Project Development Phase

Delivery of Sprint 2

Date	9 November 2022
Team ID	PNT2022TMID07640
Project Name	Classification of Arrhythmia by Using Deep
	Learning with 2-D ECG Spectral Image Representation

Task 1:

Model Building:

Adding CNN Layers:

Code:

#ADDING CNN LAYERS

model.add(Conv2D(32,(3,3),input_shape=(64,64,3),activation='relu'))#con volution layer model.add(MaxPooling2D(pool_size=(2,2)))#MaxPooling2D for downsampling the input

 $model.add(Conv2D(32,\!(3,\!3),\!activation='relu'))$

model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Flatten())#flatten the dimension of the image

Adding Dense Layers:

Code:

#ADDING DENSE LAYERS

model.add(Dense(32))#deeply connected neural network layers. model.add(Dense(6,activation='softmax'))

Model Summary:

Code:

#MODEL SUMMARY

model.summary()#summary of the model

Output:

Configure the Learning Process:

Code:

#CONFIGURE THE LEARNING PROCESS
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=
['accuracy'])

Train the Model:

Code:

#TRAIN THE MODEL

model.fit_generator(generator=x_train,steps_per_epoch = len(x_train), epochs=10, validation_data=x_test,validation_steps = len(x_test))

Output:

Save the Model:

Code:

#SAVE THE
MODEL
model.save('ECG.h5')

Test the Model:

Code:

Output:

