STAGE
Competitive Programming Test
End Stage

Questions

1. Virus Transmission ()

Note:

- You can do multiple submissions.
- Your highest score will be considered

00D: 02H: 59M: 53S

Virus Transmission

You're given a rectangular petri dish divided into \mathbf{m} rows, \mathbf{n} columns, each subdivision containing cells or left empty. Cells can be infected ($\mathbf{0}$), weak ($\mathbf{1}$), strong ($\mathbf{2}$) or empty ($_{\mathbf{1}}$). An infected cell can infect adjacent healthy (both weak and strong) cells. Once adjacent to the infected, it takes a day for a weak cell to get infected and be able to transmit the virus, and two days for a strong one. The objective is to find the number of days required to infect all weak and strong cells.

A subdivision can have a maximum of 4 adjacent subdivisions as show below. Infected cell is shown in red and it's adjacent 4 cells are shown by black dots.

Input Format

The first line contains and integer $\,\mathbf{t}\,$ denoting the number of test cases. The second line consists of two space separated integers $\,\mathbf{m}\,$ and $\,\mathbf{n}\,$. The next $\,\mathbf{m}\,$ rows each contain $\,\mathbf{n}\,$ characters.

Output Format

For each test case output the number of days required. If it's not possible to turn all healthy cells to infected, output $\,$ -1 . If there are no healthy cells output $\,$ 0 .

Sample Input

Competitive Programming Test

End Stage

Questions 1. Virus Transmission () Note: - You can do multiple submissions. - Your highest score will be considered

Sample Output

Explanation

For test case

After Day 1

Competitive Programming Test

End Stage

After Day 2

After Day 3

End Stage

Competitive Programming Test

After Day 4

After Day 5

End Stage

Competitive Programming Test

After Day 6

After Day 7

STAGE
Compositive Programming Tost
End Stage

Competitive Programming Test

After Day 8

It takes a total of 8 days.

Infected cell is shown in red, weak in blue and strong in green. Intermediate state of a strong cell after first day of infection is shown in orange.

Constraints

1 <= t <= 1000

1 <= m,n <= 100

Environment

Read from STDIN and write to STDOUT.

Please check the sample programs below which print the sum of two numbers received as input

- C goo.gl/4zRfEC (https://goo.gl/4zRfEC)
- C++ bit.ly/2lo1VND (https://bit.ly/2lo1VND)

STAGE Competitive Programming Test

Questions

1. Virus Transmission ()

Note:

- You can do multiple submissions.

- Your highest score will be considered

End Stage

(SITIUII CUSE)

- 665 horo2hit:ly59M11.G53S(https://bit.ly/2T1TGu4)
- Python3 bit.ly/2AsphPm (https://bit.ly/2AsphPm)

Instructions

- The dashboard provides two modes.
 - Test runs your code against public/sample test cases.
 - Submit runs against private/hidden ones.
- Only public/sample test cases and their elaborate "test" results are made available. A line by line comparison with expected output is shown. There is no score for passing the public test cases. It's only for testing and debugging.
- For the private/hidden test cases, the judging system only shows the exit code, passed status, time consumption, memory consumption and score. We expect users to take cues from these values. Only making a "submit" will yield a score. Total score is a normalized weighted score over all test cases.
- If the code reaches execution time limit and it still running, it is terminated and a timeout is declared.
- Use the help button

▲ Upload solution to editor Select language ▼

1

STAGE
Competitive Programming Test

End Stage

Test

Submit

Questions

1. Virus Transmission ()

Note:

- You can do multiple submissions.

- Your highest score will be considered