1 中学の復習

1.1 新出用語

- (1) 内分
 - (a) AB を 1 : 2 に内分する点 P

(b) AB を 2:1 に内分する点 Q

(c) ABを2:1に内分する点R

(2) 外分

(a) AB を 2:1 に外分する点 P

(b) ABを1:2に外分する点 Q

(c) AB を 3:1 に外分する点 R

(d) ABを1:4に外分する点S

1.2 既習用語の確認

(1) 二等辺三角形とは

(2) 正三角形とは

(3) 正方形とは

(4) 長方形とは

(5) 平行四辺形とは

(6) 台形とは

1.3 証明しよう

1.3.1 定理 1

上の図において、以下の等式が成立する.

AB : AC = BD : DC

Proof.

1.3.2 定理 2

上の図において、以下の等式が成立する.

AB : AC = BD : DC

Proof.

練習問題

AB= 10, BC= 12, CA= 6 である \triangle ABC において, \angle A の二等 分線と辺 BC の交点を D とおく. 線分 BD の長さを求めよ.

練習問題

AB= 20, BC= 10, CA= 12 である \triangle ABC において, \angle A の外角 の二等分線と辺 BC の延長との交点を D とおく. 線分 BD の長さを求めよ.

1.4 円周角の定理

指定された角の大きさを求めよ.

(1) ∠OAB= 47° のとき, ∠ACB の値

(2) ∠ADC= 30° のとき, ∠ACB の値

1.5 円周角の定理の逆

以下の図において, 4 点 A, B, C, D は同一円周上にあるか判定せよ.

(1) $\angle ADB = 65^{\circ}$, $\angle AED = 78^{\circ}$, $\angle DBC = 37^{\circ}$

(2) $\angle BEC = 84^{\circ}$, $\angle BDC = 110^{\circ}$, $\angle ACD = 26^{\circ}$

1.6 円と直線

円と直線の関係についての復習をしよう.

直線 l と線分 OA の関係性_

線分 PA と線分 PB の関係性____ 線分 PA と線分 PB の関係性について証明しよう.

Proof.

練習問題

(1) AB= 7, BC= 8, CA= 5 とする. BP の長さを求めよ.

1.7 三角形の存在

3 辺の長さが以下のような三角形は存在するか答えよ. また、存在する場合に、その三角形が特殊 (直角・二等辺・正など) であれば、それも答えよ.

(1) 1, 2, 2

(2) 3, 4, 5

(3) 4, 6, 10

(4) $\sqrt{5}, \sqrt{3}, \sqrt{2}$

2 三角形の心2.1 外心三角形に形成された折り紙で、それぞれの辺の垂線を折ろう。	2.2 内心 三角形に形成された折り紙で,それぞれの角の二等分線を折 ろう.
< 気づくこと > 以下に気づくことを列挙しよう.	< 気づくこと > 以下に気づくことを列挙しよう.
一 外心	内心————

2.3 重心 三角形に形成された折り紙で、それぞれの中線を折ろう。 注)中線とは、頂点から向かい合う辺の中点へ引いた線分のこと。	2.4 垂心 三角形に形成された折り紙で、それそれの角から、向かい合う辺への垂線を折ろう.
<気づくこと> 以下に気づくことを列挙しよう.	<気づくこと> 以下に気づくことを列挙しよう.
#.)	
重心	垂心

2.5 練習問題

指定された角, 辺の大きさを求めよ.

(1) O を \triangle ABC の外心とする. \angle OAB= 32°, \angle OAC= 35° の とき, \angle OBC の値.

(2) I を $\triangle ABC$ の内心とする. $\angle ABC=70^\circ$, $\angle IAB=30^\circ$ のとき, $\angle ICB$ の値.

(3) G を \triangle ABC の重心とする. CD= 6 のとき, GD の値.

(4) O を △ABC の外心とする. ∠CAB= 25°, ∠CBA= 45° のとき, ∠OAB の値.

(5) I を \triangle ABC の内心とする. \angle ABC= 40° のとき, \angle AIC の値.

(6) G を \triangle ABC の重心とする. \triangle ABC : \triangle GAB.

2.6 練習問題 2

各問いに答えよ.

- (1) \triangle ABC の内心と外心が一致するとき, \triangle ABC はどのような 三角形か説明せよ.
- (3) \triangle ABC の内心を I とし、3 辺 BC, CA, AB に関して I と対称 な点をそれぞれ P, Q, R とする. このとき, I は \triangle PQR についてどのような点であるか.

(2) 平行四辺形 ABCD について、辺 BC の中点を E, 辺 DE と AC の交点を F, 辺 AC と DB の交点を O とする. \triangle DFC の 面積が 5 のとき、 \triangle AOD の面積を求めよ.

3 チェバメネ

3.1 チェバの定理

- チェバの定理 -

 \triangle ABC の辺上にもその延長線上にもない点 O があり、頂点 A, C, C と O を結ぶ直線が向かい合う辺またはその延長線 と、それぞれ点 P, Q, R で交わるとき、以下が成立.

$$\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} = 1$$

Proof. △ABC の頂点 A を通り, 辺 BC に平行な直線を引く.

この直線と直線 BQ, CR との交点をそれぞれ D, E とする.

ED//BCから、

$$\begin{aligned} &\operatorname{CQ}:\operatorname{QA}=\operatorname{CB}:\underline{\hspace{1cm}}&:\frac{\operatorname{QA}}{\operatorname{CQ}}=\frac{}{\operatorname{BC}}\\ &\operatorname{AR}:\operatorname{RB}=\operatorname{AE}:\underline{\hspace{1cm}}&:\frac{\operatorname{RB}}{\operatorname{AR}}=\frac{}{\operatorname{AE}}\end{aligned}$$

また、BP:DA=PO:_____、PC:AE=PO:____であるから、

$$BP : DA = PC : \underline{\qquad} : \frac{PC}{BP} = \overline{DA}$$

よって,

$$\frac{RB}{AR} \cdot \frac{PC}{BP} \cdot \frac{QA}{CQ} = - - - - - - - - = 1$$

例題

上の図で、AR:RB= 1 : 2, BC:PC= 4 : 3 のとき, CQ:QA を求めよ.

3.2 メネラウスの定理

- メネラウスの定理 -

 \triangle ABC の辺 BC, CA, AB またはその延長線が、三角形の頂点を通らない直線 l と、それぞれ点 P, Q, R で交わるとき、以下が成立.

$$\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} = 1$$

Proof. $\triangle ABC$ の頂点 A を通り、PR に平行な直線をひく.この直線と、直線 BC の交点を D とする.

RP // AD から,

$$\begin{aligned} &\operatorname{CQ}:\operatorname{QA}=\operatorname{CP}:\underline{\hspace{1cm}}&:\frac{\operatorname{QA}}{\operatorname{CQ}}=\frac{}{\operatorname{CP}}\\ &\operatorname{AR}:\operatorname{RB}=\operatorname{DP}:\underline{\hspace{1cm}}&:\frac{\operatorname{RB}}{\operatorname{AR}}=\frac{}{\operatorname{DP}}\end{aligned}$$

よって,

$$\frac{RB}{AR} \cdot \frac{PC}{BP} \cdot \frac{QA}{CQ} = ----- \cdot ---- = 1$$

例題

上の図で、AR:RB= 2:3、BP:PC= 2:3 のとき、CA:AQ、PR:RQ を求めよ.

3.3 練習問題

(1)	△ABC の辺 AB を 3 : 2 に内分する点を R, 辺 AC を 1 : 2 に内分する点を Q とする. 線分 BQ と CR の交点を O, 直線 AO と辺 BC の交点を P とする. 以下の問いに答えよ. (a) BP : PC を求めよ.	(3) △ABC の辺 AB, AC 上に点 R, Q があり, AR: RB= 5:1, AQ: QC = 2:3 である. 線分 BQ と CR の交点を O, 線分 AO と辺 BC の交点を P とするとき, 以下の比を求めよ. (a) BP: PC
	(b) PO : OA を求めよ.	
(2)	△ABC の辺 AB, AC を 1:3 に内分する点をそれぞれ R, Q とする. 線分 BQ と CR の交点を O とし, 直線 AO と辺 BC の交点を P とする. 以下の問いに答えよ. (a) BP: PC を求めよ.	(b) PO : OA
		(c) △OBC : △ABC
	(b) △OBP : △ABC を求めよ.	

4 内接多角形

4.1 内接四角形

- 円に内接する四角形の性質 ―

円に内接する四角形の対角の和は 180° である.

Proof.

四角形 ABCD が円 O に内接し,

$$\angle BAD = \alpha$$
, $\angle BCD = \beta$

とする. 円周角の定理から,

$$2\alpha + 2\beta =$$

ゆえに

$$\alpha + \beta =$$

例

(1) ∠ADB= 25°, ∠ABD= 40° のとき, ∠BCD の値を求めよ.

(2) ∠DAP= 60°, ∠APD= 45° のとき, ∠CBP の値を求めよ.

- 四角形の円への内接条件 ----

対角の和が 180° である四角形は円に内接する.

例

以下の図において, 4 点 A, B, C, D は同一円周上にあるか判定 せよ.

(1) $\angle ABE = 40^{\circ}$, $\angle AEB = 110^{\circ}$, $\angle CDE = 30^{\circ}$

(2) $\angle BEC = 73^{\circ}, \angle CAE = 74^{\circ}, \angle DBE = 32^{\circ}$

(3) A の内角 82°, B の内角 71°, D の外角 88°

5 接弦定理

- (1) 以下の問いに答えよ.
 - (a) $\angle ACB = 40^{\circ}$ のときの $\angle BAE$ の値.

(b) $\angle ACB = 38^{\circ}, \, \angle CAB = 61^{\circ}$ のときの $\angle CAD$ の値.

(c) AB=CB, ∠ACB= 51° のときの ∠BAE の値.

6 法べきの定理

6.1 方べきの定理 ver1

Proof.

1) 左図

_____から,

 $\angle PAC = \angle PDB$ $\angle PCA = \angle PBD$

が成立する.

2) 右図

_____から,

 $\angle PAC = \angle PDB$ $\angle PCA = \angle PBD$

が成立する.

このことから、どちらの図においても、_____

なので、 $\triangle PAC$ と $\triangle PDB$ は______である.

よって, PA: PD = PC: _____

したがって、PA·PB = PC·PD

6.2 方べきの定理 ver2

Proof.

AT と BT を線分で結ぶと, \triangle PAT と \triangle PTB において, T が円と 直線の接点なので,

∠ATP = ∠_____

さて, 角 P は共通なので,

____により,

よって, よって, PA: PT = PT: _____

したがって, $PA \cdot PB = PT^2$

(1) 辺 AB と辺 CD の交点を O とする. AO= 2, BO= 3, DO= 4 のとき, CO の長さ.

(3) CP= 3, DC= 4 のとき, AP の長さ.

(4) CD= 3, AP= 2 のとき, CP の長さ.

(5) AB=2x, BP=3, CD=6, CP=4 のとき, x の値.

7 2 つの円の位置関係

(1)

(2)

(3)

(4)

(5)

(1) 円 O の半径を 4, 円 O' の半径を 2 とする. 図中において, AB の距離を 8 とする. OO' の距離を求めよ.

(2) 円 O の半径を 4, 円 O' の半径を 3 とする. 図中において, OO' の距離を 8 とする. AB の距離を求めよ.

(3) 円 O の半径を 4, 円 O'の半径を 5 とする. OO'の距離を 6 とする. AB の距離を求めよ.