PRÁCTICO 2 - Lógica Combinacional

TABLA 2-3 Mintérminos y maxtérminos para tres variables binarias.

			Min	términos	Maxtérminos		
x	y	z	Término	Designación	Término	Designación	
0	0	0	x'y'z'	m_0	x + y + z	M ₀	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x'yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x' + y + z'	M ₅	
1	1	0	xyz'	m_6	x' + y' + z	M_6	
1	1	1	xyz	m_7	x' + y' + z'	M_7	

Mapas de Karnaugh:

Figura 3-1 Mapa de dos variables.

Figura 3-3 Mapa de tres variables.

Figura 3-8 Mapa de cuatro variables.

Programmable Logic Array (PLA):

Ejercicio 1:

Un detector de paridad impar de 4 entradas y una salida funciona de la siguiente manera: Si la cantidad de entradas con valor '1' es impar la salida se pone en '1', en el resto de los casos la salida es falsa y toma valor '0'.

- a. Construir la tabla de verdad para dicho sistema.
- b. Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos.
- c. Implementar el sistema con compuertas NAND.
- d. Implementar el sistema con una PLA.

Ejercicio 2:

Un sistema digital recibe información en forma de palabras de 5 bits (**ABCDE**) en un código protegido contra errores, de tal forma que cualquier dato que se reciba debe contener 3 y sólo 3 bits en '1'. Diseñar un circuito con dichas entradas y una salida **err** que se activa por bajo cuando se recibe un dato incorrecto.

- a. Construir la tabla de verdad para dicho sistema.
- b. Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos.
- c. Implementar el sistema con compuertas lógicas básicas.
- d. Implementar el sistema con una PLA.

Ejercicio 3:Dada la siguiente tabla de verdad para la función F:

x3	x2	x1	x0	F(x3,x2,x1,x0)
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- a. Encontrar la expresión de F(x3,x2,x1,x0) como suma de minitérminos y como productos de maxitérminos.
- b. Encontrar la expresión minimizada de F(x3,x2,x1,x0) utilizando mapas de Karnaugh.

Ejercicio 4:Dada la siguiente tabla de verdad para la función F:

x2	x1	x0	F(x2,x1,x0)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- a. Encontrar la expresión de F(x2,x1,x0) como suma de minitérminos y como productos de maxitérminos.
- b. Encontrar la expresión minimizada de F(x2,x1,x0) utilizando mapas de Karnaugh.

Ejercicio 5:

Dada la siguiente tabla de verdad para la función F:

х3	x2	x1	x0	F(x3,x2,x1,x0)
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- a. Encontrar la expresión de F(x3,x2,x1,x0) como suma de minitérminos y como productos de maxitérminos.
- b. Encontrar la expresión minimizada de F(x3,x2,x1,x0) utilizando mapas de Karnaugh.

Ejercicio 6:

Construir un circuito combinacional comparador que tome dos números de 2 bits, **A** = (a1, a0) y **B** = (b1, b0) y retorne tres salidas ("**a>b**", "**a=b**" y "**a<b**") de 1 bit cada una.

Ej: A =
$$(00)$$
 y B = (10) , entonces "a>b" = (0) , "a=b" = (0) y "a(1).

- a. Construir la tabla de verdad para dicho sistema.
- b. Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos.
- c. Encontrar la función minimizada de cada salida como suma de productos usando mapas de Karnaugh.
- d. Implementar el sistema con compuertas lógicas básicas.

Ejercicio 7:

Analizar los circuitos de lógica combinacional de la figura. Para cada uno:

- a. Escribir la función booleana correspondiente.
- b. Encontrar la tabla de verdad para dicha función.
- c. Escribir el mapa de Karnaugh utilizando esa tabla.
- d. Obtener la función minimizada como suma de productos a partir del mapa.
- e. Dibujar el circuito de lógica combinacional resultante.

Ejercicio 8:

Un DECODIFICADOR es un circuito combinacional que convierte información binaria de 'n' entradas codificadas (**A**), a un máximo de '2n' salidas <u>únicas (**X**</u>). Esto quiere decir que sólo una salida está activa y representa el valor de las señales de entrada.

Considere un Decodificador activo por bajo (salida activa = '0') con n=2 y 2n=4 (deco 2 x 4).

- a. Expresar las tablas de verdad de las cuatro salidas X0, X1, X2 y X3.
- b. Encontrar las expresiones de X0, X1, X2 y X3 como suma de minitérminos y como producto de maxitérminos.
- c. Encontrar expresiones minimizadas de X0, X1, X2 y X3 utilizando el método de Karnaugh o un método algebraico.
- d. Implementar las expresiones anteriores a través del uso de compuertas lógicas.
- e. Repetir el punto "d" agregando una entrada de HABILITACIÓN (**E**) activa por bajo, de tal forma que cuando **E**=1 ninguna señal de salida permanezca habilitada.

Ejercicio 9:

- a) Diseñe un circuito SUMADOR COMPLETO (3 entradas: Cin, X, Y; 2 salidas: S, Cout) mediante el uso de un Decodificador y compuertas OR. Tip: comenzar expresando las salidas S y Cout como suma de minitérminos.
- b) Diseñe un sumador completo usando dos semisumadores y una compuerta.

Ejercicio 10:

Implementar un decodificador $3 \times 8 y$ otro de 4×16 a partir de decodificadores 2×4 con entrada de habilitación (**E**) activa por bajo y compuertas lógicas.

Ejercicio 11:

Considerando que un CODIFICADOR es un circuito combinacional que realiza la operación inversa de un decodificador:

- a. Expresar la tabla de verdad de un codificador de octal a binario (8 entradas x 3 salidas).
- b. Mostrar su implementación con compuertas OR a partir de la expresión del Codificador como suma de minitérminos.

Ejercicio 12:

Un MULTIPLEXOR (MUX) es un circuito combinacional que que selecciona información binaria de muchas entradas y la dirige <u>a una única salida</u>, conforme al estado de las señales de selección. De esta forma si un MUX posee 'n' señales de selección (**S**), tendrá '2n' entradas de información (**D**).

- a. Expresar la tabla de verdad de un MUX de 2 entradas (y una salida) y su implementación mediante el uso de compuertas lógicas (AND, OR, NOT, NOR, NAND, etc.)
- b. Mostrar cómo se puede usar un MUX para obtener una compuerta NOT.
- c. ¿Cómo obtener un MUX de 4 entradas (y una salida) en base a multiplexores de 2 entradas?
- d. ¿Cómo obtener un multiplexor de 'n' entradas con multiplexores de 2 entradas?