

Learn, Visualize, & Analyze

LAFOREST LAB R WORKSHOP

May 12-14th, 2025

DAY3: LEARNING GOALS

- 1. Understand Statistical Philosophies
- Compare Frequentist, Bayesian, and Likelihood approaches
- 2. Parametric vs. Non-Parametric Tests
- Choose tests based on data distribution and type
- Practice checks for normality (Shapiro-Wilk, Levene)
- 3. Perform Key Statistical Tests in R
- t-tests
- ANOVA (one-way, post-hoc tests)
- Correlation (Pearson, Spearman)
- 4. Build & Interpret Linear Models
- Simple/multiple linear regression (lm())
- Linear mixed-effects models (lmer() or nlme) for nested data
- Validate assumptions (residual plots)

Statistical Inference

Statistical Inference

Population

All undergraduate students in North America

unknown p

(proportion of population who own an iPhone)

Statistical Inference

Statistical Inference

Scientific methodology

Perform literature review

State hypothesis

Establish study design

Acquire data

Analyze data

Reach conclusion

1. Foundation for Reliable Results

- A well-planned design ensures data quality, reducing bias and confounding factors.
- Poor design can lead to misleading conclusions, even with advanced statistics.

1. Foundation for Reliable Results

- A well-planned design ensures data quality, reducing bias and confounding factors.
- Poor design can lead to misleading conclusions, even with advanced statistics.

2. Aligns Objectives with Methods

- Clarifies research questions/hypotheses upfront.
- Guides choice of experimental/observational approach (e.g., RCT, cohort, case-control).

1. Foundation for Reliable Results

- A well-planned design ensures data quality, reducing bias and confounding factors.
- Poor design can lead to misleading conclusions, even with advanced statistics.

2. Aligns Objectives with Methods

- Clarifies research questions/hypotheses upfront.
- Guides choice of experimental/observational approach (e.g., RCT, cohort, case-control).

3. Optimizes Resource Use

• Prevents wasted time, funding, or samples due to inadequate power or unanswerable questions.

1. Foundation for Reliable Results

- A well-planned design ensures data quality, reducing bias and confounding factors.
- Poor design can lead to misleading conclusions, even with advanced statistics.

2. Aligns Objectives with Methods

- Clarifies research questions/hypotheses upfront.
- Guides choice of experimental/observational approach (e.g., RCT, cohort, case-control).

3. Optimizes Resource Use

• Prevents wasted time, funding, or samples due to inadequate power or unanswerable questions.

4. Ensures Statistical Validity

- Determines appropriate sample size (power analysis).
- Influences choice of statistical tests (parametric/non-parametric, regression, etc.).

1. Foundation for Reliable Results

- A well-planned design ensures data quality, reducing bias and confounding factors.
- Poor design can lead to misleading conclusions, even with advanced statistics.

2. Aligns Objectives with Methods

- Clarifies research questions/hypotheses upfront.
- Guides choice of experimental/observational approach (e.g., RCT, cohort, case-control).

3. Optimizes Resource Use

• Prevents wasted time, funding, or samples due to inadequate power or unanswerable questions.

4. Ensures Statistical Validity

- Determines appropriate sample size (power analysis).
- Influences choice of statistical tests (parametric/non-parametric, regression, etc.).

5. Mitigates Ethical Risks

• Avoids unnecessary replication or unethical participant exposure (e.g., in clinical trials).

1. Foundation for Reliable Results

- A well-planned design ensures data quality, reducing bias and confounding factors.
- Poor design can lead to misleading conclusions, even with advanced statistics.

2. Aligns Objectives with Methods

- Clarifies research questions/hypotheses upfront.
- Guides choice of experimental/observational approach (e.g., RCT, cohort, case-control).

3. Optimizes Resource Use

• Prevents wasted time, funding, or samples due to inadequate power or unanswerable questions.

4. Ensures Statistical Validity

- Determines appropriate sample size (power analysis).
- Influences choice of statistical tests (parametric/non-parametric, regression, etc.).

5. Mitigates Ethical Risks

• Avoids unnecessary replication or unethical participant exposure (e.g., in clinical trials).

6. Enhances Reproducibility

Transparent protocols enable peer validation and replication.

Study design: what does your instinct tell you?

Aspect

Research Question

Bias Control

Sample Size

Variables

Data Collection

Statistical Plan

Reproducibility

Outcome

Good Design

Clear, focused, and testable hypothesis.

Minimized via randomization, blinding, controls.

Powered statistically to detect effects (e.g., pre-hoc power analysis).

Key variables defined (independent/dependent/confounders).

Standardized protocols (replicable).

Pre-specified primary analysis (avoids phacking).

Detailed methods (others can replicate).

Valid, reliable, and actionable conclusions.

Bad Design

Vague or overly broad question.

Susceptible to selection, measurement, or confounding bias.

Too small (Type II error) or unnecessarily large (wasted resources).

Poorly defined or unmeasured confounders.

Ad-hoc methods (prone to inconsistency/error).

Post-hoc "fishing" for significant results.

Missing critical details.

Misleading or uninterpretable results.

Study design: what does your instinct tell you?

1. Frequentist Statistics

- **Core Idea**: Probability = long-run frequency of events.
- **Focus**: *P*(*data* | *hypothesis*) (e.g., p-values, confidence intervals).
- Tools: Hypothesis tests (t-tests, ANOVA), Null Hypothesis Significance Testing.
- Strengths: Objective, widely used, standardized.
- **Limitations**: Ignores prior knowledge; misinterpreted p-values.

1. Frequentist Statistics

- **Core Idea**: Probability = long-run frequency of events.
- **Focus**: $P(data \mid hypothesis)$ (e.g., p-values, confidence intervals).
- Tools: Hypothesis tests (t-tests, ANOVA), Null Hypothesis Significance Testing.
- **Strengths**: Objective, widely used, standardized.
- **Limitations**: Ignores prior knowledge; misinterpreted p-values.

2. Bayesian Statistics

- **Core Idea**: Probability = degree of belief (updated with data).
- **Focus**: *P(hypothesis* | *data)* using Bayes' Theorem.
- **Tools**: Posterior distributions, credible intervals, MCMC.
- **Strengths**: Incorporates prior knowledge; intuitive interpretations.
- **Limitations**: Computationally intensive; subjective priors.

1. Frequentist Statistics

- **Core Idea:** Probability = long-run frequency of events.
- **Focus**: *P*(*data* | *hypothesis*) (e.g., p-values, confidence intervals).
- Tools: Hypothesis tests (t-tests, ANOVA), Null Hypothesis Significance Testing.
- Strengths: Objective, widely used, standardized.
- Limitations: Ignores prior knowledge;
 misinterpreted p-values.

2. Bayesian Statistics

- **Core Idea**: Probability = degree of belief (updated with data).
- Focus: P(hypothesis | data) using Bayes' Theorem.
- **Tools**: Posterior distributions, credible intervals, MCMC.
- **Strengths**: Incorporates prior knowledge; intuitive interpretations.
- **Limitations:** Computationally intensive; subjective priors.

3. Likelihood-Based Inference

- Core Idea: Focus on the likelihood function (support for hypotheses given data).
- Focus: Compare models via likelihood ratios (no priors).
- Tools: MLE, AIC/BIC, profile likelihoods.
- Strengths: Flexible; bridges
 Frequentist and Bayesian ideas.
- Limitations: Less intuitive for complex models.

1. Frequentist Statistics

- Core Idea: Probability = long-run frequency of events.
- **Focus**: *P*(*data* | *hypothesis*) (e.g., p-values, confidence intervals).
- **Tools**: Hypothesis tests (t-tests, ANOVA), Null Hypothesis Significance Testing.
- Strengths: Objective, widely used, standardized.
- **Limitations**: Ignores prior knowledge; misinterpreted p-values.

2. Bayesian Statistics

- Core Idea: Probability = degree of belief (updated with data).
- Focus: P(hypothesis | data) using Bayes' Theorem.
- **Tools**: Posterior distributions, credible intervals, MCMC.
- **Strengths:** Incorporates prior knowledge; intuitive interpretations.
- **Limitations:** Computationally intensive; subjective priors.

3. Likelihood-Based Inference

- **Core Idea:** Focus on the *likelihood* function (support for hypotheses given data).
- **Focus**: Compare models via likelihood ratios (no priors).
- **Tools**: MLE, AIC/BIC, profile likelihoods.
- Strengths: Flexible; bridges
 Frequentist and Bayesian ideas.
- Limitations: Less intuitive for complex models.

Parametric vs. non-parametric tests

Feature Parametric Tests		Non-Parametric Tests	
Assumptions	Normality, equal variance, independence	Fewer assumptions (ordinal/any distribution)	
Data Types	Continuous, normally distributed	Ordinal, skewed, or small samples	
Power	Higher power (when assumptions met)	Robust but less powerful	
Examples	t-tests, ANOVA, Pearson's r	Wilcoxon, Kruskal-Wallis, Spearman's $ ho$	

Basic parametric tests

Test	Predictor (X)	Outcome (Y)	Answer	R Function
t-test	2 groups	Continuous	"Are means different?"	t.test(y ~ group, data)
ANOVA	3+ groups	Continuous	"Which groups differ?"	aov(y ~ group, data)
Correlation	Continuous	Continuous	"How strong is the linear link?"	cor.test(data\$x, data\$y)
Regression	1+ continuous/cat.	Continuous	"How does X affect Y?"	cor.test(data\$x, data\$y)

Basic non-parametric tests

Non-Parametric

Parametric Test	Alternative	When to Use It	R Function
Independent t-test	Mann-Whitney U test	Compare 2 independent groups (ordinal/skewed)	wilcox.test(y ~ group)
Paired t-test	Wilcoxon signed-rank test	Compare paired measurements (non-normal)	wilcox.test(y1, y2, paired=TRUE)
One-way ANOVA	Kruskal-Wallis test	Compare 3+ independent groups	kruskal.test(y ~ group)
Pearson correlation	Spearman's rank correlation	Assess monotonic relationships	cor.test(x, y, method="spearman")
Repeated-measures ANOVA	Friedman test	Compare 3+ paired groups	friedman.test(y ~ group subject)

Excel, csv, txt...

How to get your data in a good format?

Let's code!