Evidence for Evolution Part 4: Molecular Evidence

Ms. Gill Honors Biology

Agenda

- How are those asses related?
 Biogeography and phylogeny of horses, zebras, and asses
- Notes: molecular evidence
- Cytochrome c protein sequence worksheet
- Finish Canary Island Lizard Lab

 HW: Cytochrome c protein sequence worksheet, FINISH LAB!!!!

How are those asses related? Biogeography and Phylogeny of the Genus *Equus* (horses, zebras, asses)

Draw a phylogenetic tree – use the additional info on your handout

Molecular evidence for evolution

Common genetic code

- Common cell structure and organization
- Sharing of genes for important proteins

Common genetic code

- Everything uses the central dogma
- Basis of life as we know it, incredibly complex, unique, and likely invented only once

- A C U G A C U
- If life originated multiple times, really unlikely DNA-RNA-protein code would emerge each time
- Even if it did, codons would probably code for different amino acids, but they're always the same

Common cell structure and organization

- All animal cells share the same general structure
- Same with all plant cells
- Same with prokaryotes
- Analogous structures in these cell types
- If life originated multiple times, really unlikely that all lineages would converge on this system

Common genes

- Related species share genes
 - the closer the relation, the more shared genes
- Usually genes that code for proteins/RNA with really key functions
 - Ribosomal RNA protein synthesis (everything we know)
 - Cytochrome c mitochondria, energy (eukaryotes)
 - Hemoglobin oxygen transport in blood (most animals)

Number of DNA/protein sequence differences measures how closely related species are

	Organism	Number of amino acid differences from humans
a	Chimpanzee	0
330	Rhesus monl	key 1
0	Rabbit	9
w	Cow	10
3	Pigeon	12
a	Bullfrog	20
分	Fruit fly	24
0	Wheat germ	37
0	Yeast	42

- Can look at DNA or protein
- Nonessential parts of DNA/protein will gain mutations over time
- The longer species have been separated, the more different mutations they will have
- More sequence differences = more distantly related (less=closer)