

Evaluierung

INTERACTIVE VISUAL DATA MINING

- Warum?
 - Systematischer Weg, um zu testen, wie verschiedene Methode funktionieren
 - Vergleich zweier Methoden
- Wie?
 - Führe Experimente durch

- Probleme:
 - Limitierte Datenqualität
 - Methoden haben unterschiedliche Ergebnisse
 - Klassen
 - Wahrscheinlichkeiten
 - Numerische Werte

- Training und Tests
 - Die Performanz für Klassifizierungsprobleme wird mit der Fehlerrate gemessen
 - Fehlerrate: Anzahl der falschen
 Vorhersagen über alle Vorhersagen
 - Ziel: Erreiche gute Vorhersagen auf neuen Daten

- Die Fehlerrate auf dem Trainingsdatensatz eignet sich nicht als guter Indikator
 - Wird auch Resubstitution Fehler genannt
 - Ist nur ein erster Indikator für die Qualität des Schätzers (Klassifizierer)
- Teile den Datensatz in
 - Training Datensatz
 - Test Datensatz

- Training und Tests
 - Die Testdaten dürfen nicht zur Erstellung des Klassifizierers genutzt werden
 - Nutzung von verschiedenen, unabhängigen Datensätzen ist oft sinnvoll:
 - Trainingsdatensatz: Erstelle die Regeln
 - Validierungsdatensatz:
 - Pruning
 - Vergleich von verschiedenen Methoden

- Testdatensatz: Test der Performanz des finalen und optimierten Klassifizierers
- Große Datensätze sind hier hilfreich
- Bei kleinen Datensätzen müssen reale
 Daten oft händisch klassifiziert werden

- Vorhersage Performanz
 - Hängt von der Größe des Testdatensatzes ab
 - Qualität des Klassifizierers hängt vom Trainingsdatensatz ab
 - Nutze Statistik: Bernoulli-Kette
 - Abfolge von unabhängigen Versuchen
 - Beispiel: Münzwurf

- Angenommen, die Münze hat einen Bias
 - Führe eine Reihe von Experimenten durch
 - Sage immer Kopf vorher
 - Habe eine 75% Erfolgsrate (Vorhersage Kopf, Ergebnis Kopf)
 - Was ist dann die richtige Erfolgsrate p?

- Vorhersage Performanz
 - Einzelner Bernoulli Versuch
 - Mittelwert: p
 - Varianz: $p \cdot (1-p)$
 - N Bernoulli Versuche
 - Mittelwert: p
 - Varianz: $\frac{p \cdot (1-p)}{N}$

– Wie schaut die Verteilung für große N aus?

- Vorhersage Performanz
 - Einzelner Bernoulli Versuch
 - Mittelwert: p
 - Varianz: $p \cdot (1-p)$
 - N Bernoulli Versuche
 - Mittelwert: p
 - Varianz: $\frac{p \cdot (1-p)}{N}$

- Wie schaut die Verteilung für große N aus?
 - Es nähert sich der Normalverteilung an

- Vorhersage Performanz
 - Nimm eine zufällige Variable X an
 - Mittelwert: 0
 - Varianz: 1
 - $-\Pr[-z \le X \le z] = c$

- Es gibt Tabellen für die Werte z und c
- Angenommen, die Daten sind normalverteilt:
 - Für einseitige Tests sehen die Tabellen so aus : $Pr[X \ge z]$
 - Für Normalverteilungen gilt: $Pr[X \ge z] = Pr[X \le z]$
 - $\Pr[X \ge z] = 5\%$: 5% Chance, dass $X > 1.65 \cdot \sigma + \mu$
 - Äquivalent zu: $Pr[-1.65 \le X \le 1.65] = 90\%$
 - Finale Gleichung: $\Pr\left[-z < \frac{f-p}{\sqrt{\frac{p \cdot (1-p)}{N}}} < z\right] = c$

- Vorhersage Performanz
 - Konfidenzgrenzen:

$$- p = \frac{f + \frac{z^2}{2N} \pm z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}}}{1 + \frac{z^2}{N}}$$

- Erhalte von c (Konfidenz) z aus der Tabelle
- Nutze die Formel mit:
 - Erfolgsrate $f = \frac{S}{N}$
 - S: Anzahl der Erfolge
 - N: Anzahl der Versuche
 - z: siehe Tabelle

- Vorhersage Performanz
 - -f = 75%, N = 1000, c = 80% ergibt [0.732,0.767]
 - -f = 75%, N = 100, c = 80% ergibt [0.691,0.801]

- Erinnerung:
 - Die Annahme einer Normalverteilung ist nur bei großen N schlüssig!

- Holdout Methode
 - Datenmengen für das Lernen und Testen sind oft limitiert verfügbar
 - Reserviere vorab einen Teil der Daten für das Testen
 - Nutzung der restlichen Daten für das Training

- Manchmal müssen auch Daten für die Validierung reserviert werden
- Oft:
 - Ein Drittel für das Testen
 - Zwei Drittel für das Training

- Holdout Methode
 - Problem: Die Datensätze k\u00f6nnen nicht repr\u00e4sentativ sein
 - Im Trainingsdatensatz fehlt eine Klasse
 - Eine Klasse ist im Trainingsdatensatz unterrepräsentiert

- Lösung: Stratifikation
 - Random sampling
 - Garantiere, dass jede Klasse in Trainingsdatensatz und Testdatensatz gleich repräsentiert ist
 - Methode: Stratified Holdout
 - Ist nur eine simple Absicherung gegen ungleiche Verteilungen

- Repeated Holdout
 - Wiederhole die Analyse (mit Stratifikation) mehrere Male
 - Wähle jedes Mal eine Teilmenge der Daten zufällig für das Testen
 - Nutze die restlichen Daten als Trainingsdatensatz

- Zusammengefasste Fehlerrate:
 - Bilde den Durchschnitt über alle einzelnen Fehlerraten

- Kreuzvalidierung
 - Erweiterung der holdout Methode
 - Wähle eine feste Anzahl an folds (Partitionen) für die Daten
 - Normalerweise sind alle folds gleich groß

- Jedes fold wird für das Testen genutzt
- Die übrigen werden für das Training genutzt
- Bei drei folds:
 - Dreifache Kreuzvalidierung
 - Stratifizierte dreifache Kreuzvalidierung
- Bilde den Durchschnitt der Fehlerraten

- Kreuzvalidierung
 - Standard: 10 folds
 - Warum 10?
 - Praktische Erfahrungen
 - Theoretische Nachweise
 - Muss dennoch nicht als "Standardwert" angenommen werden!

- Leave-one-out Kreuzvalidierung
 - Datensatz: n Instanzen
 - n-fold Kreuzvalidierungen
 - Lasse jede Instanz nacheinander aus
 - Nutze n-1 Instanzen für das Training
 - Nutze eine Instanz f
 ür das Testen
 - Bilde den Durchschnitt über alle n Bewertungen

- Leave-one-out Kreuzvalidierung
 - Vorteile:
 - Nutzung der maximal möglichen Datenmenge für das Training
 - Dadurch kann es zur Steigerung der Klassifikatorperformanz kommen
 - Deterministisch (kein random sampling notwendig)
 - Optimal f
 ür kleinere Datensätze

- Nachteile
 - Rechenzeit!
 - Unmöglich für große Datensätze
 - Kann nicht stratifiziert werden
 - Garantiert nicht stratifiziertes Ergebnis
 - Annahme: Datensatz mit gleicher Anzahl von Instanzen für 2 Klassen
 - Berechne die Mehrheitsklasse:
 - Echter Fehlerrate: 50%
 - Berechnete Fehlerrate: 100%

- Bootstrapping
 - Sampling mit Ersatz
 - Vorherige Verfahren wählten Datenpunkte ohne Ersatz
 - Variante: 0.632 bootstrap

- Ein Datensatz mit n Instanzen wird n mal mit Ersatz gesampelt
- Liefert einen Trainingsdatensatz, welcher n Instanzen hat
- Nutzt einige Instanzen im neuen Datensatz mehrfach
- Ungenutzte Instanzen werden dann im Testdatensatz genutzt

- Bootstrapping
 - Jede Instanz hat eine Wahrscheinlichkeit von:
 - $-\frac{1}{n}$, um gezogen zu werden
 - $-1-\frac{1}{n}$, um nicht gezogen zu werden
 - Jedes Item kann n mal gezogen werden
 - Wahrscheinlichkeit, dass eine Instanz nicht gezogen wird:

$$\left(1 - \frac{1}{n}\right)^n \approx e^{-1} = 0.368$$

- Trainingsdatensatz
 - 63.2% Instanzen
- Testdatensatz
 - 36.8% Instanzen
- Einige Instanzen sind mehrfach im Trainingsdatensatz vertreten und ergeben so n Instanzen

- Bootstrapping
 - Schätzung der Fehlerrate ist pessimistisch
 - 63% Instanzen gegenüber der 90%
 Instanzen der 10-fold Kreuzvalidierung
 - Idee: Kombiniere des Testdatensatzfehler mit dem Fehler des Models
 - Normalerweise zu optimistisch
 - Sollte nicht alleine genutzt werden

- Bootstrap Fehlerrate:
- $-e = 0.632 e_{test instances} + 0.368 \cdot e_{training instances}$
- Wiederhole das bootstrapping mehrmals
- Berechne den Durchschnitt über alle Wiederholungen

- Bootstrapping
 - Vorteil
 - Eine der beste Lösungen für sehr kleine Datensätze
 - Nachteile
 - Liefert schlechte Ergebnisse für spezielle Fälle
 - Annahme:
 - Zwei Klassen
 - Gleiche Anzahl von Instanzen für jede Klasse

- $-e_{training\ instances}=0$
- Schätzung der Fehlerrate: $0.632 \cdot 50\% + 0.368 \cdot 0\% = 31.6\%$
- Echte Fehlerrate: 50%

- Vergleich verschiedener Data Mining Verfahren
 - Simple Methode:
 - Nutze zum Beispiel Kreuzvalidierung
 - Nutze dann das Verfahren mit der geringsten Fehlerrate
 - Problem:
 - Geschätzte Fehlerrate kann aber nicht korrekt sein
 - Wie kann man beurteilen, dass ein Verfahren besser als das andere ist?

 Insbesondere für neue Verfahren muss man dies evaluieren

- Lösung:
 - Statistische Tests, die auf den Konfidenzintervallen basieren

- Vergleich verschiedener Data Mining Verfahren
 - Nutzung des t-Tests (auch bekannt als Student's t-test)
 - Wenn der Trainingsdatensatz und der Testdatensatz in beiden Verfahren gleich sind, wird der gepaarte t-Test verwendet
 - Evaluierung wird später erklärt
 - Wurde für die Visualisierung auch angepasst, ist aber generell anwendbar

- Vorhersage von Wahrscheinlichkeiten
 - Bisher wurde nur Korrektheit geprüft
 - Korrekt im Sinne, dass die Vorhersage mit dem gesetzten Wert übereinstimmt
 - Ansonsten ist es ein Fehler
 - Das ist in vielen Fällen passend
 - 0-1 Verlustfunktion
 - Korrekte Vorhersage: loss = 0
 - Fehlerhafte Vorhersage: loss = 1

- Viele Lernverfahren geben aber zudem eine Wahrscheinlichkeit für die Vorhersage an
 - Zum Beispiel Naïve Bayes
- Nützlich, wenn die Ergebnisse in weiteren Schritten genutzt werden sollen

- Vorhersage von Wahrscheinlichkeiten:
 Quadratische Verlustfunktion
 - Für eine einzelne Instanz
 - Annahme:
 - k mögliche Ergebnisse
 - Wahrscheinlichkeitsvektor $(p_1, ..., p_k)$, $\sum_{i=1}^k p_i = 1$
 - Tatsächliches Ergebnis: $(a_1, ..., a_k)$
 - $-a_i = \begin{cases} 1 & i \text{ is the correct class} \\ 0 & \text{else} \end{cases}$

– Quadratische Verlustfunktion:

$$\sum_{j} (p_{j} - a_{j})^{2} = 1 - 2p_{i} + \sum_{j} p_{j}^{2}$$

– Fehlerhafte Vorhersagen:

$$p_j^2$$

– Korrekte Vorhersagen:

$$(p_i - 1)^2 = 1 - 2p_i + p_i^2$$

 Für mehrere Instanzen wird die Verlustfunktion summiert

- Vorhersage von Wahrscheinlichkeiten:
 Quadratische Verlustfunktion
 - Minimierung des quadratischen Fehlers ist gut erforscht
 - In diesem Falle soll der Klassifizierer die beste Schätzung der wahren Wahrscheinlichkeiten vornehmen
 - Häufig verwendet zur Vorhersage von Wahrscheinlichkeiten

- Vorhersage von Wahrscheinlichkeiten:
 Informational Loss Function
 - $-\log_2 p_i$
 - i. Vorhersage ist korrekt
 - Negative log likelihood
 - Modulo eines konstanten Faktors, welcher durch die Basis des Logarithmus bestimmt wird
 - Repräsentiert die Informationen, welche notwendig sind, um die tatsächliche Klasse / auszudrücken

- Einheit: bit
- Wahrscheinlichkeitsverteilung: $p_1, ..., p_k$
- Minimale Anzahl von bits, die benötigt werden, um die tatsächlich aufgetretene Klasse auszudrücken.
 - Unter Beachtung der gegebenen Wahrscheinlichkeitsverteilung
- Minuszeichen: Wahrscheinlichkeiten sind kleiner als 1

- Vorhersage von Wahrscheinlichkeiten:
 Informational Loss Function
 - $-\log_2 p_i$
 - i. Vorhersage ist korrekt
 - Negative log likelihood
 - Modulo eines konstanten Faktors, welcher durch die Basis des Logarithmus bestimmt wird
 - Repräsentiert die Informationen, welche notwendig sind, um die tatsächliche Klasse / auszudrücken

- Einheit: bit
- Wahrscheinlichkeitsverteilung: $p_1, ..., p_k$
- Minimale Anzahl von bits, die benötigt werden, um die tatsächlich aufgetretene Klasse auszudrücken.
 - Unter Beachtung der gegebenen Wahrscheinlichkeitsverteilung
- Minuszeichen: Wahrscheinlichkeiten sind kleiner als 1
 - Negative Logarithmen!

- Vorhersage von Wahrscheinlichkeiten:
 Informational Loss Function
 - Beispiel:
 - Kopf oder Zahl braucht 1 bit

$$-\log_2\frac{1}{2}=1$$

- Erwarteter Wert
 - $-\sum_{j=1}^k -p_j' \cdot \log_2 p_j$
 - $-\ p_{j}{'}$ ist die wahre Wahrscheinlichkeit für die Klasse j
 - Ausprägung ist minimal, wenn $p_j = p_j{}'$

- Entropie: Durchschnittliche Information
- Probleme:
 - Wenn die Wahrscheinlichkeit 0 ist, wird der Information loss ∞
 - Auch bekannt als zero-frequency problem
 - Mögliche Lösung:
 - Laplace estimator

- Vorhersage von Wahrscheinlichkeiten
 - Welche Verlustfunktion sollte man nutzen?

– Unterschiede:

Quadratische Verlustfunktion	Information loss function
Beachtet alle Wahrscheinlichkeiten	Basiert nur auf den Wahrscheinlichkeiten der aktuell auftretenden Klassen
Obere Schranke: 2	Keine obere Schranke

- Berechnung der Kosten
 - Vorgestellte Evaluierungen beachten nicht falsch klassifizierte Daten
 - Das kann zu fragwürdigen Ergebnissen führen!

- Annahme: Ein Ergebnis tritt in 97% der Fälle auf
- Das Modell sagt dieses Ergebnis immer voraus
 - Ergebnis ist zu 97% korrekt
- Sind die Fälle, in denen das Ergebnis nicht auftritt vielleicht interessanter?

- Berechnung der Kosten
 - True positive rate: $\frac{TP}{TP+FN}$
 - False positive rate: $\frac{FP}{FP+TN}$
 - Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$

		Vorhergesagte Klasse	
		ja	nein
Tatsächliche Klasse	ja	true positive	false negative
	nein	false positive	true negative

- Berechnung der Kosten
 - Multiklassen Vorhersage: Nutzung einer
 2 dimensionalen confusion Matrix
 - Jede Zelle repräsentiert die Anzahl der Instanzen mit:
 - Zeile: tatsächliche Klasse
 - Spalte: vorhergesagte Klasse

- Gute Ergebnisse:
 - Große Zahlen auf der Diagonalen
 - Kleine Zahlen außerhalb
- Kann gut gegen Zufallsvorhersagen verglichen werden

- Berechnung der Kosten
 - Kappa Statistik: $\frac{p-r}{m-r}$
 - p: Vorhersagen
 - m: Maximal erfolgreiche Vorhersagen
 - r: Zufällige erfolgreiche Vorhersagen
 - Maximaler Wert: 100%
 - Zufallsvorhersage ergibt 0%

- Beispiel vom Anfang:
 - Kappa Wert würde bei 0% liegen
- Kosten sind aber immer noch nicht berücksichtigt!

- Berechnung der Kosten:
 Kostensensitive Klassifikation
 - Nutzung einer Kostenmatrix
 - Jede Zelle repräsentiert die Kosten, welche diese Entscheidung des Klassfikators verursacht
 - Unterschiedliche Zellen können unterschiedliche Kosten haben

- Berechnung der Kosten
 - Summiere alle Zellen der Kostenmatrix für eine Testinstanz auf
 - Kosten werden bei der Vorhersagen ignoriert
 - Kosten werden aber bei der Evaluierung in Betracht gezogen

- Berechnung der Kosten:
 Kostensensitive Klassifikation
 - Ergebnisse mit Wahrscheinlichkeiten:
 - Vorhersage der Klasse mit den geringsten Fehlerkosten
 - Gegeben:
 - Kosten Matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$
 - Wahrscheinlichkeiten für die Klassen a,
 b, c: p_a, p_b, p_c

- Vorhersage a: $1 p_a$
 - Multipliziere $[p_a \quad p_b \quad p_c]$ mit $[0 \quad 1 \quad 1]$: $p_b + p_c = 1 p_a$
- Vorhersage b: $1 p_b$
- Vorhersage c: $1 p_c$
- Auswahl der Vorhersage mit der geringsten Fehlerkosten:
 - Geringste Wahrscheinlichkeit
- Die meisten Klassifikatoren können angepasst werden, dass sie Wahrscheinlichkeiten mit ausgeben

- Berechnung der Kosten:
 Kostensensitive Klassifikation
 - Nutzung der Kostenmatrix während der Trainingsphase
 - Ignoriere Kosten bei der Vorhersage
 - Simple Methode:
 - Variiere die Größen der Instanzen im Trainingsdatensatz
 - Z.B. Duplikate der Instanzen

- Viele Lernmethoden erlauben gewichtete Instanzen
 - Instanzen werden normalerweise auf 1 initialisiert
 - Instanzen k\u00f6nnen aber auch die relative Kosten der false positives und false negatives initialisiert werden

- Evaluierung numerischer Vorhersagen
 - Grundideen funktionieren auch hier
 - Messung der Fehlerrate muss angepasst werden:
 - Vorhergesagte Werte in den Testinstanzen: p_1, \dots, p_n
 - Tatsächliche Werte: a_1, \dots, a_n

- Evaluierung numerischer Vorhersagen
 - Mittlerer quadratischer Fehler:

$$\frac{\sum_{j=1}^{n} (p_j - a_j)^2}{n}$$

- Wird sehr häufig genutzt
- Reagiert empfindlich auf Ausreißer

Wurzel der mittleren
 Fehlerquadratsumme:

$$\sqrt{\frac{\sum_{j=1}^{n} (p_j - a_j)^2}{n}}$$

- Hat die gleiche Dimension wie der vorgesagte Wert
- Mathematisch unproblematischer

- Evaluierung numerischer Vorhersagen
 - Mittlerer absoluter Fehler:

$$\frac{\sum_{j=1}^{n} |p_j - a_j|}{n}$$

Unempfindlich gegen Ausreißer

- Relative Fehler
 - Unabhängig von der Größe der Werte
 - Nutzung von relativen Fehlern statt der absoluten Fehler in den Berechnungen

- Evaluierung numerischer Vorhersagen
 - Relativer-quadratischer Fehler:

$$\frac{\sum_{j=1}^{n} (p_j - a_j)^2}{\sum_{j=1}^{n} (a_j - \bar{a})^2}$$

- Relativ zu den Ergebnissen eines simplen Klassifikators: \bar{a}
- \bar{a} ist der mittlere Wert über dem Trainingsdatensatz

 Wurzel des relativen quadratischen Fehler:

$$\sqrt{\frac{\sum_{j=1}^{n} (p_{j} - a_{j})^{2}}{\sum_{j=1}^{n} (a_{j} - \bar{a})^{2}}}$$

- Analog zum relativen quadratischen Fehler
- Relativer absoluter Fehler:

$$\frac{\sum_{j=1}^{n} |p_j - a_j|}{\sum_{j=1}^{n} (a_j - \bar{a})^2}$$

- Evaluierung numerischer Vorhersagen:
 Korrelation Koeffizienten
 - Berechnung der statistischen Korrelation zwischen vorhergesagten und tatsächlichen Wert

- 1: Perfekte Korrelation
- 0: Keine Korrelation
- -1: Perfekte negative Korrelation
- Unabhängig von der Skalierung, wenn man die vorhergesagten Werten mit einer Konstante multipliziert

Evaluierung numerischer Vorhersagen:
 Korrelation Koeffizienten

$$-\frac{S_{PA}}{\sqrt{S_P \cdot S_A}}$$

$$-S_{PA} = \frac{\sum_{i=1}^{n} (p_i - \bar{p})(a_i - \bar{a})}{n - 1}$$

$$-S_P = \frac{\sum_{i=1}^n (p_i - \bar{p})^2}{n-1}$$

$$- S_A = \frac{\sum_{i=1}^{n} (a_i - \bar{a})^2}{n-1}$$

- Evaluierung numerischer Vorhersagen
 - Sinn des berechnete Maßes hängt von der Anwendung ab:
 - Was soll minimiert werden?
 - Was sind die Kosten der verschiedenen Fehlerarten?
 - Meistens liefern alle Fehlermessarten das gleiche Ergebnis