model-calibration

Alexander Keth 2017-05-08

Contents

	0.1	User Input	3
1	$\mathbf{W}\mathbf{h}$	ole system plots!	4
		Overall biomass	4
	1.2	Biomass timeseries	5
	1.3	Biomass@age timeseries	6
	1.4	Number timeseries	7
	1.5	Number@age timeseries	8
	1.6	SSB & Recruitment	9
	1.7	Biomass benchmark	10
	1.8	Biomass benchmark 2	11
	1.9	Physics	12
2	Phy	vsics	13
	2.1	Chl_a	13
	2.2	Denitrifiction	14
	2.3	NH3	15
	2.4	NO3	16
	2.5	Temp	17
	2.6	salt	18
	2.7	Fluxes 1	19
	2.8	Fluxes 2	20
	2.9	Relative change of water column height compared to nominal_dz	21
3	Cali	ibration plots	22
	3.1	Structural nitrogen	22
	3.2	Reserve nitrogen	23
	3.3	Biomass per ageclass	24
	3.4	Eat per ageclass	25
	3.5	Growth per ageclass	26
	3.6	Growth in relation to initial conditions	27
	3.7	Numbers	28
	3.8	Biomass	29
4		tribution plots	30
	4.1	Numbers @ age	30
	4.2	Biomass @ age	31
5	Die	t Plots	32
	5.1	Diet plot 1: Cephalopod	33

	5.2	Diet plot 2: Diatom	34
	5.3	Diet plot 3: Labile detritus	35
	5.4	Diet plot 4: Megazoobenthos	36
	5.5	Diet plot 5: Refractory detritus	37
	5.6	Diet plot 6: Shallow piscivorous fish	
	5.7	Diet plot 7: Small planktivorous fish	
6	Spa	tial Plots 1	40
	6.1	Spatial Plot 1: Carrion3 1	40
	6.2	Spatial Plot 2: Cephalopod 1	
	6.3	Spatial Plot 3: Diatom 1	
	6.4	Spatial Plot 4: Labile detritus 1	
	6.5	Spatial Plot 5: Megazoobenthos 1	
	6.6	Spatial Plot 6: Refractory detritus 1	
	6.7	Spatial Plot 7: Shallow piscivorous fish 1	
	• • •		
	6.8	Spatial Plot 8: Shallow piscivorous fish 2	
	6.9	Spatial Plot 9: Small planktivorous fish 1	
	6.10	Spatial Plot 10: Small planktivorous fish 2	49
7	Spa	tial Plots 2	50
	7.1	Spatial Plot 1: Carrion3	51
	7.2	Spatial Plot 2: Cephalopod	52
	7.3	Spatial Plot 3: Diatom	53
	7.4	Spatial Plot 4: Labile detritus	54
	7.5	Spatial Plot 5: Megazoobenthos	
	7.6	Spatial Plot 6: Refractory detritus	
	7.7	Spatial Plot 7: Shallow piscivorous fish	

NOTE: This vigentte is optimised for longer simulation runs. Therefore the output is not as pleasant due to the fact that the dummy setas file have a running time of 5 years.

In order to use this vignette make sure to render model-preprocess.Rmd first. Either save the resulting list of dataframes as shown in data-raw/data-vignette-model-preprocess.Rmd or render both vignettes model-preprocess.Rmd and model-calibration.Rmd in the same R-instance. Of course, you can also use a personalised version of mode-preprocess.Rmd. Please make sure to add all resulting dataframes to the list of dataframes at the end of the preprocess vignette and change model-calibration.Rmd accordingly.

```
library("atlantistools")
library("ggplot2")
library("gridExtra")

fig_height2 <- 11
gen_labels <- list(x = "Time [years]", y = "Biomass [t]")

# You should be able to build the vignette either by clicking on "Knit PDF" in RStudio or with
# rmarkdown::render("model-calibration.Rmd")</pre>
```

0.1 User Input

This section is used to read in the SETAS dummy files. Please change this accordingly.

```
result <- preprocess

d <- system.file("extdata", "setas-model-new-trunk", package = "atlantistools")

# External recruitment data
ex_rec_ssb <- read.csv(file.path(d, "setas-ssb-rec.csv"), stringsAsFactors = FALSE)

# External biomass data
ex_bio <- read.csv(file.path(d, "setas-bench.csv"), stringsAsFactors = FALSE)

# bgm file
bgm <- file.path(d, "VMPA_setas.bgm")</pre>
```

1 Whole system plots!

1.1 Overall biomass

```
df_bio <- combine_groups(result$biomass, group_col = "species", combine_thresh = 10)</pre>
## Joining, by = "species"
plot <- plot_bar(df_bio)</pre>
update_labels(plot, labels = gen_labels)
    1.6e+08-
    1.2e+08-
                                                                                                                            species
Biomass [t]
                                                                                                                               Carrion3
                                                                                                                               Cephalopod
                                                                                                                               Diatom
                                                                                                                               Labile detritus
                                                                                                                               Megazoobenthos
                                                                                                                               Refractory detritus
                                                                                                                               Shallow piscivorous fish
                                                                                                                               Small planktivorous fish
    4.0e+07-
    0.0e+00
                                                                                                                     3
                                                         Time [years]
```

1.2 Biomass timeseries

1.1e+03 1.0e+03 9.0e+02 8.0e+02

```
plot <- plot_line(result$biomass)
update_labels(plot, labels = gen_labels)</pre>
```


Time [years]

1.3 Biomass@age timeseries

```
plot <- plot_line(result$biomass_age, col = "agecl")
update_labels(p = plot, labels = c(gen_labels, list(colour = "Ageclass")))

Shallow pischvorous fish

2.0e+04

2.0e+04

1.5e+02

1.5e+02

Time [years]
```

Ageclass - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10

1.4 Number timeseries

```
plot <- plot_line(result$nums)</pre>
update_labels(p = plot, labels = list(x = "Time [years]", y = "Numbers"))
                                                      Shallow
piscivorous
fish
                                                                                                                                                              Small
planktivorous
fish
                                                                                                           1.6e+08
   7.5e+08
                                                                                                           1.5e+08
Numbers
2.0e+08-
                                                                                                           1.4e+08
                                                                                                           1.3e+08
                                                                                                           1.2e+08
   2.5e+08-
                                                                                                       Time [years]
```

1.5 Number@age timeseries

```
plot <- plot_line(result$nums_age, col = "agecl")
update_labels(p = plot, labels = list(x = "Time [years]", y = "Numbers", colour = "Ageclass"))</pre>
```


1.6 SSB & Recruitment

Biomass benchmark

7.5e+05

5.0e+05

2.5e+05

1.4e+03-

1.2e+03-

1.0e+03-

8.0e+02-

```
names(ex_bio)[names(ex_bio) == "biomass"] <- "atoutput"</pre>
data <- result$biomass</pre>
data$model <- "atlantis"</pre>
comp <- rbind(ex_bio, data, stringsAsFactors = FALSE)</pre>
# Show atlantis as first factor!
comp$model <- factor(comp$model, levels = c("atlantis", sort(unique(comp$model))[sort(unique(comp$model)) != "atlantis"]))</pre>
# Create plot
plot <- plot_line(comp, col = "model")</pre>
update_labels(plot, gen_labels)
```


Time [years]

model - atlantis - dummy

1.8 Biomass benchmark 2

```
plot <- plot_line(result$biomass) %>% update_labels(labels = gen_labels)
plot_add_range(plot, ex_bio)
```


model — dummy

1.9 Physics

2 Physics

```
physics <- result$physics %>%
  flip_layers() %>%
  split(., .$variable)

plots <- lapply(physics, plot_line, wrap = NULL) %>%
  lapply(., custom_grid, grid_x = "polygon", grid_y = "layer")

for (i in seq_along(plots)) {
  cat(paste0("## ", names(plots)[i]), sep = "\n")
  plot <- update_labels(plots[[i]], labels = list(y = names(plots)[i]))
  print(plot)
  cat("\n\n")
}</pre>
```

2.1 Chl_a

2.2 Denitrifiction

2.3 NH3

2.4 NO3

2.5 Temp

2.6 salt

2.7 Fluxes 1

```
plot <- flip_layers(result$flux) %>%
  plot_line(wrap = NULL, col = "variable")
custom_grid(plot, grid_x = "polygon", grid_y = "layer")
    1e+04
    0e+00
   -1e+04
   -2e+04
    0e+00
    -2e+04
    -4e+04
    0e+00
    -5e+04
-5e+04

10 -1e+05

5.0e+04
    -1e+05
   0.0e+00
   -5.0e+04
  -1.0e+05
   -1.5e+05
    3e+05
    2e+05
    1e+05
    0e+00
   -1e+05
   -2e+05
    5e+04
    0e+00
    -5e+04
```

time
variable eflux vflux

2.8 Fluxes 2

1.0e+00

```
plot <- flip_layers(result$sink) %>%
  plot_line(wrap = NULL, col = "variable")
custom_grid(plot, grid_x = "polygon", grid_y = "layer")
                                                                  2
   6e+00
   5e+00
   4e+00
   3e+00-
   2e+00
   $€‡00
   4e+00
   3e+00-
   2e+00
   68±88
   5e+00
   4e+00
    3e+00
2e+00
1e+00
7.5e+00
   5.0e+00
  2.5e+00
   1.2e+01
   1.0e+01
   8.0e+00
  6.0e+00
  4.0e+00
   3:00+00
  2.5e+00
  2.0e+00
   1.5e+00
```

time
variable — hdsink — hdsource

2.9 Relative change of water column height compared to nominal_dz

```
check_dz <- result$dz %>%
  dplyr::left_join(result$nominal_dz, by = c("polygon", "layer")) %>%
  dplyr::mutate(check_dz = atoutput.x / atoutput.y) %>%
  dplyr::filter(!is.na(check_dz)) # remove sediment layer
plot <- plot_line(check_dz, x = "time", y = "check_dz", wrap = "polygon", col = "layer")</pre>
update_labels(plot, list(x = "Time [years]", y = expression(dz/nominal_dz)))
                                                                                          3
                                                                                                                           4
                                                                                                                                                            5
   1.2e+00
                                     1.2e+00
                                                                       1.2e+00
                                                                                                         1e+00
                                                                                                                                          1e+00
dz/nominal_dz
                                     1.1e+00
                                                                       1.1e+00
                                                                                                         8e-01
                                                                                                                                          8e-01
                                                                                                         6e-01
   1.0e+00
                                     1.0e+00
                                                                       1.0e+00
                                                                                                                                          6e-01
                                                                                                         4e-01
  1.0e+00 ⊬
0
                                    _31.0e+00
                                                                      ____1.0e+00
                                                                                   Time [years]
```

factor(layer) - 0 - 1 - 2 - 3 - 4 - 5 - 6

3 Calibration plots

3.1 Structural nitrogen

```
df_rel <- convert_relative_initial(result$structn_age)
plot <- plot_line(df_rel, col = "agecl")
plot <- update_labels(plot, list(x = "Time [years]", y = expression(SN/SN[init])))
plot_add_box(plot)</pre>
```


3.2 Reserve nitrogen

```
df_rel <- convert_relative_initial(result$resn_age)
plot <- plot_line(df_rel, col = "agecl")
plot <- update_labels(plot, list(x = "Time [years]", y = expression(RN/RN[init])))
plot_add_box(plot)</pre>
```


3.3 Biomass per ageclass

```
df_rel <- convert_relative_initial(result$biomass_age)
plot <- plot_line(df_rel, col = "agecl")
plot <- update_labels(plot, list(x = "Time [years]", y = expression(Biomass/Biomass[init])))
plot_add_box(plot)</pre>
```


3.4 Eat per ageclass

```
df_rel <- convert_relative_initial(result$eat_age)
plot <- plot_line(df_rel, col = "agecl")
plot <- update_labels(plot, list(x = "Time [years]", y = expression(Cons./Cons.[init])))
plot_add_box(plot)</pre>
```


3.5 Growth per ageclass

```
df_rel <- convert_relative_initial(result$growth_age)
plot <- plot_line(df_rel, col = "agecl")
plot <- update_labels(plot, list(x = "Time [years]", y = expression(Growth/Growth[init])))
plot_add_box(plot)</pre>
```


3.6 Growth in relation to initial conditions

```
plot <- plot_line(result$growth_rel_init, y = "gr_rel", col = "agecl")
update_labels(plot, list(y = expression((Growth - Growth[req])/Growth[req])))

Small
planktvorous
fish

5e-01

0e+00

-5e-01

2

3

1

2

3
```

time factor(agecl) — 1 — 2 — 3 — 4 — 5 — 6 — 7 — 8 — 9 — 10

3.7 Numbers

```
df_rel <- convert_relative_initial(result$nums_age)
plot <- plot_line(df_rel, col = "agecl")
plot <- update_labels(plot, list(x = "Time [years]", y = expression(Numbers/Numbers[init])))
plot_add_box(plot)</pre>
```


3.8 Biomass

```
df_rel <- convert_relative_initial(result$biomass)
plot <- plot_line(df_rel)
plot <- update_labels(plot, list(x = "Time [years]", y = expression(Biomass/Biomass[init])))
plot_add_box(plot)</pre>
```


4 Distribution plots

4.1 Numbers @ age

```
df <- agg_perc(result$nums_age, groups = c("time", "species"))
plot <- plot_bar(df, fill = "agecl", wrap = "species")
update_labels(plot, labels = list(x = "Time [years]", y = "Numbers [%]"))</pre>
```


4.2 Biomass @ age

```
df <- agg_perc(result$biomass_age, groups = c("time", "species"))
plot <- plot_bar(df, fill = "agecl", wrap = "species")
update_labels(plot, labels = list(x = "Time [years]", y = "Biomass [%]"))</pre>
```


5 Diet Plots

```
## Joining, by = c("time", "pred", "agecl", "prey")
## Joining, by = c("time", "pred", "agecl", "prey")
```

ż

ż

ż

2

ż

Diet proportions for species: Diatom

Diet proportions for species: Labile detritus

Diet proportions for species: Refractory detritus

6 Spatial Plots 1

Joining, by = "polygon"

6.1 Spatial Plot 1: Carrion3 1

biomass distribution 0.32 0.33 0.34 0.35 0.36

7 Spatial Plots 2

```
## Joining, by = c("time", "polygon")

## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?

## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?
```

Species: Carrion3 with stanza: 1

Species: Cephalopod with stanza: 1

Species: Megazoobenthos with stanza: 1

Species: Refractory detritus with stanza: 1

2

30

ż

30

Time [years]

30

2

ż

Ó

2

30

ż

30

30

Time [years]

30

2

ż