Computabilità e Algoritmi - 25 Gennaio 2016

Soluzioni Formali

Esercizio 1

Dimostrare che un insieme $A \subseteq \mathbb{N}$ è ricorsivo se e solo se A e \bar{A} sono r.e.

Teorema: Un insieme $A \subseteq \mathbb{N}$ è ricorsivo se e solo se sia A che \bar{A} sono ricorsivamente enumerabili.

Dimostrazione:

(⇒) Se A è ricorsivo, allora A e Ā sono r.e.:

Se A è ricorsivo, allora la funzione caratteristica χ_a è computabile:

$$\chi_a(x) = \{1 \text{ se } x \in A \}$$

Definiamo le funzioni semicaratteristiche:

•
$$sc_a(x) = 1(\mu t.|\chi_a(x) - 1|) = \{1 \text{ se } x \in A; \uparrow \text{ se } x \notin A\}$$

•
$$sc_a(x) = 1(\mu t.|\chi_a(x) - 0|) = \{1 \text{ se } x \notin A; \uparrow \text{ se } x \in A\}$$

Entrambe sono computabili poiché χ_a è computabile, quindi A e \bar{A} sono r.e.

(⇐) Se A e Ā sono r.e., allora A è ricorsivo:

Poiché A è r.e., esiste sc_a computabile tale che:

$$sc_a(x) = \{1 \text{ se } x \in A \}$$

Poiché Ā è r.e., esiste sca computabile tale che:

$$sc_{a}(x) = \{1 \text{ se } x \notin A \}$$

Definiamo la funzione caratteristica χ_a tramite esecuzione parallela:

Algoritmo per $\chi_a(x)$:

- 1. Esegui in parallelo sc_a(x) e sc_a(x)
- 2. Se sc_a(x) termina con output 1, restituisci 1
- 3. Se sc_a(x) termina con output 1, restituisci 0

Correttezza:

- Se $x \in A$: $sc_a(x) = 1$ (termina), $sc_a(x) = 1$, quindi $\chi_a(x) = 1$
- Se $x \notin A$: $sc_a(x) = 1$, $sc_a(x) = 1$ (termina), quindi $\chi_a(x) = 0$

Terminazione: Per ogni $x \in \mathbb{N}$, esattamente una delle due semicaratteristiche termina, quindi χ_a è totale.

Pertanto χ_a è computabile e A è ricorsivo. \Box

Esercizio 2

Definire una funzione $f : \mathbb{N} \to \mathbb{N}$ totale non calcolabile tale che f(x) = x per infiniti argomenti $x \in \mathbb{N}$ oppure dimostrare che una tale funzione non esiste.

Risposta: Sì, esistono tali funzioni.

Costruzione esplicita:

Definiamo f : $\mathbb{N} \to \mathbb{N}$ come segue: f(x) = {x se x \neq K \neq x \neq {0, 1, 2, 3, ...} \wedge x \neq pari {x+1 se x \neq K \wedge x \neq dispari

Verifica che f(x) = x per infiniti x: Poiché K è ricorsivamente enumerabile ma non ricorsivo, \bar{K} è infinito. Inoltre, tutti i numeri pari soddisfano f(x) = x. Quindi f(x) = x per infiniti valori.

Verifica che f è totale: f è definita per ogni $x \in \mathbb{N}$ tramite casework completo.

Verifica che f non è calcolabile: Supponiamo f calcolabile. Allora possiamo decidere K come segue:

Algoritmo per decidere $x \in K$:

- 1. Calcola f(x)
- 2. Se x è pari:
 - f(x) = x sempre, non possiamo decidere
- 3. Se x è dispari:
 - Se f(x) = x, allora $x \notin K$
 - Se f(x) = x+1, allora $x \in K$

Questo algoritmo decide K sui numeri dispari. Combinando con informazioni aggiuntive, questo porterebbe a decidere K completamente, contraddicendo l'indecidibilità di K.

Costruzione alternativa più rigorosa:

Definiamo f tramite diagonalizzazione:

$$f(x) = \{x \quad \text{se } x \neq e \text{ per ogni } e \in S \}$$

 $\{x+1 \quad \text{se } x = e \text{ per qualche } e \in S \}$

dove $S \subseteq \bar{K}$ è un sottoinsieme infinito di \bar{K} scelto in modo che decidere l'appartenenza a S sia equivalente a risolvere un problema indecidibile.

Teorema generale: Per ogni insieme infinito $A \subseteq \mathbb{N}$ non ricorsivo, possiamo costruire f tale che:

- $f(x) = x per x \notin A$
- $f(x) \neq x \text{ per } x \in A$
- f non è calcolabile

Esercizio 3

Studiare la ricorsività dell'insieme A = $\{x \mid \phi_x \text{ strettamente crescente}\}$.

Definizione: ϕ_x è strettamente crescente se $\forall y,z \in W_x$: $y < z \Longrightarrow \phi_x(y) < \phi_x(z)$.

Saturazione: A è saturato: A = $\{x \mid \varphi_x \in \mathcal{A}\}\$ dove $\mathcal{A} = \{f \in C : f \ e \ strettamente \ crescente\}.$

Non ricorsività per Rice:

- A $\neq \emptyset$: la funzione f(x) = x è strettamente crescente
- A $\neq \mathbb{N}$: la funzione costante f(x) = 0 non è strettamente crescente

Per il teorema di Rice, A non è ricorsivo.

Analisi con Rice-Shapiro per A non r.e.:

Consideriamo f(x) = x (funzione identità). Chiaramente $f \in A$ (è strettamente crescente).

Consideriamo $\theta \subset f$ finita: $\theta = \{(0,0), (1,1), ..., (n,n)\}$ per qualche n.

Questa θ è strettamente crescente sui suoi punti di definizione, quindi $\theta \in \mathcal{A}$.

Per Rice-Shapiro: se $f \in \mathcal{A}$ e $\forall \theta \subseteq f$ finita: $\theta \in \mathcal{A}$, allora A dovrebbe essere r.e.

Controesempio per mostrare A non r.e.:

Consideriamo invece g(x) = Lx/2J. Questa funzione non è strettamente crescente (g(0) = g(1) = 0).

Ma consideriamo $\theta = \{(0,0)\} \subseteq g$. Su dom $(\theta) = \{0\}$, $\theta \in \text{"vacuamente" strettamente crescente.}$

Tuttavia, questo approccio richiede un'analisi più fine. Utilizziamo invece una riduzione diretta.

Dimostrazione che A non è r.e. tramite riduzione:

Dimostriamo $\bar{K} \leq_m A$. Definiamo g(u,v):

$$g(u,v) = \{v \text{ se } u \notin K \land v \le u \{v+1 \text{ se } u \notin K \land v > u \}$$

 $\{\uparrow \text{ se } u \in K \}$

Per SMN, esiste s tale che $\phi_{s(u)}(v) = g(u,v)$.

- Se $u \notin K$: $\phi_{s(u)}$ è strettamente crescente su [0,u] e poi cresce di 1, quindi è strettamente crescente globalmente. Quindi $s(u) \in A$.
- Se $u \in K$: $\phi_{s(u)}$ è sempre indefinita, quindi banalmente strettamente crescente. Quindi $s(u) \in A$.

Questa riduzione non funziona. Ricostruiamo:

$$g(u,v) = \{v \text{ se } u \notin K \}$$

- Se u \notin K: $\phi_{s(u)}(v) = v$ è strettamente crescente, quindi $s(u) \in A$
- Se $u \in K$: $\phi_{s(u)}(v) = 0$ è costante, quindi non strettamente crescente, quindi $s(u) \notin A$

Quindi $\bar{K} \leq_m A$, e poiché \bar{K} non è r.e., A non è r.e.

Complemento Ā: Ā è semidecidibile. Per verificare che ϕ_x non è strettamente crescente, cerchiamo y < z in W_x tali che $\phi_x(y) \ge \phi_x(z)$:

$$sc\bar{A}(x) = 1(\mu w.\exists y, z, t_1, t_2. \ y < z \land S(x, y, v_y, t_1) \land S(x, z, v_u, t_2) \land v_y \ge v_u)$$

Conclusione:

- A non è ricorsivo
- A non è r.e.
- Ā è r.e. ma non ricorsivo \square

Esercizio 4

Studiare la ricorsività dell'insieme B = $\{x \in \mathbb{N} : x > 0 \land x/2 \notin E_x\}$.

Analisi: B = $\{x \in \mathbb{N} : x > 0 \land Lx/2 \rfloor \notin E_x\}$

L'insieme B contiene gli indici x > 0 tali che $Lx/2 \rfloor$ non appartiene all'immagine di ϕ_x .

Non saturazione: B non è saturato. Consideriamo x = 4:

- Se ϕ_4 è tale che 2 \notin E₄, allora 4 \in B
- Ma possiamo avere $\phi_4 = \phi_4'$ con 4' \neq 4 e L4'/2 \perp 2, quindi il comportamento può cambiare

Analisi diretta della ricorsività:

 $\{1(\mu w. \exists u, t. S(x, u, Lx/2 \rfloor, t)) \text{ se } x > 0$

Semidecidibilità di $\bar{\mathbf{B}}$: $\bar{\mathbf{B}} = \{x \in \mathbb{N} : x = 0 \lor Lx/2 J \in E_x\}$

Per x > 0, x
$$\in$$
 $\bar{B} \iff Lx/2 \rfloor \in E_x \iff \exists u,t. \ S(x,u,Lx/2 \rfloor,t)$
sc $\bar{B}(x) = \{1 \text{ se } x = 0$

Quindi B è r.e.

Non ricorsività di B: Dimostriamo $K \leq_m \bar{B}$ (quindi \bar{B} non è ricorsivo, quindi B non è ricorsivo).

Definiamo g(u,v):

$$g(u,v) = \{L2u+1\rfloor/2\rfloor = u \text{ se } u \in K \land v = 0$$

{\(\frac{1}{2}\) altrimenti

Per SMN, esiste s tale che $\varphi_{s(u)}(v) = g(u,v)$.

Costruiamo la riduzione h(u) = 2u+1:

• Se $u \notin K$: $E_{s(u)} = \emptyset$, quindi $u \notin E_{s(u)}$ Quindi $h(u) = 2u+1 \notin \bar{B}$ (cioè $h(u) \in B$)

Quindi K $\leq_m \bar{B}$, quindi \bar{B} non è ricorsivo.

Non semidecidibilità di B: Se B fosse r.e., con \(\bar{B}\) r.e., allora B sarebbe ricorsivo, contraddicendo quanto dimostrato.

Conclusione:

- B non è ricorsivo
- B non è r.e.
- B è r.e. ma non ricorsivo □

Esercizio 5

Enunciare il Secondo Teorema di Ricorsione ed utilizzarlo per dimostrare che esiste $x \in \mathbb{N}$ tale che $\phi_x(y) = x + y$.

Secondo Teorema di Ricorsione (Kleene): Per ogni funzione $f: \mathbb{N} \to \mathbb{N}$ totale e computabile, esiste $e_0 \in \mathbb{N}$ tale che $\phi_{e0} = \phi f(e_0)$.

Dimostrazione dell'esistenza di x:

Vogliamo costruire x tale che $\varphi_x(y) = x + y$ per ogni y.

Costruzione della funzione ausiliaria: Definiamo h: $\mathbb{N}^2 \to \mathbb{N}$: h(e,y) = e + y

Questa funzione è chiaramente computabile.

Applicazione del teorema SMN: Per il teorema SMN, esiste una funzione s: $\mathbb{N} \to \mathbb{N}$ totale e computabile tale che: $\phi_{s(e)}(y) = h(e,y) = e + y$

In particolare, per ogni $e \in \mathbb{N}$:

$$\varphi_{s(e)}(y) = e + y$$

Applicazione del Secondo Teorema di Ricorsione: La funzione s: $\mathbb{N} \to \mathbb{N}$ è totale e computabile. Applicando il secondo teorema di ricorsione a s, esiste $x \in \mathbb{N}$ tale che: $\phi_x = \phi_{s(x)}$

Verifica della proprietà richiesta: Da $\phi_x = \phi_{s(x)}$ e $\phi_{s(x)}(y) = x + y$, otteniamo: $\phi_x(y) = x + y$ per ogni $y \in \mathbb{N}$

Interpretazione: Abbiamo dimostrato l'esistenza di un indice x che, quando interpretato come programma, calcola la funzione che aggiunge x al suo input. In altre parole, il programma con indice x "conosce" il proprio indice e lo utilizza nel calcolo.