

2016년 10월 06일

Linear Discriminant Analysis

F조: 나여영 이재혁 정회빈 최자연

About Machine Learning

Introduction to Regression

		Dependent Variables		
Independent Variables		Continuous	Categorical	
	Continuous	Regression	Logistic Regression	
	Continuous + Categorical	ANCOVA		
	Categorical	ANOVA	Chi-Square	

More About Classification

	Logistic Regression	LDA	QDA
Type of dependent variables		Categorical	
Assumption of Normal Distribution	X	Ο	Ο
Homogeneity of Covariance Matrix	X	0	X

LDA (Linear Discriminant Analysis)

목적: 객체를 몇 개의 범주로 분류하기 위해 사용.

- 반응변수의 클래스 수가 2보다 클 때 일반적으로 사용한다.

LDA를 이용한 분류

- 1. 판별함수 (discriminant score)를 구한다
 - 판별함수 : Y=dX
- 2. 각 집단의 중심 위치 정하기
 - 각 집단 별 선형변화 Y=d'X의 평균값을 구한다.
- 3. 각 개체와 집단중심(center)과의 거리를 측정
 - 일반적으로 집단 중심을 평균으로 설정
- 4. 중심과의 거리가 가까운 집단으로 분류
 - 이 거리를 분류함수라고 한다.
 - 분류함수는 집단의 개수만큼 계산된다.

피셔 판별함수

$$E[x] = \begin{cases} \mu_1, & x$$
가 범주 1에 속할 때
$$\mu_2, & x$$
가 범주 2에 속할 때

 $Var[x] = \sum$ (범주에 관계없이 동일)

$$Z = \omega_1 X_1 + \omega_2 X_2 + \dots + \omega_p X_p = \omega^T x$$

 $(\lambda = \frac{\text{범주 간 } z \text{의 평균차이}}{z \text{의 분산}})$

$$\lambda = \frac{\text{범주 간 } z$$
의 평균차이 z 의 분산

- 1) 범주간 Z의 평균차이 = E[Z]범주1] -E[Z]범주2] = $\omega^T \mu_1 \omega^T \mu_2$
- 2) $Var[Z] = Var[\omega^T x] = \omega^T \sum \omega$

$$\lambda = \frac{\omega^T (\mu_1 - \mu_2)}{\omega^T \sum \omega}$$

피셔 판별함수

$$\lambda = \frac{\omega^T (\mu_1 - \mu_2)}{\omega^T \sum \omega}$$

$$\mu_1 - \mu_2 = \frac{2\omega^T (\mu_1 - \mu_2)}{\omega^T \sum \omega} \sum \omega$$

$$\omega \propto \sum^{-1} \omega^T (\mu_1 - \mu_2)$$

(판별계수 추정 :
$$\hat{\omega} = S_p^{-1}(\overline{x^{(1)}} - \overline{x^{(2)}})$$

$$(S_p = \frac{(n_1 - 1)S_1 + (n_2 - 1)S_2}{n_1 + n_2 - 2})$$

▶ 피셔의 판별함수

$$Z = \omega^T x = (\mu_1 - \mu_2) \sum^{-1} x$$

피셔함수의 분류규칙

$$|\widehat{\omega}^T(x-\overline{x^{(1)}})| \le |\widehat{\omega}^T(x-\overline{x^{(2)}})|$$
 이면, x 를 범주1로 분류

$$|\widehat{\omega}^T(x-\overline{x^{(1)}})| > |\widehat{\omega}^T(x-\overline{x^{(2)}})|$$
 이면, x 를 범주2로 분류

피셔함수의 분류규칙

$$\overline{Z_1} = \widehat{\omega}^T \overline{x^{(1)}} > \overline{Z_2} = \widehat{\omega}^T \overline{x^{(2)}}$$
 일 때,

$$\hat{Z} = \hat{\omega}^T x \ge \bar{Z}$$
 이면, x 를 범주1로 분류

$$\hat{Z} = \hat{\omega}^T x < \bar{Z}$$
 이면, x 를 범주2로 분류

$$\bar{Z} = \frac{1}{n} \sum_{i=1}^{n} Z_i = \frac{n_1 \overline{Z_1} + n_2 \overline{Z_2}}{n_1 + n_2}$$

▶ 피셔의 판별함수에 따른 분류 경계식

$$\widehat{\omega^T} x = \overline{Z}$$

피셔함수의 분류규칙

▶ 마할라노비스의 거리 정의

$$d^{2}(x_{1}, x_{2}) = (x_{1} - x_{2})^{T} \sum_{1}^{-1} (x_{1} - x_{2})^{T}$$

▶ 분류 규칙

$$d^{2}(x, \mu_{1}) \leq d^{2}(x, \mu_{2})$$
이면, x 를 범주 1로 분류

LDA vs QDA

- LDA
 - : 정규분포의 분산 공분산 행렬이 범주에 상관없이 동일하다 가정
- QDA
 - : 정규분포의 분산 공분산 행렬이 범주별로 다르다 가정

1. Error(오류)-통계학 입문

		reality	
		H ₀ = true	H ₀ = false
conclusion	H ₀ = true	ОК	type II error
Conclusion	H ₀ = false	type I error	ок

type I error(α)와 type II error(β)는 서로 trade-off 관계

->보통 α를 고정시키고 β 최소화 시키는 방법 사용

TEXT

과적합(overfitting)??

Error

혼동 행렬 (confusing matrix)		실제 연체 상태			
		아니오	예	합계	
예측한 연 체 상태	아니오	9644	252	9896	
	예	23	81	104	
	합계	9667	333	10000	

error rate = ??

23/9667=0.238%

252/333=75.7%

sensitivity, specificity

혼동 행렬 (confusing matrix)		실제 연체 상태			
		아니오	예	합계	
예측한 연 체 상태	아니오	9644	252	9896	
	예	23	81	104	
	합계	9667	333	10000	

sensitivity = P(q) 이 하면 하다 = q 이 하는 p 이 이 하는 p 이 p 이 하는 p 이 p 이 하는 p 이 하는 p 이

sensitivity=81/333=24.3% specificity=9644/9667=99.8%

sensitivity, specificity

혼동 행렬 (confusing matrix)		실제 연체 상태			
		아니오	예	합계	
예측한 연 체 상태	아니오	True Neg.	False Pos.	N	
	예	False Neg.	True Pos.	Р	
	합계	N*	P*		

FN/N => Type I error, 1-specificity

TP/P => 1-Type II error, power, sensitivity

ROC curve

AUC=ROC curve 아래의 면적으로, 분류기 성능 지표

Numerical Example

Curvature Diameter Quality Control Result

2.95	6.63	Passed						
			თ	1				○ Passed △ Not Passed
2.53	7.79	Passed	ω	-	٥			
			~	-		0		
3.57	5.65	Passed	Diameter 5 6				0	
			Dian 5	-		٥		
3.16	5.47	Passed	4	_	Δ			
2.58	4.46	Not Passed	ო			Δ		
4.30	4.40	Not Passed	8					
2.16	6.22	Not Passed		2.0	2.5	3.0	3.5	4.0
2.10	0.22	1100 1 40004				Curvature		
3.27	3.52	Not Passed						

http://people.revoledu.com/kardi/tutorial/LDA/LDA%20Formula.htm

Numerical Example

$$X = \begin{bmatrix} 2.95 & 6.63 \\ 2.53 & 7.79 \\ 3.57 & 5.65 \\ 3.16 & 5.47 \\ 2.58 & 4.46 \\ 2.16 & 6.22 \\ 3.27 & 3.52 \end{bmatrix}$$

$$\mu = [2.889 \quad 5.677]$$

$$X_1 = \begin{bmatrix} 2.95 & 6.63 \\ 2.53 & 7.79 \\ 3.57 & 5.65 \\ 3.16 & 5.47 \end{bmatrix}$$

$$\mu_1 = [3.053 \quad 6.385]$$

$$X_2 = \begin{bmatrix} 2.58 & 4.46 \\ 2.16 & 6.22 \\ 3.27 & 3.52 \end{bmatrix}$$

$$\mu_2 = [2.67 \quad 4.733]$$

Numerical Example

$$C_1 = \frac{1}{n_1 - 1} (X_1 - 1_{4 \times 1} \mu)^T (X_1 - 1_{4 \times 1} \mu)$$

$$=\frac{1}{3}\begin{bmatrix}2.95 & 6.63\\2.53 & 7.79\\3.57 & 5.65\\3.16 & 5.47\end{bmatrix} - \begin{bmatrix}2.889 & 5.677\\2.889 & 5.677\\2.889 & 5.677\end{bmatrix}^{T}\begin{bmatrix}2.95 & 6.63\\2.53 & 7.79\\3.57 & 5.65\\3.16 & 5.47\end{bmatrix} - \begin{bmatrix}2.889 & 5.677\\2.889 & 5.677\\2.889 & 5.677\end{bmatrix} = \begin{bmatrix}0.223 & -0.258\\-0.258 & 1.806\end{bmatrix}$$

$$C_2 = \frac{1}{n_2 - 1} (X_2 - 1_{3 \times 1} \mu)^T (X_2 - 1_{3 \times 1} \mu)$$

$$= \frac{1}{2} \begin{bmatrix} 2.58 & 4.46 \\ 2.16 & 6.22 \\ 3.27 & 3.52 \end{bmatrix} - \begin{bmatrix} 2.889 & 5.677 \\ 2.889 & 5.677 \end{bmatrix}^T \begin{bmatrix} 2.58 & 4.46 \\ 2.16 & 6.22 \\ 3.27 & 3.52 \end{bmatrix} - \begin{bmatrix} 2.889 & 5.677 \\ 2.889 & 5.677 \end{bmatrix} = \begin{bmatrix} 0.223 & -0.258 \\ -0.258 & 1.806 \end{bmatrix}$$

$$C = \frac{(n_1 - 1)C_1 + (n_2 - 1)C_2}{n_1 + n_2 - 2} = \begin{bmatrix} 0.288 & -0.323 \\ -0.323 & 2.369 \end{bmatrix}$$

$$S_p = \frac{(n_1 - 1)S_1 + (n_2 - 1)S_2}{n_1 + n_2 - 2}$$

Numerical Example - 피셔의 판별함수

$$W = C^{-1}(\mu_1 - \mu_2)^T = \begin{bmatrix} 4.099 & 0.599 \\ 0.599 & 0.498 \end{bmatrix} \begin{bmatrix} 0.383 \\ 1.652 \end{bmatrix} = \begin{bmatrix} 2.493 \\ 1.037 \end{bmatrix}$$
 판별계수 추정

$$\widehat{\omega} = S_p^{-1} (\overline{x^{(1)}} - \overline{x^{(2)}})$$

$$Z_1 = W^T \mu_1^T = \begin{bmatrix} 2.493 & 1.037 \end{bmatrix} \begin{bmatrix} 3.053 \\ 6.385 \end{bmatrix} = 14.232$$

$$Z_2 = W^T \mu_2^T = \begin{bmatrix} 2.493 & 1.037 \end{bmatrix} \begin{bmatrix} 2.67 \\ 4.733 \end{bmatrix} = 11.564$$

$$Z = \frac{n_1}{n_1 + n_2} Z_1 + \frac{n_2}{n_1 + n_2} Z_2 = 13.089$$

$$\bar{Z} = \frac{1}{n} \sum_{i=1}^{n} Z_i = \frac{n_1 \overline{Z_1} + n_2 \overline{Z_2}}{n_1 + n_2}$$

$$Z = W^T X = \begin{bmatrix} 2.493 & 1.037 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = 2.493X_1 + 1.037X_2 = 13.089$$

$$X_2 = -\frac{2.493}{1.037}X_1 + \frac{13.089}{1.037} = -2.404X_1 + 12.622$$

결정경계(Decision Boundary)

Numerical Example – 피셔의 판별함수

$$|W^{T}(x - \mu_1)| = [2.493 \quad 1.037] \begin{bmatrix} -0.243 \\ -0.925 \end{bmatrix} = 1.565$$

$$|W^T(x - \mu_2)| = [2.493 \quad 1.037] \begin{bmatrix} 0.140 \\ 0.727 \end{bmatrix} = 1.103$$

$$|\widehat{\omega}^T(x - \overline{x^{(1)}})| \le |\widehat{\omega}^T(x - \overline{x^{(2)}})|$$

x를 범주1로 분류

$$|\widehat{\omega}^T(x-\overline{x^{(1)}})| > |\widehat{\omega}^T(x-\overline{x^{(2)}})|$$

x를 범주2로 분류

$$x = [2.81 \quad 5.46]$$

x는 범주 2에 속함

Numerical Example - ISLR 교재에 나온 방법

$$f_i = \mu_i C^{-1} x^T - \frac{1}{2} \mu_i C^{-1} \mu_i^T + \ln(\frac{n_i}{n_i + n_j})$$

 $f_i > f_i$ 이면 x가 그룹 i에 속하는 것으로 분류

$$f_1 = \mu_1 C^{-1} x^T - \frac{1}{2} \mu_1 C^{-1} \mu_1^T + \ln\left(\frac{n_1}{n_1 + n_2}\right) = 31.166$$

$$f_2 = \mu_2 C^{-1} x^T - \frac{1}{2} \mu_2 C^{-1} \mu_2^T + \ln \left(\frac{n_2}{n_1 + n_2} \right) = 31.11$$

 $f_1 > f_2$ 이므로 x는 그룹 1에 속함

표본크기가 너무 작아서 결과가 다르게 나온 것으로 보임