- You will not turn in this assignment.
- Solutions are given at the end of class.
- Make sure your attendance is counted in order to get credit for your participation.
- You can keep this exercise to help you study for future exams.

Section 1: Functions that are one-to-one, onto, and invertible

Functions that are onto	A function f is <i>onto</i> if everything in the codomain really is an output of f . That is, for every element y in
	the codomain, there must be (at least one) x in the domain where $f(x) = y$.

Functions that are one-to-one A function f is *one-to-one* if nothing in the codomain is an output via two different inputs. That is, for every choice of different elements x_1 and x_2 in the domain, $f(x_1)$ and $f(x_2)$ must be different.

Functions that have a one-to-one A function f is a *one-to-one correspondence* if it is both *one-to-one* and *onto*. This is equivalent to saying that f is invertible.

Another way of stating this is: The function $f: A \rightarrow B$ is *invertible* if there is a function $f^{-1}: B \rightarrow A$ such that f(x) = y if and only if $f^{-1}(y) = x$. The notation f^{-1} is read as "f inverse" and the symmetry of the definition means that $(f^{-1})^{-1} = f$.

In diagramming terms:

- A function is *onto* if every point in the codomain has an arrow ending at that point.
- A function is *one-to-one* if no point in the codomain has two or more arrows ending at a point.
- A function is a *one-to-one correspondence (invertible)* if every point in the codomain has *exactly one arrow* ending at that point.

1. Determine whether these functions are one-to-one, onto, and/or invertible. If not, state why not.

(___/1) a.

(___/1) b.

Onto?

One-to-one? Invertible?

(___/1) c.

Onto?

One-to-one? Invertible?

(___/1) d.

Onto?

One-to-one? Invertible?

(___/1) e.

Onto?

One-to-one? Invertible?

(___/1) f.

Onto?

One-to-one? Invertible?

Onto? One-to-one? Invertible?

2. Draw the inversions of the following functions:

 $(_{/1})$ a. $f:A \rightarrow B$

Draw $f^{-1}: B \rightarrow A$

Is this a valid function?

•1

• 2

 $(\underline{\hspace{1cm}}/1) b. g: A \to B$

Draw $g^{-1}: B \rightarrow A$

Is this a valid function?

• 1 • 2

• 3

• 4

(___/1) c. $h: A \to B$

Draw $h^{-1}: B \rightarrow A$

Is this a valid function?

 $D \bullet$

• 2

• 3

• 4

3. This function is not onto. Give an example of an element in the codomain and explain why no element in the domain is associated with it.

$$f: \mathbb{R} \rightarrow \mathbb{R}$$
, with $f(x) = x^2 + 4x + 1$

4. This function is not one-to-one. To demonstrate this, provide an example of two elements of the domain that are associated with the same element of the codomain.

$$f: \mathbb{R} \rightarrow \mathbb{R}$$
, with $f(x) = x^2 + 4x + 1$

5. Which of the following functions are invertible? For each noninvertible function, explain why it is not one-to-one or not onto. It might help to list out several mappings from domain \rightarrow codomain to see the results.

a.
$$c: \mathbb{Z} \to \mathbb{Z}$$
, with $c(x) = x^3$ for all $x \in \mathbb{Z}$

What result of c(x) can you find where x is not in the set of all integers?

b.
$$s: \mathbb{N} \to \mathbb{N}$$
 , defined so that $s(x)$ is the closest whole number to $\sqrt{(x)}$ for all $x \in \mathbb{N}$

Are there any elements in the codomain that have multiple inputs?

c.
$$h:\{0,1,2,3,4\} \rightarrow \{1,2,4,6,8\}$$
 , given so that $h(n)$ is the ones' digit of 2^n for all $(\underline{\hspace{0.4cm}}/1)$ $n \in \{0,1,2,3,4\}$

d.
$$g:[0,1,2,3,4,5,6,7,8,9] \rightarrow [0,1,2,3,4,5,6,7,8,9]$$
 , given so that $g(n)$ is the ones digit of 2^n for all $n \in \{0,1,2,3,4,5,6,7,8,9\}$