Differentiation Review

Support Workshop A

04-2-2014

Topics: Squeeze theorem, implicit differentiation, logarithmic differentiation, l'Hôpital's rule.

Practice exercises:

1. The Squeeze Theorem. If $\ell(x) \leq f(x) \leq u(x)$ when x is near a (except possibly at a) and

$$\lim_{x \to a} \ell(x) = L = \lim_{x \to a} u(x),$$

then

$$\lim_{x \to a} \ell(x) \le \lim_{x \to a} f(x) \le \lim_{x \to a} u(x),$$

and the limit of f(x) is squeezed

$$L \le \lim_{x \to a} f(x) \le L,$$

thus $\lim_{x\to a} f(x) = L$.

- (a) $\lim_{x\to 0} x \sin\left(\frac{1}{2x}\right)$.
- (b) $\lim_{x\to 0} \sqrt{x^3 + x^2} \cos(\frac{\pi}{x})$.
- (c) $\lim_{x\to\infty} e^{-x} \cos\left(\frac{3}{\pi x}\right)$.

2. Calculate y' using implicit differentiation.

- (a) $x^2 2xy + y^3 = 1$.
- (b) $\sin x + \cos y = \sin xy$
- (c) $\sqrt{x+y} = 1 + x^2y$.
- (d) $\frac{y}{x+y} = \ln y$.

3. Calculate y' using logarithmic differentiation.

- (a) $f(x) = x^{2x}$.
- (b) $f(x) = (\sin x)^{x^2}$.
- (c) $f(x) = x^{x^x}$.
- (d) $f(x) = \sqrt{\frac{x^2+1}{x^3+1}}$.

4. Use L'Hôpital's rule to compute the following limits. Make sure to verify that L'Hôpital's rule applies.

- (a) $\lim_{x\to 0} \frac{e^x-1}{x}$.
- (b) $\lim_{x \to (\pi/2)^+} \frac{\cos x}{1 \sin x}$.
- (c) $\lim_{x\to\infty} \frac{\ln x}{x^3+5x+2}$.
- (d) $\lim_{x\to\infty} xe^{-x}$.
- (e) $\lim_{x\to\infty} (x-\ln x)$.
- (f) $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$.