# ИИ В бизнесе

Классификация описания товаров для маректплейса

## EDA

#### Классы

- Данные описание товаров
- Задача: классификация товара по одной из категорий





### Распределения

• Типичное для настоящих данных логнормальное распределение





### Распределения

• Типичное для настоящих данных логнормальное распределение



## Data processing

### Text processing

- Обрезка по кол-ву слов 2 % и 97 % перцентилями
- Приведение к нижнему регистру
- Удаление пунктуации
- Удаление стоп-слов
- Лемматизация
- Label encoding

# Data processing

### Sampling

- Random under sampling
- Train test split shuffled, stratified

## EDA

- Данные описание товаров
- Задача: классификация товара по одной из категорий

- Time frequency inverse document frequency: tf-idf(t, d) = tf(t, d) \* idf(t)
- LogReg



## Результат с Under Sampling

|                        | precision | recall | f1-score | support |
|------------------------|-----------|--------|----------|---------|
|                        |           |        |          |         |
| Books                  | 0.91      | 0.92   | 0.92     | 1669    |
| Clothing & Accessories | 0.97      | 0.94   | 0.95     | 1879    |
| Electronics            | 0.91      | 0.88   | 0.89     | 1759    |
| Household              | 0.90      | 0.94   | 0.92     | 3307    |
|                        |           |        |          |         |
| accuracy               |           |        | 0.92     | 8614    |
| macro avg              | 0.92      | 0.92   | 0.92     | 8614    |
| weighted avg           | 0.92      | 0.92   | 0.92     | 8614    |



### Результат без семплирования

|                        | precision | recall | f1-score | support |
|------------------------|-----------|--------|----------|---------|
|                        |           |        |          |         |
| Books                  | 0.90      | 0.94   | 0.92     | 1590    |
| Clothing & Accessories | 0.95      | 0.96   | 0.95     | 1817    |
| Electronics            | 0.87      | 0.92   | 0.90     | 1604    |
| Household              | 0.95      | 0.90   | 0.93     | 3603    |
|                        |           |        |          |         |
| accuracy               |           |        | 0.93     | 8614    |
| macro avg              | 0.92      | 0.93   | 0.92     | 8614    |
| weighted avg           | 0.93      | 0.93   | 0.93     | 8614    |



### Вывод:

- Результат с/без сэмплирования достаточно схож, но как можно видеть отсутствие сэмплирование дает больший f1.
- Прореживание доминирующего класса это потеря данных.
- По сути это делается для взвешивания, и взвешивание во многих моделях LogReg не исключение можно делать напрямую, не меняя данные. Расплата за взвешивание это модель, скор в которой теперь стал ещё дальше от вероятности. Если нам нужно предсказывать вероятности, стратегия со взвешиванием на 100% ухудшит наши результаты.

#### Фреймворк

• Для построение эмбеддингов слов при помощи модели word2vec, на базе алгоритмов cbow и skipgram



I am selling these fine leather jackets

Фреймворк

• Классификации текстов



#### Обучение

- Обертка пайплайна обработки в python скрипт
- Перебор различных вариаций гиперпараметров: Ir, epoch
- Автотюнинг модели

### Обучение

|                        | precision | recall | f1-score | support |
|------------------------|-----------|--------|----------|---------|
|                        |           |        |          |         |
| Books                  | 1.00      | 1.00   | 1.00     | 1682    |
| Clothing_&_Accessories | 1.00      | 1.00   | 1.00     | 1817    |
| Electronics            | 1.00      | 1.00   | 1.00     | 1696    |
| Household              | 1.00      | 1.00   | 1.00     | 3431    |
|                        |           |        |          |         |
| accuracy               |           |        | 1.00     | 8626    |
| macro avg              | 1.00      | 1.00   | 1.00     | 8626    |
| weighted avg           | 1.00      | 1.00   | 1.00     | 8626    |



## Выводы:

- ReSampling может не приносить желаемого результата, лучше использовать взвешенные метрики. Если же хочется предсказывать редкий класс, то можно использовать более низкий threshold.
- FastText и LogReg являются двумя популярными инструментами методами машинного обучения для задачи классификации текста. Тем не менее, fasttext имеет более сложную архитектуру, учитывает контекст, и использует word-embeddings перед обучением модели классификации.
- Благодаря чему, fasttext в этой задаче дает гораздо более высокий результат