1. A)

Table 1				
Year	Project 1 cash flow (\$)	Discount Factor @ 7%	Discounted Cash Flow	
0	-100,000	1.0000	-100,000	
1	10,000	0.9346	9,345.7944	
2	10,000	0.8734	8,734.3873	
3	10,000	0.8163	8,162.9788	
4	20,000	0.7629	15,257.9042	
5	100,000	0.7130	71,298.6179	
Net Profit	50,000		NPV = 12,799.6826	

Table 2				
Year	Project 2 cash flow (\$)	Discount Factor @ 7%	Discounted Cash Flow	
0	-100,000	1.0000	-100,000	
1	30,000	0.9346	28,037.3832	
2	30,000	0.8734	26,203.1618	
3	30,000	0.8163	24,488.9363	
4	30,000	0.7629	22,886.8564	
5	30,000	0.7130	21,389.5854	
Net Profit	50,000		NPV = 23,005.9231	

b) Project 1: NPV = \$12,799.68 Payback Period: 4.5 years

Project 2: NPV = \$23,005.92 Payback Period: 3.33 years

c) ROI for both projects are 10%.

d) The ROI are the same for both projects so that won't influence our decision. Project 2 has a higher NPV and a shorter payback period than Project 1, so I will pick Project 2 for both factors.

a.

Equipment	P ₁	P_2	P ₃	Average Payoff
C_1	70	80	90	(70 + 80 + 90) / 3 = 80
C ₂	100	20	120	(100 + 20 + 120) / 3 = 80
C ₃	100	90	60	(100 + 90 + 60) / 3 = 83.33
C ₄	30	30	140	(30 + 30 + 140) / 3 = 66.67

Equipment C₃ would be purchased because it has the highest average payoff

b.

Equipment	P ₁	P ₂	P ₃	Worst Payoff
C ₁	70	80	90	70
C ₂	100	20	120	20
C ₃	100	90	60	60
C ₄	30	30	140	30

Equipment C₁ would be purchased because it has the highest worst payoff

C.

Equipment	P ₁	P ₂	P ₃	Best Payoff
C_1	70	80	90	90
C_2	100	20	120	120
C ₃	100	90	60	100
C ₄	30	30	140	140

Equipment C₄ would be purchased because it has the highest best payoff

d.

Equipment	Best Payoff	Worst Payoff	α = 0.2	Blended Payoff
C_1	90	70	(0.2 * 90) + (0.8 * 70)	74
C ₂	120	20	(0.2 * 120) + (0.8 * 20)	40
C ₃	100	60	(0.2 * 100) + (0.8 * 60)	68
C ₄	140	30	(0.2 * 140) + (0.8 * 30)	52

Equipment C₁ would be purchased because it has the highest blended payoff

e.

Equipment	P ₁	P ₂	P ₃	Maximum Regret
C_1	100 – 70 = 30	90 – 80 = 10	140 – 90 = 50	50
C ₂	100 - 100 = 0	90 – 20 = 70	140 – 120 = 20	70
C ₃	100 - 100 = 0	90 – 90 = 0	140 – 60 = 80	80
C ₄	100 – 30 = 70	90 – 30 = 60	140 – 140 = 0	70

Equipment C₁ would be purchased because it has the lowest maximum regret

Optimum Points				
Routine	Execution Time (ms)	Number of Records		
1	912	40		
2	394	54		

Routine 1:

Routine 2:

Based on the optimum points plotted on the graph, Routine 2 has a faster execution time and a larger input stream. Therefore, Routine 2 should be selected and the size of the input stream should be 54 records.