1 Cel ćwiczenia

Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika z prądem, który został umieszczony w jednorodnym polu magnetycznym. Badana jest zależność tej siły od natężenia prądu płynącego w przewodniku i od indukcji pola magnetycznego. Na podstawie przeprowadzonych pomiarów wyznaczana jest wartość indukcji pola magnetycznego

2 Wyznaczanie siły działającej na fragment przewodnika

2.1 pomierzone dane

 $U=12~\mathrm{V}$

I[A]	m [g]	F [N]
0,5	38,19	8.92
1,0	39,08	17.64
1,5	39,96	26.26
2,0	40,85	34.99
2,5	41,60	42.34
3,0	42,74	53.50
3,5	43,67	62.62
4,0	44,62	71.93
4,5	45,44	79.97
5,0	46,39	89.28

 $U=6~\mathrm{V}$

I[A]	m [g]	F [N]
0,5	37,61	3.23
1,0	38,01	7.15
1,5	38,38	10.78
2,0	38,77	14.60
2,5	39,14	18.23
3,0	39,52	21.95
3,5	39,98	26.46
4,0	40,31	29.69
4,5	40,74	33.90
5,0	41,11	37.53

I - prąd płynądy przez ramkę

m- masa pozorna ramki przy płynącym przez nią prądzie I

 m_0 - masa ramki = 37,28 g

g - przyspiespieszenie ziemskie $\approx 9.80 \left[\frac{m}{c^2}\right]$

3 Określenie zależności indukcji magnetycznej elektromagnesu

U[V]	I [A]	m [g]	B [T]
2	0.04	37.67	955.50
4	0.2	38.96	823.20
6	0.36	40.27	813.94
8	0.53	41.68	813.58
10	0.7	43.11	816.20
12	0.86	44.52	825.02

I - natężenie prądu w uzwojeniu elektromagnesu m - masa pozorna ramki przy płynącym przez nią prądzie I

 m_0 - masa ramki = 37,28 g g - przyspiespieszenie ziemskie $\approx 9,80 \left[\frac{m}{s^2}\right]$

4 Wartość indukcji magnetycznej w szczelinie elektomagnesu

a, b = $1.83 \ 37.21$ (wyszlo w 1 przykladzie a = 1.82 więc się zgadza)

5 Użyte wzory

5.1 Wyniki

Przy pierwszych pomiarach (zmienianie prądu płynącego w ramce) chcąc wyznaczyć wartość indukcji pola magnetycznego B posłużymy się wzorem:

$$F = ILB$$
$$(m - m_0)g = ILB$$
$$m(I) = \frac{LB}{g}I + m_0$$

gdzie m_0 - masa samej ramki,

m - masa pozorna ramki przy płynącym przez nią prądzie I

 $L=0,1~\mathrm{m^1}$ - długość odcinka przewodnika oddziałującego z polem magnetycznym.

Korzystając z metody najmniejszych kwadratów otrzymamy wspł. kierunkowy prostej

$$a = \frac{LB}{g} \to B = \frac{ag}{L}$$

¹https://pg.edu.pl/files/ftims/2021-03/cwiczenieE5.pdf

W następym pomiarze (zmiana prądu płynącego przez uzwojenie elektromagnesu) skorzystamy z zależności

$$B = \frac{(m - m_0)g}{IL}$$

przy określeniu zależności $B(I_m)$, gdzie I_m - natężenie prądu w uzwojeniu elektromagnesu.

5.2 Niepewności

Niepewność indukcji pola magnetycznego wyznaczonego metodą najmniejszych kwadratów wyznaczymy z odpowiednich wzorów $^2\,$

$$u_a = \sqrt{\frac{n}{n-2} * \frac{\Sigma y_i^2 - a\Sigma x_i y_i}{n\Sigma x_i^2}}$$

skąd

$$u_B = \left| \frac{\partial B}{\partial a} \right| u_a = \frac{g}{L} u_a$$

W przypadku zależności $B(I_m)$ niepewność B wyznaczamy jako niepewność funkcji złożonej zmiennych m, m_0, I :

$$\Delta B = \left| \frac{\partial B}{\partial m_0} \right| \Delta m_0 + \left| \frac{\partial B}{\partial m} \right| \Delta m + \left| \frac{\partial B}{\partial I} \right| \Delta I = \frac{g}{IL} (\Delta m + \Delta m_0 + \frac{m - m_0}{I} \Delta I)$$

gdzie $\Delta m_0 = \Delta m = 0,01$ g oraz $\Delta I = 0,02$ A. (to jeszcze do sprawdzenia czy takie niepewności były)

²https://ftims.pg.edu.pl/documents/10673/20436990/wstep.pdf