Badania operacyjne i systemy wspomagania decyzji

07 Programowanie liniowe - objaśnienia

Programowanie liniowe - postać kanoniczna

Program liniowy to taki problem optymalizacyjny w którym mamy pewien zbiór zmiennych (z założenia nieujemnych), na które nałożone są ograniczenia w formie równości i nierówności liniowych, zaś funkcja, zadana na tych zmiennych, którą mamy optymalizować jest również funkcją liniową. Optymalizacja w tym przypadku oznacza znalezienie największej, bądź najmniejszej wartości dla tej funkcji spośród liczb które spełniają zadane ograniczenia.

Przyjmuje się, że w postaci kanonicznej programu liniowego (zwanej także postacią standardową) wszystkie nierówności podane są w formie $a_1x_1 + \cdots + a_nx_n \leq b$, gdzie x_1, \ldots, x_n są zmiennymi, zaś funkcja którą próbujemy optymalizować (zwana funkcja celu), jest nastawiona na szukanie maksimum.

Program liniowy w postaci dowolnej relatywnie łatwo sprowadzić do postaci kanonicznej. Jeżeli funkcja celu f(x) szuka minimum, to możemy zastąpić ją -f(x) i szukać dla niej maksimum. Każdą nierówność w ograniczeniach $a_1x_1+\cdots+a_nx_n\geqslant b$ można zastąpić przez $-a_1x_1-\cdots-a_nx_n\leqslant -b$, zaś równość $a_1x_1+\cdots+a_nx_n\leqslant b$ i $-a_1x_1-\cdots-a_nx_n\leqslant -b$.

Programowanie liniowe do znajdywania strategii mieszanych w grach o sumie zero

Programy liniowe mogą być użyte do znalezienia optymalnych strategii (w sensie równowagi Nasha) w grach w postaci normalnej. Skupimy się na grach o sumie zero dla dwóch graczy. Kiedy mamy do czynienia ze strategiami czystymi wiadomo czym jest wartość z gry dla danego gracza (jest to wartośc jaką otrzyma po rozegraniu każdej z gier). Jeżeli jednak mamy do czynienia ze strategiami mieszanymi, czyli rozkładem prawdopodobieństwa po możliwych ruchach, wynik pojedynczej gry nie byłby miarodajny. Dlatego za wartość strategii przyjmuje się wartość oczekiwaną wynikającą z rozkładu prawdopodobieństw dla danego gracza. Jak pamiętamy, w grach skończonych równowaga Nasha zawsze istnieje,

co będzie dla gier o sumie zero oznaczać że istnieje strategia dla gracza pierwszego zapewniająca mu co najmniej pewną wartość v z możliwych do uzystania punktów, i istnieje strategia dla drugiego gracza, która zapewnia że pierwszy gracz dostanie co najwyżej v punktów. Tą wartość v nazywamy wartością gry i strategie, które ją zapewniają będą w równowadze Nasha. Dodatkowo wartość gry zawsze znajduje się pomięczy wartościami maxmin i minmax dla danej gry (oczywiście jest im równa jeżeli są jej równe).

Mając pojęcie wartości gry możemy przetłumaczyć szukanie strategii Nasha na program liniowy. Dla przykładu rozważymy grę kamień-papier-nożyce. Macierz wypłat dla tej gry ma następującą postać:

	K	P	N
K	0	-1	1
P	1	0	-1
N	-1	1	0

Pierwszym krokiem jest sprawdzenie wartości maxmin i minmax dla tej gry. Są to odpowiednio -1 i 1. Skoro nie są sobie równe to wiemy, że równowaga Nasha jest dla strategii mieszanych, oraz że wartość gry v leży pomiędzy -1 a 1. Ponieważ będziemy potrzebowali w przyszłości dzielić przez wartość gry warto przekształcić teraz macierz wypłat poprzez zwiększenie każdej wartości o wartość bezwzględną maxmin, lub najmniejszej wypłaty w macierzy. Nasza macierz po tej operacji wygląda następująco:

	K	P	N
K	1	0	2
P	2	1	0
N	0	2	1

Taka zamiada ma tę własność, że nie zmienia strategii optymalnych, natomiast zwiększa wartość gry, minmax i maxmin o dodaną wartość, więc teraz wiemy, że 0ivi2, dla gry w nowej postaci (jeżeli będziemy chcieli znaleźć wartość gry dla orginalnego problemu wystarczy odjąć dodaną wcześniej wartość). Rozważmy strategię pierwszego gracza (p_1, p_2, p_3) , gdzie p_1 to prawdopodobieństwo wybrania kamienia, p_2 wybrania papieru, zaś p_3 nożycy. Skoro to jest rozkład prawdopodobieństwa to mamy

$$p_1 + p_2 + p_3 = 1.$$

Jeżeli gracz pierwszy będzie grał strategią optymalną zaś gracz drugi tylko grał kamień, to spełniona będzie nierówność

$$p_1 + 2p_2 \geqslant v,$$

gdyż strategia optymalna zapewnia, że gracz pierwszy zawsze otrzyma co najmniej v. Podobnierozumując dla strategii drugiego gracza grania ciągle w papier,

oraz ciągle w nożyce otrzymamy nierówności:

$$p_2 + 2p_3 \geqslant v$$

$$2p_1 + p_3 \geqslant v$$
.

Wszystko byłoby dobrze tylko, że nie znamy wartości v i chcielibyśmy żeby była jak największa. Dlatego wprowadzamy zmienne pomocnicze

$$x_k = \frac{p_k}{v}$$
.

Jeżeli teraz podzielimy trzy otrzymane wcześniej nierówności przez v (dlatego potrzebowaliśmy zapewnić żeby v było dodatnie), otrzymamy nierówności w postaci

$$x_1 + 2x_2 \ge 1$$

$$x_2 + 2x_3 \ge 1$$

$$2x_1 + x_3 \geqslant 1$$
.

To są sensowne ograniczenia dla programu liniowego, brakuje nam tylko funkcji celu. Tu z pomocą przychodzi warunek $p_1+p_2+p_3=1$. Jeżeli podzielimy go obustronnie przez v otrzymamy $x_1+x_2+x_3=\frac{1}{v}$, a ponieważ chcieliśmy jak największe v, więc szukamy jak najmniejszego $\frac{1}{v}$, co oznacza że musimy zminimalizować funkcję celu $x_1+x_2+x_3$. Ponieważ wszystkie p_k są nieujemne, zas V jest dodatnie zatem x_k są wszystkie nieujemne i mamy dane które dają sensowny program liniowy. Jeżeli go rozwiążemy to otrzymamy

$$x_1 = x_2 = x_3 = \frac{1}{3}$$

stąd $\frac{1}{v} = 1$ i v = 1. Ostatecznie możemy wyliczyć, że $p_1 = p_2 = p_3 = \frac{1}{3}$ i że wartość orginalnej gry równa jest 0.

Analogiczne rozumowanie można przeprowadzić dla drugiego gracza z tym, że dla niego ograniczenia będą w postaci \leqslant a nie \geqslant , oraz będzie się on starał minimalizować wartość v.