# Bayesian Statistics Homework1

# Adam Li Department of Biomedical Engineering Johns Hopkins University Baltimore, MD 21210 ali39@jhu.edu

September 19, 2016

## 1 Problem 1

 $Y_1, Y_2, ..., Y_6$  are observations from a uniform distribution  $(\theta - 1/2, \theta + 1/2)$  in order: 10.9, 11.0, 11.1, 11.4, 11.5, 11.7. The prior is uniform (10, 20).

$$L(Y|\theta) \sim uniform(10, 20)$$

$$L(Y|\theta) = \prod_{i=1}^{6} \mathbb{1}(\theta - 1/2 < Y_i < \theta + 1/2)$$

 $L(Y|\theta)$  would just be an intersection of the indicator functions. For example,  $\mathbb{1}(\theta - 1/2 < 10.9 < \theta + 1/2) = \mathbb{1}(10.4 < \theta < 11.4)$ .

The indicator functions give the following constraints:

```
1(10.4 < \theta < 11.4)
```

 $1(10.5 < \theta < 11.5)$ 

 $1(10.6 < \theta < 11.6)$ 

 $1(10.9 < \theta < 11.9)$ 

 $1(11.0 < \theta < 12.0)$ 

which gives  $\mathbb{1}(11.0 < \theta < 11.4)$ 

The posterior distribution is  $P(\theta|Y) \propto L(\theta)P(\theta) = \mathbb{1}(11.0 < \theta < 11.4)\frac{1}{10}\mathbb{1}(10.0 < \theta < 20.0) = \mathbb{1}(11.0 < \theta < 11.4)\frac{1}{10}$ 

The posterior distribution  $P(\theta|Y) \sim uniform(11.0, 11.4)$ 

## 2 Problem 2

## 2.1 i

$$\begin{split} P(x|y,z) &= \frac{P(y,z|x)P(x)}{P(y,z)} = \frac{P(x,y,z)}{P(y,z)} \\ &= \frac{P(x,y,z)}{\int P(x,y,z)dx} = \frac{f(x,z)g(y,z)h(z)}{\int f(x,z)g(y,z)h(z)dx} = \frac{f(x,z)}{\int f(x,z)dx} \end{split}$$

### 2.2

$$\begin{split} P(y|x,z) &= \frac{P(x,z|y)P(y)}{P(x,z)} = \frac{P(x,y,z)}{P(x,z)} \\ &= \frac{P(x,y,z)}{\int P(x,y,z)dy} = \frac{f(x,z)g(y,z)h(z)}{\int f(x,z)g(y,z)h(z)dy} = \frac{g(y,z)}{\int g(y,z)dy} \end{split}$$

#### 2.3iii

We want to show, P(x, y|z) = P(y|z)P(x|z)

#### 3 Problem 3

$$P(\theta) \sim gamma(x, k)$$

$$P(Y|\theta) \sim exp(\theta)$$

With  $P(\theta) = constant * \theta^{k-1} e^{-\theta/x}$ , with  $E[\theta] = 0.2 = k\theta$  and  $Var[\theta] = 1 = 0.0$ 

 $k\theta^2$ , so it is gamma(5, 1/25) = gamma(x, k).  $L(\theta) = \prod_{i=1}^N P(Y_i|\theta) = \lambda^N e^{-\lambda \sum_{i=1}^N Y_i}$ , and we know the average = 3.8, so  $\sum i = 1^N Y_i = N * 3.8$ .

The posterior distribution is  $P(\theta|Y) \propto L(\theta)P(\theta) = L(\theta)gamma(x,k) = \theta^{k+N-1}e^{-\theta(\sum Y_i+1/x)}*constant.$ 

The posterior distribution is  $\sim gamma(\frac{1}{\sum Y_i+1/x}, k+N)$ . where k is known, x is known and the sum of  $Y_i$  are known.

#### Problem 4 4

The negative binomial distribution is defined for an unknown theta and r. k is defined as the number of successes from all samples.

Consider  $Y_1, ..., Y_N$  observations that = 1 if successful and 0 otherwise, where  $\sum Y_i = k$ 

$$P(\theta) \sim beta(a,b)$$

$$L(Y|\theta) = \prod_{i=1}^{N} \theta^{\sum Y_i} (1 - \theta)^r * constant$$

The posterior distribution is  $P(\theta|Y) \propto P(\theta)L(Y|\theta) = \theta^{a-1}(1-\theta)^{b-1}(1-\theta)^r\theta^{\sum Y_i} * constant = \theta^{a+\sum Y_i-1}(1-\theta)^{b+r-1}$ .

This is  $\sim beta(a + \sum Y_i, b + r)$ , which shows that the beta distribution is a conjugate family for the negative binomial distribution.

#### Problem 5 **5**

#### 5.1 i

This is just the joint distribution of many Bernoulli's, which is the Binomial  ${\it distribution}.$ 

$$P(Y_1 = y_1, ..., Y_{100} = y_{100} | \theta = {100 \choose k} \theta^k (1 - \theta)^{100 - k}$$

 $P(Y_1 = y_1, ..., Y_{100} = y_{100}|\theta = \binom{100}{k}\theta^k(1-\theta)^{100-k}$ The probability of the sum given theta, though does not look at the order of Bernoulli trials, but just at the sum. It is therefore  $P(\sum Y_i = y | \theta = \theta^k (1 - \theta)^{100 - k}$ 

$$P(\sum Y_i = y | \theta = \theta^k (1 - \theta)^{100 - k})$$

#### 5.2ii

See R Code.



# 5.3 iii



# 5.4 iv



## 5.5 v



The different plots show different variations of a "posterior distribution". In part ii), this shows a discretized plot of the likelihood function, whereas in part iii), there is now the introduction of a prior. IN part iv), this shows a more continuous versino of the posterior distribution. And then in v), this is the actual posterior distribution based on conjugate prior analysis.

## 6 Problem 6

We know that the beta priors for a binomial/bernoulli distribution is a conjugate prior. So the posterior distribution is of the form beta(A, B), where in this case, we solve and obtain:

$$A = a + 57$$

$$B = b + 100 - 57$$

The contour plots are shown here:

