Semaine 5 - Calcul intégral

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Intégrales de Wallis

Soit $n \in \mathbb{N}$ on définit I_n (l'intégrale de Wallis) par $I_n = \int_0^{\frac{\pi}{2}} \sin(x)^n dx$.

- 1 Trouver une relation entre I_{n+2} et I_n . En déduire la valeur de I_n en fonction de la parité de n.
- **2** Montrer que $\lim_{n\to+\infty} \frac{I_{2n}}{I_{2n+1}} = 1$.
- ${\bf 3}$. En déduire que $\lim_{n\to +\infty} \sqrt{p} \frac{(2p-1)(2p-3)\dots 1}{2p(2p-2)\dots 2} = \frac{1}{\sqrt{\pi}}$

Remarque : ce calcul est un grand classique. Il sert notamment pour obtenir une formule très utile : la formule de Stirling. Celle-ci donne un équivalent en l'infini de la factorielle. Plus précisément : $n! \sim (\frac{n}{e})^n \sqrt{2\pi n}$.

2 Suite et intégrale (1)

Soit $n \in \mathbb{N}$. On définit $J_n = \int_0^{\frac{\pi}{4}} \tan(x)^n dx$.

- 1 Donner une formule liant J_{n+2} et J_n . On commencera par calculer $J_{n+2} + J_n$.
- **2** Après avoir calculé J_0 et J_1 exprimer J_n en fonction de la parité de n.

3 Suite et intégrale (2)

Soit $n \in \mathbb{N}$. On définit $K_n = \int_0^{\frac{\pi}{4}} \frac{1}{\cos(x)^n} dx$.

- 1 Calculer K_0 et K_1 .
- **2** Donner une formule liant K_{n+2} et K_n . On pourra intégrer par partie K_{n+2} .

4 Suite et intégrale (3)

Soit $n \in \mathbb{N}$. On définit $L_n = \int_1^e \log(x)^n dx$.

1 Donner une formule liant L_{n+1} et L_n .

5 Suite et intégrale (4)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définie par $\forall x\in\mathbb{R},\ f_n(x)=\frac{1}{(1+x^2)^n}$.

- 1 Montrer que $\forall n \in \mathbb{N}, \ f_n$ admet une primitive qui s'annule en 0 notée F_n .
- **2** Déterminer F_1 .

- ${\bf 3}$ Déterminer $F_2.$ On pourra penser à faire un changement de variable en tangente.
- 4 Trouver une formule liant F_{n+1} et F_n .
- **5** Déterminer F_3 .

6 Primitive et fonction circulaire

- 1 Donner une primitive de $x \mapsto \arccos(x)$.
- **2** Donner une primitive de $x \mapsto \frac{1}{\cos(x)}$.
- **3** Donner une primitive de $x \mapsto \frac{1}{\sin(x)}$.
- 4 Donner une primitive de $x \mapsto \frac{1}{2+\sin(x)^2}$.

7 Primitive et fonction hyperbolique

- 1 Donner une primitive de $x \mapsto \frac{1}{\cosh(x)}$.
- **2** Donner une primitive de $x \mapsto \frac{1}{\sinh(x)}$.
- **3** Donner une primitive de $x \mapsto \frac{1}{\tanh(x)}$.
- 4 Donner une primitive de $x \mapsto \frac{1}{1-\cosh(x)}$.

8 Primitive et fonction rationnelle en un radical (1)

- 1 Donner une primitive de $x \mapsto \frac{1}{\sqrt{x+1}(x+4)}$.
- **2** Donner une primitive de $x \mapsto \frac{1}{\sqrt{x}(x+3)}$.

9 Primitive et fonction rationnelle en un radical (2)

- 1 Donner une primitive de $x \mapsto \frac{x+1}{\sqrt{2-x^2}}$.
- **2** Donner une primitive de $x \mapsto \frac{1}{x + \sqrt{1 + x^2}}$.

10 Calcul d'intégrales

- 1 Calculer $\int_0^{\frac{\pi}{4}} \ln(1 + \tan(x)) dx$.
- **2** Calculer $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin(x)}}{\sqrt{\sin(x)} + \sqrt{\cos(x)}} dx$.

11 Fonction définie par une intégrale

- 1 Montrer que F, d'expression $F(x) = \int_x^{2x} \frac{1}{\sqrt{1+t^4}} dt$ est bien définie sur un intervalle à préciser.
- 2 Montrer la continuité et l'imparité de F.
- 3 Trouver une formule liant F(x) et $F(\frac{1}{2x})$ sur \mathbb{R}^* et déterminer la limite de F en $+\infty$.