Лабораторная работа № 6

Статическая маршрутизация VLAN

Демидова Екатерина Алексеевна

Содержание

4	Выводы	15
3	Выполнение лабораторной работы 3.1 Контрольные вопросы	6 13
2	Задание	5
1	Цель работы	4

Список иллюстраций

3.1	Настройка маршрутизатора msk-donskaya-eademidova-пw-1	7
		8
	Настройка виртуальных интерфейсов на маршрутизаторе	9
3.4	Проверка доступности устройств с помоощью команды ping	10
3.5	Проверка доступности устройств в режиме симулции в разных VLAN	11
3.6	Проверка доступности устройств в режиме симулции в одном VLAN	12
3.7	Содержимое ICMP-пакета	13

1 Цель работы

Настроить статическую маршрутизацию VLAN в сети.

2 Задание

- 1. Добавить в локальную сеть маршрутизатор, провести его первоначальную настройку.
- 2. Настроить статическую маршрутизацию VLAN.
- 3. При выполнении работы необходимо учитывать соглашение об именовании.

3 Выполнение лабораторной работы

В логической области проекта разместить маршрутизатор Cisco 2811, подключим его к порту 24 коммутатора msk-donskaya-sw-1 в соответствии с таблицей портов, у маршрутизатора подключение через порт 0.

Сконфигурируем маршрутизатор, задав на нём имя msk-donskaya-eademidovagw-1, пароль для доступа к консоли и удалённое подключение по ssh(рис. [3.1]).

Рис. 3.1: Настройка маршрутизатора msk-donskaya-eademidova-пw-1

Настроим порт 24 коммутатора msk-donskaya-eademidova-sw-1 как trunk-порт(рис. [3.2]).

Рис. 3.2: Hacтройка Trunk-порта коммутатора msk-donskaya-eademidova-sw-1

На интерфейсе f0/0 маршрутизатора msk-donskaya-eademidova-gw-1 настроим виртуальные интерфейсы, соответствующие номерам VLAN. Согласно таблице IP-адресов зададим соответствующие IP-адреса на виртуальных интерфейсах. Для этого используем приведённую ниже последовательность команд по конфигурации VLAN-интерфейсов маршрутизатора(рис. [3.3]).

Рис. 3.3: Настройка виртуальных интерфейсов на маршрутизаторе

Проверим доступность оконечных устройств из разных VLAN с помоощью команды ping(рис. [3.4]).

Рис. 3.4: Проверка доступности устройств с помоощью команды ping

Можно увидеть, что теперь успешно пингуются не только устройства, находящиеся в одном VLAN, но и в разных.

Отправим пакет из VLAN 4 во VLAN 6. Сначала пакет идёт к коммутатору 4, затем к 1 и после к маршрутизатору для того, чтобы получить адрес устройства из другой виртуальной подсети, затем пакет возвращается к 1 коммутатору переходит к коммутатору с другой территории и наконец достигает адресата. После этого как обычно отправляется ответ по тому же маршруту в обратном порядке(рис. [3.5]).

/is.	Time(sec)	Last Device	At Device	Туре
	0.000		dep-donskaya-1	ICMP
	0.001	dep-donskaya-1	msk-donskaya-eademidova-sw-4	ICMP
	0.002	msk-donskaya-eademidova-sw-4	msk-donskaya-eademidova-sw-1	ICMP
	0.002	_	msk-pavlovskaya-eademidova-sw-1	STP
	0.003	msk-pavlovskaya-eademidova-sw-1	msk-donskaya-eademidova-sw-1	STP
	0.003	msk-donskaya-eademidova-sw-1	msk-donskaya-eademidova-gw-1	ICMP
	0.004	msk-donskaya-eademidova-sw-1	msk-donskaya-eademidova-gw-1	STP
	0.004	msk-donskaya-eademidova-sw-1	msk-donskaya-eademidova-sw-2	STP
	0.004	msk-donskaya-eademidova-sw-1	msk-donskaya-eademidova-sw-4	STP
	0.004	msk-donskaya-eademidova-gw-1	msk-donskaya-eademidova-sw-1	ICMP
	0.005	msk-donskaya-eademidova-sw-2	msk-donskaya-eademidova-sw-3	STP
	0.005	msk-donskaya-eademidova-sw-4	adm-donskaya-1	STP
	0.005	msk-donskaya-eademidova-sw-1	msk-pavlovskaya-eademidova-sw-1	ICMP
	0.006	msk-pavlovskaya-eademidova-sw-1	other-pavlovskaya-1	ICMP
	0.007	other-pavlovskaya-1	msk-pavlovskaya-eademidova-sw-1	ICMP
	0.008	msk-pavlovskaya-eademidova-sw-1	msk-donskaya-eademidova-sw-1	ICMP
	0.009	msk-donskaya-eademidova-sw-1	msk-donskaya-eademidova-gw-1	ICMP
	0.010	msk-donskaya-eademidova-gw-1	msk-donskaya-eademidova-sw-1	ICMP
	0.011	msk-donskaya-eademidova-sw-1	msk-donskaya-eademidova-sw-4	ICMP
(9)	0.012	msk-donskaya-eademidova-sw-4	dep-donskaya-1	ICMP

Рис. 3.5: Проверка доступности устройств в режиме симулции в разных VLAN

Отправим пакет между устройствами в одном VLAN 4. Сначала пакет идёт к коммутатору 4, затем к 1 и после не направляется к маршрутизатору, как было ранее, так как ему известны адреса устройств в одной виртуальной сети. Затем пакет возвращается к 1 коммутатору переходит к коммутатору с другой территории и наконец достигает адресата. После этого как обычно отправляется ответ

по тому же маршруту в обратном порядке(рис. [3.6]).

Рис. 3.6: Проверка доступности устройств в режиме симулции в одном VLAN

Рассмотрим пакет ІСМР(рис. [3.7]).

Рис. 3.7: Содержимое ІСМР-пакета

Исследуем структуру пакета ICMP. Сначала в PDU есть только заголовки IP, можно увидеть адрес отправителя и получателя, и ICMP. В заголовке ICMP содержится информация о типе сообщения, коде дополнительной диагностической информации, контрольная сумма сообщения, его индентификатор и порядковый номер. Эти заголовоки не меняются при передаче пакета. Теперь рассмотрим заголовок Ethernet, в нем указаны MAC-адреса устройств между которыми на данном шаге пакет отпрваляется.

3.1 Контрольные вопросы

1. Охарактеризуйте стандарт IEEE 802.1Q.

Стандарт IEEE 802.1Q определяет протокол виртуального LAN (VLAN), который позволяет разделять сеть на логические сегменты. Он добавляет теги в кадры Ethernet для идентификации VLAN, обеспечивая изоляцию и безопасность сети.

2. Опишите формат кадра IEEE 802.1Q.

Формат кадра IEEE 802.1Q включает в себя дополнительный тег Ethernet, состоящий из 32-битового заголовка, включая информацию о VLAN ID и приоритете. Формат выглядит так: Преамбула - Назначение - МАС-адрес отправителя - МАС-адрес получателя - Тип данных - Тег IEEE 802.1Q - Данные - Контрольная сумма.

4 Выводы

В результате выполнения лабораторной работы получили основные навыки по настройке статической марщрутизации VLAN в сети.