Aula 2

Geometria Euclidiana

Axiomas sobre Medição de Segmentos

19 de março de 2018

Igor Oliveira

igoroliveira@imd.ufrn.br

Instituto Metrópole Digital Universidade Federal do Rio Grande do Norte Natal-RN

Índice

Axioma III₁

Axioma III₂

Axioma III₃

Relação de ordem

Ponto médio

Distância

Círculo

Exercícios

Bibliografia

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₁

Axioma III₂
Axioma III₃

Relação de ordem

Ponto médio

Distância

Círculo

Exercícios

Axioma III₁

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₁

A todo par de pontos do plano corresponde um número maior ou igual a zero. Este número é zero se e somente se os pontos são coincidentes.

O número a que se refere este axioma é chamado de <u>distância</u> entre os pontos ou é referido como o comprimento do segmento determinado pelos dois pontos. A unidade de medida utilizada está implícita no enunciado do axioma e será fixada de agora em diante ao longo do texto.

Axioma III₁

Axioma III₂
Axioma III₃

Relação de ordem

Ponto médio

Distância Círculo

Exercícios

Axioma III2

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₁

Axioma III₂

Axioma III₃

Relação de ordem

Ponto médio

Distância Círculo

Exercícios

Bibliografia

Axioma III2

Os pontos de uma reta podem ser sempre colocados em correspondência biunívoca com os números reais, de modo que a diferença entre estes números meça a distância entre os pontos correspondentes.

Ao aplicarmos este axioma, o número que corresponde a um ponto da reta é denominado <u>coordenada</u> daquele ponto. Se a e b são as coordenadas dos pontos A e B, respectivamente, denotamos o comprimento do segmento AB por \overline{AB} e calculamos

$$\overline{AB} = |b - a|$$
.

Axioma III₃

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₁
Axioma III₂

4 Axioma III₃

Relação de ordem

Ponto médio

Distância Círculo

- ..

Exercícios

Bibliografia

Axioma III₃

Se o ponto C encontra-se entre A e B, então,

$$\overline{AC} + \overline{CB} = \overline{AB}.$$

Relação de ordem dos pontos da reta

Mediante os axiomas de medição e os de ordem, relacionaremos a ordenação dos pontos de uma reta com a ordenação dos números reais.

Proposição 2.1

Se, em uma semi-reta S_{AB} , considerarmos um segmento AC com $\overline{AC} < \overline{AB}$, então o ponto C estará entre A e B.

Teorema 2.2

Sejam A, B e C pontos distintos de uma mesma reta cujas coordenadas são, respectivamente, a, b e c. O ponto C está entre A e B se, e somente se, o número c está entre a e b (a < c < b ou b < c < a).

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₂
Axioma III₂

Relação de ordem

Ponto médio

Distância Círculo

Exercícios

Ponto médio

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₁

Axioma III₂

Axioma III₃

Relação de ordem

Ponto médio

Distância

Círculo

Exercícios

Bibliografia

Definição 2.3

Chamamos de ponto médio do segmento AB a um ponto C, deste segmento, tal que $\overline{AC} = \overline{CB}$.

Teorema 2.4

Um segmento tem exatamente um ponto médio.

Distância

Observação

A noção de <u>distância</u> é uma das noções mais básicas da geometria. Ela satisfaz às seguintes propriedades para quaisquer pontos A, B e C do plano:

- 1) $\overline{AB} \ge 0$. Além disso, $\overline{AB} = 0$ se, e somente se, A = B.
- 2) $\overline{AB} = \overline{BA}$.
- 3) Desigualdade triangular: $AC \le \overline{AB} + BC$. A igualdade ocorre se, e somente se, B pertencer ao intervalo AC.

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₁
Axioma III₂
Axioma III₃

Relação de ordem Ponto médio

Distância

Círculo Exercícios

Círculo

Definição 2.5

Seja A um ponto do plano e r um número real positivo. O <u>círculo</u> de <u>centro</u> A e <u>raio</u> r é o <u>conjunto constituído por todos os pontos B do plano tais que $\overline{AB} = r$.</u>

- ► É consequência do axioma *III*₂ que podemos traçar um círculo com qualquer centro e qualquer raio.
- Seja C um ponto do plano. Se AC < r, dizemos que C está dentro do círculo. Caso AC > r, então dizemos que C está fora do círculo. Chamamos de disco de raio r e centro A o conjunto dos pontos que estão dentro do círculo.

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₂

Axioma III₃

Relação de ordem

Ponto médio Distância

Círculo

Exercícios

Bibliografia

UFRN Natal-RN

Conjunto limitado

Diz-se que um conjunto do plano é <u>limitado</u> se for possível traçar um círculo que o contenha. Do contrário, diz-se que ele é <u>ilimitado</u>. Por exemplo, qualquer segmento é limitado.

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₂

Axioma III₂

Relação de ordem

Ponto médio

Distância

Círculo

Exercícios

- 1. São dados três pontos A, B e C com B entre A e C. Sejam M e N os pontos médios de AB e BC respectivamente. Mostre que $\overline{MN} = \frac{(\overline{AB} + \overline{BC})}{2}$.
- 2. São dados três pontos A, $B \in C$ com C entre $A \in B$. Sejam $M \in N$ os pontos médios de $AB \in BC$ respectivamente. Mostre que $\overline{MN} = \frac{\overline{AB} \overline{BC}}{2}$.
- 3. Considere três pontos colineares A, B e C, sendo que B fica entre A e C e $\overline{AB} = \overline{BC}$. Se M é o ponto médio de AB e N é o ponto médio de BC, mostre que $\overline{MN} = \overline{AB}$.
- **4**. São dados pontos A, B, C e D colineares com coordenadas x, y, z e w, tais que x < y < z < w. Prove que $\overline{AC} = \overline{BD}$ se, e somente se, $\overline{AB} = \overline{CD}$.

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₂

Axioma III₃

Relação de ordem

Ponto médio Distância

Círculo

Exercícios

- **5**. Se P é o ponto de interseção de círculos de raio r e centros em A e B, mostre que $\overline{PA} = \overline{PB}$.
- **6**. Usando régua e compasso, descreva um método para construção de um triângulo com dois lados de mesmo comprimento. (Chamamos tal triângulo de triângulo isósceles).
- 7. Usando régua e compasso, descreva um método para construção de um triângulo com os três lados de mesmo comprimento. (Chamamos tal triângulo de triângulo equilátero).
- **8**. Descreva um método para construção de um triângulo de lados 3, 4 e 6.

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₁
Axioma III₂

Axioma III₃

Relação de ordem

Ponto médio Distância

Círculo

Exercícios

- **9**. Considere um círculo de raio r. Mostre que a distância entre quaisquer dois pontos situados dentro do círculo é menor do que 2r.
- **10**. Uma emissora de rádio transmite com potência suficiente para alcançar qualquer receptor situado a menos de 100km de sua antena. Justifique a veracidade da seguinte afirmação: sabendo-se que é possível viajar da cidade A para a cidade B ouvindo no rádio continuamente a transmissão daquela emissora, conclui-se que a distância entre A e B é de, no máximo, 200km.

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₂

Axioma III₃
Relação de ordem

Ponto médio

Distância Círculo

Exercícios

11. Prove que a união de uma quantidade finita de conjuntos limitados é ainda um conjunto limitado.

12. Mostre que, dado um ponto P e um conjunto limitado M, existe um disco com centro em P que contém M.

13. Prove que as retas são conjuntos ilimitados.

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₁

Axioma III₂
Axioma III₂

Relação de ordem

Ponto médio

Distância

Círculo

Exercícios

. . . .

Bibliografia

[1] BARBOSA, João L M. *Geometria Euclidiana Plana*.

11. ed. Rio de Janeiro: SBM, 2012.

IMD1003 Geometria Euclidiana Igor Oliveira

Axioma III₁

Axioma III₂

Axioma III₃

Relação de ordem

_. . .

Distância Círculo

F

Exercícios