0.1 Strukturtheorie zu Gruppen ("Einige Aussagen")

Sei im Weiteren M ein Monoid, G eine Gruppe und X eine Menge.

Definition 1 (Wirkung). Eine Abbildung

$$\lambda: M \times X \to X, (m, x) \mapsto m \cdot x := \lambda(m, x)$$

heißt Linkswirkung (left action, Linksoperation) von M auf X, wenn es gelten $\forall x \in X, m, m' \in M$:

- (i) Neutrales Element: $e \cdot x = x$
- (ii) Assoziativität: $m \cdot (m' \cdot x) = (m \cdot m') \cdot x$

Bezeichnung. Ist M eine Gruppe, so heißt λ auch Gruppenwirkung und X heißt Links-M-Menge.

Bemerkung. Analog kann man auch Rechtswirkungen

$$\rho: X \times M \to X, (x,m) \mapsto x \cdot m$$

definieren. (Axiome: $x \cdot e = c$ und $(x \cdot m) \cdot m' = x \cdot (m \cdot m')$)

Bemerkung (Übung). Jede Links-G-Wirkung kann man in eine Rechts-G-Wirkung überführen: zu $\lambda: G \times X \to X$ definiere $\rho: X \times G \to X$ durch

$$\rho(x,g) := \lambda(g^{-1},x) \iff x \cdot g := g^{-1} \cdot x$$

Proposition 2 (Alternative Beschreibung von Wirkungen).

(a) Sei $\lambda: G \times X \to X$ eine Linkswirkung, dann ist

$$\varphi: G \to \mathrm{Bij}(X), g \mapsto (\varphi_g: X \to X, x \mapsto gx)$$

ein wohl-definierter Gruppenhomomorphismus.

(b) $Sei\ \varphi: G \to Bij(X)\ ein\ Gruppenhomomorphismus,\ dann\ ist$

$$\lambda: G \times X \to X, (g, x) \mapsto \varphi(g)(x)$$

eine Linkswirkung von G auf X.

Beweis. (a) Für $g \in G$ sei $\varphi_g : X \to X, x \mapsto gx$, dann gelten: $\varphi_e : X \to X, x \mapsto ex = x$ ist id_X (Axiom (i)), und

$$(*) \quad \varphi_g \circ \varphi_{g'} = \varphi_{gg'}$$

denn $\forall x \in X$:

$$(\varphi_g \circ \varphi_{g'})(x) = \varphi_g(\varphi_{g'}(x)) = g(g'x) \stackrel{(ii)}{=} (gg')x = \varphi_{gg'}(x)$$

Damit folgen:

1. $\varphi_g \circ \varphi_{g^{-1}} = \underbrace{\varphi_e}_{\operatorname{id}_X} = \varphi_{g^{-1}} \circ \varphi_g \implies \varphi_g$ ist eine bijektive Abbildung mit Inverse $\varphi_{g^{-1}}$, d.h.

$$\varphi: G \to \operatorname{Bij}(X), g \mapsto \varphi_g$$

ist wohl-definiert.

2. φ ist ein Gruppenhomomorphismus: folgt aus (*) (Verknüpfung in Bij(X) ist die Verkettung von Abbildungen.)

(b) Übung.

Bemerkung. (a) Das Analogon von Proposition 2 gilt auch für Monoide. Die Linkewirkungen eines Monoids M auf X entsprechen Monoidhomomorphismen $M \to (\mathrm{Abb}(X,X),\mathrm{id}_X,\circ)$

(b) Eine Gruppe kann auch auf "Objekten" mit mehr Struktur als eine Menge wirken, z.B. auf eine Gruppe!

Beispiel. G wirkt auf eine Gruppe N heißt, man hat einen Gruppenhomomorphismus $G \to \operatorname{Aut}(N)$ (vgl. Lemma 1.56)

Definition 3 (Eigenschaften von Wirkungen). Sei $\lambda:G\times X\to X$ eine Linkswirkung von G auf X.

- (a) Die Bahn zu $x \in X$ ist $Gx = \{gx \mid g \in G\}$. Die Länge der Bahn zu x ist #Gx
- (b) λ ist transitiv $\iff \forall y, z \in X \exists g \in G : gy = z \stackrel{\text{Übung}}{\iff} \forall y \in X : Gy = X \stackrel{\text{Übung}}{\iff} \exists x \in X : Gx = X$
- (c) λ ist n-fach transitiv $(n \in \mathbb{N})$, wenn für alle Paare von n-Tupeln $(x_1, ..., x_n), (y_1, ..., y_n) \in X^n$ mit $\#\{x_1, ..., x_n\} = \#\{y_1, ..., y_n\}$ gilt $\exists g \in G : gx_i = y_i, \forall i$.
- (d) Die Wirkung heißt treu, wenn der induzierte Gruppenhomomorphismus $\varphi:G\to \mathrm{Bij}(X)$ (aus Proposition 2) injektiv ist

$$\overset{\ddot{\mathbf{U}}\mathrm{bung}}{\Longleftrightarrow} \forall g \in G \setminus \{e\}: \exists x \in X: \underbrace{gX \neq X}_{\varphi_g(x) \neq \mathrm{id}_X(x)}$$

Beispiel 4.

- 1. Ist V ein K-Vektoraum, so wirkt das Monoid $(K,1,\cdot)$ auf V durch Skalarmultiplikation $(\lambda,v)\mapsto \lambda v$
- 2. Die folgenden 3 Beispiele sind Linkswirkungen von $\mathrm{GL}_{\mathrm{n}}(K)$:
 - (i) $\mathrm{GL}_{\mathbf{n}}(K) \times K^n \to K^n, (g, v) \mapsto gv.$ (Übung: Es gibt die Bahnen $\{0\}, K^n \setminus \{0\}$)
 - (ii) Sei $\mathcal{B} = \{\text{geordnete Basen von } K^n\}$ und

$$\operatorname{GL}_{\mathbf{n}}(K) \times \mathcal{B} \to \mathcal{B}, (g, (b_1, ..., b_n)) \mapsto (gb_1, ..., gb_n)$$

die Wirkung ist treu und transitiv.

- (iii) $\operatorname{GL}_n(K) \times \operatorname{End}_K(K^n) \to \operatorname{End}_K(K^n), (A, B) \mapsto ABA^{-1}$ die Wirkung ist nicht treu $Z(\operatorname{GL}_n(K))$ wirkt trivial. (Übung: Bahnen stehen in Bijektion zu den Frobeniusnormalformen von Matrizen.)
- 3. $S_n \times \{1,...,n\} \rightarrow \{1,...,n\}, (\sigma,i) \mapsto \sigma(i)$ Wirkung ist treu und *n*-fach transitiv.
- 4. Abstrakte Beispiele: Sei $H \leq G$ eine Untergruppe.
 - (i) $\lambda: H \times G \to G, (h,g) \mapsto hg$. Die Bahnen sind die Mengen Hg, also die Rechtsnebenklassen zu H (treu?) Menge der Rechtsnebenklassen

$$H^{\backslash G} := \{ Hg \mid g \in G \}$$

(ii) $\rho:G\times H\to G, (g,h)\mapsto gh$ Bahnen = Linksnebenklassen zuH und

$$G_{/H} = \{gH \mid g \in G\}$$

- (iii) $c: G \times G \to G, (g,g') \mapsto gg'g^{-1}$ ist eine Linkswirkung, denn der nach Proposition 2 zugehörige Gruppenhomomorphismus ist $c: G \to \operatorname{Aut}(G), g \mapsto c_g$.
- (iv) $G \times G/H \to G/H$, $(g,g'H) \mapsto gg'H$ Die Klassen gH heißen Linksnebenklassen wegen der Links-G-Wirkung auf ihnen.

Proposition 5. Sei X eine Links-G-Menge (zu der Wirkung $\lambda : G \times X \to X, (g, x), \mapsto gx$) definiere Relation \sim auf X durch

$$x \sim y \iff \exists q \in G : qx = y$$

dann gelten:

- (a) \sim ist eine Äquivalenzrelation.
- (b) Die Äquivalenzklasse zu $x \in X$ bezüglich \sim ist die Bahn Gx. Insbesondere ist X die disjunkte Vereinigung seiner Bahnen. (Ist $(x_i)_{i \in I}$ ein Repräsentantensystem der G-Bahnen, so gilt also $\#X = \sum_{i \in I} \#Gx$)

Beweis. (a) \sim ist eine Äquivalenzrelation: Prüfe

- \sim reflexiv: $ex = x \implies x \sim x$.
- ~ symmetrisch: Gelte $x \sim y$, d.h. $\exists g \in G : gx = y$, dann gilt $x = ex = q^{-1}(gx) = q^{-1}y \implies y \sim x$.
- \sim transitiv: Gelte $x \sim y$ und $y \sim z$, d.h. $\exists g, h' \in G : gx = y, g'y = z$

$$\implies (q'q)x = q'(qx) = q'y = z \implies x \sim z$$

(b) Sei $x \in X$, dann ist

$$\{y\in X\mid x\sim y\}=\{y\in X\mid \exists g\in G: y=gx\}=\{gx\mid g\in G\}=Gx.$$

Satz 6 (Satz von Cayley). Jede Gruppe G (jedes Monoid M) ist isomorph zu einer Untergruppe (einem Untermonoid) von (Bij(G), id $_{G}$, \circ) (bzw. (Abb(G, G), id $_{G}$, \circ)).

Beweis. (Für Gruppen, Rest ist eine Übung) Definiere die Wirkung $\lambda G \times G \to G, (g,h) \mapsto gh$, dann erhalten wir den induzierten Gruppenhomomorphismus $\varphi: G \to \mathrm{Bij}(G)$, wir zeigen φ ist injektiv: Sei $g \in G \setminus \{e\}$, dann gilt $ge = g \neq e \Longrightarrow \mathrm{Wirkung}$ treu, also φ ist ein Gruppenmonomorphismus. D.h. G "ist" Untergruppe von $\mathrm{Bij}(G)$.