Timing Issues in Multi-level Logic Optimization

Giovanni De Micheli Integrated Systems Centre EPF Lausanne

Module 1

- Objectives:
 - **▲**Timing verification:
 - **▲** Delay modeling
 - **▲**Critical paths
 - **▲**The false path problem

Timing verification and optimization

Verification:

- **▲**Check that a circuit runs at speed
 - **▼** Satisfies I/O delay constraints
 - **▼** Satisfies cycle-time constraints

Optimization:

- ▲ Minimum *delay*
 - ▼ (subject to area constraints)
- Minimum area
 - **▼** Subject to *delay* constraints

Delay modeling

- Gate delay modeling:
 - **▲** Straightforward for bound networks
 - **▲** Approximations for unbound networks
- Network delay modeling:
 - **▲** Compute signal propagation
 - **▼** Topological methods
 - **▼** Logic/topological methods (false paths)

Gate delay modeling unbound networks

- Virtual gates:
 - **▲**Logical expressions
- Stage delay model:
 - **▲**Unit delay per vertex
- Refined models:
 - **▲** Depending on fanout

Network delay modeling

- ◆ For each vertex *v_i*
- Propagation delay d_i:
 - **▲I/O** propagation delays are usually zero
- **◆** Data-ready time t_i:
 - **▲**Input data-ready time denote when inputs are available
 - **▲** Computed elsewhere by forward traversal
 - $\triangle t_i = d_i + \max_i t_i \quad \text{s.t.} (v_i, v_i) \in E$

Propagation delays:

$$\Delta d_g = 3$$
; $d_h = 8$; $d_m = 1$; $d_k = 10$; $d_l = 3$

$$\Delta d_n = 5$$
; $d_p = 2$; $d_o = 2$; $d_x = 2$; $d_y = 3$

Network delay modeling

- •For each vertex v_i :
- ◆Required data-ready time <u>t</u>_i :
 - **▲** Specified at the primary outputs
 - **▲** Computed elsewhere by backward traversal
 - $\triangle \underline{t}_i = \min_i \underline{t}_i d_i \text{ s.t. } (v_i, v_i) \in E$
- ◆Slack s_i:
 - **▲** Difference between required and actual data-ready times

$$s_i = \underline{t}_j - t_i$$

- Required data-ready times:
 - ightharpoonup $\underline{t}_x = 25$ and $\underline{t}_y = 25$

•
$$s_x = 2$$
; $s_y = 0$

•
$$\underline{\mathbf{t}}_{m}$$
 = 25 - 2 = 23; \mathbf{s}_{m} = 23 - 21 = 2

•
$$\underline{\mathbf{t}}_{a}$$
= 25 - 2 = 22; \mathbf{s}_{a} = 22 - 22 = 0

•
$$\underline{t}_1 = \min \{23 - 1; 22 - 2\} = 20; s_1 = 20 - 20 = 0$$

•
$$\underline{\mathbf{t}}_{b}$$
= 23 - 1 = 22; \mathbf{s}_{b} = 22 - 11 = 11

•
$$t_k = 20 - 3 = 17$$
; $s_k = 17 - 13 = 4$

•
$$\underline{t}_p = 20 - 3 = 17$$
; $s_p = 17 - 17 = 0$

•
$$\underline{t}_n = 17 - 2 = 15$$
; $s_n = 15 - 15 = 0$

•
$$\underline{t}_b$$
= 15 - 5 = 10; s_b = 10 - 10 = 0

•
$$\underline{t}_q$$
= min {22 - 11;17 - 10; 17 - 2} = 7; s_q = 7 - 3 = 4

•
$$\underline{t}_a$$
= 7 - 3 = 4; s_a = 4 - 0 = 4

Topological critical path

- Assume topologic computation of :
 - **▲** Data-ready by forward traversal
 - Required data-ready by backward traversal
- Topological critical path :
 - **▲**Input/output path with zero slacks
 - ▲ Any increase in the vertex propagation delay affects the output data-ready time
- A topological critical path may be false:
 - **▲** No event can propagate along that path

- All gates have unit delay
- All inputs ready at time 0
- ◆ Longest topological path : (V_a, V_c, V_d, V_y, V_z) :
 - **▲**Path delay: 4 units
- Critical true path: (V_a, V_c, V_d, V_y) :

▲Path delay: 3 units

Sensitizable paths

- A path in a logic network is sensitizable if an event can propagate from its tail to its head
- ◆ A critical *path* is a sensitizable path of maximum weight
- Only sensitizable paths should be considered
- Non-sensitizable paths are false and can be discarded

Sensitizable paths

- Path:
 - **▲**Ordered set of vertices
- Inputs to a vertex:
 - **▲** Direct predecessors
- Side-inputs of a vertex:
 - **▲**Inputs not on the path

Dynamic sensitization condition

- **◆Path**: $P = (v_{xo}, v_{x1}, ..., v_{xm})$
- An event propagates along P if :

$$\partial f_{xi} / \partial x_{i-1} = 1$$
, $i = 1, 2, ..., m$

- Remarks:
 - ▲ Boolean differences are function of the side-inputs and values on the side-inputs may change
 - ▲ Boolean differences must be true at the time that the event propagates

- Path: $(V_a, V_c, V_d, V_y, V_z)$
 - \triangle $\partial f_y / \partial d = e = 1$ at time 2
 - \triangle $\partial f_x / \partial y = e' = 1$ at time 3
- Not dynamically sensitizable because e settles at time 1

Static sensitization

- Simpler, weaker model
- We neglect the requirement on when the Boolean differences must be true to propagate an event
- **◆** There is an assignment of primary inputs **c** such that:

$$\partial f_{xi}(c) / \partial x_{i-1} = 1$$
 i=1,2, ..., m

May lead to underestimate delays

Not statically sensitizable

- All gates have unit delay
- **◆**Topological critical paths:
 - $(V_a, V_d, V_g, V_o); (V_b, V_d, V_g, V_o)$
 - ▲ Path delay: 3
 - **▲** Not statically sensitizable
- **Other path:**
 - \triangle (V_a , V_e , V_o)
 - ▲ Path delay: 2
- **Assume:**
 - Arr c = 0 and a, b dropping from 1 to 0
 - **▲** Event propagates to output !!!

Modes for delay computation

- Transition mode:
 - Variables assumed to hold previous values
 - **▼** Model circuit node capacitances
 - ▲ Two test vectors are needed
- Floating mode:
 - **▲** Circuit is assumed to be memoryless
 - **▼** Variables have unknown value until set by input test vector
 - ▲ Need *only one* test vector

Modes for delay computation

- Floating mode delay computation is simpler than transition mode computation
- Floating mode is a pessimistic approach
- Floating mode is more robust:
 - **▲** *Transition mode* may not have the *monotone speed-up* property

Monotone speed-up property

- Propagation delays are upper bounds:
 - ▲ What happens if gates are faster than expected?
- We must insure that speeding-up a gate does not slowdown the circuit:
 - **▲**Topological critical paths are robust
 - **▲**What about dynamically sensitizable paths in transition mode?

- Propagation delay: 2 units
- Shaded gate: 3 units and 1 unit

Static co-sensitization

- Assumption:
 - ▲ Circuit modeled by AND, OR, INV gates
 - **▲** *INV* are irrelevant to the analysis
 - **▲**Floating mode
- Controlling values:
 - ▲0 for *AND* gate
 - ▲1 for *OR* gate
- Gate has controlled value

Static co-sensitization

- **◆Path**: $P = (v_{xo}, v_{x1}, ..., v_{xm})$
- A vector statically co-sensitizes a path to 1 (or to 0) if :
 - $\triangle x_m = 1$ (or 0) and
 - \triangle V_{xi-1} has a controlling value whenever V_{xi} has a controlled value
- Necessary condition for a path to be true

False path detection test

- For all input vectors, one of the following is true:
 - ▲(1) A gate is controlled and
 - **▼** the path provides a non-controlling value
 - **▼** a side-input provides a controlling value
 - ▲(2) A gate is controlled and
 - **▼** The path and a side-input have controlling values
 - **▼** The side-input presents the controlling value first
 - ▲(3) A gate is not controlled and
 - **▼** A side-input presents the non-controlling value last

- ◆Path: $(v_a, v_c, v_d, v_y, v_z)$
- **♦**For a = 0, b = 0:
 - ▲ Condition (1) occurs at the OR gate
- For a = 0, b = 1:
 - ▲ Condition (2) occurs at the AND gate
- For a = 1, b = 0:
 - ▲ Condition (2) occurs at the OR gate
- For a = 1, b = 1:
 - ▲ Condition (1) occurs at the AND gate

Important problems

- Check if circuit works at speed <u>t</u>:
 - ▲ Verify that all true paths are faster than <u>t</u>
 - ▲ Show that all paths slower than <u>t</u> are false
- Compute groups of false paths
- Compute critical true path:
 - ▲Binary search for values of <u>t</u>
 - **△**Show that all paths slower that <u>t</u> are false

Module 2

- Objectives:
 - **▲** Algorithms for timing optimization
 - **▲** Favorable logic transformations

Algorithms for delay minimization

- Alternate:
 - **▲**Critical path computation
 - **▲**Logic transformation on critical vertices
- Consider quasi critical paths:
 - **▲** Paths with near-critical delay
 - **▲** Small slacks

Algorithms for delay minimization

REDUCE_DELAY (G_n (V,E) , ε){repeat {

- ightharpoonup Compute critical paths and critical delay au
- \triangle Set output required data-ready times to τ
- **▲** Compute slacks
- $\triangle U$ = vertex subset with slack lower than ε
- $\triangle W$ = select vertices in U
- **▲** Apply transformations to vertices *W*
- Δ) until (no transformation can reduce τ)

Transformation for delay reduction

- Reduce propagation delay
- Reduce dependencies from critical inputs
- Favorable transformation:
 - **▲** Reduces local data-ready time
 - ▲ Any data-ready time increase at other vertices is bounded by the local slack

- Unit gate delay
- Transformation:
 - **▲** Elimination
- Always favorable
- Obtain several area/delay trade-off points

- Iteration 1: eliminate v_p , v_q . (No literal increase)
- Iteration 2: eliminate v_u . (No literal increase)
- Iteration 3: eliminate v_r , v_s , v_t . (Literal increase)

More refined delay models

Elimination:

- **▲**Reduces one stage
- **▲** Yields more complex and slower gates
- **▲** May slow other paths

Substitution:

- **▲** Adds one dependency
- **▲**Loads and slows a gate
- **▲** May slow other paths

Speed-up algorithm

- Determine a subnetwork W of depth d
- Collapse subnetwork by elimination
- Duplicate vertices with successors outside W:
 - ▲ Record area penalty
- Resynthesize W by timing-driven decomposition
- Heuristics:
 - **▲**Choice of **W**
 - ▲ Monitor area penalty and potential speed-up

- NAND delay = 2INV delay = 1
- All input data-ready are 0, except = t_d = 3

Minimal-area synthesis under delay constraints

- Start from timing-feasible network
- Minimize area while preserving timing feasibility:
 - **▲**Use area optimization algorithms
 - **▲** Monitor delays and slacks
 - **▲**Reject transformations yielding negative slacks

Making a network timing feasible

- Naive approach:
 - **▲** Mark vertices with negative slacks
 - **▲** Apply transformations to marked vertices
- Redefined approach:
 - ▲ Transform multiple I/O delay constraints into single constraint by delay padding
 - **▲** Apply algorithms for CP minimization
 - **▲** Stop when constraints are satisfied

Example $t = [2332]^{T}$

Summary

- Timing optimization is crucial for achieving competitive logic design
- Timing optimization problems are hard:
 - **▲** Detection of critical paths
 - **▼** Elimination of false paths
 - **▲** Network transformations