# Number System

## **Number Systems**

- To talk about binary data, we must first talk about number systems
- The decimal number system (base 10) you should be familiar with!
  - A digit in base 10 ranges from 0 to 9.
  - A digit in base 2 ranges from 0 to 1 (binary number system). A digit in base 2 is also called a 'bit'.
  - A digit in base R can range from 0 to R-1
  - A digit in Base 16 can range from 0 to 16-1 (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).

Use letters A-F to represent values 10 to 15. Base 16 is also called Hexadecimal or just 'Hex'.

## **Positional-Value System**

 The value of a digit ("digit" from Latin word for finger) depends on its position



# **Positional Number Systems**

 The traditional number system is called a positional number system.

$$6354 = 6*1000 + 3*100 + 5*10 + 4$$

- A number is represented as a string of digits.
- Each digit position has a weight assoc, with it.

$$D = \sum_{i=0}^{p-1} d_i 10^i$$

 Number's value = a weighted sum of the digits

## **Decimal Numbers**

Decimal Numbers: each of ten digits (0-9)



## Cont....

**Base**: The number of characters in the character set of a positional number system.

- a) Decimal number base 10
- b) Binary number base 2

Binary coded Decimal (BCD): A special binary code used for directly represent the decimal character.

a) Each four bit value in BCD represent a single decimal character.

Code: A unique way to represent a value or a character in the alphabet. Digital codes use bits configured in a given way to present the number of alphabet character.

Complement: The complement of a single character represented in a positional number system is the difference between the total number of characters in the character set and the value of the character for which a complement is being sought.

E. g: 10s complement of 4 is 6, because 10 - 4 = 6.

Hexadecimal: A base 16 number system, and four bit used to represent a single hexadecimal number.

**Logic**: It is process of determine the truth or false.

## **Binary Representation**

- The basis of all digital data is binary representation.
- Binary means 'two'
  - -1,0
  - True, False
  - Hot, Cold
  - On, Off
- We must be able to handle more than just values for real world problems
  - -1,0,56
  - True, False, Maybe
  - Hot, Cold, Warm, Cool
  - On, Off, Leaky

## **Binary: Base-2 Number System**

base point or radix

We write: (101111.001)<sub>2</sub>

Digits are called bits

## **Binary Numbers**

- Binary Numbers: each of 2 digits (0,1) called bits
- Largest decimal number = 2<sup>n</sup>-1; n is # of bits
- Binary-to-Decimal Conversion



## Binary Digits, Logic Levels, and Digital Waveforms

- Binary Digits: 0 → Low,
   1 → High
- Code:Group of Bits
- Logic Level: represented by voltages



# Base 10, Base 2, Base 16

The text book uses subscripts to represent different bases (ie.  $A2F_{16}$ ,  $953.78_{10}$ ,  $1011.11_2$ )

We will use special symbols to represent the different bases.

- The default base will be decimal, no special symbol for base 10.
- •The '\$' will be used for base 16 (\$A2F)
- •The '%' will be used for base 2 (%10101111)

If ALL numbers on a page are the same base (ie, all in base 16 or base 2 or whatever) then no symbols will be used and a statement will be present that will state the base (ie, all numbers on this page are in base 16).

#### we were talking about Binary DATA!!!

#### How many binary DIGITS does it take to represent our data??

## **Binary Codes**

One Binary Digit (one bit) can take on values 0, 1. We can represent TWO values:

```
(0 = hot, 1 = cold), (1 = True, 0 = False), (1 = on, 0 = off).
```

Two Binary digits (two bits) can take on values of 00, 01, 10, 11. We can represent FOUR values:

```
(00 = hot, 01 = warm, 10 = cool, 11 = cold).
```

Three Binary digits (three bits) can take on values of 000, 001, 010, 011, 100, 101, 110, 111.

We can represent 8 values

```
000 = Black, 001 = Red, 010 = Pink, 011 = Yellow, 100 = Brown, 101 = Blue, 110 = Green, 111 = White.
```

## **Binary Codes (cont.)**

•N bits (or N binary Digits) can represent 2<sup>N</sup> different values.

(for example, 4 bits can represent 24 or 16 different values)

•N bits can take on unsigned decimal values from 0 to 2<sup>N</sup>-1.

Codes usually given in tabular form.

| 000 | black  |
|-----|--------|
| 001 | red    |
| 010 | pink   |
| 011 | yellow |
| 100 | brown  |
| 101 | blue   |
| 110 | green  |
| 111 | white  |

```
2^{10} = 1024 = 1 \text{ K}

2^{20} = 1048576 = 1 \text{ M (1 Megabits)} = 1024 \text{ K} = 2^{10} \text{ x } 2^{10}

2^{30} = 1073741824 = 1 \text{ G (1 Gigabits)}
```

## Octal and Hexadecimal ("Hex") Numbers

- Octal = base 8
- Hexadecimal = base 16
  - Use A F to represent the values 10 through 16 in each position.

Useful for representing multi-bit binary numbers because their radices are integer multiples of 2.

10 0101 1010 1111 . 1011 
$$111_2 = 25 \text{ A F}$$
 .  $\text{B E}_{16}$ 

#### **Comparative Counting in Different Number System**

| Decimal | Binary | Hex |   |
|---------|--------|-----|---|
| 5       | 101    | 5   | 5 |
| 6       | 110    | 6   | 6 |
| 7       | 111    | 7   | 7 |
| 8       | 1000   | 10  | 8 |
| 9       | 1001   | 11  | 9 |
| 10      | 1010   | 12  | A |
| 11      | 1011   | 13  | В |
| 12      | 1100   | 14  | С |
| 13      | 1101   | 15  | D |
| 14      | 1110   | 16  | Е |
| 15      | 1111   | 17  | F |

#### **Octal Numbers**

- •The octal system is composed of eight digits; 0-7
- One octal bit: 0-7

#### **Hexadecimal Numbers**

- •The Hexadecimal system has base sixteen; 0-9 & A-F
- One hex bit: 0-F

## Comparison of binary, decimal, octal and hexadecimal numbers

| Binary | Decimal | Octal | 3-Bit<br>String | Hexadecimal | 4-Bit<br>String |
|--------|---------|-------|-----------------|-------------|-----------------|
| 0      | 0       | 0     | 000             | 0           | 0000            |
| 1      | 1       | 1     | 001             | 1           | 0001            |
| 10     | 2       | 2     | 010             | 2           | 0010            |
| 11     | 3       | 3     | 011             | 3           | 0011            |
| 100    | 4       | 4     | 100             | 4           | 0100            |
| 101    | 5       | 5     | 101             | 5           | 0101            |
| 110    | 6       | 6     | 110             | 6           | 0110            |
| 111    | 7       | 7     | 111             | 7           | 0111            |
| 1000   | 8       | 10    | _               | 8           | 1000            |
| 1001   | 9       | 11    | _               | 9           | 1001            |
| 1010   | 10      | 12    | _               | A           | 1010            |
| 1011   | 11      | 13    | _               | В           | 1011            |
| 1100   | 12      | 14    | _               | C           | 1100            |
| 1101   | 13      | 15    | _               | D           | 1101            |
| 1110   | 14      | 16    | _               | Е           | 1110            |
| 1111   | 15      | 17    | _               | F           | 1111            |

Table Binary, decimal, octal, and hexadecimal numbers.

### **Positional Notation Number System Examples**

Value of number is determined by multiplying each digit by a weight and then summing. The weight of each digit is a POWER of the BASE and is determined by position.

$$953.78 = 9 \times 10^{2} + 5 \times 10^{1} + 3 \times 10^{0} + 7 \times 10^{-1} + 8 \times 10^{-2}$$
$$= 900 + 50 + 3 + .7 + .08 = 953.78$$

decimal

% 1011.11 = 
$$1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 + 1x2^{-1} + 1x2^{-2}$$
  
=  $8 + 0 + 2 + 1 + 0.5 + 0.25$   
=  $11.75$ 

binary

$$$A2F = 10x16^2 + 2x16^1 + 15x16^0$$
  
=  $10 \times 256 + 2 \times 16 + 15 \times 1$   
=  $2560 + 32 + 15 = 2607$ 

hex