Math 397

Homework 5

Name: Gianluca Crescenzo

Exercise 1. Show that $C_0(\mathbf{R})$ is a Banach space.

Proof. Note that $C_b(\mathbf{R}) \supseteq C_0(\mathbf{R})$ is a Banach space. Let $(f_n)_n$ be a sequence in $C_0(\mathbf{R})$ converging to $f \in C_b(\mathbf{R})$. Let $\epsilon > 0$ and find N large so that $||f - f_N|| < \frac{\epsilon}{2}$. Since $f_N \in C_0(\mathbf{R})$, find M large so |x| > M implies $|f_N(x)| < \frac{\epsilon}{2}$. For |x| > M we have:

$$|f(x)| = |f(x) - f_N(x) + f_N(x)|$$

$$\leq |f(x) - f_N(X)| + |f_N(x)|$$

$$\leq ||f - f_N|| + |f_N(x)|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

Thus $\lim_{|x|\to\infty} = 0$. Since $f \in C_0(\mathbf{R})$, we have that $C_0(\mathbf{R}) \subseteq C_b(\mathbf{R})$ is closed; i.e., it is complete.

Exercise 2. Show that ℓ_2 is a Hilbert space.

Proof. Let $(f_n)_n$ be $\|\cdot\|_{\ell_2}$ -Cauchy. Let $\epsilon > 0$. Find N_1 large so $n, m \ge N_1$ implies $\|f_n - f_m\|_{\ell_2} < \epsilon$. Then:

$$|f_n(k) - f_m(k)| \le ||f_n - f_m||_{\ell_2}$$

So $(f_n(k))_n$ is Cauchy in **C**. Since **C** is complete, define $f(k) := \lim_{n \to \infty} f_n(k)$. Claim: $f \in \ell_2$ and $\lim_{n \to \infty} f_n = f$.

We will first show that $f \in \ell_2$. Note that since $(f_n)_n$ is $\|\cdot\|_{\ell_2}$ -Cauchy, it is bounded. For K > 1, observe that:

$$\sum_{j=1}^{K} |f(j)|^2 = \sum_{j=1}^{K} \left| \lim_{n \to \infty} f_n(j) \right|^2$$

$$= \lim_{n \to \infty} \sum_{j=1}^{K} |f_n(j)|^2$$

$$\leqslant \sup_{n \geqslant 1} ||f_n||_{\ell_2}^2$$

$$\leqslant \infty$$

Since $\left(\sum_{j=1}^{K} |f(j)|^2\right)_K$ is increasing and bounded above, the Monotone Convergence Theorem says

its limit exists. This means:

$$\lim_{K \to \infty} \sum_{j=1}^{K} |f(j)|^2 = \sum_{j=1}^{\infty} |f(j)|^2$$
$$= ||f||_{\ell_2}^2$$
$$< \infty.$$

Thus $f \in \ell_2$.

We will now show that f is the limit of our Cauchy sequence. With the same epsilon as before, find N_2 large so that $n, m \ge N_2$ implies $||f_n - f_m||_2 < \frac{\epsilon^2}{2}$. Then:

$$\sum_{j=1}^{K} |f_n(j) - f_m(j)| \le ||f_n - f_m||_{\ell_2}^2$$

$$< \frac{\epsilon^2}{4}.$$

Taking the limit as $m \to \infty$ and considering all $n \ge N_2$ gives $\sum_{j=1}^K |f_n(j) - f(j)| \le \frac{\epsilon^2}{4}$. Taking the limit as $K \to \infty$ gives:

$$\sum_{j=1}^{\infty} |f_n(j) - f(j)| = ||f_n - f||_{\ell_2}^2$$

$$\leq \frac{\epsilon^2}{4}$$

$$\leq \epsilon^2$$

Square-rooting both sides establishes $(f_n)_n \to f$. Thus ℓ_2 is a Banach space. Define $\langle \cdot, \cdot \rangle : \ell_2 \times \ell_2 \to \mathbf{C}$ by $\langle f, g \rangle = \sum_{k=1}^{\infty} f(j) \overline{g(j)}$. We must first verify that this series exists. Note that:

$$\begin{split} \sum_{j=1}^{K} |f(j)\overline{g(j)}| &= \sum_{j=1}^{K} |f(j)||g(j)| \\ &\leq \left(\sum_{j=1}^{K} |f(j)|^2\right)^{\frac{1}{2}} \left(\sum_{j=1}^{K} |g(j)|^2\right)^{\frac{1}{2}} \\ &\leq \|f\|_{\ell_2} \|g\|_{\ell_2} \\ &\leq \infty \end{split}$$

Since $\left(\sum_{j=1}^{K} |f(j)\overline{g(j)}|\right)_{K}$ is increasing and bounded above, its limit exists by the Monotone Convergence Theorem. So $\sum_{j=1}^{\infty} |f(j)\overline{g(j)}|$ converges. In particular, since $(\mathbf{C}, |\cdot|)$ is a Banach space, $\sum_{j=1}^{\infty} f(j)\overline{g(j)}$ will converge.

Let $f, g_1, g_2 \in \ell_2$ and $\alpha \in \mathbf{C}$. Observe that:

$$\langle f, g_1 + \alpha g_2 \rangle = \sum_{j=1}^{\infty} f(j) \overline{(g_1 + \alpha g_2)(j)}$$

$$= \sum_{j=1}^{\infty} f(j) \overline{g_1(j)} + \overline{\alpha} \sum_{j=1}^{\infty} f(j) \overline{g_2(j)}$$

$$= \langle f, g_1 \rangle + \overline{\alpha} \langle f, g_2 \rangle.$$

Now let $f_1, f_2, g \in \ell_2$ and $\alpha \in \mathbf{C}$. Observe that:

$$\langle f_1 + \alpha f_2, g \rangle = \sum_{j=1}^{\infty} (f_1 + \alpha f_2)(j) \overline{g(j)}$$

$$= \sum_{j=1}^{\infty} f_1(j) \overline{g(j)} + \alpha \sum_{j=1}^{\infty} f_2(j) \overline{g(j)}$$

$$= \langle f_1, g \rangle + \alpha \langle f_2, g \rangle.$$

Thus $\langle \cdot, \cdot \rangle$ is a sesquilinear form. Moreover, we can see:

$$\langle f, g \rangle = \sum_{j=1}^{\infty} f(j) \overline{g(j)}$$
$$= \sum_{j=1}^{\infty} g(j) \overline{f(j)}$$
$$= \overline{\langle g, f \rangle}.$$

Whence $\langle \cdot, \cdot \rangle$ is Hermitian. Finally, if $f \neq 0$, we have:

$$\langle f, f \rangle = \sum_{j=1}^{\infty} f(j) \overline{f(j)}$$
$$= \sum_{j=1}^{\infty} |f(j)|^2$$
$$> 0.$$

Thus $\langle \cdot, \cdot \rangle$ is positive definite, establishing it as an inner-product. Thus ℓ_2 is a Hilbert space. \Box

Exercise 3. Suppose (X, d) is a complete metric space and $(x_n)_n$ is a contractive sequence in X, that is, there exists a $\theta \in (0, 1)$ with $d(x_{n+1}, x_n) \leq \theta d(x_n, x_{n-1})$. Show that $(x_n)_n$ is convergent.

Proof. Note that $d(x_{n+1}, x_n) \leq \theta^{n-1} d(x_2, x_1)$. Without loss of generality, for n > m we have:

$$\begin{split} d(x_n,x_m) &\leqslant d(x_n,x_{n-1}) + d(x_{n-1},x_m) \\ &\vdots \\ &\leqslant d(x_n,x_{n-1}) + d(x_{n-1},x_{n-2}) + \ldots + d(x_{m+1},x_m) \\ &\leqslant \theta^{n-2}d(x_2,x_1) + \theta^{n-3}d(x_2,x_1) + \ldots + \theta^{m-1}d(x_2,x_1) \\ &= (\theta^{n-m-1} + \theta^{n-m-2} + \ldots + 1)\theta^{m-1}d(x_2,x_1) \\ &= \left(\frac{1-\theta^{n-m}}{1-\theta}\right)\theta^{m-1}d(x_2,x_1) \\ &\leqslant \left(\frac{1}{1-\theta}\right)\theta^{m-1}d(x_2,x_1) \\ &\Rightarrow 0. \end{split}$$

Thus $(x_n)_n$ is Cauchy. Since (X,d) is complete, $(x_n)_n$ converges.

Exercise 4. Let (X, d) be a complete metric space and suppose $f: X \to X$ is a contractive map; i.e., for all $x, y \in X$ there is a $\theta \in (0, 1)$ with:

$$d(f(x), f(y)) \le \theta d(x, y).$$

Prove that f has a unique fixed point.

Proof. Define $(x_n)_n$ in X by $x_n = f(x_{n-1})$. We can see:

$$d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1}))$$

 $\leq \theta d(x_n, x_{n-1}).$

Thus $(x_n)_n$ is contractive. By Exercise 3, $(x_n)_n$ is convergent. Define $x := \lim_{n \to \infty} x_n$. Observe that:

$$x = \lim_{n \to \infty} x_n$$

$$= \lim_{n \to \infty} f(x_{n-1})$$

$$= f\left(\lim_{n \to \infty} x_{n-1}\right)$$

$$= f(x).$$

So f admits a fixed point. Suppose $x' \in X$ is also a fixed point. Then:

$$d(x, x') = d(f(x), f(x'))$$

$$\leq \theta d(x, x').$$

Note that this only holds if d(x, x') = 0 Thus x = x', establishing that f admits a unique fixed point.

Exercise 6. Let $T: V \to W$ be a continuous linear map between normed spaces which is bounded below, that is, there is a C > 0 with $||Tv|| \ge C ||v||$ for all $v \in V$. If V is complete, show that $\operatorname{im}(T) \subseteq W$ is a closed subspace, and that $V \cong \operatorname{im}(T)$ are uniformly isomorphic.

Proof. Let $(T(v_n))_n$ be a sequence in $\operatorname{im}(T)$ converging to $w \in W$. Given ϵ , find N large so that $n \ge M$ implies $||T(v_n) - w|| < \frac{C\epsilon}{2}$. For $n, m \ge N$, observe that:

$$||v_n - v_m|| \le \frac{1}{C} ||T(v_n - v_m)||$$

$$= \frac{1}{C} ||T(v_n) - T(v_m)||$$

$$\le \frac{1}{C} ||T(v_n) - w|| + \frac{1}{C} ||w - T(v_m)||$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

Thus $(v_n)_n$ is Cauchy. Since V is complete, let $v_0 := \lim_{n\to\infty} v_n$. Since T is continuous, we can see $(T(v_n))_n \to T(v_0)$. It must be the case that $T(v_0) = w$; i.e., $w \in \operatorname{im}(T)$. Thus $\operatorname{im}(T)$ is a closed subspace.

Since T is continuous, there exists some $\alpha > 0$ such that $||Tv|| \le \alpha ||v||$. Clearly if v = 0, then Tv = 0, implying that T is injective. Whence $V \cong \operatorname{im}(T)$ as vector spaces. Since T is continuous, it is uniformly continuous, so it remains to show that $T^{-1} : \operatorname{im}(T) \to V$ (which exists) is also continuous. Let $w \in \operatorname{im}(T)$, then there exists $v \in V$ with T(v) = w. Observe that:

$$||T^{-1}w|| = ||T^{-1}(T(v))||$$

$$= ||v||$$

$$\leqslant \frac{1}{C} ||Tv||$$

$$= \frac{1}{C} ||w||.$$

Thus T is uniformism.

Exercise 7. Let (X, d) and (Y, ρ) be metric spaces with completions (\widetilde{X}, ι_X) and (\widetilde{Y}, ι_Y) respectively. If $f: X \to Y$ is an isometry, show that there is a unique isometry $\widetilde{f}: \widetilde{X} \to \widetilde{Y}$ that extends f, that is, the following diagram commutes:

$$\widetilde{X} \xrightarrow{\widetilde{f}} \widetilde{Y}$$

$$\iota_x \uparrow \qquad \uparrow \iota_y$$

$$X \xrightarrow{f} Y$$

Proof. Define $\varphi : \iota(X) \to \widetilde{Y}$ by $\varphi(\iota(x)) = \iota_Y(f(x))$. Since f and ι_Y are isometries, note that their composition $\iota_Y \circ f$ is also an isometry. This gives:

$$\rho(\varphi(\iota_X(x_1)), \varphi(\iota_X(x_2))) = \rho(\iota_Y(f(x_1)), \iota_Y(f(x_2)))$$

= $d(x_1, x_2)$.

Since φ is an isometry, the unique uniformly continuous extension $\widetilde{f}:\widetilde{X}\to\widetilde{Y}$ is also an isometry. \qed

Exercise 8. Let V be a normed space, W a Banach space, and $U \subseteq V$ a dense linear subspace. Moreover, let $T_0: U \to W$ be a bounded linear map. Show that there is a unique bounded linear map $T: V \to W$ that extends T_0 , that is, $T|_{U} = T_0$.

Proof. Clearly V is a metric space, $U \subseteq V$ is a dense subset, and W is a complete metric space. So there exists a uniformly continuous map $T: V \to W$ with $T(v) = T_0(v)$ for all $v \in U$. Hence we only need to show T is linear and bounded. Let $v, v' \in V$ and $\alpha \in F$. Let $(x_n)_n$ and $(y_n)_n$ be sequences in U with $(x_n)_n \to v$ and $(y_n)_n \to v'$. Observe that:

$$T(v + \alpha v') = \lim_{n \to \infty} T_0(x_n + \alpha y_n)$$

=
$$\lim_{n \to \infty} T_0(x_n) + \alpha \lim_{n \to \infty} T_0(y_n)$$

=
$$T(v) + \alpha T(v').$$

Thus T is linear. To show T is bounded, it suffices to show $||T||_{\text{op}} = ||T_0||_{\text{op}}$, since T_0 is bounded. Note that the composition $V \xrightarrow{T} W \xrightarrow{\|\cdot\|_W} F$ will be continuous and bounded, which means:

$$\begin{split} \|T\|_{\text{op}} &= \sup_{v \in B_V} \|T(v)\|_W \\ &= \sup_{v \in B_U} \|T(v)\|_W \\ &= \sup_{v \in B_U} \|T_0(v)\|_W \\ &= \|T_0\|_{\text{op}} \,. \end{split}$$

Thus $T \in B(V, W)$.

Exercise 9. Let X be a metric space. Show that the following are equivalent:

- (1) Every meager set has empty interior.
- (2) The complement of a meager set is dense.

Moreover, show that these equivalent statements hold true if the metric space is complete.

Proof. If $A \subseteq X$ is meager with $A^0 = \emptyset$, then $\overline{A^c} = (A^o)^c = \emptyset^c = X$. The converse is identical. Now suppose X is a complete metric space. If $A \subseteq X$ is meager, then $A = \bigcup_{n \geqslant 1} A_n$ We will show that the complement of A is dense. Clearly $\overline{\bigcap_{n\geqslant 1} A_n^c} \subseteq X$, so it remains to show the other direction of inclusion. Define $B_n = \overline{A_n}$. Clearly $A_n \subseteq B_n$, which implies that $A_n^c \supseteq B_n^c$ for each n. Whence $\bigcap_{n\geqslant 1} A_n^c \supseteq \bigcap_{n\geqslant 1} B_n^c$. Furthermore, $\overline{\bigcap_{n\geqslant 1} A_n^c} \supseteq \overline{\bigcap_{n\geqslant 1} B_n^c}$. Note that each B_n^c is open and dense, so by Baire's theorem we have $\overline{\bigcap_{n\geqslant 1} B_n^c} = X$. Thus $\overline{(\bigcup_{n\geqslant 1} A_n)^c} = X$. Since (1) and (2) are equivalent, we've established that both statements hold true if X is a complete metric space. \square

Exercise 10. Let V be a normed space with linear basis B.

- (1) If $W \subseteq V$ is a proper subspace, show that $W^o = \emptyset$.
- (2) If V is a Banach space, show that B is uncountable. You may use the fact that finite-dimensional subspaces are always closed.

Proof. Suppose towards contradiction that $W^o \neq \emptyset$. Then we can find some $v_0 \in W^o$. In particular, there exists $\delta > 0$ such that $U(v_0, \delta) \subseteq W$. Let $v \in V$. We can see that $\frac{\delta}{2} \frac{v}{\|v\|} + v_0 \in U(v_0, \delta) \subseteq W$, so for some $w \in W$ we have:

$$\frac{\delta}{2} \frac{v}{\|v\|} + v_0 = w.$$

Solving for v yields $v = ||v|| \frac{2}{\delta}(w - v_0)$. But $||v|| \frac{2}{\delta}(w - v_0) \in W$, so $v \in W$, which contradicts $W \subseteq V$ being a proper subspace. Thus $W^o = \emptyset$.

Suppose towards contradiction B is countable, that is, $B = \{e_n \mid n \ge 1\}$. Then:

$$V = \operatorname{span}\{e_n \mid n \geqslant 1\}$$
$$= \bigcup_{n \geqslant 1} \operatorname{span}\{e_1, ..., e_n\}.$$

Note that span $\{e_1, ..., e_n\}$ is a finite and proper subspace of V. This means $\overline{\text{span}\{e_1, e_2, ..., e_n\}}^o = \emptyset$. But this contradicts Baire's theorem, since we've written V—a complete normed space—as the countable union of nowhere dense sets. It must be the case that B is uncountable.