Protokol IP verze 6

- Motivace pro implementaci IPv6
- Charakteristika IPv6
- •Formát paketu IPv6
- Aktuální stav penetrace IPv6

Adresní prostor

- V polovině 90. let → obrovský rozvoj Internetu
 - začalo se rýsovat několik problémů a nových vlastností
 - Nejvýznamnějším problémem v pol. 90. let
 - byl krátící se adresní prostor
 - stav v IP verze 4
 - Pv4 ⇒ teoreticky 4 miliardy adres
 - ve třech třídách

- Ve skutečnosti mnohem méně
 - souvisí se způsobem distribuce IP adres

Distribuce IP adres

Internet Assigned Numbers Authority

- Zásada :
 - žádná IP adresa nesmí být přidělena dvakrát
 - dnes již existují výjimky
- Řešení:
 - bude existovat centrální autorita, která je bude přidělovat
 - původně bylo touto autoritou středisko SRI NIC (při Univ. of Stanford v USA)
 - každý zájemce z celého světa žádal přímo SRI NIC, ta přidělovala adresy přímo
 - časem se to stalo organizačně neúnosné

- Další vývojové stádium:
 - centrální autoritou se stala organizace IANA ————
 - IANA přidělovala celé bloky IP adres regionálním "přidělovatelům"
 - RIPE (Evropa)
 - APNIC (Asie a Pacific)
 - ARIN, v USA (Internic do r. 98)

Problém s (původními) IP adresami

Internet Architecture Board

- Úbytek IP adres byl velký
 - původně se nepočítalo s tak velkým zájmem
 - přidělování po celých třídách (A, B a C) bylo ve většině případů plýtváním
 - řešilo se přidělováním více "menších" adres, například místo 1 síťové adresy B se přidělilo více adres C
 - adresy třídy A se prakticky přestaly přidělovat

začalo hrozit vyčerpání 32-bitového prostoru všech IP adres!!!!

problémem byla malá
"granularita" tříd IP adres
(nebylo možné se jemněji přizpůsobit

skutečné velikosti sítě)

- → IAB začala zvonit na poplach
 - založila v IETF*1 celou oblast skupin věnovanou řešení tohoto problému
 - vypsala se výzva k předkládání řešení
 - začalo se měřit, jak dlouho adresy ještě vydrží ...

*1 IETF Internet Engineering Task Force komise pro "techniky" Internetu

Doba kamenná

- V dobách "třídní adresace" značně neefektivní rozdělování
 - dodnes pozůstatek z doby "divokého Internetu"
 - § 3.0.0.0/8 General Electric Company
 - 9.0.0.0/8 IBM
 - 12.0.0.0/8 AT&T Bell Laboratories
 - 13.0.0.0/8 Xerox Corporation
 - 15.0.0.0/8 Hewlett-Packard Company
 - 16.0.0.0/8 Digital Equipment Corporation
 - 17.0.0.0/8 Apple Computer Inc.
 - 19.0.0.0/8 Ford Motor Company
 - 32.0.0.0/8 AT&T Global Network Services
 - @
 - takže dnes máme "několik bloků adres RIPE, mezi nimi Ford....

Jaké je možné řešení?

- Princip řešení:
 - malou "granularitu" tříd IP adres by bylo možné řešit posunem hranice (bitové pozice) mezi síťovou částí a relativní adresou uzlu
- Problém:
 - původní mechanismy práce s IP adresami na to obecně nebyly připraveny

- nutnost použití masky:
 - u tříd je hranice (bitová pozice) určena nejvyššími bity
 - jemnější nastavení hranice musí být určeno jiným způsobem – pomocí tzv. masky

Princip podsítí

- Idea dělení na podsítě (subnettingu):
 - hranice (bitová pozice) se posune směrem k nižším bitům
 - tj. adresy uzlů se rozdělí na několik skupin
 - velikosti mocniny 2, aby to byl posun o celé bitové pozice
 - použijí se masky
 - vše se udělá někde "izolovaně" (v rámci jedné soustavy dílčích sítí)
 - a informace o tomto rozdělení není šířena "do světa,,

Smysl dělení na podsítě

- Jde o možnost využít 1 síťovou adresu (třídy A, B či C) pro více sítí
 - jinak by to musely být samostatné síťové adresy
 - příklad:
 - díky subnettingu 4 malé sítě po 20 uzlech vystačí dohromady s 1xC (256 individuálních adres)
 - bez subnettingu by spotřebovaly 4xC (4x256, tj. 1024 individuálních IP adres)

- Lze ale využít jen tam, kde soustava sítí má jeden vstupní bod
 - neboť informace o rozdělení (pomocí masky) není šířena "do světa"
 - a kdyby bylo více vstupních bodů, nevědělo by se který z nich vybrat
- Není to problémem tam, kde má soustava sítí stromovitou strukturu
 - subnetting lze použít v podstromu

Problém s IP adresami II.

- Subnetting hodně pomohl
 - byl okamžitým řešením, které šlo použít "lokálně"
 - zpomalil úbytek IP adres, ale neřešil jej z principu

- Principiální řešení:
 - nové (větší) IP adresy
 - ale "klasické" 32 bitové adresy jsou natolik zakořeněné hlavně v protokolu IP, že je nutné udělat novou verzi tohoto protokolu
 - začalo se pracovat na protokolu příští generace

- Vedle subnettingu se prosadila i další "dočasná" řešení
 - která neřeší podstatu problému, ale zmírňují jeho dopady
 - neveřejné (privátní) IP adresy
 - umožňují vícenásobné použití IP adres
 - CIDR (supersítě)
 - Classless InterDomain Routing
 - MAT
 - Network Address Translation

podařilo se výrazně zpomalit úbytek IP adres, naléhavost principiálního řešení klesla

Neveřejné IP adresy

- Co brání vícenásobnému použití IP adres?
 - to, že by směrovací algoritmy nevěděly, kam doručovat IP pakety
- Idea: tam, kde nebude existovat přímá komunikace (nutnost směrovat) by se adresy mohly opakovat
 - tato situace nastává v sítích bez přímé IP konektivity ("privátních sítích"), které jsou odděleny od "ostatního světa" vhodnou bránou (firewallem)

Privátní IP adresy (RFC1918, dříve RFC1597)

- Podmínka fungování:
 - na hranicích privátních sítí je třeba zastavit šíření směrovacích informací
 - "ohlašujících" existenci uzlů uvnitř privátních sítí
- Důsledek:
 - v privátních sítích lze použít v zásadě libovolné IP adresy
 - uvnitř jedné privátní sítě musí být jednoznačně
 - v různých privátních sítích mohou být použity stejné IP adresy

- Doporučení:
 - nepoužívat úplně libovolné IP adresy, ale takové, které byly k tomuto účelu vyhrazeny (RFC 1918)
 - jsou to adresy:
 - 1síťová adresa třídy A:
 10.0.0.0 10.255.255.255
 - 16 adres třídy B:
 - 172.16.0.0 172.31.255.255
 - 256 adres třídy C
 - 192.168.0.0 192.168.255.255

je vhodné používat i tam, kde síť není (nechce, nebude) připojena k Internetu

Privátní IP adresy

Proč je vhodné používat v privátních sítích vyhrazené ("privátní") IP adresy, a ne libovolné IP adresy?

Mechanismus CIDR - supersítě Classless InterDomain Routing (RFC 1517 - 1520)

- Řeší problém úbytku IP adres
 - umožňuje přidělovat koncovým sítím "přesně velké" skupiny IP adres
 - v zásadě to nahrazuje původní systém tříd A, B a C
- Řeší problém nárůstu směrovacích tabulek
 - dosud platilo: co 1 síťová adresa třídy A, B nebo C, to jedna položka ve směrovací tabulce
 - směrovací tabulka se prohledává při každém rozhodnutí o volbě směru
 - adresy se přidělují hierarchicky agregace směrování – méně záznamů ve ST
 - TŘÍDY byly v podstatě zrušeny

- Princip mechanismu CIDR
 - je v zásadě inverzní k subnettingu
 - také se tomu říká supernetting
 - předpokládá posun hranice (bitové pozice) mezi síťovou částí a adresou uzlu směrem "doleva" (k vyšším bitům)

Princip supersítí

- Dochází k tzv. agregaci
 - slučování "sousedních" síťových IP adres
 - vzniká 1 výsledná "agregovaná" adresa (adresa supernet-u)
- Síťová část je nyní označována jako "prefix"
 - a jeho velikost je vyjadřována v počtu bitů (síťové části)
- Adresy jsou dnes přidělovány zásadně jako tzv. CIDR bloky
 - např. 194.213.228/24 je CIDR blok odpovídající 1 dřívější síťové adrese C (má 24 bitů prefixu, zbývá 8 na adresu uzlu)

Problém směrovacích tabulek

- Dříve platilo:
 - přidělovaly se celé síťové adresy, a to systémem "kdo první přišel ..."
 - nebyl v tom žádný systém, kromě distribuce mezi regionální přidělovatele
 - pro každou síťovou adresu (A, B nebo C) musela být ve směrovacích tabulkách samostatná položka
 - směrovačům v páteřních částech Internetu začaly přetékat směrovací tabulky
 - RAM, CPU, latency...

IP adresy byly nezávislé na způsobu připojení!!

Agregace směrovacích informací

- CIDR bloky umožňují agregovat (slučovat) i směrovací informace
 - jakoby: slučovat dohromady i položky směrovacích tabulek
 - detailní směrovací informace nemusejí být zbytečně šířeny "do světa"
 - mohou zůstat lokalizovány tam, kde jsou zapotřebí, kde vznikají a kde se mění

pozor:

IP adresy se stávají závislými na způsobu připojení!!!!

Důsledky mechanismu CIDR

- Šetří se IP adresami
 - CIDR bloky ⇒ byl dále zpomalen úbytek adres
 - ale příčina problému nebyla odstraněna
- Šetří se směrovací tabulky
 - umožnilo to redukovat jejich objem, tím zrychlit směrování
 - ale nepostačuje, tabulky jsou již tak neúnosně velké
 - jsou nutná ještě jiná řešení, např. autonomní systémy (zavádí další stupeň agregace směrovacích informací)

při změně providera musí uživatelé změnit IP adresy svých uzlů!!!

- Musel se změnit způsob distribuce IP adres
 - "přidělovatelem" nyní musí být i jednotliví provideři

NAT – Network Address Translation (RFC 1631)

- NAT překládá (mění "za chodu") IP adresy
 - používá se na rozhraní mezi privátní sítí a veřejným Internetem
 - překládá lokální (privátní, vícenásobně použitelné) adresy na veřejné (unikátní) adresy
 - poskytuje zabezpečení
 - lokální adresy "nejsou vidět"
 - šetří IP adresy
 - pokud jen část lokálních uzlů potřebuje komunikovat s vnějším světem !!!!

Na chvíli klid

- Pomocí všech výše popsaných metod se podařilo problém vyčerpání adresního prostoru minimalizovat
 - ale pouze dočasně
 - když se objevila mobilní zařízení, začala se připojovat Čína a další státy, tak se problém vrátil
 Time Series of IANA to RIR Allocations

to silně pozdrželo nástup IPng

Aktuální předpověď civilizace se zhroutí: † 20.8.2011

Další problémy

- Navíc zvolená opatření silně porušují základní principy Internetu:
 - možnost přímé komunikace
 - zmenšující se adresní prostor ale nebyl jediným problémem...
- S rozvojem Internetu se objevily nové požadavky na přenosové služby
 - ► IP verze 4 neřeší (rozhodně ne elegantně) například tyto problémy:
 - již zmíněný nedostatek dres
 - nedostatečná podpora služeb se zaručenou kvalitou (QoS)
 - design neodpovídající vysokorychlostním sítím
 - bezpečnostní mechanismy nejsou obsaženy přímo v IP
 - nedostatečná podpora mobilních zařízení
 - neexistující automatická konfigurace
 - @
 - stále tedy intenzivně pokračoval vývoj nového protokolu

Geneze

- Původní protokol IP verze 4 (IPv4)
 - byl specifikován v r. 1980/81
- Specifikace nové verze IP se objevila:
 - až v roce 1995 (po 15 letech) ⇒ je vidět, že původní IP byl navržen velmi dobře
- Nový protokol je označován:
 - nejprve jako protokol příští generace IP next generation (IPng)
 - později se vžilo označení IPv6 (IP verze 5 exp. proudový protokol)
 - nový protokol byl vyvíjen s cílem postupně nahradit protokol IPv4
 - při násilném vnucení by byl uživateli odmítnut
 - podmínkou nového protokolu tedy byl co nejsnazší přechod na novou verzi

Geneze

- Vývoj na papíře předběhl reálné možnosti
 - téměř se opakoval katastrofální "model" vývoje ISO
- Základní dokument IPv6: RFC1883 z r. 1995, (revize až 2006)
 - autoři měli velké plány
 - ale v prvních letech reálná implementace značně pokulhávala
 - mnoho výrobců implementovalo jenom okleštěnou část IPv6
 - marketing my to máme, our device is IPv6 compatible
 - spousta věcí se dlouho vůbec neřešila
 - například deklarovaná podpora mobility, autentizace, bezpečnostních vlastností... prostě nebyla

→ frustrace uživatelů

- Nový "boom" rozbuška v Asii Asie zaspala IPv4
 - mezi lety 2004 2007 rozsáhlý "update"
 - přepracována podpora deklarovaných nových vlastností
 - postupná penetrace do zařízení a OS

Struktura paketu protokolu IPv6

- Struktura hlavičky byla volena s ohledem na:
 - zvětšení adresního prostoru
 - optimalizaci průchodu paketů směrovači
- Version IHL Service Type Total Length

 Identifikation Flags Fragment Offset

 Time to Live Protocol IP Header Checksum

 IP Source Adresse

 IP Destination Adresse

 Options Padding

- Původní hlavička protokolu IPv4
 - obsahovala značné množství informací
 - některé z těchto informací se používají jen málo
 - jiné se při průchodu směrovači nemění
- Základní myšlenkou IPv6 je přesunutí značné části těchto inf. do volitelné části
 - v hlavičce zůstaly pouze nejdůležitější údaje
- Jiné údaje byly zcela vypuštěny
 - např. kontrolní součet!

Struktura hlavičky IPv6

40B se může zdát hodně (u IPv4 je 40B IP+TCP) ale jen 32 B tvoří adresy

- Struktura hlavičky se skládá ze 40B záhlaví následovaného rozšířeními
 - pole Verze (4b) obsahuje 6 (u IPv4 4)
 - pole třída dat specifikuje naléhavost dat
 - jinak řečeno, která data budou zahazována v případě zahlcení sítě
 - 0 nespecifikovaná data
 - 1 provoz na pozadí (např. news)
 - 2 automatický provoz (např. mail)
 - 4 uživatelské velké přenosy (ftp. ...)
 - 6 interaktivní přenos (VNC, telnet...)
 - 7 management sítě (RIP, SNMP...)
 - 8 15 přenosy v reálném čase
 - multimediální data
 - realtime řízení technolog, procesů
 - data s vyšším číslem (≥8) mají vyšší prioritu

Struktura hlavičky IPv6

Vers Traffic Class Flow Label Payload Length Next Hop Limit

Source Address

Des tination Address

- Další položky tvoří:
 - délka dat (2B = 65535B), bez základní hlavičky
 - s použitím příznaku "ohromný datagram" v další hlavičce i více
 - typ další hlavičky
 - TCP, UDP, IPv4, rozšíření hlavičky IPv6
 - identifikace toku dat

nová myšlenka

- slouží ke dvěma účelům
 - snížení zátěže směrovačů
- datagramy jednoho toku dostanou shodný identifikátor
- směrovače pak řeší úlohu směrování pouze pro první datagram
- další datagramy odesílá stále do stejného rozhraní (max. 6s)
 - další možností je zajištění QoS
- směrovače se nakonfigurují tak, aby pro pakety s určitým FL upřednostňovaly jejich směrování
- směrovače pak neobsluhují datagramy jako sekvenční frontu ale vybírají pakety s
 vhodným FL

Porovnání hlavičky IPv4 a IPv6

- V hlavičce IPv6 zůstaly pouze nejdůležitější informace
 - zejména takové, které se uplatňují při průchodu paketu směrovači

- i přes přesun značné části dat do volitelných položek má IP hlavička:
 - 40B (z toho 32B zabírají jen adresy = 80%)

Rozšíření hlaviček (Next Headers)

- Na rozdíl od IPv4 důsledná koncepce
 - "Méně významné" informace jsou přesunuty do volitelných záhlaví

- Pole "Next Header"
 - ukazuje jaký typ hlavičky následuje (TCP, UDP, IPv4 nebo další IPv6)
 - v další hlavičce je za polem Next Header pole specifikující posunutí k další hlavičce
 - základní hlavička toto pole nemá, má vždy 40B
 - v dodatečných hlavičkách IPv6 se vyskytují méně často používané údaje

Dodatečné hlavičky IPv6

Např. využití u *RSVP* prot. rezervace kapacit po cestě

Patrně stejně "nestravitelné"

jako u IPv4

- Volby pro všechny
 - informace zajímavé pro každého po cestě (např. upozornění pro směrovače, že paket nese data, která by jej mohla zajímat)
- Explicitní směrování
 - datagram musí projít předepsanou cestou
- Fragmentace
 - při fragmentaci paketu nese informace nutné pro jeho složení do původní podoby
- Šifrování obsahu (ESP)
 - obsah datagramu je zašifrován, ESP hlavička nese odkaz na parametry pro dešifrování
- Autentizace (AH)
 - data pro ověření totožnosti odesilatele a původnosti obsahu
- Volby pro cíl
 - informace určené příjemci datagramu (např. domácí adresa mobilního uzlu)
- Mobilita
 - hlavička pro potřeby komunikace s mobilními zařízeními
 - v podstatě explicitní směrování →pevná IP (domácí) + mobilní IP (přesměrování)

Fragmentace paketů

- U IPv4 běžná věc
 - perfektně zvládnutá technologie
- Negativum
 - minimum paketů prochází přes směrovače fragmentovaných
 - v hlavičce zbytečně položky týkající se fragmentace
 - specifikace IPv6 doporučuj → LV alespoň 1280B
 - e Eth 1500B...
 - fragmentace bude u IPv6 ještě řidší jev než u IPv4
- Celá problematika fragmentace vyčleněna do samostatné hlavičky
 - navíc fragmentaci u IPv6 vždy pouze odesilatel

Šifrovací a autentizační hlavička

- → IPv6 nativně podporuje autentizaci a šifrování
 - autentizace je zajišťována vypočítáním CRC za pomocí MD-5 a šifrovacího 128bit. klíče → ten musí mít odesilatel i příjemce

pole IBP je ukazatel (index) do tabulky více předem dohodnutých klíčů

- bezpečnostní hlavička umožňuje data i šifrovat
 - jedná se o poslední hlavičku všechna následující data jsou šifrována

šifrovat mohou:

- odesilatel a příjemce
- 2. mezilehlé směrovače

Formát adresy

- Pro adresy zdroje a cíle je v IPv6 vyhrazeno
 - \sim 2 x 128b (2 x 16B) = 3.4 x 10^{38*}

Frustrace z "adresního kolapsu" musela být opravdu značná

Source Address

Destination Address

Payload Length

- Rozeznáváme tři typy adres
 - Unicast jednoznačná adresa síťového rozhraní
 - Anycast adresa skupiny síťových rozhraní
 - adresována je skupina uzlů, ale paket je doručen pouze jednomu (nejbližšímu z hlediska topologie)
 - typicky: hledám nejbližší přístupový bod
 - Multicast oběžník
 - adresována je skupina uzlů
 - paket je doručen všem
 - datagramy typu všeobecného oběžníku (Broadcat) v IPv6 neexistují
 - * někdo si dal práci a spočítal že na každý mm² povrchu Země připadá 667*10³⁸ adres
 - na každého člověka dnes připadá prostor 1.5*10¹⁹ dnešních internetů

Zápis adresy

na to si člověk jen tak nezvykne ⊖

- Používají se tři zápisy IP adresy:
 - plné vyjádření hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh
 - kde h je hexa číslice reprezentující 4 bity adresy
 - příklad: ABCE:3:89AD:134:FEDC:E4D1:34:4321 {vedoucí nuly se nemusí uvádět}
 - zkrácený zápis pomocí zdvojené dvojtečky
 - zdvojená dvojtečka se může v adrese vyskytnout pouze jednou
 - zdvojená dvojtečka nahrazuje libovolné množství čtveřic nul
 - příklad: adresu 12A1:0:0:0:5:15:500C:44 je možné zapsat: 12A1::5:15:500C:44
 - adresu 1234:0:0:0:0:0:14 je možné zapsat jako 1234::14
 - adresu 0:0:0:0:0:0:0:1 je možné zapsat jako ::1
 - kombinovaný zápis h---h:d.d.d.d sloužící zejména v heterogenních sítích
 - příklad: 1234::195.47.103.12
 - = adresa 1234:0:0:0:0:0:C32F:670C
- Adresy sítí se zapisují podobně jako v IPv4:
 - např.: 80:1::1/64

jenom je tam až 128 jedniček

Adresní prostor

- → Značný adresní prostor IPv6 (2¹²⁸ = 3,4 x 10³⁸) je rozdělen:
 - 0:0:0:0:0:0:0:0 nespecifikovaná adresa
 - nepřiřazuje se
 - pokud je použita, znamená to, že rozhraní ještě nebyla adresa přiřazena
 - ▶ 0:0:0:0:0:0:0:1 (::1) smyčka
 - loopback obdoba 127.0.0.1
- 0012/3 Unicast adresy
- 2001::/16 adresy přidělované Internet Registry poskytovatelům
 - 2001:0000::/29 2001:01F8::/29 IANA
 - 2001:0200::/29 2001:03F8::/29 APNIC (Asie)
 - 2001:0400::/29 2001:05F8::/29 ARIN (Amerika)
 - **2001:0600::/29 2001:07F8::/29 RIPE NCC (Evropa)**
 - 2002::/16 tunelování 6to4
 - 1111 1110 102/10 (např. FE80::) jednoznačné adresy v rámci LAN
 - 1111 1110 11₂/10 (např. FEC0::) jednoznačné adresy v rámci firmy
 - ▶ 3FFE::/16 experimentální síť 6Bone (přestala platit 6.6.2006)
 - FF/8 oběžníky (multicast)

Jednoznačné adresy

Rozdělení adres pro IPv6 se řídí následujícím schématem

- Položky
 - FP + TLA ID specifikuje účel použití adres
 - 2001:/16 adresy určené pro poskytování Internetu
 - SUB TLA rozdělení podle regionů
 - pro Evropu 2001:0600::/29 až 2001:07F8::/29
 - NLA ID přidělováno poskytovatelům ti rozdělují firmám
 - SLA ID firemní prostor
 - 2B = 65536 sítí po 2⁶⁴ uzlech
 - Jak ale jednoznačně určit zbylých 64 bitů adres uzlů?

Určení jednoznačných adres

- Jednoznačné určení identifikace rozhraní
 - je odvozeno od adresace IEEE 802.X MAC adresy
 - první tři B identifikují výrobce
 - další tři B jsou výrobcem zařízení přiděleny
 - MAC adresa je ale 6B
 - proto je nutná konverze

první vážná kritika: omezení práv a soukromí uživatelů – jednoduchá detekce kdo co kdy kde dělal...

- Příklad:
 - MAC = 00-A0-24-47-01-EC ⇒ IPv6 adresa = :02A0:24FF:FE47:01EC

Oběžníky

Oběžníky mají v prvním B samé jedničky – FF::

- Druhý B je rozdělen:
 - v druhé části jsou neseny dodatečné informace:
 - 1 oběžník v rámci lokálního uzlu
 - 2 oběžník v rámci LAN (II. vrstva)
 - 5 oběžník v rámci sítě
 - 8 oběžník v rámci firmy
 - E globální oběžník
 - Existují vyhrazené oběžníky, např.:
 - FFxx::1 oběžník pro všechny stanice (počítače i směrovače)
 - FFxx::2 oběžník pro všechny směrovače
 - FFxx::9 oběžník pro všechny směrovače provozující protokol RIPatd.
 - konkrétně FF02::2 je oběžník určený všem směrovačům na LAN...

ICMPv6

Na rozdíl od IPv4 několik ochran:

- regulace šířky pásma ICMPv6 ochrana před DoS
- autentizace ICMPv6 zpráv pouze důvěryhodné zdroje...
- Podobně, jako u IPv4 se o signalizaci chybových stavů stará:
 - Internet Control Message Protocol verze 6
 - protokol ICMPv6 ale řeší nové zcela odlišné funkce oproti ICMP
 - řeší například překlad IP adres na linkové adresy
 - o to se v IPv4 staraly protokoly ARP a RARP
 - z hlediska struktury se ICMPv6 jeví jako protokol vyšší vrstvy
 - ICMPv6 zprávy se dělí na dva typy
 - interval 0 127 chybové zprávy → smysl obdobný jako v ICMPv4
 - interval 128 255 informativní zprávy
 - příklad: získání HW adresy souseda
 - podobně je možné získat např.
 - adresu implicitní brány...

Autokonfigurace

zejména v případě WiFi a přestupu mezi sítěmi

- Jedna z vlastností, která dělá IPv6 atraktivní
 - Idea: zařízení se po připojení do sítě dokáže automaticky zkonfigurovat
 - v IPv4 je toto řešeno pomocí nadstavbových protokolu DHCP
 - nevýhodou je nutnost správy DHCP serverů
 - co když ale chceme jen propojit dvě zařízení? jak zařídit autokonfiguraci?
 - Funkce:
 - 1. zařízení samo vyhledá své sousedy
 - zařízení se po připojení do sítě dotáže pomocí multicastu na svou identitu a nechá si přidělit adresu od routeru
- Používají se dva mechanismy
 - Neighbor Discovery
 - ND je proces, při kterém zařízení objevuje na síti ostatní IPv6 zařízení
 - Router Discovery
 - proces objevování routerů a získávání informací od nich

Autokonfigurace

- Neighbor Discovery
 - myšlenka: zařízení samo najde své sousedy a zahájí s nimi komunikaci
 - používá ICMP pakety:
 - 135 neighbor solicitation message
 - 136 neighbor advertisement message

- Router Discovery
 - proces objevování routerů
 - e router může odpovědět na ICMPv6 typ 135
 - nebo se sám ohlásí sám
 - nebo odpoví na ICMPv6 typ 133 Router solicitation paket
 - e typicky je 133 odvysílán stanicemi po bootu

Router advertisement

Router advertisement packet definitions:

ICMPv6 Type = 134

Src = router link-local address

Dst = all-nodes multicast address

Data = options, prefix, lifetime, autoconfig flag

správně zkonfigurovaný router posílá Router advertisement zprávy do dané sítě periodicky, kde jsou také k dispozici ostatním routerům

Autokonfigurace

paket odvysílaný po bootu typ 133: "hledám router"

- Pokud zařízení posílající Router solicitaion paket má ručně nakonfigurovánu unicast adresu
 - použije jí a zdrojovou adresa je v tomto paketu

zřízení ještě není nakonfigurováno

- v opačném případě
 - se jedná o nespecifikovanou IPv6 adresa typu unicast, tedy 0:0:0:0:0:0:0:0
 - pokud router odpoví, je v Router advertisement paketu nová adresa
- Pomocí Router advertisement zpráv tedy
 - probíhá bezestavová konfigurace zařízení ve vnitřní síti
 - bezstavová znamená, že nikde neexistuje tabulka, která by k linkové adrese přiřazovala IPv6 adresu
 - toto řešení je výhodnou alternativou oproti protokolu DHCP v IPv4, který pracuje na transportní vrstvě a je stavový
 - to s sebou nese v případě velkým sítí velkou režii na správu.
- Nevýhodou autokonfigurace je absence informace o DNS serverch
 - ty si musí uživatel (při současném návrhu autokonf. protokolů) nastavit ručně

Testovací období (6Bone: *1996 - † 6.6.2006)

- Pro fungování IPv6 byla velice důležitá experimentální síť 6Bone *
 - síť začala jako virtuální s pomocí tunelování IPv6 nad IPv4
 - jejím hlavním účelem bylo testování standardů a implementací IPv6
 - síť byla dále zdokonalována a postupně přešla k nativní IPv6 síti
 - počítače zapojené do 6Bone měly na rozhraní IP 3ffe::/16

- Pro představu:
 - maximální "popularita" kolem r. 2003 asi 1000 sítí z 50 zemí

Současný stav

- Základní vývoj IPv6 dokončen
 - Revize základních dokumentů
 - Postupem času se ukázalo, že bez některých věcí to prostě nepůjde
 - dobrým příkladem je např. DHCPv6, DNSv6
- ▶ V podstatě již vyřešena i implementační část
 - velcí hráči na trhu již nemají problém (Cisco, Microsoft...)
- IPv6 již existuje zcela separátně a nezávisle na IPv4
 - páteřní síť
- Velký problém u lokálních ISP
 - zatím stále fáze "oťukávání"
 - nikomu se moc nechce "bourat" stávající fungující stav
 - nízký tlak "zespoda"
- První vážnější kritika
 - rozsáhlý adresní prostor plýtvání

Podpora IPv6 v zařízeních

- Implementace IPv6 v zařízeních se vyvíjela dosti živelně
 - často byla implementována pouze podmnožina
 - ▶ ozčarování uživatelů, zoufalá podpora
- Myšlenka:
 - u WiFi se velmi osvědčila WiFi aliance
 - na podobném principu vzniklo IPv6 fórum
 - testování kompatibility IPv6
 - 1. fáze základní kompatibilita
 - IPv6 addressing, ICMPv6, Neighbor Discovery, bezest. aut. konfigurace
 - 2. fáze včetně doporučených prvků
 - IPsec, mobilní IP, DHCPv6...

Podpora IPv6 v OS

- Moderní distribuce Linuxu již IPv6 plně podporují (částečně již od jádra 2.1.8)
 - ve většině případů není třeba ani nic nastavovat
 - informace lze získat po zadání příkazu ifconfig
 - dokonce dokáží fungovat i bez IPv4
- OS Win XP/2000/Vista implementují IPv6 jako samostatný na IPv4 nezávislý protokol
 - IPv6 je třeba nejprve nainstalovat příkazem ipv6 install
 - v OS Longhorn (Vista) je již možné přidat IPv6 za pomocí ovládacího panelu
 - po instalaci přibudou rozhraní příkaz ipv6 if
 - loopback
 - tunelování IPv6 přes IPv4
 - síťová karta (FE80::hhh...)
 - otestovat připojení je možné pomocí příkazů:
 - ping6, tracert6

Podpora IPv6 ve Windows

- Pro management mohou pomoci tyto příkazy:
 - ▶ ipv6 rc View the route cache
 - ipv6 nc View the neighbor cache
 - ipv6 if View interface information
 - ipv6 ifc Configure interface attributes
 - ▶ ipv6 rtu Add IPv6 route
 - ipv6 adu Configure IPv6 with manual addresses

Odkazy - literatura

- Literatura:
 - Strapa P.: "IPv6", CZ.NIC CESNET 2008, ISBN: 978-80-904248-0-7
 - dostupná zdarma ke stažení
- Zajímavé zdroje:
 - http://www.potaroo.net/tools/ipv4/index.html
 - automaticky generované statistiky využití adreního prostoru
 - http://www.potaroo.net/ispcolumn/2003-07-v4-address-lifetime/ale.html
 - automaticky generované statistiky využití adreního prostoru
 - www.ipv6.org
 - www.ipv6.cz
 - asi nejobsáhlejší "wiki" servery o IPv6

Konec přednášky

Děkuji vám za trpělivost