

COMPUTATIONAL STATISTICS AND PROBABILITY (AIM-5002-1)

"Final Report and Analysis Plan"

NAME: Ravisankar Chengannagari

BANNER ID: 800765235

SUBMITTED TO

Jochen G. Raimann sir

ABSTRACT

Obesity is a worldwide public health concern, posing risks to individual health and burdening healthcare systems. This study investigates the relationship between creatinine and obesity across different age groups using data from the National Health and Nutrition Examination Survey (NHANES). The primary indicator of obesity is Body Mass Index (BMI), which creatinine offers insights into muscle metabolism. By knowing and analyzing these demographics, health related, lifestyle factors, we aim to understand how creatinine may be associated with obesity. Our analysis suggest that higher creatinine may correlate with low prevalence of obesity.

INTRODUCTION

Obesity is a widespread health issue affecting peoples worldwide. It is characterized by excessive body fat accumulation. It causes significant risks to the people overall health. It is also connected with various chronic conditions like type two diabetes, heart disease, and certain cancers. Understanding the factors cause to obesity is helpful for developing required prevention and intervention techniques.

BMI (Body Mass Index) works as an indicator of obesity. it is calculated with the help of person's height and weight. We can say if a person's BMI is less than 30 then he/she is classified as normal and if a person's BMI is greater than or equal to 30 then he/she classified as obese. There are so many factors also play roles in obesity, genetic and environmental factors, lifestyle factors like diet, smoking habits, physical activity also changes weight status.

A waste product called creatinine which is produced by muscle metabolism, it is filtered out of the blood by the kidneys. Hight levels of creatinine may specify impaired kidney function. There is some kind of potential link between obesity and creatinine levels because in weight regulation the muscles metabolism plays an important role. By finding this link we can get some insights into the underlying mechanisms of obesity.

In this study, we aim to explore the relationship between creatinine levels and obesity using from National Health and Nutrition Examination Survey (NHANES). We seek to understand how the creatinine may be associated with obesity by looking into lifestyle demographic factors, smoking, and health related factors. By performing statistical analyses and hypothesis testing, we try to uncover the potential links between creatinine and obesity.

Additionally, we propose to conduct subgroup analyses across different age groups to assess if the association between creatinine levels and obesity persists across different age demographics. By exploring this age patterns, we aim to give insights into the relationship between creatinine levels and obesity across the lifespan.

METHODS

DATA SOURCE:

We got the required data from the National Health and Nutrition Examination Survey (NHANES) dataset. It is a survey data conducted by Centers for Disease Control and Prevention (CDC) which contains demographic information, health related information and physiological measurements of people who participated in the survey.

DATA CLEANING AND PREPARATION:

We will focus on the required attributes like age, gender, race, ethnicity, creatinine levels, Body Mass Index, physical activity, smoking information, and diabetic information. Initially, there is no attribute called creatinine in NHANES dataset. But we can create it with the help of Urine volume and flow. We also need to handle the missing values by imputation or exclusion by knowing the nature of the attributes and extend of missingness. There are so many missing

values of smoking information, we can't be able to remove it because it is one of the main attributes in our study. So, we used mice library to prevent eliminating so many rows.

DESCRIPTIVE ANALYSIS:

We will calculate descriptive analysis to summarize the characteristics of study population including the distribution of creatinine levels and BMI, and prevalence of obesity. We will apply exploratory data analysis techniques like box plots, histograms, scatterplots, etc. to visualize the distribution of creatinine levels and BMI across different subgroups.

BIVARIATE ANALYSIS:

We will explore the relationship between BMI and creatinine levels using correlation analysis and scatter plots. Additionally, we will investigate potential association between creatinine levels, BMI, and other demographic and lifestyle factors through bivariate analyses such as t-tests.

MULTIVARIATE REGRESSION ANALYSIS:

We will construct multivariate regression models to assess the relationship between creatinine levels and BMI while adjusting for confounding factors, like age, gender, physical activity, ethnicity, and diabetes status. Regression coefficients and their significance levels were examined to identify significant predictors of creatinine levels.

STRATIFIED ANALYSIS:

We will conduct stratified analyses to explore variations in the relationship between creatinine levels and BMI across different subgroups defined by demographic and lifestyle characteristics. Specific regression models were fitted to assess the relationship between creatinine levels and BMI within each subgroup.

STATISTICAL ANALYSIS:

We will perform statistical analysis including t-tests, regression analyses using appropriate statistical packages. The significance level was set at p < 0.05 to find out statistical significance,

RESULTS

DESCRIPTIVE ANALYSIS:

We performed descriptive analysis included a total of 10,000 participants from the NHANES dataset, with a mean age of 36.74 years. The distribution of BMI revealed that approximately 27.66% of the population had a BMI greater than or equal to 30 which indicating obesity, while 30.22% had a BMI between 25 and 30 which indicating overweight.

The mean of creatine levels of participants found to be 0.1668. Based on the 75th percentile threshold, approximately 25% of participants were classified as having high creatinine levels.

BIVARIATE ANALYSIS:

The bivariate analysis revealed a weak negative correlation between creatinine levels and BMI (r = -0.0025, p > 0.05). It is suggesting that there is no linear relationship between BMI and creatinine variables. Scatter plots also supported these results and showed no clear pattern of relationship between BMI and creatinine levels.

MULTIVARIATE REGRESSION ANALYSIS:

The logistic regression model examining the relationship between creatinine levels and obesity adjusted for age, race, and gender, revealed several significant findings. There was no significant relationship between creatinine levels and odds of obesity (beta = -0.1108, p = 0.206). However,

age remained a significant predictor of obesity with older individuals having higher odds of obesity (beta = 0.0264, p < 0.001).

STRATIFIED ANALYSIS:

We conducted stratified analysis on gender subgroups revealed variations in the relationship between creatinine levels and BMI. In the male subgroup, the regression model indicated a positive relationship between creatinine levels and BMI, with coefficient of 0.001416 which is less than 0.05 (p-value). In the female subgroup, we can observe a negative association with a coefficient of -0.001114. These relationships being statistically significant, they are both very weak and suggesting minimal impact of BMI on creatinine levels within each subgroup of gender.

Additionally, we conducted stratified analysis to find variations in the relationship between creatinine levels and obesity across different age groups. We performed two-sample test to compare creatinine levels between obese and non-obese individuals within each age group. For Middle-Aged Adults, got a significant difference (t = -2.5095, df = 3450.4, p-value = 0.01213) and mean creatinine level was 0.179872 for obese individuals and 0.203941 for non-obese individuals, with a 95% confidence interval of [-0.0442873598, -0.005264295]. For Young Adults, got a significant difference in creatinine levels between obese and non-obese individuals (t = -0.97326, df = 1046.9, p-value = 0.3306) and mean creatinine level was 0.1510731 for obese and 0.1606936 for non-obese individuals, with a 95% confidence interval of [-0.029016867, 0.009775837]. For Older Adults, revealed a significant difference in creatinine levels between obese and non-obese (t = -2.6689, df = 1350.2, p-value = 0.007702) and mean creatinine level was 0.1023153 for obese and 0.1305413 for non-obese, with a 95% confidence interval of [-0.048973248, -0.007478655].

DISCUSSION

In our study, we dig into the relationship between obesity and creatinine levels and how this relationship varies across different ethnicities and age groups. Our results offer valuable insights into the complex interplay between these factors and their implications for efforts of public health.

One of the findings is the relationship between obesity and creatinine levels. Creatinine is a waste product produced by muscle metabolism and has been linked to obesity. Our study confirms this relationship and showing that persons with higher creatinine levels tend to have lower prevalence of obesity.

Our analysis shows patterns in age-specific in the relationship between obesity and creatinine levels and found that this relationship persists across different age groups with variations in strength. For example, in older adults and middle-aged adults, higher creatinine levels were consistently related with lower prevalence of obesity. However, in young adults, this association was less pronounced which indicates differences in underlying mechanisms driving obesity across age groups.

We also observed differences in the relationship between creatinine levels and obesity across different ethnic groups. Some ethnicities showed stronger relationships between creatinine levels and obesity, others exhibited weaker relationships.

CONCLUSION

In this study, our analysis of the relationship between creatinine levels and obesity using the data of National Health and Nutrition Examination Survey (NHANES) yielded many important insights.

We observed a negative relationship between creatinine levels and obesity across the entire study population. Some people with higher creatinine levels tend to have lower BMI values which indicating a potential protective effect against obesity.

We revealed variations in stratified variations in the relationship between obese and creatinine levels across different age groups. While the negative association persisted in most age strata, some nuances were observed. Older Adults and Middle-aged adults have the strongest inverse relationship between obesity and creatinine levels. It is showing the importance of age-specific considerations in obesity research and interventions.

We uncovered gender and ethnicity differences in the relationship between creatinine levels and obesity. Gender did not influence the association, certain ethnic groups showed varying degrees of association. It suggests potential ethnic disparities in obesity risk factors.

These results have important implications for public health strategies aimed at combating the obesity epidemic. Finding creatinine levels as a potential biomarker for obesity risk, healthcare professionals can better target interventions and resources towards people having high risk, mainly in middle aged and older aged people.

In conclusion, our study contributes to a good understanding of the relationship between obesity and creatinine levels, highlighting age-specific patterns and ethnic disparities.

REFERENCES

World Health Organization (WHO) --- Obesity and Overweight --- https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

National Health and Nutrition Examination Survey (NHANES) --- https://www.cdc.gov/nchs/nhanes/index.htm

World Health Organization (WHO) --- Physical Activity and Adults --- https://www.who.int/news-room/fact-sheets/detail/physical-activity

CODE AND RESULTS

#remove all the objects currently stored in the environment rm(list = ls())

#loads NHANES package library(NHANES)

data(NHANES)

#creating object with NHANES data nhanes_data <- NHANES::NHANES

#can see the few rows of NHANES data head(nhanes_data)

## # A tibble	e: 6 × 5	7 6							
## ID Su MaritalStatus	_		Age	Αç	geDecade	AgeMonth	s Racel	Race3	Education
## <int> <f <fct=""></f></int>			<int></int>	<f< td=""><td>ict></td><td><int< td=""><td>> <fct></fct></td><td><fct></fct></td><td><fct></fct></td></int<></td></f<>	ict>	<int< td=""><td>> <fct></fct></td><td><fct></fct></td><td><fct></fct></td></int<>	> <fct></fct>	<fct></fct>	<fct></fct>
## 1 51624 20 Married			34	"	30-39"	40	9 White	<na></na>	High School
## 2 51624 20 Married			34	**	30-39"	40	9 White	<na></na>	High School
## 3 51624 20 Married			34	"	30-39"	40	9 White	<na></na>	High School
## 4 51625 20 <na></na>			4	"	0-9"	4	9 Other	<na></na>	<na></na>
## 5 51630 20 LivePartner			49	**	40-49"	59	6 White	<na></na>	Some College
## 6 51638 20 <na></na>	009 <u>1</u> 0 75000-	male -999	9	**	0-9"	11	5 White	<na></na>	<na></na>
<pre>## # i 65 more variables: HHIncomeMid <int>, Poverty <dbl>, HomeRooms <int>, HomeOwn <fct>,</fct></int></dbl></int></pre>									
## # Work < BMI <dbl>,</dbl>	(fct>, V	Veight <	<dbl>,</dbl>	Le	ength <dl< td=""><td>ol>, Head</td><td>Circ <d< td=""><td>lbl>, H</td><td>eight <dbl>,</dbl></td></d<></td></dl<>	ol>, Head	Circ <d< td=""><td>lbl>, H</td><td>eight <dbl>,</dbl></td></d<>	lbl>, H	eight <dbl>,</dbl>
## # BMICat DiaAve <int>,</int>)yrs <fo< td=""><td>ct>, Bi</td><td>MI_</td><td>WHO <fct< td=""><td>t>, Pulse</td><td><int>,</int></td><td>BPSys</td><td>Ave <int>, BP</int></td></fct<></td></fo<>	ct>, Bi	MI_	WHO <fct< td=""><td>t>, Pulse</td><td><int>,</int></td><td>BPSys</td><td>Ave <int>, BP</int></td></fct<>	t>, Pulse	<int>,</int>	BPSys	Ave <int>, BP</int>
<pre>## # BPSys1 BPDia3 <int>,</int></pre>		, BPDia1	l <int< td=""><td>>,</td><td>BPSys2 <</td><td><int>, BP</int></td><td>Dia2 <i< td=""><td>nt>, B</td><td>PSys3 <int>,</int></td></i<></td></int<>	>,	BPSys2 <	<int>, BP</int>	Dia2 <i< td=""><td>nt>, B</td><td>PSys3 <int>,</int></td></i<>	nt>, B	PSys3 <int>,</int>

- ## # Testosterone <dbl>, DirectChol <dbl>, TotChol <dbl>, UrineVol1 <int>,
 UrineFlow1 <dbl>,
- ## # UrineVol2 <int>, UrineFlow2 <dbl>, Diabetes <fct>, DiabetesAge <int>,
 HealthGen <fct>,
- ## # DaysPhysHlthBad <int>, DaysMentHlthBad <int>, LittleInterest <fct>, De pressed <fct>, ...

#each variable summary statistics summary(nhanes_data)

## ID AgeMonths	SurveyYr	Gender	Age	AgeDecade
## Min. :51624 Min. : 0.0	2009_10:5000	female:5020	Min. : 0.00	40-49 :1398
## 1st Qu.:56904 1st Qu.:199.0	2011_12:5000	male :4980	1st Qu.:17.00	0-9:1391
## Median :62160 Median :418.0			Median:36.00	10-19:1374
## Mean :61945 Mean :420.1			Mean :36.74	20-29 :1356
## 3rd Qu.:67039 3rd Qu.:624.0			3rd Qu.:54.00	30-39 :1338
## Max. :71915 Max. :959.0			Max. :80.00	(Other):2810
## NA's :5038				NA's : 333
## Race1 HHIncome	Race3	Edu	ıcation	MaritalStatus
## Black :1197 more 99999 :2220	Asian : 288	8th Grade	: 451 Divo	prced : 707
## Hispanic: 610 75000-99999:1084	Black : 589	9 - 11th Gra	ide: 888 Live	ePartner : 560
## Mexican :1015 25000-34999: 958	Hispanic: 350	High School	:1517 Marı	ried :3945
## White :6372 35000-44999: 863	Mexican: 480	Some College	:2267 Neve	erMarried:1380
## Other : 806 45000-54999: 784	White :3135	College Grad	l :2098 Sepa	arated : 183
## (Other) :3280	Other : 158	NA's	:2779 Wido	wed : 456
## NA's : 811	NA's :5000		NA's	:2769

## HHIncomeMid rk Weight	Poverty	HomeRooms	HomeOwn	Wo
## Min. : 2500 : 311 Min. : 2		Min. : 1.000	Own :6425	Looking
## 1st Qu.: 30000 :2847 1st Qu.: 56		1st Qu.: 5.000	Rent :3287	NotWorking
## Median: 50000:4613 Median: 72		Median : 6.000	Other: 225	Working
## Mean : 57206 :2229 Mean : 70		Mean : 6.249	NA's: 63	NA's
## 3rd Qu.: 87500 3rd Qu.: 88.90	3rd Qu.:4.710	3rd Qu.: 8.000		
## Max. :100000 Max. :230.70	Max. :5.000	Max. :13.000		
## NA's :811 NA's :78	NA's :726	NA's :69		
## Length tUnder20yrs	HeadCirc	Height	BMI	BMICa
## Min. : 47.10 ght: 55	Min. :34.20	Min. : 83.6	Min. :12.88	UnderWei
## 1st Qu.: 75.70 ht: 805	1st Qu.:39.58	1st Qu.:156.8	1st Qu.:21.58	NormWeig
## Median: 87.00 ht: 193	Median:41.45	Median :166.0	Median :25.98	OverWeig
## Mean : 85.02 : 221	Mean :41.18	Mean :161.9	Mean :26.66	Obese
## 3rd Qu.: 96.10 :8726	3rd Qu.:42.92	3rd Qu.:174.5	3rd Qu.:30.89	NA's
## Max. :112.20	Max. :45.40	Max. :200.4	Max. :81.25	
## NA's :9457	NA's :9912	NA's :353	NA's :366	
## BMI_WHO BPSys1	Pulse	BPSysAve	e BPDiaA	ve
## 12.0_18.5 :12° . : 72.0	77 Min. : 40	.00 Min. : 70	6.0 Min. :	0.00 Min
## 18.5_to_24.9:291 Qu.:106.0	l1 1st Qu.: 64	.00 1st Qu.:10	6.0 1st Qu.:	61.00 1st
## 25.0_to_29.9:260 ian :116.0	64 Median : 72	.00 Median :110	6.0 Median :	69.00 Med
## 30.0_plus :275 n :119.1	51 Mean : 73	.56 Mean :118	8.2 Mean :	67.48 Mea
## NA's : 39 Qu.:128.0	97 3rd Qu.: 82	.00 3rd Qu.:12	7.0 3rd Qu.:	76.00 3rd

## :232.0	Max. :136.	00 Max. :226.	0 Max. :116.	00 Max
## s :1763	NA's :1437	NA's :1449	NA's :1449	NA'
## BPDia1 ia3	BPSys2	BPDia2	BPSys3	BPD
## Min. : 0.00 : 0.0	Min. : 76.0	Min. : 0.00	Min. : 76.0	Min.
## 1st Qu.: 62.00 : 60.0	1st Qu.:106.0	1st Qu.: 60.00	1st Qu.:106.0	1st Qu.
## Median : 70.00 : 68.0	Median :116.0	Median : 68.00	Median :116.0	Median
## Mean : 68.28 : 67.3	Mean :118.5	Mean : 67.66	Mean :117.9	Mean
## 3rd Qu.: 76.00 : 76.0	3rd Qu.:128.0	3rd Qu.: 76.00	3rd Qu.:126.0	3rd Qu.
## Max. :118.00 :116.0	Max. :226.0	Max. :118.00	Max. :226.0	Max.
## NA's :1763 :1635	NA's :1647	NA's :1647	NA's :1635	NA's
## Testosterone eFlow1	DirectChol	TotChol	UrineVol1	Urin
## Min. : 0.25	Min. :0.390	Min. : 1.530	Min. : 0.0	Min.
## 1st Qu.: 17.70 .: 0.4030	1st Qu.:1.090	1st Qu.: 4.110	1st Qu.: 50.0	1st Qu
## Median: 43.82 : 0.6990	Median :1.290	Median : 4.780	Median: 94.0	Median
## Mean : 197.90 : 0.9793	Mean :1.365	Mean : 4.879	Mean :118.5	Mean
## 3rd Qu.: 362.41 .: 1.2210	3rd Qu.:1.580	3rd Qu.: 5.530	3rd Qu.:164.0	3rd Qu
## Max. :1795.60 :17.1670	Max. :4.030	Max. :13.650	Max. :510.0	Max.
## NA's :5874 :1603	NA's :1526	NA's :1526	NA's :987	NA's
## UrineVol2 n DaysPhysHlthBac		Diabetes Dia	betesAge	HealthGe
## Min. : 0.0 78 Min. : 0.000	Min. : 0.000	No :9098 Min.	: 1.00 Exce	ellent: 8
## 1st Qu.: 52.0 08 1st Qu.: 0.000	1st Qu.: 0.475	Yes: 760 1st	Qu.:40.00 Vgoc	d :25

## Median: 95.0 Median: 0.760 NA's: 14 56 Median: 0.000	2 Median :50.00 Good :29
## Mean :119.7 Mean : 1.149 10 Mean : 3.335	Mean :48.42 Fair :10
## 3rd Qu.:171.8 3rd Qu.: 1.513 87 3rd Qu.: 3.000	3rd Qu.:58.00 Poor : 1
## Max. :409.0 Max. :13.692 61 Max. :30.000	Max. :80.00 NA's :24
## NA's :8522 NA's :8524 NA's :2468	NA's :9371
## DaysMentHlthBad LittleInterest Depress s Age1stBaby	ed nPregnancies nBabie
## Min. : 0.000 None :5103 None :5	246 Min. : 1.000 Min. :
## 1st Qu.: 0.000 Several:1130 Several:1 2.000 1st Qu.:19.00	009 1st Qu.: 2.000 1st Qu.:
## Median: 0.000 Most: 434 Most: 2.000 Median: 22.00	418 Median : 3.000 Median :
## Mean : 4.127 NA's :3333 NA's :3 2.457 Mean :22.65	327 Mean : 3.027 Mean :
## 3rd Qu.: 4.000 3.000 3rd Qu.:26.00	3rd Qu.: 4.000 3rd Qu.:
## Max. :30.000 2.000 Max. :39.00	Max. :32.000 Max. :1
## NA's :2466 584 NA's :8116	NA's :7396 NA's :7
## SleepHrsNight SleepTrouble PhysActive CompHrsDay	PhysActiveDays TVHrsDay
## Min. : 2.000 No :5799 No :3677 0_to_1_hr:1409	Min. :1.000 2_hr :1275
## 1st Qu.: 6.000 Yes :1973 Yes :4649 0_hrs :1073	1st Qu.:2.000
## Median: 7.000 NA's:2228 NA's:1674 1_hr :1030	Median :3.000 3_hr : 836
## Mean : 6.928 2_hr : 589	Mean :3.744
## 3rd Qu.: 8.000 3_hr : 347	3rd Qu.:5.000 More_4_hr: 615
## Max. :12.000 (Other) : 415	Max. :7.000 (Other) : 611
## NA's :2245 NA's :5137	NA's :5337 NA's :5141

## TVHrsDayChild Year SmokeNow	CompHrsDayChild	Alcohol12PlusYı	AlcoholDay	Alcohol
## Min. :0.000 0.0 No :1745	Min. :0.000	No :1368	Min. : 1.00	0 Min. :
## 1st Qu.:1.000 3.0 Yes:1466	1st Qu.:0.000	Yes :5212	1st Qu.: 1.00	0 1st Qu.:
## Median :2.000 24.0 NA's:6789	Median :1.000	NA's:3420	Median : 2.00	0 Median:
## Mean :1.939 75.1	Mean :2.198		Mean : 2.91	4 Mean :
## 3rd Qu.:3.000 104.0	3rd Qu.:6.000		3rd Qu.: 3.00	0 3rd Qu.:
## Max. :6.000 364.0	Max. :6.000		Max. :82.00	0 Max. :
## NA's :9347 4078	NA's :9347		NA's :5086	NA's :
## Smoke100 RegularMarij	Smoke100n	SmokeAge N	Marijuana Age	FirstMarij
## No :4024 Non No :3575	-Smoker:4024 Mi	n. : 6.00 1	No :2049 Min	: 1.00
## Yes :3211 Smo Yes :1366	ker :3211 1s	st Qu.:15.00	Yes :2892 1st	Qu.:15.00
## NA's:2765 NA' NA's:5059	s :2765 Me	edian :17.00 N	NA's:5059 Med	ian :16.00
##	M∈	ean :17.83	Mea	n :17.02
##	3r	rd Qu.:19.00	3rd	Qu.:19.00
##	Ma	ax. :72.00	Max	:48.00
##	N.A.	A's :6920	NA'	s :7109
## AgeRegMarij SexNumPartYear	HardDrugs SexE	lver Sex	xAge SexNu	mPartnLife
## Min. : 5.00 Min. : 0.000	No :4700 No	: 223 Min.	: 9.00 Min.	: 0.00
## 1st Qu.:15.00 1st Qu.: 1.000	Yes :1065 Yes	:5544 1st Qu	.:15.00 1st Q	u.: 2.00
## Median :17.00 Median : 1.000	NA's:4235 NA's	s:4233 Median	:17.00 Media	n: 5.00
## Mean :17.69 Mean : 1.342		Mean	:17.43 Mean	: 15.09
## 3rd Qu.:19.00 3rd Qu.: 1.000		3rd Qu	.:19.00 3rd Q	u.: 12.00
## Max. :52.00 Max. :69.000		Max.	:50.00 Max.	:2000.00

```
## NA's :8634
                                      NA's :4460 NA's :4275
    :5072
NA's
                  SexOrientation PregnantNow
##
   SameSex
   No :5353
            Bisexual : 119
##
##
   Yes: 415 Heterosexual:4638
                              No
                                      :1573
##
   NA's:4232 Homosexual: 85 Unknown: 51
             NA's
                    :5158 NA's :8304
##
##
##
##
```

#creating a vector with required columns for our project attributes <- c("ID", "Gender", "Age", "Race1", "BMI", "PhysActive", "Diabetes", "UrineVol1", "UrineFlow1", "UrineFlow2", "SmokeNow")

#creates new dataframe having only the required attributes data <- nhanes data[, names(nhanes data) %in% attributes]

#shows total missing values of each column colSums(is.na(data))

## w1	ID UrineVol2	Gender UrineFlow2	Age	Race1	BMI	UrineVol1	UrineFlo
##	0 8522	0 8524	0	0	366	987	16
##	Diabetes	PhysActive	SmokeNow				
##	142	1674	6789				

#finding mean of Body Mass Index bmi_mean <- mean(data\$BMI, na.rm = TRUE) bmi_mean

```
## [1] 26.66014
```

#assign mean of BMI inplace of null values data\$BMI[is.na(data\$BMI)] <- bmi mean

#removing the UrineVol2 and UrineFlow2 columns because of having more null values data <- subset(data, select = -c(UrineVol2, UrineFlow2))

#loads mice package library(mice)

#set seed for reproducibility set.seed(123)

#creates multiple imputations using Predictive Mean Matching impute <- mice(data, method = 'pmm', m = 5)

```
##
   iter imp variable
##
        1 UrineVoll UrineFlow1 Diabetes
                                           PhysActive
##
    1
                                                      SmokeNow
##
    1
           UrineVol1 UrineFlow1 Diabetes
                                           PhysActive
                                                      SmokeNow
                                           PhysActive
    1
           UrineVoll UrineFlowl Diabetes
                                                      SmokeNow
    1
           UrineVoll UrineFlow1 Diabetes
                                           PhysActive
                                                      SmokeNow
##
        5 UrineVol1 UrineFlow1 Diabetes
    1
                                           PhysActive
##
                                                      SmokeNow
        1 UrineVoll UrineFlowl Diabetes PhysActive SmokeNow
##
    2
    2
        2 UrineVol1 UrineFlow1 Diabetes
                                           PhysActive SmokeNow
##
    2
        3 UrineVol1 UrineFlow1 Diabetes
                                           PhysActive
##
                                                      SmokeNow
    2
        4 UrineVoll UrineFlowl Diabetes
                                           PhysActive
                                                      SmokeNow
##
        5 UrineVoll UrineFlowl Diabetes
    2
                                           PhysActive SmokeNow
##
##
    3
        1 UrineVol1 UrineFlow1 Diabetes
                                           PhysActive SmokeNow
    3
           UrineVoll UrineFlow1 Diabetes
                                           PhysActive SmokeNow
##
    3
           UrineVoll UrineFlow1 Diabetes
                                           PhysActive
                                                      SmokeNow
##
        4 UrineVoll UrineFlowl Diabetes
    3
##
                                           PhysActive
                                                      SmokeNow
    3
        5 UrineVol1 UrineFlow1 Diabetes
##
                                           PhysActive SmokeNow
        1 UrineVol1 UrineFlow1 Diabetes
    4
                                           PhysActive SmokeNow
##
        2 UrineVol1 UrineFlow1 Diabetes
##
    4
                                           PhysActive SmokeNow
##
    4
        3 UrineVol1 UrineFlow1 Diabetes
                                           PhysActive SmokeNow
                                           PhysActive
           UrineVoll UrineFlow1 Diabetes
                                                      SmokeNow
```

```
##
           UrineVol1 UrineFlow1
                                Diabetes
                                           PhysActive
    4
                                                       SmokeNow
        1 UrineVol1 UrineFlow1 Diabetes
##
    5
                                           PhysActive
                                                      SmokeNow
    5
        2 UrineVol1 UrineFlow1 Diabetes
##
                                           PhysActive SmokeNow
    5
        3 UrineVol1 UrineFlow1 Diabetes
                                           PhysActive SmokeNow
##
    5
##
        4 UrineVoll UrineFlowl Diabetes
                                           PhysActive
                                                       SmokeNow
    5
        5 UrineVoll UrineFlowl Diabetes
                                           PhysActive
                                                       SmokeNow
```

```
#replaces missing values
data <- complete(impute)</pre>
```

#shows total missing values of each column colSums(is.na(data))

```
##
                                                                    UrineVol1 UrineFlo
            ID
                    Gender
                                     Age
                                               Race1
                                                              BMI
w1
     Diabetes PhysActive
                                       0
                                                    0
                                                                0
                                                                             0
             0
                          0
##
            0
                         0
0
##
     SmokeNow
##
```



```
#function returns creatinine value
cal_creatinine <- function(vol, flow) {
  return(vol * flow / 1000)
}

#creating column with creatinine values
data$Creatinine <- cal_creatinine(data$UrineVol1, data$UrineFlow1)

#creating Obesity values
data <- data %>%
  mutate(Obesity = ifelse(BMI >= 30, "Yes", "No"))

#each variable summary statistics of required attributes data
summary(data)
```

## Uri	ID neVol1	Gender	Age	Race1	BMI
##	Min. :51624 Min. : 0.0	female:5020	Min. : 0.00	Black :1197	Min. :12.
##	1st Qu.:56904 1st Qu.: 50.0	male :4980	1st Qu.:17.00	Hispanic: 610	1st Qu.:21.
##	Median: 62160 Median: 94.0		Median:36.00	Mexican :1015	Median :26.
##	Mean :61945 Mean :119.2		Mean :36.74	White :6372	Mean :26.
##	3rd Qu.:67039 3rd Qu.:166.0		3rd Qu.:54.00	Other : 806	3rd Qu.:30.
## 25	Max. :71915 Max. :510.0		Max. :80.00		Max. :81.
## esi	UrineFlow1 ty	Diabetes	PhysActive Smok	ceNow Creatin	ine Ob
	Min. : 0.0000 10000	No :9238	No:4021 No:	4415 Min. :0	.00000 Leng
	1st Qu.: 0.4000 character	Yes: 762	Yes:5979 Yes:	5585 1st Qu.:0	.02094 Clas
## :ch	Median : 0.6935 aracter			Median :0	.06422 Mode
##	Mean : 0.9740			Mean :0	.16681
##	3rd Qu.: 1.2250			3rd Qu.:0	.19136
##	Max. :17.1670			Max. :3	.96307

```
#plots distribution of Obesity
ggplot(data, aes(x = Obesity)) +
geom_bar(fill = "yellow", color = "red") +
labs(title = "Distribution of Obesity",
    x = "Obesity",
    y = "Frequency") +
theme_minimal()
```


#shows total missing values of each column colSums(is.na(data))

```
#plots distribution of creatinine
ggplot(data, aes(x = Creatinine)) +
  geom_histogram(binwidth = 1, fill = "green", color = "white") +
  labs(title = "Distribution of Creatinine",
       x = "Creatinine",
       y = "Frequency") +
  theme_minimal()
```



```
#plots distribution of BMI
ggplot(data, aes(x = BMI)) +
  geom_histogram(binwidth = 1, fill = "blue", color = "white") +
  labs(title = "Distribution of BMI",
      x = "BMI",
      y = "Frequency") +
  theme_minimal()
```



```
#plots distribution of BMI by PhyActice
ggplot(data, aes(x = BMI, fill = PhysActive)) +
geom_histogram(binwidth = 1, position = "identity", alpha = 0.5) +
labs(title = "Distribution BMI by Physical Activity",
        x = "BMI",
        y = "Frequency",
        fill = "PhysActive") +
theme_minimal()
```



```
#plots distribution of BMI and Age
ggplot(data, aes(x = Age, y = BMI)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "red") +
labs(title = "BMI VS Age",
        x = "Age",
        y = "BMI") +
theme_minimal()
```


#calculates correlation matrix between the variables Age, BMI, UrineVol1, UrineFlow1 corr_mat <- cor(data[, c("Age", "BMI", "UrineVol1", "UrineFlow1")]) corr_mat

```
## Age BMI UrineVol1 UrineFlow1

## Age 1.00000000 0.38961061 -0.06861398 0.03339869

## BMI 0.38961061 1.00000000 0.01661327 0.01059941

## UrineVol1 -0.06861398 0.01661327 1.00000000 0.59148715

## UrineFlow1 0.03339869 0.01059941 0.59148715 1.00000000
```

#loads reshape2 package library(reshape2)

#plots correlation matrix of Age, BMI, UrineVol1, UrineFlow1
ggplot(data = melt(corr_mat), aes(x = Var1, y = Var2, fill = value)) +
geom_tile() +

Correlation Heatmap


```
#plots distribution of BMI by Diabetes
ggplot(data, aes(x = BMI, fill = Diabetes)) +
geom_histogram(binwidth = 1, position = "identity", alpha = 0.5) +
labs(title = "Distribution of BMI by Diabetes",
        x = "BMI",
        y = "Frequency",
        fill = "Diabetes") +
theme_minimal()
```


#calculates correlation between BMI and Creatinine corr_mat <- cor(data\$BMI, data\$Creatinine) corr_mat

```
## [1] -0.002472583
```

```
#plots distribution of BMI and Creatinine
ggplot(data, aes(x = BMI, y = Creatinine)) +
geom_point() +
labs(title = "BMI VS Creatinine",
    x = "BMI",
    y = "Creatinine") +
theme_minimal()
```


#fits linear regression model Creatinine as response variable and BMI, Age, Gender, Race1, PhyActive as predictor variables model <- lm(Creatinine ~ BMI + Age + Gender + Race1 + PhysActive, data = data) model

```
##
## Call:
## lm(formula = Creatinine ~ BMI + Age + Gender + Race1 + PhysActive,
      data = data)
## Coefficients:
     (Intercept)
                          BMI
                                                  Gendermale RacelHispanic
                                          Age
RacelMexican
      0.0792620
                    0.0006605
                                   -0.0001182
                                                 0.0499709
                                                                 0.0276650
0.0084645
     RacelWhite RacelOther PhysActiveYes
```

#shows summary of linear regression model summary(model)

```
##
## Call:
## lm(formula = Creatinine ~ BMI + Age + Gender + Race1 + PhysActive,
##
     data = data
##
## Residuals:
     Min 1Q Median 3Q
## -0.2312 -0.1380 -0.0924 0.0206 3.7743
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.0792620 0.0147745 5.365 8.29e-08 ***
## BMI
               0.0006605 0.0004187 1.577 0.1148
## Age
              -0.0001182 0.0001406 -0.841 0.4005
## Gendermale 0.0499709 0.0055150 9.061 < 2e-16 ***
## RacelHispanic 0.0276650 0.0137000 2.019 0.0435 *
## RacelMexican 0.0084645 0.0117868 0.718 0.4727
## RacelWhite 0.0421146 0.0087540 4.811 1.52e-06 ***
## Race10ther
               ## PhysActiveYes 0.0249557 0.0059499 4.194 2.76e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2751 on 9991 degrees of freedom
## Multiple R-squared: 0.01475, Adjusted R-squared: 0.01396
## F-statistic: 18.69 on 8 and 9991 DF, p-value: < 2.2e-16
```

#fits linear regression model Creatine as reponse variable and BMI as predictor variable strat_analysis <- lm(Creatinine ~ BMI, data = data) strat_analysis

```
##
## Call:
## lm(formula = Creatinine ~ BMI, data = data)
##
## Coefficients:
## (Intercept) BMI
## 0.1693335 -0.0000946
```

#provides coefficients, p-values, etc,... from the summary of the model
strat_results <- coef(summary(strat_analysis))
strat_results</pre>

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.693335e-01 0.010570120 16.0200211 4.736337e-57
## BMI -9.459654e-05 0.000382619 -0.2472343 8.047320e-01
```



```
#creates subgroups of gender column
subgroups <- unique(data[["Gender"]])
#list to store regression model results for each subgroup
strat_models <- list()

#fit regression models for each subgroup
for (s in subgroups) {
    subgroup_data <- filter(data, !!as.name("Gender") == s)
    model <- lm(Creatinine ~ BMI, data = subgroup_data)
    strat_models[[s]] <- model
}
strat_models</pre>
```

```
## $male
##
## Call:
## lm(formula = Creatinine ~ BMI, data = subgroup data)
##
## Coefficients:
  (Intercept)
                         BMI
      0.154702 0.001416
##
##
##
## $female
##
## Call:
  lm(formula = Creatinine ~ BMI, data = subgroup data)
##
## Coefficients:
  (Intercept)
                         BMI
      0.171356
                -0.001114
##
#iterates over each subgroup
```

```
#Iterates over each subgroup
lapply(names(strat_models), function(subgroup) {

#extract data for the current subgroup
subgroup_data <- filter(data, !!as.name("Gender") == subgroup)

#checks the variable 'Creatinine' exists in the subgroup
if ("Creatinine" %in% colnames(subgroup_data)) {

#predicts creatinine using the regression model
subgroup_data$Predicted_Creatinine <- predict(strat_models[[subgroup]], newdata =
subgroup_data)

#plot a scatter plot of association between creatinine and BMI for each subgroup
ggplot(data = subgroup_data, aes(x = BMI, y = Creatinine)) +
geom_point(color = "green") +
geom_line(aes(y = Predicted_Creatinine), color = "red") +
labs(title = paste("Association between Creatinine and BMI for", subgroup),
```

```
x = "BMI",
y = "Creatinine") +
theme_minimal()

} else {
NULL
}
})
```

[[1]]

Association between Creatinine and BMI for male

[[2]]


```
#loads dplyr package
library(dplyr)

#group data of gender
grouped_data <- data %>%
group_by(Gender)

#calculate summary statistics for Creatinine and BMI within each group
summary_stats <- grouped_data %>%
summarize(
    Mean_Creatinine = mean(Creatinine, na.rm = TRUE),
    Mean_BMI = mean(BMI, na.rm = TRUE)
)

#plots association between Creatinine and BMI for each subgroup
ggplot(summary_stats, aes(x = Mean_BMI, y = Mean_Creatinine, color = Gender)) +
geom_point() +
labs(title = "Association between Creatinine and BMI by Gender",
```

x = "Mean BMI",
y = "Mean Creatinine") +
theme_minimal()

#if obesity value is yes then it will rewrite it as 1 otherwise 0 data\$Obesity <- ifelse(data\$Obesity == "Yes", 1, 0)

#fits logistic regression model response variable is Obesity and predictor variable is Creatinine model \leftarrow glm(Obesity \sim Creatinine, data = data, family = binomial) model

```
##
## Call: glm(formula = Obesity ~ Creatinine, family = binomial, data = data)
##
## Coefficients:
## (Intercept) Creatinine
## -0.9265 -0.2137
##
## Degrees of Freedom: 9999 Total (i.e. Null); 9998 Residual
## Null Deviance: 11790
## Residual Deviance: 11790 AIC: 11790
```

#provides summary statistics of the model summary(model)

```
##
## Call:
## glm(formula = Obesity ~ Creatinine, family = binomial, data = data)
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
0.0127 *
## Creatinine -0.21371 0.08574 -2.492
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
     Null deviance: 11794 on 9999 degrees of freedom
## Residual deviance: 11788 on 9998 degrees of freedom
## AIC: 11792
## Number of Fisher Scoring iterations: 4
```

#fits logistic regression model response var is Obesity snd predictor variables are Creatinine, Age, Gender, Race1 model <- glm(Obesity ~ Creatinine + Age + Gender + Race1, data = data, family = binomial) model

```
##
## Call: glm(formula = Obesity ~ Creatinine + Age + Gender + Racel, family =
binomial,
##
      data = data
##
## Coefficients:
                                       Age Gendermale RacelHispanic
   (Intercept) Creatinine
RacelMexican
##
      -1.447836
                  -0.110823 0.026444 0.005209
                                                           -0.503161
-0.302378
   Race1White
                 Race10ther
     -0.632645
               -1.128704
##
## Degrees of Freedom: 9999 Total (i.e. Null); 9992 Residual
## Null Deviance:
                    11790
## Residual Deviance: 11050 AIC: 11070
```

#provides summary statistics of the model summary(model)

```
##
## Call:
## glm(formula = Obesity ~ Creatinine + Age + Gender + Race1, family = binomi
al,
## data = data)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.447836  0.078453 -18.455 < 2e-16 ***
## Creatinine -0.110823  0.087574 -1.265  0.20570</pre>
```

```
0.026444
## Age
                          0.001096 24.135 < 2e-16 ***
## Gendermale
               0.005209 0.046751 0.111 0.91129
## Race1Hispanic -0.503161 0.113816 -4.421 9.83e-06 ***
## Race1Mexican -0.302378 0.095652 -3.161 0.00157 **
## RacelWhite -0.632645 0.069304 -9.129 < 2e-16 ***
## Race10ther -1.128704 0.115892 -9.739 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 11794 on 9999 degrees of freedom
## Residual deviance: 11051 on 9992 degrees of freedom
## AIC: 11067
## Number of Fisher Scoring iterations: 4
```

```
#subset data having obesity value 1
obese <- subset(data, Obesity == 1)

#subset data having obesity value 0
non_obese <- subset(data, Obesity == 0)

#t-test for creatinine with obese and without obese
t_test_result <- t.test(obese$Creatinine, non_obese$Creatinine)
t test result</pre>
```

```
##
##
    Welch Two Sample t-test
##
## data: obese$Creatinine and non obese$Creatinine
  t = -2.6363, df = 5599.4, p-value = 0.008405
  alternative hypothesis: true difference in means is not equal to 0
  95 percent confidence interval:
   -0.026979448 -0.003966988
## sample estimates:
## mean of x mean of y
## 0.1556183 0.1710915
#categorizing ages into three groups
data\$AgeGroup <- cut(data\$Age, breaks = c(0, 30, 60, max(data\$Age)),
                labels = c("Young Adults", "Middle-Aged Adults", "Older Adults"),
                include.lowest = TRUE)
#storing unique values of AgeGroup
age groups <- unique(data$AgeGroup)
#stores t-test results
t test results <- list()
#iterating each unique value of AgeGroup
for (age group in age groups) {
 #subset the AgeGroup of different categories
 age_group_data <- subset(data, AgeGroup == age_group)</pre>
 #subset the data with obese(1)
 obese age <- subset(age group data, Obesity == 1)
 #subset the data without obese(0)
 non obese age <- subset(age group data, Obesity == 0)
 #t-test on with obese and without obese
 t test result age <- t.test(obese age$Creatinine, non obese age$Creatinine)
 #intializing the test results
 t test results[[age group]] <- t test result age
```

#can see the results t test results

```
## $`Middle-Aged Adults`
##
  Welch Two Sample t-test
##
## data: obese age$Creatinine and non obese age$Creatinine
## t = -2.5095, df = 3450.4, p-value = 0.01213
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.042873598 -0.005264295
## sample estimates:
## mean of x mean of y
   0.179872 0.203941
##
##
## $`Young Adults`
##
## Welch Two Sample t-test
##
## data: obese age$Creatinine and non obese age$Creatinine
## t = -0.97326, df = 1046.9, p-value = 0.3306
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.029016867 0.009775837
## sample estimates:
## mean of x mean of y
## 0.1510731 0.1606936
##
##
## $`Older Adults`
##
```

```
## Welch Two Sample t-test
##

## data: obese_age$Creatinine and non_obese_age$Creatinine
## t = -2.6689, df = 1350.2, p-value = 0.007702
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.048973248 -0.007478655
## sample estimates:
## mean of x mean of y
## 0.1023153 0.1305413
```