Object-oriented Programming

Week 1 | Lecture 2

Recap

Information Hiding

Implementation details are hidden from the outside world

Information is stored within the object

It can only be changed by the object itself

Example: Smartphone

All logic is hidden inside the handset

 You use HOME button to get to the home screen without knowing "how" it was done

Advantages of Information Hiding

Simplifies the model by hiding implementation details

Prevents accidental access

Prevents illegal access or manipulation

Classes

- Accelerator Pedal
- Brake Pedal
- Steering Wheel

- User-friendly "interfaces" to control the car
- Their mechanism is *housed* inside the engineering drawings or blueprints

Classes

```
class Car
      void accelerate()
   { \\ logic for acceleration }
      void brake()
   { \\ logic for brakes }
```

Classes

```
class Car
       string model;
    int numOfDoors;
    string color;
   void accelerate()
    { \\ logic for acceleration }
       void brake()
    { \\ logic for brakes }
```

How to use the car?

```
int main()
{
    Car mycar;
    car.accelerate();
}
```

Class vs Struct

- Members of a class are private by default and members of struct are public by default
- Classes can be inherited whereas structures cannot
- Struct are value-type whereas classes are reference-type
- A structure can't be abstract, a class can be

Problem

```
int main()
{
    Car mycar;
    car.accelerate();
}
```

The function accelerate() cannot be accessed!

