ESS 474 Remote Sensing Lab October 11, 2024

Plan for today

- Questions about recent lab assignments?
- Remote sensing lecture
- Google Earth Engine Lab

Major divisions of the EM spectrum

Comparison of Solar and Earth Radiation Spectra

Spectral Signatures

$$p(\lambda) = R_R(\lambda) / R_I(\lambda)$$

A spectral signature of a surface is the relationship between the reflectance $p(\lambda)$ and the wavelength λ .

Spectral bands

Reflectance Spectrum

Reflectance Spectrum

Platforms

The **platform** is what a sensor is mounted on:

Passive vs. Active Sensors

Passive sensors detect and record EMR reflected or emitted from an external source (the sun or the Earth).

Active sensors detect and record EMR emitted from the sensor itself.

Building a Sensor: Detectors

Important: the detector has a set field of view, and therefore measures **RADIANCE**.

Example: Landsat 8 vs Sentinel-2

What Is A Digital Image?

Digital numbers (DNs) typically range from 0 to 255; 0 to 511; 0 to 1023, etc. These ranges are binary scales: 28=256; 29=512; 210=1024.

Images

- Rectangular
 - fixed number of columns and rows
- Can have multiple bands to add a third dimension
 - Sometimes called "layers"
- Pixel building block of an image
 - aka "cell"
- Each pixel represents an area on the Earth's surface
- Each pixel holds one numerical attribute per band
 - Typically **brightness** of that pixel as measured by the sensor
- Every pixel in the image has a value, even if the value is "missing"

Structure of a 2-D Image (Grid)

Properties of measurement Remote Sensor Resolution

2n

• **Spatial** - the size of the field-of-view, e.g. 10 x 10 m.

• **Spectral** - the number and size of spectral regions the sensor records data in, e.g. blue, green, red, near-infrared, thermal infrared, and microwave (radar).

• **Temporal** - how often the sensor acquires data, e.g. every 30 days.

• Radiometric - the sensitivity of detectors to small differences in electromagnetic energy.

Jensen, 2007

Landsat 8 Bit Depth

Landsat 8 12-bit depth improves how we view coastal waters

Trade-offs in remote sensing resolution

Remote Sensing and Limnology

True-Color image, September 24, 2017 (MODIS)

Inherent Optical Properties (IOPs) and the 'Color' of Water

Inherent Optical Properties:

- Absorption by...
 - Phytoplankton (ph)
 - Non-Algal Particles (nap)
 - Colored Dissolved
 Organic Matter
 (CDOM)
 - Water (w)
- Scattering in forward (f) and backward (b) directions

https://appliedsciences.nasa.gov/sites/default/files/2023-07/WaterQuality Part1 Final 0.pdf

Remote Sensing and Limnology

SWOT Satellite measures depth and extent of surface water in a temporary lake in Death Valley, **California**

Model Calibration and Ground-truthing

Distribution of stations with on-the-ground Secchi depth data collected in 2016 shown for the paths and rows of the Landsat Worldwide Reference System 2 in Wisconsin.

https://dnr.wisconsin.gov/topic/lakes/clmn/remotese nsing/research.html

Model Calibration and Ground-truthing

https://dnr.wisconsin.gov/topic/l akes/clmn/remotesensing/resear ch.html

Measured In(SD)Predicted In(SD)

$$ln(SD) = a + b \times \frac{OLI_{B2}}{OLI_{B4}} + c \times OLI_{B2}$$

Model Calibration and Ground-truthing

https://dnr.wisconsin.gov/topic/lakes/clmn/remotesensing/research.html

Quantitative Technique

https://appliedsciences.nasa.gov/sites/default/files/2023-07/WaterQuality_Part1_Final_0.pdf

Spectral Indices

Two general forms, which are typically used when B1 and B2 have inversely related responses to the same biophysical phenomenon

Simple ratio = B1/B2

Normalized difference ratio = (B1-B2)/(B1+B2)

Spectral bands

Chlorophyll strongly absorbs light at wavelengths around 0.45 (blue) and 0.67 μ m (red) and reflects strongly in green light, therefore our eyes perceive healthy vegetation as green. Healthy plants have a high reflectance in the near-infrared between 0.7 and 1.3 μ m.

Vegetation Indices

Vegetation indices typically leverage the (typically) inverse relationship between visible light and NIR light as vegetation chlorophyll varies, for instance:

Simple vegetation index = Red/NIR

Normalized difference vegetation index (NDVI) = (NIR-Red)/(NIR+Red)

NDVI

- Does not depend on absolute RED and NIR values
- Fixed, easy to understand bounds
 - -1.0 = very low greenness
 - +1.0=very high greenness
 - NDVI = 0.65-0.80 = vigorous vegetation
 - NDVI = 0.0-0.30 = stressed/senescent vegetation

Google Earth Engine Tutorial

If this is super interesting to you and you want to dive in further.... Here is a tutorial.

https://ecology.colostate.edu/google-earth-engine/

We will just be scratching the surface today.

Step 1: Getting started with Google Earth Engine

- 1. Sign up or log in to GEE https://earthengine.google.com/
- 2. Create an empty code block
- 3. Explore Earth Engine Data Catalog https://developers.google.com/earth-engine/datasets/
- 4. Try some example code (note: GEE is written in Java)