Complex Valued Neural Networks

Reviewed by Eun Woo Im

Introduction

- In many practical applications, complex numbers are often used such as in telecommunications, robotics, bioinformatics, speech recognition, etc.
- This suggests that ANNs using complex numbers to represent inputs, outputs, and parameters.
- Multiplication function which results in a phase rotation and amplitude modulation yields an advantageous reduction of the degree of freedom.

Complex Numbers

Basic Formula for Complex Numbers

$$z = a + bi$$
Real Imaginary

$$z = r(\cos\theta + i\sin\theta)$$

Cartesian Coordinate

Polar Coordinate

 $e^{\theta i} = \cos \theta + i \sin \theta$

Derived from Taylor Expansion

Euler Coordinate

Activation Functions

Requirement: Nonlinear, susceptible to gradient exploding/vanishing

MVN:
$$z = (w_0 + w_1 x_1 + \cdots + w_n x_n)$$

1. Multi-valued Neuron, neural element with n inputs and one output lying on the unit circle, with complex-valued weight

 \rightarrow all outputs of the function are the k-th roots of unity $f(z) = \exp\left(\frac{i2\pi j}{k}\right) if \ 2\pi j/k \le \arg(z) \le 2\pi (j+1)/kq$ can extended to continuous valued inputs by $k \to \infty$

2. Fully complex networks

Differentiable functions.
For example, hyperbolic tangent activation function.

Activation Functions

3. Radial Basis Function

Kernel trick for mapping into higher dimension.

$$z = (x_1, ..., x_n), K_{RBF} = \exp\left(-\frac{1}{2}(x_i - x_j)^2\right)$$

4. Non-parametric functions

For example, ReLU function that separately on both real and imaginary parts.

Tradeoff: boundness vs differentiable

Activation Functions

activation	f(z) =
ETFs (T. Kim & Adalı, 2003)	see Table 3.1
Georgiou and Koutsougeras $(1992)^a$	$\frac{z}{c+\frac{1}{r} z }$
Hirose $(1992a)^b$	$\tanh\left(\frac{ z }{m}\right)e^{i\arg z}$ $f^{(r)}(\operatorname{Re} z) + if^{(i)}(\operatorname{Im} z)$
Type A (Kuroe et al., 2003) ^c	$f^{(r)}(\operatorname{Re}z) + if^{(i)}(\operatorname{Im}z)$
Type B (Kuroe et al., 2003) ^d	$\psi(z)e^{i\varphi(\arg z)}$
$modReLU (Arjovsky et al., 2016)^e$	$\operatorname{ReLU}(z +b)e^{\operatorname{i}\operatorname{arg}z}$
zReLU (Guberman, 2016)	$\begin{cases} z & \text{if } \arg z \in [0, \pi/2] \\ 0 & \text{otherwise} \end{cases}$
CReLU (Trabelsi et al., 2017)	$\operatorname{ReLU}(\operatorname{Re} z) + i \operatorname{ReLU}(\operatorname{Im} z)$

 $[^]a c$ and r are constants.

Table 3.1: Elementary transcendental functions and their derivatives.

f(z)	$rac{\mathrm{d}f}{\mathrm{d}z}$
Circular	
$\tan z = \frac{e^{iz} - e^{-iz}}{i(e^{iz} + e^{-iz})}$	$\frac{\mathrm{d}}{\mathrm{d}z}\tan z = \sec^2(z)$
$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$	$\frac{\mathrm{d}}{\mathrm{d}z}\sin z = \cos z$
Inverse circular	
$\arctan z = \frac{1}{2}i[\ln(1 - iz) - \ln(1 + iz)]$	$\frac{\mathrm{d}}{\mathrm{d}} \arctan z = \frac{1}{1+z^2} : z \neq \pm \mathrm{i}$

$$\arctan z = \frac{1}{2}i[\ln(1-iz) - \ln(1+iz)] \qquad \frac{d}{dz}\arctan z = \frac{1}{1+z^2}: z \neq \pm i$$

$$\arcsin z = -i\ln(iz + \sqrt{1-z^2}) \qquad \frac{d}{dz}\arcsin z = \frac{1}{\sqrt{1-z^2}}: z \neq \pm 1$$

$$\arccos z = \frac{1}{2}\pi + i\ln(iz + \sqrt{1-z^2}) \qquad \frac{d}{dz}\arccos z = -\frac{1}{\sqrt{1-z^2}}: z \neq \pm 1$$

Hyperbolic

$$\operatorname{arctanh} z = \frac{1}{2} [\ln(1+z) - \ln(1-z)] \qquad \frac{\mathrm{d}}{\mathrm{d}z} \operatorname{arctanh} z = \frac{1}{1-z^2} : z \neq \pm 1$$
$$\operatorname{arcsinh} z = \ln(z + \sqrt{1+z^2}) \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}z} \operatorname{arcsinh} z = \frac{1}{\sqrt{1+z^2}} : z \neq \pm 1$$

Inverse hyperbolic

$$\operatorname{arctanh} z = \frac{1}{2} [\ln(1+z) - \ln(1-z)] \qquad \frac{\mathrm{d}}{\mathrm{d}z} \operatorname{arctanh} z = \frac{1}{1-z^2} : z \neq \pm 1$$
$$\operatorname{arcsinh} z = \ln(z + \sqrt{1+z^2}) \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}z} \operatorname{arcsinh} z = \frac{1}{\sqrt{1+z^2}} : z \neq \pm 1$$

 $^{^{}b}$ m is a constant.

 $^{^{}c} f^{(r)}$ and $f^{(i)}$ are nonlinear real functions.

 $^{^{}d}$ ψ and φ are nonlinear non-negative real functions.

 $^{^{}e}$ b is a trainable bias parameter.

Optimization and Learning

Gradient-based Approach

Note: All activations should be initially assumed to exist for all neuron outputs so that Cauchy-Riemann Equations are satisfied.

$$f(z) = u(z) + i \cdot v(z)$$
 $z = x + iy$. $rac{\partial u}{\partial x} = rac{\partial v}{\partial y}$ $rac{\partial u}{\partial y} = -rac{\partial v}{\partial x}$

The process of learning with complex domain back-propagation is similar to the process in the real domain. Following is used for complex square mean.

$$\mathcal{L}(e) = \sum_{k=0}^{N-1} e_k \bar{e}_k. \quad \mathcal{L}(e_{log}) = \frac{1}{2} \left(log \left[\frac{\hat{r}_k}{r_k} \right]^2 + \left[\hat{\phi}_k - \phi_k \right]^2 \right)$$

$$(e_{log}) := \sum_{k=0}^{N-1} (log (o_k) - log(d_k)) \overline{(log (o_k) - log(d_k))}$$

Optimization and Learning

Non-gradient-based Approach

For a single neuron, weight correction in MVN is determined by the neuron's error, and learning is reduced to a simple movement along the unit circle.

Pros

- 1. Easy to implement
- 2. No problem from gradient e.g., local minima
- 3. Possible to build hybrid networks

$$\tilde{w}_{i}^{kj} = w_{i}^{kj} + \frac{C_{kj}}{(N_{j-1}+1)} \epsilon_{kj} \bar{Y}_{i,j-1}, \quad i = 1, \dots, n$$

$$\tilde{w}_{0}^{kj} = w_{0}^{kj} + \frac{C_{kj}}{(N_{j-1}+1)} \epsilon_{kj}$$

$$\tilde{w}_{i}^{k1} = w_{i}^{k1} + \frac{C_{k1}}{(n+1)} \epsilon_{k1} \bar{x}_{i}, \quad i = 1, \dots, n$$

$$\tilde{w}_{0}^{k1} = w_{0}^{k1} + \frac{C_{k1}}{(n+1)} \epsilon_{kj}$$

Input and Output Representations

- Input can be complex either naturally or by design e.g., Fourier transform on images, radio frequency
- However, real-values are more appropriate if the goal is to perform inference over a probability distribution of complex parameters.
- Toy examples trained to learn a function in 4 ways.
 - 1) amplitude-phase where a real-valued vector is formed from concatenating the phase offset and amplitude parameters;
 - 2) complex representation where the phase offset is used as the phase of the complex phasor;
 - 3) real-imaginary representation where the real and imaginary components of the complex vector in 2) are used as real vectors;
 - 4) augmented complex representation which is a concatenation of the complex vector and its conjugate.

Input and Output Representations

Figure 3.5: Top: three real sinusoids corresponding to arbitrary vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\varphi}$. Bottom: corresponding real-valued output $\boldsymbol{f}(\boldsymbol{\alpha}, \boldsymbol{\varphi})$ and the Hilbert transform of \boldsymbol{f} . Black markers indicate sample points corresponding to \boldsymbol{t} .

$$egin{aligned} oldsymbol{f}(oldsymbol{lpha},oldsymbol{arphi}) &= \sum_{i\in\{0,1,2\}} lpha_i \sin(\omega_i oldsymbol{t} + arphi_i), & ext{given} \ oldsymbol{\omega} &= egin{bmatrix} 6\pi & 10\pi & 14\pi \end{bmatrix}^\mathsf{T} & ext{and} \ oldsymbol{t} &= egin{bmatrix} 0 & rac{1}{100} & \cdots & rac{99}{100} \end{bmatrix}, \end{aligned}$$

Input and Output Representations

Amplitude-Phase. Arguably the simplest input representation is to simply concatenate the amplitude and phase offset parameters into a real-valued vector,

$$oldsymbol{x}^{(ap)} := \begin{bmatrix} \cdots & lpha_i & arphi_i & \cdots \end{bmatrix}^\mathsf{T} \in \mathbb{R}^{2K}.$$

Complex. Alternatively, the input parameters can be composed into complex numbers by letting the phase offset represent the phase of a complex phasor.

$$\boldsymbol{x}^{(c)} := \begin{bmatrix} \cdots & \alpha_i e^{i\varphi_i} & \cdots \end{bmatrix}^\mathsf{T} \in \mathbb{C}^K.$$

The vector $\boldsymbol{x}^{(c)}$ is complex by design, where we use the phase of a complex number to represent a parameter that represents rotation or angle.

Real-Imaginary. The complex vector in Eq. (3.61) could also be broken into its real and imaginary parts to form a real vector.

$$\boldsymbol{x}^{(ri)} := \begin{bmatrix} \operatorname{Re} \left\{ \boldsymbol{x}^{(c)} \right\}^{\mathsf{T}} & \operatorname{Im} \left\{ \boldsymbol{x}^{(c)} \right\}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
$$= \begin{bmatrix} \cdots & \alpha_i \cos \varphi_i & \cdots & a_0 \sin \varphi_0 & \cdots \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^{2K}.$$

Augmented Complex. Finally, we may use the augmented complex vector, which is the complex vector concatenated with its conjugate.

$$\boldsymbol{x}^{(ac)} := \left[\left(\boldsymbol{x}^{(c)} \right)^{\mathsf{T}} \left(\boldsymbol{x}^{(c)} \right)^{*} \right]^{\mathsf{T}} \in \mathbb{C}^{2K},$$

$$= \left[\cdots \quad \alpha_{i} e^{i\varphi_{i}} \quad \cdots \quad \alpha_{i} e^{-i\varphi_{i}} \quad \cdots \right]^{\mathsf{T}}$$
(3.65)

Challenges and Potential Research

- 1. Limitation that the complex-valued activation is not complex-differentiable and bounded at the same time.
- 2. Not many deep learning libraries are optimized for complex-valued operations.
- 3. Alternative methods of complex-valued weight initialization for CVNNs.
- 4. Number of computational complexity increase. Network may gain more expressiveness but run the risk of overfitting due to the increase in parameters as the network goes deeper.