Disks

Outline

- ☐ Interfaces
- ☐ Geometry
- ☐ Add new disks
 - Installation procedure
 - Filesystem check
 - Add a disk
- ☐ RAID
 - GEOM

Disk Interfaces

- □ SCSI
- Expensive! SCSI Card ~ 10k
- Small Computer Systems Interface
- High performance and reliability
- \Box IDE (or ATA)

- Low Price!
- Integrated Device Electronics (or Advanced Technology Attachment)
- Low cost
- Become acceptable for enterprise with the help of RAID technology
- □ SATA

Enhancement

- Serial ATA
- \Box SAS
 - Serial Attached SCSI

Speeds up!

- □ USB
 - Universal Serial Bus
 - Convenient to use

Disk Interfaces – ATA & SATA

- ☐ ATA (AT Attachment)
 - ATA2
 - > PIO, DMA
 - ➤ LBA (Logical Block Addressing)
 - ATA3, Ultra DMA/33/66/100/133
 - ATAPI (ATA Packet Interface)
 - > CDROM, TAPE
 - Only one device can be active at a time
 - > SCSI support overlapping commands, command queuing, scatter-gather I/O
 - Master-Slave
 Primary Master (0) / Slave (1)
 - 40-pin ribbon cable
 Secondary Master (2) / Slave (3)
- \Box SATA
 - Serial ATA
 - SATA-1 1.5Gbit/s, SATA-2 3Gbit/s, SATA-3 6GBit/s
 - SATA 3.1, SATA 3.2 16Gbit/s, SATA 3.3, eSATA, mSATA

Disk Interfaces – ATA & SATA Interfaces

☐ ATA interface and it's cable

☐ SATA interface and it's cable

Data

Data

Power

Disk Interfaces – USB

☐ IDE/SATA to USB Converters

- ☐ Sector
 - Individual data block
- ☐ Track
 - circle
- ☐ Cylinder
 - circle on all platters
- Position
 - CHS:
 Cylinder,
 Head (0, 1, ...),
 Sector

Disk Geometry (2)

□ 40G HD

- 4866 cylinders, 255 heads
- 63 sectors per track, 512 bytes per sector
- 512 * 63 * 4866 * 255 = 40,024,212,480 bytes

 G M K
- 1KB = 1024 bytes
- 1MB = 1024 KB = 1,048,576 bytes
- 1GB = 1024 MB = 1,073,741,824bytes

• 40,024,212,480 / 1,073,741,824 = 37.275 GB

10³ vs. 2¹⁰...

Disk Installation Procedure (in BSD...)

Disk Installation Procedure (1)

- ☐ The procedure involves the following steps:
 - Connecting the disk to the computer
 - ➤ IDE: master/slave
 - > SATA
 - > SCSI: ID, terminator
 - > power
 - Creating device files
 - Auto created by devfs

Please do it offline...

- Formatting the disk
 - ➤ Low-level format
- Format (metadata + data) v.s. fast format (metadata only)
- Manufacturer diagnostic utility
- **Kill all** address information and timing marks on platters
- Repair bad sectors → mark the bad sectors and don't use them!

Disk Installation Procedure (2)

- Partitioning (and Labeling) the disk)
 - > Allow the disk to be treated as a group of independent data area
 - > e.g. root, home, swap partitions
 - > Former Suggestions:
 - /var, /tmp → separate partition (for backup issue)
 - Make a copy of root filesystem for emergency
- Establishing logical volumes
 - Combine multiple partitions into a logical volume
 - Related to RAID
 - > Software RAID technology
 - **GEOM: geom(4) \cdot geom(8)**
 - ZFS: zpool(8) \cdot zfs(8) \cdot zdb(8)

Disk Installation Procedure (3)

- Creating UNIX filesystems within disk partitions
 - ➤ Use "newfs" to install a filesystem for a partition
 - > Establish all filesystem components
 - A set of inode storage cells
 - A set of data blocks
 - A set of superblocks
 - A map of the disk blocks in the filesystem
 - A block usage summary

Disk Installation Procedure (4)

Superblock contents

- The length of a disk block
- Inode table's size and location
- Disk block map
- Usage information
- Other filesystem's parameters

> sync

- The *sync() system call* forces a write of dirty (modified) buffers in the block buffer cache out to disk.
- The *sync utility* can be called to ensure that all disk writes have been completed before the processor is halted in a way not suitably done by reboot(8) or halt(8).

Disk Installation Procedure (5)

mount

- > Bring the new partition to the filesystem tree
- > mount point can be any directory (empty)
- # mount /dev/ad1s1e /home2
- Setting up automatic mounting
 - > Automount at boot time
 - /etc/fstab
 - % mount -t ufs /dev/ad2s1a /backup
 - **←** % mount -t cd9600 -o ro,noauto /dev/acd0c /cdrom

Mount CD Also for ISO image file

liuyh@NASA:/etc> cat fstab					
# Device	Mountpoint	Fstype	Options	Dump	Pass#
/dev/ad0s1b	none	swap	SW	0	0
/dev/ad2s1b	none	swap	SW	0	0
/dev/ad0s1a	1	ufs	rw	1	1
/dev/acd0	/cdrom	cd9660	ro,noauto	0	0
/dev/ad2s1a	/backup	ufs	rw,noauto	2	2
csduty:/bsdhome	/bsdhome	nfs	rw,noauto	0	0

Mount from the network; talk about it in "NFS"...

Usually: 2, 1 for root; No write = 0

Disk Installation Procedure (6)

- Setting up swapping on swap partitions
 - > swapon, swapoff, swapctl
 - # swapon -a
 - » mount all partitions for swap usage
 - > swapinfo, pstat

```
nctucs [~] -wangth- swapinfo
Device 1K-blocks Used Avail Capacity
/dev/da0p2 2097152 42772 2054380 2%
```

fsck -

check and repair filesystem (1)

- ☐ System crash will cause
 - Inconsistency between memory image and disk contents
- ☐ fsck
 - Examine all local filesystem listed in /etc/fstab_at boot time. (fsck -p)
 - Automatically correct the following damages:
 - > Unreferenced inodes
 - Inexplicably large link counts
 - Unused data blocks not recorded in block maps
 - Data blocks listed as free but used in file
 - ➤ Incorrect summary information in the superblock
 - \triangleright fsck(8) \cdot fsck_ffs(8)
 - > ffsinfo(8): dump metadata

Check if filesystem is clean...

1: clean (ro)

0: dirty (rw)

fsck -

check and repair filesystem (2)

- ☐ Run fsck in manual to fix serious damages
- No guarantee on fully recover you HD...

- Blocks claimed by more than one file
- Blocks claimed outside the range of the filesystem
- Link counts that are too small
- Blocks that are not accounted for
- Directories that refer to unallocated inodes
- Other errors
- ☐ fsck will suggest you the action to perform
 - Delete, repair, ...

Adding a disk to FreeBSD (1)

- 1. Check disk connection
 - > Look <u>system boot message</u>

ada3: 238475MB <Hitachi HDS722525VLAT80 V36OA6MA> at ata1-slave UDMA100

Line, speed

- 2. Use gpart(8) to create a partition on the new HD
 - > # gpart create -s GPT ada3
 - > # gpart add -t freebsd-ufs -a 1M ada3
- 3. Use newfs(8) to construct new UFS file system
 - > # newfs -U /dev/ada3p1
- 4. Make mount point and mount it
 - > # mkdir /home2
 - > # mount -t ufs /dev/ada3p1 /home2
 - > # df
- 4. Edit /etc/fstab
- https://www.freebsd.org/doc/handbook/disks-adding.html

Adding a disk to FreeBSD (2)

- ☐ If you forget to enable soft-update when you add the disk
 - % umount /home2
 - % tunefs -n enable /dev/ada3p1
 - % mount -t ufs /dev/ada3p1 /home2
 - % mount

```
/dev/ada0p2 on / (ufs, local, soft-updates)
/dev/ada1p1 on /home (ufs, local, soft-updates)
procfs on /proc (procfs, local)
/dev/ada3p1 on /home2 (ufs, local, soft-updates)
```

https://www.freebsd.org/doc/handbook/configtuning-disk.html

GEOM

Modular Disk Transformation Framework

GEOM - (1)

☐ Support

• ELI – geli(8): <u>cryptographic</u> GEOM class

• JOURNAL – gjournal(8): journaled devices

• LABEL – glabel(8): disk labelization

• MIRROR – gmirror(8): <u>mirrored</u> devices

• STRIPE – gstripe(8): <u>striped</u> devices

• ...

Journalize (logs) before

write

Software RAID1

Software RAID0

http://www.freebsd.org/doc/handbook/geom.html

GEOM - (2)

- ☐ GEOM framework in FreeBSD
 - Major RAID control utilities
 - Kernel modules (/boot/kernel/geom_*)
 - Name and Prodivers ← devices

Logical

> "manual" or "automatic"

volumes

➤ Metadata in the <u>last sector of the providers</u>

- ☐ Kernel support
 - {glabel,gmirror,gstripe,g*} load/unload
 - device GEOM_* in kernel config
 - geom_*_enable="YES" in /boot/loader.conf
 - (1) On demand load/unload kernel modules
 - load automatically at booting
 - (2) Build-in kernel and recompile

GEOM - (3)

Why use it? → bundle by name instead of bundle by provider JLABEL

e.g. ad0s1d \rightarrow usr

- Used for GEOM provider labelization
- Kernel
 - ➤ device GEOM_LABEL
 - geom_label_load="YES"

- > # glabel clear da2

glabel label ... → Create permanent labels glabel (for new storage) glabel create ... → Create transient labels > # glabel label -v usr da2 /dev/label/usr > # newfs /dev/label/usr > # mount /dev/label/usr /usr > # glabel stop usr Stop using the name Clear metadata on provider UFS label (for an using storage) > # tunefs -L data /dev/da4s1a "data" is a name > # mount /dev/ufs/data /mnt/data

GEOM - (4)

☐ MIRROR

- Kernel
 - device GEOM_MIRROR
 - > geom_mirror_load="YES"
- gmirror
 - > # gmirror label -v -b round-robin data da0
 - > # newfs /dev/mirror/data
 - # mount /dev/mirror/data /mnt
 - > # gmirror insert data da1
 - > # gmirror forget data
 - > # gmirror insert data da1
 - > # gmirror stop data
 - > # gmirror clear da0

logical volume called "data", using HD: da0, ...

Add in HD

Kill inexist HDs

GEOM - (5)

☐ STRIPE

- Kernel
 - ➤ device GEOM_STRIPE
 - > geom_stripe_load="YES"
- gstripe
 - > # gstripe label -v -s 131072 data da0 da1 da2 da3
 - > # newfs /dev/stripe/data
 - # mount /dev/stripe/data /mnt
 - > # gstripe stop data
 - > # gstripe clear da0

Create logical volume "data", which stripe da0~da3 HDs

RAID - (1)

- RAID0

- RAIDO

- HD - HD

- HD

- HD

- HD - HD

- ☐ Redundant Array of <u>Inexpensive Disks</u>
 - A method to <u>combine several physical hard drives into one logical</u>
 <u>unit</u>
 e.g. HD1, HD2 → D:\ in windows
- ☐ Depending on the type of RAID, it has the following benefits:
 - Fault tolerance
 - Higher throughput
 - Real-time data recovery
- ☐ RAID Level
 - RAID 0, 1, 0+1, 2, 3, 4, 5, 6
 - Hierarchical RAID

RAID - (2)

- ☐ Hardware RAID
 - There is a dedicate controller to take over the whole business
 - RAID Configuration Utility after BIOS
 - Create RAID array, build Array
- ☐ Software RAID
 - > GEOM
 - CACHE · CONCAT · ELI · JOURNAL · LABEL · MIRROR · MULTIPATH · NOP · PART · RAID3 · SHSEC · STRIPE · VIRSTOR
 - > ZFS
 - JBOD · STRIPE
 - MIRROR
 - RAID-Z \ RAID-Z2 \ RAID-Z3

(normally used)

(500GB+500GB=1TB)

- ☐ Stripped data intro several disks
- ☐ Minimum number of drives: 2
- Advantage
 - Performance increase in proportional to n theoretically
 - Simple to implement

parallel file io from/to different HDs

e.g. HD1 (500GB), HD2 (500GB)

→ D:\ in windows (1TB)

- Disadvantage
 - No fault tolerance
- ☐ Recommended applications
 - Non-critical data storage
 - Application requiring high bandwidth (such as video editing)

(normally used)

(500GB+500GB=500B)

- ☐ Mirror data into several disks
- ☐ Minimum number of drives: 2
- ☐ Advantage
 - 100% redundancy of data
- ☐ Disadvantage
 - 100% storage overage
 - Moderately slower write performance
- ☐ Recommended application Cause by double check mechanisms on data...
 - Application requiring very high availability (such as home)

RAID 0+1

(normally used)

[(500GB+500GB)+(500GB+500GB)]=1TB)

- ☐ Combine RAID 0 and RAID 1
- ☐ Minimum number of drives: 4

RAID1, RAID1
Them RAID0 above it

- ☐ Hamming Code ECC Each bit of data word
- ☐ Advantages:

Read, check if correct, then read

- "On the fly" data error correction
- ☐ Disadvantages:
 - Inefficient
 - Very high ratio of ECC disks to data disks
- ☐ Recommended Application
 - No commercial implementations exist / not commercially viable

RAID1 if two HDs

Save parity

- ☐ Parallel transfer with Parity
- ☐ Minimum number of drives: 3
- ☐ Advantages:
 - Very high data transfer rate
- ☐ Disadvantages:
 - Transaction rate equal to that of a single disk drive at best
- ☐ Recommended Application
 - Any application requiring <u>high throughput</u>

- ☐ Similar to RAID3
- □ RAID 3 V.S RAID 4
 - Byte Level V.S Block Level
 - Block interleaving

Block normally 512bytes (4k for WD HDs)

➤ Small files (e.g. 4k)

RAID 5 (normally used)

- ☐ Independent Disk with distributed parity blocks
- ☐ Minimum number of drives: 3

Origin from RAID3

- ☐ Advantage Parallel file I/O
 - Highest read data rate
 - Medium write data rate
- ☐ Disadvantage
 - Disk failure has a medium impact on throughput
 - Complex controller design
 - When one disk failed, you have to rebuild the RAID array

Can tolerate only 1 HD failure

RAID 6 (normally used)

RAID 6 B Blocks A Blocks C Blocks D Blocks AO CO O parity BO Parity A1 A parity **B1** 1 parity A2 2 parity **D1 B** parity D2 3 parity C parity C1 **D3** D parity

- ☐ Similar to RAID5
- ☐ Minimum number of drives: 4
- □ 2 parity checks, 2 disk failures tolerable.

Slower than RAID5 because of storing 2 parities...