Confluence of Right Ground Term Rewriting Systems is Decidable FOSSACS 2005

Łukasz Kaiser

Mathematische Grundlagen der Informatik
RWTH Aachen

Outline

- Introduction
- Basic reductions of rewriting systems
- Coloured rewriting
- Automata with constraints
- Conclusions

Terms

- Constant signature with arity
- Positions in terms, variables
- Substitutions

- ground terms
- linear terms

Rewriting Systems

Rewrite rules

$$l \to r$$

$$f(x, g(c, y)) \to g(x, y)$$

$$f(x, x) \to c$$

- TRS set of rewrite rules
- \bullet * transitive reflexive closure of \rightarrow
- syntactic classes of TRS
 - ground
 - right ground
 - left linear right ground

Problems in TRS

- reachability: $u \stackrel{*}{\rightarrow} v$?
- joinability: $u \stackrel{*}{\to} \exists t \stackrel{*}{\leftarrow} v$?
- deep joinability:

- confluence: u deep joinable with u?
- TRS confluence: all u confluent
- Normal form problems

Methods and Results

- Ground TRS
 - polynomial time
 - transitive closure, automata
- Left linear right ground TRS
 - up to exponential
 - tree transducers
 - confluence in coNP open
- Right ground TRS
 - decidable [Tiwari, Godoy, Verma], elementary
 - rewrite closure, automata with constraints
- Further syntactic classes
 - shallow rules, else gets undecidable very quickly

TRS Reductions

Naming with Constants

Change

$$l \to f(c_1, c_2)$$

to

$$l \rightarrow c_{new}$$

$$c_{new} \to f(c_1, c_2)$$

Rules left:

>: rules in the form $c \to f(c_1, \ldots, c_n)$,

 \leq : rules $t \rightarrow c$, where t is any term.

Normalized RGTRS

Lemma: reachability for RGTRS is decidable. Use this lemma to compute closure of \rightarrow up to terms of height 1 in an RGTRS after naming constants.

Lemma:

$$t := f(t_1, \dots, t_n) \stackrel{*}{\to} s$$

for ground terms iff

- (1) $s = f(s_1, ..., s_n)$ and for each i we have $t_i \stackrel{*}{\rightarrow} s_i$,
- (2) there is a constant c such that $t \stackrel{*}{\to} c$ and $c \stackrel{*}{\to} > s$.

Stability

- Root Stable: does not rewrite to any constant
- Stable:
 - all subterms root stable,
 - no subterm rewrites to a constant
 - all successors in *→ can be reached by *→>

Reducing Confluence

Confluence in a normalized RGTRS:

reduces to:

- Deep joinability of constants
- Semi confluence

Coloured Rewriting

Rewrite Closure

Idea:

$$\stackrel{*}{\rightarrow} = \rightarrow_1 \circ \rightarrow_2$$

where \rightarrow_1 and \rightarrow_2 might not be defined as rewriting relations but are in some way easier to analyze

More specifically it is used with

- $lue{}_{-}$ \rightarrow_1 constrained decreasing rewriting (\leq)
- ullet \to_2 increasing ground rewriting (>)

Constrained Rewriting

$$l \rightarrow r \text{ if } [condition]$$

Conditions generally on reachability and joinability on variables from *l*:

$$x|y$$

$$c \xrightarrow{*} z$$

$$f(x, g(y, z)) \to c \text{ if } [x|y, d \xrightarrow{*} z]$$

Colour Constraints

- Ad-hoc constrained rewriting where constraints just specify reachability from constants
- Colour K is a set of constants $K = \{c_1, \ldots, c_m\}$
- Ground term t has colour K if each $c_i \stackrel{*}{\to} t$.
- Each ground term t has one biggest colour

$$K(t) := \{c : c \xrightarrow{*} t\}$$

Coloured Terms and Rewrite Rules

- Term t with variables with assigned colours, K(x) required for x
- Correct ground substitutions σ substitutes s for x only if K(x) is a colour of s
- Coloured rewrite rules
- Coloured (constrained) rewriting

Propagating Colours

Take term t with a colour constraint:

$$t = f(x, y), \ c \in K(t)$$

What are the colour constraints for x, y that ensure this?

As the rewriting system is normalized take all

$$c \to f(c_1, c_2)$$

and pairs of constraints

$$K(x) = c_1, K(y) = c_2$$

Note: more than one resulting colour constraint

Reducing > **Rewrites** (1)

- Think about $t \xrightarrow{*} s \rightarrow c$
- Take the rule

$$l \rightarrow c$$

- Cut l at some positions and put there constants
- Grow these constants with \rightarrow back to l size
- Check what colours must be put on variables

Reducing > Rewrites (2)

Example: take TRS

$$R = \{c \to f(c,c), f(x,f(x,x)) \to c\}$$

and look at rewriting:

$$f(c,c) \to f(c,f(c,c)) \to c$$

This suggests to cut and grow:

$$l = f(x, f(x, x))$$
 cut $f(x, c) \rightarrow f(x, f(c, c))$

New coloured rule: $f(x : \{c\}, c) \rightarrow c$

Note: colour constraints necessary since terms non-linear

Coloured Unification

Problem:

rewrite t with $l \rightarrow r$

when both t and l coloured and with variables

- $lue{}$ unify t and l in the standard way
- propagate colours to satisfy constraints on substituted variables
- extend constraints on the variables that are left
- return a finite set of coloured "most general" unifiers

Reducing Semi Confluence

When not

- Track coloured rewrites $u \stackrel{*}{\rightarrow} t$
- Find all possible coloured mgus for t
- Check stability of such t and non-joinability with c

Tree Automata with Constraints

Definition

- Automata with Equality and Disequality Constraints (AWEDC)
- Equality (disequality) constraint is $p_1 = p_2$ ($p_1 \neq p_2$), where p_1 and p_2 are positions in terms
- Transition rules $f(q_1, \ldots, q_n) \rightarrow^{\alpha} q$, α is a boolean combination of equality and disequality constraints
- Reduction automata: there is an ordering on states so if

$$f(q_1,\ldots,q_n) \to^{\alpha} q$$

and $\alpha \neq \emptyset$ then q is strictly smaller than each q_i

Properties

- The emptiness of a language accepted by a reduction automaton is decidable.
- The class of reduction automata is closed under union and intersection. There is a construction for the union that preserves determinism.
- With each reduction automaton we can associate a complete reduction automaton that accepts the same language. This construction preserves determinism.
- The class of complete deterministic reduction automata is closed under complement.

Standard Use - Normal Forms

- Problem: automata for normal forms
- Standard tree automata for linear rules, constraints needed for $f(x,x) \rightarrow c$
- There is a (deterministic) reduction automata that accepts substitutions for a term t
- Possible to extend this to accept all terms encompassing such substitutions

Reductions (1)

- Extend the construction for normal forms to take colours into accout
 - colours grow from constants so are checkable by standard tree automaton
- Also need to guarantee that the result is not joinable with c
- Again use normalization of the TRS and standard automata to check it

Reductions (2)

Deep joinability of constants remains to be checked

- Reduce it to emptiness of reduction automata
- Need to extend signature to operate on pairs of terms
 - similar to transducers with additional marking
- Normalization of TRS also necessary

Conclusions

- Rewrite closure can help a lot
- Constrained rewriting in different flavours is useful
- Don't forget about automata with constraints
 - when working on transducers, regular structures
 - make things more expressive
 - need more care by intersection + complementation

Thank you!

