Assignment Project Exam Help

https://eduassistpro.github.io/
Add WeChat edu_assist_pro

Review

- We would like to have the capacity of disk at the speed of the processor: unfortunately this is not feasible
- So we create a memory nierarchy: Exam Help
 - each successively lo https://eduassistpro.githubeid/ data from next lower level
 - exploits <u>temporal locality</u>

 Add WeChat edu_assist_pro
 - do the common case fast, worry less about the exceptions (design principle of MIPS)
- Locality of reference is a Big Idea

Big Idea Review

- Mechanism for transparent movement of data among levels of a storage hierarchy
 - set of address/walue pindingsExam Help
 - address pro didates
 - compare dehttps://eduassistpro.github.io/
 - service hit or miss
 load new block and binding

address: index offset tag 00000000000000000 000000001

Index	Valid	Tag	0x0 - 0x3	0x4 - 0x7	0x8 - 0xb	Oxc - Oxf
0						
→ 1	1	0	а	b	С	d
2						
3						

slides adapted from Patterson's 61C

Outline

- Block Size Tradeoff
- Types of Cache Misses Assignment Project Exam Help
- Fully Associative Cac https://eduassistpro.github.io/
- N-Way Associative C
 Add WeChat edu_assist_pro
- Block Replacement Policy
- Multilevel Caches (if time)
- Cache write policy (if time)

Block Size Tradeoff (1/3)

- Benefits of Larger Block Size
 - Spatial Locality: if we access a given word, we're likely to access other nearby words soon (Another Big Idea)
 - Very applicable with https://eduassistpro.gethubfi@e execute a given instruction, it's likely that we'll execute assist pro assist pro
 - Works nicely in sequential array accesses too

Block Size Tradeoff (2/3)

- Drawbacks of Larger Block Size
 - Larger block size means larger miss penalty
 Assignment Project Exam Help
 on a miss, takes longer time to load a new block from next level
 - If block size is too bi https://eduassistpro.gjthubnithere are too few blocks Add WeChat edu_assist_pro
 - Result: miss rate goes up
- In general, minimize
 - Average Access Time
 - = Hit Time + Miss Penalty x Miss Rate

Block Size Tradeoff (3/3)

- Hit Time = time to find and retrieve data from current level cache
- Miss Penalty = avera data on a current level miss (includes the p https://eduassistpro.githubio/essive levels of memory hierarchy) Add WeChat edu_assist_pro
- Hit Rate = % of requests that are found in current level cache
- Miss Rate = 1 Hit Rate

Gill COMP 273

Block Size Tradeoff Conclusions

Types of Cache Misses (1/2)

- Compulsory Misses
 - occur when a program is first started
 Assignment Project Exam Help
 cache does not cont 's da
 - cache does not cont 's data yet, so misses are bound to occur https://eduassistpro.github.io/
 - can't be avoided easily appropriate edu_assists this course

Types of Cache Misses (2/2)

Conflict Misses

- miss that occurs because two distinct memory addresses map to the same cache location
- two blocks (which h https://eduassistpro.githebdoation) can keep overwriting each other Add WeChat edu_assist_pro
- big problem in direct-mapped caches
- how do we lessen the effect of these?

Dealing with Conflict Misses

Solution 1: Make the cache size bigger

relatively expensive

Assignment Project Exam Help

Solution 2: Multiple

it in the same Cache

Index?

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Fully Associative Cache (1/3)

- Memory address fields:
 - Tag: same as before
 - Assignment Project Exam Help

 Offset: same as befo

 - Index: non-existent https://eduassistpro.github.io/
- What does this mean MeChat edu_assist_pro
 - any block can go anywhere in the cache
 - must compare with all tags in entire cache to see if data is there

Fully Associative Cache (2/3)

Fully Associative Cache (e.g., 32 B block)

Fully Associative Cache (3/3)

- Benefit of Fully Assoc Cache
 - No Conflict Misses (since data can go anywhere)
 Assignment Project Exam Help
- Drawbacks of Fully
 - Need hardware com https://eduassistpro.github.io/
 le entry:
 - If we have a 64KB of chedin washed edu_assist, we heed 16K comparators: very expensive
- Small fully associative cache may be feasible

Third Type of Cache Miss

- Capacity Misses
 - miss that occurs because the cache has a limited size Assignment Project Exam Help
 - miss that would not
 e size of the cache
 - sketchy definition, s
 https://eduassistpro.github.io/
- This is the primary typedown its the primary typedown is the primary typedow

N-Way Set Associative Cache (1/4)

- Memory address fields:
 - Tag: same as before Assignment Project Exam Help

 - Offset: same as befo

 - Index: points us to t https://eduassistpro.githubeio/n this case)
- So what's the difference? We Chat edu_assist_pro
 - each set contains multiple blocks
 - once we've found correct set, must compare with all tags in that set to find our data

N-Way Set Associative Cache (2/4)

• Summary:

- cache is direct-mapped with respect to sets
 Assignment Project Exam Help
 each set is fully asso
- If we have T blocks t https://eduassistpro.githwe.igh T/N directmapped cache, where at expercinal edu_assist fully associative N block cache. Each has its own valid bit and data.

N-Way Set Associative Cache (3/4)

- Given memory address:
 - Find correct set using Index value.
 Assignment Project Exam Help
 Compare Tag with al ermine
 - ermined set.
 - If a match occurs, it' https://eduassistpro.github.io/
 - Finally, use the offset Aid We Chat edu_assist propined data within the desired block.

N-Way Set Associative Cache (4/4)

- What's so great about this?
 - even a 2-way set associative cache avoids a lot of conflict misses
 Assignment Project Exam Help
 hardware cost isn't t
 - omparators
- https://eduassistpro.github.io/ In fact, for a cache
 - it's Direct-Mapped if Add WaChat edu_assist_(ArBlock per set)
 - it's Fully Associative if it's M-way set associative (M blocks per set)
 - so these two are just special cases of the more general set associative design

Block Replacement Policy (1/2)

- N-Way Set Assoc (N a set, but block can occupy any position https://eduassistpro.githus.io/
- Fully Associative: blocked mesewedu_assist_any position (there is no index)
- Question: if we have the choice, where should we write an incoming block?

Block Replacement Policy (2/2)

- Solution!
- If there are any locations with valid bit off (empty), then usually write the heighbook Projecthering Holie.
- If all possible locatio https://eduassistpro.galidbilock, we must use a replacement policy by which ine which block gets "cached out" on a miss. WeChat edu_assist_pro

Block Replacement Policy: LRU

- LRU (Least Recently Used)
 - Idea: cache out block which has been accessed (read or write) least recently

 Assignment Project Exam Help
 - Pro: temporal localit https://eduassistpro.gitbliesibkely future use: in fact, this is a very effective policy that edu_assist_pro
 - Con: with 2-way set assoc, easy to keep track (one LRU bit); with 4-way or greater, requires complicated hardware and much time to keep track of this

Block Replacement Example

• We have a 2-way set associative cache with a four word *total* capacity and one word blocks. We perform the following word accesses (ignore byt exam Help:

0, 2, 0, 1, 4, 0, 2, https://eduassistpro.github.io/

How many hits and how Warpat edu_assigt there for the LRU block replacement policy?

Block Replacement Example: LRU loc 0 loc 1 • Addresses 0, 2, 0, 1, 4, 0, ... set 0 0: miss, bring into set 0 (loc 0) set 1 0 remainder 2 is 0, so set 0 set 0 Iru 2: miss, bring into set 0 (loc 1) set 1 2 remainder 2 is ⁰Assignment Project Exam Help dru set 0 https://eduassistpro.github.ig/t 1 dru 🤈 1: miss, bring hto set at edu_assist_proet 0 Iru set 1 1 remainder 2 is 1, so set 1 set 0 Iru 4: miss, bring into set 0 (loc 1, replace 2) lru set 1 4 remainder 2 is 0, so set 0 ıru__ set 0 0: hit Ilru set 1

Ways to reduce miss rate

- Larger cache
 - limited by cost and technology
 - hit time of first lever signmenty Project Exam Help
- More places in the ca https://eduassistpro.github.lb associativity Add WeChat edu_assist_pro
 - fully-associative
 - any block any line
 - k-way set associated
 - k places for each block
 - direct map: k=1

Big Idea

- How do we chose between options of associativity, block size, replacement policy?
- Design against a per Assignment Project Exam Help
 - Minimize: Average Ahttps://eduassistpro.github.io/
 - = Hit Time + Miss Panaltwx Miss edu_assist_pro
 influenced by technology and pro vior

Example

- Assume
 - Hit Time = 1 cycle Assignment Project Exam Help
 - Miss rate = 5%
 - Miss penalty = 20 cy https://eduassistpro.github.io/
- Average memory access the chat edu_assist_poro = 2 cycle

Improving Miss Penalty

When caches first became popular,
 Miss Penalty ~ 10 processor clock cycles

• Today: 1000 MHz Processor (1 ns per clock cycle) Aggregators togetors the part of the p

Solution: another cache between memory and the

processor cache: Second Level (L2) Cache

Analyzing Multi-level cache hierarchy

Add WeChat edu_assist_pro

Avg Mem Access Time = L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty = L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time = L1 Hit Time +
L1 Miss Rate * (L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

Typical Scale

- L1
 - size: tens of KB
 - hit time: complete in spieghard reverse Exam Help
 - miss rates: 1-5%
- L2 https://eduassistpro.github.io/
 - size: hundreds of KB Add WeChat edu_assist_pro
 - hit time: few clock cycles
 - miss rates: 10-20%
- L2 miss rate is fraction of L1 misses that also miss in L2
 - why so high?

Example: without L2 cache

- Assume
 - L1 Hit Time = 1 cycle
 Assignment Project Exam Help
 - -L1 Miss rate = 5%
 - L1 Miss Penalty = 10 https://eduassistpro.github.io/
- Average memory access the edu_assist_pgg
 = 6 cycles

Example with L2 cache

- Assume
 - L1 Hit Time = 1 cycle
 - L1 Miss rate = 5% Assignment Project Exam Help
 - L2 Hit Time = 5 cycles https://eduassistpro.github.io/
 - L2 Miss rate = 15% (%
 - L2 Miss Penalty = 100 AddsWeChat edu_assist_pro
- L1 miss penalty = 5 + 0.15 * 100 = 20
- Average memory access time = $1 + 0.05 \times 20$ = 2 cycle

3x faster with L2 cache

McGill COMP 273

32

What to do on a write hit?

- Write-through
 - update the word in cache block and corresponding word in memory Assignment Project Exam Help
- Write-back
 - update word in cach https://eduassistpro.github.io/

 - allow memory word to be "stale"
 add WeChat edu_assist_pro
 add 'dirty' bit to each line indicati updated when block is replaced
 - OS flushes cache before I/O !!!
- Performance trade-offs?

"And in conclusion..." (1/2)

- Caches are NOT mandatory:
 - Processor performs arithmetic
 - Memory stores data

 Assignment Project Exam Help
 - Caches simply make d https://eduassistpro.github.io/
- Each level of memory higher level
- Caches speed up due to temporal locality: store data used recently
- Block size > 1 word speeds up due to spatial locality: store words adjacent to the ones used recently

"And in conclusion..." (2/2)

- Cache design choices:
 - size of cache: speed v. capacity
 - direct-mapped v. Assignment Project Exam Help
 - for N-way set assoc: https://eduassistpro.github.io/
 - block replacement policy Add WeChat edu_assist_pro
 - 2nd level cache?
 - Write through v. write back?
- Use performance model to pick between choices, depending on programs, technology, budget, ...

A real example

And additional reading (for fun):

http://igoro.com/archive/gallery-of-processor-cache-effects/

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

```
average time loop 1 = 126858657.625
average time loop 2 = 71715726.125
ratio is 1.7689098957721807
but first loop does 32 times more work!!
Loop 1 gets work done 18 times faster!
```

```
A=[
                                       0 1 240591499
                                       1 2 134307003
                                       2 4 84736089
                                       3 8 74437939
                                       4 16 70215291
                                       5 32 73695400
                                       6 64 52077957
                                       7 128 19758427
                                       8 256 10488407
                                       9 512 6369311
                                       10 1024 3736937
                                       plot(A(:,1),A(:,3));
Assignment Project Example ("long time");
                                       xlabel('exponent of size');
       https://eduassistpro.github.io/cache block?
                                                  2<sup>4</sup> = 16 words = 64 bytes
       Add WeChat edu_assist_pro
                                   time
                                     0.5
                                             2
                                                     exponent of size
```


Review and More Information

• Sections 5.3 - 5.4 of textbook

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro