Generalize: Class size N (and N-sided die) sample of $n \leq N$ students

$$\mathbb{E}[T_n] = \sum_{i=1}^n \mathbb{E}[T_i] = \sum_{i=1}^n \frac{1}{iN} = N\sum_{i=1}^n \frac{1}{i}$$

(ontinois)

p(ti) rate N ti

 $P(t;) \sim \frac{i}{N}e^{-\frac{i}{N}t;}$

Memoryless:
$$P(t_i | t_{i+1}) = P(t_i)$$

Cole-escent theory

Each interval is geometrically distributed
$$IP(T_i = t_i) = \frac{i}{N} \left(1 - \frac{i}{N}\right)^{t_i-1}$$

Cole-escent theory

Generalize: Class size
$$N$$
 (and N -sided die) sample of $n \leq N$ students

$$\mathbb{E}[T_{n\to 0}] = \sum_{i=1}^{n} \mathbb{E}[T_i] = \sum_{i=1}^{n} \frac{1}{iN} = N \sum_{i=1}^{n} \frac{1}{i}$$

$$\mathbb{P} = \frac{i}{N}$$

Each interval is geometrically distributed

$$P\left(T_{i}=t_{i}\right)=\frac{i}{N}\left(1-\frac{i}{N}\right)^{t_{i}-1}$$
for large $N:$

$$P(t_{i}) \stackrel{?}{\sim} \frac{i}{N}e^{-\frac{i}{N}t_{i}} \Rightarrow approx. expanertial dist.$$

$$P(t_{i}) \stackrel{?}{\sim} \frac{i}{N}e^{-\frac{i}{N}t_{i}} \Rightarrow approx. expanertial dist.$$

Memoryluss:
$$P(t; | t_{i+1}) = P(t;)$$

Coalescent theory

Only slightly fancier

		Cole-escent	coalescent	
,	time	classes into the future	generations into the past	
	events	dice rolls, one student	coalescences, pairs of individuals	
V	rate of events v/; individuals	i Students uncalled N Class size		#pairs