TP Courbes paramétrées 24/03/2021

DOS SANTOS Mathieu SARTORI Tom

Sommaire

Partie 1	2
Question 1	2
Question 2.a	3
Question 2.b	4
Question 2.c	5
Question 2.d	6
Question 2.e	7
Question 2.f	8
Partie 2	9
Question 1.a	9
Question 1.b	10
Question 2 (traceur)	11
Question 3.a	12
Question 3.b	13
Question 3.c	14
Question 3.d	15

Partie 1

Question 1

Question 2.a

(a)
$$\begin{cases} x(t) = -\cos(2t)\cos(t) \\ y(t) = -\sin(2t)\cos(t) \end{cases} \quad t \in [0, 2\pi]$$

```
# Question 2.a

T = np.linspace(0, 2 * np.pi, 1001)

X = - np.cos(2 * T) * np.cos(T)

Y = - np.sin(2 * T) * np.cos(T)

plt.plot(X, Y)
plt.show()
```


Question 2.b

(b)
$$\begin{cases} x(t) = 2\cos(t) + \cos(2t) \\ y(t) = 2\sin(t) + \sin(2t) \end{cases} \quad t \in [0, 2\pi]$$

```
# Question 2.b

T = np.linspace(0, 2 * np.pi, 1001)

X = 2 * np.cos(T) + np.cos(2 * T)
Y = 2 * np.sin(T) + np.sin(2 * T)

plt.plot(X, Y)
plt.show()
```


Question 2.c

(c)
$$\begin{cases} x(t) = \cos^3(t) \\ y(t) = \sin^3(t) \end{cases} \quad t \in [0, 2\pi]$$

```
# Question 2.c

T = np.linspace(0, 2 * np.pi, 1001)

X = np.cos(T) ** 3
Y = np.sin(T) ** 3

plt.plot(X, Y)
plt.show()
```


Question 2.d

(d)
$$\begin{cases} x(t) = t + 2cos(t) \\ y(t) = \frac{1}{2}t \end{cases} \quad t \in [0, 100]$$

```
# Question 2.d

T = np.linspace(0, 100, 1001)

X = T + (2 * np.cos(T))
Y = 0.5 * T

plt.plot(X, Y)
plt.show()
```


Question 2.e

(e)
$$\begin{cases} x(t) = t + 2\cos(t) \\ y(t) = \frac{1}{2}t + \sin(t) \end{cases} \quad t \in [0, 100]$$

```
# Question 2.e

T = np.linspace(0, 100, 1001)

X = T + (2 * np.cos(T))
Y = (0.5 * T) + np.sin(T)

plt.plot(X, Y)
plt.show()
```


Question 2.f

(f)
$$\begin{cases} x(t) = t \times \cos(t) \\ y(t) = t \times \sin(t) \end{cases} \quad t \in [0, 100]$$

```
# Question 2.f

T = np.linspace(0, 100, 1001)

X = T * np.cos(T)
Y = T * np.sin(T)

plt.plot(X, Y)
plt.show()
```


Partie 2

Question 1.a

Question 1.b

Question 2 (traceur)

```
def traceur (P):
    B = np.array(
        [[1, -3, 3, -1],
        [0, 3, -6, 3],
        [0, 0, 3, -3],
        [0, 0, 0, 1]]
    )

T = np.linspace(0, 1, 1001)

Vect = np.array([np.ones(1001), T, T**2, T**3])

res = np.dot(P, np.dot(B, Vect))

plt.plot(res[0,:], res[1, :])
    return res;
```

Question 3.a

```
# Question 3.a
P = np.array(
    [[0., 0, 1, 1],
        [0, 1, 0, 1]]
    )

traceur(P)
plt.show()
```


Question 3.b

```
# Question 3.b
P = np.array(
    [[0., 1, 1, 0],
        [0, 1, 0, 1]]
    )

traceur(P)
plt.show()
```


Question 3.c

```
# Question 3.c
P = np.array(
    [[0., 1, 0, -1],
        [0, 0, 1, 0]]
    )

traceur(P)
plt.show()
```


Question 3.d

```
# Question 3.d
P = np.array(
    [[0., 1, -3, -1],
        [0, 2, 2, 0]]
    )

traceur(P)
plt.show()
```

