Computer Science 181, Homework 7

Michael Wu UID: 404751542

May 21st, 2018

Problem 0

The language L_0 is context free and not finite state. The context free grammar G that describes the language is shown below.

$$G = (V, \Sigma, R, S)$$

$$V = \{A, B, C, D, T\}$$

$$R = \{T \rightarrow AB \mid CD,$$

$$A \rightarrow aAb \mid \epsilon,$$

$$B \rightarrow cB \mid \epsilon,$$

$$C \rightarrow aC \mid \epsilon,$$

$$D \rightarrow bDc \mid \epsilon\}$$

$$S = T$$

To prove that L_0 is not finite state, first assume for contradiction that L_0 is finite state. Then by the pumping lemma for finite state languages, there exists some p such that $\forall w \in L_0$ with $|w| \geq p$, w can be split into three substrings x, y, and z such that w = xyz, $|y| \geq 1$, $|xy| \leq p$, and $\forall n \geq 0$ we have that $xy^nz \in L_0$. But consider the string $w = b^pc^p$, which is in L_0 and has a length greater than p. When splitting w into x, y, and z, because $|xy| \leq p$, we have that x and y must consist entirely of b's. We know that $|y| \geq 1$, so for any $n \geq 2$ we have that xy^nz must take the form b^ic^j with i > j. This is not in the language L_0 , which is a contradiction. Thus L_0 is not a finite state language.

Problem 1

The language L_1 is context free and not finite state. The PDA with the set of stack symbols $\Gamma = \{a\}$ is shown below.

To prove that L_1 is not finite state, first assume for contradiction that L_1 is finite state. Then by the pumping lemma for finite state languages, there exists some p such that $\forall w \in L_1$ with $|w| \geq p$, w can be split into three substrings x, y, and z such that w = xyz, $|y| \ge 1$, $|xy| \le p$, and $\forall n \ge 0$ we have that $xy^nz \in L_1$. But consider the string $w = a^ib^j \#$ in L_1 such that $i+j \geq p$ and i=j+1. Because $|xy| \leq p$ when splitting w into the three substrings, y can only be chosen such that it consists entirely of a's, entirely of b's, or contains a sequence of a's followed by a sequence of b's. If y consists entirely of a's then the string xy^nz with n=0 will not be in L_1 , as this will result in an equal or lesser amount of a's than b's in the string. So y cannot consist entirely of a's. If y consists entirely of b's then the string xy^nz with $n\geq 2$ will not be in L_1 , as this will result in an equal or greater amount of b's than a's in the string. So y cannot consist entirely of b's. If y consists of a sequence of a's followed by a sequence of b's, then the string xy^nz with $n\geq 2$ will not be in L_1 , as this string will have interleaved a's and b's, which does not fit the format of $a^i b^j \#$. So y cannot consist of a sequence of a's followed by a sequence of b's. Thus there exists some $w \in L_1$ with $|w| \geq p$ that cannot be split into three substrings x, y, and z such that $w = xyz, |y| \ge 1, |xy| \le p, \text{ and } \forall n \ge 0 \text{ we have that } xy^nz \in L_1.$ This is a contradiction, and so L_1 cannot be finite state.

Problem 2

Assume for contradiction that L_2 is a context free language. Then by the pumping lemma for context free languages, there exists some p such that $\forall s \in L_2$ with $|s| \geq p$, s can be split into five substrings u, v, w, x, and y such that $|vwx| \leq p$, $|vx| \geq 1$, and $\forall n \geq 0$ we have that $uv^nwx^ny \in L_2$. Consider

the string $s = t \# t^R \# t$ in L_2 , with $|t| \geq p$. Then when attempting to split s, vwx can only contain one or zero #'s because $|vwx| \leq p$, which means vx can contain only one or zero #'s. If vx contains one #, then uv^nwx^ny would contain three #'s for n = 2, and thus uv^nwx^ny would not be in L_2 since it does not fit the format of $t\# t^R \# t$. If vx contains zero #'s, then w contains either one or zero #'s. If w contains zero #'s and vx contains zero #'s, then v and v must lie entirely within one v or within the v. Thus vv^nwx^ny will be in the form v would not be in v. If v contains one v, then v would not be in v. If v contains one v, then v would not be in v. So there exists some string v such that v cannot be split into five substrings that make the conditions of the pumping lemma hold. This is a contradiction, and thus v is not a context free language.