Displacement of fishing effort by Large Scale Marine Protected Areas

Juan Carlos Villaseñor-Derbez¹ John Lynham²

 $^1\mathrm{Bren}$ School of Environmental Science and Management, UC Santa Barbara $^2\mathrm{Department}$ of Economics, University of Hawaii at Manoa

5/10/2018

MPAs

- Marine Protected Areas (MPAs): Spatial management of fishing effort
- Areas $> 250,000 \text{ Km}^2$ are Large Scale (LSMPAs)¹
 - Industrial fishing largest human activity in pelagic environment²
 - Recent widespread implementation, unknown implication for fisheries

¹Toonen et al. 2013.

²Gray et al. 2017.

LSMPAs

- ► Erroneously assumed to have little social implications due to their remoteness³
- Blue paradox shows preemptive fishing⁴:

Figure 1: Preemtive fishing due to MPA implementation (Modified from McDermott et al (2018))

³Agardy, Sciara, and Christie 2011.

⁴McDermott et al. 2018.

MPAs and fishing effort

Models range from *cookie-cutter* approach to spatially explicit reallocation of fishing effort based on habitat characteristics:

- ► All these focus on the long term equilibrium⁵
- Resource users may show idiosyncratic responses⁶
- Redistribution of fishing effort may not be optimal, especially over the first years⁷
- Not accounting for fisher's behavior may lead to unexpected outcomes⁸

⁵White et al. 2013.

⁸Smith and Wilen 2003.

⁶Cabral et al. 2017.

⁷Stevenson, Tissot, and Walsh 2013.

PIPA

- ► Phoenix Island Protected Area
 - ▶ Belongs to Kiribati
 - ▶ Implemented in 2015
 - Kiribati is part of the PNA, along with other 8 countries

Questions

- How does vessel-level behavior change due to PIPA implementation?
- What happens to the displaced fishing effort?

Methods

Data

- On-board Automatic Identification Systems (AIS)
- ▶ Global georeferenced vessel positions (3.1 billion and growing):
 - Activity (fishing / not fishing)
 - ► Time (hours)
 - Vessel characteristics (flag, gear, length, width)

Figure 2: Sample track of Chinese longliner (10K fishing points of \sim 400K total)

Data

Two groups:

- Treated
 - Vessels who fished inside PIPA at least once before closure
 - Continued to fish elsewhere after implementation of PIPA
- Control:
 - Vessels never fished within PIPA waters
 - Vessels belong to other PNA countries
 - Vessels have fished in surrounding areas (i.e. PNA-countries' EEZ) before and after PIPA closure
- Over 45 million individual AIS messages (positions)

Data

Figure 3: Fishing hours and number of vessels by month for all vessels.

Analyses

Change in vessel-level behavior with a DiD

$$y_{i,t} = \alpha + \beta_1 Post_t + \beta_2 Treat_i + \beta_3 Post_t \times Treat_i + \epsilon_{i,t}$$

- $ightharpoonup y_{i,t}$ monthly fishing hours by vessel i in time period t
- Post_t before-after PIPA dummy
- Treat_i treatment dummy
- β_3 is our DiD estimate
- month, flag, year controls

Analyses

Spatial redistribution

► Treated vessels only

$$y_{i,t} = \alpha + \beta_1 Post_t + \beta_{2,i} Country_i + \beta_{3,i} Post_t \times Country_i + \epsilon_{i,t}$$

- $ightharpoonup y_{i,t}$ proportion of fishing hours that country i receives at time t
- Post_t before-after PIPA dummy
- Country_i country dummy

Preliminary results

(Focusing on purse seiners for now)

Change in fishing

Figure 4: Fishing hours and number of vessels by month for all vessels.

Change in fishing

Table 1: Fishing hours from GFW for purse seiners (n = 106; 38 control, 68 treatment).

	Dependent variable: hours				
	(1)	(2)	(3)	(4)	
post	8.050***	8.914***	2.303***	1.883***	
	(0.280)	(0.269)	(0.355)	(0.362)	
treated	-1.069***	-0.765***	-0.698***	0.750***	
	(0.249)	(0.234)	(0.224)	(0.278)	
post:treated	-0.782**	-0.994***	-1.035***	-0.762**	
	(0.324)	(0.312)	(0.304)	(0.310)	
Constant	11.738***	10.691***	-2,049,744.000***	-1,958,021.000***	
	(0.220)	(0.311)	(125,215.200)	(200,106.800)	
Months	No	Yes	Yes	Yes	
Year	No	No	Yes	Yes	
Country	No	No	No	Yes	
Observations	32,925	32,925	32,925	32,925	
R ²	0.083	0.132	0.164	0.179	

Note:

 $^*p < 0.1; \ ^{**}p < 0.05; \ ^{***}p < 0.01$

Effort redistribution

Figure 5: Monthly relative allocation of fishing effort by PIPA-vessels.

Displacement

Table 2: Change in the relative allocation of fishing hours by purse seiners

term	h_prop
(Intercept)	0.079***
post	0.052***
post:countryOTH	-0.063***

$$R^2 = 0.544^{***}; n = 707$$

Displacement

Figure 6: Spatial representation of the mean change in the monthly allocation of fishing effort.

Displacement

180°

Figure 7: Spatial representation of the mean change in the monthly allocation of fishing effort.

Recap

- Treated vessels fish less post-implementation
 - Only significant for purse seiners
- ▶ EEZs receive proportionally more fishing effort than before
 - Proportional change increases with proximity to PIPA

Future work

Change in behavior

- Distance traveled
- non-fishing at-sea hours
- proportion of fishing / searching

Spatial redistribution

- Proportion is bounded, might try a binomial GLM
- Measure of "crowdness"

Concerns

Spillover effects / treatment affecting control

References I

Agardy, Tundi, Giuseppe Notarbartolo di Sciara, and Patrick Christie (2011). "Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning". In: *Marine Policy* 35.2, pp. 226–232. ISSN: 0308597X. DOI: 10.1016/j.marpol.2010.10.006. URL: http://linkinghub.elsevier.com/retrieve/pii/%7BS0308597X10001740%7D (visited on 02/16/2017).

Cabral, Reniel B et al. (2017). "Drivers of redistribution of fishing and non-fishing effort after the implementation of a marine protected area network." In: *Ecol Appl* 27.2, pp. 416–428. ISSN: 10510761. DOI: 10.1002/eap.1446. URL: http://doi.wiley.com/10.1002/eap.1446 (visited on 04/27/2017).

References II

- Gray, Noella J. et al. (2017). "Human Dimensions of Large-scale Marine Protected Areas: Advancing Research and Practice". In: Coastal Management, pp. 1–9. ISSN: 0892-0753. DOI: 10.1080/08920753.2017.1373448. URL: https://www.tandfonline.com/doi/full/10.1080/08920753.2017.1373448 (visited on 11/08/2017).
 - McDermott, Grant R et al. (2018). "The blue paradox: Preemptive overfishing in marine reserves." In: *Proc Natl Acad Sci USA*. DOI: 10.1073/pnas.1802862115. URL: http://dx.doi.org/10.1073/pnas.1802862115 (visited on 09/07/2018).
 - Smith, Martin D. and James E. Wilen (2003). "Economic impacts of marine reserves: the importance of spatial behavior". In: *Journal of Environmental Economics and Management* 46.2, pp. 183–206. ISSN: 00950696. DOI: 10.1016/S0095-0696(03)00024-X. URL: http://linkinghub.elsevier.com/retrieve/pii/%7BS009506960300024X%7D (visited on 10/05/2018).

References III

Stevenson, Todd C., Brian N. Tissot, and William J. Walsh (2013). "Socioeconomic consequences of fishing displacement from marine protected areas in Hawaii". In: *Biological Conservation* 160, pp. 50–58. ISSN: 00063207. DOI: 10.1016/j.biocon.2012.11.031. URL:

http://linkinghub.elsevier.com/retrieve/pii/S0006320712005277 (visited on 06/12/2018).

Toonen, Robert J et al. (2013). "One size does not fit all: the emerging frontier in large-scale marine conservation." In: *Mar Pollut Bull* 77.1-2, pp. 7–10. DOI: 10.1016/j.marpolbul.2013.10.039. URL:

 $\label{eq:http://dx.doi.org/10.1016/j.marpolbul.2013.10.039} \mbox{ (visited on } 09/29/2018).$

References IV

White, J. Wilson et al. (2013). "A comparison of approaches used for economic analysis in marine protected area network planning in California". In: Ocean Coast Manag 74, pp. 77–89. ISSN: 09645691. DOI: 10.1016/j.ocecoaman.2012.06.006. URL: http://linkinghub.elsevier.com/retrieve/pii/S0964569112001597 (visited on 10/05/2018).