For ei gn-1 2013

CHEM STRY MARKING SCHEME FOREI GN 2013 SET - 56/2/1

Q no.	Ans wers		Marks
1	Met allic solids		1
2	Os motic pressure		1
3	Zone refining		1
4	2-chl or o- 3- met hyl but ane		1
5	Phenol < 4-nitrophenol < 2, 4, 6-tri nitrophe	nol	1
6	СӉ-СҢОӇ-СӉ-СНО		1
7	Because of +I effect or electron donating r	ature of methyl group.	
			1
8	He xa met hyl ene di a mi ne and adi pi c aci d		1
9			1/2
			1
	According to Henry's law, p $\therefore x_{CH_4} = \frac{p}{k_H} = \frac{7}{4.27}$	$\frac{= k_{\rm H} x_{\rm CH_4}}{60 \text{ mm Hg}} = 1.78 \times 10^{-3}$ $1 \times 10^5 \text{ mm Hg}$	1/2
10	(1) Mole fraction of methane in benzene; $x_{\text{CH}_4} = 1.78 \times 10^{-3}$. to freeze the solution temperature has to be 10 we.		1
11	a) $k = 2303 \log \left[A_0 \right]$ $t \left[A \right]$		1/2
	t [A]		
	$t = \frac{2303}{60 \mathrm{s}^{-1}} \log 10$		1
	t = 0.0383sec		1/2
12	a) Pepti zati on takes place. b) Because of larger surface area.		1 1
13	<u>Lyophilic sds</u>	Lyophobic sols Lyophobic sols are solvent repelling	
	2. Reversible 2.	Irreversi ble	

For ei gn-1 2013

	3. Stable 3. Unstable	1/2+1/2	
	ex. Gu m, gel ati ne, starch, rubber (any one) (any t wo) ex. Met al sols, met al sul phi des (any one)	1/2+1/2	
14	A umina is leached out by using conc. Na OH solution to sodi umal uminate and silica as sodi umsilicate. Al 2 Q + 2 Na OH + 3 H2 O 2 Na[A(OH)_4]		
	Al u mi ni u m hydroxi de or hydrated al u mi na is then ppt. by passing CO ₂ gas whereas sodi u m silicate re mai ned in sol uti on. Al u mi ni u m hydroxi de is i gnited to get pure al u mi na. (or explai ned in any other correct suitable manner) OR		
	(a) Cu ₂ S+Fe S	1	
	(b) Depressant is used to separate sul phi de ore selectively from a mixture of two sul phi de ores.	1	
15	(i) HF < HO < HBr < H	1	
16	$(ii) \qquad NH_3 < PH_3 < A_5 H_3 < SbH_3 < B H_3$	1	
	a) CHO $(CHOH)_4$ CH_2OH $CHOH$ $CHOH$ CH_3OH CH_3OH	1	
	b) CHO $(CHOH)_4 \xrightarrow{Bt_2 water} (CHOH)_4$ CH_2OH CH_2OH	1	
17	 a) Hydrogen bonding b) Nucleotide is sugar +nitrogenous base + phosphate group whereas Nucleoside is sugar + nitrogenous base. 	1+1	

For ei gn-1 2013

18	1) Buna- S < Pol yt hene < nyl on- 6, 6 2) Neoprene < PVC < Nyl on- 6	1+1
19	$d = \underbrace{z \times M}_{a^3 \times N_A}$	1/2
	$27 \text{ g c m}^{3} = \frac{\text{z x 27 g mol}^{-1}}{(4.05 \text{ x } 10^{-8} \text{ c m})^{3} \text{ x } 6.022 \text{ x } 10^{23} \text{ mol}^{-1}}$	1
	$z = \frac{27 \text{ g cm}^3 \text{ x } 6022 \text{ x } 10^{23} \text{ mol}^{-1} \text{ x } (4.05 \text{ x } 10^{-8} \text{ cm})^3}{27 \text{ g mol}^{-1}}$	
	z ≈ 4	1/2
	Hence the cubic unit cell is f.c.c.	1
20	1) I st order	
	2) – k	
	3) sec ⁻¹	1x3=3

21	(i) HO H	
	(iii) F Xe F	1 x3=3
22	i) Due to discrete tetrahedral structure and angular strain, white phosphorus is more reactive whereas red phosphorus is polymeric and therefore less reactive. ii) Because of higher charge/size ratio of Sn ⁴⁺ . iii) Due to its ease of liberating nascent oxygen. OR	1x3=3
22	(i) $PO_3 + 3H_2O \longrightarrow H_3PO_3 + 3HO$ (ii) $XeF_2 + PF_5 \longrightarrow [XeF]^+[PF_6]^-$ (iii) $2NaN_3 \longrightarrow 2Na + 3N_2$	1x3=3
23	i) Di bromi dobi s-(et hane- 1, 2- di a mi ne) cobalt (III) / Di bromi dobi s-(et hyl enedi a mi ne) cobalt (III) ii) I oni zati on i someri s m	
	iii) Because of back bonding (synergic bonding), CO stabilize the complex more than NH ₃ .	1 x 3=3

24	i) Retention of configuration	
	ii)Inversion of configuration	
	iii) Race misation	
		1x3=3
25	(i) $CH_3-CH_2-\overset{\cdots}{\bigcirc}-H$ + H^* \longrightarrow $CH_3-CH_2-\overset{\cdots}{\bigcirc}-H$	1/2
	(ii) $CH_3CH_2 - \overset{\circ}{O}: + CH_3 - CH_2 - \overset{\circ}{O} + CH_3CH_2 - \overset{\circ}{O} - CH_2CH_3 + H_2O$	1/2
	(iii) $CH_3CH_2 \longrightarrow CH_2CH_3 \longrightarrow CH_3CH_2 - O - CH_2CH_3 + H^{\dagger}$	1
	11	1
	(b) $G Q / KMh Q / Aci diffied K G_2 Q$	1
26	in ETNH2 NaNO2+HCI DINZCI CUCVHCI, ETCI	
	000	
	(ii) CH3COOH NH3 > CH3CONH2 B12/KOH > CH3NH2	
	(ii) CH3COOH A CH3CONII2	
	(iii) CGH5N2CIT H2O > CGH5OH	
	(III) C6H5N2C1	1x3=3
27	i) Hel ping, caring and setting an example of true friendship.	
	ii) Tranquilizers	
	iii) Because in excess it act as poison and can harm the nervous system	
		1x3=3
28	(a) Kohlrausch's law states that limiting molar conductivity of an electrolyte can be	
	represented as the sum of the individual contributions of the anion and cation of the	1
	electrolyte.	
	It is used to calculate \bigwedge^0 m of even weak electrolyte./ It is used to calculate degree of dissociation.	1

	(b)	
	P=o(1/ o)	
	R=ρ(1/a) Cell constant 1/a=R/ρ=Rκ = $(1500 \Omega) x(0.15x10^4 \text{Sc m}^1)$ =0. 225c m ¹	1 1 1
28	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	= 0.34 V - (-2.36) V $= +2.70 V$	1/2 1/2
	$E_{cell} = E_{gell} - \frac{0.059 \log [Mg^{2+}]}{2}$ $[Cu^{2+}]$	1
	$E_{\text{cell}} = 2.70 \text{ V} - \frac{0.059}{2} \log \frac{(0.001 \text{ M})}{(0.0001 \text{ M})}$	
	2 70 V- 0.059 log (10)	
	= 2 70 V - 0 0295 V = 2 6705 V	1
	$\Delta G = -nFE_{cell}^{O}$	1/2
	=- 2 x 96500 C mol ⁻¹ x 2.70 V = - 521.1 kJ mol ⁻¹	1/2
29	 i) Because of the absence of unpaired electron in the for mation of metallic bond/because of non-involvment of d-orbital electrons in the formation of metallic bond. ii) Because of lant hanoid contraction iii) Because of incomplete filling of d-orbitals. 	

	iv) Because of low Δ_{hyd} H° and high Δ_{h} H° of Cu^{2+} ion and Cu respectively. v) Because G^{3+} has stable t_{2g}^{3} half filled configuration.	1x5=5
29	OR $2 \operatorname{Mn} O_{2} + 4 \operatorname{KOH} + O_{2} \longrightarrow 2 \operatorname{K}_{2} \operatorname{Mn} O_{4} + 2 \operatorname{H}_{2} O$	1
	$Mh Q_1^{2-}$ under goes disproportionation reaction in acid medium to give $Mh Q_1^{-}$ ion.	1
	$3 \text{ Mh } Q_4^{2-} + 4 \text{ H}^{\dagger} \qquad -2 \text{ Mh } Q_4^{} + \text{Mh } Q_2 + 2 \text{ H}_2 \text{ O}$	1
	i) $Mh Q_{1}^{-} + 8H^{+} + Fe^{2+} - Mh^{2+} + Fe^{3+} + 4H_{2} O$	1
	ii) $2 \text{ Mh Q}^{-} + 16 \text{ H}^{+} + 5 \text{ Q} \text{ Q}^{2-} - 2 \text{ Mh}^{2+} + 10 \text{ CQ} + 8 \text{ H}_{2} \text{ O}$	1
30	a)	
	i) Because carbon of carbonyl group in ethanal is more electrophilic than of ket one due to the presence of one electron donating methyl group.	
	ii) Because of the absence of α- hydrogen at om iii) Because of extensive association of hydrogen bond / dimerisation in carboxylic acid	1x3=3
	b) i) Add Na OH + I_2 , acet ophenone gives yellow ppt. of CH 3 whereas benzophenonedoes not for many ppt.	
	ii) Add Na OH + I_2 , et hanal gives yellow ppt. of CHI ₃ whereas benzal dehyde does not for many ppt.	1+1
	(or any other correct suitable test) OR	

30	(ii) CH3-C	OH)	1 x5=5
	Sh. S K Murj a		
	Dr (Mrs.) Sangeeta Bhatia		
	Prof. R D Shukla	Mr. K.M. Abdul Raheem	
	Dr. K N Uppadhya	M.D A Mshra	
	Mr. Rakesh Dhawan	M. Deshbir Singh	
	Ms. Neeru Sofat	Mr. Akhileshwar Mishra	
	Mr. Virendra Singh		