Offline Handritting Word Recognition

Thijs Kooi, Davide Modolo

January 27, 2011

Table of contents

- Overview
 - General
 - Dataset
- 2 Implementation Details
 - Pipeline
 - Pre-Processing
 - Feature Extraction
 - Hidden-Markov Model
- 3 Experiments and Results
- 4 Conclusions

Overview of the Project

Off-line handwriting recognition

- It involves the automatic conversion of text in an image into letter codes which are usable within computer and text-processing applications
- Off-line handwriting recognition is comparatively difficult, as different people have different handwriting styles

Figure: 'Students' written by different authors

Our Al Project

A lot of research has been done over the past years.

We explored the topic and implemented a full pipeline for the task. The research touched different fields:

- Data Collection
- Image Processing
- Features extraction
- Machine Learning

Dataset

The IAM Handwriting Database 3.0¹

- Unconstrained handwritten text (scanned at a resolution of 300dpi and saved as PNG images with 256 gray levels)
- 1'539 pages of scanned text of 657 writers
- 13'353 isolated and labeled text lines
- 115'320 isolated and labeled words

¹http://www.iam.unibe.ch/fki/databases/iam-handwriting-database ≥ ✓ 🙊 🗸

Example of a page of scanned text

Sentence Database

N01-009

"Good look, Air Marshal," she said gently. "Till be waiting for you at the Hotel Roma at it this evening- and I shall look forward to meeting you both at midnight." They might have been arranging a supper party. Then she rang off. Alastair admitted that never in a not altegether uneventful life had he come across a girl who sounded so charming and appeared to be so efficient.

Jose Luck, for Marshal, " sur said gently "I'll he haiting for you at the fell Roma at the six this. we writing you both at und right." They aight have been arranging a supple party. Then see song of. Marshair admitted that were in a not attractive un went full life had be come across a give sono somethed so chasting and appeared to be so efficient.

Pipeline Pre-Processing Feature Extraction Hidden-Markov Model

Implementation Details

Pipeline

Figure: Pipeline of a word recognition system

Pre-Processing
Feature Extraction
Hidden-Markov Model

Implementation Details

Pre-Processing

Pre-processing

Figure: Pipeline for the pre-processing/normalization step

Line Segmentation

Original image segmented in lines

Vertical histograms and significant minima

Figure: Example of line segmentation

Skew and Slope Correction

Figure: Skew detection and correction pipeline

Slant Correction

Figure: Slant detection and correction pipeline

Word segmentation

Baseline Estimation

Lower Baseline

Vertical Scaling

Words with baselines

Normalization to fixed height and fixed baselines

Figure: Examples of vertical scaling process

Skeletonization

Figure: Skeletonization process

Remembering the entire pipeline....

Why repeating skew and slant correction twice?

The normalizations are necessary for:

	, , , , , , , , , , , , , , , , , , ,				
First					
Wo	rds segmentation				
	T				
	Images/problem1.png				

Pre-Processing
Feature Extraction
Hidden-Markov Model

Implementation Details

Feature Extraction

Features

Extracted from the skeleton of the words.

Mainly 2 types:

- Statistical
- Morphological

Statistical Features

Percentage of white pixels in the 3 zones of the word:

Upper Zone: 0.0124 %

Middle Zone: 0.0338 %

Lower Zone: 0.0033 %

Figure: Example

Morphological Features

Obtained by **connected component analysis**.

 A connected component it is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices.

Morphological Features

We extract:

Images/morpho_features.png

Pipeline Pre-Processing Feature Extraction Hidden-Markov Model

Implementation Details

Hidden-Markov Model for Word Recognition

HMM

- A set of N states $S = (s_1, s_2, \dots, s_N)$, where the state of the system at time t is denoted q_t
- A set of priors $\pi = (\pi_1, \pi_2, \dots, \pi_N)$, providing the probability $P(q_1 = s_i)$.
- A transition function **A**, where $a_{ij} = P(q_{t+1} = s_j | q_t = s_i)$.
- An observation function **B**, mapping each observation at every state to a probability $b_i(\mathbf{o}_t) = P(\mathbf{o}_t|q_t = s_i, \lambda)$, where λ denotes the model parameters.

The model is trained to estimate the posterior probability $P(\mathbf{O}|\lambda)$ of an observation sequence \mathbf{O} , with D-dimensional observation vectors $\mathbf{o}_t = (o_1, o_2, \dots, o_D)$.

HMM

Figure: Left-to-right HMM with N states

Main problems in an HMM

- The probability of an observation sequence, given the model, $P(\mathbf{O}|\lambda)$.
- ② The most likely parameters of the model $\lambda^* = \max P(X|\lambda)$, given a training set of M observation sequences $X = (\mathbf{O}_1, \mathbf{O}_2, \dots, \mathbf{O}_M)$.
- **1** The most likely state sequence, underlying a given observation sequence and the model, $Q^* = \max P(Q|\mathbf{0}, \lambda)$.

Main problems in an HMM

• The probability of an observation sequence, given the model, $P(\mathbf{O}|\lambda)$.

Sum-product algorithm: forward-backward algorithm

② The most likely parameters of the model $\lambda^* = \max P(X|\lambda)$, given a training set of M observation sequences $X = (\mathbf{O}_1, \mathbf{O}_2, \dots, \mathbf{O}_M)$.

EM-algorithm: Baum-Welch reestimation

1 The most likely state sequence, underlying a given observation sequence and the model, $Q^* = \max P(Q|\mathbf{0}, \lambda)$.

Dynamic programming: Viterbi algorithm

Updating the parameters

Comparison with GMM:

Model:	GMM	HMM
Model parameters:	$\lambda = \pi, \mu, \Sigma$	$\lambda=\pi, \mathbf{A}, \mathbf{B}$
Hyper parameters:	Number of compo-	Topology (states,
	nents	transitions), observa-
		tion function
Observed variables:	Data points	Observations
Latent variables:	Priors of a component	State sequence

Updating parameters

Model:	GMM	НММ
E-step:	Estimate the probabil-	Estimate the probabil-
	ity of a component,	ity of being in a state
	given the data and	at a timestep and the
	current parameters.	probability of trans-
		fering from a state to
		another state.
M-step:	Maximise π , μ and Σ .	Maximise π , A and B

Consider the following observation:

$$\mathbf{O} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \\ 1 & 0 \\ -2 & 0 \end{pmatrix}$$

Singularities. Consider the following observation:

$$\mathbf{O} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \\ 1 & 0 \\ -2 & 0 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 3\frac{1}{3} & 0 \\ 0 & 0 \end{pmatrix}$$

Singularities

$$\mathbf{O} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \\ 1 & 0 \\ -2 & 0 \end{pmatrix}$$
$$\Sigma = \begin{pmatrix} 3\frac{1}{3} & 0 \\ 0 & 0 \end{pmatrix}$$
$$|\Sigma| = 0$$

Possible solution: Add some random noise.

Length of the word. Short words seem to be harder to find. Possible causes:

- During the testing, the model does not execute a complete sequence, e.g. when looking for 'the' in 'therefore' it might end before 'r'.
- Short words may be more difficult to recognise as they are more sensible to inter-writer variations.

Possible solutions:

- Force the model to end the observations sequence in the final state.
- Use a more complex observation model. E.g., a MOG.

Mixture of Gaussians

Figure: Two letters plotted in a two dimensional feature space

Mixture of Gaussians

Figure: Two letters plotted in a two dimensional feature space

Mixture of Gaussians

Figure: Two letters plotted in a two dimensional feature space

Overview Implementation Details Experiments and Results Conclusions

Experiments and Results

Experiments

We run 2 type of experiments:

- 1 vs 1 word recognition
 - We build models for 2 words and we test both models for new instances of the 2 words from novel authors
 - GOAL: Test how much the likelihoods of the 2 words differ
- all vs all words recognition
 - We build models for every word and for every word in the test set we rank all the models by loglikelihood
 - GOAL: Compute general accuracy for a small dataset

For both experiments the model of a word is built using 30 samples from 30 authors of the word.

Experiment 1 - Typewritten words

- Done to check the correctness of the pipeline.
- Only used intensity features.
- Used words 'Letter' and 'Number' (same length)

Table: Results averaged over 40 runs

Word	Letter	Number	Difference
LL Intensity N=6 K=1	121.68	106.36	15.32
LL All features N=6 K=1	795.45	14.08	781.37
LL All features N=1 K=1	602.22	-90.02	692.22
LL All features N=6 K=3	226.96	-820.30	$1.04e^{3}$
LL ALL, N=6, K=1, diagonal cov	871.16	531.27	487.75
LL ALL , N=6, K=1, isotropc cov	-179.00	-272.23	197.35
		→ < □ → < ≥ →	< ₹

Experiment 1 - Handwritten Words (same length)

• Used words 'Before' and 'People' (same length)

Table: Results for simple handwritten words, avg over 40 runs

Word	Before	People	Difference
LL All features N=6 K=1	1.17e + 03	1.19e + 03	480.16
LL All features N=1 K=1	699.56	1.0124e + 03	422.78
LL All features N=6 K=3	226.96	-820.30	1.04e3̂

Experiment 1 - Handwritten Words (short vs long)

Experiments 2

- Used a small dataset of 100 words
- Tested on 200 words of novel authors

Num. States	Num. Gaussian Comp.	Accuracy 1 ²	Accuracy 2 ³
lengthWord	1	0.2400	0.3400
1	1	0.2000	0.3600
1	5	0.0800	0.1800
lengthWord	5	0.1200	0.3000

²Correct if in 1st position of the ranked list

³Correct if in 1st or 2nd position of the ranked list □ ➤ ◆ □ ➤ ◆ ≥ ➤ ◆ ≥ ➤ ■

Evaluation

- short vs long...
- More GMM components seems to decrease the accuracy because of

Overview Implementation Details Experiments and Results Conclusions

Conclusions

Conclusions about the AI project

- The full pipeline is working, however a lot of improvements are possible:
 - Extract more features
 - Eventually apply PCA to the feature vector
 - Optimize the parameters of the HMM (i.e. using a validation set).
- Built models for letters instead of models for words (it requires letters segmentation)
- Use a language model

Personal Evaluation

- We built a full working pipeline
- We read and learnt a lot about a new topic
- We had the chance to apply a lot of techniques that we had only been studied in theory
- We improved our skills in programming

Overview Implementation Details Experiments and Results Conclusions

Questions?