$12n_{0651} \ (K12n_{0651})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -5.87738 \times 10^{79} u^{37} - 4.81123 \times 10^{79} u^{36} + \dots + 1.09631 \times 10^{80} b + 6.40170 \times 10^{79}, \\ &- 5.87738 \times 10^{79} u^{37} - 4.81123 \times 10^{79} u^{36} + \dots + 1.09631 \times 10^{80} a - 4.56137 \times 10^{79}, \ u^{38} + u^{37} + \dots - 2u + I_2^u &= \langle -1.04653 \times 10^{27} u^{29} + 6.40175 \times 10^{26} u^{28} + \dots + 7.20755 \times 10^{25} b - 2.20858 \times 10^{27}, \\ &- 1.04653 \times 10^{27} u^{29} + 6.40175 \times 10^{26} u^{28} + \dots + 7.20755 \times 10^{25} a - 2.13651 \times 10^{27}, \ u^{30} + u^{28} + \dots + 2u + I_3^u &= \langle -8.10037 \times 10^{37} u^{23} - 8.29349 \times 10^{37} u^{22} + \dots + 3.72935 \times 10^{40} b + 3.34631 \times 10^{39}, \\ &- 4.67951 \times 10^{43} u^{23} - 5.81164 \times 10^{43} u^{22} + \dots + 3.64130 \times 10^{45} a + 6.70319 \times 10^{45}, \\ &u^{24} + u^{23} + \dots - 72u + 389 \rangle \\ I_4^u &= \langle -7.05840 \times 10^{36} u^{23} + 1.01927 \times 10^{37} u^{22} + \dots + 1.33403 \times 10^{40} b - 9.50718 \times 10^{39}, \\ &- 4.57492 \times 10^{42} u^{23} + 4.23759 \times 10^{42} u^{22} + \dots + 2.64466 \times 10^{45} a - 1.17455 \times 10^{45}, \\ &u^{24} + 12u^{22} + \dots + 1224u + 631 \rangle \\ I_5^u &= \langle b, \ a - 1, \ u^3 - u^2 + 2u - 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 119 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -5.88 \times 10^{79} u^{37} - 4.81 \times 10^{79} u^{36} + \dots + 1.10 \times 10^{80} b + 6.40 \times 10^{79}, \ -5.88 \times 10^{79} u^{37} - 4.81 \times 10^{79} u^{36} + \dots + 1.10 \times 10^{80} a - 4.56 \times 10^{79}, \ u^{38} + u^{37} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.536107u^{37} + 0.438858u^{36} + \dots + 5.20206u + 0.416067 \\ 0.536107u^{37} + 0.438858u^{36} + \dots + 5.20206u - 0.583933 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.536107u^{37} + 0.438858u^{36} + \dots + 5.20206u - 0.583933 \\ 0.551933u^{37} + 0.438858u^{36} + \dots + 5.75746u - 1.74427 \\ 0.0158259u^{37} - 0.254694u^{36} + \dots + 0.555407u - 2.16033 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.880326u^{37} + 1.05073u^{36} + \dots + 6.21709u - 0.512405 \\ 0.415309u^{37} + 0.344712u^{36} + \dots + 6.06497u - 1.60045 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.370131u^{37} + 0.566178u^{36} + \dots + 5.16811u - 0.0626616 \\ 0.484697u^{37} + 0.579181u^{36} + \dots + 5.16811u - 0.0626616 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.551933u^{37} + 0.184165u^{36} + \dots + 5.75746u - 1.74427 \\ -0.138322u^{37} - 0.383483u^{36} + \dots - 0.732063u - 1.79256 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.603900u^{37} - 0.605524u^{36} + \dots + 4.99750u + 1.42841 \\ -0.121286u^{37} + 0.101025u^{36} + \dots - 2.38717u + 2.45390 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.624236u^{37} - 0.742981u^{36} + \dots - 4.51871u - 0.410519 \\ -0.794152u^{37} - 0.640181u^{36} + \dots - 8.11717u + 1.88051 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-1.67858u^{37} 0.851719u^{36} + \cdots 22.0981u + 8.20713$

Crossings	u-Polynomials at each crossing
c_1	$u^{38} + 20u^{37} + \dots + 65536u + 65536$
c_2, c_7	$u^{38} - 16u^{37} + \dots - 2560u + 256$
c_3,c_9	$u^{38} - 2u^{37} + \dots - 8u + 1$
c_4	$u^{38} - 22u^{36} + \dots - 1528u + 1456$
c_5, c_{12}	$u^{38} - u^{37} + \dots + 2u + 1$
<i>c</i> ₆	$u^{38} - 19u^{37} + \dots - 3108u + 245$
c_8, c_{11}	$u^{38} + 12u^{37} + \dots + 1309u + 245$
c_{10}	$u^{38} - u^{37} + \dots - 189u + 61$

Crossings	Riley Polynomials at each crossing
c_1	$y^{38} - 4y^{37} + \dots - 15032385536y + 4294967296$
c_2, c_7	$y^{38} - 20y^{37} + \dots - 65536y + 65536$
c_3, c_9	$y^{38} + 20y^{37} + \dots + 38y + 1$
c_4	$y^{38} - 44y^{37} + \dots - 18656544y + 2119936$
c_5,c_{12}	$y^{38} + 51y^{37} + \dots + 14y + 1$
c_6	$y^{38} - 9y^{37} + \dots + 500486y + 60025$
c_8, c_{11}	$y^{38} + 12y^{37} + \dots + 698299y + 60025$
c_{10}	$y^{38} - 27y^{37} + \dots - 45603y + 3721$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.769678 + 0.293616I		
a = 0.990107 + 0.482059I	-1.363000 - 0.273225I	-9.42966 + 1.77588I
b = -0.009893 + 0.482059I		
u = 0.769678 - 0.293616I		
a = 0.990107 - 0.482059I	-1.363000 + 0.273225I	-9.42966 - 1.77588I
b = -0.009893 - 0.482059I		
u = 0.145322 + 0.514446I		
a = 0.88401 + 1.27389I	-5.36598 - 0.46970I	-5.55031 + 3.34064I
b = -0.115995 + 1.273890I		
u = 0.145322 - 0.514446I		
a = 0.88401 - 1.27389I	-5.36598 + 0.46970I	-5.55031 - 3.34064I
b = -0.115995 - 1.273890I		
u = -0.471950 + 0.049779I		
a = 1.55201 - 0.71853I	0.91968 - 1.81363I	-0.50505 + 3.48218I
b = 0.552008 - 0.718532I		
u = -0.471950 - 0.049779I		
a = 1.55201 + 0.71853I	0.91968 + 1.81363I	-0.50505 - 3.48218I
b = 0.552008 + 0.718532I		
u = 0.451414 + 0.116571I		
a = 1.47086 - 1.11033I	-1.87643 - 5.76844I	-7.26109 + 7.17876I
b = 0.470864 - 1.110330I		
u = 0.451414 - 0.116571I		
a = 1.47086 + 1.11033I	-1.87643 + 5.76844I	-7.26109 - 7.17876I
b = 0.470864 + 1.110330I		
u = -1.52338 + 0.33853I		
a = 0.660164 - 0.721621I	-9.11191 + 1.39764I	0
b = -0.339836 - 0.721621I		
u = -1.52338 - 0.33853I		
a = 0.660164 + 0.721621I	-9.11191 - 1.39764I	0
b = -0.339836 + 0.721621I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.41128 + 1.51296I		
a = 0.046743 + 0.690253I	1.47310 + 1.34582I	0
b = -0.953257 + 0.690253I		
u = 0.41128 - 1.51296I		
a = 0.046743 - 0.690253I	1.47310 - 1.34582I	0
b = -0.953257 - 0.690253I		
u = -0.016686 + 0.398344I		
a = 1.31541 - 1.24871I	-1.19389 - 3.34823I	1.04129 + 3.46922I
b = 0.315412 - 1.248710I		
u = -0.016686 - 0.398344I		
a = 1.31541 + 1.24871I	-1.19389 + 3.34823I	1.04129 - 3.46922I
b = 0.315412 + 1.248710I		
u = -0.310405 + 0.170863I		
a = 1.95426 - 0.20841I	2.29409 - 1.35414I	2.68942 + 3.98636I
b = 0.954255 - 0.208414I		
u = -0.310405 - 0.170863I		
a = 1.95426 + 0.20841I	2.29409 + 1.35414I	2.68942 - 3.98636I
b = 0.954255 + 0.208414I		
u = -0.19463 + 1.64159I		
a = 0.195587 - 1.105580I	0.19003 + 7.83950I	0
b = -0.804413 - 1.105580I		
u = -0.19463 - 1.64159I		
a = 0.195587 + 1.105580I	0.19003 - 7.83950I	0
b = -0.804413 + 1.105580I		
u = 0.230980 + 0.257221I		
a = 1.92353 - 0.29790I	1.90925 - 2.85593I	-1.44584 + 3.55066I
b = 0.923530 - 0.297905I		
u = 0.230980 - 0.257221I		
a = 1.92353 + 0.29790I	1.90925 + 2.85593I	-1.44584 - 3.55066I
b = 0.923530 + 0.297905I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.063281 + 0.328463I		
a = 1.38439 + 1.55227I	-4.17774 + 8.19316I	2.57658 - 7.35106I
b = 0.38439 + 1.55227I		
u = 0.063281 - 0.328463I		
a = 1.38439 - 1.55227I	-4.17774 - 8.19316I	2.57658 + 7.35106I
b = 0.38439 - 1.55227I		
u = -0.29571 + 1.65878I		
a = -0.115023 + 0.852244I	7.44352 + 10.43800I	0
b = -1.115020 + 0.852244I		
u = -0.29571 - 1.65878I		
a = -0.115023 - 0.852244I	7.44352 - 10.43800I	0
b = -1.115020 - 0.852244I		
u = 0.33699 + 1.67811I		
a = 0.190397 - 0.903287I	6.17744 - 3.28622I	0
b = -0.809603 - 0.903287I		
u = 0.33699 - 1.67811I		
a = 0.190397 + 0.903287I	6.17744 + 3.28622I	0
b = -0.809603 + 0.903287I		
u = 0.08401 + 1.79386I		
a = -0.064653 - 0.833573I	9.31632 - 4.00848I	0
b = -1.064650 - 0.833573I		
u = 0.08401 - 1.79386I		
a = -0.064653 + 0.833573I	9.31632 + 4.00848I	0
b = -1.064650 + 0.833573I		
u = -0.14610 + 1.84614I		
a = 0.181975 + 0.975853I	8.09306 - 3.65630I	0
b = -0.818025 + 0.975853I		
u = -0.14610 - 1.84614I		
a = 0.181975 - 0.975853I	8.09306 + 3.65630I	0
b = -0.818025 - 0.975853I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.83573 + 1.82057I		
a = 0.065993 - 1.107020I	6.5788 + 17.8341I	0
b = -0.93401 - 1.10702I		
u = -0.83573 - 1.82057I		
a = 0.065993 + 1.107020I	6.5788 - 17.8341I	0
b = -0.93401 + 1.10702I		
u = -0.69403 + 1.88222I		
a = 0.117388 - 0.861621I	8.47233 + 2.68142I	0
b = -0.882612 - 0.861621I		
u = -0.69403 - 1.88222I		
a = 0.117388 + 0.861621I	8.47233 - 2.68142I	0
b = -0.882612 + 0.861621I		
u = 0.61560 + 1.91074I		
a = 0.092836 + 1.092150I	8.46080 - 11.17390I	0
b = -0.90716 + 1.09215I		
u = 0.61560 - 1.91074I		
a = 0.092836 - 1.092150I	8.46080 + 11.17390I	0
b = -0.90716 - 1.09215I		
u = 0.88007 + 1.80431I		
a = 0.154018 + 0.915742I	6.17371 - 9.49223I	0
b = -0.845982 + 0.915742I		
u = 0.88007 - 1.80431I		
a = 0.154018 - 0.915742I	6.17371 + 9.49223I	0
b = -0.845982 - 0.915742I		

 $\begin{array}{l} I_2^u = \langle -1.05 \times 10^{27} u^{29} + 6.40 \times 10^{26} u^{28} + \cdots + 7.21 \times 10^{25} b - 2.21 \times 10^{27}, \ -1.05 \times 10^{27} u^{29} + 6.40 \times 10^{26} u^{28} + \cdots + 7.21 \times 10^{25} a - 2.14 \times 10^{27}, \ u^{30} + u^{28} + \cdots + 2u + 1 \rangle \end{array}$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 14.5199u^{29} - 8.88201u^{28} + \dots + 8.39444u + 29.6427 \\ 14.5199u^{29} - 8.88201u^{28} + \dots + 8.39444u + 30.6427 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1 \\ 14.5199u^{29} - 8.88201u^{28} + \dots + 8.39444u + 30.6427 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -4.06825u^{29} + 4.09990u^{28} + \dots + 9.54483u - 14.8631 \\ 10.4516u^{29} - 4.78211u^{28} + \dots - 1.15039u + 14.7796 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 7.78523u^{29} - 6.01099u^{28} + \dots + 15.7391u + 19.5443 \\ 20.7671u^{29} - 10.4401u^{28} + \dots + 7.40959u + 38.1324 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -11.5035u^{29} + 9.71998u^{28} + \dots + 22.2318u - 32.1347 \\ -17.0902u^{29} + 9.54834u^{28} + \dots - 10.8920u - 36.3401 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -4.06825u^{29} + 4.09990u^{28} + \dots - 9.54483u - 14.8631 \\ 9.84035u^{29} - 3.57850u^{28} + \dots - 9.54483u - 14.8631 \\ 9.84035u^{29} - 3.57850u^{28} + \dots - 5.28194u + 10.6797 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.746741u^{29} - 2.39409u^{28} + \dots + 16.9625u + 9.48042 \\ -13.0525u^{29} + 6.82801u^{28} + \dots + 10.265643u - 20.2601 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -5.91549u^{29} - 0.395824u^{28} + \dots + 17.1709u + 0.984383 \\ -29.7670u^{29} + 14.4764u^{28} + \dots + 2.95769u - 47.2696 \end{pmatrix}$$

(ii) Obstruction class = 1

Crossings	u-Polynomials at each crossing
c_1	$u^{30} - 20u^{29} + \dots - 157u + 9$
c_2	$u^{30} - 10u^{28} + \dots - u + 3$
c_3, c_9	$u^{30} + u^{29} + \dots - 4u + 1$
c_4	$u^{30} - u^{29} + \dots + 32u + 52$
<i>C</i> ₅	$u^{30} + u^{28} + \dots - 2u + 1$
<i>c</i> ₆	$u^{30} + 18u^{29} + \dots - u^2 + 1$
	$u^{30} - 10u^{28} + \dots + u + 3$
<i>c</i> ₈	$u^{30} + 11u^{29} + \dots + 5u + 1$
c_{10}	$u^{30} - 4u^{28} + \dots + 5u + 3$
c_{11}	$u^{30} - 11u^{29} + \dots - 5u + 1$
c_{12}	$u^{30} + u^{28} + \dots + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{30} - 4y^{29} + \dots - 817y + 81$
c_2, c_7	$y^{30} - 20y^{29} + \dots - 157y + 9$
c_3,c_9	$y^{30} - 9y^{29} + \dots + 10y + 1$
c_4	$y^{30} - 9y^{29} + \dots + 952y + 2704$
c_5, c_{12}	$y^{30} + 2y^{29} + \dots - 14y + 1$
c_6	$y^{30} - 10y^{29} + \dots - 2y + 1$
c_8, c_{11}	$y^{30} + 11y^{29} + \dots + 27y + 1$
c_{10}	$y^{30} - 8y^{29} + \dots - 43y + 9$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.192553 + 1.043410I		
a = -0.186549 + 1.226810I	-0.33621 + 6.09015I	-3.88862 - 7.39365I
b = 0.81345 + 1.22681I		
u = -0.192553 - 1.043410I		
a = -0.186549 - 1.226810I	-0.33621 - 6.09015I	-3.88862 + 7.39365I
b = 0.81345 - 1.22681I		
u = -0.275781 + 0.879549I		
a = 0.223505 + 0.732747I	2.85792 + 3.57779I	4.92513 - 8.66685I
b = 1.22350 + 0.73275I		
u = -0.275781 - 0.879549I		
a = 0.223505 - 0.732747I	2.85792 - 3.57779I	4.92513 + 8.66685I
b = 1.22350 - 0.73275I		
u = 0.499454 + 0.690994I		
a = -1.210630 - 0.663508I	-3.77754 - 2.97804I	-4.88613 + 5.33573I
b = -0.210632 - 0.663508I		
u = 0.499454 - 0.690994I		
a = -1.210630 + 0.663508I	-3.77754 + 2.97804I	-4.88613 - 5.33573I
b = -0.210632 + 0.663508I		
u = 0.617119 + 0.976797I		
a = -0.011660 - 1.138620I	1.65191 - 4.24761I	3.36736 + 1.91762I
b = 0.98834 - 1.13862I		
u = 0.617119 - 0.976797I		
a = -0.011660 + 1.138620I	1.65191 + 4.24761I	3.36736 - 1.91762I
b = 0.98834 + 1.13862I		
u = 0.755859 + 0.951225I		
a = -0.088028 - 0.491277I	1.88263 - 0.42999I	0.216000 + 0.636863I
b = 0.911972 - 0.491277I		
u = 0.755859 - 0.951225I		
a = -0.088028 + 0.491277I	1.88263 + 0.42999I	0.216000 - 0.636863I
b = 0.911972 + 0.491277I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.605699 + 0.450661I		
a = -1.57115 + 0.40450I	-2.94832 - 4.03310I	-3.08569 - 0.46145I
b = -0.571149 + 0.404502I		
u = -0.605699 - 0.450661I		
a = -1.57115 - 0.40450I	-2.94832 + 4.03310I	-3.08569 + 0.46145I
b = -0.571149 - 0.404502I		
u = 0.738105 + 0.100363I		
a = -0.685141 - 1.115870I	-2.11126 - 3.24044I	-8.53743 + 3.11023I
b = 0.314859 - 1.115870I		
u = 0.738105 - 0.100363I		
a = -0.685141 + 1.115870I	-2.11126 + 3.24044I	-8.53743 - 3.11023I
b = 0.314859 + 1.115870I		
u = 1.335800 + 0.011955I		
a = -0.802388 - 0.480325I	0.403793 + 0.548900I	-2.92133 - 2.10151I
b = 0.197612 - 0.480325I		
u = 1.335800 - 0.011955I		
a = -0.802388 + 0.480325I	0.403793 - 0.548900I	-2.92133 + 2.10151I
b = 0.197612 + 0.480325I		
u = 0.642239 + 0.139313I		
a = -1.51104 - 0.81141I	-4.13100 + 6.13004I	-10.9996 - 9.9739I
b = -0.511044 - 0.811406I		
u = 0.642239 - 0.139313I		
a = -1.51104 + 0.81141I	-4.13100 - 6.13004I	-10.9996 + 9.9739I
b = -0.511044 + 0.811406I		
u = -1.372170 + 0.319453I		
a = -1.011380 + 0.367883I	0.40035 - 6.49171I	-5.66132 + 6.20888I
b = -0.011383 + 0.367883I		
u = -1.372170 - 0.319453I		
a = -1.011380 - 0.367883I	0.40035 + 6.49171I	-5.66132 - 6.20888I
b = -0.011383 - 0.367883I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.538379 + 0.006202I		
a = -0.66784 + 1.45649I	-4.63983 + 8.15895I	-14.9285 - 6.3499I
b = 0.33216 + 1.45649I		
u = -0.538379 - 0.006202I		
a = -0.66784 - 1.45649I	-4.63983 - 8.15895I	-14.9285 + 6.3499I
b = 0.33216 - 1.45649I		
u = -0.410661 + 0.302060I		
a = -1.29493 + 1.22348I	-5.87855 + 0.33581I	-10.20797 - 1.77628I
b = -0.294926 + 1.223480I		
u = -0.410661 - 0.302060I		
a = -1.29493 - 1.22348I	-5.87855 - 0.33581I	-10.20797 + 1.77628I
b = -0.294926 - 1.223480I		
u = -1.51392 + 0.29861I		
a = -0.650786 + 0.746403I	-9.10945 + 1.47002I	-4.0000 - 56.0927I
b = 0.349214 + 0.746403I		
u = -1.51392 - 0.29861I		
a = -0.650786 - 0.746403I	-9.10945 - 1.47002I	-4.0000 + 56.0927I
b = 0.349214 - 0.746403I		
u = -0.14376 + 1.63552I		
a = 0.001371 + 0.952810I	5.51706 + 0.72621I	0
b = 1.001370 + 0.952810I		
u = -0.14376 - 1.63552I		
a = 0.001371 - 0.952810I	5.51706 - 0.72621I	0
b = 1.001370 - 0.952810I		
u = 0.46435 + 1.70410I		
a = -0.033350 - 0.978342I	5.41410 - 6.42832I	0
b = 0.966650 - 0.978342I		
u = 0.46435 - 1.70410I		
a = -0.033350 + 0.978342I	5.41410 + 6.42832I	0
b = 0.966650 + 0.978342I		

III.
$$I_3^u = \langle -8.10 \times 10^{37} u^{23} - 8.29 \times 10^{37} u^{22} + \dots + 3.73 \times 10^{40} b + 3.35 \times 10^{39}, -4.68 \times 10^{43} u^{23} - 5.81 \times 10^{43} u^{22} + \dots + 3.64 \times 10^{45} a + 6.70 \times 10^{45}, \ u^{24} + u^{23} + \dots - 72u + 389 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0128512u^{23} + 0.0159603u^{22} + \dots - 14.5752u - 1.84088 \\ 0.00217206u^{23} + 0.00222384u^{22} + \dots - 2.33706u - 0.0897290 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0106791u^{23} + 0.0137365u^{22} + \dots - 12.2382u - 1.75115 \\ 0.00217206u^{23} + 0.00222384u^{22} + \dots - 2.33706u - 0.0897290 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.00298677u^{23} - 0.00907284u^{22} + \dots - 0.491641u + 4.86694 \\ -0.00167288u^{23} - 0.00194185u^{22} + \dots + 2.00850u - 0.281410 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.00374148u^{23} + 0.000694410u^{22} + \dots + 9.49017u - 4.64825 \\ 0.0000211845u^{23} + 0.000246509u^{22} + \dots + 0.539375u + 0.850723 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.00166354u^{23} - 0.00661729u^{22} + \dots - 7.23299u + 9.14342 \\ -0.00359698u^{23} - 0.00568733u^{22} + \dots + 2.35046u + 0.996357 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.00298677u^{23} - 0.00907284u^{22} + \dots - 0.491641u + 4.86694 \\ -0.00346718u^{23} - 0.00578265u^{22} + \dots + 2.73215u + 2.08607 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.00195405u^{23} + 0.00977649u^{22} + \dots + 3.63919u - 6.91853 \\ 0.00531328u^{23} + 0.00782872u^{22} + \dots + 3.63919u - 6.91853 \\ 0.00531328u^{23} + 0.00782872u^{22} + \dots - 3.79070u - 0.818042 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0102467u^{23} + 0.0128559u^{22} + \dots - 10.6412u + 1.34843 \\ 0.00311597u^{23} + 0.00391760u^{22} + \dots - 2.20109u + 0.0846023 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.0560152u^{23} + 0.0569676u^{22} + \cdots 65.8499u 1.78467$

Crossings	u-Polynomials at each crossing
c_1	$(u^3 + u^2 + 2u + 1)^8$
c_2, c_7	$(u^3 + u^2 - 1)^8$
c_3,c_9	$u^{24} + u^{23} + \dots + 264u + 59$
c_4	$u^{24} - 2u^{23} + \dots + 17490u + 21275$
c_5, c_{12}	$u^{24} - u^{23} + \dots + 72u + 389$
	$(u^4 + u^3 + u^2 - u + 1)^6$
c_8,c_{11}	$(u^4 - u^3 + u^2 + u + 1)^6$
c_{10}	$u^{24} + 2u^{23} + \dots + 1360u + 2423$

Crossings	Riley Polynomials at each crossing
c_1	$(y^3 + 3y^2 + 2y - 1)^8$
c_2, c_7	$(y^3 - y^2 + 2y - 1)^8$
c_3, c_9	$y^{24} - 9y^{23} + \dots - 26862y + 3481$
c_4	$y^{24} - 36y^{23} + \dots - 770163150y + 452625625$
c_5, c_{12}	$y^{24} + 3y^{23} + \dots - 1491942y + 151321$
c_6, c_8, c_{11}	$(y^4 + y^3 + 5y^2 + y + 1)^6$
c_{10}	$y^{24} - 12y^{23} + \dots - 19290354y + 5870929$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.600947 + 0.848047I		
a = -0.242385 + 1.316620I	1.12763 + 4.68603I	-7.72892 - 10.27938I
b = 0.93338 + 1.13249I		
u = -0.600947 - 0.848047I		
a = -0.242385 - 1.316620I	1.12763 - 4.68603I	-7.72892 + 10.27938I
b = 0.93338 - 1.13249I		
u = 0.742465 + 0.295225I		
a = 2.13643 + 0.44294I	0.78305 - 1.85791I	-3.78084 + 7.29993I
b = -0.433380 + 0.525827I		
u = 0.742465 - 0.295225I		
a = 2.13643 - 0.44294I	0.78305 + 1.85791I	-3.78084 - 7.29993I
b = -0.433380 - 0.525827I		
u = 0.550416 + 1.107760I		
a = 0.103231 - 1.002480I	1.12763 - 4.68603I	-7.72892 + 10.27938I
b = 0.93338 - 1.13249I		
u = 0.550416 - 1.107760I		
a = 0.103231 + 1.002480I	1.12763 + 4.68603I	-7.72892 - 10.27938I
b = 0.93338 + 1.13249I		
u = 0.654636 + 0.170247I		
a = -1.32048 + 2.33671I	-3.35454 - 4.68603I	-10.3101 + 10.2794I
b = -0.433380 + 0.525827I		
u = 0.654636 - 0.170247I		
a = -1.32048 - 2.33671I	-3.35454 + 4.68603I	-10.3101 - 10.2794I
b = -0.433380 - 0.525827I		
u = -0.889025 + 1.034440I		
a = -0.651543 + 0.080481I	-3.35454 - 4.68603I	-10.3101 + 10.2794I
b = -0.433380 + 0.525827I		
u = -0.889025 - 1.034440I		
a = -0.651543 - 0.080481I	-3.35454 + 4.68603I	-10.3101 - 10.2794I
b = -0.433380 - 0.525827I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.525945 + 0.044493I		
a = 3.93720 + 1.13790I	0.78305 - 7.51416I	-3.78084 + 13.25883I
b = -0.433380 + 0.525827I		
u = -0.525945 - 0.044493I		
a = 3.93720 - 1.13790I	0.78305 + 7.51416I	-3.78084 - 13.25883I
b = -0.433380 - 0.525827I		
u = 0.09099 + 1.49396I		
a = -0.185870 + 0.739217I	5.26521 + 1.85791I	-1.19965 - 7.29993I
b = 0.93338 + 1.13249I		
u = 0.09099 - 1.49396I		
a = -0.185870 - 0.739217I	5.26521 - 1.85791I	-1.19965 + 7.29993I
b = 0.93338 - 1.13249I		
u = 0.20404 + 1.65325I		
a = -0.122484 - 0.767493I	5.26521 - 7.51416I	-1.19965 + 13.25883I
b = 0.93338 - 1.13249I		
u = 0.20404 - 1.65325I		
a = -0.122484 + 0.767493I	5.26521 + 7.51416I	-1.19965 - 13.25883I
b = 0.93338 + 1.13249I		
u = 0.48569 + 1.70790I		
a = 0.13811 - 1.41192I	5.26521 - 1.85791I	-1.19965 + 7.29993I
b = 0.93338 - 1.13249I		
u = 0.48569 - 1.70790I		
a = 0.13811 + 1.41192I	5.26521 + 1.85791I	-1.19965 - 7.29993I
b = 0.93338 + 1.13249I		
u = -0.81886 + 1.67114I		
a = 0.08738 + 1.42493I	5.26521 + 7.51416I	-1.19965 - 13.25883I
b = 0.93338 + 1.13249I		
u = -0.81886 - 1.67114I		
a = 0.08738 - 1.42493I	5.26521 - 7.51416I	-1.19965 + 13.25883I
b = 0.93338 - 1.13249I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.93247 + 0.69713I		
a = -0.044651 + 0.538366I	0.78305 - 1.85791I	-3.78084 + 7.29993I
b = -0.433380 + 0.525827I		
u = 1.93247 - 0.69713I		
a = -0.044651 - 0.538366I	0.78305 + 1.85791I	-3.78084 - 7.29993I
b = -0.433380 - 0.525827I		
u = -2.32592 + 0.12746I		
a = -0.208979 - 0.494401I	0.78305 + 7.51416I	-4.00000 - 13.25883I
b = -0.433380 - 0.525827I		
u = -2.32592 - 0.12746I		
a = -0.208979 + 0.494401I	0.78305 - 7.51416I	-4.00000 + 13.25883I
b = -0.433380 + 0.525827I		

IV.
$$I_4^u = \langle -7.06 \times 10^{36} u^{23} + 1.02 \times 10^{37} u^{22} + \dots + 1.33 \times 10^{40} b - 9.51 \times 10^{39}, -4.57 \times 10^{42} u^{23} + 4.24 \times 10^{42} u^{22} + \dots + 2.64 \times 10^{45} a - 1.17 \times 10^{45}, \ u^{24} + 12 u^{22} + \dots + 1224 u + 631 \rangle$$

(i) Arc colorings

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.00172987u^{23} - 0.00160232u^{22} + \dots + 1.02017u + 0.444120 \\ 0.000529102u^{23} - 0.000764052u^{22} + \dots - 0.0148259u + 0.712663 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.00120077u^{23} - 0.000838266u^{22} + \dots + 1.03499u - 0.268543 \\ 0.000529102u^{23} - 0.000764052u^{22} + \dots - 0.0148259u + 0.712663 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.00206826u^{23} + 0.000834451u^{22} + \dots - 1.24002u - 2.01979 \\ -0.000338403u^{23} - 0.000759834u^{22} + \dots - 1.08992u - 0.895038 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.000455367u^{23} - 0.000529102u^{22} + \dots + 0.871751u - 0.542543 \\ 0.000129944u^{23} - 0.00137802u^{22} + \dots - 0.661740u - 0.202850 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.00206826u^{23} + 0.00139661u^{22} + \dots - 0.38274u - 1.50095 \\ -0.00103460u^{23} + 0.00104292u^{22} + \dots - 0.196129u - 1.35059 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.00206826u^{23} + 0.000834451u^{22} + \dots - 0.196129u - 1.35059 \\ -0.00103287u^{23} + 0.000438081u^{22} + \dots - 0.806214u - 1.42158 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.00235883u^{23} - 0.00154095u^{22} + \dots + 2.18979u + 1.97028 \\ 0.000806262u^{23} - 0.000712088u^{22} + \dots + 0.204750u + 1.44167 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.00128858u^{23} - 0.00116685u^{22} + \dots + 0.751812u + 1.91517 \\ 0.000810721u^{23} + 0.000179541u^{22} + \dots + 0.331946u + 0.919998 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.00703358u^{23} + 0.00486786u^{22} + \cdots + 3.00965u 13.0147$

Crossings	u-Polynomials at each crossing
c_1	$(u^3 + u^2 + 2u + 1)^8$
c_2, c_7	$(u^3 + u^2 - 1)^8$
c_3, c_9	$u^{24} - 7u^{21} + \dots - 30u + 19$
c_4	$u^{24} + u^{23} + \dots + 70u + 7$
c_5,c_{12}	$u^{24} + 12u^{22} + \dots - 1224u + 631$
	$(u^4 + 2u^3 + 2u^2 + u + 1)^6$
c_8,c_{11}	$(u^4 - 2u^3 + 2u^2 - u + 1)^6$
c_{10}	$u^{24} - u^{23} + \dots + 606u + 157$

Crossings	Riley Polynomials at each crossing
c_1	$(y^3 + 3y^2 + 2y - 1)^8$
c_2, c_7	$(y^3 - y^2 + 2y - 1)^8$
c_3, c_9	$y^{24} + 46y^{22} + \dots + 2862y + 361$
c_4	$y^{24} + 3y^{23} + \dots + 1722y + 49$
c_5, c_{12}	$y^{24} + 24y^{23} + \dots - 585750y + 398161$
c_6, c_8, c_{11}	$(y^4 + 2y^2 + 3y + 1)^6$
c_{10}	$y^{24} - 9y^{23} + \dots - 34710y + 24649$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.928233 + 0.439911I		
a = 0.74033 - 2.04422I	-0.367792 + 0.232734I	-10.02977 - 2.06053I
b = -0.070696 - 0.758745I		
u = 0.928233 - 0.439911I		
a = 0.74033 + 2.04422I	-0.367792 - 0.232734I	-10.02977 + 2.06053I
b = -0.070696 + 0.758745I		
u = 0.245486 + 0.911245I		
a = -0.081489 - 0.442862I	2.27847 - 2.59539I	-1.47999 + 0.91892I
b = 1.070700 - 0.758745I		
u = 0.245486 - 0.911245I		
a = -0.081489 + 0.442862I	2.27847 + 2.59539I	-1.47999 - 0.91892I
b = 1.070700 + 0.758745I		
u = -0.570691 + 0.972378I		
a = 0.263455 + 0.980058I	2.27847 + 2.59539I	-1.47999 - 0.91892I
b = 1.070700 + 0.758745I		
u = -0.570691 - 0.972378I		
a = 0.263455 - 0.980058I	2.27847 - 2.59539I	-1.47999 + 0.91892I
b = 1.070700 - 0.758745I		
u = -1.118820 + 0.403382I		
a = 0.19970 + 2.19588I	-0.36779 + 5.42351I	-10.02977 - 3.89837I
b = -0.070696 + 0.758745I		
u = -1.118820 - 0.403382I		
a = 0.19970 - 2.19588I	-0.36779 - 5.42351I	-10.02977 + 3.89837I
b = -0.070696 - 0.758745I		
u = -0.161538 + 1.325950I		
a = -0.442722 + 1.019620I	6.41605 - 0.23273I	5.04928 + 2.06053I
b = 1.070700 + 0.758745I		
u = -0.161538 - 1.325950I		
a = -0.442722 - 1.019620I	6.41605 + 0.23273I	5.04928 - 2.06053I
b = 1.070700 - 0.758745I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.592456 + 0.139203I		
a = -1.93886 + 2.11751I	-4.50538 + 2.59539I	-16.5590 - 0.9189I
b = -0.070696 + 0.758745I		
u = -0.592456 - 0.139203I		
a = -1.93886 - 2.11751I	-4.50538 - 2.59539I	-16.5590 + 0.9189I
b = -0.070696 - 0.758745I		
u = 0.917662 + 1.065060I		
a = -0.420784 - 0.504118I	-4.50538 - 2.59539I	-16.5590 + 0.9189I
b = -0.070696 - 0.758745I		
u = 0.917662 - 1.065060I		
a = -0.420784 + 0.504118I	-4.50538 + 2.59539I	-16.5590 - 0.9189I
b = -0.070696 + 0.758745I		
u = 0.386661 + 1.354340I		
a = -0.450944 - 0.920583I	6.41605 - 5.42351I	5.04928 + 3.89837I
b = 1.070700 - 0.758745I		
u = 0.386661 - 1.354340I		
a = -0.450944 + 0.920583I	6.41605 + 5.42351I	5.04928 - 3.89837I
b = 1.070700 + 0.758745I		
u = 1.31832 + 0.83644I		
a = 0.280368 + 0.202313I	-0.367792 - 0.232734I	-10.02977 + 2.06053I
b = -0.070696 + 0.758745I		
u = 1.31832 - 0.83644I		
a = 0.280368 - 0.202313I	-0.367792 + 0.232734I	-10.02977 - 2.06053I
b = -0.070696 - 0.758745I		
u = -0.88224 + 1.49882I		
a = 0.0557491 - 0.0867063I	-0.36779 - 5.42351I	-10.02977 + 3.89837I
b = -0.070696 - 0.758745I		
u = -0.88224 - 1.49882I		
a = 0.0557491 + 0.0867063I	-0.36779 + 5.42351I	-10.02977 - 3.89837I
b = -0.070696 + 0.758745I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.10144 + 2.04885I		
a = 0.429007 - 0.648132I	6.41605 + 0.23273I	5.04928 - 2.06053I
b = 1.070700 - 0.758745I		
u = -0.10144 - 2.04885I		
a = 0.429007 + 0.648132I	6.41605 - 0.23273I	5.04928 + 2.06053I
b = 1.070700 + 0.758745I		
u = -0.36918 + 2.12340I		
a = 0.420861 + 0.689630I	6.41605 + 5.42351I	5.04928 - 3.89837I
b = 1.070700 + 0.758745I		
u = -0.36918 - 2.12340I		
a = 0.420861 - 0.689630I	6.41605 - 5.42351I	5.04928 + 3.89837I
b = 1.070700 - 0.758745I		

V.
$$I_5^u = \langle b, a-1, u^3 - u^2 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u^2 + 1 \\ u^2 - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^2 + 4u 10$

Crossings	u-Polynomials at each crossing
$c_1, c_3, c_4 \\ c_5, c_9, c_{10} \\ c_{12}$	$u^3 + u^2 + 2u + 1$
c_{2}, c_{7}	$u^3 - u^2 + 1$
c_6, c_8, c_{11}	u^3

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_4 \\ c_5, c_9, c_{10} \\ c_{12}$	$y^3 + 3y^2 + 2y - 1$
c_{2}, c_{7}	$y^3 - y^2 + 2y - 1$
c_6, c_8, c_{11}	y^3

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = 1.00000	3.02413 - 2.82812I	-2.49024 + 2.97945I
b = 0		
u = 0.215080 - 1.307140I		
a = 1.00000	3.02413 + 2.82812I	-2.49024 - 2.97945I
b = 0		
u = 0.569840		
a = 1.00000	-1.11345	-9.01950
b = 0		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^3 + u^2 + 2u + 1)^{17})(u^{30} - 20u^{29} + \dots - 157u + 9)$ $\cdot (u^{38} + 20u^{37} + \dots + 65536u + 65536)$
c_2	$(u^{3} - u^{2} + 1)(u^{3} + u^{2} - 1)^{16}(u^{30} - 10u^{28} + \dots - u + 3)$ $\cdot (u^{38} - 16u^{37} + \dots - 2560u + 256)$
c_3, c_9	$(u^{3} + u^{2} + 2u + 1)(u^{24} - 7u^{21} + \dots - 30u + 19)$ $\cdot (u^{24} + u^{23} + \dots + 264u + 59)(u^{30} + u^{29} + \dots - 4u + 1)$ $\cdot (u^{38} - 2u^{37} + \dots - 8u + 1)$
c_4	$(u^{3} + u^{2} + 2u + 1)(u^{24} - 2u^{23} + \dots + 17490u + 21275)$ $\cdot (u^{24} + u^{23} + \dots + 70u + 7)(u^{30} - u^{29} + \dots + 32u + 52)$ $\cdot (u^{38} - 22u^{36} + \dots - 1528u + 1456)$
c_5	$(u^{3} + u^{2} + 2u + 1)(u^{24} + 12u^{22} + \dots - 1224u + 631)$ $\cdot (u^{24} - u^{23} + \dots + 72u + 389)(u^{30} + u^{28} + \dots - 2u + 1)$ $\cdot (u^{38} - u^{37} + \dots + 2u + 1)$
c_6	$ \begin{vmatrix} u^3(u^4 + u^3 + u^2 - u + 1)^6(u^4 + 2u^3 + 2u^2 + u + 1)^6 \\ \cdot (u^{30} + 18u^{29} + \dots - u^2 + 1)(u^{38} - 19u^{37} + \dots - 3108u + 245) \end{vmatrix} $
c_7	$ (u^3 - u^2 + 1)(u^3 + u^2 - 1)^{16}(u^{30} - 10u^{28} + \dots + u + 3) $ $ \cdot (u^{38} - 16u^{37} + \dots - 2560u + 256) $
<i>c</i> ₈	$u^{3}(u^{4} - 2u^{3} + 2u^{2} - u + 1)^{6}(u^{4} - u^{3} + u^{2} + u + 1)^{6}$ $\cdot (u^{30} + 11u^{29} + \dots + 5u + 1)(u^{38} + 12u^{37} + \dots + 1309u + 245)$
c_{10}	$(u^{3} + u^{2} + 2u + 1)(u^{24} - u^{23} + \dots + 606u + 157)$ $\cdot (u^{24} + 2u^{23} + \dots + 1360u + 2423)(u^{30} - 4u^{28} + \dots + 5u + 3)$ $\cdot (u^{38} - u^{37} + \dots - 189u + 61)$
c_{11}	$u^{3}(u^{4} - 2u^{3} + 2u^{2} - u + 1)^{6}(u^{4} - u^{3} + u^{2} + u + 1)^{6}$ $\cdot (u^{30} - 11u^{29} + \dots - 5u + 1)(u^{38} + 12u^{37} + \dots + 1309u + 245)$
c_{12}	$(u^{3} + u^{2} + 2u + 1)(u^{24} + 12u^{22} + \dots - 1224u + 631)$ $\cdot (u^{24} - u^{23} + \dots + 72u + 389)(u^{30} + u^{28} + \dots + 2u + 1)$ $\cdot (u^{38} - u^{37} + \dots + 2u^{3} + 1)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^3 + 3y^2 + 2y - 1)^{17})(y^{30} - 4y^{29} + \dots - 817y + 81)$ $\cdot (y^{38} - 4y^{37} + \dots - 15032385536y + 4294967296)$
c_2, c_7	$((y^3 - y^2 + 2y - 1)^{17})(y^{30} - 20y^{29} + \dots - 157y + 9)$ $\cdot (y^{38} - 20y^{37} + \dots - 65536y + 65536)$
c_3, c_9	$(y^{3} + 3y^{2} + 2y - 1)(y^{24} + 46y^{22} + \dots + 2862y + 361)$ $\cdot (y^{24} - 9y^{23} + \dots - 26862y + 3481)(y^{30} - 9y^{29} + \dots + 10y + 1)$ $\cdot (y^{38} + 20y^{37} + \dots + 38y + 1)$
c_4	$(y^{3} + 3y^{2} + 2y - 1)(y^{24} - 36y^{23} + \dots - 7.70163 \times 10^{8}y + 4.52626 \times 10^{8})$ $\cdot (y^{24} + 3y^{23} + \dots + 1722y + 49)(y^{30} - 9y^{29} + \dots + 952y + 2704)$ $\cdot (y^{38} - 44y^{37} + \dots - 18656544y + 2119936)$
c_5, c_{12}	$(y^{3} + 3y^{2} + 2y - 1)(y^{24} + 3y^{23} + \dots - 1491942y + 151321)$ $\cdot (y^{24} + 24y^{23} + \dots - 585750y + 398161)(y^{30} + 2y^{29} + \dots - 14y + 1)$ $\cdot (y^{38} + 51y^{37} + \dots + 14y + 1)$
c_6	$y^{3}(y^{4} + 2y^{2} + 3y + 1)^{6}(y^{4} + y^{3} + 5y^{2} + y + 1)^{6}$ $\cdot (y^{30} - 10y^{29} + \dots - 2y + 1)(y^{38} - 9y^{37} + \dots + 500486y + 60025)$
c_8, c_{11}	$y^{3}(y^{4} + 2y^{2} + 3y + 1)^{6}(y^{4} + y^{3} + 5y^{2} + y + 1)^{6}$ $\cdot (y^{30} + 11y^{29} + \dots + 27y + 1)(y^{38} + 12y^{37} + \dots + 698299y + 60025)$
c_{10}	$(y^{3} + 3y^{2} + 2y - 1)(y^{24} - 12y^{23} + \dots - 1.92904 \times 10^{7}y + 5870929)$ $\cdot (y^{24} - 9y^{23} + \dots - 34710y + 24649)(y^{30} - 8y^{29} + \dots - 43y + 9)$ $\cdot (y^{38} - 27y^{37} + \dots - 45603y + 3721)$