Theory of Computation

(Context-Free Grammars)

Rezaul Chowdhury (Slides by Pramod Ganapathi)

Department of Computer Science State University of New York at Stony Brook Fall 2021

Contents

Contents

- Context-Free Grammars (CFG)
- Context-Free Languages
- Pushdown Automata (PDA)
- Transformations
- Pumping Lemma

Context-Free Art! (Video)

Context-Free Art! (Generator)

Context-Free Grammars (CFG)

Computer program compilation

C++ program:

```
#include <iostream>
    using namespace std;
    int main()
4.
    {
        if (true)
5.
6.
            cout << "Hi 1";
8.
            else
9.
                cout << "Hi 2";
10
        return 0;
11.
12.
```

C++ program:

```
#include <iostream>
    using namespace std;
3.
    int main()
    {
5.
        if (true)
            cout << "Hi 1";
8
            else
                cout << "Hi 2";
9.
10
        return 0;
11.
12.
```

Computer program compilation

C++ program:

```
#include <iostream>
    using namespace std;
    int main()
4.
    {
        if (true)
5.
6.
            cout << "Hi 1";
8.
            else
                cout << "Hi 2";
9.
10
        return 0;
11.
12.
```

Output:

```
error: expected '}' before 'else'
```

C++ program:

```
#include <iostream>
    using namespace std;
3.
    int main()
    {
5.
        if (true)
            cout << "Hi 1";
            else
8
                cout << "Hi 2";
9.
10
        return 0;
11.
12.
```

Output:

Hi 1

Computer program compilation

C++ program:

```
#include <iostream>
    using namespace std;
    int main()
    {
        if (true)
5
            cout << "Hi 1";
            else
8
                cout << "Hi 2";
9.
10
11.
        return 0:
12.
```

C++ program:

```
#include <iostream>
    using namespace std;
3.
    int main()
5
        if (true)
            cout << "Hi 1";
            else
                cout << "Hi 2";
10
11.
        return 0:
12.
```

Output:

```
expected '}' before 'else'
```

Output:

Hi 1

- DFA cannot check the syntax of a computer program.
- We need context-free grammars a computational model more powerful than finite automata to check the syntax of most structures in a computer program.

Construct CFG for $L = \{a^n b^n \mid n \ge 0\}$

Problem

 Construct a CFG that accepts all strings from the language $L = \{a^nb^n \mid n \geq 0\}$

Construct CFG for $L = \{a^n b^n \mid n \ge 0\}$

Problem

 Construct a CFG that accepts all strings from the language $L=\{a^nb^n\mid n\geq 0\}$

Solution

- ullet Language $L = \{\epsilon, ab, aabb, aaabbb, aaaabbbb, \ldots\}$
- ullet CFG G.

$$S \to aSb$$

$$S \to \epsilon$$

Construct CFG for $L = \{a^n b^n \mid n > 0\}$

Solution (continued)

- CFG G.
 - $S \to aSb \mid \epsilon$
- Accepting ϵ .
 - $S \Rightarrow \epsilon \quad (:: S \rightarrow \epsilon)$
- Accepting ab.
 - $S \Rightarrow aSb \qquad (:: S \rightarrow aSb)$
 - $\Rightarrow ab \quad (:: S \to \epsilon)$
- Accepting aabb. $S \Rightarrow aSb \qquad (:: S \rightarrow aSb)$
 - $\Rightarrow aaSbb$ (:: $S \rightarrow aSb$)
 - $\Rightarrow aabb \quad (:: S \to \epsilon)$
- Accepting aaabbb. $S \Rightarrow aSb \qquad (\because S \rightarrow aSb)$
 - $\Rightarrow aaSbb$ $(:: S \rightarrow aSb)$ $\Rightarrow aaaSbbb$ (:: $S \rightarrow aSb$)
 - $\Rightarrow aaabbb \quad (:: S \rightarrow \epsilon)$

Construct CFGs

Problems

 ${\it Construct\ CFGs\ to\ accept\ all\ strings\ from\ the\ following\ languages:}$

- $R = a^*$
- \bullet $R = a^+$
- $R = a^*b^*$
- $R = a^+b^+$
- $\bullet \ R = a^* \cup b^*$
- $R = (a \cup b)^*$
- $R = a^*b^*c^*$

Construct CFG for palindromes over $\{a, b\}$

Problem

 Construct a CFG that accepts all strings from the language $L=\{w\mid w=w^R \text{ and } \Sigma=\{a,b\}\}$

Construct CFG for palindromes over $\{a, b\}$

Problem

• Construct a CFG that accepts all strings from the language $L=\{w\mid w=w^R \text{ and } \Sigma=\{a,b\}\}$

Solution

- Language $L = \{\epsilon, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, baab, bbbb, \ldots\}$
- CFG G.

$$S \to aSa \mid bSb \mid a \mid b \mid \epsilon$$

Construct CFG for palindromes over $\{a, b\}$

 \triangleright 1 step

 \triangleright 2 steps

 \triangleright 2 steps

 \triangleright 3 steps

Solution (continued)

- CFG G. $S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$
- Accepting ϵ . $S \Rightarrow \epsilon$ Accepting a. $S \Rightarrow a$ Accepting b. $S \Rightarrow b$
- Accepting aa. $S \Rightarrow aSa \Rightarrow aa$ Accepting bb. $S \Rightarrow bSb \Rightarrow bb$
- Accepting aaa. $S \Rightarrow aSa \Rightarrow aaa$ Accepting aba. $S \Rightarrow aSa \Rightarrow aba$ Accepting bab. $S \Rightarrow bSb \Rightarrow bab$

Accepting bbb. $S \Rightarrow bSb \Rightarrow bbb$

- Accepting aaaa. $S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aaaa$ Accepting abba. $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$ Accepting baab. $S \Rightarrow bSb \Rightarrow baSab \Rightarrow baab$
 - Accepting bbbb. $S \Rightarrow bSb \Rightarrow bbSbb \Rightarrow bbbb$

Construct CFG for non-palindromes over $\{a, b\}$

Problem

• Construct a CFG that accepts all strings from the language $L=\{w\mid w\neq w^R \text{ and } \Sigma=\{a,b\}\}$

Construct CFG for non-palindromes over $\{a, b\}$

Problem

• Construct a CFG that accepts all strings from the language $L=\{w\mid w\neq w^R \text{ and } \Sigma=\{a,b\}\}$

Solution

- Language $L = \{ab, ba, aab, abb, baa, bba, \ldots\}$
- CFG *G*.

$$S \rightarrow aSa \mid bSb \mid aAb \mid bAa$$

$$A \to Aa \mid Ab \mid \epsilon$$

Construct CFG for non-palindromes over $\{a, b\}$

Solution (continued)

• CFG *G*.

$$S \rightarrow aSa \mid bSb \mid aAb \mid bAa$$

$$A \rightarrow Aa \mid Ab \mid \epsilon$$

• Accepting *abbbbaaba*.

$$S \Rightarrow aSa$$

$$\Rightarrow abSba$$

$$\Rightarrow abbAaba$$

$$\Rightarrow abbAaaba$$

$$\Rightarrow abbAbaaba$$

$$\Rightarrow abbAbbaaba$$

$$\Rightarrow abbbbaaba$$

What is a context-free grammar (CFG)?

- Grammar = A set of rules for a language
- Context-free = LHS of productions have only 1 nonterminal

Definition

A context-free grammar (CFG) G is a 4-tuple

$$G = (N, \Sigma, S, P)$$
, where,

- 1. *N*: A finite set (set of nonterminals/variables).
- 2. Σ : A finite set (set of terminals).
- 3. $P: A \text{ finite set of productions/rules of the form } A \to \alpha$, $A \in N, \alpha \in (N \cup \Sigma)^*$. $\triangleright \text{ Time (computation)}$
- 4. S: The start nonterminal (belongs to N).

Derivation, acceptance, and rejection

Definitions

• Derivation.

$$\alpha A \gamma \Rightarrow \alpha \beta \gamma \qquad (:: A \to \beta)$$

Acceptance.

G accepts string w iff

$$S \Rightarrow_G^* w$$

• Rejection.

G rejects string w iff

$$S \not\Rightarrow_G^* w$$

What is a context-free language (CFL)?

Definition

- If $G=(N,\Sigma,S,P)$ is a CFG, the language generated by G is $L(G)=\{w\in\Sigma^*\mid S\Rightarrow_G^*w\}$
- A language L is a context-free language (CFL) if there is a CFG G with L=L(G).

Construct CFG for $L = \{w \mid n_a(w) = n_b(w)\}$

Problem

• Construct a CFG that accepts all strings from the language $L = \{w \mid n_a(w) = n_b(w)\}$

Construct CFG for $L = \{w \mid n_a(w) = n_b(w)\}$

Problem

• Construct a CFG that accepts all strings from the language $L = \{w \mid n_a(w) = n_b(w)\}$

Solution

- $\bullet \ \mathsf{Language} \ L = \{\epsilon, ab, ba, ba, aabb, abab, abba, bbaa, \ldots\}$
- CFGs.
 - 1. $S \rightarrow SaSbS \mid SbSaS \mid \epsilon$
 - 2. $S \rightarrow aSbS \mid bSaS \mid \epsilon$
 - 3. $S \rightarrow aSb \mid bSa \mid SS \mid \epsilon$
- Derive the following 4-letter strings from G.
 aabb, abab, abba, bbaa, baba, baab
- Write G as a 4-tuple.
- What is the meaning/interpretation/logic of the grammar?

Construct CFGs

Problem

Construct CFGs that accepts all strings from the following languages

- 1. $L = \{ w \mid n_a(w) > n_b(w) \}$
- 2. $L = \{ w \mid n_a(w) = 2n_b(w) \}$
- 3. $L = \{ w \mid n_a(w) \neq n_b(w) \}$

Construct CFGs

Problem

Construct CFGs that accepts all strings from the following languages

- 1. $L = \{ w \mid n_a(w) > n_b(w) \}$
- 2. $L = \{w \mid n_a(w) = 2n_b(w)\}$
- 3. $L = \{ w \mid n_a(w) \neq n_b(w) \}$

Solutions

- 1. $S \rightarrow aS \mid bSS \mid SSb \mid SbS \mid a$
- 2. $S \rightarrow SS \mid bAA \mid AbA \mid AAb \mid \epsilon$ $A \rightarrow aS \mid SaS \mid Sa \mid a$
- 3. ?

Union, concatenation, and star are closed on CFL's

Properties

• If L_1 and L_2 are context-free languages over an alphabet Σ , then $L_1 \cup L_2$, L_1L_2 , and L_1^* are also CFL's.

Union, concatenation, and star are closed on CFL's

Properties

• If L_1 and L_2 are context-free languages over an alphabet Σ , then $L_1 \cup L_2$, L_1L_2 , and L_1^* are also CFL's.

Construction

Let $G_1 = (N_1, \Sigma, S_1, P_1)$ be CFG for L_1 .

Let $G_2 = (N_2, \Sigma, S_2, P_2)$ be CFG for L_2 .

• Union.

Let $G_u = (N_u, \Sigma, S_u, P_u)$ be CFG for $L_1 \cup L_2$.

$$N_u = N_1 \cup N_2 \cup \{S_u\}; P_u = P_1 \cup P_2 \cup \{S_u \to S_1 \mid S_2\}$$

Concatenation.

Let $G_c = (N_c, \Sigma, S_c, P_c)$ be CFG for L_1L_2 .

$$N_u = N_1 \cup N_2 \cup \{S_c\}; P_c = P_1 \cup P_2 \cup \{S_c \to S_1 S_2\}$$

• Kleene star.

Let $G_s = (N_s, \Sigma, S_s, P_s)$ be CFG for L_1^* .

$$N_s = N_1 \cup \{S_s\}; P_s = P_1 \cup \{S_s \to S_s S_1 \mid \epsilon\}$$

Union is closed on CFL's

Problem

- ullet If L_1 and L_2 are CFL's then $L_3=L_1\cup L_2$ is a CFL.
- If L_1 and $L_3 = L_1 \cup L_2$ are CFL's, is L_2 a CFL?

Union is closed on CFL's

Problem

- ullet If L_1 and L_2 are CFL's then $L_3=L_1\cup L_2$ is a CFL.
- If L_1 and $L_3 = L_1 \cup L_2$ are CFL's, is L_2 a CFL?

Solution

ullet L_2 may or may not be a CFL.

$$L_1 = \Sigma^*$$

$$L_3 = L_1 \cup L_2 = \Sigma^*$$

$$\triangleright$$
 CFL

$$L_2 = \{a^n \mid n \text{ is prime}\}$$

Reversal is closed on CFL's

Property

 \bullet If L is a CFL, then L^R is a CFL.

Reversal is closed on CFL's

Property

• If L is a CFL, then L^R is a CFL.

Construction

- Let $G=(N,\Sigma,S,P)$ be CFG for L. Let $G_r=(N,\Sigma,S,P_r)$ be CFG for L^R . Then
- Reversal.

 $P_r = \text{productions from } P \text{ such that all symbols on the right hand side of every production is reversed.}$

i.e., If $A \to \alpha$ is in P, then $A \to \alpha^R$ is in P_r

• Example.

Grammar for accepting L is $S \to aSb \mid ab$.

Grammar for accepting L^R is $S \to bSa \mid ba$.

Intersection is not closed on CFL's

Problem

ullet Show that L_1,L_2 are CFL's and $L=L_1\cap L_2$ is a non-CFL.

$$\begin{split} L &= \{a^i b^j c^k \mid i = j \text{ and } j = k\} \\ &= \{a^i b^i c^k \mid i, k \ge 0\} \cap \{a^i b^j c^j \mid i, j \ge 0\} \\ &= L_1 \cap L_2 \end{split}$$

Intersection is not closed on CFL's

Problem

ullet Show that L_1,L_2 are CFL's and $L=L_1\cap L_2$ is a non-CFL.

$$L = \{a^i b^j c^k \mid i = j \text{ and } j = k\}$$

= $\{a^i b^i c^k \mid i, k \ge 0\} \cap \{a^i b^j c^j \mid i, j \ge 0\}$
= $L_1 \cap L_2$

Solution

- L_1 is a CFL. $L_1 = \{a^i b^i c^k \mid i, k \ge 0\} = \{a^i b^i \mid i \ge 0\} \{c^k \mid k \ge 0\}$ $= L_3 L_4 = \text{CFL} \qquad (\because L_3, L_4 \text{ are CFL's})$
- L_2 is a CFL. $L_2 = \{a^i b^j c^j \mid i, j \ge 0\} = \{a^i \mid i \ge 0\} \ \{b^j c^j \mid j \ge 0\}$ $= L_5 L_6 = \mathsf{CFL} \qquad (\because L_5, L_6 \text{ are CFL's})$
- L is a non-CFL.
 Use pumping lemma for CFL's.

Pumping property of context-free languages

If L is a CFL, then there exists a $p\in\mathbb{N}$ (called the pumping length of L) such that every $s\in L$ with $|s|\geq p$ can be written as

$$s = u v x y z$$

with substrings u, v, x, y, and z, where

- $|vy| \geq 1$,
- $|vxy| \leq p$, and
- $uv^ixy^iz \in L$ for all integers $i \geq 0$.

Complementation is not closed on CFL's

Problem

• Show that complementation is not closed on CFL's.

Complementation is not closed on CFL's

Problem

Show that complementation is not closed on CFL's.

Solution

Proof by contradiction.

- Suppose complementation is closed under CFL's. i.e., if L is a CFL, then \bar{L} is a CFL.
- Consider the equation $L_1 \cap L_2 = (\overline{L_1} \cup \overline{L_2})$. Closure on complementation implies closure on intersection.
- But, intersection is not closed on CFL's.
- Contradiction!
- Hence, complementation is not closed on CFL's.

Complementation is not closed on CFL's

Problem

 \bullet Show that \bar{L} is a CFL and L is a non-CFL.

$$\bar{L} = \Sigma^* - \{ww \mid w \in \Sigma^*\} = \Sigma^* - L$$

Complementation is not closed on CFL's

Problem

ullet Show that $ar{L}$ is a CFL and L is a non-CFL.

$$\bar{L} = \Sigma^* - \{ww \mid w \in \Sigma^*\} = \Sigma^* - L$$

Solution

ullet $ar{L}$ is a CFL.

$$S \to A \mid B \mid AB \mid BA$$

$$A \to EAE \mid a$$

$$B \to EBE \mid b$$

$$E \rightarrow a \mid b$$

Why does this grammar work?

ullet L is a non-CFL.

Use pumping lemma for CFL's.

Set difference is not closed on CFL's

Problem

• Show that set difference is not closed on CFL's.

Set difference is not closed on CFL's

Problem

Show that set difference is not closed on CFL's.

Solution

Proof by contradiction.

- Suppose set difference is closed under CFL's. i.e., if L_1, L_2 are CFL's, then $L_1 L_2$ is a CFL.
- Consider the equation $L_1 \cap L_2 = L_1 (L_1 L_2)$. Closure on set difference implies closure on intersection.
- But, intersection is not closed on CFL's.
- Contradiction!
- Hence, set difference is not closed on CFL's.

Summary: Closure properties of CFL's

Operation	Closed on CFL's?
Union $(L_1 \cup L_2)$	✓
Concatenation (L_1L_2)	✓
Kleene star (L^*)	✓
Reversal (L^R)	✓
Intersection $(L_1 \cap L_2)$	Х
Complementation $(ar{L})$	X
Set difference (L_1-L_2)	X

Problem

 \bullet Construct a CFG that accepts all strings from the language $L = \{a^ib^jc^k \mid j=i+k\}$

Problem

 \bullet Construct a CFG that accepts all strings from the language $L=\{a^ib^jc^k\mid j=i+k\}$

Solution

- Language $L = \{\epsilon, ab, bc, a^2b^2, b^2c^2, ab^2c, ...\}$ • $L = \{a^ib^jc^k \mid j = i + k\}$
- $= \{a^i b^{i+k} c^k\} \qquad (\because \text{ substitute for } j)$
 - $=\{a^ib^ib^kc^k\}$ (:: expand)
 - $= \{a^i b^i\} \{b^k c^k\} \qquad (\because \text{ split the concatenated languages})$ = $L_1 L_2$
- Solve the problem completely by constructing CFG's for L_1 , L_2 , and then L_1L_2 .
- Divide-and-conquer. We can solve a complicated problem if we can break the problem into several simpler subproblems and solve those simpler problems.
- Construct CFG for the variant where $i \neq i + k$.

Problem

 \bullet Construct a CFG that accepts all strings from the language $L=\{a^ib^jc^k\mid j\neq i+k\}$

Problem

 Construct a CFG that accepts all strings from the language $L = \{a^i b^j c^k \mid i \neq i + k\}$

Solution

- Language $L = \{a, b, c, ac, a^2, b^2, c^2, \ldots\}$
- $L = \{a^i b^j c^k \mid j \neq i + k\}$ $= \{a^i b^j c^k \mid i > (i+k)\} \cup \{a^i b^j c^k \mid i < (i+k)\}$ $=L_1\cup L_2$
- Can we represent L_1 and L_2 using simpler languages?

Solution (continued)

```
• Case 1. L_1 = \{a^i b^j c^k \mid j > i + k\}

= \{a^i b^j c^k \mid j = i + m + k \text{ and } m \ge 1\}

= \{a^i b^i + m + k c^k \mid m \ge 1\}

= \{a^i b^i \} \cdot \{b^m \mid m \ge 1\} \cdot \{b^k c^k \}

= \{a^i b^i \} \cdot \{b b^n \} \cdot \{b^k c^k \}

= L_{11} \cdot L_{12} \cdot L_{13}

We know how to construct CFG's for L_{11}, L_{12}, L_{13}
```

• Case 2.
$$L_2 = \{a^i b^j c^k \mid j < i + k\}$$

 $= \{a^i b^j c^k \mid j < i \text{ or } i \le j < i + k\}$
 $= \{a^i b^j c^k \mid j < i\} \cup \{a^i b^j c^k \mid i \le j < i + k\}$
 $= L_{21} \cup L_{22}$

How to proceed?

Solution (continued)

```
• Case 3. L_{21} = \{a^i b^j c^k \mid i < i\}
   = \{a^i b^j c^k \mid i = m + j \text{ and } m \ge 1\}
   = \{a^{m+j}b^{j}c^{k} \mid m > 1\}
   = \{a^m \mid m > 1\} \cdot \{a^j b^j\} \cdot \{c^k\}
  = L_{211} \cdot L_{212} \cdot L_{213}
   We know how to construct CFG's for L_{211}, L_{212}, L_{213}
• Case 4. L_{22} = \{a^i b^j c^k \mid i < i < i + k\}
   = \{a^i b^j c^k \mid j > i \text{ and } k > j - i\}
   = \{a^i b^{i+(j-i)} c^{(j-i)+m} \mid (j-i) > 0 \text{ and } m > 1\}
   = \{a^{i}b^{i}\} \cdot \{b^{j-i}c^{j-i} \mid (j-i) > 0\} \cdot \{c^{m} \mid m > 1\}
   = \{a^ib^i\} \cdot \{b^ic^i\} \cdot \{c^m \mid m > 1\}
   = L_{221} \cdot L_{222} \cdot L_{223}
   We know how to construct CFG's for L_{221}, L_{222}, L_{223}
```

Construct CFG for $bba(ab)^* \mid (ab \mid ba^*b)^*ba$

Problem

• Construct a CFG that accepts all strings from the language corresponding to R.E. $bba(ab)^* \mid (ab \mid ba^*b)^*ba$.

Construct CFG for $bba(ab)^* \mid (ab \mid ba^*b)^*ba$

Problem

• Construct a CFG that accepts all strings from the language corresponding to R.E. $bba(ab)^* \mid (ab \mid ba^*b)^*ba$.

Solution

- Language $L = \{ba, bba, abba, bbba, \ldots\}$ This is a regular language.
- CFG G.

$$S \rightarrow S_1 \mid S_2$$

 $S_1 \rightarrow S_1 ab \mid bba$
 $S_2 \rightarrow TS_2 \mid ba$
 $T \rightarrow ab \mid bUb$

 $U \to aU \mid \epsilon$

$$ightharpoonup$$
 Generates $ab \mid ba^*b)^*ba$
 $ightharpoonup$ Generates $ab \mid ba^*b$

 \triangleright Generates a^*

Problem

• Construct a CFG that accepts all strings accepted by the following DFA.

Problem

 Construct a CFG that accepts all strings accepted by the following DFA.

Solution

- Language $L = \{(a \mid b)^*ba\}$ \triangleright Strings ending with ba $= \{ba, aba, bba, aaba, abba, baba, bbba, \ldots\}$ This is a regular language.
- How to construct CFG for this DFA?
 Approach 1: Compute R.E. Construct CFG for the R.E.
 Approach 2: Construct CFG from the DFA using transitions.

Solution (continued)

• Idea.

For every transition $\delta(Q,a)=R$, add a production $Q\to aR$. What does this mean? Why should it work?

Solution (continued)

• Idea.

For every transition $\delta(Q,a)=R$, add a production $Q\to aR$. What does this mean? Why should it work?

• CFG. \triangleright 3 states = 3 nonterminals

$$S \to aS \mid bA$$

$$A \rightarrow bA \mid aB$$

$$B \rightarrow bA \mid aS \mid \epsilon$$

 \triangleright ϵ -production for halting state

Accepting bbaaba.

$$S \xrightarrow{b} A \xrightarrow{b} A \xrightarrow{a} B \xrightarrow{a} S \xrightarrow{b} A \xrightarrow{a} B$$

$$S \Rightarrow bA \Rightarrow bbA \Rightarrow bbaB \Rightarrow bbaaS \Rightarrow bbaabA \Rightarrow bbaabaB$$

$$\Rightarrow bbaaba$$

What is a regular grammar/language?

Definitions

- A context-free grammar $G=(N,\Sigma,S,P)$ is called a regular grammar if every production is of the form $A\to aB$ or $A\to \epsilon$, where $A,B\in N$ and $a\in \Sigma.$
- A language $L \in \Sigma^*$ is called a regular language iff L = L(G) for some regular grammar G.

Construct CFG for understanding human languages

Problem

• Construct a CFG to understand some structures in the English language.

Solution

```
CFG:
      \langle Sentence \rangle \rightarrow \langle NounPhrase \rangle \langle VerbPhrase \rangle
      \langle NounPhrase \rangle \rightarrow \langle ComplexNoun \rangle | \langle ComplexNoun \rangle \langle PrepPhrase \rangle
     \langle VerbPhrase \rangle \rightarrow \langle ComplexVerb \rangle | \langle ComplexVerb \rangle \langle PrepPhrase \rangle
      \langle \mathsf{PrepPhrase} \rangle \to \langle \mathsf{Prep} \rangle \langle \mathsf{ComplexNoun} \rangle
      \langle \mathsf{ComplexNoun} \rangle \rightarrow \langle \mathsf{Article} \rangle \langle \mathsf{Noun} \rangle
      \langle \mathsf{ComplexVerb} \rangle \to \langle \mathsf{Verb} \rangle \mid \langle \mathsf{Verb} \rangle \langle \mathsf{NounPhrase} \rangle
      \langle \mathsf{Article} \rangle \to \mathsf{a} \mid \mathsf{the}
      \langle \mathsf{Noun} \rangle 	o \mathsf{boy} \mid \mathsf{girl} \mid \mathsf{flower}
     \langle Verb \rangle \rightarrow touches \mid likes \mid sees
      \langle \mathsf{Prep} \rangle \to \mathsf{with}
```

Construct CFG for understanding human languages

Solution (continued)

```
    Accepting "a girl likes".
    ⟨Sentence⟩ ⇒ ⟨NounPhrase⟩⟨VerbPhrase⟩
    ⇒ ⟨ComplexNoun⟩⟨VerbPhrase⟩
    ⇒ ⟨Article⟩⟨Noun⟩⟨VerbPhrase⟩
    ⇒ a ⟨Noun⟩⟨VerbPhrase⟩
    ⇒ a girl ⟨VerbPhrase⟩
    ⇒ a girl ⟨ComplexVerb⟩
    ⇒ a girl ⟨Verb⟩
    ⇒ a girl likes
    Derive "a girl with a flower likes the boy".
```

CFG-based Complaint-Letter Generator!

CFG-based Fake Research Paper Generator! (no longer works)

Construct CFG for strings with valid parentheses

Problem

• Construct a CFG that accepts all strings from the language $L=\{\epsilon,(),()(),(()),()(),(()()),(()()),(()()),(()()),(()()),\dots\}$

Construct CFG for strings with valid parentheses

Problem

• Construct a CFG that accepts all strings from the language $L = \{\epsilon, (), ()(), (()), ()(), ()()), ()()), (()(), (())), (()()), (()()), ...\}$

Solution

- Applications. Compilers check for syntactic correctness in:
 - 1. Computer programs written by you that possibly contain nested code blocks with { }, (), and [].
 - 2. Web pages written by you that contain nested code blocks with <div></div>, , and
- Language $L=\{w\mid w\in\{(,)\}^*$ such that $n_{(}(w)=n_{)}(w)$ and and in any prefix $p_{i<|w|}$ of $w,\ n_{(}(p_i)\geq n_{)}(p_i)\}$
- What is the CFG?

Construct CFG for strings with valid parentheses

Solution (continued)

Multiple correct ways to write the CFG:

- 1. $S \to S(S)S \mid \epsilon$ 2. $S \to SS \mid (S) \mid \epsilon$
- 3. $S \to S(S) \mid \epsilon$
- 4. $S \rightarrow (S)S \mid \epsilon$
- 5. $S \rightarrow SR) \mid \epsilon$
 - $R \rightarrow (|RR)$
- 6. $S \rightarrow (RS \mid \epsilon)$
 - $R \rightarrow) \mid (RR$

Construct CFG for valid arithmetic expressions

Problem

• Construct a CFG that accepts all valid arithmetic expressions from $\Sigma = \{(,),+,\times,n\}$, where n represents any integer.

Construct CFG for valid arithmetic expressions

Problem

• Construct a CFG that accepts all valid arithmetic expressions from $\Sigma = \{(,),+,\times,n\}$, where n represents any integer.

Solution

- Language $L = \{15 + 85, 57 \times 3, (27 + 46) \times 10, \ldots\}$
- Abstraction: Denote n to mean any integer. Valid expressions: $(n+n)+n\times n$, etc Invalid expressions: +n, (n+)n, (), $n\times n$), etc
- Hint: Use some ideas from the parenthesis problem

Construct CFG for valid arithmetic expressions

Solution (continued)

Multiple correct ways to write the CFG:

- 1. $E \rightarrow E + E \mid E \times E \mid (E) \mid n$
- 2. $E \rightarrow E + T \mid T$ $T \rightarrow T \times F \mid F$

$$F \to (\ E\) \ |\ n$$

3.
$$E \rightarrow TE'$$

$$E' \to +TE' \mid \epsilon$$

 $T \to FT'$

$$T' \to \times FT' \mid \epsilon$$

$$F \rightarrow (E) \mid n$$

• Can you derive $(n \times n)$?

▷ expression▷ term▷ factor

What is a derivation?

Definition

 A derivation in a context-free grammar is a leftmost derivation (LMD) if, at each step, a production is applied to the leftmost variable-occurrence in the current string. A rightmost derivation (RMD) is defined similarly.

Example

• CFG: $E \rightarrow E + E \mid E \times E \mid (E) \mid n$ Accepting n + (n).

 $\mathsf{LMD} \colon E \Rightarrow E + E \Rightarrow n + E \Rightarrow n + (E) \Rightarrow n + (n)$

RMD: $E \Rightarrow E + E \Rightarrow E + (E) \Rightarrow E + (n) \Rightarrow n + (n)$

What is an ambiguous grammar?

Definition

- A context-free grammar G is ambiguous if for at least one $w \in L(G)$, w has more than one derivation tree (or, equivalently, more than one leftmost derivation).
- Intuition: A CFG is ambiguous if it generates a string in several different ways.

Problem

• Show that the following CFG is ambiguous: $E \to E + E \mid E \times E \mid (\ E\) \mid n$

Problem

• Show that the following CFG is ambiguous: $E \to E + E \mid E \times E \mid (E) \mid n$

Solution

- Consider the strings $n + n \times n$ or n + n + n. There are two derivation trees for each of the strings.
- Accepting $n + n \times n$.

LMD 1: $E \Rightarrow E + E \Rightarrow n + E \Rightarrow n + E \times E \Rightarrow n + n \times E$ $\Rightarrow n + n \times n$

LMD 2: $E \Rightarrow E \times E \Rightarrow E + E \times E \Rightarrow n + E \times E \Rightarrow n + n \times E$

 $\Rightarrow n + n \times n$

• Accepting n + n + n.

LMD 1: $E \Rightarrow E + E \Rightarrow n + E \Rightarrow n + E + E \Rightarrow n + n + E$

 $\Rightarrow n+n+n$

LMD 2: $E \Rightarrow E + E \Rightarrow E + E + E \Rightarrow n + E + E \Rightarrow n + n + E$

 $\Rightarrow n + n + n$

Solution (continued) Two derivation (or parse) trees \implies Ambiguity (Reason 1: The precedence of different operators isn't enforced.) • LMD 1: $E \Rightarrow E + E \Rightarrow n + E \Rightarrow n + E \times E \Rightarrow n + n \times E$ $\Rightarrow n + n \times n$ • LMD 2: $E \Rightarrow E \times E \Rightarrow E + E \times E \Rightarrow n + E \times E \Rightarrow n + n \times E$ $\Rightarrow n + n \times n$ E

n

n

Solution (continued) Two derivation (or pr

Two derivation (or parse) trees \implies Ambiguity

(Reason 2: Order of operators of same precedence isn't enforced.)

- LMD 1: $E \Rightarrow E + E \Rightarrow n + E \Rightarrow n + E + E \Rightarrow n + n + E$ $\Rightarrow n + n + n$
- LMD 2: $E \Rightarrow E + E \Rightarrow E + E + E \Rightarrow n + E + E \Rightarrow n + n + E$ $\Rightarrow n + n + n$

If-else ladder: Ambiguous grammar

Problem

• Show that the following CFG is ambiguous: $S \to \text{if } (E) S \mid \text{if } (E) S \text{ else } S \mid O$ where, S = statement, E = expression, O = other statement.

Solution

- Consider the string: if (e_1) if (e_2) F(); else G(); There are two derivation trees for the string.
- Can you identify the two derivation trees for the string?

If-else ladder: Ambiguous grammar

What is the output of this program?

C++ program:

```
#include <iostream>
    using namespace std;
3.
    int main()
    {
        if (true)
6.
            if (false)
7.
8.
        else
9.
             cout << "Hi!";
10.
11.
        return 0;
12.
13.
```

What is the output of this program?

C++ program:

```
#include <iostream>
    using namespace std;
3.
    int main()
    {
        if (true)
6.
             if (false)
7.
8.
        else
9.
             cout << "Hi!";
10.
11.
        return 0;
12.
13.
```

Output:

Hi!

If-else ladder: Unambiguous grammar

Problem

• Can you come up with an unambiguous grammar for the language accepted by the following ambiguous grammar? $S \to \text{if } (E) S \mid \text{if } (E) S \text{ else } S \mid O$ where, S = statement, E = expression, O = other statement.

Solution

- How do you prove that the grammar is really unambiguous?

What is an inherently ambiguous language?

Definition

• A context-free language is called inherently ambiguous if there exists no unambiguous grammar to generate the language.

What is an inherently ambiguous language?

Definition

• A context-free language is called inherently ambiguous if there exists no unambiguous grammar to generate the language.

Examples

- $\bullet \ L = \{a^ib^ic^jd^j\} \cup \{a^ib^jc^jd^i\}$

Problem

 \bullet Prove that the following grammar G generates all strings of balanced parentheses and only such strings.

$$S \to (S)S \mid \epsilon$$

Problem

• Prove that the following grammar G generates all strings of balanced parentheses and only such strings. $S \to (S)S \mid \epsilon$

Solution

- ullet L(G)= language generated by the grammar G. L= language of balanced parentheses.
- Show that L(G) = L. Two cases.
 - Case 1. Show that every string derivable from ${\cal S}$ is balanced.
 - i.e., $L(G) \subseteq L$.
 - Case 2. Show that every balanced string is derivable from S.
 - i.e., $L \subseteq L(G)$.

Solution (continued)

Case 1. Show that every string derivable from S is balanced.

Let n = number of steps in derivation.

• Basis.

The only string derivable from S in 1 step is ϵ and ϵ is balanced.

Induction.

Suppose all strings with derivation fewer than \boldsymbol{n} steps produce balanced parentheses.

Consider a LMD of at most n steps.

That derivation must be of the form

$$S \Rightarrow (S)S \Rightarrow^* (x)S \Rightarrow^* (x)y \tag{LMD}$$

Derivations of x and y take fewer than n steps.

So, x and y are balanced.

Therefore, the string (x)y must be balanced.

Solution (continued)

Case 2. Show that every balanced string is derivable from S.

Let 2n = length of a balanced string.

- Basis.
 - A 0-length string is ϵ , which is balanced.
- Induction.

Assume that every balanced string of length less than 2n is derivable from S. Consider a balanced string w of length 2n such that $n \geq 1$. String w must begin with a left parenthesis. Let (x) be the shortest nonempty prefix of w having an equal number of left and right parentheses. Then, w can be written as w = (x)y, where, both x and y are balanced. Since x and y are of length less than 2n, they are derivable from S. Thus, we can find a derivation of the form

$$S \Rightarrow (S)S \Rightarrow^* (x)S \Rightarrow^* (x)y$$
 (LMD) proving that $w = (x)y$ must also be derivable from S .

What is Chomsky normal form (CNF)?

Definition

 A context-free grammar is said to be in Chomsky normal form (CNF) if every production is of one of these three types:

 $A \to BC$ (where B,C are nonterminals and they cannot be the start nonterminal S)

 $A \rightarrow a$ (where a is a terminal symbol)

$$S \to \epsilon$$

• Why should we care for CNF?

CYK is a dynamic programming algorithm used for parsing CFGs. To use CYK on a CFG, the CFG must be in CNF. For every CFG G, there exists a CFG G^\prime in CNF such that

$$L(G') = L(G).$$

Example

 $\begin{array}{c} \bullet \ \, S \to AA \mid \epsilon \\ A \to AA \mid a \end{array}$

Algorithm rule	Before rule	After rule
1. Remove start nonterminal	$S \to ASABS$	$S_0 \to S$
from RHS		$S \to ASABS$
2. Remove productions of the	$R \to ARA$	$R \to ARA \mid AR \mid RA$
form $A \to \epsilon$	$A \to a \mid \epsilon$	$A \rightarrow a$
3. Remove productions of the	$A \rightarrow B$	$A \to CDD$
form $A \to B$	$B \to CDD$	
3. Remove productions of the	$A \rightarrow aB$	$A \to CB$
form $A \to aB$		$C \to a$
5. Remove productions of the	$A \to BCD$	$A \to BC'$
form $A \to B_1 \dots B_k$, $k > 2$		$C' \to CD$

CFG-TO-CNF(G)

- 1. Remove start nonterminal from RHS
- 2. Remove ϵ productions
- 3. Remove unit productions
- 4. Remove $A \rightarrow aB$ productions
- 5. Remove $A \to B_1 \dots B_k$, k > 2 productions

Problem

• Convert the following CFG to CNF.

$$S \to ASA \mid aB$$

$$A \to B \mid S$$

$$B \to b \mid \epsilon$$

Problem

• Convert the following CFG to CNF.

$$S \to ASA \mid aB$$

$$A \to B \mid S$$

$$B \to b \mid \epsilon$$

Solution

- ullet Start nonterminal must not appear on the right hand side $S_0 o S$
 - $S \to ASA \mid aB$

$$A \rightarrow ASA \mid aD$$

 $A \rightarrow B \mid S$

$$B \rightarrow b \mid \epsilon$$

ullet Remove $B
ightarrow \epsilon$

$$S_0 \to S$$

$$S \to ASA \mid aB \mid a$$

$$A \to B \mid S \mid \epsilon$$

$$B \to b$$

Solution (continued)

- Remove $A \to \epsilon$ $S_0 \to S$
 - $S_0 \rightarrow S$ $S \rightarrow ASA \mid SA \mid AS \mid S \mid aB \mid a$
 - $A \rightarrow B \mid S$
 - $B \rightarrow b$
- Remove $A \to B$
 - $S_0 \to S$
 - $S \rightarrow ASA \mid SA \mid AS \mid S \mid aB \mid a$

Do nothing

- $A \to S \mid b$
- $B \rightarrow b$
- ullet Remove S o S
- $S_0 o S$
 - $S \to ASA \mid SA \mid AS \mid aB \mid a$
 - $A \rightarrow S \mid b$
 - $B \to b$

Solution (continued)

- Remove $A \to S$
 - $S_0 \to S$ $S \to ASA \mid SA \mid AS \mid aB \mid a$
 - $A \to ASA \mid SA \mid AS \mid aB \mid a \mid b$
- B o b• Remove $S_0 o S$
- $S_0 \to ASA \mid SA \mid AS \mid aB \mid a$
 - $S \rightarrow ASA \mid SA \mid AS \mid aB \mid a$ $A \rightarrow ASA \mid SA \mid AS \mid aB \mid a \mid b$
 - $A \rightarrow ASA \mid SA \mid AS \mid aB \mid a \mid b$ $B \rightarrow b$
- Convert $ASA \rightarrow AA_1$ $S_0 \rightarrow AA_1 \mid SA \mid AS \mid aB \mid a$
 - $S \to AA_1 \mid SA \mid AS \mid aB \mid a$ $A \to AA_1 \mid SA \mid AS \mid aB \mid a \mid b$
 - $A_1 \to SA$ $B \to b$

Solution (continued)

- Introduce $A_2 \rightarrow a$ $S_0 \rightarrow AA_1 \mid SA \mid AS \mid A_2B \mid a$ $S \rightarrow AA_1 \mid SA \mid AS \mid A_2B \mid a$ $A \rightarrow AA_1 \mid SA \mid AS \mid A_2B \mid a \mid b$ $A_1 \rightarrow SA$ $A_2 \rightarrow a$ $B \rightarrow b$
- This grammar is now in Chomsky normal form.

What is Greibach normal form (GNF)?

Definition

 A context-free grammar is said to be in Greibach normal form (GNF) if every production is of the following type:

 $A \rightarrow aA_1A_2...A_d$ (where a is a terminal symbol and $A_1, A_2,...,A_d$ are nonterminals)

 A_1, A_2, \dots, A_d are nonterminals) $S \to \epsilon$

(Not always included)

Why should we care for GNF?

This G^\prime can be used to prove that G can be accepted by a real-time (non-deterministic) pushdown automaton (PDA).

For every CFG G, there is a CFG G' in GNF such that L(G') = L(G).

Example

- $S \to aA \mid bB$
 - $B \rightarrow bB \mid b$
 - $A \to aA \mid a$

Equivalence of different computation models

Pushdown Automata (PDA)

Pushdown automaton

Source: Wikipedia

• PDA has access to a stack of unlimited memory

What is a pushdown automaton (PDA)?

- Nondetermistic = Events cannot be determined precisely
- Pushdown = Using stack of infinite memory
- Automaton = Computing machine

What is a pushdown automaton (PDA)?

- Nondetermistic = Events cannot be determined precisely
- Pushdown = Using stack of infinite memory
- Automaton = Computing machine

Definition

```
A pushdown automaton (PDA) P is a 6-tuple
```

 $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where,

- 1. Q: A finite set (set of states).
- 2. Σ : A finite set (input alphabet).
- 3. Γ : A finite set (stack alphabet).
- 4. $\delta: Q \times \Sigma_\epsilon \times \Gamma_\epsilon \to \mathcal{P}(Q \times \Gamma_\epsilon)$ is the transition function.

- 5. q_0 : The start state (belongs to Q).
- 6. F: The set of accepting/final states, where $F \subseteq Q$.

Stack

What is a context-free language?

Definition

 \bullet A PDA $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$ accepts a string $w\in\Sigma^*$ iff

$$(q_0, w, \$) \vdash_M^* (q_f, \epsilon, \alpha)$$

 $\text{ for some }\alpha\in\Gamma^*\text{ and some }q_f\in F.$

A PDA rejects a string iff it does not accept it.

- We say that a PDA M accepts a language L if $L = \{w \mid M \text{ accepts } w\}.$
- A language is called a context-free language if some PDA accepts or recognizes it.

Problem

 \bullet Construct a PDA that accepts all strings from the language $L=\{a^nb^n\}$

Problem

 \bullet Construct a PDA that accepts all strings from the language $L=\{a^nb^n\}$

Solution

PDA()

- 1. while next input character is \boldsymbol{a} do
- 2. push a
- 3. while next input character is \boldsymbol{b} do
- 4. pop a

Solution (continued)

• Transition $(i, s_1 \rightarrow s_2)$ means that when you see input character i, replace s_1 with s_2 as the top of stack.

Solution (continued)

• PDA P is specified as Set of states is $Q=\{q_0,q_1,q_2,q_3\}$ Set of input symbols is $\Sigma=\{a,b\}$ Set of stack symbols is $\Gamma=\{a,\$\}$ Start state is q_0 Set of accept states is $F=\{q_0,q_3\}$ Transition function δ is: (Empty cell is ϕ)

Input	a		b		ϵ				
Stack	a	\$	ϵ	a	\$	ϵ	a	\$	ϵ
q_0									$\{(q_1,\$)\}$
q_1			$\{(q_1,a)\}$	$\{(q_2,\epsilon)\}$					
q_2				$\{(q_2,\epsilon)\}$				$\{(q_3,\epsilon)\}$	
q_3									

Solution (continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Step	State	Stack	Input	Action
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	q_0		aaabbb	push \$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	q_1	\$	aaabbb	push a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	q_1	\$a	aabbb	$push\ a$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	q_1	\$aa	abbb	$push\ a$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	q_1	\$aaa	bbb	$pop\ a$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	q_2	\$aa	bb	$pop\ a$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	q_2	\$a	b	$pop\ a$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	q_2	\$		pop \$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	q_3			accept
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Step	State	Stack	Input	Action
$egin{array}{cccccccccccccccccccccccccccccccccccc$	1	q_0		aababb	push \$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	2	q_1	\$	aababb	$push\ a$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	3	q_1	a	ababb	$push\ a$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	q_1	\$aa	babb	$pop\ a$
- 1 4φ	5	q_2	\$a	abb	crash
7 q_{ϕ} $\$a$ b	6	q_{ϕ}	\$a	bb	
	7	q_{ϕ}	\$a	b	
8 q_{ϕ} \$ a reject	8	q_{ϕ}	\$a		reject

Construct PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$

Problem

 • Construct a PDA that accepts all strings from the language $L = \{ww^R \mid w \in \{a,b\}^*\}$

Construct PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$

Problem

• Construct a PDA that accepts all strings from the language $L = \{ww^R \mid w \in \{a,b\}^*\}$

Solution

PDA()

- 1. while next input character is a or b do
- 2. push the symbol
- 3. Nondeterministically guess the mid point of the string
- 4. while next input character is a or b do
- 5. pop the symbol

Construct PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$

Problem

 Construct a PDA that accepts all strings from the language $L = \{ww^R \mid w \in \{a,b\}^*\}$

Solution (continued)

$$a, \epsilon \to a \qquad a, a \to \epsilon \\ b, \epsilon \to b \qquad b, b \to \epsilon$$

$$\rightarrow q_0 \qquad \epsilon, \epsilon \to \$ \qquad q_1 \qquad \epsilon, \epsilon \to \epsilon \qquad q_2 \qquad \epsilon, \$ \to \epsilon \qquad q_3$$

Construct PDA for $L = \{a^i b^j c^k \mid i = j \text{ or } i = k\}$

Problem

• Construct a PDA that accepts all strings from the language $L=\{a^ib^jc^k\mid i=j \text{ or } i=k\}$

Construct PDA for $L = \{a^i b^j c^k \mid i = j \text{ or } i = k\}$

Problem

• Construct a PDA that accepts all strings from the language $L=\{a^ib^jc^k\mid i=j \text{ or } i=k\}$

Solution

PDA()

- 1. while next input character is \boldsymbol{a} do push \boldsymbol{a}
- 2. Nondeterministically guess whether a's = b's or a's = c's

Case 1. a's = b's.

- 1. while next input character is b do pop a
- 2. while next input character is c do nothing

Case 2. a's = c's.

- 1. while next input character is b do nothing
- 2. while next input character is c do pop a

Construct PDA for $L = \{a^i b^j c^k \mid i = j \text{ or } i = k\}$

Non-Context-Free Languages

Pumping lemma for context-free languages

Theorem

Suppose L is a context-free language over alphabet Σ . Then there is a natural number p (called the pumping length of L) so that for every long string $s \in L$ satisfying $|s| \geq p$, the string s can be split into five substrings $u,v,x,y,z \in \Sigma^*$, i.e., s=uvxyz, such that the following three conditions are true.

- $|vxy| \leq p$.
- $|vy| \geq 1$.
- ullet For every $i\geq 0$, the string uv^ixy^iz also belongs to L.

Problem

 \bullet Prove that $L=\{a^nb^nc^n\}$ is not CFL.

Problem

• Prove that $L = \{a^n b^n c^n\}$ is not CFL.

Solution

- Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $s = a^p b^p c^p$.
- Let s = uvxyz where $|vxy| \le p$ and $|vy| \ge 1$.
- Then uv^ixy^iz must belong to L for all $i \geq 0$.
- We will show that $uxz \notin L$ for all possible cases.
- Three cases:
 - Case 1. vxy consists of exactly 1 symbol (a's or b's or c's).
 - Case 2. vxy consist of exactly 2 symbols (ab's or bc's).
 - Case 3. vxy consist of exactly 3 symbols (abc's).

This case is impossible. Why?

Solution (continued)

Case 1. vxy consists of exactly 1 symbol (a's or b's or c's).

Three subcases:

ullet Subcase $i.\ vxy$ consists only of a's.

Let
$$s = uvxyz = a^pb^pc^p$$
.

uxz is not in L.

Reason: $uxz = a^{p-(|v|+|y|)}b^pc^p \notin L$ as (|v|+|y|) > 0. uxz has fewer a's than b's or c's.

- Subcase ii. vxy consists only of b's.
 Similar to Subcase i.
- Subcase iii. vxy consists only of c's.
 Similar to Subcase i.

Solution (continued)

Case 2. vxy consist of exactly 2 symbols (ab's or bc's).

Two subcases:

ullet Subcase $i.\ vxy$ consist only of a's and b's.

Let $s = uvxyz = a^pb^pc^p$.

uxz is not in L.

Reason: $uxz = a^{k_1}b^{k_2}c^p \notin L$

where $k_1 + k_2 = 2p - (|v| + |y|) < 2p$ as (|v| + |y|) > 0.

uxz has either fewer a's or fewer b's than c's.

Subcase ii. vxy consist only of b's and c's.
 Similar to Subcase i.

$L = \{ww \mid w \in \{a, b\}^*\}$ is a non-CFL

Problem

 $\bullet \ \, {\rm Prove \ that} \,\, L = \{ww \mid w \in \{a,b\}^*\} \,\, {\rm is \ not \ CFL}.$

$$L = \{ww \mid w \in \{a, b\}^*\}$$
 is a non-CFL

Problem

• Prove that $L = \{ww \mid w \in \{a, b\}^*\}$ is not CFL.

- ullet Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $s = a^p b^p a^p b^p$.
- Let s = uvxyz where $|vxy| \le p$ and $|vy| \ge 1$.
- Then uv^ixy^iz must belong to L for all $i \geq 0$.
- We will show that $uxz \notin L$ for all possible cases.
- Two cases:
 - Case 1. vxy consists of exactly 1 symbol (a's or b's).
 - Case 2. vxy consist of exactly 2 symbols (ab's or ba's).

$$L = \{ww \mid w \in \{a, b\}^*\}$$
 is a non-CFL

Solution (continued)

Case 1. vxy consists of exactly 1 symbol (a's or b's).

Three subcases:

ullet Subcase $i.\ vxy$ consists only of a's.

Let $s = uvxyz = a^pb^pa^pb^p$.

uxz is not in L.

Reason: $uxz = a^{p-(|v|+|y|)}b^pa^pb^p \notin L$ as (|v|+|y|) > 0. uxz has fewer a's than b's.

Subcase ii. vxy consists only of b's.
 Similar to Subcase i.

$$L = \{ww \mid w \in \{a, b\}^*\}$$
 is a non-CFL

Solution (continued)

Case 2. vxy consist of exactly 2 symbols (ab's or ba's).

Two subcases:

 \bullet Subcase $i.\ vxy$ consist only of a 's and b 's.

Let $s = uvxyz = a^pb^pa^pb^p$.

uxz is not in L.

Reason: $uxz = a^{k_1}b^{k_2}a^pb^p \not\in L$

where $k_1 + k_2 = 2p - (|v| + |y|) < 2p$ as (|v| + |y|) > 0.

uxz is not in the form of ww.

Subcase ii. vxy consist only of b's and a's.
 Similar to Subcase i.

$L = \{a^n \mid n \text{ is a square}\}\$ is a non-CFL

Problem

• Prove that $L = \{a^n \mid n \text{ is a square}\}$ is not CFL.

$L = \{a^n \mid n \text{ is a square}\}$ is a non-CFL

Problem

• Prove that $L = \{a^n \mid n \text{ is a square}\}$ is not CFL.

- ullet Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $s = a^{p^2}$.
- Let s = uvxyz where $|vxy| \le p$ and $|vy| \ge 1$.
- Then uv^ixy^iz must belong to L for all $i \geq 0$.
- $\begin{array}{l} \bullet \ \, \mathrm{But}, \ uv^2xy^2z\not\in L. \\ \mathrm{Reason:} \ \, \mathrm{Let} \ \, |vy|=k. \ \, \mathrm{Then}, \ k\in[1,p]. \\ uv^2xy^2z=a^{p^2+|vy|}=a^{p^2+k}\not\in L. \end{array}$
 - Because, $p^2 < p^2 + k < (p+1)^2$ as $k \in [1, p]$.
- Contradiction! Hence, L is not CFL.

$L = \{a^n \mid n \text{ is a power of 2}\}\$ is a non-CFL

Problem

 $\bullet \ \, \text{Prove that} \,\, L = \{a^n \mid n \text{ is a power of 2}\} \,\, \text{is not CFL}.$

$L = \{a^n \mid n \text{ is a power of 2}\}\$ is a non-CFL

Problem

• Prove that $L = \{a^n \mid n \text{ is a power of 2}\}$ is not CFL.

- ullet Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $s = a^{2^m}$, where $2^m > p$.
- $\bullet \ \ \text{Let} \ s = uvxyz \ \text{where} \ |vxy| \leq p \ \text{and} \ |vy| \geq 1.$
- Then uv^ixy^iz must belong to L for all $i \geq 0$.
- But, $uv^2xy^2z \not\in L$. Reason: Let |vy|=k, where $k\in [1,p]$. Then, $uv^2xy^2z=a^{2^m+k}\not\in L$. Because, $2^m<2^m+k<2^{m+1}$.
- Contradiction! Hence, L is not CFL.

$L = \{a^n \mid n \text{ is prime}\}$ is a non-CFL

Problem

 $\bullet \ \, {\rm Prove \ that} \,\, L = \{a^n \mid n \ \, {\rm is \ prime}\} \,\, {\rm is \ not \ CFL}.$

$L = \{a^n \mid n \text{ is prime}\}$ is a non-CFL

Problem

• Prove that $L = \{a^n \mid n \text{ is prime}\}$ is not CFL.

- ullet Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $s=a^m$, where m is a prime and $m \geq p$.
- Let s = uvxyz where $|vxy| \le p$ and $|vy| \ge 1$.
- Then uv^ixy^iz must belong to L for all $i \geq 0$.
- $\begin{array}{l} \bullet \ \, \text{But}, \ uv^{m+1}xy^{m+1}z\not\in L. \\ \text{Reason: Let } |vy|=k. \ \, \text{Then, } k\in [1,p]. \\ uv^{m+1}xy^{m+1}z=a^{m+m|vy|}=a^{m+mk}=a^{m(k+1)}\not\in L. \end{array}$
- Contradiction! Hence, L is not CFL.

Membership problem: A decision problem on CFL's

Problem

ullet Given a CFG G and a string w, is $w\in L(G)$?

Membership problem: A decision problem on CFL's

Problem

ullet Given a CFG G and a string w, is $w \in L(G)$?

Solution

- This is a difficult problem. Why?
 Nondeterminism cannot be eliminated unlike in finite automata.
- Algorithmically solvable.
 CYK algorithm (for gran

CYK algorithm (for grammars in CNF)

Earley parser

GLR parser

More decision problems involving CFL's

Decision problems

Algorithmically solvable.

- Given a CFG G, is L(G) nonempty?
- Given a CFG G, is L(G) infinite?
- \bullet Given a CFG G, is G a regular grammar?
- ullet Given a CFG G, is L(G) a regular language?

Algorithmically unsolvable.

- Given a CFG G, is $L(G) = \Sigma^*$?
- Given a CFG G, is G ambiguous?
- Given a CFG G, is L(G) inherently ambiguous?
- Given two CFG's G_1 and G_2 , is $L(G_1) = L(G_2)$?
- Given two CFG's G_1 and G_2 , is $L(G_1) \subseteq L(G_2)$?
- Given two CFG's G_1 and G_2 , is $L(G_1) \cap L(G_2)$ nonempty?