Consider a linearised homogeneous isotropic elastic solid, that is a continuous medium where the stress tensor is given by the formula $\tau = \lambda(\operatorname{tr}\varepsilon)\mathbb{I} + 2\mu\varepsilon$, where $\varepsilon := \frac{1}{2}\left(\nabla U + (\nabla U)^T\right)$ denotes the linearised strain tensor.

Příklad (1.)

Show that dynamic governing equation $\varrho_R \frac{\partial^2 \mathbf{U}}{\partial t^2} = \operatorname{div} \boldsymbol{\tau}$ in this case reduces to

$$\varrho_R \frac{\partial^2 \mathbf{U}}{\partial t^2} = (\lambda + \mu) \nabla (\operatorname{div} \mathbf{U}) + \mu \Delta \mathbf{U}.$$

 $D\mathring{u}kaz$

$$(\operatorname{div}\boldsymbol{\tau})_{j} = (\operatorname{div}(\lambda(\operatorname{tr}\boldsymbol{\varepsilon})\mathbb{I} + 2\mu\boldsymbol{\varepsilon}))_{j} =$$

$$= \lambda \partial_{k} \left(\mathbb{I}_{jk} \sum_{i} \left(\frac{1}{2} \partial_{i} U_{i} + \frac{1}{2} \partial_{i} U_{i} \right) \right) + 2\mu \left(\frac{1}{2} \sum_{i} \partial_{i} (\partial_{i} U_{j}) + \frac{1}{2} \sum_{i} \partial_{i} (\partial_{j} U_{i}) \right) =$$

$$= \lambda \partial_{j} \left(\sum_{i} (\partial_{i} U_{i}) \right) + \mu \left(\sum_{i} \partial_{i} \partial_{i} U_{j} + \partial_{j} \left(\sum_{i} \partial_{i} U_{i} \right) \right) =$$

$$= \lambda (\nabla(\operatorname{div}\mathbf{U}))_{j} + \mu \Delta U_{j} + \mu (\nabla(\operatorname{div}\mathbf{U}))_{j} = ((\lambda + \mu) \nabla(\operatorname{div}\mathbf{U}) + \mu \Delta \mathbf{U})_{j}$$

Příklad (2.)

Assume that solution to previous equation has the form of a travelling plane wave, that is $\mathbf{U} = \mathbf{A}\sin(\mathbf{K} \cdot \mathbf{X} - \omega t)$. Substitute and show that the result can be rewritten in the form

$$\varrho_R c^2 \mathbf{A} = \left[\mu \left(\mathbb{I} - \frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K} \right) + (\lambda + 2\mu) \frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K} \right] \mathbf{A}.$$

Levá strana:

$$\varrho_R \frac{\partial^2 \mathbf{U}}{\partial t^2} = \varrho_R \mathbf{A} \frac{\partial \sin(\mathbf{K} \cdot \mathbf{X} - \omega t)}{\partial t^2} = \varrho_R \mathbf{A} \frac{\partial (-\omega \cos(K \cdot X - \omega t))}{\partial t} =$$

$$= \varrho_R \mathbf{A} - \omega^2 \sin(\mathbf{K} \cdot \mathbf{X} - \omega t) = \varrho_R c^2 \mathbf{A} (-K^2 \sin(\ldots)).$$

První člen pravé strany:

$$((\lambda + \mu)\nabla(\operatorname{div}\mathbf{U}))_{j} = (\lambda + \mu)\partial_{j}\left(\sum_{i}\partial_{i}A_{i}\sin(\mathbf{K}\cdot\mathbf{X} - \omega t)\right) =$$

$$= (\lambda + \mu)\sum_{i}\partial_{j}A_{i}K_{i}\cos(\mathbf{K}\cdot\mathbf{X} - \omega t) = -(\lambda + \mu)\sum_{i}A_{i}K_{i}K_{j}\sin(\mathbf{K}\cdot\mathbf{X} - \omega t) =$$

$$= -(\lambda + \mu)(\mathbf{K}\otimes\mathbf{K})\mathbf{A}\sin(\mathbf{K}\cdot\mathbf{X} - \omega t) = (\lambda + \mu)\left(\frac{\mathbf{K}}{K}\otimes\frac{\mathbf{K}}{K}\right)\mathbf{A}(-K^{2}\sin(\ldots)).$$

Druhý člen pravé strany:

$$\mu \Delta \mathbf{U} = \mu \Delta \left(\mathbf{A} \sin(\mathbf{K} \cdot \mathbf{X} - \omega t) \right) = \mu \mathbf{A} \Delta \left(\sin(\mathbf{K} \cdot \mathbf{X} - \omega t) \right) = \mu \mathbf{A} \sum_{i} K_{i}^{2} \left(-\sin(\mathbf{K} \cdot \mathbf{X} - \omega t) \right) =$$

$$= \mu \mathbf{A} \left(-K^{2} \cdot \sin(\dots) \right).$$

Předpokládáme, že $K \neq 0$, tedy můžeme dělit rovnici K^2 a navíc $\sin(...)$ bude nulový pouze na množině s prázdným vnitřkem, takže rovnici můžeme dodefinovat ze spojitosti a můžeme dělit i $-\sin(...)$:

$$\varrho_R c^2 \mathbf{A} = (\lambda + \mu) \left(\frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K} \right) \mathbf{A} + \mu \mathbf{A} = \left[\mu \left(\mathbb{I} - \frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K} \right) + (\lambda + 2\mu) \frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K} \right] \mathbf{A}$$

This is an eigenvalue problem of the form $c^2 \mathbf{A} = \mathbb{A} \mathbf{A}$, where

$$\mathbb{A} := \frac{\mu}{\rho_R} \left(\mathbb{I} - \frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K} \right) + \frac{\lambda + 2\mu}{\rho_R} \frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K}.$$

2

Příklad (3.)

Show that the displacement in the form $\mathbf{U} := \mathbf{A} \sin(\mathbf{K} \cdot \mathbf{X} - \omega t)$ is a solution in \mathbb{R}^3 provided that either \mathbf{A} is parallel to \mathbf{K} and the speed of propagation is $c_{\parallel} = \sqrt{\frac{\lambda + 2\mu}{\varrho_R}}$ or \mathbf{A} is perpendicular to \mathbf{K} and the speed of propagation is $c_{\perp} = \sqrt{\frac{\mu}{\varrho_R}}$.

Důkaz

 $\left(\frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K}\right) \mathbf{A} = \frac{\mathbf{K}}{K} \left(\frac{\mathbf{K}}{K} \cdot \mathbf{A}\right)$ je kolmá projekce vektoru \mathbf{A} na \mathbf{K} podle toho, co víme o skalárním součinu (skalární součin s jednotkovým vektorem dává velikost projekce, vynásobením tím samým jednotkovým vektorem získáme pak celou projekci).

Tím pádem $\left(\frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K}\right) \mathbf{A}$ je tedy projekce \mathbf{A} na \mathbf{K} a $(\mathbb{I} - \ldots) \mathbf{A}$ je tedy projekce \mathbf{A} na ortogonální doplněk \mathbf{K} . \mathbf{A} tedy násobení maticí \mathbb{A} rozloží na vektor ve směru \mathbf{K} , ten vynásobí $\frac{\lambda + 2\mu}{\varrho_R}$, a na vektor v kolmém směru, a ten vynásobíme $\frac{\mu}{\varrho_R}$, a pak je zase sečteme.

Na levé straně násobíme skalárem c^2 , na což se můžeme podívat jako na rozložení $\bf A$ na složku ve směru $\bf K$ a na složku v ortogonálním směru a následně vynásobíme obě části c^2 a sečteme. Tedy

$$c^2\left(\mathbb{I} - \frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K}\right) \mathbf{A} + c^2\left(\frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K}\right) \mathbf{A} = \frac{\mu}{\varrho_R} \left(\mathbb{I} - \frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K}\right) \mathbf{A} + \frac{\lambda + 2\mu}{\varrho_R} \left(\frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K}\right) \mathbf{A}.$$

Jelikož jsou podprostory ortogonální, musí rovnost platit v každém z nich, tedy:

$$c^{2}\left(\mathbb{I} - \frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K}\right) \mathbf{A} = \frac{\mu}{\varrho_{R}} \left(\mathbb{I} - \frac{\mathbf{K}}{K} \otimes \frac{\mathbf{K}}{K}\right) \mathbf{A},$$

$$c^{2}\left(\mathbf{K} \otimes \mathbf{K}\right) \mathbf{A} = \lambda + 2\mu \left(\mathbf{K} \otimes \mathbf{K}\right) \mathbf{A}$$

$$c^{2}\left(\frac{\mathbf{K}}{K}\otimes\frac{\mathbf{K}}{K}\right)\mathbf{A} = \frac{\lambda+2\mu}{\varrho_{R}}\left(\frac{\mathbf{K}}{K}\otimes\frac{\mathbf{K}}{K}\right)\mathbf{A}.$$

Tudíž se vždy buď rovnají skaláry, nebo jsou nulové příslušné projekce. Obě projekce být nulové nemohou (součet dává původní vektor a předpokládáme, že $\mathbf{A} \neq \mathbf{o}$). Kdyby obě byly nenulové, tak $\mu = c^2 = \lambda + 2\mu$, tedy $\mu + \lambda = 0 \implies \gamma = +\infty \leqslant \frac{1}{2}$. Tedy zbývá možnost, že je právě jedna projekce nenulová.

Když **A** je paralelní na **K** (projekce na **K** je nenulová a druhá je nulová), pak $c^2 = \frac{\lambda + 2\mu}{\varrho_R}$, tj. $c = \sqrt{\frac{\lambda + 2\mu}{\varrho_R}}$, když **A** je na **K** kolmé, pak $c^2 = \frac{\mu}{\varrho_R}$, tj. $c = \sqrt{\frac{\mu}{\varrho_R}}$.