Math 425: Abstract Algebra 1

Section 0.3: Mappings

Mckenzie West

Last Updated: September 14, 2022

Last Time.

- Counterexamples
- Contrapositive
- Converse
- Sets and Operations
- Cardinality
- Power Sets
- Cartesian Products

Today.

- Mappings
- Codomain vs Range
- Image and Inverse Image
- One-to-One, Onto, Bijection
- Identity Map

A mapping or function α from A to B is a rule that assigns to every input $a \in A$ exactly one output $\alpha(a) \in B$.

Notation:

$$\alpha: A \to B \text{ or } A \xrightarrow{\alpha} B.$$

Once we have verified that each input maps to exactly one output then we say the mapping is well-defined.

Assume $\alpha: A \to B$ is a mapping.

- We call A the domain of α and B the codomain of α .
- If $C \subseteq A$, then the image of C is

$$\alpha(C) = \{b \in B : b = \alpha(c) \text{ for some } c \in C\}.$$

- The range of α is the image of the domain,

$$im(\alpha) = \alpha(A) = \{\alpha(a) \in B : a \in A\}.$$

Exercise 1.

Define $\alpha : \mathbb{Z} \to \mathbb{Z}$ by $\alpha(n) = 3n + 1$.

1. Compute the image of $C = \{2, 4, 6\}$.

2. What is the range of α ?

We will call two maps $\alpha: A \to B$ and $\beta: A \to B$ equal if $\alpha(a) = \beta(a)$ for all $a \in A$.

Example.

Consider $\alpha:\mathbb{Z} \to \{0,1\}$ and $\beta:\mathbb{Z} \to \{0,1\}$ defined by

$$\alpha(n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd} \end{cases} \text{ and } \beta(n) = \left\lceil \frac{n}{2} \right\rceil - \left\lfloor \frac{n}{2} \right\rfloor.$$

These are equal but have very different feeling descriptions.

Let $\alpha \colon A \to B$ be a mapping.

- (a) We call α one-to-one or injective if for all $a_1, a_2 \in A$ if $\alpha(a_1) = \alpha(a_2)$, then $a_1 = a_2$.
- (b) We call α onto or surjective if for all $b \in B$ there is an $a \in A$ such that $\alpha(a) = b$.
- (c) We call α a bijection or bijective if α is both one-to-one and onto.

Exercise 2.

Define $\alpha : \mathbb{Z} \to \mathbb{Z}$ by $\alpha(n) = 3n + 1$.

- **1.** Is α one-to one?
- **2.** Is α onto?
- **3.** Is α a bijection?

Generic Proof of One-to-One.

Generic Proof of Onto.

Exercise 3.

Write down a mapping $\alpha \colon \mathbb{Z} \to \mathbb{Z}$ that is

- (a) neither one-to-one nor onto,
- (b) one-to-one and not onto,
- (c) onto and not one-to-one,
- (d) a bijection.

Brain Break.

What is your favorite class you've taken and why?

The identity map for the set A is the map $1_A:A\to A$ defined by $1_A(a)=a$ for all $a\in A$.

If $\alpha:A\to B$ and $\beta:B\to C$ are mappings, we can write

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C$$

and the composition of the maps is the mapping $\beta\alpha:A\to C$ defined by

$$\beta\alpha(a) = \beta[\alpha(a)]$$
 for all $a \in A$.

Theorem 0.3.3.

Let $A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} D$ be mappings on sets. Then

- **1.** (identity) $\alpha 1_A = \alpha$ and $1_B \alpha = \alpha$
- **2.** (associativity) $\gamma(\beta\alpha) = (\gamma\beta)\alpha$
- **3.** If α and β are both one-to-one (resp. onto), then $\beta\alpha$ is one-to-one (resp. onto) too.

14

Definition.

If $\alpha:A\to B$ is a mapping of sets, then we call $\beta:B\to A$ an inverse of α if

$$\beta \alpha = 1_A$$
 and $\alpha \beta = 1_B$.

Example.

 $\alpha: \mathbb{R} \to \mathbb{R}, \ \alpha(x) = 3x + 1$

 $\beta: \mathbb{R} \to \mathbb{R}, \ \beta(x) = \frac{1}{3}x - \frac{1}{3}$

Theorem 0.3.4.

If $\alpha: A \to B$ has an inverse, then the inverse mapping is unique.

Proof.

Let $\alpha: A \to B$ be a mapping with an inverse. Let β and β' be two inverses of α . We compute

$$eta = eta 1_B$$
 Theorem 0.3.3(a)
 $= eta (lpha eta')$ eta' inverse of $lpha$
 $= (eta lpha) eta'$ Theorem 0.3.3(b)
 $= 1_A eta'$ eta inverse of $lpha$
 $= eta'$ Theorem 0.3.3(a).

Therefore $\beta = \beta'$, and the inverse of α is unique.

Result.

The notation α^{-1} is valid.

Theorem 0.3.5.

Let $\alpha: A \to B$ and $\beta: B \to C$ denote mappings.

- **1.** The identity map, $1_A: A \to A$ is invertible and $1_A^{-1} = 1_A$.
- **2.** If α is invertible, then α^{-1} is invertible and $(\alpha^{-1})^{-1} = \alpha$.
- **3.** If α and β are both invertible, then $\beta\alpha$ is invertible with $(\beta\alpha)^{-1} = \alpha^{-1}\beta^{-1}$.

Invertibility Theorem (Theorem 0.3.6).

A mapping $\alpha: A \to B$ is invertible if and only if α is a bijection.