PWM ON TIVAC TM4C123GH Tiva C Board

Dr. Munesh Singh

Indian Institute of Information Technology Design and Manufacturing Kancheepuram, Chennai, Tamil Nadu

January 24, 2020

What is Pulse Width Modulation (PWM)?

- PWM is a simple method of using a rectangular digital waveform to control an analog variable.
 - The on-off behavior changes the average power of the signal.
 - Output signal alternatives between ON and OFF with a specific time period.
- PWM control is used in a variety of applications, ranging from communications to automatic control.
- It can also be used to encode information for data transmission.

How it works?

- The period is normally kept constant, and the pulse width (or ON time) is varied.
- Duty Cycle: it is defined as the proportion of time the pulse is ON, expressed as a percentage.

```
Duty Cycle = (pulse ON time)/(pulse period)*100% = t_{on}/T*100\%
```


- Whatever duty cycle a PWM has, there is an average value, as indicated by the dooted line.
 - If the ON time is small, the average value is low; if it is large, the average value is high.
 - By controlling the duty cycle, we can control the average value.
- Average value of the signal

$$=\frac{1}{T}\int_{0}^{T}f(t)dt = t_{on}*V_{H} + (1-t_{on})*V_{L}$$

- \bullet In general, V_L is taken as 0V for ease of calculation
 - Average value become t_{on} * V_H

How to Extract the Average Value?

- The average value can be extracted from the PWM stream using a low-pass filter.
- If the PWM frequency and the values of R and C are appropriately chosen, V_{out} becomes an analog output.
 - Can be used in place of a digital-to-analog converter

- In practice, the filter is not always required.
- Many physical systems have response characteristics that act like low-pass filters.

Types of PWM

Classify PWM Signal by Methods: Symmetric and Asymmetric

- Symmetric PWM:
 - The pulses of a symmetric PWM signal are always symmetric with respect to the center of each PWM period.
 - Symmetric PWM are often used for three-phase AC induction and brushless DC motors.
- Asymmetric PWM:
 - The pulses of an asymmetric PWM signal always have the same side aligned with one end of each PWM period.
 - Asymmetric PWM can be used for stepper motors and other variable-reluctance motors.

Generating PWM with Microcontroller using Timer/Counter

- The basic idea to generate PWM signal is using a counter (or timer), a CMP (compare) value, and a digital output pin
- The counter continuously counts to up or down, and is compared with CMP value.
- The digital output (PWM) will be changed when the counter matches the CMP value, or when counter resets

PWM Timer

- The PWM timer in the microcontroller runs in one of two modes:
- Count-Down mode:
 - the timer counts from the Period (LOAD) value to zero, goes back to the Period (LOAD) value, and continues counting down.
- Count-Up/Dow mode:
 - the timer counts from zero up to the Period (LOAD) value, back down to zer, back up to the Period (LOAD) value, and so on.

PWM Calculation

TM4C123GH PWM

 Calculate the frequency of the PWM timer based on the system clock frequency and the PWM divisor.

$$\boldsymbol{f}_{PWMTimer}\!=\!\frac{SysClk}{PWMDivsor}$$

- Calculate the count value for the PWM signal.
- ullet The count value you calculated is over 65535 (= 2¹⁶-1)

$$LOAD = Count_{PWM} = \frac{T_{PWM}}{T_{PWMTimer}} = \frac{f_{PWMTimer}}{f_{PWM}} \leq 65535$$

 Changing the CMP value in the PWM module will change the duty cycle of the PWM signal

PWM Calculation

TM4C123GH PWM

- To calculate the CMP value, you have to know the type of PWM signal that you used:
 - Left-aligned
 - Right-aligned PWM
- For Left-Aligned PWM:
 - If the CMP value is closing to the LOAD value, it will decrease the duty cycle of the PWM signal.
 - If the CMP value is closing to zero, it will increase the duty cycle of the PWM signal.
- For Right-Aligned PWM:
 - If the CMP value is closing to the LOAD value, it will increase the duty cycle of the PWM signal.
 - If the CMP value is closing to zero, it will decrease the duty cycle of the PWM signal.
- The range of the duty cycle is from 0% to 100%, and the relationship between CMP and LOAD is: 0<= CMP <=LOAD

Some Typical Applications

- Control of DC motor.
 - The voltage supplied to the motor is proportional to the duty cycle.
- Ontrolling the brightness of LED.
 - The duty cycle of the voltage source determines the brightness.
- Ontrol the temperature (heater).
 - Switch ON and OFF the heater with an appropriate duty cycle.
- Many more...

PWM frequency =
$$F_{sc}$$
 / (period)
= 100KHz / 10 = 10 KHz

Thank You

