



## 特許協力条約に基づいて公開された国際出願

|                                                                                                                                                                                                                                                                                    |    |                                                      |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------|-------------|
| (51) 国際特許分類 <sup>3</sup><br>C07H 21/04; C12N 15/00 //<br>C12P 19/34, 21/00                                                                                                                                                                                                         | A1 | (11) 国際公開番号<br>(43) 国際公開日<br>1982年8月19日 (19. 08. 82) | WO 82/02715 |
| (21) 国際出願番号<br>PCT / JP82 / 00034                                                                                                                                                                                                                                                  |    |                                                      |             |
| (22) 国際出願日<br>1982年2月4日 (04. 02. 82)                                                                                                                                                                                                                                               |    |                                                      |             |
| (31) 優先権主張番号<br>特許昭56-14373<br>特許昭56-108539                                                                                                                                                                                                                                        |    |                                                      |             |
| (32) 優先日<br>1981年2月4日 (04. 02. 81)<br>1981年7月11日 (11. 07. 81)                                                                                                                                                                                                                      |    |                                                      |             |
| (33) 優先権主張国<br>JP                                                                                                                                                                                                                                                                  |    |                                                      |             |
| (71) 出願人 (米国を除くすべての指定国について)<br>財団法人 癌研究会 (JURIDICAL FOUNDATION,<br>JAPANESE FOUNDATION FOR CANCER RESEARCH) [JP / JP]<br>〒170 東京都墨田区上池袋1丁目37番1号 Tokyo, (JP)                                                                                                                        |    |                                                      |             |
| (72) 発明者 ; および<br>(75) 発明者 / 出願人 (米国についてのみ)<br>菅野 隆夫 (SUGANO, Haruo) [JP / JP]<br>〒167 東京都杉並区南荻窪4-8-13 Tokyo, (JP)<br>谷口 雄祐 (TANIGUCHI, Tadatsugu) [JP / JP]<br>〒176 東京都練馬区田柄4-27-12<br>ユーパレス田柄303号 Tokyo, (JP)<br>大野 俊男 (ONO, Shigeo) [JP / JP]<br>〒152 東京都目黒区八雲4-4-8 Tokyo, (JP) |    |                                                      |             |
| (81) 指定国<br>DE (欧洲特許), FR (欧洲特許), GB (欧洲特許), US.                                                                                                                                                                                                                                   |    |                                                      |             |
| 添付公開書類<br>国際調査報告書                                                                                                                                                                                                                                                                  |    |                                                      |             |

(54) Title: HUMAN INTERFERON- $\beta$  GENE

(54) 発明の名称 ヒトインターフェロン-β 遺伝子

(57) Abstract

Human interferon- $\beta$  gene of human chromosom origin, DNA containing said gene and DNA participating in control of transcription of said gene, and recombinant DNA between said DNA and vector DNA. Said gene and DNA can be introduced into cells of eukaryote to produce human interferon- $\beta$  by the cells.

(57) 要約

本発明はヒト染色体由来のヒトインターフェロイン- $\beta$  遺伝子、該遺伝子および該遺伝子の転写の調節に関するDNAを含むDNA、ならびに該DNAとベクターDNAとの組換え体DNAに関する。本発明の遺伝子ならびにDNAは真核生物の細胞に取り込ませて該生物にヒトインターフェロン- $\beta$  を生産させることができる。

情報としての用途のみ

PCTに基づいて公開される国際出版のパンフレット第1頁にPCT加盟国を同定するために  
使用されるコード

|    |             |    |           |
|----|-------------|----|-----------|
| AT | オーストリア      | LI | リヒテンシュタイン |
| AU | オーストラリア     | LK | スリランカ     |
| BE | ベルギー        | LU | ルクセンブルグ   |
| BR | ブラジル        | MC | モナコ       |
| CF | 中央アフリカ共和国   | MG | マダガスカル    |
| CG | コンゴー        | MR | モーリタニア    |
| CH | スイス         | MW | マラウイ      |
| CN | カメルーン       | NL | オランダ      |
| DE | 西ドイツ        | NO | ノルウェー     |
| DK | デンマーク       | RO | ルーマニア     |
| FI | フィンランド      | SE | スウェーデン    |
| FR | フランス        | SN | セネガル      |
| GA | ガボン         | SU | ソビエト連邦    |
| GB | イギリス        | TD | チャード      |
| HU | ハンガリー       | TO | トーゴ       |
| JP | 日本          | US | 米国        |
| KP | 朝鮮民主主義人民共和国 |    |           |

1  
明 細 告

## 発明の名称

ヒトインターフェロン- $\beta$  遺伝子

## 〔技術分野〕

本発明はヒト染色体由来のヒトインターフェロン- $\beta$  遺伝子（インターフェロン $\beta$  の遺伝子の全転写領域に対応するDNA（デオキシリボ核酸）），該遺伝子および該遺伝子の転写の調節に関与するDNAを含むDNA，ならびに該DNAとベクターDNAとの組換え体DNAに関する。

## 〔従来技術〕

ヒトインターフェロン- $\beta$  のcDNAをmRNAを誇型として取り出すことはしられている（Gene, 10, 11~15, (1980)）。

## 〔発明の開示〕

本発明者らは，組換えDNA技術を用い，プラスミドDNA（たとえば大腸菌由来のプラスミドDNA）あるいはファージDNA（たとえば大腸菌由来のスファージDNA）にヒトインターフェロン遺伝子を挿入した組換え体DNAによるインターフェロンの大量増殖を目的に研究を行った。その結果，細菌たとえば大腸菌内で増殖，増幅させ，最終的にはヒトインターフェロン- $\beta$ を細菌たとえば大腸菌に生産させるのに利用することができ，さらに真核細胞内たとえばマウス細胞の染色体遺伝子中に組込み，あるいはウィルスに組み込んで真核細胞内に取り込ませ，真核細胞たとえばマウス細胞にヒトインターフェロン- $\beta$ と全く同一の化学構造を有する物質を生産させるのに利用することのできる新規な組換え体DNAを見出し，本発明を完成するに至った。

該組換え体DNAはヒトインターフェロン- $\beta$ の染色体内遺伝子の少なくとも全転写領域，さらに転写の調節に関与していると考えられる領域をも含んだ部分を有する新規な組換え体DNAである。



本発明ではヒトの染色体遺伝子から直接ヒトインターフェロン- $\beta$ 遺伝子ならびに該遺伝子とその転写調節に関するDNAとを含んだDNAを取り出すことの成功を示している。

以下本発明を詳細に説明する。

本発明はヒト染色体由来のヒトインターフェロン- $\beta$ 遺伝子、該遺伝子および該遺伝子の転写の調節に関するDNAを含むDNA、ならびに該DNAとベクターDNAとの組換えDNAに関する。

本発明の組換えDNAは、概略次のようにして製造できる。

ヒト染色体全DNA、例えばヒト胎児肝臓から抽出した染色体DNAを制限酵素を用いて適当な長さに分断する。それをそのままもしくは適当な長さの部分のみを取出して電気泳動法などにより濃縮する。これを組換えDNA技術によってベクターDNAに挿入することによって組換えDNAを得る。この組換えDNAの中からヒトインターフェロン- $\beta$ メッセンジャーRNAに相補性を示すDNA(ヒトインターフェロン- $\beta$ のcDNA)を持つ組換えDNAを放射性同位元素で標識したものを探針として、ヒトインターフェロン- $\beta$ の染色体遺伝子を含む本発明の新規組換えDNAを探索、採取することができる。

該組換えDNAの製法についてさらに具体的に説明する。

ヒト染色体DNAを、ヒト胎児肝臓などからフェノールなどで抽出する。この抽出DNAを制限酵素、例えばHaeIIIとAluIなどで部分消化することにより適当な長さに分断する。

こうして得られるヒト染色体全DNAの断片をEcoRIリンクーなどを介してバクテリオファジーT4リガーゼなどを用いて大腸菌ファージスなどのDNAに挿入し、組換えDNAを作る。

これをさらにパッケージング法により、より感染性の高いファージ粒子にする。このようにして得たヒト全遺伝子を含む組換え体の集合は、ヒト遺伝子ライブラリーとよばれる。

ヒト遺伝子ライブラリーは、その構築の原理上ほとんど全てのヒ

ト遺伝子DNAを含んでおり、ほとんど全ての遺伝子をそこから単離してくることができる。

ヒトインターフェロン- $\beta$ の染色体内遺伝子の場合には、後述するように、既に遺伝子周辺の制限酵素による切断地図が明らかになっており、上述のヒト全遺伝子ライブラリーを出発点とする代りに、次のようなヒトインターフェロン- $\beta$ 遺伝子について、より濃縮された組換え体の集合を出発点としてもよい。

すなわち、ヒト染色体全DNAを制限酵素HindIIIなどで完全に消化し、約10キロベース（以下Kbと略記する）程度のDNAをアガロース中の電気泳動法などによって分画し、これを上述のようにメファージなどに組込むことによって、HindIII切断箇所を両端に持つ約10KbのDNAのライブラリーを得ることができる。

ヒトインターフェロン- $\beta$ の染色体内遺伝子はHindIIIによって生じる約10KbのDNA中に含まれている。この場合、全遺伝子ライブラリーに比べ、約10倍程度は濃縮されると考えられる。

上記ベクターとして用いたメファージはCharon系のファージ、プラスミド例えばpBR322, pCR1, pMB9, pSC1などに代えることもできる。

かくして得られたヒト遺伝子ライブラリーから次のようにしてヒトインターフェロン- $\beta$ 遺伝子を含むDNA断片を持った組換え体DNAを探し出すことができる。

ヒトインターフェロン- $\beta$ メッセンジャーRNAに相補的な構造(cDNA)をもった組換え体プラスミドを大腸菌 $\times$ 1776/TpIF319-13 ATCC31712からCurrierとNesterの方法(Analyt.Biochem.Vol.76, 431-441 (1976))によって取出す。これをニックトランスレーション法(Roopら, Cell 15, 671~685 (1978))に従って( $^{32}$ P)で標識し、これを探針とする。

一方、大腸菌ファージをベクターとして用いた上述の遺伝子ライブラリーを寒天平板上に展開し、各々のクローンに対応するファ-



一ジプレート中のDNAをBentonnとDavisの方法 [Science. 196, 180-182 (1977)] に従ってフィルター上に固定する。

このフィルターに対して上記探針を用いてハイブリダイゼーションを行い、ラジオオートグラフィーにより、ヒトインターフェロン- $\beta$ メッセンジャー-RNAに相補的な構造をもった組換え体に会合するDNAを持ったファージのクローンを判別する。

かくして得たファージを増殖し、DNAを抽出する。該DNAをEcoRIなどの制限酵素で消化し、アガロースゲル電気泳動で分画する。得られる画分をSouthernの方法 [J. Mol. Biol. 98, 503-517 (1975)] でフィルターに固定する。上記の探針を用いてハイブリダイゼーションを行い、いわゆるSouthernプロッティング分析（同上文献）する。このようにしてcDNAにハイブリダイズする、例えば1.8KbのEcoRI断片をもつファージクローンを得る。

このファージクローンから、例えばSmithとBirnstielらの方法 [Nucleic Acids Res. 3, 2387-2398 (1976)] により、より詳細な制限酵素地図を作成する。

さらに、例えばMaxamとGilbertらの方法 [Proc. Natl. Acad. Sci. USA 74, 560-564, (1977)] によりDNAの塩基配列を決定する。このDNAの塩基配列をヒトインターフェロンcDNA [Gene 10, 11-15 (1980)] の塩基配列と比較すると、得られたクローンがヒトインターフェロン- $\beta$ メッセンジャー-RNAに対応する染色体内遺伝子、すなわちヒトインターフェロン- $\beta$ の染色体内遺伝子を含むことが同定できる。

このヒトインターフェロン- $\beta$ 遺伝子ならびに該遺伝子とその転写の調節に関与するDNAを含むDNAは上記で得られた組換え体DNAの中からBenttonとDavisの方法 [Science. 196, 180-182 (1977)] やGrunstein-Hognessの方法 [Proc. Natl. Acad. Sci. USA 72, 3961-3965 (1975)] に従って採取する。



## 〔図面の簡単な説明〕

第1図aは、 $\lambda$ -IFN- $\beta_1$ -121にクローン化された15Kb染色体DNA切片の制限酵素地図を示す。図中断続線はCharon 4AからのベクターDNAの腕を示す。

第1図bおよびdは、ヒト染色体DNAに由来する1.8KbのEcoRI断片の制限酵素地図を示す。図中黒い帯はメッセンジャーRNAがそこから転写されることを示す。

第1図cは、ヒト染色体DNA中のインターフェロン- $\beta$ cDNAに対応する部分を示す。図中白枠は蛋白コーディング領域を示す。

第1図eは、配列決定の始点と方向を示す。図中矢印は分析した各画分の配列の方向および広がりをしめす。

第1図中の記号は、下記文献に記載された制限酵素を示す。

EcoRI : Methods Mol. Biol. 7, 87 (1974)

Bgl II : Nucleic Acids Res. 3, 1747 (1976)

HindIII : J. Mol. Biol. 92, 331 (1975)

BamHI : J. Mol. Biol. 97, 123 (1975)

Pst I : Nucleic Acids Res. 3, 343 (1976)

Pvu II : Gene 8, 329-343 (1980)

HinfI : J. Mol. Biol. 110, 297 (1977)

Alu I : J. Mol. Biol. 102, 157 (1976)

Hae III : J. Virol. 10, 42 (1972)

Taq I : Proc. Natl. Acad. Sci. USA, 74, 542 (1977)

Ava II : Biochem. J. 159, 317 (1976)

Hin II : Gene 8, 329-343 (1980)

EcoRII : Nature New Biol. 244, 7 (1973)

第2図は、1.8Kb EcoRI断片の塩基配列を示す。図中-1~-561はヒトイントーフェロン- $\beta$ の蛋白質をコードする部分を示し、-73~-75の矢印は転写開始部位を示し、下線はTATAボックスを示す。



## 〔発明を実施するための最良の形態〕

以下に本発明の態様を実施例によって説明する。

## 実施例 1.

ヒト遺伝子ライブラリーは Tom Maniatis (California Institute of Technology) から供与を受けたが、これは次のようにして作られたものである。

ヒト胎児肝臓から染色体全DNAをフェノールなどで抽出し、制限酵素 HaeIII と AluI で部分消化する。こうして得られた DNA 断片の中から鎖長が 18 - 25 Kb 程度のフラグメントをショ糖密度勾配遠心法により濃縮し、次に制限酵素 EcoRI の切断箇所を持つ短鎖合成スクレオチドを介して大腸菌ファージ  $\lambda$  Charon 4 A のアーム DNA に接続し、感染性のあるファージ DNA 組換え体を作成する。次に、さらに感染性を高める目的でパッケージング法により完全なファージ  $\lambda$  粒子にしてある。このようにして作られたヒト遺伝子ライブラリーは原理的にはほとんどすべてのヒト遺伝子を含む鎖長 18 - 25 Kb のヒト DNA を含んだ組換え体の集合であると考えられる。

ヒト遺伝子ライブラリーからヒトインターフェロン- $\beta$  の遺伝子を含む DNA 断片を持つ組換え体ファージはヒトインターフェロン- $\beta$  の c DNA の蛋白に翻訳される部分すべてを持つ c DNA 断片を ( $^{32}$ P) で放射標識したものを探針として Benton と Davis の方法 (Science 196, 180-182 (1977)) により探索した。以下にその詳細を述べる。

先ず、探針として用いるヒトインターフェロン- $\beta$  の c DNA の蛋白に翻訳される部分すべてを持つ約 0.57 Kb の DNA 断片は次の様にして調製し、放射標識した。

ヒトインターフェロン- $\beta$  の c DNA を含む組換え体プラスミド TpIF 319-13 を持つ大腸菌  $\lambda$  1776/TpIF 319-13 ATCC 31712 から Currier と Nester らの方法 (Analyst. Biochem. 76, 431-441



(1976) ] によって TpIF 319-13 プラスミド DNA を精製し、制限酵素 *Hinc* II, *Bgl* II, *Hha* I で消化する。得られた消化物中、最も鎖長の長い 0.57K b の DNA 断片が目的とする DNA 断片であるが、これを Tabak と Flavell の方法 [Nucleic Acids Research 5, 2321-2332 (1978) ] によりアガロース電気泳動法で他の断片と分離し精製する。これをニックトランスレーション法 [たとえば Roopら, Cell 15, 671-685 (1978) ] により [ $^{32}\text{P}$ ] で放射標識する。すなわち DNA (0.5  $\mu\text{g}$ ) を 50 mM Tris-HCl (pH7.8) 5 mM  $\text{MgCl}_2$ , 10 mM  $\beta$ -メルカプトエタノール, 5  $\mu\text{M}$  dGTP, 150  $\mu\text{M}$  dTTP, 1 ng DNase I (Worthington 社製), [ $^{32}\text{P}$ ] -  $\alpha$ -dCTP (100  $\mu\text{Ci}$ , 2000-3000 Ci/mmol, RCC Amersham 社製), 15 unit DNA polymerase I (Boehringer Mannheim 社製) を含む 30  $\mu\text{l}$  の水溶液中で 15 ℃, 4 時間インキュベートした。ついで EDTA を添加し終濃度 20 mM とし, 65 ℃, 10 分間インキュベートし酵素を失活させる。次にフェノールで除蛋白した後, Sephadex G-50 (Pharmacia Fine Chemical 社製) カラムクロマトグラフィーで脱塩し、探針に供する。このようにして得られた [ $^{32}\text{P}$ ] で放射標識された cDNA 断片は  $10^8 \text{ cpm} / \mu\text{g}$  程度の放射活性を持つ。

以上述べた方法により、ヒトインターフェロン- $\beta$  cDNA の断片を放射標識して調製した DNA 断片を探針としてヒト遺伝子ライブラリーからヒトインターフェロン遺伝子を含む DNA 断片を持つ組換え体ファージを次のようにして探索する。

まず、寒天プレート [Science 202, 1279-1284 (1978) ] 上に先のファージス粒子をまきファージブラークを形成させる。このブラークの密度は直径 15 cm のプレート 1 枚あたり 1 万~3 万個程度にする。次にこの寒天プレート上にニトロセルロース紙 (Schleicher と Schull 社販売) を重層し、方向づけのためにマークをつけ、4 ℃で約 20 分間放置し、ファージを吸着させる。ブ



レートは4℃に保存しておき、ニトロセルロース紙を室温で約90分間風乾する。これを0.1N NaOH, 1.5M NaClの水溶液中に約20秒間浸し、ファージDNAを変性させる。次に0.2M Tris-HCl (pH 7.4), 2×SSC (SSCとは0.15M NaCl, 0.015M クエン酸ソーダを含む水溶液を言う。2×SSCとはその2倍の濃度のものを言う。) 中で約20秒間中和し、さらに2×SSC中で20秒間処理する。室温で1時間風乾後、80℃で3時間風乾し、変性したファージDNAをニトロセルロース紙上に固定する。

このようにして作成したニトロセルロース紙上のファージDNAに対し、先に述べたようにして放射標識されたヒトインターフェロン- $\beta$ c DNAを探針としてハイブリダイゼーションを次のように行った。

ニトロセルロース紙を3×SSC中で65℃, 30分間処理し、3×SSCに0.2%ポリビニルビロリドン(半井化学社製), 0.2%ウシ血清アルブミン(岩井化学社製), 0.2%フィコール(Pharmacia Fine Chemical 社製)を加えた溶液中で65℃, 60分間処理する。さらに1M NaCl, 50mM Tris-HCl (pH 8.0), 10mM EDTA, 0.1%SDS, 100μg/mlの超音波処理し、熱変性した大腸菌DNAを含む溶液(ハイブリダイゼーション溶液)中で65℃, 60分間の処理をすることによりハイブリダイゼーションのための全処理とする。

一方、放射標識された探針のDNAを95℃, 10分間の処理をすることにより熱変性させておく。次に、前処理したニトロセルロース紙と、この熱変性した探針のDNAとを上記ハイブリダイゼーション溶液中、65℃でインキュベートし、ハイブリダイゼーションを行う。12-18時間後、ニトロセルロース紙を取り出し、まず2×SSCで2回洗い、0.3×SSC, 0.1%SDSを含む溶液中で65℃, 60分間の処理を2回行い、最後に80



てで 1 時間風乾させ、X 線フィルムを用いてラジオオートグラフィーを行う。

4 でに保存しておいた寒天板と、ラジオオートグラムとを重ねあわせることにより探針と会合した部分のファージをかき取り、さらに上記の操作を繰返し行うことにより、インターフェロン- $\beta$  c DNA に会合する DNA を持つ組換え体ファージを单一クローンにまで精製する。

このようにして、約 100 万個のファージブラークをスクリーニングすることにより 11 個のクローンを得た。

次に各クローンの組換え体 DNA を Maniatis の方法 (Cell, 15, 687-701 (1978)) により調製し、以下の解析に用いた。

まず、各クローンの組換え体 DNA を制限酵素 EcoRI で切断し、アガロースゲル電気泳動により生じた DNA 断片の鎖長を測定する。すべてのクローンの DNA の消化物はベクターであるファージ  $\lambda$  Charon 4 A のアームに由来する 20 Kb, 11 Kb の DNA 断片を持つが、それ以外にヒト染色体内 DNA に由来するいくつかの DNA 断片を持つ。この解析により 11 個のクローンは 5 種類に分類された。さらに上述のスクリーニングのときに用いたヒトインターフェロン- $\beta$  c DNA を探針としてサザンハイブリダイゼーション (Southern, J. Mol. Biol., 98, 503-517 (1975)) を行なうことにより、たとえば EcoRI 消化により得られたどの長さの DNA 断片がヒトインターフェロン c DNA に会合するかということが同定された。

すなわち各ファージクローンの DNA を EcoRI で消化し、アガロースゲル電気泳動を行う。泳動後ゲルを切り出し、0.5 N NaOH, 1 M NaCl を含む水溶液中、室温で 30 分間処理することにより DNA を変性する。さらに 0.5 N Tris-HCl (pH 7.0), 1.5 M NaCl を含む水溶液中で同様の処理を 2 回くり返し行い、ゲルを中和する。ゲルを 20 × SSC をしみ込ませた滤紙上に置き、ゲルの上



にニトロセルロース紙を置き、さらにその上に滤紙、紙タオルの順に重層し、ゲル中の変性したDNAをニトロセルロース紙に吸着させる。12-18時間後ニトロセルロース紙をゲルからはがし、80°Cで3時間風乾することにより、DNAをニトロセルロース紙上に固定する。以下は上述したファージのスクリーニングに際して行ったと全く同様にしてハイブリダイゼーションを行なう。

このようにしてクローニ化された5種類のヒト染色体遺伝子断片のうち4種類が1.8KbのEcoRIによって生ずるDNA断片（以下EcoRI断片という）を含み、この1.8KbのEcoRI断片がヒトイントーフェロンcDNAと相補的な構造を持っていることが明らかになった。他の1種類のクローニについては、この1.8KbのEcoRI断片の途中から始まるDNA断片を含んでいることが明らかになった。

11個のクローニのうち1.8KbのEcoRI断片を生ずるもののが1つであるλHIFN-β<sub>1</sub>-121と名づけられたクローニについては、さらにHindIII、BamHI、BglII、PstIなどの制限酵素を用いて同様の実験を行うことにより、制限酵素による切断地図を作成した。これを第1図aに示す。

次にヒトイントーフェロン-βcDNAに相補性を示す1.8KbのEcoRI断片について詳細に検討を加える目的で、この1.8KbのEcoRI断片をプラスミドpBR322をベクターとして再びクローニ化した。この方法を以下に示す。

λHIFN-β<sub>1</sub>-121 DNA 1μgを制限酵素EcoRIで消化した後、0.1Mリン酸カリウム緩衝液(PH 6.9)、6mM MgCl<sub>2</sub>、6mMメルカプトエタノール、1mM ATP、1mM TTPを含む30μlの水溶液中で5ユニットのDNAポリメラーゼクレノーフラグメント(Boehringer Mannheim社製)を用いて、EcoRI切断箇所を修復する。エタノールで除蛋白した後、ターミナルransフェラ-



ゼを  $30 \mu\text{l}$  の反応液 (DNA  $1 \mu\text{g}$  : カコジル酸カリ (PH7.6)  $0.14\text{M}$  ; トリス  $0.03\text{M}$  ; ジチオスレイトール  $0.1\text{mM}$ ;  $\text{CaCl}_2 1 \text{mM}$  ; dCTP  $1 \text{mM}$ ; 2ユニットのターミナルトランスフェラーゼ) 中で  $37^\circ\text{C}$ , 15分間反応させ, 各 EcoRI 断片の 3'両端に約 100 個のデオキシシチジン鎖を延長させる。一方 pBR322 を  $\text{Pst I}$  で切断し, 同様にして  $\text{Pst I}$  切断箇所の 3'両端に約 100 個のデオキシグアニン鎖を延長して作ったベクターを準備しておく。このようにして得られたヒト染色体遺伝子DNAのEcoRI切断片  $0.05\mu\text{g}$  と pBR322 DNA  $0.05\mu\text{g}$  とを  $0.1\text{M NaCl}$ ,  $50 \text{mM Tris-HCl}$  (PH 7.5),  $5 \text{mM EDTA}$  よりなる溶液中で  $65^\circ\text{C}$ , 2 分間,  $45^\circ\text{C}$ , 1時間,  $37^\circ\text{C}$ , 1時間, 室温, 1時間インキュベートして会合させる。これに Enea らの方法 (J. Mol. Biol. 96, 495-509 (1975)) に従って大腸菌  $\chi 1776$  を形質転換させる。

得られたテトラサイクリン耐性株の中から, 400 個の耐性株を選び各々のDNAをニトロセルロース紙上に固定する (Grunstein-Hogness 法, Proc. Natl. Acad. Sci. USA 72, 3961-3965 (1975))。このニトロセルロース紙上で上記ファージのスクリーニングあるいはササンハイブリダイゼーションのときに行なったのと同様の方法 (ハイブリダイゼーション溶液中に熱アルカリ処理して断片化し, さらに熱変性した pBR322 DNA を  $30 \mu\text{g}/\text{ml}$  の濃度で加えた。) で, 同じ探針 (インターフェロン- $\beta$  cDNA) を用いてハイブリダイゼーションを行い, 1.8 Kb の EcoRI 断片を持つ組換え体プラスミドをもつ大腸菌株を同定した。

このようにして得た大腸菌からヒトインターフェロン- $\beta$  cDNA に会合する組換え体DNAを含む 1.8 Kb の EcoRI 断片を持つ組換え体プラスミドDNAを前記 Currier と Nester の方法で調製し, 以下の解析に供した。

このヒト染色体DNAに由来する 1.8 Kb の EcoRI 断片がヒトインターフェロン- $\beta$  のメッセンジャーRNAに相補的なDNA



を含んでいることは、以上で明らかであるが、そのことをさらにはっきりさせる目的で、制限酵素による切断地図を、組換え体プラスミドのDNAあるいはその一部を1種類あるいは2種類以上の制限酵素で切断する方法により、または3'末端をポリヌクレオキナーゼを用いて(<sup>32</sup>P)で標識した断片を制限酵素で部分消化する方法 [Smith and Birnstiel, Nucleic Acids Res., 3, 2387-2398 (1976)]により生じたDNA断片の鎖長をアガロース電気泳動などにより測定することにより作成した。(第1図 b,d) 第1図cにインターフェロン- $\beta$ cDNAの対応する部分を示したが(白枠は蛋白コーディング領域を示す), cDNAと全く同一の制限酵素切断地図を示す部分があることが発見された。

以上の事実から、ここで得られたヒト染色体DNA由来の1.8Kb EcoRI DNA断片上に、ヒトイインターフェロン- $\beta$ メッセンジャー-RNA(すなわちcDNA)と全く同一の配列のあること、すなわちこの1.8Kb EcoRI DNA断片がヒトイインターフェロン- $\beta$ の染色体内遺伝子(第1図bの黒い帯)を含んでいることが明らかになった。

さらに他の多くの真核細胞の遺伝子中に存在するインターピーニングシークエンス(介在配列)がヒトイインターフェロン- $\beta$ の遺伝子に関して存在しないことが明らかになった。得られた1.8Kb EcoRI 断片中に含まれているインターフェロン- $\beta$ 遺伝子が介在配列を持っていないということは、この遺伝子DNAを用いて、介在配列を切り出すメカニズムのない、例えば六腸菌などの原核生物にインターフェロン蛋白を合成させることができることを示している。

上記のことを決定的に証明する目的で、この1.8Kb EcoRI 断片の塩基配列をMaxamとGilbertの方法 [Proc. Natl. Acad. Sci. USA 74, 560-564 (1977)]により決定した。その結果を第2図に示す。



13

この 1.8 Kb EcoRI 断片は大腸菌に挿入し、米国アメリカン・タ  
イプ・カルチャー・コレクションに Escherichia coli CI 4 ATCC  
31905 として寄託されている。



## 請 求 の 範 囲

- (1) ヒト染色体由来のヒトインターフェロン- $\beta$  遺伝子。
- (2) ヒト染色体由来のヒトインターフェロン- $\beta$  遺伝子および該遺伝子の転写の調節に関与するDNAを含むDNA。
- (3) ヒト染色体由来のヒトインターフェロン- $\beta$  遺伝子および該遺伝子の転写の調節に関与するDNAを含むDNAとベクターDNAとの組換え体DNA。
- (4) 該ベクターDNAが大腸菌由来の $\lambda$ ファージ、Charon系ファージ、プラスミドpBR 322、pCR 1、pMB 9 およびpSC 1 から選ばれる特許請求の範囲第3項記載の組換え体DNA。





2/2

## 第 2 図

GAATTCTCAGGTCTTTCCTTCTCCAACTCTCTTACATTG  
 -350  
 CTTTACTCACTGAAACTTIAAAAACATTAGAAAACCTC1CACTTTCTAAATCTTTCCGATTATATATATATATAAGATACGGATCTTAAATAAA  
 -250  
 CAGTTTACAAACTACTAAATCTAAATGACATAGGAAACTGAAAGGGAGAACTGAAAGTGGAAATTCCCTGAATAGAGAGAGGGACATCTCATATA  
 -200  
 ATAGGCCATACCCACGGACAAAGGACATTCTAACCTGCAACCTTCCGAGGCTTGCCTGGCACACAGGGACTAGGGCACACTGTTGGCTTGTCAAC  
 -100  
 +1  
 met thr asn lys cys leu leu gln ile s1s leu leu cys phe ser thr thr als leu ser MET SER TYR ASN  
 ATG ACC AAC AAG TGT CTC CTC CAA ATT GCT CTC CTG TTG TCC TTC AGT ACA GCT CTT TCC AIG AGC TAC AAC  
 50  
 LEU LEU GLY PHE LEU GLN ARG SER SER ASN PHE GLN CYS GLN LYS LEU LEU TRP GLN LEU ASN GLY ARG LEU GLU  
 TTG CTG GGA TTG CTC CAA AGA AGC ATT TTT CAG TGT CAG AAG CTC CTG TTG CAA TTG ATT GGG AGG CTT GAA 150  
 TYR CYS LEU LYS ASP ARG MET ASN PHE ASP ILE PRO GLU GLU ILE LYS GLN LEU GLN GLN PHE GLN LYS GLU ASP  
 TAC TTG CTC AAG GAC AGG ATG AAC TTT GAC ATC CCT GAG GAG ATT AAG CAG CTG CAG CAG TTG CAG AAC GAG GAC  
 200  
 ALA ALA LEU THR ILE TYR GLU MET LEU GLN ASN ILE PHE ALA ILE PHE ARG GLN ASP SER SER SER TYR GLY TRP  
 CCC GCA TTG ACC ATC TAT GAG ATG CTC CAG AAC ATC ATT GCT ATT TTG AGA CAA GAT TCA TCT ACC ACT GCG TCG  
 250  
 ASN GLU THR ILE VAL GLU ASN LEU LEU ALA ASN VAL TYR HIS GLN ILE ASN HIS LEU LYS THR TAT LEU GLU GLU  
 ATT GAG ACT ATT TTG GAG AAC CTC CTG CCT ATT GTC TAT CAT CAG ATA AAC CAT CTG AAG ACA CTC CTG GAA CAA  
 300  
 LYS LEU GLU LYS GLU ASP PHE TYR ARG GLY LYS LEU MET SER SER LEU HIS LEU LYS ARG TYR TYR GLY ARG ILE  
 AAA CTG GAG AAA GAA GAT TTG ACC AGC GCA AAA CTC ATG AGC ATG CTC CAG AAA AGA TAT TAT GGG AGG ATT  
 450  
 LEU HIS TYR LEU LYS ALA LYS GLU TYR SER HIS CYS ALA TRP TYR ILE VAL ARG VAL GLU ILE LEU ARG ASN PHE  
 CTG CAT TAC CTG ACC GCC AAG GAG TAC ACT CAC TGT GCC TGG ACC ATA CTC AGA GTG GAA ATC CTA AGC AAC ATT  
 500  
 TYR PHE ILE ASN ARG LEU THR GLY TYR LEU ARG ASN  
 TAC TTG ATT AAC AGA CTT AGC GGT TAC CTC CGA AAC TGA AGATCTCTAGCCTGTGCCCTGCCACTGACAACTTCTCAAGCATT  
 550  
 600  
 CTTCAACCCAGGAGATCTCTTAAAGTCACTGATGGCTAACTGACTGCTATGAAAGGAACTAGAAGATTTGAAATTTTATTAAATTATGACTTATT  
 650  
 700  
 TTATTTATTTATTTTCAAAATTAATTATTTTCTGCAAAGTCAACATGGCACTTTAATTGCAATTGATTATATAACCATCCATATTAA  
 750  
 800  
 TAAAATTGCCAACTACCTATTACTTCTCTTTAAATATACCTGCCAACTACTATACCTTCTGCCCTGCCCTTAACCAATTAAATTCAAGAAG  
 850  
 900  
 CCATGATGAAATATAAGGTAAGAGACAAATAGGGCACTGCAACCTTATGCCGAAATAATATGUCATGAACTCTCTGCCATTAAAGAGAAAAGGAA  
 950  
 1000  
 ACCTGGGGGTCTGCAACTAAACCTGGGCTCCCATCTCTACTCTGCTGCTCCAGATTCTCATCATAAAGTTAGAATTGAGCTGCCATCAGGAAT  
 1050  
 1100  
 ACCCACAGCAATATCTCAGCTTCTCTCCCTAACCTTCTCCACTTCTGCTCTCTGCCAGATTAAAGTTAAATTATGCCCC  
 1150  
 1200  
 CCCACCATCCCTCAAGCTTAAAGGTGAGAAGTCCCAATTACTCTCATGACACTATTAAACGACCAATCTCTTATTCTGCTCATCATGAGACAGCCAAAGA  
 1250  
 1300  
 TGCTGGCTATCTAGGGGAGCTGCGGCTCCGTCTGGCATGGCACAGGGCATCAGAGGAAGAACCTTATACCCCTAGCCATCTCTTACTT  
 1350  
 1400  
 TTCTCCCTACTTTCAAAAAACTAACCTGCTCCAGCTCCACTGCTCTTCTCATACAGAATTTC  
 1450

差換え



## INTERNATIONAL SEARCH REPORT

International Application No

PCT/JP82/00034

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) <sup>3</sup>

According to International Patent Classification (IPC) or to both National Classification and IPC

Int. Cl. <sup>3</sup> C07H21/04, C12N15/00// C12P19/34, 21/00

## II. FIELDS SEARCHED

Minimum Documentation Searched <sup>4</sup>Classification System <sup>1</sup>

Classification Symbols

I P C C07H21/04, C12N15/00, C12P19/34, 21/00

Documentation Searched other than Minimum Documentation  
to the Extent that such Documents are Included in the Fields Searched <sup>5</sup>III. DOCUMENTS CONSIDERED TO BE RELEVANT <sup>1,4</sup>

| Category <sup>6</sup> | Citation of Document, <sup>1,6</sup> with indication, where appropriate, of the relevant passages <sup>1,7</sup>                                                                                                   | Relevant to Claim No. <sup>1,8</sup> |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| A                     | Nature, Vol. 285, No. 19 (June, 1980)<br>P542 - 549. Especially see 547-549                                                                                                                                        | 1 - 4                                |
| E                     | JP,A, 57-24400 (G.D. Searle and Co.)<br>8. February. 1982 (08.02.82), Column 38,<br>lines 6 to 20, column 55, line 17 to<br>column 57, line 11                                                                     | 1 - 4                                |
| P                     | Ishikawa Kunihiko Henshu "Bessatsu Tanpakushitsu<br>Kaku-san Koso) Interferon Kenkyu no Shinpo"<br>1. December. 1981 (01.12.81) Kyoritsu<br>Shuppan Kabushiki Kaisha P169 - 182,<br>Especially see page 174 to 175 | 1 - 4                                |

• Special categories of cited documents: <sup>1,9</sup>

"A" document defining the general state of the art

"E" earlier document but published on or after the international  
filing date"L" document cited for special reason other than those referred  
to in the other categories"O" document referring to an oral disclosure, use, exhibition or  
other means"P" document published prior to the international filing date but  
on or after the priority date claimed"T" later document published on or after the international filing  
date or priority date and not in conflict with the application,  
but cited to understand the principle or theory underlying  
the invention

"X" document of particular relevance

## IV. CERTIFICATION

Date of the Actual Completion of the International Search <sup>1</sup>

April 28, 1982 (28.04.82)

Date of Mailing of this International Search Report <sup>1</sup>

May 10, 1982 (10.05.82)

International Searching Authority <sup>1</sup>

Japanese Patent Office

Signature of Authorized Officer <sup>1,9</sup>

## I. 発明の属する分野の分類

## 国際特許分類(IPC)

Int. Cl<sup>3</sup> 007H21/04, 012N15/00 // 012P19/34,  
21/00,

## II. 国際調査を行った分野

## 調査を行った最小限資料

| 分類体系 | 分類記号                                   |
|------|----------------------------------------|
| IPC  | 007H21/04, 012N15/00, 012P19/34, 21/00 |

最小限資料以外の資料で調査を行ったもの

## III. 関連する技術に関する文献

| 引用文献の<br>カテゴリー | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                                  | 請求の範囲の番号 |
|----------------|----------------------------------------------------------------------------------------------------|----------|
| A              | Nature, 第285巻19号 (6月. 1980) P542-<br>549. 特に547-549参照                                              | 1-4      |
| E              | JP, A, 57-24400 (ジー・ディー・サークル・エンド・<br>カンパニー) 8. 2月. 1982 (080282), 第38欄<br>第6-20行, 第55欄第17-第57欄第11行 | 1-4      |
| P              | 石川邦彦編集「別冊蛋白質核酸酵素インターフェロン研究の進<br>歩」1. 12月. 1981 (011281) 共立出版株式会社<br>P169-182, 特にP174-175参照。        | 1-4      |

## \*引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの  
 「E」先行文献ではあるが、国際出願日以後に公表されたもの  
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日  
 若しくは他の特別な理由を確立するために引用する文献  
 (理由を付す)  
 「O」口頭による開示、使用、展示等に言及する文献  
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日  
 の後に公表された文献

「T」国際出願日又は優先日の後に公表された文献であって出願  
 と矛盾するものではなく、発明の原理又は理論の理解のた  
 めに引用するもの  
 「X」特に関連のある文献であって、当該文献のみで発明の新規  
 性又は進歩性がないと考えられるもの  
 「Y」特に関連のある文献であって、当該文献と他の1以上の文  
 献との、当事者にとって自明である場合せによって進歩性  
 がないと考えられるもの  
 「&」同一パテントファミリーの文献

## IV. 認 証

|                           |                           |
|---------------------------|---------------------------|
| 国際調査を完了した日<br>28 04 82    | 国際調査報告の発送日<br>10.05.82    |
| 国際調査機関<br>日本国特許庁 (ISA/JP) | 権限のある職員<br>特許庁審査官<br>小沢誠次 |