Devoir à la maison n° 1

À rendre le 9 septembre

Pour un réel a, on considère la fonction f_a , définie sur \mathbb{R} par

$$f_a: x \mapsto (a-x)e^{-x^2}$$
.

On note \mathcal{C}_a la courbe représentative de f_a .

- 1) Justifier que, pour tout $a \in \mathbb{R}$, f_a est dérivable, et exprimer f'_a .
- 2) Soit $a \in \mathbb{R}$, dresser le tableau des variations de f_a .
- 3) Soit $a \in \mathbb{R}$. Montrer qu'il existe deux uniques réels $x_{-}(a)$ et $x_{+}(a)$ en lesquels f_a atteint respectivement un minimum et un maximum, dont on note les valeurs $y_{-}(a)$ et $y_{+}(a)$.
- 4) Justifier que pour tout $a \in \mathbb{R}$:

$$x_{+}(a) < a < x_{-}(a)$$
.

En déduire la limite de x_+ lorsque a tend vers $-\infty$, ainsi que la limite de x_- lorsque a tend vers $+\infty$.

- 5) Pour $a \in \mathbb{R}$, tracer dans un repère l'allure de \mathscr{C}_a , en faisant apparaître tous les éléments étudiés précédemment. On fera notamment apparaître toutes les tangentes horizontales
- 6) Soit $a, b \in \mathbb{R}$ vérifiant a < b. Comparer f_a et f_b , en déduire les positions relatives de \mathscr{C}_a et \mathscr{C}_b .
- 7) Déterminer l'expression de $x_+(a)$ et de $x_-(a)$ en fonction de $a \in \mathbb{R}$ et dresser les tableaux des variations de x_+ et de x_- .
- 8) Simplifier les expressions de $x_{+}(a) + x_{-}(a)$ et de $x_{+}(a)x_{-}(a)$, en fonction de a.
- 9) On note \mathscr{C}_{-} l'ensemble des points du plan de la forme $(x_{-}(a), y_{-}(a))$, et \mathscr{C}_{+} l'ensemble des points du plans de la forme $(x_{+}(a), y_{+}(a))$:

$$\mathscr{C}_{-} = \{ (x_{-}(a), y_{-}(a)) \mid a \in \mathbb{R} \} \text{ et } \mathscr{C}_{+} = \{ (x_{+}(a), y_{+}(a)) \mid a \in \mathbb{R} \}.$$

Montrer que \mathscr{C}_{-} et \mathscr{C}_{+} sont les deux branches de la courbe \mathscr{C} d'une fonction g, que l'on déterminera.

- 10) Dresser le tableau des variations de q.
- 11) Sans étude de fonction supplémentaire, déterminer pour un réel a la position relative des courbes \mathscr{C} et \mathscr{C}_a .
- 12) Pour deux réels a, b vérifiant a < b, tracer dans un même repère les allures des courbes \mathscr{C}_a , \mathscr{C}_b et \mathscr{C} , en faisant apparaître tous les éléments étudiés précédemment. On fera notamment apparaître toutes les tangentes horizontales.