Lesson 3: GMM Estimation

Some sources used in the slides

- Whited T. and Taylor L. Summer School in Structural Estimation.
- Wooldridge, J. M. (2001). Econometric analysis of cross section and panel data.
- Asset Pricing, Cochrane J. 2006.

Introduction

- GMM stands for Generalized Method of Moments. It is a generalization of the method of moments estimator.
- It was formalized by Hansen (1982), and since has become one of the most widely used methods of estimation for models in economics and finance.
- It is the basis for methods like the Simulated Method of Moments (SMM) and the Indirect Inference (II) estimator.
- The power of GMM is that it allows us to estimate models without having to specify the distribution of the data.

The method of moments estimator (Chebyshev)

- It was introduced by Pafnuty Chebyshev in 1887 in the proof of the central limit theorem.
- Suppose you need to estimate k unknown parameters $\theta_1, \ldots, \theta_k$ that characterize the distribution of a random variable X.

$$f_X(x; \theta_1, \dots, \theta_k)$$

Now, assume that the first k moments can be expressed as a function of the parameters:

$$egin{aligned} \mu_1 &= E[X] = g_1(heta_1, \dots, heta_k) \ \mu_2 &= E[X^2] = g_2(heta_1, \dots, heta_k) \ &dots \ \mu_k &= E[X^k] = g_k(heta_1, \dots, heta_k) \end{aligned}$$

The method of moments (cont.)

• Estimate the population moment with the sample moment

$$\hat{\mu}_j = rac{1}{n} \sum_{i=1}^n x_i^j$$

Solve the system of equations

$$egin{aligned} \hat{\mu}_1 &= g_1(\hat{ heta}_1, \dots, \hat{ heta}_k) \ \hat{\mu}_2 &= g_2(\hat{ heta}_1, \dots, \hat{ heta}_k) \ &dots \ \hat{\mu}_k &= g_k(\hat{ heta}_1, \dots, \hat{ heta}_k) \end{aligned}$$

Example, normal distribution

$$egin{aligned} \mu_1 &= E[X] = \int_{-\infty}^\infty x f_X(x;\mu,\sigma) dx = \ \mu_2 &= E[X^2] = \int_{-\infty}^\infty x^2 f_X(x;\mu,\sigma) dx \end{aligned}$$

• After observing a sample of n observations $\{x_1, \ldots, x_n\}$, we can estimate the population moments with the sample moments

$$\hat{\mu}_1 = rac{1}{n} \sum_{i=1}^n x_i$$

$$\hat{\mu}_2=rac{1}{n}\sum_{i=1}^n x_i^2$$

• And solve numerically the system of equations.

GMM

- When the number of moments is equal to the number of parameters there is a unique solution to the system of equations.
- However, we cannot compute the standard errors of the estimates. For this task we need to use the GMM estimator, and include more moments.

GMM (cont.)

- Notation in Wooldride
- ullet w_i is a (M imes 1) i.i.d. vector of random variables for observation i.
- θ is a $(P \times 1)$ vector of unknown coefficients (parameters).
- $g(w_i, \theta)$ is a (L imes 1) vector of functions $g: \mathbb{R}^M imes \mathbb{R}^P o \mathbb{R}^L \ L \geq P$
- Function g can be potentially non linear.
- Let θ_0 be the true value of θ .
- Let $\hat{\theta}$ be an estimator of θ .
- The hat and naught notation is used to denote estimators and true values, respectively.

Moment Restrictions

 GMM is based on the idea that the moment restrictions should be zero in expectation (e.g. the difference between the sample and population moments).

$$\mathbb{E}[g(w_i, heta_0)] = 0$$

Which in the sample can be written as

$$rac{1}{N}\sum_{i=1}^N g(w_i, heta)=0$$

We want to choose $\hat{\theta}$ such that $N^{-1}\sum_{i=1}^N g(w_i,\hat{\theta})$ is as close to zero as possible.

Criterion Function

- If we have more moments than parameters there might not be a solution to the system of equations, but we can make those moments as close to zero as possible.
- Hint, minimize a weighted sum of squared moments.
- How much importance you give to each moment will be discussed later.
- The estimator $\hat{\theta}$ uses the following function (criterion) as a function to minimize.

$$Q_N(heta) = \Big[N^{-1}\sum_{i=1}^N g(w_i, heta)\Big]'\hat{W}\Big[N^{-1}\sum_{i=1}^N g(w_i, heta)\Big]'$$

where \hat{W} is a positive definite weighting matrix that converges in probbaility to W_0 .

Asymptotic Properties

Hansen (1982) Large Sample Properties of Generalized Method of Moments, **Econometrica**. Two-stage procedure, for any positive semidefined matrix W e.g. I.

$$\hat{ heta_1} = rg\min_{ heta} \left[g_T(heta)
ight]' W \Big[g_T(heta) \Big]$$

First Order Condition

$$rac{\partial g_T(heta)}{\partial heta} W g_T(heta) = a g_T(heta) = 0$$

This estimator is consistent and asymptotically normal but not always efficient, the efficient estimator is obtained by estimating W as the inverse of covariance of moments $g_T(\hat{\theta_1})$ and re-estimate.

Standard Errors

Hansen proved that the estimator

$$\hat{ heta_2} = rg\min_{ heta} \left[g_T(heta)
ight]' \hat{S}^{-1} \Big[g_T(heta) \Big]$$

where \hat{S} is the sample covariance of the moments given $\hat{\theta_1}$, is consistent and asymptotically normal. Define

$$d = rac{\partial g_T(heta)}{\partial heta}$$

Then the asymptotic variance of $\hat{ heta_2}$ is

$$\hat{V}(\hat{ heta_2}) = rac{1}{T} \Big[d' \hat{S}^{-1} d \Big]^{-1}$$

Goodness of Fit

- The GMM criterion function can be used to test the null hypothesis that the model is correctly specified.
- The test statistic is

$$TQ_T(\hat{ heta}) \stackrel{d}{ o} \chi^2_{L-P}$$

Example, OLS using GMM

Consider the simple linear regression model

$$y = X\beta + \epsilon$$

The OLS conditions are

$$\mathbb{E}[X'\epsilon] = 0$$

 $\mathbb{E}[\epsilon] = 0$

Replace

$$g(w_i, heta) = egin{bmatrix} X_i' \epsilon_i \ \epsilon_i \end{bmatrix}$$

Example, OLS using GMM (cont.)

Then the GMM estimator in the first step is

$$egin{aligned} \hat{eta}_1 &= rg \min_{eta} \left[N^{-1} \sum_{i=1}^N igg[X_i' \epsilon_i \ \epsilon_i igg] igg]' I igg[N^{-1} \sum_{i=1}^N igg[X_i' \epsilon_i \ \epsilon_i igg] igg] \ &= rg \min_{eta} \left[N^{-1} \sum_{i=1}^N igg[X_i' (y_i - X_i eta) \ (y_i - X_i eta) igg] igg]' I igg[N^{-1} \sum_{i=1}^N igg[X_i' (y_i - X_i eta) \ (y_i - X_i eta) igg] igg] \end{aligned}$$

Example, OLS using GMM (cont.)

Second step, given $\hat{\beta_1}$ compute the covariance matrix of the moments

$$\hat{S} = rac{1}{N} \sum_{i=1}^N egin{bmatrix} X_i'(y_i - X_i \hat{eta}_1) \ (y_i - X_i \hat{eta}_1) \end{bmatrix} egin{bmatrix} X_i'(y_i - X_i \hat{eta}_1) \ (y_i - X_i \hat{eta}_1) \end{bmatrix}'$$

Then the GMM estimator is

$$\hat{eta_2} = rg\min_{eta} \left[N^{-1} \sum_{i=1}^N igg[egin{array}{c} X_i'(y_i - X_ieta) \ (y_i - X_ieta) \end{array}
ight]' \hat{S}^{-1} igg[N^{-1} \sum_{i=1}^N igg[igg[X_i'(y_i - X_ieta) \ (y_i - X_ieta) \end{array}
ight] igg]$$

with covariance matrix

$$\hat{V}(\hat{eta_2}) = rac{1}{N} \Big[d' \hat{S}^{-1} d \Big]^{-1}$$

GMM in practice

- In many applications, the covariance matrix of the moments is numerically singular.
- How to solve it?
 - i. Use only 1 step.
 - ii. Add small noise to the variance matrix.
 - iii. Use a "generalized" inverse.