Topics: Convex optimization problems

1. Suppose we would like to solve the following optimization problem:

Basically, we would like to minimize linear function of x, subject to that x is in a halfspace.

- (a) Show that, if vectors c and a are not parallel, the optimal value of the problem is $-\infty$. (Intuitively if c and a are not parallel, we can always find a hyperplane $c^Tx = d$ with d negative with arbitrarily large magnitude, such that the hyperplane intersects with halfspace $\{x|a^Tx \le b\}$.) *Hint:* Because a and c are not parallel, c can be decomposed as sum of two vectors where one is parallel to a, and the other is orthogonal to a. Assume c can be decomposed as $c = \lambda a + \hat{a}$, where λ is some constant and \hat{a} is orthogonal to a. Now consider $x = ba/\|a\|_2^2 + d\hat{a}$, and see what happens if we make d arbitrarily negative.
- (b) Suppose c and a are parallel, and so we can write $c = \lambda a$. Denote the optimal value of the problem by p^* . Show that

$$p^* = \begin{cases} -\infty & \lambda > 0\\ \lambda b & \text{otherwise} \end{cases}$$

2. Find the optimal solution x^* for the following optimization problems:

(a)

$$\begin{aligned} & \text{minimize } c^T x \\ & \text{subject to } l \leq x \leq u \end{aligned}$$

where vectors l and u satisfy $l \leq u$.

(b)

minimize:
$$c^T x$$

subject to $\mathbf{1}^T x = 1, \ x \ge 0$

where $\mathbf{1} = (1, 1, \dots, 1)$ is the vector of all ones. Assume $c_1 < c_2 < \dots < c_n$.

(c)

$$\begin{aligned} & \text{minimize: } c^T x \\ & \text{subject to } \mathbf{1}^T x = \alpha, \ \mathbf{0} \leq x \leq \mathbf{1} \end{aligned}$$

where α is an integer and $1 \le \alpha \le n$. Assume $c_1 < c_2 < \cdots < c_n$.

(d)

minimize:
$$c^T x$$

subject to $d^T x = \alpha, \ \mathbf{0} \le x \le \mathbf{1}$

with $d > \mathbf{0}$ and $0 \le \alpha \le \mathbf{1}^T d$.

3. Consider the LP

with A square and nonsingular. Show that the optimal value is given by

$$p^* = \begin{cases} c^T A^{-1} b & A^{-T} c \le 0 \\ -\infty & \text{otherwise} \end{cases}$$

Hint: Transform the problem by making substitution y = Ax, and try to solve the transformed problem directly.

4. Formulate the following problems as LP.

(a)

minimize $||Ax - b||_{\infty}$

(b)

minimize
$$||Ax - b||_1$$

5. Find the optimal solution of the following optimization problem

minimize
$$\frac{x^T x}{2}$$

subject to $a^T x = b$

Approach: First write down the first-order optimality condition with equality constraints, introducing dual variable ν . Then try to find out ν using the constraint.

6. Find the optimal solution of the following quadratic problems.

(a)

$$\begin{aligned} & \text{minimize: } c^T x \\ & \text{subject to } x^T A x \leq 1 \end{aligned}$$

where $A \in \mathbb{S}^n_{++}$ and $c \neq 0$.

(b)

minimize:
$$x^T B x$$

subject to $x^T A x = 1$

where $A \in \mathbb{S}_{++}^n$ and $B \in \mathbb{S}^n$. Note that the problem does not have the form of convex optimization (still you can solve it, think from eigenvalue perspective).

7. Formulate the following problem as QCQP:

minimize:
$$||Ax - b||_4 = \left(\sum_{i=1}^m (a_i^T x - b_i)^4\right)^{1/4}$$

for $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.