ÁTOMOS

CUESTIONES

Orbitales atómicos. Números cuánticos. Sistema periódico.

1. Razona si puede haber en un mismo átomo electrones con los siguientes números cuánticos:

$$(2, 1, -1, +\frac{1}{2}); (2, 1, 0, -\frac{1}{2}); (2, 1, -1, -\frac{1}{2}) y (2, 1, 0, +\frac{1}{2}).$$

(P.A.U. sep. 16)

2. Considerando el elemento alcalinotérreo del tercer período y el segundo elemento del grupo de los halógenos. Escribe sus configuraciones electrónicas y los cuatro números cuánticos posibles para el último electrón de cada elemento.

(P.A.U. jun. 11)

3. Razona si son verdaderas o falsas las afirmaciones para las dos configuraciones que se indican a continuación correspondientes a átomos neutros:

A)
$$1s^2 2s^2 2p^6 3s^1$$

B)
$$1s^2 2s^2 2p^6 5s^1$$
.

- a) Las dos configuraciones corresponden a átomos diferentes.
- b) Se necesita menos energía para arrancar un electrón de la B que de la A.

(P.A.U. jun. 10)

4. Los elementos químicos A y B tienen número atómico 20 y 35, respectivamente. Indica razonadamente: Los iones más estables que formarán cada uno de ellos.

(P.A.U. jun. 09)

- 5. Considera la configuración electrónica: 1s² 2s² 2p6 3s² 3p6 3d8 4s²
 - a) ¿A qué elemento corresponde?
 - b) ¿Cuál es su situación en el sistema periódico?
 - c) Indica los valores de los números cuánticos del último electrón.
 - d) Nombra dos elementos cuyas propiedades sean semejantes a las de este elemento. Razona las respuestas.

(P.A.U. jun. 04)

Propiedades periódicas

 A partir de las siguientes configuraciones electrónicas escribe las configuraciones electrónicas de los átomos neutros de los que proceden estos iones y razona qué elemento presentará el valor más bajo de la primera energía de ionización:

$$X^{2+}$$
: $1s^2 2s^2 2p^6 3s^2 3p^6$

$$Y^{2-}$$
: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6$

(P.A.U. sep. 16)

- 2. Indica razonadamente si las siguientes afirmaciones son correctas:
 - a) El radio atómico de los elementos de un grupo disminuye al aumentar el número atómico.
 - b) El elemento más electronegativo es el flúor.

(P.A.U. jun. 16)

3. Indica si la siguiente propuesta es verdaderas o falsa y justifica tu respuesta: Los halógenos tienen las primeras energías de ionización y afinidades electrónicas altas.

(P.A.U. jun. 16)

- 4. Indica razonadamente si las siguientes afirmaciones son correctas.
 - a) La primera energía de ionización del cesio es mayor que la del bario.
 - b) El potasio tiene un radio atómico menor que el bromo.

(P.A.U. jun. 15)

- Considera la familia de los elementos alcalinos.
 - a) ¿Cuál es la configuración electrónica más externa común para estos elementos?
 - b) ¿Cómo varía el radio atómico en el grupo y por qué? Justifica las respuestas.

(P.A.U. jun. 15, jun. 07)

Para los siguientes átomos: cloro, sodio y neón, escribe la configuración electrónica y razona a cuál de ellos será más fácil arrancarle un electrón.

(P.A.U. sep. 14)

- a) Dados los siguientes elementos: B, O, C y F, ordénalos en orden creciente según el primer potencial de ionización. Razona la respuesta.
 - b) Agrupa las especies que son isoelectrónicas: O²⁻, C, F⁻, Na⁺, Ge²⁺, B⁻, Zn. Razona la respuesta.

(P.A.U. jun. 14)

- Los números atómicos del oxígeno, del flúor y del sodio son 8,9 y 11, respectivamente. Razona:
 - a) Cuál de los tres elementos tendrá un radio atómico mayor.
 - b) Si el radio del ion fluoruro será mayor o menor que el radio atómico del flúor.

(P.A.U. jun. 13)

- Los elementos A, B, C y D tienen números atómicos 10, 15, 17 y 20, respectivamente. Indica:
 - a) ¿Cuál tiene mayor potencial de ionización y cuál mayor radio atómico?
 - b) La configuración electrónica de A, B, C⁻ y D²⁺.

Razona las respuestas.

(P.A.U. sep. 12)

- 10. Ordena de menor a mayor y de manera razonada los siguientes elementos: sodio, aluminio, silicio, fósforo y cloro, según:
 - a) El primer potencial de ionización.
 - b) El radio atómico.

(P.A.U. jun. 12)

- 11. Indica razonadamente:
 - a) Para el par de átomos: sodio y magnesio, cuál posee mayor potencial de ionización.
 - b) Para el par de átomos: yodo y cloro, cuál posee mayor afinidad electrónica.

(P.A.U. sep. 10)

- 12. Indica justificando la respuesta, si las siguientes afirmaciones son ciertas o falsas:
 - a) El ion Ba²⁺ tiene configuración de gas noble.
 - b) El radio del ion I- es mayor que el del átomo de I.

(P.A.U. jun. 08)

13. Dadas las siguientes configuraciones electrónicas asignadas a átomos en estado fundamental: $1s^2 2s^2 2p^6 3s^1$

 $1s^2 2s^2 2p^5$

 $1s^2 2s^2 2p^6 3s^2 3p^6$

- a) ¿A qué elementos corresponden?
- b) ¿Cuál será el más electronegativo? Razona las respuestas.

(P.A.U. sep. 06)

- 14. Dados los iones Cl⁻ y K⁺:
 - a) Escribe sus configuraciones electrónicas e indica los posibles números cuánticos de sus electrones más externos.
 - b) Razona cuál de ellos tiene mayor radio.

(P.A.U. sep. 05)

- 15. Dados los átomos y iones siguientes: ion cloruro, ion sodio y neón:
 - a) Escribe la configuración electrónica de los mismos.
 - b) Justifica cuál de ellos tendrá un radio mayor.
 - c) Razona a cuál de ellos será más fácil arrancarle un electrón.

(P.A.U. jun. 05)

- 16. De cada una de las siguientes parejas de elementos: Li y B; Na y Cs; Si y Cl; C y O; Sr y Se; indica razonadamente qué elemento (dentro de cada pareja) tendrá:
 - a) Mayor radio atómico.
 - b) Mayor potencial de ionización.
 - c) Mayor afinidad electrónica.
 - d) Mayor electronegatividad.
 - e) Mayor carácter metálico.

(P.A.U. sep. 04)

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.