IOQM ASSIGNMENTS: POLYNOMIALS

PANKAJ AGARWAL (PAMATHSFAC@GMAIL.COM)

Exercise 1. The product of two of the four roots of the equation

$$x^4 - 18x^3 + kx^2 + 200x - 1984 = 0$$

is -32. Determine the value of k. (USAMO, 1984)

Exercise 2. Determine all the roots, real or complex, of the system of equations:

$$x + y + z = 3$$
, $x^{2} + y^{2} + z^{2} = 3$, $x^{3} + y^{3} + z^{3} = 3$.

(USAMO, 1973)

Exercise 3. Let a, b, c be distinct integers and P(x) be a polynomial with integer coefficients. Show that it is impossible that

$$P(a) = b$$
, $P(b) = c$, $P(c) = a$.

(INMO, 1986; USAMO, 1974)

Exercise 4. Let P(x) be a polynomial of degree n such that

$$P(k) = \frac{k}{k+1}$$
, for $k = 0, 1, 2, \dots, n$.

Determine P(n+1). (Singapore MO, 1988; USAMO, 1974)

Exercise 5. Without solving the cubic equation $x^3 - x + 1 = 0$, compute the sum of all roots of the equation. (Vietnam, 1975)

Exercise 6. Can the equation

$$z^3 - 2z^2 - 2z + m = 0$$

have three distinct rational roots? Justify your answer. (Vietnam, 1980)

Exercise 7. Find the polynomial of the lowest degree with integer coefficients such that one of its roots is

$$\sqrt{2} + \sqrt[3]{3}$$
.

(Vietnam, 1984)

Exercise 8. Find all polynomials p(x) of the lowest degree with rational coefficients such that

$$p(3 + \sqrt[3]{3}) = p(3 - \sqrt[3]{3}).$$

(Vietnam, 1997)

Exercise 9. Find all real values of a for which the equation

$$x^4 + 2ax^2 - 4x + a = 0$$

has all real roots. (RMO, 2000)

Exercise 10. Prove that the product of the first 200 positive even integers differs from the product of the first 200 positive odd integers by a multiple of 407. (RMO, 2001)

Exercise 11. Let $P_1(x) = ax^2 - bx - c$, $P_2(x) = bx^2 - cx - a$, $P_3(x) = cx^2 - ax - b$, where a, b, c are nonzero real numbers. Suppose there exists a real number α such that

$$P_1(\alpha) = P_2(\alpha) = P_3(\alpha).$$

Prove that a = b = c. (RMO, 2011)

Exercise 12. Let $P_1(x) = x^2 + a_1x + b_1$ and $P_2(x) = x^2 + a_2x + b_2$ be two quadratic polynomials with integer coefficients. Suppose $a_1 \neq a_2$ and there exist integers $m \neq n$ such that

$$P_1(m) = P_2(n), \quad P_2(m) = P_1(n).$$

Prove that $a_1 - a_2$ is even. (RMO, 2015)

Exercise 13. Suppose a, b are integers and a + b is a root of the equation

$$x^2 + ax + b = 0.$$

What is the maximum possible value of b^2 ? (Pre-RMO, 2018)

Exercise 14. Suppose 1, 2, 3 are the roots of the equation

$$x^4 + ax^2 + bx = c.$$

Find the value of c. (Pre-RMO, 2017)

Exercise 15. Suppose a and b are real numbers such that ab < 1 and the equations

$$120a^2 - 120a + 1 = 0, \quad b^2 - 120b + 120 = 0$$

hold. Find the value of

$$\frac{a+b+ab}{a}$$

(Pre-RMO, 2016)

Exercise 16. Let x_1, x_2, x_3 be the roots of the equation

$$x^3 + 3x + 5 = 0.$$

Evaluate the expression

$$\left(x_1 + \frac{1}{x_1}\right) \left(x_2 + \frac{1}{x_2}\right) \left(x_3 + \frac{1}{x_3}\right)$$
?

(Pre-RMO, 2012)

Exercise 17. Determine the number of distinct real solutions of the equation

$$(x-1)(x-3)(x-5)\cdots(x-2015) = (x-2)(x-4)(x-6)\cdots(x-2014).$$

(Australian Maths Olympiad, 2015)

Exercise 18. Find a polynomial of degree 3 with real coefficients such that each of its roots is equal to the square of one root of the polynomial

$$P(x) = x^3 + 9x^2 + 9x + 9.$$

(Moldova, 1999)

Exercise 19. Let P(x) be a cubic polynomial with roots r_1, r_2, r_3 . Suppose that

$$\frac{P(1/2) + P(-1/2)}{P(0)} = 1000.$$

Find the value of

$$\frac{1}{r_1 r_2} + \frac{1}{r_2 r_3} + \frac{1}{r_3 r_1}.$$

(Australian Maths Olympiad, 1996)

Exercise 20. Find an integer x that satisfies the equation

$$x^5 - 101x^3 + 999x - 1009000 = 0.$$

(Singapore Maths Olympiad, 2005)

Exercise 21. Determine the value of $x^2 + y^2 + z^2 + w^2$ if the following equations hold:

$$\begin{split} \frac{x^2}{2^2-1^2} + \frac{y^2}{2^2-3^2} + \frac{z^2}{2^2-5^2} + \frac{w^2}{2^2-7^2} &= 1, \\ \frac{x^2}{4^2-1^2} + \frac{y^2}{4^2-3^2} + \frac{z^2}{4^2-5^2} + \frac{w^2}{4^2-7^2} &= 1, \\ \frac{x^2}{6^2-1^2} + \frac{y^2}{6^2-3^2} + \frac{z^2}{6^2-5^2} + \frac{w^2}{6^2-7^2} &= 1, \\ \frac{x^2}{8^2-1^2} + \frac{y^2}{8^2-3^2} + \frac{z^2}{8^2-5^2} + \frac{w^2}{8^2-7^2} &= 1. \end{split}$$

(AIME, 1984)

Exercise 22. For how many real numbers a does the quadratic equation

$$x^2 + ax + 6a = 0$$

have only integer roots for x? (AIME, 1991)

Exercise 23. Let

$$P_0(x) = x^3 + 313x^2 - 77x - 8.$$

For integers $n \geq 1$, define recursively

$$P_n(x) = P_{n-1}(x - n).$$

What is the coefficient of x in $P_{20}(x)$? (AIME, 1993)

Exercise 24. Suppose the roots of $x^3 + 3x^2 + 4x - 11 = 0$ are a, b, c. Let the roots of $x^3 + rx^2 + sx + t = 0$ be a + b, b + c, c + a. Find t. (AIME, 1996)

Exercise 25. Consider the polynomials

$$P(x) = x^6 - x^5 - x^3 - x^2 - x$$
, $Q(x) = x^3 - x^2 - x - 1$.

Given that z_1, z_2, z_3, z_4 are the roots of Q(x) = 0, find the value of

$$P(z_1) + P(z_2) + P(z_3) + P(z_4).$$

(AIME, 2003)

Exercise 26. Let C be the coefficient of x^2 in the expansion of

$$(1-x)(1+2x)(1-3x)(1+4x)\cdots(1-15x)$$
.

Find |C|. (AIME, 2004)

Exercise 27. Let p be the product of the non-real roots of the equation

$$x^4 - 4x^3 + 6x^2 - 4x = 2005.$$

Find |p|. (AIME, 2005)

Exercise 28. The polynomial P(x) is cubic. What is the largest value of k such that both polynomials

$$Q_1(x) = x^2 + (k-29)x - k$$
, $Q_2(x) = 2x^2 + (2k-43)x + k$

are factors of P(x)? (AIME, 2007)

Exercise 29. Let P(x) be a quadratic polynomial with real coefficients satisfying

$$x^2 - 2x + 2 \le P(x) \le 2x^2 - 4x + 3$$
 for all real x ,

and suppose P(11) = 181. Find P(16). (AIME, 2010)

Exercise 30. Prove that if the coefficients of the quadratic equation $ax^2 + bx + c = 0$ are odd integers, then its roots cannot be rational. (INMO, 1987)

Exercise 31. Let α, β, γ be the roots of $x^3 - x - 1 = 0$. Compute

$$\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma}.$$

(Canada National Olympiad, 1996)

Exercise 32. For what values of b do the equations

$$1988x^2 + bx + 8891 = 0, \quad 8891x^2 + bx + 1988 = 0$$

have a common root? (Canada Maths Olympiad, 1988)