NRF24L01 高速嵌入式无线数传模块

说

明

书

深圳云佳科技有限公司

QQ: 1002421875 MSN:yunjiakeji@hotmail.com

电话: 13430551040 Skype:yunjiakeji

E-mail: myb33695@163.com

地址:广东省深圳市南山区西丽嘉兴苑 2 栋 6 楼

公司网址: http://www.maoyunbin.com.cn/

公司名称: 深圳云佳科技有限公司 电话: 13430551040 E-mail: <u>myb33695@163.com</u> 官方网址: http://www.maoyunbin.com.cn 无线技术交流群(1) 81069762 (满) 无线技术交流群(2) 65332649 无线技术交流群(3) 81070007

QQ: 1002421875 无线技术交流群71693650 (满)

2008年12月20日

一、产品特性

2.4GHz 全球开放ISM 频段,最大0dBm 发射功率,免许可证使用

支持六路通道的数据接收

低工作电压: **1.9~3.6V**低电压工作

高速率: 2Mbps,由于空中传输时间很短,极大的降低了无线传输中的碰撞现象(软件设置1Mbps或者2Mbps的空中传输速率)

多频点: 125 频点,满足多点通信和跳频通信需要

超小型:内置2.4GHz天线,体积小巧,15x29mm(包括天线)

低功耗: 当工作在应答模式通信时,快速的空中传输及启动时间,极大的降低了电流消耗。

低应用成本: NRF24L01 集成了所有与RF协议相关的高速信号处理部分,比如: 自动重发丢失数据

包和自动产生应答信号等,NRF24L01的SPI接口可以利用单片机的硬件SPI口连接或用单片机I/O口进行模拟,内部有FIFO可以与各种高低速微处理器接口,便于使用低成本单片机。

便于开发:由于链路层完全集成在模块上,非常便于开发。

自动重发功能,自动检测和重发丢失的数据包,重发时间及 重发次数可软件控制

公司名称:深圳云佳科技有限公司 E-mail: myb33695@163.com 官方网址: http://www.maoyunbin.com.cn

电话: 13430551040 QQ: 1002421875 无线技术交流群71693650(满)

无线技术交流群(1) 81069762(满)无线技术交流群(2) 65332649无线技术交流群(3) 81070007

自动存储未收到应答信号的数据包

自动应答功能,在收到有效数据后,模块自动发送应答信号, 无须另行编程

载波检测一固定频率检测

内置硬件 CRC 检错和点对多点通信地址控制 数据包传输错误计数器及载波检测功能可用于跳频设置 可同时设置六路接收通道地址,可有选择性的打开接收通道 标准插针 Dip2.54MM 间距接口,便于嵌入式应用

二、基本电气特性

参数	数值	单位
供电电压	1.9~3.6V	V
最大发射功率	0	dBm
最大数据传输率	2000	kbps
发射模式下,电流消耗(0dBm)	11.3	mA
接收模式下电流消耗(2000kbps)	12.3	mA
温度范围	-40 ~ +85	Ĵ
数据传输率为 1000kbps 下的灵敏度	-85	dBm
掉电模式下电流消耗	900	nA
表 2-1 基本电气特性	Ē	

三、引脚说明

说明:

- 1) VCC脚接电压范围为1.9V~3.6V之间,不能在这个区间之外,超过3.6V将会烧毁模块。推荐电压3.3V左右。
- (2) 除电源VCC和接地端,其余脚都可以直接和普通的5V单片机IO口直接相连,无需电平转换。当然对3V左右的单片机更加适用了。
- (3) 硬件上面没有SPI的单片机也可以控制本模块,用普通单片机IO口模拟SPI不需要单片机真正的串口介入,只需要普通的单片机IO口就可以了,当然用串口也可以了(**a:与51系列单片机PO口连接时候,需要加10K的上**

拉电阻,与其余口连接不需要。

D: 其他系列的单片机,如果是5V的,请参考该系列单片机IO口输出电流大小,如果超过10mA,需要串联电阻分压,否则容易烧毁模块!如果是3.3V的,可以直接和RF24I01模块的IO口线连接。比如AVR系列单片机

公司名称:深圳云佳科技有限公司 E-mail: myb33695@163.com 官方网址: http://www.maovunbin.com.cn

电话: 13430551040 QQ: 1002421875 无线技术交流群71693650(满)

无线技术交流群(1)81069762(满)无线技术交流群(2)65332649无线技术交流群(3)81070007

如果是 5V的,一般串接 2K的电阻

)

(4) 如果需要其他封装接口,比如密脚插针,或者其他形式的接口,可以 联系我们定做。

四、模块结构和引脚说明

NRF24L01 模块使用 Nordic 公司的 nRF24L01 芯片开发而成。

Pin	Name	Pin function	Description
1	CE	Digital Input	Chip Enable Activates RX or TX mode
2	CSN	Digital Input	SPI Chip Select
3	SCK	Digital Input	SPI Clock
4	MOSI	Digital Input	SPI Slave Data Input
5	MISO	Digital Output	SPI Slave Data Output, with tri-state option
6	IRQ	Digital Output	Maskable interrupt pin
7	VDD	Power	Power Supply (+3V DC)
8	VSS	Power	Ground (0V)
9	XC2	Analog Output	Crystal Pin 2
10	XC1	Analog Input	Crystal Pin 1
11	VDD_PA	Power Output	Power Supply (+1.8V) to Power Amplifier
12	ANT1	RF	Antenna interface 1
13	ANT2	RF	Antenna interface 2
14	VSS	Power	Ground (0V)
15	VDD	Power	Power Supply (+3V DC)
16	IREF	Analog Input	Reference current
17	VSS	Power	Ground (0V)
18	VDD	Power	Power Supply (+3V DC)
19	DVDD	Power Output	Positive Digital Supply output for de-coupling purposes
20	VSS	Power	Ground (0V)

五、工作方式

NRF2401有工作模式有四种:

收发模式

配置模式

空闲模式

关机模式

工作模式由 CE 和寄存器内部 PWR UP、PRIM RX 共同控制,见下表:

模式	PWR_UP	PRIM_RX	CE	FIFO 寄存器状态
接收模式	1	1	1	-
发射模式	1	0	1	数据在 TX FIFO 寄存器中
发射模式	1	0	1→0	停留在发射模式, 直至数据发送完
待机模式 II	1	0	1	TX FIFO 为空
待机模式 I	1	-	0	无正在传输的数据
掉电模式	0	-	-	-

5.1 收发模式

收发模式有Enhanced ShockBurstTM收发模式、ShockBurstTM收发模式和直接收发模式三种,收发模式由器件配置字决定,具体配置将在器件配置部分详细介绍。

5.1.1 Enhanced ShockBurstTM 收发模式

Enhanced ShockBurstTM收发模式下,使用片内的先入先出堆栈区,数据低速从微控制器送入,但高速(1Mbps)发射,这样可以尽量节能,因此,使用低速的微控制器也能得到很高的射频数据发射速率。与射频协议相关的所有高速信号处理都在片内进行,这种做法有三大好处:尽量节能;低的系统费用(低速微处理器也能进行高速射频发射);数据在空中停留时间短,抗干扰性高。Enhanced ShockBurstTM技术同时也减小了整个系统的平均工作电流。

在Enhanced ShockBurstTM收发模式下, NRF24L01自动处理字头和CRC校验码。在接收数据时,自动把字头和CRC校验码移去。在发送

公司名称:深圳云佳科技有限公司 E-mail: <u>myb33695@163.com</u> 官方网址: <u>http://www.maoyunbin.com.cn</u> 电话: 13430551040 QQ: 1002421875 无线技术交流群71693650 (满)

无线技术交流群(1) 81069762(满)无线技术交流群(2) 65332649无线技术交流群(3) 8

数据时,自动加上字头和CRC校验码,在发送模式下,置CE为高,至少10us,将时发送过程完成后。

- 5.1.1.1 Enhanced ShockBurstTM发射流程
- A. 把接收机的地址和要发送的数据按时序送入NRF24L01;
- B. 配置CONFIG寄存器,使之进入发送模式。C. 微控制器把CE置高 (至少10us),激发NRF24L01进行Enhanced ShockBurstTM发射; D.
- N24L01的Enhanced ShockBurstTM发射(1) 给射频前端供电; (2)
- 射频数据打包(加字头、CRC校验码); (3) 高速发射数据包; (4) 发射完成, NRF24L01进入空闲状态。 4.1.1.2 Enhanced ShockBurstTM 接收流程 A. 配置本机地址和要接收的数据包大小; B. 配置CONFIG 寄存器, 使之进入接收模式, 把CE置高。
- C. 130us后,NRF24L01进入监视状态,等待数据包的到来; D.当接收到正确的数据包(正确的地址和CRC校验码),NRF2401自动把字头、地址和CRC校验位移去;
- E. NRF24L01通过把STATUS寄存器的RX_DR置位(STATUS一般引起微控

制器中断)通知微控制器; F. 微控制器把数据从 NewMsg_RF2401 读出; G. 所有数据读取完毕后,可以清除STATUS寄存器。NRF2401可以进入四种主要的模式之一。

5.1.2 ShockBurstTM 收发模式

ShockBurstTM收发模式可以与Nrf2401a.02.E1及E2兼容,具体表述前

看本公司的N-RF2401文档。

5.2 空闲模式

NRF24L01的空闲模式是为了减小平均工作电流而设计,其最大的 优点是,实现节能的同时,缩短芯片的起动时间。在空闲模式下,部分 片内晶振仍在工作,此时的工作电流跟外部晶振的频率有关。

5.4 关机模式

在关机模式下,为了得到最小的工作电流,一般此时的工作电流为 900nA左右。关机模式下,配置字的内容也会被保持在NRF2401片内, 这是该模式与断电状态最大的区别。

六、NRF24L01 的SPI 配置

SPI 指令设置

用于 SPI 接口的常用命令见下表。当CSN 为低时, SPI 接口开始等待一条指令,任何一条新指令均由 CSN 的由高到低的转换开始

SPI 接口指令							
指令名称	指令格式	操作					
R_REGISTER	000A AAAA	读配置寄存器。AAAAA 指出读操作的寄存器地址					
W_REGISTER	001A AAAA	写配置寄存器。AAAAA 指出写操作的寄存器地址					
		只能在掉电模式或待机模式下操作。					
R_RX_PAYLOAD	0110 0001	读 RX 有效数据: 1-32 字节。读操作全部从字节 0 开始。					
		当读 RX 有效数据完成后, FIFO 寄存器中有效数据被清除。					
		应用于接收模式下。					
W_RX_PAYLOAD	1010 0000	写 TX 有效数据: 1-32 字节。写操作从字节 0 开始。					
		应用于发射模式下					
FLUSH_TX	1110 0001	清除 TX FIFO 寄存器,应用于发射模式下。					
FLUSH_RX	1110 0010	清除 RX FIFO 寄存器,应用于接收模式下。					
		在传输应答信号过程中不应执行此指令。也就是说,若传					
		输应答信号过程中执行此指令的话将使得应答信号不能被					
		完整的传输。					
REUSE_TX_PL	1110 0011	应用于发射端					
		重新使用上一包发射的有效数据。当 CE=1 时,数据被不断					
		重新发射。					
		在发射数据包过程中必须禁止数据包重利用功能。					
NOP	1111 1111	空操作。可用来读状态寄存器。					

表6-1串行接口指令设置

寄存器内容及说明

地址	参数	位	复位值	类型	描述
00	CONFIG				配置寄存器
	reserved	7	0	R/W	默认为'0'
	MASK_RX_DR	6	0	R/W	可屏蔽中断 RX_RD
					1: IRQ 引脚不产生 RX_RD 中断
					0: RX_RD 中断产生时 IRQ 引脚电平为低
	MASK_TX_DS	5	0	R/W	可屏蔽中断 TX_DS
					1: IRQ 引脚不产生 TX_DS 中断
					0: TX_DS 中断产生时 IRQ 引脚电平为低

/木列	五任件权有限公司	l.			www.macyumbm.com.cn
	MASK_MAX_	4	0	R/W	可屏蔽中断 MAX_RT
	RT				1: IRQ 引脚不产生 TX_DS 中断
					0: MAX_RT 中断产生时 IRQ 引脚电平为低
	EN_CRC	3	1	R/W	CRC 使能。如果 EN_AA 中任意一位为高则
					EN_CRC 强迫为高。
	CRCO	2	0	R/W	CRC 模式
					'0'-8 位 CRC 校验
					'1'-16 位 CRC 校验
	PWR_UP	1	0	R/W	1:上电 0:掉电
	PRIM_RX	0	0	R/W	1:接收模式 0:发射模式
01	EN_AA				使能"自动应答"功能
	Enhanced				此功能禁止后可与nRF2401 通讯
	ShockBurst**				
	Reserved	7:6	00	R/W	默认为'0'
	ENAA_P5	5	1	R/W	数据通道 5 自动应答允许
	ENAA_P4	4	1	R/W	数据通道 4 自动应答允许
	ENAA_P3	3	1	R/W	数据通道 3 自动应答允许
	ENAA_P2	2	1	R/W	数据通道2自动应答允许
	ENAA_P1	1	1	R/W	数据通道1自动应答允许
	ENAA_P0	0	1	R/W	数据通道 0 自动应答允许
02	EN RXADDR				接收地址允许
02	Reserved	7:6	00	R/W	默认为'00'
	ERX P5	5	0	R/W	接收数据通道 5 允许
	ERX P4	4	0	R/W	接收数据通道 4 允许
		3	0	R/W	0.12021011 = 2 - 1
	ERX_P3				接收数据通道3允许
	ERX_P2	2	0	R/W	接收数据通道 2 允许
	ERX_P1	1	1	R/W	接收数据通道 1 允许
	ERX_P0	0	1	R/W	接收数据通道 0 允许

02	EN_RXADDR				接收地址允许
	Reserved	7:6	00	R/W	默认为'00'
	ERX_P5	5	0	R/W	接收数据通道 5 允许
	ERX_P4	4	0	R/W	接收数据通道 4 允许
	ERX_P3	3	0	R/W	接收数据通道 3 允许
	ERX_P2	2	0	R/W	接收数据通道 2 允许
	ERX_P1	1	1	R/W	接收数据通道 1 允许
	ERX_P0	0	1	R/W	接收数据通道 0 允许
03	SETUP_AW				设置地址宽度(所有数据通道)
	Reserved	7:2	00000	R/W	默认为 00000
	AW	1:0	11	R/W	接收/发射地址宽度
					'00'-无效
					'01'-3 字节宽度
					'10'-4 字节宽度
					'11'-5 字节宽度
04	SETUP_RETR				建立自动重发
	ARD	7:4	0000	R/W	自动重发延时
					'0000'-等待 250+86us
					'0001'-等待 500+86us
					'0010'-等待 750+86us

					'1111'-等待 4000+86us
					(延时时间是指一包数据发送完成到下一包数
					据开始发射之间的时间间隔)
	ARC	3:0	0011	R/W	自动重发计数
					'0000'-禁止自动重发
					'0000'-自动重发一次
					'0000'-自动重发 15 次
05	RF_CH				射频通道
	Reserved	7	0	R/W	默认为'0'
	RF CH	6:0	0000010	R/W	设置工作通道频率
06	RF SETUP			R/W	射频寄存器
	Reserved	7:5	000	R/W	默认为 000
	PLL LOCK	4	0	R/W	锁相环允许,仅应用于测试模式
		100000000000000000000000000000000000000	1		
	RF_DR	3	1	R/W	数据传输率:
					'0'-1Mbps '1'-2 Mbps
	RF_PWR	2:1	11	R/W	发射功率:
					'00'—-18dBm
					'01'—-12dBm
					'10'—-6dBm
					'11'—0dBm
	LNA_HCURR	0	1	R/W	低噪声放大器增益,默认是'1'
07	STATUS				状态寄存器
	Reserved	7	0	R/W	默认为'0'
	RX_DR	6	0	R/W	接收数据中断。当收到有效数据包后置1。
					写'1'清除中断。
	TX_DS	5	0	R/W	数据发送完成中断。
					数据发送完成后产生中断,如果工作在自动应
					答模式下,只有当接收到应答信号后此位置1。
					写'1'清除中断。
	MAX RT	4	0	R/W	重发次数溢出中断。
	MAA_KI		Ü	10 11	写'1'清除中断。
					如果 MAX_RT 中断产生则必须清除后系统才
					能进行通讯。
	RX_P_NO	3:1	111	R	接收数据通道号:
					000-101:数据通道号
					110:未使用
					111:RX FIFO 寄存器为空
	TX_FULL	0	0	R	TX FIFO 寄存器满标志。
					1:TX FIFO 寄存器满
					0: TX FIFO 寄存器未满,有可用空间。

08	OBSERVE_TX				发送检测寄存器
	PLOS_CNT	7:4	0	R	数据包丢失计数器。当写 RF_CH 寄存器时此寄
					存器复位。当丢失15个数据包后此寄存器重启。
	ARC_CNT	3:0	0	R	重发计数器。发送新数据包时此寄存器复位
09	CD				
	Reserved	7:1	000000	R	
	CD	0	0	R	载波检测
0.4	RX_ADDR_P0	39:0	0xE7E7E7E7E7	R/W	数据通道 0 接收地址。最大长度:5 个字节(先写低字节,所写字节数量由 SETUP_AW 设定)
0B	RX ADDR P1	39:0	0xC2C2C2C2C2	R/W	数据通道 1 接收地址。最大长度:5 个字节 (先
					写低字节,所写字节数量由 SETUP_AW 设定)
0C	RX ADDR P2	7:0	0xC3	R/W	数据通道 2 接收地址。最低字节可设置。高字
					节部分必须与RX_ADDR_P1[39:8] 相等。
0D	RX_ADDR_P3	7:0	0xC4	R/W	数据通道 3 接收地址。最低字节可设置。高字
					节部分必须与RX_ADDR_P1[39:8]相等。
0E	RX_ADDR_P4	7:0	0xC5	R/W	数据通道 4 接收地址。最低字节可设置。高字
					节部分必须与RX_ADDR_P1[39:8]相等。
0F	RX_ADDR_P5	7:0	0xC6	R/W	数据通道 5 接收地址。最低字节可设置。高字
					节部分必须与RX_ADDR_P1[39:8]相等。
10	TX_ADDR	39:0	0xE7E7E7E7E7	R/W	发送地址(先写低字节)
10	TX_ADDR	39:0	0xE7E7E7E7E7	R/W	在增强型ShockBurst TM 模式下,设置
10	TX_ADDR	39:0	0xE7E7E7E7E7	R/W	
		39:0	0xE7E7E7E7E7	R/W	在增强型ShockBurst TM 模式下,设置
10	RX_PW_P0				在增强型ShockBurstM模式下,设置 RX_ADDR_P0与此地址相等来接收应答信号。
	RX_PW_P0 Reserved	7:6	00	R/W	在增强型ShockBurstM模式下,设置 RX_ADDR_P0与此地址相等来接收应答信号。 默认为00
	RX_PW_P0				在增强型 ShockBurst™模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节)
	RX_PW_P0 Reserved	7:6	00	R/W	在增强型 ShockBurst™模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节) 0: 设置不合法
	RX_PW_P0 Reserved	7:6	00	R/W	在增强型 ShockBurst™模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节)
	RX_PW_P0 Reserved	7:6	00	R/W	在增强型 ShockBurst TM 模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节) 0: 设置不合法 1: 1 字节有效数据宽度
	RX_PW_P0 Reserved	7:6	00	R/W	在增强型 ShockBurst™模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节) 0: 设置不合法
11	RX_PW_P0 Reserved RX_PW_P0	7:6	00	R/W	 在增强型 ShockBurst™模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节) 0:设置不合法 1: 1 字节有效数据宽度
	RX_PW_P0 Reserved RX_PW_P0 RX_PW_P1	7:6	00	R/W R/W	在增强型 ShockBurst™模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节)
11	RX_PW_P0 Reserved RX_PW_P0 RX_PW_P1 Reserved	7:6 5:0	00	R/W	在增强型 ShockBurst™模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节)
11	RX_PW_P0 Reserved RX_PW_P0 RX_PW_P1	7:6	00 0	R/W R/W	在增强型 ShockBurst™模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节)
11	RX_PW_P0 Reserved RX_PW_P0 RX_PW_P1 Reserved	7:6 5:0	00 0	R/W R/W	在增强型 ShockBurst TM 模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节)
11	RX_PW_P0 Reserved RX_PW_P0 RX_PW_P1 Reserved	7:6 5:0	00 0	R/W R/W	在增强型 ShockBurst™模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节)
11	RX_PW_P0 Reserved RX_PW_P0 RX_PW_P1 Reserved	7:6 5:0	00 0	R/W R/W	在增强型 ShockBurst™模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节)
11	RX_PW_P0 Reserved RX_PW_P0 RX_PW_P1 Reserved	7:6 5:0	00 0	R/W R/W	在增强型 ShockBurst™模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节)
11	RX_PW_P0 Reserved RX_PW_P0 RX_PW_P1 Reserved	7:6 5:0	00 0	R/W R/W	在增强型 ShockBurst™模式下,设置 RX_ADDR_P0 与此地址相等来接收应答信号。 默认为 00 接收数据通道 0 有效数据宽度(1 到 32 字节)

	Reserved	7:6	00	R/W	默认为 00		
	RX_PW_P2	5:0	0	R/W	接收数据通道 2 有效数据宽度(1 到 32 字节)		
					0: 设置不合法		
					1: 1 字节有效数据宽度		
					32: 32 字节有效数据宽度		
14	RX_PW_P3						
	Reserved	7:6	00	R/W	默认为 00		
	RX_PW_P3	5:0	0	R/W	接收数据通道 3 有效数据宽度(1 到 32 字节)		
					0 设置不合法		
					1: 1 字节有效数据宽度		
					32: 32 字节有效数据宽度		
15	RX_PW_P4						
	Reserved	7:6	00	R/W	默认为 00		
	RX_PW_P4	5:0	0	R/W	接收数据通道 4 有效数据宽度(1 到 32 字节)		
					0: 设置不合法		
					1: 1 字节有效数据宽度		
					32: 32 字节有效数据宽度		
16	RX PW P5						
16	RX_PW_P5 Reserved	7:6	00	R/W	默认为 00		
16	Reserved	7:6 5:0	00	R/W	默认为 00 接收数据通道 5 有效数据密度(1 到 32 字节)		
16		7:6 5:0	00	R/W R/W	接收数据通道 5 有效数据宽度(1 到 32 字节)		
16	Reserved				接收数据通道 5 有效数据宽度(1 到 32 字节) 0: 设置不合法		
16	Reserved				接收数据通道 5 有效数据宽度(1 到 32 字节)		
16	Reserved				接收数据通道 5 有效数据宽度(1 到 32 字节) 0: 设置不合法 1: 1 字节有效数据宽度 		
16	Reserved				接收数据通道 5 有效数据宽度(1 到 32 字节) 0: 设置不合法		
16	Reserved				接收数据通道 5 有效数据宽度(1 到 32 字节) 0: 设置不合法 1: 1 字节有效数据宽度 		
	Reserved RX_PW_P5 FIFO_STATUS				接收数据通道 5 有效数据宽度(1 到 32 字节) 0: 设置不合法 1: 1 字节有效数据宽度 32: 32 字节有效数据宽度 FIFO 状态寄存器		
	Reserved RX_PW_P5 FIFO_STATUS Reserved	5:0	0	R/W	接收数据通道 5 有效数据宽度(1 到 32 字节) 0: 设置不合法 1: 1 字节有效数据宽度 32: 32 字节有效数据宽度 FIFO 状态寄存器 默认为 0		
	Reserved RX_PW_P5 FIFO_STATUS	5:0	0	R/W	接收数据通道 5 有效数据宽度(1 到 32 字节) 0: 设置不合法 1: 1 字节有效数据宽度 32: 32 字节有效数据宽度 FIFO 状态寄存器 默认为 0 若 TX_REUSE=1 则当 CE 位高电平状态时不断		
	Reserved RX_PW_P5 FIFO_STATUS Reserved	5:0	0	R/W	接收数据通道 5 有效数据宽度(1 到 32 字节) 0: 设置不合法 1: 1 字节有效数据宽度 32: 32 字节有效数据宽度 FIFO 状态寄存器 默认为 0		
	Reserved RX_PW_P5 FIFO_STATUS Reserved	5:0	0	R/W	接收数据通道 5 有效数据宽度(1 到 32 字节)		
	Reserved RX_PW_P5 FIFO_STATUS Reserved	5:0	0	R/W	接收数据通道 5 有效数据宽度(1 到 32 字节)		
	Reserved RX_PW_P5 FIFO_STATUS Reserved TX_REUSE	7 6	0 0	R/W	接收数据通道 5 有效数据宽度(1 到 32 字节)		
	Reserved RX_PW_P5 FIFO_STATUS Reserved TX_REUSE	7 6	0 0	R/W	接收数据通道 5 有效数据宽度(1 到 32 字节)		
	Reserved RX_PW_P5 FIFO_STATUS Reserved TX_REUSE	7 6	0 0	R/W	接收数据通道 5 有效数据宽度(1 到 32 字节)		
	Reserved RX_PW_P5 FIFO_STATUS Reserved TX_REUSE	7 6	0 0	R/W R/W R	接收数据通道 5 有效数据宽度(1 到 32 字节)		
	Reserved RX_PW_P5 FIFO_STATUS Reserved TX_REUSE	7 6	0 0	R/W R/W R	接收数据通道 5 有效数据宽度(1 到 32 字节)		
	Reserved RX_PW_P5 FIFO_STATUS Reserved TX_REUSE	7 6	0 0	R/W R/W R	接收数据通道 5 有效数据宽度(1 到 32 字节)		

	RX_FULL	1	0	R	RX FIFO 寄存器满标志。
					1:RX FIFO 寄存器满
					0: RX FIFO 寄存器未满,有可用空间。
	RX_EMPTY	0	1	R	RX FIFO 寄存器空标志。
					1:RX FIFO 寄存器空
					0: RX FIFO 寄存器非空
N/A	TX_PLD	255:0		W	
N/A	RX_PLD	255:0		R	

表6-2寄存器内容及说明

SPI指令格式: (命令字: 由高位到低位(每字节))

(数据字节: 低字节到高字节,每一字节高位在前)

SPI时序:

图6-1,6-2和表6-3给出了SPI操作及时序。在写寄存器之前一定要进入待机模式或掉电模式。在图6-16-2中用到了如下符号: Cn-SPI指令位 Sn-状态寄存器位Dn-数据位(注:由低字节到高字节,每字节高位在前)

图6-1 SPI读操作

图6-2 SPI写操作

PARAMETER	SYMBOL	MIN	MAX	UNITS
Data to SCK Setup	Tde	2		ns
SCK to Data Hold	Tdh	2		ns
CSN to Data Valid	Tesd		42	ns
SCK to Data Valid	Ted		58	ns
SCK Low Time	Tel	40		ns
SCK High Time	Tch	40		ns
SCK Frequency	Fsck	0	8	MHz
SCK Rise and Fall	Tr,Tf		100	ns
CSN to SCK Setup	Tcc	2		ns
SCK to CSN Hold	Tech	2		ns
CSN Inactive time	Tewh	50		ns
CSN to Output High Z	Tedz		42	ns

图6-3 SPI参考时序

七、NRF24L01模块电路

八、NRF24L01与单片机接口电路示例

绝对极限参数

工作电压

输入电压

Vi...... -0.3Vto+5.25V

输出电压

Vo······VSSt oVDD

总功耗

温度

工作温度······-40℃to+85℃

存储温度······40℃to+125℃

注意: 强行超过一项或多项极限值使用将导致器件导致器件永久性损坏

九、联系方式

QQ: 1002421875 MSN:yunjiakeji@hotmail.com

Skype:yunjiakeji 电话: 13430551040

E-mail: myb33695@163.com

地址:广东省深圳市南山区西丽嘉兴苑 2 栋 6 楼

公司网址: http://www.maoyunbin.com.cn/

2008年12月20日