The Gaussian Cotype of Operators from C(K)

S.J. Montgomery-Smith

Abstract

We show that the canonical embedding $C(K) \to L_{\Phi}(\mu)$ has Gaussian cotype p, where μ is a Radon probabilty measure on K, and Φ is an Orlicz function equivalent to $t^p(\log t)^{\frac{p}{2}}$ for large t.

* * * * * *

In [6], I showed that the Gaussian cotype 2 constant of the canonical embedding $l_{\infty}^{N} \to L_{2,1}^{N}$ is bounded by $\log \log N$. Talagrand [9] showed that this embedding does not have uniformly bounded cotype 2 constant. In fact, a careful study of his proof yields that the cotype 2 constant is bounded below by $\sqrt{\log \log N}$. In this paper, we will show that this is the correct value for the Gaussian cotype 2 constant of this operator. However, we will show this via a different result, which we will give presently. First, let us define our terms.

We will write Φ_p for an Orlicz function such that $\Phi_p(t) \approx t^p (\log t)^{\frac{p}{2}}$ for large t.

For any bounded linear operator $T: X \to Y$, where X and Y are Banach spaces, and any $2 \le p < \infty$, we say that T has Gaussian cotype p if there is a number $C < \infty$ such that for all sequences $x_1, x_2, \ldots \in X$ we have

$$\mathbf{E} \left\| \sum_{s=1}^{\infty} \gamma_s x_s \right\| \ge C^{-1} \left(\sum_{s=1}^{\infty} \|Tx_s\|^p \right)^{\frac{1}{p}}.$$

(Here, as elsewhere, $\gamma_1, \gamma_2, \ldots$ denote independent N(0,1) Gaussian random variables.) We call the least value of C the Gaussian cotype p constant of T, and denote it by $\beta^{(p)}(T)$.

Throughout this paper, we shall use the letter c to denote a positive finite constant, whose value may change with each occurrence. We shall write $A \approx B$ to mean $A \leq c B$ and $B \leq c A$.

Theorem 1. Let μ be a Radon probability measure on a compact Hausdorff topological space K, and let $2 \leq p < \infty$. Then the canonical embedding $C(K) \to L_{\Phi_p}(\mu)$ has Gaussian cotype p.

Finding the Gaussian cotype p constant of an operator from C(K) involves finding lower bounds for the quantity $\mathbf{E} \|\sum_{s=1}^{\infty} \gamma_s x_s\|_{\infty}$, where $x_1, x_2, \ldots \in C(K)$. In fact, since

we really only need to consider finite sequences $x_1, x_2, \ldots, x_S \in C(K)$, in order to prove Theorem 1, it is sufficient to show that the Gaussian cotype p constant of the canonical embedding $C(K) \to L_{\Phi_p}(\mu)$ is uniformly bounded over all finite K. Now we see that we are trying to find lower bounds for the supremum of the finite Gaussian process, $\sup_{\omega \in K} |\Gamma_{\omega}|$, where $\Gamma_{\omega} = \sum_{s=1}^{\infty} \gamma_s x_s(\omega)$. Hence we can apply the following result due to Talagrand [8].

Theorem 2. Let $(\Gamma_{\omega} : \omega \in K)$ be a finite Gaussian process.

i) Let

$$V_1 = \mathbf{E}\left(\sup_{\omega \in K} |\Gamma_{\omega}|\right).$$

ii) Let V_2 be the infimum of

$$\left(\sup_{t\geq 1} \sqrt{1+\log t} \left(\mathbf{E} \left| Y_t \right|^2\right)^{\frac{1}{2}}\right) \left(\sup_{\omega\in K} \sum_{t=1}^{\infty} \left|\alpha_t(\omega)\right|\right)$$

over all Gaussian processes $(Y_t)_{t=1}^{\infty}$ and over all sequences $(\alpha_t)_{t=1}^{\infty}$ of functions on K such that $\Gamma_{\omega} = \sum_{t=1}^{\infty} \alpha_t(\omega) Y_t$.

Then $V_1 \approx V_2$.

We can rewrite this corollary in the following way. First, let us define the following spaces (here we are assuming K is finite).

$$\mathcal{G} = \left\{ \left(x_s \in C(K) \right)_{s=1}^{\infty} : \| (x_s) \|_{\mathcal{G}} = \left\| \sum_{s=1}^{\infty} \gamma_s x_s \right\|_{\infty} < \infty \right\},$$

$$C(K, l_1) = \left\{ \left(\alpha_t \in C(K) \right)_{t=1}^{\infty} : \| (\alpha_t) \|_{C(K, l_1)} = \left\| \sum_{t=1}^{\infty} |\alpha_t| \right\|_{\infty} < \infty \right\},$$

$$\mathcal{Y} = \left\{ \left(y_t \in l_2 \right)_{t=1}^{\infty} : \| (y_t) \|_{\mathcal{Y}} = \sup_{t \ge 1} \sqrt{1 + \log t} \| y_t \|_2 < \infty \right\}.$$

Let $m: C(K, l_1) \times \mathcal{Y} \to \mathcal{G}$ be the bilinear map $m((\alpha_t), (y_t)) = (x_s)$, where

$$x_s = \sum_{t=1}^{\infty} y_t(s)\alpha_t.$$

Corollary 3. The map m has the following two properties:

i) m is bounded;

ii) m is open, that is, if $\|(x_s)\|_{\mathcal{G}} \leq 1$, then there are $\|(\alpha_t)\|_{C(K,l_1)} \leq c$ and $\|(y_t)\|_{\mathcal{Y}} \leq c$ such that $m((\alpha_t),(y_t)) = (x_s)$.

Proof: This is just restating Theorem 2, setting $\Gamma_{\omega} = \sum_{s=1}^{\infty} \gamma_s x_s(\omega)$, and $Y_t = \sum_{s=1}^{\infty} \gamma_s y_t(s)$.

From this we obtain the following corollary, for which we first give a definition.

Definition. If $2 \le p < \infty$, and $T: C(K) \to Y$ is a bounded linear map, where K is a finite Hausdorff space, and Y is a Banach space, then we set

$$H^{(p)}(T) = \sup \left\{ \left(\sum_{s=1}^{\infty} \|Tx_s\|^p \right)^{\frac{1}{p}} \right\},$$

where the supremum is over all $x_s = \sum_{t=1}^{\infty} y_t(s)\alpha_t$, with $\alpha_1, \alpha_2, \ldots$ pairwise disjoint elements of the unit ball of C(K), and $\|(y_t)\|_2 \leq \frac{1}{\sqrt{1+\log t}}$ for each $t \geq 1$.

Corollary 4. For any $2 \le p < \infty$, and for any bounded linear operator $T: C(K) \to Y$, where K is a finite Hausdorff space, and Y is a Banach space, we have

$$H^{(p)}(T) \approx \beta^{(p)}(T).$$

Proof: This follows straight away from Corollary 3 and the following lemma.

Lemma 5. Let B be the set of $(\alpha_t) \in C(K, l_1)$ such that the α_t are pairwise disjoint elements of the unit ball of C(K). Then the closed convex hull of B is the unit ball of $C(K, l_1)$.

Proof: See [5], Lemma 4 or [3], Proposition 14.4.

Now we are almost in a position to prove Theorem 1; we just need the following properties of $L_{\Phi_p}(\mu)$.

Lemma 6. If μ is a Radon probability measure on a compact Hausdorff space K, then

- i) for any Borel subset I of K, we have $\|\chi_I\|_{\Phi_p} \approx (\mu(I))^{\frac{1}{p}} \sqrt{\log \frac{1}{\mu(I)}}$;
- ii) the space L_{Φ_p} satisfies an upper p estimate.

Proof of Theorem 1: We want to show that $H^{(p)}(C(K) \to L_{\Phi_p}(\mu)) \leq c$, where μ is a probability measure on a finite Hausdorff space K. So consider (x_s) , (α_t) and (y_t) as

given in the definition of $H^{(p)}(T)$. Then we need to show that

$$\sum_{s=1}^{\infty} \|x_s\|_{\Phi_p}^p \le c.$$

First note, by Lemma 6, that

$$||x_s||_{\Phi_p}^p \le c \sum_{t=1}^\infty y_t(s)^p ||a_t||_{\Phi_p}^p$$

$$\le c \sum_{t=1}^\infty y_t(s)^p \mu(I_t) \left(\log \frac{1}{\mu(I_t)}\right)^{\frac{p}{2}},$$

where I_t is the support of α_t . Hence

$$\sum_{s=1}^{\infty} \|x_s\|_{\Phi_p}^p \le c \sum_{t=1}^{\infty} \sum_{s=1}^{\infty} y_t(s)^p \mu(I_t) \left(\log \frac{1}{\mu(I_t)}\right)^{\frac{p}{2}}$$

$$\le c \sum_{t=1}^{\infty} \frac{1}{(1 + \log t)^{\frac{p}{2}}} \mu(I_t) \left(\log \frac{1}{\mu(I_t)}\right)^{\frac{p}{2}},$$

since $||y_t||_p \le ||y_t||_2 \le \frac{1}{\sqrt{1+\log t}}$. But now, splitting the sum into the two cases $\mu(I_t) \ge \frac{1}{t^2}$ or $\mu(I_t) < \frac{1}{t^2}$, we deduce that this sum is bounded by some universal constant.

Concluding Remarks

We first note that there is a nice way to calculate the Orlicz norms $\|\cdot\|_{\Phi_p}$ provided by the following result of Bennett and Rudnick.

Theorem 7. If $1 \le p < \infty$ and $a \in \mathbf{R}$, then the Orlicz probability norm given by the function $\Theta(t) \approx t^p(\log t)^a$ (t large) is equivalent to the norm

$$||x|| = \left(\int_0^1 (1 + \log \frac{1}{t})^a x^*(t)^p dt\right)^{\frac{1}{p}},$$

where x^* is the non-increasing rearrangement of |x|.

Proof: See [1], Theorem D.

Thus we can now deduce the following result.

Theorem 8. The Gaussian cotype 2 constant of the canonical embedding $l_{\infty}^N \to L_{2,1}^N$ is bounded by $\sqrt{\log \log N}$.

Proof: Let $K = \{1, 2, ..., N\}$, and let μ be the measure $\mu(A) = \frac{|A|}{N}$. Now notice that if $x \in l_{\infty}^{N} = C(K)$, then $x^{*}(t)$ is constant over $0 \le t \le \frac{1}{N}$, and hence

$$\begin{aligned} \|x\|_{L_{2,1}^{N}} &= \frac{1}{2} \int_{0}^{1} \frac{x^{*}(t)}{\sqrt{t}} dt \\ &= \frac{x^{*}(1/N)}{\sqrt{N}} + \frac{1}{2} \int_{\frac{1}{N}}^{1} \frac{x^{*}(t)}{\sqrt{t}} dt \\ &\leq \left(\int_{0}^{\frac{1}{N}} (1 + \log \frac{1}{t}) x^{*}(t)^{2} dt \right)^{\frac{1}{2}} + \frac{1}{2} \left(\int_{\frac{1}{N}}^{1} \frac{1}{t(1 + \log \frac{1}{t})} dt \right)^{\frac{1}{2}} \left(\int_{\frac{1}{N}}^{1} (1 + \log \frac{1}{t}) x^{*}(t)^{2} dt \right)^{\frac{1}{2}} \\ &\leq c \sqrt{\log \log N} \|x\|_{\Phi_{2}}. \end{aligned}$$

This is sufficient to prove the result.

An obvious question is the following.

Problem 9. Is there a rearrangement invariant norm $\|\cdot\|_X$ on [0,1] which is strictly larger than $\|\cdot\|_{\Phi_p}$, but for which the canonical embedding $C(K) \to X(\mu)$ has Gaussian cotype p?

For p > 2, the answer is yes. The embedding $C(K) \to L_{p,1}(\mu)$ has cotype p (this follows from results in [2]). Hence $X = L_{\Phi_p} \cap L_{p,1}$ equipped with the norm $||x|| = \max\{||x||_{\Phi_p}, ||x||_{p,1}\}$ provides the counterexample.

For p=2, the answer is no. Talagrand [10] has recently shown that if $C[0,1] \to X$ has Gaussian cotype 2, then $\|\cdot\|_X$ is bounded by a constant times $\|\cdot\|_{\Phi_2}$.

Another problem is also suggested by Theorem 1.

Problem 10. If $T: C(K) \to X$ is a linear map with Gaussian cotpye 2, does it follow that there is a Radon probability measure μ on K such that $||Tx|| \le c ||x||_{L_{\Phi_2}(\mu)}$ for $x \in C(K)$?

Talagrand [10] has recently shown that this not the case.

Acknowledgements

Much of the contents of this paper also appear in my Ph.D. thesis [7], which I studied at Cambridge University under the supervision of Dr. D.J.H. Garling, to whom I would like to express my thanks. I would also like to acknowledge simplifications communicated to me by M. Talagrand, including the statement of Corollary 4.

References

- 1. C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, *Dissert. Math.* **175** (1980), 1–72.
- 2. J. Creekmore, Type and cotype in Lorentz $L_{p,q}$ spaces, Indag. Math. 43 (1981), 145–152.
- 3. G.J.O. Jameson, Summing and Nuclear Norms in Banach Space Theory, London Math. Soc., Student Texts 8.
- 4. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I—Sequence Spaces, Springer-Verlag.
- 5. B. Maurey, Type et cotype dans les espaces munis de structures locales inconditionelles, Seminaire Maurey-Schwartz 1973–74, Exposés 24–25.
- 6. S.J. Montgomery-Smith, On the cotype of operators from l_{∞}^{n} , preprint.
- 7. S.J. Montgomery-Smith, The Cotype of Operators from C(K), Ph.D. thesis, Cambridge University, August 1988.
- 8. M. Talagrand, Regularity of Gaussian processes, *Acta Math.* **159** (1987), 99–149.
- 9. M. Talagrand, The canonical injection from C([0,1]) into $L_{2,1}$ is not of cotype 2, Contemporary Mathematics, Volume 85 (1989), 513–521.
- 10. M. Talagrand, Private communication.
 - S.J. Montgomery-Smith,
 Department of Mathematics,
 University of Missouri at Columbia,
 Columbia, Missouri 65211,
 U.S.A.