Maxima & Minima Two Variables Page No: in Find of & of ther solw the egg stationary points (iii) Find 245 (iv) Calculate & t - 52 for this pain · 4/ 8t-s² >0 and 8 >0, then

f(x,y) is a minimum for hair (a, b). · 91 xt-s2 > 0 and x < 0, then f(x,y) is a maximum for tair (a,b).

Page No.	Page No.
.3	2 1 14 - 126 xx = aly
washgation is	2 6
say shall leave this	× / ×
MIXIME and	ر ا ا
- In function x3+43 - 3TRANS	1 - 0 - x - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
x3+53-3a	
Partially dill. wy 3 (x)	
0,0	1 X 0 1 X
34 = 3x2 - 3ay	God 2 - 3 /0 a)
*	5 (5 (0)
342 - 36x 20	72
	ZXC
	2600) = 69
1 3x2-3ay=0 d	ps - = 29
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50 xc
x2 = 2 4 0 - 0 - 2 x	7 san) = -3a
(1 - 0 - 1 - 0 - 1 - 0 - 1 - 1 - 1 - 1 -	4
- 4	250
	(4,4)=
(2) = (2) = (2),	Now 74-52 = (60) (60) - 63012
Q=12 20 1/2 1/2 1/2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 - 52 - 4
	0 < 25 - 44

Page No:	Page No:
	Page of a most
- S2 is position d (8)	1
10 400 ou - 10 ou - 10 ou ou	
maxima of minima according	(30m eg" (1) & (i)
as (a) in (-ve) or (+ve) at x=y=a	0=(x-2x+2x)(x+x) 0= x+x-2x
2* Loute the stationaxy houts at	5 1 5 1
xx + yx - 2x2 + 4xy - 242	23+4
makure.	
50 - 25 - 6xy + 5x - 2x2 + 4x = 24 - 24 - 0	32
Postselly diff with the want to cy. Of	B-= (1-2h)h-
4 7 + 4 - 5 × h	1 = 1 - 7 h
-	2 = 2
8 x 8 x 8 x 8 x 8 x 8 x 8 x 8 x 8 x 8 x	(2) - x) (x = x(2)
(x - 1 x	
	Henry stationers hours one +
Publishly diff. w. + (y) in eg. (1)	CREA VERS
7,1	(5-5) & (-5, 0)
84 + 6h - 5h - 78	Cen (0,0) - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33	1 2 - 1 X - 1 - 2 - 1
	17
1 x x / 1 0 - x +	6.04
+ (1-5)5	7 = (0'0)8 = 8 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
	× 5.

· · · (iii)

case Is doubtful and purcotion further investigation we shall leave This as required - So Case @: dt (52, -52) (52,-52) = \$2045 = 4 $5 \pm -5^2 = (20)(20) - (4)^2$ 7 t - 52 = 384 & x >0, then given function (u) is minimum for (52, -52). Similarly Now u = (52) 4 + (-Si) - 2 x (Si) 2 + 4 (52) (52) - 2 (-52)2 4-4-4-68-4 y = -8 X(52,52) = 20, \$ = 20, \$ = 4 (52,52) = 20, \$ = 4

Henry fluricy is minimum for (52, 51) also. Ans

the maxima of mining of Discuss u = sinx siny sin (x+y) function & x, y & z are the angles of AABC then find the maxima d minima of the function y = sinx sing sinz Salus* Given: 4 = sinx sing sin(x+y)...(is-Partially diff eq is wir to (x), we sing Lainx coo (x+y) + sin Gety) coox = sing. sin (2x+4) sinx sin (2y+x) Now sinx sin (ly+x) = 0 ring sin (2x+y) = 0 sinn = 0 & linky 1 n)=0 ling = 0 d sin(2x+y) = 0 x=0 & 24+x=000 i. y = 0 & 2x+y = 0 or Tor 27 To or la geogna y=0 px 2x+y=0, 7, 27

X = 0 or 24+x=0, 1,27 ... (iv)

24+x = TI Putting y = 77 - 2x from eq" live, we set

2 (Tr - 2m) + x = TI

4 = 11/3

Similarly on putting y = 27-2x from equality, case ():- At

24 + 21 = 27 (from 1/1), we get

2 (2x-2x) + x = 27

Then from eg

4 = 2 Tr - 2/ 2717

27

Huna, stat critical points are 2 x /3 2 x /3)

New 24 - 2 siny cos (2x + 4)

2 sinx cos (2y+x sinx cos (2y+x) + sin(2y+x) cosx

sin (2x+2y) = sin 2 (x+y)

Ti/3. Ti/2

8 = -53, t = -53 & s = -(53/2)then

-9/4>0

Since, But \$ 5t - 52 > 0. But, 8 < -53

Hence, function is maximum for ("13, "13).

4 = sin(=13) sin(=13) sin $(\pi(3+\pi(3)$ 305 J3 X 2 X

(3) (-13) Ely (21/3) Din (21/3) Din (21/3) mid Since, given function is minimum for [2= 13, 2=1]. 012 8 01 25- 72 0< 1/5 = 1/8 - 8 = 2 (2/Es) - (S) (S) = 25 - xe 13 Page No:

Date