

semi-direct factor and quotient group

 ${\bf Canonical\ name} \quad {\bf SemidirectFactorAndQuotientGroup}$

Date of creation 2013-03-22 15:10:22 Last modified on 2013-03-22 15:10:22

Owner yark (2760) Last modified by yark (2760)

Numerical id 8

Author yark (2760) Entry type Theorem Classification msc 20E22 **Theorem.** If the group G is a semi-direct product of its subgroups H and Q, then the semi-direct Q is isomorphic to the quotient group G/H.

Proof. Every element g of G has the unique representation g = hq with $h \in H$ and $q \in Q$. We therefore can define the mapping

$$g \mapsto q$$

from G to Q. The mapping is surjective since any element y of Q is the image of ey. The mapping is also a homomorphism since if $g_1 = h_1q_1$ and $g_2 = h_2q_2$, then we obtain

$$f(g_1g_2) = f(h_1q_1h_2q_2) = f(h_1h_2q_1q_2) = q_1q_2 = f(g_1)f(g_2).$$

Then we see that $\ker f = H$ because all elements h = he of H are mapped to the identity element e of Q. Consequently we get, according to the first isomorphism theorem, the result

$$G/H \cong Q$$
.

Example. The multiplicative group \mathbb{R}^{\times} of reals is the semi-direct product of the subgroups $\{1, -1\} = \{\pm 1\}$ and \mathbb{R}_+ . The quotient group $\mathbb{R}^{\times}/\{\pm 1\}$ consists of all cosets

$$x\{\pm 1\} = \{x, -x\}$$

where $x \neq 0$, and is obviously isomorphic with $\mathbb{R}_+ = \{x \mid x > 0\}$.