Procedure in Classification 1/3

- 1. Build a classifier from Training data (observed data)
- 2. Use classifier on unseen data

Training data: examples with label

Unseen data: examples without label

Apply to any classifier

Procedure in Classification 2/3

1. Build a classifier from Training data (observed data)

Procedure in Classification 3/3

2. Use classifier on unseen data

YES

>40	medium	yes	fair

Classifier models

• ID3: A decision tree

• Naïve Bayesian: Probabilities & Gaussian parameters

• KNN: Training examples and K

Testing a classifier 1/2

ID3 Classifier

	: - 1:
prea	ictions

				-		
<=30	high	no	fair		yes	
<=30	high	no	excellent		no	
3140	high	no	fair		yes	
>40	medium	no	fair		ves	
>40	low	yes	fair		no	
>40	low	yes	excellent		no	
3140	low	yes	excellent		ves	
<=30	medium	no	fair		yes	
<=30	low	yes	fair		yes	
>40	medium	yes	fair		yes	
<=30	medium	yes	excellent		yes	
3140	medium	no	excellent		yes	
3140	high	yes	fair		yes	
>40	medium	no	excellent		no	

Testing a classifier 2/2

Label (actual data)	Prediction (output of classifier)
No	No
No	Yes
Yes	Yes
Yes	Yes
Yes	No
No	No
Yes	Yes
No	Yes
Yes	Yes
No	No

- 3 errors (out of 10)
- →70% examples are classified correctly

Binary classifier vs Multi-classes classifier

Confusion matrix

	Prediction			
Actual		Yes	No	
	Yes			
	No			

		Prediction				
		Cinema	Tennis	Shopping	Stay-in	
Actual	Cinema					
	Tennis					
	Shopping					
	Stay-in					

Example of measures

For each class:

In average:

Precision, Recall, F1, ...Precision= (101+98+58+198) /(Sum(Sum(Columns)))

		Prediction				
		Cinema	Tennis	Shopping	Stay-in	
Actual	Cinema	101	5	3	7	
	Tennis	23	98	12	16	
	Shopping	12	11	58	5	
	Stay-in	8	9	7	198	

Next exercise 1/2

- Conduct in a group (3 students)
- Given a labeled (modified) dataset, evaluate some classifiers using 5-folds cross validation
 - Build 5 classifiers
 - Record the performance
 - Training time
 - Prediction time
 - Precision, Recall, F1
 - in average
 - on each Class
 - Write a report

Next exercise 2/2

- Report
 - The purposes of the report ?
 - E.g., to evaluate the performance of different classifiers
 - Summary of selected classifiers
 - E.g., KNN: A simple kernel method that classifies examples on the basis of their similarity
 - (Optional): advantages and disadvantages of classifiers (in theory)
 - The experiment
 - How?
 - E.g., data split, computer
 - Result:
 - Description, analysis, discussion
 - Table, graph
 - Conclusion