Table 1: Comparison of Methodologies in Studies on ZnO Nanowires (and ZnO-related)

Study	Year	Material System	Methodology	Limitations	Future Direction
Niloy Goswami et al. [7]	2025	Ge, GaN, ZnO NWs	FEM (Poisson–Schrödinger, COMSOL)	Idealized cylinders, no defects	Experimental FO & external field effects
T. Movla- rooy et al. [6]	2018	$rac{ m ZnO}{ m NWs}$	${ m DFT} + { m pseudopotential} \ { m (NWs/NTs)}$	No temperature effects	Device-level modeling & experiments
Marco Carofiglio et al. [19]	2020	ZnO (NWs / nanopar- ticles)	Review of experimental & synthesis approaches	Stability in biological fluids, cytotoxicity, lack of in vivo studies	In vivo/clinical studies; optimize doping strategies
Wenjie Liang et al. [37]	2009	ZnO NWs (Co- doped)	Electrical magnetotransport	Limited scope; no secondary phases	Vary doping; higher fields for spintronics
Ponka J. Mokgolo et al. [21]	2025	ZnO (for PSCs)	Review of RE-doped ZnO in PSCs	Toxicity, scalability, cost	Better doping methods; stability in large-scale PSCs

Table 2: Comparison of Methodologies in Studies on Silicon Nanowires (Si NWs)

Study	Year	Material System	Methodology	Limitations	Future Direction
Noor S. Moham- mad et al. [24]	2014	Si NWs	Comparative theory—experiment analysis	Data scatter reduces precision	Standardized QC protocols
Zhigang Wu et al. [17]	2008	Si NWs	DFT (tapered vs. straight NWs)	Purely theoretical	Experimental validation & material expansion
Yun Zheng et al. [22]	2005	Si NWs	3D Hamiltonian discretization	Mostly simulations	Strengthen experimental verification
P. R. Bandaru et al. [27]	2010	Si NWs	Review: fabrication & properties	Surface passivation & contact issues	Nanoelectronics thermoelectrics exploration
Riccardo Rurali et al. [23]	2019	Si NWs	Review: models & simulations	Lacks experimental support	Bridge theory-experiment gap
A. T. Tilke et al. [25]	2003	Si NWs	Low-T quantum transport/interference	Very small/low-T wires	Quantum device applications
Zhaohui Zhong et al. [26]	2004	Si NWs	Low-T transport & Coulomb blockade	Device/defect complexity	Optimize for nanoelectronics QC
N. Fukata et al. [38]	2005	Si NWs	Diameter variation; thermal oxidation	Need optimized phonon confinement control	Refine synthesis for precise phonon behavior
Mohammad Montaz- eri et al. [39]	2011	Si NWs	Photomodulated Rayleigh scattering	Laser spot misalignment risk	Extend to other NWs & time-domain studies
M. L. Ciurea et al. [40]	2005	Si (nanocrys- talline)	Energy levels & activation energy shifts	Introductory confinement study	More on confinement across nanostructures
A. A. Leonardi et al. [28]	2021	Si NWs	Critical review of MACE	Limited alignment control	Enhanced MACE techniques
Giovanni Pennelli et al. [5]	2021	Si NWs	Thermoelectric performance analysis	Fabrication scalability	Engineer NWs for improved TE performance

 $\begin{tabular}{ll} Table 3: Comparison of Methodologies in Studies on Si/Ge Nanowires and Related Heterostructures \\ \end{tabular}$

Study	Year	Material System	Methodology	Limitations	Future Direction
E. G. Barbagio- vanni et al. [4]	2012	Si & Ge NWs	Perturbative EMA (classification)	Neglects phonon effects	Extend to other semiconductors/defects
Xihong Peng et al. [15]	2011	Si/Ge NWs	DFT simulations	Theory-focused	Investigate larger NW diameters
Xihong Peng et al. [41]	2011	Si/Ge NWs	DFT/ab initio	High computational cost	Expand pressure studies on core–shell systems
Michele Amato et al. [29]	2009	SiGe NWs	Computational study (composition/geometry)	No experimental validation	Experimental confirmation; explore compositions
Ghada Badawy et al. [12]	2024	InAs, InSb, Ge/Si NWs	Review: synthesis & transport	Focused on III–V/IV only	Extend to other materials; topological QC
Ge, J et al. [42]	2022	Si/Ge core—shell NWs	(Not specified)	Temp. & magnetic field enhance effects	Real-world validation; refined modeling
Peng, X et al. [15]	2011	Si/Ge core—shell NWs	Uniaxial strain on varying diameters	Properties enhanced by strain	Device-level applications
E. G. Barbagio- vanni et al. [4]	2012	Si & Ge NTs	EMA + perturbation theory	Size uncertainty in samples	Surface-state impact on confinement
Laura Loaiza et al. [30]	2020	Si & Ge (anodes)	Review: alloying mechanisms & strategies	Volume change, cracking, unstable SEI, Na/K kinetics	Zintl phases; cycling stability; high-rate capability
You Li et al. [31]	2021	Si & SiGe NWs	Review of fabrication techniques.	Bulk Si has high thermal conductivity.	integrating with CMOS
Jacopo et al. [43]	2020	Ge/Si	Quantum dot solar cell fabrication	Low efficiency and high defect density in the QDs	Further optimization of quantum dot

 ${\it Table 4: Comparison of Methodologies in Studies on Ge/GeSn, Si \ and \ Si/SiGe \ NWs}$

Study	Year	Material System	Methodology	Limitations	Future Direction
S. Assali et al. [32]	2017	m Ge/GeSn $ m core/shell$ $ m NWs$	Fabrication & characterization	Strain-induced structural defects	Scale-up GeSn NW production
Yuanhao Miao et al. [33]	2021	Si-based GeSn (CVD)	Review: CVD growth & optoelectronic applications	Stability; Sn incorporation	Optimize CVD for GeSn/related
Luis Fonseca et al. [34]	2021	Si/SiGe NWs	TE devices via CVD-VLS	Doping & material stability	Scale SiGe NWs for TE devices

Table 5: Comparison of Methodologies in Studies on GaN and Related III–N Systems

Study	Year	Material System	Methodology	Limitations	Future Direction
Niloy Goswami et al. [7]	2025	$\begin{array}{c} {\rm Ge,GaN,} \\ {\rm ZnO} \\ {\rm NWs} \end{array}$	FEM (Poisson–Schrödinger, COMSOL)	Idealized cylinders, no defects	Experimental FO & external field effects
Damien J. Carter et al. [8]	2009	GaN	Ab initio DFT (GGA)	Surface effects neglected	Study surface effects; experimental validation
Matt Law et al. [35]	2004	GaN NWs/NTs	Review: synthesis & optical properties	Introductory scope	Explore new nanowire applications
E. L. Luna et al. [9]	2024	$ GaN, \\ InN, \\ alloys $	Review of experimental studies	Theory focus in parts	Toward improved GaN devices