RAK811 Module AT Command Manual

Introduction

The RAK811 module is designed to simplify LoRaWAN and LoRa point to point (P2P) communication. To integrate LoRa technology into your projects, RAK811 implemented easy to use UART communication interface where you can send AT commands. Through these AT commands, you can set the parameters needed for LoRa P2P and LoRaWAN communication. You can even control the available GPIO pins and analog input of RAK811. You can also use any microcontroller with UART interface to control the RAK811 module.

The UART serial communication is exposed on the **UART1 port**, through **Pin 6 (TX1)** and **Pin 7 (RX1)**. The default parameters of the UART1 communication are **115200 / 8-N-1**. The firmware upgrade is also possible through this port. To get familiar with the pin distribution of this module and find a schematic circuit of a reference application, refer to the RAK811 Module Datasheet. You can also see the summary provided in Appendix IV.

The RAK811 module also exposes another serial port through the **Pin 25 (TX3)** and **Pin 26 (RX3)**. This port is named as **UART3** with default parameters **115200** / **8-N-1**. You can use UART3 as alternative to UART1 when sending AT commands. You can also use UART3 when developing custom firmware via RUI.

In the case that the target application only requires one single UART port, then it is recommended to make use of the UART3 to connect to the MCU and reserve the UART1 for future firmware upgrade.

Links to Quick Start Guide

For AT commands example usage, you can check these sections of quick start guide:

- TTN OTAA/ABP
- ChirpStack OTAA/ABP
- LoRa P2P

Software Tool

If you don't have a serial port tool yet, it is recommended to download and install the RAK Serial Port Tool. There are some ready-made AT commands in this tool that will be very useful for you.

RAK Serial Port Tool ☑

For more detailed information on how to use this tool, refer to the following guide:

· RAK Serial Port Tool Guide

AT Command Syntax

The AT command is based on ASCII characters. In general, the AT Command starts with the prefix AT or at and ends with <cr>
characters at the end of the command. For the rest of the document, the
\r\n
part is omitted for the sake of clarity.

The AT commands can be classified in the following groups:

• **Read Command**: Reads the current configuration or status of the module. The command name and the list of parameters are separated by = character. The <m> parameter is separated with its associated value <n> by the : character.

at+get_config=<m>:<n>

• **Write Command**: Writes/Modifies the current configuration or status of the module. The command name and the list of parameters are separated by = character. The <m> parameter is separated with its associated value <n> by the : character.

at+set_config=<m>:<n>

• **Operational Commands**: Some commands are neither read nor write commands but are used to execute an action.

at+send=lora:<m>:<n> // Sends data through the LoRa transceiver.

• Special Command: The RAK811 UART port has two operational modes: Configuration Mode and Data Transmission Mode. When switching from data transmission mode to configuration mode the command to be entered is +++ and does not contain terminators such as \r and \r and \r n.

After executing the command, a response is sent back to the external MCU. The usual reply has the following format:

OK [information]\r\n

Only the read commands have information in the replied message, while Write commands do not have an informative description.

After sending a successful command to the module, the firmware developed, running in the external MCU, will expect at a minimum string of Ok\r\n . On the other hand, when the command is not successfully executed by the module, you will receive a response with the following format:

ERROR: [ErrCode]\r\n

Error Code Table

Error Code	Description
1	The last command received is an unsupported AT command.
2	Invalid parameter in the AT command.
3	There is an error when reading or writing the flash memory.
4	There is an error when reading or writing through IIC bus.
5	There is an error when sending data through the UART port.
80	The LoRa transceiver is busy, could not process a new command.
81	LoRa service is unknown. Unknown MAC command received by node. Execute commands that are not supported in the current state, such as sending at+join command in P2P mode.
82	The LoRa parameters are invalid.
83	The LoRa parameters are invalid.
84	The LoRa data rate (DR) is invalid.
85	The LoRa frequency and data rate are invalid.
86	The device has not joined into a LoRa network.
87	The length of the packet exceeded that maximum allowed by the LoRa protocol.
88	Service is closed by the server. Due to the limitation of duty cycle, the server will send " SRV_MAC_DUTY_CYCLE_REQ" MAC command to close the service.
89	This is an unsupported region code.
90	Duty cycle is restricted. Due to duty cycle, data cannot be sent at this time until the time limit is removed.
91	No valid LoRa channel could be found.
92	No available LoRa channel could be found.
93	Status is error. Generally, the internal state of the protocol stack is wrong.
94	Time out reached while sending the packet through the LoRa transceiver.
95	Time out reached while waiting for a packet in the LoRa RX1 window.
96	Time out reached while waiting for a packet in the LoRa RX2 window.
97	There is an error while receiving a packet during the LoRa RX1 window.

Error Code	Description
98	There is an error while receiving a packet during the LoRa RX2 window.
99	Failed to join into a LoRa network.
100	Duplicate downlink message is detected. A message with an invalid downlink count is received.
101	Payload size is not valid for the current data rate (DR).
102	Many downlink packets are lost.
103	Address fail. The address of the received packet does not match the address of the current node.
104	Invalid MIC is detected in the LoRa message.

General AT Command

1. at+version

This command is used to get the current firmware version number.

Operation	Command	Response
Read	at+version	OK <version number=""></version>

Parameter: NONE

Example:

at+version\r\n OK V3.0.0.14.H

2. at+help

This command is used to obtain all AT commands supported by the current firmware.

Operation	Command	Response
Read	at+help	OK <all at="" commands=""></all>

Parameter: NONE

Example:

```
at+help\r\n
OK Device AT commands:
 at+version
 at+help
 at+set_config=device:restart
 at+set_config=device:sleep:X
 at+get_config=device:status
 at+set_config=device:uart:X:Y
 at+set_config=device:uart_mode:X:Y
 at+send=uart:X:YYY
 at+set_config=device:gpio:X:Y
 at+get_config=device:gpio:X
 at+get_config=device:adc:X
LoRaWAN AT commands:
 at+set_config=lora:default_parameters
 at+join
 at+send=lora:X:YYY
 at+set_config=lora:region:XXX
 at+get_config=lora:channel
 at+set_config=lora:dev_eui:XXXX
 at+set_config=lora:app_eui:XXXX
 at+set_config=lora:app_key:XXXX
 at+set_config=lora:dev_addr:XXXX
 at+set_config=lora:apps_key:XXXX
 at+set_config=lora:nwks_key:XXXX
 at+set_config=lora:multicastenable:X
 at+set_config=lora:multicast_dev_addr:XXXX
 at+set_config=lora:multicast_apps_key:XXXX
 at+set_config=lora:multicast_nwks_key:XXXX
 at+set_config=lora:join_mode:X
 at+set_config=lora:work_mode:X
 at+set_config=lora:ch_mask:X:Y
 at+set_config=lora:class:X
 at+set_config=lora:confirm:X
 at+set_config=lora:dr:X
 at+set_config=lora:tx_power:X
 at+set_config=lora:adr:X
 at+get_config=lora:status
 at+set_config=lora:dutycycle_enable:X
 at+set_config=lora:send_repeat_cnt:X
LoRaP2P AT commands:
 at+set_config=lorap2p:XXX:Y:Z:A:B:C
 at+set_config=lorap2p:transfer_mode:X
 at+send=lorap2p:XXX
```

3. at+set_config=device:restart

This command is used for restarting the device.

 Operation
 Command
 Response

 Read
 at+set_config=device:restart

Parameter: NONE

Example:

at+set_config=device:restart

LoRa (R) is a registered trademark or service mark of Semtech Corporation or its affiliates. LoRa

RAK811 Version:3.0.0.14.H

UART1 work mode: RUI_UART_NORMAL, 9600, N81

UART3 work mode: RUI_UART_NORMAL, 115200, N81

LoRa work mode: P2P

LoRa P2P Transfer_mode: Sender

Initialization OK

4. at+set_config=device:sleep: <status>

This command is used to change the current state of the device between the sleep and the wake-up mode.

Operation	Command	Response
Write	at+set_config=device:sleep: <status></status>	OK <status></status>
Parameter:		
status	0: wake up 1: sleep	

Example:

at+set_config=device:sleep:1\r\n OK Sleep at+set_config=device:sleep:0\r\n OK Wake Up

5. at+get_config=device:status

This command is used for obtaining the status of the device.

*Operation	Command	Response	
Read	at+get_config=device:status	OK <information< th=""><th>tion></th></information<>	tion>

Parameter: None

Example:

at+get_config=device:status\r\n
OK Board Core:RAK811
MCU:STM32L151CBU6A
LoRa chip:SX1276

Interface Type AT Command

1. at+set_config=device:uart: <index>:<baud_rate>

This command is used for changing the baud rate of the UART port. There will be no reply after executing this configuration if a different baud rate was set. To make your UART serial communication work again, configure the UART baud rate setting of the Serial Port Tool based on the new baud rate.

Operation	Command	Response
Write	at+set_config=device:uart: <index>:<baud_rate></baud_rate></index>	ОК
Parameter:		
index	UART Number: 1 or 3. Two UART ports are currently supported start UART1 and UART3	ting FW V3.0.0.14.H -
baud_rate	UART Baud rate: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 1	15200

Example:

2. at+set_config=device:uart_mode: <index>:<mode>

This command is used for switching the UART operation between the AT configuration mode and the data transmission mode.

Operation	Command	Response
Write	at+set_config=device:uart_mode: <index>:<mode></mode></index>	ОК

Parameter:

index	UART Number: 1 or 3. Two UART ports are currently supported starting FW V3.0.0.14.H - UART1 and UART3
mode	UART Mode : Only 1 can be selected, which means the UART is set to data transmission mode

```
NOTE:
```

Example:

```
at+set_config=device:uart_mode:1:1\r\n
OK
+++
OK
```

3. at+send=uart: <index>:<data>

This command is used for sending data over a UART port.

Operation	Command	Response
Write	at+send=uart: <index>:<data></data></index>	ОК

Parameter:

index UART Port Number. Currently, the RAK811 only supports UART1.

mode The data you want to send. The maximum length of data is **250 characters**, equivalent to 255 — the length of at+... — the length of $r \cdot r$.

Example:

```
at+send=uart:1:12345\r\n
OK
```

4. at+get_config=device:gpio: <pin_num>

This command is used for obtaining the voltage level status of a pin on a module.

Operation	Command	Response
Read	<pre>at+get_config=device:gpio:<pin_num></pin_num></pre>	0K <status></status>
Parameter:		

Pin index of the module pin_num (GPIO pins available are Pin 2, Pin 3, Pin 4, Pin 5, Pin 8, Pin 9, Pin 14, Pin 15, Pin 16, Pin 18, Pin 19, Pin 20, Pin 22, Pin 23, and Pin 27)

status (Return 0: Low Voltage Level
Value) 1: High Voltage Level

Figure 1: GPIO Pinout for RAK811

Example:

at+get_config=device:gpio:2\r\n
OK 1

5. at+set_config=device:gpio: <pin_num>:<status>

This command is used for setting the voltage level state (high or low) of a pin on a module.

Operation	Command	Response
Write	<pre>at+set_config=device:gpio:<pin_num>:<status></status></pin_num></pre>	ОК

Parameter:

Pin index of the module
(GPIO pins available are Pin 2, Pin 3, Pin 4, Pin 5, Pin 8, Pin 9, Pin 14, Pin 15, Pin 16, Pin 18, Pin 19, Pin 20, Pin 22, Pin 23, and Pin 27)
Please refer on Figure 1.

Status

O: Low voltage level
1: High voltage level

Example:

at+set_config=device:gpio:2:0\r\n
0K

6. at+get_config=device:adc: <pin_num>

This command is used for obtaining the voltage level of an ADC pin of the module.

Operation	Command	Response
Read	at+get_config=device:adc: <pin_num></pin_num>	OK <voltage></voltage>
Parameter:		
pin_num	ADC pin index of the module. (ADC pins available are different between the high - For low-frequency modules, the ADC pins are Pir 20, Pin 22, and Pin 23 - For high-frequency modules, the ADC pins are Pi and Pin 23)	n 2, Pin 3, Pin 4, Pin 5, Pin 15, Pin
Voltage (Return Value)	Voltage, Unit: mV	

Figure 2: ADC Pinout on Low-frequency modules for RAK811

Figure 3: ADC Pinout on High-frequency modules for RAK811

Example:

at+get_config=device:adc:2\r\n OK 1663mV

LoRaWAN Type AT Command

1. at+join

This command is used for joining to the LoRaWAN network.

Operation	Command	Response
	at+join	OK Join Success

Parameter: NONE

Example:

at+join\r\n OK Join Success

2. at+send=lora: <port>:<data>

This command is used to send data via LoRaWAN.

Operation	Command	Response
	at+send=lora: <port>:<data></data></port>	ОК

Parameter:

port Sending port of LoRa. The value range is 1-223.

data

The sending data format is in hexadecimal format. The possible values are between **00-FF**. The module will internally cast every two characters into a byte before sending it to the LoRa transceiver. The maximum length varies depending on the band frequency and DR (LoRaWAN standard). Refer to Appendix III.

Example:

When sending data as unconfirmed uplink:

```
at+send=lora:1:5A00\r\n
OK
```

When sending data as confirmed uplink:

```
at+send=lora:1:5A00\r\n
OK
at+recv=0,-105,-12,0
```

NOTE

- When sending a confirmed message, you will receive an ACK response, i.e. at+recv=... . The 0, -105, -12,0 stands for:
 - 0 : For the LoRa port;
 - ∘ -105 : For the RSSI;
 - ∘ -12 : For the SNR;
 - 0 : For the length of the data (no valid data in ACK).

3. at+set_config=lora:region: <region>

This command is used to set the appropriate working frequency band.

Operation	Command	Response
Write	<pre>at+set_config=lora:region:<region></region></pre>	ОК

Parameter:

region EU433, CN470, IN865, EU868, US915, AU915, KR920, AS923. The default is EU868.

Example:

```
at+set_config=lora:region:EU868\r\n
OK
```

NOTE:

In the AS923 frequency band, the supported frequency plan is "as2" and dwell is set to 1.

4. at+get_config=lora:channel

This command is used to read all the LoRa channel information given the current region configured on the board.

Operation	Command	Response
Read	at+get_config=lora:channel	OK <channel information=""></channel>

Parameter: NONE

Example: EU868 region

at+get_config=lora:channel\r\n OK *0,on,868100000,0,5; *1,on,868300000,0,5; *2,on,868500000,0,5; 3,off,0,0,0; 4,off,0,0,0; 5,off

NOTE

With ***0,on,868100000,0,5** as an example, the following is the channel parameter analysis:

- * at the beginning if the channel is open;
- 0 is the channel ID;
- on indicates the current status of the channel;
- 868100000 is the actual frequency of the channel, unit is Hz;
- 0,5 indicates the DR of the channel, DR0~DR5.

5. at+set_config=lora:ch_mask: <channel_number>:<status>

This command is used to enable (on) or disable (off) a channel in the current region.

Operation	Command	Response
Write	at+set_config=lora:ch_mask: <channel_number>:<status></status></channel_number>	ОК

Parameter:

channel_number	Channel number
status	0: off 1: on

Example:

at+set_config=lora:ch_mask:0:0\r\n
0K

6. at+set_config=lora:dev_eui: <dev_eui>

This command is used to set the Device EUI parameter for the LoRaWAN OTAA mode.

Operation	Command	Response
Write	at+set_config=lora:dev_eui: <dev_eui></dev_eui>	ОК
Parameter:		
dev_eui	Device EUI	
Example:		
at+set_config=	-lora:dev_eui:3530353064377716\r\n	

7. at+set_config=lora:app_eui: <app_eui>

0K

This command is used to set the Application EUI parameter for the LoRaWAN OTAA mode.

Operation	Command	Response
Write	at+set_config=lora:app_eui: <app_eui></app_eui>	ОК
Parameter:		
app_eui	Application EUI	
Example:		

 $\label{lem:atset_config} \textbf{at+set_config=lora:app_eui:00000000000000001} \\ \textbf{OK}$

8. at+set_config=lora:app_key: <app_key>

This command is used to set the Application Key parameter for the LoRaWAN OTAA mode.

Operation	Command	Response	
Write	at+set_config=lora:app_key: <app_key></app_key>	ОК	

Parameter:

app_key Application Key

Example:

 $at+set_config=lora: app_key: 841986913ACD00BBC2BE2479D70F3228 \label{eq:config} $$ \config=lora: app_key: app_key: ap$

9. at+set_config=lora:dev_addr: <dev_addr>

This command is used to set the Device Address parameter for the LoRaWAN ABP mode.

Operation	Command	Response
Write	at+set_config=lora:dev_addr: <dev_addr></dev_addr>	ОК
Parameter:		
dev_addr	Device Address	
Example:		
at+set_config=lora:dev_addr:260125D7\r\n		

ОК

10. at+set_config=lora:apps_key: <apps_key>

This command is used to set the Application Session Key parameter for the LoRaWAN ABP mode.

Operation	Command	Response
Write	at+set_config=lora:apps_key: <apps_key></apps_key>	ОК
Parameter:		
apps_key	Application Session Key	
Example:		

 $\verb|at+set_config=lora:apps_key:841986913ACD00BBC2BE2479D70F3228\\ | r \\ | OK$

This command is used to set the Network Session Key parameter for the LoRaWAN ABP mode.

Operation	Command	Response
Read	at+set_config=lora:nwks_key: <nwks_key></nwks_key>	ОК
Parameter:		
nwks_key	Network Session Key	
Example:		
at+set_config=lora:nwks_key:69AF20AEA26C01B243945A28C9172B42\r\n		

12. at+set_config=lora:multicastenable: <IsEnable>

0K

This command is used to enable or disable the multicast feature.

Operation	Command	Response
Write	at+set_config=lora:multicastenable: <isenable></isenable>	ОК
Parameter:		
IsEnable	0: disable 1: enable The default is disable.	
Example:		

at+set_config=lora:multicastenable:1\r\n
OK

13. at+set_config=lora:multicast_dev_addr: <multicast_dev_addr>

This command is used to set the Device Address for the multicast feature.

Operation	Command	Response
Write	at+set_config=lora:multicast_dev_addr: <multicast_dev_addr></multicast_dev_addr>	ОК

Parameter:

multicast_dev_addr Multicast Device Address

Example:

at+set_config=lora:multicast_dev_addr:260111fd\r\n
OK

14. at+set_config=lora:multicast_apps_key: <multicast_apps_key>

This command is used to set the Application Session Key for the multicast feature.

Operation	Command	Response
Write	<pre>at+set_config=lora:multicast_apps_key:<multicast_apps_key></multicast_apps_key></pre>	ОК

Parameter:

multicast_app_addr

Multicast Application Session Key

Example:

15. at+set_config=lora:multicast_nwks_key: <multicast_nwks_key>

This command is used to set the Network Session Key for the multicast feature.

Operation	**Command	Response
Write	<pre>at+set_config=lora:multicast_nwks_key:<multicast_nwks_key></multicast_nwks_key></pre>	ОК

Parameter:

multicast_nwks_key

Multicast Network Session Key

Example:

16. at+set_config=lora:join_mode: <mode>

This command is used to switch the LoRaWAN access mode between the OTAA and the ABP mode.

Operation	Command	Response
Write	at+set_config=lora:join_mode: <mode></mode>	ОК

Parameter:

Activation mode

mode 0: OTAA

1: ABP

The default is OTAA.

Example:

at+set_config=lora:join_mode:1\r\n
OK

17. at+set_config=lora:class: <class>

This command is used to set LoRaWAN class to Class A, Class B, or Class C.

Operation	Command	Response
Write	at+set_config=lora:class: <class></class>	ОК
Parameter:		
class	0: Class A 1: Class B (Not supported at this time) 2: Class C The default is Class A.	

Example:

Example:

at+set_config=lora:class:0\r\n
0K

18. at+set_config=lora:confirm: <type>

This command is used to set the type data to be sent: Confirmed/Unconfirmed.

Operation	Command	Response
Write	at+set_config=lora:confirm: <type></type>	ОК
Parameter:		
type	0: unconfirm type1: confirm typeThe default is unconfirm type.	

 $\begin{tabular}{ll} at+set_config=lora:confirm:0\r\\ OK \end{tabular}$

19. at+set_config=lora:dr: <dr>

This command is used to set the data rate (DR) of LoRa.

Operation	Command	Response
Write	at+set_config=lora:dr: <dr></dr>	ОК

Parameter:

dr The data rate of LoRa is related to the current region. In most of the LoRa areas, it is common to use 0 to 5. Detailed reference can be made to LoRaWAN 1.0.2 specification.

20. at+set_config=lora:tx_power: <tx_power>

This command is used to set the RF transmission power level of the LoRa transceiver. The unit is in dBm.

Operation	Command	Response
Write	at+set_config=lora:tx_power: <tx_power></tx_power>	ОК

Parameter:

LoRa transmit power level varies depending on frequency band and DR. Refer to the tx_power

LoRaWAN 1.0.2 specification or Appendix II for details.

The default is 0.

Example:

at+set_config=lora:tx_power:0\r\n
0K

21. at+set_config=lora:adr: <status>

This command is used to turn on/off the ADR feature of the LoRa communication.

Operation	Command	Response
Write	at+set_config=lora:adr: <status></status>	ОК

Parameter:

0: Turn off status 1: Turn on

The default is on.

Example:

```
at+set_config=lora:adr:0\r\n
OK
```

22. at+get_config=lora:status

This command is used to get all the information related to the current LoRa status, except the channel information.

Operation	Command	Response
Read	at+get_config=lora:status	OK <lora detail="" status=""></lora>

Parameter: NONE

Example:

```
at+get_config=lora:status\r\n
OK Work Mode: LoRaWAN
Region: EU868
Send_interval: 600s
Auto send status: false.
MulticastEnable: true.
Multi_Dev_Addr: 260111FD
Multi_Apps_Key: F13DDFA2619B10411F02F042E1C0F356
Multi_Nwks_Key: 1D1991F5377C675879C39B6908D437A6
Join_mode: OTAA
DevEui: 000000000000888
AppEui: 0000000000000888
AppKey: 00000000000008880000000000000000
Class: C
Joined Network:false
IsConfirm: unconfirm
AdrEnable: true
EnableRepeaterSupport: false
RX2_CHANNEL_FREQUENCY: 869525000, RX2_CHANNEL_DR:0
RX_WINDOW_DURATION: 3000ms
RECEIVE_DELAY_1: 1000ms
RECEIVE_DELAY_2: 2000ms
JOIN_ACCEPT_DELAY_1: 5000ms
JOIN_ACCEPT_DELAY_2: 6000ms
Current Datarate: 4
Primeval Datarate: 4
ChannelsTxPower: 0
UpLinkCounter: 0
DownLinkCounter: 0
```

23. at+set_config=lora:dutycycle_enable:1 <status>

This command is used to enable or disable the Duty Cycle feature.

Operation	Command	Response
Write	at+set_config=lora:dutycycle_enable: <status></status>	ОК
Parameter:		
status	0: disable 1: enable The default is disable.	

Example:

at+set_config=lora:dutycycle_enable:1\r\n
OK

24. at+set_config=lora: send_repeat_cnt: <num>

This command is used to set the number of retransmitting attempts on an uplink message. When activated, the board will resend a message if its corresponding ACK (downlink) is not received after sending a confirmed uplink message. The default value is 0, which means that the board will not resend any message by default.

Operation	Command	Response
Write	<pre>at+set_config=lora: send_repeat_cnt:<num></num></pre>	ОК
Parameter:		
num	Number of retries, up to 8. The default is 0.	
Example:		

at+set_config=lora:send_repeat_cnt:1\r\n
0K

25. at+set_config=lora:default_parameters

This command is used for restoring the factory setting.

Operation	Command	Response
Write	at+set_config=lora:default_parameters	ОК

Parameter: NONE

Example:

at+set_config=lora:default_parameters\r\n

0K

LoRa P2P Type AT Command

1. at+set_config=lora:work_mode: <mode>

This command is used to switch the LoRa work mode between the LoRaWAN and the LoRa P2P mode. This command will cause the module to restart.

Operation	Command	Response
Write	at+set_config=lora:work_mode: <mode></mode>	
Parameter:		
	Work mode of LoRa	
	0: LoRaWAN	
mode	1: LoRa P2P	
	The default is LoRaWAN mode	

Example:

at+set_config=lora:work_mode:1\r\n
UART1 work mode: RUI_UART_NORMAL
Current work_mode:P2P
Initialization OK

2. at+set_config=lorap2p: <frequency>:<spreadfact>:<bandwidth>:<codingrate>:codingrate

This command is used for setting the relevant parameters of LoRAP2p mode and is only valid when the LoRa mode was switched to LoRaP2P before.

Operation	Command	Response	
Write	at+set_config=lorap2p: <frequency>:<spreadfact>:<bandwidth>:</bandwidth></spreadfact></frequency>	OK	
vviile	<codingrate>:<pre><codingrate>:<pre></pre></codingrate></pre></codingrate>	OK	

Parameter:

frequency	Frequency, the unit is Hz The default is 869525000 Hz.
spreadfact	Spreading factor The default is 12.
bandwidth	0: 125 kHz 1: 250 kHz 2: 500 kHz The default is 0.
codeingrate	1: 4/5 2: 4/6 3: 4/7 4: 4/8 The default is 1.
preamble	Preamble Length. 5~65535 The default is 8.
power	TX power. The unit is in dBm. 5~20 The default is 20.

Example :

at+set_config=lorap2p:869525000:12:0:1:8:20\r\n OK

3. at+set_config=lorap2p:transfer_mode: <mode>

This command is used to switch the state of the LoRa transceiver between sending and receiving state, and it is only valid when the LoRa mode is set to LoRa P2P before.

Operation	Command	Response
Write	<pre>at+set_config=lorap2p: transfer_mode:<mode></mode></pre>	ОК
Parameter :		
mode	1: receiver mode 2: sender mode	
	The default is sender mode.	

Example :

at+set_config=lorap2p:transfer_mode:1\r\n
0K

4. at+send=lorap2p: <data>

This command is used to send data in LoRa P2P mode, and it is only valid when the LoRa mode is set to LoRa P2P before.

Operation	Command	Response
Send	at+send=lorap2p: <data></data>	ОК
Parameter :		
mode	1: receiver mode 2: sender mode	
	The default is sender mode.	

Example :

at+send=lorap2p:1234\r\n OK

In LoRa P2P mode, the receiving node receives the data and outputs the data in the following format:

at+recv=<RSSI>,<SNR>,< Data Length >:< Data >

Appendix I: Data Rate by Region

EU433/EU868/AS923

Data Rate	Configuration	Indicative Physical Bit Rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
8 ~ 15	RFU	

CN470/KR920

Data Rate	Configuration	Indicative Physical Bit Rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6 ~ 15	RFU	

US915

Data Rate	Configuration	Indicative Physical Bit Rate [bit/s]
0	LoRa: SF10 / 125 kHz	980
1	LoRa: SF9 / 125 kHz	1760
2	LoRa: SF8 / 125 kHz	3125
3	LoRa: SF7 / 125 kHz	5470
4	LoRa: SF8 / 500 kHz	12500
5 ~ 7	RFU	
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11	LoRa: SF9 / 500 kHz	7000
12	LoRa: SF8 / 500 kHz	12500
13	LoRa: SF7 / 500 kHz	21900
14 ~ 15	RFU	

AU915

Data Rate	Configuration	Indicative Physical Bit Rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF8 / 500 kHz	12500
7	RFU	RFU
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11	LoRa: SF9 / 500 kHz	7000
12	LoRa: SF8 / 500 kHz	12500

IN865

Data Rate	Configuration	Indicative Physical Bit Rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	RFU	RFU
7	FSK: 50 kbps	50000
8 ~ 15	RFU	RFU

Appendix II: TX Power by Region

EU868

By default, MaxEIRP is considered to be +16 dBm.

TXPower	Configuration (EIRP)
0	MaxEIRP
1	MaxEIRP - 2 dB
2	MaxEIRP - 4 dB
3	MaxEIRP - 6 dB
4	MaxEIRP - 8 dB
5	MaxEIRP - 10 dB
6	MaxEIRP - 12 dB
7	MaxEIRP - 14 dB
8 ~ 15	RFU

TXPower	Configuration (Conducted Power)
0	30 dBm - 2*TXpower
1	28 dBm
2	26 dBm
3~9	-
10	10 dBm
11 ~ 15	RFU

AU915

By default, MaxEIRP is considered to be +30 dBm.

TXPower	Configuration (EIRP)
0	MaxEIRP
1 ~ 10	MaxEIRP - 2*TXPower
11 ~ 10	RFU

KR920

By default, MaxEIRP is considered to be $+14~\mathrm{dBm}$.

TXPower	Configuration (EIRP)
0	MaxEIRP
1	MaxEIRP - 2 dB
2	MaxEIRP - 4 dB
3	MaxEIRP - 6 dB
4	MaxEIRP - 8 dB
5	MaxEIRP - 10 dB
6	MaxEIRP - 12 dB
7	MaxEIRP - 14 dB
8 ~ 15	RFU

AS923

By default, Max EIRP isconsidered to be 16 dBm.

TXPower	Configuration (EIRP)
0	MaxEIRP
1	MaxEIRP - 2 dB
2	MaxEIRP - 4 dB
3	MaxEIRP - 6 dB
4	MaxEIRP - 8 dB
5	MaxEIRP - 10 dB
6	MaxEIRP - 12 dB
7	MaxEIRP - 14 dB
8 ~ 15	RFU

IN865

By default, MaxEIRP is considered to be 30 dBm.

TXPower	Configuration (EIRP)
0	MaxEIRP
1	MaxEIRP - 2 dB
2	MaxEIRP - 4 dB
3	MaxEIRP - 6 dB
4	MaxEIRP - 8 dB
5	MaxEIRP - 10 dB
6	MaxEIRP - 12 dB
7	MaxEIRP - 14 dB
8	MaxEIRP - 16 dB
9	MaxEIRP - 18 dB
10	MaxEIRP - 20 dB
11 ~ 15	RFU

CN470

By default, MaxEIRP is considered to be +19.15 dBm.

TXPower	Configuration (EIRP)
0	MaxEIRP
1	MaxEIRP 2 dB
2	MaxEIRP 4 dB
3	MaxEIRP 6 dB
4	MaxEIRP 8 dB
5	MaxEIRP - 10 dB
6	MaxEIRP - 12 dB
7	MaxEIRP - 14 dB
8 ~ 15	RFU

EU433

By default, MAxEIRP is considered to be +12.15 dBm.

TXPower	Configuration (EIRP)
0	MaxEIRP
1	MaxEIRP - 2 dB
2	MaxEIRP - 4 dB
3	MaxEIRP - 6 dB
4	MaxEIRP - 8 dB
5	MaxEIRP - 10 dB
6 ~ 15	RFU

Appendix III: Maximum Transmission Load by Region

M in the following list is the length with MAC header, N is the maximum usable payload size for the user data without MAC header.

EU868

Data Rate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242
8 ~ 15	Not Defined	Not Defined

US915

Data Rate	М	N
0	19	11
1	61	53
2	133	125
3	250	242
4	250	242
5 ~ 7	Not Defined	Not Defined
8	61	53
9	137	129
10	250	242
11	250	242
12	050	242
	250	242
13	250	242

AU915

Data Rate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7		Not Defined
7	Not Defined	Not Delined
8	Not Defined 61	53
8	61	53
9	61 137	53 129
9	61 137 250	53 129 242
8 9 10 11	61 137 250 250	53 129 242 242

KR920

Data Rate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6 ~ 15	Not Defined	Not Defined

AS923

Data Rate	Uplink MAC Pa	yload Size (M)	Downlink MAC I	Payload Size (M)
	UplinkDwellTime = 0	UplinkDwellTime = 1	DownlinkDwellTime = 0	DownlinkDwellTime = 1
0	59	N/A	59	N/A
1	59	N/A	59	N/A
2	59	19	59	19
3	123	61	123	61
4	250	133	250	133
5	250	250	250	250
6	250	250	250	250
7	250	250	250	250
8	RI	=U	RI	=U

IN865

Data Rate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242
8 ~ 15	Not Defined	Not Defined

CN470

Data Rate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6 ~ 15	Not Defined	Not Defined

EU433

Data Rate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242
8 ~ 15	Not Defined	Not Defined

Appendix IV: Pin Description of RAK811

The pin definition of the RAK811 module can be reviewed in the Pin Definition section of the Datasheets.

Listed are the summary of the pins of the RAK811 module:

1. About the UART Pin:

- Pin 6 (TX1) and Pin 7 (RX1) are reserved for UART1.
- Pin 25 (TX3) and Pin 26 (RX3) are reserved for UART3.
- During sleep, Pin 7 (RX1), and Pin 26 (RX3) are configured as external interrupt mode, internal pull-down resistor, bilateral edge trigger wake-up.
- 2. About the SWD Debug Pin: Pin 10 (SWDIO) and Pin 13 (SWCLK) are used for SWD connection.
- 3. **About the Power Pin**: The power pin on the RAK811 module includes VCC/GND, Pin 1, Pin 11, Pin 12, Pin 21, Pin 28, Pin 29, Pin 30, Pin 31, Pin 32, and Pin 34;
- 4. About the Reset Pin: The reset pin on the RAK811 module is the Pin 24.
- 5. **About the BOOT Pin**: The BOOT0 pin on the RAK811 module is Pin 17.
- 6. About the RF Antenna Pin: The RF antenna pin on the RAK811 module is the Pin 33.
- 7. **About the ADC Pin**: The ADC pins available on the RAK811 are different between the high and low-frequency modules.
- In the low-frequency modules, the ADC pins are the following: Pin 2, Pin 3, Pin 4, Pin 5, Pin 15, Pin 20, Pin 22, and Pin 23.
- In the high-frequency modules, the ADC pins are the following: Pin 2, Pin 3, Pin 4, Pin 20, Pin 22, and Pin 23.
- 8. **About the GPIO**: The GPIO pins available on the RAK811 module are Pin 2, Pin 3, Pin 4, Pin 5, Pin 8, Pin 9, Pin 14, Pin 15, Pin 16, Pin 18, Pin 19, Pin 20, Pin 22, Pin 23, and Pin 27.

RAK® Documentation Center

NOTE:

If you want to use the RAK811 module to make a product, you should understand how to upgrade the RAK811 firmware in the future. As mentioned, the firmware of the RAK811 module can be upgraded through the SWD or UART1 port. Both requires a general-purpose PC.

Last Updated: 3/29/2021, 4:29:51 PM