1 Формула Остроградского-Лиувилля (ФОЛ) для лин. cuc.

$$\dot{X} = A(t)x \qquad x \in \mathbb{R}$$

$$A(t) = \begin{pmatrix} a_{11}(t) & \dots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \dots & a_{nn}(t) \end{pmatrix} \qquad a_{ij}(t) \in C(a,b)$$

 $x_1(t), \ldots, x_n(t)$ - решение системы

$$W(t) = |x_1(t)...x_n(t)| = \begin{vmatrix} x_{11}(t) & \dots & x_{1n}(t) \\ \vdots & & \vdots \\ x_{n1}(t) & \dots & x_{nn}(t) \end{vmatrix}$$

Теорема 1.1. Пусть $x_1(t), \dots, x_n(t)$ решение системы и W(t) - определитель Вронского, тогда:

$$W(t) = W(t_0)e^{\int_{t_0}^t tr A(\tau)d\tau} \quad \forall t \in (a, b), \ t_0 \in (a, b)$$

Доказательство.

$$\dot{W}(t) = \begin{vmatrix} \dot{x}_{11} & \dot{x}_{12} & \dots & \dot{x}_{12} \\ x_{21} & x_{22} & \dots & x_{22} \\ \dots & \dots & \dots & \dots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{vmatrix} + \dots + \begin{vmatrix} x_{11} & x_{12} & \dots & x_{12} \\ x_{21} & x_{22} & \dots & x_{22} \\ \dots & \dots & \dots & \dots \\ \dot{x}_{n1} & \dot{x}_{n2} & \dots & \dot{x}_{nn} \end{vmatrix} = a_{nn}W(t)$$

- 1) решения лин. завис $\Rightarrow W(t) = 0$ на (a,b)
- 2) решения лин. независ:

$$\dot{x}_1 = Ax_1 \dots \dot{x}_n = Ax_n, \ \Phi MP \ \Phi(t) = (x_1(t), \dots, x_n(t)), \ \dot{\Phi}(t) = A\Phi$$

$$\begin{pmatrix} \dot{x}_{11} & \dot{x}_{12} & \dots & \dot{x}_{1n} \\ \dot{x}_{21} & \dot{x}_{22} & \dots & \dot{x}_{2n} \\ \dots & \dots & \dots & \dots \\ \dot{x}_{n1} & \dot{x}_{n2} & \dots & \dot{x}_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix}$$

$$\dot{x}_{11} = a_{11}x_{11} + a_{12}x_{21} + \dots + a_{1n}x_{n1}$$

$$\dot{x}_{12} = a_{11}x_{12} + a_{12}x_{22} + \dots + a_{1n}x_{n2}$$

$$\dots$$

$$\dot{x}_{1n} = a_{11}x_{1n} + a_{12}x_{2n} + \dots + a_{1n}x_{nn}$$

$$(\dot{x}_{11}\,\dot{x}_{12}\,\ldots\,\dot{x}_{1n}) = a_{11}(x_{11}\,x_{12}\,\ldots\,x_{1n}) + a_{12}(x_{21}\,x_{22}\,\ldots\,x_{2n}) + \cdots + a_{1n}(x_{n1}\,x_{n2}\,\ldots\,x_{nn})$$

$$W_{1} = a_{11} \begin{vmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{vmatrix} + a_{12} \begin{vmatrix} x_{21} & x_{22} & \dots & x_{2n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{vmatrix} + \cdots + a_{1n} \begin{vmatrix} x_{n1} & x_{n2} & \dots & x_{nn} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{vmatrix} + \cdots + a_{1n} \begin{vmatrix} x_{n1} & x_{n2} & \dots & x_{nn} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{vmatrix} = 0$$

$$\dot{W}(t) = trA \cdot W(t)$$
 $W(t) = W(t_0)e^{\int_{t_0}^t trA(\tau)d\tau}$

2 Формула Остроградского-Лиувилля для линейного уравнения

$$a_n(x)y^{(n)}+a_{n-1}(x)y^{(n-1)}+\cdots+a_1(x)y'+a_0(x)y=0$$
 $a_i(x)/a_n(x)\in C(a,b);\,y_1,y_2,\ldots,y_n$ - решения

$$W(x) = \begin{vmatrix} y_1 & \dots & y_n \\ y'_1 & \dots & y'_n \\ \dots & \dots & \dots \\ y_1^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}$$

Теорема 2.1. Пусть y_1, \dots, y_n - решения уравнения и W(x) опр. Вронского, тогда

$$W(x) = W(x_0)e^{-\int_{x_0}^x \frac{a_{n-1}(\xi)}{a_n(\xi)}d\xi}$$

Доказательство. 1) y_1, \ldots, y_n лин завис $\Rightarrow W(x) = 0$

 $(2) y_1, \dots, y_n$ - лин независ

$$t = x \ x_1 = y \ x_2 = y' \dots x_n = y^{n-1}$$

$$\begin{cases} \dot{x}_1 = y' = x_2 \\ \dot{x}_2 = y'' = x_3 \\ \dots \\ \dot{x}_n = y^n = -\frac{a_{n-1}(t)}{a_n(t)} x_n - \dots - \frac{a_0(t)}{a_n(t)} x_1 \end{cases}$$

$$A(t) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ -\frac{a_0}{a_n} & -\frac{a_1}{a_n} & \dots & \dots & -\frac{a_{n-1}}{a_n} \end{pmatrix}$$

$$W(t) = W(t_0)e^{-\int_{t_0}^t \frac{a_{n-1}(t)}{a_0(t)} d\tau} \qquad W(x) = W(x_0)e^{-\int_{x_0}^x \frac{a_{n-1}(\xi)}{a_0(\xi)} d\xi}$$

Замечание.

$$W(x_0) = 0 \to W(x) = 0$$
 на (a,b) $W(x_0) \neq 0 \to W(x) \neq 0$ на (a,b)

Частные случаи:

1.
$$a_1(x)y' + a_0(x)y = 0$$
, $W(x) = y_1(x) = y_1(x_0)e^{-\int_{x_0}^x \frac{a_0(\xi)}{x_1(\xi)}d\xi}$

2.
$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$$

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix} = y_1 y_2' - y_2 y_1' = \left(\frac{y_2}{y_1}\right)' y_1^2 = W(x_0) e^{-\int_{x_0}^x \frac{a_1(\xi)}{a_2(\xi)} d\xi}$$

3 Схема решения уравн (линейного) второго порядка

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$$
 $\frac{a_1}{a_2}, \frac{a_0}{a_2}, \frac{f}{a_2} \in C(a, b)$

1. однородное уравнение

- (a) угадали $y_1(x)$ чаще всего в виде $P_n(x) = e^{ax} x^a$
- (b) $y_2(x)$ по Φ ОЛ $\left(\frac{y_2}{y_1}\right)'=\frac{1}{y_1^2}e^{-\int^x\frac{a_1(\xi)}{a_2(\xi)}d\xi}\to y_2(x)$ линейно незав. решение $y_0=C_1y_1+C_2y_2$

2. неоднородное уравнение МВП $\tilde{y} = C_1(x)y_1(x) + C_2(x)y_2(x)$ - частное решение неоднородного

$$\begin{pmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{pmatrix} \begin{pmatrix} C'_1 \\ C'_2 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{f(x)}{a_2(x)} \end{pmatrix}$$
$$y = y_0 + \tilde{y}$$

4 Качественное исследование лин. однор. ур. 2-го порядка

4.1 Виды уравнений

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$$

1. нормальный вид

$$y'' + b_1(x)y' + b_0(x)y = 0$$
 $b_0(x), b_1(x) \in C(a, b)$

2. самосопряжённый вид

$$(p(x)y')' + q(x)y = 0$$

$$p(x) > 0$$
 на $(a, b), p(x) \in C'(a, b), q(x) \in C(a, b)$.

Как приводить?

$$py'' + p'y' + qy = 0$$

$$y'' + \frac{p'}{p}y' + \frac{q}{p}y = y'' + b_1y' + b_0y = 0$$

$$\begin{cases} \frac{p'}{p} = b_1 \\ q = pb_0 \end{cases}$$

$$p(x) = e^{\int_{x_0}^x b_1(\xi)d\xi} > 0, \, p(x) \in C'(a,b), \, q = b_0 e^{\int_{x_0}^x b_1(\xi)d\xi} \in C(a,b)$$

Пример. xy''+2y'+y=0 нормальный вид $y''+\frac{2}{x}y'+\frac{1}{x}y=0$ смотрим на $(-\infty,0)$ или $(0,+\infty)$ (у нас второе) самосопр вид $(x^2y')'+xy=0$, $p=x^2,\,q=x$

3. канонический вид

$$y'' + r(x)y = 0 \qquad r(x) \in C(a, b)$$

(a)
$$b_0 \in C(a,b)$$
 и $b_1(x) \in C'(a,b)$ замена $y(x) = \varphi(x)z(x)$

Пример.
$$b_1(x) = \frac{2}{x}, \, b_0 = \frac{1}{x}, \, x > 0, \, b_1 \in C'(0, +\infty)$$

$$y' = \varphi'z + \varphi z' \qquad y'' = \varphi''z + 2\varphi'z' + \varphi z''$$

$$x\varphi''z + 2x\varphi'z' + x\varphi z'' + 2\varphi'z + 2\varphi z' + \varphi z = 0$$

Зануляем коэфициент перед $z'\Rightarrow 2x\varphi'+2\varphi=0$

$$\frac{\varphi'}{\varphi} = -\frac{1}{x} \qquad \varphi(x) = \frac{1}{x}$$

$$\varphi' = -\frac{1}{x^2} \qquad \varphi'' = \frac{2}{x^2}$$

$$\frac{2}{x^2}z + z'' - 2z\frac{1}{x^2} + \frac{1}{x}z = 0$$

$$z'' + \frac{1}{x}z = 0$$

(b) $b_0(x)$ и $b_1(x) \in C(a,b)$, замена $t = \psi(x)$

$$y' = \frac{\partial y}{\partial x} = \frac{\partial y}{\partial t} \frac{\partial t}{\partial x} = \dot{y}\psi' \qquad y'' = \dot{y}\psi'' + \ddot{y}\psi'^2$$
$$py'' + p'y' + qy = 0 \qquad p\dot{y}\psi'' + p\ddot{y}\psi'^2 + p'\dot{y}\psi' + qy = 0$$
$$p\psi'' + p'\psi' = 0 \qquad (p\psi') = 0 \qquad p\psi' = 1$$

 $\psi(x)=\int_{x_0}^x \frac{d\xi}{p(\xi)} o$ сторого монот и непр, \exists обратная функция x=x(t) на (t_1,t_2)

$$\psi' = \frac{1}{p} \qquad \psi'' = -\frac{p'}{p^2}$$

$$p\frac{1}{p^2}\ddot{y} + qy = 0$$

$$\ddot{y}(t) + q(x(t))p(x(t))y(t) = 0$$

- (с) Преобразование Фурье-Лиувилля привидение к канон. виду
 - i. $t = \varphi(x)$ к виду $\ddot{y} + c(t)\dot{y} \pm y = 0$
 - іі. $c(t) \in C'(t_1,t_2), \, y(t) = \psi(t)z(t)$ к канон. виду $\ddot{y} + \alpha(t)y = 0$

Пример.

$$xy'' + 2y' + y = 0 \quad x > 0$$

$$y' = \dot{y}\varphi'(x) \qquad y'' = \dot{y}\varphi''(x) + \ddot{y}\varphi'^2$$

$$x\dot{y}\varphi'' + x\ddot{y}\varphi'^2 + 2\dot{y}\varphi' + y = 0$$

$$x\varphi'^2 = 1 \qquad \varphi' = \frac{1}{\sqrt{x}} \qquad \varphi = 2\sqrt{x}$$

$$t = 2\sqrt{x} \qquad \varphi'' = -\frac{1}{2}\frac{1}{x^{3/2}}$$

$$\ddot{y} + \dot{y}\left(-\frac{1}{2\sqrt{x}} + \frac{2}{\sqrt{x}}\right) + y = 0$$

$$\ddot{y} + \dot{y}\frac{3}{2\sqrt{x}} + y = 0 \qquad \ddot{y} + \dot{y}\underbrace{\frac{3}{t}}_{c(t)} + y = 0$$

При t>0 непр дифф., делаем второй шаг

$$\begin{split} y(t) &= z(t)\psi(t) \\ \ddot{z}\psi(t) + 2\dot{z}\dot{\psi} + z\ddot{\psi} + \frac{3}{t}\dot{z}\psi + \frac{3}{t}z\dot{\psi} + z\psi = 0 \\ 2\dot{\psi} + \frac{3}{t}\psi &= 0 \qquad \psi = \frac{1}{t^{3/2}} \\ \dot{\psi} &= -\frac{3}{2}\frac{1}{t^{5/2}} \qquad \ddot{\psi} = \frac{15}{4}\frac{1}{t^{7/2}} \\ \ddot{z}\frac{1}{t^{3/2}} + z\left(\frac{15}{4}\frac{1}{t^{7/2}} - \frac{9}{2}\frac{1}{t^{7/2}} + \frac{1}{t^{3/2}}\right) &= 0 \\ \ddot{z} + z\left(1 - \frac{3}{4t^2}\right) &= 0 \qquad t > 0 \end{split}$$

4.2 Асимптотический вид решения

$$\ddot{y} + y(m + \beta(t)) = 0 \qquad m \neq 0$$

Теорема 4.1. Если $\beta(t)$ непр на $[t_0, +\infty)$ и $\beta(t) = O(\frac{1}{t^{1+\varepsilon}})$ при $t \to \infty$, $\varepsilon > 0$, то

- m > 0: $y(t) = C_1 \cos \sqrt{mt} + C_2 \sin \sqrt{mt} + O(\frac{1}{t^{\varepsilon}})$
- m < 0: $y(t) = C_1 e^{\sqrt{|m|}t} \left(1 + O(\frac{1}{t^{\varepsilon}})\right) + C_2 e^{-\sqrt{|m|}t} \left(1 + O(\frac{1}{t^{\varepsilon}})\right)$

Пример.

$$\begin{split} \ddot{z} + z \left(1 - \frac{3}{4t^2}\right) &= 0 \qquad t > 0 \\ m &= 1 \qquad \beta(t) = -\frac{3}{4t^2} \quad \text{Henp } (0, +\infty) \quad \varepsilon = 1 \\ z(t) &= C_1 \cos t + C_2 \sin t + O(t) \\ t &= 2\sqrt{x} \qquad y(t) = z(t) \frac{1}{t^{3/2}} \\ y(t) &= C_1 \frac{\cos t}{3^{3/2}} + C_2 \frac{\sin t}{t^{3/2}} + O\left(\frac{1}{t^{5/2}}\right) \\ y(x) &= \tilde{C}_1 \frac{\cos 2\sqrt{x}}{x^{3/4}} + \tilde{C}_2 \frac{\sin 2\sqrt{x}}{x^{3/4}} + O\left(\frac{1}{x^{3/4}}\right) \end{split}$$

Верно при $x \to \infty$

4.3 Исследование нулей решения уравн. второго порядка

$$y'' + b_1(x)y' + b_0(x)y = 0$$
 $b_0, b_1 \in C(a, b)$

Определение 4.1. Точка x_0 называется нулём решения y(x), если $y(x_0) = 0$

Теорема 4.2. Пусть y(x) нетривиальное решение и $y(x_0) = 0$ тогда $y'(x_0) \neq 0$

Доказательство. Пусть $y'(x_0) = 0$, получаем задачу Коши $y(x_0) = 0$, $y'(x_0) = 0 \Rightarrow y \equiv 0$ единст. реш., противоречит с нетрив реш.

Теорема 4.3. Любое нетривиальное решение может иметь на отрезке $[c,d]\subset (a,b)$ не более конечного числа нулей.

Доказательство. Пусть число нулей бесконечно на [c,d], счётное подмнож x_1,x_2,\ldots,x_n - ограниченная послед, выделяем сход. подпослед. $x_{n_k}\to x_0\in [c,d]$.

$$y(x_{n_k}) = 0, y(x_{n_k}) \to y(x_0) = 0$$
 непр. $y(x)$

y(x) - решение $\Rightarrow \exists y'(x_0)$

$$y'(x_0) = \lim_{k \to \infty} \frac{y(x_{n_k}) - y(x_0)}{x_{n_k} - x_0} = 0$$

Противоречие с пред. теоремой.

Теорема 4.4 (Теорема сравнения Штурма). Пусть (p(x)z')'+q(x)z=0, (p(x)y')'+Q(x)y=0, $p(x)\in C'(a,b)$, $q,Q\in C(a,b)$, p(x)>0 на (a,b) и пусть x_1 и $x_2\in (a,b)$ два последовательных нуля нетривиального решения z(x) и $q(x)\leq Q(x)$ на $[x_1,x_2]$.

Тогда любое решение y(x) имеет хотя бы один нуль на $[x_1, x_2]$.

Доказательство. Пусть $y(x) \neq 0$ на $[x_1, x_2]$

$$(pz')'y + qzy' - (py')'z - Qyz = 0$$

$$\underbrace{p'z'y + pz''y - p'y'z - py''z}_{(p(z'y-zy'))'} + yz(q-Q) = 0 \qquad \int_{x_1}^{x_2}$$

$$p(z'y - zy')\Big|_{x_1}^{x_2} + \int_{x_1}^{x_2} yz(q-Q)dx = 0$$

$$\underbrace{p(x_2)\underbrace{(z'(x_2)}_{<0}\underbrace{y(x_2)}_{>0} - \underbrace{z(x_2)}_{=0}\underbrace{y'(x_2)}_{>0}\underbrace{y'(x_2)}_{>0} - \underbrace{p(x_1)}_{>0}\underbrace{(z'(x_1)}_{>0}\underbrace{y(x_1)}_{>0} - \underbrace{z(x_1)}_{=0}\underbrace{y'(x_1)}_{>0}\underbrace{y'(x_1)}_{>0} + \underbrace{\int_{x_1}^{x_2}\underbrace{yz}_{<0}\underbrace{(q-Q)}_{<0}dx = 0}$$

Противоречие.

Следствие 4.1 (Теорема о премежаемости нулей). Пусть $y_1(x)$ и $y_2(x)$ два линейно независимых решения $(p(x)y(x))'+q(x)y=0,\ p\in C'(a,b),\ p>0$ на $(a,b),\ q\in C(a,b)$ и x_1 и x_2 два последовательных нуля $y_1(x)$ тогда $y_2(x)$ имеет ровно один нуль на (x_1,x_2) .

Доказательство. Пусть $y_1(x_0) = 0$ и $y_2(x_0) = 0$

$$W(x_0) = \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{vmatrix} = 0$$

Противоречие с линейной независ.

$$(py_1')' + qy_1 = 0$$
 $(py_2')' + qy_2 = 0$

По теореме Штурма y_2 имеет хотя бы один нуль на (x_1, x_2) .

Пусть два нуля $y_2(x_3) = y_2(x_4) = 0$, тогда по теореме сравнения Штурма $\exists x_5 : y_1(x_5) = 0$ противоречит с соседством x_1 и x_2 .

4.4 Оценка расстояние между нулями

Теорема 4.5. Пусть y'' + qy = 0, $q \in C(a,b)$, тогда для любого нетривиального решения расстояние между соседними нулями удовлетворяет неравенству:

$$\frac{\pi}{\sqrt{M}} \leq \Delta \leq \frac{\pi}{\sqrt{m}} \qquad 0 < m \leq q(x) \leq M \text{ на } (a,b)$$

Доказательство. Пусть $\Delta > \frac{\pi}{\sqrt{m}}$

$$z'' + mz = 0$$
 $z(x) = \sin(\sqrt{m}(x + \alpha))$ $\forall \alpha$

 $m \leq q$ по т. ср. Штурма между двумя нулями $z(x) \; \exists$ нуль y(x). Противоречие.

Аналогично
$$\Delta < \frac{\pi}{\sqrt{M}}$$

4.5 Оценка числа нулей на интервале

Теорема 4.6. Пусть y'' + Q(x)y = 0, $Q(x) \in C(a,b)$, $0 < m \le Q(x) \le M$ на (a,b), тогда число нулей любого нетривиального решения на (a,b) удовлетворяет неравнству:

$$\left[\sqrt{m}\frac{b-a}{\pi}\right] - 1 \le N \le \left[\sqrt{M}\frac{b-a}{\pi}\right] + 1$$

где $[\dots]$ - целая часть числа.

 \mathcal{A} оказательство. $\frac{\pi}{\sqrt{M}} \leq \Delta \leq \frac{\pi}{\sqrt{m}}$ - расстояние между соседними нулями.

Теорема 4.7. Пусть y'' + Q(x)y = 0, $Q(x) \in C(a,b)$, $Q(x) \le 0$ на (a,b), тогда число нулей любого нетривиального решения на (a,b) удовлетворяет неравнству:

$$0 \le N \le 1$$

(не более одного нуля)

Доказательство. Пусть 2 нуля x_1, x_2

$$z'' + 0z = 0 \implies z'' = 0$$

По т. сравн. Штурма на $[x_1,x_2]$ лежит хотя бы один нуль z''=0 любого решения. \square

Замечание. • в Т. 1: (a,b) - открытое и ограниченное множество

• в Т. 2 (a,b), [a,b], (a,b] и может быть неогран.

Пример. Доказать \forall нетрив. реш $y'' + \sqrt{4-x^2}y = 0$ имеет на [-2,2] не более 2 нулей.

$$0 \le Q(x) = \sqrt{4 - x^2} \le 2$$

$$(-2, 2) \quad N \le \underbrace{\left[\sqrt{2} \frac{(2 - (-2))}{\pi}\right]}_{1.8} + 1 = 2$$

Пусть 3 нуля на [-2, 2].

$$z'' + 2z = 0$$
$$z = \sin \sqrt{2}(x + \alpha) \qquad \frac{\pi}{\sqrt{2}} \approx 2.22$$

Можем подобрать α так чтобы попадал только один ноль в [-2,2].

4.6 Уравнение Бесселя

$$x^{2}y'' + xy' + (x^{2} - \nu^{2})y = 0$$

 $x > 0 \quad \nu \in \mathbb{R} \quad \nu > 0$

Попытаемся привести к каноническому виду:

$$y = z(x)\varphi(x)$$

$$x^{2}(z''\varphi + z\varphi'' + 2z'\varphi') + x(z'\varphi + z\varphi') + (x^{2} - \nu^{2})z\varphi = 0$$

$$2x^{2}\varphi' + x\varphi = 0 \qquad \frac{d\varphi}{\varphi} = -\frac{dx}{2x}$$

$$\varphi = \frac{1}{\sqrt{x}} \qquad \varphi' = -\frac{1}{2x^{3/2}} \qquad \varphi'' = \frac{3}{4}\frac{1}{x^{3/2}}$$

$$z''x^{3/2} + z\left(\frac{3}{4\sqrt{x}} - \frac{1}{2\sqrt{x}} + x^{3/2} - \nu^{2}\frac{1}{\sqrt{x}}\right) = 0$$

$$z'' + z\left(1 + \frac{.25 - \nu^{2}}{x^{2}}\right) = 0$$

$$\nu = \frac{1}{2} \qquad z'' + z = 0 \qquad y(z) = C_{1}\frac{\cos x}{\sqrt{x}} + C_{2}\frac{\sin x}{\sqrt{x}}$$

Одно решение ограничено (синус), а другое нет (косинус). Может быть это характерно для всех решений уравнения?

$$W(x) = W(x_0)e^{-\int_{x_0}^x \frac{\xi}{\xi^2} d\xi} = W(x_0)\frac{x_0}{x}$$
$$W(x) = \frac{C}{x} = y_1 y_2' - y_2 y_1' \underset{x \to 0}{\to} \infty$$

Действительно что-то стремится к бесконечности (или производные или сама функция).

$$z'' + z(1 + \underbrace{\frac{.25 - \nu^2}{x^2}}) = 0$$

Чтобы было почти с пост. коэф. α непр на $[x_0,+\infty),\ \alpha(x)=O\left(\frac{1}{x^{1+\varepsilon}}\right), \varepsilon>0.$

$$z(x) = C_1 \cos x + C_2 \sin x + \underbrace{O\left(\frac{1}{x^{\varepsilon}}\right)}_{O\left(\frac{1}{x}\right)}$$
$$y(x) = C_1 \frac{\cos x}{\sqrt{x}} + C_2 \frac{\sin x}{\sqrt{x}} + \underbrace{O\left(\frac{1}{x^{3/2}}\right)}_{x \to \infty}$$

Обобщённый степенной ряд:

$$y(x) = x^{\alpha}(a_0 + a_1x + a_2x^2 + \dots) = \sum_{k=0}^{\infty} a_k x^{k+\alpha}$$

Полагаем что дифф. нужно число раз и после нахождения решения задним числом смотрим так ли это.

$$y'(x) = \sum_{k=0}^{\infty} a_k(k+\alpha)x^{k+\alpha-1}$$

$$y''(x) = \sum_{k=0}^{\infty} a_k(k+\alpha)(k+\alpha-1)x^{k+\alpha-2}$$

$$\sum_{k=0}^{\infty} [a_k(k+\alpha)(k+\alpha-1)x^{k+\alpha} + a_k(k+\alpha)x^{k+\alpha} - \nu^2 a_k x^{k+\alpha} + a_k x^{k+\alpha+2}] = 0$$

$$\sum_{k=0}^{\infty} [(a_k(k+\alpha)^2 - \nu^2 a_k)x^k + a_k x^{k+2}] = 0$$

$$k = 0: \ a_0\alpha^2 - a_0\nu^2 = 0$$

$$k = 1: \ a_1(1+\alpha)^2 - a_1\nu^2 = 0$$

$$k \ge 2: \ a_k(k+\alpha)^2 - \nu^2 a_k + a_{k-2} = 0$$

$$a_0 \ne 0 \quad \alpha = \pm \nu \quad \alpha = \nu \ge 0$$

$$a_1(1+\nu^2 + 2\nu - \nu^2) = 0 \Rightarrow a_1 = 0$$

$$a_k = \frac{a_{k-2}}{\nu^2 - (k+\nu)^2} = \frac{-a_{k-2}}{k(k+2\nu)}$$

$$a_{2n+1} = 0$$

$$a_{2n} = \frac{-a_{2n-2}}{2n(2n+2\nu)} = \frac{-a_{2n-2}}{4n(n+\nu)}$$

$$a_2 = \frac{-a_0}{4(a+\nu)} \qquad a_4 = \frac{-a_2}{4 \cdot 2(2+\nu)} = \underbrace{\frac{a_0}{4 \cdot 4 \cdot 2(1+\nu)(2+\nu)}}_{2^4}$$

$$a_6 = \underbrace{\frac{a_0}{2^6 \cdot 2 \cdot 3(3+\nu)(1+\nu)(2+\nu)}}_{2^2n_1!(1+\nu)(2+\nu) \dots (n+\nu)}$$

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx \quad s > 0 \quad \Gamma(s+1) = s\Gamma(s)$$

$$\Gamma(n+\nu+1) = (n+\nu)\Gamma(n+\nu) = \dots = (n+\nu)(n+\nu-1) \dots (\nu+1)\Gamma(\nu+1)$$

$$a_{0} = \frac{1}{2^{\nu}\Gamma(\nu+1)} \qquad a_{2n} = \frac{(-1)^{n}}{2^{2n+\nu}n!\Gamma(n+\nu+1)}$$
$$y(x) = \sum_{k=0}^{\infty} a_{k}x^{k+\alpha}$$
$$y(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(n+\nu+1)} \left(\frac{x}{2}\right)^{2n+\nu} = J_{\nu}(x)$$

Постфактум доказываем дифферинцируемость (признак Доломбера):

$$\lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| < 1$$

$$\lim_{n \to \infty} \left| \frac{(.5x)^2}{(n+1)(n+\nu+1)} \right| = 0$$

Получаем что радиус сходимости бесконечен $(R=\infty)$, то есть можем бесконечно диф. где угодно.

 $J_{\nu}(x)$ беск. дифф x > 0.

Ищем второе решение через ФОЛ:

$$\left(\frac{y_2}{J_{\nu}(x)}\right)' = \frac{1}{J_{\nu}^2(x)} \frac{1}{x}$$

 $y_2 = Y_{\nu}(x)$ функция Бесселя второго рода.

$$y(x) = C_1 J_{\nu}(x) + C_2 Y_{\nu}(x)$$

5 Автономные системы дифф. ур.

Определение 5.1. Нормальная система называется автономной, если правая часть не зависит явно от t.

$$x = F(x)$$

$$\begin{cases} \dot{x}_1 = f_1(x) \\ \dots \\ \dot{x}_2 = f_2(x) \end{cases} \qquad f_i(x) \in C^1(D) \quad D \in \mathbb{R}^n \quad t \in (a, b)$$

через $\forall t_0 \in (a,b)$ и $\forall x_0 \in D$ проходит единственная интегральная кривая.

Определение 5.2. Точка $\tilde{x} \in D$ называется положением равновесия автономной системы, если $F(\tilde{x}) = 0$.

Определение 5.3. Фазовая траектория - проекция инт. кр. на \mathbb{R}^n , где \mathbb{R}^n - фазовое пространство.

5.1 Свойства фазовых траекторий

1. Если $x=\varphi(t)$ решение системы на (a,b) (автономн.), то $\forall c\ x=\varphi(t+c)$ тоже решение на (a-c,b-c).

Доказательство.

$$\frac{d\varphi(t)}{dt} = F(\varphi(t)) \qquad t = \tau + c$$
$$\frac{d\varphi(\tau + c)}{d(\tau + c)} = F(\varphi(\tau + c))$$

$$\varphi(\tau+c)$$
 → решение

2. Фазовые траектории не могут пересекаться

Доказательство. Пусть есть два решения $\varphi(t)$ и $\psi(t)$ на (a,b)

$$\exists t_1, t_2 \in (a,b) : \varphi(t_1) = \psi(t_2) = x_0, \ \chi(t) = \varphi(t+t_1-t_2) \text{ - решение}$$

$$\chi(t_2) = \varphi(t_1) = \psi(t_2) = x_0 \text{ противоречит T. единст.} \qquad \square$$

3. Пусть \tilde{x} положение равновесия, тогда $x=\varphi(t)=\tilde{x}$ - решение системы, а точка $\tilde{x}\in\mathbb{R}^n$ - фазовая траектория.

Доказательство.

$$F(\tilde{x}) = 0 \qquad \dot{x} = 0$$

Проекция фазовой троектории - точка.

4. Фазовая траектория, отличная от положения равн. является гладкой кривой.

$$\dot{x}=F(x),\,F\in C',\,\varphi(t)\text{ - непр. дифф. на }(a,b),$$

$$\dot{x}=\dot{\varphi}(t)\neq0\text{ т.к. не явл. полож. равн.}$$
 \qed

- 5. Фазовые траектории:
 - точки
 - незамкнутые гладкие кривые без самопересечения
 - замкнутые гладкие кривые без самопересечения

5.2 Классификация положений равновесия

5.2.1 n=1

$$\dot{x} = -x$$
 $x(t) = Ce^{-t}$ $\tilde{x} = 0$

5.2.2 n=2

$$\dot{x} = Ax \qquad A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

5.2.3 Изолированные положения равновесия при n=2

$$\begin{aligned} \det A \neq 0 & Ax = 0 & \tilde{x} = 0 \\ \lambda_1 \neq 0 & \lambda_2 \neq 0 \end{aligned}$$

 λ_1 и λ_2 действительны, $\lambda_1 \neq \lambda_2, \ h_1$ и h_2 - базис

$$x(t) = C_1 e^{\lambda_1 t} h_1 + C_2 e^{\lambda_2 t} h_2$$

$$\xi_1 = C_1 e^{\lambda_1 t} \qquad \xi_2 = C_2 e^{\lambda_2 t}$$

$$\begin{cases} \xi_2 = C_2 \left(\frac{\xi_1}{C_1}\right)^{\lambda_2/\lambda_1} &, C_1 \neq 0 \\ \xi_1 = 0 &, C_1 = 0 \end{cases} \qquad \alpha = \frac{\lambda_2}{\lambda_1}$$

1. $\alpha > 0$, h_2 h_1 h_1 h_2 h_1 h_1 h_2 h_1 h_2 h_3 $|\lambda_2| < |\lambda_1|$ $|\lambda_2| < |\lambda_1|$ $|\lambda_1| > 0$ $|\lambda_2| > 0$ $|\lambda_2| < 1$

 h_1 и h_2 - фазовые траектории $\lambda_2 > 0$ и $\lambda_2 > 0$ неустойчивый узел

 $\lambda_2 < 0$ и $\lambda_2 < 0$ устойчивый узел

2. $\alpha < 0, \, \xi_2 = A\xi_1^{\alpha}$

 λ_1 и λ_2 разные знаки, седло

 $\lambda_1,\,\lambda_2$ - действ., $\lambda_1=\lambda_2=\lambda$

1. Два собственных вектора h_1 и h_2

$$x(t) = C_1 e^{\lambda t} h_1 + C_2 e^{\lambda t} h_2$$

$$\xi_1 = C_1 e^{\lambda t} \qquad \xi_2 = C_2 e^{\lambda t}$$

$$\begin{cases} \xi_2 = \frac{C_2}{C_1} \xi_1 & , C_1 \neq 0 \\ \xi_1 = 0 & , C_1 = 0 \end{cases}$$

 $\lambda>0$ неустойчивый дикритический узел

 $\lambda < 0$ устойчивый дикритический узел

2. h_1 - собственный вектор, h_2 - присоед.

$$x(t) = C_1 h_1 e^{\lambda t} + C_2 (h_1 t + h_2) e^{\lambda t}$$

$$\xi_1 = (C_1 + C_2 t) e^{\lambda t} \qquad \xi_2 = C_2 e^{\lambda t}$$

$$\begin{cases} \xi_1 = C_1 \frac{\xi_2}{C_2} + \xi_2 \frac{1}{\lambda} \ln \frac{\xi_2}{C_2} &, C_2 \neq 0 \\ \xi_2 = 0 &, C_2 = 0 \end{cases}$$

 h_1 - фазовая таектория, h_2 - не явл. фаз. тр.

 $\lambda>0$ неустойчивый вырожденный узел

 $\lambda < 0$ устойчивый вырожденный узел

 $\lambda_1,\,\lambda_2$ - комплексные, $\lambda_{1,2}=a\pm ib,\,b>0$

$$\lambda_1 = a + ib \rightarrow h$$

$$h_1 = Re \ h \quad h_2 = Im \ h$$

$$x(t) = C_1 Re(he^{\lambda_1 t}) + C_2 Im(he^{\lambda_1 t})$$

$$he^{\lambda t} = (h_1 + ih_2)e^{at}(\cos bt + i\sin bt) =$$

$$= e^{at}[(h_1 \cos bt - h_2 \sin bt) + i(h_2 \cos bt + h_1 \sin bt)]$$

$$x(t) = h_1(\underbrace{C_1 e^{at} \cos bt + C_2 e^{at} \sin bt}_{\xi_1}) + h_2(\underbrace{-C_1 e^{at} \cos bt + C_2 e^{at} \cos bt}_{\xi_2})$$

$$C_1 = A \cos \theta \qquad A \ge 0$$

$$C_2 = A \sin \theta \qquad \theta \in [0, 2\pi)$$

$$\xi + e^{at} \cos(\theta - bt)A$$

$$\xi_2 = e^{at} \sin(\theta - bt)A$$

1. a = 0, центр

2. $a \neq 0$, фокус

a>0 неустойчивый фокус

a < 0 устойчивый фокус

5.2.4 Неизолированные полож равн. при n=2

$$\dot{x} = Ax$$
 $x \in \mathbb{R}^2$
 $Ax = 0$ $det A = 0$

Хотя бы одно $\lambda=0$

 $\lambda_1=0,\,\lambda_2\neq 0,\,{
m coбст.}\,\,{
m Bek},\,h_1$ и h_2

$$x = C_1 h_1 + C_2 h_2 e^{\lambda_2 t}$$

$$J = S^{-1} A S = \begin{pmatrix} 0 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\xi_2 = 0$$

$$\xi_1 = C_1 \qquad \xi_2 = C_2 e^{\lambda_2 t}$$

 $\lambda_2>0$ нестабильная "антенна"

 $\lambda_2 < 0$ стабильная "антенна"

 $\lambda_1=\lambda_2=0,\,h_1$ и h_2 собст. век.

$$x = C_1 h_1 + C_2 h_2$$

Положение равновесия все точки фызовой плоскости.

"Точки"

 $\lambda_1=\lambda_2=0,\,h_1$ обст. век., h_2 присоед

$$x = C_1 h_1 + C_2 (h_1 t + h_2)$$

$$S^{-1} A S = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \xi_2 = 0$$

$$\xi_1 = C_1 + C_2 t \qquad \xi_2 = C_2$$

 h_1 - положение равновесия

"Улица"

5.3 Второй взгляд на классификацию

$$\det \begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix}$$

$$\lambda^{2} - \lambda \underbrace{a_{11} + a_{22}}_{TrA} + \underbrace{a_{11}a_{22} - a_{12}a_{21}}_{detA=0} = 0$$

$$\lambda^{2} - T\lambda + D = 0$$

$$\lambda_{1,2} = \frac{T \pm \sqrt{T^{2} - 4D}}{2}$$

5.4 Третий взгляд на классификацию

Насколько влияют нелинейные коэффициенты?

Грубые: седло, узел, фокус

Негрубые: остальные

5.5 Устойчивость по Ляпунову

$$\dot{x} = F(t, x)$$
 $x \in \mathbb{R}^n$

 $x(t_0)=x_0,\, \varphi(t)$ - решение задачи Коши, продолжаемое на $[t_0,+\infty)$

Определение 5.4. Решение $\varphi(t)$ задачи Коши называется устойчивым по Ляпунову, если $\forall \varepsilon > 0 \, \exists \delta > 0: \, \forall x(t) \text{ реш.}: |x(t_0) - x_0| < \delta \, \forall t \geq t_0 \hookrightarrow x(t)$ определено на $[t_0, +\infty)$ и $|x(t) - \varphi(t)| < \varepsilon$.

Определение 5.5. Решение $\varphi(t)$ з. К. называется асимпотически уст., если оно устойчиво и $\exists \delta_0: \ \forall x(t)$ реш. с $|x(t_0)-x_0|<\delta_0\hookrightarrow \lim_{t\to +\infty}|x(t)-\varphi(t)|=0$

Определение 5.6 (Неустойчивость). Решение $\varphi(t)$ называется неуст. по Ляпунову, если $\exists \varepsilon_0 > 0: \, \forall \delta > 0 \, \exists x(t) \text{ реш.}: \, |x(t_0) - x_0| < \delta \, \exists \tilde{t} \geq t_0 \hookrightarrow x(\tilde{t})$ неопределено или $|x(\tilde{t}) - \varphi(\tilde{t})| \geq \varepsilon_0$.

Замечание.

$$|x(t_0) - x_0| = \sqrt{(x_1(t_0) - x_{01})^2 + \dots + (x_n(t_0) - x_{0n})^2}$$

Пример (889).

$$\begin{cases} \dot{x} = P(x, y) \\ \dot{y} = Q(x, y) \end{cases}$$

 $\varphi(t)=0$ - тривиальное решение, $\varphi(t_0)=0,\,x_0=0$

Выполняются условия отрицания.

5.5.1 Исследование на устойчивость

$$\dot{x} = F(t, x) \qquad x(t_0) = x_0$$

 $\varphi(t)$ - решение з. К., $x(t) = \varphi(t) + \varepsilon(t)$

$$\dot{\varphi} + \dot{\varepsilon} = F(t, \varphi + \varepsilon)$$
 $\varepsilon(t_0) = 0$

Система уравнений возмущений:

$$\dot{\varepsilon} = F(t, \varphi(t) + \varepsilon(t)) - \dot{\varphi}(t)$$
 $\varepsilon(t) = 0$

5.5.2 Теоремы об уст. (неуст.) полож. равн. авт. сис.

$$\dot{x} = F(x)$$
 $x \in \mathbb{R}^n$

 $F(x) = 0 \rightarrow \tilde{x}$ полож. равн., $\varphi(t) = \tilde{x}$

Теорема 5.1 (Об уст. по линейному прибл.). Пусть $\dot{x} = F(x), F(\tilde{x}) = 0,$ $F'(\tilde{x})$ матрица Якоби, λ_i - собст. числа $F'(\tilde{x})$, тогда

- 1. Если $\forall \lambda_i : Re\lambda_i < 0$, то \tilde{x} асимпт. уст.
- 2. Если $\exists \lambda_i : Re\lambda_i > 0$, то \tilde{x} неуст.

Определение 5.7 (Функция Ляпунова). v(x) опр. и непр. дифф. в $O_{\varepsilon}(\tilde{x})$ (окрестности) и $v(\tilde{x})=0$.

Производная в силу системы:

$$\frac{dv}{dt} = \frac{\partial v}{\partial x_1} \frac{\partial x_1}{\partial t} + \dots + \frac{\partial v}{\partial x_n} \frac{\partial x_n}{\partial t} = \frac{\partial v}{\partial x_1} f_1(x) + \dots + \frac{\partial v}{\partial x_n} f_n(x)$$

Теорема 5.2 (Ляпунова об устойчивости). Пусть $\exists v(x): v(x)>0$ в $\dot{O}_{\varepsilon}(\tilde{x})$ и $\frac{dv}{dt}\leq 0$ в $O_{\varepsilon}(\tilde{x})$, тогда \tilde{x} - уст. по Ляпунову.

Теорема 5.3 (Ляпунова об асимпт. уст.). Пусть $\exists v(x): v(x)>0$ в $\dot{O}_{\varepsilon}(\tilde{x})$ и $\frac{dv}{dt}<0$ в $\dot{O}_{\varepsilon}(\tilde{x})$, тогда \tilde{x} - асимпт. уст. по Ляпунову.

Теорема 5.4 (Ляпунова о неустойчивости). Пусть $\exists v(x)$: в $\forall O_{\delta}(\tilde{x}) \in O_{\varepsilon}(\tilde{x}) \; \exists x^* : \; v(x^*) > 0$ и $\frac{dv}{dt} > 0$ в $\dot{O}_{\varepsilon}(\tilde{x})$, тогда \tilde{x} - неуст.

Теорема 5.5 (Четаева о неустойчивости).

Пусть \exists область $D\subset O_{\varepsilon}(\tilde{x})$ и $\exists v(x),\, \tilde{x}\in\partial_1 D,\, v(x)=0$ на $\partial_1 D,\, v(x)>0$ в D, $\frac{dv}{dt}>0$ в D, тогда \tilde{x} неуст.

5.6 Примеры на устойчивость

Пример.

$$\begin{cases} \dot{x} = y - x^3 \\ \dot{y} = -x - y^3 \end{cases}$$
 $A(0,0)$
$$F'(A) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \lambda_{1,2} = \pm i \text{ (центр)}$$
 $v = x^2 + y^2$
$$\frac{dv}{dt} = 2x\dot{x} + 2y\dot{y} = -2x^4 - 2y^4 < 0$$

v>0в $\dot{O}_{\varepsilon}(A)$ и $\frac{dv}{dt}<0$ там же \Rightarrow асимп. уст.

Пример.

$$\begin{cases} \dot{x} = -x \\ \dot{y} = x + y^2 \end{cases}$$

$$A(0,0) \qquad F'(A) = \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$v = y(y + 2x)$$

В т. Четаева берём за Dобласть где v>0: $v(A)=0,\,v\big|_{\partial_1 D}=0,\,v>0$ в D

$$rac{dv}{dt} = 2y^3 + 2x^2 + 2xy^2 = y^3 + 2x^2 + y^2(y+2x) > 0$$
 в D

Выполнены условия для Четаева \Rightarrow неустойчива.

5.7 Исследование фаз. тр. нелин. автоном. сист.

$$\dot{x} = F(x)$$
 $x \in \mathbb{R}^n$ $F(x) \in C'(D)$ $D \in \mathbb{R}^n$

1. полож. равновесия, иссл. методом линеаризации

$$\begin{split} F(x) &= \underbrace{F(\tilde{x})}_{0} + \underbrace{F'(x)}_{\text{м. Якоби}} (x - \tilde{x}) + o(|x - \tilde{x}|) \\ y &= x - \tilde{x} \qquad \dot{y} = F'(\tilde{x})y + o(|y|) \end{split}$$

(важно учитывать грубые или негрубые)

- 2. иссл. устойчивость пол. равновесия
- 3. иссл. предельные множества.
- 4. иссл. фазовые траектории вне предельных множеств, метод первых интегралов

5.8 Первые интегралы автономных систем

$$\dot{x} = F(x)$$
 $x \in \mathbb{R}^n$ $F(x) \in C'(D)$ $D \in \mathbb{R}^n$

Определение 5.8. Функция $u(x) \in C'(D)$ называется первым интегралом автономной системы, если для любого решения g(t), фазовая траектория которого лежит в $D \hookrightarrow u(g(t)) = const.$

Пример. u=const - тривиальный первый интеграл

Теорема 5.6 (Критерий первого интеграла). Функция $u(x) \in C'(D)$ является первым интегралом тогда и только тогда, когда $(\nabla u, F(x)) = 0$ в D.

Доказательство. \rightarrow : Пусть u(x) первый инт:

Возьмём $x_0 \in D, \, x(0) = x_0 \Rightarrow \, \exists \ \text{решение} \ g(t), \, u(g(t)) = const$

$$\frac{du}{dt}\Big|_{t=0} = \sum_{i=1}^{n} \underbrace{\frac{\partial u}{\partial x_i}}_{(\nabla u)_i} \underbrace{\frac{dx_i}{dt}\Big|_{t=0}}_{f_i(x_0)} = 0$$
$$(\nabla u, F(x)) = 0$$

В силу произвольности x_0 выполнено в D.

 \leftarrow : Пусть $(\nabla u, F(x)) = 0$ в D.

Произвольное решение x=g(t)

$$\left. \frac{du}{dt} \right|_{\gamma} = \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} f_i(x) = (\nabla u, F) \right|_{\gamma} = 0$$

T.e. u(g(t)) = const на γ .

5.9 Независимость функция

Определение 5.9. Система функций $u_1(x), \ldots, u_m(x) \in C'(D), x \in R^n, m \le n, D \in \mathbb{R}^n$ - область., называется зависимой в D, если в D

$$\exists K, \exists G \in C' : u_k(x) = G(u_1(x), \dots, u_{k-1}(x), u_{k+1}(x), \dots, u_m(x))$$

Если так сделать нельзя, то система называется независимой в D.

Теорема 5.7 (Необход. усл. зависимости). Пусть u_1, \ldots, u_m зависимы в D, тогда $\nabla u_1, \ldots, \nabla u_m$ линейно зависимы в каждой точке D.

Доказательство.

$$\nabla u_k(x) = \frac{\partial G}{\partial u_1} \nabla u_1 + \dots + \frac{\partial G}{\partial u_m} \nabla u_m$$

Получили опредление линейной зависимости ∇u_i .

Следствие 5.1 (Достаточное условие независимости). Пусть $\exists x_0 \in D$, в которой ∇u_i линейно незав., тогда система u_1, \ldots, u_m незав. в D.

Пример.

$$u_{1} = x_{1} u_{2} = x_{2} u_{3} = x_{1}^{2} + u_{2}^{2}$$

$$u_{3} = u_{1}^{2} + u_{2}^{2}$$

$$\begin{pmatrix} 2x_{1} \\ 2x_{2} \\ 0 \end{pmatrix} = 2x_{1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 2x_{2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Теорема 5.8 (Достаточное условие зависимости). Пусть в каждой точке области $D \hookrightarrow \nabla u_1, \ldots, \nabla u_m$ лин. зав. и не обращаются 0 одновременно, тогда для каждой точки D существует окрестность, в которой u_1, \ldots, u_m зависимы.

Доказательство. (для n=2)

 $f(x,y),\,g(x,y),\,\nabla f$ и ∇g лин. зав. в D

 $(x_0,y_0) \in D$ пусть $\nabla f|_A \neq \vec{0}$, пусть $\frac{\partial f}{\partial x}|_A \neq 0$

$$\xi = f(x, y)$$
 $\eta = y$ $J = \begin{vmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ 0 & 1 \end{vmatrix} = \frac{\partial f}{\partial x} \Big|_A \neq 0$

 $\exists O_{\varepsilon}(A),\,J\neq 0,$ значит есть взаимооднозначное отображение

$$\begin{split} x &= x(\xi, \eta) & y &= y(\xi, \eta) \\ f(x(\xi, \eta), y(\xi, \eta)) &= \xi & g(x(\xi, \eta), y(\xi, \eta)) \\ \underbrace{\begin{pmatrix} \frac{\partial f}{\partial \xi} & \frac{\partial f}{\partial \eta} \\ \frac{\partial g}{\partial \xi} & \frac{\partial g}{\partial \eta} \end{pmatrix}}_{det = 0 \text{ B } O_{\delta}(B)} &= \underbrace{\begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix}}_{det = 0 \text{ B } D} \begin{pmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{pmatrix} \\ \begin{vmatrix} 1 & 0 \\ \frac{\partial g}{\partial \xi} & \frac{\partial g}{\partial \eta} \end{vmatrix} &= 0 \end{split}$$

$$rac{\partial g}{\partial \eta}=0$$
 в $O_{\delta}(B)\Rightarrow g=g(\eta)=h(f)$ завис в $O_{arepsilon}(A).$

Теорема 5.9 (О существовании первых инт.). Пусть точка a не является положением равновесия автономной системы, тогда в некоторой окрестности этой точки \exists первые интегралы $u_1(x), \ldots, u_{n-1}(x)$ и она независимы.

Доказательство.

$$\dot{x} = F(x)$$
 $F(x) \in C'(x)$ $F(a) \neq \vec{0}$

Пусть $f_n(a) \neq 0$.

$$x(0) = b \qquad b = \begin{pmatrix} b_1 \\ \vdots \\ b_{n-1} \\ a_n \end{pmatrix}$$

x = g(t, b) - реш. задачи Коши

$$\begin{cases} x_1 = g_1(t, b_1, \dots, b_{n-1}, a_n) \\ \dots \\ x_n = g_n(t, b_1, \dots, b_{n-1}, a_n) \end{cases}$$

Можем смотреть как на решение з. К. и как на систему уравнений.

Значит $g_i(t,b_1,\ldots,b_{n-1},a_n$ - по t напр дифф как решение, а также по b_j непр. дифф. по теор. о дифф. решения по параметру.

$$A: t = 0$$
 $b_1 = a_1, \dots, b_{n-1} = a_{n-1}$

Дифф. по b_i , t=0:

$$\begin{cases} b_1 = g_1(0, b_1, \dots, b_{n-1}, a_n) \\ \dots \\ a_n = g_n(0, b_1, \dots, b_{n-1}, a_n) \end{cases} \qquad \frac{\partial g_1}{\partial b_1} \Big|_A = 1; \quad \frac{\partial g_1}{\partial b_j} \Big|_A = 0; \quad \frac{\partial g_n}{\partial b_i} \Big|_A = 0$$

Дифф. по t в A: $b_i = a_i$

$$\begin{cases} x_1 = g_1(t, a_1, \dots, a_n) \\ \dots \\ x_n = g_n(t, a_1, \dots, a_n) \end{cases} \dot{g}_1(t) = f_1(a)$$

$$J = \frac{\partial(g_1, \dots, g_n)}{\partial(b_1, \dots, b_{n-1}, t)} = \begin{vmatrix} 1 & 0 & \dots & 0 & f_1(a) \\ 0 & 1 & \dots & 0 & f_2(a) \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & f_n(a) \end{vmatrix}$$