- **Ex 1** Déterminer $\inf_{x>0} \left(\lfloor x \rfloor + \left\lfloor \frac{1}{x} \right\rfloor \right)$ après avoir justifié son existence.
- **Ex 2** Soit $f(x) = \frac{2x^2 + 4x + 1}{x^2 + 2x + 2}$. Calculer $\sup_{\mathbb{R}} f$ et $\inf_{\mathbb{R}} f$. Sont-ils atteints?
- $\textbf{Ex 3} \ \, \text{Soit} \, f\left(x\right) = \frac{x^2 \cos x}{1+x^2}. \, \text{Montrer que } f \, \text{est born\'ee sur } \mathbb{R}, \, \text{et calculer } \sup_{\mathbb{R}} f \, \text{et } \inf_{\mathbb{R}} f \, . \\ \underline{\text{Indication}} : \text{si } \varepsilon > 0, \, \text{on pourra chercher un } x \, \text{de la forme } 2k\pi \, \text{tel que } f(x) > M \varepsilon.$
- $\mathbf{Ex\ 4}\ \ \mathrm{Soit}\ E = \left\{\frac{n}{mn+1},\ m\in\mathbb{N}^*, n\in\mathbb{N}^*\right\}.\ \mathrm{Montrer\ que}\ E\ \mathrm{est\ born\acute{e},\ et\ calculer\ sup}\ E\ \mathrm{et\ inf}\ E.$
- **Ex 5** Soient A et B deux parties de $\mathbb R$ non vides telles que $A\subset B$ et B majorée. Montrer que A admet une borne supérieure qui vérifie $\sup A\leqslant \sup B$.
- **Ex 7** Soit f une fonction majorée sur un intervalle I et sur un intervalle J. On note $M_I = \sup_I f$ et $M_J = \sup_J f$. Montrer que f est bornée sur $I \cup J$ et que $\sup_{I \cup J} f = \max(M_I, M_J)$.
- **Ex 8** Soit E un sous-ensemble borné de \mathbb{R} , $M = \sup E$, $m = \inf E$. On pose $\mathcal{D} = \{|x y|, \ (x, y) \in E^2\}$. Montrer que \mathcal{D} est majoré, et montrer que $\sup \mathcal{D} = M m$.
- **Ex 9** Soit A un sous ensemble de $\mathbb R$ non vide et borné tel que $\inf A>0$ On pose $B=\left\{\frac{1}{a},\ a\in A\right\}$. Montrer que B est borné et que $\sup B=\frac{1}{\inf A}$
- Ex 10 Soit $(I_k)_{k\in\mathbb{N}}$ une suite de segments emboîtés, c'est-à-dire d'intervalles fermés et bornés de type $I_k=[a_k,b_k]$ avec $a_k\leqslant b_k$, et formant une suite décroissante pour l'inclusion $(\forall k\in\mathbb{N},\ I_{k+1}\subset I_k)$.
 - a) Montrer que $(a_k)_{k\in\mathbb{N}}$ et $(b_k)_{k\in\mathbb{N}}$ sont bornées, et que si $a=\sup a_k$ et $b=\inf b_k$, alors $a\leqslant b$.
 - b) Montrer que $\bigcap_{k\in\mathbb{N}}I_k=[a,b]$
- **Ex 11** Soit f une fonction définie sur [0,1] vérifiant : $\begin{cases} \forall x \in [0,1], \ f(x) \in [0,1] \\ \forall (x,y) \in [0,1]^2, \quad |f(x) f(y)| \leqslant |x-y| \end{cases}$

On se propose de démontrer qu'il existe un réel $\alpha \in [0,1] / f(\alpha) = \alpha$.

On pose à cet effet : $A = \{x \in [0,1] / f(x) \ge x\}$.

- a) Montrer que A admet une borne supérieure $m \in [0, 1]$.
- b) Montrer que $\forall z \in A, \ z \leqslant f(z) \leqslant f(m) + m z$, et en déduire $m \leqslant \frac{m + f(m)}{2}$. Qu'en déduit-on?
- c) On suppose que $m \neq 1$. Montrer que $\forall z \in]m,1]$, $f(m) \leqslant f(z) + z m < 2z m$. En déduire $m \geqslant \frac{m+f(m)}{2}$. Qu'en déduit-on?
- d) Conclure.

PCSI 1 Thiers 2019/2020