MATH 2033 Mathematical Analysis Midterm Exam Spring 2019

29 March 2019

Student Name: ____

Student Id: Tutorial Section: Instructions			
Instructions			
Instructions			
	Score Summary	(Exam	iner On
Please read the following and sign in the blank provided below and sign in the blank below.			Ι
1. You MUST seat according to the Seating Plan.	Question No	Points	Scores
2. DO NOT OPEN the exam until you are told to.	1	15	
3. This is a CLOSED BOOK exam.			
4. All mobile phones and communication devices should be switched OFF .	2	25	
5. Only calculators approved by \mathbf{HKEAA} allowed.	3	25	
6. Answer ALL the questions.			
7. You must SHOW YOUR WORK to receive	4	35	
credits in all questions. Answers alone (whether correct or not) will not receive any credit.	Total	100	
Integrity Statement			
I have neither given nor received any unauthorised aid during work. I understand that sanctions will be imposed if I am for governing academic integrity.	•		

- 1. (15 points) .
 - 1.1 Negating the following statements.

$$\forall \epsilon > 0, \exists \delta > 0, \text{such that } \forall x, 0 < |x - x_0| < \delta \implies \left| \frac{f(x) - f(x_0)}{x - x_0} - L \right| < \epsilon.$$

1.2 Find $\cap_{n\in\mathbb{N}}(0,\frac{1}{n})$ and justify your answer.

- 2. (25 points) .
 - 2.1 Write down the definition of infimum. State and prove the infimum property.
 - 2.2 Determine if the following set A has an infimum. If it exists, find it and justify your answer.

$$A = \{x+y^2: x \in [0,1] \cap \mathbb{Q}, y \in [0,1] \setminus \mathbb{Q}\}$$

3. (25 points) .

3.1 Let
$$C \geq 1$$
, prove that

$$\lim_{n \to +\infty} C^{\frac{1}{n}} = 1.$$

3.2 Determine whether the sequence x_n defined by

$$x_1 = 3, x_{n+1} = 3 + \frac{4}{x_n}$$
 for $n \ge 1$,

converges or not. If it converges, justify the convergence and find the limit.

4. (35 points).

4.1 Write down the definition of Cauchy sequence.

4.2 Let $\{x_n\}$, $\{y_n\}$ be two Cauchy sequences, show that both $\{x_n-y_n\}$ and $\{x_ny_n\}$ are Cauchy sequences by checking the definition of Cauchy sequence.

4.3 Let S be the set of all Cauchy sequences in \mathbb{Q} . More precisely,

$$S = \{\{x_n\} : \{x_n\} \text{ is a Cauchy sequence s.t } x_n \in \mathbb{Q} \text{ for all } n \in \mathbb{N}\}.$$

Determine if S is countable and justify your answer.

4.4 Let S be defined above, let $\{x_n\} \in S$, we say that $\{x_n\}$ is positive iff there exists $\delta > 0, \delta \in \mathbb{Q}$ and $k \in \mathbb{N}$ s.t $x_n > \delta$ for all $n \geq k$. We say that $\{x_n\} < \{y_n\}$ iff $\{y_n - x_n\}$ is positive. Show that

$$\forall \{x_n\}, \{y_n\}, \{z_n\} \in S,$$

if $\{x_n\} < \{y_n\}$, and $\{z_n\}$ is positive, then

$$\{x_n z_n\} < \{y_n z_n\}.$$