Department of Mathematics

Calculus of Several Variables and Differential Geometry

Assignment-III

- 1. Find the unit speed parametrization of the following curves.
 - (a) For a > 0, let $\gamma(t) := (a \cos t, a \sin t)$ for $t \in \mathbb{R}$.
 - (b) For a, b > 0, let $\gamma(t) := (ae^{bt}\cos t, ae^{bt}\sin t)$ for $t \in \mathbb{R}$.
 - (c) For a, b > 0, let $\gamma(t) := (a \cos t, a \sin t, bt)$ for $t \in \mathbb{R}$.
- 2. Find the curvature of the curves
 - (a) $\gamma : \mathbb{R} \to \mathbb{R}^2$ defined by $\gamma(t) = e^t(\cos t, \sin t)$.
 - (b) $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ defined by $\gamma(t) = (t, t^2)$.
 - (c) $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ defined by $\gamma(t) = (\cosh t, \sinh t)$.
 - (d) $\gamma : [0, 2\pi] \to \mathbb{R}^2$ defined by $\gamma(t) = (a \cos t, b \sin t)$ where a, b > 0 are fixed.
 - (e) $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ defined by $\gamma(t) = (t, \sin t)$.

In each of the problem sketch the trace of the curves.

- 3. Let $\gamma \colon [a,b] \to \mathbb{R}^2$ be a regular smooth curve and $\psi \colon [c,d] \to [a,b]$ be a smooth bijection. Let $\sigma \colon [c,d] \to \mathbb{R}^2$ defined by $\sigma(s) := \gamma(\psi(s))$ be a reparametrization of the curve γ . Show that length of the curves γ and σ are equal.
- 4. Let $\gamma \colon [a,b] \to \mathbb{R}^2$ be a regular smooth curve and A be a 2×2 orthogonal matrix. Let $\gamma_A \colon [a,b] \to \mathbb{R}^2$ be a regular smooth curve defined by $\gamma_A(t) := A(\gamma(t))$. Find the relation between the curvature $\kappa_{\gamma}(t)$ and $\kappa_{\gamma_A}(t)$ for $t \in [a,b]$.
- 5. Let $\gamma \colon [a,b] \to \mathbb{R}^2$ be a regular smooth curve parametrized by arc length. For $s \in [a,b]$, we denote the tangent vector $\gamma'(s) = (x'(s),y'(s))$ by t(s) and the unit postive normal (-y'(s),x'(s)) by N(s). By definition $t'(s) = \kappa(s)N(s)$. Prove that $N'(s) = -\kappa(s)t(s)$ for $s \in [a,b]$.
- 6. Let $\gamma: [a, b] \to \mathbb{R}^2$ be a regular smooth curve. Assume that there exists t_0 in [a, b] such that $\|\gamma(t)\| \le \|\gamma(t_0)\|$. Show that $\kappa(t_0) \ge \frac{1}{\|\gamma(t_0)\|}$. Can you infer some information about the curvature if $\|\gamma(t)\| \ge \|\gamma(t_0)\|$?
- 7. Let $\gamma \colon [a,b] \to \mathbb{R}^2$ be a regular smooth curve with constant positive curvature κ . Show that the trace of γ is contained in a circle of radius $1/\kappa$. What can you say when the curvature κ is a non-positive constant.
- 8. Can you find a regular smooth curve $\gamma \colon [a,b] \to \mathbb{R}^2$ such that $\|\gamma'(t)\| = 3$ and $\kappa(t) = 4$ for $t \in [a,b]$.
- 9. Can you find a regular smooth curve $\gamma \colon [a,b] \to \mathbb{R}^2$ such that $\|\gamma'(t)\| = 3$ and $\kappa(t) = -4$ for $t \in [a,b]$.
- 10. Let $\gamma \colon [a,b] \to \mathbb{R}^2$ be a regular curve such that all the normal lines to the curve pass through a point $a \in \mathbb{R}^2$. Show that the trace of the curve γ is contained in a circle.

- 11. Let $\gamma \colon \mathbb{R} \to \mathbb{R}^3$ be a unit speed curve such that, for all $t \in \mathbb{R}$, $\|\gamma(t)\| = R$ for some R > 0. Show that the curvature $\kappa(t) \ge 1/R$.
- 12. Find the curvature and torsion of the curve $\gamma(t) := (a\cos t, a\sin t, bt)$ for $t \in \mathbb{R}$ and a, b > 0 are fixed.
- 13. Find the curvature and torsion of the curve $\gamma(t) := (e^t \cos t, e^t \sin t, e^t)$ for $t \in \mathbb{R}$.

Apart from the exercises above you may solve the problems in the book Curves and Surfaces by Sebastian Montiel and Antonio Ros. The exercise with \uparrow mark provided with hints in the book to help you.