# Различные методы построения рекомендательных систем

Георгий Демин 417гр

ВМК МГУ

25.11.2019

## Постановка задачи

#### Дано:

- II Множество пользователей  $\mathcal{U}$ , множество товаров  $\mathcal{I}$  (возможно, с признаковым описанием)  $|\mathcal{U}|=n, |\mathcal{I}|=m$
- 2 Контекст (время, место и т.д.)
- f 3 Матрица интеракций (рейтингов)  $\mathcal{R} \in \mathbb{Z}_+^{n imes m}$  рейтинги могут быть явными (explicit) и неявными (implicit)



Рис.: пример матрицы интеракции

## Постановка задачи

Требуется найти функцию

$$f: (\mathcal{U} \times \mathcal{I}) \to \mathcal{R}$$

Стандартные обозначения:

 $r_{ui} = R[u,i]$  - известная оценка

 $\hat{r_{ui}} = f(u, i)$  - предсказанная оценка

 $U_i$  - множество пользователей, оценивших товар i

 $I_u$  - множество товаров, оценённых пользователем u

Общий подход:

$$\mathcal{L}(r_{ui} - \hat{r_{ui}}) \rightarrow \min_{f}$$

# Основные подходы

- Collaborative filtering
  - Memory-based
  - Model-based (matrix factorization)
- Content-based filtering
- Context-aware collaborative filtering

## Memory-based

Похожим пользователям нравятся похожие товары:

$$\hat{r_{u,i}} = \frac{1}{|U_i|} \sum_{u' \in U_i} sim(u, u') r_{u',i}$$

## Memory-based

Похожим пользователям нравятся похожие товары:

$$\hat{r_{u,i}} = \frac{1}{|U_i|} \sum_{u' \in U_i} sim(u, u') r_{u',i}$$

Добавляем среднее

$$\hat{r_{u,i}} = \mu + \bar{r_u} + \frac{1}{|U_i|} \sum_{u' \in U_i} \text{sim}(u, u') (r_{u',i} - \bar{r_{u'}} - \mu)$$

# Memory-based

#### Преимущества:

- 1 Быстро
- Просо

#### Недостатки:

- Модель слишком простая
- 2 Зачастую рекомендуем самые популярные товары
- Не можем учитывать признаки пользователей и товаров
- Проблема холодного старта (cold-start)

### Model-based

Основная идея - matrix factorization: разложить матрицу  $\mathcal R$  в произведение матриц меньшего ранга Похоже на SVD decomposition:

$$R \in \mathbb{R}^{n \times m} = P \Sigma Q^T$$
, rank $(R) = k$ 

$$P \in \mathbb{R}^{n \times k}$$
,  $Q \in \mathbb{R}^{k \times m}$ ,  $\Sigma = \text{diag}\{\sigma_i\}$ ,  $\sigma_i \geqslant 0$ 

Рис.: matrix factorization

По сути учим k-размерные эмбединги для пользователей и товаров

### Model-Based

#### Алгоритм Alternating Least Squares:

$$\sum_{u,i} c_{ui} (p_{ui} - x_u^T y_i)^2 + \lambda (\|x_u\|^2 + \|y_u\|^2) \to \min_{x,y}$$

$$p_{ui} = \begin{cases} 1 & \text{if } r_{ui} > 0 \\ 0 & \text{if } r_{ui} = 0 \end{cases}$$

$$c_{ui} = 1 + \alpha r_{ui}$$

Это функция потерь Ridge-регрессии, известен аналитический ответ Оптимизировать можно блочно-координатным спуском

### Model-Based

### Преимущества **ALS**:

- 11 Получаем эмбединги пользователей и товаро
- 2 Простая оптимизационная задача
- Неявно учитываем схожесть пользователей

### Model-Based

### Преимущества **ALS**:

- 11 Получаем эмбединги пользователей и товаро
- 2 Простая оптимизационная задача
- 3 Неявно учитываем схожесть пользователей

#### Недостатки:

- 1 Модель все ещё довольно простая
- 2 Зачастую рекомендуем самые популярные товары
- Не можем учитывать признаки пользователей и товаров
- Проблема холодного старта (cold-start)
- 5 При новых интеракциях нужно переучивать

# Признаковое описание

Основная идея: будем использовать не только оценки товаров пользователями, но и дополнительную информацию.

Теперь  $U \in \mathbb{R}^{n \times f_1}$ ,  $I \in \mathbb{R}^{n \times f_2}$ 

Признаки пользователей: социально-демографические, связи в социальных сетях

Признаки товаров: цена, различные статистики, особенности из предметной области

Каждый **признак** и пользователя, и товара кодируется вектором размерности k, то есть они лежат в одном пространстве.  $e^u_s$ - эмбединг фичи пользователя с номером s Эмбединги пользователей  $q \in \mathbb{R}^{n \times k}$  и товаров  $p \in \mathbb{R}^{m \times k}$  - сумма эмбедингов признаков.

$$q_j = \sum_{s=1}^{f_1} U[j, s] e_s^u \in \mathbb{R}^k$$

$$p_j = \sum_{s=1}^{f_2} I[j, s] e_s^i \in \mathbb{R}^k$$

Предсказания:

$$\hat{r_{u,i}} = f(q_u p_i + b_u + b_i)$$

В качестве f можно брать разные неубывающие функции с областью значеиний - возможными  $r_{ui}$ . Далее, как и в статье будем рассматривать случай, когда ответ бинарный. В качестве f берём сигмоиду.

$$\mathcal{L}(r_{ui}-\hat{r_{ui}})=\prod_{u,i}(r_{ui}-\hat{r_{ui}})$$

#### Преимущества **ALS**:

- 1 Получаем эмбединги пользователей и товаро
- 2 Можем использовать внешнюю информацию
- 3 Лучшее представление пользователей и товаров
- 4 Отчасти решается проблема холодного старта

#### Преимущества **ALS**:

- 1 Получаем эмбединги пользователей и товаро
- 2 Можем использовать внешнюю информацию
- 3 Лучшее представление пользователей и товаров
- Отчасти решается проблема холодного старта

#### Недостатки:

- Используется только линейная связь признаков
- 2 Зачастую рекомендуем самые популярные товары
- При добавлении новых пользователей/товаров нужно переучивать
- 4 Очень долго учиться на dense-признаках

### **SLAGR**

Social Influence-based Attentive Mavens Mining and Aggregative Representation Learning for Group Recommendation

Теперь у нас есть ещё группы ползователей G Каждый пользователь в какой-либо группе.

Каждый пользователь по-разному влияет на свою группу. Задача - построить рекомендации для групп пользователей, зная матрицы взаимодействия user-items, groups-items

### **SLAGR**

Оценка товара t для группы I складывается из влияний каждого пользователя (со своим весом) и биаса.  $H_v$ ,  $H_u$  - эмбединги товара и пользователя attention сети

$$z(t,j) = A^{T} \operatorname{ReLU}(H_{v}v_{t} + H_{u}u_{j} + b')$$
  
 $\alpha(t,j) = Softmax(z(t,j))$   
 $g_{l}(t) = \sum_{i} \alpha(t,j)u_{j} + g_{l}$ 

Конкатенируем эмбединги групп и товаров, прогоняем через полносвязные слои и получаем предсказание

$$e_0 = \phi_{pooling}(g_l(t), v_t) = (g_l(t) \odot v_t, g_l(t), v_t)^T$$
 $e_n = \mathsf{Dense}(e_0)$ 
 $(\hat{y}_i t) = w^T e_n$ 
 $\mathcal{L}(y_{ui} - \hat{y_{ui}}) = \sum_{u,i} (r_{ui} - \hat{r_{ui}})^2$ 

### **SLAGR**

#### Преимущества:

- 1 Получаем эмбединги для всего
- 2 Используем социальную информацию и социальную модель
- 3 При новых взаимодействиях достаточно доучиваться

### SLAGR

#### Преимущества:

- Получаем эмбединги для всего
- 2 Используем социальную информацию и социальную модель
- При новых взаимодействиях достаточно доучиваться

#### Недостатки:

- Очень долго учиться
- Применима ли на практике?