SQL

Master Data Analytics para para la empresa

Pedro Nieto

EDEM

Escuela de Empresarios

Agenda

- 1.SQL Introducción
- 2. Tipos de Instrucciones
- 3.DML
 - 1. Select
 - 2. Insert
 - 3. Update
 - 4. Delete
- 4.DDL
 - 1. Create
 - 2. Drop
 - 3. Alter
- 5. Joins
- 6. Public Dataset

SQL Introducción

SQL is a domain-specific language used in programming and designed for managing data held in a relational database management system (**RDBMS**), or for stream processing in a relational data stream management system (**RDSMS**). It is particularly useful in handling structured data, i.e. data incorporating relations among entities and variables.

GFT GROUP 11/11/2021 ■ 3

Google BigQuery

Bigquery el almacén de datos como servicio

Google BigQuery

- El Almacén de datos corporativos en la nube de Google
- Escala de Petabyte y la facilidad del SQL
- Datos Cifrados, Durables y Áltamente disponibles
- Servicio completamente gestionado

Beneficios de Bigquery

Escalable

Escalabilidad horizontal real, con alto rendimiento para Petabytes de datos

En aplicaciones de producción en Google durante más de una década

Simple

Servicio gestionado: escalado automático de almacenamiento y computación

Analiza tus datos en la plataforma de Google Cloud usando SQL

Compartible

Comparte el acceso a datos y resultados a un grupo mayor de usuarios

Conjuntos de datos públicos y comerciales para enriquecer los análisis

Seguro

Datos cifrados en movimiento v almacenamiento

Gestión de acceso granular con Google Cloud IAM

Ahorras

Servicio completamente gestionado, con un Coste de Propiedad bajo para organizaciones de todo tipo

Facturación flexible. con detalle de todos los costes por recurso

ID

3

Vamos a crear un esquema

MASTER

MDA	

Nom

2 Sales

Marketing

ALUMNOS

ID	No m	CogNo m	Pais	Direccion	Email
1	Juan	Nieto	España	C/ San Vicent	a@a.com
2	Pedr o	García	Alemania	C/ Rod	a@a.com
3	Luis	López	Italia	C/ La Paz	a@a.com

	▼	
ID	ALU_ID	MAS_ID
1	1	2
2	2	3
3	3	1

ALU_MASTER

Tipos de Operaciones SQL

- Las diferentes operaciones que de pueden realizar en una base de datos relacional se pueden agrupar en:
 - DDL (Data Definition Language)
 - Permite crear y modificar la estructura de una base de datos.
 - DML (Data Manipulation Language):
 - Permite recuperar, almacenar, modificar, eliminar, insertar y actualizar datos de una base de datos.
 - DCL (Data Control Language):
 - Permite crear roles, permisos e integridad referencial, así como el control al acceso a la base de datos.
 - TCL (Transactional Control Language):
 - Permite administrar diferentes transacciones que ocurren dentro de una base de datos.

GFT GROUP

11/11/2021

DML - Data Manipulation Language

- Permite recuperar, almacenar, modificar, eliminar, insertar y actualizar datos de una base de datos.
 - SELECT: Utilizado para consultar registros de la base de datos que satisfagan un criterio determinado.
 - INSERT: Utilizado para cargar de datos en la base de datos en una única operación.
 - UPDATE: Utilizado para modificar los valores de los campos y registros especificados
 - DELETE: Utilizado para eliminar registros de una tabla de una base de datos.

Sintaxis SELECT

- SELECT: Utilizado para consultar registros de la base de datos que satisfagan un criterio determinado.
- ORDER BY
 - ASC: De menor a mayor
 - **DESC**: De mayor a menor
- SELECT DISTINCT y SELECT DISTINCT ON(GROUP BY)
- WHERE
 - AND y OR
 - = y <>
 - IN y NOT IN
- LIKE y NOT LIKE
 - Operadores: % y _
- BETWEEN

" Select * From Customers where first_name like "%Ant%"

Ejemplos

- SELECT NOM, PAIS FROM EDEM. ALUMNOS;
- SELECT NOM FROM EDEM.ALUMNOS WHERE ID BETWEEN 1 AND 10;
- SELECT NOM FROM pabloEDEM.ALUMNOS WHERE NOM LIKE '%O%';
- SELECT NOM FROM EDEM.ALUMNOS WHERE ID IN (1,2,3);

GFT GROUP

ID

2

3

MASTER

Nom

MDA

Sales

Marketing

Ejercicio

Dado este esquema:

ALUMNOS

ID	No m	CogNo m	Pais	Direccion	Email
1	Juan	Nieto	España	C/ San Vicent	a@a.com
2	Pedr o	García	Alemania	C/ Rod	a@a.com
3	Luis	López	Italia	C/ La Paz	a@a.com

	$\overline{}$	ſ	ALU_MASTER
ID	ALU_ID	MAS_ID	_
1	1	2	
2	2	3	
3	3	1	

GFT GROUP 11/11/2021

Ejercicio

- Proporciona una Select que de los Alumnos de Portugal
- Proporciona una Select de los Masters que lleven una D
- Proporciona una Select con los Alumnos cuyo ID sea 37 y 45

Sintaxis INSERT

- INSERT: Utilizado para cargar de datos en la base de datos en una única operación.
- All columns by order:
 INSERT INTO table_name VALUES(data1, data2, ...)
- Specific columns:
 INSERT INTO table_name(field1, field2) VALUES(data1, data2, ...)

INSERT INTO student VALUES(101, 'Adam', 15);

GFT GROUP 11/11/2021 ■ 15

Ejemplos

- insert into EDEM.ALUMNOS (id, Nom, CogNom, Pais, Direccion, Email) values (1001, "PEDRO", "Robottham", "Philippines", "3620 Graedel Court", "mrobotthamrr@reddit.com");
- insert into EDEM.ALUMNOS (id, Nom) values (1002, "PEDRO");

ID

2

3

Ejercicio

Dado este esquema:

MASTER

MDA

Nom

Sales

Marketing

ALUMNOS

ID	No m	CogNo m	Pais	Direccion	Email
1	Juan	Nieto	España	C/ San Vicent	a@a.com
2	Pedr o	García	Alemania	C/ Rod	a@a.com
3	Luis	López	Italia	C/ La Paz	a@a.com

		ĺ	ALU_MASTER
ID	ALU_ID	MAS_ID	
1	1	2	
2	2	3	
3	3	1	

Ejercicio

Genera tu Insert para incluir en la base de datos

GFT GROUP

11/11/2021

Sintaxis UPDATE

- UPDATE: Utilizado para actualizar registros de la base de datos que satisfagan un criterio determinado.
- One column:

UPDATE table_name SET column_name = new_value WHERE some condition;

Multiple Columns:

UPDATE table_name SET column_name = new_value, column_name = new value WHERE some condition;

Using custom values:

UPDATE table_name SET column_name = column_name + 1;

UPDATE student SET age=18 WHERE student id=102;

GFT GROUP

11/11/2021

Ejemplos

- UPDATE EDEM.ALUMNOS SET NOM="ESTEBAN" WHERE NOM="PEDRO";
- UPDATE EDEM.ALUMNOS SET NOM="ESTEBAN" WHERE ID IN (SELECT ID FROM EDEM.ALUMNOS WHERE NOM="PEDRO");
- UPDATE EDEM.ALUMNOS SET NOM="ROBERTO",PAIS="CHINA" WHERE NOM="ESTEBAN";

GFT GROUP

11/11/2021

ID

2

3

Ejercicio

Dado este esquema:

MASTER

MDA

Nom

Sales

Marketing

ALUMNOS

ID	No m	CogNo m	Pais	Direccion	Email
1	Juan	Nieto	España	C/ San Vicent	a@a.com
2	Pedr o	García	Alemania	C/ Rod	a@a.com
3	Luis	López	Italia	C/ La Paz	a@a.com

ID	ALU_ID	MAS_ID
1	1	2
2	2	3
3	3	1

ALU_MASTER

Ejercicio

- Actualiza tu país de origen a Mexico
- Inserta una fila con tu asistencia al master de MDA

Sintaxis DELETE

- DELETE: Utilizado para eliminar registros de la base de datos que satisfagan un criterio determinado.
- No filters:

DELETE FROM table_name;

With Filter:

DELETE FROM table_name where column_name>1;

DELETE FROM student WHERE s_id=103;

Ejemplos

- DELETE FROM EDEM.ALUMNOS WHERE NOM="PEDRO";
- DELETE FROM EDEM.ALUMNOS WHERE ID IN (SELECT ID FROM EDEM.ALUMNOS WHERE NOM="PEDRO");
- DELETE FROM EDEM.ALUMNOS WHERE ID>1000;

GFT GROUP

ID

2

3

Ejercicio

Dado este esquema:

MASTER

1	MDA

Nom

Sales

Marketing

ALUMNOS

ID	No m	CogNo m	Pais	Direccion	Email
1	Juan	Nieto	España	C/ San Vicent	a@a.com
2	Pedr o	García	Alemania	C/ Rod	a@a.com
3	Luis	López	Italia	C/ La Paz	a@a.com

			ALU_MASTER
ID	ALU_ID	MAS_ID	
1	1	2	
2	2	3	
3	3	1	

Ejercicio

Borra todos los alumnos que se llamen Juan

GFT GROUP

11/11/2021

Combina tus DML

INSERT + SELECT

INSERT INTO Table_Name SELECT * FROM Table_Name2;

DELETE + SELECT

DELETE FROM Table_Name where Id in (select ID from Table_Name)

SELECT + SELECT

SELECT * FROM Table_Name where Id in (select ID from Table_Name)

UPDATE + SELECT

UPDATE table_name SET column_name = new_value WHERE Id in (select ID from Table_Name);

GFT GROUP 11/11/2021 ■ 27

3

MASTER

Ejercicio

Dado este esquema:

ALUMNOS

ID	No m	CogNo m	Pais	Direccion	Email
1	Juan	Nieto	España	C/ San Vicent	a@a.com
2	Pedr o	García	Alemania	C/ Rod	a@a.com
3	Luis	López	Italia	C/ La Paz	a@a.com

ID	Nom
1	MDA
2	Sales

Marketing

ALU_MASTER

	▼	
ID	ALU_ID	MAS_ID
1	1	2
2	2	3
3	3	1

Ejercicio

- Borra los alumnos que no asistan a ningún master
- Borra los masters que no tengan alumnos
- Actualiza a Nulo los emails de los alumnos del master de MDA

DDL - Data Definition Language

- Un Data Definition Language o Lenguaje de descripción de datos (DDL) es un lenguaje de programación para definir <u>estructura de datos</u> .
 - CREATE: Sirve para crear una nueva base de datos, tabla, índice, o procedimiento almacenado..
 - DROP: Sirve para borrar en forma sencilla distintos objetos dentro del [SGBD] como por ejemplo base de datos, tablas, índices.
 - ALTER: La sentencia ALTER TABLE es usada para agregar, borrar o modificar columnas en una tabla existente

DataTypes

	postgresql	sqlite	sqlserver	sybase
:binary	bytea	blob	image	image
:boolean	boolean	boolean	bit	bit
:date	date	date	date	datetime
:datetime	timestamp	datetime	datetime	datetime
:decimal	decimal	decimal	decimal	decimal
:float	float	float	float(8)	float(8)
:integer	integer	integer	int	int
:string	(note 1)	varchar(255)	varchar(255)	varchar(255)
:text	text	text	text	text
:time	time	datetime	time	time
:timestamp	timestamp	datetime	datetime	timestamp

Casi todo es standard...

GFT GROUP

11/11/2021

 Primary key: (PK): A primary key is a column or a group of columns used to identify a row uniquely in a table.

Customer , ID	Forename	Surname
1	Simon	Jones
2	Emma	Price
3	Laura	Jones
4	Jonathan	Hale
5	Emma	Smith

• Foreign KEY (FK): A foreign key is a field or group of fields in a table that uniquely identifies a row in another table. In other words, a foreign key is defined in a table that references to the primary key of the other table.

GFT GROUP

11/11/2021

 UNIQUE: Sometimes, you want to ensure that values stored in a column or a group of columns are unique across the whole table such as email address and username.
 PostgreSQL provides you with the UNIQUE constraint to make sure that the uniqueness of the data is maintained correctly.

					1
Student ID F	irst Name	Last Name	Email	Major	Faculty
200120 K	ate	West	kwest@email.com	Music	Arts
200121 Ju	ulie	McLain	jmclain@email.com	Finance	Business
200122 To	om	Erlich	terlich@email.com	Sculpture	Arts
200123 M	1 <mark>ark</mark>	Smith	msmith@email.com	Biology	Science
200124 Je	en	Foster	jfoster@email.com	Physics	Science
200125 M	1 <mark>att</mark>	Knight	mknight@email.com	Finance	Business
200126 K	aren	Weaver	kweaver@email.com	Music	Arts
200127 Jo	hn	Smith	jsmith@email.com	Sculpture	Arts
200128 A	lison	Page	apage@email.com	History	Humanities
200129 C	raig	Cambell	ccambell@email.com	Music	Arts
200130 S	teve	Edwards	sedwards@email.com	Biology	Science
200131 M	1 ke	Williams	mwilliams@email.com	Linguistics	Humanities
200132 Ja	ne	Reid	jreid@email.com	Music	Arts

NOT NULL: In database theory, NULL is unknown or missing information. The NULL value is different from an empty string or number zero. For example, you can ask a person for an email address, if you don't know, you use the NULL value for inserting into the email column. This indicates that the information at the time of inserting is unknown. In case the person does not have any email address, you can update it to an empty string.

The NULL value is very special. For example, NULL is not equal to anything even NULL. To check if a value is NULL or not, you use the Boolean operator **IS NULL** or **IS NOT NULL**. The expression NULL = NULL returns NULL.

GFT GROUP

11/11/2021

Sintaxis CREATE

- Hay dos Statements disponibles de CREATE en SQL:
 - CREATE DATABASE (no la veremos)
 - CREATE TABLE

```
CREATE TABLE table_name
(
column1 data_type(size) constraint,
column2 data_type(size) constraint,
column3 data_type(size) constraint,
....
);
```


CREATE TABLE account(
user_id serial PRIMARY KEY,
username VARCHAR (50) UNIQUE NOT NULL,
password VARCHAR (50) NOT NULL,
email VARCHAR (355) UNIQUE NOT NULL,
created_on TIMESTAMP NOT NULL,
last_login TIMESTAMP
);

Ejemplos


```
CREATE TABLE role(
 role id serial PRIMARY KEY,
 role name VARCHAR (255) UNIQUE NOT NULL
CREATE TABLE account(
 user_id serial PRIMARY KEY,
 username VARCHAR (50) UNIQUE NOT NULL,
 password VARCHAR (50) NOT NULL,
 email VARCHAR (355) UNIQUE NOT NULL,
 created_on TIMESTAMP NOT NULL,
 last_login TIMESTAMP
```


CREATE TABLE EDEM.role(

role id int64,

```
role name STRING
CREATE TABLE EDEM.account(
 user_id int64,
 username STRING,
 password STRING,
 email STRING,
 created_on DATETIME,
 last_login DATETIME
```


Ejercicio

• Crea la siguiente tabla en tu schema:

■ ID: Clave primaria único

Mes: No nulo

Cantidad: No nulo

Descripcion: Más de 250 characteres

ld	Mes	Cantidad	Descripcion
1	Enero	100.4	Cuota Mensual
2	Febrero	240	Gasto

Sintaxis DROP

- Hay dos Statements disponibles de DROP en SQL:
 - DROP DATABASE (no la veremos)
 - DROP TABLE

DROP TABLE [IF EXISTS] table_name [CASCADE | RESTRICT];

DROP TABLE IF EXISTS account;

GFT GROUP 11/11/2021 ■ 40

Ayuda

Las siguientes opciones os harán la vida más fácil a la hora de construir una join:

Visual JOIN

Understand how joins work by interacting and see it visually

SQL Joins Visualizer

42 **GFT GROUP** 11/11/2021

ID

2

3

Ejercicio

Dado este esquema:

MASTER

MDA

Nom

Sales

Marketing

ALUMNOS

ID	No m	CogNo m	Pais	Direccion	Email
1	Juan	Nieto	España	C/ San Vicent	a@a.com
2	Pedr o	García	Alemania	C/ Rod	a@a.com
3	Luis	López	Italia	C/ La Paz	a@a.com

	▼	
ID	ALU_ID	MAS_ID
1	1	2
2	2	3
3	3	1

ALU_MASTER

Example:

Query que haga Join y muestre cada alumno el master que tiene asociado

GFT GROUP

11/11/2021

Dataset Publicos

GFT GROUP 11/11/2021 45

Ejercicios de repaso

- Seguir las instrucciones del video:
- Postgres in Docker YouTube

DVD Rental Database

Hagamos unos pocos de Ejercicios

<u>PostgreSQL Sample Database</u> (postgresqltutorial.com)

GFT GROUP 11/11/2021

1. Proporciona una SQL que muestre los siguientes datos:

- Nombre Actor
- Apellido Actor

2. Proporciona una SQL que muestre los siguientes datos:

- Nombre Actor
- Titulo de la Película

3. Proporciona una SQL que muestre los siguientes datos:

- Nombre Actor
- Número de películas
- Ordenar de mayor a menor

4. Proporciona una SQL que muestre los siguientes datos:

- Película
- Numero de veces alquilada

5. Proporciona una SQL que muestre los siguientes datos:

- Película
- Dinero recaudado por película

6. Proporciona una SQL que muestre los siguientes datos:

- Nombre del mejor cliente (mayor gasto)
- 7. Proporciona una SQL que muestre los siguientes datos:
 - Nombre del mejor cliente (mayor num alquileres)