Are Transformers Effective for Time Series Forecasting?

Yusupov Viacheslav

Transformers

- Natural Language Processing (GPT, Bert)
- Computer Vision (ViT, Swin)
- Video (MART)
- Graphs (Graphormer)
- Recommender Systems (SASRec)
- ...

Time series

Long-term Time Series Forecasting

Iterated Multi-Step (IMS) forecasting

$$y_t = m(x_{t-1}; \theta) + e_t$$
, where $x_t = [y_t, ..., y_{t-p+1}]'$

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{argmin}} \sum_{t} (y_t - m(\boldsymbol{x}_{t-1}; \boldsymbol{\theta}))^2,$$

Direct Multi-Step (DMS) forecasting

$$y_t = m_h(y_{t-h}, ..., y_{t-h-p_h}; \theta_h) + e_{t,h},$$

$$\hat{\theta}_h = \underset{\theta_h \in \Theta_h}{\operatorname{argmin}} \sum_t [y_t - m_h(x_{t-h}; \theta_h)]^2.$$

Transformer models

- Informer
- Pyraformer
- Autoformer
- FEDformer
- ...

Informer

$$M(\mathbf{q}_i, \mathbf{K}) = \ln \sum_{i=1}^{L_K} e^{\frac{\mathbf{q}_i \mathbf{k}_j^{\mathsf{T}}}{\sqrt{d}}} - \frac{1}{L_K} \sum_{i=1}^{L_K} \frac{\mathbf{q}_i \mathbf{k}_j^{\mathsf{T}}}{\sqrt{d}}$$

$$\mathcal{A}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{Softmax}(\frac{\overline{\mathbf{Q}}\mathbf{K}^{\top}}{\sqrt{d}})\mathbf{V}$$

Informer

Pyraformer

Figure 1: Graphs of commonly used neural network models for sequence data.

Pyraformer

Figure 2: The architecture of Pyraformer: The CSCM summarizes the embedded sequence at different scales and builds a multi-resolution tree structure. Then the PAM is used to exchange information between nodes efficiently.

Autoformer

FEDformer

Figure 3. Frequency Enhanced Block with Fourier transform (FEB-f) structure.

Figure 4. Frequency Enhanced Attention with Fourier transform (FEA-f) structure, $\sigma(\cdot)$ is the activation function.

Are Transformers Effective for Time Series Forecasting?

$$\hat{X}_i = WX_i,$$

$$W \in \mathbb{R}^{T \times L}$$

DLinear

Specifically, DLinear is a combination of a Decomposition scheme used in Autoformer and FEDformer with linear layers. It first decomposes a raw data input into a trend component by a moving average kernel and a remainder (seasonal) component. Then, two one-layer linear layers are applied to each component, and we sum up the two features to get the final prediction. By explicitly handling trend, *DLinear* enhances the performance of a vanilla linear when there is a clear trend in the data.

NLinear

Meanwhile, to boost the performance of LTSF-Linear when there is a distribution shift in the dataset, NLinear first subtracts the input by the last value of the sequence. Then, the input goes through a linear layer, and the subtracted part is added back before making the final prediction. The subtraction and addition in NLinear are a simple normalization for the input sequence.

Models

Method	MACs	Parameter	Time	Memory			
DLinear	0.04G	139.7K	0.4ms	687MiB			
Transformer×	4.03G	13.61M	26.8ms	6091MiB			
Informer	3.93G	14.39M	49.3ms	3869MiB			
Autoformer	4.41G	14.91M	164.1ms	7607MiB			
Pyraformer	0.80G	241.4M*	3.4ms	7017MiB			
FEDformer	4.41G	20.68M	40.5ms	4143MiB			

Results

M	ethods	IMP.	Lin	ear*	NLin	ear*	DLi	near*	FEDf	ormer	Autof	ormer	Info	rmer	Pyrafo	ormer*	Log	Trans	Rep	eat*
N	letric	MSE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE										
Ž	96	27.40%	0.140	0.237	0.141	0.237	0.140	0.237	0.193	0.308	0.201	0.317	0.274	0.368	0.386	0.449	0.258	0.357	1.588	0.946
Electricity	192	23.88%	0.153	0.250	0.154	0.248	0.153	0.249	0.201	0.315	0.222	0.334	0.296	0.386	0.386	0.443	0.266	0.368	1.595	0.950
ect	336	21.02%	0.169	0.268	0.171	0.265	0.169	0.267	0.214	0.329	0.231	0.338	0.300	0.394	0.378	0.443	0.280	0.380	1.617	0.961
回	720	17.47%	0.203	0.301	0.210	0.297	0.203	0.301	0.246	0.355	0.254	0.361	0.373	0.439	0.376	0.445	0.283	0.376	1.647	0.975
ge	96	45.27%	0.082	0.207	0.089	0.208	0.081	0.203	0.148	0.278	0.197	0.323	0.847	0.752	0.376	1.105	0.968	0.812	0.081	0.196
Exchange	192	42.06%	0.167	0.304	0.180	0.300	0.157	0.293	0.271	0.380	0.300	0.369	1.204	0.895	1.748	1.151	1.040	0.851	0.167	0.289
xcl	336	33.69%	0.328	0.432	0.331	0.415	0.305	0.414	0.460	0.500	0.509	0.524	1.672	1.036	1.874	1.172	1.659	1.081	0.305	0.396
Ш	720	46.19%	0.964	0.750	1.033	0.780	0.643	0.601	1.195	0.841	1.447	0.941	2.478	1.310	1.943	1.206	1.941	1.127	0.823	0.681
0	96	30.15%	0.410	0.282	0.410	0.279	0.410	0.282	0.587	0.366	0.613	0.388	0.719	0.391	2.085	0.468	0.684	0.384	2.723	1.079
Traffic	192	29.96%	0.423	0.287	0.423	0.284	0.423	0.287	0.604	0.373	0.616	0.382	0.696	0.379	0.867	0.467	0.685	0.390	2.756	1.087
Tra	336	29.95%	0.436	0.295	0.435	0.290	0.436	0.296	0.621	0.383	0.622	0.337	0.777	0.420	0.869	0.469	0.734	0.408	2.791	1.095
-	720	25.87%	0.466	0.315	0.464	0.307	0.466	0.315	0.626	0.382	0.660	0.408	0.864	0.472	0.881	0.473	0.717	0.396	2.811	1.097
is is	96	18.89%	0.176	0.236	0.182	0.232	0.176	0.237	0.217	0.296	0.266	0.336	0.300	0.384	0.896	0.556	0.458	0.490	0.259	0.254
Weather	192	21.01%	0.218	0.276	0.225	0.269	0.220	0.282	0.276	0.336	0.307	0.367	0.598	0.544	0.622	0.624	0.658	0.589	0.309	0.292
We	336	22.71%	0.262	0.312	0.271	0.301	0.265	0.319	0.339	0.380	0.359	0.395	0.578	0.523	0.739	0.753	0.797	0.652	0.377	0.338
	720	19.85%	0.326	0.365	0.338	0.348	0.323	0.362	0.403	0.428	0.419	0.428	1.059	0.741	1.004	0.934	0.869	0.675	0.465	0.394
	24	47.86%	1.947	0.985	1.683	0.858	2.215	1.081	3.228	1.260	3.483	1.287	5.764	1.677	1.420	2.012	4.480	1.444	6.587	1.701
=	36	36.43%	2.182	1.036	1.703	0.859	1.963	0.963	2.679	1.080	3.103	1.148	4.755	1.467	7.394	2.031	4.799	1.467	7.130	1.884
_	48	34.43%	2.256	1.060	1.719	0.884	2.130	1.024	2.622	1.078	2.669	1.085	4.763	1.469	7.551	2.057	4.800	1.468	6.575	1.798
	60	34.33%	2.390	1.104	1.819	0.917	2.368	1.096	2.857	1.157	2.770	1.125	5.264	1.564	7.662	2.100	5.278	1.560	5.893	1.677
_	96	0.80%	0.375	0.397	0.374	0.394	0.375	0.399	0.376	0.419	0.449	0.459	0.865	0.713	0.664	0.612	0.878	0.740	1.295	0.713
ETTh	192	3.57%	0.418	0.429	0.408	0.415	0.405	0.416	0.420	0.448	0.500	0.482	1.008	0.792	0.790	0.681	1.037	0.824	1.325	0.733
Ξ	336	6.54%	0.479	0.476	0.429	0.427	0.439	0.443	0.459	0.465	0.521	0.496	1.107	0.809	0.891	0.738	1.238	0.932	1.323	0.744
	720	13.04%	0.624	0.592	0.440	0.453	0.472	0.490	0.506	0.507	0.514	0.512	1.181	0.865	0.963	0.782	1.135	0.852	1.339	0.756
2	96	19.94%	0.288	0.352	0.277	0.338	0.289	0.353	0.346	0.388	0.358	0.397	3.755	1.525	0.645	0.597	2.116	1.197	0.432	0.422
ETTh2	192	19.81%	0.377	0.413	0.344	0.381	0.383	0.418	0.429	0.439	0.456	0.452	5.602	1.931	0.788	0.683	4.315	1.635	0.534	0.473
豆	336	25.93%	0.452	0.461	0.357	0.400	0.448	0.465	0.496	0.487	0.482	0.486	4.721	1.835	0.907	0.747	1.124	1.604	0.591	0.508
	720	14.25%	0.698	0.595	0.394	0.436	0.605	0.551	0.463	0.474	0.515	0.511	3.647	1.625	0.963	0.783	3.188	1.540	0.588	0.517
=	96	21.10%	0.308	0.352	0.306	0.348	0.299	0.343	0.379	0.419	0.505	0.475	0.672	0.571	0.543	0.510	0.600	0.546	1.214	0.665
ETTml	192	21.36%	0.340	0.369	0.349	0.375	0.335	0.365	0.426	0.441	0.553	0.496	0.795	0.669	0.557	0.537	0.837	0.700	1.261	0.690
H	336	17.07%	0.376	0.393	0.375	0.388	0.369	0.386	0.445	0.459	0.621	0.537	1.212	0.871	0.754	0.655	1.124	0.832	1.283	0.707
- 1150	720	21.73%	0.440	0.435	0.433	0.422	0.425	0.421	0.543	0.490	0.671	0.561	1.166	0.823	0.908	0.724	1.153	0.820	1.319	0.729
2	96	17.73%	0.168	0.262	0.167	0.255	0.167	0.260	0.203	0.287	0.255	0.339	0.365	0.453	0.435	0.507	0.768	0.642	0.266	0.328
ETTm2	192	17.84%	0.232	0.308	0.221	0.293	0.224	0.303	0.269	0.328	0.281	0.340	0.533	0.563	0.730	0.673	0.989	0.757	0.340	0.371
ET	336	15.69%	0.320	0.373	0.274	0.327	0.281	0.342	0.325	0.366	0.339	0.372	1.363	0.887	1.201	0.845	1.334	0.872	0.412	0.410
-	720	12.58%	0.413	0.435	0.368	0.384	0.397	0.421	0.421	0.415	0.433	0.432	3.379	1.338	3.625	1.451	3.048	1.328	0.521	0.465

References

- Souhaib Ben Taieb, Rob J Hyndman, et al. Recursive and direct multi-step forecasting: the best of both worlds, volume 19. Citeseer, 2012.
- Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting. In International Conference on Learning Representations, 2021.
- Jiehui Xu, Jianmin Wang, Mingsheng Long, et al. Autoformer: Decomposition transformers with autocorrelation for long-term series forecasting. Advances in Neural Information Processing Systems, 34, 2021.

References

- Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, volume 35, pages 11106–11115. AAAI Press, 2021.
- Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin.
 Fedformer: Frequency enhanced decomposed transformer for long-term series 14 forecasting. In International Conference on Machine Learning, 2022.