Lab 13

David Wiley / Duy Truong March 27, 2019

Reading in Data

```
# Reading in data
dat = read.csv("/home/david/Documents/2019 Spring/Applied Regression/Labs_HW/Data_Sets/Appendices/data-
fit = lm(MORT -., dat)
summary(fit)
##
## Call:
## lm(formula = MORT ~ ., data = dat)
##
## Residuals:
             1Q Median
##
     Min
                           3Q
                                 Max
## -91.38 -18.97 -3.56 16.00 91.83
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 995.63646   91.64099   10.865   3.35e-15 ***
## PRECIP
                1.40734
                          0.68914
                                   2.042 0.046032 *
## EDUC
              -14.80139
                           7.02747 -2.106 0.039849 *
## NONWHITE
                3.19909
                           0.62231
                                    5.141 3.89e-06 ***
               -0.10797
                           0.13502 -0.800 0.427426
## NOX
## S02
                0.35518
                           0.09096
                                   3.905 0.000264 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 37.09 on 54 degrees of freedom
## Multiple R-squared: 0.6746, Adjusted R-squared: 0.6444
## F-statistic: 22.39 on 5 and 54 DF, p-value: 4.407e-12
```

Plotting Normality of Residuals

```
qqnorm(fit$residuals)
qqline(fit$residuals)
```

Normal Q-Q Plot

Looking at the plot, we can see there is some light-tailed distribution leading us to believe there may not be normality in the data.

Plotting Residuals vs Fitted

plot(fit)

From observing that graph of Res vs Fit, we see there is a double bow happening. There means there is non-linearity in the data. This could be corrected by applying an appropriate transformation to the regressor or the response variable or use a method of weight least squares.