Segmentation d'image par marches aléatoires

Problème

La **segmentation d'image** est un problème de vision par ordinateur qui consiste à **partitionner** une image donnée en différentes régions selon des **critères** prédéfinis.

On s'intéresse ici au cas où **certains pixels sont étiquetés**, on cherche alors à attribuer une étiquette aux autres pixels. On supposera de plus que les **objets** sont **homogènes** et **tous** étiquetés.

Solution

On va faire des **marches aléatoires** partant de chacun des pixels, et on retient l'étiquette du pixel sur lequel on retombe le plus souvent en premier.

Graphe

$$\begin{split} V &= \llbracket 0, H - 1 \rrbracket \times \llbracket 0, L - 1 \rrbracket \\ E &= \{ \left. \{ v_i, v_j \} \subseteq V \mid \|v_i - v_j\| = 1 \right. \} \\ \forall i, j \in V, \begin{cases} \omega_{ij} \in \mathbb{R}_+^* & \text{si } e_{ij} \in E \quad (\text{p.ex. } e^{-\beta \|p_i - p_j\|^2}) \\ \omega_{ij} &= 0 \quad \text{sinon} \end{cases} \end{split}$$

Marches aléatoires

$$orall i \in V, \quad d_i = \sum_{e_{ij} \in E} \omega_{ij}$$
 $orall (i,j) \in V^2, \quad p(i \to j) = rac{\omega_{ij}}{d_i}$

Marches aléatoires

 $x_i^s = \mathbb{P}($ "la marche aléatoire partant de i arrive en premier en S")

Alors

$$\forall i \in V_{NE}, \forall s \in S, \quad x_i^s = \frac{\sum\limits_{e_{ij} \in E} \omega_{ij} x_j^s}{d_i}$$

On cherche x avec comme conditions aux bords

$$\forall i \in V_E, \forall s \in S, \quad x_i^s = \begin{cases} 1 & \text{si } i \text{ est \'etiquet\'e par } s \\ 0 & \text{sinon} \end{cases}$$

Algorithme: Automate cellulaire

```
entrée: graphe, nombre n d'itérations
sortie: probabilités
x \leftarrow répartition approximative avec
 conditions aux bords:
pour k de 1 à n faire
    pour chaque i dans V_{NE} faire
        pour chaque s dans S faire
        fin
    fin
    x \leftarrow x;
fin
renvoie x;
```


Proposition

Les valeurs prises par une fonction harmonique sont entre les extrema des conditions aux bords.

Corollaire

Les fonctions harmoniques sont uniques pour des conditions aux bords fixées.

Preuve:

Soit x_i^s un maximum sur V_{NE} .

Si i est dans l'intérieur de V_{NE} , $x_i^s = \frac{\sum_{e_{ij}} \omega_{ij} x_j^s}{d_i}$ avec les j dans V_{NE} donc $x_i^s = x_i^s$.

On se ramène donc au cas où i est sur les bords de V_{NE} ,

 $x_{i}^{s} = \frac{\sum_{e_{ij}} \omega_{ij} x_{j}^{s}}{d_{i}} + \frac{\sum_{e_{ik}} \omega_{ik} x_{k}^{s}}{d_{i}} \text{ avec les } j \text{ dans } V_{NE} \text{ et les } k \text{ dans } V_{E}.$

Alors if y a un k tel que $x_k^s >= x_i^s$.

Idem si x_i^s est un minimum.

Preuve du Corollaire :

Soit x et y deux fonctions harmoniques avec mêmes conditions aux bords. Alors la fonction (x-y) est aussi harmonique avec 0 comme condition aux bords, donc x=y.

$$L_{ij} = \begin{cases} d_i & \text{si } i = j \\ -\omega_{ij} & \text{sinon} \end{cases}$$

Proposition

La solution x au problème est la fonction qui minimise txLx .

$$^{t}xLx = \sum_{i \in V} x_{i}(x_{i}d_{i} - \sum_{j \in V} \omega_{ij}x_{j}) = \sum_{e_{ij} \in E} \omega_{ij}(x_{i} - x_{j})^{2}$$

Donc txLx est convexe et ${}^txLx \xrightarrow[x \to \infty]{} \infty$ donc pour toutes conditions aux bords il existe un minimum atteint pour x. Soit $i \in V_{NE}$, on isole le terme

$$\sum_{e_{ij} \in E} \omega_{ij} (x_i - x_j)$$

$$= ||X_j - x_i \mathbb{1}||^2 \quad \text{avec} < a, b > = \sum_{e_{ij} \in E} \omega_{ij} a_i b_j$$

$$= ||X_j||^2 - 2x_i < X_j, \mathbb{1} > +x_i^2 ||\mathbb{1}||^2$$

La somme est minimale donc

$$x_i = \frac{\sum_{e_{ij} \in E} \omega_{ij} x_j}{d_i}$$

$$L = \begin{bmatrix} L_E & B \\ {}^tB & L_{NE} \end{bmatrix}, \quad x = \begin{bmatrix} x_E \\ x_{NE} \end{bmatrix}$$
$$(Lx)_i = x_i d_i - \sum_{e_{ij} \in E} \omega_{ij} x_j$$

Donc

$$Lx = \begin{bmatrix} ? \\ 0 \end{bmatrix}$$

Donc

$$L_{NE} x_{NE} = -^{t} B x_{E}$$

 \implies Résolution de (|S|-1) sytèmes linéaires creux de grande taille (5 coefficients non nuls par ligne/colonne dans L), le dernier s'obtenant à partir des autres, $x_i^{|S|} = 1 - \sum_{s=1}^{|S|-1} x_i^s$.

Exemples

Exemples

