WSTĘP DO TEORII OBLICZALNOŚCI

Laboratorium 4

OPRACOWANIE

KRZYSZTOF BORZĘCKI

Laboratorium 4/15

Laboratorium 4. Maszyny Turinga działające na zbiorach słów

1.1 Wyrażenia regularne

1.1.1 Definicja wyrażeń regularnych

Składnia wyrażeń regularnych określa, jak wyglądają wyrażenia regularne.

Definicja 1.1. Niech Σ będzie alfabetem. Wyrażenia regularne nad Σ i zbiory przez nie reprezentowane definiujemy rekursywnie w następujący sposób:

- 1. Ø jest wyrażeniem regularnym reprezentującym zbiór pusty.
- 2. ε jest wyrażeniem regularnym reprezentującym zbiór $\{\varepsilon\}$.
- 3. Dla każdego $a \in \Sigma$, **a** jest wyrażeniem regularnym reprezentującym zbiór $\{a\}$.
- 4. Jeżeli r i s są wyrażeniami regularnymi reprezentującymi, odpowiednio, języki R i S, to
 - (a) suma r+s jest wyrażeniem regularnym reprezentującym zbiór $R \cup S$
 - (b) konkatenacja rs jest wyrażeniem regularnym reprezentującym zbiór RS
 - (c) domknięcie Kleene'ego r^* jest wyrażeniem regularnym reprezentującym zbiór R^*
 - (d) grupowanie (r) jest wyrażeniem regularnym

Jeśli \mathbf{r} jest wyrażeniem regularnym, to \mathbf{r}^i oznacza $\mathbf{rr} \dots \mathbf{r}$ (i razy). Możemy skracać wyrażenia \mathbf{rr}^* do \mathbf{r}^+ .

Priorytety operatorów:

- 1. * ma wyższy priorytet niż złożenie lub +
- 2. złożenie ma wyższy priorytet niż + .

1.1.2 Definicja języka określanego przez wyrażenie regularne

Każde wyrażenie regularne definiuje pewien język formalny. Język definiowany przez wyrażenie regularne jest definiowany indukcyjnie. Niech $L(\mathbf{r})$ oznacza język definiowany przez r.

Pamiętamy, że język formalny to zbiór słów (łańcuchów).

Semantyka wyrażeń regularnych precyzyjnie definiuje formalne znaczenie składni wyrażeń regularnych.

Definicja 1.2. Język określający wyrażenie regularne definiujemy przez indukcję.

Podstawa indukcji:

- 1. $L(\varepsilon) = \{\varepsilon\}$.
- 2. $L(\emptyset) = \emptyset$.
- 3. Dla każdego a z alfabetu zachodzi $L(\mathbf{a}) = \{a\}.$

Krok indukcyjny:

Jeżeli **r**, **s** są wyrażeniami regularnymi, to

- 1. $L(\mathbf{r} + \mathbf{s}) = L(r) \cup L(s)$ (suma języków)
- 2. $L(\mathbf{r}^*) = (L(\mathbf{r}))^*$ (domknięcie Kleene'ego języka)
- 3. $L(\mathbf{rs}) = \{xy : x \in L(r) \land y \in L(s)\}$ (konkatenacja języków)
- 4. $L((\mathbf{r})) = L(\mathbf{r})$ (język grupowania)

Zad 1.1. Co oznaczają wyrażenia: $(\mathbf{aa}+\mathbf{bb})$, $(\mathbf{aa}+\mathbf{bb})^*$, $\mathbf{a}+\mathbf{ba}^*$, $(\mathbf{b}^*\mathbf{ab}^*\mathbf{ab}^*)^*+\mathbf{b}^*$, $(\mathbf{b}+\mathbf{ab})^*(\mathbf{a}+\varepsilon)$.

Rozwiazanie.

Wyrażenie

$$(1.1) (aa + bb)$$

opisuje dwa łańcuchy aa i bb, czyli

$$(1.2) {aa, bb}.$$

Wyrażenie

$$(1.3) \qquad (\mathbf{aa} + \mathbf{bb})^*$$

opisuje łańcuchy składające się z aa i/lub bb skonkatenowanych razem, czyli

$$\{\varepsilon, aa, bb, aaaa, aabb, bbaa, bbbb, \ldots\}.$$

Wyrażenie

$$(1.5) a + ba^*$$

opisuje łańcuchy składające się z a lub łańcuchy zawierające jedno b, po którym następuje zero lub więcej a, czyli

$$(1.6) \{a, b, ba, baa, baaa, \ldots\}.$$

Wyrażenie

$$(1.7) \qquad (\mathbf{b}^* \mathbf{a} \mathbf{b}^* \mathbf{a} \mathbf{b}^*)^* + \mathbf{b}^*$$

opisuje zbiór wszystkich łańcuchów zawierające parzystą liczbę a, czyli (1.8)

 $\{\varepsilon, aa, bb, aab, aba, baa, bbb, aaaa, aabb, abab, abba, baab, baba, bbaa, bbbb, \ldots\}$.

Wyrażenie

$$(1.9) (\mathbf{b} + \mathbf{ab})^* (\mathbf{a} + \varepsilon)$$

opisuje zbiór wszystkich łańcuchów nie zawierających aa, czyli

$$\{\varepsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}.$$

Zad 1.2. Co oznaczają wyrażenia: (00+01+10+11), $(0+\varepsilon)(1+\varepsilon)$, $(0+1)^*$, $(0+1)^*00(0+1)^*$, $(0+10)^*$, $(0+\varepsilon)(0+10)^*$, $00^*11^*22^*$? Rozwiązanie.

Wyrażenie

$$(1.11) \qquad (00+01+10+11)$$

opisuje cztery łańcuchy 00, 01, 10 i 11, czyli

$$(1.12) {00, 01, 10, 11}.$$

Wyrażenie

$$(1.13) (0+\varepsilon)(1+\varepsilon)$$

opisuje cztery łańcuchy ε , 0, 1 i 01, czyli

$$\{\varepsilon, 0, 1, 01\}.$$

Wyrażenie

$$(1.15) \qquad \qquad (\mathbf{0} + \mathbf{1})^*$$

opisuje zbiór wszystkich łańcuchów złożonych z zer i jedynek, czyli

$$\{\varepsilon, 0, 1, 00, 01, 10, 11, \ldots\}.$$

Wyrażenie

$$(1.17) (0+1)^*00(0+1)^*$$

opisuje zbiór wszystkich łańcuchów zer i jedynek, zawierających przynajmniej dwa kolejne zera, czyli

 $(1.18) \quad \{00,000,001,100,0000,0001,0010,0011,0100,1100,1000,1001,\ldots\}.$

Wyrażenie

$$(1.19) (0+10)^*$$

reprezentuje zbiór wszystkich łańcuchów zer i jedynek, które rozpoczynają się od jedynki i nie zawierają dwóch kolejnych zer.

Wyrażenie

$$(1.20) \qquad \qquad (\mathbf{0} + \varepsilon)(\mathbf{0} + \mathbf{10})^*$$

opisuje zbiór wszystkich łańcuchów zer i jedynek, dowolnego kształtu, ale nie zawierających dwóch kolejnych zer.

Wyrażenie

$$(1.21) 00*11*22*$$

opisuje te spośród łańcuchów należących do $0^*1^*2^*$, które zawierają przynajmniej po jednym egzemplarzu każdego z symboli. Wyrażenie $00^*11^*22^*$ można zapisać zgodnie z

$$(1.22) 00^*11^*22^* = 0^+1^+2^+.$$

Zad 1.3. Niech $\Sigma = \{x, y, z\}$. Dla składni $\mathbf{x}^* + \mathbf{y}^*$, $\mathbf{x}(\mathbf{x}^* + \mathbf{y}^* + \mathbf{z}^*)$, $\mathbf{x}\mathbf{z}^*\mathbf{x}$ wyznacz semantykę języków i opisz słownie języki.

Rozwiazanie.

Język wszystkich słów złożonych z dowolnej liczby symboli x lub z dowolnej liczby symboli y to

(1.23)
$$L(\mathbf{x}^* + \mathbf{y}^*) = {\{\mathbf{x}\}}^* \cup {\{\mathbf{y}\}}^*.$$

Język wszystkich słów zaczynających się od x to

$$L(\mathbf{x}(\mathbf{x}^* + \mathbf{y}^* + \mathbf{z}^*)) = \{xu : u \in \Sigma^*\}.$$

Język wszystkich słów zaczynających się od x i kończących się na x oraz zawierających dowolną liczbę symboli z pomiędzy to

(1.25)
$$L(\mathbf{xz}^*\mathbf{x}) = \{xux : u \in \{z\}^*\}.$$

Suma dwóch języków formalnych.

Suma $R \cup S$ dwóch języków formalnych R i S to zbiór elementów, które należą do języka R lub S lub do obu.

Zad 1.4. Dla języków $R = \{a, ba\}$ i $S = \{ab, ba, b\}$ wyznacz $R \cup S$.

Rozwiązanie.

Wyznaczamy

$$(1.26) R \cup S = \{a, ba\} \cup \{ab, ba, b\} = \{a, ab, ba, b\}$$

Zad 1.5. Dla języków $R = \{001, 10, 111\}$ i $S = \{\varepsilon, 001\}$ wyznacz $R \cup S$. Rozwiązanie.

Wyznaczamy

$$(1.27) R \cup S = \{001, 10, 111\} \cup \{\varepsilon, 001\} = \{\varepsilon, 10, 001, 111\}.$$

 ${\bf Zad}$ 1.6. Niech $\Sigma=\{a,b\}.$ Zaprojektuj maszynę Turinga akceptującą język

(1.28)
$$L((\mathbf{a} + \mathbf{b})^* \mathbf{a} \mathbf{a} (\mathbf{a} + \mathbf{b})^*).$$

Wykonaj obliczenia maszyny dla konfiguracji początkowej $K_0=q_0\bigtriangledown aabb$. Rozwiązanie.

(1.29)
$$M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) =$$

= $(\{q_0, q_1, q_2, q_3\}, \{a, b\}, \{a, b, \nabla\}, \delta, q_0, \nabla, \{q_3\}).$

Funkcja przejścia $\delta\colon Q\times\Gamma\to Q\times\Gamma\times\{\leftarrow,\to\}$ jest określona przez

$$\delta(q_0, \nabla) = (q_1, \nabla, \rightarrow),$$

$$\delta(q_1, a) = (q_2, a, \rightarrow),$$

(1.32)
$$\delta(q_1, b) = (q_1, b, \to),$$

(1.33)
$$\delta(q_2, b) = (q_1, b, \to),$$

(1.34)
$$\delta(q_2, a) = (q_3, a, \to).$$

Obliczenia możemy zapisać jako

$$(1.35) K_0 = q_0 \nabla aabb,$$

$$(1.36) K_1 = q_1 aabb,$$

$$(1.37) K_2 = aq_2abb,$$

$$(1.38) K_3 = aaq_3bb.$$

A więc

$$(1.39) K_0 \vdash K_1 \vdash K_2 \vdash K_3.$$

Maszyna Turinga akceptująca język L((a+b)*aa(a+b)*).

Maszyna M zaczyna pracę z głowicą przed pierwszym symbolem a.

Rysunek 1.1: Maszyna Turinga akceptująca język $L((\mathbf{a} + \mathbf{b})^* \mathbf{a} \mathbf{a} (\mathbf{a} + \mathbf{b})^*)$.

Zad 1.7. Niech $\Sigma = \{a,b\}.$ Zaprojektuj maszynę Turinga akceptującą język

$$(1.40) L((\mathbf{a} + \mathbf{b})^* \mathbf{a} \mathbf{b} (\mathbf{a} + \mathbf{b})^* + (\mathbf{a} + \mathbf{b})^* \mathbf{b} \mathbf{a}),$$

czyli

$$(1.41) L = \{a, b\}^* \{ab\} \{a, b\}^* \cup \{a, b\}^* \{ba\}.$$

Zakładamy, że głowica dla łańcucha wejściowego jest ustawiona przed komórką z symbolem najbardziej po lewej.

Rozwiązanie.

Stwierdzamy, że język opisany w zadaniu, to język wszystkich łańcuchów nad $\Sigma^* = \{a, b\}^*$, które zawierają podłańcuch ab lub takich, które są zakończone na ba. Diagram maszyny przedstawiono na dołączonym rysunku.

a) Maszyna Turinga akceptująca język z zadania.

Rysunek 1.2: Maszyna Turinga akceptująca język $L = \{a,b\}^*\{ab\}\{a,b\}^* \cup \{a,b\}^*\{ba\}.$

1.2 Wielogłowicowa maszyna Turinga

1.2.1 Opis wielogłowicowej maszyny Turinga

Przeważnie **wielogłowicowa maszyna Turinga** (k-głowicowa maszyna Turinga) M jest określana jako siódemka uporządkowana

$$(1.42) M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F)$$

z odpowiednio określoną funkcją przejścia.

Funkcja δ (funkcja następnego ruchu lub funkcja przejścia) jest dana przez

$$\delta \colon Q \times \Gamma^k \to Q \times \Gamma^k \times D^k,$$

gdzie D jest zbiorem możliwych przemieszczeń głowicy. Zapiszmy

$$(1.44) \delta(p, [x_1, x_2, \dots, x_k]) = (q, [y_1, y_2, \dots, y_k], [d_1, d_2, \dots, d_k]),$$

gdzie stany $p, q \in Q$, a $[x_1, x_2, \ldots, x_k], [y_1, y_2, \ldots, y_k]$ to wektory odczytywany i zapisywany do komórek oraz $[d_1, d_2, \ldots, d_k]$ to kierunki przesunięcia głowic. W podstawowej wersji maszyny Turinga głowica może przesuwać się w lewo lub prawo, co oznaczmy przez \leftarrow i \rightarrow , czyli $D = \{\leftarrow, \rightarrow\}$. W innej wersji maszyny Turinga głowica dodatkowo może stać w miejscu, co oznaczmy przez -, czyli zbiór $D = \{\leftarrow, -, \rightarrow\}$. Jeśli funkcja przejścia nie jest zdefiniowana na bieżącym stanie i bieżącym symbolu taśmy, to maszyna zatrzymuje się.

1.2.2 Konfiguracja wielogłowicowej maszyny Turinga

Aby wskazać położenie k głowic, przyjmujemy konwencję raportowania indeksu głowicy pod symbolem, nad którym się znajduje.

Konfiguracja będzie reprezentowana przez

(1.45)
$$K = (q, x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 \dots x_{n-2} x_{n-1} x_n).$$

Dla przykładu, w zadaniu rozpoznania wielogłowicowego maszyna z 4 głowicami, która działa na łańcuchu aabbccddee i jest w stanie q_3 oraz ma głowice w położeniach 3, 5, 5, 9, konfiguracja będzie wyglądać następująco

(1.46)
$$K = (q_3, aabb c_1 cddee).$$

Jak zwykle, o dwóch konfiguracjach K_1 i K_2 mówi się, że następują po sobie, jeśli możliwe jest przejście z jednej konfiguracji do następnej w jednym cyklu roboczym modelu obliczeniowego. Zatem obie konfiguracje będą połączone relacją przejścia i możemy zapisać $K_1 \vdash K_2$.

Wielogłowicowa maszyna Turinga.

Schemat obliczeń dla wielogłowicowej maszyny Turinga.

Rysunek 1.3: Wielogłowicowa maszyna Turinga.

1.2.3 Zagadnienia z użyciem wielogłowicowej maszyny Turinga

Zad 1.8. Zaprojektuj 3-głowicową maszynę Turinga rozpoznającą język

$$(1.47) L = \{a^n b^n c^n : n > 0\}.$$

Założyć, że trzy głowice dotyczą określonego typu symbolu (głowica 1 poświęcona symbolom a, głowica 2 poświęcona symbolom b, głowica 3 poświęcona symbolom c). Głowica 1 jest początkowo umieszczona na komórce zawierającej pierwsze wystąpienie symbolu a, podczas gdy głowica 2 będzie na komórce zawierającej pierwsze wystąpienie symbolu b i głowica 3 zostanie umieszczona na pierwszym c. Głowice są poruszane zgodnie w prawo.

Wykonaj obliczenia dla

$$(1.48) K_0 = (q_0, \underset{123}{abc})$$

i

(1.49)
$$K_0 = (q_0, \underset{1}{aabbcc}).$$

Rozwiązanie.

Maszynę można określić zgodnie z

(1.50)
$$M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) =$$

= $(\{q_0, q_1, q_2\}, \{a, b, c\}, \{a, b, c, \nabla\}, \delta, q_0, \nabla, \{q_1\}),$

która to definicja jest mniej odpowiednia w tym przypadku.

Korzystając z alternatywnej lepszej definicji w tym przypadku mamy

(1.51)
$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R) =$$

= $(\{q_0, q_1, q_2\}, \{a, b, c\}, \{a, b, c, \nabla\}, \delta, q_0, \{q_1\}, \{q_2\}).$

Funkcja przejścia $\delta \colon Q \times \Gamma^3 \to Q \times \Gamma^3 \times \{\leftarrow, \rightarrow\}^3$ może być określona przez tabelę przejść dla stanu bieżącego (tabela 1.1).

Poniższa tabela przedstawia funkcję przejścia.

Nr	Stan bieżący	Czytany symbol	Nowy symbol	Nowy stan	Kierunki głowic
1	q_0	[a, b, c]	[a, b, c]	q_0	$\boxed{ \left[\ \rightarrow \ , \ \rightarrow \ , \ \rightarrow \ \right] }$
2	q_0	$[b, c, \bigtriangledown]$	$[b, c, \bigtriangledown]$	q_1	$[\;\leftarrow\;,\;\leftarrow\;,\;\leftarrow\;]$
3	q_0	[b,b,c]	[b,b,c]	q_2	$[\;\leftarrow\;,\;\leftarrow\;,\;\leftarrow\;]$
4	q_0	[a, c, c]	[a, c, c]	q_2	$[\;\leftarrow\;,\;\leftarrow\;,\;\leftarrow\;]$
5	q_0	$[a, b, \bigtriangledown]$	$[a, b, \bigtriangledown]$	q_2	$[\leftarrow,\leftarrow,\leftarrow]$

Tabela 1.1: Tabela przejścia dla bieżącego stanu q_0 .

Wielogłowicowa maszyna Turinga akceptująca język $L = \{a^n b^n c^n : n > 0\}.$

Obliczenia wielogłowicowej maszyny Turinga akceptującej język z zadania.

Rysunek 1.4: Wielogłowicowa maszyna Turinga akceptująca język z zadania.

Obliczenia wielogłowicowej maszyny Turinga akceptującej język $L = \{a^n b^n c^n : n > 0\}.$

Rysunek 1.5: Wielogłowicowa maszyna Turinga akceptująca język z zadania.

1.3 Dwutaśmowa i jednotaśmowa maszyna Turinga akceptujące palindromy

1.3.1 Dwutaśmowa maszyna Turinga akceptująca palindromy

Zad 1.9. Zaprojektuj 2-taśmową maszynę Turinga akceptującą palindromy nad alfabetem $\Sigma = \{a, b\}$. Zastosuj taśmy jednostronnie nieskończone.

Rozwiązanie

Opiszmy działanie maszyny.

- 1. Pierwszą komórkę na taśmie 2 oznaczona specjalny symbol X; dane są kopiowane z taśmy l, gdzie początkowo występują (rys.), na taśmę 2 (rys.).
- 2. Następnie głowica taśmy 2 jest przesuwana na X (rys.),
- 3. Głowica taśmy 2 jest wielokrotnie przesuwana o jedną komórkę w prawo, głowica taśmy l, o jedną komórkę w lewo, i porównywane są odpowiednie symbole. Jeżeli wszystkie symbole pasują, dane tworzą palindrom i maszyna wchodzi w stan akceptujący q_5 . W przeciwnym razie maszyna Turinga nie będzie mogła w pewnej chwili zrobić żadnego poprawnego ruchu; zatrzyma się bez akceptowania.

Opiszmy stany.

Stan q_0 .

Jeżeli dana nie jest pusta, drukuj X na taśmie 2 i przesuń głowicę w prawo; przejdź do stanu q_1 . W przeciwnym razie przejdź do stanu q_5 .

Stan q_1 .

Pozostawaj w stanie q_1 , kopiując taśmę 1 na 2, aż dotrzesz do ∇ na taśmie 1. Wtedy przejdź do stanu q_2 .

Stan q_2 .

Pozostaw bez ruchu głowicę taśmy 1, a 2 przesuwaj w lewo, aż dotrzesz do X. Wtedy przejdź do stanu q_3 .

Stany q_3 i q_4 .

Sterowanie na przemian w stanie q_3 i q_4 . W q_3 porównaj symbole na obu taśmach, przesuń głowicę taśmy 2 w prawo i przejdź do q_4 . W q_4 przejdź do q_5 i akceptuj, jeżeli głowica dotarła do ∇ na taśmie 2. W przeciwnym razie przesuń głowicę taśmy 1 w lewo i wróć do q_3 . Alternacja q_3 , q_4 zapobiega przekroczeniu lewego końca taśmy przez głowicę wejściową.

Stan q_5 .

Akceptuj

Maszynę określamy zgodnie z

(1.52)
$$M_p = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) =$$

= $(\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{a, b\}, \{a, b, X, \nabla\}, \delta, q_0, \nabla, \{q_5\}).$

Funkcja przejścia $\delta\colon Q\times\Gamma^2\to Q\times\Gamma^2\times\{\leftarrow,-,\to\}^2$ jest określona przez tabelę przejścia 1.2.

Nr	Stan bieżący	Czytany symbol	Nowy symbol	Nowy stan	Kierunki głowic
1	q_0	$[a, \bigtriangledown]$	[a, X]	q_1	[-, ightarrow]
2	q_0	$[b, \bigtriangledown]$	[b, X]	q_1	[-, ightarrow]
3	q_0	$[\bigtriangledown,\bigtriangledown]$	[igtriangledown, igtriangledown]	q_5	[-,-]
4	q_1	$[a, \bigtriangledown]$	[a, a]	q_1	[o, o]
5	q_1	$[\mathrm{b}, \bigtriangledown]$	[b, b]	q_1	[o, o]
6	q_1	[igtriangledown,igtriangledown]	[igtriangledown,igtriangledown]	q_2	[−,←]
7	q_2	$[\nabla,a]$	$[\nabla, a]$	q_2	$[-,\leftarrow]$
8	q_2	$[\nabla, b]$	[∇. b]	q_2	$[-,\leftarrow]$
_9	q_2	$[\bigtriangledown,\!X]$	[▽, X]	q_3	$[\leftarrow,\rightarrow]$
10	q_3	[a,a]	[a, a]	q_4	[-, ightarrow]
_11	q_3	[b,b]	[b, b]	q_4	$[-,\!\!\rightarrow]$
12	q_4	[a,a]	[a, a]	q_3	$[\leftarrow,-]$
13	q_4	[a,b]	[a, b]	q_3	$[\leftarrow,-]$
14	q_4	[b,a]	[b, a]	q_3	$[\leftarrow,-]$
15	q_4	[b,b]	[b, b]	q_3	$[\leftarrow,-]$
16	q_4	$[a, \bigtriangledown]$	$[a, \nabla]$	q_5	[-,-]
_17	q_4	[b,▽]	[b, ▽]	q_5	[-,-]
_18	q_5				

Tabela 1.2: Tabela przejścia dla dwutaśmowej maszyny akceptującej palindromy

$$(q_0 \text{ aba}, q_0 \bigtriangledown) \qquad \vdash (q_1 \text{ aba}, X q_1 \bigtriangledown)$$

$$\vdash (a q_1 \text{ ba}, Xa q_1 \bigtriangledown)$$

$$\vdash (aba q_1 a, Xab q_1 \bigtriangledown)$$

$$\vdash (aba q_2 \bigtriangledown, Xab q_2 a)$$

$$\vdash (aba q_2 \bigtriangledown, Xa q_2 ba)$$

$$\vdash (aba q_2 \bigtriangledown, X q_2 aba)$$

$$\vdash (aba q_2 \bigtriangledown, X q_2 aba)$$

$$\vdash (aba q_2 \bigtriangledown, X q_2 aba)$$

$$\vdash (aba q_3 \bigtriangledown, X q_3 aba)$$

$$\vdash (ab q_3 a, X q_3 aba)$$

$$\vdash (ab q_4 a, Xa q_4 ba)$$

$$\vdash (a q_3 ba, Xab q_4 a)$$

$$\vdash (q_3 aba, Xab q_4 a)$$

$$\vdash (q_4 aba, Xaba q_4 \bigtriangledown)$$

$$\vdash (q_5 aba, Xaba q_5 \bigtriangledown)$$

Tabela 1.3: Obliczenia dwutaśmowej maszyny akceptującej palindromy

2-taśmowa maszyna Turinga rozpoznająca palindromy (akceptująca palindromy). [s taśma 1, s taśma 2]/[n s taśma 1, n s*taśma 2], $[\longrightarrow, \longrightarrow]$ notacja: $[\nabla,b]/[\nabla,b],[-,\leftarrow]$ $[a,\nabla]/[a,X],[-,\rightarrow]$ $[\triangledown,\!\triangledown]/[\triangledown,\!\triangledown],\,[-,\!\longleftarrow]$ $[b,\nabla]/[b,X], [-,\rightarrow]$ $[\nabla, X]/[\nabla, X], [\leftarrow,$ $[\nabla,\nabla]/[\nabla,X],[-,-]$ $[a,a]/[a,a], [-, \to]$ $[b,b]/[b,b], [-, \rightarrow]$ $[a,\nabla]/[a,\nabla],[-,-]$ $[a,a]/[a,a], [\leftarrow,-]$ $[b,\nabla]/[b,\nabla], [-,-]$ [a,b]/[a,b], [-,-][b,a]/[b,a], [-,-][b,b]/[b,b], [-,-]taśma 1 $a b b a \nabla \nabla \nabla$ taśma 2 a b b b a $X \mid a \mid b \mid b \mid b \mid a \mid \nabla \mid \nabla \mid \nabla$ $a b b b a \nabla \nabla \nabla$ q_4 $a b b b a \nabla \nabla$ $a \mid b \mid b \mid b \mid a \mid \nabla$ $|X|a|b|b|b|a|\nabla|\nabla|$ $X \mid a \mid b \mid b \mid b \mid a \mid \nabla \mid \nabla \mid \nabla$

Rysunek 1.6: Dwutaśmowa maszyna Turinga akceptująca palindromy.

Obliczenia 2-taśmowej maszyny Turinga rozpoznającej palindromy (akceptującej palindromy). $\boxed{q_0}$

Rysunek 1.7: Dwutaśmowa maszyna Turinga akceptująca palindromy. Opracowanie Krzysztof Borzęcki

17

Obliczenia 2-taśmowej maszyny Turinga rozpoznającej palindromy (akceptującej palindromy).

Rysunek 1.8: Dwutaśmowa maszyna Turinga akceptująca palindromy. Opracowanie Krzysztof Borzęcki

 $K_{14} = (q_4 aba, Xabaq_4 \nabla)$

1.3.2 Jednotaśmowa maszyna Turinga akceptująca palindromy

Zad 1.10. Zaprojektuj jednotaśmową maszynę Turinga akceptującą palindromy nad alfabetem $\Sigma = \{a, b\}.$

Rozwiązanie

Maszynę możemy określić zgodnie z

(1.53)
$$M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) =$$

= $(\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \{a, b\}, \{a, b, \nabla\}, \delta, q_0, \nabla, \{q_6\}),$

która to definicja jest mniej odpowiednia w tym przypadku.

Korzystając z alternatywnej lepszej definicji w tym przypadku otrzymujemy

(1.54)
$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R) =$$

= $(\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \{a, b\}, \{a, b, \nabla\}, \delta, q_0, \{q_6\}, \{q_7\}).$

Funkcja przejścia $\delta\colon Q\times\Gamma\to Q\times\Gamma\times\{\leftarrow,\rightarrow\}$ może być określona przez diagram przejść.

Jednotaśmowa maszyna Turinga rozpoznająca palindromy (akceptująca palindromy).

stan akceptujący
stan odrzucający

Łańcuchy będące palindromami:

- palindrom o nieparzystej długości

 $\nabla \nabla a b b a \nabla \nabla$

- palindrom o parzystej długości

 $\nabla \nabla a b b a \nabla \nabla$

Łańcuchy nie będące palindromami:

- łańcuch o nieparzystej długości

 $\nabla \nabla a b b a a \nabla \nabla$

- łańcuch o parzystej długości

 $\nabla \nabla b b b a \nabla \nabla$

Po zastapieniu przez symbole puste:

- palindrom o nieparzystej długości

- palindrom o parzystej długości

Po zastąpieniu przez symbole puste:

- łańcuch o nieparzystej długości

 ∇ ∇ ∇ b a ∇ ∇

- łańcuch o parzystej długości

 $\nabla \nabla \nabla b b a \nabla \nabla$

Rysunek 1.9: Jednotaśmowa maszyna Turinga akceptująca palindromy z zadania.

Obliczenia jednotaśmowej maszyny Turinga rozpoznającej palindromy (akceptującej palindromy).

Rysunek 1.10: Obliczenia jednotaśmowej maszyny Turinga akceptującej palindromy z zadania.

Obliczenia jednotaśmowej maszyny Turinga rozpoznającej palindromy (akceptującej palindromy).

Rysunek 1.11: Obliczenia jednotaśmowej maszyny Turinga akceptującej palindromy z zadania.

Obliczenia 1-taśmowej maszyny Turinga rozpoznającej palindromy (akceptującej palindromy).

Rysunek 1.12: Obliczenia jednotaśmowej maszyny Turinga akceptującej palindromy z zadania.