Mølmer-Sørensen gate simulation

December 18, 2022

1 Goal

Derive the expression for simulating and optimizing a Mølmer-Sørensen gate pulse sequence.

2 Setup and scope

We'll discuss a simple two tone pulse sequence where the two tones are perfectly symmetric around the carrier. We'll ignore any error in the carrier frequency in this note. Crosstalk, coupling to carrier and other sideband orders are also ignored.

For a typical gate sequence, what we care about are

1. Ion motion:

The MS interaction will drive each of the motional mode in a spin-dependent way. For a proper MS gate, we'd like the final motional state to be identical to where we started. Any deviation from this results in a closure error.

2. Spin operation:

The enclosed area in phase-space from the driven motion results in a spin-dependent phase which is the main goal of the MS gate. Deviation in the control parameter could result in spin/angle error in the spin space.

3 Mølmer-Sørensen interaction

The effective Hamiltonian for a Mølmer-Sørensen gate sequence can be written as

$$H_{MS} = \frac{\Omega(t)}{2} \sum_{i=1,2} \sum_{k} \eta_{jk} \left(a_k e^{-i\theta_k(t)} + a_k^{\dagger} e^{i\theta_k(t)} \right) \sigma_x^j$$

where j is the ion index (simplified to 1 and 2) and k is the motional mode index. For the "fixed" parameters, η_{jk} is the Lamb-Dicke parameter for the j-th ion on the k-th mode. a_k and a_k^{\dagger} are the creation and annihilation operators for the k-th mode and the σ_x^j is the single qubit spin operator we are coupling to which we'll set as x in this note. (The error on the spin axis is ignored.) For the "variable" parameters in the pulse sequence, $\Omega(t)$ is the time dependent two-photon Rabi frequency (controlled by laser power) and $\theta_k(t)$ is the time-dependent phase offset between the laser and the k-th mode with,

$$\theta_k(t) = \omega_k t - \theta(t)$$
$$= \omega_k t - \int_0^t \delta(t') dt'$$

where ω_k is the frequency of the k-th mode, $\theta(t)$ is the half the phase difference of the two lasers and $\delta(t')$ is the (symmetric) detuning of the lasers from the carrier. (If phase modulation is used, $\theta(t)$ and $\theta_k(t)$ may be discontinuous functions).