Brief Introduction to Deep Learning and TensorFlow

Deep Learning in Earth Science Lecture 1 By Xiao Zhuowei

For researchers interested in studying Earth science with deep learning.

All resources in lectures are available at

https://github.com/MrXiaoXiao/DLiES

TensorFlow Basics

Classifying Stability of Mantle with Neural Networks: An Example

Discussions

Deep Learning is about automatically obtaining representation of input and mapping (from representation) to output with deep neural network architectures.

Obtain the *representation* of input.

What We See

What Computers See

(https://adeshpande3.github.io)

(Deep Learning, MIT Press, 2016)

Obtain *mapping* from representation to output.

(Deep Learning, MIT Press, 2016)

Complicated representations are built out of simpler ones.

The graph of deep learning architecture is deep, with many layers.

Brief Introdu

Brief Introduction to Deep Learning

Considering deep learning as algorithm for non-linear function approximation

 $Ideal\ Output = Ideal\ Function(Input + Noise)$

Approximation of Ideal Output = DL Model(Input + Noise)

What can deep learning do in Earth science?

Classification

Denoising

Forward Modeling

Inversion

• • •

What can deep learning do in Earth science?

Classification

Predicting aftershocks following large earthquakes

(DeVries et al., 2018)

What can deep learning do in Earth science?

Classification

Processing remote sensing data

(Zhang et al., 2016)

What can deep learning do in Earth science? Denoising Trace number Trace number Noisy input DL output

(Beckouche and Ma, 2014)

What can deep learning do in Earth science?

Forward Modeling

Fast approximate simulation of seismic waves with deep learning

(Moseley et al., 2018)

What can deep learning do in Earth science?

Inversion

(Araya-Polo et al., 2018)

Model Observation

Inversion by DL

(Adler and Öktem, 2017)

TensorFlow Basics

Classifying Stability of Mantle with Neural Networks: An Example

Discussions

TensorFlow™ is an open source software library for high performance numerical computation.

https://www.tensorflow.org/

or

https://tensorflow.google.cn/

Install TensorFlow via Anaconda

Anaconda Distribution is a free, easy-to-install package manager, environment manager and Python distribution with a collection of 1,000+ open source packages with free community support.

Anaconda Download (https://www.anaconda.com/download/)

Tensorflow-in-Anaconda

(https://www.anaconda.com/blog/developer-blog/tensorflow-in-anaconda/)

Python is an interpreted high-level programming language for general-purpose programming.

(https://www.python.org/)

How The Python Interpreter Works

(http://opensourceforgeeks.blogspot.com/2015/10/how-python-works.html)

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text.

https://jupyter.org/

Image Manipulation with skimage

This example builds a simple UI for performing basic image manipulation with scikit-image.

- In [21]: from ipywidgets import interact, interactive, fixed from IPython.display import display
- In [22]: import skimage
 from skimage import data, filter, io
- In [23]: i = data.coffee()
- In [24]: io.Image(i)

Out[24]:


```
In [25]: def edit_image(image, sigma=0.1, r=1.0, g=1.0, b=1.0):
    new_image = filter.gaussian_filter(image, sigma=sigma, multichannel=True)
    new_image[;;;,0] = r*new_image[;;,0]
    new_image[;;,1] = g*new_image[;;,1]
    new_image[;;,2] = b*new_image[;;,2]
    new_image = io.Image(new_image)
    display(new_image)
    return new_image
```

In [26]: lims = (0.0,1.0,0.01)
w = interactive(edit_image, image=fixed(i), sigma=(0.0,10.0,0.1), r=lims, g=lims, b=lims)
display(w)

TensorFlow Hello World

TensorFlow Hello World

Modified from https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/helloworld.py

```
In [1]: import tensorflow as tf
In [2]: # Simple hello world using TensorFlow
         # Create a Constant op
         # The op is added as a node to the default graph.
         # The value returned by the constructor represents the output
         # of the Constant op.
         hello = tf.constant('Hello, TensorFlow!')
In [3]: print(hello)
         Tensor("Const:0", shape=(), dtype=string)
In [4]: # Start tf session
         sess = tf. Session()
In [5]: # Run the op
         print(sess.run(hello))
         b'Hello, TensorFlow!'
```

TensorFlow Multiply Matrices

TensorFlow Multiply Matrices Example

```
Modified from https://github.com/vahidk/EffectiveTensorflow

In [1]: import tensorflow as tf

In [2]: x = tf.random_normal([3,3])
    y = tf.random_normal([3,3])
    z = tf.matmul(x,y)

In [3]: print('{}\n{}\n{}\n{}\'.format(x,y,z))
    Tensor("random_normal:0", shape=(3, 3), dtype=float32)
    Tensor("random_normal_1:0", shape=(3, 3), dtype=float32)
    Tensor("MatMul:0", shape=(3, 3), dtype=float32)

In [4]: sess = tf.Session()
    z_val = sess.run(z)

In [5]: print(z_val)
```

```
In [5]: print(z_val)

[[-1.8857789    0.02845232    2.23009  ]
    [ 0.20160252    0.49441913    0.37605742]
    [ 3.5984905    1.7590961    -0.84973013]]
```

Approximate Quadratic Function With TensorFlow

```
In [1]: import numpy as np
        import tensorflow as tf
        #Remeber to install matplotlib in your environment
        import matplotlib.pyplot as plt
In [2]: #When using Jupyter notebook make sure to call tf.reset default graph()
        # at the beginning to clear the symbolic graph before defining new nodes.
        tf.reset default graph()
In [3]: # Placeholders are used to feed values from python to TensorFlow ops. We define
        # two placeholders, one for input feature x, and one for output y.
        x = tf.placeholder(tf.float32)
        y = tf.placeholder(tf.float32)
In [4]: # Assuming we know that the desired function is a polynomial of 2nd degree, we
        # allocate a vector of size 3 to hold the coefficients. The variable will be
        # automatically initialized with random noise.
        w = tf.get variable("w", shape=[3, 1])
In [5]: # We define yhat to be our estimate of y.
        f = tf.stack([tf.square(x), x, tf.ones like(x)], 1)
        yhat = tf.squeeze(tf.matmul(f, w), 1)
In [6]: # The loss is defined to be the 12 distance between our estimate of y and its
        # true value. We also added a shrinkage term, to ensure the resulting weights
        # would be small.
        loss = tf.nn.12 loss(yhat - y)
In [7]: # We use the Adam optimizer with learning rate set to 0.1 to minimize the loss.
        train op = tf.train.AdamOptimizer(0.001).minimize(loss)
In [8]: def generate data(size = 100):
            x val = np.random.uniform(-10.0, 10.0, size=size)
```

y val = 5 * np.square(x val) + 14.3 * x val + 8.9

return x val, y val

Approximate Quadratic Function With TensorFlow

```
In [9]: inspect step = [0,1000,5000,10000,15000,20000]
          inspect list = list()
In [10]: sess = tf.Session()
          # Since we are using variables we first need to initialize them.
          sess.run(tf.global variables initializer())
          for step in range (20001):
              x val, y val = generate data()
              , loss_val = sess.run([train_op, loss], {x: x_val, y: y_val})
              if step in inspect step:
                  print('STEP {:5d}: loss val {:}'.format(step,loss val))
                  inspect data = dict()
                  inspect data['w'] = w.eval(sess)
                  inspect data['step'] = step
                  inspect list.append(inspect data)
                   0: loss val 2060689.375
          STEP 1000: loss val 1881029.25
          STEP 5000: loss val 201219.46875
          STEP 10000: loss val 47986.7421875
          STEP 15000: loss val 4134.412109375
          STEP 20000: loss_val 0.029617290943861008
In [11]: plt.figure(figsize=(8,6))
          x axis = np.arange(-10.0,10.0,0.0001)
          y gt = 5.0 * np.square(x axis) + 14.3 * x axis + 8.9
          plt.plot(x_axis,y_gt,color='r',label='Ground Truth y = 5 * x^2 + 14.3 * x + 8.9')
          for data in inspect list:
              yhat = data['w'][0][0] * np.square(x axis) + data['w'][1][0] * x axis + data['w'][2][0]
              plt.plot(x axis, yhat, label='STEP \{:5d\} y = \{:.2f\} * x^2 + \{:.2f\} * x + \{:.2f\}'.format(
                  data['step'], data['w'][0][0], data['w'][1][0], data['w'][2][0]))
          #plt.xlim([-10.0,10.0])
          plt.legend()
          plt.show()
                — Ground Truth y = 5 * x^2 + 14.3 * x + 8.9
                 STEP 0 y = 0.50 * x^2 + 0.11 * x + 0.07
                STEP 1000 y = 1.45 * x^2 + 1.05 * x + 1.02
                STEP 5000 y = 4.32 * x^2 + 4.67 * x + 3.93
                STEP 10000 y = 5.07 * x^2 + 9.07 * x + 5.24
                STEP 15000 y = 5.03 * x^2 + 12.90 * x + 7.15
                STEP 20000 y = 5.00 * x^2 + 14.30 * x + 8.86
           400
           300
           200
           100
```

Recommended TensorFlow tutorials

Effective TensorFlow

https://github.com/vahidk/EffectiveTensorflow

TensorFlow Official Tutorial

https://www.tensorflow.org/tutorials/

Simple and ready-to-use tutorials for TensorFlow

https://github.com/astorfi/TensorFlow-World

TensorFlow Basics

Classifying Stability of Mantle with Neural Networks: An Example

Discussions

Plane Layer Heated from Below

Factors determine stability of Mantle

- (a) Gravitational acceleration
- (b) Volume expansion coefficient
- (c) Kinematic viscosity coefficient
- (d) Thermal diffusivity
- (e) Depth
- (f) Thickness
- (g) λ
- (h) dT: (T0 T1)

(Schuber et al., 2001)

Prepare Dataset

```
In [3]: #Define a function to generate data set
         def generate_data_set(instance_num = 10000, split_rate = 0.6):
             #instance[0] Gravitational acceleration
             #instance[1] Volume expansion coefficient
             #instance[2] Kinematic viscosity coefficient
             #instance[3] Thermal diffusivity
             #instance[4] Depth
             #instance[5] b
             #instance[6] \(\lambda\)
             #instance[7] (TO - T1)/1000
             #label (1,0) for stable (0,1) for unstable
             #instance[8] stability 0 is unstable and 1 is stable
             counter_for_stable = 0
             counter_for_unstable = 0
             data_set = {'input':np.zeros([instance_num, 8]), 'label':np.zeros([instance_num, 2])}
             #simulate gravitational accelerations
             data_set['input'][:,0] = np. random. uniform(0.8, 1.0, size=instance_num)
             #simulate Volume expansion coefficient
             data_set['input'][:,1] = np. random. uniform(1e-4, 1e-2, size=instance_num)
             #simulate Kinematic viscosity coefficient
             data_set['input'][:,2] = np.random.uniform(1e-2, 1.0, size=instance_num)
             #simulate Thermal diffusivity
             data_set['input'][:,3] = np.random.uniform(0.1,1.0,size=instance_num)
             #simulate Depth 10000km
             data_set['input'][:,4] = np. random. uniform(0, 0.35, size=instance_num)
             #simulate b 10000km
             for idx in range(instance_num):
                 data_set['input'][idx, 5] = np. random. uniform(max([0.25, data_set['input'][idx, 4]]), 0.35)
             data_set['input'][:,6] = np.random.uniform(0.0,0.39, size=instance_num)
             data_set['input'][:,7] = np. random. uniform(0.0,0.5, size=instance_num)
             for idx in range(instance_num):
                 g = data_set['input'][idx, 0]*10
                 a = data set['input'][idx, 1]
                 v = data_set['input'][idx, 2]*1000
                 k = data_set['input'][idx, 3]*10000
                 d = data_set['input'][idx, 4]*10000
                 b = data_set['input'][idx, 5]*10000
                 lam = data set['input'][idx, 6]*10000
                 dT = data_set['input'][idx, 7]*1000
                 Ra = (a*g*dT*(d**3))/(v*k)
                 Racr = (np. pi**4*((4+(lam/b)**2)**3))/(4*((lam/b)**4))
                 if Ra > Racr:
                     data_set['label'][idx, 0] = 0
                     data_set['label'][idx, 1] = 1
                     counter_for_unstable += 1
                     data_set['label'][idx, 0] = 1
                     data_set['label'][idx, 1] = 0
                     counter_for_stable += 1
             split_index = int(instance_num*split_rate)
             train_set = {'input':data_set['input'][0:split_index,:],
                           'label':data_set['label'][0:split_index,:]}
             test_set = {'input':data_set['input'][split_index:,:],
                           'label':data_set['label'][split_index:,:]}
             print('Stable:{} UnStable:{}'.format(counter_for_stable, counter_for_unstable))
             return train_set, test_set
```


Build Inference

hidden layer 3 = full connection layer (input tensor=hidden layer 2, n out=4, name='fc layer 3')

pred = full_connection_layer(input_tensor=hidden_layer_3, n_out=2, name='pred')

return pred

Fully Connected layer

$$\mathbf{a}^l = \sigma(\mathbf{W}^l \mathbf{a}^{l-1} + \mathbf{b}^l)$$

https://medium.com/@erikhallstrm/backpropa gation-from-the-beginning-77356edf427d

Training

```
In [7]: #set param for training
           step_num = 20001
          batch size = 1000
           data length = 8
          learning_rate = 0.01
           #setup training
           input_tensor = tf. placeholder(tf. float32, [None, data_length], name='input')
          label = tf.placeholder(tf.float32, [None, 2], name='label')
          pred = inference(input_tensor=input_tensor)
          loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=label))
          train_op = tf. train. AdamOptimizer(learning_rate = learning_rate). minimize(loss)
In [8]: def get traning batch(train set, batch size, data_length):
              batch ids = np. random. choice(len(train set['input']), batch size)
              input_batch = np. zeros([batch_size, data_length])
              label_batch = np. zeros([batch_size, 2])
              for idx in range(batch_size):
                  input batch[idx][:] = train set['input'][batch ids[idx]][:]
                  label_batch[idx][:] = train_set['label'][batch_ids[idx]][:]
              return input_batch, label_batch
 In [9]: sess = tf.Session()
          sess.run(tf.global_variables_initializer())
In [10]: #start traning
          for idx in range(step num):
              input_batch, label_batch = get_traning_batch(train_set, batch_size, data_length)
              _, loss_val = sess.run([train_op, loss], {input_tensor: input_batch, label: label_batch})
              if idx\\2000 == 0:
                  print(loss_val)
```

Testing

Accuracy: 0.9589059948921204

```
In [24]: #compare test results with theoretical curve
           plt.figure(figsize=(4,8))
          for idx in range(max(len(test_set['input']), 10000)):
              g = test_set['input'][idx, 0]*10
              a = test_set['input'][idx, 1]*1e-5
              v = test_set['input'][idx, 2]
              k = test_set['input'][idx, 3]
              d = test_set['input'][idx, 4]
              b = test_set['input'][idx, 5]*10000
              lam = test set['input'][idx, 6]*10000
              dT = test_set['input'][idx, 7]*1000
              \#map_x = ((np. pi**4)*((4+(1am/b)**2)**3))/(4*((1am/b)**4))
              map_x = (2.0*np.pi*b)/lam
              map_y = ((a*g*dT*(d**3))/(v*k))*1e7
              if map_y > 4000:
                   continue
              if np.argmax(test_pred[idx])==0:
                   map_color = 'r'
              else:
                   map_color = 'b'
              plt.plot([map_x], [map_y], color=map_color, marker='o')
           #plot theo curve
          plot_x = np. arange(0.5, 7, 0.001)
          plot_y = ((np. pi**4)*((4+(2*np. pi/plot_x)**2)**3))/(4*((2*np. pi/plot_x)**4))
          plt.plot(plot_x, plot_y, color='k', linewidth=2, label='Theo Curve')
          plt. xlabel('2*pi*b/\lambda')
          plt.ylabel('Ra')
          plt.legend()
           plt.show()
```


$$Ra = Ra_{cr} = \frac{\left(\pi^2 + 4\pi^2/\lambda^{*2}\right)^3}{4\pi^2/\lambda^{*2}} = \frac{\pi^4}{4\lambda^{*4}} \left(4 + \lambda^{*2}\right)^3$$

$$Ra = \frac{\alpha g (T_1 - T_0) b^3}{\nu \kappa}$$

$$\lambda^* = \lambda/b$$

(Schuber et al., 2001)

- **TensorFlow Basics**
- Classifying Stability of Mantle with Neural Networks: An Example
- 4 Discussions

Discussions

TensorFlow Installation via Anaconda

Step 1. Install Anaconda from (https://www.anaconda.com/download/)

Anaconda

Prompt

Step 2. Create a new conda environment containing TensorFlow.

Open Anaconda Prompt and run

'conda create -n tensorflow_env tensorflow python=3.6'

or

'conda create -n tensorflow_gpuenv tensorflow-gpu python=3.6'

for GPU version

Congratulations...

References

- [1] Ian Goodfellow Yoshua Bengio and A. Courville, "Deep Learning," 2016.
- [2] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," arXiv:1512.03385 [cs], Dec. 2015.
- [3] P. M. R. DeVries, F. Viégas, M. Wattenberg, and B. J. Meade, "Deep learning of aftershock patterns following large earthquakes," *Nature*, vol. 560, no. 7720, pp. 632–634, Aug. 2018.
- [4] L. Zhang, L. Zhang, and B. Du, "Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art," *IEEE Geoscience and Remote Sensing Magazine*, vol. 4, no. 2, pp. 22–40, Jun. 2016.
- [5] S. Beckouche and J. Ma, "Simultaneous dictionary learning and denoising for seismic data," *GEOPHYSICS*, vol. 79, no. 3, pp. A27–A31, May 2014.
- [6] B. Moseley, A. Markham, and T. Nissen-Meyer, "Fast approximate simulation of seismic waves with deep learning," arXiv:1807.06873 [physics], Jul. 2018.
- [7] M. Araya-Polo, J. Jennings, A. Adler, and T. Dahlke, "Deep-learning tomography," *The Leading Edge*, vol. 37, no. 1, pp. 58–66, Jan. 2018.
- [8] J. Adler and O. Öktem, "Solving ill-posed inverse problems using iterative deep neural networks," *Inverse Problems*, vol. 33, no. 12, p. 124007, Dec. 2017.