Lab2

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import scipy
```

例题1

```
X=df['mheight']
y=df['dheight']
X=sm.add_constant(X)
```

df = pd.read_csv('data/R_alr4_Heights.csv')

```
model = sm.OLS(y, X).fit()
# 回归系数
coefficients = model.params
```

```
# 汇总
print(model.summary())
```

Dep. Variab	le:	dhe	eight	R-squ	ared:		0.241
Model:			OLS	Adj.	R-squared:		0.240
Method:		Least Squ	uares	F-sta	tistic:		435.5
Date:	9	sun, 26 Nov	2023	Prob	(F-statistic)	:	3.22e-84
Time:		22:3	33:18	Log-L	ikelihood:		-3075.0
No. Observa	tions:		1375	AIC:			6154.
Df Residual	s:		1373	BIC:			6164.
Df Model:			1				
Covariance	Type:	nonro	bust				
=======					P> t		
					0.000		
•					0.000		
====== Omnibus:	========				======= n-Watson:	=======	 0.126
Prob(Omnibu	s):	(.494	Jarqu	e-Bera (JB):		1.353
Skew:		(0.002	Prob(JB):		0.508
Kurtosis:		3	3.154	Cond.	No.		1.66e+03

- [2] The condition number is large, 1.66e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

```
plt.scatter(df['mheight'],df['dheight'],marker='o',s=1,color='black')
#把预测的直线画出来
plt.plot(df['mheight'],model.predict(X),color='red',linewidth=1)
plt.show()
```



```
#残差分析
residual=model.resid
#残差是否正态
sm.qqplot(residual,line='s')
plt.show()
plt.hist(residual,bins=40)
plt.show()
#残差与自变量 mheight 是否存在某种非线性关系?
plt.scatter(df['mheight'],residual,marker='o',s=1,color='black')
plt.show()
```


例题2

```
df=pd.read_csv('data/R_alr4_brains.csv')
df.drop(df.columns[0],axis=1,inplace=True)
df_eg2=df.copy()
```

```
# 画出散点图
plt.scatter(df['Bodywt'],df['Brainwt'],marker='*',s=4,color='black')
#拟合简单线性模型
X=df['Bodywt']
y=df['Brainwt']
X=sm.add_constant(X)
model_eg2=sm.OLS(y,X).fit()
plt.plot(df['Bodywt'],model_eg2.predict(X),linewidth=0.1,color='red')
plt.show()
Brain_pred=model_eg2.predict(sm.add_constant(df['Bodywt']))
print(model_eg2.params)
```


const 91.008644
Bodywt 0.966460
dtype: float64

```
#对两个变量取对数
df_log=np.log(df)
# 画出散点图
plt.scatter(df_log['Bodywt'],df_log['Brainwt'],marker='*',s=4,color='black')
#拟合简单线性模型
X=df_log['Bodywt']
y=df_log['Brainwt']
X=sm.add_constant(X)
model_eg2_log=sm.OLS(y,X).fit()
plt.plot(df_log['Bodywt'],model_eg2_log.predict(X),linewidth=0.1,color='red')
plt.show()
```



```
BrainWt_logpred=model_eg2_log.predict(sm.add_constant(df_log['BodyWt']))
#pd.DataFrame({'BrainWt':df['BrainWt'],'BrainWt_logpred':np.exp(BrainWt_logpred),
'BrainWt_pred':Brain_pred}).head()
```

练习一

福布斯 2019 财富榜前 100 名数据:

http://staff.ustc.edu.cn/~ynyang/2023/lab/forbes2019.txt

第1列是排名(Rank),第4列为财富值(Wealth),试研究财富与排名的关系。

```
#以'\t'为分隔符读取数据
data=pd.read_table('data/forbes2019.txt')

df=pd.DataFrame({'Rank':data.iloc[:,0],'Wealth':data.iloc[:,3]})

X=df['Wealth']
y=df['Rank']
X=sm.add_constant(X)

model=sm.OLS(y,X).fit()
print(model.summary())
```

```
OLS Regression Results
```

Dep. Variable	2 :	F	Rank	R-squa			0.626
Model:			OLS	Adj. R	-squared:		0.622
Method:		Least Squa	ıres	F-stat	istic:		164.2
Date:		Sun, 26 Nov 2	2023	Prob (F-statistic)	:	1.16e-22
Time:		22:33	3:20	Log-Li	kelihood:		-428.11
No. Observati	ions:		100	AIC:			860.2
Df Residuals:	:		98	BIC:			865.4
Df Model:			1				
Covariance Ty	/pe:	nonrol	oust				
	coef	std err			P> t		
const							
Wealth							
omnibus:					 -Watson:		0.070
Prob(Omnibus)):	0	.000	Jarque	-Bera (JB):		17.169
Skew:		0	.925	Prob(J	B):		0.000187
Kurtosis:		3 .	.835	Cond.	No.		58.7

specified.

```
plt.scatter(df['Wealth'],df['Rank'],marker='o',s=1,color='black')
plt.plot(df['wealth'], model.predict(X), color='red', linewidth=1)
plt.xlabel('Wealth')
plt.ylabel('Rank')
plt.show()
```


取对数之后再拟合

```
#取log之后再拟合
df_log=np.log(df)
X=df_log['Wealth']
y=df_log['Rank']
X=sm.add_constant(X)
model=sm.OLS(y,X).fit()
plt.scatter(df_log['Wealth'],df_log['Rank'],marker='o',s=1,color='black')
plt.plot(df_log['Wealth'],model.predict(X),color='red',linewidth=1)
plt.xlabel('log_Wealth')
plt.ylabel('log_Rank')
plt.show()
print(model.params)
```


const 9.026446 Wealth -1.710065 dtype: float64

答:

发现取对数之后的模型更好

所建立的模型为: log(Rank)=(9.026446)+log(Wealth)*(-1.710065)

练习二

类似于例 1 中的残差分析,考察例 2 两个模型的拟合效果。

```
def residual_analysis(df,model,x_name):
    residual=model.resid
    #残差是否正态
    sm.qqplot(residual,line='s')
    plt.show()
    plt.hist(residual,bins=30)
    plt.show()
    #残差与自变量是否存在某种非线性关系?
    plt.scatter(df[x_name],residual,marker='o',s=1,color='black')
    plt.show()
```

例题2线性模型的残差分析

```
residual_analysis(df_eg2,model_eg2,'BodyWt')
```


例题2对数线性模型的残差分析

residual_analysis(np.log(df_eg2),model_eg2_log,'BodyWt')

练习三

```
X=np.log(df['height'])
y=np.log(df['weight'])
X=sm.add_constant(X)
model_log=sm.OLS(y,X).fit()
print(model_log.summary())
print(model_log.params)
plt.scatter(np.log(df['height']),np.log(df['weight']),marker='o',s=1,color='black
')
plt.plot(np.log(df['height']),model_log.predict(X),color='red',linewidth=1)
plt.xlabel('log_height')
plt.ylabel('log_weight')
plt.show()
```

Dep. Variable:		we	ight	R-squa	red:		0.615	
Model:			OLS	Adj. R	-squared:		0.613	
Method:		Least Squ	ares	F-stat	istic:		314.4	
Date:	Su	n, 26 Nov	2023	Prob (F-statistic)	:	1.11e-42	
Time:		22:3	3:23	Log-Li	kelihood:		137.87	
No. Observatio	ns:	199		AIC:			-271.7	
Df Residuals:			197	BIC:			-265.2	
Df Model:			1					
Covariance Typ	e:	nonro	oust					
	coef	std err		t	P> t	[0.025	0.975]	
const	2.5988	0.088	29	. 387	0.000	2.424	2.773	
height	2.9297	0.165	17	.733	0.000	2.604	3.255	
Omnibus:		3	====== .252	 Durbin	======== -Watson:		1.804	
Prob(Omnibus)		0	.197	Jarque	-Bera (JB):		2.906	
Skew:		0	.216	Prob(J	в):		0.234	
Kurtosis:		3	.404	Cond.	No.		24.6	

(a)

应用前述模型,使用所有数据 (不考虑性别) 求出 a,b,σ 的 LS 估计, 计算你自己的体重指数 ξ ,判断自己体重是否超标,并计算群体中超过你的体重指数 ξ 值的人的比例。

```
def cal_bmi(height,weight,model):
    return (np.log(weight)-model.params[0]-
model.params[1]*np.log(height))/(((model.resid**2).sum()/model.df_resid)**0.5)
my_bmi=cal_bmi(1.724,65.5,model_log)
print(f'我的epsilon指数是{my_bmi}')
```

我的epsilon指数是-0.10158930069421292

```
list=pd.DataFrame(cal_bmi(df['height'],df['weight'],model_log))
print(f'列表中比我的epsilon指数高的比例约为
{list[list>my_bmi].dropna().shape[0]/list.shape[0]}')
```

列表中比我的epsilon指数高的比例约为0.5477386934673367

```
检验 H0 : b = 2 ;检验统计量t=\sqrt{s_{xx}}(\hat{b}-2)/\hat{\sigma};t\sim t_{n-2}. 如果不显著,则可认为 b = 2, 从而你得到了 BMI 计算公式!)。
```

```
remark:.std()的公式为S=sqrt(np.sum((x-x.mean())**2)/(n-1))
```

```
t=np.sqrt(((df['height']-df['height'].mean())**2).sum())*
(model_log.params[1]-2)/model_log.resid.std()
print(f'检验统计量为{t}')
```

检验统计量为9.648346102081407

```
#求t_n-2的0.05分位数
print(f't_{df.shape[0]-2}的0.025上分位数为
{scipy.stats.t.ppf(0.975,df.shape[0]-2)}')
print('于是拒绝原假设,认为b不等于2')
```

```
t_197的0.025上分位数为1.9720790337760217
于是拒绝原假设,认为b不等于2
```

(c)

我们可以不取对数,直接建立线性模型 W = a + bH + ϵ , ϵ ~ $N(0,\sigma^2)$

```
x=df['height']
y=df['weight']
X=sm.add_constant(X)
model=sm.OLS(y,X).fit()
print(model.summary())
print(model.params)
plt.scatter(df['height'],df['weight'],marker='o',s=1,color='black')
plt.plot(df['height'],model.predict(X),color='red',linewidth=1)
plt.xlabel('height')
plt.ylabel('weight')
plt.show()
```

```
OLS Regression Results
Dep. Variable:
                              weight R-squared:
                                                                       0.594
                                 OLS Adj. R-squared:
Model:
                                                                       0.592
Method:
                      Least Squares F-statistic:
                                                                       288.3
Date:
                    Sun, 26 Nov 2023 Prob (F-statistic):
                                                                    2.01e-40
                            22:33:24 Log-Likelihood:
                                                                     -707.79
Time:
No. Observations:
                                                                       1420.
                                 199 AIC:
Df Residuals:
                                 197
                                       BIC:
                                                                       1426.
Df Model:
Covariance Type:
                           nonrobust
                        std err
                                                           [0.025
                                                                      0.975]
                coef
                                                P>|t|
                                         t
```

const	-130.7470	11.563	-11.308	0.000	-153.550	-107.944
height	114.9222	6.769	16.978	0.000	101.573	128.271
Omnibus:		33.	873 Dur	bin-Watson:	=======	 1.844
Prob(Omnib	ous):	0.	000 Jar	que-Bera (JB)	:	77.622
Skew:		0.	766 Pro	ob(JB):		1.40e-17
Kurtosis:		5.	648 Cor	nd. No.		43.9
========						
Notos						
Notes:	ard Errore acci	ıma that th	a covaria	unce matriv of	the arrors	is correct
[1] Standa	ard Errors assu	ume that th	e covaria	unce matrix of	the errors	is correct
[1] Standa		ume that th	e covaria	unce matrix of	the errors	is correct
[1] Standa specified.		ume that th	e covaria	unce matrix of	the errors	is correct


```
def cal_bmi_linear(height, weight, model):
    return (weight - model.params[0] - model.params[1] * height) / (((model.resid
** 2).sum() / model.df_resid) ** 0.5)

my_bmi = cal_bmi_linear(1.724, 65.5, model)

print(f'我的epsilon指数是{my_bmi}')

list = pd.DataFrame(cal_bmi_linear(df['height'], df['weight'], model))

print(f'列表中比我的epsilon指数高的比例约为{list[list > my_bmi].dropna().shape[0] /

list.shape[0]}')

print('与a中得到的结果差不多')
```

我的epsilon指数是-0.22044291167298843 列表中比我的epsilon指数高的比例约为0.5628140703517588 与a中得到的结果差不多

(d)

方法 (a) 和 (c) 哪个更合理?这依赖于哪个模型能更好地拟合数据。模仿例 1 的残差分析,考察两个模型的拟合效果

#残差分析

residual_analysis(np.log(df+1e-5),model_log,'height')

答:从二者表现来看,二者效果都很不错,但从qq图来看取对数之后的模型稍微好

(e)

显然性别与 W,H 都有关,因此我们应该在对数尺度简单模型中添加一项控制性别: $log(W) = a + b \times log(H)) + c \times Sex + \epsilon$,相应地,R 命令为 $lm(logW \sim logH + Sex)$ 。此时,你能否推断出 b = 2?

```
X=pd.DataFrame([np.log(df['height']),df['sex']]).T
y=np.log(df['weight'])
X=sm.add_constant(X)
model_log=sm.OLS(y,X).fit()
print(model_log.params)
```

```
const 3.008705
height 2.057156
sex 0.124078
dtype: float64
```

```
#检验b=2
t=np.sqrt(((np.log(df['height'])-np.log(df['height']).mean())**2).sum())*
(model_log.params[1]-2)/(((model_log.resid**2).sum()/model_log.df_resid)**0.5)
print(f'检验统计量为{t}')
#求t_n-3的0.05分位数
print(f't_{df.shape[0]-2}的0.025上分位数为
{scipy.stats.t.ppf(0.975,df.shape[0]-2)}')
print('于是接受原假设,认为b等于2')
```

检验统计量为0.3673653017397748 t_197的0.025上分位数为1.9720790337760217 于是接受原假设,认为b等于2

练习四

有人声称如下论断: 如果一个正随机变量 x 服从对数正态分布, 即 $\log(x) \sim N(0,1)$, 则 x 的首位非 0 数字 d 服从 Benford 定律, 即 $P(d=i) = \log 10(1+1/i), i=1,2,...,9.$ 试通过模拟实验验证上述论断是否成立。

```
N=1000
np.random.seed(0)
X=np.random.normal(0,1,N)
X=np.exp(X)

for i in range(len(X)):
    while X[i]<1:
        X[i]=X[i]*10

#取首位非零的数字
X=X.astype(str)
X=pd.DataFrame(X)
X['first']=X.iloc[:,0].str[0]
X['first']=X['first'].astype(int)</pre>
```

```
numerical_prob=X['first'].value_counts()
#benford定律
benford=pd.DataFrame([np.log10(1+1/i) for i in
range(1,10)],index=range(1,10),columns=['benford'])*N
data=pd.DataFrame({'numerical_prob':numerical_prob,'benford':benford['benford']})
```

```
#卡方检验
chi2=np.sum((numerical_prob-benford['benford'])**2/benford['benford'])
print(f'卡方检验统计量为{chi2}')
print(f'自由度为8的卡方分布的0.95分位数为{scipy.stats.chi2.ppf(0.95,8)}')
```

```
卡方检验统计量为10.49169161383419
自由度为8的卡方分布的0.95分位数为15.507313055865453
```

```
#运用库库函数进行卡方检验
scipy.stats.chisquare(numerical_prob,benford['benford'])
```

答:在样本量是1000的条件下进行卡方检验,得到的卡方检验统计量为10.5,小于自由度为8的卡方分布的0.95分位数为15.51,p值为0.6;因此接受原假设,认为benford定律成立。 当然我试过样本量是10000的时候,那时候卡方检验是拒绝的,这个说实话我不太明白。