ISA SOFTWARE V.1.3

1. Caso di studio : Grafo $P_2^{(1)}\times C_5^{(1)}$

Definition 1.1. Un grafo (non orientato e finito) è una coppia ordinata (V, E) dove V è un insieme finito ed E è un multiinsieme di coppie non ordinate di elementi di V. L'insieme V contiene i vertici del grafo ed E i suoi lati. Per un generico grafo G, l'insieme dei suoi vertici è indicato con V(G) e quello dei suoi lati con E(G).

La struttura dati con la quale si è scelto di memorizzare il grafo è la matrice di adicenza.

Definition 1.2. La matrice di adiacenza di un grafo G i cui vertici siano v_1, v_2, \ldots, v_n è una matrice A(G) = [a(i, j)] simmetrica di ordine $n \times n$ in cui si pone:

$$a(i,j) = \begin{cases} 1 & \text{se } (v_i, v_j) \in E(G) \\ 0 & \text{altrimenti} \end{cases}$$

Di seguito viene mostrata invece la lista di adiacenza che permette una più facile lettura delle adiacenze:

$$\begin{cases} (1;1) &\longrightarrow (2;1), (1;2), (1;5), \\ (2;1) &\longrightarrow (1;1), (2;2), (2;5), \\ (1;2) &\longrightarrow (1;1), (2;2), (1;3), \\ (2;2) &\longrightarrow (2;1), (1;2), (2;3), \\ (1;3) &\longrightarrow (1;2), (2;3), (1;4), \\ (2;3) &\longrightarrow (2;2), (1;3), (2;4), \\ (1;4) &\longrightarrow (1;3), (2;4), (1;5), \\ (2;4) &\longrightarrow (2;3), (1;4), (2;5), \\ (1;5) &\longrightarrow (1;1), (1;4), (2;5), \\ (2;5) &\longrightarrow (2;1), (2;4), (1;5), \end{cases}$$

Date: January 18, 2016.

 $Key\ words\ and\ phrases.$ sample.tex.

Con le famiglie di grafi C vogliamo indicare dei circuiti $veri\ e\ propri$ in cui, oltre all'arco che collega il primo nodo con l'ultimo, abbiamo anche archi delle potenze dei cammini orizzontali che possono collegarsi ai nodi precedenti rispetto ai nodi dai quali partono.

1.1. Calcolo insiemi indipendenti con metodo forza bruta.

Definition 1.3. Un insieme indipendente di un grafo è un insieme di vertici non adiacenti del grafo.

Definiamo T(n,k) il numero di k-sottoinsiemi indipendenti di Grafo $P_2^{(1)} \times C_5^{(1)}$. Ecco alcuni valori

T(n,k)	k = 0	1	2	3	4	5	6
0	1						
1	1	2					
2	1	4	2				
3	1	6	6				
4	1	8	16	8	2		
5	1	10	30	30	10		
6	1	12	48	76	48	12	2
7	1	14	70	154	154	70	14

Seguono le successioni delle antidiagonali, della somma delle righe e dei valori massimali di k per cui esistono insiemi indipendenti:

n	0	1	2	3	4	5	6	7
AD_n	1	1	3	5	9	15	27	51
RS_n	1	3	7	13	35	81	199	477
K_n	0	1	2	2	4	4	6	6

Ricerca delle bijezioni disabilitata per questa stampa.

Wilf: Non possiamo usare il metodo di Wilf per trovare la Fgo delle somme delle righe in quanto il grafo è un circuito.

Calcolo automatico sistema lineare e automa per circuiti:

$$\begin{cases} e \longrightarrow e + u + d \\ u_i \longrightarrow e_k + d_k \\ d \longrightarrow e + u \\ u \longrightarrow e + d \\ u_k \longrightarrow u_k + d_2 \\ e_k \longrightarrow e_k + d_1 \\ d_k \longrightarrow d_k + u_2 \\ s \longrightarrow e + u_i + d_i \\ d_i \longrightarrow e_k + u_k \end{cases}$$

$$\begin{cases} E(x) = xE(x) + xU(x) + xD(x) + 1 \\ U(x) = xE(x) + xD(x) + 1 \\ D(x) = xE(x) + xU(x) + 1 \\ U_i(x) = xE_k(x) + xD_k(x) + 1 \\ E_k(x) = xE_k(x) + xD_1(x) + 1 \\ U_k(x) = xU_k(x) + xD_2(x) + 1 \\ D_k(x) = xD_k(x) + xU_2(x) + 1 \\ S(x) = xE(x) + xU_i(x) + xD_i(x) + 1 \\ D_i(x) = xE_k(x) + xU_k(x) + 1 \end{cases}$$

$$\begin{cases} E \rightarrow eE \mid uU \mid dD \mid \lambda \\ U \rightarrow eE \mid dD \mid \lambda \\ D \rightarrow eE \mid uU \mid \lambda \\ U_i \rightarrow eE_k \mid dD_k \mid \lambda \\ E_k \rightarrow eE_k \mid dD_1 \mid \lambda \\ U_k \rightarrow uU_k \mid dD_2 \mid \lambda \\ D_k \rightarrow dD_k \mid uU_2 \mid \lambda \\ S \rightarrow eE \mid uU_i \mid dD_i \mid \lambda \\ D_i \rightarrow eE_k \mid uU_k \mid \lambda \end{cases}$$

