Knowing When to Look: Adaptive Attention

Karim Ghonim Hossam Arafat

Introduction

The purpose of this work is to propose a novel adaptive attention model with a visual sentinel

- Inspired by "Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning"
- Main points in this work:
 - network architecture
 - dataset
 - preprocessing
 - implementation
 - results

Motivation

- most methods force visual attention to be active for every generated word
- not all words in the caption have corresponding visual signals
- e.g., "sign" after "on top of a red stop"

3

Motivation

- adaptive encoder-decoder framework that automatically decides when to look at the image and when to rely on the language model to generate the next word
- when relying on visual signals, the model also decides where – which image region – it should attend to

Encoder-Decoder

- CNN used as encoder
- LSTM used as decoder
- context vector in vanilla framework dependent only on encoder
- context vector in attention-based framework dependent on both encoder and decoder

Spatial Attention

- context vector is generated using the current hidden state and the spatial image features
- context vector considered as the residual visual information of current hidden state
- complements the informativeness of the current hidden state for next word prediction

Adaptive Attention

- improves on the spatial attention model
- relies on a new concept "visual sentinel"
- introduces novel way in generating context vector

Visual Sentinel

- latent representation of what the decoder already knows
- the model can fall back on it when it chooses not to attend to the image
- the gate that decides between attending to the image or the visual sentinel is called "sentinel gate"

$$\mathbf{g}_{t} = \sigma \left(\mathbf{W}_{x} \mathbf{x}_{t} + \mathbf{W}_{h} \mathbf{h}_{t-1} \right)$$
$$\mathbf{s}_{t} = \mathbf{g}_{t} \odot \tanh \left(\mathbf{m}_{t} \right)$$

Adaptive Attention

- context vector c_t modeled as mixture of spatially attended image features and visual sentinel
- sentinel gate β_t decides between attending to the image or the visual sentinel
- $-\beta_t$ is a scalar in the range [0,1]

model adaptively attends to image vs. visual sentinel when

generating the next word

$$\hat{\boldsymbol{c}}_t = \beta_t \boldsymbol{s}_t + \left(1 - \beta_t\right) \boldsymbol{c}_t$$

Datasets

Flickr30k

- contains ≈ 32 thousand images collected from Flickr
- depicts humans performing various activities
- each image is paired with 5 crowd-sourced captions

COCO

- contains ≈ 83 thousand images for training
- contains multiple objects in the context of complex scenes
- each image has 5 human annotated captions

Preprocessing

Images

- 40 thousand COCO images used
- 80% for training and 20% for testing

Captions

- vocab consists of the 6 thousand most frequent words
- remove punctuations
- max length based on longest caption

Implementation

Encoder-CNN

- spatial features extracted from last convolutional layer of ResNet-152-V2
- ResNet was pre-trained on ImageNet
- spatial features were saved in npy format

Decoder-LSTM

input is concatenation of word embedding and global image feature

Hidden Size	Embedding Size	Features Shape	grid locations
512	512	2048	49

Batch Size	Epochs	
64	12	

Spatial Attention

Spatial Attention

"a man surfing **through** the water **as a** pink board"

Spatial Attention

"a sandwich on **top of** a plate **with side of** food"

Adaptive Attention

Adaptive Attention

Adaptive Attention

0.826 - of

Future Work

- use contextualized embeddings (e.g., BERT)
- train on entire COCO dataset

Conclusion

- Adaptive attention best performer
- model leans to attend less for non-visual words and attend more for the visual words.

Thank you for your attention