数字逻辑设计

王鸿鹏 计算机科学与技术学院 wanghp@hit.edu.cn

组合逻辑电路设计中的冒险问题

- 组合电路中的冒险(hazard/险象)
 - ■门延迟
 - ■冒险的分类
- ■冒险的判断及消除
 - 代数法
 - ■卡诺图法

门延迟

当输入发生变化,逻辑门的输出不会同步发生改变

可能引发非预期 的尖峰干扰

- 对于组合逻辑电路,多数情况下可以忽略门的延迟.
- 但是, 门的延迟对时序电路的影响不容忽视

组合电路中的冒险/险象

当一个逻辑门的两个输入端的信号同时向相反方向变化,

则该电路存在竞争。

逻辑门因输入端的 竞争而导致输出了不应有的尖峰干扰脉冲(又称过渡干扰脉冲)称为冒险。

组合电路中的险象

$$F = AB + \overline{AC}$$

if $B = C = 1$,
 $F = 1$ (理论上)

组合电路中的险象/冒险类型

类型	概念		输出波形	备注
+6 -4- [=] 7.6	输入信号发生一次	静态1冒险	0	
静态冒险	变化只引起 <mark>一个</mark> 错 误信号脉冲	静态0冒险	0 0	
动态冒险	输入信号发生一次改变引起 <mark>多个</mark> 错误信号脉冲			有动态冒险,就有静态冒险
功能冒险	多个输入信号的变化不同步 而产生的错误信号脉冲			逻辑功能决定的,无法从设计上消除冒险
逻辑冒险	一个输入信号的变化不同步 而产生的错误信号脉冲			

静态冒险

$$F = (A+B)(\overline{A}+C)$$

if $B=C=1$,
 $F=0$ (理论上)

静态0冒险

组合电路中的动态冒险

- ■当输入发生一次变化,输出将发生多次变化。
- ■通常发生在多级电路情况下
- ■不同的路径有不同的传输延迟

if WYZ=001, F=X'

from X to F: 存在3条路径

假设时延如下:或>与>非

组合电路中的功能冒险

F(1,0,0)—>F(1,1,1), 若B和C变化速度不同:

静态1冒险

	初值	过渡值	终值	F值
C 较快:	100	→101—	→ 111	$1 \longrightarrow 1 \longrightarrow 1$
B 较快:	100	→110−	→ 111	$1 \longrightarrow 0 \longrightarrow 1$

真值表

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

组合逻辑电路设计

- 组合电路中的冒险
 - ■门延迟
 - ■冒险的分类
- ■冒险的判断及消除
 - 代数法
 - ■卡诺图法

险象/冒险的判断——代数法

检查表达式中是否存在某个变量X

它同时以原变量和反变量的形式出现,

并能在特定条件下简化成下面形式之一:

$$X + \overline{X}$$

$$X \cdot \overline{X}$$

险象判断——例子

$$F = \overline{A}\overline{C} + \overline{A}B + AC$$

分别检查C,A

C:

$$AB=00$$
 $F=\overline{C}$

$$AB=01$$
 $F=1$

$$AB=10$$
 $F=C$

$$AB=11$$
 $F=C$

A:

$$BC = 00$$
 $F = \overline{A}$

$$BC = 01$$
 $F = A$

$$BC = 10$$
 $F = \overline{A}$

$$BC = 11$$
 $F = A + \overline{A}$

没有同时出现C和C,无险象

静态1冒险

险象判断——例子

$$F=(A+B)(\overline{A}+C)(\overline{B}+C)$$

分别检查变量: A, B

 \boldsymbol{B} :

A C=0 0	$F=B\overline{B}$
A C=0 1	F=B
AC=10	F=0
AC=11	F=1

A:

B C=0 0	$F=A\overline{A}$
B C=0 1	F=A
BC=10	$F = \overline{A}$
B C=1 1	F=1

险象判断——卡诺图法

化简后是否存在相切的卡诺圈

卡诺图法判断险象的例子

F=A'D+A'C+ABC' 请判断是否存在险象?

存在卡诺圈相切

$$B=D=1,C=0 \longrightarrow F=A+A'$$

发生险象

险象的消除——1

① 添加卡诺圈

$$F_1=A'C+BC'+A'B$$

 $A=0,B=1 \longrightarrow F_1=1$

$$F_2=(A'+C)(B+C')(A'+B)$$

 $A=1,B=0 \longrightarrow F_2=0$

险象的消除

添加一个包含相邻单元的新项

险象的消除——2

② 添加冗余项

险象的消除——其他方法

③ 添加滤波电容

电容 是 积分特性,因此可以滤过这个 冒l

FPGA设计中常用

④ 加封锁/选通脉冲

B A C 选通脉冲

对静态1冒险,输入端加选通信号

对静态0冒险,输入端加封锁信号