

4

VECTOR GEOMETRY

Chapter Outline

- 4.1. Vectors and Lines
- 4.2. Projections and Planes
- 4.3. More on the Cross Product
- \clubsuit 4.4. Linear Operations on \mathbb{R}^3
- **4.5.** An application to Computer Graphics

4.1. Vectors and Lines

Vectors in \mathbb{R}^3

The terms *vector* and *point* are interchangeable.

Vectors in \mathbb{R}^3

Length. If
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 nen $||v|| = \sqrt{x^2 + y^2 + z^2}$

Ex. If
$$\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 then $\|\mathbf{v}\| = \sqrt{4+1+9} = \sqrt{14}$.

Scalar Multiple Law

If a is a real number and $\mathbf{v} \neq \mathbf{0}$ is a vector then:

2. If $a\mathbf{v} \neq \mathbf{0}$, the direction of $a\mathbf{v}$ is $\begin{cases} \text{the same as } \mathbf{v} \text{ if } a > 0, \\ \text{opposite to } \mathbf{v} \text{ if } a < 0. \end{cases}$

Equality

Let $v \neq 0$ and $w \neq 0$ be vectors in \mathbb{R}^3 .

Then $\mathbf{v} = \mathbf{w}$ if and only if \mathbf{v} and \mathbf{w} have the same direction and the same length.

→ The same geometric vector can be positioned anywhere in space.

Parallel vectors

- Two nonzero vectors are called *parallel* if they have the same or opposite direction.
- \diamond v and w are parallel \Leftrightarrow v = kw for some scalar k

The Parallelogram Law

Tip-to-tail rule

Distance between two points

Theorem 4.1.4

Let $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ be two points. Then:

1.
$$\overrightarrow{P_1P_2} = \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{bmatrix}$$
.

2. The distance between P_1 and P_2 is $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$.

Lines in Space

- Given the point P_0 (with vector p_0) and the *direction vector* $d \neq 0$.
- \clubsuit Then *line* parallel to d through the point P₀ is given by:

$$p = p_0 + td$$
,
(t is any number)

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + t \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

4.2 Projections and Planes

The Dot Product

Definition 4.4

Given vectors
$$\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$, their **dot product** $\mathbf{v} \cdot \mathbf{w}$ is a number defined

$$\mathbf{v} \cdot \mathbf{w} = x_1 x_2 + y_1 y_2 + z_1 z_2 = \mathbf{v}^T \mathbf{w}$$

The Dot Product

Example 4.2.1

If
$$\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}$, then $\mathbf{v} \cdot \mathbf{w} = 2 \cdot 1 + (-1) \cdot 4 + 3 \cdot (-1) = -5$.

Properties of dot product

Theorem 4.2.1

Let **u**, **v**, and **w** denote vectors in \mathbb{R}^3 (or \mathbb{R}^2).

- 1. $\mathbf{v} \cdot \mathbf{w}$ is a real number.
- 2. $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$.
- 3. $\mathbf{v} \cdot \mathbf{0} = 0 = \mathbf{0} \cdot \mathbf{v}$.
- 4. $\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2$.
- 5. $(k\mathbf{v}) \cdot \mathbf{w} = k(\mathbf{w} \cdot \mathbf{v}) = \mathbf{v} \cdot (k\mathbf{w})$ for all scalars k.
- 6. $\mathbf{u} \cdot (\mathbf{v} \pm \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} \pm \mathbf{u} \cdot \mathbf{w}$

Ex. Find
$$(v + w) \cdot (v - 2w)$$
 if $||v|| = 3$, $||w|| = 2$, and $v \cdot w = -1$.

Angles between vectors

Theorem 4.2.2

Let \mathbf{v} and \mathbf{w} be nonzero vectors. If $\boldsymbol{\theta}$ is the angle between \mathbf{v} and \mathbf{w} , then

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta$$

Example.

Example. Compute the angle between
$$\mathbf{u} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$.

Orthogonality

Two vectors v and w are said to be *orthogonal* if

$$\mathbf{v} \bullet \mathbf{w} = \mathbf{0}$$

Example 4.2.4

Show that the points P(3, -1, 1), Q(4, 1, 4), and R(6, 0, 4) are the vertices of a right triangle.

Solution. The vectors along the sides of the triangle are

$$\overrightarrow{PQ} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \overrightarrow{PR} = \begin{bmatrix} 3\\1\\3 \end{bmatrix}, \text{ and } \overrightarrow{QR} = \begin{bmatrix} 2\\-1\\0 \end{bmatrix}$$

Evidently $\overrightarrow{PQ} \cdot \overrightarrow{QR} = 2 - 2 + 0 = 0$, so \overrightarrow{PQ} and \overrightarrow{QR} are orthogonal vectors. This means sides PQ and QR are perpendicular—that is, the angle at Q is a right angle.

Exercise 4.2.3 Find all real numbers x such that:

a.
$$\begin{vmatrix} 2 \\ -1 \\ 3 \end{vmatrix}$$
 and $\begin{vmatrix} x \\ -2 \\ 1 \end{vmatrix}$ are orthogonal.

b.
$$\begin{vmatrix} 2 \\ -1 \\ 1 \end{vmatrix}$$
 and $\begin{vmatrix} 1 \\ x \\ 2 \end{vmatrix}$ are at an angle of $\frac{\pi}{3}$.

If ${\bf u}$ and ${\bf v}$ are orthogonal unit vectors, then $(2{\bf u}-3{\bf v})\cdot({\bf u}+{\bf v})$ is:

a) -5

b) -1

c) 0

d) 1

e) 5

f) not computable with the given data

Projection

- 1. v // d
- 2. $u v \perp d$

Theorem 4.2.4

Let **u** and $\mathbf{d} \neq \mathbf{0}$ be vectors.

- 1. The projection of \mathbf{u} on \mathbf{d} is given by $\operatorname{proj}_{\mathbf{d}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{d}}{\|\mathbf{d}\|^2} \mathbf{d}$.
- 2. The vector \mathbf{u} proj_d \mathbf{u} is orthogonal to \mathbf{d} .

If $\mathbf{u} = (-2, 1, 1)$ and $\mathbf{v} = (1, 0, 1)$, then $\|\operatorname{proj}_{\mathbf{v}} \mathbf{u}\|$ is:

a)
$$\frac{\sqrt{6}}{6}$$

b) 1 c)
$$\frac{\sqrt{2}}{2}$$

e)
$$\frac{1}{2}$$

Planes

Definition 4.7

A nonzero vector **n** is called a **normal** for a plane if it is orthogonal to every vector in the plane.

$$\mathbf{n} \cdot \overrightarrow{P_0 P} = 0$$

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

The Cross Product

Definition 4.8

Given vectors
$$\mathbf{v}_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$, define the **cross product** $\mathbf{v}_1 \times \mathbf{v}_2$ by

$$\mathbf{v}_1 \times \mathbf{v}_2 = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ -(x_1 z_2 - z_1 x_2) \\ x_1 y_2 - y_1 x_2 \end{bmatrix}.$$

If $\mathbf{u} = (3, -1, 4)$ and $\mathbf{v} = (-1, 6, -5)$, what is $\mathbf{u} \times \mathbf{v}$?

a)
$$(17, -10, 11)$$

b)
$$(-19, 11, 17)$$

c)
$$(-3, -6, -20)$$

d)
$$(-19, -11, 17)$$

e)
$$(-17, -10, 11)$$

f)
$$(3, -6, 20)$$

Determinant Form of the Cross Product

If
$$\mathbf{v}_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ are two vectors, then

$$\mathbf{v}_1 \times \mathbf{v}_2 = \det \begin{bmatrix} \mathbf{i} & x_1 & x_2 \\ \mathbf{j} & y_1 & y_2 \\ \mathbf{k} & z_1 & z_2 \end{bmatrix}$$

where the determinant is expanded along the first column.

If $\mathbf{u} = (3, -1, 4)$ and $\mathbf{v} = (-1, 6, -5)$, what is $\mathbf{u} \times \mathbf{v}$?

a)
$$(17, -10, 11)$$

b)
$$(-19, 11, 17)$$

c)
$$(-3, -6, -20)$$

d)
$$(-19, -11, 17)$$

e)
$$(-17, -10, 11)$$

f)
$$(3, -6, 20)$$

Properties of cross product

Theorem 4.2.5

Let **v** and **w** be vectors in \mathbb{R}^3 .

- 1. $\mathbf{v} \times \mathbf{w}$ is a vector orthogonal to both \mathbf{v} and \mathbf{w} .
- 2. If \mathbf{v} and \mathbf{w} are nonzero, then $\mathbf{v} \times \mathbf{w} = \mathbf{0}$ if and only if \mathbf{v} and \mathbf{w} are parallel.

An equation for the plane passing through the points (1,2,3), (1,0,-1) and (4,-2,0) is:

a)
$$x = 1$$

b)
$$5x + 6y - 3z + 8 = 0$$

c)
$$5x + 6y - 3z = 8$$

d)
$$6x - 5y - 3z + 8 = 0$$
 e) $2x + 2y - z = 3$

e)
$$2x + 2y - z = 3$$

f)
$$3x - 2y - 3z = 3$$

4.3 More on Cross Product

Theorem 4.3.1

If
$$\mathbf{u} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$, then $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \det \begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ z_0 & z_1 & z_2 \end{bmatrix}$

Let
$$\mathbf{u} = (-4, 2, 7)$$
, $\mathbf{v} = (2, 1, 2)$, $\mathbf{w} = (1, 2, 3)$. Then $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ equals:

b)
$$-15$$

a) 15 b)
$$-15$$
 c) 16 d) -16 e) 17

Let $\mathbf{u} = (-4, 2, 7)$, $\mathbf{v} = (2, 1, 2)$, $\mathbf{w} = (1, 2, 3)$. Then $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ equals:

a) 15 b) -15 c) 16 d) -16 e) 17

Theorem 4.3.3: Lagrange Identity¹¹

If **u** and **v** are any two vectors in \mathbb{R}^3 , then

$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$

Let $\|\mathbf{u}\| = \|\mathbf{v}\| = \sqrt{2}$ and $\mathbf{u} \cdot \mathbf{v} = 1$. Then $\|\mathbf{u} \times \mathbf{v}\|^2$ is:

a) 0

- b) 1 c) 2 d) 3

e) $\sqrt{2}$

Theorem 4.3.4

If **u** and **v** are two nonzero vectors and θ is the angle between **u** and **v**, then

- 1. $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta = \text{area of the parallelogram determined by } \mathbf{u} \text{ and } \mathbf{v}.$
- 2. \mathbf{u} and \mathbf{v} are parallel if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

The area of a parallelogram determined by the vectors $\mathbf{u} = (1, -1, 0)$ and $\mathbf{v} = (2, -3, 1)$ is:

a) $\sqrt{3}$

- b) 3 c) -3 d) $3\sqrt{3}$ e) 27

Find the area of the triangle with vertices A(-1,5,0), B(1,0,4) and C(1,4,0).

a) 1

b) 2

c) 3 d) 4 e) 5

Find the volume of the parallelepiped determined by the vectors $\mathbf{u} = (1, 1, -1)$, $\mathbf{v} = (2, 0, 1)$ and $\mathbf{w} = (1, -1, 3)$.

- a) -2
- b) 4

c) 6

d) 8

e) 16

f) 2

The volume of the pyramid with vertices (0,0,0), (-2,8,14), (-6,7,-3) and (4,0,2) is:

a) 35

b) 45 c) 60 d) 70 e) 75

Linear Operators on R³

- Reflections and Projections
- Rotations
- Translations

Reflections and Projections

$$Q_m$$
 has matrix $\frac{1}{1+m^2}\begin{bmatrix} 1-m^2 & 2m\\ 2m & m^2-1 \end{bmatrix}$ and P_m has matrix $\frac{1}{1+m^2}\begin{bmatrix} 1 & m\\ m & m^2 \end{bmatrix}$.

Rotations

$$\begin{bmatrix} R_{z,\theta}(\mathbf{i}) & R_{z,\theta}(\mathbf{j}) & R_{z,\theta}(\mathbf{k}) \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4.5 An application in Computer Graphics

How to change image?

Computer graphics

- ❖ Image → matrix D
- \diamond Matrices of transformations $A_1, A_2, ..., A_n$

Matrices of Translations

Need a clever way to give these matrices (Read yourself in the text book)

Homogeneous coordinate

$$\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

homogeneous coordinate of v

Then translation by $\mathbf{w} = \begin{bmatrix} p \\ q \end{bmatrix}$ can be achieved by multiplying by a 3 × 3 matrix:

$$\begin{bmatrix} 1 & 0 & p \\ 0 & 1 & q \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+p \\ y+q \\ 1 \end{bmatrix} = \begin{bmatrix} T_{\mathbf{w}}(\mathbf{v}) \\ 1 \end{bmatrix}$$

Example 4.5.1

Rotate the letter A in Figure 4.5.2 through $\frac{\pi}{6}$ about the point $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$.

Solution.

Figure 4.5.6

Using homogenous coordinates for the vertices of the letter results in a data matrix with three rows:

$$K_d = \left[\begin{array}{cccc} 0 & 6 & 5 & 1 & 3 \\ 0 & 0 & 3 & 3 & 9 \\ 1 & 1 & 1 & 1 & 1 \end{array} \right]$$

If we write $\mathbf{w} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$, the idea is to use a composite of transformations: First translate the letter by $-\mathbf{w}$ so that the point \mathbf{w} moves to the origin, then rotate this translated letter, and then translate it

by w back to its original position. The matrix arithmetic is as follows (remember the order of composition!):

$$\begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.866 & -0.5 & 0 \\ 0.5 & 0.866 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -5 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 6 & 5 & 1 & 3 \\ 0 & 0 & 3 & 3 & 9 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Summary

- ❖ 4.1. Vectors and Lines
- 4.2. Projections and Planes
- 4.3. More on the Cross Product
- \clubsuit 4.4. Linear Operations on \mathbb{R}^3
- **4.5.** An application to Computer Graphics