DO BARS DRIVE SPIRAL DENSITY WAVES?

RONALD J. BUTA¹, JOHAN H. KNAPEN², BRUCE G. ELMEGREEN³, HEIKKI SALO⁴, EIJA LAURIKAINEN⁴, DEBRA MELOY ELMEGREEN5, IVÂNIO PUERARI6, AND DAVID L. BLOCK7

Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA; rbuta@bama.ua.edu ² Instituto de Astrofísica de Canarias, E-38200 La Laguna, Spain; jhk@iac.es

³ IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA; bge@watson.ibm.com Division of Astronomy, Department of Physical Sciences, University of Oulu, Oulu FIN-90014, Finland; hsalo@sun3.oulu.fi, eija@sun3.oulu.fi 5 Vassar College, Department of Physics & Astronomy, Box 745, Poughkeepsie, NY 12604, USA; elmegreen@vassar.edu

6 Instituto Nacional de Astrofísica, Optica y Electrónica, Tonantzintla, PUE 72840, Mexico; puerari@inaoep.mx

Anglo American Cosmic Dust Laboratory, School of Computational & Applied Mathematics, University of the Witwatersrand, P.O. Box 60 Wits, 2050, South Africa; David.Block@wits.ac.za

Received 2008 October 22; accepted 2009 February 28; published 2009 April 7

THE ASTROPHYSICAL JOURNAL LETTERS, 715:L56-L61, 2010 May 20

© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/2041-8205/7

BARS DO DRIVE SPIRAL DENSITY WAVES

H. Salo¹, E. Laurikainen^{1,2}, R. Buta³, and J. H. Knapen^{4,5} Statistica 1 Department of Physics/Astronomy Division, University of Oulu, FI-90014, Finland Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisälantie 20, FI-21500 Piikkiö, Finland Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487582 DSC ⁴ Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain Received 2010 February 3; accepted 2010 April 20; published 2010 May 3

ABSTRACT

Recently, Buta et al. examined the question "Do Bars Drive Spiral Density Waves?", an idea supported by theoretical studies and also from a preliminary observational analysis. They estimated maximum bar strengths Q_b , maximum spiral strengths Q_s , and maximum m=2 arm contrasts A_{2s} for 23 galaxies with deep Anglo-Australian Telescope (AAT) K_s -band images. These were combined with previously published Q_b and Q_s values for 147 galaxies from the Ohio State University Bright Spiral Galaxy Survey (OSUBSGS) sample and with the 12 galaxies from Block et al. Weak correlation between Q_b and Q_s was confirmed for the combined sample, whereas the AAT subset alone showed no significant correlations between Q_b and Q_s , nor between Q_b and A_{2s} . A similar negative result was obtained in Durbala et al. for 46 galaxies. Based on these studies, the answer to the above question remains uncertain. Here we use a novel approach, and show that although the correlation between the maximum bar and spiral parameters is weak, these parameters do correlate when compared locally. For the OSUBSGS sample, a statistically significant correlation is found between the local spiral amplitude, and the forcing due to the bar's potential at the same distance, out to \approx 1.6 bar radii (the typical bar perturbation is then of the order of a few percent). Also for the sample of 23 AAT galaxies of Buta et al., we find a significant correlation between local parameters out to ≈1.4 bar radii. Our new results confirm that, at least in a statistical sense, bars do indeed drive spiral density waves.

We present deep near-infrared. of a selected sample of near sample covers a range of Hut the spirals correlate with thos has been predicted by theoret at high redshift. Analysis of where effects of extinction a few excessively strong bars. is relatively weak. We find to the presence of a very strong pattern speed, but that this m