2016 VLSI Midterm Solution

1. (a)

- (b) $g_A=8/3$, $g_C=6/3=2$, $g_D=4/3$
- (c) 略
- (d) $p_{max}=(4+4+2+4+2)/3=16/3$, $p_{min}=(4+2+2)/3=8/3$
- 2. (a) $g_{avg}=5/3$

 g_d

Computing Logical Effort

 The ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current

$$g_u = \frac{3+\sqrt{2}}{\sqrt{2}+\sqrt{2}/2} = 2.08$$
, $g_d = \frac{3+\sqrt{2}}{2+1} = 1.47$, $g_{avg} = 1.775$

3. (a)(b) F=GBH=1*1*(128/2)=64,
$$f_i = F^{1/N} = 64^{1/N}$$

For N=3,
$$f_i$$
=4, D=N* $F^{1/N}$ +N=15

4. (a)

(b)

Comment: Both N/PMOS turn off when 0.2<Vin<0.4, and Ron $\rightarrow \infty$ The transmission gate switch as open circuit.

5. (a)

- (b) NM_H=VOH-VIH, NM_L=VIL-VOL
- (c) High-skewed : $NM_H \downarrow$, $NM_L \uparrow$; Low-skewed : $NM_H \uparrow$, $NM_L \downarrow$
- (d) $W_P/W_N=3/1$, with the same L
- (e) Both in saturation region.

6. (a)

(b) $g_A=28/27$, $g_{RESETB}=4$ (RESETB would be non-critical input)

7. (a)
$$G = 1 \times \frac{5}{3} \times \frac{4}{3} \times \frac{5}{3} = \frac{100}{27}$$

 $B = 2 \times 2 = 4$
 $H = \frac{120}{2} = 60$

(b)
$$F = GBH = \frac{8000}{9} \rightarrow f = F^{\frac{1}{4}} = 5.46$$

 $P = 1 + 3 + 2 + 2 = 8$
 $D = NF^{\frac{1}{N}} + P = 5.46 \times 4 + 8 = 29.84$

(c)
$$Cin = \frac{g \times Cout}{f}$$

$$\Rightarrow \begin{cases} z = \frac{\frac{5}{3} \times 120}{5.46} = 36.63 \\ y = \frac{\frac{4}{3} \times 36.63}{5.46} = 8.945 \\ x = \frac{\frac{5}{3} \times 8.945 \times 2}{5.46} = 5.46 \end{cases}$$

8. (a)
$$d = gh + p = 2$$

 $d' = d \times R \times C = 1k \times 10f$
 $f_{osc} = \frac{1}{2Nd'} = \frac{1}{2 \times 9 \times 1k \times 10f} = 5.556 \ GHz$

(b) Down-sized inverter $g_{avg} = 1$

$$f_{osc} = \frac{1}{2Nd'} = \frac{1}{2 \times 9 \times 1k \times 10f} = 5.556 \ GHz$$

9. (a)
$$D = NF^{\frac{1}{N}} + \sum_{i=1}^{n} p_i + (N - n1)p_{inv}$$

(b)
$$N = 6 \rightarrow D = 6 \times 2048^{\frac{1}{6}} + 6 \times 2 = 33.38$$

10. (a)
$$T_{pdr} = (9 + 4h)RC$$

$$T_{pdf} = \left(3\text{C} \times \frac{R}{3}\right) + \left(3\text{C} \times \frac{2R}{3}\right) + \text{R} \times (9 + 4\text{h})\text{C} = (12 + 4\text{h})\text{RC}$$

 $T_{pd} = (10.5 + 4\text{h})\text{RC}$

(b)
$$T_{cdr} = \frac{R}{3} \times (9 + 4h)C$$

$$T_{cdf} = (9 + 4h)RC$$

$$T_{cd} = \frac{2}{3} \times (9 + 4h)RC = (6 + \frac{8}{3}h)RC$$

11. $g \rightarrow l \rightarrow i \rightarrow f \rightarrow k \rightarrow b \rightarrow h \rightarrow c \rightarrow d \rightarrow a \rightarrow j \rightarrow e$ 12. (a)

$$t_{pd} = (500 \times 440 \text{f}) + (600 + 500) \times 408 \text{f} + 2500 \times 8 \text{f} = 688.8 \text{ ps}$$
 (b)

$$t_{pd} = (50 \times 800\text{f}) + (600 + 50) \times 408\text{f} + 2500 \times 8\text{f} = 325.2 \text{ ps}$$

13.
$$C_{wire} = 400 f$$

$$C_{adi} = 800f$$

(a)
$$\Delta V_Y = 1.8 \times \frac{800f}{1200f} = 1.2 V$$

(b) Shielding, Increase the loading Cap, Put two wire away 14. A. 講義 3-11 B. 講義 3-11 C. 講義 2-62 D. 講義 3-11 E. 講義 3-11 F. 講義 4-15 G. 講義 4-14 H. 講義 4-12 i. 講義 4-13 j. 講義 4-19 15. A. 講義 2-27 B. 講義 2-27 C. 講義 2-34 D. 講義 2-30 E. 講義 2-28 16. $P=[(0.1\times20M\times0.5)+(0.04\times60M\times0.25)]\times2f\times1.8^2\times100M=1.0368W$

17.

TFTTT FTFTF