Advanced Techniques for Combinatorial Algorithms: Fixed-Parameter Algorithms

Gianluca Della Vedova

Univ. Milano-Bicocca https://gianluca.dellavedova.org

May 4, 2020

Fixed-Parameter

- An NP-hard problem does not go away
- Vertex cover
- Clique
- Independent set
- Dominating set
- Hamiltonian cycle

Vertex Cover

Instance

Undirected graph $G = \langle V, E \rangle$, integer k.

Question

Find a set $C \subset V$ such that for each edge $e \in E$ at least one endpoint of e belongs to C, and $|C| \leq k$

Clique

Instance

Undirected graph $G = \langle V, E \rangle$, integer k.

Question

Find a set $C \subset V$ such that all pairs of vertices in C are connected by an edge, and $|C| \geq k$

Independent Set

Instance

Undirected graph $G = \langle V, E \rangle$, integer k.

Question

Find a set $I \subset V$ such that no two vertices in K are connected by an edge, and $|K| \geq k$

Dominating Set

Instance

Undirected graph $G = \langle V, E \rangle$, integer k.

Question

Find a set $D \subset V$ such that for each vertex $v \notin D$, v is adjacent to some $d \in D$, and $|D| \leq k$

(a)

Hamiltonian cycle

Instance

Undirected graph $G = \langle V, E \rangle$.

Question

Find a cycle C that visits each vertex $v \in V$ exactly once.

Longest Path

Instance

Undirected graph $G = \langle V, E \rangle$, integer k.

Question

Find a simple (no vertex is visited twice) path P of G, with P consisting of k vertices.

Fixed Parameter Tractable (FPT)

FPT

Parameterized problem: pair (I, k). The problem is in FPT if there is an algorithm with time $f(k)n^{\alpha}$, with α a constant and f a function

Typical times

- $O(1.1^k)n$
- $O(2^k)n^3$
- $O(2^k + n^3)$
- $O(k^k)n^3$
- $O(2^{2^{2^{\dots^2}}})n^3$

Bounded Search Tree

The search tree has $O(f(k))n^{\alpha}$ nodes

Vertex Cover

Let $(u, v) \in E$. Then $u \in C$ or $v \in C$

- How is the search tree?
- \circ 2^k n time

Smaller Search Tree

Proposition

Let v be a node, let N(v) be its neighbors. Then $v \in C$ or $N(v) \subseteq C$

Proposition

No node has at least three neighbors. Then G consists of vertex-disjoint cycles or paths, and its smallest cover is trivial

Corollary

Consider only vertices ν with $|N(\nu)| > 3$

Smaller Search Tree

Two cases

- $v \in C$, then recurse on G v and height k 1
- \bigcirc $v \notin C$, then recurse on G N(v) and height at most k 3
- ① Number of nodes f(k) = f(k-1) + f(k-3) + 1
- 2 $f(k) \leq 5^{\frac{k}{4}} < 1.5^k$

Independent Set on Planar Graphs

Euler formula

Let G be a planar graph. Then G has at most 3n-6 edges.

Corollary

Let G be a planar graph. Then there exists a vertex v of G with at most 5 incident edges.

Independent Set on Planar Graphs

Algorithm 1: Finds an independent set of size k, if it exists

```
1 v \leftarrow a minimum degree vertex of G foreach x \in \{v\} \cap N(v) do

2 | Add x to I;

3 | G_1 \leftarrow a copy of G where x and the edges incident on it are removed;

4 | if G_1 is not empty then

5 | recurse on (G_1, k, I);

6 | else

7 | if |I| \ge k then

8 | return I;
```

Reduction to a Kernel

Main idea

- Fix or exclude portions of the solution, so that the remaining part is small.
- Then be naive on what remains.

Rule example

- \bigcirc Let v be a vertex with exactly one neighbor w.
- Remove v
- Put w in the cover.

Problem

No such vertex $v \Rightarrow$ nothing is removed

Reduction to a Kernel

- **1** Find all vertices L with degree $\geq k$. If |L| > k, then no cover of size k. Let $k_1 = k |L|$
- ② $G_1 = G L$. If G_1 has more than $k_1(k+1)$ vertices, then no cover of size k.
- $ext{ } ext{ } ext$
- \bigcirc Improve to $O(n+2^kk^2)$

Independent Set on Planar Graphs

4 color theorem

Let G be a planar graph. Then there is a coloring of the vertices of G that uses at most 4 colors and such that no two adjacent vertices are the same color.

Corollaries

- The set of vertices that are the same color is an independent set
- ullet The largest such set has at least 1/4 of all vertices

Question

Is this kernel useful?

Independent Set on Planar Graphs

4 color theorem

Let G be a planar graph. Then there is a coloring of the vertices of G that uses at most 4 colors and such that no two adjacent vertices are the same color.

Corollaries

- The set of vertices that are the same color is an independent set
- \odot The set of all vertices is a kernel with 4k elements

Question

Is this kernel useful? No, $4k > n \Rightarrow 2^{[4k]} > 2^n$

Color Coding

Colorful Path

- Color each vertex with k colors
- Colorful path: each vertex has a distinct color

Random coloring

Probability that a path is colorful: $\frac{k!}{kk} \geq e^{-k}$

Dynamic programming

- Given a coloring, find a colorful path (if it exists)
- Keep only the colors
- Time $(2^{O(k)}|E|)$

Giantuca Della Vedova

Color Coding

Dynamic programming

i colors from v to w: i-1 colors from v to z and the color from z to w

Time complexity

- At time i, there are $\binom{k}{i}$ sets
- $O(\sum_{i=1}^k i\binom{k}{i}) = O(k2^k)$

Derandomize

- k-perfect family H of hash functions $h:[1:n]\mapsto [1:k]$ is such that for each $S\subset [1:n]$ with |S|=k, there exists h that is 1-to-1 on S
- Compute in linear time a k-perfect family H of $2^{O(k)} \log n$ functions

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 s_1, \ldots, s_m : strings of length n. Integer k

Problem

Find a string $t = t[1] \cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Input

 (s_1, \ldots, s_m) : strings of length n. Integer k

Problem

Find a string $t=t[1]\cdots t[n]$ such that t has Hamming distance at most k with each s_i

Hint

Super-Sub sequence

Longest Subsequence

 s_1, \ldots, s_m : strings of length n. Does it exist $t = t[1] \cdots t[k]$ such that for each s_i , $s_i = w_0 t [1] w_1 \cdots t [k] w_k$, for some (possibly empty) strings w_i ?

Shortest Supersequence

 s_1, \ldots, s_m : strings of length n. Does it exist $t = t[1] \cdots t[k]$ such that for each s_i , $t_i = w_0 s_i [1] w_1 \cdots s_i [n] w_k$, for some (possibly empty) strings w_i ?

Which problem is easier?

Attribution

- Vertex Cover figure: By Miym Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6017739
- Clique figure: Public Domain, https://commons.wikimedia.org/w/index.php?curid=1072101
- Dominating Set figure: By Miym Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6821042