Olimpiada de Matematică

Etapa județeană și a Municipiului București 11 Martie 2006

CLASA A X-A – SOLUŢII şi BAREM ORIENTATIV

Problema 1. Se consideră numerele reale $a, b, c \in (0, 1)$ și $x, y, z \in$ $(0,\infty)$, astfel încât

$$a^x = bc$$
, $b^y = ca$, $c^z = ab$.

Să se arate că

$$\frac{1}{2+x} + \frac{1}{2+y} + \frac{1}{2+z} \le \frac{3}{4}.$$

Inegalitatea devine

$$\sum \frac{1}{2 + \frac{B+C}{A}} \le \frac{3}{4},$$

sau cu notația S = A + B + C

$$\sum \frac{A}{S+A} \le \frac{3}{4} \quad \dots \quad 3 \text{ puncte}$$

Aceasta este echivalentă cu

$$-\sum \frac{A}{S+A} \ge -\frac{3}{4} \text{ sau } \sum \left(1 - \frac{A}{S+A}\right) \ge \frac{9}{4},$$

ceea ce poate fi scris

$$4S\sum \frac{1}{S+A} \ge 9,$$

inegalitate imediat demonstrabilă......3 puncte

Problema 2. Considerăm triunghiul ABC și punctele $M \in (BC)$, $N \in (CA), P \in (AB)$ astfel încât $\frac{AP}{PB} = \frac{BM}{MC} = \frac{CN}{NA}$. Să se arate că dacă triunghiul MNP este echilateral, atunci triunghiul ABC este echilateral

Soluție. Notăm
$$\lambda=\frac{AP}{AB}=\frac{BM}{BC}=\frac{CN}{CA}.$$
 Considerăm un reper ortonormat cu originea în M astfel încât

afixul punctului Neste 1 și afixul lui Peste $\epsilon = \cos\frac{\pi}{3} + \mathrm{i}\sin\frac{\pi}{3}$

Dacă a, b, c sunt afixele punctelor A, B, C atunci

$$\epsilon = (1 - \lambda)a + \lambda b, 0 = (1 - \lambda)b + \lambda c, \text{ si } 1 = (1 - \lambda)c + \lambda a, \dots 2 \text{ puncte}$$

Problema 3. Spunem că o prismă este binară dacă există o etichetare a vârfurilor sale cu numere din mulțimea $\{-1, +1\}$, astfel încât produsul numerelor atribuite vârfurilor oricărei fețe (bază sau față laterală) este -1.

- a) Să se arate că orice prismă binară are numărul vârfurilor divizibil cu 8.
 - b) Să se arate că orice prismă cu 2000 de vârfuri este binară.

Soluție. a) Să presupunem că poligonul bază are n vârfuri. Cum produsul numerelor de pe fiecare față este -1, rezultă că produsul numerelor de pe toate fețele laterale este $(-1)^n$, și în același timp 1, deoarece fiecare număr apare la pătrat. Rezultă $n = 2p \dots 2$ puncte

Apoi, dacă n = 4k + 2, luând fețele din 2 în 2, produsul pe fiecare față este -1, deci produsul total este $(-1)^{2k+1} = -1$. Acesta este egal cu produsul tuturor numerelor, deci cu produsul celor două baze, adică 1, fals. Rezultă n = 4k și atunci numărul de vârfuri este 8k.

b) Alegem -1 pentru vârfurile $A_1, A_3, A_5, \ldots, A_{997}$ și +1 pentru restul vârfurilor de pe bază. Pe baza superioară alegem 1 pentru toate vârfurile, cu excepția lui A_{999} unde punem -1......3 puncte

Problema 4. a) Să se găsească două mulțimi X, Y astfel încât $X \cap Y = \emptyset$, $X \cup Y = \mathbb{Q}_+^*$ si $Y = \{a \cdot b \mid a, b \in X\}$.

b) Să se găsească două mulțimi U, V astfel încât $U \cap V = \emptyset, U \cup V = \emptyset$ \mathbb{R} si $V = \{x + y \mid x, y \in U\}.$

Soluție. a) Alegem X ca fiind mulțimea produselor de tipul $p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$, unde p_1,p_2,\ldots,p_k sunt numere prime distincte, α_i sunt întregi și $\sum_{i=1}^n \alpha_i$ este impară. Punem $Y=\mathbb{Q}_+^*\setminus X.\ldots 2$ puncte Verificarea proprietății $Y=\{a\cdot b\mid a,b\in X\}$ este imediată.....1

punct

b) Alegem

$$U = \bigcup_{k \in \mathbb{Z}} [3k+1, 3k+2)$$
 și $V = \mathbb{R} \setminus U$ 2 puncte