

Relational Database Design by ER-toRelational Mapping

Design a relational database schema

Based on a conceptual schema design

Seven-step algorithm to convert the basic ER model constructs into relations

Relational Database Design Using ER-toRelational Mapping

Figure 9.1
The ER conceptual schema diagram for the COMPANY database.

EMPLOYEE Fname Bdate Address Minit Ssn Sex Salary Super_ssn Dno Lname DEPARTMENT Mgr_ssn Dname Dnumber Mgr_start_date **DEPT LOCATIONS**

into a relational database

For each regular entity type, create a relation *R* that includes all the simple attributes of *E*

Called **entity relations**

Each tuple represents an entity instance

COMPANY database example

Assume that the mapping will create tables with simple single-valued attributes

Figure 9.3

Illustration of some mapping steps.
a. Entity relations after step 1.

(a) EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary
-------	-------	-------	------------	-------	---------	-----	--------

DEPARTMENT

PROJECT

Pname	Pnumber	Plocation

Step 2: Mapping of Weak Entity Types

- For each weak entity type, create a relation *R* and include all simple attributes of the entity type as attributes of *R*
- Include primary key attribute of owner as foreign key attributes of R

Essn

Figure 9.3 **EMPLOYEE** Illustration of some Fname Minit Bdate Address Sex Salary Lname Ssn mapping steps. a. Entity relations after **DEPARTMENT** step 1. Dname Dnumber b. Additional weak entity relation after step 2. **PROJECT** Plocation Pname Pnumber (b) DEPENDENT

Dependent_name

Sex

Bdate

Relationship

Step 3: Mapping of Binary 1:1 Relationship Types

- For each binary 1:1 relationship type
 - Identify relations that correspond to entity types participating in R
- Possible approaches:
 - Foreign key approach
 - Merged relationship approach
 - Crossreference or relationship relation approach

Step 4: Mapping of Binary 1:N Relationship Types

- For each regular binary 1:N relationship type
 - Identify relation that represents participating entity type at N-side of relationship type
 - Include primary key of other entity type as foreign key in S
 - Include simple attributes of 1:N relationship type as attributes of S
- Alternative approach
 - Use the relationship relation (cross-reference) option as in the third option for binary 1:1 relationships

Step 5: Mapping of Binary M:N Relationship Types

- For each binary M:N relationship type
 - Create a new relation S
 - Include primary key of participating entity types as foreign key attributes in S
 - Include any simple attributes of M:N relationship type

Figure 9.3

Illustration of some mapping steps.

- a. Entity relations after step 1.
- b. Additional weak entity relation after step 2.
- c. Relationship relation after step 5.

(a) EMPLOYEE

Fname Minit Lname <u>Ssn</u> Bdate Address Sex Salary	Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary
---	-------	-------	-------	------------	-------	---------	-----	--------

DEPARTMENT

PROJECT

Pname	Pnumber	Plocation
-------	---------	-----------

(b) DEPENDENT

Essn	Dependent name	Sex	Bdate	Relationship
	B op officiality	00%	Dance	110101101110

(c) WORKS_ON

Essn Pno	<u>Hours</u>
----------	--------------

Step 6: Mapping of Multivalued Attributes

- For each multivalued attribute
 - Create a new relation
 - Primary key of R is the combination of A and K
 - If the multivalued attribute is composite, include its simple components

Figure 9.3 (a) **EMPLOYEE** Illustration of some Fname Minit Ssn Bdate Address Sex Salary Lname mapping steps. a. Entity relations after DEPARTMENT step 1. Dname Dnumber b. Additional weak entity relation after step 2. **PROJECT** c. Relationship relation after step 5. Pname Pnumber Plocation d. Relation representing multivalued attribute DEPENDENT after step 6. Essn Dependent name Sex Bdate Relationship WORKS ON Pno Essn Hours DEPT_LOCATIONS Dnumber Dlocation

ER-to-Relational Mapping Algorithm: Step 7

Step 7: Mapping of *N*-ary Relationship Types

- For each n-ary relationship type R
 - Create a new relation S to represent R
 - Include primary keys of participating entity types as foreign keys
 - Include any simple attributes as attributes

Summary of Mapping for ER Model Constructs

Table 9.1 Correspondence between ER and Relational Models

ER MODEL	RELATIONAL MODEL		
Entity type	Entity relation		
1:1 or 1:N relationship type	Foreign key (or relationship relation)		
M:N relationship type	Relationship relation and two foreign keys		
n-ary relationship type	Relationship relation and n foreign keys		
Simple attribute	Attribute		
Composite attribute	Set of simple component attributes		
Multivalued attribute	Relation and foreign key		
Value set	Domain		
Key attribute	Primary (or secondary) key		

References

R. Elmasri and S. Navathe: Fundamentals of Database Systems, 7/E, Addison-Wesley, 2015