PHY 1120 - Dr. Rowley

Chapter 18 - Class Expectations

Introduction

- Dr. Eric Rowley eric.rowley@wright.edu
- Office: Online
- * Office Hours:
 - * 11:30 AM 12:30 PM (M R),
 - * 5:00 PM 7:00 PM (M R)
 - or by appointment

Course Philosophy

- Collaborative Learning
- Challenging Content
- Opportunity to Learn from Mistakes

Course Structure

- HW is for Completion (and <u>unlocks</u> exam corrections, PSP is for Accuracy.
- * Keys will be posted as soon as the assignments are due.
- 4 Exams (instead of 3)
- Calendar and Syllabus will be posted this afternoon.

Course Expectations

- Fast paced 2-3 chapters a week
- Group learning with Independent assessment
- * Trust

- * A 0.52 kg toy experiences an acceleration of +2.5 m/s² in the x-direction and an acceleration of -8.2 m/s² in the y-direction.
 - * What is the magnitude and direction of the net acceleration of this toy?
 - What is the net force on this toy?

* A 0.52 kg toy experiences an acceleration of $+2.5 \text{ m/s}^2$ in the x-direction and an acceleration of -8.2 m/s^2 in the y-direction. What is the magnitude and direction of the net acceleration of this object?

$$m = 0.52 \text{ kg}$$
 $a_x = +2.5 \frac{m}{s^2}$
 $a_y = -8.2 \frac{m}{s^2}$

$$a_{net} = \sqrt{a_x^2 + a_y^2}$$

$$a_{net} = \sqrt{(2.5 \frac{m}{s^2})^2 + (-8.2 \frac{m}{s^2})^2}$$

$$a_{net} = 8.57 \frac{m}{s^2}$$

anet

ay

* A 0.52 kg toy experiences an acceleration of $+2.5 \text{ m/s}^2$ in the x-direction and an acceleration of -8.2 m/s^2 in the y-direction. What is the magnitude and direction of the net acceleration of this object?

$$m = 0.52 \text{ kg}$$
 $a_x = +2.5 \frac{m}{s^2}$
 $a_y = -8.2 \frac{m}{s^2}$
 $a_{net} = 8.57 \frac{m}{s^2}$

$$\theta = \tan^{-1} \left(\frac{a_y}{a_x} \right)$$

$$\theta = \tan^{-1} \left(\frac{8.2 \frac{m}{s^2}}{2.5 \frac{m}{s^2}} \right)$$

anet

$$\theta_{net} = 73^{\circ}$$
 below +x-axis

What is the net force on the 0.52kg toy?

$$a_{net} = 8.57 \frac{m}{s^2}$$
 @ 73° below +x-axis

$$F_{net} = ma_{net}$$

$$F_{net} = (0.52kg)(8.57 \frac{m}{s^2})$$

$$F_{net} = 4.46 \, N \, @ \, 73^{\circ} \, \text{below +x-axis}$$

Chapter 18 - Objectives

- Illustrate understanding of basic electro-statics including the Inverse Square Law
- Apply Coulomb's Law to determine the force between charged particles
- Compare and Contrast the Universal Law of Gravitation and Coulmob's Law
- Use understanding of Electric Fields to solve force and field problems.
- Solve Electrical Potential problems

History of Electricity

- * ~2750 BCE Ancient Egyptians, Electric Eels
- * ~600 BCE Ancient Mediterraneans, Amber rubbed with cat fur would attract feathers.
- * 1600 CE William Gilbert, English Physicists, first scientific study of static electricity.

History of Electricity

- ~1750 CE Benjamin Franklin, American Physicist,
 conducted extensive researching involving electricity.
 - Studied the electrical nature of lightning (kite and key) and examined the nature of the Leyden Jar (to be discussed later)

Nature of Electricity

Rubber rod rubbed with wool. Glass rod rubbed with silk.

	Glass	Rubber
Glass	None	None
Rubber	None	None

	Glass w/Silk	Rubber w/Wool
Glass w/ Silk	Repel	Attract
Rubber w/Wool	Attract	Repel

Nature of Electricity

- * Reaction is not based on the nature of the rods themselves but based on the interaction between the rods and the silk/wool.
- Benjamin Franklin called the charge on Glass, Positive and the charge on Rubber, Negative.
- Opposites Attract, Likes Repel

Law of Conservation of Charge

- No net charge can be created or destroyed
- * So, charge can only be moved from one region to the next giving <u>localized</u> regions of charge.
- ...but, which charge is moving?

DISCUSS

Atomic Theory

- What was the current Atomic Theory when Benjamin Franklin was doing his research? How does that differ from our understanding today?
 - Democritus (~400 BCE) Atomic Hypothesis
 - Atoms are small indivisible, indestructible fundamental building blocks that make up all things.

Atomic Theory

- Isaac Newton (1704 CE)
 - * The mechanical universe is composed of small, solid masses in motion.
- John Dalton (1803 CE)
 - Elements & Compounds

Atomic Theory

* Modern Model: Protons (+) and Neutrons (0) contain the majority of the mass of an atom and reside in the center of the atom. Electrons (-) are much smaller and have much less mass than Protons and Neutrons and exist in probabilistic "clouds" surrounding the nucleus.

Refreshers

$$1 fm = 1 \times 10^{-15} m$$

Determine the volume of a proton and the volume of an electron. $r_{proton} = 1$ femtometer, $r_{electron} = 0.001$ fm

$$V = \frac{4}{3}\pi r^3$$

$$V = \frac{4}{3}\pi r^3$$
 $r_{proton} = 1x10^{-15}m$

$$r_{electron} = 1x10^{-18} m$$

$$V = \frac{4}{3}\pi \left(1x10^{-15}m\right)^3$$

$$V = \frac{4}{3}\pi \left(1x10^{-15}m\right)^3 \qquad V = \frac{4}{3}\pi \left(1x10^{-18}m\right)^3$$

$$V = 4.19 \times 10^{-45} \, m^3$$

$$V = 4.19 \times 10^{-54} \, \text{m}^3$$

Electrons

- Electrical Charge is based on moving electrons.
- Can we explain Franklin's observations?
 - Wool & Rubber
 - Silk & Glass

TriBOELECTICAL Series

Electrons

If you rub cat fur on glass, which ends up positive, which is negative, and how does the charge move?

> Glass = + Cat Fur = -

Electrons move from Glass to Fur

TriBOELECTICAL Series

Conductors/Insulators

- Conductors: Electrons are free to move around the material. Charge exists on the surface of the conductor but not within the conductor (Electrostatics)
- Primarily metals, graphite, some specialty ceramics

Conductors/Insulators

- Insulators: Electrons are "locked in" and not free to move.
- Wood, Glass, Plastic, MOST Ceramics

Conductors/Insulators

* Semi-conductors: Have properties between conductors and insulators. Can be carefully controlled.

Conduction & Induction

- Conduction Charge transfer due to direct contact.
- Induction Separation of charge due to another charge being placed in close proximity to the object of interest.
 - The separation can be permanent if the induction is coupled with conduction.

Polar vs. Non-polar

Polar Molecules are slightly positive on one end, slightly negative on the other end.

Why?

Polar vs. Non-polar

Polar Molecules are slightly positive on one end, slightly negative on the other end.

- Hydrogen (+1 Ion)
- Oxygen (-2 Ion)

* I comb my hair (with a plastic comb) then bring the comb near a stream of water. What is happening here and why? Be as detailed as possible.

