## Il Teorema di Morse

#### Nicolò Leuzzi

Università degli Studi di Cagliari Facoltà di Scienze Corso di Laurea in Matematica





## ARGOMENTI

- DEFINIZIONI
  - indice di un campo di vettori X
  - punti critici non degeneri
  - singolarità semplici
  - punti di massimo, di minimo e di sella
- 2 Alcuni Risultati
- 3 Il Teorema di Morse





# L'Indice di un campo di vettori X

Sia M una varietà differenziabile orientata e compatta e scelgo una metrica Riemanniana su M. Sia X un campo di vettori su M avente singolarità isolata p. Sia C una curva semplice che delimita una regione semplice che contiene p nel suo interno. Oriento C come bordo di tale regione e definisco:

#### **DEFINIZIONE**

L'indice di X in p come l'intero I tale che:

$$\int_C d\varphi = 2\pi I$$

in cui  $\varphi$  è la funzione angolo tra il campo  $e_1 = \frac{X}{|X|}$  e un altro campo unitario  $\bar{e}_1$  definito su C.



# Punti critici non degeneri e singolarità semplici

#### Definizione: Punto critico non degenere

Sia  $f:M\to\mathbb{R}$  una funzione differenziabile su una varietà differenziabile M.  $p\in M$  è detto *critico* per f se  $df_p=0$ . Un punto critico è detto non degenere se per qualche parametrizzazione  $g:U\subseteq\mathbb{R}^2\to M$  di p=g(0,0) si ha che la matrice:

$$A = \begin{pmatrix} \frac{\partial^{2}(f \circ g)}{\partial x^{2}} & \frac{\partial^{2}(f \circ g)}{\partial x \partial y} \\ \frac{\partial^{2}(f \circ g)}{\partial y \partial x} & \frac{\partial^{2}(f \circ g)}{\partial y^{2}} \end{pmatrix} (0,0)$$

ha determinante non nullo.



# Punti critici non degeneri e singolarità semplici

### Definizione: Singolarità Semplice

Sia X un campo di vettori differenziabile su M e sia  $p \in M$  un punto singolare di X. Sia  $g: U \subseteq \mathbb{R}^2 \to M$  una parametrizzazione di un intorno di p=g(0,0) in cui  $X=\alpha(x,y)\frac{\partial}{\partial x}+\beta(x,y)\frac{\partial}{\partial y}$ .  $p \in M$  è una singolarità semplice per X se la matrice:

$$A_{g} = \begin{pmatrix} \left(\frac{\partial \alpha}{\partial x}\right)_{0} & \left(\frac{\partial \alpha}{\partial y}\right)_{0} \\ \left(\frac{\partial \beta}{\partial x}\right)_{0} & \left(\frac{\partial \beta}{\partial y}\right)_{0} \end{pmatrix}$$

ha determinante non nullo.



INDICE DI UN CAMPO DI VETTORI X PUNTI CRITICI NON DEGERERI SINGOLARITÀ SEMPLICI PUNTI DI MASSIMO, DI MINIMO E DI SELLA

# Punti critici non degeneri e singolarità semplici

## Proposizione 1

Sia  $p \in M$  un punto critico di una funzione differenziabile  $f: M \to \mathbb{R}$  su una varietà Riemanniana M. Allora: p è un punto critico non degenere di  $f \iff p$  è una singolarità semplice di grad f.





## Punti di massimo, di minimo e di sella

Sviluppando in serie di Taylor  $h(x, y) = f \circ g(x, y)$  attorno a (0, 0) e posto d = h(x, y) - h(0, 0), allora:

$$d = \frac{1}{2} \left\{ \left( \frac{\partial^2 h}{\partial x^2} \right)_0 x^2 + 2 \left( \frac{\partial^2 h}{\partial x \partial y} \right)_0 xy + \left( \frac{\partial^2 h}{\partial y^2} \right)_0 y^2 \right\} + c$$

in cui c indica i termini di ordine superiore.

Se det(A) > 0:

Se det(A) < 0:

p è detto punto di sella.

- p è punto di massimo se d < 0:</li>
- p è punto di minimo se







## ALCUNI RISULTATI

#### LEMMA

Sia  $p \in M$  una singolarità semplice di un campo di vettori differenziabile X su M, allora p è una singolarità isolata di M.

#### <u>Co</u>rollario

I punti critici non degeneri di una funzione  $f: M \to \mathbb{R}$  sono isolati.

### Proposizione 2

Sia  $p \in M$  una singolarità semplice di un campo di vettori X differenziabile su M, allora l'indice I di X in p è:

- +1 se  $det(A_g) > 0$ ;
- -1 se  $\det(A_g) < 0$ .





## Il Teorema di Morse

### Teorema di Morse

Sia  $f:M\to\mathbb{R}$  una funzione differenziabile su una superficie compatta e orientata M tale che tutti i suoi punti critici sono non degeneri. Denotato con M, m ed s rispettivamente il numero di punti di massimo, di minimo e di sella di f, allora il numero M-s+m non dipende dall'applicazione f ed inoltre:

$$M-s+m=\chi(M)$$

in cui  $\chi(M)$  è la caratteristica di Eulero-Poincarè di M.



## DIMOSTRAZIONE

Scelgo una metrica Riemanniana su M.

Poichè i punti critici per f sono non degeneri  $\Longrightarrow$  le singolarità di grad f sono semplici e isolate.

 $\Longrightarrow I_i = \begin{cases} 1 & \text{in corrispondenza dei minimi o massimi} \\ -1 & \text{in corrispondenza dei punti di sella} \end{cases}$  Il numero M-s+m sarà quindi la somma degli indici dei punti singolari di grad f su M.

$$\mathit{M}-\mathit{s}+\mathit{m}=\sum_{i=1}^{\mathit{M}+\mathit{s}+\mathit{m}}\mathit{I}_i=\chi(\mathit{M})=rac{1}{2\pi}\int_{\mathit{M}}\mathit{K}\sigma$$

Per il *Teorema di Gauss-Bonnet* tale somma non dipende dal campo grad f, quindi non dipende dall'applicazione f, ed inoltre è uguale alla caratteristica di Eulero-Poincarè.