

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO

Pertemuan ke_5 REDUKSI STATE

Tim pengampu

2022

Materi:

Reduksi State NFA dngn ε Move

- Dua buah FSA dikatakan Ekivalen walaupun jumlah state nya berbeda
- Jumlah state mempunyai pengaruh besar dalam suatu proses
- Oleh karenanya perlu direduksi jika memungkinkan

- Ada dua Istilah dalam proses mereduksi State
 - 1. Berbeda (distinguishable)
 - 2. Tidak Berbeda (indistinguishable)

1. Berbeda (distinguishable)
jika A dan B sebuah state, dan F
himpunan state akhir dan w sebuah
input, maka:

 $\delta(A,w) \in F \text{ dan } \delta(B,w) \notin F$ $\delta(A,w) \notin F \text{ dan } \delta(B,w) \in F$

2. Tidak Berbeda (indistinguishable) jika A dan B sebuah state, dan F himpunan state akhir dan w sebuah input, maka:

> $\delta(A,w) \in F \text{ dan } \delta(B,w) \in F$ $\delta(A,w) \notin F \text{ dan } \delta(B,w) \notin F$

Langkah Mereduksi State:

- 1. Hapus State yg tidak dapat dicapai dari state awal
- Buat semua fungsi transisinya dan semua kemungkinan pasang state
- 3. Tentukan pasang state yang berbeda

- 4. Diperoleh sisa pasang state yang tidak berbeda yg bisa digabung
- 5. Buat graph transisi dengan state yang sudah digabung
- 6. Catatan : state akhir hanya bisa digabung dengan state akhir juga
- 7. Catatan : State awal sebaiknya tidak digabung

REDUKSI STATE Contoh 1: Diketahui DFA berikut:

DFA hasil Reduksi:

Video Referensi Reduksi State

 https://www.youtube.com/watch?v=yE9D7eo5d30&list=PLRh5ykdCNEH3G_RYC8S_1znK0FLV9GTV5 &index=4

Soal 1:

S = A $F = \{D, E\}$

	0	1
Α	В	С
В	С	D
С	С	Е
D	D	D
E	E	Е
F	F	Е

Reduksi DFA tersebut

Soal 2:

	0	1
Α	В	С
В	D	G
С	E	E
D	D	G
Е	F	Е
F	F	Е
G	Е	Е

S = A F = {B,C,D,G} Reduksi DFA tersebut

REDUKSI STATE Soal 3:

$$S = A$$

 $F = \{F\}$

0 B B B G

Reduksi DFA tersebut

REDUKSI STATE Soal 4:

S = A F = {G, H} Reduksi DFA tersebut

	0	1
Α	В	В
В	D	С
С	F	G
D	Е	Н
E	D	Н
F	С	G
G	Н	G G
Н	G	Н

•Simbol ɛ diartikan empty artinya tidak ada inputan atau tanpa membaca inputan tetapi state tersebut dapat berpindah ke state lain

- State A tanpa membaca input ke state B
- State B tanpa membaca input ke state C
- State E tanpa membaca input ke state B

Bentuk Tabel Transisinya

	3	0	1
Α	{B}	{D}	{E}
В	{C}	{ }	{ }
С	{ }	{ }	{}
D	{ }	{ }	{E}
E	{B}	{ }	{}

Ada istilah :

- Himpunan state yang dapat dicapai dari suatu state tanpa membaca input
- ε -Closure(A) = {A, B, C}
- ε -Closure(D) = {D}

• Tentukan ε-Closure setiap state

- ε -Closure(A) = {A, B, C}
- ε-Closure(B) = {B, C}
- ε-Closure(C) = {C}
- ε -Closure(D) = {D}
- ε -Closure(E) = {E, B, C}

State yang tidak memiliki ɛ maka ɛ-Closure nya dirinya sendiri

• Tentukan ε-Closure setiap state

- ε -Closure(A) = {A, B, E}
- ε -Closure(B) = {B, E}
- ε -Closure(C) = {C, D}
- ε -Closure(D) = {D}
- ε -Closure(E) = {E}

- Komputer tidak dapat memproses sebuah sistem yang mengikuti sistem NFA, apalagi NFA dengan ϵ move
- Karena itu harus dibuat NFA tanpa ϵ move yang ekivalen dengan NFA dengan ϵ -move
- Untuk itu harus di ubah

- Langkah
 - 1. Buat Tabel Transisi NFA dengan ε move
 - 2. Tentukan ε -Closure setiap state
 - 3. Tentukan fungsi Transisi baru : $\delta'(Q,\Sigma) = \varepsilon Cl(\delta(\varepsilon Cl(Q),\Sigma))$

- 4. Buat Tabel Transisi NFA tanpa ε Move berdasarkan (3)
- 5. State akhir diambil dari state akhir semula di tambah state yang ε -Closure nya menuju ke state akhir $F=F\cup\{Q/\varepsilon\text{-}Cl(Q)\cap F\neq\emptyset\}$
- 6. Gambar graph transisi tanpa ε-move

Contoh 1

FAKULTAS ILMU KOMPUTER

1. Buat Tabel Transisi NFA dengan ε move

	3	0	1
Α	{B}	{}	{}
В	{}	{C}	{D}
С	{}	{}	{}
D	{}	{}	{}

2. Tentukan ε -Closure setiap state

$$\varepsilon$$
-Closure (A) = {A, B}

$$\varepsilon$$
-Closure (B) = {B}

$$\varepsilon$$
-Closure (C) = {C}

$$\varepsilon$$
-Closure (D) = {D}

3. Tentukan fungsi Transisi baru:

$$\delta'(Q,\Sigma) = \varepsilon - CI(\delta(\varepsilon - CI(Q),\Sigma))$$

$$\delta'(A,0) = \varepsilon - CI(\delta(\varepsilon - CI(A),0))$$

$$= \varepsilon - CI(\delta(\{A,B\},0))$$

$$= \varepsilon - CI(C)$$

$$= \{C\}$$

```
\delta'(A,1) = \varepsilon - CI(\delta(\varepsilon - CI(A),1))
                   =\varepsilon-Cl(\delta(\{A,B\},1))
                   =\varepsilon-Cl(D)
                   =\{D\}
\delta'(B,0) = \varepsilon - CI(\delta(\varepsilon - CI(B),0))
                   =\varepsilon-CI(\delta(\{B\},0))
                   =\varepsilon-Cl(C)
                   =\{C\}
```

```
\delta'(B,1) = \varepsilon - Cl(\delta(\varepsilon - Cl(B),1))
= \varepsilon - Cl(\delta(\{B\},1))
= \varepsilon - Cl(D)
= \{D\}
\delta'(C,0) = \varepsilon - Cl(\delta(\varepsilon - Cl(C),0))
= \varepsilon - Cl(\delta(\{C\},0))
= \varepsilon - Cl(\{\})
= \{\}
```

```
\delta'(\mathsf{C},1) = \varepsilon - \mathsf{Cl}(\delta(\varepsilon - \mathsf{Cl}(\mathsf{C}),1))
= \varepsilon - \mathsf{Cl}(\delta(\{\mathsf{C}\},1))
= \varepsilon - \mathsf{Cl}(\{\})
= \{\}
\delta'(\mathsf{D},0) = \varepsilon - \mathsf{Cl}(\delta(\varepsilon - \mathsf{Cl}(\mathsf{D}),0))
= \varepsilon - \mathsf{Cl}(\delta(\{\mathsf{D}\},0))
= \varepsilon - \mathsf{Cl}(\{\})
= \{\}
```

```
\delta'(D,1) = \varepsilon - Cl(\delta(\varepsilon - Cl(D),1))
                                                                                                                                                                        =\varepsilon-Cl(\delta(\{D\},1))
                                                                                                                                                                       =\varepsilon-CI(\{ \})
 Didapat fungsi transisi baru yaitu:
\delta'(A,0) = \{C\}, \ \delta'(B,0) = \{C\}, \ \delta'(C,0) = \{C\}, \ \delta'(C
\delta'(A,1) = \{D\}, \ \delta'(B,1) = \{D\}, \ \delta'(C,1) = \{\}
 \delta'(D,0)=\{\}, \delta'(D,1)=\{\}
```

4. Buat Tabel Transisi NFA tanpa ε Move berdasarkan (3)

	0	1
Α	{C}	{D}
В	{C}	{D}
С	{ }	{ }
D	{}	{ }

MATA KULIAH

EKIVALENSI NFA DG ε MOVE

5. State akhir baru

$$F=F\cup\{Q/\epsilon\text{-}Cl(Q)\cap F\neq\varnothing\}$$
 A: $\epsilon\text{-}Cl(A)\cap\{D\}=\{A,B\}\cap\{D\}=\varnothing$, $A\notin F$ B: $\epsilon\text{-}Cl(B)\cap\{D\}=\{B\}\cap\{D\}=\varnothing$, $B\notin F$ C: $\epsilon\text{-}Cl(C)\cap\{D\}=\{C\}\cap\{D\}=\varnothing$, $C\notin F$ D: $\epsilon\text{-}Cl(D)\cap\{D\}=\{D\}\cap\{D\}\neq\varnothing$, $D\in F$ Jadi $F=\{D\}$

PROGRAM STUDI

FAKULTAS ILMU KOMPUTER

Video Referensi NFA dengan E-move

 https://www.youtube.com/watch?v=frltQ16me9I&list=PLRh5ykdCNEH3G_RYC8S_1znK0FLV9GTV5&i ndex=2