VLSI Devices Lecture 15

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

Coverage

- Two YouTube lectures reserved for advanced topics
 - -L14: Substrate bias, channel mobility
 - -L15: 3.2.1
 - -L16: 3.2.1 (Continued)
 - -L17: Velocity saturation (3.2.2)
 - -L18: Channel length modulation and so on (3.2.3, 3.2.4, 3.2.5)
 - -L19: MOSFET scaling
 - L20: MOSFET scaling (Continued)
 - -L21: Quantum effect (4.2.4)
 - L22: Double-gate MOSFETs (10.3)
 - -L23: FinFETs
 - -L24: CFETs

Rough surface

- High-resolution TEM image of SiO₂/Si interface
 - How can we characterize the roughness? Autocorrleation function,

$$\Delta(r)$$
. Usually, $\Delta^2 \exp\left(-\frac{r^2}{\Lambda^2}\right)$ or $\Delta^2 \exp\left(-\frac{r}{\Lambda}\right)$

HRTEM image (Prof. Shinichi Takagi's group, IEEE TED, 2010)

Effective mobility against effective field

- Effective field
 - Average electric field perpendicular to the Si-SiO₂ interface experienced by the carriers in the channel

$$\mathcal{E}_{eff} = \frac{1}{\epsilon_{si}} \bigg(|Q_d| + \frac{1}{2} |Q_i| \bigg) \qquad \text{Taur, Eq. (3.51)}$$

$$- \text{Using } |Q_d| \approx C_{ox} \big(V_t - V_{fb} - 2\phi_B \big) \text{ and } |Q_i| \approx C_{ox} \big(V_{gs} - V_t \big),$$

$$\mathcal{E}_{eff} = \frac{V_t - V_{fb} - 2\phi_B}{3t_{ox}} + \frac{V_{gs} - V_t}{6t_{ox}} \qquad \text{Taur, Eq. (3.53)}$$

Mobility variation

Mobility variation (Vertical field dependence)

 $N_A \, (\mathrm{cm}^{-3})$

o 3.9×10¹⁵

• 2.0×10¹⁶

 $\triangle 7.2 \times 10^{16}$

▲ 3.0×10^{17}

□ 7.7×10¹⁷

■ 2.4×10¹⁸

 $N_D \text{ (cm}^{-3}\text{)}$ o 7.8×10^{15} • 1.6×10^{16}

Δ 5.1×10¹⁶

▲ 2.7×10¹⁷

 -6.6×10^{17}

Inversion-layer mobility (Sze's book)

Strain effect on mobility

- Default wafer orientation is in the (001) plane.
 - Overall, the VLSI industry has utilized strain to gain about 10~25 % on the drive current of NMOSFET and 50 % or more on the drive current of PMOSFET.

Cubic ctrstals under stress (Sun et al., JAP, 2007)

Model planar MOSFET

- Effective oxide thickness of 1.2 nm
 - Gate workfunction of 4.3 eV
 - -Substrate doping of 1.5X10¹⁸ cm⁻³
 - $-V_{DD}$ of 1.2 V
- Channel length of 50 nm
 - Comparison with 1 μ m device

Short and long structures

• Drawn in the same scale

Input characteristics

- Physical models included
 - Note that $I_D \propto \frac{1}{L}$.

Reduction of V_t , even at a low V_{ds}

- For a short-channel device, the threshold voltage decreases.
 - $-\sim 0.45 \text{ V (Long-channel)}$
 - -~ 0.4 V (Short-channel)

-Why?

V_t as a function of L

• Short-Channel Effect (SCE) = Decrease of V_t as the channel length is reduced

Short-channel threshold rolloff (Taur, Fig. 3.19)

Charge sharing

• Even at $V_{gs} = V_{ds} = 0$ V, the conduction band profiles are different.

Drain-induced barrier lowering (DIBL)

Much worse than the long-channel device

$$-45 \text{ mV/V} @ I_D = 10^{-6} \text{ A/}\mu\text{m}$$

Conduction band, again

• At a high V_{ds} , the energy barrier is further reduced.

Simplified geometry for an analytic solution

Poisson equation

-For AFGH
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$
 Taur, Eq. (A9.1)
-For ABEF
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \frac{qN_a}{\epsilon_{si}}$$
 Taur, Eq. (A9.2)

Simplified geometry (Taur, Fig. A9.1)

Thank you!