Лабораторная работа 2.1.3

Определение C_p/C_v по скорости звука в газе

Татаурова Юлия Романовна

15 мая 2024 г.

Цель работы:

- 1) измерение частоты колебаний и длины волны при резонансе зуковых колебаний в газе, заполняющем трубу;
 - 2) определение показателя адиабаты с помощью уравнения состояния идеального газа.

Оборудование: звуковой генератор, электронный осциллограф, микрофон, телефон, раздвижная труба, теплоизолированная турба, баллон со сжатым углекислым газом, газгольдер.

Теоретические сведения

Скорость звука в газах поределяется как:

$$c = \sqrt{\gamma \frac{RT}{\mu}} \tag{1}$$

Если длина трубы L равна целому числу полуволн ($L=n\frac{\lambda}{2}$), волна, отраженная от торца трубы совпадает по фазе с падающей. Поэтому они усиливают друг друга и возникает резонанс. Скорость звука при этом связана с длиной волны как:

$$c = \lambda f \tag{2}$$

Рассмотрим 2 способа образования резонансая:

- 1) При f = const, изменяя длину трубы.
- 2)При L=const, изменяя частоту звуковых колебаний. Тогда

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1)\dots = \frac{\lambda_{k+1}}{2}(n+k)$$
(3)

$$f_1 = \frac{c}{\lambda_1} = \frac{c}{2L}n\tag{4}$$

$$f_2 = \frac{c}{2L}(n+1) = f_1 + \frac{c}{2L}k \Rightarrow f_{k+1} = f_1 + \frac{c}{2L}k$$
 (5)

Экспериментальная установка

Звуковые колебания возбуждаются телефоном Т и улавливаются микрофоном М. Возникающий в нем сигнал отображается на осциллографе ЭО.

(b) Установка для изучения зависимости скорости звука от температуры

Экспериментальные данные

Для воздуха:

$N_{ar{o}}$	1	2	3	4	5	6	λ cm	c м/с
L , см ($\nu = 3750 \ \Gamma$ ц)	3	7.6	12.3	16.7	-	-	9.2	344
L , см ($\nu = 5500 \; \Gamma$ ц)	1.2	4.3	7.5	10.5	13.7	16.8	6.2	343
L , см ($\nu = 4750 \; \Gamma$ ц)	1.9	5.5	9.2	12.8	16.3	_	7.7	345
L , см ($\nu = 4500 \ \Gamma$ ц)	2	5.8	9.6	12.7	16.3	_	7.2	341

Таблица 1: Зависимость длины трубы от номера резонанса в воздухе

(а) Зависимость длины от номера резонанса при $\nu = 3750~\Gamma {\rm H}$

(b) Зависимость длины от номера резонанса при $\nu = 5500~\Gamma {\rm H}$

(c) Зависимость длины от номера резонанса (d) Зависимость длины от номера резонанса при $\nu=4500~\Gamma$ ц при $\nu=4750~\Gamma$ ц

Для \mathbf{CO}_2 :

Ŋō	1	2	3	4	5	λ cm	c M/c
L , см ($\nu = 1500 \ \Gamma$ ц)	16.2	6	-	-	-	20.4	306
L , см ($\nu = 2000 \ \Gamma$ ц)	21.2	15.6	8.7	1.7	-	13	261
L , см ($\nu = 2500 \ \Gamma$ ц)	20.7	13.8	10.2	4.5	-	10.4	261
L , см ($\nu = 3000 \Gamma$ ц)	20.1	15.7	10.7	6.3	1.1	9.48	284

Таблица 2: Зависимость длины трубы от номера резонанса в углекислом газе

Теперь найдем коэффициент $\gamma = C_p/C_v$:

(а) Зависимость длины от номера резонанса

при $\nu=1500$ Γ ц

(b) Зависимость длины от номера резонанса при $\nu = 2000$ Γ ц

(c) Зависимость длины от номера резонанса (d) Зависимость длины от номера резонанса при $\nu = 4500$ Γ ц при $\nu = 4750$ Γ ц

1	2	3	4	5	$T^{\circ}C$	c M/c	γ
275	495	735	995	1225	18	335	2.14
765	1015	1265	1515	1775	40	362	2.32
524	778	1038	1298	1558	55	362	2.21

Таблица 3: Частота при резонансе при разных температурах

(а) Зависимость частоты от номера резонанса при $T=18^{\circ}C$

(b) Зависимость частоты от номера резонанса при $T=40^{\circ}C$

(c) Зависимость частоты от номера резонанса при $T=55^{\circ}C$