

Práctica 1 – Repaso de redes – Direccionamiento IP

1. Completa la siguiente tabla:

IP	Máscara	Subred	Broadcast	Nº Hosts
20.1.17.15	255.255.255.0	20.1.17.0	20.1.17.255	254
133.32.4.165	255.255.255.224	132.32.4.192	132.32.4.227	235
200.9.41.126	255.255.255.0	200.9.41.63	200.9.41.127	64-2
32.40.55.99	255.255.0.0	32.40.0.0	32.40.255.255	130050
10.43.15.41	255.0.0.0	10.0.0.0	10.255.255.255	195075
192.168.5.100	255.255.255.128	192.168.5.0	192.168.5.127	126
192.168.50.150	255.255.255.32	192.168.50.0	192.168.50.31	32-2
172.50.123.0	255.255.240.0	172.50.127.0	172.50.240.255	64-2
172.50.123.100	255.255.255.128	172.50.123.0	172.50.255.128	62
269.254.148.0	255.255.252.0	No existe	No existe	No existe
192.168.10.130	255.255.255.0	192.168.10.128	192.168.10.144	16-2
192.168.10.100	255.255.255.0	192.168.10.96	192.168.10.127	32-2

2. Diseña la red de una empresa que tiene 4 departamentos, del siguiente modo:

• Departamento de ventas: 2 ordenadores

• Departamento de marketing: 3 ordenadores

• Facturación: 2 ordenadores

• Gerencia: 1 ordenador

Dibuja la red de la empresa, usando únicamente 3 routers, cada uno de los departamentos tiene que estar en una red diferente.

Tenéis que dividir la red 192.168.10.0 haciendo subnetting.

Indica además las direcciones de red y de broadcast de todas las redes que hayas creado

 $2^2=4$ $2^6=64-2=62$

1° Subred 192.168.10.0 Red 192.168.10.1 Primera IP

•••

192.168.10.62 Ultima IP 192.168.10.63 Broadcast I.E.S. «SAN VICENTE» Código centro: 03008423 www.iessanvicente.com 03008423@edu.gva.es C/ Lillo Juan, 128 03690 Sant Vicent del Raspeig Telf.: 965 93 65 05 Fax: 965 93 65 06

2° Subred 192.168.10.64 Red 192.168.10.65 Primera IP

... 192.168.10.126 Ultima IP

3° Subred 192.168.10.128 Red

192.168.10.129 Primera IP

192.168.10.127 Broadcast

• • •

192.168.10.190 Ultima IP 192.168.10.191 Broadcast

4° Subred 192.168.10.192 Red 192.168.10.193 Primera IP

192.168.10.254 Ultima IP 192.168.10.255 Broadcast

3. Dada la siguiente red:

Completa la tabla, asignando las IP's que consideres oportunas:

	IP	Máscara
A	192.168.1.10	255.255.255.0
В	192.168.2.11	255.255.255.0
C	192.168.3.6	255.255.255.0
D	192.168.4.7	255.255.255.0
Е	192.168.1.100	255.255.255.0
F	192.168.2.100	255.255.255.0
G	192.168.3.1	255.255.255.0
Н	192.168.4.1	255.255.255.0
I	192.168.5.7	255.255.255.0
J	192.168.6.7	255.255.255.0
K	192.168.5.6	255.255.255.0
L	192.168.6.6	255.255.255.0
M	108.18.80.68	0.0.0.0

4. La red privada de la empresa donde trabajamos sigue el siguiente diagrama:

NOTA: El router ADSL da conexión a Internet.

Asigna las direcciones IP que creas oportunas, completando la siguiente tabla:

RED	IP	Máscara	Gateway (Para conexión a Internet)
A	192.168.50.9	255.255.255.0	192.168.50.0
В	192.168.50.10	255.255.255.0	192.168.50.0
C	192.168.50.11	255.255.255.0	192.168.50.0
D	192.168.30.9	255.255.255.0	192.168.30.0
E	192.168.30.10	255.255.255.0	192.168.30.0
F	192.168.30.11	255.255.255.0	192.168.30.0
G	192.168.20.1	255.255.255.0	192.168.30.0
Н	192.168.20.1	255.255.255.0	192.168.20.2
I	192.168.30.20	255.255.255.0	192.168.40.2
J	192.168.40.2	255.255.255.0	192.168.40.3
K	192.168.20.2	255.255.255.0	172.41.0.0
L	192.168.40.3	255.255.255.0	192.168.1.1
M	192.168.1.1	255.255.255.0	192.168.1.1
N	192.168.1.2	255.255.255.0	192.168.1.2
Ip Pública del router	8.218.38.58	0.0.0.0	192.168.1.2

5. Suponiendo que una red utiliza direcciones IP de clase C y que dispone de un único router para conectarse a Internet. ¿Cuál es el número máximo de estaciones que podríamos conectar a la red?

254 estaciones

6. Una empresa dispone de dos redes locales separadas geográficamente: una de 300 nodos y la otra de 150. ¿Podría incorporarse a Internet empleando únicamente direcciones de clase C?. Justifíquese la respuesta. En caso afirmativo indíquese cómo, (suponed que la conexión a Internet es única desde cada una de las redes).

No que podria incorporar a internet empleando unicamente direcciones de clase C, necesitariamos un bit más para poder tener una de 300, suponiendo que cada bit tiene 8 bits 2⁸=256, 2⁹=512.