Teoría de números Verano 2018*

Oromion

Facultad de Ciencias – Universidad Nacional de Ingeniería

Actualizado a la fecha 12 de enero del 2018

^{*}Grupo Estudiantil de Matemática y al Instituto de Matemática y Ciencias Afines

Capítulo 1

Introducción

I. Principio de inducción matemática

Sea \mathcal{P} un conjunto de números naturales tal que

- a) $1 \in \mathcal{P}$.
- b) Si $n \in \mathcal{P} \implies n+1 \in \mathcal{P}$.

$$\mathcal{L} \cdot \mathcal{P} = \mathbb{N}$$
.

II. Principio del buen orden

Si \mathcal{A} es un conjunto no vacío de \mathbb{N} , entonces \mathcal{A} posee un elemento mínimo.

1.1. Divisibilidad

Definición 1.1. Sean d y n dos números enteros, se denotará

$$d \text{ divide } a n \iff \text{ existe } c \in \mathbb{Z} \text{ tal que } n = c \cdot n$$

como $a \mid n$.

Si d no divide a n, es decir, si $\forall c \in \mathbb{Z} : n \neq c \cdot d$, se denotará como $d \nmid n$.

1.2. Propiedades de la operación

- 1) $n \mid n$ para cualquier $n \in \mathbb{N}$ (Reflexividad).
- 2) Si $d \mid n$ y $n \mid m$, entonces $d \mid m$. (Transitividad).
- 3) Si $d \mid n$ y $d \mid m$, entonces $d \mid an + bm \ \forall a, b \in \mathbb{Z}$.
- 4) Si $d \mid n$, entonces $ad \mid an$.
- 5) Si $ad \mid an \operatorname{con} a \neq 0$, entonces $d \mid n$.
- **6)** $1 \mid n$ para cualquier $n \in \mathbb{N}$.
- 7) $n \mid 0$ para cualquier $n \in \mathbb{N}$.
- **8)** Si $0 \mid n$, entonces n = 0.
- 9) Si $d \mid n$ y $n \neq 0$, entonces $|d| \leq |n|$.
- **10)** Si d | n y n | d, entonces |d| = |n|.
- **11)** Si $d \mid n \text{ con } d \neq 0$, entonces $\left(\frac{n}{d}\right) \mid n$.

1.3. Máximo común divisor

Definición 1.2. Sean a, b y d números enteros. Si $d \mid a$ y $d \mid b$, entonces d es un divisor común de a y b.

Teorema 1.1. Dados los números enteros a y b, existe un divisor común d de a y b de la forma d = ax + by para cualesquiera $x, y \in \mathbb{Z}$.

Prueba: Por inducción matemática en K = |a| + |b|.

Si K=0, entonces a=b=0, esto es, $d=0\cdot a+0\cdot b$. \checkmark

Supongamos que se cumple para $K=0,1,\ldots,n-1$. (Hipótesis de inducción matemática).

Demostraremos para K = n = |a| + |b|

Sin pérdida de generalidad, suponga que $|a| \ge |b|$. Así, si |b| = 0, entonces b = 0 y $|a| = n \implies d = n = (1)(\pm 1) + 0 \cdot b$.

Si $|b| \geqslant 1$, entonces para los números |a| - |b| y |b| se cumple la hipótesis:

$$|\underline{a| - |b|} + |b| = |a| - |b| + |b| = |a| < |a| + |b| = n.$$

Existe $d \in \mathbb{Z}$, $d \mid |a| - |b|$ y $d \mid |b|$. Además:

$$d = (|a| - |b|) x' + |b|y'$$

$$d = |a| \underbrace{x'}_{x''} + |b| \underbrace{y'}_{y''}$$

$$d = \underbrace{|a|}_{a,-a} x'' + \underbrace{|b|}_{b,-b} y''$$

$$d = a \underbrace{x''}_{\pm x'} + b \underbrace{y''}_{\pm y'}$$

Pero $d \mid |a|$ y $d \mid |b|$, así $d \mid |a| - |b|$.

∴ Esto cumple la condición.

Teorema 1.2. Sean a y b números enteros, existe solo un número $d \in \mathbb{Z}$ tal que

- 1) $d \ge 0$.
- **2)** $d \mid a \ y \ d \mid b$.
- 3) Si $e \mid a \ y \ e \mid b$, entonces $e \mid d$ para cualquier $e \in \mathbb{Z}$.

Prueba: Por la definición 1.2 y por el teorema 1.1, existe un d con las siguientes propiedades:

$$d \mid a$$
 $d \mid b$ $d = ax + by$

Es claro que -d también cumple esto. Elegimos |d|=ax'+by' que cumpla 1) y 2).

Si $e \mid a$ y $e \mid b$, entonces de la propiedad 3) $e \mid ax' + by' = |d|$. Así, $e \mid |d|$, en consecuencia $e \mid d$ y |d| satisface 3). Si existiese un d' que cumpla 1), 2) y 3), entonces de la afirmación 3):

$$d \mid a \vee d \mid b \implies d \mid d'$$
.

De forma similar:

$$d' \mid a \ y \ d' \mid b \implies d' \mid d.$$

Pero de la propiedad 10)