به نام خدا

تمرین سری سوم (موعد تحویل 4 شنبه 77 اسفند ساعت 0 بعد از ظهر)

منبع S_1 را که یک فرآیند تصادفی دارای توزیع یکنواخت بین S_1 می باشد با T=1000 نمونه و منبع S_2 را که یک فرآیند تصادفی دارای توزیع یکنواخت بین S_2 می باشد با T=1000 نمونه و منبع را که یک فرآیند تصادفی دارای توزیع میانگین منابع را حتما صفر کنید. این دو منبع را به تولید کنید. در صورت وجود میانگین در منابع، میانگین منابع را حتما صفر کنید. این دو منبع را به صورت خطی و آنی توسط ماتریس مخلوط کننده $A = \begin{bmatrix} 1 & -2 \\ 2 & -1 \\ 3 & -2 \end{bmatrix}$ ترکیب کنید و مشاهدات X_2 و X_3 را تولید کنید.

$X_{3\times T} = A_{3\times 2} S_{2\times T}$

- أ) پراکندگی مشاهدات را در فضای سه بعدی (دستور scatter3) رسم کنید. همان طور که مشاهده می کنید با این که مشاهدات سه بعدی هستند، اما عملا در یک فضای دو بعدی پراکنده شده اند. با محاسبه کنید با این که مشاهدات سه بعدی هستند، اما عملا در یک فضای دو بعدی پراکنده شده اند. با محاسبه ی ماتریس R_{χ} و اعمال تحلیل PCA (توسط دستور eig در Matlab) ماتریس بردارهای ویژه R_{χ} ماتریس قطری مقدار ویژه R_{χ} را به دست آورید.
- ب) یک بار با استفاده از روش Steepest Descend و یک بار با استفاده از روش Newton (با رویکرد GP) بردارهای ویژه و مقادیر ویژه را استخراج کنید. ابتدا بردار ویژه و مقدار ویژه ی اول را استخراج کنید سپس بردار ویژه ی دوم و الی آخر... نتایج به دست آمده را با قسمت آ مقایسه کنید.
- ج) سعی کنید هر سه گزاره ی زیر را به صورت مفهومی درک کنید. بردار ویژه ها را متناظر با مقادیر ویژه از برگ به کوچک، به صورت u_2 ، u_3 و u_2 ، u_3 و u_4 در نظر بگیرید.
- u_3 تصویری یا به عبارت دیگر پراکندگی ندارند. معادل ریاضی این گزاره یعنی u_3 داده ها در جهت تصویری ندارند یا به عبارت دیگر پراکندگی ندارند. معادل ریاضی این گزاره یعنی $u_3^T X = 0$.
- بر ستون های ماتریس A عمود است زیرا این ستون ها هستند که داده ها را تولید کرده اند و در u_3 * واقع داده ها در فضای این ستون ها هستند. معادل ریاضی این گزاره یعنی $u_3^TA=0$.
- u_1 و u_2 در همان فضای ستون های ماتریس A یعنی u_2 و u_3 قرار دارند. معادل ریاضی این گزاره u_2 یعنی u_3 درایه های ماتریس u_3 را به دست آورید.

د) چون یکی از مقادیر ویژه صفر است می توان بدون از دست دادن هیچ گونه اطلاعاتی، داده ها را به فضای دو بعدی برد. ماتریسی که می تواند بُعد اضافی داده ها را حذف کند و همچنین آنها را در فضای جدید سفید کند به دست آورید $(Z_{2\times T}=B_{2\times 3}X_{3\times T})$.

.

ه) اگر از ما بخواهند که بُعد داده های اولیه X را تا حد ممکن کاهش دهید به گونه ای که حداقل ۹۰ درصد انرژی کل مشاهدات ($E_{tot}=E_1+E_2+E_3$) حفظ شود، چگونه این کار را انجام می دهید؟ داده ها را در فضای با بعد تقلیل یافته رسم کنید.