Lectures 5-7

Simple Linear Regression

DSC 40A, Fall 2025

Announcements

- Homework 1 is due Friday night.
- Look at the office hours schedule here and plan to start regularly attending!
- Remember to take a look at the supplementary readings linked on the course website.

Agenda

- 0-1 loss
- Prediction rules using features
- Simple linear regression.
- Minimizing mean squared error for the simple linear model.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

Another example: 0-1 loss

Consider, for example, the **0-1 loss**:

$$L_{0,1}(y_i,h) = egin{cases} 0 & y_i = h \ 1 & y_i
eq h \end{cases}$$

The corresponding empirical risk is:

$$R_{0,1}(h) = rac{1}{n} \sum_{i=1}^n L_{0,1}(y_i,h)$$

Question 🤔

Answer at q.dsc40a.com

$$R_{0,1}(h) = \underbrace{\frac{1}{n}}_{i=1}^n egin{cases} 0 & y_i = h \ 1 & y_i
eq h \end{cases}$$

Suppose y_1, y_2, \ldots, y_n are all unique. What is $R_{0,1}(y_1)$?

- A. O.
- B. $\frac{1}{n}$
- leftharpoonup C. $\frac{n-1}{n}$.
- D. 1.

Proportion of all pts different from yn

If have for any yi:

$$Ro_n(h) = \frac{1}{n} \sum_{i=1}^{n} 1 = \frac{1}{n} (1+1+...+1) = \frac{n}{n} = 1$$

Minimizing empirical risk for 0-1 loss

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0 & y_i = h \\ 1 & y_i \neq h \end{cases}$$

$$= \text{proportion of pts not equal to h}$$

$$R_{0,1} \text{ is } \underbrace{\text{minimited}}_{\text{for the value that}} \text{ for the value that}$$

$$\text{is most frequent (appears the most) in the data}$$

$$h^{+} = \text{Mode (y_1, y_2, ..., y_n)}_{\text{isn't recessarily unique (Ex: \{1, 2, 3, 143\})}_{\{1,2,2,3,3,5\}}$$

7

Summary: Choosing a loss function

Key idea: Different loss functions lead to different best predictions, $h^*!$

Loss	Minimizer	Always Unique?	Robust to Outliers?	Differentiable?
$L_{ m sq}$	mean	yes 🗸	no X	yes <
$L_{ m abs}$	median	no X	yes <a>V	no X
L_{∞}	midrange	yes 🗸	no X	no X
$L_{0,1}$	mode	no X	yes <a>	no X

The optimal predictions, h^* , are all **summary statistics** that measure the **center** of the dataset in different ways.

Predictions with features

Towards simple linear regression

- In Lecture 1, we introduced the idea of a hypothesis function, H(x).
- We've focused on finding the best constant model, H(x)=h.
- Now that we understand the modeling recipe, we can apply it to find the best simple linear regression model, $H(x)=w_0+w_1x$.
- This will allow us to make predictions that aren't all the same for every data point.

Recap: Hypothesis functions and parameters

A hypothesis function, H, takes in an x as input and returns a predicted y.

Parameters define the relationship between the input and output of a hypothesis function.

The simple linear regression model, $H(x)=\underbrace{w_0}_{}+\underbrace{w_1}_{}x$, has two parameters: w_0 and w_1 .

The modeling recipe

1. Choose a model.

2. Choose a loss function.

2. Choose a loss function.

Labs
$$(y_i, H(x_i)) = (y_i - H(x_i))^2$$

Labs $(y_i, H(x_i)) = (y_i - H(x_i))^2$

3. Minimize average loss to find optimal model parameters.

$$L_{abs}(y_i,H_{(x_i)}) = |y_i - H_{(x_i)}|$$

$$R_{s_1}(H) = \frac{1}{n} \sum_{i=n}^{n} (y_i - H(x_i))^2$$

Rabs (H)=
$$\frac{1}{n} \sum_{i=1}^{n} |y_i - H(x_i)|$$

Features

A **feature** is an attribute of the data – a piece of information.

- Numerical: maximum allowed speed, time of departure
- Categorical: day of week
- Boolean: was there a car accident on the road?

Think of features as columns in a DataFrame (i.e. table).

			J	
	Departure time	Day of week	Accident on route	Commute time
	7:05	Monday	yes	101
	8:03	Tuesday	no	87
	10:20	Wednesday	yes	79
	8:30	Thursday	no	76

Variables

- The features, x, that we base our predictions on are called predictor variables.
- The quantity, y, that we're trying to predict based on these features is called the response variable, dependent variable or target.
- We are trying to predict our commute time as a function of departure time.

Modeling

- We believe that commute time is a function of departure time.
- I.e., there is a function *H* so that: commute time pprox H (departure time) • H is called a hypothesis function or prediction rule.
- ullet Our goal: find a good prediction rule, H.

Possible Hypothesis Functions

- H_1 (departure time) = 90©10 ·(departure time-7)
- H_2 (departure time) = 90 (departure time-8)²
- H_3 (departure time) = 20 \bigcirc 6. departure time

These are all valid prediction rules.

Some are better than others.

Comparing predictions

- How do we know which is best: H_1, H_2, H_3 ?
- We gather data from n days of commute. Let xi be experience, yi be salary:

```
(	ext{departure time}_1 	ext{, commute time}_1) \qquad (x_1,y_1) \ (	ext{departure time}_2 	ext{, commute time}_2) \qquad (x_2,y_2) \ \dots \ (	ext{departure time}_n 	ext{, commute time}_n) \qquad (x_n,y_n) \ (	ext{departure time}_n)
```

• See which rule works better on data.

Commuting Time vs. Home Departure Time

Hy seems to be
the best

The best

The best

I how to quantify?

How to find optimal

solution?

Question P Answer at q.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?

Question Answer at q.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?

- A. yes
- B. no

Solution

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:
 - \circ Linear: $H(x)=w_0+w_1x$. \longleftarrow this well
 - \circ Quadratic: $H(x)=w_0+w_1x_1+w_2x^2$. Soulhear, in a few
 - \circ Exponential: $H(x) = w_0 e^{w_1 x}$.
 - \circ Constant: $H(x) = w_0$.

Goal: linear relationship between xi and yi Find the best linear model =) finding wot, wit

Comparing predictions

Minimizing mean squared error for the simple linear model

- We'll choose squared loss, since it's the easiest to minimize.
- Our goal, then, is to find the linear hypothesis function $H^*(x)$ that minimizes empirical risk:

$$R_{ ext{sq}}(\widehat{H}) = rac{1}{n} \sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

• Since linear hypothesis functions are of the form $H(x)=w_0+w_1x$, we can rewrite $R_{\rm sq}$ as a function of w_0 and w_1 :

func. of
$$R_{ ext{sq}}(w_0,w_1)=rac{1}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)^2$$

• How do we find the parameters w_0^* and w_1^* that minimize $R_{
m sq}(w_0,w_1)$?

Loss surface

For the constant model, the graph of $R_{\rm sq}(h)$ looked like a parabola.

What does the graph of $R_{\rm sq}(w_0,w_1)$ look like for the simple linear regression model?

Minimizing multivariate functions

• Our goal is to find the parameters w_0^* and w_1^* that minimize mean squared error:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

- $R_{
 m sq}$ is a function of two variables: w_0 and w_1 .
- To minimize a function of multiple variables:
 - Take partial derivatives with respect to each variable.
 - Set all partial derivatives to 0.
 - Solve the resulting system of equations.
 - Ensure that you've found a minimum, rather than a maximum or saddle point (using the second derivative test for multivariate functions).

Example

Find the point (x, y, z) at which the following function is minimized.

$$f(x,y) = x^2 - 8x + y^2 + 6y - 7$$