Variational Attention for Sequence-to-Sequence Models

Hareesh Bahuleyan, Lili Mou, Olga Vechtomova, Pascal Poupart University of Waterloo, ON, Canada

Variational Autoencoder

- ☐ Variational Autoencoder (VAE)
 - Encode data Y as hidden random variables Z, then reconstruct Y.

- VAE models both $q_{\phi}(z|y)$ and $p_{\theta}(y|z)$ with neural networks.
- Training objective:

$$J_{\text{rec}}(\boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{y}^{(n)}) + \text{KL}\left(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{y}^{(n)}) || p(\boldsymbol{z})\right)$$

reconstruction loss

regularization

Variational Encoder-Decoder

- ☐ Variational Encoder-Decoder (VED)
 - Extend VAE to VED.

Model:

Attention Mechanism

☐ Attention significantly improves Seq2Seq performance in translation, summarization, etc.

$$\alpha_{ji} = \frac{\exp{\{\widetilde{\alpha}_{ji}\}}}{\sum_{i'=1}^{|\boldsymbol{x}|} \exp{\{\widetilde{\alpha}_{ji'}\}}} \qquad \boldsymbol{a}_j = \sum_{i=1}^{|\boldsymbol{x}|} \alpha_{ji} \boldsymbol{h}_i^{(\text{src})}$$

☐ Add attention to variational Seq2Seq model?

"Bypassing" Phenomenon

lacktriangle Observation: if the decoder has a direct, deterministic access to the encoder, the latent variables Z might not capture much information, so that VED does not learn much and play a role in the process.

Example: variational Seq2Seq with hidden state initialization

A Pilot Study

Input: the men are playing musical instruments

(a) VAE w/o hidden state init. (Avg entropy: 2.52)

the men are playing musical instruments
the men are playing video games
the musicians are playing musical instruments
the women are playing musical instruments

(b) VAE w/ hidden state init. (Avg entropy: 2.01)

the men are playing musical instruments the men are playing musical instruments the men are playing musical instruments the man is playing musical instruments

Table 1: Sentences obtained by sampling from the VAE latent space. (a) VAE without hidden state initialization. (b) VAE with hidden state initialization.

Variational Attention

 \square Treat latent space Z and attention vector a_i as random variables.

Variational lower bound

$$\mathcal{L}_{j}^{(n)}(\boldsymbol{\theta}, \boldsymbol{\phi})$$

$$= \mathbb{E}_{\boldsymbol{z}, \boldsymbol{a} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z}, \boldsymbol{a} | \boldsymbol{x}^{(n)})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{y}^{(n)} | \boldsymbol{z}, \boldsymbol{a}) \right]$$

$$- \text{KL} \left(q_{\boldsymbol{\phi}}(\boldsymbol{z}, \boldsymbol{a} | \boldsymbol{y}^{(n)}) \| p(\boldsymbol{z}, \boldsymbol{a}) \right)$$

$$= \mathbb{E}_{\boldsymbol{z} \sim q_{\boldsymbol{\phi}}^{(z)}(\boldsymbol{z} | \boldsymbol{x}^{(n)}), \boldsymbol{a} \sim q_{\boldsymbol{\phi}}^{(a)}(\boldsymbol{a} | \boldsymbol{x}^{(n)})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{y}^{(n)} | \boldsymbol{z}, \boldsymbol{a}) \right]$$

$$- \text{KL} \left(q_{\boldsymbol{\phi}}^{(z)}(\boldsymbol{z} | \boldsymbol{y}^{(n)}) \| p(\boldsymbol{z}) \right)$$

$$- \text{KL} \left(q_{\boldsymbol{\phi}}^{(a)}(\boldsymbol{a} | \boldsymbol{y}^{(n)}) \| p(\boldsymbol{a}) \right)$$

$$(7)$$

z and a are conditional independent given x, also marginally independent.

Variational Attention

- \square Prior $p(a_i)$
 - The same as z, set $p(a_i) = N(0, I)$.
 - $p(a_j) = N(\overline{h}^{(src)}, I)$, where $\overline{h}^{(src)} = \frac{1}{|x|} \sum_{i=1}^{|x|} h_i^{(src)}$.
- ☐ Training Objective

$$J^{(n)}(\boldsymbol{\theta}, \boldsymbol{\phi}) = J_{\text{rec}}(\boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{y}^{(n)})$$

$$+ \lambda_{\text{KL}} \left[\text{KL} \left(q_{\boldsymbol{\phi}}^{(z)}(\boldsymbol{z}) || p(\boldsymbol{z}) \right) + \gamma_a \sum_{j=1}^{|\boldsymbol{y}|} \text{KL} \left(q_{\boldsymbol{\phi}}^{(a)}(\boldsymbol{a}_j) || p(\boldsymbol{a}_j) \right) \right]$$

Experiments

- ☐ Task: generate questions based on a sentence in a paragraph.
- ☐ Generated questions do need some variety.
- Dataset: follow Du et al. (2017) and use SQuAD.
- ☐ Metrics:
 - Measure accuracy: BLEU-1 to BLEU-4.
 - Measure diversity: entropy and distinct metrics.

The percentage of distinct unigrams or bigrams.

Results

Model	Inference	BLEU-1	BLEU-2	BLEU-3	BLEU-4	Entropy	Dist-1	Dist-2
Previous work (Du et al., 2017)	MAP	43.09	25.96	17.50	12.28	-	-	-
DED (w/o Attn)	MAP	39.46	28.49	20.74	8.10	-	-	-
DED+DAttn	MAP	42.34	30.86	22.74	11.60	-	-	-
VED+DAttn	MAP	42.50	31.13	23.09	12.38	-	-	-
	Sampling	42.48	31.10	23.08	12.30	2.37	0.18	0.26
VED+DAttn (2-stage training)	MAP	42.17	30.96	22.95	11.98	-	-	-
	Sampling	41.98	30.82	22.81	11.78	2.41	0.19	0.27
VED+VAttn-0	MAP	41.77	30.54	22.53	11.37	-	-	-
	Sampling	41.73	30.51	22.49	11.27	2.44	0.20	0.28
VED+VAttn- \bar{h}	MAP	42.10	30.71	22.70	11.55	-	-	-
	Sampling	42.03	30.62	22.66	11.50	2.44	0.20	0.29

Table 2: BLEU, entropy, and distinct scores. We compare the deterministic encoder-decoder (DED) and variational encoder-decoders (VEDs). For VED, we have several variates: deterministic attention (DAttn) and the proposed variational attention (VAttn). We evaluate the sentences obtained by both max a posteriori (MAP) inference and sampling.

Sampling: draw 10 samples each time.

2-stage training: train VED without attention for first 20 epochs.

Strength of Attention's KL Loss

Entropy 1.5

1.0

0.5 - 0.5

0.0

0.1

0.3

1.0

3.0

10.0

$$J^{(n)}(\boldsymbol{\theta}, \boldsymbol{\phi}) = J_{\text{rec}}(\boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{y}^{(n)})$$

$$+ \lambda_{\text{KL}} \left[\text{KL} \left(q_{\boldsymbol{\phi}}^{(z)}(\boldsymbol{z}) || p(\boldsymbol{z}) \right) \right]$$

$$+ \gamma_a \sum_{j=1}^{|\boldsymbol{y}|} \text{KL} \left(q_{\boldsymbol{\phi}}^{(a)}(\boldsymbol{a}_j) || p(\boldsymbol{a}_j) \right) \right]$$

-

 γ_a has little effects.