Code ▼

R_Notebook_ibrutinib_swath.Rmd

Somchai Chutipongtanate

January 11, 2020

This is an R Markdown (http://rmarkdown.rstudio.com) Notebook version of ibrutinib_swath.R . In R Notebook, you can execute the code chunk by clicking the run button on the upper right corner of each chunk. The results will then appear beneath the code.

To use this script, please download and install R (version 3.4.4 or later) and RStudio (version 1.1.453 or later).

Once R and Rstuido installations finish, please open the file "R_Notebook_ibrutinib_swath.Rmd". Since this script needs functions from several R packages, the first step is to install all package dependencies below. This step can be skipped if all required packages (as shown below) have already been installed.

```
# Install package dependencies
install.packages(c("readxl", "dplyr", "tidyr", "ggplot2", "ggrepel", "reshape2", "
FactoMineR", "pheatmap"))
source("https://bioconductor.org/biocLite.R")
biocLite(c("biomaRt", "preprocessCore"))
```

Then, we load the required R packages.

Hide

Hide

```
# Load: R packages
library(readxl)
library(dplyr)
library(tidyr)
library(biomaRt)
library(preprocessCore)
library(ggplot2)
library(ggrepel)
library(reshape2)
library(FactoMineR)
library(pheatmap)
```

Data loading

The raw data (ibrutinib_SWATH.xlsx) is available via ProteomeXchange (PXD013402) and also downloadable as the supplementary dataset 1 once this dataset published. Please downlaod and place the dataset file on the desktop, so that it can be loaded into R.

```
# Load: ibrutinib-SWATH dataset (PXD013402)
setwd("~/Desktop")
data path <- "~/Desktop/ibrutinib SWATH.xlsx"
# Start: Data preprocess -----
## loading
group <- as.factor(c("WT", "WT", "WT", "WT+inh", "WT+inh", "WT+inh", "Q741x", "Q74</pre>
1x", "Q741x", "Q741x+inh", "Q741x+inh", "Q741x+inh"))
#group <- as.factor(c("W", "W", "W", "iW", "iW", "iW", "Q", "Q", "Q", "iQ", "iQ",
"iQ"))
group <- factor(group, ordered = TRUE,</pre>
                levels = c("Q741x+inh", "WT+inh", "Q741x", "WT"))
sample_label <- as.character(c("WT_1", "WT_2", "WT_3", "WT+inh_1", "WT+inh_2", "WT</pre>
+inh_3", "Q741x_1", "Q741x_2", "Q741x_3", "Q741x+inh_1", "Q741x+inh_2", "Q741x+inh
3"))
#sample_label <- as.character(c("W1", "W2", "W3", "iW1", "iW2", "iW3", "Q1", "Q2",</pre>
"Q3", "iQ1", "iQ2", "iQ3"))
areaPept <- read_excel(data_path, sheet = "Area - peptides")</pre>
areaProt <- read excel(data path, sheet = "Area - proteins")</pre>
```

Now the SWATH data at peptide and protein levels are ready for downstream analyses.

Showing the first 10 rows of SWATH dataset at the peptide level;

Hide

head(areaPept, n = 10)

Protein <chr></chr>	Peptide <chr></chr>	Precursor MZ <dbl></dbl>	Precursor Charge <dbl></dbl>	RT <dbl></dbl>
sp Q8VDD5 MYH9_MOUSE	ALELDSNLYR	597	2	28.7
sp Q8VDD5 MYH9_MOUSE	VSHLLGINVTDFTR	525	3	35.1
sp Q8VDD5 MYH9_MOUSE	AGVLAHLEEER	409	3	22.2
sp Q8VDD5 MYH9_MOUSE	LDPHLVLDQLR	440	3	33.9
sp Q8VDD5 MYH9_MOUSE	VVFQEFR	463	2	25.2
sp Q8VDD5 MYH9_MOUSE	LQQELDDLLVDLDHQR	651	3	43.4
sp Q8VDD5 MYH9_MOUSE	SMEAEMIQLQEELAAAER	684	3	48.5
sp Q8VDD5 MYH9_MOUSE	VIQYLAHVASSHK	364	4	18.5
sp Q8VDD5 MYH9_MOUSE	YEILTPNSIPK	638	2	29.7
sp P26039 TLN1_MOUSE	EQGVEEHETLLLR	518	3	22.7
1-10 of 10 rows 1-5 of 17 c	olumns			

And at the protein level;

```
head(areaProt, n = 10)
```

Protein <chr></chr>	020518 Somchai (Greis)_SWATH_W1 (Data020518_02.พ
sp Q8VDD5 MYH9_MOUSE	
sp P26039 TLN1_MOUSE	
sp Q68FD5 CLH1_MOUSE	
sp P58252 EF2_MOUSE	
sp P07901 HS90A_MOUSE	
sp Q8BTM8 FLNA_MOUSE	
sp P52480 KPYM_MOUSE	
sp Q9JHU4 DYHC1_MOUSE	
sp P20029 GRP78_MOUSE	
sp P08113 ENPL_MOUSE	
1-10 of 10 rows 1-2 of 13 columns	

In this analysis, we use SWATH quantitative data at the protein level for downstream data processing.

Gene mapping

UniProt IDs can be mapped to gene names using useMart and getBM funcitons in BiomaRt package.

```
colnames(tmp) <- c('uniProtID', "gene.SYMBOL")

df <- left_join(df, tmp[!duplicated(tmp$uniProtID), ], by = "uniProtID")

ind <- is.na(df$gene.SYMBOL)

df$gene.SYMBOL[ind] <- df$entry_names[ind]

id_all <- df</pre>
```

 $head(id_all, n = 10)$

uniProtID <chr></chr>	entry_names <chr></chr>	species <chr></chr>	gene.SYMBOL <chr></chr>
Q8VDD5	MYH9	MOUSE	Myh9
P26039	TLN1	MOUSE	Tln1
Q68FD5	CLH1	MOUSE	Cltc
P58252	EF2	MOUSE	Eef2
P07901	HS90A	MOUSE	Hsp90aa1
Q8BTM8	FLNA	MOUSE	Flna
P52480	KPYM	MOUSE	Pkm
Q9JHU4	DYHC1	MOUSE	Dync1h1
P20029	GRP78	MOUSE	Hspa5
P08113	ENPL	MOUSE	Hsp90b1
1-10 of 10 rows			

Quantile normalization and missing value handling

For data preprocessing, the normalize quantiles function of preprocessCore package is applied, while missing values are replaced by zero.

```
## Quantile normalization using preprocessCore package (ref#2)
expr raw <- areaProt[ , 2:length(areaProt)]</pre>
colnames(expr_raw) <- sample_label</pre>
Quantile <- as.data.frame(normalize.quantiles(log2(as.matrix(expr_raw))))
colnames(Quantile) <- sample_label</pre>
## Missing values replaced by zero
ind <- which(is.na(Quantile), arr.ind = TRUE)</pre>
Quantile[ind] <- 0
expr processed <- Quantile
## Collect datasets
raw_ds <- cbind(id_all, expr_raw)</pre>
process_ds <- cbind(id_all, expr_processed)</pre>
df <- t(expr_processed)</pre>
colnames(df) <- id_all$gene.SYMBOL</pre>
log ds <- data.frame(group, df)</pre>
# End: Data preprocess ----
```

Once the preprocessing finished, we got the process dataset at the protein level, in which the quantitative data are expressed in log2 values.

Hide

head(process_ds, n=10)

	uniProtID <chr></chr>	entry_names <chr></chr>	species <chr></chr>	gene.SYMB <chr></chr>	 <dbl><dbl><dbl></dbl></dbl></dbl>	WT+in <dbl></dbl>	WT+in <dbl></dbl>
1	Q8VDD5	MYH9	MOUSE	Myh9	19.8 19.8 19.7	19.7	19.8
2	P26039	TLN1	MOUSE	Tln1	19.7 19.6 19.7	19.7	19.7
3	Q68FD5	CLH1	MOUSE	Cltc	19.9 20.4 20.0	20.4	20.4
4	P58252	EF2	MOUSE	Eef2	20.0 20.0 20.1	20.2	20.2
5	P07901	HS90A	MOUSE	Hsp90aa1	19.5 19.4 19.4	19.9	19.9
6	Q8BTM8	FLNA	MOUSE	Flna	17.4 17.1 17.3	17.5	17.1
7	P52480	KPYM	MOUSE	Pkm	20.7 20.6 20.7	21.1	20.9
8	Q9JHU4	DYHC1	MOUSE	Dync1h1	17.1 17.3 17.3	17.1	17.5
9	P20029	GRP78	MOUSE	Hspa5	19.3 19.0 19.4	19.3	19.2
10) P08113	ENPL	MOUSE	Hsp90b1	19.6 19.7 19.7	19.8	19.9
1-1	0 of 10 rows	1-10 of 16 colu	ımns				

Data quality check

The data quality is checked by several measures. The first one is %coefficient of variation (CV).

```
# Start: Data analysis and visualization ---------
## Group average
tmp <- data.frame(group = log_ds[ , 1], 2^log_ds[ , 2:length(log_ds)]) %>%
  gather(gene.SYMBOL, expression, -group) %>%
  dplyr::group_by(group, gene.SYMBOL) %>%
  dplyr::summarize(group_mean = mean(expression)) %>%
  spread(gene.SYMBOL, group_mean)
gr avr <- as.data.frame(tmp[ , 2:length(tmp)])</pre>
rownames(gr avr) <- tmp$group</pre>
gr_pair <- combn(unique(tmp$group), 2)</pre>
fc <- (gr_avr[gr_pair[1, ], ] / gr_avr[gr_pair[2, ], ]) %>% log2()
rownames(fc) <- paste0('log2', '(', gr_pair[1, ], '/', gr_pair[2, ], ')')
log2fc_ds <- fc
## Group SD
tmp <- data.frame(group = log_ds[ , 1], 2^log_ds[ , 2:length(log_ds)]) %>%
  gather(gene.SYMBOL, expression, -group) %>%
  dplyr::group by(group, gene.SYMBOL) %>%
  dplyr::summarize(group sd = sd(expression)) %>%
  spread(gene.SYMBOL, group_sd)
gr_sd <- as.data.frame(tmp[ , 2:length(tmp)])</pre>
rownames(gr_sd) <- tmp$group</pre>
## Coefficient of variation
qc <- 100 *gr sd/gr avr
qc <- data.frame(group = tmp$group, qc)</pre>
QC <- qc %>% gather(gene, CV, -group)
# Calculate median-CV of each group
medianCV <- QC %>% dplyr::group_by(group) %>% summarise(CV = round(median(CV), 1))
```

Median-CVs for each group;

```
Hide
```

```
print(paste0("Median-CV: Q741x+inh, ", medianCV[1,2], "%; WT+inh, ", medianCV[2,2]
, "%; Q741x, ", medianCV[3,2], "%; WT, ", medianCV[4,2], "%"))
```

```
[1] "Median-CV: Q741x+inh, 20.4%; WT+inh, 13%; Q741x, 17.2%; WT, 14.9%"
```

Violin plot of inter-group CV

```
# Violin plot of inter-group CV
plot.qc <- ggplot(QC, aes(x=group, y=CV)) +</pre>
              geom_violin(aes(fill = as.character(group)), trim=FALSE, width = 0.8
, #aes(fill = group),
                          na.rm = TRUE, position = "dodge")+
              labs(fill = "") +
              geom_boxplot(width=0.1, fill = 'white', outlier.size = 0,
                          na.rm = TRUE, position = "dodge")+
              geom text(data = medianCV, aes(label = CV), position = position dodg
e(width = 1),
                          hjust = -0.5, vjust = -0.5, size = 5) +
              xlab("") + ylab("% Coefficient of Variation") +
              scale_y_continuous(breaks=c(0, 10, 20, 50, ceiling(max(QC$CV, na.rm=
TRUE)))) +
              theme light(base size = 12)
plot.qc
```


Correlation heatmap

```
## Correlation heatmap
corr <- 2^expr processed</pre>
corr <- round(cor(corr, method = "pearson"),3)</pre>
corr[lower.tri(corr)] <- NA</pre>
melted_corr <- melt(corr, na.rm = TRUE)</pre>
plot_corrHM <- ggplot(data = melted_corr, aes(x = Var2, y = Var1, fill = value))+</pre>
                  geom_tile(color = "white")+
                  scale_fill_gradient2(low = "white", high = "red", mid = "yellow"
                                        midpoint = 0.9, limit = c(0.8, 1), space =
"Lab",
                                        name= paste("Pearson", "\ncorrelation") ) +
                   labs(x = "", y = "") +
                   theme minimal() +
                   theme(axis.text.x = element text(angle = 90, vjust = 1,
                                                     size = 8, hjust = 1)) +
                   coord_fixed() +
                   geom text(aes(label = value), color = "black", size = 2) +
                   theme(axis.text.y = element text(color = "black", size=8),
                         panel.grid.major = element_blank(),
                         panel.border = element_blank(),
                         panel.background = element_blank(),
                         axis.ticks = element blank(),
                         legend.justification = c(1, 0),
                         legend.position = c(0.6, 0.7),
                         legend.direction = "horizontal")+
                   guides(fill = guide_colorbar(barwidth = 7, barheight = 1,
                                title.position = "top", title.hjust = 0.5))
plot_corrHM
```



```
## nPP plot
n pept prot <- areaPept %>%
  dplyr::group by(Protein) %>%
  dplyr::summarize(n_pept = n()) %>%
  arrange(desc(n_pept))
nPP \leftarrow data.frame(n_pept = c("1", "2-5", "6-10"),
                    n_prot = rbind(n_pept_prot %>% filter(n_pept ==1) %>% nrow(),
                                    n_pept_prot %>% filter(n_pept >=2 & n_pept <= 5</pre>
) %>% nrow(),
                                    n_pept_prot %>% filter(n_pept >=6) %>% nrow()))
nPP_plot <- ggplot(nPP, aes(x = n_pept, y= n_prot)) +</pre>
                    geom_bar(stat = "identity", fill = "steelblue") +
                    ylim(0, max(nPP$n_prot)+50) +
                    geom_text(aes(label= n_prot), vjust=-0.3, color="black", size=
4.5) +
                    geom_text(aes(label= paste0(round(100*n_prot/sum(n_prot), 1),
"%")), vjust=1.6, color="white", size=4.5) +
                    xlab("Numbers of peptide") + ylab("Numbers of protein") +
                    theme light(base size = 12)
nPP_plot
```


PCA individual plot

NOTE: The contributions of protein variables of each component can be extracted from the fit_pca object for in-depth biological interpretation.

```
head(fit_pca[["var"]][["contrib"]], n = 10)
```

```
Dim.4
          Dim.1
                  Dim.2
                          Dim.3
                                            Dim.5
         0.0607 0.35234 0.00352 0.005935 0.029067
Myh9
         0.2853 0.04184 0.00242 0.012616 0.015562
Tln1
Cltc
         0.0121 0.38603 0.11048 0.060218 0.053396
         0.3336 0.02708 0.00107 0.001344 0.009143
Eef2
Hsp90aal 0.0122 0.41772 0.10758 0.000423 0.005738
         0.2242 0.02023 0.03532 0.170729 0.024465
Flna
         0.1944 0.08087 0.14988 0.008074 0.001413
Pkm
         0.0131 0.01155 0.02371 0.354755 0.080413
Dync1h1
         0.0934 0.00388 0.00606 0.005852 0.601517
Hspa5
Hsp90b1 0.2801 0.09564 0.02236 0.001281 0.000225
```

Lastly, the protein abundance heatmap (values in the log10 scale) where the missing values are mapped in black color.

Hide

```
## Protein abundance heatmap by pheatmap package (ref#4)
qc_hm <- 2^expr_processed
rownames(qc_hm) <- process_ds$gene.SYMBOL
for(i in seq_along(qc_hm)){
   if(qc_hm[i] != 0){
      qc_hm[i] <- log10(qc_hm[i])
   } else {
      qc_hm[i] <- 0
   }}
n_missing <- sum(qc_hm == 0)
n_total <- dim(qc_hm)[1] * dim(qc_hm)[2]</pre>
```

Hide

```
print(paste0("QC_heatmap: Total ", n_total, " data points; ", n_missing, " missing
values (", round(100*n_missing/n_total, 2), "%) showed in black)"))
```

```
[1] "QC_heatmap: Total 12564 data points; 7 missing values (0.06%) showed in black)"
```


Data analysis and visualization

Differntial expression analysis for multiple group comparison is performed by ANOVA with Tukey's post-hoc.

```
## ANOVA with Tukey's post-hoc
tmp <- as.matrix(log_ds[, 2:length(log_ds)])
fit.aov <- aov(tmp ~ group)
output.aov <- summary.aov(fit.aov)
anova.pVal <- numeric(length = ncol(tmp))
for (i in 1:length(output.aov)){
   anova.pVal[i] <- output.aov[[i]][1, 5]
}
adj.pVal <- matrix(nrow = ncol(tmp), ncol = nrow(log2fc_ds))
colnames(adj.pVal) <- paste(gr_pair[1, ], " vs ", gr_pair[2, ])
rownames(adj.pVal) <- colnames(tmp)
for (i in 1:ncol(tmp)){
   adj.pVal[i, ] <- (TukeyHSD((aov(tmp[, i] ~ group))))[[1]][ ,4]
}
anova_ds <- cbind(anova.pVal, adj.pVal)</pre>
```

The ANOVA p-values (the first column) and the adjusted p-values from Tukey's posthoc for each pairwise comparison (as labelled in the column name) are ready for further use.

Hide

```
head(anova_ds, n=10)
```

	-	inh vs WT+inh Q741x+	inh vs Q741x Q741x	+inh vs WT W
T+inh vs	Q741x WT+inh v	s WT Q741x vs WT		
Myh9	2.75e-02	0.538046	0.2710	0.49571
3.95e-02	0.9998	0.035361		
Tln1	2.33e-03	0.004109	0.6777	0.00979
1.76e-02	0.8966	0.045834		
Cltc	1.50e-03	0.896792	0.0110	0.25091
2.80e-02	0.0970	0.000996		
Eef2	6.85e-05	0.000107	0.5638	0.00106
3.54e-04	0.1473	0.004905		
Hsp90aa1	1.60e-02	0.719928	0.0536	0.94154
1.25e-02	0.4196	0.117739		
Flna	2.88e-02	0.161970	0.9625	0.10916
8.33e-02	0.9914	0.055835		
Pkm	1.35e-03	0.002028	1.0000	0.36323
2.01e-03	0.0176	0.360103		
Dync1h1	6.30e-01	0.999364	0.7075	0.95402
6.42e-01	0.9197	0.937132		
Hspa5	4.80e-01	0.417546	0.7729	0.73844
9.08e-01	0.9302	0.999893		
Hsp90b1	5.01e-05	0.000157	0.8479	0.00501
7.97e-05	0.0407	0.001931		

Data including the fold changes and the adjusted p-values of proteins in each pairwise are ready for the volcano plots.

Hide

```
## Pairwise-Volcano plot
tmp <- data.frame(gene = rownames(anova_ds), anova_ds)
colnames(tmp) <- c("gene", "anova.pVal", paste0(gr_pair[1, ], "/", gr_pair[2, ]) )
long_ano <- gather(tmp, compare, adj_pVal, -gene, -anova.pVal)
fc.vp <- t(log2fc_ds)
fc.vp <- data.frame(gene = colnames(log2fc_ds), fc.vp)
colnames(fc.vp) <- c("gene", paste0(gr_pair[1, ], "/", gr_pair[2, ]) )
long_fc <- gather(fc.vp, compare, log2FC, -gene)
long_ano.fc <- long_ano %>%
    left_join(long_fc, by = c("gene", "compare"))
long_ano.fc$gene <- as.character(long_ano.fc$gene)</pre>
```

Here is the mulitple pairwise volcano plots, where the red dots represent the relevant proteins based on the thresholds of >1.5x fold change and the adjusted p-value <0.05;

```
volcano_all <- ggplot(data = long_ano.fc, aes(x= log2FC, y=-log10(adj_pVal))) +</pre>
                    geom point(aes(color = as.factor(abs(log2FC) >= log2(1.5) & an
ova.pVal < 0.05 \& adj pVal < 0.05), size = 3, show.legend = FALSE) + #alpha = 0.
5,
                    scale_color_manual(values = c("grey", "red")) +
                    xlab("log2 (fold change)") + ylab("-log10 (adjusted p-value)")
                   # ggtitle(label = paste0("Volcano plot at ", 1.5,
                                             "x fold change and adjusted P-value <
   0.05)) +
                    theme_grey(base_size = 15) +
                    geom_text_repel(data = (subset(long_ano.fc,
                                     abs(log2FC) > 2 \& -log10(adj_pVal) > 1.33 | -1
og10(adj_pVal) > 6)),
                                     aes(label = gene, size = 0.1),
                                     show.legend = FALSE,
                                     colour = 'darkblue',
                                    # box.padding = unit(0.35, "lines"),
                                    point.padding = unit(0.5, "lines")
                    facet_wrap(~ compare)
volcano_all
```


The lists of relevant proteins can be extracted from the long.ano.fc object;

```
head(long_ano.fc, n=10)
```

	gene	anova.p V al	compare	adj_pVal	log2FC
	<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	Myh9	2.75e-02	Q741x+inh/WT+inh	0.538046	0.0935

2	Tln1	2.33e-03	Q741x+inh/WT+inh	0.004109	-0.5089
3	Cltc	1.50e-03	Q741x+inh/WT+inh	0.896792	-0.0690
4	Eef2	6.85e-05	Q741x+inh/WT+inh	0.000107	-0.7151
5	Hsp90aa1	1.60e-02	Q741x+inh/WT+inh	0.719928	-0.1858
6	Flna	2.88e-02	Q741x+inh/WT+inh	0.161970	0.4186
7	Pkm	1.35e-03	Q741x+inh/WT+inh	0.002028	-0.4366
8	Dync1h1	6.30e-01	Q741x+inh/WT+inh	0.999364	0.0309
9	Hspa5	4.80e-01	Q741x+inh/WT+inh	0.417546	-0.1744
10	Hsp90b1	5.01e-05	Q741x+inh/WT+inh	0.000157	-0.4749
1-1	0 of 10 rows				

For example, a list of 61 relevent proteins (in gene names) can be extracted from the Q741x+inh/Q741x condition at the threshold of >1.5x fold changes and adj.pVal < 0.05. The protein list can be used for further biological interpretation;

Hide

```
long_ano.fc %>% filter(compare == "Q741x+inh/Q741x") %>% filter(abs(log2FC) >= log
2(1.5)) %>% filter(adj_pVal < 0.05) %>% .$gene
```

"Uba1"	"Iqgap1"	"Pabpc1"	"Serpinbla"	"Rps4x"	"Pgam1"	"Mdh2
"Phb2"	"Copb2"	"Gsn"	"Etfa"			
"Pfn1"	"Capzb"	"RL10A"	"Psmd6"	"Hsd17b4"	"Uqcrc1"	"Ssb"
npab" "Rps	27a" "Gcr	1" "Rps	15a"			
"Fdps"	"Rps19"	"Hars"	"Sri"	"Smarca5"	"Sae1"	"Dcps
"Tpp2"	"Fth1"	"Hnrnpul2	" "Gm2000"			
"Rps25"	"Dnpep"	"Grb2"	"Nme2"	"Ahcyl1"	"Lamp2"	"Twf2
"Anp32b"	"Cox6c"	"Lpcat3"	"Lnpep"			
"Metap2"	"Rtn3"	"Atp5d"	"Ndufa12"	"SNX3"	"Krt2"	"Tnfa
"Uqcr10"	"Srp9"	"VAMP8"	"CPNS1"			
"Atp5k"	"Nmt1"	"Pdk3"	"Rrm2"	"Gabpa"	"Sec61b"	
	"Phb2" "Pfn1" "pab" "Rps "Fdps" "Tpp2" "Rps25" "Anp32b" "Metap2" "Uqcr10"	"Phb2" "Copb2" "Pfn1" "Capzb" npab" "Rps27a" "Gcr "Fdps" "Rps19" "Tpp2" "Fth1" "Rps25" "Dnpep" "Anp32b" "Cox6c" "Metap2" "Rtn3" "Uqcr10" "Srp9"	"Phb2" "Copb2" "Gsn" "Pfn1" "Capzb" "RL10A" npab" "Rps27a" "Gcn1" "Rps "Fdps" "Rps19" "Hars" "Tpp2" "Fth1" "Hnrnpul2 "Rps25" "Dnpep" "Grb2" "Anp32b" "Cox6c" "Lpcat3" "Metap2" "Rtn3" "Atp5d" "Uqcr10" "Srp9" "VAMP8"	"Phb2" "Copb2" "Gsn" "Etfa" "Pfn1" "Capzb" "RL10A" "Psmd6" npab" "Rps27a" "Gcn1" "Rps15a" "Fdps" "Rps19" "Hars" "Sri" "Tpp2" "Fth1" "Hnrnpul2" "Gm2000" "Rps25" "Dnpep" "Grb2" "Nme2" "Anp32b" "Cox6c" "Lpcat3" "Lnpep" "Metap2" "Rtn3" "Atp5d" "Ndufa12" "Uqcr10" "Srp9" "VAMP8" "CPNS1"	"Phb2" "Copb2" "Gsn" "Etfa" "Pfn1" "Capzb" "RL10A" "Psmd6" "Hsd17b4" npab" "Rps27a" "Gcn1" "Rps15a" "Fdps" "Rps19" "Hars" "Sri" "Smarca5" "Tpp2" "Fth1" "Hnrnpul2" "Gm2000" "Rps25" "Dnpep" "Grb2" "Nme2" "Ahcyl1" "Anp32b" "Cox6c" "Lpcat3" "Lnpep" "Metap2" "Rtn3" "Atp5d" "Ndufa12" "SNX3" "Uqcr10" "Srp9" "VAMP8" "CPNS1"	"Phb2" "Copb2" "Gsn" "Etfa" "Pfn1" "Capzb" "RL10A" "Psmd6" "Hsd17b4" "Uqcrc1" npab" "Rps27a" "Gcn1" "Rps15a" "Fdps" "Rps19" "Hars" "Sri" "Smarca5" "Sae1" "Tpp2" "Fth1" "Hnrnpul2" "Gm2000" "Rps25" "Dnpep" "Grb2" "Nme2" "Ahcyl1" "Lamp2" "Anp32b" "Cox6c" "Lpcat3" "Lnpep" "Metap2" "Rtn3" "Atp5d" "Ndufa12" "SNX3" "Krt2" "Uqcr10" "Srp9" "VAMP8" "CPNS1"

Finally, the significant protein heatmap demonstrated several protein clusters distinct to each treatment conditions which can be used later for in-depth biological interpretation. The heatmap is plotted using the pheatmap function of pheatmap package.

```
## Significant protein heatmap by pheatmap (ref#4)
tmp <- as.matrix(log ds[ , 2:length(log ds)])</pre>
med <- apply(t(tmp), 1, mean)</pre>
medScale <- (t(tmp) - med)</pre>
tmp <- anova_ds[, 1]</pre>
medScale <- data.frame(medScale,</pre>
                       anova_pVal = tmp,
                       gene = rownames(medScale))
colnames(medScale) <- c("WT 1", "WT 2", "WT 3", "WT+inh 1", "WT+inh 2", "WT+inh 3"</pre>
, "Q741x_1", "Q741x_2", "Q741x_3", "Q741x+inh_1", "Q741x+inh_2", "Q741x+inh_3", "a
nova_pVal", "gene")
medScale sig <- medScale %>% filter(anova pVal < 0.05)</pre>
rownames(medScale_sig) <- medScale_sig$gene</pre>
medScale_sig <- medScale_sig[, 1: (length(medScale_sig) - 2)]</pre>
nprot sig <- nrow(medScale sig)</pre>
group <- factor(group, ordered = TRUE,</pre>
                 levels = c("WT+inh", "Q741x+inh", "Q741x", "WT"))
hm sig <- pheatmap(medScale sig, silent = FALSE,
                      breaks = seq(-(max(round(medScale sig, 0))), max(round(medSca
le_sig, 0)), length.out=101),
                      legend_breaks = seq(-(max(round(medScale sig, 0))), max(round
(medScale_sig, 0)), length.out=5),
                      color = colorRampPalette(c("darkblue", "blue", "white", "oran
gered", "red"))(100),
                      border color = NA,
                      annotation_col = data.frame(group = group, #factor(group),
                                                    row.names = sample label),
                      clustering_distance_rows = "correlation",
                      clustering_distance_cols = "correlation",
                      clustering_method = "average",
                      fontsize row = 2, fontsize col = 10,
                      scale = "none")
```


NA

The heatmap parameters are provided here for a reproducibility purpose.

Hide

print(paste0("Significant protein heatmap:", nprot_sig, " significant proteins (AN
OVA p-value < ", 0.05, ")", "; Scale: Log2(fold change) with mean center", "; Clus
tering: Correlation distance and average linkage"))</pre>

[1] "Significant protein heatmap:397 significant proteins (ANOVA p-value < 0.05); Scale: Log2(fold change) with mean center; Clustering: Correlation distance and average linkage"

Additional analysis

Additional analysis#1: %coefficient of variation of peptide retention time (RT) to reassure the consistency chromatography applied in SWATH acquisition

```
RT <- read_excel(data_path, sheet = "Observed RT")</pre>
RT <- RT %>% filter(Decoy == "FALSE")
RT \leftarrow RT[, c(2, 8:length(RT))]
colnames(RT) <- c("Peptides", sample_label)</pre>
tRT <- t(RT[, 2:length(RT)])</pre>
colnames(tRT) <- RT$Peptides</pre>
tRT <- data.frame(group, tRT)</pre>
## Group RT average
tmp RT <- tRT %>%
  gather(Peptides, RT, -group) %>%
  dplyr::group_by(group, Peptides) %>%
  dplyr::summarize(group mean = mean(RT)) %>%
  spread(Peptides, group_mean)
gr RT avr <- as.data.frame(tmp RT[ , 2:length(tmp RT)])</pre>
rownames(gr_RT_avr) <- tmp_RT$group
## Group RT SD
tmp RT <- tRT %>%
  gather(Peptides, RT, -group) %>%
  dplyr::group_by(group, Peptides) %>%
  dplyr::summarize(group_sd = sd(RT)) %>%
  spread(Peptides, group sd)
gr_RT_sd <- as.data.frame(tmp_RT[ , 2:length(tmp_RT)])</pre>
rownames(gr_RT_sd) <- tmp_RT$group</pre>
## Coefficient of variation
cv RT <- 100 *gr RT sd/gr RT avr
cv_RT <- data.frame(group = tmp_RT$group, cv_RT)</pre>
cv RT$group <- factor(cv RT$group, ordered = TRUE,
                 levels = c("Q741x+inh", "WT+inh", "Q741x", "WT"))
CV_RT <- cv_RT %>% gather(Peptides, CV, -group)
# Calculate median-CV of each group
medianCV RT <- CV RT %>% dplyr::group by(group) %>% summarise(CV = round(median(CV
), 1))
```

```
print(paste0("Median-CV of peptide RT: Q741x+inh, ", medianCV_RT[1,2], "%; WT+inh,
", medianCV_RT[2,2], "%; Q741x, ", medianCV_RT[3,2], "%; WT, ", medianCV_RT[4,2],
"%"))
```

```
[1] "Median-CV of peptide RT: Q741x+inh, 1.5%; WT+inh, 0.7%; Q741x, 1.5%; WT, 0.5%"
```

And here is the plot;

```
# Violin plot of inter-group CV
plot.cv_RT <- ggplot(CV_RT, aes(x=group, y=CV)) +</pre>
              geom_violin(aes(fill = as.character(group)), trim=FALSE, width = 0.8
, #aes(fill = group),
                          na.rm = TRUE, position = "dodge")+
              geom_boxplot(width=0.1, fill = 'white', outlier.size = 0,
                          na.rm = TRUE, position = "dodge")+
              #geom_boxplot(width=0.3, outlier.size = 0.1, na.rm = TRUE, position
= "dodge", aes(fill = as.character(group)))+
              geom_text(data = medianCV_RT, aes(label = CV), position = position_d
odge(width = 1),
                          hjust = -0.5, vjust = -0.5, size = 5) +
              ylim(0, 20)+
              labs(fill = "")+
              xlab("") + ylab("% Coefficient of Variation of peptide retention tim
e") +
              theme light(base size = 12)
plot.cv_RT
```


Additional analysis#2: Visualizing the overall shape of comparative data by a histogram of distribution of log2FC;

```
hist(long_ano.fc$log2FC, breaks = 120, col = "grey", xlab = "log2FC", main = "")
```

