MSO202A COMPLEX VARIABLES ASSIGNMENT-7

Practice Problems: Solutions will not be posted!

- 1. Find the residue at z=0 of the following functions and indicate the type of singularity they have at 0. (i) $\frac{\sin z}{z^2 - \pi^2}$ at $z = \pi$, (ii) $\frac{\sin z}{(z - \pi)^2}$ at $z = \pi$ π (iii) $\frac{z \cos z}{1 - \sin z}$ at $z = \pi/2$.
- 2. Use Cauchy's residue theorem to evaluate the integral of each of the following functions around the circle |z| = 3. (a) $\frac{e^{-z}}{z^2}$, (b) $\frac{e^{-z}}{(z-1)^2}$, (c) $z^2 e^{\frac{1}{z}}$ and (d) $\frac{z+1}{z^2-2z}$.
- 3. Compute the following integrals:
 - (a) $\int_{|z|=1} e^z z^{-n} dz$; $n \in \mathbb{Z}$;
 - (b) $\int_{|z|=1} \frac{\cos z}{\sin z} dz$
 - (c)

$$\int_{|z|=1} (z - \frac{1}{z})^n \frac{dz}{z} = \begin{cases} 2\pi i \binom{n}{n/2} (-1)^{n/2} & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

Use it to show that

$$\int_0^{2\pi} \sin^n t \ dt = \begin{cases} \frac{\pi}{2^{n-1}} \binom{n}{n/2} & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

4. Find the isolated singularities and compute the residue of the functions

$$\frac{e^z}{z^2 - 1}$$
, $\frac{3z}{z^2 + iz + 2}$, $\cot \pi z$.

- 5. Let $f(z) = \frac{\pi \cot \pi z}{(z + \frac{1}{2})^2}$. Compute the residue of f at isolated singularities.
- 6. Use Cauchy's residue theorem to evaluate the integral of each of the following functions around the circle |z| = 3. (a) $\frac{e^{-z}}{z^2}$, (b) $\frac{e^{-z}}{(z-1)^2}$, (c) $z^2 e^{\frac{1}{z}}$ and (d) $\frac{z+1}{z^2-2z}$.
- 7. Use the residue integration method to evaluate: (i) $\int_0^{\pi} \frac{d\theta}{2+\cos\theta}$ (ii) $\int_0^{2\pi} \frac{d\theta}{8-2\sin\theta}$.

(i)
$$\int_0^{\pi} \frac{d\theta}{2 + \cos \theta}$$

(ii)
$$\int_0^{2\pi} \frac{d\theta}{8-2\sin\theta}$$

8. Evaluate: (a)
$$\int_{-\infty}^{\infty} \frac{x}{x^4 + 1} dx$$
 (b) $\int_{-\infty}^{\infty} \frac{dx}{(x^2 - 2x + 5)^2}$ (c) $\int_{-\infty}^{\infty} \frac{dx}{x^4 + 16}$.

9. Evaluate: (a)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx$$
 (b) $\int_{-\infty}^{\infty} \frac{x \sin 3x}{x^2 + a^2} dx$, $a > 0$ (c) $\int_{-\infty}^{\infty} \frac{dx}{(1 + x^2)^n}$, $n \ge 1$.

10. Evaluate: (a)
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+9)}$$
 (b) $\int_{-\infty}^{\infty} \frac{x^2+1}{x^4+1} dx$ (c) $\int_{-\infty}^{\infty} \frac{\cos x}{x^4+1} dx$.