Matrizes

Fernando Jorge

10 de Março, 2023

Sumário

1 Introdução

	(1) Norte	(2) Nordeste	(3) Sudeste	(4) Sul	(5) Centro-Oeste
(1) Homens	69,1	66,5	70,4	71,6	70,6
(2) Mulheres	74,9	73,8	78,5	78,5	77,5

Disponível em: http://www.ibge.gov.br>. Acesso em: 9 nov. 2009.

Figure 1: expectativa de vida brasileira em 2008

Note que podemos encontrar a expectativa de vida de uma mulher residente na região Sul bastando olhar o cruzamento da linha 2 com a coluna 4, onde encontramos o valor de 78,5 anos.

Em matemática, as tabelas como essa são chamadas de **matrizes**, sobre as quais definiremos a relação de igualdade e algumas operações.

2 Definição

Definition 2.1: Matriz

Chama-se **matriz do tipo** $m \times n$ (lemos "m por n") toda tabela de números dispostos em m linhas e n colunas.

Essa tabela deve ser representada entre parênteses () ou entre colchetes [].

Exemplos.

- a) $\begin{bmatrix} -6 & 7 \\ -4 & 0 \\ 2 & -1 \end{bmatrix}$ é uma matriz do tipo 3×2 , pois tem 3 linhas e 2 colunas.
- b) $\begin{bmatrix} 3 & \sqrt{2} & -5 \end{bmatrix}$ é uma matriz do tipo 1×3 , pois tem 1 linha e 3 colunas.

3 Representação genérica

Indicamos por a_{ij} o elemento posicionado na linha i e na coluna j de uma matriz A. Na matriz:

$$A_{3\times 2} = \begin{bmatrix} 6 & 7 \\ -4 & 0 \\ 2 & -1 \end{bmatrix}$$

- o elemento 6 está na linha 1 e na coluna 1; por isso, ele é indicado por a_{11} , ou seja, $a_{11} = 6$;
- o elemento 7 está na linha 1 e na coluna 2; por isso, ele é indicado por a_{12} , ou seja, $a_{12} = 7$;
- analogamente, temos $a_{21} = -4$, $a_{22} = 0$, $a_{31} = 2$, $a_{32} = -1$.

Definition 3.1: Matriz Genérica

Representamos genericamente uma matriz A do tipo $m \times n$ da seguinte maneira:

$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

Como essa representação é muita extensa, vamos convencionar uma forma abreviada. Essa matriz pode ser representada simplesmente por $A = (a_{ij})_{m \times n}$ ou, quando não houver possibilidade de confusão quanto ao tipo de matriz, por $A = (a_{ij})$.

Exercício Resolvido. Representar explicitamente a matriz $A = (a_{ij})_{2\times 4}$ tal que $a_{ij} = 2i + j$.

Primeiro, representamos genericamente a matriz A, do tipo 2×4 :

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix}$$

A seguir, calculamos o valor de cada elemento a_{ij} , pela lei $a_{ij} = 2i + j$:

$$a_{11} = 2 \cdot 1 + 1 = 3$$

$$a_{12} = 2 \cdot 1 + 2 = 4$$

$$a_{13} = 2 \cdot 1 + 3 = 5$$

$$a_{14} = 2 \cdot 1 + 4 = 6$$

$$a_{21} = 2 \cdot 2 + 1 = 5$$

$$a_{22} = 2 \cdot 2 + 2 = 6$$

$$a_{23} = 2 \cdot 2 + 3 = 7$$

$$a_{24} = 2 \cdot 2 + 4 = 8$$

Concluindo, temos a matriz: $A = \begin{bmatrix} 3 & 4 & 5 & 6 \\ 5 & 6 & 7 & 8 \end{bmatrix}$

4 Matrizes Especiais

4.1 Matriz Quadrada

Definition 4.1: Matriz Quadrada

É toda matriz cujo número de linhas é igual ao número de colunas.

O número de linhas ou de colunas de uma matriz quadrada é chamado de ${\bf ordem}$ da matriz.

Exemplos.

a)
$$\begin{bmatrix} 4 & 9 & 0 \\ -6 & 2 & 4 \\ 3 & 5 & -2 \end{bmatrix}$$
 é uma matriz quadrada de ordem 3. b) $\begin{bmatrix} 3 & -9 \\ 0 & 1 \end{bmatrix}$ é uma matriz quadrada de ordem 2.

Numa matriz A de ordem n, os elementos a_{ij} , tais que i=j formam a diagonal principal da matriz, e os elementos a_{ij} , tais que i+j=n+1 formam a diagonal secundária. Por exemplo:

4.2 Matriz Identidade

Definition 4.2: Matriz Identidade

É a matriz quadrada cujos elementos da **diagonal principal** são iguais a 1 e os demais iguais a 0.

Indicamos por I_n a matriz identidade de ordem n.

Exemplos.

a)
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

b)
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

4.3 Matriz Nula

Definition 4.3: Matriz Nula

É a matriz que possui todos os elementos iguais a zero.

Exemplos.

a)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

b)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

3

4.4 Transposta de uma Matriz

Definition 4.4: Transposta de uma Matriz

Transposta de uma matriz A é a matriz A^t tal que os números que a formam são obtidos através da troca de posição entre linhas e colunas da matriz A.

Exemplos.

a) A transposta de
$$A_{3\times2}=\begin{bmatrix}5&-4\\6&2\\0&7\end{bmatrix}$$
 é a matriz $A_{2\times3}^t=\begin{bmatrix}5&6&0\\-4&2&7\end{bmatrix}$

b) A transposta de
$$B_{1\times 4} = \begin{bmatrix} 2 & 0 & -5 & 8 \end{bmatrix}$$
 é a matriz $B_{4\times 1}^t = \begin{bmatrix} 2 & 0 \\ -5 & 8 \end{bmatrix}$

Nome que a transposta de uma matriz $m \times n$ é uma matriz do tipo $n \times m$.

4.5 Igualdade de Matrizes

Definition 4.5: Igualdade de Matrizes

Duas Matrizes do mesmo tipo são iguais quando todos os elementos correspondentes são iguais.

Exercício Resolvido. Determinar o número real x tal que: $\begin{bmatrix} 6 & x^2 - 5 \\ 0 & x \end{bmatrix} = \begin{bmatrix} 6 & 11 \\ 0 & 4 \end{bmatrix}$

Resolução

As matrizes são do mesmo tipo (2×2) . Logo, elas serão iguais se, e somente se, os elementos correspondentes forem iguais, isto é:

$$\begin{cases} 6=6\\ x^2-5=11\\ 0=0\\ x=4 \end{cases} \implies \begin{cases} x^2=16\\ x=4 \end{cases} \therefore \begin{cases} x=\pm 4\\ x=4 \end{cases}$$

Como o número 4 é a única solução comum às duas equações do sistema, concluímos que as matrizes são iguais se, e somente se, x = 4.

4.6 Exercícios Propostos

1 Uma rede comercial é formada por cinco lojas, numeradas de 1 a 5. A tabela abaixo mostra o faturamento, em real, de cada loja nos quatro primeiros dias de janeiro:

$$\begin{bmatrix} 1950 & 2030 & 1800 & 1950 \\ 1500 & 1820 & 1740 & 1680 \\ 3010 & 2800 & 2700 & 3050 \\ 2500 & 2420 & 2300 & 2680 \\ 1800 & 2020 & 2040 & 1950 \end{bmatrix}$$

4

Cada elemento a_{ij} dessa matriz é o faturamento da loja i no dia j.

- a) Qual foi o faturamento da loja 3 no dia 2?
- b) Qual foi o faturamento dessa rede de lojas no dia 3?
- c) Qual foi o faturamento da loja 1 nos quatro dias?

2 Represente explicitamente cada uma das matrizes:

a)
$$A = (a_{ij})_{3\times 2}$$
 tal que $a_{ij} = i + 2j$

b)
$$B = (b_{ij})_{2\times 3}$$
 tal que $b_{ij} = i^2 + 3j$

c)
$$C = (c_{ij})_{2 \times 2}$$
 tal que $c_{ij} = 2i$

d)
$$D = (a_{ij})_{2\times 3}$$
 tal que
$$\begin{cases} 1, \text{ se } i = j \\ i+j, \text{ se } i \neq j \end{cases}$$

 $\boxed{3}$ Sendo I_2 a matriz identidade de ordem 2, determine o número real x tal que:

$$\begin{bmatrix} x^2 - 15 & 0 \\ 0 & x - 3 \end{bmatrix} = I_2$$

 $\boxed{4} \ \text{Dada a matriz} \ A = \begin{bmatrix} 5 & 4 & -2 \\ -6 & 0 & 3 \end{bmatrix}, \ \text{determine as matrizes:}$

- a) A^t
- b) $(A^t)^t$

 $\boxed{5}$ Obtenha os valores reais de x e y de modo que a matriz abaixo seja nula.

$$\begin{bmatrix} 3x+y-7 & 0 & 0 \\ 0 & 5x-y-1 & 0 \end{bmatrix}$$

5 Operações entre Matrizes

5.1 Adição de matrizes

Definition 5.1: Adição de Matrizes

A soma de duas matrizes do mesmo tipo, A e B, é a matriz em que cada elemento é a soma de seus correspondentes em A e B.

Indicamos essa soma por: A + B.

Exemplo.

$$\begin{bmatrix} 4 & 7 \\ -5 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ -3 & -6 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ -8 & -3 \end{bmatrix}$$

Proposition 5.1. Adição de Matrizes

- 1. Associativa: (A + B) + C = A + (B + C) = A + B + C
- 2. Comutativa: A + B = B + A
- 3. Elemento Neutro: A = 0 = 0 + A = A. Onde 0 é a matriz nula.
- 4. Elemento oposto: A + (-A) = (-A) + A = 0. Onde -A é a matriz oposta de A.

Exemplo. Dado $A=\begin{bmatrix}2&0\\7&-8\end{bmatrix}$, sua matriz oposta é $-A=\begin{bmatrix}-2&0\\-7&8\end{bmatrix}$, pois:

$$A + (-A) = \begin{bmatrix} 2 & 0 \\ 7 & -8 \end{bmatrix} + \begin{bmatrix} -2 & 0 \\ -7 & 8 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

5.2 Subtração de Matrizes

Definition 5.2: Subtração de Matrizes

A diferença de duas matrizes do mesmo tipo, $A \in B$, nessa ordem, é a soma de A com a oposta de B.

Indicamos essa diferença por A - B.

Exemplo. Sendo $A = \begin{bmatrix} 9 & 6 \\ 4 & 0 \\ -4 & -1 \end{bmatrix}$ e $B = \begin{bmatrix} 2 & 4 \\ -3 & 5 \\ 1 & -1 \end{bmatrix}$, temos: $A - B = A + (-B) = \begin{bmatrix} 9 & 6 \\ 4 & 0 \\ -4 & -1 \end{bmatrix} + \begin{bmatrix} -2 & -4 \\ 3 & -5 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 2 \\ 7 & -5 \\ -5 & 0 \end{bmatrix}$

Para simplificar esse procedimento, podemos subtrair os elementos correspondentes em A e B:

$$A - B = \begin{bmatrix} 9 & 6 \\ 4 & 0 \\ -4 & -1 \end{bmatrix} - \begin{bmatrix} 2 & 4 \\ -3 & 5 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 9 - 2 & 6 - 4 \\ 4 - (-3) & 0 - 5 \\ -4 - 1 & -1 - (-1) \end{bmatrix} = \begin{bmatrix} 7 & 2 \\ 7 & -5 \\ -5 & 0 \end{bmatrix}$$

5

5.3 Multiplicação de um número real por uma Matriz

Definition 5.3: Multiplicação de um número real por uma Matriz

O **produto** de um número real k por uma matriz A é a matriz em que cada elemento é o produto de seu correspondente em A pelo número k.

Indicamos esse produto por $k \cdot A$ ou kA.

Exemplo.

$$6 \cdot \begin{bmatrix} 2 & 5 & 1 \\ 0 & \sqrt{2} & -2 \end{bmatrix} = \begin{bmatrix} 12 & 30 & 6 \\ 0 & 6\sqrt{2} & -12 \end{bmatrix}$$

5.4 Exercícios Propostos

 $\boxed{1} \text{ Dadas as matrizes } A = \begin{bmatrix} 2 & 3 & 8 \\ 1 & -4 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 5 & -9 \\ 6 & 2 & 7 \end{bmatrix} \text{ e } C = \begin{bmatrix} 2 & 0 \\ 8 & 6 \\ -4 & 10 \end{bmatrix} \text{ determine:}$

- a) A + B
- b) 2A B
- c) $3A \frac{1}{2} \cdot C^t$

2 Determine a matriz X tal que:

$$2 \cdot \begin{bmatrix} 4 & 1 & 3 \\ 6 & 2 & -1 \end{bmatrix} + X = 3 \cdot \begin{bmatrix} 1 & 2 & -1 \\ 0 & 2 & 1 \end{bmatrix}$$

 $\boxed{3}$ Determine as matrizes X e Y tais que:

$$X + Y = \begin{bmatrix} 0 & 1 \\ -6 & 4 \end{bmatrix}$$
 e $X - Y = \begin{bmatrix} 2 & -7 \\ 4 & 6 \end{bmatrix}$

5.5 Multiplicação de Matrizes

Definition 5.4: Multiplicação de Matrizes

O **produto** da matriz $A = (a_{ij})_{m \times n}$ pela matriz $B = (b_{ij})_{n \times p}$ é a matriz $C = (c_{ij})_{m \times p}$ tal que cada elemento c_{ij} é o produto da linha i de A pela coluna j de B.

Esse produto é indicado por $A \cdot B$ ou AB. O esquema a seguir ajuda a visualizar essa definição:

Exemplos.

1.
$$\begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 5 & 3 \\ 2 & 0 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 2 \cdot 5 + 1 \cdot 2 + 3 \cdot 1 & 2 \cdot 3 + 1 \cdot 0 + 3 \cdot (-2) \end{bmatrix} = \begin{bmatrix} 15 & 0 \end{bmatrix}$$

2. $\begin{bmatrix} 3 & 5 \\ 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 4 & 5 & -2 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 \cdot 4 + 5 \cdot 2 & 3 \cdot 5 + 5 \cdot 1 & 3 \cdot (-2) + 5 \cdot 3 \\ 2 \cdot 4 + 0 \cdot 2 & 2 \cdot 5 + 0 \cdot 1 & 2 \cdot (-2) + 0 \cdot 3 \end{bmatrix} = \begin{bmatrix} 22 & 20 & 9 \\ 8 & 10 & -4 \end{bmatrix}$

Nota:-

- 1. Se A e B são matrizes, existe o produto AB se, e somente se, o número de colunas de A é igual ao número de linhas de B. Veja abaixo:
 - a) Existe o produto $A_{3\times 4} \cdot B_{4\times 5}$

- b) Não existe o produto $A_{2\times 3} \cdot B_{4\times 2}$
- 2. A matriz C, tal que C = AB, possui o mesmo número de linhas de A e o mesmo número de colunas de B, isto é:

$$A_{m \times k} \cdot B_{k \times n} = C_{m \times n}$$

Por exemplo:

a)
$$A_{3\times 5} \cdot B_{5\times 8} = C_{3\times 8}$$

b)
$$A_{1\times 4} \cdot B_{4\times 1} = C_{1\times 1}$$

Proposition 5.2. Propriedades da multiplicação de matrizes

- 1. Associativa: $(A \cdot B) \cdot C = A \cdot (B \cdot C) = A \cdot B \cdot C$, em que $A_{m \times n}$, $B_{n \times k}$ e $C_{k \times p}$.
- 2. Distributiva: $(A+B) \cdot C = A \cdot C + B \cdot C$, em que $A_{m \times n}$, $B_{m \times n}$ e $C_{k \times m}$.
- 3. Elemento neutro: $A \cdot I_n = A$ e $I_m \cdot A = A$
- 4. Transposta do produto: $(A \cdot B)^t = B^t \cdot A^t$, em que $A_{m \times n}$ e $B_{n \times k}$.

Exercício Resolvido.

1. Determinar a matriz X tal que: $\begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix} \cdot X = \begin{bmatrix} 4 \\ -9 \end{bmatrix}$

Resolução

Primeiro, vamos determinar o tipo da matriz X:

$$\begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}_{2 \times 2} \cdot X_{m \times n} = \begin{bmatrix} 4 & -9 \end{bmatrix}_{2 \times 1}$$

Para que seja possível multiplicar as matrizes, o número de colunas da primeira matriz deve ser igual ao número de linhas de X; portanto, m=2. O número de colunas da matriz X deve ser igual ao número de colunas da matriz produto; portanto, n=1.

Assim, a matriz X é to tipo 2×1 .

Sendo $X = \begin{bmatrix} a \\ b \end{bmatrix}$, temos:

$$\begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4 \\ -9 \end{bmatrix} \implies \begin{bmatrix} 2a+3b \\ a-4b \end{bmatrix} = \begin{bmatrix} 4 \\ -9 \end{bmatrix}$$

Portanto:

$$\begin{cases} 2a+3b=4 \\ a-4b=-9 \end{cases} \implies \begin{cases} 2a+3b=4 \\ -2a+8b=18 \end{cases} \implies 0a+11b=22 \implies b=2 \implies a=-1$$

Assim, concluímos: $X = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

5.6 Exercícios Propostos

- $\boxed{1} \ \text{Dadas as matrizes } A = \begin{bmatrix} 2 & 6 \\ -1 & 0 \end{bmatrix}, \, B = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \, \text{e } C = \begin{bmatrix} 1 & -2 \end{bmatrix}, \, \text{determine, se possível:}$
 - a) $A \cdot B$

b) $A \cdot C$

c) $B \cdot C$

d) A^2

- e) B^2
- $\boxed{2} \text{ Sendo as matrizes } A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 6 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 1 \\ 4 & 4 \\ 2 & 2 \end{bmatrix} \text{ e } C = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix}, \text{ determine: }$
 - a) $A \cdot B$

b) $B \cdot A$

c) $A \cdot I_3$

d) $I_2 \cdot A$

e) $B \cdot C$

 $\boxed{3} \ \ \text{O valor de a para que a setença} \ \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ -1 & a \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ seja verdadeira \'e:}$

d) -2

Dadas as matrizes $A = (a_{ij})_{9\times 8}$, com $a_{ij} = 2j$; $B = (b_{ij})_{8\times 6}$, com $b_{ij} = i$; e $C\cdot A$, determine o elemento C_{45} da matriz C.

 $\boxed{5} \ \ \text{Dadas as matrizes} \ A = \begin{bmatrix} 1 & 2 \\ 0 & -3 \end{bmatrix}, \ B = \begin{bmatrix} 6 \\ -15 \end{bmatrix}, \ \text{obtenha a matriz} \ X \ \text{tal que} \ A \cdot X = B.$

5.7 Matrizes Inversas

Definition 5.5: Matrizes Inversas

Uma matriz A de ordem n é **invertível** se, e somente se, existe uma matriz B tal que:

$$AB = BA = I_n$$

em que I_n é a matriz identidade de ordem n.

Exemplo. As matrizes $A=\begin{bmatrix}1&1\\3&4\end{bmatrix}$ e $B=\begin{bmatrix}4&-1\\-3&1\end{bmatrix}$ são inversas entre si, pois:

$$AB = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2 \in BA = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$$

Assim, indicamos $B = A^{-1}$ ou, de maneira equivalente, $A = B^{-1}$.

Exercício Resolvido. Determinar, se existir, a inversa de cada uma das matrizes.

a)
$$A = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}$$

b)
$$B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

Resolução

a) Admitindo que $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ seja a inversa da matriz A, devemos ter $A \cdot A^{-1} = I_2$, ou seja:

$$\begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \begin{bmatrix} a+3c & b+3d \\ 2c & 2d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Igualando as matrizes, encontramos: $\begin{cases} a & +3c & =1 \\ & 2c & =0 \\ b & +3d =0 \end{cases} \implies \begin{cases} a & +3c & =1 & (1) \\ & c & =0 & (2) \\ b & +3d =0 & (3) \\ & d = \frac{1}{z} & (4) \end{cases}$

Substituindo (2) em (1), obtemos: a=1Substituindo (4) em (3), obtemos: $b=-\frac{3}{2}$

Assim, concluímos: $A^{-1} = \begin{bmatrix} 1 & -\frac{3}{2} \\ 0 & \frac{1}{2} \end{bmatrix}$

b) Admitindo que $B^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ seja a inversa da matriz B, devemos ter $B \cdot B^{-1} = I_2$, ou seja:

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \begin{bmatrix} a+2c & b+2d \\ 2a+4c & 2b+4d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Igualando as matrizes, encontramos: $\begin{cases} a & +2c & =1 \\ 2a & +4c & =0 \\ b & +2d =0 \end{cases} \implies \begin{cases} a & +2c & =1 & (1) \\ a & +2c & =0 & (2) \\ b & +2d =0 & (3) \\ b & +2d =\frac{1}{2} & (4) \end{cases}$

Logo, o sistema é impossível de responder, pois não existe solução e dessa forma não existe matriz inversa de B.

5.8 Exercícios Propostos

1 Obtenha, se existir, a inversa de cada matriz:

a)
$$A = \begin{bmatrix} 3 & 6 \\ 0 & 1 \end{bmatrix}$$

b)
$$B = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$$

c)
$$C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

a)
$$A = \begin{bmatrix} 3 & 6 \\ 0 & 1 \end{bmatrix}$$
 b) $B = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$ c) $C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ d) $D = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$