UCS654 - Predictive Analytics Using Statistics

Assignment02 - Feature Extraction

General Instructions – Must Read

• **Submission Due Date:** 06 Feb 2022 | 23:59:59

• **Marks:** 05 (Five)

• Number of Questions: 01

• Submission Link: Click Here

• **Submission Guidelines:** You need to submit single R file.

- Single R (.r) file | File Name must be <YourRollNum>.r | Example: 10155.r

• Your program must be run from **command line** only:

Usages: rscript program.r> <InputDataFile>

- **Example:** rscript 10155.r input.csv

Output File Name: <output>-<YourRollNum>.csv

- **Example:** output-10155.csv

- Your program must be capable to handle exception/error (if any) and write to **log file**:
 - Correct number of parameters (inputFileName).
 - Show the appropriate message for wrong inputs.
 - Handling of "File not Found" exception
 - Many sequences are missing in the input file, handle them (ignore them).
 - If any issue with the input record, it must be write to a log file

Note:

- Multiple submissions are allowed, but **latest submission** will be considered for the evaluation.
- Submission link will open all the time, but only 50% marks will be awarded if you fail to submit with in the due date. No excuse will be consider for the submission.
- **Zero marks** will be awarded for plagiarized code or result.

1. Write a R program that extract the features (aliphatic index, Boman index, hmoment index, peptide charge, etc) of each "Peptide Sequence" given in the input file and create a feature matrix given below. [Input file is available in "Input for Assignment02" folder]

Peptide Sequence	len	Aliphatic_index	Boman_index	hmoment_index	peptide_chrage	molecular_weight	 	 	Target
TLYGPQLSQKIVQIN	15	123.33	0.68	0.51	1.00	1701.98	 	 	0
PSWGLVVTMFAWGYLI	24	101.25	-0.28	0.44	-0.91	2764.26	 	 	1
TMIKTAVAVV	10	146.00	-1.23	0.40	1.00	1032.31	 	 	1
AGISSLIIDPNPMFV	15	130.00	-0.64	0.23	-1.00	1573.87	 	 	1
DPMIVGVLFIEIHMM	15	142.67	-1.24	0.13	-1.91	1745.19	 	 	0
ELNNALQNLARTISE	15	117.33	2.44	0.73	-1.00	1685.85	 	 	1
AGILLGLFYLVAVAR	15	188.67	-1.86	0.23	1.00	1575.96	 	 	0
GKAGCQTYKWETFLTSE	20	44.00	1.02	0.30	-0.06	2216.49	 	 	0
QLSAEYASTAAELSG	15	78.67	0.94	0.26	-2.00	1497.58	 	 	1
AAVVRFQEAANKQKQ	15	65.33	2.52	0.52	2.00	1687.92	 	 	1

Please note: Steps for feature extraction

1. First, install two packages: 'Peptides' and 'peptider'

install.packages('Peptides')
install.packages('peptider')

2. Explore all the functions of both the packages:

3. Give the sequence to these functions, get the value, merge them and write to the output file.

4. Sample Code