

REACCIONES QUÍMICAS | 4° ESO EJERCICIOS

ALBA LÓPEZ VALENZUELA

Cambios físicos	y cambios químicos
	y cambios quinness

- 1. Clasifica las siguientes transformaciones en cambios físicos y cambios químicos:
 - (a) Fundir hielo.
 - (b) Respirar.
 - (c) Cortar papel.
 - (d) Encender una vela.
 - (e) Hervir agua.
 - (f) Una llave de hierro oxidándose.
 - (g) Calentar leche en el microondas.

- (h) Aplastar una bola de plastilina.
- (i) Quemar un papel.
- (j) Freír un huevo.
- (k) Disolver azúcar en el café.
- (l) La fotosíntesis.
- (m) Estirar una goma del pelo.
- (n) Romper una piedra.

Reacciones químicas

- 2. En las siguientes ecuaciones químicas, indica cuáles son los reactivos y cuáles los productos, en qué estado de agregación se encuentran y ajusta las reacciones:
 - (a) $HgO(s) \longrightarrow Hg(l) + O_2(g)$
 - (b) $Ca(s) + H_2O(l) \longrightarrow Ca(OH)_2(ac) + H_2(g)$
 - (c) $H_2O_2(l) \longrightarrow H_2O(l) + O_2(g)$
 - (d) $Na(s) + Cl_2(g) \longrightarrow NaCl(s)$
- 3. La reacción entre el hidrógeno y el oxígeno da lugar a vapor de agua. Escribe la ecuación química correspondiente a este proceso, ajústala e indica las relaciones de estequiometría en moles, en masa y en volumen que pueden obtenerse a partir de ella.
- 4. Escribe y ajusta las ecuaciones:
 - (a) hidrógeno(g) + oxígeno(g) → agua(l)
 - (b) hidrógeno(g) + oxígeno(g) → agua oxigenada(g)
 - (c) nitrógeno(g) + hidrógeno(g) → amoniaco(g)
- 5. Ajusta las siguientes ecuaciones químicas:
 - (a) $CuO + H_2SO_4 \longrightarrow CuSO_4 + H_2O$
 - (b) $N_2 + H_2 \longrightarrow NH_3$
 - (c) $Ca(OH)_2$ + $HCl \longrightarrow CaCl_2 + H_2O$
 - (d) $KClO_3 \longrightarrow KCl + O_2$
 - (e) $S_8 + O_2 \longrightarrow SO_3$
 - (f) $Zn + HCl \longrightarrow ZnCl_2 + H_2$
 - (g) $Al + HCl \longrightarrow AlCl_3 + H_2$
 - (h) Fe + O₂ \longrightarrow Fe₂O₃
 - (i) $Fe_2O_3 + H_2 \longrightarrow Fe + H_2O$
 - (j) $NH_4NO_3 \longrightarrow N_2O + H_2O$
 - (k) $Fe + H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + H_2$
 - (l) $N_2O_5(g) \longrightarrow NO_2(g) + O_2(g)$

- 6. Ajusta las siguientes reacciones de combustión:
 - (a) $CH_4 + O_2 \longrightarrow CO_2 + H_2O$
 - (b) $C_2H_6 + O_2 \longrightarrow CO_2 + H_2O$
 - (c) $C_3H_8 + O_2 \longrightarrow CO_2 + H_2O$
 - (d) $C_2H_6O + O_2 \longrightarrow CO_2 + H_2O$
 - (e) $C_6H_{12}O_6 + O_2 \longrightarrow CO_2 + H_2O$
 - (f) $C_4H_8O + O_2 \longrightarrow CO_2 + H_2O$
 - (g) $C + O_2 \longrightarrow CO_2$
 - (h) $H_2 + O_2 \longrightarrow H_2O$
- 7. Ajusta las siguientes reacciones químicas:
 - (a) $NO_2 + H_2O \longrightarrow HNO_3 + NO$
 - (b) $ZnS + O_2 \longrightarrow ZnO + SO_2$
 - (c) $CuO + Cu_2O + H_2 \longrightarrow Cu + H_2O$
 - (d) $HBr + Fe \longrightarrow FeBr_3 + H_2$
 - (e) $NH_3 + O_2 \longrightarrow NO_2 + H_2O$
 - (f) $Fe_2O_3 + CO \longrightarrow CO_2 + Fe$
- 8. Comenta los siguientes enunciados, indicando si son correctos o no:
 - (a) En todas las reacciones químicas hay tantos reactivos como productos.
 - (b) Siempre tiene que haber, al menos, dos reactivos para que tenga lugar una reacción.
 - (c) En una reacción se puede obtener un solo producto, aunque haya varios reactivos.
 - (d) Si no se observa un cambio de color, es porque no ha tenido lugar una reacción química.
 - (e) En una reacción química en la que solamente intervienen gases, el volumen de los reactivos es igual al volumen de los productos.

Masas moleculares

Masas atómicas (u)						
H: 1	N: 14	Cl: 35.5	Fe: 55.8	Al: 27	K: 39.1	
C: 12	O: 16	Na: 23	P: 31	S: 32	Br: 79.9	

- 9. Calcula la masa molecular de las siguientes sustancias:
 - (a) Molécula de hidrógeno
- (f) Cloruro de sodio
- (k) Pentacloruro de fósforo

(b) Agua

- (g) Dióxido de carbono
- (l) Trihidróxido de hierro

(c) Amoniaco

(h) Butano

(m) Sulfato de aluminio

- (d) Cloruro de hidrógeno
- (i) Molécula de oxígeno
- (n) Sulfuro de sodio

(e) Ácido nítrico

- (j) Óxido de hierro(III)
- (o) Eteno

- 10. Calcula la masa molar de las siguientes moléculas: a) agua, b) amoniaco, c) nitrato de potasio, d) ácido sulfúrico, e) bromuro de hidrógeno, f) sulfuro de hierro(III).
- 11. El butano contiene carbono e hidrógeno en una proporción de 2 a 5 átomos. Si su masa molecular es de 58 u, ¿cuál es su fórmula?
- 12. El ácido sulfúrico, H₂SO₄, es un ácido habitual en el laboratorio de Química y en la industria.
 - (a) ¿Cuál es la masa molecular del ácido sulfúrico?
 - (b) ¿Qué cantidad de hidrógeno hay en 50 g de ácido sulfúrico?
 - (c) ¿Qué porcentaje de azufre contiene este compuesto?

..... El mol y el número de Avogadro

- 13. Realiza los siguientes cálculos:
 - (a) Cuántos moles hay en 3.0 g de helio (He).
 - (b) Cuántos moles hay en 244 g de aluminio (Al).
 - (c) La masa en gramos de un átomo de aluminio (Al).
 - (d) La masa en gramos de un átomo de hierro (Fe).
 - (e) Los átomos hay en 98.5 g de calcio (Ca).
 - (f) Los átomos hay en 300 g de hierro (Fe).
 - (g) Los átomos hay en 3 moles de sodio (Na).
 - (h) Los moles que son 5×10^{24} átomos de potasio (K).
- 14. Calcule el número de átomos de carbono (C) que hay en 0.350 moles de glucosa ($C_6H_{12}O_6$).
- 15. Calcule el número de átomos de oxigeno (O) que hay en 2.33 moles de ácido benzoico ($C_7H_6O_2$).
- 16. Calcule cuántos gramos de cobre (Cu) hay en 7.33×10^{23} átomos de este elemento (Masa Cu: 63.55).
- 17. Calcule cuántos gramos de níquel (Ni) hay en 9.32×10^{21} átomos de este elemento (Masa Ni: 58.69).
- 18. Calcule cuántos gramos de oxigeno (O) hay en 2.44×10²⁴ moléculas de ácido acético (C₂H₄O₂).
- 19. Calcule cuántos gramos de carbono (C) hay en 1.25×10²² moléculas de éter dietílico (C₄H₁₀O).
- 20. ¿Cuántos gramos de carbono (C) hay en 4.54 g de retinol $(C_{20}H_{30}O)$?
- 21. ¿Cuántos gramos de nitrógeno (N) hay en 20.42 g de rivoflavina (C₁₇H₂₀N₄O₆)?

- 22. El aminoácido cisteína tiene una masa molar de 121.16 g/mol. Calcule:
 - (a) Cuántos moles hay en 5.0 g de cisteína.
 - (b) El número de átomos de oxigeno (O) que hay en 2.83 moles de cisteína (considere que una molécula de cisteína contiene 2 átomos de oxígeno).
- 23. El ácido p-toluensulfónico tiene una masa molar de 172.20 g/м. Calcule:
 - (a) Cuántos moles hay en 4.83 g de este ácido.
 - (b) El número de átomos de carbono (C) que hay en 0.342 moles de ácido p-toluensulfónico (considere que una molécula de este ácido contiene 7 átomos de carbono).
- 24. El anhídrido acético tiene una masa molar de 102.1 g/mol. Calcule:
 - (a) Cuántos moles hay en 500 g de este compuesto.
 - (b) El número de átomos de hidrógeno (H) que hay en 2.50 moles de anhídrido acético (considere que una molécula de este compuesto contiene 6 átomos de hidrógeno)
- 25. Teniendo en cuenta la definición de mol, realiza los cálculos necesarios para responder a las siguientes cuestiones:
 - (a) Si en un recipiente hay 1.8066×10^{24} moléculas de agua, ¿cuántos moles de agua contiene?
 - (b) ¿Cuántos átomos hay en un recipiente que contiene 0.4 moles de hierro?

- (c) ¿Cuántos moles corresponden a un número de moléculas de ácido sulfúrico (H_2SO_4) igual a 1.5055 × 10^{23} ?
- 26. El trióxido de azufre es un gas de fórmula SO₃. ¿Cuántas moléculas de SO₃ habrá en un recipiente que contenga 1.5 moles de este gas? ¿Cuántos átomos de azufre contendrá? ¿Y de oxígeno?
- 27. Para la acetona C_3H_6O . Determinar:
 - (a) Cuántos átomos de hidrógeno (H) hay en una molécula de acetona.
 - (b) Cuántos átomos hay en una molécula de acetona.

- (c) Cuántos átomos de hidrógeno (H) hay en un mol de acetona.
- (d) Cuántos átomos hay en un mol de acetona.
- 28. Para el furano C₄H₄O. Determinar:
 - (a) Cuántos átomos de carbono (C) hay en una molécula de furano.
 - (b) Cuántos átomos hay en una molécula de furano.
 - (c) Cuántos átomos de carbono (C) hay en un mol de furano.
 - (d) Cuántos átomos hay en un mol de furano.

..... Estequiometría

- 29. El magnesio se combina con el oxígeno molecular para formar óxido de magnesio. Si tenemos 8 gramos de magnesio, calcula:
 - (a) ¿Cuántos gramos de oxígeno se necesitan para reaccionar con todo el magnesio?
 - (b) ¿Cuántos gramos de óxido de magnesio se obtienen?

Masas atómicas (u): Mg=24; O=16

- 30. La reacción entre el ácido sulfúrico (H₂SO₄) y el hidróxido de sodio (NaOH) en disolución da lugar a sulfato de sodio (Na₂SO₄) disuelto y agua. Escribe la ecuación química, ajústala y calcula:
 - (a) Los moles de ácido sulfúrico necesarios para reaccionar con 9 moles de hidróxido de sodio.
 - (b) La masa en gramos de sulfato de sodio obtenidos a partir de 50 gramos de ácido sulfúrico.
- 31. El hidrógeno reacciona con el oxígeno para producir agua.
 - (a) Escribe la reacción ajustada indicando la proporción en moles.
 - (b) ¿Cuántos moles de hidrógeno se necesitan para obtener 15 moles de agua?
 - (c) ¿Cuántas moléculas de hidrógeno y de oxígeno se necesitan para obtener 40 moléculas de agua?
- 32. El carbono reacciona con el oxígeno para producir monóxido de carbono.
 - (a) Escribe la reacción ajustada indicando la proporción en moles.
 - (b) ¿Cuántos moles de carbono se necesitan para obtener 8 moles de monóxido de carbono?
 - (c) ¿Cuántas moléculas de oxígeno se necesitan para obtener 30 moléculas de dióxido de carbono?
- 33. El magnesio reacciona con dióxido de azufre gaseoso para dar óxido de magnesio y azufre ambos sólidos.

$$Mg(s) + SO_2(g) \longrightarrow MgO(s) + S(s)$$

- (a) Calcula la cantidad de magnesio necesario para reaccionar completamente con 20 litros de dióxido de azufre medidos a 0 °C y 1 atm.
- (b) Calcular las cantidades de óxido de magnesio y azufre formadas en la reacción.

Masas atómicas (u): Mg=24; S=32; O=16

34. El pentaóxido de dinitrógeno (N₂O₅) es un sólido incoloro, de aspecto cristalino y altamente inestable, que explota con facilidad y reacciona con el agua:

$$N_2O_5(s) + H_2O(l) \longrightarrow HNO_3(ac)$$

- (a) Ajusta la ecuación química y escribe las relaciones estequiométricas en moles y en masa.
- (b) Calcula los moles de N₂O₅ que se necesitan para obtener 15 moles de HNO₃.
- (c) ¿Qué masa de ácido nítrico se obtendrá a partir de 270 g de N₂O₅?

- 35. Considera la reacción: CaCO₃ + HCl → CaCl₂ + CO₂ + H₂O. Si reacciona 1 kg de CaCO₃:
 - (a) Calcula los g de CaCl₂.
 - (b) Calcula los moles de CO₂ y las moléculas de H₂O.
- 36. Para la reacción siguiente: CaCO₃ + HCl → CaCl₂ + CO₂ + H₂O. Si reacciona 1 tonelada de CaCO₃, calcula:
 - (a) La masa de CaCl₂ que se forma.
 - (b) El volumen de disolución de HCl necesario.
 - (c) El volumen de gas CO₂ medido a 1 atm y 0 °C.
- 37. La reacción entre el zinc (Zn) y el ácido clorhídrico (HCl) produce dicloruro de zinc (ZnCl₂) y desprende hidrógeno (H₂), de acuerdo con la siguiente ecuación:

$$Zn(s) + 2 HCl(ac) \longrightarrow ZnCl_2(ac) + H_2(g)$$

- (a) Calcula la relación estequiométrica en masa.
- (b) ¿Qué cantidad de hidrógeno se obtendrá si reaccionan 280 g de ácido clorhídrico?
- (c) Si se hacen reaccionar completamente 12.5 g de Zn, ¿qué cantidad de ZnCl₂ se obtendrá?
- 38. La combustión de un compuesto orgánico produce CO₂ y agua. Determina la masa de oxígeno que reacciona con el butano por combustión de una botella que contiene 13.4 kg de butano, así como las masas de dióxido de carbono y de agua obtenidas.
- 39. Se hacen reaccionar 50 gramos de calcio con ácido clorhídrico 2 m para dar hidrógeno gaseoso y cloruro de calcio.

$$Ca + HCl \longrightarrow CaCl_2 + H_2$$

- (a) Calcula el volumen de disolución de ácido clorhídrico necesario para que reaccione totalmente el calcio.
- (b) Calcula el volumen de hidrógeno gaseoso que se produce a 0 °C y 1 bar de presión.
- (c) Calcular la cantidad de cloruro de calcio que se produce.

Masas atómicas (u): H=1; Cl=35.5; Ca=40

40. Se hacen reaccionar 35 gramos de zinc con ácido clorhídrico 0.2 m para dar hidrógeno gaseoso y cloruro de zinc.

$$Zn + HCl \longrightarrow ZnCl_2 + H_2$$

- (a) Calcula el volumen de disolución de ácido clorhídrico necesario para que reaccione totalmente el zinc.
- (b) Calcula el volumen de hidrógeno gaseoso que se produce a 25 °C y 1 atm de presión.
- (c) Calcular la cantidad de cloruro de zinc que se produce.

Masas atómicas (u): H=1; Cl=35.5; Ca=40

41. Sobre un catalizador de platino, el monóxido de carbono (CO) reacciona fácilmente con el oxígeno (O₂) para transformarse en dióxido de carbono (CO₂):

$$2 \operatorname{CO}(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{CO}_2(g)$$

- (a) ¿Qué volumen de dióxido de carbono se obtendrá si reaccionan completamente 12 L de monóxido de carbono?
- (b) ¿Qué volumen de oxígeno se habrá consumido?
- 42. El dióxido de azufre (SO₂) reacciona con el oxígeno (O₂) y se transforma en trióxido de azufre (SO₃) en presencia de pentaóxido de divanadio (V₂O₅) como catalizador:

$$SO_2(g) + O_2(g) \longrightarrow SO_3(g)$$

- (a) Ajusta la ecuación química.
- (b) Calcula el volumen de oxígeno necesario para que reaccionen completamente 8.6 L de dióxido de azufre, medidos ambos en las mismas condiciones de presión y temperatura.
- (c) ¿Qué volumen de trióxido de azufre se obtendrá en las condiciones anteriores?