Natural Language Inference

Shira Rozenthal and Peter Sapountzis

Causal Inference & NLI

Causal inference is the process of determining if a causal relationship exists between two events.

In NLI, the relationship between a premise and a hypothesis can be classified into one of 3 categories:

- 1. Entailment
- 2. **Neutrality**
- 3. Contradiction

Textual Entailment

For example, the premise "Peter and Shira are presenting their NLP project"

Entails that Peter and Shira are on the zoom call

Contradicts that Peter and Shira are sleeping through class

Is *neutral* on whether they are having fun

...we're having fun we promise!

MNLI

The MultiNLI (MNLI) dataset, sourced from the Open American National Corpus, encompasses both spoken and written premise/hypothesis pairs across 10 genres.

- These genres include transcriptions of face-to-face conversations, government documents, the 9/11 Commission report, articles from Slate Magazine, telephone conversations, etc.
- A distinctive aspect of MNLI is that only half of the genres are included in the training set, with the remaining unseen genres serving to test a model's ability to generalize to new text sources.

<pre>premise string · lengths</pre>	<pre>premise_binary_parse string · lengths</pre>	<pre>premise_parse string · lengths</pre>	hypothesis string · lengths	hypothesis_binary_parse string · lengths	hypothesis_parse string · lengths	genre string · classes	label class label
5 1.82k	6 3.43k	23 6.45k	1 393	1 669	19 1.15k	5 values	3 classes
The other men shuffled.	((The (other men)) (shuffled .))	(ROOT (S (NP (DT The) (JJ other) (NNS men)) (VP (VBD shuffled)) (The other men were shuffled around.	((The (other men)) ((were (shuffled	(ROOT (S (NP (DT The) (JJ other) (NNS men))	fiction	0 entailment
States must show reasonable	(States ((must (show (((ROOT (S (NP (NNPS States)) (VP (MD must) (VP (VB show) (NP (NP (JJ	Itis not necessary for there to be	(([Itis (not necessary)) (for ((ROOT (S (VP (VB Itis) (ADJP (RB not) (JJ	government	2 contradiction
well it's been very interesting	(well (it ('s (been (very	(ROOT (ADJP (RB well) (SBAR (S (NP (PRP it)) (VP (VBZ 's) (VP (VBN	It has been very intriguing.	(It ((has (been (very intriguing)))	(ROOT (S (NP (PRP It)) (VP (VBZ has) (VP (VBN	telephone	0 entailment
He started slowly back to the	(He (((started (slowly back)) ((ROOT (S (NP (PRP He)) (VP (VBD started) (ADVP (RB slowly) (RB	He returned slowly to the bunkhouse.	(He ((returned slowly) (to (the	(ROOT (S (NP (PRP He)) (VP (VBD returned) (ADV	fiction	0 entailment
and it's it's quite a bit i	(and (it ('s ((((((it (('s ((ROOT (PRN (CC and) (S (NP (PRP it)) (VP (VBZ 's) (S (S (NP (PRP it)) (V		(I (((do not) (know ((exactly wher	(ROOT (S (NP (PRP I)) (VP (VBP do) (RB not)	telephone	1 neutral
They're made from a secret recipe	(They (('re (made (from ((a	(ROOT (S (NP (PRP They)) (VP (VBP 're) (VP (VBN made) (PP (IN from)	The recipe passed down from	(((The recipe) ((passed down) (from	(ROOT (S (NP (NP (DT The) (NN recipe)) (VP	travel	2 contradiction
yeah well you're a student right	(yeah (well (you ('re (a (studen…	(ROOT (S (VP (VB yeah) (S (ADVP (RB well)) (NP (PRP you)) (VP (VBP 're)	Well you're a mechanics student	(Well (you (('re (a (mechanics (stude	(ROOT (S (ADVP (RB Well)) (NP (PRP you))	telephone	1 neutral

 We are using the mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 model, developed by Microsoft, for our project.

 Built on the mDeBERTa-v3-base architecture and pre-trained on the CC100 dataset, this model supports natural language inference (NLI) in 100 languages and is ideal for multilingual zero-shot classification tasks.

We are evaluating model performance with validation accuracy.

Training Our Model

 Determining Optimal Subset to Train: Given that our model is already pre-trained on some natural language, we wanted to determine where our validation accuracy begins to plateau in order to optimize our runtime without sacrificing performance.

 Gradient Clipping: This prevents the gradients from exploding, which is crucial for maintaining stable training dynamics.

• **Learning Rate Scheduler**: Adjusts the learning rate throughout training, which can help in converging to a better minimum.

Epoch 1: Average Loss: 0.37268252827463644 Epoch 2: Average Loss: 0.08028289416642298 Epoch 3: Average Loss: 0.017550210266130135 Epoch 4: Average Loss: 0.010786756653004208

Validation Accuracy: 85.26%

Demo

