Google Play Store Case Study What makes a popular app?

By Bradford Murphy & Jayke Sudana

Introduction

Project Description

Google Play Store

- An app developer approaches us with plans of developing a new app and releasing it onto the Google Play Store. The developer does not know exactly what the app will look like in terms of size, functionality, category, etc.
- There are 3.04 million apps on the Google Play Store.
- <1% of apps are downloaded 1m+ times ("Android app download ranges 2018").
- Our data set included 1.1 million rows of apps with 23 column attributes.

Project Objective

Project Goals

- Create a dependent variable which best describes an app's success.
- Model previous 2020 Google Play app installation behavior to analyze what combination of parameters makes a user more likely to install an app.
- Narrow down the data set to an accurate representation of the 2020 Google Play Store.

Analytics Questions

- Is there a correlation between the App's rating and the number of installs?
 - O Does an app with a higher rating tend to have more installs? Are there outliers?
- Do free apps tend to be downloaded more than nonfree apps?
 - O What is the correlation between app price and the number of installs?
- Is there a correlation between app category and the number of installs?
- Does the app size have an effect on the number of downloads?
- Are apps released earlier in 2020 installed more on average than later releases?
- Is there a correlation between the content rating and the average number of downloads?
- Do apps that receive an 'Editors Choice' rating get more installs?
- Do ad support apps fare better than non-ad support apps?
- Are apps with in-app purchases more download than apps without in-app purchases?

Data Preprocessing

Handling Missing Data / Selecting Random sample

- Missing data
 - O The Google Play Dataset had more than one million Records; a small percentage of the records had missing data.
 - O Any record containing missing values was deleted. With such a large data set we felt this had no impact on our results.
- Getting a sample of 10,000 values
 - 1. Changing the time frame: we used only 2020 data and deleted data from all other years.
 - 2. Category selection: we included only the top 5 app categories (Education, Business, Lifestyle, Music, and Entertainment).
 - 3. Excel RAND() function: we created a new column containing random values and then sorted the dataset by this column. Selecting the first 10,00 records gave us a usable random sample.

Correlation Table & Summary Characteristics

A	В	c	b	Ē	F	G
	Rating	Rating Count	aximum instal	Size	Days	nstalls per Day
Rating	1					
Rating Count	0.09242658	1				
Maximum Ins	0.0833606	0.75439484	1			
Size	0.11211274	0.0110148	0.01028715	1		
Days	0.17666736	0.04458022	0.04632868	-0.05505	1	
Installs per Da	0.06408627	0.53607985	0.69877842	0.03506801	-0.0052175	1

	Rating	Rating Count	Size	Installs per day	Min Android
Mean	1.56128	113.8076192	21.87	77.78349244	4.38168183
Med	0	0	9.80	1.463414634	4.1
St dev	2.09414	2874.429515	25.627345	1453.549222	0.57211063

- Nothing found in the correlation table was alarming.
- The correlation values shown in the bottom row indicate that the numerical variables are likely to have an effect on our dependent variable.
- The standard deviation values of our numerical variables seemed large.
- This meant that some of our variables had values which were very spread out.

Histograms

Issues Discovered:

- Many values having a rating count of zero
- "Installs per day" variable has many outliers

Solutions:

- Standardize data with log transformation
- Delete outliers

Scatterplots

Correlations Found:

- Higher Rating ⇒
 More Installations
- Larger App ⇒ More Installations
- No clear correlation between size and installs
- Apps rated
 "everyone" ⇒ More
 Installations

***should be noted that the majority of apps are rated "everyone"

Box Plots

Issues Discovered:

- Outliers in categories involving number of installs
- Outliers in "Size"

Solutions:

- Standardize data with log transformation
- Delete outliers

Model 1: Linear Regression

Why Linear Regression?

- We are using linear regression because our dependent variable is numerical.
- Linear regression gives us an understanding of which variables are important in determining the outcome of our dependent variable (installs per day).
- Variable Selection is automatic.

Results

Predictor	Estimate	Confidence Interval: Lower	Confidence Interval: Upper	Standar d Error	T-Sta tistic	P-Va lue
Intercept	64.59743865	-3.47356072 9	132.668438	34.723 73028	1.86 0325 435	0.0 628 884
Rating Count	0.664416513	0.63880322	0.69002980 6	0.0130 65609	50.8 5231 772	0
Size	1.497940029	0.30728629 8	2.68859376	0.6073 64948	2.46 6293 179	0.0 136 797
Days	-0.501807028	-0.82492987 7	-0.1786841 78	0.1648 28353	-3.0 4442 179	0.0 023 414

Model Interpretation

Equation

• Installs per day = 64.60 + 0.6644RatingCount + 1.4979Size - 0.5018Day

Interpretation

- Installs per day increases by 0.6644 when Rating Count increases by 1, holding other variables constant.
- Installs per day increases by 1.4979 when Size increases by 1, holding other variables constant.
- Installs per day decreases by 0.5018 when Days increases by 1, holding other variables constant.

Model Performance

- The model performs very well as shown in the lift charts.
- When comparing training and validation data and lift charts, we saw that the AUCs for both charts were quite similar. The RMSE for validation (1197.9) was a bit lower than the training data's RMSE (1665.6), while the R^2 statistic for Validation (0.30) was higher than that of Training (-0.26).

Advice to Firm

All advice has our primary goal in mind: increasing the number of installation the appreceives

- 1. Get more users to review the application.
 - Add push notifications asking users to leave a reviews.
- 2. Market heavily soon after the app is released to capitalize on the app's early "buzz".
 - O Apps who receive many downloads soon after release get a "push" from the Google Play Store.
- 3. Make a high performing app, even if the app has to be large.
 - O Users don't care if the app is large. They want the app to work well.

Model 2: Regression Tree

Model & Variable Selection

Purpose of Regression Tree

- Easy to interpret and understand.
- Tree gives simplified insight into certain variables that are most important to determining an app with high "Installs per day".
- Variables are automatically selected.

Variable Selection

- Independent variables include category, rating, size, days, minimum android, content rating, ad supported, free, in app, and editors choice.
- Rating Count was excluded due to high correlation with dependent variable.

Fully Grown Tree:

Nodes

Links

Decision

Terminal

Collapsed

-x - # Records

In App Purchases 408 1763 Ad Supported

Best Pruned Tree:

Tree Info Tree Height: 7 # Nodes: 23 Tree Info

Tree Height: 5

Nodes: 9

Model Output & Interpretation

- Go left if Size < 91.5 and right if Size > 91.5.
- Go left if Rating < 2.25 and right if Rating > 2.25.
- Go left if Days < 335.5 and right if Days > 335.5.
- Go left if In App Purchases is True and right if In App Purchases is False.

Tree Info
Tree Height: 5
Nodes: 9

Training, Validation, and Test Results

- The A.U.C for each model demonstrate that the model works well.
 - Validation with largest AUC, then Training, then Test.
- Validation displayed highest RMSE of 1894.02.
 - Training with 1387.74 and Test with lowest, 483.60.
- Validation and Training have similar R² values (0.014 and 0.015, respectively).
 - Training has lowest R^2, with -0.099.

Validation	Cumulative actual using average Cumulative actual when sorted using predicted values
	300,000
	250,000 -
	\$200,000 - egs 50,000 -
	50,000 -
	100,000 -
	50,000 -
	0 500 1,000 1,500 2,000 2,500 3,00

Cases

Metric	Value		
SSE	10761901269		
MSE	3587300.423		
RMSE	1894.017007		
MAD	146.1921555		
R2	0.014428844		

Advice to Firm

- According to our decision tree model, the apps which a developer should focus on include app size, rating, days the app has been available, and in-app purchases.
- Larger sized apps tend to receive more downloads.
 - O A high performing app can take into account latest technologies, personalization, connectivity, business solutions, etc.
- Apps with high ratings tend to receive higher installs.
- The longer an app is available, the more likely it is to be installed.
- In-App purchases are a strong add-in for increasing downloads.
 - o "Monetization is directly linked to engagement" ("Driving Buyer Behavior with In-App Purchases")

Conclusion

Which Model Should Be Used?

We recommend using the decision tree model.

Justification for Decision Tree

- Regression tree addressed our business questions more fully.
 - O Parameters relevant to our goals were addressed and included by the tree model more so than the linear regression.
 - O The tree allowed us to provide a more holistic conclusion to the firm.
- The tree model does not assume normal distribution; this addresses the outlier issue we had with the linear regression model.
- The model handled outliers while providing accurate results as seen in the lift charts.
- The tree was easier to interpret and understand.

We Learned...

- How to create effective research questions.
- How to clean, process, and sample a dataset of over 1 million values. It Was Hard!
- How to effectively visualize data and find issues through visualization.
- How to use models to draw conclusions from data.
- How to analyze results and deliver said results to a boss/client.

Issues with the Dataset

- The dataset was huge. Getting a representative sample of 10,000 values was difficult.
- There were unexpected outliers and some were discovered well into our analysis.
- Some inter-variable correlations proved to be problematic.
- We had to derive our own independent variable (Installs per day) using the information we has.

Sources

- "What factors contribute to the success of a mobile app?": https://appinventiv.com/blog/8-key-features-makes-mobile-app-successful/
- "Driving Buyer Behavior with In-App Purchases": https://medium.com/googleplaydev/a-kpis-guide-for-google-play-apps-and-games-driving-buyer-behavior-with-in-app-purchases-a9f88564cd86

"Android app download ranges 2018": https://www.statista.com/statistics/269884/android-app-downloads/