Dealing with Heteroskedasticity R-side Variance Modeling

2022-04-03

Contents

1	Generating a data set	2
2	Analysis	5
3	Models with heterosckedasticity	39
4	Revisiting the gap	44

```
library(nlme)
library(spida2)

Attaching package: 'spida2'

The following object is masked from 'package:nlme':

    getData

library(lattice)
library(latticeExtra)
library(latex2exp)
```

1 Generating a data set

Pay equity data set for a hypothetical university with two faculties: Medicine and Arts with a higher level and variance in Medicine vs Arts and a different gender gap

```
dd <- expand.grid(Faculty = c("Arts", "Med"), Sex = c("F", "M"), n = 1:400)
set.seed(1233)
dd <- within(</pre>
  dd,
    Age \leftarrow 45 + 5 * (Faculty == "Arts") + 5 * (Sex == "M") + 15 * rnorm(n)
    ..esal <- 100 + 20 * (Faculty == 'Med') +
      (4 + .3 *(Sex == "M") + .5 * (Faculty == "Med")) * (Age - 30)
    ..sdsal \leftarrow 10 + 10 * (Faculty == "Med") + .2 * (Age - 30)
    Base <- ..esal + ..sdsal * rnorm(n)</pre>
    keep <- Age > 28 & Age < 80
    ..sdsal <- NULL
    ..esal <- NULL
tab(dd, ~ Faculty + Sex +keep)
```

, , keep = FALSE

Sex

Faculty F M Total Arts 35 32 67 Med 50 32 82 Total 85 64 149

, , keep = TRUE

Sex

Faculty F M Total Arts 365 368 733 Med 350 368 718 Total 715 736 1451

, , keep = Total

Sex

Faculty F M Total Arts 400 400 800

```
Med 400 400 800

Total 800 800 1600

dd <- subset(dd, keep)

save(dd, file = 'salary.rda')
```

2 Analysis

```
load('salary.rda', verbose = TRUE)

Loading objects:
    dd

xqplot(dd)
```



```
xyplot(Base ~ Age | Faculty, dd, groups = Sex,
    auto.key = T)
```



```
fit <- lm(Base ~ Age * Faculty * Sex, dd)
summary(fit)</pre>
```

Call:

lm(formula = Base ~ Age * Faculty * Sex, data = dd)

Residuals:

Min 1Q Median 3Q Max -84.147 -11.606 0.375 12.001 66.045

Coefficients:

```
FacultyMed:SexM -22.58948 9.10350 -2.481 0.013200 *
Age:FacultyMed:SexM 0.44828 0.17377 2.580 0.009986 **
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 19.69 on 1443 degrees of freedom
Multiple R-squared: 0.8836, Adjusted R-squared: 0.883
F-statistic: 1565 on 7 and 1443 DF, p-value: < 2.2e-16

for(i in c(1,2,3,5)) {
   plot(fit, which = i, add.smooth=T, mfcol = c(1,1))
}
```

Residuals vs Fitted 000 Standardized residuals 50 α Residuals -50 7 7720 0750 -100

250

300

350

Fitted values Im(Base ~ Age * Faculty * Sex)

200

100

150

Fitted values Im(Base ~ Age * Faculty * Sex)

plot(fit, 1)

Residuals vs Fitted

Fitted values Im(Base ~ Age * Faculty * Sex)

plot(fit, 2)

Theoretical Quantiles Im(Base ~ Age * Faculty * Sex)

plot(fit, 3)

Scale-Location

Fitted values Im(Base ~ Age * Faculty * Sex)

plot(fit, 5)

Residuals vs Leverage

Im(Base ~ Age * Faculty * Sex)

xyplot(resid(fit) ~ fitted(fit)|Faculty * Sex, dd) %>%
 useOuterStrips

Functions in nlme to deal with heteroskedasticity:

Overview:

?varClasses

- varExp: exponential of a covariate or yhat
- varPower: power of a covariate or yhat
- varConstPower: constant + power of a covariate or yhat
- varConstProp: constant + proportion of a covariate or yhat
- varIdent: different variance in different subgroups
- varFixed: fixed weights given by a covariate
- varComb: combination of variance functions
- You can also build your own but count on spending a days figuring out how to do it

```
fit <- gls(Base ~ Age * Faculty * Sex, dd) # re fit with gls model
pred <- with(dd, pred.grid(Faculty, Sex, Age = seq(30,75,1)))
ww <- as.data.frame(wald(fit, pred = pred))
head(ww)</pre>
```

coef se U2 L2 Faculty Sex Age L.(Intercept) L.Age

:	1 100.3628 2.080	263 104.5	5233	96.20224	Arts	F	30	1	30
2	2 122.1229 1.940	117 126.0	0031	118.24268	Med	F	30	1	30
;	3 102.2655 2.350	772 106.9	9671	97.56400	Arts	M	30	1	30
4	114.8848 2.030	886 118.9	9465	110.82299	Med	M	30	1	30
į	5 104.3403 2.008	011 108.3	3563	100.32424	Arts	F	31	1	31
(5 126.5274 1.862	586 130.2	2526	122.80225	Med	F	31	1	31
	L.FacultyMed L	.SexM L.A	Age:Fa	acultyMed	L.Age:Se	xM L	.Facul	LtyMed:SexM	
:	1 0	0		0		0		0	
2	2 1	0		30		0		0	
;	3 0	1		0		30		0	
4	1	1		30		30		1	
į	5 0	0		0		0		0	
(5 1	0		31		0		0	
	L.Age:FacultyMe	ed:SexM							
:	1	0							
2	2	0							
;	3	0							
4	1	30							
į	5	0							

Analyzing the Gap

1442 -2.117754 0.03437 -10.179319 -0.389628 -5.284473 2.495320 19 2.714545 2.725513 1442 0.995976 0.31943 -2.6318518.060940 -4.633247 2.395053 1442 -1.934507 0.05325 -9.3314080.064914 20 23 2.917486 2.625560 1442 1.111186 0.26667 -2.2328398.067811 24 -3.982021 2.297337 1442 -1.733321 0.08325 -8.488500 0.524459 27 3.120428 2.527307 1442 1.234685 0.21715 -1.8371648.078019 28 -3.330794 2.202509 1442 -1.512272 0.13068 -7.6512600.989671 31 3.323369 2.430961 1442 1.367101 0.17181 -1.4452308.091968 32 -2.679568 2.110961 1442 -1.269359 0.20452 -6.8204521.461316 1.509061 0.13150 -1.05749935 3.526311 2.336759 1442 8.110121 1442 -1.002572 0.31624 36 -2.028341 2.023137 -5.996949 1.940266 3.729253 2.244969 1.661160 0.09690 -0.67450239 1442 8.133007 40 -1.377115 1.939544 1442 -0.710020 0.47781 -5.181744 2,427514 1.823922 0.06837 43 3.932194 2.155900 1442 -0.2968438.161231 -0.725889 1.860750 1442 -0.390105 0.69652 -4.3759562.924178 44 1.997742 0.04593 47 4.135136 2.069904 1442 0.074790 8.195481 48 -0.074662 1.787392 1442 -0.041772 0.96669 -3.5808293.431505 51 4.338077 1.987379 1442 2.182813 0.02921 0.439613 8.236541 0.576564 1.720165 1442 0.335180 0.73754 -2.79772952 3.950857

55	A EA1010	1.908776	1442	2.379021	0.01740	0.796744	8.285293
					0.02.20		
56	1.227791	1.659813	1442	0.739716	0.45959	-2.028116	4.483698
59	4.743960	1.834598	1442	2.585831	0.00981	1.145194	8.342727
60	1.879017	1.607112	1442	1.169188	0.24252	-1.273512	5.031546
63	4.946902	1.765404	1442	2.802136	0.00514	1.483867	8.409937
64	2.530244	1.562837	1442	1.619007	0.10566	-0.535433	5.595920
67	5.149843	1.701801	1442	3.026113	0.00252	1.811572	8.488115
68	3.181470	1.527718	1442	2.082498	0.03747	0.184681	6.178258
71	5.352785	1.644439	1442	3.255082	0.00116	2.127036	8.578535
72	3.832696	1.502400	1442	2.551049	0.01084	0.885573	6.779820
75	5.555727	1.593992	1442	3.485417	0.00051	2.428936	8.682518
76	4.483923	1.487382	1442	3.014641	0.00262	1.566258	7.401587
79	5.758668	1.551133	1442	3.712555	0.00021	2.715949	8.801388
80	5.135149	1.482978	1442	3.462729	0.00055	2.226125	8.044174
83	5.961610	1.516508	1442	3.931144	0.00009	2.986812	8.936407
84	5.786376	1.489281	1442	3.885350	0.00011	2.864987	8.707764
87	6.164551	1.490689	1442	4.135371	0.00004	3.240401	9.088702
88	6.437602	1.506157	1442	4.274191	0.00002	3.483109	9.392095
91	6.367493	1.474139	1442	4.319466	0.00002	3.475807	9.259179

92	7.088828	1.533257	1442	4.623380	<.00001	4.081176	10.096481
95	6.570434	1.467172	1442	4.478298	0.00001	3.692414	9.448455
96	7.740055	1.570052	1442	4.929809	<.00001	4.660225	10.819885
99	6.773376	1.469925	1442	4.607974	<.00001	3.889956	9.656796
100	8.391281	1.615879	1442	5.193013	<.00001	5.221556	11.561007
103	6.976318	1.482343	1442	4.706278	<.00001	4.068538	9.884097
104	9.042508	1.669996	1442	5.414689	<.00001	5.766627	12.318389
107	7.179259	1.504187	1442	4.772851	<.00001	4.228631	10.129888
108	9.693734	1.731624	1442	5.598058	<.00001	6.296961	13.090507
111	7.382201	1.535054	1442	4.809082	<.00001	4.371023	10.393379
112	10.344961	1.799994	1442	5.747220	<.00001	6.814074	13.875847
115	7.585142	1.574414	1442	4.817755	<.00001	4.496755	10.673530
116	10.996187	1.874367	1442	5.866615	<.00001	7.319410	14.672964
119	7.788084	1.621649	1442	4.802571	<.00001	4.607040	10.969127
120	11.647413	1.954057	1442	5.960631	<.00001	7.814314	15.480512
123	7.991025	1.676093	1442	4.767652	<.00001	4.703185	11.278866
124	12.298640	2.038442	1442	6.033353	<.00001	8.300011	16.297269
127	8.193967	1.737067	1442	4.717127	<.00001	4.786517	11.601417
128	12.949866	2.126963	1442	6.088432	<.00001	8.777594	17.122138

131	8.396909	1.803911	1442	4.654834	<.00001	4.858337	11.935480
132	13.601093	2.219124	1442	6.129037	<.00001	9.248036	17.954149
135	8.599850	1.875997	1442	4.584149	<.00001	4.919874	12.279826
136	14.252319	2.314491	1442	6.157863	<.00001	9.712189	18.792449
139	8.802792	1.952744	1442	4.507908	0.00001	4.972268	12.633316
140	14.903545	2.412684	1442	6.177164	<.00001	10.170799	19.636292
143	9.005733	2.033625	1442	4.428413	0.00001	5.016553	12.994914
144	15.554772	2.513372	1442	6.188807	<.00001	10.624516	20.485028
147	9.208675	2.118166	1442	4.347475	0.00001	5.053657	13.363692
148	16.205998	2.616266	1442	6.194324	<.00001	11.073904	21.338093
151	9.411616	2.205947	1442	4.266474	0.00002	5.084408	13.738825
152	16.857225	2.721116	1442	6.194967	<.00001	11.519455	22.194995
155	9.614558	2.296596	1442	4.186439	0.00003	5.109532	14.119584
156	17.508451	2.827705	1442	6.191752	<.00001	11.961594	23.055308
159	9.817500	2.389786	1442	4.108108	0.00004	5.129670	14.505329
160	18.159678	2.935844	1442	6.185505	<.00001	12.400695	23.918660
163	10.020441	2.485232	1442	4.031994	0.00006	5.145384	14.895498
164	18.810904	3.045367	1442	6.176893	<.00001	12.837081	24.784727
167	10.223383	2.582684	1442	3.958434	0.00008	5.157163	15.289602

```
168 19.462130 3.156130 1442
                             6.166454 < .00001
                                                13.271033 25.653227
171 10.426324 2.681923 1442
                             3.887631 0.00011
                                                 5.165437 15.687212
172 20.113357 3.268007
                        1442
                             6.154625 < .00001
                                                13.702801 26.523913
175 10.629266 2.782757
                        1442
                             3.819688 0.00014
                                                 5.170580 16.087952
176 20.764583 3.380887
                        1442
                             6.141756 < .00001
                                                14.132599 27.396567
179 10.832207 2.885021
                        1442
                             3.754638 0.00018
                                                 5.172921 16.491494
                       1442
                             6.128128 < .00001
                                                14.560620 28.270999
180 21.415810 3.494674
183 11.035149 2.988566
                       1442
                             3.692457 0.00023
                                                 5.172747 16.897551
                       1442
                             6.113970 < .00001 14.987032 29.147040
184 22.067036 3.609281
```

wgap <- as.data.frame(wgap)
head(wgap)</pre>

	coef	se	U2	L2	Faculty	Age	L.(Intercept)	L.Age
3	1.902778	3.139048	8.180873	-4.375317	Arts	30	0	0
4	-7.238153	2.808656	-1.620840	-12.855465	Med	30	0	0
7	2.105720	3.033885	8.173489	-3.962049	Arts	31	0	0
8	-6.586926	2.702361	-1.182204	-11.991649	Med	31	0	0
11	2.308662	2.929824	8.168310	-3.550986	Arts	32	0	0
12	-5.935700	2.597841	-0.740017	-11.131383	Med	32	0	0

```
L.FacultyMed L.SexM L.Age:FacultyMed L.Age:SexM L.FacultyMed:SexM
                                                       30
                                                       30
                                                       31
                                                       31
      11
                                                       32
      12
                                                       32
         L.Age:FacultyMed:SexM
                            30
                            31
      11
                            32
xyplot(coef ~ Age | Faculty, wgap,
       type = 'l', auto.key = list(space='right'))
```


3 Models with heteroschedasticity

```
fitconpower <- gls(Base ~ Age * Faculty * Sex, dd,
                  weights = varConstPower(form = ~fitted(.)|Faculty))
summary(fitconpower)
     Generalized least squares fit by REML
       Model: Base ~ Age * Faculty * Sex
       Data: dd
            AIC BIC logLik
        12552.91 12621.48 -6263.454
      Variance function:
      Structure: Constant plus power of variance covariate, different strata
      Formula: ~fitted(.) | Faculty
      Parameter estimates:
                   Arts
                               Med
      const 9.749647e-06 29.7003504
      power 7.307494e-01 0.7216105
```

Coefficients:

	Value	Std.Error	t-value	p-value
(Intercept)	-19.762576	2.784153	-7.09824	0.0000
Age	3.993222	0.057807	69.07861	0.0000
FacultyMed	8.149613	5.857826	1.39123	0.1644
SexM	-4.803421	4.190896	-1.14616	0.2519
Age:FacultyMed	0.445143	0.125251	3.55401	0.0004
Age:SexM	0.213444	0.083970	2.54190	0.0111
FacultyMed:SexM	-20.688326	8.384991	-2.46730	0.0137
Age:FacultyMed:SexM	0.410238	0.174064	2.35682	0.0186

Correlation:

	(Intr)	Age	FcltyM	SexM	Ag:FcM	Ag:SxM	FcM:SM
Age	-0.969						
FacultyMed	-0.475	0.461					
SexM	-0.664	0.644	0.316				
Age:FacultyMed	0.447	-0.462	-0.971	-0.297			
Age:SexM	0.667	-0.688	-0.317	-0.970	0.318		

```
FacultyMed:SexM 0.332 -0.322 -0.699 -0.500 0.679 0.485
      Age:FacultyMed:SexM -0.322  0.332  0.699  0.468 -0.720 -0.482 -0.971
      Standardized residuals:
              Min
                           Q1
                                      Med
                                                   QЗ
                                                              Max
      -3.53559716 -0.67370477 0.02089916 0.67207429 3.51634551
      Residual standard error: 0.3070914
      Degrees of freedom: 1451 total; 1443 residual
fitpower <- update(fit, weights = varPower(form = ~fitted(.)|Faculty))</pre>
fitgroups <- update(fit, weights = varIdent(form = ~ 1 | Faculty))</pre>
anova(fit , fitgroups, fitpower, fitconpower)
```

	Model	df	AIC	BIC	logLik		Test	L.Ratio	p-value
fit	1	9	12780.75	12828.22	-6381.373				
fitgroups	2	10	12621.74	12674.48	-6300.868	1	vs 2	161.00929	<.0001
fitpower	3	11	12557.45	12615.47	-6267.727	2	vs 3	66.28162	<.0001
fitconpower	4	13	12552.91	12621.48	-6263.454	3	vs 4	8.54737	0.0139

library(car)

```
Loading required package: carData
compareCoefs(fit, fitgroups, fitpower, fitconpower)
     Calls:
     1: gls(model = Base ~ Age * Faculty * Sex, data = dd)
     2: gls(model = Base ~ Age * Faculty * Sex, data = dd, weights =
       varIdent(form = ~1 | Faculty))
     3: gls(model = Base ~ Age * Faculty * Sex, data = dd, weights =
       varPower(form = ~fitted(.) | Faculty))
     4: gls(model = Base ~ Age * Faculty * Sex, data = dd, weights =
       varConstPower(form = ~fitted(.) | Faculty))
                         Model 1 Model 2 Model 3 Model 4
     (Intercept)
                         -18.96 -18.96 -19.57 -19.76
     SE
                            4.44 3.31 2.92 2.78
                          3.9775 3.9775 3.9893 3.9932
     Age
```

SE	0.0837	0.0624	0.0589	0.0578
FacultyMed	8.95	8.95	7.19	8.15
SE	6.35	6.40	5.81	5.86
SexM	-4.19	-4.19	-4.63	-4.80
SE	6.53	4.87	4.37	4.19
Age:FacultyMed	0.427	0.427	0.465	0.445
SE	0.125	0.128	0.125	0.125
Age:SexM SE	0.2029 0.1195	0.2029 0.0891	0.2104 0.0852	
FacultyMed:SexM	-22.59	-22.59	-20.21	-20.69
SE	9.10	9.07	8.33	8.38
Age:FacultyMed:SexM	0.448	0.448	0.399	0.410
SE	0.174	0.176	0.175	0.174

4 Revisiting the gap

```
wgap2 <- wald(fitconpower,
            Lgap,
            data = subset(ww, Sex == 'F', select = c(Faculty, Age)))
wgap2
       numDF denDF F-value p-value
           4 1442 14.1574 < .00001
         Estimate Std.Error DF t-value p-value Lower 0.95 Upper 0.95
          1.599889 1.850517 1442 0.864563 0.38742 -2.030104 5.229882
        -6.781289 3.023151 1442 -2.243120 0.02504 -12.711533 -0.851044
          1.813333 1.780923 1442 1.018198 0.30875 -1.680144 5.306809
        -6.157607 2.899415 1442 -2.123741 0.03386 -11.845130 -0.470083
          2.026776 1.712618 1442 1.183437 0.23683 -1.332713 5.386266
     12 -5.533925 2.778538 1442 -1.991668 0.04660 -10.984334 -0.083516
```

15 2 240220 1 645764 1442 1.361204 0.17366 -0.9881285.468568 16 -4.910243 2.660908 1442 -1.845326 0.06520 -10.129908 0.309422 2.453664 1.580544 1442 1.552418 0.12078 -0.6467475.554075 19 -4.286561 2.546976 1442 -1.683000 0.09259 -9.2827350.709613 20 23 2.667107 1.517168 1442 1.757951 0.07897 -0.308986 5.643201 24 -3.662879 2.437259 1442 -1.502868 0.13309 -8.443832 1.118074 27 2.880551 1.455879 1442 1.978565 0.04806 0.024684 5.736418 28 -3.039197 2.332354 1442 -1.303060 0.19276 -7.6143671.535973 31 3.093995 1.396950 1442 2.214822 0.02693 0.353723 5.834266 32 -2.415515 2.232938 1442 -1.081765 0.27954 -6.7956701.964640 35 3.307438 1.340692 1442 2.466963 0.01374 0.677522 5.937355 1442 -0.837392 0.40251 36 -1.791833 2.139777 -5.9892422,405576 39 3.520882 1.287457 1442 2.734757 0.00632 0.995393 6.046371 1442 -0.568797 0.56958 40 -1.168151 2.053722 -5.1967542.860451 43 3.734326 1.237633 1442 3.017312 0.00259 1.306571 6.162080 1442 -0.275583 0.78291 -4.420026-0.544469 1.975701 3.331087 44 47 3.947769 1.191650 1442 3.312860 0.00095 1.610216 6.285323 48 0.079213 1.906702 1442 0.041544 0.96687 -3.6609943.819419 1442 3.618549 0.00031 1.905425 51 4.161213 1.149967 6.417001

52	0.702895	1.847735	1442	0.380409	0.70370	-2.921642	4.327431
55	4.374657	1.113069	1442	3.930266	0.00009	2.191249	6.558064
56	1.326577	1.799786	1442	0.737074	0.46120	-2.203903	4.857057
59	4.588100	1.081444	1442	4.242569	0.00002	2.466728	6.709472
60	1.950259	1.763755	1442	1.105742	0.26902	-1.509542	5.410059
63	4.801544	1.055567	1442	4.548781	0.00001	2.730932	6.872156
64	2.573940	1.740382	1442	1.478952	0.13937	-0.840011	5.987892
67	5.014988	1.035869	1442	4.841333	<.00001	2.983016	7.046960
68	3.197622	1.730179	1442	1.848145	0.06479	-0.196315	6.591560
71	5.228431	1.022707	1442	5.112344	<.00001	3.222278	7.234585
72	3.821304	1.733380	1442	2.204539	0.02764	0.421088	7.221521
75	5.441875	1.016335	1442	5.354410	<.00001	3.448221	7.435529
76	4.444986	1.749911	1442	2.540122	0.01119	1.012343	7.877629
79	5.655319	1.016880	1442	5.561439	<.00001	3.660595	7.650042
80	5.068668	1.779399	1442	2.848527	0.00445	1.578180	8.559157
83	5.868762	1.024332	1442	5.729354	<.00001	3.859421	7.878103
84	5.692350	1.821217	1442	3.125574	0.00181	2.119831	9.264869
87	6.082206	1.038542	1442	5.856485	<.00001	4.044991	8.119421
88	6.316032	1.874539	1442	3.369378	0.00077	2.638916	9.993148

91	6.295650	1.059238	1442	5.943567	<.00001	4.217838	8.373461
92	6.939714	1.938416	1442	3.580095	0.00035	3.137296	10.742132
95	6.509093	1.086048	1442	5.993374	<.00001	4.378690	8.639497
96	7.563396	2.011843	1442	3.759436	0.00018	3.616943	11.509849
99	6.722537	1.118535	1442	6.010129	<.00001	4.528408	8.916666
100	8.187078	2.093815	1442	3.910124	0.00010	4.079828	12.294328
103	6.935981	1.156218	1442	5.998852	<.00001	4.667931	9.204030
104	8.810760	2.183371	1442	4.035394	0.00006	4.527837	13.093683
107	7.149424	1.198609	1442	5.964769	<.00001	4.798221	9.500628
108	9.434442	2.279615	1442	4.138611	0.00004	4.962724	13.906159
111	7.362868	1.245226	1442	5.912878	<.00001	4.920220	9.805516
112	10.058124	2.381739	1442	4.223017	0.00003	5.386080	14.730168
115	7.576312	1.295613	1442	5.847664	<.00001	5.034823	10.117800
116	10.681806	2.489018	1442	4.291575	0.00002	5.799322	15.564289
119	7.789755	1.349349	1442	5.772974	<.00001	5.142858	10.436652
120	11.305488	2.600814	1442	4.346904	0.00001	6.203704	16.407272
123	8.003199	1.406049	1442	5.691979	<.00001	5.245079	10.761319
124	11.929170	2.716570	1442	4.391262	0.00001	6.600318	17.258022
127	8.216643	1.465369	1442	5.607219	<.00001	5.342160	11.091125

128	12.552852	2.835801	1442	4.426563	0.00001	6.990115	18.115588
131	8.430086	1.527003	1442	5.520673	<.00001	5.434700	11.425472
132	13.176534	2.958086	1442	4.454412	0.00001	7.373921	18.979146
135	8.643530	1.590684	1442	5.433845	<.00001	5.523228	11.763832
136	13.800215	3.083063	1442	4.476138	0.00001	7.752447	19.847984
139	8.856974	1.656174	1442	5.347851	<.00001	5.608204	12.105743
140	14.423897	3.210417	1442	4.492843	0.00001	8.126311	20.721484
143	9.070417	1.723268	1442	5.263497	<.00001	5.690036	12.450799
144	15.047579	3.339875	1442	4.505431	0.00001	8.496045	21.599114
147	9.283861	1.791786	1442	5.181345	<.00001	5.769075	12.798647
148	15.671261	3.471204	1442	4.514648	0.00001	8.862112	22.480411
151	9.497305	1.861569	1442	5.101773	<.00001	5.845631	13.148978
152	16.294943	3.604197	1442	4.521102	0.00001	9.224912	23.364974
155	9.710748	1.932482	1442	5.025014	<.00001	5.919971	13.501525
156	16.918625	3.738678	1442	4.525296	0.00001	9.584795	24.252456
159	9.924192	2.004404	1442	4.951194	<.00001	5.992333	13.856051
160	17.542307	3.874492	1442	4.527641	0.00001	9.942063	25.142551
163	10.137636	2.077230	1442	4.880363	<.00001	6.062920	14.212352
164	18.165989	4.011503	1442	4.528475	0.00001	10.296983	26.034995

167	10.351079	2.150869	1442	4.812511	<.00001	6.131913	14.570246
168	18.789671	4.149592	1442	4.528077	0.00001	10.649788	26.929555
171	10.564523	2.225239	1442	4.747589	<.00001	6.199470	14.929576
172	19.413353	4.288656	1442	4.526675	0.00001	11.000680	27.826026
175	10.777967	2.300271	1442	4.685521	<.00001	6.265731	15.290202
176	20.037035	4.428603	1442	4.524460	0.00001	11.349841	28.724229
179	10.991410	2.375901	1442	4.626208	<.00001	6.330819	15.652002
180	20.660717	4.569351	1442	4.521587	0.00001	11.697430	29.624004
183	11.204854	2.452073	1442	4.569543	0.00001	6.394841	16.014866
184	21.284399	4.710829	1442	4.518185	0.00001	12.043587	30.525210

wgap2 <- as.data.frame(wgap2)
head(wgap2)</pre>

	coef	se	U2	L2	Faculty	Age	L.(Intercept)	L.Age
3	1.599889	1.850517	5.30092255	-2.101144	Arts	30	0	0
4	-6.781289	3.023151	-0.73498710	-12.827590	Med	30	0	0
7	1.813333	1.780923	5.37517823	-1.748513	Arts	31	0	0
8	-6.157607	2.899415	-0.35877599	-11.956438	Med	31	0	0
11	2.026776	1.712618	5.45201298	-1.398460	Arts	32	0	0

```
12 -5.533925 2.778538 0.02315111 -11.091001
                                                        Med 32
         L.FacultyMed L.SexM L.Age:FacultyMed L.Age:SexM L.FacultyMed:SexM
                                                       30
                                                       30
                                                       31
                                                       31
                                                       32
      11
      12
                                                       32
         L.Age:FacultyMed:SexM
                            30
                            31
      11
                            32
xyplot(coef ~ Age | Faculty, wgap2,
```

type = 'l', auto.key = list(space='right'))

c(plhet, plnohet)

Question: Where are the bands wider and where are they narrower when incorporating heteroskedasticity in the model? Do the patterns you see make sense? Note the blue bands use heteroskedasticity and the pink ones don't.