Algoritmo Genético Aplicado à Otimização do Planejamento de Torneios Esportivos

Paulo Henrique dos Santos¹ Marco Antonio M. Carvalho²

Departamento de Engenharia de Controle e Automação ²Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

07 de agosto de 2018

Outline

- 1 Mirrored Traveling Tournament Problem
- 2 Algoritmo Genético de Chaves Aleatórias Viciadas
- 3 Experimentos Computacionais
- 4 Conclusão

Introdução

Organizadores de torneios esportivos se preocupam em produzir um calendário de jogos que atenda diversos objetivos práticos e logísticos, eventualmente conflitantes.

Definição

No mTTP, é necessário definir os confrontos entre n equipes em um torneio do tipo $\it Mirrored Double Round Robin (MDRR)$.

Cada equipe deve enfrentar duas vezes cada uma das outras equipes: uma vez no primeiro turno e a segunda vez no segundo turno.

A sequência de adversários de cada equipe é a mesma em ambos os turnos, porém, as sede dos confrontos devem ser invertidas no segundo turno.

As distâncias entre as sedes das equipes são conhecidas e cada equipe começa o campeonato em sua respectiva cidade.

Definição

No mTTP, é necessário definir os confrontos entre n equipes em um torneio do tipo *Mirrored Double Round Robin* (MDRR).

Cada equipe deve enfrentar duas vezes cada uma das outras equipes: uma vez no primeiro turno e a segunda vez no segundo turno.

A sequência de adversários de cada equipe é a mesma em ambos os turnos porém, as sede dos confrontos devem ser invertidas no segundo turno.

As distâncias entre as sedes das equipes são conhecidas e cada equipe começa o campeonato em sua respectiva cidade.

Definição

No mTTP, é necessário definir os confrontos entre n equipes em um torneio do tipo *Mirrored Double Round Robin* (MDRR).

Cada equipe deve enfrentar duas vezes cada uma das outras equipes: uma vez no primeiro turno e a segunda vez no segundo turno.

A sequência de adversários de cada equipe é a mesma em ambos os turnos, porém, as sede dos confrontos devem ser invertidas no segundo turno.

As distâncias entre as sedes das equipes são conhecidas e cada equipe começa o campeonato em sua respectiva cidade.

Definição

No mTTP, é necessário definir os confrontos entre n equipes em um torneio do tipo *Mirrored Double Round Robin* (MDRR).

Cada equipe deve enfrentar duas vezes cada uma das outras equipes: uma vez no primeiro turno e a segunda vez no segundo turno.

A sequência de adversários de cada equipe é a mesma em ambos os turnos, porém, as sede dos confrontos devem ser invertidas no segundo turno.

As distâncias entre as sedes das equipes são conhecidas e cada equipe começa o campeonato em sua respectiva cidade.

Definição

No mTTP, é necessário definir os confrontos entre n equipes em um torneio do tipo *Mirrored Double Round Robin* (MDRR).

Cada equipe deve enfrentar duas vezes cada uma das outras equipes: uma vez no primeiro turno e a segunda vez no segundo turno.

A sequência de adversários de cada equipe é a mesma em ambos os turnos, porém, as sede dos confrontos devem ser invertidas no segundo turno.

As distâncias entre as sedes das equipes são conhecidas e cada equipe começa o campeonato em sua respectiva cidade.

Restrições

- Nenhuma equipe pode ter mais do que três confrontos em sequência como mandante ou como visitante;
- Não pode haver dois confrontos consecutivos entre duas equipes;
- $oldsymbol{\circ}$ Os confrontos em uma rodada R são exatamente os mesmos confrontos em uma rodada R+(n-1) para $R=1,2,3,\ldots,n-1$, com o local dos confrontos invertidos.

Objetivo

Minimizar a distância total viajada pelas equipes durante um torneio.

Motivação

- Aplicação prática;
- 2 Problema NP-Difícil no sentido forte

Restrições

- Nenhuma equipe pode ter mais do que três confrontos em sequência como mandante ou como visitante;
- ② Não pode haver dois confrontos consecutivos entre duas equipes;
- ullet Os confrontos em uma rodada R são exatamente os mesmos confrontos em uma rodada R+(n-1) para $R=1,2,3,\ldots,n-1$, com o local dos confrontos invertidos.

Objetivo

Minimizar a distância total viajada pelas equipes durante um torneio.

Motivação

- Aplicação prática;
- 2 Problema NP-Difícil no sentido forte

Restrições

- Nenhuma equipe pode ter mais do que três confrontos em sequência como mandante ou como visitante;
- ② Não pode haver dois confrontos consecutivos entre duas equipes;
- ullet Os confrontos em uma rodada R são exatamente os mesmos confrontos em uma rodada R+(n-1) para $R=1,2,3,\ldots,n-1$, com o local dos confrontos invertidos.

Objetivo

Minimizar a distância total viajada pelas equipes durante um torneio.

Motivação

- Aplicação prática;
- Problema NP-Difícil no sentido forte.

Entrada

Equipe	ATL	NYM	PHI	MON
ATL	0	745	665	929
NYM	745	0	80	337
PHI	665	80	0	380
MON	929	337	380	0

Solução

Primeiro Turno				Segundo Turno			
	Rodada 1	Rodada 2		Rodada 4			
ATL	PHI	NYM	MON		-NYM	-MON	
NYM	MON	-ATL		-MON	ATL		
PHI	-ATL	MON	NYM	ATL	-MON	-NYM	
MON	-NYM		-ATL	NYM		ATL	

Entrada

Equipe	ATL	NYM	PHI	MON
ATL	0	745	665	929
NYM	745	0	80	337
PHI	665	80	0	380
MON	929	337	380	0

Solução

	Primeiro Turno				Segundo Turno		
Equipe	Rodada 1	Rodada 2	Rodada 3	Rodada 4	Rodada 5	Rodada 6	
ATL	PHI	NYM	MON	-PHI	-NYM	-MON	
NYM	MON	-ATL	-PHI	-MON	ATL	PHI	
PHI	-ATL	MON	NYM	ATL	-MON	-NYM	
MON	-NYM	-PHI	-ATL	NYM	PHI	ATL	

1970 - Algoritmos Genéticos (AG)

Classe de metaheurísticas populacionais evolutivas, inspirada na teoria da evolução de *Darwin*.

Utiliza operadores de seleção, reprodução e mutação para alternar entre intensificação e diversificação da busca.

1994 - *Random-Key Genetic Algorithm*, RKGA

- ► Cada indivíduo é codificado como um vetor de chaves aleatórias, em que cada chave é um numero real pertencente ao intervalo [0,1);
- ▶ Uso de elitismo:
- Reprodução uniforme parametrizada de pais selecionados aleatoriamente;
- A mutação consiste em introduzir novos indivíduos, cujos genes são gerados de maneira aleatória.

1970 - Algoritmos Genéticos (AG)

Classe de metaheurísticas populacionais evolutivas, inspirada na teoria da evolução de *Darwin*.

Utiliza operadores de seleção, reprodução e mutação para alternar entre intensificação e diversificação da busca.

1994 - Random-Key Genetic Algorithm, RKGA

- ► Cada indivíduo é codificado como um vetor de chaves aleatórias, em que cada chave é um numero real pertencente ao intervalo [0,1);
- Uso de elitismo;
- Reprodução uniforme parametrizada de pais selecionados aleatoriamente;
- A mutação consiste em introduzir novos indivíduos, cujos genes são gerados de maneira aleatória.

2011 - Biased Random-Key Genetic Algorithm (BRKGA)

- Reprodução: um dos indivíduos deve pertencer ao conjunto elite e o outro deve pertencer ao restante da população;
- Os genes do indivíduo pai do conjunto elite possuem maior probabilidade de serem atribuídos ao indivíduo filho.

Método do Polígono

Descrição

O **Método do Polígono** é comumente utilizado na literatura para gerar tabelas *Single Round Robin* (SRR).

A partir da rotação de uma permutação base de n elementos, são geradas outras n-1 permutações.

Cada uma destas permutações geram emparelhamentos que correspondem aos (n-1) confrontos de cada uma das n equipes em um torneio SRR.

Ao duplicarmos e espelharmos a tabela SRR, obtemos uma tabela MDRR.

Método do Polígono

Expansão da permutação base e tabela SRR resultante.

5	4	6	2	3	1
5	6	2	3	1	4
5	2	3	1	4	6
5	3	1	4	6	2
5	1	4	6	2	3

	R_1	R_2	R_3	R_4	R_5
E_1	6	3	4	2	5
E_2	3	4	5	1	6
E_3	2	1	6	5	4
E_4	5	2	1	6	3
E_5	4	6	2	3	1
E_6	1	5	3	4	2

Método do Polígono

Tabela MDRR contendo os confrontos dos dois turnos.

	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	R_9	R_{10}
E_1	-6	3	-4	2	-5	6	-3	4	-2	5
E_2	-3	4	-5	-1	6	3	-4	5	1	-6
E_3	2	-1	6	5	-4		1	-6	-5	4
E_4	5	-2	1	-6	3	-5	2	-1	6	-3
E_5	-4	6	2	-3	1	4	-6	-2	3	-1
E_6	1	-5	-3	4	-2	-1	5	3	-4	2

Buscas Locais

- Home-Away Swap: consiste em, dado um confronto entre duas equipes E_i e E_j , inverter o mando de campo;
- ② Round Swap: consiste em realizar a troca dos confrontos entre duas rodadas R_k e R_l na tabela;
- **1** Team Swap: consiste em trocar todos os confrontos da equipe E_i com os confrontos da equipe E_j , exceto o confronto entre as duas;
- O Partial Round Swap: consiste em trocar a equipe que E_i enfrenta na rodada R_k com a equipe que E_i enfrenta na rodada R_l ;
- **9** Partial Team Swap: consiste em trocar a equipe que E_i enfrenta na rodada R_k com a equipe que E_j enfrenta na rodada R_k .

Buscas Locais

- Home-Away Swap: consiste em, dado um confronto entre duas equipes E_i e E_j , inverter o mando de campo;
- **2** Round Swap: consiste em realizar a troca dos confrontos entre duas rodadas R_k e R_l na tabela;
- ① Team Swap: consiste em trocar todos os confrontos da equipe E_i com os confrontos da equipe E_j , exceto o confronto entre as duas;
- O Partial Round Swap: consiste em trocar a equipe que E_i enfrenta na rodada R_k com a equipe que E_i enfrenta na rodada R_l ;
- **o** Partial Team Swap: consiste em trocar a equipe que E_i enfrenta na rodada R_k com a equipe que E_i enfrenta na rodada R_k .

Buscas Locais

- Home-Away Swap: consiste em, dado um confronto entre duas equipes E_i e E_j , inverter o mando de campo;
- **2** Round Swap: consiste em realizar a troca dos confrontos entre duas rodadas R_k e R_l na tabela;
- **1** Team Swap: consiste em trocar todos os confrontos da equipe E_i com os confrontos da equipe E_j , exceto o confronto entre as duas;
- Partial Round Swap: consiste em trocar a equipe que E_i enfrenta na rodada R_k com a equipe que E_i enfrenta na rodada R_l ;
- **9** Partial Team Swap: consiste em trocar a equipe que E_i enfrenta na rodada R_k com a equipe que E_j enfrenta na rodada R_k .

Buscas Locais

- Home-Away Swap: consiste em, dado um confronto entre duas equipes E_i e E_j , inverter o mando de campo;
- **2** Round Swap: consiste em realizar a troca dos confrontos entre duas rodadas R_k e R_l na tabela;
- **1** Team Swap: consiste em trocar todos os confrontos da equipe E_i com os confrontos da equipe E_j , exceto o confronto entre as duas;
- Partial Round Swap: consiste em trocar a equipe que E_i enfrenta na rodada R_k com a equipe que E_i enfrenta na rodada R_l ;
- **9** Partial Team Swap: consiste em trocar a equipe que E_i enfrenta na rodada R_k com a equipe que E_i enfrenta na rodada R_k .

Buscas Locais

- Home-Away Swap: consiste em, dado um confronto entre duas equipes E_i e E_j , inverter o mando de campo;
- **2** Round Swap: consiste em realizar a troca dos confrontos entre duas rodadas R_k e R_l na tabela;
- **1** Team Swap: consiste em trocar todos os confrontos da equipe E_i com os confrontos da equipe E_j , exceto o confronto entre as duas;
- Partial Round Swap: consiste em trocar a equipe que E_i enfrenta na rodada R_k com a equipe que E_i enfrenta na rodada R_l ;
- **9** Partial Team Swap: consiste em trocar a equipe que E_i enfrenta na rodada R_k com a equipe que E_j enfrenta na rodada R_k .

Ambiente

- ▶ Intel Core i5 Quad Core de 3.0 GHz, 8 GB de RAM, Ubuntu 15.10;
- brkgaAPI e OpenMP.

Ajuste de Parâmetros

Parâmetro	Valor Definido
Tamanho da população	$3 \times n$
Tamanho do conjunto elite	25%
Tamanho do conjunto mutante	20%
Probabilidade de herdar gene elite na reprodução	
Número de gerações	
Probabilidade de busca local	

Ambiente

- ▶ Intel Core i5 Quad Core de 3.0 GHz, 8 GB de RAM, Ubuntu 15.10;
- brkgaAPI e OpenMP.

Ajuste de Parâmetros

Parâmetro	Valor Definido
Tamanho da população	$3 \times n$
Tamanho do conjunto elite	25%
Tamanho do conjunto mutante	20%
Probabilidade de herdar gene elite na reprodução	85%
Número de gerações	800
Probabilidade de busca local	80%

Instâncias

Instâncias *National League* (NL) e as instâncias circulares (*circ*), disponibilizadas por Michael Trick^a.

ahttp://mat.gsia.cmu.edu/TOURN/

Comparação

Os resultados obtidos foram comparados com os melhores disponíveis na literatura, o que inclui uma variedade de métodos. Entre as metaheurísticas, comparamos com:

- ► Simulated Annealing: Van Hentenryck, P. e Vergados, Y. (2006). Traveling tournament scheduling: a systematic evaluation of simulated annealling.
- ▶ Algoritmo Genético: Biajoli, F. e Lorena, L. (2006). Mirrored traveling tournament problem: An evolutionary approach.
- Biogeography based Optimization: Gupta, D. et al. (2013). A hybrid biogeography based heuristic for the mirrored traveling tournament problem

Instâncias

Instâncias *National League* (NL) e as instâncias circulares (*circ*), disponibilizadas por Michael Trick^a.

Comparação

Os resultados obtidos foram comparados com os melhores disponíveis na literatura, o que inclui uma variedade de métodos. Entre as metaheurísticas, comparamos com:

- ► Simulated Annealing: Van Hentenryck, P. e Vergados, Y. (2006). Traveling tournament scheduling: a systematic evaluation of simulated annealling.
- ▶ Algoritmo Genético: Biajoli, F. e Lorena, L. (2006). Mirrored traveling tournament problem: An evolutionary approach.
- ▶ Biogeography based Optimization: Gupta, D. et al. (2013). A hybrid biogeography based heuristic for the mirrored traveling tournament problem.

ahttp://mat.gsia.cmu.edu/TOURN/

Instância	B^*	S^*	T (s)	gap (%)	σ
nl4	8276	8276	0,55	0,00	0,00
nl6	26588	26588	3,30	0,00	0,00
nl8	41928	43620	12,04	4,04	139,43
nl10	63832	70386	35,27	10,23	447,05
nl12	119608	130013	86,84	8,70	962,41
nl14	199363	236461	188,62	18,61	2212,51
nl16	278305	313555	375,91	12,67	2776,91

Instância	B^*	S^*	T (s)	gap (%)	σ
circ4	20	20	0,55	0,00	0,00
circ6	72	72	3,21	0,00	0,00
circ8	140	150	11,86	7,14	0,60
circ10	272	300	34,62	10,29	2,71
circ12	432	496	85,52	14,81	4,10
circ14	672	756	187,87	12,40	11,81
circ16	968	1102	374,26	13,84	4,63
circ18	1306	1570	846,08	20,21	9,10
circ20	1852	2134	1461,20	15,23	18,26

Conclusão

Conclusão

Os resultados demonstram que o método é promissor, obtendo baixa divergência em relação às melhores soluções disponíveis para a maioria das instâncias em baixo tempo computacional.

Adicionalmente, o método proposto apresenta rápida convergência e variação da qualidade das soluções abaixo de 1% em diferentes execuções independentes.

Trabalhos futuros incluem permitir soluções inviáveis, o uso de operadores adaptativos e controle de diversidade do conjunto elite.

Conclusão

Conclusão

Os resultados demonstram que o método é promissor, obtendo baixa divergência em relação às melhores soluções disponíveis para a maioria das instâncias em baixo tempo computacional.

Adicionalmente, o método proposto apresenta rápida convergência e variação da qualidade das soluções abaixo de 1% em diferentes execuções independentes.

Trabalhos futuros incluem permitir soluções inviáveis, o uso de operadores adaptativos e controle de diversidade do conjunto elite.

Conclusão

Conclusão

Os resultados demonstram que o método é promissor, obtendo baixa divergência em relação às melhores soluções disponíveis para a maioria das instâncias em baixo tempo computacional.

Adicionalmente, o método proposto apresenta rápida convergência e variação da qualidade das soluções abaixo de 1% em diferentes execuções independentes.

Trabalhos futuros incluem permitir soluções inviáveis, o uso de operadores adaptativos e controle de diversidade do conjunto elite.

Agradecimentos

Esta pesquisa foi apoiada pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico e pela Universidade Federal de Ouro Preto.

Perguntas?

