

AUR 😂 RA

Hydrogen Conference

London 2022

Wednesday 9 November

Premium Partner:

Panel Partners:

We assume that by 2035, around 8% of power generated in Great Britain will come from unabated gas plants, of which 1% is from gas peakers

At low load factors, hydrogen-fired plants are likely to be more economical than gas-fired plants with Carbon Capture and Storage (CCS)

¹⁾ Assuming lifetime of 30 years for new build CCGTs and CCS and 25 years for peakers. 2) Analysis done without assuming any policy support and including carbon prices.

If we replaced the remaining gas-fired peakers with hydrogen peakers in 2035, 8 TWh of extra hydrogen fuel would be needed

Just using curtailed renewable electricity would not be enough to produce the needed hydrogen for peakers...

Curtailed renewable generation and electrolyser demand¹

TWh electricity, 2035

extra hydrogen for peakers¹

To make the 8 TWh of extra hydrogen needed to replace gas in peakers in 2035, we would need 13 TWh of input electricity¹

When the amount of lowmarginal-cost generation exceeds demand and prices drop to zero, some renewables will turn down economically

When renewable generation cannot all reach demand because of **network constraints**. the system operator will instruct some renewables to turn down

We currently expect this curtailed generation to be wasted, but it could be more usefully employed to run electrolysers

Source: Aurora Energy Research

¹⁾ Electrolyser electricity demand for H₂ peakers assumes 38% efficient peaker and 65% efficient electrolyser.

... instead, there is an optimum amount of zero-carbon capacity that could be AUR QRA added to the system to meet hydrogen demand

¹⁾ Electrolyser electricity demand for H₂ peakers assumes 38% efficient peaker and 65% efficient electrolyser

Source: Aurora Energy Research

Using hydrogen for power system flexibility would also require interseasonal hydrogen storage

Monthly curtailed renewable generation and peaker demand¹

TWh electricity, 2035

Storage Requirements in different weather years² TWh hydrogen, 2035

Dependent on the weather, renewables generation and peaking demand vary leading to different storage requirements; ranging between 4-10 TWh

This route to low carbon flexibility is comparable to building 12 GW of new gas with CCS

Capex spend to replace peakers with low carbon alternatives in 2035

£ billion, real 2021

Takeaways

Gas peakers are meeting less than 1% of power demand in 2035 but emit 11% of power sector emissions. Hydrogen peakers could be economical as a low-carbon alternative to gas peakers. Hydrogen peakers would allow the system to shift excess renewables generation to tight low-renewables generation periods

In order to generate enough low-carbon electricity to produce hydrogen for peakers, we have found a balanced scenario where 7.5% more renewable and nuclear capacity is needed on top of Aurora Central. This is combined with the need for 4-10 TWh of seasonal hydrogen storage

This would cost around £20 billion, which is similar in cost to installing 12 GW of new gas CCGTs with CCS on top of Aurora Central

