

[NAACL 2021] Multimodal End-to-End Sparse Model for Emotion Recognition

Wenliang Dai, Samuel Cahyawijaya, Zihan Liu, Pascale Fung

2021. 11. 22 Eung yeop Kim

1. Abstract & Introduction

The main challenges in these tasks and

MFCC
Prosody
Glottal Source

Sparse End2End

Three modalities: Textual Acoustic Visual

How to model the interactions between different modalities?

<- Feature extractions resulted from each models

1. Abstract & Introduction

2. Methodology

$$M_q = \tanh\left((W_m M + b_m) \oplus W_q q \right) \quad (1)$$

$$M_i = \operatorname{softmax} \left(W_i M_q + b_i \right) \tag{2}$$

$$M_{ns} =$$
Nucleus Sampling (M_i) (3)

$$M_o = M_{ns} \otimes M, \tag{4}$$

I multimodal data samples : $X = \{(t_i, a_i, v_i)\}_{i=1}^{I}$

 t_i is a sequence of words

 a_i is a sequence of spectrogram chunks from the audio

 v_i is a sequence of RGB image frames

2. Methodology

$$M_q = \tanh ((W_m M + b_m) \oplus W_q q)$$
 (1)

$$M_i = \operatorname{softmax} (W_i M_q + b_i)$$
 (2)

$$M_i = \text{softmax } (W_i M_q + b_i) \tag{2}$$

$$M_{ns} = \text{Nucleus Sampling } (M_i)$$
 (3)
 $M_o = M_{ns} \otimes M,$ (4)

$$M_o = M_{ns} \otimes M, \tag{4}$$

a query vector $q \in \mathbb{R}^d$

a stack of feature maps $M \in \mathbb{R}^{C \times S \times H \times W}$, where C, S, H, and W $W_m \in \mathbb{R}^{k \times C}$, $W_q \in \mathbb{R}^{k \times d}$, and $W_i \in \mathbb{R}^k$ are linear transformation weights the softmax function is applied to the $(H \times W)$ dimensions, and $M_i \in \mathbb{R}^{S \times H \times W}$ is the tensor of the

spatial attention scores corresponding to each fea-ture map.

we perform Nucleus Sampling

Therefore, M_o is a sparse tensor with some positions being zero, and the degree of sparsity is controlled by p.

0. Evaluation Metrics

1) Evaluation Metrics

- IEMOCAP dataset: Accuracy, F1-score
- CMU-MOSEI dataset: Weighted Accuracy, F1-score

2) Weighted Accuracy (WAcc) for evaluating the CMU-MOSEI

- It contains many more negative samples than positive ones on each emotion category.
- If normal accuracy is used, a model will still get a fine score when predicting all samples to be neg-.

$$WAcc. = \frac{TP \times N/P + TN}{2N},$$

in which P means total positive, TP true positive, N total negative, and TN true negative.

1. Feature extraction step

Label	Avg. word length	Avg. clip duration (s)	Train size	Valid size	Test size	Label	Avg. word length	Avg. clip duration (s)	Train size	Valid size	Test size
Anger	15.96	4.51	757	112	234	Anger	7.75	23.24	3267	318	1015
Excited	16.79	4.78	736	92	213	Disgust	7.57	23.54	2738	273	744
Frustrated	17.14	4.71	1298	180	371	Fear	10.04	28.82	1263	169	371
Happiness	13.58	4.34	398	62	135	Happiness	8.14	24.12	7587	945	2220
Neutral	13.08	3.90	1214	173	321	Sadness	8.12	24.07	4026	509	1066
Sadness	14.82	5.50	759	118	207	Surprise	8.40	25.95	1465	197	393

Table 1: Statistics of our IEMOCAP dataset split.

Table 2: Statistics of our CMU-MOSEI dataset split.

Visual data: **35 facial action units** using the Open Face library for the image frames in the video, which <u>capture the movement of facial muscles.</u>

Acoustic data: a total of 142 dimension features consisting of 12 dimension bark band energy(**BBE**) features, 22 dimension mel-frequency cepstral coefficient(**MFCC**) features, and 108 statistical features from 18 phonological classes. We extract the features per 400 ms time frame using the DisVoice library.

Textual data: the pre-trained GloVe word embeddings.(glove.840B.300d)

Model	#FLOPs	Angry		Excited		Frustrated		Нарру		Neutral		Sad		Average	
Wiodei	$(\times 10^9)$	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1
LF-LSTM	-	71.2	49.4	79.3	57.2	68.2	51.5	67.2	37.6	66.5	47.0	78.2	54.0	71.8	49.5
LF-TRANS	-	81.9	50.7	85.3	57.3	60.5	49.3	85.2	37.6	72.4	49.7	87.4	57.4	78.8	50.3
EmoEmbs†	-	65.9	48.9	73.5	58.3	68.5	52.0	69.6	38.3	73.6	48.7	80.8	53.0	72.0	49.8
MulT [†]		77.9	60.7	76.9	58.0	72.4	57.0	80.0	46.8	74.9	53.7	83.5	65.4	77.6	56.9
FE2E	8.65	88.7	63.9	89.1	61.9	71.2	57.8	90.0	44.8	79.1	58.4	89.1	65.7	84.5	58.8
MESM (p = 0.7)	5.18	88.2	62.8	88.3	61.2	74.9	58.4	89.5	47.3	77.0	52.0	88.6	62.2	84.4	57.4
					·		·	·		·	·	·		·	

Table 3: The results on the IEMOCAP dataset. #FLOPs is the number of floating point operations per second. We report the accuracy (Acc.) and the F1-score on six emotion categories: angry, excited, frustrated, happy, neutral and sad. We re-run the models marked by † , as we use two more categories and the split is different.

Model	#FLOPs	Angry		Disgusted		Fea	Fear		Нарру		Sad		Surprised		age
	$(\times 10^9)$	WAcc.	F1	WAcc.	F1	WAcc.	F1	WAcc.	F1	WAcc.	F1	WAcc.	F1	WAcc.	F1
LF-LSTM	-	64.5	47.1	70.5	49.8	61.7	22.2	61.3	73.2	63.4	47.2	57.1	20.6	63.1	43.3
LF-TRANS		65.3	47.7	74.4	51.9	62.1	24.0	60.6	72.9	60.1	45.5	62.1	24.2	64.1	44.4
EmoEmbs†		66.8	49.4	69.6	48.7	63.8	23.4	61.2	71.9	60.5	47.5	63.3	24.0	64.2	44.2
MulT [†]		64.9	47.5	71.6	49.3	62.9	25.3	67.2	75.4	64.0	48.3	61.4	25.6	65.4	45.2
FE2E	8.65	67.0	49.6	77.7	57.1	63.8	26.8	65.4	72.6	65.2	49.0	66.7	29.1	67.6	47.4
MESM (0.5)	4.54	66.8	49.3	75.6	56.4	65.8	28.9	64.1	72.3	63.0	46.6	65.7	27.2	66.8	46.8

Table 4: The results on the CMU-MOSEI dataset. WAcc stands for weighted accuracy. We report the accuracy and the F1-score on six emotion categories: angry, disgusted, fear, happy, sad and surprised. We re-run the models marked by † , as the data we use is unaligned along the sequence length dimension and the split is different.

3. Experiments & Ablation Study

Effects of Nucleus Sampling

Model	Mods.	Avg. Acc	Avg. F1
	TAV	84.5	58.5
	TA	83.7	54.0
	TV	82.8	55.7
FE2E	VA	81.2	54.4
	T	80.8	50.0
	A	73.3	44.9
	V	78.2	49.8
	TAV	84.4	57.3
MESM	TA	83.6	56.7
	TV	82.1	56.0

T: Textual

A: Acoustic

V: Visual

Specifically, with a top-p of 0.5, the MESM can achieve comparable performance to the FE2E model with around half of the FLOPs in the feature extraction.

4. Conclusion & Future Work

Hand Crafted

Fully End2End

Sparse End2End

MFCC

Prosody

Glottal Source

- 1) MESM is able to reduce the computational overhead.
- 2) FE2E model has an advantage in feature learning

 And surpasses the current state of the-art models
- 3) Visualization of the cross-modal attention maps can give an insight to determine modalities.