CPSC 322 Assignment 4

Question 1 [15 points] Probabilities

- a) p(A=T, B=F, C=T) = 0.4 is wrong. We have the necessary information to fix it, since the sum of all probabilities should be 1, and without this probability it is already 1, so it should be 0.
- Marginal distributions of A and B: p(A=T)=0.5, p(A=F)=0.5, p(B=F)=0.5, p(B=F)=0.5 A and B are not independent because p(A=T,B=T)=0.2, so it is not equal to p(A=T)*p(A=B) p(A=T|B=F)=0.3/0.5=0.6
- Yes, P(A) * P(B|A) * P(C|A,B) = P(C) * P(B|C) * P(A|B,C) is true because both are the result of applying the chain rule to the same joint distribution, the only difference is the chosen ordering.

Question 2 [20 points] Bayes' rule

- a. Using W=1 to denote a warning and W=0 for no warning, and F=1 and F=0 for a failure or not of the electrical system:
 - 1. Given that $P(F = 1|W = 1) = \frac{P(W=1|F=1)*P(F=1)}{P(W=1)}$ we need to start by finding P(W=1):

$$P(W = 1) = P(W = 1|F = 0) * P(F = 0) + P(W = 1|F = 1) \cdot P(F = 1)$$

 $P(W = 1) = 0.05 * 0.9999 + 0.95 * 0.0001$
 $P(W = 1) = 0.0501$

2. Finally calculate P(F=1|W=1):

$$P(F = 1|W = 1) = \frac{P(W=1|F=1)*P(F=1)}{P(W=1)}$$

$$P(F = 1|W = 1) = \frac{0.95*0.0001}{0.0501}$$

$$P(F = 1|W = 1) = 0.0019$$

- b. We will have to do the same thing using P(F=1)=0.01:
 - 1. Find P(W=1):

$$P(W = 1) = P(W = 1|F = 0) * P(F = 0) + P(W = 1|F = 1) \cdot P(F = 1)$$

 $P(W = 1) = 0.05 * 0.99 + 0.95 * 0.01$
 $P(W = 1) = 0.059$

2. Finally calculate P(F=1|W=1):

$$P(F = 1|W = 1) = \frac{P(W=1|F=1)*P(F=1)}{P(W=1)}$$

$$P(F = 1|W = 1) = \frac{0.95*0.01}{0.059}$$

$$P(F = 1|W = 1) = 0.16$$

c. Because these are calculating the probability of having a fire given that you have had a warning (the prior probability). Therefore, one directly affects the other.

Question 3 [25 points] Bayesian/Belief networks

a. Applying the JPD we have to store 17.781.120 values because:

$$4^2 * 15 * 6^2 * 7^2 * 42 = 17781120$$

We can get fewer values to store by using the belief network given:

- P(A)
 - |Domain| = 4
 - o Values to store: 3
- P(B)
 - |Domain| = 15
 - Values to store: 14
- P(C|A)
 - o 24 values, but given that |domain(A)| = 4 we can save 1 value from each row
 - Values to store: 20
- P(D|A,B)
 - o 240 values but again can save 1 per row = 60 values saved
 - Values to store: 180
- P(E|B)
 - o 105 values, can save 15 values
 - o Values to store: 90
- P(F|C)
 - o 36 values, can save 6 values
 - Values to store: 30
- P(G|C,A,D,E)
 - 4.704 values, can save 672 values
 - Values to store: 4.032
- P(H|B,D,E)
 - o 17.640 values, can save 420 values
 - Values to store: 17.220

Therefore, 17.220 + 4.032 + 30 + 90 + 180 + 20 + 14 + 3 = 21.589. Saving 17.759.531 values.

- b. Given that in part a we saved:
 - a. 1
 - b. 1
 - c. |Domain(A)|
 - d. |Domain(A)|*|Domain(B)|
 - e. |Domain(B)|
 - f. |Domain(C)|
 - g. |Domain(C)|*|Domain(A)|*|Domain(D)|*|Domain(E)|
 - h. |Domain(B)|*|Domain(D)|*|Domain(E)|

Therefore we are saving 2+a+(a*b)+b+c+(a*c*d*e)+(b*d*e)

Which, when rearranged yields: 2+a+b+c+ab+bde+acde

Question 4 [40 points] Variable Elimination

1)

W and Y are conditionally independent of S given Q, and the nodes Z, M and V can be pruned because they are unobserved leaf nodes. In fact, W and Y can also be pruned as unobserved leaf nodes. Hence, the result simpler network will look like the following picture:

The factors that we must have to express this network are expressed as follows: f(O), f(N,O), f(R,O), f(Q,N,R), f(U,R), f(S,Q,U)

And after assigning Q=F we will get:

$$f_1(0), f_2(N,0), f_3(R,0), f_4(N,R), f_5(U,R), f_6(S,U)$$

2)

First of all, our alphabetical elimination ordering will be N,O,R,U, so we will express the factors as the following formula:

$$\Sigma_{U} f_{6}(S, U) \Sigma_{R} f_{5}(U, R) \Sigma_{O} f_{1}(O) f_{3}(R, O) \Sigma_{N} f_{2}(N, O) f_{4}(N, R)$$

And the steps are:

$$f_7(O, R) = \sum_{N} f_2(N, O) f_4(N, R)$$

$$f_8(R) = \Sigma_0 f_1(0) f_3(R, 0) f_7(0, R)$$

$$f_9(U) = \Sigma_R f_5(U, R) f_8(R)$$

$$f_{10}(S) = \Sigma_U f_6(S, U) f_9(U)$$

And their corresponding tables:

0	R	$f_7(O,R)$
Т	Τ	0.84
Т	F	0.74
F	Т	0.76
F	F	0.66

R	$f_8(R)$
Т	0.4668
F	0.3062

J	$f_9(U)$
Т	0.41562
F	0.35738

S	$f_{10}(S)$
Т	0.41641
F	0.35659

Once we have all the factors, we can compute our normalization term, which is going to be: $\Sigma_S f_{10}(S) = 0.41641 + 0.35659 = 0.773$ and with this we can finally compute our conditional probability distribution given Q=F:

S	P(S Q=F)
Т	0.5387
F	0.4613