

Universidade Federal de Pelotas

Centro de Desenvolvimento Tecnológico Bacharelado em Engenharia de Computação

Circuitos Digitais Aula T6

Implementação de circuitos digitais: Noções sobre a tecnologia MOS, Transistores NMOS e PMOS, Estrutura de portas lógicas CMOS estáticas.

Prof. Leomar S. Rosa Jr.

leomarjr@ufpel.edu.br

Como são implementadas as portas lógicas?

- Portas lógicas: utilizadas na construção de sistemas digitais
- Como são implementadas estas portas lógicas ?
 - Circuitos eletrônicos compostos de transistores ou diodos
- Circuitos Eletrônicos
 - Trabalham em dois níveis ou valores de tensão que representam:
 - Valor lógico '0' ou nível lógico baixo
 - Valor lógico '1' ou nível lógico alto

- Projeto das Portas e Circuitos Lógicos
 - Associação de chaves lógicas controladas por uma grandeza elétrica
 - Chave Lógica composta por três terminais:
 - Gate (nodo de controle), dreno e fonte

Projeto das Portas e Circuitos Lógicos

- Modelo de chave elétrica ideal
- Teoria de chaveamento
 - Descreve como estas chaves elétricas ideais podem ser utilizadas na implementação de portas e circuitos lógicos
- Tecnologias utilizadas nas últimas décadas: relés, válvulas, diodos e os transistores bipolares
- Tecnologia MOS (metal-óxido-semicondutor)
 - Tecnologia dominante atualmente
 - Vantagens: densidade de integração em um único chip e consumo de potência

Prof. Leomar S. Rosa Jr.

Prof. Leomar S. Rosa Jr.

Prof. Leomar S. Rosa Jr.

Níveis Lógicos x Níveis de Tensão

Nas tecnologias MOS atuais:

Nível Lógico	Nível de Tensão	Símbolos
0	0 Volts (terra, massa, VSS, GND)	<u></u>
1	3.3, 1.5 ou 1.1 Volts (Vdd, Vcc)	TY

Transistores MOS

Há dois tipos de transistores MOS:

NMOS

 Os portadores majoritários (responsáveis pela corrente elétrica) são os elétrons.

PMOS

 Os portadores majoritários são as lacunas (falta de elétrons).

O Transistor NMOS

Funcionamento Simplificado: "uma chave eletrônica"

O Transistor PMOS

Funcionamento Simplificado: "uma chave eletrônica"

Associações de Transistores NMOS

Série

Problema: o transistor NMOS não conduz bem o nível lógico "1"

Associações de Transistores NMOS

Paralelo

Associações de Transistores PMOS

Série

Problema: o transistor PMOS não conduz bem o nível lógico "0"

Associações de Transistores PMOS

Paralelo

Portas Lógicas CMOS: o Inversor

Tabela-verdade

Esquemático de transistores

Portas Lógicas CMOS: o Inversor

Funcionamento Estático:

2 situações possíveis

Portas Lógicas CMOS: esquema geral

As redes *pull-up* e *pull-down* são duais.

Portas Lógicas CMOS: NAND de 2 entradas

Esquemático lógico

Tabela-verdade

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Portas Lógicas CMOS: NAND de 2 entradas

Representação como chaves

Portas Lógicas CMOS: NOR de 2 entradas

Esquemático lógico

Tabela-verdade

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

