Combinatorics, 2018 Fall, USTC Homework 9

- The due is on Thursday, Nov. 29.
- Please sign your name and student number.
- Please solve as many problems as you can.
- 1. Let A_1, \dots, A_m be a collection of sets of size a and B_1, \dots, B_m be a collection of sets of size b such that $|A_i \cap B_i| = t$ for all $i \in [n]$ and $|A_i \cap B_j| > t$ for all $i \neq j$. Show that $m \leq \binom{a+b-t}{a-t}$.
- 2. Let \mathcal{F} be a k-uniform family, and suppose that it is intersection-free, i.e. $A \cap B \nsubseteq C$ for any three sets A, B, C of \mathcal{F} . Prove that $|\mathcal{F}| \leqslant 1 + \binom{k}{\left\lfloor \frac{k}{2} \right\rfloor}$.
- 3. Let n=2k. Characterize (i.e. list) all intersecting families $\mathcal{F}\subseteq \binom{[n]}{k}$ with $|\mathcal{F}|=\binom{n-1}{k-1}$.
- 4. Let $n \leq 2k$, and let A_1, \dots, A_m be a family of k-element subsets of [n] such that $A_i \cup A_j \neq [n]$ for all i, j. Show that $m \leq (1 - \frac{k}{n}) \binom{n}{k} = \binom{n-1}{k}$.
- 5. Use Fisher's Inequality to show that $|D| \ge |X|$, where (X, D) is a (v, k, λ) design.

- 6. Let (X, D) be a (v, k, λ) design with b blocks and replication number r. Prove that its complement (X, \overline{D}) , where $\overline{D} = \{X \setminus B : B \in D\}$, is a $(v, v k, b 2r + \lambda)$ design provided that $b 2r + \lambda > 0$.
- 7. Let A be the adjacency matrix of a finite d-regular graph G with vertex set [n]. Let $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$ be a column vector of length n. Show that
 - (1) If Ax = y and $y = (y_1, \dots, y_n)^T$, then $y_i = \sum_{j:i \sim j} x_j$.
 - (2) Consider any orientation of G, that is, any assignment of direction to each edge, then each edge $u \sim v$ becomes an arc $u \to v$ or $v \to u$. Let D be the incidence matrix of the orientation of G, whose rows and columns are indexed by vertices and edges, and for $\forall v \in V, e \in E$,

$$D_{v,e} = \begin{cases} 1, & \text{if } v \text{ is the head of } e \\ -1, & \text{if } v \text{ is the tail of } e \\ 0, & \text{otherwise.} \end{cases}$$

Show that $DD^T = dI - A$. Here, $L = DD^T$ is called Laplacian matrix of G.

(3) If λ is an eigenvalue of A, show that $d \ge \lambda$.