Grundlagen der Medieninformatik I

T12 - 26.11.2020 Kodierung

Kahoot

Übungsblatt 2 - Abgabe bis 29.11 23:59 GMT+1

Übung 2: Digitalisierung

Einzelaufgabe, 10 Punkte, Abgabe 29.11.20, 23:59 Uhr in Stud.IP

- 1. Signal digitalisieren: Die Aufgabe ist es, obiges Signal angemessen zu digitalisieren:
- » Betrachte das Signal und wähle eine sinnvolle Samplingrate (mit Begründung). Die X-Achse ist Zeit in Sekunden, die Y-Achse hat willkürliche Einheiten.
- » Markiere die gesampleten Werte in der Grafik
- » Wähle eine sinnvolle Quantisierung und einen sinnvollen Wertebereich (mit Begründung)
- » Quantisiere die gesampleten Werte und stelle das Ergebnis als Folge von Dezimalzahlen dar 1 P

Kodierung

Binärdarstellung von Symbolen

Ein digitales Signal wird durch Symbole dargestellt

Jede Symbolmenge lässt sich binär kodieren

n Bits haben 2ⁿ Kombinationen (Hä? - Ja erklären wir Gleich)

Kodierungsarten

Welche Arten von Kodierung habt ihr gelernt?

- Standartkodierung

- Lauflängkodierung

- Huffman Kodierung

- Wörterbuchkodierung - Später in der Vorlesung

Standartkodierung

- Kodierung mit fester Anzahl an Bits
- Verwende für alle Zeichen gleiche Anzahl von Bits

- Suche kleinste Zahl n, so dass 2ⁿ≥|X|
- X die Anzahl der zu kodierenen Zeichen
- z.B. X = {A,B,C,D,E,F,G} -> |X| = 7, suche 2ⁿ so dass 2ⁿ≥7
 -> Kodiere daher mit 3 Bits, da 2³ = 8 ≥ 7

Kodiere z.B.

 $A \rightarrow 000$, $B \rightarrow 001$ $C \rightarrow 010$, $D \rightarrow 011$, $E \rightarrow 100$, $F \rightarrow 101$ $G \rightarrow 110$

Standartkodierung

Beispiel: Standartkodierung von "HALLO WELT" (Ohne Leerzeichen)

- X = {H,A,L,O,W,E,T}
- $|X| = 7 \rightarrow 2^3 = 8 > 7$
- Kodierung z.B.
- $H \rightarrow 000$, $A \rightarrow 001$, $L \rightarrow 010$, $O \rightarrow 011$, $W \rightarrow 100$, $E \rightarrow 101$, $T \rightarrow 110$
- Bekomme also (ohne Leerzeichen):

Н	Α	L	L	0	W	Е	L	Т
000	001	010	010	011	100	101	010	110

"Hallo Welt" kodiert ist also: 0000010100100111001010110

Standartkodierung

- Nachteil:
- Rohe, unkomprimierter Datenstrom
- → Mehr Speicherverbrauch

- Lösung:
- Komprimierung

Lauflängkodierung

• Idee: Ersetzen einer Folge gleicher Zeichen durch 1 Zeichen + Zähler

Steuer- Bedeutung

bits

010

100

101

110

1 Zeichen direkt

2 Zeichen direkt

3 Zeichen direkt

4 Zeichen direkt

Zeichen 2× wdh.

Zeichen 3× wdh.

Zeichen 4× wdh.

Zeichen 5× wdh.

- Nutze hierfür Steuerbits, z.B. →→→→→→→
- z.B. kodierung von "HALLO WELT"
- Gleiches Verfahren wie vorher, |X| = 7 → 2³ = 8 > 7
- $H \rightarrow 000, A \rightarrow 001, L \rightarrow 010, O \rightarrow 011, W \rightarrow 100, E \rightarrow 101, T \rightarrow 110$
- Bekomme somit: (SB Steuer Bit)

SB	Н	Α	SB	LL	SB	0	W	E	L	SB	T
001	000	001	100	010	011	011	100	101	010	000	110

"Hallo Welt" ist damit: 001000001100010011011100101010000110

Lauflängkodierung

- Vorteil:
- Weniger Bits bei Eingabe mit vielen Wiederholungen des gleichen Zeichens
- Bei ABBBBEFAFFFNFNNNNNN z.B. 51 Bits statt 60 Bits
- → Datenkomprimierung

- Nachteil:
- Bei normaler Eingabe → Mehr Bits als mit Standartkodierung
- Bei "HALLO WELT" z.B. 36 Bits statt 27 Bits

Huffman Kodierung

 Idee: Kodiere Zeichen einzeln, aber mit unterschiedlicher Anzahl an Bits, so dass häufige Zeichhen kurze Bitfolgen haben

- Vorgehen:
- Sortiere Zeichen nach Häfigkeit von klein zu groß
- Verbinde jede 2 kleinst vorkommenden Zeichenknoten
- Bis alle Knoten als Baum verbunden

Setze dann noch 1en und 0en und bekomme kodiertes Wort

- ** Huffman Bäume können nach unterschiedlichen Verfahren erstellt werden, hier nutzen wir das folgende Verfahren: **
- Schreibe Buchstaben auf nach Häufigkeit von Rechts nach Links (Groß- / Kleinschreibung <u>hier</u> ignoriert!)
- Verbinde kleinste H\u00e4figkeiten zu gemeinsamem Knoten, bis alle Knoten als Baum verbunden sind

Schreibe 1en Rechts, 0en Links

Dekodiere...

Lese Symbole aus dem Baum und bekomme:

Н	A	L	L	0	W	Е	L	Т
111	110	00	00	101	100	011	00	010

• "Hallo Welt" = 111110000010110001100010

- Zur Überprüfung eurer Lösung kann ein Huffman Baum Generator verwendet werden. Bei korrekter Lösung gleiche Bitanzahl (Baum kann vertauschte Knoten haben)
- Bei einfachem Einsetzen in einen Generator und Copy Paste wird eure Abgabe mit 0 Punkten bewertet!

Arbeitsblatt

Kodiere die Eingabe

DABADABADU BALU

(ohne Leerzeichen) mit Hilfe der Huffman-Kodierung. Um wie viel reduziert sich die Bitzahl gegenüber einer Standard-Kodierung?

Algorithmus zur Huffman - Kodierung

- Zähle in n(x) wie oft das Zeichen x in der Eingabe vorkommt
- Für jedes vorkommende Zeichen x
 - füge einen Teilbaum mit einem Knoten hinzu,
 - der nur das Zeichen x enthält und dessen Häufigkeit angibt
- Solange mehr als ein Teilbaum übrig ist
 - suche zwei Teilbäume x, y mit den zwei geringsten Häufigkeiten (ggf. wählen)
 - füge die Teilbäume x und y zusammen zu einem neuen Teilbaum, der
 - eine Wurzel hat.
 - x im 0-Zweig der Wurzel hat,
 - y im 1-Zweig der Wurzel hat und
 - als Häufigkeit die Summe der Häufigkeiten von x und y hat.
- Gehe Zeichen für Zeichen durch die Eingabe:
- Suche Kodierung des Zeichens im Baum und speichere in Ausgabe

- Schreibe Zeichen nach Häufigkeit auf von Rechts nach Links
- Verbinde niedrigste Häufigkeiten zu Knoten...
- ...Bis alle Knoten als Baum verbunden sind

• 1en Rechts, 0en Links...

Lese die Symbole aus dem Baum und bekomme:

D	A	В	A	D	A	В	A	D	U	В	A	L	U
10	00	01	00	10	00	01	00	10	110	01	00	111	110

- Und somit ist DABADABADU BALU kodiert:
- = 10000100100100100100100111110

- Reduzierung:
- Mit Standartkodierung hätte jedes Zeichen 3 Bit (23>5)
- Das Wort ist 14 Zeichen lang:
- So haben wir mit Standartkodierung 14 * 3 = 42 Bit
- Mit Huffman Kodierung haben wir 31 Bit
- (*) Reduzierung = 1 (Kodiert / StandartKodierung)
- Reduzierung = $1 (31/42) = 1 0.738 \approx 0.261$ Reduzierung = $0.261 \approx 2.6 / 10 = 26 / 100 = 26\%$
- Somit haben wir eine Komprimierung von 26%
- (*) Ein Ganzes (1) = 100%, Reduzierung = Differenz zwischen einem Ganzen und dem zweiten Wert

Übungsblatt 3 - Abgabe bis 6.12.2020 20:00 GTM+1

Übung 3: Huffman

Einzelaufgabe, 10 Punkte, Abgabe 6.12.2020, 20:00 Uhr in Stud.IP

1. Binarzahlen	1 P
» Was ist die Zahl 17 mit 8 Bit im Binärsystem?	0.2P
» Was ist die Zahl 123 im Binärsystem?	0.2 P
» Was ist die Zahl 010101 im Dezimalsystem?	0.2 P
» Was ist die höchste Zahl, die man mit 32 Bit darstellen kann?	0.2 P
» Wie viele Bits braucht es, um jedem Mitgliedsstaat der UN eine eindeutige Nummer zuzuweisen?	0.2 P
2. Maximale Rate	1 P

- » Analysiere die Lauflängenkodierung aus der Vorlesung mit der dort angegebenen Steuerbittabelle beim Alphabet X ={Schwarz, Rot, Grün, Blau, Türkis, Magenta, Gelb, Weiß} bzgl. folgender Frage!
- » Um wie viel % wird die Kodierung eines Text im besten Fall gegenüber der Standardkodierung kürzer?
- » Gib eine begründete Lösung ab!
- Immer gesamte Rechnung angeben! Endergebnis alleine reicht nicht!

Das wars mal wieder!

Bis nächste Woche!