CB N°3 - RÉDUCTION - SUJET 1

EXERCICE 1

Les matrices suivantes sont-elles diagonalisables dans \mathbb{R} ? Justifier la réponse. Si oui, donner la matrice diagonale qui leur est semblable.

$$A = \begin{pmatrix} -1 & 0 & 5 \\ 2 & 1 & 1 \\ 0 & 1 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & -8 & 4 \\ 5 & -8 & 5 \\ 2 & -2 & 3 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & 2 & -1 \\ 0 & 2 & 0 \\ 2 & -2 & 3 \end{pmatrix}$$

- $\chi_A = (X-4)(X^2+X+2)$ n'est pas scindé dans \mathbb{R} . A n'est donc pas diagonalisable dans \mathbb{R} .
- $\chi_B = (X-1)(X-2)(X+3)$ est scindé à racines simples donc B est diagonalisable, semblable à diag(1,2,-3).

•
$$\chi_C = (X-2)^2(X-1)$$
; $C-2I_3 = \begin{pmatrix} -2 & 2 & -1 \\ 0 & 0 & 0 \\ 2 & -2 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Ainsi, $\operatorname{rg}(C-2I_3)=1$ donc $\dim(E_2(C))=2=m(2)$. De plus, $\dim(E_1(C))=1=m(1)$.

Le polynôme caractéristique est scindé, et les dimensions des espaces propres sont égales aux multiplicités des valeurs propres correspondantes. On en déduit que C est diagonalisable, semblable à diag(1,2,2).

EXERCICE 2

Soient
$$M = \begin{pmatrix} 0 & 2 & -1 \\ -1 & 4 & -1 \\ 0 & 2 & 1 \end{pmatrix}$$
 et $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

Montrer qu'il existe une matrice inversible P, que l'on déterminera, telle que

$$M = PTP^{-1}$$

On note f l'endomorphisme canoniquement associé à M.

 $\det(M - I_3) = \det(M - 2I_3) = 0$; on en déduit que 1 et 2 sont valeurs propres de M.

Le polynôme caractéristique de M admet au moins deux racines et il est de degré 3, il est donc scindé dans \mathbb{R} , et M est trigonalisable.

De plus, la trace est un invariant de similitude, et tr(M) = 5, on en déduit que f admet une matrice

de la forme $\begin{pmatrix} 1 & 0 & a \\ 0 & 2 & b \\ 0 & 0 & 2 \end{pmatrix}$, dans une base (u, v, w), telle que $u \in E_1(f)$ et $v \in E_2(f)$.

Ker(f - Id) = Vect((1, 0, -1)); on prend u = ((1, 0, -1)).

Ker(f - 2Id) = Vect((0, 1, 2)); on prend v = ((0, 1, 2)).

M semblable à T si, et seulement s'il existe $w=(x,y,z)\in\mathbb{R}^3$ tel que $\{u,v,w\}$ est libre et f(w)=v+2w.

$$\begin{pmatrix} 0 & 2 & -1 \\ -1 & 4 & -1 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + 2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Leftrightarrow \begin{cases} 2x - 2y + z = 0 \\ -x + 2y - z = 1 \\ 2y - z = 2 \end{cases} \Leftrightarrow \begin{cases} 2x - 2y + z = 0 \\ 2y - z = 2 \end{cases}$$

$$w = (1, 1, 0) \text{ convient, car } \det(u, v, w) \neq 0.$$

Finalement,
$$M = PTP^{-1}$$
, avec $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 2 & 0 \end{pmatrix}$.

Spé PT B

CB N°3 - RÉDUCTION - SUJET 2

EXERCICE 1

Les matrices suivantes sont-elles diagonalisables dans \mathbb{R} ? Justifier la réponse. Si oui, donner la matrice diagonale qui leur est semblable.

$$A = \begin{pmatrix} -4 & 4 & -2 \\ -4 & 4 & -1 \\ 2 & -2 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 7 & 6 \\ 0 & 2 & 0 \\ -3 & 3 & 4 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

- $\chi_A = X(X-1)(X-2)$ est scindé à racines simples donc A est diagonalisable, semblable à diag(0,1,2). $\chi_B = (X-2)(X^2-2X+10)$ n'est pas scindé dans \mathbb{R} . B n'est donc pas diagonalisable dans \mathbb{R} .

•
$$\chi_C = (X-2)^2(X+1)$$
; $C-2I_3 = \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Ainsi, $\operatorname{rg}(C-2I_3)=1$ donc $\dim(E_2(C))=2=m(2)$. De plus, $\dim(E_{-1}(C))=1=m(-1)$.

Le polynôme caractéristique est scindé, et les dimensions des espaces propres sont égales aux multiplicités des valeurs propres correspondantes. On en déduit que C est diagonalisable, semblable à diag(-1, 2, 2).

EXERCICE 2

Soient
$$M = \begin{pmatrix} 5 & -3 & 6 \\ 4 & 0 & 4 \\ -1 & 2 & -2 \end{pmatrix}$$
 et $T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

Montrer qu'il existe une matrice inversible P, que l'on déterminera, telle que

$$M = PTP^{-1}$$

 $\det(M+I_3) = \det(M-2I_3) = 0$; on en déduit que -1 et 2 sont valeurs propres de M.

Le polynôme caractéristique de M admet au moins deux racines et il est de degré 3, il est donc scindé dans \mathbb{R} , et C est trigonalisable.

De plus, la trace est un invariant de similitude, et tr(M) = 3, on en déduit que f admet une matrice

de la forme $\begin{pmatrix} -1 & 0 & a \\ 0 & 2 & b \\ 0 & 0 & 2 \end{pmatrix}$, dans une base (u, v, w), telle que $u \in E_{-1}(f)$ et $v \in E_{2}(f)$.

Ker(f + Id) = Vect((1, 0, -1)); on prend u = ((1, 0, -1)).

Ker(f - 2Id) = Vect((0, 2, 1)); on prend v = ((0, 2, 1)).

$$M \text{ semblable à } T \text{ si, et seulement s'il existe } w = (x, y, z) \in \mathbb{R}^3 \text{ tel que } \{u, v, w\} \text{ est libre et } f(w) = v + 2w.$$

$$\begin{pmatrix} 5 & -3 & 6 \\ 4 & 0 & 4 \\ -1 & 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Leftrightarrow \begin{cases} 3x - 3y + 6z = 0 \\ 4x - 2y + 4z = 2 \\ -x + 2y - 4z = 1 \end{cases} \Leftrightarrow \begin{cases} x - y + 2z = 0 \\ y - 2z = 1 \end{cases};$$

w = (1, 1, 0) convient car $det(u, v, w) \neq 0$.

Finalement,
$$M = PTP^{-1}$$
, avec $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ -1 & 1 & 0 \end{pmatrix}$.

Spé PT B Page 2 sur 2