Random Vector Assignment

EE22BTECH11052 - Sujal Gupta

The randomly generated vectors are:

$$\mathbf{A} = \begin{pmatrix} -6\\0 \end{pmatrix} \tag{1}$$

$$\mathbf{A} = \begin{pmatrix} -6\\0 \end{pmatrix} \tag{1}$$

$$\mathbf{B} = \begin{pmatrix} -4\\3 \end{pmatrix} \tag{2}$$

$$\mathbf{C} = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{3}$$

Fig. 0. Vectors

I. vectors

parameter	value	description
\mathbf{m}_1	$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$	AB
\mathbf{m}_2	$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$	BC
\mathbf{m}_3	$\begin{pmatrix} -4 \\ 0 \end{pmatrix}$	CA
$ \mathbf{B} - \mathbf{C} $	(3.60)	length of BC
A, B, C collinearity	collinear	collinear
\mathbf{n}^{T}	$\begin{pmatrix} -3\\2 \end{pmatrix}$	AB
c	18	
\mathbf{n}^{T}	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	ВС
c	-6	
$\mathbf{n^T}$	$\begin{pmatrix} 0 \\ -4 \end{pmatrix}$	AC
С	-12	
Area	6	area of triangle
∠A	56.30°	
∠B	67.38	Angle
∠C	56.30	

TABLE 0 Vectors

Fig. 0. Medians

II. MEDIAN

parameter	value	description
D	$\begin{pmatrix} -3 \\ 1.5 \end{pmatrix}$	midpoint of AB
E	$\begin{pmatrix} -4 \\ 0 \end{pmatrix}$	midpoint of BC
F	$\begin{pmatrix} -5 \\ 1.5 \end{pmatrix}$	midpoint of CA
n ^T	(-1.5 3)	normal ag of AD
С	15	normal eq of AD
n ^T	(3 0)	normal eq of BE
С	-12	normal eq or BE
\mathbf{n}^{T}	$\begin{pmatrix} -1.5 & -3 \end{pmatrix}$	normal eq of CF
С	-3	normal eq of CF
G	$\begin{pmatrix} -4 \\ 1 \end{pmatrix}$	intersection of BE and CF
collinearity	collinear	A,G,D are collinear
G	$\begin{pmatrix} -4 \\ 1 \end{pmatrix}$	centroid

TABLE 0 MEDIAN

Fig. 0. Altitude

III. ALTITUDE

parameter	value	description
n ^T	(-1.84 2.76)	A.D.
С	15.69	AD_1
n ^T	(3 0)	BE_1
С	-12	BE_1
n ^T	(-1.84 -2.76)	CF_1
С	-0.92	CF1
Н	$\begin{pmatrix} -4 \\ 1.33 \end{pmatrix}$	Orthocentre

TABLE 0 ALTITUDE

Fig. 0. PERPENDICULAR BISECTORS

IV. PERPENDICULAR BISECTORS

parameter	value	description
n ^T	(-2 -3)	Perpendicular bisector of AB
c	5.50	Terpendicular discetor of AB
$\mathbf{n}^{\mathbf{T}}$	(-2 3)	Perpendicular bisector of BC
c	10.5	respendicular discetor of Be
\mathbf{n}^{T}	(4 0)	Perpendicular bisector of <i>CA</i>
c	-16	respendicular discetor of em
0	$\begin{pmatrix} -4\\0.833 \end{pmatrix}$	Circumcentre
r_c	2.166	OA = OB = OC
∠BOC	112.6°	Angle BOC
$\angle BAC$	56.3°	Angle BAC
TABLE 0		

PERPENDICULAR BISECTORS

Fig. 0. ANGLE BISECTORS

V. ANGLE BISECTORS

	v. ANGLE DISECTORS			
parameter	value	description		
n ^T	(0.83 -1.55)	Angular bisector of A		
c	-4.99	ringular discetor of 11		
\mathbf{n}^{T}	(0 -1.10)	Angular bisector of B		
С	-3.32	Aligular discetor of B		
n ^T	(0.83 -0.44)	Angular bisector of C		
С	-1.66	Angular disector of C		
I	(-4)	T		
	(1.07)	Incentre		
r_i	1.07	Inradius		
∠BAI	28.154°	Angle BAI		
∠CAI	28.154°	Angle CAI		
r_{AB}, r_{BC}, r_{CA}	1.070	$r_{AB} = r_{BC} = r_{CA}$		
D_3	$\begin{pmatrix} -3.10 \\ 1.66 \end{pmatrix}$	D_3		
E ₃	$\begin{pmatrix} -4.89 \\ 1.66 \end{pmatrix}$	E_3		
F ₃	$\begin{pmatrix} -4 \\ 0 \end{pmatrix}$	F_3		
length AE_3, AF_3	2	$AE_3 = AF_3$		
length BD_3, BF_3	1.606	$BD_3 = BF_3$		
length CD_3, CE_3	2	$CD_3 = CE_3$		

TABLE 0 ANGLE BISECTORS