Assignment 4

1. **a.** $\{f: [T1 \rightarrow T2], g: [T1 \rightarrow T2], a: T1\} \vdash (f(ga)): T2\}$

This typing statement is false because if a is from type T1, so $(g \ a)$ will return the type T2, and from that we can see that f in the expression $(f \ (g \ a))$ will get the type T2 instead of the type T1.

b. $\{x: T1, y: T2, f: [T2 \to T1]\} \vdash (f y) : T1$

This typing statement is true. y type is T2, so f return value's type will be T1 as the typing statement shows.

c. $\{f : [T1 \to T2]\} \vdash (lambda(x)(f x)): [T1 \to T2]$

This typing statement is true. We can infer this from the following type inference:

	<u> </u>
Expression	Var
(lambda(x)(fx))	T_0'
(f x)	T_1'
f	T_f'
χ	T_x'

Now we can build the following type equations:

Expression	Var
(lambda(x)(fx))	$T_0' = [T_x' \to T_1']$
(f x)	$T_f' = [T_x' \to T_1']$

Now from the substitution $[T1 \to T2]$ we will be able to see that $T1 := T'_x$, $T2 := T'_1$ and because of that we can see that:

$$(lambda(x)(f x)): T'_0 = [T'_x \to T'_1] = [T1 \to T2] \Rightarrow (lambda(x)(f x)): [T1 \to T2]$$

d. $\{f: [T1 * T2 \to T3]\} \vdash (lambda(x)(f x 100)): [T1 \to T3]$

This typing statement is false. We can infer this from the following type inference:

71 6	0 /1
Expression	Var
(lambda(x)(f x 100))	T_0'
(f x 100)	T_1'
f	T_f'
x	T_{x}^{\prime}
100	T'_{num100}

Now we can build the following type equations:

Expression	Var
(lambda(x)(f x 100))	$T_0' = [T_x' \to T_1']$
(f x 100)	$T_f' = [T_x' * T_{num100}' \to T_1']$
100	$T'_{num100} = Number$

Now from the substitution $\{T1 * T2 \rightarrow T3\}$ we will be able to see that:

$$[T'_x * T'_{num100} \to T'_1] = [T1 * T2 \to T3] \Rightarrow T'_{num100} = Number = T2$$

So, we get that T2 = Number in contradiction because we got 2 atomic variables that are equal but not the same.

2. **a.** ((lambda (x1) (+ x1 1)) 4)

STAGE 1: Renamed bound variables: ((lambda(x) + x 1)) 4)

STAGE 2: Assign type variables to all sub-exps:

Expression	Var
((lambda(x)(+x1))4)	T_0
(lambda(x)(+x1))	T_1
(+x1)	T_2
+	T_{+}
x	T_{x}
1	T_{num1}
4	T_{num4}

STAGE 3: Construct type equations:

Expression	Equation
((lambda(x)(+x1))4)	$T_1 = [T_{num4} \to T_0]$
(lambda(x)(+x1))	$T_1 = [T_x \to T_2]$
(+x1)	$T_+ = [T_x * T_{num1} \rightarrow T_2]$
+	$T_{+} = [Number * Number \rightarrow Number]$
1	$T_{num1} = Number$
4	$T_{num4} = Number$

STAGE 4: Solving the equations:

Equation	Substitution
$T_1 = [T_{num4} \to T_0]$	{}
$T_1 = [T_x \to T_2]$	
$T_+ = [T_x * T_{num1} \rightarrow T_2]$	
$T_{+} = [Number * Number \rightarrow Number]$	
$T_{num1} = Number$	
$T_{num4} = Number$	

Equation	Substitution
$T_1 = [T_x \to T_2]$	$\{T_1 \coloneqq [T_{num4} \to T_0]\}$
$T_+ = [T_x * T_{num1} \rightarrow T_2]$	
$T_{+} = [Number * Number \rightarrow Number]$	
$T_{num1} = Number$	
$T_{num4} = Number$	

Equation	Substitution
$T_+ = [T_x * T_{num1} \rightarrow T_2]$	$\{T_1 \coloneqq [T_{num4} \to T_0]\}$
$T_{+} = [Number * Number \rightarrow Number]$	
$T_{num1} = Number$	
$T_{num4} = Number$	
$T_x = T_{num4}$	
$T_2 = T_0$	

Equation	Substitution
$T_{+} = [Number * Number \rightarrow Number]$	$\{T_1 \coloneqq [T_{num4} \to T_0]$
$T_{num1} = Number$	$T_+:=[T_x*T_{num1}\to T_2]\}$
$T_{num4} = Number$	
$T_x = T_{num4}$	
$T_2 = T_0$	

Equation	Substitution
$T_{num1} = Number$	$\{T_1 \coloneqq [T_{num4} \to T_0]$
$T_{num4} = Number$	$T_+:=[T_x*T_{num1}\to T_2]$
$T_x = T_{num4}$	
$T_2 = T_0$	
$T_x = Number$	
$T_{num1} = Number$	
$T_2 = Number$	

Equation	Substitution
$T_{num4} = Number$	$\{T_1 \coloneqq [T_4 \to T_0]$
$T_x = T_{num4}$	$T_{+} \coloneqq [T_{x} * Number \to T_{2}]$
$T_2 = T_0$	$T_{num1} := Number$
$T_x = Number$	
$T_{num1} = Number$	
$T_2 = Number$	

Equation	Substitution
$T_x = T_{num4}$	$\{T_1 \coloneqq [Number \to T_0]$
$T_2 = T_0$	$T_{+} \coloneqq [T_{x} * Number \rightarrow T_{2}]$
$T_x = Number$	$T_{num1} \coloneqq Number$
$T_{num1} = Number$	$T_{num4} = Number$
$T_2 = Number$	

Equation	Substitution
$T_x = Number$	$\{T_1 \coloneqq [Number \to T_0]$
$T_2 = T_0$	$T_{+} \coloneqq [T_{x} * Number \to T_{2}]$
$T_x = Number$	$T_{num1} \coloneqq Number$
$T_{num1} = Number$	$T_{num4} = Number$
$T_2 = Number$	

Equation	Substitution
$T_2 = T_0$	$\{T_1 \coloneqq [Number \to T_0]$
$T_x = Number$	$T_+ \coloneqq [Number * Number \rightarrow T_2]$
$T_{num1} = Number$	$T_{num1} \coloneqq Number$
$T_2 = Number$	$T_{num4} = Number$
_	$T_x = Number$

Equation	Substitution
$T_x = Number$	$\{T_1 \coloneqq [Number \to T_0]$
$T_{num1} = Number$	$T_{+} \coloneqq [Number * Number \rightarrow T_{0}]$
$T_2 = Number$	$T_{num1} \coloneqq Number$
	$T_{num4} = Number$
	$T_x = Number$
	$T_2 = T_0$

Equation	Substitution
Number = Number	$\{T_1 \coloneqq [Number \to T_0]$
$T_{num1} = Number$	$T_{+} \coloneqq [Number * Number \rightarrow T_{0}]$
$T_2 = Number$	$T_{num1} \coloneqq Number$
_	T_{num4} : = $Number$
	T_x : = $Number$
	$T_2 := T_0 $

Equation	Substitution
$T_{num1} = Number$	$\{T_1 \coloneqq [Number \to T_0]$
$T_2 = Number$	$T_{+} \coloneqq [Number * Number \rightarrow T_{0}]$
	$T_{num1} \coloneqq Number$
	T_{num4} : = $Number$
	T_x : = $Number$
	$T_2 := T_0$

Equation	Substitution
Number = Number	$\{T_1 \coloneqq [Number \to T_0]$
$T_2 = Number$	$T_{+} \coloneqq [Number * Number \rightarrow T_{0}]$
	$T_{num1} \coloneqq Number$
	T_{num4} : = $Number$
	T_x : = $Number$
	$T_2 := T_0$

Equation	Substitution
$T_2 = Number$	$\{T_1 \coloneqq [Number \to T_0]$
	$T_{+} \coloneqq [Number * Number \rightarrow T_{0}]$
	$T_{num1} \coloneqq Number$
	T_{num4} : = $Number$
	T_x : = $Number$
	$T_2 := T_0 $

Equation	Substitution
	$\{T_1 \coloneqq [Number \rightarrow Number]$
	$T_{+} \coloneqq [Number * Number \rightarrow Number]$
	$T_{num1} \coloneqq Number$
	T_{num4} : = $Number$
	$T_x =: Number$
	T_2 : = $Number$ }

$$Exp: (\left(lambda \; ([x1:Number]) \; (+[x1:Number] \; 1)\right) 4)$$

b. ((lambda (f1 x1) (f1 x1 1)) 4 +)

STAGE 1: Renamed bound variables: ((lambda (f x) (+ x 1)) 4)

STAGE 2: Assign type variables to all sub-exps:

Expression	Var
((lambda (f x) (f x 1)) 4 +)	T_0
$\left(\operatorname{lambda}\left(f\;x\right) \left(f\;x\;1\right) \right)$	T_1
(f x 1)	T_2
f	T_f
x	T_{χ}
1	T_{num1}
4	T_{num4}
+	T_{+}

STAGE 3: Construct type equations:

Expression	Equation
((lambda (f x) (f x 1)) 4 +)	$T_1 = [T_{num4} * T_+ \rightarrow T_0]$
(lambda (f x) (f x 1))	$T_1 = [T_f * T_x \to T_2]$
(f x 1)	$T_f = [T_x * T_{num1} \to T_2]$
4	$T_{num4} = Number$
+	$T_{+} = [Number * Number \rightarrow Number]$

STAGE 4: Solving the equations:

Equation	Substitution
$T_1 = [T_{num4} * T_+ \rightarrow T_0]$	{}
$T_1 = [T_f * T_x \to T_2]$	
$T_f = [T_x * T_{num1} \to T_2]$	
$T_{num4} = Number$	
$T_{+} = [Number * Number \rightarrow Number]$	

Equation	Substitution
$T_1 = [T_f * T_x \to T_2]$	$\{T_1 = [T_{num4} * T_+ \to T_0]\}$
$T_f = [T_x * T_{num1} \to T_2]$	
$T_{num4} = Number$	
$T_{+} = [Number * Number \rightarrow Number]$	

Equation	Substitution
$T_f = [T_x * T_{num1} \to T_2]$	$\{T_1 = [T_{num4} * T_+ \to T_0]\}$
$T_{num4} = Number$	
$T_{+} = [Number * Number \rightarrow Number]$	
$T_f = T_{num4}$	
$T_{x} = T_{+}$	
$T_2 = T_0$	

Equation	Substitution
$T_{num4} = Number$	$\{T_1 = [T_{num4} * T_+ \to T_0]$
$T_{+} = [Number * Number \rightarrow Number]$	$T_f = [T_x * T_{num1} \to T_2] \}$
$T_f = T_{num4}$,
$T_{x} = T_{+}$	
$T_2 = T_0$	

Equation	Substitution
$T_{+} = [Number * Number \rightarrow Number]$	$\{T_1 = [Number * T_+ \rightarrow T_0]$
$T_f = T_{num4}$	$T_f = [T_x * T_{num1} \to T_2]$
$T_{x} = T_{+}$	$T_{num4} = Number$
$T_2 = T_0$	

Equation	Substitution
$T_f = T_{num4}$	$\{T_1 = [Number * [Number * Number \rightarrow Number] \rightarrow T_0]$
$T_x = T_+$	$T_f = [T_x * T_{num1} \to T_2]$
$T_2 = T_0$	$T_{num4} = Number$
	$T_{+} = [Number * Number \rightarrow Number]$

Now we get that $Number = [T_x * T_{num1} \rightarrow T_2]$ so we can see that the expression in this question is not valid.

Question 2.2 (b):

The wrapped function returns Promise<R> because first, we need to create a function that returns the value of the key in the store which is in type R. Second, because we return a value of a store (which means Promise), we wrote the word 'async' before this function which we return (when the word 'async' comes before a function' it's means that this function return Promise), we get that the wrapped function returns Promise <R>.

Question 3.1: