B. Teeh Degree Examination, May 2023. 18 MAB 302T - Discrete Mathematics for Engineers Answer Skey.

21).
$$(fo(goh))(n) = \frac{1}{(1+x^2)^3} - \frac{4}{(1+x^2)^{41}} \longrightarrow (2n)$$

 $((fog)oh)(n) = \frac{1}{(1+x^2)^3} - \frac{4}{(1+x^2)} \longrightarrow (2n)$

when 5 occupies first place =
$$\frac{6!}{2!}$$
 = 360
when 6 or 7 occupies first place = $\frac{6!}{2!2!}$ = $\frac{260}{2!2!}$ = $\frac{20}{2!2!}$ = $\frac{20}{2!2!}$

23.	P	9	79	9-7P	p -> 9	(9->7p) (p6-)9				
	T	TFTF	FFTT	FTTT	T F T	F F T -> (4m)				
24).										
	Let b, ceg. Then b= and c= an where mand n									
	are integers. Now b*c= a"*a" = a"*a" = C*b.									
	Hence (G,*) is an abelian group> (4m)									
25)	Since every edge is incident with exactly two vertices									
	every edge contributes 2 to the sumof the degree of									
	inatices : 2 deglvi) = 20.									
26).	$S = \{1, 2, 3, 4, 6, 8, 12\},$ $R = \{x \leq y \mid \text{ at dividesy}\} = \{1, 1\}, (1, 2), (1, 3), (1, 4)\}$ $x, y \in S.$									
	(1,6), (1,8), (1,12), (2,2), (2,4), (2,6), (2,6)									
	(3,3), (3,6), (3,12), (4,4), (4,8), (4,12), (6,6), (6,12), $(3,3), (3,6), (3,12), (4,4), (4,8), (4,12), (6,6), (6,12),$									
	(9.8) (12,12)									
æ	(8,8), (12,12). Hasse Diagram: 4 2 3 (3m)									
*										

		1			
	W2	1,2,4,5	1,2,3	(1,1), (1,2), (1,3),	(11100)
N.		A Samuel Samuel		(2,1), (2,2), (2,3)	11100
				(4,1), (4,2), (4,3)	11110
	and ditte	4. 13. Electric	0 127 3	(5,1), (5,2) (5,3)	11101
<i>}</i>	77,378	29 1920	90 ON	(1,4), (2,4), (4,4)	(111107
	W_3	11.2.1		(514)	11110
	7.3	(1,2,4)	4		00010
		and Name			10011
					\rightarrow (2m)
	W4	1,2,3,4,	112,3,4	(1,1), (1,2),(1,3),(1,4)	
		5	* '	(2,1), (2,2),(2,3)(2,4)	11110
				(3,1), (3,2), (3,3)(1,4)	
				(4,1), (4,2), (4,3), (4,4) (5,1), (5,2), (5,3), (5,4)	LIIII ()
1				(5,1),(5,2),5,3),	f111107
	W5	5	(12,3,4,5)		11110 00
				(5,4), (5,5)	= R
					1 1 1 1 1 1 2.
					$\longrightarrow (2m)$
	Proc	of: f:	A-B;	g: B-> c gof:	$A \rightarrow C$
	-			V	al a vertible

28) b)

Since f, g are invertible, g of is also invertible.

So $(g \circ f)^{\dagger}$: $C \rightarrow A$ equists.

Since g^{\dagger} : $c \rightarrow B$ and f^{\dagger} : $B \rightarrow A$; $f^{\dagger} \circ g^{\dagger}$: $c \rightarrow A$ can be formed and $(g \circ f)^{\dagger}$, $f^{\dagger} \circ g^{\dagger}$: $c \rightarrow A$.

Now for any $a \in A$, let b = f(a) and c = g(b). $f(g \circ f)(a) = g(f(a)) = g(b) = c$ $f(g \circ f)^{\dagger}(a) = g(f(a)) = g(b) = c$

 $=229 \longrightarrow (2m)$

6

30) a (TPVq) ~ (Pr(prq)) (1) = (1pvq) ~ ((prp) ~9) = (7pvq) ~ (prq) = (7pn(pnq)) v(qn(pnq)) = ((7PAP) ~ (QAP) (F 19) V (P19) = FV(P19) = (P19). -> (6m) Reason. (Ii) Statement S.NO (pvg) +78 78 -> (CA75) 2. T(1,2) HS. (pvq) -> (s 17t) 3. pre 4. T(4,3) M.P SMIF 5 (sn#) -> (avb) 6. T(5,6) M.P > (6m) avb 7. Rama gets his degree 30) Ite will go for a job. He will get married soon. Ite goes for higher stedy. > (2m) Symbolic Form:- $P \rightarrow q$, $q \rightarrow r$, $s \rightarrow 7r$, $p \wedge s$ are inconsistent.

30) b) cont.

Step No. Statement Reasen. P->9 9->8 2. T(1,2) HS por >(4m) 3. PAS 4. T(4) T(4) S -> 78 F. TC 6,7) 19)P T (5,3) MP. 8 T (8,9) conjunction 2178 1.0 T(10) negation Law. 11,

31)a) i)

Let $(G_1, *)$ be a group. Let $(H_1, *) \subseteq (G_1, *)$ and $(H_2, *) \subseteq (G_1, *)$. $H_1 \cap H_2$ is a nonempty set. Since identity elt e' is expressed to both H_1 and H_2 . Let be $H_1 \cap H_2$ then a eH_1 and be H_2 . Let be $H_1 \cap H_2$ then be H_1 and be H_2 . H_1 is a subgroup of G_1 . $A \times B^{\dagger} \in H_2$ $A \times B^{\dagger} \in H_2$. $A \times B^{\dagger} \in H_2$ $A \times B = (G_1, *)$. Let $(H_1 \cap H_2 \circ *) \subseteq (G_1, *)$. Let $(H_1 \cap H_2 \circ *) \subseteq (G_1, *)$. Let $(H_1 \cap H_2 \circ *) \subseteq (G_1, *)$ and $(H_2, *) = (3z, +)$ then $(H_1 \cap H_2 \circ *) \subseteq (2z, +)$ and $(H_2, *) = (3z, +)$ then $(H_1 \cap H_2 \circ *) \subseteq (2z, +)$ and $(H_2, *) = (3z, +)$ then $(H_1 \cap H_2 \circ *) \subseteq (2z, +) = (2z \cap H_2 \cap H_2)$.

Hence (HIUH2, *) & (G,*).

(ic)

Let atib and ctid be any two elts of C.

then f(a+ib) + (c+id) = f((a+c) + i(b+d)) = a+c

= f(a+ib) + f(c+id) Hence fix a homomorphism

from C to R.

The identity of R is the real number o.

The images of all eemplex numbers with real part o are each equal to 0, the identity of R under f. Hence, the kernel of f is the set of all purely

imaginary numbers.

 $H = \left[A^T / I_{n-m}\right] ; e: B^2 \rightarrow B^{BT}; m=2, n=5.$

 $A = \begin{cases} 0 & 1 & 1 \end{cases}$ Then $H = \begin{cases} 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{cases}$

Generator matrix G = [Im/A]

9= [10011] -> (6m)

 $w \in B^2 = \{00, 01, 10, 11\}; e(w) = (w9)$

e(00) = [000000]; e(10) = [10011] | + (6m).

eco1) = [01011]; ec11) = [11000]

Hence generated code words are

0000, 01011, 10011, 11000.

31/6/

R

In Gi d(A) = 2 = d(E) = d(H) = d(C). d(B) = 3 = d(F) = d(G) = d(D)In Ga: d(P) = d(T) = d(U) = d(Q) = 2> (am) d(0) = d(s) = d(v) = d(R) = 3. Yng, Vertere B having degree 3 is incident with vertices A and C having degree 21
whereas in G2: Vertiex O having degree 3
is incident with vertices P and R having degree 2 and 3. Hence G, # 92. _____ (4 m) They are not isomorphic. Proof: (i) Let the undirected graph The a tree. Then, by dofn of a tree T is connected.

32) b) (i`i)

Prepared By Dr. D. K. Sheena elmisty

Verified N. P. Je 30 18 123