

542	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	2-(methylaminosulfonyl)phenyl
543	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	1-pyrrolidinocarbonyl
544	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	2-(methylsulfonyl)phenyl
545	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	4-morpholino
546	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
547	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	4-morpholinocarbonyl
548	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	2-methyl-1-imidazolyl
549	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	5-methyl-1-imidazolyl
550	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
551	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
552	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
553	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	1-pyrrolidinocarbonyl
554	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
555	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	4-morpholino
556	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
557	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	4-morpholinocarbonyl
558	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	2-methyl-1-imidazolyl
559	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	5-methyl-1-imidazolyl
560	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	2-methylsulfonyl-1-imidazolyl
561	C1	phenyl	2-(aminosulfonyl)phenyl
562	C1	phenyl	2-(methylaminosulfonyl)phenyl
563	C1	phenyl	1-pyrrolidinocarbonyl
564	C1	phenyl	2-(methylsulfonyl)phenyl
565	C1	phenyl	4-morpholino
566	C1	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
567	C1	phenyl	4-morpholinocarbonyl
568	C1	phenyl	2-methyl-1-imidazolyl
569	C1	phenyl	5-methyl-1-imidazolyl
570	C1	phenyl	2-methylsulfonyl-1-imidazolyl
571	C1	2-pyridyl	2-(aminosulfonyl)phenyl
572	C1	2-pyridyl	2-(methylaminosulfonyl)phenyl

573	C1	2-pyridyl	1-pyrrolidinocarbonyl
574	C1	2-pyridyl	2-(methylsulfonyl)phenyl
575	C1	2-pyridyl	4-morpholino
576	C1	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
577	C1	2-pyridyl	4-morpholinocarbonyl
578	C1	2-pyridyl	2-methyl-1-imidazolyl
579	C1	2-pyridyl	5-methyl-1-imidazolyl
580	C1	2-pyridyl	<u>2-methylsulfonyl-1-imidazolyl</u>
581	C1	3-pyridyl	2-(aminosulfonyl)phenyl
582	C1	3-pyridyl	2-(methylaminosulfonyl)phenyl
583	C1	3-pyridyl	1-pyrrolidinocarbonyl
584	C1	3-pyridyl	2-(methylsulfonyl)phenyl
585	C1	3-pyridyl	4-morpholino
586	C1	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
587	C1	3-pyridyl	4-morpholinocarbonyl
588	C1	3-pyridyl	2-methyl-1-imidazolyl
589	C1	3-pyridyl	5-methyl-1-imidazolyl
590	C1	3-pyridyl	<u>2-methylsulfonyl-1-imidazolyl</u>
591	C1	2-pyrimidyl	2-(aminosulfonyl)phenyl
592	C1	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
593	C1	2-pyrimidyl	1-pyrrolidinocarbonyl
594	C1	2-pyrimidyl	2-(methylsulfonyl)phenyl
595	C1	2-pyrimidyl	4-morpholino
596	C1	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
597	C1	2-pyrimidyl	4-morpholinocarbonyl
598	C1	2-pyrimidyl	2-methyl-1-imidazolyl
599	C1	2-pyrimidyl	5-methyl-1-imidazolyl
600	C1	2-pyrimidyl	<u>2-methylsulfonyl-1-imidazolyl</u>
601	C1	5-pyrimidyl	2-(aminosulfonyl)phenyl
602	C1	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
603	C1	5-pyrimidyl	1-pyrrolidinocarbonyl
604	C1	5-pyrimidyl	2-(methylsulfonyl)phenyl
605	C1	5-pyrimidyl	4-morpholino
606	C1	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
607	C1	5-pyrimidyl	4-morpholinocarbonyl
608	C1	5-pyrimidyl	2-methyl-1-imidazolyl
609	C1	5-pyrimidyl	5-methyl-1-imidazolyl
610	C1	5-pyrimidyl	<u>2-methylsulfonyl-1-imidazolyl</u>
611	C1	2-Cl-phenyl	2-(aminosulfonyl)phenyl
612	C1	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
613	C1	2-Cl-phenyl	1-pyrrolidinocarbonyl
614	C1	2-Cl-phenyl	2-(methylsulfonyl)phenyl
615	C1	2-Cl-phenyl	4-morpholino
616	C1	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
617	C1	2-Cl-phenyl	4-morpholinocarbonyl
618	C1	2-Cl-phenyl	2-methyl-1-imidazolyl
619	C1	2-Cl-phenyl	5-methyl-1-imidazolyl
620	C1	2-Cl-phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
621	C1	2-F-phenyl	2-(aminosulfonyl)phenyl
622	C1	2-F-phenyl	2-(methylaminosulfonyl)phenyl
623	C1	2-F-phenyl	1-pyrrolidinocarbonyl
624	C1	2-F-phenyl	2-(methylsulfonyl)phenyl
625	C1	2-F-phenyl	4-morpholino
626	C1	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
627	C1	2-F-phenyl	4-morpholinocarbonyl

628	C1	2-F-phenyl	2-methyl-1-imidazolyl
629	C1	2-F-phenyl	5-methyl-1-imidazolyl
630	C1	2-F-phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
631	C1	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
632	C1	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
633	C1	2,6-diF-phenyl	1-pyrrolidinocarbonyl
634	C1	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
635	C1	2,6-diF-phenyl	4-morpholino
636	C1	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
637	C1	2,6-diF-phenyl	4-morpholinocarbonyl
638	C1	2,6-diF-phenyl	2-methyl-1-imidazolyl
639	C1	2,6-diF-phenyl	5-methyl-1-imidazolyl
640	C1	2,6-diF-phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
641	F	phenyl	2-(aminosulfonyl)phenyl
642	F	phenyl	2-(methylaminosulfonyl)phenyl
643	F	phenyl	1-pyrrolidinocarbonyl
644	F	phenyl	2-(methylsulfonyl)phenyl
645	F	phenyl	4-morpholino
646	F	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
647	F	phenyl	4-morpholinocarbonyl
648	F	phenyl	2-methyl-1-imidazolyl
649	F	phenyl	5-methyl-1-imidazolyl
650	F	phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
651	F	2-pyridyl	2-(aminosulfonyl)phenyl
652	F	2-pyridyl	2-(methylaminosulfonyl)phenyl
653	F	2-pyridyl	1-pyrrolidinocarbonyl
654	F	2-pyridyl	2-(methylsulfonyl)phenyl
655	F	2-pyridyl	4-morpholino
656	F	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
657	F	2-pyridyl	4-morpholinocarbonyl
658	F	2-pyridyl	2-methyl-1-imidazolyl
659	F	2-pyridyl	5-methyl-1-imidazolyl
660	F	2-pyridyl	<u>2-methylsulfonyl-1-imidazolyl</u>
661	F	3-pyridyl	2-(aminosulfonyl)phenyl
662	F	3-pyridyl	2-(methylaminosulfonyl)phenyl
663	F	3-pyridyl	1-pyrrolidinocarbonyl
664	F	3-pyridyl	2-(methylsulfonyl)phenyl
665	F	3-pyridyl	4-morpholino
666	F	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
667	F	3-pyridyl	4-morpholinocarbonyl
668	F	3-pyridyl	2-methyl-1-imidazolyl
669	F	3-pyridyl	5-methyl-1-imidazolyl
670	F	3-pyridyl	<u>2-methylsulfonyl-1-imidazolyl</u>
671	F	2-pyrimidyl	2-(aminosulfonyl)phenyl
672	F	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
673	F	2-pyrimidyl	1-pyrrolidinocarbonyl
674	F	2-pyrimidyl	2-(methylsulfonyl)phenyl
675	F	2-pyrimidyl	4-morpholino
676	F	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
677	F	2-pyrimidyl	4-morpholinocarbonyl
678	F	2-pyrimidyl	2-methyl-1-imidazolyl
679	F	2-pyrimidyl	5-methyl-1-imidazolyl
680	F	2-pyrimidyl	<u>2-methylsulfonyl-1-imidazolyl</u>
681	F	5-pyrimidyl	2-(aminosulfonyl)phenyl
682	F	5-pyrimidyl	2-(methylaminosulfonyl)phenyl

683	F	5-pyrimidyl	1-pyrrolidinocarbonyl
684	F	5-pyrimidyl	2-(methylsulfonyl)phenyl
685	F	5-pyrimidyl	4-morpholino
686	F	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
687	F	5-pyrimidyl	4-morpholinocarbonyl
688	F	5-pyrimidyl	2-methyl-1-imidazolyl
689	F	5-pyrimidyl	5-methyl-1-imidazolyl
690	F	5-pyrimidyl	<u>2-methylsulfonyl-1-imidazolyl</u>
691	F	2-Cl-phenyl	2-(aminosulfonyl)phenyl
692	F	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
693	F	2-Cl-phenyl	1-pyrrolidinocarbonyl
694	F	2-Cl-phenyl	2-(methylsulfonyl)phenyl
695	F	2-Cl-phenyl	4-morpholino
696	F	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
697	F	2-Cl-phenyl	4-morpholinocarbonyl
698	F	2-Cl-phenyl	2-methyl-1-imidazolyl
699	F	2-Cl-phenyl	5-methyl-1-imidazolyl
700	F	2-Cl-phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
701	F	2-F-phenyl	2-(aminosulfonyl)phenyl
702	F	2-F-phenyl	2-(methylaminosulfonyl)phenyl
703	F	2-F-phenyl	1-pyrrolidinocarbonyl
704	F	2-F-phenyl	2-(methylsulfonyl)phenyl
705	F	2-F-phenyl	4-morpholino
706	F	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
707	F	2-F-phenyl	4-morpholinocarbonyl
708	F	2-F-phenyl	2-methyl-1-imidazolyl
709	F	2-F-phenyl	5-methyl-1-imidazolyl
710	F	2-F-phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
711	F	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
712	F	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
713	F	2,6-diF-phenyl	1-pyrrolidinocarbonyl
714	F	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
715	F	2,6-diF-phenyl	4-morpholino
716	F	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
717	F	2,6-diF-phenyl	4-morpholinocarbonyl
718	F	2,6-diF-phenyl	2-methyl-1-imidazolyl
719	F	2,6-diF-phenyl	5-methyl-1-imidazolyl
720	F	2,6-diF-phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
721	CO ₂ CH ₃	phenyl	2-(aminosulfonyl)phenyl
722	CO ₂ CH ₃	phenyl	2-(methylaminosulfonyl)phenyl
723	CO ₂ CH ₃	phenyl	1-pyrrolidinocarbonyl
724	CO ₂ CH ₃	phenyl	2-(methylsulfonyl)phenyl
725	CO ₂ CH ₃	phenyl	4-morpholino
726	CO ₂ CH ₃	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
727	CO ₂ CH ₃	phenyl	4-morpholinocarbonyl
728	CO ₂ CH ₃	phenyl	2-methyl-1-imidazolyl
729	CO ₂ CH ₃	phenyl	5-methyl-1-imidazolyl
730	CO ₂ CH ₃	phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
731	CO ₂ CH ₃	2-pyridyl	2-(aminosulfonyl)phenyl
732	CO ₂ CH ₃	2-pyridyl	2-(methylaminosulfonyl)phenyl
733	CO ₂ CH ₃	2-pyridyl	1-pyrrolidinocarbonyl
734	CO ₂ CH ₃	2-pyridyl	2-(methylsulfonyl)phenyl
735	CO ₂ CH ₃	2-pyridyl	4-morpholino

736	CO ₂ CH ₃	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
737	CO ₂ CH ₃	2-pyridyl	4-morpholinocarbonyl
738	CO ₂ CH ₃	2-pyridyl	2-methyl-1-imidazolyl
739	CO ₂ CH ₃	2-pyridyl	5-methyl-1-imidazolyl
740	CO ₂ CH ₃	2-pyridyl	2-methylsulfonyl-1-imidazolyl
741	CO ₂ CH ₃	3-pyridyl	2-(aminosulfonyl)phenyl
742	CO ₂ CH ₃	3-pyridyl	2-(methylaminosulfonyl)phenyl
743	CO ₂ CH ₃	3-pyridyl	1-pyrrolidinocarbonyl
744	CO ₂ CH ₃	3-pyridyl	2-(methylsulfonyl)phenyl
745	CO ₂ CH ₃	3-pyridyl	4-morpholino
746	CO ₂ CH ₃	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
747	CO ₂ CH ₃	3-pyridyl	4-morpholinocarbonyl
748	CO ₂ CH ₃	3-pyridyl	2-methyl-1-imidazolyl
749	CO ₂ CH ₃	3-pyridyl	5-methyl-1-imidazolyl
750	CO ₂ CH ₃	3-pyridyl	2-methylsulfonyl-1-imidazolyl
751	CO ₂ CH ₃	2-pyrimidyl	2-(aminosulfonyl)phenyl
752	CO ₂ CH ₃	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
753	CO ₂ CH ₃	2-pyrimidyl	1-pyrrolidinocarbonyl
754	CO ₂ CH ₃	2-pyrimidyl	2-(methylsulfonyl)phenyl
755	CO ₂ CH ₃	2-pyrimidyl	4-morpholino
756	CO ₂ CH ₃	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
757	CO ₂ CH ₃	2-pyrimidyl	4-morpholinocarbonyl
758	CO ₂ CH ₃	2-pyrimidyl	2-methyl-1-imidazolyl
759	CO ₂ CH ₃	2-pyrimidyl	5-methyl-1-imidazolyl
760	CO ₂ CH ₃	2-pyrimidyl	2-methylsulfonyl-1-imidazolyl
761	CO ₂ CH ₃	5-pyrimidyl	2-(aminosulfonyl)phenyl
762	CO ₂ CH ₃	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
763	CO ₂ CH ₃	5-pyrimidyl	1-pyrrolidinocarbonyl
764	CO ₂ CH ₃	5-pyrimidyl	2-(methylsulfonyl)phenyl
765	CO ₂ CH ₃	5-pyrimidyl	4-morpholino
766	CO ₂ CH ₃	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
767	CO ₂ CH ₃	5-pyrimidyl	4-morpholinocarbonyl
768	CO ₂ CH ₃	5-pyrimidyl	2-methyl-1-imidazolyl
769	CO ₂ CH ₃	5-pyrimidyl	5-methyl-1-imidazolyl
770	CO ₂ CH ₃	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
771	CO ₂ CH ₃	2-Cl-phenyl	2-(aminosulfonyl)phenyl
772	CO ₂ CH ₃	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
773	CO ₂ CH ₃	2-Cl-phenyl	1-pyrrolidinocarbonyl
774	CO ₂ CH ₃	2-Cl-phenyl	2-(methylsulfonyl)phenyl
775	CO ₂ CH ₃	2-Cl-phenyl	4-morpholino
776	CO ₂ CH ₃	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
777	CO ₂ CH ₃	2-Cl-phenyl	4-morpholinocarbonyl
778	CO ₂ CH ₃	2-Cl-phenyl	2-methyl-1-imidazolyl
779	CO ₂ CH ₃	2-Cl-phenyl	5-methyl-1-imidazolyl
780	CO ₂ CH ₃	2-Cl-phenyl	2-methylsulfonyl-1-imidazolyl
781	CO ₂ CH ₃	2-F-phenyl	2-(aminosulfonyl)phenyl
782	CO ₂ CH ₃	2-F-phenyl	2-(methylaminosulfonyl)phenyl
783	CO ₂ CH ₃	2-F-phenyl	1-pyrrolidinocarbonyl

784	CO ₂ CH ₃	2-F-phenyl	2-(methylsulfonyl)phenyl
785	CO ₂ CH ₃	2-F-phenyl	4-morpholino
786	CO ₂ CH ₃	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
787	CO ₂ CH ₃	2-F-phenyl	4-morpholinocarbonyl
788	CO ₂ CH ₃	2-F-phenyl	2-methyl-1-imidazolyl
789	CO ₂ CH ₃	2-F-phenyl	5-methyl-1-imidazolyl
790	CO ₂ CH ₃	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
791	CO ₂ CH ₃	2,6-dif-phenyl	2-(aminosulfonyl)phenyl
792	CO ₂ CH ₃	2,6-dif-phenyl	2-(methylaminosulfonyl)phenyl
793	CO ₂ CH ₃	2,6-dif-phenyl	1-pyrrolidinocarbonyl
794	CO ₂ CH ₃	2,6-dif-phenyl	2-(methylsulfonyl)phenyl
795	CO ₂ CH ₃	2,6-dif-phenyl	4-morpholino
796	CO ₂ CH ₃	2,6-dif-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
797	CO ₂ CH ₃	2,6-dif-phenyl	4-morpholinocarbonyl
798	CO ₂ CH ₃	2,6-dif-phenyl	2-methyl-1-imidazolyl
799	CO ₂ CH ₃	2,6-dif-phenyl	5-methyl-1-imidazolyl
800	CO ₂ CH ₃	2,6-dif-phenyl	2-methylsulfonyl-1-imidazolyl
801	CH ₂ OCH ₃	phenyl	2-(aminosulfonyl)phenyl
802	CH ₂ OCH ₃	phenyl	2-(methylaminosulfonyl)phenyl
803	CH ₂ OCH ₃	phenyl	1-pyrrolidinocarbonyl
804	CH ₂ OCH ₃	phenyl	2-(methylsulfonyl)phenyl
805	CH ₂ OCH ₃	phenyl	4-morpholino
806	CH ₂ OCH ₃	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
807	CH ₂ OCH ₃	phenyl	4-morpholinocarbonyl
808	CH ₂ OCH ₃	phenyl	2-methyl-1-imidazolyl
809	CH ₂ OCH ₃	phenyl	5-methyl-1-imidazolyl
810	CH ₂ OCH ₃	phenyl	2-methylsulfonyl-1-imidazolyl
811	CH ₂ OCH ₃	2-pyridyl	2-(aminosulfonyl)phenyl
812	CH ₂ OCH ₃	2-pyridyl	2-(methylaminosulfonyl)phenyl
813	CH ₂ OCH ₃	2-pyridyl	1-pyrrolidinocarbonyl
814	CH ₂ OCH ₃	2-pyridyl	2-(methylsulfonyl)phenyl
815	CH ₂ OCH ₃	2-pyridyl	4-morpholino
816	CH ₂ OCH ₃	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
817	CH ₂ OCH ₃	2-pyridyl	4-morpholinocarbonyl
818	CH ₂ OCH ₃	2-pyridyl	2-methyl-1-imidazolyl
819	CH ₂ OCH ₃	2-pyridyl	5-methyl-1-imidazolyl
820	CH ₂ OCH ₃	2-pyridyl	2-methylsulfonyl-1-imidazolyl
821	CH ₂ OCH ₃	3-pyridyl	2-(aminosulfonyl)phenyl
822	CH ₂ OCH ₃	3-pyridyl	2-(methylaminosulfonyl)phenyl
823	CH ₂ OCH ₃	3-pyridyl	1-pyrrolidinocarbonyl
824	CH ₂ OCH ₃	3-pyridyl	2-(methylsulfonyl)phenyl
825	CH ₂ OCH ₃	3-pyridyl	4-morpholino
826	CH ₂ OCH ₃	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
827	CH ₂ OCH ₃	3-pyridyl	4-morpholinocarbonyl
828	CH ₂ OCH ₃	3-pyridyl	2-methyl-1-imidazolyl
829	CH ₂ OCH ₃	3-pyridyl	5-methyl-1-imidazolyl
830	CH ₂ OCH ₃	3-pyridyl	2-methylsulfonyl-1-imidazolyl
831	CH ₂ OCH ₃	2-pyrimidyl	2-(aminosulfonyl)phenyl

832	CH ₂ OCH ₃	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
833	CH ₂ OCH ₃	2-pyrimidyl	1-pyrrolidinocarbonyl
834	CH ₂ OCH ₃	2-pyrimidyl	2-(methylsulfonyl)phenyl
835	CH ₂ OCH ₃	2-pyrimidyl	4-morpholino
836	CH ₂ OCH ₃	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
837	CH ₂ OCH ₃	2-pyrimidyl	4-morpholinocarbonyl
838	CH ₂ OCH ₃	2-pyrimidyl	2-methyl-1-imidazolyl
839	CH ₂ OCH ₃	2-pyrimidyl	5-methyl-1-imidazolyl
840	CH ₂ OCH ₃	2-pyrimidyl	2-methylsulfonyl-1-imidazolyl
841	CH ₂ OCH ₃	5-pyrimidyl	2-(aminosulfonyl)phenyl
842	CH ₂ OCH ₃	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
843	CH ₂ OCH ₃	5-pyrimidyl	1-pyrrolidinocarbonyl
844	CH ₂ OCH ₃	5-pyrimidyl	2-(methylsulfonyl)phenyl
845	CH ₂ OCH ₃	5-pyrimidyl	4-morpholino
846	CH ₂ OCH ₃	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
847	CH ₂ OCH ₃	5-pyrimidyl	4-morpholinocarbonyl
848	CH ₂ OCH ₃	5-pyrimidyl	2-methyl-1-imidazolyl
849	CH ₂ OCH ₃	5-pyrimidyl	5-methyl-1-imidazolyl
850	CH ₂ OCH ₃	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
851	CH ₂ OCH ₃	2-Cl-phenyl	2-(aminosulfonyl)phenyl
852	CH ₂ OCH ₃	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
853	CH ₂ OCH ₃	2-Cl-phenyl	1-pyrrolidinocarbonyl
854	CH ₂ OCH ₃	2-Cl-phenyl	2-(methylsulfonyl)phenyl
855	CH ₂ OCH ₃	2-Cl-phenyl	4-morpholino
856	CH ₂ OCH ₃	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
857	CH ₂ OCH ₃	2-Cl-phenyl	4-morpholinocarbonyl
858	CH ₂ OCH ₃	2-Cl-phenyl	2-methyl-1-imidazolyl
859	CH ₂ OCH ₃	2-Cl-phenyl	5-methyl-1-imidazolyl
860	CH ₂ OCH ₃	2-Cl-phenyl	2-methylsulfonyl-1-imidazolyl
861	CH ₂ OCH ₃	2-F-phenyl	2-(aminosulfonyl)phenyl
862	CH ₂ OCH ₃	2-F-phenyl	2-(methylaminosulfonyl)phenyl
863	CH ₂ OCH ₃	2-F-phenyl	1-pyrrolidinocarbonyl
864	CH ₂ OCH ₃	2-F-phenyl	2-(methylsulfonyl)phenyl
865	CH ₂ OCH ₃	2-F-phenyl	4-morpholino
866	CH ₂ OCH ₃	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
867	CH ₂ OCH ₃	2-F-phenyl	4-morpholinocarbonyl
868	CH ₂ OCH ₃	2-F-phenyl	2-methyl-1-imidazolyl
869	CH ₂ OCH ₃	2-F-phenyl	5-methyl-1-imidazolyl
870	CH ₂ OCH ₃	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
871	CH ₂ OCH ₃	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
872	CH ₂ OCH ₃	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
873	CH ₂ OCH ₃	2,6-diF-phenyl	1-pyrrolidinocarbonyl
874	CH ₂ OCH ₃	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
875	CH ₂ OCH ₃	2,6-diF-phenyl	4-morpholino
876	CH ₂ OCH ₃	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
877	CH ₂ OCH ₃	2,6-diF-phenyl	4-morpholinocarbonyl
878	CH ₂ OCH ₃	2,6-diF-phenyl	2-methyl-1-imidazolyl
879	CH ₂ OCH ₃	2,6-diF-phenyl	5-methyl-1-imidazolyl

880	CH ₂ OCH ₃	2,6-diF-phenyl	2-methylsulfonyl-1-imidazolyl
881	CONH ₂	phenyl	2-(aminosulfonyl)phenyl
882	CONH ₂	phenyl	2-(methylaminosulfonyl)phenyl
883	CONH ₂	phenyl	1-pyrrolidinocarbonyl
884	CONH ₂	phenyl	2-(methylsulfonyl)phenyl
885	CONH ₂	phenyl	4-morpholino
886	CONH ₂	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
887	CONH ₂	phenyl	4-morpholinocarbonyl
888	CONH ₂	phenyl	2-methyl-1-imidazolyl
889	CONH ₂	phenyl	5-methyl-1-imidazolyl
890	CONH ₂	phenyl	2-methylsulfonyl-1-imidazolyl
891	CONH ₂	2-pyridyl	2-(aminosulfonyl)phenyl
892	CONH ₂	2-pyridyl	2-(methylaminosulfonyl)phenyl
893	CONH ₂	2-pyridyl	1-pyrrolidinocarbonyl
894	CONH ₂	2-pyridyl	2-(methylsulfonyl)phenyl
895	CONH ₂	2-pyridyl	4-morpholino
896	CONH ₂	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
897	CONH ₂	2-pyridyl	4-morpholinocarbonyl
898	CONH ₂	2-pyridyl	2-methyl-1-imidazolyl
899	CONH ₂	2-pyridyl	5-methyl-1-imidazolyl
900	CONH ₂	2-pyridyl	2-methylsulfonyl-1-imidazolyl
901	CONH ₂	3-pyridyl	2-(aminosulfonyl)phenyl
902	CONH ₂	3-pyridyl	2-(methylaminosulfonyl)phenyl
903	CONH ₂	3-pyridyl	1-pyrrolidinocarbonyl
904	CONH ₂	3-pyridyl	2-(methylsulfonyl)phenyl
905	CONH ₂	3-pyridyl	4-morpholino
906	CONH ₂	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
907	CONH ₂	3-pyridyl	4-morpholinocarbonyl
908	CONH ₂	3-pyridyl	2-methyl-1-imidazolyl
909	CONH ₂	3-pyridyl	5-methyl-1-imidazolyl
910	CONH ₂	3-pyridyl	2-methylsulfonyl-1-imidazolyl
911	CONH ₂	2-pyrimidyl	2-(aminosulfonyl)phenyl
912	CONH ₂	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
913	CONH ₂	2-pyrimidyl	1-pyrrolidinocarbonyl
914	CONH ₂	2-pyrimidyl	2-(methylsulfonyl)phenyl
915	CONH ₂	2-pyrimidyl	4-morpholino
916	CONH ₂	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
917	CONH ₂	2-pyrimidyl	4-morpholinocarbonyl
918	CONH ₂	2-pyrimidyl	2-methyl-1-imidazolyl
919	CONH ₂	2-pyrimidyl	5-methyl-1-imidazolyl
920	CONH ₂	2-pyrimidyl	2-methylsulfonyl-1-imidazolyl
921	CONH ₂	5-pyrimidyl	2-(aminosulfonyl)phenyl
922	CONH ₂	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
923	CONH ₂	5-pyrimidyl	1-pyrrolidinocarbonyl
924	CONH ₂	5-pyrimidyl	2-(methylsulfonyl)phenyl
925	CONH ₂	5-pyrimidyl	4-morpholino
926	CONH ₂	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
927	CONH ₂	5-pyrimidyl	4-morpholinocarbonyl

928	CONH ₂	5-pyrimidyl	2-methyl-1-imidazolyl
929	CONH ₂	5-pyrimidyl	5-methyl-1-imidazolyl
930	CONH ₂	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
931	CONH ₂	2-Cl-phenyl	2-(aminosulfonyl)phenyl
932	CONH ₂	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
933	CONH ₂	2-Cl-phenyl	1-pyrrolidinocarbonyl
934	CONH ₂	2-Cl-phenyl	2-(methylsulfonyl)phenyl
935	CONH ₂	2-Cl-phenyl	4-morpholino
936	CONH ₂	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
937	CONH ₂	2-Cl-phenyl	4-morpholinocarbonyl
938	CONH ₂	2-Cl-phenyl	2-methyl-1-imidazolyl
939	CONH ₂	2-Cl-phenyl	5-methyl-1-imidazolyl
940	CONH ₂	2-Cl-phenyl	2-methylsulfonyl-1-imidazolyl
941	CONH ₂	2-F-phenyl	2-(aminosulfonyl)phenyl
942	CONH ₂	2-F-phenyl	2-(methylaminosulfonyl)phenyl
943	CONH ₂	2-F-phenyl	1-pyrrolidinocarbonyl
944	CONH ₂	2-F-phenyl	2-(methylsulfonyl)phenyl
945	CONH ₂	2-F-phenyl	4-morpholino
946	CONH ₂	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
947	CONH ₂	2-F-phenyl	4-morpholinocarbonyl
948	CONH ₂	2-F-phenyl	2-methyl-1-imidazolyl
949	CONH ₂	2-F-phenyl	5-methyl-1-imidazolyl
950	CONH ₂	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
951	CONH ₂	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
952	CONH ₂	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
953	CONH ₂	2,6-diF-phenyl	1-pyrrolidinocarbonyl
954	CONH ₂	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
955	CONH ₂	2,6-diF-phenyl	4-morpholino
956	CONH ₂	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
957	CONH ₂	2,6-diF-phenyl	4-morpholinocarbonyl
958	CONH ₂	2,6-diF-phenyl	2-methyl-1-imidazolyl
959	CONH ₂	2,6-diF-phenyl	5-methyl-1-imidazolyl
960	CONH ₂	2,6-diF-phenyl	2-methylsulfonyl-1-imidazolyl

Table 7

oo

pp

qq

rr

ss

tt

uu

vv

Ex #	R ^{1a}	A	B
1	CH ₃	phenyl	2-(aminosulfonyl)phenyl
2	CH ₃	phenyl	2-(methylaminosulfonyl)phenyl
3	CH ₃	phenyl	1-pyrrolidinocarbonyl
4	CH ₃	phenyl	2-(methylsulfonyl)phenyl
5	CH ₃	phenyl	4-morpholino
6	CH ₃	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
7	CH ₃	phenyl	4-morpholinocarbonyl
8	CH ₃	phenyl	2-methyl-1-imidazolyl
9	CH ₃	phenyl	5-methyl-1-imidazolyl
10	CH ₃	phenyl	2-methylsulfonyl-1-imidazolyl
11	CH ₃	2-pyridyl	2-(aminosulfonyl)phenyl
12	CH ₃	2-pyridyl	2-(methylaminosulfonyl)phenyl
13	CH ₃	2-pyridyl	1-pyrrolidinocarbonyl
14	CH ₃	2-pyridyl	2-(methylsulfonyl)phenyl
15	CH ₃	2-pyridyl	4-morpholino
16	CH ₃	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
17	CH ₃	2-pyridyl	4-morpholinocarbonyl
18	CH ₃	2-pyridyl	2-methyl-1-imidazolyl
19	CH ₃	2-pyridyl	5-methyl-1-imidazolyl
20	CH ₃	2-pyridyl	2-methylsulfonyl-1-imidazolyl
21	CH ₃	3-pyridyl	2-(aminosulfonyl)phenyl
22	CH ₃	3-pyridyl	2-(methylaminosulfonyl)phenyl
23	CH ₃	3-pyridyl	1-pyrrolidinocarbonyl
24	CH ₃	3-pyridyl	2-(methylsulfonyl)phenyl
25	CH ₃	3-pyridyl	4-morpholino

26	CH ₃	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
27	CH ₃	3-pyridyl	2-methyl-1-imidazolyl
28	CH ₃	3-pyridyl	5-methyl-1-imidazolyl
29	CH ₃	3-pyridyl	2-methylsulfonyl-1-imidazolyl
30	CH ₃	3-pyridyl	2-(aminosulfonyl)phenyl
31	CH ₃	2-pyrimidyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
32	CH ₃	2-pyrimidyl	2-(methylsulfonyl)phenyl 4-morpholino
33	CH ₃	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
34	CH ₃	2-pyrimidyl	2-methyl-1-imidazolyl
35	CH ₃	2-pyrimidyl	5-methyl-1-imidazolyl
36	CH ₃	2-pyrimidyl	2-methylsulfonyl-1-imidazolyl
37	CH ₃	2-pyrimidyl	2-(aminosulfonyl)phenyl
38	CH ₃	2-pyrimidyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
39	CH ₃	2-pyrimidyl	2-(methylsulfonyl)phenyl 4-morpholino
40	CH ₃	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
41	CH ₃	5-pyrimidyl	2-methyl-1-imidazolyl
42	CH ₃	5-pyrimidyl	5-methyl-1-imidazolyl
43	CH ₃	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
44	CH ₃	5-pyrimidyl	2-(aminosulfonyl)phenyl
45	CH ₃	5-pyrimidyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
46	CH ₃	5-pyrimidyl	2-(methylsulfonyl)phenyl 4-morpholino
47	CH ₃	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
48	CH ₃	5-pyrimidyl	2-methyl-1-imidazolyl
49	CH ₃	5-pyrimidyl	5-methyl-1-imidazolyl
50	CH ₃	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
51	CH ₃	2-Cl-phenyl	2-(aminosulfonyl)phenyl
52	CH ₃	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
53	CH ₃	2-Cl-phenyl	2-(methylsulfonyl)phenyl 4-morpholino
54	CH ₃	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
55	CH ₃	2-Cl-phenyl	2-methyl-1-imidazolyl
56	CH ₃	2-Cl-phenyl	5-methyl-1-imidazolyl
57	CH ₃	2-Cl-phenyl	2-methylsulfonyl-1-imidazolyl
58	CH ₃	2-Cl-phenyl	2-(aminosulfonyl)phenyl
59	CH ₃	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
60	CH ₃	2-Cl-phenyl	2-(methylsulfonyl)phenyl 4-morpholino
61	CH ₃	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
62	CH ₃	2-F-phenyl	2-methyl-1-imidazolyl
63	CH ₃	2-F-phenyl	5-methyl-1-imidazolyl
64	CH ₃	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
65	CH ₃	2-F-phenyl	2-(aminosulfonyl)phenyl
66	CH ₃	2-F-phenyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
67	CH ₃	2-F-phenyl	2-(methylsulfonyl)phenyl 4-morpholino
68	CH ₃	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
69	CH ₃	2-F-phenyl	2-methyl-1-imidazolyl
70	CH ₃	2-F-phenyl	5-methyl-1-imidazolyl
71	CH ₃	2,6-diF-phenyl	2-methylsulfonyl-1-imidazolyl
72	CH ₃	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
73	CH ₃	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl

74	CH ₃	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
75	CH ₃	2,6-diF-phenyl	4-morpholino
76	CH ₃	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
77	CH ₃	2,6-diF-phenyl	4-morpholinocarbonyl
78	CH ₃	2,6-diF-phenyl	2-methyl-1-imidazolyl
79	CH ₃	2,6-diF-phenyl	5-methyl-1-imidazolyl
80	CH ₃	2,6-diF-phenyl	2-methylsulfonyl-1-imidazolyl
81	CH ₂ CH ₃	phenyl	2-(aminosulfonyl)phenyl
82	CH ₂ CH ₃	phenyl	2-(methylaminosulfonyl)phenyl
83	CH ₂ CH ₃	phenyl	1-pyrrolidinocarbonyl
84	CH ₂ CH ₃	phenyl	2-(methylsulfonyl)phenyl
85	CH ₂ CH ₃	phenyl	4-morpholino
86	CH ₂ CH ₃	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
87	CH ₂ CH ₃	phenyl	4-morpholinocarbonyl
88	CH ₂ CH ₃	phenyl	2-methyl-1-imidazolyl
89	CH ₂ CH ₃	phenyl	5-methyl-1-imidazolyl
90	CH ₂ CH ₃	phenyl	2-methylsulfonyl-1-imidazolyl
91	CH ₂ CH ₃	2-pyridyl	2-(aminosulfonyl)phenyl
92	CH ₂ CH ₃	2-pyridyl	2-(methylaminosulfonyl)phenyl
93	CH ₂ CH ₃	2-pyridyl	1-pyrrolidinocarbonyl
94	CH ₂ CH ₃	2-pyridyl	2-(methylsulfonyl)phenyl
95	CH ₂ CH ₃	2-pyridyl	4-morpholino
96	CH ₂ CH ₃	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
97	CH ₂ CH ₃	2-pyridyl	4-morpholinocarbonyl
98	CH ₂ CH ₃	2-pyridyl	2-methyl-1-imidazolyl
99	CH ₂ CH ₃	2-pyridyl	5-methyl-1-imidazolyl
100	CH ₂ CH ₃	2-pyridyl	2-methylsulfonyl-1-imidazolyl
101	CH ₂ CH ₃	3-pyridyl	2-(aminosulfonyl)phenyl
102	CH ₂ CH ₃	3-pyridyl	2-(methylaminosulfonyl)phenyl
103	CH ₂ CH ₃	3-pyridyl	1-pyrrolidinocarbonyl
104	CH ₂ CH ₃	3-pyridyl	2-(methylsulfonyl)phenyl
105	CH ₂ CH ₃	3-pyridyl	4-morpholino
106	CH ₂ CH ₃	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
107	CH ₂ CH ₃	3-pyridyl	4-morpholinocarbonyl
108	CH ₂ CH ₃	3-pyridyl	2-methyl-1-imidazolyl
109	CH ₂ CH ₃	3-pyridyl	5-methyl-1-imidazolyl
110	CH ₂ CH ₃	3-pyridyl	2-methylsulfonyl-1-imidazolyl
111	CH ₂ CH ₃	2-pyrimidyl	2-(aminosulfonyl)phenyl
112	CH ₂ CH ₃	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
113	CH ₂ CH ₃	2-pyrimidyl	1-pyrrolidinocarbonyl
114	CH ₂ CH ₃	2-pyrimidyl	2-(methylsulfonyl)phenyl
115	CH ₂ CH ₃	2-pyrimidyl	4-morpholino
116	CH ₂ CH ₃	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
117	CH ₂ CH ₃	2-pyrimidyl	4-morpholinocarbonyl
118	CH ₂ CH ₃	2-pyrimidyl	2-methyl-1-imidazolyl
119	CH ₂ CH ₃	2-pyrimidyl	5-methyl-1-imidazolyl
120	CH ₂ CH ₃	2-pyrimidyl	2-methylsulfonyl-1-imidazolyl
121	CH ₂ CH ₃	5-pyrimidyl	2-(aminosulfonyl)phenyl

122	CH ₂ CH ₃	5-pyrimidyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
123	CH ₂ CH ₃	5-pyrimidyl	2-(methylsulfonyl)phenyl 4-morpholino
124	CH ₂ CH ₃	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
125	CH ₂ CH ₃	5-pyrimidyl	2-methyl-1-imidazolyl 5-methyl-1-imidazolyl
126	CH ₂ CH ₃	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
127	CH ₂ CH ₃	5-pyrimidyl	2-(aminosulfonyl)phenyl
128	CH ₂ CH ₃	5-pyrimidyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
129	CH ₂ CH ₃	5-pyrimidyl	2-(methylsulfonyl)phenyl 4-morpholino
130	CH ₂ CH ₃	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
131	CH ₂ CH ₃	2-Cl-phenyl	2-methyl-1-imidazolyl 5-methyl-1-imidazolyl
132	CH ₂ CH ₃	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
133	CH ₂ CH ₃	2-Cl-phenyl	2-(methylsulfonyl)phenyl 4-morpholino
134	CH ₂ CH ₃	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
135	CH ₂ CH ₃	2-Cl-phenyl	2-methyl-1-imidazolyl 5-methyl-1-imidazolyl
136	CH ₂ CH ₃	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
137	CH ₂ CH ₃	2-Cl-phenyl	2-(methylsulfonyl)phenyl 4-morpholino
138	CH ₂ CH ₃	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
139	CH ₂ CH ₃	2-Cl-phenyl	2-methyl-1-imidazolyl 5-methyl-1-imidazolyl
140	CH ₂ CH ₃	2-Cl-phenyl	2-methylsulfonyl-1-imidazolyl
141	CH ₂ CH ₃	2-F-phenyl	2-(aminosulfonyl)phenyl
142	CH ₂ CH ₃	2-F-phenyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
143	CH ₂ CH ₃	2-F-phenyl	2-(methylsulfonyl)phenyl 4-morpholino
144	CH ₂ CH ₃	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
145	CH ₂ CH ₃	2-F-phenyl	2-methyl-1-imidazolyl 5-methyl-1-imidazolyl
146	CH ₂ CH ₃	2-F-phenyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
147	CH ₂ CH ₃	2-F-phenyl	2-(methylsulfonyl)phenyl 4-morpholino
148	CH ₂ CH ₃	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
149	CH ₂ CH ₃	2-F-phenyl	2-methyl-1-imidazolyl 5-methyl-1-imidazolyl
150	CH ₂ CH ₃	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
151	CH ₂ CH ₃	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
152	CH ₂ CH ₃	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
153	CH ₂ CH ₃	2,6-diF-phenyl	2-(methylsulfonyl)phenyl 4-morpholino
154	CH ₂ CH ₃	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
155	CH ₂ CH ₃	2,6-diF-phenyl	2-methyl-1-imidazolyl 5-methyl-1-imidazolyl
156	CH ₂ CH ₃	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
157	CH ₂ CH ₃	2,6-diF-phenyl	2-(methylsulfonyl)phenyl 4-morpholino
158	CH ₂ CH ₃	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
159	CH ₂ CH ₃	2,6-diF-phenyl	2-methyl-1-imidazolyl 5-methyl-1-imidazolyl
160	CH ₂ CH ₃	2,6-diF-phenyl	2-methylsulfonyl-1-imidazolyl
161	CF ₃	phenyl	2-(aminosulfonyl)phenyl
162	CF ₃	phenyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
163	CF ₃	phenyl	2-(methylsulfonyl)phenyl 4-morpholino
164	CF ₃	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
165	CF ₃	phenyl	2-methyl-1-imidazolyl 5-methyl-1-imidazolyl
166	CF ₃	phenyl	2-(methylaminosulfonyl)phenyl 1-pyrrolidinocarbonyl
167	CF ₃	phenyl	2-(methylsulfonyl)phenyl 4-morpholino
168	CF ₃	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl 4-morpholinocarbonyl
169	CF ₃	phenyl	2-methyl-1-imidazolyl 5-methyl-1-imidazolyl

170	CF_3^*	phenyl	2-methylsulfonyl-1-imidazolyl
171	CF_3	2-pyridyl	2-(aminosulfonyl)phenyl
172	CF_3	2-pyridyl	2-(methylaminosulfonyl)phenyl
173	CF_3	2-pyridyl	1-pyrrolidinocarbonyl
174	CF_3	2-pyridyl	2-(methylsulfonyl)phenyl
175	CF_3	2-pyridyl	4-morpholino
176	CF_3	2-pyridyl	2-(1'- CF_3 -tetrazol-2-yl)phenyl
177	CF_3	2-pyridyl	4-morpholinocarbonyl
178	CF_3	2-pyridyl	2-methyl-1-imidazolyl
179	CF_3	2-pyridyl	5-methyl-1-imidazolyl
180	CF_3	2-pyridyl	2-methylsulfonyl-1-imidazolyl
181	CF_3	3-pyridyl	2-(aminosulfonyl)phenyl
182	CF_3	3-pyridyl	2-(methylaminosulfonyl)phenyl
183	CF_3	3-pyridyl	1-pyrrolidinocarbonyl
184	CF_3	3-pyridyl	2-(methylsulfonyl)phenyl
185	CF_3	3-pyridyl	4-morpholino
186	CF_3	3-pyridyl	2-(1'- CF_3 -tetrazol-2-yl)phenyl
187	CF_3	3-pyridyl	4-morpholinocarbonyl
188	CF_3	3-pyridyl	2-methyl-1-imidazolyl
189	CF_3	3-pyridyl	5-methyl-1-imidazolyl
190	CF_3	3-pyridyl	2-methylsulfonyl-1-imidazolyl
191	CF_3	2-pyrimidyl	2-(aminosulfonyl)phenyl
192	CF_3	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
193	CF_3	2-pyrimidyl	1-pyrrolidinocarbonyl
194	CF_3	2-pyrimidyl	2-(methylsulfonyl)phenyl
195	CF_3	2-pyrimidyl	4-morpholino
196	CF_3	2-pyrimidyl	2-(1'- CF_3 -tetrazol-2-yl)phenyl
197	CF_3	2-pyrimidyl	4-morpholinocarbonyl
198	CF_3	2-pyrimidyl	2-methyl-1-imidazolyl
199	CF_3	2-pyrimidyl	5-methyl-1-imidazolyl
200	CF_3	2-pyrimidyl	2-methylsulfonyl-1-imidazolyl
201	CF_3	5-pyrimidyl	2-(aminosulfonyl)phenyl
202	CF_3	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
203	CF_3	5-pyrimidyl	1-pyrrolidinocarbonyl
204	CF_3	5-pyrimidyl	2-(methylsulfonyl)phenyl
205	CF_3	5-pyrimidyl	4-morpholino
206	CF_3	5-pyrimidyl	2-(1'- CF_3 -tetrazol-2-yl)phenyl
207	CF_3	5-pyrimidyl	4-morpholinocarbonyl
208	CF_3	5-pyrimidyl	2-methyl-1-imidazolyl
209	CF_3	5-pyrimidyl	5-methyl-1-imidazolyl
210	CF_3	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
211	CF_3	2-Cl-phenyl	2-(aminosulfonyl)phenyl
212	CF_3	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
213	CF_3	2-Cl-phenyl	1-pyrrolidinocarbonyl
214	CF_3	2-Cl-phenyl	2-(methylsulfonyl)phenyl
215	CF_3	2-Cl-phenyl	4-morpholino
216	CF_3	2-Cl-phenyl	2-(1'- CF_3 -tetrazol-2-yl)phenyl
217	CF_3	2-Cl-phenyl	4-morpholinocarbonyl

218	CF ₃	2-Cl-phenyl	2-methyl-1-imidazolyl
219	CF ₃	2-Cl-phenyl	5-methyl-1-imidazolyl
220	CF ₃	2-Cl-phenyl	2-methylsulfonyl-1-imidazolyl
221	CF ₃	2-F-phenyl	2-(aminosulfonyl)phenyl
222	CF ₃	2-F-phenyl	2-(methylaminosulfonyl)phenyl
223	CF ₃	2-F-phenyl	1-pyrrolidinocarbonyl
224	CF ₃	2-F-phenyl	2-(methylsulfonyl)phenyl
225	CF ₃	2-F-phenyl	4-morpholino
226	CF ₃	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
227	CF ₃	2-F-phenyl	4-morpholinocarbonyl
228	CF ₃	2-F-phenyl	2-methyl-1-imidazolyl
229	CF ₃	2-F-phenyl	5-methyl-1-imidazolyl
230	CF ₃	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
231	CF ₃	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
232	CF ₃	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
233	CF ₃	2,6-diF-phenyl	1-pyrrolidinocarbonyl
234	CF ₃	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
235	CF ₃	2,6-diF-phenyl	4-morpholino
236	CF ₃	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
237	CF ₃	2,6-diF-phenyl	4-morpholinocarbonyl
238	CF ₃	2,6-diF-phenyl	2-methyl-1-imidazolyl
239	CF ₃	2,6-diF-phenyl	5-methyl-1-imidazolyl
240	CF ₃	2,6-diF-phenyl	2-methylsulfonyl-1-imidazolyl
241	SCH ₃	phenyl	2-(aminosulfonyl)phenyl
242	SCH ₃	phenyl	2-(methylaminosulfonyl)phenyl
243	SCH ₃	phenyl	1-pyrrolidinocarbonyl
244	SCH ₃	phenyl	2-(methylsulfonyl)phenyl
245	SCH ₃	phenyl	4-morpholino
246	SCH ₃	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
247	SCH ₃	phenyl	4-morpholinocarbonyl
248	SCH ₃	phenyl	2-methyl-1-imidazolyl
249	SCH ₃	phenyl	5-methyl-1-imidazolyl
250	SCH ₃	phenyl	2-methylsulfonyl-1-imidazolyl
251	SCH ₃	2-pyridyl	2-(aminosulfonyl)phenyl
252	SCH ₃	2-pyridyl	2-(methylaminosulfonyl)phenyl
253	SCH ₃	2-pyridyl	1-pyrrolidinocarbonyl
254	SCH ₃	2-pyridyl	2-(methylsulfonyl)phenyl
255	SCH ₃	2-pyridyl	4-morpholino
256	SCH ₃	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
257	SCH ₃	2-pyridyl	4-morpholinocarbonyl
258	SCH ₃	2-pyridyl	2-methyl-1-imidazolyl
259	SCH ₃	2-pyridyl	5-methyl-1-imidazolyl
260	SCH ₃	2-pyridyl	2-methylsulfonyl-1-imidazolyl
261	SCH ₃	3-pyridyl	2-(aminosulfonyl)phenyl
262	SCH ₃	3-pyridyl	2-(methylaminosulfonyl)phenyl
263	SCH ₃	3-pyridyl	1-pyrrolidinocarbonyl
264	SCH ₃	3-pyridyl	2-(methylsulfonyl)phenyl
265	SCH ₃	3-pyridyl	4-morpholino

266	SCH ₃	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
267	SCH ₃	3-pyridyl	4-morpholinocarbonyl
268	SCH ₃	3-pyridyl	2-methyl-1-imidazolyl
269	SCH ₃	3-pyridyl	5-methyl-1-imidazolyl
270	SCH ₃	3-pyridyl	2-methylsulfonyl-1-imidazolyl
271	SCH ₃	2-pyrimidyl	2-(aminosulfonyl)phenyl
272	SCH ₃	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
273	SCH ₃	2-pyrimidyl	1-pyrrolidinocarbonyl
274	SCH ₃	2-pyrimidyl	2-(methylsulfonyl)phenyl
275	SCH ₃	2-pyrimidyl	4-morpholino
276	SCH ₃	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
277	SCH ₃	2-pyrimidyl	4-morpholinocarbonyl
278	SCH ₃	2-pyrimidyl	2-methyl-1-imidazolyl
279	SCH ₃	2-pyrimidyl	5-methyl-1-imidazolyl
280	SCH ₃	2-pyrimidyl	2-methylsulfonyl-1-imidazolyl
281	SCH ₃	5-pyrimidyl	2-(aminosulfonyl)phenyl
282	SCH ₃	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
283	SCH ₃	5-pyrimidyl	1-pyrrolidinocarbonyl
284	SCH ₃	5-pyrimidyl	2-(methylsulfonyl)phenyl
285	SCH ₃	5-pyrimidyl	4-morpholino
286	SCH ₃	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
287	SCH ₃	5-pyrimidyl	4-morpholinocarbonyl
288	SCH ₃	5-pyrimidyl	2-methyl-1-imidazolyl
289	SCH ₃	5-pyrimidyl	5-methyl-1-imidazolyl
290	SCH ₃	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
291	SCH ₃	2-Cl-phenyl	2-(aminosulfonyl)phenyl
292	SCH ₃	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
293	SCH ₃	2-Cl-phenyl	1-pyrrolidinocarbonyl
294	SCH ₃	2-Cl-phenyl	2-(methylsulfonyl)phenyl
295	SCH ₃	2-Cl-phenyl	4-morpholino
296	SCH ₃	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
297	SCH ₃	2-Cl-phenyl	4-morpholinocarbonyl
298	SCH ₃	2-Cl-phenyl	2-methyl-1-imidazolyl
299	SCH ₃	2-Cl-phenyl	5-methyl-1-imidazolyl
300	SCH ₃	2-Cl-phenyl	2-methylsulfonyl-1-imidazolyl
301	SCH ₃	2-F-phenyl	2-(aminosulfonyl)phenyl
302	SCH ₃	2-F-phenyl	2-(methylaminosulfonyl)phenyl
303	SCH ₃	2-F-phenyl	1-pyrrolidinocarbonyl
304	SCH ₃	2-F-phenyl	2-(methylsulfonyl)phenyl
305	SCH ₃	2-F-phenyl	4-morpholino
306	SCH ₃	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
307	SCH ₃	2-F-phenyl	4-morpholinocarbonyl
308	SCH ₃	2-F-phenyl	2-methyl-1-imidazolyl
309	SCH ₃	2-F-phenyl	5-methyl-1-imidazolyl
310	SCH ₃	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
311	SCH ₃	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
312	SCH ₃	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
313	SCH ₃	2,6-diF-phenyl	1-pyrrolidinocarbonyl

314	SCH ₃	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
315	SCH ₃	2,6-diF-phenyl	4-morpholino
316	SCH ₃	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
317	SCH ₃	2,6-diF-phenyl	4-morpholinocarbonyl
318	SCH ₃	2,6-diF-phenyl	2-methyl-1-imidazolyl
319	SCH ₃	2,6-diF-phenyl	5-methyl-1-imidazolyl
320	SCH ₃	2,6-diF-phenyl	2-methylsulfonyl-1-imidazolyl
321	SOCH ₃	phenyl	2-(aminosulfonyl)phenyl
322	SOCH ₃	phenyl	2-(methylaminosulfonyl)phenyl
323	SOCH ₃	phenyl	1-pyrrolidinocarbonyl
324	SOCH ₃	phenyl	2-(methylsulfonyl)phenyl
325	SOCH ₃	phenyl	4-morpholino
326	SOCH ₃	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
327	SOCH ₃	phenyl	4-morpholinocarbonyl
328	SOCH ₃	phenyl	2-methyl-1-imidazolyl
329	SOCH ₃	phenyl	5-methyl-1-imidazolyl
330	SOCH ₃	phenyl	2-methylsulfonyl-1-imidazolyl
331	SOCH ₃	2-pyridyl	2-(aminosulfonyl)phenyl
332	SOCH ₃	2-pyridyl	2-(methylaminosulfonyl)phenyl
333	SOCH ₃	2-pyridyl	1-pyrrolidinocarbonyl
334	SOCH ₃	2-pyridyl	2-(methylsulfonyl)phenyl
335	SOCH ₃	2-pyridyl	4-morpholino
336	SOCH ₃	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
337	SOCH ₃	2-pyridyl	4-morpholinocarbonyl
338	SOCH ₃	2-pyridyl	2-methyl-1-imidazolyl
339	SOCH ₃	2-pyridyl	5-methyl-1-imidazolyl
340	SOCH ₃	2-pyridyl	2-methylsulfonyl-1-imidazolyl
341	SOCH ₃	3-pyridyl	2-(aminosulfonyl)phenyl
342	SOCH ₃	3-pyridyl	2-(methylaminosulfonyl)phenyl
343	SOCH ₃	3-pyridyl	1-pyrrolidinocarbonyl
344	SOCH ₃	3-pyridyl	2-(methylsulfonyl)phenyl
345	SOCH ₃	3-pyridyl	4-morpholino
346	SOCH ₃	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
347	SOCH ₃	3-pyridyl	4-morpholinocarbonyl
348	SOCH ₃	3-pyridyl	2-methyl-1-imidazolyl
349	SOCH ₃	3-pyridyl	5-methyl-1-imidazolyl
350	SOCH ₃	3-pyridyl	2-methylsulfonyl-1-imidazolyl
351	SOCH ₃	2-pyrimidyl	2-(aminosulfonyl)phenyl
352	SOCH ₃	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
353	SOCH ₃	2-pyrimidyl	1-pyrrolidinocarbonyl
354	SOCH ₃	2-pyrimidyl	2-(methylsulfonyl)phenyl
355	SOCH ₃	2-pyrimidyl	4-morpholino
356	SOCH ₃	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
357	SOCH ₃	2-pyrimidyl	4-morpholinocarbonyl
358	SOCH ₃	2-pyrimidyl	2-methyl-1-imidazolyl
359	SOCH ₃	2-pyrimidyl	5-methyl-1-imidazolyl
360	SOCH ₃	2-pyrimidyl	2-methylsulfonyl-1-imidazolyl
361	SOCH ₃	5-pyrimidyl	2-(aminosulfonyl)phenyl

362	SOCH_3	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
363	SOCH_3	5-pyrimidyl	1-pyrrolidinocarbonyl
364	SOCH_3	5-pyrimidyl	2-(methylsulfonyl)phenyl
365	SOCH_3	5-pyrimidyl	4-morpholino
366	SOCH_3	5-pyrimidyl	2-(1'- CF_3 -tetrazol-2-yl)phenyl
367	SOCH_3	5-pyrimidyl	4-morpholinocarbonyl
368	SOCH_3	5-pyrimidyl	2-methyl-1-imidazolyl
369	SOCH_3	5-pyrimidyl	5-methyl-1-imidazolyl
370	SOCH_3	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
371	SOCH_3	2-Cl-phenyl	2-(aminosulfonyl)phenyl
372	SOCH_3	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
373	SOCH_3	2-Cl-phenyl	1-pyrrolidinocarbonyl
374	SOCH_3	2-Cl-phenyl	2-(methylsulfonyl)phenyl
375	SOCH_3	2-Cl-phenyl	4-morpholino
376	SOCH_3	2-Cl-phenyl	2-(1'- CF_3 -tetrazol-2-yl)phenyl
377	SOCH_3	2-Cl-phenyl	4-morpholinocarbonyl
378	SOCH_3	2-Cl-phenyl	2-methyl-1-imidazolyl
379	SOCH_3	2-Cl-phenyl	5-methyl-1-imidazolyl
380	SOCH_3	2-Cl-phenyl	2-methylsulfonyl-1-imidazolyl
381	SOCH_3	2-F-phenyl	2-(aminosulfonyl)phenyl
382	SOCH_3	2-F-phenyl	2-(methylaminosulfonyl)phenyl
383	SOCH_3	2-F-phenyl	1-pyrrolidinocarbonyl
384	SOCH_3	2-F-phenyl	2-(methylsulfonyl)phenyl
385	SOCH_3	2-F-phenyl	4-morpholino
386	SOCH_3	2-F-phenyl	2-(1'- CF_3 -tetrazol-2-yl)phenyl
387	SOCH_3	2-F-phenyl	4-morpholinocarbonyl
388	SOCH_3	2-F-phenyl	2-methyl-1-imidazolyl
389	SOCH_3	2-F-phenyl	5-methyl-1-imidazolyl
390	SOCH_3	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
391	SOCH_3	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
392	SOCH_3	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
393	SOCH_3	2,6-diF-phenyl	1-pyrrolidinocarbonyl
394	SOCH_3	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
395	SOCH_3	2,6-diF-phenyl	4-morpholino
396	SOCH_3	2,6-diF-phenyl	2-(1'- CF_3 -tetrazol-2-yl)phenyl
397	SOCH_3	2,6-diF-phenyl	4-morpholinocarbonyl
398	SOCH_3	2,6-diF-phenyl	2-methyl-1-imidazolyl
399	SOCH_3	2,6-diF-phenyl	5-methyl-1-imidazolyl
400	SOCH_3	2,6-diF-phenyl	2-methylsulfonyl-1-imidazolyl
401	SO_2CH_3	phenyl	2-(aminosulfonyl)phenyl
402	SO_2CH_3	phenyl	2-(methylaminosulfonyl)phenyl
403	SO_2CH_3	phenyl	1-pyrrolidinocarbonyl
404	SO_2CH_3	phenyl	2-(methylsulfonyl)phenyl
405	SO_2CH_3	phenyl	4-morpholino
406	SO_2CH_3	phenyl	2-(1'- CF_3 -tetrazol-2-yl)phenyl
407	SO_2CH_3	phenyl	4-morpholinocarbonyl
408	SO_2CH_3	phenyl	2-methyl-1-imidazolyl
409	SO_2CH_3	phenyl	5-methyl-1-imidazolyl

410	SO ₂ CH ₃	phenyl	2-methylsulfonyl-1-imidazolyl
411	SO ₂ CH ₃	2-pyridyl	2-(aminosulfonyl)phenyl
412	SO ₂ CH ₃	2-pyridyl	2-(methylaminosulfonyl)phenyl
413	SO ₂ CH ₃	2-pyridyl	1-pyrrolidinocarbonyl
414	SO ₂ CH ₃	2-pyridyl	2-(methylsulfonyl)phenyl
415	SO ₂ CH ₃	2-pyridyl	4-morpholino
416	SO ₂ CH ₃	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
417	SO ₂ CH ₃	2-pyridyl	4-morpholinocarbonyl
418	SO ₂ CH ₃	2-pyridyl	2-methyl-1-imidazolyl
419	SO ₂ CH ₃	2-pyridyl	5-methyl-1-imidazolyl
420	SO ₂ CH ₃	2-pyridyl	2-methylsulfonyl-1-imidazolyl
421	SO ₂ CH ₃	3-pyridyl	2-(aminosulfonyl)phenyl
422	SO ₂ CH ₃	3-pyridyl	2-(methylaminosulfonyl)phenyl
423	SO ₂ CH ₃	3-pyridyl	1-pyrrolidinocarbonyl
424	SO ₂ CH ₃	3-pyridyl	2-(methylsulfonyl)phenyl
425	SO ₂ CH ₃	3-pyridyl	4-morpholino
426	SO ₂ CH ₃	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
427	SO ₂ CH ₃	3-pyridyl	4-morpholinocarbonyl
428	SO ₂ CH ₃	3-pyridyl	2-methyl-1-imidazolyl
429	SO ₂ CH ₃	3-pyridyl	5-methyl-1-imidazolyl
430	SO ₂ CH ₃	3-pyridyl	2-methylsulfonyl-1-imidazolyl
431	SO ₂ CH ₃	2-pyrimidyl	2-(aminosulfonyl)phenyl
432	SO ₂ CH ₃	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
433	SO ₂ CH ₃	2-pyrimidyl	1-pyrrolidinocarbonyl
434	SO ₂ CH ₃	2-pyrimidyl	2-(methylsulfonyl)phenyl
435	SO ₂ CH ₃	2-pyrimidyl	4-morpholino
436	SO ₂ CH ₃	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
437	SO ₂ CH ₃	2-pyrimidyl	4-morpholinocarbonyl
438	SO ₂ CH ₃	2-pyrimidyl	2-methyl-1-imidazolyl
439	SO ₂ CH ₃	2-pyrimidyl	5-methyl-1-imidazolyl
440	SO ₂ CH ₃	2-pyrimidyl	2-methylsulfonyl-1-imidazolyl
441	SO ₂ CH ₃	5-pyrimidyl	2-(aminosulfonyl)phenyl
442	SO ₂ CH ₃	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
443	SO ₂ CH ₃	5-pyrimidyl	1-pyrrolidinocarbonyl
444	SO ₂ CH ₃	5-pyrimidyl	2-(methylsulfonyl)phenyl
445	SO ₂ CH ₃	5-pyrimidyl	4-morpholino
446	SO ₂ CH ₃	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
447	SO ₂ CH ₃	5-pyrimidyl	4-morpholinocarbonyl
448	SO ₂ CH ₃	5-pyrimidyl	2-methyl-1-imidazolyl
449	SO ₂ CH ₃	5-pyrimidyl	5-methyl-1-imidazolyl
450	SO ₂ CH ₃	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
451	SO ₂ CH ₃	2-Cl-phenyl	2-(aminosulfonyl)phenyl
452	SO ₂ CH ₃	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
453	SO ₂ CH ₃	2-Cl-phenyl	1-pyrrolidinocarbonyl
454	SO ₂ CH ₃	2-Cl-phenyl	2-(methylsulfonyl)phenyl
455	SO ₂ CH ₃	2-Cl-phenyl	4-morpholino
456	SO ₂ CH ₃	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
457	SO ₂ CH ₃	2-Cl-phenyl	4-morpholinocarbonyl

458	SO_2CH_3	2-Cl-phenyl	2-methyl-1-imidazolyl
459	SO_2CH_3	2-Cl-phenyl	5-methyl-1-imidazolyl
460	SO_2CH_3	2-Cl-phenyl	2-methylsulfonyl-1-imidazolyl
461	SO_2CH_3	2-F-phenyl	2-(aminosulfonyl)phenyl
462	SO_2CH_3	2-F-phenyl	2-(methylaminosulfonyl)phenyl
463	SO_2CH_3	2-F-phenyl	1-pyrrolidinocarbonyl
464	SO_2CH_3	2-F-phenyl	2-(methylsulfonyl)phenyl
465	SO_2CH_3	2-F-phenyl	4-morpholino
466	SO_2CH_3	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
467	SO_2CH_3	2-F-phenyl	4-morpholinocarbonyl
468	SO_2CH_3	2-F-phenyl	2-methyl-1-imidazolyl
469	SO_2CH_3	2-F-phenyl	5-methyl-1-imidazolyl
470	SO_2CH_3	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
471	SO_2CH_3	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
472	SO_2CH_3	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
473	SO_2CH_3	2,6-diF-phenyl	1-pyrrolidinocarbonyl
474	SO_2CH_3	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
475	SO_2CH_3	2,6-diF-phenyl	4-morpholino
476	SO_2CH_3	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
477	SO_2CH_3	2,6-diF-phenyl	4-morpholinocarbonyl
478	SO_2CH_3	2,6-diF-phenyl	2-methyl-1-imidazolyl
479	SO_2CH_3	2,6-diF-phenyl	5-methyl-1-imidazolyl
480	SO_2CH_3	2,6-diF-phenyl	2-methylsulfonyl-1-imidazolyl
481	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	phenyl	2-(aminosulfonyl)phenyl
482	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	phenyl	2-(methylaminosulfonyl)phenyl
483	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	phenyl	1-pyrrolidinocarbonyl
484	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	phenyl	2-(methylsulfonyl)phenyl
485	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	phenyl	4-morpholino
486	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
487	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	phenyl	4-morpholinocarbonyl
488	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	phenyl	2-methyl-1-imidazolyl
489	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	phenyl	5-methyl-1-imidazolyl
490	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	phenyl	2-methylsulfonyl-1-imidazolyl
491	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyridyl	2-(aminosulfonyl)phenyl
492	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyridyl	2-(methylaminosulfonyl)phenyl

493	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyridyl	1-pyrrolidinocarbonyl
494	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyridyl	2-(methylsulfonyl)phenyl
495	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyridyl	4-morpholino
496	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
497	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyridyl	4-morpholinocarbonyl
498	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyridyl	2-methyl-1-imidazolyl
499	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyridyl	5-methyl-1-imidazolyl
500	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyridyl	2-methylsulfonyl-1-imidazolyl
501	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	3-pyridyl	2-(aminosulfonyl)phenyl
502	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	3-pyridyl	2-(methylaminosulfonyl)phenyl
503	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	3-pyridyl	1-pyrrolidinocarbonyl
504	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	3-pyridyl	2-(methylsulfonyl)phenyl
505	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	3-pyridyl	4-morpholino
506	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
507	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	3-pyridyl	4-morpholinocarbonyl
508	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	3-pyridyl	2-methyl-1-imidazolyl
509	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	3-pyridyl	5-methyl-1-imidazolyl
510	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	3-pyridyl	2-methylsulfonyl-1-imidazolyl
511	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyrimidyl	2-(aminosulfonyl)phenyl
512	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
513	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyrimidyl	1-pyrrolidinocarbonyl
514	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyrimidyl	2-(methylsulfonyl)phenyl
515	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyrimidyl	4-morpholino
516	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl

517	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyrimidyl	4-morpholinocarbonyl
518	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyrimidyl	2-methyl-1-imidazolyl
519	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyrimidyl	5-methyl-1-imidazolyl
520	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-pyrimidyl	2-methylsulfonyl-1-imidazolyl
521	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	5-pyrimidyl	2-(aminosulfonyl)phenyl
522	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
523	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	5-pyrimidyl	1-pyrrolidinocarbonyl
524	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	5-pyrimidyl	2-(methylsulfonyl)phenyl
525	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	5-pyrimidyl	4-morpholino
526	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
527	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	5-pyrimidyl	4-morpholinocarbonyl
528	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	5-pyrimidyl	2-methyl-1-imidazolyl
529	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	5-pyrimidyl	5-methyl-1-imidazolyl
530	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
531	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-Cl-phenyl	2-(aminosulfonyl)phenyl
532	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
533	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-Cl-phenyl	1-pyrrolidinocarbonyl
534	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-Cl-phenyl	2-(methylsulfonyl)phenyl
535	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-Cl-phenyl	4-morpholino
536	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
537	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-Cl-phenyl	4-morpholinocarbonyl
538	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-Cl-phenyl	2-methyl-1-imidazolyl
539	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-Cl-phenyl	5-methyl-1-imidazolyl
540	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-Cl-phenyl	2-methylsulfonyl-1-imidazolyl

541	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	2-(aminosulfonyl)phenyl
542	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	2-(methylaminosulfonyl)phenyl
543	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	1-pyrrolidinocarbonyl
544	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	2-(methylsulfonyl)phenyl
545	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	4-morpholino
546	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
547	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	4-morpholinocarbonyl
548	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	2-methyl-1-imidazolyl
549	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	5-methyl-1-imidazolyl
550	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
551	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
552	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
553	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	1-pyrrolidinocarbonyl
554	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
555	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	4-morpholino
556	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
557	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	4-morpholinocarbonyl
558	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	2-methyl-1-imidazolyl
559	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	5-methyl-1-imidazolyl
560	$\text{CH}_2\text{NH}-\text{SO}_2\text{CH}_3$	2,6-diF-phenyl	2-methylsulfonyl-1-imidazolyl
561	Cl	phenyl	2-(aminosulfonyl)phenyl
562	Cl	phenyl	2-(methylaminosulfonyl)phenyl
563	Cl	phenyl	1-pyrrolidinocarbonyl
564	Cl	phenyl	2-(methylsulfonyl)phenyl
565	Cl	phenyl	4-morpholino
566	Cl	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
567	Cl	phenyl	4-morpholinocarbonyl
568	Cl	phenyl	2-methyl-1-imidazolyl
569	Cl	phenyl	5-methyl-1-imidazolyl

570	C1	phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
571	C1	2-pyridyl	2-(aminosulfonyl)phenyl
572	C1	2-pyridyl	2-(methylaminosulfonyl)phenyl
573	C1	2-pyridyl	1-pyrrolidinocarbonyl
574	C1	2-pyridyl	2-(methylsulfonyl)phenyl
575	C1	2-pyridyl	4-morpholino
576	C1	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
577	C1	2-pyridyl	4-morpholinocarbonyl
578	C1	2-pyridyl	2-methyl-1-imidazolyl
579	C1	2-pyridyl	5-methyl-1-imidazolyl
580	C1	2-pyridyl	<u>2-methylsulfonyl-1-imidazolyl</u>
581	C1	3-pyridyl	2-(aminosulfonyl)phenyl
582	C1	3-pyridyl	2-(methylaminosulfonyl)phenyl
583	C1	3-pyridyl	1-pyrrolidinocarbonyl
584	C1	3-pyridyl	2-(methylsulfonyl)phenyl
585	C1	3-pyridyl	4-morpholino
586	C1	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
587	C1	3-pyridyl	4-morpholinocarbonyl
588	C1	3-pyridyl	2-methyl-1-imidazolyl
589	C1	3-pyridyl	5-methyl-1-imidazolyl
590	C1	3-pyridyl	<u>2-methylsulfonyl-1-imidazolyl</u>
591	C1	2-pyrimidyl	2-(aminosulfonyl)phenyl
592	C1	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
593	C1	2-pyrimidyl	1-pyrrolidinocarbonyl
594	C1	2-pyrimidyl	2-(methylsulfonyl)phenyl
595	C1	2-pyrimidyl	4-morpholino
596	C1	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
597	C1	2-pyrimidyl	4-morpholinocarbonyl
598	C1	2-pyrimidyl	2-methyl-1-imidazolyl
599	C1	2-pyrimidyl	5-methyl-1-imidazolyl
600	C1	2-pyrimidyl	<u>2-methylsulfonyl-1-imidazolyl</u>
601	C1	5-pyrimidyl	2-(aminosulfonyl)phenyl
602	C1	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
603	C1	5-pyrimidyl	1-pyrrolidinocarbonyl
604	C1	5-pyrimidyl	2-(methylsulfonyl)phenyl
605	C1	5-pyrimidyl	4-morpholino
606	C1	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
607	C1	5-pyrimidyl	4-morpholinocarbonyl
608	C1	5-pyrimidyl	2-methyl-1-imidazolyl
609	C1	5-pyrimidyl	5-methyl-1-imidazolyl
610	C1	5-pyrimidyl	<u>2-methylsulfonyl-1-imidazolyl</u>
611	C1	2-Cl-phenyl	2-(aminosulfonyl)phenyl
612	C1	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
613	C1	2-Cl-phenyl	1-pyrrolidinocarbonyl
614	C1	2-Cl-phenyl	2-(methylsulfonyl)phenyl
615	C1	2-Cl-phenyl	4-morpholino
616	C1	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
617	C1	2-Cl-phenyl	4-morpholinocarbonyl
618	C1	2-Cl-phenyl	2-methyl-1-imidazolyl
619	C1	2-Cl-phenyl	5-methyl-1-imidazolyl
620	C1	2-Cl-phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
621	C1	2-F-phenyl	2-(aminosulfonyl)phenyl
622	C1	2-F-phenyl	2-(methylaminosulfonyl)phenyl
623	C1	2-F-phenyl	1-pyrrolidinocarbonyl
624	C1	2-F-phenyl	2-(methylsulfonyl)phenyl

625	Cl	2-F-phenyl	4-morpholino
626	Cl	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
627	Cl	2-F-phenyl	4-morpholinocarbonyl
628	Cl	2-F-phenyl	2-methyl-1-imidazolyl
629	Cl	2-F-phenyl	5-methyl-1-imidazolyl
630	Cl	2-F-phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
631	Cl	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
632	Cl	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
633	Cl	2,6-diF-phenyl	1-pyrrolidinocarbonyl
634	Cl	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
635	Cl	2,6-diF-phenyl	4-morpholino
636	Cl	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
637	Cl	2,6-diF-phenyl	4-morpholinocarbonyl
638	Cl	2,6-diF-phenyl	2-methyl-1-imidazolyl
639	Cl	2,6-diF-phenyl	5-methyl-1-imidazolyl
640	Cl	2,6-diF-phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
641	F	phenyl	2-(aminosulfonyl)phenyl
642	F	phenyl	2-(methylaminosulfonyl)phenyl
643	F	phenyl	1-pyrrolidinocarbonyl
644	F	phenyl	2-(methylsulfonyl)phenyl
645	F	phenyl	4-morpholino
646	F	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
647	F	phenyl	4-morpholinocarbonyl
648	F	phenyl	2-methyl-1-imidazolyl
649	F	phenyl	5-methyl-1-imidazolyl
650	F	phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
651	F	2-pyridyl	2-(aminosulfonyl)phenyl
652	F	2-pyridyl	2-(methylaminosulfonyl)phenyl
653	F	2-pyridyl	1-pyrrolidinocarbonyl
654	F	2-pyridyl	2-(methylsulfonyl)phenyl
655	F	2-pyridyl	4-morpholino
656	F	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
657	F	2-pyridyl	4-morpholinocarbonyl
658	F	2-pyridyl	2-methyl-1-imidazolyl
659	F	2-pyridyl	5-methyl-1-imidazolyl
660	F	2-pyridyl	<u>2-methylsulfonyl-1-imidazolyl</u>
661	F	3-pyridyl	2-(aminosulfonyl)phenyl
662	F	3-pyridyl	2-(methylaminosulfonyl)phenyl
663	F	3-pyridyl	1-pyrrolidinocarbonyl
664	F	3-pyridyl	2-(methylsulfonyl)phenyl
665	F	3-pyridyl	4-morpholino
666	F	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
667	F	3-pyridyl	4-morpholinocarbonyl
668	F	3-pyridyl	2-methyl-1-imidazolyl
669	F	3-pyridyl	5-methyl-1-imidazolyl
670	F	3-pyridyl	<u>2-methylsulfonyl-1-imidazolyl</u>
671	F	2-pyrimidyl	2-(aminosulfonyl)phenyl
672	F	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
673	F	2-pyrimidyl	1-pyrrolidinocarbonyl
674	F	2-pyrimidyl	2-(methylsulfonyl)phenyl
675	F	2-pyrimidyl	4-morpholino
676	F	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
677	F	2-pyrimidyl	4-morpholinocarbonyl
678	F	2-pyrimidyl	2-methyl-1-imidazolyl
679	F	2-pyrimidyl	5-methyl-1-imidazolyl

680	F	2-pyrimidyl	<u>2-methylsulfonyl-1-imidazolyl</u>
681	F	5-pyrimidyl	2-(aminosulfonyl)phenyl
682	F	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
683	F	5-pyrimidyl	1-pyrrolidinocarbonyl
684	F	5-pyrimidyl	2-(methylsulfonyl)phenyl
685	F	5-pyrimidyl	4-morpholino
686	F	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
687	F	5-pyrimidyl	4-morpholinocarbonyl
688	F	5-pyrimidyl	2-methyl-1-imidazolyl
689	F	5-pyrimidyl	5-methyl-1-imidazolyl
690	F	5-pyrimidyl	<u>2-methylsulfonyl-1-imidazolyl</u>
691	F	2-Cl-phenyl	2-(aminosulfonyl)phenyl
692	F	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
693	F	2-Cl-phenyl	1-pyrrolidinocarbonyl
694	F	2-Cl-phenyl	2-(methylsulfonyl)phenyl
695	F	2-Cl-phenyl	4-morpholino
696	F	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
697	F	2-Cl-phenyl	4-morpholinocarbonyl
698	F	2-Cl-phenyl	2-methyl-1-imidazolyl
699	F	2-Cl-phenyl	5-methyl-1-imidazolyl
700	F	2-Cl-phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
701	F	2-F-phenyl	2-(aminosulfonyl)phenyl
702	F	2-F-phenyl	2-(methylaminosulfonyl)phenyl
703	F	2-F-phenyl	1-pyrrolidinocarbonyl
704	F	2-F-phenyl	2-(methylsulfonyl)phenyl
705	F	2-F-phenyl	4-morpholino
706	F	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
707	F	2-F-phenyl	4-morpholinocarbonyl
708	F	2-F-phenyl	2-methyl-1-imidazolyl
709	F	2-F-phenyl	5-methyl-1-imidazolyl
710	F	2-F-phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
711	F	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
712	F	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
713	F	2,6-diF-phenyl	1-pyrrolidinocarbonyl
714	F	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
715	F	2,6-diF-phenyl	4-morpholino
716	F	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
717	F	2,6-diF-phenyl	4-morpholinocarbonyl
718	F	2,6-diF-phenyl	2-methyl-1-imidazolyl
719	F	2,6-diF-phenyl	5-methyl-1-imidazolyl
720	F	2,6-diF-phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
721	CO ₂ CH ₃	phenyl	2-(aminosulfonyl)phenyl
722	CO ₂ CH ₃	phenyl	2-(methylaminosulfonyl)phenyl
723	CO ₂ CH ₃	phenyl	1-pyrrolidinocarbonyl
724	CO ₂ CH ₃	phenyl	2-(methylsulfonyl)phenyl
725	CO ₂ CH ₃	phenyl	4-morpholino
726	CO ₂ CH ₃	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
727	CO ₂ CH ₃	phenyl	4-morpholinocarbonyl
728	CO ₂ CH ₃	phenyl	2-methyl-1-imidazolyl
729	CO ₂ CH ₃	phenyl	5-methyl-1-imidazolyl
730	CO ₂ CH ₃	phenyl	<u>2-methylsulfonyl-1-imidazolyl</u>
731	CO ₂ CH ₃	2-pyridyl	2-(aminosulfonyl)phenyl
732	CO ₂ CH ₃	2-pyridyl	2-(methylaminosulfonyl)phenyl

733	CO ₂ CH ₃	2-pyridyl	1-pyrrolidinocarbonyl
734	CO ₂ CH ₃	2-pyridyl	2-(methylsulfonyl)phenyl
735	CO ₂ CH ₃	2-pyridyl	4-morpholino
736	CO ₂ CH ₃	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
737	CO ₂ CH ₃	2-pyridyl	4-morpholinocarbonyl
738	CO ₂ CH ₃	2-pyridyl	2-methyl-1-imidazolyl
739	CO ₂ CH ₃	2-pyridyl	5-methyl-1-imidazolyl
740	CO ₂ CH ₃	2-pyridyl	2-methylsulfonyl-1-imidazolyl
741	CO ₂ CH ₃	3-pyridyl	2-(aminosulfonyl)phenyl
742	CO ₂ CH ₃	3-pyridyl	2-(methylaminosulfonyl)phenyl
743	CO ₂ CH ₃	3-pyridyl	1-pyrrolidinocarbonyl
744	CO ₂ CH ₃	3-pyridyl	2-(methylsulfonyl)phenyl
745	CO ₂ CH ₃	3-pyridyl	4-morpholino
746	CO ₂ CH ₃	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
747	CO ₂ CH ₃	3-pyridyl	4-morpholinocarbonyl
748	CO ₂ CH ₃	3-pyridyl	2-methyl-1-imidazolyl
749	CO ₂ CH ₃	3-pyridyl	5-methyl-1-imidazolyl
750	CO ₂ CH ₃	3-pyridyl	2-methylsulfonyl-1-imidazolyl
751	CO ₂ CH ₃	2-pyrimidyl	2-(aminosulfonyl)phenyl
752	CO ₂ CH ₃	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
753	CO ₂ CH ₃	2-pyrimidyl	1-pyrrolidinocarbonyl
754	CO ₂ CH ₃	2-pyrimidyl	2-(methylsulfonyl)phenyl
755	CO ₂ CH ₃	2-pyrimidyl	4-morpholino
756	CO ₂ CH ₃	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
757	CO ₂ CH ₃	2-pyrimidyl	4-morpholinocarbonyl
758	CO ₂ CH ₃	2-pyrimidyl	2-methyl-1-imidazolyl
759	CO ₂ CH ₃	2-pyrimidyl	5-methyl-1-imidazolyl
760	CO ₂ CH ₃	2-pyrimidyl	2-methylsulfonyl-1-imidazolyl
761	CO ₂ CH ₃	5-pyrimidyl	2-(aminosulfonyl)phenyl
762	CO ₂ CH ₃	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
763	CO ₂ CH ₃	5-pyrimidyl	1-pyrrolidinocarbonyl
764	CO ₂ CH ₃	5-pyrimidyl	2-(methylsulfonyl)phenyl
765	CO ₂ CH ₃	5-pyrimidyl	4-morpholino
766	CO ₂ CH ₃	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
767	CO ₂ CH ₃	5-pyrimidyl	4-morpholinocarbonyl
768	CO ₂ CH ₃	5-pyrimidyl	2-methyl-1-imidazolyl
769	CO ₂ CH ₃	5-pyrimidyl	5-methyl-1-imidazolyl
770	CO ₂ CH ₃	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
771	CO ₂ CH ₃	2-Cl-phenyl	2-(aminosulfonyl)phenyl
772	CO ₂ CH ₃	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
773	CO ₂ CH ₃	2-Cl-phenyl	1-pyrrolidinocarbonyl
774	CO ₂ CH ₃	2-Cl-phenyl	2-(methylsulfonyl)phenyl
775	CO ₂ CH ₃	2-Cl-phenyl	4-morpholino
776	CO ₂ CH ₃	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
777	CO ₂ CH ₃	2-Cl-phenyl	4-morpholinocarbonyl
778	CO ₂ CH ₃	2-Cl-phenyl	2-methyl-1-imidazolyl
779	CO ₂ CH ₃	2-Cl-phenyl	5-methyl-1-imidazolyl
780	CO ₂ CH ₃	2-Cl-phenyl	2-methylsulfonyl-1-imidazolyl

781	CO ₂ CH ₃	2-F-phenyl	2-(aminosulfonyl)phenyl
782	CO ₂ CH ₃	2-F-phenyl	2-(methylaminosulfonyl)phenyl
783	CO ₂ CH ₃	2-F-phenyl	1-pyrrolidinocarbonyl
784	CO ₂ CH ₃	2-F-phenyl	2-(methylsulfonyl)phenyl
785	CO ₂ CH ₃	2-F-phenyl	4-morpholino
786	CO ₂ CH ₃	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
787	CO ₂ CH ₃	2-F-phenyl	4-morpholinocarbonyl
788	CO ₂ CH ₃	2-F-phenyl	2-methyl-1-imidazolyl
789	CO ₂ CH ₃	2-F-phenyl	5-methyl-1-imidazolyl
790	CO ₂ CH ₃	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
791	CO ₂ CH ₃	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
792	CO ₂ CH ₃	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
793	CO ₂ CH ₃	2,6-diF-phenyl	1-pyrrolidinocarbonyl
794	CO ₂ CH ₃	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
795	CO ₂ CH ₃	2,6-diF-phenyl	4-morpholino
796	CO ₂ CH ₃	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
797	CO ₂ CH ₃	2,6-diF-phenyl	4-morpholinocarbonyl
798	CO ₂ CH ₃	2,6-diF-phenyl	2-methyl-1-imidazolyl
799	CO ₂ CH ₃	2,6-diF-phenyl	5-methyl-1-imidazolyl
800	CO ₂ CH ₃	2,6-diF-phenyl	2-methylsulfonyl-1-imidazolyl
801	CH ₂ OCH ₃	phenyl	2-(aminosulfonyl)phenyl
802	CH ₂ OCH ₃	phenyl	2-(methylaminosulfonyl)phenyl
803	CH ₂ OCH ₃	phenyl	1-pyrrolidinocarbonyl
804	CH ₂ OCH ₃	phenyl	2-(methylsulfonyl)phenyl
805	CH ₂ OCH ₃	phenyl	4-morpholino
806	CH ₂ OCH ₃	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
807	CH ₂ OCH ₃	phenyl	4-morpholinocarbonyl
808	CH ₂ OCH ₃	phenyl	2-methyl-1-imidazolyl
809	CH ₂ OCH ₃	phenyl	5-methyl-1-imidazolyl
810	CH ₂ OCH ₃	phenyl	2-methylsulfonyl-1-imidazolyl
811	CH ₂ OCH ₃	2-pyridyl	2-(aminosulfonyl)phenyl
812	CH ₂ OCH ₃	2-pyridyl	2-(methylaminosulfonyl)phenyl
813	CH ₂ OCH ₃	2-pyridyl	1-pyrrolidinocarbonyl
814	CH ₂ OCH ₃	2-pyridyl	2-(methylsulfonyl)phenyl
815	CH ₂ OCH ₃	2-pyridyl	4-morpholino
816	CH ₂ OCH ₃	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
817	CH ₂ OCH ₃	2-pyridyl	4-morpholinocarbonyl
818	CH ₂ OCH ₃	2-pyridyl	2-methyl-1-imidazolyl
819	CH ₂ OCH ₃	2-pyridyl	5-methyl-1-imidazolyl
820	CH ₂ OCH ₃	2-pyridyl	2-methylsulfonyl-1-imidazolyl
821	CH ₂ OCH ₃	3-pyridyl	2-(aminosulfonyl)phenyl
822	CH ₂ OCH ₃	3-pyridyl	2-(methylaminosulfonyl)phenyl
823	CH ₂ OCH ₃	3-pyridyl	1-pyrrolidinocarbonyl
824	CH ₂ OCH ₃	3-pyridyl	2-(methylsulfonyl)phenyl
825	CH ₂ OCH ₃	3-pyridyl	4-morpholino
826	CH ₂ OCH ₃	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
827	CH ₂ OCH ₃	3-pyridyl	4-morpholinocarbonyl
828	CH ₂ OCH ₃	3-pyridyl	2-methyl-1-imidazolyl

829	CH ₂ OCH ₃	3-pyridyl	5-methyl-1-imidazolyl
830	CH ₂ OCH ₃	3-pyridyl	2-methylsulfonyl-1-imidazolyl
831	CH ₂ OCH ₃	2-pyrimidyl	2-(aminosulfonyl)phenyl
832	CH ₂ OCH ₃	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
833	CH ₂ OCH ₃	2-pyrimidyl	1-pyrrolidinocarbonyl
834	CH ₂ OCH ₃	2-pyrimidyl	2-(methylsulfonyl)phenyl
835	CH ₂ OCH ₃	2-pyrimidyl	4-morpholino
836	CH ₂ OCH ₃	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
837	CH ₂ OCH ₃	2-pyrimidyl	4-morpholinocarbonyl
838	CH ₂ OCH ₃	2-pyrimidyl	2-methyl-1-imidazolyl
839	CH ₂ OCH ₃	2-pyrimidyl	5-methyl-1-imidazolyl
840	CH ₂ OCH ₃	2-pyrimidyl	2-methylsulfonyl-1-imidazolyl
841	CH ₂ OCH ₃	5-pyrimidyl	2-(aminosulfonyl)phenyl
842	CH ₂ OCH ₃	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
843	CH ₂ OCH ₃	5-pyrimidyl	1-pyrrolidinocarbonyl
844	CH ₂ OCH ₃	5-pyrimidyl	2-(methylsulfonyl)phenyl
845	CH ₂ OCH ₃	5-pyrimidyl	4-morpholino
846	CH ₂ OCH ₃	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
847	CH ₂ OCH ₃	5-pyrimidyl	4-morpholinocarbonyl
848	CH ₂ OCH ₃	5-pyrimidyl	2-methyl-1-imidazolyl
849	CH ₂ OCH ₃	5-pyrimidyl	5-methyl-1-imidazolyl
850	CH ₂ OCH ₃	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
851	CH ₂ OCH ₃	2-Cl-phenyl	2-(aminosulfonyl)phenyl
852	CH ₂ OCH ₃	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
853	CH ₂ OCH ₃	2-Cl-phenyl	1-pyrrolidinocarbonyl
854	CH ₂ OCH ₃	2-Cl-phenyl	2-(methylsulfonyl)phenyl
855	CH ₂ OCH ₃	2-Cl-phenyl	4-morpholino
856	CH ₂ OCH ₃	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
857	CH ₂ OCH ₃	2-Cl-phenyl	4-morpholinocarbonyl
858	CH ₂ OCH ₃	2-Cl-phenyl	2-methyl-1-imidazolyl
859	CH ₂ OCH ₃	2-Cl-phenyl	5-methyl-1-imidazolyl
860	CH ₂ OCH ₃	2-Cl-phenyl	2-methylsulfonyl-1-imidazolyl
861	CH ₂ OCH ₃	2-F-phenyl	2-(aminosulfonyl)phenyl
862	CH ₂ OCH ₃	2-F-phenyl	2-(methylaminosulfonyl)phenyl
863	CH ₂ OCH ₃	2-F-phenyl	1-pyrrolidinocarbonyl
864	CH ₂ OCH ₃	2-F-phenyl	2-(methylsulfonyl)phenyl
865	CH ₂ OCH ₃	2-F-phenyl	4-morpholino
866	CH ₂ OCH ₃	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
867	CH ₂ OCH ₃	2-F-phenyl	4-morpholinocarbonyl
868	CH ₂ OCH ₃	2-F-phenyl	2-methyl-1-imidazolyl
869	CH ₂ OCH ₃	2-F-phenyl	5-methyl-1-imidazolyl
870	CH ₂ OCH ₃	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
871	CH ₂ OCH ₃	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
872	CH ₂ OCH ₃	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
873	CH ₂ OCH ₃	2,6-diF-phenyl	1-pyrrolidinocarbonyl
874	CH ₂ OCH ₃	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
875	CH ₂ OCH ₃	2,6-diF-phenyl	4-morpholino
876	CH ₂ OCH ₃	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl

877	CH ₂ OCH ₃	2, 6-diF-phenyl	4-morpholinocarbonyl
878	CH ₂ OCH ₃	2, 6-diF-phenyl	2-methyl-1-imidazolyl
879	CH ₂ OCH ₃	2, 6-diF-phenyl	5-methyl-1-imidazolyl
880	CH ₂ OCH ₃	2, 6-diF-phenyl	2-methylsulfonyl-1-imidazolyl
881	CONH ₂	phenyl	2-(aminosulfonyl)phenyl
882	CONH ₂	phenyl	2-(methylaminosulfonyl)phenyl
883	CONH ₂	phenyl	1-pyrrolidinocarbonyl
884	CONH ₂	phenyl	2-(methylsulfonyl)phenyl
885	CONH ₂	phenyl	4-morpholino
886	CONH ₂	phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
887	CONH ₂	phenyl	4-morpholinocarbonyl
888	CONH ₂	phenyl	2-methyl-1-imidazolyl
889	CONH ₂	phenyl	5-methyl-1-imidazolyl
890	CONH ₂	phenyl	2-methylsulfonyl-1-imidazolyl
891	CONH ₂	2-pyridyl	2-(aminosulfonyl)phenyl
892	CONH ₂	2-pyridyl	2-(methylaminosulfonyl)phenyl
893	CONH ₂	2-pyridyl	1-pyrrolidinocarbonyl
894	CONH ₂	2-pyridyl	2-(methylsulfonyl)phenyl
895	CONH ₂	2-pyridyl	4-morpholino
896	CONH ₂	2-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
897	CONH ₂	2-pyridyl	4-morpholinocarbonyl
898	CONH ₂	2-pyridyl	2-methyl-1-imidazolyl
899	CONH ₂	2-pyridyl	5-methyl-1-imidazolyl
900	CONH ₂	2-pyridyl	2-methylsulfonyl-1-imidazolyl
901	CONH ₂	3-pyridyl	2-(aminosulfonyl)phenyl
902	CONH ₂	3-pyridyl	2-(methylaminosulfonyl)phenyl
903	CONH ₂	3-pyridyl	1-pyrrolidinocarbonyl
904	CONH ₂	3-pyridyl	2-(methylsulfonyl)phenyl
905	CONH ₂	3-pyridyl	4-morpholino
906	CONH ₂	3-pyridyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
907	CONH ₂	3-pyridyl	4-morpholinocarbonyl
908	CONH ₂	3-pyridyl	2-methyl-1-imidazolyl
909	CONH ₂	3-pyridyl	5-methyl-1-imidazolyl
910	CONH ₂	3-pyridyl	2-methylsulfonyl-1-imidazolyl
911	CONH ₂	2-pyrimidyl	2-(aminosulfonyl)phenyl
912	CONH ₂	2-pyrimidyl	2-(methylaminosulfonyl)phenyl
913	CONH ₂	2-pyrimidyl	1-pyrrolidinocarbonyl
914	CONH ₂	2-pyrimidyl	2-(methylsulfonyl)phenyl
915	CONH ₂	2-pyrimidyl	4-morpholino
916	CONH ₂	2-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
917	CONH ₂	2-pyrimidyl	4-morpholinocarbonyl
918	CONH ₂	2-pyrimidyl	2-methyl-1-imidazolyl
919	CONH ₂	2-pyrimidyl	5-methyl-1-imidazolyl
920	CONH ₂	2-pyrimidyl	2-methylsulfonyl-1-imidazolyl
921	CONH ₂	5-pyrimidyl	2-(aminosulfonyl)phenyl
922	CONH ₂	5-pyrimidyl	2-(methylaminosulfonyl)phenyl
923	CONH ₂	5-pyrimidyl	1-pyrrolidinocarbonyl
924	CONH ₂	5-pyrimidyl	2-(methylsulfonyl)phenyl

925	CONH ₂	5-pyrimidyl	4-morpholino
926	CONH ₂	5-pyrimidyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
927	CONH ₂	5-pyrimidyl	4-morpholinocarbonyl
928	CONH ₂	5-pyrimidyl	2-methyl-1-imidazolyl
929	CONH ₂	5-pyrimidyl	5-methyl-1-imidazolyl
930	CONH ₂	5-pyrimidyl	2-methylsulfonyl-1-imidazolyl
931	CONH ₂	2-Cl-phenyl	2-(aminosulfonyl)phenyl
932	CONH ₂	2-Cl-phenyl	2-(methylaminosulfonyl)phenyl
933	CONH ₂	2-Cl-phenyl	1-pyrrolidinocarbonyl
934	CONH ₂	2-Cl-phenyl	2-(methylsulfonyl)phenyl
935	CONH ₂	2-Cl-phenyl	4-morpholino
936	CONH ₂	2-Cl-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
937	CONH ₂	2-Cl-phenyl	4-morpholinocarbonyl
938	CONH ₂	2-Cl-phenyl	2-methyl-1-imidazolyl
939	CONH ₂	2-Cl-phenyl	5-methyl-1-imidazolyl
940	CONH ₂	2-Cl-phenyl	2-methylsulfonyl-1-imidazolyl
941	CONH ₂	2-F-phenyl	2-(aminosulfonyl)phenyl
942	CONH ₂	2-F-phenyl	2-(methylaminosulfonyl)phenyl
943	CONH ₂	2-F-phenyl	1-pyrrolidinocarbonyl
944	CONH ₂	2-F-phenyl	2-(methylsulfonyl)phenyl
945	CONH ₂	2-F-phenyl	4-morpholino
946	CONH ₂	2-F-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
947	CONH ₂	2-F-phenyl	4-morpholinocarbonyl
948	CONH ₂	2-F-phenyl	2-methyl-1-imidazolyl
949	CONH ₂	2-F-phenyl	5-methyl-1-imidazolyl
950	CONH ₂	2-F-phenyl	2-methylsulfonyl-1-imidazolyl
951	CONH ₂	2,6-diF-phenyl	2-(aminosulfonyl)phenyl
952	CONH ₂	2,6-diF-phenyl	2-(methylaminosulfonyl)phenyl
953	CONH ₂	2,6-diF-phenyl	1-pyrrolidinocarbonyl
954	CONH ₂	2,6-diF-phenyl	2-(methylsulfonyl)phenyl
955	CONH ₂	2,6-diF-phenyl	4-morpholino
956	CONH ₂	2,6-diF-phenyl	2-(1'-CF ₃ -tetrazol-2-yl)phenyl
957	CONH ₂	2,6-diF-phenyl	4-morpholinocarbonyl
958	CONH ₂	2,6-diF-phenyl	2-methyl-1-imidazolyl
959	CONH ₂	2,6-diF-phenyl	5-methyl-1-imidazolyl
960	CONH ₂	2,6-diF-phenyl	2-methylsulfonyl-1-imidazolyl

Utility

The compounds of this invention are useful as anticoagulants for the treatment or prevention of thromboembolic disorders in mammals. The term "thromboembolic disorders" as used herein includes arterial or venous cardiovascular or cerebrovascular thromboembolic disorders, including, for example, unstable angina, first or recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, venous thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary and cerebral arterial thrombosis, cerebral embolism, kidney embolisms, and pulmonary embolisms. The anticoagulant effect of compounds of the present invention is believed to be due to inhibition of factor Xa or thrombin.

The effectiveness of compounds of the present invention as inhibitors of factor Xa was determined using purified human factor Xa and synthetic substrate. The rate of factor Xa hydrolysis of chromogenic substrate S2222 (Kabi Pharmacia, Franklin, OH) was measured both in the absence and presence of compounds of the present invention. Hydrolysis of the substrate resulted in the release of pNA, which was monitored spectrophotometrically by measuring the increase in absorbance at 405 nM. A decrease in the rate of absorbance change at 405 nm in the presence of inhibitor is indicative of enzyme inhibition. The results of this assay are expressed as inhibitory constant, K_i .

Factor Xa determinations were made in 0.10 M sodium phosphate buffer, pH 7.5, containing 0.20 M NaCl, and 0.5 % PEG 8000. The Michaelis constant, K_m , for substrate hydrolysis was determined at 25°C using the method of Lineweaver and Burk. Values of K_i were determined by allowing 0.2-0.5 nM human factor Xa (Enzyme Research Laboratories, South Bend, IN) to react with the substrate (0.20 mM-1 mM) in the presence of inhibitor. Reactions were allowed to go for 30 minutes and the velocities (rate of absorbance change vs time) were measured in the time frame of 25-30 minutes. The following relationship was used to calculate K_i values:

$$(v_0 - v_s) / v_s = I / (K_i (1 + S/K_m))$$

where:

v_o is the velocity of the control in the absence of inhibitor;

v_s is the velocity in the presence of inhibitor;

I is the concentration of inhibitor;

K_i is the dissociation constant of the enzyme:inhibitor complex;

S is the concentration of substrate;

K_m is the Michaelis constant.

Using the methodology described above, a number of compounds of the present invention were found to exhibit a K_i of $\leq 10 \mu\text{M}$, thereby confirming the utility of the compounds of the present invention as effective Xa inhibitors.

The antithrombotic effect of compounds of the present invention can be demonstrated in a rabbit arterio-venous (AV) shunt thrombosis model. In this model, rabbits weighing 2-3 kg anesthetized with a mixture of xylazine (10 mg/kg i.m.) and ketamine (50 mg/kg i.m.) are used. A saline-filled AV shunt device is connected between the femoral arterial and the femoral venous cannulae. The AV shunt device consists of a piece of 6-cm tygon tubing which contains a piece of silk thread. Blood will flow from the femoral artery via the AV-shunt into the femoral vein. The exposure of flowing blood to a silk thread will induce the formation of a significant thrombus. After forty minutes, the shunt is disconnected and the silk thread covered with thrombus is weighed. Test agents or vehicle will be given (i.v., i.p., s.c., or orally) prior to the opening of the AV shunt. The percentage inhibition of thrombus formation is determined for each treatment group. The ID₅₀ values (dose which produces 50% inhibition of thrombus formation) are estimated by linear regression.

The compounds of formula (I) may also be useful as inhibitors of serine proteases, notably human thrombin, plasma kallikrein and plasmin. Because of their inhibitory action, these compounds are indicated for use in the prevention or treatment of physiological reactions, blood coagulation and inflammation, catalyzed by the aforesaid class of enzymes. Specifically, the compounds have utility as drugs for the

treatment of diseases arising from elevated thrombin activity such as myocardial infarction, and as reagents used as anticoagulants in the processing of blood to plasma for diagnostic and other commercial purposes.

Some compounds of the present invention were shown to be direct acting inhibitors of the serine protease thrombin by their ability to inhibit the cleavage of small molecule substrates by thrombin in a purified system. *In vitro* inhibition constants were determined by the method described by Kettner et al. in *J. Biol. Chem.* **265**, 18289-18297 (1990), herein incorporated by reference. In these assays, thrombin-mediated hydrolysis of the chromogenic substrate S2238 (Helena Laboratories, Beaumont, TX) was monitored spectrophotometrically. Addition of an inhibitor to the assay mixture results in decreased absorbance and is indicative of thrombin inhibition. Human thrombin (Enzyme Research Laboratories, Inc., South Bend, IN) at a concentration of 0.2 nM in 0.10 M sodium phosphate buffer, pH 7.5, 0.20 M NaCl, and 0.5% PEG 6000, was incubated with various substrate concentrations ranging from 0.20 to 0.02 mM. After 25 to 30 minutes of incubation, thrombin activity was assayed by monitoring the rate of increase in absorbance at 405 nm which arises owing to substrate hydrolysis. Inhibition constants were derived from reciprocal plots of the reaction velocity as a function of substrate concentration using the standard method of Lineweaver and Burk. Using the methodology described above, some compounds of this invention were evaluated and found to exhibit a K_i of less than 10 μm , thereby confirming the utility of the compounds of the present invention as effective Xa inhibitors.

The compounds of the present invention can be administered alone or in combination with one or more additional therapeutic agents. These include other anti-coagulant or coagulation inhibitory agents, anti-platelet or platelet inhibitory agents, thrombin inhibitors, or thrombolytic or fibrinolytic agents.

The compounds are administered to a mammal in a therapeutically effective amount. By "therapeutically"

"effective amount" it is meant an amount of a compound of Formula I that, when administered alone or in combination with an additional therapeutic agent to a mammal, is effective to prevent or ameliorate the thromboembolic disease condition or the progression of the disease.

By "administered in combination" or "combination therapy" it is meant that the compound of Formula I and one or more additional therapeutic agents are administered concurrently to the mammal being treated. When administered in combination each component may be administered at the same time or sequentially in any order at different points in time. Thus, each component may be administered separately but sufficiently closely in time so as to provide the desired therapeutic effect. Other anticoagulant agents (or coagulation inhibitory agents) that may be used in combination with the compounds of this invention include warfarin and heparin, as well as other factor Xa inhibitors such as those described in the publications identified above under Background of the Invention.

The term anti-platelet agents (or platelet inhibitory agents), as used herein, denotes agents that inhibit platelet function such as by inhibiting the aggregation, adhesion or granular secretion of platelets. Such agents include, but are not limited to, the various known non-steroidal anti-inflammatory drugs (NSAIDS) such as aspirin, ibuprofen, naproxen, sulindac, indomethacin, mefenamate, droxicam, diclofenac, sulfinpyrazone, and piroxicam, including pharmaceutically acceptable salts or prodrugs thereof. Of the NSAIDS, aspirin (acetylsalicylic acid or ASA), and piroxicam are preferred. Other suitable anti-platelet agents include ticlopidine, including pharmaceutically acceptable salts or prodrugs thereof. Ticlopidine is also a preferred compound since it is known to be gentle on the gastro-intestinal tract in use. Still other suitable platelet inhibitory agents include IIb/IIIa antagonists, thromboxane-A2-receptor antagonists and thromboxane-A2-synthetase inhibitors, as well as pharmaceutically acceptable salts or prodrugs thereof.

The term thrombin inhibitors (or anti-thrombin agents), as used herein, denotes inhibitors of the serine protease thrombin. By inhibiting thrombin, various thrombin-mediated processes, such as thrombin-mediated platelet activation (that is, for example, the aggregation of platelets, and/or the granular secretion of plasminogen activator inhibitor-1 and/or serotonin) and/or fibrin formation are disrupted. A number of thrombin inhibitors are known to one of skill in the art and these inhibitors are contemplated to be used in combination with the present compounds. Such inhibitors include, but are not limited to, boroarginine derivatives, boropeptides, heparins, hirudin and argatroban, including pharmaceutically acceptable salts and prodrugs thereof. Boroarginine derivatives and boropeptides include N-acetyl and peptide derivatives of boronic acid, such as C-terminal a-aminoboronic acid derivatives of lysine, ornithine, arginine, homoarginine and corresponding isothiouronium analogs thereof. The term hirudin, as used herein, includes suitable derivatives or analogs of hirudin, referred to herein as hirulogs, such as disulfatohirudin. Boropeptide thrombin inhibitors include compounds described in Kettner et al., U.S. Patent No. 5,187,157 and European Patent Application Publication Number 293 881 A2, the disclosures of which are hereby incorporated herein by reference. Other suitable boroarginine derivatives and boropeptide thrombin inhibitors include those disclosed in PCT Application Publication Number 92/07869 and European Patent Application Publication Number 471,651 A2, the disclosures of which are hereby incorporated herein by reference.

The term thrombolytics (or fibrinolytic) agents (or thrombolytics or fibrinolytics), as used herein, denotes agents that lyse blood clots (thrombi). Such agents include tissue plasminogen activator, anistreplase, urokinase or streptokinase, including pharmaceutically acceptable salts or prodrugs thereof. The term anistreplase, as used herein, refers to anisoylated plasminogen streptokinase activator complex, as described, for example, in European Patent Application No. 028,489, the disclosure of which is hereby

incorporated herein by reference herein. The term urokinase, as used herein, is intended to denote both dual and single chain urokinase, the latter also being referred to herein as prourokinase.

Administration of the compounds of Formula I of the invention in combination with such additional therapeutic agent, may afford an efficacy advantage over the compounds and agents alone, and may do so while permitting the use of lower doses of each. A lower dosage minimizes the potential of side effects, thereby providing an increased margin of safety.

The compounds of the present invention are also useful as standard or reference compounds, for example as a quality standard or control, in tests or assays involving the inhibition of factor Xa. Such compounds may be provided in a commercial kit, for example, for use in pharmaceutical research involving factor Xa. For example, a compound of the present invention could be used as a reference in an assay to compare its known activity to a compound with an unknown activity. This would ensure the experimenter that the assay was being performed properly and provide a basis for comparison, especially if the test compound was a derivative of the reference compound. When developing new assays or protocols, compounds according to the present invention could be used to test their effectiveness.

The compounds of the present invention may also be used in diagnostic assays involving factor Xa. For example, the presence of factor Xa in an unknown sample could be determined by addition of chromogenic substrate S2222 to a series of solutions containing test sample and optionally one of the compounds of the present invention. If production of pNA is observed in the solutions containing test sample, but no compound of the present invention, then one would conclude factor Xa was present.

Dosage and Formulation

The compounds of this invention can be administered in such oral dosage forms as tablets, capsules (each of which includes sustained release or timed release formulations),

pills, powders, granules, elixirs, tinctures, suspensions, syrups, and emulsions. They may also be administered in intravenous (bolus or infusion), intraperitoneal, subcutaneous, or intramuscular form, all using dosage forms well known to those of ordinary skill in the pharmaceutical arts. They can be administered alone, but generally will be administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.

The dosage regimen for the compounds of the present invention will, of course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration; the species, age, sex, health, medical condition, and weight of the recipient; the nature and extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; the route of administration, the renal and hepatic function of the patient, and the effect desired. A physician or veterinarian can determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the thromboembolic disorder.

By way of general guidance, the daily oral dosage of each active ingredient, when used for the indicated effects, will range between about 0.001 to 1000 mg/kg of body weight, preferably between about 0.01 to 100 mg/kg of body weight per day, and most preferably between about 1.0 to 20 mg/kg/day. Intravenously, the most preferred doses will range from about 1 to about 10 mg/kg/minute during a constant rate infusion. Compounds of this invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three, or four times daily.

Compounds of this invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using transdermal skin patches. When administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

The compounds are typically administered in admixture with suitable pharmaceutical diluents, excipients, or carriers (collectively referred to herein as pharmaceutical carriers) suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixirs, syrups and the like, and consistent with conventional pharmaceutical practices.

For instance, for oral administration in the form of a tablet or capsule, the active drug component can be combined with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, starch, sucrose, glucose, methyl cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, mannitol, sorbitol and the like; for oral administration in liquid form, the oral drug components can be combined with any oral, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like. Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture. Suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes, and the like. Lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.

The compounds of the present invention can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine, or phosphatidylcholines.

Compounds of the present invention may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamide-phenol,

polyhydroxyethylaspartamidephenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore, the compounds of the present invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacylates, and crosslinked or amphipathic block copolymers of hydrogels.

Dosage forms (pharmaceutical compositions) suitable for administration may contain from about 1 milligram to about 100 milligrams of active ingredient per dosage unit. In these pharmaceutical compositions the active ingredient will ordinarily be present in an amount of about 0.5-95% by weight based on the total weight of the composition.

Gelatin capsules may contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.

Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.

In general, water, a suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffer substances. Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts and sodium EDTA. In addition,

parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol.

Suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences, Mack Publishing Company, a standard reference text in this field.

Representative useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows:

Capsules

A large number of unit capsules can be prepared by filling standard two-piece hard gelatin capsules each with 100 milligrams of powdered active ingredient, 150 milligrams of lactose, 50 milligrams of cellulose, and 6 milligrams magnesium stearate.

Soft Gelatin Capsules

A mixture of active ingredient in a digestable oil such as soybean oil, cottonseed oil or olive oil may be prepared and injected by means of a positive displacement pump into gelatin to form soft gelatin capsules containing 100 milligrams of the active ingredient. The capsules should be washed and dried.

Tablets

Tablets may be prepared by conventional procedures so that the dosage unit is 100 milligrams of active ingredient, 0.2 milligrams of colloidal silicon dioxide, 5 milligrams of magnesium stearate, 275 milligrams of microcrystalline cellulose, 11 milligrams of starch and 98.8 milligrams of lactose. Appropriate coatings may be applied to increase palatability or delay absorption.

Injectable

A parenteral composition suitable for administration by injection may be prepared by stirring 1.5% by weight of active ingredient in 10% by volume propylene glycol and water. The solution should be made isotonic with sodium chloride and sterilized.

Suspension

An aqueous suspension can be prepared for oral administration so that each 5 mL contain 100 mg of finely divided active ingredient, 200 mg of sodium carboxymethyl cellulose, 5 mg of sodium benzoate, 1.0 g of sorbitol solution, U.S.P., and 0.025 mL of vanillin.

Where the compounds of this invention are combined with other anticoagulant agents, for example, a daily dosage may be about 0.1 to 100 milligrams of the compound of Formula I and about 1 to 7.5 milligrams of the second anticoagulant, per kilogram of patient body weight. For a tablet dosage form, the compounds of this invention generally may be present in an amount of about 5 to 10 milligrams per dosage unit, and the second anti-coagulant in an amount of about 1 to 5 milligrams per dosage unit.

Where the compounds of Formula I are administered in combination with an anti-platelet agent, by way of general guidance, typically a daily dosage may be about 0.01 to 25 milligrams of the compound of Formula I and about 50 to 150 milligrams of the anti-platelet agent, preferably about 0.1 to 1 milligrams of the compound of Formula I and about 1 to 3 milligrams of antiplatelet agents, per kilogram of patient body weight.

Where the compounds of Formula I are administered in combination with thrombolytic agent, typically a daily dosage may be about 0.1 to 1 milligrams of the compound of Formula I, per kilogram of patient body weight and, in the case of the thrombolytic agents, the usual dosage of the thrombolytic agent when administered alone may be reduced by about 70-80% when administered with a compound of Formula I.

Where two or more of the foregoing second therapeutic agents are administered with the compound of Formula I, generally the amount of each component in a typical daily dosage and typical dosage form may be reduced relative to the usual dosage of the agent when administered alone, in view of the additive or synergistic effect of the therapeutic agents when administered in combination.

Particularly when provided as a single dosage unit, the potential exists for a chemical interaction between the combined active ingredients. For this reason, when the compound of Formula I and a second therapeutic agent are combined in a single dosage unit they are formulated such that although the active ingredients are combined in a single dosage unit, the physical contact between the active ingredients is minimized (that is, reduced). For example, one active ingredient may be enteric coated. By enteric coating one of the active ingredients, it is possible not only to minimize the contact between the combined active ingredients, but also, it is possible to control the release of one of these components in the gastrointestinal tract such that one of these components is not released in the stomach but rather is released in the intestines. One of the active ingredients may also be coated with a material which effects a sustained-release throughout the gastrointestinal tract and also serves to minimize physical contact between the combined active ingredients. Furthermore, the sustained-released component can be additionally enteric coated such that the release of this component occurs only in the intestine. Still another approach would involve the formulation of a combination product in which the one component is coated with a sustained and/or enteric release polymer, and the other component is also coated with a polymer such as a lowviscosity grade of hydroxypropyl methylcellulose (HPMC) or other appropriate materials as known in the art, in order to further separate the active components. The polymer coating serves to form an additional barrier to interaction with the other component.

These as well as other ways of minimizing contact between the components of combination products of the present invention, whether administered in a single dosage form or administered in separate forms but at the same time by the same manner, will be readily apparent to those skilled in the art, once armed with the present disclosure.

Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the

scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

WHAT IS CLAIMED AS NEW AND DESIRED TO BE SECURED BY
LETTER PATENT OF UNITED STATES IS:

1. A compound of formula I:

or a stereoisomer or pharmaceutically acceptable salt thereof, wherein;

ring M contains, in addition to J, 0-2 N atoms;

J is O or S;

D is selected from CN, C(=NR⁸)NR⁷R⁹, NHC(=NR⁸)NR⁷R⁹, NR⁸CH(=NR⁷), C(O)NR⁷R⁸, and (CR⁸R⁹)_tNR⁷R⁸, provided that D is substituted meta or para to G on E;

E is selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, and piperidinyl substituted with 1 R;

alternatively, D-E-G together represent pyridyl substituted with 1 R;

R is selected from H, halogen, (CH₂)_tOR³, C₁₋₄ alkyl, OCF₃, and CF₃;

G is absent or is selected from NHCH₂, OCH₂, and SCH₂;

Z is selected from a C₁₋₄ alkylene, (CH₂)_rO(CH₂)_r, (CH₂)_rNR³(CH₂)_r, (CH₂)_rC(O)(CH₂)_r, (CH₂)_rC(O)O(CH₂)_r, (CH₂)_rOC(O)(CH₂)_r, (CH₂)_rC(O)NR³(CH₂)_r, (CH₂)_rNR³C(O)(CH₂)_r, (CH₂)_rOC(O)O(CH₂)_r, (CH₂)_rOC(O)NR³(CH₂)_r, (CH₂)_rNR³C(O)O(CH₂)_r, (CH₂)_rNR³C(O)NR³(CH₂)_r, (CH₂)_rS(O)_p(CH₂)_r, (CH₂)_rSO₂NR³(CH₂)_r, (CH₂)_rNR³SO₂(CH₂)_r, and

$(CH_2)_rNR^3SO_2NR^3(CH_2)_r$, provided that Z does not form a N-N, N-O, N-S, NCH₂N, NCH₂O, or NCH₂S bond with ring M or group A;

R^{1a} and R^{1b} are independently absent or selected from -(CH₂)_r-R^{1'}, NCH₂R^{1''}, OCH₂R^{1''}, SCH₂R^{1''}, N(CH₂)₂(CH₂)_tR^{1'}, O(CH₂)₂(CH₂)_tR^{1'}, and S(CH₂)₂(CH₂)_tR^{1'}, or combined to form a 5-8 membered saturated, partially saturated or unsaturated ring substituted with 0-2 R⁴ and which contains from 0-2 heteroatoms selected from the group consisting of N, O, and S;

R^{1'} is selected from H, C₁₋₃ alkyl, halo, (CF₂)_rCF₃, OR², NR²R^{2a}, C(O)R^{2c}, OC(O)R², (CF₂)_rCO₂R^{2c}, S(O)_pR^{2b}, NR²(CH₂)_rOR², NR²C(O)R^{2b}, NR²C(O)NHR^{2b}, NR²C(O)₂R^{2a}, OC(O)NR^{2b}, C(O)NR²R^{2a}, SO₂NR²R^{2a}, NR²SO₂R^{2b}, C₃₋₆ carbocyclic residue substituted with 0-2 R⁴, and 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴;

R^{1''} is selected from H, C(O)R^{2b}, C(O)NR²R^{2a}, S(O)R^{2b}, S(O)₂R^{2b}, and SO₂NR²R^{2a};

R², at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl, benzyl, C₃₋₆ carbocyclic residue substituted with 0-2 R^{4b}, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4b};

R^{2a}, at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl, benzyl, C₃₋₆ carbocyclic residue substituted with 0-2 R^{4b}, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4b};

R^{2b}, at each occurrence, is selected from CF₃, C₁₋₄ alkoxy, C₁₋₆ alkyl, benzyl, C₃₋₆ carbocyclic residue substituted with

0-2 R^{4b}, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4b};

R^{2c}, at each occurrence, is selected from CF₃, OH, C₁₋₄ alkoxy, C₁₋₆ alkyl, benzyl, C₃₋₆ carbocyclic residue substituted with 0-2 R^{4b}, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4b};

alternatively, R² and R^{2a} combine to form a 5 or 6 membered saturated, partially saturated or unsaturated ring substituted with 0-2 R^{4b} which contains from 0-1 additional heteroatoms selected from the group consisting of N, O, and S;

R³, at each occurrence, is selected from H, C₁₋₄ alkyl, and phenyl;

R^{3a}, at each occurrence, is selected from H, C₁₋₄ alkyl, and phenyl;

A is selected from:

C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁴, and 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴;

B is selected from:

X-Y, NR²R^{2a}, C(=NR²)NR²R^{2a}, NR²C(=NR²)NR²R^{2a}, C₃₋₁₀ carbocyclic residue substituted with 0-2 R^{4a}, and 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^{4a};

X is selected from C₁₋₄ alkylene, -CR²(CR²R^{2b})(CH₂)_t-, -C(O)-, -C(=NR)-, -CR²(NR¹"R²)-, -CR²(OR²)-, -CR²(SR²)-, -C(O)CR²R^{2a}- , -CR²R^{2a}C(O), -S(O)_p-, -S(O)_pCR²R^{2a}-,

$-CR^2R^{2a}S(O)_p-$, $-S(O)_2NR^{2-}$, $-NR^2S(O)_2-$, $-NR^2S(O)_2CR^2R^{2a}-$,
 $-CR^2R^{2a}S(O)_2NR^{2-}$, $-NR^2S(O)_2NR^{2-}$, $-C(O)NR^{2-}$, $-NR^2C(O)-$,
 $-C(O)NR^2CR^2R^{2a}-$, $-NR^2C(O)CR^2R^{2a}-$, $-CR^2R^{2a}C(O)NR^{2-}$,
 $-CR^2R^{2a}NR^2C(O)-$, $-NR^2C(O)O-$, $-OC(O)NR^{2-}$, $-NR^2C(O)NR^{2-}$,
 $-NR^{2-}$, $-NR^2CR^2R^{2a}-$, $-CR^2R^{2a}NR^{2-}$, O , $-CR^2R^{2a}O-$, and
 $-OCR^2R^{2a}-$;

Y is selected from:

$(CH_2)_rNR^2R^{2a}$, provided that X-Y do not form a N-N, O-N, or S-N bond,

C_{3-10} carbocyclic residue substituted with 0-2 R^{4a} , and
5-10 membered heterocyclic system containing from 1-4
heteroatoms selected from the group consisting of N, O, and S
substituted with 0-2 R^{4a} ;

R^4 , at each occurrence, is selected from =O, $(CH_2)_rOR^2$, halo,
 C_{1-4} alkyl, -CN, NO_2 , $(CH_2)_rNR^2R^{2a}$, $(CH_2)_rC(O)R^{2b}$,
 $NR^2C(O)R^{2b}$, $C(O)NR^2R^{2a}$, $NR^2C(O)NR^2R^{2a}$, $CH(=NR^2)NR^2R^{2a}$,
 $NHC(=NR^2)NR^2R^{2a}$, $SO_2NR^2R^{2a}$, $NR^2SO_2NR^2R^{2a}$, $NR^2SO_2-C_{1-4}$ alkyl,
 $NR^2SO_2R^5$, $S(O)_pR^5$, $(CF_2)_rCF_3$, $NCH_2R^{1''}$, $OCH_2R^{1''}$, $SCH_2R^{1''}$,
 $N(CH_2)_2(CH_2)_tR^{1''}$, $O(CH_2)_2(CH_2)_tR^{1''}$, and $S(CH_2)_2(CH_2)_tR^{1''}$,

alternatively, one R^4 is a 5-6 membered aromatic heterocycle
containing from 1-4 heteroatoms selected from the group
consisting of N, O, and S;

R^{4a} , at each occurrence, is selected from =O, $(CH_2)_rOR^2$, halo,
 C_{1-4} alkyl, -CN, NO_2 , $(CH_2)_rNR^2R^{2a}$, $(CH_2)_rC(O)R^{2b}$,
 $NR^2C(O)R^{2b}$, $C(O)NR^2R^{2a}$, $NR^2C(O)NR^2R^{2a}$, $CH(=NR^2)NR^2R^{2a}$,
 $NHC(=NR^2)NR^2R^{2a}$, $SO_2NR^2R^{2a}$, $NR^2SO_2NR^2R^{2a}$, $NR^2SO_2-C_{1-4}$ alkyl,
 $NR^2SO_2R^5$, $S(O)_pR^5$, and $(CF_2)_rCF_3$;

alternatively, one R^{4a} is a 5-6 membered aromatic heterocycle
containing from 1-4 heteroatoms selected from the group
consisting of N, O, and S substituted with 0-1 R^5 ;

R^{4b} , at each occurrence, is selected from =O, $(CH_2)_rOR^3$, halo,
 C_{1-4} alkyl, -CN, NO_2 , $(CH_2)_rNR^3R^{3a}$, $(CH_2)_rC(O)R^3$,

NR³C(O)R^{3a}, C(O)NR³R^{3a}, NR³C(O)NR³R^{3a}, CH(=NR³)NR³R^{3a}, NH³C(=NR³)NR³R^{3a}, SO₂NR³R^{3a}, NR³SO₂NR³R^{3a}, NR³SO₂-C₁₋₄ alkyl, NR³SO₂CF₃, NR³SO₂-phenyl, S(O)_pCF₃, S(O)_p-C₁₋₄ alkyl, S(O)_p-phenyl, and (CF₂)_rCF₃;

R⁵, at each occurrence, is selected from CF₃, C₁₋₆ alkyl, phenyl substituted with 0-2 R⁶, and benzyl substituted with 0-2 R⁶;

R⁶, at each occurrence, is selected from H, OH, (CH₂)_rOR², halo, C₁₋₄ alkyl, CN, NO₂, (CH₂)_rNR²R^{2a}, (CH₂)_rC(O)R^{2b}, NR²C(O)R^{2b}, NR²C(O)NR²R^{2a}, CH(=NH)NH₂, NHC(=NH)NH₂, SO₂NR²R^{2a}, NR²SO₂NR²R^{2a}, and NR²SO₂C₁₋₄ alkyl;

R⁷, at each occurrence, is selected from H, OH, C₁₋₆ alkyl, C₁₋₆ alkylcarbonyl, C₁₋₆ alkoxy, C₁₋₄ alkoxy carbonyl, (CH₂)_n-phenyl, C₆₋₁₀ aryloxy, C₆₋₁₀ aryloxycarbonyl, C₆₋₁₀ arylmethylcarbonyl, C₁₋₄ alkylcarbonyloxy C₁₋₄ alkoxy carbonyl, C₆₋₁₀ arylcarbonyloxy C₁₋₄ alkoxy carbonyl, C₁₋₆ alkylaminocarbonyl, phenylaminocarbonyl, and phenyl C₁₋₄ alkoxy carbonyl;

R⁸, at each occurrence, is selected from H, C₁₋₆ alkyl and (CH₂)_n-phenyl;

alternatively, R⁷ and R⁸ combine to form a 5 or 6 membered saturated, ring which contains from 0-1 additional heteroatoms selected from the group consisting of N, O, and S;

R⁹, at each occurrence, is selected from H, C₁₋₆ alkyl and (CH₂)_n-phenyl;

n, at each occurrence, is selected from 0, 1, 2, and 3;

m, at each occurrence, is selected from 0, 1, and 2;

p, at each occurrence, is selected from 0, 1, and 2;

r, at each occurrence, is selected from 0, 1, 2, and 3;
 s, at each occurrence, is selected from 0, 1, and 2; and,
 t, at each occurrence, is selected from 0 and 1;
 provided that D-E-G-(CH₂)_s- and -Z-A-B are not both
 benzamidines.

2. A compound according to Claim 1, wherein the compound is of formulae Ia-IIf:

wherein, groups D-E- and -Z-A-B are attached to adjacent atoms on the ring;

Z is selected from a CH₂O, OCH₂, CH₂NH, NHCH₂, C(O), CH₂C(O), C(O)CH₂, NHC(O), C(O)NH, CH₂S(O)₂, S(O)₂(CH₂), SO₂NH, and NSO₂, provided that Z does not form a N-N, N-O, NCH₂N, or NCH₂O bond with ring M or group A;

A is selected from one of the following carbocyclic and heterocyclic systems which are substituted with 0-2 R⁴;
 phenyl, piperidinyl, piperazinyl, pyridyl,
 pyrimidyl, furanyl, morpholinyl, thiophenyl, pyrrolyl,
 pyrrolidinyl, oxazolyl, isoxazolyl, thiazolyl,
 isothiazolyl, pyrazolyl, imidazolyl, oxadiazolyl,
 thiadiazolyl, triazolyl, 1,2,3-oxadiazolyl,

1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl,
 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl,
 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,3-triazolyl,
 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl,
 benzofuranyl, benzothiofuranyl, indolyl, benzimidazolyl,
 benzoxazolyl, benzthiazolyl, indazolyl, benzisoxazolyl,
 benzisothiazolyl, and isoindazolyl;

B is selected from: Y, X-Y, NR²R^{2a}, C(=NR²)NR²R^{2a}, and
 NR²C(=NR²)NR²R^{2a};

X is selected from C₁₋₄ alkylene, -C(O)-, -C(=NR)-,
 -CR²(NR²R^{2a})-, -C(O)CR²R^{2a}-, -CR²R^{2a}C(O), -C(O)NR²-,
 -NR²C(O)-, -C(O)NR²CR²R^{2a}-, -NR²C(O)CR²R^{2a}-,
 -CR²R^{2a}C(O)NR²-, -CR²R^{2a}NR²C(O)-, -NR²C(O)NR²-, -NR²-,
 -NR²CR²R^{2a}-, -CR²R^{2a}NR²-, O, -CR²R^{2a}O-, and -OCR²R^{2a}-;

Y is NR²R^{2a}, provided that X-Y do not form a N-N or O-N bond;

alternatively, Y is selected from one of the following carbocyclic and heterocyclic systems which are substituted with 0-2 R^{4a};

cyclopropyl, cyclopentyl, cyclohexyl, phenyl,
 piperidinyl, piperazinyl, pyridyl, pyrimidyl, furanyl,
 morpholinyl, thiophenyl, pyrrolyl, pyrrolidinyl,
 oxazolyl, isoxazolyl, isoxazolinyl, thiazolyl,
 isothiazolyl, pyrazolyl, imidazolyl, oxadiazolyl,
 thiadiazolyl, triazolyl, 1,2,3-oxadiazolyl,
 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl,
 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl,
 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,3-triazolyl,
 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl,
 benzofuranyl, benzothiofuranyl, indolyl, benzimidazolyl,
 benzoxazolyl, benzthiazolyl, indazolyl, benzisoxazolyl,
 benzisothiazolyl, and isoindazolyl;

alternatively, Y is selected from the following bicyclic heteroaryl ring systems:

K is selected from O, S, NH, and N.

3. A compound according to Claim 2, wherein the compound is of formulae Ib and Ic:

wherein;

J is O or S; and,

Z is selected from a C(O), CH₂C(O), C(O)CH₂, NHC(O), C(O)NH, C(O)N(CH₃), CH₂S(O)₂, S(O)₂(CH₂), SO₂NH, and NHSO₂, provided that Z does not form a N-N or NCH₂N bond with ring M or group A.

4. A compound according to Claim 3, wherein the compound is of formulae Ib and Ic:

E is phenyl substituted with R or 2-pyridyl substituted with R;

D is selected from NH₂, C(O)NH₂, C(=NH)NH₂, CH₂NH₂, CH₂NHCH₃, CH(CH₃)NH₂, and C(CH₃)₂NH₂, provided that D is substituted meta or para to ring M on E; and,

R is selected from H, OCH₃, Cl, and F.

5. A compound according to Claim 4, wherein the compound is of formulae Ib and Ic:

D-E is selected from 3-aminophenyl, 3-amidinophenyl, 3-aminomethylphenyl, 3-aminocarbonylphenyl, 3-(methylaminomethyl)phenyl, 3-(1-aminoethyl)phenyl, 3-(2-amino-2-propyl)phenyl, 4-chloro-3-aminophenyl, 4-chloro-3-amidinophenyl, 4-chloro-3-aminomethylphenyl, 4-chloro-3-(methylaminomethyl)phenyl, 4-fluoro-3-aminophenyl, 4-fluoro-3-amidinophenyl, 4-fluoro-3-aminomethylphenyl, 4-fluoro-3-(methylaminomethyl)phenyl, 6-aminopyrid-2-yl, 6-amidinopyrid-2-yl, 6-aminomethylpyrid-2-yl, 6-aminocarbonylpyrid-2-yl, 6-(methylaminomethyl)pyrid-2-yl, 6-(1-aminoethyl)pyrid-2-yl, and 6-(2-amino-2-propyl)pyrid-2-yl.

6. A compound according to Claim 3, wherein the compound is of formulae Ib and Ic:

Z is C(O)CH₂ and CONH, provided that Z does not form a N-N bond with group A;

A is selected from phenyl, pyridyl, and pyrimidyl, and is substituted with 0-2 R⁴; and,

B is selected from X-Y, phenyl, pyrrolidino, morpholino, 1,2,3-triazolyl, and imidazolyl, and is substituted with 0-1 R^{4a};

R⁴, at each occurrence, is selected from OH, (CH₂)_rOR², halo, C₁₋₄ alkyl, (CH₂)_rNR²R^{2a}, and (CF₂)_rCF₃;

R^{4a} is selected from C₁₋₄ alkyl, CF₃, S(O)_pR⁵, SO₂NR²R^{2a}, and 1-CF₃-tetrazol-2-yl;

R⁵, at each occurrence, is selected from CF₃, C₁₋₆ alkyl, phenyl, and benzyl;

X is CH₂ or C(O); and,

Y is selected from pyrrolidino and morpholino.

7. A compound according to Claim 6, wherein the compound is of formulae Ib and Ic:

A is selected from the group: phenyl, 2-pyridyl, 3-pyridyl, 2-pyrimidyl, 2-Cl-phenyl, 3-Cl-phenyl, 2-F-phenyl, 3-F-phenyl, 2-methylphenyl, 2-aminophenyl, and 2-methoxyphenyl; and,

B is selected from the group: 2-CF₃-phenyl, 2-(aminosulfonyl)phenyl, 2-(methylaminosulfonyl)phenyl, 2-(dimethylaminosulfonyl)phenyl, 1-pyrrolidinocarbonyl, 2-(methylsulfonyl)phenyl, 4-morpholino, 2-(1'-CF₃-tetrazol-2-yl)phenyl, 4-morpholinocarbonyl, 2-methyl-1-imidazolyl, 5-methyl-1-imidazolyl, 2-methylsulfonyl-1-imidazolyl and, 5-methyl-1,2,3-triazolyl.

8. A compound according to Claim 3, wherein the compound is of formulae Ib and Ic:

E is phenyl substituted with R or 2-pyridyl substituted with R;

D is selected from NH₂, C(O)NH₂, C(=NH)NH₂, CH₂NH₂, CH₂NHCH₃, CH(CH₃)NH₂, and C(CH₃)₂NH₂, provided that D is substituted meta or para to ring M on E; and,

R is selected from H, OCH₃, Cl, and F;

Z is C(O)CH₂ and CONH, provided that Z does not form a N-N bond with group A;

A is selected from phenyl, pyridyl, and pyrimidyl, and is substituted with 0-2 R⁴; and,

B is selected from X-Y, phenyl, pyrrolidino, morpholino, 1,2,3-triazolyl, and imidazolyl, and is substituted with 0-1 R^{4a};

R⁴, at each occurrence, is selected from OH, (CH₂)_rOR², halo, C₁₋₄ alkyl, (CH₂)_rNR²R^{2a}, and (CF₂)_rCF₃;

R^{4a} is selected from C₁₋₄ alkyl, CF₃, S(O)_pR⁵, SO₂NR²R^{2a}, and 1-CF₃-tetrazol-2-yl;

R⁵, at each occurrence, is selected from CF₃, C₁₋₆ alkyl, phenyl, and benzyl;

X is CH₂ or C(O); and,

Y is selected from pyrrolidino and morpholino.

9. A compound according to Claim 8, wherein the compound is of formulae Ib and Ic:

D-E is selected from 3-aminophenyl, 3-amidinophenyl, 3-aminomethylphenyl, 3-aminocarbonylphenyl, 3-

(methylaminomethyl)phenyl, 3-(1-aminoethyl)phenyl, 3-(2-amino-2-propyl)phenyl, 4-chloro-3-aminophenyl, 4-chloro-3-amidinophenyl, 4-chloro-3-aminomethylphenyl, 4-chloro-3-(methylaminomethyl)phenyl, 4-fluoro-3-aminophenyl, 4-fluoro-3-amidinophenyl, 4-fluoro-3-aminomethylphenyl, 4-fluoro-3-(methylaminomethyl)phenyl, 6-aminopyrid-2-yl, 6-amidinopyrid-2-yl, 6-aminomethylpyrid-2-yl, 6-aminocarbonylpyrid-2-yl, 6-(methylaminomethyl)pyrid-2-yl, 6-(1-aminoethyl)pyrid-2-yl, 6-(2-amino-2-propyl)pyrid-2-yl;

A is selected from the group: phenyl, 2-pyridyl, 3-pyridyl, 2-pyrimidyl, 2-C1-phenyl, 3-C1-phenyl, 2-F-phenyl, 3-F-phenyl, 2-methylphenyl, 2-aminophenyl, and 2-methoxyphenyl; and,

B is selected from the group: 2-CF₃-phenyl, 2-(aminosulfonyl)phenyl, 2-(methylaminosulfonyl)phenyl, 2-(dimethylaminosulfonyl)phenyl, 1-pyrrolidinocarbonyl, 2-(methylsulfonyl)phenyl, 4-morpholino, 2-(1'-CF₃-tetrazol-2-yl)phenyl, 4-morpholinocarbonyl, 2-methyl-1-imidazolyl, 5-methyl-1-imidazolyl, 2-methylsulfonyl-1-imidazolyl and, 5-methyl-1,2,3-triazolyl.

10. A compound according to Claim 9, wherein the compound is of formula Ib₁.

11. A compound according to Claim 9, wherein the compound is of formula Ib₂.

12. A compound according to Claim 9, wherein the compound is of formula Ib₃.

13. A compound according to Claim 9, wherein the compound is of formula Ib₄.

14. A compound according to Claim 9, wherein the compound is of formula Ic₁.

15. A compound according to Claim 9, wherein the compound is of formula Ic₂.

16. A compound according to Claim 3, wherein the compound is of formulae Ib and Ic:

D is selected from C(=NR⁸)NR⁷R⁹, C(O)NR⁷R⁸, NR⁷R⁸, and CH₂NR⁷R⁸, provided that D is substituted meta or para to ring M on E;

E is phenyl substituted with R or pyridyl substituted with R;

R is selected from H, Cl, F, OR³, CH₃, CH₂CH₃, OCF₃, and CF₃;

Z is selected from C(O), CH₂C(O), C(O)CH₂, NHC(O), and C(O)NH, provided that Z does not form a N-N bond with ring M or group A;

R^{1a} and R^{1b} are independently absent or selected from -(CH₂)_r-R^{1'}, NCH₂R^{1''}, OCH₂R^{1''}, SCH₂R^{1''}, N(CH₂)₂(CH₂)_tR^{1'}, O(CH₂)₂(CH₂)_tR^{1'}, and S(CH₂)₂(CH₂)_tR^{1'}, or combined to form a 5-8 membered saturated, partially saturated or unsaturated ring substituted with 0-2 R⁴ and which contains from 0-2 heteroatoms selected from the group consisting of N, O, and S;

R^{1'}, at each occurrence, is selected from H, C₁₋₃ alkyl, halo, (CF₂)_rCF₃, OR², NR²R^{2a}, C(O)R^{2c}, (CF₂)_rCO₂R^{2c}, S(O)_pR^{2b},

$\text{NR}^2(\text{CH}_2)_r\text{OR}^2$, $\text{NR}^2\text{C(O)R}^{2b}$, $\text{NR}^2\text{C(O)}_2\text{R}^{2b}$, $\text{C(O)NR}^2\text{R}^{2a}$, $\text{SO}_2\text{NR}^2\text{R}^{2a}$, and $\text{NR}^2\text{SO}_2\text{R}^{2b}$;

A is selected from one of the following carbocyclic and heterocyclic systems which are substituted with 0-2 R^4 ;
 phenyl, piperidinyl, piperazinyl, pyridyl,
 pyrimidyl, furanyl, morpholinyl, thiophenyl, pyrrolyl,
 pyrrolidinyl, oxazolyl, isoxazolyl, thiazolyl,
 isothiazolyl, pyrazolyl, and imidazolyl;

B is selected from: Y, X-Y, NR^2R^{2a} , $\text{C(=NR}^2)\text{NR}^2\text{R}^{2a}$, and $\text{NR}^2\text{C(=NR}^2)\text{NR}^2\text{R}^{2a}$;

X is selected from CH_2 , $-\text{CR}^2(\text{CR}^2\text{R}^{2b})(\text{CH}_2)_t-$, $-\text{C(O)}-$, $-\text{C(=NR)}-$,
 $-\text{CH}(\text{NR}^2\text{R}^{2a})-$, $-\text{C(O)NR}^2-$, $-\text{NR}^2\text{C(O)}-$, $-\text{NR}^2\text{C(O)NR}^2-$, $-\text{NR}^2-$,
 and O;

Y is NR^2R^{2a} , provided that X-Y do not form a N-N or O-N bond;

alternatively, Y is selected from one of the following carbocyclic and heterocyclic systems which are substituted with 0-2 R^{4a} ;

phenyl, piperidinyl, piperazinyl, pyridyl,
 pyrimidyl, furanyl, morpholinyl, thiophenyl, pyrrolyl,
 pyrrolidinyl, oxazolyl, isoxazolyl, isoxazolinyl,
 thiazolyl, isothiazolyl, pyrazolyl, imidazolyl,
 oxadiazolyl, thiadiazolyl, triazolyl, 1,2,3-oxadiazolyl,
 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl,
 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl,
 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,3-triazolyl,
 1,2,4-triazolyl, 1,2,5-triazolyl, and 1,3,4-triazolyl;

R^4 , at each occurrence, is selected from =O, OH, Cl, F, C_{1-4} alkyl, $(\text{CH}_2)_r\text{NR}^2\text{R}^{2a}$, $(\text{CH}_2)_r\text{C(O)R}^{2b}$, $\text{NR}^2\text{C(O)R}^{2b}$, $\text{C(O)NR}^2\text{R}^{2a}$, CH(=NH)NH_2 , NHC(=NH)NH_2 , $\text{SO}_2\text{NR}^2\text{R}^{2a}$, $\text{NR}^2\text{SO}_2\text{-C}_{1-4}$ alkyl, $\text{NR}^2\text{SO}_2\text{R}^5$, $\text{S(O)}_p\text{R}^5$, and $(\text{CF}_2)_r\text{CF}_3$;

R^{4a}, at each occurrence, is selected from =O, OH, Cl, F, C₁₋₄ alkyl, (CH₂)_rNR²R^{2a}, (CH₂)_rC(O)R^{2b}, NR²C(O)R^{2b}, C(O)NR²R^{2a}, CH(=NH)NH₂, NHC(=NH)NH₂, SO₂NR²R^{2a}, NR²SO₂-C₁₋₄ alkyl, NR²SO₂R⁵, S(O)_pR⁵, (CF₂)_rCF₃, and 1-CF₃-tetrazol-2-yl;

R⁵, at each occurrence, is selected from CF₃, C₁₋₆ alkyl, phenyl substituted with 0-2 R⁶, and benzyl substituted with 0-2 R⁶;

R⁶, at each occurrence, is selected from H, =O, OH, OR², Cl, F, CH₃, CN, NO₂, (CH₂)_rNR²R^{2a}, (CH₂)_rC(O)R^{2b}, NR²C(O)R^{2b}, CH(=NH)NH₂, NHC(=NH)NH₂, and SO₂NR²R^{2a};

R⁷, at each occurrence, is selected from H, OH, C₁₋₆ alkyl, C₁₋₆ alkylcarbonyl, C₁₋₆ alkoxy, C₁₋₄ alkoxy carbonyl, benzyl, C₆₋₁₀ aryloxy, C₆₋₁₀ aryloxycarbonyl, C₆₋₁₀ arylmethylcarbonyl, C₁₋₄ alkylcarbonyloxy C₁₋₄ alkoxy carbonyl, C₆₋₁₀ arylcarbonyloxy C₁₋₄ alkoxy carbonyl, C₁₋₆ alkylaminocarbonyl, phenylaminocarbonyl, and phenyl C₁₋₄ alkoxy carbonyl;

R⁸, at each occurrence, is selected from H, C₁₋₆ alkyl and benzyl; and

alternatively, R⁷ and R⁸ combine to form a morpholino group; and,

R⁹, at each occurrence, is selected from H, C₁₋₆ alkyl and benzyl.

17. A compound according to Claim 16, wherein the compound is of formulae Ib and Ic:

E is phenyl substituted with R or 2-pyridyl substituted with R;

R is selected from H, Cl, F, OCH₃, CH₃, OCF₃, and CF₃;

Z is selected from a C(O)CH₂ and C(O)NH, provided that Z does not form a N-N bond with group A;

R^{1a} is selected from H, CH₃, CH₂CH₃, Cl, F, CF₃, OCH₃, NR²R^{2a}, S(O)pR^{2b}, CH₂S(O)pR^{2b}, CH₂NR²S(O)pR^{2b}, C(O)R^{2c}, CH₂C(O)R^{2c}, C(O)NR²R^{2a}, and SO₂NR²R^{2a};

R^{1b} is selected from H, CH₃, CH₂CH₃, Cl, F, CF₃, OCH₃, NR²R^{2a}, S(O)pR^{2b}, CH₂S(O)pR^{2b}, CH₂NR²S(O)pR^{2b}, C(O)R^{2c}, CH₂C(O)R^{2c}, C(O)NR²R^{2a}, and SO₂NR²R^{2a};

A is selected from one of the following carbocyclic and heterocyclic systems which are substituted with 0-2 R⁴; phenyl, pyridyl, pyrimidyl, furanyl, thiophenyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, and imidazolyl;

B is selected from: Y and X-Y;

X is selected from CH₂, -CR²(CR²R^{2b})-, -C(O)-, -C(=NR)-, -CH(NR²R^{2a})-, -C(O)NR²-, -NR²C(O)-, -NR²C(O)NR²-, -NR²-, and O;

Y is NR²R^{2a}, provided that X-Y do not form a N-N or O-N bond;

alternatively, Y is selected from one of the following carbocyclic and heterocyclic systems which are substituted with 0-2 R^{4a}; phenyl, piperidinyl, piperazinyl, pyridyl,

pyrimidyl, furanyl, morpholinyl, thiophenyl, pyrrolyl, pyrrolidinyl, oxazolyl, isoxazolyl, isoxazolinyl, thiazolyl, isothiazolyl, pyrazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, and 1,3,4-triazolyl;

R², at each occurrence, is selected from H, CF₃, CH₃, benzyl, and phenyl;

R^{2a}, at each occurrence, is selected from H, CF₃, CH₃, benzyl, and phenyl;

R^{2b}, at each occurrence, is selected from CF₃, OCH₃, CH₃, benzyl, and phenyl;

R^{2c}, at each occurrence, is selected from CF₃, OH, OCH₃, CH₃, benzyl, and phenyl;

alternatively, R² and R^{2a} combine to form a 5 or 6 membered saturated, partially unsaturated, or unsaturated ring which contains from 0-1 additional heteroatoms selected from the group consisting of N, O, and S;

R³, at each occurrence, is selected from H, CH₃, CH₂CH₃, and phenyl;

R^{3a}, at each occurrence, is selected from H, CH₃, CH₂CH₃, and phenyl;

R⁴, at each occurrence, is selected from OH, Cl, F, CH₃, CH₂CH₃, NR²R^{2a}, CH₂NR²R^{2a}, C(O)R^{2b}, NR²C(O)R^{2b}, C(O)NR²R^{2a}, and CF₃;

R^{4a}, at each occurrence, is selected from OH, Cl, F, CH₃, CH₂CH₃, NR²R^{2a}, CH₂NR²R^{2a}, C(O)R^{2b}, C(O)NR²R^{2a}, SO₂NR²R^{2a}, S(O)_pR⁵, CF₃, and 1-CF₃-tetrazol-2-yl;

R⁵, at each occurrence, is selected from CF₃, C₁₋₆ alkyl, phenyl substituted with 0-2 R⁶, and benzyl substituted with 1 R⁶;

R⁶, at each occurrence, is selected from H, OH, OCH₃, Cl, F, CH₃, CN, NO₂, NR²R^{2a}, CH₂NR²R^{2a}, and SO₂NR²R^{2a};

R⁷, at each occurrence, is selected from H, OH, C₁₋₃ alkyl, C₁₋₃ alkylcarbonyl, C₁₋₃ alkoxy, C₁₋₄ alkoxycarbonyl, benzyl, phenoxy, phenoxy carbonyl, benzylcarbonyl, C₁₋₄ alkylcarbonyloxy C₁₋₄ alkoxycarbonyl, phenylcarbonyloxy C₁₋₄ alkoxycarbonyl, C₁₋₆ alkylaminocarbonyl, phenylaminocarbonyl, and phenyl C₁₋₄ alkoxycarbonyl;

R⁸, at each occurrence, is selected from H, CH₃, and benzyl; and,

alternatively, R⁷ and R⁸ combine to form a morpholino group;

R⁹, at each occurrence, is selected from H, CH₃, and benzyl.

18. A compound according to Claim 17, wherein the compound is of formulae Ib and Ic:

R^{1a} is absent or is selected from H, CH₃, CH₂CH₃, Cl, F, CF₃, OCH₃, NR²R^{2a}, S(O)_pR^{2b}, C(O)NR²R^{2a}, CH₂S(O)_pR^{2b}, CH₂NR²S(O)_pR^{2b}, C(O)R^{2c}, CH₂C(O)R^{2c}, and SO₂NR²R^{2a};

R^{1b} is absent or is selected from H, CH₃, CH₂CH₃, Cl, F, CF₃, OCH₃, NR²R^{2a}, S(O)_pR^{2b}, C(O)NR²R^{2a}, CH₂S(O)_pR^{2b}, CH₂NR²S(O)_pR^{2b}, C(O)R^{2b}, CH₂C(O)R^{2b}, and SO₂NR²R^{2a};

A is selected from one of the following carbocyclic and heterocyclic systems which are substituted with 0-2 R⁴; phenyl, pyridyl, and pyrimidyl;

B is selected from: Y and X-Y;

X is selected from -C(O)- and O;

Y is NR²R^{2a}, provided that X-Y do not form a O-N bond;

alternatively, Y is selected from one of the following carbocyclic and heterocyclic systems which are substituted with 0-2 R^{4a};

phenyl, piperazinyl, pyridyl, pyrimidyl, morpholinyl, pyrrolidinyl, imidazolyl, and 1,2,3-triazolyl;

R², at each occurrence, is selected from H, CF₃, CH₃, benzyl, and phenyl;

R^{2a}, at each occurrence, is selected from H, CF₃, CH₃, benzyl, and phenyl;

R^{2b}, at each occurrence, is selected from CF₃, OCH₃, CH₃, benzyl, and phenyl;

R^{2c}, at each occurrence, is selected from CF₃, OH, OCH₃, CH₃, benzyl, and phenyl;

alternatively, R² and R^{2a} combine to form a ring system selected from pyrrolidinyl, piperazinyl and morpholino;

R⁴, at each occurrence, is selected from Cl, F, CH₃, NR²R^{2a}, and CF₃;

R^{4a}, at each occurrence, is selected from Cl, F, CH₃, SO₂NR²R^{2a}, S(O)_pR⁵, and CF₃; and,

R⁵, at each occurrence, is selected from CF₃ and CH₃.

19. A compound according to Claim 1, wherein the compound is selected from the group:

3-(3-amidinophenyl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-5-(hydroxymethyl)isoxazole;

3-(3-amidinophenyl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]isoxazole;

3-(3-amidinophenyl)-4-[(2'-methylsulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]isoxazole;

3-(3-amidinophenyl)-4-[5-(2-aminosulfonyl)phenylpyrid-2-yl)aminocarbonyl]-5-(methoxymethyl)isoxazole;

3-(3-amidinophenyl)-4-[(2'-trifluoromethyl-[1,1']-biphen-4-yl)aminocarbonyl]isoxazole;

3-(3-amidinophenyl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-5-(trifluoromethyl)isoxazole;

2-acetylamino-4-(3-amidinophenyl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

2-amino-4-(3-amidinophenyl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

2-methyl-4-(3-amidinophenyl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

5-(3-amidinophenyl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]oxazole;

3-(3-amidinophenyl)-4-[(2'-t-butylaminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]isoxazole;

3-(3-amidinophenyl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-5-(methoxymethyl)-isoxazole;

3-(3-amidinophenyl)-4-[(2'-t-butylaminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]isoxazole;

3-(3-amidinophenyl)-4-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]-5-(methoxymethyl)isoxazole;

2-methyl-4-(3-amidinophenyl)-5-[(2'-trifluoromethyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

2-phenyl-4-(3-amidinophenyl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

3-(3-amidinophenyl)-4-[(3-fluoro-2'-methylsulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]isoxazole;

3-(3-amidinophenyl)-4-[(2'-trifluoromethylthio-[1,1']-biphen-4-yl)aminocarbonyl]isoxazole;

3-(3-amidinophenyl)-5-amino-4-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]isoxazole;

2-(phenylamino)-4-(3-amidinophenyl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

2-(benzylamino)-4-(3-amidinophenyl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

2-(methylamino)-4-(3-amidinophenyl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

2-(methylamino)-4-(3-carboxamidophenyl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

2-methyl-4-(3-amidinophenyl)-5-[(5-(2'-aminosulfonylphenyl-1-yl)pyridin-2-yl)aminocarbonyl]thiazole;

2-methyl-4-(3-(carboxamido)phenyl)-5-[(5-(2'-aminosulfonylphenyl-1-yl)pyridin-2-yl)aminocarbonyl]thiazole;

2-(3-pyridyl)-4-(3-amidinophenyl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

2-(3-pyridyl)-4-(3-carboxamidophenyl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

2-chloro-4-(3-amidinophenyl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

2-chloro-4-(3-carboxamidophenyl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

2-chloro-4-(3-amidinophenyl)-5-[[5-(2'-aminosulfonylphenyl-1-yl)pyridin-2-yl]aminocarbonyl]thiazole;

2-chloro-4-(3-(carboxamido)phenyl)-5-[[5-(2'-aminosulfonylphenyl-1-yl)pyridin-2-yl]aminocarbonyl]thiazole;

2-hydroxy-4-(3-amidinophenyl)-5-[[5-(2'-aminosulfonylphenyl-1-yl)pyridin-2-yl]aminocarbonyl]thiazole;

2-chloro-4-(3-aminophenyl)-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

2-amino-4-[(3-amino-4-chloro)phenyl]-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

2-chloro-4-[(3-amino-4-chloro)phenyl]-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole; and,

2-amino-4-[(3-aminomethyl)phenyl]-5-[(2'-aminosulfonyl-[1,1']-biphen-4-yl)aminocarbonyl]thiazole;

and a pharmaceutically acceptable salt thereof.

20. A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt thereof.

21. A method for treating or preventing a thromboembolic disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt thereof.