

(https://swayam.gov.in)

shweta_s@cs.iitr.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning - IIT Ropar (course)

Click to register
for Certification
exam (https://
examform.nptel.ac.in/2025_10/

exam_form/dashboard)

If already registered, click to check your payment status

Course outline

About NPTEL ()

How does an NPTEL online course work? ()

Week 0 ()

Week 1 ()

Week 2 ()

Week 3 ()

week 4 ()

Week 4: Assignment 4

The due date for submitting this assignment has passed.

Due on 2025-02-19, 23:59 IST.

Assignment submitted on 2025-02-13, 16:38 IST

- 1) Using the Adam optimizer with $\beta_1=0.9$, $\beta_2=0.999$, and $\epsilon=10^{-8}$, what would 1 **point** be the bias-corrected first moment estimate after the first update if the initial gradient is 4?
 - 0.4
 - **4.0**
 - 3.6
 - 0.44

Yes, the answer is correct.

Score: 1

Accepted Answers:

4.0

- 2) In a mini-batch gradient descent algorithm, if the total number of training samples is *1 point* 50,000 and the batch size is 100, how many iterations are required to complete 10 epochs?
 - **5,000**
 - **50,000**
 - **500**
 - \bigcirc 5

Yes, the answer is correct.

Score: 1

Accepted Answers:

5,000

3) In a stochastic gradient descent algorithm, the learning rate starts at 0.1 and decays exponentially with a decay rate of 0.1 per epoch. What will be the learning rate after 5 epochs?

1 of 4 24/06/25, 13:50

- Recap:
 Learning
 Parameters:
 Guess Work,
 Gradient
 Descent (unit?
 unit=59&lesso
 n=60)
- Contours
 Maps (unit?
 unit=59&lesso
 n=61)
- Momentum
 based
 Gradient
 Descent (unit?
 unit=59&lesso
 n=62)
- Nesterov
 Accelerated
 Gradient
 Descent (unit?
 unit=59&lesso
 n=63)
- Stochastic And Mini-Batch Gradient
 Descent (unit? unit=59&lesso n=64)
- Tips for
 Adjusting
 Learning Rate
 and
 Momentum
 (unit?
 unit=59&lesso
 n=65)
- Line Search (unit? unit=59&lesso n=66)
- Gradient
 Descent with
 Adaptive
 Learning Rate
 (unit?
 unit=59&lesso
 n=67)
- BiasCorrection in

3.162

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 0.060,0.061

Accepted Answers:

To correct for the bias in the estimates of first and second moments

5) The figure below shows the contours of a surface.

1 point

Suppose that a man walks, from -1 to +1, on both the horizontal (x) axis and the vertical (y) axis. The statement that the man would have seen the slope change rapidly along the x-axis than the y-axis is,

True

False

Cannot say

No, the answer is incorrect.

Score: 0

Accepted Answers:

True

Adam (unit? unit=59&lesso	6) What is the primary benefit of using Adagrad compared to other optimization algorithms?	1 point
n=68)	It converges faster than other optimization algorithms.	
LectureMaterial for	It is more memory-efficient than other optimization algorithms.	
Week 4 (unit?	It is less sensitive to the choice of hyperparameters(learning rate).	
unit=59&lesso	It is less likely to get stuck in local optima than other optimization algorithms.	
n=69)	No, the answer is incorrect.	
• Week 4:	Score: 0	
Solution (unit? unit=59&lesso	Accepted Answers:	
n=248)	It is less sensitive to the choice of hyperparameters(learning rate).	
Week 4 Feedback	7) What are the benefits of using stochastic gradient descent compared to vanilla gradient descent?	1 point
Form:Deep	SGD converges more quickly than vanilla gradient descent.	
Learning - IIT Ropar!! (unit?	SGD is computationally efficient for large datasets.	
unit=59&lesso	SGD theoretically guarantees that the descent direction is optimal.	
n=187)	SGD experiences less oscillation compared to vanilla gradient descent.	
Quiz: Week 4	No, the answer is incorrect.	
: Assignment 4	Score: 0	
(assessment?	Accepted Answers:	
name=309)	SGD converges more quickly than vanilla gradient descent. SGD is computationally efficient for large datasets.	
Week 5 ()	8) What is the role of activation functions in deep learning?	1 point
Week 6 ()	Activation functions transform the output of a neuron into a non-linear function, a	llowing
Week 7 ()	the network to learn complex patterns.	
Week I ()	Activation functions make the network faster by reducing the number of iterations	needed
Week 8 ()	for training.	
	Activation functions are used to normalize the input data.	
Week 9 ()	Activation functions are used to compute the loss function.	
week 10 ()	Yes, the answer is correct. Score: 1	
Week 11 ()	Accepted Answers:	: 4l
	Activation functions transform the output of a neuron into a non-linear function, allowir network to learn complex patterns.	ig trie
Week 12 ()		4 ! 4
	9) What is the advantage of using mini-batch gradient descent over batch gradient descent?	1 point
Download Videos ()		
	Mini-batch gradient descent is more computationally efficient than batch gradient	descent.
Books ()	Mini-batch gradient descent leads to a more accurate estimate of the gradient that gradient descent.	an batch
Text	Mini batch gradient descent gives us a better solution.	
Transcripts ()	Mini-batch gradient descent can converge faster than batch gradient descent.	
Problem	No, the answer is incorrect. Score: 0	
Solving Session -	Accepted Answers:	
0033IUII -		

3 of 4 24/06/25, 13:50

Jan 2025 ()	Mini-batch gradient descent is more computationally efficient than batch gradient descent. Mini-batch gradient descent can converge faster than batch gradient descent.
	10) In the Nesterov Accelerated Gradient (NAG) algorithm, the gradient is computed at: 1 point
	The current position
	A "look-ahead" position
	The previous position
	The average of current and previous positions
	Yes, the answer is correct. Score: 1
	Accepted Answers:
	A "look-ahead" position

4 of 4 24/06/25, 13:50