				1	1	1	i		1		
TO an Total									1	1	
Keg. 190	-					l				1	
8								l			

B.Tech DEGREE EXAMINATION, DECEMBER 2023

Fourth and Fifth Semester

18ECC202J - LINEAR INTEGRATED CIRCUITS

(For the candidates admitted during the academic year 2018-19 to 2021-22) OPEN BOOK EXAMINATION

Note:

i. Specific approved THREE text books (Printed or photocopy) recommended for the course.

ii. Handwritten class notes (certified by the faculty handling the course / Head of the Department).

Time: 3 Hours

Answer FIVE Questions (Question No. 1 is compulsory) Marks BL CO

Max. Marks: 100

i. a. The input offset current compensated inverting amplifier shown in below figure. Determine the value of resistor R₄ in the feedback network of an amplifier to provide the voltage gain of -120 [9 Marks]

b. Explain the function of the circuit shown in Figure 1 and derive the output expression. Also, find the value of (i) input resistance (ii) voltage gain (iii) output voltage, where $R_1=R_3=560\Omega$, $R_f=R_2=5.6k\Omega$, $V_1=2V$ (peak to peak), $V_2=1V$ (peak to peak), $R_1=2M$ Ω and open loop gain A_{OL}=200000. [9 Marks]

Figure 1

- ii. What will be the emitter current in a differential amplifier, where both the transistor are biased and matched? (Assume current to be I_O)
 - (A) $I_E = I_Q/2$

(C) $I_E = (I_Q)^2/2$

- (B) $I_E = I_Q$ (D) $I_E = (I_Q)^2$
- iii. A differential amplifier has a transistor with $\beta_0 = 100$, is biased at $I_{CQ} = 0.48 mA$. Determine the value of CMRR and A_{CM} , if R_E =7.89k Ω and R_C = 5k Ω .
 - (A) 49.54 db

(B) 49.65 db

(C) 49.77 db

(D) 49.60 db

2. i. Analyze the function of the circuit shown in the Figure and derive its output voltage. Also, calculate the output voltage, where $V_1=2V$, $V_2=5V$, $V_3=3V$, $V_4=1V$, $V_5=3V$, $V_6=2V$. Assume that the op-amp is initially nulled .

ii. What happens if the potentiometer R_p (10 k Ohms) is connected to negative supply?

- iii. How to minimize the response time and increase the operating frequency range of the 1 1 2 op-amp?
 - (A) Positive halfwave rectifier with two diodes
- (B) Positive halfwave rectifier with one diode
- (C) Negative halfwave rectifier with two diodes
- (D) Negative halfwave rectifier with one diode
- i. a. Design a circuit using 555 timer, which will flash the electric bulb such that it's ON time will be 3 seconds and OFF time will be 1 second. [9 Marks]
 b. Find the phase error necessary to produce a VCO frequency shift of Δf =10 KHz for an open loop gain of KV = 40 KHz/rad. What will be the deviation of phase error if Δf shifts to 5 KHz? [9 Marks]

2

ii.	How to achieve 50% duty cycle in adjust $R_1 \rightarrow$ Resistor connected between supply a between discharge and trigger input.)	table rectangular wave generator? (Assume and discharge and $R_2 \rightarrow$ Resistor connected	1	3	
	(A) $R_1 < R_2$	(B) $R_1 > R_2$			
	(A) $R_1 < R_2$ (C) $R_1 = R_2$	(D) $R_1 \ge R_2$			
iii.	A basic feedback oscillator is satisfying the	e Barkhausen criterion. If the ß value is given 1	1	3	
	as 0.7072, find the gain of basic amplifier? (A) 2.1216	(B) 0.7072			
	(A) 2.1210 (C) 1	(D) 1.414			
4	. Design an active low pass filter with	a gain of 4, a corner frequency of 1 kHz, and a [arks]	18	3	4
		a gain of 10, a corner frequency of 2 kHz, and a			
	ii. Find the High cut-off frequency if the pa	ass band gain of a filter is 10. (B) 7.07 KHz	1	1	4
	(A) 70.7 Hz (C) 7.07 Hz	(D) 707 Hz			
	iii. What happens if inductors are used in lo	ow frequency applications? (B) No losses occurs	1	1	4
	(A) Enhance inductor usage(C) Degrades inductor performance	(D) Low power dissipation			
5	i. a. "An ADC which uses a very efficient conversion in just n-clock periods" - statement and explain with an example	ficient code search strategy to complete n-bit Identity a suitable ADC that will fulfill this how the input analog signal will be converted to olution of 10 mV. Find the corresponding analog	18	3	5
	ii. The smallest resistor in a 12 bit weight	ed resistor DAC is $2.5k\Omega$, what will be the largest	1	1	5
	resistor value?	(B) $10.24\text{M}\Omega$			
	(A) $40.96M\Omega$	(D) $18.43M\Omega$			
	(C) $61.44 \text{ M}\Omega$		1	1	5
	iii. Find out the resolution of 8 bit DAC/A	(B) 625			
	(A) 562 (C) 256	(D) 265	,		
(6 i. a. The drift parameter of an operation	nal amplifier used in a non-inverting amplifier is	18	3	2
	Assuming $R_f = 1.3 \text{ M}\Omega$ and $R_i = 130 \text{ voltage}$ at 60° C due to offset voltage Marks]	V/°C Input offset current variation= ± 0.4 nA/° C K Ω and output V _o = 0 V at 25°C, find the output e variation and due to offset current variation. [9			
	b. In the inverting AC amplifier circuit $K\Omega$, and Rf=150 $K\Omega$. Calculate the loop voltage gain in the mid-band range.	it shown in Fig. below, Vi=2 V, C =0.1 μ F, R1=15 ower 3dB frequency and the approximate closedge of frequencies. [9 Marks]			
		$\sim V_c$			

ii. How many equal intervals are present in a 14-bit D-A converter?

(A) 16383

(B) 4095

(C) 65535

(D) 1023

1 1 2

iii.	Hosw	ow an AC amplifier can be powered by a sving?	ingle supply voltage, produces voltage 1 1	2
-		inverting input) By inserting a voltage divider at the non-inverting input) By inserting a voltage divider at the feedback circuit	
7	i.	If an analog input of 8.3 V is given as an conversion code search sequence for a clock step search flow diagram starting from MSB ADC must be provided. Also if the full scale VS Analog conversion chart with your assume	refrequency of 100 Hz. Complete step by with the block diagram of the 4 bit SAR analog voltage is 15 V provide the Digital	3
		Find the error voltage of phase comparator, the output signal $V_o = V_o \sin(2\pi f_o t + \phi)$. (A) $V_e = [k \times (V_s/2)] \times [\cos(-\phi) - \cos(2\pi f_o t + \phi)]$ (C) $V_e = [k \times V_s \times (V_o/2)] \times [\cos(-\phi) + \cos(2\pi f_o t + \phi)]$	whose input signal is $V_s = V_s \sin(2\pi f_s t)$ and 1 1 (B) $V_e = [\underline{k} \times V_s \times (V_o/2)] \times [\cos(-\varphi) - \cos(2\pi f_o t + \varphi)]$ (D) $V_e = [\underline{k} \times V_s \times V_o] \times [\cos(-\varphi) - \cos(2\pi f_o t + \varphi)]$	3
		Calculate the value of external timing capacit to VCO. Consider f_0 =25 kHz and R_T =5 k Ω . (A) 6nF (C) 2nF		3

* * * * *