

Land Cover Classification Using Satellite Imagery

Kevin Patel, Soham Pachpande, Smeet Vora

Aim

- To classify the land usage and land cover into several classes using deep learning approach
- To create a framework to easily extract land usage information from satellite images.

Motivation

Land is a key resource, especially in this age of urbanisation. The knowledge about land cover has become increasingly important as it overcomes problems like uncontrolled development of a region, depletion of resources, loss of green cover, destruction of wetlands, loss of wildlife habitat.

Data

We used publicly available satellite images from Sentinel-2 program of EU Copernicus. Labelled data from EuroSAT Dataset^[1] is used for training the model.

Application

- Land Cover Classification can help monitor changes and survey specific regions without human intervention. - Information about land usage is useful for better planning of future policies and infrastructures to tackle the resource crunch of arable land.
- It can be used to track environmental damage like deforestation in a region over time.

Confusion Matrix for ResNET50

Results

		Accuracy=82.3333										
Model	Test Accuracy	Industrial	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Pasture	0.1	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
ResNET50	82.33%	Residential	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		PermanentCrop	0.1	0.1	0.0	0.6	0.0	0.0	0.0	0.1	0.1	0.0
VGG16	81.9%	를 Highway	0.1	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0
		된 Highway SeaLake	0.1	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0
VGG19		Vegetation	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0
	78.2%	River	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.8	0.0	0.1
		AnnualCrop	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0
Baseline Model	62%	Forest	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8
			lai-	- ar	lal -	- do.	ay -	ke -	- uoi	River -	- do	est -
		-	Industria	Pasture	Residential	manentCrop	Highway	SeaLake	Vegetation	Ŗ	AnnualCrop	Forest
			-		Re	man	_		ş		An	

Challenges

- Amount of data required for training deep learning models is huge and labelled satellite data is not easily available.
- Cloud cover is also a major issue, it leads to ambiguity between classes.

Future Work

- Using higher Resolution Imagery from various satellite programmes and compare results.
- Using domain-specific knowledge to extract features from 13 Band Images.

References

[1] Helber, Patrick, et al. "Introducing EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification." IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE,

[2] Yang, C., Rottensteiner, F., & Heipke, C. (2018). Classification of land cover and land use based on convolutional neural networks. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 4 (2018), Nr. 3, 4(3), 251-258.

[3] Sentinel Hub. Retrieved from https://www.sentinel-hub.com/