Resampling Techniques and their Application

-Class 6-

Frank Konietschke

Institut für Biometrie und Klinische Epidemiologie Charité - Universitätsmedizin Berlin, Berlin frank.konietschke@charite.de

Motivation and Examples-III

Researchers produce a pain killer using poison from a snake. They investigate the effect of the treatment on n_1 mice in the **control** group and $n_2 = 10$ mice in the **active treatment**. The response variable is the reaction time of the mice to signal pain when a stitch is applied to their tail. Is the treatment effective? (all mice survived the dose)


```
x=c(
2.4, 3.0, 3.0, 2.2, 2.2,
2.2, 2.2, 2.8, 2.0, 3.0)

y=c(
2.8, 2.2, 3.8, 9.4, 8.4,
3.0, 3.2, 4.4, 3.2, 7.4)
```

• Aim: Test H_0 : $\mu_1=\mu_2$ and confidence interval for $\delta=\mu_1-\mu_2$

Statistical Model

- $X_{ik} \sim F_i, i = 1, 2; k = 1, ..., n_i; N = n_1 + n_2$
 - $E(X_{i1}) = \mu_i$; $Var(X_{i1}) = \sigma_i^2$
 - Asymptotics: $N \to \infty$: $n_i/N \to \kappa_i \in (0,1)$
- Estimators
 - \overline{X}_1 and \overline{X}_2 : means per group with

$$\overline{X}_{i\cdot} = \frac{1}{n_i} \sum_{k=1}^{n_i} X_{ik}$$

• $\hat{\sigma}_1^2$ and $\hat{\sigma}_2^2$: empirical variances per group with

$$\widehat{\sigma}_i^2 = \frac{1}{n_i - 1} \sum_{i=1}^{n_i} (X_{ik} - \overline{X}_{i \cdot})^2$$

The t-Test

- $X_{ik} \sim F_i, i = 1, 2; k = 1, \ldots, n_i; N = n_1 + n_2$
 - $E(X_{i1}) = \mu_i$; $Var(X_{i1}) = \sigma_i^2$
 - Asymptotics: $N \to \infty$: $n_i/N \to \kappa_i \in (0,1)$
 - Assume $\sigma_1 = \sigma_2$
- Pooled variance

$$\widehat{\sigma}_{p}^{2} = \frac{(n_{1}-1)\widehat{\sigma}_{1}^{2} + (n_{2}-1)\widehat{\sigma}_{2}^{2}}{n_{1}+n_{2}-2} = \frac{1}{N-2}\sum_{i=1}^{2}\sum_{k=1}^{n_{i}}(X_{ik}-\overline{X}_{i\cdot})^{2}$$

Test statistic

$$T = \frac{\overline{X}_{1.} - \overline{X}_{2.}}{\widehat{\sigma}_{P} \sqrt{1/n_1 + 1/n_2}}$$

• Reject H_0 , if $|T| \ge t_{1-\alpha/2}(n_1 + n_2 - 2)$, the $(1 - \alpha/2)$ -quantile from the t-distribution with N-2 degrees of freedom

Satterthwaite-Welch t-Test

- $X_{ik} \sim F_i, i = 1, 2; k = 1, ..., n_i; N = n_1 + n_2$
 - $E(X_{i1}) = \mu_i$; $Var(X_{i1}) = \sigma_i^2$
 - Asymptotics: $N \to \infty$: $n_i/N \to \kappa_i \in (0,1)$
- Test statistic

$$T = \frac{\overline{X}_{1.} - \overline{X}_{2.}}{\sqrt{\widehat{\sigma}_1^2/n_1 + \widehat{\sigma}_2^2/n_2}}$$

• Reject H_0 , if $|T| \ge t_{1-\alpha/2}(\nu)$,

$$\nu = \frac{\left(\frac{\widehat{\sigma}_1^2}{n_1} + \frac{\widehat{\sigma}_2^2}{n_2}\right)^2}{\frac{\widehat{\sigma}_1^4}{n_1^2(n_1 - 1)} + \frac{\widehat{\sigma}_2^4}{n_2^2(n_2 - 1)}}$$

degrees of freedom (Satterthwaite's approximation).

Researchers produce pain killer using poison from a cobra. The investigate the effect of the treatment on n_1 mice in the **control** group and $n_2 = 10$ mice in the **active treatment**. The response variable is the reaction time of the mice to signal pain when a stitch is applied to their tail. Is the treatment effective?


```
react <- data.frame(resp=c(x,y),
grp=factor(c(rep(1,10),rep(2,10))))
t.test(resp~grp,data=react,
var.equal=TRUE)
t.test(resp~grp,data=react,</pre>
```

var.equal=FALSE)

Properties of the *t***-Tests**

- t-Test
- Strictly: Only valid if data is normally distributed
- Method is valid for large sample sizes, in general
- Assumes equal variances
- Simulations show bad performance if data is skewed
- Can we do better? (⇒ Resampling)

- Satterthwaite t-Test
- Strictly: Only valid if data is normally distributed
- Method is valid for large sample sizes, in general
- Allows for unequal variances
- Simulations show bad performance if data is skewed
- Can we do better? (⇒ Resampling)

First Attempts: Permutation Tests (1990)

- Original permutation test (Romano, 1990)
- Basically the t-test without studentization (no denominator)
- Test statistic

$$T_{ns} = \sqrt{\frac{n_1 n_2}{N}} (\overline{X}_{1\cdot} - \overline{X}_{2\cdot})$$

- Idea: Use of **permutations** to find its distribution
- ullet Compute critical and p-values from the permutation distribution of T_{ns}

First Attempts: Permutation Tests (1990) -II

Workflow

- Collect **all** data in $\mathbf{X} = (X_{11}, \dots, X_{2n_0})'$
- Randomly **permute** the values in **X** and obtain $X^* = (X_{11}^*, \dots, X_{2n_0}^*)'$
- Re-assign $X_{11}^*, \ldots, X_{1n}^*$: group 1
- Re-assign $X_{21}^*, \ldots, X_{2n_2}^*$: group 2
- Compute \overline{X}_{1}^{*} and \overline{X}_{2}^{*} .
- Compute $T_{ns}^* = \sqrt{\frac{n_1 n_2}{N}} (\overline{X}_{1}^* \overline{X}_{2}^*)$ and safe this value
- Repeat the above a large number of times (n_{perm}) and estimate the p-value

First Attempts: Permutation Tests (1990) -III

- When will the test work?
- Impact of n₁ and n₂
- Impact of the variances
- Impact of the joint distribution $F(X_{11}, X_{21})$
- Write a simulation program (lpha=5%)

- Implementation
- Write the sample as X_1, \ldots, X_N
- $\sqrt{\frac{n_1 n_2}{N}} (\overline{X}_{1.} \overline{X}_{2.}) = \sum_{\ell=1}^{N} c_{\ell} X_{\ell}$
- Permutation version

$$\sqrt{\frac{n_1n_2}{N}}\left(\overline{X}_{1\cdot}^* - \overline{X}_{2\cdot}^*\right) = \sum_{\ell=1}^N c_\ell X_\ell^* = \sum_{\ell=1}^N c_\ell^* X_\ell$$

- Permute the "coefficients" c_ℓ
- Use matrix technique to multiply a permutation matrix with the sample

Implementation

- Write the **pooled** sample X_{11}, \ldots, X_{2n2} as X_1, \ldots, X_N
- Index (11) \hookrightarrow 1; (12) \hookrightarrow 2; ...; (2 n_2) \hookrightarrow N
- Test statistic

$$\sqrt{\frac{n_1 n_2}{N}} \left(\overline{X}_{1 \cdot } - \overline{X}_{2 \cdot } \right) = \sum_{\ell = 1}^{N} c_{\ell} X_{\ell}, \ c_{\ell} = \left\{ \begin{array}{cc} 1 \leq \ell \leq n_1 : & \sqrt{\frac{n_1 n_2}{N}} \frac{1}{n_1} \\ n_1 + 1 \leq \ell \leq N : & -\sqrt{\frac{n_1 n_2}{N}} \frac{1}{n_2} \end{array} \right.$$

Permutation version

$$\sqrt{rac{n_1n_2}{N}}\left(\overline{X}_{1.}^*-\overline{X}_{2.}^*
ight)=\sum_{\ell=1}^Nc_\ell X_\ell^*=\sum_{\ell=1}^Nc_\ell^*X_\ell$$

• Arrange the coefficients c_{ℓ}^* in a $n_{perm} \times N$ matrix **P** and multiply with **X**. This operation computes all permuted values T_{ns}^*

```
mypermu<-function(nsim,nperm,n1,n2,s1,s2,Distribution) {
N<-n1+n2;erg<-c()
#-------Permutation Matrices-----#
i1<-sqrt(n1*n2/N)*c(rep(1/n1,n1),rep(-1/n2,n2))
P<-t(apply(matrix(i1,nrow=nperm,ncol=N,byrow=TRUE),1,sample))</pre>
```

```
x<-rbind(x1,x2)
mx1<-colMeans(x1); mx2<-colMeans(x2)
Tns <-sqrt(n1*n2/N)*(mx1-mx2)

for (i in 1:nsim){</pre>
```

x1<-matrix(rnorm(n1*nsim)*sqrt(s1),ncol=nperm,nrow=n1)
x2 <-matrix(rnorm(n2*nsim)*sqrt(s2),ncol=nperm.nrow=n2)}</pre>

if (Distribution == "Normal") {

```
X<-x[,i]
#-------#
TnsP <- P%*%X #actual samole
pvalue<-2*min(mean(TnsP<=Tns[i]),mean(TnsP>=Tns[i]))
```

```
\label{eq:continuous} $$ \operatorname{erg[i]} <-(\operatorname{pvalue}<0.05)$ \\ \operatorname{result}<-\operatorname{data.frame}(\operatorname{nsim}=\operatorname{nsim},\operatorname{nperm}=\operatorname{nperm},\operatorname{n1}=\operatorname{n1},\operatorname{n2}=\operatorname{n2},\operatorname{s1}=\operatorname{s1},\operatorname{s2}=\operatorname{s2},\operatorname{Dist}=\operatorname{Distribution}, \\ \operatorname{Permu}=\operatorname{mean}(\operatorname{erg})) \\ \operatorname{result}$ \\ \operatorname{mypermu}(10000,10000,10,10,10,1,1,"\operatorname{Normal}") \\ \end{aligned}
```

General Validity of the Permutation Test

- Type-I error simulation (10K simulations, 10K n_{perm} $\alpha = 5\%$); Test $H_0: \mu_1 = \mu_2$
- Sample sizes $(n_1, n_2) = (10, 10), (10, 20), (20, 10)$ and one with (50, 100)
- Variances $(\sigma_1^2, \sigma_2^2) = (1, 1), (1, 3)$
- Fill the table: (set.seed(1); most important is the last column)

Sample Size	Variances	Shape	Emp. Type-I	Accurate (yes/no)
(10,10)	(1,1)	Symmetric		
(10,20)	(1,1)	Symmetric		
(10,10)	(1,3)	Symmetric		
(10,20)	(1,3)	Symmetric		
(20,10)	(1,3)	Symmetric		
(50,100)	(1,3)	Symmetric		
(100,50)	(1,3)	Symmetric		

Any issues? Observations?

Theoretical Investigations

- The above can only work if the distribution of T_{ns} and T_{ns}^* coincide
- Let us compute

$$E(T_{ns}) = 0$$

$$E(T_{ns}^*|\mathbf{X}) = E\left(\sqrt{\frac{n_1 n_2}{N}} \left(\overline{X}_{1.}^* - \overline{X}_{2.}^*\right)|\mathbf{X}\right) = 0$$

$$Var(T_{ns}) = \frac{n_1 n_2}{N} \frac{\sigma_1^2}{n_1} + \frac{n_1 n_2}{N} \frac{\sigma_2^2}{n_2} \rightarrow \kappa_2 \sigma_1^2 + \kappa_1 \sigma_2^2$$

$$Var(T_{ns}^* | \mathbf{X}) = \frac{1}{N-1} \sum_{i=1}^{2} \sum_{k=1}^{n_i} (X_{ik} - \overline{X}_{..})^2 \rightarrow \kappa_1 \sigma_1^2 + \kappa_2 \sigma_2^2$$

- $\overline{X}_{..} = \frac{1}{N} \sum_{i=1}^{2} \sum_{k=1}^{n_i} X_{ik}$
- Only valid, if... $n_1 = n_2$ or $\sigma_1^2 = \sigma_2^2$

Theoretical Investigations-II

• Derivation of $Var(T_{ns}^*|\mathbf{X})$

We compute the expectation and variance of

$$\sqrt{\frac{n_1 n_2}{N}} \left(\overline{X}_1^* - \overline{X}_2^* \right) = \sum_{\ell=1}^N c_\ell X_\ell^*$$

$$E(X_\ell^* | \mathbf{x}) = \frac{1}{N} \sum_{\ell=1}^N x_\ell = \overline{x}.$$

$$E(X_\ell^{2*} | \mathbf{x}) = \sum_{\ell=1}^N X_\ell^{2*} P(X_i^* = X_\ell) = \frac{1}{N} \sum_{\ell=1}^N X_\ell^2$$

$$Var(X_i^* | \mathbf{x}) = E(X_i^{2*} | \mathbf{x}) - E^{2*}(X_i | \mathbf{x}) = \frac{1}{N} \sum_{\ell=1}^N (X_\ell - \overline{X}..)^2$$

$$E(X_i^* X_j^* | \mathbf{x}) = E(X_i^{2*} | \mathbf{x}) - E^{2*}(X_i | \mathbf{x}) = \frac{1}{N} \sum_{\ell=1}^N (X_\ell - \overline{X}..)^2$$

$$E(X_i^* X_j^* | \mathbf{x}) = \sum_{\ell \neq k} X_\ell X_\ell P(X_i^* = X_\ell, X_j^* = X_k) = \frac{1}{N(N-1)} \sum_{\ell \neq k} X_\ell X_\ell$$

$$Cov(X_i^*, X_j^* | \mathbf{x}) = E(X_i^* X_j^* | \mathbf{x}) - E(X_i^* | \mathbf{x}) E(X_j^* | \mathbf{x})$$

$$= -\frac{1}{N(N-1)} \sum_{\ell=1}^N (X_\ell - \overline{X}..)^2$$

Repairment: Studentize the Statistic

Instead of using the numerator of the statistic only, investigate the permutation distribution of

$$T = \frac{\overline{X}_{1\cdot} - \overline{X}_{2\cdot}}{\sqrt{\widehat{\sigma}_1^2/n_1 + \widehat{\sigma}_2^2/n_2}}$$

- Verify in a simulation study
- We call these methods Studentized Permutation Tests
 - Permuted values $X^* = (X_{11}^*, ..., X_{2n_0}^*)'$
 - $X_{11}^*, \ldots, X_{1n_1}^*$: group 1
 - $X_{21}^*, \ldots, X_{2n_2}^*$: group 2
 - \overline{X}_{1}^{*} and \overline{X}_{2}^{*} : means
 - $\hat{\sigma}_1^{2*}$ and $\hat{\sigma}_2^{2*}$: empirical variances

$$T^* = \frac{\overline{X}_{1.}^* - \overline{X}_{2.}^* - E(\overline{X}_{1.}^* - \overline{X}_{2.}^* | \mathbf{X})}{\sqrt{\widehat{\sigma}_{1.}^{2*}/n_1 + \widehat{\sigma}_{2.}^{2*}/n_2}}$$

Project: Validity of Studentized Permutation Test

- Type-I error simulation (10K simulations, 10K n_{perm} $\alpha = 5\%$); Test $H_0: \mu_1 = \mu_2$
- Sample sizes $(n_1, n_2) = (10, 10), (10, 20), (20, 10)$ and one with (50, 100)
- Variances $(\sigma_1^2, \sigma_2^2) = (1, 1), (1, 3)$
- Fill the table: (set.seed(1); most important is the last column)

Sample Size	Variances	Shape	Emp. Type-I	Accurate (yes/no)
(10,10)	(1,1)	Symmetric		
(10,20)	(1,1)	Symmetric		
(10,10)	(1,3)	Symmetric		
(10,20)	(1,3)	Symmetric		
(20,10)	(1,3)	Symmetric		
(50,100)	(1,3)	Symmetric		
(100,50)	(1,3)	Symmetric		

Any issues? Observations?

Resampling the *t*-Test

- Goal: estimate the distribution of T via resampling
 - Data: $\mathbf{X} = (X_{11}, \dots, X_{2n_2})'$
 - Resampling variables: $\mathbf{X}^* = (X_{11}^*, \dots, X_{2n_2}^*)'$
 - $X_{11}^*, \ldots, X_{1n_1}^*$: group 1
 - $X_{21}^*, \ldots, X_{2n_2}^*$: group 2
 - \overline{X}_{1}^{*} and \overline{X}_{2}^{*} : means
 - $\widehat{\sigma}_1^{2*}$ and $\widehat{\sigma}_2^{2*}$: empirical variances

$$T^* = \frac{\overline{X}_{1.}^* - \overline{X}_{2.}^* - E(\overline{X}_{1.}^* - \overline{X}_{2.}^* | \mathbf{X})}{\sqrt{\widehat{\sigma}_{1}^{2*}/n_1 + \widehat{\sigma}_{2}^{2*}/n_2}}$$

- Repeat these steps *nboot*-times
- Reject H_0 , if $T < c^*_{\alpha/2}$ or $T > c^*_{1-\alpha/2}$
- c_{α}^* : α quantile from resampling distribution

Group wise Nonparametric Bootstrap

- $X_1 = (X_{11}, \dots, X_{1n_1})$ (fixed values)
- $X_2 = (X_{21}, \dots, X_{2n_2})$ (fixed values)
- Drawing with Replacement: randomly draw n_1 and n_2 observations from X_1 and X_2
- Example $\mathbf{X}_1 = (1, 2, 3, 4, 5) \Rightarrow$

$$\mathbf{X}_{1}^{*}=(2,2,4,3,2)$$

$$\mathbf{X}_{1}^{*}=(1,1,2,3,3)$$

$$\mathbf{X}_{1}^{*}=(2,5,5,3,3)$$

...

- In R: sample(x1,replace=TRUE)
- Also known as Group wise Nonparametric Bootstrap

Nonparametric Bootstrap

- Data $X = (X_{11}, \dots, X_{2n_2})$ (fixed values)
- **Drawing with Replacement:** randomly draw N observations X_k^* from \mathbf{X} with replacement such that

$$P(X_{11}^* = X_{11}) = \frac{1}{N}$$

- In R: sample(x,replace=TRUE)
- Also known as Nonparametric Bootstrap

Permutation

- Data $X = (X_{11}, \dots, X_{2n_2})$ (fixed values)
- **Drawing without Replacement:** randomly draw N observations X_{ik}^* from \mathbf{X} without replacement such that

$$P(X_{11}^* = X_{11}) = \frac{1}{N}$$

- Example $X = (1, 2, 3, 4, 5) \Rightarrow$
 - $\mathbf{X}^* = (4, 1, 3, 2, 5)$
 - $\mathbf{X}^* = (5, 1, 2, 3, 4)$
 - $\mathbf{X}^* = (3, 1, 2, 5, 4)$

..

- In R: sample(x)
- Also known as Permutation

Parametric Bootstrap

- Data $X_i = (X_{ik}, \dots, X_{in_i})$ (fixed values)
- **Resampling** randomly draw n_i observations X_{ik}^* from

$$N(0,\widehat{\sigma}_i^2)$$

- In R: rnorm(n, 0, sd(x))
- Also known as Parametric Bootstrap (Why is that not equivalent to the t-approximation?)

Skewed Parametric Bootstrap

- Data $X_i = (X_{i1}, \dots, X_{in_i})$ (fixed values)
- Estimate the skewness of each sample by

$$\widehat{\mu}_{i,3} = \frac{n_i}{(n_i - 1)(n_i - 2)} \sum_{k=1}^{n_i} \left(\frac{X_{ik} - \overline{X}_{i.}}{\widehat{\sigma}_i} \right)^3$$

• **Resampling** randomly draw n_i observations X_{ik}^* from

$$sign(\widehat{\mu}_{i,3})\widehat{\sigma}_i \frac{\chi_{f_i}^2 - f_i}{\sqrt{2f_i}}$$

• $f_i = 8/\widehat{\mu}_{i,3}^2$

Wild Bootstrap

- Data $X_i = (X_{i1}, \dots, X_{in_i})$ (fixed values)
- Fix the values $Z_{ik} = X_{ik} \overline{X}_{i}$.
- **Resampling** randomly generate iid weights W_{ik} with $E(W_{ik}) = 0$ and $Var(W_{ik}) = 1$. Generate X_{ik}^* by

$$X_{ik}^* = W_{ik} * Z_{ik}$$

- Examples: $W_{ik} \sim N(0,1)$
- Rademacher: $P(W_{ik} = 1) = P(W_{ik} = -1) = 1/2$

...

Also known as Wild-Bootstrap

Project

- Which resampling method is better? Permutation, Nonparametric Bootstrap or Parametric Bootstrap?
- Write your own simulation program