Routing within a network: Internet Helper Protocols

- # Internet Control Message Protocol (ICMP): used to send error messages back to the source when a datagram fails to be processed;
 - - destination is unreachable
 - > TTL expired
 - > IP checksum does not match
 - Or advisory messages, such as ICMP-Redirect, ping, and traceroute
- # Tunneling: a virtual point-to-point link created by encapsulating IP-in-IP
 - Provides some special capability (e.g., MBone (multicast backbone))
 - Creates a secure networking
 - Connectivity across other-than-IP networks
 - Forced delivery (e.g., mobile networks (MobileIP))

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

1

ICMP: Internet Control Message Protocol

- ****** used by hosts, routers, gateways to communication network-level information
 - error reporting: unreachable host, network, port, protocol
 - cho request/reply (used by ping)
- **X** ICMP message: type, code plus first 8 bytes of IP datagram causing the error

Type	Code	description
------	------	-------------

- 0 0 echo reply (ping)
- 3 0 dest. network unreachable
- 3 1 dest host unreachable
- 3 2 dest protocol unreachable
- 3 dest port unreachable
 3 6 dest network unknown
- 3 7 dest host unknown
- 4 0 source quench (congestion control not used)
- 8 0 echo request (ping)
- 9 0 route advertisement
- 10 0 router discovery
- 11 0 TTL expired
- 12 0 bad IP header

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

Interior Gateway Protocols (IGP): Routing Information Protocol (RIP)

- # The *Routing Information Protocol* (*RIP*) is an example of a use of the Distance-Vector protocol.
- ₩ RIP advertises routes to other networks (not other routers).
- ∺ RIP exchanges route advertisements every 30 sec and every time that a route is changed due to a received advertisement.
- # The *cost* used by RIP is the number of hops, with the value of "16" representing infinity.
- # Included in BSD-UNIX Distribution in 1982

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

3

Interior Gateway Protocols (IGP): OSPF (Open Shortest Path First)

- # Uses Link State algorithm
 - ❖ LS packet (LSP) dissemination
 - Topology map at each node
 - Route computation using Dijkstra's algorithm
- # Each node assumed to know state of links to its neighbors
- # Each node broadcasts its state to all other nodes
 - use of reliable flooding mechanism
- ★ Each node locally computes shortest paths to all other nodes from the locally available global state
 - Using Dijkstra's shortest path algorithm

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

OSPF "advanced" features

- Some goals/features of OSPF include:
 - open standard (as opposed to proprietary protocols)
 - type-of-service (TOS) routing (for each link, multiple cost metrics for different TOS (e.g., satellite link cost set "low" for best effort; high for real time))
 - load balancing
 - * allows network partition to self-contained subsets termed areas
 - variety of authentication schemes (all OSPF messages authenticated (crypto-based authentication))
 - integrated uni- and multi-cast support
 - * host- and network-specific routes
 - uses the notion of the designated router to minimize the amount of periodic broadcast link status
 - * allows virtual network topology
 - allows the exchange of information from external sites.

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

5

Hierarchical OSPF

- # Two-level hierarchy: local area, backbone.
 - Link-state advertisements only in area
 - Each node has detailed area topology; only knows direction (shortest path) to nets in other areas.
- ** Area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- **Backbone routers:** run OSPF routing limited to backbone.
- **Boundary routers:** connect to other AS's.

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

Link Metrics

- **★ Simplest metric is number of hops**
 - * Treats all links the same way (e.g., delay, capacity, load)
- # Queue-length (lacks the dynamic aspect)
- Average link delay (instability → idle links; dynamic range)
 Delay = (Depart_Time-Arrival_Time) + Transmission_Time + Latency
 Transmission_Time

 © Bandwidth
 Latency
 © Prop. Delay
- Eink utilization + "smoothing"

 (limit the amount of change in one measurement cycle) to eliminate instability + compression of dynamic range

 Eink utilization + "smoothing"

 (limit the amount of change in one dynamic range)

 Eink utilization + "smoothing"

 (limit the amount of change in one dynamic range)

 Eink utilization + "smoothing"

 (limit the amount of change in one dynamic range)

 Eink utilization + "smoothing"

 (limit the amount of change in one dynamic range)

 Eink utilization + "smoothing"

 Eink utilization + "smoothing"

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

7

Scalability: Improving the Scaling Properties

- # Dijkstra's shortest-path algorithm
 - \triangleright Simplest version: $O(N^2)$, where N is # of nodes
 - ▶ Better versions: O(L*log(N)), where L is # links
 - ➤ Incremental algorithms: great for small changes
- #Timers to pace operations
 - Minimum time between LSAs for the same link
 - Minimum time between path computations
- # More resources on the routers
 - > Routers with more CPU and memory

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017