

Introduction

Nicotine has been addressed in multiple previous reports of the Surgeon General. Most notably, the 1988 Surgeon General's report, *The Health Consequences of Smoking: Nicotine Addiction*, concluded that cigarettes and tobacco products are addicting and that "Nicotine is the drug in tobacco that causes addiction" (U.S. Department of Health and Human Services [USDHHS] 1988, p. 9). The 2010 report, *How Tobacco Smoke Causes Disease*, addressed the mechanisms by which nicotine leads to addiction, providing full coverage of pharmacology, genetic factors, manifestations of addiction, and epidemiologic aspects (USDHHS 2010). The topic of trajectories of addiction and relapse was also addressed and further covered in regard to adolescents and young adults in the 2012 report, *Preventing Tobacco Use Among Youth and Young Adults* (USDHHS 2012).

This chapter addresses the acute toxicity of nicotine and the effects of longer-term exposure on reproductive outcomes, lung growth and development, neurocognitive function and cognitive decline, psychiatric morbidity, immune function, cancer risk, and cardiovascular

disease. A number of new noncombustible products (e.g., electronic cigarettes) have been marketed by the tobacco industry and other manufacturers that provide nicotine through the oral and inhaled routes. Use of such products is projected by some to take an increasing market share over the next decade (Citigroup Global Markets 2011). Additionally, nicotine replacement therapy (NRT) remains a mainstay of cessation aids and many former smokers may remain on such therapy for periods of time longer than recommended and approved by the U.S. Food and Drug Administration (West and Russell 1985; Hajek et al. 1988; Hughes et al. 1991; Hughes 1998).

Given the possibility of increasing exposure of the population to nicotine obtained from products other than conventional cigarettes, this chapter considers the acute and longer-term adverse consequences of nicotine. The chapter also provides background for the consideration of future policy directions in Chapter 16, "A Vision for Ending the Epidemic: A Society Free of Tobacco-Related Death and Disease."

Toxicokinetics and Acute Toxicity of Nicotine

Nicotine is the major chemical component responsible for addiction in tobacco products (USDHHS 1988; Stolerman and Jarvis 1995; Royal College of Physicians of London 2000; Balfour 2004). The risk for nicotine addiction depends on the dose of nicotine delivered and the way it is delivered; the potential for addiction increases with the dose delivery rate, the rate of absorption, and the attained concentration of nicotine (Henningfield and Keenan 1993; de Wit and Zacyn 1995; Stitzer and de Wit 1998). For an in-depth discussion of the pharmacokinetics of nicotine as related to addiction, see the pharmacokinetics section of Chapter 4 in the 2010 Surgeon General's report (USDHHS 2010). Similarly, the toxicity caused by nicotine is dependent on dose, dose duration and frequency, route of exposure, formulation of the nicotine product, and interpersonal variability as addressed in the 2010 report. This section discusses the toxicokinetics and the acute toxicity of nicotine.

Toxicokinetics

Nicotine, 3-(1-methyl-2-pyrrolidinyl) pyridine, is a volatile alkaloid with a molecular weight of 162.23. The absorption and elimination via renal excretion of nicotine are highly dependent on pH. At a high (alkaline) pH, nicotine ($pK_a^1 = 8.5$) is in the non-ionized state, which passes more easily through lipoprotein membranes than the ionized (charged) state (Stratton et al. 2001). Nicotine in its un-ionized state can be readily absorbed across the epithelium of the lung, the oral mucosa, and the nose, and through the skin. Nicotine in tobacco smoke inhaled into the lung is rapidly absorbed because of the large surface area of the alveoli and small airways and the dissolution of nicotine in the fluid coating the lung's epithelial layer, which has a physiological pH that facilitates absorption. Similarly, nicotine from oral tobacco products that

¹The logarithmic measure of the acid disassociation constant, which represents the pH of a solution in which half of the acid molecules are ionized.

have an alkaline pH is readily absorbed through the oral mucosa, but more gradually than via the lungs. Nicotine can be well absorbed in the small intestine, because of its more alkaline pH and large surface area. However, nicotine is poorly absorbed from the stomach, because its acidic environment results in greater ionized nicotine. In addition, unlike ingestion, nicotine's bioavailability is greater through the lung or through the oral mucosa, because nicotine reaches the systemic circulation before passing through the liver where it is metabolized (first-pass metabolism). Arterial concentrations of nicotine from smoking are higher than venous concentrations (Figure 5.1). Across studies, the ratios of arterial to venous concentration range from 2.3–10 (Henningfield et al. 1993; Gourlay and Benowitz 1997; Rose et al. 1999). Less than 5% of nicotine is protein-bound in the plasma (Benowitz et al. 1982). It distributes extensively to body tissues, including the liver, kidney, spleen, lung, and brain and also accumulates in gastric juice and saliva, breast milk, skeletal muscle, and fetal serum and amniotic fluid (Dahlstrom et al. 1990; Breese et al. 1997; Perry et al. 1999; Dempsey and Ben-

owitz 2001). The time course of nicotine accumulation in the brain and other body organs, and the resultant pharmacologic effects, are highly dependent on route and rate of dosing. The lag time between a puff on a cigarette until nicotine reaches the brain is 10–20 seconds (Henningfield and Keenan 1993; de Wit and Zachy 1995; Stitzer and de Wit 1998; Rose et al. 1999).

More than 80% of nicotine absorbed into the body undergoes metabolism in the liver, principally by CYP2A6, UDP-glucuronosyltransferase, and flavin-containing monooxygenase (Cashman et al. 1992; Park et al. 1993; Benowitz and Jacob 1994; Benowitz et al. 2009). Several metabolites of nicotine reach the central nervous system (CNS) after acute administration of nicotine (Crooks and Dwoskin 1997). Nornicotine is both a metabolite of nicotine and a minor tobacco alkaloid. Researchers have observed similar behavioral effects from nicotine and nornicotine. However, because nornicotine is present only as a minor metabolite, it is unclear whether it has significant pharmacologic or toxicologic effects in nicotine users. Less data are available on cotinine, a major metabolite of

Figure 5.1 Venous blood concentrations of nicotine over time for various nicotine delivery systems

Source: Adapted from Fant et al. 1999 with permission from Elsevier, ©1999.

Note: mg = milligrams; ng/mL = nanograms per milliliter.

Table 5.1 Animal studies on acute toxicity of nicotine

Study	Species tested	Route of exposure	Study objective/endpoint
Larson et al. 1945	Mice, rabbits	i.p.	Determine LD50
Hicks and Sinclair, 1947	Rats	i.p.	Determine LD50
Yamamoto et al. 1966	Rats	i.p.	Determine LD50
Lazutka et al. 1969	Mice, rats	Oral, inhalation	Determine LD16, LD50, LD100
Stalhandske and Slanina 1970	Mice	i.p.	Determine difference in response to LD50 between young and old rats
Tepper et al. 1979	Mice	i.p.	Determine LD50 by mouse strain, age, gender; ED50 of onset of tremor
Okamoto et al. 1992	Rats	i.p.	Determine time to convulsions
Okamoto et al. 1994	Rats	i.p.	Determine difference in response to LD50 between young and old rats
Yuen et al. 1995	Rats	Oral (water)	Examine acute hepatotoxicity

Note: ED50 = median dose where 50% of sample subjects achieve a predefined endpoint; i.p. = intraperitoneal; LD16 = dosage of a given drug required to kill 16% of a test population; LD50 = dosage of a given drug required to kill 50% of a test population; LD100 = dosage of a given drug required to kill 100% of a test population.

nicotine (Benowitz and Jacob 1994; Keenan et al. 1994). For discussion of the pharmacodynamics of nicotine in the brain, see the section on “Pathophysiology of Nicotine Addiction” in Chapter 4 of the 2010 Surgeon General’s report (USDHHS 2010).

Acute Toxicity of Nicotine

Nicotine exerts its effects via stimulation of the nicotinic acetylcholine receptors (nAChRs), which are located in the CNS, at interganglionic junctions of the autonomic nervous system, and on target organs throughout the body as part of the parasympathetic autonomic nervous system (USDHHS 2010). As a result of the global expression of these receptors, their stimulation causes broad physiologic effects. Although the nicotine intoxication syndrome is not fully characterized, symptoms of mild acute toxicity might include nausea and vomiting, progressing with increased exposure to cholinergic syndrome, which includes diarrhea, increased salivation, increased respiratory secretions, and bradycardia. Severe poisonings can progress further to seizures and respiratory depression. Countering the development of acute toxicity is the relatively rapid development of tolerance with repeated exposure (Benowitz et al. 1987; Okamoto et al. 1992).

Acute toxicologic data on nicotine is limited. Such information comes from three sources: (1) animal studies, (2) studies investigating nicotine as a therapeutic agent (including NRT), and (3) poisonings involving nicotine. A few acute toxicological studies performed on animals are available (Table 5.1). These studies contribute basic LD50 (dose causing 50% lethality) values primarily in rats and mice (Larson et al. 1945; Hicks and Sinclair 1947; Yamamoto et al. 1966; Lazutka et al. 1969; Tepper et al. 1979), as well as examining the effects of age and gender, and endpoints other than lethality, such as hepatotoxicity and time to convulsions. However, the studies available do not adequately characterize acute toxicity. Studies investigating nicotine as a therapeutic agent in humans are limited in predicting the acute toxicity of nicotine. These studies are better at documenting adverse effects rather than overt toxicity, as the doses administered are chosen, in part, because they are considered subtoxic. Mild adverse effects, as defined by the World Health Organization’s (WHO’s) Collaborating Center for International Drug Monitoring (WHO 1972), of nicotine given as pharmacologic treatment for nicotine addiction have been commonly reported (Barrueco et al. 2005). Studies examining nicotine’s potential role to treat ulcerative colitis using nicotine patches or enemas provide similar findings with regard to adverse effects (Nikfar et al. 2010; Lunney and Leong 2012).

Numerous poisonings have been documented in the literature since the use of nicotine as a pesticide became widespread in the early part of the twentieth century. These studies describe patients exposed to doses associated with toxicity via one or more routes of exposure, and a resulting predicted clinical course of acute toxicity as noted previously in this section. However, the literature also notes exceptions, including a rapid progression to near fatal symptoms after a relatively low exposure to a piece of 2 milligrams (mg) nicotine gum that was chewed briefly and discarded – never swallowed (Mensch and Holden 1984), as well as a patient receiving a relatively large dose, 240 mg nicotine, in an accidental subcutaneous administration that proved to be nonfatal (Brady et al. 1979). In both instances, the affected persons were active cigarette smokers. The case report involving the 2 mg gum did not specifically document nicotine intoxication; rather, a clinical diagnosis was made. Yet, despite the abundance of case reports, it appears that there has not been a systematic assessment of the literature to characterize the dose-response relationship. Finally, the human oral fatal dose is commonly reported to be between 50–60

mg for adults, with the fatal dose for youth expected to be lower, but not determined specifically. A study by Lazutka and colleagues (1969), in a Russian language publication, is commonly cited in support of these figures. However, Lazutka and colleagues make no such estimation. Further, a systematic literature search was performed using OVID MEDLINE for nicotine (focusing on ‘toxicity’ n = 744 and ‘poisonings’ n = 134), as well as a search of databases such as the Hazardous Substances Data Bank and Haz-Map using Toxnet; however, no study was located as a source for an estimate of the dose that is fatal to humans and the figure of 50–60 mg is poorly documented.

Summary

In its un-ionized state, nicotine readily enters the body, regardless of the mode of administration. It has known acute toxicity, reflecting its pharmacologic activity. There is a potential for poisoning from ingestion of nicotine-containing products.

Pathophysiology of Nicotine Addiction

Summary of Evidence from the 2010 Surgeon General’s Report

Dependence on nicotine is characterized by both the persistence of a drug-taking behavior and the emergence of withdrawal symptoms upon the abrupt cessation of nicotine administration (Wikler 1973; Levine 1974; Stewart et al. 1984; Ludwig 1986; O’Brien et al. 1990; Hughes and Hatsukami 1992; Koob et al. 1993; Markou et al. 1993, 1998; American Psychiatric Association 1994; Kenny and Markou 2001; USDHHS 2010). Therefore, both the neurosubstrates (brain structures, pathways, and systems) mediating the reinforcing effects of acute administration of nicotine and those mediating the nicotine withdrawal syndrome are relevant to nicotine addiction. The physiological systems that develop adaptations to repeated nicotine administration, and lead to the emergence of withdrawal signs on cessation of nicotine administration, are likely to intersect with systems that mediate the acute effects of nicotine (Markou et al. 1998; Kenny and Markou 2001). That is, nicotine addiction develops as a neurobiological adaptation to chronic nicotine exposure. However, all forms of nicotine delivery do not pose an equal risk in establishing or maintaining nicotine addiction. NRT medicines, which are designed to minimize addiction risk,

carry a low risk of establishing addiction and are generally substantially easier to discontinue than tobacco products (Henningfield et al. 2011; WHO 2012). Conversely, cigarettes have been researched, designed, and manufactured to increase the likelihood that initiation will lead to dependence and difficulty achieving cessation due to contents and emissions in addition to nicotine (e.g., acetaldehyde, ammonia compounds, and menthol); design features that may increase free-base nicotine and produce larger puffs (filter-tip ventilation); and other factors that reduce the concerns for smokers and increase the attractiveness of the products (USDHHS 2010, 2012).

nAChRs are ligand-gated ion channels composed of five membrane-spanning subunits that combine to form a functional receptor (Lindstrom et al. 1996; Role and Berg 1996; Albuquerque et al. 1997; Lèna and Changeux 1998, 1999; Dani 2000; Gotti et al. 2006). As a result of actions at the nAChR sites, nicotine stimulates the release of most neurotransmitters throughout the brain (Araujo et al. 1988; Toide and Arima 1989; McGehee and Role 1995; Gray et al. 1996; Role and Berg 1996; Wilkie et al. 1996; Albuquerque et al. 1997; Alkondon et al. 1997; Kenny et al. 2000; Grady et al. 2001). Therefore, various transmitter systems are likely to be involved in the rewarding effects of nicotine and in the adaptations that occur in response

to chronic exposure to nicotine, which give rise to dependence and to withdrawal responses.

The positive reinforcing aspects of nicotine addiction primarily results from the release of dopamine in the ventral tegmental area region of the brain (Grenhoff et al. 1986; Nisell et al. 1994a,b, 1997; Pidoplichko et al. 1997; Watkins et al. 2000; Picciotto and Corrigall 2002; Balfour 2004). Nicotine stimulates nAChRs on glutamatergic terminals that release glutamate, an excitatory neurotransmitter, which results in an increased release of dopamine in the nucleus accumbens and the frontal cortex (Gray et al. 1996; Gioanni et al. 1999; Fu et al. 2000; Grillner and Svensson 2000; Mansvelder and McGehee 2000; Reid et al. 2000). Nicotine also excites nAChRs on gamma-aminobutyric acid (GABA)-releasing terminals (Schilström et al. 1998; Mansvelder and McGehee 2000). Thus, levels of GABA, an inhibitory neurotransmitter, are also increased by nicotine. However, the interplay between the quick desensitization of nAChRs on the GABA neuron and the higher doses of nicotine required to desensitize nAChRs on the glutamate neuron results in an increase in dopamine levels (Schilström et al. 1998; Mansvelder and McGehee 2000). A critical role may also be played by nicotine-induced increases in norepinephrine transmission, although the role of this transmitter system in nicotine dependence has not been investigated as extensively as that of the dopamine, glutamate, and GABA systems. The roles of endocannabinoids, serotonin, and endogenous opiates in nicotine addiction are less certain. For further discussion of neurosubstrates, see ‘Neurosubstrates of Nicotine Reinforcement’ in the ‘Pathophysiology of Nicotine Addiction’ section of Chapter 4 in the 2010 Surgeon General’s report.

The neurophysiological mechanisms associated with withdrawal symptoms may vary with the type of symptoms experienced (e.g., somatic vs. affective). The nAChRs appear to be involved in both the somatic and affective components of nicotine withdrawal. Decreased mesolimbic dopaminergic transmission seems to mediate various aspects of the withdrawal syndrome (Fung et al. 1996;

Hildebrand et al. 1998, 1999; Carboni et al. 2000). Noradrenergic and serotonergic systems may also play a role in withdrawal. Decreased glutamate transmission appears to mediate the affective aspects of withdrawal, but GABA transmission does not appear to change with withdrawal.

Trajectory of Addiction

The addiction caused by the nicotine in tobacco smoke is critical in the transition of smokers from experimentation to sustained smoking and, subsequently, in the maintenance of smoking for the majority of smokers who want to quit (USDHHS 2010, 2012). Substantial longitudinal research has shown that smoking typically begins with experimental use of cigarettes and that the transition to regular smoking can occur relatively quickly, with the smoking of as few as 100 cigarettes (USDHHS 2012). Longitudinal studies show that there are individual trajectories of smoking as tracked by the index of numbers of cigarettes smoked daily. These trajectories are variable, with some smokers quickly progressing to regular smoking and others doing so more slowly (USDHHS 2010, 2012). Research is in progress on the possible role of genetic factors in determining the trajectory of nicotine use.

The 2012 Surgeon General’s report makes clear that addiction can begin in people who begin experimenting with tobacco use during their teenage years (USDHHS 2012). Although the phenotype of addiction is not so well defined as with adults, symptoms of withdrawal occur among youth who become regular smokers. As documented in that report, the longitudinal studies show several different patterns of smoking uptake, with some young people rapidly escalating their use to a typical pattern of regular use and others doing so more slowly. Some adolescents may be able to smoke on an experimental or intermittent basis without becoming addicted (USDHHS 2012).

Health Consequences of Nicotine Exposure

Cancer

Nicotine is a highly bioactive compound with effects ranging from being a natural pesticide in tobacco leaves to causing addiction in tobacco users. For cancer, there is some biological basis for proposing that nicotine may

promote cancer based on experimental studies that have limitations in replicating human exposure and on mechanistic studies, but human evidence is lacking (Lee et al. 2005, 2012; Dasgupta and Chellappan 2006; Zheng et al. 2007; Catassi et al. 2008; Chen et al. 2008b, 2010; Egletton et al. 2008). Nicotinic receptors are found not only in the

brain but throughout the body; for example, in muscle, lung, endothelia, kidney, and skin (Imaprogo et al. 2011; Cardinale et al. 2012; Hurst et al. 2013). These receptors trigger a number of cellular pathways involved in carcinogenesis. The presence of nicotinic cholinergic receptors throughout the normal lung and in lung tumors has been well documented (Schuller 2009; Imaprogo et al. 2011). This section reviews the current literature that relates to the hypothesis that nicotine may contribute to the carcinogenic process. The evidence comes from experimental cell culture and animal studies, and from human studies including epidemiologic.

The potential for nicotine to contribute to the risk of incident cancer or cancer recurrence is important due to the number of smokers who have quit by using NRT, some of whom use NRT for long durations to remain smoking abstinent, and other smokers who switch to alternate sources of nicotine (e.g., e-cigarettes or smokeless tobacco products). Although using NRT or other noncombusted sources of nicotine is different than smoking in evident ways, the possibility of increased risk in long-term users compared to those who use such products only briefly for cessation merits consideration. Thus, when contemplating the available evidence, coming largely from laboratory experiments, the following questions need to be addressed: (1) What is the cancer risk for those who quit smoking but use long-term NRT or other sources of nicotine compared with those who continue to smoke? (2) What is the cancer risk of a lifetime pattern of repeatedly quitting with NRT and relapsing, but smoking fewer lifetime cigarettes overall? (3) What is the cancer risk of long-term NRT use without relapse to smoking or sustained switching to a noncombusted nicotine source compared with long-term abstinence without NRT or other source of nicotine or relapse to smoking? This section will address these questions.

Genotoxicity

There are mixed data for a genotoxic effect of nicotine. Most studies were negative that used the Ames assay (including urine of rats exposed to nicotine), chromosomal aberration and sister chromatid exchange (SCE) assays in Chinese hamster ovary cells, and the bacterial genotoxicity luminescence test (Mizusaki et al. 1977; Riebe et al. 1982; Doolittle et al. 1991, 1995; Yim and Hee 1995). In contrast, two studies were positive for chromosomal aberration and SCEs (Riebe and Westphal 1983; Trivedi et al. 1990), one was positive for micronuclei formation that was inhibited with antioxidants (Argentin and Cicchetti 2004), one was positive for an *Escherichia coli* POLA⁺/POLA⁻ mutation assay (Riebe et al. 1982), and another using nasal mucosal cells was positive by the Comet assay, which is inhibited by

antioxidants or nicotinic receptor inhibitors (Ginzkey et al. 2012). One study found that cotinine, and not nicotine, was genotoxic by the bacterial genotoxicity luminescence test, but another was null for the Ames assay and SCE induction (Doolittle et al. 1995; Yim and Hee 1995). Some reports indicate that nicotine can lead to the formation of DNA adducts using the ultrasensitive technique accelerator mass spectroscopy (Cheng et al. 2003). Although cigarette smoke is highly genotoxic, a comparison of Ames mutagenicity for cigarette smoke from cigarettes with differing nicotine yields did not indicate different mutagenic potential, suggesting that there was no additional contribution by nicotine (Chen et al. 2008a).

Effects of Nicotine on Carcinogenic Pathways

There are numerous studies that focus on lung cells and cells from other organs relating to nicotine exposure. A wide range of effects has been reported in cellular systems, including at doses similar to those in the blood of smokers (Cardinale et al. 2012). The presence of nAChRs throughout the lung has been well documented via protein studies and demonstration of the presence of transcripts for both normal tissues and lung tumors (Imaprogo et al. 2011). These receptors are important for triggering many signaling pathways in lung cells (Schuller 2009). In lung cells, nicotine has been shown to: (1) inhibit apoptosis including apoptosis induced by chemotherapy (Maneckjee and Minna 1990, 1994; Cardinale et al. 2012), which involves the PI3-K-Akt pathway and attendant positive effects on Bcl-2 and negative effects on BAD and BAX (West et al. 2003; Jin et al. 2004; Xin and Deng 2005); (2) affect proliferation by stimulating the release of epidermal growth factor and, therefore, activation of the Ras-Raf-ERK cascade (Dasgupta and Chellappan 2006; Carlisle et al. 2007; Paleari et al. 2008); and (3) stimulating fibronectin production activating ERK, PI3-K, mTOR, and the expression of PPAR- β/δ (Dasgupta et al. 2006). Also, there is evidence that nicotine may promote metastases because of stimulation of cell motility and migration, loss of adhesion, and inducing the transition of a well-differentiated epithelial cell to a highly invasive carcinoma via epithelial-mesenchymal transition (Catassi et al. 2008; Egletton et al. 2008; Cardinale et al. 2012).

An important consideration for cancer survival and metastasis is angiogenesis. A variety of mechanisms are stimulated by nicotine to promote angiogenesis; for example, promoting endothelial cell migration, proliferation, survival, and tube formation (Cardinale et al. 2012; Lee and Cooke 2012). Nicotine directly binding to nicotinic receptors in endothelial cells induced endothelial cell tube migration by stimulating VEGF in lung cancer cells (Conklin et al. 2002; Heeschen et al. 2002; Li and Wang

2006; Ng et al. 2007). Lower doses of nicotine in vitro induce endothelial cell proliferation, while higher doses induce cytotoxicity (Villalblanca 1998). These effects also occur via stimulation of nicotinic receptors in the endothelia. The angiogenic effect of nicotine involves MAPK, PI3K/Akt, and NF- κ B activation (Heeschen et al. 2002). Angiogenesis has been shown in a variety of tumor cells, such as breast, colon, and lung, implanted in a chick chorioallantoic membrane, and other systems (Heeschen et al. 2002; Mousa and Mousa 2006).

Limited research has addressed whether the nicotine in tobacco smoke somehow alters the toxicity of tobacco smoke. Chen and colleagues (2008a) conducted various in vitro studies comparing cigarettes with differing amounts of nicotine, and where nicotine was added back to the condensate. They found that nicotine attenuated the cytotoxicity of cigarette smoke through inhibition of apoptotic pathways, increased proliferative activity, and increased cell survival. There was no evidence of an effect on the gap junction intracellular communication, which is considered to be a marker of tumor promotion effects.

Experimental Animal Studies for Carcinogenicity

Several studies in experimental animals also did not indicate that nicotine alone is tumorigenic (Martin et al. 1979; Waldum et al. 1996; Hecht 2003; Murphy et al. 2011). These studies have included the inhalational route of exposure, fetal exposure, and exposure through maternal milk. The only exception to the null findings is the report of nicotine inducing sarcomas in the muscle or uterus of exposed A/J mice; other tumors, including those in the lung, were not observed in that same study (Galitovskiy et al. 2012). The A/J mouse model is used for assessing the carcinogenic effects of cigarette smoke in inducing lung tumors. However, the lack of nicotine induction of lung tumors may be related to the dose and route of exposure.

As a tumor promoter, nicotine has been reported to increase the frequency of tumors induced by agents such as nicotine-derived nitrosamine ketone, and 7,12-dimethylbenz(a)anthracene (Chen and Squier 1990), N-methyl-N'-nitro-N-nitrosoguanidine (Gurkalo and Volfson 1982), and N-[4-(5-nitro-2-furyl)-2-thiazolyl] formamide (LaVoie et al. 1985). Other studies showed that nicotine had no effect in promoting tumors related to other N-nitrosamines (Habs and Schmahl 1984) and had an anti-tumor effect in some cases (Zeller and Berger 1989). In a different tumor promotion model, nicotine induced lung tumors in hamsters in the presence of hyperoxia (Schuller et al. 1995). In addition, studies using cancer xenograft models have shown that nicotine promotes tumor growth

and metastases (Heeschen et al. 2001; Jarzynka et al. 2006; Al-Wadei et al. 2009; Davis et al. 2009).

Other studies have investigated the potential for nicotine to promote the carcinogenic effects of 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Maier and colleagues (2011) conducted a series of studies to determine if nicotine would promote the carcinogenesis induced by NNK. The results were null. The investigators used several models, including a crossed A/J and C57BL/6 mouse, a mutant *k-Ras* animal model prone to develop lung tumors, and a syngeneic lung-cancer graft model with NNK-transformed lung cancer cells. The dosing of nicotine, albeit by drinking water, was specifically intended to be similar to the levels human smokers receive when using NRT. In a separate study, Murphy and colleagues (2011) studied the A/J mouse and did not find a difference in tumorigenesis whether the nicotine was given before or after NNK, compared to NNK alone.

In summary, the findings of animal studies do not support the hypothesis that nicotine is a complete carcinogen. It is a tumor promoter in some experimental models, although not for tobacco-specific nitrosamines. Studies examining other classes of tobacco smoke carcinogens (e.g., polycyclic aromatic hydrocarbons) would need to be performed to better define the potential cancer risk inferred from animal studies.

Human Studies

Very little human data are on human cancer risk relating to nicotine. The Lung Health Study is the only study that provides information about long-term users of NRT (Murray et al. 2009). This study was not designed to directly examine nicotine's potential cancer risk. It was a 5-year randomized trial to assess the effects of smoking cessation and reduction on chronic lung disease and lung function. Among 5,887 persons initially enrolled, the researchers continued to follow them for an additional 7 years ($n = 3,220$). Study participants were offered NRT without consideration of randomization or study design. Although they were encouraged to use NRT for only 6 months, many continued to use it long term. A total of 75 lung cancers were diagnosed among smokers and quitters of the extended surveillance group, but the use of NRT was not associated with lung cancer (or other cancers). A major limitation was the short follow-up period of only 7 additional years. Notwithstanding the limitations, this study at least does not indicate a strong role for nicotine in promoting carcinogenesis in humans, and clearly the risk, if any, is less than continued smoking.

Another approach to examining whether nicotine could contribute to carcinogenesis would be to consider its delivery in the context of long-term smokeless tobacco

use. Smokeless tobacco products used in northern European countries appear to result in a substantially reduced exposure to many tobacco smoke carcinogens, because smokeless tobacco does not undergo combustion. Epidemiologic studies of smokeless tobacco indicate that it increases the risk of oral cavity, esophageal and pancreatic cancers, (IARC 2012) at least for some forms of smokeless tobacco. The associated risks for these sites are less than the risk of these cancers from smoking; however, high rates of oral cancers in India and Sudan are attributable to the use of smokeless tobacco products (Accortt et al. 2005; Boffetta et al. 2005, 2008; Luo et al. 2007). The risks for many cancers commonly associated with smoking are not elevated by long-term smokeless tobacco use. This pattern of risk suggests that in humans nicotine may not have a strong tumor promoting effect. Further, although levels of nicotine are similar for smokers and smokeless tobacco users, the risk of cancer of the oral cavity, esophagus, and pancreas is less for the smokeless tobacco users, indicating that exposures other than nicotine contribute to the cancer process. This conclusion, however, needs to be tempered by the possibility that there may be a different risk due to route of exposure, because smokeless tobacco use leads to nicotine exposure via the oral mucosa and ingestion, while smoking results in inhalation exposure. Risks inferred from smokeless tobacco studies may not extend directly to inhalation exposures.

There is some evidence that NRT can endogenously lead to the formation of the carcinogenic tobacco-specific nitrosamines, NNK and N-nitrosonornicotine (NNN), at least in rats (Carmella et al. 1997), which conceptually would increase cancer risk if the resultant dose was similar to those which result from smoking or the use of smokeless tobacco. A smoking cessation study by Stepanov and colleagues (2009b) demonstrated that NNK metabolites were not detectable in persons using NRT (Hecht et al. 1999). However, they did find intermittently high levels of NNN similar to baseline smoking levels in 13 of 34 participants using NRT gum or lozenges, and in only 1 of 9 persons using the patch (Stepanov et al. 2009a). Although these data indicate a potential cancer risk to NRT users, especially oral users, it is important to realize that NNN is only one of the tobacco-specific nitrosamines in cigarette smoke. Thus, it will be important to quantify the level of risk from long-term use of NRT or other non-combusted sources of nicotine, particularly if long-term nicotine use from sources other than smoking becomes more prevalent. Although there is a variety of evidence that nicotinic receptor polymorphisms play a role in lung cancer risk and in determining the amount of tobacco use, the genes on chromosome 15 (i.e., *CHRNA3*, *CHRNA4*, *CHRNA5*, *CHRNA6*, *CHRN2*, *CHRN3*, and *CHRN4*),

chromosome 1 (i.e., *CHRN2*), chromosome 8 (*CHRN3*), and chromosome 20 (*CHRNA4*), it is not known how much of an effect there is, if any, by these genes on carcinogenesis independently of an effect on tobacco use (Thorgeirsson et al. 2008; Bierut 2009, 2010; Johnson et al. 2010; Li et al. 2011; Russo et al. 2011; Sarginson et al. 2011; Sorice et al. 2011; Timofeeva et al. 2011; Wassenaar et al. 2011; Broms et al. 2012; Budulac et al. 2012; Kapoor et al. 2012). Separately, there are data on CYP2A6 genetics and nicotine metabolism that show associations with smoking behavior, nicotine levels, and lung cancer risk (Wassenaar et al. 2011; Gold and Lerman 2012; Liu et al. 2013; Zhu et al. 2013).

Summary

There is insufficient data to conclude that nicotine causes or contributes to cancer in humans, but there is evidence showing possible oral, esophageal, or pancreatic cancer risks. Additionally, there is substantial experimental evidence indicating that nicotine is bioactive for a number of carcinogenic mechanisms in experimental systems. Although *in vitro* data are suggestive of relevant biological activity, this is not supported overall by the most recent experimental animal studies. In humans, there has been limited research and only one relatively short-term follow-up study on nicotine and cancer.

Cardiovascular Diseases

The potential role of nicotine in atherogenesis and in triggering acute coronary events has been discussed extensively in the medical literature (USDHHS 2010) and reviewed in Chapter 8, "Cardiovascular Diseases," of this volume. It is likely that the sympathomimetic effects of nicotine increase heart rate and myocardial contractility, increase coronary vascular resistance, and reduce insulin sensitivity, contributing to some extent to increasing cardiovascular risk in smokers. However, other mechanisms by which nicotine might contribute to atherogenesis have also been proposed (Lee and Cooke 2011). nAChRs are found not only in neuronal and muscle cells but also in endothelial cells and immune cells. Nicotine has been reported to induce the proliferation of vascular smooth muscle cells and migration of cells into blood vessels (Lee and Cooke 2012). In apoE^{-/-}deficient mouse models of atherosclerosis, oral nicotine was shown to promote plaque progression and neovascularization. The primary nicotine receptor in endothelial cells is the alpha 7 homomeric nicotine receptor. In mice deficient in this receptor subtype, the effect of nicotine in augmenting angiogenesis

is blunted. Tolerance develops to many of the effects of nicotine with prolonged exposure, both in people and animals. Chronic oral administration of nicotine was shown to abolish the augmenting effect of nicotine on angiogenic responses to limb ischemia (Konishi et al. 2010). Thus, it is unclear whether the short-term effects of nicotine in enhancing angiogenesis persist with long-term exposure, as seen with users of tobacco or other nicotine-delivering products.

A genomewide association study found an association between a gene cluster on chromosome 15 and an increased risk of peripheral arterial obstructive disease (Thorgeirsson et al. 2008). Since this gene cluster is strongly associated with the level of nicotine dependence, it is not clear whether the association indicates a direct role of nicotine in atherosclerosis.

Immune Function and Related Disorders

Nicotine has both stimulatory and suppressive effects on the immune system, and levels of nicotine, inferred from urine markers, have been linked with both induction of and protection from immunologically mediated disease (Cloëz-Tayarani and Changeux 2007). Nicotine exerts its effects via pentameric nicotinic cholinoreceptors that vary in their alpha and beta subunit composition (USDHHS 2010). Nicotine can act directly on cells, but *in vivo* it is also a direct activator of the sympathetic nervous system, which itself can have strong immune-regulatory effects. Aged-smoke extracts that still contain all of the nicotine of fresh smoke but lack reactive intermediates are much less active in immune assays than freshly prepared, oxidant-rich extracts (Laan et al. 2004; Bauer et al. 2008). Nicotine patches or mecamylamine (a full antagonist) or nicotine partial antagonists (e.g., varenicline), which are used as adjuncts in smoking cessation, are not immune-modulatory in humans (Cahill et al. 2008), and snus (the nicotine-rich low nitrosamine smokeless tobacco product that is used widely in Sweden) does not replicate the effects of smoking. This interpretation is consistent with research with macrophages where the effects of smoking on immunity were linked to oxidation (McMaster et al. 2008).

This highly contradictory literature is further reinforced by studies on human immune effector cells linked to atherosclerosis where nicotine was found to stimulate, not suppress, dendritic cells as part of adaptive immune responses (Aicher et al. 2003). However, a large body of evidence suggests that nicotine acting via the alpha 7 subunit that contains neuronal nicotinic cholinoreceptors

can suppress cellular immunity both *in vivo* and *in vitro*. Nicotine suppresses the production of antibodies in B cells, reduces the proliferation of T cells, and induces an anergy-like state where signaling via the T cell receptor is attenuated (Geng et al. 1995, 1996). These effects have been linked to the impaired host defense response to bacteria and viruses in nicotine-treated animals.

In summary, as reviewed here and discussed in more detail in Chapter 10, “Other Specific Outcomes,” there is compelling evidence that nicotine affects cellular immunity, either directly by interacting with nicotinic cholinoreceptors or indirectly via its effects on the nervous system. Whether these effects contribute to the overall adverse effects of cigarette smoke on immunity is less well-understood.

Reproductive Health Outcomes

Pregnancy is accompanied by a complex series of maternal physiological adjustments to support fetal growth and homeostasis. Basic characteristics of embryologic and fetal development include cell growth, differentiation, interaction, and migration. Teratogenic factors can disturb one or more of these processes, resulting in abnormalities in fetal structure or function, including growth retardation, malformations due to abnormal growth or morphogenesis, and altered CNS performance (Hacker et al. 2010). In addition, there is a growing appreciation that teratogenic substances can have effects throughout the duration of pregnancy, and that those effects can be more subtle than gross anatomic anomalies (Yaffe and Aranda 2011). Thus, for women of reproductive age, a comprehensive exploration of the known and potential harms of the range of available tobacco products, all of which contain nicotine, is needed. The health effects of smoking and of components in tobacco smoke, including nicotine, on reproduction are reviewed in Chapter 9, “Reproductive Outcomes.” A focused review of what is known about the effects of nicotine on maternal and fetal health outcomes is presented here.

Cigarette use before and/or during pregnancy remains a major cause of reduced fertility as well as maternal, fetal, and infant morbidity and mortality (see Chapter 9) and over 400,000 live-born infants in the United States are exposed *in utero* to tobacco from maternal smoking annually (Hamilton et al. 2012; Tong et al. *in press*). Conditions causally associated with maternal prenatal smoking include preterm delivery and fetal growth restriction, placenta previa, placental abruption, sudden infant death syndrome (SIDS), some congenital anomalies, ectopic

pregnancy, and reduced preeclampsia risk. Maternal prenatal smoking has also been associated with stillbirth and spontaneous abortion (USDHHS 2004).

Much of what can currently be inferred about nicotine and reproductive health comes from studies comparing the effects of prenatal smokeless tobacco use with the effects of prenatal smoking because smokeless tobacco products do not expose users to products of combustion, but all contain nicotine. In addition, some smokeless products such as Swedish snus contain lower levels of certain toxicants when compared with conventional smokeless tobacco products (Stepanov et al. 2008). This differential exposure between snus and other smokeless products allows researchers to study the health effects of smokeless tobacco while reducing the likelihood that adverse outcomes will mistakenly be attributed to nicotine. Studies of health outcomes in randomized trials of nicotine therapy in pregnant women offer additional insights.

Fetal Growth Restriction

It has been believed for decades that in utero exposure to cigarette smoke causes fetal growth restriction through nicotine-mediated vasoconstriction of utero-placental vessels (Lambers and Clark 1996). However, this hypothesis has been questioned because it is not likely that nicotine's vasoconstrictive effects are sufficient to overcome placental circulatory reserve (Benowitz and Dempsey 2004). Further evidence against a vasoconstrictive mechanism comes from studies of pregnancy outcomes in smokeless tobacco users. These studies have consistently demonstrated only modest contributions of smokeless tobacco to reduced infant birth weight (England et al. 2003, 2012; Gupta and Sreevidya 2004; Juarez and Merlo 2013). Results from a population-based study in Sweden conducted from 1999–2010 suggest that smokeless tobacco (snus) use increases the risk for delivering a small-for-gestational-age infant (for term births, adjusted odds ratio [AOR] = 1.21; 95% confidence interval [CI], 1.02–1.43). The effect was smaller in magnitude for smokeless tobacco than for cigarette smoking (AOR = 2.27; 95% CI, 2.62–2.91) (Baba et al. 2013). In a trial of 250 women randomized to a nicotine patch (15 mg) or to placebo for 11 weeks, the researchers found that there was no difference between the two arms in quit rates or in saliva cotinine, but birth weight was significantly higher in the NRT group (186g [95% CI, 35–336g]), possibly due to reduced cigarette smoking and exposure to products of combustion. Taken together, these studies support a modest role for nicotine in fetal growth restriction.

Preterm Delivery

Maternal smoking is associated with a 27% increase in the risk of preterm delivery (Shah and Bracken 2000) and several studies have also found an increased risk of preterm delivery in smokeless tobacco users (Gupta and Sreevidya 2004; Baba et al. 2012; England et al. 2013). In Sweden, snus use and smoking during pregnancy were both associated with increased risks of preterm birth, and the magnitudes of the associations were similar (Baba et al. 2012). Together, these studies provide evidence that nicotine increases the risk of preterm delivery. The potential roles of nicotine and products of combustion in preterm delivery are discussed in detail in Chapter 9.

Stillbirth, Perinatal Mortality, and Sudden Infant Death Syndrome

Studies of stillbirth have also been conducted among smokeless tobacco users. Studies in India and Sweden showed an increased risk of stillbirth in women using smokeless tobacco (Krishna 1978; Gupta and Subramoney 2006; Wikström et al. 2010). In the study conducted in Sweden, when antenatal bleeding and small-for-gestational-age deliveries were excluded, the smoking-related risk of stillbirth was markedly reduced although the elevated risk for snus users remained the same. These findings suggest that the mechanisms underlying the associations between smoking and stillbirth and between smokeless tobacco use and stillbirth both involve nicotine, but other factors may also contribute to increased risk in smokers (Wikström et al. 2010).

The effects of nicotine on the brainstem, cardio-pulmonary integration, fetal and neonatal responses to hypoxic stress, and arousal in early infancy are reviewed in Chapter 9. For example, it has been hypothesized that tobacco-related changes in autonomic function and/or arousal could increase the risk of SIDS, although a mechanistic pathway has not been established (American Academy of Pediatrics Task Force on Sudden Infant Death Syndrome 2011). Studies of human infants have shown an association between prenatal exposure to cigarette smoke and impaired recovery from hypoxia in preterm infants (Schneider et al. 2008) and an association with impaired arousal patterns that correlates with cotinine levels (Richardson et al. 2009). Maternal prenatal cigarette use has also been associated with increased obstructive apnea and decreased arousal in response to apnea events in infants (Sawnani et al. 2004). Additional data suggest that maternal prenatal smokeless tobacco use also increases infants' risk of apnea, of a similar magnitude to that seen with maternal smoking (Gunnerbeck et al. 2011).

Extensive animal research has generated plausible and generalizable models to explain how nicotine could increase the risk of SIDS and perinatal mortality (Slotkin and Seidler 1988); these models are reviewed in Chapter 9. In one such model, the fetal/infant protective response to hypoxia is impaired. During parturition, the fetus normally experiences significant hypoxia, but is able to respond with a massive release of catecholamines from the adrenal medulla (Lagercrantz and Bistolfelli 1977; Lagercrantz and Slotkin 1986) in order to maintain blood flow to the brain and heart. In the fetus and neonate, the adrenal gland responds directly to hypoxia, independent of central reflexes, and this direct mechanism persists until chromaffin cells differentiate after the development of splanchnic nerve function (Slotkin 1998). However, prenatal nicotine exposure in rat models causes immature chromaffin cells in the adrenal gland to differentiate prematurely, resulting in loss of the normal direct stimulation of the adrenal gland by hypoxia, complete absence of catecholamine release, and impaired cardiac response in the presence of hypoxia (Slotkin 1998). The effect is a temporary loss of a critical protective response to hypoxia and, theoretically, is accompanied by a temporary increased mortality risk (Slotkin 1998).

Congenital Malformations

In this report, the evidence was determined to be sufficient to support a causal relationship between maternal smoking and orofacial clefts, and to be suggestive of a causal relationship for clubfoot, cryptorchidism, gasteroschisis, and some types of congenital heart defects (see Chapter 9). The 2010 Surgeon General's report examined the biological basis for increased risk of congenital defects in infants of mothers who smoke and specifically considered the potential role of nicotine (USDHHS 2010); this report updates that review. A number of potential mechanisms were cited by which nicotine having crossed the placenta, could contribute to defects.

Summary

The evidence supports the hypothesis that nicotine plays a key role in mediating adverse effects of smoking on reproductive health, including preterm delivery and stillbirth. Smoking has been linked to diverse adverse health outcomes for the developing fetus and experimental research and pharmacologic understanding indicate that nicotine specifically has a role in causing them.

Lung Development

The 2004 Surgeon General's report concluded that “the evidence is sufficient to infer a causal relationship between maternal smoking during pregnancy and a reduction of lung function in infants” (p. 27). This conclusion was based on epidemiologic studies that consistently demonstrated an inverse dose-response relationship between the number of cigarettes smoked per day during pregnancy by the mother and the level of lung function and pulmonary compliance in the newborn. The 2006 Surgeon General's report expanded the conclusions of the 2004 report to address the duration of effects after infancy: “The evidence is sufficient to infer a causal relationship between maternal smoking during pregnancy and persistent adverse effects on lung function across childhood” (p. 399). The report further concluded that the “evidence shows that parental smoking (*referring to secondhand smoke exposure and maternal smoking during pregnancy*) reduces the maximum achieved level (*of lung growth*), although not to a degree (on average) that would impair individuals” (p. 400). “Nonetheless, a reduced peak level increases the risk for future chronic lung disease, and there is heterogeneity of the effect so that some exposed children may have a much greater reduction than the mean” (p. 400). This section considers studies on the mechanisms underlying the relationship between maternal smoking and the infant or child's lung development and function and the potential role of nicotine in these mechanisms.

Human lung development begins in the embryonic stage and extends through early adulthood. During fetal lung growth, structural and vascular development take place and major airway branching and mesenchymal proliferation are complete by the end of the second trimester. Alveolarization (marked by septation and multiplication of alveoli) begins in the third trimester of pregnancy and multiplication of alveolar number continues to 2–3 years of age, when lungs reach the full adult quantity of approximately 300 million alveoli. Alveolar size and surface, however, increase until after adolescence as the lungs grow (Joshi and Kotecha 2007). Lung development is tightly regulated, and intrauterine and postnatal environmental factors can interfere with this complicated set of processes. The alveolar phase of development is particularly sensitive to late-pregnancy and postnatal insults (Harding and Maritz 2012).

As reviewed in previous Surgeon General's reports, the clinical and epidemiologic data strongly support that maternal smoking in pregnancy has lasting effects on lung development. Studies of infants exposed in utero to tobacco smoke show evidence of impaired lung function with reduced respiratory compliance, forced expiratory flow, and tidal breathing ratio, consistent with impaired airways development (Hanrahan et al. 1992; Tager et al. 1995; Lødrup Carlsen et al. 1997; Stocks and Dezateux 2003). Maternal prenatal smoking has also been associated with impaired lung function with reduced small airway flow rates in school-age offspring (Cunningham et al. 1994, 1995), even after adjustment for the offspring's current and past exposure to secondhand smoke (Gilliland et al. 2000), and with deficits in measures of airflow among adolescents, especially among those with a history of early-onset asthma (Gilliland et al. 2003). There is also evidence to suggest that exposure to prenatal tobacco smoke could result in an acceleration of lung aging and an increased susceptibility to obstructive lung disease, lasting beyond childhood (Maritz and Harding 2011).

Numerous studies using animal models have been conducted to develop a better understanding of the mechanisms through which maternal smoking affects fetal and infant lungs. These studies are summarized in several review articles (Stocks and Dezateux 2003; Maritz 2008; Maritz and Harding 2011). Studies in primates specifically examining nicotine exposure have demonstrated decreased lung size and volume, increased type I and type III collagens, decreased elastin in the lung parenchyma, increased alveolar volume, and increased airway wall area (Sekhon et al. 1999, 2001, 2002). Animal studies have also demonstrated decreased expiratory flow rates and increased pulmonary resistance with nicotine exposure, similar to findings in human studies (Hanrahan et al. 1992; Cunningham et al. 1995; Tager et al. 1995; Dezateux et al. 1999). Primate studies further suggest that nicotine-induced changes in airway wall thickness or stiffness could be an underlying cause of altered lung function (Pierce and Nguyen 2002; Sekhon et al. 2002). Finally, nicotine exposure in fetal lambs has been associated with accelerated maturation of lung acini and reduced proximal airway conductance (Sandberg et al. 2004), hyperreactive proximal airways, and changes in proximal airway wall composition with associated defects in airflow (Sandberg et al. 2011).

At the molecular level, nicotine crosses the placenta and binds nAChRs in numerous locations in the lung, including bronchial epithelial cells, alveolar epithelial cells, neuroendocrine cells, submucosal glands, airway and vascular smooth muscle cells, fibroblasts, and pulmonary macrophages (Pierce and Nguyen 2002). Nicotine administration to pregnant rhesus monkeys is associated with

an increase in nAChRs in the lungs (Sekhon et al. 1999; Fu et al. 2009), increased collagen deposition in airway walls, and increases in the numbers of alveolar type II and neuroendocrine cells (Sekhon et al. 1999, 2002). Coinciding with these changes are alterations in smooth muscle and vascular tension, perhaps explaining the effects of maternal smoking on infant lung function (Stocks and Dezateux 2003). Other hypothesized mechanisms through which nicotine could affect lung development include premature onset of cell differentiation and decreased replication and impaired alveolar development—resulting from altered expression or deposition of elastin (Pierce and Nguyen 2002; Stocks and Dezateux 2003).

Together, these findings indicate that nicotine is a primary mediator of many of the adverse effects of maternal smoking on fetal lung development. However, the mechanisms involved remain incompletely understood.

Summary

Studies reviewed in the 2004 and 2006 Surgeon General's reports and subsequently published data collectively show that prenatal tobacco exposure affects the structure and function of the lung; these effects may have consequences that last into childhood beyond, as lung development and growth are completed. Studies in rhesus monkeys, which have lung development similar to that of humans, and in other animal models consistently show that nicotine may be the primary mediator of many of the adverse effects of maternal smoking on fetal lung development.

Cognitive Function

Researchers have suggested that smoking may have cognition-enhancing properties (West 1993; Heishman et al. 2010), such as improvements in sustained attention, reaction time, and memory (Evans and Drobis 2008; Poorthuis et al. 2009; Heishman et al. 2010). Initial reports of improved cognitive function were based on empirical evidence from smokers (Bell et al. 1999); thus, these observations could reflect the mitigation of cognitive impairment from nicotine withdrawal, enhancement of smokers' cognitive function independent of nicotine's effects on withdrawal symptoms, or both. Interest in the effects of nicotine on cognition has since expanded to include healthy nonsmokers and individuals with underlying neuropsychiatric conditions accompanied by cognitive deficits. Concurrently, there is a growing awareness of the potential harms of nicotine exposure during certain vulnerable stages of brain development, such as during fetal and adolescent growth (Dwyer et al. 2008; Duncan et

al. 2009; Poorthuis et al. 2009; Bublitz and Stroud 2012; Goriounova and Mansvelder 2012). This section reviews the evidence on the effects of nicotine on cognitive function in general (in smokers and nonsmokers), and in potentially vulnerable populations.

Cognitive Function and the Nicotinic Acetylcholine Receptor System

Underlying the purported connection between nicotine and cognitive enhancement is the role of nAChRs in attention, learning, memory, and cortical plasticity (Wallace and Bertrand 2013). nAChRs are receptors that normally bind endogenous neurotransmitter acetylcholine, but are also particularly responsive to nicotine. nAChRs are abundant in brain regions associated with learning and memory, including the prefrontal cortex (Poorthuis et al. 2009), and in primate and rodent models, depletion of acetylcholine in the prefrontal cortex results in impaired attentional performance (Poorthuis et al. 2009; Wallace and Bertrand 2013). $\beta 2$ nAChRs are especially abundant in the brain and have a high affinity for nicotine (Evans and Drobis 2008; Poorthuis et al. 2009; Herman and Sofuoğlu 2010). Recent evidence from animal studies suggests that $\beta 2$ nAChRs play a critical role in regulating attention (Howe et al. 2010; Poorthuis et al. 2013a). Additional research has demonstrated that nicotine interferes with cholinergic control of $\beta 2$ nAChRs in the prefrontal cortex in mice, which could result in acute impairment of attention and alterations of the prefrontal cortex network, and lead to long-term effects on attention (Poorthuis et al. 2013a). Mice lacking the $\beta 2$ nAChR subunit demonstrate deficits in executive function (Granon et al. 2003).

Effects of Nicotine on Cognitive Function in Healthy Adult Smokers and Nonsmokers

In adults, the negative effects of nicotine withdrawal on cognitive function have been documented in both humans and animals, and the administration of nicotine during withdrawal mitigates cognitive impairment (Evans and Drobis 2008). In dependent smokers, abstinence from smoking is associated with reductions in working memory and sustained attention (Evans and Drobis 2008), and adverse effects on attention can be seen as early as 30 minutes after smoking the last cigarette (Hendricks et al. 2006). Nicotine withdrawal is also commonly accompanied by symptoms of negative affect (anxiety and depression) (Edwards and Kendler 2011) and relief of this symptom may be an important element of addiction in smokers (Baker et al. 2004). Because negative affect and attentional control are related, the effects of smoking on these two domains could be interrelated (Evans and Drobis 2008).

Whether there are direct effects of nicotine on cognitive function (positive or negative) in nonabstinent smokers and in healthy nonsmoking adults is less clear. In a recent meta-analysis of double-blind, placebo-controlled studies examining the acute effects of nicotine (administered mainly as nicotine replacement product) on cognitive function in nonsmokers and smokers abstinent for 2 hours or less, nicotine was found to result in cognitive enhancement in six of nine performance domains: fine motor, alerting attention-accuracy and response time (RT), orienting attention and RT, short-term episodic memory accuracy, and working memory RT (Heishman et al. 2010). To separate the effects of nicotine on symptoms of withdrawal versus its direct effects, the results were stratified by smoking status. The effects on alerting attention accuracy and short-term episodic memory accuracy were significant in smokers but not in nonsmokers; effects on alerting attention RT were significant in nonsmokers but not in smokers; effects on working memory RT were significant in both smokers and nonsmokers, and in the remaining outcomes there were insufficient numbers of studies on smokers to conduct stratified analysis. Thus, nicotine may have some positive effects on cognitive performance that are unique to nonsmokers. No studies meeting the inclusion criteria for the review addressed learning or executive function.

Critical Periods of Exposure in the Nervous System

Across the lifespan, there are several developmental windows during which exposure to nicotine may have adverse consequences. In the fetus, nicotine targets neurotransmitter receptors in the brain, potentially resulting in abnormalities in cell proliferation and altering synaptic activity (Slotkin 1998). The effects of prenatal exposure to nicotine on the fetal nervous system are summarized earlier in this chapter and elsewhere in this report (see Chapter 9).

Human brain development continues far longer than was previously realized. In particular, areas involved in higher cognitive function such as the prefrontal cortex continue to develop throughout adolescence (the period during which individuals are most likely to begin smoking) and into adulthood (Poorthuis et al. 2009; Goriounova and Mansvelder 2012). During this extended period of maturation, substantial neural remodeling occurs, including synaptic pruning and changes in dopaminergic input, as well as changes in gray and white matter volume. The density of projections from the amygdala to the prefrontal cortex increases, suggesting that there is substantial development of the connectivity between the emotional and cognitive areas of the brain (Durston et al. 2001; Ernst and Fudge 2009). The cholinergic system, which matures

in adolescence, plays a central role in maturation of cognitive function and reward (Poorthuis et al. 2009).

Smoking during adolescence has been associated with lasting cognitive and behavioral impairments, including effects on working memory and attention, although causal relationships are difficult to establish in the presence of potential confounding factors (Goriunova and Mansvelder 2012). In addition, functional magnetic resonance imaging in humans showed that young adult smokers had reduced prefrontal cortex activation during attentional tasks when compared with nonsmoking controls. Diminished prefrontal cortex activity correlated with duration of smoking, supporting the hypothesis that smoking could have long-lasting effects on cognition (Musso et al. 2007).

Animal studies provide evidence that nicotine exposure during adolescence has effects on the brain that differ from exposure during other periods of development. Studies in rodents show that nicotine induces changes in gene expression in the brain to a greater degree with adolescent exposure than during other periods of development (Schochet et al. 2005; Polesskaya et al. 2007). DNA microarrays in female rats demonstrated that gene expression in response to nicotine was most pronounced around the age of puberty and the effects of nicotine on gene expression were most dramatic in the hippocampus, with upregulation of growth factors and cyclic AMP signaling pathways (Polesskaya et al. 2007). Expression of the *Arc* gene (implicated in synaptic plasticity, learning, memory, and addiction) was upregulated in the prefrontal cortex in adolescent rats exposed to nicotine, and to a much greater extent than in adult rats (Schochet et al. 2005).

Nicotine exposure during adolescence also appears to cause long-term structural and functional changes in the brain (Dwyer et al. 2009). Exposure of adolescent rats to nicotine resulted in upregulation of nAChRs in the midbrain, cerebral cortex, and hippocampus that was still present 4 weeks after the end of the exposure, in contrast to adult rats in which upregulation had disappeared by 4 weeks. Receptor upregulation was more pronounced in male adolescent rats than females (Trauth et al. 1999). Indices of cell damage and size in rats with adolescent nicotine exposure indicate reduced cell number and size in the cerebral cortex, midbrain, and hippocampus (Trauth et al. 2000). Structural changes in prefrontal cortex neurons have also been described, including increased dendritic length and spine density (Brown and Kolb 2001).

Some effects of nicotine exposure appear to be gender-selective. For example, adolescent nicotine exposure

resulted in increased membrane protein concentration in the hippocampus, consistent with cell damage and/or cell loss, in female rats, but not in males (Trauth et al. 1999). Male rats with nicotine exposure demonstrated a loss of a dopaminergic response to nicotine more than a month after exposure ended, while females exhibited deficits in hippocampal norepinephrine content and turnover during the month after nicotine exposure (Trauth et al. 2001). Because estrogen regulates hippocampal cell proliferation in an adult rat, there may be interactions between the effects of nicotine and the hormonal milieu in the adolescent (Trauth et al. 1999).

Corresponding behavioral studies of adolescent rats have also shown effects of nicotine exposure. Exposed females exhibited reduced grooming during exposure and reduced locomotion and rearing after cessation of exposure; these results were not seen in exposed adult rats, which show increased grooming in both genders and no decrease in locomotion (Trauth et al. 2000). Adolescent rats, tested 5 weeks after nicotine exposure ended, demonstrated an increase in premature responses and a reduction in correct responses when given a serial reaction time test; this effect was not seen with adult exposure (Counotte et al. 2009).

Thus, adolescents appear to be particularly vulnerable to the adverse effects of nicotine on the CNS. Based on existing knowledge of adolescent brain development, results of animal studies, and limited data from studies of adolescent and young adult smokers, it is likely that nicotine exposure during adolescence adversely affects cognitive function and development. Therefore, the potential long-term cognitive effects of exposure to nicotine in this age group are of great concern.

The effects of nicotine exposure on cognitive function after adolescence and young adulthood are unknown. There are data to suggest that smoking accelerates some aspects of cognitive decline in adults, and that these effects appear to be mediated by an increased risk of respiratory and cardiovascular disease (Swan and Lessov-Schlaggar 2007; Almeida et al. 2011). However, in a cohort study of more than 7,000 men and women, the authors found that current male smokers and recent former smokers had a greater 10-year decline in global cognition and executive function than never smokers (with the greatest adverse effect on executive function); these differences were not explained by other health behaviors or measures, including heart disease and stroke, and measures of lung function. An analysis using pack-years² as the exposure measure provided evidence of a dose-response relation-

²Pack-years: the number of years of smoking multiplied by the number of packs of cigarettes smoked per day.

ship. The results of the latter study suggest that there may be mechanisms contributing to cognitive decline in addition to and independent of respiratory and cardiovascular disease; however, whether nicotine plays a role in accelerating cognitive decline is unknown.

Other Vulnerable Populations

Although the contribution of nicotine to the effects of smoking on cognitive decline is unclear, there has been a great deal of interest in applications of nicotine as a treatment for several conditions characterized by cognitive deficits, including Alzheimer's disease and Parkinson's disease. These disorders have underlying deficits in the cholinergic system, and it has been hypothesized that nicotine and/or nicotine analogs may be effective in attenuating symptoms or slowing disease progression. This hypothesis is further supported by research (reviewed earlier in this chapter) suggesting that acute administration of nicotine has cognitive-enhancing properties. In addition, some early observational studies showed evidence for a reduced risk of Alzheimer's in smokers, suggesting that components in tobacco smoke, such as nicotine, may have protective properties. A growing body of evidence now links smoking to an increased risk for Alzheimer's disease (Almeida et al. 2002; Anstey et al. 2007; Hernán et al. 2008; Purnell et al. 2009) rather than a reduced risk; however, research on nicotine as a treatment for this condition (and for Parkinson's disease) continues.

Other disorders associated with cognitive and attentional impairment, such as schizophrenia and attention deficit hyperactivity disorder (ADHD), are characterized by a very high prevalence of smoking among those affected. It has been proposed that individuals with these disorders smoke in order to alleviate the symptoms of their disease, and a number of clinical trials using nicotine as a therapeutic agent have been conducted.

Alzheimer's Disease

Alzheimer's disease is a common form of dementia in which individuals experience ongoing deterioration of cognitive abilities. Although smoking is recognized as a risk factor for Alzheimer's disease (Peters et al. 2008; Cataldo et al. 2010), acute nicotine administration has been reported to improve some Alzheimer's symptoms, such as recall, visual attention, and mood (Lopez-Arrieta and Sanz 2001). The plausibility of this effect is supported by studies of Alzheimer's disease patients showing deficits in cholinergic systems and a loss of nicotinic binding sites (Whitehouse et al. 1982). However, evidence from randomized trials to support improvement of Alzheimer's symptoms from nicotine treatment is sparse. In a 2001 Cochrane review updated in 2010, the authors found no

double-blind, placebo-controlled, randomized trials of treatment for Alzheimer's disease with nicotine and concluded that there is no evidence to recommend nicotine as a treatment for Alzheimer's disease (Lopez-Arrieta and Sanz 2001).

Parkinson's Disease

Parkinson's disease is a degenerative hypokinetic movement disorder. Most patients with Parkinson's disease will also eventually develop cognitive impairment—with deficits in attention, executive and visual-spatial functions, and memory—and subsequent dementia. In Parkinson's disease, both the dopaminergic and cholinergic systems undergo degeneration, which leads to deficits in dopamine and acetylcholine at synapses; thus, nicotinic mechanisms may play a role in cognitive deficits. In contrast to Alzheimer's, data consistently support that smokers are at reduced risk for developing Parkinson's disease (Ritz et al. 2007; Wirdefeldt et al. 2011), and twin studies have reported a 20–30% reduction of Parkinson's disease risk for ever smoking or regular smoking in monozygotic and dizygotic, same-gender male twin pairs who were discordant for Parkinson's disease (Tanner et al. 2002; Wirdefeldt et al. 2005). This suggests that genetic factors contributing to both Parkinson's disease and smoking are not responsible for the apparent smoking and Parkinson's disease association.

Two studies have examined the association between smokeless tobacco use and risk of Parkinson's disease: a case-control study found a significant inverse association (odds ratio [OR] 0.18; 95% CI, 0.04–0.82, in ever users vs. never users of smokeless tobacco) (Benedetti et al. 2000) and a prospective cohort study that assessed Parkinson's disease mortality as the outcome found a relative risk of 0.22 (95% CI, 0.07–0.67) for current users of smokeless tobacco versus never users (O'Reilly et al. 2005). These studies add support for a protective role for nicotine. However, there are few controlled trials of the effects of nicotine on cognitive function in patients with Parkinson's disease, and results have been inconsistent (Kelton et al. 2000; Vieregge et al. 2001; Lemay et al. 2004; Holmes et al. 2011).

ADHD and Schizophrenia

Several neuropsychiatric disorders characterized by attention-related cognitive defects are characterized by high prevalence of smoking, including ADHD and schizophrenia. It has been suggested that smoking may be particularly reinforcing for individuals with these conditions because of the cognitive-enhancing effects of nicotine. Because cholinergic systems play an important role in functional impairments in certain neurodegenerative

diseases, it also has been suggested that individuals with attention-related cognitive defects may benefit from treatment with nicotine through nicotine's role as a cholinergic agonist (Singh et al. 2004; Kumari and Postma 2005; Evans and Drobis 2008). Some research suggests that nicotine may improve attention performance in individuals with ADHD and schizophrenia (Evans and Drobis 2008).

ADHD is a common disorder of childhood with symptoms of inattention and hyperactivity/impulsivity. Behavioral inhibition and delay aversion deficits are believed to be factors contributing to impulsive behavior. Other features, such as poor planning, and deficits in working memory and cognitive flexibility, are more recently recognized traits. Limited research suggests that nicotine might improve the symptoms and measures of behavioral inhibition, delay aversion, and recognition memory in individuals with ADHD (Gehricke et al. 2006, 2009).

Schizophrenia is a chronic disorder marked by delusions, hallucinations, thought disorder, and negative symptoms such as flattening of affect. The evidence suggests that dysregulation of cholinergic systems is involved in altered sensory physiology and individuals with schizophrenia have decreased dopaminergic activity in the prefrontal cortex (Punnoose and Belgamwar 2006). The prevalence of smoking in individuals with schizophrenia is high, perhaps as the result of an effort of patients to relieve symptoms associated with the disorder (Kumari and Postma 2005). Specifically, it has been suggested that nicotine-induced release of dopamine could improve attention and processing symptoms and sensory-gating deficits in schizophrenia, and that nicotine treatment could attenuate antipsychotic-induced cognitive impairment and extrapyramidal symptoms, through nicotine's effects on dopamine release (Alder et al. 1993; Newhouse et al. 2004; Birkett et al. 2007; Evans and Drobis 2008). However, in a 2012 Cochrane Review update, the authors reviewed all randomized controlled trials in which nicotine or tobacco and placebo were administered to patients with schizophrenia or schizophrenia-like illness and found no studies that met the inclusion criteria. A number of studies were excluded because they were a crossover design, which was determined to be inappropriate because schizophrenia is an unstable condition and nicotine may have carryover effects (Punnoose and Belgamwar 2006).

Tobacco Industry Influence

The tobacco industry has a long-standing interest in nicotine and neurocognitive functioning and psychiatric disease. The tobacco industry has invested in pharmaceutical applications of nicotine and nicotine analogs for decades (Vagg and Chapman 2005). Philip Morris and R.J.

Reynolds both developed research programs to explore the potential uses of nicotine and analogs in the treatment of neurological disorders (R.J. Reynolds 1993). In the early 1990s, R.J. Reynolds established both its "Nicotine Pharmacology and Neurodegenerative Disease Program" and later Targacept, a pharmaceutical company, for the purpose of discovering therapeutic uses of nicotinic compounds. Tobacco industry documents indicate that diversification into the pharmaceutical industry was seen not only as potentially profitable but also as a strategy to improve the tobacco industry's corporate image (Vagg and Chapman 2005).

Data from observational studies describing the protective effects of smoking on the risk of Parkinson's disease and Alzheimer's disease and the high prevalence of smoking among individuals with ADHD and schizophrenia are often cited in industry-sponsored and non-industry-sponsored literature as evidence to support the therapeutic applications of nicotine. However, there is evidence that the tobacco industry influenced many of these epidemiologic studies of smoking and psychiatric disorders. For example, an analysis of publications on the relationship between smoking and Alzheimer's disease that controlled for authors' industry affiliation revealed that pooled ORs for studies without industry funding were neutral or indicated an increased risk with smoking, depending on study design, while industry-affiliated studies indicated a reduced risk (Cataldo et al. 2010). Studies of tobacco industry documents have also revealed that the industry sought to influence scientific attitudes regarding the role of smoking in schizophrenia (Prochaska et al. 2008). Tobacco industry documents indicate that the industry funded research for the specific purpose of perpetuating the belief that smoking improves symptoms in schizophrenic patients, advocated for exceptions for smoking in hospitalized psychiatric patients, and funded studies of medicinal uses of nicotine analogs to treat mental illnesses (Prochaska et al. 2008).

Evidence of the tobacco industry's interest in the cognitive-enhancing properties of nicotine comes from a 1997 review of publications investigating the effects of tobacco and nicotine on cognitive performance. Turner and Spilich (1997) found that authors acknowledging tobacco industry funding were much less likely than nonindustry-funded authors to report a negative effect of nicotine on cognitive performance. Nonindustry-funded authors reported both positive and negative findings, while industry-funded authors reported positive findings almost exclusively (Turner and Spilich 1997). Studies of this type using more recent published articles are needed to better understand current industry influences on the scientific literature.

It is difficult to estimate the extent to which industry-generated research activities have influenced scientific thinking regarding the effects of nicotine on cognitive performance and on nicotine's therapeutic applications. Authors' industry affiliations and potential conflicts of interest reported in publications may go unnoticed by readers, may be difficult to identify, or may not be disclosed at all. Reviews and other articles citing industry-affiliated studies generally did not include author affiliations or potential conflicts of interest at all, leaving the readers unaware of possible industry influences. A growing concern about conflicts of interest resulting from funding through the tobacco industry is reflected in the National Institute on Drug Abuse (NIDA) advice to its grantees that "Receiving funding from the tobacco industry may compromise the perceived objectivity of their research results, which in turn could impact the overall credibility of their research findings, including its interpretation, acceptance and implementation" (NIDA n.d.).

Summary

Evidence shows that acute nicotine administration has some modest cognition-enhancing effects in adult

smokers during withdrawal. However, less is known about the acute effects in nonabstinent smokers and in nonsmokers, and about the effects of long-term nicotine exposure on cognitive performance. Human and animal evidence show detrimental effects on cognition from smoking during aging. Evidence also shows that exposure to cigarette smoke and to nicotine has adverse effects on fetal and adolescent brain development, which could result in lasting deficits in cognitive function. Furthermore, withdrawal from tobacco in dependent-users results in cognitive impairment. Among individuals with attention-related cognitive defects, nicotine has been proposed as a potential treatment because of its effect as a cholinergic agonist. However, randomized controlled trials to demonstrate safety and efficacy of nicotine treatment in individuals with these disorders are lacking, and the long-term effects of low-dose, chronic nicotine exposure on individuals with neuropsychiatric disorders are unknown. Because nAChRs are distributed extensively across the central and peripheral nervous systems, studying the effects of nicotine across the behavioral spectrum, rather than on isolated domains, may reveal adverse effects and may help establish whether the potential benefits of nicotine are clinically meaningful (Heishman 1998).

Evidence Summary

This chapter complements reviews in prior reports and in other sections of this report on the potential toxicity of nicotine, a pharmacologically active agent that readily enters the body and is distributed throughout. Nicotine activates multiple biological pathways that are relevant to fetal growth and development, immune function, the cardiovascular system, the CNS, and carcinogenesis. Experimental research documents that nicotine plays a key role in several adverse consequences of maternal smoking for the fetus, including altered lung development, and has effects on the developing brain. Evidence supports that acute nicotine administration has modest cognition-enhancing properties in adult smokers during withdrawal and in adult nonsmokers. However, little is

known about the effects of long-term nicotine exposure on cognitive performance and how nicotine withdrawal impairs cognition. Previous reports have reached causal conclusions related to nicotine and addiction (USDHHS 1988, 2010, 2012). Evidence in this chapter considers the particular vulnerability of adolescents and other groups to nicotine. Beyond the use of NRT cessation aids, the therapeutic roles for nicotine have not been established, in spite of clinical research, some carried out by the tobacco industry.

Acute toxicity of nicotine, reflecting its pharmacologic activity, is well established. There is a potential for poisoning from ingestion of nicotine-containing products.

Conclusions

1. The evidence is sufficient to infer that at high-enough doses nicotine has acute toxicity.
2. The evidence is sufficient to infer that nicotine activates multiple biological pathways through which smoking increases risk for disease.
3. The evidence is sufficient to infer that nicotine exposure during fetal development, a critical window for brain development, has lasting adverse consequences for brain development.
4. The evidence is sufficient to infer that nicotine adversely affects maternal and fetal health during pregnancy, contributing to multiple adverse outcomes such as preterm delivery and stillbirth.
5. The evidence is suggestive that nicotine exposure during adolescence, a critical window for brain development, may have lasting adverse consequences for brain development.
6. The evidence is inadequate to infer the presence or absence of a causal relationship between exposure to nicotine and risk for cancer.

Implications

Large numbers of people are exposed to nicotine through products other than conventional cigarettes, including NRT, smokeless tobacco, and new nicotine-containing noncombustible products. The fetus will be exposed to nicotine without other smoke components if the mother uses these products. The number of people exposed to nicotine long-term may grow under a number of potential future scenarios; for example, expanding use of multiple products or the replacement of conventional combustible cigarettes with other nicotine delivery systems (see Chapter 15, “The Changing Landscape of Tobacco Control: Current Status and Future Directions”), or increased appeal and uptake of nicotine product use because of their apparent relative safety in comparison to cigarettes. In considering such scenarios, information will be needed on the risks of long-term exposure to nicotine, including the consequences for reproductive health and adolescent cognitive development, compared with cigarette smoking, and no tobacco products use at all. The evidence reviewed in this chapter, in other chapters in this report, and in previous reports shows that long-term nicotine use may have adverse consequences for those exposed and it clearly harms the developing fetus. The latest U.S. Public Health Service guidelines acknowledge this risk and have not made a specific recommendation on the use of NRT during pregnancy. Pregnant women who

smoke should consider and discuss with their health care providers the potential risk to the fetus from continuing to smoke and from using NRT. There is a strong recommendation from the U.S. Preventive Services Task Force for health care providers to ask pregnant women about tobacco use and provide the appropriate counseling.

The possibility of increasing chronic nicotine exposure in the population from various nicotine-containing products for the long-term merits further research. Cancer, cardiovascular, and neurocognitive outcomes are of concern. The evidence is already sufficient to provide appropriately cautious messages to pregnant women and women of reproductive age as well as adolescents about the use of nicotine-containing products such as smokeless tobacco and electronic cigarettes, and newer forms of nicotine-containing tobacco products, as alternatives to smoking.

All tobacco products contain toxicants, so all tobacco product use poses some health risks. Because of the potential for fetal and adolescent nicotine exposure to have long-term detrimental effects on brain development, measures should be taken to ensure that nicotine is not perceived by the public as a cognitive-enhancing substance. It also does not have an established role in the management of people with a severe mental illness.

References

- Accortt NA, Waterbor JW, Beall C, Howard G. Cancer incidence among a cohort of smokeless tobacco users (United States). *Cancer Causes and Control* 2005;16(9):1107–15.
- Adler LE, Hoffer LD, Wiser A, Freedman R. Normalization of auditory physiology by cigarette smoking in schizophrenic patients. *American Journal of Psychiatry* 1993;150(12):1856–61.
- Aicher A, Heeschen C, Mohaupt M, Cooke JP, Zeiher AM, Dimmeler S. Nicotine strongly activates dendritic cell-mediated adaptive immunity: potential role for progression of atherosclerotic lesions. *Circulation* 2003;107(4):604–11.
- Albuquerque EX, Alkondon M, Pereira EF, Castro NG, Schrattenholz A, Barbosa CT, Bonfante-Cabarcas R, Aracava Y, Eisenberg HM, Maelicke A. Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. *Journal of Pharmacology and Experimental Therapeutics* 1997;280(3):1117–36.
- Alkondon M, Pereira EF, Barbosa CT, Albuquerque EX. Neuronal nicotinic acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat hippocampal slices. *Journal of Pharmacology and Experimental Therapeutics* 1997;283(3):1396–411.
- Almeida OP, Garrido GJ, Alfonso H, Hulse G, Lautenschlager NT, Hankey GJ, Flicker L. 24-month effect of smoking cessation on cognitive function and brain structure in later life. *Neuroimage* 2011;55(4):1480–9.
- Almeida OP, Hulse GK, Lawrence D, Flicker L. Smoking as a risk factor for Alzheimer's disease: contrasting evidence from a systematic review of case-control and cohort studies. *Addiction* 2002;97(1):15–28.
- Al-Wadei HA, Plummer HK 3rd, Schuller HM. Nicotine stimulates pancreatic cancer xenografts by systemic increase in stress neurotransmitters and suppression of the inhibitory neurotransmitter gamma-aminobutyric acid. *Carcinogenesis* 2009;30(3):506–11.
- American Academy of Pediatrics Task Force on Sudden Infant Death Syndrome. SIDS and other sleep-related infant deaths: expansion of recommendations for a safe infant sleeping environment. *Pediatrics* 2011;128(5):e1341–e67.
- American Psychiatric Association. *Diagnostic and Statistical Manual of Mental Disorders*. 4th ed. Washington: American Psychiatric Association, 1994.
- Anstey KJ, von Sanden C, Salim A, O'Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. *American Journal of Epidemiology* 2007;166(4):367–78.
- Araujo DM, Lapchak PA, Collier B, Quirion R. Characterization of N-[3H]methylcarbamylcholine binding sites and effect of N-methylcarbamylcholine on acetylcholine release in rat brain. *Journal of Neurochemistry* 1988;51(1):292–9.
- Argentin G, Cicchetti R. Genotoxic and antiapoptotic effect of nicotine on human gingival fibroblasts. *Toxicological Sciences* 2004;79(1):75–81.
- Baba S, Wikström AK, Stephansson O, Cnattingius S. Influence of smoking and snuff cessation on risk of preterm birth. *European Journal of Epidemiology* 2012;27(4):297–304.
- Baba S, Wikström AK, Stephansson O, Cnattingius S. Changes in snuff and smoking habits in Swedish pregnant women and risk for small for gestational age births. *BJOG: An International Journal of Obstetrics and Gynaecology* 2013;120(4):456–62.
- Baker TB, Piper ME, McCarthy DE, Majeskie MR, Fiore MC. Addiction motivation reformulated: an affective processing model of negative reinforcement. *Psychological Review* 2004;111(1):33–51.
- Balfour DJ. The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus accumbens [corrected]. *Nicotine & Tobacco Research* 2004;6(6):899–912.
- Barrueco M, Otero MJ, Palomo L, Jimenez-Ruiz C, Torrecilla M, Romero P, Riesco JA. Adverse effects of pharmacological therapy for nicotine addiction in smokers following a smoking cessation program. *Nicotine & Tobacco Research* 2005;7(3):335–42.
- Bauer CM, Dewitte-Orr SJ, Hornby KR, Zavitz CC, Lichty BD, Stämpfli MR, Mossman KL. Cigarette smoke suppresses type I interferon-mediated antiviral immunity in lung fibroblast and epithelial cells. *Journal of Interferon and Cytokine Research* 2008;28(3):167–79.
- Bell SL, Taylor RC, Singleton EG, Henningfield JE, Heishman SJ. Smoking after nicotine deprivation enhances cognitive performance and decreases tobacco craving in drug abusers. *Nicotine & Tobacco Research* 1999;1(1):45–52.
- Benedetti MD, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE, Schaid DJ, Rocca WA. Smoking, alcohol, and coffee consumption preceding Parkinson's disease: a case-control study. *Neurology* 2000;55(9):1350–8.

- Benowitz N, Dempsey D. Pharmacotherapy for smoking cessation during pregnancy. *Nicotine & Tobacco Research* 2004;6(Suppl 2):S189–S202.
- Benowitz NL, Hukkanen J, Jacob P 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. *Handbook of Experimental Pharmacology* 2009;(192):29–60.
- Benowitz NL, Jacob P 3rd. Metabolism of nicotine to cotinine studied by a dual stable isotope method. *Clinical Pharmacology and Therapeutics* 1994;56(5):483–93.
- Benowitz NL, Jacob P 3rd, Jones RT, Rosenberg J. Interindividual variability in the metabolism and cardiovascular effects of nicotine in man. *Journal of Pharmacology and Experimental Therapeutics* 1982;221(2):368–72.
- Benowitz NL, Lake T, Keller KH, Lee BL. Prolonged absorption with development of tolerance to toxic effects after cutaneous exposure to nicotine. *Clinical Pharmacology and Therapeutics* 1987;42(1):119–20.
- Bierut LJ. Nicotine dependence and genetic variation in the nicotinic receptors. *Drug and Alcohol Dependence* 2009;104(Suppl 1):S64–S9.
- Bierut LJ. Convergence of genetic findings for nicotine dependence and smoking related diseases with chromosome 15q24-25. *Trends in Pharmacological Sciences* 2010;31(1):46–51.
- Birkett P, Sigmundsson T, Sharma T, Toulopoulou T, Griffiths TD, Reveley A, Murray R. Reaction time and sustained attention in schizophrenia and its genetic predisposition. *Schizophrenia Research* 2007;95(1-3):76–85.
- Boffetta P, Aagnes B, Weiderpass E, Andersen A. Smokeless tobacco use and risk of cancer of the pancreas and other organs. *International Journal of Cancer* 2005;114(6):992–5.
- Boffetta P, Hecht S, Gray N, Gupta P, Straif K. Smokeless tobacco and cancer. *Lancet Oncology* 2008;9(7):667–75.
- Brady ME, Ritschel WA, Saelinger DA, Cacini W, Patterson AJ. Animal model and pharmacokinetic interpretation of nicotine poisoning in man. *International Journal of Clinical Pharmacology and Biopharmacy* 1979;17(1):12–7.
- Breese CR, Marks MJ, Logel J, Adams CE, Sullivan B, Collins AC, Leonard S. Effect of smoking history on [³H]nicotine binding in human postmortem brain. *Journal of Pharmacology and Experimental Therapeutics* 1997;282(1):7–13.
- Broms U, Wedenoja J, Largeau MR, Korhonen T, Pitkaniemi J, Keskkitalo-Vuokko K, Happola A, Heikkila KH, Heikkila K, Ripatti S, et al. Analysis of detailed phenotype profiles reveals CHRNA5-CHRNA3-CHRN4 gene cluster association with several nicotine dependence traits. *Nicotine & Tobacco Research* 2012;14(6):720–33.
- Brown RW, Kolb B. Nicotine sensitization increases dendritic length and spine density in the nucleus accumbens and cingulate cortex. *Brain Research* 2001;899(1-2):94–100.
- Bublitz MH, Stroud LR. Maternal smoking during pregnancy and offspring brain structure and function: review and agenda for future research. *Nicotine & Tobacco Research* 2012;14(4):388–97.
- Budulac SE, Vonk JM, Postma DS, Siedlinski M, Timens W, Boezen MH. Nicotinic acetylcholine receptor variants are related to smoking habits, but not directly to COPD. *PloS One* 2012;7(3):e33386.
- Cahill K, Stead LF, Lancaster T. Nicotine receptor partial agonists for smoking cessation. *Cochrane Database of Systematic Reviews* 2008, Issue 3. Art No.: CD006103. DOI: 10.1002/14651858.CD006103.pub3.
- Carboni E, Bortone L, Giua C, Di Chiara G. Dissociation of physical abstinence signs from changes in extracellular dopamine in the nucleus accumbens and in the prefrontal cortex of nicotine dependent rats. *Drug and Alcohol Dependence* 2000;58(1-2):93–102.
- Cardinale A, Nastrucci C, Cesario A, Russo P. Nicotine: specific role in angiogenesis, proliferation and apoptosis. *Critical Reviews in Toxicology* 2012;42(1):68–89.
- Carlisle DL, Liu X, Hopkins TM, Swick MC, Dhir R, Siegfried JM. Nicotine activates cell-signaling pathways through muscle-type and neuronal nicotinic acetylcholine receptors in non-small cell lung cancer cells. *Pulmonary Pharmacology and Therapeutics* 2007;20(6):629–41.
- Carmella SG, Borukhova A, Desai D, Hecht SS. Evidence for endogenous formation of tobacco-specific nitrosamines in rats treated with tobacco alkaloids and sodium nitrite. *Carcinogenesis* 1997;18(3):587–92.
- Cashman JR, Park SB, Yang ZC, Wrighton SA, Jacob P 3rd, Benowitz NL. Metabolism of nicotine by human liver microsomes: stereoselective formation of trans-nicotine N'-oxide. *Chemical Research in Toxicology* 1992;5(5):639–46.
- Cataldo JK, Prochaska JJ, Glantz SA. Cigarette smoking is a risk factor for Alzheimer's Disease: an analysis controlling for tobacco industry affiliation. *Journal of Alzheimer's Disease* 2010;19(2):465–80.
- Catassi A, Servent D, Paleari L, Cesario A, Russo P. Multiple roles of nicotine on cell proliferation and inhibition of apoptosis: implications on lung carcinogenesis. *Mutation Research* 2008;659(3):221–31.
- Chen J, Higby R, Tian D, Tan D, Johnson MD, Xiao Y, Kellar KJ, Feng S, Shields PG. Toxicological analysis of low-nicotine and nicotine-free cigarettes. *Toxicology* 2008a;249(2-3):194–203.

- Chen RJ, Ho YS, Guo HR, Wang YJ. Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. *Toxicological Sciences* 2008;104(2):283–93.
- Chen RJ, Ho YS, Guo HR, Wang YJ. Long-term nicotine exposure-induced chemoresistance is mediated by activation of Stat3 and downregulation of ERK1/2 via nAChR and beta-adrenoceptors in human bladder cancer cells. *Toxicological Sciences* 2010;115(1):118–30.
- Chen YP, Squier CA. Effect of nicotine on 7,12-dimethylbenz[a]anthracene carcinogenesis in hamster cheek pouch. *Journal of the National Cancer Institute* 1990;82(10):861–4.
- Cheng Y, Li HL, Wang HF, Sun HF, Liu YF, Peng SX, Liu KX, Guo ZY. Inhibition of nicotine-DNA adduct formation in mice by six dietary constituents. *Food and Chemical Toxicology* 2003;41(7):1045–50.
- Citigroup Global Markets Inc. *Tobacco: What if the Last Smoker Quits in 2050?* London: Citi Investment Research & Analysis, 2011.
- Cloez-Tayarani I, Changeux JP. Nicotine and serotonin in immune regulation and inflammatory processes: a perspective. *Journal of Leukocyte Biology* 2007;81(3):599–606.
- Conklin BS, Zhao W, Zhong DS, Chen C. Nicotine and cotinine up-regulate vascular endothelial growth factor expression in endothelial cells. *American Journal of Pathology* 2002;160(2):413–8.
- Counotte DS, Spijker S, Van de Burgwal LH, Hogenboom F, Schoffelmeer AN, De Vries TJ, Smit AB, Pattij T. Long-lasting cognitive deficits resulting from adolescent nicotine exposure in rats. *Neuropsychopharmacology* 2009;34(2):299–306.
- Crooks PA, Dwoskin LP. Contribution of CNS nicotine metabolites to the neuropharmacological effects of nicotine and tobacco smoking. *Biochemical Pharmacology* 1997;54(7):743–53.
- Cunningham J, Dockery DW, Gold DR, Speizer FE. Racial differences in the association between maternal smoking during pregnancy and lung function in children. *American Journal of Respiratory and Critical Care Medicine* 1995;152(2):565–9.
- Cunningham J, Dockery DW, Speizer FE. Maternal smoking during pregnancy as a predictor of lung function in children. *American Journal of Epidemiology* 1994;139(12):1139–52.
- Dahlstrom A, Lundell B, Curvall M, Thapper L. Nicotine and cotinine concentrations in the nursing mother and her infant. *Acta Paediatrica Scandinavica* 1990;79(2):142–7.
- Dani JA. Properties underlying the influence of nicotinic receptors on neuronal excitability and epilepsy. *Epilepsia* 2000;41(8):1063–5.
- Dasgupta P, Chellappan SP. Nicotine-mediated cell proliferation and angiogenesis: new twists to an old story. *Cell Cycle* 2006;5(20):2324–8.
- Dasgupta P, Rastogi S, Pillai S, Ordóñez-Ercan D, Morris M, Haura E, Chellappan S. Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb-Raf-1 pathways. *Journal of Clinical Investigation* 2006;116(8):2208–17.
- Davis R, Rizwani W, Banerjee S, Kovacs M, Haura E, Coppoli D, Chellappan S. Nicotine promotes tumor growth and metastasis in mouse models of lung cancer. *PloS One* 2009;4(10):e7524.
- de Wit H, Zacyn J. Abuse potential of nicotine replacement therapies. *CNS Drugs* 1995;4(6):456–68.
- Dempsey DA, Benowitz NL. Risks and benefits of nicotine to aid smoking cessation in pregnancy. *Drug Safety* 2001;24(4):277–322.
- Dezateux C, Stocks J, Dundas I, Fletcher ME. Impaired airway function and wheezing in infancy: the influence of maternal smoking and a genetic predisposition to asthma. *American Journal of Respiratory and Critical Care Medicine* 1999;159(2):403–10.
- Doolittle DJ, Rahn CA, Lee CK. The effect of exposure to nicotine, carbon monoxide, cigarette smoke or cigarette smoke condensate on the mutagenicity of rat urine. *Mutation Research* 1991;260(1):9–18.
- Doolittle DJ, Winegar R, Lee CK, Caldwell WS, Hayes AW, de Bethizy JD. The genotoxic potential of nicotine and its major metabolites. *Mutation Research* 1995;344(3–4):95–102.
- Duncan JR, Garland M, Myers MM, Fifer WP, Yang M, Kinney HC, Stark RI. Prenatal nicotine-exposure alters fetal autonomic activity and medullary neurotransmitter receptors: implications for sudden infant death syndrome. *Journal of Applied Physiology* 2009;107(5):1579–90.
- Durston S, Hulshoff Pol HE, Casey BJ, Giedd JN, Buitelaar JK, van Engeland H. Anatomical MRI of the developing human brain: what have we learned? *Journal of the American Academy of Child and Adolescent Psychiatry* 2001;40(9):1012–20.
- Dwyer JB, Broide RS, Leslie FM. Nicotine and brain development. *Birth Defects Research. Part C, Embryo Today* 2008;84(1):30–44.
- Dwyer JB, McQuown SC, Leslie FM. The dynamic effects of nicotine on the developing brain. *Pharmacology and Therapeutics* 2009;122(2):125–39.
- Edwards AC, Kendler KS. Nicotine withdrawal-induced negative affect is a function of nicotine dependence and not liability to depression or anxiety. *Nicotine & Tobacco Research* 2011;13(8):677–85.
- Egleton RD, Brown KC, Dasgupta P. Nicotinic acetylcholine receptors in cancer: multiple roles in proliferation

- and inhibition of apoptosis. *Trends in Pharmacological Sciences* 2008;29(3):151–8.
- England LJ, Kim SY, Shapiro-Mendoza CK, Wilson HG, Kendrick JS, Satten GA, Lewis CA, Tucker MJ, Callaghan WM. Effects of maternal smokeless tobacco use on selected pregnancy outcomes in Alaska Native women: a case-control study. *Acta Obstetricia et Gynecologica Scandinavica* 2013;92(6):648–55.
- England LJ, Kim SY, Shapiro-Mendoza CK, Wilson HG, Kendrick JS, Satten GA, Lewis CA, Whittern P, Tucker MJ, Callaghan WM. Maternal smokeless tobacco use in Alaska Native women and singleton infant birth size. *Acta Obstetricia et Gynecologica Scandinavica* 2012;91(1):93–103.
- England LJ, Levine RJ, Mills JL, Klebanoff MA, Yu KF, Cnattingius S. Adverse pregnancy outcomes in snuff users. *American Journal of Obstetrics and Gynecology* 2003;189(4):939–43.
- Ernst M, Fudge JL. A developmental neurobiological model of motivated behavior: anatomy, connectivity and ontogeny of the triadic nodes. *Neuroscience and Biobehavioral Reviews* 2009;33(3):367–82.
- Evans DE, Drobis DJ. Nicotine self-medication of cognitive-attentional processing. *Addiction Biology* 2009; 14(1):32–42.
- Fant RV, Owen LL, Henningfield JE. Nicotine replacement therapy. *Primary Care: Clinics in Office Practice* 1999;26(3):633–52.
- Fu XW, Lindstrom J, Spindel ER. Nicotine activates and up-regulates nicotinic acetylcholine receptors in bronchial epithelial cells. *American Journal of Respiratory Cell and Molecular Biology* 2009;41(1):93–9.
- Fu Y, Matta SG, Gao W, Brower VG, Sharp BM. Systemic nicotine stimulates dopamine release in nucleus accumbens: re-evaluation of the role of N-methyl-D-aspartate receptors in the ventral tegmental area. *Journal of Pharmacology and Experimental Therapeutics* 2000;294(2):458–65.
- Fung YK, Schmid MJ, Anderson TM, Lau YS. Effects of nicotine withdrawal on central dopaminergic systems. *Pharmacology, Biochemistry and Behavior* 1996; 53(3):635–40.
- Galitovskiy V, Chernyavsky AI, Edwards RA, Grando SA. Muscle sarcomas and alopecia in A/J mice chronically treated with nicotine. *Life Sciences* 2012;91(21–22):1109–12.
- Gehricke JG, Hong N, Whalen CK, Steinhoff K, Wigal TL. Effects of transdermal nicotine on symptoms, moods, and cardiovascular activity in the everyday lives of smokers and nonsmokers with attention-deficit/hyperactivity disorder. *Psychology of Addictive Behaviors* 2009;23(4):644–55.
- Gehricke JG, Whalen CK, Jamner LD, Wigal TL, Steinhoff K. The reinforcing effects of nicotine and stimulant medication in the everyday lives of adult smokers with ADHD: a preliminary examination. *Nicotine & Tobacco Research* 2006;8(1):37–47.
- Geng Y, Savage SM, Johnson LJ, Seagrave J, Sopori ML. Effects of nicotine on the immune response. I. Chronic exposure to nicotine impairs antigen receptor-mediated signal transduction in lymphocytes. *Toxicology and Applied Pharmacology* 1995;135(2):268–78.
- Geng Y, Savage SM, Razani-Boroujerdi S, Sopori ML. Effects of nicotine on the immune response. II. Chronic nicotine treatment induces T cell anergy. *Journal of Immunology* 1996;156(7):2384–90.
- Gilliland FD, Berhane K, Li YF, Rappaport EB, Peters JM. Effects of early onset asthma and in utero exposure to maternal smoking on childhood lung function. *American Journal of Respiratory and Critical Care Medicine* 2003;167(6):917–24.
- Gilliland FD, Berhane K, McConnell R, Gauderman WJ, Vora H, Rappaport EB, Avol E, Peters JM. Maternal smoking during pregnancy, environmental tobacco smoke exposure and childhood lung function. *Thorax* 2000;55(4):271–6.
- Ginzkey C, Stueber T, Friehs G, Koehler C, Hackenberg S, Richter E, Hagen R, Kleinsasser NH. Analysis of nicotine-induced DNA damage in cells of the human respiratory tract. *Toxicology Letters* 2012;208(1):23–9.
- Gioanni Y, Rougeot C, Clarke PB, Lepouse C, Thierry AM, Vidal C. Nicotinic receptors in the rat prefrontal cortex: increase in glutamate release and facilitation of mediodorsal thalamo-cortical transmission. *European Journal of Neuroscience* 1999;11(1):18–30.
- Gold AB, Lerman C. Pharmacogenetics of smoking cessation: role of nicotine target and metabolism genes. *Human Genetics* 2012;131(6):857–76.
- Goriounova NA, Mansvelder HD. Short- and long-term consequences of nicotine exposure during adolescence for prefrontal cortex neuronal network function. *Cold Spring Harbor Perspectives in Medicine* 2012;2(12):a012120.
- Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. *Trends in Pharmacological Sciences* 2006;27(9):482–91.
- Gourlay SG, Benowitz NL. Arteriovenous differences in plasma concentration of nicotine and catecholamines and related cardiovascular effects after smoking, nicotine nasal spray, and intravenous nicotine. *Clinical Pharmacology and Therapeutics* 1997;62(4):453–63.
- Grady SR, Meinerz NM, Cao J, Reynolds AM, Picciotto MR, Changeux JP, McIntosh JM, Marks MJ, Collins AC. Nicotinic agonists stimulate acetylcholine release from

- mouse interpeduncular nucleus: a function mediated by a different nAChR than dopamine release from striatum. *Journal of Neurochemistry* 2001;76(1):258–68.
- Granon S, Faure P, Changeux JP. Executive and social behaviors under nicotinic receptor regulation. *Proceedings of the National Academy of Sciences of the United States of America* 2003;100(16):9596–601.
- Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. *Nature* 1996;383(6602):713–6.
- Grenhoff J, Aston-Jones G, Svensson TH. Nicotinic effects on the firing pattern of midbrain dopamine neurons. *Acta Physiologica Scandinavica* 1986;128(3):351–8.
- Grillner P, Svensson TH. Nicotine-induced excitation of midbrain dopamine neurons in vitro involves ionotropic glutamate receptor activation. *Synapse* 2000;38(1):1–9.
- Gunnerbeck A, Wikstrom AK, Bonamy AK, Wickstrom R, Cnattingius S. Relationship of maternal snuff use and cigarette smoking with neonatal apnea. *Pediatrics* 2011;128(3):503–9.
- Gupta PC, Subramoney S. Smokeless tobacco use, birth weight, and gestational age: population based, prospective cohort study of 1,217 women in Mumbai, India. *British Medical Journal* 2004;328(7455):1538.
- Gupta PC, Subramoney S. Smokeless tobacco use and risk of stillbirth: a cohort study in Mumbai, India. *Epidemiology* 2006;17(1):47–51.
- Gurkalo VK, Volfson NI. Nicotine influence upon the development of experimental stomach tumors. *Archiv für Geschwulstforschung* 1982;52(4):259–65.
- Habs M, Schmahl D. Influence of nicotine on N-nitrosomethylurea-induced mammary tumors in rats. *Klinische Wochenschrift* 1984;62(Suppl 2):105–8.
- Hacker NF, Gambone JC, Hobel SJ. *Hacker and Moore's Essentials of Obstetrics and Gynecology*. 5th ed. Philadelphia: Saunders Elsevier, 2010.
- Hajek P, Jackson P, Belcher M. Long-term use of nicotine chewing gum. Occurrence, determinants, and effect on weight gain. *JAMA: the Journal of the American Medical Association* 1988;260(11):1593–6.
- Hamilton BE, Martin JA, Ventura SJ. Births: preliminary data for 2011. *National Vital Statistics Reports* 2012;61(5):1–18.
- Hannahan JP, Tager IB, Segal MR, Tosteson TD, Castile RG, Van Vunakis H, Weiss ST, Speizer FE. The effect of maternal smoking during pregnancy on early infant lung function. *American Review of Respiratory Disease* 1992;145(5):1129–35.
- Harding R, Maritz G. Maternal and fetal origins of lung disease in adulthood. *Seminars in Fetal & Neonatal Medicine* 2012;17(2):67–72.
- Hecht SS. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. *Nature Reviews: Cancer* 2003;3(10):733–44.
- Hecht SS, Carmella SG, Chen M, Dor Koch JF, Miller AT, Murphy SE, Jensen JA, Zimmerman CL, Hatsukami DK. Quantitation of urinary metabolites of a tobacco-specific lung carcinogen after smoking cessation. *Cancer Research* 1999;59(3):590–6.
- Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, Tsao PS, Johnson FL, Cooke JP. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. *Nature Medicine* 2001;7(7):833–9.
- Heeschen C, Weis M, Aicher A, Dimmeler S, Cooke JP. A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. *Journal of Clinical Investigation* 2002;110(4):527–36.
- Heishman SJ. What aspects of human performance are truly enhanced by nicotine? *Addiction* 1998;93(3):317–20.
- Heishman SJ, Kleykamp BA, Singleton EG. Meta-analysis of the acute effects of nicotine and smoking on human performance. *Psychopharmacology* 2010;210(4):453–69.
- Hendricks PS, Ditre JW, Drobes DJ, Brandon TH. The early time course of smoking withdrawal effects. *Psychopharmacology* 2006;187(3):385–96.
- Henningfield JE, Hatsukami DK, Zeller M, Peters E. Conference on abuse liability and appeal of tobacco products: conclusions and recommendations. *Drug and Alcohol Dependence* 2011;116(1):1–7.
- Henningfield JE, Keenan RM. Nicotine delivery kinetics and abuse liability. *Journal of Consulting and Clinical Psychology* 1993;61(5):743–50.
- Henningfield JE, Stapleton JM, Benowitz NL, Grayson RF, London ED. Higher levels of nicotine in arterial than in venous blood after cigarette smoking. *Drug and Alcohol Dependence* 1993;33(1):23–9.
- Herman AI, Sofuoglu M. Cognitive effects of nicotine: genetic moderators. *Addiction Biology* 2010;15(3):250–65.
- Hernán MA, Alonso A, Logroscino G. Cigarette smoking and dementia: potential selection bias in the elderly. *Epidemiology* 2008;19(3):448–50.
- Hicks CS, Sinclair DA. Toxicities of the optical isomers of nicotine and nornicotine. *Australian Journal of Experimental Biology and Medical Science* 1947;25:83–6.
- Hildebrand BE, Nomikos GG, Hertel P, Schilstrom B, Svensson TH. Reduced dopamine output in the nucleus accumbens but not in the medial prefrontal cortex in rats displaying a mecamylamine-precipitated nicotine withdrawal syndrome. *Brain Research* 1998;779(1–2):214–25.

- Hildebrand BE, Panagis G, Svensson TH, Nomikos GG. Behavioral and biochemical manifestations of mecamylamine-precipitated nicotine withdrawal in the rat: role of nicotinic receptors in the ventral tegmental area. *Neuropsychopharmacology* 1999;21(4):560–74.
- Holmes AD, Copland DA, Silburn PA, Chinery HJ. Acute nicotine enhances strategy-based semantic processing in Parkinson's disease. *International Journal of Neuropsychopharmacology* 2011;14(7):877–85.
- Howe WM, Ji J, Parikh V, Williams S, Mocaer E, Trocme-Thibierge C, Sarter M. Enhancement of attentional performance by selective stimulation of alpha4beta2(*) nAChRs: underlying cholinergic mechanisms. *Neuropsychopharmacology* 2010;35(6):1391–401.
- Hughes JR. Dependence on and abuse of nicotine replacement medications. In: Benowitz N, editor. *Nicotine Safety and Toxicity*. Oxford: Oxford University Press, 1998:147–57.
- Hughes JR, Hatsukami DK. The nicotine withdrawal syndrome: a brief review and update. *International Journal of Smoking Cessation* 1992;1(2):21–6.
- Hughes JR, Gust SW, Keenan R, Fenwick JW, Skoog K, Higgins ST. Long-term use of nicotine vs placebo gum. *Archives of Internal Medicine* 1991;151(10):1993–8.
- Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. *Pharmacology and Therapeutics* 2013;137(1):22–54.
- Imprigo MR, Tapper AR, Gardner PD. Nicotinic acetylcholine receptor-mediated mechanisms in lung cancer. *Biochemical Pharmacology* 2011;82(8):1015–21.
- International Agency for Research on Cancer. *A Review of Human Carcinogens. Part E: Personal Habits and Indoor Combustions*. IARC monograph volume 100E. Lyon (France): International Agency for Research on Cancer, 2012.
- Jarzynka MJ, Guo P, Bar-Joseph I, Hu B, Cheng SY. Estradiol and nicotine exposure enhances A549 bronchioalveolar carcinoma xenograft growth in mice through the stimulation of angiogenesis. *International Journal of Oncology* 2006;28(2):337–44.
- Jin Z, Gao F, Flagg T, Deng X. Nicotine induces multi-site phosphorylation of Bad in association with suppression of apoptosis. *Journal of Biological Chemistry* 2004;279(22):23837–44.
- Johnson EO, Chen LS, Breslau N, Hatsukami D, Robbins T, Saccone NL, Grucza RA, Bierut LJ. Peer smoking and the nicotinic receptor genes: an examination of genetic and environmental risks for nicotine dependence. *Addiction* 2010;105(11):2014–22.
- Joshi S, Kotecha S. Lung growth and development. *Early Human Development* 2007;83(12):789–94.
- Juárez SP, Merlo J. The effect of Swedish snuff (snus) on offspring birthweight: a sibling analysis. *PloS One* 2013;8(6):e65611.
- Kapoor M, Wang JC, Bertelsen S, Bucholz K, Budde JP, Hinrichs A, Agrawal A, Brooks A, Chorlian D, Dick D, et al. Variants located upstream of CHRN4 on chromosome 15q25.1 are associated with age at onset of daily smoking and habitual smoking. *PloS One* 2012;7(3):e33513.
- Keenan RM, Hatsukami DK, Pentel PR, Thompson TN, Grillo MA. Pharmacodynamic effects of cotinine in abstinent cigarette smokers. *Clinical Pharmacology and Therapeutics* 1994;55(5):581–90.
- Kelton MC, Kahn HJ, Conrath CL, Newhouse PA. The effects of nicotine on Parkinson's disease. *Brain and Cognition* 2000;43(1-3):274–82.
- Kenny PJ, File SE, Neal MJ. Evidence for a complex influence of nicotinic acetylcholine receptors on hippocampal serotonin release. *Journal of Neurochemistry* 2000;75(6):2409–14.
- Kenny PJ, Markou A. Neurobiology of the nicotine withdrawal syndrome. *Pharmacology, Biochemistry and Behavior* 2001;70(4):531–49.
- Konishi H, Wu J, Cooke JP. Chronic exposure to nicotine impairs cholinergic angiogenesis. *Vascular Medicine* 2010;15(1):47–54.
- Koob GF, Markou A, Weiss F, Schulteis G. Opponent process and drug dependence: neurobiological mechanisms. *Seminars in Neuroscience* 1993;5(5):351–8.
- Krishna K. Tobacco chewing in pregnancy. *British Journal of Obstetrics and Gynaecology* 1978;85(10):726–8.
- Kumari V, Postma P. Nicotine use in schizophrenia: the self medication hypotheses. *Neuroscience and Biobehavioral Reviews* 2005;29(6):1021–34.
- Laan M, Bozinovski S, Anderson GP. Cigarette smoke inhibits lipopolysaccharide-induced production of inflammatory cytokines by suppressing the activation of activator protein-1 in bronchial epithelial cells. *Journal of Immunology* 2004;173(6):4164–70.
- Lagercrantz H, Bistoletti P. Catecholamine release in the newborn infant at birth. *Pediatric Research* 1977;11(8):889–93.
- Lagercrantz H, Slotkin TA. The “stress” of being born. *Scientific American* 1986;254(4):100–7.
- Lambers DS, Clark KE. The maternal and fetal physiologic effects of nicotine. *Seminars in Perinatology* 1996;20(2):115–26.
- Landau LI. Tobacco smoke exposure and tracking of lung function into adult life. *Paediatric Respiratory Reviews* 2008;9(1):39–43; quiz –4.
- Larson PS, Haag HB, Finnegan JK. On the relative toxicity of nicotine and nornicotine. *Experimental Biology and Medicine* 1945;58(3):231–2.

- LaVoie EJ, Shigematsu A, Rivenson A, Mu B, Hoffmann D. Evaluation of the effects of cotinine and nicotine-N'-oxides on the development of tumors in rats initiated with N-[4-(5-nitro-2-furyl)-2-thiazolyl]formamide. *Journal of the National Cancer Institute* 1985;75(6):1075–81.
- Lazutka FA, Vasiliauskene AP, Gefen Sh G. On the toxicological assessment of the insecticide nicotine sulfate [Russian]. *Gigiena i Sanitaria* 1969;34(5):30–3.
- Lee HJ, Guo HY, Lee SK, Jeon BH, Jun CD, Lee SK, Park MH, Kim EC. Effects of nicotine on proliferation, cell cycle, and differentiation in immortalized and malignant oral keratinocytes. *Journal of Oral Pathology and Medicine* 2005;34(7):436–43.
- Lee J, Cooke JP. The role of nicotine in the pathogenesis of atherosclerosis. *Atherosclerosis* 2011;215(2):281–3.
- Lee J, Cooke JP. Nicotine and pathological angiogenesis. *Life Sciences* 2012;91(21–22):1058–64.
- Lee W, Ray R, Bergen AW, Swan GE, Thomas P, Tyndale RF, Benowitz NL, Lerman C, Conti DV. DRD1 associations with smoking abstinence across slow and normal nicotine metabolizers. *Pharmacogenetics and Genomics* 2012;22(7):551–4.
- Lemay S, Chouinard S, Blanchet P, Masson H, Soland V, Beuter A, Bedard MA. Lack of efficacy of a nicotine transdermal treatment on motor and cognitive deficits in Parkinson's disease. *Progress in Neuro-Psychopharmacology and Biological Psychiatry* 2004;28(1):31–9.
- Léna C, Changeux JP. Allosteric nicotinic receptors, human pathologies. *Journal of Physiology, Paris* 1998;92(2):63–74.
- Léna C, Changeux JP. The role of beta 2-subunit-containing nicotinic acetylcholine receptors in the brain explored with a mutant mouse. *Annals of the New York Academy of Sciences* 1999;868:611–6.
- Levine DG. "Needle freaks": compulsive self-injection by drug users. *American Journal of Psychiatry* 1974;131(3):297–300.
- Li P, McCollum M, Bracamontes J, Steinbach JH, Akk G. Functional characterization of the alpha5(Asn398) variant associated with risk for nicotine dependence in the alpha3beta4alpha5 nicotinic receptor. *Molecular Pharmacology* 2011;80(5):818–27.
- Li XW, Wang H. Non-neuronal nicotinic alpha 7 receptor, a new endothelial target for revascularization. *Life Sciences* 2006;78(16):1863–70.
- Lindstrom J, Anand R, Gerzanich V, Peng X, Wang F, Wells G. Structure and function of neuronal nicotinic acetylcholine receptors. *Progress in Brain Research* 1996;109:125–37.
- Liu T, Xie CB, Ma WJ, Chen WQ. Association between CYP2A6 genetic polymorphisms and lung cancer: a meta-analysis of case-control studies. *Environmental and Molecular Mutagenesis* 2013;54(2):133–40.
- Lødrup Carlsen KC, Jaakkola JJ, Nafstad P, Carlsen KH. In utero exposure to cigarette smoking influences lung function at birth. *European Respiratory Journal* 1997;10(8):1774–9.
- Lopez-Arrieta JM, Rodriguez JL, Sanz F. Nicotine for Alzheimer's disease. *Cochrane Database of Systematic Reviews* 2000, Issue 2. Art No.: CD001749. DOI: 10.1002/14651858.CD001749.
- Ludwig AM. Pavlov's "bells" and alcohol craving. *Addictive Behaviors* 1986;11(2):87–91.
- Lunney PC, Leong RW. Review article: Ulcerative colitis, smoking and nicotine therapy. *Alimentary Pharmacology and Therapeutics* 2012;36(11–12):997–1008.
- Luo J, Ye W, Zendehdel K, Adami J, Adami HO, Boffetta P, Nyren O. Oral use of Swedish moist snuff (snus) and risk for cancer of the mouth, lung, and pancreas in male construction workers: a retrospective cohort study. *Lancet* 2007;369(9578):2015–20.
- Maier CR, Hollander MC, Hobbs EA, Dogan I, Linnoila RI, Dennis PA. Nicotine does not enhance tumorigenesis in mutant K-ras-driven mouse models of lung cancer. *Cancer Prevention Research* 2011;4(11):1743–51.
- Maneckjee R, Minna JD. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines. *Proceedings of the National Academy of Sciences of the United States of America* 1990;87(9):3294–8.
- Maneckjee R, Minna JD. Opioids induce while nicotine suppresses apoptosis in human lung cancer cells. *Cell Growth and Differentiation* 1994;5(10):1033–40.
- Mansvelder HD, McGehee DS. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. *Neuron* 2000;27(2):349–57.
- Maritz GS. Nicotine and lung development. *Birth Defects Research. Part C, Embryo Today* 2008;84(1):45–53.
- Maritz GS, Harding R. Life-long programming implications of exposure to tobacco smoking and nicotine before and soon after birth: evidence for altered lung development. *International Journal of Environmental Research and Public Health* 2011;8(3):875–98.
- Markou A, Kosten TR, Koob GF. Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. *Neuropsychopharmacology* 1998;18(3):135–74.
- Markou A, Weiss F, Gold LH, Caine SB, Schulteis G, Koob GF. Animal models of drug craving. *Psychopharmacology* 1993;112(2–3):163–82.
- Martin JC, Martin DD, Radow B, Day HE. Life span and pathology in offspring following nicotine and methamphetamine exposure. *Experimental Aging Research* 1979;5(6):509–22.

- McGehee DS, Role LW. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. *Annual Review of Physiology* 1995;57:521–46.
- McMaster SK, Paul-Clark MJ, Walters M, Fleet M, Anandarajah J, Sriskandan S, Mitchell JA. Cigarette smoke inhibits macrophage sensing of Gram-negative bacteria and lipopolysaccharide: relative roles of nicotine and oxidant stress. *British Journal of Pharmacology* 2008;153(3):536–43.
- Mensch AR, Holden M. Nicotine overdose from a single piece of nicotine gum. *Chest* 1984;86(5):801–2.
- Mizusaki S, Okamoto H, Akiyama A, Fukuhara Y. Relation between chemical constituents of tobacco and mutagenic activity of cigarette smoke condensate. *Mutation Research* 1977;48(3-4):319–25.
- Mousa S, Mousa SA. Cellular and molecular mechanisms of nicotine's pro-angiogenesis activity and its potential impact on cancer. *Journal of Cellular Biochemistry* 2006;97(6):1370–8.
- Murphy SE, von Weymarn LB, Schutten MM, Kassie F, Modiano JF. Chronic nicotine consumption does not influence 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis. *Cancer Prevention Research* 2011;4(11):1752–60.
- Murray RP, Connett JE, Zapawa LM. Does nicotine replacement therapy cause cancer? Evidence from the Lung Health Study. *Nicotine & Tobacco Research* 2009; 11(9):1076–82.
- Musso F, Bettermann F, Vucurevic G, Stoeter P, Konrad A, Winterer G. Smoking impacts on prefrontal attentional network function in young adult brains. *Psychopharmacology* 2007;191(1):159–69.
- National Institute on Drug Abuse. Points to Consider Regarding Tobacco Industry Funding of NIDA Applicants, n.d.; <<http://www.drugabuse.gov/about-nida/advisory-boards-groups/national-advisory-council-drug-abuse-nacda/council-statements/points-to-consider-regarding->>>; accessed: August 7, 2013.
- Newhouse P, Singh A, Potter A. Nicotine and nicotinic receptor involvement in neuropsychiatric disorders. *Current Topics in Medicinal Chemistry* 2004;4(3): 267–82.
- Ng MK, Wu J, Chang E, Wang BY, Katzenberg-Clark R, Ishii-Watabe A, Cooke JP. A central role for nicotinic cholinergic regulation of growth factor-induced endothelial cell migration. *Arteriosclerosis, Thrombosis, and Vascular Biology* 2007;27(1):106–12.
- Nikfar S, Ehteshami-Ashar S, Rahimi R, Abdollahi M. Systematic review and meta-analysis of the efficacy and tolerability of nicotine preparations in active ulcerative colitis. *Clinical Therapeutics* 2010;32(14):2304–15.
- Nisell M, Marcus M, Nomikos GG, Svensson TH. Differential effects of acute and chronic nicotine on dopamine output in the core and shell of the rat nucleus accumbens. *Journal of Neural Transmission* 1997;104(1): 1–10.
- Nisell M, Nomikos GG, Svensson TH. Infusion of nicotine in the ventral tegmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. *Pharmacology and Toxicology* 1994a; 75(6):348–52.
- Nisell M, Nomikos GG, Svensson TH. Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. *Synapse* 1994b;16(1):36–44.
- O'Brien CP, Childress AR, McLellan T, Ehrman R. Integrating systemic cue exposure with standard treatment in recovering drug dependent patients. *Addictive Behaviors* 1990;15(4):355–65.
- Okamoto M, Kita T, Okuda H, Nakashima T. Tolerance to the convulsions induced by daily nicotine treatment in rats. *Japanese Journal of Pharmacology* 1992; 59(4):449–55.
- Okamoto M, Kita T, Okuda H, Tanaka T, Nakashima T. Effects of aging on acute toxicity of nicotine in rats. *Pharmacology and Toxicology* 1994;75(1):1–6.
- O'Reilly EJ, McCullough ML, Chao A, Henley SJ, Calle EE, Thun MJ, Ascherio A. Smokeless tobacco use and the risk of Parkinson's disease mortality. *Movement Disorders* 2005;20(10):1383–4.
- Paleari L, Catassi A, Ciarlo M, Cavalieri Z, Bruzzo C, Servent D, Cesario A, Chessa L, Cilli M, Piccardi F, et al. Role of alpha7-nicotinic acetylcholine receptor in human non-small cell lung cancer proliferation. *Cell Proliferation* 2008;41(6):936–59.
- Park SB, Jacob P 3rd, Benowitz NL, Cashman JR. Stereoselective metabolism of (S)-(-)-nicotine in humans: formation of trans-(S)-(-)-nicotine N-1'-oxide. *Chemical Research in Toxicology* 1993;6(6):880–8.
- Perry DC, Davila-Garcia MI, Stockmeier CA, Kellar KJ. Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. *Journal of Pharmacology and Experimental Therapeutics* 1999;289(3):1545–52.
- Peters R, Poulter R, Warner J, Beckett N, Burch L, Bullock C. Smoking, dementia and cognitive decline in the elderly, a systematic review. *BMC Geriatrics* 2008;8:36.
- Philip Morris International. Philip Morris International (PMI) enters into a patent purchase agreement of new technology with the potential to reduce the harm of smoking [press release], May 26, 2011; <http://www.pmi.com/eng/media_center/press_releases/pages/201105261249.aspx>; accessed: July 13, 2013.>

- Picciotto MR, Corrigall WA. Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. *Journal of Neuroscience* 2002;22(9):3338–41.
- Pidoplichko VI, DeBiasi M, Williams JT, Dani JA. Nicotine activates and desensitizes midbrain dopamine neurons. *Nature* 1997;390(6658):401–4.
- Pierce RA, Nguyen NM. Prenatal nicotine exposure and abnormal lung function. *American Journal of Respiratory Cell and Molecular Biology* 2002;26(1):10–3.
- Polesskaya OO, Fryxell KJ, Merchant AD, Locklear LL, Ker KF, McDonald CG, Eppolito AK, Smith LN, Wheeler TL, Smith RF. Nicotine causes age-dependent changes in gene expression in the adolescent female rat brain. *Neurotoxicology and Teratology* 2007;29(1):126–40.
- Poorthuis RB, Bloem B, Schak B, Wester J, de Kock CP, Mansvelder HD. Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. *Cerebral Cortex* 2013a;23(1):148–61.
- Poorthuis RB, Bloem B, Verhoog MB, Mansvelder HD. Layer-specific interference with cholinergic signaling in the prefrontal cortex by smoking concentrations of nicotine. *Journal of Neuroscience* 2013b;33(11):4843–53.
- Poorthuis RB, Goriounova NA, Couey JJ, Mansvelder HD. Nicotinic actions on neuronal networks for cognition: general principles and long-term consequences. *Biochemical Pharmacology* 2009;78(7):668–76.
- Prochaska JJ, Hall SM, Bero LA. Tobacco use among individuals with schizophrenia: what role has the tobacco industry played? *Schizophrenia Bulletin* 2008;34(3):555–67.
- Punnoose S, Belgamwar MR. Nicotine for schizophrenia. *Cochrane Database of Systematic Reviews* 2006, Issue 1. Art No.: CD004838. DOI: 10.1002/14651858.CD004838.pub2.
- Purnell C, Gao S, Callahan CM, Hendrie HC. Cardiovascular risk factors and incident Alzheimer disease: a systematic review of the literature. *Alzheimer Disease and Associated Disorders* 2009;23(1):1–10.
- R.J. Reynolds Tobacco Company. How important is smoker understanding and what are our learning needs? 1993. RJ Reynolds Collection. Bates No. 510932130/2136. <<http://legacy.library.ucsf.edu/tid/cpp53d00>>.
- Reid MS, Fox L, Ho LB, Berger SP. Nicotine stimulation of extracellular glutamate levels in the nucleus accumbens: neuropharmacological characterization. *Synapse* 2000;35(2):129–36.
- Richardson HL, Walker AM, Horne RS. Maternal smoking impairs arousal patterns in sleeping infants. *Sleep* 2009;32(4):515–21.
- Riebe M, Westphal K. Studies on the induction of sister-chromatid exchanges in Chinese hamster ovary cells by various tobacco alkaloids. *Mutation Research* 1983;124(3-4):281–6.
- Riebe M, Westphal K, Fortnagel P. Mutagenicity testing, in bacterial test systems, of some constituents of tobacco. *Mutation Research* 1982;101(1):39–43.
- Ritz B, Ascherio A, Checkoway H, Marder KS, Nelson LM, Rocca WA, Ross GW, Strickland D, Van Den Eeden SK, Gorell J. Pooled analysis of tobacco use and risk of Parkinson disease. *Archives of Neurology* 2007;64(7):990–7.
- Role LW, Berg DK. Nicotinic receptors in the development and modulation of CNS synapses. *Neuron* 1996;16(6):1077–85.
- Rose JE, Behm FM, Westman EC, Coleman RE. Arterial nicotine kinetics during cigarette smoking and intravenous nicotine administration: implications for addiction. *Drug and Alcohol Dependence* 1999;56(2):99–107.
- Royal College of Physicians of London. *Nicotine Addiction in Britain: A Report of the Tobacco Advisory Group of the Royal College of Physicians*. London: Royal College of Physicians of London, 2000.
- Russo P, Cesario A, Rutella S, Veronesi G, Spaggiari L, Galetta D, Margaritora S, Granone P, Greenberg DS. Impact of genetic variability in nicotinic acetylcholine receptors on nicotine addiction and smoking cessation treatment. *Current Medicinal Chemistry* 2011;18(1):91–112.
- Sandberg K, Poole SD, Hamdan A, Arbogast P, Sundell HW. Altered lung development after prenatal nicotine exposure in young lambs. *Pediatric Research* 2004;56(3):432–9.
- Sandberg KL, Pinkerton KE, Poole SD, Minton PA, Sundell HW. Fetal nicotine exposure increases airway responsiveness and alters airway wall composition in young lambs. *Respiratory Physiology & Neurobiology* 2011;176(1-2):57–67.
- Sarginson JE, Killen JD, Lazzeroni LC, Fortmann SP, Ryan HS, Schatzberg AF, Murphy GM Jr. Markers in the 15q24 nicotinic receptor subunit gene cluster (CHRNA5-A3-B4) predict severity of nicotine addiction and response to smoking cessation therapy. *American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics* 2011;156B(3):275–84.
- Sawnani H, Jackson T, Murphy T, Beckerman R, Simakajornboon N. The effect of maternal smoking on respiratory and arousal patterns in preterm infants during sleep. *American Journal of Respiratory and Critical Care Medicine* 2004;169(6):733–8.

- Schilström B, Svensson HM, Svensson TH, Nomikos GG. Nicotine and food induced dopamine release in the nucleus accumbens of the rat: putative role of alpha₇ nicotinic receptors in the ventral tegmental area. *Neuroscience* 1998;85(4):1005–9.
- Schneider J, Mitchell I, Singhal N, Kirk V, Hasan SU. Prenatal cigarette smoke exposure attenuates recovery from hypoxic challenge in preterm infants. *American Journal of Respiratory and Critical Care Medicine* 2008;178(5):520–6.
- Schochet TL, Kelley AE, Landry CF. Differential expression of arc mRNA and other plasticity-related genes induced by nicotine in adolescent rat forebrain. *Neuroscience* 2005;135(1):285–97.
- Schuller HM. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? *Nature Reviews: Cancer* 2009;9(3):195–205.
- Schuller HM, McGavin MD, Orloff M, Riechert A, Porter B. Simultaneous exposure to nicotine and hyperoxia causes tumors in hamsters. *Laboratory Investigation* 1995;73(3):448–56.
- Sekhon HS, Jia Y, Raab R, Kuryatov A, Pankow JF, Whitsett JA, Lindstrom J, Spindel ER. Prenatal nicotine increases pulmonary alpha₇ nicotinic receptor expression and alters fetal lung development in monkeys. *Journal of Clinical Investigation* 1999;103(5):637–47.
- Sekhon HS, Keller JA, Benowitz NL, Spindel ER. Prenatal nicotine exposure alters pulmonary function in newborn rhesus monkeys. *American Journal of Respiratory and Critical Care Medicine* 2001;164(6):989–94.
- Sekhon HS, Keller JA, Proskocil BJ, Martin EL, Spindel ER. Maternal nicotine exposure upregulates collagen gene expression in fetal monkey lung. Association with alpha₇ nicotinic acetylcholine receptors. *American Journal of Respiratory Cell and Molecular Biology* 2002;26(1):31–41.
- Shah NR, Bracken MB. A systematic review and meta-analysis of prospective studies on the association between maternal cigarette smoking and preterm delivery. *American Journal of Obstetrics and Gynecology* 2000;182(2):465–72.
- Singh A, Potter A, Newhouse P. Nicotinic acetylcholine receptor system and neuropsychiatric disorders. *IDrugs* 2004;7(12):1096–103.
- Slotkin TA. Fetal nicotine or cocaine exposure: which one is worse? *Journal of Pharmacology and Experimental Therapeutics* 1998;285(3):931–45.
- Slotkin TA, Seidler FJ. Adrenomedullary catecholamine release in the fetus and newborn: secretory mechanisms and their role in stress and survival. *Journal of Developmental Physiology* 1988;10(1):1–16.
- Sorice R, Bione S, Sansanelli S, Ulivi S, Athanasakis E, Lanzara C, Nutile T, Sala C, Camaschella C, D'Adamo P, et al. Association of a variant in the CHRNA5-A3-B4 gene cluster region to heavy smoking in the Italian population. *European Journal of Human Genetics* 2011;19(5):593–6.
- Stalhandske T, Slanina P. Lethal brain concentrations of nicotine in mice of different ages. *Acta Pharmacologica et Toxicologica* 1970;28(3):233–40.
- Stepanov I, Carmella SG, Briggs A, Hertsgaard L, Lindgren B, Hatsukami D, Hecht SS. Presence of the carcinogen N'-nitrosonornicotine in the urine of some users of oral nicotine replacement therapy products. *Cancer Research* 2009a;69(21):8236–40.
- Stepanov I, Carmella SG, Han S, Pinto A, Strasser AA, Lerman C, Hecht SS. Evidence for endogenous formation of N'-nitrosonornicotine in some long-term nicotine patch users. *Nicotine & Tobacco Research* 2009b;11(1):99–105.
- Stepanov I, Jensen J, Hatsukami D, Hecht SS. New and traditional smokeless tobacco: comparison of toxicant and carcinogen levels. *Nicotine & Tobacco Research* 2008;10(12):1773–82.
- Stewart J, de Wit H, Eikelboom R. Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. *Psychological Review* 1984;91(2):251–68.
- Stitzer ML, de Wit H. Abuse liability of nicotine. In: Benowitz NL, editor. *Nicotine Safety and Toxicity*. New York: Oxford University Press, 1998:119–31.
- Stocks J, Dezateux C. The effect of parental smoking on lung function and development during infancy. *Respirology* 2003;8(3):266–85.
- Stolerman IP, Jarvis MJ. The scientific case that nicotine is addictive. *Psychopharmacology* 1995;117(1):2–10; discussion 4–20.
- Stratton K, Shetty P, Wallace R, Bondurant S, editors. In: *Clearing the Smoke: Assessing the Science Base for Tobacco Harm Reduction*. Washington: National Academies Press, 2001.
- Swan GE, Lessov-Schlaggar CN. The effects of tobacco smoke and nicotine on cognition and the brain. *Neuropsychology Review* 2007;17(3):259–73.
- Tager IB, Ngo L, Hanrahan JP. Maternal smoking during pregnancy. Effects on lung function during the first 18 months of life. *American Journal of Respiratory and Critical Care Medicine* 1995;152(3):977–83.
- Tanner CM, Goldman SM, Aston DA, Ottman R, Ellenberg J, Mayeux R, Langston JW. Smoking and Parkinson's disease in twins. *Neurology* 2002;58(4):581–8.
- Tepper JM, Wilson JR, Schlesinger K. Relations between nicotine-induced convulsive behavior and blood and

- brain levels of nicotine as a function of sex and age in two inbred strains of mice. *Pharmacology, Biochemistry and Behavior* 1979;10(3):349–53.
- Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifsson G, Stefansson H, Ingason A, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. *Nature* 2008;452(7187):638–42.
- Timofeeva MN, McKay JD, Smith GD, Johansson M, Byrnes GB, Chabrier A, Relton C, Ueland PM, Vollset SE, Midttun O, et al. Genetic polymorphisms in 15q25 and 19q13 loci, cotinine levels, and risk of lung cancer in EPIC. *Cancer Epidemiology, Biomarkers and Prevention* 2011;20(10):2250–61.
- Toide K, Arima T. Effects of cholinergic drugs on extracellular levels of acetylcholine and choline in rat cortex, hippocampus and striatum studied by brain dialysis. *European Journal of Pharmacology* 1989;173(2-3):133–41.
- Tong VT, Dietz PM, Morrow B, D'Angelo DV, Farr SL, Rockhill KM, England LJ. Trends in smoking before, during, and after pregnancy—Pregnancy Risk Assessment Monitoring System (PRAMS), United States, 40 sites, 2000–2010. *Morbidity and Mortality Weekly Report*. 2013;62(SS-6):1–19.
- Trauth JA, Seidler FJ, Ali SF, Slotkin TA. Adolescent nicotine exposure produces immediate and long-term changes in CNS noradrenergic and dopaminergic function. *Brain Research* 2001;892(2):269–80.
- Trauth JA, Seidler FJ, McCook EC, Slotkin TA. Adolescent nicotine exposure causes persistent upregulation of nicotinic cholinergic receptors in rat brain regions. *Brain Research* 1999;851(1-2):9–19.
- Trauth JA, Seidler FJ, Slotkin TA. An animal model of adolescent nicotine exposure: effects on gene expression and macromolecular constituents in rat brain regions. *Brain Research* 2000;867(1-2):29–39.
- Trivedi AH, Dave BJ, Adhvaryu SG. Assessment of genotoxicity of nicotine employing *in vitro* mammalian test system. *Cancer Letters* 1990;54(1-2):89–94.
- Turner C, Spilich GJ. Research into smoking or nicotine and human cognitive performance: does the source of funding make a difference? *Addiction* 1997;92(11):1423–6.
- U.S. Department of Health and Human Services. *The Health Consequences of Smoking: Nicotine Addiction. A Report of the Surgeon General*. Atlanta (GA): U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 1988. DHHS Publication No. (CDC) 88-8406.
- U.S. Department of Health and Human Services. *The Health Consequences of Smoking: A Report of the Surgeon General*. Atlanta (GA): U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2004.
- U.S. Department of Health and Human Services. *The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General*. Atlanta (GA): U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Coordinating Center for Health Promotion, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2006.
- U.S. Department of Health and Human Services. *How Tobacco Smoke Causes Disease—The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General*. Atlanta (GA): U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2010.
- U.S. Department of Health and Human Services. *Preventing Tobacco Use Among Youth and Young Adults: A Report of the Surgeon General*. Atlanta (GA): U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2012.
- Vagg R, Chapman S. Nicotine analogues: a review of tobacco industry research interests. *Addiction* 2005; 100(5):701–12.
- Vieregge A, Sieberer M, Jacobs H, Hagenah JM, Vieregge P. Transdermal nicotine in PD: a randomized, double-blind, placebo-controlled study. *Neurology* 2001; 57(6):1032–5.
- Villalblanca AC. Nicotine stimulates DNA synthesis and proliferation in vascular endothelial cells *in vitro*. *Journal of Applied Physiology* 1998;84(6):2089–98.
- Waldum HL, Nilsen OG, Nilsen T, Rorvik H, Syversen V, Sanvik AK, Haugen OA, Torp SH, Brenna E. Long-term effects of inhaled nicotine. *Life Sciences* 1996; 58(16):1339–46.
- Wallace TL, Bertrand D. Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. *Biochemical Pharmacology* 2013;85(12):1713–20.
- Wassenaar CA, Dong Q, Wei Q, Amos CI, Spitz MR, Tynale RF. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRN8 variation and smoking behaviors and lung cancer risk. *Journal of the National Cancer Institute* 2011;103(17):1342–6.

- Watkins SS, Stinus L, Koob GF, Markou A. Reward and somatic changes during precipitated nicotine withdrawal in rats: centrally and peripherally mediated effects. *Journal of Pharmacology and Experimental Therapeutics* 2000;292(3):1053–64.
- West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. *Journal of Clinical Investigation* 2003;111(1):81–90.
- West R. Beneficial effects of nicotine: fact or fiction? *Addiction* 1993;88(5):589–90.
- West RJ, Russell MA. Effects of withdrawal from long-term nicotine gum use. *Psychological Medicine* 1985; 15(4):891–3.
- Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. *Science* 1982;215(4537):1237–9.
- Wikler A. Dynamics of drug dependence. Implications of a conditioning theory for research and treatment. *Archives of General Psychiatry* 1973;28(5):611–6.
- Wikström AK, Cnattingius S, Stephansson O. Maternal use of Swedish snuff (snus) and risk of stillbirth. *Epidemiology* 2010;21(6):772–8.
- Wilkie GI, Hutson P, Sullivan JP, Wonnacott S. Pharmacological characterization of a nicotinic autoreceptor in rat hippocampal synaptosomes. *Neurochemical Research* 1996;21(9):1141–8.
- Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson's disease: a review of the evidence. *European Journal of Epidemiology* 2011;26(Suppl 1):S1–58.
- Wirdefeldt K, Gatz M, Pawitan Y, Pedersen NL. Risk and protective factors for Parkinson's disease: a study in Swedish twins. *Annals of Neurology* 2005;57(1):27–33.
- World Health Organization. *International Drug Monitoring: The Role of National Centres. Report of a WHO Meeting*. Geneva (Switzerland): World Health Organization, 1972. WHO Technical Report Series No. 498.
- World Health Organization. *WHO Study Group on Tobacco Product Regulation: Report on the Scientific Basis of Tobacco Product Regulation. Fourth Report of a WHO Study Group*. WHO Technical Report Series 967. Geneva (Switzerland): World Health Organization, 2012.
- Xin M, Deng X. Nicotine inactivation of the proapoptotic function of Bax through phosphorylation. *Journal of Biological Chemistry* 2005;280(11):10781–9.
- Yaffe SJ, Aranda JV. *Neonatal and Pediatric Pharmacology: Therapeutic Principles in Practice*. 4th ed. Philadelphia: Lippincott, Williams, and Wilkins, 2010.
- Yamamoto I, Nagai K, Inoki R. The contents of DOPA and catecholamines in several rat tissues and nicotine-induced convulsions. *Japanese Journal of Pharmacology* 1966;16(3):295–305.
- Yim SH, Hee SS. Genotoxicity of nicotine and cotinine in the bacterial luminescence test. *Mutation Research* 1995;335(3):275–83.
- Yuen ST, Gogo AR Jr, Luk IS, Cho CH, Ho JC, Loh TT. The effect of nicotine and its interaction with carbon tetrachloride in the rat liver. *Pharmacology and Toxicology* 1995;77(3):225–30.
- Zeller WJ, Berger MR. Nicotine and estrogen metabolism—possible implications of smoking for growth and outcome of treatment of hormone-dependent cancer? Discussion of experimental results. *Journal of Cancer Research and Clinical Oncology* 1989;115(6):601–3.
- Zheng Y, Ritzenthaler JD, Roman J, Han S. Nicotine stimulates human lung cancer cell growth by inducing fibronectin expression. *American Journal of Respiratory Cell and Molecular Biology* 2007;37(6):681–90.
- Zhu AZ, Renner CC, Hatsukami DK, Swan GE, Lerman C, Benowitz NL, Tyndale RF. The ability of plasma cotinine to predict nicotine and carcinogen exposure is altered by differences in CYP2A6: the influence of genetics, race, and sex. *Cancer Epidemiology, Biomarkers and Prevention* 2013;22(4):708–18.

[AAPCC \(/\)](#)[Alerts \(/alerts/\)](#)[Prevention \(/prevention/\)](#)[National Poison Data System \(/data-system/\)](#)[Our Work \(/working-aapcc/\)](#)

E-Cigarettes and Liquid Nicotine

Local poison centers report an uptick in liquid nicotine exposures.

[Twitter \(https://twitter.com/AAPCC\)](#) [Facebook \(https://www.facebook.com/aapcc\)](#) [RSS \(/alerts/rss/\)](#)

2,689 Exposures

Jan. 1, 2015, to October 31, 2015

Related Topics

[Poison Control in Action › \(/prevention/adult-education/\)](#)

For More Information

1-800-222-1222

For Media: 703-894-1865

Poison centers are reporting a recent uptick in calls about exposures to e-cigarette devices and liquid nicotine.

Slightly more than half of these reported exposures have occurred in young children under the age of 6. However, this is consistent with National Poison Data System exposures to all substances combined. Some children and toddlers who come in contact with e-cigarette devices or liquid nicotine have become very ill; some even requiring ER visits with nausea and vomiting being the most significant symptoms. Adults should use care to protect their skin when handling the products, and they should be out of sight and out of the reach of children. Additionally, those using these products should dispose of them properly to prevent exposure to pets and children from the residue or liquid left in the container.

The American Association of Poison Control Centers recommends the following steps:

- Protect your skin when handling the products.
- Always keep e-cigarettes and liquid nicotine locked up and out of the reach of children.
- Follow the specific disposal instructions on the label.
- If you think someone has been exposed to an e-cigarette or liquid nicotine, call your local poison center at 1-800-222-1222 immediately.

[Click here for the most recent detailed data. \(https://aapcc.s3.amazonaws.com/files/library/E-cig_Nicotine_Web_Data_through_10.2015.pdf\)](https://aapcc.s3.amazonaws.com/files/library/E-cig_Nicotine_Web_Data_through_10.2015.pdf) [https://aapcc.s3.amazonaws.com/files/library/E-cig_Nicotine_Web_Data_through_9.2015IAIV9Wr.pdf\)](https://aapcc.s3.amazonaws.com/files/library/E-cig_Nicotine_Web_Data_through_9.2015IAIV9Wr.pdf)

[Click here for AAPCC's tobacco & nicotine prevention resource page \(http://www.aapcc.org/prevention/tobacco-liquid-nicotine/\).](http://www.aapcc.org/prevention/tobacco-liquid-nicotine/)

In 2015, through October 31, AAPCC has received 2,689 e-cigarette devices and liquid nicotine reported exposures.

PLEASE NOTE: All NPDS data reported by the American Association of Poison Control Centers for 2014 and 2015 is considered preliminary because it is possible that a poison center may update a case anytime during the year if new information is obtained.

The term "exposure" means someone has had contact with the substance in some way; for example, ingested, inhaled, absorbed by the skin or eyes, etc. Not all exposures are poisonings or overdoses.

E-cigarette Device and Liquid Nicotine Reported Exposures to Poison Centers

Related Press Releases

- [American Association of Poison Control Centers Releases Annual Poison Exposure Report › \(/press/38/\)](#)
- [American Association of Poison Control Centers Urges Government Liquid Nicotine Regulation in Wake of Child Death › \(/press/37/\)](#)
- [New E-Cigarette Poisoning Data Reinforce Need for Immediate Government Action to Protect Children › \(/press/36/\)](#)

- [AAPCC Joins 30-member Sign-on Letter Supporting the Child Nicotine Poison Prevention Act of 2014 › \(/press/39/\)](#)
- [AAPCC Issues Statement on the Introduction of the Child Nicotine Poison Prevention Act of 2014 › \(/press/30/\)](#)

Find Your Local Poison Center

Poison centers offer free, private, confidential medical advice 24 hours a day, 7 days a week. You can reach your local poison center by calling 1-800-222-1222.

Alabama

- [Alabama \(.\)](#)
- [Alaska \(.\)](#)
- [Arizona \(.\)](#)
- [Arkansas \(.\)](#)
- [California \(.\)](#)
- [Colorado \(.\)](#)
- [Connecticut \(.\)](#)
- [Delaware \(.\)](#)
- [District of Columbia \(.\)](#)
- [Florida \(.\)](#)
- [Georgia \(.\)](#)
- [Hawaii \(.\)](#)
- [Idaho \(.\)](#)
- [Illinois \(.\)](#)
- [Indiana \(.\)](#)
- [Iowa \(.\)](#)
- [Kansas \(.\)](#)
- [Kentucky \(.\)](#)
- [Louisiana \(.\)](#)
- [Maine \(.\)](#)
- [Maryland \(.\)](#)
- [Massachusetts \(.\)](#)
- [Michigan \(.\)](#)
- [Minnesota \(.\)](#)
- [Mississippi \(.\)](#)
- [Missouri \(.\)](#)
- [Montana \(.\)](#)
- [Nebraska \(.\)](#)
- [Nevada \(.\)](#)
- [New Hampshire \(.\)](#)
- [New Jersey \(.\)](#)
- [New Mexico \(.\)](#)

- [New York \(.\)](#)
- [North Carolina \(.\)](#)
- [North Dakota \(.\)](#)
- [Ohio \(.\)](#)
- [Oklahoma \(.\)](#)
- [Oregon \(.\)](#)
- [Pennsylvania \(.\)](#)
- [Rhode Island \(.\)](#)
- [South Carolina \(.\)](#)
- [South Dakota \(.\)](#)
- [Tennessee \(.\)](#)
- [Texas \(.\)](#)
- [Utah \(.\)](#)
- [Vermont \(.\)](#)
- [Virginia \(.\)](#)
- [Washington \(.\)](#)
- [West Virginia \(.\)](#)
- [Wisconsin \(.\)](#)
- [Wyoming \(.\)](#)
- [American Samoa \(.\)](#)
- [Guam \(.\)](#)
- [Northern Mariana Islands \(.\)](#)
- [Puerto Rico \(.\)](#)
- [Virgin Islands \(.\)](#)
- [New Brunswick \(.\)](#)
- [Quebec \(.\)](#)
- [Alberta \(.\)](#)
- [Ontario \(.\)](#)
- [Manitoba \(.\)](#)
- [Nova Scotia \(.\)](#)
- [British Columbia \(.\)](#)

Alabama

[Search](#) | [View all Poison Control Centers \(/centers/\)](#)

[Twitter \(https://twitter.com/AAPCC\)](#) [Facebook \(https://www.facebook.com/aapcc\)](#) [RSS \(/rss/\)](#) [WordPress \(http://aapcc.wordpress.com\)](#)

Search [aapcc.org](#)

- [Contact Us \(mailto:info@aapcc.org\)](#)
- [Take Action \(http://capwiz.com/aapcc/home/\)](#)
- [Member Login \(/members/login/\)](#)

