Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Отчёт Анализ параллельной программы на MPI, реализующей зашумленное преобразование n-Адамар

Работу выполнил **Имашев В.Р.**

Описание алгоритма

Однокубитная операция задается двумя параметрами: комплексной матрицей размера 2x2 и числом от 1 до n (данный параметр обозначает номер кубита, по которому проводится операция).

$$U = \left(\begin{array}{cc} u_{00} & u_{01} \\ u_{10} & u_{11} \end{array}\right)$$

Итак, дана комплексная матрица:

и k - номер индекса от 1 до n (номер кубита).

Такая операция преобразует вектор $\{a_{i_1i_2...i_n}\}$ в $\{b_{i_1i_2...i_n}\}$, где все 2^n элементов нового вектора вычисляются по следующей формуле:

$$b_{i_1 i_2 \dots i_k \dots i_n} = \sum_{j_k=0}^{1} u_{i_k j_k} a_{i_1 i_2 \dots j_k \dots i_n} = u_{i_k 0} a_{i_1 i_2 \dots 0_k \dots i_n} + u_{i_k 1} a_{i_1 i_2 \dots 1_k \dots i_n}$$

Реализация алгоритма с помощью МРІ

Реализация преобразования Адамара:

На каждом процессе хранится лишь фрагмент вектора длиной исходный вектор / количество процессов. При выполнении преобразования вычисляется номер процесса, на котором находится инвертированный бит с номеров к.

В случае, если номер процесса совпадает с текущим, преобразование производится по обычной схеме в соответствии с формулой выше. Иначе происходит обмен данными между текущим и процессом, в котором находится инвертированный бит и далее преобразование производится также по обычному сценарию в соответствии с формулой, однако с той лишь поправкой, что в буфере, куда производится запись нового вектора, уже лежат все необходимые инвертированные биты.

Реализация **преобразования п-Адамар** заключается в циклическом выполнении преобразования Адамара к каждому кубиту. Для зашумления используется матрица поворота с нормально распределенной случайная величиной, которая, в свою очередь, умножена на заданный уровень шума EPS.

Тестирование на BlueGene

Тестирование программы проводилось на Bluegene. На следующей странице приведена таблица, содержащая информацию о результатах выполнения программы на вычислительном комплексе. Замер времени производился с помощью функции MPI_Wtime().

Количество кубитов	Количество процессоров	Время работы (в сек.)	Ускорение
26	8	36,4334	1
	16	19,0238	1,9151
	32	9,35188	3,8958
	64	4,84757	7,5158
	128	2,64326	13,7835
	256	1,13024	32,2351

Значение е	Количество кубитов	Среднее значение потерь
	24	0,0116154857
	25	0,0254488191
0,01	26	0,0314988191
	27	0,0460948328
	28	0,0674281662

Вывод

Из приведенных выше гистограмм, показывающих распределение значений потерь точности, можно сделать вывод, что средняя величина потери растет с количеством кубитов.