高二数学 期中测试卷

试卷分为两卷, A 卷 100 分, B 卷 50 分, 共计 150 分 考试时间: 120 分钟

A券

	沙子 中文 日度	/十十時十 1	10 小田新	長 小 晒 ೯ 八	# =0 // \
━.	近 挥劍	(4)人逖共]	LU小觑,	每小题 5 分,	共 50 分)

1.	不等式 $\frac{x-3}{x+2}$ <0的解	集为		
	A. $\{x -2 < x < 3\}$	B. $\{x x < -2\}$	$C. \left\{ x \middle x < -2 \overrightarrow{\boxtimes} x > 3 \right\}$	$D.\left\{x \middle x > 3\right\}$
2.	已知数列 $\{a_n\}$ 满足 a	$a_{n+1} = a_n + n$, $A_1 = 2$, 那么 <i>a</i> ₃ =	
	A. 4	B. 5	C. 6	D. 7

- 3. 下列命题中的假命题是
 - A. $\forall x \in \mathbf{R}, x^3 > 0$.

B. $\exists x \in \mathbf{R}$,使 $\tan x = 2$.

C. $\forall x \in \mathbf{R}, 2^x > 0$.

- D. $\exists x \in \mathbf{R}$, $\notin \lg x = 0$.
- 4. 已知等差数列 $\{a_n\}$ 中, $a_1 = -1$,公差d = 2,则 $\{a_n\}$ 的前 5 项和等于
 - A. -15
- B. -17
- C. 15

D. 17

- 5. 若a < b < 0,则下列不等式中成立的是

- A. $a^2 < b^2$ B. $\frac{a}{b} < 1$ C. $\frac{1}{a} < \frac{1}{b}$ D. $\frac{1}{a} > \frac{1}{b}$
- 6. 设 $P: a^2 = 4$, Q: a = 2, 则 $P \neq Q$ 的
 - A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

- D. 既不充分也不必要条件

- A. $a^2 + b^2 > 2ab$ B. $a + b \ge 2\sqrt{ab}$ C. $\frac{1}{a} + \frac{1}{b} > \frac{2}{\sqrt{ab}}$ D. $\frac{b}{a} + \frac{a}{b} \ge 2$
- 8. 等差数列 $\{a_n\}$ 的前n项和为 S_n , $a_1 = -11$, $a_4 + a_6 = -6$, 则 S_n 取最小值时的n为
 - A. 6
- B. 7
- C. 8
- D. 9

9. 函数 $y = \tan x + \frac{9}{\tan x} (\frac{\pi}{2} < x < \pi)$ 的最大值为

A. 6

B. 9

C. -6

D. -9

10. 已知常数 $k \in (0, 1)$,数列 $\left\{a_n\right\}$ 满足 $a_n = n \cdot k^n (n \in \mathbb{N}^*)$. 下面说法正确的是

①当 $k = \frac{1}{2}$ 时,数列 $\{a_n\}$ 为递减数列;

②当 $0 < k < \frac{1}{2}$ 时,数列 $\{a_n\}$ 为递减数列;

③当 $\frac{1}{2}$ <k<1时,数列 $\{a_n\}$ 不一定有最大项;

④当 $\frac{k}{1-k}$ 为正整数时,数列 $\{a_n\}$ 必有两项相等的最大项.

A. (1)(2)

B. (2)(3)

C. (2)(4)

D. (3)(4)

二. 填空题(本大题共5小题,每小题4分,共20分)

11. 命题" $\forall x \in \mathbf{R}$, $x^2 - 1 > 0$ "的否定是_____.

12. 设 S_n 为等比数列 $\{a_n\}$ 的前n项和, $8a_2-a_5=0$,则公比q=______, $\frac{S_4}{S_2}=$ ______.

13. 若正数 a,b 满足 $\frac{1}{a} + \frac{4}{b} = 1$,则 a+b 的最小值等于_____.

14. 已知函数 f(x) 的对应关系如下表所示:

х	1	2	3
f(x)	3	1	2

- 15. 能够说明"设a,b,c是任意实数. 若a>b>c,则a+b>c."是假命题的一组整数a,b,c的值依次为____.
- 三. 解答题(本大题共3小题,每小题10分,共30分)
- 16. (本小题满分 10 分) 已知 $\{a_n\}$ 为等差数列,且 $a_3 = 6$, $a_6 = 0$.

(I) 求 $\{a_n\}$ 的通项公式;

(I) 若等比数列 $\{b_n\}$ 满足 $b_1 = 3$, $b_2 = a_4 + a_5$,求 $\{b_n\}$ 的前n项和公式.

17. (本小题满分 10 分)

已知函数 $f(x) = x^2 + ax - 4$.

- (I) 当a = 3时,解不等式 f(x) < 0;
- (Ⅱ) 若不等式 f(x)+5>0 的解集为**R**, 求实数 a 的取值范围.
- (本小题满分10分) 18.

已知 $\{a_n\}$ 是等差数列, $\{b_n\}$ 是等比数列,且 $b_2=3$, $b_5=81$, $a_1=b_1$, $a_{14}=b_4$.

- (I) 求 $\{a_n\}$ 的通项公式;
- (II) 设 $c_n = a_n b_n$, 求数列 $\{c_n\}$ 的前n项和 T_n .

B券

- 一. 选填题(本大题共7小题,每小题4分,共28分)
- 1. 若m < 0, n > 0且m + n < 0,则

A. m < -n < n < -m B. -n < m < -m < n C. m < -n < -m < n D. -n < m < n < -m

- 2. 设 $\{a_n\}$ 是等差数列, $\{b_n\}$ 为等比数列,其公比 $q \neq 1$,且 $b_n > 0$ $(n = 1, 2, 3, \cdots)$. 若 $a_1 = b_1$, $a_{11} = b_{11}$,则 $a_6 = b_6$ 的大小关系为

 - A. $a_6 = b_6$ B. $a_6 > b_6$ C. $a_6 < b_6$
- D. 不确定
- 3. 已知数列 $\{a_n\}$ 满足 $a_{n+1}+a_n=4n+3$,则 $a_1+a_{2020}=$
 - A. 4043
- B. 4046
- C. 4047
- D. 4049
- 4. 己知数列 $\{a_n\}$ 满足 $a_n = 4S_n 3$, $n \in \mathbb{N}^*$,则 $a_1 + a_3 + a_5 + a_7 + a_9 = _____.$
- 5. 若 a > 0, b > 0, 则不等式 $-b < \frac{1}{r} < a$ 的**解集**是_____.
- 6. 已知a > b > 0,则 $a^2 \frac{4}{b^2 ab}$ 的最小值是_____.
- 7. 有穷数列 $\{a_n\}$ $(n \in \mathbb{N}^*, n \le 12)$ 满足 a_1, a_4, a_5 成等比数列,且对 $\forall k \in \mathbb{N}^*, 2 \le k \le 12$,都有

 $|a_k - a_{k-1}| = 1$. 若 $a_1 = 1$, $a_{12} = 4$,则满足条件的不同数列 $\{a_n\}$ 的个数为_____.

二. 解答题(本大题共2小题,共22分)

8. (本小题满分10分)

已知二次函数 $f(x) = a^2x + l$, f(-1) = -4, 恒有 $f(x) \le 6x + 2$. 数列 $\{a_n\}$ 满足 $a_{n+1} = f(a_n)$,且 $0 < a_n < \frac{1}{2}$ $(n \in \mathbb{N}^*)$.

- (I) 求 f(x) 的解析式;
- (Ⅱ) 证明:数列 $\{a_n\}$ 单调递增;

(III)
$$\mbox{id} \prod_{i=1}^{n} a_i = a_1 a_2 \cdot \dots \cdot a_n$$
. $\mbox{#} a_1 = \frac{1}{3}, \mbox{#} \prod_{i=1}^{n} (1 - 2a_i)$.

9. (本小题满分 12 分)

给定数列 a_1, a_2, \dots, a_n . 对 $i = 1, 2, 3, \dots, n-1$,该数列前 i 项的最大值记为 A_i ,后 n-i 项 $a_{i+1}, a_{i+2}, \dots, a_n$ 的最小值记为 B_i , $d_i = A_i - B_i$.

- (I) 设数列 $\{a_n\}$ 为3,4,7,1. 写出 d_1,d_2,d_3 的值;
- (Π) 设 $a_1, a_2, \dots, a_n (n \ge 4)$ 是公比大于1的等比数列,且 $a_1 > 0$. 证明: d_1, d_2, \dots, d_{n-1} 是等比数列;
- (III) 若 $d_1 = d_2 = \cdots = d_{n-1} = 0$, 证明: $\{a_n\}$ 是常数列.

参考答案

A 卷

一. 选择题(本大题共10小题,每小题5分,共50分)

题号	1	2	3	4	5	6	7	8	9	10
答案	A	В	A	С	D	В	D	A	С	С

二. 填空题(本大题共5小题,每小题4分,共20分)

11	$\exists x \in \mathbf{R}, \ x^2 - 1 \le 0.$		12	2,5	13	9
14	3	1	15	-1,-2,-3		

- 三、解答题(本大题共3小题,每小题10分,共30分)
- 16. (本小题满分 10 分)

已知 $\{a_n\}$ 为等差数列,且 $a_3 = 6$, $a_6 = 0$.

- (I) 求{ a_n }的通项公式;
- (II) 若等比数列 $\{b_n\}$ 满足 $b_1 = 3$, $b_2 = a_4 + a_5$, 求 $\{b_n\}$ 的前n项和公式.
- 解:(I)设等差数列 $\{a_n\}$ 的公差为d.

因为
$$a_3 = 6, a_6 = 0$$
,

所以
$$\begin{cases} a_1 + 2d = 6 \\ a_1 + 5d = 0 \end{cases}$$
,解得 $a_1 = 10, d = -2$.

所以
$$a_n = 10 + (n-1) \cdot (-2) = -2n + 12$$
.

(II) 设等比数列 $\{b_n\}$ 的公比为q.

因为
$$b_2 = a_4 + a_5 = 6$$
, $b_1 = 3$,

所以
$$3q=6$$
,即 $q=2$.

所以
$$\{b_n\}$$
的前 n 项和公式为 $S_n = \frac{b_1(1-q^n)}{1-q} = 3(2^n-1)$.

17. (本小题满分 10 分)

已知函数 $f(x) = x^2 + ax - 4$.

- (I) 当a = 3时,解不等式 f(x) < 0;
- (Ⅱ) 若不等式 f(x)+5>0 的解集为 \mathbb{R} , 求实数 a 的取值范围.

解: (I) 由 $f(x) = x^2 + 3x - 4 < 0$ 得 (x+4)(x-1) < 0,

由二次函数的图象,得原不等式解集为 $\{x \mid -4 < x < 1\}$.

(II) 若不等式 f(x)+5>0 的解集为 $\mathbf R$,因为抛物线 $g(x)=f(x)+5=x^2+ax+1$ 开口向上, 所以只需 $\Delta=a^2-4<0$,解得 -2<a<2 .

故 f(x)+5>0 解集为**R**时,实数 a 的取值范围为(-2,2).

18. (本小题满分 10 分)

已知 $\{a_n\}$ 是等差数列, $\{b_n\}$ 是等比数列,且 $b_2=3$, $b_5=81$, $a_1=b_1$, $a_{14}=b_4$.

- (I) 求 $\{a_n\}$ 的通项公式;
- (II) 设 $c_n = a_n b_n$, 求数列 $\{c_n\}$ 的前n项和 T_n .
- 解: (I) 等比数列 $\{b_n\}$ 的公比 $q^3 = \frac{b_5}{b_2} = \frac{81}{3} = 27$, 故q = 3.

所以
$$b_1 = \frac{b_2}{q} = 1$$
, $b_4 = b_3 q = 27$.

设等差数列 $\{a_n\}$ 的公差为d.

因为
$$a_1 = b_1 = 1$$
, $a_{14} = b_4 = 27$,

所以
$$1+13d=27$$
, 即 $d=2$.

所以
$$a_n = 2n-1 \ (n \in N^*)$$
.

(II) 曲(I) 知, $a_n = 2n-1$, $b_n = 3^{n-1}$, 从而 $c_n = (2n-1) \cdot 3^{n-1}$.

由于
$$T_n = c_1 + c_2 + c_3 + \cdots + c_n$$
,

则
$$3T_n = 3 + 3^2 \times 3 + 5 \times 3^3 + \dots + (2n-1) \cdot 3^n$$
 (2)

$$-2T_n = 1 + 2 \times (3 + 3^2 + 3^3 + \dots + 3^{n-1}) - (2n - 1) \cdot 3^n$$

$$= 1 + 2 \times \frac{3 \times (1 - 3^{n-1})}{1 - 3} - (2n - 1) \cdot 3^n$$

$$= 1 + 3 \times (3^{n-1} - 1) - (2n - 1) \cdot 3^n$$

$$= -2 - (2n - 2) \cdot 3^n$$

所以
$$T_n = (n-1) \cdot 3^n + 1$$
.

B卷

一. 选填题(本大题共7小题,每小题4分,共28分)

1	2	3	4	5	6	7
A	В	A	341 256	$\{x \mid x < -\frac{1}{b} \overrightarrow{\boxtimes} x > \frac{1}{a}\}$	8	176

- 二. 解答题(本大题共2小题,共22分)
- 8. (本小题满分 10 分)

已知二次函数 $f(x) = a^2x + l$, f(-1) = -4, 恒有 $f(x) \le 6x + 2$.数列 $\{a_n\}$ 满足 $a_{n+1} = f(a_n)$,且 $0 < a_n < \frac{1}{2}$ $(n \in \mathbb{N}^*)$.

- (I) 求f(x)的解析式;
- (Ⅱ) 证明:数列 $\{a_n\}$ 单调递增;

解: (I) 由 f(-1) = -4 得 a-b=-4, 即 b=a+4;

因为 $f(x) \le 6x + 2$ 恒成立,即 $ax^2 + (b-6)x - 2 \le 0$ 恒成立,

即 $ax^2 + (a-2)x - 2 \le 0$ 恒成立,从而 $\Delta = (a-2)^2 + 8a = (a+2)^2 \le 0$,所以 a = -2;

所以表达式为 $f(x) = -2x^2 + 2x$;

(II) 由于 $a_{n+1} - a_n = (-2a_n^2 + 2a_n) - a_n = -2a_n^2 + a_n = -2a_n(a_n - \frac{1}{2})$, 又因为 $0 < a_n < \frac{1}{2} (n \in \mathbb{N}^*)$,

所以 $-2a_n(a_n-\frac{1}{2})>0$, 因此 $a_{n+1}>a_n$, 所以数列 $\{a_n\}$ 单调递增;

(III) 因为 $1-2a_{n+1}=1-2(-2a_n^2+2a_n)=1-4a_n+4a_n^2=(1-2a_n)^2>0$,

所以
$$\log_3(1-2a_{n+1}) = 2\log_3(1-2a_n)$$
,即 $\frac{\log_3(1-2a_{n+1})}{\log_3(1-2a_n)} = 2$,

所以数列 $\log_3(1-2a_n)$ 是等比数列,其首项 $\log_3(1-2a_1)=-1$,公比 q=2,

所以
$$S_n = \frac{b_1(1-q^n)}{1-q} = 1-2^n$$
, 所以 $\prod_{i=1}^n (1-2a_i) = 3^{S_n} = 3^{1-2^n}$.

9. (本小题满分 12 分)

给定数列 a_1, a_2, \dots, a_n . 对 $i = 1, 2, 3, \dots, n-1$,该数列前 i 项的最大值记为 A_i ,后 n-i 项 $a_{i+1}, a_{i+2}, \dots, a_n$ 的最小值记为 B_i , $d_i = A_i - B_i$.

- (I) 设数列 $\{a_n\}$ 为3,4,7,1. 写出 d_1,d_2,d_3 的值;
- (Π) 设 $a_1, a_2, \dots, a_n (n \ge 4)$ 是公比大于1的等比数列,且 $a_1 > 0$. 证明 d_1, d_2, \dots, d_{n-1} 是等比数列;
- (III) 若 $d_1 = d_2 = \cdots = d_{n-1} = 0$,证明 $\{a_n\}$ 是常数列.

$$\mathfrak{M}$$
: (I) $d_1 = A_1 - B_1 = 3 - 1 = 2$, $d_2 = A_2 - B_2 = 4 - 1 = 3$, $d_3 = A_3 - B_3 = 7 - 1 = 6$

(II) 因为 $a_1, a_2, \cdots, a_n (n \ge 4)$ 是公比大于1的等比数列,且 $a_1 > 0$ 所以 $a_n = a_1 q^{n-1}$ 且 $\{a_n\}$ 为单调递增数列. 所以当 $k = 1, 2, 3, \cdots, n-1$ 时, $d_k = A_k - B_k = a_k - a_{k+1} < 0$ 所以当 $k = 2, 3, \cdots, n$ 时, $\frac{d_k}{d_{k-1}} = \frac{a_k - a_{k+1}}{a_{k-1} - a_k} = \frac{a_{k-1} q(1-q)}{a_{k-1} (1-q)} = q$ 所以 $d_1, d_2, \cdots, d_{n-1}$ 是首项为 $a_1 - a_2$,公比为q的等比数列.

(Ⅲ) 任取 $i \in \{1, 2, \dots, n-1\}$,因为 $0 = d_i = A_i - B_i$,所以, $A_i = B_i$,故 $a_i \leq \max\{a_1, \dots, a_i\} = A_i = B_i = \min\{a_{i+1}, \dots, a_n\} \leq a_{i+1}$,故 $a_1 \leq a_2 \leq \dots \leq a_n$,因此,任取 $i \in \{1, 2, \dots, n-1\}$,有 $a_i = \max\{a_1, \dots, a_i\} = A_i = B_i = \min\{a_{i+1}, \dots, a_n\} = a_{i+1}$,即 $a_1 = a_2 = \dots = a_n$,也即 $\{a_n\}$ 是常数列.