

$$\hat{y}_{i} = 9.75 + 19.9 \times i$$

$$x_{i} = 4.75 + 19.9 \times 29.$$

$$\Rightarrow \hat{y}_{i} = 9.75 + 19.9 \times 29.$$

Introducción a la Investigación

Contenido

Alumas med. polo.

- Introducción
- Métodos de la investigación
- Fuente de datos
- Hipótesis

$$\mathcal{I} = 1.7n$$
 $\mathcal{I} = 1.7n$

$$\mathcal{I} = 5^2 \longrightarrow 6^2$$

$$\hat{\mu} = \cancel{x} \qquad S^2 = 6_2$$

Concepto

El análisis y la investigación nos permiten buscar información pertinente acerca de un tema en específico. Básicamente nos permite:

Entender mejor

Determinar la frecuencia de un evento

Comparar relaciones entre las variables

Describir varias características de nuestros datos

Reportar y presentar conclusiones

Investigación

En Investigación, podemos aplicar la Estadística a cualquier problema enfocado con procesos sistemáticos y científicos mediante:

Diferencia entre investigación básica y aplicada

Existen, a grandes rasgos, dos tipos de investigación: básica y aplicada.

INVESTIGACIÓN

Básica

- Es usada únicamente para la expansión de conocimientos
- Viene impulsado por la simple curiosidad
- Busca responder preguntas sobre fundamentos

Aplicada

- Busca un uso comercial o de desarrollo
- Es impulsada por la solución a un problema real
- Responde preguntas específicas

Toma de decisiones

El proceso en la toma de decisiones es el siguiente.

Tipos de investigación

Existen varios tipos de investigación. Por mencionar algunos:

- Exploratoria. Se usa principalmente para explorar ideas sobre el fenómeno de estudio. Ésta es considerada como el primer acercamiento científico a un problema. Se utiliza cuando éste aún no ha sido abordado o no ha sido suficientemente estudiado y las condiciones existentes no son aún determinantes.
- Descriptiva. Se utiliza el método de análisis, se logra caracterizar un objeto de estudio o una situación concreta, señalar sus características y propiedades. Combinada con ciertos criterios de clasificación sirve para ordenar, agrupar o sistematizar los objetos involucrados en el trabajo indagatorio. Al igual que la investigación exploratoria, puede servir de base para investigaciones que requieran un mayor nivel de profundidad.
- Causal o explicativa. Es aquella que tiene relación causal; no sólo persigue describir o acercarse a un problema, sino que intenta encontrar las causas del mismo. Mediante este tipo de investigación, que requiere la combinación de los métodos analítico y sintético, en conjugación con el deductivo y el inductivo, se trata de responder o dar cuenta de los porqués del objeto que se investiga.

Para más información:

https://www.uv.mx/apps/bdh/investigacion/unidad1/investigacion-tipos.html

Investigación exploratoria

Se aplican diferentes fuentes de información como.

1. Análisis de datos de fuentes secundarias

4. Entrevistas en profundidad

2. Análisis de expertos

5. Análisis por casos

3. Entrevistas a grupos focalizados

f. Técnicas proyectivas

Existen de dos tipos

Secciones cruzadas

- Recolecta la información
 únicamente para un punto en
 el tiempo
- La muestra puede no ser la misma en cada estudio
- Busca un enfoque más cuantitativo

Longitudinal

- Recolecta la información para un periodo de tiempo
- La muestra es la misma en todos los estudios
- Trabaja enfoque cuantitativo y cualitativo

Investigación causal

- ▶ Busca identificar las causas y los efectos.
- ▶ Utiliza la experimentación como herramienta.
- ► Es mucho más estructurada en la teoría y la práctica, por lo que su uso es aplicable cuando el problema o fenómeno de estudio está claramente definido.

Debido a esto, únicamente se utiliza en la investigación aplicada, ya que siempre es necesario tener al menos dos variables medidas para poder definir sus relaciones.

Trabajo con Datos

El proceso del trabajo con datos consiste en los siguientes pasos

Recolección de datos y trabajo de campo Preparación de los datos Análisis de los datos Interpretación de resultados Implementación de las decisiones

Fuentes de Datos

Se suelen dividir de dos maneras

Primarias

- El investigador colecta los datos con un propósito en específico
- Hay más control y calidad en los datos
- Más costoso y consume más tiempo consumido

Secundarias

- El investigador utiliza los datos recolectados por alguien más
- Puede haber menor calidad en los datos
- Puede ser o no ser costoso, pero en definitiva se consume menos tiempo

Fuentes Primaria

Básicamente son tres

1. Encuestas

2. Observaciones

3. Experimentos

Fuentes Secundarias

Aquí hay varias

1. Bases de datos internas

4. Fuentes públicas

Libros y artículos

Fuentes privadas

Reportes y publicaciones

Redes sociales

Pruebas de Hipótesis

- ► Una hipótesis es una suposición que se hace sobre un parámetro poblacional, la cual puede ser verdadera o falsa.
- ▶ Por ejemplo, basado en la información que el investigador tiene sobre los últimos 10 años acerca de un fenómeno, puede medir el comportamiento del mismo fenómeno en el año siguiente.

► Luego, las pruebas de hipótesis son procedimientos estadísticos utilizados para

verificar las suposiciones del investigador.

Tipos de Hipótesis

En Estadística hay varias pero las principales son dos

Se denota por HO

queremos probar

- obtenemos si la H0 es rechazada
- Se denota por Ha

H,: M < 20 izqueda

Interpretación de los resultados

Para poder interpretar correctamente los resultados, el investigador debe definir un valor crítico usualmente basado en su experiencia u objetivos.

- ▶ Valor calculado < Valor crítico En esta condición, aceptamos la hipótesis nula.
- ▶ Valor calcul<mark>a</mark>do ≥ Va<mark>lo</mark>r crítico En esta condición, rechazamos la hipótesis nula y se acepta la hipótesis alternativa

Tipos de errores cometidos

Cuando aceptamos o rechazamos una hipótesis, podemos cometer algunos errores. Estos se dividen en dos tipos: **Tipo I** (α) y **Tipo II** (β).

$$\alpha_{1,1}, \alpha_{n} \sim N(u, \sigma^{2})$$

Astribución normal

(continuo)

 $f(z) \neq 2 \int_{-\infty}^{\infty} f(x) dx = 1$

19.81

 $f(z) \neq 2 \int_{-\infty}^{\infty} f(x) dx = 1$

µ=20

Tipos de errores cometidos

Cuando aceptamos o rechazamos una hipótesis, podemos cometer algunos errores. Estos se dividen en dos tipos: **Tipo I** (α) y **Tipo II** (β).

	Decisión tomada	
	Aceptar hipótesis nula	Rechazar hipótesis nula
H0 es Verdadera	No hay error	Error de tipo I
H0 es Falsa	Error de tipo II	No hay error