GÖRÜNTÜ İŞLEME

PROJE ÖDEVİ RAPORU

İsim: Fatih

Soy İsim: ALTINCI

Numara: 20011610

Mail: fatihaltinci@gmail.com

1. The Oxford-IIT Pet veri kümesinin analizi:

37 Cins Hayvan Var.

Her Cinsten Kaç Adet Olduğu

		Abyssinian	Abyssinian	:	200
		Bengal	Bengal	:	200
		Birman	Birman	:	200
		Bombay	Bombay	:	200
		British Shorthair	British Shorthair	:	200
		Egyptian Mau	Egyptian Mau	:	200
		Maine Coon	Maine Coon	:	200
		Persian	Persian	:	200
		Ragdoll	Ragdoll	:	200
		Russian Blue	Russian Blue	:	200
		Siamese	Siamese	:	200
		Sphynx	Sphynx	:	200
		american bulldog	american bulldog	:	200
		american pit bull terrier	american pit bull terrier	:	200
		basset hound	basset hound	:	200
15	:	beagle	beagle	:	200
		boxer	boxer	:	200
		chihuahua	chihuahua	:	200
		english cocker spaniel	english cocker spaniel	:	200
		english setter	english setter	:	200
		german shorthaired	german shorthaired	:	200
21	:	great pyrenees	great pyrenees	:	200
	-	havanese	havanese	:	200
		japanese chin	japanese chin	:	200
		keeshond	keeshond	:	200
		leonberger	leonberger	:	200
		miniature pinscher	miniature pinscher	:	200
		newfoundland	newfoundland	:	200
		pomeranian	pomeranian	:	200
		pug	pug	:	200
		saint bernard	saint bernard	:	200
		samoyed	samoyed	:	200
		scottish terrier	scottish terrier	:	199
		shiba inu	shiba inu	:	200
		staffordshire bull terrier	staffordshire bull terrier	:	191
		wheaten terrier	wheaten terrier	:	200
36	:	yorkshire terrier	yorkshire terrier	:	200

7390 Toplam Veri: 5173 Eğitim (%70), 2217 Doğrulama (%30) | Projede

Annotation'ları verilen veri setinin 3681 tanesi Eğitim/Doğrulama, 3670 tanesi Test olarak ayrılmış.

Bu dosyalar veri setinin içerisinde "txt" uzantılı dosyalarda belirtilmiş.

2. Kodlayıcı-Kod çözücü tabanlı konvolüsyonel sinir ağının eğitimi

Yöntem:

Veri setinin analizi yapılır. Bölütleme için istenilen Framework seçilir. Bu Framework'de verilen direktiflere ve istenilen parametrelere göre model kurulur. Modelin maskeleme ile bölütleme performansı test edilir.

Google Colab ortamında çalıştığım için önce veri setini kendi çalışma ortamıma indirdim. Daha sonra içindekileri çıkardım. Giriş ve Hedef yollarını belirledim. Veri setini Eğitim ve Doğrulama seti olarak böleceğim oranı belirledim. Sonra veri setinin analizi yaptım. Ardından gerekli kütüphanelerin de gömülmesiyle modelin tasarım kısmına geçtim. PDF'de verilen LinkNet mimari yapısını inceledim. GitHub kodlarına baktım. Daha sonra bu modeli implemente edenlere baktım. Aynı yapıda modelin kodlayıcı ve kod çözücü bloklarını kurdum. Katmanlarda "Relu" aktivasyon fonksiyonun kullandım. Son katmanda "Softmax" kullandım. Genel kullandığım derin öğrenme modelleri bu yapıda olduğu için ben de böyle kullandım. Modele giriş çözünürlüğü (128,128) olarak belirledim. Altına düştüğünde konvolüsyon işlemleri sonucunda filtre boyutu aştığı için olmuyordu. Batch Size 32, Epoch 10 olacak şekilde modeli fitledim. Sonra modelin doğruluk ve dice coefficient grafiğini bastırdım. Modeli kaydettim.

Uygulama: Sparse Categorical Accuracy:

Dice Coefficient:

İlk turda Validation Loss yüksek olduğu zaman metrik yüksek bir başlangıç yaptı daha sonra 10 tur sonunda yavaşlayarak azalan bir grafik çizdi.

Denemeler:

Validation Loss: 0.3898560404777527

Validation Accuracy: 0.8730757832527161

Validation Dice Coefficient: 0.8572415113449097

Sonuç:

Derin öğrenme yöntemi ile geliştirilen bölütleme modelleri, klasik yöntemlere göre daha yüksek doğruluk ve daha az hata oranlarına sahiptir. Ayrıca, özellik çıkarımı gerektirmeyen yapay sinir ağları sayesinde daha hızlı ve verimli çalışırlar. Bu nedenle, derin öğrenme yöntemi ile geliştirilen bölütleme modelleri, klasik yöntemlerle karşılaştırıldığında önemli avantajlar sağlar.

Dice Coefficient metriği, bölütlemenin doğruluğunu ölçmenin yanı sıra modeller arasında karşılaştırma yapmamıza izin verir. F1 Score metriği ile karıştırılmamalıdır. F1, precision ve recall değerlerinin harmonik ortalamasıdır ve sınıflandırma problemlerinde kullanılır. Dice Coefficient ise iki setin ortak elemanlarının toplamının iki setin elemanlarının toplamına bölümüdür ve bölütleme problemlerinde kullanılır. Bu metrikler arasındaki temel fark, F1 skoru sınıflandırma problemlerinde kullanılırken Dice coefficient bölütleme problemlerinde kullanılır.

<u>Video</u>