Definition: Prädikatenlogische Sprache erster Stufe (PL1- Sprache)

(ohne Funktionssymbole) gegeben durch Paar (A, F) mit

- A = Alphabet mit
 - unendlich viele Variable (aus einer Variablenmenge, genannt Var_A)
 - keine oder beliebig viele Konstantensymbole (aus einer Konstantenmenge Konst, genannt $Konst_A$)
 - mindestens ein Prädikatensymbol, möglicherweise unendlich viele Prädikatensymbole (aus einer Prädikatensymbolmenge, genannt $Präd_A$)
- \bullet F = Menge aller wohlgeformten Formeln (Ausdrücke) mit Symbolen aus A

Definition: Term

Ein Konstantensymbol aus $Konst_A$ oder eine Variable aus Var_A .

Definition: Atomare Formel (Atom)

 $p(t_1, \dots, t_n)$ mit p ist n-stelliges Prädikatensymbol aus A und t_1, \dots, t_n Terme

Satz: Konstruktionsregel für F

kleinste Menge mit

- \bullet Jedes Atom aus A ist in F
- Falls f und g in F sind, dann sind auch $\neg f, (f \land g), (f \lor g), (f \Rightarrow g), (f \Leftrightarrow g)$ in F
- Falls X eine Variable ist und f in F, dann sind auch $(\forall X)(f)$ und $(\exists X)(f)$ in F

Definition: Interpretation

Eine Interpretation I für eine PL1-Sprache (A, F) ist ein Tripel (Dom, k, ext) mit:

- dom ist eine nicht leere Menge, genannt Wertebereich (domain) von I
- \bullet k ist eine Abbildung von Konstantensymbolen aus A in dom
- ext (extension) ist eine Abbildung von Prädikatensymbolen aus A in Mengen von Tupeln, gebildet aus Werten von Dom unter Beachtung der Stelligkeit der Prädikatensymbole. Diese Tupelmengen heißen **Prädikate**, ext(p) wird auch **Ausprägung** von p genannt.

Definition: Wahrheitswerte für PL1

Konstanten und Variablen $||t_1||_{I,\rho}$: $Var_A \cup Konst_A \to Dom$ definiert durch:

- k(c) für Konstantensymbole
- p(X) für Variablen

Relationen $\models_{I,\rho} p(t_1, \dots, t_n)$ (Unter der Interpretation I und Belegung ρ wahr) genau dann wenn ($\parallel t_1 \parallel_{I,\rho}, \dots \parallel t_n \parallel_{I,\rho}$) $\in ext(\rho)$) für jedes Atom $p(t_1, \dots, t_n)$ aus F

Definition: Folgerung $(F' \models f)$

Formel $f \in F$ mit $F' \subseteq F$, falls jedes Modell von F' auch ein Modell von f ist.

Definition: unter Folgerbarkeit abgeschlossen

Transitive Hülle von Folgerung

Definition: Theorie

Besteht aus PL1-Sprache (A, F) und Formelmenge $F' \subseteq F$, die unter Folgerbarkeit abgeschlossen ist. (F': Sätze der Theorie)

Definition: Axiomatisierbar

Theorie T, falls es eine entscheidbare Formelmenge $X\subseteq T$ gibt, derart dass alle Sätze von T Folgerungen von X (dann Axiomensystem von T mit Elementen Axiome) sind

Satz: Modell einer Theorie

Eine Interpretation I ist ein Modell einer Theorie T, falls I ein Modell der Menge aller Sätze von T ist.

Definition: Konsistente Theorie

Falls Theorie wenigstens ein Modell hat, sonst inkonsistent.

Definition: formale Ableitung

Eine formale Ableitung einer Formel f von der Menge $\{f_1, ..., f_m\}$ in der PL1- Logik ist eine Folge b_1, \dots, b_l von Formeln der Sprache (A, F) mit

- b_l ist gleich f
- jede Formel $b_j, j \in \{1, \dots l\}$ ist eine der Formeln $f_i, i \in \{1, \dots, m\}$ oder eine allgemeingültige Formel, die aus b_j in der Liste vorangehender Formeln durch Anwendung einer Ableitungsregel der PL1-Logik erhalten werden kann.

Definition: ableitbar (\vdash)

Falls es eine formale Ableitung gibt (aus ∅ oder Formelmenge)

Satz: Vollständigkeitssatz von Gödel

$$\emptyset \models f \Longrightarrow \vdash f$$

Definition: Relationale Sprache

R = (A, F) mit

- Es gibt in A
 - $-1 \le |Konst_A| < \infty$
 - $|\operatorname{Pr\ddot{a}d}_A| < \infty$
 - ausgezeichnetes, zweistelliges Prädikatensymbol = (Gleichheit)
 - ausgezeichnete Teilmenge einstelliger Prädikatensymbole, die einfachen Typen
- Typen, kleinste Menge mit
 - jeder einfache Typ von A ist ein Typ von R
 - falls τ_1, τ_2 Typen von R, dann auch $(\tau_1 \wedge \tau_2), (\tau_1 \vee \tau_2), \neg \tau_1$ Typen von R

Definition: Relationale Interpretation

Sei R = (A, F) relationale Sprache, dann ist eine Interpretation I = (Dom, k, ext) für R eine relationale Interpretation für R, wenn

- k ist eine Bijektion (Dom ist endlich)
- $ext(=) = \{(d, d) | d \in Dom \}$

Definition: Relationale Datenbank

Tripel (R, I, IB) mit

- R ist eine relationale Sprache
- I ist eine relationale Interpretation
- IB ist eine Menge von Formeln von R, so dass insbesondere für jedes nstellige Prädikatensymbol P, das verschieden ist von "=" und von den einfachen Typen, IB eine Formel der folgenden Gestalt enthalten muss $(\tau_1, \dots, \tau_n$ einfache Typen):

$$(\forall X_1)\cdots(\forall X_n)(p(X_1,\cdots X_n)\Rightarrow \tau_1(X_1)\wedge\cdots\wedge\tau_n(X_n))$$

Definition: Erlaubte relationale Datenbank

Falls I ein Modell von IB ist

Definition: Intentionale, extentionale Prädikatensymbole

- Intentional: durch ein Programm definiert
- Extentional: als Relationen in einer Datenbank gespeichert

Definition: Fixpunkttheorem (Knaster / Tarski)

Sei τ eine monotone Transformation auf einem vollständigen Verband (V, \leq) . Dann hat τ einen kleinsten Fixpunkt

$$lfp(\tau) = inf(\{x \in V | \tau(x)lex\})$$

Definition: Datalog Programm

Ein Datalog-Programm P (ohne IBen(Integritätsbedingungen)) ist eine endliche Menge von Horn-Klauseln mit Jedes $d \in P$ ist entweder

- ein Fakt q(...). ohne Variable
- eine sichere Regel $q(...): -p_1(...), ..., p_n(...)$. mit $q \in iPraedikat$

Eine Regel heißt sicher, wenn alle in ihr vorkommenden Variablen beschränkt sind.

Definition: Bedeutung eines Datalog Programms

Menge der Grundatome, die logisch aus P gefolgert werden können.

Satz von Gödel / Skolem

Eine Klauselmenge P hat ein Modell genau dann wenn P hat ein Herbrand-Modell. Daraus folgt, dass ein Verfahren analog zu Wahrheitstabellen in der Aussagenlogik möglich ist.

Skolemisierung

Jeder Formel der PL1 Logik, kann in eine erfüllbarkeitsäquivalte Formel in Skolem-Form gebracht werden. Dies bedeutet Pränexnormalform und alle Existenzquantoren durch Funktionen ersetzen.

Definition: Herbrand-Interpretation

Eine Teilmenge der Herbrand- Basis

Grundatom

Ein Grundatom f ist eine logische Folgerung einer Menge D von Datalog Klauseln (z.B. $D \models f$) \diamondsuit_{Def} . Jedes Herbrand Modell von D ist auch ein Modell von f. Da f ein Grundatom ist gilt $D \models f \Longrightarrow f$ ist in jedem Herbrand-Modell von D enthalten. Das heißt $f \in \bigcap \{I | IHerbrand - Modell von D\}$. Sei $f \in \bigcap \{I | IHerbrand - Modell von D\}$, dann ist f ein Grundatom und jedes Modell von D auch in Modell von f.

Definition: Mege aller Konsequenzen

$$cons(D) =_{def} \{ f \in HB_D | D \models f \}$$

Definition: Substitution

Eine Substitution ist eine endliche Menge der Form

$$\{X_1/t_1, \dots, X_n/t_n\}, X_1, \dots, X_n$$
 unterschiedliche Variablen, $t_1, \dots, t_n Terme, X_i \neq t_i$
(1)

Sei θ eine Substitution, t ein Term (Variable oder Konstante), so gilt

$$t\theta =_{def} \begin{cases} t_i, & \text{falls } t/t_i \in \theta \\ t, & \text{sonst} \end{cases}$$
 (2)

Definition: Grundsubstitution

Substitution bei der alle t_i Konstanten sind.

Definition: Unifizierbar

Seien L_1 und L_2 heißen **unifizierbar**, wenn $(\exists \text{ Substitution }\Theta)(L_1\Theta=L_2\Theta)$. Θ heißt dann **Unifikator**.

Definition: Komposition

Sei $\Theta = \{X_1/t_1, \dots, X_n/t_n\}, \sigma = \{Y_1/n_1, \dots, Y_m/t_m\}$ Substitutionen. Die Komposition $\Theta \sigma$ von Θ und σ erhält man aus

$$X_1/t_1\sigma, \cdots, X_m/t_m\sigma, Y_1/n_q, \cdots, Y_m/n_m$$
 (3)

Durch Streichen von Elementen der Form Z/Z sowie Y_i/n_i mit $Y_i = X_j$ für ein $jj \in \{1,...,n\}$

Definition: allgemeinere Substitution

Sei $\Theta = \{X_1/t_1, \cdots, X_n/t_n\}, \sigma = \{Y_1/n_1, \cdots, Y_m/t_m\}$ Substitutionen.

Die Komposition $\Theta\sigma$ von Θ und σ erhält man aus $X_1/t_1\sigma,\cdots,X_m/t_m\sigma,Y_1/n_q,\cdots,Y_m/n_m$

Definition: Beweisbaum

B entsteht aus S durch Anwendung von Θ auf alle Benennungen von Zielknoten. B repräsentiert einen Beweis für $g\Theta$, g benennung der Wurzel von S.

Definition: Tiefe eines Baums

maximale Anzahl von Zielknoten auf einem Pfad von einem Blattknoten zur Wurzel. Entsprechend Knoten der Tiefe i, Ebene i eines Baumes. Zusätzlich: Spezielle Suchbäume (Tiefe 0) für Fakten aus P.

Suchbaum zu cons

Sei P ein Datalog-Programm. Die Suchbaum / Beweisbaum Methode, angewand auf alle Ziele $q(X_1, \dots, X_{Stelligkeit(q)})$, q intentionales Prädikatesymbol von P, liefert cons(P) als Ergebnis

Suchbaum, Vollständigkeit

Die Suchbaum / Beweisbaum Methode bleibt vollständig für ein Programm P, wenn nur Bäume mit max. Tiefe max_fakt(P) betrachtet werden.

Resolutionsmethode

Für allgemeine Klauselformen entwickelte Methode zum automatischen Beweisen.

Definition: Vollständiger Verband

Partiell geordnete Mengt (V, \leq) bei der zu jeder Teilmenge ein Infinum (\perp_V) & Suprenum (\top_V) besteht. Jeder endliche Verband (und jeder Teilmengenverband) ist vollständig.

Definition: Monotone Transformation

Abbildung τ mit $(\forall a, b \in V)(a \le b \Rightarrow \tau(a) \le \tau(b))$.

Definition: Fixpunkt

$$a \in V : \tau(a) = a$$

Satz: Fixpunkttheorem (Knaster / Tarski)

Sei τ eine monotone Transformation auf einem vollständigen Verband (V, \leq) . Dann hat τ einen kleinsten Fixpunkt

$$lfp(\tau) = inf(\{x \in V | \tau(x)lex\})$$

Magic Set Methode

Transformiere ein Programm in eine Version, die für ein gegebenes Ziel die gleiche Ausgabe hat aber das Ziel bei bottom-up Auswertung berücksichtigt wird. Algorithmus, Beispiel hier.

Vorgehen

1.Schritt Füge für das Ziel $g = q(\cdots)$ die Regel $query^{f\cdots 1}(X_1, \cdots, X_k) : -q^{\alpha}(\cdots)$. ein, wobei X_1, \cdots, X_k Variablen aus $q^{\alpha}(\cdots)$ sind. Erzeuge für jede Regel $r \in P$ und jedes mögliche Bindungsmuster β des Prädikates im Kopf von r eine Regel mit Bindungsmuster für jedes ihrer itensionalen Prädikate. Bestimme dabei unter Beachtung von β für jedes Argument im Rumpf ob es ausgezeichnet ist oder nicht. Falls ein IDB-Prädikat im Rumpf mehrfach auftritt, sollte man es durchnummerieren.

2.Schritt Forme P_g^{B2} zu P_g^{magic3} . Sei $P_g^{magic} := P_g^B$. Mach dann für jedes $r \in P_g^B$ und draus folgend für jedes Vorkommen $p^\beta i(t_1, \dots t_l)$ eines IDB-Prädikates im Rumpf von r folgendes:

- Streiche alle anderen Vorkommen von IDB-Prädikaten im Rumpf von r
- Ersetze p_g^β durch $magic_r_p^\beta_i$
- Streiche alle Variablen aus $(t_1, \dots t_l)$, die nicht ausgezeichnet sind. ⁴
- Streiche alle nicht ausgezeichneten EDB-Prädikate aus r.

¹Hochgestellte Zeichen sind Bindungsmuster (wie in Coral)

²Menge aller erreichbaren Regeln aus Schritt 1

 $^{^3\}mathrm{Bez\"{u}glich}$ g äquivalent

 $^{^4}$ Bei "Prädikaten" ohne Argumente die entsthen können: Fall entsprechende Relation $\neq \emptyset$ wahr, sonst falsch

- Sei $z^{\alpha}(s_1, \dots, s_k)$ das Prädikat im Kopf von r. Streiche alle Variablen aus (s_1, \dots, s_k) , die nicht ausgezeichnet sind; α wird nicht verändert. Ersetze $magic_r_p^{\beta}_i(t_1, \dots t_l)$ durch $magic_z^{\alpha}(s'_1, \dots s'_{\overline{l}})^5$
- \bullet Füge P_g^{magic} die neuen Regel
n hinzu

3. + 4.Schritt

⁵Änderungen aus letztem Schritt

```
for each r \in P_g^{\beta} do

begin

for each p^{\beta}\_i(t_1,...,t_l), p \in iPr\ddot{a}d im Rumpf von r do

begin erzeuge Prädikat m = magic\_r\_p^{\beta}\_i(t'_1,...,t'_{\tilde{l}}),

wobei die t'_1,...,t'_{\tilde{l}} die ausgezeichneten Argumente von

t_1,...,t_l sind;

if p Prädikatensymbol im Kopf von r

then füge m am Beginn des Rumpfes von r ein

else füge m unmittelbar vor p^{\beta}\_i(t_1,...,t_l) ein

end; /* Einfügeposition für Semantik ohne Bedeutung */

ersetze Rumpf von r in P_g^{magic} durch den geänderten Rumpf

end;
```

Figure 1:

```
\begin{split} &\textbf{for each } r \in P_g^{magic} \textbf{ do} \\ &\textbf{ for each } p^{\beta} \_i(t_1, ..., t_l) \text{ im Rumpf von } r \textbf{ do} \\ &P_g^{magic} := P_g^{magic} \cup \{ magic\_p^{\beta}(t_1', ..., t_{\tilde{l}}') : - \quad magic\_r\_p^{\beta}\_i(t_1', ..., t_{\tilde{l}}') \}; \end{split}
```

Figure 2:

Definition: Ausgezeichnet

Argument eines Teilziels Konstantensymbol, gemäß α gebunden, es in einem EDB-Prädikat auftritt, das ein ausgezeichnetes Argument hat.

EDB-Prädikat Alle seine Argumente sind ausgezeichnet

Definition: Abhängigkeitsgraph

Gerichteter Graph DG(P) = (V, E) eines Programms P, falls V die Menge aller Prädikatensymbole von P und $e = (p, q) \in E \Leftrightarrow q$ kommt im Rumpf einer Regel von P vor, deren Kopfprädikat p ist. e ist mit "¬" benannt, wenn q dabei wenigstens einmal negiert vorkommt.

Definition: Schichtung eines Programms

Eine Folge Π_1, \dots, Π_n von Mengen von Prädikatensymbolen mit

- $\{\Pi_1, \cdots, \Pi_n\}$ ist eine Partition der Prädikatensymbole in P
- $q \in \Pi_i, r \in \Pi_j, (q, r)$ Kante in $DG(P) \Rightarrow i \geq j$, für alle Prädikatensymbole q, r aus $P, i, j \in \{1, \dots, n\}$
- $q \in \Pi_i, r \in \Pi_j, (q, r)$ mit "¬" markierte Kante in $DG(P) \Rightarrow i > j$

Definition: Geschichtetes Programm

Ein Programm P heißt geschichtet, wenn P eine Schichtung hat.

Satz: Schichtung / Zyklus

Ein Programm P ist geschichtet, gdw. DG(P) enthält keinen Zyklus mit einer Kante, die mit "¬" markiert ist.

Eigenschaften: Perfektes Modell

"Kleinstes" der minimalen Modelle, wenn das stärkste Gewicht darauf gelegt wird, dass die Prädikate niedriger Schichten klein bleiben

Satz: sicher geschichtet / perfektes Modell

Sei P ein sicheres, geschichtetes Programm, dann ist das Perfekte Modell von P unabhängig von der Wahl der Schichtungen

Definition: Anfrage

Sei $\sigma = \{(RT_1, \alpha_1), \dots, (RT_n m \alpha_n)\}$ ein relationales Datenbankschema über $\alpha = \bigcup_{i=1}^n \alpha_i$ mit Wertebereichsfunktion dom. Sei α in eine genügend große Attribut-

menge α_0 eingebettet⁶. Eine Anfrage q auf σ ist eine partielle Funktion

$$q|Z\sigma \Rightarrow R_{\beta}^{\infty}$$

Definition: Anfragesprache

Eine Anfragesprache zu σ ist eine Menge L_0 von Ausdrücken zusammen mit einer Bedeutungsfunktion (in Zeichen: (L_{σ}^7, μ^8)), so dass für jeden Ausdruck $e \in L_{\sigma}$ gilt: $\mu(e)$ ist eine Anfrage von σ

Definition: Ausdruckskraft

Die Ausdruckskraft einer Anfragesprache (L_{σ}, μ) zu einer DB-Schema σ ist definiert als $\mu(L_{\sigma}) =_{Def.} \{\mu(e) | e \in L_{\sigma}\}$. Eine Sprache (L_{σ}, μ') ist **ausdrucksstärker** als eine Sprache (L_{σ}, μ) , wenn gilt: $\mu(L_{\sigma}) \subseteq \mu'(L'_{\sigma})$ Im Fall $\mu(L_{\sigma}) = \mu'(L'_{\sigma})$ werden die Sprachen **äquivalent** genannt

Definition: An frage sprache von ρ

Sei $\rho = \{(RT_i, \alpha_i) | i \in Lm\}$ ein relationales Datenbankschema über $\alpha = \bigcup \alpha_i$ mit Werteberichsfunktion dom. Sei α in eine genügend große Attributmenge α_0 eingebettet. Eine Anfrage q ist eine partielle Funktion mit $q : \delta_\rho \to R_\beta^\infty$, $\delta \subseteq \alpha_0, R_\beta^\infty$ ist die Menge der verallgemeinerten DB-Relationen über β (unendliche Teilmengen sind erlaubt).

Eine Anfragesprache zu ρ ist eine Menge L_{ρ} von Ausdrücken mit einer Bedeutungsfunktion μ (schreibe (L_{ρ}, μ)), so dass für jeden Ausdruck $e \in L_{\rho}$ gilt $\mu(e)$ ist eine Anfrage an ρ .

 $^{^6}$ Enthalten darin

⁷Sprache

⁸Bedeutungsfunktion

Definition: Ausdruckskraft einer Anfragesprache von ρ

Die Ausdruckskraft einer Anfragesprache (L_{ρ}, μ) zu ρ ist definiert als $\mu(L_{\rho}) = \{\mu(e) | e \in L_{\rho}\}$

Definition: Äquivalenz von Sprachen

 $(L'_{\rho}, \mu') = (L_{\rho}, \mu)$, wenn $\mu'(L'_{\rho}) = \mu(L_{\rho})$. Kleiner und größer analog. Falls Anfragesprache L für alle ρ äquivalent zu Anfragesprache L' ist werden beide als äquivalent bezeichnet.

Satz 2.1

Sei e ein zu einem gegebenen Datenbankschema ρ passender RA-Ausdruck ohne Komplement. Dann gibt es einen äquivalenten zu e passenden Ausdruck der RA e' in dem als Operatoren nur Selektionen mit einfachen Vergleichsausdrücken, direktes Produkt, Projektion, Umbenennung, Differenz, Vereinigung vorkommen. Als Operanden ermittelt e' neben Relationstypbezeichnern aus ρ nur (extensionale) DB-Relationen der Form $\{(A, C), A \in \alpha_{\rho}, c \in dom(A)\}$

Weitere Einschränkungen sind möglich \rightarrow Projektionen nur auf ein Attribut, Vergleichsausdrücke = und χ .

Falls Komplementbildung hinzugenommen, Differenz nicht mehr notwendig: $R \setminus S = (R[kompl] \cup S)[kompl]$

Satz 2.2

Eine derart ??? Operationsmenge der RA ist minimal, d.h. es kann keine Operation entfernt werden, ohne dass die Ausdruckskraft eingeschränkt ist.

Satz 2.3

Sei RT der Bezeichner eines beliebigen, zweistelligen Relationstyp über abzählbaren unendlichen Wertebereich. Sei Rt* der Relationstyp für die transitive Hülle von

Relationen des Typs RT. Es gibt keinen Ausdruck der Relationenalgebra mit der Eigenschaft e(RT)? = RT*.

Gegeben Wertebereich $\{a_1, a_2, \cdots\}$ ohne Ordnungsrelation. Betrachte $R_l = \{(a_i, a_i + 1) | i \in [l-1]\}$ für $l \in \mathbb{N}\}$. R_l ist eine mathematische Relation, die Tupel sind also geordnet. Zeige $e(R_l) \neq R*_l$ für jeden RA - Ausdruck e, der zu Wertebereichen passt und für genügend großes l. $e(R_l)$ bedeutet R_l für RT eingesetzt. RA-Operationen sind anzupassen (wir haben keine Bezeichner \sim Permutationen einführen).

- Projektion: 9 erlaubte Permutationen (vgl p(x) :- r(y,x) ist Projektion in r)
- Selektionen mit atomaren Vergleichsausdrücken der Form $i=a_m, i\neq a_m, i=j, i\neq j$ für $i,j\in [k], m\in [l]$ k ist bestimmt durch Größe der konstruierten Tupel $(b_1,\cdots,b_k), b_i\in \{a_1,\cdots a_l\}$

Lemma 2.1

Sei e ein beliebiger RA-Ausdruck, der zum Wertebereich $\{a_1, a_2, a_3, \dots\}$ passt und zu RT. Dann lässt sich $e(R_l)$ für ein genügend großes I darstellen als

$$e(R_l) = \{(X_1, \dots, X_K)/\Psi(X_1, \dots, X_K)\} \subseteq \{a_1, \dots, a_l\}^K$$

mit $K \in \mathbb{N}$, Ψ aussagenlogischer Ausdruck in disjunktiver Form, wobei atomare Ausdrücke nur Vergleichsausdrücke der oben genannten Form auftreten.

Definition: Vollständigkeit einer Anfragesprache

Eine Anfragesprache (L_0, μ) zu einem DB-Schema σ heißt vollständig, wenn gilt:

- 1. Für jeden Ausdruck $e \in L_{\sigma}$ ist $\mu(e)$ berechenbar und generisch
- 2. Für jede berechenbare und generische Anfrage q an σ gibt es einen Ausdruck $e \in L_{\sigma}$ mit $\mu(e) = q$.

⁹entspricht ∃: es gibt da was in der spalte, aber was das ist, ist mir egal

Definition: Abgeschlossenheit einer Anfragesprache

Eine allgemeine Anfragesprache L mit Interpretationsvorschrift μ heißt abgeschlossen, wenn sie zu jedem Datenbank-Schema σ eine vollständige Anfragesprache (L_{σ}, μ) enthält. Offensichtlich:

- Alle RA-Anfragen sind berechenbar und generisch
- Die RA ist nicht abgeschlossen (s. Satz 2.3)