Phương pháp chứng minh

Bùi Việt Dũng

Ngày 31 tháng 5 năm 2022

Một mệnh đề là một câu khẳng định hoặc câu phủ định. Một mệnh đề chỉ có thể **Đúng** hoặc **Sai**, nhưng không thể vừa **Đúng** vừa **Sai**.

Một mệnh đề là một câu khẳng định hoặc câu phủ định. Một mệnh đề chỉ có thể **Đúng** hoặc **Sai**, nhưng không thể vừa **Đúng** vừa **Sai**. Ví du:

Một mệnh đề là một câu khẳng định hoặc câu phủ định. Một mệnh đề chỉ có thể **Đúng** hoặc **Sai**, nhưng không thể vừa **Đúng** vừa **Sai**.

Ví dụ:

Một mệnh đề là một câu khẳng định hoặc câu phủ định. Một mệnh đề chỉ có thể **Đúng** hoặc **Sai**, nhưng không thể vừa **Đúng** vừa **Sai**.

Ví dụ:

- "1+1=2"
- "4 không là số chẵn"

Một mệnh đề là một câu khẳng định hoặc câu phủ định. Một mệnh đề chỉ có thể **Đúng** hoặc **Sai**, nhưng không thể vừa **Đúng** vừa **Sai**.

Ví dụ:

- "1+1=2"
- "4 không là số chẵn"
- "Anh có yêu em không?" ← không phải mệnh đề

Kí hiệu mệnh đề

Ta có thể kí hiệu mệnh đề bằng các chữ cái P: "1+1=2"

Nếu mệnh đề chứa biến, ta kí hiệu như sau:

P(x): "x chia hết cho 2"

Phủ định (Not)

Ta kí hiệu mệnh đề phủ định của mệnh đề P là \overline{P}

Phủ định (Not)

Ta kí hiệu mệnh đề phủ định của mệnh đề P là \overline{P} Bảng chân trị:

Ρ	\overline{P}
0	1
1	0

Và (And)

Ρ	Q	P và Q
0	0	0
0	1	0
1	0	0
1	1	1

Và (And)

Ρ	Q	P và Q
0	0	0
0	1	0
1	0	0
1	1	1

Một số tài liệu kí hiệu mệnh đề "
$$P$$
 và Q " là " $\begin{cases} P \\ Q \end{cases}$ " hoặc " $P \wedge Q$ "

Hoặc (Or)

Ρ	Q	P hoặc Q
0	0	0
0	1	1
1	0	1
1	1	1

Hoặc (Or)

Ρ	Q	P hoặc Q
0	0	0
0	1	1
1	0	1
1	1	1

Một số tài liệu kí hiện mệnh đề "P hoặc Q" là " $P \lor Q$ "

Mệnh đề kéo theo

Ρ	Q	$P \Rightarrow Q$
0	0	1
0	1	1
1	0	0
1	1	1

Chứng minh mệnh đề kéo theo

Nếu
$$P\Rightarrow Q$$
 thì $ar Q\Rightarrow ar P$

Chứng minh mệnh đề kéo theo

Nếu
$$P\Rightarrow Q$$
 thì $ar Q\Rightarrow ar P$

Giả sử $P\Rightarrow Q$ đúng

Do Q là mệnh đề nên Q đúng hoặc Q sai. Ta xét hai trường hợp:

- Trường hợp 1: Q đúng. Khi đó, \overline{Q} sai. Vì thế nên $\overline{Q} \Rightarrow \overline{P}$ đúng.
- Trường hợp 2: Q sai. Khi đó, \overline{Q} đúng. Ngoài ra, do Q sai và $P\Rightarrow Q$ đúng, P sai, tức \overline{P} đúng. Do \overline{Q} đúng và \overline{P} đúng, $\overline{Q}\Rightarrow \overline{P}$

Vậy ở cả hai trường hợp, ta đều có $\overline{Q} \Rightarrow \overline{P}$.

Do ta giả sử $P \Rightarrow Q$, ta có thể kết luận

Nếu $P\Rightarrow Q$ thì $\overline{Q}\Rightarrow \overline{P}$

Đây là điều phải chứng minh.

Mệnh đề kéo theo

Nếu $P\Rightarrow Q$ thì $ar Q\Rightarrow ar P$

Nếu $P\Rightarrow Q$ thì P được gọi là điều kiện đủ để có Q, và Q được gọi là điều kiện cần để có P.

Mệnh đề tương đương

Ρ	Q	$P \Leftrightarrow Q$
0	0	1
0	1	0
1	0	0
1	1	1

Mệnh đề tương đương

Ρ	Q	$P \Leftrightarrow Q$
0	0	1
0	1	0
1	0	0
1	1	1

Một định nghĩa là một mệnh đề tương đương.

Mệnh đề tương đương

Ρ	Q	$P \Leftrightarrow Q$
0	0	1
0	1	0
1	0	0
1	1	1

Một định nghĩa là một mệnh đề tương đương.

$$\mathsf{N\acute{e}u} \, \begin{cases} P \Rightarrow Q \\ Q \Rightarrow P \end{cases} \quad \mathsf{thi} \, P \Leftrightarrow Q$$

Bài tập

Biết mệnh đề P đúng, hãy cho biết mệnh đề Q đúng, sai, hoặc chưa biết đúng hay sai?

- ullet P : "Nếu 1+1=3 thì anh yêu em." Q : "Anh yêu em"
- ullet P : "Anh yêu em hoặc 1+1=2." Q : "Anh yêu em"
- P : "Nếu anh yêu em thì 1+1=3." Q : "Anh yêu em"

Mệnh đề Toán học

Mệnh đề Toán học là mệnh đề về một sự kiện trong Toán học.

Mệnh đề Toán học

Mệnh đề Toán học là mệnh đề về một sự kiện trong Toán học. Mệnh đề Q: "Anh yêu em" không phải là mệnh đề Toán học.

Với mọi và tồn tại (∀, ∃)

 $\forall x$ thỏa mãn điều kiện K: P(x) đúng khi và chỉ khi nếu ta chọn bất kì x nào thỏa mãn điều kiện K, P(x) đúng.

 $\exists x$ thỏa mãn điều kiện K: P(x) đúng khi và chỉ khi ta có thể tìm được một hay nhiều x thỏa mãn điều kiện K sao cho P(x) đúng.

Ρ	Q	P và Q	P và Q
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Ρ	Q	P và Q	\overline{P} và \overline{Q}
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Ta thấy P và Q sai khi và chỉ khi ((P sai và Q sai) hoặc (P sai và Q đúng) hoặc (P đúng và Q sai))

Ρ	Q	P và Q	\overline{P} và \overline{Q}
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Ta thấy P và Q sai khi và chỉ khi ((P sai và Q sai) hoặc (P sai và Q đúng) hoặc (P đúng và Q sai)) Nói cách khác, P và $Q \Leftrightarrow \overline{P}$ hoặc \overline{Q}

Р	Q	P và Q	\overline{P} và \overline{Q}
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Ta thấy P và Q sai khi và chỉ khi ((P sai và Q sai) hoặc (P sai và Q đúng) hoặc (P đúng và Q sai))

Nói cách khác, P và $Q \Leftrightarrow \overline{P}$ hoặc \overline{Q}

Tương tự, ta có thể tìm được

•
$$\overline{P}$$
 hoặc $\overline{Q} \Leftrightarrow \overline{P}$ và \overline{Q}

Р	Q	P và Q	\overline{P} và \overline{Q}
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Ta thấy P và Q sai khi và chỉ khi ((P sai và Q sai) hoặc (P sai và Q đúng) hoặc (P đúng và P sai))

Nói cách khác, P và $Q \Leftrightarrow \overline{P}$ hoặc \overline{Q}

Tương tự, ta có thể tìm được

- ullet P hoặc $Q \Leftrightarrow \overline{P}$ và \overline{Q}
- $\overline{P \Rightarrow Q} \Leftrightarrow P$ đúng và Q sai.

Ρ	Q	P và Q	P và Q
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Ta thấy P và Q sai khi và chỉ khi ((P sai và Q sai) hoặc (P sai và Q đúng) hoặc (P đúng và P sai))

Nói cách khác, P và $Q \Leftrightarrow \overline{P}$ hoặc \overline{Q}

Tương tự, ta có thể tìm được

- ullet \overline{P} hoặc $\overline{Q} \Leftrightarrow \overline{P}$ và \overline{Q}
- $\overline{P \Rightarrow Q} \Leftrightarrow P$ đúng và Q sai.

Phủ định của mệnh đề chứa ∀,∃

- $\forall x$ thỏa mãn điều kiện $K: \underline{P(x)} \Leftrightarrow \exists x$ thỏa mãn điều kiện $K: \overline{P(x)}$
- $\exists x$ thỏa mãn điều kiện $K : P(x) \Leftrightarrow \forall x$ thỏa mãn điều kiện $K : \overline{P(x)}$

Phương pháp phản chứng

Ta có thể chứng minh $P\Rightarrow Q$ bằng cách giả sử \overline{Q} theo hai hướng sau:

Phương pháp phản chứng

Ta có thể chứng minh $P\Rightarrow Q$ bằng cách giả sử \overline{Q} theo hai hướng sau:

• Giả sử \overline{Q} , chứng minh \overline{P} . Do $(P\Rightarrow Q)\Leftrightarrow (\overline{Q}\Rightarrow \overline{P})$ nên ta sẽ có $P\Rightarrow Q$.

Phương pháp phản chứng

Ta có thể chứng minh $P\Rightarrow Q$ bằng cách giả sử \overline{Q} theo hai hướng sau:

- Giả sử \overline{Q} , chứng minh \overline{P} . Do $(P\Rightarrow Q)\Leftrightarrow (\overline{Q}\Rightarrow \overline{P})$ nên ta sẽ có $P\Rightarrow Q$.
- Giả sử P đúng và Q sai, sau đó suy ra được một mệnh đề sai S. Điều này nghĩa là (P đúng và Q sai) sai, tức $\overline{P} \Rightarrow \overline{Q}$ sai, tức $P \Rightarrow Q$ đúng.

Giá trị nhỏ nhất

Giá trị nhỏ nhất

Cho một tập số A. Tập A có giá trị nhỏ nhất khi $\exists d \in A: \forall x \in A: d \leq x$

Cho một tập số A. Tập A có giá trị nhỏ nhất khi $\exists d \in A: \forall x \in A: d \leq x$ Số d như vậy được gọi là giá trị nhỏ nhất của A và được kí hiệu là $d = \min A$

Cho một tập số A. Tập A có giá trị nhỏ nhất khi $\exists d \in A : \forall x \in A : d \leq x$ Số d như vậy được gọi là giá trị nhỏ nhất của A và được kí hiệu là $d = \min A$ Kí hiệu $d = \min A$ có hợp lí?

Chứng minh rằng nếu A có giá trị nhỏ nhất thì giá trị nhỏ nhất của A là duy nhất.

Chứng minh rằng nếu A có giá trị nhỏ nhất thì giá trị nhỏ nhất của A là duy nhất.

Giả sử A có giá trị nhỏ nhất. Khi đó, $\exists d \in A : \forall x \in A : d \leq x$.

Chứng minh rằng nếu A có giá trị nhỏ nhất thì giá trị nhỏ nhất của A là duy nhất.

Giả sử A có giá trị nhỏ nhất. Khi đó, $\exists d \in A : \forall x \in A : d \leq x$. Giả dụ giá trị nhỏ nhất của A không là duy nhất.

Chứng minh rằng nếu A có giá trị nhỏ nhất thì giá trị nhỏ nhất của A là duy nhất.

Giả sử A có giá trị nhỏ nhất. Khi đó, $\exists d \in A : \forall x \in A : d \leq x$.

Giả dụ giá trị nhỏ nhất của A không là duy nhất.

Khi đó, ta có thể tìm được nhiều hơn một giá trị nhỏ nhất của A.

Chứng minh rằng nếu A có giá trị nhỏ nhất thì giá trị nhỏ nhất của A là duy nhất.

Giả sử A có giá trị nhỏ nhất. Khi đó, $\exists d \in A : \forall x \in A : d \leq x$. Giả dụ giá trị nhỏ nhất của A không là duy nhất. Khi đó, ta có thể tìm được nhiều hơn một giá trị nhỏ nhất của A. Chọn $d_1, d_2 \in A$ sao cho $d_1 \neq d_2$ và d_1, d_2 là hai giá trị nhỏ nhất của A.

Chứng minh rằng nếu A có giá trị nhỏ nhất thì giá trị nhỏ nhất của A là duy nhất.

Giả sử A có giá trị nhỏ nhất. Khi đó, $\exists d \in A : \forall x \in A : d \leq x$.

Giả dụ giá trị nhỏ nhất của A không là duy nhất.

Khi đó, ta có thể tìm được nhiều hơn một giá trị nhỏ nhất của A.

Chọn $d_1, d_2 \in A$ sao cho $d_1 \neq d_2$ và d_1, d_2 là hai giá trị nhỏ nhất của A.

Do d_1 là giá trị nhỏ nhất của A, $\forall x \in A : d_1 \leq x$.

Chứng minh rằng nếu A có giá trị nhỏ nhất thì giá trị nhỏ nhất của A là duy nhất.

Giả sử A có giá trị nhỏ nhất. Khi đó, $\exists d \in A : \forall x \in A : d \leq x$.

Giả dụ giá trị nhỏ nhất của A không là duy nhất.

Khi đó, ta có thể tìm được nhiều hơn một giá trị nhỏ nhất của A.

Chọn $d_1, d_2 \in A$ sao cho $d_1 \neq d_2$ và d_1, d_2 là hai giá trị nhỏ nhất của A.

Do d_1 là giá trị nhỏ nhất của A, $\forall x \in A : d_1 \leq x$.

Do $d_2 \in A$, điều này nghĩa là $d_1 \leq d_2$

Chứng minh rằng nếu A có giá trị nhỏ nhất thì giá trị nhỏ nhất của A là duy nhất.

Giả sử A có giá trị nhỏ nhất. Khi đó, $\exists d \in A : \forall x \in A : d \leq x$.

Giả dụ giá trị nhỏ nhất của A không là duy nhất.

Khi đó, ta có thể tìm được nhiều hơn một giá trị nhỏ nhất của A.

Chọn $d_1,d_2\in A$ sao cho $d_1\neq d_2$ và d_1,d_2 là hai giá trị nhỏ nhất của A.

Do d_1 là giá trị nhỏ nhất của A, $\forall x \in A : d_1 \leq x$.

Do $d_2 \in A$, điều này nghĩa là $d_1 \leq d_2$

Tương tự, do d_2 là giá trị nhỏ nhất của A, $d_2 \leq d_1$.

Chứng minh rằng nếu A có giá trị nhỏ nhất thì giá trị nhỏ nhất của A là duy nhất.

Giả sử A có giá trị nhỏ nhất. Khi đó, $\exists d \in A : \forall x \in A : d \leq x$.

Giả dụ giá trị nhỏ nhất của A không là duy nhất.

Khi đó, ta có thể tìm được nhiều hơn một giá trị nhỏ nhất của A.

Chọn $d_1, d_2 \in A$ sao cho $d_1 \neq d_2$ và d_1, d_2 là hai giá trị nhỏ nhất của A.

Do d_1 là giá trị nhỏ nhất của A, $\forall x \in A : d_1 \leq x$.

Do $d_2 \in A$, điều này nghĩa là $d_1 \leq d_2$

Tương tự, do d_2 là giá trị nhỏ nhất của A, $d_2 \leq d_1$.

$$\begin{cases} d_1 \le d_2 \\ d_2 \le d_1 \end{cases} \Rightarrow d_1 = d_2$$

Chứng minh rằng nếu A có giá trị nhỏ nhất thì giá trị nhỏ nhất của A là duy nhất.

Giả sử A có giá trị nhỏ nhất. Khi đó, $\exists d \in A : \forall x \in A : d \leq x$.

Giả dụ giá trị nhỏ nhất của A không là duy nhất.

Khi đó, ta có thể tìm được nhiều hơn một giá trị nhỏ nhất của A.

Chọn $d_1,d_2\in A$ sao cho $d_1\neq d_2$ và d_1,d_2 là hai giá trị nhỏ nhất của A.

Do d_1 là giá trị nhỏ nhất của A, $\forall x \in A : d_1 \leq x$.

Do $d_2 \in A$, điều này nghĩa là $d_1 \leq d_2$

Tương tự, do d_2 là giá trị nhỏ nhất của A, $d_2 \leq d_1$.

$$\left\{egin{aligned} d_1 & \leq d_2 \ d_2 & \leq d_1 \end{aligned}
ight. \Rightarrow d_1 = d_2$$

Điều này trái với $d_1 \neq d_2$.

Do đó, giả dụ ban đầu sai. Nói cách khác, giá trị nhỏ nhất của A là duy nhất.

$$A \cup B = \{x | x \in A \text{ hoặc } x \in B\}$$

$$A \cup B = \{x | x \in A \text{ hoặc } x \in B\}$$

 $A \cap B = \{x | x \in A \text{ và } x \in B\}$

$$A \cup B = \{x | x \in A \text{ hoặc } x \in B\}$$

 $A \cap B = \{x | x \in A \text{ và } x \in B\}$
 $A \setminus B = \{x | x \in A \text{ và } x \notin B\}$

```
A \cup B = \{x | x \in A \text{ hoặc } x \in B\} A \cap B = \{x | x \in A \text{ và } x \in B\} A \setminus B = \{x | x \in A \text{ và } x \notin B\} Nếu các tập hợp trong một bài toán đều là tập con của tập C nào đó thì ta kí hiệu \bar{A} = \{x | x \in C \text{ và } x \notin A\}
```

```
A \cup B = \{x | x \in A \text{ hoặc } x \in B\}
A \cap B = \{x | x \in A \text{ và } x \in B\}
A \setminus B = \{x | x \in A \text{ và } x \notin B\}
Nếu các tập hợp trong một bài toán đều là tập con của tập C nào đó thì ta kí hiệu \bar{A} = \{x | x \in C \text{ và } x \notin A\}
A \subset B \Leftrightarrow \forall x \in A : x \in B
```

```
A \cup B = \{x | x \in A \text{ hoặc } x \in B\}
A \cap B = \{x | x \in A \text{ và } x \in B\}
A \setminus B = \{x | x \in A \text{ và } x \notin B\}
Nếu các tập hợp trong một bài toán đều là tập con của tập C nào đó thì ta kí hiệu \bar{A} = \{x | x \in C \text{ và } x \notin A\}
A \subset B \Leftrightarrow \forall x \in A : x \in B
A = B \Leftrightarrow \begin{cases} A \subset B \\ B \subset A \end{cases}
```

 $\overline{A \cap B} = \overline{A} \cup \overline{B}$

$$\frac{\overline{A \cap B}}{\overline{A \cup B}} = \frac{\overline{A} \cup \overline{B}}{\overline{A} \cap \overline{B}}$$

$$\frac{\overline{A \cap B}}{\overline{A \cup B}} = \overline{\overline{A}} \cup \overline{\overline{B}}$$

Mẹo: Sử dụng biểu đồ Venn để thấy các tính chất của tập hợp.

$$\frac{\overline{A \cap B}}{\overline{A \cup B}} = \frac{\overline{A} \cup \overline{B}}{\overline{A} \cap \overline{B}}$$

Mẹo: Sử dụng biểu đồ Venn để thấy các tính chất của tập hợp.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Ta cần chứng minh:

- $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$
- $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**.

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**. Khi đó $x \in A$ hoặc $x \in B \cap C$ (theo định nghĩa hợp của hai tập hợp)

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**. Khi đó $x \in A$ hoặc $x \in B \cap C$ (theo định nghĩa hợp của hai tập hợp) Trường hợp $x \in A$

hợp của hai tập hợp)

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**. Khi đó $x \in A$ hoặc $x \in B \cap C$ (theo định nghĩa hợp của hai tập hợp) Trường hợp $x \in A$ thì $x \in A \cup B$ và $x \in A \cup C$ (theo định nghĩa

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**. Khi đó $x \in A$ hoặc $x \in B \cap C$ (theo định nghĩa hợp của hai tập hợp)

Trường hợp $x \in A$ thì $x \in A \cup B$ và $x \in A \cup C$ (theo định nghĩa hợp của hai tập hợp) , do đó nên $x \in (A \cup B) \cap (A \cup C)$ (theo định nghĩa giao của hai tập hợp).

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**. Khi đó $x \in A$ hoặc $x \in B \cap C$ (theo định nghĩa hợp của hai tập hợp)

Trường hợp $x \in A$ thì $x \in A \cup B$ và $x \in A \cup C$ (theo định nghĩa hợp của hai tập hợp), do đó nên $x \in (A \cup B) \cap (A \cup C)$ (theo định nghĩa giao của hai tập hợp).

Trường hợp $x \in B \cap C$

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**. Khi đó $x \in A$ hoặc $x \in B \cap C$ (theo định nghĩa hợp của hai tập hợp)

Trường hợp $x \in A$ thì $x \in A \cup B$ và $x \in A \cup C$ (theo định nghĩa hợp của hai tập hợp) , do đó nên $x \in (A \cup B) \cap (A \cup C)$ (theo định nghĩa giao của hai tập hợp).

Trường hợp
$$x \in B \cap C$$
 . Khi đó, $\begin{cases} x \in B \\ x \in C \end{cases}$

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**. Khi đó $x \in A$ hoặc $x \in B \cap C$ (theo định nghĩa hợp của hai tập hợp)

Trường hợp $x \in A$ thì $x \in A \cup B$ và $x \in A \cup C$ (theo định nghĩa hợp của hai tập hợp), do đó nên $x \in (A \cup B) \cap (A \cup C)$ (theo định nghĩa giao của hai tập hợp).

Trường hợp
$$x \in B \cap C$$
 . Khi đó, $\begin{cases} x \in B \\ x \in C \end{cases}$. Do $x \in B$, $x \in A \cup B$

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**. Khi đó $x \in A$ hoặc $x \in B \cap C$ (theo định nghĩa hợp của hai tập hợp)

Trường hợp $x \in A$ thì $x \in A \cup B$ và $x \in A \cup C$ (theo định nghĩa hợp của hai tập hợp), do đó nên $x \in (A \cup B) \cap (A \cup C)$ (theo định nghĩa giao của hai tập hợp).

Trường hợp
$$x \in B \cap C$$
 . Khi đó, $\begin{cases} x \in B \\ x \in C \end{cases}$. Do $x \in B$, $x \in A \cup B$

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**. Khi đó $x \in A$ hoặc $x \in B \cap C$ (theo định nghĩa hợp của hai tập hợp)

Trường hợp $x \in A$ thì $x \in A \cup B$ và $x \in A \cup C$ (theo định nghĩa hợp của hai tập hợp) , do đó nên $x \in (A \cup B) \cap (A \cup C)$ (theo định nghĩa giao của hai tập hợp).

Trường hợp
$$x \in B \cap C$$
 . Khi đó, $\begin{cases} x \in B \\ x \in C \end{cases}$. Do $x \in B$, $x \in A \cup B$. Do $x \in C$, $x \in A \cup C$. Do $x \in A \cup B$ và $x \in A \cup C$,

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**. Khi đó $x \in A$ hoặc $x \in B \cap C$ (theo định nghĩa hợp của hai tập hợp)

Trường hợp $x \in A$ thì $x \in A \cup B$ và $x \in A \cup C$ (theo định nghĩa hợp của hai tập hợp) , do đó nên $x \in (A \cup B) \cap (A \cup C)$ (theo định nghĩa giao của hai tập hợp).

Trường hợp
$$x \in B \cap C$$
 . Khi đó, $\begin{cases} x \in B \\ x \in C \end{cases}$. Do $x \in B$, $x \in A \cup B$

. Do $x \in C$, $x \in A \cup C$. Do $x \in A \cup B$ và $x \in A \cup C$, $x \in (A \cup B) \cap (A \cup C)$.

Từ hai trường hợp trên, ta có thể kết luận $x \in (A \cup B) \cap (A \cup C)$

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**. Khi đó $x \in A$ hoặc $x \in B \cap C$ (theo định nghĩa hợp của hai tập hợp)

Trường hợp $x \in A$ thì $x \in A \cup B$ và $x \in A \cup C$ (theo định nghĩa hợp của hai tập hợp) , do đó nên $x \in (A \cup B) \cap (A \cup C)$ (theo định nghĩa giao của hai tập hợp).

Trường hợp
$$x \in B \cap C$$
 . Khi đó, $\begin{cases} x \in B \\ x \in C \end{cases}$. Do $x \in B$, $x \in A \cup B$

. Do $x \in C$, $x \in A \cup C$. Do $x \in A \cup B$ và $x \in A \cup C$, $x \in (A \cup B) \cap (A \cup C)$.

Từ hai trường hợp trên, ta có thể kết luận $x \in (A \cup B) \cap (A \cup C)$ Do ta lấy $x \in A \cup (B \cap C)$ bất kì, ta được

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**. Khi đó $x \in A$ hoặc $x \in B \cap C$ (theo định nghĩa hợp của hai tập hợp)

Trường hợp $x \in A$ thì $x \in A \cup B$ và $x \in A \cup C$ (theo định nghĩa hợp của hai tập hợp) , do đó nên $x \in (A \cup B) \cap (A \cup C)$ (theo định nghĩa giao của hai tập hợp).

Trường hợp
$$x \in B \cap C$$
 . Khi đó, $\begin{cases} x \in B \\ x \in C \end{cases}$. Do $x \in B$, $x \in A \cup B$

. Do $x \in C$, $x \in A \cup C$. Do $x \in A \cup B$ và $x \in A \cup C$, $x \in (A \cup B) \cap (A \cup C)$.

Từ hai trường hợp trên, ta có thể kết luận $x \in (A \cup B) \cap (A \cup C)$ Do ta lấy $x \in A \cup (B \cap C)$ bất kì, ta được $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$

Ta cần chứng minh: $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ Lấy $x \in A \cup (B \cap C)$ **bất kì**. Khi đó $x \in A$ hoặc $x \in B \cap C$ (theo định nghĩa hợp của hai tập hợp)

Trường hợp $x \in A$ thì $x \in A \cup B$ và $x \in A \cup C$ (theo định nghĩa hợp của hai tập hợp) , do đó nên $x \in (A \cup B) \cap (A \cup C)$ (theo định nghĩa giao của hai tập hợp).

Trường hợp
$$x \in B \cap C$$
 . Khi đó, $\begin{cases} x \in B \\ x \in C \end{cases}$. Do $x \in B$, $x \in A \cup B$

. Do $x \in C$, $x \in A \cup C$. Do $x \in A \cup B$ và $x \in A \cup C$, $x \in (A \cup B) \cap (A \cup C)$.

Từ hai trường hợp trên, ta có thể kết luận $x \in (A \cup B) \cap (A \cup C)$ Do ta lấy $x \in A \cup (B \cap C)$ bất kì, ta được $\forall x \in A \cup (B \cap C) : x \in (A \cup B) \cap (A \cup C)$ $\Rightarrow A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$

Phần 2: $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$

```
Ta cần chứng minh: \forall x \in (A \cup B) \cap (A \cup C) : A \cup (B \cap C)
Lấy x \in (A \cup B) \cap (A \cup C) bất kì. Khi đó, x \in A \cup B và x \in A \cup C
Do x \in A \cup B. x \in A hoặc x \in B
Giả sử x \in A thì x \in A \cup (B \cap C)
Giả sử x \notin A thì x \in B. Do x \in A \cup C, x \in A hoặc x \in C, mà
x \notin A nên x \in C. Do x \in C và x \in B,
x \in B \cap C \Rightarrow x \in A \cup (B \cap C)
Từ hai trường hợp x \in A và x \notin A, ta có thể kết luận
x \in A \cup (B \cap C)
Do ta lấy x \in (A \cup B) \cap (A \cup C) bất kì, ta được
\forall x \in (A \cup B) \cap (A \cup C) : A \cup (B \cap C)
\Rightarrow (A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)
```

A(n) là một mệnh đề chứa biến $n \in \mathbb{N}$

$$A(n)$$
 là một mệnh đề chứa biến $n \in \mathbb{N}$
$$\begin{cases} A(0) \\ \forall k \in \mathbb{N} : A(k) \Rightarrow A(k+1) \end{cases} \Rightarrow \forall k \in \mathbb{N} : A(k)$$

```
 A(n) \text{ là một mệnh đề chứa biến } n \in \mathbb{N}   \begin{cases} A(0) \\ \forall k \in \mathbb{N} : A(k) \Rightarrow A(k+1) \end{cases} \Rightarrow \forall k \in \mathbb{N} : A(k)  hoặc  \begin{cases} A(0) \\ \forall k \in \mathbb{N} : \left( \forall n \in \mathbb{N}, n \leq k : A(n) \right) \Rightarrow A(k+1) \end{cases}   \Rightarrow \forall k \in \mathbb{N} : A(k)
```

Cho $S \subset \mathbb{N}, S \neq \emptyset$ Chứng minh tồn tại min S

Cho $S \subset \mathbb{N}, S \neq \emptyset$ Chứng minh tồn tại min S

Lấy tập $S \subset \mathbb{N}, S \neq \emptyset$ bất kì.

Cho $S \subset \mathbb{N}, S \neq \emptyset$ Chứng minh tồn tại min S

Lấy tập $S \subset \mathbb{N}, S \neq \emptyset$ bất kì. Giả dụ "min S tồn tại" sai,

Cho $S \subset \mathbb{N}, S \neq \emptyset$ Chứng minh tồn tại min S

Lấy tập $S \subset \mathbb{N}, S \neq \emptyset$ bất kì. Giả dụ "min S tồn tại" sai, tức " $\exists d \in S : \forall x \in S : d < x$ " sai,

Cho $S \subset \mathbb{N}, S \neq \emptyset$ Chứng minh tồn tại min S

Lấy tập $S \subset \mathbb{N}, S \neq \emptyset$ bất kì. Giả dụ "min S tồn tại" sai, tức " $\exists d \in S : \forall x \in S : d \leq x$ " sai, hay $\forall d \in S : \exists x \in S : x < d$.

Cho $S \subset \mathbb{N}, S \neq \emptyset$ Chứng minh tồn tại min S

Lấy tập $S \subset \mathbb{N}, S \neq \emptyset$ bất kì. Giả dụ "min S tồn tại" sai, tức " $\exists d \in S : \forall x \in S : d \leq x$ " sai, hay $\forall d \in S : \exists x \in S : x < d$.

Giờ ta sẽ chứng minh $\forall n \in \mathbb{N} : n \notin S$ bằng phương pháp quy nạp (phiên bản 2).

Giờ ta sẽ chứng minh $\forall n \in \mathbb{N} : n \notin S$ bằng phương pháp quy nạp (phiên bản 2).

Giờ ta sẽ chứng minh $\forall n \in \mathbb{N} : n \notin S$ bằng phương pháp quy nạp (phiên bản 2).

Gọi $A(n): n \notin S \ (n \in \mathbb{N})$

• *A*(0) đúng.

Giờ ta sẽ chứng minh $\forall n \in \mathbb{N} : n \notin S$ bằng phương pháp quy nạp (phiên bản 2).

Gọi $A(n): n \notin S \ (n \in \mathbb{N})$

• A(0) đúng. Giả dụ A(0) sai, khi đó $0 \in S \Rightarrow \min S = 0$

Giờ ta sẽ chứng minh $\forall n \in \mathbb{N} : n \notin S$ bằng phương pháp quy nạp (phiên bản 2).

- ullet A(0) đúng. Giả dụ A(0) sai, khi đó $0\in S\Rightarrow\min S=0$
- Lấy $k \in \mathbb{N}$ bất kì.

Giờ ta sẽ chứng minh $\forall n \in \mathbb{N} : n \notin S$ bằng phương pháp quy nạp (phiên bản 2).

- ullet A(0) đúng. Giả dụ A(0) sai, khi đó $0\in S\Rightarrow\min S=0$
- Lấy $k \in \mathbb{N}$ bất kì. Giả sử $\forall n \in \mathbb{N}, n \leq k : A(n)$. Ta cần chứng minh $A(k+1) : k+1 \notin S$

Giờ ta sẽ chứng minh $\forall n \in \mathbb{N} : n \notin S$ bằng phương pháp quy nạp (phiên bản 2).

- ullet A(0) đúng. Giả dụ A(0) sai, khi đó $0 \in S \Rightarrow \min S = 0$
- Lấy $k \in \mathbb{N}$ bất kì. Giả sử $\forall n \in \mathbb{N}, n \leq k : A(n)$. Ta cần chứng minh $A(k+1) : k+1 \notin S$ Giả dụ A(k+1) sai, tức $k+1 \in S$.

Giờ ta sẽ chứng minh $\forall n \in \mathbb{N} : n \notin S$ bằng phương pháp quy nạp (phiên bản 2).

Gọi A(n): $n \notin S \ (n \in \mathbb{N})$

- ullet A(0) đúng. Giả dụ A(0) sai, khi đó $0 \in S \Rightarrow \min S = 0$
- Lấy $k \in \mathbb{N}$ bất kì.

Giả sử $\forall n \in \mathbb{N}, n \leq k : A(n)$. Ta cần chứng minh

$$A(k+1): k+1 \notin S$$

Giả dụ A(k+1) sai, tức $k+1 \in S$.

Do $\forall d \in S : \exists x \in S : x < d \text{ và } k+1 \in S, \exists x \in S : x < k+1.$

Giờ ta sẽ chứng minh $\forall n \in \mathbb{N} : n \notin S$ bằng phương pháp quy nạp (phiên bản 2).

Gọi A(n): $n \notin S \ (n \in \mathbb{N})$

- ullet A(0) đúng. Giả dụ A(0) sai, khi đó $0\in S\Rightarrow\min S=0$
- Lấy $k \in \mathbb{N}$ bất kì.

Giả sử $\forall n \in \mathbb{N}, n \leq k : A(n)$. Ta cần chứng minh

$$A(k+1): k+1 \notin S$$

Giả dụ A(k+1) sai, tức $k+1 \in S$.

Do $\forall d \in S : \exists x \in S : x < d \text{ và } k+1 \in S, \exists x \in S : x < k+1.$

Chọn một số x như vậy, ta có $x \in \mathcal{S} \subset \mathbb{N}$ và x < k+1

Giờ ta sẽ chứng minh $\forall n \in \mathbb{N} : n \notin S$ bằng phương pháp quy nạp (phiên bản 2).

Gọi A(n): $n \notin S \ (n \in \mathbb{N})$

- ullet A(0) đúng. Giả dụ A(0) sai, khi đó $0 \in S \Rightarrow \min S = 0$
- Lấy $k \in \mathbb{N}$ bất kì.

Giả sử $\forall n \in \mathbb{N}, n \leq k : A(n)$. Ta cần chứng minh

$$A(k+1): k+1 \notin S$$

Giả dụ A(k+1) sai, tức $k+1 \in S$.

Do $\forall d \in S : \exists x \in S : x < d \text{ và } k+1 \in S, \exists x \in S : x < k+1.$

Chọn một số x như vậy, ta có $x \in S \subset \mathbb{N}$ và x < k+1

Tuy nhiên, điều này nghĩa là $\exists x \in S, x \leq k : A(s)$ sai, trái với $\forall n \in \mathbb{N}, n \leq k : A(k)$.

Giờ ta sẽ chứng minh $\forall n \in \mathbb{N} : n \notin S$ bằng phương pháp quy nạp (phiên bản 2).

Gọi A(n): $n \notin S \ (n \in \mathbb{N})$

- ullet A(0) đúng. Giả dụ A(0) sai, khi đó $0\in S\Rightarrow\min S=0$
- Lấy $k \in \mathbb{N}$ bất kì.

Giả sử $\forall n \in \mathbb{N}, n \leq k : A(n)$. Ta cần chứng minh

$$A(k+1): k+1 \notin S$$

Giả dụ A(k+1) sai, tức $k+1 \in S$.

Do $\forall d \in S : \exists x \in S : x < d \text{ và } k+1 \in S, \exists x \in S : x < k+1.$

Chọn một số x như vậy, ta có $x \in S \subset \mathbb{N}$ và x < k+1

Tuy nhiên, điều này nghĩa là $\exists x \in S, x \leq k : A(s)$ sai, trái với $\forall n \in \mathbb{N}, n \leq k : A(k)$.

Do đó, giả dụ "A(k+1) sai" sai, tức A(k+1)

Giờ ta sẽ chứng minh $\forall n \in \mathbb{N} : n \notin S$ bằng phương pháp quy nạp (phiên bản 2).

Gọi A(n): $n \notin S \ (n \in \mathbb{N})$

- ullet A(0) đúng. Giả dụ A(0) sai, khi đó $0 \in S \Rightarrow \min S = 0$
- Lấy $k \in \mathbb{N}$ bất kì.

Giả sử $\forall n \in \mathbb{N}, n \leq k : A(n)$. Ta cần chứng minh

$$A(k+1): k+1 \notin S$$

Giả dụ A(k+1) sai, tức $k+1 \in S$.

Do $\forall d \in S : \exists x \in S : x < d \text{ và } k+1 \in S, \exists x \in S : x < k+1.$

Chọn một số x như vậy, ta có $x \in \mathcal{S} \subset \mathbb{N}$ và x < k+1

Tuy nhiên, điều này nghĩa là $\exists x \in S, x \leq k : A(s)$ sai, trái với $\forall n \in \mathbb{N}, n \leq k : A(k)$.

Do đó, giả dụ "A(k+1) sai" sai, tức A(k+1)

Do ta lấy $k \in \mathbb{N}$ bất kì, ta có thể kết luận

Giờ ta sẽ chứng minh $\forall n \in \mathbb{N} : n \notin S$ bằng phương pháp quy nạp (phiên bản 2).

Gọi A(n): $n \notin S \ (n \in \mathbb{N})$

- ullet A(0) đúng. Giả dụ A(0) sai, khi đó $0\in S\Rightarrow\min S=0$
- Lấy $k \in \mathbb{N}$ bất kì.

Giả sử $\forall n \in \mathbb{N}, n \leq k : A(n)$. Ta cần chứng minh

$$A(k+1): k+1 \notin S$$

Giả dụ A(k+1) sai, tức $k+1 \in S$.

Do $\forall d \in S : \exists x \in S : x < d \text{ và } k+1 \in S, \exists x \in S : x < k+1.$

Chọn một số x như vậy, ta có $x \in S \subset \mathbb{N}$ và x < k+1

Tuy nhiên, điều này nghĩa là $\exists x \in S, x \leq k : A(s)$ sai, trái với $\forall n \in \mathbb{N}, n \leq k : A(k)$.

Do đó, giả dụ "A(k+1) sai" sai, tức A(k+1)

Do ta lấy $k \in \mathbb{N}$ bất kì, ta có thể kết luận

 $\forall k \in \mathbb{N} : \left(\forall n \in \mathbb{N}, n \leq k : A(n) \right) \Rightarrow A(k+1)$

$$\begin{cases} A(0) \\ \forall k \in \mathbb{N} : (\forall n \in \mathbb{N}, n \leq k : A(n)) \Rightarrow A(k+1) \end{cases}$$

```
\begin{cases} A(0) \\ \forall k \in \mathbb{N} : (\forall n \in \mathbb{N}, n \le k : A(n)) \Rightarrow A(k+1) \\ \Rightarrow \forall k \in \mathbb{N} : A(k) \end{cases}
```

```
\begin{cases} A(0) \\ \forall k \in \mathbb{N} : (\forall n \in \mathbb{N}, n \le k : A(n)) \Rightarrow A(k+1) \\ \Rightarrow \forall k \in \mathbb{N} : A(k) \\ \Rightarrow \forall k \in \mathbb{N} : k \notin S \end{cases}
```

```
\begin{cases} A(0) \\ \forall k \in \mathbb{N} : \left( \forall n \in \mathbb{N}, n \leq k : A(n) \right) \Rightarrow A(k+1) \\ \Rightarrow \forall k \in \mathbb{N} : A(k) \\ \Rightarrow \forall k \in \mathbb{N} : k \notin S \\ \text{Diều này cộng với việc } S \subset \mathbb{N} \text{ nghĩa là } S = \emptyset, \text{ trái với } S \neq \emptyset \end{cases}
```

```
\begin{cases} A(0) \\ \forall k \in \mathbb{N} : \left( \forall n \in \mathbb{N}, n \leq k : A(n) \right) \Rightarrow A(k+1) \\ \Rightarrow \forall k \in \mathbb{N} : A(k) \\ \Rightarrow \forall k \in \mathbb{N} : k \notin S \\ \text{Diều này cộng với việc } S \subset \mathbb{N} \text{ nghĩa là } S = \emptyset, \text{ trái với } S \neq \emptyset \\ \text{Do đó, giả dụ "min } S \text{ không tồn tại" sai, tức min } S \text{ tồn tại. Đây là điều phải chứng minh.} \end{cases}
```

Bài tập lập trình

Cho số nguyên dương n ($n \le 10^9$). Tính $1^3 + 2^3 + ... + n^3$ trong 1 giây.

Bài tập lập trình

Cho số nguyên dương n ($n \le 10^9$). Tính $1^3 + 2^3 + ... + n^3$ trong 1 giây.

• Do n có thể lên đến 10^9 mà máy tính chỉ có thể chạy 10^8 phép tính trong một giây, chương trình vòng lặp từ 1 đến n sẽ không chạy đủ nhanh.

Bài tập lập trình

Cho số nguyên dương n ($n \le 10^9$). Tính $1^3 + 2^3 + ... + n^3$ trong 1 giây.

- Do n có thể lên đến 10^9 mà máy tính chỉ có thể chạy 10^8 phép tính trong một giây, chương trình vòng lặp từ 1 đến n sẽ không chạy đủ nhanh.
- Ta cần tìm một công thức cho $1^3 + 2^3 + ... + n^3$

Bài tập lập trình

Cho số nguyên dương n ($n \le 10^9$). Tính $1^3 + 2^3 + ... + n^3$ trong 1 giây.

- Do n có thể lên đến 10^9 mà máy tính chỉ có thể chạy 10^8 phép tính trong một giây, chương trình vòng lặp từ 1 đến n sẽ không chạy đủ nhanh.
- Ta cần tìm một công thức cho $1^3 + 2^3 + ... + n^3$

Hướng dẫn cách mò

0 1 9 36 100 225 441	/ bậc 4
1 8 27 64 125 216	bác 3
7 19 37 61 91	bậc 2
12 18 24 30	båc 1
666	bậc O
	•

Ta mò ra được
$$1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$$

Ta mò ra được
$$1^3+2^3+...+n^3=\frac{n^4}{4}+\frac{n^3}{2}+\frac{n^2}{4}$$

Gọi $A(n):1^3+2^3+...+n^3=\frac{n^4}{4}+\frac{n^3}{2}+\frac{n^2}{4}$, ta có:

Ta mò ra được $1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$ Gọi $A(n): 1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$, ta có: • A(0) đúng.

Ta mò ra được
$$1^3+2^3+...+n^3=\frac{n^4}{4}+\frac{n^3}{2}+\frac{n^2}{4}$$

Gọi $A(n):1^3+2^3+...+n^3=\frac{n^4}{4}+\frac{n^3}{2}+\frac{n^2}{4}$, ta có:

- *A*(0) đúng.
- Lấy $k \in \mathbb{N}$ bất kì. Giả sử A(k) đúng, ta cần chứng minh A(k+1) đúng.

Ta mò ra được
$$1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$$

Gọi $A(n): 1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$, ta có:

- *A*(0) đúng.
- Lấy $k \in \mathbb{N}$ bất kì. Giả sử A(k) đúng, ta cần chứng minh A(k+1) đúng.

$$1^3 + 2^3 + \dots + k^3 + (k+1)^3 = (1^3 + 2^3 + \dots + k^3) + (k+1)^3$$

Ta mò ra được
$$1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$$

Gọi $A(n): 1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$, ta có:

- *A*(0) đúng.
- Lấy $k \in \mathbb{N}$ bất kì. Giả sử A(k) đúng, ta cần chứng minh A(k+1) đúng.

$$1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} = (1^{3} + 2^{3} + \dots + k^{3}) + (k+1)^{3}$$
Do $A(k)$, $1^{3} + 2^{3} + \dots + k^{3} = \frac{k^{4}}{4} + \frac{k^{3}}{2} + \frac{k^{2}}{4}$

Ta mò ra được
$$1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$$

Gọi $A(n): 1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$, ta có:

- *A*(0) đúng.
- Lấy $k \in \mathbb{N}$ bất kì. Giả sử A(k) đúng, ta cần chứng minh A(k+1) đúng.

$$1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} = (1^{3} + 2^{3} + \dots + k^{3}) + (k+1)^{3}$$
Do $A(k)$, $1^{3} + 2^{3} + \dots + k^{3} = \frac{k^{4}}{4} + \frac{k^{3}}{2} + \frac{k^{2}}{4}$
Nên $1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} = \frac{k^{4}}{4} + \frac{k^{3}}{2} + \frac{k^{2}}{4} + (k+1)^{3}$

Ta mò ra được
$$1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$$

Gọi $A(n): 1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$, ta có:

- *A*(0) đúng.
- Lấy $k \in \mathbb{N}$ bất kì. Giả sử A(k) đúng, ta cần chứng minh A(k+1) đúng.

$$1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} = (1^{3} + 2^{3} + \dots + k^{3}) + (k+1)^{3}$$
Do $A(k)$, $1^{3} + 2^{3} + \dots + k^{3} = \frac{k^{4}}{4} + \frac{k^{3}}{2} + \frac{k^{2}}{4}$
Nên $1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} = \frac{k^{4}}{4} + \frac{k^{3}}{2} + \frac{k^{2}}{4} + (k+1)^{3}$
Ta có:

Ta mò ra được
$$1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$$

Gọi $A(n): 1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$, ta có:

- *A*(0) đúng.
- Lấy $k \in \mathbb{N}$ bất kì. Giả sử A(k) đúng, ta cần chứng minh A(k+1) đúng.

$$\begin{aligned} &1^3 + 2^3 + \ldots + k^3 + (k+1)^3 = (1^3 + 2^3 + \ldots + k^3) + (k+1)^3 \\ &\text{Do } A(k), \ 1^3 + 2^3 + \ldots + k^3 = \frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4} \\ &\text{Nên } 1^3 + 2^3 + \ldots + k^3 + (k+1)^3 = \frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4} + (k+1)^3 \\ &\text{Ta có:} \\ &\left(\frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4} + (k+1)^3\right) - \left(\frac{(k+1)^4}{4} + \frac{(k+1)^3}{2} + \frac{(k+1)^2}{4}\right) = 0 \end{aligned}$$

Ta mò ra được
$$1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$$

Gọi $A(n): 1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$, ta có:

- *A*(0) đúng.
- \bullet Lấy $k \in \mathbb{N}$ bất kì. Giả sử A(k) đúng, ta cần chứng minh A(k+1) đúng.

$$\begin{array}{l} 1^3 + 2^3 + \ldots + k^3 + (k+1)^3 = \left(1^3 + 2^3 + \ldots + k^3\right) + (k+1)^3 \\ \text{Do } A(k), \ 1^3 + 2^3 + \ldots + k^3 = \frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4} \\ \text{Nên } 1^3 + 2^3 + \ldots + k^3 + (k+1)^3 = \frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4} + (k+1)^3 \\ \text{Ta có:} \\ \left(\frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4} + (k+1)^3\right) - \left(\frac{(k+1)^4}{4} + \frac{(k+1)^3}{2} + \frac{(k+1)^2}{4}\right) = 0 \\ \text{nên } \frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4} + (k+1)^3 = \frac{(k+1)^4}{4} + \frac{(k+1)^3}{2} + \frac{(k+1)^2}{4} \end{array}$$

Ta mò ra được
$$1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$$

Gọi $A(n): 1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$, ta có:

- *A*(0) đúng.
- Lấy $k \in \mathbb{N}$ bất kì. Giả sử A(k) đúng, ta cần chứng minh A(k+1) đúng.

Ta có:

$$1^3 + 2^3 + \dots + k^3 + (k+1)^3 = (1^3 + 2^3 + \dots + k^3) + (k+1)^3$$
 Do $A(k)$, $1^3 + 2^3 + \dots + k^3 = \frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4}$ Nên $1^3 + 2^3 + \dots + k^3 + (k+1)^3 = \frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4} + (k+1)^3$ Ta có:
$$\left(\frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4} + (k+1)^3\right) - \left(\frac{(k+1)^4}{4} + \frac{(k+1)^3}{2} + \frac{(k+1)^2}{4}\right) = 0$$
 nên $\frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4} + (k+1)^3 = \frac{(k+1)^4}{4} + \frac{(k+1)^3}{2} + \frac{(k+1)^2}{4}$ Ta giờ có thể kết luận $1^3 + 2^3 + \dots + k^3 + (k+1)^3 = \frac{(k+1)^4}{4} + \frac{(k+1)^3}{2} + \frac{(k+1)^2}{4}$, hay $A(k+1)$ đúng

Do hai điểm trên đều đúng, ta có $\forall n \in \mathbb{N} : A(n)$

Ta mò ra được
$$1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$$

Gọi $A(n): 1^3 + 2^3 + ... + n^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$, ta có:

- *A*(0) đúng.
- \bullet Lấy $k \in \mathbb{N}$ bất kì. Giả sử A(k) đúng, ta cần chứng minh A(k+1) đúng.

Ta có:

$$1^3 + 2^3 + \dots + k^3 + (k+1)^3 = (1^3 + 2^3 + \dots + k^3) + (k+1)^3$$
 Do $A(k)$, $1^3 + 2^3 + \dots + k^3 = \frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4}$ Nên $1^3 + 2^3 + \dots + k^3 + (k+1)^3 = \frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4} + (k+1)^3$ Ta có:
$$\left(\frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4} + (k+1)^3\right) - \left(\frac{(k+1)^4}{4} + \frac{(k+1)^3}{2} + \frac{(k+1)^2}{4}\right) = 0$$
 nên $\frac{k^4}{4} + \frac{k^3}{2} + \frac{k^2}{4} + (k+1)^3 = \frac{(k+1)^4}{4} + \frac{(k+1)^3}{2} + \frac{(k+1)^2}{4}$ Ta giờ có thể kết luận $1^3 + 2^3 + \dots + k^3 + (k+1)^3 = \frac{(k+1)^4}{4} + \frac{(k+1)^3}{2} + \frac{(k+1)^2}{4}$, hay $A(k+1)$ đúng

Do hai điểm trên đều đúng, ta có $\forall n \in \mathbb{N} : A(n)$