CS 534. HW 1.

We augment the centered matrix \vec{X} with k additional nows \vec{J} , \vec{I} and augment \vec{y} with k zeros, which means training data $(x_1, y_1), \dots (x_N, y_N)$. become $(x_1, y_1), \dots (x_N, y_N)$. $(x_N, y_N) \cdot (x_N, y_N$

=0) () = Bj2

... RSS(B) = $\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{i=1}^{N} \lambda_{ij} \cdot \beta_j)^2 + \sum_{j=1}^{P} \beta_j^2$, (N>0.) which is almost equal to β^{ridge} of original \vec{X} and \vec{y} $\Rightarrow \hat{\beta}^{ridge} = \underset{\beta}{\operatorname{argmin}} \{\sum_{\nu=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{N} \lambda_{ij}^2 \cdot \beta_j)^2 + \sum_{j=1}^{N} \beta_j^2 \}$ (N>0)