

Software Engineering

Marcel Lüthi, Universität Basel

Datenflussdiagramm

- Semi-formale, konstruktive Spezifikation
- Systemsicht: Kollektionen von Daten die durch Funktionen "transformiert" werden
 - Daten/Informationsfluss im Zentrum
- Daten können persistent sein

Datenflussdiagramm: Präzisierung

Datenflussdiagramm: Beispielspezifikation

Datenflussdiagramm: Beispielspezifikation

Petrinetze

- Formale, konstruktive Spezifikation
- Interaktion zwischen Komponenten steht im Vordergrund

Ein Petri-Netz ist ein Quadrupel (P, T, F, W)

- P eine (endliche) Menge von Stellen
- *T* eine (endliche) Menge von Transitionen
- $F \subseteq (P \times T) \cup (T \times P)$ eine Flussrelation
- $W: F \to \mathbb{N}_0$ eine Gewichtsfunktion

Gegeben ist zudem die Anfangsmarkierung $M: P \to \mathbb{N}_0$ Die Gewichtsfunktion W ist eine partielle Funktion. Wenn W(f) nicht definiert ist, wird das Gewicht 1 angenommen.

Petrinetze: Schaltregeln

```
p \in Inputstellen(t): M'(p)=M(p)-W((p,t))

p \in Outputstellen(t): M'(p)=M(p)+W((t,p))

p \in Input und Outputstellen(t): M'(p)=M(p)-W((p,t))+W((t,p))
```


Petrinetze: Dynamik

Eine Transition kann Schalten, wenn Sie aktiviert ist. Ob die Transition schaltet ist nicht determiniert (stochastisch)

Eine Transition ist aktiviert wenn gilt: $\forall p \in \text{Inputstellen}(t): M(p) \geq W((p,t))$

Petrinetz: Beispieldynamik

Petrinetz: Beispielspezifikation

