Information Retrieval

CS 547/DS 547
Worcester Polytechnic Institute
Department of Computer Science
Instructor: Prof. Kyumin Lee

Upcoming Schedule

March 1: Midterm Exam

March 3: due date of HW3

March 17: due date of project proposal

March 21: due date of proposal presentation slides

Midterm

- The exam will be held at 6pm next Wednesday in class.
- The exam is closed book.
- You may prepare and use one standard 8.5" by 11" piece of paper with any notes you think appropriate or significant.
- You may use a calculator if it make you feel comfortable. But no other electronic devices are allowed (e.g., cell phone, tablet and computer).

Boolean Retrieval Model

Boolean Retrieval Model

Inverted index

Query Optimization

Query Optimization

Preprocessing
Documents
→ Tokenization,
Normalization,
Stemming, Stop words

Query Optimization

Preprocessing
Documents
Tokenization,
Normalization,
Stemming, Stop words

Skip pointers & Positional index

Wild-card queries

→ Permuterm Index

TF and IDF

TF and IDF

tf-idf weighting

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

Cosine Similarity

Cosine Similarity

Computing scores in a complete search system

Statistical Language Models

Crawler

Statistical Language Models

Crawler

Web APIs

PageRank

Evaluation

Recommenders

Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

In 2022

Image source: https://www.digitalinformationworld.com/2022/09/new-report-shares-mind-blowing-amount.html

Amazon itself sells over 12 million products. If you take into account all products sold on the Amazon marketplace by third-party sellers, that number rises to more than 353 million products.

How Many Orders Does Amazon Get A Day?

Amazon ships approximately **1.6 million packages a day**.

That works out to more than 66 thousand orders per hour, and 18.5 orders per second.

Amazon Sales Statistics: How Much Amazon Makes in a Day

In 2019, Amazon made \$141.25 billion in retail product sales. This comes out to an average of \$385 million each day.

About Spotify

Spotify transformed music listening forever when it launched in 2008. Discover, manage and share over 100 million tracks and 5 million podcasts titles, for free, or upgrade to Spotify Premium to access exclusive features for music including improved sound quality and an on-demand, offline, and ad-free music listening experience. Today, Spotify is the world's most popular audio streaming subscription service with 489 million users, including 205 million subscribers in more than 180 markets.

YouTube Usage Statistics

YouTube users consume 1 billion hours' worth of video every day. This figure translates to approximately 5 billion videos every day.

- The average time spent on YouTube by a user is 11.24 minutes.
- It is estimated that YouTube has around 5 billion videos.
- 500 hours of video is uploaded to YouTube every minute.

Recommendations

kindle fire HDX

GOOGLE HANGOUTS

From \$229
>Shop now

Best Sellers

Sports & Outdoors : Golf Clubs

Related to Items You've Viewed

You viewed Customers who viewed this also viewed

Introduction to Information Retrieval Hinrich Schütze, Christopher D. Manning, Prabhakar Raghavan Hardcover (21)

\$69.00 \$57.42

Taming Text: How to Find, Organize... Grant S. Ingersoll, Thomas S. Morton, ... Paperback (9) \$44-99 \$31.65

One of thousands of small businesses thriving because of Amazon customers.

Foundations of Statistical
Natural...

Hinrich Schütze, Christopher D.
Manning
Hardcover
(18)

595-0e \$85.00

Information Retrieval: Implementing... Stefan Buettcher, Charles L. A... Hardcover (4)

View or edit your browsing history

Browse

Taste Profile

KiDS

DVDs

Titles, People, Genres

Q

James 🔻

Recently Watched

Popular on Netflix

Top Picks for James

Search

Gaming

Live

Game shows

Basketball

Algorithms

Classical Music

History

- History
- Your videos
- Watch later
- Liked videos

Boston Dynamics

Music

Tools

Background music

Why we all need subtitles now Vox 👁 8.8M views • 1 month ago

Culinary arts

How Singapore Airlines Makes 50,000 In-Flight Meals A Day | Big Business |...

Insider Business 1.5M views • 3 days ago

Subscriptions

Browse channels

Explore

Trending

Shopping

Music

Movies & TV

Glitterbomb Trap Catches Phone Scammer (who gets arrested)

Mark Rober 2 70M views • 1 year ago

Smith: "Call of Duty" more available after Nintendo deal

Ouest Means Business 2K views • 20 hours ago

The 4 Reasons Why You're Poor Iman Gadzhi

838K views • 5 months ago

NBA bloopers but they keep getting more embarrassing

CoshReport 2 2.9M views • 10 months ago

Home Screen with Shelves

Jump back in, Recently played

Other examples of recommenders?

From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller
 - http://www.wired.com/wired/archive/12.10/tail.html

The Long Tail

Recommendation Types

- Editorial and hand curated
 - List of favorites
 - Lists of "essential" items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, ...

Formal Model

- X = set of Customers (Users)
- S = set of Items
- Utility function $u: X \times S \rightarrow R$
 - \blacksquare R = set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

	The Lego Movie	The Fault in Our Stars	Guardians of the Galax	Star Wars Y
Alice	1	0.2		
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- Gathering "known" ratings for matrix
- Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - Don't care about finding what you don't like, but rather what you like
- Evaluating extrapolation methods
 - How do we know if we've done a good job?

Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating, clicks, listen to a song
- What about low ratings?
 - Called negative sampling
 - Random sampling, popularity-based sampling, and so on.

(2) Extrapolating Utilities

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Three main approaches
 - Content-based
 - Collaborative
 - Latent factor based
- These days, people focus on neural network/deep learning based approaches to capture more complex relation between users and items

Content-based Recommender Systems

Content-based Recommendations

- Main idea: recommend items to customer x similar to previous items rated highly by x
- Movie recommendations
 - recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - recommend other sites with "similar" content

Plan of Action

Item Profiles

- For each item, create an item profile
- Profile is a set of features (vectors!)
 - Movies: author, title, actor, director,...
 - Text: Set of "important" words in document
- How to pick important features?
 - Usual heuristic is TF-IDF

Sidenote: TF-IDF

 f_{ii} = frequency of term (feature) i in doc (item) j

$$T_{F...} = f_{ij}$$

Note: we normalize TF to discount for "longer"

 $TF_{ij} = \frac{f_{ij}}{\max_k f_{ik}}$ — Whichever doc/item has the max # of frequency of term i

 n_i = number of docs that mention term i

N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ii} \times IDF_i$

Doc/item profile = set of words with highest TF-IDF scores, together with their scores

User Profiles and Prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item
 - ...
- Prediction heuristic
 - Given user profile **x** and item profile **i**, estimate
 - $u(\mathbf{x},\mathbf{i}) = \cos(\mathbf{x},\mathbf{i}) = \mathbf{x}.\mathbf{i}/(|\mathbf{x}||\mathbf{i}|)$

Advantages of Content-based Approach

- No need for data on other users
 - No cold-start or sparsity problems
- Able to recommend to users with unique tastes
- Able to recommend new & unpopular items
 - No first-rater problem
- Can provide explanations of recommended items by listing contentfeatures that caused an item to be recommended

Limitations of content-based approach

- Finding the appropriate features is hard
 - e.g., images, movies, music
- Recommendations for new users
 - How to build a user profile?
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Collaborative Recommendations

Collaborative Recommendations

User-based recommendation

Item-based recommendation

Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

Finding "Similar" Users $r_v = [*, _, *, *, ***]$

- Let r_x be the vector of user x's ratings
- Jaccard similarity measure
 - Problem: Ignores the value of the rating
- Cosine similarity measure
 - $= sim(\boldsymbol{x}, \boldsymbol{y}) = cos(\boldsymbol{r}_{\boldsymbol{x}}, \boldsymbol{r}_{\boldsymbol{y}}) = \frac{r_{\boldsymbol{x}} \cdot r_{\boldsymbol{y}}}{||r_{\boldsymbol{x}}|| \cdot ||r_{\boldsymbol{y}}||}$

 r_x , r_v as points: $r_x = \{1, 0, 0, 1, 3\}$

 r_x , r_v as sets:

 $r_x = \{1, 4, 5\}$ $r_v = \{1, 3, 4\}$

- $r_v = \{1, 0, 2, 2, 0\}$
- Problem: Treats missing ratings as "negative"
- Pearson correlation coefficient

$$\overline{\mathbf{r}}_{\mathbf{x}}, \overline{\mathbf{r}}_{\mathbf{y}} \dots$$
 avg. rating of \mathbf{x}, \mathbf{y}

Similarity Metric

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A,B) > sim(A,C)
- Jaccard: 1/5 < 2/4
- Cosine: 0.380 > 0.322
 - Considers missing ratings as "negative"
 - Solution: subtract the (row) mean

		HP1	HP2	HP3	TW	SW1	SW2	SW3
_	A	4			5	1		
	B	5	5	4				
	C				2	4	5	
	D		3					3

Solution: subtract the (row) mean

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C		-		-5/3	1/3	4/3	
D		0		•	-	•	0

- sim(A,B) vs sim (A,C)
 - **0.092 > -0.559**

Notice cosine sim. is pearson correlation when data is centered at 0

Rating Predictions

From similarity metric to recommendations:

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item i of user x:

$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

Shorthand:

$$s_{xy} = sim(x, y)$$

User-User CF (|N|=2)

							user	5					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3			5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

- rating between 1 to 5

- unknown rating

User-User CF (|N|=2)

							user	5					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

Neighbor selection: Identify users similar to user 5, and rated item 1

- estimate rating of movie 1 by user 5

User-User CF (|N|=2)

User-based CF (|K|=2)

	users														
		1	2	3	4	5	6	7	8	9	10	11	12		
	1	1		3		?	5			5		4			
	2			5	4			4			2	1	3		
movies	3	2	4		1	2		3		4	3	5			
Ε	4		2	4		5			4			2			
	5			4	3	4	2					2	5		
	6	1		3		3			2			4			
			<u> </u>					1							

Compute similarity weights:

$$s_{5,3}$$
=0.21, $s_{5,9}$ =0.47

Predict by taking weighted average:

$$r_{1,5} = (0.21*3 + 0.47*5) / (0.21+0.47) = 4.4$$

$$r_{1,5} = (0.21*3 + 0.47*5) / (0.21+0.47) = 4.4$$

$$r_{xi} = \frac{\sum_{j \in K(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Similarity:-0.45

0.21

1.0 -0.15

0.47

-0.71

User-based CF (|K|=2)

	users														
		1	2	3	4	5	6	7	8	9	10	11	12		
	1	1		3		4.4	5			5		4			
(0	2			5	4			4			2	1	3		
movies	3	2	4		1	2		3		4	3	5			
_	4		2	4		5			4			2			
	5			4	3	4	2					2	5		
	6	1		3		3			2			4			
	•4		•	0.04		4.0				<u> </u>		0.74			

Compute similarity weights:

$$s_{5,3}$$
=0.21, $s_{5,9}$ =0.47

Predict by taking weighted average:

$$r_{1,5} = (0.21*3 + 0.47*5) / (0.21+0.47) = 4.4$$

$$r_{1,5} = \frac{(0.21*3 + 0.47*5)}{(0.21+0.47)} = 4.4$$

$$r_{xi} = \frac{\sum_{j \in K(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Similarity:-0.45

0.21

1.0 -0.15

0.47

-0.71

Issue with the user-based CF

So far: user-based collaborative filtering

Another view is item-based CF.

Item-based CF

The item-based approach works by comparing items based on their pattern of ratings across users. The similarity of items i and j is computed as follows:

$$sim(i,j) = \frac{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},i} - \bar{r}_{\mathbf{u}})(r_{\mathbf{u},j} - \bar{r}_{\mathbf{u}})}{\sqrt{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},i} - \bar{r}_{\mathbf{u}})^2} \sqrt{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},j} - \bar{r}_{\mathbf{u}})^2}}$$

Recommendation phase

 After computing the similarity between items we select a set of k most similar items to the target item and generate a predicted value of user x's rating

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

```
s_{ij}... similarity of items i and j r_{xj}...rating of user x on item j N(i;x)... set items rated by x similar to i
```

							users	5					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3			5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

- rating between 1 to 5

- unknown rating

	users														
		1	2	3	4	5	6	7	8	9	10	11	12		
	1	1		3		?	5			5		4			
	2			5	4			4			2	1	3		
movies	3	2	4		1	2		3		4	3	5			
Ε	4		2	4		5			4			2			
	5			4	3	4	2					2	5		
	6	1		3		3			2			4			

							user	S						
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
Ε	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

- 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

							user	S						
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
Ε	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Compute similarity weights:

s_{1,3}=0.41, s_{1,6}=0.59

	users														
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)	
	1	1		3		2.6	5			5		4		1.00	
	2			5	4			4			2	1	3	-0.18	
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>	
Ē	4		2	4		5			4			2		-0.10	
	5			4	3	4	2					2	5	-0.31	
	<u>6</u>	1		3		3			2			4		<u>0.59</u>	

Predict by taking weighted average:

$$r_{1.5} = (0.41^{2} + 0.59^{3}) / (0.41 + 0.59) = 2.6$$

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Item-Item vs. User-User

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- In practice, it has been observed that <u>item-item</u> often works better than user-user
- Why? Items are simpler, users have multiple tastes

Pros/cons of collaborative filtering

- Works for any kind of item
 - No feature selection needed
- Cold start:
 - Need enough users in the system to find a match
- Sparsity:
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items
- First rater:
 - Cannot recommend an item that has not been previously rated
 - New items, esoteric items
- Popularity bias:
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items

Hybrid Methods

Hybrid Methods

- Add content-based methods to collaborative filtering
 - item profiles for new item problem
 - demographics to deal with new user problem
- Implement two separate recommenders and combine predictions
 - Perhaps using a linear model
 - E.g., global baseline + collaborative filtering

Global baseline estimate

- Estimate Joe's rating for the movie The Sixth Sense
 - No feature selection needed
 - Problem: Joe has not rated any movie similar to The Sixth Sense

Global baseline estimate

- Mean movie rating: 3.7 stars
- The Six Sense is 0.5 stars above avg
- Joe rates 0.2 stars below avg
- Baseline estimate: 3.7 + 0.5 0.2 = 4 stars

Combining Global Baseline with CF

Global Baseline estimate:

Joe will give The Sixth Sense 4 stars

Local neighborhood (CF/NN):

- Joe didn't like related movie Signs
- Rated it 1 star below his average rating

Final estimate

• Joe will rate The Sixth Sense 4 - 1 = 3 stars

CF: Common practice $r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{xj}}{\sum_{i,j} s_{ij}}$

Before:
$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

- Define similarity s_{ii} of items i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to i, that were rated by x
- Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

$$b_{xi} = \mu + b_x + b_i$$

baseline estimate for r_{xi} μ = overall mean movie rating

• b_x = rating deviation of user x= (avg. rating of user \mathbf{x}) – $\boldsymbol{\mu}$

 b_i = rating deviation of movie i

Evaluation

Evaluation

Evaluation

Evaluation Predictions

Root-mean-square error (RMSE)

$$\sqrt{\frac{1}{|R|}\sum_{(i,x)\in R}(\hat{r}_{xi}-r_{xi})^2}$$
 where \hat{r}_{xi} is predicted, r_{xi} is the true rating of \boldsymbol{x} on \boldsymbol{i}

- Problems with Error Measures
 - Narrowly focus on accuracy sometimes misses the point
 - Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others
- Alternative: Precision@k, Hit Rate@k (i.e., recall of positive interactions), and NDCG@k
 - E.g., k=10

Three ways running Jupyter Notebook

- 1. Install Jupyter Notebook
 - https://jupyter.org/install
- 2. install Anaconda (if you installed it before, Jupyter Notebook was already installed together)
 - https://www.anaconda.com/products/individual
 - Beyond all of the normal (non-data centric) packages that Python comes with, Anacoda comes with even more!
- 3. Use a cloud computing (e.g., Google Colab)
 - https://colab.research.google.com/notebooks/intro.ipynb#recent=true

Google Colab

 Google Colaboratory is a free online cloud-based Jupyter notebook environment that allows us to train our machine learning and deep learning models on CPUs, GPUs, and TPUs.

Recommendation Demo

recommenderDemo.ipynb

Latent Factor Models

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005
- Test data
 - Last few ratings of each user (2.8 million)
 - Evaluation criterion: Root Mean Square Error (RMSE) =

$$\sqrt{\frac{1}{|R|}\sum_{(i,x)\in R}(\hat{r}_{xi}-r_{xi})^2}$$

- Netflix's system RMSE: 0.9514
- Competition
 - 2,700+ teams
 - \$1 million prize for 10% improvement on Netflix

Competition Structure

The Netflix Utility Matrix R

Matrix R

17,700 movies

					<u> </u>
1	3	4			
	3	5			5
		4	5		5
		3			
		3			
2			2		2
				5	
	2	1			1
	3			3	
1					

480,000 users

Utility Matrix R: Evaluation

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Grand Prize: 0.8563

BellKor Recommender System

- The winner of the Netflix Challenge
- Multi-scale modeling of the data: Combine top level, "regional" modeling of the data, with a refined, local view:
 - Global:
 - Overall deviations of users/movies
 - Factorization:
 - Addressing "regional" effects
 - Collaborative filtering:
 - Extract local patterns

Modeling Local & Global Effects

Global:

- Mean movie rating: 3.7 stars
- The Sixth Sense is 0.5 stars above avg.
- Joe rates 0.2 stars below avg.
 - ⇒ Baseline estimation:

 Joe will rate The Sixth Sense 4 stars

- Joe didn't like related movie Signs
- Rated it 1 star below his average rating

Final estimate

■ Joe will rate The Sixth Sense 4 - 1 = 3 stars

Modeling Local & Global Effects

In practice we get better estimates if we model deviations:

$$\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for r_{xi}

$$\boldsymbol{b}_{xi} = \boldsymbol{\mu} + \boldsymbol{b}_x + \boldsymbol{b}_i$$

 μ = overall mean rating \mathbf{b}_{x} = rating deviation of user \mathbf{x} = $(avg. rating of user \mathbf{x}) - \mu$ \mathbf{b}_{i} = $(avg. rating of movie <math>\mathbf{i}) - \mu$

Problems/Issues:

- 1) Similarity measures are "arbitrary"
- **2)** Pairwise similarities neglect interdependencies among users
- **3)** Taking a weighted average can be restricting

Solution: Instead of s_{ij} use w_{ij} that we estimate directly from data

Idea: Interpolation Weights w_{ij}

Use a weighted sum rather than weighted avg.:

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- A few notes:
 - N(i; x) ... set of movies rated by user x that are similar to movie i
 - $lackbox{\hspace{0.1cm}\blacksquare} w_{ij}$ is the **interpolation weight** (some real number)
 - Note, we allow: $\sum_{j \in N(i;x)} w_{ij} \neq 1$
 - w_{ij} models interaction between pairs of movies (it does not depend on user x)

Idea: Interpolation Weights w_{ij}

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i,x)} w_{ij} (r_{xj} - b_{xj})$$

- How to set w_{ij} ?
 - Remember, error metric is:

$$\sqrt{\frac{1}{|R|}}\sum_{(i,x)\in R}(\hat{r}_{xi}-r_{xi})^2$$
 or equivalently Sum of

Squared Error (SSE):
$$\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2$$

- Find w_{ii} that minimize SSE on training data!
 - Models relationships between item i and its neighbors j
- w_{ij} can be learned/estimated based on x and all other users that rated i

Recommendations via Optimization

- Goal: Make good recommendations
 - Quantify goodness using RMSE:
 Lower RMSE ⇒ better recommendations

- Want to make good recommendations on items that user has not yet seen. Can't really do this!
- Let's build a system such that it works well on known (user, item) ratings
 And hope the system will also predict well the unknown ratings

Recommendations via Optimization

- Idea: Let's set values w such that they work well on known (user, item) ratings
- How to find such values w?
- Idea: Define an objective function and solve the optimization problem
- Find w_{ij} that minimize SSE on training data!

$$J(w) = \sum_{x,i \in R} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^{2}$$
Predicted rating

Predicted rating

Think of w as a vector of numbers

Detour: Minimizing a function

- A simple way to minimize a function f(x):
 - Compute the derivative $\nabla f(x)$
 - Start at some point y and evaluate $\nabla f(y)$
 - Make a step in the reverse direction of the gradient: $y = y \nabla f(y)$
 - Repeat until converged

Interpolation Weights

- So far: $\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} b_{xj})$
 - Weights w_{ij} derived based on their role; no use of an arbitrary similarity measure $(w_{ij} \neq s_{ij})$
 - Explicitly account for interrelationships among the neighboring movies
- Next: Latent factor model
 - Extract "regional" correlations

