1984 FI2.2

If
$$\sin \theta = \frac{1}{2}$$
 (0° < θ < 90°), and 10 $\cos 2\theta = b$, find the value of b .

1984 FI3.4

If
$$\sin \theta = \frac{1}{2}$$
 (90° < θ < 180°) and $\tan(\theta - 15^\circ) = y$, find the value of y.

1985 FI5.2

若
$$\sin u^{\circ} = \frac{2}{\sqrt{8}}$$
 且 $90 < u < 180$,求 u 的值。

If
$$\sin u^{\circ} = \frac{2}{\sqrt{8}}$$
 and $90 < u < 180$, find the value of u .

1986 FG9.2

方程
$$(\sin^2 \theta - 1)(2 \sin^2 \theta - 1) = 0$$
,其中 $0^\circ \le \theta \le 360^\circ$,共有 n 個根。 求 n 的值。

There are exactly *n* values of θ satisfying the equation $(\sin^2 \theta - 1)(2 \sin^2 \theta - 1) = 0$, where $0^\circ \le \theta \le 360^\circ$. Find the value of *n*.

1987 FSI.2

若
$$\sin 10^{\circ} = \cos b^{\circ}$$
, 其中 $270 < b < 360$, 求 b 的值。

If $\sin 10^\circ = \cos b^\circ$, where 270 < b < 360, find the value of b.

1987 FI1.2

若
$$\sin 380^\circ = \cos B^\circ$$
, 其中 $0 < B < 90$, 求 B 的值。

If $\sin 380^\circ = \cos B^\circ$, where 0 < B < 90, find the value of B.

1987 FG8.3

共有 N 個 α 值可满足方程 $\cos^3\alpha - \cos\alpha = 0$,其中 $0^\circ \le \alpha \le 360^\circ$ 。 求 N 的值 \circ

There are exactly N values of α satisfying the equation $\cos^3 \alpha - \cos \alpha = 0$, where $0^\circ < \alpha < 360^\circ$. Find the value of N.

1989 FI5.2

已知
$$\sin(240^\circ) = \cos b^\circ$$
,且 $90^\circ < b < 180^\circ$,求 b 的值。

If $\sin 240^\circ = \cos b^\circ$, and $90^\circ < b < 180^\circ$, find the value of b.

1990 FI2.1

$$\stackrel{\cdot}{=}$$
 $\frac{1}{\cos \theta}$ = 4 有 p 個根 , 求 p 的值。

If
$$0^{\circ} \le \theta < 360^{\circ}$$
, the equation in θ : $3\cos\theta + \frac{1}{\cos\theta} = 4$ has p roots.

Find the value of p.

1996 FIS.2

若
$$\sin(2b^{\circ} + 34^{\circ}) = \cos(6b^{\circ} - 16^{\circ})$$
, 其中 $0 < b < 90$, 求 b 的值。

If
$$\sin(2b^\circ + 34^\circ) = \cos(6b^\circ - 16^\circ)$$
, where $0 < b < 90$, find the value of b .

1997 FI5.2

若
$$\sin 60^{\circ} = \cos(360^{\circ} - b^{\circ})$$
 和 $0 < b < 90$,求 b 的值。

If $\sin 60^\circ = \cos(360^\circ - b^\circ)$ and 0 < b < 90, find the value of b.

1998 FI4.4

若
$$\tan^2(57+s)^\circ = 3$$
 且 $0 \le 57+s \le 90$,求 s 的值。

If
$$\tan^2(57 + s)^\circ = 3$$
 and $0 \le 57 + s \le 90$, find the value of s.

2000 HG2

方程
$$(\cos^2 \theta - 1)(2\cos^2 \theta - 1)$$
 = 恰有 n 個根,其中 $0^\circ < \theta < 360^\circ$ 。求 n 的值。

There are exactly *n* roots in the equation $(\cos^2 \theta - 1)(2 \cos^2 \theta - 1) = 0$,

where $0^{\circ} < \theta < 360^{\circ}$. Find the value of n.

2001 HI5

已知
$$2-6\cos^2\theta=7\sin\theta\cos\theta$$
, 求 $\tan\theta$ 的最大值。

It is known that $2 - 6 \cos^2 \theta = 7 \sin \theta \cos \theta$, find the largest value of $\tan \theta$.

2002 FG1.4

已知
$$4\cos^4\theta + 5\sin^2\theta - 4 = 0$$
,其中 $0^\circ < \theta < 360^\circ$ 。

若
$$\theta$$
 的最大值為 d ,求 d 的值。

It is given that $4\cos^4\theta + 5\sin^2\theta - 4 = 0$, where $0^\circ < \theta < 360^\circ$.

If the maximum value of θ is d, find the value of d.

2004 FI1.3

若
$$\sin(c^2 - 3c + 17)^\circ = \frac{1}{\sqrt{2}}$$
,其中 $0 < c^2 - 3c + 17 < 90$ 及 $c > 0$,求 c 的值。

If
$$\sin(c^2 - 3c + 17)^\circ = \frac{1}{\sqrt{2}}$$
, where $0 < c^2 - 3c + 17 < 90$ and $c > 0$,

find the value of c.

Last updated: 2018-07-11

2006 HI5

已知 $4\sec^2\theta^\circ - \tan^2\theta^\circ - 7\sec\theta^\circ + 1 = 0$ 及 $0^\circ \le \theta^\circ \le 180^\circ$,求 θ 的值。 Given that $4\sec^2\theta^\circ - \tan^2\theta^\circ - 7\sec\theta^\circ + 1 = 0$ and $0^\circ \le \theta^\circ \le 180^\circ$, find the value of θ .

2008 HG5

已知 $90^{\circ} < \theta < 180^{\circ}$ 及 $\sin \theta = \frac{\sqrt{3}}{2}$ 。若 $A = \cos(180^{\circ} - \theta)$,求 A 的值。

Given that $90^{\circ} < \theta < 180^{\circ}$ and $\sin \theta = \frac{\sqrt{3}}{2}$. If $A = \cos(180^{\circ} - \theta)$, find the value of A.

2009 HI3

設 $16 \sin^4 \theta^\circ = 5 + 16 \cos^2 \theta^\circ$ 且 $0 \le \theta \le 90$,求 θ 的值。 Let $16 \sin^4 \theta^\circ = 5 + 16 \cos^2 \theta^\circ$ and $0 \le \theta \le 90$, find the value of θ .

2009 HG4

已知 $0 \le x \le 180$ 。若方程 $\cos 7x^\circ = \cos 5x^\circ$ 有 r 個不同的根,求 r 的值。 Given that $0 \le x \le 180$. If the equation $\cos 7x^\circ = \cos 5x^\circ$ has r distinct roots, find the value of r.

2012 HG6

如圖, ΔABC 為一等腰三角形,設 AB=AC=12。若 D 是 BC 延伸線上的一點,使 $\angle DAB=90$ ° 及 CD=2,求 BC 的長。

In the figure, $\triangle ABC$ is an isosceles triangle. Suppose AB = AC = 12. If D is a point on BC^B produced such that $\angle DAB = 90^\circ$ and CD = 2.

find the length of *BC*.

2014 HG10

已知 $\tan\left(\frac{90^{\circ}}{\tan x}\right) \times \tan\left(90^{\circ} \tan x\right) = 1$ 及 $1 < \tan x < 3 \circ 求 \tan x$ 的值。

Given that $\tan\left(\frac{90^{\circ}}{\tan x}\right) \times \tan\left(90^{\circ} \tan x\right) = 1$ and $1 < \tan x < 3$.

Find the value of $\tan x$.

2017 HI9

已知 $\sin x \cdot \cos x = 0$ 及 $\sin^3 x - \cos^3 x = 1$, 其中 $90^{\circ} \le x < 180^{\circ}$, 求 x 的值。

Given that $\sin x \cdot \cos x = 0$ and $\sin^3 x - \cos^3 x = 1$, where $90^\circ \le x < 180^\circ$,

find the value of x.

Answers

1984 FI2.2	1984 FI3.4	1985 FI5.2	1986 FG9.2	1987 FSI.2
5	-1	135	6	280
1987 FG7.2	1987 FG8.3	1989 FI5.2	1990 FI2.2	1996 FIS.2
3	5	150	3	9
1997 FI5.2	1998 FI4.4	2000 HG2	2001 HI5	2002 FG1.4
30	3	5	4	300°
2004 FI1.3 7	2006 HI5 60	2008 HG5 $\frac{1}{2}$	2009 HI3 60	2009 HG4 7
2012 HG6 16	$\frac{2014 \text{ HG10}}{\frac{3+\sqrt{5}}{2}}$	2017 HI9 90°		