Topology General Exam August 26, 2017

Instructions: This is a four hour exam and 'closed book'. There are eight problems. Show your work using methods and results from the first year topology course topics. Results from one part of a problem can be assumed in later parts.

- **1.** Let $f: \mathbb{R}^2 \{(0,0)\} \to \mathbb{R}^3$ be given by $f(x,y) = (x^2, y^2, xy)$.
- (a) Prove that f is an immersion, but not an embedding.
- (b) Find all values of c such that f is transverse to the plane $\{(u, v, w) \mid v = c\} \subset \mathbb{R}^3$.

2. Two covering spaces over $X, p_1: X_1 \to X$ and $p_2: X_2 \to X$, are said to be isomorphic if there exists a homeomorphism $h: X_1 \to X_2$ such that the diagram $X_1 \xrightarrow{h} X_2$ commutes.

Describe the isomorphism classes of covers of the space $\mathbb{R}P^2 \times \mathbb{R}P^2$.

- **3.** Suppose that $t \in \mathbb{R}$ is a regular value of a smooth map $f : \mathbb{R}^n \to \mathbb{R}$, and let $M = f^{-1}(t)$.
- (a) Will M necessarily have a nowhere vanishing normal vector field?
- **(b)** Will *M* necessarily have a nowhere vanishing tangent vector field?
- (c) Will M necessarily be orientable?

In each part, explain how to construct the vector field or orientation if it must exist, and give a counterexample, if it needn't.

- **4.** (a) Define what it means for two chain maps between chain complexes to be *chain homotopic*. Then prove that if $f_*, g_*: C_* \to D_*$ are chain homotopic, then $f_* = g_*: H_*(C_*) \to H_*(D_*)$.
- (b) Call a chain map a quasi-isomorphism if it induces an isomorphism on homology. Let

$$0 \longrightarrow A_* \longrightarrow B_* \longrightarrow C_* \longrightarrow 0$$

$$\downarrow f_* \qquad \downarrow g_* \qquad \downarrow h_*$$

$$0 \longrightarrow D_* \longrightarrow E_* \longrightarrow F_* \longrightarrow 0$$

be a commutative diagram of chain complexes, such that each horizontal row is exact. Show that if f_* and g_* is a quasi-isomorphism then so is h_* .

5. Let $f: M \to N$ be a smooth map between manifolds of dimension m and n respectively. Let $D(f) \subset M \times M$ be the 'double point' subspace:

$$D(f) = \{(x, y) \mid x \neq y \text{ and } f(x) = f(y)\}.$$

- (a) Say that f is self transverse if for all $(x,y) \in D(f)$, $d_x f(T_x M) + d_y f(T_y M) = T_{f(x)} N$. Show that then D(f) is a smooth manifold of $M \times M$, and find its dimension. [Hint: Show that if f is self transverse, then the function $f \times f : M \times M \Delta(M) \to N \times N$ is transverse to the diagonal $\Delta(N) \subset N \times N$.]
- (b) Describe, with pictures and/or words, an example of a self transverse smooth function $f: S^1 \to \mathbb{R}^2$ for which D(f) is nonempty.
- (c) Describe, with pictures and/or words, an example of a smooth function $f: S^1 \to \mathbb{R}^2$ that is not self transverse.

- **6.** (a) Show that there is no continuous map $g: S^2 \to S^2$ such that, for all $x \in S^2$, $g(x) \neq x$ and $g(x) \neq -x$. [Hint: if such a g exists, explain how it can be used to show that the antipodal map is homotopic to the identity map on S^2 . Hmm . . .]
- (b) Show that every continuous map $f: \mathbb{R}P^2 \to \mathbb{R}P^2$ has a fixed point. [If f has no fixed point, use covering space theory to show that one can construct g as in part (a).]

- 7. Suppose a finite group G acts freely on the right of a Hausdorff space X. Let X/G be the space of G-orbits sets of the form $\{xg \mid g \in G\}$ given the quotient topology.
- (a) Show that the quotient map $X \to X/G$ is a covering space map. [Hint: you need to show that each point $x \in X$ has an open neighborhood U such that all the translates of U the sets Ug for $g \in G$ are disjoint.]
- (b) How are the groups G, $\pi_1(X)$ and $\pi_1(X/G)$ related?
- (c) Show that there exists a smooth 3-manifold with a fundamental group that is both finite and non-abelian. [One approach: Recall that S^3 can be viewed as the quaternions of unit length.]

- **8.** (a) S^2 has a CW complex structure with one 0-cell and one 2-cell, and then the associated 'product' CW structure on $S^2 \times S^2$ has one 0-cell, two 2-cells, and one 4-cell. Compute the homology groups of $S^2 \times S^2$.
- (b) If M is a smooth connected n-dimensional manifold, let \widetilde{M} denote M with a small open n-ball removed. Show that $\widetilde{S^2 \times S^2}$ is homotopy equivalent to $S^2 \vee S^2$. [Hint: you can assume that the small open 4-ball is removed from the interior of the 4-cell.]
- (c) The connected sum M#N of two n-manifolds admits a decomposition $M\#N=\widetilde{M}\cup\widetilde{N}$ with $\overline{M}\cap\overline{N}$ diffeomorphic to S^{n-1} . Compute the homology groups of $(S^2\times S^2)\#(S^2\times S^2)$.