ľ

1

(ii

m

m

ļ.ä

- 4. (Amended) A multifunctional linker molecule according to claim 1, characterized in that X comprises a structure having a hydrocarbon skeleton with two identical or different substituents that are used for connecting to and/or forming of the molecular groups FUNC₁ and FUNC₂.
- 6. (Amended) A multifunctional linker molecule according to claim 4, characterized in that the substituents of X are directed at an angle α relative to one another such that $90^{\circ} < \alpha < 270^{\circ}$.
- 7. (Amended) A multifunctional linker molecule according to claim 4, characterized in that X comprises a conjugated system, an aromatic π-system and/or contains heteroatoms, like N, O or S, and/or contains at least one electron donating substituent, like CH₃, O⁻, COO⁻, N(CH₃)₂ or NH₂, and/or electron accepting substituent, like CN, COCH₃, CONH₂, CO₂CH₃, N(CH₃)₃⁺, NO₂, F, CI, Br, I, OCF₃, or SO₂NH₂.
- 8. (Amended) A multifunctional linker molecule according to claim 4, characterized in that X is selected from the group comprising
- a) linear or branched structures comprising alkanes, alkenes, alkynes and combinations thereof comprising 3-12 carbon atoms and exhibiting at two ends substituents of the group consisting of amines, carboxylic acids, sulfonic acids and phosphonic acids;
- b) structures having the general formula

and derivatives thereof containing heteroatoms, like N, S, and/or O, or electron donating or accepting substituents; R can be methyl, phenyl or alkoxyl and wherein FUNC₁ and FUNC₂ are attached via the N-atoms of the two amine substituents indicated by N; structures having the general formula

 and derivatives thereof containing electron donating or accepting substituents wherein FUNC1 and $FUNC_2$ are attached via the N-atoms of the amine substituents indicated by $\underline{N};$ structures having the general formula

and derivatives thereof containing hereroatoms, like N, S, and/or O, or electron donating or accepting substituents; and wherein FUNC1 and FUNC2 are attached via the carbon atoms of the two carboxylic acid substituents indicated by \underline{C} ; structures having the general formula

wherein FUNC₁ and FUNC₂ are attached via the carbon atoms of the two carboxylic acid substituents indicated by \underline{C} ; structures having the general formula

and derivatives thereof containing electron donating or accepting substituents wherein $FUNC_1$ and $FUNC_2$ are attached via the N- or S-atoms of the two amine of sulfonic acid substituents indicated by \underline{N} and \underline{S} ; structures having the general formula

$$Z-N$$
 $N-Z$

$$Z-N$$
 $N-Z$

$$Z-N$$
 $N-Z$

$$Z-N$$
 $N-Z$

$$Z-N$$
 C
 $N-Z$
 N

$$Z-N$$
 $N-Z$

in which \underline{Z} represents amine ($\underline{Z}=\underline{N}$) or a carboxymethyl ($\underline{Z}=CH(R)\underline{C}$) residue, wherein R is an amino acid side chain and $FUNC_1$ and $FUNC_2$ are attached via \underline{Z} ; and

c) electron donors like hydroquinones and electron acceptors, like quinones and diimides carrying to substituents of the group consisting of amines, carboxylic acids, sulfonic acids and phosphonic acids.

M

M

THE THE

 9.

FUNC₁ and FUNC₂ independently of each other are connected to X via \underline{N} , \underline{C} , \underline{S} , or \underline{P} , and are selected from the group comprising

(Amended) A multifunctional linker molecule according to claim 1, characterized in that

- $-\underline{NH}, -NH\underline{CO}, -NH\underline{CO}\underline{NH}, -NH\underline{CS}\underline{NH}, -NH\underline{CO}\underline{NH}\underline{NH}, -NH\underline{CS}\underline{NH}\underline{NH}, -NH\underline{CO}\underline{NH}\underline{NH}, -NH\underline{CO}\underline{NH}, -NH\underline{C$
- -NHCONHNHCO in case of a connection via N;
- -CONH, -CONHNH, and -CONHNHCO in case of a connection via C;
- -SO₂NH, -SO₂NHNH, and -SO₂NHNHCO in case of a connection via \underline{S} ; and
- -PO₂NH, -PO₂NHNH, and -PO₂NHNHCO in case of a connection via P.
- 10. (Amended) A multifunctional linker molecule according to claim 1, characterized in that CON₁ and CON₂ connected to FUNC₁ and FUNC₂ via NH or CO, independently of each other are selected from the groups comprising
- -(CHR)_nCOOH; -(CHR)_nNC; -(CHR)_nNH₂; -(CHR)_nNHCS₂H; -(CHR)_nOPO₃H₂; -
- (CHR)_nOSO₃H; -(CHR)_nPO₃H₂; -(CHR)_nSH; -(CHR)_nSO₃H; -CSOH; and -CS₂H in case of a connection via NH; and
- -(CHR) $_n$ COOH; -(CHR) $_n$ NC; -(CHR) $_n$ NH $_2$; -(CHR) $_n$ NHCS $_2$ H; -(CHR) $_n$ OPO $_3$ H $_2$; -
- $(CHR)_nOSO_3H$; - $(CHR)_nPO_3H_2$; - $(CHR)_nSH$; and - $(CHR)_nSO_3H$ in case of a connection via \underline{CO} ; and

where R is H, CH₂OH, or CH₃ and n is 1 or 2, and iconic forms thereof.

- A3
- 14. (Amended) 1-, 2-, or 3-dimensional assembly of nanostructured units comprising a multifunctional linker according to claim 1, wherein the conductivity of the assembly is determined by the structure of the multifunctional linker.
- AY
- 16. (Amended) Assembly according to claim 14 in the form of a thin film of interconnected nanostructured units.

