63. $Y = \cos(2X - \pi)$, $Z = |X - \frac{\pi}{2}|$, 由 X 的分布律可得 Y 及 Z 的分布律为

$$Y \sim \begin{pmatrix} -1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \quad Z \sim \begin{pmatrix} 0 & \frac{\pi}{2} & \pi \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \end{pmatrix}.$$

65. $X \sim U(0,1)$, 则其密度函数为

$$f_X(x) = \begin{cases} 1, & 0 < x < 1, \\ 0 & \sharp \text{ th.} \end{cases}$$

(1) 因为 $Y_1 = e^X$ 的可能取值范围为 (1,e),且 $y_1 = e^X$ 在 (0,1) 上为严格增函数,其反函数为 $x = h(y_1) = \ln y_1$,对应导数 $h'(y_1) = \frac{1}{y_1}$. 所以 Y_1 的密度函数为

$$f_1(y_1) = \begin{cases} f_X(\ln y_1) \left| \frac{1}{y_1} \right|, & 1 < y_1 < e \\ 0, & \text{ 其他 } \end{cases} = \begin{cases} \frac{1}{y_1}, & 1 < y_1 < e, \\ 0, & \text{ 其他.} \end{cases}$$

(2) $Y_2 = X^{-1}$ 的可能取值范围为 $(1, \infty)$,且 $y_2 = x^{-1}$ 在 (0, 1) 上为严格减函数,反函数及对应的导数为 $x = h(y_2) = 1/y_2$, $h'(y_2) = -1/y_2^2$. 所以 Y_2 的密度函数为

$$f_2(y_2) = \begin{cases} f_X(y_2^{-1}) |-1/y_2^2|, & y_2 > 1 \\ 0, & \text{ 其他 } \end{cases} = \begin{cases} \frac{1}{y_2^2}, & y_2 > 1, \\ 0, & \text{ 其他.} \end{cases}$$

(3) $Y_3 = -\frac{1}{\lambda} \ln X$ 的可能取值范围为 $(0,\infty)$, 且 $y_3 = -\frac{1}{\lambda} \ln x$ $(\lambda > 0)$ 在 (0,1) 上为严格减函数,反函数及对应的导数为 $x = h(y_3) = e^{-\lambda y_3}$, $h'(y_3) = -\lambda e^{-\lambda y_3}$. 所以 Y_3 的密度函数为

$$f_3(y_3) = \begin{cases} f_X(e^{-\lambda y_3}) \left| -\lambda e^{-\lambda y_3} \right|, & y_3 > 0 \\ 0, & \text{ 其他 } \end{cases} = \begin{cases} \lambda e^{-\lambda y_3}, & y_3 > 0, \\ 0, & \text{ 其他.} \end{cases}$$

68. $X \sim Exp(1)$, 密度函数为

$$f_X(x) = \begin{cases} e^{-x}, & x > 0, \\ 0 & x \le 0. \end{cases}$$

(1) $Y_1 = X^2$ 的可能取值范围为 $(0, \infty)$, 且密度函数为

$$f_1(y_1) = \begin{cases} f_X(\sqrt{y_1}) \left| \frac{1}{2\sqrt{y_1}} \right|, & y_1 > 0 \\ 0, & \text{##} \end{cases} = \begin{cases} \frac{1}{2\sqrt{y_1}} e^{-\sqrt{y_1}}, & y_1 > 0, \\ 0, & \text{##} \end{cases}$$

(2) $Y_2 = 1 - e^{-X}$ 的可能取值范围为 (0,1), 且密度函数为

$$f_2(y_2) = \begin{cases} f_X(-\ln(1-y_2)) \left| \frac{1}{1-y_2} \right|, & 0 < y_2 < 1 \\ 0, & \text{其他} \end{cases} = \begin{cases} 1, & 0 < y_2 < 1, \\ 0, & \text{其他}. \end{cases}$$

71. $X \sim Exp(\lambda)$, 分布函数为

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0, \\ 0 & x \le 0. \end{cases}$$

 $Y=\left\{egin{array}{ll} X, & \ddot{z}X\geq 1, \\ -X^2, & \ddot{z}X< 1. \end{array}
ight.$ 则 Y 的可能取值范围为 $(-1,0)\cup [1,\infty)$, 先求 Y 的分布函数 $F_Y(y)$.

当 -1 < y < 0 时,

$$F_Y(y) = P(Y \le y) = P(-X^2 \le y) = P(X \ge \sqrt{-y}) = e^{-\lambda\sqrt{-y}};$$

所以 Y 的密度函数为

$$f_Y(y) = \begin{cases} \frac{\lambda}{2\sqrt{-y}} e^{-\lambda\sqrt{-y}}, & -1 < y < 0, \\ \lambda e^{-\lambda y} & y \ge 1, \\ 0, & \text{ 其他}. \end{cases}$$

- **73.** 由密度函数的正则性可知 $\int_0^3 \frac{1}{a} x^2 dx = \frac{9}{a} = 1$, 所以 a = 9.
- (1) Y 的可能取值范围为 [1,2], 且

$$P(Y=1) = P(X > 2) = \int_{2}^{3} \frac{1}{9}x^{2} dx = \frac{19}{27},$$

$$P(Y=2) = P(X \le 1) = \int_{0}^{1} \frac{1}{9}x^{2} dx = \frac{1}{27},$$

 $\forall 1 < y < 2, P(Y \le y) = P(Y = 1) + P(1 < Y \le y) = \frac{19}{27} + \int_1^y \frac{1}{9} x^2 \ dx = \frac{y^3}{27} + \frac{2}{3} \cdot \frac{y^3}{27} + \frac{y^3}{27}$

所以 Y 的分布函数为

$$F_Y(y) = \begin{cases} 0, & y < 1, \\ \frac{y^3}{27} + \frac{2}{3} & 1 \le y < 2, \\ 1, & y \ge 2. \end{cases}$$

(2)
$$P(X \le Y) = P(X \le 1) + P(1 < X < 2) = \int_0^2 \frac{1}{9} x^2 dx = \frac{8}{27}$$
.

1. $X, Y, Zi.i.d. \sim Exp(1)$, 则其联合密度函数为

$$f(x, y, z) = \begin{cases} e^{-(x+y+z)}, & x, y, z > 0, \\ 0, & \text{ 其他.} \end{cases}$$

$$J = \frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\ \frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} vw & -vw & 0 \\ uw & w(1-u) & -w \\ uv & v(1-u) & 1-v \end{vmatrix} = vw^2.$$

所以 (U,V,W) 的联合密度函数为

$$f_{UVW}(u, v, w) = \begin{cases} vw^2 e^{-w}, & 0 < u, v < 1, w > 0, \\ 0, & \text{ 其他.} \end{cases}$$

(2) U, V, W 三者的密度函数分别为

$$f_{U}(u) = \int_{0}^{1} \int_{0}^{\infty} f_{UVW}(u, v, w) dv dw = 1, \ 0 < u < 1;$$

$$f_{V}(v) = \int_{0}^{1} \int_{0}^{\infty} f_{UVW}(u, v, w) du dw = 2v, \ 0 < v < 1;$$

$$f_{W}(w) = \int_{0}^{1} \int_{0}^{1} f_{UVW}(u, v, w) dv du = \frac{1}{2} w^{2} e^{-w}, \ w > 0.$$

所以 $f_{UVW}(u,v,w)=f_U(u)f_V(v)f_W(v)$,三者相互独立.

(3)
$$\begin{cases} V_1 = \frac{X}{X + Y + Z}, \\ V_2 = \frac{Y}{X + Y + Z}, \\ W = X + Y + Z, \end{cases}$$
 对应的有
$$\begin{cases} X = V_1 W, \\ Y = V_2 W, \\ W = W(1 - V_1 - V_2). \end{cases}$$
 则

$$J = \begin{vmatrix} \frac{\partial x}{\partial v_1} & \frac{\partial y}{\partial v_1} & \frac{\partial z}{\partial v_1} \\ \frac{\partial x}{\partial v_1} & \frac{\partial y}{\partial v_1} & \frac{\partial z}{\partial v_2} \\ \frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} w & 0 & -w \\ 0 & w & -w \\ v_1 & v_2 & 1 - v_1 - v_2 \end{vmatrix} = w^2.$$

所以 (V_1, V_2, W) 的联合密度为

$$f_{V_1V_2W}(v_1, v_2, w) = \begin{cases} w^2 e^{-w}, & 0 < v_1, v_2 < 1, v_1 + v_2 < 1, w > 0, \\ 0, & \sharp \text{ th.} \end{cases}$$

由此可得

$$f_{V_1V_2}(v_1, v_2) = \int_0^\infty w^2 e^{-w} dw = 2, 0 < v_1, v_2 < 1, v_1 + v_2 < 1;$$

$$f_{V_1}(v_1) = 2(1 - v_1), 0 < v_1 < 1;$$

$$f_{V_2}(v_2) = 2(1 - v_2), 0 < v_2 < 2.$$

 $f_{V_1V_2}(v_1,v_2) \neq f_{V_1}(v_1)f_{V_2}(v_2)$, 所以两者不独立.

2.
$$X \sim Exp(\lambda), Y \sim Exp(\mu)$$
, 两者分布函数为
$$F_X(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & \text{其他.} \end{cases}$$
 及 $F_Y(y) = \begin{cases} 1 - e^{-\mu y}, & y \ge 0, \\ 0, & \text{其他.} \end{cases}$

密度函数为

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & \text{其他.} \end{cases}$$
 $\mathcal{F}_Y(y) = \begin{cases} \mu e^{-\mu y}, & y > 0, \\ 0, & \text{其他.} \end{cases}$

(1) Z 的分布函数为, 当 z < 0, $F_Z(z) = 0$; 当 $z \ge 0$,

$$F_Z(z) = P(\min\{X, Y\} \le z) = 1 - P(\min\{X, Y\} > z)$$

= 1 - P(X > z, Y > z) = 1 - P(X > z)P(Y > z)
= 1 - e^{-(\lambda + \mu)z}, (z \ge 0).

所以 $Z \sim Exp(\lambda + \mu)$.

(2) U = X/Y, 由商的公式 $f_U(u) = \int_{-\infty}^{\infty} f_X(uv) f_Y(v) |v| dv$, 可得 u > 0 时,

$$f_U(u) = \int_0^\infty \lambda e^{-\lambda u v} \cdot \mu e^{-\mu y v} \cdot v \, dv$$
$$= \int_0^\infty \lambda \mu e^{-(\lambda u + \mu)v} v \, dv$$
$$= \frac{\lambda \mu}{(\lambda u + \mu)^2}.$$

所以,U 的密度函数为

$$f_U(u) = \begin{cases} \frac{\lambda \mu}{(\lambda u + \mu)^2}, & u > 0, \\ 0, & \text{其他.} \end{cases}$$

3. $(X,Y) \sim N(0,0;1,1;\rho), Z = (Y-\rho X)/\sqrt{1-\rho^2},$ 则 $Y = \sqrt{1-\rho^2}Z + \rho X$ 且

$$J^{-1} = \frac{\partial(x,z)}{\partial(x,y)} = \begin{vmatrix} 1 & 0 \\ -\frac{\rho}{\sqrt{1-\rho^2}} & \frac{1}{\sqrt{1-\rho^2}} \end{vmatrix} = \frac{1}{\sqrt{1-\rho^2}}.$$

所以 (X,Z) 的密度函数为

$$\begin{split} f(x,z) &= \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{x^2-2\rho xy+y^2}{2\left(1-\rho^2\right)}\right\} \cdot \sqrt{1-\rho^2} \; (\sharp \pitchfork y = \sqrt{1-\rho^2}z + \rho x) \\ &= \frac{1}{2\pi} \exp\left\{-\frac{(y-\rho x)^2+x^2-\rho^2 x^2}{2\left(1-\rho^2\right)}\right\} \\ &= \frac{1}{2\pi} \exp\left\{-\frac{(\sqrt{1-\rho^2}z)^2+(1-\rho^2)x^2}{2\left(1-\rho^2\right)}\right\} \\ &= \frac{1}{2\pi} e^{-\frac{1}{2}\left(x^2+z^2\right)}, \quad x,z \in \mathbb{R}. \end{split}$$

(2) 由 (1) 中 (X,Z) 的密度函数可知: $(X,Z) \sim N(0,0;1,1;0)$, 两者相关系数为 0, 所以 X,Z 相互独立.

或求得密度函数:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, z) dz = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{x^2 + z^2}{2}} dz = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \ x \in \mathbb{R}.$$

同理

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, \ z \in \mathbb{R}.$$

所以 $f(x,z) = f_X(x)f_X(z)$, X,Z 相互独立.

对于 Y, Z, 与 (1) 过程类似可求得 (Y, Z) 密度函数为

$$g(y,z) = \frac{1}{2\pi|\rho|} \exp\left\{-\frac{y^2 - 2\sqrt{1-\rho^2}yz + z^2}{2\rho^2}\right\}, \quad y,z \in \mathbb{R}.$$

可见 $(Y,Z) \sim N(0,0;1,1;\sqrt{1-\rho^2})$ $(\rho \neq 0,\pm 1)$, 相关系数不为 0, 所以 Y,Z不独立.

(3)

$$\begin{split} P(X>0,Y>0) &= P\left(X>0,\sqrt{1-\rho^2}Z+\rho X>0\right) \\ &= P(X>0,Z>0) + P\left(Z>0,-\frac{\rho_X}{\sqrt{1-p^2}} < Z < 0\right) \\ &= \frac{1}{4} + P\left(X>0,-\frac{\rho X}{\sqrt{1-\rho^2}} < Z < 0\right). \end{split}$$

下面求
$$P\left(X>0, -\frac{\rho X}{\sqrt{1-\rho^2}} < Z < 0\right)$$
,令 $X=r\cos\theta, Z=r\sin\theta$. 代入 $X>0, -\frac{\rho X}{\sqrt{1-\rho^2}} < Z < 0$ 得 的取值范围为 $\left(-\arctan\frac{\rho}{\sqrt{1-\rho^2}}, 0\right)$. 所以
$$P\left(X>0, -\frac{\rho X}{\sqrt{1-\rho^2}} < Z < 0\right) = \int_0^\infty \int_{-\arctan\frac{\rho}{\sqrt{1-\rho^2}}}^0 \frac{1}{2\pi} e^{-\frac{r^2}{2}} \cdot r d\theta dr$$

$$= \arctan\frac{\rho}{\sqrt{1-\rho^2}} \int_0^\infty \frac{r}{2\pi} e^{-\frac{r^2}{2}} dr$$

$$= \frac{1}{2\pi} \arcsin\rho$$

即得

$$P(X > 0, Y > 0) = \frac{1}{4} + \frac{1}{2\pi} \arcsin \rho.$$

4. 先求 Z 的分布函数 $F_Z(z)$.

当
$$1 < x < 2$$
时, $P(X \le x) = \int_1^x f(t)dt = (x-1)^3$;
当 $0 < z < 3$ 时, $P(Z \le z) = \sum_y P(X+Y \le z|Y=y)P(Y=y)$
 $= \frac{1}{6}P(X \le z+1) + \frac{1}{3}P(X \le z) + \frac{1}{2}P(X \le z-1).$

具体地,

 $\stackrel{\text{def}}{=} z \le 0, \ F_Z(z) = 0;$

$$\stackrel{\text{def}}{=} 0 < z < 1, \ F_Z(z) = P(Z \le z) = \frac{1}{6}(z+1-1)^3 = \frac{1}{6}z^3;$$

$$\stackrel{\text{def}}{=} 1 \le z < 2, \ F_Z(z) = P(Z \le z) = \frac{1}{6} + \frac{1}{3}(z-1)^3$$
;

$$\stackrel{\square}{=} 2 \le z < 3, \quad F_Z(z) = P(Z \le z) = \frac{1}{6} + \frac{1}{3} + \frac{1}{2}(z - 1 - 1)^3 = \frac{1}{2} + \frac{1}{2}(z - 2)^3;$$

 $\stackrel{\text{def}}{=} z > 3, \ F_Z(z) = 1.$

 $F_Z(z)$ 为连续函数, Z 为连续型随机变量, 对应的密度函数为

$$f_Z(z) = \begin{cases} \frac{1}{2}z^2, & 0 < z < 1, \\ (z-1)^2, & 1 < z < 2, \\ \frac{3}{2}(z-2)^2, & 2 < z < 3, \\ 0, & \sharp \text{th.} \end{cases}$$

5.
$$(X,Y)$$
 的联合密度为 $f(x,y) = \begin{cases} 1, & a - \frac{1}{2} < x, y < a - \frac{1}{2}, \\ 0, &$ 其他. $X - Y,$ 则可能的取值范围为 $(-1,1)$.

$$\stackrel{\mathfrak{L}}{=} -1 < z < 0, \ P(z \leqslant z) = P(X - Y \le z) = P(Y \geqslant X - z)$$

$$= \int_{a - \frac{1}{2}}^{a + \frac{1}{2} + z} \int_{x - z}^{a + \frac{1}{2}} dx dy$$

$$= \frac{1}{2} z^2 + z + \frac{1}{2};$$

$$\stackrel{\mathfrak{L}}{=} 0 \le z < 1, \ P(z \le z) = P(X - Y \leqslant z) = P(Y \geqslant x + z)$$

$$= \int_{a - \frac{1}{2}}^{a - \frac{1}{2} + z} \int_{a - \frac{1}{2}}^{a + \frac{1}{2}} dx dy + \int_{a - \frac{1}{2} + z}^{a + \frac{1}{2}} \int_{x - z}^{a + \frac{1}{2}} dx dy$$

$$= z - \frac{1}{2} z^2 + \frac{1}{2}.$$

所以,Z 的分布函数为

$$F_Z(z) = \begin{cases} 0, & z \le -1, \\ \frac{1}{2}z^2 + z + \frac{1}{2}, & -1 < z < 0, \\ z - \frac{1}{2}z^2 + \frac{1}{2}, & 0 \le z < 1, \\ 1 & z \ge 1. \end{cases}$$

即证 X - Y 的分布与 a 无关.

9. (1)

$$\begin{split} EX &= \int_0^\infty x \cdot \frac{x}{\sigma^2} \exp\left\{-\frac{x^2}{2\sigma^2}\right\} dx = \frac{1}{2} \int_{-\infty}^\infty \frac{x^2}{\sigma^2} \exp\left\{-\frac{x^2}{2\sigma^2}\right\} dx \\ &= \frac{1}{\sigma} \sqrt{\frac{\pi}{2}} \int_{-\infty}^\infty x^2 \cdot \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{x^2}{2\sigma^2}\right\} dx \\ &= \frac{1}{\sigma} \sqrt{\frac{\pi}{2}} \cdot \sigma^2 = \sigma \sqrt{\frac{\pi}{2}} \end{split}$$

$$\begin{split} EX^2 &= \int_0^\infty x^2 \cdot \frac{x}{\sigma} \exp\left\{-\frac{x^2}{2\sigma^2}\right\} dx = -\int_0^\infty x^2 d\left(e^{-\frac{x^2}{2\sigma^2}}\right) \\ &= -\left. x^2 e^{-\frac{x^2}{2\sigma^2}}\right|_0^\infty + 2\int_0^\infty x e^{-\frac{x^2}{2\sigma^2}} dx \\ &= -\left. 2\sigma^2 e^{-\frac{x^2}{2\sigma^2}}\right|_0^\infty = 2\sigma^2 \end{split}$$

$$Var(X) = EX^2 - (EX)^2 = \frac{4-\pi}{2}\sigma^2$$

(2)
$$EX = \int_0^1 x \cdot \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$
$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^1 x^{\alpha - 1 + 1} (1 - x)^{\beta - 1} dx$$
$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot \frac{\Gamma(\alpha + 1)\Gamma(\beta)}{\Gamma(\alpha + \beta + 1)} = \frac{\alpha}{\alpha + \beta}$$

$$EX^{2} = \int_{0}^{1} x^{2} \frac{T(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$

$$= \frac{\Gamma(\alpha + \beta)}{T(\alpha)\Gamma(\beta)} \int_{0}^{1} x^{\alpha + 2 - 1} (1 - x)^{\beta - 1} dx$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)T(\beta)} \cdot \frac{\Gamma(\alpha + 2)\Gamma(\beta)}{\Gamma(\alpha + \beta + 2)} = \frac{\alpha(\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)}$$

$$Var(X) = EX^{2} - (EX)^{2} = \frac{\alpha\beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$$

(3)
$$EX = \int_0^\infty x \cdot \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} \exp\left\{-\left(\frac{x}{\lambda}\right)^k\right\} dx$$

$$= \lambda \int_0^\infty \left[\left(\frac{x}{\lambda}\right)^k\right]^{\frac{1}{k}} \exp\left\{-\left(\frac{x}{\lambda}\right)^k\right\} d\left(\frac{x}{\lambda}\right)^k$$

$$= \lambda \Gamma\left(1 + \frac{1}{k}\right)$$

$$EX^2 = \int_0^\infty x^2 \cdot \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} \exp\left\{-\left(\frac{x}{\lambda}\right)^k\right\} dx$$

$$= \lambda^2 \int_0^\infty \left[\left(\frac{x}{\lambda}\right)^k\right]^{\frac{2}{k}+1} e^{-\left(\frac{x}{\lambda}\right)^k} d\left(\frac{x}{\lambda}\right)^k$$

$$= \lambda^2 \Gamma\left(1 + \frac{2}{k}\right)$$

$$Var(X) = EX^2 - (EX)^2 = \lambda^2 \left[\Gamma\left(1 + \frac{2}{k}\right) - \Gamma^2\left(1 + \frac{1}{k}\right)\right]$$

27.
$$Y = \ln X \sim N(\mu, \sigma^2)$$
. 则

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, -\infty < y < \infty;$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}} \cdot |(\ln x)'| = \frac{1}{x\sqrt{2\pi}\sigma} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, 0 < x < \infty.$$

$$EX = \int_{0}^{\infty} x f_{X}(x) dx = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\ln x - \mu)^{2}}{2\sigma^{2}}} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-t^{2}} de^{\sqrt{2}\sigma t + \mu} = \frac{e^{\mu + \frac{\sigma^{2}}{2}}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\left(t - \frac{\sqrt{2}\sigma}{2}\right)^{2}} dt$$

$$= \frac{1}{\sqrt{\pi}} e^{\mu + \frac{\sigma^{2}}{2}} \int_{-\infty}^{\infty} e^{-\left(t - \frac{\sqrt{2}\sigma}{2}\right)^{2}} d\left(t - \frac{\sqrt{2}\sigma}{2}\right)$$

$$= \frac{1}{\sqrt{\pi}} e^{\mu + \frac{\sigma^{2}}{2}} \cdot \sqrt{\pi} = e^{\mu + \frac{\sigma^{2}}{2}}$$

$$EX^{2} = \int_{0}^{\infty} \frac{x}{\sqrt{2\pi}\sigma} e^{-\frac{(\ln x - \mu)^{2}}{2\sigma^{2}}} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{\sqrt{2}\sigma t + \mu} \cdot e^{-t^{2}} de^{\sqrt{2}\sigma t + \mu}$$

$$= \frac{e^{2\mu + 2\sigma^{2}}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(t - \sqrt{2}\sigma)^{2}} d(t - \sqrt{2}\sigma)$$

$$= e^{2\mu + 2\sigma^{2}}$$

$$Var(X) = EX^{2} - (EX)^{2} = \left(e^{\sigma^{2}} - 1\right) e^{2\mu + \sigma^{2}}$$

29. 设该店购进玫瑰花数量为 $X \in [m, n]$,销售量为 $Y \sim U(m, n)$,所获利 \mathbb{A} \mathbb

$$Z = \begin{cases} aX, & Y > X, \\ aY - b(X - Y), & Y \le X. \end{cases}$$

$$E(Z|X = x) = E\left(aX \ I_{\{Y > X\}} + [aY - b(X - Y)] \ I_{\{Y \le X\}}|X = x\right)$$

$$= axE(I_{\{Y > x\}}) + (a + b)E(YI_{\{Y \le x\}}) - bxE(I_{\{Y \le x\}})$$

$$= axP(Y > x) + (a + b) \int_{m}^{x} \frac{y}{n - m} dy - bxP(Y \le x)$$

$$= ax \frac{n - x}{n - m} + (a + b) \cdot \frac{1}{2(n - m)} (x^{2} - m^{2}) - bx \cdot \frac{x - m}{n - m}$$

$$= -\frac{a + b}{2(n - m)} x^{2} + \frac{an + bm}{n - m} x - \frac{m^{2}(a + b)}{2(n - m)}$$

将 E(Z|X=x) 看作关于 x 的函数, $x \in [m,n]$, 则极大值点为

$$x_0 = \frac{an + bm}{n - m} / \left(2\frac{a + b}{2(n - m)}\right) = \frac{an + bm}{a + b}.$$

所以,为使平均获利最大,应购进 $\frac{an+bm}{a+b}$ 東玫瑰花.

41.

$$\min \{X_1, X_2\} = \frac{1}{2} (X_1 + X_2 - |X_1 - X_2|).$$

$$\max \{X_1, X_2\} = \frac{1}{2} (X_1 + X_2 + |X_1 - X_2|),$$

$$E |X_1 - X_2| = 2 \int_0^\infty \int_{x_1}^\infty 4(x_2 - x_1) e^{-2(x_1 + x_2)} dx_2 dx_1$$

$$= 2 \int_0^\infty e^{-2x_2} \left[-(2x_1 + 1) e^{-2x_1} \Big|_{x_2}^\infty + 2x_2 e^{-2x_1} \Big|_{x_2}^\infty \right] dx_2$$

$$= 2 \int_0^\infty e^{-4x_2} dx_2 = 2 \left[-\frac{1}{4} e^{-4x_2} \Big|_0^\infty \right] = \frac{1}{2}$$

$$E (\min \{X_1, X_2\}) = \frac{1}{2} E X_1 + \frac{1}{2} E X_2 - \frac{1}{2} |X_1 - X_2| = \frac{1}{4}$$

$$E (\max \{X_1, X_2\}) = \frac{1}{2} E X_1 + \frac{1}{2} E X_2 + \frac{1}{2} E |X_1 - X_2| = \frac{3}{4}$$

45. (1) 设投掷点数大于等于 n 时投掷次数的期望为 E_n , 则题中所要求的为 E_{10} . 则

$$E_1=1$$

$$E_2=1\times\frac{5}{6}+2\times\frac{1}{6}=\frac{7}{6}$$

$$3\leq n\leq 6,$$
对第一次投掷出的点数取条件,则有
$$E_n=\sum_{i=1}^6 E_{n|X_1=i}P(X_1=i)$$

$$=P(X_1=1)(1+E_{n-1})+\cdots P(X_1=n-1)(1+E_1)$$

$$+P(X_1=n)(1+0)+\cdots P(X_1=6)(1+0)$$

$$=\sum_{i=1}^6 P(X_1=i)+P(X_1=1)E_{n-1}+P(X_1=2)E_{n-2}+\cdots P(X_1=n-1)E_1$$

$$=1+\frac{1}{6}\sum_{i=1}^{n-1}E_i$$
则有 $E_n=\frac{7}{6}E_{n-1}=\left(\frac{7}{6}\right)^{n-1}$ $(1\leq n\leq 6)$

$$n>6时, E_n=\sum_{i=1}^6 E_{n|X_1=i}P(X_1=i)=1+\sum_{i=1}^6 P(X_1=i)E_{n-i}=1+\frac{1}{6}\sum_{i=1}^6 E_{n-i}$$

$$\Rightarrow E_{n+1}-E_n=\frac{1}{6}(E_n-E_{n-6})$$

$$E_{n+1}=\frac{7}{6}E_n-\frac{1}{6}E_{n-6} \ (n\geq 7)$$

两式结合,有
$$E_7=\left(\frac{7}{6}\right)^6$$
, $E_8=\left(\frac{7}{6}\right)^7-\frac{1}{6}$, $E_9=\left(\frac{7}{6}\right)^8-\frac{7}{18}$, $E_{10}=\left(\frac{7}{6}\right)^9-\frac{49}{72}\approx 3.3237$.

(2) 记直到点数大于等于 10 所需的投掷次数为 Y_{10} , 由 (1) 知 $E(Y_{10}) = E_{10}$. 再由 Wald 等式有

$$E(\sum_{i=1}^{Y_{10}} X_i) = E(X_1)E_{10} = \frac{7}{2}E_{10} \approx 11.6329.$$

Wald 等式: 设 X_1, X_2, \cdots 为一列独立同分布的随机变量, 随机变量 N 只

取正整数值, 且 N 与 $\{X_n\}$. 独立, 则

$$E\left(\sum_{i=1}^{N} X_i\right) = E\left(X_1\right) E(N)$$

证明:

$$E\left(\sum_{i=1}^{N} X_i\right) = E\left[E\left(\sum_{i=1}^{N} X_i \mid N\right)\right]$$

$$= \sum_{n=1}^{\infty} E\left(\sum_{i=1}^{N} X_i \mid N = n\right) P(N = n)$$

$$= \sum_{n=1}^{\infty} E\left(\sum_{i=1}^{n} X_i\right) P(N = n)$$

$$= \sum_{n=1}^{\infty} nE(X_1) P(N = n)$$

$$= E(X_1) \sum_{n=1}^{\infty} nP(N = n)$$

$$= E(X_1) E(N)$$

55. 将 A, B 两点看作在 [0,1] 线段上取点, 起点为 O, 设线段 OA,OB 的长度分别为 X,Y, 线段 AB 的长度可以表示为 |X-Y|. (X,Y) 的联合密度为

$$f(x,y) = \begin{cases} 1, & 0 \le x, y \le 1, \\ 0, & \not\exists \text{ th.} \end{cases}$$

$$E|X - Y| = \int_0^1 \int_0^1 |x - y| \, dx dy = 2 \int_0^1 \int_0^y (y - x) dx dy = \frac{1}{3}$$

$$E|X - Y|^2 = \int_0^1 \int_0^1 (x^2 - 2xy + y^2) dx dy = \frac{1}{6}$$

$$Var(|X - Y|) = E|X - Y|^2 - (E|X - Y|)^2 = \frac{1}{18}$$

62. (1)

$$X \sim \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$$

$$E(X) = \sum_{x=1}^{6} P(X = x) \cdot x = \sum_{x=1}^{6} \frac{1}{6}x = \frac{7}{2}$$

$$Var(X) = \sum_{x=1}^{66} P(X = x) \cdot x^2 - (EX)^2 = \frac{35}{12}$$

$$Y \sim \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{1}{36} & \frac{1}{12} & \frac{5}{36} & \frac{7}{36} & \frac{7}{36} & \frac{11}{36} \end{pmatrix}$$

$$E(Y) = \sum_{y=1}^{6} P(Y = y) \cdot y = \frac{161}{36}$$

$$Var(Y) = \sum_{y=1}^{6} P(Y = y)y^2 - (EY)^2 = \frac{791}{36} - \left(\frac{161}{36}\right) \approx 1.97$$

$$EXY = \sum xyP(X = x, Y = y) = \frac{616}{36} = \frac{154}{9}$$

 $Cov(X, Y) = EXY - EXEY = \frac{35}{24}$

63.(1)

$$Cov(\alpha X + \beta Y, \alpha X - \beta Y) = Cov(\alpha X, \alpha X - \beta Y) + Cov(\beta Y, \alpha X - \beta Y)$$

$$= Cov(\alpha X, \alpha X) - Cov(\alpha X, \beta Y) + Cov(\beta Y, \alpha X) - Cov(\beta Y, \beta Y)$$

$$= \alpha^{2} Cov(X, X) - 0 + 0 - \beta^{2} Cov(Y, Y)$$

$$= (\alpha^{2} - \beta^{2}) \sigma^{2}$$

(2) $X, Y \sim N(\mu, \sigma^2)$, 且相互独立. 则 $\alpha X + \beta Y$ 与 $\alpha X - \beta Y$ 都服从正态分布. 由正态分布的不相关与独立等价,有

$$Cov(\alpha X + \beta Y, \alpha X - \beta Y) = (\alpha^2 - \beta^2) \sigma^2 = 0$$

$$\Rightarrow \alpha = \pm \beta.$$

66. (X,Y) 的联合密度为

$$f(x,y) = \begin{cases} \frac{1}{2}, & |x| + |y| \le 1, \\ 0, & \text{其他.} \end{cases}$$

则 X,Y 的边际分布为

$$f_X(x) = \begin{cases} \int_{-x-1}^{x+1} \frac{1}{2} dy = x+1, & -1 < x < 0, \\ \int_{x-1}^{-x+1} \frac{1}{2} dy = -x+1, & 0 < x < 1. \end{cases}$$
 类似地,
$$f_Y(y) = \begin{cases} y+1, & -1 < y < 0, \\ -y+1, & 0 < y < 1. \end{cases}$$

(1) Cov(X,Y) = E(XY) - E(X)E(Y). 其中

$$E(X) = \int_{-1}^{0} x \cdot (x+1)dx + \int_{0}^{1} x \cdot (-x+1)dx = 0, \quad \boxed{\exists \Xi, E(Y) = 0}$$

$$E(XY) = \int_{-1}^{0} \int_{-x-1}^{x+1} \frac{xy}{2} dydx + \int_{0}^{1} \int_{x-1}^{-x+1} \frac{xy}{2} dydx = 0$$

$$Cov(X, Y) = E(XY) - E(X)E(Y) = 0.$$

(2) $f(x,y) \neq f_X(x) f_Y(y), X, Y$ 不独立.

69. (1)

$$Var(Z) = Var(\pi X + (1 - \pi)Y)$$

$$= \pi^{2}Var(X) + (1 - \pi)^{2}Var(Y) + 2\pi(1 - \pi)Cov(X, Y)$$

$$= \pi^{2}\sigma^{2} + (1 - \pi)^{2}\sigma^{2} + 2\pi(1 - \pi) \cdot (-\frac{1}{2})\sigma^{2}$$

$$= (3\pi^{2} - 3\pi + 1)\sigma^{2}. \ \pi \in (0, 1)..$$

在 $\pi \in (0,1)$ 上, $3\pi^2 - 3\pi + 1 = 3\pi(\pi - 1) + 1 < 1$ 恒成立, $Var(Z) < \sigma^2$,即证投资组合 Z 的风险小于将所有资本投资于其中一个的风险.

(2) $f(\pi) = 3\pi^2 - 3\pi + 1$, $\pi \in (0,1)$ 的极小值点为 $\pi = 1/2$. 所以使得投资组合风险最小的分配比例为 $\pi = 1/2$.

4. 由题意知: $E(X_i) = E(Y_i) = 2$, $E(X_iY_i) = \text{Cov}(X_i, Y_i) + E(X_i)E(Y_i) = 5$, $i = 1, \dots, n$. 则 $\forall n \in \mathbb{N}$,

$$E(Z_n) = E\left(\frac{X_1Y_1 + \cdots + X_nY_n}{n}\right)$$
$$= \frac{1}{n} \sum_{i=1}^n E(X_iY_i)$$
$$= E(X_1Y_1) = 5.$$

由大数定律知 $Z_n \stackrel{P}{\to} 5$.

5. 由题意知: $E(X_i^2) = \text{Var}(X_i) + (E(X_i))^2 = a^2 + b, i = 1, \dots, n, \dots$. 则 $\forall n \in \mathbb{N},$

$$E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right) = E(X_{1}^{2}) = a^{2} + b.$$

由大数定律知 $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \stackrel{P}{\rightarrow} a^{2} + b$.

7. X_1, \dots, X_2 为独立同分布随机变量,

$$E(\sum_{i=1}^{n} X_i^2) = nE(X_1^2) = n\alpha_2,$$

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i^2\right) = n\operatorname{Var}(X_1^2)$$

$$= n\left(E(X_1^4) - \left(E(X_1^2)\right)^2\right)$$

$$= n\left(\alpha_4 - \alpha_2^2\right).$$

则由中心极限定理有

$$\frac{\sum_{i=1}^{n} X_i^2 - n\alpha_2}{\sqrt{n(\alpha_4 - \alpha_2^2)}} \xrightarrow{d} N(0, 1).$$

11. 设三年内第 i 个月移民至该城市的人数为 X_i , $i=1,2,\cdots n,\ n=36$, 则三年内的总移民人数为 $Y_n=\sum_{i=1}^n X_i,\ n=36$.

$$E(X_i) = 8\left(1 \times \frac{1}{8} + 2 \times \frac{1}{4} + 3 \times \frac{1}{2} + 4 \times \frac{1}{8}\right) = 21$$

$$Var(X_i) = 8\left(1^2 \times \frac{1}{8} + 2^2 \times \frac{1}{4} + 3^2 \times \frac{1}{2} + 4^2 \times \frac{1}{8} - \left(\frac{21}{8}\right)^2\right) = 61 - \frac{21^2}{8}$$

$$E(Y_n) = E(\sum_{i=1}^n X_i) = nE(X_1) = 36 \times 21 = 756$$

$$Var(Y) = nVar(X_1) = \frac{423}{2}.$$

由中心极限定理, 所求概率为

$$P(Y_n \le 760) = P\left(\frac{Y_n - 756}{\sqrt{\frac{423}{2}}} \le \frac{760 - 756}{\sqrt{\frac{423}{2}}}\right)$$

$$\approx \Phi(0.275)$$

$$\approx 0.608$$

15. 设第 i 次加法运算的误差为 X_i , 则 X_1, \dots, X_n i.i.d. $\sim U(-0.5, 0.5)$. $E(X_i) = 0$, $Var(X_i) = \frac{1}{12}$.

(1) n = 1500,

$$E(\sum_{i=1}^{n} X_i) = nE(X_1) = 0$$
$$Var(\sum_{i=1}^{n} X_i) = nVar(X_1) = 125.$$

由中心极限定理, 所求概率为

$$P(|\sum_{i=1}^{n} X_i| > 15) = 1 - P(|\sum_{i=1}^{n} X_i| \le 15)$$

$$= 1 - P(\frac{-15 - 0}{\sqrt{125}} \le \frac{\sum_{i=1}^{n} X_i - 0}{\sqrt{125}} \le \frac{15 - 0}{\sqrt{125}})$$

$$= 1 - \left(\Phi(\frac{3}{\sqrt{5}}) - \Phi(-\frac{3}{\sqrt{5}})\right)$$

$$= 2\left(1 - \Phi(\frac{3}{\sqrt{5}})\right)$$

$$\approx 0.18$$

(2) 由中心极限定理, 进行 n 次运算误差绝对值不超过 10 的概率为

$$P(|\sum_{i=1}^{n} X_i| \le 10) = P\left(\frac{-10 - 0}{\sqrt{n/12}} \le \frac{\sum_{i=1}^{n} X_i - 0}{\sqrt{n/12}} \le \frac{10 - 0}{\sqrt{n/12}}\right)$$
$$= \Phi\left(\frac{20\sqrt{3}}{\sqrt{n}}\right) - \Phi\left(-\frac{20\sqrt{3}}{\sqrt{n}}\right)$$
$$= 2\Phi\left(\frac{20\sqrt{3}}{\sqrt{n}}\right) - 1$$

要使所求概率不小于 0.90, 即

$$2\Phi\left(\frac{20\sqrt{3}}{\sqrt{n}}\right) - 1 \ge 0.90$$
$$n \le 443.$$

6. (1) *X* 的期望为

$$\begin{split} E(X) &= \int_0^\theta \frac{x}{2\theta} dx + \int_\theta^1 \frac{x}{2(1-\theta)} dx = \frac{2\theta+1}{4}, \\ \Rightarrow \theta &= 2E(X) - \frac{1}{2}. \end{split}$$

用样本矩代替总体矩,得到 θ 的矩估计为 $\hat{\theta} = 2\bar{X} - \frac{1}{2}$.

(2) 先求 X 的方差

$$\begin{split} E(X^2) &= \int_0^\theta \frac{x^2}{2\theta} dx + \int_\theta^1 \frac{x^2}{2(1-\theta)} dx = \frac{1}{6} (2\theta^2 + \theta + 1) \\ \mathrm{Var}(X) &= E(X^2) - (EX)^2 = \frac{1}{48} \left(4\theta^2 - 4\theta + 5 \right) \\ \mathrm{DIMF} \, \bar{X}, \\ E(\bar{X}) &= E(X) = \frac{2\theta + 1}{4} \\ \mathrm{Var}(\bar{X}) &= \frac{1}{n} \mathrm{Var}(X) = \frac{1}{48n} \left(4\theta^2 - 4\theta + 5 \right) \\ E(4\bar{X}^2) &= 4E(\bar{X}^2) = 4 \mathrm{Var}(\bar{X}) + 4(E\bar{X})^2 \neq \theta^2 \end{split}$$

所以, $4\bar{X}$ 不是 θ^2 的无偏估计.

13. 由题意知,似然函数为

$$L(\theta)=\theta^{2n_1}\left[2\theta(1-\theta)\right]^{n_2}(1-\theta)^{2n_3}=2^{n_2}\theta^{2n_1+n_2}(1-\theta)^{n_2+2n_3}$$
 对数似然函数为

$$\ln L(\theta) = n_2 \ln 2 + (2n_1 + n_2) \ln \theta + (n_2 + 2n_3) \ln(1 - \theta)$$

将其关于 θ 求导并令为 0.

$$\begin{split} \frac{\partial \ln L(\theta)}{\partial \theta} &= \frac{2n_1 + n_2}{\theta} - \frac{n_2 + 2n_3}{1 - \theta} = 0 \\ &\Rightarrow \hat{\theta} = \frac{2n_1 + n_2}{2(n_1 + n_2 + n_3)} = \frac{2n_1 + n_2}{2n} \\ \mathbb{X} &\frac{\partial^2 \ln L(\theta)}{\partial \theta^2} = -\frac{2n_1 + n_2}{\theta^2} - \frac{n_2 + 2n_3}{(1 - \theta)^2} < 0, \text{ 所以} \hat{\theta} 是极大值点. \end{split}$$

综上, θ 的极大似然估计为 $\hat{\theta} = \frac{2n_1 + n_2}{2n}$.

16. 由题意知,似然函数为

$$L(\theta) = \theta^{\sum_{i=1}^{n} I(0 < X_i < 1)} (1 - \theta)^{\sum_{i=1}^{n} I(1 \le X_i < 2)}$$

对数似然函数为

$$\ln L(\theta) = \sum_{i=1}^{n} I(0 < X_i < 1) \ln \theta + \sum_{i=1}^{n} I(1 \le X_i < 2) \ln(1 - \theta)$$

将其关于 θ 求导并令为 0,

$$\begin{split} \frac{\partial \ln L(\theta)}{\partial \theta} &= \frac{\sum_{i=1}^n I(0 < X_i < 1)}{\theta} - \frac{\sum_{i=1}^n I(1 \le X_i < 2)}{1 - \theta} = 0 \\ \Rightarrow \hat{\theta} &= \frac{\sum_{i=1}^n I(0 < X_i < 1)}{n} \\ \mathbb{Z} \frac{\partial^2 \ln L(\theta)}{\partial \theta^2} &< 0, \; \text{所以ê是极大值点.} \end{split}$$

综上, θ 的极大似然估计为 $\hat{\theta} = \frac{\sum_{i=1}^{n} I(0 < X_i < 1)}{n}$.

19. (1) $T = \max(X_1, X_2, X_3)$, 则 $0 < T < \theta$. 其分布函数为, 当 $t \le 0$, $F_T(t) = 0$; 当 $t \ge \theta$, $F_T(t) = 1$; 当 $t \in (0, \theta)$ 时,

$$F_T(t) = P(T \le t) = P(X_1 \le t, X_2 \le t, X_3 \le t) = \left(\int_0^t \frac{3x^2}{\theta^3} dx\right)^3 = \left(\frac{t}{\theta}\right)^9$$

则概率密度为

$$f_T(t) = \begin{cases} \frac{9t^8}{\theta^9}, & 0 < t < \theta, \\ 0, & \text{其他}. \end{cases}$$

(2) 由(1)知,

$$E(T) = \int_0^\theta t \cdot \frac{9t^8}{\theta^9} dt = \frac{9}{10}\theta.$$

要使 aT 是 θ 的无偏估计,即

$$E(aT) = aE(T) = \frac{9a}{10}\theta = \theta$$
$$\Rightarrow a = \frac{10}{9}.$$

20. (1)
$$E(X_i) = \mu$$
, $Var(X_i) = \sigma^2$, $i = 1, 2, \dots, n$. \mathbb{N}

$$E(X_{i+1} - X_i) = 0; \quad Var(X_{i+1} - X_i) = 2\sigma^2;$$

$$E(X_{i+1} - X_i)^2 = Var(X_{i+1} - X_i) + \left(E(X_{i+1} - X_i)\right)^2 = 2\sigma^2.$$

要使 $c\sum_{i=1}^{n-1} E(X_{i+1}-X_i)^2$ 是 σ^2 的无偏估计,即

$$E\left(c\sum_{i=1}^{n-1}E(X_{i+1}-X_i)^2\right) = 2c(n-1)\sigma^2$$

$$\Rightarrow c = \frac{1}{2(n-1)}.$$

(2)
$$E(\overline{X}^2 - cS^2) = E(\overline{X}^2) - cE(S^2)$$
$$= \operatorname{Var}(\overline{X}) + (E\overline{X})^2 - cE(S^2)$$
$$= \frac{1}{2}\sigma^2 + \mu^2 - c\sigma^2$$

要使 $\overline{X}^2 - cS^2$ 是 μ^2 的无偏估计, 即

$$E(\overline{X}^2 - cS^2) = \mu^2$$

$$\Rightarrow c = \frac{1}{n}.$$

40. (1) 由题意知,似然函数为

$$L(\mu) = \prod_{i=1}^{n} e^{-(x_i - \mu)} I(x_i \ge \mu) = e^{-\sum_{i=1}^{n} (x_i - \mu)} I(x_{(1)} \ge \mu),$$

要使 $L(\mu)$ 达到最大,首先示性函数取值应为 1,其次 $e^{-\sum_{i=1}^{n}(x_i-\mu)}$ 尽可能大,所以 mu 取值应尽可能大,但示性函数为 1 确定了 $\mu \leq x_{(1)}$,由此 μ 的极大似然估计 $\hat{\mu}^* = X_{(1)}$. 由最小值的分布结论可知, $X_{(1)}$ 的密度函数为

$$f_1(x) = \begin{cases} n(1 - F(x))^{n-1} f(x) = ne^{-n(x-\mu)}, & x \ge \mu, \\ 0, & \text{ #.} \end{cases}$$

$$E(X_{(1)}) = \int_{\mu}^{\infty} x \cdot ne^{-n(x-\mu)} dx = \int_{0}^{\infty} (y+\mu) \cdot ne^{-ny} dy = \mu + \frac{1}{n}$$

所以 $\hat{\mu}^* = X_{(1)}$ 不是 μ 的无偏估计. 修正之后的无偏估计 $\hat{\mu}^{**} = X_{(1)} - \frac{1}{n}$. (2)

$$E(X) = \int_{\mu}^{\infty} x \cdot e^{-(x-\mu)} dx = \int_{0}^{\infty} (y+\mu) \cdot e^{-y} dy = \mu + 1.$$

记 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, 所以 μ 的矩估计 $\hat{\mu} = \bar{X} - 1$, 且

$$E(\hat{\mu}) = E(\bar{X}) - 1 = E(X) - 1 = \mu,$$

 $\hat{\mu}$ 是 μ 的无偏估计.

(3) $\hat{\mu}^{**}$ 及 $\hat{\mu}$ 都是 μ 的无偏估计,比较两者方差

$$\begin{aligned} \operatorname{Var}(\hat{\mu}^{**}) &= \operatorname{Var}\left(X_{(1)} - \frac{1}{n}\right) = \operatorname{Var}(X_{(1)}) \\ &= \int_{\mu}^{\infty} x^2 \cdot n e^{-n(x-\mu)} dx - \left(\mu + \frac{1}{n}\right)^2 = \frac{1}{n^2} \\ \operatorname{Var}(\hat{\mu}) &= \operatorname{Var}(\bar{X} - 1) = \operatorname{Var}(\bar{X}) = \frac{1}{n} \operatorname{Var}(X) \\ &= \frac{1}{n} \left[\int_{\mu}^{\infty} x^2 \cdot e^{-(x-\mu)} dx - (\mu + 1)^2 \right] = \frac{1}{n} \end{aligned}$$

所以 $\hat{\mu}^{**}$ 更有效.

注: 不难发现 $(X - \mu) \sim Exp(1)$, $(X_{(1)} - \mu) \sim Exp(n)$. 由指数分布的期望方差结论,可直接得到 $E(X) = \mu + 1$, Var(X) = 1, $E(X_{(1)}) = \mu + \frac{1}{n}$, $Var(X_{(1)}) = \frac{1}{n^2}$. 此方法更快.

43. 法一: 由 Jensen 不等式有,

$$E\Big(rac{1}{\overline{X}}\Big) \geq rac{1}{E(\overline{X})} = \lambda,$$
 等号当且仅当 $P(\overline{X} = E(\overline{X})) = 1$ 时成立.

所以 $1/\bar{X}$ 不是 λ 的无偏估计.

Jensen 不等式: 如果 $\varphi(\cdot)$ 是凸函数, X 是随机变量, 则:

$$E[\varphi(X)] \ge \varphi[E(X)]$$

若 $\varphi(\cdot)$ 严格凸,则等号当且仅当 P(X = E(X)) = 1 时成立.

法二: 由指数分布与伽玛分布的关系知: $X_1, X_2, \dots, X_n i.i.d. \sim Exp(\lambda) = Gamma(1, \lambda)$, 再由伽玛分布的可加性,知

$$Y := X_1 + X_2 + \dots + X_n \sim Gamma(n, \lambda), i.e.,$$

$$f_Y(y) = \begin{cases} \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y}, & y \ge 0, \\ 0, & y < 0. \end{cases}$$

$$E\left(\frac{1}{\overline{X}}\right) = nE\left(\frac{1}{Y}\right) = n \int_0^\infty \frac{1}{y} \cdot \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} dy = \frac{n}{n-1} \lambda$$

所以 $1/\bar{X}$ 不是 λ 的无偏估计.

伽玛分布: $X \sim Gamma(\alpha, \lambda)$, 其中 $\alpha > 0$ 为形状参数, $\lambda > 0$ 为尺度参数. 密度函数为

$$f_X(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\lambda y}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

利用卷积公式易证其可加性: $U \sim Gamma(\alpha_1, \lambda), V \sim Gamma(\alpha_2, \lambda)$, 且 U, V 相互独立,则 $U + V \sim Gamma(\alpha_1 + \alpha_2, \lambda)$.

45. 总体
$$X \sim f(x,\theta) = \begin{cases} 1, & \theta - \frac{1}{2} \le x \le \theta + \frac{1}{2}, \\ 0 & 其他. \end{cases}$$
 记 $Y = X - \theta + \frac{1}{2},$ 则 $Y \sim U(0,1), E(Y) = 1/2, \mathrm{Var}(Y) = 1/12.$
$$E(\bar{X}) = E(X) = E(Y) + \theta - \frac{1}{2} = \frac{1}{2} + \theta - \frac{1}{2} = \theta$$

$$\mathrm{Var}(\bar{X}) = \frac{1}{n} \mathrm{Var}(X) = \frac{1}{n} \mathrm{Var}(Y) = \frac{1}{12n}$$

对于 $X_{(n)} := \max_{1 \leq i \leq n} X_i, Y_{(n)} := \max_{1 \leq i \leq n} Y_i, Y_{(n)} = X_{(n)} - \theta + \frac{1}{2}$. $Y_{(n)}$ 的密度函数为

$$f_{Y_{(n)}}(y) = \begin{cases} ny^{n-1}, & 0 \le y \le 1, \\ 0, & \not\exists \text{ th.} \end{cases}$$

$$E(Y_{(n)}) = \int_0^1 y \cdot ny^{n-1} dy = \frac{n}{n+1}$$

$$\operatorname{Var}(Y_{(n)}) = \int_0^1 y^2 \cdot ny^{n-1} dy - \left(\frac{n}{n+1}\right)^2 = \frac{n}{(n+1)^2(n+2)}$$

$$\Rightarrow E(X_{(n)}) = E(Y_{(n)}) + \theta - \frac{1}{2} = \frac{n}{n+1} + \theta - \frac{1}{2} = \theta + \frac{n-1}{2(n+1)}$$

$$E\left(X_{(n)} - \frac{n-1}{2(n+1)}\right) = \theta$$

$$\operatorname{Var}\left(X_{(n)} - \frac{n-1}{2(n+1)}\right) = \operatorname{Var}(X_{(n)}) = \operatorname{Var}(Y_{(n)}) = \frac{n}{(n+1)^2(n+2)}$$

当 n=1 时,两者方差相等;

 $\stackrel{\underline{\mathbf{u}}}{=} 1 < n \le 7 \text{ ft}, \frac{1}{12n} < \frac{n}{(n+1)^2(n+2)};$

 $\stackrel{\underline{}}{=}$ $n \ge 8$ $\stackrel{\underline{}}{=}$ $n \ge \frac{1}{12n} > \frac{n}{(n+1)^2(n+2)}$.

所以两者都是 θ 的无偏估. n 一般取较大值,所以 $X_{(n)} - \frac{n-1}{2(n+1)}$ 更有效.

51. 由题意知,对于总体 X,

$$E(X) = \theta + 3\theta + 3(1 - 3\theta) = 3 - 5\theta,$$

 θ 的矩估计 $\hat{\theta}_M = \frac{3-\bar{X}}{5}$.

记 n_i 为样本取到 i 的次数, 且 $n = \sum_{i=0}^3 n_i$. 则似然函数, 对数似然为

$$\begin{split} L(\theta) &= \left(\frac{\theta}{2}\right)^{n_0} \theta^{n_1} \left(\frac{3\theta}{2}\right)^{n_2} (1-3\theta)^{n_3} \\ &\ln L(\theta) = n_0 (\ln \theta - \ln 2) + n_1 \ln \theta + n_2 (\ln \theta + \ln(3/2)) + n_3 \ln(1-3\theta) \\ &\frac{\partial \ln L(\theta)}{\partial \theta} = \frac{n_0 + n_1 + n_2}{\theta} - \frac{3n_3}{1-3\theta} = 0 \Rightarrow \theta_0 = \frac{n_0 + n_1 + n_2}{3n} \\ &\mathbb{E} \, \, \overline{\square} \, \, \underline{\mathbb{R}} \, \, \underline{\mathbb{H}} \, \, \underline{\mathbb{H}} \, \underline{\mathbb$$

heta 的极大似然估计 $\hat{ heta}_L = \frac{n_0 + n_1 + n_2}{3n} = \frac{n - n_3}{3n}$. 由观测值可计算具体的估计值: $\hat{ heta}_M = \frac{2}{5}, \hat{ heta}_L = \frac{4}{15}$.

(2)
$$E(\hat{\theta}_M) = \frac{3 - E(\bar{X})}{5} = \theta$$
, $\hat{\theta}_M$ 显然无偏. 对于 $\hat{\theta}_L = \frac{n - n_3}{3n}$, 这里 $n = 10$, 且 $n_3 \sim b(n, 1 - 3\theta)$, $E(n_3) = n(1 - 3\theta)$.
$$E(\hat{\theta}_L) = \frac{n - E(n_3)}{3n} = \frac{n - n(1 - 3\theta)}{3n} = \theta.$$

所以 $\hat{\theta}_L$ 也是无偏估计.

(3) 对于 $\hat{\theta}_M$,

$$Var(X) = E(X^{2}) - (EX)^{2} = 9 - 20\theta - (3 - 5\theta)^{2} = 10\theta - 25\theta^{2}$$
$$Var(\hat{\theta}_{M}) = \frac{1}{25}Var(\bar{X}) = \frac{1}{25n}Var(X) = \frac{\theta(2 - 5\theta)}{5n}$$

对于 $\hat{\theta}_L$, 由 $n_3 \sim b(n, 1-3\theta)$

$$Var(n_3) = 3n\theta(1 - 3\theta)$$
$$Var(\hat{\theta}_L) = \frac{1}{(3n)^2} Var(n_3) = \frac{\theta(1 - 3\theta)}{3n}$$

比较两者方差,可以发现 $\hat{\theta}_L$ 更有效.

15. $X_1, X_2, X_3, X_4 i.i.d. \sim N(0, 2^2)$, 则有

$$(X_1 - 2X_2) \sim N(0, 20), (3X_3 - 4X_4) \sim N(0, 10^2)$$

要使 $T = a(X_1 - 2X_2)^2 + b(3X_3 - 4X_4)^2$ 服从 χ^2 分布,

$$\sqrt{a}(X_1 - 2X_2) \sim N(0, 1), \quad \sqrt{b}(3X_3 - 4X_4) \sim N(0, 1)$$

 $\Rightarrow a = \frac{1}{20}, \quad b = \frac{1}{100}$

此时 $T \sim \chi^2(2)$. 或 (a=1/20,b=0) 及 (a=0,b=1/100) 也可,此时 $T \sim \chi^2(1)$.

17. $X_1, X_2, \cdots, X_{15}i.i.d. \sim N(0, 2^2)$. 则有

$$\frac{1}{4}(X_1^2 + \dots + X_{10}^2) \sim \chi^2(10),$$

$$\frac{1}{4}(X_{11}^2 + \dots + X_{15}^2) \sim \chi^2(5),$$

$$Y = \frac{X_1^2 + \dots + X_{10}^2}{2(X_{11}^2 + \dots + X_{15}^2)} = \frac{\left(\frac{1}{4}(X_1^2 + \dots + X_{10}^2)\right) / 10}{\left(\frac{1}{4}(X_{11}^2 + \dots + X_{15}^2)\right) / 5} \sim F(10, 5).$$

16.
$$X_1, X_2, \dots, X_9 i.i.d. \sim N(\mu, \sigma^2)$$
, 则有

$$\begin{split} &Y_1 \sim N(\mu, \frac{1}{6}\sigma^2), \quad Y_2 \sim N(\mu, \frac{1}{3}\sigma^2), \quad \sqrt{2}(Y_1 - Y_2) \sim N(0, \sigma^2), \\ &\frac{2S^2}{\sigma^2} \sim \chi^2(2). \quad (Y_2 是样本X_7, X_8, X_9 的样本均值, S^2 为样本方差.) \\ &Z = \frac{\frac{\sqrt{2}}{\sigma}(Y_1 - Y_2)}{S} = \frac{\sqrt{2}(Y_1 - Y_2)}{\sqrt{\frac{2S^2}{2\sigma^2}}} \sim t(2). \end{split}$$

20.
$$X_1, \dots, X_n, X_{n+1}$$
 i.i.d. $\sim N(a, \sigma^2)$, 则有

$$\bar{X} \sim N(a, \frac{\sigma^2}{n}), \quad X_{n+1} - \bar{X} \sim N(0, \frac{n+1}{n}\sigma^2),$$

$$\frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2(n-1),$$

$$\frac{X_{n+1} - \bar{X}}{S_n} \sqrt{\frac{n}{n+1}} = \frac{\frac{X_{n+1} - \bar{X}}{\sqrt{(n+1)\sigma^2/n}}}{\sqrt{\frac{(n-1)S_n^2}{(n-1)\sigma^2}}} \sim t(n-1).$$

21. $X_1, \dots, X_m i.i.d. \sim N(\mu_1, \sigma^2), Y_1, \dots, Y_n i.i.d. \sim N(\mu_2, \sigma^2)$,且相互独立,则有

$$\alpha(\bar{X} - \mu_1) + \beta(\bar{Y} - \mu_2) \sim N\left(0, \left(\frac{\alpha^2}{m} + \frac{\beta^2}{n}\right)\sigma^2\right)$$

$$\frac{(m-1)S_m^2}{\sigma^2} \sim \chi^2(m-1), \frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2(n-1), \frac{(m-1)S_m^2 + (n-1)S_n^2}{\sigma^2} \sim \chi^2(m+n-2),$$

$$T \sim t(m+n-2).$$

22. 对于 $X_{(n)}$, 当 $x \in (0,1)$,

(2) 分别求 $X_{(n)}, X_{(1)}$ 的密度函数:

$$f_n(x) = \begin{cases} nx^{n-1}, & 0 < x < 1, \\ 0, & \text{ 其他.} \end{cases} \qquad f_1(x) = \begin{cases} n(1-x)^{n-1}, & 0 < x < 1, \\ 0, & \text{ 其他.} \end{cases}$$

$$\begin{split} E(X_{(n)}) &= \int_0^\infty x \cdot nx^{n-1} dx = \frac{n}{n+1}, \\ E(X_{(1)}) &= \int_0^\infty x \cdot n(1-x)^{n-1} dx = \frac{1}{n+1}, \\ E(R_n) &= E(X_{(n)} - X_{(1)}) = E(X_{(n)}) - E(X_{(1)}) = \frac{n-1}{n+1}. \end{split}$$

63. (1) $\sigma = 0.01$ (已知), 则总体均值的 90% 置信区间为

$$[\bar{X} - \frac{\sigma}{\sqrt{n}}u_{0.05}, \bar{X} + \frac{\sigma}{\sqrt{n}}u_{0.05}] \approx [2.1267, 2.1377] \ (\vec{x} \ [2.127, 2.138]).$$

(2) σ 未知, 则总体均值的 90% 置信区间为

$$[\bar{X} - \frac{S}{\sqrt{n}} t_{0.05}(n-1), \bar{X} + \frac{S}{\sqrt{n}} t_{0.05}(n-1)] \approx [2.1199,\ 2.1445]\ (\vec{\boxtimes}\ [2.120,\ 2.145]).$$

- **30.** 检验 $H_0: \sigma \leq 0.01 \leftrightarrow H_1: \sigma > 0.01$ 等价于检验 $H_0: \sigma^2 \leq 0.01^2 \leftrightarrow H_1: \sigma^2 > 0.01^2$.
- (1) μ 已知,在 $\sigma = \sigma_0 = 0.01$ 时,检验统计量 $\sum_{i=1}^{n} \frac{(X_i \mu)^2}{\sigma^2} \sim \chi^2(n)$,拒绝域 为 $\{\sum_{i=1}^{n} \frac{(X_i \mu)^2}{\sigma^2} \ge \chi^2_{\alpha}(n)\}$. 经计算,

$$\sum_{i=1}^{n} \frac{(X_i - \mu)^2}{\sigma^2} = 45 > \chi_{0.05}^2(9) = 16.919,$$

由此可见,样本落入拒绝域,拒绝原假设 H_0 .

(2) μ 未知,在 $\sigma = \sigma_0 = 0.01$ 时,检验统计量 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$,拒绝域为 $\{\frac{(n-1)S^2}{\sigma^2} \geq \chi^2_{\alpha}(n-1)\}$.经计算,

$$\frac{(n-1)S^2}{\sigma^2} = 31.556 > \chi^2_{0.05}(8) = 15.507,$$

由此可见,样本落入拒绝域,拒绝原假设 H_0 .

35. 成对数据检验: 令 $Y_i = X_{1i} - X_{2i}$,其中 X_{1i} 为训练前体重, X_{2i} 为训练后体. 检验 $H_0: \mu \leq 8 \leftrightarrow H_1: \mu > 8$. 方差未知,在 $\mu = \mu_0 = 8$ 时,检验统计量 $\frac{\bar{Y} - \mu}{S/\sqrt{n}} \sim t(n-1)$,拒绝域为 $\{\frac{\bar{Y} - \mu}{S/\sqrt{n}} \geq t_{\alpha}(n-1)\}$. 经计算,

$$\frac{\bar{Y} - \mu}{S/\sqrt{n}} = 0.1457 < t_{0.05}(8) = 1.860.$$

由此可见,样本未落入拒绝域,接受原假设 H_0 , 即认为该俱乐部的宣传不可信.

注: 根据原假设的提法原则,此题应站在保护消费者的角度考虑原假设的取法. 若取原假设与备择假设为 $H_0: \mu \geq 8 \leftrightarrow H_1: \mu < 8$, 则得到该俱乐部的宣传可信的结论. 所以上面的检验原假设的提法更可取.

40. (1) 检验 $H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$, 在 H_0 成立的条件下,检验统计量 $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(m-1,n-1)$, 拒绝域为 $\{\frac{S_1^2}{S_2^2} \geq F_{\frac{\alpha}{2}}(m-1,n-1) \text{ or } \frac{S_1^2}{S_2^2} \leq F_{1-\frac{\alpha}{2}}(m-1,n-1)\}$. 经计算,

$$\frac{S_1^2}{S_2^2} = 0.715 \notin (-\infty, F_{0.975}(6,7)) \cup (F_{0.025}(6,7), +\infty)$$
$$= \left(-\infty, \frac{1}{5.12}\right) \cup (5.12, +\infty).$$

由此可见,样本未落入拒绝域,接受原假设 H_0 , 即认为两企业职工工资方 差相等.

(2) 由 (1) 可以即认为两企业职工工资方差相等,检验 $H_0: \mu_1 \geq \mu_2 \leftrightarrow H_1: \mu_1 < \mu_2$. 检验统计量 $T = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t(m+n-2)$, 其中 $S_w^2 = \frac{(m-1)S_1^2 + (n-1)S_2^2}{m+n-2}$, 拒绝域为 $\{T \leq t_{1-\alpha}(m+n-2)\}$. 经计算,在 $\mu_1 = \mu_2$ 时,

$$T = \frac{\bar{X} - \bar{Y}}{S_w \sqrt{\frac{1}{m} + \frac{1}{n}}} = -1.8265 < t_{0.95}(13) = -1.771.$$

由此可见,样本落入拒绝域,拒绝原假设 H_0 , 即认为甲企业职工平均工资 低于乙企业职工平均工资.

注:根据原假设的提法原则:如果你希望"证明"某个命题,就取相反结论或者其中一部分作为原假设.此题希望证明"即认为甲企业职工平均工资低于乙企业职工平均工资",因此原假设的提法如上.

42. 检验 $H_0: \sigma_1^2 \geq \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 < \sigma_2^2$, 检验统计量 $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(m-1, n-1)$, 拒绝域为 $\left\{\frac{S_1^2}{S_2^2} \leq F_{1-\alpha}(m-1, n-1)\right\}$. 经计算, 在 $\sigma_1^2 = \sigma_2^2$ 时,

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2}{S_2^2} = 0.1777 < F_{0.95}(8,8) = \frac{1}{3.44} = 0.2907$$

由此可见,样本落入拒绝域,拒绝原假设 H_0 .

45. 检验 $H_0: \mu_1 = \mu_2 \leftrightarrow H_1: \mu_1 \neq \mu_2$,检验统计量 $U = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}} \sim N(0,1)$,拒绝域为 $\{|U| \geq u_{\frac{\alpha}{2}}\}$.在 $\mu_1 = \mu_2$ 时,经计算

$$U = \frac{\bar{X} - \bar{Y}}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}} = -0.1464.$$

 $|U| = 1.464 < u_{0.025} = 1.96$. 由此可见,样本未落入拒绝域,接受原假设 H_0 , 即认为 μ_1 与 μ_2 没有显著差异.

64. 检验假设 H_0 : 每页上的印刷错误个数服从泊松分布. 首先估计泊松分布参数 λ , 由极大似然估计法知 $\hat{\lambda} = \bar{X}$, 即

$$\hat{\lambda} = \frac{1}{150} (1 \times 40 + 2 \times 19 + 3 \times 2 + 5 \times 2 + 6) = 2/3.$$

其次,计算泊松分布的概率的估计值 $\hat{p}_i = \frac{\hat{\lambda}^i}{i!}e^{-\hat{\lambda}}, \ i=0,1,2,\cdots$. 为了满足每一类的样本观测数不小于 5, 将 $i\geq 3$ 作为一类,一共 4 类. 具体计算结果如下:

$$n\hat{p}_0 = nP(X = 0) = 150 \times \frac{(2/3)^0 e^{-2/3}}{0!} = 77.01$$

$$n\hat{p}_1 = 150 \times \frac{(2/3) \times e^{-2/3}}{1!} = 51.34$$

$$n\hat{p}_2 = 150 \times \frac{(2/3)^2 \times e^{-2/3}}{2!} = 17.11$$

$$n\hat{p}_3 = nP(X \le 3) = 150 \times \left(1 - \sum_{i=1}^{2} \frac{(2/3)^i}{i!} e^{-2/3}\right) = 4.53$$

从而得到检验统计量的值为

$$Z = \sum_{i=1}^{4} \frac{(n_i - n\hat{p_i})^2}{n\hat{p_i}} = 3.81$$

检验的拒绝域为 $\{Z \ge \chi^2_{0.05}(4-1-1)\} = \{\chi^2 \ge 5.991\}$. 所以结果不落入拒绝域内,接受原假设 H_0 ,即认为每页上的印刷错误个数服从泊松分布、、注:对于分布的拟合优度检验,一般为了保证落入每类的样本数不小于 5,可将相邻的几类合并.

67. 检验假设 H_0 : 当美国总统与星座无关. 记美国总统是第 i 种星座的概率为 $p_i, i=1,2,\cdots,12$. 即检验 $H_0: p_i=1/12$.

理论上,每种星座对应的总统位数为 $np_i=44\times 1/12=11/3$. 则检验统计量

$$Z = \sum_{i}^{12} \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i}$$

$$= \frac{2 \times (5 - 11/3)^2 + 2 \times (3 - 11/3)^2 + 2 \times (2 - 11/3) + 6 \times (4 - 11/3)^2}{11/3}$$

$$= 2.8485$$

检验的拒绝域为 $\{Z \geq \chi^2_{0.05}(12-1)\} = \{Z \geq 19.675\}$. 所以结果不落入拒绝域内,接受原假设 H_0 ,即认为当美国总统与星座无关.

74. 检验假设 H_0 : X 服从超几何分布 $P\{X = k\} = \binom{5}{k}\binom{3}{3-k}/\binom{8}{3}$, k = 0, 1, 2, 3.

将 $\{X=0\}$ 与 $\{X=1\}$ 归为一组. 则按原假设 H_0 , 得每组对应的概率为

$$p_{1} = P\{X = 0\} + P\{X = 1\} = {5 \choose 0} {3 \choose 3} / {8 \choose 3} + {5 \choose 1} {3 \choose 2} / {8 \choose 3} = 16/56$$

$$p_{2} = P\{X = 2\} = {5 \choose 2} {3 \choose 1} / {8 \choose 3} = 30/56$$

$$p_{3} = P\{X = 3\} = {5 \choose 3} {3 \choose 0} / {8 \choose 3} = 10/56$$

从而得到检验统计量的值为

$$Z = \sum_{i=1}^{3} \frac{(n_i - np_i)^2}{np_i}$$

$$= \frac{(32 - 112 \times (16/56))^2}{112 \times (16/56)} + \frac{55 - 112 \times (30/56))^2}{112 \times (30/56)} + \frac{25 - 112 \times (10/56))^2}{112 \times (10/56)}$$

$$= 1.667$$

检验的拒绝域为 $\{Z \ge \chi^2_{0.05}(3-1)\} = \{Z \ge 5.991\}$. 所以结果不落入拒绝域内,接受原假设 H_0 ,即认为 X 服从超几何分布.

$$1,(1)\Omega = \{(i,j): i,j = 1,...,6\}$$

$$A = \{(i, j) : i > j, i = 2, ..., 6, j = 1, ...5\}$$

$$B = \{(i, i) : i = 1, ..., 6\}$$

$$C = \{(4,6), (5,5), (6,4)\}$$

(2)记硬币正面为"1",反面为"0",则

$$\Omega = \{(i, j, k) : i, j, k = 0, 1\}$$

$$A = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1)\}$$

$$B = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$$

$$C = \{(1, 1, 1), (0, 0, 0)\}$$

(3)记所取某点的坐标为"(x,y)",则

$$\Omega = \{(x, y) : x^2 + y^2 < 1\}$$

$$A = \{(x, y) : x^2 + y^2 < \frac{1}{4}\}$$

$$B = \{(x,y) : \frac{1}{9} < x^2 + y^2 < \frac{1}{4}\}$$

$$3(1)A_1\overline{A}_2\overline{A}_3 + \overline{A}_1A_2\overline{A}_3 + \overline{A}_1\overline{A}_2A_3$$

$$(2)A_1 \bigcup A_2 \bigcup A_3$$

$$(3)A_1 \cap (A_2 \bigcup A_3)$$

$$(4)A_1\overline{A}_2\overline{A}_3 + \overline{A}_1A_2\overline{A}_3 + \overline{A}_1\overline{A}_2A_3 + \overline{A}_1\overline{A}_2\overline{A}_3$$

12,
$$\frac{\binom{3}{2}}{\binom{100}{2}}$$
, $\frac{\binom{97}{2}}{\binom{100}{2}}$

22,记事件A := "该小区居民订阅了甲报纸",B := "该小区居民订阅了 乙报纸"

$$(1)P(A\overline{B}) = P(A) - P(AB) = 0.4 - 0.15 = 0.25$$

$$(2)P(A\overline{B}) + P(\overline{A}B) = P(A) + P(B) - 2P(AB) = 0.4 + 0.25 - 0.3 = 0.35$$

$$(3)P(A \mid B) = P(A) + P(B) - P(AB) = 0.4 + 0.25 - 0.15 = 0.5$$

$$(4)P(\overline{A} \ \overline{B}) = 1 - P(A | |B|) = 0.5$$

23.三局两胜时,甲获胜的概率

$$P_1 = p^2 + {2 \choose 1}p^2(1-p) = p^2(3-2p)$$

五局三胜时, 甲获胜的概率

$$P_2 = p^3 + \binom{3}{1}p^3(1-p) + \binom{4}{2}p^3(1-p)^2 = p^3(6p^2 - 15p + 10)$$

当 $\frac{1}{2} 时,易得<math>P_1 < P_2$,所以,五局三胜对甲更有利。

例: 设 $P_n(A)$ 为蚂蚁第n次爬向A点的概率,则

$$\begin{split} P_2(A) &= \tfrac{1}{2} \times \tfrac{1}{2} + \tfrac{1}{2} \times \tfrac{1}{2} = \tfrac{1}{2} \\ P_n(A) &= \tfrac{1}{2}(1 - P_{n-1}(A)), \, P_n(A) - \tfrac{1}{3} = -\tfrac{1}{2}(P_{n-1}(A) - \tfrac{1}{3}) \\ \text{Fig.}, \, \, P_n(A) &= \tfrac{2^{n-1} + (-1)^n}{3 \times 2^{n-1}} \end{split}$$

34,记事件 A_i 为"第i次取出的数为偶数, i=1,2",则

$$\begin{array}{l} P(A_1) = \frac{4}{9}, \ P(A_1A_2) = \frac{4}{9} \times \frac{3}{8} = \frac{1}{6}, \\ \text{MU,} \ \ P(\overline{A}_2|A_1) = \frac{P(A_1) - P(A_1A_2)}{P(A_1)} = \frac{5}{8} \end{array}$$

39,记"两点之和为5点"为事件A,"两点之差不大于2"为事件B,由枚举法易知,

$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{\frac{2}{6^2}}{\frac{4}{6^2}} = \frac{1}{2}$$

40,记两点之和大于6为事件A,两点之差小于2为事件B,则 $P(A|B) = \frac{P(AB)}{P(B)} = \frac{9}{16}$

42,记三个数都不同为事件A,含有1点为事件B,最大结果是6为事件C,则

$$P(B|A) = P(C|A) = \frac{\binom{5}{2}}{\binom{6}{3}} = \frac{1}{2}$$

45,记取出的球是白球为"A",剩下的球也是白球为"B",则

$$P(A) = \frac{1}{2} \times 1 + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4}$$

$$P(B|A) = \frac{\frac{1}{2}}{\frac{3}{4}} = \frac{2}{3}$$

46,记硬币正面向上的次数为M, M=0,1,...N

$$P(N = 4|M = 3) = \frac{P(N=4,M=3)}{\sum_{n=3}^{6} P(M=3|N=n)P(N=n)} = \frac{4}{16} = \frac{1}{4}$$

$$53$$
,证: $\frac{P(AB)}{P(A)} = P(B|A) = P(B|\overline{A}) = \frac{P(\overline{A}B)}{P(\overline{A})} = \frac{P(B) - P(AB)}{1 - P(A)}$ 左右移项整理得, $P(AB) = P(A)P(B)$

61,记A为某人碰到红灯的个数, A=0,1,2,3,4, 则

$$P(A \ge 2) = 1 - P(A = 0) - P(A = 1)$$

= 1 - 0.6²0.4² - (²₁)0.6³0.4 - (²₁)0.4³0.6 = 0.6928

65(5)记 A_i 元件能正常工作为 " A_i ", B_i ,C同理。考虑C是否能正常工作,

$$P = P(\overline{C})P(A_1B_1 \bigcup A_2B_2) + P(C)(1 - P(\overline{A}_1\overline{A}_2 \bigcup \overline{B}_1\overline{B}_2))$$

$$= (1 - P_C)(2P_AP_B - P_A^2P_B^2) + P_C(1 - (1 - P_A)^2 - (1 - P_B)^2 + (1 - P_A)^2(1 - P_B)^2)$$

$$= 2P_A(1 - P_A)[1 - (1 - P_B)(1 - P_BP_C)] + P_A^2[1 - (1 - P_B)^2]$$

81,记A := "该人为带菌者", $B_i :=$ "第i次检测为阳性"

$$(1)P(A|B) = \frac{P(AB)}{P(B)} = \frac{0.95 \times 0.1}{0.95 \times 0.1 + 0.01 \times 0.9} = \frac{0.095}{0.104} = 0.92$$

$$(1)P(A|B) = \frac{P(AB)}{P(B)} = \frac{0.95 \times 0.1}{0.95 \times 0.1 + 0.01 \times 0.9} = \frac{0.095}{0.104} = 0.91$$

$$(2)P(A|B_1B_2) = \frac{P(AB_1B_2)}{P(B_1B_2)} = \frac{0.95^2 \times 0.1}{0.95^2 \times 0.1 + 0.01^2 \times 0.9} = 0.99$$

4,X = 0,1,2,3,4

$$P(X = 0) = \frac{1}{3}, \ P(X = 1) = \frac{2}{3} \times \frac{1}{3} = \frac{2}{9},$$

$$P(X = 2) = (\frac{2}{3})^2 \times \frac{1}{3} = \frac{4}{27},$$

$$P(X = 3) = (\frac{2}{3})^3 \times \frac{1}{3} = \frac{8}{81},$$

$$P(X = 4) = (\frac{2}{3})^4 = \frac{16}{81}.$$

则有

$$X \sim \left(\begin{array}{cccc} 0 & 1 & 2 & 3 & 4\\ \frac{1}{3} & \frac{2}{9} & \frac{4}{27} & \frac{8}{81} & \frac{16}{81} \end{array}\right)$$

8,记该设备一周内发生故障次数为X,对应的毛利润为Y,则有

$$P(Y = 10) = P(X = 0) = (1 - 0.2)^{5} = 0.32768$$

$$P(Y = 5) = P(X = 1) = {5 \choose 1} 0.2(1 - 0.2)^{4} = 0.4096$$

$$P(Y = 0) = P(X = 2) = {5 \choose 2} 0.2^{2}(1 - 0.2)^{3} = 0.2048$$

$$P(Y = -2) = P(X \ge 3) = 1 - \sum_{k=1}^{3} P(X = k) = 0.05792$$

所以,Y 的分布律为

$$\left(\begin{array}{cccc} Y & 10 & 5 & 0 & -2 \\ P & 0.32768 & 0.4096 & 0.2048 & 0.05792 \end{array}\right).$$

9,以X 记在一局游戏中玩家获得的奖励情况,则

$$P(X = 100) = \frac{2 \binom{10}{10}}{\binom{20}{10}} = \frac{1}{92378}$$

$$P(X = 20) = \frac{2 \binom{10}{9} \binom{10}{1}}{\binom{20}{10}} = \frac{100}{92378}$$

$$P(X = 5) = \frac{2 \binom{10}{8} \binom{10}{2}}{\binom{20}{10}} = \frac{2025}{92378}$$

$$P(X = 0) = 1 - P(X = 100) - P(X = 20) - P(X = 5) = \frac{90252}{92378}$$

所以,X 的分布律为

$$\left(\begin{array}{cccc}
X & 100 & 20 & 5 & 0 \\
P & \frac{1}{92378} & \frac{100}{92378} & \frac{2025}{92378} & \frac{90252}{92378}
\end{array}\right).$$

$$17, X \sim b(20, \frac{1}{5}), P(X \ge 1) = 1 - P(X = 0) = 1 - (\frac{4}{5})^{20} = 0.988,$$
 求 $arg \max(\frac{20}{5})(\frac{1}{5})^k(\frac{4}{5})^{20-k}($ 或求 $EX = 4),$ 有 $k = \lfloor (n+1)p \rfloor = 4$

$$20,P=P_4+P_5+P_6+P_7=0.6^4+\binom{4}{1}0.6^40.4+\binom{5}{2}0.6^40.4^2+\binom{6}{3}0.6^40.4^3=0.71$$

$$P'=P'_2+P'_3=0.6^2+\binom{2}{1}0.6^20.4=0.65$$

$$P>P',$$
所以三局两胜制对乙队更有利。

22,以X表示赌徒赌完一局后的收益,则有

$$P(X = -1) = \left(\frac{5}{6}\right)^3 = \frac{125}{216}$$

$$P(X = 1) = \binom{3}{1} \left(\frac{1}{6}\right) \left(\frac{5}{6}\right)^2 = \frac{75}{216}$$

$$P(X = 2) = \binom{3}{2} \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right) = \frac{15}{216}$$

$$P(X = 3) = \left(\frac{1}{6}\right)^3 = \frac{1}{216}$$

所以,X 的分布律为

$$\left(\begin{array}{cccc} X & -1 & 1 & 2 & 3 \\ P & \frac{125}{216} & \frac{75}{216} & \frac{15}{216} & \frac{1}{216} \end{array}\right).$$

24. 记该患者一年内患两次感冒为事件A, 此药对他有效为事件B, 对他无效为事件 \overline{B} . 则由贝叶斯公式有

$$P(B|A) = \frac{P(B) P(A|B)}{P(B) P(A|B) + P(\overline{B}) P(A|\overline{B})}$$

$$= \frac{\frac{3}{4} \cdot \frac{3^{2}}{2}e^{-3}}{\frac{3}{4} \cdot \frac{3^{2}}{2}e^{-3} + \frac{1}{4} \cdot \frac{5^{2}}{2}e^{-5}}$$

$$= \frac{27e^{2}}{27e^{2} + 25}.$$

$$27, \lambda = np = 400 \times 0.02 = 8, \ X \sim P(8)$$

 $P(X \ge 2) = 1 - P(X = 1) - P(X = 0) = 1 - 8e^{-8} - e^{-8} = 1 - 9e^{-8} \approx 0.997$

29,没来的乘客人数可近似为poisson分布,
$$\lambda = 52 \times 0.05 = 2.6$$
 $P(X \le 1) = P(X = 0) + P(X = 1) = (1 + 2.6)e^{-2.6} \approx 0.27$

31,由规律所得,当X=k时,无论第几次投中球,所求概率的分子分母都有相同的形式,所以

$$P(X=k) = \binom{100-2}{k-1} \frac{(k-1)!(99-k)!}{99!} = \frac{98!}{(k-1)!(99-k)!} \frac{(k-1)!(99-k)!}{99!} = \frac{1}{99}$$

X在{1,2,...,99}上均匀分布。

$$\begin{split} &32, (1)P(X=3)=1-\frac{5}{6}=\frac{1}{6},\\ &P(X=2)=F(2)-F(2-)=\frac{5}{6}-(\frac{1}{2}+\frac{2-1}{4})=\frac{1}{12},\\ &P(X=1)=F(1)-F(1-)=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\\ &(2)P(\frac{1}{2}< x<\frac{3}{2})=P(X<\frac{3}{2})-P(X\leq \frac{1}{2})=(\frac{1}{2}+\frac{\frac{3}{2}-1}{4})-\frac{1}{8}=\frac{1}{2} \end{split}$$

33. 由分布函数的右连续性 $F(x_0+) = F(x_0)$,取 $x_0 = \frac{\pi}{2}$ 有

$$1 = a\sin\frac{\pi}{2}, \ \text{#} \ a = 1.$$

代入F(x),可得

$$P\left(X > \frac{\pi}{6}\right) = 1 - P\left(X \le \frac{\pi}{6}\right) = 1 - F\left(\frac{\pi}{6}\right) = 1 - \frac{1}{2} = \frac{1}{2}.$$

$$37$$
,证: 令F(x)为X的分布函数,对于 $\forall n \in (1,\infty)$,由题意得,
$$F(\frac{1}{n}) - F(0) = F(\frac{2}{n}) - F(\frac{1}{n}) = \dots = F(1) - F(\frac{n-1}{n}),$$
又因为 $\sum_{i=1}^{n} (F(\frac{i}{n}) - F(\frac{i-1}{n})) = F(1) - F(0) = 1,$ 所以 $F(\frac{m}{n}) = \sum_{i=1}^{m} (F(\frac{i}{n}) - F(\frac{i-1}{n})) = \frac{m}{n}, \ m \le n,$ 所以有 $F(x) = x.$

$$egin{aligned} &38, &P(1 < X < 2) = \int_1^2 ax dx = rac{a}{2}x^2\mid_1^2 = rac{3}{2}a, \ &P(2 < X < 3) = \int_2^3 b dx = b = rac{3}{2}a, \ &\mathbb{X}$$
 因为 $P(1 < X < 2) + P(2 < X < 3) = 1,$ 所以 $a = rac{1}{3}, \ b = rac{1}{2}. \end{aligned}$

$$\begin{array}{l} 39,(1) \int_{-\infty}^{+\infty} \frac{a}{1+x^2} dx = a \arctan x \mid_{-\infty}^{+\infty} = a\pi = 1 \\ \text{MLL,} \quad a = \frac{1}{\pi} \\ (2) F(x) = \int_{-\infty}^{x} \frac{1}{\pi(1+x^2)} dx = \frac{1}{\pi} \arctan x + \frac{1}{2} \\ (3) P(|x| < 1) \int_{-1}^{1} \frac{1}{\pi(1+x^2)} dx = \frac{1}{2} \end{array}$$

$$41,S=\int_0^2(2x-x^2)dx=[x^2-\frac{1}{3}x^3]|_0^2=\frac{4}{3}$$

$$P(X\leq x)=\int_0^x(2x-x^2)dx/S=\frac{3}{4}(x^2-\frac{1}{3}x^3)(x\in(0,2)),$$
 所以

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{3}{4}x^2 - \frac{1}{4}x^3, & 0 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$
$$f(x) = \begin{cases} \frac{3}{2}x - \frac{3}{4}x^2, & 0 < x < 2 \\ 0, & other \end{cases}$$

,(1)由连续型随机变量的性质可知F(0)=F(0-),F(1)=F(1-), 所以 $a=b,\ 1-a=b,$ 解得 $a=\frac{1}{2},\ b=\frac{1}{2}$ (2)对F(x)求导,有

$$f(x) = \begin{cases} \frac{1}{2}e^x, & x < 0\\ \frac{1}{2}e^{-(x-1)}, & x \ge 1\\ 0, & other \end{cases}$$

45,在
$$X \in (-5,5)$$
上, $f(X) = \frac{1}{10}$,
由 $\delta = X^2 - 4 \ge 0$,有 $X \ge 2$ 或 $X \le -2$
所以 $P(\{-5 \le X \le -2\} \bigcup \{2 \le X \le 5\}) = \frac{6}{10} = \frac{3}{5}$

49. $X \sim \exp(\lambda)$.

(1)
$$P(X > 2) = \int_2^\infty e^{-x} dx = 1 - e^{-x} \Big|_2^\infty = e^{-2}$$

(2)
$$P(X > 4) = \int_{4}^{\infty} e^{-x} dx = e^{-4}$$

$$P(X > 4 \mid X > 2) = \frac{P(X > 4)}{P(X > 2)} = e^{-2}$$

$$50, X \sim \exp\left(\frac{1}{5}\right)$$
,所以 $P(X > 10) = \int_{10}^{\infty} \frac{1}{5} e^{-\frac{1}{5}x} dx = 1 - e^{-\frac{1}{5}x} \Big|_{10}^{\infty} = e^{-2}$ 所以 $Y \sim b\left(5, e^{-2}\right) P(Y \ge 1) = 1 - P(X = 0) = 1 - \left(1 - e^{-2}\right)^5 \approx 0.517$

$$\begin{array}{ll} 55, & X_1 \sim N(30,100), & X_2 \sim N(40,16) \\ (1)P_1 = P\left(X_1 \leq 50\right) = P\left(\frac{X_1 - 30}{10} \leq \frac{50 - 30}{10}\right) = \Phi(2) \\ P_2 = P\left(X_2 \leq 50\right) = P\left(\frac{X_2 - 40}{4} \leq \frac{50 - 40}{4}\right) = \Phi(2.5) \\ \text{所以}P_2 > P_1 \\ (2) \ P_1' = P(X_1 \leq 45) = \Phi(1.5), \ P_2' = P\left(X_2 \leq 45\right) = \Phi(1.25), \\ \text{所以}P_1' > P_2' \end{array}$$

57.
$$X \sim N(170, 6^2)$$
,设门的最低高度为 x ,由 $P(X \ge x) = 1 - \Phi\left(\frac{x-170}{6}\right) \le 0.5\%$ 得 $x = 170 + u_{0.995}6 \approx 185.5$.

$$P(|X - \mu_1| < 1) = P(\frac{|X - \mu_1|}{\sigma_1} < \frac{1}{\sigma_1}) = 2\phi(\frac{1}{\sigma_1}) - 1$$
,同理有 $P(|X - \mu_2| < 1) = 2\phi(\frac{1}{\sigma_2}) - 1$,因为 $P(|X - \mu_1| < 1) > P(|X - \mu_2| < 1)$,所以有 $\sigma_2 > \sigma_1$.

$$\begin{array}{l} 2.P(Y=2) = P(Y=2|X=2) + P(Y=2|X=3) + P(Y=2|X=4) \\ = \frac{1}{4} \times \frac{1}{2} + \frac{1}{4} \times \frac{1}{3} + \frac{1}{4} \times \frac{1}{4} = \frac{13}{48} \end{array}$$

$$\begin{aligned} 4.X &= 0, 1, Y = 0, 1, 2 \\ P(X &= 0, Y = 0) &= \frac{\binom{3}{2}}{\binom{6}{2}} = \frac{1}{5} \\ P(X &= 0, Y = 1) &= \frac{\binom{3}{1}\binom{2}{1}}{\binom{6}{2}} = \frac{2}{5} \\ P(X &= 0, Y = 2) &= \frac{\binom{2}{2}}{\binom{6}{2}} = \frac{1}{15} \\ P(X &= 1, Y = 0) &= \frac{\binom{3}{1}\binom{1}{1}}{\binom{6}{2}} = \frac{1}{5} \\ P(X &= 1, Y = 1) &= \frac{\binom{2}{1}\binom{1}{1}}{\binom{6}{2}} = \frac{2}{15} \end{aligned}$$

6.由题意得
$$X \sim b(n, \frac{1}{2}), Y \sim b(n, \frac{1}{2}),$$

所以 $P(X_1 = k) = P(X_2 = k) = \frac{\binom{n}{k}}{2^n},$
 $P(X_1 = k, X_2 = n - k) = \frac{\binom{n}{k}}{2^n}.$

$$8.P(X_1 = 1, X_2 = 1) = 0,$$

$$P(X_1 = 1, X_2 = 0) = \frac{80}{100} = \frac{4}{5},$$

$$P(X_1 = 0, X_2 = 1) = \frac{10}{100} = \frac{1}{10},$$

$$P(X_1 = 0, X_2 = 0) = \frac{10}{100} = \frac{1}{10}.$$

11.(1)
$$X \sim Ge(p), Y \sim Nb(2,p), x = 1,2,..., y = 2,3,...,$$

因为 $P(Y = y|X = x) = P(Y - X = y - x|X = x) = P(Y - X = y - x) = (1-p)^{y-x-1}p,$
所以 $P(X = x, Y = y) = P(X = x)P(Y = y|X = x) = (1-p)^{x-1}p(1-p)^{y-x-1}p = (1-p)^{y-2}p^2$
(2) $P(X = x) = \sum_{y=x+1}^{\infty} P(X = x, Y = y) = p^2 \frac{(1-p)^{x-1}}{1-(1-p)} = p(1-p)^{x-1},$
 $x = 1,2,...$
 $P(Y = y) = \sum_{x=1}^{\infty} P(X = x, Y = y) = (y-1)p^2(1-p)^{y-2}, y = 2,3,...$

$$\begin{aligned} &22.\int\int f(x,y)dxdy = A\int e^{-x^2}(\int e^{-(y-x)^2}dy)dx = \sqrt{\pi}\int e^{-x^2}dx = A\pi = 1,\\ &\Re \mathbb{N}A = \frac{1}{\pi}.\\ &f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{e^{-2x^2+2xy-y^2}}{\sqrt{\pi}e^{-x^2}} = \frac{1}{\sqrt{\pi}}e^{-(x-y)^2},\ y \in R \end{aligned}$$

$$&26.(1).f_X(x) = \int_0^x f(x,y)dy = xe^{-x}, \quad x > 0\\ &f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{x},\ 0 < y < x\\ 0,\ other. \end{cases}$$

$$&(2).f_Y(y) = \int_y^y f(x,y)dx = e^{-y},\ y > 0\\ &P(X \le 1,Y \le 1) = \int_0^1 \int_0^x e^{-x}dydx = 1 - 2e^{-1}\\ &P(Y \le 1) = \int_0^1 e^{-y}dy = 1 - e^{-1}\\ &P(X \le 1|Y \le 1) = \frac{P(x \le 1,Y \le 1)}{P(Y \le 1)} = \frac{e^{-2}}{e^{-1}} \end{aligned}$$

$$&29.(1)f(x,y) = f_{Y|X}(y|x)f_X(x)\\ &\Re \mathbb{N}\mathcal{N}f(x,y) = \begin{cases} \frac{9y^2}{x},\ 0 < y < x < 1\\ 0,\ other. \end{cases}$$

$$&(2)f_Y(y) = \int_y^1 f(x,y)dx = \begin{cases} -9y^2lny,\ 0 < y < 1,\\ 0,\ other. \end{cases}$$

$$&30.(1)\ Y \mid X \sim U(0,X).\\ &f_{Y|X}(y\mid x) = \frac{1}{x},\ 0 < y < x\\ &f(x,y) = f_{Y|X}(y\mid x) \cdot f_X(x) = \frac{1}{x} \cdot xe^{-x} = e^{-x},\ 0 < y < x\\ &f(x,y) = \begin{cases} e^{-x},\ 0 < y < x\\ 0,\ other. \end{cases}$$

$$&0.\ other. \end{cases}$$

$$&(2).f_Y(y) = \int_y^\infty f(x,y)dx = \int_y^\infty e^{-x}dx = e^{-y},\ y > 0,$$

$$&\Re \mathbb{N}f \mathbb{N}f_Y(y) = \begin{cases} e^{-y},\ y > 0,\\ 0,\ other. \end{cases}$$

31.

$$P(Y = k) = \sum_{x} P(Y = k \mid X = x) P(X = x) = \sum_{x} \frac{x^{k}}{k!} e^{-x} [F(x) - F(x-)]$$

$$= \sum_{x} \frac{x^{k}}{k!} e^{-x} f(x) \cdot (x - x -) = \frac{1}{k!} \int_{0}^{\infty} x^{k} e^{-2x} dx$$

$$= \frac{1}{2^{k+1} k!} \int_{0}^{\infty} t^{k} e^{-t} dt = \frac{\Gamma(k+1)}{2^{k+1} k!} = \frac{1}{2^{k+1}}, \ k = 0, 1, 2, \dots$$

$$35.S = \frac{1}{2} \times 2 \times 1 = 1,$$
所以 $f(x,y) = \begin{cases} 1, \ 0 < y < x < 2 - y < 1, \\ 0, \ other. \end{cases}$

$$(1) \oplus 0 < x < \leq 1$$
时,有 $f_X(x) = \int_0^x f(x,y)dy = x,$
 $\oplus 1 < x \leq 2$ 时,有 $f_X(x) = \int_0^{2-x} = 2 - x$

$$\text{所以}f_X(x) = \begin{cases} x, \ 0 < x \leq 1, \\ 2 - x, \ 1 < x \leq 2, \\ 0, \ other. \end{cases}$$

$$(2) f_Y(y) = \int_y^{2-y} f(x,y)dx = 2 - y - y = 2 - 2y, \ 0 < y < 1,$$
所以 $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{1}{2-2y}, \ y < x < 2 - y, \\ 0, \ other. \end{cases}$

$$28.(1)$$
 $\int \int Ae^{-(3x+4y)} dx dy = \frac{A}{4} \int e^{-3x} dx = \frac{A}{12} = 1$ 所以 $A = 12$.

(2)因为f(x,y)可分离变量,所以X,Y相互独立。

$$37.S = 4 \times \frac{1}{2} \times 1 \times 1 = 2$$
所以 $f(x,y) = \begin{cases} \frac{1}{2}, & x, y \in \mathcal{S}, \\ 0, & other. \end{cases}$

$$(1) = -1 < x \le 0$$
时, $f_X(x) = \int_{-(1+x)}^{1+x} f(x,y) dy = 1 + x$

$$= 0 < x \le 1$$
时, $f_X(x) = \int_{x-1}^{1-x} f(x,y) dy = 1 - x$
所以 $f_X(x) = \begin{cases} 1 + x, & -1 < x \le 0, \\ 1 - x, & 0 < x \le 1, \\ 0, & other. \end{cases}$
由对称性可知 $f_Y(y) = \begin{cases} 1 + y, & -1 < y \le 0, \\ 1 - y, & 0 < y \le 1, \\ 0, & other. \end{cases}$

由对称性可知
$$f_Y(y) = \begin{cases} 1+y, & -1 < y \le 0, \\ 1-y, & 0 < y \le 1, \\ 0, & other. \end{cases}$$

(2)不独立。 因为 $f(x,y) \neq f_X(x)$

$$(3) f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

所以
$$f_{Y|X}(y|x) = \begin{cases} \frac{1}{2(1-x)}, & x-1 < y < 1-x, \\ 0, & other. \end{cases}$$

43.因为
$$X, Y$$
独立,所以有 $f(x, y) = \begin{cases} 4e^{-x-4y}, & x, y \ge 0, \\ 0, & other. \end{cases}$
所以 $P(X < Y) = \int_0^\infty \int_x^\infty 4e^{-x-4y} dy dx = \int_0^\infty e^{-5x} dx = \frac{1}{5}$

48.(1).
$$x = 1, 2, 3, \dots; Y = 3, 4, 5, 6$$

$$P(x = i, Y = j) = \frac{1}{6 \cdot 3^{i-1}}$$

(2)
$$P(x=i) = \frac{1}{3^{i-1}} \frac{2}{3} = \frac{2}{3^i}, P(Y=j) = \frac{1}{4}$$

因为
$$P(X = i, Y = j) = P(X = i)P(Y = j)$$
,所以 X, Y 相互独立。

$$55.(1)F_X(x) = F(x,\infty) = \begin{cases} 1 - (x+1)e^{-x}, & x > 0, \\ 0, & other. \end{cases}$$

$$F_Y(y) = F(\infty, y) = \begin{cases} \frac{y}{1+y}, & y > 0, \\ 0, & other. \end{cases}$$

$$F_Y(y) = F(\infty, y) = \begin{cases} \frac{y}{1+y}, & y > 0, \\ 0, & other. \end{cases}$$

$$(2) \forall F_X(x), F_Y(y)$$
 求导,有 $f_X(x) = \begin{cases} xe^{-x}, & x > 0, \\ 0, & other. \end{cases}$

$$f_Y(y) = \begin{cases} \frac{1}{(1+y)^2}, & y > 0, \\ 0, & other. \end{cases}$$

(3)因为 $f(x,y) = f_X(x)f_Y(y)$,所以独立。

$$57. f_X(x) = \int_0^{2\pi} \int_0^{2\pi} f(x, y, z) dy dz = \begin{cases} \frac{1}{2\pi}, & 0 < x < 2\pi, \\ 0, & other. \end{cases}$$

$$f(x, y) = \int_0^{2\pi} f(x, y, z) dz = \begin{cases} \frac{1}{4\pi^2}, & 0 < x, y < 2\pi, \\ 0, & other. \end{cases}$$

$$f(x,y) = \int_0^{2\pi} f(x,y,z)dz = \begin{cases} \frac{1}{4\pi^2}, & 0 < x, y < 2\pi, \\ 0, & other. \end{cases}$$

由对称性可知, $f_Y(y)$, $f_Z(z)$ 与 $f_X(x)$, f(x,z), f(y,z)与f(x,y)有相同的形 式, 因为 $f(x,y) = f_X(x)f_Y(y)$,

所以x, y相互独立,同理可得X, Y, Z两两独立。

因为 $f(x, y, z) \neq f_X(x)f_Y(y)f_Z(z)$, 所以X, Y, Z不相互独立。

ch9 7

在图9.16所示的网络中,除了边有容量外,s和t没有容量,而其余的顶点都有容量。 求此网络的最大流。

设d->t的容量为x

找到可增载轨道 s->a->b->t,增加载流2

找到可增载轨道 s -> e -> a -> b -> f -> t, 增加载流2

找到可增载轨道 s-> c-> f-> t,增加载流2

找到可增载轨道 s -> a -> d -> t, 增加载流min(x, 1)

找到可增载轨道 s -> e -> d -> t, 增加载流min(3, max(x - 1, 0))

最大流Val(f*) = 6 + min(4, x)

(也可以对x < 4, 4 <= x < 5, x >= 5的情况进行分类讨论)

ch9 11

在第2题中,若边上标的数字是容量下界,上界均为正无穷。求该网络的最小流函数。

任取一可行流如下

最小流为16

ch9 12

给定容量上有上下界的网络N的顶点子集V,记 $\alpha(V)$ 为D中头在V'中,尾在V(D) - V的边集合,记 $\beta(V)$ 为D中尾在V'中,头在V(D) - V的边集合。若 $\Sigma_{e\in\alpha(V')}c(e)-\Sigma_{e\in\beta(V')}b(e)<0$,则称V'冒出流;若 $\Sigma_{e\in\alpha(V')}c(e)-\Sigma_{e\in\beta(V')}b(e)>0$,则称V"漏掉流。证明:容量有上下界的网络没有可行流,当且仅当存在一个一个顶点子集 $V'\subseteq V(D)-\{s,t\}$,使得V"冒出流,

证明:

或者V漏掉流

充分性:

如果存在一个顶点子集 $V'\subseteq V(D)-\{s,t\}$ 使得需要V'冒出流,对于集合V'来说, $\Sigma_{e\in\alpha(V')}c(e)-\Sigma_{e\in\beta(V')}b(e)<0$,假设所有流向V'的边都满载,由于容量有上下界,所以 V'流出的流量至少是 $\Sigma_{e\in\beta(V')}b(e)$,则V'无法满足流入=流出,故原网络没有可行流。

如果存在一个顶点子集 $V'\subseteq V(D)-\{s,t\}$ 使得需要V漏掉流,对于集合V来说, $\Sigma_{e\in\alpha(V')}c(e)-\Sigma_{e\in\beta(V')}b(e)>0$,假设所有V流出的边都满载,由于容量有上下界,所以流入的流量至多是 $\Sigma_{e\in\alpha(V')}c(e)$,则V无法满足流入=流出,故原网络没有可行流。

必要性:

若N有可行流,则其伴随网络N'有最大流f,f'(e) + b(e) 是N的一个可行流。故对任意 $V' \subseteq V(D) - \{s,t\}$,均有 $\Sigma_{e \in \alpha(V')} c(e) - \Sigma_{e \in \beta(V')} b(e) \ge \Sigma_{e \in \beta(V')} f'(e) \ge 0$,故不需 V'冒出流。同理可得不需V'漏掉流。

ch10 1

给出图10.25中图G的一棵生成树T,求出G关于T的一组基本圈组和圈空间的所有向量,并给出图示

基本圈组

- {e1, e2, e3}
- {e3, e4, e5}
- {e4, e6, e7}
- {e3, e4, e7, e8}

圈空间的所有向量

- (0, 0, 0, 0, 0, 0, 0, 0)
- (0, 0, 0, 0, 1, 0, 1, 1)
- (0, 0, 0, 1, 0, 1, 1, 0)
- (0, 0, 0, 1, 1, 1, 0, 1)
- (0, 0, 1, 0, 0, 1, 0, 1)
- (0, 0, 1, 0, 1, 1, 1, 0)
- (0,0,1,1,0,0,1,1)
- (0,0,1,1,1,0,0,0)
- $(1,\,1,\,0,\,0,\,0,\,1,\,0,\,1)$
- (1, 1, 0, 0, 1, 1, 1, 0)
- (1, 1, 0, 1, 0, 0, 1, 1)
- (1, 1, 0, 1, 1, 0, 0, 0)
- (1, 1, 1, 0, 0, 0, 0, 0)

(1, 1, 1, 0, 1, 0, 1, 1)

(1, 1, 1, 1, 0, 1, 1, 0)

(1, 1, 1, 1, 1, 1, 0, 1)

图示略

ch104

证明: G是欧拉图, 当且仅当任给 $S \in S(G)$, S中非零分量有偶数个

充分性:

对任给 $S \in S(G)$,S中非零分量有偶数个,说明对断集中任意顶点v的度数为偶数,故G为欧拉图

必要性:

对 ∀ V' ⊂ V, V'' = V - V', 且V' 和 V'' 均不为空

设V 中有 e 条边,则断集中的边数为 $\sum_{v \in V'} deg(v) - 2e$

已知欧拉图中每一个顶点的度数为偶数,故断集中的边数为偶数

故对任意 $S \in S(G)$, S中非零分量有偶数个

$$23.P(Y \le y) = P(X_1 \le y, ..., X_n \le y) = (\int_0^y \frac{1}{\theta} dx)^n = (\frac{y}{\theta})^n, \ y \in (0, \theta)$$

$$P(Z \le z) = 1 - P(X_1 > z, ..., X_n > z) = 1 - (\int_z^\theta \frac{1}{\theta} dx)^n = 1 - (1 - \frac{z}{\theta})^n,$$

$$z \in (0, \theta)$$
令 $T = \theta - Y$,则
$$P(T \le t) = P(Y \ge \theta - t) = \int_{\theta - t}^\theta \frac{n}{\theta^n} y^{n-1} dy = 1 - (1 - \frac{t}{\theta})^n, \ t \in (0, \theta)$$
得证。

24.

$$\begin{split} P(Y_1 \leq u, Y_2 \leq v) = & P(\min(X_1, X_2) \leq u, \max(X_1, X_2) - \min(X_1, X_2) \leq v) \\ = & P(X_1 \leq u, X_2 \leq X_1 + v | X_1 \leq X_2) P(X_1 \leq X_2) \\ + & P(X_2 \leq u, X_1 \leq X_1 + v | X_2 \leq X_1) P(X_2 \leq X_1) \\ = & 2P(X_1 \leq u, X_1 \leq X_2 \leq X_1 + v) \\ = & 2 \int_0^u \int_{x_1}^{x_1 + v} e^{-(x_1 + x_2)} dx_1 dx_2 \\ = & (1 - e^{-2u})(1 - e^{-v}), \ u, v > 0 \end{split}$$

$$\begin{split} &P(Y_1 \leq u) = P(Y_1 \leq u, Y_2 \leq \infty) = 1 - e^{-2u}, \ u > 0 \\ &\boxed{ 同理可得} P(Y_2 \leq v) = 1 - e^{-v}, \ v > 0, \\ &\boxed{ 有P(Y_1 \leq u, Y_2 \leq v) = P(Y_1 \leq u) P(Y_2 \leq v), \ \ \text{所以} Y_1, \ Y_2$$
相互独立。 又因为 $P(\frac{X_1}{2} \leq k) = P(X_1 \leq 2k) = 1 - e^{-2k}, \ k > 0 \\ \\ &\textmd{得证} \end{split}$

$$56.(1)f_{X,Y}(x,y) = f_X(x)f_Y(y) = \begin{cases} \frac{1}{2}e^{-\frac{y}{2}}, & 0 < x < 1, \ y > 0 \\ 0, & other. \end{cases}$$

(2)因为 $a^2 + 2aX + Y = 0$ 有解,所以 $\Delta = 4X^2 - 4Y \ge 0$,所以 $X^2 \ge Y$.

$$P(X^{2} \ge Y) = \int_{0}^{1} \int_{0}^{x^{2}} f_{X,Y}(x,y) dx dy = \int_{0}^{1} (1 - e^{-\frac{x^{2}}{2}}) dx$$
$$= 1 - \sqrt{2\pi} (\Phi(1) - \Phi(0)) \approx 0.1446$$

$$2.X = 4, 5, 6, 7$$
,所以

$$(1)P(X=4) = 2 \cdot \left(\frac{1}{2}\right)^4 = \frac{1}{8}, \ P(x=5) = 2 \cdot C_4^1 \cdot \left(\frac{1}{2}\right)^5 = \frac{1}{4}$$

$$P(X=6) = 2 \cdot C_5^2 \cdot \left(\frac{1}{2}\right)^6 = \frac{5}{16}, \ P(x=7) = 2 \cdot C_6^3 \cdot \left(\frac{1}{2}\right)^7 = \frac{5}{16}$$

$$EX = \sum_{x=4}^7 P(X=x) = \frac{93}{16} \approx 5.8$$

$$(2)p = 0.6$$
时

$$P(X = 4) = 0.6^{4} + 0.4^{4}, \ P(X = 5) = C_{4}^{1} \cdot 0.6^{4} \cdot 0.4 + C_{4}^{1} \cdot 0.4^{4} \cdot 0.6$$

$$P(X = 6) = C_{5}^{2} \cdot 0.6^{4} \cdot 0.4^{2} + C_{5}^{2} \cdot 0.6^{2} \cdot 0.4^{4}$$

$$P(X = 7) = C_{6}^{3} \cdot 0.6^{4} \cdot 0.4^{3} + C_{6}^{3} \cdot 0.6^{3} \cdot 0.4^{4}$$

$$EX = \sum_{r=4}^{7} xP(X = x) = \frac{17804}{3125} \approx 5.7$$

6.X的密度函数为 $f(x) = 0.5 \cdot \psi(x) + 0.25 \cdot \psi(\frac{x-4}{2})$,则

$$EX = \int x f(x) dx = 0.5 \int x \psi(x) dx + 0.25 \int x \psi\left(\frac{x-4}{2}\right) dx$$
$$= 0.25 \int (2y+4)\psi(y) d(2y+4)$$
$$= 0.5 \int 2y \psi(y) dy + 0.5 \int 4\psi(y) dy = 2$$

$$18.(1)$$
记 $X_i = \begin{cases} 1, 第i个盒子为空 \\ 0, 第i个盒非空. \end{cases}$, $i = 1, ..., n$

则空盒子总数为 $Y = \sum_{i=1}^{n} X_i$,因为 $P(X_i = 1) = (1 - \frac{1}{n})^n$

所以
$$Y \sim b(n, (1-\frac{1}{n})^n), EY = n(1-\frac{1}{n})^n$$

(2). $n \to \infty$ 时,

$$\lim_{n\to\infty}\frac{n\left(1-\frac{1}{n}\right)^n}{n}=\lim_{n\to\infty}\left(1-\frac{1}{n}\right)^n=\lim_{n\to\infty}\left(1-\frac{1}{n}\right)^{-n\cdot(-1)}=e^{-1}$$

19.X = n, n+1, ...,记 Y_j 为抽到i-1种卡后,抽到新卡所需的次数,则 $X_n = \sum_{j=1}^n Y_j, \ P(Y_j = k) = \frac{n-j+1}{n} \cdot (\frac{j-1}{n})^{k-1}$

$$EY_j = \frac{n-j+1}{n} \sum_{k=1}^{\infty} k \left(\frac{j-1}{n}\right)^{k-1} = \frac{n-j+1}{n} \cdot \frac{n^2}{(n-j+1)^2} = \frac{n}{n-j+1}$$

所以
$$EX_n = E\sum_{j=1}^n Y_j = \sum_{j=1}^n EY_j = \sum_{j=1}^n \frac{n}{n-j+1} = \sum_{k=1}^n \frac{n}{k}$$

$$(1)n = 12$$
 时, $EX_n = \sum_{k=1}^n \frac{n}{k} = 12 \sum_{k=1}^{12} \frac{1}{k} \approx 37.24$

(2)
$$\lim_{n \to \infty} \frac{EX_n}{n \ln n} = \lim_{n \to \infty} \frac{n \sum_{k=1}^{n} \frac{1}{k}}{n \ln n} = \lim_{n \to \infty} \frac{\ln n + \gamma + \frac{1}{2n}}{\ln n} = 1$$

$$20.记X_i = \begin{cases} 1, \text{第i & i e } \\ 0, \text{第i e } \\ 0, \text{第i e } \end{cases}, i = 1, ..., n$$

$$\stackrel{\underline{\,}}{=} P(X_i = 1) = \frac{a}{a+b}$$
时,

$$P(X_{i+1} = 1) = P(X_i = 0) \frac{a}{a+b+1} + P(X_i = 1) \frac{a+1}{a+b+1} = \frac{a}{a+b}$$

所以
$$P(X_i = 1) = \frac{a}{a+b}, EX_i = \frac{a}{a+b}, \forall i = 1, 2, ..., n$$

所以
$$EW_n = \sum_{i=1}^n EX_i = \frac{na}{a+b}$$

26.

$$EY = \int_{1}^{2} e^{x} 2(x-1) dx = 2 \int_{1}^{2} x e^{x} dx - 2 \int_{1}^{2} e^{x} dx = 2x e^{x} |_{1}^{2} - e^{x} |_{1}^{2} - 2e^{x} |_{1}^{2}$$
$$= 4e^{2} - 2e - 2e^{2} + 2e - 2e^{2} + 2e = 2e$$

$$EZ = \int_{1}^{2} \frac{2(x-1)}{x} dx = \int_{1}^{2} (2 - \frac{2}{x}) dx = 2 - 2\ln 2$$

31.

$$\begin{split} E[\min\{|X|,1\}] &= \int_{|x|>1} f(x) dx + \int_{|x|\leq 1} x \cdot f(x) dx \\ &= 2 \int_{1}^{\infty} \frac{1}{\pi (1+x^2)} dx + \int_{-1}^{1} \frac{x}{\pi (1+x^2)} dx \\ &= \frac{2 \arctan x}{\pi} \bigg|_{1}^{\infty} + \int_{-1}^{1} \frac{d (1+x^2)}{2\pi (1+x^2)} = \frac{1}{2} + \frac{1}{2\pi} \ln \left(1+x^2\right) \bigg|_{-1}^{1} \\ &= \frac{1}{2} + \frac{\ln 2}{\pi} \end{split}$$

$$32.(1)$$
当 $X = 1$ 时, $Y \in (0,1)$,当 $X = 2$ 时, $Y \in (0,2)$,所以

$$\begin{split} P(Y < y) &= P(x = 1) \cdot P(Y < y \mid x = 1) + P(x = 2)P(Y < y \mid x = 2) \\ &= \frac{1}{2} \int_0^y du + \frac{1}{2} \int_0^y \frac{1}{2} du = \frac{3}{4} y \quad (0 < y < 1) \end{split}$$

$$\begin{split} P(Y < y) &= P(Y < 1) + P(X = 2)P(1 \le Y < 2) \\ &= \frac{3}{4} + \frac{1}{2} \int_{1}^{y} \frac{1}{2} du = \frac{1}{2} + \frac{1}{4} y \quad (1 \le y < 2) \end{split}$$

所以
$$F_Y(y) = \begin{cases} 0, & y < 0 \\ \frac{3}{4}y, & 0 \le y < 1 \\ \frac{1}{2} + \frac{1}{4}y, & 1 \le y < 2 \\ 1, & y \ge 2 \end{cases}$$

$$(2)EY = \int y dF(y) = \int_0^1 \frac{3}{4} y dy + \int_1^2 \frac{y}{4} dy = \frac{3}{4}$$

$$1.\overline{X} = rac{53 imes 1 + 16 imes 2 + 21 imes 3}{100} = 1.48,$$
 $EX = 2\theta(1-\theta) + 2\theta^2 + 3(1-2\theta) = 3-4\theta$,所以 $\theta = rac{3-EX}{4}$,所以 $\theta = rac{3-\overline{X}}{4} = 0.38$

$$3(1)EX = \frac{1}{\theta}(\frac{\theta-1}{2} \times \theta) = \frac{\theta-1}{2}$$
,所以 $\theta = 2EX + 1$,所以 $\hat{\theta} = 2\overline{X} + 1$

(2)

$$\begin{split} EX &= \sum_{x=2}^{\infty} x(x-1)\theta^2 (1-\theta)^{x-2} = \theta^2 (\sum_{x=2}^{\infty} x(x-1)(1-\theta)^{x-2}) \\ &= \theta^2 (\sum_{x=2}^{\infty} -x(1-\theta)^{x-1})' = \theta^2 (\sum_{x=2}^{\infty} (1-\theta))'' = \theta^2 (\frac{(1-\theta)^2}{1-(1-\theta)}) \\ &= \theta^2 (\frac{1}{\theta})'' = \theta^2 (\frac{2}{\theta^3}) = \frac{2}{\theta} \end{split}$$

所以
$$\theta = \frac{2}{EX}$$
,有 $\hat{\theta} = \frac{2}{X}$

$$\begin{array}{l} 4.(2)EX = \int_{0}^{1}x(\theta+1)x^{\theta}dx = \int_{0}^{1}(\theta+1)x^{\theta+1} = \frac{\theta+1}{\theta+2}x^{\theta+2}|_{0}^{1} = 1 - \frac{1}{\theta+1} \\ \text{所以}\theta = \frac{1}{1-EX} - 2, \ \text{所以}\widehat{\theta} = \frac{1}{1-\overline{X}} = \frac{2\overline{X}-1}{1-\overline{X}} \\ (4)EX = \int_{c}^{\infty}x\theta c^{\theta}x^{-(\theta+1)}dx = \int_{c}^{\infty}\theta c^{\theta}x^{-\theta}dx = \frac{\theta c^{\theta}}{-\theta+1}x^{-\theta+1}|_{c}^{\infty} = \frac{\theta c}{\theta-1} \\ \text{所以}\theta = \frac{EX}{EX-c}, \ \text{所以}\widehat{\theta} = \frac{\overline{X}}{\overline{X}-c} \\ (6)EX = \int_{0}^{\infty}x\frac{\theta^{2}}{x^{3}}e^{-\frac{\theta}{x}}dx = \int_{0}^{\infty}\frac{\theta^{2}}{x^{2}}e^{-\frac{\theta}{x}} = \theta e^{-\frac{\theta}{x}}|_{0}^{\infty} = \theta \\ \text{所以}\widehat{\theta} = \overline{X} \end{array}$$

$$\begin{split} 7.(1)P(X=0) &= \frac{\lambda^0}{0!}e^{-\lambda} = e^{-\lambda}, \ \, \coprod L(\lambda) = \prod_{i=1}^n P(X_i=x_i) = e^{-n\lambda} \frac{\sum\limits_{\lambda i=1}^n x_i}{\prod\limits_{i=1}^n x_i!} \\ &\bar{\eta} \ln L(\lambda) = -n\lambda + \sum\limits_{i=1}^n x_i \ln \lambda + C, \ \, \underline{\mathsf{X}} + C \mathbb{E} - \Lambda = \lambda \times \mathbb{E} \\ &\hat{\eta} \otimes \mathbb{E} \\ &$$

9.设
$$n_i$$
为 x 取值为 i 的次数,则有 $n = n_0 + n_1 + n_2 + n_3$,
$$L(\theta) = \theta^{2n_0} (2\theta(1-\theta))^{n_1} \theta^{2n_2} (1-2\theta)^{n_3} = 2^{n_1} \theta^{2n-n_1-2n_3} (1-\theta)^{n_1} (1-2\theta)^{n_3},$$

令
$$\frac{\partial lnL(\theta)}{\partial \theta}=0$$
,利用求根公式有 $\hat{\theta} \approx 0.38$

 $64.(1)X_i$ 表示学生的身高,i=1,2,...,18,男孩的人数为 n_1 ,女孩的人数 为 n_2 , 当 σ 未知时, 有 $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim \chi^2(n-1)$,

所以置信区间为[$\bar{X} - t_{0.025}(n-1)\frac{S}{\sqrt{n}}$, $\bar{X} + t_{0.025}(n-1)\frac{S}{\sqrt{n}}$], 查表得[119.80, 124.54]

- $(2)Y_i$ 表示男孩的身高,i=1,2,...,8,则 $\frac{\bar{Y}-\mu_y}{S_y/\sqrt{n_1}}\sim \chi^2(n_1-1)$, 所以置信区间为 $[\bar{Y}-t_{0.025}(n_1-1)\frac{S_y}{\sqrt{n_1}}, \bar{Y}+t_{0.025}(n_1-1)\frac{S_y}{\sqrt{n_1}}]$ 有[118.69, 127.53]
- (3)同理可得女孩身高得置信区间为[118.43, 124.01]

67.(1)设更换策略前的销量为 X_{1i} ,更换策略后的销量为 X_{2i} ,i=1,2,...,11 $\mathbb{N}\frac{\bar{X}_1-\mu_1}{S_1/\sqrt{n_1}}\sim t(n_1-1),$

所以置信区间为[$\bar{X} - \frac{S_1}{\sqrt{n_1}} t_{0.025}(n_1 - 1), \ \bar{X} + \frac{S_1}{\sqrt{n_1}} t_{0.025}(n_1 - 1)], \$ 得[71.21, 110.79]

(2)同理可得置信区间[72.41, 114.77]

$$(3)$$
令 $d_i = X_{2i} - X_{1i}$,则 $\frac{\bar{d}-\mu}{S_d/\sqrt{n}} \sim t(n-1)$,所以置信区间为[-10.00, 4.80]

$$72.(1)\mu$$
已知时,有 $\frac{X_i-\mu}{\sigma}\sim N(0,1)$,所以 $\sum_{i=1}^n rac{(X_i-\mu)^2}{\sigma^2}\sim \chi^2(n)$,

置信区间为[
$$\frac{\sum\limits_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n)}, \frac{\sum\limits_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n)}$$
]

 $\alpha = 0.05$ 时,置信区间为[60.92, 384.28]

 $\alpha = 0.1$ 时,置信区间为[68.16, 316.69]

$$(2)\mu$$
未知时,有 $\frac{(n-1)S^2}{\sigma^2}$ $\sim \chi^2(n-1)$,置信区间为 $[\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2}}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2}}(n-1)}]$.

置信区间为[
$$\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2}}(n-1)}$$
, $\frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2}}(n-1)}$].

 $\alpha = 0.05$ 时,置信区间为[65.46, 461.21]

 $\alpha = 0.1$ 时,置信区间为[73.60, 374.51]

$$84.\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t(n-1), \implies P(\mu \geq \bar{X} - \frac{S}{\sqrt{n}}t_{\alpha}(n-1)) = 1 - \alpha$$
,置信下限为 $\bar{X} - \frac{S}{\sqrt{n}}t_{\alpha}(n-1)$,带入具体值,有

- (1)120.21
- (2)119.54
- (3)118.97

$$86.(1)P(\mu \ge \bar{X} - \frac{S}{\sqrt{n}}t_{\alpha}(n-1)) = 1 - \alpha$$

所以置信下限为1593.4262. $(2)P(\sigma^2 \leq \frac{(n-1)S^2}{\chi^2_{1-\alpha}(n-1)}) = 1-\alpha$ 置信上限为464.8120.

 $13.(1)H_0: \mu = 7 \leftrightarrow H_1: \mu \neq 7$,因为方差已知且 $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$,所以拒绝域为 $\{|\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}| \geq u_{\frac{\alpha}{2}}\}$,查表得 $u_{\frac{0.025}{2}} = 1.96$,又因为 $|\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}| = 1.739 < 1.96$ 未落入拒绝域内,所以接受原假设。 $(2)H_0: \mu \geq 7 \leftrightarrow H_1: \mu < 7$,拒绝域为 $\{\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \leq u_{1-\alpha}\}$,查表得 $u_{0.95} = -1.645$,所以 $\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}} = -1.739 < -1.645$ 落在拒绝域内,所以拒绝原假设。 $(3)H_0: \mu \leq 7 \leftrightarrow H_1: \mu > 7$,

拒绝域为 $\{\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \geq u_{\alpha}\}$,查表得 $u_{0.05}=1.645$, 又因为 $\frac{\bar{X}-\mu_{0}}{\sigma/\sqrt{n}}=2.2136>1.645$ 落在拒绝域内,所以拒绝原假设。

 $19.H_0: \mu = 87 \leftrightarrow H_1: \mu \neq 87$,方差未知时,有 $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$,所以拒绝域为 $\{|\frac{\bar{X}-\mu}{S/\sqrt{n}}| \geq t_{\frac{\alpha}{2}}(n-1)\}$,查表得 $t_{0.025}(24) = 2.064$,因为 $|\frac{\bar{X}-\mu_0}{S/\sqrt{n}}| = 3.125 > 2.064$ 落在拒绝域内,所以不能认为平均成绩为87分。

 $20.H_0: \mu=105.2 \leftrightarrow H_1: \mu \neq 105.2$,拒绝域为 $\{|\frac{\bar{X}-\mu}{S/\sqrt{n}}| \geq t_{\frac{\alpha}{2}}(n-1)\}$,查表得 $t_{0.025}(7)=2.365$,因为 $|\frac{\bar{X}-\mu_0}{S/\sqrt{n}}|=0.01750<2.365$ 未落入拒绝域内,所以接受原假设。

 $24.H_0: \mu \leq 19 \leftrightarrow H_1: \mu > 19$,拒绝域为 $\{\frac{\bar{X}-\mu}{S/\sqrt{n}} \geq t_{\alpha}(n-1)\}$,查表得 $t_{0.01}(15) = 2.602$,因为 $\frac{\bar{X}-\mu_0}{S/\sqrt{n}} = 4.4538 > 2.602$ 落入拒绝域内,所以可以认为新工艺的维生素含量有所提高。

 $25.H_0: \mu=5 \leftrightarrow H_1: \mu\neq 5$,拒绝域为 $\{|\frac{\bar{X}-\mu}{S/\sqrt{n}}| \geq t_{\frac{\alpha}{2}}(n-1)\}$,查表得 $t_{0.025}(9)=2.262,\ t_{0.005}(9)=3.250$,因为 $\frac{\bar{X}-\mu_0}{S/\sqrt{n}}=3.1623$,所以当 $\alpha=0.05$ 时,有3.1623>2.262,此时 $\frac{\bar{X}-\mu_0}{S/\sqrt{n}}$ 落入拒绝域内, H_1 成立,机器的工作不良好。

当 $\alpha=0.01$ 时,有3.1623<3.250,此时 $\frac{\bar{X}-\mu_0}{S/\sqrt{n}}$ 未落入拒绝域内,接受原假设,机器的工作良好。

中国科学技术大学

2017—2018学年第一学期考试试卷

得分

考试科目 概率论与数理统计(B)

	所在系	姓名	学号	
	考试时间	: 2018年1月10日上午8:	30-10:30; 使用简单	计算器
. (30	分, 每小题3分) 填空	空题或单选题, 答案	可以直接写在试卷	法上.
(1)		目互独立, A 和 C 相互 $1/4$, 则 $P(C) =$	·	斥. 若 $P(A) = P(B) = 1/2$,
(2)	一只蚂蚁从等边三	ABC的顶点	— A出发开始沿着b	也爬行,设它每次爬行到一
	个坝点后, 会休憩, 为	片刻再随机选择一刻	条辺继续爬行,则	第n次爬行是往A爬的概率
(3)	设连续型随机变量 则 $P(X < 0) = ($		梼足 $f(1+x) = f($	$(1-x)$, $\coprod \int_0^2 f(x) dx = 0.4$,
(4)		B (C) 0.4 (I		¹), 其中Φ(x)为标准正态分
	布函数,则X的数等	学期望E <i>X</i> =	·	
(5)		相互独立, <i>X</i> 的概率 oisson分布. 若记Z :		= P(X = -1) = 1/2, Y服 Z) =
(6)	设将1米长的木棒队则X与Y的相关系统		一段的长度记为X	7,另一段长度的1/3记为Y,
(7)	(A) 1 (B) -1	(C) -1/3 (有机样末 刚玉别纮计鲁山
(1)	服从F分布的是()		恒机样本,则下列统计量中 $\frac{2}{3} + X^2$ (2) $\frac{2}{3} + X^2 + X^2 + X^2$
(8)				$\frac{2+X_3^2}{1+\cdots+X_9^2}$ (D) $\frac{2(X_1^2+X_2^2+X_3^2)}{X_4^2+X_5^2+\cdots+X_9^2}$ 以 \overline{X} 和 S^2 分别表示样本均值
		$Var(X) = \sigma^2$,则() 计量 (B) S 是 σ F		<u>.</u> 1
(0)	(C) S 与 \overline{X} 相互独立	(D) 以上均	9不对	
	知参数µ的置信度	为0.95的置信区间为		x , 其样本均值 $\overline{X} = 5$, 则未 (保留到小数点后三位).
(10)		是来自正态总体 $N(\mu)$ $H_1: \mu \neq \mu_0, 其中_{\mu}$		值机样本,据此样本做假设 数,则()
	` /		•	$\overline{Z}_{\alpha} = 0.01$ 下必接受 H_0 $\overline{Z}_{\alpha} = 0.01$ 下必接受 H_0
	` '			$\mathbf{z}_{\alpha} = 0.01$ 下必拒绝 H_0

(D) 如果在检验水平 $\alpha = 0.05$ 下拒绝 H_0 ,那么在检验水平 $\alpha = 0.01$ 下必拒绝 H_0

二. (16分)设二维随机向量(X,Y)的联合密度函数为

$$f(x,y) = Ce^{-2x^2 + 2xy - y^2}, \quad -\infty < x, y < \infty.$$

- (1) 求常数C的值;
- (2) 在X = x的条件下, 求Y的条件密度 $f_{Y|X}(y|x)$.
- 三. (16分)设二维随机向量(X,Y)服从二元正态分布 $N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)$,其中 $\mu_1=\mu_2=1$, $\sigma_1^2=\sigma_2^2=0.5$, $\rho=0.5$. 记

$$Z = |X - Y|$$
, $U = \max(X, Y)$, $V = \min(X, Y)$.

- (1) 求Z的密度函数 $f_Z(z)$;
- (2) 求数学期望E(U+V);
- (3) 分别求数学期望EU和EV.
- 四. (18分)设总体X的密度函数为

$$f(x) = \frac{2x}{a^2}, \quad 0 \le x \le a,$$

其中a > 0为未知参数, 而 X_1, X_2, \dots, X_n 是来自该总体的一组简单随机样本.

- (2) 求 $p = P(0 < X < \sqrt{a})$ 的极大似然估计量 \hat{p} ;
- (3) 问 \hat{a}_1 和 \hat{a}_2 是否为无偏估计? 若是, 请证明你的结论; 若不是, 请修正之.
- **五.** (10分) 为了检验某种体育锻炼对减肥的效果, 随机抽取了10名减肥者进行测试. 在进行体育锻炼前后这些减肥者的体重(单位:千克)数据列表如下, 问该体育锻炼方法对降低体重是否具有显著性(设人的体重服从正态分布, 取显著性水平α=0.05)?

锻炼前体重	70	65	67	58	69	72	74	61	63	67
锻炼后体重	68	60	68	58	67	70	70	60	60	65

六. (10分)上海证券综合指数简称"上证指数", 反映了上海证券交易所上市股票价格的变动情况. 自上证指数诞生的二十七年(1991年1月至2017年12月)以来, 所有月份上涨或下跌的情况如下:

	月份	_		三	四	五.	六	七	八	九	十	+-	十二
	上涨月数	14	21	16	15	14	14	13	15	11	13	18	13
Ì	下跌月数	13	6	11	12	13	13	14	12	16	14	9	14

结合你所学的知识, 我们能否认为上证指数的涨跌与月份有关?

附录: 上分位数表

 $u_{0.025} = 1.96, u_{0.05} = 1.645;$

 $t_8(0.025) = 2.306, t_8(0.05) = 1.86, t_9(0.025) = 2.262, t_9(0.05) = 1.833;$

 $\chi_{11}^2(0.05) = 19.675.$

参考答案

一. (每小题3分)

$$\frac{1}{4}$$
; $\frac{1}{3}[1-(-\frac{1}{2})^{n-1}]$; B; 2; λ ; B; D; C; [4.412, 5.588]; A.

二. (1) (8分)由

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-2x^2 + 2xy - y^2} dx dy = \int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-(x-y)^2} dy = \pi$$

可知 $C = \frac{1}{\pi}$;

(2) (8分) 由于X的边缘密度函数为

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \frac{1}{\sqrt{\pi}} e^{-x^2},$$

从而,

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{1}{\sqrt{\pi}} e^{-(x-y)^2}, \quad -\infty < y < \infty.$$

 Ξ . (1) (6分) 由E(X - Y) = 0,

$$Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y)$$

= $0.5 + 0.5 - 2 \times 0.25 = 0.5$,

及二元正态分布的性质可知 $X - Y \sim N(0, 0.5)$,从而Z = |X - Y|的密度函数为

$$f_Z(z) = \frac{2}{\sqrt{\pi}} e^{-z^2}, \quad z > 0.$$

- (2) (4分) 易知, E(U+V) = E(X+Y) = 2.
- (3) (6分) 由E $U EV = EZ = \frac{1}{\sqrt{\pi}}$,可知E $U = 1 + \frac{1}{2\sqrt{\pi}}$,E $V = 1 \frac{1}{2\sqrt{\pi}}$.

四. (1) (6分) 矩估计量 $\hat{a}_1 = \frac{3}{2}\overline{X}$, 极大似然估计量 $\hat{a}_2 = X_{(n)}$;

- (2) (4分) 由 $p = \frac{1}{a}$ 知其极大似然估计量为 $\hat{p} = 1/X_{(n)}$;
- (3) (8分) 矩估计 \hat{a}_1 是无偏的, 因 $E(\hat{a}_1) = \frac{3}{2}E(\overline{X}) = \frac{3}{2}E(X) = a$; 而由 $X_{(n)}$ 的密度函数为

$$h(x) = n[F(x)]^{n-1}f(x) = \frac{2n}{a^{2n}}x^{2n-1}, \quad 0 < x < a,$$

知 $E(\hat{a}_2) = \frac{2n}{2n+1}a$. 故 \hat{a}_2 不是无偏估计,可修正为 $\hat{a}_2^* = \frac{2n+1}{2n}X_{(n)}$.

五. (10分) 成对数据. 首先可算得相减之后, 有 $\overline{X} = 2, S^2 = 28/9$. 故由

$$t = \frac{\sqrt{nX}}{S} = 3.59 > t_9(0.05) = 1.833,$$

可拒绝原假设(H_0 : 锻炼前后体重无显著变化), 即认为该体育锻炼方法对降低体重具有显著性.

六. (10分) 列联表齐一性检验. 两行的和分别为177和147, 每列之和均为27. 由此可算得 χ^2 统计量的值为11.394 $<\chi^2_{11}(0.05) = 19.675$, 故可认为"无充分证据表明上证指数的涨跌与月份有关"或"上证指数的涨跌与月份无关".

3

中国科学技术大学

2018—2019学年第一学期考试试卷

考试科目 概率论与数理统计(B)

一、 (30分,

	所在系	_ 姓名	学 写	号	
	考试时间:	2019 年1月9日上午	8:30-10:30; 使月	用简单计算器	
(30	分, 每小题3分) 填空	题或单选题, 答 题	案可以直接写在	生试卷上.	
(1)	已知 10 台洗衣机中 随机抽取 2 台后发现				
(2)	设随机变量 X 的概率	率密度 $f(x) = A$	$e^{-x^2+x}, -\infty <$	$x < \infty$, 则常数 $x < \infty$	$4 = \underline{\hspace{1cm}}.$
(3)	设随机变量 X 与 Y	相互独立, 且它位	门的取值范围约	分别是 {1,2} 和 {	1,2,3}. 己知
	P(Y=1) =	$= \frac{1}{6}, P(X = 1,$	Y = 2) = P(Y	$X = 1, X = 2) = \frac{1}{8}$,

得分

- 则 P(Y=3)=(4) 设随机变向量 (X,Y) 的分布函数为 $\Phi(2x)\Phi(y-1)$, 其中 $\Phi(x)$ 为标准正态分布函 数, 则 (X,Y) 服从二元正态分布 (\quad)
 - (A) $N(0,1;\frac{1}{4},1;0)$ (B) $N(0,-1;\frac{1}{4},1;0)$ (C) N(0,1;4,1;0) (D) N(0,-1;4,1;0)
- (5) 设随机变量 X 与 Y 相互独立, 且 X 服从参数为 2 的泊松分布, Y 服从区间 [-3, 3] 上的均匀分布, 则它们的乘积的方差 Var(XY) =_____
- (6) 设 X_1, X_2, X_3, X_4 是来自标准正态总体的简单随机样本, a > 0为某个常数. 若已知

$$Y = a\left(\frac{1}{2}X_1^2 + \frac{1}{2}X_2^2 + \frac{1}{2}X_3^2 + \frac{1}{2}X_4^2 + X_1X_2 + X_3X_4\right)$$

服从 χ_n^2 分布, 则 n + a =_____

- (7) 已知随机变量 X 服从 $F_{3,4}$ 分布. 设对给定的 $\alpha(0 < \alpha < 1)$, 实数 $F_{3,4}(\alpha)$ 满足 $P(X > F_{3,4}(\alpha)) = \alpha$. 若有 $P(X \le x) = 1 - \alpha$, 则 x 等于() (A) $\frac{1}{F_{4,3}(1-\alpha)}$ (B) $\frac{1}{F_{3,4}(1-\alpha)}$ (C) $F_{4,3}(\alpha)$ (D) $F_{4,3}(1-\alpha)$
- (8) 设 X_1, X_2, \dots, X_n 是来自均匀总体 $U[-\theta, \theta]$ 的简单随机样本, 则参数 θ 的极大似 然估计量 $\hat{\theta}$ 为()
 - (B) $\max_{1 \le i \le n} |X_i|$ (C) $-\min_{1 \le i \le n} X_i$ (D) $-\min_{1 \le i \le n} |X_i|$ $(A) \max_{1 \le i \le n} X_i$
- (9) 设 X_1, X_2, \dots, X_n (n > 2) 是来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本, 且 \overline{X} 为样 本均值. 若统计量 $T = c(X_1 + X_n - 2\overline{X})^2$ 为 σ^2 的无偏估计, 则常数 $c = \underline{\hspace{1cm}}$.
- (10) 已知两个正态总体 X_1 和 X_2 分别为 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$, 为了检验总体 X_1 的 均值大于 X_2 的均值, 则应作检验的假设为()
 - (A) $H_0: \mu_1 > \mu_2 \leftrightarrow H_1: \mu_1 \leq \mu_2$ (B) $H_0: \mu_1 \geq \mu_2 \leftrightarrow H_1: \mu_1 < \mu_2$
 - (C) $H_0: \mu_1 < \mu_2 \leftrightarrow H_1: \mu_1 \ge \mu_2$ (D) $H_0: \mu_1 \le \mu_2 \leftrightarrow H_1: \mu_1 > \mu_2$

二、(24分) 设二维随机向量(X,Y) 的联合密度函数为

$$f(x,y) = \frac{1}{5}(2x+y), \quad 0 \le x \le 2, 0 \le y \le 1.$$

- (1) 分别求 X 和 Y 的边缘密度函数 $f_X(x)$ 和 $f_Y(y)$;
- (2) 在给定 X = 1 的条件下, 求 Y 在点 y = 0.5 处的概率密度 $f_{Y|X}(0.5|1)$;
- (3) 求X和Y的协方差Cov(X,Y);
- (4) 求随机变量 $Z = \max\{X, Y\}$ 的密度函数 $f_Z(z)$.
- 三、(12分) 某药厂试制了一种新药, 声称对贫血患者的治疗有效率达到 80%. 医药监管部门随机抽取 200 个贫血患者进行此药的临床试验, 若至少有 152 人用药有效, 就批准此药的生产. 试利用中心极限定理, 求解如下问题:
 - (1) 若该药的有效率确实达到80%, 此药被批准生产的概率大约是多少?
 - (2) 若监管部门的方案是 200 个人中要有 160 人用药有效才批准, 这对药厂是否公平? 需说明理由.
- 四、(18分)已知总体X的密度函数为

$$f(x;\theta) = \begin{cases} -\theta^x \ln \theta, & x > 0; \\ 0, & x \le 0, \end{cases}$$

其中 $0 < \theta < 1$ 为未知参数. 设 X_1, X_2, \dots, X_n 为来自该总体的一组简单随机样本.

- (1) 求 θ 的矩估计量 $\hat{\theta}$;
- (2) 求 $h(\theta) = (\ln \theta)^{-1}$ 的极大似然估计量 \hat{h}_{θ} ;
- (3) 试求实数 a, 使得 \hat{h}_{θ} 依概率收敛到 a, 即对任何 $\varepsilon > 0$, 都有 $\lim_{n \to \infty} P(|\hat{h}_{\theta} a| \ge \varepsilon) = 0$.
- 五、 (8分) 为比较A和B两种型号步枪子弹的枪口速度, 随机地抽取A型子弹 10 发, 得到枪口速度的平均值为 $\bar{x} = 500 (\text{m/s})$, 样本标准差 $s_1 = 1.10 (\text{m/s})$; 随机地抽取B型子弹 20 发, 得到枪口速度的平均值为 $\bar{y} = 496 (\text{m/s})$, 样本标准差 $s_2 = 1.20 (\text{m/s})$. 假设A和B型号子弹的枪口速度分别近似服从方差相等的正态分布 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$. 试在显著性水平 $\alpha = 0.05$ 下检验假设 $H_0: \mu_1 \mu_2 = 5 \leftrightarrow H_1: \mu_1 \mu_2 \neq 5$.
- 六、(8分)某机构为了研究鼻咽癌是否与血型有关,随机调查了一些患者和健康人,得到的数据如下:

	A	В	О	AB
患者	64	86	130	20
健康人	125	138	210	26

请你根据所学的统计知识给出适当的结论(显著性水平设为 $\alpha = 0.05$).

附录: 上分位数表

 $u_{0.025} = 1.96, \ u_{0.05} = 1.645, \ \Phi(1.414) = 0.9214;$

 $t_{28}(0.025) = 2.0484, \ t_{28}(0.05) = 1.7011, \ t_{29}(0.025) = 2.0452, \ t_{29}(0.05) = 1.6991;$

 $\chi_3^2(0.95) = 0.3518, \ \chi_3^2(0.05) = 7.8147.$

参考答案

一. (每小题3分)

$$3/8; \quad \frac{1}{\sqrt{\pi}} e^{-\frac{1}{4}}; \quad 1/3; \quad A; \quad 18; \quad 3; \quad A; \quad B; \quad \frac{n}{2(n-2)}; \quad D.$$

二.(1)(6分)由边缘密度和联合密度的关系可知,

$$f_X(x) = \int_0^1 f(x,y)dy = \frac{2}{5}x + \frac{1}{10}, \quad 0 \le x \le 2;$$

$$f_Y(y) = \int_0^2 f(x,y)dx = \frac{2}{5}y + \frac{4}{5}, \quad 0 \le y \le 1.$$

(2) (6分) 由边缘密度、条件密度和联合密度的关系可知,

$$f_{Y|X}(0.5 \mid 1) = \frac{f(1, 0.5)}{f_X(1)} = 1.$$

(3) (6分)由

$$E[XY] = \int_0^1 \int_0^2 xy f(x, y) dx dy = \frac{2}{3},$$

及 $EX = \frac{19}{15}$ 和 $EY = \frac{8}{15}$,可知 $Cov(X, Y) = E[XY] - EXEY = -\frac{2}{225}$.

(4) (6分)由

$$F_Z(z) = P(Z \le z) = \iint_{x,y \le z} f(x,y) dx dy$$

可知,

$$F_Z(z) = \begin{cases} 0, & z < 0; \\ \frac{3}{10}z^3, & 0 \le z < 1; \\ \frac{1}{5}z^2 + \frac{1}{10}z, & 1 \le z < 2; \\ 1, & z \ge 2. \end{cases}$$

从而, 所求密度函数为

$$f_Z(z) = \begin{cases} \frac{9}{10}z^2, & 0 \le z < 1; \\ \frac{2}{5}z + \frac{1}{10}, & 1 \le z < 2. \end{cases}$$

- 三. (1) (6分) 所求概率为 $\Phi(\sqrt{2}) = 0.9214$.
 - (2) (6分) 不公平. 对药厂而言, 在治疗有效率达到80%的情况下被批准的概率大约为 $\Phi(0) = 0.5$, 这相当于用掷硬币的方式来决定是否得到批准.
- 四. (1) (6分) 矩估计量 $\hat{\theta} = \exp\{-\frac{1}{X}\}$, 其中 \overline{X} 为样本均值;
 - (2) (6分) 参数 θ 的极大似然估计量同样为 $\exp\{-\frac{1}{X}\}$, 从而 $h(\theta)$ 的极大似然估计量为 $\hat{h}_{\theta} = -\overline{X}$:
 - (3) (6分) 由弱大数律可知, 所求的实数 $a = -EX = \frac{1}{\ln \theta}$.

五. (8分) 两样本 t 检验, 其检验统计量为

$$T = \frac{\overline{X} - \overline{Y} - \mu_0}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}.$$

代入数据计算可知, $s_w = 1.169, t = -2.209$. 由于 $|t| > t_{28}(0.025) = 2.0484$, 在显著性水平 $\alpha = 0.05$ 下我们应该拒绝原假设 H_0 .

六. (8分) 拟合优度联列表检验. 原假设为鼻咽癌与血型无关, 而其检验统计量为

$$\chi^2 = \sum_{i=1}^{2} \sum_{j=1}^{4} \frac{(nn_{ij} - n_{i.}n_{.j})^2}{nn_{i.}n_{.j}}.$$

代入数据计算可知, $\chi^2 = 1.921 < \chi_3^2(0.05) = 7.8147$. 故在显著性水平 $\alpha = 0.05$ 下我们不能拒绝原假设, 即可以认为鼻咽癌与血型无关.

中国科学技术大学

2019—2020学年第一学期考试试卷

		考试科目	概率论与	数理统计(B)	得分		
		所在系 _		姓名		学号		
		考试时	寸间: 2020年	1月13日上午8	:30-10:30;	使用简单计算	拿器	
— 、	(30	分, 每小题3分):	填空题或单	鱼选题,答案	可以直接	· 写在试卷上	.•	
	(1)	设 $P(A) = P(B)$	=0.4,且	P(B A) + F	$P(\overline{B} \overline{A}) =$	1, 则 P(<i>AB</i>) =	·
	(2)	甲乙二人抛掷一比乙多的概率是		硬币, 甲抛了	7101 次,	乙抛了100 ₹	大,则甲抛出	的正面次数
	(3)	设随机变量 X 若在条件 $X = x$			**		1). 对任意	$x \in (-1, 1),$
			P(Y =	$-\sqrt{1-x^2})$	= P(Y =	$\sqrt{1-x^2}) =$	1/2,	
		则 Y 连续型 (A) 是, 是 (B)				, ,		
	(4)	在单位圆盘 $\{(x)$ 的距离, 则 $E(X)$		=	随机取两	个点, 以随材	l变量 <i>X</i> 表	示它们之间
	(5)	设 X_1, X_2, \cdots , 分布. 记 $\overline{X} = \frac{1}{n}$ (A) $\lim_{n \to \infty} P\left(\frac{\sqrt{n}}{\lambda}\right)$ (C) $\lim_{n \to \infty} P\left(\sqrt{n}\right)$	$\frac{\sum_{i=1}^{n} X_i}{\overline{X} - \lambda} \le$	$\Phi(x)$ 为标 $x = \Phi(x)$	淮正态分 (B) lin	$ au$ 布函数, 则 $\sum_{n \to \infty} P\left(\sqrt{\frac{n}{\lambda}}(\overline{X})\right)$	付任意 $x \in I$ $(-\lambda) \le x$	$\mathbb{R}, $ 有 $($ $)$ $= \Phi(x)$
	(6)	设 X_1, X_2, \cdots , $c = $ 时						n, 则当常数
	(7)	设 X_1, X_2, \cdots ,记 \overline{X} 和 S^2 分别 (A) 样本标准差	为样本均	值和样本方	差,则下列	列统计量中与	\overline{X} 不独立	的是()
	(8)	设 X_1, X_2, X_3 長 μ 的无偏估计且 (A) $\frac{1}{2}X_1 + \frac{1}{3}X_2$ (C) $\frac{1}{5}X_1 + \frac{2}{5}X_2$.方差最小. + ¹ / ₆ X ₃	(B) $\frac{1}{3}X_1 + \frac{1}{3}X_1 +$	$\frac{1}{3}X_2 + \frac{1}{3}X$	X_3	则下列统计	量中,()为
	(9)	对一正态总体 / 长度不大于 4, 》	**	· ·		为 95% 的置	ł信区间, 若	要求其区间
((10)	假设检验中,在(A)有充分的理(C)有充分的理	由表明 H_0	是正确的	(B) 没有	「充分的理由	表明 H ₀ 是	错误的

- 二、(20分)设 X_1, X_2, \dots, X_n 为一列独立的随机变量,且均服从 U(0,1) 分布. 记 $Y = \min\{X_1, X_2, \dots, X_n\}, \quad Z = \max\{X_1, X_2, \dots, X_n\}.$
 - (1) 试证明: 对任意常数 0 < y, z < 1, 有

$$P(Y \le y, Z \le z) = \begin{cases} z^n - (z - y)^n, & y < z; \\ z^n, & y \ge z. \end{cases}$$

- (2) 利用上述结果, 试求随机变量 Y 和 Z 的联合密度函数 f(y,z).
- (3) 在 Y = y 条件下 (0 < y < 1), 试求 Z 的条件密度函数 $f_{Z|Y}(z|y)$.
- (4) 若 n=2, 试求 Y 和 Z 的协方差 Cov(Y,Z).
- Ξ 、(15分)设随机变量 X,Y 和 Z 相互独立, 且均服从参数为 1 的指数分布. 记

$$U = \frac{X}{X+Y}, \quad V = \frac{X+Y}{X+Y+Z}, \quad W = X+Y+Z.$$

- (1) 计算随机向量 (U, V, W) 的联合密度函数.
- (2) 随机变量 U,V 和 W 是否相互独立? 请证明你的结论.
- 四、 (15分)设某种元件的使用寿命 T 的分布函数为 $F(t) = \begin{cases} 1 \exp\{-(\frac{t}{\theta})^m\}, & t \geq 0; \\ 0, & t < 0, \end{cases}$ 其中 m > 0 为已知参数, 而 $\theta > 0$ 为未知参数. 随机取 n 个这种元件, 测得它们的寿命分别为 T_1, T_2, \cdots, T_n . 记 $g(\theta) = \theta^m$.
 - (1) 试求 $q(\theta)$ 的极大似然估计 $\hat{q}(T_1, T_2, \dots, T_n)$.
 - (2) 上述估计是否为无偏估计? 请证明你的结论.
- 五、(12分)经大量调查,已知一般健康成年男子每分钟脉搏的次数服从正态分布 N(72,6²). 现测得 16 例成年男子慢性铅中毒患者的脉搏平均 67 次/分钟,标准差为 7 次/分钟. 问在显著性水平 0.05 下,这群患者每分钟脉搏的次数(假设也服从正态分布)和正常人有无显著性差异? (要求对均值和方差都进行检验.)
- 六、(8分)中国科学技术大学 2019 级本科新生入学考试中, 某学院两个班级的英语科目各档成绩(从低到高)人数如下表所示:

档次	I	II	III	IV	V	VI	合计
一班						6	65
二班	15	25	8	7	6	4	65

我们能否认为这两个班级的英语水平大致相当? 显著性水平设为 $\alpha = 0.05$.

附录:

$$\Phi(1.645) = 0.95, \ \Phi(1.96) = 0.975;$$

$$t_{15}(0.025) = 2.131, \ t_{15}(0.05) = 1.753, \ t_{16}(0.025) = 2.12, \ t_{16}(0.05) = 1.746;$$

 $\chi_5^2(0.95) = 1.145, \ \chi_5^2(0.05) = 11.071, \ \chi_{15}^2(0.975) = 6.262, \ \chi_{15}^2(0.025) = 27.488.$

参考答案

- **—.** (1) 0.16 (2) 0.5 (3) B (4) 1 (5) C
 - $(6) \frac{n-m}{m}$ (7) C (8) B (9) 97 (若答 96 也算对) (10) B.
- 二. (1) 当 0 < y, z < 1 时, 由 X_1, \dots, X_n 独立同分布可知

$$P(Y \le y, Z \le z) = P(Z \le z) - P(Y > y, Z \le z)$$

$$= P(X_1 \le z, \dots, X_n \le z) - P(y < X_1 \le z, \dots, y < X_n \le z)$$

$$= [P(X_1 \le z)]^n - [P(y < X_1 \le z)]^n.$$

再由 $X_1 \sim U(0,1)$ 即知

$$P(Y \le y, Z \le z) = \begin{cases} z^n - (z - y)^n, & y < z; \\ z^n, & y \ge z. \end{cases}$$

(2) 注意到联合密度函数 f(y,z) 的取值范围是 0 < y < z < 1, 将 (1) 中联合分布函数 $P(Y \le y, Z \le z)$ 对变量 y 和 z 求一阶偏导数, 即得

$$f(y,z) = n(n-1)(z-y)^{n-2}, \quad 0 < y < z < 1.$$

(如果上述表达式正确, 但没有说明取值范围为0 < y < z < 1, 扣1-2分.)

(3) 由(2) 可知, 随机变量 Y 的密度函数为

$$f_Y(y) = \int_y^1 f(y, z) dz = n(1 - y)^{n-1}, \quad 0 < y < 1.$$

从而

$$f_{Z|Y}(z|y) = \frac{f(y,z)}{f_Y(y)} = \frac{(n-1)(z-y)^{n-2}}{(1-y)^{n-1}}, \quad y < z < 1.$$

(如果上述表达式正确, 但没有说明取值范围为 y < z < 1, 扣 1-2 分.)

(4) 当 n = 2 时, 随机变量 Y 的密度函数为 $f_Y(y) = 2(1 - y)$, 0 < y < 1, 故

$$EY = \int_0^1 2y(1-y) dy = \frac{1}{3}.$$

类似地, 可求得随机变量 Z 的密度函数为 $f_Z(z)=2z,\ 0< z<1,\$ 及 $\mathrm{E}Z=\frac{2}{3}.$ 此外, 由于此时联合密度函数退化为 $f(y,z)=2,\ 0< y< z<1,$ 我们有

$$E[YZ] = \int_0^1 \int_y^1 2yz dz dy = \frac{1}{4}.$$

所以,

$$Cov(Y, Z) = E[YZ] - EY \cdot EZ = \frac{1}{4} - \frac{1}{3} \cdot \frac{2}{3} = \frac{1}{36}.$$

三. (1) 由

$$u = \frac{x}{x+y}, \quad v = \frac{x+y}{x+y+z}, \quad w = x+y+z,$$

可得 x = uvw, y = (1 - u)vw, z = (1 - v)w, 从而Jacobi行列式

$$J = \begin{vmatrix} vw & uw & uv \\ -vw & (1-u)w & (1-u)w \\ 0 & -w & 1-v \end{vmatrix} = vw^{2}.$$

由 (X,Y,Z) 的联合密度函数 $f(x,y,z)=\mathrm{e}^{-(x+y+z)},\ x,y,z>0$, 及密度变换公式可得所求随机向量 (U,V,W) 的联合密度函数为

$$p(u, v, w) = vw^2 e^{-w}, \quad 0 < u, v < 1, w > 0.$$

(如果上述表达式正确, 但没有说明取值范围, 扣1-2分.)

(2) 随机变量 U,V 和 W 相互独立. 事实上, 由上述联合密度函数可以分解为

$$p(u, v, w) = p_U(u)p_V(v)p_W(w)$$

即知该结论成立, 其中

$$p_U(u) = 1, \ 0 < u < 1; \quad p_V(v) = 2v, \ 0 < v < 1; \quad p_W(w) = \frac{1}{2}w^2e^{-w}, \ w > 0.$$

四. (1) 由总体 T 的概率密度函数为 $f(t) = \frac{mt^{m-1}}{\theta^m} \exp\{-(\frac{t}{\theta})^m\}, t \ge 0$, 故似然函数为

$$L(\theta) = \frac{m^n}{\theta^{mn}} \prod_{i=1}^n t_i^{m-1} \exp\Big\{-\left(\frac{t_i}{\theta}\right)^m\Big\}.$$

对其取对数,得对数似然函数为

$$l(\theta) = \ln L(\theta) = C - n \ln(\theta^m) - \frac{1}{\theta^m} \sum_{i=1}^n t_i^m.$$

将上式对 θ^m 求导数, 并令其等于0, 可得(也可对 θ 求导, 结果相同)

$$\frac{\mathrm{d}l(\theta)}{\mathrm{d}(\theta^m)} = -\frac{n}{\theta^m} + \frac{1}{\theta^{2m}} \sum_{i=1}^n t_i^m = 0.$$

解之即可得所求极大似然估计量为

$$\hat{g}(T_1, T_2, \cdots, T_n) = \frac{1}{n} \sum_{i=1}^n T_i^m.$$

(2) 由

$$E[\hat{g}(T_1, T_2, \cdots, T_n)] = \frac{1}{n} \sum_{i=1}^n E[T_i^m] = E[T^m]$$

$$= \int_0^\infty \frac{mt^{2m-1}}{\theta^m} \exp\left\{-\left(\frac{t}{\theta}\right)^m\right\} dt = \theta^m \int_0^\infty x e^{-x} dx = \theta^m,$$

可知, $\hat{g}(T_1, T_2, \dots, T_n)$ 是 $g(\theta)$ 的一个无偏估计.

五. (1) 均值的检验. $H_0: \mu = 72$, \longleftrightarrow $H_1: \mu \neq 72$. 由 t 检验统计量

$$t = \frac{\sqrt{n}(\overline{X} - \mu_0)}{S} = \frac{\sqrt{16}(67 - 72)}{7} = -2.857,$$

可知 $|t| > t_{15}(0.025) = 2.131$,故应拒绝原假设,即认为患者每分钟脉搏的平均次数与正常人有显著性差异.

(2) 方差的检验. $H_0: \sigma^2=6^2$, \longleftrightarrow $H_1: \sigma^2\neq 6^2$. 由 χ^2 检验统计量

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} = \frac{15 \cdot 7^2}{6^2} = 20.417,$$

可知 $\chi^2_{15}(0.975) = 6.262 < \chi^2 < \chi^2_{15}(0.025) = 27.488$, 故应接受原假设, 即认为患者每分钟脉搏次数的方差与正常人相同. 结合均值和方差两个方面, 我们最终可认为患者每分钟脉搏的次数与正常人有显著性差异.

(注: 如果先进行方差的检验, 认定方差可以等于 6^2 , 然后利用一样本 u 检验也算正确答案, 均值的检验结果与上面相同.)

六. 拟合优度联列表齐一性检验. 原假设为两个班级的英语水平相当, 而其检验统计量为

$$\chi^2 = \sum_{i=1}^{2} \sum_{j=1}^{6} \frac{(nn_{ij} - n_{i.}n_{.j})^2}{nn_{i.}n_{.j}}.$$

代入数据计算可知, $\chi^2 = 3.1922 < \chi_5^2(0.05) = 11.071$, 故在显著性水平 $\alpha = 0.05$ 下我们不能拒绝原假设, 即可认为两个班级的英语水平相当.

中国科学技术大学

2020—2021学年第一学期考试试卷

考试科目 概率论与数理统计(B) 得分 _____

所在院系 _____ 姓名 _____ 学号 ______

		考试时间: 2021 年 3 月 6 日上午 8:30-10:30; 可使用简单计算器
-,	•	分, 每小题3分) 填空题或单选题, 答案可以直接写在试卷上. 设 A, B 为随机事件, 且 $0 < P(B) < 1$, 下列为假命题的是() (A) 若 $P(A B) = P(A)$, 则 $P(A \overline{B}) = P(A)$ (B) 若 $P(A B) > P(A)$, 则 $P(\overline{A} \overline{B}) > P(\overline{A})$ (C) 若 $P(A B) > P(A \overline{B})$, 则 $P(A B) > P(A)$ (D) 若 $P(A A \cup B) > P(\overline{A} A \cup B)$, 则 $P(A) > P(B)$
	(2)	设平面上有 n 个点, 编号分别为 $1,2,\cdots,n$. 现一质点在此点集上做随机游动, 每次它在一点上停留片刻后就会在其余各点中随机地选择一个并移动到该点上. 已知其初始位置为点 1 , 则它在第一次返回点 1 之前访问过点 2 的概率是
	(3)	设随机变量 X 服从参数为 $0 的几何分布, 且在条件 X = k 下, Y 服从参数为 k 的指数分布. 对任一实数 y > 0, 则 P(Y > y) = (). (A) e^{-y/p} (B) pe^{-y} (C) p/(y+p) (D) p/(e^y-1+p)$
	(4)	若随机变量 X 和 Y 满足 $P(X^2+Y^2=2)=1$,则下列说法中一定不成立的是((A) (X,Y) 为连续型随机向量 (B) $P(X+Y=0)=1/2$ (C) $EX=EY=0$ (D) X 和 Y 相互独立
	(5)	设 X 和 Y 为相互独立的标准正态随机变量, 则 $P(\max\{X,Y\} \ge 0) =$
	(6)	设随机变量 X 和 Y 分别服从参数为 λ 和 μ 的 Poisson 分布, 且相互独立. 对任一非负整数 n , 则条件期望 $\mathrm{E}[X X+Y=n]=$
	(7)	设随机向量 (X,Y) 服从二维正态分布 $N(a,a;\sigma^2,\sigma^2;0)$, 则 $\mathrm{Cov}(X,XY^2)=$
	(8)	设 $X_1, X_2, \dots, X_n, X_{n+1}$ 是来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, 且 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ $m_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$. 已知 $T = c(X_{n+1} - \overline{X})/\sqrt{m_2}$ 服从 t 分布, 则 $c = \underline{\hspace{1cm}}$
	(9)	设正态总体 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 未知, 若样本容量 n 和置信水平 $1-\alpha$ 均保持不变, 对不同的样本观察值, 则总体均值 μ 的置信区间长度() (A) 与样本均值有关 (B) 与 μ 本身有关 (C) 保持不变 (D) 不确定
	(10)	设 X_1, X_2, \dots, X_{16} 是来自总体 $N(\mu, 4)$ 的简单随机样本, \overline{X} 为其样本均值, $\Phi(x)$ 为标准正态分布函数. 考虑假设检验问题: $H_0: \mu \leq 10 \leftrightarrow H_1: \mu > 10$. 若其拒绝域为 $W = \{\overline{X} \geq 11\}$, 则当 $\mu = 11.5$ 时, 该检验犯第二类错误的概率为()

(A) $1 - \Phi(0.5)$ (B) $1 - \Phi(1)$ (C) $1 - \Phi(1.5)$ (D) $1 - \Phi(2)$

- 二、(10分)设有两个罐子,一罐中有m个红球和n个黑球,另一罐中有n个红球和m个 黑球,且m>n.某人随机选取一个罐子并从中随机抽取一球,发现为红球.现将该球放回原罐后并摇匀,然后再次在此罐中随机抽取一球,则它仍为红色的概率是否比 1/2 大?通过计算事件的概率来证明你的结论.
- 三、(20分) 将区间(0,2) 随机截成两段, 记较短一段的长度为X, 较长一段的长度为Y.
 - (1) 求 X 和 Y 的相关系数 Corr(X,Y);
 - (2) 求 X 的概率密度函数 f(x);
 - (3) 求 $Z = \frac{Y}{X}$ 的概率密度函数 g(z);
 - (4) 设随机变量 X^* 与 X 独立同分布, 试求 $V = 2|X X^*|$ 的概率密度函数 h(v).
- 四、 (16分) 已知总体 X 的概率密度函数为 $f(x) = (\theta + 1)x^{\theta}$, 0 < x < 1, 其中 $\theta > -1$ 为一未知参数. 设 X_1, X_2, \dots, X_n 是来自该总体的一组简单随机样本.
 - (1) 求 θ 的矩估计量 $\hat{\theta}$;
 - (2) 求 $g(\theta) = \frac{1}{\theta+1}$ 的极大似然估计量 \hat{g} ;
 - (3) 问 \hat{g} 是否为 $g(\theta)$ 的一个无偏估计? 证明你的结论.
 - (4) 求常数 b, 使得对任意实数 x, 都有 $\lim_{n\to\infty} P(\sqrt{n}(\hat{g}-g(\theta))/b \le x) = \Phi(x)$ 成立, 其中 $\Phi(x)$ 为标准正态分布函数.
- 五、(14分) 在 1970 年代后期, 人们发现酿造啤酒时麦芽干燥的过程中会形成致癌物质亚硝基二甲胺(NDMA). 在 1980 年代初期为此开发了一种新麦芽干燥工艺. 独立地随机抽查了新旧工艺下各一组样本, 得到NDMA含量(以10亿份中的份数计)的结果如下:

设旧、新工艺下的两样本均来自正态总体. 在显著性水平 $\alpha = 0.05$ 下,

- (1) 是否可以认为两个总体的方差相等?
- (2) 是否可以认为旧工艺下NDMA平均含量比新工艺下显著地大 3?
- 六、 (10分) 某种鸟在起飞前, 双足齐跳的次数 X 服从参数为 p 的几何分布, 即其分布律 为 $P(X = k) = p(1-p)^{k-1}$, $k = 1, 2, \cdots$. 某人观测 130 次后, 获得一组样本如下:

- (1) 求 p 的最大似然估计值(精确到小数点后三位);
- (2) 在拟合优度检验中频数一般不能小于 5, 故需将上述所有 $k \ge 7$ 情形下的频数进行合并, 此时请检验假设"X 服从几何分布"是否成立(显著性水平 $\alpha = 0.05$).

附录: $t_{22}(0.025) = 2.074$, $t_{22}(0.05) = 1.717$, $t_{23}(0.025) = 2.069$, $t_{23}(0.05) = 1.714$ $F_{11,11}(0.025) = 3.474$, $F_{11,11}(0.05) = 2.818$, $F_{12,12}(0.025) = 3.277$, $F_{12,12}(0.05) = 2.687$ $\chi_5^2(0.05) = 11.071$, $\chi_5^2(0.95) = 1.145$, $\chi_6^2(0.05) = 12.592$, $\chi_6^2(0.95) = 1.635$

参考答案

- -. (1) D (2) $\frac{n}{2(n-1)}$ (3) D (4) A (5) $\frac{3}{4}$ (6) $\frac{n\lambda}{\lambda+\mu}$ (7) $(a^2+\sigma^2)\sigma^2$ (8) $\sqrt{\frac{n-1}{n+1}}$ (9) D (10) B
- 二. 以 A 表示选取的罐子为甲罐 (m 红 n 黑) 的事件, B 表示第一次取出的球为红球的事件, 则由 Bayes 公式可知

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)} = \frac{m}{m+n}.$$

再由全概率公式可知, 第二次抽取的球仍为红色的概率为

$$\frac{m}{m+n}P(A|B) + \frac{n}{m+n}P(A^c|B) = \frac{m^2 + n^2}{(m+n)^2} > \frac{1}{2}.$$

- 三. (1) 由 P(X + Y = 2) = 1 立知 Corr(X, Y) = -1.
 - (2) 设随机变量 $U \sim U(0,2)$, 而 X 取值范围为 (0,1), 故对任意 0 < x < 1,

$$P(X \le x) = P(U \le x) + P(2 - U \le x) = \frac{x}{2} + \frac{x}{2} = x,$$

即 $X \sim U(0,1)$. 故 X 的概率密度函数 f(x) = 1, 0 < x < 1.

- (3) 易知 $Z = \frac{Y}{X} = \frac{2-X}{X}$ 及 $X = \frac{2}{Z+1}$, 由 (2) 和密度变换公式可知 $g(z) = \frac{2}{(z+1)^2}$, z > 1.
- (4) 利用密度变换公式或者几何概型, 可知 V 的概率密度函数为

$$h(v) = \begin{cases} v, & 0 < v \le 1; \\ 2 - v, & 1 < v < 2. \end{cases}$$

注: 若上述密度函数表达式中变量范围缺乏或不正确, 按每处扣分.

- 四. (1) 由 $\mathrm{E}X = \frac{\theta+1}{\theta+2}$,解方程 $\frac{\theta+1}{\theta+2} = \overline{X}$ 可知 θ 的矩估计量 $\hat{\theta} = \frac{2\overline{X}-1}{1-\overline{X}}$.
 - (2) 由题意, 似然函数 $L(\theta) = (\theta+1)^n \prod_{i=1}^n x_i^{\theta}$, 从而对数似然函数为

$$l(\theta) = \ln L(\theta) = n \ln(\theta + 1) + \theta \sum_{i=1}^{n} \ln x_i.$$

令 $\frac{\mathrm{d}l(\theta)}{\mathrm{d}\theta}=0$, 可得 $\frac{n}{\theta+1}+\sum_{i=1}^{n}\ln x_{i}=0$. 由此可知, $g(\theta)=\frac{1}{\theta+1}$ 的极大似然估计量

$$\hat{g} = -\frac{1}{n} \sum_{i=1}^{n} \ln X_i.$$

- (3) 记 $Y_i = -\ln X_i, \ i = 1, 2, \cdots, n$, 则易知 $\{Y_i, 1 \le i \le n\}$ 独立同分布于参数为 $\theta + 1$ 的指数分布, 由此即知 $\mathbf{E}\hat{g} = \frac{1}{\theta + 1}$. 故 \hat{g} 是 $g(\theta)$ 的一个无偏估计.
- (4) 由上可知, \hat{g} 可表示为一列独立同分布随机变量 $\{Y_i, 1 \leq i \leq n\}$ 的平均, 故由经典场合下的中心极限定理可知, 常数 $b = \sqrt{\mathrm{Var}(Y_1)} = \frac{1}{\theta+1}$.

- 五. 先计算一些统计量的值. 旧工艺: $n_1 = 12$, $\overline{x} = 5.25$, $(n_1 1)S_1^2 = 10.25$; 新工艺: $n_2 = 12$, $\overline{y} = 1.5$, $(n_2 1)S_2^2 = 11$; $S_w^2 = 0.983^2$.
 - $\begin{array}{ccc} (1) \ H_0: \sigma_1^2 = \sigma_2^2 \ \leftrightarrow \ H_1: \sigma_1^2 \neq \sigma_2^2. \\ & \boxplus \end{array}$

$$\frac{1}{3.474} = \frac{1}{F_{11,11}(0.025)} < \frac{S_1^2}{S_2^2} = 0.932 < F_{11,11}(0.025) = 3.474,$$

接受 H₀, 即可以认为两个总体的方差相等.

(2) $H_0: \overline{X} - \overline{Y} \le 3 \iff H_1: \overline{X} - \overline{Y} > 3.$

$$t = \frac{\overline{X} - \overline{Y} - 3}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = 1.867 > t_{22}(0.05) = 1.717,$$

拒绝 H_0 , 即可以认为旧工艺下NDMA平均含量比新工艺下显著地大 3.

$$\hat{p} = \frac{1}{\overline{X}} = \frac{130}{363} = 0.358.$$

(2) 合并后的数据为

$$k$$
 1
 2
 3
 4
 5
 6
 ≥ 7

 频数
 48
 31
 20
 9
 6
 5
 11

从而检验统计量

$$\chi^2 = \frac{(48 - 130 \times \hat{p})^2}{130 \times \hat{p}} + \frac{[31 - 130 \times \hat{p}(1 - \hat{p})]^2}{130 \times \hat{p}(1 - \hat{p})} + \dots + \frac{[11 - 130 \times (1 - \hat{p})^6]^2}{130 \times (1 - \hat{p})^6}$$
$$= 1.868 < \chi_5^2(0.05) = 11.071.$$

故接受原假设.