Математические основы криптографии

Автор курса: Применко Эдуард Андреевич Составители: Смирнов Дмитрий Константинович, Соколов Александр ??

2022 г.

Оглавление

1	Элег	менты теорий групп и чисел	1
	1.1	Делимость в кольце целых чисел. НОД, алгоритм Евкли-	
		да. Критерий взаимной простоты двух чисел.	2
	1.2	Сравнения и их свойства. Китайская теорема об остатках.	
		Кольцо вычетов. Функция Эйлера и её свойства	2
	1.3	Теоремы Эйлера и Ферма. Критерий обратимости, алго-	
		ритм вычисления обратного элемента	2
	1.4	Криптографическая теорема (обоснование криптосистемы	
		PCA)	2
	1.5	Теорема о цикличности мультипликативной группы по при-	
		марному модулю.	2
	1.6	Решение сравнений первой степени	2
	1.7	Сравнения второй степени. Символ Лежандра и его свой-	
		ства	2
	1.8	Алгоритмы решения сравнений второй степени по просто-	
		му модулю	2
	1.9	Символ Якоби и его свойства. Числа Блюма и их свойства.	
		Эквивалентность задачи факторизации и решения сравне-	
		ния второй степени	2
	1.10	Алгоритмы решения сравнений второй степени по примар-	
		ному и составному модулю.	2
	1.11	Группа, порядок элемента. Теорема Лагранжа	2
	1.12	Нормальный делитель, фактор – группа, первая теорема	
		о гомоморфизме	3
	1.13	Кольцо многочленов, идеал, теорема Безу, кольцо главных	
		идеалов	3
	1.14	Конечное поле. Теорема о простом подполе конечного по-	
		ля. Строение конечного поля. Теорема о примитивном эле-	
		менте.	3
	1.15	Построение конечных полей. Алгоритм вычисления обрат-	
		ного элемента. Арифметические операции в конечном поле.	3
	1.16	Алгоритмы вычисления дискретного алгоритма	3
	1.17	Криптосистема Эль - Гамаля. Протокл Диффи - Хеллмана.	3

Оглавление 3

1.18	Минимальный многочлен и его свойства. Теорема об изо-
1 10	морфизме конечных полей одной мощности
1.13	ложении многочлена $f(x) = xp^n - x$ на неприводимые мно-
	гочлены. Критерий принадлежности элемента поля соб-
	ственному подполю
1.90	-
	Теорема о группе автоморфизмов конечного поля
1.41	линейные рекуррентные последовательности над конечным полем,
	рактеристический и минимальный многочлен ЛРП и их
	свойства
1 99	Теорема об определении структуры ЛРП по её характе-
1.22	ристическому многочлену. Теорема о ЛРП максимального
	периода
1 92	Прямое произведение групп. Теорема о представлении груп-
1.20	пы в виде прямого произведения своих подгрупп
1 94	Теорема о примарной абелевой группе
	Теорема о примарной абелевой группы в произ-
1.20	ведение своих циклических подгрупп
1 26	Нормализатор, централизатор, класс сопряженных элемен-
1.20	тов конечной группы. Теорема о числе множеств сопря-
	женных с данным. Теорема о центре примарной группы.
	Теорема Коши
1 27	Двойные смежные классы и их свойства. Теорема Силова
	(первая)
1.28	Вторая и третья теоремы Силова
	Группы подстановок. Инвариантное множество, орбита. Тео-
	рема об индексе стабилизатора группы. Теорема о транзи-
	твности нормализатора подгруппы транзитвной группы.
	$(y_T . 13.4)$
1.30	Лемма Бернсайда
	Регулярные и полурегулярные группы. Порядок полурегу-
	лярной группы.
1.32	Блоки и импримитивные группы. Критерий импримитив-
	ности. Теорема о импримитивности транзитивной группы
	с интранзитивным нормальным делителем
1.33	Примитивные группы. Кратная транзитивность. Крите-
	рий кратной транзитивности.
1.34	Теорема о группе автоморфизмов конечной группы
1.35	Утверждение об изоморфизме стабилизатора и специаль-
	ной группы автоморфизмов регулярной подгруппы (Ут.
	13.5). Утверждение о порядке регулярного нормального
	делителя кратно транзитивной группы.

4	Оглавление
---	------------

1.36	Простая группа. Теорема о простоте знакопеременной груп-	
	пы. Теорема о нормальном делителе симметрической груп-	
	пы	4

Глава 1

Элементы теорий групп и чисел

- 1.1 Делимость в кольце целых чисел. НОД, алгоритм Евклида. Критерий взаимной простоты двух чисел.
- 1.2 Сравнения и их свойства. Китайская теорема об остатках. Кольцо вычетов. Функция Эйлера и её свойства.
- 1.3 Теоремы Эйлера и Ферма. Критерий обратимости, алгоритм вычисления обратного элемента.
- 1.4 Криптографическая теорема (обоснование криптосистемы PCA).
- 1.5 Теорема о цикличности мультипликативной группы по примарному модулю.
- 1.6 Решение сравнений первой степени.
- 1.7 Сравнения второй степени. Символ Лежандра и его свойства.
- 1.8 Алгоритмы решения сравнений второй степени по простому модулю.
- 1.9 Символ Якоби и его свойства. Числа Блюма и их свойства. Эквивалентность задачи факторизации и решения сравнения второй степени.
- 1.10 Алгоритмы решения сравнений второй степени по примарному и составному модулю.
- 1.11 Группа, порядок элемента. Теорема Лагранжа.

.

- 1.12. Нормальный делитель, фактор группа, первая теорема о гомоморфизме.3
- 1.12 Нормальный делитель, фактор группа, первая теорема о гомоморфизме.
- 1.13 Кольцо многочленов, идеал, теорема Безу, кольцо главных идеалов.
- 1.14 Конечное поле. Теорема о простом подполе конечного поля. Строение конечного поля. Теорема о примитивном элементе.
- 1.15 Построение конечных полей. Алгоритм вычисления обратного элемента. Арифметические операции в конечном поле.
- 1.16 Алгоритмы вычисления дискретного алгоритма.
- 1.17 Криптосистема Эль Гамаля. Протокл Диффи Хеллмана.
- 1.18 Минимальный многочлен и его свойства. Теорема об изоморфизме конечных полей одной мощности.
- 1.19 Примитивный многочлен и его свойства. Теорема о разложении многочлена $f(x) = xp^n-x$ на неприводимые многочлены. Критерий принадлежности элемента поля собственному подполю.
- 1.20 Теорема о группе автоморфизмов конечного поля.
- 1.21 Рекуррентные последовательности над конечным полем, линейные рекуррентные последовательности (ЛРП). Характеристический и минимальный многочлен ЛРП и их свойства.
- 1.22 Теорема об определении структуры ЛРП по её характеристическому многочлену. Теорема о ЛРП максимального периода.
- 1.23 Прямое произведение групп. Теорема о представлении группы в виде прямого произведения своих подгрупп.
- 1.24 Теорема о примарной абелевой группе.

- 1.25 Теорема о разложении конечной абелевой группы в произведение своих циклических подгрупп.
- 1.26 Нормализатор, централизатор, класс сопряженных элементов конечной группы. Теорема о числе множеств сопряженных с данным. Теорема о центре примарной группы. Теорема Коши.
- 1.27 Двойные смежные классы и их свойства. Теорема Силова (первая)
- 1.28 Вторая и третья теоремы Силова.
- 1.29 Группы подстановок. Инвариантное множество, орбита. Теорема об индексе стабилизатора группы. Теорема о транзитвности нормализатора подгруппы транзитвной группы. (Ут. 13.4).
- 1.30 Лемма Бернсайда.
- 1.31 Регулярные и полурегулярные группы. Порядок полурегулярной группы.
- 1.32 Блоки и импримитивные группы. Критерий импримитивности. Теорема о импримитивности транзитивной группы с интранзитивным нормальным делителем.
- 1.33 Примитивные группы. Кратная транзитивность. Критерий кратной транзитивности.
- 1.34 Теорема о группе автоморфизмов конечной группы.
- 1.35 Утверждение об изоморфизме стабилизатора и специальной группы автоморфизмов регулярной подгруппы (Ут. 13.5). Утверждение о порядке регулярного нормального делителя кратно транзитивной группы.
- 1.36 Простая группа. Теорема о простоте знакопеременной группы. Теорема о нормальном делителе симметрической группы.