Lista 1: Algebry C*. Operatory w przestrzeni Hilberta

Matematyka nieprzemienna 2024/25

Przez $M_n(\mathbb{C})$ oznaczamy przestrzeń macierzy (kwadratowych) o wymiarach n na n i wyrazach zespolonych. Przez I oznaczamy macierz identycznościową w $M_n(\mathbb{C})$.

Niech H będzie przestrzenią Hilberta (=zupełną przestrzenią z iloczynem skalarnym $\langle ., - \rangle$ oraz indukowana normą $\|.\|$). Uwaga: zakładmy, że iloczyn skalarny jest liniowy względem drugiej współrzędnej. Operator $T: H \to H$ nazywamy liniowym, jeśli dla $x, y \in H$ i $\alpha \in \mathbb{C}$ mamy

$$T(x+y) = T(x) + T(y), \quad T(\alpha x) = \alpha T(x).$$

Operator liniowy $T: H \to H$ nazywamy **ciągłym**, gdy istnieje M>0 takie, że dla wszystkich $x \in H$ mamy

$$||T(x)|| \le M||x||.$$

Najmniejszą stałą spełniającą powyższy warunek nazywamy normą operatora T i oznaczamy ||T||. Zachodzą własności

$$||T|| \stackrel{df}{=} \inf\{C \ge 0 \colon ||Tx|| \le C||x||\} = \sup_{x \ne 0} \frac{||Tx||}{||x||} = \sup_{\|x\| = 1} ||Tx|| = \sup_{\|x\| = \|y\| = 1} |\langle x, Ty \rangle|. \tag{1}$$

Przez B(H) oznaczamy zbiór wszystkich operatorów liniowych i ciągłych na przestrzeni Hilberta H. Dla każdego $T \in B(H)$ istnieje dokładnie jeden operator w B(H), który oznaczamy T^* i nazywamy **sprzężonym**, dla którego

$$\langle x, Ty \rangle = \langle T^*x, y \rangle, \quad x, y \in H.$$

- 1. Wykaż, że w dowolnej algebrze C* z jedynką A zachodza następujące własności:
 - (a) Inwolucja jest izometrią (tzn. $||x^*|| = ||x||$).
 - (b) Jedynka ma norme 1.
 - (c) Mnożenie $A \times A \ni (x,y) \mapsto xy \in A$ jest (łącznie) ciągłe.
 - (d) Grupa elementów odwracalnych G(A) jest zamknięta na inwolucję $(x \in A \Rightarrow x^* \in A)$. Ponadto, $(x^*)^{-1} = (x^{-1})^*$.
 - (e) Każda niezerowa projekcja oraz każdy element unitarny ma normę 1. (Projekcjq nazywamy $p \in A$ takie, że $p = p^* = p^2$. Element $u \in A$ jest unitarny, gdy $u^*u = 1 = uu^*$.)
 - (f) Każdy element $a \in A$ jest sumą dwóch elementów samosprzężonych. (Wskazówka: jest to rozkład na tzw. część rzeczywistą i część urojoną.)
- 2. Niech A będzie algebrą C^* (z jedynką). Element $x \in A$ nazywamy samosprzężonym, jeśli $x^* = x$. Niech S(A) oznacza zbiór elementów samosprzężonych. Czy S(A) jest zamknięta na: dodawanie? mnozenie? sprzężenie? Czyli np.: czy suma/iloczyn elementów samosprzężonych będzie elementem samosprzężonym?

- 3. Niech H będzie przestrzenią Hilberta. Wykaż, że wzory na normę operatora podane w równaniu (1) faktycznie są równe. Można opuścić nierówność " \leq " między ostatnimi dwoma wzorami (wymaga użycia twierdzenia o wydobywaniu normy).
- 4. Niech H będzie przestrzenią Hilberta. Sprawdź, że B(H) jest algebrą C*. W szczególności pokaż, że
 - $B(H) \ni T \mapsto ||T|| = \sup_{||x||=1} ||Tx||$ spełnia własności normy.
 - odwzorowanie $T \mapsto T^*$ jest inwolucją na algebrze B(H);
 - \bullet dla normy na B(H) zachodzą submultiplikatywność oraz własność C^* .
- 5. Pokaż, że $B(\mathbb{C}^n)$ jest izomorficzne z $M_n(\mathbb{C})$. Wywnioskuj z poprzedniego zadania, że $M_n(\mathbb{C})$ jest algebra \mathbb{C}^* .

WSKAZÓWKA: zdefiniuj odwzorowanie $\Phi: B(\mathbb{C}^n) \to M_n(\mathbb{C})$ takie, że dodawanie operatorów z $B(\mathbb{C}^n)$ odpowiadana dodawaniu macierzy w $M_n(\mathbb{C})$, a składanie operatorów z $B(\mathbb{C}^n)$ odpowiadana mnożeniu macierzy w $M_n(\mathbb{C})$. Sprawdź, że jest to izomorfizm algebr C^* , czyli jest liniowy, ograniczony, multiplikatywny oraz zachowuje jedynkę i sprzężenie.

6. Przestrzeń $\ell^2=\{(x_n)_{n=1}^\infty\colon x_n\in\mathbb{C}, \sum_{n=1}^\infty |x_n|^2<\infty\}$ jest przestrzenią unitarną z iloczynem skalarnym

$$\langle (x_n)_n, (y_n)_n \rangle := \sum_{n=1}^{\infty} \bar{x}_n \cdot y_n.$$

- (a) Pokaż, że odwzorowanie shift $S: \ell^2 \ni x = (x_1, x_2, \ldots) \mapsto (x_2, x_3, \ldots)$ jest poprawnie zdefiniowane $(Sx \in \ell^2)$ i liniowe. Oblicz jego normę S (wywnioskuj, że S jest w $B(\ell^2)$).
- (b) Znajdź S^* i oblicz jego normę.
- (c) Wykaż, że dla dowolnego ciagu $a=(a_n)_n\in \ell^2$ odwzorowanie $waga~W:\ell^2\ni x=(x_1,x_2,\ldots)\mapsto (a_1x_1,a_2x_2,\ldots)$ jest poprawnie zdefiniowane $(Sx\in\ell^2)$ i liniowe. Oblicz jego normę.
- 7. **Ślad macierzy.** Definiujemy odwzorowanie tr : $M_n(\mathbb{C}) \to \mathbb{C}$ wzorem tr $(A) = \frac{1}{n} \sum_{j=1}^n a_{jj}$, gdzie $A = (a_{jk})_{j,k=1}^n$.
 - (a) Wykazać, że tr
 jest funkcjonałem liniowym, tzn. ${\rm tr}(\lambda x + \mu y) = \lambda {\rm tr}(x) + \mu {\rm tr}(y)$ oraz ${\rm tr}(I) = 1.$
 - (b) Wykazać, że $tr(A^*A) \ge 0$.
 - (c) Sprawdzić, czy tr(AB) = tr(BA).