

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No:CCISE160605901

FCC REPORT

(Bluetooth)

Applicant: SHENZHEN NEW SKY TECHNOLOGY CO., LTD

3f B building, DaHong technology park, BaiHua 1st industrial

Address of Applicant: park, GuangMin area ,ShenZhen city, GuangDong province,

China

Equipment Under Test (EUT)

Product Name: USB Bluetooth Adapter

Model No.: PBT06H, BT-06A

FCC ID: 2AIW7PBT06H

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 May, 2016

Date of Test: 09 May, to 27 Jun., 2016

Date of report issued: 28 Jun., 2016

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	28 Jun., 2016	Original

Tested by:

| | | CWG | Date: 28 Jun., 2016

Test Engineer

Reviewed by: Over them Date: 28 Jun., 2016

Project Engineer

3 Contents

				Page
1	С	OVE	R PAGE	1
2	٧	ERSI	ON	2
3		ONT	ENTS	3
3				
4	Т	EST :	SUMMARY	4
5	G	ENE	RAL INFORMATION	5
	5.1	CLIEN	IT INFORMATION	5
	5.2	GENE	RAL DESCRIPTION OF E.U.T.	5
	5.3	TEST	MODE	7
	5.4	DESC	RIPTION OF SUPPORT UNITS	7
	5.5	LABO	RATORY FACILITY	7
	5.6	LABO	RATORY LOCATION	7
	5.7	TEST	INSTRUMENTS LIST	8
6	т	EST	RESULTS AND MEASUREMENT DATA	9
	6.1	Ante	NNA REQUIREMENT	9
	6.2	Con	DUCTED EMISSIONS	10
	6.3	Con	DUCTED OUTPUT POWER	13
	6.4	Occi	JPY BANDWIDTH	17
	6.5	CARR	IER FREQUENCIES SEPARATION	24
	6.6	Норг	PING CHANNEL NUMBER	29
	6.7	DWE	LL TIME	31
	6.8	Pseu	DORANDOM FREQUENCY HOPPING SEQUENCE	35
	6.9	BANE	EDGE	36
	6.	.9.1	Conducted Emission Method	36
	6.	9.2	Radiated Emission Method	40
	6.10	Sı	Purious Emission	53
	6.	.10.1	Conducted Emission Method	53
	6	10.2	Radiated Emission Method	60
7	Т	EST :	SETUP PHOTO	65
0	_		ONSTRUCTIONAL DETAILS	67

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty:

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5 General Information

5.1 Client Information

Applicant:	SHENZHEN NEW SKY TECHNOLOGY CO., LTD
Address of Applicant:	3f B building, DaHong technology park, BaiHua 1st industrial park, GuangMin area, ShenZhen city, GuangDong province, China
Manufacturer/Factory:	SHENZHEN NEW SKY TECHNOLOGY CO., LTD
Address of Manufacturer/Factory:	3f B building, DaHong technology park, BaiHua 1st industrial park, GuangMin area, ShenZhen city, GuangDong province, China

5.2 General Description of E.U.T.

Product Name:	USB Bluetooth Adapter
Model No.:	PBT06H, BT-06A
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	PCB Antenna
Antenna gain:	1dBi
Power supply:	DC 5V
Remark:	The No.: PBT06H, BT-06A were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19 2421MHz 39 2441MHz 59 2461MHz							

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

Report No: CCISE160605901

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered andfullydescribedin a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

●IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Project No.: CCISE1606059

5.7 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer Model No.		Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017		
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 1 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.207	7			
Test Method:	ANSI C63.4: 2014				
Test Frequency Range:	150kHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz, Sw	veen time-auto			
Limit:	100V = 9K112, VBVV = 30K112, 3W	Limit (c	IRu\/\		
Limit.	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test setup:	Reference Plane				
	AUX Filter AC power Equipment E.U.T Equipment E.U.T Equipment Under Test LISN: Line impedence Stabilization Network Test table height=0.8m				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Bluetooth (Continuous transmitting) mode				
Test results:	Pass				

Measurement Data

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition EUT USB Bluetooth Adapter

Model : PBTO6H Test Mode : BT mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: YT Remark

emark								
	122	Read		Cable		Limit	Over	1000
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.154	20.29	0.14	10.78	31.21	55.78	-24.57	Average
2	0.158	25.91	0.14	10.78	36.83	65.56	-28.73	QP
3	0.253	18.59	0.16	10.75	29.50		-32.14	
4	0.253	14.12	0.16	10.75	25.03	51.64	-26.61	Average
2 3 4 5 6 7 8 9	0.299	9.76	0.16	10.74	20.66	50.28	-29.62	Average
6	0.318	16.54	0.18	10.74	27.46	59.75	-32.29	QP
7	0.385	8.35	0.23	10.72	19.30	48.17	-28.87	Average
8	0.697	11.26	0.32	10.77	22.35	46.00	-23.65	Average
9	0.727	19.43	0.31	10.78	30.52	56.00	-25.48	QP
10	1.147	15.96	0.27	10.89	27.12	56.00	-28.88	QP
11	22.416	24.96	0.35	10.90	36.21	50.00	-13.79	Average
12	22.535	27.70	0.35	10.89	38.94	60.00	-21.06	QP

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : USB Bluetooth Adapter Condition

EUT

Model : PBTO6H Test Mode : BT mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT Remark

emark	: Freq	Read	LISN Factor	Cable Loss	Level	Limit Line	Over	Remark
	MHz	—dBu⊽	dB		dBuV	dBuV		
1	0.154	19.29	0.12	10.78	30.19			Average
2	0.162 0.253	25.05 20.00	0.13 0.17	10.77 10.75	35.95 30.92		-29.39 -30.72	
4	0.253 0.318	14.15 16.20	0.17 0.20	10.75 10.74	25.07 27.14		-26.57 -32.61	Average OP
5 6 7 8	0.739 0.759	19.10 10.90	0.32	10.79	30.21	56.00	-25.79	
8	1.276	9.11	0.26	10.90	20.27	46.00	-25.73	Average
9 10	3.276 3.276	12.84 7.13	0.32 0.32	10.91 10.91	24.07 18.36		-31.93 -27.64	QP Average
11 12	22.535 22.655	26.85 23.94	0.25 0.25	10.89 10.89	37.99 35.08		-22.01 -14.92	QP Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)			
Test Method:	ANSI C63.10: 2013 and DA00-705			
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)			
Limit:	125 mW(21 dBm)			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.7 for details			
Test mode: Non-hopping mode				
Test results:	Pass			

Measurement Data:

GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	3.77	21.00	Pass		
Middle	3.95	21.00	Pass		
Highest	3.90	21.00	Pass		
	π/4-DQPSK ι	mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	2.89	21.00	Pass		
Middle	2.95	21.00	Pass		
Highest	2.86	21.00	Pass		
	8DPSK mo	ode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	2.83	21.00	Pass		
Middle	2.98	21.00	Pass		
Highest	2.95	21.00	Pass		

Test plot as follows:

Date: 1.JUN.2016 17:39:53

Lowest channel

Date: 1.JUN.2016 17:40:44

Middle channel

Date: 1.JUN.2016 17:41:58

Highest channel

Date: 1.JUN.2016 17:33:28

Lowest channel

Date: 1.JUN.2016 17:35:12

Middle channel

Date: 1.JUN.2016 17:35:44

Highest channel

Date: 1.JUN.2016 17:38:44

Lowest channel

Date: 1.JUN.2016 17:38:14

Middle channel

Date: 1.JUN.2016 17:36:31

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10: 2013 and DA00-705			
Receiver setup:	RBW=30kHz, VBW=100kHz, detector=Peak			
Limit:	NA			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
	Ground Reference Plane			
Test Procedure:	 Connect EUT antenna terminal to the spectrum analyzer with a low loss cable and use the following setting: Centre Frequency: The centre frequency of the channel under test Resolution BW: ~ 1 % of the span without going below 1 %RBW=1% of the Span, VBW=3×RBW Frequency Span: 2 × Occupied Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel), Detector Mode: RMS, Trace Mode: Max Hold Wait until the trace is completed. Find the peak value of the trace and place the analyser marker on this peak. Use the N dB down function of the spectrum analyzer to measure the Emission Bandwidth of the UUT. This value shall be recorded. 			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Non-hopping mode			
Test results:	Pass			

Measurement Data:

Toot channel		20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	944	1276	1232	
Middle	932	1244	1252	
Highest	896	1240	1256	

Test channel		99% Occupy Bandwidth (kHz)		
rest channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	960	1164	1188	
Middle	954	1164	1188	
Highest	954	1164	1188	

Test plot as follows:

Date: 25.MAY.2016 22:10:35

Lowest channel

Date: 25.MAY.2016 22:12:01

Middle channel

Date: 25.MAY.2016 22:12:59

Highest channel

Date: 25.MAY.2016 22:14:20

Lowest channel

Date: 25.MAY.2016 22:15:54

Middle channel

Date: 25.MAY.2016 22:17:16

Highest channel

Date: 25.MAY.2016 22:18:22

Lowest channel

Date: 25.MAY.2016 22:19:44

Middle channel

Date: 25.MAY.2016 22:21:23

Highest channel

99% OBW

Modulation mode:GFSK

Date: 1.JUN.2016 17:48:22

Lowest channel

Date: 1.JUN.2016 17:49:08

Middle channel

Date: 1.JUN.2016 17:50:26

Highest channel

Date: 1.JUN.2016 17:55:09

Lowest channel

Date: 1.JUN.2016 17:53:53

Middle channel

Date: 1.JUN.2016 17:51:30

Highest channel

Date: 1.JUN.2016 17:56:22

Lowest channel

Date: 1.JUN.2016 17:57:50

Middle channel

Date: 1.JUN.2016 17:59:14

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10: 2013 and DA00-705			
Receiver setup:	RBW=100kHz, VBW=300kHz, detector=Peak			
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
	Ground Reference Plane			
Test Procedure:	 Connect EUT antenna terminal to the spectrum analyzer with a low loss cable and use the following setting: Centre Frequency: The centre between two channels, RBW = 100kHz: VBW=3×RBW Frequency Span: 2 xBandwidth, Detector Mode: Peak, Trace Mode: Max Hold Wait until the trace is completed. Find the peak value of each envelope and place the analyzer marker on this peak. Repeat above steps for low, middle, high channels and each mode respectively. 			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Hopping mode			
Test results:	Pass			

Measurement Data:

GFSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1004	629.33	Pass	
Middle	1000	629.33	Pass	
Highest	1000	629.33	Pass	
	π/4-DQPSK mo	de		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1000	850.67	Pass	
Middle	1004	850.67	Pass	
Highest	1004	850.67	Pass	
	8DPSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1004	837.33	Pass	
Middle	1004	837.33	Pass	
Highest	1004	837.33	Pass	

Note: According to section 6.4

totor ricocraming to cocare in cri						
Mode	20dB bandwidth (kHz)	Limit (kHz)				
Wiode	(worse case)	(Carrier Frequencies Separation)				
GFSK	944	629.33				
π/4-DQPSK	1276	850.67				
8DPSK	1256	837.33				

Test plot as follows:

Date: 25.MAY.2016 23:18:05

Lowest channel

Date: 25.MAY.2016 23:19:11

Middle channel

Date: 25.MAY.2016 23:20:08

Highest channel

Date: 25.MAY.2016 23:21:46

Lowest channel

Date: 25.MAY.2016 23:22:46

Middle channel

Date: 25.MAY.2016 23:24:14

Highest channel

Date: 25.MAY.2016 23:28:14

Lowest channel

Date: 25.MAY.2016 23:29:02

Middle channel

Date: 25.MAY.2016 23:29:53

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10: 2013 and DA00-705		
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode: Hopping mode			
Test results:	Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

Date: 12.MAY.2016 21:25:49

Date: 12.MAY.2016 21:29:38

Date: 12.MAY.2016 21:31:17

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10: 2013 and KDB DA00-705	
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result
GFSK	DH1	0.14016		
	DH3	0.27168	0.4	Pass
	DH5	0.31403		
π/4-DQPSK	2-DH1	0.13888		
	2-DH3	0.27456	0.4	Pass
	2-DH5	0.31659		
8DPSK	3-DH1	0.14016		
	3-DH3	0.27360	0.4	Pass
	3-DH5	0.31744		

For GFSK, π/4-DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.438*(1600/ (2*79))*31.6=140.16ms

DH3 time slot=1.698*(1600/ (4*79))*31.6=271.68ms

DH5 time slot=2.944*(1600/ (6*79))*31.6=314.03ms

2-DH1 time slot=0.434*(1600/ (2*79))*31.6=138.88ms

2-DH3 time slot=1.716*(1600/ (4*79))*31.6=274.56ms

2-DH5 time slot=2.968*(1600/(6*79))*31.6=316.59ms

3-DH1 time slot=0.438*(1600/(2*79))*31.6=140.16ms

3-DH3 time slot=1.710*(1600/ (4*79))*31.6=273.60ms

3-DH5 time slot=2.976*(1600/ (6*79))*31.6=317.44ms

Test plot as follows:

Date: 25.MAY.2016 23:31:18

DH1

Date: 25.MAY.2016 23:32:20

DH3

Date: 25.MAY.2016 23:33:05

DH5

Date: 25.MAY.2016 23:35:01

2-DH1

Date: 25.MAY.2016 23:35:45

2-DH3

Date: 25.MAY.2016 23:36:29

2-DH5

Date: 25.MAY.2016 23:37:26

3-DH1

Date: 25.MAY.2016 23:38:06

3-DH3

Date: 25.MAY.2016 23:38:55

3-DH5

Report No: CCISE160605901

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10: 2013 and DA00-705		
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode and hopping mode		
Test results:	Pass		

Test plot as follows:

Date: 25.MAY.2016 22:59:11

No-hopping mode

Hopping mode

Date: 25.MAY.2016 23:00:15

No-hopping mode

Hopping mode

$\pi/4$ -DQPSK

No-hopping mode

Hopping mode

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Project No.:CCISE1606059

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Page 38 of 72

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

	Radiated Ellission Met								
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
_	Test Method:	ANSI C63.10: 2	.013						
	Test Frequency Range:	2.3GHz to 2.5G	Hz						
	Test site:	Measurement D	Distance: 3m						
	Receiver setup:	Frequency	Detector		RBW	VBW	Remark		
		Above 1GHz	Peak		1MHz	3MHz	Peak Value		
	Limit	Freque	RMS	<u> </u> 1 i	1MHz imit (dBuV/	3MHz	Average Value Remark		
	Limit:		•		54.0		Average Value		
		Above 1	IGHz		74.0		Peak Value		
	Test setup:	AE (Turr	EUT Ground Test Receiver	3m	Dra.	Antenna Tower			
	Test Procedure:	ground at a 3 todetermine 2. The EUT wa antenna, white tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and thenthe the rota table maximum resonations. 5. The test-reconspecified Ba 6. If the emission limit specified EUT would be 10dB margin.	a meter camb the position of s set 3 meter ich was mour height is var termine the n d vertical pol nt. spected emiss antenna was e was turned ading. eiver system indwidth with on level of the d, then testing per reported. Co	per. of the rs avertied from tunders and t	The table was from the top on the top from one minum value ations of the top	was rotated adiation. The interference of a variable of the field the antenna was arrangents from 1 mes to 360 de alk Detect Field Mode. The mode was apped and the missions the one using particular interference of the interfer	or meters above the distrength. Both are set to make the ed to its worst case neter to 4 meters and grees to find the function and 10dB lower than the ne peak values of the nat did not have beak, quasi-peak or		
	Test Instruments:	Refer to section				-			
	Test mode:	Non-hopping m	ode						
	Test results:	Passed							
-									

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : USB Bluetooth Adapter Condition

EUT

Model : PBTO6H Test mode : DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT REMARK

CHIMA									
	Freq		Antenna Factor					Over Limit	Remark
-	MHz	dBu∜		<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	2321.425	24.35	23.67	6.48	0.00	54.50	74.00	-19.50	Peak
2	2321.425	15.64	23.67	6.48	0.00	45.79	54.00	-8.21	Average
3	2390.000	15.54	23.68	6.63	0.00	45.85	74.00	-28.15	Peak
4	2390, 000	7, 52	23, 68	6, 63	0.00	37, 83	54,00	-16.17	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: USB Bluetooth Adapter EUT

: FBTO6H
Test mode : DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

			Antenna Factor						Remark
2	MHz	dBu₹	$\overline{-dB}/\overline{m}$	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	ā	
2	2321.608 2321.608 2390.000	12.76	23.67				54.00	-11.09	Average
	2390.000								Average

Test channel:Highest Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : USB Bluetooth Adapter

EUT

Model : PBTO6H : DH1-H mode Test mode Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT

REMARK

Freq		Antenna Factor						Remark	
MHz	dBu₹	dB/m	<u>d</u> B	dB	dBuV/m	dBuV/m	dB		+
2483.500 2483.500									

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : USB Bluetooth Adapter

: PBTO6H Model Test mode : DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT REMARK :

		Antenna Factor						
MHz	dBu∇	<u>−−dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500				0.00 0.00				

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : USB Bluetooth Adapter Condition

EUT

: rBIU6H
Test mode : 2DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

	9990		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	—dBu∇	— <u>dB</u> /π		<u>ab</u>	dBuV/m	dBuV/m		
1 2	2329.227 2329.227	19.70 10.64		6.51 6.51	0.00 0.00		74.00 54.00		Peak Average
3	2390.000 2390.000	15.43 7.18	23.68 23.68	6.63 6.63			74.00 54.00		Peak Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : USB Bluetooth Adapter

Model : PBTO6H Test mode : 2DH1-L mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Test Engineer: YT REMARK

Huni:55% 101KPa

REMARK

THETH									
	Freq		Antenna Factor					Over Limit	Remark
-	MHz	—dBuV	$\overline{-dB/m}$		<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	2321.242	23.07	23.67	6.48	0.00	53.22	74.00	-20.78	Peak
2	2321.242	13.26	23.67	6.48	0.00	43.41	54.00	-10.59	Average
3	2390.000	14.09	23.68	6.63	0.00	44.40	74.00	-29.60	Peak
4	2390, 000	7.48	23, 68	6, 63	0.00	37, 79	54,00	-16.21	Average

Test channel:Highest Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : USB Bluetooth Adapter Condition

EUT

Model : PBTO6H Test mode : 2DH1-H mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa Test Engineer: YT

REMARK

	Re: Freq Leve		Antenna Factor						
	MHz	—dBu∜	<u>dB</u> /m	d <u>B</u>	<u>ab</u>	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT USB Bluetooth Adapter

ro106H

rest mode : 2DH1-H mode

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C

Test Engineer: YT

REMARK : PBTO6H

Huni:55% 101KPa

331UH-		Road	Ant enna	Cable	Dreamn		Limit	Ottor	
	Freq		Factor						
	MHz	dBuV	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500								
2	2483.500	7.40	23.70	6.85	0.00	37.95	54.00	-16.05	Average

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : USB Bluetooth Adapter Condition

EUT

Model : PBTO6H Test mode : 3DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT REMARK :

1234

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∇		<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
3	2321.425 2390.000	14.68 16.10	23.67 23.67 23.68 23.68	6.48 6.63	0.00	46.41	54.00 74.00	-9.17 -27.59	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : USB Bluetooth Adapter Condition

EUT

Model : PBTO6H Test mode : 3DH1-L mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa Test Engineer: YT REMARK :

mena.									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∇		<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	2321.242	23.22	23.67	6.48	0.00	53.37	74.00	-20.63	Peak
2	2321.242	13.14	23.67	6.48	0.00	43.29	54.00	-10.71	Average
3	2390.000	17.59	23.68	6.63	0.00	47.90	74.00	-26.10	Peak
4	2390.000	7.84	23.68	6.63	0.00	38.15	54.00	-15.85	Average

Test channel:Highest Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : USB Bluetooth Adapter Condition

EUT

Model : PBTO6H Test mode : 3DH1-H mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Test Engineer: YT REMMARK

Huni:55% 101KPa

REMARK

			Antenna						
	rreq	rever	Factor	LOSS	ractor	rever	Line	LIMIT	Kemark
9	MHz	dBu₹	dB/m	₫B	₫₿	dBuV/m	dBuV/m	₫B	
1 2	2483.500 2483.500					51.33 38.42			

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : USB Bluetooth Adapter Condition

: USB Bluetooth Adapter

Model : PBT06H
Test mode : 3DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

CHICALCE		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu∜			<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B		_
	2483,500 2483,500					51.28 38.61				

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10: 2013 and DA00-705						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Non-hopping mode						
Test results:	Pass						

Date: 25.MAY.2016 23:49:40

30MHz~25GHz

Date: 25.MAY.2016 23:47:09

Date: 25.MAY.2016 23:47:46

π/4-DQPSK

Date: 25.MAY.2016 23:52:23

26.5 dBm

*Att

30MHz~25GHz

Date: 25.MAY.2016 23:53:42

Date: 25.MAY.2016 23:54:37

Date: 25.MAY.2016 23:55:37

30MHz~25GHz

Date: 25.MAY.2016 23:56:49

Date: 25.MAY.2016 23:57:56

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission Me	etnod									
Test Requirement:	FCC Part 15 C Section 15.209									
Test Method:	ANSI C63.10: 20 ⁻	ANSI C63.10: 2013								
Test Frequency Range:	9kHz to 25GHz	9kHz to 25GHz								
Test site:	Measurement Dis	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	7,5000 10112	RMS	1MHz	3MHz	Average Value					
Limit:	Frequen	су	Limit (dBuV	/m @3m)	Remark					
	30MHz-88I	MHz	40.0)	Quasi-peak Value					
	88MHz-216	6MHz	43.5	5	Quasi-peak Value					
	216MHz-960	OMHz	46.0)	Quasi-peak Value					
	960MHz-1	GHz	54.0)	Quasi-peak Value					
	Above 1G	iHz –			Average Value					
	7,5575 15		74.0)	Peak Value					
Above 1GHz Test setup: Below 1GHz Tum Table Above 1GHz Above 1GHz Artenna Test Recover Ground Rilerous Plane Ground Rilerous Plane Ground Rilerous Plane Test Recover Test Recover Test Recover					aa Tower ch nna					

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the
	ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : USB Bluetooth Adapter Condition

EUT

: FDIUDH
Test mode : BT mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK Model : PBTO6H

REMARK

CHICK TATE									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∇	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	39.437	42.38	16.68	1.21	29.91	30.36	40.00	-9.64	QP
2	54.452	50.95	13.06	1.34	29.80	35.55	40.00	-4.45	QP
3	127.218	48.60	12.18	2.25	29.35	33.68	43.50	-9.82	QP
4	241.676	44.51	11.81	2.82	28.59	30.55	46.00	-15.45	QP
5	417.641	46.70	16.02	3.12	28.81	37.03	46.00	-8.97	QP
6	801.786	44.14	20.60	4.34	28.19	40.89	46.00	-5.11	QP

Horizontal:

Site Condition

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : USB Bluetooth Adapter

: USB Bluetooth Adapter

Model : PBT06H
Test mode : BT mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

LMAKK									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>d</u> B/m	dB	dB	dBuV/m	dBuV/m	dB	
1	55.027	51.55	12.65	1.36	29.80	35.76	40.00	-4.24	QP
2	136.460	49.02	11.91	2.36	29.29	34.00	43.50	-9.50	QP
2	214.514	50.74	11.02	2.85	28.74	35.87	43.50	-7.63	QP
4	290.017	47.01	12.30	2.91	28.47	33.75	46.00	-12.25	QP
5	417.641	41.55	16.02	3.12	28.81	31.88	46.00	-14.12	QP
6	798.980	44.76	20.60	4.35	28.20	41.51	46.00	-4.49	QP

Above 1GHz:

Te	st channel:		Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.21	35.99	10.57	40.24	51.53	74.00	-22.47	Vertical
4804.00	45.81	35.99	10.57	40.24	52.13	74.00	-21.87	Horizontal
Te	st channel:		Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.68	35.99	10.57	40.24	42.00	54.00	-12.00	Vertical
4804.00	35.81	35.99	10.57	40.24	42.13	54.00	-11.87	Horizontal

Te	st channel:		Middle		Lev	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	44.64	36.38	10.66	40.15	51.53	74.00	-22.47	Vertical
4882.00	45.39	36.38	10.66	40.15	52.28	74.00	-21.72	Horizontal
Te	st channel:		Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	34.59	36.38	10.66	40.15	41.48	54.00	-12.52	Vertical
4882.00	35.83	36.38	10.66	40.15	42.72	54.00	-11.28	Horizontal

Te	st channel:		Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	44.56	36.71	10.73	40.03	51.97	74.00	-22.03	Vertical
4960.00	44.34	36.71	10.73	40.03	51.75	74.00	-22.25	Horizontal
Te	st channel:	•	Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	34.58	36.71	10.73	40.03	41.99	54.00	-12.01	Vertical
4960.00	34.71	36.71	10.73	40.03	42.12	54.00	-11.88	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.