Optimization on deep learning

MATH818 RESEARCH IN APPLIED MATH 2019020356 JAEHEUN JUNG

DNN Architecture

Deep Neural Network

 Universal function approximator

 Combination of weighted sum and activation

Parametrized with matrices

Loss function

Measurement for the difference between model and real data

MSE loss (Mean-Squared Error)

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i^{true} - y_i^{pred})^2$$

Cross-entropy loss

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} -y_{ij}^{true} log(y_{ij}^{pred})$$

Gradient descent

•First-order iterative optimization

Optimizers

Momentum

$$v_{t+1} = \gamma v_t - \eta \nabla L(\theta_t)$$
$$\theta_{t+1} = \theta_t + v_{t+1}$$

optimizers

Adaptive learning rate

Adagrad

$$G_{\theta}^{t} = \sum_{i=0}^{t} (\nabla L(\theta_{i}))^{2}$$
$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{G_{\theta}^{t} + \epsilon}} \nabla L(\theta_{t})$$

RMSprop

$$G_{\theta}^{t} = \gamma G_{\theta}^{t-1} + (1 - \gamma)(\nabla L(\theta_{t}))^{2}$$
$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{G_{\theta}^{t} + \epsilon}} \nabla L(\theta^{t})$$

optmimizers

Adam

$$\hat{m}_{\theta} = \frac{m_{\theta}^{t+1}}{1 - \beta_1^{t+1}} \text{ where } m_{\theta}^{t+1} = \beta_1 m_{\theta}^t + (1 - \beta_1) \nabla L(\theta^t)$$

$$\hat{G}_{\theta} = \frac{G_{\theta}^{t+1}}{1 - \beta_2^{t+1}} \text{ where } G_{\theta}^{t+1} = \beta_2 G_{\theta}^t + (1 - \beta_2) (\nabla L(\theta^t))^2$$

$$\theta^{t+1} = \theta^t - \eta \frac{\hat{m}_{\theta}}{\sqrt{\hat{G}_{\theta}} + \epsilon}$$

Optimizers

RAdam

$$v_{t} = \beta_{2}v_{t-1} + (1 - \beta_{2})(\nabla L(\theta^{t}))^{2}$$

$$\hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}} \text{ where } m_{t} = \beta_{1}m_{t-1} + (1 - \beta_{1})\nabla L(\theta_{t})$$

$$\rho_{t} = \rho_{\infty} - 2t \frac{\beta_{2}^{t}}{1 - \beta_{2}^{t}} \text{ where } \rho_{\infty} = \frac{2}{1 - \beta_{2}} - 1$$

if
$$\rho_t > 4$$
 then
$$\ell_t = \sqrt{\frac{1 - \beta_2^t}{v_t}}$$

$$r_t = \sqrt{\frac{(\rho_t - 4)(\rho_t - 2)\rho_\infty}{(\rho_\infty - 4)(\rho_\infty - 2)\rho_t}}$$

$$\theta_t = \theta_{t-1} - \alpha_t r_t \ell_t \hat{m}_t \text{ where } \alpha_t \text{ is step size}$$
else $\theta_t = \theta_{t-1} - \alpha_t \hat{m}_t$

Batch size

of datapoints for single update

Stochastic Gradient descent
Single datapoint

Batch Gradient descent
All datapoints

Data parallelism

Multiple workers compute gradient

 Parameter server collects gradients and update the parameter

- •Update Rules:
 - SSGD and ASGD

Algorithm 2: worker mInput dataset \mathcal{X} , minibatch size \mathcal{B}

end

for
$$t = 0, 1, \cdots$$
 do

Wait to read $\theta^{(t)}$ from parameter server;

 $G_m^{(t)} := 0;$

for $i = 1, \cdots, \mathcal{B}$ do

Sample data $x_{k,i}$ from \mathcal{X} ;

 $G_m^{(t)} \longleftarrow G_m^{(t)} + \frac{1}{\mathcal{B}} \nabla L(x_{k,i}, \theta^{(t)})$

end

Send $G_m^{(t)}$ to parameter server

Data parallelism

SYNCHRONOUS UPDATE

ASYNCHRONOUS UPDATE

Algorithm 3: SSGD parameter server

Algorithm 5: ASGD parameter server

Matrix rank constraint

Truncated svd

Truncated SVD

Original image: rank 402

Truncated svd: rank 80

Canonical Polyadic decomposition

Weight for Convolutional layer: 4-tensor

of parameters: $T_1T_2T_3T_4 \to R(T_1 + T_2 + T_3 + T_4)$

Low rank approximation

Model	TOP-5 Accuracy	Speed-up	Compression Rate
AlexNet	80.03%	1.	1.
BN Low-rank	80.56%	1.09	4.94
CP Low-rank	79.66%	1.82	5.
VGG-16	90.60%	1.	1.
BN Low-rank	90.47%	1.53	2.72
CP Low-rank	90.31%	2.05	2.75
GoogleNet	92.21%	1.	1.
BN Low-rank	91.88%	1.08	2.79
CP Low-rank	91.79%	1.20	2.84

