

- **1.** a. Hasta el año 2011.
 - b. En el año 2002 la ganancia fue de 10 millones de pesos.
 - c. Las ganancias fueron de 3 millones de pesos en los años 1989, 1993 y 1997.
 - e. 5 millones de pesos. En 1991.
- 2. a. En 2005 se invirtieron diez millones de pesos y en el 2004 se invirtieron 18,25 millones.
 - b. En los años 2001 y 2005.
- **3.** i. a) Dom $f = R \{4\}$, Im $f = (-\infty; 2]$

b)
$$C^0 = \{-3, -1, 5\}$$

$$C^{+} = (-3, -1) \cup [2, 4) \cup (4, 5)$$

b)
$$C^0 = \{-3, -1, 5\}$$
 $C^+ = (-3, -1) \cup [2, 4) \cup (4, 5)$ $C^- = (-\infty, -3) \cup (-1, 2) \cup (5, +\infty)$

ii. a) Dom f = R, Im $f = [-2, +\infty)$

b)
$$C^0 = \{-5, -2, 5, 2\}$$
 $C^+ = (-\infty, -5) \cup (-2, 2) \cup (5, +\infty)$ $C^- = (-5, -2) \cup (2, 5)$

$$C = (-5, -2) \cup (2, 5)$$

- **4.** i. a) Dom f = R b) Dom $f = [-3, +\infty)$ c) Dom f = R d) Dom $f = R \{-2, 2\}$ e) Dom $f = [0, +\infty) \{1\}$
 - f) Dom f = $[2, +\infty) \{\frac{7}{2}\}$

ii. a)
$$C^0 = \left\{ \frac{4}{3} \right\}$$
 b) $C^0 = \{-2, -3\}$ c) $C^0 = \{1, -2\}$ d) $C^0 = \emptyset$ e) $C^0 = \emptyset$

b)
$$C^0 = \{-2, -3\}$$

c)
$$C^0 = \{1, -2\}$$

d)
$$C^0 = \emptyset$$

e)
$$C^0 = \emptyset$$

- f) $C^0 = \{2, 3\}$
- iii. a) $C^+ = \left(\frac{4}{3}, +\infty\right)$ $C^- = \left(-\infty, \frac{4}{3}\right)$ c) $C^+ = (-\infty, -2) \cup (1, +\infty)$ $C^- = (-2, 1)$

- iv. $5 \in \text{Im f}$.
- f(6) = 14 (2, 2) \in graf (f)

5. a. C(q) = 150q + 6075

b. i)
$$I(q) = 600q$$

$$B(q) = 450q - 6075$$
 ii) $B(40) = 11925$

ii)
$$B(40) = 1192^{\circ}$$

iii) Debe vender 14 o más mesas

- **6.** a. I(q) = 3qC(q) = 0.5q + 10
 - c. Deben producirse y venderse 4 artículos. Si se venden 5 artículos hay ganancia.
- **7.** a. $F(c) = \frac{9}{5}c + 32$ c: grados centígrados, F: grados Fahrenheit.
 - b. Aproximadamente, -17,8°C
 - c. 32° F

- **8.** a. $f(x) = \frac{1}{3}x$ b. f(x) = 5 c. $f(x) = \frac{2}{3}x + 3$ d. $f(x) = -\frac{1}{4}x + \frac{5}{2}$
- **9.** $P = \left(-\frac{5}{2}, 5\right)$ $Q = \left(7, -\frac{13}{5}\right)$
- **10.** a. $f(x) = \frac{-3x + 13}{2}$ b. No existe tal función lineal c. f(x) = 5x + 10
- 11. a. f(x) = -x + 2

- b. x = -8 c. f(x) = x d. f(x) = 2x 1

12. i) a.
$$V = (1, 1)$$
 $x = 1$

i) a.
$$V = (1, 1)$$
 $x = 1$ b. $f(x) = -(x - 1)^2 + 1$

c.
$$C^0 = \{0, 2\}$$
 $C^+ = \{0, 2\}$ $C^- = \{-\infty, 0\}$ \cup $\{0, +\infty\}$ d. Im f: $\{-\infty, 1\}$

ii) a.
$$V = (2, 2)$$
 $x = 2$ b. $f(x) = (x - 2)^2 + 2$
c. $C^0 = \emptyset$ $C^+ = R$ $C^- = \emptyset$ d. Im f: $[2, +\infty)$

iii) a.
$$V = (2, -2)$$
 $x = 2$ b. $f(x) = \frac{1}{2}(x - 2)^2 - 2$ c. $C^0 = \{0, 4\}$ $C^+ = (-\infty, 0) \cup (4, +\infty)$ $C^- = (0, 4)$ d. Im f: $[-2, +\infty)$

iv) a.
$$V = (-3, 0)$$
 $x = -3$ b. $f(x) = -\frac{1}{2}(x + 3)^2$
c. $C^0 = \{-3\}$ $C^+ = \emptyset$ $C^- = (-\infty, -3) \cup (-3, +\infty)$ d. Im f: $(-\infty, 0]$

- 13. a. V = (3, -9). Eje de simetría: x = 3. Intersección eje x: (0, 0), (6, 0). Intersección eje y: (0, 0). b. V = (2, 1). Eje de simetría: x = 2. Intersección eje x: (1, 0), (3, 0). Intersección eje y: (0, -3). c. V = (1, 0). Eje de simetría: x = 1. Intersección eje x: (1, 0). Intersección eje y: (0, 1). d. V = (1, 3). Eje de simetría: x = 1. Intersección eje x: no hay. Intersección eje y: $(0, \frac{7}{2})$.
- 14. a. I(15) = 375b. I(g) = (100 - 5g)g c. 10 unidades. El ingreso máximo es \$ 500. d. 7 y 13 unidades.
- 15. Se deben vender dos unidades. El costo mínimo es de \$10.
- 16. a. \$1000 b. \$1125 c. 38000 personas
- a. $S = \left\{ (-1, -4), \left(\frac{3}{2}, -\frac{3}{2} \right) \right\}$ b. $S = \{(2, 11)\}$ c. $S = \emptyset$. **17.**
- 18. a. Opción 1: C(x) = 200x + 240 Opción 2: C(x) = 224x. b. Por una semana conviene la propuesta 2; por quince días, la propuesta 1. c. Si la estadía es de más de diez días conviene la opción 1. Si es por menos de diez días, conviene la

19.

- a. Deben producir siete mil toneladas para obtener una ganancia de cuatro mil pesos.
- c. Cuando fabrica más de siete mil toneladas.

opción 2.

d. Aproximadamente, entre 0.39 y 7.6 toneladas el primer productor y más de cinco toneladas el segundo productor.

21. a.
$$\Delta y = f(x_0 + \Delta x) - f(x_0) = a \Delta x$$
 b. i. $\Delta y > 0$ ii. $\Delta y = 0$ iii. $\Delta y < 0$.

22. b. i)
$$\Delta y = 0.69$$
 ii) $\Delta y = -1.5$ iii) $\Delta y = -1$.

23.
$$\Delta q = -225$$

a.
$$\Delta p = -0.25$$

b.
$$\frac{\Delta p}{\Delta q} = -\frac{1}{20}$$

a. $\Delta C = 4000$, $\Delta I = 3700$, $\Delta B = -300$. No le conviene aumentar la producción.

b.
$$\frac{\Delta B}{\Delta q} = -3$$

a.
$$\Delta B = 90$$

b.
$$\frac{\Delta B}{\Delta a} = 90$$

a. Dom f = R, Im f = R,
$$C^0 = \left\{ \sqrt[3]{-\frac{1}{2}} \right\}$$
, $C^+ = \left(\sqrt[3]{-\frac{1}{2}} \right)$, $C^- = \left(-\infty, \sqrt[3]{-\frac{1}{2}} \right)$.

b. Dom f = R, Im f = R, $C^0 = \{-1\}$, $C^+ = (-\infty, -1)$, $C^- = (-1, -1)$

c. Dom f = R, Im f = R,
$$C^0 = \left\{-\frac{1}{2}\right\}$$
, $C^+ = \left(-\frac{1}{2}, +\infty\right)$, $C^- = \left(-\infty, -\frac{1}{2}\right)$.

d. Dom $f = [-3, +\infty)$, Im $f = [0, +\infty)$, $C^0 = \{-3\}$, $C^+ = (-3, +\infty)$, $C^- = \emptyset$

e. Dom f = [-2, + ∞). Im f= (- ∞ , 4], C⁰ = {14}, C⁺ = [-2, 14), C⁻ = (14, + ∞).

f. Dom f = R, Im f = R, $C^0 = \{3\}$, $C^+ = \{3, +\infty\}$, $C^- = \{-\infty, 3\}$

g. Dom f = R, Im f = R, $C^0 = \{-28\}$, $C^+ = (-\infty, -28)$, $C^- = (-28, +\infty)$.

28.

Debe producirse una unidad.

29.

a. Dom f = R – {1}, Im f = R – {0},
$$C^0 = \emptyset$$
, $C^+ = (1, +\infty)$, $C^- = (-\infty, 1)$.

b. Dom f = R – {0}, Im f = R – {3},
$$C^0 = \left\{\frac{1}{3}\right\}$$
, $C^+ = \left(-\infty, 0\right) \cup \left(\frac{1}{3}, +\infty\right)$, $C^- = \left(0, \frac{1}{3}\right)$

c. Dom f = R - {-1}, Im f = R - {-2},
$$C^0 = \left\{-\frac{1}{2}\right\}$$
, $C^+ = \left(-1, -\frac{1}{2}\right)$, $C^- = \left(-\infty, -1\right) \cup \left(-\frac{1}{2}, +\infty\right)$

a.
$$S = \{(3, -2)\}$$

d.
$$S = \{(6, 0), (-2\sqrt{2} + 6, -2\sqrt{2}), (2\sqrt{2} + 6, 2\sqrt{2})\}$$

a. Dom
$$f = R - \{4\}, C^0 = \{0, -4\}$$

b. Dom f = R – {2},
$$C^0 = \emptyset$$

b. Dom
$$f = R - \{2\}, C^0 = \emptyset$$
 c. Dom $f = R - \{1\}, C^0 = \{-1\}$

d. Dom f = R -
$$\left\{-\frac{3}{2}\right\}$$
, $C^0 = \left\{\frac{3}{2}\right\}$.

a.
$$C(x) = \begin{cases} 0.8x + 200 & 0 \le x \le 50 \\ 240 + 0.6(x - 50) & x > 50 \end{cases}$$

c. Se consumieron 104 Kw/h.

33.

i. a) Dom f = R,
$$C^0 = \emptyset$$
 b) $C^+ = (-2, +\infty)$, $C^- = (-\infty, -2]$, Im f = $(-\infty, -1] \cup (0, +\infty)$

ii. a) Dom f = R,
$$C^0 = \emptyset$$
 b) $C^+ = (-\infty, 1)$, $C^- = [1, +\infty)$, Im f = $(-\infty, -1]$ U $(2, +\infty)$

iii. a) Dom f = R,
$$C^0 = \left\{ \frac{3}{2} \right\}$$
 b) $C^+ = (-\infty, 1) \cup (1, 3/2), C^- = (3/2, +\infty) \cup \{1\}, \text{ Im } f = R - \{1\}$

iv. a) Dom f = R,
$$C^0 = \left\{ \sqrt{3}, \frac{7}{2} \right\}$$
 b) $C^+ = \left(\sqrt{3}, \frac{7}{2} \right)$, $C^- = (-\infty, \sqrt{3}) \cup \left(\frac{7}{2}, +\infty \right)$, Im f = $(-\infty, 3]$

v. a) Dom f = R,
$$C^0 = \{-5\}$$
 b) $C^+ = R - \{-5\}$, $C^- = \emptyset$, Im f = $[0, +\infty)$

vi. a) Dom f = R,
$$C^0 = \{0, 1\}$$
 b) $C^+ = \{0, 1\}$ U $\{1, +\infty\}$, $C^- = \{-\infty, 0\}$, Im f = R

a.
$$f'(x) = 5x^4 + 12x^2 - 1$$

b.
$$f'(x) = 2x + 2$$

c.
$$f'(t) = 150t^4 - 6t$$

d.
$$f'(x) = 0$$

e. f'(x) = (2x + 1).
$$(5x^{27} - \frac{1}{2}x^{10} - \sqrt{5}) + (x^2 - 3 + x).(135x^{26} - 5x^9)$$

$$f. f'(x) = 4x^3$$

g.
$$f'(x) = \sqrt{2} - 5x^4 + 12x^2 + 2x$$

h.
$$f'(s) = \frac{-6}{(3s-8)^2} + 1152s^{15} - 297s^{10}$$
 i. $f'(t) = \frac{2t^2 - 2t - 10}{(t^2 + 2t + 4)^2}$

i.
$$f'(t) = \frac{2t^2 - 2t - 10}{(t^2 + 2t + 4)^2}$$

j.
$$f'(x) = \frac{4,5x^4 - 0,8x^3 - 0,6x^2 + 3\sqrt[3]{2}}{(3x - 1)^2} + \frac{1}{x^2}$$
 k. $f'(x) = \frac{2x^2 - 12x + 18}{(x^2 - 9)^2}$

k. f'(x) =
$$\frac{2x^2 - 12x + 18}{(x^2 - 9)^2}$$

I.
$$f'(q) = -16q^3 + 15q^2 + \frac{2}{3}q - \frac{2}{3}$$

m.
$$f'(t) = 2.8t^{13} - \frac{\sqrt{2}}{2}$$

n.
$$f'(x) = 1225x^4 - 556x^3 + 60x^2$$

o.
$$f'(s) = \frac{8s^5 + 3}{s^4}$$
 p. $f'(x) = -x^3 + x^2 - \frac{1}{4}$

p.
$$f'(x) = -x^3 + x^2 - \frac{1}{4}$$

q.
$$f'(t) = \frac{36t^8 - 1}{t + 2} + \frac{t - 4t^9}{(t + 2)^2}$$

36. a.
$$f: R \to R$$
 es biyectiva. $f^{-1}: R \to R / f^{-1}(x) = \sqrt[3]{\frac{x-1}{2}}$

b.
$$f:[-1,+\infty) \to [0,+\infty)$$
 es biyectiva. $f^{-1}:[0,+\infty) \to [-1,+\infty)$ / $f^{-1}(x)=x^2-1$

c. La función no es biyectiva.

d.
$$f: R \rightarrow R$$
 es biyectiva. $f^{-1}: R \rightarrow R / f^{-1}(x) = \frac{1}{8}x^3$

e.
$$f: R - \{5\} \to R - \{1\}$$
 es biyectiva. $f^{-1}: R - \{1\} \to R - \{5\} / f^{-1}(x) = \frac{2}{x-1} + 5$

37. a. Dom f = R, Dom g = R.
$$(f \circ g)(x) = \sqrt[3]{4x^2 - 10}$$
, $(g \circ f)(x) = 4(\sqrt[3]{x - 7})^2 - 3$

b. Dom f = [0, +\infty], Dom g = R.
$$(f \circ g)(x) = \sqrt{2x^2 + 1}$$
, $(g \circ f)(x) = 2x + 1$

c. Dom f = R, Dom g = R.
$$(f \circ g)(x) = 2x^3 - 3$$
. $(g \circ f)(x) = (2x - 5)^3 + 1$

d. Dom f = R, Dom g = R.
$$(f \circ g)(x) = (g \circ f)(x) = x$$

38. a.
$$I(q) = \frac{1}{2}q(300 - q)$$

39.
$$g \circ f(x) = 100 - (150 - x)^2$$

i. a) Dom f = R b) Dom f =
$$(0, +\infty)$$
 c) Dom f = R

d) Dom
$$f = (-4, +\infty)$$
 e) Dom $f = R$

f) Dom f =
$$(-5, +\infty)$$

ii. b)
$$f^{-1}: R \rightarrow (0, +\infty)/f^{-1}(x) = e^{x+2}$$

c)
$$f^{-1}: (3,+\infty) \to R/f^{-1}(x) = \log_{\frac{1}{2}}(x-3)$$

f) $f^{-1}: R \to (-5,+\infty)/f^{-1}(x) = 10^{x+3}-5$

- 41.
- a. V(0) = 500000
- b. V(10) = 500000e^{-0,5}
- c. Aproximadamente 27,7 años