实验报告

实验名称: 页面置换算法模拟	
实验时间:	
实验人员:李子强(姓名)115010352(学号) _15(年级)	
实验目的: 掌握页面置换的原理,深入理解不同策略之间的优势和劣势	
实验环境: Linux_	
实验步骤:	
1.了解不同页面置换算法的细节与思想	
2.编写模拟程序	
实验陈述:	
1、基础知识回顾:	
1.FIFO 置换算法的内容与复杂度分析: 置换最先调入内存的页面, 即置换在内存中:	拄留
时间最久的页面。按照进入内存的先后次序排列成队列,从队尾进入,从队首删除。	替换
时间复杂度为 O(1)。	
2. Min 置换算法的内容与复杂度分析:置换以后不再被访问,或者在将来最迟才回被	访问
的页面,缺页中断率最低。但是,这个是理论上在线算法的性能,只有在离线的情况	下能
达到。可以以 O(n)的时间复杂度实现。	
3. LRU 置换算法的内容与复杂度分析: 置换最近一段时间以来最长时间未访问过的页	〔面。
根据程序局部性原理,刚被访问的页面,可能马上又要被访问;而较长时间内没有被	访问
的页面,可能最近不会被访问。可以以 O(n)的时间复杂度实现。	
4. Clock 置换算法的内容与复杂度分析:为了节约 Second Chance 算法一个接着一个	检查
使用位的开销,时钟轮转法又提出了改进。时钟轮转法将所有的页组成一个圆,圆心	的指
针指向下一个要被置换的页面,置换前同样检查使用位,如果使用位为1,同样将其	使用
位置为 0, 随后将顺指针旋转, 检查下一个页面, 直到发现某页的使用位为 0, 将此	页置
换出内存。很容易理解此算法为什么叫"时钟"轮转法。可以以 O(n)的时间复杂度实	;现。
5. Second-chance 置换算法的内容与复杂度分析: 为了避免 FIFO 算法将重要的页换	出内
存,Second Chance 算法提供了一些改进。讲 FIFO 列表的一部分采用 LRU 模式,踢	出最
近不使用。结合了 LRU 和 FIFO 的优点。可以以 O(n)的时间复杂度实现。	
2、理论基础	
页面置换理论最优的算法是:Min	
请给出相关证明 Min 是 OPT 算法,因为是离线算法,运行时知道所有将来的数:	
每次替换页面操作都可选出将来最晚使用的页面替换	. 0
FIFO 算法是否有提升的空间?如果有请提出方案,没有请给出证明。查找时间	优化
为 O(1), 加入哈希表另外存储页面数据。	
LRU 算法是否有提升的空间?如果有请提出方案,没有请给出证明。 <u>查找时间优</u>	化为
O(1),加入哈希表另外存储页面数据。	

3、	遇到的问题与解决方法
.7 \	

问题 1: _____算法逻辑错误

解决方法 排查临界值解决。

运行表格: (hit percentage) cache size: 123

	_ = 11					
Algorithms/test	1.in	2.in	3.in			
FIFO	11.98%	11.85%	82.36%			
MIN	42.4%	43.27%	88.58%			
LRU	11.76%	11.85%	82.39%			
Clock	11.90%	11.90%	82.32%			
Second-chance	11.85%	11.85%	82.39%			

实验总结:

学习不同页面置换算法的细节与思想。