

General Description

The MAX4667/MAX4668/MAX4669 dual analog switches feature low on-resistance of 2.5Ω max. On-resistance is matched between switches to 0.5Ω max and is flat $(0.5\Omega$ max) over the specified signal range. Each switch can handle Rail-to-Rail® analog signals. The off-leakage current is only 5nA max at +85°C. These analog switches are ideal in low-distortion applications and are the preferred solution over mechanical relays in automatic test equipment or applications where current switching is required. They have low power requirements, use less board space, and are more reliable than mechanical relays.

The MAX4667 has two normally closed (NC) switches, the MAX4668 has two normally open (NO) switches, and the MAX4669 has one NC and one NO switch that guarantee break-before-make operation.

These switches operate from a +4.5V to +36V single supply or from ±4.5V to ±20V dual supplies. All digital inputs have +0.8V and +2.4V logic thresholds, ensuring TTL/CMOS-logic compatibility when using ±15V supplies or a single +12V supply.

Applications

Reed Relay Replacement Test Equipment

Communication Systems

PBX, PABX Systems

Audio-Signal Routing **Avionics**

Features

- **♦** Low On-Resistance (2.5Ω max)
- **♦** Guaranteed R_{ON} Match Between Channels $(0.5\Omega \text{ max})$
- **♦** Guaranteed R_{ON} Flatness over Specified Signal Range (0.5 Ω max)
- **♦** Guaranteed Break-Before-Make (MAX4669)
- ♦ Rail-to-Rail Signal Handling
- Guaranteed ESD Protection >2kV per Method 3015.7
- **♦** +4.5V to +36V Single-Supply Operation ±4.5V to ±20V Dual-Supply Operation
- **♦ TTL/CMOS-Compatible Control Inputs**

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4667CSE	0°C to +70°C	16 Narrow SO
MAX4667CPE	0°C to +70°C	16 Plastic DIP
MAX4667ESE	-40°C to +85°C	16 Narrow SO
MAX4667EPE	-40°C to +85°C	16 Plastic DIP

Ordering Information continued at end of data sheet.

Pin Configurations/Functional Diagrams/Truth Tables

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V+ to GND	0.3V to +44V
V- to GND	+0.3V to -44V
V+ to V	0.3V to +44V
V _L to GND	(GND - 0.3V) to (V+ + 0.3V)
All Other Pins to GND (Note	1)(V 0.3 V) to (V + + 0.3 V)
Continuous Current (COM_,	NO_, NC_)±100mA
Peak Current (COM_, NO_, I	NC_)
(pulsed at 1ms, 10% duty	cycle) ±300mA
	•

Continuous Power Dissipation ($T_A = +70^{\circ}$	C)
Narrow SO (derate 8.70mW/°C above +	-70°C)696mW
Plastic DIP (derate 10.53mW/°C above	+70°C)842mW
Operating Temperature Ranges	
MAX466_C_E	0°C to +70°C
MAX466_E_E	40°C to +85 °C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec)	+300°C

Note 1: Signals on NC_, NO_, COM_, or IN_ exceeding V+ or V- will be clamped by internal diodes. Limit the forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

 $(V+=+15V, V-=-15V, V_L=+5V, V_{IN_H}=+2.4V, V_{IN_L}=+0.8V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CONDIT	ONS	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Input Voltage Range (Note 3)	V _{COM} , V _{NO} , V _{NC}			V-		V+	V
COM_ to NO_, COM_ to NC_ On-Resistance	R _{ON}	$I_{COM} = 10mA$, V_{NO} or $V_{NC} = \pm 10V$	$T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}$		1.6	2.5	Ω
COM_ to NO_, COM_ to NC_	A.D.	I _{COM} _ = 10mA; V _{NO} _	$T_A = +25^{\circ}C$		0.05	0.4	
On-Resistance Match Between Channels (Notes 3, 4)	ΔR _{ON}	or V _{NC} __ = -5V, 0, 5V	$T_A = T_{MIN}$ to T_{MAX}			0.5	Ω
COM_ to NO_, COM_ to NC_ On-Resistance Flatness	R _{FLAT} (ON)	I _{COM} _ = 10mA,	T _A = +25°C		0.1	0.4	Ω
(Notes 3, 5)	TIFLAT(ON)	V_{NO} or $V_{NC} = \pm 10V$	I_{NO} or $I_{NC} = \pm 10V$ $I_{A} = I_{MIN}$ to I_{MAX}			0.5	22
Off-Leakage Current	I _{NO_,} I _{NC_}	$V_{COM} = \pm 10V$,	$T_A = +25^{\circ}C$	-0.5	0.01	0.5	nA
(NO_ or NC_) (Note 6)	1110_, 1110_	V_{NO} or $V_{NC} = \mp 10V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	117 (
COM_ Off-Leakage Current	loom (OFF)	$V_{COM} = \pm 10V$,	$T_A = +25^{\circ}C$	-0.5	0.01	0.5	nA
(Note 6)	ICOM_(OFF)	V_{NO} or $V_{NC} = \mp 10V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	117 (
COM_ On-Leakage Current	I _{COM_(ON)}	$V_{COM} = \pm 10V$, V_{NO} or $V_{NC} = \pm 10V$	$T_A = +25^{\circ}C$	-1	0.02	1	nA
(Note 6)	ICOM_(ON)	or floating	T _A = T _{MIN} to T _{MAX}	-20		20	11/ (
LOGIC INPUT							
Input Current with Input Voltage High	I _{IN_H}	IN_ = 2.4V, all others =	0.8V	-0.5	0.001	0.5	μΑ
Input Current with Input Voltage Low	I _{IN_L}	IN_ = 0.8V, all others =	2.4V	-0.5	0.001	0.5	μΑ
Logic Input Voltage High	V _{IN_H}			2.4			V
Logic Input Voltage Low	V _{IN_L}					0.8	V

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V+=+15V, V-=-15V, V_L=+5V, V_{IN_H}=+2.4V, V_{IN_L}=+0.8V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
POWER SUPPLY								
Power-Supply Range				±4.5		±20.0	V	
Positive Supply Current	l+	V _{IN} = 0 or 5V	T _A = +25°C	-0.5	0.001	0.5	μA	
Tositive Supply Current	17	VIIV = 0 OI OV	$T_A = T_{MIN}$ to T_{MAX}	5		5	μΛ	
Negative Supply Current	I-	V _{IN} = 0 or 5V	T _A = +25°C	-0.5	0.001	0.5	μA	
Negative Supply Guiterit	,- 	VIIV = 0.01.3V	$T_A = T_{MIN}$ to T_{MAX}	5		5	μΛ	
Logic Supply Current	ΙL	VIN = 0 or 5V	T _A = +25°C	-0.5	0.001	0.5		
Logic Supply Current	'L	VIIV = 0 01 3V	$T_A = T_{MIN}$ to T_{MAX}	5		5	— μΑ	
Ground Current	I _{GND}	V _{IN} = 0 or 5V	T _A = +25°C	-0.5	0.001	0.5	μA	
around Current	IGND	VIIV = 0.01.24	$T_A = T_{MIN}$ to T_{MAX}	5		5	μΑ	
SWITCH DYNAMIC CHARACTE	RISTICS							
Turn-On Time	ton	$V_{COM} = \pm 10V$	T _A = +25°C		130	275	ns	
Turri-Ori Tilrie	UN	Figure 2	$T_A = T_{MIN}$ to T_{MAX}			400	110	
Turn-Off Time	toff	$V_{COM} = \pm 10V$	$T_A = +25^{\circ}C$		90	175	ns	
rain on time	OFF	Figure 2	$T_A = T_{MIN}$ to T_{MAX}			300	110	
Break-Before-Make Time Delay (MAX4669)		V _{COM} = 10V		5	30		ns	
Charge Injection	Q	$C_L = 1.0$ nF, $V_{GEN} = 0$	0, R _{GEN} = 0, Figure 3		450		рС	
Off-Isolation (Note 7)	V _{ISO}	$R_L = 50\Omega$, $C_L = 5pF$,	f = 1MHz, Figure 4		-60		dB	
Crosstalk (Note 8)	V _{CT}	$R_L = 50\Omega$, $C_L = 5pF$,	f = 1MHz, Figure 5		-66		dB	
NC_ or NO_ Capacitance	C _{OFF}	f = 1MHz, Figure 6			65		рF	
COM_ Off-Capacitance	ССОМ	f = 1MHz, Figure 6			65		рF	
On-Capacitance	ССОМ	f = 1MHz, Figure 7			290	<u> </u>	рF	

ELECTRICAL CHARACTERISTICS—Single Supply

 $(V+=+12V, V-=0, V_L=+5V, V_{IN_H}=+2.4V, V_{IN_L}=+0.8V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	TYP	MAX	UNITS	
ANALOG SWITCH	,							
Input Voltage Range (Note 3)	V _{COM_} , V _{NO_} , V _{NC_}			0		V+	V	
COM_ to NO_, COM_ to NC_	R _{ON}	I _{COM} _ = 10mA;	$T_A = +25^{\circ}C$		3	4	Ω	
On-Resistance	014	V_{NO} or V_{NC} = 10V	$T_A = T_{MIN}$ to T_{MAX}			5		
COM_ to NO_, COM_ to NC_ On-Resistance Match Between	ΔR _{ON}	$I_{COM} = 10mA;$	T _A = +25°C		0.05	0.4	Ω	
Channels (Notes 3, 4)		V_{NO} or $V_{NC} = 10V$	$T_A = T_{MIN}$ to T_{MAX}			0.5		
COM_ to NO_, COM_ to NC_ On-Resistance Flatness	Rflat(on)	I_{COM} = 10mA; V_{NO} or V_{NC} = 3V,			0.05	0.5	Ω	
(Note 5)	THEAT(ON)	6V, 0V	$T_A = T_{MIN}$ to T_{MAX}			0.5		
Off-Leakage Current	I _{NO_} , I _{NC_}	V _{COM} _ = 1V, 10V; V _{NO} _ or V _{NC} _ = 1V,	T _A = +25°C	-0.5	0.01	0.5	nA	
(NO_ or NC_) (Notes 6, 9)	1110_, 1110_	10V	$T_A = T_{MIN}$ to T_{MAX}	-5		5	117 (
COM Off-Leakage Current	ICOM (OFF)	$V_{COM} = 10V, 1V;$ $V_{NO} \text{ or } V_{NC} = 1V,$	T _A = +25°C	-0.5	0.01	0.5	nA	
(Notes 6, 9)	ICOM_(OFF)	10V	$T_A = T_{MIN}$ to T_{MAX}	-5		5	IIA	
COM On-Leakage Current	leer (ern	$V_{COM} = 1V$, $10V$; V_{NO} or $V_{NC} = 1V$,	T _A = +25°C	-1	0.01	1	nA	
(Notes 6, 9)	ICOM_(ON)	10V, or floating	TA = TMIN to TMAX	-20		20	IIA	
LOGIC INPUT								
Input Current with Input Voltage High	IIN_H	IN_ = 2.4V, all others	= 0.8V	-0.5	0.001	0.5	μΑ	
Input Current with Input Voltage Low	I _{IN_L}	IN_ = 0.8V, all others =	= 2.4V	-0.5	0.001	0.5	μΑ	
Logic Input Voltage High	V _{IN_H}			2.4			V	
Logic Input Voltage Low	V _{IN_L}					0.8	V	

ELECTRICAL CHARACTERISTICS—Single Supply (continued)

 $(V+=+12V, V-=0, V_L=+5V, V_{IN_H}=+2.4V, V_{IN_L}=+0.8V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS		
POWER SUPPLY									
Power-Supply Range				4.5		36.0	V		
Positive Supply Current	l+	V _{IN} = 0 or 5V	$T_A = +25^{\circ}C$	-0.5	0.001	0.5	μA		
Toshive Supply Guirent	17	V \(\text{V} = 0 \text{Ol 3 V}	$T_A = T_{MIN}$ to T_{MAX}	-5		5	μΑ		
Logic Supply Current	IL	I _I V _{IN} = 0 or 5V	$T_A = +25^{\circ}C$	-0.5	0.001	0.5	μΑ		
Logic Supply Current	'L	VIN - 0 01 3V	$T_A = T_{MIN}$ to T_{MAX}	-5		5	μΑ		
Ground Current	lovio	VIN = 0 or 5V	$T_A = +25^{\circ}C$	-0.5	0.001	0.5			
Ground Current	IGND	VIIV — O OI SV	$T_A = T_{MIN}$ to T_{MAX}	-5		5	- μΑ		
SWITCH DYNAMIC CHARACTE	RISTICS								
Turn-On Time (Note 3)	ton	$V_{COM} = 10V$	$T_A = +25^{\circ}C$		200	400	ns		
rum-on time (Note 3)	ton	Figure 2	$T_A = T_{MIN}$ to T_{MAX}			500	115		
Turn-Off Time (Note 3)	torr	$V_{COM_{-}} = 10V,$	$T_A = +25^{\circ}C$		100	200	200 ns		
rum-on time (Note 3)	tOFF	Figure 2	$T_A = T_{MIN}$ to T_{MAX}			300	115		
Break-Before-Make Time Delay (MAX4669)		V _{COM} = 10V		10			ns		
Charge Injection	Q	$C_L = 1.0$ nF, $V_{GEN} = 0$), R _{GEN} = 0, Figure 3		50		рС		
Crosstalk (Note 8)	V _{CT}	$R_L = 50\Omega$, $C_L = 5pF$,	f = 1MHz, Figure 5		-66		dB		
NC or NO Capacitance	C _{OFF}	f = 1MHz, Figure 6, T	A = +25°C		105		pF		
COM Off-Capacitance	Ссом	f = 1MHz, Figure 6, T	A = +25°C		105		pF		
On-Capacitance	Ссом	f = 1MHz, Figure 7, T	A = +25°C		185		pF		

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- Note 3: Guaranteed by design.
- Note 4: $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 5:** Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal range.
- Note 6: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at +25°C.
- Note 7: Off-isolation = 20log₁₀ [V_{COM} / (V_{NC} or V_{NO})], V_{COM} = output, V_{NC} or V_{NO} = input to off switch.
- Note 8: Between any two switches.
- Note 9: Leakage testing at single supply is guaranteed by testing with dual supplies.

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

V_{COM} (V)

V+ = -V- (V)

V_{COM} (V)

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

PIN		PIN		FUNCTION	
MAX4667	MAX4668	MAX4669	NAME	FUNCTION	
1, 3, 6, 8, 10, 15	1, 3, 6, 8, 10, 15	1, 3, 6, 8, 10, 15	N.C.	No Connection. Not internally connected. Connect to GND as low impedance to improve on/off-isolation.	
2, 7	2, 7	2, 7	IN2, IN2	Logic-Control Digital Inputs	
4	4	4	V-	Negative Analog Supply Voltage Input. Connect to GND for single-supply operation.	
5	5	5	GND	Ground	
12	12	12	VL	Logic Supply Input	
13	13	13	V+	Positive Analog Supply Voltage Input	
14, 11	14, 11	14, 11	COM1, COM2	Analog Switch, Common Terminals	
16, 9	_	_	NC1, NC2	Analog Switch, Normally Closed Terminals	
_	16, 9	_	NO1, NO2	Analog Switch, Normally Open Terminals	
_	_	9	NC1	Analog Switch, Normally Closed Terminal	
_	_	16	NO1	Analog Switch, Normally Open Terminal	

Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with supply pins (Figure 1). Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 44V. These protection diodes are not recommended when using a single supply.

Off-Isolation at High Frequencies

With the N.C. pins connected to GND, the high-frequency on-response of these parts extends from DC to above 100MHz with a typical loss of -2dB. When the switch is turned off, however, it behaves like a capacitor, and off-isolation decreases with increasing frequency. (Above 300MHz, the switch actually passes more signal turned off than turned on.) This effect is more pronounced with higher source and load impedances.

Above 5MHz, circuit-board layout becomes critical and it becomes difficult to characterize the response of the switch independent of the circuit. The graphs shown in the *Typical Operating Characteristics* were taken using a 50Ω source and load connected with BNC connectors to a circuit board deemed "average"; that is, designed with isolation in mind, but not using stripline or other special RF circuit techniques. For critical applications above 5MHz, use the MAX440, MAX441, and MAX442, which are fully characterized up to 160MHz.

Figure 1. Overvoltage Protection Using External Blocking Diodes

Test Circuits/Timing Diagrams

Figure 2. Switching-Time Test Circuit

Figure 3. Charge-Injection Test Circuit

Test Circuits/Timing Diagrams (continued)

Figure 4. Off-Isolation Test Circuit

Figure 5. Crosstalk Test Circuit

Figure 6. Switch Off-Capacitance Test Circuit

Figure 7. Switch On-Capacitance Test Circuit

Ordering Information (continued)

_Chip Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4668CSE	0°C to +70°C	16 Narrow SO
MAX4668CPE	0°C to +70°C	16 Plastic DIP
MAX4668ESE	-40°C to +85°C	16 Narrow SO
MAX4668EPE	-40°C to +85°C	16 Plastic DIP
MAX4669CSE	0°C to +70°C	16 Narrow SO
MAX4669CPE	0°C to +70°C	16 Plastic DIP
MAX4669ESE	-40°C to +85°C	16 Narrow SO
MAX4669EPE	-40°C to +85°C	16 Plastic DIP

TRANSISTOR COUNT: 108

Package Information

	INC	HES	MILLIM	IETERS
	MIN	MAX	MIN	MAX
Α	0.053	0.069	1.35	1.75
Α1	0.004	0.010	0.10	0.25
В	0.014	0.019	0.35	0.49
С	0.007	0.010	0.19	0.25
е	0.0)50	1.7	27
Ε	0.150	0.157	3.80	4.00
Н	0.228	0.244	5.80	6.20
h	0.010	0.020	0.25	0.50
L	0.016	0.050	0.40	1.27

MIN	MA)	x MT	N MA	VV N	11001
			14 111	4 X 1./	M201
D 0.18	9 0.19	7 4.8	30 5.0	00 8	A
D 0.33	7 0.34	44 8.5	55 8.	75 14	4 B
D 0.38	6 0.39	9.8	30 10	.00 16	5 C

- NOTES:
 1. D&E DO NOT INCLUDE MOLD FLASH
 2. MOLD FLASH DR PROTRUSIONS NOT
 TO EXCEED .15mm (.006*)
 3. LEADS TO BE COPLANAR WITHIN
 .102mm (.004*)
 4. CONTROLLING DIMENSION: MILLIMETER
 5. MEETS JEDEC MS012-XX AS SHOWN
 IN ABOVE TABLE
 6. N = NUMBER OF PINS

PACKAGE FAMILY DUTLINE: SDIC .150"

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.