Verifica del Software - Esercizi parte 2 Università degli Studi di Padova

Mirko Bez

18 febbraio 2017

Indice

Esercizio 1 2

Esercizio 1

Consegna Let (α, C, A, γ) be a Galois connection. Prove that:

- (A) γ is injective, \iff
- (B) $\alpha \circ \gamma = id \iff$
- (C) α is surjective.

Svolgimento Alcune definizioni utili:

Definizione 1. (Galois Connection) (α, C, A, γ) è una Galois connection se:

- 1. A, C sono poset
- 2. $\alpha: C \longrightarrow A \ monotona$
- 3. $\gamma: A \longrightarrow C \ monotona$
- 4. $\forall c \in C. \ c \leq_C \gamma(\alpha(c))$
- 5. $\forall a \in A. \ \alpha(\gamma(a)) \leq_A a$

Definizione 2. (Funzione iniettiva) Una funzione $f: X \longrightarrow Y$ è iniettiva se:

$$\forall a, b \in X. \ f(a) = f(b) \implies a = b$$

 $(B) \Longrightarrow (A)$ Assumo che valga l'ipotesi (B) ovvero che $\alpha \circ \gamma = id$. Assumo per assurdo che non valga l'ipotesi (A) ovvero che γ non sia iniettiva, quindi:

$$\exists a, b \in A. \ \gamma(a) = \gamma(b) \land a \neq b$$

Siano a,b due elementi diversi di A ($a \neq b$) che vengono mappati allo stesso elemento di C, ovvero $\gamma(a) = \gamma(b)$. Essendo (C, \leq_C) un poset, per la riflessività della relazione \leq_C , valgono anche le relazioni:

- I) $\gamma(a) \leq_C \gamma(b)$
- II) $\gamma(b) \leq_C \gamma(a)$

Partendo dalla relazione I) ottengo:

$$\begin{array}{lll} \gamma(a) \leq_C \gamma(b) & \Longrightarrow & \text{per la monotonia di } \alpha \\ \alpha(\gamma(a)) \leq_A \alpha(\gamma(b)) & \Longrightarrow & \text{per l'ipotesi (B)} \\ a \leq_A b & & & \end{array}$$

Partendo dalla relazione II) ottengo:

$$\begin{array}{lll} \gamma(b) \leq_C \gamma(a) & \Longrightarrow & \text{per la monotonia di } \alpha \\ \alpha(\gamma(b)) \leq_A \alpha(\gamma(a)) & \Longrightarrow & \text{per l'ipotesi (B)} \\ b \leq_A a & & \end{array}$$

Siccome valgono al contempo $a \leq_A b$ e $b \leq_A a$ allora per l'antisimmetria del poset (A, \leq_A) a = b. Che è in contrasto con l'ipotesi iniziale che $a \neq b$.