PROJECT REPORT

Health Care Cost Linear Regression

Students:

Sakshi Singla Ivette Sulca

Project report

1. Description of your dataset:

The linear regression analysis presented on this report will work with a dataset related to Medical health care cost provided in the book of *Machine Learning* with R by Lantz. The dataset can be found at https://www.kaggle.com/ruslankl/ health-care-cost-prediction-w-linear-regression/comments.

The dataset presents 1338 observations of health insured person with predictor variables explaining the profile of each person and the total amount they paid for the health insurance coverage. In the next table all variables are described.

Variable	Туре	Description	Туре
Age	Numerical	The age of the insured person	Explanatory
Sex	Categorical	Sex of the insured person. Possible values: Female or Male	Explanatory
ВМІ	Numerical	Body mass index in kg/m2	Explanatory
Children	Numerical	Number of children of the insured person	Explanatory
Smoker	Categorical	Indicates if the person is a smoker or not. Possible values: Yes or No	Explanatory
Region	Categorical	Region place of the insured person. Possible values: Southwest, Northwest, Southeast or Northeast.	Explanatory
Charges	Numerical	Total insurance payment	Response

2. Statement of the research problems:

Research problem:

Health care cost in The United States is one of the most expensive around the world and is affecting negatively the quality of life of American population. In this sense, the project looks forward to understand which are the main variables that influence the most on the insurance annual charge and how (based on this variables) we can predict medical insurance cost for a specific

individual. The initial hypothesis is that age, sex, body mass index, number of children, smoker status and region have a relationship with how much a person pay for insurance.

Methods used:

We chose to use Linear Regression after analyzing the dataset using residuals and correlation matrixes. It won't be used any transformation do the predictor variables or response variables since it is no needed and to choose the best model Best Subsets technique will be applied based on Mallow Cp values and R² adjusted.

3. The explanatory analysis:

We analyze the numerical variables of the dataset with respect of the response variable "Insurance charge" in the following table. First of all, there is no missing data points and the range of values are reasonable for each type. We conclude also that half of the people paying for health insurance are 40 or more years old and the mean body mass index mean is 30 which are not good news since in general a BMI higher than 30 falls onto the obese category. In the other side, these people have in average one child and only 25% of them have 2 or more children.

Table: Statistics summary of the numerical explanatory variables

			- · · · · · · · · · · · · · · · · · · ·	
Statistc	Age	ВМІ	Number of children	Insurance Charges (USD)
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

The next scatter plot matrix shows the relationship between age, bmi and children against insurance charges. Age has clearly a strong positive relationship

with insurance charges while bmi just a moderate relationship which we believe after the individual tests could be excluded for the model. On the other side, the number of children seems to have a slightly negative relationship with insurance charges, however, that is not the expected since it is known that both should have a positive relationship.

Table: Scatter plot matrixes

The other important categorical variable to analyze is sex. However, the next box plot shows that apparently there is no difference between sex and charges.

Table: Sex vs. Insurance charges box plot

Nevertheless, smoker status seems to have a relationship with the response variable. The next plot indicates that the smokers pay more medical insurance than those who don't smoke.

Table: Smoker vs. Insurance charges box plot

In the case of the origin region of the insured, we can't find a different relationship with the predictor variable with the exception of Southeast which tends to pay a bit higher, but it is not extremely different than the other three regions. For this specific variable, we will be paying attention during the regression modelling.

60000 - 50000 - 40000 - 20000 - 10000 - southwest southeast region region

Table: Region vs. Insurance charges box plot

4. Regression analysis:

Before start fitting the model we create dummy variables for the categories sex, smoker status and region. Then, the table for fitting the variable remain as follows:

Table: Dataset with dummy variables	Table:	Dataset	with	dummy	/ variables
-------------------------------------	--------	---------	------	-------	-------------

	charges	age	bmi	children	sex_male	is_smoker	northwest	southeast	southwest
0	16884.92400	19	27.900	0	0	1	0	0	1
1	1725.55230	18	33.770	1	1	0	0	1	0
2	4449.46200	28	33.000	3	1	0	0	1	0
3	21984.47061	33	22.705	0	1	0	1	0	0
4	3866.85520	32	28.880	0	1	0	1	0	0

We initiate the fitting model considering all the explanatory variables and doing individual tests. Considering a significance level alpha of 5%, the next table shows that both sex and region don't have a relationship with the

predictor variable insurance charges, which makes sense with the previous exploratory analysis.

Table: Fitted model considering all variables

Dep. Va	riable:		charge	s	R-squa	red:	0	.751	
ı	Model:		OL	S Adj.	R-squa	red:	0	.749	
M	ethod:	Lea	ast Square	s	F-stati	stic:	5	8.00	
	Date:	Fri, 1	1 Oct 201	9 Prob (F-statis	tic):		0.00	
	Time:		19:29:2	8 Log -	Likelih	ood:	-13	548.	
No. Observa	ations:		133	8		AIC:	2.711€	+04	
Df Resi	iduals:		132	9	I	BIC:	2.716	+04	
Df N	Model:			8					
Covariance	туре:		nonrobus	st					
		coef	std err	t	P> t	r	0.025	0	975]
Intercept	-1.194		987.819	-12.086	0.000	_	9e+04		e+04
age		8564	11.899	21.587	0.000		3.514		.199
bmi		1935	28.599	11.860	0.000	28	3.088		.298
children	475.	5005	137.804	3.451	0.001	20	5.163	745	.838
sex_male	-131.	3144	332.945	-0.394	0.693	-78	4.470	521	.842
is_smoker	2.385	e+04	413.153	57.723	0.000	2.3	3e+04	2.47€	+04
northwest	-352.	9639	476.276	-0.741	0.459	-128	7.298	581	.370
southeast	-1035.	0220	478.692	-2.162	0.031	-197	4.097	-95	.947
southwest	-960.	0510	477.933	-2.009	0.045	-189	7.636	-22	.466
0	h 0	00.00	n David	: \		0.000			
Omnil		00.36		in-Watso		2.088			
Prob(Omnib	-	1.21		-Bera (JE		18.887			
Kurto	ew:			Prob(JE					
Kurto	osis:	5.65 ⁻	I	Cona. N	υ.	311	•		

We exclude sex and region and fit the model again in the next table. And decide to continue with this model as the full model:

Table: Fitted model considering only age, bmi, children and smoker status

OLS Regressi	on Resul	ts							
Dep. Va	riable:		charge	es	R-squ	ared:		0.750	
ı	Model:		OL	S Adj	. R-squ	ared:		0.749	
M	ethod:	Leas	t Square	es	F-stat	istic:		998.1	
	Date:	Fri, 11	Oct 20	19 Prob	(F-stati	stic):		0.00	
	Time:		19:29:2	24 Log	j-Likelih	nood:		13551.	
No. Observa	ations:		133	38		AIC:	2.71	1e+04	
Df Resi	duals:		133	33		BIC:	2.71	4e+04	
Df I	Model:			4					
Covariance	Туре:	r	onrobu	st					
	cc	ef s	td err	t	P> t	[0.	025	0.9	75]
Intercept	-1.21e+	04 94	11.984	-12.848	0.000	-1.4e	+04	-1.03e	-04
age	257.84	95 1	1.896	21.675	0.000	234.	512	281.	187
bmi	321.85	14 2	27.378	11.756	0.000	268.	143	375.5	559
children	473.50	23 13	37.792	3.436	0.001	203.	190	743.8	314
is_smoker	2.381e+	04 41	1.220	57.904	0.000	2.3e	+04	2.46e-	-04
Omnil	ous: 30	1.480	Durl	oin-Watso	on:	2.087	7		
Prob(Omnib	us):	0.000	Jarqu	e-Bera (J	B): 7	722.157	7		
Sk	œw:	1.215		Prob(J	B): 1.5	3e-157	7		
Kurto	sis:	5.654		Cond. N	No.	292			

Considering the second full model, the residuals remains as follows. Mostly of the data are bounding around zero and the qqplot shows nearly a line showing the normality assumption of the linear regression model.

Table: Residuals plot

Table: QQ plot

5. Model selection

For model selection we will use Best Subsets method to find a group of model candidates with Mallow's CP, R^2 , AIC and BIC as the criteria set for the analysis. The next table presents 2^4 fitted models with all criteria computed.

Model Fitted	СР	R2_adj	R2	AIC	BIC
charges~intercept	3989.4928 94	0.00000	0.00000	27619.263199	27624.46213 0
charges~age	3515.3624 11	0.08872	0.08941	27495.948748	27506.34661 0
charges~bmi	3781.9925 84	0.03862	0.03934	27567.564127	27577.96198 9
charges~children	3966.8690 99	0.00388	0.00462	27615.062262	27625.46012 5
charges~is_smoker	690.93977 7	0.61948	0.61976	26327.463615	26337.86147 7
charges~age+bmi	3369.4336 04	0.11586	0.11718	27456.497842	27472.09463 6
charges~age+children	3501.0473 55	0.09111	0.09247	27493.439630	27509.03642 3

charges~age+is_smoker	151.67792 1	0.72098	0.72140	25913.324376	25928.92117 0
charges~bmi+children	3761.1637 60	0.04219	0.04363	27563.580279	27579.17707 3
charges~bmi+is_smoker	489.62747 7	0.65743	0.65794	26187.890316	26203.48711 0
charges~children+is_smoker	672.49540 0	0.62304	0.62360	26315.886123	26331.48291 7
charges~age+bmi+children	3355.9108 06	0.11812	0.12010	27454.072837	27474.86856 2
charges~age+bmi+is_smoker	14.808596	0.74691	0.74748	25783.835916	25804.63164 1
charges~age+children+is_smoker	141.20350 1	0.72312	0.72374	25904.027223	25924.82294 8
charges~bmi+children+is_smoker	472.78862 1	0.66072	0.66148	26175.980976	26196.77670 1
charges~age+bmi+children+is_smo ker	5.000000	0.74894	0.74969	25774.035219	25800.02987 5

Finally, we observe that the next two models have lower Cp value, higher R^2 and also the best (lower) values of AIC and BIC. Those model candidates are:

Candidate 1: charges~age+bmi+children+is_smoke Candidate 2: charges~age+bmi+is_smoker

• F-test between Full model and Reduced model:

Ho: charges~age+bmi+is_smoker (reduced model) **H1:** charges~age+bmi+children+is smoke (full model)

Full model:

SSE_full=4.89*((10)^10) n=1338 p=9 df full=n-p=1329

Reduced model:

SSE_red=4.90*((10)^10) n=1338 p=5 df_red=n-p=1333

F statistic:

F_stat=((SSE_red-SSE_full)/(df_red-df_full))/(SSE_full/df_full)
F_stat=((4.90*((10)^10) - 4.89*((10)^10))/(1333-1329))/ (4.89*((10)^10) / 1329)
F_stat=0.679

P_value=0.6062

Since p-value>0.05, we don't have enough evidence to reject the null hypothesis and conclude that the reduce model charges~age+bmi+is_smoker fits better than the full model.

6. Model diagnosis

Doing model diagnosis for the model:

charges~age+bmi+is_smoker

Table: Regression summary table

OLS Regression Results

Dep. Va	riable:		charge	es	R-squa	ared:	C	0.747	
ı	Model:		Ol	_S Adj	. R-squ	ared:	C	0.747	
M	ethod:	Le	ast Squar	es	F-stat	istic:	1	1316.	
	Date:	Sat,	12 Oct 20	19 Prob	(F-stati	stic):		0.00	
	Time:		14:25:	14 Log	j-Likelih	ood:	-13	3557.	
No. Observa	ations:		133	38		AIC:	2.712	e+04	
Df Resi	iduals:		133	34		BIC:	2.714	e+04	
Df I	Model:			3					
Covariance	туре:		nonrobu	ıst					
		4	-4-1		ъ. М			•	0751
		coef	std err	t	P> t	[C	0.025	0	.975]
Intercept	-1.1686		std err 937.569	t -12.454	P> t 	[0		0 -983	-
Intercept age		e+04			• • •	-1.35		-9837	-
•	-1.1686	e+04 5475	937.569	-12.454	0.000	-1.35 236	e+04	-9837 282	7.561
age	-1.168e	e+04 5475 6151	937.569	-12.454 21.748	0.000	-1.35 236 268	e+04 6.136	-9837 282 376	7.561 2.959
age bmi is_smoker	-1.168e 259.9 322.6 2.382e	9+04 5475 6151 9+04	937.569 11.934 27.487 412.867	-12.454 21.748 11.737 57.703	0.000 0.000 0.000 0.000	-1.35 236 268 2.3	e+04 6.136 3.692	-9837 282 376	7.561 2.959 6.538
age bmi	-1.168e 259.9 322.6 2.382e	e+04 5475 6151	937.569 11.934 27.487 412.867	-12.454 21.748 11.737	0.000 0.000 0.000 0.000	-1.35 236 268	e+04 6.136 3.692	-9837 282 376	7.561 2.959 6.538
age bmi is_smoker	-1.1686 259.8 322.6 2.3826 bus: 2	9+04 5475 6151 9+04	937.569 11.934 27.487 412.867	-12.454 21.748 11.737 57.703	0.000 0.000 0.000 0.000	-1.35 236 268 2.3	e+04 6.136 3.692	-9837 282 376	7.561 2.959 6.538
age bmi is_smoker Omnib	-1.1686 259.8 322.6 2.3826 bus: 2	e+04 5475 6151 e+04 99.709	937.569 11.934 27.487 412.867 Durb	-12.454 21.748 11.737 57.703	0.000 0.000 0.000 0.000	-1.35 236 268 2.3 2.077	e+04 6.136 3.692	-9837 282 376	7.561 2.959 6.538

a.>Checking for the normality of error terms:

QQ-Plot:

The plot is not-linear. Therefore we can say that error terms are not following normal curve.

b.>Fitted values v/s residuals plot:

Not randomly distributed across zero. Therefore, Heteroskedasticity exists.

c.> Checking for the outliers and leverage points.

Influence Plot

Therefore, there are outliers and leverage points

Getting all the points that are considered influential using DFFITS and Cook's distance criteria and removing them from the table.

Again performing OLS:

OLS Regression Results

OLO Hogressi	10111103	uito							
Dep. Va	riable:		charg	jes	R-squ	ared:		0.853	
	Model:		0	LS Adj.	R-squ	ared:		0.853	
М	ethod:	Le	east Squa	res	F-stat	istic:		2315.	
	Date:	Sun,	13 Oct 20	19 Prob	(F-stati	stic):		0.00	
	Time:		10:48:	17 Log	-Likelih	nood:	-1	1755.	
No. Observ	ations:		12	02		AIC:	2.352	2e+04	
Df Res	iduals:		11	98		BIC:	2.354	le+04	
Df l	Model:			3					
Covariance	e Type:		nonrob	ust					
		coef	std err	t	P> t	[0	0.025	0.	975]
Intercept	-1.066	e+04	718.486	-14.843	0.000	-1.21	e+04	-9254	.505
age	263.	.4242	8.845	29.784	0.000	246	6.072	280).777
bmi	250.	.6620	21.494	11.662	0.000	208	3.493	292	.832
is_smoker	2.442	e+04	317.824	76.821	0.000	2.38	e+04	2.5	e+04
Omni	bue. 3	28.237	Durbi	n-Watson:	2	049			
Onlin	bus. 2	20.201	Durbi	1- VV al5011.	۷.	043			
Prob(Omnib	ous):	0.000	Jarque-	Bera (JB):	59.	752			
SI	œw:	0.032		Prob(JB):	1.06e	-13			
Kurto	sis:	4.090		Cond. No.	9	299.			

P-values are low and AIC, BIC slightly reduced and Adj. R-squared improved. Therefore, a better fit.

Again testing for normality:

We can see that **normality is considerably improved** for the model. Line is much closer to be linear than previously.

Testing for the variances:

Therefore, the range of variances is also improved now.

d.> Breusch-Pagan test for Heteroskedasticity

Results:

('LM Statistic': 737.0934816226819,

'LM-Test p-value': 1.8987749487608997e-159,

'F-Statistic': 633.1294257220253,

'F-Test p-value': 1.677709707214861e-246}

Since LM test p-value is very small. Therefore, Heteroskedasticity exists. We will use **weighted least squares** to provide correction for Heteroskedasticity.

e.>Testing for autocorrelation:

Plotting charge variable: Quite random(Therefore good.)

Testing for autocorrelation graphically:

Plot is Showing that there is no autocorrelation.

Using Breusch Godfrey test for testing autocorrelation:

Test results:

{'LM Statistic': 16.67536754131242, 'LM-Test p-value': 0.7810148532361781,

'F-Statistic': 0.752008494381279,

'F-Test p-value': 0.7867214801580659}

As we can see, p-value for LM test is higher than 0.05. Therefore we cannot reject null hypothesis. Thus, we can say from test that there is no serial correlation. Also evident from plot.

f.> Testing for multicollinearity:

Side-by-side plots:

Not much evident multicollinearity problem evident from the plots.

<u>Using VIF method to test multicollinearity:</u>

```
VIF Factor features
0 7.919438 age
1 8.187069 bmi
2 1.177900 is smoker
```

VIF for age and bmi is higher than 4 but less than 10.

Also, seeing correlation matrix between the variables:

```
age bmi is_smoker
age 1.00 0.12 -0.05
bmi 0.12 1.00 0.05
is smoker -0.05 0.05 1.00
```

Correlation factor between age and bmi is very low. Also, evident from the plot between age and bmi.

Therefore, concluding that there is no serious multicollinearity issue for the model.

g.> Performing weighted least squares to provide correction for Heteroskedasticity

h.> For full model:

Also, we performed diagnostics for model(See appendix): charges~age+bmi+children+is smoke

Final model:

```
y=-10984.74920721+260.74790992* age + 249.88974821*bmi + 449.63510152*children + 24408.59159125*is_smoker
```

Diagnostic tests results were almost same for both models. Therefore, selecting reduced model than full model. Also, evident from F-test.

7. Final Model

Therefore final model is:

y= -8150.40+ 260.84*age + 173.23*bmi + 25693.62*is smoker

The final model indicates that age, body mass index and smoking status has a relationship with the final medical insurance cost for an individual. Between these three explanatory variables, the smoker status shows the highest influence on the insurance cost which is reasonable since it can lead to develop quickly new illnesses.

8. Summary

- We started with a dataset containing 1338 observations of health insured person with predictor variables explaining the profile of each person and the total amount they paid for the health insurance coverage.
- Amount paid was predicted by age, sex, body mass index, number of children, smoker status and region as predictor variables.
- Upon explanatory analysis, we concluded that sex and region is not having much impact on amount paid. Therefore, removed those variables from our analysis.
- Then, we did model selection using AIC, BIC, Mallow Cp and Adj R2 criteria and concluded with 2 models:

Candidate 1: charges~age+bmi+children+is_smoke ->Full model

Candidate 2: charges~age+bmi+is smoker ->Reduced model

- Then we performed F-test to conclude that reduced model is better.
- Now, we started with model diagnostics for both full and reduced models and found that results were quite similar for both models.

Here were outliers and leverage points, and removing those improved normality and heteroskedasticity of the model. Therefore removed those points, and used weighted least squares for correction for heteroskedasticity. Also, there was not major auto-correction and multicollinearity in both models.

- Finally selected the reduced Model: y= -8150.40+ 260.84*age + 173.23*bmi + 25693.62*is_smoker Therefore cost of health insurance is depending on age, bmi and whether a person is a smoker or not.

Final Project - Linear Regression

Students:

- · Sakshi Singla
- Ivette Sulca

URL_data: https://www.kaggle.com/ruslankl/health-care-cost-prediction-w-linear-regression/data (https://www.kaggle.com/ruslankl/health-care-cost-prediction-w-linear-regression/data)

1. Description of the Dataset

2. Statement of the research

3. Exploratory Analisis

```
In [1]: import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    import statsmodels.api as sm
    import statsmodels.formula.api as smf
    import scipy.stats as stats
    import matplotlib.cm as cm
    from IPython.display import display
    from mpl_toolkits.mplot3d import Axes3D
    from sklearn.feature_selection import f_regression
    from statsmodels.stats.anova import anova_lm
```

In [2]: #Number of observations: 1338
 #health_data=pd.read_csv('/Users/sakshisingla/Downloads/insurance.csv')
 health_data=pd.read_csv('/Users/ivettesulca/Desktop/Linear_Regression/proje
 health_data.head()

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [3]: #Correlation Matrix : Quantitative variables
import seaborn as sns
sns.pairplot(health_data)

Out[3]: <seaborn.axisgrid.PairGrid at 0x109934f60>

Out[4]: <matplotlib.axes._subplots.AxesSubplot at 0x1c1fc20ef0>

In [8]: #Analysis of Categorical predictors: SMOKER
sns.catplot(x="smoker", y="charges",kind="box", data=health_data);
There is a relationship between SMOKER and HEALTH CHARGES

In [9]: #Analysis of Categorical predictors: REGION
 sns.catplot(x="region", y="charges",kind="box", data=health_data);
We dont see a relationship between REGION and HEALTH CHARGES.


```
In [10]: health_data.head()
```

Out[10]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

4. Regression Model

```
In [11]: #Creating dummy variables:
    sex_cols=pd.get_dummies(health_data['sex'],drop_first=True)
    sex_cols.columns=['sex_male']

smoker_cols=pd.get_dummies(health_data['smoker'],drop_first=True)
    smoker_cols.columns=['is_smoker']

region_cols=pd.get_dummies(health_data['region'],drop_first=True)
    region_cols

health_data_dumm=pd.concat([health_data[['charges','age','bmi','children']])
    health_data_dumm.head()
```

Out[11]:

	charges	age	bmi	children	sex_male	is_smoker	northwest	southeast	southwest
0	16884.92400	19	27.900	0	0	1	0	0	1
1	1725.55230	18	33.770	1	1	0	0	1	0
2	4449.46200	28	33.000	3	1	0	0	1	0
3	21984.47061	33	22.705	0	1	0	1	0	0
4	3866.85520	32	28.880	0	1	0	1	0	0

In [12]: ##MODEL 1: WITH ALL VARIABLES
 reg1 = smf.ols('charges~age+bmi+children+sex_male+is_smoker+northwest+south
 #reg1 = smf.ols('charges~age+bmi+children+is_smoker',data=health_data_dumm)
 reg1.summary()
 #The individual tests shows that sex and region are not significant.

Out[12]: OLS Regression Results

Dep. Variable:	charges	R-squared:	0.751
Model:	OLS	Adj. R-squared:	0.749
Method:	Least Squares	F-statistic:	500.8
Date:	Sun, 13 Oct 2019	Prob (F-statistic):	0.00
Time:	17:46:40	Log-Likelihood:	-13548.
No. Observations:	1338	AIC:	2.711e+04
Df Residuals:	1329	BIC:	2.716e+04
Df Model:	8		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.194e+04	987.819	-12.086	0.000	-1.39e+04	-1e+04
age	256.8564	11.899	21.587	0.000	233.514	280.199
bmi	339.1935	28.599	11.860	0.000	283.088	395.298
children	475.5005	137.804	3.451	0.001	205.163	745.838
sex_male	-131.3144	332.945	-0.394	0.693	-784.470	521.842
is_smoker	2.385e+04	413.153	57.723	0.000	2.3e+04	2.47e+04
northwest	-352.9639	476.276	-0.741	0.459	-1287.298	581.370
southeast	-1035.0220	478.692	-2.162	0.031	-1974.097	-95.947
southwest	-960.0510	477.933	-2.009	0.045	-1897.636	-22.466

 Omnibus:
 300.366
 Durbin-Watson:
 2.088

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 718.887

 Skew:
 1.211
 Prob(JB):
 7.86e-157

 Kurtosis:
 5.651
 Cond. No.
 311.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [13]: ##MODEL 2: DELETING SEX AND REGION
    reg2 = smf.ols('charges~age+bmi+children+is_smoker',data=health_data_dumm).
    reg2.summary()
```

Out[13]:

OLS Regression Results

Dep. Variable:	charges	R-squared:	0.750
Model:	OLS	Adj. R-squared:	0.749
Method:	Least Squares	F-statistic:	998.1
Date:	Sun, 13 Oct 2019	Prob (F-statistic):	0.00
Time:	17:46:40	Log-Likelihood:	-13551.
No. Observations:	1338	AIC:	2.711e+04
Df Residuals:	1333	BIC:	2.714e+04
Df Model:	4		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.21e+04	941.984	-12.848	0.000	-1.4e+04	-1.03e+04
age	257.8495	11.896	21.675	0.000	234.512	281.187
bmi	321.8514	27.378	11.756	0.000	268.143	375.559
children	473.5023	137.792	3.436	0.001	203.190	743.814
is_smoker	2.381e+04	411.220	57.904	0.000	2.3e+04	2.46e+04

 Omnibus:
 301.480
 Durbin-Watson:
 2.087

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 722.157

 Skew:
 1.215
 Prob(JB):
 1.53e-157

 Kurtosis:
 5.654
 Cond. No.
 292.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [14]: #FITTED VALUES VS. RESIDUALS: MODEL 2

p = reg2.fittedvalues
res = reg2.resid
plt.scatter(p,res)
plt.xlabel("Fitted Values")
plt.ylabel("Residual")
plt.title("Fitted Values vs. Residuals")
```

Out[14]: Text(0.5, 1.0, 'Fitted Values vs. Residuals')

5. Model selection

```
In [15]: | ##Mallow Cp and R^2
         from tqdm import tnrange, tqdm notebook
         import itertools
         import math
         #full model = smf.ols('charges~age+bmi+children+sex male+is smoker+northwes
         full model = smf.ols('charges~age+bmi+children+is smoker',data=health_data_
         Y=health data dumm[['charges']]
         X=health_data_dumm[['age','bmi','children','is_smoker']]
         SSE p = (full model.resid**2).sum()
         MSE p=full model.mse resid
         ###permutations of reduced model
         n pred=X.shape[1]
         n_obs=X.shape[0]
         list R adj=[]
         list_CP=[]
         list predictors=[]
         list_SSE=[]
         list_R=[]
         list_BIC=[]
         list_AIC=[]
         for k in range(0,n pred+1):
             for combo in itertools.combinations(X.columns,k):
                 text predictors='charges~'
                 p=1 #number of parameters
                 for t in combo:
                     text predictors+=t+"+"
                     p+=1
                 text predictors=text predictors[:-1]
                 if k==0:
                     text predictors='charges~1'
                 reduced model = smf.ols(text predictors, data=health data dumm).fit(
                 SSE k = (reduced model.resid**2).sum()
                 #CP and R^2
                 CP = SSE k/MSE p - (n obs-2*p)
                 R adj=round(reduced model.rsquared adj,5)
                 R=round(reduced model.rsquared,5)
                 #BIC and AIC
                 AIC=n obs*math.log(2*math.pi)+n obs*math.log(SSE k)-n obs*math.log(
                 BIC=n obs*math.log(2*math.pi)+n obs*math.log(SSE k)-n obs*math.log(
                 list predictors.append(text predictors)
                 list CP.append(CP)
                 list R adj.append(R adj)
                 list SSE.append(SSE k)
                 list R.append(R)
```

list_AIC.append(AIC)
list_BIC.append(BIC)

Out[15]:

	Predictors	СР	R_adj	R	AIC	BIC
0	charges~1	3989.492894	0.00000	0.00000	27619.263199	27624.462130
1	charges~age	3515.362411	0.08872	0.08941	27495.948748	27506.346610
2	charges~bmi	3781.992584	0.03862	0.03934	27567.564127	27577.961989
3	charges~children	3966.869099	0.00388	0.00462	27615.062262	27625.460125
4	charges~is_smoker	690.939777	0.61948	0.61976	26327.463615	26337.861477
5	charges~age+bmi	3369.433604	0.11586	0.11718	27456.497842	27472.094636
6	charges~age+children	3501.047355	0.09111	0.09247	27493.439630	27509.036423
7	charges~age+is_smoker	151.677921	0.72098	0.72140	25913.324376	25928.921170
8	charges~bmi+children	3761.163760	0.04219	0.04363	27563.580279	27579.177073
9	charges~bmi+is_smoker	489.627477	0.65743	0.65794	26187.890316	26203.487110
10	charges~children+is_smoker	672.495400	0.62304	0.62360	26315.886123	26331.482917
11	charges~age+bmi+children	3355.910806	0.11812	0.12010	27454.072837	27474.868562
12	charges~age+bmi+is_smoker	14.808596	0.74691	0.74748	25783.835916	25804.631641
13	charges~age+children+is_smoker	141.203501	0.72312	0.72374	25904.027223	25924.822948
14	charges~bmi+children+is_smoker	472.788621	0.66072	0.66148	26175.980976	26196.776701
15	charges~age+bmi+children+is_smoker	5.000000	0.74894	0.74969	25774.035219	25800.029875

In [16]: #Model selection based on CP:
 df_model_selection.sort_values('CP',ascending=True)

#Selected models:
 #charges~age+bmi+children+is_smoke
#charges~age+bmi+is_smoker

\cap	111	+ 1	г 1	16	•	
\circ	'u	し	_	LU	, ,	
					-	

	Predictors	СР	R_adj	R	AIC	BIC
15	charges~age+bmi+children+is_smoker	5.000000	0.74894	0.74969	25774.035219	25800.029875
12	charges~age+bmi+is_smoker	14.808596	0.74691	0.74748	25783.835916	25804.631641
13	charges~age+children+is_smoker	141.203501	0.72312	0.72374	25904.027223	25924.822948
7	charges~age+is_smoker	151.677921	0.72098	0.72140	25913.324376	25928.921170
14	charges~bmi+children+is_smoker	472.788621	0.66072	0.66148	26175.980976	26196.776701
9	charges~bmi+is_smoker	489.627477	0.65743	0.65794	26187.890316	26203.487110
10	charges~children+is_smoker	672.495400	0.62304	0.62360	26315.886123	26331.482917
4	charges~is_smoker	690.939777	0.61948	0.61976	26327.463615	26337.861477
11	charges~age+bmi+children	3355.910806	0.11812	0.12010	27454.072837	27474.868562
5	charges~age+bmi	3369.433604	0.11586	0.11718	27456.497842	27472.094636
6	charges~age+children	3501.047355	0.09111	0.09247	27493.439630	27509.036423
1	charges~age	3515.362411	0.08872	0.08941	27495.948748	27506.346610
8	charges~bmi+children	3761.163760	0.04219	0.04363	27563.580279	27579.177073
2	charges~bmi	3781.992584	0.03862	0.03934	27567.564127	27577.961989
3	charges~children	3966.869099	0.00388	0.00462	27615.062262	27625.460125
0	charges~1	3989.492894	0.00000	0.00000	27619.263199	27624.462130

In [17]: #Model selection based on R_adj:
 df_model_selection.sort_values('R_adj',ascending=False)

#Models selected
 #charges~age+bmi+children+is_smoker
 #charges~age+bmi+is_smoke

Out[17]:

	Predictors	СР	R_adj	R	AIC	BIC
15	charges~age+bmi+children+is_smoker	5.000000	0.74894	0.74969	25774.035219	25800.029875
12	charges~age+bmi+is_smoker	14.808596	0.74691	0.74748	25783.835916	25804.631641
13	charges~age+children+is_smoker	141.203501	0.72312	0.72374	25904.027223	25924.822948
7	charges~age+is_smoker	151.677921	0.72098	0.72140	25913.324376	25928.921170
14	charges~bmi+children+is_smoker	472.788621	0.66072	0.66148	26175.980976	26196.776701
9	charges~bmi+is_smoker	489.627477	0.65743	0.65794	26187.890316	26203.487110
10	charges~children+is_smoker	672.495400	0.62304	0.62360	26315.886123	26331.482917
4	charges~is_smoker	690.939777	0.61948	0.61976	26327.463615	26337.861477
11	charges~age+bmi+children	3355.910806	0.11812	0.12010	27454.072837	27474.868562
5	charges~age+bmi	3369.433604	0.11586	0.11718	27456.497842	27472.094636
6	charges~age+children	3501.047355	0.09111	0.09247	27493.439630	27509.036423
1	charges~age	3515.362411	0.08872	0.08941	27495.948748	27506.346610
8	charges~bmi+children	3761.163760	0.04219	0.04363	27563.580279	27579.177073
2	charges~bmi	3781.992584	0.03862	0.03934	27567.564127	27577.961989
3	charges~children	3966.869099	0.00388	0.00462	27615.062262	27625.460125
0	charges~1	3989.492894	0.00000	0.00000	27619.263199	27624.462130

In [18]: #Model selection based on AIC:
 df_model_selection.sort_values('AIC',ascending=True)

#Models selected
#charges~age+bmi+children+is_smoker
#charges~age+bmi+is_smoke

Out[18]:

	Predictors	СР	R_adj	R	AIC	BIC
15	charges~age+bmi+children+is_smoker	5.000000	0.74894	0.74969	25774.035219	25800.029875
12	charges~age+bmi+is_smoker	14.808596	0.74691	0.74748	25783.835916	25804.631641
13	charges~age+children+is_smoker	141.203501	0.72312	0.72374	25904.027223	25924.822948
7	charges~age+is_smoker	151.677921	0.72098	0.72140	25913.324376	25928.921170
14	charges~bmi+children+is_smoker	472.788621	0.66072	0.66148	26175.980976	26196.776701
9	charges~bmi+is_smoker	489.627477	0.65743	0.65794	26187.890316	26203.487110
10	charges~children+is_smoker	672.495400	0.62304	0.62360	26315.886123	26331.482917
4	charges~is_smoker	690.939777	0.61948	0.61976	26327.463615	26337.861477
11	charges~age+bmi+children	3355.910806	0.11812	0.12010	27454.072837	27474.868562
5	charges~age+bmi	3369.433604	0.11586	0.11718	27456.497842	27472.094636
6	charges~age+children	3501.047355	0.09111	0.09247	27493.439630	27509.036423
1	charges~age	3515.362411	0.08872	0.08941	27495.948748	27506.346610
8	charges~bmi+children	3761.163760	0.04219	0.04363	27563.580279	27579.177073
2	charges~bmi	3781.992584	0.03862	0.03934	27567.564127	27577.961989
3	charges~children	3966.869099	0.00388	0.00462	27615.062262	27625.460125
0	charges~1	3989.492894	0.00000	0.00000	27619.263199	27624.462130

In [19]: #Model selection based on BIC:
 df_model_selection.sort_values('BIC',ascending=True)

#Models selected
 #charges~age+bmi+children+is_smoker
 #charges~age+bmi+is_smoke

Out[19]:

	Predictors	СР	R_adj	R	AIC	BIC
15	charges~age+bmi+children+is_smoker	5.000000	0.74894	0.74969	25774.035219	25800.029875
12	charges~age+bmi+is_smoker	14.808596	0.74691	0.74748	25783.835916	25804.631641
13	charges~age+children+is_smoker	141.203501	0.72312	0.72374	25904.027223	25924.822948
7	charges~age+is_smoker	151.677921	0.72098	0.72140	25913.324376	25928.921170
14	charges~bmi+children+is_smoker	472.788621	0.66072	0.66148	26175.980976	26196.776701
9	charges~bmi+is_smoker	489.627477	0.65743	0.65794	26187.890316	26203.487110
10	charges~children+is_smoker	672.495400	0.62304	0.62360	26315.886123	26331.482917
4	charges~is_smoker	690.939777	0.61948	0.61976	26327.463615	26337.861477
5	charges~age+bmi	3369.433604	0.11586	0.11718	27456.497842	27472.094636
11	charges~age+bmi+children	3355.910806	0.11812	0.12010	27454.072837	27474.868562
1	charges~age	3515.362411	0.08872	0.08941	27495.948748	27506.346610
6	charges~age+children	3501.047355	0.09111	0.09247	27493.439630	27509.036423
2	charges~bmi	3781.992584	0.03862	0.03934	27567.564127	27577.961989
8	charges~bmi+children	3761.163760	0.04219	0.04363	27563.580279	27579.177073
0	charges~1	3989.492894	0.00000	0.00000	27619.263199	27624.462130
3	charges~children	3966.869099	0.00388	0.00462	27615.062262	27625.460125

In [20]: #CONCLUSION: We select these two models: #Selected models: #charges~age+bmi+children+is_smoker #charges~age+bmi+is_smoker

In [21]: #ANOVA Full model
 sm.stats.anova_lm(reg1, typ=1)

Out[21]:

	df	sum_sq	mean_sq	F	PR(>F)
age	1.0	1.753019e+10	1.753019e+10	477.023920	1.311803e-90
bmi	1.0	5.446449e+09	5.446449e+09	148.206388	2.114426e-32
children	1.0	5.715190e+08	5.715190e+08	15.551926	8.445622e-05
sex_male	1.0	5.824524e+08	5.824524e+08	15.849440	7.229729e-05
is_smoker	1.0	1.228706e+11	1.228706e+11	3343.502231	0.000000e+00
northwest	1.0	2.167002e+07	2.167002e+07	0.589675	4.426812e-01
southeast	1.0	6.347488e+07	6.347488e+07	1.727251	1.889892e-01
southwest	1.0	1.482863e+08	1.482863e+08	4.035102	4.476493e-02
Residual	1329.0	4.883953e+10	3.674908e+07	NaN	NaN

In [22]: #ANOVA Reduced model
 sm.stats.anova_lm(reg2, typ=1)

Out[22]:

	df	sum_sq	mean_sq	F	PR(>F)
age	1.0	1.753019e+10	1.753019e+10	476.130483	1.675025e-90
bm	i 1.0	5.446449e+09	5.446449e+09	147.928806	2.371721e-32
childre	1.0	5.715190e+08	5.715190e+08	15.522798	8.573928e-05
is_smoke	1.0	1.234476e+11	1.234476e+11	3352.910806	0.000000e+00
Residua	1333.0	4.907845e+10	3.681804e+07	NaN	NaN

```
In [23]: | #####F-Test from ANOVA TABLE####
         #Full Model
         SSE_full=4.89*((10)**10)
         n=1338
         p=9
         df_full=n-p
         #Reduced Model
         SSE_red=4.90*((10)**10)
         n=1338
         p=5
         df_red=n-p
         #F-statistic
         F_stat=((SSE_red-SSE_full)/(df_red-df_full))/(SSE_full/df_full)
         F_stat
```

Out[23]: 0.6794478527607362

```
In [24]: from scipy.stats import f
         from scipy.stats import norm
         p_value=1-f.cdf(0.67944, df_red-df_full, df_full)
         p_value
```

Out[24]: 0.6062384669375296

6. Model Diagnosis

In [26]: health data dumm.head()

Out[26]:

	charges	age	bmi	children	sex_male	is_smoker	northwest	southeast	southwest
0	16884.92400	19	27.900	0	0	1	0	0	1
1	1725.55230	18	33.770	1	1	0	0	1	0
2	4449.46200	28	33.000	3	1	0	0	1	0
3	21984.47061	33	22.705	0	1	0	1	0	0
4	3866.85520	32	28.880	0	1	0	1	0	0

```
In [28]: #Regression for full model
    reg1 = smf.ols('charges~age+bmi+children+is_smoker',data=health_data_dumm).
    reg1.summary()
```

Out[28]:

OLS Regression Results

Dep. Variable:	charges	R-squared:	0.750
Model:	OLS	Adj. R-squared:	0.749
Method:	Least Squares	F-statistic:	998.1
Date:	Sat, 12 Oct 2019	Prob (F-statistic):	0.00
Time:	14:24:48	Log-Likelihood:	-13551.
No. Observations:	1338	AIC:	2.711e+04
Df Residuals:	1333	BIC:	2.714e+04
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.21e+04	941.984	-12.848	0.000	-1.4e+04	-1.03e+04
age	257.8495	11.896	21.675	0.000	234.512	281.187
bmi	321.8514	27.378	11.756	0.000	268.143	375.559
children	473.5023	137.792	3.436	0.001	203.190	743.814
is_smoker	2.381e+04	411.220	57.904	0.000	2.3e+04	2.46e+04

 Omnibus:
 301.480
 Durbin-Watson:
 2.087

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 722.157

 Skew:
 1.215
 Prob(JB):
 1.53e-157

 Kurtosis:
 5.654
 Cond. No.
 292.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [29]: #Regression for reduced model
    reg2 = smf.ols('charges~age+bmi+is_smoker',data=health_data_dumm).fit()
    reg2.summary()
```

Out[29]:

OLS Regression Results

Covariance Type:

Dep. Variable:	charges	R-squared:	0.747
Model:	OLS	Adj. R-squared:	0.747
Method:	Least Squares	F-statistic:	1316.
Date:	Sat, 12 Oct 2019	Prob (F-statistic):	0.00
Time:	14:25:14	Log-Likelihood:	-13557.
No. Observations:	1338	AIC:	2.712e+04
Df Residuals:	1334	BIC:	2.714e+04
Df Model:	3		

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.168e+04	937.569	-12.454	0.000	-1.35e+04	-9837.561
age	259.5475	11.934	21.748	0.000	236.136	282.959
bmi	322.6151	27.487	11.737	0.000	268.692	376.538
is_smoker	2.382e+04	412.867	57.703	0.000	2.3e+04	2.46e+04

Omnibus: 299.709 Durbin-Watson: 2.077

Prob(Omnibus): 0.000 Jarque-Bera (JB): 710.137

Skew: 1.213 **Prob(JB):** 6.25e-155

Kurtosis: 5.618 **Cond. No.** 289.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [40]: #2. check residual for full model
    # Normality
    JB, JBpv,skw,kurt = sm.stats.stattools.jarque_bera(reg.resid)
    print(JB,JBpv,skw,kurt)
    # p-value is not good
    sm.qqplot(reg1.resid)
```

722.1565054761726 1.5335830526321106e-157 1.2152404041806357 5.6544760234 446745

Out[40]:


```
In [41]: #2. check residual for reduced model
    # Normality
    JB, JBpv,skw,kurt = sm.stats.stattools.jarque_bera(reg2.resid)
    print(JB,JBpv,skw,kurt)
    # p-value is not good
    sm.qqplot(reg2.resid)
```

710.137418335741 6.246243519708224e-155 1.2130482786943517 5.617622281017 362

Model 2 is slightly better but both are having non normality

Theoretical Quantiles

```
In [42]: #2.2 Fitted Values vs. Residuals for full model
    p = reg1.fittedvalues
    res = reg1.resid
    plt.scatter(p,res)
    plt.xlabel("Fitted Values")
    plt.ylabel("Residual")
    plt.title("Fitted Values vs. Residuals")
    #nonlinearity is there
```

Out[42]: Text(0.5, 1.0, 'Fitted Values vs. Residuals')


```
In [43]: #2.2 Fitted Values vs. Residuals for reduced model
p = reg2.fittedvalues
res = reg2.resid
plt.scatter(p,res)
plt.xlabel("Fitted Values")
plt.ylabel("Residual")
plt.title("Fitted Values vs. Residuals")
#nonlinearity is there
```

Out[43]: Text(0.5, 1.0, 'Fitted Values vs. Residuals')

Almost same results. There is some variance in residuals.

Diagnostic tests and correction for full model

```
In [45]: #influential points
    #object for the analysis of influential points
    infl1 = reg1.get_influence()
    infl2 = reg2.get_influence()
    #members
    print(dir(infl))
```

['_class__', '_delattr__', '_dict__', '_dir__', '_doc__', '_eq__', '_format__', '_ge__', '_getattribute__', '_gt__', '_hash__', '_init__', '_init_subclass__', '_le__', '_lt__', '_module__', '_ne__', '_new__', '_reduce_ex__', '_repr__', '_setattr__', '_size_of__', '_str__', '_subclasshook__', 'weakref__', 'cache', 'get_drop_vari', 'ols_xnoti', 'res_looo', 'aux_regression_endog', 'aux_regression_exog', 'cooks_distance', 'cov_ratio', 'det_cov_params_not_obsi', 'dfbet_as', 'dffits_internal', 'endog', 'ess_press', 'exog', 'get_resi_d_studentized_external', 'hat_diag_factor', 'hat_matrix_diag', 'influenc_e', 'k_vars', 'model_class', 'nobs', 'params_not_obsi', 'resid_press', 'r_esid_std', 'resid_studentized_external', 'resid_studentized_internal', 'r_esid_var', 'results', 'sigma2_not_obsi', 'sigma_est', 'summary_frame', 's_ummary_table']

For model 1:Influential points

-1.2652221]

In [46]: #leverage

```
print(infl1.hat_matrix_diag)
      [0.00572181 0.00302181 0.0035557 ... 0.00427337 0.00307642 0.00644726]

In [47]: #internally studentized residuals
      print(infl1.resid_studentized_internal)
      [-1.43833415 -0.35575698 -0.44727795 ... -0.45730802 0.06472097
```

```
In [48]: #externally studentized residuals
print(infl1.resid_studentized_external)
```

```
[-1.43891156 -0.35564039 -0.4471437 \dots -0.45717232 0.06469679 -1.26550753]
```

In [49]: #graphical representation of the influences()
sm.graphics.influence_plot(reg1)

Out[49]:


```
In [50]: #too messy. define your rules.
    #threshold leverage
    residus = reg1.resid.as_matrix() #residuals
    leviers = infl1.hat_matrix_diag #leverage
    n = health_data_dumm.shape[0]
    p=5
    seuil_levier = 2*p/n # people choose 2.5 or 3 as well
    print(seuil_levier)
    #identification
    atyp_levier = leviers > seuil_levier
    print(atyp_levier)
```

0.007473841554559043
[False False False False False]

/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:3: FutureWar ning: Method .as_matrix will be removed in a future version. Use .values instead.

This is separate from the ipykernel package so we can avoid doing imports until

```
In [52]: #too hard to read
print(health_data_dumm.index[atyp_levier],leviers[atyp_levier])
```

```
Int64Index([ 14,
                    32,
                          39,
                                71.
                                       83,
                                             98,
                                                  116,
                                                        128,
                                                              166,
                                                                    185,
250,
                         292, 301,
                                      344,
                                            380,
             265.
                   281,
                                                  412,
                                                        413,
                                                              425,
                                                                    438,
494.
                                                  664,
             543,
                               621,
                   549,
                         568,
                                      640,
                                            660,
                                                        674,
                                                              803,
860,
             877,
                   901,
                         932, 937,
                                     969,
                                            984, 994, 1047, 1085, 1116, 1
124,
            1130, 1156, 1186, 1245, 1265, 1272, 1307, 1317],
           dtype='int64') [0.00768125 0.01073336 0.00750771 0.0092878
00754973 0.00823485
0.00923105 \ 0.00750688 \ 0.01156398 \ 0.00809413 \ 0.00889485 \ 0.00820321
0.0079519 0.00964437 0.0077778 0.00768758 0.00764957 0.00810981
0.01061097 0.00979143 0.01403164 0.00967911 0.01048509 0.00916477
 0.00903956 0.00820012 0.01194986 0.00801453 0.00846788 0.0075313
0.00900637 0.01052002 0.009902
                                  0.00924631 0.00787025 0.00946798
0.00970682 0.00908174 0.01053691 0.00818723 0.01513658 0.01466071
0.00884004 0.00788926 0.00980432 0.01032
                                              0.00758461 0.01020894
 0.00820157 0.00942602 0.00829636 0.01447816]
```

```
#threshold externally studentized residuals
In [54]:
         import scipy
         seuil stud = scipy.stats.t.ppf(0.975,df=n-p-1)
         #detection - absolute value > threshold
         reg studs=infl1.resid studentized external
         atyp stud = np.abs(reg studs) > seuil stud
         #which ones?
         print(health_data_dumm.index[atyp_stud],reg_studs[atyp_stud])
                                   34,
                                         62,
                                               99,
                                                    102,
         Int64Index([
                        3,
                              9,
                                                          115,
                                                                138,
                                                                      140,
                                                                            143,
         219,
                      242,
                            245,
                                  289,
                                        291,
                                              305,
                                                    306,
                                                          321,
                                                                340,
                                                                      355,
                                                                            379,
         387,
                      397,
                            429,
                                  430,
                                        443,
                                              468,
                                                    488,
                                                          491,
                                                                516,
                                                                      520,
                                                                           526,
         539,
                      543,
                            573,
                                  577,
                                        583,
                                              587,
                                                    599,
                                                          637,
                                                                658,
                                                                      688,
         739,
                            819,
                                  858, 876, 925,
                                                    936, 959,
                                                                964,
                                                                      980,
                                                                          987, 1
                      806,
         008,
                     1012, 1019, 1027, 1039, 1104, 1123, 1134, 1142, 1146, 1157, 1
         195,
                     1206, 1211, 1230, 1258, 1300, 1328],
                    dtype='int64') [ 3.024589
                                                 2.8541619
                                                             3.32940668
                                                                         2.8722592
         3 -1.96976668 3.16576247
           2.92844454 2.28425829 3.73945972 2.02564622
                                                           3.904287
                                                                       3.9788698
           2.1469096
                       2.44338612 2.46021772 2.04615842
                                                           2.52300445
                                                                       3.09074804
                                               3.3766269
           2.64386329
                       2.63903414 2.0685811
                                                           2.19656462 2.10613006
           3.25262268 2.1402063
                                   3.29036127 2.2478375
                                                           2.1192884
                                                                       3.78728912
           2.65600572
                       3.3921089
                                   2.59479685
                                              3.80964778
                                                           2.54744952 4.34701078
           2.21264374 2.19447207 3.16970781 2.44442791
                                                           2.32744755 2.97680119
                                                           2.15195422 2.71356556
           2.69212211 2.15513084 2.72385589 3.90017714
           2.19069372 3.70341629 2.63183422 2.04561694
                                                           2.48457778 3.2218622
           3.29779974 3.37565129 3.5207505
                                               3.60873616
                                                           3.30943844 2.21198929
           2.17105574 2.25914333 2.94832248 2.46031465
                                                           2.01479649
                                                                       2.5877892
           3.58969042 2.261063
                                   3.7185462
                                               2.38686515
                                                           4.91644271 3.284175631
In [55]: #suspicious observations with one of the two criteria
         pbm infl = np.logical or(atyp levier,atyp stud)
         print(health data_dumm.index[pbm_infl])
                              9,
                                   14.
                                         32.
                                               34.
                                                     39.
         Int64Index([
                        3,
                                                           62.
                                                                 71.
                                                                       83,
                                                                             98.
                     1211, 1230, 1245, 1258, 1265, 1272, 1300, 1307, 1317, 1328],
                    dtype='int64', length=123)
In [59]: #DFFITS for detecting influential points
         inflsum=infl1.summary frame()
         reg dffits=inflsum.dffits
         seuil dffits=2*np.sqrt((p+1)/(n-p-1))
         atyp dffits = np.abs(reg dffits) > seuil dffits
         # print(health data dumm.index[atyp dffits],reg dffits[atyp dffits])
         influ DFFITS=health data dumm.index[atyp dffits]
```

```
In [79]:
         import scipy
         seuil stud = 5/1338
         #detection - absolute value > threshold
         cook studs,pvalue=infl1.cooks distance
         atyp cook = np.abs(cook studs) > seuil stud
         #which ones?
         print(health data dumm.index[atyp_cook],cook studs[atyp_cook])
         Int64Index([
                         3,
                               9,
                                     34,
                                           62,
                                                 69,
                                                       98,
                                                              99,
                                                                   102,
                                                                         115,
                                                                               140,
         219,
                       242,
                             250,
                                   266,
                                         289,
                                                321,
                                                      380,
                                                             387,
                                                                   412,
                                                                         430,
                                                                               468,
         488,
                       491,
                             494,
                                   516,
                                          526,
                                                543,
                                                      573,
                                                             577,
                                                                   599,
                                                                         688,
                                                                               730,
         739,
                                                806,
                       754,
                             780,
                                   793,
                                         803,
                                                      819,
                                                            847,
                                                                   860,
                                                                         896,
                                                                               936,
         994,
                      1008, 1011, 1012, 1019, 1027, 1039, 1047, 1085, 1100, 1142, 1
         146,
                      1156, 1195, 1206, 1230, 1258, 1300, 1307, 1317, 1328],
                     dtype='int64') [0.00521066 0.00638295 0.01072969 0.00706031 0.
         00404725 0.00469132
          0.00538363 0.00640598 0.00587598 0.00778474 0.00996854 0.00723109
          0.00495071 0.00459631 0.00457148 0.01172495 0.00455505 0.00555543
          0.0048788 0.00693583 0.00455522 0.00553413 0.00385997 0.00468374
          0.00854248 \ 0.00694026 \ 0.03044872 \ 0.00445184 \ 0.01907625 \ 0.00544371
          0.00377593 \ 0.0039572 \ 0.00463895 \ 0.00389433 \ 0.00394341 \ 0.0048317
          0.00389982 0.00488223 0.01487195 0.00380881 0.00405566 0.00389113
          0.0039719 0.0046322 0.00587941 0.00469559 0.01569061 0.00710086
          0.01302549 0.00684464 0.00801497 0.00992318 0.00417362 0.00525094
          0.00747265 0.00430255 0.00618261 0.00760074 0.01728522 0.0050502
          0.02139853 0.00407646 0.0058161 0.00666209]
```

```
In [80]: #Removing influential points
    pbm_infl1 = np.logical_or(atyp_levier,atyp_stud)
    pbm_infl2 = np.logical_or(atyp_cook,atyp_dffits)
    pbm_infl = np.logical_or(pbm_infl1,pbm_infl2)
    infl_pts=(health_data_dumm.index[pbm_infl])
```

```
In [75]: health_data_without_influential=health_data_dumm.drop(infl_pts)
```

```
In [76]: reg3 = smf.ols('charges~age+bmi+children+is_smoker',data=health_data_withou
reg3.summary()
```

Out[76]:

OLS Regression Results

Dep. Variable:	charges	R-squared:	0.855
Model:	OLS	Adj. R-squared:	0.854
Method:	Least Squares	F-statistic:	1762.
Date:	Sat, 12 Oct 2019	Prob (F-statistic):	0.00
Time:	21:09:25	Log-Likelihood:	-11747.
No. Observations:	1202	AIC:	2.350e+04
Df Residuals:	1197	BIC:	2.353e+04
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.097e+04	718.108	-15.281	0.000	-1.24e+04	-9564.594
age	260.7491	8.814	29.583	0.000	243.456	278.042
bmi	249.5205	21.361	11.681	0.000	207.612	291.429
children	449.3417	111.718	4.022	0.000	230.156	668.527
is_smoker	2.441e+04	315.835	77.281	0.000	2.38e+04	2.5e+04

 Omnibus:
 29.546
 Durbin-Watson:
 2.068

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 63.950

 Skew:
 0.033
 Prob(JB):
 1.30e-14

 Kurtosis:
 4.128
 Cond. No.
 301.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [77]: #2. check residual
    #2.1 Normality
    JB, JBpv,skw,kurt = sm.stats.stattools.jarque_bera(reg3.resid)
    print(JB,JBpv,skw,kurt)
    # p-value is not good
    sm.qqplot(reg3.resid)
```

63.949777371101284 1.298620589821719e-14 0.03294510562484799 4.1280629038 71845

Out[77]:


```
In [78]: #2.2 Fitted Values vs. Residuals
p = reg3.fittedvalues
res = reg3.resid
plt.scatter(p,res)
plt.xlabel("Fitted Values")
plt.ylabel("Residual")
plt.title("Fitted Values vs. Residuals")
#nonlinearity
```

Out[78]: Text(0.5, 1.0, 'Fitted Values vs. Residuals')

Therefore removing influential points have improved both normality and homoscedascity

```
In [82]: #Breusch-Pagan for Heteroskedasticity
    from statsmodels.stats.diagnostic import het_breuschpagan
    bp_test = het_breuschpagan(reg3.resid, reg3.model.exog)
    labels = ['LM Statistic', 'LM-Test p-value', 'F-Statistic', 'F-Test p-value
    print(dict(zip(labels, bp_test)))

{'LM Statistic': 741.9669535355475, 'LM-Test p-value': 2.8473890576841394
    e-159, 'F-Statistic': 482.6470892731169, 'F-Test p-value': 8.416450376812
```

329e-248}

```
In [83]: #Breusch-Pagan for Heteroskedasticity
           from statsmodels.stats.diagnostic import het breuschpagan
           bp_test = het_breuschpagan(reg1.resid, reg1.model.exog)
           labels = ['LM Statistic', 'LM-Test p-value', 'F-Statistic', 'F-Test p-value
           print(dict(zip(labels, bp_test)))
           {'LM Statistic': 117.15665244370166, 'LM-Test p-value': 2.161944101621577
           3e-24, 'F-Statistic': 31.979905124611555, 'F-Test p-value': 1.77558219771
           74608e-25}
 In [86]: # therefore heteroskedascity exists
           # use weighted least squares
In [141]: from patsy import dmatrices
           y, X = dmatrices('charges~age+bmi+children+is_smoker', health_data_without
In [142]: X.head()
Out[142]:
              Intercept age
                            bmi children is_smoker
           0
                  1.0 19.0 27.90
                                    0.0
                                             1.0
                  1.0 18.0 33.77
                                    1.0
                                             0.0
           1
                  1.0 28.0 33.00
                                    3.0
                                             0.0
           2
                  1.0 32.0 28.88
                                    0.0
                                             0.0
                  1.0 31.0 25.74
                                             0.0
                                    0.0
           5
In [143]:
          y.head()
Out[143]:
                charges
           o 16884.9240
              1725.5523
              4449.4620
              3866.8552
              3756.6216
In [146]: XTXI = np.linalg.inv((X.T).dot(X))
           H=X.dot(XTXI.dot(X.T))
In [150]: H.shape
Out[150]: (1202, 1202)
In [151]: | I=np.identity(1202)
In [174]: | l=np.array((y.T).dot(I-H))
```

```
In [175]:
          r=np.array(y)
In [177]:
          SSE=1.dot(r)
In [180]: MSE=SSE/(1202/5)
          MSE=90165854.54827976
In [192]: mat=MSE*(I-H)
          mat=1/mat
In [194]: W = np.diag(np.diag(mat))
          W
Out[194]: array([[1.11658995e-08, 0.00000000e+00, 0.00000000e+00, ...,
                  0.00000000e+00, 0.00000000e+00, 0.0000000e+00],
                  [0.00000000e+00, 1.11287143e-08, 0.0000000e+00, ...,
                  0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
                  [0.00000000e+00, 0.0000000e+00, 1.11432905e-08, ...,
                  0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
                  [0.00000000e+00, 0.0000000e+00, 0.0000000e+00, ...,
                  1.11447609e-08, 0.00000000e+00, 0.00000000e+00],
                  [0.00000000e+00, 0.0000000e+00, 0.0000000e+00, ...,
                  0.00000000e+00, 1.11280493e-08, 0.0000000e+00],
                  [0.00000000e+00, 0.0000000e+00, 0.0000000e+00, ...,
                  0.00000000e+00, 0.00000000e+00, 1.11763169e-08]])
In [1971:
          \# \beta^{\text{NLS}} = (XTWX) - 1XTWy
          X=np.array(X)
          y=np.array(y)
In [200]:
          (((np.linalg.inv(((X.T).dot(W)).dot(X))).dot(X.T)).dot(W)).dot(y)
Out[200]: array([[-10984.74920721],
                      260.747909921,
                 [
                      249.889748211,
                      449.635101521,
                  [ 24408.59159125]])
```

Therefore Model is: y=-10984.74920721+260.74790992*age*+249.88974821bmi+449.63510152*children*+24408.59159125is_smoker

In [94]: #show autocorrelation graphically
sm.graphics.tsa.plot_acf(charge, lags=1200)
plt.show()

3}

```
In [95]: bg_test=sm.stats.diagnostic.acorr_breusch_godfrey(reg3)
    labels = ['LM Statistic', 'LM-Test p-value', 'F-Statistic', 'F-Test p-value
    print(dict(zip(labels, bg_test)))

{'LM Statistic': 16.051171595369393, 'LM-Test p-value': 0.813338010638982
    8, 'F-Statistic': 0.7228629620451152, 'F-Test p-value': 0.819325659425108
```

There p-value is higher than 0.05. Therefore we cannot reject null hypothesis. Thus, we can say from test that there is no serial correlation. Also evident from plot.

```
In [139]: import seaborn as sns
    sns.pairplot(health_data_without_influential[['age','bmi','children','is_sm
```

Out[139]: <seaborn.axisgrid.PairGrid at 0x1c2775c1d0>


```
In [97]: | #Multicollinearity
         health data_new=health_data_without_influential[['age','bmi','children','is
         cm = health_data_new.corr().round(2)
         print(cm)
         #doesnt seem to be correlated.
                           bmi children
                                          is smoker
                     age
         age
                    1.00 0.12
                                     0.08
                                               -0.02
         bmi
                    0.12 1.00
                                    0.02
                                                0.00
         children
                    0.08 0.02
                                    1.00
                                                0.00
         is_smoker -0.02 0.00
                                     0.00
                                                1.00
         from patsy import dmatrices
         y, X = dmatrices('charges~age+bmi+children+is smoker', salesdata, return ty
In [98]:
         #VIF
         from statsmodels.stats.outliers_influence import variance_inflation_factor
         vif = pd.DataFrame()
         vif["VIF Factor"] = [variance_inflation_factor(health_data_new.values, i) f
         vif["features"] = health_data_new.columns
         print(vif)
            VIF Factor
                         features
         0
              7.819684
                              age
         1
              8.215770
                              bmi
         2
              1.819139
                         children
         3
              1.219588 is smoker
 In [ ]: # Therefore age and BMI may have multicollinearity problem.
         \# But looking at the graph, the problem is not serious. Therefore can be ig
```

Diagnostic tests and correction for reduced model

```
In [99]: reg2 = smf.ols('charges~age+bmi+is_smoker',data=health_data_dumm).fit()
reg2.summary()
```

Out[99]:

OLS Regression Results

Dep. Variable:	charges	R-squared:	0.747
Model:	OLS	Adj. R-squared:	0.747
Method:	Least Squares	F-statistic:	1316.
Date:	Sun, 13 Oct 2019	Prob (F-statistic):	0.00
Time:	10:39:37	Log-Likelihood:	-13557.
No. Observations:	1338	AIC:	2.712e+04
Df Residuals:	1334	BIC:	2.714e+04
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.168e+04	937.569	-12.454	0.000	-1.35e+04	-9837.561
age	259.5475	11.934	21.748	0.000	236.136	282.959
bmi	322.6151	27.487	11.737	0.000	268.692	376.538
is smoker	2 382e+04	412 867	57 703	0.000	2 3e+04	2 46e+04

 Omnibus:
 299.709
 Durbin-Watson:
 2.077

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 710.137

 Skew:
 1.213
 Prob(JB):
 6.25e-155

 Kurtosis:
 5.618
 Cond. No.
 289.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [100]: #2. check residual
    #2.1 Normality
    JB, JBpv,skw,kurt = sm.stats.stattools.jarque_bera(reg2.resid)
    print(JB,JBpv,skw,kurt)
    # p-value is not good
    sm.qqplot(reg2.resid)
```

710.137418335741 6.246243519708224e-155 1.2130482786943517 5.617622281017 362

Out[100]:


```
In [101]: #2.2 Fitted Values vs. Residuals
p = reg2.fittedvalues
res = reg2.resid
plt.scatter(p,res)
plt.xlabel("Fitted Values")
plt.ylabel("Residual")
plt.title("Fitted Values vs. Residuals")
#nonlinearity
```

Out[101]: Text(0.5, 1.0, 'Fitted Values vs. Residuals')

In [107]: #graphical representation of the influences()
sm.graphics.influence_plot(reg2)

Out[107]:


```
In [109]: #too messy. define your rules.
#threshold leverage
residus = reg2.resid.as_matrix() #residuals
leviers = infl2.hat_matrix_diag #leverage
n = health_data_dumm.shape[0]
p=4
seuil_levier = 2*p/n # people choose 2.5 or 3 as well
print(seuil_levier)
#identification
atyp_levier = leviers > seuil_levier
print(atyp_levier)
```

0.005979073243647235
[False False False False False]

/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:3: FutureWar ning: Method .as_matrix will be removed in a future version. Use .values instead.

This is separate from the ipykernel package so we can avoid doing imports until

```
In [110]: #too hard to read
          print(health_data_dumm.index[atyp_levier],leviers[atyp_levier])
          Int64Index([ 11,
                               14,
                                     39,
                                            64,
                                                  94,
                                                        98,
                                                              99,
                                                                    109,
                                                                          116,
                                                                                128,
          161,
                        172,
                              175,
                                    185,
                                          244,
                                                 250,
                                                       263,
                                                                    266,
                                                             265,
                                                                          281,
                                                                                286,
          292,
                        301.
                              328.
                                    330,
                                          362,
                                                 377,
                                                       380,
                                                             401.
                                                                    411.
                                                                          412.
                                                                                419,
          420,
                        438,
                              442,
                                    454,
                                          530,
                                                 543,
                                                       547,
                                                             549,
                                                                    593,
                                                                          607,
                                                                                660,
          664,
                        674,
                              759,
                                    793,
                                          803,
                                                 847,
                                                       860,
                                                             890,
                                                                    896,
                                                                          901,
                                                                                930.
          951,
                              994, 1011, 1033, 1047, 1062, 1074, 1085, 1088, 1100, 1
                        989.
          124,
                       1131, 1156, 1231, 1240, 1241, 1265, 1282, 1284, 1288, 1317, 1
          3211,
                      dtype='int64') [0.0063642 0.00706826 0.00675891 0.00606671 0.
          00611992 0.00754275
           0.00628875 0.00613353 0.00850487 0.0070598 0.006276
                                                                     0.00648109
           0.00661421\ 0.00627568\ 0.00627013\ 0.00839749\ 0.00614096\ 0.00645495
           0.00611174\ 0.0062523\ 0.00706097\ 0.00921601\ 0.00601672\ 0.00618415
           0.00599884 0.00642295 0.00653768 0.00718541 0.00670611 0.00610916
           0.00764093 \ 0.00640972 \ 0.0061904 \ 0.00643319 \ 0.00631477 \ 0.00650813
           0.00720811 0.00974793 0.00654859 0.00847778 0.00612414 0.00655212
           0.00616715 0.00773507 0.00716227 0.00669388 0.00668795 0.00842894
           0.01051796 0.00951611 0.00662797 0.00613405 0.00711941 0.00717058
           0.00697911 0.00628516 0.00623567 0.00609655 0.00660366 0.01513248
           0.00706183 0.00614969 0.00679646 0.00707784 0.006388
                                                                     0.00788621
           0.00662671 0.00973398 0.00626155 0.00656252 0.00662942 0.00746722
```

0.00657225 0.00598304 0.00681398 0.01390984 0.006276291

#threshold externally studentized residuals

In [111]:

```
import scipy
          seuil stud = scipy.stats.t.ppf(0.975,df=n-p-1)
          #detection - absolute value > threshold
          reg studs=infl2.resid studentized external
          atyp stud = np.abs(reg studs) > seuil stud
          #which ones?
          print(health data dumm.index[atyp stud],reg studs[atyp stud])
                                    34,
                                           62,
                                                 99,
                                                      102,
          Int64Index([
                         3,
                               9,
                                                            115,
                                                                  138,
                                                                        140,
                                                                              143,
          219,
                       242,
                             245,
                                   289,
                                         291,
                                                305,
                                                      306,
                                                            321,
                                                                  340,
                                                                        355,
                                                                              379,
          387,
                       397,
                             429,
                                   430,
                                         443,
                                                468,
                                                      488,
                                                            491,
                                                                  516,
                                                                        520,
                                                                              526,
          539,
                       543,
                             573,
                                   577,
                                         583,
                                                587,
                                                      599,
                                                            637,
                                                                  658,
                                                                        688,
                                                                              696,
          739,
                       770,
                             806,
                                   819,
                                         858,
                                               876,
                                                      925,
                                                            936,
                                                                  959,
                                                                        964,
                                                                             980,
          987,
                      1008, 1012, 1019, 1027, 1039, 1104, 1123, 1134, 1142, 1146, 1
          157,
                      1195, 1206, 1211, 1230, 1258, 1300, 1328],
                     dtype='int64') [ 2.92861178  2.75082316  3.30920227
                                                                           2.8473245
          9 -2.0467631
                         3.0724268
            2.82439838 2.4181574
                                    3.79783728
                                                2.09108346
                                                             3.80638518 3.95153954
            2.04829857
                        2.57785601
                                    2.4462419
                                                 2.1110727
                                                             2.5870492
                                                                         3.30393266
            2.55171394
                        2.54064006
                                    2.04671228
                                                 3.43157414
                                                             2.10695987
                                                                         2.24832186
            3.15817807
                        2.11824433 3.27391006 2.14835823
                                                             2.01936695
                                                                         3.76962941
                                                 3.69787647
            2.55639917
                        3.45494418
                                    2.49412033
                                                             2.52290213
                                                                         4.32142422
                                    3.22338764 2.50554811
            2.19959623 2.17807235
                                                             2.30788657
                                                                         2.95631846
                                                 2.70419838
            2.74799761
                        2.21745085 1.99790168
                                                             3.79588473
                                                                         2.14003656
            2.69323719
                        2.24937384
                                    3.75820336
                                                2.61091377
                                                             2.10376094
                                                                         2.46399629
                                    3.57791131
                                                 3.5822785
                                                             3.51314767
                                                                         3.37300615
            3.20047291
                        3.3600212
            2.11796841
                        2.15847854
                                    2.16691293
                                                 2.8469783
                                                             2.3558629
                                                                         2.08280893
            2.73048722
                        3.64017089
                                    2.3222563
                                                 3.84512904
                                                             2.51941218
                                                                         4.80382808
            3.34711085]
In [114]: #DFFITS for detecting influential points
          inflsum=infl2.summary frame()
          reg dffits=inflsum.dffits
          seuil dffits=2*np.sqrt((p+1)/(n-p-1))
          atyp dffits = np.abs(reg dffits) > seuil dffits
          # print(health data dumm.index[atyp dffits],req dffits[atyp dffits])
          influ DFFITS=health data dumm.index[atyp dffits]
```

```
In [113]:
          import scipy
          seuil stud = 4/1338
          #detection - absolute value > threshold
          cook_studs,pvalue=infl2.cooks_distance
          atyp cook = np.abs(cook studs) > seuil stud
          #which ones?
          print(health data dumm.index[atyp cook], cook studs[atyp cook])
                                    11,
                                          34,
                                                58,
                                                      62,
                                                            64,
                                                                  70,
                                                                        85,
                                                                              98,
          Int64Index([
                         3,
                               9,
                      1258, 1265, 1274, 1282, 1288, 1300, 1306, 1317, 1321, 1328],
                     dtype='int64', length=129) [0.00488022 0.00610712 0.00344809
          0.0132411 0.00406817 0.00864387
           0.00402056 0.00360179 0.0035866 0.00591095 0.00661214 0.00629806
           0.00544821 0.00356631 0.00839059 0.00299935 0.003716
                                                                  0.00423889
           0.00342835 0.00300864 0.00327494 0.00990315 0.00401993 0.00368387
           0.00488004 \ 0.0033297 \ 0.00347813 \ 0.00440093 \ 0.00316687 \ 0.00321897
           0.00316238 0.00459028 0.00301787 0.00485195 0.00599806 0.00459281
           0.00521239 0.0035014 0.00683758 0.0032479 0.00303559 0.00563559
           0.00553543 0.00367222 0.00430865 0.01057842 0.00751379 0.00326599
           0.03333532 \ 0.00340006 \ 0.00543154 \ 0.02354643 \ 0.00442619 \ 0.00360199
           0.00606152 0.00396194 0.00308403 0.00345388 0.00309855 0.00441755
           0.00351474 0.00464275 0.00312944 0.00374669 0.00560544 0.0030143
           0.00314435\ 0.00310529\ 0.00598529\ 0.00350381\ 0.00402282\ 0.00600414
           0.01536903 \ 0.0047569 \ 0.00386977 \ 0.0053002 \ 0.00416287 \ 0.00362472
           0.00366429 0.00323593 0.00316477 0.00307818 0.00413606 0.00372108
           0.00325302 \ 0.00465854 \ 0.00360046 \ 0.00340309 \ 0.00625975 \ 0.00506091
                      0.00762718 0.01380662 0.00341493 0.00453258 0.00745494
           0.00984929 0.00327386 0.00375446 0.00388512 0.00444223 0.00436732
           0.00311226\ 0.00479762\ 0.00754005\ 0.00445789\ 0.0031135\ 0.00334656
           0.00479427 0.00858699 0.01668255 0.00358104 0.00339601 0.00424356
           0.00460459 0.00337342 0.00406792 0.00320201 0.0217505 0.00416152
           0.00775626 0.00327741 0.00726581]
          pbm infl1 = np.logical or(atyp levier,atyp stud)
In [119]:
          pbm infl2 = np.logical or(atyp cook,atyp dffits)
          pbm infl = np.logical or(pbm infl1,pbm infl2)
          infl pts=(health data dumm.index[pbm infl])
          health data without influential2=health_data_dumm.drop(infl_pts)
```

```
localhost:8888/notebooks/Downloads/Project_Health_Care v2.ipynb#
```

In [120]:

In [121]: reg4 = smf.ols('charges~age+bmi+is_smoker',data=health_data_without_influen
 reg4.summary()

Out[121]:

OLS Regression Results

Dep. Variable:	charges	R-squared:	0.853
Model:	OLS	Adj. R-squared:	0.853
Method:	Least Squares	F-statistic:	2315.
Date:	Sun, 13 Oct 2019	Prob (F-statistic):	0.00
Time:	10:48:17	Log-Likelihood:	-11755.
No. Observations:	1202	AIC:	2.352e+04
Df Residuals:	1198	BIC:	2.354e+04
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.066e+04	718.486	-14.843	0.000	-1.21e+04	-9254.505
age	263.4242	8.845	29.784	0.000	246.072	280.777
bmi	250.6620	21.494	11.662	0.000	208.493	292.832
is_smoker	2.442e+04	317.824	76.821	0.000	2.38e+04	2.5e+04

 Omnibus:
 28.237
 Durbin-Watson:
 2.049

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 59.752

 Skew:
 0.032
 Prob(JB):
 1.06e-13

 Kurtosis:
 4.090
 Cond. No.
 299.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [122]: #2. check residual
    #2.1 Normality
    JB, JBpv,skw,kurt = sm.stats.stattools.jarque_bera(reg4.resid)
    print(JB,JBpv,skw,kurt)
    # p-value is not good
    sm.qqplot(reg4.resid)
```

59.75244561532769 1.0590617781850974e-13 0.032350335678457486 4.090355126 232836

Out[122]:


```
In [123]: #2.2 Fitted Values vs. Residuals
    p = reg4.fittedvalues
    res = reg4.resid
    plt.scatter(p,res)
    plt.xlabel("Fitted Values")
    plt.ylabel("Residual")
    plt.title("Fitted Values vs. Residuals")
    #nonlinearity
```

Out[123]: Text(0.5, 1.0, 'Fitted Values vs. Residuals')


```
In [124]: #Breusch-Pagan for Heteroskedasticity
    from statsmodels.stats.diagnostic import het_breuschpagan
    bp_test = het_breuschpagan(reg4.resid, reg4.model.exog)
    labels = ['LM Statistic', 'LM-Test p-value', 'F-Statistic', 'F-Test p-value
    print(dict(zip(labels, bp_test)))
```

{'LM Statistic': 737.0934816226819, 'LM-Test p-value': 1.8987749487608997 e-159, 'F-Statistic': 633.1294257220253, 'F-Test p-value': 1.677709707214 861e-246}

```
In [125]: #Breusch-Pagan for Heteroskedasticity
    from statsmodels.stats.diagnostic import het_breuschpagan
    bp_test = het_breuschpagan(reg2.resid, reg2.model.exog)
    labels = ['LM Statistic', 'LM-Test p-value', 'F-Statistic', 'F-Test p-value
    print(dict(zip(labels, bp_test)))
```

{'LM Statistic': 112.73640444098342, 'LM-Test p-value': 2.827322043783107 4e-24, 'F-Statistic': 40.91374407633964, 'F-Test p-value': 2.715975903497 3015e-25}

```
In [126]:
          # therefore heteroskedascity exists
          # use weighted least squares
In [202]: from patsy import dmatrices
          y, X = dmatrices('charges~age+bmi+is_smoker', health_data_without_influenti
In [208]: X=np.array(X)
          y=np.array(y)
          y.shape
Out[208]: (1157, 1)
In [206]: |XTXI = np.linalg.inv((X.T).dot(X))
          H=X.dot(XTXI.dot(X.T))
          H.shape
Out[206]: (1157, 1157)
In [212]:
          I=np.identity(1157)
In [215]:
          l=(y.T).dot(I-H)
In [217]:
          SSE=1.dot(y)
          SSE
Out[217]: array([[1.63357056e+10]])
In [220]: MSE=SSE/(1157/4)
          MSE=56476078.25983766
In [222]: mat=MSE*(I-H)
          mat=1/mat
          W = np.diag(np.diag(mat))
          W
Out[222]: array([[1.78416846e-08, 0.00000000e+00, 0.00000000e+00, ...,
                  0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                 [0.00000000e+00, 1.77707166e-08, 0.0000000e+00, ...,
                  0.00000000e+00, 0.0000000e+00, 0.0000000e+00],
                 [0.00000000e+00, 0.0000000e+00, 1.77396514e-08, ...,
                  0.00000000e+00, 0.00000000e+00, 0.0000000e+00],
                 [0.00000000e+00, 0.0000000e+00, 0.0000000e+00, ...,
                  1.77889217e-08, 0.00000000e+00, 0.00000000e+00],
                 [0.00000000e+00, 0.0000000e+00, 0.0000000e+00, ...,
                  0.0000000e+00, 1.77589907e-08, 0.00000000e+00],
                 [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
                  0.00000000e+00, 0.00000000e+00, 1.78615914e-08]])
```

Therefore model is: y=-8150.40862706 + 260.8424167age + 173.22681875bmi + 25693.62330826*is_smoker

```
In [127]: charge=health_data_without_influential2['charges']
    plt.plot(charge)
    plt.show()
```



```
In [129]: #show autocorrelation graphically
sm.graphics.tsa.plot_acf(charge, lags=1100)
plt.show()
```



```
In [130]: bg_test=sm.stats.diagnostic.acorr_breusch_godfrey(reg4)
    labels = ['LM Statistic', 'LM-Test p-value', 'F-Statistic', 'F-Test p-value
    print(dict(zip(labels, bg_test)))

{'LM Statistic': 16.67536754131242, 'LM-Test p-value': 0.781014853236178
    1, 'F-Statistic': 0.752008494381279, 'F-Test p-value': 0.786721480158065
    9}
```

There p-value is higher than 0.05. Therefore we cannot reject null hypothesis. Thus, we can say from test that there is no serial correlation. Also evident from plot.

```
In [132]: import seaborn as sns
sns.pairplot(health_data_without_influential2[['age','bmi','is_smoker']])
```

Out[132]: <seaborn.axisgrid.PairGrid at 0x1c24e70e10>


```
In [133]:
          #Multicollinearity
          health data_new2=health_data_without_influential2[['age','bmi','is_smoker']
          cm = health_data_new2.corr().round(2)
          print(cm)
          #doesnt seem to be correlated.
                            bmi is smoker
                      age
          age
                     1.00
                           0.12
                                      -0.05
          bmi
                     0.12 1.00
                                       0.05
                                       1.00
          is_smoker -0.05
                           0.05
In [135]:
          from patsy import dmatrices
          y, X = dmatrices('charges~age+bmi+is_smoker', health_data_without_influenti
In [137]:
          #VIF
          from statsmodels.stats.outliers influence import variance inflation factor
          vif = pd.DataFrame()
          vif["VIF Factor"] = [variance inflation factor(health data new2.values, i)
          vif["features"] = health_data_new2.columns
          print(vif)
             VIF Factor
                          features
          0
               7.919438
                               age
          1
               8.187069
                               bmi
               1.177900 is_smoker
In [138]: # Therefore age and BMI may have multicollinearity problem.
          \# But looking at the graph, the problem is not serious. Therefore can be ig
```

7. Therefore, the final model is:

```
y=-8150.40862706 + 260.8424167age + 173.22681875bmi + 25693.623308
26*is_smoker
```

```
In [ ]:
```