MISR UNIVERSITY FOR SCIENCE AND TECHNOLOGY COLLEGE OF ENGINEERING MECHATRONICS DEPARTMENT

MTE 506 DIGITAL CONTROL

LAB 4 - SPRING 2019

Goals of The Lab

Studying the PID terms on system response

Computing steady state for each term

Open Loop DC Gain

$$G_p(s) = \frac{K}{\tau s + 1} = \frac{5}{0.1s + 1}$$

Open Loop DC Gain

DC Gain of
$$G_p(s = j\omega = 0) = \frac{K}{(0.1)(j0) + 1} = \frac{5}{1} = 5$$

What is the importance of DC Gain?

Automatic Control

P AND PI CONTROLLER

PID Controller

Using Simulink

Present

PID Controller

Simple example

Standard Form

$$u(t) = k_p e(t) + k_i \int_0^t e(t) \cdot dt + k_d \frac{de}{dt}$$

$$u(t) = k_p(e(t) + \frac{1}{T_i} \int_0^t e(t) \cdot dt + T_d \frac{de}{dt}$$

PID Controller

Simple example

Standard Form

P-Controller

Simple example

Steady State Error with P - Controller

P-Controller

Simple example

Steady State Error with P - Controller

$$e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)K_p} = \lim_{s \to 0} \frac{\frac{s\frac{1}{s}}{5}}{1 + \frac{5}{0.1s + 1}K_p} = \frac{1}{1 + \frac{5}{1}K_p} = \frac{1}{1 + \frac{5}{1}K_p}$$

$$e(\infty)_{K_p=2} = \frac{1}{1+5K_p} = \frac{1}{1+(5)(2)} = \frac{1}{11} = 0.0909$$

Classwork

Simple example

Compute the DC gain and steady state error for:

$$G(s) = \frac{6}{(2s+1)(4s+1)(6s+1)}$$
 for $Kp = 10$ (use simulink zero – pole block)

PI-Controller

Simple example

Steady State Error with PI - Controller

PI-Controller

Simple example

Steady State Error with PI - Controller

$$e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)(K_p + \frac{K_i}{s})} = \lim_{s \to 0} \frac{\frac{s\frac{1}{s}}{s}}{1 + \frac{5}{0.1s + 1}(K_p + \frac{K_i}{s})} = \frac{1}{\infty} = 0$$

What is the DC gain of PI Controller? Why?

SOLVING DIFFERENTAIL EQUATIONS

Open and Closed Loop

The Laplace transform

The most commonly used transform pairs

Original	Image
а	$\frac{a}{s}$
t	$\frac{1}{s^2}$
t^2	$\frac{2}{s^3}$
$t^n, n \in N$	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
te ^{at}	$\frac{1}{(s-a)^2}$
t^2e^{at}	$\frac{2}{(s-a)^3}$
$t^n e^{at}, n \in N$	$\frac{n!}{(s-a)^{n+1}}$

Original	Image
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$
$\sinh(\omega t)$	$\frac{\omega}{s^2 - \omega^2}$
$\cosh(\omega t)$	$\frac{s}{s^2 - \omega^2}$
$t\sin(\omega t)$	$\frac{2s\omega}{(s^2+\omega^2)^2}$
$t\cos(\omega t)$	$\frac{s^2 - \omega}{(s^2 + \omega^2)^2}$
$e^{at}\sin(\omega t)$	$\frac{\omega}{(s-a)^2+\omega^2}$
$e^{at}\cos(\omega t)$	$\frac{s-a}{(s-a)^2+\omega^2}$

Solving LTI differential equations

Excited systems

Find the **unit step response** y(t) if applied on the below transfer function $m\ddot{x}(t) + c\dot{x}(t) + kx(t)$

SOLUTION

Reformulating the problem:

$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = f(t)$$

: f(t) is unit step

$$\ddot{m}\ddot{x}(t) + c\dot{x}(t) + kx(t) = u(t)$$

Taking Laplace of the system

$$m[s^{2}X(s) - sX(0) - X(0)] + c[sX(s) - x(0)] + kX(s) = \frac{1}{s}$$

Solving LTI differential equations

Excited systems

Find the **unit step response** x(t) if applied on the below transfer function $m\ddot{x}(t) + c\dot{x}(t) + kx(t)$

SOLUTION

Assuming system starts from 0

$$ms^{2}X(s) + csX(s) + kX(s) = \frac{1}{s}$$

$$X(s) = \frac{1}{ms^2 + cs + k}, \qquad m = 1, c = 7, k = 10$$

$$X(s) = \frac{1}{ms^2 + cs + k}, \qquad m = 1, c = 7, k = 10$$

$$X(s) = \frac{1}{s(s+2)(s+5)} = \frac{A}{s} + \frac{B}{s+2} + \frac{C}{s+5}$$
 (Partial Fractions)

Solving LTI differential equations

Excited systems

Find the **unit step response** $\mathbf{x}(\mathbf{t})$ if applied on the below transfer function $\mathbf{m}\ddot{\mathbf{x}}(\mathbf{t}) + \mathbf{c}\dot{\mathbf{x}}(\mathbf{t}) + \mathbf{k}\mathbf{x}(\mathbf{t})$

SOLUTION

Assuming system starts from 0

$$X(s) = \frac{1}{s(s+2)(s+5)} = \frac{A}{s} + \frac{B}{s+2} + \frac{C}{s+5}$$
 (Partial Fractions Decomposition)
$$X(s) = 1 = A(s+2)(s+5) + B(s)(s+5) + C(s)(s+2)$$
 Solve for $s = 0, s = -2, s = -5 \rightarrow A = 0.1, B = -0.17, C = 0.07$

Solving LTI differential equations

Excited systems

Find the **unit step response** x(t) if applied on the below transfer function $m\ddot{x}(t) + c\dot{x}(t) + kx(t)$

SOLUTION

$$X(s) = \frac{1}{10} \frac{1}{s} - \frac{1}{6} \frac{1}{s+2} + \frac{1}{15} \frac{1}{s+5}$$

$$x(t) = \frac{1}{10} - \frac{1}{6}e^{-2t} + \frac{1}{15}e^{-5t}$$

Table of Laplace Transforms

Table of La	prace	11 4115101 1115	,
$) = \mathcal{L}\{f(t)\}\$		$f(t) = \mathcal{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathcal{L}\{f(t)\}\$
$\frac{1}{s}$	2.	\mathbf{e}^{at}	$\frac{1}{s-a}$
$\frac{n!}{s^{n+1}}$	4.	t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,\dots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$
$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$
$\frac{2as}{s^2 + a^2)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$

Don't forget to pull the lab update from.

http://github.com/wbadry/mte506

END OF Lab 4