# Evacuation Bottleneck Simulating a Panic on a Cruise Ship

Johannes Weinbuch, Benedek Vartok

December 19, 2012



#### Outline

#### Introduction

#### Models and Implementation

Program Structure

Input, Configuration

Placement of New Agents

Filled Exits

**Forces** 

#### Results

Passenger Distribution

Panic Level

Outtakes

Summary and Outlook



# Our Research Object

- Costa Voyager
- Capacity: 836 passengers
- ▶ 8 Rescue Boats
- ▶ In distress at sea in 2005



 $\begin{array}{c} {\sf Source:\ http://www.shipspotting.com,} \\ {\sf Picture\ taken\ by\ Roy\ Batty} \end{array}$ 



# Program Structure

- 1. Load configuration
- 2. Loop over simulation steps
  - 2.1 Place new agents
  - 2.2 Handle filled exits
  - 2.3 Progress agents with calculated forces
  - 2.4 Remove exited agents
  - 2.5 Plot current state (optional)
- 3. Plot and save final data

#### The Deck Plan

- Colormap
  - Allows any number of zones
- Scaling
- Greatly simplyfied





Source: http://www.kreuzfahrtberater.de



# Configuration File

- Simulation parameters intialized from a file:
  - Deck configuration
  - Plotting options
  - Physical and behavioral parameters
- Simple syntax makes automated generation easy

# Placement of New Agents

- Spawning zones as entering areas for agents
- ▶ In each step, remaining agents are tried to be placed
- If spawning zones are too full, new agents can only appear in later steps
- Nice model for steady inflow of agents

#### Filled Exits

- Rescue boats modeled with limited capacities
- If a boat gets full, agents need to be informed
- Two implementation approaches:
  - Instantaneous update
  - Gradual circle-shaped spreading of information

#### **Forces**

- ► As described in paper "Simulating dynamical features of escape panic" by Helbing, Farkas and Vicsek
- Three main forces act on agents:
  - Desired direction
  - ▶ Repulsion & friction between agents
  - Repulsion & friction from walls
- Motions calculated with Leap-Frog integration method

## Distribution of the Agents to the Exits

- ► The distribution depends strongly on the geometry of the ship
- There was no case where the agents really distributed over the exits
  - Weakness in the model
  - ▶ More realistic: Go for the shortest individual evacuation time
- Realistic update for propagation of information
- Video



## Effect of Desired Speed on Total Evacuation Time

- We could reproduce the results from Helbing,
   Farkas and Vicsek for low panic levels
- High panic levels: Problem!



## All the things you don't want to happen

- Agents were stuck in walls
  - Even the tiniest timesteps didn't help
- MATLAB does not behave as expected in batch mode
  - Simulation works in foreground, crashes in background
  - ▶ No error message, just silently writing crashdumps to home
- No reproducability even with fixed random seed in our group
  - Different versions of MATLAB

## Some points to take away

- The basic results could be reproduced
- ▶ The model is not very well suited for multiple exits
  - ▶ There should be a heuristic to decide for a direction
- Use the power of Open Source Software (OSS)!

#### You ask – We answer

Now it's your turn