

IN THE CLAIMS:

1-7. (canceled)

8. (currently amended) An organic electroluminescent display, comprising:

- (a) an organic light-emitting device including, in the recited sequence,
 - a substrate,
 - thin film transistors that each have a source and a drain,
 - anodes or cathodes that include an electrically conductive thin film material and are each connected to the source or the drain on a corresponding one of the thin film transistors,
 - an organic electroluminescent light-emitting layer,
 - an upper transparent electrode that is a cathode or anode and includes a transparent electrically conductive material, and
 - at least one passivation layer on the upper transparent electrode;
- (b) a color-converting substrate that comprises
 - a transparent supporting substrate, and
 - color-converting filters that comprise color filter layers alone, or color filter layers and color-converting layers, and are disposed on the supporting substrate, the color-converting filters having edges;
- (c) adhesive that is disposed between and in direct contact with the organic light-emitting device and the color-converting filters, and that bonds the organic light-emitting device and the color-converting filters together with the color-converting filters facing the upper transparent electrode of the organic light-emitting device; and

(d) a stress-relieving layer that is disposed between and in direct contact with the organic light-emitting device and the color-converting filters, the stress-relieving layer being patterned to have walls that are disposed in positions corresponding to the edges of the color-converting filters and to have openings between the walls, the adhesive extending into the openings.

9. (previously presented) The organic electroluminescent display according to claim 8, wherein the stress-relieving layer includes a resin having a higher elasticity than the adhesive.

10. (previously presented) The organic electroluminescent display according to claim 8, wherein the stress-relieving layer has a lower refractive index than the adhesive.

11. (previously presented) The organic electroluminescent display according to claim 8, wherein walls of the stress-relieving layer have a reverse tapered shape relative to the color filter layers alone, or the color filter layers and the color-converting layers, of the color-converting filters.

12. (currently amended) The An organic electroluminescent display according to claim 8, display, comprising:

(a) an organic light-emitting device including, in the recited sequence,
a substrate,

thin film transistors that each have a source and a drain,
anodes or cathodes that include an electrically conductive thin film material and
are each connected to the source or the drain on a corresponding one of the thin film
transistors.

an organic electroluminescent light-emitting layer,
an upper transparent electrode that is a cathode or anode and includes a
transparent electrically conductive material, and
at least one passivation layer on the upper transparent electrode;

(b) a color-converting substrate that comprises
a transparent supporting substrate, and
color-converting filters that comprise color filter layers alone, or color filter layers
and color-converting layers, and are disposed on the supporting substrate, the color-
converting filters having edges;

(c) adhesive that is disposed between the organic light-emitting device and the
color-converting filters, and that bonds the organic light-emitting device and the color-
converting filters together with the color-converting filters facing the upper transparent
electrode of the organic light-emitting device; and

(d) a stress-relieving layer that is disposed between the organic light-emitting
device and the color-converting filters, the stress-relieving layer being patterned to have
walls that are disposed in positions corresponding to the edges of the color-converting
filters and to have openings between the walls, the adhesive extending into the openings,
wherein the stress-relieving layer is black.

13. (currently amended) ~~The~~ An organic electroluminescent display according to claim 8, display, comprising:

(a) an organic light-emitting device including, in the recited sequence, a substrate,

thin film transistors that each have a source and a drain,

anodes or cathodes that include an electrically conductive thin film material and are each connected to the source or the drain on a corresponding one of the thin film transistors,

an organic electroluminescent light-emitting layer,

an upper transparent electrode that is a cathode or anode and includes a transparent electrically conductive material, and

at least one passivation layer on the upper transparent electrode;

(b) a color-converting substrate that comprises

a transparent supporting substrate, and

color-converting filters that comprise color filter layers alone, or color filter layers and color-converting layers, and are disposed on the supporting substrate, the color-converting filters having edges;

(c) adhesive that is disposed between the organic light-emitting device and the color-converting filters, and that bonds the organic light-emitting device and the color-converting filters together with the color-converting filters facing the upper transparent electrode of the organic light-emitting device; and

(d) a stress-relieving layer that is disposed between the organic light-emitting device and the color-converting filters, the stress-relieving layer being patterned to have

walls that are disposed in positions corresponding to the edges of the color-converting filters and to have openings between the walls, the adhesive extending into the openings,
wherein the stress-relieving layer has fine particles dispersed therein that promote thermal conductivity.

14. (previously presented) The organic electroluminescent display according to claim 8, wherein the stress-relieving layer is formed from a polymeric material having fine carbon particles dispersed therein to promote thermal conductivity.