RECEIVED CENTRAL FAX CENTER

AUG 0 3 2006

REMARKS

This paper is responsive to the Office Action dated June 2, 2006.

Claims 119 and 127-131 were pending in this application. Claims 119 and 129 have been examined and stand variously rejected. Upon entry of this amendment, certain claims are amended and claim 128 is cancelled. Accordingly, the pending claims are 119, 127, and 129-131.

Applicants acknowledge with gratitude withdrawal of rejections previously made under 35 USC § 102(e) with respect to U.S. Patent 6,093,809. Further consideration and allowance of the application is respectfully requested.

Interview summary

The undersigned wishes to thank Examiner Myers for the helpful telephone interview conducted on July 6, 2006. The claim wording presented in this Amendment was discussed, along with ways of overcoming the current rejections in the case.

The application is now believed to be in condition for allowance, which is respectfully requested.

Restriction requirement and request for rejoinder

The Office Action states that claims 128 and 130 as previously presented were drawn to subject matter outside the invention elected for examination. Applicants agree. Claim 128 has now been cancelled, and claim 130 has been rewritten as a polynucleotide claim, depending from another polynucleotide claim in the elected group.

Applicants hereby renew their request that claims 127 and 131 be rejoined into the group under examination upon determination that the product claims from which they depend are patentable.

Rejection under 35 USC § 112 ¶ 2

Claim 119 and 129 stand rejected as indefinite for reasons of claim wording. The claims have now been amended in accordance with the Examiner's recommendation, for which applicants are grateful.

015389-002950US 018/206p2

Rejections under 35 USC § 112 ¶ 1

Claim 119 stands rejected under the written description and enablement requirements of § 112 ¶ 1, for reasons related to the *proviso* clause as previously presented.

The claim has now been amended to state that the claimed polynucleotide does not contain consecutive nucleotides 1-2009 of SEQ. ID NO:124. Reference to this portion of SEQ. ID NO:124 as part of the mouse telomerase reverse transcriptase cDNA sequence may be found in the specification on page 165, lines 3-10.

+6504738654

Withdrawal of the rejections under 35 USC § 112 ¶ 1 is respectfully requested.

Applicants submit that the claim as presently worded is again not subject to obviousness-type double patenting with respect to U.S. Patent 6,767,719, which claims polynucleotides encoding mouse telomerase reverse transcriptase, and functional homologs thereof. Appendix A compares SEQ. ID NO:124 of this application with the cDNA and encoded protein sequence from the '719 patent. SEQ. ID NO:124 encodes 658 amino acids (i.e., over half) of the native mTRT protein.

Double patenting

Claims 119 and 129 of this application stand rejected for obviousness-type double patenting over certain claims of U.S. Patents 6,927,285; 6,921,664; 6,337,200; 6,475,789; and 6,444,650. These claims are also provisionally rejected for obviousness type double patenting over certain claims of copending applications USSN 09/721,477; USSN 10/877,124; USSN 10/044,539; USSN 09/721,506; USSN 11/207,078; and USSN 10/044,692.

Applicants respectfully submit that nothing needs to be done with respect to USSN 09/721,477; USSN 11/207,078, and USSN 10/044,692, because they are less advanced in prosecution and not expected to issue first. The other patents and applications will be addressed under separate cover.

Rejection under 35 USC § 102(e):

The claims under examination stand rejected under § 102(e) as being anticipated by what is disclosed in U.S. Patent 6,309,867, which names different inventors from the inventors named in the present application.

Enclosed with this Amendment is a second Declaration under 37 CFR § 1.132 by Calvin Harley. He explains that the Schizosaccharomyces pombe sequence was deduced by Thomas Cech and Toru Nakamura. Only the pombe protein sequence is claimed in the '867 patent, and so the patent appropriately names Cech and Nakamura as the inventive entity. However, the human TERT sequence and use thereof disclosed but not claimed in the '867 patent was deduced by the same inventors as are named on the present application.

Thus, the relevant information disclosed in the cited patent does not qualify as an invention by "another" under 35 USC § 102(e). Withdrawal of this rejection is respectfully requested.

Request for further interview

Applicants respectfully request that all outstanding rejections be reconsidered and withdrawn. Once the double patenting issues are addressed, the application should be in condition for allowance, and a prompt Notice of Allowance is requested.

In the event that the Examiner determines that there are other matters to be addressed, applicants hereby request an interview by telephone.

Fees due

No fee is believed payable with respect to entry and consideration of this response. However, should the Patent Office determine that a further extension of time or any other relief is required for further consideration of this application, applicants hereby petition for such relief, and authorize the Commissioner to charge the cost of such petitions and other fees due in connection with the filing of these papers to Deposit Account No. 07-1139, referencing the docket number indicated above.

Respectfully submitted,

J. Michael Schiff

Registration No. 40,253

GERON CORPORATION 230 Constitution Drive Menlo Park, CA 94025 Telephone: (650) 473-7715

Fax: (650) 473-8654

July **21** , 2006

Appendix A

SEQ. ID NO.124 of the current application

CGGCTGGGAG GCCCATCCCG	GCCTTGAGCA	CAATGACCCG	CCCTCCTCGT	TGCCCCGCGG	TCCCCTCTCT	GCTGCGCAGC
CONTACCOCC ACCTCTCCCC	GCTGGCAACC	TTTCTGCGGC	GCCTGGGGCC	CGAGGGCAGG	CCCCTTGTGC	AACCCGGGGA
CCCCAACATC TACCCCACTT	TGGTTGCCCA	ATGCCTAGTG	TGCATGCACT	GGGGCTCACA	GCCTCCACCT	CCCCACCTTT
CCTTCCACCA GCTGTCATCC	CTGAAAGAGC	TCGTCGCCAG	GGTTGTGCAG	AGACTCTGCG	ACCCCAACGA	GAGAAACGTG
CTCCCTTTCACCT	CCTTAACGAG	CCCAGAGGCG	GGCCTCCCAT	CCCCTTCACT	AGTAGCGTGC	GTAGCTACTT
GCCCAACACT GTTATTGAGA	CCCTGCGTGT	CAGTGGTGCA	TGGATGCTAC	TGTTGAGCCG	ACTGGGCGAC	CACCTGCTGG
TOTACCTOCY COCACACTOY	GCTCTTTATC	TTCTCCTGCC	CCCCAGCTGT	GCCTACCAGG	TCTCTCCCCTC	TCCCCTGTAC
CAAATTTGTG CCACCACGGA	TATCTGGCCC	TCTGTGTCCG	CTACTTACAG	CCCCACCCGA	CCCGTGGGCA	GGAATTTCAC
TAACCTTAGG TTCTTACAAC	ACATCAAGAG	CAGTAGTCGC	CAGGAAGCAC	CGAAACCCCCT	GGCCTTGCCA	TCTCGAGGTA
CAAAGAGGCA TCTGAGTCTC	ACCAGTACAA	CTCTCCCTTC	AGCTAAGAAG	GCCAGATGCT	ATCCTGTCCC	GAGAGTGGAG
GAGGGACCCC ACAGGCAGGT	GCTACCAACC	CCATCAGGCA	AATCATGGGT	GCCAAGTCCT	CCTCCGTCCC	CCGAGGTGCC
TACTGCAGAG AAAGATTTGT	CTTCTAAAGG	AAAGGTGTCT	GACCTGAGTC	זכוכוננננוכ	CCTCTCCTCT	AAACACAAGC
CCAGCTCCAC ATCTCTGCTG	TCACCACCCC	GCCAAAATGC	CTTTCAGCTC	ACCCCATTTA	TTGAGACCAG	ACATTTCCTT
TACTCCAGGG GAGATGGCCA	AGAGCGTCTA	AACCCCTCAT	TCCTACTCAG	CAACCTCCAG	CCTAACTTGA	CTGGGGCCAG
GAGACTGGTG GAGATCATCT	TTCTGGGCTC	AAGGCCTAGG	ACATCACGAC	CACTCTGCAG	GACACACCGT	CTATCGCGTC
GATACTGGCA GATGCGGCCC	CTGTTCCAAC	AGCTGCTGGT	GAACCATGCA	GAGTGCCAAT	ATGTCAGACT	CCTCAGGTCA
CATTGCAGGT TTCGAACAGC	AAACCAACAG	CTCACAGATG	CCTTGAACAC	CAGCCCACCG	CACCICATGG	ATTIGUICCG
CCTCCACAGC AGTCCCTGGC	ACCTATATCC	TTTCTTCGG	GCCTGTCTCT	GCAAGGTGGT	GTCTGCTAGT	CTCTGGGGTA
CCAGGCACAA TGAGCGCCGC	TTCTTTAAGA	ACTTAAAGAA	CTTCATCTCG	TTGGGGAAAT	ACGGCAAGCT	ATCACTGCAG
GAACTGATGT GGAAGATGAA	ACTAGACCAT	TGCCACTGGC	TCCGCAGCAG	CCCGGGGAAG	GACCGTGTCC	CCGCTGCAGA
GCACCOTCTC AGGGAGAGGA	TCCTCGCTAC	ancereno	TGGCTGATGG	ACACATACGI	GGTACAGCTG	CITAGGICAI
TCTTTTACAT CACAGAGAGC	ACATTCCAGA	AGAACAGGCT	CTTCTTCTAC	CCTAAGAGTG	TGTGGAGCAA	GCTGCAGAGC
ATTGGAGTCA GGCAACACCT	TGAGAGAGTG	CGGCTACGGG	AGCTGTCACA	AGAGGAGGTC	ACCATCACC	AGGACACCTG
GCTAGCCATG CCCATCTGCA	CACTGCCCTT	CATCCCCAAG	CCCAACGGCC	TGCGGCCCAT	TGTGAACATG	AUTTATAGCA
TGGGTACCAG AGCTTTGGGC	AGAAGGAAGC	AGGCCCAGCA	TTTCACCCAG	CUTCTCAAGA	CICICHICAG	CATULTCAAC
TATGAGCCG						

mTERT cDNA sequence (SEQ. ID NO.1) from U.S. Patent 6,767,719

GAATTCCGGGTGGGAGGCCCATCCCGGCCTTGAGCACAATGACCCGGGGTCCTCGTTGCCCCGGGGTGCGCTCTCTGCTGCGCAGCCGATACCG CGAGGTGTCGCCGCTCGCAACCTTTGTGCGCCGCCTGGGGCCCGAGGGCAGGCCGGCTTGTGCAACCCCGGGGACCCGAAGATCTACCGCACTTTG CCAGGGTTGTGCAGAGACTCTGCGAGCGCAACGAGAGAAACGTGCTGGCTTTTGGCTTTGAGCTGCTTAACGAGGCCAGAGGCGGGCCTCCCAT ACCAAATTTGTGCCACGACGGATATCTGGCCCTCTGTGTCCGCTAGTTACAGGCCCCACCCGACCCGTGGGCAGGAATTTCACTAACCTTAGGTT CTTACAACAGATCAAGAGCAGTAGTCGCCAGGAAGCACCGAAACCCCTGGCCTTGCCATCTCGAGGTACAAAGAGGCATCTGAGTCTCACCAGT AATCATGGGTGCCAAGTCCTGCTCGGTCCCCCGAGGTGCCTACTGCAGAGAAAGATTTGTCTTCTAAAGGAAAGGTGTCTGACCTGAGTCTCTC TGGGTCGGTGTGCTGTAAACACAAGCCCAGGTCCACATCTCTGCTGTCACCACCCCGCCAAAATGCCTTTCAGCTCAGGCCATTTATTGAGACC AGACATTTCCTTTACTCCAGGGGAGATGGCCAAGAGCGTCTAAACCCCTCATTCCTACTCAGCAACCTCCAGCCTAACTTGACTGGGGCCAGGA GACTGGTGGAGATCATCTTTCTGGGCTCAAGGCCTAGGACATCAGGACCACTCTGCAGGACAACCGTCTATCGCGTCGATACTGGCAGATGCG GCCCCTGTTCCAACAGCTGCTGCAACCATGCAGAGTGCCAATATGTCAGACTCCTCAGGTCACATTGCAGGTTTCGAACAGCAAACCAACAG GTGACAGATGCCTTGAACACCAGCCCACCGCACCTCATGGATTTGCTCCGCCCTGCACAGCAGTCCCTGGCAGGTATATGGTTTTCTTCGGGCCT GTCTCTGCAAGGTGGTGTCTCCTAGTCTCTGGGGTACCAGGCACAATGAGCGCCGCTTCTTTAAGAACTTAAAGAAGTTCATCTCGTTGGGGAA ATACGGCAAGCTATCACTGCAGGAACTGATGTGGAAGATGAAAGTAGAGGATTGCCACTGGCTCCGCAGCAGCAGCCCGGGAAGGACCGTGTCCCCGGCAGGAGCACCGTCTGAGGGAGAGGACCGTCTGGCTACGTTCCTGTTCTGGCTGATGGACACATACGTGGTACAGCTGCTTAGGTCATTCTTTT CAGGACCTGGCGGGCCTTTGTGCTGCGTGTGCGTGCTCTGGACCAGACACCCCAGGATGTACTTTGTTAAGGCAGATGTGACCCGGGCCTATGAT GCCATCCCCCAGGCTAAGCTGGTGGAGGTTGTTGCCAATATGATCAGGCACTCGGAGAGCACGTACTGTATCCGCCAGTATGCAGTGGTCCGGA GAGATAGCCAAGGCCAAGTCCACAAGTCCTTTAGGAGACAGGTCACCACCCTCTCTGACCTCCAGCCATACATGGGCCAGTTCCTTAAGCATCT GGTGACGCCTCACTTGGACCAAGCAAAAACCTTCCTCAGCACCCTGGTCCATGGCGTTCCTGAGTATGGGTGCATGATAAACTTGCAGAACACA TGGACACTCAGACTTTGGAGGTGTTCTGTGACTACTCAGGTTATGCCCAGACCTCAATTAAGACGAGCCTCACCTTCCAGAGTGTCTTCAAAGC TGGGAAGACCATGCGGAACAAGCTCCTGTCGGTCTTGCGGTTGAAGTGTCACGGTCTATTTCTAGACTTGCAGGTGAACAGCCTCCAGACAGTC CCTCTCACCACACCCCAAAAACTGCTGTCCCGGAAGCTCCCAGAGGCGACAATGACCATCCTTAAAGCTGCAGCTGACCCAGCCCTAAGCACAG ACTITICAGACCATTTTGGACTAACCCTGTCTCCTTCCGCTAGATGAACATGAAGGGCGAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCC GAGCTCGCTACCAAGCTT

mTERT protein sequence (SEQ. ID NO.2) from U.S. Patent 6,767,719

MTRAPRCPAVRSLLRSRYREVWPLATFVRRLGPEGRRLVQPGDPKIYRTLVAQCLVCMHWGSQPPPADLSFHQVSSLKELVARVVQRLCERNER NVLAFGFELLNEARGGPPMAFTSSVRSYLPNTVIETLRVSGAWMLLLSRVGDDLLVYLLAHCALYLLVPPSCAYQVCGSPLYQICATTDIWPSV SASYRPTRPVGRNFTNLRFLQQIKSSSRQEAPKPLALPSRGTKRHLSLTSTSVPSAKKARCYPVPRVEECPHRQVLPTPSGKSWVPSPARSPEV PTAEKDLSSKGKVSDLSLSGSVCCKHKPSSTSLLSPPRQNAFQLRFFIETRHFLYSRGDGQERLNPSFLLSNLQPNLTGARRLVEIIFLGSRPR TSGPLCRTHRLSRRYWQMRPLFQQLLVNHAECQYVRLLRSHCRFRANQQVTDALNTSPPHLMDLLRLHSSPWQVYGFLRACLCKVVSASLWGT RHNERRFFKNLKKFISLGKYGKLSLQELMWKMKVEDCHWLRSSPGKDRVPAAEHRLRERILATFLFWLMDTYVVQLLRSFFYITESTFQKNRLFFYRKSVWSKLQSIGVRQHLERVRLRELSQEEVRHHQDTWLAMPICRLRFIPKPNGLRPIVNMSYSMCTRALGRRKQAQHFTQRLKTLFSMLNYE RTKHPHLMGSSVLGMNDIYRTWRAFVLRVRALDQTPRMYFVKADVTGAYDAIPQGKLVEVVVANMIRHSESTYCIRQYAVVRRDSQGQYHKSFRR QVTTLSDLQPYMGQFLKHLQDSDASALRNSVVIEQSISMNESSSLFDFFLHFRHSVVKIGDRCYTQCQGIPGGSSLSTLLCSLCFGDMENKL FAEVQRDGLLLRFVDDFFLLVTPHLDQAKTFLSTLVKGVPEYGCMINLQKTVVNFPVEPGTLGGAAPYQLPAHCLFPWCGLLLDTQTLEVFCDYS GYAQTSIKTSLTFQSVFKAGKTMRNKLLSVLRLKCKGLFLDLQVNSLQTVCXNIYKIFLLGAYRFHACVIQLPFDQRVRKNLTFFLGIISSQAS CCYAILKVKNPGMTLKAAADPALSTDFQTILD

BLAST comparison of nucleic acid sequence

BLASTX algorithm, NCBI website

SEQ. ID NO.124:	1 .	CGGGTGGGAGGCCCATCCCGGCCTTGAGCACAATGACCCCGCGCTCCTTGCCCCGCGG	60
mTRT:	7	CGGGTGGGAGGCCCATCCCGGCCTTGAGCACAATGACCCGCGCTCCTCGTTGCCCCGCGG	66
SEQ. ID NO.124:	61	TGCGCTCTCTGCCGCAGCCGATACCGGGAGGTGTGGCCGCTGGCAACCTTTGTGCGGC	120
mTRT:	67	TGCGCTCTCTGCTGCGCAGCCGATACCGGCAGGTGTGGCCGCTGGCAACCTTTGTGCGGC	126
SEQ. ID NO.124:	121	GCCTGGGGCCCGAGGGCAGGCGGCTTGTGCAACCCGGGGACCCGAAGATCTACCGCACTT	180
mTRT:	127	CCCTGGGGCCCGAGGGCAGCCGGCTTGTGCAACCCGGGGACCCGAAGATCTACCGCACTT	186
SEQ. ID NO.124:	181	TGGTTGCCCAATGCCTAGTGTGCATGCACTGGGGCTCACAGCCTCCACCTGCGGACCTTT	240
mTRT:	187	TGCTTGCCCAATGCCTAGTGTGCATGCACTGGGGCTCACAGCCTCCACCTGCCGACCTTT	246
SEQ. ID NO.124:	241	CCTTCCACCACGTGTCATCCCTGAAAGAGCTGGTGGCCAGGGTTGTGCAGAGACTCTGCG	300
mTRT:	247	CCTTCCACCAGGTGTCATCCCTGAAAGAGCTGGTCGCCAGGGTTGTGCAGAGACTCTGCG	306
SEQ. ID NO.124:	301	AGCGCAACGACAGAAACGTGCTGGCTTTTGGCTTTGAGCTGCTTAACGAGGCCAGAGGCG	360
mTRT:	307	AGCGCAACGAGAGAAACGTGCTGGCTTTTGGCTTTGAGCTGCTTAACGAGGCCAGAGGCG	366
\$EQ. ID NO.124:	361	GGCCTCCCATGGCCTTCACTAGTAGCGTGCGTAGCTACTTGCCCAACACTGTTATTGAGA	420
mTRT:	367	GCCTCCCATGCCTTCACTAGTAGCGTGCGTAGCTACTTGCCCAACACTGTTATTGAGA	426
SEQ. ID NO.124:	421	CCCTGCGTGTGCATGCATGCATGCTACTGTTGAGCCGAGTGGGGCGACCACCTGCTGG	480
mTRT:	427	CCCTGCGTGTCAGTGGTGCATCGATGCTACTGTTGAGCCGAGTGGGCGACGACCTGCTGG	486
SEQ. ID NO.124;	481	TCTACCTGCTGCCACACTGTGCTCTTTATCTTCTGGTGCCCCCAGCTGTGCCTACCAGG	540
mTRT:	487	TCTACCTGCTGGCACACTGTGCTCTTTATCTTCTGGTGCCCCCAGCTGTGCCTACCAGG	546
SEQ. ID NO.124:	541	TGTGTGGGTCTCCCCTGTACCAAATTTGTGCCACCACGGATATCTGGCCCTCTGTGTCCG	600
mTRT:	547	TGTGTGGGTCTCCCCTGTACCAAATTTGTGCCACCACGGATATCTGGCCCCTCTGTGTCCG	606
SEQ. ID NO.124:	601	CTAGTTACAGGCCCACCCGCCCGTGGGCAGGAATTTCACTAACCTTAGGTTCTTACAAC	660
mTRT:	607	CTACTTACAGGCCCACCCGACCCGTGGGCAGGAATTTCACTAACCTTAGGTTCTTACAAC	666
SEQ. ID NO.124:	661	AGATCAAGAGCACTAGTCGCCAGGAAGCACCGAAACCCCTGGCCTTGCCATCTCGAGGTA	720
mTRT:	667	AGATCAAGAGCAGTAGTCGCCAGGAAGCACCGAAACCCCCTGGCCTTGCCATCTCGAGGTA	726
SEQ. ID NO.124:	721	CAAAGAGGCATCTGAGTCTCACCAGTACAAGTGTGCCTTCAGCTAAGAAGGCCAGATGCT	780
mTRT:	727	CAAAGAGGCATCTGAGTCTCACCAGTACAAGTGTGCCTTCAGCTAAGAAGGCCAGATGCT	786
SEQ. ID NO.124:	781	ATCCTGTCCCGAGAGTGGAGGAGGGACCCCACAGGCAGGTGCTACCAACCCCCATCAGGCA	840
mTRT:	787	ATCCTGTCCCGAGAGTGGAGGGAGCGACCCCACAGGCAGG	846

SEQ. 10 NO.124:	841	AÀTCATGGGTGCCAAGTCCTGCTCGGTCCCCCGAGGTGCCTACTGCAGAGAAAGATTTGT	900 906
mTRT:	847	AATCATGGGTGCCAAGTCCTGGTCCCCCGAGGTGCCTACTGCAGAGAAAGATTTGT	
SEQ. ID NO.124:	901	CTTCTAAAGGAAAGGTGTCTGACCTGAGTCTCTCTGGGTCGGTGTGCTGTAAACACAAGC	960
mTRT:	907	CTTCTAAAGGAAAGGTGTCTGACCTGAGTCTCTCTGGGTCGGTGTGCTGTAAACACAAGC	966
SEQ. ID NO.124:	961	CCAGCTCCACATCTCTGCTGTCACCACCCCGCCAAAATGCCTTTCAGCTCAGGCCATTTA	1020
mTRT:	967	CCAGCTCCACATCTCTGCTGTCACCACCCCGCCAAAATGCCTTTCAGCTCAGGCCATTTA	1026
SEQ. ID NO.124:	1021	TTGAGACCAGACATTTCCTTTACTCCAGGGGAGATGGCCAAGAGCGTCTAAACCCCTCAT	1080
MTERT	1027	TTGAGACCAGACATTTCCTTTACTCCAGGGGAGATGGCCAAGAGCGTCTAAACCCCTCAT	1086
SEQ. ID NO.124:	1081	TCCTACTCAGCAACCTCCAGCCTAACTTGACTGGGGCCCAGGAGACTGGTGGAGATCATCT	1140
mTERT	1087	TCCTACTCAGCAACCTCCAGCCTAACTTGACTGGGGCCCAGGAGACTGGTGGAGATCATCT	1146
SEQ. ID NO.124:	1141	TTCTGGGCTCAAGGCCTAGGACATCAGGACCACTCTGCAGGACACACCGTCTATCGCGTC	1200
mTERT	1147	TTCTGGGCTCAAGGCCTAGGACATCAGGACCACTCTGCAGGACACACCCGTCTATCGCGTC	1206
SEQ. ID NO.124:	1201	GATACTGGCAGATGCGGCCCCTGTTCCAACAGCTGCTGGTGAACCATGCAGAGTGCCAAT	1260
mTERT	1207	GATACTGGCAGATGCGGCCCCTGTTCCAACAGCTGCTGGTGAACCATGCAGAGTGCCAAT	1266
SEQ. ID NO.124:	1261	ATGTCAGACTCCTCACGTCACATTGCAGGTTTCGAACAGCAAACCAACAGGTGACAGATG	1320
mTERT	1267	ATGTCACACTCCTCACGTCACATTGCAGGTTTCGAACAGCAAACCAACAGGTGACAGATG	1326
SEQ. ID NO.124:	1321	CCTTGAACACCAGCCCACCGCACCTCATCGATTTGCTCCGCCTGCACAGCAGTCCCTGGC	1380
MTERT	1327	CCTTGAACACCAGCCCACCGCACCTCATGGATTTGCTCCGCCTGCACAGCAGTCCCTGGC	1386
SEQ. ID NO.124:	1381	AGGTATATGGTTTTCTTCGGGCCTGTCTCTGCAAGGTGGTGTCTGCTAGTCTCTGGGGTA	1440
	1387	AGGTATATGGTTTTCTTCGGGCCTGTCTCTGCAAGGTGGTGTCTCTGCTAGTCTCTGGGGTA	1446
mTERT		CCAGGCACAATGAGCGCCGCTTCTTTAAGAACTTAAAGAAGTTCATCTCGTTGGGGAAAT	1500
SEQ. ID NO.124:	1441	CCAGGCACAATGAGCGCCGCTTCTTTAAGAACTTAAAGAAGTTCATCTCGTTGGGGAAAT	1506
mTERT	1447		1560
SEQ. ID NO.124:	1501	ACGGCAAGCTATCACTGCAGGAACTGATGTGGAAGATGAAAGTAGAGGATTGCCACTGGC	
mTERT	1507	ACCCCAAGCTATCACTCCACGAACTGATGTGGAAGATGAAACTAGAGGATTGCCACTGGC	1566
SEQ. ID NO.124:	1561	TCCGCACCACCCCGGGGAACGACCCTGTCCCCGCTGCAGAGCACCGTCTGAGGGAGAGGA	1620
mTERT	1567	TCCGCAGCAGCCCGGGGAAGGACCCTTGTCCCCGCTGCAGAGCACCGTCTGAGGGAGAGGA	1626
SEQ. ID NO.124:	1 621	TCCTGGCTACGTTCCTGTTCTGGCTGATGGACACATACGTGGTACAGCTGCTTAGGTCAT	1680
mTERT	1627	TCCTCCCTACGTTCCTGCTCTCCCCCCATGCACACATACGTCGTACAGCTGCTTAGGTCAT	1.686
SEQ. ID NO.124:	1681	TCTTTTACATCACAGAGAGCACATTCCAGAAGAACAGGCTCTTCTTCTACCGTAAGAGTG	1740
mTERT	1687	TCTTTACATCACAGAGAGCACATTCCAGAAGAACAGGCTCTTCTTCTACCGTAAGAGTG	1746
SEQ. 10 NO.124:	1741	TGTGGAGCAAGCTGCAGAGCATTCGAGTCAGGCAACACCTTGAGAGAGA	1800
mTERT	1747	TGTGGAGCAAGCTGCAGAGCATTGGAGTCAGGCAACACCTTGAGAGAGTGCGGGCTACGGG	1806

SEQ. ID NO.124:	1801	AGCTGTCACAAGAGGAGGTCAGGCATCACCAGGACACCTGGCTAGCCATGCCCATCTGCA	1860
mTERT	1807	AGCTGTCACAAGAGGAGGTCAGGCATCACCAGGACACCTGGCTAGCCCATGCCCATCTGCA	1866
SEQ. ID NO.124:	1861	GACTGCGCTTCATCCCCAAGCCCAACGGCCTGCGGCCCATTGTGAACATGAGTTATAGCA	1920
mTERT	1867	CACTGCGCTTCATCCCCAAGCCCAACGGCCCTGCGGCCCATTGTGAACATGAGTTATAGCA	1926
SEQ. ID NO.124:	1921	TGGGTACCAGAGCTTTGGGCAGAAGGAAGCAGCCCCAGCATTTCACCCAGCGTCTCAAGA	1980
mTERT	1927	TGGGTACCAGAGCTTTGGGCAGAAGGAAGCAGGCCCAGCATTTCACCCAGCGTCTCAAGA	1986
SEQ. ID NO.124:	1981	CTCTCTTCAGCATGCTCAACTATGAGC 2007	
mTERT	1987	CTCTCTTCAGCATGCTCAACTATGAGC 2013	

Translated BLAST comparison of encoded protein

BLASTX algorithm, NCBI website

SEQ. ID NO.124:	33 1	MTRAPRCPAVRSLLRSRYREVWPLATFVRRLGPEGRRLVQPGDPKIYRTLVAQCLVCMHW MTRAPRCPAVRSLLRSRYREVWPLATFVRRLGPEGRRLVQPGDPKIYRTLVAQCLVCMHW MTRAPRCPAVRSLLRSRYREVWPLATFVRRLGPEGRRLVQPGDPKIYRTLVAQCLVCMHW	212 60
SEQ. ID NO.124:	213 61	GSQPPPADLSFHQVSSLKELVARVVQRLCERNERNVLAFGFELLNEARGGPPMAFTSSVR GSQPPPADLSFHQVSSLKELVARVVQRLCERNERNVLAFGFELLNEARGGPPMAFTSSVR GSQPPPADLSFHQVSSLKELVARVVQRLCERNERNVLAFGFELLNEARGGPPMAFTSSVR	392 120
SEQ. ID NO.124:	393 121	SYLPNTVIETLRVSGAWMLLLSRVGDDLLVYLLAHCALYLLVPPSCAYQVCGSPLYQICA SYLPNTVIETLRVSGAWMLLLSRVGDDLLVYLLAHCALYLLVPPSCAYQVCGSPLYQICA SYLPNTVIETLRVSGAWMLLLSRVGDDLLVYLLAHCALYLLVPPSCAYQVCGSPLYQICA	572 180
SEQ. ID NO.124:	573 181	TTDIWPSVSASYRPTRPVGRNFTNLRFLQQIKSSSRQEAPKPLALPSRGTKRHLSLTSTS TTDIWPSVSASYRPTRPVGRNFTNLRFLQQIKSSSRQEAPKPLALPSRGTKRHLSLTSTS TTDIWPSVSASYRPTRPVGRNFTNLRFLQQIKSSSRQEAPKPLALPSRGTKRHLSLTSTS	752 240
SEQ. ID NO.124: mTRT:	753 241	VPSAKKARCYPVPRVEEGPHRQVLPTPSGKSWVPSPARSPEVPTAEKDLSSKGKVSDLSL VPSAKKARCYPVPRVEEGPHRQVLPTPSGKSWVPSPARSPEVPTAEKDLSSKGKVSDLSL VPSAKKARCYPVPRVEEGPHRQVLPTPSGKSWVPSPARSPEVPTAEKDLSSKGKVSDLSL	932 300
SEQ. ID NO.124:	933 301	SGSVCCKHKPSSTSLLSPPRQNAFQLRPFIETRHFLYSRGDGQERLNPSFLLSNLQPNLT SGSVCCKHKPSSTSLLSPPRQNAFQLRPFIETRHFLYSRGDGQERLNPSFLLSNLQPNLT SGSVCCKHKPSSTSLLSPPRQNAFQLRPFIETRHFLYSRGDGQERLNPSFLLSNLQPNLT	1112 360
SEQ. ID NO.124:	1113 361	GARRLVEIIFLGSRPRTSGPLCRTHRLSRRYWQMRPLFQQLLVNHAECQYVRLLRSHCRF GARRLVEIIFLGSRPRTSGPLCRTHRLSRRYWQMRPLFQQLLVNHAECQYVRLLRSHCRF GARRLVEIIFLGSRPRTSGPLCRTHRLSRRYWQMRPLFQQLLVNHAECQYVRLLRSHCRF	1292 420
SEQ. ID NO.124:	1293 421	RTANQQVTDALNTSPPHLMDLLRLHSSPWQVYGFLRACLCKVVSASLWGTRHNERRFFKN RTANQQVTDALNTSPPHLMDLLRLHSSPWQVYGFLRACLCKVVSASLWGTRHNERRFFKN RTANQQVTDALNTSPPHLMDLLRLHSSPWQVYGFLRACLCKVVSASLWGTRHNERRFFKN	1472 480
SEQ. ID NO.124:	1473 481	LKKFISLGKYGKLSLQELMWKMKVEDCHWLRSSPGKDRVPAAEHRLRERILATFLFWLMD LKKFISLGKYGKLSLQELMWKMKVEDCHWLRSSPGKDRVPAAEHRLRERILATFLFWLMD LKKFISLGKYGKLSLQELMWKMKVEDCHWLRSSPGKDRVPAAEHRLRERILATFLFWLMD	1652 540
SEQ. ID NO.124; mTRT:	1653 541	TYVVQLLRSFFYITESTFQKNRLFFYRKSVWSKLQSIGVRQHLERVRLRELSQEEVRHHQ TYVVQLLRSFFYITESTFQKNRLFFYRKSVWSKLQSIGVRQHLERVRLRELSQEEVRHHQ TYVVQLLRSFFYITESTFQKNRLFFYRKSVWSKLQSIGVRQHLERVRLRELSQEEVRHHQ	1832 600
SEQ. ID NO.124:	1833 601	DTWLAMPICKLRFIPKPNGLRPIVNMSYSMGTRALGRRKQAQHFTQRLKTLFSMLNYE	2006 558