INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4044B MSI

Quadruple R/S latch with 3-state outputs

Product specification
File under Integrated Circuits, IC04

January 1995

Quadruple R/S latch with 3-state outputs

HEF4044B MSI

The HEF4044B is a quadruple R/S latch with 3-state outputs with a common output enable input (EO). Each latch has an active LOW set input $(\overline{S}_0$ to \overline{S}_3), an active LOW reset input $(\overline{R}_0$ to \overline{R}_3) and an active HIGH 3-state output $(O_0$ to O_3).

When EO is HIGH, the state of the latch output (O_n) can be determined from the function table below. When EO is LOW, the latch outputs are in the high impedance OFF-state. EO does not affect the state of the latch.

The high impedance off-state feature allows common busing of the outputs.

HEF4044BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4044BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4044BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

PINNING

EO	common output enable input
\overline{S}_0 to \overline{S}_3	set inputs (active LOW)
\overline{R}_0 to \overline{R}_3	reset inputs (active LOW)
O ₀ to O ₃	3-state buffered latch outputs

FUNCTION TABLE

	OUTPUT		
EO	S _n	\overline{R}_n	On
L	Х	Х	Z
Н	L	Н	Н
н	Х	L	L
н	Н	Н	latched

Notes

- 1. H = HIGH state (the more positive voltage)
 - L = LOW state (the less positive voltage)
 - X = state immaterial
 - Z = high impedance OFF-state

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

Quadruple R/S latch with 3-state outputs

HEF4044B MSI

Philips Semiconductors Product specification

Quadruple R/S latch with 3-state outputs

HEF4044B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$\overline{R}_n \rightarrow O_n$	5			90	185	ns	63 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
$\overline{S}_n \rightarrow O_n$	5			90	180	ns	63 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
Output transition	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
times	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
HIGH to LOW	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
3-state propagation delays							
Output disable times							
$EO \to O_n$	5			50	100	ns	
HIGH	10	t _{PHZ}		30	60	ns	
	15			25	50	ns	
	5			30	60	ns	
LOW	10	t _{PLZ}		25	45	ns	
	15			20	40	ns	
Output enable times							
$EO \rightarrow O_n$	5			50	100	ns	
HIGH	10	t _{PZH}		25	50	ns	
	15			20	40	ns	
	5			50	95	ns	
LOW	10	t _{PZL}		25	45	ns	
	15			20	35	ns	
Minimum \overline{S}_n	5		30	15		ns	
pulse width; LOW	10	t _{WSL}	20	10		ns	
	15		16	8		ns	see also waveforms
Minimum \overline{R}_n	5		30	15		ns	Fig.5
pulse width; LOW	10	t _{WRL}	20	10		ns	
	15		16	8		ns	

Philips Semiconductors Product specification

Quadruple R/S latch with 3-state outputs

HEF4044B MSI

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1300 f _i + \sum (f _o CL) × V _{DD} ²	where
dissipation per	10	5200 $f_i + \sum (f_oCL) \times V_{DD}^2$	$f_i = input freq. (MHz)$
package (P)	15	12 900 $f_i + \sum (f_oCL) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = total load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

APPLICATION INFORMATION

An example of application for the HEF4044B is:

• Four-bit storage with output enable