Loi de Faraday

Flux d'un champ magnétique

Loi de modération

Le pôle nord de l'aimant s'approche de la spire

Le flux de \vec{B} à travers la spire augmente

Le courant induit crée un champ magnétique qui tend à diminuer le flux

pour calculer Φ, la surface est

Flux de \vec{B} à travers S

Conversion de puissance

· Mécanique ightarrow Électrique ·

Puissance dissipée dans R

$$P_J = Ri^2 = \frac{(BLv)^2}{R}$$

Puissance fournie par la force extérieure

$$P_E = F_E v = \frac{(BLv)^2}{R}$$

Électrique→ Mécanique -

Puissance de la force de

$$P_L = \vec{F}_L \cdot \vec{v} = iLBv$$

Puissance fournie par le générateur

$$P_{elec} = -ie = i\frac{\mathrm{d}\,\Phi}{\mathrm{d}\,t}$$
$$= iLBv$$

Champ magnétique variable

Auto-induction

Induction mutuelle

 $\Phi_P = \text{Flux du champ magnétique créé par}$ \mathscr{C} à travers \mathscr{C} .

 $\Phi_E = \text{Flux du champ magnétique créé par}$ les autres sources à travers \mathscr{C} .

Inductance propre du circuit

Énergie stockée

 ${\mathscr C}$ est la seule source de champ magnétique

$$\begin{split} e_1 &= -L_1 \frac{\mathrm{d}\,i_1}{\mathrm{d}\,t} - M \frac{\mathrm{d}\,i_2}{\mathrm{d}\,t} \\ e_2 &= -L_2 \frac{\mathrm{d}\,i_2}{\mathrm{d}\,t} - M \frac{\mathrm{d}\,i_1}{\mathrm{d}\,t} \end{split}$$

$$E = \frac{1}{2}L_1i_1^2 + \frac{1}{2}L_2i_2^2 + Mi_1i_2$$

Induction

Convertisseurs électromécaniques

hors programme

<u>Moteur à courant continu</u>

Moteur synchrone

Moteur asynchrone

 $i_y = I\sin(\omega t)$

Champ magnétique tournant

Avantages :

- + Pas de balais donc plus endurant
- + Vitesse de rotation fixe

Inconvénients :

- Incapable de démarrer tout seul

Couple fourni par le moteur $\vec{\Gamma} = \vec{M} \wedge \vec{B} = MB \sin(\theta)$

Champ magnétique tournant

Couple de démarrage est non nul

Champ magnétique tournant

La variation de flux dans le rotor provoque un courant induit

Le rotor possède un moment magnétique, il subit un couple

Inconvénient

Vitesse de rotation variable