Лекция 6. Леммы о несамодвойственной, немонотонной и нелинейной функциях. Полнота. Теорема Поста о полноте.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте http://mk.cs.msu.ru

Самодвойственные функции

Функция
$$f(x_1,\ldots,x_n)\in P_2$$
 — самодвойственна, если $f(ar x_1,\ldots,ar x_n)=\overline{f(x_1,\ldots,x_n)},$

т. е. когда на всех парах противоположных наборов она принимает противоположные значения.

Лемма о несамодвойственной функции

Лемма 6.1 (о несамодвойственной функции). Если $f \notin S$, то, подставляя вместо ее переменных функции x, \bar{x} , можно получить функцию, равную константе.

Лемма о несамодвойственной функции

Доказательство. Если $f(x_1,\ldots,x_n)\notin S$, то найдется такая пара противоположных наборов $\alpha,\bar{\alpha}\in E_2^n$, что

$$f(\alpha) = f(\bar{\alpha}) = c \in E_2.$$

Положим:

$$\varphi(x)=f(x\oplus\alpha_1,\ldots,x\oplus\alpha_n).$$

Отметим, что вместо переменной x_i подставили x при $\alpha_i=0$ и подставили \bar{x} при $\alpha_i=1$.

Получаем:

$$\varphi(0) = f(0 \oplus \alpha_1, \dots, 0 \oplus \alpha_n) = f(\alpha) = c,$$

$$\varphi(1) = f(1 \oplus \alpha_1, \dots, 1 \oplus \alpha_n) = f(\bar{\alpha}) = c.$$

Значит,
$$\varphi(x) = c$$
.

Лемма о несамодвойственной функции

Пример. Рассмотрим несамодвойственную функцию $f(x_1, x_2, x_3)$:

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Т. к.
$$f(0,1,0)=f(1,0,1)=1$$
, получаем $\varphi(x)=f(x,\bar{x},x)$.

Теперь
$$\varphi(0) = f(0,1,0) = 1$$
, $\varphi(1) = f(1,0,1) = 1$, т. е. $\varphi(x) = 1$.

Монотонные функции

Функция $f(x_1,...,x_n) \in P_2$ — монотонна, если для любых наборов $\alpha, \beta \in E_2^n$ из $\alpha \leqslant \beta$ следует $f(\alpha) \leqslant f(\beta)$.

Лемма о немонотонной функции

Лемма 6.2 (о немонотонной функции). Если $f \notin M$, то, подставляя вместо ее переменных функции 0, 1, x можно получить функцию \bar{x} .

Лемма о немонотонной функции

Доказательство. Если $f(x_1,\ldots,x_n)\notin M$, то найдется такая пара наборов $\alpha,\beta\in E_2^n$, что $\alpha\leqslant\beta$, но $f(\alpha)>f(\beta)$.

Значит,
$$f(\alpha) = 1$$
 и $f(\beta) = 0$.

Не ограничивая общности рассуждений, пусть $\alpha_i=0$, $\beta_i=1$ для всех $i=1,\ldots,k$ и $\alpha_i=\beta_i$ для всех $i=k+1,\ldots,n$, где $1\leqslant k\leqslant n$.

Доказательство. Положим:

$$\varphi(x) = f(\underbrace{x, \ldots, x}_{k}, \alpha_{k+1}, \ldots, \alpha_{n}).$$

Отметим, что вместо переменной x_i подставили x при i = 1, ..., k и подставили 0 или 1 при i = k + 1, ..., n.

Получаем:

Три леммы

$$\varphi(0) = f(\underbrace{0,\ldots,0}_{k},\alpha_{k+1},\ldots,\alpha_{n}) = f(\alpha) = 1,$$

$$\varphi(1) = f(\underbrace{1,\ldots,1}_{k},\alpha_{k+1},\ldots,\alpha_{n}) = f(\beta) = 0.$$

Значит, $\varphi(x) = \bar{x}$.

Лемма о немонотонной функции

Пример. Рассмотрим немонотонную функцию $f(x_1, x_2, x_3)$:

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Т. к.
$$f(0,0,1)=1$$
, $f(1,1,1)=0$, получаем $\varphi(x)=f(x,x,1)$.

Теперь
$$\varphi(0)=f(0,0,1)=1$$
, $\varphi(1)=f(1,1,1)=0$, т. е. $\varphi(x)=\bar{x}$.

Свойство немонотонной функции

Напомним, что наборы $\alpha, \beta \in E_2^n$ называются **соседними**, если они отличаются только в одном разряде.

Предложение 6.1. Если $f(x_1, ..., x_n) \notin M$, то найдутся два таких соседних набора $\alpha, \beta \in E_2^n$, что $\alpha \leqslant \beta$, но $f(\alpha) > f(\beta)$.

Доказательство проведите самостоятельно.

Значит, функция f — монотонна тогда и только тогда, когда на всех парах соседних наборов она принимает значения, не нарушающие монотонность.

Линейные функции

Функция $f(x_1,...,x_n) \in P_2$ — линейна, если она может быть представлена в виде:

$$f(x_1,\ldots,x_n)=c_0\oplus c_1x_1\oplus\ldots\oplus c_nx_n,$$

где коэффициенты $c_0, c_1, \dots, c_n \in E_2$, т. е. если в ее полиноме Жегалкина нет слагаемых хотя бы с двумя переменными.

Лемма 6.3 (о нелинейной функции). Если $f \notin L$, то, подставляя вместо ее переменных функции $0, 1, x, \bar{x}, y, \bar{y}$ можно получить функцию $x \cdot y$ или функцию $\overline{x \cdot y}$.

Доказательство. Если $f(x_1, \ldots, x_n) \notin L$, то в ее полиноме Жегалкина найдется слагаемое ранга, не меньшего двух.

Не ограничивая общности рассуждений, пусть в полиноме Жегалкина функции f содержится слагаемое $x_1 \cdot \ldots \cdot x_k$, где $k \geqslant 2$.

Представим полином Жегалкина функции f в виде:

$$f(x_1,\ldots,x_n) = x_1x_2 \cdot g_1(x_3,\ldots,x_n) \oplus x_1 \cdot g_2(x_3,\ldots,x_n) \oplus x_2 \cdot g_3(x_3,\ldots,x_n) \oplus g_4(x_3,\ldots,x_n),$$

где $g_1, g_2, g_3, g_4 \in P_2$, причем $g_1 \neq 0$.

Значит, найдется такой набор $\alpha \in E_2^{n-2}$, что $g_1(\alpha) = 1$.

Доказательство. Пусть $g_2(\alpha)=a$, $g_3(\alpha)=b$, $g_4(\alpha)=c$, где $a,b,c\in E_2$. Тогда

$$f(x_1,x_2,\alpha_1,\ldots,\alpha_{n-2})=x_1x_2\oplus ax_1\oplus bx_2\oplus c.$$

Положим:

$$\psi(x,y)=f(x\oplus b,y\oplus a,\alpha_1,\ldots,\alpha_{n-2}).$$

Отметим, что вместо переменной x_1 подставили x или \bar{x} , вместо переменной x_2 подставили y или \bar{y} и вместо переменных x_i при $i=3,\ldots,n$ подставили 0 или 1.

Доказательство. Получаем:

$$\psi(x,y) = (x \oplus b)(y \oplus a) \oplus a(x \oplus b) \oplus b(y \oplus a) \oplus c =$$

$$= (xy \oplus ax \oplus by \oplus ab) \oplus (ax \oplus ab) \oplus (by \oplus ab) \oplus c =$$

$$= xy \oplus (ab \oplus c) = xy \oplus d,$$

где $d = ab \oplus c$.

Значит,

$$\psi(x,y) = \begin{cases} x \cdot y, & d = 0, \\ \overline{x \cdot y}, & d = 1. \end{cases}$$

Пример. Рассмотрим нелинейную функцию $f(x_1, x_2, x_3)$:

$$f=x_1x_2x_3\oplus x_1x_2\oplus x_2\oplus x_3.$$

Перепишем f в виде:

$$f = x_1x_2 \cdot (x_3 \oplus 1) \oplus x_1 \cdot (0) \oplus x_2 \cdot (1) \oplus x_3.$$

Значит,
$$g_1(x_3) = x_3 \oplus 1$$
, $g_2(x_3) = 0$, $g_3(x_3) = 1$, $g_4(x_3) = x_3$.

Заметим, что $g_1(0) = 1$. Тогда:

$$a = g_2(0) = 0, \ b = g_3(0) = 1, \ c = g_4(0) = 0.$$

Получаем:

$$\psi(x,y)=f(\bar{x},y,0)=(x\oplus 1)y\oplus y=x\cdot y.$$

Напомним, что множество A, $A \subseteq P_2$, называется **полной системой**, если формулами над A можно выразить любую функцию алгебры логики.

Теорема 6.1 (Поста). Пусть $A \subseteq P_2$. Множество A является полной системой тогда и только тогда, когда A не содержится ни в одном из классов T_0 , T_1 , L, S, M, τ . e.

 $A \not\subseteq T_0$, $A \not\subseteq T_1$, $A \not\subseteq L$, $A \not\subseteq S$, $A \not\subseteq M$.

Доказательство. 1. *Необходимость* обоснуем от обратного: пусть A является полной системой, но содержится в одном из классов T_0 , T_1 , L, S, M, например, пусть $A \subseteq T_0$.

Тогда получаем:

$$[A]\subseteq [T_0]=T_0\neq P_2.$$

Приходим к противоречию.

Значит, A не может содержаться ни в одном из классов T_0 , T_1 , L, S, M.

Доказательство. 2. *Достаточность*. Пусть A не содержится в одном из классов T_0 , T_1 , L, S, M. Докажем, что в этом случае A — полная система.

Из условия непринадлежности A к каждому из перечисленных классов следует, что в A найдутся такие функции

$$f_0, f_1, f_l, f_s, f_m,$$

что

$$f_0 \notin T_0, \ f_1 \notin T_1, \ f_I \notin L, \ f_s \notin S, \ f_m \notin M.$$

Отметим, что функции f_0, f_1, f_l, f_s, f_m не обязательно все различны.

Доказательство. Покажем, что формулами над A можно выразить все функции из полной системы $\{0,1,\bar{x},x\cdot y\}$.

Доказательство. 2.1. Построение констант 0 и 1.

Рассмотрим функции $f_0 \notin T_0$ и $f_1 \notin T_1$. Положим:

$$\varphi_0(x) = f_0(x, \ldots, x),
\varphi_1(x) = f_1(x, \ldots, x).$$

Тогда:

X	$arphi_0$	φ_1
0	1	b
1	а	0

Теперь если a=1 и b=0, то $\varphi_0(x)=1$, $\varphi_1(x)=0$.

Если же a=0 или b=1, то получена функция \bar{x} . Тогда по лемме о несамодвойственной функции из $f_s \notin S$, подставляяя вместо ее переменных функции x, \bar{x} , получаем некоторую константу $c \in E_2$, а затем $\bar{c} \in E_2$.

Константы 0 и 1 построены.

Доказательство. 2.2. Построение отрицания \bar{x} .

По лемме о немонотонной функции из $f_m \notin M$, подставляяя вместо ее переменных функции 0, 1, x, получаем отрицание \bar{x} .

Отрицание \bar{x} построено.

Доказательство. 2.3. Построение конъюнкции $x \cdot y$.

По лемме о нелинейной функции из $f_l \notin L$, подставляяя вместо ее переменных функции $0,\ 1,\ x,\ \bar{x},\ y,\ \bar{y}$ и, возможно, навешивая отрицание над функцией, получаем конъюнкцию $x\cdot y$.

Конъюнкция $x \cdot y$ построена.

Доказательство. Значит, формулами над A можно выразить все функции из полной системы $\{0,1,\bar{x},x\cdot y\}$.

Следовательно, система A — полна.

По теореме Поста можно проверять полноту систем функций из P_2 .

Если задано конечное множество $A=\{f_1,\ldots,f_t\}\subseteq P_2$, то можно построить таблицу со строками, соответствующими функциям f_1,\ldots,f_t , и со столбцами, соответствующими классам T_0,T_1,L,S,M .

На пересечении строки и столбца можно записывать «+» или «-» в зависимости от того, принадлежит или не принадлежит функция, которой обозначена эта строка, к классу, которым обозначен этот столбец.

По теореме Поста система A — полна, если в этой таблице в любом столбце найдется хотя бы один «минус», и не полна, если в этой таблице найдется столбец, состоящий только из «плюсов».

Пример. Проверить, является ли полной система

$$A = \{\bar{x}, x \to y\}.$$

Применим теорему Поста:

	T_0	T_1	L	S	М
\bar{x}	_	_	+	+	_
$x \rightarrow y$	_	+	_	_	_

Значит, система A — полна.

Пример. Проверить, является ли полной система

$$A = \{\bar{x}, x \sim y\}.$$

Применим теорему Поста:

	T_0	T_1	L	S	М
\bar{x}	_	_	+	+	_
$x \sim y$	_	+	+	_	_

Значит, система A — не полна, т. к. $A \subseteq L$.

Поразительно, но теорему Поста можно применять для проверки полноты и бесконечных множеств функций из P_2 .

Пример. Проверить, является ли полной системой бесконечное множество

$$A=(S\cap M)\cup (L\setminus M).$$

Предположим, что A — полная система. Тогда по теореме Поста в A обязаны содержаться функции, не принадлежащие каждому из классов T_0, T_1, L, S, M .

Попытаемся их подобрать. Находим:

$$ar{x} \in L \setminus M,$$
 $ar{x} \notin T_0, T_1, M,$
 $x \oplus y \in L \setminus M,$ $x \oplus y \notin S,$
 $xy \oplus xz \oplus yz \in S \cap M,$ $xy \oplus xz \oplus yz \notin L.$

Значит, система A — полна.

Пример. Проверить, является ли полной системой бесконечное множество

$$A = (L \cap T_0 \cap T_1) \cup (S \setminus (T_0 \cup T_1)).$$

Предположим, что A — полная система. Тогда по теореме Поста в A обязаны содержаться функции, не принадлежащие каждому из классов T_0, T_1, L, S, M .

Попытаемся их подобрать. Находим:

$$ar{x} \in S \setminus (T_0 \cup T_1), \qquad \qquad ar{x} \notin T_0, T_1, M, \\ xy \oplus xz \oplus yz \oplus 1 \in S \setminus (T_0 \cup T_1), \qquad xy \oplus xz \oplus yz \oplus 1 \notin L.$$

Осталось найти несамодвойственную функцию в A. Т. к. в множестве $S \setminus (T_0 \cup T_1)$ все функции — самодвойственные, искать ее нужно в множестве $L \cap T_0 \cap T_1$.

Пример (продолжение). Посмотрим, какие функции входят в множество $L \cap T_0 \cap T_1$.

Если $f(x_1,\ldots,x_n)\in L\cap T_0\cap T_1$, то $f\in L$, т. е.

$$f(x_1,\ldots,x_n)=c_0\oplus c_1x_1\oplus\ldots\oplus c_nx_n,$$

где $c_0, c_1, \ldots, c_n \in E_2$.

Кроме того, $f \in T_0$ и $f \in T_1$, т. е.

$$f(0,...,0) = 0, \quad c_0 = 0,$$

 $f(1,...,1) = 1, \quad c_1 \oplus ... \oplus c_n = 1.$

Итак, если $f \in L \cap T_0 \cap T_1$, то

$$f(x_1,\ldots,x_n)=c_1x_1\oplus\ldots\oplus c_nx_n,$$

где $c_1,\ldots,c_n\in E_2$ и

$$c_1 \oplus \ldots \oplus c_n = 1.$$

Пример (продолжение). Найдем двойственную функцию к функции $f(x_1, \ldots, x_n)$:

$$f^{*}(x_{1},...,x_{n}) = \overline{c_{1}\overline{x}_{1} \oplus ... \oplus c_{n}\overline{x}_{n}} =$$

$$= c_{1}(x_{1} \oplus 1) \oplus ... \oplus c_{n}(x_{n} \oplus 1) \oplus 1 =$$

$$= (c_{1}x_{1} \oplus ... \oplus c_{n}x_{n}) \oplus (c_{1} \oplus ... \oplus c_{n} \oplus 1) =$$

$$= c_{1}x_{1} \oplus ... \oplus c_{n}x_{n} = f(x_{1},...,x_{n}).$$

Следовательно, $f^*=f$, т. е. $f\in S$ и

$$L \cap T_0 \cap T_1 \subseteq S$$
.

Значит, система A — не полна, т. к. $A \subseteq S$.

Теорему Поста можно применять для проверки полноты множеств функций из P_2 , в которых функции не явно заданы, а описаны своими свойствами.

Пример. Пусть $f \in P_2$ и формулами над $A = \{f\}$ можно выразить константы 0 и 1. Доказать, что система $A = \{f\}$ — полна.

Докажем, что $f \notin T_0 \cup T_1 \cup L \cup S \cup M$.

Пример (продолжение). Итак,

1) если $f\in T_0$, то $A\subseteq T_0$, значит,

$$[A]\subseteq [T_0]=T_0,$$

но $1 \in [A]$, $1 \notin T_0$ — противоречие, поэтому $f \notin T_0$;

2) если $f \in T_1$, то $A \subseteq T_1$, значит,

$$[A]\subseteq [T_1]=T_1,$$

но $0\in [A]$, $0\notin T_1$ — противоречие, поэтому $f\notin T_1$;

3) если $f \in S$, то $A \subseteq S$, значит,

$$[A]\subseteq [S]=S,$$

но $1\in [A]$, $1\notin S$ — противоречие, поэтому $f\notin S$.

Пример (продолжение). Далее,

- 4) $f \notin T_0$, $f \notin T_1$, поэтому $f \notin M$;
- 5) $f \notin T_0$, $f \notin T_1$, если предположить, что $f \in L$, т. е. если $f \in L \setminus (T_0 \cup T_1)$, то аналогично предыдущему примеру показываем $f \in S$ противоречие, поэтому $f \notin L$.

Пример (продолжение). Следовательно, получаем:

	T_0	T_1	L	S	М
f	_	ı	_	ı	_

Значит, система $A=\{f\}$ — полна.

Задачи для самостоятельного решения

- 1. Докажите предложение 6.1.
- 2. Проверьте, является ли множество A полной системой, если

1)
$$A = (M \cap T_0 \cap T_1) \cup (M \setminus (T_0 \cup T_1)) \cup \{x \oplus y \oplus z\};$$

2)
$$A = ((M \cap T_0) \setminus T_1) \cup ((M \cap T_1) \setminus T_0)) \cup \{x \oplus y \oplus z\}.$$

Литература к лекции

- 1. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012.
- 2. Марченков С. С. Основы теории булевых функций. М.: Физматлит, 2014.
- 3. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001.
- 4. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.