Lecture 22: Gaussian quadrature and Legendre polynomials

Ciaran Evans

Summary so far

To approximate $\int_{1}^{1} f(x)dx$:

- 1. Choose *n* points $x_1, ..., x_n$ in (-1, 1)
- 2. Construct the interpolating polynomial: $q(x) = \sum_{i=1}^{n} f(x_i) L_{n,i}(x)$
- 3. Integrate q:

$$\int_{-1}^{1} q(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i}) \qquad w_{i} = \int_{-1}^{1} L_{n,i}(x)dx$$

4. Approximate the integral of f:

$$\int_{-1}^{1} f(x) dx \approx \int_{-1}^{1} q(x) dx = \sum_{i=1}^{n} w_{i} f(x_{i})$$

Today: Which points $x_1, ..., x_n$ do we use??

Warmup

Warmup activity to motivate importance of node choice:

https://sta379-s25.github.io/practice_questions/pq_22_warmup.html

- Work with your neighbors on the warmup activity
- In a bit, we will discuss key points as a class

Warmup

- ▶ If $x_1 = -0.1$, $x_2 = 0.5$, then $w_1 = 5/3$ and $w_2 = 1/3$
- ▶ Best two-point rule: $x_1 = -1\sqrt{3}$, $x_2 = 1\sqrt{3}$, $w_1 = w_2 = 1$

$$\int_{-1}^{1} (x^3 - 2x^2 + 3) dx = 14/3$$

$$\frac{5}{3} f(-0.1) + \frac{1}{3} f(0.5) =$$

$$f(-1/\sqrt{3}) + f(1/\sqrt{3}) =$$

Warmup

- ▶ If $x_1 = -0.1$, $x_2 = 0.5$, then $w_1 = 5/3$ and $w_2 = 1/3$
- ▶ Best two-point rule: $x_1 = -1\sqrt{3}$, $x_2 = 1\sqrt{3}$, $w_1 = w_2 = 1$

$$\int_{-1}^{1} (2x+1)dx = 2$$

$$\frac{5}{3}f(-0.1) + \frac{1}{3}f(0.5) =$$

$$f(-1/\sqrt{3}) + f(1/\sqrt{3}) =$$

Summary so far

▶ Choose *n* points $x_1, ..., x_n$ in (-1, 1)

$$\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} w_i f(x_i) \qquad w_i = \int_{-1}^{1} L_{n,i}(x)dx$$

▶ If f(x) is a polynomial of degree $\leq n-1$, approximation is **exact**:

$$\int_{1}^{1} f(x)dx = \sum_{i=1}^{n} w_i f(x_i)$$

for any choice of n distinct points $x_1, ..., x_n$ in (-1, 1).

▶ If we are **clever** about choosing $x_1, ..., x_n$, we can get exact integrals for polynomials of degree $\leq 2n-1$

Next step: How should we be clever? Turns out the best nodes $x_1, ..., x_n$ are the roots of **Legendre polynomials**

Legendre polynomials

The **Legendre polynomials** are a set of polynomials $p_0, p_1, p_2, ...$ The first few Legendre polynomials are:

$$p_0(x) = 1$$
 $p_1(x) = x$ $p_2(x) = \frac{1}{2}(3x^2 - 1)$ $p_3(x) = \frac{1}{2}(5x^3 - 3x^2)$

Degree: Degree of p_n is n

Roots of Legendre polynomials

$$ightharpoonup p_1(x) = x$$
. Root of p_1 :

$$ho_2(x) = \frac{1}{2}(3x^2 - 1)$$
. Roots of p_2 :

$$p_3(x) = \frac{1}{3}(5x^3 - 3x^2)$$
. Roots of p_3 :

Properties of Legendre polynomials

Let p_n be the *n*th Legendre polynomial

- \triangleright p_n has degree n
- \triangleright p_n has n distinct roots in (-1,1)
- ► Let $g(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$. Then

$$\int_{-1}^{1} g(x)p_n(x)dx = 0$$

Why the Legendre polynomials?

Theorem: Suppose f(x) is a polynomial of degree 2n-1. Let p_n be the nth Legendre polynomial, and let $x_1, ..., x_n$ be the n roots of p_n . Then

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i}) \qquad w_{i} = \int_{-1}^{1} L_{n,i}(x)dx$$

Your turn

Practice questions with roots of Legendre polynomials and Gaussian quadrature:

https://sta379-s25.github.io/practice_questions/pq_22.html

- Start in class
- You are welcome and encouraged to work with your neighbors
- Solutions posted on course website