COSC 302, Spring 2018

Lecture 6.2: Hash tables

Prof. Darren Strash

Department of Computer Science Colgate University

Breaking the search lower bound

Just like with linear-time sorting, use value of elements.

Example: Integers 0 to m-1, can store in Boolean array $A[0..m-1] \rightarrow O(1)$ -time search

What if elements aren't integers 0 to m-1?

If integers, can map to 0 to m-1 with mod m operator

If two integers are same after mapping? \rightarrow handle *collisions*.

If not integers, map to integer! \rightarrow hash function

Hash functions and direct addressing

Map a universe of values *U* to their key (index) in $\{0, 1, ..., m-1\}$

$$h: U \to \{0, 1, ..., m-1\}$$

Store values in a direct address table, in slots.

Hash functions and direct addressing

Map a universe of values U to their key (index) in $\{0, 1, ..., m-1\}$

$$h: U \to \{0, 1, ..., m-1\}$$

Handling collisions: chaining

Keys with colliding hash values are stored in **linked list** in the corresponding cell

Keys are **added** and **removed** from the linked lists

We assume **simple uniform hashing**:

Any given key is equally likely to hash to any of the *m* slots independently of where any key is hashed to.

We assume **simple uniform hashing**:

Any given key is equally likely to hash to any of the *m* slots independently of where any key is hashed to.

→ this assumption is critical to analysis

We assume simple uniform hashing:

Any given key is equally likely to hash to any of the *m* slots independently of where any key is hashed to.

→ this assumption is critical to analysis

We assume **simple uniform hashing**:

Any given key is equally likely to hash to any of the *m* slots independently of where any key is hashed to.

→ this assumption is critical to analysis

Chaining: unsuccessful searches

Let $\alpha = \frac{n}{m}$ be the **load factor** for the hash table.

Thm In hashing by chaining, *unsuccessful* searches take expected time $\Theta(1 + \alpha)$

Expected length of chain is $\frac{n}{m} = \alpha$ with simple uniform hashing

- $\Theta(1)$ for hash + access
- ullet $\Theta(\alpha)$ to traverse and compare keys of *entire chain*

Chaining: unsuccessful searches

Let $\alpha = \frac{n}{m}$ be the **load factor** for the hash table.

Thm In hashing by chaining, *unsuccessful* searches take expected time $\Theta(1 + \alpha)$

Expected length of chain is $\frac{n}{m} = \alpha$ with simple uniform hashing

- $\Theta(1)$ for hash + access
- ullet $\Theta(\alpha)$ to traverse and compare keys of *entire chain*
- \rightarrow constant time if α is a constant!

Chaining: successful searches

Thm In hashing by chaining, *successful* searches take expected time $\Theta(1 + \alpha)$

Intuition: expect to be in middle of chain $\approx \alpha/2$ comparisons

- $\Theta(1)$ for hash + access
- $\bullet \approx \alpha/2 = \Theta(\alpha)$ to traverse and compare keys in chain

Open addressing: Store keys directly in slots of hash table

 \rightarrow if collision, choose new slot, new hash function:

$$h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$$

 $h(k, i) := (i+1)$ -th slot probed

Open addressing: Store keys directly in slots of hash table

→ if collision, choose new slot, new hash function:

$$h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$$

 $h(k, i) := (i+1)$ -th slot probed

Open addressing: Store keys directly in slots of hash table

→ if collision, choose new slot, new hash function:

$$h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$$

 $h(k, i) := (i+1)$ -th slot probed

Probe sequence:
$$\langle h(k,0), h(k,1), ..., h(k,m-1) \rangle$$

 \rightarrow a permutation of $\langle 0, 1, ..., m-1 \rangle$

Described by a probing strategy: decides how to probe after collision

Probe sequence:
$$\langle h(k,0), h(k,1), ..., h(k,m-1) \rangle$$

 \rightarrow a permutation of $\langle 0, 1, ..., m-1 \rangle$

Described by a probing strategy: decides how to probe after collision

Strategies:

- Linear probing → probe cells sequentially
- ullet Quadratic probing o probe cells with quadratic function offset
- Double hashing → probe cells using another hash function

Goal: keep number of probes during search small

$$h(k,i) = (h'(k) + i) \mod m$$

$$h(k, i) = (h'(k) + c_1i + c_2i^2) \mod m$$

auxiliary constants chosen to make
probe sequence a permutation

$$h(k, i) = (h'(k) + c_1i + c_2i^2) \mod m$$

auxiliary constants chosen to make
probe sequence a permutation

$$h(k, i) = (h'(k) + c_1i + c_2i^2) \mod m$$

auxiliary constants chosen to make
probe sequence a permutation

$$h(k, i) = (h'(k) + c_1i + c_2i^2) \mod m$$

auxiliary constants chosen to make
probe sequence a permutation

$$h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$$

auxiliary constants chosen to make
probe sequence a permutation

$$h(k, i) = (h'(k) + c_1i + c_2i^2) \mod m$$

auxiliary constants chosen to make
probe sequence a permutation

$$h(k, i) = (h_1(k) + ih_2(k)) \mod m$$

offset also depends on key k

$$h(k, i) = (h_1(k) + ih_2(k)) \mod m$$

offset also depends on key k

$$h(k, i) = (h_1(k) + ih_2(k)) \mod m$$

offset also depends on key k

$$h(k, i) = (h_1(k) + ih_2(k)) \mod m$$

offset also depends on key k

$$h(k, i) = (h_1(k) + ih_2(k)) \mod m$$
offset also depends on key k

$$h(k, i) = (h_1(k) + ih_2(k)) \mod m$$
offset also depends on key k

We assume uniform hashing:

Any given key is equally likely to have any of the m! permutations of $\langle 0, 1, ..., m-1 \rangle$ as its probe sequence.

- → linear probing, quadratic probing do **not** meet this requirement!
- → double hashing is *closest*

We assume uniform hashing:

Any given key is equally likely to have any of the m! permutations of $\langle 0, 1, ..., m-1 \rangle$ as its probe sequence.

- → linear probing, quadratic probing do **not** meet this requirement!
- → double hashing is *closest*

We assume uniform hashing:

Any given key is equally likely to have any of the m! permutations of (0, 1, ..., m-1) as its probe sequence.

- → linear probing, quadratic probing do **not** meet this requirement!
- → double hashing is *closest*

We assume uniform hashing:

Any given key is equally likely to have any of the m! permutations of (0, 1, ..., m-1) as its probe sequence.

- → linear probing, quadratic probing do **not** meet this requirement!
- → double hashing is *closest*

