# PATENT ABSTRACTS OF JAPAN

(11) Publication number:

07-097355

(43) Date of publication of application: 11.04.1995

(51) Int. Cl.

C07C211/54 C07C211/56 C07C255/58 C07C323/37 C09K 11/06

(21) Application number: 06-036605 (71) Applicant: SHIROTA YASUHIKO

TDK CORP

(22) Date of filing: 09.02.1994 (72) Inventor: SHIROTA YASUHIKO

NAKATANI KENJI

INOUE TETSUJI OKADA NORIHIRO NANBA NORIYOSHI

(30) Priority

Priority

**05 45785** Priority

10.02.1993 Priority

JP

number :

05140041 date :

19.05.1993 country:

## (54) TRIS (ARYLAMINO) BENZENE DERIVATIVE, COMPOUND FOR ORGANIC EL ELEMENT AND ORGANIC EL ELEMENT

(57) Abstract:

PURPOSE: To obtain a novel compound which is useful in organic EL elements of high reliability, durability and high emission efficiency because of its high melting point and glass transition temperature Tg, transparency, stability and smooth film

property. CONSTITUTION: A tri (arylamino) benzene derivative of formula I [F11, F21, F31 are divalent aromatic residues; R11, R21, R31 each is NF01F02, NHF01, NR01F01, F01, OF01 or SF01 (F01, F02 are monovalent aromatic ring residues: RO1 is an alkyl) where at least one of R11, R21 and R31 is NF01F02, NHF01 or NR01F 01; A12, A22 and A23 each is a monovalent aromatic ring residue, on alkyl, H], for example, the compound of formula II. The compound of formula I is obtained by the Ullmann reaction between a compound of formula

Ī

11

ξķ

III such as 1,3,5-tris[(4-diphenylaminophenyl)-amino]benzene and a compound of formula IV (F12, R12 are monovalent aromatic ring residues) such as iodobenzene or an iodine compound such as an alkyl iodine.

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平7-97355

(43)公開日 平成7年(1995)4月11日

| (51) Int.Cl. <sup>6</sup>                 | 識別記号               | 庁内整理番号  | FI                                      | 技術表示箇所                  |
|-------------------------------------------|--------------------|---------|-----------------------------------------|-------------------------|
| C 0 7 C 211/54                            |                    | 9280-4H |                                         |                         |
| 211/56                                    |                    |         |                                         |                         |
| 255/58                                    |                    |         |                                         |                         |
| 323/37                                    |                    | 7419-4H |                                         |                         |
| CO9K 11/06                                | 7.                 | 9159-4H |                                         |                         |
| 2 2 2 2 2 27, 00                          | _                  |         | 審査請求                                    | 未請求 請求項の数10 FD (全 14 頁) |
| (21)出顯番号                                  | <b>特顯平6-36605</b>  |         | (71) 出顧人                                | 593045097               |
|                                           |                    |         |                                         | 城田 蟾彦                   |
| (22)出顧日                                   | 平成6年(1994)2)       | 19日     |                                         | 大阪府豊中市大黒町3-5-7          |
|                                           |                    |         | (71)出願人                                 | 000003067               |
| (31)優先権主張番号                               | 特顯平5-45785         |         |                                         | ティーディーケイ株式会社            |
| (32)優先日                                   | 平5 (1993) 2月10日    | 3       |                                         | 東京都中央区日本橋1丁目13番1号       |
| (33)優先権主張国                                | 日本(JP)             |         | (72)発明者                                 | 城田 蜟彦                   |
| (31)優先権主張番号                               | <b>特願平5-140041</b> |         |                                         | 大阪府費中市大照町3-5-7          |
| (32) 優先日                                  | 平 5 (1993) 5 月 19日 | 3       | (72)発明者                                 | 中谷 賢司                   |
| (33)優先権主張国                                | 日本 (JP)            | •       | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 東京都中央区日本橋一丁目13番1号 ティ    |
| / \ <b>2</b> /2 \ <b>4</b> ( <b>3</b> /2) | , , , , , ,        |         |                                         | ーディーケイ株式会社内             |
|                                           |                    |         | (74)代理人                                 | <b>弁理士 石井 陽一</b>        |
|                                           |                    |         |                                         | 最終頁に続く                  |

## (54) 【発明の名称】 トリスアリールアミノベンゼン誘導体、有機EL案子用化合物および有機EL案子

### (57)【要約】

(修正有)

【構成】 次式で表わされるトリスアリールアミノベンゼン誘導体および有機 E L素子としての用途。

$$A_{32}$$
 $A_{32}$ 
 $A_{31}$ 
 $A_{31}$ 
 $A_{12}$ 
 $A_{12}$ 
 $A_{12}$ 
 $A_{22}$ 
 $A_{21}$ 
 $A_{22}$ 
 $A_{31}$ 
 $A_{31}$ 

Ψ<sub>11</sub>, Φ<sub>21</sub>, Φ<sub>45</sub> R<sub>11</sub>, R<sub>25</sub>, R<sub>81</sub> A<sub>15</sub>, A<sub>25</sub>, A<sub>38</sub>

【効果】 この化合物は融点とガラス転移温度 T g が高く、透明で室温以上でも安定なアモルファス状態を形成し平滑で良好な膜質を示す。従って、これを用いた有機 E L 素子はムラのない均一な面発光が可能であり、高輝度が長時間に渡って安定して得られ、耐久性に優れる。

〔例えば、

### 【特許請求の範囲】

【請求項1】 下記化1で表わされるトリスアリールア ミノベンゼン誘導体。

1

#### [化1]

[上記化1において、 $\Phi_n$ 、 $\Phi_2$  および $\Phi_3$  は、それぞれ2価の芳香族環残基を表わし、

 $R_{11}$ 、 $R_{21}$  および  $R_{31}$  は、それぞれーN  $\Phi_{01}$   $\Phi_{02}$  、一N  $H\Phi_{01}$  、一N  $R_{01}$   $\Phi_{01}$  、一 $\Phi_{01}$  、一 $\Phi_{01}$  、一 $\Phi_{01}$  または一  $S\Phi_{01}$  で示される基を表わし、 $\Phi_{01}$  および  $\Phi_{02}$  は、それぞれ 1 価の芳香族環残基を表わし、 $R_{01}$  はアルキル基を表わし、前記  $R_{11}$  、 $R_{21}$  および  $R_{31}$  のうち、少なくとも 1 個は前記  $-N\Phi_{01}$   $\Phi_{02}$  、一 $NH\Phi_{01}$  または  $-NR_{01}$   $\Phi_{01}$  で 20 あり、

 $A_{12}$ 、 $A_{22}$  および $A_{32}$  はそれぞれ 1 価の芳香族環残基、アルキル基または水素を表わす。]

【請求項2】 前記 $R_{11}$  、 $R_{21}$  および $R_{31}$  のすべてが前記 $-N\Phi_{01}\Phi_{02}$  、 $-NH\Phi_{01}$  または $-NR_{01}\Phi_{01}$  である請求項1 のトリスアリールアミノベンゼン誘導体。

【請求項3】 下記化2で表わされる請求項2のトリスアリールアミノベンゼン誘導体。

### 【化2】

$$\Phi_{01}$$
 $\Phi_{11}$ 
 $\Phi_{12}$ 
 $\Phi_{32}$ 
 $\Phi_{31}$ 
 $\Phi_{22}$ 
 $\Phi_{02}$ 
 $\Phi_{01}$ 

[上記化2において、 $\Phi_{11}$ 、 $\Phi_{21}$ 、 $\Phi_{31}$ 、 $\Phi_{01}$  および $\Phi_{02}$  は、前記化1におけると同義であり、それぞれ3個の $\Phi_{01}$  および $\Phi_{02}$  は互いに同一であっても異なるものであってもよく、

 $\Phi_{\alpha}$ 、 $\Phi_{\alpha}$  および $\Phi_{\alpha}$  は、それぞれ 1 価の芳香族環残基を表わす。]

【請求項4】 下記化3で表わされる請求項3のトリスアリールアミノベンゼン誘導体。

#### [化3]

[上記化3において、計9個のR:およびR:は、互いに同一でも異なっていてもよく、それぞれ水素、アルキル基、アリール基、アルコキシ基、アラルキル基、アルキルアリール基、1~3級のアミノ基、シアノ基、ニトロ基またはハロゲンを表わす。] 【請求項5】 下記化4で表わされる請求項2のトリスアリールアミノベンゼン誘導体。

### 【化4】

30

[上記化4において、 $\Phi_n$ 、 $\Phi_a$ 、 $\Phi_n$ 、 $\Phi_n$  、 $\Phi_n$  なの および $\Phi_n$  は前記化1におけると同義であり、それぞれ3個の $\Phi_n$  および $\Phi_n$  は互いに同一であっても異なるものであってもよく、

 $R_{12}$  、 $R_{22}$  および $R_{22}$  は、それぞれ水素またはアルキル基を表わす。]

【請求項6】 下記化5で表わされる請求項5のトリス アリールアミノベンゼン誘導体。

[化5]

[上記化5において、

R<sub>12</sub>、R<sub>22</sub>、R<sub>32</sub>は前記化4におけると同義であり、計6個のRは、互いに同一でも異なっていてもよく、それぞれ水素、アルキル基、アリール基、アルコキシ基、アリーロキシ基、アラルキル基、アルキルアリール基、1~3級のアミノ基、シアノ基、ニトロ基またはハロゲン 20を表わす。]

【請求項7】 請求項1~6のいずれかのトリスアリールアミノベンゼン誘導体である有機EL素子用化合物。

【請求項8】 請求項7の有機EL素子用化合物を含有する層を有する有機EL素子。

【請求項9】 正孔注入輸送層と発光層とを有し、この 正孔注入輸送層が前記化合物を含有する請求項8の有機 EL素子。

【請求項10】 さらに電子注入輸送層を有する請求項9の有機EL素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、トリスアリールアミノベンゼン誘導体と、有機EL(電界発光)素子用化合物と、有機EL素子とに関する。

### [0002]

【従来の技術】有機EL素子は、蛍光性有機化合物を含む薄膜を陰極と陽極とで挟んで構成され、この薄膜に電子および正孔を注入して再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する40際の光の放出(燐光、蛍光)を利用して発光させる素子である。有機EL素子の特長は、10V以下の低電圧で1000cd/m²程度の高輝度の面発光が可能であり、また、蛍光性物質の種類を選択することにより青色から赤色までの発光が可能なことである。

【0003】一方、有機EL素子の問題点は、寿命が短く、耐久性、信頼性が低いことであり、この原因としては、

【0004】① 有機化合物の物理的な変化(結晶粒界などの欠陥や表面の不均一性に起因する素子の絶縁破壊 50

を防ぐために、非晶性で平滑な薄膜が形成できる有機化合物を用いる必要がある。しかし、膜質の安定性が不十分なために、経時変化として結晶化が起こったり、駆動時の発熱による素子温度の上昇でそれが促進されて膜質が変化する。従って、真空蒸着等の容易な手段によりガラス状態を形成し、その安定性が大きい材料が求められている。)

【0005】② 陰極の酸化・剥離[電子注入効率を上げるために、仕事関数の小さい金属(Mg、Li、Na 10 など)を使用しているが、これらの金属は大気中の酸素や水分と反応する。また、それに起因して有機層と陰極の剥離が起きる。]

【0006】 ② 発光効率が低く、発熱量が多いこと(素子温度が上昇し結晶化が促進されたり、有機層が溶融し破壊に至る。従って、入力エネルギーの変換効率を上げることや有機層に耐熱性を付与する材料が求められてる。)

【0007】 **②** 有機化合物の光化学的変化・電気化学的変化などが挙げられる。

【0008】本発明者の一人城田は、これまで特開平4 -308688号公報、Polymer Preprints, Japan Vo 1.41,No.3(1992)、日本化学会 第61春季年会 19 91年 3D3 36、3D3 37、3D3 38、 4F8 18、4F8 25、4F8 26、4F8 32、日本化学会 第63春季年会 1992年 P2 571~2574等に各種π電子系アモルファス分子材料の提案や報告をしてきた。

[0009]

【発明が解決しようとする課題】本発明の主たる目的 30 は、特に物理的変化や光化学的変化、電気化学的変化の 少ない光・電子機能を有する新規化合物を提供すること である。さらには、それを有機 E L 素子用化合物として 用いることにより、信頼性、耐久性および発光効率の高い有機 E L 素子を実現することである。

[0010]

【課題を解決するための手段】このような目的は、下記  $(1) \sim (10)$  の本発明により達成される。

(1) 下記化6で表わされるトリスアリールアミノベンゼン誘導体。

[0011]

[化6]

【0012】 [上記化6において、Φn 、Φn およびΦ

40

 $_{31}$  は、それぞれ  $_{2}$  価の芳香族環残基を表わし、  $_{R11}$  、  $_{R21}$  および  $_{R31}$  は、それぞれ $_{1}$  N  $_{00}$   $_{00}$  な、 $_{1}$  一 N  $_{1}$  R  $_{01}$   $_{1}$  で  $_{1}$ 

- (2) 前記 R<sub>11</sub> 、 R<sub>21</sub> および R<sub>31</sub> のすべてが前記 NΦ 10 g<sub>1</sub> Φ<sub>122</sub> 、 N H Φ<sub>01</sub> または N R<sub>01</sub> Φ<sub>01</sub> である上記
- (1) のトリスアリールアミノベンゼン誘導体。
- (3)下記化7で表わされる上記(2)のトリスアリールアミノベンゼン誘導体。

[0013]

[化7]

$$\Phi_{01} \qquad \Phi_{11} \qquad \Phi_{12}$$

$$\Phi_{03} \qquad \Phi_{01} \qquad \Phi_{02} \qquad \Phi_{01}$$

$$\Phi_{02} \qquad \Phi_{01} \qquad \Phi_{02}$$

【0014】 [上記化7において、 $\Phi_{11}$ 、 $\Phi_{21}$  、 $\Phi_{22}$  は、 $\Phi_{21}$  は、 $\Phi_{22}$  は、 $\Phi_{23}$  は、 $\Phi_{24}$  は、 $\Phi_{25}$  は

(4) 下記化8で表わされる上記(3) のトリスアリールアミノベンゼン誘導体。

[0015]

[化8]

$$R_1$$
 $R_2$ 
 $R_1$ 
 $R_2$ 
 $R_1$ 
 $R_2$ 
 $R_1$ 
 $R_2$ 
 $R_2$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 

【0016】 [上記化8において、計9個のR: およびR: は、互いに同一でも異なっていてもよく、それぞれ水素、アルキル基、アリール基、アルコキシ基、アリーロキシ基、アラルキル基、アルキルアリール基、1~3級のアミノ基、シアノ基、ニトロ基またはハロゲンを表わす。]

(5) 下記化9で表わされる上記(2) のトリスアリールアミノベンゼン誘導体。

[0017]

【化9】

【0018】 [上記化9において、 $Φ_n$  、 $Φ_n$  は  $Φ_n$  および $Φ_n$  は  $Φ_n$  は  $Φ_n$  は  $Φ_n$  であっても 異なるものであってもよく、 $Φ_n$  、 $Φ_n$  および $Φ_n$  は  $Φ_n$  および $Φ_n$  は、 $Φ_n$  を  $Φ_n$  なものであってもよく、 $Φ_n$  、 $Φ_n$  および $Φ_n$  は、 $Φ_n$  を  $Φ_n$  ない  $Φ_n$  を  $Φ_n$  に  $Φ_n$  を  $Φ_n$  を  $Φ_n$  に  $Φ_n$  を  $Φ_n$  を  $Φ_n$  を  $Φ_n$  に  $Φ_n$  を  $Φ_n$   $Φ_n$  を  $Φ_n$   $Φ_n$ 

(6) 下記化10で表わされる上記(5) のトリスアリールアミノベンゼン誘導体。

[0019]

【化10】

【0020】 [上記化10において、Ru、Ru、Ru、Ru は前記化9におけると同義であり、計6個のRは、互いに同一でも異なっていてもよく、それぞれ水素、アルキル基、アリール基、アルコキシ基、アリーロキシ基、アラルキル基、アルキルアリール基、1~3級のアミノ

50 基、シアノ基、ニトロ基またはハロゲンを表わす。]

(7) 上記(1)~(6) のいずれかのトリスアリール アミノベンゼン誘導体である有機EL素子用化合物。

- (8) 上記(7) の有機 E L 素子用化合物を含有する層 を有する有機EL素子。
- (9) 正孔注入輸送層と発光層とを有し、この正孔注入 輸送層が前記化合物を含有する上記(8)の有機EL素 子。
- (10) さらに電子注入輸送層を有する上記(9)の有 機EL素子。

### [0021]

【作用】上記化6で表わされるトリスアリールアミノベ ンゼン誘導体は、新規化合物であって、融点やガラス転 移温度Tgが高く、その蒸着等により成膜される薄膜 は、透明で室温以上でも安定なアモルファス状態を形成 し、平滑で良好な膜質を示す。この効果は以下のことに 起因していると考えられる。

【 0 0 2 2 】 **①** 分子量を増して高融点にしたこと

- ② 分子の剛直性を増やし、室温以上の高いガラス転移 温度を発現させたこと
- 立体障害のあるフェニル基のようなバルキーな置換 20 基を導入して分子間の重なりを最適化していること、
- 分子の取り得るコンフォーメーション数が多く、分 子の再配列が妨げられていること、

## 5 分子構造が非平面であること

【0023】また、分子中にN-フェニル基等の正孔注 入輸送単位を多く含み、さらには非平面構造を取ってい ることにより、隣接分子間においてダイマートラップラ ジカルイオンのような正孔の安定な構造的トラップを形 成しにくいために、正孔注入輸送能にも非常に優れてい る。

【0024】従って、本発明の有機EL素子は、上記化 6で表わされる本発明の1,3,5-トリスジアリール アミノベンゼン誘導体や1,3,5-トリキノアリール アミノベンゼン誘導体や、1,3,5-トリスモノアリ ールアンベンゼン誘導体を有機 E L 素子用化合物として 有機化合物層に、特に好ましくは、正孔注入輸送層に用 いるため、ムラのない均一な面発光が可能であり、高輝 度が長時間に渡って安定して得られる。波長によっても 異なるが100cd/m² 程度以上、特に1000cd/m² 程 度以上の高輝度が長時間安定して得られる。

### [0025]

【具体的構成】以下、本発明の具体的構成について詳細 に説明する。

【0026】本発明の化合物は、上記化6に示される所 定分子量以上のトリス(ジまたはモノアリールアミノ) ベンゼン誘導体である。化6において、計3個の2価の 芳香族環残基Φπ、Φπ およびΦπ としては、それぞれ 縮合環を有してもよく、例えばベンゼン、ナフタレン、 アントラセン等;チオフェン;フラン;ピロールおよび ビフェニル等の芳香族炭化水素環あるいは芳香族へテロ 50 のうち、少なくとも1個、より好ましくは2個以上、特

環の2価の残基のいずれであってもよい。これらは通常 互いに同一であるが、互いに異なるものであってもよ い。また、前記の芳香族環には、好ましくは炭素原子数 1~8、特に1~6のアルキル基;好ましくは炭素原子 数6~15のアリール基;これらのアルキル基やアリー ル基を有するアルコキシ基やアリーロキシ基;これらの アルキル基とアリール基とを有するアラルキル基やアル キルアリール基;これらのアルキル基やアリール基を有 することがある1~3級のアミノ基;シアノ基;ニトロ 10 基;ハロゲン等が置換していてもよい。ただし、これら のうちでは、Φπ、Φπ およびΦπ は、ともに置換基を 有してもよいが、より好ましくは非置換の1,4-フェ

【0027】次に、化6のRn、Rn およびRn は、そ れぞれジアリールアミノ基-NΦoiΦoz;モノアリール アミノ基-ΝΗΦω;アリールアルキルアミノ基-ΝR οι Φοι ; アリール基Φοι : アリールオキシ基一〇Φοι ; およびアリールチオ基一 S Ф いの含芳香族環基の1種以 上である。Φοι およびΦοι は互いに同一でも異なってい てもよく、前記の置換基を有してもよく、かつ前記の縮 合環を有してもよい芳香族炭化水素環や芳香族へテロ環 の1価の残基である。

ニレン基であることが好ましい。

【0028】これらの $\Phi_{01}$ 、 $\Phi_{02}$  で表わされる芳香族残 基には好ましくは炭素原子数1~8、特に1~6のアル キル基:好ましくは炭素原子数6~15のアリール基; これらのアルキル基やアリール基を有するアルコキシ基 やアリーロキシ基;これらのアルキル基とアリール基と を有するアラルキル基やアルキルアリール基;これらの アルキル基やアリール基を有することがある1~3級の アミノ基;シアノ基;ニトロ基;ハロゲン等が置換して いてもよい。この場合の置換基としては、炭素原子数1 ~8、特に1~6、さらには1~4のアルキル基、アリ ール基が好ましい。アルキル基は直鎖であっても分岐を 有していてもよく、またアリール基としてはフェニル基 が好ましい。そして、このアリール基は、さらに前記の  $-N\Phi_{01}\Phi_{02}$ 、 $-NH\Phi_{01}$  または $-NR\Phi_{01}$  を置換基と して有していてもよい。

【0029】また、Raは、好ましくは炭素原子数1~ 8、特に1~6、さらには1~4のアルキル基である。 アルキル基は直鎖であっても分岐を有していてもよい。 このアルキル基にも好ましくは炭素原子数1~8のアル キル基;好ましくは炭素原子数6~15のアリール基; これらのアルキル基やアリール基を有するアルコキシ基 やアリーロキシ基;これらのアルキル基とアリール基と を有するアラルキル基やアルキルアリール基;これらの アルキル基やアリール基を有することがある1~3級の アミノ基;シアノ基;ニトロ基;ハロゲン等が置換して いてもよいが、通常は非置換である。

【0030】これらの場合、計3個のRu、Ru、Ru

に3個が-NΦoi Φoz、-NHΦoi または-NR or Φor、より好ましくはーNΦor Φoz である。さらにー ΝΦοι Φα としては、置換基を有してもよいフェニル基 Phを有する-NPhzが好ましい。

【0031】また、An、Az およびAx は、それぞれ 芳香族環残基、アルキル基または水素である。芳香族環 残基としては、それぞれ縮合環を有してもよく、例えば ベンゼン、ナフタレン、アントラセン、ピレン等;チオ フェン:フラン:ピロールおよびビフェニル等の芳香族 炭化水素環あるいは芳香族へテロ環の1価の残基のいず 10 れであってもよい。これらは通常互いに同一であるが、 互いに異なるものであってもよい。また、前記の芳香族 環には、好ましくは炭素原子数1~8のアルキル基;好 ましくは炭素原子数6~15のアリール基;これらのア ルキル基やアリール基を有するアルコキシ基やアリーロ キシ基;これらのアルキル基とアリール基とを有するア ラルキル基やアルキルアリール基;これらのアルキル基 やアリール基を有することがある1~3級のアミノ基; シアノ基;ニトロ基;ハロゲン等が置換していてもよ 61

【0032】また、Au、Au およびAu がアルキル基 である場合は、アルキル基は直鎖であっても分岐を有す るものであってもよく、炭素原子数は1~8、特に1~ 6のものが好ましい。また、アルキル基はアリール基、 特にフェニル基で置換されていてもよい。

【0033】以上、本発明の化合物を特徴づける分岐末 端のアミノ基ーN Φm Φm 、-NHΦm または-NRm  $\Phi_0$  は、分子中に $R_0 \sim R_0$  として 1 個あればよいが、 特に2個、さらには3個存在することが好ましい。また  $A_{12} \sim A_{22}$  は芳香族環残基 $\Phi_{12} \sim \Phi_{22}$  となり、これが  $\Theta_{12} \sim \Phi_{12}$  30  $N\Phi_{01}$   $\Phi_{02}$  、 $-NH\Phi_{01}$  または $-NR_{01}$   $\Phi_{01}$  を置換基と

して有してもよいので、これらアミノ基は分子中に3~ 6個存在することが好ましい。これらのアミノ基の好適 例は前記のとおりである。

10

【0034】このような本発明の化合物は、W. Ishikaw a, H. Inada, H. Nakano and Y. Shirota, Chem. Lett., 1 991, 1731-1734.. W.Ishikawa, H.Inada, H.Nakano and Y.Shirota, Mol. Cryst. Liq. Cryst., 211(1992)431-438, W.Ishikawa, H.Inada, H.Nakano and Y.Shirota, J.Phys.D: Appl.Phys.26 B94-B99(1993)等に準じた方 法により合成できる。より具体的には、1,3,5ート リス[(4-ジフェニルアミノフェニル)ーアミノ]ベ ンゼン等の化11で示される化合物に、ヨードベンゼン 等の化10で示される化合物やヨウ化アルキル等のヨウ 化物をウルマン反応させればよい。

[0035]

【化11】



[0036] 【化12】

R 1 2 P 1 2 I

【0037】以下に、これらの化合物の具体例を挙げ

[0038] 【表1】

|        |            | 11                                |                    | 12                |
|--------|------------|-----------------------------------|--------------------|-------------------|
|        | 化合物<br>No. | $\Phi_{11}, \Phi_{21}, \Phi_{31}$ | R11, R21, R21      | A12, A22, A32     |
|        | 1          | <b>←</b> >                        | −N CH <sub>a</sub> |                   |
|        | 2          | <b>←</b>                          | -N                 | -                 |
|        | 3          | $\leftarrow$                      | $-N$ $C_2H_5$      |                   |
|        | 4          |                                   | -N                 | $\leftarrow$      |
|        | 5          |                                   | -N                 | ~°>               |
|        | 6          | <b>—</b>                          | -N                 | → <sup>S</sup>    |
|        | 7          | ————                              | -N                 |                   |
|        | 8          | <b>←&gt;</b>                      | -N                 |                   |
|        | 9          | <b>\_</b>                         | -N                 | $\Leftrightarrow$ |
|        | 1 0        | <b>←</b> >                        | -N                 |                   |
| [0039] |            |                                   | 【表2】               |                   |

| fi A 41.   | 13            | 14            |                                |
|------------|---------------|---------------|--------------------------------|
| 化合物<br>No. | Ф11, Ф21, Ф31 | R11, R21, R31 | A12. A22. A22                  |
| 1 1        |               |               |                                |
| 1 2        | <b>\_</b>     | -N $H$        | ~                              |
| 1 3        | $\leftarrow$  | -NCH,         |                                |
| 1 4        | <b>←&gt;</b>  | -N            | — С H s                        |
| 15         | <b>←&gt;</b>  | -N            | -C <sub>2</sub> H <sub>s</sub> |
| 16         | $\leftarrow$  | -N            | -C <sub>s</sub> H <sub>7</sub> |
| 17         | <del></del>   | -N            | -Cs His                        |
| 18         |               | -N            | СН.<br>-СНСН-СН.               |
| 19         | <b>←</b> >    | -N            | -CH2                           |
| 20         |               | -N            | Н                              |

【0040】これらの本発明の化合物は、500~30 00程度の分子量をもち、100~300℃の高融点を 有し、30~200℃、特に80~200℃のTgを示 し、通常の真空蒸着等により透明で室温以上でも安定な アモルファス状態を形成し、平滑で良好な膜として得ら れ、しかもそれが長期間に渡って維持される。

【0041】本発明のEL素子は、少なくとも1層の有 機化合物の層を有し、少なくとも1層の有機化合物層が を図1に示す。同図に示されるEL素子1は、基板2上 に、陽極3、正孔注入輸送層4、発光層5、電子注入輸 送層6、陰極7を順次有する。

【0042】発光層は、正孔および電子の注入機能、そ れらの輸送機能、正孔と電子の再結合により励起子を生 成させる機能をもつ。正孔注入輸送層は、陽極からの正 孔の注入を容易にする機能、正孔を輸送する機能および 電子を妨げる機能をもち、電子注入輸送層は、陰極から 本発明の化合物を含有する。本発明の E L 素子の構成例 50 の電子の注入を容易にする機能および電子を輸送する機 能、およびさらに正孔の輸送を防げる機能をもつものであり、これらの層は、発光層へ注入される正孔や電子を増大させて発光効率を改善する。従って、電子注入輸送層や正孔注入輸送層は、発光層に用いる化合物の電子注入、正孔輸送の各機能の高さを考慮し、必要に応じて設けられるものである。例えば、発光層に用いる化合物の正孔注入輸送機能または電子注入輸送機能が高い場合には、正孔注入輸送層または電子注入輸送層を設けずに、発光層が正孔注入輸送層または電子注入輸送層を設けずに、発光層が正孔注入輸送層または電子注入輸送層を設けずに、発光層が正孔注入輸送層または電子注入輸送層を設けずに、発光層が正孔注入輸送層または電子注入輸送層を設けずに、発光層が正孔注入輸送層を設けずることができる。また、場合によっては正孔注入輸送層および電子注入輸送層のいずれも設けなくてよい。

【0043】本発明の化合物は、正孔注入輸送性が良好であるので、正孔注入輸送層に用いることが好ましい。従って、本発明の化合物を正孔注入輸送層に用いる場合について説明する。この場合、発光層中には、蛍光性物質が含まれる。この蛍光性物質としては、例えば、特開昭63-264692号公報に開示されているような化合物、例えばクマリン、キナクリドン、ルブレン、スチリル系色素等の化合物から選択される少なくとも1種が挙げられる。その他には例えば、テトラフェニルブタジェン、アントラセン、ペリレン、コロネン、12-フタロペリノン誘導体、トリス(8-キノリノール)アルミニウム等の金属錯体色素なども挙げることができる。これらの有機蛍光体を蒸着するか、あるいは樹脂バインダー中に分散させてコーティングすることにより、発光層を所定の厚さに形成する。

【0044】正孔注入輸送層には、本発明の化合物を用 いる。この場合も、化合物を蒸着するか、コーティング する。特に蒸着を行えば良好なアモルファス膜が得られ る。本発明の化合物を正孔注入輸送層に用いる場合、通 常の有機EL素子に用いられている各種有機化合物、例 えば、特開昭63-295695号公報、特開平2-1 91694号公報、特開平3-792号公報等に記載さ れている各種有機化合物を正孔注入輸送層に併用した り、電子注入輸送層として用いたりすることができる。 例えば、正孔注入輸送層には、芳香族三級アミン、ヒド ラゾン誘導体、カルバゾール誘導体等を本発明の化合物 と積層したり、10モル%以下混合することができる。 積層する場合は本発明の化合物を陽極と併用する正孔注 40 入輸送層との間に用いることが望ましい。また、電子注 入輸送層には、オキサジアゾール誘導体等を用いること ができる。

【0045】また、有機化合物の層には、一重項酸素クエンチャーが含有されていてもよい。このようなクエンチャーとしては、ニッケル錯体や、ルブレン、ジフェニルイソベンゾフラン、三級アミン等が挙げられる。中でもルブレンは特に好ましい。このようなクエンチャーの含有量は、本発明の化合物の10モル%以下とすることが好ましい。

16

【0046】発光層の厚さ、正孔注入輸送層の厚さおよび電子注入輸送層の厚さは特に限定されず、形成方法によっても異なるが、通常、10~1000m程度、特に50~200mとすることが好ましい。正孔注入輸送層の厚さおよび電子注入輸送層の厚さは、発光層の厚さと同程度とすればよい。

【0047】陰極には、仕事関数の小さい材料、例えば、Li、Na、Mg、Al、Ag、Inあるいはこれらの1種以上を含む合金を用いることが好ましい。また、陰極は結晶粒が細かいことが好ましく、特に、アモルファス状態であることが好ましい。陰極の厚さは10~1000m程度とすることが好ましい。

【0048】 E L素子を面発光させるためには、少なくとも一方の電極が透明ないし半透明である必要があり、上記したように陰極の材料には制限があるので、好ましくは発光光の透過率が80%以上となるように陽極の材料および厚さを決定することが好ましい。具体的には、例えば、ITO、 $SnO_2$  、Ni、Au、Pt、Pd、ポリチオフェン、ポリピロールなどを陽極に用いることが好ましい。また、陽極の厚さは $10\sim500m$ 程度とすることが好ましい。

【0049】基板材料に特に制限はないが、図示例では 基板側から発光を取り出すため、ガラスや樹脂等の透明 ないし半透明材料を用いる。なお、基板に不透明な材料 を用いる場合には、図1に示される積層順序を逆にして もよい。

【0050】次に、本発明のEL素子の製造方法を説明する。陰極および陽極は、真空蒸着法やスパッタ法等の気相成長法により形成することが好ましい。正孔注入輸送層、発光層および電子注入輸送層の形成には、均質な薄膜が形成できることから真空蒸着法を用いることが好ましい。真空蒸着法を用いた場合、アモルファス状態の均質な薄膜が得られる。

【0051】真空蒸着の条件は特に限定されないが、 $10^3$  Pa以下の真空度とし、蒸着速度は $0.1\sim1$  mm/sec 程度とすることが好ましい。また、真空中で連続して各層を形成することが好ましい。真空中で連続して形成すれば、各層の界面に不純物が吸着することを防げるため、高特性が得られる。また、素子の駆動電圧を低くすることができる。これら各層の形成に真空蒸着法を用いる場合において、1 層に複数の化合物を含有させる場合、化合物を入れた各ボートを個別に温度制御して共る着することが好ましいが、予め混合してから蒸着してもよい。また、この他、溶液塗布法(スピンコート、ディップ、キャスト等)、ラングミュア・ブロジェット(1 B)法などを用いることもできる。溶液塗布法では、ポリマー等のマトリクス物質中に本発明の化合物を分散させる構成としてもよい。

【0052】本発明のEL素子は、通常、直流駆動型の 50 EL素子として用いられるが、交流駆動またはパルス駆 動すること できる。印加電圧は、通常、3~20V程度とされるも、

[0053]

【実施例】】下、本発明の具体的実施例を示し、本発明をさらに、以に説明する。

【005<sup>件細</sup>に実施例1>上記表1、表2に示される化合物No. 4】 13に示される方法により合成した。まず、4 1を化・ルアミノベンゼン(10.4g、0.04モージフェーとドロキシベンゼン(1.26g、0.1・ル)とトリ、ヨウ素(0.2g、0.0008モ 10ル)とコフラスコにいれ、窒素雰囲気下におりとを50ml三に間反応させた。反応終了後、ホットいて190℃で6時行った。ベンゼンを留去した後、ベベンゼンより抽出を、、シリカゲルカラムクロマトグランゼンを展開溶媒としした。フィーにより分解精製、

【0055】得られた 1, 3, 5-トリス {N-(4-ジフェニルアミノフェニル) アミノ) ベンゼン (2. 13g, 0. 0025 モル)と、3-ドベンゼン (1. 04g, 0. 02 モル)と、3-ドベンゼン (3 0. 04g, 0. 02 モル)と、3-1g0 と、3-1g0 と、3-1g0 と、3-1g0 と、3-1g0 とを 3-1g0 と、3-1g0 とを 3-1g0 と、3-1g0 とを 3-1g0 と 3-1g0 とを 3-1g0 と 3-1g0 とを 3-1g0 と 3-1g0 とを 3-1g0 と 3-1g0 と 3-1g0 とを 3-1g0 と 3-1g

【0056】

(11)

65%

【0057】 IR (図2) \*NMR ' H NMR 6. 3~6. 8 UV  $(\lambda \max, \log \varepsilon)$  (310nm, 4.85) 質量分析:m/e 1080(M) 元素分析

> C Н N 計算值(%) 86.64 5. 59 7.77 86.90 測定值(%) 5.63 7. 74

【0058】DSC(図3)

融点:240℃

ガラス転移点:108℃

【0059】<実施例2>厚さ200mmの1TO透明電 極(陽極)を有するガラス基板を、中性洗剤、アセト

50 ン、エタノールを用いて超音波洗浄し、煮沸エタノール

中から引き上げて乾燥し、蒸着装置の基板ホルダーに固定して、8×10°Paまで減圧した。

【0060】次いで、化合物No. 1を蒸着速度0.2nm/sec で50nmの厚さに蒸着し、正孔注入輸送層とした。次いで、減圧状態を保ったまま、トリス(8-+ノリノール)アルミニウムを蒸着速度0.2nm/sec で50nmの厚さに蒸着して、電子注入輸送機能の強い発光層とした。さらに、減圧状態を保ったまま、MgAg(重量比10:1)を蒸着速度0.2nm/sec で200nmの厚さに蒸着して陰極とし、EL素子を得た。

【0061】このE L素子の電流密度ー輝度特性を図4に、電圧ー輝度特性を図5に示す。なお、この際、黄緑色(発光極大波長 $\lambda_{\rm axx}=495\,{\rm nm}$ )の発光が確認された。

【0062】その際、破壊に至る直前までの限界電流密度は、 $1500mA/cm^2$ と、これまでの約2倍になり、耐久性の向上が認められた。

【0063】さらに、このE L素子に直流電圧を印加し、 $10 \, \text{mA/cm}^2$  の一定電流密度で連続駆動させた。初期に $5.3 \, \text{V}$  の駆動電圧で $170 \, \text{cd/m}^2$  を示した発光輝度は、 $800 \, \text{時間を経過しても減衰が} 30 \, \text{%と少なく、} 100 \, \text{cd/m}^2$  以上の実用輝度を保っている。また、駆動電圧の上昇も少なく、高い駆動安定性を示している。経時特性を図6 に示す。

【0065】<比較例2>実施例2の化合物No.1の代わりに4,4′,4″ートリス(ジフェニルアミノ)トリフェニルアミン(TDATA)を用いた。DSCによるTDATAの融点は239℃、ガラス転移点は89℃、結晶化点は130℃であった。成膜に際し、放冷しただけではガラス状態を形成せず、このため液体窒素で急冷した。EL素子では蒸着装置から取り出した直後に白濁して結晶化するものが存在した。白濁化しないもののみを選別して連続駆動させたところ、6時間で発光輝度は半減し、翌日には絶縁破壊するに至った。以上から、本発明の効果が明らかである。

【0066】<実施例3>実施例1と同様にしてウルマン反応により化合物No.2~13を合成した。これらの

22

同定は実施例1と同様、IR、NMR、質量分析、元素 分析によった。これらの化合物を用い、実施例2と同様 にして実験を行ったところ実施例2と同等の結果を得 た。

【0067】<実施例4>実施例1において、ヨードベンゼンを対応するヨー化アルキルに変え、反応温度40~170℃、反応時間5~20時間で、化合物No.14~19を得た。同定は、「R、NMR、質量分析、元素分析によった。このものも実施例2と同等の結果を得10 た。

【0068】<実施例5>実施例1の中間生成物である 化合物No.20を用いたところ、この場合も実施例2と 同等の結果を得た。

[0069]

【発明の効果】本発明の化合物は融点とガラス転移温度 Tgが高く、透明で室温以上でも安定なアモルファス状態を形成し平滑で良好な膜質を示す。従って、本発明 E L素子は上記化合物を有機化合物層、特に好ましくは正孔注入輸送層に用いるため、ムラのない均一な面発光が可能であり、高輝度が長時間に渡って安定して得られ、耐久性に優れる。

【0070】また、本発明の化合物は、ドナー性を有する有機半導体材料として有機EL素子以外の光電変換素子、例えば光電池や光センサへの応用が可能である。さらには、アモルファス状態と結晶間の転移を利用したサーモクロミック材料としても有用である。

#### 【図面の簡単な説明】

【図1】本発明のEL素子の構成例を示す側面図である。

【図2】本発明の化合物の赤外線吸収スペクトルの1例 を示す図である。

【図3】本発明の化合物のDSC図の1例を示す図である。

【図4】本発明のEL素子の電流密度-輝度特性の1例を示すグラフである。

【図5】本発明のEL素子の電圧-輝度特性の1例を示すグラフである。

【図6】本発明のEL素子と従来のEL素子の連続駆動 安定性の1例を示すグラフである。

40 【符号の説明】

- 1 E L 素子
- 2 基板
- 3 陽極
- 4 正孔注入輸送層
- 5 発光層
- 6 電子注入輸送層
- 7 陰極

[図1]



[図2]







[図4]







フロントページの続き

(72)発明者 井上 鉄司 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 (72)発明者 岡田 式博 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 (72)発明者 南波 憲良

東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内