# CS182: Introduction to Machine Learning Reference Solutions of Final Exam

June 12, 2022

# I Regression and Probability Estimation [12 points]

We consider the following linear regression model in which y is the sum of a deterministic linear function of x, plus random noise  $\epsilon$ , i.e.,

$$y = wx + \epsilon, \tag{1}$$

where x is the real-valued input, y is the real-valued output, and w is a single real-valued parameter to be learned. Here  $\epsilon$  is a real-valued random variable that represents noise which follows a Gaussian distribution with mean 0 and standard deviation  $\sigma$ , that is,  $\epsilon \sim \mathcal{N}(0, \sigma^2)$ .

**Note**: the probability density function f(X) of a Gaussian distributed variable  $X \sim \mathcal{N}(\mu, \sigma^2)$  takes the form

$$f(X=x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(x-\mu)^2}{2\sigma^2}).$$
 (2)

1. [4 points] Write down the probability distribution of y conditioned on x and w., i.e.  $Pr(y \mid w, x)$ .

Solution

$$\Pr(y \mid w, x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(y - wx)^2}{2\sigma^2}).$$

2. [4 points] Given n i.i.d. training examples  $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ . Let  $\mathcal{Y} = (y_1, ..., y_n)$  and  $\mathcal{X} = (x_1, ..., x_n)$ , please write down an expression for the conditional data likelihood:  $\Pr(\mathcal{Y} \mid \mathcal{X}, w)$ 

Solution

$$\Pr(\mathcal{Y} \mid \mathcal{X}, w) = \prod_{i=1}^{n} \Pr(y_i \mid x_i, w)$$

$$= (\frac{1}{2\pi\sigma^2})^{n/2} \prod_{i=1}^{n} \exp(-\frac{(y_i - wx_i)^2}{2\sigma^2})$$

$$= (\frac{1}{2\pi\sigma^2})^{n/2} \exp(-\frac{\sum_{i=1}^{n} (y_i - wx_i)^2}{2\sigma^2}).$$

3. [4 points] Suppose a Laplace prior over w with  $\mu = 0$  and b (i.e.,  $w \sim Laplace(0, b)$ ). Now you need to use MAP(maximum a posterior probability) to estimate w from the training data. Please show that finding the MAP estimate  $w^*$  is equivalent to solving the following optimization problem

$$w^* = \underset{w}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} (y_i - wx_i)^2 + c|w|.$$
 (3)

Express the regularization parameter c in terms of  $\sigma$  and b.

**Hint**: the probability density function f(X) of a Laplace distributed variable  $X \sim Laplace(\mu, b)$  takes the form

$$f(X = x) = \frac{1}{2b} \exp(-\frac{|x - \mu|}{b}).$$
 (4)

#### Solution

$$\Pr(w \mid \mathcal{Y}, \ \mathcal{X}) \propto \Pr(\mathcal{Y} \mid \mathcal{X}, w) \Pr(w)$$

$$\propto \exp(-\frac{\sum_{i=1}^{n} (y_i - wx_i)^2}{2\sigma^2}) \exp(-\frac{|w|}{b})$$

$$w^* = \underset{w}{\operatorname{argmin}} - \ln \Pr(w \mid \mathcal{Y}, \ \mathcal{X})$$

$$= \underset{w}{\operatorname{argmin}} \frac{\sum_{i=1}^{n} (y_i - wx_i)^2}{2\sigma^2} + \frac{|w|}{b}$$

$$= \underset{w}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} (y_i - wx_i)^2 + \frac{\sigma^2}{b} |w|.$$

We can find that  $c = \frac{\sigma^2}{b}$ .

# II LINEAR CLASSIFICATION [12 points]

Let X be a d-dimensional binary vector, drawn from one of two classes: P or Q. Assume each element  $X_i$  in X is an independent Bernoulli random variable with parameter  $p_i$  when X drawn from class P (similarly, with parameter  $q_i$  for class Q). That is

$$X_i|(Y = P) \sim Bernoulli(p_i), \qquad 1 \le i \le d,$$
  
 $X_i|(Y = Q) \sim Bernoulli(q_i), \qquad 1 \le i \le d.$ 

Note: for this problem, the values of  $p_i$  and  $q_i$ , along with priors  $\Pr(Y = P) = \pi_p$  and  $\Pr(Y = P) = \pi_q$ , are known.

1. [3 points] Given a vector  $x \in \{0,1\}^d$ , compute the probabilities  $\Pr(X = x | Y = P)$  and  $\Pr(X = x | Y = Q)$  in terms of class parameters  $p_i$  and  $q_i$ . Your answer must be a single expression for each probability.

#### Solution

$$\Pr(X = x | Y = P) = \prod_{i=1}^{d} p_i^{x_i} (1 - p_i)^{1 - x_i},$$
$$\Pr(X = x | Y = Q) = \prod_{i=1}^{d} q_i^{x_i} (1 - q_i)^{1 - x_i}.$$

2. [4 points] Please write down the equation which holds if and only if x is at the decision boundary of the Bayes' optimal classifier.

#### Solution

$$\Pr(Y = P | X = x) = \frac{\Pr(X = x | Y = P) \Pr(Y = P)}{\Pr(X = x)},$$

$$\Pr(Y = Q | X = x) = \frac{\Pr(X = x | Y = Q) \Pr(Y = Q)}{\Pr(X = x)},$$

Therefore, the equation of decision boundary is

$$\pi_p \Pr(X = x | Y = P) = \pi_q \Pr(X = x | Y = Q).$$

3. [5 points] The decision boundary derived above is actually linear in x, which can be expressed as:

$$\{x \in \{0,1\}^d | w^T x + b = 0\},\$$

for some vector w and scalar b. Please find expressions for w and b in terms of priors  $(\pi_p \text{ and } \pi_q)$  and class parameters  $(p_i \text{ and } q_i)$ .

#### Solution

$$\Pr(Y = P) \Pr(X = x | Y = P) = \Pr(Y = Q) \Pr(X = x | Y = Q)$$

$$\pi_p \prod_{i=1}^d p_i^{x_i} (1 - p_i)^{1 - x_i} = \pi_q \prod_{i=1}^d q_i^{x_i} (1 - q_i)^{1 - x_i}$$

$$ln(\pi_p) + \sum_{i=1}^d [x_i ln(p_i) + (1 - x_i) ln(1 - p_i)] = ln(\pi_q) + \sum_{i=1}^d [x_i ln(q_i) + (1 - x_i) ln(1 - q_i)]$$

where we can get:

$$\sum_{i=1}^{d} \left[ \left( \ln \frac{p_i}{q_i} - \ln \frac{1 - p_i}{1 - q_i} \right) x_i \right] + \ln \frac{\pi_p}{\pi_q} + \sum_{i=1}^{d} \ln \frac{1 - p_i}{1 - q_i} = 0.$$

Therefore,

$$w_i = ln\frac{p_i}{q_i} - ln\frac{1 - p_i}{1 - q_i}$$

$$b = \ln \frac{\pi_p}{\pi_q} + \sum_{i=1}^d \ln \frac{1 - p_i}{1 - q_i}.$$

# III GRAPHICAL MODEL [12 points]

We have a Bayesian network shown below, in which  $X_1, X_2, ..., X_8$  are eight boolean random variables. Please answer the following questions.

Note: correct answers without proof will get 0 point.



Figure 1: The Bayesian network with eight variables.

1. [3 points] Now we have known probabilities for some random variables. For  $X_1$ , we have  $\Pr(x_1) = 0.7$ . For  $X_2$ , we have  $\Pr(x_2|x_1) = 0.6$  and  $\Pr(x_2|\neg x_1) = 0.3$ . For  $X_3$ , we have  $\Pr(x_3|x_2) = 0.4$  and  $\Pr(x_3|\neg x_2) = 0.8$ . Apply the method of inference to calculate marginal probability  $\Pr(\neg x_3)$ . **Note**: please round your results to 3 decimal places.

# Solution $\begin{aligned} \Pr(\neg x_3) &= \sum_{x_1, x_2} \Pr(x_1, x_2, \neg x_3) \\ &= \Pr(x_1) \Pr(x_2 | x_1) \Pr(\neg x_3 | x_2) + \Pr(x_1) \Pr(\neg x_2 | x_1) \Pr(\neg x_3 | \neg x_2) \\ &+ \Pr(\neg x_1) \Pr(x_2 | \neg x_1) \Pr(\neg x_3 | x_2) + \Pr(\neg x_1) \Pr(\neg x_2 | \neg x_1) \Pr(\neg x_3 | \neg x_2) \\ &= 0.7 \times 0.6 \times 0.6 + 0.7 \times 0.4 \times 0.2 + 0.3 \times 0.3 \times 0.6 + 0.3 \times 0.7 \times 0.2 \\ &= 0.404. \end{aligned}$

2. [3 points] Using the same probabilities for  $X_1, X_2 = X_3$  in III.1, and apply the method of inference to calculate conditional probability  $\Pr(\neg x_2 | \neg x_3)$ .

Note: please round your results to 3 decimal places.

Solution 
$$\begin{aligned} & \Pr(\neg x_2, \neg x_3) = \sum_{x_1} \Pr(x_1, \neg x_2, \neg x_3) \\ & = \Pr(x_1) \Pr(\neg x_2 | x_1) \Pr(\neg x_3 | \neg x_2) + \Pr(\neg x_1) \Pr(\neg x_2 | \neg x_1) \Pr(\neg x_3 | \neg x_2) \\ & = 0.7 \times 0.4 \times 0.2 + 0.3 \times 0.7 \times 0.2 \\ & = 0.098. \end{aligned}$$
 So  $\Pr(\neg x_2 | \neg x_3) = \frac{\Pr(\neg x_2, \neg x_3)}{\Pr(\neg x_3)} = 0.243.$ 

3. [3 points] Prove that  $X_1 \perp \!\!\! \perp X_3 | X_2$  without using D-separation.

Solution 
$$\Pr(X_1, X_3 | X_2) = \frac{\Pr(X_1, X_2, X_3)}{\Pr(X_2)} = \frac{\Pr(X_1, X_2) \Pr(X_3 | X_2)}{\Pr(X_2)} = \Pr(X_1 | X_2) \Pr(X_3 | X_2).$$

4. [3 points] Discuss whether the statement,  $X_1 \perp \!\!\! \perp X_5 | X_6$ , is true or not, and explain the reason based on D-separation.

#### Solution

The statement is false.

Given  $X_6$ , the path through  $X_1$  to  $X_5$  is open.

# IV EXPECTATION-MAXIMIZATION [10 points]

Given a Bayesian network with four discrete variables  $\{A, B, C, D\}$ , where  $\{A, C, D\}$  are boolean variables and  $B \in \{0, 1, 2\}$ . Suppose that  $\{A, C, D\}$  are observed variables and  $\{B\}$  is a latent variable. Now we implement EM algorithm for this model. Suppose there are K observations in total.  $(\{a_k, c_k, d_k\}_{k=1}^K)$ .



Figure 2: The Bayesian network with four discrete variables  $\{A, B, C, D\}$ .

1. [4 points] Derive the E-step.

#### Solution

In E-step, calculate  $P(B|A, C, D, \theta)$ .

$$P(b_k = 0 | a_k, c_k, d_k, \theta) = \frac{P(b_k = 0, a_k, c_k, d_k | \theta)}{\sum_{i=0}^2 P(b_k = i, a_k, c_k, d_k | \theta)},$$

$$P(b_k = 1 | a_k, c_k, d_k, \theta) = \frac{P(b_k = 1, a_k, c_k, d_k | \theta)}{\sum_{i=0}^2 P(b_k = i, a_k, c_k, d_k | \theta)},$$

$$P(b_k = 2 | a_k, c_k, d_k, \theta) = \frac{P(b_k = 2, a_k, c_k, d_k | \theta)}{\sum_{i=0}^2 P(b_k = i, a_k, c_k, d_k | \theta)}.$$

2. [6 points] Derive the M-step, and update parameters for the Bayesian network

#### Solution

In M-step, choose  $\theta'$  which maximize  $E_{P(B|A,C,D,\theta)} \log P(A,B,C,D|\theta')$ , where

$$E_{P(B|A,C,D,\theta)} \log P(A,B,C,D|\theta')$$

$$= \sum_{k=1}^{K} \sum_{i=0}^{2} P(b_k = i|a_k, c_k, d_k, \theta) [\log P(a_k) + \log P(b_k|a_k) + \log P(c_k|a_k) + \log P(d_k|b_k, c_k)].$$

Parameters are updated based on:

$$\theta_{a} = \frac{\sum_{k=1}^{K} \delta(a_{k} = 1)}{K},$$

$$\theta_{b|a} = \frac{\sum_{k=1}^{K} P(b_{k} = b) \delta(a_{k} = a)}{\sum_{k=1}^{K} \delta(a_{k} = a)},$$

$$\theta_{c|a} = \frac{\sum_{k=1}^{K} \delta(a_{k} = a, c_{k} = 1)}{\sum_{k=1}^{K} P(a_{k} = a)},$$

$$\theta_{d|b,c} = \frac{\sum_{k=1}^{K} \delta(d_{k} = 1, c_{k} = c) P(b_{k} = b)}{\sum_{k=1}^{K} \delta(c_{k} = c) P(b_{k} = b)}.$$

# V Support Vector Machines [12 points]

Support vector machines (SVM) are supervised learning models, that directly optimize for the maximum margin separator. Fig. 3 shows an example of maximum margin separator over a dataset  $S = \{(x_i, y_i)\}_{i=1}^n$ , in which  $x_i \in \mathbb{R}^2$  and  $y_i \in \{-1, 1\}$  denote the *i*-th sample and the *i*-th label  $(\forall i)$ , respectively. For simplicity, here we assume that the dataset S has been standardized, and thus the bias can be omitted in the linear model. In Fig. 3, "+" and "-" denote the samples with labels "1" and "-1", respectively, and  $\mathbf{w}$  is the normal vector of the maximum margin separator  $\mathbf{w}^{\top}x = 0$ . You need to derive the optimization problem of SVM in the linearly separable case.

Note: correctly giving the results without detailed derivation will get 0 point.



Figure 3: Maximum margin separator in the linearly separable case.

1. [5 points] Derive the constraint optimization problem of SVM in the separable case shown in Fig. 3.

#### Solution

Let r be the margin between  $\mathbf{w}^{\top}x = 0$  and  $\mathbf{w}^{\top}x = 1$ . Assume there are two points  $x_0 \in \mathbb{R}^2$  and  $x_1 \in \mathbb{R}^2$  on  $\mathbf{w}^{\top}x = 0$  and  $\mathbf{w}^{\top}x = 1$ , respectively, and we make  $x_1 - x_0$  paralleled with  $\mathbf{w}$ . Hence, we have the following equations:

$$\begin{cases} w^{\top} x_1 = 1, \\ w^{\top} x_0 = 0, \\ x_1 - x_0 = r \times \frac{\mathbf{w}}{||\mathbf{w}||_2}, \end{cases}$$

where  $||\cdot||_2$  denotes the  $\ell_2$ -norm. By multiplying  $\mathbf{w}^{\top}$  on both sides of the third equation, and plugging the first two equations into it, we have

$$\mathbf{w}^{\top}(x_1 - x_0) = r \times \frac{\mathbf{w}^{\top}\mathbf{w}}{||\mathbf{w}||_2}$$
$$1 = r \times ||\mathbf{w}||_2,$$
$$\Rightarrow r = \frac{1}{||\mathbf{w}||_2}.$$

In the separable case, a maximum margin separator should satisfy the following three conditions:

- maximize the margin  $r = \frac{1}{||\mathbf{w}||_2}$  over a dataset;
- put positive samples  $(y_i = 1)$  on one side of the separator, i.e.,  $\mathbf{w}^{\top} x_i \geq 1$ ;
- put negative samples  $(y_i = -1)$  on another side of the separator, i.e.,  $\mathbf{w}^\top x_i \leq -1$ .

Therefore, the constraint optimization problem of SVM is

$$\begin{aligned} & \min_{\mathbf{w}} \ ||\mathbf{w}||_2^2, \\ & \text{s.t.} \ y_i \mathbf{w}^\top x_i \ge 1, \ \forall i \in \{1, 2, ..., n\}. \end{aligned}$$

2. [5 points] Derive the dual problem of the above primal problem based on K.K.T. conditions.

#### Solution

We first formulate the Lagrangian function of the primal problem:

$$L(\mathbf{w}, \xi, \alpha, \lambda) = ||\mathbf{w}||_2^2 - \sum_{i=1}^n \alpha_i (y_i \mathbf{w}^\top x_i - 1),$$

where  $\alpha_i \geq 0 \ (\forall i)$  is the dual variable. Because strong duality holds in the primal problem, the optimal optimization variables  $\{\mathbf{w}^*, \alpha^*\}$  should satisfy K.K.T. conditions:

• primal:  $y_i \mathbf{w}^{*\top} x_i \ge 1, \forall i,$ 

• dual:  $\alpha_i^* \geq 0, \forall i$ ,

• complementary:  $\alpha_i^*(y_i \mathbf{w}^* \top x_i - 1) = 0, \ \forall i,$ 

• stationary:  $\nabla_{\mathbf{w}^*} L = 0$ .

According to the stationary condition, we have

$$\nabla_{\mathbf{w}} L = 2\mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i x_i = 0, \quad \Rightarrow \quad \mathbf{w} = \frac{1}{2} \sum_{i=1}^{n} \alpha_i y_i x_i,$$

Substituting them into the Lagrangian function yields the dual function  $g(\alpha, \lambda)$ ,

$$g(\alpha) = \inf_{\mathbf{w}, \xi} L(\mathbf{w}, \alpha)$$

$$= \frac{1}{4} \langle \sum_{i=1}^{n} \alpha_i y_i x_i, \sum_{j=1}^{n} \alpha_j y_j x_j \rangle - \sum_{i=1}^{n} \alpha_i (y_i \langle \frac{1}{2} \sum_{j=1}^{n} \alpha_j y_j x_j, x_i \rangle - 1)$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j \langle x_i, x_j \rangle + \sum_{i=1}^{n} \alpha_i.$$

Thus, the dual problem is

$$\max_{\alpha} -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j \langle x_i, x_j \rangle + \sum_{i=1}^{n} \alpha_i,$$
  
s.t.  $\alpha_i \ge 0$ ,  $\forall i$ .

3. [2 points] Kernel functions implicitly define some mapping function  $\phi(\cdot)$  that transforms an input instance  $x \in \mathbb{R}^d$  to a high or even infinite dimensional feature space Q, by giving the form of dot product in  $Q: k(x_i, x_j) = \phi(x_i)\dot{\phi}(x_j)$ . Please kernelize the dual problem, in order to learn a non-linear SVM classifier.

#### Solution

Based on the dual problem, the kernelized SVM problem becomes

$$\max_{\alpha} -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j k(x_i, x_j) + \sum_{i=1}^{n} \alpha_i,$$
  
s.t.  $\alpha_i \ge 0, \ \forall i.$ 

# VI CLUSTERING [10 points]

Given six data points in 2D space (shown in Table 1) and two initial cluster centers  $c_1 = (0, 1), c_2 = (0, -1),$  please answer the following questions.

| i | x  | y  |
|---|----|----|
| 1 | -2 | 1  |
| 2 | 0  | 2  |
| 3 | 2  | 1  |
| 4 | 2  | -1 |
| 5 | 0  | -2 |
| 6 | -2 | -1 |

Table 1: Six input data points

1. [5 points] Please use k-means algorithm to cluster the given points into two groups.

#### Solution

The first iteration is shown at Table 2.

According to the table, it is obvious that  $x_1, x_2$  and  $x_3$  should be clustered into one group and  $x_4, x_5$  and  $x_6$  should be clustered into the other group. The center points for two groups are  $c_1^{new} = (0, \frac{4}{3})$  and  $c_2^{new} = (0, -\frac{4}{3})$ .

| i | x  | y  | distance to $c_1$ | distance to $c_2$ |
|---|----|----|-------------------|-------------------|
| 1 | -2 | 1  | 2                 | $2\sqrt{2}$       |
| 2 | 0  | 2  | 1                 | 3                 |
| 3 | 2  | 1  | 2                 | $2\sqrt{2}$       |
| 4 | 2  | -1 | $2\sqrt{2}$       | 2                 |
| 5 | 0  | -2 | 3                 | 1                 |
| 6 | -2 | -1 | $2\sqrt{2}$       | 2                 |

Table 2: Results of the first iteration.

2. [5 points] Please give the center points for the two groups after the algorithm converges.

#### Solution

The second iteration is shown at Table 3.

We can find that the clustering result keeps the same as the first iteration so the algorithm converges. Above all,  $x_1, x_2$  and  $x_3$  should be clustered into one group with the center point  $(0, \frac{4}{3})$  and  $x_4, x_5$  and  $x_6$  should be clustered into the other group with center point  $(0, -\frac{4}{3})$ .

| i | x  | y  | distance to $c_1^{new}$ | distance to $c_2^{new}$ |
|---|----|----|-------------------------|-------------------------|
| 1 | -2 | 1  | $\sqrt{37}/3$           | $\sqrt{85}/3$           |
| 2 | 0  | 2  | 2/3                     | 10/3                    |
| 3 | 2  | 1  | $\sqrt{37}/3$           | $\sqrt{85}/3$           |
| 4 | 2  | -1 | $\sqrt{85}/3$           | $\sqrt{37}/3$           |
| 5 | 0  | -2 | 10/3                    | 2/3                     |
| 6 | -2 | -1 | $\sqrt{85}/3$           | $\sqrt{37}/3$           |

Table 3: Results of the second iteration.

#### DIMENSIONALITY REDUCTION [12 points] VII

Given three data points in 2D space:  $x_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, x_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ , please answer the following questions: Note: correct answers without detailed derivation will get 0 point

1. [4 points] What are the first and second principal components?

$$\mathbf{X} = \begin{bmatrix} x_1, x_2, x_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}, \mathbf{X}^T = \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 1 & 1 \end{bmatrix}, \mathbf{X}\mathbf{X}^T = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\mathbf{X}\mathbf{X}^{T} - \lambda \mathbf{I} = \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix}, |\mathbf{X}\mathbf{X}^{T} - \lambda \mathbf{I}| = (2 - \lambda)^{2} - 1 = 0 \Rightarrow (\lambda - 3)(\lambda - 1) = 0 \Rightarrow \lambda_{1} = 3, \lambda_{2} = 1$$

When 
$$\lambda = 3$$
,  $\mathbf{X}\mathbf{X}^T - \lambda \mathbf{I} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow v_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ 

When 
$$\lambda = 1, \mathbf{X}\mathbf{X}^T - \lambda \mathbf{I} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow v_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

So the first and second principal component directions are  $v_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ ,  $v_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$  respectively.

2. [4 points] If we project the original data points on the new coordinate system represented by the principal components, what are their coordinates?

#### Solution

Let  $z_1, z_2, z_3$  denote the points in the new coordinate system represented by the principal component

$$z_1 = \begin{bmatrix} x_1^T v_1 \\ x_1^T v_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, z_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}, z_3 = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}.$$

3. [4 points] What is the variance of the data in each direction? Verify that it is equal to the total variance of the origin data.

#### Solution

Variance of the first direction:  $Var_1 = \frac{1}{3}[(-\frac{1}{\sqrt{2}})^2 + (-\frac{1}{\sqrt{2}})^2 + (\sqrt{2})^2] = 1$ . Variance of the second direction:  $Var_2 = \frac{1}{3}[(\frac{1}{\sqrt{2}})^2 + (-\frac{1}{\sqrt{2}})^2] = \frac{1}{3}$ . Total variance of the origin data:  $Var_{origin} = \frac{1}{3}[(-1)^2 + 1^2 + (-1)^2 + 1^2] = \frac{4}{3}$ .

It is obvious that  $Var_{origin} = Var_1 + Var_2$ .

# VIII NEURAL NETWORKS [12 points]

As shown in Fig.4, we have a feed-forward neural network with two hidden-layer nodes and one output node, and  $x_1$  and  $x_2$  are two inputs. For simplicity, the bias b is omitted here. For the following questions, assume the learning rate  $\eta$  in gradient descent is fixed by  $\eta = 0.1$ . Both hidden and output units use the same activation function  $g(\cdot)$ .



Figure 4: The Neural network with one hidden layer.

1. [4 points] Express the output  $y_{\text{output}}$  in terms of inputs  $x_1, x_2$ , weights  $w_1, w_2, w_3, w_4, w_5, w_6$  and the activation function g.

# Solution $y_{\text{output}} = g(w_5h_1 + w_6h_2) = g(w_5g(w_1x_1 + w_3x_2) + w_6g(w_2x_1 + w_4x_2)).$

- 2. [8 points] Assume we have one input  $\{x_1 = 1, x_2 = 1\}$  and the real target of it is  $y_{\text{target}} = 1$ . The initial value of  $w_1^{(0)}, w_2^{(0)}, w_3^{(0)}, w_4^{(0)}, w_5^{(0)}, w_6^{(0)}$  is 1,2,-1, $\frac{1}{2}$ ,-2,1. And the loss on the given example is defined as  $L = \frac{1}{2}(y_{\text{target}} y_{\text{output}})^2$ . Suppose that the sigmoid activation function  $g(z) = \frac{1}{1+e^{-z}}$  is used. Note: please round your results to 3 decimal places.
  - (1) [3 points] Without any optimization, calculate the output  $h_1, h_2$  and  $y_{\text{output}}$  on the given example.

Solution 
$$h_1 = g(w_1x_1 + w_3x_2) = g(0) = \frac{1}{2}$$

$$h_2 = g(w_2x_1 + w_4x_2) = g(2.5) = 0.924$$

$$y_{\text{output}} = g(w_5g(w_1x_1 + w_3x_2) + w_6g(w_2x_1 + w_4x_2))$$

$$= g(-2g(0) + g(2.5))$$

$$= 0.481.$$

(2) [5 points] Compute the updated weights  $w_1^{(1)}, w_2^{(1)}, w_3^{(1)}, w_4^{(1)}, w_5^{(1)}, w_6^{(1)}$  by performing ONE step of gradient descent. Show all steps in your calculation.

#### Solution

```
\Delta w_5 = (0.481 - 1) \times 0.481 \times (1 - 0.481) \times 0.5 = -0.0648,
\Delta w_6 = (0.481 - 1) \times 0.481 \times (1 - 0.481) \times 0.924 = -0.1198,
\Delta w_1 = (0.481 - 1) \times 0.481 \times (1 - 0.481) \times (-2) \times 0.5 \times (1 - 0.5) \times 1 = 0.0648,
\Delta w_2 = (0.481 - 1) \times 0.481 \times (1 - 0.481) \times (1) \times 0.924 \times (1 - 0.924) \times 1 = -0.0091,
\Delta w_3 = (0.481 - 1) \times 0.481 \times (1 - 0.481) \times (-2) \times 0.5 \times (1 - 0.5) \times 1 = 0.0648,
\Delta w_4 = (0.481 - 1) \times 0.481 \times (1 - 0.481) \times (1) \times 0.924 \times (1 - 0.924) \times 1 = -0.0091,
w_1^{(1)} = w_1^{(0)} - 0.1 \times \Delta w_1 = 0.994,
w_2^{(1)} = w_2^{(0)} - 0.1 \times \Delta w_2 = 2.001,
w_3^{(1)} = w_2^{(0)} - 0.1 \times \Delta w_3 = -1.006,
w_4^{(1)} = w_4^{(0)} - 0.1 \times \Delta w_4 = 0.501,
w_5^{(1)} = w_5^{(0)} - 0.1 \times \Delta w_5 = -1.994,
w_6^{(1)} = w_6^{(0)} - 0.1 \times \Delta w_6 = 1.012.
```

# IX CONVOLUTIONAL NEURAL NETWORKS [8 points]

Convolutional neural networks are designed to process 2D features instead of the 1D ones in multi-layer perceptron (MLP).

1. [4 points] Please calculate the feature map based on 2D convolution, if you are given the following  $5 \times 5$  image matrix in Table 4 and  $2 \times 2$  kernel matrix in Table 5. (stride = 1, no padding)

| 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 |
| 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 |

Table 4:  $5 \times 5$  image matrix.

| 1 | 0 |
|---|---|
| 0 | 1 |

Table 5:  $2 \times 2$  kernel matrix.

#### Solution

The feature map is shown in Table 6.

| 8  | 10 | 12 | 14 |
|----|----|----|----|
| 18 | 20 | 22 | 24 |
| 28 | 30 | 32 | 34 |
| 38 | 40 | 42 | 44 |

Table 6:  $4 \times 4$ -feature maps.

2. [4 points] Based on the above result, calculate the feature maps after max-pooling and average-pooling, respectively. (both pooling with  $2 \times 2$  filters and stride = 2)

#### Solution

Please refer to Tables 7 and 8.

| 20 | 24 |
|----|----|
| 40 | 44 |

Table 7: After max-pooling.

| 14 | 18 |
|----|----|
| 34 | 38 |

Table 8: After average-pooling.