INFO 284 – Machine Learning Reinforcement Learning

Bjørnar Tessem

What is reinforcement learning

- There is no supervisor present.
- Importance of time/sequences.
- Concept of delayed rewards.
- The agents action effects its next input.

What is reinforcement learning

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial

[Video: AIBO WALK - initial]

Example: Learning to Walk

Finished

[Video: AIBO WALK – finished]

Concepts

- Policy defines the learning agent's way of behaving at a given time. It is a mapping from perceived states of the environment to actions to be taken when in those states
 - Reflex agents agents that always behave the same way
- Reward defines the goal of a reinforcement learning problem. It defines what are good and what are bad events for the agent in the immediate sense.
- Value function (Utilty function)- specifies what is a good outcome for the agent long term.
 The value of a state is a total amount of reward an agent can expect to accumulate over the future starting from that state.
- Environment something that mimics the behaviour of the environment, or allows inferences to be made about how the environment will behave.

NFO284 6

Markov decision process

- A sequential decision problem for a fully observable, stochastic environment with a Markovian transition model and additive rewards.
- Solution should specify what agent should do for any state that the agent might reach (policy)
- Stochastic nature means that the a policy starting from the same initial state may lead to different environment.
- The goal is to find an optimal policy (a policy that yields the highest expected utility)

NFO284

Markov decision process

- A Markov decision process (MDP) is a structure that consists of a set of states (with an initial state s0); a set A(s) of actions in each state; a transition model P(s'|s, a); and a reward function R(s)
- We want to win as highest reward as possible
- What the agent should do for any state that the agent might reach is described in a policy
- $\pi(s)$ what the agent should do in state s.
- optimal policy π*(s)
- Additive rewards: The utility of a state sequence is

$$U_h([S_0, S_1, S_2, \ldots]) = R(S_0) + R(S_1) + R(S_2) + \ldots$$

Discounted rewards: The utility of a state sequence is

$$U_h([s_0, s_1, s_2, \ldots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots$$

How much is a policy worth?

The expected utility obtained by executing π starting in s is given by

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(S_{t})\right] ,$$

$$\pi_s^* = \operatorname*{argmax}_{\pi} U^{\pi}(s) .$$

- Learn an optimal policy:
 - Utility-based agent policy maps states to utility
 - must have a model of the environment
 - Learns by optimization

FO284

- Learning by doing
- Learn the expected utility of taking a given

-actio	n	
state	action	Q-value
s1	а	?
s1	b	?
s1	С	?
s2	а	?
s2	b	?
s2	С	?
s3	а	?
s3	b	?
s3	С	?

Q-learning (learning an action-utility function)

- Initialise an array Q(state, action) arbitrarily (choose utilities).
- · At each time t the agent selects an action, observes a reward, enters a new state (that may depend on both the previous state and the selected action), and updates Q.
- Update = we change the utility for the state we just came out of

$$Q(s_t, a_t) \leftarrow (1-lpha) \cdot \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{lpha}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_a Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}}
ight)}_{ ext{best action in next state}}$$

In state s2 select a, receive -10, $\gamma = 0.5$, $\alpha = 0.1$

state	action	Q-value
s1	а	0
s1	b	0
s1	С	0
s2	а	0
s2	b	0
s2	С	0
s3	а	0
s3	b	0
s3	С	0

state	action	Q-value
s1	а	0
s1	b	0
s1	С	0
s2	а	-1
s2	b	0
s2	С	0
s3	а	0
s3	b	0
s3	С	0

• In state s2 select b, receive 20, $\gamma = 0.5$, $\alpha = 0.1$

state	action	Q-value
s1	а	0
s1	b	0
s1	С	0
s2	а	-1
s2	b	0
s2	С	0
s3	а	0
s3	b	0
s3	С	0

state	action	Q-value
s1	а	0
s1	b	0
s1	С	0
s2	а	-1
s2	b	2
s2	С	0
s3	а	0
s3	b	0
s3	С	0

• In state s1 select c, receive 10, $\gamma = 0.5$, $\alpha = 0.1$

state	action	Q-value
s1	а	0
s1	b	0
s1	С	0
s2	а	-1
s2	b	2
s2	С	0
s3	а	0
s3	b	0
s3	С	0

state	action	Q-value
s1	а	0
s1	b	0
s1	С	1.1
s2	а	-1
s2	b	2
s2	С	0
s3	а	0
s3	b	0
s3	С	0

Q-learning properties

- Fully observable states and rewards
- Do not need a complete environment model initially
 - Add states to model as encountered
- Converges if learning rate decreases slowly
- Based on random exploration of actions

Exploration vs. exploitation

- Learning when doing!
- Exploit learned Q-values
 - Choose action with best Q-value
 - Will not learn if only exploiting
- Explore
 - Choose random action
- Strategies
 - ε-exploration explore randomly part of the time
 - Reduce ε as time goes
 - Optimism in face of uncertainty assign high initial q-values
 - Need to start with realistic Q-values
- SARSA
 - Include risk of exploration in updates
 - Look one more step ahead

Additional approaches

- Random outcome of actions
 - Learn probabilities for transitions
 - Build environment model
- Learn supervised models for value of state
 - Environments are complex
 - Use state properties as features and Q-values as targets
- Learning strategies in multiagent environments
 - Game playing (Alpha Zero)

uib.no

