# Analysis of Algorithms II

#### Recitation 1

Alperen Kantarcı

01.03.2022

## Q1: Do all executions of Gale-Shapley lead to the same stable matching?

- A. No, because the algorithm is nondeterministic.
- B. No, because an instance can have several stable matchings.
- C. Yes, because each instance has a unique stable matching.
- D. Yes, even though an instance can have several stable matchings and the algorithm is nondeterministic.

## Q1: Do all executions of Gale-Shapley lead to the same stable matching?

- A. No, because the algorithm is nondeterministic.
- B. No, because an instance can have several stable matchings.
- C. Yes, because each instance has a unique stable matching.
- Yes, even though an instance can have several stable matchings and the algorithm is nondeterministic.

## Q2: Who is the best valid partner for W in the following

instance?

| 6 st   | able n | natchi | ngs   |
|--------|--------|--------|-------|
| { A-W, | B-X,   | C-Y,   | D-Z } |
| { A-X, | B-W,   | C-Y,   | D-Z } |
| { A-X, | B-Y,   | C-W,   | D-Z } |
| { A-Z, | B-W,   | C-Y,   | D-X } |
| { A-Z, | B-Y,   | C-W,   | D-X } |
| { A-Y, | B-Z,   | C-W,   | D-X } |

|   | 1st | 2 <sup>nd</sup> | 3rd | 4th |
|---|-----|-----------------|-----|-----|
| Α | Y   | Z               | X   | W   |
| В | Z   | Y               | W   | X   |
| C | W   | Y               | X   | Z   |
| D | Х   | Z               | W   | Y   |

|   | 1st | 2 <sup>nd</sup> | 3rd | 4th |
|---|-----|-----------------|-----|-----|
| w | D   | Α               | В   | С   |
| х | С   | В               | A   | D   |
| Y | С   | В               | Α   | D   |
| Z | D   | Α               | В   | C   |

### Q2: Who is the best valid partner for W in the following

instance? A



|   | 1st | 2 <sup>nd</sup> | 3rd | 4th |
|---|-----|-----------------|-----|-----|
| Α | Y   | Z               | X   | W   |
| В | Z   | Y               | W   | X   |
| С | w   | Y               | X   | Z   |
| D | Х   | Z               | W   | Y   |

|   | 1st | 2 <sup>nd</sup> | 3rd | 4th |
|---|-----|-----------------|-----|-----|
| w | D   | Α               | В   | С   |
| х | С   | В               | A   | D   |
| Y | С   | В               | Α   | D   |
| Z | D   | Α               | В   | C   |

Q3: In every instance of the Stable Matching Problem, there is a stable matching containing a pair (m, w) such that m is ranked first on the preference list of w and w is ranked first on the preference list of m. True or False?

Q3: In every instance of the Stable Matching Problem, there is a stable matching containing a pair (m, w) such that m is ranked first on the preference list of w and w is ranked first on the preference list of m. True or False?

**FALSE** 

|    | 1st | 2nd |
|----|-----|-----|
| m  | W   | w'  |
| m' | w'  | W   |

|    | 1st | 2nd |
|----|-----|-----|
| w  | m'  | m   |
| w' | m   | m'  |

m proposes to w → matched with w m' proposes to w' → matched with w'

Q4: Consider an instance of the Stable Matching Problem in which there exists a man m and a woman w such that m is ranked first on the preference list of w and w is ranked first on the preference list of m. Then in every stable matching S for this instance, the pair (m, w) belongs to S. True or False?

Q4: Consider an instance of the Stable Matching Problem in which there exists a man m and a woman w such that m is ranked first on the preference list of w and w is ranked first on the preference list of m. Then in every stable matching S for this instance, the pair (m, w) belongs to S. True or False?

TRUE

|   | 1st | 2nd |
|---|-----|-----|
| m | W   |     |
|   |     |     |

|   | 1st | 2nd |
|---|-----|-----|
| w | m   |     |
|   |     |     |

If there is matching pairs such that

m - w'

m' - w

m and w will choose each other

### Q5: Another type of stability: competition between TV networks

- Let's assume there are two TV networks A and D.
- There are *n* prime-time show *slots*.
- Each network has n TV shows.
- Each show has a fixed rating, which is based on the number of people who watched it last year; we'll assume that no two shows have exactly the same rating.
- Each network wants to devise a schedule –an assignment of each show to a distinct slot– so
  as to attract as much market share as possible.
- A network wins a given time slot if the show that it schedules for the time slot has a larger rating than the show the other network schedules for that time slot.
- We'll say that the pair of schedules (S, T) is stable if neither network can unilaterally change its own schedule and win more time slots.
- For every set of TV shows and ratings, is there always a stable pair of schedules?

### Q5: Another type of stability: competition between TV networks

- There is not always a stable pair of schedules
- Assume n=2

|     | Α  |    |  |
|-----|----|----|--|
| 8pm | a1 | 20 |  |
| 9pm | a2 | 40 |  |

|     | D  |    |
|-----|----|----|
| 8pm | d1 | 10 |
| 9pm | d2 | 30 |

- A wins for both slots
- D will want to switch d1&d2

|     | Α  |    |
|-----|----|----|
| 8pm | a1 | 20 |
| 9pm | a2 | 40 |

|     | D  |    |
|-----|----|----|
| 8pm | d2 | 30 |
| 9pm | d1 | 10 |

- A wins 9pm slot
- D wins 8pm slot
- A will want to switch a1&a2