, consisting of three different subunits, and monomeric, low molecular weight (LMW), GTP-binding proteins consisting of a single polypeptide chain.

G protein coupled receptors (GPCR) are a superfamily of integral membrane proteins which transduce extracellular signals. GPCRs include receptors for biogenic amines, mediators of inflammation, peptide hormones, and sensory signal mediators. A GPCR becomes activated when the receptor binds to its extracellular ligand. The beta subunit of the GPCR, which consists of an amino-terminal helical segment followed by seven WD, or β transducin repeats, transduces signals across the plasma membrane. Conformational changes in the GPCR, resulting from the ligand-receptor interaction, promote the binding of GTP to the GPCR intracellular domains. GTP binding to the GPCR leads to the interaction of the GPCR alpha subunit with adenylate cyclase or other second messenger molecule generators. This interaction regulates the activity of second messenger molecules such as cAMP, cGMP, or eicosinoids which, in turn, regulate phosphorylation and activation of other intracellular proteins. The GPCR changes conformation upon hydrolysis of the bound GTP by GTPases, dissociates from the second messenger molecule generator, and returns to its initial pre-ligand binding conformation.

G beta proteins, also known as β transducins, contain seven tandem repeats of the WDrepeat sequence motif, a motif found in many proteins with regulatory functions. WD-repeat proteins contain from four to eight copies of a loosely conserved repeat of approximately 40 amino acids which participates in protein-protein interactions. Mutations and variant expression of β transducin proteins are linked with various disorders. Mutations in LIS1, a subunit of the human platelet activating factor acetylhydrolase, cause Miller-Dieker lissencephaly. RACK1 binds activated protein kinase C, and RbAp48 binds retinoblastoma protein. CstF is required for polyadenylation of mammalian pre-mRNA in vitro and associates with subunits of cleavage-stimulating factor. CD4, an integral membrane glycoprotein which functions as an HIV coreceptor for infection of human host cells is degraded by HIV-encoded Vpu in the endoplasmic reticulum. WD repeats of human beta TrCP molecule mediate the formation of the CD4- Vpu, inducing CD4 proteolysis (Neer, E.J. et al. (1994) Nature 371:297-300 and Margottin, F. et al.

(1998) Mol. Cell. 1:565-574).

10

Irregularities in the GPCR signaling cascade may result in abnormal activation of leukocytes and lymphocytes, leading to the tissue damage and destruction seen in many inflammatory and autoimmune diseases such as rheumatoid arthritis, biliary cirrhosis, hemolytic 5 anemia, lupus erythematosus, and thyroiditis. Abnormal cell proliferation, including cyclic AMP stimulation of brain, thyroid, adrenal, and gonadal tissue proliferation is regulated by G proteins. Mutations in G_n subunits have been found in growth-hormone-secreting pituitary somatotroph tumors, hyperfunctioning thyroid adenomas, and ovarian and adrenal neoplasms (Meij, J.T.A. (1996) Mol. Cell. Biochem. 157:31-38; Aussel, C. et al. (1988) J. Immunol. 140:215-220).

LMW GTP-binding proteins regulate cell growth, cell cycle control, protein secretion, and intracellular vesicle interaction. They consist of single polypeptides which, like the alpha subunit of the heterotrimeric GTP-binding proteins, are able to bind to and hydrolyze GTP, thus cycling between an inactive and an active state. LMW GTP-binding proteins respond to extracellular signals from receptors and activating proteins by transducing mitogenic signals involved in 15 various cell functions. The binding and hydrolysis of GTP regulates the response of LMW GTPbinding proteins and acts as an energy source during this process (Bokoch, G. M. and Der, C. J. (1993) FASEB J. 7:750-759).

At least sixty members of the LMW GTP-binding protein superfamily have been identified and are currently grouped into the four subfamilies of ras, rho, arf, sarl, ran, and rab. 20 Activated ras genes were initially found in human cancers and subsequent studies confirmed that ras function is critical in determining whether cells continue to grow or become differentiated. Other members of the LMW G-protein superfamily have roles in signal transduction that vary with the function of the activated genes and the locations of the GTP-binding proteins that initiate the activity. Rho GTP-binding proteins control signal transduction pathways that link growth factor 25 receptors to actin polymerization, which is necessary for normal cellular growth and division. The rab, arf, and sarl families of proteins control the translocation of vesicles to and from membranes for protein localization, protein processing, and secretion. Ran GTP-binding proteins are located in the nucleus of cells and have a key role in nuclear protein import, the control of DNA synthesis, and cell-cycle progression (Hall, A. (1990) Science 249:635-640; Barbacid, M. (1987) Ann. Rev 30 Biochem. 56:779-827; and Sasaki, T. and Takai, Y. (1998) Biochem. Biophys. Res. Commun. 245:641-645).

LMW GTP-binding proteins are GTPases which cycle between a GTP-bound active form and a GDP-bound inactive form. This cycle is regulated by proteins that affect GDP dissociation, GTP association, or the rate of GTP hydrolysis. Proteins affecting GDP association are

represented by guanine nucleotide dissociation inhibitors and guanine nucleotide exchange factors (GEP). The best characterized is the mammalian homologue of the Drosophila Son-of-Sevenless protein. Proteins affecting GTP hydrolysis are exemplified by GTPase-activating proteins (GAP). Both GEP and GAP activity may be controlled in response to extracellular stimuli and modulated by accessory proteins such as RalBP1 and POB1. The GDP-bound form is converted to the GTP-bound form through a GDP/GTP exchange reaction facilitated by guanine nucleotide-releasing factors. The GTP-bound form is converted to the GDP-bound form by intrinsic GTPase activity, and the conversion is accelerated by GAP (Ikeda, M. et al. (1998) J. Biol. Chem. 273:814-821;Quilliam, L. A. (1995) Bioessays 17:395-404.). Mutant Ras-family proteins, which bind but can not hydrolyze GTP, are permanently activated, and cause cell proliferation or cancer, as do GEP that activate LMW GTP-binding proteins (Drivas, G. T. et al. (1990) Mol. Cell. Biol. 10:1793-1798; and Whitehead, I. P. et al. (1998) Mol Cell Biol. 18:4689-4697.)

The discovery of new cell signaling proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative and inflammatory disorders.

SUMMARY OF THE INVENTION

The invention features substantially purified polypeptides, cell signaling proteins, referred to collectively as "CSIGP" and individually as CSIGP-1 through CSIGP-13. In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof.

The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-13, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof.

Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino

acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof.

The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26, and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at 5 least 70% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26 and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14-26 and fragments thereof.

The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one 15 aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

10

20

30

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof. In another aspect, the expression vector is contained within a host cell.

The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially 25 purified polypeptide having the amino acid sequence selected from the group consisting of SEO ID NO: 1-13, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-13, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

The invention also provides a method for treating or preventing a disorder associated with decreased expression or activity of CSIGP, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof, in conjunction with a suitable 35 pharmaceutical carrier.

The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of CSIGP, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows nucleotide and polypeptide sequence identification numbers (SEQ ID NO), clone identification numbers (clone ID), cDNA libraries, and cDNA fragments used to assemble 10 full-length sequences encoding CSIGP.

Table 2 shows features of each polypeptide sequence including potential motifs, homologous sequences, and methods and algorithms used for identification of CSIGP.

Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis, diseases, disorders or conditions associated with these tissues, and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which Incyte cDNA clones encoding CSIGP were isolated.

Table 5 shows the programs, their descriptions, references, and threshold parameters used to analyze CSIGP.

20

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a,"

"an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for
example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an
antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled
in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and

methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"CSIGP" refers to the amino acid sequences of substantially purified CSIGP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which, when bound to CSIGP, increases or prolongs the duration of the effect of CSIGP. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of CSIGP.

An "allelic variant" is an alternative form of the gene encoding CSIGP. Allelic variants

may result from at least one mutation in the nucleic acid sequence and may result in altered

mRNAs or in polypeptides whose structure or function may or may not be altered. Any given

natural or recombinant gene may have none, one, or many allelic forms. Common mutational

changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or

substitutions of nucleotides. Each of these types of changes may occur alone, or in combination

with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding CSIGP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as CSIGP or a polypeptide with at least one functional characteristic of CSIGP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding CSIGP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding CSIGP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent CSIGP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of CSIGP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and

phenylalanine and tyrosine.

The terms "amino acid" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of CSIGP which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of CSIGP. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence.

Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which, when bound to CSIGP, decreases the

15 amount or the duration of the effect of the biological or immunological activity of CSIGP.

Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of CSIGP.

The term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind CSIGP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form

duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

The term "biologically active," refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic CSIGP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding CSIGP or fragments of CSIGP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the

30 GELVIEW Fragment Assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

The term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding CSIGP, by northern analysis is indicative of the presence of nucleic acids encoding CSIGP in a sample, and thereby correlates with expression of the transcript from the polynucleotide encoding CSIGP.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

10

25

The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined 15 using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions 20 require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases "percent identity" or "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison WI). The MEGALIGN program can create alignments between two or more sequences according to different methods, e.g., the clustal method. (See, e.g., Higgins, D.G. and P.M. Sharp 30 (1988) Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A 35 and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid

sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

The term "humanized antibody" refers to antibody molecules in which the amino acid
sequence in the non-antigen binding regions has been altered so that the antibody more closely
resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C₀t or R₀t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" or "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

20

30

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.

The terms "element" or "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

The term "modulate" refers to a change in the activity of CSIGP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of CSIGP.

The phrases "nucleic acid" or "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may

represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material. In this context, "fragments" refers to those nucleic acid sequences which, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length polypeptide.

The terms "operably associated" or "operably linked" refer to functionally related nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or microarray. "Oligonucleotide" is substantially equivalent to the terms "amplimer." "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding CSIGP, or fragments thereof, or CSIGP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" or "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "stringent conditions" refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent, e.g., formamide, temperature, and other

conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

10

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

"Transformation" describes a process by which exogenous DNA enters and changes a

15 recipient cell. Transformation may occur under natural or artificial conditions according to

various methods well known in the art, and may rely on any known method for the insertion of

foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for

transformation is selected based on the type of host cell being transformed and may include, but is

not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment.

20 The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "variant" of CSIGP polypeptides refers to an amino acid sequence that is altered by one or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to CSIGP. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants. A splice variant may have significant identity to a reference molecule, but will generally have a greater or

lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

10 THE INVENTION

The invention is based on the discovery of new human cell signaling proteins (CSIGP), the polynucleotides encoding CSIGP, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative and inflammatory disorders.

Table 1 lists the Incyte Clones used to derive full length nucleotide sequences encoding

CSIGP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NO) of the amino acid and nucleic acid sequences, respectively. Column 3 shows the Clone ID of the Incyte Clone in which nucleic acids encoding each CSIGP were first identified, and column 4, the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones, their corresponding cDNA libraries, and shotgun sequences useful as fragments in hybridization technologies, and which are part of the consensus nucleotide sequence of each CSIGP.

The columns of Table 2 show various properties of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3, potential phosphorylation sites; column 4, potential glycosylation sites; column 5, the amino acid residues comprising signature sequences and motifs; column 6, homologous sequences; and column 7, analytical methods used to identify each protein through sequence homology and protein motifs.

The columns of Table 3 show the tissue-specificity and disease-association of nucleotide sequences encoding CSIGP. The first column of Table 3 lists the polynucleotide sequence identifiers. The second column lists tissue categories which express CSIGP as a fraction of total tissue categories expressing CSIGP. The third column lists diseases, disorders, and conditiond associated with those tissues expressing CSIGP. The fourth column lists the vectors used to subclone the cDNA library.

The following fragments of the nucleotide sequences encoding CSIGP are useful in hybridization or amplification technologies to identify SEQ ID NO:14-26 and to distinguish between SEQ ID NO:14-26 and similar polynucleotide sequences. The useful fragments are the

fragment of SEQ ID NO:14 from about nucleotide 135 to about nucleotide 189, the fragment of SEQ ID NO:15 from about nucleotide 493 to about nucleotide 558, the fragment of SEQ ID NO:16 from about nucleotide 1170 to about nucleotide 1233, the fragment of SEQ ID NO:17 from about nucleotide 939 to about nucleotide 996, the fragment of SEQ ID NO:18 from about nucleotide 424 to about nucleotide 486, the fragment of SEQ ID NO:19 from about nucleotide 274 to about nucleotide 333, and the fragment of SEQ ID NO:20 from about nucleotide 1013 to about nucleotide 1070, the fragment of SEQ ID NO:21 from about nucleotide 284 to about nucleotide 325, the fragment of SEQ ID NO:22 from about nucleotide 642 to about nucleotide 674, the fragment of SEQ ID NO:24 from about nucleotide 457 to about nucleotide 486, the fragment of SEQ ID NO:25 from about nucleotide 205 to about nucleotide 246, and the fragment of SEQ ID NO:26 from about nucleotide 342.

The invention also encompasses CSIGP variants. A preferred CSIGP variant is one which

15 has at least about 80%, more preferably at least about 90%, and most preferably at least about 95%

amino acid sequence identity to the CSIGP amino acid sequence, and which contains at least one

functional or structural characteristic of CSIGP.

The invention also encompasses polynucleotides which encode CSIGP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:14-26 which encodes CSIGP.

The invention also encompasses a variant of a polynucleotide sequence encoding CSIGP.

In particular, such a variant polynucleotide sequence will have at least about 70%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding CSIGP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:14-26 which has at least about 70%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:14-26. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of CSIGP

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding CSIGP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide

sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring CSIGP, and all such variations are to be considered as being specifically disclosed.

5

Although nucleotide sequences which encode CSIGP and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring CSIGP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding CSIGP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at 10 which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding CSIGP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally 15 occurring sequence.

The invention also encompasses production of DNA sequences which encode CSIGP and CSIGP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to 20 introduce mutations into a sequence encoding CSIGP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:14-26 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 25 152:507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, 30 and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30°C, more preferably of at least about 37°C, and most preferably of at least about 42°C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are 35 accomplished by combining these various conditions as needed. In a preferred embodiment,

hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37°C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 μg/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50 % formamide, and 200 μg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25°C, more preferably of at least about 42°C, and most preferably of at least about 68°C. In a preferred embodiment, wash steps will occur at 25°C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the HYDRA microdispenser (Robbins Scientific, Sunnyvale CA), MICROLAB 2200 (Hamilton, Reno NV), Peltier Thermal Cycler 200 (PTC200; MJ Research, Watertown MA) and the ABI CATALYST 800 (Perkin-Elmer). Sequencing is then carried out using either ABI 373 or 377 DNA Sequencing Systems (Perkin-Elmer) or the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA). The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding CSIGP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect

upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In 10 this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-306). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic 15 DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

20

25

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal 30 using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode CSIGP may be cloned in recombinant DNA molecules that direct expression of

CSIGP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express CSIGP.

5

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter CSIGP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, 10 oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding CSIGP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucl. 15 Acids Res. Symp. Ser. 215-223, and Horn, T. et al. (1980) Nucl. Acids Res. Symp. Ser. 225-232.) Alternatively, CSIGP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of 20 CSIGP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g, Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by 25 sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY.)

In order to express a biologically active CSIGP, the nucleotide sequences encoding CSIGP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted 30 coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding CSIGP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding CSIGP. Such signals include the ATG initiation codon and adjacent 35 sequences, e.g. the Kozak sequence. In cases where sequences encoding CSIGP and its initiation

codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct

expression vectors containing sequences encoding CSIGP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989)

Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons,

New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding CSIGP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected

depending upon the use intended for polynucleotide sequences encoding CSIGP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding CSIGP can be achieved using a multifunctional <u>E. coli</u> vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or pSPORT1 plasmid (Life Technologies). Ligation of sequences encoding CSIGP into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of CSIGP are needed. e.g. for the production of antibodies, vectors which direct high level expression of CSIGP may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage

promoter may be used.

Yeast expression systems may be used for production of CSIGP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Grant et al. (1987) Methods Enzymol. 153:516-54; and Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of CSIGP. Transcription of sequences
encoding CSIGP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used
alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987)
EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or
heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680;
Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell
Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA
transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of
Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding CSIGP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses CSIGP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of CSIGP in cell lines is preferred. For example, sequences encoding CSIGP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2

days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

5

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in the or apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers 10 resistance to methotrexate; neo confers resistance to the aminoglycosides neomycin and G-418; and als or pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase. respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., 15 Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ß glucuronidase and its substrate B-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. 20 Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding CSIGP is inserted within a marker gene sequence, transformed cells containing sequences encoding CSIGP can be identified by the absence of marker gene 25 function. Alternatively, a marker gene can be placed in tandem with a sequence encoding CSIGP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding CSIGP and that express CSIGP may be identified by a variety of procedures known to those of skill in the art. 30 These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of CSIGP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques

include enzyme-linked immunosorb nt assays (ELISAs), radioimmunoassays (RIAs), and flu rescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on CSIGP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art.

5 (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St Paul MN, Sect. IV; Coligan, J. E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols. Humana Press, Totowa NJ).

A wide variety of labels and conjugation techniques are known by those skilled in the art
and may be used in various nucleic acid and amino acid assays. Means for producing labeled
hybridization or PCR probes for detecting sequences related to polynucleotides encoding CSIGP
include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled
nucleotide. Alternatively, the sequences encoding CSIGP, or any fragments thereof, may be
cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are
commercially available, and may be used to synthesize RNA probes in vitro by addition of an
appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures
may be conducted using a variety of commercially available kits, such as those provided by
Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter
molecules or labels which may be used for ease of detection include radionuclides, enzymes,
fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors,
magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding CSIGP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode CSIGP may be designed to contain signal sequences which direct secretion of CSIGP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC, Bethesda MD) and may be chosen to ensure the

correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding CSIGP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric CSIGP protein 5 containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of CSIGP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-10 His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be 15 engineered to contain a proteolytic cleavage site located between the CSIGP encoding sequence and the heterologous protein sequence, so that CSIGP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled CSIGP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract systems (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably ³⁵S-methionine.

Fragments of CSIGP may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, <u>supra</u> pp. 55-60.)

Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Various fragments of CSIGP may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

20

25

30

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between CSIGP and cell signaling proteins. In addition, the expression of CSIGP is closely

35 associated with cell proliferation and inflammatory disorders. Therefore, in cell proliferative and

inflammatory disorders where CSIGP is an inhibitor or suppressor of cell proliferation, it is desirable to increase the expression of CSIGP. In cell proliferative and inflammatory disorders where CSIGP is an activator or enhancer and is promoting cell proliferation, it is desirable to decrease the expression of CSIGP.

5

35

Therefore, in one embodiment, CSIGP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CSIGP. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia; cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an inflammatory 15 disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema 20 nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, 25 thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma.

In another embodiment, a vector capable of expressing CSIGP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CSIGP including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified CSIGP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CSIGP including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of CSIGP may be

administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CSIGP including, but not limited to, those listed above.

In a further embodiment, an antagonist of CSIGP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of CSIGP. Examples of 5 such disorders include, but are not limited to, those described above. In one aspect, an antibody which specifically binds CSIGP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express CSIGP.

In an additional embodiment, a vector expressing the complement of the polynucleotide 10 encoding CSIGP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of CSIGP including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination 15 therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of CSIGP may be produced using methods which are generally known in the art. In particular, purified CSIGP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind CSIGP. Antibodies to CSIGP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies. Fab fragments, 25 and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

20

35

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with CSIGP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various 30 adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions. KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to

CSIGP have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of CSIGP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to CSIGP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV
hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce CSIGP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton D.R. (1991) Proc. Natl. Acad. Sci. 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for CSIGP may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between

CSIGP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering CSIGP epitopes is preferred, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay

techniques may be used to assess the affinity of antibodies for ABBR. Affinity is expressed as an association constant, K_a, which is defined as the molar concentration of ABBR-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple ABBR epitopes, represents the average affinity, or avidity, of the antibodies for ABBR. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular ABBR epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10° to 10¹² L/mole are preferred for use in immunoassays in which the ABBR-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10° to 10⁷ L/mole

are preferred for use in immunopurification and similar procedures which ultimately require dissociation of ABBR, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume 1: A Practical Approach, IRL Press, Washington DC; Liddell, J. E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to

determine the quality and suitability of such preparations for certain downstream applications. For
example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml,
preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation
of ABBR-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity,
and guidelines for antibody quality and usage in various applications, are generally available.

25 (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding CSIGP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding CSIGP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding CSIGP. Thus, complementary molecules or fragments may be used to modulate CSIGP activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding CSIGP.

35 Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses,

or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding CSIGP. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

Genes encoding CSIGP can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding CSIGP. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

5

35

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding CSIGP. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding CSIGP.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences:

GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be

prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding CSIGP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' 10 ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and 15 uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers 20 may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nature Biotechnology 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

25

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier. for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of CSIGP, antibodies to CSIGP, and mimetics, agonists, antagonists, or inhibitors of CSIGP. The compositions may be administered alone or in combination with at least one other agent, such as a 30 stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal,

enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution,
Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain
substances which increase the viscosity of the suspension, such as sodium carboxymethyl

cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an
appropriate container and labeled for treatment of an indicated condition. For administration of
CSIGP, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example CSIGP or fragments thereof, antibodies of CSIGP, and agonists, antagonists or inhibitors of CSIGP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or

 LD_{50} (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the LD_{50} / ED_{50} ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED_{50} with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 µg to 100,000 µg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind CSIGP may be used for the diagnosis of cell proliferative and inflammatory disorders characterized by expression of CSIGP, or in assays to monitor patients being treated with CSIGP or agonists, antagonists, or inhibitors of CSIGP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for CSIGP include methods which utilize the antibody and a label to detect CSIGP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring CSIGP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of CSIGP expression. Normal or standard values for CSIGP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to

PCT/US99/10567 WO 99/58558

CSIGP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of CSIGP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding CSIGP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of CSIGP 10 may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of CSIGP, and to monitor regulation of CSIGP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding CSIGP or closely related 15 molecules may be used to identify nucleic acid sequences which encode CSIGP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding CSIGP, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the CSIGP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:14-26 or from genomic sequences including promoters, enhancers, and introns of the CSIGP gene.

20

25

Means for producing specific hybridization probes for DNAs encoding CSIGP include the cloning of polynucleotide sequences encoding CSIGP or CSIGP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a 30 variety of reporter groups, for example, by radionuclides such as ³²P or ³⁵S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/bjotin coupling systems, and the like.

Polynucleotide sequences encoding CSIGP may be used for the diagnosis of cell proliferative and inflammatory disorders associated with expression of CSIGP. Examples of such disorders include, but are not limited to, a disorder of cell proliferation such as actinic keratosis, 35 arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease

(MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia; cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermatitis, Crohn's 10 disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma. The polynucleotide sequences encoding CSIGP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and ELISA assays; and in microarrays utilizing fluids or tissues from patients to detect altered CSIGP expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding CSIGP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The

25 nucleotide sequences encoding CSIGP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide

30 sequences encoding CSIGP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of CSIGP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a

PCT/US99/10567 WO 99/58558

sequence, or a fragment thereof, encoding CSIGP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with 5 values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results 10 obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A 15 more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding CSIGP may involve the use of PCR. These oligomers may be chemically synthesized, generated 20 enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding CSIGP, or a fragment of a polynucleotide complementary to the polynucleotide encoding CSIGP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

Methods which may also be used to quantitate the expression of CSIGP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format 30 where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

25

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously 35 and to identify genetic variants, mutations, and polymorphisms. This information may be used to

determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monit r the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl.

5 Acad. Sci. 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding CSIGP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding CSIGP on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, CSIGP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between CSIGP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with CSIGP, or fragments thereof, and washed. Bound CSIGP is then detected by methods well known in the art. Purified CSIGP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which

15 neutralizing antibodies capable of binding CSIGP specifically compete with a test compound for binding CSIGP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with CSIGP.

In additional embodiments, the nucleotide sequences which encode CSIGP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any was whatsoever.

The entire disclosure of all applications, patents, and publications, cited above and below, and of US provisional applications 60/085,343 (filed May 13, 1998), and 60/098,010 (filed August 26, 1998) are hereby incorporated by reference.

EXAMPLES

30 I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated

from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Valencia CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6). Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), pSPORT1 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

Plasmids were recovered from host cells by <u>in vivo</u> excision, using the UNIZAP vector system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the REAL Prep 96 plasmid kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a Fluoroskan II

fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

The cDNAs were prepared for sequencing using either an ABI CATALYST 800 (Perkin-Eimer) or a HYDRA microdispenser (Robbins) or MICROLAB 2200 (Hamilton) sequencing

5 preparation system in combination with PTC-200 thermal cyclers (MJ Research). The cDNAs were sequenced using the ABI PRISM 373 or 377 sequencing systems of the MEGABACE 1000 DNA sequencing system (Molecular Dynamics) and ABI protocols, base calling software, and kits (Perkin-Eimer). Alternatively, solutions and dyes from Amersham Pharmacia Biotech were used. Reading frames were determined using standard methods (Ausubel, 1997, supra). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA, extension, and shotgun sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the software programs, descriptions, references, and threshold parameters used. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides a brief description thereof, the third column presents the references which are incorporated by reference herein, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the probability the greater the homology). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, S. San Francisco CA) and LASERGENE software (DNASTAR).

cDNAs were also compared to sequences in GenBank using a search algorithm developed by Applied Biosystems and incorporated into the INHERITTM 670 sequence analysis system. In this algorithm, Pattern Specification Language (TRW Inc, Los Angeles, CA) was used to determine regions of homology. The three parameters that determine how the sequence comparisons run were window size, window offset, and error tolerance. Using a combination of these three parameters, the DNA database was searched for sequences containing regions of homology to the query sequence, and the appropriate sequences were scored with an initial value. Subsequently, these homologous regions were examined using dot matrix homology plots to distinguish regions of homology from chance matches. Smith-Waterman alignments were used to display the results of the homology search.

Peptide and protein sequence homologies were ascertained using the INHERIT- 670 sequence analysis system using the methods similar to those used in DNA sequence homologies. Pattern Specification Language and parameter windows were used to search protein databases for sequences containing regions of homology which were scored with an initial value. Dot-matrix homology plots were examined to distinguish regions of significant homology from chance

matches.

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire annotation, using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, PFAM, and Prosite.

The programs described above for the assembly and analysis of full length polynucleotide
and amino acid sequences were also used to identify polynucleotide sequence fragments from
SEQ ID NO:14-26. Fragments from about 20 to about 4000 nucleotides which are useful in
hybridization and amplification technologies were described in The Invention section above.

IV. Northern Analysis

30

35

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel, 1995, supra, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ database (Incyte

25 Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

8 Sequence identity x 8 maximum BLAST score

100

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported a percentage distribution of libraries in which

PCT/US99/10567 WO 99/58558

the transcript encoding CSIGP occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease or condition categories included cancer,

5 inflammation/trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease expression are reported in Table 3.

V. **Extension of CSIGP Encoding Polynucleotides**

10

20

30

The full length nucleic acid sequence of SEQ ID NO:14-26 was produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 15 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH_a), SO₃, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the 25 following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 µl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 µl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the 35 sample and to quantify the concentration of DNA. A 5 μ l to 10 μ l aliquot of the reaction mixture

was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent <u>E. coli</u> cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following

parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min;

Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulphoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequence of SEQ ID NO:14-26 is used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

25 VI. Choice, Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:14-26 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ-32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10² counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following

endonucleases: Ase I, Bgl II. Eco RI, Pst I, Xba1, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT-AR film (Eastman Kodak, Rochester NY) is exposed to the blots to film for several hours, hybridization patterns are compared visually.

VII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array

10 elements on the surface of a substrate. (See, e.g., Baldeschweiler, <u>supra</u>.) An array analogous to a
dot or slot blot may also be used to arrange and link elements to the surface of a substrate using
thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by
hand or using available methods and machines and contain any appropriate number of elements.

After hybridization, nonhybridized probes are removed and a scanner used to determine the levels

15 and patterns of fluorescence. The degree of complementarity and the relative abundance of each
probe which hybridizes to an element on the microarray may be assessed through analysis of the
scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

VIII. Complementary Polynucleotides

Sequences complementary to the CSIGP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring CSIGP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of CSIGP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit

translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the CSIGP-encoding transcript.

IX. Expression of CSIGP

Expression and purification of CSIGP is achieved using bacterial or virus-based 5 expression systems. For expression of CSIGP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, 10 e.g., BL21(DE3). Antibiotic resistant bacteria express CSIGP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of CSIGP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding CSIGP by either homologous recombination 15 or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 20 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, CSIGP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from CSIGP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch 10 and 16). Purified CSIGP obtained by these methods can be used directly in the following activity assay.

X. Demonstration of CSIGP Activity

CSIGP activity can be assayed in <u>vitro</u> by monitoring the mobilization of Ca⁻⁻ as part of the signal transduction pathway. (See, e.g., Grynkievwicz, G. et al. (1985) J. Biol. Chem.

260:3440; McColl, S. et al. (1993) J. Immunol. 150:4550-4555; and Aussel, C. et al. (1988) supra)

The assay requires preloading neutrophils or T cells with a fluorescent dye such as FURA-2 or

BCECF (Universal Imaging Corp, Westchester PA) whose emission characteristics have been
altered by Ca⁺⁺ binding. When the cells are exposed to one or more activating stimuli artificially

(ie, anti-CD3 antibody ligation of the T cell receptor) or physiologically (ie, by allogeneic
stimulation), Ca⁺⁺ flux takes place. This flux can be observed and quantified by assaying the cells
in a fluorometer or fluorescent activated cell sorter. Measurements of Ca⁺⁺ flux are compared
between cells in their normal state and those preloaded with CSIGP.

Protein kinase activity in CSIGP is determined by measuring the phosphorylation of a

10 protein substrate using gamma-labeled ³²P-ATP and quantitation of the incorporated radioactivity
using a radioisotope counter. CSIGP is incubated with the protein substrate, ³²P-ATP, and an
appropriate kinase buffer. The ³²P incorporated into the product is separated from free ³²P-ATP by
electrophoresis and the incorporated ³²P is counted. The amount of ³²P recovered is proportional
to the activity of CSIGP in the assay. A determination of the specific amino acid residue

15 phosphorylated is made by phosphoamino acid analysis of the hydrolyzed protein.

Protein phosphatase (PP) activity in CSIGP is determined by measuring the hydrolysis of P-nitrophenyl phosphate (PNPP). CSIGP is incubated together with PNPP in HEPES buffer pH 7.5, in the presence of 0.1% b-mercaptoethanol at 37°C for 60 min. The reaction is stopped by the addition of 6 ml of 10 N NaOH and the increase in light absorbance at 410 nm resulting from the hydrolysis of PNPP is measured using a spectrophotometer. The increase in light absorbance is proportional to the activity of CSIGP in the assay.

XI. Production of CSIGP Specific Antibodies

CSIGP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the CSIGP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A

Peptide Synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich,
St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to
increase immunogenicity. (See, e.g., Ausubel, 1995, supprace.) Rabbits are immunized with the
oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for

antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XII. Purification of Naturally Occurring CSIGP Using Specific Antibodies

Naturally occurring or recombinant CSIGP is substantially purified by immunoaffinity chromatography using antibodies specific for CSIGP. An immunoaffinity column is constructed by covalently coupling anti-CSIGP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing CSIGP are passed over the immunoaffinity column, and the column is
washed under conditions that allow the preferential absorbance of CSIGP (e.g., high ionic strength
buffers in the presence of detergent). The column is eluted under conditions that disrupt
antibody/CSIGP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope,
such as urea or thiocyanate ion), and CSIGP is collected.

XIII. Identification of Molecules Which Interact with CSIGP

15

CSIGP, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled CSIGP, washed, and any wells with labeled CSIGP complex are assayed. Data obtained using different concentrations of CSIGP are used to calculate values for the number, affinity, and association of CSIGP with the candidate molecules.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
1	14	016108	HUVELPB01	016108, 016624, (HUVELPB01), 970134 (MUSCNOT02), 1605858 (LUNGNOT15), 1419046 (KIDNNOT09)
2	15	640521	BRSTNOT03	640521 (BRSTNOT03)
3	16	1250171	LUNGFET03	1250171 (LUNGFET03), 260744 (HNT2RAT01), 077085 (SYNORAB01), 2790184 (COLNTUT16), SAEB01398, SAEB00499, SAEB02190, SAEB00648, SAEB00948
4	17	1911587	CONNTUT01	1911587 (CONNTUT01), 1989659 (CORPNOT02)
ı t r	18	2079081	ISLTNOT01	2079081 (ISLTNOT01), 2631449 (COLNTUT15), 2350624 (COLSUCT01), 2568459 (HIPOAZT01), 2132860 (OVARNOT03)
9	19	2472655	THP1NOT03	2472655 (THPINOTO3), 1325950 (LPARNOTO2), SAEA01014, SAEA01114, SAEA03382
7	20	2948818	KIDNFET01	2948818 (KIDNFET01), 1543592 (PROSTUT04), SAAE00176

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
ω	21	054191	FIBRNOT01	054191H1 and 054191R6 (FIBRNOT01), 483547H1, 483547R6, and 483547F6 (HNT2RAT01), 1537974R6 (SINTTUT01), 1633493H1 (COLNNOT19)
6	22	1403604	LATRTUT02	491348H1 (HNT2AGT01), 1403604H1 (LATRTUT02), 3331135T6.com (BRAIFET01), SBAA02561F1.comp, SBAA03200F1, SBAA01960F1.comp, SBAA01439F1, SBAA01304F1
10	23	1652936	PROSTUT08	467767R6 (LATRNOT01), 1551938R6 (PROSNOT06), 1652936F6 and 1652936H1 (PROSTUT08), 181738BF6 and 1817388H1 (PROSNOT20), 2822521H1 (ADRETUT06)
11	24	1710702	PROSNOT16	1474380T1 (LUNGTUT03), 1710702H1 (PROSNOT16), 2189187H1 (PROSNOT26), 1526267F1 (UCMCL5T01), 1467104F1 (PANCTUT02)
12	25	3239149	COLAUCT01	482693H1 (HNT2RAT01), 2287788R6 (BRAINON01), 2570350T6 (HIPOAZT01), 3239149F6 and 3239149H1 (COLAUCT01), 3837574F6 (DENDTNT01), 4993747H1 (LIVRTUT11)
13	26	3315936	PROSBPT03	2501356T6 (ADRETUTOS), 3315936H1 (PROSBPT03)

Table 2

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Homologous Sequence	Analytical Methods
1	418	S359 S2 T12 S56 T91 T257 S287 S306 T402 S414 T9 S16 S43 T87 S184 S327 S334	N54 N70 N118	Y58-1293	Serine /threonine protein kinase	BLOCKS PRINTS PFAM
2	540	\$100 T145 \$26 T56 \$100 T166 \$358 \$456 T462 T467 \$503 \$11 \$30 \$95 \$137 \$197 T280 \$T362 \$367 \$474 \$7234 \$305	N460	Y165-V446	Ca2 +/calmodulin- dependent protein kinase kinase	BLOCKS PRINTS MOTIFS BLAST PFAM
m	729	T96 S348 T373 S518 S531 T682 T78 T239 T478 Y235	N42 N455 N614	W9-I238	Serine/ threonine protein kinase	BLOCKS PFAM PRINTS MOTIFS BLAST
4	313	S38 S82 S95 S97 T143 Y30	N79 N80 N172 N192	R114-S135	Protein tyrosine phosphatase	PRINTS BLAST

Table 2 cont.

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Homologous Sequence	Analytical Methods
un	506	\$114 \$300 \$81 \$160 T162 \$211 \$253 \$291 \$335 \$341 T63 \$143 T144 \$156 T177 \$196 \$363 \$439 \$45 Y187	N275	SH3 domains: R441-L495	PEST phosphatase interacting protein	BLOCKS PRINTS PFAM BLAST
٧	341	S39 S118 T125 S180 S110 S170 S173 S195 T299	N37 N178 N229 N263		Prolactin receptor associated protein (PRAP)	BLAST
٢	8 6 8	S56 T640 S15 S107 T210 T267 S324 S366 S374 S504 T547 T592 T640 S655 T681 T756 S775 S58 S249 T437 S551 T573 S655 T726 T745 T762 S836 S858 S879	N322 N347 N389 N502 N503	F24-V277	Serine/ threonine protein kinase	BLOCKS PRINTS PFAM MOTIFS BLAST

Table 2 cont.

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Homologous Sequence	Analytical Methods
œ	336	S34 T110 S148 S311	N137 N144 N169	T175-1195 V236-T254	putative G- protein-coupled receptor	PRINTS, BLAST HMM, Motifs
6	686	T192 S312 S483 S502 S23 T584	N17 N457 N618 N642	G544~N560	GDP-GTP exchange protein	PRINTS, BLAST Motifs
10	519	S3 S77 S130 S176 S187 T196 S245 S265 T280 T290 T305 T324 S325 S351 S384 S390 T29 S33 S265 T305 S311 T453 S464 Y131	N128		GTPase-interacting protein	BLAST Motifs
11	334	S332 T186 S198 S269 T321 S90 S139 Y289	N20 N30	L267-L281	G-protein beta WD-40 repeat containing protein	PRINTS, BLAST Motifs
12	569	S91 S19 S109 S162 S376 S418 T514 S535 S536 S19 S39 T266 T288 T328 T381 T411 T451 S519	N17 N77 N416	1320-V334 M360-M374 1403-T417 V443-1457 I583-L497 I532-F546	beta-transducin repeats containing protein	PRINTS, BLAST PFAM, Motifs
13	123	S14 T107 Y44 Y70	N100	M1-N52	SAR1 family GTP-binding protein	PRINTS, BLOCKS BLAST, Motifs

Table

Polynuleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
14	Cardiovascular (0.194) Hematopoietic/Immune (0.194) Developmental (0.139)	Cancer (0.389) Inflammation (0.333) Cell proliferative (0.306)	pBLUESCRIPT
15	Reproductive (0.282) Nervous (0.179) Developmental (0.128)	Cancer (0.410) Cell proliferative (0.205) Inflammation (0.154)	psport1
16	Reproductive (0.286) Hematopoietic/Immune (0.167) Nervous (0.119)	Cancer (0.429) Inflammation (0.310) Cell proliferative (0.214)	pincy
17	Nervous (0.235) Reproductive (0.147) Gastrointestinal (0.118)	Cancer (0.471) Cell proliferative (0.176) Trauma (0.176)	pincy
18	Reproductive (0.400) Gastrointestinal (0.267) Cardiovascular (0.133)	Cancer (0.533) Inflammation (0.333) Cell proliferative (0.067)	pincy
19	Nervous (0.273) Hematopoietic/Immune (0.227) Reproductive (0.227)	Cancer (0.364) Inflammation (0.364) Cell proliferative (0.318)	pincy
20	Hematopoietic/Immune (0.216) Reproductive (0.216) ervous (0.157)	Cancer (0.412) Inflammation (0.294) Cell proliferative (0.216)	pINCY

Table 3 cont.

Polynucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
21	Cardiovascular (0.217) Gastrointestinal (0.174) Nervous (0.174)	Cell proliferative (0.652) Inflammation (0.304)	pBlUESCRIPT
22	Reproductive (0.370) Nervous (0.222) Hematopoietic/Immune (0.148)	Cell proliferative (0.778) Trauma (0.148)	pINCY
23	Reproductive (0.400) Cardiovascular (0.200) Hematopoietic/Immune (0.133)	Cancer (0.533) Inflammation (0.200)	pincy
24	Reproductive (0.241) Nervous (0.190) Cardiovascular (0.138)	Cell proliferative (0.724) Inflammation (0.138)	pincy
25	Musculoskeletal (0.222) Nervous (0.222) Gastrointestinal (0.167)	Cell proliferative (0.555) Inflammation (0.222)	pincy
26	Reproductive (0.750) Cardiovascular (0.250)	Cancer (0.500) Inflammation (0.500)	pINCY

Table 4

Polynucleotide SEQ ID NO:	Library	Library Description
14	ниуег. РВО 1	The library was constructed using RNA isolated from HUV-EC-C (ATCC CRL 1730) cells that were stimulated with cytokine/LPS. HUV-EC-C is an endothelial cell line derived from the vein of a normal human umbilical cord. RNA was isolated from two pools of HUV-EC-C cells that had been treated with either gamma IFN and TNF-alpha or IL-1 beta and LPS.
15	BRSTNOT03	The library was constructed using RNA isolated from nontumorous breast tissue removed from a 54-year-old Caucasian female during a bilateral radical mastectomy. Pathology for the associated tumor tissue indicated residual invasive grade 3 mammary ductal adenocarcinoma. Family history included benign hypertension, hyperlipidemia, and a malignant neoplasm of the colon.
16	LUNGFET03	The library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus, who died at 20 weeks' gestation from fetal demise. Family history included bronchitis.
17	CONNTUT01	The library was constructed using RNA isolated from a soft tissue tumor removed from the clival area of the skull of a 30-year-old Caucasian female. Pathology indicated chondroid chordoma with neoplastic cells reactive for keratin. Patient history included deficiency anemia.
18	ISLTNOT01	The library was constructed using RNA isolated from pancreatic islet cells. Starting RNA was made from a pooled collection of islet cells.
19	THP1NOT03	The library was constructed using RNA isolated from untreated THP-1 cells. THP-1 (ATCC TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia.
20	KIDNFET01	The library was constructed using RNA isolated from kidney tissue removed from a Caucasian female fetus, who died at 17 weeks' gestation from ancephalus. Family history included gastritis.

Table 4 cont.

Polynucleotide SEQ ID NO:	Library	Library Description
21	FIBRNOT01	The library was constructed at Stratagene (STR937212), using RNA isolated from the WI38 lung fibroblast cell line, which was derived from a 3-month-old Caucasian female fetus. 2x10e6 primary clones were amplified to stabilize the library for long-term storage.
22	LATRTUT02	The library was constructed using RNA isolated from a myxoma removed from the left atrium of a 43-year-old Caucasian male during annuloplasty. Pathology indicated atrial myxoma. Patient history included pulmonary insufficiency, acute myocardial infarction, atherosclerotic coronary artery disease and hyperlipidemia. Family history included benign hypertension, acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes.
23	PROSTUT08	The library was constructed using RNA isolated from prostate tumor tissue removed from a 60-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated an adenocarcinoma (Gleason grade 3+4). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Family history included tuberculosis, cerebrovascular disease, and arteriosclerotic coronary artery disease.
24	PROSNOT16	The library was constructed using RNA isolated from diseased prostate tissue removed from a 68-year-old Caucasian male during a radical prostatectomy. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3+4). The patient presented with elevated prostate specific antigen (PSA). During this hospitalization, the patient was diagnosed with myasthenia gravis. Patient history included osteoarthritis, and type II diabetes. Family history included benign hypertension, acute myocardial infarction, hyperlipidemia, and arteriosclerotic coronary artery disease.

Table 4 cont

Polynucleotide Library SEQ ID NO:		Library Description
25	COLAUCT01	COLAUCT01 The library was constructed using RNA isolated from diseased ascending colon tissue removed from a 74-year-old Caucasian male during a multiple-segment large bowel excision with temporary ileostomy. Pathology indicated inflammatory bowel disease consistent with chronic ulcerative colitis, severe acute and chronic mucosal inflammation with erythema, ulceration, and pseudopolyp formation involving the entire colon and rectum. The sigmoid colon had an area of mild stricture formation. One diverticulum with diverticulitis was identified near this zone.
26	PROSBPT03	PROSBPT03 The library was constructed using RNA isolated from diseased prostate tissue removed from a 59-year-old Caucasian male during a radical prostatectomy and regional lymph node excision. Pathology indicated benign prostatic hyperplasia (BPH). Pathology for the associated tumor indicated adenocarcinoma, Gleason grade 3+3. The patient presented with elevated prostate specific antigen (PSA), benign hypertension, and hyperlipidemia. Family history included cerebrovascular disease, benign hypertension and prostate cancer.

Table 5

Program ABI FACTURA	Description A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Reference Perkin-Elmer Applied Biosystems, Foster City, CA.	Parameter Threshold
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25: 3389-3402.	ESTs: Probability value= 1.0E-8 or less Full Length sequences: Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, tfasta, tfastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad Sci. 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183: 63-98; and Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489.	ESTs: fasta E value=1.06E-6 Assembled ESTs: fasta Identity= 95% or greater and Match length=200 bases or greater; fastx E value=1.0E-8 or less Full Length sequences: fastx score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS and PRINTS databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S and J.G. Henikoff, Nucl. Acid Res., 19:6565-72, 1991. J.G. Henikoff and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger; and Probability value= 1.0E-3 or less, if applicable
PFAM	A Hidden Markov Models-based application useful for protein family search.	Krogh, A. et al. (1994) J. Mol. Biol., 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322.	Score=10-50 bits, depending on individual protein families

Table 5 cont.

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Score= 4.0 or greater
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186- 194.	
Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M. S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12: 431-439.	Score≈5 or greater
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch et al. <u>supra</u> ; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

5

15

30

1. A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, or a fragment thereof.

- 2. A substantially purified variant having at least 90% amino acid identity to the amino acid sequence of claim 1.
 - 3. An isolated and purified polynucleotide encoding the polypeptide of claim 1.
- 4. An isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide of claim 3.
- 10 5. An isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide of claim 3.
 - 6. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 3.
 - 7. A method for detecting a polynucleotide, the method comprising the steps of:
 - (a) hybridizing the polynucleotide of claim 6 to at least one nucleic acid in the sample, thereby forming a hybridization complex; and
 - (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of the polynucleotide in the sample.
- 8. The method of claim 7 further comprising amplifying the polynucleotide prior to hybridization.
 - 9. An isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26, or a fragment thereof.
 - 10. An isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide of claim 9.
- 25 11. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 9.
 - 12. An expression vector comprising at least a fragment of the polynucleotide of claim 3.
 - 13. A host cell comprising the expression vector of claim 12.
 - 14. A method for producing a polypeptide, the method comprising the steps of:
 - a) culturing the host cell of claim 13 under conditions suitable for the expression of the polypeptide; and
 - b) recovering the polypeptide from the host cell culture.
- 15. A pharmaceutical composition comprising the polypeptide of claim 1 in conjunction with a suitable pharmaceutical carrier.

16. A purified antibody which specifically binds to the polypeptide of claim 1.

- 17. A purified agonist of the polypeptide of claim 1.
- 18. A purified antagonist of the polypeptide of claim 1.
- 19. A method for treating or preventing a disorder associated with decreased
- 5 expression of CSIGP, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 15.
 - 20. A method for treating or preventing a disorder associated with increased expression of CSIGP, the method comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 18.

10

SEQUENCE LISTING

```
<110> INCYTE PHARMACEUTICALS, INC.
      BANDMAN, Olga
      HILLMAN, Jennifer L.
      LAL, Preeti
YUE, Henry
      TANG, Y. Tom
      PATTERSON, Chandra
      BAUGHN, Mariah R.
      YANG, Junming
<120> CELL SIGNALING PROTEINS
<130> PF-0521 PCT
<140> To Be Assigned
<141> Herewith
<150> 60/085,3434; 60/098,010
<151> 1998-05-13; 1998-08-26
<160> 26
<170> PERL Program
<210> 1
<211> 418
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 016108
<400> 1
Met Ser Leu Leu Asp Cys Phe Cys Thr Ser Arg Thr Gln Val Glu
Ser Leu Arg Pro Glu Lys Gln Ser Glu Thr Ser Ile His Gln Tyr
                 20
                                      25
                                                          30
Leu Val Asp Glu Pro Thr Leu Ser Trp Ser Arg Pro Ser Thr Arg
                                      40
Ala Ser Glu Val Leu Cys Ser Thr Asn Val Ser His Tyr Glu Leu
                 50
Gln Val Glu Ile Gly Arg Gly Phe Asp Asn Leu Thr Ser Val His
                 65
                                      70
                                                          75
Leu Ala Arg His Thr Pro Thr Gly Thr Leu Val Thr Ile Lys Ile
                 80
                                      85
Thr Asn Leu Glu Asn Cys Asn Glu Glu Arg Leu Lys Ala Leu Gln
                 95
                                     100
Lys Ala Val Ile Leu Ser His Phe Phe Arg His Pro Asn Ile Thr
                110
                                     115
                                                         120
Thr Tyr Trp Thr Val Phe Thr Val Gly Ser Trp Leu Trp Val Ile
                125
                                    130
                                                         135
Ser Pro Phe Met Ala Tyr Gly Ser Ala Ser Gln Leu Leu Arg Thr
                140
                                     145
                                                         150
Tyr Phe Pro Glu Gly Met Ser Glu Thr Leu Ile Arg Asn Ile Leu
                155
                                    160
                                                         165
Phe Gly Ala Val Arg Gly Leu Asn Tyr Leu His Gln Asn Gly Cys
                170
                                     175
                                                         180
Ile His Arg Ser Ile Lys Ala Ser His Ile Leu Ile Ser Gly Asp
                185
                                    190
                                                         195
Gly Leu Val Thr Leu Ser Gly Leu Ser His Leu His Ser Leu Val
```

```
Lys His Gly Gln Arg His Arg Ala Val Tyr Asp Phe Pro Gln Phe
                215
                                    220
Ser Thr Ser Val Gln Pro Trp Leu Ser Pro Glu Leu Leu Arg Gln
                230
                                    235
Asp Leu His Gly Leu Tyr Val Lys Ser Asp Ile Tyr Ser Val Gly
                245
                                    250
                                                         255
Ile Thr Ala Cys Glu Leu Ala Ser Gly Gln Val Pro Phe Gln Asp
                260
                                    265
                                                         270
Met His Arg Thr Gln Met Leu Leu Gln Lys Leu Lys Gly Pro Pro
                275
                                    280
                                                         285
Tyr Ser Pro Leu Asp Ile Ser Ile Phe Pro Gln Ser Glu Ser Arg
                290
                                    295
                                                         300
Met Lys Asn Ser Gln Ser Gly Val Asp Ser Gly Ile Gly Glu Ser
                305
                                    310
Val Leu Val Ser Ser Gly Thr His Thr Val Asn Ser Asp Arg Leu
                320
                                    325
His Thr Pro Ser Ser Lys Thr Phe Ser Pro Ala Phe Phe Ser Leu
                335
                                    340
                                                         345
Val Gln Leu Cys Leu Gln Gln Asp Pro Glu Lys Arg Pro Ser Ala
                                    355
                350
Ser Ser Leu Leu Ser His Val Phe Phe Lys Gln Met Lys Glu Glu
                365
                                    370
                                                         375
Ser Gln Asp Ser Ile Leu Ser Leu Leu Pro Pro Ala Tyr Asn Lys
                380
                                    385
                                                         390
Pro Ser Ile Ser Leu Pro Pro Val Leu Pro Trp Thr Glu Pro Glu
                395
                                    400
                                                         405
Cys Asp Phe Pro Asp Glu Lys Asp Ser Tyr Trp Glu Phe
                410
```

```
<210> 2
<211> 540
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 640521
<400> 2
Met Ser Ser Cys Val Ser Ser Gln Pro Ser Ser Asn Arg Ala Ala
                                     10
Pro Gln Asp Glu Leu Gly Gly Arg Gly Ser Ser Ser Ser Glu Ser
                 20
Gln Lys Pro Cys Glu Ala Leu Arg Gly Leu Ser Ser Leu Ser Ile
                 35
                                     40
His Leu Gly Met Glu Ser Phe Ile Val Val Thr Glu Cys Glu Pro
                 50
                                     55
Gly Cys Ala Val Asp Leu Gly Leu Ala Arg Asp Arg Pro Leu Glu
                                     70
Ala Asp Gly Gln Glu Val Pro Leu Asp Ser Ser Gly Ser Gln Ala
                 80
                                     85
Arg Pro His Leu Ser Gly Arg Lys Leu Ser Leu Gln Glu Arg Ser
                 95
                                     100
                                                         105
Gln Gly Gly Leu Ala Ala Gly Gly Ser Leu Asp Met Asn Gly Arg
                110
                                    115
                                                         120
Cys Ile Cys Pro Ser Leu Pro Tyr Ser Pro Val Ser Ser Pro Gln
                125
                                    130
                                                         135
Ser Ser Pro Arg Leu Pro Arg Arg Pro Thr Val Glu Ser His His
                140
                                    145
Val Ser Ile Thr Gly Met Gln Asp Cys Val Gln Leu Asn Gln Tyr
```

```
Thr Leu Lys Asp Glu Ile Gly Lys Gly Ser Tyr Gly Val Val Lys
                170
                                     175
Leu Ala Tyr Asn Glu Asn Asp Asn Thr Tyr Tyr Ala Met Lys Val
                185
                                     190
                                                         195
Leu Ser Lys Lys Leu Ile Arg Gln Ala Gly Phe Pro Arg Arg
                200
                                     205
                                                         210
Pro Pro Pro Arg Gly Thr Arg Pro Ala Pro Gly Gly Cys Ile Gln
                215
                                     220
                                                         225
Pro Arg Gly Pro Ile Glu Gln Val Tyr Gln Glu Ile Ala Ile Leu
                230
                                     235
Lys Lys Leu Asp His Pro Asn Val Val Lys Leu Val Glu Val Leu
                245
                                    250
Asp Asp Pro Asn Glu Asp His Leu Tyr Met Val Phe Glu Leu Val
                260
                                    265
Asn Gln Gly Pro Val Met Glu Val Pro Thr Leu Lys Pro Leu Ser
                275
                                    280
                                                         285
Glu Asp Gln Ala Arg Phe Tyr Phe Gln Asp Leu Ile Lys Gly Ile
                290
                                    295
                                                         300
Glu Tyr Leu His Tyr Gln Lys Ile Ile His Arg Asp Ile Lys Pro
                305
                                    310
Ser Asn Leu Leu Val Gly Glu Asp Gly His Ile Lys Ile Ala Asp
                320
                                    325
Phe Gly Val Ser Asn Glu Phe Lys Gly Ser Asp Ala Leu Leu Ser
                335
                                    340
                                                         345
Asn Thr Val Gly Thr Pro Ala Phe Met Ala Pro Glu Ser Leu Ser
                350
                                    355
                                                         360
Glu Thr Arg Lys Ile Phe Ser Gly Lys Ala Leu Asp Val Trp Ala
                365
                                    370
Met Gly Val Thr Leu Tyr Cys Phe Val Phe Gly Gln Cys Pro Phe
                380
                                    385
                                                         390
Met Asp Glu Arg Ile Met Cys Leu His Ser Lys Ile Lys Ser Gln
                395
                                    400
                                                         405
Ala Leu Glu Phe Pro Asp Gln Pro Asp Ile Ala Glu Asp Leu Lys
                410
                                    415
                                                         420
Asp Leu Ile Thr Arg Met Leu Asp Lys Asn Pro Glu Ser Arg Ile
                425
                                    430
                                                         435
Val Val Pro Glu Ile Lys Leu His Pro Trp Val Thr Arg His Gly
                440
                                    445
Ala Glu Pro Leu Pro Ser Glu Asp Glu Asn Cys Thr Leu Val Glu
                455
                                    460
Val Thr Glu Glu Glu Val Glu Asn Ser Val Lys His Ile Pro Ser
                470
                                    475
                                                         480
Leu Ala Thr Val Ile Leu Val Lys Thr Met Ile Arg Lys Arg Ser
                485
                                    490
Phe Gly Asn Pro Phe Glu Gly Ser Arg Arg Glu Glu Arg Ser Leu
                500
                                    505
Ser Ala Pro Gly Asn Leu Leu Thr Lys Gln Gly Ser Glu Asp Asn
                515
                                    520
Leu Gln Gly Thr Asp Pro Pro Pro Val Gly Glu Glu Glu Val Leu
               530
                                    535
```

```
<210> 3
<211> 729
<212> PRT
<213> Homo sapiens
```

<221> misc-feature <223> Incyte Clone 1250171

```
<400> 3
Met Gln Ser Thr Ser Asn His Leu Trp Leu Leu Ser Asp Ile Leu
Gly Gln Gly Ala Thr Ala Asn Val Phe Arg Gly Arg His Lys Lys
                                     25
                 20
Thr Gly Asp Leu Phe Ala Ile Lys Val Phe Asn Asn Ile Ser Phe
                 35
                                     40
Leu Arg Pro Val Asp Val Gln Met Arg Glu Phe Glu Val Leu Lys
                                     55
                 50
Lys Leu Asn His Lys Asn Ile Val Lys Leu Phe Ala Ile Glu Glu
                 65
                                     70
Glu Thr Thr Thr Arg His Lys Val Leu Ile Met Glu Phe Cys Pro
                                                         90
                 80
                                     85
Cys Gly Ser Leu Tyr Thr Val Leu Glu Glu Pro Ser Asn Ala Tyr
                                    100
Gly Leu Pro Glu Ser Glu Phe Leu Ile Val Leu Arg Asp Val Val
                110
                                    115
                                                        120
Gly Gly Met Asn His Leu Arg Glu Asn Gly Ile Val His Arg Asp
                125
                                    130
                                                        135
Ile Lys Pro Gly Asn Ile Met Arg Val Ile Gly Glu Asp Gly Gln
                                    145
                140
Ser Val Tyr Lys Leu Thr Asp Phe Gly Ala Ala Arg Glu Leu Glu
                155
                                    1.60
                                                        165
Asp Asp Glu Gln Phe Val Ser Leu Tyr Gly Thr Glu Glu Tyr Leu
                170
                                    175
                                                        180
His Pro Asp Met Tyr Glu Arg Ala Val Leu Arg Lys Asp His Gln
                185
                                    190
Lys Lys Tyr Gly Ala Thr Val Asp Leu Trp Ser Ile Gly Val Thr
                200
                                    205
                                                        210
Phe Tyr His Ala Ala Thr Gly Ser Leu Pro Phe Arg Pro Phe Glu
                215
                                    220
Gly Pro Arg Arg Asn Lys Glu Val Met Tyr Lys Ile Ile Thr Gly
                230
                                    235
                                                        240
Lys Pro Ser Gly Ala Ile Ser Gly Val Gln Lys Ala Glu Asn Gly
                                    250
                245
Pro Ile Asp Trp Ser Gly Asp Met Pro Val Ser Cys Ser Leu Ser
                260
                                    265
                                                        270
Arg Gly Leu Gln Val Leu Leu Thr Pro Val Leu Ala Asn Ile Leu
                275
                                    280
                                                        285
Glu Ala Asp Gln Glu Lys Cys Trp Gly Phe Asp Gln Phe Phe Ala
                290
                                    295
                                                        300
Glu Thr Ser Asp Ile Leu His Arg Met Val Ile His Val Phe Ser
                305
                                    310
                                                        315
Leu Gln Gln Met Thr Ala His Lys Ile Tyr Ile His Ser Tyr Asn
                320
                                    325
Thr Ala Thr Ile Phe His Glu Leu Val Tyr Lys Gln Thr Lys Ile
                335
                                    340
                                                        345
Ile Ser Ser Asn Gln Glu Leu Ile Tyr Glu Gly Arg Arg Leu Val
                350
                                    355
                                                         360
Leu Glu Pro Gly Arg Leu Ala Gln His Phe Pro Lys Thr Thr Glu
                365
                                    370
                                                         375
Glu Asn Pro Ile Phe Val Val Ser Arg Glu Pro Leu Asn Thr Ile
                380
                                    385
                                                        390
Gly Leu Ile Tyr Glu Lys Ile Ser Leu Pro Lys Val His Pro Arg
                395
                                    400
Tyr Asp Leu Asp Gly Asp Ala Ser Met Ala Lys Ala Ile Thr Gly
                410
                                    415
                                                         420
Val Val Cys Tyr Ala Cys Arg Ile Ala Ser Thr Leu Leu Leu Tyr
                425
                                    430
                                                         435
Gln Glu Leu Met Arg Lys Gly Ile Arg Trp Leu Ile Glu Leu Ile
                440
                                    445
Lys Asp Asp Tyr Asn Glu Thr Val His Lys Lys Thr Glu Val Val
                455
                                    460
Ile Thr Leu Asp Phe Cys Ile Arg Asn Ile Glu Lys Thr Val Lys
```

```
475
                470
Val Tyr Glu Lys Leu Met Lys Ile Asn Leu Glu Ala Ala Glu Leu
                                    490
                                                         495
Gly Glu Ile Ser Asp Ile His Thr Lys Leu Leu Arg Leu Ser Ser
                500
                                    505
                                                         510
Ser Gln Gly Thr Ile Glu Thr Ser Leu Gln Asp Ile Asp Ser Arg
                                    520
                515
                                                         525
Leu Ser Pro Gly Gly Ser Leu Ala Asp Ala Trp Ala His Gln Glu
                530
                                     535
Gly Thr His Pro Lys Asp Arg Asn Val Glu Lys Leu Gln Val Leu
                545
                                    550
                                                         555
Leu Asn Cys Met Thr Glu Ile Tyr Tyr Gln Phe Lys Lys Asp Lys
                560
                                    565
                                                         570
Ala Glu Arg Arg Leu Ala Tyr Asn Glu Glu Gln Ile His Lys Phe
                575
                                    580
                                                         585
Asp Lys Gln Lys Leu Tyr Tyr His Ala Thr Lys Ala Met Thr His
                590
                                    595
                                                         600
Phe Thr Asp Glu Cys Val Lys Lys Tyr Glu Ala Phe Leu Asn Lys
                605
                                    610
                                                         615
Ser Glu Glu Trp Ile Arg Lys Met Leu His Leu Arg Lys Gln Leu
                620
                                    625
Leu Ser Leu Thr Asn Gln Cys Phe Asp Ile Glu Glu Glu Val Ser
                                    640
                635
                                                         645
Lys Tyr Gln Glu Tyr Thr Asn Glu Leu Gln Glu Thr Leu Pro Gln
                650
                                    655
                                                         660
Lys Met Phe Thr Ala Ser Ser Gly Ile Lys His Thr Met Thr Pro
                665
                                    670
Ile Tyr Pro Ser Ser Asn Thr Leu Val Glu Met Thr Leu Gly Met
                680
                                    685
                                                         690
Lys Lys Leu Lys Glu Glu Met Glu Gly Val Val Lys Glu Leu Ala
                695
                                    700
Glu Asn Asn His Ile Leu Glu Arg Phe Gly Ser Leu Thr Met Asp
                710
                                    715
Gly Gly Leu Arg Asn Val Asp Cys Leu
                725
```

```
<211> 313
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 1911587
<400> 4
Met Pro Gly Leu Leu Cys Glu Pro Thr Glu Leu Tyr Asn Ile
                                    10
Leu Asn Gln Ala Thr Lys Leu Ser Arg Leu Thr Asp Pro Asn Tyr
                 20
                                     25
Leu Cys Leu Leu Asp Val Arg Ser Lys Trp Glu Tyr Asp Glu Ser
                 35
                                     40
                                                         45
His Val Ile Thr Ala Leu Arg Val Lys Lys Asn Asn Glu Tyr
                                     55
Leu Leu Pro Glu Ser Val Asp Leu Glu Cys Val Lys Tyr Cys Val
                 65
                                     70
                                                         75
Val Tyr Asp Asn Asn Ser Ser Thr Leu Glu Ile Leu Leu Lys Asp
                 80
                                     85
                                                         90
Asp Asp Asp Ser Asp Ser Asp Gly Asp Gly Lys Asp Leu Val
                                    100
```

Pro Gln Ala Ala Ile Glu Tyr Gly Arg Ile Leu Thr Arg Leu Thr

<210> 4

```
110
His His Pro Val Tyr Ile Leu Lys Gly Gly Tyr Glu Arg Phe Ser
                125
                                    130
Gly Thr Tyr His Phe Leu Arg Thr Gln Lys Ile Ile Trp Met Pro
                140
                                    145
                                                         150
Gln Glu Leu Asp Ala Phe Gln Pro Tyr Pro Ile Glu Ile Val Pro
                155
                                     160
Gly Lys Val Phe Val Gly Asn Phe Ser Gln Ala Cys Asp Pro Lys
                170
                                    175
                                                         180
Ile Gln Lys Asp Leu Lys Ile Lys Ala His Val Asn Val Ser Met
                185
                                    190
                                                        195
Asp Thr Gly Pro Phe Phe Ala Gly Asp Ala Asp Arg Leu Leu His
                200
                                    205
Ile Arg Ile Glu Asp Ser Pro Glu Ala Gln Ile Leu Pro Phe Leu
                215
                                    220
Arg His Met Cys His Phe Ile Glu Ile His His Leu Gly Ser
                230
                                    235
                                                        240
Val Ile Leu Ile Phe Ser Thr Gln Gly Ile Ser Arg Ser Cys Ala
                245
                                    250
                                                        255
Ala Ile Ile Ala Tyr Leu Met His Ser Asn Glu Gln Thr Leu Gln
                260
                                    265
Arg Ser Trp Ala Tyr Val Lys Lys Cys Lys Asn Asn Met Cys Pro
                275
                                    280
Asn Arg Gly Leu Val Ser Gln Leu Leu Glu Trp Glu Lys Thr Ile
               290
                                    295
                                                        300
Leu Gly Asp Ser Ile Thr Asn Ile Met Asp Pro Leu Tyr
                305
                                    310
```

```
<211> 506
<212> PRT
<213> Homo sapiens
<221> misc-feature
<223> Incyte Clone 2079081
<400> 5
Met Arg Asp Pro Leu Thr Asp Cys Pro Tyr Asn Lys Val Tyr Lys
                                     10
Asn Leu Lys Glu Phe Ser Gln Asn Gly Glu Asn Phe Cys Lys Gln
                                     25
Val Thr Ser Val Leu Gln Gln Arg Ala Asn Leu Glu Ile Ser Tyr
                 35
                                     40
Ala Lys Gly Leu Gln Lys Leu Ala Ser Lys Leu Ser Lys Ala Leu
                 50
Gln Asn Thr Arg Lys Ser Cys Val Ser Ser Ala Trp Ala Trp Ala
                 65
                                     70
Ser Glu Gly Met Lys Ser Thr Ala Asp Leu His Gln Lys Leu Gly
                                     85
Lys Ala Ile Glu Leu Glu Ala Ile Lys Pro Thr Tyr Gln Val Leu
                 95
                                    100
                                                         105
Asn Val Gln Glu Lys Lys Arg Lys Ser Leu Asp Asn Glu Val Glu
                110
                                    115
                                                        120
Lys Thr Ala Asn Leu Val Ile Ser Asn Trp Asn Gln Gln Ile Lys
                125
                                    130
                                                        135
Ala Lys Lys Leu Met Val Ser Thr Lys Lys His Glu Ala Leu
                140
                                    145
                                                        150
Phe Gln Leu Val Glu Ser Ser Lys Gln Ser Met Thr Glu Lys Glu
               155
                                    160
Lys Arg Lys Leu Leu Asn Lys Leu Thr Lys Ser Thr Glu Lys Leu
```

<210> 5

```
170
                                    175
Glu Lys Glu Asp Glu Asn Tyr Tyr Gln Lys Asn Met Ala Gly Tyr
                185
                                    190
Ser Thr Arg Leu Lys Trp Glu Asn Thr Leu Glu Asn Cys Tyr Gln
                200
                                    205
                                                         210
Ser Ile Leu Glu Leu Glu Lys Glu Arg Ile Gln Leu Leu Cys Asn
                215
                                    220
                                                         225
Asn Leu Asn Gln Tyr Ser Gln His Ile Ser Leu Phe Gly Gln Thr
                230
                                    235
Leu Thr Thr Cys His Thr Gln Ile His Cys Ala Ile Ser Lys Ile
                245
                                    250
                                                         255
Asp Ile Glu Lys Asp Ile Gln Ala Val Met Glu Glu Thr Ala Ile
                260
                                    265
                                                         270
Leu Ser Thr Glu Asn Lys Ser Glu Phe Leu Leu Thr Asp Tyr Phe
                275
                                    280
Glu Glu Asp Pro Asn Ser Ala Met Asp Lys Glu Arg Arg Lys Ser
                290
                                    295
                                                         300
Leu Leu Lys Pro Lys Leu Leu Arg Leu Gln Arg Asp Ile Glu Lys
                305
                                    310
                                                         315
Ala Ser Lys Asp Lys Glu Gly Leu Glu Arg Met Leu Lys Thr Tyr
                320
                                    325
                                                         330
Ser Ser Thr Ser Ser Phe Ser Asp Ala Lys Ser Gln Lys Asp Thr
                335
                                    340
                                                         345
Ala Ala Leu Met Asp Glu Asn Asn Leu Lys Leu Asp Leu Leu Glu
                350
                                    355
                                                        360
Ala Asn Ser Tyr Lys Leu Ser Ser Met Leu Ala Glu Leu Glu Gln
                365
                                    370
                                                         375
Arg Pro Gln Pro Ser His Pro Cys Ser Asn Ser Ile Phe Arg Trp
                380
                                    385
                                                         390
Arg Glu Lys Glu His Thr His Ser Tyr Val Lys Ile Ser Arg Pro
                395
                                    400
                                                         405
Phe Leu Met Lys Arg Leu Glu Asn Ile Val Ser Lys Ala Ser Ser
                410
                                    415
                                                         420
Gly Gly Gln Ser Asn Pro Gly Ser Ser Thr Pro Ala Pro Gly Ala
                425
                                    430
Ala Gln Leu Ser Ser Arg Leu Cys Lys Ala Leu Tyr Ser Phe Gln
                440
                                    445
                                                         450
Ala Arg Gln Asp Asp Glu Leu Asn Leu Glu Lys Gly Asp Ile Val
                                    460
                455
Ile Ile His Glu Lys Lys Glu Glu Gly Trp Trp Phe Gly Ser Leu
                470
                                    475
                                                         480
Asn Gly Lys Lys Gly His Phe Pro Ala Ala Tyr Val Glu Glu Leu
                485
                                    490
Pro Ser Asn Ala Gly Asn Thr Ala Thr Lys Ala
                500
```

```
40
                 35
Ala Ala Leu Leu Ala Ser His Pro Thr Ala Glu Val Thr Ile Val
                 50
Gln Val Asp Val Ser Asn Leu Gln Ser Val Phe Arg Ala Ser Lys
                 65
                                     70
Glu Leu Lys Gln Arg Phe Gln Arg Leu Asp Cys Ile Tyr Leu Asn
                 80
                                     85
                                                          90
Ala Gly Ile Met Pro Asn Pro Gln Leu Asn Ile Lys Ala Leu Phe
                                    100
                                                         105
Phe Gly Leu Phe Ser Arg Lys Val Ile His Met Phe Ser Thr Ala
                110
                                    115
                                                         120
Glu Gly Leu Leu Thr Gln Gly Asp Lys Ile Thr Ala Asp Gly Leu
                                    130
                                                         135
                1.25
Gln Glu Val Phe Glu Thr Asn Val Phe Gly His Phe Ile Leu Ile
                140
                                    145
Arg Glu Leu Glu Pro Leu Leu Cys His Ser Asp Asn Pro Ser Gln
                                    160
                155
                                                         165
Leu Ile Trp Thr Ser Ser Arg Ser Ala Arg Lys Ser Asn Phe Ser
                170
                                    175
                                                         180
Leu Glu Asp Phe Gln His Ser Lys Gly Lys Glu Pro Tyr Ser Ser
                185
                                    190
                                                         195
Ser Lys Tyr Ala Thr Asp Leu Leu Ser Val Ala Leu Asn Arg Asn
                200
                                    205
                                                         210
Phe Asn Gln Gln Gly Leu Tyr Ser Asn Val Ala Cys Pro Gly Thr
                215
                                    220
Ala Leu Thr Asn Leu Thr Tyr Gly Ile Leu Pro Pro Phe Ile Trp
                230
                                    235
                                                         240
Thr Leu Leu Met Pro Ala Ile Leu Leu Leu Arg Phe Phe Ala Asn
                245
                                    250
                                                         255
Ala Phe Thr Leu Thr Pro Tyr Asn Gly Thr Glu Ala Leu Val Trp
                260
                                    265
                                                         270
Leu Phe His Gln Lys Pro Glu Ser Leu Asn Pro Leu Ile Lys Tyr
                275
                                    280
                                                         285
Leu Ser Ala Thr Thr Gly Phe Gly Arg Asn Tyr Ile Met Thr Gln
                290
                                    295
                                                         300
Lys Met Asp Leu Asp Glu Asp Thr Ala Glu Lys Phe Tyr Gln Lys
                305
                                    310
                                                         315
Leu Leu Glu Leu Glu Lys His Ile Arg Val Thr Ile Gln Lys Thr
                                    325
                320
Asp Asn Gln Ala Arg Leu Ser Gly Ser Cys Leu
                335
```

```
<210> 7
<211> 898
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 2948818
<400> 7
Met Arg Lys Gly Val Leu Lys Asp Pro Glu Ile Ala Asp Leu Ser
                                     10
Tyr Lys Asp Asp Pro Glu Glu Leu Phe Ile Gly Leu His Glu Ile
                 20
                                     25
Gly His Gly Ser Phe Gly Ala Val Tyr Phe Ala Thr Asn Ala His
                 35
                                     40
Thr Ser Glu Val Val Ala Ile Lys Lys Met Ser Tyr Ser Gly Lys
Gln Thr His Glu Lys Trp Gln Asp Ile Leu Lys Glu Val Lys Phe
```

```
Leu Arg Gln Leu Lys His Pro Asn Thr Ile Glu Tyr Lys Gly Cys
                 80
                                     85
Tyr Leu Lys Glu His Thr Ala Trp Leu Val Met Glu Tyr Cys Leu
                                     100
                                                         105
                 95
Gly Ser Ala Ser Asp Leu Leu Glu Val His Lys Lys Pro Leu Gln
                110
                                    115
                                                         120
Glu Val Glu Ile Ala Ala Ile Thr His Gly Ala Leu His Gly Leu
                125
                                     130
                                                         135
Ala Tyr Leu His Ser His Ala Leu Ile His Arg Asp Ile Lys Ala
                                     145
                                                         150
                140
Gly Asn Ile Leu Leu Thr Glu Pro Gly Gln Val Lys Leu Ala Asp
                155
                                     160
Phe Gly Ser Ala Ser Met Ala Ser Pro Ala Asn Ser Phe Val Gly
                170
                                     175
                                                         180
Thr Pro Tyr Trp Met Ala Pro Glu Val Ile Leu Ala Met Asp Glu
                185
                                     190
                                                         195
Gly Gln Tyr Asp Gly Lys Val Asp Ile Trp Ser Leu Gly Ile Thr
                                                         210
                200
                                     205
Cys Ile Glu Leu Ala Glu Arg Lys Pro Pro Leu Phe Asn Met Asn
                                     220
                215
Ala Met Ser Ala Leu Tyr His Ile Ala Gln Asn Asp Ser Pro Thr
                230
                                     235
                                                         240
Leu Gln Ser Asn Glu Trp Thr Asp Ser Phe Arg Arg Phe Val Asp
                245
                                     250
                                                         255
Tyr Cys Leu Gln Lys Ile Pro Gln Glu Arg Pro Thr Ser Ala Glu
                260
                                    265
                                                         270
Leu Leu Arg His Asp Phe Val Arg Arg Asp Arg Pro Leu Arg Val
                275
                                     280
                                                         285
Leu Ile Asp Leu Ile Gln Arg Thr Lys Asp Ala Val Arg Glu Leu
                                                         300
                290
                                     295
Asp Asn Leu Gln Tyr Arg Lys Met Lys Lys Ile Leu Phe Gln Glu
                305
                                     310
Thr Arg Asn Gly Pro Leu Asn Glu Ser Gln Glu Asp Glu Glu Asp
                320
                                     325
                                                         330
Ser Glu His Gly Thr Ser Leu Asn Arg Glu Met Asp Ser Leu Gly
                335
                                     340
Ser Asn His Ser Ile Pro Ser Met Ser Val Ser Thr Gly Ser Gln
                350
                                     355
                                                         360
Ser Ser Ser Val Asn Ser Met Gln Glu Val Met Asp Glu Ser Ser
                                     370
                                                         375
                365
Ser Glu Leu Val Met Met His Asp Asp Glu Ser Thr Ile Asn Ser
                380
                                     385
                                                         390
Ser Ser Ser Val Val His Lys Lys Asp His Val Phe Ile Arg Asp
                395
                                     400
                                                         405
Glu Ala Gly His Gly Asp Pro Arg Pro Glu Pro Arg Pro Thr Gln
                410
                                     415
                                                         420
Ser Val Gln Ser Gln Ala Leu His Tyr Arg Asn Arg Glu Arg Phe
                425
                                     430
Ala Thr Ile Lys Ser Ala Ser Leu Val Thr Arg Gln Ile His Glu
                440
                                     445
His Glu Gln Glu Asn Glu Leu Arg Glu Gln Met Ser Gly Tyr Lys
                455
                                     460
                                                         465
Arg Met Arg Arg Gln His Gln Lys Gln Leu Ile Ala Leu Glu Asn
                470
                                     475
                                                         480
Lys Leu Lys Ala Glu Met Asp Glu His Arg Leu Lys Leu Gln Lys
                485
                                     490
                                                          495
Glu Val Glu Thr His Ala Asn Asn Ser Ser Ile Glu Leu Glu Lys
                500
                                     505
                                                         510
Leu Ala Lys Lys Gln Val Ala Ile Ile Glu Lys Glu Ala Lys Val
                515
                                     520
                                                         525
Ala Ala Ala Asp Glu Lys Lys Phe Gln Gln Gln Ile Leu Ala Gln
                530
                                     535
Gln Lys Lys Asp Leu Thr Thr Phe Leu Glu Ser Gln Lys Lys Gln
```

```
545
                                    550
Tyr Lys Ile Cys Lys Glu Lys Ile Lys Glu Glu Met Asn Glu Asp
                560
                                    565
His Ser Thr Pro Lys Lys Glu Lys Gln Glu Arg Ile Ser Lys His
                575
                                    580
Lys Glu Asn Leu Gln His Thr Gln Ala Glu Glu Glu Ala His Leu
                590
                                    595
                                                         600
Leu Thr Gln Gln Arg Leu Tyr Tyr Asp Lys Asn Cys Arg Phe Phe
                605
                                    610
Lys Arg Lys Ile Met Ile Lys Arg His Glu Val Glu Gln Gln Asn
                620
                                    625
Ile Arg Glu Glu Leu Asn Lys Lys Arg Thr Gln Lys Glu Met Glu
                635
                                    640
                                                         645
His Ala Met Leu Ile Arg His Asp Glu Ser Thr Arg Glu Leu Glu
                650
                                    655
                                                         660
Tyr Arg Gln Leu His Thr Leu Gln Lys Leu Arg Met Asp Leu Ile
                665
                                    670
                                                         675
Arg Leu Gln His Gln Thr Glu Leu Glu Asn Gln Leu Glu Tyr Asn
                                    685
                680
                                                         690
Lys Arg Arg Glu Arg Glu Leu His Arg Lys His Val Met Glu Leu
                                    700
                695
Arg Gln Gln Pro Lys Asn Leu Lys Ala Met Glu Met Gln Ile Lys
                710
                                    715
                                                         720
Lys Gln Phe Gln Asp Thr Cys Lys Val Gln Thr Lys Gln Tyr Lys
                                    730
                725
Ala Leu Lys Asn His Gln Leu Glu Val Thr Pro Lys Asn Glu His
                740
                                    745
Lys Thr Ile Leu Lys Thr Leu Lys Asp Glu Gln Thr Arg Lys Leu
                755
                                    760
                                                         765
Ala Ile Leu Ala Glu Gln Tyr Glu Gln Ser Ile Asn Glu Met Met
                770
                                    775
Ala Ser Gln Ala Leu Arg Leu Asp Glu Ala Gln Glu Ala Glu Cys
                785
                                    790
                                                         795
Gln Ala Leu Arg Leu Gln Leu Gln Gln Glu Met Glu Leu Leu Asn
                                    805
                800
                                                         810
Ala Tyr Gln Ser Lys Ile Lys Met Gln Thr Glu Ala Gln His Glu
                815
                                    820
                                                         825
Arg Glu Leu Gln Lys Leu Glu Gln Arg Val Ser Leu Arg Arg Ala
                                    835
                830
                                                         840
His Leu Glu Gln Lys Ile Glu Glu Glu Leu Ala Ala Leu Gln Lys
                845
                                    850
                                                         855
Glu Arg Ser Glu Arg Ile Lys Asn Leu Leu Glu Arg Gln Glu Arg
                860
                                    865
                                                         870
Glu Ile Glu Thr Phe Asp Met Glu Ser Leu Arg Met Gly Phe Gly
                                    880
                875
Asn Leu Val Thr Leu Asp Phe Pro Lys Glu Asp Tyr Arg
                890
                                    895
```

```
<210> 8
<211> 336
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 054191
<400> 8
Met Ala Thr Leu Ser Val Ile Gly Ser Ser Ser Leu Ile Ala Tyr
1 5 10 15
Ala Val Phe His Asn Ile Gln Lys Ser Pro Glu Ile Arg Pro Leu
```

```
20
                                     25
Phe Tyr Leu Ser Phe Cys Asp Leu Leu Gly Leu Cys Trp Leu
                 35
                                     40
                                                         45
Thr Glu Thr Leu Leu Tyr Gly Ala Ser Val Ala Asn Lys Asp Ile
                                     55
Ile Cys Tyr Asn Leu Gln Ala Val Gly Gln Ile Phe Tyr Ile Ser
                 65
                                     70
Ser Phe Leu Tyr Thr Val Asn Tyr Ile Trp Tyr Leu Tyr Thr Glu
                                    85
                 80
Leu Arg Met Lys His Thr Gln Ser Gly Gln Ser Thr Ser Pro Leu
                                    100
                                                        105
Val Ile Asp Tyr Thr Cys Arg Val Gly Gln Met Ala Phe Val Phe
                110
                                    115
                                                        120
Ser Ser Leu Ile Pro Leu Leu Leu Met Thr Pro Val Phe Cys Leu
               125
                                    130
                                                        135
Gly Asn Thr Ser Glu Cys Phe Gln Asn Phe Ser Gln Ser His Lys
                140
                                    145
                                                        150
Cys Ile Leu Met His Ser Pro Pro Ser Ala Met Ala Glu Leu Pro
                                    160
                155
                                                        165
Pro Ser Ala Asn Thr Ser Val Cys Ser Thr Leu Tyr Phe Tyr Gly
                                    175
                170
Ile Ala Ile Phe Leu Gly Ser Phe Val Leu Ser Leu Leu Thr Ile
                                    190
                185
                                                        195
Met Val Leu Leu Ile Arg Ala Gln Thr Leu Tyr Lys Lys Phe Val
                                    205
                200
                                                        210
Lys Ser Thr Gly Phe Leu Gly Ser Glu Gln Trp Ala Val Ile His
                215
                                    220
                                                        225
Ile Val Asp Gln Arg Val Arg Phe Tyr Pro Val Ala Phe Phe Cys
                230
                                    235
                                                        240
Cys Trp Gly Pro Ala Val Ile Leu Met Ile Ile Lys Leu Thr Lys
                245
                                    250
                                                         255
Pro Gln Asp Thr Lys Leu His Met Ala Leu Tyr Val Leu Gln Ala
                260
                                    265
                                                        270
Leu Thr Ala Thr Ser Gln Gly Leu Leu Asn Cys Gly Val Tyr Gly
                275
                                    280
Trp Thr Gln His Lys Phe His Gln Leu Lys Gln Glu Ala Arg Arg
                290
                                    295
                                                        300
Asp Ala Asp Thr Gln Thr Pro Leu Leu Cys Ser Gln Lys Arg Phe
                                    310
                                                        315
                305
Tyr Ser Arg Gly Leu Asn Ser Leu Glu Ser Thr Leu Thr Phe Pro
                320
                                    325
Ala Ser Thr Ser Thr Ile
                335
```

```
<210> 9
<211> 686
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 1403604
<400> 9
Met Gly Pro Arg Ser Arg Glu Arg Arg Ala Gly Ala Val Gln Asn
                                     10
                 5
                                                         15
Thr Asn Asp Ser Ser Ala Leu Ser Lys Arg Ser Leu Ala Ala Arg
                 20
                                     25
Gly Tyr Val Gln Asp Pro Phe Ala Ala Leu Leu Val Pro Gly Ala
                 35
                                     40
Ala Arg Arg Ala Pro Leu Ile His Arg Gly Tyr Tyr Val Arg Ala
```

```
Arg Ala Val Arg His Cys Val Arg Ala Phe Leu Glu Gln Ile Gly
                                     70
Ala Pro Gln Ala Ala Leu Arg Ala Gln Ile Leu Ser Leu Gly Ala
                                      85
                 80
Gly Phe Asp Ser Leu Tyr Phe Arg Leu Lys Thr Ala Gly Arg Leu
                                    100
                 95
Ala Arg Ala Ala Val Trp Glu Val Asp Phe Pro Asp Val Ala Arg
                                     115
                110
Arg Lys Ala Glu Arg Ile Gly Glu Thr Pro Glu Leu Cys Ala Leu
                125
                                    130
Thr Gly Pro Phe Glu Arg Gly Glu Pro Ala Ser Ala Leu Cys Phe
                140
                                    145
                                                         150
Glu Ser Ala Asp Tyr Cys Ile Leu Gly Leu Asp Leu Arg Gln Leu
                                    160
                155
Gln Arg Val Glu Glu Ala Leu Gly Ala Ala Gly Leu Asp Ala Ala
                170
                                    175
Ser Pro Thr Leu Leu Leu Ala Glu Ala Val Leu Thr Tyr Leu Glu
                185
                                    190
                                                         195
Pro Glu Ser Ala Ala Ala Leu Ile Ala Trp Ala Ala Gln Arg Phe
                                    205
                200
                                                         210
Pro Asn Ala Leu Phe Val Val Tyr Glu Gln Met Arg Pro Gln Asp
                                    220
                215
Ala Phe Gly Gln Phe Met Leu Gln His Phe Arg Gln Leu Asn Ser
                230
                                    235
                                                         240
Pro Leu His Gly Leu Glu Arg Phe Pro Asp Val Glu Ala Gln Arg
                245
                                    250
Arg Arg Phe Leu Gln Ala Gly Trp Thr Ala Cys Gly Ala Val Asp
                                    265
                260
Ile Asn Glu Phe Tyr His Cys Phe Leu Pro Ala Glu Glu Arg Arg
                275
                                    280
Arg Val Glu Asn Ile Glu Pro Phe Asp Glu Phe Glu Glu Trp His
                290
                                    295
Leu Lys Cys Ala His Tyr Phe Ile Leu Ala Ala Ser Arg Gly Asp
                                    310
                305
Thr Leu Ser His Thr Leu Val Phe Pro Ser Ser Glu Ala Phe Pro
                320
                                    325
                                                         330
Arg Val Asn Pro Ala Ser Pro Ser Gly Val Phe Pro Ala Ser Val
                335
                                    340
                                                         345
Val Ser Ser Glu Gly Gln Val Pro Asn Leu Lys Arg Tyr Gly His
                350
                                    355
Ala Ser Val Phe Leu Ser Pro Asp Val Ile Leu Ser Ala Gly Gly
                365
                                     370
Phe Gly Glu Glu Gly Arg His Cys Arg Val Ser Gln Phe His
                380
                                    385
Leu Leu Ser Arg Asp Cys Asp Ser Glu Trp Lys Gly Ser Gln Ile
                395
                                     400
Gly Ser Cys Gly Thr Gly Val Gln Trp Asp Gly Arg Leu Tyr His
                410
                                     415
Thr Met Thr Arg Leu Ser Glu Ser Arg Val Leu Val Leu Gly Gly
                                    430
                425
                                                         435
Arg Leu Ser Pro Val Ser Pro Ala Leu Gly Val Leu Gln Leu His
                440
                                    445
Phe Phe Lys Ser Glu Asp Asn Asn Thr Glu Asp Leu Lys Val Thr
                                     460
                455
Ile Thr Lys Ala Gly Arg Lys Asp Asp Ser Thr Leu Cys Cys Trp
                470
                                     475
                                                         480
Arg His Ser Thr Thr Glu Val Ser Cys Gln Asn Gln Glu Tyr Leu
                485
                                     490
Phe Val Tyr Gly Gly Arg Ser Val Val Glu Pro Val Leu Ser Asp
                500
                                    505
                                                         510
Trp His Phe Leu His Val Gly Thr Met Ala Trp Val Arg Ile Pro
                                    520
Val Glu Gly Glu Val Pro Glu Ala Arg His Ser His Ser Ala Cys
```

```
535
Thr Trp Gln Gly Gly Ala Leu Ile Ala Gly Gly Leu Gly Ala Ser
                545
                                    550
Glu Glu Pro Leu Asn Ser Val Leu Phe Leu Arg Pro Ile Ser Cys
                560
                                    565
                                                         570
Gly Phe Leu Trp Glu Ser Val Asp Ile Gln Pro Pro Ile Thr Pro
                575
                                    580
                                                         585
Arg Tyr Ser His Thr Ala His Val Leu Asn Gly Lys Leu Leu Leu
                590
                                    595
Val Gly Gly Ile Trp Ile His Ser Ser Ser Phe Pro Gly Val Thr
                605
                                    610
                                                         615
Val Ile Asn Leu Thr Thr Gly Leu Ser Ser Glu Tyr Gln Ile Asp
                620
                                    625
                                                        630
Thr Thr Tyr Val Pro Trp Pro Leu Met Leu His Asn His Thr Ser
                635
                                    640
Ile Leu Leu Pro Glu Glu Gln Gln Leu Leu Leu Gly Gly Gly
                650
                                    655
                                                        660
Gly Asn Cys Phe Ser Phe Gly Thr Tyr Phe Asn Pro His Thr Val
                665
                                    670
                                                        675
Thr Leu Asp Leu Ser Ser Leu Ser Ala Gly Gln
                680
                                    685
```

```
<210> 10
<211> 519
<212> PRT
<213> Homo sapiens
<220>
```

<221> misc-feature <223> Incyte Clone 1652936

Met Met Ser Lys Asn Asp Gly Glu Ile Arg Phe Gly Asn Pro Ala Glu Leu His Gly Thr Lys Val Gln Ile Pro Tyr Leu Thr Thr Glu Lys Asn Ser Phe Lys Arg Met Asp Asp Glu Asp Lys Gln Glu Thr Gln Ser Pro Thr Met Ser Pro Leu Ala Ser Pro Pro Ser Ser Pro คก Pro His Tyr Gln Arg Val Pro Leu Ser His Gly Tyr Ser Lys Leu Arg Ser Ser Ala Glu Gln Met His Pro Ala Pro Tyr Glu Ala Arg Gln Pro Leu Val Gln Pro Glu Gly Ser Ser Ser Gly Gly Pro Gly Thr Lys Pro Leu Arg His Gln Ala Ser Leu Ile Arg Ser Phe Ser Val Glu Arg Glu Leu Gln Asp Asn Ser Ser Tyr Pro Asp Glu Pro Trp Arg Ile Thr Glu Glu Gln Arg Glu Tyr Tyr Val Asn Gln Phe Arg Ser Leu Gln Pro Asp Pro Ser Ser Phe Ile Ser Gly Ser Val Ala Lys Asn Phe Phe Thr Lys Ser Lys Leu Ser Ile Pro Glu Leu Ser Tyr Ile Trp Glu Leu Ser Asp Ala Asp Cys Asp Gly Ala Leu Thr Leu Pro Glu Phe Cys Ala Ala Phe His Leu Ile Val Ala Arg Lys Asn Gly Tyr Pro Leu Pro Glu Gly Leu Pro Pro Thr Leu Gln

```
220
                215
Pro Glu Tyr Leu Gln Ala Ala Phe Pro Lys Pro Lys Trp Asp Cys
                                    235
                230
Gln Leu Phe Asp Ser Tyr Ser Glu Ser Leu Pro Ala Asn Gln Gln
                245
                                    250
                                                         255
Pro Arg Asp Leu Asn Arg Met Glu Thr Ser Val Lys Asp Met Ala
                                                         270
                260
                                    265
Asp Leu Pro Val Pro Asn Gln Asp Val Thr Ser Asp Asp Lys Gln
                                    280
                275
Ala Leu Lys Ser Thr Ile Asn Glu Ala Leu Pro Lys Asp Val Ser
                290
                                    295
                                                         300
Glu Asp Pro Ala Thr Pro Lys Asp Ser Asn Ser Leu Lys Ala Arg
                                                         315
                                    310
                305
Pro Arg Ser Arg Ser Tyr Ser Ser Thr Ser Ile Glu Glu Ala Met
                320
                                    325
Lys Arg Gly Glu Asp Pro Pro Thr Pro Pro Pro Arg Pro Gln Lys
                335
                                    340
                                                         345
Thr His Ser Arg Ala Ser Ser Leu Asp Leu Asn Lys Val Phe Gln
                350
                                    355
                                                         360
Pro Ser Val Pro Ala Thr Lys Ser Gly Leu Leu Pro Pro Pro Pro
                365
                                    370
                                                         375
Ala Leu Pro Pro Arg Pro Cys Pro Ser Gln Ser Glu Gln Val Ser
                                    385
                380
                                                         390
Glu Ala Glu Leu Leu Pro Gln Leu Ser Arg Ala Pro Ser Gln Ala
                395
                                     400
                                                         405
Ala Glu Ser Ser Pro Ala Lys Lys Asp Val Leu Tyr Ser Gln Pro
                410
                                    415
                                                         420
Pro Ser Lys Pro Ile Arg Arg Lys Phe Arg Pro Glu Asn Gln Ala
                425
                                     430
                                                         435
Thr Glu Asn Gln Glu Pro Ser Thr Ala Ala Ser Gly Pro Ala Ser
                440
                                     445
                                                         450
Ala Ala Thr Met Lys Pro His Pro Thr Val Gln Lys Gln Ser Ser
                                     460
                                                         465
                455
Lys Gln Lys Lys Ala Ile Gln Thr Ala Ile Arg Lys Asn Lys Glu
                                     475
                                                         480
                470
Ala Asn Ala Val Leu Ala Arg Leu Asn Ser Glu Leu Gln Gln
                                                         495
                485
                                    490
Leu Lys Glu Val His Gln Glu Arg Ile Ala Leu Glu Asn Gln Leu
                500
Glu Gln Leu Arg Pro Val Thr Val Leu
                515
```

```
<210> 11
<211> 334
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 1710702
<400> 11
Met Phe Arg Trp Glu Arg Ser Ile Pro Leu Arg Gly Ser Ala Ala
                                     10
Ala Leu Cys Asn Asn Leu Ser Val Leu Gln Leu Pro Ala Arg Asn
                 20
Leu Thr Tyr Phe Gly Val Val His Gly Pro Ser Ala Gln Leu Leu
                                      40
                                                          45
Ser Ala Ala Pro Glu Gly Val Pro Leu Ala Gln Arg Gln Leu His
                                     55
```

Ala Lys Glu Gly Ala Gly Val Ser Pro Pro Leu Ile Thr Gln Val

```
70
His Trp Cys Val Leu Pro Phe Arg Val Leu Leu Val Leu Thr Ser
                 80
                                      85
His Arg Gly Ile Gln Met Tyr Glu Ser Asn Gly Tyr Thr Met Val
                 95
                                     100
                                                         105
Tyr Trp His Ala Leu Asp Ser Gly Asp Ala Ser Pro Val Gln Ala
                110
                                     115
Val Phe Ala Arg Gly Ile Ala Ala Ser Gly His Phe Ile Cys Val
                125
                                     130
                                                         135
Gly Thr Trp Ser Gly Arg Val Leu Val Phe Asp Ile Pro Ala Lys
                140
                                     145
                                                         150
Gly Pro Asn Ile Val Leu Ser Glu Glu Leu Ala Gly His Gln Met
                155
                                    160
                                                         165
Pro Ile Thr Asp Ile Ala Thr Glu Pro Ala Gln Gly Gln Asp Cys
                170
                                     175
                                                         180
Val Ala Asp Met Val Thr Ala Asp Asp Ser Gly Leu Leu Cys Val
                185
                                    190
                                                         195
Trp Arg Ser Gly Pro Glu Phe Thr Leu Leu Thr Arg Ile Pro Gly
                200
                                    205
                                                         210
Phe Gly Val Pro Cys Pro Ser Val Gln Leu Trp Gln Gly Ile Ile
                215
                                     220
                                                         225
Ala Ala Gly Tyr Gly Asn Gly Gln Val His Leu Tyr Glu Ala Thr
                230
                                     235
                                                         240
Thr Gly Asn Leu His Val Gln Ile Asn Ala His Ala Arg Ala Ile
                245
                                     250
                                                         255
Cys Ala Leu Asp Leu Ala Ser Glu Val Gly Lys Leu Leu Ser Ala
                260
                                    265
                                                         270
Gly Glu Asp Thr Phe Val His Ile Trp Lys Leu Ser Arg Asn Pro
                275
                                    280
                                                         285
Glu Ser Gly Tyr Ile Glu Val Glu His Cys His Gly Glu Cys Val
                290
                                     295
                                                         300
Ala Asp Thr Gln Leu Cys Gly Ala Arg Phe Cys Asp Ser Ser Gly
                305
                                    310
                                                         315
Asn Ser Phe Ala Val Thr Gly Tyr Asp Leu Ala Glu Ile Arg Arg
                320
                                    325
Phe Ser Ser Val
```

```
<210> 12
<211> 569
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 3239149
<400> 12
Met Asp Pro Ala Glu Ala Val Leu Gln Glu Lys Ala Leu Lys Phe
Met Asn Ser Ser Glu Arg Glu Asp Cys Asn Asn Gly Glu Pro Pro
                 20
                                      25
                                                          30
Arg Lys Ile Ile Pro Glu Lys Asn Ser Leu Arg Gln Thr Tyr Asn
                                      40
Ser Cys Ala Arg Leu Cys Leu Asn Gln Glu Thr Val Cys Leu Ala
                 50
                                      55
Ser Thr Ala Met Lys Thr Glu Asn Cys Val Ala Lys Thr Lys Leu
                 65
                                     70
                                                          75
Ala Asn Gly Thr Ser Ser Met Ile Val Pro Lys Gln Arg Lys Leu
                                     85
                                                          90
Ser Ala Ser Tyr Glu Lys Glu Lys Glu Leu Cys Val Lys Tyr Phe
                 95
                                     100
```

```
Glu Gln Trp Ser Glu Ser Asp Gln Val Glu Phe Val Glu His Leu
                                    115
                110
Ile Ser Gln Met Cys His Tyr Gln His Gly His Ile Asn Ser Tyr
                125
                                    130
Leu Lys Pro Met Leu Gln Arg Asp Phe Ile Thr Ala Leu Pro Ala
                                    145
                                                         150
                140
Arg Gly Leu Asp His Ile Ala Glu Asn Ile Leu Ser Tyr Leu Asp
                                                         165
                155
                                    160
Ala Lys Ser Leu Cys Ala Ala Glu Leu Val Cys Lys Glu Trp Tyr
                                    175
                                                         180
                170
Arg Val Thr Ser Asp Gly Met Leu Trp Lys Lys Leu Ile Glu Arg
                                     190
                185
Met Val Arg Thr Asp Ser Leu Trp Arg Gly Leu Ala Glu Arg Arg
                                     205
                200
Gly Trp Gly Gln Tyr Leu Phe Lys Asn Lys Pro Pro Asp Gly Asn
                                     220
                215
Ala Pro Pro Asn Ser Phe Tyr Arg Ala Leu Tyr Pro Lys Ile Ile
                                     235
                230
                                                         240
Gln Asp Ile Glu Thr Ile Glu Ser Asn Trp Arg Cys Gly Arg His
                                     250
                                                         255
                245
Ser Leu Gln Arg Ile His Cys Arg Ser Glu Thr Ser Lys Gly Val
                260
                                     265
Tyr Cys Leu Gln Tyr Asp Asp Gln Lys Ile Val Ser Gly Leu Arg
                                     280
                                                         285
                275
Asp Asn Thr Ile Lys Ile Trp Asp Lys Asn Thr Leu Glu Cys Lys
                                     295
                                                         300
                290
Arg Ile Leu Thr Gly His Thr Gly Ser Val Leu Cys Leu Gln Tyr
                305
                                     310
Asp Glu Arg Val Ile Ile Thr Gly Ser Ser Asp Ser Thr Val Arg
                                     325
                320
                                                         330
Val Trp Asp Val Asn Thr Gly Glu Met Leu Asn Thr Leu Ile His
                335
                                     340
His Cys Glu Ala Val Leu His Leu Arg Phe Asn Asn Gly Met Met
                350
                                     355
Val Thr Cys Ser Lys Asp Arg Ser Ile Ala Val Trp Asp Met Ala
                                     370
                                                         375
                365
Ser Pro Thr Asp Ile Thr Leu Arg Arg Val Leu Val Gly His Arg
                380
                                     385
Ala Ala Val Asn Val Val Asp Phe Asp Asp Lys Tyr Ile Val Ser
                395
                                     400
Ala Ser Gly Asp Arg Thr Ile Lys Val Trp Asn Thr Ser Thr Cys
                                                         420
                410
                                     415
Glu Phe Val Arg Thr Leu Asn Gly His Lys Arg Gly Ile Ala Cys
                425
                                     430
                                                         435
Leu Gln Tyr Arg Asp Arg Leu Val Val Ser Gly Ser Ser Asp Asn
                440
                                     445
Thr Ile Arg Leu Trp Asp Ile Glu Cys Gly Ala Cys Leu Arg Val
                                     460
                455
Leu Glu Gly His Glu Glu Leu Val Arg Cys Ile Arg Phe Asp Asn
                470
                                     475
                                                         480
Lys Arg Ile Val Ser Gly Ala Tyr Asp Gly Lys Ile Lys Val Trp
                485
                                     490
Asp Leu Val Ala Ala Leu Asp Pro Arg Ala Pro Ala Gly Thr Leu
                500
                                     505
Cys Leu Arg Thr Leu Val Glu His Ser Gly Arg Val Phe Arg Leu
                                     520
                515
Gln Phe Asp Glu Phe Gln Ile Val Ser Ser Ser His Asp Asp Thr
                530
                                     535
Ile Leu Ile Trp Asp Phe Leu Asn Asp Pro Ala Ala Gln Ala Glu
                545
                                     550
Pro Pro Arg Ser Pro Ser Arg Thr Tyr Thr Tyr Ile Ser Arg
                560
                                     565
```

```
<210> 13
<211> 123
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 3315936
<400> 13
Met Glu Phe Leu Glu Ile Gly Gly Ser Lys Pro Phe Arg Ser Tyr
                                       10
Trp Glu Met Tyr Leu Ser Lys Gly Leu Leu Leu Ile Phe Val Val
Asp Ser Ala Asp His Ser Arg Leu Pro Glu Ala Lys Lys Tyr Leu
                  35
                                        40
                                                             45
His Gln Leu Ile Ala Ala Asn Pro Val Leu Pro Leu Val Val Phe
                  50
                                       55
                                                             60
Ala Asn Lys Gln Asp Leu Glu Ala Ala Tyr His Ile Thr Asp Ile
                  65
                                        70
His Glu Ala Leu Ala Leu Ser Glu Val Gly Asn Asp Arg Lys Met
                                        85
                  80
Phe Leu Phe Gly Thr Tyr Leu Thr Lys Asn Gly Ser Glu Ile Pro
                  95
                                      100
Ser Thr Met Gln Asp Ala Lys Asp Leu Ile Ala Gln Leu Ala Ala
                 110
Asp Val Gln
<210> 14
<211> 1957
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 016108
atttttgtca ctttctgtgt gaactaaagt gattcaatgt ctcttttgga ttgcttctgt 60
acttcaagaa cacaagttga atcactcaga cctgaaaaac agtctgaaac cagtatccat 120
caatactigg tigatgagec accettice tggteacgte catecactag agecagtgaa 180
gtactatgtt ccaccaacgt ttctcactat gagetecaag tagaaatagg aagaggattt 240
gacaacttga cttctgtcca tcttgcacgg catactccca caggaacact ggtaactata 300
aaaattacaa atctggaaaa ctgcaatgaa gaacgcctga aagctttaca gaaagccgtg 360
attetatece actititecg geateceaat attacaactt attggacagt titecatgit 420 ggcagetgge titiggttat tietecatti atggeetatg giteageaag teaactetig 480
aggacctatt tecetgaagg aatgagtgaa actttaataa gaaacattet etttggagee 540
gtgagagggt tgaactatct gcaccaaaat ggctgtattc acaggagtat taaagccagc 600
catatoctca titotggtga tggcctagtg accotototg gcctgtccca totgcatagt 660
ttggttaagc atggacagag gcatagggct gtgtatgatt tcccacagtt cagcacatca 720
gtgcagccgt ggttgagtcc agaactactg agacaggatt tacatgggtt atatgtgaag 780
tcagatattt acagtgttgg gatcacagca tgtgaattag ccagtgggca ggtgcctttc 840
caggacatgc atagaactca gatgctgtta cagaaactga aaggtcctcc ttatagccca 900
ttggatatca gtattttccc tcaatcagaa tccaqaatga aaaattccca gtcaggtgta 960
gactotggga ttggagaaag tgtgottgto tocagtggaa otcacacagt aaatagtgac 1020
cgattacaca caccatcete aaaaacttte teteetgeet tetttagett ggtacagete 1080
tgtttgcaac aagatoctga gaaaaggoca toagcaagca gtttattgto coatgtttto 1140 ttcaaacaga tgaaagaaga aagocaggat toaatacttt cactgttgco tootgottat 1200
aacaagccat caatatcatt gcctccagtg ttaccttgga ctgagccaga atgtgatttt 1260
cctgatgaaa aagactcata ctgggaattc tagggctgcc aaatcatttt atgtcctata 1320
```

```
tacttgacac tttctccttg ctgctttttc ttctgtattt ctaggtacaa ataccagaat 1380
tatacttgaa aatacagttg gtgcactgga gaatctatta tttaaaacca ctctgttcaa 1440
aggggcacca gtttgtagtc cctctgtttc gcacagagta ctatgacaag gaaacatcag 1500
aattactaat ctagctagtg tcatttattc tggaattitt ttctaagctg tgactaactc 1560
tttttatctc tcaatataat ttttgagcca gttaattttt ttcagtattt tgctgtccct 1620
tgggaatggg ccctcagagg acagtgcttc caagtacatc ttctcccaga ttctctggcc 1680
tittaatga gctattgtta aaccaacagg ctagtttatc ttacatcaga cccttttctg 1740
gtagagggaa aatgtttgtg ctttcccttt ttcttctgtt aatacttatg gtaacaccta 1800
actgagecte acteacatta aatgatteac ttgaaatata tacagaaatt gtaatttget 1860
tttttttaaa aaagggggct aaagtaacac tttcctactt atgtaaatta tagatcctaa 1920
attcacgcac cccgtgggag ctcaataaag atttact
<210> 15
<211> 2545
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 640521
gagccgagct gggggcgcag agcgcgggag gcggcggcgg cgcggaccca gtcacccagg 60
ctgcagtgca gtggtgcgat ctcggctcag tcattgcaac cttcacctcc cggattcaag 120
tgattetect gcctcagcct cccgagtage tgggattaca ggtgcccace accatgccca 180
ggtggctccg ctgccggatg ggagtgcccc agtgtgctgg atgaagctgg cgcatgcacc 240
atgtcatcat gtgtctctag ccagcccagc agcaaccggg ccgcccccca ggatgagctg 300
gggggcaggg gcagcagcag cagcgaaagc cagaagcct gtgaggcct gcqgggctc 360
tcatccttga gcatccacct gggcatggag tccttcattg tggtcaccga gtgtgagccg 420
ggctgtgctg tggacctcgg cttggcgcgg gaccggcccc tggaggccga tggccaagag 480
gtocccettg actoccogg gtoccaggod oggooccaco totcoggtog caagetgtot 540
ctqcaaqaqc ggtcccaggg tgggctggca gccggtggca gcctggacat gaacggacgc 600
tgcatctgcc cgtccctgcc ctactcaccc gtcagctccc cgcagtcctc gcctcggctg 660
ccccggcggc cgacagtgga gtctcaccac gtctccatca cgggtatgca ggactgtgtg 720
caqcigaatc agtatacct gaaggatgaa attggaaagg gctcctatgg tgtcgtcaag 780
ttggcctaca atgaaaatga caatacctac tatgcaatga aggtgctgtc caaaaagaag 840
ctgatccggc aggccggctt tccacgtcgc cctccacccc gaggcacccg gccagctcct 900
ggaggetgca tecageceag gggeeceatt gageaggtgt accaggaaat tgeeateete 960
aagaagctgg accaccccaa tgtggtgaag ctggtgagg tcctggatga ccccaatgag 1020 gaccatctgt acatggtgtt cgaactggtc aaccaagggc ccgtgatgga agtgcccacc 1080
ctcaaaccac tetetgaaga ccaggecegt ttetaettee aggatetgat caaaggeate 1140
gagtacttac actaccagaa gatcatccac cgtgacatca aaccttccaa cctcctggtc 1200
ggagaagatg ggcacatcaa gatcgctgac tttggtgtga gcaatgaatt caagggcagt 1260
gacgogotoc totocaacac cgtgggcacg cocgoottca tggcaccoga gtcgctotot 1320
gagaccegea agatettete tgggaaggee ttggatgttt gggetatggg tgtgacacta 1380 tactgetttg tetttggeea gtgeceatte atggacgage ggateatgtg tttacacagt 1440
aagatcaaga gtcaggccct ggaatttcca gaccagcccg acatagctga ggacttgaag 1500
gacetgatea ceegtatget ggacaagaac eeegagtega ggategtggt geeggaaate 1560
aagetgeace cetgggteac gaggeatggg geggageegt tgeegtegga ggatgagaac 1620
tgcacgctgg tcgaagtgac tgaagaggag gtcgagaact cagtcaaaca cattcccagc 1680 ttggcaaccg tgatcctggt gaagaccatg atacgtaaac gctcctttgg gaacccattc 1740
gagggcagcc ggcgggagga acgctcactg tcagcgcctg gaaacttgct cacgaagcaa 1800
ggcagcgaag acaacctcca gggcaccgac ccgcccccg tgggggagga ggaagtgctc 1860
ttgtgagagg cagtcctgc gtggaaagtt gctgggccc cgccccggc tcccccgcac 1920
gcatgcatcc actgcggccg gaggaggcca tggagcccga gtagctgcct ggatcgctcg 1980
acctegeatg egegeeget egectetggg gggetgetge accgegttte catageagea 2040
tgtcctacgg aaacccagca cgtgtgtaga gcctcgatcg tcatctctgg ttatttgttt 2100
togacogtgg cogotggotg gotggacagg ogggtgtgag gagttgcaga occaaacoca 2220
cgtgcatttt gggacaattg ctttttaaaa cgtttttatg ccaaaaatcc ttcattgtga 2280
ttttcagaac cacgtcagat ataccaagtg actgtgtgtg gggtttgaca actgtggaaa 2340
ggcgagcaga aaactccggc ggtctgaggc catggaggtg gttgctgcat ttgagaggga 2400 gtagggggct agatgtggct cctagtgcaa accggaaacc atggcacett ccagagccgt 2460
```

ggtctcaagg agtcagagca gggctggccc tcagtagctg cagggagctt tgatggcaac 2520

```
ttattttgtt aagaagggtt ttttt
<210> 16
<211> 3034
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 1250171
<400> 16
tectgagtet egaggaggee gegggageee geeggeggtg gegeggegga gaceeggetg 60
gtataacaag aggattgcct gatccagcca agatgcagag cacttctaat catctgtggc 120
ttttatctga tattttaggc caaggagcta ctgcaaacgt ctttcgtgga agacataaga 180
aaactggtga titattigct atcaaagtat ttaataacat aagcttcctt cgtccagtgg 240
atgttcaaat qaqagaattt gaagtgttga aaaaactcaa tcacaaaaat attgtcaaat 300
tatttgctat tgaagaggag acaacaacaa gacataaagt acttattatg gaattttgtc 360
catgtgggag tttatacact gttttagaag aacettetaa tgeetatgga etaecagaat 420
ctgaattett aattgttttg cgagatgtgg tgggtggaat gaatcateta cgaqaqaatg 480
gtatagtgca ccgtgatatc aagccaggaa atatcatgcg tgttataggg gaagatggac 540
agtotgtgta caaactcaca gattttggtg cagctagaga attagaagat gatgagcagt 600
ttgtttctct gtatggcaca gaagaatatt tgcaccctga tatgtatgag agagcagtgc 660
taagaaaaga tcatcagaag aaatatggag caacagttga tctttggagc attggggtaa 720
cattttacca tgcagctact ggatcactgc catttagacc ctttgaaggg cctcgtagga 780
ataaagaagt gatgtataaa ataattacag gaaagccttc tggtgcaata tctggagtac 840
agaaagcaga aaatggacca attgactgga gtggagacat gcctgtttct tgcagtcttt 900
ctcggggtct tcaggttcta cttacccctg ttcttgcaaa catccttgaa gcagatcagg 960
aaaagtgttg gggttttgac cagttttttg cagaaactag tgatatactt caccgaatgg 1020
taaticatgi titttegeta caacaaatga cageteataa gatttatata catagetata 1080
atactgctac tatatttcat quactggtat ataaacaaac caaaattatt tcttcaaatc 1140
aagaacttat ctacgaaggg cgacgcttag tcttagaacc tggaaggctg gcacaacatt 1200
tocctaaaac tactgaggaa aaccetatat ttgtagtaag ccgggaacct ctgaatacca 1260
taggattaat atatgaaaaa atttecetee etaaagtaca tecaegttat gatttagaeg 1320
gggatgctag catggctaag gcaataacag gggttgtgt ttatgcctgc agaattgcca 1380 gtaccttact gctttatcag gaattaatgc gaaaggggat acgatggctg attgaattaa 1440
ttaaagatga ttacaatgaa actgttcaca aaaagacaga agttgtgatc acattggatt 1500
tetgtateag aaacattgaa aaaactgtga aagtatatga aaagttgatg aagatcaace 1560
tggaagcggc agagttaggt gaaatttcag acatacacac caaattgttg agactttcca 1620
gttctcaggg aacaatagaa accagtcttc aggatatcga cagcagatta tctccaggtg 1680
gatcactggc agacgcatgg gcacatcaag aaggcactca tccgaaagac agaaatgtag 1740
aaaaactaca agtcctgtta aattgcatga cagagattta ctatcagttc aaaaaagaca 1800
aagcagaacg tagattagct tataatgaag aacaaatcca caaatttgat aagcaaaaac 1860
tgtattacca tgccacaaaa gctatgacgc actttacaga tgaatgtgtt aaaaagtatg 1920
aggcattttt qaataagtca gaaqaatgqa taaqaaaqat qcttcatctt aggaaacaqt 1980
tattatcgct gactaatcag tgttttgata ttgaagaaga agtatcaaaa tatcaagaat 2040
atactaatga gttacaagaa actctgcctc agaaaatgtt tacagcttcc agtggaatca 2100
aacataccat gaccccaatt tatccaagtt ctaacacatt agtagaaatg actcttggta 2160
tgaagaaatt aaaggaagag atggaagggg tggttaaaga acttgctgaa aataaccaca 2220 ttttagaaag gtttggctct ttaaccatgg atggtggcct tcgcaacgtt gactgtcttt 2280
agetttetaa tagaagttta agaaaagttt cegttigeac aagaaaataa egettiggea 2340
ttaaatgaat gootttatag atagtoactt gtttctacaa ttcagtattt gatgtggtcg 2400
tgtaaatatg tacaatattg taaatacata aaaaatatac aaatttttgg ctgctgtgaa 2460
gatgtaattt tatettttaa catttataat tatatgagga aatttgacet cagtgateac 2520
gagaagaaag ccatgaccga ccaatatgtt gacatactga teetetacte tgagtggggc 2580
taaataagtt attttctctg accgcctact ggaaatattt ttaagtggaa ccaaaatagg 2640
catcettaca aatcaggaag actgacttga cacgtttgta aatggtagaa cggtggctac 2700
tgtgagtggg gagcagaacc gcaccactgt tatactggga taacaatttt tttgagaagg 2760 ataaagtggc attatttat tttacaaggt gcccagatcc cagttatcct tgtatccatg 2820
taatttcaga tgaattatta agcaaacatt ttaaagtgaa ttcattatta aaaactattc 2880
attititic titiggccata aatgigtaat tgicattaaa atticaaggi catticaact 2940
gttttaaget gtatatttet ttaattetge ttactattte atggaaaaaa ataaatttet 3000
```

3034

caattttaaa aaatttttt ataaaaaaaa aaaa

<210> 17 <211> 1337 <212> DNA <213> Homo sapiens <220> <221> misc-feature <223> Incyte Clone 1911587 gaaagctgtg ggaccatcct ggcaaccccg gtgtttggct gggttctagc gtaccgtctg 60 tgtggccggt gggggacctg cggtcggagt gggagggcca gtctgcaccc aagaggtgga 120 agaggacggg ctttaggctg gaagcgcctt agaggagcca tttttccagg tggggccca 180 ggcagaggct ccgacaggga gcctggccat agtcgcgcac caggggaggt ggagcgcgtc 240 ccagacccga gcccccgacc tcagccaaac ccattcette tgtcettgga ggccagaggg 300 gactotgage ateggaaage aggatgeetg gtttgetttt atgtgaacca acagagettt 360 acaacateet gaateaggee acaaaactet ecagattaac agaceecaac tatetetgtt 420 tattqqatgt ccgttccaaa tgggagtatg acgaaagcca tgtgatcact gcccttcgag 480 tgaagaagaa aaataatgaa tatcttctcc cggagtctgt ggacctggag tgtgtgaagt 540 actgcgtggt gtatgataac aacagcagca ccctggagat actcttaaaa gatgatgatg 600 atgaticaga ctctgatggt gatggcaaag atcttgtgcc tcaagcagcc attgagtatg 660 gcaggatect gaccegeete acceaecace eegtetacat eetgaaaggg ggetatgage 720 getteteagg caegtaceae ttteteegga eecagaagat catetqqatq ceteaggaae 780 tggatgcatt tcagccatac cccattgaaa tcgtgccagg gaaggtcttc gttggcaatt 840 tcagtcaagc ctgtgacccc aagattcaga aggacttgaa aatcaaagcc catgtcaatg 900 tetecatgga tacagggeec ttttttgeag gegatgetga caggettetg cacateegga 960 tagaagattc eceggaagec cagattette cettettacg ccacatgtgt cactteattg 1020 aaattcacca tcaccttggc tctgtcattc tgatcttttc cacccagggt atcagccgca 1080 gttgtgccgc catcatagcc tacctcatgc atagtaacga gcagaccttg cagaggtcct 1140 gggcctatgt caagaagtgc aaaaacaaca tgtgtccaaa tcggggattg gtgagccagc 1200 tgctggaatg ggagaagact atccttggag attccatcac aaacatcatg gatccgctct 1260 actgatcttc toogaggccc accgaagggt actgaagagc ctcacctggg ggcattttgt 1320 gggtggaggg ccagagt <210> 18 <211> 1639 <212> DNA <213> Homo sapiens <220> <221> misc-feature <223> Incyte Clone 2079081 <400> 18 gacaaaagcc agacacattt caacatgagg gacccactga cagattgtcc gtataataaa 60 gtatacaaga acctaaagga gttttctcaa aatggagaga atttctgcaa acaggtcaca 120 totgttotto agcaaagggo aaacotggaa attagctatg ccaaaggact toagaaactg 180 gcaagcaagc tgagcaaagc attacagaac acgagaaaaa gttgtgttag cagtgcctgg 240 gcctgggcct cagagggaat gaaatccaca gcggacctgc atcaaaaact tggcaaagca 300 attgaattgg aagcaataaa accgacttat caagtcctaa atgtacaaga gaagaagaga 360 aaatcacttg acaatgaagt tgaaaagaca gcaaatcttg tcattagcaa ctggaatcag 420 caaattaagg ccaagaagaa attaatggtt agtaccaaga aacatgaagc acttttccag 480 cttgtagaaa gctccaagca atctatgact gagaaggaga agcggaagct cctcaataaa 540 ctgacaaaat caactgaaaa gttggaaaag gaagatgaaa attactacca aaaaaacatg 600 gcgggttatt ctaccagact gaaatgggaa aacacactag agaactgcta ccagagcatt 660 ctggagctgg agaaggaaag aattcaactt ttatgcaata acttaaacca gtacagccaa 720 catatttete tttttggcca aaccetgace acatgccaca egeagattea etgtgecate 780 agcaagattg acattgaaaa agatatccag gctgtaatgg aagaaactgc aattttatct 840 acagaaaaca aatctgagtt cctgttaacg gattactttg aagaagatcc taacagtgca 900 atggataaag agagacgaaa gtotttacta aaaccaaaat tattgagact gcagagagac 960

```
attgaaaaag cctcaaaaga caaggaaggc ctggaacgaa tgcttaaaac gtactccagc 1020
acctectect tetetgatge aaagagecag aaagacacag cagegttaat ggatgagaac 1080
aatttgaaac tagacctttt ggaagcgaac tcctacaaac tgtcatcaat gttagcagaa 1140
cttgagcaaa gacctcaacc cagccatcct tgtagtaatt ccatcttcag gtggagggaa 1200
aaggagcata ctcatagcta tgtgaaaata tctcggcctt ttttaatgaa gagattagag 1260
aatattqtqa qcaaqqcatc ttctqgtggg cagagcaatc caggttcttc aactccagcc 1320
cctggtgcag cccagctcag cagcagactt tgcaaggcct tgtattcttt tcaagccagg 1380
caaqatqatq agttgaattt ggaaaagggt gacattgtga ttatacacga gaaaaaagaa 1440
gaaggatggt ggttiggatc tittgaatggg aaaaaaggcc attitcctgc cgcttatgtg 1500
gaggagttac cttcaaatgc tggcaacaca gctacaaagg cataaaacaa gactctgaac 1560
atactacctt cacactcggt aatcaacaat acagtgtggt tcaaataaga ataaagtgct 1620
cttaccttta aaaaaaaaa
<210> 19
<211> 1504
<212> DNA
<213> Homo sapiens
<221> misc-feature
<223> Incyte Clone 2472655
cgaaatcgta ggacttccga aagcagcggt ggcgtttgct tcactgcttg gaagtgtgag 60
ctctgcaagc ggctgctggc ggaagatgat gagcttcatc tgtgttttggc gtgcaggaac 180
atgagcaagg cagaagetgt etgtgetget etgetggeet etcaccecae tgetgaggte 240
accattgtcc aggtggatgt cagcaacctg cagteggtct teegggcctc caaggaactt 300
aagcaaaggt ticagagatt agactgtata tatctaaatg ctgggatcat gcctaatcca 360
caactaaata tcaaaqcact tttctttggc ctcttttcaa gaaaagtgat tcatatgttc 420
tccacagetg aaggeetget gacceagggt gataagatca etgetgatgg aettcaggag 480
qtqtttqaqa ccaatqtctt tggccatttt atcctgattc gggaactgga gcctctcctc 540
tgtcacagtg acaatccatc tcagctcatc tggacatcat ctcgcagtgc aaggaaatct 600
aatttcagcc tcgaggactt ccagcacagc aaaggcaagg aaccctacag ctcttccaaa 660
tatgccactg accttttgag tgtggctttg aacaggaact tcaaccagca gggtctctat 720
tccaatgtgg cctgtccagg tacagcattg accaatttga catatggaat tctgcctccg 780
tttatatgga cgctgttgat gccggcaata ttgctacttc gcttttttgc aaatgcattc 840
actttgacac catataatgg aacagaagct ctggtatggc ttttccacca aaagcctgaa 900
tototoaato ototgatoaa atatotgagt gooaccactg gotttggaag aaattacatt 960
atgacccaga agatggacct agatgaagac actgctgaaa aattttatca aaagttactg 1020
gaactggaaa agcacattag ggtcactatt caaaaaacag ataatcaggc caggctcagt 1080
ggctcatgcc tataattcca gcactttggg aggccaaggc agaaggatca cttgagacca 1140
ggagttcaag accagcetga gaaacatagt gagccettgt etetacaaaa agaaataaaa 1200
ataatagctg ggtgtggtgg catgcgcatg tagtcccagc tactcagaag gatgaggtgg 1260
gaggatetet tgaggetggg aggeagaggt tgeagtgage tgagattgtg ceaetgeaet 1320
ccaqcctqqq tqacaqcqaq accctqtctc aaaatatqta tatatttaat atatataaa 1380
aaccagagct gacaatgaca ctctggaaca ttgcatacct tctgtacatt ctggggtaca 1440
tggatttcta ctgagttgga taatatgcat ttgtaataaa ctatgaacta tgaaaaaaaa 1500
aaaa
<210> 20
<211> 3096
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 2948818
gggtgttctt ataacttaag ttcagttttt tctttcctgt gaggaagagg cagttttta 60
aatgaagcca tototgggga aatogtattg attgttgtag otaaatacgg aatttttaaa 120
```

```
gtctttagta tgttgaactg gaaatatagg acatgcgttt gagatctact gtgagttgca 180
tcataaatac aaaggactga agttataaaa gagaaaagag aagtttgctg ctaaaatgaa 240
totgagoaat atggaatatt ttgtgccaca cacaaaaagg tactgaggat ttacccccca 300
aaaaaaattq tcaatgagaa ataaagctaa ctgatatcaa aaagcagagc ctgctctact 360
ggccatcatg cgtaaagggg tgctgaagga cccagagatt gccgatctat cctacaaaga 420
tgatcctgag gaacttttta ttggtttgca tgaaattggg catggaagtt ttggagcagt 480
ttattttgct acaaatgctc acaccagtga ggtggtggca attaagaaga tgtcctatag 540
tgggaagcag acccatgaga aatggcaaga tattcttaag gaagttaaat ttttacgaca 600
attgaagcat cotaatacta ttgagtacaa aggotgttac ttgaaagaac acactgottg 660
gttggtgatg gaatattgct taggctcagc ctctgattta ttagaagttc ataaaaaacc 720
acttcaggaa gtggagatcg ctgccattac tcatggagcc ttgcatggac tagcctacct 780
acatteteat geattgatte atagggatat taaageagga aatattette taacagagee 840
aggtcaggta aaactagctg attitggatc tgcttcaatg gcttctcctg ccaactcctt 900
cgtgggcaca ccttactgga tggctccaga ggtgatctta gctatggatg aaggacagta 960
geogecett tteaacatga atgeaatgag tgeettatat cacattgeec agaatgaete 1080
cccaacgtta cagtctaatg aatggacaga ctcctttagg agatttgttg attactgctt 1140
gcagaaaata cctcaggaaa ggccaacatc agcagaacta ttaaggcatg actttgttcg 1200
acgagaccgg ccactacgtg tcctcattga cctcatacag aggacaaaag atgcagttcg 1260 tgagctagat aacctacagt accgaaaaat gaaaaaaata cttttccaag agacacggaa 1320
tggaccettg aatgagteac aggaggatga ggaagacagt gaacatggaa ceageetgaa 1380
cagggaaatg gacagcetgg gcagcaacca ttccattcca agcatgtccg tgagcacagg 1440
cagccagage ageagtgtga acagcatgea ggaagteatg gaegagagea gtteegaact 1500
tgtcatgatg cacgatgacg aaagcacaat caattccagc tcctccgtcg tgcataagaa 1560
agateatgta tteataaggg atgaggeggg ceaeggegat eceaggeetg ageegggee 1620 tacceagtea gtteagagee aggeettea etaceggaae agagageget ttgeeaegat 1680
caaatcagca totttggtta cacgacagat coatgagcat gagcaggaga acgagttgcg 1740
ggaacagatg tcaggttata agcggatgcg gcgccagcac cagaagcagc tgatcgccct 1800
ggagaacaag ctgaaggctg agatggacga gcaccgcctc aagctacaga aggaggtgga 1860
gacgcatgcc aacaactcgt ccatcgagct ggagaagctg gccaagaagc aagtggctat 1920
catagaaaag gaggcaaagg tagctgcagc agatgagaag aagttccagc aacagatctt 1980
ggcccagcag aagaaagatt tgacaacttt cttagaaagt cagaagaagc agtataagat 2040
ttgtaaggaa aaaataaaag aggaaatgaa tgaggaccat agcacaccca agaaagagaa 2100
gcaagagegg atetecaaac ataaagagaa ettgcageac acacaggetg aagaggaage 2160
ccaccttete acteaacaga gactqtacta cgacaaaaat tgtcgtttet tcaageggaa 2220
aataatgatc aagcggcacg aggtggagca gcagaacatt cgggaggaac taaataaaaa 2280
gaggaccag aaggagatgg agcatgccat gctaatccgg cacgacgagt ccacccgaga 2340
gctagagtac aggcagctgc acacgttaca gaagctacgc atggatctga tccgtttaca 2400
gcaccagacg gaactggaaa accagctgga gtacaataag aggcgagaaa gagaactgca 2460
cagaaagcat gtcatggaac ttcggcaaca gccaaaaaac ttaaaggcca tggaaatgca 2520
aattaaaaaa caqtttcaqq acacttqcaa aqtacaqacc aaacaqtata aagcactcaa 2580
gaatcaccag ttggaagtta ctccaaagaa tgagcacaaa acaatcttaa agacactgaa 2640
agatgagcag acaagaaaac ttgccatttt ggcagagcag tatgaacaga gtataaatga 2700
aatgatggcc tetcaagcgt tacggctaga tgaggctcaa gaagcagaat gccaggcctt 2760
gaggotacag etccagcagg aaatggaget getcaaegee taccagagea aaatcaagat 2820
gcaaacagag gcacaacatg aacgtgagct ccagaagcta gagcagagag tgtctctgcg 2880
cagagcacac ettgagcaga agattgaaga ggagetgget gecetteaga aggaaegeag 2940
cgagagaata aagaacctat tggaaaggca agagcgagag attgaaactt ttgacatgga 3000 gagcctcaga atgggatttg ggaatttggt tacattagat tttcctaagg aggactacag 3060
atgagattaa attttttgcc atttacaaaa aaaaaa
                                                                     3096
<210> 21
<211> 1527
<212> DNA
<213> Homo sapiens
<221> misc-feature
<223> Incyte Clone 054191
<400> 21
ctccgcttga ggagaagcgc caagtgcgca tggggacgct atagcaattc gtttgctgtc 60
ettectetee tregaagatg acaaggeeta ceategtite treetgeett tgggeegtea 120
```

```
ggcagttggt tgggacccgc tccaaccctc ggttcttcct gcaatacagt ggatacaatt 180
tgtcatggct actotgagtg trataggttc aagttcactt attgcctatg ctgtattcca 240
taatatacag aaatctccag agataagacc acttttttat ctgagettct gtgacetget 300
cctgggactt tgctggctca cggagacact tctctatgga gcttcagtag caaataagga 360
catcatctgc tataacctac aagcagttgg acagatattc tacatttcct catttetcta 420
caccgtcaat tacatctggt atttgtacac agagctgagg atgaaacaca cccaqagtgg 480
acagagcaca totocactgg tgatagatta tacttgtoga gttggtcaaa tggcctttgt 540 tttotcaage otgatacote tgctattgat gacacotgta ttotgtctgg gaaatactag 600
tgaatgtttc caaaacttca gtcagagcca caagtgtatc ttgatgcact caccaccatc 660
agecatgget gaacttccac ettetgecaa cacatetgte tgtageacae tttattttta 720
tggtatcgcc attitectgg gcagcittgt actcagcctc citaccatta tggtcttact 780
tatocgagee cagacattgt ataagaagtt tgtgaagtea actggettte tggggagtga 840
acagtgggca gtgattcaca ttgtggacca acgggtgcgc ttctacccag tggccttctt 900 ttgctgctgg ggcccagctg tcattctaat gatcataaag ctgactaagc cacaggacac 960
caagettcac atggecettt atgtteteca ggetetaacg geaacatete agggtetaet 1020
caactgtgga gtatatggct ggacgcagca caaattccac caactaaagc aggaggctcg 1080
qcqtqatqca gatacccaga caccattatt atgctcacag aagagattct atagcagggg 1140
cttaaattca ctggaatcca ccctgacttt tcctgccagt acttctacca ttttttgaaa 1200
ctacaatact ggaacatcca ggaactggag ttattctacg ctaatggatt ggaaagaatg 1260
ttqqqaaaqq acatettaaa tettttetaa etatqeeeta aactqeaqaa etcaaaqqaa 1320
atatagtgcc attgttagta gtcattctag atgaattggg agtatctctc cagttattcc 1380
cagattcact agtgatcctt aaagtctcta ttcagggaga ggaagacact ttccatctca 1440
gagatagact cgtgttacct tgatggatat tggatttgtc taagtctctt ctagaaaaaa 1500
taaattctag attattaaaa aaaaaaa
<210> 22
<211> 2948
<212> DNA
<213> Homo sapiens
<221> misc-feature
<223> Incyte Clone 1403604
aaagaaaggt cagccgcaag cgaacttagc actggctaca ccctcctcaa ttctgqttqq 60
cgagatgcgc tcttcccgga agtgacgcac aagtgccggc ggaaggggaa gtccaggagc 120
atgggtggtt tttttccccc taccgaggtc cgtgaggtgt gtgctaacca aggggcggct 180
cacaaccgtg acagactgcc attoctgagt ctcttctggc catgggcccc cggagccgtg 240
agcgtcgggc aggcgcggta cagaacacca acgacagcag cgccctcagc aagcgttccc 300
tggccgcgcg cgggtacgtg caggacccct ttgccgcgtt gctggttccg ggcqcgqcgc 360
geogegeace geteatteae egaggetaet aegteegege aegegeegtg aggeactgeg 420
tgcgcgcttt tttggagcag attggcgcgc cccaggccgc gcttcgcgcg cagatcttgt 480
cteteggege tggettegae tegetetatt ttegettaaa aaccgeggge egeetggece 540
gggctgcagt ctgggaggtg gattttccgg acgtggcgcg gcgcaaagca gaaaggattg 600
gagagacgcc agagctgtgc gcgttaaccg ggcctttcga gaggggggag cccgcgtccg 660
egetgtgett tgagagegea gactaetgea teetgggtet ggacttgegg cageteeage 720
gagtggagga ggccctgggc gccgcggggc tcgacgcagc ctcacccact ctgctcctqq 780
ccgaggcggt gctgacctac ctcgagccgg agagtgccgc ggccctcatc gcctgggcag 840
cccagcgttt tcctaatgcc cttttcgtgg tctatgagca gatgaggcct caagacgcct 900
ttggccagtt catgctgcaa cattttcggc agctaaactc ccccctgcat ggcctggagc 960
gttttcctga cgtggaggcg cagcggcgcc gcttccttca agctggctgg accgcctgcg 1020
gtgccgtgga cataaatgaa ttctatcact gctttcttcc cgcagaagaa cgccggcggg 1080
tggaaaatat tgaacccttt gacgaatttg aggagtggca tetgaagtgc geccattatt 1140
teattetgge agettetagg ggagacacce teteccacae cetagtqttt ceatceteaq 1200
aggcattice tegegtaaat eetgettege etteaggggt atteeetgee agegtagtea 1260
gtagcgaggg ccaggtccca aacctgaaga gatatggcca cgcctctgtc ttcttgagcc 1320
cagacgttat totcagtgca ggaggatttg gagagcagga ggggcggcac tgccgagtga 1380
gccagtttca cttgctctca agagattgtg actctgaatg gaaaggcagc caaataggca 1440
gttgtgggac tggagttcag tgggatggac gcctttatca caccatgaca agactctcag 1500
agagtcgggt tctggttctg ggagggagac tgtccccaqt aaqtccaqcc ttqqqqqttc 1560
tccagcttca tttttttaag agtgaggata ataacactga ggacctgaaa gtgacaataa 1620
caaaggctgg ccgaaaggat gattccactt tgtgttgttg gcggcattca acaacagaag 1680
```

```
tgtcctgtca gaatcaggaa tatttgtttg tgtatggggg tcgaagcgtg gtggaacctg 1740
tactaagtga ctggcatttc ctccatgtag ggacaatggc ttgggtcagg atcccagtgg 1800
agggagaagt acctgaagec eggeattete acagtgeetg caettggeaa gggggageec 1860
ttattgctgg aggtctcggg gcttctgagg agccattgaa ctctgtgctc tttctgagac 1920
caatctcttg tggattctc tgggagtcag tagacatcca gcctcccatt accccaaggt 1980
actoccacae ageteatgtg etcaatggaa agetgttaet ggttggaggg atetggatte 2040
attectecte atttectgga gtgactgtga teaatttgae tacaggattg agetetgagt 2100
atcagattga cacaacatat gtgccatggc cattaatgtt acacaaccat actagtatcc 2160
ttottootga agagcaacag ctootgotoo ttggaggtgg tgggaactgc ttttootttg 2220
qtacctactt caacccccat acagtcacat tagacctttc ttccttaagt gctgggcagt 2280
aaggactgga ctaatattca ggacccacta aagtagacaa taaagttttc cacaaatagg 2340
atgaccotot agetatagat actgocacto etectitoco catectitit ticcettago 2400
actattcagt gcaaaaagtg aaaaaggttg gtaaaatagg taaaatacct agaaacaatc 2460
actacagaaa acagctgaag acagtggcca tgcagtccga gaggagtagt ggtctgcctc 2520
taattttcta atctaagttc gtttattgag ttacagtggt ctttagtaaa gtaaaacaat 2580 ttcccaatcc caggccttgt gatttgagat ggtaccttag aaaaagttac acgcagttcc 2640
gtggttgaat atatttgaga tggtacctta gaaaaagttt cacgcagatc cttggttgaa 2700
tatagttgag ggagcgtagt attgacaatt cttcatgtag gaaacctgaa atgaacacag 2760
tcacagtttg attaaaacat tgtcctgttt gttgcaacag aaaactcgga tagttttaac 2820
aacaggaaac acttgtagga cttcctttac caacatactt tttaaatgtt ttgctattgg 2880
ttccatattt atttagattt ataagtgtca ataaagcaaa cttttgatgc ctcaaaaaaaa 2940
aaaaaaa
<210> 23
<211> 1808
<212> DNA
<213> Homo sapiens
<221> misc-feature
<223> Incyte Clone 1652936
<400> 23
gagagtatta aatgtgaatt gcctctgcct cgctttatga tgtcaaagaa tgatggtgag 60
atacgatttg ggaacccagc tgagctgcat ggaactaagg ttcagattcc atatttaact 120
acagaaaaaa attoottoaa aagaatgac gatgaggata aacaggaaac acagtotoco 180 acgatgtoac coctogcoto coctoottot toccogcoto attaccagag ggtgccottg 240
agccatggct acagcaaact gcggagcagc gcagaacaga tgcatccagc accttatgaa 300
gctaggcage ccettgteca gcccgaggga tcctcatcag ggggcccagg aaccaagccc 360 cttcggcatc aggettecet tatccggtec ttttcagtgg agagggaact acaggataac 420
agcagttace eegacgaace etggaggata acagaagaac agegegagta etatgteaat 480
cagticegat ecetteagee agacceaage tettteattt caggitetgt ggeeaagaac 540
ttetteacca aateaaaget tteeatteea gaacteteet atatatggga gettagtgat 600
getgaetgtg atggageeet gaeeetgeet gagttetgtg etgegtttea teteattgtg 660
geteggaaga aeggetaece attgeetgag ggeeteecte caactetgea geeagaatae 720
ctgcaggcag cttttcctaa gcccaaatgg gactgtcaat tatttgattc ttattctgag 780
tcactgccgg caaatcaaca acctcgtgac ttgaatcgga tggagacatc tgttaaagac 840
atggctgacc ttcctgtccc taaccaggat gtaactagtg atgacaaaca agctttgaaa 900
agtactatca atgaagcctt accaaaggac gtgtctgagg atccagcaac tcccaaggat 960
tecaacagte teaaageaag accaagatee agatettaet etageacete catagaagag 1020
gccatgaaaa ggggcgagga ccctcccacc ccgccacctc ggccacagaa aacccattcc 1080
agageeteet cettggatet gaataaagte tteeageeea gtgtgeeage taccaagtea 1140
ggattgttac coccaccacc tgcgctccct ccaagacctt gtccatcaca gtctgaacaa 1200
gtgtcggagg ccgagttact cccacagctg agcagagecc catcccaggc tgcagaaagt 1260
agtocagoaa agaaggatgt actgtattot cagocaccat caaagcocat togtaggaaa 1320
ttcagaccag aaaaccaagc tacagaaaac caagagcctt ccactgctgc aagtgggcca 1380
gcttctgcgg caaccatgaa accgcatcca acagtccaaa agcagtcttc caaacagaag 1440
aaggccattc aaactgctat ccgcaaaaat aaagaggcaa acgcagtgct ggctcggctg 1500
aacagtgagc tocagcaqca gotcaaggag gttcatcaag aacqaattgc attggaaaac 1560
caattggaac aacttcgtcc ggtcactgtg ttgtgacccc cccatggttc aagtgacagt 1620
gggtgacctt gtctgccaag atctttcttt tgaatgtttt gaacccaact acttgtcata 1680
gatgtttgac tgtgtcaaaa gctgtgagca gcaaaatata atccatatga ccttttctct 1740
tgtatagact taaaaaaaaa aaaatagatc tttaattaag cggtcgcaag cttattccct 1800
```

```
ttagtgag
                                                                           1808
 <210> 24
 <211> 1148
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc-feature
 <223> Incyte Clone 1710702
 <400> 24
 tgcgtacgtg cgtcgtctct atggtggcgg cggatttgga gggaccctac gaaccaggag 60
 tcaggcgagc cgatctgggg ctgcaggatg ttccgctggg agcgctccat tcccctgcga 120
 ggctcggccg ccgccctgtg caacaacctc agtgtgctgc agctgccggc tcgcaacctc 180
 acgtattttg gcgtggttca tggaccaagc gcccagcttc tcagcgctgc tcctgagggt 240
gtgcccttgg cccagcgcca gctccacgct aaggagggtg ctggagtgag tcccccactt 300
 atcactcagg tocactggtg tgtcctcccc ttccgagtgc tgctggtact cacctcacat 360
cgaggaatac agatgtacga gtccaatggc tacaccatgg tctactggca tgcactggac 420
 totggagatg cotcoccagt acaggetgtg tttgcccggg gaattgctgc cagtggccac 480
 ttcatctgtg tgggaacgtg gtcaggccgg gtgctggtgt ttgacatccc agcaaagggt 540
cccaacattg tactgagcga ggagctggct gggcaccaga tgccaatcac agacattgcc 600 accgagcctg cccagggaca ggattgtgtg gctgacatgg tgacggcaga tgactcaggc 660
ttgctgtgtg tctggcggtc agggccagaa ttcacattat tgacccgcat tccaggattt 720
ggagttccgt gcccctctgt gcagctgtgg caggggatca tagcagcagg ctatgggaac 780
ggacaagtgc atctatatga ggccactaca ggaaatctac atgtccagat caatgcccat 840
gecegggeea tetgegeett ggaeetgget tetgaggtgg geaagetaet etetgeaggt 900 gaggacacet ttgtgeatat etggaagetg ageagaaace cagagagtgg etacattgag 960
gtggaacact gtcatggtga gtgtgtcgcc gacacccagc tgtgtggtgc tcgattttgt 1020
gattcctcag gcaactcctt tgctgtgact ggctatgacc ttgcggagat ccggagattc 1080
agcagtgtgt gagaagagca gccttccttt gtccctgtgg tattcataaa gtacccgctc 1140
cacccaaa
<210> 25
<211> 2419
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 3239149
<400> 25
cggacgcgtg ggggcctggc accaaagggg cggccccggc ggagagcgga cccagtggcc 60
tcggcgatta tggacccggc cgaggcggtg ctgcaagaga aggcactcaa gtttatgaat 120
tectcagaga gagaagaetg taataatgge gaacceecta ggaagataat accagagaag 180
aattcactta gacagacata caacagctgt gccagactct gcttaaacca agaaacagta 240
tgtttagcaa gcactgctat gaagactgag aattgtgtgg ccaaaacaaa acttgccaat 300 ggcacttcca gtatgattgt gcccaagcaa cggaaactct cagcaagcta tgaaaaggaa 360
aaggaactgt gtgtcaaata ctttgagcag tggtcagagt cagatcaagt ggaatttgtg 420
gaacatetta tateecaaat gtgteattae caacatggge acataaaete gtatettaaa 480
cctatgttgc agagagattt cataactgct ctgccagctc ggggattgga tcatattgct 540
gagaacattc tgtcatacct ggatgccaaa tcactatgtg ctgctgaact tgtgtgcaag 600
gaatggtacc gagtgacctc tgatggcatg ctgtggaaga agcttatcga gagaatggtc 660
aggacagatt ctctgtggag aggcctggca gaacgaagag gatggggaca gtatttattc 720
aaaaacaaac ctcctgacgg gaatgctcct cccaactctt tttatagagc actttatcct 780
aaaattatac aagacattga gacaatagaa totaattgga gatgtggaag acatagttta 840
cagagaattc actgccgaag tgaaacaagc aaaggagttt actgtttaca gtatgatgat 900
cagaaaatag taageggeet tegagacaac acaatcaaga tetgggataa aaacacattg 960
gaatgcaagc gaatteteac aggceataca ggttcagtee tetgteteca gtatgatgag 1020
agagtgatca taacaggatc atcggattcc acggtcagag tgtgggatgt aaatacaggt 1080 gaaatgctaa acacgttgat tcaccattgt gaagcagttc tgcacttgcg tttcaataat 1140
```

```
ggcatgatgg tgacctgctc caaagatcgt tccattgctg tatgggatat ggcctcccca 1200
actgacatta coctocggag ggtgctggtc ggacaccgag ctgctgtcaa tgttgtagac 1260 tttgatgaca agtacattgt ttctgcatct ggggatagaa ctataaaggt atggaacaca 1320
aqtacttqtq aatttqtaaq gaccttaaat ggacacaaac gaggcattgc ctqtttqcag 1380
tacagggaca ggctggtagt gagtggctca tctgacaaca ctatcagatt atgggacata 1440 gaatgtggtg catgtttacg agtgttagaa ggccatgagg aattggtgcg ttgtattcga 1500
tttgataaca agaggatagt cagtggggcc tatgatggaa aaattaaagt gtgggatctt 1560
gtggctgctt tggacccccg tgctcctgca gggacactct gtctacggac ccttgtggag 1620
cattccggaa gagtttttcg actacagttt gatgaattcc agattgtcag tagttcacat 1680
gatgacacaa tecteatetg ggaetteeta aatgateeag etgeecaage tgaaceeeee 1740
cqttcccctt ctcqaacata cacctacatc tccaqataaa taaccataca ctqacctcat 1800
acttgcccag gacccattaa agttgcggta tttaacgtat ctgccaatac caggatgagc 1860
aacaacagta acaatcaaac tactgcccag tttccctgga ctagccgagg agcagggctt 1920
tqaqactect qttqqqacac aqttqqtetq caqteqqeec aqqacqqtet actcaqeaca 1980
actgactgct tcagtgctgc tatcagaaga tgtcttctat cttttgtgaa tgattggaac 2040
ttttaaacct cccctcctct cctcctttca cctctgcacc tagttttttc ccattggttc 2100
cagacaaagg tgacttataa atatattag gtgttttngc ccaggaatct ctcttgcttt 2160
ggccattaag gcaggaggaa ctaggtttcc cctgtatagg gcctgcgggg ggagaggacc 2220
ccactctagg gggtaggggg gggggtgnca gctttcaagg cccaggggcc ccaggtgtct 2280
tecceggita actgcagggg atgtccagga cegggggge tacgagcaag geeeggeece 2340
ataggictag gggagggga cagagticcc ctcgtaatag ggctcggggg agggcaggga 2400
aagggaaaca caggatttg
                                                                        2419
<210> 26
<211> 746
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte Clone 3315936
atttaatatg actcactata qqqaatttqq ccctcqaqct aqaqattcqq qcacqaqqqq 60
ttgcttagac tgcggcccac gtggaaggct cttagccacc ctgcctggcc cgaggagaaa 120
aacaagcaaa teetagtget gggeetggat ggagcaggaa aaaccagtgt cetgeactet 180
ctagetteaa acagagteca geacagtgtg geacceacce aaggttteca tgeagtttge 240
atcaacactg aagacagca gatggagttc ctggagattg gtggcagtaa accttttcgg 300 tcctactggg aaatgtacct atccaaggga ttgctgctga tctttgtggt ggattcagca 360
gateacagee gattacetga agecaagaaa tacetteate agetaattge ageaaaceca 420
gtacttecte tggttgtgtt tgcaaacaaa caggatettg aagcageeta teacattaca 480
gatatccatg aagctttggc attatctgaa gtgggaaatg acaggaagat gttcttgttt 540
ggaacctacc tgactaagaa tggctcagag ataccctcca ccatgcaaga tgccaaagac 600
ttgattgcac agctggctgc agatgtgcag tgaccaggac tcagcccact gigcggctca 660
cgactgagat gtcatcagtg ttgaatggca ggcttgaagc caaaggtttc cacctcaaat 720
aaaaattaag ccatttccta ttaaaa
                                                                        746
```