

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPRODUCED FROM BEST AVAILABLE COPY

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER NADC=76327-30 √	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Hybrid LTA Vehicle Controllab	ility as	Draft Final FebJune 1977
Affected by Thruster Magnitud	e and	6. PERFORMING ORG. REPORT NUMBER
Spacing		97-C-1 ~
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(#)
Donald N. Meyers		N62269-77-C-0099
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Piasecki Aircraft Corporation		Air Task No. A03P-03P3/
Island Rd., International Air Philadelphia, Penna. 19153	port	001B/7WF41-411-000 Work Unit No. DH816
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Air Development Center		1 July 1977
Warminster, Pennsylvania 1897		13. HUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II ditteren	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		150. DECLASSIFICATION DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for Public Release;	Distribution (Unlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered	In Block 20, If different In	om Report)
		ACCESSION IN
		NTIS Wells Stolics
18. SUPPLEMENTARY NOTES		BRANNOUNCED UNSTIFICATION
		DY
19 KEY WORDS (Continue on reverse elde if necessary a	ad Idealth, by black graphs	BICCO, YTUTEL HAVE WOLTHER BEING
Helicopters	ed Identify by bluck houses	BIST. AYAIL 2": X STUGIAL
ieavy Lift		2.3
Lighter-than-air (LTA)		10151
Maneuverability /		
20 ABSTRACT (Continue on reverse side if necessary on	d identify by block number))
Results of an analytical inverthe effects on low speed manerand dynamic parameters of a highest relative spacing amount and direction of available is based on nine "noint chick is based on nine chick is	uverability of ybrid lighter- ameter: are: r g of vertical able horizonta	f several geometric -than-air (LTA) vehicle, ratio of static lift to thrusters: relative

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

UNCLASSIFIED

vehicles, takes into account the increased moment of inertia associated with increased spacing of the dynamic thrusters.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PIASECKI HELI-STAT, HEAVY VERTICAL AIR LIFTER

This page is intentionally blank.

1. SUMMARY

An investigation has been conducted on the effect of geometric and dynamic parameters on the maneuverability of a hybrid lighter-than-air (LTA) vehicle, notably the ratio of longitudinal rotor spacing to overall length, and the ratio of static-lift to gross-weight. Other parameters considered were airspeed, angle of sideslip, and amount of horizontal thrust.

The study was conducted on 4 variations of 9 different vehicle designs forming a matrix with 36 variations in the geometric and dynamic parameters.

A qualitative summary of the effects of these parameters is shown in the chart, Fig. 1. More detailed discussion of these separate effects is given in Section 5, together with graphs showing the various functional relationships.

FIG. 1 EFFECTS OF	CTS OF GEOMETRIC AND	AND DYNAMIC PARAMETERS	RAMETERS ON MANEL	ON MANEUVERABILITY OF LTA VEHICLES	TA VEHICLES"
PARAMETER MODE OF ACCELERATION	INCREASING LONGITUDINAL ROTOR SPACING	INCREASING RATIO OF STATIC LIFT TO GROSS WEIGHT	INCREASING RATIO OF HORIZONTAL THRUST TO ROTOR LIFT	INCREASING	ANGLE OF SIDESLIP
LONGITUDINAL	NO I NF L UENCE	DECREASES	INCREASES	SL IGHT DECREASE	NOT INVESTIGATED
РІТСН	INCREASES	DECREASES	NOT APPLICABLE	SLIGHT DECREASE	NOT I NVEST I GATED
LATERAL TRANSLATION	NO I NFLUENCE	DECREASES	NO 1NFLUENCE	DECREASES	NOT INVESTIGATED
ROLL	NO I NF LUENCE	DECREASES	NO INFLUENCE	DECREASES	NOT INVESTIGATED
YAW	DECREASES	DECREASES	INCREASES	DECREASES AT CRITICAL YAW ANGLES	MINIMUM AT APPROX. 45 DEGREES

	TABLE OF CONTENTS	PAGE
ι.	SUMMARY	3
2.	LIST OF FIGURES	6
3.	INTRODUCTION	8
4.	METHOD OF ANALYSIS	9
5.	RESULTS OF ANALYSIS	2 3
6.	CONCLUSIONS	56
7.	RECOMMENDATIONS	59
8.	REFERENCES AND BIBLIGGRAPHY	60
9.	ABBREVIATIONS AND SYMBOLS	61
10.	APPENDIX AND CALCULATIONS	65

THE PROPERTY OF THE PROPERTY O

2. LIST OF FIGURES

A CONTROL OF THE PROPERTY OF T

FIG.	TITLE	PAGE
1.	EFFECTS OF GEOMETRIC AND DYNAMIC PARAMETERS OF MANEUVERABILITY OF LTA VEHICLES	4
2.	MATRIX OF CONFIGURATIONS OF HYBRID LTA VEHICLES	19
3.	MATRIX OF DESIGNS FOR STUDY OF HYBRID LTA CONTROLLABILITY	20
4.	FORCES AND MOMENTS ACTING ON HYBRID LTA VEHICLE	24
5.	LONGITUDINAL ACCELERATION CAPABILITY VS. STATIC LIFT/GROSS WEIGHT RATIO	25
6.	PITCHING ACCELERATION CAPABILITY VS. STATIC LIFT/GROSS WEIGHT RATIO	2 8
7.	PITCHING ACCELERATION CAPABILITY VS. RATIO OF ROTOR LONGITUDINAL SPACING/OVERALL LENGTH	29
8.	LATERAL ACCELERATION CAPABILITY VS. STATIC LIFT GROSS WEIGHT RATIO	32
9.	LATERAL ACCELERATION CAPABILITY VS. AIR SPEED	33
10,	ROLL ACCELERATION CAPABILITY VS. STATIC LIFT GROSS WEIGHT RATIO (Ψ = 90°)	34
11.	ROLL ACCELERATION CAPABILITY VS. LATERAL AIR SPEED (Ψ = 90°)	36
12.	YAW ACCELERATION CAPABILITY VS. ROTOR SPACING RATIO (MAX. AUX. PROPULSIVE THRUST/ROTOR LIFT RATIO = .125; YAW ANGLE = 0°)	3 9
13.	YAW ACCELERATION CAPABILITY VS. RATIO OF ROTOR LONGITUDINAL SPACING/OVERALL LENGTH. (V = 25 KNOTS; STATIC LIFT/GROSS WEIGHT RATIO = .609)	40

2. LIST OF FIGURES (CONT'D)

NO.	TITLE	PAGE
14.	YAW ACCELERATION CAPABILITY VS. STATIC LIFT/GROSS WEIGHT RATIO (MAX. AUX. PROPULSIVE THRUST/ROTOR LIFT RATIO = 0.125)	40
15.	YAW ACCELERATION CAPABILITY VS. STATIC LIFT/GROSS WEIGHT RATIO (ROTOR SPACING/OVERALL LENGTH RATIO = .542; V = 25 KNOTS)	41
16.	YAW ACCELERATION CAPABILITY VS. SIDESLIP ANGLE	42
17.	CONTROLLABILITY COMPARISON BETWEEN MODEL 97-1 HELI-STAT AND INTERPOLATIONS FROM MATRIX POINT DESIGNS	44
18.	LONGITUDINAL ACCELERATION CAPABILITY VS. AIRSPEED, AS AFFECTED BY AVAILABLE AUXILIARY PROPULSIVE THRUST/DYNAMIC LIFT RATIO.	47
19.	PITCHING ACCELERATION CAPABILITY VS. RATIO OF LONGITUDINAL SPACING/OVERALL LENGTH, AS AFFECTED BY AVAILABLE DIFFERENTIAL THRUST	48
20.	YAW ACCELERATION CAPABILITY VS. SIDESLIP ANGLE, AS AFFECTED BY AVAILABLE AUXILIARY PROPULSIVE THRUST/ROTOR LIFT RATIO	49
21.	CONTROLLABILITY VARIATION WITH LOADING CONDITION	51

3. INTRODUCTION

The ability of Lighter-Than-Air-Vehicles utilizing large fractions of rotor lift to perform precision hovering maneuvers depends on the relative magnitudes of the dynamic thrust forces and their moments, the overall moment of inertia, and the aerodynamic hull moments. Design studies show the desirability to keep the overall length of the vehicle to a minimum for a given payload capability, in order to reduce surface wetted area, structural weight, cost, and mooring space requirements.

Hovering maneuverability is directly related to the ratio of static to rotor lift.

The study effort herein is directed toward reduction of weight empty and construction costs by reduction of rotor-spacing/overall-length ratio, and increasing the static/rotor lift ratio.

Calculations of the controllability for various hybrid configurations with reduced ratio of rotor spacing to overall length are presented.

4. MIDHOD OF ANALYSTS

The objective of this investigation was to determine the effects on controllability of hybrid LTA vehicles of buoyancy ratio and longitudinal rotor spacing ratio. These two quantities are both dimensionless ratios, and hence a knowledge of their influence can be applied to a wide variety of designs. However, consideration of other design aspects has shown that several other design variables can have a considerable influence, and if not held constant in the investigation, could mask the influence of buoyancy ratio and rotor spacing ratio. Indeed, these other design variables have a direct bearing on the vehicle mass distribution (thus moment of inertia) and on the effectiveness of available control forces. These aspects are discussed below.

Size of Aerostat

Assume that a comparison is to be made between two LTA vehicles of the same displaced volume (e.g. 1,500,000 cu. ft.), the same static lift (e.g. 94,000 lb.), and the same rotor spacing ratio (e.g. rotor spacing is 505 of overall length). However, let the fineness ratios of the two vehicles differ, so that vehicle A is twice as long as vehicle B, and that both vehicles have a moment of inertia distribution which is approximately uniform longitudinally. Then, since

moment of inertia in pitch or yaw varies as L^2 , where L is vehicle length, the ratio of moment of inertia will be

$$\frac{I_A}{I_B} = (2)^2 = l_4$$

or
$$I_{A} = 4 I_{B}$$

Control moments which can be developed are equal to the product of the rotor thrust component about the particular axis (assumed the same for both vehicles) times the longitudinal distance from rotor to c.g. Since vehicle A is twice as long as vehicle B, and both have the same rotor spacing ratio, it follows that vehicle A can develop a yawing or pitching moment, M, of twice that of vehicle B.

$$M_A = 2 M_B$$

The ratio of control effectiveness of the two vehicles, is measured by angular acceleration, lpha, which is

$$\alpha = \frac{y}{T}$$

$$\frac{\mathbf{A}_{A}}{\mathbf{A}_{B}} = \frac{\frac{\mathbf{N}_{A}}{\mathbf{I}_{A}}}{\frac{\mathbf{N}_{B}}{\mathbf{I}_{B}}} = \frac{\frac{\mathbf{N}_{A}}{\mathbf{N}_{B}}}{\frac{\mathbf{I}_{A}}{\mathbf{I}_{B}}}$$

Substituting
$$I_{\frac{1}{A}} = I_{0}$$
 and $\frac{II_{A}}{h_{B}} = 2$

$$\frac{\alpha_A}{\alpha_3} = \frac{2}{7} = 0.5$$

Vehicle A can develop one-half the angular acceleration of vehicle 3. Thus differences in shape, alone, can mask the effects of either buoyancy ratio or rotor spacing ratio.

A similar situation develops if the fineness ratio is maintained constant, for two vehicles of different overall size, even if rotor spacing ratio and buoyancy ratio are held constant. Assume that vehicle C has twice the aerostat volume, twice the static lift, and twice the dynamic lift of vehicle D, but the same relative shape (fineness ratio).

The ratio of lengths, L , will be approximately

$$\frac{L_{\rm C}}{L_{\rm D}} = (2)^{1/3}$$

The ratio of moments of inertia, I, will be

$$\frac{I_{C}}{I_{D}} = 2 \left((2)^{1/3} \right)^{2} = (2)^{5/3}$$

The ratio of control moments, M , will be

$$\frac{M_{\rm C}}{M_{\rm D}} = 2 (2)^{1/3} = (2)^{1/3}$$

The ratio of control effectiveness, or angular acceleration, will be

$$\frac{\alpha_{\mathbf{E}}}{\alpha_{\mathbf{D}}} = \frac{\frac{E_{\mathbf{C}}}{I_{\mathbf{C}}}}{\frac{E_{\mathbf{D}}}{I_{\mathbf{D}}}} = \frac{\frac{E_{\mathbf{C}}}{E_{\mathbf{D}}}}{\frac{E_{\mathbf{C}}}{I_{\mathbf{D}}}} = \frac{(2)^{4/3}}{(2)^{5/3}} = (2)^{-1/3} = .79$$

Because of this size effect, the investigation dealtwith vehicles which all have the same displaced volume and shape.

Ballonet Air Volume

The volume of air in the aerostat ballonets, especially when the ballonets are located in the extreme bow and stern for effective trim control, will have a major effect on pitch and yaw moments of inertia. For example assume two LTA vehicles of identical shape and displaced volume (e.g. 1,500,000 ft.³), with the same rotor spacing (hence the same rotor spacing ratio), and operating at the same static lift/gross weight ratio (e.g. 0.5).

Suppose vehicle E is fully inflated with helium, and thus has a static lift of 94,000 lb. Since we have assumed a static lift/gross weight ratio of 0.5, the gross weight will be 188,000 lb., and the rotor lift will be 94,000 lb. The empty weight will probably be of the order of 65,000 lb., and the resulting useful load will be 123,000 lb. The latter will tend to be longitudinally concentrated near the vehicle c.g. and contribute relatively little to the overall vehicle moments of linertia in pitch and yaw.

Now let vehicle F be only 86% inflated with helium with the remaining 14% of the volume consisting of air in forward and aft ballonets. This is representative of a design pressure height of 5,000 feet, where the helium

would expand to fill the entire volume, and the ballonets would be fully collapsed. This vehicle would have a static lift of 86% of 94,000 lb., or 80,840 lb., and a gross weight of 161,680 lb., since we are holding the static lift/gross weight ratio constant at 0.5. Since the empty weight should be the same as for vehicle E, the useful load will be 95,680 lb., a reduction of 26,320 lb. compared to vehicle E. The air in the ballonets has a mass in excess of the displaced helium (expressed in pounds instead of slugs) equivalent to 14% of 94,000 lb., or 13,160 lb. A comparison of vehicles E and F is shown below:

	Units	Vehicle E	Vehicle F	Difference
Displaced Volume	cu. ft.	1,500,000	1,500,000	
Pressure height	ft.	S.L.	5,000	
Air in Ballonets	cu. ft.	0	210,000	
Air in Ballonets	1b.	0	13,160	13,160
Static Lift	1b.	94,000	80,840	
Rotor Lift	16.	94,000	80,840	
Gross Weight	1b.	188,000	161,680	
Empty Weight	lo.	65,000	65,000	
Useful Load	1 b.	123,000	96,680	-26,320

Vehicle F has a useful load which is 26,320 lb. less than Vehicle E. However, since the useful load is more or less concentrated near the c.g., its effect on moment of inertia is small. On the other hand, vehicle F has 13,160 lb. of air contained in ballonets located at its extremities. This will cause a significant increase in pitch and yaw moments of inertia. At the same time, the rotor lift (which is vectored for yaw control) has been reduced by 14%. Thus these two vehicles, with the same size, shape, static lift/gross weight ratio, and rotor spacing ratio, will be significantly different in controllability.

To avoid this influence, the investigation dealt with a standardized pressure height of 5,000 feet, equivalent to a sealevel helium inflation of 86%, with 14% of the volume consisting of air in ballonets located at the bow and stern.

Rotor Diameter

For reasons discussed above, the investigation has dealtwith hybrid vehicles, all of which have aerostats of the same volume, shape, and static lift. It follows that variation of the static lift/gross weight ratio must involve variation of gross weight, and hence rotor lift. The question then arises as to how best to treat the variation of rotor thrust.

One method would be to maintain a constant disk loading, allowing the rotor diameters to increase as the rotor lift increases. From a decign standpoint, this means that the minimum longitudinal rotor spacing which can be investigated would be governed by clearance considerations with the largest rotor, which would unduly restrict the range of rotor spacing ratios to be investigated. For this reason, the rotor diameter was held constant, and the disk loading allowed to increase with increased rotor lift. This cohene has the additional valuable feature that variation of rotor lift is representative of operating a given vehicle at various loading conditions, including minimum flying weight, thus providing greater insight into the effect of payload variation on flying qualities in a given vehicle.

Mectoring Angle of Main Rotor Thrust

Nectoring of the thrust of the lifting rotors of the hybrid ITA vehicle is the primary means of providing control forces and moments for translational and rotational motion in all axes. The term "vectoring" includes variation in the size of the vector as well as in its direction. Clearly if the maximum amount of vectoring is permitted to be different in two vehicles which are otherwise identical, then their maneuverability will be different. It is essential to exist this conference convert for maximum vectoring among all

the vehicles under consideration. For angular deflection of the thrust vector a maximum value of 12 degrees was maintained, longitudinally and laterally (independently). This value is representative of maximum longitudinal and lateral cyclic pitch control of typical helicopter rotors. The maximum magnitude of differential thrust was plus or minus 30% of the maximum steady-state value (typical for tandem helicopters). However, the configurations with static-lift/gross-weight ratio of .85 can be considered representative of the configurations with a .609 ratio when the latter are flying with about 50% payload. (The smaller payload results in a smaller gross weight, which in turn means a larger ratio of static-lift/gross weight.) Therefore, an additional series of cases was calculated, using the weights and inertias of the .85 designs, but the control forces of the .609 designs.

Horizontal Thrusters

CONT. AND DESCRIPTION OF THE PROPERTY OF THE P

When the hybrid LTA vehicle is operating at a relatively low static lift/gross weight ratio, and hence a substantial amount of rotor lift, the latter forces can be vectored for propulsion and control about all axes (see previous paragraph). However, when the vehicle is operating at a high static lift/gross weight ratio (above about 0.8), and hence small values of rotor thrust, then the force vectors become too small to be effective, even when vectored to large deflection angles.

A solution to this situation is to use horizontal thrust units, such as propellers, mounted to produce thrust

vectors directed in a variable azimuth, but in a horizontal plane. These units can be driven from the same powerplants or from their own separate powerplants. For the purpose of this controllability study it does not matter. The vehicles investigated were considered to be provided with thrust means capable of producing horizontal forces in the range of 3% to 100% of main rotor maximum steady-state thrust. The specific amount constitutes an additional variable in the study matrix (see "Methodology," the next subsection of the report).

METHOD OF ANALYSIS (Cont'd)

Methodology

The first step required in the analytical study was to establish a matrix of point designs covering a broad interval of rotor spacing ratio and buoyancy ratio (static lift to gross weight ratio). The point designs have been selected with due consideration given to the design aspects discussed above, and their major characteristics are listed in the chart, Fig. 2.

The model designation code contains the most significant feature of each design. The numeral before the "/" is the longitudinal rotor spacing, in feet. Associated with each of the three rotor spacings is the letter A, B, or C, primarily to aid the reader's memory. The decimal fraction after the "/" is the ratio of static-lift to gross weight, of which there are three. Thus Fig. 2 shows nine point designs, in addition to the reference design, model 97-1 from Ref. 1.

Analyses were carried out for each of the nine matrix design points, which were further subdivided with regard to the amount of horizontal thrust assumed. Four constant ratios of horizontal thrust to main rotor thrust were used: .03, .125, .50, and 1.00, thus making 36 distinct design points. Fig. 3 is a composite three-view drawing, showing, the assumed aerostat shape and the three different locations of the propulsors (helicopters).

MATRIX OF CONFIGURATIONS OF HYBRID LTA VEHICLES PIG. 2

and the second second by the second s

	UNITS	REF.MODEL 97-1			
VOLUME OVERALL LENGTH, AEROSTAT (L) LONGIT. DIST. BETWEEN ROTORS (XR) LONGIT. RTR. SPACING RATIO (XR/L) MAX. DIAM., AEROSTAT STATIC LIFT AT 5,000 FT.PRESS.HT. AUX. HORIZONTAL THRUST (MIN/MAX)	CU.FT. FT. - FT. LB. LB.	2,900,000 384 295.25 .769 124 140,800	1,500,000 240 76 .317 103 80,900 5,900/19,700	1,500,000 240 130 .542 103 80,900 5,900/19,700	1,500,000 240 184 .767 103 80,900 5,900/19,700
MODEL DESIGNATION STATIC LIFT/GROSS WT. RATIO GROSS WEIGHT RUTOR LIFT, TOTAL ROTOR THRUST, EACH ROTOR DIA./DISK-LOADING	_ LB. LB. LB. FT/PSF		C-76/.85 .85 95,180 14,280 3,570 56/1.45	B-130/.85 .85 .95,180 14,280 3,570 56/1.45	A-184/.85 .85 95,180 14,280 3,570 56/1.45
MODEL DESIGNATION STATIC LIFT/GROSS WT. RATIO GROSS WEIGHT ROTOR LIFT, TOTAL ROTOR THRUST, EACH ROTOR DIA./DISK-LOADING	- LB. LB. ET/PSF	97-1 .438 321,600 180,800 45,200	c-76/.609 .609 132,900 52,000 13,000	B-130/.609 .609 132,900 52,000 13,000 56/5.28	A-184/.609 .609 132,900 52,000 13,000 56/5.28
MODEL DESIGNATION STATIC LIFT/GROSS WT. RATIO GROSS WEIGHT ROTOR LIFT, TOTAL ROTOR THRUST, EACH ROTOR DIA./DISK-LOADING	- LB. LB. LB. FT/PSF		C-76/.291 .291 277,940 197,040 49,260 56/20.0	B-130/,291 ,291 277,940 197,040 49,260 56/20.0	A-184/.291 .291 277,940 197,040 49,260 56/20.0

MATRIX OF DESIGNS FOR STUDY OF HYBRID LTA CONTROLLABILITY

Next, the following inertial and aerodynamic properties were determined for each point design.

- 1. Weight breakdown, including aerostat propulsors, interconnecting structure, and payload, and c.g.
- 2. Mass, including components of item 1, above, plus enclosed air, helium, and additional apparent mass.
- 3. Moments of inertia in pitch, roll, and yaw, including additional apparent inertia.
- 4. Drag at airspeeds of 15, 25, and 35 knots, and at sideslip angles of 0, 30, 60, and 90 degrees.
- 5. Aerodynamic yawing moments at airspeeds of 15, 25, and 35 knots, and sideslip angles of 0, 30, 60, and 90 degrees.
- 6. Control forces and moments available from the main and auxiliary rotors.

At each sideslip angle and speed considered, the control forces necessary to trim the vehicle were calculated. Finally, maximum accelerations were calculated based on maximum control forces available after subtracting those required for trim. Controllability analyses were made for the following flight conditions.

- Acceleration in pitch and in forward translation
 (independently), at zero sideslip angle, zero pitch angle,
 and forward speeds of 0, 15, 25, and 35 knots.
- 2. Acceleration in roll, from trimmed roll attitude, at sideways velocities (β =90 degrees) of 0, 15, 25, and 35 knots. Since longitudinal rotor spacing has no effect on lateral flight at β = 90 degrees, except for a minor effect on lateral drag, this analysis was carried out for only one value of rotor spacing.
- 3. Acceleration in lateral translation, after achieving the maximum roll attitude, at sideways velocities (\$=90 degrees) of 0, 15, 25, and 35 knots. Again, this was done at only one value of longitudinal rotor spacing.
- 4. Acceleration in yaw, from trimmed attitude, at speeds of 0, 15, 25, and 35 knots, and at sideslip angles of 0, 30, 60 and 90 degrees.

In all cases, the acceleration was in the direction with least control remaining. Thus, if the vehicle was trimmed in a right roll (to maintain right sideslip), the least roll control remaining was to roll further to the right. If trimmed in yaw to maintain a sideslip angle (other than zero) at a constant

airspeed, the least yaw control remaining was to reduce the sideslip, since the vehicle was unstable in yaw, tending to yaw to a greater sideslip angle unless resisted by control forces.

Sources of control forces and moments are shown in Fig. 4.
RESULTS OF ANALYSES

Longitudinal Acceleration

Fig. 5 shows maximum longitudinal acceleration capability plotted against static lift/gross weight ratio for zero forward speed and 35 knots, and for the various ratios of horizontal propulsion thrust to total rotor lift $(T_{p_{max}}/T_{z_{total}})$. The control forces for producing longitudinal acceleration are the thrust of horizontal propulsive units $(T_{P_{x}})$ and the X component of rotor thrust. Both of these parameters are independent of longitudinal rotor spacing, which is, therefore, not a parameter for this motion. The influence of forward speed is quite minor, as evidenced by the small separation of the graphs for zero and 35 knots. The 15-knot and 25-knot speeds would fall within this spacing, and for the sake of clarity are not plotted. Longitudinal acceleration has an inverse, but non-linear relationship to static-lift/gross weight ratio. This is to be expected, since the X component of rotor thrust is directly proportional to total rotor thrust ($T_{\mathbf{Z}_{k-1}}$), which decreases toward zero as the static

FIG. 5 LONGITUDINAL ACCELERATION CAPABILITY VS. STATIC LIFT/GROSS WEIGHT RATIO

lift/gross weight ratio increases toward 1.0. The amount of horizontal thrust available has a predictably important influence on longitudinal acceleration, although one should note that it has been varied over a very large range (from 3% to 100% of the dynamic lift). At high values of static lift/gross weight ratio the horizontal thrust is the primary means for producing longitudinal acceleration.

Two points are shown in Fig. 5, for zero and 35 knots, for Piasecki Model 97-1 (from Ref. 1), which had no horizontal thrust provisions. These points are quite consistent with the trends of the parametric curves falling slightly below the curves for 3% horizontal thrust.

Pitching Acceleration

Pitching control moments are produced by differential thrust variation between the forward and aft vertical thrust units (designated ΔT_2). At forward speed, part of this moment is needed to counteract the nose-up moment of the thrust units, which in the configuration studied (see Fig. 4) are located substantially below the center of buoyancy and center of gravity.

Fig. 6 shows the strong inverse relationship between pitching acceleration capability and static lift/gross weight ratio for all speeds and all rotor spacing ratios considered. The reason for this is that the maximum amount of differential thrust at each vertical thrust unit was assumed to be a

constant 30% of the basic (average) thrust, a value representative of typical tandem helicopters. Thus for a static lift/gross weight ratio approaching 1.0, the dynamic thrust is relatively low, and so is the amount available for differential thrust. On the other hand, for a static lift/gross weight ratio approaching zero, the dynamic thrust is large, and so is the differential thrust.

Although Fig. 6 indicates that the pitching acceleration capability increases with increasing longitudinal rotor spacing, this effect is shown more clearly on Fig. 7, where acceleration is plotted against rotor spacing.

The effect of longitudinal moment of inertia (I_Y) can be seen in Fig. 7. For values of static lift/gross weight ratio approaching 1.0 (for example the 0.85 set of curves in Fig. 7.) most of the effective pitching moment of inertia is due to the mass of the aerostat envelope, the internal gases, and the additional apparent mass of the surrounding air. Thus for this condition I_Y is essentially constant, independent of rotor spacing ratio. The curves are nearly straight lines. For lower values of static lift/gross weight ratio a greater part of the total I_Y is due to the mass of the thrust units, and I_Y increases with increasing rotor spacing. This, in turn, reduces the increase in acceleration which would otherwise result from the increased moment arms of the thrust units, and the curves are strongly curved concave

FIG. 6
PITCHING ACCELERATION CAPABILITY VS. STATIC LIFT/G.W. RATIO

FIG. 7 PITCHING ACCELERATION CAPABILITY VS.
RATIO OF ROTOR LONGIT. SPACING/OVERALL LENGTH

down.

Both Figs. 6 and 7 show that the pitching acceleration capability becomes smaller with increasing forward speed. The increased drag, acting approximately at the center of buoyancy, requires a larger amount of differential thrust for trim, because of the low position of the thrust units. Hence less differential thrust is available for acceleration. The effect of speed is accentuated at high static lift/gross weight ratios because the amount of differential thrust is smaller to begin with, and the amount required for trim is a larger percentage of the total.

Model 97-1, also plotted on Figs. 6 and 7, is seen to be consistent with the trend curves within about 10%. Its pitching acceleration capability is about 10% higher than the parametric point with the same rotor spacing ratio and static lift/gross weight ratio (best seen in Fig. 6). The probable reason is that this model, having a rigid aerostat, does not have ballonets at each end, with their mass of air which would add a significant contribution to moment of inertia in pitch. Thus, the Model 97-1 has a relatively smaller moment of inertia, and a correspondingly higher acceleration capability.

Lateral Acceleration

Lateral rotor spacing was not considered as a variable in this study. All of the matrix designs have the same clearance between rotors and aerostat hull, and consequently the lateral spacing on all is nearly the same, (see Fig. 3). Calculations for lateral controllability were based on the 76-ft. longitudinal spacing.

Fig. 8 shows lateral (or sideways) acceleration capability (y) plotted versus static-lift/gross-weight ratio for lateral velocities from zero to 35 knots. Lateral acceleration has a strong inverse relationship with static-lift/gross-weight ratio for the same reasons as does longitudinal acceleration, described earlier. Velocity, however, has a much greater influence on lateral than on longitudinal acceleration because of the much greater drag in the lateral direction (compare Figs. 8 and 5).

The effect of lateral velocity is shown more directly in Fig. 9, where lateral acceleration capability is plotted versus lateral airspeed. Model 97-1 is also shown on this figure, and is seen to display approximately the same trend as the matrix designs.

Roll Acceleration

Fig. 10 shows roll acceleration capability (p) plotted versus static-lift/gross-weight ratio. Once again there is a strong inverse relationship because the rolling moment is

FIG. 8 LATERAL ACCELERATION CAPABILITY VS. STATIC~LIFT

GROSS-WEIGHT RATIO

-32-

FIG. 9 LATERAL ACCELERATION CAPABILITY VS. AIRSPEED

FIG. 10 ROLL ACCELERATION CAPABILITY VS. STATIC-LIFT GROSS-WEIGHT RATIO (β = 90°)

comprised of the lateral differential thrust, which is assumed at a constant 30% of the average thrust (see discussion of pitching acceleration). The roll acceleration capability is reduced with increasing velocity to a greater degree than is pitching acceleration, because the lateral drag is much higher. (Compare Figs. 10, 6 and 7).

Roll acceleration capability is plotted directly against lateral airspeed in Fig. 11. For each static-lift/gross-weight ratio there is a limiting lateral velocity where all available roll control moment is needed merely to trim the vehicle into a rolled attitude, so that none remains for acceleration to an increased roll attitude. This limiting velocity is seen to vary inversely with the static-lift/gross-weight ratio, Model 97-1 has been plotted on Fig. 11, and is seen to display the same general trend as the matrix vehicles.

FIG. 11 ROLL ACCELERATION CAPABILITY VS. LATERAL

AIRSPEED ($\beta = 90^{\circ}$)

ACCELERATION IN YAW

The effect of five distinct parameters on yaw acceleration capability has been investigated. To show the separate effects of so many parameters on any single presentation become extremely confusing. Consequently, their effects are shown in five different ways, Figs. 12 through 16. On each of these figures variation in either three or four parameters are shown, while a typical constant value is maintained for the other(s).

Figs. 12 and 13 show that yaw acceleration capability decreases with increasing rotor spacing, except for high ratios of static-lift/gross weight. This was an unexpected result, since intuitively it seemed that a longer moment arm for the yaw-producing forces should produce a higher yaw acceleration. However, the weight of the thrust-producing units increases the yaw inertia of the vehicle sufficiently to more than offset the increased yaw moment. At a static-lift gross weight ratio of .85, the weight of the thrust-producing units relative to the aerostat is sufficiently small that the additional moment of inertia from increased spacing is balanced by the additional moment arm, and the acceleration is essentially independent of spacing.

Speed in itself does not have much influence, particularly at zero sideslip angle, as seen by the small change between zero and 35 knots (Fig. 12). In combination with high angles of sideslip, however, speed becomes significant, as can be seen in Fig. 14.

Fig. 12 also shows that the static-lift/gross-weight ratio is a highly significant parameter. The vehicle with the smallest percentage of static lift is the most maneuverable. This relationship is shown more clearly in Figs. 14 and 15, where yaw-acceleration capability is plotted directly against static-lift/gross weight ratio.

Use of auxiliary thrust in the horizontal plane is a powerful method of providing yaw moment. In the present study horizontal thrust of varying magnitude was assumed to act in a fore-and-aft direction at a location behind each of the aft main lifting rotors (see Fig. 4). The magnitude of the maximum available horizontal thrust is expressed as a fraction of the rotor lift. Acting together, the horizontal thrusters produce forward (or aft) propulsion, but acting differentially they produce a yawing moment. Their effectiveness is clearly shown in Figs. 13 and 15.

As expected, the yaw acceleration capability at airspeeds other than zero is dependent upon the sideslip angle since the wind then produces its own yawing moment. This dependency on sideslip is shown in Fig. 16 for a wind speed of 25 knots. The aerodynamic moment produced by the wind is greatest at 45 degrees; hence the acceleration capability is smallest at that azimuth. Also, Fig. 16 again points out that the acceleration capability is higher with a smaller rotor spacing.

FIG. 12 YAW ACCELERATION CAPABILITY VS. ROTOR SPACING RATIO (MAX. PORIZ.PROPULSIVE THRUST/DYNAMIC LIFT RATIO = .125; SIDESLIP ANGLE = 0°)

FIG. 13 YAW ACCELERATION CAPABILITY VS. RATIO OF ROTOR LONGITUDINAL SPACING/OVERALL LENGTH. (V=25 KNOTS; STATIC-LIFT/GROSS WEIGHT RATIO = .609)

FIG. 14 YAW ACCELERATION CAPABILITY VS. STATIC-LIFT/GROSS WEIGHT RATIO. (MAX.HORIZ. PROPULSIVE THRUST/ROTOR LIFT RATIO = 0.125)

FIG. 15 YAW ACCELERATION CAPABILITY VS. STATIC~ LIFT/GROSS WEIGHT RATIO. (ROTOR SPACING/OVERALL LENGTH RATIO = .542: V = 25 KNOTS)

FIG. 16 YAW ACCELERATION CAPABILITY VS. YAW ANGLE. (V = 25 KNOTS; MAX.HORIZ. PRO-PULSIVE THRUST/DYNAMIC LIFT RATIO = .125)

Comparison with Heli-Stat Model 97-1

The Piasecki Heli-Stat Model 97-1, described and analyzed in Ref. 1, had geometric and dynamic characteristics as shown in Fig. 2, From interpolation of results from the matrix point designs to correspond with the ratios of static-lift to gross weight, and of rotor longitudinal spacing to overall length, the comparison table, Fig. 17, is obtained.

The correlation between Model 97-1 and the matrix points is seen to be within 12% for speeds of zero and 25 knots and for all axes except lateral translation and roll. The lower degree of correlation in these two axes is the result of a somewhat different lateral control configuration. As shown in Fig. 4 , lateral forces are produced in the matrix designs by lateral thrusters (tail rotors) on the two forward main thrust units, as well as by lateral components of the main rotor thrusts. The two aft thrust units are equipped with horizontal thrusters for longitudinal thrust only. Model 97-1, on the other hand, had lateral thrusters on all four main thrust units and, therefore, twice as much lateral thrust from this source. It is this feature which gives Model 97-1 a higher lateral acceleration capability. Moreover, Model 97-1 can be trimmed for a given lateral airspeed at a smaller roll angle because it was designed with greater lateral thrust than the matrix designs. Hence a larger proportion of roll control is available for roll acceleration

CONTROLLABILITY COMPARISON BETWEEN MODEL 97-1 HELI-STAT AND INTERPOLATIONS FROM MATRIX POINT DESIGNS FIG. 17

			0 = >		>	V = 25 KNOTS	5
CONTROL AXIS	ACCELERATION UNITS	97-1	DESIGN MATRIX	97-1 DESIGN MATRIX	97-1	DESIGN MATRIX	97-1 DE 51GN MATRIX
LONG IT WINAL TRANSLATION	FT/SEC ²	2.88	3.16	1.08	2.64	2.55	76.
PITCH	RAD/SEC ²	9450*	.0525	96•	.0538	5240.	88*
LATERAL TRANSLATION	FT/SEC ²	7.85	5 † • †	.63	4.35	2.62	09•
ROLL	RAD/SEC ²	.1203	.0885	٠74	.0741	.052	.70
YAW	RAD/SEC ²	8680.	.0825	. 92	9980.	.0775	68.

,这种种种,我们是一个人,我们也会是一个人,我们也是一个人,我们也是一个人,我们也会是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们

Application to Real Designs

The parametric analyses conducted for this report were based on a grid, or matrix, of point designs having three fixed values for static-lift/gross weight ratio. In any real design this quantity is a variable, dependent upon the vehicle's empty weight and the amount of useful load being carried. However, from these parametric results the behavior of such a real design can be estimated.

To illustrate a typical real-design application, Model C-76/.609 has been selected. The .609 ratio of static lift to gross weight has been taken to represent the fully loaded condition, for which estimated weight breakdowns can be found in the Appendix. When off-loaded approximately 50%, this design is found to have a ratio of static-lift to gross weight of 0.85, another of the fixed values used in the matrix study. However, since it is now considered to be a fixed design, operating at part load rather than full load, the control available for pitch, roll, and yaw (differential thrust and auxiliary horizontal thrust) will remain the same as they were in the fully loaded condition, as opposed to the smaller values found in the .85 ratio matrix points.

The .85-static-lift/gross weight ratio designs were, therefore, re-analyzed using the values for differential thrust and auxiliary thrust from the .609-ratio designs.

Results are shown as follows:

THE PERSON NAMED IN

A STATE OF STATE A SAME WANTED

Longitudinal Translation is shown on Fig.18 nlotted against airsneed, for an horizontal thrust ratio of .125, one of the constant ratios used in the matrix (solid line), and a ratio of .455, which represents the same value of horizontal thrust, in pounds, as the corresponding matrix point with .609 static-lift gross-weight ratio (dotted line). The dotted line can be considered to show the .609-ratio matrix designs when operating with approximately 50% design payloads.

Pitch is shown on Fig. 19 plotted against longitudinal spacing ratio for speeds of zero and 35 knots. The solid curves ($\Delta T_{\chi_{max}}/T_{Z} = .30$) are identical to those in Fig. 7. The dotted curves ($\Delta T_{Z_{max}}/T_{Z}$) once again are representative of the .609-ratio matrix designs operating with approximately 50% design payload.

Lateral Translation and Roll are shown plotted against airspeed on previous Figs. 9 and 11. On each, along with the regular matrix designs is shown a curve for the .85 static-lift ratio, but with lateral differential thrust taken from the .609 ratio.

Yaw is shown on Fig. 20 plotted against sideslip angle at a speed of 15 knots. As in Fig. 18 the solid curves are for an auxiliary thrust ratio of .125, while the dotted curves are for a ratio of .455.

FIG. 18 LONGITUDINAL ACCELERATION CAPABILITY VS. AIRSPEED, AS AFFECTED BY AVAILABLE HORIZONTAL PROPULSIVE THRUST/DYNAMIC LIFT RATIO (Tp. /Tz.).

Xmax total

STATIC LIFT/GROSS WEIGHT RATIO = .85

FIG. 19 PITCHING ACCELERATION CAPABILITY VS. RATIO OF LONGITUDINAL SPACING/OVERALL LENGTH, AS AFFECTED BY AVAILABLE DIFFERENTIAL THRUST (\$\Delta T\$).

STATIC-LIFT/GROSS WEIGHT RATIO=.85

FIG. 20 YAW ACCELERATION CAPABILITY VS. SIDESLIP ANGLE, AS AFFECTED BY AVAILABLE HQRIZONTAL PROPULSIVE THRUST/DYNAMIC LIFT RATIO (T_P / T_Z). STATIC LIFT/GROSS WT. X max total RATIO = .85; V = 15 KNOTS

Final graphs of controllability vs. loading condition are shown on Fig. 21. These graphs were constructed using points for 100° and 50° payload as described in the preceding paragraphs. They were then extrapolated down to zero payload.

For zero airspeed, pitch and roll controllability decrease with increasing payload, since the available control moments (from differential thrust) remain constant, while moments of inertia are increased. (Even though the payload was considered as essentially a point mass, its location well below the vehicle center of mass gave it a significant contribution to pitch and roll, but not yaw moments of inertia). However, longitudinal and lateral translation and yaw controllability all decrease with decreasing payload. Main rotor thrust vector components play a large part in these particular modes. Since these thrust components are a direct function of dynamic lift, they become smaller with decreased payload.

At 15-knots airspeed longitudinal translation, pitch, and yaw acceleration are not greatly different from their zero-speed values. Lateral translation is substantially reduced, and the slope of the graph for roll is reversed. A reduction in lateral translation capability is accompanied by increased roll control and roll angle to maintain lateral force trim. Thus less roll control is available for roll acceleration.

FIG. 21 CONTROLLABILITY VARIATION WITH LOADING CONDITION: MODEL C-76/.609

In a light condition (payload ratio less than .35), the maximum sideward airspeed for lateral trim is about 15 knots. However, hovering flight in a 90-degree crosswind will normally not be required. For those applications when it would be required, provision would have to be made for ample lateral thrust under conditions of light loading.

Thus the parametric results developed herein can be used to determine the control response of a "real" preliminary design vehicle. The example just described represents a design which the fully loaded condition, happens to fit one of the matrix points and in the 50%-loaded condition to nearly fit another matrix point. Hence Figs. 18, 19, and 20 could be constructed directly from calculated values, without the need for interpolation. However, other designs falling within the matrix limits can be analyzed in similar fashion. Although all possible combinations of parameters have not been plotted in the figures in this report, the calculated results can all be found in the Appendix. Data for designs with parameters within the matrix limits but not equal to any of the specific matrix points can be easily interpolated, using the nearest appropriate points.

Comparison With Specification MIL-H-8501A

Execifications or standards have not been promplyated for controllability requirements of a lighter-than-air vehicle (hybrid or not). As a matter of interest, however, Model C-76/.609 has been evaluated in pitch, roll, and yaw, in terms of paragraphs 3.2.13, 3.3.18, and 3.3.5, respectively, of Spec. MIL-H-8501A, Amendment 1 (Ref. 4). This specification, of course, when written was dealing with a vehicle of the order of one-tenth or less of the size of an anticipated LTA vehicle. However, the effect of size on controllability requirement was considered to some degree, in that the formulas for controllability permit slower motions for increased size of helicopter. The calculated values shown in Fig. 22 for the Heli-Stat Model C-76/.609 are several orders of magnitude superior to past Navy Blimp LTA vehicles of the 2PG-2V size, although lower than the requirements of the helicopter spec.

YAW SECOND FROM TRIM	6.45	3.69	2.32	0	SECOND FROM TRIM	6.45	3.36	.82
	•	ė	ζ,		,	ý	က်	_
PITCH BEGREES ATTITUDE CHANGE IN ONE WITH FULL CONTROL DISPLACEMENT	1.77	-8.	2.39	06	DEGREES ATTITUDE CHANGE IN ONE WITH FULL CONTROL DISPLACEMENT	1.77	-S.	NO TRIM
DEGREES ATT	3.52	.58	£8.	0	DEGREES ATT WITH FULL C	3.52	.45	99•
LOADING	ALL G.W.	FULL DESIGN PAYLOAD	50% PAYLOAD	:	,	ALL G.W.	FULL DESIGN PAYLOAD	50% PAYLOAD
SOURCE OF VALUES	MIL-H-8501-A REQUIREMENT	CALCULATED CONTROL RESPONSE		1		MIL-H-8501A REQUIREMENT	CALCULATED CONTROL RESPONSE	
SIDESLIP ANGLE (DEG.)	N. A.			AS NOTED				
AIRSPEED (KNOTS)	: O			52		_		

<u>.</u>:

FIG. 22. COMPARISON OF MODEL C-76/.609 WITH HELICOPTER FLYING QUALITIES SPECIFICATION MIL-H-8501-A

THE PROPERTY OF THE PROPERTY O

6. CONCLUSIONS

A systematic investigation of controllability of hybrid LTA vehicles with varying ratios of static-lift to grossweight and of longitudinal rotor spacing to overall length. has led to the following conclusions.

- (1) Longitudinal translational acceleration has an inverse relationship to static-lift/gross-weight ratio.
- (2) Longitudinal translational acceleration strongly depends on the amount of horizontal thrust. At high ratios of static-lift/gross-weight, horizontal thrust is the basic means of propulsion and control.
- (3) Pitching acceleration has an inverse relationship with the static-lift/gross-weight ratio.
- (4) Pitching acceleration increases with increasing longitudinal rotor spacing.
- of acceleration on speed, for either longitudinal translation or pitch, is minor, probably because of the relatively low body drag at these speeds. However, the dependency on speed becomes more significant at high ratios of static-lift/gross-weight, with acceleration decreasing with increasing speed.

6. CONCLUSIONS (Cont'd)

- (6) Both lateral translational and roll acceleration have a strong inverse relationship with static-lift/ gross-weight ratio and with lateral airspeed.
- (7) Yaw acceleration has a strong inverse relation—ship to static-lift/gross-weight ratio.
- (8) Except for high ratios of static-lift/gross-weight (greater than 0.85), an increasing rotor spacing results in a decrease in yaw acceleration.
- (9) The use of horizontal thrust which can produce yawing moments is a highly effective method of increasing yaw maneuverability.
- (10) Yaw acceleration capability depends on the relative instantaneous wind direction. For the configurations analyzed, with no stabilizing tail fins, the aerodynamic moment at an angle of yaw is high, becoming maximum at 45 degrees, and is a critical maneuverability condition for design.

6. CONCLUSIONS (Cont'd)

- (11) The inverse relationship with static-lift/gross-weight ratio for pitch and roll acceleration, stated in conclusions (3) and (6), hold only for vehicles designed with thrusters limited in capacity consistent with their normal operation at high static-lift/gross-weight ratios. Vehicles with thrusters sized for operation at moderate to low static-lift/gross-weight ratio (not greater than 0.65) will have greater, not less, pitch and roll maneuverability when operating light (and thus at a higher static-lift/gross-weight ratio).
- (12) The results herein can be useful in assessing the control response of a "real" hybrid LTA vehicle while still in the preliminary-design stage.

The Book and State

- (1) The most complete of the hybrid configurations attailed herein should be bested in full scale to correlate the actual value calculated control reaction times and the resultant effect on required fright maneuvers.
- (2) The flight manuseurs required for distinct aericlcrone mission functions should be broken down into flight
 captients, and the time for the hybrid configurations,
 uneither in, to perfort these regments should be calculated
 for each of the required flight maneuvers under various
 sets of assumed environmental conditions. The flight
 maneuvers contained in the following missions are of
 interest for such calculations:
 - a. Illostrical transmission tower placement precision operations.
 - b. Convolutionally (leading and unloading) procession chattle operations.
 - c. injuing the objections.

8. REFERENCES AND BIBLIOGRAPHY

DATE	24 June 76	1958	1963	3 Apr.1962		
AUTHOR		S.F.Hoerne	W.F.Durand			
TITLE	: "Design Feasibility Analysis, Ultra-Heavy Vertical Lift System-The Heli-Stat"	"Fluid Dynamic Drag"	"Aerodynamic Theory"	"Helicopter Flying and Ground Handling Qualities; General Requirements for"		
CO. OR AGENCY	Piasecki Aircraft		Dover Publicat- ions, Inc. New York, N.Y.	ดอส		
REPORT NO.	97-x-11		vol. VI	MIL-H- 8501A, Amend-		
NO.	٦٠.	2.	r.	4		

9. ABBREVIATIONS AND SYMBOLS

Symbols	Definition	<u>Units</u>
а	acceleration, linear	ft./sec. ²
C.B.,	center of buoyancy	
C.G.	center of gravity	
$^{\mathrm{C}}_{\mathrm{D}}$	drag coefficient, based on $\psi^{2/3}$	
$\mathtt{c}_\mathtt{L}$	lift coefficient, based on $4^{2/3}$	
C ^I L	moment coefficient, based on ♥	
¢	center-line	
cu. ft.	cubic feet	ft. ³
D	drag force	lb.
D	diameter	ft.
deg.	degrees	deg.
e.g.	for example	
F	Fahrenheit (temperature)	
fps	feet per second	ft./sec.
ft.	feet	ft.
f.r.	fineness ratio (length/diameter)	
g	acceleration of gravity	ft./sec. ²
G.W.	gross weight	1b.
H _{CG}	height of vehicle center of gravity (defined in Fig. 4)	ft.
${\rm H}_{ m RTR}$	height of main roters (defined in Fig. 4)	ft.

9. ABBREVIATIONS AND SYMBOLS (Cont'd)

Symbols	<u>Definition</u>	Units
$\begin{bmatrix} \mathbf{I}_{X} \\ \mathbf{I}_{Y} \\ \mathbf{I}_{Z} \end{bmatrix}$	mass moment of inertia about X, Y and Z axes (roll, pitch, and yaw, respectively)	slug ft. ²
^k ı	coefficient of additional apparent mass for longitudinal motion	
^k 2	coefficient of additional apparent mass for transverse motion	
kt.	knots (speed)	kt.
L	lift	lb.
L	rolling moment	lbft.
L	overall length	ft.
$^{ extsf{L}}\! extsf{A}$	aerodynamic body lift	lb.
$\mathtt{L}_{\mathtt{B}}$	buoyant lift (synonymous with L_S)	16.
lb.	pounds	16.
$\mathtt{L}_{\mathtt{S}}$	static lift (synonymous with L_{B})	1b.
LTA	lighter than air	
m	mass	slugs
M	pitching moment	lbft.
min.	minutes	min.
min.	minimum	
N	yawing moment	lbft.
p	rolling velocity	rad./sec.
paf	pounds per square foot	lb./ft. ²

9. ABBREVIATIONS AND SYMBOLS (Cont'd)

Symbols	Definition	<u>Units</u>
Q	dynamic prescure = $1/2 \text{ V}^2$	1b./ft. ²
Q	pitching velocity	rad./sec.
r	yaw velocity	rad./sec.
R	radius	ft.
rad	radians	rad.
ref.	reference	
S	area	ft. ²
S.L.	sea level	
sec.	seconda	sec.
T	thrust	lb.
t	time	sec.
$\left. \begin{array}{c} \mathbf{T}_{X} \\ \mathbf{T}_{Y} \\ \mathbf{T}_{Z} \end{array} \right\}$	X, Y, Z components of rotor thrust (defined in Fig. 4)	lb.
$\mathtt{T}_{\mathtt{P}_{old X}}$	X component of horizontal thrusters (defined in Fig. 4)	lb.
$^{\mathrm{T}}$ R $_{\mathrm{Y}}$	Y component of horizontal thrusters (defined in Fig. 4)	1b.
U.L.	useful load	16.
V	flight path velocity	ft./sec. or knots
v	sideslip velocity	ft./sec.
¥	volume	ft. ³
*.1	gross weight	lb.

9. ABBREVIATIONS AND SYMBOLS (Cont'd)

Symbols	<u>Definition</u>	<u>Units</u>
X	direction of longitudinal axis	
x	displacement in X direction	ft.
X _{RTR}	rotor longitudinal spacing (defined in Fig. 4)	ft.
Y	direction of lateral axis	
У	<pre>displacement in Y direction (lateral)</pre>	ft.
YRTR	rotor lateral spacing (defined in Fig. 4)	ft.
a	angular acceleration	rad./sec. ²
$oldsymbol{eta}$	sideslip angle	deg.
Δ	differential	
ρ	air density	slugs/ft.3
o _e	average weight of aerostat envelope	1b./ft. ²
φ	roll angle	rad
Ψ	yaw angle	rad
(*)	first time derivative of ()	sec1
(**)	second time derivative of ()	sec. ⁻²

· 5. <u>- 3.1 - 1.</u>

Dec 1 (100) and the second places of the

da shto ji dada

SUMMARY OF INERTIAL PROPERTIES OF VEHICLE CONFIGURATIONS

ИОDEL	GROSS WEI	WEIGHT	MASS OF HELIUM	MASS OF AIR IN BALLONETS	ADDITIONAL APPARENT MASS	ONAL ENT S	TOTAL EGUTY.	ourv. S
				(LESS DIS- PLACED HELIUM)	LONGI- TUDINAL MOTION	TRANS- VERSE MOTION	LONGI- TUDINAL MOTION	TRANS- VERSE MOTION
	(POUNDS) (SL	(SFNGS)	(SLUGS)	(SFNGS)	(SECGS)	(SFNGS)	(SENGS)	(51065)
97-1 (REF.)	321,600	836,6	956	1,546	326	5,578	13,328	18,030
A-134/.85	95,180	2,956	556	463	641	2,601	949.4	909 69
A-184/.609	132,900	4,127	556	493	641	2,601	5,817	7,777
A-184/.291	277,940	3,632	556	£64	641	2,601	10,322	12,282
8-130/.85	95,180	2,956	556	403	641	2,601	949 4	909 ′ 9
8-130/.609	132,900	4, 127	556	493	641	2,601	5,817	7,777
8-130/.291	277,930	8,632	556	,193	541	2,601	10, 322	12,282
C-76/.85	95, 180	2,956	556	493	64.1	2,601	919 4	909 (9
609./92-0	132,900	4, 127	556	493	641	2,601	5,817	7,777
c-76/.291	277,940	8,632	556	493	541	2,601	10, 322	12,282

SUMMARY OF INERTIAL PROPERTIES OF VEHICLE CONFIGURATIONS (CONT'D)

一つなけまうとう かんとうきょうこうない こうこうなましてき

TOTAL EQUIV. IZ	(SLUG FTZ)	163,620,000	27,007,999	29,940,000	69,575,063	21,567,000	23,298,000	52,688,000	17,645,000	18,523,000	41,236,000
TOTAL EQUIV. IY	(SLUG FT ²)	146,614,090	30,959,000	000 *526 *34	37,045,000	24,687,000	33,498,000	66,570,000	20,405,000	29,365,000	52,883,000
ADDITIONAL APPARENT MOMENT OF INERTIA IN PITCH AND YAW	(31,96 +1-)	9,529,000	3,766,000	3,766,000	3,766,000	3,766,000	3,766,000	3,766,000	3,766,000	3,766,000	3,766,000
12	(SLUG FT ²)	149,421,000	23,241,000	26,174,900	65,809,000	17,891,000	19,532,000	48,922,000	13,879,000	14,757,000	37,470,000
}	(SLUG FTZ)	137,085,000	27,193,000	37,209,000	83,279,000	20,921,000	29,732,000	62,804,000	16,639,000	25,600,000	49,117,000
×	(SLUG FTZ)	37,433,000	12,911,000	17,763,000	37,212,000	14,295,000	19,135,000	41,490,000	15,247,000	20,925,000	44,460,000
C.G. BELOW C.B.	(FI,)	33.3	33.1	39.2	47.0	33.7	39.6	47.3	34.2	40.1	47.7
MODEL		97-1 (REF.) 33.3	A-184/.85	A-184/.609	A-184/.291	3-130/.85	8-1307.609	8-130/.291	C-76/.85	609./9/-0	C-76/.291

SUMMARY OF DRAG AREAS AND COEFFICIENTS, TOTAL VEHICLES

MODEL	VOLUME			YAW	A ANGLE				
	(FT3)	°0		3	30°	09	0	。06	0
		DRAG AREA (FT2)	O _O	DRAG AREA (FT2)	o _o	DRAG AREA (FT2)	o _ن	DRAG AREA (FT2)	O _O
97-1 (REF.)	2,900,000	1468	.0722	4980	.2450	17,300	.8500	22,000	1.082
C-76/.85	1,500,000	1133	.0865	3380	.2579	6,685	.5102	7,798	.5951
609*/91-0	1,500,000	1253	.0956	3460	.2640	6,770	.5166	7,918	.6043
C-76/.291	1,500,000	1433	.1094	3700	.2824	7,290	.5563	8,494	.6482
8-130/.85	1,500,000	1911	9880.	3450	.2633	6,870	.5243	8,068	.6157
8-130/.609	1,500,000	1281	.0978	3500	.2671	6,930	.5289	8,108	.6188
B-i30/.291	1,500,000	1461	.1115	3820	.2915	7,480	.5708	8,764	.6688
A-184/.85	1,500,000	1176	.0897	3540	.2702	7,130	.5441	8,343	.6367
A-184/.609	1,500,000	1296	6860*	3580	.2732	7,230	.5518	8,463	.645ō
A-184/.291	1,500,000	1476	.1126	3900	.2976	7,710	.5884	9,033	.6893

NOTE $c_D = \frac{DRAG AREA}{(Vol)2/3}$

SUMMARY OF TOTAL VEHICLE DRAGS

YAW ANGLE, DEG.			0		•	30		
SPEED - KNOTS	0	15	2.5	3.5	0	15	25	35
DYN. PRESS LB/FT ²	0	.7638	2.212	4.158	0	.7638	2.212	4.158
			DRAG	(POUNDS)				
MODEL								
97-1 (REF)	0	1, 121	3,247	6, 103.	0	3,804	11,017	20,708
C-76/.85	0	865	2,505	4,709.		2,582	7,478	14,056.
609.767.	0	957	2,772	5,210.	0	2,643	7,654	14,388.
C-76/.291	0	1,095	3, 171	5,961.	0	2,826	8,184	15,384.
8-130/.85	0	887	2,569	4,829.	0	2,635	7,631	14,345.
8-130/.609	0	826	2,832	5,324.	0	2,673	7,741	14,551.
8-130/.291	0	1,116	3,232	6,075.	0	2,918	8,451	15,885.
A-184/.85	0	868	2,601	4,889.	0	2,704	7,831	14,720.
A-184/.609	0	066	2,867	5,389.	0	2,734	7,918	14,883.
A-184/.291	0	1, 127	3,264	6,135.	0	2,979	8,627	16,217.

TO SECTION OF THE PROPERTY OF

SUMMARY OF TOTAL VEHICLE DRAGS (CONT'D)

and the state of t

- 第100日には年の上記をしてものだち

YAM ANGLE, DEG.			09			06		
STONY - CHERY	0	15	2.5	35	0	15	2.5	35
DYN. PRESS LB/FT ²	0	.7638	2.212	4.158	0	.7638	2.212	4/158
1			DRAG	G (POUNDS)				
i do								
07=1 (RFF.)	0	13,214	38,268	71,935	0	16,804	48,665	91,478
2-76/-85	0	5, 106	14,787	27,796	0	5,956	17,249	32,423
609./9/-0	0	5,171	14,975	28,150	0	840 9	17,515	32,924
C-76/.291	0	5, 568	16, 125	30,311	0	884'9	28,790	35,320
B-130/.85	0	5,247	15,196	28,564	0	6,162	17,845	33,545
B-130/.609	0	5,293	15, 329	28,814	0	6, 193	17,935	33,714
B-130/.291	0	5,713	16,545	31,101	0	76979	19,386	36,441
A-184/.85		5,446	15,772	29,647	0	6,372	18,454	34,688
A-184/.609	•	5,522	15,992	30,061	0	494'9	18,720	35, 189
A-184/.291	0	5,889	17,055	32,059	c	66879	19,980	27,557
				7				

-71-

	VELOCITY (V)	KT.	0	15	25	35
	DYNAMIC PRESS. (q)	P.S.P.	0	.764	2.12	4.16
	DRAG (D)	LB.	Ó	1,121	3.247	6,103
	$\Delta^{T}_{2} = \frac{D(H_{RTR})}{2(X_{RTR})}$	LB.	0	70	ر 20	382
	2 (ATZHAX -ATZTRIM) (IRTR)	RAD. SEC ²	.0546	.05+3	.0538	.0531
7 _{PX}	(4 T _X + T _{PX}) HAX	LB.	38,432	38,432	38,432	38,432
O LB.	(4 T _X + T _{PX}) - D	LB.	38,432	37,311	35.185	32,329
	X* (4 T _X + T _P) - D	SEC ²	2.88	2.80	2.64	2.43
T _P XHAX	(4 T _X + T _P) X HAX	LB.				
LB.	(4 T _X + T _{PX}) - D	LB.				
	14 T _X + T _P) - D	FT. SEC ²				
TPXHAX	(5 TX+ TPX) NAX	LB.				
LB.	(TX TP) MAY " U	LB.				
	(4 T _X + T _P) - D	PT. SEC ²				
T _P XXXX	(4 T _X + T _p)	LB.				
w.	Y X Y Y MAX	18.				
	THE TX + TP) HAX - D	FT.				

	VELOCITY (V)	KT.	0	15	25	35
Ĭ	DYNAMIC PRESS. (q)	P.S.P.	0	.764	2.12	4.16
I	DRAG (D)	LB.	0	1,095	3,171	5,961
	ΔT ₂ TRIM D(H _{RTR})	LB.	0	353	1,022	1,922
	XY Z(ATZNAX -ATZTRIM (IRTR)	RAD. SEC ²	.0425	.0415	.0395	.0370
T _P	-(4 T _X + T _P)	LS.	47,790	47,790	47,790	47,790
5,910 LB.	(4 T _Z + T _{PX}) - D	LB.	47,790	46,695	44,619	41,829
	(* T _X + T _P) - D	SEC ²	4.63	4.52	4.32	4.05
T _P	(4 7 _X + 7 _P)	LB.	66,480	66,480	66,480	66,480
24,600 LB.	(4 T _X + T _{PX}) - D	1.9.	56,480	65,385	63,309	60,519
	(4 T _X + T _P) - D	PT. SEC ^Z	6.44	6.33	6.13	5.86
T _P	(4 T _X + T _{PX})	LD.	140,400	140,400	140,400	140,400
98,520 23.	(4 T _X + T _{P_X}) - D	LD.	140,400	139,305	137,229	134,439
	X (4 T _X + T _P) - D	PT. SEC ²	13.60	13.50	13.29	13.02
TP XHAY	(4 T _X + T _P)	LB.	238,920	238,920	238,920	238,920
197,040 LB.	(4 T _X + T _{PX}) - D	1.8.	238,920	237,825	235,749	232,959
	14 T _X + T _{P_X} LAX - D	FX.	23,14	23.04	22.84	22.57

-IAd				
mX D ZOTZ HETR ZOTZ	HRTR	•	49.0	PT.
27-1200 27-12	X _{RTR}	•	76	Pt.
X 2TZ ZZX	T _X	•	2,763	LB.
DESIGN NO. C-76/.609	(AT _E)	-	3,900	LB.
·	•	-	5,617	SLUGS
	īĀ	• .	29,3 00,000	BL. PT.

				· · · · · · · · · · · · · · · · · · ·		~ ~~~
i	VELOCITY (V)	KT.	٥	15	25	35
I	DYNAMIC PRESS. (Q)	P.S.P.	0	-764	2.12	4.16
	DRAG (D)	LB.	0	957	2,772	5,210
	ΔT_{2} TRIM $\frac{D(H_{RTR})}{2(R_{RTR})}$	LB.	0	309	894	1,680
	CY 2 (ATZ NAX - CT Z TRIE) (XRTR)	RAD. SEC ²	.0202	.0186	.0156	.0115
T _P Z _{HAX}	· (4 T _X + 2 _{P_X})	LB.	12,612	12,612	12,612	12,612
1,560 LB.	(4 T _X + T _{PX}) - D	13.	12,612	11,655	9,840	7,402
	(* T _X + T _P) - D	EL. und²	2.17	2.00	1,692	1,272
T _P	(4 T _X + T _P) X HAX	LB.	17,552	17,552	17,552	17,552
6,500 LB.	(4 T _X + T _{PX}) - D	LB.	17,552	16,595	14,780	12,342
	(4 T _X + T _P) - D	FT. SEC ^Z	3.02	2.65	2.54	2.12
T _{PXMAX}	(4 T _X + T _{PX}) MAX	LB.	37,052	37,052	37,052	37,052
26,000 LB.	(4 T _X + T _{PX}) - D	LB.	37,052	36,095	34,280	31,842
	(4 T _X + T _P) - D	PT. SEC ²	6.370	6,205	5,843	5.474
T _{P I} MAX	(4 T _X + T _{PX}) HAX	Lb.	63,052	63,052	63,052	63,052
52,000 LB.	(4 T _X + T _{PX}) - D	LB.	63,052	62,095	60,230	57,842
	14 T _X + T _P) = D	FT. SEC ²	10.84	10.67	10,36	9.94

	-Iyq					
 ml D	2 AT TR 2AT	`	HRTR	- = 49.	.o PT.	
	2000 2012	/ ·	I _{RTR}	7 6	P7.	
	112T ₂ 12'X	_	TANAX	75 9	LB.	
DES ION	NO. X _{RTR}	T _P	(AT _E) _{HAI}	, - 1,0	71 LB.	
C-76/.8	5		- TANKA	4.6 4		
			I _Y	= 20,405		2
						,
,	ASTOCIAL (A)	KT.	0	15	25	35
	DYMANIC PRESS. (q)	P.S.P.	0	.764	2.12	4.16
	DRAG (D)	LB.	O	865	2505	4709
	$\Delta T_{2} = \frac{D(H_{RTR})}{2(X_{RTR})}$	LB.	0	279	808	1518
	ZY ZYAY -ATZTRIM (XRIR)	RAD. SEC ²	.0080	.0059	.0020	
T _P ZHAX	·(4 T _X + T _{P_X})	LB.	3,464	3,464	3,464	3,464
428 LB.	(4 T _X + T _{P_X}) - D	LB.	3,464	2,599	959	-1245
	" (4 T _X + T _P) - D	SEC ²	.745	.559	.206	268
T _P	(4 T _X + T _{PX})	LB.	4,821	4,821	4,821	4,821
1,785 LB.	(4 T _X + T _{PX}) - D	LB.	4,82!	3,956	2,316	112
	X* (4 TX * TPX NAX - D	FT. SEC ^Z	1.038	.851	.498	.024
TPXHAX	(4 T _X + T _{PX}) HAX	LB.	10,176	10,176	10,176	10,176
7,140 LB.	(4 T _X + T _{FX}) = D	LB.	10,176	9,311	7,671	5,467
	1- (5 7x + Tpx) - D	PT. SBC ^Z	2,190	2.004	1,651	1,177
T _P XXX	(5 T _X + T _P) MAX	LB.	17,316	17,316	17,316	17,316
14,280 LB.	(4 T _X + T _{PX}) - D	LB.	17,316	16,451	14,811	12,607
	X+ X + Tp) - D	PT. SEC ²	3.727	3.541	3.188	2.714

LB.

LB.

PT. SECZ

LB.

LB.

SEC²

238,920

238,920

23.15

238,920

237,804

23.04

238,920

235,688

22.83

238,920

232,845

22.56

T_P

T_P

LB.

197,040 LB.

(4 T_X+ T_{PX}) MAX

(4 T_X + T_{PX}) - D

(4 TX + TP) - D

 $(4 T_X + T_{P_X}) = D$

(4 T_X + T_{P_X}) - D

(\$ 7_X + 2_{PX}) HAX

	, 					
{	YELOCITY (▼)	KT.	0	15	25	35
	DINAMIC PRESS. (q)	P.S.P.	0	•764	2.12	4.16
[DRAG (D)	LB.	0	978	2,832	5,324
	ΔT ₂ TRIM D(H _{RTR})	LB.	0	184	534	1,003
1	CY Z COTZ MAX CTZ TRIM (XRTH)	BAD. SEC ²	.0303	.0288	.0261	.0225
T _P	·(4 T _X + T _P)	LB.	12,612	12,612	12,612	12,612
1,560 LB.	(4 T _X + T _{PX}) - D	LB.	12,612	11,634	9,780	7,289
	(4 T _X + T _P) - D	ET. SEC ²	2.17	2.00	1.661	1.253
T _P XHAX	(4 T _K + T _P)	L3.	17,552	17,552	17,552	17,552
6,500 LB.	(4 T _X + T _{PX}) - D	цв.	17,552	16,574	14,720	12,228
	(4 T _X + T _P) - D	PT. SEC ^Z	3.02	2.85	2.53	2.10
T _P Z _{MAX}	(4 T _X + T _{P_X}) MAX	LB,	63,052	63,052	63,052	63,052
52,000 LB.	(4 T _X + T _{PX}) - D	LB.	63,052	62,074	60,220	57,728
	(4 T _X + T _P) = D	PT. SEC ^Z	10.83	10.67	10.35	9.92
TP THAX	(5 T _X + T _P)	LB.				
LB.	(4 T _X + T _{PX}) = D	LB.			<u> </u>	
	X- (4 T _X + T _P) HAX - D	FT. SEC ²				

	VELUCITY (Y)	KT.	0	15	25	35
	DYNAMIC PRESS. (q)	P.S.P.	0	.764	2.12	4.16
	DRAG (D)	LE.	G	087	2,569	4,829
	OT _{ZTRIH} D(H _{HIR})	LID.	0	167	454	513
	$\alpha_{Y} = \frac{2(\Delta T_{Z_{\text{MAX}}} - \Delta T_{Z_{\text{TR}}})(x_{\text{RTR}})}{T_{Y}}$	RAD. SEC ²	.0113	.0095	.0052	.0017
TPXXX	(4 T _X + T _{PX}) MAX	LB,	3,464	3,454	3,464	0,464
428 LB.	(4 T _X + T _{PX}) - D	LB.	3,464	2,577	895	-1,355
	: (5 T _X + T _P) - D	SEC ²	.748	.557	.193	295
TP -	(4 T _X + T _P)	10.	4,82;	4,821	4,821	4,621
1,785 ኤ ክ.	(4 T _X + T _{PX}) - D	LB.	4,821	3,934	2,252	8
	" (4 T _K + T _{PK}) - D	PT. SEC ^Z	1.042	.850	.487	002
T _P	(4 T _X + T _{PX}) MAX	LB.	17,316	17,316	17,316	17,316
14,280 LB.	(* TX, * TPX) HAX	128.	17,316	16,429	14,747	12,487
	(4 T _X + S _P) - D	SEC Z	3.743	3.551	3.188	2.699
TPX MAY	(4 T _X + T _P)	LB.				
LB.	(4 T _X + T _{P_X}) = D	La.				
	X= (4 T _X + T _P)	FT.				

	VELCCITY (Y)	KT.	0	15	25	35
	DYNAMIC PRESS. (q)	F.S.F.	0	.764	2.12	4.16
	DRAG (D)	LB.	0	1,127	3,264	6,135
	$\Delta T_{2_{TRIM}} = \frac{D(H_{RTR})}{2(X_{RTR})}$	LB.	0	150	435	817
	XYL ZGTZ HAX TTZ TRIM (XRTR)	RAT. SEC ²	.0625	.0648	.000	.0590
T _P	·(4 T _X + T _P)	LB,	47,790	47,790	. 47,790	47,790
5,910 LB.	(4 T _X + T _{PX}) - D	LB.	47,790	46,663	44,526	41,655
	"x" (4 T _X + T _P) - D	SEC ²	4.63	4.52	4.31	4.04
T _P XKAX	(4 T _X + T _{P_X}) MAX	LÐ.	66,480	66,43u	66,480	66,450
24,600 LB.	(4 T _X + T _{PX}) - D	LB.	66, 4 80	65,353	63,216	60,345
	(4 T _X + T _P) - D	FT. SEC ^Z	6.44	6.33	6.12	5.85
TP THAX	(4 T _X + T _P) MAX	LB.	238,920	238,920	238,920	238,920
197,040LB.	(4 T _X + T _{P_X}) - D	LB.	238,920	237,793	235,655	232,785
	(4 T _X + T _P) - D	PT. SEC ²	23.15	23.04	22.83	22.55
T _P	(4 T _X + T _P)	LB.				
. الم	(4 T _X + T _{PX}) = D	LB.				
	** (4 ** * Tp) HAX - D	FT. SEC ²				

	VELOCITY (V)	KT.	0	15	25	35
1	DYNAMIC PRESS. (q)	P.S.P.	0	.764	2.12	4.16
I	DRAG (Q)	LB.	0	990	2,867	5,389
	$\Delta T_{Z_{\overline{TRIM}}} = \frac{D(H_{RTR})}{2(X_{RTR})}$	LB,	0	132	382	718
- (x_{Y} $\xrightarrow{2(\Delta T_{Z_{HAX}} - \Delta T_{Z_{TRIM}})(x_{RTR})}$	Bill. SEC ²	.0350	.0338	3180.	.0286
TPX _{MAX}	·(4 T _X + T _P)	LB.	12,612	12,612	12,612	12,612
1,560 I.B.	(4 T _X + 2 _{P_X}) - D	LB.	12,612	11,172	9,295	6,773
	(4 T _X + T _P) - D	SEC ²	2.17	1.921	1.598	1.184
7 _P XWAX	(4 T _X + T _{P_X}) HAX	LB.	17,552	17,552	17,552	17,552
6,500 LB .	(4 T _X + T _{PX}) - D	LB.	17,552	16,562	14,685	12,163
	(4 T _X + T _P) - D	FI. SEC ^Z	3.02	2.85	2.52	2.09
T _{PXMAX}	(4 T _X + T _{PX}) RAX	LD.	63,052	63,052	63,052	63,052
52,000 LB.	(* TX * TPX HAX	LB.	63,052	62,062	60,185	57,663
	(4 T _X + T _P) - D	PT. SEC ^Z	10.84	10.67	10.35	9,91
T _P XMX	(4 T _X + T _P)	LB.				
LB.	(" TX TPX MAX	LB.				
	Y- (A'TX + TPX) HAX - D	FT. SEC ²				

	VELOCITY (V)	KT.	0	15	25	35
	DYNAMIC PRESS. (Q)	P.S.P.	0	.764	2.12	4.16
	DRAG (D)	LB.	0	898	2,601	4,889
	ΔT _Z TRIM D(H _{RTR}) 2(X _{RTR})	LD.	o	120	346	651
	× _Y =	RAD. SEC ²	.0127	.0113	.0086	.0050
T _P XXX	·(4 T _X + T _{PX})	LB.	3,464	3,464	3,464	3,464
428 LB.	(4 T _X + T _{PX}) - D	LB.	3,464	2,566	863	-1,425
	"x" (4 TX + TPX MAX - D	FT. SEC ²	-746	.552	.186	307
T _P XKYX	(4 T _X + T _P)	LB.	4,821	4,821	4,821	4,821
1,785 LB,	(4 T _X + T _{PX}) - D	LB.	4,821	3,923	2,220	-68
i :	(4 T _X + T _P) - D	PT. SEC ^Z	1.038	.844	.478	015
T _P	(4 T _X + T _{PX}) HAX	LB.	17,216	17,316	17,316	17,316
4,280 LB.	(4 T _X + T _{PX}) - D	LB.	17,316	16,418	14,715	12,427
	(* 7 _X + T _{P_X})	PT. SEC ²	3,727	3,534	3,167	2.675
T _P Z _{MAX}	(4 T _X + T _P) X MAX	LB.				
LB.	(4 T _X + T _{PX}) - D	L3.				
	X- (4 Tx + Tp) HAX	SEC ²				

-Iyn̂				
or HATH OTZ	KRTR	•	49.0	PI.
- co v - rz	X _{RTR}	-	76	FT.
Tx 12 1 1 x	TXHAI	•	759	LB.
DESIGN NO. C-76/.85609	(ATZ) KAX	•	3,900	LB.
		•	4,646	SLUGS
	I _Y	•	20,405,000	SL. PT. ²

			-4	20,000		
	VELCCITY (V)	KT.	0	15	25	35
ľ	DYNATIC PRESS. (q)	P.S.P.	0	.764	2.12	4.16
ľ	DRAG (D)	LB.	0	865	2,505	4,709
	$\Delta T_{Z} = \frac{D(H_{RTR})}{2(Y_{RTR})}$	LB.	0	279	808	1,518
	$\alpha_{\gamma} = \frac{2(\Delta T_{Z_{NAX}} - \Delta T_{Z_{IRTH}})(x_{RTR})}{T_{\gamma}}$	<u>RAD.</u> J⊞C ²	.0291	.0270	.0230	.0177
TPX PAX	(4 T _X * T _P) (4 X	1,0,	4 , 656	4 , ከማለ	4,5.71	4,500
1,560 LB.	^ * X	LB.	4,596	3,731	2,091	-113
	; (4 T _X + T _{P_X FAX} - D	FT. SEC ²	.989	.803	.450	024
T _P XEAX	(1) T _X + T _P)	LB.	9,536	9,536	9,536	9,536
6,500 LB.	(4 TX + TPX) - D	LB.	9,536	8,671	7,031	4,827
	(4 T _X + T _P) - D	FT. SEC ^Z	2.053	1.867	1.513	1.039
T _P X _{UAX}	(4 TX+ T;)	LD.	29,036	29,036	29,036	29,036
26,000 LB.	(4 T _X + T _{P_X}) - 0	LB.	29,036	28,171	26,531	24,327
	X= (4 T _X * T _P) - D	PT, SEC ²	6.250	6.064	5.711	5,236
T _P X _{YAX}	(4 T _X * T _P)	LB.	55,036	55,036	55,036	55,036
52,000 LB.	$(4 T_X + T_{P_X}) = 0$	LB.	55,036	54,171	52,531	50,327
	- (4 T _χ + T _{Pχ}) - 2	FT. SEC ²	11,846	11.660	11.307	10.832

	VELOCITY (V)	KT.	0	15	25	35
İ	DYNAMIC PRESS. (q)	P.S.P.	0	.764	2.12	4.16
	DRAG (D)	LB.	0	887	2,569	4,829
	$\Delta T_{2} = \frac{D(H_{RTR})}{2(X_{RTR})}$	LB.	0	167	484	910
	$\alpha_{Y} = \frac{2(\Delta T_{Z_{HAX}} - \Delta T_{Z_{TR,TM}})(x_{RTR})}{T_{Y}}$	RAD. SEC ²	.0411	.0393	.0360	.0315
TPX FAX	(4 T _X + T _{PX}) HAX	ru.	4,596	4,596	4,596	4,596
1,560 LB.	(4 T _X + T _{PX}) - D	LB.	4,595	3,709	2,027	-233
	(4 T _X + T _{P_X}) - D	ET. SEC ²	.983	.798	.436	050
I _P XKVX	(4 T _X + T _{PX}) MAX	LB.	9,536	9,536	9,536	9,536
e,soo in.	$(4 T_X + T_{I'X}) = D$	tat.	9,536	B,649	6,967	4,707
	(4 T _X + T _P) - D	PT. SEC ²	2.053	1.862	1.50	1.01
T _P	(4 T _X + T _{P_X})	LB.	29,036	29,036	29,036	29,036
26,000 LB.	(4 T _X + T _{P_X}) - D	La.	29,036	28,159	26,467	24,207
	(4 T _X + T _{P_X}) - D	PT. SEC ²	6.25	6.06	5.70	5.21
T _P XKAX	(4 T _X + T _P) MAX	LB.	55,036	55,036	55,036	55,036
52,000 LB.	(4 T _X + T _{FX}) - D	LB.	55,036	54,149	52,467	50,207
	X- (4 TX + TP) - D	ZT. SEC ²	11.05	11,65	11,29	10.61

	VELCCITY (V)	KT.	0	15	25	35
	DYNAMIC PRESS. (q)	P.S.P.	0	.764	2.12	4.16
	DRAS (D)	LB.	1)	898	2,601	4.889
	$\Delta T_{Z_{\overline{1}\overline{1}\overline{1}\overline{1}\overline{1}\overline{1}\overline{1}\overline{1}\overline{1}1$	LB.	0	120	346	651.
	$\alpha_{Y} = \frac{2(\Delta T_{Z_{MAX}} - \Delta T_{Z_{TRIM}})(x_{RTR})}{Y_{Y}}$	RàD. SEC ²	.046	.045	.042	.039
T _P ZyAX	(4 T _X + T _{P_X})	LB.	4,596	4,596	4,596	4,596
1,560 LB.	(4 T _X + T _{PX}) - D	LB.	4,596	3,698	1,995	-293
	X- (4 T _X + T _{PX}) - D	SEC 2	.99	.80	.43	063
T _P XHAX	(h T _X + T _{P_X})	LB.	9,536	9,536	9,536	9,536
6,500 LB.	(4 T _X + T _{P_X}) - D	LB.	9,536	8,638	6,935	4,647
	X= (4 T _X + T _P) - D	PT. SEC ^Z	2.05	1.86	1,49	1.00
TPXYAX	(4 TX+ TPX) KAX	LB.	29,036	29,036	29,036	29,036
28,000 LB.	(5 TX -+ TPX) - D	LB.	29,036	28,138	26,435	24,147
	(4 T _X + T _P) - D	PT. SEC ²	6.25	6.06	5.70	5.20
T _P XMAX	(4 T _X + T _P) NAX	LB.	55,036	55,036	55,036	55,036
52,000 LB.	(4 T _X + T _{P_X}) - 0	LB.	55,036	54,138	52,435	50,147
	(4 T _X + T _P) - D	SEC ^Z	11.85	11.65	11.29	10.79

Equations of Motion for Lateral Translation and Roll.

Maximum roll acceleration is produced when T_{Y} , $T_{R_{Y}}$,

and T_Z are co-ordinated to produce pure roll (zero lateral translation acceleration). Therefore, for $\frac{14}{y}$ = 0,

$$\frac{\text{$\not=$ } \text{$ \sin $\varphi = $} \int_{-4T_{Y_{\text{max}}}^{-2}}^{-2} T_{R_{Y_{\text{max}}}}}{4T_{Z}}$$

If ϕ is calculated to be negative, the vehicle can be trimmed at the particular lateral velocity in level attitude and need not be banked. Therefore, in such a case ϕ is made equal to zero.

$$\Delta T_{Z_{trim}} = \frac{D(H_{rtr}) + (L_{B} H_{rtr} - WH_{cg}) \sin \phi}{2Y_{rtr}}$$

$$\dot{p} = \frac{2Y_{rtr} \Delta T_{Z_{max}} - DH_{rtr} - \sin \phi (L_{B} H_{rtr} - WH_{cg})}{I_{\chi}}$$

Maximum lateral linear acceleration is produced when $T_{\mathbf{Y}}$, $T_{R_{\mathbf{Y}}}$,

and T_Z are coordinated to produce pure linear motion (zero roll acceleration). Therefore, for p=0,

Combining (1) and (2) and simplifying:

$$\frac{\mathbf{\dot{y}} = \frac{4T_{2}(2\Delta T_{2} \mathbf{\dot{y}} - DH_{rtr}) + (1/H_{cg} - L_{B}H_{rtr})(D - 4T_{Y} - 2T_{R_{Y}})}{m(4T_{2}H_{rtr} + L_{B}H_{rtr} - H_{cg})}$$

Ψ - 90 DEG.

DESIGN NO. C-76/.201

いたことには、ままずは、小まないになるのかったい

$$c_1 = (L_B h_{rtr}) - (W H_{cg}) = 5.214,830 \text{ ft. lb.}$$
 $c_2 = 2 Y_{rtr} (\Delta T_{Z_{max}}) = 4.817,628 \text{ ft. lb.}$

Hrtr	•	49.0	ft.
Kcg .	•	-4.5	ft.
T _{Ymax}	-	10,470	1b.
ΔT _{Zmax}	-	14,778	1b.
R	=	12,282	slugs
IX	= 4	4.460.000	slug ft.2
τ_{Z}	•	49,260	16.
LB	-	80,900	16.
¥		277,940	lb.
Yrtr	-	163	ft.
T _R	•	750	16.

٧	<pre>"elocity (sidewards)</pre>	kt.	0	15	25	35
D	- Urag	lb.	0	6,488	18,790	35.320
€1	• D - 4TY - 2TRY MAX	lb.	-43,380	-36,892	-24,590	-8,060
• $sin\phi$		-	0	0	0	. 0
8 2	- C (H _{rtr})	1,000 ft. lb.	0	317.9	920.7	1,730.7
ε ₃	* c ₂ - g ₂	106 ft. 1b.	4.818	4.500	3.897	3.087
Ď.	$=\frac{\varepsilon_3-c_1\sin\phi}{I_X}$	rad.	,1084	.1012	.0876	.0694
64	$= i_1 T_Z (g_3) - c_1 (g_1)$	10 ¹⁰ ft. 1b ²	117.55	.07.90	89.608	65.028
Ÿ	= £4 = (03)	ft.	6.436	. 5.908	4.907	3.561

^{*} If $\sin \phi \gtrsim 0$, make it = 0. Negative $\sin \phi$ indicates that the lateral control force components available are more than sufficient to counteract the lateral drag at a roll angle (ϕ) = 0.

90 DEG.

DESIGN NO. C-76/.609

 $c_1 = (L_B H_{i-tr}) - (W H_{cg}) = 2.781.290 ft. 1b.$ c₂ = 2 Y_{rtr} (Δ T_{Zmax}) =1,271,400 ft. 1b.

c₃ = 4 T_Z H_{rtr} + a₁ =5,329,290 ft. 1b.

			•
Hrtr	•	49.0	ft.
Hog	•	8.9	It.
TYMAX	•	2,763	16.
ΔT _{Zmax}	•	3,900	16.
A	•	7.777	slugs
ıx	• ;	20,025,000	slug ft.2
$\tau_{\mathbf{Z}}$	*	13,000	16.
LB	•	80,900	lb.
W		132,900	1b.
Yrtr	•	163	ft.
TRY make	•	750	1b.

٧	• Velocity (sidewards)	kt.	0	15	25	35
D	- Drag	1b.	0	6,048	17,515	32,924
6 1	- D - 4TYmax - 2TRYmax	lb.	-12,552	-6,504	4,963	20,372
*sinф		-	0	0	.0954	.3918
82	= D (H _{rtr})	1,000 ft. lb.	0	296.3	858.2	1,613.3
в ₃	" c ₂ - g ₂	106 ft. lb.	1.271	0.975	0.413	-0.342
• ·	$\frac{\varepsilon_3-c_1\sin\phi}{I_X}$	rad.	.0635	.0487	.0074	0715
Вц	- 4 T _Z (g ₃) - c ₁ (g ₁)	10 ¹⁰ ft. 1b ²	10.102	6.8792	0.7681	-7.444
ъ	• 64 a (03)	ft.	2.437	.1.6590	.1853	-1.796

Ψ - 90 DEG.

DESIGN NO. C-76/.85

 $c_1 = (L_B H_{rtr}) - (W H_{cg}) = 2.555.436 \text{ ft. lb.}$ $c_2 = 2 Y_{rtr} (\Delta T_{Z_{max}}) = 349.146 \text{ ft. lb.}$ $c_3 = 4 T_Z H_{rtr} + c_1 = 3.255.156 \text{ ft. lb.}$

H _{rtr}	= 49.0	ft.
Hog	14.8	ft.
27LLX	7 59	1b.
△T _{Znax}	_ 1,071	16.
r.	= 6,6 06	slugs
Ix	=15,247.000	slug ft.2
r _z	- 3,570	1b.
r _z r _B	3,57 0 80,9 00	16.
_		-
r _B	= 80,900	16.

Y	* Velocity (sidewards)	kt.	0	15	25	35
D	= D.ag	lb.	0	5.956	17,249	32.423
e ₁	- D - 4TYmax - 2TRYmax	16.	-4536	1,420	12,713	27.887
•sin∳	• \$\frac{\beta_1}{\pi_{1}}\$	-	0	.0994	.8903	•1.953
82	• D (H _{rtr})	1.000 ft. lb.	0	291.8	845.2	1.588.7
€3	• c ₂ - g ₂	10 ⁶ ft. lb.	• 3491	.0573	4961	-1.240
P	$\frac{63-c_1\sin\phi}{1^{\chi}}$	rad. sec.2	.0229	0129	1167	
84	= $4 T_2 (g_3) - c_1 (g_1)$	10 ¹⁰ ft. 1b ²	1.6577	2810	-3.957	-8.897
ÿ	• £1/4 (03)	ft.	.7 709	1.3069	-1.840	

^{*}Sin φ cannot exceed 1.0 (φ = 90 degrees). At this lateral airspeed the .vehicle cunot be trimmed.

^{*}Negative values indicate that the vehicle cannot be trimmed in roll at this lateral airspeed within the roll control moments available.

₩ • 90 DEG.

DESIGN NO. 97-1

 $c_1 = (L_B H_{rtr}) - (W H_{cg}) = 44,006,816$ ft. 16. $c_2 = 2 Y_{rtr} (\Delta T_{Z_{max}}) = 4,501,920$ ft. 16.

c3 = 4 Tz Hrtr + c1 =10,696,416 ft. 1b.

$^{\mathtt{H}}_{\mathtt{rtr}}$	- 37.0	ft.
Hcg	■ 3.7 ¹	ft.
TYBOX	9,608	lb.
△ T _{ZBRX}	13,560	16.
	• 13,328	sluga
1 _X	* 37.433.00	oslug ft.2
TZ	45,200	1b.
$\mathbf{L}_{\mathbf{B}}$	= 140,800	16.
W	321,600	16.
Yrtr	= 166	ft.
TRY MER	= 18,800	16.

Y	- Velocity (Sidewards)	kt.	0	15	25	35
D	- Drag	16.	O	16,808	46,640	91.520
ϵ_1	= D - 4TYmax - 2TRYmax	1b.	-76,032	-59,224	-29,392	+15,468
•sinφ	= 8: 472	-	0	0	0	.0857
6 2	- D (H _{rtr})	1,000 ft. lb.	0	621.9	1,726	3.386
E 3	* c ₂ - g ₂	106 ft. lb.	4.502	3.880	2.776	1.116
ŕ.	$= \frac{\varepsilon_3 - c_1 \sin \phi}{I_X}$	rad.	-1203	-1 037	.0741	.0206
84	• 4 T _Z (g ₃) - c ₁ (g ₁)	10 ¹⁰ ft. 16 ²	111.86	93.88	61.97	13.97
Ÿ	- <u>&u</u> (03)	ft.	7.846	. 6.585	4.347	.980

^{*} If $\sin\phi \gtrsim 0$, make it = 0. Negative $\sin\phi$ indicates that the lateral control force components available are more than sufficient to counteract the lateral drag at 1 roll angle (ϕ) = 0.

+ 90 DBG.

Hrtr

Hcg

Ix Tz

Yrts

TYMAX

ΔT_{Zmax}

ft.

ft.

1b.

lb.

1b.

lb.

lb. ft.

-1.2278

■15,247,000 slug ft.²

sluns

49.0

14.8

759

3,900 ■ 6,606

3,570

80,900

-95,180

163

DESIGN NO. C-76/.85-.609

64 m (03)

٧	- Velocity	kt.	0	15	26	7
D	- Drag	15.	0	5,956	17,249	32,423
€1	= D - 4TYmax - 2TRYmax	lb.	-4536	1,420	12,713	27,887
•sin ϕ		-	0	.0994	.8903	1.953
€2	= D (H _{rtr})	1,000 ft. 1b.	n	291.8	845.2	1,588.7
63	= c ₂ - g ₂	106 ft. 1b.	1.2714	•9796	.4262	3173
e, P	$=\frac{g_3-a_1\sin\phi}{T_X}$	rad.	.0834	476	1213	1
Бь	= 4 T ₂ (g ₃) - o ₁ (g ₁)	10 ¹⁰	2.9747	60	-2.6400	-7.579

1.3834

117

ft.

8ec:2

^{*} Sin Φ cannot exceed 1.0 (Φ = 90 degrees). At this lateral airspect the vehicle cannot be trimmed.

[&]amp; Negative values indicate that the vehicle cannot be trimmed in roll at this lateral airspeed within the roll control moments available.

ACCELERATION IN YAU

Max. Available moment

$$E_{Z_{max}} = Y_{rtr} \left[2(T_{X_{max}} - T_{x}) + (T_{P_{X_{max}}} - T_{P_{x}}) \right] + 2X_{rtr} (T_{Y_{max}} - T_{Y})$$

$$+ 2X_{TR} (T_{R_{Y_{max}}} - T_{R_{Y}})$$

$$= Y_{rtr} \left[(2T_{X_{max}} + T_{P_{X_{max}}}) - (2T_{X} + T_{P_{X}}) \right]$$

$$+ 2X_{rtr} T_{Y_{max}} + 2X_{TR} T_{R_{Y_{max}}}$$

$$- (2X_{rtr} T_{Y} + 2X_{TR} T_{R_{Y}})$$

$$= Y_{rtr} \left(2T_{X_{max}} + T_{P_{X_{max}}} - \frac{D \cos \psi}{2} \right) + 2X_{rtr} T_{Y_{max}} + 2X_{TR} T_{R_{Y_{max}}}$$

$$- 2X_{rtr} T_{Y} - 2X_{TR} T_{R_{Y}}$$

$$\dot{r} = \frac{M_{Z_{max} - M_{Z}trim}}{I_{Z}}$$

DESIGN NO. 97-1

Ψ • 0 Degrees

 $c_1 = 2Y_{rtr} T_{X_{max}} + 2(X_{rtr} T_{Y_{max}} + X_{TR} T_{R_{Y_{max}}}) = 14,414,080 ft.lb.$

		DAX			
Velocity (V)	kt.	0	15	25	35
Drag (D)	1b.	0	1,121	3.247	6,103
Aero.Yawing Mom. (MZtrim)	ft.1b.	0	0	0	0
E ₁ = D s in ψ	1b.	0	o	0	0
g ₂ = Y _{r+x} D coaΨ	ft.lb.	0	93,043	269,501	506,549
If $g_1 \geq T_{Y_{max}}$, T_{Y_1}	$^{\mathrm{T}}$ Y	and T	x ₁ = 2 (6	1 - Tymex)	
$\varepsilon_1 \leq T_{Y_{\max}}, T_{Y_1}$	ε_1	and T _F	R _Y 1 - c		
T _Y ,	1b.	0	0 .	0	0
T _R Y ₁	1b.	0	0	0	0
g ₃ = c ₁ ·· g ₂ - 2X _{rtr} T _{Y1}	ft.1b.	14,414,080	14,321,037	14,144,579	13,907,531
-2 X _{TR} T _R Y ₁ r - M _{Z_{max} - M_Z trin 1₂ e₃ * Y_{rtr} T_P X_{max} -M_Z trie}	rad.	• • • • • • • • • • • • • • • • • • • •			!
T _Z (1b)		-	r		.,
0	rad.	.0898	.0892	.0891	.0866
	rad.				
	rad.				

ACCELERATION IN YAW

 $T_{X_{max}}$ = 759 lb. $T_{Y_{max}}$ = 759 lb. X_{rtr} = 76 ft. Y_{rtr} = 163 ft. $T_{RY_{max}}$ = 750 lb. I_{Z} =17.645.000 sl.ft.² X_{TR} = 5 ft.

DESIGN NO. C-76/.85

Velocity (Y)	kt.	0	15	25	35
Drag (D)	16.	0	866	2,402	4,713
Aerc.Yawing Mom. (MZtrim)	ft.lb.	0	0	0	0
$\mathcal{E}_1 = \frac{D \sin \psi}{\psi}$	lb.	0	o	0	0
E2 = Yrtr D cos W	ft.lb.	0	70.579	195,763	384,109
If $\varepsilon_1 \geq T_{Y_{max}}$, T_{Y_1}	Tymax		4	(1 - Tymax)	
$s_1 \leq T_{Y_{max}}, T_{Y_1}$	ε ₁	and T	R _{Y₁} = 0		
TY1	1b.	0	0	0	0
T _R Y ₁	1b.	0	0	0	0
83 • c1 - E2 - 2Xrtr TY1	ft.1b.	370,302	299,723	174,539	-13,807
-2 X _{TR} T _R Y ₁					
r - Mz _{max} - Mz _{trin}	rad.				
* Tz TpXmax -MZ trim	1				
Tp (1b) Tp /TZ total			ř		
428 .030	rad.	.0249	.0209	.0138	.0032
1,785 .125	rad.	.0375	.0335	.0264	.0157
7,140 .500	774	02/0	.0829	.0758	0652
7,140	rad.	.0869	.0029	1.0750	1 .000

DESIGN NO. C-76/.609

		m e.x			
Velocity (Y)	kt.	0	15	25	35
raj (D)	16.	0	957	2,656	5.212
Aero.Yawing Mom.(MZtrim)	ft.1b.	0	0	0	0
$g_1 = \frac{D \sin \psi}{4}$	16.	o	0	o	٥
g ₂ Y _{rtr} D cosΨ	ft.lb.	0	77.995	216,464	424,778
If $\mathbf{g_1} \geq \mathbf{T_{Y_{max,}}} \mathbf{T_{Y_1}}$	TYmax	and T	Y ₁ = 2 (g	1 - Tymax)	
$g_1 \leq T_{Y_{\text{max}}}, T_{Y_1}$	• 6 ₁		Y, - 0		
T _Y ,	lb.	0	0	0	0
TRY 1	1b.	0	0	. 0	0
83 " c1 - 82 - 2X _{rtr} T _{Y1}	ft.lb.	1,328,214	1,250,219	1,111,750	903.436
-2 X _{TR} T _R					1
$\dot{r} = \frac{M_{Z_{max}} - M_{Z_{trim}}}{I_{Z}}$	rad.			elle commente e e e e e e e e e e e e e e e e e e	
83 + Yrtr Tp _{Xmax} -M2	trim	 			
T _P X _{max} (1b) T _P X _{max} /T _{Zt}	otal		ř		
1.560 .030	rad.	.0854	.0912	.0737	.062
	rad.	.1289	.1247	.1172	.1060
6,500 .125	sec.2		1 .	1	j
26,000 .500	rnd.	.3005	2963	.2888	.2776

ACCELERATION IN YAW

 $\mathbf{x}_{\mathbf{z}_{\mathbf{q}}}\mathbf{x}^{\mathbf{T}}$ **=** 10,470 lb. TYmax - 10,470 16. Xrtr 76 ft. Yrtr **-** 163 ft. TRY max 16. 750 =41,236,000 sl.ft.² I_z ft. X_{TR} 5

DESIGN NO. C-76/.291

Velocity (Y)	kt.	0	15	25	35
Drag (D)	lb.	0	1,095	3,038	5,961
Aero.Yawing Mom. (MZ trim)	ft.lb.	0	0	0	0
$\varepsilon_1 = \frac{D \sin \psi}{4}$	16.	0	0	0	0
g ₂ = Y _{rtr} D cos Ψ	ft.lb.	0	89.242	247.597	485,821
If $g_1 \geq T_{Y_{max}}$, T_{Y_1}	T _{Ymax}	and Tp	- 2 (g	1 - TYmax)	
$s_1 \leq T_{Y_{max}}, T_{Y_1}$	$\boldsymbol{\varepsilon_1}$		- o		
TY ₁	lb.	0	0	0	0
TRY 1	lb.	0	0	0	0
83 - c1 - 82 - 2X rtr TY1	ft.lb.	5,012,160	4,922,918	4,764,563	4,526,33
-2 X _{TR} T _R _{Y₁}					
r = MZ - MZ trim 12 63 + Yrtr TPX - MZ trim	sec.2				
¹ 2	1				
TRX (1b) TPX TZ total			ŕ		
5,510 .030	rad.	.1449	.1427	.1389	•1331
24,600 .125	rad.	.2188	.2166	.2128	.2070
			5050	1	
98,520 .500	rad.	.5110	.5088	.5039	4992

DESIGN NO. 8-130/.85

Ψ * 0 Degrees

 $c_1 = 2Y_{rtr} T_{X_{max}} + 2(x_{rtr} T_{Y_{max}} + x_{TR} T_{R_{Y_{max}}}) = 479,112$ ft.1b.

			Dax -			
Velocity (V)		kt.	0	15	25	35
Drag (D)		1b.	0	887	2.461	4,830
Aero. Tawing No.	n.(MZtrim)	ft.lb.	0	0	0	0
$g_1 = \frac{D \sin \psi}{4}$	_	1b.	0	0	0	0
E2 " Yrtr D	.~	ft.lb.	0	68,299	189,497	371,910
If $\epsilon_1 \geq \tau_{\gamma_{mi}}$	ax. Ty .	TYmax	and 1	R _{Y1} = 2 (6	(1 - TYmex)	
$\epsilon_1 \leq \tau_{\gamma_{m_1}}$	ax, Ty,	$\tilde{\epsilon}_1$	and I	S _R ~ 0		
TY ₁		16.	0	0	0	0
TRY1		1b.	0	0	0	0
ε ₃ = c ₁ - ε ₂	^{2X} rtr ^T Y ₁	ft.1b.	479,112	410,813	289,615	107,20
	X _{TR} T _R Y ₁					
$\dot{\mathbf{r}} = \frac{\mathbf{M}_{\mathbf{Z}_{max}}}{\mathbf{I}_{\mathbf{Z}}}$	M2 trim	rad.				
C3 + Yrtr	TPXmax -NZ tr	<u>im</u>				
T _P (1b) T	PX _{max} tota	1		ř		···
28	.030	rad.	.0253	.0221	.0165	.0030
1,785	.125	rnd.	.0350	.0318	.0262	.0177
7,140	.500	rad.	.0732	.0700	.0644	.0560
I I						

ACCELERATION IN YAW

T_{Xmax} = 2.763 lb.

T_{Ymax} = 2.763 lb.

X_{rtr} = 130 ft.

Y_{rtr'} = 154 ft.

T_{RYmax} = 750 lb.

I_Z = 23.298.000 e t.²

I_{TR} = 32 ft.

DESIGN NG. B-130/.609

ψ = 0 Degrees

c₁ = 2X_{rtr} T_{X_{max} + 2(X_{rtr} T_{Y_{max} + X_{TR} T_R_{Y_{max}})= 1.617,384 ft.1b.}}

t. b. t.1b.	O O	979 0	25	35 5,329
t.1b.	+	979	2.716	5,329
	0	0	1 _ 1	
b.	t		0	0
	0	0	o	0
t.1b.	0	75.383	209,132	410,333
Tyma.x	and T _i	Y ₁ = 2 (g	1 - TYmax)	
£1	and T	RY1	,	
b.	0	0	0	0
b.	0	0	0	0
t.1b.	1,617,384	1,542,001	1,408,252	1,207,501
ad.				
		ř		· <u>-</u> ·
2 .c. 2	.0797	.0765	.0708	.0621
ad.	.1124	.1092	.1034	.0947
ad.	.2413	.2380	.2323	.2237
nd.	.4131	.4097	.4042	•3955
	ad. 20.2 20.2 20.2	ad. 2 .0797 ad. 2 .1124 ad. 2 .2413 ad. 2 .413	and TRY: 0 D. 0 0 D. 0 0 D. 0 0 Et.1b. 1,617,384 1.542,001 Add. 2 .0797 .0765 BC. 2 .1124 .1092 Add. 2 .2413 .2380 DC. 2 .131 .4099	ad. 2d. 2c. 2 . 2c. 2d. 2d. 2d. 2d. 2d. 2d. 2d. 2d. 2d. 2d

OΒ

Txmax	-	10,470	1b.
TYmax	7	10,470	16.
X _{rtr}	•	1 30	ft.
Yrtr	-	154	ft.
$\mathbf{T}_{\mathbf{R}\mathbf{Y}_{\mathbf{max}}}$	•	750	1b.
I ₂	-	52,688,000	sl.ft. ²
X _{TR}		32	St.

DESIGN NO. B-130/.291

ψ = 0 Degrees

 $c_1 = 2Y_{rtr} T_{X_{max}} + 2(X_{rtr} T_{Y_{max}} + X_{TR} T_{R_Y}) = 5.994.960 \text{ ft.lb.}$

			DAX			
Velocity (V)		kt.	0	15	25	35
Drag (D)		1b.	0	1,116	3,097	6.078
Aero.Yawing Mom	· (MZ trim)	ft.1b.	-1	0	0	0
$g_1 = \frac{D \sin \psi}{4}$		16.	0	0	0	0
82 = Yrtr De	4	ft.lb.	0	85,932	238,469	468,006
If $\varepsilon_1 \geq \tau_{\gamma_{mn}}$	TY 1	TYmax	and I	CRY1 = 2 (g	1 - TYmax)	
$s_1 \leq T_{Y_{max}}$	x, Ty, =	€1		R _Y = 0		
TY ₁		1b.	0	0	0	0
TRY 1		16.	0	0	0	0
83 ° c1 - 82 -	2X _{rtr} T _{Y1}	ft.lb.	5,994,960	5,709,028	5.756.49	1 5,526,9
-2 X	TR TRY		1			1
-7	M2 trim	rad.				
83 1 Yrtr	17					
Tp (1b) T	PX _{max} tota	al		ŕ	r	
5,910	.030	rad.	.1311	.1294	.1265	.1722
24,600	.125	rad.	.1857	.1841	.1812	.1768
98,520	.500	rad.	.4017	.4001	.3972	.3929
197.040	1.000	rad.	.6897	.6881	•6852	.6808

ACCELERATION IN YAW

DESIGN NO. A-184/.85

$$c_1 = 2Y_{rtr} T_{X_{max}} + 2(X_{rtr} T_{Y_{max}} + X_{TR} T_{R_{Y_{max}}}) = 575.778$$
 ft.lb.

Velocity (V)		kt.	0	15	25	35
Drag (D)		1b.	0	898	2,493	4,892
Aero.Yawing F	om.(MZtrim)	ft.1b.	0	0	0	0
$\varepsilon_1 = \frac{D \sin \psi}{4}$	<u>) </u>	16.	o	o	o	0
g ₂ = Y _{rtr} I		ft.lb.	0	61,513	170,770	335,102
If $g_1 \geq T_1$	max, Ty =	Tymax	and T	R _{Y1} = 2 (E1 - TY EEX	
$g_1 \leq T_1$	max, Ty, w	$\boldsymbol{\varepsilon_1}$		R _{Y1} = 0		
Tyi		16.	0	0	0	0
TRY1		1b.	0	0	0	0
E3 - c1 - E2	- 2X _{rtr} Ty	ft.lb.	575,778	514,265	405.008	240,676
	X _{TR} T _R					
r - Mz	y ₂ trim	rad.				
€3 + Y _r	tr Tpxmax tri					
T _P X _{max} (lb)	TPX TZ tote	11		ř		
428	.030	rad.	.02349	.0212	.0172	.0146
1,785	.125	rad.	.03037	.0281	.0241	.0215
7,140	.500	rad.	.0575	.0553	.0512	.0486
14,280	1.000	rad.	.0938	.0915	,0874	.0848

DESIGN NO. A-184/.609

Velocity (V)	kt.	1 -		1	
		0	15	25	35
Drag (D)	1b.	0	990	2,748	5,391
Aero.Yawing Mom.(MZtrim)	ft.1b.	0	0	0	0
$g_1 = \frac{D \sin \psi}{\psi}$	15.	0	0 ,	0	o
g2 Trtr D cos W	ft.lb.	0	67,815	188,238	369.283
If $e_i \geq T_{T_{max}}$, T_{Y_i}	TYmax	and Tr	Y ₁ • 2 (g	1 - TYmax)	
$s_1 \leq T_{Y_{max}}, T_{Y_1}$	$\boldsymbol{\varepsilon_1}$	and T _f	r _i - o		
TY ₁	16.	0	0	0	0
TRY ₁	1b.	0	0	0	0
g3 * c1 - g2 - 2xrtr TY1	ft.lb.	1,862,346	1.794.531	1,674,108	1,493,063
-2 X _{TR} T _R					ļ
r - M ₂ - M ₂ trim	rad.				
= Trtr TPX -MZ trim					
TPX (1b) TPX TZ total			ř		
1,560 .030	rad.	.0693	.0671	.0631	.0570
6,500 .125	rad.	.0919	.0897	.0857	.0796
26,000 .500	rad.	.1812	.1789	.1749	.1688
52,000 1.000	rad.	.3001	.2979	.2939	.2873

ACCELERATION IN YAW

DESIGN NO. A-184/.291

$$c_1 = 2Y_{\text{rtr}} T_{X_{\text{max}}} + 2(X_{\text{rtr}} T_{Y_{\text{max}}} + X_{\text{TR}} T_{R_{Y_{\text{max}}}}) = 6.810.240$$
 ft.lb.

		nax	 		
Velocity (Y)	kt.	0	15	25	3 5
Drag (D)	16.	C	1,128	3,129	6.140
Aero.Yawing Mom. (MZtrim)	ft.1b.	0	0	0.	0
$\delta_1 = \frac{D \sin \psi}{\psi}$	16.	0	0	0	. 0
g2 = Irtr D cos W	ft.1b.	0	77.268	214.336	420,590
If $g_1 \geq T_{Y_{max}}$, T_{Y_1}	TYmax	and T	R _{Y₁} = 2 (8	(1 - TY Dax)	•
$s_1 \leq T_{Y_{max}}, T_{Y_1}$	s ₁	and T	R _Y 1 = 0		
TY1.	lb.	0	0	0	0
TRY 1	1b.	0	0	0	0
g3 = c1 - g2 - 2Xrtr TY1	ft.1b.	6,810,240	6.732.972	6,595,904	6,389,65
-2 X _{TR} T _R					
r • Mzmex - Mztrim	rad.				
= G3 + Yrtr TPXmax -M2 tris					
Tp (1b) Tp /T2 tota			ř		
5.910 .030	rad.	.1095	.1084	.1064	.1035
24,670 .125	rad.	.1463	.1452	.1432	.1403
98.520 .500	rad.	.2919	.2908	.2898	.2858
197.040 1.000	rad.	.4359	.4848	.4828	.4798

ACCELERATION IN YAW

TImar	•	75 9	16.
$T_{Y_{C}}$	•	759	1 b
xrtr	-	76	ft.
Yrtr	-	163	ft.
T _{RYmax}	-	75 0	lb.
I ₂	•	17,645.000	Bl.ft.2
\mathbf{I}_{TR}	-	5	ft.

DESIGN NO. 0-70/.85

Ψ = 30 Degrees

Velocity (Y)		kt.	0	15	25	35	
Drag (D)		16.	0	2,592	7.166	14,061	
Aero.Yawing	Mom.(MZ _{trim})	ft.lb.	0	272,838	757,882	1,485,449	
81 = D sin (<u>v</u>	1b.	0	322	895	1,757	
62 " Yrtr	D cos Ψ 2	£6.36.	0	182,240	505,783	992,440	
If $g_1 \geq T$	Ymax. Ty =	Ymax	and Ty	1 2 (g	1 - TYmax)		
$e_1 \leq T$	Ymax, Ty1 =	8 1	and T	x ₁ = 0			
TY 1		1b.	0	322	759	759	
T _R		16.	0	0	272	1,996	
ε ₃ = c ₁ - ε ₂		ft.1b.	370,302	139,118	-253.569	-757,466	
-	2 ITR TRI						
r = MZ	- M _Z trim	rad.					
	tr T _{PXmax} -M ₂ trim						
T _P X _{nax} (1b)	TPXmax Total		ř				
428	.030	red.	.0249	0036	0534	1232	
1,785	.125	rad.	.0375	.0089	0408	1106	
7,140	.500	rnd.	.0869	.0584	.0086	0612	
	.,,,,,	sec,2				1	

-1]-

DESIGN NO. C-76/.609

Ψ = 37 Degrees

.
$$c_1 = 2Y_{rtr} T_{X_{max}} + 2(X_{rtr} T_{Y_{max}} + X_{TR} T_{R_{Y_{max}}}) = 1,328,214 ft.16.$$

2.7632.763

76

160

750

■ 18,523.000 Bl.ft.²

5

15.

ft.

ft.

1b.

ft.

			Pax					
Velocity (V)		kt,	0	15	25	35		
Drag (D)		lb.	0	2,643	7.335	14,394		
Aero.Yawing Mom.(MZtrim)		ft.lb.	0	272.838	757,882	1,485,449		
g ₁ = D sin y		1b.	0	330	916	1,799		
g2 = Yrtr	2 cos Ψ	ft.lb.	0	186,545		1,015,943		
If $g_1 \geq T_Y$	-	Tynax	$T_{Y_{max}}$ and $T_{R_{Y_1}} = 2 (g_1 - T_{Y_{max}})$					
$g_1 \leq T_{Y}$	max, Ty	ε_1 and $\tau_{R_{\overset{\bullet}{Y}_1}}$ = 0						
TY1		16.	0	330	916	1,799		
TRY 1		1b.	0	0	0	0		
g ₃ = c ₁ - g ₂ - 2x _{rtr} T _{Y₁}		ft.lb.	1,328,214	1,091,509	671,270	38,823		
-2	XTR TRE							
r - MZ _{vax}	M _Z trim Z	rad.						
	r TPXmax trim							
T _R X _{max} (1b)	TPX /TZ total	1	ì					
1,560	.030	rad.	.0854	.0579	.0091	0644		
6,500	.125	rad.	.1289	.1014	.0525	0209		
26,000	.500	rad.	.3005	.2730	.2241	.1507		
52,000	1.000	rad.	•5293	.5018	.4529	.3795		
		<u> </u>	_1					

 $T_{X_{\triangle} a.x}$ **=** 10,470 lb. TYniex **10,4**70 lb. X_{rtr} 76 ft. Yrir 163 ft. $\mathbf{T}_{\mathbf{R}\mathbf{T}_{\mathbf{max}}}$ lb. 750 ız - 41,236,000 Bl.ft.² 5 ft. \mathbf{x}_{TR}

Was in NO. C-76/.291

Ψ = p Degrees

$$e_1 = 2Y_{rtr} T_{\frac{1}{2}rqx} + 2(X_{rtr} T_{\frac{1}{2}\pi cx} + X_{TR} T_{R_{\frac{1}{2}}max}) = 5.012,160$$
 ft.lb.

•			max			
Velocity (Y)		kt.	0	15	25	35
Drag (D)		15.	0	2,827	7,544	15,392
Aero.Yawing Mo	om. (Mz trim)] ft.15.	0	272,838	757,882	1.485,449
ε ₁ = <u>D sin ψ</u>		16.	0	350	980	1.924
$\epsilon_2 = \gamma_{rtr} = \frac{D}{2}$	<u>coa Ψ</u>	ft.lb.	0	199,532	1	1,056,383
If $e_1 \geq T_{\chi_1}$	nux, Ty	T _Y max	and T _F	1	1 - TYmax)	
$\epsilon_1 \leq r_{Y_L}$	nax, Ty	ϵ_1	and T _F	x ₁ • 0		
TY ₁		1b.	0	353	980	1,924
TRY 1		16.	0	0	0	0
κ ₃ * c ₁ - ε ₂ ·	- 2x _{rtr} Ty ₁	ft.1b.	5,012,160	4,758,972	4,009,563	3,633,329
~2	X _{TR} 2 _{n_{Y1}}			; !		
r = MZ nex	ing L	rad.	:			
g ₃ + Y _{rt}	r Tpx, x tri					'
T _p (1b)	TPX TZ tota	_ ;		ř		· . —
5,910	٥٢٥.	- 1 <u>.</u> - <u>2</u>	+1449	•1322	.10.5	754
24,600	.125	7	.2138	.2000	.1834	.1493
98,520	.540	rad. nec.2	.5110	.4972	.4745	.6915
197,040	;,000	rnd.	,900%	.8877	.8650	.6310

DESIGN NO. B-130/.85

ψ = 30 Degrees

$$c_1 = 2Y_{rtr} T_{X_{max}} + 2(X_{rtr} T_{Y_{max}} + X_{TR} T_{R_{Y_{max}}}) = 479,112$$
 ft.lb.

			BRX			
Velocity (V)	-:	kt.	0	15	25	35
Drag (D)		1b.	0	2,636	7,314	14,352
Aero.Yawing M	om.(MZ _{trim})	ft.lb.	0	272,838	757.882	1,485,449
$\varepsilon_1 = \frac{D \sin \psi}{4}$	<u>-</u>	1b.	0	329	914	1,794
g2 - Yrtr D	2 CO3 W	ft.lb.	0	175.778	487.726	957.048
If $\varepsilon_1 \geq \tau_\gamma$	max. Ty =	TY _{max}		.	1 - TYmax)	
$\varepsilon_1 \leq \tau_{\Upsilon}$	max, Ty =	6 1	and T	R _{Y1} - 0		
TY1		16.	0	329	759	759
TRI		1b.	0	0	310	2,070
ε ₃ • c ₁ - ε ₂	- 2X _{rtr} Ty ₁	ft.lb.	479,112	217.794	-225.794	-807.756
-2	x _{TR} T _R					
r = Mzmax	M _Z trim	rad.		•		
53 + Yrt	r Tp _{Xmax} -MZ tris					
Tp (1b)	TpXmax total			ř		
428	.030	rad.	.0253	.0005	0426	1033
1,785	.125	rad.	.0350	.0102	0329	~.0936
7,140	. 500	rad.	.0732	.0484	.0054	-,0553
14,280	1.000	rad.	.1242	.0994	.0564	0044

DESTON NO. B-130/.609

Ψ • 30 Degrees

$$c_1 = 2Y_{rtr} T_{X_{max}} + 2(X_{rtr} T_{Y_{max}} + X_{TR} T_{R_Y}) = 1.617.334 ft.1b.$$

Velocity (V)		kt.	0	15	25	35
Drag (D)		1b.	0	2,674	7,420	14.560
Aero.Yawing M	om.(MZ _{trim})	r.lb.	0	272,838	757.882	1,485,449
$g_1 = \frac{D \sin \psi}{4}$		1b.	0	334	927	1,820
g ₂ = Y _{rtr} D	<u>cos Ψ</u> 2	ft.lb.	0	178,312	494.794	970,918
If $g_1 \geq T_{Y_1}$	max. Ty =	Tymax	and T	Y ₁ = 2 (g	1 - Tymax)	
$\epsilon_1 \leq \tau_{Y_1}$	max, TY1 =	$\boldsymbol{\epsilon_1}$		RY ₁ = 0		
TY ₁	· · · · · · · · · · · · · · · · · · ·	1b.	0	334	927	1,820
TRY1		lb.	0	0	0	•
ε ₃ = c ₁ - ε ₂	- 2X _{rtr} Ty,	ft.lb.	1,617,384	1,352,232	881,570	173.266
	XTR TRY					
r = M2 -	M _Z trim	rad.				-4
83 + Y _{rt}	r TP _{Xmax} -MZ trim					
TpX (1b)	TPXmax tota			ŕ		
1.560	.030	rad.	.0797	.0566	.0156	0460
6,500	.125	rad.	.1124	.0893	.0483	0134
26,000	.500	rnd.	.2413	.2182	.1772	.1155
52,000	1.000	rnd.	.4131	.3901	•3490	.2874

DESIGN NO. B-130/.291

Ψ = 30 Degrees

100mm 100m

			E 6.3			
Velocity (V)		kt.	0	15	25	35
Drag (D)		16.	0	2,918	8,098	15,891
Aero.Yawing Mo	om.(MZtrim)	ft.1b.	0	272,838	757.882	1,485,449
$\varepsilon_1 = \frac{D \sin \psi}{4}$		1b.	0	364	1,012	1,986
82 - Yrtr D	005Ψ 2	ft.lb.	0	194,583		1,059,674
If $\epsilon_1 \geq \tau_{Y_1}$	ex. Ty *	TYmax	and Tp	1 2 (g	1 - TYmax)	
$\epsilon_1 \leq \tau_{\Upsilon_E}$	max, Ty =	61		- o	,	
TY 1		1b.	0	364	1,012	1,986
TRY ₁	1	1b.	0	0	0	0
E3 - c1 - E2		ft.1b.	5,994,960	5,706,517	5,191,834	4,418,92
-2	X _{TR} T _R					
r = HZmax	M _Z trim Z	rad.				
83 + Yrt;	¹ Z	1				
T _R X _{max} (1b)	TPXmax Total			ŕ		
5,910	.030	rnd.	1311	.1204	.1014	.0730
24,600	.125	rad.	.1857	.1750	.1560	.1276
98,520	. 500	rad.	.4017	•3911	.3721	. 3436
197,040	1.000	rad.	.6897	.6791	.6601	.6316

DESIGN NO. A-184/.85

₩ = 30 Degrees

$$c_1 = 2Y_{\text{rtx}} T_{X_{\text{max}}} + 2(X_{\text{rtr}} T_{Y_{\text{max}}} + X_{\text{TR}} T_{R_Y}) = 575,778$$
 ft.1b.

			MAA			
Velocity (Y)	 	kt.	0	15	25	35
Drag (D)		1b.	0	2.705	7.505	14.726
Aero. Yawing Nom	(MZtrim)	ft.1b.	0	272,838	757,882	1,485,449
81 = D sin Ψ		1b.	0	338	938	1,840
E2 - Yrtr Do		ft.1b.	0	160,468	445,217	873,586
If $\varepsilon_1 \geq \tau_{\gamma_{max}}$	r. T _{Y1} *	Tymax	and T	RY = 2 (6	(1 - TY NAX)	
$s_1 \leq T_{Y_{max}}$	r _{Y1} -	8 1		R _Y = 0		
TY1		1b.	0	338	759	759
T _{RY}		1b.	0	0	358	2,162
ε ₃ = ο ₁ - ε ₂ - 2	2X _{rtr} T _{Y1}	ft.lb.	575,778	290,926	-190,995	-832,23
	rr Tr _Y					
	¹ Z _{trim}	rad.			redomina i i rici i i anti	- *- · · · · · · · · · · · · · · · · · ·
83 + Y _{rtr}	TpXmax trie					
T _P X _{nax} (1b) T _F	X _{max} total			ř		···
428	.030	rad.	.0235	.0028	0330	0836
1,785	.125	rad.	.0304	.0097	0261	0768
7,140	.500	rad.	.0575	.0369	.0011	0496
14,280	1.000	rad.	.0938	.0731	.0373	0134

TXBAX	•	2,763	1 b.
TYmax		2.763	lb.
Xrtr	•	184	ft.
Yrtr	-	137	ft.
T _{RY rax}	•	750	16.
ı _z .	-	29,940,000	sl.ft.
_	_	40	<i>a</i> . 1

DESIGN NO. A-184/.609

Ψ = 30 Degrees

Velocity (V)	•	kt.	0	15	25	35
Drag (D)		1b.	0	2.735	7.590	14,893
Aero.Yawing Mo	m.(MZtrim)	ft.lb.	0	272,838	757,882	1,485,449
$g_1 = \frac{D \sin \psi}{\psi}$	_	1b.	0	341	948	1,861
g ₂ = Y _{rtr} D	CO8 Ψ	ft.lb.	0	162,247	450.259	883,493
If $g_1 \geq T_{\gamma_1}$	eax. Ty =	TYmax	and Tr	Y ₁ = 2 (g	1 ~ TYmax)	
$s_1 \leq \tau_{\gamma_{c}}$	TY1	€1		R _{Y1} = 0		
TY1		1b.	0	341	948	1,861
TRY 1		1b,	0	0	0	0
ε ₃ = c ₁ - ε ₂	- 2X _{rtr} T _{Y,}	ft.1b.	1,862,346	1,574,243	1,063,223	294,005
-2	XTR TRY			,		
r = Mz _{max} -	M _Z trim	rad.				
63 + Yrt	T _Z x _{max} -M ₂ tri					
T _P Xmax (1b)	TPX TZ tota	1		ř		
1,560	.030	rad.	.0693	.0506	.0173	0326
6,500	.125	rad.	.0919	.0732	.0399	0101
26,000	.500	rnd.	.1812	.1624	.1292	.0792
52,000	1.000	rad.	.3001	.2814	.2481	.1981

ACCRUPATION IN YAW

DESIGN NO. A-184/.291

Ψ = 30 Degrees

$$c_1 = 2Y_{\text{rtr}} T_{X_{\text{max}}} + 2(X_{\text{rtr}} T_{Y_{\text{max}}} + X_{TR} T_{R_{Y_{\text{max}}}}) \approx 6,810,240$$
 ft.lb.

10,470

184

137

750

59

16.

ft. ft.

1b.

ft.

		POX			
Velocity (V)	kt.	0	15 '	25	35
Drag (D)	1b.	0	2,980	8,268	16,224
Aero.Yahing Mom. (MZtrim)	ft.lb.	0	272,838	757,882	1,485,449
81 = Dain W	15.	o	372	1,033	2,028
82 - Yrtr D cos W	ft.1b.	0	176,781	490,480	962,452
If $\varepsilon_1 \geq \tau_{\Upsilon_{\text{max}}}$, τ_{Υ_1}	TYmax	and Tr	- 2 (g	1 - Tymax)	
$s_1 \leq T_{Y_{\text{Bax}}}, T_{Y_1}$	• 6 ₁	and T _F	R _{Y1} • 0		
TY1	lb.	0	372	1.033	2,028
T _R T ₁	16.	00	0	0	0
83 = c1 - 82 - 2Xrtr TY1	ft.1b.	6,810,240	6,496.563	5,939,616	5,101,484
-2 X _{TR} T _R					
r = M _Z max - M _Z trim	rad.				
F3 FYrtr TPX -M2 t	rim				
TRIMAX (1b) TPX T2 to	tal		i i	, 	
5,910 .030	rad.	.1095	.1011	.0861	.0636
24,600 .125	rad.	.1463	.1379	.1229	.1004
98,520 .500	rnd.	.2919	.2834	.2685	.2':60
197.040 1.000	rad.	.4859	.4774	.4625	.4400

ACCRIES ATION IN YAW

TXmax = 759 lb.

TYmax = 759 lb.

Xrtr = 76 ft.

Yrtr = 163 ft.

TRYmax = 750 lb.

IZ = 17.645.000 sl.ft.²

XTR = 5 ft.

DESIGN NO. C-76/.85

ψ = 60 Degrees

			hax			
Velocity (V)	•	kt.	0	15	25	35
Drag (D)		16.	0	5,107	14,172	27,810
Aero.Yawing	Mom. (Mz _{trim})	ft.1b.	0	272,838	757.882	1,485,449
$E_1 = \frac{D \sin 4}{4}$	<u>v</u>	16.	o	1,105	3.068	6,021
62 " Yrtr		ft.lb.	0	208,110	577.509	1,133,257
If $g_1 \geq T$		T _{Ymax}		- I	(1 - Tymax)	
$s_1 \leq \tau$	Ymax. TY1 =	6 1	and T	** 0		
Tyi		16.	0	759	759	759
TRY 1		1b.	0	692	4,618	10,524
83 - c1 - 82	- 2Xrtr TY1	ft.1b,	370,302	39,504	-368,755	-983,563
	2 X _{TR} T _R					
	- M _Z trim	rad.				
63 + Y _x	tr ^T P X max tru	_				
T _P X _{max} (1b)	T _P X _{max} total			ř		
428	.030	rad.	.0249	0092	0599	1360
1,785	.125	rad.	.0375	.0033	0474	1234
7,140	. 500	rad.	.0869	.0528	.0021	-,0740
14,280	1.000	rad.	.1529	.1187	.0681	0080
		 _				

ACCEPATION IN AAA

Endion No. 0-76/.600

Ψ = 60 Degress

 $c_1 = 2Y_{rtr} T_{Trax} + 2(X_{rtr} T_{Trax} + X_{TR} T_{H_{Trax}}) = 1.328,214 ft.lb.$

ft.

		hax			
Yelocity (Y)	kt.	0	15	25	35
Drag (D)	lb.	0	5,172	14,352	23,163
Acro.Yawing Kom. (MZtrim)	ft.1b.	0	272.838	757.882	1,485,449
$\varepsilon_1 = \frac{D \sin \psi}{4}$	16.	0	1.11	3,107	6,097
R2 - Yrtr D cos W	ft.lb.	0	210,759	584.844	1,147,642
If $\varepsilon_1 \geq T_{Y_{\text{max}}}$, T_{Y_1}	Tymax		1	1 - TY _{max})	
$s_1 \leq T_{Y_{\max}}, T_{Y_1}$	61	and T	ky • 0		
TY 1	16.	0	1.119	2,763	2,763
TRY1	16.	0	0	688	6,668
g3 = c1 - g2 - 2xrtr Tx1	ft.lb.	1,328,214	9'+7,367	316,514	-306,084
-2 x _{TR} T _R) !
$\frac{1}{r} = \frac{M_{Z_{\text{max}}} - M_{Z_{\text{trim}}}}{I_{Z}}$	rad.				to be not a second seco
- Tz	-				
TpXnex (1b) TpXnax total			ř		
1,560 .030	red.	.0954	.0501	0101	0830
6,590 .125	rad.	.1269	.0936	.0334	0395
26,000 .500	rad.	.3005	.2652	.2050	.1321
52,000 1.000	rad.	.5293	,491.0	.4338	.360%

lb. TXmax 10,470 10,470 lh. TYmax ft. X_{rtr} 76 Yrtr 163 ft. T_{RYmax} 750 lb. - 41,236,000 sl.ft.2 ız ft. X_{TR} 5

DESIGN NO. C-76/.291

₩ = 60 Degrees

			BAX		,	
Velocity (V)	•	kt.	0	15	25	35
Drag (D)		16.	0	5.570	15,455	30,326
Aero.Yawing M	on.(MZ trim)	ft.1b.	0	272,838	757.882	1,485,449
$g_1 = \frac{D \sin \psi}{4}$)	16.	0	1.205	3,346	6,565
g ₂ • Y _{rtr} <u>P</u>		ft.lb.	0	226,977		1,235,784
If $g_1 \geq T_Y$		TYmax		1	1 - TYmex)	
$g_1 \leq T_{\gamma}$	max, Ty =	6 ₁	and T	T ₁ • 0		
TY 1		16.	0	1,205	3,346	6,565
TRY1	,	16.	0	0	0	0
ε ₃ = c ₁ - ε ₂	- 2Xrtr TY1	ft.lb.	5,012,160	4,602,023	3,873,777	2.778,496
~2	TR TRI					
r = M _Z max	M _Z trim	rad.				
	r Tp X max Trim					
T _{PI} (1b)	TPXmax Total			ř		
5.910	.030	rad.	•1449	.1283	.0989	.0549
24,600	.125	rad.	.2188	.2022	.1728	.1286
98,520	.500	rnd.	.5110	.4944	.4650	.4208
197.040	1.000	rad.	.9004	.8838	.8544	.8102
					<u> با رساست سالت . الم</u>	<u> </u>

DESIGN NO. B-130/.85

■ 60 Degrees

$$c_1 = 2Y_{rtr} T_{X_{max}} + 2(X_{rtr} T_{Y_{max}} + X_{TR} T_{R_{Y_{max}}}) = 479.112$$
 ft.lb.

Velocity (Y)	kt.	0	15	25	35
Drag (D)	16.	0	5,249	14,564	28,579
Aero. Yawing Mom. (MZ trim) ft.ib.	0	272,838	757.882	1,485,449
$\varepsilon_1 = \frac{\text{D oin } \psi}{\psi}$	16.	0	1.136	3,153	6.187
E2 " Yrtr D cos W	ft.lb.	0	202.086	560,714	1,100,291
If $\varepsilon_1 \geq \tau_{\gamma_{max}}$, τ_{γ_1}	Yeu X	and T	R _{Y1} = 2 (g ₁ - Tymax)	
$\varepsilon_1 \leq T_{\Upsilon_{\max}}, T_{\Upsilon_1}$	• 61	and T	R _{Y1} - 0		
T _{Y1}	16.	0	759	759	759
TRY 1	16.	0	754	4.788	10.856
83 * c1 - 82 - 2Xrtr TY	ft.lb.	479,112	31.430	-226,746	-615,098
-2 X _{TR} T _R Y ₁					
r = Mznax - Mztrim	rad.				
B3 + Yrtr Tp -M	Ztrim				
Trxmax (1b) Trxmax	total		i		
428 .030	rad.	.0253	6031	0426	0943
1,785 .125	rad.	.0350	.0016	0329	0347
7.140 .500	rad.	.0732	.0398	.0053	0464
15,200 1.000	rad.	.1242	.0908	.0563	.0046

1 3237 NO. P-130/.609

₩ • 60 Degrees

Velocity (V)		kt.	0	15	25	35
Drag (D)		16.	0	5.295	14.692	28,829
Aero.Yawing	tom.(M2 _{trim})	ft.lb.	0	272,838	757.882	1,485,449
$g_1 = \frac{D \sin y}{4}$	א	16.	0	1,146	3,180	6,241
62 - Yrtr) com Ψ 2	ft.1b.	0	203.857	565,642	1,109,916
If $g_1 \geq T$	Tmax. TY1	Ty _{max}	and T _f	R _{Y1} = 2 (g	1 - TYmax)	
s₁ ≤ T	fmax. Ty =	8 ₁	and T _F	* 0		
TY1		1b.	0	1,146	2.763	2.763
TRY1		16.	0_	0	834	6,956
83 - c1 - 82		ft.1b.	1.617.384	1,319,424	279,986	-656,096
-:	X _{TR} T _R		1			
r M2max	- M ₂ trim	rad.			_	
ε ₃ + Υ _r	tr TPXmax trim					
TRX (1b)	Tpxmax Total			ř		
1,560	,050	rad.	.0797	.0552	0162	0816
6,500	.125	rad.	.1124	.0879	.0224	.0490
26,000	.500	rad.	.2413	.2168	.1513	.0799
52,000	1,000	rnd.	.4131	.3886	.3232	.2518
						-

DIMIGN NO. B-130/.291

₩ = 60 Degrees

e₁ = 2Y_{rtr} T_{Xmax} + 2(x_{rtr} T_{Ymax} + x_{TR} T_{Ry}) = 5.994,960 ft.lb.

						
Velocity (V)		kt.	0	15	25	35
Drag (D)		lb.	0	5,715	15,858	31,117
Aero.Yawing M	om.(MZtrlm)	ft.lb.	0	272,838	757.832	1,485,449
$r_1 \leftarrow \frac{p_{10}r_0}{r_1}$		16.	U	1,237	2,433	6,737
$e_2 = Y_{rtr} \underline{D}$		ft.lb.	0	220,027	610,533	1,198,004
If $\varepsilon_1 \geq \tau_{\gamma}$	max. Ty =	Tymax	and T	R _{Y1} = 2 (e	1 - TYmax)	
$s_1 \leq T_{\Upsilon}$	nax, Ty -	$arepsilon_1$	and T _I	R _{Y1} - 0		
TY ₁		1b.	0	1,237	3,433	6,737
TRY 1		16.	0	0	0	0
E3 * c1 - E2	- 2X _{rtr TY1}	ft.lb.	5.994.960	5,453,333	4.491.847	~ 045.33
-2	TR TRY					
r = M _{Zmax}	MZ trin	rad.				
	r TPXmnx -M2 trim					
T _P x _{max} (10)	TpX /TZ total			ř		
5.910	.030	rad.	.1311	.1116	.0881	.0469
24,600	.125	rad.	.1857	.1702	.1428	.10 5
98,520	.500	rad.	.4017	.3863	.3588	.3176
197,040	1.000	rad.	.6897	.6742	.6468	.6055
		1			1	4

DESIGN NO. A-184/.85

Ψ • 60 Degrees

			DAX			
Volocity (Y)	·	kt.	0	15	25	35
Drag (D)		lb.	0	5,447	15,116	29,661
Aero.Yawing M	on.(MZtrim)	ft.lb.	0	272,838	757,882	1,485,449
$\epsilon_1 = \frac{D \sin \psi}{4}$	<u>, </u>	1b.	0	1,179	3,272	6,421
g ₂ = Y _{rtr} D		ft.lb.	0	186,559	517.723	1,015,889
If $\epsilon_1 \geq t_Y$	max. TY1	T _{Ymax}	and T _R	= 2 (g	1 - Tymax)	
$s_1 \leq T_{\Upsilon}$	max, Ty	61	and T _R	- 0		
TY 1		1b.	0	759	759	759
TRY 1		1Ն.	0	840	5,026	11,324
$\varepsilon_3 = c_1 - \varepsilon_2$	- 2X _{rtr} T _{Y1}	ft.lb.	575.778	10,787	-814,325	-2,055,6
	X _{TR} T _R	<u> </u>				
· - Mz _{max} -	M ₂ trin	rad.				
	r TPXDex Trim	1				
Tp (1b)	TPXmax Tz total			ŕ		
428	.030	rad.	.0235	0075	.0560	1289
1.785	.125	rad.	.0304	0006	0492	1221
7,140	.500	rad.	.0575	.0265	0220	0949
14,280	1.000	rad.	.0938	.0627	.0142	0587

DESIGN NO. A-184/.609

Ψ = 60 Degreea

コー・モークというところから、けっちょうけっぱい かいけん はいけん はいない はいかい かんしゅう はんない ないない ないない ないない ないない ないない しゅうしゅう
Yelocity (Y)	kt.	0	15	25	35
Drag (D)	lb.	0	5,524	15,328	30,077
Aero.Yawing Mom. (MZtrim)	ft.lb.	0	272,838	757.882	1,485,449
$\varepsilon_1 = \frac{D \sin \psi}{\psi}$	15.	0	1,195	3,318	6,511
g ₂ = Y _{rtr} D cosΨ 2	ft.1b.	0	189,197	524,984	1,028,032
If $g_1 \geq T_{y_{max}}$, T_{Y_1}	\mathbf{x}^{N}	anu Tr	R _{Y1} - 2 (g	1 - TYmax)	
$g_1 \leq T_{Y_{\text{max}}}, T_{Y_1}$	ε_1	and T _j	R _{Y₁} = 0		
^T Y ₁	lb.	0	1,195	2,763	2,763
TRY 1	16.	0	0	1.110	7,496
g3 = c1 - E2 - 2Xrtr TY1	ft.lb.	1,862,346	1,233,389	185,598	-1.067,048
-2 X _{TR} T _R Y ₁		 			!
r = M _{Zmax} - M _Z trin	rnd.			nd en wiene (, , , , , , , , , , , , , , , , , ,	
e ₃ + Y _{rtr} T _P X _{nax} -Mz _{trin}		1			
$T_{P_{\mathbf{X}_{\mathbf{p},\mathbf{u}_{\mathbf{X}}}}}$ (1b) $T_{P_{\mathbf{X}_{\mathbf{p},\mathbf{a}_{\mathbf{X}}}}}/r_{Z_{total}}$			ř		
1,560 .030	r 1.	.0693	. 392	0120	c78:
6,500 .125	rad.	.0919	.0618	.0106	0555
25,000 .500	rad.	.1512	.1511	0999	.0337
	690.		. 1		•

 $\mathbf{T}_{\mathbf{X}_{\mathbf{DB},\mathbf{X}}}$ 10,470 lb. Tynax **=** 10,470 1b. 184 ſt. ft. 137 750 lb. • 69,575,000 al.ft.² ft.' XTR 59

DESIGN NO. A-184/.291

Ψ = 60 Degrees

			BAX			
Velocity (V)	•	kt.	0	15	25	35
Drag (D)		1b.	0	5,890	16,345	32,074
Aero.Yawing	log. (MZtrim)	ft.1b.	0	272,838	757,882	1,485,449
61 = D sin 4		1b.	0	1,275	3,538	6,944
s2 " Yrtr !		ft.lb.	0	201.732	1	1,098,534
If $\varepsilon_1 \geq \tau_1$	max. Ty	T _{Ymax}		.	1 - TYmax)	
$s_1 \leq T_1$	max, T _Y =	ε ₁	and T _I	RY ₁ • 0		
TY1		16.	0	1,275	3,538	6,944
TRy 1		1b.	0 .	0	0	0
83 ° c1 - 82	- 2X _{rtr} T _{Y1}	ft.lb.	6,810,240	6,139,308	4,948,440	3,156,31
-1	X _{TR} T _R					
r = MZmax	- M _Z trim	rad.				
83 + Yr	tr ¹ P _{Xmax} -Hz trim					
T _R X _{BAX} (1b)	TPXmax Total			ř		
5,910	.030	rnd.	.1095	.0960	.0719	.0357
24,600	.125	rad. sec.2	.1463	.1328	.1087	.0725
98,520	. 500	rad.	.2919	.2783	.2542	,2180
197,040	1.000	rad.	.4859	.4723	.41.82	.4120

1 WON 80, 0-767.85

• " Digital a

$$v_1 = 2v_{rir} x_{max} + 2(x_{rir} x_{max} + x_{m} x_{max}) = 370,500 \text{ st.15}.$$

		EUL			
Volucity (Y)	kt.	0	15	25	35
Prag (D)	15.	С	5,500	16,532	32.440
Aero.Yn.ing Mon. (Matrix)	17.10.	0	0	0	0
B ₁ · Dainy	16.	0	1,489	4,133	8,110
62 = Yrtr D chay	ft.lb.	0	0	0	0
If $g_1 \geq T_{Y_{\text{pol}X}}$, T_{Y_1}	T _{Ymax}	≅nd T	RY1 - 2 (4	Y ₁ - Ty _{ERX})	
$\varepsilon_1 \leq \tau_{\gamma_{max}}, \tau_{\gamma_1}$	Б 1	and T_1	Ry ₁ • 0		
T _Y 1	16.	0	759	759	759
T _R Y ₁	1b.	0	1.460	6,748	14,702
E3 = c1 - F2 - 2Xrtr TY1	ft.1b.	370,302	240,334	187,1+51+	107.914
-2 x_{TR} $\tau_{P_{\mathbf{Y_1}}}$					
r - M2 rax - M2 trin	1 d.				
- E3 + Y1 tr Trx - 24					
TPXnay (18) TyXney (12)	-12		ŕ		
h2) (0,)	1/1/2/2 64.7.2	2/47	-0176	.0145	.5101
1,744 .175	000.2	.0725	.°;11	•3271	.5.75
7.1/3 .500	r 1.	-0569	.07.4	.0777	10.11
16,285 1.000	rid.	.15 19	1455	11475	.1; 5

TXmax 2,763 1b. 2.763 TYDEX lb. x_{rtr} 76 ft. 163 ft. $\mathbf{r}_{\mathrm{RY}_{\mathrm{max}}}$ 750 1b. - 18,523,000 sl.ft.² \mathbf{x}_{TR}

DESIGN NO. C-76/.609

Ψ = 90 Degrees

<u> </u>						
Velocity (V)	,	kt.	0	15	25	35
Drag (D)		lb.	0	6,049	16,786	32,939
Aero.Yawing Mo	m.(MZ _{trim})	ft.lb.	0	0	0	0
$\varepsilon_1 = \frac{D \sin \psi}{\psi}$	-	16.	o	1,512	4,196	8,234
g ₂ = Y _{rtr} D	C08Ψ 2	ft.lb.	0	0	0	0
If $\varepsilon_1 \geq \tau_{\gamma_m}$	ax, TY1	Ty _{max}	and Tg	= 2 (g	1 - TYmax)	
s₁ ≤ Tγ _m	ax, Ty =	g ₁	and T	* 0		
TY 1		16.	0	1,512	2,763	2.763
TRY1		1b.	0	0	2,866	10,942
83 ° c1 - 82 -	2X _{rtr} T ₁	ft.lb.	1,328,214	1,098,390	879.578	798,818
-2	ITR TRY1					
$\frac{1}{r} = \frac{M_{2_{\text{max}}}}{I_{2}}$	M2 trim	rad.				
83 + Y _{rtr}	TpXmax trim	1				
T _P (1b)	TPX Dax total			ŕ	***************************************	
1,560	.030	rad.	.0854	.0730	.0612	.0569
6,500	.125	rad.	.1289	.1165	.1047	.1003
26,000	.500	rad.	.3005	.283:	.2763	.2719
52,000		rad.	.529	.5169	.5051	.5007

ACCYLERATION IN YAN

DESIGN NO. C-76/.291

Ψ = 90 Degrees

····		BEA			
Velocity (V)	kt.	0	15	25	35
Drag (D)	16.	0	6,489	18,007	35.335
Aero.Yawing Mom. (KZ.	tria) ft.1b	. 0	0	0	0
$g_1 = \frac{D \sin \psi}{\psi}$	1b.	0	1,622	4,501	8,833
E2 " Yrtr D cos W	ft.1b	1	0	0	0
	TY1 TYma	and f	r _R y ₁ - 2 (e	(1 - TY BAX)	
$e_1 \leq T_{\Upsilon_{max}}$	Ty, = g,	and 5	r _{Ry} - o		
T _Y 1	1b.	0	1,622	4,501	8,833
TRY 1	16.	. 0	0	0	0
83 = c1 - 82 - 2Xrtx	TY1 ft.lb	. 5,012,160	4.765,616	4,328,008	3,669.54
-2 I _{TR} T _F	· _{Y1}				
r - Mzmnx - Mztri					
- E3 + Yrtr TFXnn	Į.				
Tp _{Xmax} (1b) P _y	T _L to al		ř	e energia de la compania de la comp	· · · · · · · · · · · · · · · · · · ·
	030 1d.	. 1-49	.1389	.1283	.1124
24,600 .	125 Sec 2	.2155	.2125	.2022	.1852
98,520	500 You 2	.5110	.3050	. institut	1 ,4704
197,040 1.1			.8744	.8838	.5579

L.DIGN NO. B-130/.85

Y - 90 Degrees

$$c_1 = 2Y_{rtr} T_{max} + 2(X_{rtr} T_{max} + X_{TR} T_{R_Y}) = 479,112 ft.lb.$$

Velocity (V)		kt.	0	15	25	35
Drag (D)		10.	0	6,164	17,104	33.563
Aero.Yawing	Nom.(MZtrim)	ft.1b.	0	0	0	0
$s_1 = \frac{D \sin}{4}$	Ψ	1b.	0	1,541	4.276	٥,390
e ₂ = Yrtr	D cos W	ft.lb.	0	0	0	0
If $\varepsilon_1 \geq 1$		x _{Bm} Y ^T	and Tr	R _{Y1} = 2 (6	(1 - Tymax)	*
$s_1 \leq r$	Ymax, Ty =	· 81	and T	R _{Y1} = c		
TY 1		1b.	0 .	759	759	759
TRY,		1b.	0	1.564	7.034	15,262
g ₃ = c ₁ - g ₂	- 2X _{rtr} T _{Y1}	ft.1b.	479,112	181,676	-168,404	-594.996
•	-2 X _{TR} T _R					
r = Mz	- M _Z trim	rnd.				
	tr TPXmax -M2trim					
T _P (1v)	Tp /Tz total			ř		· · · · · · · · · · · · · · · · · · ·
428	.030	red.	.0253.	.0155	00/18	0245
1,785	.125	rad.	.0350	.0212	.0049	0148
7,140	. 500	r.d.	.0732	.0510	.0432	.0234
14,280	1.000	rad.	,12/42	.1104-	.0942	. 0741.
		пес.2				1

ACCRLERATION IN YAM

Tycax - 2,763 16. 2.763 ົ¥_{ລາເ}x 1b. 15. 130 Yrtr **-** 154 ft. T_{RY}nax 750 15. - 23,298,000 al.ft.² X_{TR} 32 ft.'

DESIGN NO. 8-130/.609

Ψ • 00 Dagrees

		D B.X			
Velocity (V)	kt.	0	15	25	35
Drag (D)	16.	0	6,195	17,189	33.729
Aero.Yawing Mom. (MZ trim)	ft.1b.	C	0	0	0
$\varepsilon_1 = \frac{D \sin \psi}{4}$	1b.	0	1,548	4.297	8,432
g2 - Yrtr D cos W	ft.lb.	0	0	0	0
If $g_1 \geq T_{Y_{max}}$, T_{Y_1}	${^{\mathrm{T}}}{^{\mathrm{Y}}}_{\mathrm{max}}$	and T _F	I.	1 - TY _{max})	
$\varepsilon_1 \leq T_{Y_{max}}, T_{Y_1}$	6 1	and T _F	r ₁ - 0		
T _Y 1	16.	0	1.548	2.763	2,763
TRY 1	16.	0	0	3.068	11,338
83 - c1 - 82 - 2Xrtr TY1	ft.lb.	1,617,384	1,214,904	702,652	173,372
-2 X _{TR} T _{RY}					
$\dot{r} = \frac{M_{Z_{max}} - M_{Z_{trim}}}{1_{Z}}$	rad.				
=					
TpXnax TpXnax tot	al		ŕ		
1.540 .030	rad.	.0797	.06.5	.0405	.0177
6,500 .125	rad. sec.2	.112/+	.0751	.0731	.0504
26,000 .500	rad.	.2413	.220	.2020	.1793
52,000 1,000	rai.	.4131	• 39 59	• 3739	.3512

T_{Xmax} = 10,470 lb.

T_{Ymax} = 10,470 lb.

X_{rtr} = 130 ft.

Y_{rtr} = 154 ft.

T_{RYmax} = 750 lb.

I_Z = 52,688,000 ml.ft.²

X_{TR} = 32 ft.

DESIGN NO. B-130/.291

Ψ = 90 Degrees

			PAX			
Velocity (Y)		kt.	0	15	25	35
Drag (D)		1b.	0	6,696	18,580	36.458
Aero.Yawing K	om.(NZtrim)	1.1b.	0	0	0 .	0
s ₁ = D sin w		1b.	0	1,674	4.645	9,114
g ₂ = Y _{rtr} D		ft.lb.	0	0	o	0
If $g_1 \geq t_1$		Tymax		1	1 - TY NAX)	٠
$\varepsilon_1 \leq \tau_{\gamma}$	sax, Ty	6 ₁	and T _R	- 0		
TY1		1b.	0	1,674	4,645	9,114
TRY1	,	16.	0	0	0	0
$\varepsilon_3 - c_1 - \varepsilon_2$	- 21 _{rtr} 7 ₁₁	ft.lb.	5.994.960	5.559.720	4,787,260	3,625,320
-2	TR TRI					
r - H2 -	M _Z trim	rad.				
	r TPXmax -MZ trim	1				
TpXmax (1b)	TPXmax total			ř		
5.910	.030	rad.	.1311	.1228	.1081	.0861
24,600	.125	rnd.	.1857	•1774	.1628	.1407
98.520	. 500	rad.	.4017	• 3935	.3788	.3568
197.040	1.000	rnd.	.6997	.6814	.6668	.6447
						

DEDIGN NO. A-184/.85

Ψ = 90 Degrees

		max			
Yelocity (Y)	kt.	0	15	25	35
Drag (D)	1b.	0	6,374	17.637	34,707
Aero.Yawing Mom. (MZtrim)	ft.lb.	0	0	0	0
$g_1 = \frac{p \sin \psi}{\psi}$	16.	0	1,593	4,421	8,676
E2 " Yrtr D cos W	ft.lb.	0	О	0	0
If $\varepsilon_1 \geq \tau_{\Upsilon_{max}}$, τ_{Υ_1}	x.em ^Y T	and T _f	4	g1 - TY DEX	
$s_1 \leq T_{Y_{\text{max}}}, T_{Y_1}$	• ¢ ₁	and T	R _{Y1} - 0		
T _{Y1}	16.	0	759	759	759
TRY1	lb.	0	1,668	7.324	15,834
E3 * c1 - E2 - 2Xrtr TY1	ft.lb.	575,778	99.642	-567,766	-1.571,94
-2 x _{TR} T _R					,
r = Mz _{nax} - Mz _{trim}	rad.				
= C ₃ + Y _{rtr} T _P _{Z_{DAX} -M_Z.}	trim				
$T_{P_{X_{max}}}$ (1b) $T_{P_{X_{max}}}$ / $T_{Z_{tot}}$	ial		ŕ		
429 .030	rad.	.0235	.0059	0189	0560
1,795	rnd.	.0304	.0127	0170	01.92
7.140 .500	rad.	.0575	.0399	.0152	0220
1,289 1.000	rad.	.0938	.0761	.0514	.0142

Laign No. A-184/.609

= 90 Degrees

$$c_1 = 2Y_{rtr} T_{X_{max}} + 2(X_{rtr} T_{Y_{max}} + X_{TR} T_{RY_{max}}) = 1,862,346$$
 ft.lb.

lb.

1b.

ſt.

ſt.

1b.

ft.

			max.	<u> </u>		
Velocity (V)		kt.	0	15	25	35
Drag (D)		16.	0	6,466	17,942	35,206
Aero.Yawing	iom.(MZ _{trim})	ft.lb.	0	0	0	0
E ₁ = D sin y	<u></u>	16.	0	1,616	4,485	8,801
E2 = Yrtr	2 2	ft.lb.	0	0	0	0
If $g_1 \geq T_1$		T _{Ymax}	and TR	1	- Tymax)	
$\varepsilon_1 \leq \tau_1$	Pax, Ty =	6 1	and T _R	* 0 Y ₁		
TY1		1b.	0	1,616	2,763	2,763
TRY 1		1.5.	0	0	3.444	12,076
ε ₃ • ε ₁ - ε ₂		ft.lb.	1,862,346	1,267,658	439.170	-579.406
-;	Z X _{TR} T _R					
r = Mz	trim	rad.	·			
	TPXmax Trim				•	
T _P Xnax (1b)	TPX TZ total			ŕ		
1,560	.030	rad.	.0693	.0495	.0218	0122
6,500	.125	rad.	.0919	.0721	.0/44	.0103
26,000	.500	rad.	.1812	.1613	.13 36	.0996
52.000	1.000	rad.	. 3001	.2802	.2526	.2186

T_{K, ax} = 10,770 lb.

T_{Ymax} = 10,470 lb.

X_{rtr} = 104 ft.

Y_{rtr} = 137 ft.

T_{RYmax} = 750 lb.

I_Z = 69,575,000 sl.ft.²

59

ft.

DESIGN NO. A-154/.201

Ψ = 90 Degrees

			D.B.X			
Velocity (V)		kt.	0	15	25	35
Drag (D) .		1b.	0	6,901	19,150	37,577
Aero.Yawing F	lom. (MZtrim)	st.16.	0	0	0	0
E ₁ = D sin y	<u>) </u>	1b.	0	1.725	4,787	9.394
e2 = Yrtr E		ft.1b.	0	0	0	0
If $arepsilon_1 \geq arepsilon_{\Upsilon}$		TYmex	and T _F	ı	1 - TY EAX)	
8 1 ≤ T 1	max, Ty	٤ _{1,}	and T _F	- 0		
TY1		16.	0	1,725	4,537	9.394
T _R		1b.	0	0	0	0
83 - c1 - 82	- 2X _{rtr TY₁}	ft.lb.	6,810,240	6.175.440	5,140,624	3,353,24
-2	X _{TR} T _R					
r - Mznax	M _Z trin	rad.			4	
	T _Z	1				
T _P (1b)	7/X, , x tot-1			ŗ		* -
5,910	.0,0	r d. Dec. 2	.1095	•10 UH	.0855	.0598
24,600	.125	rad.	.1463	.1372	.1223	.0965
98.520	.500	rad.	.2919	.20%	.2679	.2422
197,040	1.000	red. neo. ²	.4859	.4763	1.519	.4362

DESIGN NO. C-76/.85-609

Ψ = 0 Degrees

						
Velocity (V)	·	kt.	0	15	25	35
Drag (D)		1b.	0	866	2,402	4,713
Aero.Yawing	Mom.(MZ _{trim})	ft.lb.	0	0	0	0
Si = D sin		16.	0	0	0	0
g2 " Yrtr	D co∎Ψ 2	ft.lb.	0	70,579	195,763	384.109
If $g_1 \geq T$	Ymax. Ty	TYmax	and T _R	* 2 (g	1 - TYmax)	
s ₁ ≤ T	Ymax, Ty,	6 ₁	and T _B	- 0		1
TY1		16.	0	0	0	o
T _{PY} 1		16.	0	0	0	0
E3 * c1 - E2	- 2X _{rtr} T ₁	ft.lb.	370,302	299.723	174.539	-13,807
-	2 X _{TR} T _R Y ₁	i				
	- M _Z trim	rad.		·.	/	
=	tr TPX ax trim	ł				
TPI (1b)	TFX max T2 total			÷	•	
1,560	.109_	rad.	.0354	.0314	.0243	.0136
6,500	.455	rad.	.0810	,0770	.0699	.0593
26,000	1.821	rad.	.2612	.2572	.2500	.239
52,000	3.641	rad.	.5013	.4973	.4903	.4796

DESIGN NO. C-76/.85-.609

Ψ = 30 Degrees

c₁ = 2Y_{rtr} T_{X-x} + 2(X_{rtr} T_{Max} + X_{TR} T_R) = 370,302 ft.1b.

			PAX			
Velocity (V)		kt.	0	15	25	35
Drag (D)		1b.	0	2,582	7,166	14,061
Aero.Yawing	for (MZtrim)	24.16.	0	272,838	757.882	1,485,449
$g_1 = \frac{D \sin y}{4}$	<u>u</u>	16.	0	322	895	1,757
s2 = Yrtr		ft.lb.	0	182,240	505,783	992,440
If $\varepsilon_1 \geq \tau$		TYmax	and T _F	-1	$-1 - T_{Y_{max}}$	
$s_1 \leq \tau$	r _{max} , r _{Y1} =	ϵ_1	and T _F	. · o		
TY1		1ն.	0	322	759	759
TRY 1		16.	0	O	272	1,996
ε ₃ • c ₁ - ε ₂	- 2X _{rtr} Ty ₁	ft.lb.	370,362	139,118	-253,569	-757.46
-	2 X _{TR} T _{RY}					
		rad.				
	tr TPX max tri	1				
T _P (1b)	TPX /TZ total			ŗ	•	
1,560	.109	rad.	.03540	.006833	04291	1127
6,500	.455	rad.	.08103	.05247	.002723	0670
26,000	1.821	rad.	.2612	.2326	.1829	.1131
52.000	3.641	rad.	.5013	.4728	.4230	.3533

DESIGN NO. C-76/.85-.609

Ψ = 45 Degrees

 $c_i = 2Y_{rtr} T_{X_{max}} + 2(I_{rtr} T_{T_{max}} + X_{TR} T_{R_Y}) = 370,302 ft.lb.$

			BAX		<u>.</u>	
Velocity (V)		kt.	0	15	25	35
Drag (D)		1 b.		4,030	11,194	
Aero, Yawing	Mom. (NZ _{trim})	ft.lb.		315,050	875,138	
$\varepsilon_1 = \frac{D \sin \zeta}{4}$		1b.		712.41	1978.8	
g ₂ = Y _{rtr}	D co \$ Ψ΄	ft.1b.			645,101	
If $g_1 \geq T$	Ymax, Ty	TYREX	and T	.	1 - TYmax)	
6 1 ≤ T	Ymax, Ty =	٤ ₁	and T	R _Y , • 0		
TY1		1b.		712.41	759	
TRY 1		16.		0	2,440	:
£3 * 01 - £2	- 2Xrtr TY1	ft.15.		29769.7	-414,567	
-	2 Y _{TR} T _R					
r - M2 max	- M _Z trim	rad.				
	tr TPXmax -M2 tris	İ				
TpX (1b)	TPX T2 total			ŕ		
42 8	.030	rad,		0122	0691	
1,785	.125	rad.		,0003216	0566	
1,560	.109	rad.		001757	05868	·
6,500	.455	rad.		.04388	01305	

TXmax = 759 lb.

TYmax = 759 lb.

Xrtr = 76 ft.

Yrtr = 163 ft.

TRYmax = 750 lb.

Iz = 17.645,000 sl.ft.²

XrR = 5 ft.

DESIGN NO. C-76/.85-.609

₩ = 60 Degrees

c₁ = 2Y_{rtr} T_{Xmax} + 2(X_{rtr} T_{Ymax} + X_{TR} T_{Ry})= 370,302 ft.1b.

	 		E CLA			
Velocity (Y))	kt.	0	15	25	35
Drag (D)		1b.	0	5,107	14.172	27,810
Aero.Yawing	Mom. (M2trim)	ft.lb.	0	272.838	757.882	1,485,469
61 = D sin	Ψ	15.	0	1,105	3,068	6,021
g ₂ = Y _{rtr}		ft.lb.	0	208,110	577.509	1,133,257
If $g_1 \geq 2$		TYmax		1	31 - TYmax)	•
5 ₁ ≤ 3	TYmax, TY1	٤ ₁	and T	R _{Y1} = 0		
TY1		lb.	0	759	759	759
TRY1		1b.	0	692	4,618	10,524
63 ° c1 - 6	2 - 2X _{rtr} Ty ₁	ft.lb.	370,302	39,604	-368.755	-983,563
	-2 X _{TR} T _R					
r = MZmax	- M ₂ trim	rad.				
	rtr Tp _{Xmax} -H ₂ tris	n				
T _P X _{max} (1b)	TPX /TZ tota	1		ŕ		
1,560	.109	rad.	.03540	.001193	-,04944	- 1255
6,500	.455	rad.	.08130	.04683	003805	07988
26,000	1.821	rad.	.2612	.2270	.1763	,1003
52,000	3.641	rad.	.5013	.4671	.4165	.3404

TXmax = 759 lb.

TYmax = 759 lb.

Xrtr = 76 ft.

Yrtr = 163 ft.

TRYmax = 750 lb.

1z = 17.645.000 s1.ft.²

X_{TR} = 5 ft.

DESIGN NO. C-76/.85-.609

₩ - 90 Degrees

 $c_1 = 2Y_{\text{rtr}} T_{X_{\text{max}}} + 2(X_{\text{rtr}} T_{Y_{\text{max}}} + X_{\text{TR}} T_{R_Y}) = 370,502 \text{ ft.1b.}$

			# B.X			
Velocity (V)	kt.	0	15	25	35
Drag (D)		1b.	0	5, 958	16,532	32,440
Aero.Yawing	Mom.(MZ _{trim})	ft.1b.	0	0	0	0
$\epsilon_1 = \frac{D \sin \alpha}{4}$	Ψ	16.	o	1,489	4,133	8,110
s ₂ = y _{rtr}	D co∎Ψ 2	ft.lb.	O	0	0	0
If €1 ≥	TYBAX. TY,	Tymax	and Tp	Y = 2 (g	1 - TYmax)	
$e_1 \leq \frac{1}{2}$	Tymax, Tym	61	and T _F	hr ₁ - 0		
YY1		16.	0	759	759	759
T _{RY}		lb.	0	1,460	6,748	14,702
83 = c1 - 8	2 - 2X _{rtr} T _{Y1}	ft.lb.	370,302	240,334	187.454	107,914
1	-2 X _{TR} T _R				<u> </u>	1
r = MZmax	- M _Z trim	rad.				
	rtr TPX -M2 trim	1		•		
TPX (1b)	TPX Tax total			ŕ		
1,560	.109	rad.	.03540	.02803	.02503	.02053
6,500	.455	rad. sec. ²	.08103	.07367	.07067	.06616
26,000	1.821	rad.	.2612	.2538	.2508	.2463
52,000	2,641	rad.	.5013	.4940	.4210	.4865

DESIGN NO. B0130/.85-.609

Ψ • o Degrees

 $c_1 = 2Y_{\text{rtr}} T_{\frac{X}{\text{max}}} + 2(X_{\text{rtr}} T_{\frac{X}{\text{max}}} + X_{\text{TR}} T_{\frac{X}{\text{F}_{\frac{X}{\text{max}}}}}) = 479,112 \text{ ft.lb.}$

Yelocity (Y)		kt.	0	15	25	35
Drag (D)		1b.	0	887	2,461	4.830
Aero.Yawing	fom.(MZ _{trim})	ft.lb.	0	0	0	0
€ ₁ > D sin v		1b.	O	0	0	0
62 = Yrtr) com Ψ 2	ft.lb.	0	68,299	189,497	371.910
If $\varepsilon_1 \geq \tau_1$	max. Tri	T _{Ymax}	and T _R	- 2 (g	1 - TYmax)	
$\epsilon_1 \leq \tau$	max, Ty .	8 ₁	end T _R	- 0		
TY 1		16.	0	0	0	0
TRY 1		lb.	0	0	0	o
83 ° c1 - 82	- 2X _{rtr} T _{Y1}	ft.lb.	479,112	410,813	289,615	107,202
	X _{TR} T _R					
r = MZ	M _Z trim	rad.				
	tr TPX -MZ trim					•
T _{PX} (1b)	TPX max TZ total			ŕ	·	
1,560	.109	rad.	.03335	.03019	.02457	.01611
6,500	.455	rad.	.06863	,06546	.05984	.05139
26,000	1.821	rad.	.2079	.2047	,1991	.1906
52,000	3.641	rad.	• 3 935	.3904	. 3847	.3763

DESIGN NO. B-130/.85-.609

₩ • 30 Degrees

c₁ = 2Y_{rtr} T_{Ymax} + 2(X_{rtr} T_{Ymax} + X_{TR} T_{RY})= 479,112 ft.1b.

Velocity (V)	kt.	0	15	25	35
Drag (D)		1b.	0	2,636	7,314	14,352
Aero.Yawing	Mom.(MZtrim)	ft.1b.	0	272,838	757.882	1,485,449
$\varepsilon_1 = \frac{D \sin \psi}{\psi}$	<u>w</u>	16.	0	329	914	1,794
Z2 * Yrtr		ft.lb.	0	175,778	487.726	957.048
If $\varepsilon_1 \geq \varepsilon_2$	Tymax, Ty =	$\mathbf{T}_{\mathbf{Y}_{\mathbf{max}}}$	and Tr	Y ₁ = 2 (6	(1 - TYmax)	
€ ₁ ≤	TYmax, Tyi =	$\boldsymbol{\varepsilon_1}$		Ry - 0		
TY1		1b.	0	329	759	759
TRY1		1b. /	0	0	310	2,070
E3 = 01 - E	2 - 2X _{rtr} T _{Y1}	ft.lb.	479,112	217,794	-225,794	-807.750
	-2 X _{TR} T _R Y ₁					
r = MZmax	- M _Z trim	rad.				
*	rtr ^T P _{Xmax} trim			•		
T _P (1b)	TPX TZ total			ŕ		
1,560	.109	rad.	.03335	.08587	03447	09519
6,500	.455	rad.	.06863	.04386	.0008032	6627
26,000	1.821	rad.	.2079	,1831	,1405	07932
52,000	3.641	rad.	•3935	.3688	.3257	.2650

DESIGN NO. B-130/.85-.609

Ψ = 45 Degrees

$$c_1 = 2Y_{rtr} T_{X_{max}} + 2(X_{rtr} T_{Y_{max}} + X_{TR} T_{R_{Y_{max}}}) = 479,112 ft.lb.$$

Velocity (V)		kt.	0		15	25	35
Drag (D)		1b.			4,100	11,389	
Aero.Yawing	Mom.(MZ _{trim})	ft.1b.	<u> </u>		315,050	875,138	
Si = D sin 4		1 b.			724.78	2013.31	
82 " Yrtr		ft.lb.				620,099	
If $g_1 \geq T$	Ymax, Ty, "	T _Y	and	TR	-1	1 - TYmax)	
6 ₁ ≤ ⁷	Ymax, Ty =	£1	and	T _R	- o		
TY1		16.			724.78	759	
T _R Y ₁		16,			0	2,509	
83 ° c1 - 82	- 2X _{rtr} Ty	ft.lb.			67.435	-498,903	
	2 X _{TR} T _R Y						
r = M2max		rad.		,			
	tr TPX max trim						
T _P X (1b)	TPX TZ total			-	ŕ		
1,428	.030	rad.			0084	0607	
1,785	.125	rnd. sec.2			+.0013	0510	
1,560	.109	rad.			0003	0526	
6.500	.455	rad.			.0349	0173	

DESIGN NO. B-130/.85-.609

Ψ = 60 Degrees

c₁ = 2Y_{rtr} T_{Ymax} + 2(X_{rtr} T_{Ymax} + X_{TR} T_{Rymax})= 479,112 ft.1b.

Velocity (V))	kt.	0	15 ·	25	35
Drag (D)		1b.	0	5,249	14,564	28,579
	Mom. (NZtrim)	ft.lb.	0	272,538	757.882	1,485,449
$s_1 = \frac{D \sin}{4}$		1b.	o	1,136	3,153	6,187
s ₂ = Y _{rtr}	D co W	ft.1b.	0	202,086	1	1,100,291
If $\varepsilon_1 \geq 1$	Ymax, TY *	TYnax	and TR	= 2 (g	1 - Tymax)	
$s_1 \leq s_2$	Tymax, Ty1	6 1	and T _R	- 0 1		
TY1		16.	0	759	759	759
T _R Y1		16.	0	754	4,788	10,856
53 - c1 - 8	2 - 2X _{rtr} T _{Y1}	ft.1b.	479,112	31,430	-226,746	-615,098
•	-2 X _{TR} T _R Y ₁					
r • Mzmax	- M ₂ trim	rad.				
	rtr Tp X max Trim					
T _P Xmax (1b)	TPX max /TZ total			ŕ		,
1,560	.109	rad.	.03335	0000541	03452	08626
6,500	.455	rad.	.06863	0352	.0007591	0510
26,000	1.821	rad.	.2075	1745	,1340	.08826
52,000	3.641	rade.	.3235	.3601	.3257	12739

DESIGN NO. B-130/.85-.609

Ψ = 90 Degrees

e₁ = 2Y_{rtr} T_{Xmax} + 2(X_{rtr} T_{Ymax} + X_{TR} T_{RYmax}) = 479,112 ft.1b.

			BAX			
Velocity (V)		kt.	0	15	25	35
Drag (D)		lb.	0	6,154	17,104	33,563
Aero.Yawing	Mom. (MZtrim)	ft.1b.	0	0	0	0
$\varepsilon_1 = \frac{D \sin \theta}{4}$	<u>Ψ</u>	15.	0	1,541	4.276	6,390
62 * Yrtr		ft.lb.	0	0	0	0
If $\epsilon_1 \geq 1$		$^{\mathrm{T}}$ Y _{max}	and T	- 1	1 - TYmax)	
$s_1 \leq 7$	Ymax, Ty, -	ε ₁	and T	R _{Y1} - 0		
TY 1		16.	0	759	759	759
TRY1		1b.	0	1,564	7.034	15,262
83 ° °1 - 82	- 2X _{rtr} Ty ₁	ft.lb.	479,112	181,676	-168,404	-594,99
	2 X _{TR} T _R					
	- M ₂ trim	rad.				
	rtr Tp _{Xmax} -M _Z tris					
TPX (1b)	TpXmax TZ total	1		ŕ		
1,560	.109	rad.	.03335	.01956	.003331	01645
6,500	.455	rad.	.06863	.05484	.03861	.01883
26,000	1.821	rad.	.2079	.1941	.1778	.1581
52,000	3.641	rad.	•3935	:3797	.3635	.3437

DESIGN NO. A-184/.85-.609

Ψ = 0 Dagrees

 $c_1 = 2Y_{rtr} T_{X_{max}} + 2(X_{rtr} T_{Y_{max}} + X_{TR} T_{R_Y}) = 575,778 \text{ ft.1b.}$

Yelocity (Y)		kt.	0	15	25	35			
Drag (D)		1b.	0	898	2,493	4,892			
Aero.Yawing	Mom.(MZ _{trim})	ft.1b.	0	0	0	0			
E1 = D sin		1b.	o	0	0	0			
62 - Yrtr	D co ψ Ψ 2	ft.lb.	0	61,513	170,770	335,102			
If $s_1 \geq T$		TY max		and TRY: 2 (S1 - TYmex)					
. s₁ ≤ T	Ymax, Ty =	ε ₁ '	and T _R	- o					
TY1	·	1b.	0	0	0	0			
TRY:		1b.	0	0	0	0			
83 = c1 - 82	83 = c1 - 82 - 2X _{rtr} TY ₁		575.778	514,265	405,008	240.676			
-	-2 X _{TR} T _R					· ·			
r = M2	r - M _{Zmax} - M _Z trim		,	,					
1	tr TPX -MZ trim								
T _p (1b)	TPXmax /T2 total		+						
1.560	.109	rad,	.02923	.02696	.02291	.01683			
6,500	.455	rad.	.05429	.05201	.04797	.04188			
26,000	1.821	rad. 800.2	.1532	.1509	.1469	.1408			
52,000	3.641	rad.	.2851	.2828	.2788	,2727			

DESIGN NO. A-184/.85-.609

Ψ = 30 Degrees

Velocity (V)	kt.	0	15	25	35
Drag (D)	·	16.	0	2,705	7.505	14,726
Aero.Yawing	Mom.(MZ _{trim})	ft.lb.	0	272,838	757.882	1,485,449
$\varepsilon_1 = \frac{D \sin \phi}{\psi}$		lb.	O	3 38	938	1,840
E2 " Yrtr	D con W	ft.lb.	0 .	160,468	445,217	873,586
If €1 ≥		TYREX	and TR	- 2 (g	1 - TY BEX	
8 ₁ ≤	Tymax, Tym	8 ₁	and T _R	- 0		
TY 1		lb.	0	338	759	759
TRY1"		lb.	0	0	358	2,162
67 " °1 - 8	g ₃ = o ₁ - g ₂ - 2X _{rtr} T _{Y1}		575.778	290,926	-190,975	-832,236
	-2 X _{TR} T _R Y ₁					
r - MZ max	r - MZ - MZ trim					
	rtr TPKmax -MZ trim					
Tp (lb)	TPX TZ total			ř		
1,560	.109	rad.	.02923	.008583	0272	07790
6.500	.455	rad.	.05430	.03364	002162	05285
26,000	1.821	rad.	.1532	.1326	.09676	.04607
52,000	3.641	rad.	.2851	. 2645	.2286	.1780

-_ __

TXmax	-	759	16.
TYnax	•	759	16.
I _{rtr}	•	184	ft.
Yrtr	•	137	ft.
TRYMAX	•	750	16.
ız	•	27,007,000	sl.ft. ²
X-r	•	59	ft.

DESIGN NO. A-184/.85-.609

W = 45 Degrees

 $c_1 = 2Y_{\text{rtr}} T_{X_{\text{max}}} + 2(X_{\text{rtr}} T_{Y_{\text{max}}} + X_{\text{TR}} T_{R_Y}) = 575,778 \text{ ft.lb.}$

Velocity (V)	kt.	0	15	25	35
Drag (D)		lb.		4,300	11,944	
Aero.Yawing	Mom. (NZtrim)	ft.lb.		315,050	875,138	
Si = D sin	Ψ	16.		760.14	2,111.4	
52 " Yrtr		ft.lb.		L .	578.529	
If $g_1 \geq 0$	TYMAX, TY1	TYRAX	and T	R _{Y1} = 2 (g	1 - TYmax)	
6 ₁ ≤ ¹	TYmax, TY1 =	ε_1		R _{Y1} - o		
TY1.	• • • • • • • • • • • • • • • • • • • 	16.		759	759	
TRY 1		1b.		2.28	2,705	
E3 - 01 - E	2 - 27 _{ctr} T _{Y1}	ft.lb.		87,919	-601253	
	-2 X _{TR} T _R Y ₁					
r - MZmax	- M _Z trim	rad.				
	rtr TPX -MZ tri	Len .				
Tp (1b)	Tz TPXmax TZtota:	-	+	-		
^nax	^max "total	1			,	
428	.030	rad.		.2890	05250	
1,785	.125	rad.		.0006448	04561	
1,560	.109	rad.		0004966	04676	
6,500	.455	rad.		.02456	02159	

DESIGN NO. A-184/.85-.609

Ψ = 60 Degrees

 $c_1 = 2Y_{rtr} T_{max} + 2(X_{rtr} T_{max} + X_{TR} T_{R_{Y_{max}}}) = 575.778 ft.1b.$

Velocity (V)	kt.	0	15	25	35
Drag (D)		1b.	0	5,447	15.116	29.661
Aero.Yawing	Mom.(MZ _{trim})	ft.1b.	0	272,838	757,882	1,485,449
$\varepsilon_1 = \frac{D \sin \theta}{4}$	<u>Ψ_</u>	1b.	0	1,179	3,272	6.421
g ₂ = Y _{rtr}		ft.1b.	0	186,559	517.723	1,015,889
If $\varepsilon_1 \geq 0$		TYmax		⁻ 1	1 - Tymex)	
$s_1 \leq \frac{1}{2}$	Tymax, Tyi	81	and T	Y ₁ • 0		
TYi		1b.	0	759	759	759
TRY1		lb.	0	840	5.026	11,324
63 ° °1 - 8	2 - 2X _{rtr} T ₁	ft.1b.	575.778	10,787	-814,325	-2,055.65
•	-2 X _{TR} T _R Y ₁					
r = HZmax	- M ₂ trim	rad.				
	rtr Tp X Trim					
Tp (1b)	TPX TZ total			ŕ		
1,560	.109	rad.	.02923	001790	05 03	1232
6,500	.455	rad.	.05429	.02327	02524	09815
26,000	1.821	rad.	.1782	.1222	.07368	.000773
52,000	3.641	rad.	.2851	.2541	.2056	.1327

759 lb. 759 lb. TYmax 184 Xrtr ſŧ. Yrtr 137 750 lb. 27.007.000 sl.ft.² ft.' X_{TR} 59

DESIGN NO. A-184/.85-.609

W = 90 Degrees

e₁ = 2Y_{rtr} T_{Y_{max} + 2 X_{rtr} T_{Ymax} + X_{TR} T_R = 575,778 ft.lb.}

					
Velocity (V)	kt.	0	15	25	35
Drag (D)	16.	0	6,374	17,687	34.707
Aero.Yawing Mom. (NZtrim)	ft.1b.	O	0	0	0
$s_1 = \frac{p \sin \psi}{\psi}$	16.	o	1,593	4,421	8,626
52 = Yrtr D cos W	ft.lb.	0	0	0	0
If $\varepsilon_1 \geq \tau_{y_{max}}$, τ_{y_1}	Tymax	and T	Y ₁ = 2 (6	1 - Typax)	
$s_1 \leq r_{y_{max}}, r_{y_1} =$	8 1	and T _p	R _{Y1} = 0		
TY1	lb.	0	759	759	759
TRY 1	lb.	0	1,668	7.324	15,834
63 - c1 - 62 - 2X TY	ft.1b.	575,778	99.642	-567.766	-1,571,94
-2 I _{TR} T _R					
r = Mz _{nax} - Mz _{trin}	rad.				
= - H ₂ + Y _{rtr} T _P X _{max} - H ₂ tr					
T _P X _{max} (1b) T _P X _{max} /T _Z tota	1		ř		
1,560 .109	rad.	.02923	.01161	01311	05029
6,500 .455	rad.	.05429	-03666	.01195	02523
26,000 1.821	rad.	.1532	.1356	.1109	.07369
52,000 3.641	rad.	.2851	.2675	.2428	.2056

REPORT NO. NADC-76327-30

AIR TASK A03P-03P3/0018/7WF41/411/000

*1.1	DISTRIBUT	LON	-	NO. OF	COPIES
Halling on The graph of	NAVAIRSYSCOM	(AIR-03P32)		2	3 - 2 - 40
	DDC NAVAIRDEVCEN	(6096)		12 10	