Chapter 2	Configuration Space
Chapter 3	Rigid-Body Motions
Chapter 4	Forward Kinematics
Chapter 5	Velocity Kinematics and Statics
Chapter 6	Inverse Kinematics
Chapter 7	Kinematics of Closed Chains
Chapter 8	Dynamics of Open Chains
	8.1 Lagrangian Formulation
	8.2 Dynamics of a Single Rigid Body
	8.3 Newton-Euler Inverse Dynamics
	8.4 Dynamic Equations in Closed Form
	8.5 Forward Dynamics of Open Chains

Chapter 9	Trajectory Generation
Chapter 10	Motion Planning
Chapter 11	Robot Control
Chapter 12	Grasping and Manipulation
Chapter 13	Wheeled Mobile Robots, Snch and Park, Cambridge University Press

Important concepts, symbols, and equations

Newton-Euler recursive inverse dynamics

Find
$$\tau = M(\theta)\ddot{\theta} + c(\theta,\dot{\theta}) + g(\theta) + J^{\mathrm{T}}(\theta)\mathcal{F}_{\mathrm{tip}}$$

efficiently and numerically, without closed-form expressions or differentiation.

 G_i : spatial inertia matrix of link $\{i\}$ in $\{i\}$

$$M_{i,i-1}: \{i-1\} \text{ in } \{i\} \text{ when } \theta_i = 0$$

 A_i : screw axis of joint i in $\{i\}$

 \mathcal{F}_{n+1} : wrench \mathcal{F}_{tip} applied by end-effector

$$\dot{\mathcal{V}}_0 = (\dot{\omega}_0, \dot{v}_0) = (0, -\mathfrak{g})$$

Important concepts, symbols, and equations (cont.)

Forward iterations

Given $\theta, \dot{\theta}, \ddot{\theta}$, for i = 1 to n do:

$$T_{i,i-1} = e^{-[\mathcal{A}_i]\theta_i} M_{i,i-1}$$

$$\mathcal{V}_i = [\operatorname{Ad}_{T_{i,i-1}}] \mathcal{V}_{i-1} + \mathcal{A}_i \dot{\theta}_i$$

$$\dot{\mathcal{V}}_i = [\operatorname{Ad}_{T_{i,i-1}}] \dot{\mathcal{V}}_{i-1} + [\operatorname{ad}_{\mathcal{V}_i}] \mathcal{A}_i \dot{\theta}_i + \mathcal{A}_i \ddot{\theta}_i$$

Backward iterations

For i = n to 1 do:

$$\mathcal{F}_i = [\mathrm{Ad}_{T_{i+1,i}}]^{\mathrm{T}} \mathcal{F}_{i+1} + \mathcal{G}_i \dot{\mathcal{V}}_i - [\mathrm{ad}_{\mathcal{V}_i}]^{\mathrm{T}} \mathcal{G}_i \mathcal{V}_i$$
$$\tau_i = \mathcal{F}_i^{\mathrm{T}} \mathcal{A}_i$$

Important concepts, symbols, and equations (cont.)

Forward dynamics: Solve $M(\theta)\ddot{\theta} = \tau - c(\theta,\dot{\theta}) - g(\theta) - J^{\mathrm{T}}(\theta)\mathcal{F}_{\mathrm{tip}}$ for $\ddot{\theta}$.

Use n + 1 calls of N-E inverse dynamics to get

- $c(\theta, \dot{\theta}) + g(\theta) + J^{\mathrm{T}}(\theta) \mathcal{F}_{\mathrm{tip}}$ by setting $\ddot{\theta} = 0$
- $M(\theta) = [M_1(\theta) \cdots M_n(\theta)]$, where $\tau = M_i(\theta)$ if $\ddot{\theta}_i = 1$, $\ddot{\theta}_j = 0$ for all $j \neq i$, $\dot{\theta} = 0$, $\mathfrak{g} = 0$, and $\mathcal{F}_{\text{tip}} = 0$.

Use any efficient algorithm to solve $M\ddot{\theta} = b$ for $\ddot{\theta}$.

Important concepts, symbols, and equations (cont.)

Euler integration for simulation:

$$\ddot{\theta}[k] = ForwardDynamics(\theta[k], \dot{\theta}[k], \tau(k\delta t), \mathcal{F}_{tip}(k\delta t))$$

$$\theta[k+1] = \theta[k] + \dot{\theta}[k]\delta t + \frac{1}{2} \dot{\theta}[k] \delta t$$

$$\dot{\theta}[k+1] = \dot{\theta}[k] + \ddot{\theta}[k]\delta t$$

Could add a second-order correction to the position calculation.

Explain each term in the equations below.

Forward iterations

Given $\theta, \dot{\theta}, \dot{\theta}$, for i = 1 to n do:

For i = n to 1 do:

$$\mathcal{F}_i = [\mathrm{Ad}_{T_{i+1,i}}]^\mathrm{T} \mathcal{F}_{i+1} + \underline{\mathcal{G}_i \dot{\mathcal{V}}_i} - [\mathrm{ad}_{\mathcal{V}_i}]^\mathrm{T} \mathcal{G}_i \mathcal{V}_i$$

$$\tau_i = \mathcal{F}_i^\mathrm{T} \mathcal{A}_i \qquad \text{rigid-body dynamics}$$

$$\text{component of the}$$

$$\text{wrench that does work}$$

$$\text{Modern Robotics. Lynch and Park. Cambridge University}$$

 \mathcal{V}_i is the twist of link i in $\{i\}$