CSE 4125: Distributed Database Systems Chapter – 5

Translation of Global Queries to Fragment Queries.

(part – B)

Outline

- Qualified relations.
- Algebra of qualified relations.
- Simplification of horizontally and vertically fragmented relations.
- Simplification of joins between horizontally fragmented relations.
- Criterion 3, 4 and 5.
- Parametric queries and their simplifications.

Qualified Relation

Say, DEPT has 2 fragments: DEPT₁ and DEPT₂.

DEPT₁: SL _{deptnum <= 10} DEPT

DEPT₂: SL _{deptnum > 10} DEPT

- A Qualified relation
 - Is a relation extended by a qualification.
 - Is denoted as a pair [R:qR], where R is a relation called body and qR is a predicate called qualification.
 - Qualifications can be seen as an intentional property possessed by all the tuples of the relation. For example all the tuples in R satisfies qR.

Algebra of Qualified Relation

- We know relational algebra uses relations as operands.
 - For example, SL_F R
- Algebra of qualified relation uses qualified relations as operands.
 - For example, $SL_F[R:qR]$

Rules of Algebra of Qualified Relation

Rule 1: $SL_F[R:qR] \rightarrow [SL_FR:F and qR]$

[ACCOUNT $_1$: ID < 5]

ID	NAME	CITY
1	а	dhk
2	b	dhk
3	С	ctg
4	d	ctg

SL _{CITY = dhk} [**ACCOUNT** $_{1}$: ID < 5]

ID	NAME	CITY
1	а	dhk
2	b	dhk

[SL $_{CITY} = _{dhk}$ ACCOUNT $_{1}$: ID < 5 and CITY = dhk]

ID	NAME	CITY
1	a	dhk
2	b	dhk

Rules of Algebra of Qualified Relation

Rule 1: $SL_F[R:qR] \rightarrow [SL_FR:F and qR]$

Rule 2: $PJ_A [R : qR] \rightarrow [PJ_A R : qR]$

Rule 3: [R:qR] CP $[S:qS] \rightarrow [R$ CP S:qR and qS]

Rule 4: [R:qR] DF $[S:qS] \rightarrow [R$ DF S:qR]

Rules of Algebra of Qualified Relation (contd.)

Rule 5: [R:qR] UN $[S:qS] \rightarrow [R$ UN S:qR or qS]

Rule 6: $[R:qR] JN_F [S:qS] \rightarrow [R JN_F S: qR and qS and F]$

Rule 7: $[R:qR] SJ_F [S:qS] \rightarrow [R SJ_F S: qR and qS and F]$

Simplification of Horizontally Fragmented Relations

Example

Q: SL deptnum = 1 **DEPT**

Now, apply algebra of qualified relation.

Check if any contradiction.

 Apply the predefined equivalence transformations.

 $SL_{F}(\emptyset) \leftrightarrow \emptyset$ $PJ_{A}(\emptyset) \leftrightarrow \emptyset$ $R CP \emptyset \leftrightarrow \emptyset$ $R UN \emptyset \leftrightarrow R$ $R DF \emptyset \leftrightarrow R$ $\emptyset DF R \leftrightarrow \emptyset$ $R JN_{F} \emptyset \leftrightarrow \emptyset$ $R SJ_{F} \emptyset \leftrightarrow \emptyset$ $\emptyset SJ_{F} R \leftrightarrow \emptyset$

Criterion - 3

Criterion - 3:

- Push SL down, then apply algebra of qualified relations.
- Substitute the selection with empty if the qualifications contradicts.

Criterion - 3

So, from now, you also have to apply **criterion – 3** after applying **criterion – 1** and **criterion – 2**.

Simplification of Join between Horizontally Fragmented Relations

Example

SUPPLIER (<u>snum</u>, name, city) SUPPLIER₁: SL city = 'dhk' SUPPLIER SUPPLY (snum, pnum, deptnum, quan) SUPPLIER₂: SL city = 'ctg' SUPPLIER SUPPLY₁: SUPPLY SJ _{snum=snum} SUPPLIER₁ snum **Apply Canonical Expression** SUPPLY₂: SUPPLY SJ _{snum=snum} SUPPLIER₂ [SUPPLY₁: SUPPLY.snum [SUPPLIER₁: city = 'dhk'] = SUPPLIER.snum and SUPPLER.city = 'dhk'] [**SUPPLY**₂: SUPPLY.snum = [SUPPLIER₂: city = 'ctg'] SUPPLIER.snum and SUPPLER.city = 'ctg']

Jubair | AUST

Criterion – 5 and 4

Criterion - 5:

Push JN down and UN up.

Criterion – 5 and 4

Criterion - 4:

Eliminate JN between fragments that do not contribute to results.

Simplification of Vertically Fragmented Relations

Simplification of Vertically Fragmented Relations

 To determine a proper subset of the fragments which is sufficient for generating result for a query.

Example

Global schema:

EMP (empno, name, sal, tax, mgrnum, deptnum)

Fragmentation schema:

```
EMP<sub>1</sub> = SL <sub>deptnum</sub> <= 10 PJ <sub>empnum</sub>, name, magnum, deptname</sub> (EMP)

EMP<sub>2</sub> = SL <sub>10</sub> < deptnum <= 20 PJ <sub>empnum</sub>, name, mgrnum, deptnum</sub> (EMP)

EMP<sub>3</sub> = SL <sub>deptnum</sub> > 20 PJ <sub>empnum</sub>, name, mgrnum, deptname</sub> (EMP)

EMP<sub>4</sub>=PJ <sub>empnum</sub>, name, sal, tax (EMP)
```

```
EMP<sub>1</sub> = SL <sub>deptnum</sub> <=10 PJ <sub>empnum</sub>, name, mgrnum, deptnum</sub> (EMP)

EMP<sub>2</sub> = SL <sub>10</sub> < deptnum <= 20 PJ <sub>empnum</sub>, name, mgrnum, deptnum (EMP)

EMP<sub>3</sub> = SL <sub>deptnum</sub> > 20 PJ <sub>empnum</sub>, name, mgrnum, deptnum (EMP)

EMP<sub>4</sub>=PJ <sub>empnum</sub>, name, sal, tax (EMP)
```

Q: PJ name, sal EMP


```
EMP<sub>1</sub> = SL <sub>deptnum</sub> <=10 PJ <sub>empnum</sub>, name, mgrnum, deptnum</sub> (EMP)

EMP<sub>2</sub> = SL <sub>10</sub> < deptnum <= 20 PJ <sub>empnum</sub>, name, mgrnum, deptnum (EMP)

EMP<sub>3</sub> = SL <sub>deptnum</sub> > 20 PJ <sub>empnum</sub>, name, mgrnum, deptnum (EMP)

EMP<sub>4</sub>=PJ <sub>empnum</sub>, name, sal, tax (EMP)
```



```
EMP<sub>1</sub> = SL <sub>deptnum</sub> <=10 PJ <sub>empnum</sub>, name, mgrnum, deptnum</sub> (EMP)

EMP<sub>2</sub> = SL <sub>10</sub> < deptnum <= 20 PJ <sub>empnum</sub>, name, mgrnum, deptnum (EMP)

EMP<sub>3</sub> = SL <sub>deptnum</sub> > 20 PJ <sub>empnum</sub>, name, mgrnum, deptnum (EMP)

EMP<sub>4</sub>=PJ <sub>empnum</sub>, name, sal, tax (EMP)
```



```
EMP<sub>1</sub> = SL <sub>deptnum</sub> <=10 PJ <sub>empnum</sub>, name, mgrnum, deptnum</sub> (EMP)

EMP<sub>2</sub> = SL <sub>10</sub> < deptnum <= 20 PJ <sub>empnum</sub>, name, mgrnum, deptnum (EMP)

EMP<sub>3</sub> = SL <sub>deptnum</sub> > 20 PJ <sub>empnum</sub>, name, mgrnum, deptnum (EMP)

EMP<sub>4</sub>=PJ <sub>empnum</sub>, name, sal, tax (EMP)
```



```
EMP<sub>1</sub> = SL <sub>deptnum</sub> <=10 PJ <sub>empnum</sub>, name, mgrnum, deptnum</sub> (EMP)

EMP<sub>2</sub> = SL <sub>10</sub> < deptnum <= 20 PJ <sub>empnum</sub>, name, mgrnum, deptnum (EMP)

EMP<sub>3</sub> = SL <sub>deptnum</sub> > 20 PJ <sub>empnum</sub>, name, mgrnum, deptnum (EMP)

EMP<sub>4</sub>=PJ <sub>empnum</sub>, name, sal, tax (EMP)
```



```
EMP<sub>1</sub> = SL <sub>deptnum</sub> <=10 PJ <sub>empnum</sub>, name, mgrnum, deptnum</sub> (EMP)

EMP<sub>2</sub> = SL <sub>10</sub> < deptnum <= 20 PJ <sub>empnum</sub>, name, mgrnum, deptnum (EMP)

EMP<sub>3</sub> = SL <sub>deptnum</sub> > 20 PJ <sub>empnum</sub>, name, mgrnum, deptnum (EMP)

EMP<sub>4</sub>=PJ <sub>empnum</sub>, name, sal, tax (EMP)
```

Q: PJ name, sal EMP

Parametric Queries

Parametric Queries

- SL include parameters values that are not known in compile time.
- When parametric queries executed, the user provides values in *runtime*, which are bound to (substituted for) parameters.
- Example: SL _{deptnum = \$X} DEPT

Simplification of Parametric Queries

Example

Q: SL deptnum = \$X OR deptnum = \$Y **DEPT**

Q: SL deptnum = \$X OR deptnum = \$Y **DEPT**

Q: SL deptnum = \$X OR deptnum = \$Y DEPT

Additional Reading

- Get the intuition behind all the rules of algebra of qualified relation.
- Proof of rule 6 and 7 of algebra of qualified relations.
 - Understand what is happening in each line of the proofs.

Practice Problems/ Questions

- Text book: exercise 5.2 (a) and (b)
 - N.B: use criteria 1 to 5
- Text book: exercise 5.3, 5.4 and 5.7