#### 7-1 $D_z$ 起稳幅作用,其稳定电压 $\pm U_z = \pm 8V$ 。试估算:

- (1)输出电压不失真情况下的有效值:
- (2) 振荡频率。

#### 解答:

(1)输出电压不失真情况下的峰值 是稳压管的稳定电压,故其有效值

$$\frac{U_{o}}{U_{Z}} = \frac{R_{1} + R_{f}}{R_{f}} = \frac{3R_{1}}{2R_{1}} = 1.5$$

$$U_{\rm o} = \frac{1.5 \ U_{\rm Z}}{\sqrt{2}} \approx 8.49 \text{V}$$

(2) 电路的振荡频率

$$f_0 = \frac{1}{2\pi RC} \approx 79.58 \text{Hz}$$



## 7-2 试将图示电路合理连线,组成RC桥式正弦波振荡电路



④、5与9相连,3与8相连,1与6相连,2与7相连。

## 7-3 电路是否满足正弦波振荡的条件?试改正错误之处。



**解**:图(a)所示电路有可能产生正弦波振荡。因为共射放大电路输出电压和输入电压反相( $\varphi_A = -180^\circ$ ),且图中三级 *RC* 移相电路为超前网络,在信号频率为 0 到无穷大时相移为+270°~0°,因此存在使相移为+180°的频率,即存在满足正弦波振荡相位条件的频率  $f_o$ ,故可能产生正弦波振荡。

图(b)所示电路有可能产生正弦波振荡。因为共射放大电路输出电压和输入电压 反相( $\varphi_A = -180^\circ$ ),且图中三级 RC 移相电路为滞后网络,在信号频率为 0 到无穷大时相移为-270°~0°,因此存在使相移为-180°的频率,即存在满足正弦波振荡相位条件的频率  $f_0$ ,故可能产生正弦波振荡。

# 7-3 电路是否满足正弦波振荡的条件?试改正错误之处。







- **7-4** 在如图7-4所示的运算电路中,已知 $R_1$ =10KΩ, $R_2$ = $R_4$ = $R_5$ = $R_6$ =20KΩ。
  - 1)写出 $u_{01}$ 与 $u_i$ 之间的运算关系式,并说明以运放 $A_1$ 构成的电路的名称。
  - 2) 写出u。的表达式,并说明电路实现了什么功能?



- 7-5 试设计电路实现如图7-5所示的输入 $u_i(t)$ 到输出 $u_o(t)$ 的波形转换功能。
  - 1) 画出 $u_i$ 与 $u_o$ 之间的电压传输特性。
  - 2) 画出电路原理图。
  - 3) 进行元件参数选择以实现要求的功能。

提供:任意阻值电阻若干;运放OP07一片(已知运放的最大输出值  $\pm U_{OM}$ = $\pm 14V$ );

稳压管若干(已知稳压管IN4731的参数为 $U_Z$ =4.3V, $U_D$ =0.7V, $I_Z$ =5mA, $P_{ZM}$ =1W)。



#### **7-6**

电路如图7-6所示。

- 1)分别说明A<sub>1</sub>和A<sub>2</sub>各构成哪种基本电路;
- 2) 求出 $u_{01}$ 与 $u_{0}$ 的关系曲线 $u_{01}$ = $f(u_{0})$ ;
- 3) 求出 $u_0$ 与 $u_{01}$ 的运算关系式 $u_0$ = $f(u_{01})$ ;
- 4) 定性画出 $u_{01}$ 与 $u_{0}$ 的波形;
- 5) 说明若要提高振荡频率,则可以改变哪些电路参数,如何改变。





1)A1: 滞回比较器; A2: 积分运算电路。

(2)根据 
$$u_{P1} = \frac{R_1}{R_1 + R_2} \cdot u_{O1} + \frac{R_2}{R_1 + R_2} \cdot u_{O} = \frac{1}{2} (u_{O1} + u_{O}) = u_{N1} = 0$$

可得: 
$$\pm U_T = \pm 8V$$





(3) uo与 uo1 的运算关系式

$$u_O = -\frac{1}{R_4 C} u_{O1}(t_2 - t_1) + u_O(t_1) = -2000 u_{O1}(t_2 - t_1) + u_O(t_1)$$

(4)



(5)要提高振荡频率,可以减小  $R_4$  、C 、 $R_1$  或增大  $R_2$ 。