INTRODUCTION TO PROBABILITY AND STATISTICS FOURTEENTH EDITION

5.1 DISCRETE RVS AND THEIR PROBABILITY DISTRIBUTIONS

KEY IDEAS

- Random variable
- Discrete random variables
- Probability distribution
- The calculation of mean, variance, standard deviation.

PROBABILITY DISTRIBUTIONS

- Chapters 1 and 2: Relative frequency
- Chapter 4: Probabilty
- Chatper 5 ad 6: Discrete and Continuous Random Variables

We define the probability distribution for a random variable *X* as the relative frequency distribution constructed for the entire population of measurements.

RANDOM VARIABLES

- A **variable** *X* is a **random variable** if the value that it assumes, corresponding to the outcome of an experiment, is a chance or random event.
- It can be discrete and continuous.

Examples

- *X*: Number of defects on a randomly selected piece of furniture
- *X*: SAT score for a randomly selected college applicant
- *X*: Number of telephone calls received by a crisis interventi on hotline during a randomly selected time period

PROBABILITY DISTRIBUTIONS FOR DISCRETE RANDOM VARIABLES

- The probability distribution for a discrete random variable x resembles the relative frequency distributions we constructed in Chapter 1.
- It is a graph, table or formula that gives the possible values of x and the probability p(x) associated with each value.

$$0 \le p(x) \le 1$$
 and $\sum p(x) = 1$

Here, p(x) is called the frequency function or the probability mass function (pmf).

EXAMPLE 5.1

• Toss two fair coins and let *X* equal the number of heads observed. Find the probability distribution for *X*.

■ Table 5.1 Simple Events and Probabilities in Tossing Two Coins

Coin 1	Coin 2	D(E)	V
Coin i	Coin 2	P(E _i)	X
Н	Н	1/4	2
Н	Т	1/4	1
Т	Н	1/4	1
Т	Т	1/4	0
		H H H T	H H 1/4 H T 1/4 T H 1/4

■ Table 5.2 Probability Distribution for x (x = Number of Heads)

X	Simple Events in <i>x</i>	p(x)
0	E ₄	1/4
1	E_2, E_3	1/2
2	E_1	1/4
	Σ p(x)=1

• Toss a fair coin three times and define x = number of heads.

ннн		<u>X</u>
	1/8	3
ННТ	1/8	2
HTH		_
THH	1/8	2
11111	1/8	2
HTT	1/8	1
THT	1/8	1
TTH	1/8	1

1/8

P(x = 0) =	1/8
P(x = 1) =	3/8
P(x = 2) =	3/8
P(x = 3) =	1/8

X	p(x)
0	1/8
1	3/8
2	3/8
3	1/8

PROBABILITY DISTRIBUTIONS

- Probability distributions can be used to describe the population, just as we described samples in Chapter 1.
 - Shape: Symmetric, skewed, mound-shaped...
 - Outliers: unusual or unlikely measurements
 - **Center and spread:** mean and standard deviation. A population mean is called μ and a population standard deviation is called σ.

• The probability distribution for *x* the number of heads in tossing 3 fair coins.

- Shape?
- Outliers?
- Center?
- Spread?

Symmetric; mound-shaped

None

$$\mu = 1.5$$

 $\sigma = .688$

THE MEAN AND STANDARD DEVIATION

- Let X be a discrete random variable with probability distribution p(x).
- \circ The mean or expected value of *X* is

$$\mu = \mathrm{E}[X] = \sum x p(x)$$

 \circ The variance of *X* is

$$\sigma^2 = E[(X - \mu)^2] = \sum_{i=1}^{n} (x - \mu)^2 p(x)$$

• The standard deviation of *X* is

$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum (x - \mu)^2 p(x)}$$

X	p(x)	xp(x)	$(x-\mu)^2 p(x)$
0	1/8	0	$(-1.5)^2(1/8)$
1	3/8	3/8	$(-0.5)^2(3/8)$
2	3/8	6/8	$(0.5)^2(3/8)$
3	1/8	3/8	(1.5)2(1/8)

$$\mu = \sum xp(x) = \frac{12}{8} = 1.5$$

$$\sigma^2 = \sum (x - \mu)^2 p(x)$$

$$\sigma^2 = .28125 + .09375 + .09375 + .28125 = .75$$

$$\sigma = \sqrt{.75} = .688$$

FIND μ AND σ OF EXAMPLE 5.1

$$\mu = 0 \times 1/4 + 1 \times 1/2 + 2 \times 1/4 = 1$$

$$\sigma^2 = (0-1)^2 \times 1/4 + (1-1)^2 \times 1/4 + (2-1)^2 \times 1/4 = 1/2$$

$$\sigma = \sqrt{1/2} = 0.71$$

X	0	1	2
p(x)	1/4	1/2	1/4

DISCRETE RVS

- Discrete random variables take on only a finite or countably infinite number of values.
- Three discrete probability distributions serve as models for a large number of practical applications:

```
√Ch 5.2: The binomial random variable
```

√Ch 5.3: The Poisson random variable

√Ch 5.4: The hypergeometric random

variable

5.2 BINOMIAL DISTRIBUTION

THE BERNOULLI TRAIL

- Each trial results in **one of two outcomes**, success (S) or failure (F).
- The probability of success on a single trial is p and **remains constant** from trial to trial. The probability of failure is q = 1 p.
- Bernoulli random variable defines X as 1 for a success and 0 for a failure in a Bernoulli trial, denoted as $X \sim Bernoulli(p)$. Its probability distribution is

$$p(1) = p, \quad p(0) = 1 - p.$$

Or, $p(x) = p^{x}(1-p)^{1-x}$, for x = 0,1.

1655-1705, Swiss Mathematician

THE BINOMIAL RANDOM VARIABLE

The coin-tossing experiment is a simple example of a binomial random variable.
 Toss a fair coin n = 3 times and

record x = number of heads.

X	p(x)	
0	1/8	
1	3/8	
2	3/8	
3	1/8	1

THE BINOMIAL RANDOM VARIABLE

• Many situations in real life resemble the coin toss, but the coin is not necessarily fair, so that $P(H) \neq 1/2$.

• **Example:** A geneticist samples 10 people and counts the number who have a gene linked to Alzheimer's disease.

• Coin: Person • Number of n = 10

• Head: Has gene tosses:

• Tail: Doesn't have gene

P(has gene) = proportion in the population who hate the gene.

THE BINOMIAL EXPERIMENT

- 1. The experiment consists of *n* identical Bernoulli trials.
- Each trial results in **one of two outcomes**, success (S) or failure (F).
- The probability of success on a single trial is p and **remains constant** from trial to trial. The probability of failure is q = 1 p.
- 4. The trials are **independent**.
- We are interested in X, the number of successes in n trials.

BINOMIAL OR NOT?

 Very few real life applications satisfy these requirements exactly.

- Select two people from the U.S. population, and suppose that 15% of the population has the Alzheimer's gene.
 - For the first person, p = P(gene) = .15
 - For the second person, p ≈ P(gene) =
 .15, even though one person has been removed from the population.

21

THE BINOMIAL PROBABILITY DISTRIBUTION

• For a binomial experiment with *n* trials and probability *p* of success on a given trial, the probability of *k* successes in *n* trials is

$$P(x = k) = C_k^n p^k q^{n-k} = \frac{n!}{k!(n-k)!} p^k q^{n-k} \text{ for } k = 0,1,2,...n.$$

Recall
$$C_k^n = \frac{n!}{k!(n-k)!}$$

with
$$n! = n(n-1)(n-2)...(2)1$$
 and $0! = 1$.

THE MEAN AND STANDARD DEVIATION

• For a binomial experiment with *n* trials and probability *p* of success on a given trial, the measures of center and spread are:

Mean: $\mu = np$

Variance: $\sigma^2 = npq$

Standarddeviation: $\sigma = \sqrt{npq}$

Fig 5.3 Binomial Probability Distributions

A marksman hits a target 80% of the time. He fires five shots at the target. What is the probability that exactly 3 shots hit the target?

 $X\sim$ Binomial(n=5, p =0.8)

$$n = 5$$
 success = hit $p = .8$ $x = # of hits$

$$P(x=3) = C_3^5 p^3 q^{5-3} = \frac{5!}{3!2!} (.8)^3 (.2)^{5-3}$$

$$=10(.8)^3(.2)^2=.2048$$

What is the probability that more than 3 shots hit the target?

$$P(x > 3) = C_4^5 p^4 q^{5-4} + C_5^5 p^5 q^{5-5}$$

$$= \frac{5!}{4!1!} (.8)^4 (.2)^1 + \frac{5!}{5!0!} (.8)^5 (.2)^0$$

$$= 5(.8)^4 (.2) + (.8)^5 = .7373$$

CUMULATIVE PROBABILITY TABLES

You can use the **cumulative probability tables** to find probabilities for selected binomial distributions.

√ Find the table for the correct value of n.

✓ Find the column for the correct value of p.

✓The row marked "k" gives the cumulative probability, $P(x \le k) = P(x = 0) + ... + P(x = k)$

■ Table 1 Cumulative Binomial Probabilities

Tabulated values are $P(x \le k) = p(0) + p(1) + \cdots + p(k)$.

(Computations are rounded to the third decimal place.)

n = 2

n = 3

p														
k	.01	.05	.10	.20	.30	.40	.50	.60	.70	.80	.90	.95	.99	k
0	.980	.902	.810	.640	.490	.360	.250	.160	.090	.040	.010	.002	.000	0
1	1.000	.998	.990	.960	.910	.840	.750	.640	.510	.360	.190	.098	.020	1
2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	2

							p							_
k	.01	.05	.10	.20	.30	.40	.50	.60	.70	.80	.90	.95	.99	k
0	.970	.857	.729	.512	.343	.216	.125	.064	.027	.008	.001	.000	.000	0
1	1.000	.993	.972	.896	.784	.648	.500	.352	.216	.104	.028	.007	.000	1
2	1.000	1.000	.999	.992	.973	.936	.875	.784	.657	.488	.271	.143	.030	2
3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	3

k	p = .80
0	.000
1	.007
2	.058
3	.263
4	.672
5	1 ΩΩΩ

What is the probability that exactly 3 shots hit the target?

$$P(x = 3) = P(x \le 3) - P(x \le 2)$$

$$= .263 - .058$$

Check from formula: P(x = 3) = .2048

							P				1			
k	.01	.05	.10	.20	.30	.40	.50	.60	.70	.80	.90	.95	.99	k
0	.951	.774	.590	.328	.168	.078	.031	.010	.002	.000	000	.000	.000	0
1	.999	.977	.919	.737	.528	.337	.188	.087	.031	.007	.000	.000	.000	1
2	1.000	.999	.991	.942	.837	.683	.500	.317	.163	.058	.009	.001	.000	2
3	1.000	1.000	1.000	.993	.969	.913	.812	.663	.472	.263	.081	.023	.001	3
4	1.000	1.000	1.000	1.000	.998	.990	.969	.922	.832	.672	.410	.226	.049	4
5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	5

k	p = .80
0	.000
1	.007
2	.058
3	.263
4	.672
5	1.000

What is the probability that more than 3 shots hit the target?

$$P(x > 3) = 1 - P(x \le 3)$$

= 1 - .263 = .737

Check from formula: P(x > 3) = .7373

EXAMPLE Link to Hypothesis Testing!

• Here is the probability distribution for x = numberof hits. What are the mean and standard deviation for *x*?

Mean:
$$\mu = np = 5(.8) = 4$$

Standarddeviation: $\sigma = \sqrt{npq}$

$$= \sqrt{5(.8)(.2)} = .89$$

Link to Hypothesis Testing!

• Would it be unusual to find that none of the shots hit the target?

The value:

$$P(x = 0) = 0.2^5 = 0.0$$
,
This is very unusual.

EXAMPLE Link to Hypothesis Testing!

• Would it be unusual to find that none of the shots hit the target?

$$\mu = 4; \sigma = .89$$

• The value x = 0 lies

$$z = \frac{x - \mu}{\sigma} = \frac{0 - 4}{.89} = -4.49$$

 more than 4 standard deviations below the mean. Very unusual.

5.3 Poisson distribution (Skipped)

THE POISSON RANDOM VARIABLE

• The Poisson random variable *x* is a model for data that represent the number of occurrences of a specified event in a given unit of time or space.

Examples:

- The number of calls received by a switchboard during a given period of time.
- The number of machine breakdowns in a day
- The number of traffic accidents at a given intersection during a given time period.

THE POISSON PROBABILITY DISTRIBUTION

 \circ x is the number of events that occur in a period of time or space during which an average of μ such events can be expected to occur. The probability of k occurrences of this event is

X~Poisson(μ)

$$P(x = k) = e^{-\mu} \frac{\mu^k}{k!}$$

For values of k = 0, 1, 2, ... The mean and standard deviation of the Poisson random variable are

Mean: μ

Standard deviation: $\sigma = \sqrt{\mu}$

The average number of traffic accidents on a certain section of highway is two per week. Find the probability of exactly one accident during a one-week period.

Let X denote the number of accident on a certain section of highway per week: $X \sim Poisson(\mu = 2)$.

$$P(x=1) = e^{-\mu} \frac{\mu^k}{k!} = e^{-2} \frac{2^1}{1!} = e^{-2} 2 = .2707$$

CUMULATIVE PROBABILITY TABLES

You can use the **cumulative probability tables** to find probabilities for selected Poisson distributions.

√Find the column for the correct value of μ .

✓The row marked "k" gives the cumulative probability, $P(x \le k) = P(x = 0) + ... + P(x = k)$

k	$\mu = 2$
0	.135
1	.406
2	.677
3	.857
4	.947
5	.983
6	.995
7	.999
8	1.000

What is the probability that there is exactly 1 accident?

k	$\mu = 2$
0	.135
1	.406
2	.677
3	.857
4	.947
5	.983
6	.995
7	.999
8	1.000

What is the probability that 8 or more accidents happen?

$$P(x \ge 8) = 1 - P(x < 8)$$

= 1 - P(x \le 7)
= 1 - .999 = .001

This would be very unusual (small probability) since x = 8 lies

$$z = \frac{x - \mu}{\sqrt{\mu}} = \frac{8 - 2}{1.414} = 4.24$$

standard deviations above the mean.

40

5.4 HYPERGEOMETRIC DISTRIBUTION

(skipped)

41

THE HYPERGEOMETRIC PROBABILITY DISTRIBUTION

- The "M&M® problems" from Chapter 4 are modeled by the **hypergeometric distribution**.
- A bowl contains M red candies and N-M blue candies. Select *n* candies from the bowl and record *x* the number of red candies selected. Define a "red M&M®" to be a "success".

The probability of exactly *k* successes in *n* trials is

$$P(x=k) = \frac{C_k^M C_{n-k}^{M-N}}{C_n^N}$$

THE MEAN AND VARIANCE

The mean and variance of the hypergeometric random variable *x* resemble the mean and variance of the

Mean:
$$\mu = n \left(\frac{M}{N} \right)$$

Variance: $\sigma^2 = n \left(\frac{M}{N} \right) \left(\frac{N-M}{N} \right) \left(\frac{N-n}{N-1} \right)$

A package of 8 AA batteries contains 2 batteries that are defective. A student randomly selects four batteries and replaces the batteries in his calculator. What is the probability that all four batteries work?

$$N = 8$$

$$M = 6$$

$$n = 4$$

$$P(x=4) = \frac{C_4^6 C_0^2}{C_4^8}$$

$$= \frac{6(5)/2(1)}{8(7)(6)(5)/4(3)(2)(1)} = \frac{15}{70}$$

What are the mean and variance for the number of batteries that work?

$$\mu = n\left(\frac{M}{N}\right) = 4\left(\frac{6}{8}\right) = 3$$

$$\sigma^2 = n \left(\frac{M}{N} \right) \left(\frac{N - M}{N} \right) \left(\frac{N - n}{N - 1} \right)$$

$$=4\left(\frac{6}{8}\right)\left(\frac{2}{8}\right)\left(\frac{4}{7}\right)=.4286$$

45

SUMMARY

KEY CONCEPTS

I. The Binomial Random Variable

- 1. Five characteristics: n identical independent trials, each resulting in either success S or failure F; probability of success is p and remains constant from trial to trial; and x is the number of successes in n trials.
- 2. Calculating binomial probabilities
 - a. Formula: $P(x = k) = C_k^n p^k q^{n-k}$
 - b. Cumulative binomial tables
- c. Individual and cumulative probabilities using Minitab
- 3. Mean of the binomial random variable: $\mu = np$
- 4. Variance and standard deviation: $\sigma^2 = npq$ and

KEY CONCEPTS

II. The Poisson Random Variable

- 1. The number of events that occur in a period of time or space, during which an average of μ such events are expected to occur
- 2. Calculating Poisson probabilities
 - a. Formula:
 - b. Cumulative Poisson tables

$$P(x=k) = \frac{\mu^k e^{-\mu}}{k!}$$

- c. Individual and cumulative probabilities using Minitab
- 3. Mean of the Poisson random variable: $E(x) = \mu$
- 4. Variance and standard deviation: $\sigma^2 = \mu$ and

$$\sigma = \sqrt{\mu}$$

5. Binomial probabilities can be approximated with Poisson probabilities when np < 7, using $\mu = np$.

KEY CONCEPTS

III. The Hypergeometric Random Variable

- 1. The number of successes in a sample of size n from a finite population containing M successes and N-M failures
- 2. Formula for the probability of k successes in n trials:

$$P(x = k) = \frac{C_k^M C_{n-k}^{M-N}}{C_n^N}$$

3. Mean of the hypergeometric random variable:

4. Variance and standard deviation:

$$\mu = n \left(\frac{M}{N} \right)$$

$$\sigma^{2} = n \left(\frac{M}{N}\right) \left(\frac{N-M}{N}\right) \left(\frac{N-n}{N-1}\right)$$