

Modelling of ion exchange for water treatment in the nuclear industry...

...using high performance computing and custom web interfaces for large scale sensitivity studies

Steve Baker & Jonathan Austin

What is NNL

- The National Nuclear Laboratory (NNL) was formed from the Research and Technology organisation of BNFL
- Currently operates as a Government Owned Contractor Operated company which
 - Employs 800 people
 - Operates 6 active and non-active facilities
 - Has a turnover of £84M
- Customer base across the nuclear industry including
 - Sellafield Limited
 - Nuclear Decommissioning Authority
 - Magnox Electric
 - EDF
 - MOD

History of Modelling in NNL

- Modelling goes back to the start of the nuclear industry and covers a wide range of disciplines
- Current team Chemical and Process modelling has a continuous history back to the early 1980's
- Team size usually in the range 10-15 Engineers/scientists
- Modelled most unit operations including
 - Solvent extraction
 - Filtration
 - Ion Exchange
 - Distillation
 - Evaporation

History of Modelling in NNL

- For many reasons
 - Flowsheeting/design support
 - Process Development
 - Process Control
 - Plant optimisation
 - Safety/environmental cases

History of Modelling in NNL

- Tools used (as this is a user conference)
 - Fortran
 - SpeedUp
 - ACM
 - gPROMS
- Plus a range of chemical modelling tools including
 - PHREEQC (speciation modelling)
 - Quantum Mechanics
 - Molecular Dynamics
- Close links to other modelling areas
 - CFD Fluent/CFX

What is SIXEP?

Site Ion eXchange Effluent Plant

SIXEP - Design Specifications

- SIXEP is a Low Activity Effluent Treatment Plant implementing Ion Exchange technology.
- It uses Best Practicable Means (BPM) for removing:
 - Suspended solids (associated alpha-activity)
 - Soluble caesium (beta-activity)
 - Soluble strontium (beta-activity)
- Operational since 1985.
- SIXEP capacity is 4200 m³/day.
- Designed to be operational for 30 years.

Goals of SIXEP

- Effective reduction of the activity in the effluent streams discharged to the environment.
- Production of stable secondary radioactive waste.
- Low volumes of secondary waste formed.
- Robust System:
 - -Deals with waste from a number of different sources
- SIXEP has been a tremendous success for the Sellafield site

Reduction in Alpha and Beta activity to Sea

The problem

- SIXEP was designed 30+ years ago for a particular type of effluent
- Sellafield effluents are changing as site is remediated
- Expectation is for continuing high performance
- Life is being extended to potentially 70 years

What we need to do

- Develop a tool to predict plant output over the next 4 decades
- Preserve the life of the ion exchange beds
- Prevent out of spec discharge to the environment
- Analyse proposed feeds to plant

How we are going to solve it

- Production of a process & chemistry model
- Supported by experimental work
- Validated against plant feed and discharge data
- Implemented through a web interface

SIXEP schematic

pumps

gPROMS Model

gPROMS Model

Ion Exchange Material

- Natural Zeolite material (strong):
 - Molecular sieve

- Cation-exchange

Knowledge Capture

- IX column trials
- Sand bed rig trials
- Plant sampling
- Fundamental understanding
 - Molecular dynamics
 - PHREEQC

Experiment → Modelling → Plant Consequence

Dynamic Ion Exchange Reactions

- Ion exchange follows a reversible mechanism:

- $\bullet \operatorname{Na^{+}}_{ex} + \operatorname{Cs^{+}}_{aq} \qquad \Leftrightarrow \qquad \operatorname{Na^{+}}_{aq} + \operatorname{Cs^{+}}_{ex}$ $\bullet \operatorname{2Na^{+}}_{ex} + \operatorname{Sr^{2+}}_{aq} \qquad \Leftrightarrow \qquad \operatorname{2Na^{+}}_{aq} + \operatorname{Sr^{2+}}_{ex}$
- Ion exchange efficiency for Cs⁺ and Sr²⁺ is affected by:
 - Rate of reactions
 - Concentrations of competing cations
 - Flow rate
 - pH

$$mA_{ex}^{n+} + nB_{aq}^{m+} \iff mA_{aq}^{n+} + nB_{ex}^{m+}$$

Speciation

What can the model do?

Predict bed discharges

Cs-137

What can the model do?

Predict IX bed loading

Problem

- Model detailed with long run times (1-10 hours)
- Significant number of scenarios required (and growing)
- Need to compare lots of scenarios
- Desktops not suitable

Use of Web interface

- Solution
 - Automated web interface for gPROMS models
 - gO:RUN + FO / FPI interfaces

- Result
 - Runs use large computing cluster 24/7
 - Effective use of licences
 - Efficient use of time

NNL Modelling Web Interface

Welcome, Jonathan Austin

Main Menu

- My Simulations
- View All Completed Sims
- View My Saved Charts
- ▶ Search Simulations
- ▶ Help
- About
- Update My Details
- ▶ logout

Admin

- ▶ User Accounts
- gPROMS Models
- ▶ gPROMS Versions
- ▶ Set Cluster Fingerprint
- Run Test Code

SIXEP Simulations

- New SIXEP Simulation
- SIXEP Plant Data
- ▶ Compare SIXEP Results

Model Development

- Model Development Home
- ▶ Create A New Model
- ▶ New Simulation Type

Validated Models

- View Validated Models
- New Simulation
- Compare Results

My Simulations

My Draft gPROMS Simulations

You have no draft simulations

My Running gPROMS Simulations

Simulation ID	Description	Status	Sim Type	Date Created	
3171	Test flow rate variations [4 of 4]	Submitting	SIXEP	09-Apr-2013	
3170	Test flow rate variations [3 of 4]	Submitting	SIXEP	09-Apr-2013	
3169	Test flow rate variations [2 of 4]	Submitting	SIXEP	09-Apr-2013	
3168	Test flow rate variations [1 of 4]	Submitting	SIXEP	09-Apr-2013	

My Completed gPROMS Simulations

Simulation ID	Description	Sim Type	Date Created	
3161	06872.301 - Final Heel Fitting, Plant, to Jan 2013 [New Purge feed] [1 of 1]	SIXEP	12-Mar-2013	□ ×
3160	06872.301 - Final Heel Fitting, Plant, to Jan 2013 [No SS] [1 of 1]	SIXEP	12-Mar-2013	3 ×
3148	06872.301 - Final Heel Fitting, Plant, Feb 2010 to Jan 2013, BSTs	SIXEP	11-Mar-2013	⇒ ×
3147	06872.301 - Final Heel Fitting, Plant, Feb 2010 to Jan 2013	SIXEP	11-Mar-2013	商業

NNL Modelling Web Interface

Hold-up in Buffer Tank

Model Development QA

Running a Simulation

Simulation Workflow

Example – Sensitivity Analysis

- Feed sensitivity analysis:
 - Flow: 1000-3000 m³/day 5 steps
 - Cs-137: 1000-3000 Bq/ml 5 steps
- 25 combinations
- ~2 hrs per sim
- ~50 hrs computation

Example – Sensitivity Analysis

Save & Execute

Cancel

Save Draft

Compare Results

Hold-up in Buffer Tank

Project Successes - Model

- Forecasts of plant performance
 - Predict plant discharges
 - Advise plant on how to manage IX bed changes
- Assess the impact of new feeds
- Demonstrate technical benefit of alternative IX material
- Underpin Plant Modification Proposals (PMPs)
- Underpin plant feed conditions for acceptance
- The EA Endorsed Route To Accepting New Feeds

Project Successes – Web Interface NATIONAL NU

- Improve quality assurance
- Allow non-technical staff to run simulations
- Rolled out across a variety of NNL models
- Efficiency savings
- Model version control

Summary

- Chemical and Process Modelling
 - A long established discipline in NNL which supports many plants and Processes
- SIXEP IX Model
 - A model that captures experimental and plant experience to give accurate predictions of plant performance
- Web Interface
 - An interface to gPROMS models that improves QA and efficiency

Questions?

Stephen.R.Baker@nnl.Co.Uk

Jonathan.Austin@nnl.Co.Uk