

ECE 462 – Data and Computer Communications

Lecture 13A: HDLC and PPP

Bijan Jabbari, PhD

Dept. of Electrical and Computer Eng. George Mason University bjabbari@gmu.edu

Outline

- Summary of throughput Analysis (what we have seen so far)
- DLC and its Efficiency
- Illustration of Window Concept
- Maximum Window Size
- Error Recovery Scenarios
- Error Recovery Analysis

Stop and Wait Link Utilization (1)

 $\alpha > 1$ Effect of $\alpha = t_P / t_I$ Frame Tx time $(t_I) = 1$ Prop Time (t_P)

3

Stop and Wait Link Utilization (2)

lpha < 1 Effect of $lpha = t_P / t_I$ Frame Tx time $(t_I) = 1$ Prop Time (t_P)

Timing of a sliding-window protocol

(a) N > 2a+1 [X] = smallest integer greater than or equal to X

Timing of a sliding-window protocol

 $\label{eq:continuous} \begin{tabular}{l} (b) $N < 2a+1$ \\ [X] = smallest integer greater than or equal to X \\ \end{tabular}$

Sequence Numbering

- Each frame is sequentially numbered (0 to 7) and after reaching 7 it cycles through the range 0 to 7 (i.e., modulo 8).
- The maximum number of unacknowledged frames at any given time never exceeds 7, (i.e. modulus minus one).
- Sequence numbering is used both at the transmit and receive points.
- Can be represented by window concept.
- Used for lost, errored and mis-sequenced frames.

Window Concept

(a) Sequence number and window concept

(b)

- a. Prior to ack arrival
- b. Ack with N(R)=3 arrives

Window Concept

- Illustration of the window concept using modulo 8
- Suppose A transmits frame0, frame1, frame2
- A shrinks its window with transmission of each frame
- A can transmit a total of 7 frames
- Therefore, A is represented by a window that is open to transmit 4 additional frames

A can transmit 4 frames

Consider two stations A and B, each having a window of seven frames:

Consider two stations A and B, each having a window of seven frames:

Maximum Window Size in Go-Back N Protocol

Therefore, the MAX window size must be restricted to Max Seq No

HDLC Frame Format

F	ADDR CNTL	INFO	СНК	F
---	-----------	------	-----	---

Frame Types and Their Control Field Format

Detailed Control Fields of Frames

1. Information (I) Frames for transferring information

2. Supervisory (S) Frames to acknowledge I frames, request retransmission of I frames, and to communicate status (busy, ready)

Receive Ready (RR)

N(R)	P/F	00	01

Reject (REJ)

N(R)	P/F	01	01

Receive Not Ready (RNR)

N(R)	P/F	10	01
` /			

Selective Reject (SREJ)

N(R)	P/F	11	01

3. Unnumbered (U) Frames to issue commends and responses

Type	P/F	Туре	11
------	-----	------	----

Unnumbered format commands

Control Field Bits	Mnemonic	Name
100P0011	SNRM	Set Normal Response Mode
000P1111	SARM	Set Asynchronous Response Mode
001P1111	SABM	Set Asynchronous Balanced Mode
110P1111	SNRME	Set Normal Response Mode Extended
0 1 0 P 1 1 1 1	SARME	Set Asynchronous Response Mode Extended
011P1111	SABME	Set Asynchronous Balanced Mode Extended
000P0111	SIM	Set Initialization Mode
0 1 0 P 0 0 1 1	DISC	Disconnect
000P0011	UI	Unnumbered Information
0 0 1 P 0 0 1 1	UP	Unnumbered Poll
100P1111	RSET	Reset
101P1111	XID	Exchange Identification
Unumbered format respon	ases	
011F0011	UA	Unnumbered Acknowledgement
000F1111	DM	Disconnected Mode
000F0111	RIM	Request Initialization Mode
000F0011	UI	Unnumbered Information
100F0111	FRMR	Frame Reject
101F1111	XID	Exchange Identification
010F0011	RD	Request Disconnect

HDLC Modes of Operation

- NRM (Normal Response Mode)
 - Used in a centralized control environment (Roll-call polling), One primary and several secondary station in a multi-hop configuration
- ARM (Asynchronous Response Mode)
 - Similar to NRM but no primary command needed for the secondary station
- ABM (Asynchronous Balanced Mode)
 - For point-to-point link transmission, LAPB of X.25

LAPB Protocol Operation

LAPB Operation- No Errors

PPP frame format

11111111						11000	000		
	Flag	Add	dress	Conti	rol	Protocol	Payload	FCS	Flag
	1 byte	1 by	/te	1 byte	е -	1 or 2 byte	e Variable	2 or 4 byte	1 byte

Transition Phases

Multiplexing in PPP

Multilink PPP

