- 1) (40Ptos) (a) Uma mistura binária com 40% do componente 1 é líquida a 1 bar e 25 °C. Nesta temperatura, a volatilidade do componente 2 é desprezível. Quando a pressão é reduzida para 0,60 bar, inicia-se a formação de vapor. Calcule a pressão necessária para vaporizar 25% (em base molar) da mistura a 25 °C.
- (b) A mistura do item (a) é aquecida até 120 °C. Nesta temperatura, a volatilidade do componente 2 é significativa e sua pressão de vapor é 0,80 bar. Determine a faixa de pressões na qual a mistura se apresenta em equilíbrio líquidovapor.

Considere comportamento de gás ideal. Dados:

$$ln(P_1^{sat}) = 4.9 - \frac{1500}{T} \quad (P_1^{sat} \ em \ bar, T \ em \ K) \quad ln(\gamma_i) = \frac{c}{T} x_j^2 \quad (T \ em \ K, c \ constante)$$

2) (40Ptos) As reações químicas $2 A (g) \leftrightarrow B (g)$ e $B (g) \leftrightarrow C (g) + D (s)$ ocorrem a 500 °C e 10 bar num reator alimentado com uma mistura gasosa de 40% (em mols) de A, 10% (em mols) de B e o restante de inerte N_2 . Considerando comportamento de mistura ideal dentro do reator e desprezando o efeito da temperatura sobre os calores padrões das reações, calcule as frações molares de A e de B no equilíbrio e o calor envolvido para manter a temperatura em 500 °C. Dados de propriedade de formação dos compostos puros, em estado de sólido para D e de gás ideal para A, B, C e N_2 a 2 bar (atenção). Encontram-se, também, valores de B (segundo coeficiente do virial) a 500 °C para cada substância.

	A(g)	B (g)	C(g)	D(s)	$N_2(g)$	$Z = \frac{PV}{-} = 1 + \frac{BP}{-}$
ΔG _f (kJ/mol) a 25 °C e 2 bar	-42	-84	-70	-68	-50	$Z = RT = T + RT$ $\langle f \rangle BP$
ΔH _f (kJ/mol) a 25 °C e 2 bar	-46	-91	-75	-64	-58	$ln\left(\frac{f}{P}\right) = \frac{BT}{RT}$
B (cm ³ /gmol) a 500 °C	150	200	300	450	120	

3) (20Ptos) Num processo em estado estacionário, uma corrente de 180 kJ/h de solução aquosa de soda cáustica (NaOH), com concentração de 50% (em base mássica) e a 160 °C, é diluída através da mistura com uma corrente de água pura a 30 °C, obtendo-se uma corrente com concentração de 15% e a 100 °C. Calcule a vazão mássica da corrente de água e a taxa de calor envolvida no processo.

