

Projeto e Fabricação Assistidos por Computador

Simulation

Prof. Me Herbert Severino

Sumário

- Apresentação do SolidWorks Simulation;
- Localizar e aplicar comandos do SolidWorks Simulation;

Conhecer as funcionalidades dos comandos disponíveis

para análises de peças;

- Aplicar e editar definição de materiais em peças;
- Opções de plotagens;
- Realizar a primeira análise de uma peça;
- Avaliar os resultados obtidos da análise.

Clique na imagem para acessar a peça de estudo.

Fundamento teórico

Método dos Elementos Finitos - MEF

Fundamento teórico

Etapas do processo de análise

Pré-processamento

Preparação do modelo CAD 3D, tipo de análise, propriedades dos materiais, cargas e restrições, geração de malha.

Solução

Execução pelo Solver do Cálculo resultante de todas essas combinações.

Pós-processamento

Visualização dos resultados gerados durante a etapa de solução.

Limitações do Simulation

Linearidade do material

Limitações do Simulation

Pequenas deformações

Limitações do Simulation

Carregamentos estáticos

Fixações

Rolagem/Deslizamento...

Articulação fixa...

Suporte elástico...

Acess<u>ó</u>rio de fixação de rolamento...

Parafuso de <u>f</u>undação...

Acessórios de fixação avançados...

Rolagem/ Deslizamento

Geometria Fixa

Conexões e interações

Contato

Livre

Tipos de carregamento

Malhas

Tipos de Malhas

Qualidade de malha

1° Ordem (Qualidade Rascunho)

Estudos preliminares. Análises de deslocamento. 2° Ordem (Alta Qualidade)

Resultados precisos. Análises de tensão.

Sólida VS Casca

Solução

Análise estática pela Método de Elementos Finitos (MEF)

O equilíbrio de forças obtido em um elemento conforme destacado na figura, deste modelo unidimensional, é dado pela equação diferencial.

$$\frac{d\sigma_{x}(x)}{dx} + b_{x} = 0,$$

onde bx é a força interna de corpo e $\sigma x(x)$ é a tensão normal na direção x, obtida pela equação

$$\sigma_x(x) = (E \times \varepsilon),$$

E é o módulo de elasticidade do material e ε é a deformação calculada pela equação

$$\varepsilon = \frac{du_X(x)}{dx},$$

onde dux é a variação do deslocamento em x e dx é o tamanho do elemento.

Solução

Análise estática pela Método de Elementos Finitos (MEF)

A partir da resolução da equação diferencial dada, chega-se nas matrizes de rigidez (K) e de inércias (M) do sistema, que possuem dimensões $n \times n$, onde n é o número de graus de liberdade, sendo que M não será utilizada para análises estáticas, apenas para análises dinâmicas. O vetor de forças (F) possui dimensões $n \times 1$ e contém as informações de forças e momentos nodais do sistema.

Para realização da análise estática, o solver do SolidWorks Simulation calcula o vetor de deslocamentos nodais pela equação

$$U=K^{-1}F.$$

A partir da obtenção de U, as deformações e tensões em cada elemento podem então ser obtidas, conforme visto anteriormente.

Deslocamento

Deslocamento (mm)

Estimativa de quanto um determinado ponto (nó) moveu-se em uma determinada direção.

Deformação

Deslocamento (admissional)

A deformação da estrutura em cada elemento, é obtida pela equação

$$\varepsilon_{xx} = \frac{du_x(x)}{dx}$$

Onde:

 $du_x(x)$ - variação do comprimento do elemento (mm); dx - comprimento inicial do elemento (mm).

Tensão (MPa)

Uma tensão equivalente (proposta por Von-Mises) que é uma combinação de todos esses componentes é a solução mais genérica e comumente utilizada como um parâmetro de tensão proposta pelo SolidWorks Simulation, calculada pela equação:

$$\sigma_{eq} = \sqrt{\frac{1}{2} \Big[\big(\sigma_x - \sigma_y \big)^2 + \big(\sigma_z - \sigma_y \big)^2 + (\sigma_x - \sigma_z)^2 \Big] + 3 \big(\tau_{xy}^2 + \tau_{zy}^2 + \tau_{xz}^2 \big)}.$$

Coeficiente de segurança

É importante ressaltar que a tensão de Von Mises <u>é independente do Sistema de coordenadas</u>. Dessa forma, pode-se verificar se a tensão equivalente de Von-Mises é <u>maior</u>, <u>menor ou igual a tensão de escoamento do material</u>. Um projeto seguro, deve-se manter a tensão de Von Mises abaixo do limite da tensão de escoamento.

Para verificar o nível de segurança do projeto se costuma utilizar o quociente entre tensão de escoamento (σe) e tensão de Von Mises (σeq), originando um coeficiente de segurança conforme equação

$$FOS = \frac{\sigma_e}{\sigma_{eq}}$$
.

Em geral, o objetivo da análise é determinar a resposta de um sistema submetido a algum tipo de carga. Observe a seguir, exemplo de uma Plotagem de Fator de Segurança (FOS).

Valores de referência NAFEMS

Vamos ativar o suplemento Simulation:

1° Ative o suplemento **SOLIDWORKS Flow Simulation**.

2° Selecione o **Simulation** na Barra de Ferramentas.

Podemos iniciar a simulação! Primeiro iniciamos um Novo estudo.

1° Clique em Novo estudo

2° Selecione Análise estática. Verifique o nome. (Pode manter o padrão Análise estática 1). Em seguida clique em OK.

Vamos fazer o pré-processamento:

- 1° Insira o material:
 - Clique com o botão direito em Licao 01
 - Selecione Aplicar/ editar material....

Vamos fazer o pré-processamento:

Como deverá ficar.

Vamos fazer o pré-processamento:

- 1° Selecione os tipos de Fixações:
 - Clique com o botão direito em Acessórios de fixação.
 - Selecione Geometria Fixa.

2° Selecione os locais de fixação:

- Nos pontos de parafusamento selecione a face de apoio e a parte interna do furo.
- Faço o mesmo processo com os três furos.

Vamos fazer o pré-processamento:

Como deverá ficar.

3° Após seleção das faces conforme a imagem, clique em OK.

Vamos fazer o pré-processamento:

1° Selecione o tipo de carga:

- Clique com o botão direito em Cargas.
- Selecione Força.

2° Configure conforme a imagem:

- Selecione as três faces;
- Valor da força: 9500N
- Selecione: Por item.
- Clique em OK.

Tipo Dividir

Força/Torque

8

Força

Torque

Face<1>

Face<2>

图

Força/Torque

0

A

Vamos fazer o pré-processamento:

Como deverá ficar.

Vamos fazer o pré-processamento:

1° Vamos gerar a malha:

- Clique com o botão direito em Malhas.
- Selecione Criar malha.

2° Configure a malha: Definição

- Densidade de malha: Padrão.
- Parâmetros de malha
 - Malha mesclada com base em curvatura.
 - Demais medidas: Manter o padrão do sistema.

Vamos fazer o pré-processamento:

3° Configure a Qualidade de malha:

- Especificar: Alta
- Clique em OK.

Como deverá ficar.

Chegou a hora da verdade!! Vamos executar:

- Clique com o botão direito no nome do estudo (Análise estática 2).
- Selecione Executar.

PRONTO!!

Resultados: Tensão Von Mises

Resultados: Deslocamento

Resultados: Deformação

Você aprendeu:

- Apresentação do SolidWorks Simulation;
- Localizar e aplicar comandos do SolidWorks Simulation;
- Conhecer as funcionalidades dos comandos disponíveis para análises de peças;
- Aplicar e editar definição de materiais em peças;
- Opções de plotagens;
- Realizar a primeira análise de uma peça;
- Avaliar os resultados obtidos da análise.

