FYS1210 - Lab 5

Robin.A.T.Pedersen

Dawid Patryk Kuleczko

March 7, 2016

1 Formål

Oppgaven skal gi en innføring i digitale kretser.

Vi skal se hvordan digitale kretser er bygget opp av komponenter. Og hvordan egenskapene til disse bestemmer kretsens ytelse. Det er også en øvelse i bruk av oscilloskop og signalgenerator, med vekt på oscilloskopets *cursor*-funksjon.

Utgangspunktet er i en diode-transistor krets (DTL - diode transistor logikk). Vi ser på en NAND-krets og skal se på de logiske og elektriske egenskapene. Hva skjer når man legger til en Schottky-diode mellom collector og base på en switch-transistor?

Vi skal også undersøke egenskapene til en low-power-schottky NAND.

2 Oppgave 1

Kretsen vår er en NAND. Det er to input, A og B, og en output Y. Spenningen avgjør om signalet regnes som 1 eller 0.

Et potmeter gjør at vi kan justere spenningen på A. Input B er alltid 1, men en knapp setter den til 0. En lysdiode, aktivert av strap S2, indikerer om output er 1 eller 0.

2.1 Potmeter

Hvor går spenningsgrensen mellom 1 og 0 i logikken? Hvis B alltid er på, og lampa av når begge er på, skrur vi A opp til lampa er av. Da kom vi opp til 1.1 volt. Det betyr at grense mellom 1 og 0 (i port-logikken) er ca 1.1V.

2.2 Oppg 1

Prøv forskjellige kombinasjonene av A og B og verifiser funksjonstabellen.

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

Strap S2 er på så vi kan observere om output er 1 eller 0. Deretter vrir vi potmeteret for å justere A mellom 0 og 5 volt.

- Vi skrur A=0 og trykker ned B=0. Dioden lyser! Akkurat som forventet.
- $\bullet\,$ Fortsatt er A=0 og slipper opp B=1. Dioden lyser! Akkurat som forventet.
- Vrir opp A=1 og trykker ned B=0. Dioden lyser! Akkurat som forventet.
- Fortsatt er A=1 og slipper opp B=1. Det kommer en tid i enhver diodes liv hvor lyset tar slutt.

3 Oppgave 2

Vi fjerner strap S2.

3.1 Oppg 2a

La B være 'høy' - (ikke trykk på knappen) Ved hvilken spenning på A skifter utgangen tilstand til lav? Forklar hvorfor.

Vi måler utgangsspenningen mens vi justerer spenningen over A fra 5V og nedover. Utgangsspenningen holder seg på ca 21 mV lenge til den såvidt begynner å stige. Den stiger svakt i mV skala til den plutselig hopper opp til 1V. Der er spenningen over A 1.1V.

Forklaring

For at det skal gå strøm gjennom transistoren må strømmen gjennom D3, D4 og BE, tilsammen må spenningen være 0.6 + 0.6 + 0.6 = 1.8. Vi måtte spille A til 1.1V som sammen med dioden er 1.1 + 0.6 = 1.7. Fordi diodene ikke er perfekte vil det gå strøm litt før ideelt sett, altså er 1.7 nok til å få strøm i kretsen.

3.2 Oppg 2b

Tegn opp sammenhengen mellom spenningen over A og Vut. Pass på å få med med noen ekstra verdier rundt overgangen fra 'høy' til 'lav'.

4 Oppgave 3

 $\rm P\mathring{a}$ de neste oppgavene bruker vi
 funksjonsgeneratoren TG550 som signalkilde. Vi stiller inn funksjonsgeneratoren og oscilloskopet slik det er beskrevet i oppgaven.

Figure 1: Sammenheng mellom spenning over A og spenning ut.

```
A = [5 4 3 2 1.5 1.25 1.20 1.15 1.10 1 0.5 0];

Vut = [21.0E-3 21.0E-3 21.0E-3 21.0E-3 21.3E-3 42.5E-3

61.0E-3 113.5E-3 3.28 5.06 5.09 5.09];

plot(A, Vut);

xlabel('A');

ylabel('Vut');

savefig('2b.png');
```

Figure 2: Koden tilhørende plot.

4.1 Oppg 3

A settes til 5 volt. Inngangssignalet til B er en sinusspenning med frekvens 1 kHz og vi varier signalamplituden (Vpp) fra 2 til 6 Vpp. Vi sammenligner inngangssignal og utgangssignal.

For input Vpp fra 2V og oppover får vi utslag i output signalet. Der hvor input signalet er over 2V får vi en negativ puls på output.

