q-DEFORMED D-MODULES

To do:

- (1) check 7.1.4, the relation between D-modules on $X_{\bf q}$ (or $X_{\bf \Phi}$) with D-modules on X/Φ .
- (2) What should theorem 7.1.7 say?

Contents

1.	Introduction	1
2.	Background: vector fields and D-modules	2
3.	Quantum analogues	4
4.	Functoriality	9
5.	Quantum vertex algebras	10
6.	How to construct the q -affine vertex algebra	14
7.	Variant: Quantum vertex algebras via q-automorphisms	16
Ref	References	

1. Introduction

1.1. Motivation.

1.1.1. The main point of this document is to understand a q-deformation of the WZW vertex algebra.

The approximate physics picture of the relevant spaces and their (Koszul dual to) local operators is:

$$\underbrace{\mathbf{C} \times \mathbf{C}}_{\hbar} \qquad \underbrace{\mathbf{C} \times \mathbf{C}}_{\hbar} \times \mathbf{R} \qquad \operatorname{Rep}_{VA} V_{\hbar}^{k}(\mathfrak{g}) \qquad \operatorname{Rep}_{alg} Y_{\hbar}(\hat{\mathfrak{g}})^{1}, \ \operatorname{Rep}_{VA} W_{1+\infty}^{c,\mu}(\mathfrak{g})$$

$$\mathbf{C} \qquad \mathbf{R} \times \mathbf{R} \times \mathbf{R} \qquad \operatorname{Rep}_{VA} V^{k}(\mathfrak{g}) \qquad \operatorname{Rep}_{alg} U_{\hbar}(\mathfrak{g})$$

where the underlined spaces are *noncommutative*, i.e. are a deformation over $\mathbb{C}[\hbar]$ given by the Moyal product, a.k.a. differential operators $\mathcal{D}_{\hbar}(\mathbb{C})$. In physics terminology this is called Nekrasov's " Ω -background". See [Co] for details about the theory on the top right. For details on the two-parameter deformation see [Li] and [GRZ].

- 2. Background: vector fields and D-modules
- 2.1. **Vector fields.** Recall that a tangent vector is a map

$$\xi: \mathbf{D}_2 \to X$$

from the second order infinitesimal neighbourhood of the origin in the formal disk **D**. Likewise we get the notion of n-jet for any $n=1,2,\cdots,\infty$, and stronger still we could ask for a map

$$\xi: \mathbf{G}_a \to X.$$

A vector field induces a map on functions

$$\mathcal{O}(X) \to \mathbf{C}[\epsilon]/\epsilon^2$$
,

and the ϵ coefficient is the *derivative* of the function in the direction of the vector field.

2.1.1. *Multiplicative and elliptic jets.* We make the following redundant definition. If G is a one-dimensional algebraic group, a G-jet is a map

$$\xi: \mathbf{D}^G \to X$$

from the formal neighbourhood of the identity in G. Of course, all of these are non-canonically isomorphic and so this is the same thing as an ordinary jet. Let χ_G be a left-invariant vector field on G, then

$$\mathbf{D}_2^G = \mathbf{D}_2 \cdot \chi_G.$$

However, when we pass to the quantum versions of the above definitions, the definitions for different G will seperate.

2.1.2. Vector fields. A vector field is a map over X

$$\xi: X \times \mathbf{D}_2 \to X$$
.

Proposition 2.1.3. The sheaf \mathfrak{T}_X of vector fields is the Lie algebra of the group $\operatorname{Aut}(X)$ over X.

Proof. A tangent vector inside Aut(X) is a map

$$\psi: \mathbf{D}_2 \to \operatorname{Aut}(X)$$

which by adjunction is the same as a map

$$\mathbf{D}_2 \times X \to X$$
.

The condition that ψ needs to be a tangent vector at the unit $id \in Aut(X)$ is equivalent to this map being over X.

In exactly the same way, an n-jet field on X is the same as an n-jet at the identity of Aut(X).

2.2. **Koszul dual picture.** If X is a smooth scheme, we have a Koszul duality of sheaves of algebras over X,

$$KD(\mathcal{D}_X) \simeq \Omega_X$$

where Ω_X is the de Rham complex. The equivalence is given by a bimodule, the de Rham complex $\mathcal{D}_X \otimes \Omega_X$ equipped with a differential which intertwines the factors.

Thus, if we define q-deformed D-modules on X as D-modules on a noncommutative space $Y = Y_q$, it is natural to expect that it be Koszul dual to the noncommutative de Rham complex Ω_Y , if it is defined.

2.3. **Jets.** In the above, we considered jets, and moreover, the de Rham stack $X_{dR} \simeq X/\mathfrak{G}$ is the quotient by

$$\mathcal{G} = \exp(\mathfrak{T}_X) \simeq \mathfrak{J}_{\infty} X$$

the formal group scheme over X given by formal jets. In particular, below when we will want to define q-D modules on X as D-modules on a certain noncommutative space $Y=Y_{\mathbf{q}}$, we will need to define the jet space $\mathcal{J}_{\infty}Y_{\mathbf{q}}$, and

$$Y_{\mathrm{dR}} = Y/\mathcal{J}_{\infty}Y.$$

For this we will use the machinery developed by Majid and Simao in [MS].

3. Quantum analogues

3.1. q-vector fields. Now let \mathbf{G}_m act on our smooth scheme X. This makes \mathfrak{O}_X into a \mathbf{Z} -graded sheaf, so we can define the sheaf $\mathfrak{T}_X^q \subseteq \operatorname{End}(\mathfrak{O}_X)$ of q-vector fields consisting of endomorphisms ∂ with

$$\partial(fg) = \partial(f)g + q^{|f|}f\partial(g)$$

for all pairs of homogenous functions $f, g \in \Gamma(\mathcal{O}_X)$.

3.1.1. One way to axiomatise this is the following. Extend $\mathcal{O}(X)$ by adding the variable \mathbf{q} with commutation relations

$$\mathbf{q}f = q^{|f|}f\mathbf{q}$$

for homogeneous elements, where $q \in k$ is central. Then

$$\mathbf{q}\partial(fg) \ = \ \mathbf{q}\partial(f)g \ + \ f\mathbf{q}\partial(g)$$

and so $\mathbf{q}\partial$ defines an honest vector field on $\langle \mathcal{O}(X), \mathbf{q} \rangle$. Thus a q-vector field induces an algebra map

$$\langle \mathfrak{O}(X), \mathbf{q} \rangle \to \langle \mathbf{C}[\epsilon]/\epsilon^2, \mathbf{q} \rangle, \qquad f \mapsto f + \mathbf{q} \partial(f)\epsilon,$$

where **q** and ϵ commute. We now turn to the question of what this algebra $\langle \mathfrak{O}(X), \mathbf{q} \rangle$ is.

Proposition 3.1.2. $\langle \mathcal{O}(X), \mathbf{q} \rangle [q, q^{-1}]$ is a $\mathbf{Z}[q, q^{-1}]$ -quantisation of $\mathcal{O}(X \times \mathbf{G}_{m,\mathbf{q}})[q, q^{-1}]$ with the grading given by a \mathbf{G}_m -action on $X \times \mathbf{G}_{m,\mathbf{q}}$.

For instance, if every function on X has degree zero, then $\langle \mathfrak{O}(X), \mathbf{q} \rangle = \mathfrak{O}(X \times \mathbf{G}_{m,\mathbf{q}})$.

3.1.3. We are now in place to define q-vector field. To begin, we need to *choose* a quantisation $X \times \mathbf{G}_{m,\mathbf{q}} \to G$ of $X \times \mathbf{G}_{m,\mathbf{q}}$ over G. Then,

Definition 3.1.4. A *q-vector field* on X is a vector field

$$\xi : \mathbf{D}_2 \times (X \times \mathbf{G}_{m,\mathbf{q}}) \to (X \times \mathbf{G}_{m,\mathbf{q}})$$

on the noncommutative space $X\ ilde{ imes}\ \mathbf{G}_{m,\mathbf{q}}$, i.e. a map as above, over $X\ ilde{ imes}\ \mathbf{G}_{m,\mathbf{q}}$

We have immediately

Lemma 3.1.5. The restriction of a q-vector field to X is a vector field.

Proof. We take the pullback squares

$$\begin{array}{cccc} \mathbf{D}_2 \times X & \xrightarrow{\xi_1} & X & \longrightarrow & 1 \\ \downarrow & & \downarrow & & \downarrow \\ \mathbf{D}_2 \times (X \times \mathbf{G}_{m,\mathbf{q}}) & \xrightarrow{\xi} & (X \times \mathbf{G}_{m,\mathbf{q}}) & \longrightarrow & \mathbf{G}_m \end{array}$$

which gives an ordinary vector field on X.

Thus loosely speaking, a q-vector field is a quantised vector field on X.

3.1.6. Example: $X = \mathbf{A}^1$. The operator $\partial(x^n) = n_q x^{n-1}$, where n_q is the nth q-integer,

$$n_q = 1 + q + \dots + q^{n-1},$$
 $(-n)_q = q^{-1} + q^{-2} + \dots + q^{-n}$

which satisfies $(n+m)_q=n_q+q^nm_q$. In particular, $\partial(x^{n+m})=n_qx^n\cdot x^m+q^nx^n\cdot m_qx^m$, and so this defines a q vector field.

3.1.7. Remark. We could also just as well replace $G_{m,q}$ by $E_{q,\tau}$ or G_q any one-dimensional algebraic group.

Thus, let X and $G_{\mathbf{q}}$ be viewed as constant schemes over G. Then we *choose* a quantisation $X \times G_{\mathbf{q}} \to G$ over G. In this case, a G-jet is a map

$$\xi : \mathbf{D}_n^G \times (X \times G_{\mathbf{q}}) \to (X \times G_{\mathbf{q}})$$

over $X \times G_{\mathbf{q}}$. Over a point $x \in X$ we get

$$\xi_x: \mathbf{D}_n^G \times (G_{\mathbf{q}} \times G) \to (X \times G_{\mathbf{q}})$$

and so we get a map

$$\xi_x : \mathcal{O}(X \times G_{\mathbf{q}}) \to \mathcal{O}(\mathbf{D}_n^G \times G_{\mathbf{q}}) \otimes \mathcal{O}(G).$$

For instance, our ordinary notion of q-vector field corresponds to $G = \mathbf{G}_m$. We can define an \hbar -adic version by taking $G = \mathbf{G}_a$.

When dealing with elliptic curves, we may also require a compatible family of G_m - and E_{τ} -jets which glue over $\overline{\mathbb{M}}_{1,1}$.

3.2. h and Ω -backgrounds.

3.2.1. As a motivating computation, let us formally add in the logarithm **h**, \hbar and $\log f$ of **q**, q and f respectively. Assume that $[\hbar, \log f]$ is central for every f. Then the commutation relations

$$\mathbf{q}f = q^{|f|}f\mathbf{q}$$

become by the Baker-Campbell-Hausdorff formula

$$\mathbf{q} f \mathbf{q}^{-1} f^{-1} = e^{[\mathbf{h}, \log f]} = e^{|f|\hbar}$$

This gives us

$$[\mathbf{h}, \log f] = |f|\hbar.$$

Taking this relation as a definition, one then verifies that an appropriate completion of the $\mathbf{C}[\hbar]$ -algebra $\langle \log \mathcal{O}(X), \hbar \rangle$ indeed contains a copy of $\langle \mathcal{O}(X), \mathbf{q}^{\pm} \rangle$, where we have taken logarithms of every homogeneous function.

¹In particular, the assumption that the commutator is central is now a definition.

- 3.2.2. If we take $X = \mathbf{C}^{\times}$, then this algebra is $\langle x, \mathbf{h} \rangle$ with the relation $[\mathbf{h}, x] = \hbar$. In other words, it is the Weyl algebra of differential operators, or the Moyal product on \mathbf{C}^2 . Here, we have taken x the logarithm of a coordinate on X.
- 3.3. q-cotangent bundles. The cotangent bundle over X is given by taking the relative spectrum of the sheaf of vector fields.
- 3.3.1. Having chosen a quantisation $\tilde{X} = X \times G_{\mathbf{q}}$, the quantum cotangent bundle is

$$\tilde{\mathbf{T}}_{\tilde{X}}^* = \mathbf{T}_{\tilde{X}/G_{\mathbf{q}} \times G}^*.$$

(define this, i.e. show that we get a quantisation)

Lemma 3.3.2. This is a quantisation of the cotangent bundle of X times $G_{\mathbf{q}} \times G$, i.e.

$$\mathbf{T}_{\tilde{X}/G_{\mathbf{q}}\times G}^* = \mathbf{T}_X^* \tilde{\times} G_{\mathbf{q}}.$$

For instance, if $X = \mathbf{A}^1$ and $G = \mathbf{G}_m$, then we can take

$$\tilde{X} = \operatorname{Spec} \mathbf{C} \langle x, \mathbf{q}^{\pm}, q^{\pm} \rangle$$

where q is central, and

$$\mathbf{T}_{\tilde{X}}^q = \operatorname{Spec} \mathbf{C}\langle x, p, \mathbf{q}^{\pm}, q^{\pm} \rangle$$

is a twisted product of $T^*\mathbf{A}^1$ and $\mathbf{G}_{m,\mathbf{q}} \times \mathbf{G}_m$, where $p = \partial_x$, and so we have that $\mathbf{q}p = q^{-1}p\mathbf{q}$. Notice that we get a closed subscheme

$$\mathbf{A}_q^2 = \operatorname{Spec} \mathbf{C}\langle x, \mathbf{q}p \rangle$$

which is the quantum affine plane, since writing $y = \mathbf{q}p$, we get the defining relations xy = qyx.

3.4. q-differential operators. The q-differential operators \mathcal{D}_q will be a filtered quantisation of

$$\operatorname{Spec} \operatorname{Sym}_{\tilde{\mathbf{Y}}} \tilde{\mathbf{T}}_{\tilde{\mathbf{Y}}}^*$$
.

Notice that the role of q and the q-quantisation is orthogonal to the role of the filtration and the filtered quantisation. We define it as usual: it is the sheaf of differential operators on \tilde{X} , i.e. it is the sheaf of subalgebras

$$\tilde{\mathfrak{D}}_{\tilde{X}} \subseteq \operatorname{End}_{\tilde{X}}(\mathfrak{O}_{\tilde{X}})$$

generated by the q-vector fields and $\mathcal{O}_{\tilde{X}}$.

Notice that by the definition,

Lemma 3.4.1. $\tilde{\mathfrak{I}}_{\tilde{X}}$ forms a sheaf of Lie algebras over \tilde{X} .

This allows us to give a Grothendieck definition of the sheaf of quantum differential operators:

Lemma 3.4.2. $\tilde{\mathcal{D}}_{\tilde{X}} = \bigcup_{n \geqslant 0} \tilde{\mathcal{D}}_{\tilde{X},n}$, where the zeroeth term is $\tilde{\mathcal{O}}_{\tilde{X}}$, and above that

$$\tilde{\mathcal{D}}_{\tilde{X},n} = \text{(recursive definition)}.$$

To summarise, we have the following

$$\operatorname{gr} \mathfrak{D}_X \qquad \operatorname{gr} \tilde{\mathfrak{D}}_{\tilde{X}}$$

$$\mathfrak{D}_X \qquad \tilde{\mathfrak{D}}_{\tilde{X}}$$

and the sheaves on the left are given by pulling back the sheaves on the right along $1 \to G$.

3.5. **Relation to automorphisms of** X**.** Recall that one may define a D-module on X to be a quasicoherent sheaf which is equivariant for the action of the formal group $\exp(\mathfrak{T}_X)$; this is the parallel transport map. Likewise, if Φ is an automorphism of X, one possible definition of quantum D-module is a Φ -equivariant quasicoherent sheaf.

How does this relate to the above definition?

To begin with, what has this to do with the quantisation $X \times \mathbf{G}_{m,\mathbf{q}}$? Let us consider the case when the quantisation and the automorphism both come from the same source: a single \mathbf{G}_m action:

$$\mathbf{G}_m \text{ action on } X$$
 automorphism Φ_g for any $g \in \mathbf{G}_m$ quantisation $X \times \mathbf{G}_{m,\mathbf{q}}$

A quasicoherent sheaf on $X \times \mathbf{G}_{m,\mathbf{q}}$ is the same as a quasicoherent sheaf $\mathfrak{M} \in \mathrm{QCoh}(X)$ with a compatible action of $\mathbf{C}[\mathbf{q}^{\pm}]$, i.e. we have

$$\mathbf{q}_x : \mathcal{M}_x \xrightarrow{\sim} \mathcal{M}_x$$

for every point $x \in X$, and we have

$$\mathbf{q}_x f(x) = q^{|f|} f(x) \mathbf{q}_x$$

as automorphisms of \mathcal{M}_x . In particular, this has nothing to do with comparing \mathcal{M}_x and $\mathcal{M}_{\Phi_g \cdot x}$, so it is unlikely the definitions are related.

The automorphism definition of quantum D-module is related to

$$\mathbf{Z} \stackrel{\Phi}{\to} \operatorname{Aut}(X) \leftarrow \exp(\mathfrak{T}_X)$$

whereas the q-deformed D-module changes the underlying space,

$$\exp(\tilde{\mathfrak{T}}_{\tilde{X}}) \to \exp(\mathfrak{T}_X).$$

One expects that it might be possible to quantise both ways simultaneously.

3.6. **Relation to difference equations.** If instead we are to take $\tilde{X}_{\hbar} = X \times G_a$, then we get (show how to get difference equations, might need to take $C[[\hbar]]$)

3.7. **Relation to Beilinsorn-Bernstein.** Let $\lambda : \mathbf{G}_m \to G$ be a character with $\lambda B \lambda^{-1} = B$. Then we get an induced \mathbf{G}_m action on the flag variety G/B, and can form the quantisation.

Conjecture 3.7.1. We have a surjection $\tilde{\mathfrak{D}}_{\tilde{G/B}} woheadrightarrow U_q(\mathfrak{g}).$

3.8. **Relation to quantum groups.** We are going to give a *different* relation to quantum groups, where

$$X = \operatorname{Spec} U_q(\mathfrak{g}), \qquad G = T.$$

Note that here we may be using a group of dimension greater than one. If \mathbf{q}_{λ} corresponds to $\lambda \in \mathfrak{O}(T) \subseteq \mathfrak{t}^*$, then we set

$$x\mathbf{q}_{\lambda} = q^{\lambda(x)}\mathbf{q}_{\lambda}x$$

for all $x \in \mathfrak{g} \subseteq U_q(\mathfrak{g})$.

Conjecture 3.8.1. We have

$$\tilde{\mathfrak{D}}_{\tilde{X}} = U_q(\mathfrak{g} \oplus_{\mathfrak{t}} \mathfrak{g}^*)$$

is the Takiff algebra.

4. Functoriality

- 4.1. In the above we defined the category of D-modules over $\operatorname{Spec} A$ for any (check Majid?) non-commutative algebras A as an element of $\operatorname{QCoh}(\operatorname{Spec} A)$ which is equivariant for the action of the formal jet group $\mathcal{J}_{\infty}\operatorname{Spec} A$. (what about in the non-affine case)
- 4.1.1. Let $f: X \to Y$ be a map of noncommutative spaces. We then have functor

$$f^{\dagger} : \mathcal{D}\text{-Mod}(Y) \to \mathcal{D}\text{-Mod}(X)$$

induced by pullback of quasicoherent sheaves (i.e. restriction of modules) and functoriality of \mathcal{J}_{∞} .

4.1.2. Now assume that f is (noncommutative schematic and quasi-compact??). Then we have a pushforward functor

$$f_{dR,*}: \mathcal{D}\text{-}\mathsf{Mod}(X) \to \mathcal{D}\text{-}\mathsf{Mod}(Y)$$

defined by (pushforward on QCoh?). To be explicit, it acts on modules as

$$M \mapsto f_*(M \otimes \Omega_{X/Y})$$

where $\Omega_{X/Y}$ is the noncommutative de Rham complex of Majid and Simao [MS].

5. Quantum vertex algebras

If ordinary vertex algebras are meant to axiomatise two-dimensional chiral conformal field theory on a complex curve Σ , then **q**-vertex algebras axiomatise the theory on *noncommutative* curves $\tilde{\Sigma}_{\mathbf{q}}$.

In physics terms, these should be two-dimensional CFTs on $\Sigma \times S^1$, which are compatified along a nontrivial S^1 action. (check)

One common way to get noncommutative curves is to quantise curves inside cotangent bundles

$$\Sigma \subseteq T^*C \qquad \leadsto \qquad \tilde{\Sigma} \subseteq \operatorname{Spec} \mathfrak{D}_C$$

where if Σ is the vanishing locus of the symbol σP of differential operator P, then the quantisation has ring of functions \mathcal{D}_C/P . If we want this to be an algebra over $k[[\hbar]]$, we may in the above take the \hbar -adically completed sheaf of D-modules $\mathcal{D}_{C,\hbar}$. There is a relation to opers, see for instance section 2 of [CPT].

5.1. Motivation.

- 5.1.1. Recall the standard construction of the category of vertex algebras:
 - (1) We build the Ran space $\operatorname{Ran} \mathbf{A}^1$ parametrising finite subsets of \mathbf{A}^1 .
 - (2) We define the category of D-modules over $\operatorname{Ran} \mathbf{A}^1$.
 - (3) We define a *decomposition structure* on the Ran space, using the open locus $(\mathbf{A}^n \times \mathbf{A}^m)_{\circ}$ where the set of first n and last m points are required to be disjoint. This allows us to define factorisation algebras over Ran \mathbf{A}^1 .
 - (4) We define an action of G_a on A^1 , and extend it to act on the Ran space.
 - (5) We define *vertex algebras* to be the (weakly) G_a -equivariant commutative factorisation algebras over Ran A^1 .
 - (6) Finally, we prove that this is equivalent to the data of a pointed vector space with endomorphism $(V, |0\rangle, T)$ along with a map $Y: V \otimes V \to V((z))$ satisfying conditions.

In defining q-deformed vertex algebras, we will follow the same steps, but with the following modifications:

- (1) We use $\mathbf{A}_{\mathbf{q}}^1$ instead of \mathbf{A}^1 , and define the Ran space as usual (as a noncommutative space).
- (2) We define the category of $\mathfrak{D}_{\mathbf{q}}$ -modules over $\operatorname{Ran} \mathbf{A}_{\mathbf{q}}^1$.
- (3) We define a *decomposition structure* on the Ran space as before. The space of **q**-diagonals naturally appears here, even though we do not insert this into the definition by hand.

(4) We define **Z** many actions of $\mathbf{G}_{a,\mathbf{q}}$ on $\mathbf{A}_{\mathbf{q}}^1$, and extend it to act on the Ran space. The integer is called the *weight* of the action and the function $x_1 - \mathbf{q}^w x_2$ giving the \mathbf{q}^w -diagonal is invariant under the weight w action.

We say that a $\mathcal{D}_{\mathbf{q}}$ -module is $\mathbf{G}_{a,\mathbf{q}}$ -equivariant if it is a direct sum of $\mathcal{D}_{\mathbf{q}}$ -modules which are equivariant for the weight w action.

- (5) We define **q**-vertex algebras to be the (weakly) $\mathbf{G}_{a,\mathbf{q}}$ -equivariant commutative factorisation algebras over Ran $\mathbf{A}_{\mathbf{q}}^1$.
- (6) Finally, we prove that this is equivalent to concrete data in Theorem 5.3.12 below.

5.2. Appearance of q-diagonals.

- 5.2.1. We now consider what the diagonal inside $X \times \mathbf{G}_{m_{\mathbf{q}}}$ looks like.
- 5.2.2. To begin, for a map $A \to B$ of algebras, note that the relative diagonal is given by the map

$$B \otimes_A B \twoheadrightarrow B, \qquad b \otimes b' \mapsto bb'.$$

5.2.3. For instance, let $X = \mathbf{A}^1 = \operatorname{Spec} k[x]$. Then the quantum diagonal is given by the ideal

$$\tilde{\Delta}: \tilde{X} \to \tilde{X} \times \tilde{X}$$

given by the ideal

$$I_{\Delta} \subseteq \langle k[x_1], \mathbf{q}_1^{\pm}, k[x_2], \mathbf{q}_2^{\pm} \rangle \twoheadrightarrow \langle k[x], \mathbf{q}^{\pm} \rangle, \qquad x_1, x_2 \mapsto x, \quad \mathbf{q}_i \mapsto \mathbf{q}$$

and where in the domain x_1, x_2 commute, and

$$\mathbf{q}_i x_j = q x_j \mathbf{q}_i$$

for every i, j. This is necessary so that the above defines an algebra map. For instance, the ideal of the diagonal contains the element

$$x_1 - x_2(\mathbf{q}_2\mathbf{q}_1^{-1})^n$$

for every integer $n \in \mathbf{Z}$.

5.3. q-additive group.

5.3.1. We consider the group structure,

$$m : \tilde{\mathbf{A}}_{\mathbf{q}}^1 \times \tilde{\mathbf{A}}_{\mathbf{q}}^1 \to \tilde{\mathbf{A}}_{\mathbf{q}}^1$$

which is the unique map of noncommutative schemes so that

$$m^* \mathbf{q} = \mathbf{q} \otimes \mathbf{q}, \qquad m^* x = x \otimes 1 + \mathbf{q} \otimes x$$

for an integer $w \in \mathbf{Z}$ called the *weight*. This is well-defined, since

$$m^*(\mathbf{q}x) = \mathbf{q}x \otimes \mathbf{q} + \mathbf{q}^2 \otimes \mathbf{q}x$$
$$= q(x\mathbf{q} \otimes \mathbf{q} + \mathbf{q}^2 \otimes x\mathbf{q})$$
$$= q \cdot m^*(x\mathbf{q}).$$

Denote this algebraic group $\mathbf{G}_{a\mathbf{q}}$.

5.3.2. Likewise, we have an action for every integer w

$$m_w^* \mathbf{q} = \mathbf{q} \otimes \mathbf{q}, \qquad m_w^* x = x \otimes 1 + \mathbf{q}^w \otimes x$$

giving a group law as above.

- 5.3.3. If we write points of G_{aq} as z, then the above group law we will write as $(z_1, z_2) \mapsto z_1 + \mathbf{q}_1 z_2$.
- 5.3.4. Given a representation of G_{aq} , i.e.

$$V \to V \otimes \langle k[x], \mathbf{q}^{\pm} \rangle$$

then the invariants are the elements v sent to

$$v \mapsto v \otimes 1.$$

5.3.5. What are the $\mathbf{G}_{a\mathbf{q}}^{w}$ -invariants of $\mathcal{O}(\tilde{\mathbf{A}}_{\mathbf{q}}^{1} \times \tilde{\mathbf{A}}_{\mathbf{q}}^{1})$? Note that the coaction is given by

$$m^* \mathbf{q}_i = \mathbf{q}_i \otimes \mathbf{q}, \qquad m^* x_i = x_i \otimes 1 + \mathbf{q}_i^w \otimes x,$$

where the right hand side tensor multiplicand lies in $\mathcal{O}(\mathbf{G}_{a_{\mathbf{q}}})$, and so

$$m^*(x_1 - x_2(\mathbf{q}_2/\mathbf{q}_1)^n) = (x_1 \otimes 1 + \mathbf{q}_1^w \otimes x) - (x_2 \otimes 1 + \mathbf{q}_2^w \otimes x)((\mathbf{q}_2/\mathbf{q}_1)^n \otimes 1)$$
$$= (x_1 - x_2(\mathbf{q}_2/\mathbf{q}_1)^n) \otimes 1 + (\mathbf{q}_1^w - \mathbf{q}_2^w(\mathbf{q}_2/\mathbf{q}_1)^n) \otimes x.$$

In particular, $(x_1 - x_2(\mathbf{q}_2/\mathbf{q}_1)^n)$ is invariant with respect to the $\mathbf{G}_{a\mathbf{q}}$ -action of weight w = -n. Thus we get

Proposition 5.3.6. For any integer $w \in \mathbb{Z}$, the functions on the complement of the main quantum diagonal which are invariant with respect to the weight w action are

$$\mathcal{O}((\tilde{\mathbf{A}}_{\mathbf{q}}^{1} \times \tilde{\mathbf{A}}_{\mathbf{q}}^{1})_{\mathbf{q},\circ})^{\mathbf{G}_{a_{\mathbf{q}}^{w}}} = \langle (x_{1} - x_{2}(\mathbf{q}_{2}/\mathbf{q}_{1})^{w}) \rangle_{k[\mathbf{q}_{1}^{\pm},\mathbf{q}_{2}^{\pm}]},$$

which is spanned as a vector space by $\mathbf{q}_1^a \mathbf{q}_2^b (x_1 - x_2 (\mathbf{q}_2/\mathbf{q}_1)^w)^c \mathbf{q}_1^d \mathbf{q}_2^e$.

5.3.7. We now ask the question: what is the category of D-modules on $\tilde{\mathbf{A}}_{\mathbf{q}}^1$ which are weakly equivariant with respect to the weight w action of $\mathbf{G}_{a\mathbf{q}}$? Recall that without the \mathbf{q} the answer was it is the category of a vector space (the invariant sections) with endomorphism (the action of ∂_z).

(write)

5.3.8. Notice that the Ran space of $\tilde{\mathbf{A}}_{\mathbf{q}}^1$ is still a symmetric factorisation space,

$$(\operatorname{Ran} \tilde{\mathbf{A}}_{\mathbf{q}}^{1} \times \operatorname{Ran} \tilde{\mathbf{A}}_{\mathbf{q}}^{1})_{\circ}$$

$$\sigma \downarrow \iota$$

$$(\operatorname{Ran} \tilde{\mathbf{A}}_{\mathbf{q}}^{1} \times \operatorname{Ran} \tilde{\mathbf{A}}_{\mathbf{q}}^{1})_{\circ}$$

$$\operatorname{Ran} \tilde{\mathbf{A}}_{\mathbf{q}}^{1} \times \operatorname{Ran} \tilde{\mathbf{A}}_{\mathbf{q}}^{1}$$

$$\operatorname{Ran} \tilde{\mathbf{A}}_{\mathbf{q}}^{1} \times \operatorname{Ran} \tilde{\mathbf{A}}_{\mathbf{q}}^{1}$$

because for instance in $\tilde{\mathbf{A}}_{\mathbf{q}}^1 \times \tilde{\mathbf{A}}_{\mathbf{q}}^1$ functors on the left and right factors commute, so the swap map is indeed a map of noncommutative schemes; considering higher powers of the quantum affine plane induces the symmetric factorisation structure σ considered above.

5.3.9. In particular, this means we should consider the categories

$$\bigoplus_{w \in \mathbf{Z}} \mathcal{D}\text{-}\mathsf{Mod}(\mathrm{Ran}\,\tilde{\mathbf{A}}^1_{\mathbf{q}})^{\mathbf{G}_{a_{\mathbf{q},w}}}$$

of D-modules which are weakly equivariant respect to some weight w. (how to combine these together more naturally?) Notice that

Proposition 5.3.10. For each weight w, the w summand upgrades to a symmetric factorisation category $\mathbb{D}\text{-Mod}^{\mathbf{G}_{a_{\mathbf{q},w}}}$ over $\operatorname{Ran}\tilde{\mathbf{A}}^1_{\mathbf{q}}$.

5.3.11. We can finally define a **q**-vertex algebra to be a strong factorisation algebra in this category.

Theorem 5.3.12. A **q**-vertex algebra is equivalent to a direct sum of vector spaces (or $k[\mathbf{q}^{\pm}]$ -comodules?)

$$V = \bigoplus_{w \in \mathbf{Z}} V_w$$

along with a map of $\mathfrak{D}(\tilde{\mathbf{A}}_{\mathbf{q}}^1)$ -modules (how should this interact with the weight w?)

$$Y: V \otimes V \rightarrow V((\{z_1 - \mathbf{q}^n z_2\}))$$

satisfying (a commutativity and associativity condition), and equipped with a vector $|0\rangle \in V_0$ and (whatever data is equivalent to a $\mathcal{D}(\tilde{\mathbf{A}}^1_{\mathbf{q}})$ -module)

6. How to construct the **q**-affine vertex algebra

In this section, we recall the construction of the affine vertex algebra, then show how to deform it to the \mathbf{q} -affine vertex algebra.

6.1. General picture.

6.1.1. Let X be an algebraic curve and Y a prestack with maps

$$\operatorname{Ran} X \stackrel{s}{\to} Y \stackrel{p}{\to} \operatorname{Ran} X$$

of factorisation spaces. Moreover, assume that the latter map admits a *connection*, i.e. comes from a pullback

$$Y \to \operatorname{Ran} X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\overline{Y} \to \operatorname{Ran} X_{dB}$$

$$\tag{1}$$

Moreover,

Lemma 6.1.2. The map $Y \to Y_{dR}$ factors as

$$Y \downarrow Y \downarrow Y_{dR} \leftarrow \overline{Y}$$

Proof. Apply the functor $(-)_{dR}$ (which is a right adjoint, hence preserves limits) to diagram (1). This gives pullback

$$Y_{dR} \longrightarrow \operatorname{Ran} X_{dR}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\overline{Y}_{dR} \longrightarrow \operatorname{Ran} X_{dR}$$

hence $Y_{dR} = \overline{Y}_{dR}$, and the Lemma follows by functoriality of $(-)_{dR}$.

Thus we have commuting diagram

$$\begin{array}{ccc}
\operatorname{QCoh}(Y) & \xrightarrow{p_*^{\operatorname{QCoh}}} & \operatorname{QCoh}(\operatorname{Ran} X) \\
& & \uparrow & \uparrow \\
\operatorname{D-Mod}(Y) & \longrightarrow & \operatorname{QCoh}(\overline{Y}) & \longrightarrow & \operatorname{D-Mod}(\operatorname{Ran} X)
\end{array} \tag{2}$$

We stress that the pushforward $\mathcal{D}\text{-Mod}(Y) \to \mathcal{D}\text{-Mod}(\operatorname{Ran} X)$ is *not* the ordinary $\mathcal{D}\text{-module}$ pushforward p_* . Rather, the above says that any quasicoherent sheaf pushforward of a \mathcal{D} -module, which usually has no reason to be a \mathcal{D} -module, in this case always carries a natural \mathcal{D} -module structure.

If in addition the maps in (1) are maps of factorisation spaces, it not not hard to show that

Lemma 6.1.3. The functors in (2) are functors of symmetric monoidal categories.

In particular, this implies

Corollary 6.1.4. The quasicoherent sheaf pushforward p_*^{QCoh} extends to a functor on factorisation algebras p_*^{QCoh} : CommAlg(\mathcal{D} -Mod(Y), \otimes_Y^{ch}) \to CommAlg(\mathcal{D} -Mod(Ran X), \otimes^{ch}).

In particular, if $\mathcal A$ is a factorisation algebra on $\operatorname{Ran} X$, then so $s_*\mathcal A$ is a factorisation algebra on Y, and hence we get a new factorisation algebra $p_*^{\operatorname{QCoh}}(s_*\mathcal A)$ on $\operatorname{Ran} X$.

6.2. **Affine Grassmannian.** We apply this to the Beilinson-Drinfeld Grassmannian

$$\operatorname{Ran} X \stackrel{\operatorname{triv}}{\to} \operatorname{Gr}_{G,X} \to \operatorname{Ran} X$$

and the constant factorisation algebra $\mathcal{A} = \omega_{\operatorname{Ran} X}$.

Lemma 6.2.1. The map $Gr_{G,X} \to \operatorname{Ran} X$ admits a connection.

Specfically, consider

$$\begin{array}{ccc}
\operatorname{QCoh}(\operatorname{Gr}_{G,X}) & \xrightarrow{p_*^{\operatorname{QCoh}}} & \operatorname{QCoh}(\operatorname{Ran} X) \\
& & \uparrow & \uparrow & \uparrow \\
\operatorname{D-Mod}(\operatorname{Gr}_{G,X}) & --- & \operatorname{QCoh}(\overline{\operatorname{Gr}_{G,X}}) & \longrightarrow \operatorname{D-Mod}(\operatorname{Ran} X)
\end{array} \tag{3}$$

which allows us to define the affine WZW factorisation algebra $\mathcal{A}_{\mathfrak{g}}$ as

$$i_*\omega \xrightarrow{p_*^{\text{QCoh}}} \Gamma(i_*\omega)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\omega \longmapsto \Gamma(i_*\omega) = \mathcal{A}_{\mathfrak{g}}$$
(4)

Lemma 6.2.2. As a vector space, the underlying vertex algebra is

$$V = \operatorname{Sym}(t^{-1}\mathfrak{g}[t^{-1}]).$$

Proof. This is the vector space corresponding to the D-module pushforward along the affine Grassmannian

$$i_0: 0 \to Gr_G$$
.

Specifically, the normal bundle to i_0 is the vector space $t^{-1}\mathfrak{g}[t^{-1}]$, and so the pushforward is the symmetric algebra on this.

6.3. q-analogue.

6.3.1. The above construction generalises.

7. Variant: Quantum vertex algebras via q-automorphisms

There are two (inequivalent?) notions of q-D-module in the literature: one in terms of q-derivations, which we covered in section 3, and another in terms of automorphism-invariant quasicoherent sheaves. In this section we relate the two notions.

7.1. G-D-modules.

7.1.1. Note that if G is a discrete group acting on X, then

$$(X/G)_{dR} = X_{dR}/G,$$

in other words, the category of D-modules on X/G is equivalent to weakly G-equivariant D-modules on X.

7.1.2. Let Φ be the automorphism of \mathbf{A}^1 acting by $t \mapsto qt$. Then we have

$$\Phi f(x) \cdot g(x) = f(qx)g(qx),$$
 $f(x)\Phi \cdot g(x) = f(x)g(qx).$

In particular, if f is homogeneous of degree |f| then we have

$$\Phi f(x) = q^{|f|} f(x) \Phi.$$

Note that acting on functions, $\Phi = e^{\log(q)x\partial_x} = q^{x\partial_x}$.

7.1.3. Thus, Φ takes the role of \mathbf{q} in section 3. To make this analogy stronger, the analogue of $\mathbf{A}_{\mathbf{q}}^{1}$ is the product

$$\mathbf{A}_{\Phi}^{1} = \mathbf{A}^{1} \tilde{\times} \mathbf{Z} = \mathbf{A}^{1} \tilde{\times} \{\Phi^{n}\}_{n \in \mathbf{Z}},$$

on which Φ acts diagonally. More generally, for any space X we can form

$$X_{\operatorname{Aut} X} = X \tilde{\times} \operatorname{Aut}(X),$$

which when X is affine is defined as the subalgebra of $\operatorname{End} \mathfrak{O}(X)$ generated by $\mathfrak{O}(X)$ and $\operatorname{Aut}(X)$. If one considers only infinitesimal automorphisms, this recovers $\mathfrak{D}(X)$.

7.1.4. Note that the usual definition of q-derivation may be written as

$$\partial(fg) \ = \ \partial(f)g \ + \ \Phi(f)\partial(g).$$

7.1.5. One can define (check) the action map $X \times \operatorname{Aut}(X) \to X$, and so we can define

$$\begin{array}{ccc} X\tilde{\times}\operatorname{Aut}(X) & \longrightarrow & X \\ \downarrow & & \downarrow \\ X & \longrightarrow & X\tilde{/}\operatorname{Aut}(X) \end{array}$$

We expect that $X/\operatorname{Aut}(X) = X/\operatorname{Aut}(X)$ (unsure). In particular, we expect that D-modules on X_{Φ} act as descent data for gluing D-modules on X to D-modules on X/Φ .

7.1.6. One definition of q-D-module is simply a quasicoherent sheaf on X/Φ .

Theorem 7.1.7. There is (a functor?) of categories over $C[q^{\pm}]$:

$$\operatorname{QCoh}(X/\Phi) \xrightarrow{??} \mathcal{D}_q\operatorname{-Mod}(X) = \operatorname{QCoh}(X_{\mathbf{q}}/\exp \mathfrak{T}_{X_{\mathbf{q}}}).$$

(check the $q \to 1$ limit to make this an equivalence) If ξ is the vector field inducing Φ , then

$$\operatorname{QCoh}(X/\Phi) \stackrel{??}{\to} \operatorname{QCoh}(X_{\mathbf{q}}/\exp(\mathcal{O}_{X_{\mathbf{q}}} \cdot \xi))$$

is an equivalence.

7.2. G-factorisation algebras.

7.2.1. Let G act on a space X. We will now define a version of factorisation algebra on subsets $\{x_1, ..., x_n\} \subseteq X$, where two subsets are equivalent if they differ by a G-shift. This necessitates the use of G-diagonals.

The factorisation space to consider is then $(\operatorname{Ran} X)/G$, with factorisation structure

$$(\operatorname{Ran} X \times \operatorname{Ran} X)_{G, \circ}/G$$

$$(\operatorname{Ran} X)/G \times (\operatorname{Ran} X)/G \qquad (\operatorname{Ran} X)/G$$

where $(\operatorname{Ran} X \times \operatorname{Ran} X)_{G,\circ}$ is the open subset of (S,S') with $gS \cap S' = \emptyset$ for all $g \in G$. The left map is the composition

$$(\operatorname{Ran} X \times \operatorname{Ran} X)_{G,\circ}/G \to (\operatorname{Ran} X \times \operatorname{Ran} X)_{G,\circ}/G \times G \to (\operatorname{Ran} X \times \operatorname{Ran} X)/G \times G.$$

- 7.2.2. *Remark.* Note that for the above to work the open subset $(\operatorname{Ran} X \times \operatorname{Ran} X)_{G,\circ}$ must be a $G \times G$ -invariant, which is why we made this definition.
- 7.2.3. Remark. The above is a colimit of

$$(X^{n} \times X^{m})_{G, \circ}/G$$

$$X^{n}/G \times X^{m}/G$$

$$X^{n+m}/G$$
(5)

7.3. G-vertex algebras.

- 7.3.1. We now give an explicit model for the above. Let \mathcal{M} be a factorisation algebra on $(\operatorname{Ran} X)/G$, in the category:
 - (1) $\operatorname{QCoh}(\operatorname{Ran} X/G)$, i.e. \mathcal{D}_q -Mod(X) when $G = \mathbf{Z} \cdot q$, or otherwise
 - (2) $\mathcal{D}\text{-Mod}(\operatorname{Ran} X/G)$.

We consider the restriction of the factorisation map to (5) when n, m = 1, in which case we have open and closed complements

$$\Delta_G X/G \stackrel{i_G}{\to} (X^n \times X^m)/G \stackrel{j_G}{\leftarrow} (X^n \times X^m)_{G,\circ}/G$$

where $\Delta_G X \subseteq X \times X$ consists of points of the form (x, gx) for $g \in G$, and G acts diagonally.

We now consider the cofibre sequence

$$i_G^* \mathcal{M} \to i_G^* j_* j^* \mathcal{M} \to \text{cofib}$$
.

7.3.2. In the D-module case $\operatorname{cofib} = i_G^! \mathcal{M}[1]$. Assume that $i_G^* \mathcal{M} = V \otimes \mathcal{O}$ and z, w are local coordinates on X, then taking global sections of the cofibre sequence gives

$$V^{\otimes 2} \otimes \mathcal{O}_{X/G}[\{(z-gw)^{\pm 1}\}_{q \in G}] \to V \otimes \mathcal{O}_{X/G}[\{\delta_{z-qw}\}_{q \in G}].$$

Crucially, because we have only quotiented by a single, diagonal, G-action throughout, in the above we have *not* taken G-invariants with respect to the antidiagonal action, which would have killed the z-gw terms.

Lemma 7.3.3. The data of the above is equivalent to a map

$$V^{\otimes 2} \otimes \mathcal{O}_{X/G} \to V \otimes \mathcal{O}_{X/G} \hat{\otimes} \prod_{\mathbf{C}[[z,w]]} \mathbf{C}((z-gw)).$$

Assuming that X is itself an algebraic group, we take X-invariant sections of the above to get a map

$$Y_G: V^{\otimes 2} \to V((z-g_1w, z-g_2w, \cdots)) = V \hat{\otimes} \prod_{\mathbf{C}[[z,w]]} \mathbf{C}((z-gw)).$$

7.3.4. In the quasicoherent sheaf case, since the pullback/forgetful functor $\mathcal{D}\text{-Mod}(Z) \to \mathrm{QCoh}(Z)$ is exact, we have that cofib is the same as above, and given the above assumptions, taking global sections of the cofibre sequence gives

$$V^{\otimes 2} \otimes \mathcal{O}_{X/G}[\{(z-gw)^{\pm 1}\}_{g \in G}] \to V \otimes \mathcal{O}_{X/G}[\{\delta_{z-gw}\}_{g \in G}].$$

What is different is that we have only remembered that this is a map inside QCoh(X/G). However,

Lemma 7.3.5. (check) When $X = \mathbf{C}$ and $G = \mathbf{Z} \cdot q \simeq \mathbf{Z}$, this is equivalent to a map

$$Y_G: V^{\otimes 2} \to V((z-g_1w, z-g_2w, \cdots)) = V \hat{\otimes} \prod_{\mathbf{C}[[z,w]]} \mathbf{C}((z-gw))$$

(with some T action, or rather $q = \exp(\hbar T)$.)

Proof. (The same proof as for the D-module case should work, except that instead of asking that the map commutes with ∂ , we ask that it be **Z**-graded, a **Z** acts on k[x] as $x^n \mapsto (qx)^n$.)

7.4. Exponentiating.

7.4.1. We expect that we have

$$\begin{array}{ccc} \mathcal{D}\text{-Mod}(\mathbf{C}) & \xrightarrow{\exp_*} & \mathcal{D}\text{-Mod}(\mathbf{C}^*) \\ \downarrow & & \downarrow \\ \mathcal{D}_h\text{-Mod}(\mathbf{C}) & \xrightarrow{\exp_*} & \mathcal{D}_q\text{-Mod}(\mathbf{C}^*) \end{array}$$

and we have likewise the notions of vertex algebras for these, where on the bottom the OPEs have singularities of the form $(z-w-n\hbar)$ and $(z-q^nw)$.

References

- [Co] Costello, K., 2016. M-theory in the Omega-background and 5-dimensional non-commutative gauge theory. arXiv preprint arXiv:1610.04144.
- [CPT] Coman, I., Pomoni, E. and Teschner, J., 2023. From quantum curves to topological string partition functions. Communications in mathematical physics, 399(3), pp.1501-1548.
- [GR] Gaitsgory, D. and Rozenblyum, N., 2017. A Study in Derived Algebraic Geometry: Volume II: Deformations, Lie Theory and Formal Geometry. Mathematical surveys and monographs, 221.
- [GRZ] Gaiotto, D., Rapčák, M. and Zhou, Y., 2023. Deformed Double Current Algebras, Matrix Extended W_{∞} Algebras, Coproducts, and Intertwiners from the M2-M5 Intersection. arXiv preprint arXiv:2309.16929.
 - [Li] Linshaw, A.R., 2021. Universal two-parameter W_{∞} -algebra and vertex algebras of type $W(2,3,\ldots,N)$. Compositio Mathematica, 157(1), pp.12-82.
 - [MS] Majid, S. and Simão, F., 2023. Quantum jet bundles. Letters in Mathematical Physics, 113(6), p.120.