Sequence alignment

Multiple alignment scoring and dynamic programming

Outline

- The multiple sequence alignment algorithm
- Scoring Multiple Sequence Alignments
- Dynamic programming

What is multiple sequence alignment?

Given: three or more related biological sequences

Do: identify the subsets of positions across sequences that are truly related

In other words: find a simultaneous alignment of all input sequences such that the implied pairwise alignments identify the truly related positions between each pair of sequences

An example multiple sequence alignment

Why multiple sequence alignment?

- Build phylogenetic trees (next module)
 - Determine evolutionary relationships between sequences
- A multiple sequence alignment can represent a family of proteins with similar function
 - Compare new sequence to a "family" of known proteins
 - For example the BLOCKS database used for BLOSUM contains several ungapped alignments for known protein families
- Discover common signatures or protein domains among a group of proteins
- Identify genetic variation among individuals of a population

Some notation for multiple sequence alignments

- Let *m* denote a Multiple Sequence Alignment
- m_i is the i^{th} column of the alignment m
- m_i^j is the i^{th} column and j^{th} row
- c_i^a count of residue a in column i

Example using notation

Scoring a Multiple Sequence Alignment (MSA)

- Key issue: how do we score a multiple sequence alignment?
- Usually, we assume that columns of an alignment are independent

$$Score(m) = G(m) + \sum_{i} S(m_{i})$$
gap function
$$score of i^{th} column$$

 For now, we will simplify the score by assuming a linear gap penalty

$$Score(m) = \sum_{i} S(m_i)$$

Gap penalty (G)

- We will use a simple linear gap penalty function
 - Penalty for a space: s
- Let S(a,b) denote the cost of substituting a by b.
- Linear gap penalty can be incorporated into the substitution matrix
 - S(a,-) = S(-, a) = s
 - S(-,-)=0

Two common ways of scoring a multiple alignment

- Entropy based scores
- Sum of pairs

Entropy of a distribution

- A measure of uncertainty of an outcome
- For a discrete distribution P(X), where X takes k values $x_1, \dots x_k$ it is defined as

$$H(X) = -\sum_{i=1}^{k} P(x_i) \log P(x_i)$$

- Entropy is greatest when we are most uncertain, that is, for a uniform distribution
- Entropy is least when we are most certain, e.g. deterministic event

Entropy in extreme cases

Score of a column: Entropy based

• Score of the i^{th} column of alignment m is

$$S(m_i) = -\sum_{a} c_i^a \log(p_{ia})$$

 p_{ia} : Probability of character a in column i c_i^a : Number of occurrences of a in column i

- This has an entropy-based interpretation
 - Let X_i be a random variable representing a character in column i
 - Consider each entry of column i to be observations of X_i across multiple independent experiments c_i^a
 - across multiple independent experiments $P(X_i = a) \quad \text{by} \quad p_{ia} = \frac{c_i^a}{a}$
 - Column score is proportional to the entropy of X_i

Scoring an alignment: Entropy based score

- High entropy: More uniform distribution/more variability of characters
- Low entropy: Less uniform distribution/less variability of characters

$$S(m_i) = -\sum_{a} c_i^a \log(p_{ia})$$

Scoring of a column: Sum of Pairs

Compute the sum of the pairwise scores

$$S(m_i) = \sum_{k < l} s(m_i^k, m_i^l)$$

 Iterate over all pairs of rows in the column

$$s(m_i^k, m_i^l)$$
 Substitution score from a substitution/match matrix such as BLOSUM or PAM

Dynamic Programming (DP) for global multiple sequence alignment

- Assume columns are independent
 - Score of alignment is sum of column scores
- Generalization of methods for pairwise alignment
 - consider k-dimensional matrix for k sequences (instead of 2-dimensional matrix)
 - each matrix element represents alignment score for k prefixes (instead of 2 prefixes)

Notation for DP

- Assume we have k sequences x^1, \cdots, x^k
- i_1 denotes the length of the prefix for sequence 1
- i₂ denotes the length of the prefix for sequence 2
- ...
- i_k denotes the length of the prefix for sequence k
- $x_{i_k}^k$ denotes the character at i_k position of sequence x^k
- *F*: *k*-dimensional matrix where

$$F(i_1, i_2, \cdots, i_k)$$

denotes the score of the best alignment of the i_1 , i_2 .. i_k prefixes of the sequences

Recall the DP for the pairwise alignment

$$F(i_1, i_2) = \max \begin{cases} F(i_1 - 1, i_2 - 1) + S(x_{i_1}^1, x_{i_2}^2) \\ F(i_1, i_2 - 1) + S(-, x_{i_2}^2) \\ F(i_1 - 1, i_2) + S(x_{i_1}^1, -) \end{cases}$$

DP for Multiple sequence alignment

$$F(i_{1}-1,\dots,i_{k}-1)+S(x_{i_{1}}^{1},\dots,x_{i_{k}}^{k})$$

$$F(i_{1},i_{2}-1,\dots,i_{k}-1)+S(-,x_{i_{2}}^{2},\dots,x_{i_{k}}^{k})$$

$$F(i_{1}-1,i_{2},\dots,i_{k}-1)+S(x_{i_{1}}^{1},-,\dots,x_{i_{k}}^{k})$$

$$\vdots$$

$$F(i_{1},i_{2}-1,\dots,i_{k})+S(-,x_{i_{2}}^{2},\dots,-)$$

$$\vdots$$

max score of alignment for the k prefixes

How many items do we need to maximize over? $2^k - 1$

DP algorithm is too expensive

- For k sequences each of length n
 - -Space complexity: $O(n^k)$
 - -Time complexity: $O(n^k 2^k)$

Summary

- Multiple alignment task and applications
- Two scoring functions
 - Entropy-based
 - -Sum of pairs
- Inefficient dynamic programming extension