Face Recognition using PCA (Eigenfaces)

Ishat Shivhare U23AI071

August 28, 2025

Implementation: Github

Objective

The objective of this lab is to implement a facial recognition system using Principal Component Analysis (PCA). The approach projects images into a lower-dimensional subspace spanned by Eigenfaces and applies this representation for image reconstruction and recognition.

Dataset

The AT&T (ORL) Face Dataset was used:

- 400 grayscale face images (40 subjects \times 10 images).
- Resolution: 92×112 pixels.
- Includes variations in lighting, expression, glasses, and pose.

Implementation Steps

1. Data Preprocessing

- Images were loaded from the ORL dataset and flattened into 1D vectors.
- Each image was converted to grayscale and standardized.
- Dataset was split into training (70%) and testing (30%) using stratified sampling.

2. PCA using SVD

- Mean face was computed and subtracted from each image.
- Singular Value Decomposition (SVD) was used to extract eigenfaces.
- Top 200 principal components were retained.
- Eigenvalues were used to compute explained variance.

3. Eigenfaces Visualization

Figure 1: Mean face computed from dataset.

Figure 2: First 20 Eigenfaces visualized.

4. Image Reconstruction

Sample test images were reconstructed using different values of k (number of components).

Figure 3: Reconstruction of test images with k = 10, 50, 100, 200.

5. Face Recognition

Nearest neighbor classification was performed in PCA space.

Number of Components (k)	Accuracy (%)
5	85.83
10	93.33
20	95.00
50	96.67
100	96.67
150	95.00
200	95.83

Table 1: Recognition accuracy vs. number of principal components.

Figure 4: Recognition accuracy as a function of k.

6. t-SNE Visualization

t-SNE was applied on the top 50 PCA features to reduce to 2D.

Figure 5: t-SNE visualization showing clustering of different subjects.

Results and Analysis

- Best recognition accuracy was obtained at k = 50 with accuracy = 96.67%.
- Top 10 explained variance ratios were printed in the notebook.
- Cumulative explained variance for top 50 components was reported as 0.8161.
- \bullet Reconstruction quality improved as k increased and later decreased.
- t-SNE visualization showed clear clustering of different subjects.

Conclusion

This experiment showed that PCA reduces dimensionality effectively while retaining key facial features. Using Eigenfaces with nearest neighbor classification achieved high recognition accuracy. t-SNE further confirmed separability of subjects in reduced space.