ML Boot Camp V: Предсказание сердечнососудистых заболеваний

ШАЯХМЕТОВ РИМ

Постановка задачи

- 100 000 пациентов. Train 70%, Public 10%, Private 20%.
- Предсказание вероятности ССЗ по результатам врачебного осмотра.
 - ▶ Возраст, рост, вес, пол
 - ▶ Верхнее и нижнее давление. Уровень холестерина и глюкозы (3 категории)
 - Курение, алкоголь, физическая активность (бинарные признаки)
 - ▶ 10% скрыто на тестовых данных
- ▶ Метрика logloss

Данные

train

	id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
0	0	18393	2	168	62.0	110	80	1	1	0	0	1	0
1	1	20228	1	156	85.0	140	90	3	1	0	0	1	1
2	2	18857	1	165	64.0	130	70	3	1	0	0	0	1
3	3	17623	2	169	82.0	150	100	1	1	0	0	1	1
4	4	17474	1	156	56.0	100	60	1	1	0	0	0	0
5	8	21914	1	151	67.0	120	80	2	2	0	0	0	0

- Возраст в днях
- ▶ Сбалансированная выборка
- ▶ Грязные поля давление (ap_hi, ap_lo), рост, вес

Кросс-валидация

- ▶ 7 CV (10 000 в валидации).
- В валидации 10% alco, smoke, active скрыты
- ▶ Несколько стратегий по изменению alco, smoke, active
 - ▶ Оставить как есть (NaN только в валидации)
 - ▶ Скрыть 10% в обучении (алгоритм должен принимать NaN, пр. XGB) почти всегда показывал лучший СV.
 - ▶ Предсказать в валидации для алгоритмов, которые не умеют работать с NaN
 - ▶ Предсказать вероятности для всех значений и заменить на них совсем не сработало
- ► Если использовать стандартную CV без NaN, то результаты были лучше, но, видимо, завышенными.

Корреляция с лидербордом

Spearman rho correlation

	CV	Public	Private
CV	1	0.723	0.915
Public		1	0.643
Private	IL IVAL		1

Чистка данных I

- ▶ Улучшало результат на лучших моделях до CV ~0.5375, Public ~0.5435
- Аналогично с ростом-весом

Модели

- XGBoost почти все наилучшие модели, включая усреднение различных xgb
- Neural Networks (Keras) пробовал, но не смог в итоге улучшить результат xgb
- ▶ Усреднение xgb с другими моделями (RF, NN, ExtraTrees) не давало улучшения с∨
- Стекинг (brew) тоже не улучшал результат усреднения различных xgb
- Сконцентрировался больше на очистке данных,
 преобразованиях признаков и поиске 1-3 оптимальных хар

Гиперпараметры искал с помощью Байесовской оптимизации с большим количеством случайного поиска в качестве инициализации

Чистка данных II

- ▶ Основная идея к каждому правилу есть исключение
 - ▶ Делить на 10 у давлений между 1000-2000, но у давлений 1130, 1420, 1620 игнорировать последние две цифры (110, 140, 160)
- Смотреть на другие поля
 - ▶ Давление в 12000, 13000 делим на 100, но давление 14900/90 это скорее всего 140/90
 - ▶ 1/1099, 1/2088 заменить на 110/90 и 120/80
 - Самые сложные случаи замена 585 на 85, 701 на 170, 401 на 140
- ▶ Находить похожие в train в более неоднозначных ситуациях
 - ▶ 13/0 заменить на 130 на 80, так как более вероятно
- Помнить, что встречаются аномальные реальные значения (150/60) лучше оставить, тем более если это в train и ССЗ)
- ▶ Рост\вес очищался по аналогичным принципам, но большинство неоднозначностей так и остались неразрешимыми

Чистка данных II

- По недавнему выложенному полному датасету чистка давления, роста и веса в итоге оказалась проделанной
 - ▶ Для 1379 объектов в train
 - ▶ Для 402 объектов в private
 - ▶ Для 194 объектов в public
- ▶ Все последующие модели с данной чисткой смогли улучшить CV до \sim 0.5370 (с \sim 0.5375), Public до \sim 0.5431 (с \sim 0.5435)
- ▶ Правильность чистки не 100%, но помогла значительно улучшить результат
- Желательно после каждой чистки, преобразований находить более оптимальные гипер-параметры xgb (помимо тривиального количества деревьев)

Преобразование признаков І

Возраст

▶ Если поделить количество дней на 365.25, то можно получить распределение по годам, но:

Преобразование признаков I

 Улучшая СV и гистограмму, разбиваем возраст по «годам», соответствующим половине распределений в гауссовской смеси

Новые признаки

- ▶ Поиск и отбор проводился вручную
- ► Комбинации более чем двух признаков всплывали в feature importance, но ухудшали CV
- ▶ BMI = weight/(height/100)**2 -> первый в feature importance
- Pulse pressure = ap_hi ap_lo
- ▶ Нормальное ли давление(85 <= ap hi <= 125 & 55 <= ap lo <= 85)
- Последняя цифра в давлении (+перестановка)
- ▶ Аналог чётности года (age/365.25) = (age (age/2).round()*2) > 0

Преобразование признаков II

- Дискретизация признаков (bmi, weight, height)
 - ▶ Почему? Возраст разделял лучше 0 от 1 (гос auc = 0.6358), чем ВМІ (гос auc = 0.6151), когда как в моих моделях ВМІ имел значительно высокий feature importance (может это и нормально)
 - ▶ Зачем? Улучшило CV моделей (1-3 xgb) + полезно для смешивания с моделями на исходных признаках
- ▶ Порог дискретизации на основании квартилей, количество на основании сv + хорошие графики + feature importance
- Округление давления, пульса

Последний час соревнования

- До конца соревнования чуть больше часа:
 - Все лучшие модели были простые (1-3 хдb, простое усреднение, либо с весами) на основе последней чистки данных, преобразований (включая дискретизацию).
 - ▶ Усреднение 2 xgb с применением вышеуказанных приёмов github.com/shayakhmetov/mlbootcampV (CV 0.5370, Public 0.5431, Private 0.530569 = 2 место)

Последний час соревнования

- Усреднение 9 предсказаний с весом, обратно пропорциональной округлённой 4 цифре на Public: улучшение Public с 0.5431 до 0.54288
- Добавив ещё более различные предсказания (с ещё меньшими весами), взвешенное усреднение 17 предсказаний дало Public 0.54278
- ▶ Переобучение?
 - ▶ Больший вклад от моделей со стабильным CV около 0.5370-0.5371
 - ▶ Большинство моделей использовало последнюю чистку данных
 - Модели различались дискретизацией (отсутствием), преобразованием с возрастом, дополнительными признаками, разными seeds, стратегиях с NaN, т.д.
- ▶ Итог: 0.5304688 Private = 2 место

Выученные уроки

- Использование относительно простых моделей на разных признаках/предобработке может дать лучшие результаты, чем использование многих моделей на одних и тех же данных
- ▶ Необходимо хранить результаты кросс-валидации промежуточных моделей, чаще коммитить в git. Иначе, взвесив множество предсказаний (и не переобучившись), не совсем понятно, комбинация каких именно признаков\моделей дала прирост. (к любому правилу исключение – если только не осталось одного часа до конца соревнования)
- Нужно было продолжать эксперименты с добавлением нейронных сетей
- Стекинг?

Спасибо за внимание!