DATA 311 - Fall 2020

Final Project - due Tuesday, Nov 24 by midnight

J.Mo Yang

```
In [59]: import pandas as pd
import sqlite3
In [60]: conn= sqlite3.connect('Final.db')
    curs = conn.cursor()
    curs.execute("PRAGMA foreign_keys=ON;")
Out[60]: <sqlite3.Cursor at 0x7f6102e7e180>
```

1) Which state(s) were the first to issue a state of emergency, and how many positive test cases had been reported in those state(s) at that time?

Return three columns:

- State
- Number of positive tests
- Date of emergency declaration

Out[61]: <sqlite3.Cursor at 0x7f6102e7e180>

```
Out[62]: State Positive Date_of_Emergency

O Washington 18 2020-02-29
```

2) Of states which did declare a state of emergency, which were the last, how many DEATHS had been reported in those state(s) at that time, and, if they did issue a statewide stay at home order, when?

Return 4 columns:

- State
- Number of deaths at the time state of emergency was declared
- Date the state of emergency was declared
- Date stay-at-home order issued (if it exists)

Out[63]: <sqlite3.Cursor at 0x7f6102e7e180>

```
Out [64]: State death Date_of_Emergency StayHomeAnnounced

O West Virginia 0 2020-03-16 2020-03-23
```

3) According to the data provided, which state(s) did not issue a stay-at-home order, and how many total deaths have been reported in those state(s)?

Return two columns:

- State
- Number of deaths (as of Nov 15)

```
Out[65]:
                       State death
                    Arkansas
                               2183
           0
           1
                       Iowa
                               1985
           2
                   Nebraska
                                779
                North Dakota
                                570
           3
                  Oklahoma
                               1528
              South Carolina
                               4112
               South Dakota
                                644
```

	State	death
7	Utah	718
8	Wyoming	144

4) Repeat the previous question, but this time look at states that did issue a stay-at-home order

Return three columns:

- State
- Number of deaths (as of Nov 15)
- Date stay-at-home order announced

Out[66]:		State	death	DateAnnounce
	0	California	18253	2020-03-19
	1	Connecticut	4737	2020-03-20
	2	Illinois	11162	2020-03-20
	3	New Jersey	16566	2020-03-20
	4	New York	26133	2020-03-20
	5	Delaware	736	2020-03-22
	6	Kentucky	1661	2020-03-22
	7	Louisiana	6132	2020-03-22
	8	Ohio	5722	2020-03-22
	9	Hawaii	222	2020-03-23
	10	Indiana	4910	2020-03-23
	11	Massachusetts	10329	2020-03-23
	12	Michigan	8376	2020-03-23
	13	New Mexico	1208	2020-03-23
	14	Oregon	761	2020-03-23
	15	Pennsylvania	9312	2020-03-23
	16	Washington	2519	2020-03-23
	17	West Virginia	582	2020-03-23
	18	Vermont	59	2020-03-24
	19	Wisconsin	2751	2020-03-24

	State	death	DateAnnounce
20	Idaho	759	2020-03-25
21	Minnesota	2905	2020-03-25
22	Colorado	2234	2020-03-26
23	Montana	520	2020-03-26
24	New Hampshire	499	2020-03-26
25	Alaska	98	2020-03-27
26	North Carolina	4806	2020-03-27
27	Kansas	1256	2020-03-28
28	Rhode Island	1254	2020-03-28
29	Arizona	6302	2020-03-30
30	District of Columbia	660	2020-03-30
31	Maryland	4302	2020-03-30
32	Tennessee	3893	2020-03-30
33	Virginia	3800	2020-03-30
34	Maine	165	2020-03-31
35	Mississippi	3543	2020-03-31
36	Texas	19559	2020-03-31
37	Florida	17734	2020-04-01
38	Nevada	1909	2020-04-01
39	Georgia	8957	2020-04-02
40	Alabama	3248	2020-04-03
41	Missouri	3374	2020-04-03

5) Return the following statistics for Virginia:

- Total number of postive cases reported
- Total number of deaths
- Total number of deaths per capita
- Mortality rate, estimated by: Number of deaths / number of positive cases

Hint: Beware of data types, integer conversion etc. The answers are probably not zero.

```
In [67]: pd.read_sql("""SELECT State, Positive, Death, (1.0*Death/Pop19)

AS DeathsPerCapita, (1.0*Death/Positive) AS MortRate
FROM tCovidDaily
JOIN tState USING (State)

JOIN tPopDensity USING (State)
```

```
WHERE State IS 'Virginia'
AND date IS '2020-11-15';""",conn)
```

```
        Out[67]:
        State
        Positive
        death
        DeathsPerCapita
        MortRate

        0
        Virginia
        201960
        3800
        0.000445
        0.018816
```

6) Which state has had the most deaths per capita as of Nov 15?

Return:

- State
- Number of deaths
- Population
- Population per square mile
- Number of deaths per capita
- Mortality rate, estimated as

Hint: I made a view first, which shortened up the SQL here quite a bit

```
        Out[68]:
        State
        death
        Pop19
        DeathsPerCapita
        PopPerSqMi
        MortRate

        0
        New Jersey
        16566
        8882190
        0.001865
        1207.767785
        0.059318
```

7) Repeat the previous question, but this time for the state with the fewest deaths per capita as of Nov 15

```
        Out[69]:
        State
        death
        Pop19
        DeathsPerCapita
        PopPerSqMi
        MortRate

        0
        Vermont
        59
        623989
        0.000095
        67.702291
        0.020422
```

8) For the entire US (i.e. the sum of all 50 states + Washington DC):

Get the daily number (not the running total) of positive cases, deaths, and tests reported

0

Return:

- Date
- The number of new positive tests reported per day
- The number of new deaths reported per day
- The number of new tests performed per day

Order the results by date, ascending

out[70]:		Date	PositivePerDay	DeathsPerDay	TestPerDay
	0	2020-01-22	0	0	0
	1	2020-01-23	0	0	1
	2	2020-01-24	0	0	0
	3	2020-01-25	0	0	0
	4	2020-01-26	0	0	0
	•••				
	294	2020-11-11	144134	1553	1380904
	295	2020-11-12	149099	1096	1488194
	296	2020-11-13	170051	1297	1682170
	297	2020-11-14	162755	1314	1654691
	298	2020-11-15	144807	657	1473789

299 rows × 4 columns

BONUS: +2 points. The previous results aren't readily intepretable as a long list of numbers.

Make a plot with date on the x-axis, and daily # of deaths on the y-axis.

```
In []:
In [71]: conn.commit()
   conn.close()
In [1]: # Don't forget to close the database!
```