

Algèbre Linéaire et Analyse de Données

Corrections des TD Licence 2 MIASHS (2022-2023)

Guillaume Metzler Institut de Communication (ICOM) Université de Lyon, Université Lumière Lyon 2

Laboratoire ERIC UR 3083, Lyon, France guillaume.metzler@univ-lyon2.fr

Résumé

Ce document contient la correction des exercices proposées pour la première partie de ce cours, i.e. sur la partie relative à l'algèbre linéaire et à la géométrique euclidienne.

Il est uniquement à destination des enseignants pour cet enseignement. Merci de ne pas le diffuser aux étudiants.

1 Espaces vectoriels et Applications linéaires

1.1 Applications du cours

Exercice 1.1. Soit E un ensemble, typiquement $E = \mathbb{R}^2$ muni d'une loi interne, notée + et d'une loi externe notée \cdot définies pour tout $\mathbf{x}, \mathbf{y} \in E$ et pour tout $\lambda \in \mathbb{R}$ par

$$\mathbf{x} + \mathbf{y} = (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$
 et $\lambda \cdot \mathbf{x} = \lambda \cdot (x_1, x_2) = (0, \lambda x_2)$.

L'ensemble $(E, +, \cdot)$ a-t-il une structure d'espace vectoriel sur \mathbb{R} ?

Correction

On peut montrer qu'il ne s'agit pas d'un espace vectoriel. En effet, rappelons que nous devons montrer que les différents points

- 1. (E, +) est un groupe abélien (i.e. commutatif)
- 2. $\forall \mathbf{x} \in E, 1 \cdot \mathbf{x} = \mathbf{x}.$
- 3. $\forall (\alpha, \beta) \in \mathbb{R}^2, \ \forall \mathbf{x} \in E, \ (\alpha + \beta) \cdot \mathbf{x} = \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x}.$
- 4. $\forall \alpha \in \mathbb{R}, \ \forall \mathbf{x}, \mathbf{x}' \in E, \ \alpha \cdot (\mathbf{x} + \mathbf{x}') = \alpha \cdot \mathbf{x} + \alpha \cdot \mathbf{x}'.$
- 5. $\forall (\alpha, \beta) \in \mathbb{R}^2, \ \forall \mathbf{x} \in E, \ \alpha \cdot (\beta \cdot \mathbf{x})) = (\alpha\beta) \cdot \mathbf{x}.$
- 1. (a) Il est clair que la somme de deux éléments de \mathbb{R}^2 reste un élément de \mathbb{R}^2 .
 - (b) La loi + est associative, nous avons bien $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$.
 - (c) Elle admet un élément neutre qui est le vecteur (0,0).
 - (d) L'existence d'un inverse pour tout élément \mathbf{x} défini par $-\mathbf{x}$ pour lequel on a $-\mathbf{x} + \mathbf{x} = \mathbf{x} \mathbf{x} = 0$.
 - (e) La loi + est bien commutative, on a bien $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$.
- 2. L'existence d'un élément neutre pour la loi externe, noté 1, pour lequel nous devons avoir $1 \cdot \mathbf{x} = \mathbf{x}$ Or, pour tout \mathbf{x} , nous avons $1\mathbf{x} = 1 \cdot (x_1, x_2) = (0, x_2) \neq \mathbf{x}$ sauf lorsque $x_1 = 0$. Ce qui met en défaut ce point là.
- 3. La distributivité par rapport à la loi interne : $\forall (\alpha, \beta) \in \mathbb{R}^2, \ \forall \mathbf{x} \in E$

$$(\alpha + \beta) \cdot \mathbf{x} = (\alpha + \beta) \cdot (x_1, x_2),$$

= $(0, (\alpha + \beta)x_2),$
= $(0, \alpha x_2) + (0, \beta x_2),$
= $\alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x}$

4. On vérifie aisément la distributivité par rapport à la loi externe. Pour cela $\forall \lambda \in \mathbb{R}, \ \forall \mathbf{x}, \mathbf{x}' \in E$

$$\lambda \cdot (\mathbf{x} + \mathbf{x}') = \lambda \cdot (x_1 + x_1', x_2 + x_2'),$$

$$= (0, \lambda(x_2 + x_2')),$$

$$= (0, \lambda x_2 + \lambda x_2'),$$

$$= (0, \lambda x_2) + (0, \lambda x_2'),$$

$$= \lambda \cdot (x_1, x_2) + \lambda \cdot (x_1', x_2'),$$

$$= \lambda \cdot \mathbf{x} + \lambda \cdot \mathbf{x}'.$$

5. On vérifie l'associativitié par rapport à la loi externe $\forall (\alpha, \beta) \in \mathbb{R}^2, \ \forall \mathbf{x} \in E$

$$\alpha \cdot (\beta \cdot \mathbf{x}) = \alpha \cdot (0, \beta x_2),$$

= $(0, (\alpha \beta) x_2),$
= $(\alpha \beta) \cdot \mathbf{x}$

L'espace ainsi étudié n'est donc pas un espace vectoriel.

Exercice 1.2. Soit $E = \mathbb{R}_n[X]$ l'espace des polynômes de degré n, i.e. si P est un élément de E, alors il existe des coefficients $a_0, \ldots, a_n \in \mathbb{R}$ et $a_n \neq 0$ tels que

$$P(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n = \sum_{k=0}^{n} a_k X^k.$$

L'ensemble E muni des lois internes et externes, respectivement définies, pour tout $P,Q\in E$ et $\lambda\in\mathbb{R}$ par

$$P(X) + Q(X) = \sum_{k=0}^{n} (a_k + b_k) X^k \quad et \quad \lambda \cdot P(X) = \sum_{k=0}^{n} \lambda a_k X^k$$

a-t-il une structure d'espace vectoriel sur \mathbb{R} ? Sans chercher à justifier votre réponse, quelle est une base de cet espace vectoriel et quelle est sa dimension?

Correction

On refait exactement les mêmes vérifications que pour l'exercice précédent

- 1. (a) Il est clair que la somme de deux éléments de E reste un élément de E, i.e. la somme de deux polynôme reste un polynôme.
 - (b) La loi + est associative nous avons bien P + (Q + R) = (P + Q) + R. En effet

$$\begin{split} P(X) + (Q(X) + R(X)) &= \sum_{k=0}^{n} a_i X^i + (\sum_{k=0}^{n} b_i X^i + \sum_{k=0}^{n} c_i X^i), \\ &= \sum_{k=0}^{n} a_i X^i + \sum_{k=0}^{n} b_i X^i + \sum_{k=0}^{n} c_i X^i, \\ &= (\sum_{k=0}^{n} a_i X^i + \sum_{k=0}^{n} b_i X^i) + \sum_{k=0}^{n} c_i X^i, \\ &= (P(X) + Q(X)) + R(X). \end{split}$$

- (c) Elle admet un élément neutre qui est le polynôme nul P = 0.
- (d) L'existence d'un inverse pour tout élément P défini par -P pour lequel on a -P+P=P-P=0.
- (e) La loi + est bien commutative, on a bien P + Q = Q + P.
- 2. L'existence d'un élément neutre pour la loi externe, noté 1, pour lequel nous devons avoir $1 \cdot P = P$ Or, pour tout P, nous avons $1 \cdot P(X) = \sum_{k=0}^{n} 1a_k X^k = \sum_{k=0}^{n} a_k X^k = P(X)$.

3. La distributivité par rapport à la loi interne : $\forall (\alpha, \beta) \in \mathbb{R}^2, \ \forall P \in E$

$$(\alpha + \beta) \cdot P = \sum_{k=0}^{n} (\alpha + \beta) a_i X^i,$$

$$= \sum_{k=0}^{n} \alpha a_i X^i + \sum_{k=0}^{n} \beta a_i X^i,$$

$$= \alpha \sum_{k=0}^{n} a_i X^i + \beta \sum_{k=0}^{n} a_i X^i,$$

$$= \alpha \cdot P + \beta \cdot P$$

4. On vérifie aisément la distributivité par rapport à la loi externe. Pour cela $\forall \lambda \in \mathbb{R}, \ \forall P, Q \in E$

$$\lambda \cdot (P+Q) = \lambda \cdot (\sum_{k=0}^{n} (a_i + b_i) X^i),$$

$$= \sum_{k=0}^{n} \lambda (a_i + b_i) X^i,$$

$$= \sum_{k=0}^{n} \lambda a_i X^i + \sum_{k=0}^{n} \lambda b_i X^i,$$

$$= \lambda \sum_{k=0}^{n} a_i X^i + \lambda \sum_{k=0}^{n} b_i X^i,$$

$$= \lambda \cdot P + \lambda Q.$$

5. On vérifie l'associativitié par rapport à la loi externe $\forall (\alpha, \beta) \in \mathbb{R}^2, \ \forall \mathbf{x} \in E$

$$\alpha \cdot (\beta \cdot P) = \alpha \cdot (\sum_{k=0}^{n} \beta a_i X^i),$$

$$= \sum_{k=0}^{n} \alpha(\beta a_i X^i),$$

$$= \sum_{k=0}^{n} (\alpha \beta) a_i X^i,$$

$$= (\alpha \beta) \cdot P$$

Exercice 1.3. Montrer que la famille de vecteurs $\mathbf{v}_1 = (1,1)$ et $\mathbf{v}_2 = (2,0)$ forme une famille génératrice de \mathbb{R}^2 .

Correction

Pour cet exercice, on se rappelle simplement qu'une famille de E est dite génératrice si tout élément \mathbf{x} de E peut s'exprimer comme une combinaison linéaire des éléments de cette famille.

Considérons $\mathbf{x} = (x_1, x_2)$ un élément de \mathbb{R}^2 et exprimons \mathbf{x} comme une combinaison linéaire de \mathbf{v}_1 et \mathbf{v}_2 , *i.e.* trouver des valeurs α_1 et α_2 telles que

$$\mathbf{x} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2$$
 soit
$$\begin{cases} x_1 = \alpha_1 + 2\alpha_2 \\ x_2 = \alpha_1 \end{cases}$$

La deuxième équation nous conduit à $\alpha_1 = x_2$ et avec la première équation on a

$$x_1 = 2\alpha_2 + \alpha_1,$$

$$\downarrow \text{ en isolant } \alpha_2$$

$$\alpha_2 = \frac{1}{2} (x_1 - x_2).$$

Exercice 1.4. Montrer que la famille de vecteurs $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (0, 0, 1)$ et $\mathbf{v}_3 = (1, -1, 2)$ forme une famille libre de \mathbb{R}^3 .

Correction

On rappelle qu'une famille est dite libre si la seule combinaison linéaire de ces vecteurs conduisant au vecteur nul est la combinaison triviale.

Nous devons donc vérifier que l'équation

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3 = 0$$

admet pour une unique solution $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

On remarque que \mathbf{v}_2 est un vecteur de la base canonique de \mathbb{R}^3 . On va donc se concentrer sur les vecteurs \mathbf{v}_1 et \mathbf{v}_3 et montrer qu'ils forment une famille libre. Plus précisément, on va se concentrer sur les deux premières composantes de ces vecteurs.

Il est très facile de voir qu'ils forment deux "vecteurs" linéairement indépendants.

Exercice 1.5. Montrer que la famille $\mathscr{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ forme une base de l'espace \mathbb{R}^3 où

$$\mathbf{v}_1 = (1, 3, 2), \quad \mathbf{v}_2 = (2, 5, 2) \quad et \quad \mathbf{v}_3 = (-2, -2, 1).$$

Correction

La famille $\mathscr{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ forme une base de l'espace \mathbb{R}^3 . En effet, il nous suffit de montrer qu'elle forme une famille libre et/ou génératrice de \mathbb{R}^3 (on pourra alors conclure à l'aide d'un argument portant la dimension de l'espace étudié).

On décide de montrer qu'il s'agit d'une famille libre. Soient $\lambda_1, \lambda_2, \lambda_3$ des nombres réels tels que $\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3 = \mathbf{0}$. Montrons alors que $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

$$\begin{cases} \lambda_1 + 2\lambda_2 - 2\lambda_3 &= 0 \\ 3\lambda_1 + 5\lambda_2 - 2\lambda_3 &= 0 \\ 2\lambda_1 + 2\lambda_2 + 1\lambda_3 &= 0 \end{cases} \begin{cases} \lambda_1 + 2\lambda_2 - 2\lambda_3 &= 0 \\ -\lambda_2 + 4\lambda_3 &= 0 & L_2 \leftarrow L_2 - 3L_1 \\ -2\lambda_2 + 5\lambda_3 &= 0 & L_3 \leftarrow L_3 - 2L_1 \end{cases}$$
$$\rightarrow \begin{cases} \lambda_1 + 2\lambda_2 - 2\lambda_3 &= 0 \\ -\lambda_2 + 4\lambda_3 &= 0 \\ -3\lambda_3 &= 0 & L_3 \leftarrow L_3 - 2L_2 \end{cases}$$

En remontant de bas en haut dans le système, on montre bien que $\lambda_1 = \lambda_2 = \lambda_3 = 0$, la familleest donc libre.

Ayant une famille libre de trois vecteurs de \mathbb{R}^3 , cette famille constitue bien une base de \mathbb{R}^3 .

Exercice 1.6. On considère une famille de vecteurs de \mathbb{R}^4 définies par

$$\mathbf{v}_1 = (1, 1, 1, 0), \ \mathbf{v}_2 = (0, 0, 1, 1) \quad et \quad \mathbf{v}_3 = (-1, 0 - 1, -2).$$

Cette famille est-elle une famille libre de \mathbb{R}^4 ? Compléter cette famille en une base de l'espace \mathbb{R}^4 .

Correction

On procède comme à l'exercice précédent, considère λ_1, λ_2 et λ_3 tels que

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3 = \mathbf{0}.$$

Montrons alors alors que $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

$$\begin{cases} \lambda_1 - \lambda_3 &= 0\\ \lambda_1 &= 0\\ \lambda_1 + \lambda_2 - \lambda_3 &= 0\\ \lambda_2 - 2\lambda_3 &= 0 \end{cases}$$

La deuxième équation implique que $\lambda_1 = 0$, la première équation va alors montrer que $\lambda_3 = 0$ et la dernière équation (ou la troisième) permettra de conclure que λ_3 est nul.

Regardons comment compléter cette famille en une base de \mathbb{R}^4 . Pour cela, on va représenter la famille de vecteurs sous forme de matrice et appliquer la méthode du pivot de gauss pour obtenir une matrice triangulaire supérieure (l'ordre des vecteurs importe peu).

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & 0 & -1 & -2 \\ 0 & 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 \end{pmatrix} L_2 \leftarrow L_2 + L_1$$

Pour compléter cette forme triangulaire, on peut donc prendre un vecteur \mathbf{v}_4 de la forme $(0,0,0,\alpha)$ où $\alpha \neq 0$.

Exercice 1.7. Montrer que le noyau d'une application linéaire ϕ de E forme un sous-espace de E, i.e.

$$Ker(\phi) = \{ \mathbf{x} \in E : \phi(\mathbf{x}) = \mathbf{0} \}$$

muni des lois internes et externes de E (addition et multiplication) est un sous-espace vectoriel de E.

Correction

 $Ker(\phi)$ est un sous-espace vectoriel de E. En effet, pour montrer qu'un ensemble est un sous-espace vectoriel, il suffit de montrer deux choses :

- que cet ensemble est non vide
- qu'il est stable par combinaison linéaire

Il est clair que $Ker(\phi)$ est non vide car nous avons $\mathbf{0} \in Ker(\phi)$ car ϕ est une application linéaire. Il nous reste alors à montrer que $Ker(\phi)$ est stable par combinaison linéiare. Pour cela, considérons \mathbf{x} et \mathbf{x}' deux éléments du noyau de ϕ et $\alpha \in \mathbb{R}$, nous devons montrer que $\mathbf{x} + \alpha \mathbf{x}' \in Ker(\phi)$.

$$\phi(\mathbf{x} + \alpha \mathbf{x}') = \phi(\mathbf{x}) + \phi(\alpha \mathbf{x}'),$$

$$\downarrow \text{ linéarité de } \phi$$

$$= \phi(\mathbf{x}) + \alpha \phi(\mathbf{x}'),$$

$$\downarrow \mathbf{x} \in Ker(\phi) \text{ et } \mathbf{x}' \in Ker(\phi)$$

$$= \mathbf{0}.$$

Donc $Ker(\phi)$ est bien un sous-espace de E.

Exercice 1.8. On considère E l'espace vectoriel des fonctions continues de \mathbb{R} dans \mathbb{R} . On note P l'ensemble des fonctions paires de E et I l'ensemble des fonctions impaires de E.

Montrer que les ensembles P et I, munis des structures induites par celle de E sont des sousespaces vectoriels de E. Que peut-on dire de l'intersection de ces deux sous-espaces.

Correction

On commence par rappeler qu'une fonction paire est une fonction f qui vérifie

$$\forall x \in \mathbb{R}, \quad f(x) = f(-x).$$

De même, une fonction g est dite impaire si elle vérifie

$$\forall x \in \mathbb{R}, \quad g(-x) = -g(x).$$

Pour montrer que P et I sont des sous espaces de E, il faut à nouveau montrer que les ensembles sont non vides et qu'ils sont stables par combinaisons linéaires.

• Espace P: cet espace est clairement non vide car la fonction nulle, f=0, vérifie bien f(x)=f(-x) pour tout réel x. Soient maintenant $f,g\in P$ et $\lambda\in\mathbb{R}$, alors

$$(f + \lambda g)(x) = f(x) + \lambda g(x),$$

$$\downarrow f \text{ et } g \text{ appartienment à } P$$

$$= f(-x) + \lambda g(-x),$$

$$= (f + \lambda g)(-x)$$

Donc P est bien un sous-espace de E.

• Espace I: cet espace est clairement non vide car la fonction nulle, f=0, vérifie bien -f(x)=f(-x) pour tout réel x. Soient maintenant $f,g\in P$ et $\lambda\in\mathbb{R}$, alors

$$(f + \lambda g)(-x) = f(-x) + \lambda g(-x),$$

$$\downarrow f \text{ et } g \text{ appartienment à } I$$

$$= -f(x) - \lambda g(x),$$

$$= -(f + \lambda g)(x)$$

Donc I est bien un sous-espace de E.

Il est aussi évident que l'intersection de ces deux sous-espaces est nul. En effet, soit $h \in P \cap I$, alors la fonction h vérifie les relations suivantes

$$h(x) - h(-x) = 0 \quad \forall x \text{ car } h \in P,$$

 $h(-x) + h(x) = 0 \quad \forall x \text{ car } h \in I.$

En sommant les deux relations, nous avons 2h(x) = 0 pour tout réel x, donc h = 0.

On pourrait aller plus loin dans cet exercice en montrant que P et I sont en somme directe, il nous resterait à montrer que toute fonction h de E peut s'écrire de façon unique comme la somme d'une fonction paire et d'une fonction impaire. Ce que l'on peut vérifier facilement en écrivant :

$$h(x) = \underbrace{\frac{h(x) + h(-x)}{2}}_{f \in P} + \underbrace{\frac{h(x) - h(-x)}{2}}_{g \in I}.$$

Exercice 1.9. Montrer que l'application $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$\phi(x_1, x_2) = (3x_1 + 6x_2, -2x_1)$$

est une application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 . Est-ce que cette application est injective? Est-elle surjective?

Correction

Commençons par montrer qu'il s'agit d'une application linéaire. Considérons $\mathbf{x}=(x_1,x_2)$ et $\mathbf{y}=(y_1,y_2)$ deux éléments de \mathbb{R}^2 et $\lambda \in \mathbb{R}$, alors

$$\phi(\mathbf{x} + \lambda \mathbf{y}) = \phi(x_1 \lambda y_1, x_2 + \lambda y_2),$$

$$\downarrow \text{ definition de } \phi$$

$$= (3x_1 + 6x_2 + \lambda(3y_1 + 6y_2), -2x_1 - \lambda y_1),$$

$$= (3x_1 + 6x_2, -2x_1) + \lambda(3y_1 + 6y_2, -2y_1),$$

$$= \phi(\mathbf{x}) + \lambda \phi(\mathbf{y}).$$

Etudions maintenant le noyau de cette application. Considérons \mathbf{x} un élément du noyau de ϕ , nous avons alors $\phi(\mathbf{x}) = 0$, ce qui nous conduit au système

$$\begin{cases} 3x_1 + 6x_2 &= 0, \\ -2x_1 &= 0. \end{cases}$$

La deuxième équation implique $x_1 = 0$, ce qui, répercuter dans la première, implique $x_2 = 0$. L'application ϕ est donc bien injective.

Pour voir si elle est surjective, considérons un élément \mathbf{y} et montrons qu'il existe $\mathbf{x} \in E$ tel que $\phi(\mathbf{x}) = \mathbf{y}$. Cela nous amène à considérer le système

$$\begin{cases} 3x_1 + 6x_2 &= y_1, \\ -2x_1 &= y_2. \end{cases} \rightarrow \begin{cases} x_2 &= \frac{1}{6}(y_1 + \frac{y_2}{4}), \\ x_1 &= -\frac{y_2}{2}. \end{cases}$$

qui admet une solution, l'application est donc bien surjective. L'application ϕ est donc bijective!

Exercice 1.10. On considère l'application $\phi : \mathbb{K}[X] \to \mathbb{K}[X]$, i.e. une application de l'espace des polynômes dans l'espace des polynômes (de degré quelconque), définie par

$$\phi(P(X)) = XP(X).$$

Montrer que cette application définie un endormorphisme injectif mais non surjectif de $\mathbb{K}[X]$.

Correction

Il faut d'abord montrer que l'application ϕ est linéaire.

Soient P et Q deux polynômes et α et β deux éléments de \mathbb{K} , alors

$$\phi(\alpha P(X) + \beta Q(X)) = X(\alpha P(X) + \beta Q(X)),$$

$$\downarrow \text{ on développe}$$

$$= \alpha X P(X) + \beta X Q(X),$$

$$\downarrow \text{ on applique la définition de } \phi$$

$$= \alpha \phi(P(X)) + \beta \phi(Q(X)),$$

L'application ϕ est donc linéaire et on vérifie facilement qu'elle transforme tout polynôme en polynôme. c'est donc un endomorphisme.

Pour montrer que l'endomorphisme est injectif, on va montrer que $\phi(P(X)) = 0$ implique que P est le polynôme nul.

Soit P un élément de $\mathbb{K}[X]$ tel que $\phi(P(X)) = 0$, on a alors XP(X) = 0 pour tout X. Or X n'est pas nul pour tout X, nécessairement

Pour montrer que l'application n'est pas surjective, il suffit d'observer que le polynôme constant n'appartient pas à l'image de ϕ .

Pour cela, considérons $a \in \mathbb{R}^*$ et supposons qu'il existe un polynôme $P \in \mathbb{K}[X]$ tel que $\phi(P(X)) = a$ pour tout X Pour tout X nous aurions donc XP(X) = a. En particulier, pour X = 0 nous aurons 0 = a, or $a \neq 0$, donc ϕ n'est pas surjective.

Exercice 1.11. On considère l'application $\phi : \mathbb{K}[X] \to \mathbb{K}[X]$, i.e. une application de l'espace des polynômes dans l'espace des polynômes (de degré quelconque), définie par

$$\phi(P(X)) = P'(X),$$

où P'(X) désigne le polynôme dérivé. Montrer que cette application définie un endormorphisme surjectif mais non injectif de $\mathbb{K}[X]$.

Correction

Il faut d'abord montrer que l'application ϕ est linéaire.

Soient P et Q deux polynômes et α et β deux éléments de \mathbb{K} , alors

$$\phi(\alpha P(X) + \beta Q(X)) = (\alpha P(X) + \beta Q(X))',$$

$$\downarrow \text{ la dérivation est linéaire}$$

$$= \alpha P'(X) + \beta Q'(X),$$

$$\downarrow \text{ on applique la définition de } \phi$$

$$= \alpha \phi(P(X)) + \beta \phi(Q(X)),$$

L'application ϕ est donc linéaire et on vérifie facilement qu'elle transforme tout polynôme en polynôme. C'est donc un endormorphisme.

Pour montrer que l'endomorphisme est surjectif, on va montrer que tout polynôme appartient à l'image de ϕ à l'aide d'une construction explicite

Soit Q un élément de $\mathbb{K}[X]$, alors Q peut s'écrire sous la forme

$$Q(X) = \sum_{i=0}^{n} a_i X^i.$$

Considérons maintenant le polynôme P défini par

$$P(X) = \sum_{i=0}^{n} \frac{a_i}{i+1} X^{i+1}.$$

On vérifie immédiatement que l'on a bien $\phi(P) = P' = Q$.

Pour montrer que l'application n'est pas injective, on va montrer que son noyau n'est pas réduit au polynôme nul, mais plutôt aux polynômes constants.

Supposons que l'on a $\phi(P(X)) = P'(X) = 0$. Donc P est un polynôme dont la première dérivée est nulle, or les seuls polynômes dont la dérivée est nulle sont les polynômes constants qui ne se limitent donc pas au polynôme nul (pour tout réel $a, \phi(a) = 0$). ϕ n'est donc pas injective.

Exercice 1.12. On considère l'application $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$\phi(\mathbf{x}) = (2x_1 + x_2 - x_3, 2x_1 - x_2 + 2x_3, 8x_1 + 2x_3).$$

Déterminer le noyau de l'application linéaire ϕ . Quelle est sa dimension?

Correction

Le noyau de l'application linéaire ϕ est défini comme l'ensemble des vecteurs \mathbf{x} de $E = \mathbb{R}^3$ vérifiant $\phi(\mathbf{x}) = \mathbf{0}$.

On va donc chercher à résoudre un système linéaire homogène de trois équations à trois inconnues.

$$\phi(\mathbf{x}) = \mathbf{0} \iff \begin{cases} 2x_1 + x_2 - x_3 &= 0, \\ 2x_1 - x_2 + 2x_3 &= 0, \\ 8x_1 + 2x_3 &= 0 \end{cases} \Rightarrow \begin{cases} -4x_1 &= x_3 & L_1 \leftarrow L_1 + L_2 \\ 2x_1 - x_2 + 2x_3 &= 0 \\ 0 &= 0 \end{cases} \quad L_3 \leftarrow L_3 - 2L_2 - 2L_1$$

$$\Rightarrow \begin{cases} x_3 &= -4x_1 \\ x_2 &= -6x_1 \\ 0 &= 0 \end{cases}$$

Le noyau de ϕ est donc déterminé par l'ensemble des vecteurs \mathbf{x} de la forme $\begin{pmatrix} t \\ -6t \\ -4t \end{pmatrix}$, où $t \in \mathbb{R}$

Le noyau de ϕ est donc engendré par un vecteur, il forme donc une droite vectorielle de \mathbb{R}^3 . C'est donc un espace de dimension 1.

Exercice 1.13. Déterminer une base du noyau de l'application linéaire ϕ dont la représentation matricielle est donnée par

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

Correction

Pour déterminer une base du noyau de cette matrice, on considère un élément $\mathbf{x} = (x_1, x_2, x_3, x_4)$ de ce noyau, ce dernier doit vérifier

$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = & 0, \\ x_1 + 2x_2 + 3x_3 + 4x_4 & = & 0, \\ 4x_1 + 3x_2 + 2x_3 + x_4 & = & 0 \end{cases} \begin{cases} x_1 + x_2 + x_3 + x_4 & = & 0, \\ x_2 + 2x_3 + 3x_4 & = & 0, \\ -x_2 - 2x_3 - 3x_4 & = & 0 \end{cases}$$

Les deux dernières équations sont identiques, cela nous ramène donc à un système à deux équations

$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = & 0, \\ x_2 + 2x_3 + 3x_4 & = & 0, \end{cases} \rightarrow \begin{cases} x_1 & = & x_3 + 2x_4, \\ x_2 & = & -2x_3 - 3x_4, \end{cases}$$

On en déduit que le système admet pour solutions les éléments suivants

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_3 \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \end{pmatrix}$$

Ainsi les vecteurs $\begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \end{pmatrix}$ constituent une base du noyau de cette application.

Exercice 1.14. Déterminer une base de l'image de l'application linéaire ϕ dont la représentation matricielle est donnée par

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

Correction

On rappelle que l'image d'une application est engendrée par les vecteurs colonnes de la matrice représentant cette application.

On peut déjà se douter, à l'aide du théorème du rang, de la dimension de l'espace image étant donné l'exercice précédent où l'on a a travaillé sur le noyau.

Ainsi déterminer une base de l'image de cette application, revient à déterminer une famille libre des vecteurs colonnes de la matrice.

Si les vecteurs étaient linéairement indépendants, alors le système $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \mathbf{0}$ admettrait $\mathbf{x} = \mathbf{0}$ comme unique solution, *i.e.*

$$x_1 \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} + x_2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} = \mathbf{0}.$$

Ici on va chercher à exploiter le travail effectué sur le noyau en exploitant les relations obtenues à l'exercice précédent :

$$\begin{cases} x_1 &= x_3 + 2x_4, \\ x_2 &= -2x_3 - 3x_4, \end{cases}$$

Posons $x_3 = -1$ et $x_4 = 0$ dans notre relation principale, on en déduit, en utilisant notre système précédent que $x_1 = -1$ et $x_2 = 2$. D'où :

$$-\begin{pmatrix}1\\1\\4\end{pmatrix}+2\begin{pmatrix}1\\2\\3\end{pmatrix}=\begin{pmatrix}1\\3\\2\end{pmatrix}.$$

Ce qui permet d'exprimer la troisième colonne de notre matrice comme une combinaison linéaire des deux premières. De la même façon, posons $x_3=0$ et $x_4=-1$ dans notre relation principale, on en déduit, en utilisant notre système précédent que $x_1=-2$ et $x_2=3$. D'où :

$$-2\begin{pmatrix}1\\1\\4\end{pmatrix} + 3\begin{pmatrix}1\\2\\3\end{pmatrix} = \begin{pmatrix}1\\4\\1\end{pmatrix}.$$

On a exprimé la quatrième colonne de notre matrice comme une combinaison linéaire des deux premières. De plus, les deux premières colonnes sont linéairement indépendantes (cela se voir très fa-

cilement), donc une base de l'image de notre application est donnée par les vecteurs
$$\begin{pmatrix} 1\\1\\4 \end{pmatrix}$$
 et $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$.

Nous aurions également pu faire cela uniquement en nous ramenant à une matrice échelonnée réduite en travaillant sur les colonnes de la matrice, ce qui aurait été beaucoup plus rapide! Je vous le laisse à titre d'entraînement

Exercice 1.15. On considère l'application $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$\phi(x_1, x_2, x_3) = (4x_1 + 2x_2 - x_3, x_1 + x_2 + x_3, -x_1 + x_2 - x_3).$$

Déterminer le noyau de cette application. Peut-on dire que ϕ est un automorphisme de \mathbb{R}^3 ?

Correction

Pour la première question, on procédera de la même manière que les fois précédentes.

$$\phi(\mathbf{x}) = \mathbf{0} \iff \begin{cases} 4x_1 + 2x_2 - x_3 &= 0, \\ x_1 + x_2 + x_3 &= 0, \\ -x_1 + x_2 - x_3 &= 0 \end{cases} \rightarrow \begin{cases} x_1 + x_2 + x_3 &= 0 & L_1 \leftarrow L_2 \\ -x_1 + x_2 - x_3 &= 0 & L_2 \leftarrow L_3 \\ 4x_1 + 2x_2 - x_3 &= 0 \end{cases}$$

$$\rightarrow \begin{cases}
x_1 + x_2 + x_3 &= 0 \\
x_2 &= 0 & L_2 \leftarrow L_2 + L_1 \\
-2x_2 - 5x_3 &= 0 & L_3 \leftarrow L_3 - 4L_1
\end{cases}
\begin{cases}
x_1 + x_2 + x_3 &= 0 \\
x_2 &= 0 \\
-5x_3 &= 0 & L_3 \leftarrow L_3 + 2L_2
\end{cases}$$

On en déduit que la solution de ce système est le vecteur nul. Ainsi l'application ϕ est injective. Or il s'agit d'un endomorphisme (c'est une application linéaire de \mathbb{R}^3 dans \mathbb{R}^3) de \mathbb{R}^3 , elle est donc aussi surjective. In fine, l'application ϕ est un automorphisme de \mathbb{R}^3 .

Exercice 1.16. Considérons une application linéaire $\phi: \mathbb{R}^3 \to \mathbb{R}^2$ définie par

$$\phi(x_1, x_2, x_3) = (2x_1 - x_2 + x_3, -x_1 + x_2 - x_3).$$

Supposons que \mathbb{R}^2 est muni de sa base canonique $(\mathbf{e}_1, \mathbf{e}_2)$ et \mathbb{R}^3 de sa base canonique $(\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3')$.

- 1. Déterminer la représentation matricielle de l'application ϕ .
- 2. Déterminer l'image du vecteur $\mathbf{u} = 2\mathbf{e}_1' 2\mathbf{e}_2' \mathbf{e}_3'$ avec **et** sans l'aide de la représentation matricielle.

Correction

1. La représentation matricielle de cette application nous donnera une une matrice A de 2 lignes et 3 colonnes, dont les colonnes correspondent aux images des vecteurs de bases dans cette même base, i.e.

$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix}$$

2. Commençons par la forme algébrique, c'est-à-dire en passant par la définition de la fonction ϕ .

On commence par noter que les image des vecteurs de base $\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'$ sont données par les relations

$$\phi(\mathbf{e}_1') = 2\mathbf{e}_1 - \mathbf{e}_2,$$

$$\phi(\mathbf{e}_2') = -\mathbf{e}_1 + \mathbf{e}_2,$$

$$\phi(\mathbf{e}_2') = \mathbf{e}_1 - \mathbf{e}_2,$$

On peut alors calculer l'image du vecteur ${\bf u}=2{\bf e}_1'-2{\bf e}_2'-{\bf e}_3'$ par l'application ϕ

$$\phi(\mathbf{u}) = \phi(2\mathbf{e}'_1 - 2\mathbf{e}'_2 - \mathbf{e}'_3),$$

$$\downarrow \phi \text{ est une application linéaire}$$

$$= 2\phi(\mathbf{e}'_1) - 2\phi(\mathbf{e}'_2) - \phi(\mathbf{e}'_3),$$

 \downarrow on calcule les images des vecteurs de base $= 2(2\mathbf{e}_1 - \mathbf{e}_2) - 2(-\mathbf{e}_1 + \mathbf{e}_2) - (\mathbf{e}_1 - \mathbf{e}_2),$ $= 4\mathbf{e}_1 - 2\mathbf{e}_2 + 2\mathbf{e}_1 - 2\mathbf{e}_2 - \mathbf{e}_1 + \mathbf{e}_2,$

$$= 5\mathbf{e}_1 - 3\mathbf{e}_2.$$

Avec la représente matricielle il suffit de faire le calcul suivant :

$$A\mathbf{u} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ -3 \end{pmatrix} = 5\mathbf{e}_1 - 3\mathbf{e}_2.$$

On retrouve le même résultat que précédemment.

1.2 Pour aller plus loin

Exercice 1.17 (Images et Noyaux). Soit E un espace vectoriel sur un corps \mathbb{R} . Soit f un endomorphisme de E. Montrer que les équivalence suivantes sont vraies 1 :

1.
$$Ker(f^2) = Ker(f) \iff Ker(f) \cap Im(f) = \{\mathbf{0}\}.$$

2.
$$Im(f^2) = Im(f) \iff Ker(f) + Im(f) = E$$
.

Correction

L'exercice ne suppose pas de grandes connaissances, il suffit simplement de se rappeler des définitions d'image et de noyau :

$$\mathbf{x} \in Ker(f) \iff f(\mathbf{x}) = \mathbf{0}$$

et

$$\mathbf{x} \in Im(f) \iff \exists \mathbf{z} \in E, \mathbf{x} = f(\mathbf{z}).$$

Il faudra ensuite traiter chaque égalité entre les ensembles en montrant les inclusions réciproques, *i.e.* pour montrer que deux ensembles A et B sont égaux, il nous faut montrer que $A \subset B$ et $B \subset A$.

- 1. Comme il s'agit d'une équivalence, il va falloir démontrer l'implication dans les deux sens.
 - On suppose que $Ker(f^2) = Ker(f)$
 - (i) Il est clair que le vecteur nul $\mathbf{0}$ est un élément de Im(f) et de Ker(f) car ce sont des sous-espaces vectoriels de E. On en déduit que $0 \in Ker(f) \cap Im(f)$.
 - (ii) Soit maintenant \mathbf{x} un élément de $Ker(f) \cap Im(f)$, on a donc $f(\mathbf{x}) = 0$ et on sait qu'il existe $\mathbf{z} \in E$ tel que $f(\mathbf{z}) = \mathbf{x}$. On en déduit que $f(f(\mathbf{z})) = f(\mathbf{x}) = \mathbf{0}$. Ainsi $\mathbf{z} \in Ker(f^2) = Ker(f)$, ce qui signifie que $\mathbf{x} = f(\mathbf{z}) = 0$.
 - On suppose que $Ker(f) \cap Im(f) = \mathbf{0}$
 - (i) Il est à nouveau évident que $Ker(f) \subset Ker(f^2)$. En effet, soit $\mathbf{x} \in Ker(f)$, alors $f(\mathbf{x}) = \mathbf{0}$ et $f(f(\mathbf{x})) = f(\mathbf{0}) = \mathbf{0}$. Donc $\mathbf{x} \in Ker(f^2)$.
 - (ii) Soit $\mathbf{x} \in Ker(f^2)$, on a alors $f(f(\mathbf{x})) = 0$. Cela signifie que $f(\mathbf{x}) \in Ker(f) \cap Im(f)$, alors cette intersection est réduite au vecteur nul, donc $f(\mathbf{x}) = \mathbf{0}$. Cette dernière égalité montre bien que \mathbf{x} est un élément du noyau de f, *i.e.* $\mathbf{x} \in Ker(f)$.
- 2. Comme précédemment, nous devons démontrer l'implication dans les deux sens
 - Supposons que $Im(f^2) = Im(f)$
 - (i) L'inclusion $Im(f)+Ker(f)\subset E$ est évidente car ce sont des sous-espaces vectoriels de E.
 - (ii) Soit \mathbf{x} un élément de E, par hypothèse on sait que $f(\mathbf{x}) \in Im(f^2)$, donc il existe un vecteur $\mathbf{z} \in E$ tel que $f(\mathbf{x}) = f(f(\mathbf{z}))$. On en déduit que $f(f(\mathbf{z}) \mathbf{x}) = \mathbf{0}$, donc $\mathbf{x} f(\mathbf{z}) \in Ker(f)$. En écrivant $\mathbf{x} = \underbrace{\mathbf{x} f(\mathbf{z})}_{\in Ker(f)} + \underbrace{f(\mathbf{z})}_{\in Im(f)}$, nous obtenons le résultat demandé.
- 1. Pour montrer que deux ensembles A et B sont égaux, il nous faut montrer que $A \subset B$ et $B \subset A$.

- Supposons que Ker(f) + Im(f) = E
 - (i) L'inclusion $Im(f^2) \subset Im(f)$ est évidente. En effet, soit $\mathbf{x} \in Im(f^2)$, alors il existe $\mathbf{z} \in E$ tel que $f(f(\mathbf{z})) = \mathbf{x}$, par conséquente $\mathbf{x} = f(\mathbf{y})$ où $\mathbf{y} = f(\mathbf{z})$. On a bien écrit \mathbf{x} comme l'image par f d'un vecteur de E.
 - (ii) Considérons maintenant $\mathbf{x} \in Im(f)$, alors il existe $\mathbf{z} \in E$ tel que $f(\mathbf{z}) = \mathbf{x}$. On doit maintenant utiliser notre hypothèse, on peut donc écrire $\mathbf{z} = \mathbf{a} + \mathbf{b}$ où $\mathbf{a} \in Ker(f)$ et $\mathbf{b} \in Im(f)$. Or comme $\mathbf{b} \in Im(f)$, on sait qu'il existe $\mathbf{c} \in E$ tel que $f(\mathbf{c}) = \mathbf{b}$. Ainsi

$$\mathbf{x} = f(\mathbf{z}) = f(\mathbf{a} + f(\mathbf{c})) = f(\mathbf{a}) + f(f(\mathbf{c})) = f(f(\mathbf{c})) \in Im(f^2),$$

ce qui termine la démonstration.

Exercice 1.18 (Images et noyaux en dimension finie). Soit E un \mathbb{R} -espace vectoriel de dimension finie n. Soit f un endomorphisme de E. Démontrer les équivalences suivantes

$$Ker(f) \oplus Im(f) = E \iff Im(f^2) = Im(f) \iff Ker(f) = Ker(f^2)$$

Correction

Cela fonctionne comme pour l'exercice précédent, mais certaines démonstrations seront grandement simplifiées. On va ici démontrer les implications de gauche à droite : $(1) \implies (2)$, $(2) \implies (3)$ et $(3) \implies (1)$

• Montrons que $(1) \implies (2)$

Aucune spécificité liée à l'étude d'un espace de dimension finie, on procèdera donc comme à l'exercice précédent.

- Montrons que $(2) \implies (3)$
 - (i) On a bien $Ker(f) \subset Ker(f^2)$. En effet, soit $\mathbf{x} \in Ker(f)$, alors $f(\mathbf{x}) = \mathbf{0}$ et donc $f(f(\mathbf{x})) = f(\mathbf{0}) = \mathbf{0}$.
 - (ii) Comme $Ker(f) \subset Ker(f^2)$, pour que les deux ensembles soient égaux, il suffit de montrer qu'ils ont la même dimension! Pour cela, on va utiliser le théorème du rang

$$\dim(Ker(f^2)) = n - \dim(Im(f^2)) = n - \dim(Im(f)) = \dim(Ker(f)).$$

On en déduit que $Ker(f) = Kerf(^2)$.

Montrons que (3) ⇒ (1)
Il s'agit de démontrer que les espaces Im(f) et Ker(f) sont supplémentaires dans E.
(i) Soit x ∈ Ker(f) ∩ Im(f), il existe z ∈ E tel que f(z) = x d'où f(x) = f(f(z)) = 0. Donc z ∈ Ker(f²) = Ker(f), ainsi x = f(z) = 0. Finalement

$$Ker(f) \cap Im(f) = \{0\}.$$

(ii) Il suffit maintenant de démontrer que la somme des dimensions de ces deux sous-espaces est égale à n. Mais c'est une conséquence directe du théorème du rang, qui énonce

$$\dim(Ker(f))+\dim(Im(f))=\dim(E)=n.$$

Exercice 1.19 (Homothéties). Soit E un espace vectoriel sur \mathbb{R} de dimension finie n. On appelle homothétie, une application linéaire h_a de la forme

$$h_a: E \to E,$$

 $\mathbf{x} \mapsto a\mathbf{x},$

où a est un nombre réel.

1. Soit f un endomorphisme de E. Supposons que, quelque soit $\mathbf{x} \in E$, il existe $a_{\mathbf{x}} \in \mathbb{R}$ tel que :

$$f(\mathbf{x}) = a_{\mathbf{x}}\mathbf{x}.$$

- (a) Soient $\mathbf{x}, \mathbf{y} \in E$ deux vecteurs linéairements indépendants. Montrer que $a_{\mathbf{x}} = a_{\mathbf{y}}$. On pourra chercher à calculer $f(\mathbf{x} + \mathbf{y})$ de deux façons différentes.
- (b) Montrer que f est une homothétie.
- 2. On appelle centre de $\mathcal{L}(E)$ (i.e. centre de l'ensemble des endomorphismes de E) l'ensemble des éléments $f \in \mathcal{L}(E)$ vérifiant

$$\forall g \in \mathcal{L}(E), \ f \circ g = g \circ f,$$

i.e. il s'agit des endomorphismes de E qui commutent avec tous les autres.

- (a) Soit $\mathbf{x} \in E$. Montrer qu'il existe un projecteur $p_{\mathbf{x}}$ de E dont l'image est égale à $Vect(\mathbf{x}) = \langle \mathbf{x} \rangle$.
- (b) Déterminer le centre de $\mathcal{L}(E)$.

Correction

1. Soit f un endomorphisme de E. Supposons que, quelque soit $\mathbf{x} \in E$, il existe $a_{\mathbf{x}} \in \mathbb{R}$ tel que :

$$f(\mathbf{x}) = a_{\mathbf{x}}\mathbf{x}$$
.

(a) Soient $\mathbf{x}, \mathbf{y} \in E$ deux vecteurs linéairements indépendants. On va utiliser le fait que f est linéaire pour écrire : $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$. Ce qui nous donne

$$f(\mathbf{x} + \mathbf{y}) = a_{\mathbf{x} + \mathbf{y}}(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y}) = a_{\mathbf{x}}\mathbf{x} + a_{\mathbf{y}}\mathbf{y}.$$

Ce qui nous donne :

$$(a_{\mathbf{x}+\mathbf{y}} - a_{\mathbf{x}})\mathbf{x} + (a_{\mathbf{x}+\mathbf{y}} - a_{\mathbf{y}})\mathbf{y} = \mathbf{0}$$

Or les vecteurs \mathbf{x} et \mathbf{y} forment une famille libre, ce qui signifie que $a_{\mathbf{x}+\mathbf{y}} - a_{\mathbf{x}} = 0$ et $a_{\mathbf{x}+\mathbf{y}} - a_{\mathbf{y}} = 0$. Par suite, on déduit que $a_{\mathbf{x}} = a_{\mathbf{y}}$.

(b) Pour montrer que f est une homothétie il faut montrer que pour tout \mathbf{x} , f peut s'écrire sous la forme $f(\mathbf{x}) = a\mathbf{x}$ pour un certain réel a.

Dans la définition actuelle de f, le rapport de l'homothétie dépend du vecteur \mathbf{x} considéré, l'objectif de est montrer que $a_{\mathbf{x}} = a$ quel que soit \mathbf{x} .

Pour cela on va considérer deux vecteur \mathbf{x} et \mathbf{y} et montrer que l'on a $a_{\mathbf{x}} = a_{\mathbf{y}}$ dans tous les cas.

La question précédente nous a permis de montrer que si \mathbf{x} et \mathbf{y} sont indépendants, alors $a_{\mathbf{x}} = a_{\mathbf{y}}$. Il reste à étudier le cas où les deux vecteurs sont liés. Deux vecteurs sont liés s'il existe un réel λ tel que $\mathbf{y} = \lambda \mathbf{x}$ (on va considérer \mathbf{x} non nul). On alors

$$a_{\mathbf{y}} \mathbf{y} = f(\mathbf{y})$$

$$= f(\lambda \mathbf{x})$$

$$= \lambda f(\mathbf{x})$$

$$= \lambda a_{\mathbf{x}} \mathbf{x}$$

$$= a_{\mathbf{x}} \lambda \mathbf{x}$$

$$= a_{\mathbf{x}} \mathbf{y}.$$

On a donc $a_{\mathbf{y}}\mathbf{y} = a_{\mathbf{x}}\mathbf{y}$, ce qui montre que $a_{\mathbf{x}} = a_{\mathbf{y}}$ quels que soient \mathbf{x}, \mathbf{y} .

2. On appelle centre de $\mathcal{L}(E)$ (i.e. centre de l'ensemble des endomorphismes de E) l'ensemble des éléments $f \in \mathcal{L}(E)$ vérifiant

$$\forall q \in \mathcal{L}(E), \ f \circ g = g \circ f,$$

i.e. il s'agit des endomorphismes de E qui commutent avec tous les autres.

- (a) Pour cela il suffit de définir le projecteur $p_{\mathbf{x}}$ qui projette sur la droite vectorielle engendrée par \mathbf{x} , notée D, parallèlement à un supplémentaire de D.
- (b) On doit maintenant déterminer l'ensemble des endomorphismes qui commutent avec tous les autres. La question précédente suggère qu'il s'agit des homothéties. On peut donc commencer par montrer que ce sont bien des éléments du centre de $\mathcal{L}(E)$.

Soit f une homothétie de E. f est donc de la forme $h_a = aId$ pour un certain réel a. Considérons maintenant g un endomorphisme de E, alors pour tout $\mathbf{x} \in E$ nous avons

$$(g \circ f)(\mathbf{x}) = g(f(\mathbf{x}))$$

$$= g(a\mathbf{x})$$

$$= ag(\mathbf{x})$$

$$= f(g(\mathbf{x}))$$

$$= (f \circ g)(\mathbf{x}).$$

Il faut maintenant montrer qu'il n'y pas d'autres endomorphimes qui appartiennent au centre de $\mathcal{L}(E)$ que les homothéties.

Pour cela, considérons f un élément du centre de $\mathcal{L}(E)$ et soit $\mathbf{x} \in E$. D'après la question a) il existe un projecteur $p_{\mathbf{x}}$ qui projette sur la droite vectorielle $D = Vect(\mathbf{x})$ et parallèlement à un supplémentaire de D. Comme f appartient au centre de $\mathcal{L}(E)$, on a

$$(f \circ p_{\mathbf{x}})(\mathbf{x}) = (p_{\mathbf{x}} \circ f)(\mathbf{x}).$$

Ce qui montre que f laisse stable l'image du projecteur $p_{\mathbf{x}}$. Donc l'image d'un vecteur de $Vect(\mathbf{x})$ par l'application f est de la forme $\alpha_{\mathbf{x}}\mathbf{x}$ où $\alpha \in \mathbb{R}^*$. La question 1.b) permet de conclure que f est une homothétie. Ce qui achève la démonstration de cette question.

2 Matrices, changements de bases, et équations linéaires

2.1 Applications du cours

Exercice 2.1. Déterminer le rang des matrices suivantes

$$A = \begin{pmatrix} -1 & 1 & -1 \\ -2 & 0 & -2 \\ -1 & -3 & 1 \end{pmatrix} \quad et \quad B = \begin{pmatrix} -3 & 1 & 7 \\ -4 & 2 & 10 \\ 1 & 2 & 0 \end{pmatrix}$$

Correction

On peut montrer que ces matrices sont de rang 3 et 2 respectivement.

En effet, en appliquant la méthode du pivot de Gauss sur la matrice A, nous avons

$$A = \begin{pmatrix} -1 & 1 & -1 \\ -2 & 0 & -2 \\ -1 & -3 & 1 \end{pmatrix} \to \begin{pmatrix} -1 & 1 & -1 \\ 0 & -2 & 0 \\ 0 & -4 & 2 \end{pmatrix} \to \begin{pmatrix} -1 & 1 & -1 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Les lignes ainsi obtenues sont toutes indépendantes. Faisons de même sur la matrice B, ce qui nous donne

$$B = \begin{pmatrix} -3 & 1 & 7 \\ -4 & 2 & 10 \\ 1 & 2 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 2 & 0 \\ -3 & 1 & 7 \\ -4 & 2 & 10 \end{pmatrix} \to \begin{pmatrix} 1 & 2 & 0 \\ 0 & 7 & 7 \\ 0 & 10 & 10 \end{pmatrix}$$

On remarque que les deux dernières lignes sont proportionnelles.

Exercice 2.2. Soient $a, b, c \in \mathbb{R}$ et $A \in \mathcal{M}_3(\mathbb{R})$ définie par :

$$A = \begin{pmatrix} 1 & a & a^3 \\ 1 & b & b^3 \\ 1 & c & c^3 \end{pmatrix}$$

Calculer son déterminant et déterminer à quelle(s) condition(s) la matrice A est inversible.

Correction

La matrice A est inversible si les conditions suivantes sont toutes réunies

- -a, b et c sont des réels distincts,
- $-a+b+c \neq 0.$

En effet

$$det(A) = \begin{vmatrix} 1 & a & a^3 \\ 1 & b & b^3 \\ 1 & c & c^3 \end{vmatrix} = \begin{vmatrix} 1 & a & a^3 \\ 0 & b - a & b^3 - a^3 \\ 0 & c - a & c^3 - a^3 \end{vmatrix} = \begin{vmatrix} b - a & b^3 - a^3 \\ c - a & c^3 - a^3 \end{vmatrix} = (b - a)(c - a) \begin{vmatrix} 1 & a^2 + b^2 + ab \\ 1 & a^2 + c^2 + ac \end{vmatrix}$$

Soit

$$det(A) = (b-a)(c-a)(c^2-b^2+a(c-b)) = (b-a)(c-a)(c-b)(a+b+c).$$

Exercice 2.3. Déterminer l'inverse de la matrice $A \in \mathcal{M}_3(\mathbb{R})$ suivante :

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 4 & 0 & -1 \\ -1 & 2 & 2 \end{pmatrix}$$

Correction

Nous avons
$$A^{-1} = \begin{pmatrix} -1/2 & 1/2 & 1/2 \\ 7/4 & -3/4 & -5/4 \\ -2 & 1 & 2 \end{pmatrix}$$

En effet, commençons par montrer que A est inversible en montrant qu'elle est de rang plein ou en calculant son déterminant avec la règle de Sarrus.

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 4 & 0 & -1 \\ -1 & 2 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 2 & 1 \\ 0 & -8 & -5 \\ 0 & 4 & 3 \end{pmatrix}$$

Les deux dernières lignes ne sont pas colinéaires et elles sont indépendantes de la troisième. La matrice est donc de rang plein et inversible. On utilise ensuite le pivot de Gauss pour déterminer l'inverse :

$$\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 4 & 0 & -1 & 0 & 1 & 0 \\ -1 & 2 & 2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & -8 & -5 & -4 & 1 & 0 \\ 0 & 4 & 3 & 1 & 0 & 1 \end{pmatrix} \underset{L_2 \leftarrow L_2 - 4L_1}{L_2 \leftarrow L_2 - 4L_1}$$

$$\rightarrow \begin{pmatrix} 4 & 0 & -1 & 0 & 1 & 0 \\ 0 & -8 & -5 & -4 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{pmatrix} \xrightarrow{L_1 \leftarrow 4L_1 + L_2} \rightarrow \begin{pmatrix} 4 & 0 & 0 & -2 & 2 & 2 \\ 0 & -8 & 0 & -14 & 6 & 10 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{pmatrix} \xrightarrow{L_1 \leftarrow L_1 + L_3} \xrightarrow{L_2 \leftarrow L_2 + 5L_3}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & -1/2 & 1/2 & 1/2 \\ 0 & 1 & 0 & 7/4 & -3/4 & -5/4 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{pmatrix} \stackrel{L_1 \leftarrow \frac{1}{4}L_1}{\underset{L_2 \leftarrow \frac{-1}{8}L_2}{-1}}$$

Exercice 2.4. Soient $a, b, c \in \mathbb{R}$ et soient $A, B \in \mathcal{M}_3(\mathbb{R})$ définies par :

$$A = \begin{pmatrix} 1 & 1 & 1 \\ a+b & c+a & b+c \\ ab & ca & bc \end{pmatrix} \quad et \quad B = \begin{pmatrix} 2a & 2a & a-b-c \\ 2b & b-c-a & 2b \\ c-a-b & 2c & 2c \end{pmatrix}$$

Calculer leur déterminant et déterminer à quelle(s) condition(s) les matrices A et B sont inversibles.

Correction

La matrice A est inversible si et seulement si a, b et c sont trois réels distincts. En effet

$$det(A) = \begin{vmatrix} 1 & 1 & 1 \\ a+b & c+a & b+c \\ ab & ca & bc \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ a+b & c-b & c-a \\ ab & a(c-b) & b(c-a) \end{vmatrix} = \begin{vmatrix} c-b & c-a \\ a(c-b) & b(c-a) \end{vmatrix}$$

$$det(A) = (c-b)(c-a)\begin{vmatrix} 1 & 1 \\ a & b \end{vmatrix} = (c-b)(c-a)(b-a).$$

La matrice B est inversible si et seulement si $a + b + c \neq 0$. En effet

$$det(B) = \begin{vmatrix} 2a & 2a & a-b-c \\ 2b & b-c-a & 2b \\ c-a-b & 2c & 2c \end{vmatrix} = \begin{vmatrix} a+b+c & a+b+c & a+b+c \\ 2b & b-c-a & 2b \\ c-a-b & 2c & 2c \end{vmatrix}$$

$$= (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ 2b & b-c-a & 2b \\ c-a-b & 2c & 2c \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & 0 & 0 \\ 2b & -b-c-a & 0 \\ c-a-b & c+a+b & c+a+b \end{vmatrix} = -(a+b+c)^3.$$

Exercice 2.5. On considère la matrice $A \in \mathcal{M}_3(\mathbb{R})$ définie par

$$A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1. La matrice A est-elle inversible? Déterminer son inverse.
- 2. Déterminer une matrice N telle que $A = (I_3 + N)$.
- 3. Calculer N^2 et N^3 . Que remarquez vous?
- 4. Exprimer A^{-1} en fonction de I_3 , N et N^2 .
- 5. En déduire l'expression de A^p pour tout entier $p > 0^2$.

Correction

- 1. La matrice A est inversible. En effet, A est une matrice triangulaire supérieure dont tous les éléments diagonaux sont non nuls.
 - On peut également dire que son déterminant (qui est ici égal au produit des éléments diagonaux) est égal à 1.
- 2. On a directement

$$N = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

En effet, pour une telle matrice, on a directement la relation $A = N + I_3$. Une remarque très importante : les matrices I_3 et N commutent!

3. Calculons les produits N^2 et N^3 , nous avons

$$N^2 = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$N^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

On remarque qu'à partir du degré 3, toutes les puissances de N supérieures à 3 sont nulles. La matrice N est dite nilpotente de degré 3^3 .

^{3.} Les matrices nilpotentes sont des matrices N pour lesquelles il existe un entier n tel que $N^n = 0$. n est alors appelé l'indice ou le degré de nilpotence.

^{2.} On utilisera le fait que les matrices I_3 et N commutent et la formule du binôme

4. Cette question est un peu plus difficile et repose sur ce qui précède. On va montrer que $A^{-1} = I_3 - N + N^2$.

En effet, pour tout élément a et b qui commutent, nous avons

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{n-k} b^{k} = (a - b) \sum_{k=0}^{n-1} a^{n-k} b^{k}.$$

Si on pose $a = I_3$ et b = N dans cette dernière relation, nous avons :

$$I_3 = I_3^3 - N^3 = (I_3 - N) \sum_{k=0}^{2} I_3^{3-k} N^k = (I_3 - N) \sum_{k=0}^{2} N^k.$$

On en déduit que l'inverse de la matrice $I_3 - N$ est $\sum_{k=0}^2 N^k$. En remplaçant N par -N, on en déduit que l'inverse de $I_3 + N$ est $\sum_{k=0}^2 (-1)^k N^k = I_3 - N + N^2$.

5. Pour tout entier p > 0, nous avons

$$A^p = \begin{pmatrix} 1 & p & p^2 + 2p \\ 0 & 1 & 2p \\ 0 & 0 & 1 \end{pmatrix}$$

En effet, rappelons que $A^p = (I_3 + N)^p$. En utilisant la formule du binôme, nous obtenons

$$A^{p} = (I_{3} + N)^{p},$$

$$= \sum_{k=0}^{p} {p \choose k} N^{k} I_{3}^{n-k},$$

$$= \sum_{k=0}^{p} {p \choose k} N^{k},$$

$$= I_{3} + pN + \frac{p(p-1)}{2} N^{2}.$$

On réutilise ensuite les résultats de la question 2 pour conclure.

Exercice 2.6. Soit $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ une base de \mathbb{R}^3 et on considère les vecteurs $\mathbf{e}_1', \mathbf{e}_2'$ et \mathbf{e}_3' définis par

$$\begin{array}{rcl} \mathbf{e}_1' & = & \mathbf{e}_1 + \mathbf{e}_2 - \mathbf{e}_3, \\ \\ \mathbf{e}_2' & = & \mathbf{e}_1 - \mathbf{e}_2 + \mathbf{e}_3, \\ \\ \mathbf{e}_3' & = & -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3. \end{array}$$

- 1. Déterminer la matrice de passage de B vers la base B'.
- 2. Montrer que $\mathscr{B}' = (\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3)$ est une base de \mathbb{R}^3 .
- 3. Déterminer la matrice de passage de \mathcal{B}' vers la base \mathcal{B} .
- 4. Soit ϕ l'endomorphisme de \mathbb{R}^3 dont la représentation matricielle A dans la base $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ est donnée par

$$\frac{1}{2} \begin{pmatrix} a - b & a + c & c - b \\ b - a & c - a & b + c \\ a + b & a - c & b - c \end{pmatrix}$$

Déterminer la matrice de ϕ dans la base $(\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3')$.

Correction

1. La matrice de passage P est donnée par $P=\begin{pmatrix}1&1&-1\\1&-1&1\\-1&1&1\end{pmatrix}$.

En effet, cette dernière s'obtient en écrivant, en colonne dans le base de départ \mathcal{B} , les vecteurs de la base \mathcal{B}' , ce qui se fait directement en lisant la définition de la base \mathcal{B}' . Mais regardons cela d'un peu plus près cette matrice de passage.

Pour cela, considérons un vecteur $\mathbf{x} = \alpha_1' \mathbf{e}_1' + \alpha_2' \mathbf{e}_2' + \alpha_3' \mathbf{e}_3'$ et en exploitant la relation entre les vecteurs des bases \mathcal{B} et \mathcal{B}' on a

$$\mathbf{x} = \alpha'_1(\mathbf{e}_1 + \mathbf{e}_2 - \mathbf{e}_3) + \alpha'_2(\mathbf{e}_1 - \mathbf{e}_2 + \mathbf{e}_3) + \alpha'_3(-\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3),$$

= $(\alpha'_1 + \alpha'_2 - \alpha'_3)\mathbf{e}_1 + (\alpha'_1 - \alpha'_2 + \alpha'_3)\mathbf{e}_2 + (-\alpha'_1 + \alpha'_2 + \alpha'_3)\mathbf{e}_3, = \alpha_1\mathbf{e}_1 + \alpha_2\mathbf{e}_2 + \alpha_3\mathbf{e}_3.$

On obtient donc les relations suivantes entre les coordonnées

$$\begin{array}{rcl} \alpha_1 & = & \alpha_1' + \alpha_2' - \alpha_3', \\ \alpha_2 & = & \alpha_1' - \alpha_2' + \alpha_3', \\ \alpha_3 & = & -\alpha_1' + \alpha_2' + \alpha_3'. \end{array}$$

Ce que l'on peut exprimer de façon matricielle, obtenant ainsi les coordonnées dans l'ancienne base en fonction des coordonnées dans la nouvelle base. Cette matrice est la matrice de passage P

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \alpha_1' \\ \alpha_2' \\ \alpha_3' \end{pmatrix}$$

2. Pour montrer que \mathscr{B}' est une base de \mathbb{R}^3 , nous pourrions montrer qu'il s'agit d'une famille libre et génératrice ... ou alors montrer que la matrice de passage est inversible!

On peut montrer que la matrice de passage est inversible et que son inverse est donnée par

$$P^{-1} = \begin{pmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 \end{pmatrix}$$

- 3. Voir question précédente.
- 4. On rapelle que pour un endomorphisme A, la relation de changement de base est donnée $A' = P^{-1}AP$, où A' est la représentation matricielle de l'endomorphisme dans la nouvelle base, A celle dans l'ancienne base et P la matrice de passage de l'ancienne vers la nouvelle base.

On a directement

$$A' = \frac{1}{2} \begin{pmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} a-b & a+c & c-b \\ b-a & c-a & b+c \\ a+b & a-c & b-c \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & c \\ a & 0 & 0 \\ 0 & b & 0 \end{pmatrix}$$

Exercice 2.7. Soit u un endomorphisme de $E = \mathbb{R}^3$ dont la matrice, relativement à la base canonique, est donnée par :

$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

- 1. Déterminer le noyau et l'image de u.
- 2. Montrer que Ker(u) + Im(u) = E.
- 3. Déterminer une base \mathscr{B}' de \mathbb{R}^3 adaptée à la somme directe Ker(u) + Im(u) = E.
- 4. Déterminer la matrice de l'endomorphisme de u relativment à la base \mathscr{B}' .
- 5. Quelle la nature de u?

Correction

1. Le noyau de u est composé de l'ensemble des vecteurs $\mathbf{x} = (x_1, x_2, x_3)$ vérifiant $A\mathbf{x} = \mathbf{0}$. Les triplets sont donc solutions du système

$$\begin{cases} 2x_1 - x_2 - x_3 &= 0 \\ -x_1 + 2x_2 - x_3 &= 0 \\ -x_1 - x_2 + 2x_3 &= 0 \end{cases} \rightarrow \begin{cases} 3x_1 - 3x_2 &= 0 & L_1 \leftarrow L_1 - L_2 \\ 3x_1 - 3x_3 &= 0 & L_1 \leftarrow L_1 - L_3 \\ 0 &= 0 & L_3 \leftarrow L_1 + L_2 + L_3 \end{cases}$$

Des deux premières équations, on voit que $\mathbf{x} \in Ker(u)$ si et seulement si $x_1 = x_2 = x_3$, donc Ker(u) est le sous-espace engendré par le vecteur (1, 1, 1).

Pour déterminer l'image deux u, nous avons deux méthodes possibles.

- Première méthode : elle repose sur le fait que l'image de u est engendré par les vecteurs colonnes de la matrice A.
 - La question précédente nous a montré que la matrice était de rang 2 (conséquence du théorème du rang), donc il suffit de sélectionner deux vecteurs colonnes indépendants de la matrice A pour que ces derniers constituent une base de l'espace image. On pourra ainsi écrire que Im(u) est l'espace engendré par les vecteurs (2, -1, -1) et (-1, 2, -1).
- Deuxième méthode : on peut faire le choix de revenir à la définition. On prendra $\mathbf{y} = (y_1, y_2, y_3)$ et on dit que ce dernier appartient à Im(u) si et seulement s'il existe un vecteur $\mathbf{x} = (x_1, x_2, x_3)$ tel que $u(\mathbf{x}) = \mathbf{y}$, *i.e.* le système $A\mathbf{x} = \mathbf{y}$ admet au moins une solution.

$$\begin{cases} 2x_1 - x_2 - x_3 &=& 3y_1 \\ -x_1 + 2x_2 - x_3 &=& 3y_2 \\ -x_1 - x_2 + 2x_3 &=& 3y_3 \end{cases} \begin{cases} x_1 - x_2 &=& y_1 - y_2 & L_1 \leftarrow \frac{1}{3}(L_1 - L_2) \\ x_1 - x_3 &=& y_1 - y_3 & L_1 \leftarrow \frac{1}{3}(L_1 - L_3) \\ 0 &=& y_1 + y_2 + y_3 & L_3 \leftarrow \frac{1}{3}(L_1 + L_2 + L_3) \end{cases}$$

Le système admet au moins une solution si et seulement si $y_1 + y_2 + y_3 = 0$ (car, alors $(x_1, x_2, x_3) = (y_1, y_2, y_3)$, par exemple, est solution).

Donc l'ensemble des vecteurs solutions, *i.e.* appartenant à l'image de u, sont ceux définissant le plan d'équation $y_1 + y_2 + y_3 = 0$, dont les vecteurs les vecteurs (2, -1, -1) et (-1, 2, -1) forment bien une base.

2. Le théorème du rang nous permet déjà de conclure que la dimension du noyau et celle de l'espace image somme bien à 3 qui est la dimension de E. Pour montrer que les espaces sont supplémentaires, il nous faut alors montrer que l'intersection de ces deux ensembles est réduite au vecteur nul.

Soit $\mathbf{x} = (x_1, x_2, x_3) \in Ker(u) \cap Im(u)$. Comme \mathbf{x} appartient à Ker(u), nous avons $x_1 = x_2 = x_3$. De plus \mathbf{x} appartenant à l'image de u, nous avons $x_1 + x_2 + x_3 = 0$, ce qui assure que $3x_1 = 0$ et donc $\mathbf{x} = (0, 0, 0)$.

L'intersection des deux ensembles est bien réduite au vecteur nul, ils sont donc supplémentaires.

Nous aurions également pu montrer que les vecteurs de bases de ces deux ensembles forment une famille libre, et donc une base de E. Mais c'est l'objet de la questions suivante.

3. Nous venons de voir que Ker(u) et Im(u) sont supplémentaires. Pour obtenir une base de E, on peut alors appliquer le principe de **recollement des bases**. Connaissant une base de Ker(u) et Im(u) une base de E est alors donnée par la famille de vecteurs

$$\mathscr{B}' = (\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3) = ((1, 1, 1), (2, -1, -1), (-1, 2, -1)).$$

- 4. A nouveau deux méthodes s'offrent à nous
 - Première méthode : on dispose d'une relation permettant d'exprimer un endomorphisme dans une base différente

$$A' = P^{-1}AP,$$

où P est la matrice de passage permettant de passer de la base \mathscr{B} à la base \mathscr{B}' . Elle est formée par les vecteurs de la base \mathscr{B}' exprimés, en colonne, dans la base \mathscr{B} . Donc

$$P = \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 2 \\ 1 & -1 & -1 \end{pmatrix}.$$

Il nous faut maintenant déterminer la matrice inverse P^{-1} .

$$\begin{pmatrix} 1 & 2 & -1 & 1 & 0 & 0 \\ 1 & -1 & 2 & 0 & 1 & 0 \\ 1 & -1 & -1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & 0 & 1 & 0 & -1 \\ 0 & 0 & 3 & 0 & 1 & -1 \\ 3 & 0 & 0 & 1 & 1 & 1 \end{pmatrix} \begin{matrix} L_1 \leftarrow L_1 - L_3 \\ L_2 \leftarrow L_2 - L_3 \\ L_3 \leftarrow L_1 + L_2 + L_3 \end{matrix}$$
$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 1 & 0 & 1/3 & 0 & -1/3 \\ 0 & 0 & 1 & 0 & 1/3 & -1/3 \end{pmatrix} \begin{matrix} L_1 \leftarrow \frac{1}{3} L_3 \\ L_2 \leftarrow \frac{1}{3} L_1 \\ L_3 \leftarrow \frac{1}{3} L_2 \end{matrix}$$

On a donc $P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1/3 \\ 0 & 1/3 & -1/3 \end{pmatrix}$. Il ne reste plus qu'à effectuer le produit matriciel,

pour lequel on trouve $A' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

• Deuxième méthode : elle consiste à calculer les images des vecteurs de la base \mathscr{B}' par l'endomorphisme u.

On sait déjà que $u(\mathbf{e}_1') = \mathbf{0}$ car \mathbf{e}_1' est un élément du noyau de u.

$$u(\mathbf{e}_2') = A\mathbf{e}_2' = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} = \mathbf{e}_2'$$

 et

$$u(\mathbf{e}_3') = A\mathbf{e}_3' = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} = \mathbf{e}_3'$$

On retrouve bien $A' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

5. Si on observe bien la matrice A' on remarque qu'elle laisse invariante les éléments de l'image de u. A' est donc la matrice d'un projecteur sur $Im(u) = Vect(\mathbf{e}'_2, \mathbf{e}'_3)$ parallèlement à $Ker(u) = Vect(\mathbf{e}'_1)$.

Exercice 2.8. On se place dans l'espace vectoriel $E = \mathbb{R}^3$, on note $\mathscr{B} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ sa base canonique. Soit u un endomorphisme de E dont la représentation matricielle dans la base \mathscr{B} , notée A, est donnée par :

$$A = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix}$$

On pose $\mathbf{f}_1 = \mathbf{e}_1 + \mathbf{e}_3$, $\mathbf{f}_2 = \mathbf{e}_1 + \mathbf{e}_2$ et $\mathbf{f}_3 = \mathbf{e}_1 - \mathbf{e}_3$.

- 1. Montrer que $\mathscr{B}' = (\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ une base de E.
- 2. Déterminer $u(\mathbf{f}_1), u(\mathbf{f}_2)$ et $u(\mathbf{f}_3)$ et en déduire une représentation matricielle de A dans cette nouvelle base \mathscr{B}' . Elle sera appelée D dans la suite.
- 3. Calculer D^n pour tout entier $n \in \mathbb{N}^*$.
- 4. Calculer A^n pour tout entier $n \in \mathbb{N}^*$ en fonction de la matrice A^n .

Correction

1. On procède toujours de la même, on va regarder si la matrice formée par les vecteurs écrits dans la base canonique forme est inversible, *i.e.* on va étudier la matrice

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

On peut voir très facilement que cette matrice est inversible! On peut par exemple voir une forme échelonnée réduite en ajoutant la première colonne à la troisième.

2. On va simplement procéder au calcul

$$u(\mathbf{f}_1) = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 4 \end{pmatrix} = 4\mathbf{f}_1$$
$$u(\mathbf{f}_2) = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} = 2\mathbf{f}_2$$

$$u(\mathbf{f}_3) = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} = 2\mathbf{f}_3$$

On a donc
$$D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
.

3. La matrice D étant diagonale, on a trivialement :

$$D^n = \begin{pmatrix} 4^n & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 2^n \end{pmatrix}$$

4. A l'aide de la formule de changement de base reliant les représentations du même endomorphisme U dans les bases \mathscr{B} et \mathscr{B}' , nous avons

$$A = PDP^{-1}$$

soit

$$A^n = PD^nP^{-1}$$

Il reste alors à calculer la matrice de passage de \mathscr{B} vers \mathscr{B}' ainsi que son inverse. La matrice de passage de la base \mathscr{B} vers la base \mathscr{B}' est donnée par

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

et son inverse (après calcul) est donné par

$$P^{-1} = \begin{pmatrix} 1/2 & -1/2 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & -1/2 & -1/2 \end{pmatrix}.$$

Il ne reste plus qu'à faire le calcul!

Exercice 2.9 (Projection et symétrie). Les deux questions de cet exercice sont indépendantes.

1. Soient les vecteurs de \mathbb{R}^3

$$\mathbf{b}_1 = (1, 1, 2)$$
 $\mathbf{b}_2 = (-2, -1, 3)$ et $\mathbf{b}_3 = (0, -3, -1).$

Notons alors E l'espace engendré par les vecteurs \mathbf{b}_1 et \mathbf{b}_2 et F l'espace engendré par le vecteur \mathbf{b}_3 .

- (a) Montrer que la famille $\mathscr{B} = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ est une base de \mathbb{R}^3 . Que peut-on dire des espaces E et F.
- (b) Soit p la projection sur E parallèlement à F. Calculer la matrice M de p dans la base \mathscr{B} .
- (c) Notons $\mathcal{E} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ la base canonique de \mathbb{R}^3 . Calculer la matrice N de p dans la base \mathcal{E} .
- (d) Calculer la matrice P de passage de \mathcal{E} vers \mathcal{B} .

 Quelle relation existe-t-il entre les matrices M, N et P.
- 2. Soient les vecteurs de \mathbb{R}^3

$$\mathbf{c}_1 = (1, -1, -3)$$
 $\mathbf{c}_2 = (1, 0, 3)$ et $\mathbf{c}_3 = (2, -1, 1)$.

Notons alors G l'espace engendré par le vecteur \mathbf{c}_1 et F l'espace engendré par les vecteurs \mathbf{c}_2 et \mathbf{c}_3 .

- (a) Montrer que la famille $\mathscr{C} = (\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$ est une base de \mathbb{R}^3 . Que peut-on dire des espaces G et H.
- (b) Soit s la symétrie par rapport à G parallèlement à H. Calculer la matrice S de s dans la base \mathscr{C} .
- (c) Notons $\mathcal{E} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ la base canonique de \mathbb{R}^3 . Calculer la matrice Q de passage de \mathcal{E} vers \mathcal{C} ainsi que son inverse.
- (d) En utilisant la question précédente, calculer la matrice T de s dans la base \mathcal{E} .

Correction

1. Soient les vecteurs de \mathbb{R}^3

$$\mathbf{b}_1 = (1, 1, 2)$$
 $\mathbf{b}_2 = (-2, -1, 3)$ et $\mathbf{b}_3 = (0, -3, -1)$.

(a) Pour montrer qu'il s'agit d'une base de \mathbb{R}^3 . On considère la matrice formée des vecteurs inscrits en colonne et on va montrer que cette matrice est inversible.

$$\begin{pmatrix} 1 & -2 & 0 \\ 1 & -1 & -3 \\ 2 & 3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & -3 \\ 0 & 7 & -1 \end{pmatrix} \underset{L_2 \leftarrow L_2 - L_1}{L_2 \leftarrow L_2 - L_1}$$

On peut s'arrêter là car les deux dernières lignes sont indépendantes et la première ligne est indépendante des deux suivantes. On peut donc affirmer que $\mathscr{B} = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ forme une base de \mathbb{R}^3 .

A partir de ces éléments, on peut affirmer les espaces E et F sont supplémentaires.

(b) Comme p est le projecteur sur E parallèlement à F, nous avons $p(\mathbf{b}_1) = \mathbf{b}_1$, $p(\mathbf{b}_2) = \mathbf{b}_2$ et $p(\mathbf{b}_3) = 0$. D'où

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(c) Pour déterminer l'expression de la projection p dans la base \mathcal{E} nous devons d'abord exprimer les vecteurs de \mathcal{E} dans la base \mathcal{B} . Cela revient à inverser la matrice nous donnant l'expression des vecteurs de \mathcal{B} dans la base \mathcal{E} , i.e. nous devons inverser la matrice

$$\begin{pmatrix} 1 & -2 & 0 \\ 1 & -1 & -3 \\ 2 & 3 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 & 0 & 1 & 0 & 0 \\ 1 & -1 & -3 & 0 & 1 & 0 \\ 2 & 3 & -1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 0 & 1 & 0 & 0 \\ 0 & 1 & -3 & -1 & 1 & 0 \\ 0 & 7 & -1 & -2 & 0 & 1 \end{pmatrix} \underbrace{L_2 \leftarrow L_2 - L_1}_{L_3 \leftarrow L_3 - 2L_1}$$

$$\rightarrow \begin{pmatrix} 1 & -2 & 0 & 1 & 0 & 0 \\ 0 & 1 & -3 & -1 & 1 & 0 \\ 0 & 0 & 20 & 5 & -7 & 1 \end{pmatrix} \underbrace{L_3 \leftarrow L_3 - 2L_1}_{L_3 \leftarrow L_3 - 2L_1}$$

$$\rightarrow \begin{pmatrix} 1 & -2 & 0 & 1 & 0 & 0 \\ 0 & 1 & -3 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1/4 & -7/20 & 1/20 \end{pmatrix} \underbrace{L_3 \leftarrow L_3/20}_{L_3 \leftarrow L_3/20}.$$

$$\rightarrow \begin{pmatrix} 1 & -2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1/4 & -1/20 & 3/20 \\ 0 & 0 & 1 & 1/4 & -7/20 & 1/20 \end{pmatrix} \underbrace{L_2 \leftarrow L_2 + 3L_3}_{L_1 \leftarrow L_1 + 2L_2}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1/2 & -1/10 & 3/10 \\ 0 & 1 & 0 & -1/4 & -1/20 & 3/20 \\ 0 & 0 & 1 & 1/4 & -7/20 & 1/20 \end{pmatrix} \underbrace{L_1 \leftarrow L_1 + 2L_2}_{L_1 \leftarrow L_1 + 2L_2}$$

On a donc

$$\mathbf{e}_1 = \frac{1}{2}\mathbf{b}_1 - \frac{1}{4}\mathbf{b}_2 + \frac{1}{4}\mathbf{b}_3,$$

$$\begin{split} \mathbf{e}_2 &= \frac{-1}{10} \mathbf{b}_1 - \frac{1}{20} \mathbf{b}_2 - \frac{7}{20} \mathbf{b}_3, \\ \mathbf{e}_3 &= \frac{3}{10} \mathbf{b}_1 - \frac{3}{20} \mathbf{b}_2 - \frac{1}{20} \mathbf{b}_3. \end{split}$$

Ce système permet de définir la matrice de passage P^{-1} de la base \mathcal{B} vers la base \mathcal{E} Pour obtenir l'expression de la matrice N de p dans la base \mathcal{E} , nous pouvons soit

• utiliser la formule de changement de base d'un endomorphisme et calculer

$$N = PMP^{-1}$$

et il faudrait faire le calcul pour obtenir $N = \begin{pmatrix} 1 & 0 & 0 \\ 3/4 & -1/20 & 3/20 \\ 1/4 & -7/20 & 21/10 \end{pmatrix}$.

• ou se rappeler que la matrice d'un endomorphisme dans une base donnée est entièrement déterminée par l'image des vecteurs de base par ce même endomorphisme. On peut donc calculer l'image des vecteurs de base par l'application p:

$$p(\mathbf{e}_1) = p\left(\frac{1}{2}\mathbf{b}_1 - \frac{1}{4}\mathbf{b}_2 + \frac{1}{4}\mathbf{b}_3\right) = \frac{1}{2}\mathbf{b}_1 - \frac{1}{4}\mathbf{b}_2 = \mathbf{e}_1 + \frac{3}{4}\mathbf{e}_2 + \frac{1}{4}\mathbf{e}_3$$

$$p(\mathbf{e}_2) = p\left(\frac{-1}{10}\mathbf{b}_1 - \frac{1}{20}\mathbf{b}_2 - \frac{7}{20}\mathbf{b}_3\right) - \frac{1}{10}\mathbf{b}_1 - \frac{1}{20}\mathbf{b}_2 = -\frac{1}{20}\mathbf{e}_2 - \frac{7}{20}\mathbf{e}_3$$

$$p(\mathbf{e}_3) = p\left(\frac{3}{10}\mathbf{b}_1 - \frac{3}{20}\mathbf{b}_2 - \frac{1}{20}\mathbf{b}_3\right) = \frac{3}{10}\mathbf{b}_1 - \frac{3}{20}\mathbf{b}_2 = \frac{3}{20}\mathbf{e}_2 + \frac{21}{20}\mathbf{e}_3.$$

On obtient la même expression de la matrice M.

- (d) Nous avons répondu de façon indirecte à cette question en traitant la question précédente.
- 2. Soient les vecteurs de \mathbb{R}^3

$$\mathbf{c}_1 = (1, -1, -3)$$
 $\mathbf{c}_2 = (1, 0, 3)$ et $\mathbf{c}_3 = (2, -1, 1)$.

(a) On procédera de la même façon que précédemment en montrant les vecteurs sont bien linéairement indépendants, ou en montrant que la matrice associée est inversible.

$$\begin{pmatrix} 1 & 1 & 2 \\ -1 & 0 & -1 \\ -3 & 3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 6 & 4 \end{pmatrix} \underset{L_{3} \leftarrow L_{3} + 3L_{1}}{L_{2} \leftarrow L_{2} + L_{1}}$$

On peut s'arrêter là car les deux dernières lignes sont indépendantes et la première ligne est indépendante des deux suivantes. On peut donc affirmer que $\mathcal{C} = (\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$ forme une base de \mathbb{R}^3 .

A partir de ces éléments, on peut affirmer les espaces G et H sont supplémentaires.

(b) s est la symétrie par rapport à G parallèlement à H, elle laisse donc invariant les vecteurs de base de G et transforme tout vecteur de base de H en son opposé. Sa représentation matricielle dans la base C est donnée par

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

(c) Comme pour la question précédente, nous devons exprimer les vecteurs de la base \mathcal{C} dans la base \mathcal{E} pour obtenir l'expression de Q. Pour cela, il suffit d'écrire, en colonne, les vecteurs de la base de \mathcal{C} dans la base \mathcal{E} qui n'est rien d'autre que la base canonique de \mathbb{R}^3 . Ainsi

$$Q = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 0 & -1 \\ -3 & 3 & 1 \end{pmatrix}$$

Il ne nous reste plus qu'à inverser cette matrice

$$\begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 & 1 & 0 \\ -3 & 3 & 1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 6 & 7 & 3 & 0 & 1 \end{pmatrix} \underbrace{L_2 \leftarrow L_2 + L_1}_{L_3 \leftarrow L_3 + 3L_1}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & -3 & -6 & 1 \end{pmatrix} \underbrace{L_1 \leftarrow L_1 - L_2}_{L_3 \leftarrow L_3 - 6L_2}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 3 & 5 & -1 \\ 0 & 1 & 0 & 4 & 7 & -1 \\ 0 & 0 & 1 & -3 & -6 & 1 \end{pmatrix} \underbrace{L_1 \leftarrow L_1 - L_3}_{L_2 \leftarrow L_2 - L_3}$$

On a donc

$$Q^{-1} = \begin{pmatrix} 3 & 5 & -1 \\ 4 & 7 & -1 \\ -3 & -6 & 1 \end{pmatrix}.$$

(d) On se rappelle la formule de changement de base d'un endomorphisme qui, dans le cas présent nous donne

$$T = QSQ^{-1} = \begin{pmatrix} 5 & 10 & -2 \\ -6 & -11 & 2 \\ -18 & -30 & 5 \end{pmatrix}.$$

2.2 Pour aller plus loin

Exercice 2.10 (Déterminant de Vandermonde). Soit $n \in \mathbb{N} \setminus \{0,1\}$ et $a_1, \ldots, a_n \in \mathbb{R}^n$. Calculer le déterminant de la matrice suivante :

$$\begin{vmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_{n-1} & a_{n-1}^2 & \cdots & a_{n-1}^{n-1} \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{vmatrix}$$

On commencera par calculer ce déterminant pour n=2 et n=3 et on procédera par récurrence.

Correction

L'énoncé nous suggère de commencer par calculer le déterminant de cette matrice pour les premières valeurs de n :

- pour n = 1, le déterminant est égal à 1.
- pour n=2, le déterminant est égal à :

$$\begin{vmatrix} 1 & a_1 \\ 1 & a_2 \end{vmatrix} = a_2 - a_1.$$

• pour n=3, il va falloir faire quelques transformations pour faire apparaître des zéros sur une ligne ou une colonne de notre matrice

$$\begin{vmatrix} C_2 \leftarrow C_2 - a_3 C_1 & C_3 \leftarrow C_3 - a_3 C_2 \\ \downarrow & & \downarrow & \downarrow \\ 1 & a_1 & a_1^2 \\ 1 & a_2 & a_2^2 \\ 1 & a_3 & a_3^2 \end{vmatrix} = \begin{vmatrix} 1 & a_1 - a_3 & a_1^2 - a_3 a_1 \\ 1 & a_2 - a_3 & a_2^2 - a_3 a_2 \\ 1 & 0 & 0 \end{vmatrix}.$$

On peut alors développer par rapport à la dernière ligne, puis factoriser la première ligne par $a_1 - a_3$ et la deuxième ligne par $a_2 - a_3$

$$\begin{vmatrix} 1 & a_1 - a_3 & a_1^2 - a_3 a_1 \\ 1 & a_2 - a_3 & a_2^2 - a_3 a_2 \\ 1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} a_1 - a_3 & a_1^2 - a_3 a_1 \\ a_2 - a_3 & a_2^2 - a_3 a_2 \end{vmatrix} = (a_1 - a_3)(a_2 - a_3) \begin{vmatrix} 1 & a_1 \\ 1 & a_2 \end{vmatrix}.$$

Finalement nous avons

$$\begin{vmatrix} 1 & a_1 - a_3 & a_1^2 - a_3 a_1 \\ 1 & a_2 - a_3 & a_2^2 - a_3 a_2 \\ 1 & 0 & 0 \end{vmatrix} = (a_1 - a_3)(a_2 - a_3)(a_2 - a_1) = (a_3 - a_1)(a_3 - a_2)(a_2 - a_1).$$

• En procédant ainsi, on refait apparaître notre déterminant de Vandermonde pour n=2. Ce suggère qu'il y a bien une relation de récurrence entre les différentes valeurs de n. Essayons de mettre cette relation en évidence.

$$V_n = \begin{vmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_{n-1} & a_{n-1}^2 & \cdots & a_{n-1}^{n-1} \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{vmatrix}$$

$$\begin{vmatrix} 1 & a_1 - a_n & a_1^2 - a_1 a_n & \cdots & a_1^{n-1} - a_1^{n-2} a_n \\ 1 & a_2 - a_n & a_2^2 - a_2 a_n & \cdots & a_2^{n-1} - a_2^{n-2} a_n \\ \vdots & \vdots & & \vdots & & \vdots \\ C_{n-1} \leftarrow C_{n-1} - a_n C_{n-2} & 1 & a_{n-1} - a_n & a_{n-1}^2 - a_{n-1} a_n & \cdots & a_{n-1}^{n-1} - a_{n-1}^{n-2} a_n \\ \vdots & & \vdots & & & \vdots \\ C_{2} \leftarrow C_{2} - a_n C_{1} & 1 & 0 & 0 & \cdots & 0 \end{vmatrix}$$

On développe à nouveau selon la dernière ligne, ce qui nous donne

$$V_n = (-1)^{n+1} \begin{vmatrix} a_1 - a_n & a_1^2 - a_1 a_n & \cdots & a_1^{n-1} - a_1^{n-2} a_n \\ a_2 - a_n & a_2^2 - a_1 a_n & \cdots & a_2^{n-1} - a_2^{n-2} a_n \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-1} - a_n & a_{n-1}^2 - a_{n-1} a_n & \cdots & a_{n-1}^{n-1} - a_{n-1}^{n-2} a_n \end{vmatrix}$$

A nouveau on va extraire les différentes valeurs communes à chaque ligne, *i.e.* on peut factoriser chaque ligne L_k par le facteur $(a_k - a_n)$ pour k allant de 1 à n - 1. D'où

$$V_{n} = (-1)^{n+1}(a_{1} - a_{n})(a_{2} - a_{n}) \cdots (a_{n-1} - a_{n}) \begin{vmatrix} 1 & a_{1} & \cdots & a_{1}^{n-2} \\ 1 & a_{2} & \cdots & a_{2}^{n-2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & a_{n-1} & \cdots & a_{n-1}^{n-2} \end{vmatrix},$$

$$\downarrow \text{ on reconnaît } V_{n-1}$$

$$= (-1)^{n+1}(a_{1} - a_{n})(a_{2} - a_{n}) \cdots (a_{n-1} - a_{n})V_{n-1},$$

$$\downarrow \text{ on change le signe de chaque différence}$$

$$= (-1)^{n+1+n-1}(a_{n} - a_{1})(a_{n} - a_{2}) \cdots (a_{n} - a_{n-1})V_{n-1},$$

$$= (a_{n} - a_{1})(a_{n} - a_{2}) \cdots (a_{n} - a_{n-1})V_{n-1}$$

Cela montre la relation liant V_n à V_{n-1} . Il nous reste à déterminer la valeur. Pour n=3 nous avions

$$V_3 = (a_3 - a_1)(a_3 - a_1)(a_2 - a_1) = \prod_{1 \le i < j \le 3} (a_j - a_i).$$

• Montrons alors par récurrence que pour tout entier $n \geq 2$, nous avons $V_n = \prod_{1 \leq i < j \leq n} (a_j - a_i)$ et notons H_n cette hypothèse de récurrence.

On a montré que cette hypothèse est vraie pour n = 3. Supposons maintenant que la relation est vraie au rang n - 1 et montrons qu'elle reste vraie au rang n, nous avons

$$V_n = (a_n - a_1)(a_n - a_2) \cdots (a_n - a_{n-1})V_{n-1},$$

$$= (a_n - a_1)(a_n - a_2) \cdots (a_n - a_{n-1}) \prod_{1 \le i < j \le n-1} (a_j - a_i),$$

$$= \prod_{1 \le i < j \le n} (a_j - a_i).$$

La relation reste donc vraie au rang n. On en déduit H_n est vraie pour tout entier $n \geq 2$.

Exercice 2.11 (Système linéaire). Résoudre le système (S) suivant en discutant selon les valeurs du réel m

(S):
$$\begin{cases} (1-m)x + (2m+1)y + (2m+2)z & = m \\ mx + my & = 2m+2 \\ 2x + (m+1)y + (m-1)z & = m^2 - 2m + 9 \end{cases}$$

Correction

Commençons par réécrire matriciellement notre système (S). Pour tout réel m, le système (S) s'écrit :

$$\begin{pmatrix} 1 - m & 2m + 1 & 2m + 2 \\ m & m & 0 \\ 2 & m + 1 & m - 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} m \\ 2m + 2 \\ m^2 - 2m + 9 \end{pmatrix}$$

Nous avons vu qu'un tel système peut avoir une unique solution si la matrice associée est de rang plein. Dans les autres cas, le système peut admettre une infinité ou aucune solution. On va donc regarder pour quelles valeurs de m notre endomorphisme n'est pas inversible. Pour cela calculons le déterminant.

$$det(A) = \begin{vmatrix} 1-m & 2m+1 & 2m+2 \\ m & m & 0 \\ 2 & m+1 & m-1 \end{vmatrix} = \begin{vmatrix} 1-m & 3m & 2m+2 \\ m & 0 & 0 \\ 2 & m-1 & m-1 \end{vmatrix},$$

$$\downarrow \text{ on développe selon la deuxième ligne}$$

$$= -m \begin{vmatrix} 3m & 2m+2 \\ m-1 & m-1 \end{vmatrix},$$

$$\downarrow \text{ on développe notre déterminant d'ordre 2}$$

$$= m(1-m)(3m-2m-2),$$

$$\downarrow \text{ on simplifie}$$

$$= m(1-m)(m-2).$$

Ainsi, le système (S) admet une unique solution pour tout $m \notin \{0, 1, 2\}$. Commençons par regarder ce cas là, pour cela nous utiliserons les formules dites de Cramer :

$$x = \frac{1}{\det(A)} \begin{vmatrix} m & 2m+1 & 2m+2 \\ 2m+2 & m & 0 \\ m^2 - 2m + 9 & m+1 & m-1 \end{vmatrix}$$

$$\downarrow \text{ on effectue le transformation } L_3 \leftarrow L_3 - 2L_2$$

$$= \frac{1}{m(1-m)(m-2)} \begin{vmatrix} m & 2m+1 & 2m+2 \\ 2m+2 & m & 0 \\ (m-1)(m-5) & -m+1 & m-1 \end{vmatrix},$$

$$\downarrow \text{ on factorise la dernière ligne par } m-1$$

$$= \frac{-1}{m(m-2)} \begin{vmatrix} m & 2m+1 & 2m+2 \\ 2m+2 & m & 0 \\ (m-5) & -1 & 1 \end{vmatrix},$$

$$\downarrow \text{ on développe selon la dernière ligne}$$

$$= \frac{-1}{m(m-2)} (m^2 - (2m+1)(2m+2) - (2m+2)^2 - (m-5)m(2m+2)),$$

$$= \frac{1}{m(m-2)} (2m^3 - m^2 + 4m + 6).$$

 $y = \frac{1}{\det(A)} \begin{vmatrix} 1 - m & m & 2m + 2 \\ m & 2m + 2 & 0 \\ 2 & m^2 - 2m + 9 & m - 1 \end{vmatrix},$

 \downarrow on effectue le transformation $L_3 \leftarrow L_3 - 2L_2$

$$=\frac{1}{m(1-m)(m-2)}\begin{vmatrix} 1-m & m & 2m+2\\ m & 2m+2 & 0\\ 2-2m & m^2-6m+5 & m-1 \end{vmatrix},$$

 $\downarrow\,$ on factorise la dernière ligne par 1-m

$$= \frac{1}{m(m-2)} \begin{vmatrix} 1-m & m & 2m+2 \\ m & 2m+2 & 0 \\ 2 & 5-m & -1 \end{vmatrix},$$

↓ on développe selon la dernière ligne

$$= \frac{1}{m(m-2)}((2m+2)(m-1) + m(5-m)(2m+2) - 2(2m+2)^2 + m^2),$$

$$= \frac{1}{m(m-2)}(-2m^3 + 3m^2 - 6m - 10).$$

$$z = \frac{1}{det(A)} \begin{vmatrix} 1 - m & 2m + 1 & m \\ m & m & 2m + 2 \\ 2 & m + 1 & m^2 - 2m + 9 \end{vmatrix},$$

L on effectue le transformation $L_3 \leftarrow L_3 - 2L_2$

$$= \frac{1}{m(1-m)(m-2)} \begin{vmatrix} 1-m & 2m+1 & m\\ m & m & 2m+2\\ 2-2m & 1-m & m^2-6m+5 \end{vmatrix},$$

 \downarrow on factorise la dernière ligne par 1-m

$$= \frac{1}{m(m-2)} \begin{vmatrix} 1-m & 2m+1 & m\\ m & m & 2m+2\\ 2 & 1 & 5-m \end{vmatrix},$$

↓ on développe selon la dernière ligne

$$= \frac{1}{m(m-2)} \left((1-m)m(5-m) + m^2 + 2(2m+1)(2m+2) - 2m^2 - (2m+2)(1-m) - m(5-m)(2m+1) \right).$$

$$= \frac{1}{m(m-2)} (3m^3 - 6m^2 + 12m + 2).$$

Ainsi les solutions de ce système sont données par

$$\left\{ \left(\frac{2m^3 - m^2 + 4m + 6}{m(m-2)}, \frac{-2m^3 + 3m^2 - 6m - 10}{m(m-2)}, \frac{3m^3 - 6m^2 + 12m + 2}{m(m-2)} \right) \right\}.$$

On peut maintenant étudier les solutions dans les cas où m=0, m=1 et aussi m=2.

• Traitons le cas m=0, notre système s'écrit :

$$(S): \begin{cases} -x+y+2z & = & 0\\ 0 & = & 2\\ 2x+y+-z & = & 9 \end{cases}$$

La deuxième équation n'admettant aucune solution, il en va de même du système (S).

• Traitons le cas m=1, notre système s'écrit :

$$(S): \begin{cases} 3y + 4z &= 1\\ x + y &= 4\\ 2x + 2y &= 8 \end{cases}$$

Les deux dernières lignes de ce système sont liées. On peut donc se concentrer sur les deux premières. On peut alors écrire :

(S):
$$\begin{cases} z = \frac{1}{4}(1-3y), \\ x = 4-y \end{cases}$$

Ainsi les solutions de ce système sont données par

$$\left\{ \left(4-t,t,\frac{1}{4}-\frac{3}{4}t\right)\mid t\in\mathbb{R}\right\} .$$

• On finit avec le cas m=2, notre système s'écrit :

$$(S): \begin{cases} -x + 5y + 6z &= 2\\ 2x + 2y &= 6\\ 2x + 3y + z &= 9 \end{cases} \underset{L_3 \leftarrow L_3 - L_2}{\leftarrow} \begin{cases} 12y + 12z &= 10\\ 2x + 2y &= 6\\ y + z &= 3 \end{cases}$$

On remarque que les première et la dernière équations forment un système incompatible. On en déduit, dans le cas présent, que le système n'admet pas de solutions.

Exercice 2.12 (Rang de la comatrice). Soit n un entier supérieur ou égal à 3. Pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, on note Com(A) la comatrice de A, dont les coefficients sont les cofacteurs de A.

Déterminer le rang de Com(A) en fonction du rang de A, qu'on note rg(A).

Correction

Pour cet exercice, il est important de se rappeler de la définition de la comatrice. On rappelle relation liant une matrice à son inverse pour écrire :

$$det(A)I_n = A^T Com(A)$$

Nous avons alors trois cas à distinguer :

- 1. supposons que la matrice A est de rang plein (i.e. égal à n) alors A est inversible et la relation précédente nous indique immédiatement que la comatrice est également de rang plein.
- 2. supposons que $rg(A) \leq n-2$, on se rappelle qu'un cofacteur est le résultat d'un calcul de déterminant effectué sur une matrice à laquelle on a supprimé une ligne et une colonne, *i.e.* sur une matrice carrée de taille n-1. Cette matrice extraite est au plus de rang n-2, elle n'est donc pas inversible, le cofacteur est donc toujours égal à 0. Ainsi Com(A) est nulle donc de rang nul.
- 3. supposons enfin que la matrice A est de rang égal à n-1. Cela signifie qu'il existe au moins un cofacteur non nul. La matrice A n'étant pas inversible, $A^TCom(A)$ est donc nulle. Ce qui signifie que $Im(Com(A)) \subset Ker(A^T)$ donc $rg(Com(A)) \leq dim(Ker(A^T)) = 1$ (c'est une conséquence du théorème du rang).

On en déduit que Com(A) est de rang 1.

Exercice 2.13 (Matrices triangulaires par blocs et inversion). L'objectif de cet exercice est d'établir un résultat pour une matrice par blocs.

1. Soient A, B, C et D des matrices de $\mathcal{M}_n(\mathbb{R})$ et considérons la matrice M triangulaire supérieure par blocs de la forme

$$M = \begin{pmatrix} A & C \\ 0 & D \end{pmatrix}.$$

Montrer que det(M) = det(A)det(D).

Indication : on pourra commencer par montrer que det(M) = det(A)det(D) en considérant la décomposition suivante :

$$\begin{pmatrix} A & C \\ 0 & D \end{pmatrix} = \begin{pmatrix} I_n & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} ? & ? \\ 0 & ? \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & I_n \end{pmatrix}.$$

2. On suppose maintenant que les matrices C et D commutent et que D est inversible. Montrer que l'on a

$$det(N) = \begin{vmatrix} A & C \\ B & D \end{vmatrix} = det(DA - CB).$$

 $\begin{array}{l} \textit{Indication}: \textit{on cherchera multiplier N par une certaine matrice de sorte à ce que le produit} \\ \textit{des deux donne la matrice} \begin{pmatrix} A - CD^{-1}B & C \\ 0 & D \end{pmatrix} \end{array}$

Correction

1. Utilisons directement l'indication pour écrire

$$\begin{pmatrix} A & C \\ 0 & D \end{pmatrix} = \begin{pmatrix} I_n & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} I_n & C \\ 0 & I_n \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & I_n \end{pmatrix}.$$

On en déduit

$$det(M) = \begin{vmatrix} A & C \\ 0 & D \end{vmatrix} = \begin{vmatrix} I_n & 0 \\ 0 & D \end{vmatrix} \begin{vmatrix} I_n & C \\ 0 & I_n \end{vmatrix} \begin{vmatrix} A & 0 \\ 0 & I_n \end{vmatrix}.$$

Etudions maintenant chaque déterminant séparément. Commençons par regarder le déterminant de la matrice $\begin{pmatrix} I_n & 0 \\ 0 & D \end{pmatrix}$. Si on développe selon la première ligne (ou la première colonne) on trouve

$$\begin{vmatrix} I_n & 0 \\ 0 & D \end{vmatrix} = \begin{vmatrix} I_{n-1} & 0 \\ 0 & D \end{vmatrix}.$$

On répète ce processus n fois et on trouve finalement que

$$\begin{vmatrix} I_n & 0 \\ 0 & D \end{vmatrix} = det(D).$$

On effectue le même raisonnement mais en développant à chaque fois selon la dernière ligne (ou la dernière colonne) avec la matrice $\begin{pmatrix} A & 0 \\ 0 & I_n \end{pmatrix}$ et on trouve

$$\begin{vmatrix} A & 0 \\ 0 & I_n \end{vmatrix} = det(A).$$

On peut également faire de même avec la matrice $\begin{pmatrix} I_n & C \\ 0 & I_n \end{pmatrix}$ et on déduit que son déterminant est égal à 1. Ce qui montre bien que

$$det(M) = det(A)det(D).$$

2. On suppose maintenant D est inversible, ce qui permet d'écrire :

$$\begin{pmatrix} A & C \\ B & D \end{pmatrix} \begin{pmatrix} I_n & 0 \\ -D^{-1}B & I_n \end{pmatrix} = \begin{pmatrix} A - CD^{-1}B & C \\ 0 & D \end{pmatrix}$$

A partir de là, on peut utiliser la question précédente pour conclure ⁴.

^{4.} Le résultat précédent reste bien évidemment applicable lorsque la matrice est triangulaire inférieure par blocs

En effet, à gauche de notre égalité, on retrouve bien le déterminant de la matrice N. Ensuite, il nous faut calculer le déterminant de la matrice du membre de droite, ce qui nous donne :

$$\begin{pmatrix} A - CD^{-1}B & 0 \\ C & D \end{pmatrix} = det(D)det(A - CD^{-1}B),$$

$$= det(DA - DCD^{-1}B),$$

$$\downarrow \text{ les matrices } C \text{ et } D \text{ commutent}$$

$$= det(DA - CDD^{-1}B),$$

$$= det(DA - CB).$$