Compilers (CS3 I 003)

Lecture 07-08

Pralay Mitra

Curse or Boon 1: Left-Recursion

A grammar is left-recursive iff there exists a non-terminal A that can derive to a sentential form with itself as the leftmost symbol. Symbolically,

$$A \Rightarrow^+ A\alpha$$

We cannot have a recursive descent or predictive parser (with left-recursion in the grammar) because we do not know how long should we recur without consuming an input

Curse or Boon 1: Left-Recursion

Note that, $A \rightarrow A\alpha$ leads to:

Removing left-recursion $A' \rightarrow \beta A' \rightarrow \alpha A'$ leads to:

Curse or Boon 2: Left-Recursion

```
1: E \rightarrow E + E

2: E \rightarrow E * E

3: E \rightarrow (E)

4: E \rightarrow id
```

- Ambiguity simplifies. But, ...
 - Associativity is lost
 - Precedence is lost
- Can Operator Precedence (infix → postfix) give us a clue?

Left-Recursion: Example

Grammar G₁ before Left-Recursion Removal

1:
$$E \rightarrow E + T$$

2: $E \rightarrow T$
3: $T \rightarrow T * F$
4: $T \rightarrow F$
5: $F \rightarrow (E)$
6: $F \rightarrow id$

Grammar G₂ after Left-Recursion Removal

1:	Ε	\rightarrow	T E'	
2:	E'	\rightarrow	+ T E'	ϵ
3:	T	\rightarrow	FT'	
4:	T'	\rightarrow	* F T'	ϵ
5:	F	\rightarrow	(E)	
6:	F	\rightarrow	id	

- These are syntactically equivalent. But what happens semantically?
- Can left recursion be effectively removed?
- What happens to Associativity?

Top-Down parsing

- Action A: Selection of an alternative for the actual leftmost nonterminal and attachment of the right side of the production to the actual tree fragment.
- Action B: Comparison of terminal symbols to the left of the leftmost nonterminal with the remaining input.

$$S \to E$$
 $E' \to + E \mid \varepsilon$ $T' \to *T \mid \varepsilon$ $\mathsf{Id+Id*Id}$ $E \to T \ E'$ $T \to F \ T'$ $F \to (E) \mid \mathsf{Id}$

Top-Down parsing

$$\begin{array}{lll} S \to E & E' \to + E \mid \varepsilon & T' \to *T \mid \varepsilon & \mathsf{Id+Id*Id} \\ E \to T \; E' & T \to F \; T' & F \to (E) \mid \mathsf{Id} \end{array}$$

Ambiguous Derivation of id + id * id

Correct derivation: * has precedence over +

$$E \$ \Rightarrow \underbrace{E + E} \$$$

$$\Rightarrow E + \underline{E} * \underline{E} \$$$

$$\Rightarrow E + E * \underline{id} \$$$

$$\Rightarrow E + \underline{id} * \underline{id} \$$$

$$\Rightarrow \underline{id} + \underline{id} * \underline{id} \$$$

Wrong derivation: + has precedence over *

$$E \$ \Rightarrow \underline{E * E} \$$$

$$\Rightarrow E * \underline{id} \$$$

$$\Rightarrow \underline{E + E} * \underline{id} \$$$

$$\Rightarrow E + \underline{id} * \underline{id} \$$$

$$\Rightarrow \underline{id} + \underline{id} * \underline{id} \$$$

Ambiguous Derivation of id * id + id

Correct derivation: * has precedence over +

$$E \$ \Rightarrow \underline{E + E} \$$$

$$\Rightarrow E + \underline{id} \$$$

$$\Rightarrow \underline{E * E} + \underline{id} \$$$

$$\Rightarrow \underline{E * E} + \underline{id} \$$$

$$\Rightarrow \underline{E * \underline{id}} + \underline{id} \$$$

$$\Rightarrow \underline{id} * \underline{id} + \underline{id} \$$$

Wrong derivation: + has precedence over *

$$E \$ \Rightarrow \underline{E * E} \$$$

$$\Rightarrow E * \underline{E + E} \$$$

$$\Rightarrow E * \underline{E + id} \$$$

$$\Rightarrow E * \underline{id} + \underline{id} \$$$

$$\Rightarrow \underline{id} * \underline{id} + \underline{id} \$$$

Remove: Ambiguity and Left-Recursion

```
1: E \rightarrow E + E

2: E \rightarrow E * E

3: E \rightarrow (E)

4: E \rightarrow id
```

Removing ambiguity:

Remove: Ambiguity and Left-Recursion

Removing ambiguity:

```
1: E \rightarrow E + T

2: E \rightarrow T

3: T \rightarrow T * F

4: T \rightarrow F

5: F \rightarrow (E)

6: F \rightarrow id
```

Removing left-recursion:

Remove: Ambiguity and Left-Recursion

Removing ambiguity:

```
1: E \rightarrow E + T

2: E \rightarrow T

3: T \rightarrow T * F

4: T \rightarrow F

5: F \rightarrow (E)

6: F \rightarrow id
```

Removing left-recursion:

```
1: E \rightarrow T E'

2|3: E' \rightarrow + T E' \mid \epsilon

4: T \rightarrow F T'

5|6: T' \rightarrow *F T' \mid \epsilon

7: F \rightarrow (E)

8: F \rightarrow id
```

A grammar

```
• G_0 = (\{E,T,F\}, \{+,*,(,),Id\}, P_0, E)
```

•
$$P_0$$
 $E \rightarrow E + T | T$
 $T \rightarrow T * F | F$
 $F \rightarrow (E) | Id$

First and Follow

- First(α) is the set of terminals that begin strings derived from α , where α is any string of grammar symbols. If $\alpha \rightarrow *$ ϵ then ϵ is also in First(α).
- Follow(A), for a non-terminal A, is the set of terminals a that can appear immediately to the right of A in some sentential; that is, the set of terminals a such that there exists a derivation of the form $S \rightarrow * \alpha A a \beta$ for some α and β .

First and Follow

$First(\alpha)$:

- 1. First(X) = {X} if X is a terminal.
- 2. Add ε to First(X) if there exists $X \rightarrow \varepsilon$.
- 3. If there is a production $X \to Y_1Y_2Y_3...Y_k$, $k \ge 1$, then place a in First(X) if a is in First(Y_i) and $Y_1Y_2...Y_{i-1} \to * \varepsilon$.

Follow(A):

- 1. Follow(S)=\$, where S is the start symbol and \$ is the input right end marker.
- 2. If there is a production $A \rightarrow \alpha B\beta$, then everything in First(β) except ϵ is in Follow(B).
- 3. If there is a production $A \rightarrow \alpha B \mid \alpha B \beta$, where First(β) contains ϵ then everything in Follow(A) is in Follow(B).

Exercise

Compute First and Follow for the following grammar:

- $E \rightarrow T E'$
- E' \rightarrow + T E' | ε
- T \rightarrow F T'
- T' \rightarrow * F T' | ε
- $F \rightarrow (E) | id$

Do it now

stmt \rightarrow if expr then stmt

| if expr then stmt else stmt

other

Ambiguous

Make it unambiguous.

Item Pushdown Automata (IPDA)

(E)
$$\Delta([X \to \beta.Y\gamma], \varepsilon) = \{[X \to \beta.Y\gamma][Y \to .\alpha] \mid Y \to \alpha \in P\}$$

(S) $\Delta([X \to \beta.a\gamma], a) = \{[X \to \beta a.\gamma]\}$
(R) $\Delta([X \to \beta.Y\gamma][Y \to \alpha.], \varepsilon) = \{[X \to \beta Y.\gamma]\}.$

E/S/R ← Expanding/Shifting/Reducing Transition

Accepting the word Id+Id*Id

$$E \rightarrow E + T | T$$

$$T \rightarrow T * F | F$$

 $F \rightarrow (E) \mid Id$

Pushdown	Remaining input
$[S \to .E]$	Id + Id * Id
$[S \to .E][E \to .E + T]$	Id + Id * Id
$[S \to .E][E \to .E + T][E \to .T]$	Id + Id * Id
$[S \to .E][E \to .E + T][E \to .T][T \to .F]$	Id + Id * Id
$[S \to .E][E \to .E + T][E \to .T][T \to .F][F \to .Id]$	Id + Id * Id
$[S \to .E][E \to .E + T][E \to .T][T \to .F][F \to Id.]$	+ Id * Id

Accepting the word Id+Id*Id

$[S \to .E][E \to .E + T][E \to .T][T \to F.]$	+Id * Id
$[S \to .E][E \to .E + T][E \to T.]$	+Id * Id
$[S \to .E][E \to E. + T]$	+Id * Id
$[S \to .E][E \to E + .T]$	ld ∗ ld
$[S \to .E][E \to E + .T][T \to .T * F]$	Id * Id
$[S \to .E][E \to E + .T][T \to .T * F][T \to .F]$	Id * Id
$[S \to .E][E \to E + .T][T \to .T * F][T \to .F][F \to .Id]$	Id * Id
$[S \to .E][E \to E + .T][T \to .T * F][T \to .F][F \to Id.]$	*ld
$[S \to .E][E \to E + .T][T \to .T * F][T \to F.]$	*ld
$[S \to .E][E \to E + .T][T \to T. * F]$	*ld
$[S \to .E][E \to E + .T][T \to T * .F]$	Id
$[S \to .E][E \to E + .T][T \to T * .F][F \to .Id]$	Id
$[S \to .E][E \to E + .T][T \to T * .F][F \to Id.]$	
$[S \to .E][E \to E + .T][T \to T * F.]$	
$[S \to .E][E \to E + T.]$	
$[S \rightarrow E.]$	

Construction of Predictive Parsing Table

•Input: Grammar G

•Output: Parsing Table M

•Method:

For each production A $\rightarrow \alpha$ of the grammar, do the following

- 1. For each terminal a in First(α), add $A \rightarrow \alpha$ to M[A, a].
- 2. If ε is in First(α), then for each terminal b in Follow(A), add $A \rightarrow \alpha$ to M[A, b]. If ε is in First(α) and \$ is in Follow(A), add $A \rightarrow \alpha$ to M[A,\$] as well.
- 3. All the blank M[A, a] entries are marked as error.

LL(I)

 $E \rightarrow T E'$ $E' \rightarrow + T E' \mid \varepsilon$ $T \rightarrow F T'$ $T' \rightarrow * F T' \mid \varepsilon$ $F \rightarrow (E) \mid id$

	id	+	*	()	\$
E	$E \rightarrow T E'$			E → T E'		
E '		$E' \rightarrow + T E'$			Ε' → ε	E ' → ε
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		T' → ε	T' → * F T'		T' → ε	T' → ε
F	$F \rightarrow id$			$\mathbf{F} \rightarrow (\mathbf{E})$		

LL(I)

	id	+	*
E	E → T E'		
E'		E' → + T E'	
T	$T \rightarrow FT'$		
T'		Τ' → ε	T' → * F T'
F	$F \rightarrow Id$		

	()	\$
E	$E \rightarrow T E'$		
E'		Ε' → ε	Ε' → ε
T	$T \rightarrow FT'$		
T'		Τ' → ε	Τ' → ε
F	$\mathbf{F} \rightarrow (\mathbf{E})$		

Matched	Stack	Input	Action
	E\$	ld+ld*ld\$	
	TE'\$	ld+ld*ld\$	Output E → TE'
	FT'E'\$	ld+ld*ld\$	Output T → FT'
	Id T'E'\$	ld+ld*ld\$	Output F → Id
ld	T'E'\$	+ld*ld\$	Match Id
ld	E'\$	+ld*ld\$	Output T' → ε
ld	+TE'\$	+ld*ld\$	Output E' →+TE'
ld+	TE'\$	ld*ld\$	Match +
ld+	FT'E'\$	ld*ld\$	Output T → FT'
ld+	Id T'E'\$	ld*ld\$	Output F → Id
ld+ld	T'E'\$	*ld\$	Match Id
ld+ld	* FT'E'\$	*ld\$	Output T' → *FT'
ld+ld*	FT'E'\$	ld\$	Match *
ld+ld*	Id T'E'\$	ld\$	Output F → Id
ld+ld*ld	T'E'\$	\$	Match Id
ld+ld*ld	E'\$	\$	Output T' $\rightarrow \epsilon$
ld+ld*ld	\$	\$	Output E' $\rightarrow \epsilon$

Syntax error

- I. Error is localized and reported.
- 2. Error is diagnosed.
- 3. Error is corrected.
- 4. Parser gets back to a state for further error detection.

$$A = B + (C + D * E ;$$

Should not go into endless loop while correcting errors.

Whenever the prefix \mathbf{u} of a word has been analyzed without announcing an error, then there exists a word \mathbf{w} such that $\mathbf{u}\mathbf{w}$ is a word of the language.

Error recovery in predictive parsing

$$E \rightarrow T E'$$

 $E' \rightarrow + T E' \mid \varepsilon$
 $T \rightarrow F T'$
 $T' \rightarrow * F T' \mid \varepsilon$
 $F \rightarrow (E) \mid id$

	id	+	*	()	\$
E	E → T E'			E → T E'	synch	synch
E '		$E' \rightarrow + T E'$			E' → ε	E' → ε
T	$T \rightarrow FT'$	synch		$T \rightarrow FT'$	synch	synch
T '		T' → ε	T' → * F T'		Τ' → ε	T' → ε
F	$F \rightarrow Id$	synch	synch	$\mathbf{F} \rightarrow (\mathbf{E})$	synch	synch

LL(I) parser (Home work)

Construct the predictive parsing table

G=(
$$\{S,E,S'\}, \{i, t, a, e, b\}, P, S$$
)

P:

$$S \rightarrow i E t S S' \mid a$$

 $S' \rightarrow e S \mid \varepsilon$
 $E \rightarrow b$

Parsers

- Top-down parsing:
 - The non-confirmed part of the prediction starts with a nonterminal.
 - Termination upon prediction and confirmation of whole input.
 - $\gamma_1 \beta \gamma_2$ is produced/derived from $\gamma_1 A \gamma_2$ when $A \rightarrow \beta$ is a production rule.
- Bottom-up parsing:
 - The non-confirmed part of the prediction starts with a nonterminal.
 - It either reduce or shift to next input symbol.
 - $\gamma_1 A \gamma_2$ is reduced from $\gamma_1 \beta \gamma_2$ when $A \rightarrow \beta$ is a production rule.

Bottom-up Parser

- Read the next input symbol (shift)
- Reduce the right side of a production $X \rightarrow \alpha$ at the top of the pushdown by the left side X of the production (*reduce*).

Bottom-up parsing

- Bottom-up parsing:
 - The non-confirmed part of the prediction starts with a nonterminal.
 - It either reduce or shift to next input symbol.
 - $\gamma_1 A \gamma_2$ is reduced from $\gamma_1 \beta \gamma_2$ when $A \rightarrow \beta$ is a production rule.

Item Pushdown Automata (IPDA)

$$\begin{array}{ll} (E) & \Delta([X \to \beta.Y\gamma], \varepsilon) & = \{[X \to \beta.Y\gamma][Y \to .\alpha] \mid Y \to \alpha \in P\} \\ (S) & \Delta([X \to \beta.a\gamma], a) & = \{[X \to \beta a.\gamma]\} \\ (R) & \Delta([X \to \beta.Y\gamma][Y \to \alpha.], \varepsilon) = \{[X \to \beta Y.\gamma]\}. \end{array}$$

E/S/R ← Expanding/Shifting/Reducing Transition

Definitions

• Item for $A \rightarrow XYZ$

$$A \rightarrow .XYZ \mid X.YZ \mid XY.Z \mid XYZ.$$

Closure

If *I* is a set of items for a grammar *G*, then CLOSURE(*I*) is the set of items constructed from *I* by:

- (i) Add every item in *I* to CLOSURE(*I*)
- (ii) $\forall A \rightarrow \alpha . B\beta \in \text{CLOSURE}(I) \land B \rightarrow \gamma$ Add $B \rightarrow . \gamma$ to CLOSURE(I) if it is not there.
- Action
- Goto

GOTO(I,X) is defined to be the closure of the set of all items $[A \rightarrow \alpha X.\beta]$ such that $[A \rightarrow \alpha .X\beta]$ is in I.

Definitions

• Item for $A \rightarrow XYZ$

$$A \rightarrow .XYZ \mid X.YZ \mid XY.Z \mid XYZ.$$

- Kernel Items, Non-kernel Items
- Closure

If *I* is a set of items for a grammar *G*, then CLOSURE(*I*) is the set of items constructed from *I* by:

- (i) Add every item in *I* to CLOSURE(*I*)
- (ii) $\forall A \rightarrow \alpha B \beta \in CLOSURE(I) \land B \rightarrow \gamma$ Add $B \rightarrow \gamma$ to CLOSURE(I) if it is not there.
- Action
- Goto

GOTO(I,X) is defined to be the closure of the set of all items $[A \rightarrow \alpha X.\beta]$ such that $[A \rightarrow \alpha .X\beta]$ is in I.

Definitions

Handle: A substring that matches the body of a production, and whose reduction represents one step along the reverse of a rightmost derivation.

Reliable prefix: A reliable prefix is a prefix of a right sentential-form that does not properly extend beyond the handle.

Right Sentential Form	Handle	Reducing Production
ld * ld	ld	F → Id
F * Id	F	$T \rightarrow F$
T * Id	Id	F → Id
T * F	T * F	$T \rightarrow T * F$
Т	Т	$E \rightarrow T$

Bottom-up parsing

$$S \rightarrow E$$

$$E \rightarrow E+T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (E) \mid Id$$

In an unambiguous grammar, the handle of a right sentential-form is the uniquely determined word that the *bottom-up* parser should replace by a nonterminal in the next reduction step to arrive at a rightmost derivation.

A reliable prefix is a prefix of a right sententialform that does not properly extend beyond the handle.

Right sentential-form	Handle	Reliable prefixess	Reason
E + F	F	E, E+, E+F	$S \Longrightarrow_{rm} E \Longrightarrow_{rm} E + T \Longrightarrow_{rm} E + F$
T*Id	Id	T, T*, T*Id	$S \stackrel{3}{\Longrightarrow} T * F \Longrightarrow T * Id$

Bottom-up parsing

$$S \rightarrow E$$
 $E \rightarrow E+T \mid T$
 $T \rightarrow T*F \mid F$
 $F \rightarrow (E) \mid Id$

A reliable prefix is a prefix of a right sententialform that does not properly extend beyond the handle.

Reliable prefix	Valid item	Reason
E +	$[E \rightarrow E + .T]$	$S \Longrightarrow_{rm} E \Longrightarrow_{rm} E + T$
	$[T \to .F]$	$S \stackrel{*}{\Longrightarrow} E + T \Longrightarrow_{rm} E + F$
	$[F o. ext{Id}]$	$S \stackrel{*}{\Longrightarrow} E + F \stackrel{\Longrightarrow}{\Longrightarrow} E + \mathrm{Id}$
(E + ($[F \to (.E)]$	$S \stackrel{*}{\Longrightarrow} (E + F) \Longrightarrow_{rm} (E + (E))$
	$[T \to .F]$	$S \stackrel{*}{\Longrightarrow} (E + (.T) \Longrightarrow_{rm} (E + (F))$
	[F o.Id]	$S \stackrel{*}{\Longrightarrow} (E + (F) \Longrightarrow_{rm} (E + (Id))$

Bottom-up parsing

$$S \rightarrow E$$
 $E \rightarrow E+T \mid T$
 $T \rightarrow T*F \mid F$
 $F \rightarrow (E) \mid Id$

Id * Id

Pushdown	Input	Erroneous alternative actions
	ld ∗ ld	
Id	* Id	
\overline{F}	* Id	Reading of * misses a required reduction
T	* Id	Reduction of T to E leads into a dead end
T *	Id	
T* Id		
T * F		Reduction of F to T leads into a dead end
T		
E		
S		

Bottom-up parsing

$$S \rightarrow E$$
 $E \rightarrow E+T \mid T$
 $T \rightarrow T*F \mid F$
 $F \rightarrow (E) \mid Id$

Id * Id

Shift-Reduce parsing

 $S \rightarrow E$ $E \rightarrow E+T \mid T$ $T \rightarrow T*F \mid F$ $F \rightarrow (E) \mid Id$

Shift / Reduce / Accept / Error

Stack	Input	Action	
\$	ld*ld\$	Shift	
\$Id	*ld\$	Reduce F → Id	
\$F	*Id\$	Reduce $T \rightarrow F$	
\$T	*Id\$	Shift	
\$T*	ld\$	Shift	
\$T*Id	\$	Reduce F →Id	
\$T*F	\$	Reduce T \rightarrow T*F	
\$T	\$	Reduce $E \rightarrow T$	
\$E	\$	Accept	

Shift/Reduce conflict Reduce/Reduce conflict

LR parsing

si ← shift and stack state i,
rj ← reduce by the production j,
Acc ← accept
Blank ← error

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow Id$$

State	Action						Goto		
	Id	+	*	()	\$	Е	Т	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

LR parsing

- (1) $E \rightarrow E + T$
- (2) $E \rightarrow T$
- (3) $T \rightarrow T * F$
- (4) $T \rightarrow F$
- (5) $F \rightarrow (E)$
- (6) $F \rightarrow Id$

	Stack	Symbol	Input	Action
1	0		ld*ld+ld\$	shift
2	0 5	Id	*ld+ld\$	reduce F → Id
3	03	F	*ld+ld\$	reduce T → F
4	02	Т	*ld+ld\$	shift
5	027	T*	ld+ld\$	shift
6	0275	T*ld	+ld\$	reduce F → Id
7	02710	T*F	+ld\$	reduce T → T*F
8	02	Т	+ld\$	reduce E → T
9	0 1	Е	+ld\$	shift
10	016	E+	ld\$	shift
11	0165	E+ld	\$	reduce F → Id
12	0163	E+F	\$	reduce T → F
13	0169	E+T	\$	reduce E → E+T
14	0 1	Е	\$	accept

```
I0: E'→.E
E→.E+T
E→.T
T→.T*F
T→.F
F→.(E)
F→.id
```

E'
$$\rightarrow$$
 E
E \rightarrow E + T | T
T \rightarrow T * F | F
F \rightarrow (E) | id

E'
$$\rightarrow$$
 E
E \rightarrow E + T | T
T \rightarrow T * F | F
F \rightarrow (E) | id

E'
$$\rightarrow$$
 E
E \rightarrow E + T | T
T \rightarrow T * F | F
F \rightarrow (E) | id

$$E' \rightarrow E$$
 $E \rightarrow E + T \mid T$
 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

$$E \rightarrow E + T \mid T$$
 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

 $E' \rightarrow E$

I3: T**→**F.

I5: F**→**id.

$$E' \rightarrow E$$
 $E \rightarrow E + T \mid T$
 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

I7:
$$T \rightarrow T^*.F$$

 $F \rightarrow .(E)$
 $F \rightarrow .id$

$$E' \rightarrow E$$
 $E \rightarrow E + T \mid T$
 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

I5:
$$F \rightarrow id$$
.

I11:
$$F \rightarrow (E)$$
.

E'
$$\rightarrow$$
 E
E \rightarrow E + T | T
T \rightarrow T * F | F
F \rightarrow (E) | id

I3: T**→**F.

Homework: Add GOTO(I,+)

E'
$$\rightarrow$$
 E
E \rightarrow E + T | T
T \rightarrow T * F | F
F \rightarrow (E) | id

I3: T→F.

Canonical LR (I) parsing table

Input: An augmented grammar G'.

Output: Canonical LR parsing table with <u>Action</u> and <u>Goto</u> for G'

Method:

- 1. Construct $C'=\{I_0,I_1,...\}$, the collection of sets of LR(1) items for G'.
- 2. State i of the parser is constructed from I_i . The parsing action for state i is:
 - (a) If $[A \rightarrow \alpha.a\beta, b]$ is in I_i and $\underline{Goto}(I_i,a) = I_j$, then $\underline{Action}[i,a]$ is "shift j". Here a must be a terminal.
 - (b) If $[A \rightarrow \alpha_{\bullet}, a]$ is in I_i , $A \neq S'$, then $\underline{Action}[i, a]$ is "reduce $A \rightarrow \alpha_{\bullet}$ ".
 - (c) If $[S' \rightarrow S_{\bullet}, \$]$ is in I_i , then <u>Action</u>[i,\$] is "accept".
- 3. The <u>Goto</u> transition for state i are constructed for all non-terminals A using the rule: If $Goto(I_i,A)=I_j$, then Goto[i,A]=j.
- 4. All blank entries are error.
- 5. Initial state is $[S' \rightarrow .S,\$]$.

Canonical LR (I) parsing table

Input: An augmented grammar G'.

Output: Canonical LR parsing table with <u>Action</u> and <u>Goto</u> for G'

Method:

- 1. Construct $C'=\{I_0,I_1,...\}$, the collection of sets of LR(1) items for G'.
- 2. State i of the parser is constructed from I_i . The parsing action for state i is:
 - (a) If $[A \rightarrow \alpha.a\beta, b]$ is in I_i and $\underline{Goto}(I_i,a) = I_j$, then $\underline{Action}[i,a]$ is "shift j". Here a must be a terminal.
 - (b) If $[A \rightarrow \alpha_{\bullet}, a]$ is in I_i , $A \neq S'$, then $\underline{Action}[i, a]$ is "reduce $A \rightarrow \alpha_{\bullet}$ ".
 - (c) If $[S' \rightarrow S_{\bullet}, \$]$ is in I_i , then <u>Action</u>[i,\$] is "accept".
- 3. The <u>Goto</u> transition for state i are constructed for all non-terminals A using the rule: If $Goto(I_i,A)=I_j$, then Goto[i,A]=j.
- 4. All blank entries are error.
- 5. Initial state is $[S' \rightarrow .S,\$]$.

LR(0)???? LR(2)?????

An example

- $(0) S' \rightarrow S$
- $(1) S \rightarrow CC$
- $(2) C \rightarrow cC$
- $(3) C \rightarrow d$
- I2: S→C.C,\$ C→.cC,c/d C→.d,c/d
- I3: C→c.C,c/d C→.cC,c/d C→.d,c/d
- I6: C→c.C,\$ C→.cC,\$ C→.d,\$
- si ← shift and stack state i,
- rj ← reduce by the production j,

Acc ← accept

Blank ← error

- I0: S'→.S,\$
 S→.CC,\$
 C→.cC,c/d
 C→.d,c/d
- I1: S'**→**S.,\$

- I4: C→d.,c/d
- I5: S→CC.,\$
- I7: C→d.,\$
- I8: C→cC.,c/d
- I9: C→cC.,\$

An example

- $(0) S' \rightarrow S$
- $(1) S \rightarrow CC$
- $(2) C \rightarrow cC$
- $(3) C \rightarrow d$

I2: S→C.C,\$
C→.cC,c/d
C→.d,c/d

I3: C→c.C,c/d C→.cC,c/d C→.d,c/d

I6: C→c.C,\$ C→.cC,\$ C→.d,\$

si ← shift and stack state i,

rj ← reduce by the production j,

Acc ← accept

Blank ← error

I1: S' → S.,\$	
-----------------------	--

|--|

15:	S) (.C.,\$	
				_

1/.	C 7 α.,φ
I8:	C→cC.,c/d

19: C→cC.,\$	I9 :	C → cC.,	\$
--------------	-------------	-----------------	----

I7· C→d \$

te	P	Action	GOTO		
State	c	d	\$	S	C
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

Error recovery in LR parsing

State	Action						Goto
	ld	+	*	()	\$	E
0	s3	el	el	s2	e2	el	1
I	e3	s4	s5	e3	e2	acc	
2	s3	el	el	s2	e2	el	6
3	r4	r4	r4	r4	r4	r4	
4	s3	el	el	s2	e2	el	7
5	s3	el	el	s2	e2	el	8
6	e3	s4	s5	e3	s9	e4	
7	rl	rl	s5	rl	rl	rl	
8	r2	r2	r2	r2	r2	r2	
9	r3	r3	r3	r3	r3	r3	

e1: Missing Operand

e2: Unbalanced right parenthesis

e3: Missing operator

e4: Missing right parenthesis.

LR(k) parser

We call a CFG G an LR(k)-grammar, if in each of its rightmost derivations $S' = \alpha_0 \Longrightarrow_{rm} \alpha_1 \Longrightarrow_{rm} \alpha_2 \cdots \Longrightarrow_{rm} \alpha_m = v$ and each right sentential-forms α_i occurring in the derivation

- the handle can be localized, and
- the production to be applied can be determined

$$S' \stackrel{*}{\Longrightarrow} \alpha X w \stackrel{*}{\Longrightarrow} \alpha \beta w$$
 and $S' \stackrel{*}{\Longrightarrow} \gamma Y x \stackrel{*}{\Longrightarrow} \alpha \beta y$ and $w|_k = y|_k$ implies $\alpha = \gamma \land X = Y \land x = y$.

Resolving conflicts

- Precedence
- Associativity

Homework

Draw LR parsing for following grammar

$$G=({E,T,F},{+,*,Id,(,)},P,E)$$

P:
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid Id$

An expression grammar

$$G_1 = (\{E\}, \{+, *, (,), Id\}, P_1, E)$$

 $P_1 \qquad E \rightarrow E + E \mid E * E \mid (E) \mid Id$

$$G_0=(\{E,T,F\},\{+,*,(,),Id\},P_0,E)$$
 P_0
 $E \rightarrow E+T|T$
 $T \rightarrow T*F|F$
 $F \rightarrow (E)|Id$

Structure of a Bison program

```
%{
C declarations
%}
Bison declarations
```

%%
Grammar rules

%%
Additional C code

Reverse polish notation calculator

```
% {
#define YYSTYPE double
#include <ctype.h>
#include <stdio.h>
% }
%token NUM
%% /* Grammar rules and actions follow */
input: /* empty */
     | input line
       '\n'
line:
     | \exp ' \mid n' | \{ printf ("\t\%.10g\n", \$1); \}
        NUM \{ \$\$ = \$1; \}
exp:
     | \exp \exp '+'  { $$ = $1 + $2; }
     | \exp \exp '-'  { $$ = $1 - $2; }
     | \exp \exp '*'  { $$ = $1 * $2; }
     | \exp \exp ' / ` { $\$ = \$1 / \$2; }
%%
```

```
yylex ()
 int c;
while ((c = getchar ()) == ' ' || c == ' t');
if (c == '.' \parallel isdigit(c)) {
   ungetc (c, stdin);
   scanf ("%lf", &yylval);
   return NUM;
if (c == EOF) return 0;
return c;
yyerror (char *s) /* Called by yyparse on error */
 printf ("%s\n", s);
main ()
 yyparse ();
```

Compilation and Execution

```
$ bison firstProg.y
```

```
$ cc firstProg.tab.c -lm -o firstProg
```

\$./firstProg

• • • •

\$

```
% {
                                      input: /* empty */
#define YYSTYPE double
                                            | input line
#include <ctype.h>
#include <stdio.h>
                                      line:
                                              '\n'
% }
                                           | \exp ' \ | \ \{ printf ("\t\%.10g\n", \$1); \} 
/* Bison Declaration */
                                              NUM
                                                                      \{ \$\$ = \$1;
                                      exp:
%token NUM
%left '-' '+' '*' '/'
                                            | \exp '+' \exp { \{ \$\$ = \$1 + \$3; \} }
                                            | \exp '-' \exp { \$\$ = \$1 - \$3; }
                                            | \exp''' \exp { \$ = \$1 * \$3; }
                                            | \exp '/' \exp { (\$\$ = \$1 / \$3; )}
                                            | '(' \exp ')'  { $$ = $2;
%%
                                       %%
```

Unary minus?

```
% {
#define YYSTYPE double
#include <ctype.h>
#include <stdio.h>
% }
/* Bison Declaration */
%token NUM
%left '-' '+' '*' '/'
%left NEG /* negation--unary
minus */
%%
```

Operator precedence?

```
input: /* empty */
     | input line
line: '\n'
     NUM
                              \{ \$\$ = \$1;
exp:
     | \exp '+' \exp { \{ \$\$ = \$1 + \$3; \} }
     | \exp '-' \exp  $$ = $1 - $3; }
     | \exp''' \exp \{ \$ = \$1 * \$3; \}
     | \exp ' / \exp  { $$ = $1 / $3; }
   /* Unary minus
     | '-' \exp \% \operatorname{prec NEG} \{ \$\$ = -\$2; \}
     | '(' \exp ')'  { $$ = $2; }
```

```
% {
#define YYSTYPE double
#include <ctype.h>
#include <stdio.h>
% }
/* Bison Declaration */
%token NUM
%left '-' '+'
%left '*' '/'
%left NEG /* negation--unary
minus */
%%
```

Right associativity?

```
input: /* empty */
     | input line
line: '\n'
     | \exp ' \mid n' | \{ printf ("\t%.10g \mid n", \$1); \}
                                  \{ \$\$ = \$1;
        NUM
exp:
     | \exp' +' \exp \{ \$ = \$1 + \$3; \}
     | \exp '-' \exp { \$\$ = \$1 - \$3; }
     | \exp'^*' \exp \{ \$\$ = \$1 * \$3; \}
     | \exp '/' \exp { \$ = \$1 / \$3; }
    /* Unary minus
     | '-' \exp \% \operatorname{prec NEG}  { $$ = -$2;
                            { $$ = $2; }
     | '(' exp ')'
%%
```

```
input: /* empty */
                                                     | input line
% {
#define YYSTYPE double
#include <ctype.h>
                                                line:
                                                      '\n'
                                                     | \exp ' \mid n' | \{ printf ("\t\%.10g \mid n", \$1); \}
#include <stdio.h>
% }
                                                     error '\n' { yyerrok; }
/* Bison Declaration */
                                                                                { $$ = $1;
                                                        NUM
                                                exp:
%token NUM
%left '-' '+'
                                                     | \exp' + ' \exp \{ \$\$ = \$1 + \$3; \}
%left '*' '/'
                                                     | \exp '-' \exp  { $$ = $1 - $3; }
                                                     | \exp'^*' \exp \{ \$\$ = \$1 * \$3; \}
%left NEG /* negation--unary
                                                     | \exp '/' \exp { \$ = \$1 / \$3; }
minus */
                                                    /* Unary minus
                                                     | '-' \exp \% \operatorname{prec NEG}  { $$ = -$2;
%%
                                                     | '(' exp ')'
                                                                          { $$ = $2;
     Syntax error?
                                                %%
```

Syntax Tree

```
extern int yylineno; // interface to lexer from lexer
void yyerror(char s*, ...);
/* node of Abstract Syntax Tree (AST) */
struct AST {
         int nodetype;
          struct AST *1;
          struct AST *r;
};
struct AST *newast(int nodetype, struct AST *1, struct AST *r);
                                                                    // build
an AST
                                       // evaluate an AST
double eval(struct AST *);
void treefree(struct AST *);
                                       // free AST
```

Bison

```
% {
#include <stdio.h>
#include <stdlib.h>
#include "bison1.h"
% }
%union {
         struct AST *a;
         double d;
%token <d>NUMBER
%token EOL
%type <a> exp factor term
```