ROBOT OBSTACLE AVOIDANCE WITH REINFORCEMENT LEARNING

INTELLIGENT SYSTEMS AND REINFORCEMENT LEARNING

Group Members:

- 1. Alexandre Dietrich
- 2. Ankur Tyagi
- 3. Haitham Alamri
- 4. Rodolfo Vasconcelos

PROBLEM STATEMENT

Find the path for robot to reach an end point (goal state) while avoiding randomly generated obstacles in a 2D space

ENVIRONMENT

Environment simulation using python 3 for the project

Simulation Steps:

- 1. Choose the starting coordinates of the robot
- 2. Choose the target coordinates
- 3. Define static obstacles generated randomly for each episode
- 4. Define number of sensors on the robot
- 5. Navigate the path using the step and avoid any incoming obstacles while navigating towards the target state.

Objectives:

- 1. Identify and optimize the algorithm to avoid the obstacle and reach the destination
- 2. Compare the efficiency of algorithms against each other.

^{*}sample screen shot

SOLUTION APPROACH

- Set the Canvas size to be 500*500 pixels
- Grid of 50*50px with each grid of 12.5 pixels
- Actions(s): Up, Down, Right and left
- Dynamically generated obstacles

- States: all possible states within a 4 x 4 grid with 0 or more obstacles
- Reward function:
 - -1 cost of step
 - -5 cost of obstacle
 - 0 goal end state

ALGORITHM - 1 (BAYESIAN + STATIC)

Execution Steps:

- Environment:
 - Starting point : top corner(0,0)
 - End point bottom right corner (500, 500)
- Monte-carlo method to simulate 1000's of episodes and value iteration
- Find optimal q-value for every state in 4*4 grid and determine action based on epsilon soft policy algorithm
- The generated master policy is a dictionary of states and actions for all 50*50 grids
- Use the optimal policy to playing stage and then run through the agent from the starting point to the goal
- T(s'|s; a): probability of reaching s' if action a is taken in state s = 1 (No uncertainty)

ALGORITHM - 2 (DYNAMIC BAYESIAN POLICY)

- Environment
 - Dynamic start point for the robot
 - Dynamic goal (end-point) for the robot
- In start of every episode robot begins without a policy

- If a policy is not available for that state, a new policy is created using the same Monte Carlo method
- T(s'|s; a): probability of reaching s' if action a is taken in state s < 1 (some uncertainty)

ALGORITHM – 3 (EXTENDED DYNAMIC POLICY)

- Environment
 - Dynamic start point for the robot
 - Dynamic goal (end-point) for the robot
- Algorithm extension :
 - In this algorithm, the policy matrix calculation is changed where the policy looks into nearby square matrix as well to define the path of the robot
- Grid calculation changed from 50*50 to 250 * 250px
- Instead of Monte-carlo in a grid of 4*4, we are calculating a grid of 5*5.

SUMMARY -ALGORITHM COMPARISONS

- Dynamic policy algorithm has the highest consistency among all the algorithm to navigate through obstacles while extended dynamic policy couldn't scale up as expected.
- Github: <a href="https://github.com/ravasconcel
- Report:
 https://github.com/ravasconcelos/rr
 <a href="mailto:syrto-syrto

CONCLUSION – LESSON LEARNT AND FUTURE WORK

Lesson Learnt

- 1. It's difficult to solve continuous problems using discrete solutions
- 2. Enhancing object detection function has improved object avoidance algorithm

Possible extensions of the work include:

- 1. Use deep learning q network to further increases the accuracy for the path navigation as done in the snake game (reference: https://github.com/maurock/snake-ga)
- Use deep deterministic policy gradient for solving the problem in continuous domain (reference: https://www.youtube.com/watch?v=PngA5YLFuvU&t=187s)