Геодезические – локально кратчайшие

Пусть M – риманово многообразие со связностью Леви-Чивита ∇ .

Теорема

Пусть $p \in M$, $v \in T_p M$, $|v| < \rho_{inj}(p)$, $\gamma_v \colon [0,1] \to M$ — геодезическая, $\gamma(0) = p$, $\gamma_v'(0) = v$. Тогда γ — кратчайший кусочно-гладкий путь между $\gamma_v(0)$ и $\gamma_v(1)$.

Док-во:

- Пусть γ произвольный кусочно-гладкий путь между $\gamma_{\nu}(0)$ и $\gamma_{\nu}(1)$, т.е. $\gamma(0)=\gamma_{\nu}(0)$ и $\gamma(1)=\gamma_{\nu}(1)$. Нужно доказать, что $\ell(\gamma)\geq \ell(\gamma_{\nu})$.
- Сократим путь γ так, чтобы он не проходил через p и не уходил от нее дальше чем $\gamma_{\rm V}(1)$.

Обозначим $r:=|v|,\; B_r(0)$ – замкнутый шар в $T_p M,$

 $U:=\exp_p(B_r(0)),\ \partial U:=\exp_p(\partial B_r(0)).$ Еще обозначим:

 $a:=\max\{t\in[0,1]:\gamma(t)=p\},$

 $b:=\min\{t\in(a,1]:\gamma(t)\in\partial U\}.$

Доказажем, что $\ell(\gamma|_{[a,b]}) \ge \ell(\gamma_{\nu})$.

- ullet Поднимем $\gamma|_{[a,b]}$ в $T_p M$. $\widetilde{\gamma} := \exp_p^{-1}(\gamma(t)), \ t \in [a,b].$
- ullet Обозначим: $ho(t)=|\widetilde{\gamma}(t)|,\; u(t)=\widetilde{\gamma}(t)/
 ho(t).$

Тогда $\widetilde{\gamma}(t) = \rho(t) \cdot u(t)$.

Геодезические – локально кратчайшие

• Спускаемся обратно на M.

$$\gamma = \exp_{\rho} \circ \widetilde{\gamma} \quad \gamma'(t) = d_{\widetilde{\gamma}(t)} \exp_{\rho} (\widetilde{\gamma}'(t)).$$

- ullet $\widetilde{\gamma}'(t)=(
 ho(t)\cdot u(t))'=
 ho'(t)\cdot u(t)+
 ho(t)\cdot u'(t)$, где $u\perp u'$, т.к. |u|=1.
- $d_{\widetilde{\gamma}(t)} \exp_{\rho}(\widetilde{\gamma}'(t)) = \rho'(t) \cdot d_{\widetilde{\gamma}(t)} \exp_{\rho}(u(t)) + \rho(t) \cdot d_{\widetilde{\gamma}(t)} \exp_{\rho}(u'(t)).$
- Т.к. $u\perp u'$ и |u|=1, то по лемме Гаусса $d_{\widetilde{\gamma}(t)}\exp_p(u(t))\perp d_{\widetilde{\gamma}(t)}\exp_p(u'(t))$ и $|d_{\widetilde{\gamma}(t)}\exp_p(u(t))|=1$.
- $|\gamma'(t)| = |d_{\widetilde{\gamma}(t)} \exp_{\rho}(\widetilde{\gamma}'(t))| \ge |\rho'(t)| \ge \rho'(t)$.
- $\ell(\gamma) = \int_a^b |\gamma'(\tau)| d\tau \ge \int_a^b \rho' d\tau = r = \ell(\gamma_v).$

Теорема доказана.

Лекция 13 23 мая 2022 г.

2/8

Геодезические – локально кратчайшие

Определение

Отрезок в M – кусочно гладкий путь, реализующий расстояние между концами.

Замечание

Отрезок между любыми двумя точками гарантированно существует только в полном многообразии.

Упражнения

- f 0 Любой отрезек в M изометричен отрезку в $\Bbb R$.
- **2** $\forall p \in M$ найдется такая окрестность U, что любые две точки этой окрестности соединяются отрезком.
- **3** Любой отрезек в M геодезическая.
- ullet Пусть $p \in M$ и $r <
 ho_{inj}(p)$, $S_r \subset T_p M$ сфера радиуса r с центром в 0 в $T_p M$. Тогда $\exp_p(S_r)$ сфера радиуса r с центром в p в M.

3/8

$ho_{\it inj}$ локально отделен от 0

Теорема

Для любой точки $p \in M$ существует такая окрестность $U \ni p$, что

$$\inf_{x\in U}\rho_{inj}(x)>0.$$

Док-во:

- Мы уже знаем, что:
 - exp: $TM \to M$ гладкое отображение, определенное на открытом подмножестве TM.

$$\exp_p = \exp|_{T_pM}$$
. $d_0 \exp_p = \operatorname{id}_{T_pM}$.

• Зададим частично определенную гладкую функцию $F : TM \to M \times M$ правилом

$$\forall p \in M \ \forall v \in T_p M \quad F(v) := (p, \exp_p(v)).$$

- Покажем, что $d_0 F \neq 0$.
 - Доказываем в картах, что матрица $d_0F=egin{pmatrix} E & 0 \ E & E \end{pmatrix}$.

Пусть $(x_1, \ldots, x_n, \xi_1, \ldots, \xi_n)$ – координаты в карте TU.

Тогда
$$\left(\frac{\partial F}{\partial x}\right) = \begin{pmatrix} E \\ E \end{pmatrix}$$
, $\left(\frac{\partial F}{\partial \xi}\right) = \begin{pmatrix} 0 \\ \left[d_0 \exp_\rho\right] \end{pmatrix} = \begin{pmatrix} 0 \\ E \end{pmatrix}$.

$ho_{\it inj}$ локально отделен от 0

- Применяем теорему об обратной функции: Найдется такая окрестность W точки $0 \in T_pM$, что сужение $F|_W$ есть диффеоморфизм W на F(W).
- Найдется такая окрестность U точки $p \in M$ и такое число r > 0, что

$$\bigcup_{x\in U}B_r^{T_xM}(0)\subset W.$$

ullet Тогда $\forall \ x \in U: \exp_x = F|_{T_xM}$ – диффеоморфизм шара $B_r^{T_xM}(0)$ на его образ.

Теорема доказана.

Лекция 13

Связность Леви-Чивита и символы Кристоффеля для подмногообразий в \mathbb{R}^n (обзорно)

Пример (напоминание): ∇ в \mathbb{R}^n .

Любое $Y \in \mathfrak{X}(\mathbb{R}^n)$ можно считать гладкой функцией $\mathbb{R}^n \to \mathbb{R}^n$. Тогда $\forall \ X \in \mathfrak{X}(\mathbb{R}^n)$ определим оператор $\mathfrak{X}(\mathbb{R}^n) \to \mathfrak{X}(\mathbb{R}^n)$ дифференцирования вдоль X равенством:

$$orall \ Y \in \mathfrak{X}(\mathbb{R}^n)$$
 полагаем $abla_X Y = (Y_X')_p = d_p Y(X_p).$

Подмногообразие M в \mathbb{R}^n .

Пусть $r\colon U\subset\mathbb{R}^m\to\mathbb{R}^N$ — простая регулярная поверхность, M=r(U), $x\in U$, p=r(x), (x_i) — координаты в U. Размерности любые.

Определение

Пусть $X,Y\in\mathfrak{X}(M)$. Ковариантная производная Y вдоль X определяется равенством

$$\nabla_{v}W = \Pr_{T_{n}M}(Y_{X}')$$

где Y_X' – как в предыдущем примере, \Pr_{T_pM} — ортогональная проекция на T_pM .