Neural Network

Representation

JP @ 2B3E

Neurons & Brain

- Neural networks (NNs) were originally motivated by looking at machines which replicate the brain's functionality
 - Looked at here as a machine learning technique
- Origins
 - To build learning systems, why not mimic the brain?
 - Used a lot in the 80s and 90s
 - Popularity diminished in late 90s
 - Recent major resurgence
 - NNs are computationally expensive, so only recently large scale neural networks became computationally feasible

Neurons & Brain

- Brain
 - Does loads of crazy things
 - Hypothesis is that the brain has a single learning algorithm
 - Evidence for hypothesis
 - Auditory cortex --> takes sound signals
 - If you cut the wiring from the ear to the auditory cortex
 - Re-route optic nerve to the auditory cortex
 - Auditory cortex learns to see
 - Somatosensory context (touch processing)
 - If you rewrite optic nerve to somatosensory cortex then it learns to see
 - With different tissue learning to see, maybe they all learn in the same way
 - Brain learns by itself

Neurons & Brain

<u>Brainport https://www.youtube.com/watch?</u> v=CNR2gLKnd0g

Human echolocation https://www.youtube.com/watch?v=A8lztr1tu4o

Haptic belt

https://www.youtube.com/watch?v=dqijP8si9rc

- Other examples
 - Seeing with your tongue
 - Brainport
 - Grayscale camera on head
 - Run wire to array of electrodes on tongue
 - Pulses onto tongue represent image signal
 - Lets people see with their tongue
 - Human echolocation
 - Blind people being trained in schools to interpret sound and echo
 - Lets them move around
 - Haptic belt direction sense
 - Belt which buzzes towards north
 - Gives you a sense of direction
- Brain can process and learn from any data source

Neurons

- Components
 - Cell body, # of inputs (dendrites), output wire (axon)
- Simple level
 - Neuron gets one or more inputs through dendrites
 - Does processing
 - Sends output down axon
- Neurons communicate through electric spikes
 - Pulse of electricity via axon to another neuron

Artificial Neurons

주의: notation이 "Deep Learning from Scratch"와 다름

- A neuron is a logistic unit
 - Feed input via input wires
 - Logistic unit does computation
 - Sends output down output wires
- That logistic computation is just like logistic regression hypothesis calculation

Artificial Neural Network

- Very simple model of a neuron's computation
 - Often good to include an x0 input the bias unit
 - This is equal to 1
- This is an artificial neuron with a sigmoid (logistic) activation function
 - O vector may also be called the weights of a model
- The above diagram is a single neuron
 - Next, we have a group of neurons strung together

Artificial Neural Network

- input is x₁, x₂ and x₃
 - We could also call input activation on the first layer i.e. (a_1^1, a_2^1) and a_3^1
 - Three neurons in layer 2 (a_1^2, a_2^2) and a_3^2
 - Final neuron which produces the output
 - Which again we *could* call a₁³
- First layer is the input layer
- Final layer is the **output layer** produces value computed by a hypothesis
- Middle layer(s) are called the hidden layers
 - You don't observe the values processed in the hidden layer
 - Can have many hidden layers

Neural networks - notation

- a_i(j) activation of unit i in layer j
 - So, a₁² is the activation of the 1st unit in the second layer
 - By activation, we mean the value which is computed and output by that node
- $\Theta^{(j)}$ matrix of parameters controlling the function mapping from layer j to layer j+1
 - Parameters for controlling mapping from one layer to the next
 - If network has
 - s_i units in layer j and
 - s_{i+1} units in layer j + 1
 - Then Θ^{j} will be of dimensions $[s_{j+1} x s_{j} + 1]$
 - Because
 - s_{j+1} is equal to the number of units in layer (j + 1)
 - (s_i + 1) is equal to the number of units in layer j, plus an additional unit

Neural networks - notation

- Looking at the Θ matrix
 - Column length is the number of units in the following layer
 - Row length is the number of units in the current layer + 1 (because we have to map the bias unit)
 - So, if we had two layers 101 and 21 units in each
 - Then Θ^j would be = [21 x 102]

- What are the computations which occur?
 - We have to calculate the activation for each node
 - That activation depends on
 - The input(s) to the node
 - The parameter associated with that node (from the Θ vector associated with that layer)

 Below we have an example of a network, with the associated calculations for the four nodes below

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

- calculate each of the layer-2 activations based on the input values with the bias term (which is equal to 1)
 - i.e. x₀ to x₃
- then calculate the final hypothesis (i.e. the single node in layer 3) using exactly the same logic
 - except the input is not x values, but the activation values from the preceding layer

- The activation value on each hidden unit (e.g. a_1^2) is equal to the sigmoid function applied to the linear combination of inputs
 - Three input units
 - So $\Theta^{(1)}$ is the matrix of parameters governing the mapping of the input units to hidden units
 - $\Theta^{(1)}$ here is a [3 x 4] dimensional matrix
 - Three hidden units
 - Then $\Theta^{(2)}$ is the matrix of parameters governing the mapping of the hidden layer to the output layer
 - $\Theta^{(2)}$ here is a [1 x 4] dimensional matrix (i.e. a row vector)
 - One output unit

- Something conceptually important is that
 - Every input/activation goes to every node in following layer
 - Which means each "layer transition" uses a matrix of parameters with the following significance
 - **Θ**_{ji}l
 - j (first of two subscript numbers)= ranges from 1 to the number of units in layer l+1
 - i (second of two subscript numbers) = ranges from 0 to the number of units in layer I
 - I is the layer you're moving FROM

- For example Θ_{13}^1 = means
 - 1 we're mapping to node 1 in layer l+1
 - 3 we're mapping from node 3 in layer I
 - 1 we're mapping from layer 1

- Here we'll look at how to carry out the computation efficiently through a vectorized implementation.
- We'll also consider why NNs are good and how we can use them to learn complex non-linear things

$$\begin{split} a_1^{(2)} &= g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3) \\ a_2^{(2)} &= g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3) \\ a_3^{(2)} &= g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3) \\ h_{\Theta}(x) &= a_1^{(3)} &= g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)}) \end{split}$$

- Define some additional terms
 - $z_1^2 = \Theta_{10}^1 x_0 + \Theta_{11}^1 x_1 + \Theta_{12}^1 x_2 + \Theta_{13}^1 x_3$
 - Which means that
 - $a_1^2 = g(z_1^2)$
 - superscript numbers are the layer associated
- Similarly, we define the others as
 - z_2^2 and z_3^2
 - These values are just a linear combination of the values
- If we look at the block we just redefined
 - We can vectorize the neural network computation
 - So lets define
 - x as the feature vector x
 - z² as the vector of z values from the second layer

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

- z² is a 3x1 vector
- We can vectorize the computation of the neural network as follows in two steps
 - $z^2 = \Theta^{(1)}x$
 - i.e. $\Theta^{(1)}$ is the matrix defined above
 - x is the feature vector
 - $a^2 = g(z^{(2)})$
 - To be clear, z² is a 3x1 vecor
 - a² is also a 3x1 vector
 - g() applies the sigmoid (logistic) function element wise to each member of the z² vector
- To make the notation with input layer make sense;
 - $a^1 = x$
 - a¹ is the activations in the input layer
 - Obviously the "activation" for the input layer is just the input!
 - So we define x as a¹ for clarity
 - So
 - a¹ is the vector of inputs
 - a² is the vector of values calculated by the g(z²) function

• Having calculated then z^2 vector, we need to calculate a_0^2 for the final hypothesis calculation

$$h_{\Theta}(x) = g(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)})$$

- To take care of the extra bias unit add $a_0^2 = 1$
 - So add a₀² to a² making it a 4x1 vector
- So,
 - $z^3 = \Theta^2 a^2$
 - This is the inner term of the above equation
 - $h_{\Theta}(x) = a^3 = g(z^3)$
- This process is also called forward propagation
 - Start off with activations of input unit
 - i.e. the x vector as input
 - Forward propagate and calculate the activation of each layer sequentially
 - This is a vectorized version of this implementation

- Layer 3 is a logistic regression node
- The hypothesis output = $g(\Theta_{10}^2 a_0^2 + \Theta_{11}^2 a_1^2 + \Theta_{12}^2 a_2^2 + \Theta_{13}^2 a_3^2)$
- This is just logistic regression
 - The only difference is, instead of input a feature vector, the features are just values calculated by the hidden layer

- The features a₁², a₂², and a₃² are calculated/learned not original features
- So the mapping from layer 1 to layer 2 (i.e. the calculations which generate the a^2 features) is determined by another set of parameters Θ^1
 - So instead of being constrained by the original input features, a neural network can learn its own features to feed into logistic regression
 - Depending on the Θ¹ parameters you can learn some interesting things
 - Flexibility to learn whatever features it wants to feed into the final logistic regression calculation
 - compared to previous logistic regression, calculate your own exciting features to define the best way to classify or describe something
 - the hidden layers role: feed the hidden layers our input values, and let them learn whatever gives the best final result to feed into the final output layer

- As well as the networks already seen, other architectures (topology) are possible
 - More/less nodes per layer
 - More layers
 - Once again, layer 2 has three hidden units, layer 3 has 2 hidden units by the time you get to the output layer you get very interesting non-linear hypothesis

- Some of the intuitions here are complicated and hard to understand
 - In the following lectures we're going to go though a detailed example to understand how to do non-linear analysis

Example – complex, nonlinear function

- Non-linear classification: XOR/XNOR
 - x₁, x₂ are binary

$$y = x_1 XOR x_2$$

 $x_1 XNOR x_2$

Where XNOR = NOT $(x_1 XOR x_2)$

Positive examples when both are true and both are false

Let's start with something a little more straight forward...

Don't worry about how we're determining the weights (Θ values) for now - just get a flavor of how NNs work

Neural Network example 1: AND function

- Can we get a one-unit neural network to compute this logical AND function? (probably...)
 - · Add a bias unit
 - Add some weights for the networks
 - What are weights?
 - Weights are the parameter values which multiply into the input nodes (i.e. Θ)

Neural Network example 1: AND function

- Sometimes it's convenient to add the weights into the diagram. These values are in fact just the Θ parameters so
 - $\Theta_{10}^{1} = -30$
 - $\Theta_{11}^{1} = 20$
 - $\Theta_{12}^{1} = 20$
- To use our original notation

Neural Network example 1: AND function

Look at the four input values

x_1	x_2	$h_{\Theta}(x)$
0	0	g (-30) 20
0	1	9(-10) 20
1	0	3(-10) 20
1	1	9(10) 21
ho(x) % X, AND X2		

Sigmoid function (reminder)

• So, as we can see, when we evaluate each of the four possible input, only (1,1) gives a positive output

Neural Network example 2: NOT function

Neural Network example 3: XNOR function

- So how do we make the XNOR function work?
 XNOR is short for NOT XOR
 - i.e. NOT an exclusive or, so either go big (1,1) or go home (0,0)
- So we want to structure this so the input which produce a positive output are
 - AND (i.e. both true)OR
 - Neither (which we can shortcut by saying not only one being true)

Neural Network example 3: XNOR function

Multi-class classification

- Multiclass classification is, unsurprisingly, when you distinguish between more than two categories (i.e. more than 1 or 0)
- With handwritten digital recognition problem 10 possible categories (0-9)
 - How do you do that?
 - Done using an extension of one vs. all classification
- Recognizing pedestrian, car, motorbike or truck
 - Build a neural network with four output units
 - Output a vector of four numbers
 - 1 is 0/1 pedestrian
 - 2 is 0/1 car
 - 3 is 0/1 motorcycle
 - 4 is 0/1 truck
 - When image is a pedestrian get [1,0,0,0] and so on

Multi-class classification

- Just like one vs. all described earlier
 - Here we have four logistic regression classifiers

Multi-class classification

- Training set here is images of our four classifications
 - While previously we'd written y as an integer {1,2,3,4}
 - Now represent y as

$$y^{(i)}$$
 one of $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$