Simulations in Rank-Based Büchi Automata Complementation

Yu-Fang Chen¹, Vojtěch Havlena², Ondřej Lengál²

Academia Sinica, Taiwan
 Brno University of Technology, Czech Republic

Büchi Automata

• like Finite Automata, but on infinite words

$$lpha = a_1 a_2 a_3 a_4 a_5 a_6 a_7 \dots \in \Sigma^{\omega}$$

- $A=(Q,\Delta,Init,Acc)$ over Σ
 - $\circ Q$ finite set of states
 - \circ Δ transition relation $\subseteq Q imes \Sigma imes Q$
 - \circ Init initial states, Acc accepting states
- a word is accepted by **looping** over an accepting state
- Büchi Automata recognize ω -regular languages
- language $L_{example} = (a+b)^*b^\omega$

Büchi Automata — Motivation

- model checking of linear-time properties (Vardi & Wolper)
 - \circ property $arphi \leadsto A_arphi$
 - \circ system $S \leadsto A_S$
 - \circ checking $S \models arphi \qquad \leadsto \qquad A_S \subseteq A_arphi \qquad \leadsto \qquad A_S \cap A_arphi^C = \emptyset$
- termination analysis (e.g. Ultimate Automizer: Heizmann, Hoenicke, Podelski)
- decision procedure for S1S (Büchi)
 - \circ monadic 2^{nd} order logic over $(\mathbb{N},0,+1)$

Complementing Büchi Automaton

- ullet $L(A^C)=\Sigma^\omega\setminus L(A)$
- much more involved than for Finite Automata (cannot be determinized)
- example

$$\circ L(A_1) = (a+b)^*b^\omega$$

$$\circ \ \overline{L(A_1)} = (b^*a)^\omega$$

Complementing Büchi Automaton

Why need to complement Büchi Automata?

- Termination Analysis Ultimate Automizer (Heizmann, Hoenicke, Podelski)
 - $\circ A_{ToDo}$ Büchi Automaton representing a set of uprocessed program traces
 - \circ while $L(A_{ToDo})
 eq \emptyset$:
 - 1. pick a word $lpha \in L(A_{ToDo})$ and prove its termination
 - 2. generalize lpha to a set of words with the same termination argument: A_lpha
 - 3. $A_{ToDo}:=A_{ToDo}\setminus A_{lpha}=A_{ToDo}\cap A_{lpha}^C$
- Decision Procedures of logics (negation):
 - \circ S1S: monadic $2^{
 m nd}$ order logic over $(\mathbb{N},0,+1)$
 - ETL: extended temporal logic
- O QPTL: quantified propositional temporal logic Chen, Havlena, LENGÁL: Simulations in Rank-Based Büchi Automata Complementation

Complementing Büchi Automaton

- Büchi's original construction (1962) $A \leadsto A^C$:
 - based on infinite Ramsey theorem
 - \circ size: $2^{2^{O(n)}}$ n number of states of A
- Safra's algorithm (1988):
 - through deterministic Rabin automaton
 - \circ size: $2^{\mathcal{O}(n \cdot \log n)}$
- Ramsey-based [Sistla, Vardi, Volper '87]
- determinization-based [Safra '88], [Piterman '06]
- rank-based [Kupferman, Vardi '01], [Schewe '09]
- slice-based [Kähler, Wilke '08], [Vardi, Wilke '08]
- learning-based [Li, Turrini, Zhang, Schewe '18]
- subset-tuple construction [Allred, Ultes-Nitsche '18]

Our Contribution

- improvement of the rank-based Büchi Automata complementation procedure
 - started by [Kupferman, Vardi '01]
 - several optimizations
 - \circ [Schewe '09] **complexity-tight** size: $(0.76)^n$ (modulo $\mathcal{O}(n^2)$)
- we use **simulations** for two optimizations
 - 1. **purging** macrostates with simulation-incompatible rankings (always helps)
 - 2. **saturating** macrostates (can help merge several states)
- in some practical settings, the optimizations are for free

Rank-based Büchi Automaton Complement

- we will show the ideas of our contribution on the original [Kupferman, Vardi '01]
- easy extension to the optimal [Schewe '09]

$$L(A)=a^*(a^\omega+bbb^+a^\omega)+bb^+a^\omega$$

Run DAG G_{lpha} of A on $lpha \in \Sigma^{\omega}$

- ullet represents all runs of A on lpha
- nodes are (state, step)
 - $\circ \; state \in Q, step \in \mathbb{N}$
- ullet example: $lpha=b^\omega
 otin L(A)$

ullet assigns **ranks** to nodes of Run DAG G_lpha

$$i := 0$$
 while $i \leq 2 \cdot |Q|$:

- 1. assign rank i to nodes with finitely many successors and remove them from G_{lpha}
- 2. assign rank i+1 to nodes that cannot reach Acc and remove them from G_{lpha}

$$3. i := i + 2$$

Lemma: [Kupferman, Vardi '01] If lpha
otin L(A), then $orall n \in G_lpha : rank(n) \leq 2 \cdot |Q|$.

ullet assigns **ranks** to nodes of Run DAG G_lpha

remove them from G_{α}

$$i := 0$$
 while $i \leq 2 \cdot |Q|$:

- 1. assign $\operatorname{\mathsf{rank}} i$ to nodes with finitely many successors and
- 2. assign rank i+1 to nodes that cannot reach Acc and remove them from G_{lpha}

$$3. i := i + 2$$

Lemma: [Kupferman, Vardi '01] If lpha
otin L(A), then $orall n \in G_lpha : rank(n) \leq 2 \cdot |Q|$.

ullet assigns **ranks** to nodes of Run DAG G_lpha

$$i := 0$$

while
$$i \leq 2 \cdot |Q|$$
:

- 1. assign rank i to nodes with finitely many successors and remove them from G_{lpha}
- 2. assign rank i+1 to nodes that cannot reach Acc and remove them from G_{lpha}

$$3. i := i + 2$$

Lemma: [Kupferman, Vardi '01]

If lpha
otin L(A), then $orall n \in G_lpha : rank(n) \leq 2 \cdot |Q|$.

ullet assigns **ranks** to nodes of Run DAG G_lpha

$$i := 0$$

while
$$i \leq 2 \cdot |Q|$$
:

- 1. assign rank i to nodes with finitely many successors and remove them from G_{lpha}
- 2. assign rank i+1 to nodes that cannot reach Acc and remove them from G_{lpha}

$$3. i := i + 2$$

Lemma: [Kupferman, Vardi '01]

If
$$lpha
otin L(A)$$
, then $orall n \in G_lpha : rank(n) \leq 2 \cdot |Q|$.

Rank-based BA^C

- $egin{aligned} ullet A^C &= (Q^C, \Delta^C, \quad Init^C = \{Init\} imes \{\emptyset\} imes ?, \qquad Acc^C &= Q^C imes \{\emptyset\} imes ?) \ &\circ Q^C &= \{(det, cut, rank) \mid det, cut \in 2^Q, rank : Q
 ightarrow \{0, \dots, 2n\} \} \end{aligned}$
 - det: states reachable in runs over the same word
 - cut: represents runs that need to leave Acc
 - rank: a guess of ranking of Run DAG nodes
 - $\circ \ \Delta^C:$ we have $(det, cut, rank) \ ext{-}\{a\} \!\! o (det', cut', rank') \in \Delta^C$
 - $det' = Post_a(det)$
 - $lacksymbol{ iny } rank'$: non-incr wrt Δ from rank s.t. $rank'(q_{Acc})$ is even for $q_{Acc} \in Acc$
 - $ullet egin{aligned} ullet oldsymbol{cut'} = Post_a(oldsymbol{cut}) \setminus odd(oldsymbol{rank'}) & ext{if } oldsymbol{cut}
 eq \emptyset \ Post_a(oldsymbol{det}) \setminus odd(oldsymbol{rank'}) & ext{otherwise} \end{aligned}$

Rank-based BA^C

Example: $b^\omega \in L(A^C)$

0.
$$(\{\mathbf{r},\mathbf{s}\},\emptyset,\{\mathbf{r}\mapsto\mathbf{2},\mathbf{s}\mapsto\mathbf{1}\})$$
 $\downarrow b$

1.
$$(\{\mathbf{s},\mathbf{t}\},\emptyset,\{\mathbf{s}\mapsto\mathbf{1},\mathbf{t}\mapsto\mathbf{1}\})$$
 $\downarrow b$

2.
$$(\{t,u\},\{u\},\{t\mapsto 1,u\mapsto 0\})$$
 $\downarrow b$

3.
$$(\{\mathbf{t}, \mathbf{u}\}, \emptyset, \{\mathbf{t} \mapsto \mathbf{1}, \mathbf{u} \mapsto \mathbf{0}\})$$
 $\downarrow b$

4.
$$(\{t,u\},\{u\},\{t\mapsto 1,u\mapsto 0\})$$
 (2) Chen, Havlena, LENGÁL: Simulations in Rank-Based Büchi Automata Complementation

Simulations

- often used to speed-up expensive FA & BA operations (inclusion, reduction)
- Let $A=(Q,\Delta,Init,Acc)$
- relation on states $\preceq \subseteq Q \times Q$
- $ullet q \preceq r \ \Rightarrow \ L(q) \subseteq L(r)$
- ullet generally: if $q = \{a\} {
 ightarrow} q'$, then it needs to hold that $r = \{a\} {
 ightarrow} r'$ where $q' \leq r'$

Simulations

- ullet various relations based on handling Acc:
 - \circ **direct** simulation \leq_{direct}

 \circ **delayed** simulation $\leq_{delayed}$

(note that $\leq_{direct} \subseteq \leq_{delayed}$)

• both can be used for quotienting (merging states p and q s.t. $p \leq q \land q \leq p$) Chen, Havlena, LENGAL: Simulations in Rank-Based Büchi Automata Complementation

Modification of the rank-based complementation.

Idea: if $q \leq r$ and G_{α} is the Run DAG of A on $\alpha \in \Sigma^{\omega}$, then the subgraph of G_{α} rooted at a q-node is embedded in a subgraph rooted in a r-node on the same level.

Therefore, the rank of a q-node will never be higher* than the rank of an r-node on the same level.

Theorem 1: Let $A=(Q,\Delta,Init,Acc)$ be a BA such that $q \preceq_{direct} r$.

Then we can remove from A^{C} all $(\det, cut, rank)$ where

$$q,r \in det \qquad ext{and} \qquad rank(q) > rank(r)$$

Modification of the rank-based complementation.

Theorem 2: Let $A=(Q,\Delta,Init,Acc)$ be a BA such that $q \leq_{delayed} r$. Then we can remove from A^C all macrostates (det,cut,rank) where

$$q,r \in det \qquad ext{ and } \qquad rank(q) > \llbracket rank(r)
rbracket$$

where $\lceil rank(r)
ceil$ is the smallest even number $\geq rank(r)$

Theorem 3: (combines Theorem 1 and Theorem 2)

We can remove from A^C all macrostates (det, cut, rank) where $q, r \in det$ and

$$q \preceq_{direct} r \qquad ext{and} \qquad rank(q) > rank(r) \qquad ext{or}$$
 $q \preceq_{delayed} r \qquad ext{and} \qquad rank(q) > \llbracket rank(r)
rbracket$

- $s \leq_{delayed} r$
- initial states of A^C :

$$\circ \ (\{r,s\},\emptyset,\{r\mapsto 2,s\mapsto 1\})$$

$$\circ \ (\{r,s\},\emptyset,\{r\mapsto 2,s\mapsto 2\})$$

$$\circ \ (\{r,s\},\emptyset,\{r\mapsto 2,s\mapsto 3\})$$

$$\circ \ (\{r,s\},\emptyset,\{r\mapsto 2,s\mapsto 4\})$$

$$\circ \ (\{r,s\},\emptyset,\{r\mapsto 2,s\mapsto 5\})$$

0

- $s \leq_{delayed} r$
- initial states of A^C :

$$\circ \ (\{r,s\},\emptyset,\{r\mapsto 2,s\mapsto 1\})$$

$$\circ \ (\{r,s\},\emptyset,\{r\mapsto 2,s\mapsto 2\})$$

$$\circ \ (\{r,s\},\emptyset,\{r\mapsto 2,s\mapsto 3\})$$
 XXX

$$\circ \ (\{r,s\},\emptyset,\{r\mapsto 2,s\mapsto 4\})$$
 XXX

$$\circ \ (\{r,s\},\emptyset,\{r\mapsto 2,s\mapsto 5\})$$
 XXX

0 ...

• Always works (never increases the size of A^C)

Our Contribution #2 — Saturation

Idea: Adding simulation-smaller states to det doesn't change its language.

$$q \preceq r \;\; \Rightarrow \;\; L(\{r\}) = L(\{r,q\})$$

Theorem 4: Let $A=(Q,\Delta,Init,Acc)$ be a BA.

Every macrostate (det, cut, rank) in A^C can be changed to $(\mathbf{cl}[det], cut, rank')$, where $\mathbf{cl}[det] = \{q \in Q \mid s \in det : q \leq_{delayed} s\}$

Theorem 4 can help us map $(det_1, cut_1, rank_1)$ and $(det_2, cut_2, rank_2)$ to the same macrostate (det', cut', rank').

- sometimes helps
- sometimes increases the size

Experiments

- 124 random BAs (w/ non-trivial language) over $\Sigma = \{a,b\}$
 - quotiented wrt delayed simulation

Experiments

a) PURGE vs. original

b) PURGE+SATURATION vs. original

• Best result: from 4065 to 985 (PURGE only) to 929 (PURGE + SATURATE)

Conclusion

- use of simulation to optimize complement of Büchi Automata
 - purging: remove macrostates with simulation-incompatible ranking
 - saturation: saturate macrostates, maybe some will merge
- the optimization is in some practical settings for free

Future work

- extend to other complement constructions
- extend to richer simulations
 - multi-pebble
 - look-ahead