

WHAT IS CLAIMED IS:

- Suk Q2*
1. A valve timing control system for an internal combustion engine, comprising:
a drive force transmitter driven by means of a crank shaft of the internal
combustion engine;
2. a cam shaft having an external periphery which is formed with a drive cam for
operating a valve of the internal combustion engine, the cam shaft being so fitted
with the drive force transmitter as to rotate the drive force transmitter relative to the
cam shaft when so required, the cam shaft being a follower which is rotated with a
drive force transmitted from the drive force transmitter;
3. a housing rotating integrally with one of the drive force transmitter and the
cam shaft;
4. a vane rotor housed in the housing, and rotating integrally with the other of the
drive force transmitter and the cam shaft;
5. an advanced angle chamber and a delayed angle chamber disposed in the
housing, and rotating the vane rotor with an oil pressure;
6. an oil pressure conveyer communicating to the advanced angle chamber and
the delayed angle chamber, the oil pressure conveyer supplying the oil pressure
selectively to one of the advanced angle chamber and the delayed angle chamber
while draining the oil pressure selectively from the other of the advanced angle
chamber and the delayed angle chamber;
7. a protrusion shaft formed on at least one of the vane rotor and the housing, the
protrusion shaft protruding forward;
8. a target plate mounted on at least one of the vane rotor and the housing, the
target plate being formed substantially flat and fitted to the protrusion shaft; and
9. a sensor disposed in a vicinity of the target plate, the sensor detecting a
rotational angle of the target plate.
10. 2. The valve timing control system for the internal combustion engine as claimed
in claim 1, in which the target plate is formed through a press molding.

1 3. The valve timing control system for the internal combustion engine as claimed
2 in claim 1, in which the target plate is fixed to the protrusion shaft through a press
3 fitting.

1 4. The valve timing control system for the internal combustion engine as claimed
2 in claim 1, in which the target plate has an internal periphery and an external
3 periphery, the external periphery facing the sensor and being thinner than the
4 internal periphery.

1 5. The valve timing control system for the internal combustion engine as claimed
2 in claim 1, in which the target plate is formed with a stopper for stopping a rotation
3 of the target plate relative to the protrusion shaft.

1 6. The valve timing control system for the internal combustion engine as claimed
2 in claim 5, in which the stopper is a key slot receiving a key so as to prevent the
3 rotation of the target plate relative to the protrusion shaft.

1 7. The valve timing control system for the internal combustion engine as claimed
2 in claim 1, in which

3 a supply-drain passage shaft is fixedly disposed in the internal combustion
4 engine,

the supply-drain passage shaft being for supplying an operation oil to the advanced angle chamber and for draining the operation oil from the advanced angle chamber, and

8 the supply-drain passage shaft being for supplying the operation oil to the
9 delayed angle chamber and for draining the operation oil from the delayed angle
10 chamber;

11 a connection hole is defined from a head end of the protrusion shaft disposed
12 on the vane rotor to substantially a center of a shell section of the vane rotor;

the supply-drain passage shaft is so inserted into the connection hole as to rotate relative to the connection hole; and

15 a seal ring is disposed between the connection hole and the supply-drain
16 passage shaft.

1 8. The valve timing control system for the internal combustion engine as claimed
2 in claim 1, in which

3 the target plate has an internal periphery which is formed with a boss section
4 embossed axially, and

5 the target plate is press fitted to the protrusion shaft for fixation in such a
6 manner that the boss section is positioned on a side defining a root of the protrusion
7 shaft.

1 9. The valve timing control system for the internal combustion engine as claimed
2 in claim 1, in which

3 the target plate has an internal periphery which is so bent through a press
4 molding as to form a cross section shaped substantially into an alphabetical U, and
5 an inner cylindrical wall formed inside the internal periphery of the target plate
6 is press fitted to the protrusion shaft for fixation.

1 10. The valve timing control system for the internal combustion engine as claimed
2 in claim 9, in which

3 the internal periphery of the target plate further has a bottom section for
4 forming the cross section shaped substantially into the alphabetical U, and

5 the inner cylindrical wall of the target plate is press fitted to the protrusion
6 shaft from the bottom section of the target plate.

1 11. The valve timing control system for the internal combustion engine as claimed
2 in claim 1, in which the drive force transmitter is a chain sprocket.

1 12. A valve timing control system for an internal combustion engine, comprising:
2 a drive force transmitter driven by means of a crank shaft of the internal
3 combustion engine;

4 a cam shaft having an external periphery which is formed with a drive cam for
5 operating a valve of the internal combustion engine, the cam shaft being so fitted
6 with the drive force transmitter as to rotate the drive force transmitter relative to the
7 cam shaft when so required, the cam shaft being a follower which is rotated with a
8 drive force transmitted from the drive force transmitter;

9 a rotation control mechanism disposed between the drive force transmitter and
10 the cam shaft, the rotation control mechanism supplying an oil pressure from an
11 outside and draining the oil pressure to the outside so as to control the derive force
12 transmitter to rotate relative to the cam shaft;

13 a target plate mounted on at least one of the drive force transmitter and the cam
14 shaft, the target plate comprising:

15 a plurality of detector protrusions protruding radially outward and
16 disposed at regular angular intervals circumferentially on the target plate, the
17 detector protrusions being substantially equal in width, each two of the detector
18 protrusions defining therebetween a first pulse interval of a detection signal, and

19 one index protrusion protruding radially outward and disposed between
20 two of the detector protrusions that are predetermined and adjacent to the one index
21 protrusion, the one index protrusion being substantially equal in width to any one of
22 the detector protrusions, the one index protrusion and the any one of the detector
23 protrusions defining therebetween a second pulse interval of the detection signal, the
24 second pulse interval being shorter than the first pulse interval; and

25 a sensor for detecting the plurality of the detector protrusions and the one
26 index protrusion of the target plate, so as to detect a rotational position of the drive
27 force transmitter and a rotational position of the cam shaft, by the following steps of:

28 detecting a point in time when the first pulse interval is reduced to the
29 second pulse interval shorter than the first pulse interval, and

30 determining the point in the time as an arrival of the one index protrusion
31 at a detection position of the sensor.

1 13. The valve timing control system for the internal combustion engine as claimed
2 in claim 12, in which

3 the target plate has an internal periphery; and

4 each of the detector protrusion and the index protrusion of the target plate
5 protrudes from the internal periphery of the target plate, and is thinner than the
6 internal periphery of the target plate.

1 14. The valve timing control system for the internal combustion engine as claimed
2 in claim 12, in which the rotation control mechanism comprises:

3 a housing rotating integrally with one of the drive force transmitter and the
4 cam shaft,
5 a vane rotor housed in the housing, and rotating integrally with the other of the
6 drive force transmitter and the cam shaft,
7 an advanced angle chamber and a delayed angle chamber each of which is
8 disposed in the housing and rotates the vane rotor with the oil pressure; and
9 an oil pressure conveyer communicating to the advanced angle chamber and
10 the delayed angle chamber, the oil pressure conveyer supplying the oil pressure
11 selectively to one of the advanced angle chamber and the delayed angle chamber
12 while draining the oil pressure selectively from the other of the advanced angle
13 chamber and the delayed angle chamber.

1 15. The valve timing control system for the internal combustion engine as claimed
2 in claim 12, in which the detector protrusions are three in number.

1 16. The valve timing control system for the internal combustion engine as claimed
2 in claim 12, in which the drive force transmitter is a chain sprocket.

1 17. A valve timing control system for the internal combustion engine, comprising:
2 a protrusion shaft; and
3 a target plate fixed to the protrusion shaft, the target plate being formed
4 substantially flat, comprising:
5 a plurality of detector protrusions protruding radially outward and
6 disposed at regular angular intervals circumferentially on the target plate, the
7 detector protrusions being substantially equal in width, each two of the detector
8 protrusions defining therebetween a first pulse interval of a detection signal, and

9 one index protrusion protruding radially outward and disposed between
10 two of the detector protrusions that are predetermined and adjacent to the one index
11 protrusion, the one index protrusion being substantially equal in width to any one of
12 the detector protrusions, the one index protrusion and the any one of the detector
13 protrusions defining therebetween a second pulse interval of the detection signal, the
14 second pulse interval being shorter than the first pulse interval.

- 1 18. The valve timing control system for the internal combustion engine as claimed
2 in claim 17, in which
3 the target plate is formed through a press molding, and
4 the target plate is fixed to the protrusion shaft through a press fitting.

0695201000