课程名称:微积分(二)

2013-2014 学年第(2) 学期期中

本试卷共6道大题,满分100分

- 1, (45分) 计算下列各式, 若不存在简要说明理由:
 - (1) $\int_0^1 \ln x dx$; (2) $V.P.\int_0^3 \frac{1}{1-x} dx$; (3) $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, z = \ln(\sqrt{x} + \sqrt{y})$;

 - (4) $D_{(x,z)}F$, $F = (r,\theta,\varphi)^T$, $x = r\cos\theta\cos\varphi$, $y = r\cos\theta\sin\varphi$, $z = r\sin\theta$;
 - (5) $du, d^2u, u(x, y, z) = \sqrt{x^2 + y^2 + z^2};$ (6) $e^{x + \sin y}$ 的泰勒展式(到3阶)。
- 2, $(10 分) 若 f(x) 在 [0,1] 区间上可积,试证明 <math>\sin(f(x))$ 也可积。
- 3, $(10 \, \beta)$ 讨论 $\int_{\pi}^{+\infty} \frac{\sin x}{\sqrt{x}} dx$ 的绝对收敛性和条件收敛性。
- 4, (10分) 求抛物线 $x^2 = 2y$ 在 $x \in [2,3]$ 部分的弧长。
- 5, (15 分)叙述: (1) \mathbb{R}^n 空间中紧致集的定义; (2) \mathbb{R}^n 上函数不一致连续的定义; (3) 函数 f(x,y) 在二维空间 \mathbb{R}^2 的紧致集 $x^2+y^2 \le 1$ 上连续,试证明其一致连续。
- 6, (10 分)在四维欧氏空间 IE^4 上,试用拉格朗日乘子法求点 (a_1,a_2,a_3,a_4) 到 超平面 $Ax_1 + Bx_2 + Cx_3 + Dx_4 = E$ 的距离。