Pós-Prática Ressonância Paramagnética Eletrônica

Edmur C. Neto - 12558492 Rafael F. Gigante - 12610500

Instituto de Física de São Carlos Universidade de São Paulo

10/04/2024

- Descoberto pelo físico soviético Yevgeny Zavoisky;
- Estuda a interação entre radiação e matéria em materiais paramagnéticos na presença de um campo externo;
- Exemplo: Substâncias com elétrons desemparelhados.

Figura 1: Ilustração de um material paramagnético

ightarrow Momento Magnético associado ao Momento Angular Total $ec{J}=ec{L}+ec{S}$

$$ec{\mu}=-g_jrac{\mu_b}{\hbar}ec{J}$$
 , sendo g_j o fator giromagnético e $\mu_b=rac{\hbar e}{2m_e}$ o magneton de Bohr

ightharpoonup Ao aplicar um campo externo $ec{B_0}$, observamos a energia $E=-ec{\mu}_j\cdotec{B_0}$, portanto, $E=g_j\;\mu_b\;B_0\;m_j$, com $m_j=-j,-j+1,\cdots,j-1,j$

Para um elétron desemparelhado (m_j = ½, -½) temos:

Figura 2: Ilustração do Efeito Zeeman

Aplicamos um campo $\vec{B_1}$ alternado perpendicular a $\vec{B_0}$

$$\vec{B}_1 = \vec{B}_{HF} \cdot sen(2\pi\nu t)$$

Se satisfazer as regras de seleção:

$$\Delta m_i = \pm 1$$

е

$$h\nu = \Delta E = g_i \ \mu_b \ B_0$$

Temos a ressonância do sistema.

ightharpoonup Estudo da largura à meia altura δB_0

Princípio da Incerteza: $\delta E \cdot T \geq \frac{\hbar}{2}$

$$\delta E = g \; \mu_b \; \delta B_0 \; \Rightarrow \; \delta B_0 = \frac{\hbar}{2 \; g_j \; \mu_b \; T}$$

Figura 3: Representação da absorção em função do campo magnético homogêneo

OBJETIVOS

- Ressonância Paramagnética Eletrônica em DPPH:
 - 1. Determinar o campo magnético de ressonância B_0 em função da frequência de ressonância ν ;
 - Determinar o fator g da molécula de DPPH;
 - 3. Determinar a largura à meia altura δB_0 do sinal ressonante.

- Equipamento a ser utilizado:
 - Unidade controle ESR;
 - 2. Unidade básica ESR;
 - Par de bobinas de Helmholtz;
 - 4. Osciloscópio;
 - 5. Amperímetro;
 - 6. Amostra da molécula DPPH;
 - 7. Pequenas bobinas de diversas configurações de espiras.

Figura 4: Esquema do experimento 1

Figura 5: (a) Esquema do experimento 1, (b) Amostra de DPPH utilizada e (c) Bobinas para a corrente alternada.

- Ajuste do aparato experimental:
 - Definir a frequência de ressonância como ν = 15 MHz;
 - Ajustar as escalas temporais e de amplitude do osciloscópio;
 - Modificar o campo gerado pelas bobinas de Helmholtz até que os sinais de ressonância figuem igualmente espaçados.
- Ajuste da mudança de fase:
 - Mudar o osciloscópio para o modo XY e visualizar o padrão;
 - Haverá uma diferença de fase entre o campo da bobina da bobina e o campo modulado;
 - Ajustar a fase na unidade de controle até que os sinais de ressonância coincidam.

- Determinando o campo de ressonância:
 - Ajustar o campo na unidade de controle até que o sinal de ressonância fique simétrico;
 - Medir a corrente que está passando pelas bobinas de Helmholtz junto com a frequência de ressonância v;
 - Incrementar a frequência de ressonância em 5 MHz e repetir o processo até 135 MHz.

- Determinando a largura à meia altura do campo:
 - Ajustar a condição de ressonância para ν = 50MHz;
 - Expandir o sinal de ressonância na direção X até que ocupe toda a tela do osciloscópio variando a tensão modulada;
 - Medir o valor RMS da corrente modulada;
 - Medir a largura à meia altura do sinal de ressonância no osciloscópio.

Figura 6: (a) Esquema de montagem do experimento (b) Exemplo de observação no osciloscópio

Resultados Esperados

Visualização do estado de ressonância no osciloscópio

Figura 7: Visualização no osciloscópio da tensão no indutor e da varredura do campo magnético homogêneo

Estimativa do fator giromagnético (g):

$$g_j = \frac{\nu}{B_0} \frac{h}{\mu_h} = \frac{27.289 \cdot 10^9 \cdot 6.626 \cdot 10^{-34}}{9.27 \cdot 10^{-24}} = 1.95056$$

Figura 7: Gráfico da relação da variação da frequência ressonante com campo Bo observado no osciloscópio.

Estimativa do fator giromagnético (g) para medição da Sonda Hall:

$$g_j = \frac{\nu}{B_0} \frac{h}{\mu_b} = \frac{28.206 \cdot 10^9 \cdot 6.626 \cdot 10^{-34}}{9.27 \cdot 10^{-24}} = 2.01610$$

Figura 8: Gráfico da relação da variação da frequência ressonante com campo Bo medido com a sonda Hall.

Figura 9: Gráfico da relação da variação da frequência ressonante com campo Bo para os diferentes campos medidos.

Resultados Esperados

- \triangleright Determinando a relação entre ν e B_0 ;
- Determinação do fator g da amostra.

Sabendo
$$\nu = B_0 \frac{g_j \mu_b}{h} \Rightarrow g_j = \frac{\alpha h}{\mu_b}$$

sendo α o coeficiente angular.

$$g_{\rm J} = g_{\rm S} \approx 2.0023.$$

Figura 10: Gráfico da variação da frequência de ressonância em função do campo magnético do par de bobinas Helmholtz

Estimativa do Tempo de Relaxamento

$$\tau_{relaxamento} = \frac{1}{\delta B} \frac{\hbar}{2 \cdot g_i \cdot \mu_b}$$

	$\delta I (A)$	$\delta \mathbf{B} \; (\mathbf{mT})$	$ au_{relaxamento}(\mathbf{ns})$
Amostra Não Resfriada	0.1101	0.4527	1.2565
Amostra Resfriada	0.1018	0.4185	1.3591

- Resultado Teórico: δB_0 (DPPH): 0.15-0.80 (mT)

Figura 11: Gráfico da variação da largura a meia altura do campo em função da frequência, para as diferentes amostras.

Figura 12: Gráfico da variação dos erros de medição da largura a meia altura do campo em função da frequência, para as diferentes amostras.

Teste de Hipótese para Médias de Amostras Independentes com Variâncias Desconhecidas e Diferentes

Ho:
$$u_1 = u_2$$
, Hi: $u_1 > u_2$
$$t_{obs} = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2 + s_2^2}{n_1 + n_2}}} \text{ com g.l. = menor valor entre (n1 - 1) e (n2 - 1).}$$

- Para os dados dos experimentos, obtivemos: tobs = 1.812
- Portanto, o p-value obtido utilizando a curva de distribuição t de student foi: p-value ~ 4,657%;
- Com isso, para esse valor de p-value, temos evidências razoáveis de que a hipótese nula é falsa, portanto, a média da amostra resfriada é menor.

Apêndice - Teste de Hipótese

 $H_0: u_1 = u_2, H_1: u_1 > u_2$

$p_{value} = P(\mu_1 > \mu_2)$	$/\mu_1 = \mu_2) = P(t > t)$	$t_{obs}/H_0 \ verdadeira)$
--------------------------------	------------------------------	-----------------------------

Dados							
Amostras	n	\bar{X}	S				
Amostra Não Resfriada	14	0.4527	0.04758				
Amostra Resfriada	17	0.4185	0.05750				

$$t_{obs} = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2 + \frac{s_2^2}{n_1}}{n_1^2 + n_2}}} \ \ \text{com} \ \ \text{g.l. = menor valor entre (n_1 - 1) e (n_2 - 1)}.$$

- 1 p = 4.657%
- g.l. = 13

GL (V)		P									
	0,75	0,80	0,85	0,90	0,95	0,975	0,980	0,990	0,995	0,9975	0,9990
1	1,0000	1,3764	1,9626	3,0777	6,3138	12,7062	15,8945	31,8205	63,6567	127,3213	318,3088
2	0,8165	1,0607	1,3862	1,8856	2,9200	4,3027	4,8487	6,9646	9,9248	14,0890	22,3271
3	0,7649	0,9785	1,2498	1,6377	2,3534	3,1824	3,4819	4,5407	5,8409	7,4533	1,0215
4	0,7407	0,9410	1,1896	1,5332	2,1318	2,7764	2,9985	3,7469	4,6041	5,5976	7,1732
5	0,7267	0,9195	1,1558	1,4759	2,0150	2,5706	2,7565	3,3649	4,0321	4,7733	5,8934
6	0,7176	0,9057	1,1342	1,4398	1,9432	2,4469	2,6122	3,1427	3,7074	4,3168	5,2076
7	0,7111	0,8960	1,1192	1,4149	1,8946	2,3646	2,5168	2,9980	3,4995	4,0293	4,7853
8	0,7064	0,8889	1,1081	1,3968	1,8595	2,3060	2,4490	2,8965	3,3554	3,8325	4,5008
9	0,7027	0,8834	1,0997	1,3830	1,8331	2,2622	2,3984	2,8214	3,2498	3,6897	4,2968
10	0,6998	0,8791	1,0931	1,3722	1,8125	2,2281	2,3593	2,7638	3,1693	3,5814	4,1437
11	0,6974	0,8755	1,0877	1,3634	1,7959	2,2010	2,3281	2,7181	3,1058	3,4966	4,0247
12	0,6955	0,8726	1,0832	1,3562	1,7823	2,1788	2,3027	2,6810	3,0545	3,4284	3,9296
13	0,6938	0,8702	1,0795	1,3502	1,7709	2,1604	2,2816	2,6503	3,0123	3,3725	3,8520

Apêndice - Teste de Hipótese

Figura 13: Gráfico da distribuição t-student, utilizada no teste, com indicação dos valores do teste.

OBJETIVOS

- Absorção de ressonância de um circuito oscilador de RF (radio frequency) passivo:
 - 1. Medir a tensão U_1 na bobina do circuito oscilador de RF em função da frequência com acoplamento indutivo para um circuito oscilador passivo;
 - 2. Medir a tensão U_2 na bobina do circuito oscilador passivo em função da frequência.

- Equipamento a ser utilizado:
 - Unidade controle ESR;
 - 2. Unidade básica ESR;
 - 3. Osciloscópio;
 - 4. Amperímetro;
 - 5. Amostra da molécula DPPH;
 - 6. Pequenas bobinas de diversas configurações de espiras.

Figura 14: Esquema do experimento 2

- Realização do experimento:
 - Definir a escala 3/6 no capacitor variável no circuito oscilador passivo;
 - Definir a frequência mínima na Unidade de ESR;
 - Medir a frequência v na Unidade de Controle, a voltagem U₂ da bobina passiva no osciloscópio e a voltagem U₁ da bobina RF;
 - Aumentar a frequência e repetir as medidas;
 - Refazer as medidas com as escalas 2/6 e 1/6 no capacitor variável.

Resultados e Discussão

Figura 15: Gráfico das variações das tensões nos circuitos passivos e ativos em função da variação da freguência.

Resultados Esperados

➤ Determinando a relação entre as tensões U₁ e U₂ dos circuitos com a frequência.

$$\nu_0 = \frac{1}{2\pi \sqrt{L_2 C_2}}$$

Figura 16: Gráfico da variação da tensão dos circuitos 1 e 2 em função da frequência.

Logo Image Here