

MATURITNÍ PRÁCE

Využití videonávodů pro výuku konstrukce v SolidWorks

Petr Štourač

Brno 2021

STŘEDNÍ PRŮMYSLOVÁ A VYŠŠÍ ODBORNÁ ŠKOLA BRNO, Sokolská

VYUŽITÍ VIDEONÁVODŮ PRO VÝUKU KONSTRUKCE V SOLIDWORKS

VIDEOGUIDES USAGE IN SOLIDWORKS CONSTRUCTION EDUCATION

AUTOR Petr Štourač

VEDOUCÍ PRÁCE Ing. Václav Zavadil

OKRUH Strojírenská konstrukce

Brno 2021

Prohlášení
Prohlašuji, že svou maturitní práci na téma <i>Využití videonávodů pro výuku konstrukce v SolidWorks</i> jsem vypracoval samostatně pod vedením Ing. Václava Zavadila a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.
Dále prohlašuji, že tištěná i elektronická verze práce jsou shodné a nemám závažný důvod proti zpřístupňování této práce v souladu se zákonem č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a změně některých zákonů (autorský zákon) v platném znění.
V Brně dne:
Petr Štourač

Poděkování

Děkuji svému vedoucímu práce

Anotace

Sem patří anotace v češtině.

Klíčová slova

SolidWorks, 3D modelování, CAD, videonávody, P3D

Annotation

Here goes english version of thesis annotation.

Keywords

SolidWorks, 3D modelling, CAD, videoguides, P3D

Obsah

Ú٠	vod		8
1	Onl	ine portál P3D	9
	1.1	Zpracování	9
	1.2	Členění webu	9
2	Inst	zalace a nastavení SolidWorks	10
	2.1	Instalace SolidWorks SDK	10
		2.1.1 Stažení instalátoru a získání licenčních klíčů	10
		2.1.2 Instalace	10
	2.2	Instalace školních šablon a norm. dílů	11
	2.3	Zprovoznění RealView na necertifikovaném počítači	11
3	Výk	resová dokumentace - vybrané návody	13
	3.1	Výkres hřídele	13
		3.1.1 Hlavní a připojovací rozměry	13
		3.1.2 Drážka pro pero	13
		3.1.3 Drážka pro pojist. kroužek	13
4	Mo	delování - vybrané návody	14
	4.1	Drážka pro pero v náboji	15
	4.2	Drážka pro pero na hřídeli	15
	4.3	Drážka pro pojist. kroužek v náboji	15
	4.4	Drážka pro pojistný kroužek na hřídeli	15
	4.5	Čelní ozubené kolo s přímým ozubením	15
	4.6	Řetězové kolo	15
Zá	ivěr		16

lohy	17
Obrazové přílohy	17
eratura	18
Seznam obrázků	 19
Seznam tabulek	 20

$\mathbf{\acute{U}vod}$

Představte si (alespoň pro mne dříve) klasickou situaci: Blíží se termín odevzdání projektu do konstrukčního cvičení. Jeden ze studentů vyrábí modely v SolidWorks, když v tom najednou se zasekne na nějakém (byť primitivní) prvku, nebo chybě. Napadne ho, že zná nějakého spolužáka, který nemá s modelováním problém, nebo jej dokonce baví. Spolužák mu samozřejmě ochotně poradí a student může svůj projekt dokončit.

Nyní si prosím představte situaci, kdy jste ten spolužák. Ovšem tentokrát s rozdílem, že Vám nepíše jeden student, ale třeba 20 a to za jeden den. Také z toho již po chvíli začínáte šílet?

Online portál P3D

Při tvorbě několika prvních videonávodů začalo být jasné, že je třeba je více provázat. Tento problém se ale prostřednictvím videa neřeší úplně nejlépe. Odkaz na předchozí video přidat lze, ale odkaz na video, které má teprve vyjít, nebo ještě není ani hotové? Zde už nastává problém.

Napadlo mne tedy vytvořit webovou stránku, kde by bylo možné si dohledat dodatečný obsah, reference na předešlá a následující videa, nebo ukázkové modely. Z tohoto nápadu se časem stalo tvoření komplexnějšího webu, na kterém je možné jednotlivá videa přímo vyhledávat.

1.1 Zpracování

Webové stránky běží na vlastní doméně směrované na webhosting, který používám pro vícero projektů. Samotný web je založen na redakčním systému WordPress s upraveným CSS.

1.2 Členění webu

Úvodní stránka

Sekce "Všechna videa"

Sekce "Modelování"

Instalace a nastavení SolidWorks

2.1 Instalace SolidWorks SDK

2.1.1 Stažení instalátoru a získání licenčních klíčů

Začneme otevřením webové stránky www.solidworks.com/sdk. Zobrazí se nám formulář, do kterého vyplníme údaje o sobě (jméno, příjmení, e-mail a status - student). Je nutné psát **bez** diakritiky!

V sekci Product information pod textem "I already have a Serial Number that starts with 9020" zaškrtneme možnost No a do kolonky níže napíšeme 9SDK2019. Na pravé straně poté zaškrtneme nejnovější verzi, tedy 2020-2021. Vyplněný formulář odešleme kliknutím na tlačítko Request download. Na další stránce potvrdíme licenční podmínky tlačítkem Accept and Continue.

Nyní jsme se již dostaly na stránku, odkud můžeme SDK stáhnout. Klikneme tedy na tlačítko **Download**, čímž si stáhneme instalátor. Okno ještě **nezavíráme** - budeme z něj potřebovat zkopírovat licenční čísla.

2.1.2 Instalace

Stažený instalátor otevřeme. Objeví se nám okno, ve kterém můžeme nastavit, kam chceme vyextrahovat soubory instalace. Jakmile máme umístění zvolené, klikneme na tlačítko **Unzip**. Chvíli počkáme a otevře se nám *Manažer instalací SOLIDWORKS 2020*. Pokud se nám objeví okno informující, že po předchozí instalaci nebyl dokončen restart systému, stačí jej odklepnout tlačítkem **OK**. Na obrazovce, kde můžeme zvolit typ instalace ponecháme zaškrtnuté *Instalovat na tento počítač* a klikneme na **Další**.

Nyní po nás bude instalátor chtít zadat sériová čísla. Otevřeme si tedy webový prohlížeč se

PŠ Note: Sem přijde screenshot formu-

láře

stránkou, kde byla tato čísla napsaná.

2.2 Instalace školních šablon a norm. dílů

Stažení .ZIP archivu

Instalace šablon a knihoven materiálů

Instalace normalizovaných dílů

2.3 Zprovoznění RealView na necertifikovaném počítači

Co je to režim RealView?

Režim zobrazení RealView umožňuje věrnější zobrazení modelů díky vylepšenému stínování a odleskům. Tento režim je ale podporován jen relativně malým počtem certifikovaných grafických karet NVIDIA Quadro a Radeon Pro. Aktivace na ostatních grafických kartách je možná s malým zásahem do registru.

VAROVÁNÍ: Při aktivaci budeme zasahovat do registru systému, je tedy nutné se přesně řídit návodem. Zásah v registru na špatném místě může způsobit nestabilitu operačního systému, nebo aplikací.

Zjištění označení aktuální grafické karty

Než začneme cokoliv dělat, musíme zkontrolovat, že je SolidWorks vypnutý. Pokud ne, hned tak učiníme. Na klávesnici zmáčkneme klávesovou zkratku $\mathbf{Win} + \mathbf{R}$, otevře se nám dialog Spustit. Do políčka napíšeme regedit a potvrdíme Enterem. Kliknutím na tlačítko Ano potvrdím udělení administrátorských oprávnění v okně UAC.

V levé části editoru registru postupně proklikáváme složky

HKEY_CURRENT_USER > SOFTWARE > SolidWorks > SOLIDWORKS 2020 > Performance > Graphics > Hardware > Current. Při kliknutí na poslední složku se nám vpravo objeví několik hodnot, klikneme dvakrát na *Renderer*. Otevře se nám tabulka nastavení hodnoty, za pomoci **Ctrl** + **C** si její údaj celý zkopíruji (např. *GeForce GTX 1050/PCIe/SSE2*).

Přidání vlastního klíče do registru

V levé straně editoru registru nyní otevřu složku *GI2Shaders*. Následně si podle toho, jakou mám grafickou kartu vyberu složku *Other* (pokud mám graf. procesor Intel HD Graphics), nebo *NV40* (cokoliv ostatního) – obě jsou obsaženy ve složce *GI2Shaders*. Na zvolenou složku (Other, nebo NV40) kliknu pravým tlačítkem a vytvořím *nový klíč*, do jehož názvu vložím hodnotu, kterou jsem si před chvílí zkopíroval za pomoci **Ctrl** + **V**. Zkontroluji, že je nový klíč vybraný a na pravé straně editoru registru kliknu opět pravým tl. myši. Tentokrát vytvořím novou *Hodnotu DWORD (32 bitová)*, kterou nazvu *Workarounds*. Na novou hodnotu dvakrát poklepu myší a do políčka "*Údaj hodnoty*" napíšu **4000080** pro verzi SolidWorks 2020. Verze 2019 má tento kód lehce odlišný – **30408**.

Vyzkoušení, zda nám RealView funguje

Teď již jen musíme vyzkoušet, zda nám RealView funguje jak má. Otevřeme SolidWorks a v něm nějaký díl, nebo sestavu. Nahoře klikneme na tlačítko se symbolem oka a pokud se mezi možnostmi objeví i RealView, vše je v pořádku.

Výkresová dokumentace - vybrané návody

- 3.1 Výkres hřídele
- 3.1.1 Hlavní a připojovací rozměry
- 3.1.2 Drážka pro pero
- 3.1.3 Drážka pro pojist. kroužek

PŠ
Note:
Sekci
dopíšu,
jakmile
začnu
točit
videa z

výkresovky

Modelování - vybrané návody

4.1 Drážka pro pero v náboji

Skica

Odebrání vysunutím

4.2 Drážka pro pero na hřídeli

Vytvoření roviny

Skica

Odebrání vysunutím

4.3 Drážka pro pojist. kroužek v náboji

Skica

Odebrání rotací

4.4 Drážka pro pojistný kroužek na hřídeli

Skica

Odebrání rotací

4.5 Čelní ozubené kolo s přímým ozubením

15

Vytvoření základního válce

Profilová skica zubu

Závěr

Sem přijde závěr práce.

Příloha A

Obrazové přílohy

Obrázek A.1: Vizualizace PPSB-T (horní strana vpravo, dolní vlevo).

Literatura

1. AOSONG ELECTRONICS CO.,LTD. AM2321 product manual [online] [cit. 2020-02-20]. Dostupné z: http://akizukidenshi.com/download/ds/aosong/AM2321_e.pdf.

Seznam obrázků

A.1	Vizualizace PPSB-T	(horní strana vpravo,	dolní vlevo))						17
-----	--------------------	-----------------------	--------------	---	--	--	--	--	--	----

Seznam tabulek