Spark

- NPL com Spark
- Utilizando bibliotecas Nativas de ML do Spark
- Classificação: Spam

Como Utilizar Spark?

- Instalar a versão Open Source (Windows, Mac, Linux)
 - https://spark.apache.org/
- Instalar no Google Colab
- Utilizar um provedor na Nuvem
 - AWS (EMR)
 - Azure (HDInsight)
 - Databricks
 - Você pode instalar em um servidor na nuvem

Databricks

- Dos criadores do Spark
- Community Edition: sem custo, com algumas limitações
- https://community.cloud.databricks.com/login.html

Sign In to Databricks Community Edition fernando@evoluth.com.br Forgot Password? Sign In New to Databricks? Sign Up.

Privacy Policy | Terms of Use

Please tell us about yourself

First	Name: *
Last	Name: *
Com	pany *
Com	pany Email *
Title	*
Phor	ne Number
	Keep me informed with occasional updates about Databricks and related open source products
10.	cking "Get Started For Free", you agree to the Privacy Policy.

O que é Spark?

- Ferramenta de Processamento de Dados Distribuído em um Cluster
- Em memória
- Veloz
- Escalável
- Particionamento

Spark

• Escala horizontalmente - Cluster

Replicação / Tolerância a Falha

• Dados são copiados entre os nós do cluster. Isso traz o benefício de, entre outras coisas, tolerância a falhas

Particionamento

Spark VS Python, R ou Banco de Dados

- Você precisa Processar dados!
- Custo computacional: CPU, Memória, Rede etc.
- Spark tem arquitetura voltada a processar dados!
 - Melhor performance, porém:
 - Não substitui Python
 - Não substitui SQL ou um SGBDR

Linguagens

Scala **5**

Python 💨

Por que Spark?

- NLP são tarefas com alto custo computacional
- Spark Alta performance pela sua natureza "distribuída"
- Com Pyspark, você tem tudo do Python + Spark!

Componentes

- Machine Learning (Mlib)
- SQL (Spark SQL)
- Processamento em Streaming
- Processamento de Grafos (GraphX)

Spark SQL

- Permite ler dados tabulares de várias fontes (CSV, Json, Parquet, ORC etc)
- Pode usar sintaxe SQL

Streaming: Spark Structured Streaming

• Dados estruturados

Grafos acíclicos dirigidos

• Spark Constrói Gráficos Acíclicos Dirigidos

Elementos

• SparkSession: Seção

• Aplication: Programa

Transformações e Ações

- Um data frame é imutável: traz tolerância a falha
- Uma transformação gera um novo data frame.
- O processamento de transformação de fato só ocorre quando há uma Ação: Lazy Evaluation

Lazy Evaluation

