IB Mathematics Analysis and Approaches HL

Topic 1 Number and Algebra

Jiuru Lyu

February 28, 2022

Contents

1	1 Sequences and Series	2
2	2 Exponents and Logarithms	3
3	3 Proof	4
4	4 Counting and Binomial Theorem	8
5	5 Partial Fraction - AHL	11
6	6 Complex Number - AHL	12
	6.1 Introduction	12
	6.2 Argand Diagram	13
	6.3 Complex Number in Other Forms	15
	6.4 Power of Complex Number	16
	6.5 Polynomial Function with Complex Roots	17
	6.6 Root of Complex Numbers	17

1 Sequences and Series

1. Terms: $u_1, u_2, u_3...$

Position: *n* Sum: *S*

- 2. Arithmetic Sequence/Arithmetic Progession (AP):
 - Recursive formula: $u_{n+1} = u_n + d$, d is the common difference.
 - Explicit formula: $u_n = u_1 + d(n-1)$
 - Summation: $S_n = \frac{1}{2}[2u_1 + d(n-1)]$

Proof: 1.1

Let $u_1, u_2, u_3, ..., u_n$ be an arithmetic sequence with d as common difference.

Then,
$$S_n = u_1 + u_2 + u_3 + ... + u_n = u_1 + (u_1 + d) + (u_1 + 2d) + ... + (u_1 + (n-1)d)$$

Also,
$$S_n = [u_1 + (n-1)d] + ... + (u_1 + d) + u_1$$
.

Add two expressions together:

$$2S_n = [2u_1 + (n-1)d]n$$

$$\therefore S_n = \frac{n}{2}[2u_1 + (n-1)d].$$

3. Geometric Sequence

- Recursive formula: $u_{n+1} = r \cdot u_n$, r is the common ratio.
- Explicit formula: $u_n = u_1 \cdot r^{n-1}$

•

$$r = \frac{u_2}{u_1} = \frac{u_3}{u_2} = \frac{u_4}{u_3} = \dots$$

• Summation: $S_n = \frac{u_1(r^n-1)}{r-1}$

Proof: 1.2

Let $u_1, u_2, u_3, ..., u_n$ be a geometric sequence with r as common ratio.

$$S_n = u_1 + u_2 + u_3 + \dots + u_n = u_1 + (u_1 \cdot r) + (u_1 \cdot r^2) + \dots + (u_1 \cdot r^{n-1})$$

Then, $rS_n = (u_1 \cdot r) + (u_1 \cdot r^2) + ... + (u_1 \cdot r^n)$.

Substract the first expression from the second:

$$rS_n - S_n = u_1 \cdot r^n - u_1 \Rightarrow (r-1)S_n = u_1(r^n - 1)$$

$$\therefore S_n = \frac{u_1(r^n - 1)}{r - 1}$$

• If r > 1, the sequence is an exponential growth.

If 0 < r < 1, the sequence has an exponential decay.

• When r > 1, series approaches ∞ .

When -1 < r < 1, or |r| < 1, the series converges:

$$S_{\infty} = \frac{u_1}{1-r}, |r| < 1$$

2 **Exponents and Logarithms**

$$1. \ a^m \cdot a^n = a^{m+n}$$

$$a^m \div a^n = a^{m-n}$$

$$(a^m)^n = a^{mn}$$

2.
$$x^0 = 1$$
 ($x^0 = x^{1-1} = \frac{x^1}{x^1} = 1$)
 $x^{-m} = \frac{1}{x^m}$

$$x^{-m} = \frac{1}{x^m}$$

$$x^{\frac{1}{n}} = \sqrt[n]{x} (x^{\frac{m}{n}} = (\sqrt[n]{x})^m)$$

3. If a = b, then $a^n = b^n$

If m = n, then $a^m = a^n$

For
$$a^b = 1$$
: $a = 1, b \in \mathbb{R}$; $a \neq 1, b = 0$; OR $a = -1, b = 2n$

- 4. When solving exponential equations, convert them to the same base.
- 5. Division Theorem.

Theroem: 2.1

If $a^x = b^y$ given a > 0 and b > 0, then $a = b^{\frac{y}{x}}$.

Proof: 2.1

$$a^{x} = b^{y}$$

$$(a^{x})^{\frac{1}{x}} = (b^{y})^{\frac{1}{x}} \Rightarrow a = b^{\frac{y}{x}}$$

- 6. $a = b^x \Leftrightarrow x = \log_b a$, where $a, b \in \mathbb{R}^+$ and $b \neq 1$.
- 7. Logarithmic rules:
 - $\log_a x + \log_a y = \log_a(xy)$

Proof: 2.2

Let
$$\log_a x = p$$
, $\log_a y = q$. $\Rightarrow a^p = x, a^q = y$.

Then,
$$x \cdot y = a^p \cdot a^q = a^{p+q}$$
.

$$\therefore \log_a(xy) = p + q = \log_a x + \log_a y.$$

• $\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$

Proof: 2.3

Let
$$\log_a x = p$$
, $\log_a y = q$. $\Rightarrow a^p = x, a^q = y$.
Then, $\frac{x}{y} = \frac{a^p}{a^q} = a^{p-q}$.

$$\therefore \log_a \left(\frac{x}{y}\right) = p - q = \log_a x - \log_a y.$$

- $\log_a x^n = n \log_a x$
- $\log_a 1 = 0$
- $\log_a a = 1$
- $-\log_a x = \log_a \frac{1}{x}$
- $\log_a x = \frac{\log_b x}{\log_b a}$
- $s \log_a b = \frac{1}{\log_b a}$

3 Proof

1. Direct proof:

Example: 3.1

Show that the sum of two even numbers is always even.

Let m and n be two even positive integers.

m = 2p, n = 2q, where p and $q \in \mathbb{Z}^+$.

Then, m+n=2p+2q=2(p+q), which is an even number.

Example: 3.2

Show that
$$(x + \frac{a}{2})^2 - (\frac{a}{2})^2 \equiv x^2 + ax$$
.

LHS =
$$x^2 + \frac{a^4}{4} + ax - \frac{a^4}{4} = x^2 + ax =$$
RHS.

Equations "=": only true from some values.

Identities "≡": true for all values.

Example: 3.3 Question

Prove that if the sum of the digits of a four-digit number is divisible by 3, then the four-digit number is also divisible by 3.

4

Example: 3.3 Answer

Let *n* be a 4-digit number: n = 1000a + 100b + 10c + d, where $0 \le a, b, c, d \le 9$, and $a \ne 0$.

It is given that $a+b+c+d=3k, k \in \mathbb{Z}$:

$$n = 1000a + 100b + 10c + d + 3k - a - b - c - d$$
$$= 999a + 99b + 9c + 3k$$
$$= 3(333a + 33b + 3c + k)$$

Since $(333a + 33b + 3c + k) \in \mathbb{Z}$, it implies that *n* is divisible by 3.

2. Proof by Contradiction:

Example: 3.4

Prove the statement: If the integer n is odd, then n^2 is also odd.

Let, if possible, n^2 is even and n is odd.

Then, $n^2 = 2k$, $k \in \mathbb{Z} \Rightarrow n \times n = 2k$, which indicates the product of two odd number is even, and which is not true.

Hence, there is a contradiction.

 \therefore Our assumption is wrong, and thus given that n is odd, n^2 is also odd.

Example: 3.5

Show that $\sqrt{2}$ is irrational.

Let us assume, if possible, taht $\sqrt{2}$ is rational:

 $\sqrt{2} = \frac{p}{q}$, where $p, q \in \mathbb{Z}$, and p, q have no common factors, $q \neq 0$.

$$\therefore 2 = \frac{p^2}{q^2} \Rightarrow p^2 = 2q^2$$
 (1).

 $\therefore p^2$ is even, and thus p is also even.

As p is an even number, we can write: $p = 2k, k \in \mathbb{Z}$. $\Rightarrow : p^2 = (2k)^2 = 4k^2$ (2).

From (1) and (2): $4k^2 = 2q^2 \Rightarrow q^2 = 2k^2 \Rightarrow q^2$ is even, and thus q is also an even number.

But since p and q have no common factors, they cannot have "2" as a common factor.

Hence, we have arrived at a contradiction.

 \therefore Our assumption is incorrect, and $\sqrt(2)$ is irrational.

Definition 1: A number is **rational** if it can be written as $\frac{p}{q}$, where $p, q \in \mathbb{Z}$, and $q \neq 0$.

5

Example: 3.6 Question

Prove that there is no $x \in \mathbb{R}$ such that $\frac{1}{x-2} = 1 - x$

Example: 3.6 Answer

Assume there is a real number x such that $\frac{1}{x-2} = 1 - x$.

$$\therefore (1-x)(x-2) = 1 \Rightarrow x^2 - 3x + 3 = 0$$

Solving the equation, we get $x = \frac{3 \pm \sqrt{9-12}}{2}$, which $\notin \mathbb{R}$

 \therefore We arrived at a contradiction, and our assumption is incorrect. There is no $x \in \mathbb{R}$ such that $\frac{1}{x-2} = 1 - x$

3. Proof by Mathematical Induction

Definition 2: **Principle of Mathematical Induction (PMI)**:

Suppose P_n is a proposition which is defined for every integer $n \ge a$, $a \in \mathbb{Z}$. If P_a is true, and if P_{k+1} is true whenever P_k is true, then P_n is true $\forall n \ge a$.

Example: 3.7

Prove that $4^n + 2$ is divisible by 3 for $n \in \mathbb{Z}$, $n \ge 0$, by using PMI.

For n = 0, LHS = $4^0 + 2 = 1 + 2 = 3$, which is divisible by 3.

 $\therefore P_0$ (OR denoted as P(0)) is true.

Assume that P_k is true: i.e., $4^k + 2$ is divisible by 3. $\Rightarrow 4^k + 2 = 3A$, $A \in \mathbb{Z}^+ \Rightarrow 4^k = 3A - 2$.

Consider P_{k+1} :

$$4^{k+1} + 2 = 4^k \cdot 4^1 + 2$$

$$= (3A - 2) \cdot 4 + 2$$

$$= 12A - 6$$

$$= 3(4A - 2).$$

 $\therefore 4A - 2$ is an integer as $A \in \mathbb{Z}^+$, $4^{k+1} + 2$ is divisible by 3 whenever $4^k + 2$ is divisible by 3.

Since P_0 is true, and P_{k+1} is true whenever Pk is true, P_n is ture $\forall n \in \mathbb{Z}, n \geq 0$.

Example: 3.8

A sequence is defined by $u_{n+1} = 2u_n + 1 \ \forall n \in \mathbb{Z}^+$. Prove that $u_n = 2^n - 1$.

For n = 1, $u_1 = 2^1 - 1 = 1 \Rightarrow : P_1$ is ture.

Let P_k be true: $u_k = 2^k - 1$ for some $k \in \mathbb{Z}^+$.

Consider P_{k+1} :

$$u_{k+1} = 2u_k + 1$$

= $2(2^k - 1) + 1$
= $2^{k+1} - 1$.

6

Since P_1 is ture, and P_{k+1} is true whenever P_k is true, P_n is true $\forall n \in \mathbb{Z}^+$.

Example: 3.9

Prove that
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}, \forall n \in \mathbb{Z}^+$$
.

For n = 1, LHS = $1^2 = 1$, RHS = $\frac{1(1+1)(2+1)}{6} = 1$ ∴ LHS = RHS $\Rightarrow P_1$ is true.

Assume that P_k is true, $k \in \mathbb{Z}^+$: $1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$. Consider P_{k+1} :

LHS =
$$1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2$$

= $\frac{k(k+1)(2k+1)}{6} + (k+1)^2$
= $\frac{k(k+1)(2k+1) + 6(k+1)^2}{6}$
= $\frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$
= $\frac{(k+1)(2k^2 + 7k + 6)}{6}$
= $\frac{(k+1)(k+2)(2k+3)}{6}$
= $\frac{(k+1)[(k+1) + 1][2(k+1) + 1]}{6}$ = RHS.

Thus, P_{k+1} is true whenever P_k is true.

Since P_1 is true, and P_{k+1} is true whenver P_k is true, P_n is true $\forall n \in \mathbb{Z}^+$.

Example: 3.10

Prove that if
$$x \neq 1$$
, the $\prod_{i=1}^{n} (1+x^{2^{i-1}}) = (1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^{n-1}}) = \frac{1-x^{2^n}}{1-x}$.

For n = 1, LHS = 1 + x, RHS = $\frac{1 - x^2}{1 - x} = \frac{1 - x^2}{1 - x} = 1 + x$. \Rightarrow : LHS = RHS, P_1 is true.

Assume that P_k is true: $(1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^{k-1}})=\frac{1-x^{2^k}}{1-x}$.

Conosider P_{k+1} :

LHS =
$$(1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^{k-1}})(1+x^{2^k})$$

= $\frac{1-x^{2^k}}{1-x}(1+x^{2^k})$
= $\frac{1+x^{2^k}-x^{2^k}+(x^{2^k})^2}{1-x}$
= $\frac{1-x^{2^{k-2}}}{1-x}$
= $\frac{1-x^{2^{k+1}}}{1-x}$ = RHS.

Since P_1 is true, and P_{k+1} is true whenever P_k is true, P_n is true $\forall n \in \mathbb{Z}^+$.

4 Counting and Binomial Theorem

1. Choose *r* from *n*: $\binom{n}{r} =_n C_r$

•
$$\binom{n}{m} = \binom{n}{n-m}$$

•
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

• Fractorial notation:
$$n! = n(n-1)(n-2)\cdots 2\cdot 1$$

e.g. $\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5\times 4\times 3!}{3!\times 2} = 5\times 2 = 10.$

Example: 4.1

Write $\frac{(n!)^2}{(n-1)!(n-2)!}$ without using fractorial notation.

$$(n!)^2 = n! \times n! = n(n-1)! \times n(n-1)(n-2)!$$

$$\therefore \frac{(n!)^2}{(n-1)!(n-2)!} = \frac{n(n-1)! \times n(n-1)(n-2)!}{(n-1)!(n-2)!} = n \cdot n(n-1) = n^3 - n^2.$$

- 2. The number of ways of arranging n distinct objects in a row is n!.
- 3. The number of permutations of r objects out of n distinct objects is given by

$$_{n}P_{r}=\frac{n!}{(n-r)!}.$$

- 4. In permutations, the order matters.

 In combinations, the order does not matter.
- 5. The Binomial Theorem:

Theroem: 4.1 The Binomial Theorem

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^{2} + \dots + b^{n}, \ n \in \mathbb{N}$$
$$= \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^{r}$$

Example: 4.2

Find $(2x+3)^4$.

$$(2x+3)^4 = (2x)^4 + {4 \choose 1}(2x)^3(3)^1 + {4 \choose 2}(2x)^2(3)^2 + {4 \choose 3}(2x)(3)^3 + 3^4$$
$$= 16x^4 + 96x^3 + 216x^2 + 216x + 81$$

Example: 4.3

Find the term independent of x in the expasion of $\left(x - \frac{2}{x^2}\right)^{12}$.

General term: $\binom{12}{r}x^{12-r}\left(-\frac{2}{x^2}\right)^r = \binom{12}{r}x^{12-r-2r} = \binom{12}{r}x^{12-3r}$ When 12-3r=0, the term is independent of x: $12-3r=0 \Rightarrow r=4$.

$$\therefore \binom{12}{4} x^0 = 7920.$$

- 1. The independent term should not involve x in it since the independent term does not vary as x varies. (constant term)
- 2. The coefficient should not include x as well.

Example: 4.4

Find the coefficient of x^3y^2 in the expansion of $(2x+y)(x+\frac{y}{x})^5$.

Assume $2x \cdot A$ and $y \cdot B$ will yield the term x^3y^2 . $\Rightarrow A = x^2y^2$, $B = x^3y$.

General term: $\binom{5}{r}x^{5-r}(\frac{y}{x})^r = \binom{5}{r}x^{5-2r}y^r$.

When r = 2, $5 - 2r = 1 \neq 2 \Rightarrow x^2y^2$ is not possible.

When r = 1, $5 - 2r = 3 \Rightarrow x^3y$ is possible.

$$\therefore \text{Coefficient} = \binom{5}{1} = 5.$$

Example: 4.5

Find the coefficient of x^2 in the expansion of $(1-2x)(1-4x)^7$.

Assume $1 \cdot A = x^2$, $-2x \cdot B = x^2$. $\Rightarrow A = x^2$, B = x.

General term: $\binom{7}{r}(-4x)^{7-r}(1)^r$

When 7 - r = 2, r = 5: $\binom{7}{5}(-4x)^2(1)^5 = 336x^2$. $\Rightarrow 1 \cdot 336x^2 = 336x^2$ When 7 - r = 1, r = 6: $\binom{7}{6}(-4x)^1(1)^6 = -28x$. $\Rightarrow (-2x) \cdot (-28x) = 56x^2$

$$\therefore$$
 Coefficient = 336 + 56 = 392.

6. AHL - Extention of Binomial Theorem:

Theroem: 4.2 Binomial Theorem Extended

$$(a+b)^{n} = a^{n} \left(1 + \frac{b}{a}\right)^{n}$$

$$= a^{n} \left(1 + n \cdot \frac{b}{a} + \frac{n(n-1)}{2!} \left(\frac{b}{a}\right)^{2} + \frac{n(n-1)(n-2)}{3!}\right) \left(\frac{b}{a}\right)^{3} + \cdots, n \in \mathbb{Q}, \left|\frac{b}{a}\right| < 1$$

9

Example: 4.6

Expand $\sqrt{1+2x}$ $\left(|x|<\frac{1}{2}\right)$ and $\frac{2}{1-3x}$ $\left(|x|<\frac{1}{3}\right)$ upto x^3 term.

$$(1+2x)^{\frac{1}{2}} = 1 + \frac{1}{2}(2x) + \frac{1}{2}\left(\frac{1}{2} - 1\right)\frac{(2x)^2}{2!} + \frac{1}{2}\left(\frac{1}{2} - 1\right)\left(\frac{1}{2} - 2\right)\frac{(2x)^3}{3!} + \cdots$$
$$= 1 + x - \frac{1}{2}x^2 + \frac{1}{2}x^3 + \cdots$$

$$2(1-3x)^{-1} = 2(1-(-3x)-(-1-1)\frac{(-3x)^2}{2!} - (-1-1)(-1-2)\frac{(-3x)^3}{3!} + \cdots$$

$$= 2(1+3x+x^2+27x^3+\cdots)$$

$$= 2+6x+18x^2+54x^3+\cdots.$$

Example: 4.7

Write the first three terms in the expasion of $(2+x)^{-3}$.

$$(2+x)^{-3} = 2^{-3} \left(1 + \frac{x}{2}\right)^{-3}$$

$$= \frac{1}{8} \left(1 + (-3)\frac{x}{2} + (-3)(-3-1)\frac{2^2}{2 \cdot 2!} + \cdots\right)$$

$$= \frac{1}{8} \left(1 - \frac{3}{2}x + \frac{12}{4}x^2 + \cdots\right)$$

$$= \frac{1}{8} - \frac{3}{16}x + \frac{3}{8}x^2 + \cdots$$

Example: 4.8 Application of Bionomial Theorem

Find square root of 24 correct to 5 decimal places, using the binomial theorem.

$$24^{\frac{1}{2}} = (25 - 1)^{\frac{1}{2}} = 25^{\frac{1}{2}} \left(1 - \frac{1}{25} \right)^{\frac{1}{2}}$$

$$= 5 \left(1 + \left(\frac{1}{2} \right) \left(-\frac{1}{25} \right) + \frac{\frac{1}{2} \left(\frac{1}{2} - 1 \right)}{2!} \left(-\frac{1}{25} \right)^2 + \frac{\frac{1}{2 \left(\frac{1}{2} - 1 \right) \left(\frac{1}{2} - 2 \right)}}{3!} \left(-\frac{1}{25} \right)^3 + \cdots \right)$$

$$= 5 \left(1 - \frac{1}{50} - \frac{1}{5000} - \frac{1}{250000} + \cdots \right)$$

$$= 5 \left(1 - 0.02 - 0.0002 - 0.000004 \right)$$

$$= 4.89898 \quad (5 d.p.).$$

5 Partial Fraction - AHL

- 1. Proper fractions: The degree of the numerator is less than the degree of the denominator.
- 2. Partial fraction: A method to separate one complex fraction into two or more simpler fractions.

Example: 5.1

Find the partial fraction of $\frac{3x}{(x-1)(x+2)}$.

Let
$$\frac{3x}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}$$
.

$$\therefore 3x \equiv A(x+2) + B(x-1).$$

When
$$x = 1$$
, $3 = 3A \Rightarrow A = 1$.

When
$$x = -2, -6 = -3B \implies B = 2$$
.

$$\therefore \frac{3x}{(x-1)(x+2)} \equiv \frac{1}{x-1} + \frac{2}{x+2}.$$

Example: 5.2

Find the partial fraction of $\frac{2x+5}{(x-2)(x+1)}$.

Let
$$\frac{2x+5}{(x-2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+1}$$
.

$$\therefore 2x + 5 \equiv A(x+1) + B(x-2).$$

When
$$x = 2$$
, $9 = 3A \implies A = 3$.

When
$$x = -1$$
, $3 = -3B \implies B = -1$.

$$\therefore \frac{2x+5}{(x-2)(x+1)} \equiv \frac{3}{x-2} - \frac{1}{x+1}.$$

Example: 5.3

Find the partial fraction of $\frac{34-12x}{3x^2-10x-8}$.

As
$$\frac{34-12x}{3x^2-10x-8} = \frac{34-12x}{(3x+2)(x-4)}$$
, let $\frac{34-12x}{(3x+2)(x-4)} = \frac{A}{3x+2} + \frac{B}{x-4}$.

$$\therefore 34 - 12x \equiv A(x - 4) + B(3x + 2).$$

When
$$x = 4$$
, $-14 = 14A \implies B = -1$.

When
$$x = -\frac{2}{3}$$
, $42 = -\frac{14}{3}A \implies A = -9$.

$$\therefore \frac{34-12x}{(3x+2)(x-4)} \equiv -\frac{9}{3x+2} - \frac{1}{x-4}.$$

6 Complex Number - AHL

6.1 Introduction

1. Complex Number:

Definition 3:

Complex Numbers are numbers in the form of a + bi, where $i^2 = -1$.

- a is called the **real part**, denoted as Re(a + bi) = a.
- b is called the **imaginary part**, denoted as Im(a+bi) = b.
- a + bi is called the Cartesian form of complex number.

2. Basic Calculations of Complex Number:

• Define $z_1 = a + bi$ and $z_2 = c + di$:

$$z_1 \pm z_2 = (a \pm c) + (b \pm d)i$$
.

• Define $z_1 = a + bi$ and $z_2 = c + di$:

$$z_1z_2 = (ac - bd) + (ad + bc)i.$$

Proof: 6.1.1

$$z_1 z_2 = (a+bi)(c+di)$$

$$= ac + (ad+bc)i + bdi^2 [i^2 = -1]$$

$$= (ac-bd) + (ad+bc)i.$$

• Conjugate complex number:

Definition 4:

We call a - bi as the **conjugate** of z = a + bi, denoted as $z^* = a - bi$.

Theroem: 6.1.1

Define $z_1 = a + bi$, and z^* is the conjugate of z_1 . Then,

$$z_1 z^* = a^2 + b^2$$
.

Proof: Theorem 6.1.1

By definition, $z^* = a - bi$. Thus,

$$z_1 z^* = (a+bi)(a-bi)$$
$$= a^2 - (bi)^2$$
$$= a^2 + b^2.$$

• Define $z_1 = a + bi$ and $z_2 = c + di$:

$$\frac{z_1}{z_2} = \frac{ac + bd}{c^2 + d^2} - \frac{bc - ad}{c^2 + d^2}i.$$

Proof: 6.1.2

$$\frac{z_1}{z_2} = \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)}$$
$$= \frac{(ac+bd) - (bc-ad)i}{c^2+d^2}$$
$$= \frac{ac+bd}{c^2+d^2} - \frac{bc-ad}{c^2+d^2}i.$$

Example: 6.1.1

Find $z \in \mathbb{C}$ that satisfies the equation $\frac{z+2}{1-\mathrm{i}} = \frac{z-3\mathrm{i}}{2+\mathrm{i}}$.

$$(z+2)(2+i) = (z-3i)(1-i)$$

$$z(2+i)+4+2i = z(1-i)-3i+(3i)^2$$

$$z(2+i-1+i) = -3i-3-4-2i$$

$$z(1+2i) = -7-5i$$

$$z = \frac{-7-5i}{1+2i} = -\frac{17}{5} + \frac{9}{5}i.$$

3. If s = a + bi and t = c + di, then:

$$Re(s) + Re(t) = Re(s+t)$$
; and $Im(i \cdot s) = Re(s)$.

6.2 Argand Diagram

1. The Complex Plane:

z = a + bi can be represented on a complex plane with real coordinate a and imaginary coordinate b. It can also be denoted as z(a,b).

• Modulus of a complex number:

$$|z| = \sqrt{a^2 + b^2}.$$

• Argument of a complex number:

$$\operatorname{Arg}(z) = \arctan\left(\frac{b}{a}\right)(+k\pi) \to \arctan x \in \left] -\frac{\pi}{2}, \frac{\pi}{2}\right[.$$

*When determine a complex number, first draw it on the plane to show which quadrant it is in.

The range of arugment is $[0, 2\pi]$ or $[-\pi, \pi]$.

• Use modulus and argument to express a complex number:

$$a = |z| \cdot \cos \theta$$
;

$$b = |z| \cdot \sin \theta$$
.

2. If z = a + bi and |z| = 1, then $z^* = z^{-1}$.

Proof: 6.2.1

$$|z| = 1$$

$$\sqrt{a^2 + b^2} = 1$$

$$a^2 + b^2 = 1$$

Method 1

Method 2

RHS =
$$z^{-1} = \frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)}$$
 $z \cdot z^* = (a+bi)(a-bi)$
= $\frac{a-bi}{a^2+b^2} = a-bi$ $= |z|^2 = 1$
= $z^* = LHS$. $z \cdot z^* = z^{-1}$

- 3. When $|z| \neq 1$, $z^* = \frac{|z|^2}{z}$, and $z^{-1} = \frac{z^*}{|z|^2}$.
- 4. Properties of modulus and arguments: For complex number s and $t \in \mathbb{C}$:

$$|st| = |s||t|$$

$$\left|\frac{s}{t}\right| = \frac{|s|}{|t|}$$

•

$$Arg(st) = Arg(s) + Arg(t) + 2k\pi$$

$$\operatorname{Arg}\left(\frac{s}{t}\right) = \operatorname{Arg}(s) - \operatorname{Arg}(t) + 2k\pi$$

Complex Number in Other Forms 6.3

1. The Polar Form (Modulus-Argument Form):

$z = r(\cos\theta + i\sin\theta) = r\operatorname{cis}\theta$

Proof: 6.3.1

According to the Argand Diagram:

$$z = x + yi = r\cos\theta + ir\sin\theta = r(\cos\theta + i\sin\theta).$$

 $z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$

 $\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$

- 2. de Movrie's Theorem:
 - By Maclaurin Series:

$$e^{i\theta} = cis\theta = cos\theta + isin\theta$$
.

• Exponential form of complex number:

$$z = re^{i\theta} = rcis\theta$$
.

3. Cartesian Form: Addition and Substraction Modulus-Argument Form: Multiply and Division

Exponential Form: Exponents and Roots

4. Since $\operatorname{cis}\theta = \operatorname{cis}(\theta + 2k\pi)$,

$$re^{\mathrm{i}\theta} = re^{\mathrm{i}(\theta + 2k\pi)}.$$

Example: 6.3.1

Find $e^{i\frac{17\pi}{12}}$ in the form of Cartesian.

$$\begin{split} e^{i\frac{17\pi}{12}} &= e^{i\left(\frac{7\pi}{6} + \frac{\pi}{4}\right)} = e^{i\frac{7\pi}{6}} \cdot e^{\frac{\pi}{4}} \\ &= \operatorname{cis}\left(\frac{7\pi}{6}\right) \cdot \operatorname{cis}\left(\frac{\pi}{4}\right) \\ &= \left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) = \frac{\sqrt{2} - \sqrt{6}}{4} - \frac{\sqrt{2} + \sqrt{6}}{4}i. \end{split}$$

6.4 Power of Complex Number

1. For a complex number $z = re^{i\theta}$,

$$z^n = r^n e^{in\theta}$$
.

Example: 6.4.1

Find $(3\cos\frac{2\pi}{3} - 3i\sin\frac{\pi}{3})^3$

$$\left(3\cos\frac{2\pi}{3} - 3i\sin\frac{\pi}{3}\right)^{3} = \left(-3\cos\frac{\pi}{3} - 3i\sin\frac{\pi}{3}\right)^{3}$$

$$= \left(-3\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)\right)^{3}$$

$$= (-3)^{3}(e^{i\frac{\pi}{3}})^{3}$$

$$= -27e^{i\pi}$$

$$= -27(-1) = 27.$$

Key learnings from Example 6.4.1:

1. z = 3 is only the fundemental root of equation $z^3 = 27$. In \mathbb{C} , there are other two complex roots that satisfy the equation.

2. In \mathbb{C} , $\sqrt{4} = \pm 2 = 2 + 0 \cdot i$ or $-2 + 0 \cdot i$.

Example: 6.4.2

Given a complex number $\omega \neq 1$ is one of the solutions of $z^3 = 1$.

- **a. Prove** $\omega^{2} + \omega + 1 = 0$;
- **b. Calculate** $\omega^{2019} + \omega^{2020} + \omega^{2021} + \omega^{2022}$.

$$\therefore \omega^{3} = 1$$

$$\therefore \omega^{3} - 1 = 0 \implies (\omega - 1)(\omega^{2} + \omega + 1) = 0$$

$$\therefore \omega \neq 1$$

$$\therefore \omega^{2} + \omega + 1 = 0.$$

Approach B $\omega^2 + \omega + 1 = 0$ is a geometric sequence, $u_1 = 1, r = \omega$:

$$S_3 = \frac{u_1(1-r^3)}{1-r} = \frac{1-\omega^3}{1-\omega} = \frac{0}{1-\omega} = 0.$$

(b)
$$\omega^{2019} + \omega^{2020} + \omega^{2021} + \omega^{2022} = \omega^{2019} \times (1 + \omega + \omega^2 + \omega^3)$$
$$= \omega^{2019} (0+1) = \omega^{2019}$$
$$= (\omega^3)^{673} = 1.$$

Example: 6.4.3

Find:

- **a.** 1ⁱ;
- **b.** $\ln(-1)$;
- c. ln(-c), where c is a constant.

$$1 = e^{i2\pi} \implies 1^{i} = \left(e^{i2\pi}\right)^{i} = e^{-2\pi}. \quad (1^{i} = e^{-2k\pi}, k \in \mathbb{Z})$$

$$-1 = e^{i\pi} \implies \ln(-1) = \ln\left(e^{i\pi}\right) = i\pi.$$

$$ln(-c) = ln[(-1) \cdot c] = ln(-1) + ln(c) = ln(c) + i\pi.$$

6.5 Polynomial Function with Complex Roots

1. Conjugate Pair Theorem:

Theroem: 6.5.1 Conjugate Pair Theorem

If z is a complex root of P(x), then the conjugate of $z(z^*)$ is also a complex root of P(x). (P(x) should be a polynomial with rational coefficients.)

2. Properties of Conjugate.

•

$$(s\pm t)^* = s^* \pm t^*$$

•

$$(st)^* = s^*t^*$$

•

$$\left(\frac{s}{t}\right)^* = \frac{s^*}{t^*}$$

6.6 Root of Complex Numbers

1. The Root of Unity:

Theroem: 6.6.1 The Root of Unity

For any complex equation $\omega^n = 1$, there are *n* distinct roots:

$$1 = e^{\mathrm{i}(0 + 2k\pi)} = \omega^n, \ k \in \mathbb{Z} \quad \Rightarrow \quad \omega = e^{\mathrm{i}\frac{2k\pi}{n}}, \ k \in \mathbb{Z}.$$

Example: 6.6.1

Solve $z^3 = 8$.

$$z^{3} = 8 \cdot 1 = 8e^{i(0+2k\pi)} \implies z = 2e^{i\frac{2k\pi}{3}}, \ k \in \mathbb{Z}$$

$$k = 0: \ z = 2$$

$$k = 1: \ z = 2e^{i\frac{2\pi}{3}} = 2\operatorname{cis}\left(\frac{2\pi}{3}\right) = -1 + \sqrt{3}\mathrm{i}$$

$$k = 2: \ z = 2e^{i\frac{4\pi}{3}} = 2\operatorname{cis}\left(\frac{4\pi}{3}\right) = -1 - \sqrt{3}\mathrm{i}$$

2. Property of $cis\theta$:

$$cis(-\theta) = \cos\theta - i\sin\theta$$

Proof: 6.6.1

$$\cos \theta - i \sin \theta = \cos(-\theta) + i \sin(-\theta)$$
$$= \cos(-\theta).$$