SUPPLEMENTAL MATERIAL

Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for Rasburicase Therapy in the context of G6PD Deficiency Genotype

Authors

Mary V. Relling¹, Ellen M. McDonagh², Tamara Chang³, Kelly E. Caudle¹, Howard L. McLeod⁴, Cyrine E. Haidar, ¹ Teri E. Klein², Lucio Luzzatto⁵

¹Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

²Department of Genetics, Stanford University, Stanford, California, USA.

³Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

⁴Moffitt Cancer Center, Tampa, FL USA

⁵Department of Hematology, Istituto Toscano Tumori, Firenze, Italy.

Table of Contents

CPIC Updates	3
Focused Literature Review	3
G6PD Genetic Variant Nomenclature and WHO Class	3
G6PD Heterozygotes	5
Available Genetic Test Options	6
Recommendations for Incidental Findings	7
Other Considerations	7
Levels of Evidence Linking Genotype to Phenotype	8
Strength of Recommendations	8
Supplemental Table S1. G6PD genetic variants and likely conferred enzyme phenotype ^a	. 10
Supplemental Table S2. Association between allelic variants and G6PD function as defined by the WHO.	
Supplemental Table S3. World-wide estimates of G6PD deficiency prevalence overa	all . 19
Supplemental Table S4. Frequencies of <i>G6PD</i> variants available with commercial testing in major race/ethnic groups	. 20
Supplemental Table S5. Frequencies of G6PD variants in specific populations	. 21
Supplemental Table S6. Drug and compound safety reviews for G6PD deficient patients	. 25
Supplemental Table S7. Evidence linking G6PD deficiency to Rasburicase-induced hemolysis or methemoglobinemia	l . 43
References	. 45

CPIC Updates

Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines are published in full on the PharmGKB website (http://www.pharmgkb.org/page/cpic). Information relevant to this guideline will be periodically reviewed and updated guidelines will be published online.

Focused Literature Review

We searched the PubMed database (1966 to August 2013) and OVID MEDLINE (1950 to August 2013) for keywords (rasburicase OR urate oxidase OR uricase OR elitek OR Fasturtec) AND (G6PD OR glucose-6-phosphate dehydrogenase OR G-6-PD). General searches for (rasburicase OR urate oxidase OR uricase OR elitek OR Fasturtec and (G6PD OR glucose-6-phosphate dehydrogenase OR G-6-PD were also carried out. Definitive reviews (1-10) were relied upon to summarize much of the earlier literature.

G6PD Genetic Variant Nomenclature and WHO Class

Criteria for the identification and characterization of *G6PD* variants were established by the WHO Scientific Group starting in 1967 (11), based primarily on samples from hemizygous males. Characteristics used to classify alleles have included G6PD activity in red blood cells, electrophoretic migration as compared to the normal B enzyme, thermal stability, and Michaelis constant for G6P and rate of utilization. Nomenclature guidelines were outlined before the cDNA position for each was reported, and suggested the use of geographical or trivial names for new variants (11).

Along with being grouped by how much evidence existed for a particular variant, in 1971 the *G6PD* variants were also divided into 5 classes depending on phenotype, as determined by extent of enzyme deficiency and associated clinical manifestations (see Supplementary Table 2) (12). Standardized criteria for determining the class were defined and included erythrocyte activity level and electrophoretic mobility performed on samples from hemizygous males. It should be noted that the variants were "somewhat

arbitrarily divided into five classes" and that the "distinction between these classes is not always clear" (12). For example, although the Mediterranean variant (rs5030868 563C>T) is assigned a class II definition, it has also been associated with chronic nonspherocytic hemolytic anemia (CNSHA), consistent with the definition of class I variants (12). Some class I variants have higher enzyme activity in vitro than those of class III variants (12) and *in vivo* enzyme activity can be altered by numerous factors (1, 3). This class system was again reported in a WHO update article with slight differences in enzyme activity for class IV (normal activity described as 60-150%) and class V (described simply as increased activity)(10). This five class system describing phenotypes for G6PD variants has been used since; (13) however, recent school of thought and evidence suggests that the clinical phenotype is blurred between class II and III variants. Thus, class II and III variants should not be considered separate risk phenotypes and instead three phenotype classes should be used (11, 14), as we have used in this guideline (Tables 1 and 2 main manuscript). See Supplementary Table S1 for a list of G6PD variants, nucleotide and amino acid substitutions, and associated WHO class and phenotype, based on a published update of G6PD variants (13) and previous publications (15).

Despite establishing nomenclature rules, the same genetic variant may have several different names; for example Mediterranean, Dallas, Panama, Sassari, Birmingham and Cagliari are all conferred by allele T at position 563 (rs5030868) but the enzyme variation was discovered in different populations (15). In addition, restriction endonuclease analysis of DNA revealed that several G6PD variants thought to be the same had different underlying genetic variants; for example, the A- enzyme is a combination of the A variant (376A>G, rs1050829) and another variant, either 202A (rs1050828), or 680T (rs137852328), or 968C (rs76723693) (16). Worldwide estimates of G6PD deficiency prevalence (17) are listed in Supplementary Table S3. World distribution of G6PD low-function alleles correlates with malaria endemic regions, and this originally prompted the notion that G6PD deficiency confers protection from malaria. Populations from Asia, Africa and the Middle East are associated with the highest prevalence of G6PD deficiency (Supplemental Table S3, S4 and S5).

Frequencies of alleles in major race/ethnic groups are listed in Supplementary Table S4. See Supplementary Table S5 for a detailed listing of racial/ethnic group assignments.

G6PD Heterozygotes

Determining G6PD phenotype in heterozygous females (one normal class IV allele and one deficient class I-III allele) is not possible based on genetic testing alone due to Xlinked chromosome inactivation. For example, in a study of Afghan refugees, the majority of women heterozygous for the Mediterranean variant (class II) had normal G6PD enzyme activity (by colorimetric assay), but one quarter were G6PD deficient (18). Variation in the percentage of G6PD deficient cells can change in the same individual over the space of a year, from 0% to 31% (19). Age is also a factor due to skewing of X chromosome inactivation. Newborn heterozygotes have a red cell population distribution skewed towards G6PD normal red blood cells, whereas heterozygous adults tend to show a more symmetrical distribution (20). Inactivation of the G6PD normal X chromosome increases in elderly heterozygotes, correlating with decreased G6PD activity levels (20, 21). This may mean as heterozygous females age they become more susceptible to clinical manifestations (21). For example, in a case report in which a novel class I variant was identified (Tondela), the mother was heterozygous and displayed chronic hemolytic anemia due to almost exclusive mRNA expression of the variant allele in reticulocytes resulting in G6PD deficiency, however two of her daughters were also heterozygous but asymptomatic with normal G6PD activity in red blood cells (22).

Determining whether a heterozygous female is at increased risk of drug-induced hemolytic anemia is therefore not possible without measuring G6PD activity. Previous studies of dapsone treatment in A- heterozygote children with uncomplicated malaria infection seemed to show they were not at an increased risk of drug-induced AHA, until data from several studies was combined (23). The report showed that average risk is somewhere in between that of children with G6PD deficiency (hemizygous or homozygous A-) and those with normal G6PD, but individually this risk is highly variable due to X-linked mosaicism; with some individuals showing severe hemolysis upon dapsone treatment with a similar profile to that of deficient children, whilst others

had very similar responses in hemoglobin levels as 'normal' children (23). The studies support the idea that the A- variant cannot be considered 'mild', as depending on the strength of the drug challenge, can cause severe life-threatening AHA (23). It is not known if these children may have had other genetic variants that could have contributed to the severity, and malaria infection should also be taken into account. For example, in a separate study a 21-month girl heterozygous for A- suffered severe anemia with an antimalarial regime containing methylene blue, she also however had high parasitaemia, and overall heterozygotes were not reported to have a higher risk of hemoglobin decrease than wild-type children (24). Whether the response to rasburicase would be similar to that of dapsone is not known, as there are (to our knowledge) no known reported cases in heterozygous females (Supplemental Table S6).

Compound heterozygotes (carrying two deficient class I-III alleles with different variants) seem to be rarely reported in the literature; this may be due to most studies screening for a limited number of genetic variants rather than gene sequencing. Examples include: an 86 year-old Chinese female who displayed G6PD deficiency with the Canton/Viangchan genotype (class II/II) (21), Mediterranean/Clatham (class III/II) and Asahi/Clatham (class III/II) in Saudi women with G6PD deficiency (25). This assignment of compound heterozygous status is based on the assumption that each *G6PD* allele carries a deficient variant, rather than the two different variants residing on the same chromosome.

Available Genetic Test Options

Several testing services for *G6PD* are available; however, commercially available genetic testing options change over time. An updated and fully linked table is available at http://www.pharmgkb.org/gene/PA28469. Furthermore, the Genetic Testing Registry (GTR) provides a central location for voluntary submission of genetic test information by providers and is available at http://www.ncbi.nlm.nih.gov/gtr/tests/?term=g6pd.

Recommendations for Incidental Findings

There are a number of medications that have been suggested to be avoided in G6PD deficient individuals (Supplemental Table S7) (1, 4, 10, 26, 27). The development of a list of unsafe drugs in the setting of G6PD deficiency was historically developed through observations of hemolysis after ingestion of a drug or clinical investigations with ⁵¹Cr-labeled erythrocytes to determine erythrocyte survival (1). More recently, several groups have attempted to consolidate the varying recommendations for safe and unsafe drugs in G6PD deficient individuals and have found that the evidence supporting a clear association with drug-induced hemolysis exists only for a small number of agents (3, 4). Future CPIC guidelines will provide additional information on the non-rasburicase G6PD drug substrates. Many drugs previously thought to be unsafe (i.e. aspirin) can be safely administered at therapeutic doses without evidence of hemolysis (4). Patients and clinicians should be aware of signs and symptoms that may indicate an acute hemolytic crisis or methemoglobinemia.

Other Considerations

Physiological factors other than genetic variants in the *G6PD* gene may result in differences in G6PD enzyme expression (28). As G6PD activity is usually measured in erythrocytes, conditions affecting reticulocytosis and blood transfusions could affect G6PD activity. Exogenous agents may also cause hemolysis in an individual at one time when previously it had no effect (10). Susceptibility to drug-induced hemolytic anemia can be influenced by factors that are not constant; dosage and drug pharmacokinetics, the pharmacodynamic effects of the drug on G6PD activity, the presence of additional oxidative stresses such as concomitant drug administration, drug-drug interactions and infection, or baseline characteristics such as hemoglobin concentration and erythrocyte population age (3).

Other inherited enzyme deficiencies may increase a patient's risk for hemolytic anemia, such as catalase deficiency (acatalasaemia) or the risk of methemoglobinemia, for example cytochrome b5 reductase deficiency or Hemoglobin M (29-31). Due to lower levels of enzymes that protect from oxidative stress, such as catalase, cytochrome b5

reductase and glutathione peroxidase, newborns are more susceptible to methemoglobinemia (31-33).

Unsafe Drugs for G6PD deficient patients. Supplementary Table S7 summarizes the available drug and compound safety reviews for G6PD deficient patients available from the FDA, the Associazione Italiana Favismo from their website (www.g6pd.org) and published articles.

Levels of Evidence Linking Genotype to Phenotype

The evidence linking *G6PD* genotype to phenotype (adverse reaction to rasburicase) is summarized in Supplemental Table S6 and is graded using a scale modified slightly from Valdes, *et al* (34):

High: Evidence includes consistent results from well-designed, well-conducted studies.

Moderate: Evidence is sufficient to determine effects, but the strength of the evidence is limited by the number, quality, or consistency of the individual studies; generalizability to routine practice; or indirect nature of the evidence.

Weak: Evidence is insufficient to assess the effects on health outcomes because of limited number or power of studies, important flaws in their design or conduct, gaps in the chain of evidence, or lack of information.

Strength of Recommendations

CPIC's dosing recommendations are based weighting the evidence from a combination of preclinical functional and clinical data, as well as on some existing disease-specific consensus guidelines. Some of the factors that are taken into account include: *in vivo* clinical outcome for rasburicase, *in vivo* pharmacodynamics for rasburicase, *in vitro* enzyme activity for reference drug, *in vivo* clinical outcome with another drug plus variant type, *in vivo* pharmacokinetics/pharmacodynamics for another drug plus variant type, *in vitro* enzyme activity with another drug plus variant type, *in vitro* enzyme

activity with probe substrate only, *in vivo* clinical outcome with another drug only, *in vivo* pharmacokinetics/pharmacodynamics for another drug only, and *in vitro* enzyme functional (protein stability or enzyme activity with another drug).

Overall, the dosing recommendations are simplified to allow rapid interpretation by clinicians. We chose to use a slight modification of a transparent and simple system for just three categories for recommendations adopted from the rating scale for evidence-based recommendations on the use of retroviral agents (http://aidsinfo.nih.gov/contentfiles/AdultandAdolescentGL.pdf): strong, where "the evidence is high quality and the desirable effects clearly outweigh the undesirable effects"; moderate, in which "there is a close or uncertain balance" as to whether the evidence is high quality and the desirable clearly outweigh the undesirable effects; and optional, in which the desirable effects are closely balanced with undesirable effects and there is room for differences in opinion as to the need for the recommended course of action.

Strong recommendation for the statement Moderate recommendation for the statement Optional recommendation for the statement

Supplemental Table S1. G6PD genetic variants and likely conferred enzyme phenotype^a

Variant Name ^a	cDNA nucleotide substitution (Negative chromosomal strand) Constituted by genotypes at: a, b	dbSNP rsID ^c	Amino acid substitution ^a	Codon ^a	WHO Class ^{a, d}	Likely Phenotype ^e	References ^a
Villeurbanne	1000_1002delACC		Thr	334	I	Deficient with CNSHA	(35)
Torun	1006A->G		Thr->Ala	336	I	Deficient with CNSHA	(36)
Sunderland	105_107delCAT		Ile	33 or 34	I	Deficient with CNSHA	(37)
Iwatsuki	1081G->A		Ala->Thr	361	I	Deficient with CNSHA	(38)
Serres	1082C->T		Ala->Val	361	I	Deficient with CNSHA	(39)
Tondela	1084_1101delCTGAACGAGCGCAAGGCC		Leu-Asn-Glu-Arg-Lys-Ala	362-367	Ι	Deficient with CNSHA	(22)
Loma Linda	1089C->A		Asn->Lys	363	I	Deficient with CNSHA	(40)
Aachen	1089C->G		Asn->Lys	363	I	Deficient with CNSHA	(41)
Tenri	1096A->G		Lys->Glu	366	I	Deficient with CNSHA	(42)
Montpellier	1132G>A		Gly>Ser	378	I	Deficient with CNSHA	(35)
Calvo Mackenna	1138A->G		Ile->Val	380	I	Deficient with CNSHA	(43)
Riley	1139T->C		Ile->Thr	380	I	Deficient with CNSHA	(43)
Olomouc	1141T->C		Phe->Leu	381	I	Deficient with CNSHA	(43)
Tomah	1153T->C		Cys->Arg	385	I	Deficient with CNSHA	(43)
Lynwood	1154G->T		Cys->Phe	385	I	Deficient with CNSHA	(38)
Madrid	1155C->G		Cys->Trp	385	I	Deficient with CNSHA	(44)
Iowa, Walter Reed, Springfield	1156A->G		Lys->Glu	386	I	Deficient with CNSHA	(45)
Guadalajara	1159C->T		Arg->Cys	387	I	Deficient with CNSHA	(46)

Variant Name ^a	cDNA nucleotide substitution (Negative chromosomal strand) Constituted by genotypes at: ^{a, b}	dbSNP rsID ^c	Amino acid substitution ^a	Codon ^a	WHO Class ^{a, d}	Likely Phenotype ^c	References ^a
Beverly Hills, Genova,						Deficient with CNSHA	
Iwate, Niigata, Yamaguchi	1160G->A		Arg->His	387	I		(47, 48)
Hartford	1162A->G		Asn->Asp	388	I	Deficient with CNSHA	(38)
Praha	1166A->G		Glu->Gly	389	I	Deficient with CNSHA	(49)
Krakow	1175T>C		Ile>Thr	392	I	Deficient with CNSHA	(50)
Wisconsin	1177C->G		Arg->Gly	393	I	Deficient with CNSHA	(43)
Nashville, Anaheim, Portici	1178G->A		Arg->His	393	I	Deficient with CNSHA	(40, 51)
Alhambra	1180G->C		Val->Leu	394	I	Deficient with CNSHA	(49)
Bari	1187C->T		Pro->Leu	396	I	Deficient with CNSHA	(52)
Puerto Limon	1192G->A		Glu->Lys	398	I	Deficient with CNSHA	(53)
Covao do Lobo	1205C>A		Thr>Asn	402	I	Deficient with CNSHA	(54)
Clinic	1215G->A		Met->Ile	405	Ι	Deficient with CNSHA	(55)
Utrecht	1225C->T		Pro->Ser	409	Ι	Deficient with CNSHA	(56)
Suwalki	1226C->G		Pro->Arg	409	I	Deficient with CNSHA	(57)
Riverside	1228G->T		Gly->Cys	410	I	Deficient with CNSHA	(45)
Japan, Shinagawa	1229G->A		Gly->Asp	410	I	Deficient with CNSHA	(58, 59)
Kawasaki	1229G->C		Gly->Ala	410	I	Deficient with CNSHA	(38)
Munich	1231A->G		Met->Val	411	I	Deficient with CNSHA	(60)
Georgia	1284C->A		Tyr->End	428	I	Deficient with CNSHA	(49)
Sumare	1292T->G		Val->Gly	431	Ι	Deficient with CNSHA	(61)

Variant Name ^a	cDNA nucleotide substitution (Negative chromosomal strand) Constituted by genotypes at: ^{a, b}	dbSNP rsID ^c	Amino acid substitution ^a	Codona	WHO Class ^{a, d}	Likely Phenotype ^c	References ^a
Telti/Kobe	1318C->T		Leu->Phe	440	I	Deficient with CNSHA	(62)
Santiago de Cuba,	15166 1		200 110		-	Deficient with CNSHA	(02)
Morioka	1339G->A		Gly->Arg	447	I		(48, 63)
Harima	1358T->A		Val->Glu	453	I	Deficient with CNSHA	(38)
Figuera da Foz	1366G->C		Asp->His	456	I	Deficient with CNSHA	(64)
Amiens	1367A>T		Asp>Val	456	I	Deficient with CNSHA	(35)
		rs72554665,				Deficient with CNSHA	
Bangkok Noi	1376G->T, 1502T->G	unknown	Arg->Leu, Phe-Cys	459, 501	I		(65)
Fukaya	1462G->A		Gly->Ser	488	I	Deficient with CNSHA	(38)
Campinas	1463G->T		Gly->Val	488	I	Deficient with CNSHA	(66)
Buenos Aires	1465C>T		Pro->Ser	489	I	Deficient with CNSHA	(67)
Arakawa	1466C->T		Pro->Leu	489	I	Deficient with CNSHA	(38)
Brighton	1488 1490delGAA		Lys	497	I	Deficient with CNSHA	(68)
Kozukata	159G->C		Trp->Cys	53	I	Deficient with CNSHA	(69)
Amsterdam	180 182delTCT		Leu	61	I	Deficient with CNSHA	(70)
	_	rs1050828,				Deficient with CNSHA	
No name	202G->A, 376A->G, 1264C>G	rs1050829, unknown	Val->Met, Asn->Asp, Leu>Val	68, 126, 422	I		(71)
Swansea	224T->C		Leu->Pro	75	I	Deficient with CNSHA	(72)
Urayasu	281 283delAGA		Lys	95	I	Deficient with CNSHA	(73)
Vancouver	317C->G544C->T592C->T		Ser>Cys, Arg->Trp, Arg>Cys	106, 182, 198	I	Deficient with CNSHA	(74)
. ancourer	2770 - 33710 - 13720 - 1	rs1050829,	551 Cy5, 111g - 11p, 111g - Cy5	170	1	Deficient with CNSHA	(, ,)
Mt Sinai	376A->G, 1159C->T	unknown	Asn->Asp, Arg->His	126, 387	I		(75)
Plymouth	488G->A		Gly->Asp	163	I	Deficient with CNSHA	(76)

Variant Name ^a	cDNA nucleotide substitution (Negative chromosomal strand) Constituted by genotypes at: ^{a, b}	dbSNP rsID ^c	Amino acid substitution ^a	Codon ^a	WHO Class ^{a, d}	Likely Phenotype ^c	References ^a
Volendam	514C->T		Pro->Ser	172	I	Deficient with CNSHA	(77)
Shinshu	527A->G		Asp->Gly	176	I	Deficient with CNSHA	(58)
Chikugo	535A->T		Ser->Cys	179	I	Deficient with CNSHA	(38)
Tsukui	561_563delCTC		Ser	188 or 189	I	Deficient with CNSHA	(78)
Pedoplis-Ckaro	573C>G		Phe>Leu	191	I	Deficient with CNSHA	(50)
Santiago	593G->C		Arg->Pro	198	I	Deficient with CNSHA	(59)
Minnesota, Marion, Gastonia, LeJeune	637G->T		Val->Leu	213	I	Deficient with CNSHA	(40, 79)
Cincinnati	637G->T, 1037A->T		Val->Leu\ Asn>Ile	213, 346	I	Deficient with CNSHA	(80)
Harilaou	648T->G		Phe->Leu	216	I	Deficient with CNSHA	(81)
North Dallas	683_685delACA		Asn	229	I	Deficient with CNSHA	(38)
Asahikawa	695G->A		Cys->Tyr	232	I	Deficient with CNSHA	(82)
Durham	713A->G		Lys->Arg	238	I	Deficient with CNSHA	(83)
Stonybrook	724_729delGGCACT		Gly-Thr	242-243	I	Deficient with CNSHA	(59)
Wayne	769C->G		Arg->Gly	257	I	Deficient with CNSHA	(84)
Aveiro	806G->A		Cys->Tyr	269	I	Deficient with CNSHA	(85)
Cleveland Corum	820G->A		Glu->Lys	274	I	Deficient with CNSHA	(49, 76)
Lille	821A>T		Glu>Val	274	I	Deficient with CNSHA	(35)
Bangkok	825G>C		Lys>Asn	275	I	Deficient with CNSHA	(65)
Sugao	826C->T		Pro->Ser	276	I	Deficient with CNSHA	(86)
La Jolla	832T->C		Ser->Pro	278	I	Deficient with CNSHA	(87)

Variant Name ^a	cDNA nucleotide substitution (Negative chromosomal strand) Constituted by genotypes at: a, b	dbSNP rsID ^c	Amino acid substitution ^a	Codon ^a	WHO Class ^{a, d}	Likely Phenotype ^e	References ^a
Wexham	833C->T		Ser->Phe	278	I	Deficient with CNSHA	(76)
Piotrkow	851T>C		Val>Ala	284	I	Deficient with CNSHA	(50)
West Virginia	910G->T		Val->Phe	303	I	Deficient with CNSHA	(49)
Omiya	921G->C		Gln->His	307	I	Deficient with CNSHA	(38)
Nara	953_976delCCACCAAAGGGTACCTGGAC GACC		Thr-Lys-Gly-Tyr-Leu-Asp- Asp-Pro	319-326	I	Deficient with CNSHA	(88)
Manhattan	962G->A		Gly->Glu	321	I	Deficient with CNSHA	(38)
Rehevot	964T->C		Tyr->His	322	I	Deficient with CNSHA	(89)
Honiara	99A->G, 1360C->T		Ile->Met, Arg->Cys	33, 454	I	Deficient with CNSHA	(90)
Tokyo, Fukushima	1246G->A		Glu->Lys	416	I-II	Deficient with CNSHA- Deficient	(48, 91)
Chatham	1003G->A	rs5030869	Ala->Thr	335	II	Deficient	(63)
Fushan	1004C->A		Ala->Asp	335	II	Deficient	(49)
Partenope	1052G->T		Gly->Val	351	II	Deficient	(92)
Ierapetra	1057C->T		Pro->Ser	353	II	Deficient	(59)
Anadia	1193A->G		Glu->Gly	398	II	Deficient	(38, 64)
Abeno	1220A->C		Lys->Thr	407	II	Deficient	(38, 93)
Surabaya	1291G->A		Val->Met	431	II	Deficient	(94)
Pawnee	1316G->C		Arg->Pro	439	II	Deficient	(59)
S. Antioco	1342A->G		Ser->Gly	448	II	Deficient	(92)
Cassano	1347G->C		Gln->His	449	II	Deficient	(95, 96)
Hermoupolis	1347G->C, 1360C->T		Gln->His, Arg->Cys	449, 454	II	Deficient	(96)
Union,Maewo,							
Chinese-2, Kalo	1360C->T		Arg->Cys	454	II	Deficient	(95, 97, 98)
Andalus	1361G->A		Arg->His	454	II	Deficient	(99)
Cosenza	1376G->C	rs72554665	Arg->Pro	459	II	Deficient	(95)
Canton, Taiwan- Hakka, Gifu-like,							
Agrigento-like	1376G->T	rs72554665	Arg->Leu	459	II	Deficient	(100, 101)
Flores	1387C->A		Arg->Ser	463	II	Deficient	(102)

	cDNA nucleotide substitution				WHO		
Variant Name ^a	(Negative chromosomal strand) Constituted by genotypes at: a, b	dbSNP rsID ^c	Amino acid substitution ^a	Codon ^a	WHO Class ^{a, d}	Likely Phenotype ^e	References ^a
Kaiping, Anant, Dhon,	Constituted by genotypes at.	UDSINI ISID	Allillo acid substitution	Codon	Class	Likely Flienotype	References
Sapporo-like, Wosera	1388G->A		Arg->His	463	II	Deficient	(98, 101)
Kamogawa	169C->T		Arg->Trp	57	II	Deficient	(69)
Costanzo	179T>C		Leu>Pro	60	II	Deficient	(13)
Amazonia	185C->A		Pro->His	62	II	Deficient	(103)
Songklanagarind	196T->A		Phe->Ile	66	II	Deficient	(104)
Бонькинаванна	1701 - 11	rs1050828,	The The	00		Benefelit	(101)
Hechi	202G->A, 871G->A	unknown	Val->Met, Val->Met	68, 291	II	Deficient	(105)
Namouru	208T->C		Tyr->His	70	II	Deficient	(55)
Bao Loc	352T>C		Tyr>His	118	II	Deficient	(106)
				125, 127,			(***)
Crispim	375G->T, 379G->T383T->C384C>T		Met->Ile, Ala->Ser, Leu->Pro	128	II	Deficient	(103)
1	,	rs1050829,	,				, ,
Acrokorinthos	376A->G, 463C->G	unknown	Asn->Asp, His->Asp	126, 155	II	Deficient	(99)
	,	rs1050829,					
Santa Maria	376A->G, 542A->T	unknown	Asn->Asp, Asp->Val	126, 181	II	Deficient	(107, 108)
	,	rs1050829,	1, 1				
Ananindeua	376A->G, 871G->A	unknown	Asn->Asp, Val->Met	126, 291	II	Deficient	(103)
Vanua Lava	383T->C		Leu->Pro	128	II	Deficient	(109)
Valladolid	406C->T		Arg->Cys	136	II	Deficient	(44)
Belem	409C->T		Leu->Phe	137	II	Deficient	(13)
Liuzhou	442G->A		Glu->Lys	148	II	Deficient	(105)
Shenzen	473G>A		Cys>Tyr	158	II	Deficient	(110)
Taipei ,ÄúChinese-							
3,Äù	493A->G		Asn->Asp	165	II	Deficient	(111)
Toledo	496C>T		Arg>Cys	166	II	Deficient	(35)
Naone	497G->A		Arg->His	166	II	Deficient	(112)
Nankang	517T->C		Phe->Leu	173	II	Deficient	(113, 114)
Miaoli	519C->G		Phe->Leu	173	II	Deficient	(115)
Mediterranean, Dallas,							
Panama, Sassari,							
Cagliari, Birmingham	563C->T	rs5030868	Ser->Phe	188	II	Deficient	(63)
Coimbra Shunde	592C->T		Arg->Cys	198	II	Deficient	(116, 117)
Nilgiri	593G>A		Arg>His	198	II	Deficient	(118)
Radlowo	679C->T		Arg->Trp	227	II	Deficient	(36)
Roubaix	811G>C		Val>Leu	271	II	Deficient	(35)

	cDNA nucleotide substitution (Negative chromosomal strand)				WHO		
Variant Name ^a	Constituted by genotypes at: a, b	dbSNP rsID ^c	Amino acid substitution ^a	Codon ^a	Class ^{a, d}	Likely Phenotype ^e	References ^a
Haikou	835A->G		Thr->Ala	279	II	Deficient	(119)
Chinese-1	835A->T		Thr->Ser	279	II	Deficient	(120)
Mizushima	848A>G		Asp>Gly	283	II	Deficient	(121)
Osaka	853C->T		Arg->Cys	285	II	Deficient	(38, 93)
Viangchan, Jammu	871G->A		Val->Met	291	II	Deficient	(79, 122)
Seoul	916G->A		Gly->Ser	306	II	Deficient	(38)
Ludhiana	929G->A		Gly->Glu	310	II	Deficient	(38)
Farroupilha	977C->A		Pro->His	326	II/III	Deficient	(123)
Chinese-5	1024C->T		Leu->Phe	342	III	Deficient	(117)
Rignano	130G>A		Ala>Thr	44	III	Deficient	(124)
Orissa	131C->G	rs78478128	Ala->Gly	44	III	Deficient	(125, 126)
G6PDNice	1380G>C		Glu>Asp	460	III	Deficient	(35)
Kamiube, Keelung	1387C->T		Arg->Cys	463	III	Deficient	(48, 115)
Neapolis	1400C->G		Pro->Arg	467	III	Deficient	(127)
Aures	143T->C		Ile->Thr	48	III	Deficient	(128, 129)
Split	1442C->G		Pro->Arg	481	III	Deficient	(130)
Kambos	148C->T		Pro->Ser	50	III	Deficient	(131)
Palestrina	170G>A		Arg>Glu	57	III	Deficient	(13)
Metaponto	172G->A		Asp->Asn	58	III	Deficient	(132)
Musashino	185C->T		Pro->Leu	62	III	Deficient	(109)
Asahi	202G->A	rs1050828	Val->Met	68	III	Deficient	(112)
		rs1050828,					
A- (202), Ferrara I	202G->A, 376A->G	rs1050829	Val->Met, Asn->Asp	68, 126	III	Deficient	(63)
Murcia Oristano	209A->G		Tyr->Cys	70	III	Deficient	(76, 126)
Ube Konan	241C->T		Arg->Cys	81	III	Deficient	(126, 133)
Lagosanto	242G->A		Arg->His	81	III	Deficient	(134)
Guangzhou	274C->T		Pro->Ser	92	III	Deficient	(135)
Hammersmith	323T->A		Val->Glu	108	III	Deficient	(15, 136)
Sinnai	34G->T		Val->Leu	12	III	Deficient	[3](123)
		rs137852328,					
A- (680)	376A->G, 680G->T	rs1050829	Asn->Asp, Arg->Leu	126, 227	III	Deficient	(16)
A- (968),					_		
Betica,Selma,		rs76723693,					
Guantanamo	376A->G, 968T->C	rs1050829	Asn->Asp, Leu->Pro	126, 323	III	Deficient	(16)
Salerno Pyrgos	383T>G		Leu>Arg	128	III	Deficient	(35, 126)
Quing Yan	392G->T		Gly->Val	131	III	Deficient	(117)

Variant Name ^a	cDNA nucleotide substitution (Negative chromosomal strand) Constituted by genotypes at: ^{a, b}	dbSNP rsID ^c	Amino acid substitution ^a	Codon ^a	WHO Class ^{a, d}	Likely Phenotype ^c	References ^a
Lages	40G->A		Gly->Arg	14	III	Deficient	(137)
Ilesha	466G->A		Glu->Lys	156	III	Deficient	(138)
Mahidol	487G->A		Gly->Ser	163	III	Deficient	(139)
Malaga	542A->T		Asp->Val	181	III	Deficient	(140)
Sibari	634A->G		Met->Val	212	III	Deficient	(95)
Mexico City	680G->A		Arg->Gln	227	III	Deficient	(59)
Nanning	703C->T		Leu->Phe	235	III	Deficient	(105)
Seattle, Lodi, Modena,							(121, 141,
Ferrara II, Athens-like	844G->C		Asp->His	282	III	Deficient	142)
Bajo Maumere	844G->T		Asp->Tyr	282	III	Deficient	(143)
Montalbano	854G->A		Arg->His	285	III	Deficient	(144)
Kalyan-Kerala,			a				
Jamnaga, Rohini	949G->A	rs137852339	Glu->Lys	317	III	Deficient	(145, 146)
Gaohe	95A->G		His->Arg	32	III	Deficient	(38)
A	376A->G	rs1050829	Asn->Asp	126	III-IV	Deficient-Normal	(147)
Mira d'Aire	1048G->C		Asp->His	350	IV	Normal	(38)
Sao Borja	337G->A		Asp->Asn	113	IV	Normal	(148)
Insuli	989G->A		Arg->His	330	IV	Normal	(149)
В	'Wildtype'/ Reference	NA	NA	NA	IV	Normal	(16)
Hektoen					V	Normal	(150, 151)
					Not		
Gidra	110T>C		Met->Thr	37	reported	unknown	(69)
					Not		
Yunan	1381G->A		Ala->Thr	461	reported	unknown	(152)
					Not		
Laibin	1414A->C		Ile->Leu	472	reported	unknown	(105)
					Not		
No name	25C>T		Arg>Trp	9	reported	unknown	(153)
					Not		
Cairo	404A->C		Asn->Thr	135	reported	unknown	(38)
					Not		
Gond	477G>C		Met>Ile	159	reported	unknown	(154)
_					Not		
Dagua	595A->G		Ile>Val	199	reported	unknown	(155)
_					Not		4.50
Papua	849C->A		Asp->Glu	283	reported	unknown	(156)

Variant Name ^a	cDNA nucleotide substitution (Negative chromosomal strand) Constituted by genotypes at: ^{a, b}	dbSNP rsID ^c	Amino acid substitution ^a	Codon ^a	WHO Class ^{a, d}	Likely Phenotype ^e	References ^a
		unknown,			Not		
Sierra Leone	311G>A, 376A>G	rs1050829	Arg>His, Asn->Asp	104, 126	reported	unknown	(157)
Mediterranean					Not		(158)
Haplotype	1311C>T, 563T				reported	Unknown	

^a This modified table of G6PD variants is from (13), https://grenada.lumc.nl/LOVD2/MR/home.php?select_db=G6PD, with several additional variants.

NA = not applicable

^b cDNA sequence GenBank accession number X03674.1 (http://www.ncbi.nlm.nih.gov/nuccore/X03674.1). Allele A of the ATG start codon is numbered here as +1, and is position 471 in the X03674.1 cDNA sequence, therefore subtract 470 nucleotides from the GenBank cDNA sequence. For genomic DNA nucleotide position information, see (13, 159). Please note that the G6PD gene is on the minus chromosomal strand, and therefore alleles represented on www.pharmgkb.org may be represented on the plus chromosomal strand in a complementary manner.

^c National Center for Biotechnology Information dbSNP database. http://www.ncbi.nlm.nih.gov/projects/SNP/

^d Please note; WHO class as reported in (13, 14) or individual references. This class may have been assigned based on just clinical manifestations and not enzyme activity level or characterization of the enzyme variant.

^eLikely phenotype as referenced in this guideline, based on converting assigned WHO class to 3 phenotypes. "Normal" defined as very mild or no enzyme deficiency (>60% normal enzyme levels); "Deficient" defined as mild to severely deficient (<10-60% normal) enzyme levels; "Deficient with CNSHA" defined as severe G6PD enzyme deficiency (<10% activity) with chronic non-spherocytic hemolytic anemia (14). See main text for further explanation, and Table 1 for examples of diplotypes.

Supplemental Table S2. Association between allelic variants and G6PD function as defined by the WHO (10, 12).

Functional Status	Alleles
Severe enzyme deficiency, <10% normal	WHO Class I
enzyme activity, with associated chronic	
non-spherocytic hemolytic anemia	
Severe enzyme deficiency, <10% normal	WHO Class II
enzyme activity, no chronic non-	
spherocytic hemolytic anemia	
Moderate to mild deficiency, 10-60% of	WHO Class III
normal enzyme activity	
Normal activity, 60-150% normal enzyme	WHO Class IV
activity	
Increased activity, >150% normal enzyme	WHO Class V
activity	

^{*}See Supplemental Table S1 for classification of alleles by WHO class

Supplemental Table S3. World-wide estimates of G6PD deficiency prevalence overall and for males from (17).

Region	Total Summary Prevalence	Summary Prevalence Estimate
	Estimate (with 95% confidence	for Males (with 95% confidence
	intervals)	intervals)
Africa	7.5% (7.1-7.9)	8.5% (7.9-9.1)
Middle East	6% (5.7-6.4)	7.2% (6.6-7.7)
Asia	4.7% (4.4-4.9)	5.2% (4.7-5.6)
Europe	3.9% (3.5-4.2)	3.8% (2.9-4.7)
Americas	3.4% (3.0-3.8)	5.2% (4.7-5.8)
Pacific	2.9% (2.4-3.4)	3.4% (2.7-4.1)

Supplemental Table S4. Frequencies of G6PD variants¹ available with commercial testing in major race/ethnic groups²

Allele	WHO Class ³	dbSNP rsID ⁴	cDNA substitution ⁵		All		C	aucasi	an	Sout	h Amo	erican		Africa	n		Asian	l
				Affy Hapmap ⁶	EVS ⁷	1000 Genomes ⁸	Affy Hapmap ⁶	EVS ⁷	1000 Genomes ⁸	Affy Hapmap ⁶	EVS ⁷	1000 Genomes ⁸	Affy Hapmap ⁶	EVS ⁷	1000 Genomes ⁸	Affy Hapmap ⁶	EVS ⁷	1000 Genomes ⁸
A	III-IV	rs1050829	376A>G	N/A	0.113	0.081	0	0.0595	0.005	0.017	N/A	0.036	0.345	0.312	0.324	0	N/A	0
A-	III	rs1050828 rs1050829	202G>A, 376A>G	N/A	0.0425	N/A	N/A	0.0	N/A	N/A	N/A	N/A	N/A	0.117	N/A	N/A	N/A	N/A
Asahi	III	rs1050828	202G>A			0.043			0			0.022			0.17			0
Mediterranean (also known as Dallas, Panama, Sassari)	II	rs5030868	563C>T	N/A	0.0663	N/A	0	0.0743	N/A	0	N/A	N/A	0	0.0522	N/A	0	N/A	N/A
Canton (also known as Taiwan- Hakka, Gifu- like, Agrigento- like)	П	rs72554665	1376G>T (1376G>C is Cosenza variant)	N/A	N/A	T = 0.001	0.0	N/A	0.0	0	N/A	0.0	0	N/A	0.0	0.017	N/A	T = 0.002
Orissa	III	rs78478128	131C>G	N/A	N/A	N/A												
Kalyan- Kerala	III	rs137852339	949G>A	N/A	N/A	N/A												
Chatham	II	rs5030869	1003G>A	N/A	0.0095	N/A	N/A	0.0149	N/A	N/A	N/A	N/A	N/A	0	N/A	N/A	N/A	N/A

Average allele frequencies are reported, based on the actual numbers of subjects with each allele reported in multiple studies

N/A not available.

²Grouped according to major race/ethnic groups for studies as defined in Supplemental Table S5

³From (13); the phenotype associated with each variant according to WHO classification

⁴National Center for Biotechnology Information dbSNP database. http://www.ncbi.nlm.nih.gov/projects/SNP/

⁵cDNA reference sequence; NM_001042351.1:c., alleles represented are on the negative chromosomal strand. The G6PD gene is on the negative chromosomal strand, alleles on PharmGKB (www.pharmgkb.org) are complemented to the plus chromosomal strand for standardization.

⁶Affymetrix Hapmap database. http://www.affymetrix.com/

⁷National Heart Lung and Blood Institute Exome Variant Server database. http://evs.gs.washington.edu/EVS/

⁸1000 Genomes Project database. http://browser.1000genomes.org/index.html

Supplemental Table S5. Frequencies of $\it G6PD$ variants in specific populations.

HGDP-CEPH	Population/	Sample Size	Genotyping details	Reference	G6PD Allele	Allele Frequency
Grouping	Ethnicity					
Africa	São Tomé e	52, males and	376G/202A,	Manco et al. 2007	В	0.698
	Príncipe (West	females	376G/968C,	(160)	A	0.194
	Africa)	(males were all	376G/542T PCR-RFLP		A-	0.108
		B)	analysis of haplotype		Betica	ND
			diversity.		Santa Maria	ND
Africa	Fulani, ethnic	59 (42 females,	202A-G by PCR-RFLP	(161)	position 202 allele	0.069 (SE 0.025)
	group, Burkino	17 males)	analysis.	(Modiano et al,	G (rs1050828),	
	Faso.			2001)	referred to as A- in	
					the publication.	
Africa	Mossi ethnic	148	202A-G by PCR-RFLP	(161)	position 202 allele	0.195 (SE 0.024)
	group, Burkino	(114 females, 34	analysis.	(Modiano et al,	G (rs1050828),	
	Faso.	males)		2001)	referred to as A- in	
					the publication.	
Africa	Rimaibé ethnic	79	202A-G by PCR-RFLP	(161)	position 202 allele	0.185 (SE 0.033)
	group, Burkino	(56 females, 23	analysis.	(Modiano et al,	G (rs1050828),	
	Faso.	males)		2001)	referred to as A- in	
					the publication.	
Africa	Newborns of	467 (246	A-: 202 A>G and 376	(162) (Badens et al,	A-	n= 14/17 alleles in
	Comorian origin	females, 221	G>A, Mediterranean:	2000)		G6PD deficient
	living in Marseilles	males)	defined by positions			individuals = 0.82
			563C>T and 1311C>T.		Mediterranean	n=3/17 alleles in
			PCR-RFLP analysis.			G6PD deficient
			Only those found to be			individuals = 0.18
			G6PD deficient by			
			enzyme activity assay			
			were then genotyped.			

Africa	Dienga, Gabon	77 male children.	A- 376A>G and	(163) (Migot-Nabias	A-	
			202G>A, by PCR-RFLP	et al, 2000)		Males: 0.16
			analysis.			
Africa	Dienga, Gabon	271 children	376A>G and 202G>A,	(164)(Mombo et al,	A-	0.155
		(note that	by PCR-RFLP analysis.	2003)	A	0.330
		amplification of			В	0.515
		each allele could				
		not be achieved				
		in some samples)				
Africa	Ibadan, and Abanla	n=314 males.	PCRs and sequence-	(May et al, 2000)	A- (202A, 376G)	0.242
	(95% Yoruba		specific probes for	(165)	A (376G)	0.175
	tribe), South-West		positions 202, 376, 542,		В	0.583
	Nigeria		680, 968.			
Africa	Ibadan, and Abanla	n=292 females.	PCRs and sequence-	(165) (May et al,	A- (202A, 376G)	0.184
	(95% Yoruba		specific probes for	2000)	A (376G)	0.214
1	tribe), South-West		positions 202, 376, 542,		В	0.603
1	Nigeria		680, 968.			
Africa	Abidjan, Ivory	39 newborn	376 A>G, 202 G>A, by	(166) (Coulibaly et	A-	0.21
I	Coast	males	PCR-RFLP analysis.	al, 2000)	A	0.28
I					В	0.51
Africa	Abidjan, Ivory	72 newborn	376 A>G, 202 G>A, by	(166) (Coulibaly et	A-	0.22
I	Coast	females	PCR-RFLP analysis.	al, 2000)	A	0.26
					В	0.51
Africa	Sereer ethnic	n=430 children	376G, 202A, 542T,	(167)	A-(376G/202A)	0.01
	group, Niakhar	(220 girls, 210	680T, 968C by PCR	(De Araujo et al,		
	area, Senegal	boys)	with 5'biotinylated	2006)		

primers and reverse dot blot hybridization.

22

					A-(376G/680T)	0
					A-(376G/968C)	0.09
					Santamaria	0.01
					(376G/542T)	
					A	0.20
					В	0.68
India	Andaman &	n=29	Position 1311, PCR	(168) (Murhekar et	Orissa	Only one individual
	Nicobar Islands,		amplification followed	al, 2001)		was G6PD deficient -
	India		by restriction digest			a female who had the
						Orissa variant.
Southeast Asia	Shan State,	n=563 females	PCR-RFLP analysis.	(169) (Than et al,	Mahidol	Females: 0.12
	Myanmar	(Males: reported hemi and homozygous males therefore did not include these figures)		2005)	Viangchan	ND
Middle East	Kuwait	n=206	563C>T, 376A>G,	(170) (Samilchuk et	A-	0.0111
			202G>A, 680G>T,	al, 1999)	A	0.0215
			968T>C PCR/RFLP analysis		Mediterranean	0.0503
Middle East	Kuwait	n=1209	PCR-RFLP analysis for	(171) (Afadhli et al,	A-	0.0074
			positions 563C>T,	2005)	Mediterranean	0.035
			202G>A, 376A>G, and		Chatham	0.0046
			143T>C, negative		Aures	0.0023
			samples were then			
			sequences in exon 9 to			
			detect 1003G>A.			
Middle East	Jordan (Amman	n=981 males	PCRof and sequencing	(172) (Karadsheh et	A- (376G, 202A)	0.006

					Asahi (202A)	0.001
					Chatham	0.003
					Valladolid	0.002
					Aures	0.001
					Mediterranean	0.017
Mixed	Mixed	n=178 (88 males,	Position 1311 by PCR	(158) Beutler et al,	1311C>T -	0.051
		90 females)	and sequencing or	1990	Oriental	
			oligonucleotide		1311C>T - South	0.100
			hybridization.		American	
					1311C>T - White	0.132
					non-Jewish	
					1311C>T -	0.167
					Sicilians	
					1311C>T - White	0.220
					Jewish	
					1311C>T - African	0.25
					1311C>T - Indian	0.45

ND: not detected

Supplemental Table S6. Drug and compound safety reviews for G6PD deficient patients

Drug/ compound	FDA Drug Label Information ^a	Italian G6PD Deficiency Association www.g6pd.org ^b	WHO Working Group, 1989 (10)	Beutler <i>et al</i> , 1994 (1)	Cappellini et al, 2008 (3)	Elyassi <i>et al</i> , 2008 (26)	(4)	Luzzatto & Poggi, Chapter 17: G6PD Deficiency (Nathan and Oski's Hematology of Infancy and Childhood) (14)
Acalypha indica extract					Possible association with hemolysis in G6PD deficient patients.			
Acetanilide (acetanilid)		Risk level: high, for Medit., Asian.		Should be avoided by G6PD deficient patients.	Definite association with hemolysis in G6PD deficient patients.	Unsafe for Class 1, 2, 3.		Definite risk of hemolysis
Acetylphenylhydra zine (2'- phenylacetohydraz ide)		Risk level: high, for all.	Should be avoided by all G6PD deficient					
Acetylphenylhydra zine (2'-phenylacetohydraz ide)		Risk level: high, for all.	Should be avoided by all G6PD deficient patients.					

Aldesulfone		Risk level: high,	(sulphoxone		Doubtful			
sodium (sulfoxone)		for all.) Should be		association			
			avoided by		with hemolysis			
			all G6PD		in G6PD			
			deficient		deficient			
			patients.		patients.			
Aminophenazone		Risk level: low,		Safe at		Safe for Class	Safe at	
(aminopyrine)		for all.		therapeutic		2, 3.	therapeutic	
				doses in those			doses in	
				with G6PD			those with	
				deficiency			G6PD	
				without			deficiency.	
				NSHA.				
Aminosalicyclic			Should be		Doubtful		No evidence	
acid (4-			avoided by		association		to suggest	
aminosalicyclic			G6PD		with hemolysis		unsafe in	
acid, p-			deficient		in G6PD		G6PD	
aminosalicyclic			patients of		deficient		deficient	
acid)			Asian,		patients.		patients.	
			Middle					
			Eastern or					
			Mediterrane					
			an origin.					
Antazoline		Risk level: low,		Safe at			No evidence	
(antistine)		for all.		therapeutic			to suggest	
				doses in those			unsafe in	
				with G6PD			G6PD	
				deficiency			deficient	
				without			patients.	
				NSHA.				
Ascorbic acid	Caution	Risk level: low,		Safe at	Possible	Safe for Class	Safe at	Possible risk of
(vitamin c)	should be	for all.		therapeutic	association	2, 3.	therapeutic	hemolysis
Ascorbic acid	Caution	Risk level: low,		Safe at	Possible	Safe for Class	Safe at	Possible risk of
(vitamin c)	should be	for all.		therapeutic	association	2, 3.	therapeutic	hemolysis
	taken in			doses in those	with hemolysis		doses in	
	patients with			with G6PD	in G6PD		those with	26
	G6PD			deficiency	deficient		G6PD	20
	deficiency			without NSHA	patients.		deficiency.	
I	l •	I	I	/ 1	Į	Į	Į	ļ

Arsine		Risk level: high, for all.	Should be avoided by all G6PD deficient patients.					
Aspirin (acetylsalicylic acid)		Risk level: high, for Medit., Asian.	Should be avoided by G6PD deficient patients of Asian, Middle Eastern or Mediterrane an origin.	Safe at therapeutic doses in those with G6PD deficiency without NSHA.	Possible association with hemolysis in G6PD deficient patients.	Safe for Class 2, 3.	Safe at therapeutic doses in those with G6PD deficiency.	Possible risk of hemolysis* *up to 20mg/kg probably safe
Beta-Naphthol (2- Naphthol)		Risk level: high, for all.	Should be avoided by all G6PD deficient patients.					
Chloramphenicol		Risk level: high, for Medit., Asian.	Should be avoided by G6PD deficient patients of Asian, Middle Eastern or Mediterrane an origin.	Safe at therapeutic doses in those with G6PD deficiency without NSHA.	Possible association with hemolysis in G6PD deficient patients.	Safe for Class 2, 3.	Safe at therapeutic doses in those with G6PD deficiency.	Possible risk of hemolysis
Chloroquine	Should be administered	Risk level: high, for Medit.,	Should be avoided by	Safe at therapeutic	Possible association	Safe for Class 2, 3.	Safe at therapeutic	Possible risk of hemolysis
Chloroquine	Should be administered with caution to G6PD patients.	Risk level: high, for Medit., Asian. If required, this substance may be taken under	Should be avoided by G6PD deficient patients of Asian,	Safe at therapeutic doses in those with G6PD deficiency without	Possible association with hemolysis in G6PD deficient patients.	Safe for Class 2, 3.	Safe at therapeutic doses in those with G6PD deficiency.	Possible risk of hemolysis

Ciprofloxacin		Risk level: high, for Medit., Asian. Hemolytic reactions to this substance have been reported only in few, isolated cases and no written reference exists as of this time.			Possible association with hemolysis in G6PD deficient patients.		Safe at therapeutic doses in those with G6PD deficiency.	Definite risk of hemolysis
Colchicine		Risk level: low, for all.		Safe at therapeutic doses in those with G6PD deficiency without NSHA.		Safe for Class 2, 3.	No evidence to suggest unsafe in G6PD deficient patients.	
Dapsone (diaphenylsulfone)	Should be administered with caution to G6PD patients.	Risk level: high, for all. These substances taken in high quantities might cause hemolysis also with normal subjects.	Should be avoided by all G6PD deficient patients.		Definite association with hemolysis in G6PD deficient patients.	Unsafe for Class 1, 2, 3.	Should be avoided by G6PD deficient patients.	Definite risk of hemolysis
Dimercaprol		Risk level: high, for all.	Should be avoided by all G6PD deficient patients.		Doubtful association with hemolysis in G6PD deficient			
Dimercaprol		Risk level: high, for all.	Should be avoided by all G6PD deficient patients.		Doubtful association with hemolysis in G6PD deficient patients.			28

Diphenhydramine		Risk level: low,		Safe at		Safe for Class	No evidence	
(difenilhydramine)		for all.		therapeutic		2, 3.	to suggest	
				doses in those			unsafe in	
				with G6PD			G6PD	
				deficiency			deficient	
				without			patients.	
				NSHA.				
Dipyrone							Safe at	
(metamizole)							therapeutic	
							doses in	
							those with	
							G6PD	
							deficiency.	
Doxorubicin		Risk level: high,			Doubtful		No evidence	
		for Medit.,			association		to suggest	
		Asian.			with hemolysis		unsafe in	
					in G6PD		G6PD	
					deficient		deficient	
					patients.		patients.	
Furazolidone		Risk level: high,	Should be	Should be		Unsafe for	Safe at	
		for all.	avoided by	avoided by		Class 1, 2, 3.	therapeutic	
			all G6PD	G6PD			doses in	
			deficient	deficient			those with	
			patients.	patients.			G6PD	
							deficiency.	
Glibenclamide	Caution	Risk level: high,			Possible		Safe at	Possible risk of
(glyburide)	should be	for all.			association		therapeutic	hemolysis
	taken in	Hemolytic			with hemolysis		doses in	
	patients with	reactions to this			in G6PD		those with	
	G6PD	substance have			deficient		G6PD	
	deficiency	been reported			patients.		deficiency.	
	and a non-	only in few,						
Glibenclamide	Caution	Risk level: high,			Possible		Safe at	Possible risk of
(glyburide)	should be	for all.			association		therapeutic	hemolysis
	taken in	Hemolytic			with hemolysis		doses in	
	patients with	reactions to this			in G6PD		those with	29
	G6PD	substance have			deficient		G6PD	
	deficiency	been reported			patients.		deficiency.	

Glucosulfone (glucosulphone sodium, promin) Isobutyl Nitrite	Risk level: high, for all. Risk level: high,	Should be avoided by all G6PD deficient patients.	Should be			
	for Medit., Asian.		avoided by G6PD deficient patients.			
Isoniazid	Risk level: low, for all.		Safe at therapeutic doses in those with G6PD deficiency without NSHA.	Safe for Class 2, 3.	Safe at therapeutic doses in those with G6PD deficiency.	
Isosorbide dinitrate					Safe at therapeutic doses in those with G6PD deficiency.	
Levodopa (L- DOPA)	Dopamine: Risk level: low, for all.		Safe at therapeutic doses in those with G6PD deficiency without NSHA.	Safe for Class 2, 3.	No evidence to suggest unsafe in G6PD deficient patients.	
Menadione	Risk level: high,		Safe at	Safe for Class		Possible risk of
(menaphthone, Menadione (menaphthone, vitamin K3)	for all. Risk level: high, for all.		therapeutic Safe at therapeutic doses in those with G6PD deficiency without	2, 3. Safe for Class 2, 3.		Possible risk of hemolysis 30

Menadione sodium		Risk level: high,				Safe at		Possible risk of
bisulfite (vitamin		for all.				therapeutic		hemolysis
K3 sodium						doses in those		
bisulfite)						with G6PD		
						deficiency		
						without NSHA.		
Mepacrine		Risk level: high,	Should be		Doubtful		Safe at	
(quinacrine)		for Medit.,	avoided by		association		therapeutic	
		Asian.	all G6PD		with hemolysis		doses in	
			deficient		in G6PD		those with	
			patients.		deficient		G6PD	
					patients.		deficiency.	
Mesalazine (5-		Risk level: high,			Possible			
aminosalicylic acid,		for Medit.,			association			
mesalamine)		Asian.			with hemolysis			
					in G6PD			
					deficient			
					patients.			
Methylthioninium	Should be	Risk level: high,	Should be	Should be	Definite	Unsafe for	Should be	Definite risk of
chloride	avoided by	for all.	avoided by	avoided by	association	Class 1, 2, 3.	avoided by	hemolysis
(methylene blue)	G6PD		all G6PD	G6PD	with hemolysis		G6PD	
	deficient		deficient	deficient	in G6PD		deficient	
	patients.		patients.	patients.	deficient		patients.	
					patients.			
Moxifloxacin								Definite risk of
								hemolysis
Nalidixic acid	Caution	Risk level: high,	Should be	Should be	Definite	Unsafe for	Safe at	Definite risk of
	should be	for Medit.,	avoided by	avoided by	association	Class 1, 2, 3.	therapeutic	hemolysis
	taken in	Asian.	G6PD	G6PD	with hemolysis		doses in	
	patients with	Hemolytic	deficient	deficient	in G6PD		those with	
	G6PD	reactions to this	patients with	patients.	deficient		G6PD	
	deficiency.	substance have	the A-		patients.		deficiency.	
Nalidixic acid	Caution	Risk level: high,	Should be	Should be	Definite	Unsafe for	Safe at	Definite risk of
	should be	for Medit.,	avoided by	avoided by	association	Class 1, 2, 3.	therapeutic	hemolysis
	taken in	Asian.	G6PD	G6PD	with hemolysis		doses in	
	patients with	Hemolytic	deficient	deficient	in G6PD		those with	31
	G6PD	reactions to this	patients with	patients.	deficient		G6PD	31
	deficiency.	substance have	the A-		patients.		deficiency.	

Napthalene, pure (naphtalin) Niridazole		Risk level: high, for all. Risk level: high, for all.	(naphthalene) Should be avoided by all G6PD deficient patients. Should be avoided by all G6PD deficient patients.	Should be avoided by G6PD deficient patients. Should be avoided by G6PD deficient patients.	Definite association with hemolysis in G6PD deficient patients. Definite association with hemolysis in G6PD deficient patients.	Unsafe for Class 1, 2, 3. Unsafe for Class 1, 2, 3.		Definite risk of hemolysis
Nitrofural (nitrofurazone)		Risk level: high, for all.	Should be avoided by all G6PD deficient patients.					
Nitrofurantoin	Warning section – hemolytic anemia linked to G6PD deficiency.	Risk level: high, for all.	Should be avoided by all G6PD deficient patients.	Should be avoided by G6PD deficient patients.	Definite association with hemolysis in G6PD deficient patients.	Unsafe for Class 1, 2, 3.	Should be avoided by G6PD deficient patients.	Definite risk of hemolysis
Norfloxacin	Precautions section – hemolytic reactions have been reported in G6PD deficient	Risk level: low, for all.					Safe at therapeutic doses in those with G6PD deficiency.	Definite risk of hemolysis
Norfloxacin	Precautions section – hemolytic reactions have been reported in	Risk level: low, for all.					Safe at therapeutic doses in those with G6PD deficiency.	Definite risk of hemolysis

Ofloxacin							Definite risk of hemolysis
Pamaquine	Risk level: high, for all.	Should be avoided by all G6PD deficient patients.		Definite association with hemolysis in G6PD deficient patients.			Definite risk of hemolysis
Para-aminobenzoic acid (4- aminobenzoic acid)	Risk level: low, for all.		Safe at therapeutic doses in those with G6PD deficiency without NSHA.		Safe for Class 2, 3.	No evidence to suggest unsafe in G6PD deficient patients.	
Paracetamol (acetaminophen)	Risk level: low, for all.	Safe alternative to aspirin or phenacetin in G6PD deficient patients of Asian, Middle Eastern or Mediterrane an origin	Safe at therapeutic doses in those with G6PD deficiency without NSHA.	Doubtful association with hemolysis in G6PD deficient patients.	Safe for Class 2, 3.	Safe at therapeutic doses in those with G6PD deficiency.	
Pentaquine	Risk level: high, for all.	<u> </u>					
Phenacetin (acetophenetidin)	Risk level: high, for Medit., Asian. Probably	Should be avoided by G6PD	Safe at therapeutic doses in those	Doubtful association with hemolysis	Safe for Class 2, 3.	No evidence to suggest unsafe in	
Phenacetin (acetophenetidin)	Risk level: high, for Medit., Asian. Probably safe in moderate doses.	Should be avoided by G6PD deficient patients of Asian,	Safe at therapeutic doses in those with G6PD deficiency without	Doubtful association with hemolysis in G6PD deficient patients.	Safe for Class 2, 3.	No evidence to suggest unsafe in G6PD deficient patients.	33

Phenazone	Risk level: low,		Safe at			Safe at	
(antipyrine)	for all.		therapeutic			therapeutic	
			doses in those			doses in	
			with G6PD			those with	
			deficiency			G6PD	
			without			deficiency.	
			NSHA.				
Phenazopyridine	Risk level: high,		Should be	Definite	Unsafe for	Should be	
	for Medit.,		avoided by	association	Class 1, 2, 3.	avoided by	
	Asian.		G6PD	with hemolysis		G6PD	
			deficient	in G6PD		deficient	
			patients.	deficient		patients.	
				patients.			
Phenylbutazone	Risk level: low,		Safe at			No evidence	
	for all.		therapeutic			to suggest	
			doses in those			unsafe in	
			with G6PD			G6PD	
			deficiency			deficient	
			without			patients.	
			NSHA.				
Phenytoin	Risk level: low,		Safe at		Safe for Class	No evidence	
	for all.		therapeutic		2, 3.	to suggest	
			doses in those			unsafe in	
			with G6PD			G6PD	
			deficiency			deficient	
			without			patients.	
	= 1.1.1		NSHA.				
Phynylhydrazine	Risk level: high,	(Phenylhydr	Should be		Unsafe for		
	for all.	azine)	avoided by		Class 1, 2, 3.		
		Should be	G6PD				
		avoided by	deficient				
DI II I	D: 1 1 1 1 1	all G6PD	patients.		II C C		
Phynylhydrazine	Risk level: high,	(Phenylhydr	Should be		Unsafe for		
	for all.	azine)	avoided by		Class 1, 2, 3.		
		Should be	G6PD				
		avoided by	deficient				
		all G6PD	patients.				
		deficient					

Phytomenadione (vitamin k1)		Risk level: low, for all.						Possible risk of hemolysis
Primaquine	Precaution – G6PD deficient patients should be closely observed.	Risk level: high, for all. May be given in reduces doses under medical supervision.	Should be avoided by all G6PD deficient patients. May be safe in those with A- under surveillance and reduced dosage.	Should be avoided by G6PD deficient patients.	Definite association with hemolysis in G6PD deficient patients.	Unsafe for Class 1, 2, 3.	Should be avoided by G6PD deficient patients.	Definite risk of hemolysis
Probenecid	Adverse reactions section – hemolytic anemia may be related to G6PD deficiency.	Risk level: high, for all.	Should be avoided by all G6PD deficient patients.	Safe at therapeutic doses in those with G6PD deficiency without NSHA.	Doubtful association with hemolysis in G6PD deficient patients.	Safe for Class 2, 3.	No evidence to suggest unsafe in G6PD deficient patients.	
Procainamide		Risk level: low, for all.		Safe at therapeutic doses in those with G6PD deficiency without NSHA.		Safe for Class 2, 3.	No evidence to suggest unsafe in G6PD deficient patients.	
Proguanil (chlorguanidine)		Risk level: low, for all.		Safe at therapeutic doses in those with G6PD			No evidence to suggest unsafe in G6PD	
Proguanil (chlorguanidine)		Risk level: low, for all.		Safe at therapeutic doses in those with G6PD deficiency without			No evidence to suggest unsafe in G6PD deficient patients.	

Pyrimethamine		Risk level: low,		Safe at		Safe for Class	No evidence	
		for all.		therapeutic		2, 3.	to suggest	
				doses in those			unsafe in	
				with G6PD			G6PD	
				deficiency			deficient	
				without			patients.	
				NSHA.				
Quinidine		Risk level: low,		Safe at		Safe for Class		
		for all.		therapeutic		2, 3.		
				doses in those				
				with G6PD				
				deficiency				
				without				
				NSHA.				
Quinine		Risk level: low,		Safe at	Doubtful	Safe for Class	Safe at	Possible risk of
		for all.		therapeutic	association	2, 3.	therapeutic	hemolysis
				doses in those	with hemolysis		doses in	
				with G6PD	in G6PD		those with	
				deficiency	deficient		G6PD	
				without	patients.		deficiency.	
				NSHA.				
Rasburicase (urate	Contraindicat	Risk level: high,		Should be			Should be	Possible risk of
oxidase)	ed in patients	for Medit.,		avoided by			avoided by	hemolysis
	with G6PD	Asian.		G6PD			G6PD	
	deficiency.			deficient			deficient	
				patients.			patients.	
Stibophen (2-(2-		Risk level: high,	(Stibophan)					
oxido-3,5-		for all.	Should be					
disulphonatopheno			avoided by					
ху)-			all G6PD					
1,3,2,benzodioxasti			deficient					
bole-4-6-			patients.					
Stibophen (2-(2-		Risk level: high,	(Stibophan)					
oxido-3,5-		for all.	Should be					
disulphonatopheno			avoided by					
ху)-			all G6PD					
1,3,2,benzodioxasti			deficient					
bole-4-6-			patients.					
1. 1 1 ()								

Streptomycin		Risk level: low,		Safe at		Safe for Class	No evidence	
		for all.		therapeutic		2, 3.	to suggest	
				doses in those			unsafe in	
				with G6PD			G6PD	
				deficiency			deficient	
				without			patients.	
				NSHA.				
Succimer							Safe at	
(dimercaptosuccini							therapeutic	
c acid)							doses in	
							those with	
							G6PD	
							deficiency.	
Sulfacetamide		Risk level: high,	Should be	Should be	Definite	Unsafe for	Safe at	
		for all.	avoided by	avoided by	association	Class 1, 2, 3.	therapeutic	
			all G6PD	G6PD	with hemolysis		doses in	
			deficient	deficient	in G6PD		those with	
			patients.	patients.	deficient		G6PD	
					patients.		deficiency.	
Sulfacytine		Risk level: low,		Safe at			No evidence	
		for all.		therapeutic			to suggest	
				doses in those			unsafe in	
				with G6PD			G6PD	
				deficiency			deficient	
				without			patients.	
				NSHA.				
Sulfadiazine	Warning	Risk level: low,		Safe at	Doubtful		No evidence	Possible risk of
	section -	for all.		therapeutic	association		to suggest	hemolysis
	hemolysis			doses in those	with hemolysis		unsafe in	
	may occur in			with G6PD	in G6PD		G6PD	
	some G6PD			deficiency	deficient		deficient	
	individuals.			without	patients.		patients.	
Sulfadiazine	Warning	Risk level: low,		Safe at	Doubtful		No evidence	Possible risk of
	section –	for all.		therapeutic	association		to suggest	hemolysis
	hemolysis			doses in those	with hemolysis		unsafe in	
	may occur in			with G6PD	in G6PD		G6PD	37
	some G6PD			deficiency	deficient		deficient	3/

Sulfadimidine		Risk level: high,	Should be		Possible			
		for all.	avoided by		association			
			all G6PD		with hemolysis			
			deficient		in G6PD			
			patients.		deficient			
					patients.			
Sulfafurazole	Precaution	Risk level: high,	(sulphafuraz	Safe at	Doubtful	Safe for Class	Safe at	
(sulfafurazone,	section –	for Medit.,	one) Should	therapeutic	association	2, 3.	therapeutic	
sulfisoxazole)	hemolysis	Asian.	be avoided	doses in those	with hemolysis		doses in	
,	may occur in		by G6PD	with G6PD	in G6PD		those with	
	G6PD		deficient	deficiency	deficient		G6PD	
	deficient		patients of	without	patients.		deficiency.	
	individuals.		Asian,	NSHA.				
			Middle					
			Eastern or					
			Mediterrane					
			an origin.					
Sulfaguanidine		Risk level: low,		Safe at			No evidence	
		for all.		therapeutic			to suggest	
				doses in those			unsafe in	
				with G6PD			G6PD	
				deficiency			deficient	
				without			patients.	
				NSHA.				
Sulfamerazine		Risk level: low,		Safe at			No evidence	
		for all.		therapeutic			to suggest	
				doses in those			unsafe in	
				with G6PD			G6PD	
				deficiency			deficient	
				without			patients.	
				NSHA.				
Sulfamethoxazole	(Trimethopri	Risk level: high,	(Septra -	Should be	Definite	Unsafe for	(Cotrimoxaz	Definite risk of
Sulfamethoxazole	(Trimethopri	Risk level: high,	(Septra -	Should be	Definite	Unsafe for	(Cotrimoxaz	Definite risk of
	m and	for all.	Trimethopri	avoided by	association	Class 1, 2, 3.	ole -	hemolysis
	sulfamethoxa		m and	G6PD	with hemolysis		trimethopri	
	zole drug		sulfamethox	deficient	in G6PD		m and	38
	label)		azole)	patients.	deficient		sulfamethox	30
	precaution		Should be		patients.		azole) Safe	
1	.•	I		ı	I	ı	I .	ı l

Sulfamethoxypyrid		Risk level: low,		Safe at		Safe for Class	No evidence	
azine		for all.		therapeutic		2, 3.	to suggest	
				doses in those			unsafe in	
				with G6PD			G6PD	
				deficiency			deficient	
				without			patients.	
				NSHA.				
Sulfanilamide		Risk level: high,	Should be	Should be	Definite	Unsafe for	Safe at	
(Sulphanilamide)		for all.	avoided by	avoided by	association	Class 1, 2, 3.	therapeutic	
			all G6PD	G6PD	with hemolysis		doses in	
			deficient	deficient	in G6PD		those with	
			patients.	patients.	deficient		G6PD	
					patients.		deficiency.	
Sulfapyridine		Risk level: high,	Should be	Should be	Definite	Unsafe for		
		for all.	avoided by	avoided by	association	Class 1, 2, 3.		
			all G6PD	G6PD	with hemolysis			
			deficient	deficient	in G6PD			
			patients.	patients.	deficient			
					patients.			
Sulfasalazine,	Precaution	Risk level: high,	Should be		Possible		Safe at	Possible risk of
Salazosulfapyridin	section –	for all.	avoided by		association		therapeutic	hemolysis
e (salazopyrin)	G6PD		all G6PD		with hemolysis		doses in	
	patients		deficient		in G6PD		those with	
	should be		patients.		deficient		G6PD	
	closely				patients.		deficiency.	
	observed for							
	signs of							
	hemolytic							
	anemia.							
Thiazosulfone		Risk level: high,		Should be		Unsafe for	Safe at	
(thiazolesulfone)		for Medit.,		avoided by		Class 1, 2, 3.	therapeutic	
TO 1 1 2 2		Asian.		G6PD		11 0 0	doses in	
Thiazosulfone		Risk level: high,		Should be		Unsafe for	Safe at	
(thiazolesulfone)		for Medit.,		avoided by		Class 1, 2, 3.	therapeutic	
		Asian.		G6PD			doses in	
				deficient			those with	39
				patients.			G6PD	
							deficiency.	1

Tiaprofenic acid		Risk level: low,		Safe at			No evidence	
		for all.		therapeutic			to suggest	
				doses in those			unsafe in	
				with G6PD			G6PD	
				deficiency			deficient	
				without			patients.	
				NSHA.				
Tolonium chloride,		Risk level: high,	Should be	Should be		Unsafe for	Should be	
(toluidine blue)		for all.	avoided by	avoided by		Class 1, 2, 3.	avoided by	
			all G6PD	G6PD			G6PD	
			deficient	deficient			deficient	
			patients.	patients.			patients.	
Trihexyphynidyl		Risk level: low,		Safe at			No evidence	
(benzhexol)		for all.		therapeutic			to suggest	
				doses in those			unsafe in	
				with G6PD			G6PD	
				deficiency without			deficient	
				NSHA.			patients.	
				NSHA.			F	
Trimethoprim	(Trimethopri	Risk level: low,	Septrin -	Safe at	Definite	Safe for Class	Cotrimoxaz	
	m and	for all.	Trimethopri	therapeutic	association	2, 3.	ole -	
	sulfamethoxa		m and	doses in those	with hemolysis		trimethopri	
	zole drug		sulfamethox	with G6PD	in G6PD		m and	
	label)		azole)	deficiency	deficient		sulfamethox	
	precaution		Should be	without	patients.		azole - Safe	
	section –		avoided by	NSHA.			at	
	hemolysis		all G6PD				therapeutic	
	may occur in		deficient				doses in	
	G6PD		patients.				those with	
	deficient		_				G6PD	
	individuals.						deficiency.	
Trinitrotoluene		Risk level: high,		Should be	Definite	Unsafe for	-	

Trinitrotoluene (2,4,6-trinitrotoluene)	Risk level: high, for Medit., Asian.		Should be avoided by G6PD deficient patients.	Definite association with hemolysis in G6PD deficient patients.	Unsafe for Class 1, 2, 3.		
Tripelennamine	Risk level: low, for Medit., Asian.		Safe at therapeutic doses in those with G6PD deficiency without NSHA.		Safe for Class 2, 3.	No evidence to suggest unsafe in G6PD deficient patients.	
Vitamin K	(Menadiol Sodium Sulfate (vitamin K4 sodium sulfate)). Risk level: high, for all. Synthetic substitutes of natural vitamin K. It is probable that natural vitamin K1 (phyto-	Should be avoided by all G6PD deficient patients.	Safe at therapeutic doses in those with G6PD deficiency without NSHA.	Possible association with hemolysis in G6PD deficient patients.	Safe for Class 2, 3.	No evidence to suggest unsafe in G6PD deficient patients.	

Table Key

Shaded rows are those in which all references with an available review for the drug are in agreement that there is a risk of hemolysis in G6PD deficient individuals (dark grey) or they are in agreement that there is a low level of risk in G6PD deficient individuals who do not have NSHA (light grey). Blank cells are those for which no information for the particular drug was available.

^aDrugs labels were searched for and downloaded at DailyMed, and manually read for information regarding G6PD deficiency. http://dailymed.nlm.nih.gov/dailymed/about.cfm?CFID=19319725&CFTOKEN=58cf841e285ab349-4BB80DDF-DED0-E0BA-8A9AD8C4DF2D7FCF&jsessionid=843066c9aeb61c0b912ef102d65774752f44 (accessed November 29th 2012). Drug labels with highlighted pharmacogenetic information can be found at https://www.pharmgkb.org/gene/PA28469#tabview=tab0&subtab=32

^bItalian G6PD Deficiency Association www.g6pd.org

Abbreviations:

NSHA = nonspherocytic hemolytic anemia

Supplemental Table S7. Evidence linking G6PD deficiency to Rasburicase-induced hemolysis or methemoglobinemia

Type of experimental	Major findings	References	Level of
model (in vitro, in vivo			evidence ^a
preclinical, or clinical)			
Clinical	G6PD deficient individuals (as determined by	Ducros et al. (1991) (173)	Strong
	enzyme assay) developed acute hemolysis or	Pui et al (1997) (174)	
	methemoglobinemia after exposure to	Bosly et al. (2003) (175)	
	rasburicase or urate oxidase.	Browning and Kruse (2005) (176)	
		Borinstein et al. (2007) (177)	
		Bhat et al. (2008) (178)	
		Vadhan-Raj et al. (2011) (179)	
		Sonbol et al. (2012) (180)	
		Zaramella et al. (2012) (181)	
		Cheah et al. (2013) (182)	
Clinical	G6PD deficient individuals (as determined by	Bain et al. (2010) (183)	Moderate
	genotype) developed acute hemolysis after	Zaramella et al. (2012) (181)	
	exposure to rasburicase or urate-oxidase.	Joly et al. (2009) (184)	
Clinical	Probable G6PD deficient individuals (no G6PD	Ng et al. (2011) (185)	Moderate
	enzyme activity or genetic test to determine	Patte et al. (2002) (186)	
	G6PD status) developed acute hemolysis after	Kizer et al (2006) (187)	
	exposure to rasburicase or urate oxidase.		
Clinical	G6PD normal individuals (as determined by	Goldman et al. (2001) (188)	Moderate
	enzyme assay) developed acute hemolysis after	Kizer et al. (2006) (187)	
	exposure to rasburicase or urate-oxidase.	Bauters et al. (2010) (189)	
		Bauters et al. (2011) (190)	

^aSee above for description of 'Levels of Evidence Linking Genotype to Phenotype'. Some of the case studies, although not strong individually, collectively do support a strong level of evidence.

Abbreviations:

G6PD – glucose-6-phosphate dehydrogenase

References

- (1) Beutler, E. G6PD deficiency. *Blood* **84**, 3613-36 (1994).
- (2) Mason, P.J., Bautista, J.M. & Gilsanz, F. G6PD deficiency: the genotype-phenotype association. *Blood reviews* **21**, 267-83 (2007).
- (3) Cappellini, M.D. & Fiorelli, G. Glucose-6-phosphate dehydrogenase deficiency. *Lancet* **371**, 64-74 (2008).
- (4) Youngster, I. *et al.* Medications and glucose-6-phosphate dehydrogenase deficiency: an evidence-based review. *Drug Saf* **33**, 713-26 (2010).
- (5) McDonagh, E.M., Thorn, C.F., Bautista, J.M., Youngster, I., Altman, R.B. & Klein, T.E. PharmGKB summary: very important pharmacogene information for G6PD. *Pharmacogenet Genomics* **22**, 219-28 (2012).
- (6) Navolanic, P.M. *et al.* Elitek-rasburicase: an effective means to prevent and treat hyperuricemia associated with tumor lysis syndrome, a Meeting Report, Dallas, Texas, January 2002. *Leukemia* **17**, 499-514 (2003).
- (7) Pui, C.H. Rasburicase: a potent uricolytic agent. *Expert Opin Pharmacother* **3**, 433-42 (2002).
- (8) Whelton, A. Current and future therapeutic options for the management of gout. *Am J Ther* **17**, 402-17 (2010).
- (9) Sivilotti, M.L. Oxidant stress and haemolysis of the human erythrocyte. *Toxicol Rev* **23**, 169-88 (2004).
- (10) Glucose-6-phosphate dehydrogenase deficiency. WHO Working Group. *Bulletin of the World Health Organization* **67**, 601-11 (1989).
- (11) Nomenclature of glucose-6-phosphate dehydrogenase in man. *Am J Hum Genet* **19**, 757-61 (1967).
- (12) Yoshida, A., Beutler, E. & Motulsky, A.G. Human glucose-6-phosphate dehydrogenase variants. *Bulletin of the World Health Organization* **45**, 243-53 (1971).
- (13) Minucci, A., Moradkhani, K., Hwang, M.J., Zuppi, C., Giardina, B. & Capoluongo, E. Glucose-6-phosphate dehydrogenase (G6PD) mutations database: review of the "old" and update of the new mutations. *Blood Cells Mol Dis* **48**, 154-65 (2012).
- (14) Luzzatto, L. & Poggi, V. Glucose-6-Phosphate Dehydrogenase Deficiency In: *Nathan and Oski's Hematology of Infancy and Childhood, 7th Edition* (ed. Meloni, D., Anderson, A. Authors of the book: Orkin, S.H., Fisher, D.E., Look, A.T., Lux IV, S.E., Ginsburg, D., Nathan, D.G.) (Saunders, Elsevier., 2009).
- (15) Beutler, E. & Vulliamy, T.J. Hematologically important mutations: glucose-6-phosphate dehydrogenase. *Blood Cells Mol Dis* **28**, 93-103 (2002).
- (16) Beutler, E., Kuhl, W., Vives-Corrons, J.L. & Prchal, J.T. Molecular heterogeneity of glucose-6-phosphate dehydrogenase A. *Blood* **74**, 2550-5 (1989).
- (17) Nkhoma, E.T., Poole, C., Vannappagari, V., Hall, S.A. & Beutler, E. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. *Blood Cells Mol Dis* **42**, 267-78 (2009).

- (18) Leslie, T. *et al.* The impact of phenotypic and genotypic G6PD deficiency on risk of plasmodium vivax infection: a case-control study amongst Afghan refugees in Pakistan. *PLoS medicine* **7**, e1000283 (2010).
- (19) Rinaldi, A., Filippi, G. & Siniscalco, M. Variability of red cell phenotypes between and within individuals in an unbiased sample of 77 heterozygotes for G6PD deficiency in Sardinia. *Am J Hum Genet* **28**, 496-505 (1976).
- (20) Sanna, G., Frau, F., De Virgiliis, S., Piu, P., Bertolino, F. & Cao, A. Glucose-6-phosphate dehydrogenase red blood cell phenotype in GdMediterranean heterozygous females and hemizygous males at birth. *Pediatric research* **15**, 1443-6 (1981).
- (21) Au, W.Y., Ma, E.S., Lam, V.M., Chan, J.L., Pang, A. & Kwong, Y.L. Glucose 6-phosphate dehydrogenase (G6PD) deficiency in elderly Chinese women heterozygous for G6PD variants. *American journal of medical genetics Part A* **129A**, 208-11 (2004).
- (22) Manco, L. *et al.* Chronic hemolytic anemia is associated with a new glucose-6-phosphate dehydrogenase in-frame deletion in an older woman. *Blood Cells Mol Dis* **46**, 288-93 (2011).
- (23) Pamba, A. *et al.* Clinical spectrum and severity of hemolytic anemia in glucose 6-phosphate dehydrogenase-deficient children receiving dapsone. *Blood* **120**, 4123-33 (2012).
- (24) Muller, O. *et al.* Haemolysis risk in methylene blue treatment of G6PD-sufficient and G6PD-deficient West-African children with uncomplicated falciparum malaria: a synopsis of four RCTs. *Pharmacoepidemiology and drug safety* **22**, 376-85 (2013).
- (25) Faiyaz-Ul-Haque, M. *et al.* Genetics of glucose-6-phosphate dehydrogenase deficiency in Saudi patients. *Clinical genetics* **78**, 98-100 (2010).
- (26) Elyassi, A.R. & Rowshan, H.H. Perioperative management of the glucose-6-phosphate dehydrogenase deficient patient: a review of literature. *Anesth Prog* **56**, 86-91 (2009).
- (27) http://www.g6pd.org: G6PD Deficiency Favism Association. The Association is affiliated with UNIAMO, Italian Federation for Rare Diseases, which is member of EURORDIS, European Organization for Rare Diseases. (© 1996-2012 by Associazione Italiana Favismo Deficit di G6PD). Accessed May 8th 2012.
- (28) Kletzien, R.F., Harris, P.K. & Foellmi, L.A. Glucose-6-phosphate dehydrogenase: a "housekeeping" enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. *FASEB J* **8**, 174-81 (1994).
- (29) Goth, L. & Bigler, N.W. Catalase deficiency may complicate urate oxidase (rasburicase) therapy. *Free Radic Res* **41**, 953-5 (2007).
- (30) Skold, A., Cosco, D.L. & Klein, R. Methemoglobinemia: pathogenesis, diagnosis, and management. *South Med J* **104**, 757-61 (2011).
- (31) Curry, S. Methemoglobinemia. *Ann Emerg Med* **11**, 214-21 (1982).
- (32) Mansouri, A. & Lurie, A.A. Concise review: methemoglobinemia. *American journal of hematology* **42**, 7-12 (1993).

- (33) Lo, S.C. & Agar, N.S. NADH-methemoglobin reductase activity in the erythrocytes of newborn and adult mammals. *Experientia* **42**, 1264-5 (1986).
- (34) Valdes, R., Payne, D.A. & Linder, M.W. Laboratory analysis and application of pharmacogenetics to clinical practice. *The National Academy of Clinical Biochemistry (NACB) Laboratory Medicine Practice Guidelines* 2010.
- (35) Moradkhani, K. *et al.* Practical approach for characterization of glucose 6-phosphate dehydrogenase (G6PD) deficiency in countries with population ethnically heterogeneous: Description of seven new G6PD mutants. *American journal of hematology,* (2011).
- (36) Jablonska-Skwiecinska, E. *et al.* Several mutations including two novel mutations of the glucose-6-phosphate dehydrogenase gene in Polish G6PD deficient subjects with chronic nonspherocytic hemolytic anemia, acute hemolytic anemia, and favism. *Human mutation* **14**, 477-84 (1999).
- (37) MacDonald, D., Town, M., Mason, P., Vulliamy, T., Luzzatto, L. & Goff, D.K. Deficiency in red blood cells. *Nature* **350**, 115 (1991).
- (38) Chao, L.T. *et al.* A to G substitution identified in exon 2 of the G6PD gene among G6PD deficient Chinese. *Nucleic acids research* **19**, 6056 (1991).
- (39) Vulliamy, T.J. *et al.* Clinical and haematological consequences of recurrent G6PD mutations and a single new mutation causing chronic nonspherocytic haemolytic anaemia. *British journal of haematology* **101**, 670-5 (1998).
- (40) Beutler, E., Kuhl, W., Gelbart, T. & Forman, L. DNA sequence abnormalities of human glucose-6-phosphate dehydrogenase variants. *The Journal of biological chemistry* **266**, 4145-50 (1991).
- (41) Kahn, A., Esters, A. & Habedank, M. GD (--) Aachen, a new variant of deficient glucose-6-phosphate dehydrogenase. Clinical, genetic, biochemical aspects. *Human genetics* **32**, 171-80 (1976).
- (42) Yasutaka, H. *et al.* Japenese siblings with chronic compensated hemolysis and acute hemolytic anemia due to a new glucose-6-phosphate dehydrogenase variant (G6PD Tenri). *J Japan Pediatr Soc* **106**, 759-62 (2002).
- (43) Beutler, E., Westwood, B., Melemed, A., Dal Borgo, P. & Margolis, D. Three new exon 10 glucose-6-phosphate dehydrogenase mutations. *Blood Cells Mol Dis* **21**, 64-72 (1995).
- (44) Zarza, R. *et al.* Two new mutations of the glucose-6-phosphate dehydrogenase (G6PD) gene associated with haemolytic anaemia: clinical, biochemical and molecular relationships. *British journal of haematology* **98**, 578-82 (1997).
- (45) Hirono, A., Kuhl, W., Gelbart, T., Forman, L., Fairbanks, V.F. & Beutler, E. Identification of the binding domain for NADP+ of human glucose-6-phosphate dehydrogenase by sequence analysis of mutants. *Proceedings of the National Academy of Sciences of the United States of America* **86**, 10015-7 (1989).
- (46) Vaca, G., Ibarra, B., Romero, F., Olivares, N., Cantu, J.M. & Beutler, E. G-6-PD Guadalajara. A new mutant associated with chronic nonspherocytic hemolytic anemia. *Human genetics* **61**, 175-6 (1982).

- (47) Gaetani, G.F. *et al.* A new glucose-6-phosphate dehydrogenase variant with congenital nonspherocytic hemolytic anemia (G6PD Genova). Biochemical characterization and mosaicism expression in the heterozygote. *Human genetics* **84**, 337-40 (1990).
- (48) Hirono, A., Fujii, H., Takano, T., Chiba, Y., Azuno, Y. & Miwa, S. Molecular analysis of eight biochemically unique glucose-6-phosphate dehydrogenase variants found in Japan. *Blood* **89**, 4624-7 (1997).
- (49) Xu, W., Westwood, B., Bartsocas, C.S., Malcorra-Azpiazu, J.J., Indrak, K. & Beutler, E. Glucose-6 phosphate dehydrogenase mutations and haplotypes in various ethnic groups. *Blood* **85**, 257-63 (1995).
- (50) Maciag, M. *et al.* Molecular analysis of three novel G6PD variants: G6PD Pedoplis-Ckaro, G6PD Piotrkow and G6PD Krakow. *Acta biochimica Polonica* **54**, 877-81 (2007).
- (51) Filosa, S. *et al.* Molecular basis of chronic non-spherocytic haemolytic anaemia: a new G6PD variant (393 Arg----His) with abnormal KmG6P and marked in vivo instability. *British journal of haematology* **80**, 111-6 (1992).
- (52) Filosa, S. *et al.* A novel single-base mutation in the glucose 6-phosphate dehydrogenase gene is associated with chronic non-spherocytic haemolytic anaemia. *Human genetics* **94**, 560-2 (1994).
- (53) Elizondo, J. *et al.* G6PD-Puerto Limon: a new deficient variant of glucose-6-phosphate dehydrogenase associated with congenital nonspherocytic hemolytic anemia. *Human genetics* **62**, 110-2 (1982).
- (54) Manco, L., Goncalves, P., Macedo-Ribeiro, S., Seabra, C., Melo, P. & Ribeiro, M.L. Two new glucose-6-phosphate dehydrogenase mutations causing chronic hemolysis. *Haematologica* **90**, 1135-6 (2005).
- (55) Ganczakowski, M. *et al.* Multiple glucose 6-phosphate dehydrogenase-deficient variants correlate with malaria endemicity in the Vanuatu archipelago (southwestern Pacific). *Am J Hum Genet* **56**, 294-301 (1995).
- (56) Grabowska, D. *et al.* A novel mutation in the glucose-6-phosphate dehydrogenase gene in a subject with chronic nonspherocytic hemolytic anemia--characterization of enzyme using yeast expression system and molecular modeling. *Blood Cells Mol Dis* **32**, 124-30 (2004).
- (57) van Wijk, R. *et al.* Distinct phenotypic expression of two de novo missense mutations affecting the dimer interface of glucose-6-phosphate dehydrogenase. *Blood Cells Mol Dis* **32**, 112-7 (2004).
- (58) Hirono, A., Miwa, S., Fujii, H., Ishida, F., Yamada, K. & Kubota, K. Molecular study of eight Japanese cases of glucose-6-phosphate dehydrogenase deficiency by nonradioisotopic single-strand conformation polymorphism analysis. *Blood* **83**, 3363-8 (1994).
- (59) Beutler, E., Westwood, B., Prchal, J.T., Vaca, G., Bartsocas, C.S. & Baronciani, L. New glucose-6-phosphate dehydrogenase mutations from various ethnic groups. *Blood* **80**, 255-6 (1992).
- (60) Kiani, F., Schwarzl, S., Fischer, S. & Efferth, T. Three-dimensional modeling of glucose-6-phosphate dehydrogenase-deficient variants from German ancestry. *PloS one* **2**, e625 (2007).

- (61) Saad, S.T., Salles, T.S., Arruda, V.R., Sonati, M.F. & Costa, F.F. G6PD sumare: a novel mutation in the G6PD gene (1292 T-->G) associated with chronic nonspherocytic anemia. *Human mutation* **10**, 245-7 (1997).
- (62) Fujii, H. *et al.* Glucose 6-phosphate dehydrogenase variants: a unique variant (G6PD Kobe) showed an extremely increased affinity for galactose 6-phosphate and a new variant (G6PD Sapporo) resembling G6PD Pea Ridge. *Human genetics* **58**, 405-7 (1981).
- (63) Vulliamy, T.J. *et al.* Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia. *Proceedings of the National Academy of Sciences of the United States of America* **85**, 5171-5 (1988).
- (64) Manco, L., Goncalves, P., Antunes, P., Maduro, F., Abade, A. & Ribeiro, M.L. Mutations and haplotype diversity in 70 Portuguese G6PD-deficient individuals: an overview on the origin and evolution of mutated alleles. *Haematologica* **92**, 1713-4 (2007).
- (65) Tanphaichitr, V.S., Hirono, A., Pung-amritt, P., Treesucon, A. & Wanachiwanawin, W. Chronic nonspherocytic hemolytic anemia due to glucose-6-phosphate dehydrogenase deficiency: report of two families with novel mutations causing G6PD Bangkok and G6PD Bangkok Noi. *Annals of hematology* **90**, 769-75 (2011).
- (66) Baronciani, L., Tricta, F. & Beutler, E. G6PD "campinas:" a deficient enzyme with a mutation at the far 3' end of the gene. *Human mutation* **2**, 77-8 (1993).
- (67) Minucci, A., Concolino, P., Vendittelli, F., Giardina, B., Zuppi, C. & Capoluongo, E. Glucose-6-phosphate dehydrogenase Buenos Aires: a novel de novo missense mutation associated with severe enzyme deficiency. *Clinical biochemistry* **41**, 742-5 (2008).
- (68) McGonigle, D.P., Lalloz, M.R.A., Wild, B.J. & Layton, D.M. G6PD-Brighton: a new class I glucose-6-phosphate dehydrogenase variant due to a deletion in exon 13. *Brit J haematol* **101**, 51 (1988).
- (69) Vulliamy, T., Luzzatto, L., Hirono, A. & Beutler, E. Hematologically important mutations: glucose-6-phosphate dehydrogenase. *Blood Cells Mol Dis* **23**, 302-13 (1997).
- (70) van Bruggen, R. *et al.* Deletion of leucine 61 in glucose-6-phosphate dehydrogenase leads to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections. *Blood* **100**, 1026-30 (2002).
- (71) McDade, J., Abramova, T., Mortier, N., Howard, T. & Ware, R.E. A novel G6PD mutation leading to chronic hemolytic anemia. *Pediatric blood & cancer* **51**, 816-9 (2008).
- (72) Mason, P.J. *et al.* New glucose-6-phosphate dehydrogenase mutations associated with chronic anemia. *Blood* **85**, 1377-80 (1995).
- (73) Hirono, A., Fujii, H. & Miwa, S. Identification of two novel deletion mutations in glucose-6-phosphate dehydrogenase gene causing hemolytic anemia. *Blood* **85**, 1118-21 (1995).

- (74) Maeda, M., Constantoulakis, P., Chen, C.S., Stamatoyannopoulos, G. & Yoshida, A. Molecular abnormalities of a human glucose-6-phosphate dehydrogenase variant associated with undetectable enzyme activity and immunologically cross-reacting material. *Am J Hum Genet* **51**, 386-95 (1992).
- (75) Vlachos, A., Westwood, B., Lipton, J.M. & Beutler, E. G6PD Mount Sinai: a new severe hemolytic variant characterized by dual mutations at nucleotides 376G and 1159T (N126D). *Human mutation* **Suppl 1**, S154-5 (1998).
- (76) Rovira, A., Vulliamy, T., Pujades, M.A., Luzzatto, L. & Corrons, J.L. Molecular genetics of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Spain: identification of two new point mutations in the G6PD gene. *British journal of haematology* **91**, 66-71 (1995).
- (77) Roos, D. *et al.* Molecular basis and enzymatic properties of glucose 6-phosphate dehydrogenase volendam, leading to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections. *Blood* **94**, 2955-62 (1999).
- (78) Ogura, H. *et al.* A new glucose-6-phosphate dehydrogenase variant (G6PD Tsukui) associated with congenital hemolytic anemia. *Human genetics* **78**, 369-71 (1988).
- (79) Beutler, E., Westwood, B. & Kuhl, W. Definition of the mutations of G6PD Wayne, G6PD Viangchan, G6PD Jammu, and G6PD 'LeJeune'. *Acta haematologica* **86**, 179-82 (1991).
- (80) Mizukawa, B. *et al.* Cooperating G6PD mutations associated with severe neonatal hyperbilirubinemia and cholestasis. *Pediatric blood & cancer* **56**, 840-2 (2011).
- (81) Poggi, V., Town, M., Foulkes, N.S. & Luzzatto, L. Identification of a single base change in a new human mutant glucose-6-phosphate dehydrogenase gene by polymerase-chain-reaction amplification of the entire coding region from genomic DNA. *The Biochemical journal* **271**, 157-60 (1990).
- (82) Takizawa, T. *et al.* A unique electrophoretic slow-moving glucose 6-phosphate dehydrogenase variant (G6PD Asahikawa) with a markedly acidic pH optimum. *Human genetics* **68**, 70-2 (1984).
- (83) Zimmerman, S.A., Ware, R.E., Forman, L., Westwood, B. & Beutler, E. Glucose-6-phosphate dehydrogenase Durham: a de novo mutation associated with chronic hemolytic anemia. *The Journal of pediatrics* **131**, 284-7 (1997).
- (84) Ravindranath, Y. & Beutler, E. Two new variants of glucose-6-phosphate dehydrogenase associated with hereditary non-spherocytic hemolytic anemia: G6PD Wayne and G6PD Huron. *American journal of hematology* **24**, 357-63 (1987).
- (85) Costa, E. *et al.* Glucose-6-phosphate dehydrogenase aveiro: a de novo mutation associated with chronic nonspherocytic hemolytic anemia. *Blood* **95**, 1499-501 (2000).
- (86) Taki, M. *et al.* A new glucose-6-phosphate dehydrogenase variant G6PD Sugao (826C-->T) exhibiting chronic hemolytic anemia with episodes of hemolytic crisis immediately after birth. *International journal of hematology* **74**, 153-6 (2001).

- (87) Beutler, E., Gelbart, T. & Miller, W. Severe jaundice in a patient with a previously undescribed glucose-6-phosphate dehydrogenase (G6PD) mutation and Gilbert syndrome. *Blood Cells Mol Dis* **28**, 104-7 (2002).
- (88) Hirono, A., Fujii, H., Shima, M. & Miwa, S. G6PD Nara: a new class 1 glucose-6-phosphate dehydrogenase variant with an eight amino acid deletion. *Blood* **82**, 3250-2 (1993).
- (89) Iancovici-Kidon, M. *et al.* A new exon 9 glucose-6-phosphate dehydrogenase mutation (G6PD "Rehovot") in a Jewish Ethiopian family with variable phenotypes. *Blood Cells Mol Dis* **26**, 567-71 (2000).
- (90) Hirono, A., Ishii, A., Kere, N., Fujii, H., Hirono, K. & Miwa, S. Molecular analysis of glucose-6-phosphate dehydrogenase variants in the Solomon Islands. *Am J Hum Genet* **56**, 1243-5 (1995).
- (91) Hirono, A., Fujii, H., Hirono, K., Kanno, H. & Miwa, S. Molecular abnormality of a Japanese glucose-6-phosphate dehydrogenase variant (G6PD Tokyo) associated with hereditary non-spherocytic hemolytic anemia. *Human genetics* **88**, 347-8 (1992).
- (92) Cappellini, M.D., Montemuros, F.M.d., Bellis, G.D., Debernardi, S., Dotti, C. & Fiorelli, G. Multiple G6PD mutations are associated with a clinical and biochemical phenotype similar to that of G6PD Mediterranean. *Hum Mutat* **14**, 447-84 (1999).
- (93) Okano, Y. *et al.* Two novel glucose-6-phosphate dehydrogenase variants found in newborn mass-screening for galactosaemia. *Eur J Pediatr* **160**, 105-8 (2001).
- (94) Iwai, K. *et al.* Distribution of glucose-6-phosphate dehydrogenase mutations in Southeast Asia. *Human genetics* **108**, 445-9 (2001).
- (95) Calabro, V. *et al.* Genetic heterogeneity of glucose-6-phosphate dehydrogenase deficiency revealed by single-strand conformation and sequence analysis. *Am J Hum Genet* **52**, 527-36 (1993).
- (96) Menounos, P. *et al.* Molecular heterogeneity of the glucose-6-phosphate dehydrogenase deficiency in the Hellenic population. *Human heredity* **50**, 237-41 (2000).
- (97) Perng, L.I., Chiou, S.S., Liu, T.C. & Chang, J.G. A novel C to T substitution at nucleotide 1360 of cDNA which abolishes a natural Hha I site accounts for a new G6PD deficiency gene in Chinese. *Human molecular genetics* **1**, 205 (1992).
- (98) Wagner, G., Bhatia, K. & Board, P. Glucose-6-phosphate dehydrogenase deficiency mutations in Papua New Guinea. *Human biology* **68**, 383-94 (1996).
- (99) Vives-Corrons, J.L., Kuhl, W., Pujades, M.A. & Beutler, E. Molecular genetics of the glucose-6-phosphate dehydrogenase (G6PD) Mediterranean variant and description of a new G6PD mutant, G6PD Andalus1361A. *Am J Hum Genet* **47**, 575-9 (1990).
- (100) Stevens, D.J., Wanachiwanawin, W., Mason, P.J., Vulliamy, T.J. & Luzzatto, L. G6PD Canton a common deficient variant in South East Asia caused by a 459 Arg----Leu mutation. *Nucleic acids research* **18**, 7190 (1990).

- (101) Chiu, D.T. *et al.* Two commonly occurring nucleotide base substitutions in Chinese G6PD variants. *Biochemical and biophysical research communications* **180**, 988-93 (1991).
- (102) Rodrigues, M.O., Pereira, J.D., Gaspar, G., Olim, G., Martins, M.D. & Monteiro, C. Novel point mutation in exon 12 of the glucose-6- phosphate dehydrogenase gene: G6PD FLORES. *Journal of clinical laboratory analysis* 18, 129-31 (2004).
- (103) Hamel, A.R., Cabral, I.R., Sales, T.S., Costa, F.F. & Olalla Saad, S.T. Molecular heterogeneity of G6PD deficiency in an Amazonian population and description of four new variants. *Blood Cells Mol Dis* **28**, 399-406 (2002).
- (104) Laosombat, V. *et al.* Molecular heterogeneity of glucose-6-phosphate dehydrogenase (G6PD) variants in the south of Thailand and identification of a novel variant (G6PD Songklanagarind). *Blood Cells Mol Dis* **34**, 191-6 (2005).
- (105) Yan, T. *et al.* Incidence and complete molecular characterization of glucose-6-phosphate dehydrogenase deficiency in the Guangxi Zhuang autonomous region of southern China: description of four novel mutations. *Haematologica* **91**, 1321-8 (2006).
- (106) Matsuoka, H. *et al.* Seven different glucose-6-phosphate dehydrogenase variants including a new variant distributed in Lam Dong Province in southern Vietnam. *Acta medica Okayama* **61**, 213-9 (2007).
- (107) Beutler, E., Kuhl, W., Saenz, G.F. & Rodriguez, W. Mutation analysis of glucose-6-phosphate dehydrogenase (G6PD) variants in Costa Rica. *Human genetics* **87**, 462-4 (1991).
- (108) Cittadella, R. *et al.* Genetic heterogeneity of glucose-6-phosphate dehydrogenase deficiency in south-east Sicily. *Annals of human genetics* **61**, 229-34 (1997).
- (109) Kumakawa, T., Suzuki, S., Fujii, H. & Miwa, S. Frequency of glucose 6-phosphate dehydrogenase (G6PD) deficiency in Tokyo and a new variant: G6PD Musashino. *Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society* **50**, 25-8 (1987).
- (110) Chen, X., Yue, L. & Li, C. A novel G473A mutation in the glucose-6-phosphate dehydrogenase gene. *Pediatric blood & cancer* **55**, 383-5 (2010).
- (111) Tang, T.K., Huang, C.S., Huang, M.J., Tam, K.B., Yeh, C.H. & Tang, C.J. Diverse point mutations result in glucose-6-phosphate dehydrogenase (G6PD) polymorphism in Taiwan. *Blood* **79**, 2135-40 (1992).
- (112) Hirono, A., Kawate, K., Honda, A., Fujii, H. & Miwa, S. A single mutation 202G>A in the human glucose-6-phosphate dehydrogenase gene (G6PD) can cause acute hemolysis by itself. *Blood* **99**, 1498 (2002).
- (113) Chen, H.L., Huang, M.J., Huang, C.S. & Tang, T.K. G6PD NanKang (517 T-->C; 173 Phe-->Leu): a new Chinese G6PD variant associated with neonatal jaundice. *Human heredity* **46**, 201-4 (1996).
- (114) Ainoon, O., Boo, N.Y., Yu, Y.H., Cheong, S.K., Hamidah, H.N. & Lim, J.H. Complete molecular characterisation of glucose-6-phosphate dehydrogenase (G6PD) deficiency in a group of Malaysian Chinese neonates. *The Malaysian journal of pathology* **26**, 89-98 (2004).

- (115) Chen, H.L., Huang, M.J., Huang, C.S. & Tang, T.K. Two novel glucose 6-phosphate dehydrogenase deficiency mutations and association of such mutations with F8C/G6PD haplotype in Chinese. *Journal of the Formosan Medical Association = Taiwan yi zhi* **96**, 948-54 (1997).
- (116) Corcoran, C.M. *et al.* Molecular heterogeneity underlying the G6PD Mediterranean phenotype. *Human genetics* **88**, 688-90 (1992).
- (117) Chiu, D.T. *et al.* Molecular characterization of glucose-6-phosphate dehydrogenase (G6PD) deficiency in patients of Chinese descent and identification of new base substitutions in the human G6PD gene. *Blood* **81**, 2150-4 (1993).
- (118) Chalvam, R., Kedar, P.S., Colah, R.B., Ghosh, K. & Mukherjee, M.B. A novel R198H mutation in the glucose-6-phosphate dehydrogenase gene in the tribal groups of the Nilgiris in Southern India. *Journal of human genetics* **53**, 181-4 (2008).
- (119) Cai, W. *et al.* [Molecular characterization of glucose-6-phosphate dehydrogenase deficiency in the Han and Li nationalities in Hainan, China and identification of a new mutation in human G6PD gene]. *Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics* **18**, 105-9 (2001).
- (120) Beutler, E., Westwood, B., Kuhl, W. & Hsia, Y.E. Glucose-6-phosphate dehydrogenase variants in Hawaii. *Human heredity* **42**, 327-9 (1992).
- (121) Cappellini, M.D., Martinez di Montemuros, F., Dotti, C., Tavazzi, D. & Fiorelli, G. Molecular characterisation of the glucose-6-phosphate dehydrogenase (G6PD) Ferrara II variant. *Human genetics* **95**, 440-2 (1995).
- (122) Poon, M.C., Hall, K., Scott, C.W. & Prchal, J.T. G6PD Viangchan: a new glucose 6-phosphate dehydrogenase variant from Laos. *Human genetics* **78**, 98-9 (1988).
- (123) Galanello, R., Loi, D., Sollaino, C., Dessi, S., Cao, A. & Melis, M.A. A new glucose 6 phosphate dehydrogenase variant G6PD Sinnai (34 G-->T). Mutations in brief no. 156. Online. *Human mutation* **12**, 72-3 (1998).
- (124) Minucci, A. *et al.* Description of a novel missense mutation of glucose-6-phosphate dehydrogenase gene associated with asymptomatic high enzyme deficiency. *Clinical biochemistry* **40**, 856-8 (2007).
- (125) Kaeda, J.S. *et al.* A new glucose-6-phosphate dehydrogenase variant, G6PD Orissa (44 Ala-->Gly), is the major polymorphic variant in tribal populations in India. *Am J Hum Genet* **57**, 1335-41 (1995).
- (126) Minucci, A., Antenucci, M., Giardina, B., Zuppi, C. & Capoluongo, E. G6PD Murcia, G6PD Ube and G6PD Orissa: report of three G6PD mutations unusual for Italian population. *Clinical biochemistry* **43**, 1180-1 (2010).
- (127) Alfinito, F. *et al.* Molecular characterization of G6PD deficiency in Southern Italy: heterogeneity, correlation genotype-phenotype and description of a new variant (G6PD Neapolis). *British journal of haematology* **98**, 41-6 (1997).
- (128) Nafa, K. *et al.* G6PD Aures: a new mutation (48 Ile-->Thr) causing mild G6PD deficiency is associated with favism. *Human molecular genetics* **2**, 81-2 (1993).

- (129) Daoud, B.B., Mosbehi, I., Prehu, C., Chaouachi, D., Hafsia, R. & Abbes, S. Molecular characterization of erythrocyte glucose-6-phosphate dehydrogenase deficiency in Tunisia. *Pathologie-biologie* **56**, 260-7 (2008).
- (130) Barisic, M. *et al.* Characterization of G6PD deficiency in southern Croatia: description of a new variant, G6PD Split. *Journal of human genetics* **50**, 547-9 (2005).
- (131) Drousiotou, A. *et al.* Molecular characterization of G6PD deficiency in Cyprus. *Blood Cells Mol Dis* **33**, 25-30 (2004).
- (132) Calabro, V. *et al.* Genetic heterogeneity at the glucose-6-phosphate dehydrogenase locus in southern Italy: a study on a population from the Matera district. *Human genetics* **86**, 49-53 (1990).
- (133) Nakatsuji, T. & Miwa, S. Incidence and characteristics of glucose-6-phosphate dehydrogenase variants in Japan. *Human genetics* **51**, 297-305 (1979).
- (134) Ninfali, P. *et al.* Molecular analysis of G6PD variants in northern Italy: a study on the population from the Ferrara district. *Human genetics* **92**, 139-42 (1993).
- (135) Jiang, W. *et al.* Structure and function of glucose-6-phosphate dehydrogenase-deficient variants in Chinese population. *Human genetics* **119**, 463-78 (2006).
- (136) Kotea, R. *et al.* Three major G6PD-deficient polymorphic variants identified among the Mauritian population. *British journal of haematology* **104**, 849-54 (1999).
- (137) Weimer, T.A., Salzano, F.M., Westwood, B. & Beutler, E. G6PD variants in three South American ethnic groups: population distribution and description of two new mutations. *Human heredity* **48**, 92-6 (1998).
- (138) Usanga, E.A., Bienzle, U., Cancedda, R., Fasuan, F.A., Ajayi, O. & Luzzatto, L. Genetic variants of human erythrocyte glucose 6-phosphate dehydrogenase: new variants in West Africa characterized by column chromatography. *Annals of human genetics* **40**, 279-86 (1977).
- (139) Vulliamy, T.J., Wanachiwanawin, W., Mason, P.J. & Luzzatto, L. G6PD mahidol, a common deficient variant in South East Asia is caused by a (163)glycine----serine mutation. *Nucleic acids research* **17**, 5868 (1989).
- (140) Vulliamy, T., Rovira, A., Yusoff, N., Colomer, D., Luzzatto, L. & Vives-Corrons, J.L. Independent origin of single and double mutations in the human glucose 6-phosphate dehydrogenase gene. *Human mutation* **8**, 311-8 (1996).
- (141) Kirkman, H.N., Simon, E.R. & Pickard, B.M. Seattle variant of glucose-6-phosphate dehydrogenase. *The Journal of laboratory and clinical medicine* **66**, 834-40 (1965).
- (142) Cappellini, M.D. *et al.* Biochemical and molecular characterization of a new sporadic glucose-6-phosphate dehydrogenase variant described in Italy: G6PD Modena. *British journal of haematology* **87**, 209-11 (1994).
- (143) Kawamoto, F. *et al.* Further investigations of glucose-6-phosphate dehydrogenase variants in Flores Island, eastern Indonesia. *Journal of human genetics* **51**, 952-7 (2006).

- (144) Viglietto, G. *et al.* Common glucose-6-phosphate dehydrogenase (G6PD) variants from the Italian population: biochemical and molecular characterization. *Annals of human genetics* **54**, 1-15 (1990).
- (145) Ahluwalia, A. *et al.* G6PD Kalyan and G6PD Kerala; two deficient variants in India caused by the same 317 Glu-->Lys mutation. *Human molecular genetics* **1**, 209-10 (1992).
- (146) Sukumar, S., Mukherjee, M.B., Colah, R.B. & Mohanty, D. Two distinct Indian G6PD variants G6PD Jamnagar and G6PD Rohini caused by the same 949 G-->A mutation. *Blood Cells Mol Dis* **35**, 193-5 (2005).
- (147) Takizawa, T., Yoneyama, Y., Miwa, S. & Yoshida, A. A single nucleotide base transition is the basis of the common human glucose-6-phosphate dehydrogenase variant A (+). *Genomics* **1**, 228-31 (1987).
- (148) Weimer, T.A., Salzano, F.M., Westwood, B. & Beutler, E. Molecular characterization of glucose-6-phosphate dehydrogenase variants from Brazil. *Human biology* **65**, 41-7 (1993).
- (149) Sukumar, S., Mukherjee, M.B., Colah, R.B. & Mohanty, D. Molecular characterization of G6PD Insuli--a novel 989 CGC --> CAC (330 Arg --> His) mutation in the Indian population. *Blood Cells Mol Dis* **30**, 246-7 (2003).
- (150) Dern, R.J., McCurdy, P.R. & Yoshida, A. A new structural variant of glucose-6-phosphate dehydrogenase with a high production rate (G6PD Hektoen). *The Journal of laboratory and clinical medicine* **73**, 283-90 (1969).
- (151) Yoshida, A. Amino acid substitution (histidine to tyrosine) in a glucose-6-phosphate dehydrogenase variant (G6PD Hektoen) associated with overproduction. *Journal of molecular biology* **52**, 483-90 (1970).
- (152) Ren, X., He, Y., Du, C., Jiang, W., Chen, L. & Lin, Q. A novel mis-sense mutation (G1381A) in the G6PD gene identified in a Chinese man. *Chinese medical journal* **114**, 399-401 (2001).
- (153) Hamada, M., Shirakawa, T., Poh-San, L., Nishiyama, K., Uga, S. & Matsuo, M. Two new variants of G6PD deficiencies in Singapore. *Nepal Medical College journal:* NMCJ 12, 137-41 (2010).
- (154) Sarkar, S., Biswas, N.K., Dey, B., Mukhopadhyay, D. & Majumder, P.P. A large, systematic molecular-genetic study of G6PD in Indian populations identifies a new non-synonymous variant and supports recent positive selection. *Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases* **10**, 1228-36 (2010).
- (155) Hung, N.M. *et al.* Glucose-6-phosphate dehydrogenase (G6PD) variants in East Sepik Province of Papua New Guinea: G6PD Jammu, G6PD Vanua Lava, and a novel variant (G6PD Dagua). *Trop Med Health* **4**, 163-9 (2008).
- (156) Bulliamy, T., Luzzatto, L., Hirono, A. & Beutler, E. Hematologically important mutations: glucose-6-phosphate dehydrogenase. *Blood Cells Mol Dis* **23**, 302-13 (1997).
- (157) Jalloh, A. *et al.* G6PD deficiency assessment in Freetown, Sierra Leone, reveals further insight into the molecular heterogeneity of G6PD A. *Journal of human genetics* **53**, 675-9 (2008).

- (158) Beutler, E. & Kuhl, W. The NT 1311 polymorphism of G6PD: G6PD Mediterranean mutation may have originated independently in Europe and Asia. *Am J Hum Genet* **47**, 1008-12 (1990).
- (159) Mazieres, S. *et al.* Subtle adjustments of the glucose-6-phosphate dehydrogenase (G6PD) mutation database and reference sequence. *Blood Cells Mol Dis*, (2013).
- (160) Manco, L., Botigue, L.R., Ribeiro, M.L. & Abade, A. G6PD deficient alleles and haplotype analysis of human G6PD locus in Sao Tome e Principe (West Africa). *Human biology* **79**, 679-86 (2007).
- (161) Modiano, D. *et al.* The lower susceptibility to Plasmodium falciparum malaria of Fulani of Burkina Faso (west Africa) is associated with low frequencies of classic malaria-resistance genes. *Transactions of the Royal Society of Tropical Medicine and Hygiene* **95**, 149-52 (2001).
- (162) Badens, C. *et al.* Molecular basis of haemoglobinopathies and G6PD deficiency in the Comorian population. *The hematology journal : the official journal of the European Haematology Association / EHA* **1**, 264-8 (2000).
- (163) Migot-Nabias, F. *et al.* Human genetic factors related to susceptibility to mild malaria in Gabon. *Genes and immunity* **1**, 435-41 (2000).
- (164) Mombo, L.E. *et al.* Human genetic polymorphisms and asymptomatic Plasmodium falciparum malaria in Gabonese schoolchildren. *The American journal of tropical medicine and hygiene* **68**, 186-90 (2003).
- (165) May, J. *et al.* Red cell glucose-6-phosphate dehydrogenase status and pyruvate kinase activity in a Nigerian population. *Trop Med Int Health* **5**, 119-23 (2000).
- (166) Coulibaly, F.H. *et al.* Molecular genetics of glucose-6-phosphate dehydrogenase deficiency in a population of newborns from Ivory Coast. *Clinical biochemistry* **33**, 411-3 (2000).
- (167) De Araujo, C., Migot-Nabias, F., Guitard, J., Pelleau, S., Vulliamy, T. & Ducrocq, R. The role of the G6PD AEth376G/968C allele in glucose-6-phosphate dehydrogenase deficiency in the seerer population of Senegal. *Haematologica* **91**, 262-3 (2006).
- (168) Murhekar, K.M. *et al.* Red cell genetic abnormalities, beta-globin gene haplotypes, and APOB polymorphism in the Great Andamanese, a primitive Negrito tribe of Andaman and Nicobar Islands, India. *Human biology* **73**, 739-44 (2001).
- (169) Than, A.M., Harano, T., Harano, K., Myint, A.A., Ogino, T. & Okadaa, S. High incidence of 3-thalassemia, hemoglobin E, and glucose-6-phosphate dehydrogenase deficiency in populations of malaria-endemic southern Shan State, Myanmar. *International journal of hematology* **82**, 119-23 (2005).
- (170) Samilchuk, E., D'Souza, B. & Al-Awadi, S. Population study of common glucose-6-phosphate dehydrogenase mutations in Kuwait. *Human heredity* **49**, 41-4 (1999).
- (171) Alfadhli, S., Kaaba, S., Elshafey, A., Salim, M., AlAwadi, A. & Bastaki, L. Molecular characterization of glucose-6-phosphate dehydrogenase gene defect in the Kuwaiti population. *Archives of pathology & laboratory medicine* **129**, 1144-7 (2005).

- (172) Karadsheh, N.S., Moses, L., Ismail, S.I., Devaney, J.M. & Hoffman, E. Molecular heterogeneity of glucose-6-phosphate dehydrogenase deficiency in Jordan. *Haematologica* **90**, 1693-4 (2005).
- (173) Ducros, J., Saingra, S., Rampal, M., Coulange, C., Barbe, M.C. & Verzetti, G. Hemolytic anemia due to G6PD deficiency and urate oxidase in a kidney-transplant patient. *Clin Nephrol* **35**, 89-90 (1991).
- (174) Pui, C.H. *et al.* Urate oxidase in prevention and treatment of hyperuricemia associated with lymphoid malignancies. *Leukemia* **11**, 1813-6 (1997).
- (175) Bosly, A. *et al.* Rasburicase (recombinant urate oxidase) for the management of hyperuricemia in patients with cancer: report of an international compassionate use study. *Cancer* **98**, 1048-54 (2003).
- (176) Browning, L.A. & Kruse, J.A. Hemolysis and methemoglobinemia secondary to rasburicase administration. *Ann Pharmacother* **39**, 1932-5 (2005).
- (177) Borinstein, S.C., Xu, M. & Hawkins, D.S. Methemoglobinemia and hemolytic anemia caused by rasburicase administration in a newly diagnosed child with Burkitt lymphoma/leukemia. *Pediatric blood & cancer* **50**, 189 (2008).
- (178) Bhat, P., Sisler, I. & Collier, A.B., 3rd. Exchange transfusion as treatment for rasburicase induced methemoglobinemia in a glucose-6-phosphate dehydrogenase deficient patient. *Pediatric blood & cancer* **51**, 568 (2008).
- (179) Vadhan-Raj, S. *et al.* A randomized trial of a single-dose rasburicase versus five-daily doses in patients at risk for tumor lysis syndrome. *Ann Oncol*, (2011).
- (180) Sonbol, M.B., Yadav, H., Vaidya, R., Rana, V. & Witzig, T.E. Methemoglobinemia and hemolysis in a patient with G6PD deficiency treated with rasburicase. *American journal of hematology*, (2012).
- (181) Zaramella, P. *et al.* Lethal effect of a single dose of rasburicase in a preterm newborn infant. *Pediatrics* **131**, e309-12 (2013).
- (182) Cheah, C.Y., Lew, T.E., Seymour, J.F. & Burbury, K. Rasburicase Causing Severe Oxidative Hemolysis and Methemoglobinemia in a Patient with Previously Unrecognized Glucose-6-Phosphate Dehydrogenase Deficiency. *Acta haematologica* **130**, 254-9 (2013).
- (183) Bain, B.J. A ghostly presence-G6PD deficiency. *American journal of hematology* **85**, 271 (2010).
- (184) Joly, P., Bon, C., Francina, A., Gelineau, M.C., Lacan, P. & Orfeuvre, H. [A severe G6PD deficiency revealed during a chemotherapy protocol including rasburicase]. *Annales de biologie clinique* **67**, 432-6 (2009).
- (185) Ng, J.S., Edwards, E.M. & Egelund, T.A. Methemoglobinemia induced by rasburicase in a pediatric patient: A case report and literature review. *J Oncol Pharm Pract*, (2011).
- (186) Patte, C. *et al.* Urate-oxidase in the prevention and treatment of metabolic complications in patients with B-cell lymphoma and leukemia, treated in the Societe Francaise d'Oncologie Pediatrique LMB89 protocol. *Ann Oncol* **13**, 789-95 (2002).
- (187) Kizer, N., Martinez, E. & Powell, M. Report of two cases of rasburicase-induced methemoglobinemia. *Leuk Lymphoma* **47**, 2648-50 (2006).

- (188) Goldman, S.C. *et al.* A randomized comparison between rasburicase and allopurinol in children with lymphoma or leukemia at high risk for tumor lysis. *Blood* **97**, 2998-3003 (2001).
- (189) Bauters, T., Mondelaers, V., Robays, H., De Wilde, H., Benoit, Y. & De Moerloose, B. Methemoglobinemia and hemolytic anemia after rasburicase administration in a child with leukemia. *Int J Clin Pharm* 33, 58-60 (2011).
- (190) Bauters, T., Mondelaers, V., Robays, H., De Wilde, H., Benoit, Y. & De Moerloose, B. Methemoglobinemia and hemolytic anemia after rasburicase administration in a child with leukemia. *Pharmacy world & science : PWS*, (2010).