Internal Measures (II): Normalized Cut and Modularity

- Normalized cut: $NC = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{vol(C_i)} = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{W(C_i, V)} = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{W(C_i, C_i) + W(C_i, \overline{C_i})} = \sum_{i=1}^{k} \frac{1}{\frac{W(C_i, \overline{C_i})}{W(C_i, \overline{C_i})} + 1}$ where $vol(C_i) = W(C_i, V)$ is the volume of cluster C_i
 - ☐ The higher normalized cut value, the better the clustering

- **Modularity** (for graph clustering) $Q = \sum_{i=1}^{k} \left(\frac{W(C_i, C_i)}{W(V, V)} \left(\frac{W(C_i, V)}{W(V, V)} \right)^2 \right)$ Modularity Q is defined as
 - where $W(V,V) = \sum_{i=1}^{k} W(C_i,V) = \sum_{i=1}^{k} W(C_i,C_i) + \sum_{i=1}^{k} W(C_i,\overline{C_i}) = 2(W_{in} + W_{out})$
 - \square Modularity measures the difference between the observed and expected fraction of weights on edges within the clusters.
 - ☐ The smaller the value, the better the clustering—the intra-cluster distances are lower than expected