Тема:

Автоматы-распознаватели

Сергей Витальевич Рыбин svrvbin@etu.ru

СПбГЭТУ «ЛЭТИ», кафедра «Алгоритмической математики»

16 июня 2023 г.

Детерминированный конечный автомат-распознаватель A — это пятерка объектов $A=(Q,\, \Sigma,\, \delta,\, q_0\,,F)$, где:

Детерминированный конечный автомат-распознаватель A — это пятерка объектов $A=(Q,\Sigma,\delta,q_0,F)$, где:

Q — конечное непустое множество состояний;

Детерминированный конечный автомат-распознаватель A — это пятерка объектов $A=(Q,\,\Sigma,\,\delta,\,q_0\,,F)$, где:

- \bigcirc Q конечное *непустое* множество состояний;
- $\mathbf{2} \ q_0 \in Q$ начальное состояние;

Детерминированный конечный автомат-распознаватель A — это пятерка объектов $A=(Q\,,\,\Sigma\,,\,\delta\,,\,q_0\,,F)$, где:

- Q конечное непустое множество состояний;
- $q_0 \in Q$ начальное состояние;
- 3 Σ конечное nenycmoe множество входных символов (входной алфавит);

Детерминированный конечный автомат-распознаватель A — это пятерка объектов $A=(Q,\,\Sigma,\,\delta,\,q_0\,,F)$, где:

- \bigcirc Q конечное *непустое* множество состояний;
- $q_0 \in Q$ начальное состояние;
- 3 Σ конечное *непустое* множество входных символов (входной алфавит);
- 0 $\delta: Q \times \Sigma \to Q$ всюду определенное отображение множества $Q \times \Sigma$ в множество Q, определяющее поведение автомата. Эту функцию называют функцией переходов;

Детерминированный конечный автомат-распознаватель A — это пятерка объектов $A=(Q,\,\Sigma,\,\delta,\,q_0\,,F)$, где:

- \bigcirc Q конечное *непустое* множество состояний;
- $q_0 \in Q$ начальное состояние;
- Σ конечное *непустое* множество входных символов (входной алфавит);
- $\emptyset: Q \times \Sigma \to Q$ всюду определенное отображение множества $Q \times \Sigma$ в множество Q, определяющее поведение автомата. Эту функцию называют функцией переходов;
- 5 $F \subseteq Q$ множество заключительных (финальных) состояний.

Детерминированный конечный автомат-распознаватель A — это пятерка объектов $A=(Q\,,\,\Sigma\,,\,\delta\,,\,q_0\,,F)$, где:

- $oldsymbol{1}$ Q конечное *непустое* множество состояний;
- $\mathbf{2} \ q_0 \in Q$ начальное состояние;
- **3** Σ конечное *непустое* множество входных символов (входной алфавит);
- 0 $\delta: Q \times \Sigma \to Q$ всюду определенное отображение множества $Q \times \Sigma$ в множество Q, определяющее поведение автомата. Эту функцию называют функцией переходов;
- **5** $F \subseteq Q$ множество заключительных (финальных) состояний.

Автомат начинает работу в состоянии q_0 , считывая по одному символу входной строки.

Детерминированный конечный автомат-распознаватель A — это пятерка объектов $A=(Q,\Sigma,\delta,q_0,F)$, где:

- Q конечное непустое множество состояний;
- $q_0 \in Q$ начальное состояние;
- 3 Σ конечное *непустое* множество входных символов (входной алфавит);
- $oldsymbol{0}$ $\delta:Q imes \Sigma o Q$ всюду определенное отображение множества $Q imes \Sigma$ в множество Q, определяющее поведение автомата. Эту функцию называют функцией переходов:
- **5** $F \subseteq Q$ множество заключительных (финальных) состояний.

Автомат начинает работу в состоянии q_0 , считывая по одному символу входной строки.

Считанный символ переводит автомат в новое состояние из Q в соответствии с функцией переходов δ .

Летерминированный конечный автомат-распознаватель A — это пятерка объектов $A = (Q, \Sigma, \delta, g_0, F)$, где:

- Q конечное непустое множество состояний;
- $q_0 \in Q$ начальное состояние;
- **3** Σ конечное *непустое* множество входных символов (входной алфавит);
- $oldsymbol{4}$ $\delta:Q imes \mathcal{D} o Q$ всюду определенное отображение множества $Q imes \mathcal{D}$ в множество Q, определяющее поведение автомата. Эту функцию называют функцией переходов:
- **5** $F \subseteq Q$ множество заключительных (финальных) состояний.

Автомат начинает работу в состоянии q_0 , считывая по одному символу входной строки.

Считанный символ переводит автомат в новое состояние из Q в соответствии с функцией переходов δ .

Автомат называется **детерминированным**, так как для любой пары $q \in Q$, $a \in \Sigma$ существует единственное состояние $p \in Q: p = \delta(q, a)$.

Летерминированный конечный автомат-распознаватель A — это пятерка объектов $A = (Q, \Sigma, \delta, g_0, F)$, где:

- Q конечное непустое множество состояний;
- $q_0 \in Q$ начальное состояние;
- 3 Σ конечное *непустое* множество входных символов (входной алфавит);
- $oldsymbol{4}$ $\delta:Q imes \mathcal{D} o Q$ всюду определенное отображение множества $Q imes \mathcal{D}$ в множество Q, определяющее поведение автомата. Эту функцию называют функцией переходов:
- **5** $F \subseteq Q$ множество заключительных (финальных) состояний.

Автомат начинает работу в состоянии a_0 , считывая по одному символу входной строки.

Считанный символ переводит автомат в новое состояние из Q в соответствии с функцией переходов δ .

- Автомат называется **детерминированным**, так как для любой пары $q \in Q$, $a \in \Sigma$ существует единственное состояние $p \in Q: p = \delta(q, a)$.
- Для определения последующих действий конечного автомата достаточно знать его текущее состояние и последовательность еще необработанных символов на входной ленте. Этот набор данных называется конфигурацией автомата.

Детерминированный конечный автомат-распознаватель A — это пятерка объектов $A=(Q,\, \Sigma,\, \delta,\, q_0\,,F)$, где:

- Q конечное непустое множество состояний;
- $q_0 \in Q$ начальное состояние;
- 3 Σ конечное *непустое* множество входных символов (входной алфавит);
- 0 $\delta: Q \times \Sigma \to Q$ всюду определенное отображение множества $Q \times \Sigma$ в множество Q, определяющее поведение автомата. Эту функцию называют функцией переходов;
- **5** $F \subseteq Q$ множество заключительных (финальных) состояний.

Автомат начинает работу в состоянии q_0 , считывая по одному символу входной строки.

Считанный символ переводит автомат в новое состояние из Q в соответствии с функцией переходов $\delta.$

- $m{\checkmark}$ Автомат называется **детерминированным**, так как для любой пары $q\in Q$, $a\in \Sigma$ существует единственное состояние $p\in Q: p=\delta(q,a)$.
- ✓ Для определения последующих действий конечного автомата достаточно знать его текущее состояние и последовательность еще необработанных символов на входной ленте. Этот набор данных называется конфигурацией автомата.
- \checkmark Слово $w=a_1...a_k$ над алфавитом \varSigma допускается конечным автоматом $M=(Q,\varSigma,\delta,q_0,F)$, если существует последовательность состояний $q_1,q_2,...,q_n$ такая, что

$$q_1 = q_0 \,, \ q_n \in F, \ \delta(q_i \,, a_j) = q_{i+1} \,, \ 1 \leqslant i < n \,, \ 1 \leqslant j < k \,.$$

Летерминированный конечный автомат-распознаватель A — это пятерка объектов $A = (Q, \Sigma, \delta, g_0, F)$, где:

- Q конечное непустое множество состояний;
- $q_0 \in Q$ начальное состояние;
- Σ конечное *непустое* множество входных символов (входной алфавит);
- $A : Q \times \Sigma \to Q$ всюду определенное отображение множества $Q \times \Sigma$ в множество Q, определяющее поведение автомата. Эту функцию называют функцией переходов:
 - **5** $F \subseteq Q$ множество заключительных (финальных) состояний.

Автомат начинает работу в состоянии q_0 , считывая по одному символу входной строки.

Считанный символ переводит автомат в новое состояние из Q в соответствии с функцией переходов δ .

- Автомат называется **детерминированным**, так как для любой пары $q \in Q$, $a \in \Sigma$ существует единственное состояние $v \in Q$: $v = \delta(a,a)$.
- Для определения последующих действий конечного автомата достаточно знать его текущее состояние и последовательность еще необработанных символов на входной ленте. Этот набор данных называется конфигурацией автомата.
- ✓ Слово $w=a_1...a_k$ над алфавитом Σ допускается конечным автоматом $M=(Q,\Sigma,\delta,q_0,F)$, если существует последовательность состояний $q_1, q_2, ..., q_n$ такая, что

$$q_1 = q_0 \,, \ q_n \in F \,, \ \delta(q_i \,, a_j) = q_{i+1} \,, \ 1 \leqslant i < n \,, \ 1 \leqslant j < k \,.$$

✓ Язык L распознается конечным автоматом A, если каждое слово языка L допускается этим конечным автоматом. При этом язык называется автоматным (или регулярным) и обозначается L_{Δ} .

✓ Далее, на рисунках начальное состояние автомата будем отмечать зеленым цветом, конечные состояния — синим.

- ✓ Далее, на рисунках начальное состояние автомата будем отмечать зеленым цветом, конечные состояния — синим.
- ✓ Рассмотрим автомат, распознающий слова, содержащие только парные вхождения букв а и b, например aa, aabbaaaa, bbaa и т. д. Диаграмма состояний автомата приведена на рисунке 1.

- ✓ Далее, на рисунках начальное состояние автомата будем отмечать зеленым цветом, конечные состояния — синим.
- ✓ Рассмотрим автомат, распознающий слова, содержащие только парные вхождения букв a и b, например aa, aabbaaaa, bbaa и т. д. Диаграмма состояний автомата приведена на рисунке 1.

Puc. 1

- ✓ Далее, на рисунках начальное состояние автомата будем отмечать зеленым цветом, конечные состояния — синим.
- ✓ Рассмотрим автомат, распознающий слова, содержащие только парные вхождения букв а и b, например aa, aabbaaaa, bbaa и т. д. Диаграмма состояний автомата приведена на рисунке 1.
- ✓ Заметим, что автомат, попав в незаключительное состояние q_3 под воздействием сигналов a, b, не может выйти из него под воздействием тех же входных сигналов.

Puc. 1

- ✓ Далее, на рисунках начальное состояние автомата будем отмечать зеленым цветом, конечные состояния — синим.
- ✓ Рассмотрим автомат, распознающий слова, содержащие только парные вхождения букв а и b, например aa, aabbaaaa, bbaa и т. д. Диаграмма состояний автомата приведена на рисунке 1.
- ✓ Заметим, что автомат, попав в незаключительное состояние q_3 под воздействием сигналов a,b, не может выйти из него под воздействием тех же входных сигналов.
- ✓ Состояние и переходы отмечены на диаграмме 1 пунктиром).

Puc. 1

- ✓ Далее, на рисунках начальное состояние автомата будем отмечать зеленым цветом, конечные состояния — синим.
- ✓ Рассмотрим автомат, распознающий слова, содержащие только парные вхождения букв а и b, например aa, aabbaaaa, bbaa и т. д. Диаграмма состояний автомата приведена на рисунке 1.
- ✓ Заметим, что автомат, попав в незаключительное состояние q_3 под воздействием сигналов a, b, не может выйти из него под воздействием тех же входных сигналов.
- ✓ Состояние и переходы отмечены на диаграмме 1 пунктиром).
- Будем считать, что переходы автомата в это состояние под воздействием сигналов a, b запрещены. То есть запрещены сигнал b в состоянии q_1 и сигнал a в состоянии q_2 .

Puc. 1

- ✓ Далее, на рисунках начальное состояние автомата будем отмечать зеленым цветом, конечные состояния — синим.
- ✓ Рассмотрим автомат, распознающий слова, содержащие только парные вхождения букв а и b, например aa, aabbaaaa, bbaa и т. д. Диаграмма состояний автомата приведена на рисунке 1.
- ✓ Заметим, что автомат, попав в незаключительное состояние q_3 под воздействием сигналов a, b, не может выйти из него под воздействием тех же входных сигналов.
- ✓ Состояние и переходы отмечены на диаграмме 1 пунктиром).
- ✓ Будем считать, что переходы автомата в это состояние под воздействием сигналов a, b запрещены. То есть запрещены сигнал b в состоянии q_1 и сигнал a в состоянии q_2 .
- Далее запрещенные состояния и переходы в диаграмме состояний не отображаем, считая, что если символ входного слова привел к запрещенному переходу, то данное слово не принимается автоматом.

Puc. 1

- ✓ Далее, на рисунках начальное состояние автомата будем отмечать зеленым цветом. конечные состояния — синим.
- ✓ Рассмотрим автомат, распознающий слова, содержащие только парные вхождения букв а и b, например aa, aabbaaaa, bbaa и т. д. Диаграмма состояний автомата приведена на рисунке 1.
- Заметим, что автомат, попав в незаключительное состояние a_2 под воздействием сигналов a, b, не может выйти из него под воздействием тех же входных сигналов.
- Состояние и переходы отмечены на диаграмме 1 пунктиром).
- Будем считать, что переходы автомата в это состояние под воздействием сигналов a, b**запрешены.** То есть запрешены сигнал b в состоянии a_1 и сигнал a в состоянии a_2 .
- ✓ Далее запрещенные состояния и переходы в диаграмме состояний не отображаем, считая, что если символ входного слова привел к запрешенному переходу, то данное слово не принимается автоматом.
- Такие состояния (в которые перехолят при обработке любого недопустимого символа) в теории часто называют невозвратными.

Puc. 1

Пример 1

Построим автомат, распознающий слова над алфавитом $\{\alpha,\beta\}$, начинающиеся с символов $\alpha\alpha$ и содержащие нечетное число вхождений символа β .

Пример 1

Построим автомат, распознающий слова над алфавитом $\{\alpha,\beta\}$, начинающиеся с символов $\alpha\alpha$ и содержащие нечетное число вхождений символа β . Его диаграмма представлена на рисунке 2.

Пример 1

Построим автомат, распознающий слова над алфавитом $\{\alpha, \beta\}$, начинающиеся с символов $\alpha\alpha$ и содержащие нечетное число вхождений символа β . Его диаграмма представлена на рисунке 2.

Puc. 2

Пример 1

Построим автомат, распознающий слова над алфавитом $\{\alpha, \beta\}$, начинающиеся с символов $\alpha\alpha$ и содержащие нечетное число вхождений символа β . Его диаграмма представлена на рисунке 2.

Puc. 2

Пример 2

Пример 1

Построим автомат, распознающий слова над алфавитом $\{\alpha, \beta\}$, начинающиеся с символов $\alpha\alpha$ и содержащие нечетное число вхождений символа β . Его диаграмма представлена на рисунке 2.

Puc. 2

Пример 2

Построим автомат, распознающий слова над алфавитом $\{0,1\}$, содержащие подслово 00, например $\alpha=01001$. Его диаграмма представлена на рисунке 3.

Пример 1

Построим автомат, распознающий слова над алфавитом $\{\alpha, \beta\}$, начинающиеся с символов $\alpha\alpha$ и содержащие нечетное число вхождений символа β . Его диаграмма представлена на рисунке 2.

Puc. 2

Пример 2

Построим автомат, распознающий слова над алфавитом $\{0,1\}$, содержащие подслово 00, например $\alpha=01001$. Его диаграмма представлена на рисунке 3.

Puc. 3