Lab #3 Speech Emotion Recognition

Mariam Saeed Nada Hassan Mohamed Metwalli

First Model 1D convolution

Feature Extraction

- o :Total of 258 features extracted using the means of
 - Zero-crossing rate: which is a measure of the number of times in a given time interval/frame that the amplitude of the speech signals passes .through a value of zero
 - energy: which is the total magnitude of the signal, .i.e. how loud the signal is
 - mfcc(n_mfcc=100): which is a replication of the human hearing system intending to artificially implement the ear's working principle. 100 features .were used
 - **chroma shift:** which computes a chromagram from a waveform that captures harmonic and melodic characteristics of music
 - **Mel spectrogram**: which is a spectrogram where the frequencies are converted to the mel scale
 - roll of: which is This is a measure of the amount of the right-skewness of the power spectrum
 - centroids: spectral centroid is the location of the center of mass of the spectrum. Since the audio files are digital signals and the spectral centroid is a measure that can be useful in the characterization of the spectrum of the audio file .signal
 - contrast: In an audio signal, the spectral contrast is the measure of the energy of frequency at each timestamp. is a way to measure that energy variation over time
 - bandwidth: is the difference between the upper and lower frequencies in a continuous band of .frequencies

 tonnetz: which represents a lattice diagram represents tonal space

• Structure of The Model

Improvement of The Model

- We started with the model in the pdf assignment with pure data which was about 7442 samples of data and features 258
- Then, we used augmentation on the data such as noise, stretch and pitch we got over 29,000 samples of data which helped in training the model better
- Then, we made some modifications to the layers and we noticed that adding more layers wasn't improving the accuracy so we removed some layers and added dropout layers to the model
- We ran the model a couple of times with different number of epochs and we found that 200 epochs gave us the best results

Results

confusion matrix

C →	The rows represents the true values or observations The columns respresent the model's predictions							
		angry	disgust	fear	happy	neutral	sad	10:
	angry	1186	50	46	157	49	7	
	disgust	44	1027	36	92	152	134	
	fear	47	87	937	108	91	247	
	happy	126	109	80	1112	107	35	
	neutral	5	134	37	45	982	94	
	sad	2	116	92	21	133	1204	

accuracy

□→ Training Accuracy: 0.9529679417610168

/usr/local/lib/python3.7/dist-packages/sklearn/preprocessing
y = column_or_1d(y, warn=True)
Testing Accuracy: 0.7219796180725098

o f-score, precision and recall

Percision: 0.7251878711572747

Recall: 0.7227134395174205

F-score: 0.7215634677727829

o report of all classes

₽	precision	recall	f1-score	support	
angry	0.84	0.79	0.82	1495	
disgust	0.67	0.69	0.68	1485	
fear	0.76	0.62	0.68	1517	
happy	0.72	0.71	0.72	1569	
neutral	0.65	0.76	0.70	1297	
sad	0.70	0.77	0.73	1568	
accuracy			0.72	8931	
macro avg	0.73	0.72	0.72	8931	
weighted avg	0.73	0.72	0.72	8931	

most confusing classes

According to classification report disgust and fear classes has the lowest f1-score

.so the model is confused about those classes

The previous heatmap shows how the model predicts disgust and .fear

Second Model 2D convolution

Feature Extraction

- As each sound has a variable length the data needed
 :padding so the data was processed as follows
 - load the data into a dataframe
 - replace NaN values with the mean of audio (padding)
 - take only 50000 out of approximately 80000 columns
 - extract Mel spectrogram of each audio
 - reshape data to be suitable for input

Structure of The Model

Improvement of The Model

- First shrink the large size of data to include just 50,000 columns
- Try larger model to be able to train across the large feature space
- try large number of epochs to know the best range of epochs

 The previous image shows that the best number of epochs is approximately 50

Results

confusion matrix

₽	The rows represents the true values or observations The columns respresent the model's predictions								
		angry	disgust	fear	happy	neutral	sad	%	
	angry	265	26	26	54	11	3		
	disgust	42	109	40	46	66	75		
	fear	26	40	174	62	32	76		
	happy	62	26	63	193	25	10		
	neutral	6	33	20	27	197	37		
	sad	2	47	45	13	54	200		

accuracy

f-score, precision and recall

Percision: 0.5028906174789683 Recall: 0.5133230282614288 F-score: 0.5055335823870692

report of all classes

8	precision	recall	f1-score	support	
angry	0.66	0.69	0.67	385	
disgust	0.39	0.29	0.33	378	
fear	0.47	0.42	0.45	410	
happy	0.49	0.51	0.50	379	
neutral	0.51	0.62	0.56	320	
sad	0.50	0.55	0.52	361	
accuracy			0.51	2233	
macro avg	0.50	0.51	0.51	2233	
weighted avg	0.50	0.51	0.50	2233	

most confusing classes

According to the classification report disgust has the lowest f1-.score so the model is confused about those classes

.The previous heatmap also shows how the model predicts disgust

Comparing models

The first model was better as it considered more data and even when it was confused about some of the classes , it managed to .predict most of the samples