Московский государственный университет имени М.В.Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Разработка метода прогнозирования слабой масштабируемости суперкомпьютерных приложений

Студент: Мокров К.С., 423 группа Науч. руководитель: к.ф-м.н., в.н.с. НИВЦ МГУ Антонов Александр Сергеевич

Введение

- Масштабируемость ключевая характеристика параллельных программ со сложным поведением.
- Существует проблема запуска задачи на большом количестве узлов: они недоступны или ожидание занимает слишком много времени.
- Актуальна задача прогнозирования масштабируемости приложения на большие конфигурации вычислительной системы.
- Предсказания можно строить, основываясь на данных, полученных из множественных запусков на малых конфигурациях.
- Разрабатываемый метод должен быть достаточно универсальным.

Постановка задачи

- Исследовать возможные подходы к предсказанию масштабируемости.
- Реализовать метод, предсказывающий слабую масштабируемость суперкомпьютерных приложений на основе экспериментальных данных.
- Проверить применимость метода на различных приложениях, собрав экспериментальную базу и оценив точность предсказаний.

- Линейная регрессия.
- Методы машинного обучения.
- Симуляция исполнения программы.
- Коллаборативная фильтрация.

- + Модель простая, легко искать неизвестные параметры.
- Для поиска параметров не требуется большое число запусков.
- + Точность предсказаний либо сопоставима, либо даже лучше, чем у других методов
- Далеко не всегда простая модель может описать поведение рассматриваемой величины из-за её нелинейного характера изменения

- Линейная регрессия.
- Методы машинного обучения.
- Симуляция исполнения программы.
- Коллаборативная фильтрация.

- + Способны уловить сложные аспекты взаимодействия между архитектурой суперкомпьютера и исследуемыми программами.
- + Есть возможность работать при наличии неинформативных, зашумлённых входных данных.
- Для обучения необходимо провести большое число запусков приложения.
- Относительно высокая вычислительная стоимость процесса обучения как по времени, так и по памяти.
- Чёрный ящик невозможно объяснить ответ.

- Линейная регрессия.
- Методы машинного обучения.
- Симуляция исполнения программы.
- Коллаборативная фильтрация.

- + Сбор трасс исполнения приложения и его профилирование может быть произведено на одной машине для последующей симуляции исполнения на другой.
- Часто требует для своей работы наличия информации о структуре программы и подробных технических характеристик используемой системы.
- Сложно реализовать.

- Линейная регрессия.
- Методы машинного обучения.
- Симуляция исполнения программы.
- Коллаборативная фильтрация.

- Давно используется в рекомендательных системах, где хорошо себя зарекомендовала.
- Для построения точных прогнозов необходимо провести много тестирований программы и иметь доступ к большим наборам параметров запуска программы и динамических характеристик исполнения.

- С помощью линейной регрессии строятся предсказания значений динамических характеристик на p_{target} процессах, использую эмпирические данные, полученные из нескольких запусков на $\mathbb{Q} = \{q_1, \dots, q_n\}, q_1 < q_2 < \dots < q_n < p_{target}$ процессах.
- Предиктор функция от параметров запуска: $DF = \hat{DF} + error = F(x_1, x_2, \dots, x_n, p) + error$
- Параметры регрессии ищутся с помощью метода наименьших квадратов, он минимизирует: $|f(w,g(X))-y|_2=\sum_{i=1}^N \left(f(w,g_i(X))-y_i\right)^2 \xrightarrow{w} min$

- LSM \equiv минимизация абсолютной ошибки error.
- Качество предсказаний принято оценивать по относительным ошибкам.

- LSM \equiv минимизация абсолютной ошибки error.
- Качество предсказаний принято оценивать по относительным ошибкам.

- LSM \equiv минимизация абсолютной ошибки error.
- Качество предсказаний принято оценивать по относительным ошибкам.

Экстраполирующая функция и оценка ошибок предсказаний

- LSM \equiv минимизация абсолютной ошибки error.
- Качество предсказаний принято оценивать по относительным ошибкам.

• Ключевой шаг - параметризация функции $\log(\hat{DF}) = w_1 \cdot \log(p) + w_2 \cdot \log(N) + w_3 \cdot \log(p) \cdot \log(N)$

Общая схема работы метода

- 1) Определение набора тестовых конфигураций.
- 2) Проведение запусков с этими конфигурациями.
- Извлечение из результатов запусков необходимых для поиска неизвестных коэффициентов модели данных, для идентичных конфигураций выбор минимума времени / максимума производительности исполнения.
- 4) Использование метода наименьших квадратов для подбора коэффициентов линейной регрессии.
- 5) Построение предсказаний значений динамических характеристик для заданного множества целевых запусков с помощью построенной модели.

Экспериментальная проверка применимости метода

- Система для тестирований: «Ломоносов-2»
- Приложения для тестирований: HPL, HPCG, алгоритмы матричного умножения DNS и SUMMA, Graph500.
- Тестирования некоторых приложений проводились с несколькими наборами конфигураций, каждый из которых определяет своя константа из отношения $T_A(N) / p = const$ (HPL 3 набора; Graph500, DNS 2; HPCG, SUMMA 1).
- Количество используемых процессов на целевых конфигурациях превосходит самую большую тестовую конфигурацию в **1,2 6,6** раз.

Экспериментальная проверка применимости метода

- HPL тест производительности вычислительной системы. Суть теста решение плотных систем линейных алгебраических уравнений, используя LU факторизацию.
- Сложность алгоритма $\mathcal{O}(N^3)$
- Количество операций чтения/записи $\mathcal{O}(N^2)$.
- Большое количеством вычислений над плотными структурами данных.

	Min	Max	Mean	Median
Time	0,02	11,35	4,12	3,82
Perf	0,07	16,35	5,23	5,69

Таблица: Относительные ошибки предсказаний, усреднённые по динамическим характеристикам, HPL

Рис.: Аппроксимирующая функция предсказаний времени, HPL

PN	225	400	576	784	1369
Mean	5,09	7,17	3,74	4,43	2,95

Таблица: Относительные ошибки предсказаний, усреднённые по количеству процессов, HPL

Экспериментальная проверка применимости метода нрсс

- HPCG альтернативный HPL тест производительности.
- Сильно выделяется на фоне остальных приложений, так как сложность алгоритма и количество операций чтения/записи O(N).
- Преобладают нерегулярный доступ к памяти и рекурсивные вычисления.

PN	PS	RE_time	RE_perf
280		0,02	0,37
560	_	1,56	0,80
700	$PN \cdot 104^3$	1,89	13,07
980		2,85	19,54
1400		7,05	8,99

Таблица: Относительные ошибки предсказаний времени и производительности, HPCG

Рис.: Аппроксимирующая функция предсказаний производительности, HPCG

Экспериментальная проверка применимости метода Алгоритмы матричного умножения, SUMMA

Рис.: Конфигурации запусков матричного умножения по алгоритму $\operatorname{SUMM} A$

- SUMMA алгоритм матричного умножения.
- Используется в ScaLAPAK и PBLAS.
- Сложность алгоритма $\mathcal{O}(N^3)$
- $\bullet \Rightarrow p = N^3 / const$

Рис.: Аппроксимирующая функция предсказаний времени, SUMM A

PN	PS	RE_time
225	25,6	1,95
400	30	3,94
576	33,6	3,01
784	37,8	7,59
1024	40	1,39

Таблица: Относительные ошибки предсказаний времени, SUMMA

Экспериментальная проверка применимости метода Алгоритмы матричного умножения, DNS

Рис.: Аппроксимирующие функции предсказаний времени для двух наборов конфигураций, DNS

- DNS алгоритм матричного умножения.
- Сложность алгоритма $\mathcal{O}(N^3)$
- Всего 6 тестовых конфигураций

	C_1		C_2	
PN	PS	RE_time	PS	RE_time
343	31,5	6,55	63	5,66
512	36	8,42	72	6,84
729	40,5	9,35	81	7,85
1000	45	7,94	90	1,94
1331	49,5	9,63	99	0,19

Таблица: Относительные ошибки предсказаний времени, DNS

Экспериментальная проверка применимости метода Graph500

- Graph500: BFS и SSSP.
- Сложность алгоритмом определяется через количество вершин и рёбер графа $\mathcal{O}(V+E)$.
- Выражая сложность через параметры запуска scalefactor и edgefactor, получим: $V + E = 2^{SC} + EF \cdot 2^{SC} = 2^{SC} \cdot (1 + EF)$
- Сильнее всего проявляется проблема сбора тестовых конфигураций для слабой масштабируемости: они выбираются так, чтобы удовлетворять $T_A(N)/p=const$, но не всегда возможно обеспечить строгое равенство.
- $SC, EF \in \mathbb{Z}_+$. Округление сильно изменяет сложность.
- Средняя относительная ошибка предсказания времени 13,28%, производительности 13,22%.

Результаты

Рис.: Относительные ошибки предсказаний на всех конфигурациях всех рассматриваемых приложений

• Среднее значение относительных ошибок - 8,6% (HPL - 4,9%, HPCG - 5,6%, SUMMA - 3,6%, DNS - 6,4%, Graph500 - 13,2%)

Результаты

- Разработан метод, предсказывающий слабую масштабируемость суперкомпьютерных приложений на основе экспериментальных данных со средней относительной ошибкой по всем смотренным приложениям равной 8,6%.
- Выполнена проверка применимости метода на различных приложениях (HPL, HPCG, матричных алгоритмов умножения SUMMA и DNS, Graph500) на суперкомпьютере «Ломоносов-2».