МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Методы оптимизации»

Тема: Симплексный метод Вариант 8

Студент гр. 8383	Киреев К.А.
Преподаватель	Мальцева Н.В

Санкт-Петербург 2021

Цели работы

- Решение задачи линейного программирования симплекс методом с помощью стандартной программы
- о Решение задачи линейного программирования графически
- о Сравнение результатов решения задачи обоими способами

Постановка задачи

Рассматривается следующая задача линейного программирования.

Найти минимум линейной функции $f(x_1, x_2, ..., x_n)$:

$$f = c[1]*x[1] + c[2]*x[2] + ... + c[n]*x[n],$$

где c[i] - постоянные коэффициенты на множестве, заданном набором линейных ограничений:

$$a[1, 1]*x[1] + ... + a[1, n]*x[n] >= b[1]$$
...
 $a[m, 1]*x[1] + ... + a[m, n]*x[n] >= b[m]$
 $x[1] >= 0, ..., x[n] >= 0,$

где a[i, j], b[i] - постоянные коэффициенты.

В матричной форме ограничения записываются следующим образом:

$$AX >= B, X >= 0$$

Целевая функция м. б. представлена в виде скалярного произведения:

$$f = (C, X).$$

Краткие общие сведения

Симплексный метод решения задачи линейного программирования состоит из двух этапов:

- о поиск крайней точки допустимого множества
- о поиск оптимальной точки путем направленного перебора крайних точек Крайняя точка не существует, если в таблице существует строка, все элементы которой неположительные, а последний элемент - отрицательный.

Крайняя точка найдена, если все элементы вектора-столбца В больше нуля.

Чтобы найти крайнюю точку, надо:

- \circ выбрать строку i, в которой b[i] < 0
- \circ выбрать столбец s, в котором a[i,s] >= 0
- \circ в столбце s задать номер строки r разрешающего элемента так, чтобы отрицательное отношение b[r]/a[r,s] было максимальным
- о поменять местами имена координат в таблице из строки r и столбца s
- \circ рассматривая элемент a[r,s] как разрешающий, необходимо преобразовать таблицу по формулам:

```
ARS:= a[r,s];

z1[r,s]:= 1/ARS;

z1[r,j]:= -z[r,j]/ARS , j<>s;

z1[i,s]:= z[i,s]/ARS , i<>r;

z1[i,j]:= (z[i,j]*ARS - z[i,s]*z[r,j])/ARS , i<>r,j<>s;

z:=z1,
```

где под *z* и *z*1 понимается соответственно первоначальное и преобразованное значение таблицы (кроме левого столбца и верхней строки)

Оптимальная точка найдена, если все элементы вектора-строки C >= 0 (при этом все элементы вектор-столбца B >= 0)

Оптимальная точка не существует, если в таблице есть столбец j, в котором c[j] < 0, а все a[i,j] > 0 при любом i.

Чтобы найти оптимальную точку, надо:

- \circ выбрать столбец s, в котором c[s] < 0
- \circ в столбце s задать номер строки r разрешающего элемента так, чтобы отрицательное отношение b[r]/a[r,s] было максимальным
- о поменять местами имена координат в таблице из строки r и столбца s
- \circ рассматривая элемент a[r,s] как разрешающий, необходимо преобразовать таблицу по формулам

Координаты оптимальной точки определяются следующим образом:

 \circ если x[j] находится на i-м месте левого столбца, то его значение равно b[i]

 \circ если x[i] находится на j-м месте верхней строки, то его значение равно 0

Выполнение работы

На РС-ЭВМ была запущена стандартная программа с 8 вариантом. Начальные условия для симплекс-метода представлены на рис. 1.

	x1	x2	b[i]
y1 y2 y3 y4	2.00 1.00 -1.00 -1.00	-1.00¦ -2.00¦ -1.00¦ 1.00¦	1.00 5.00 7.00 3.00
c[j]¦	1.00	-2.00¦	0.00

Рисунок 1 – Начальные условия

По таблице приводим задачу к основному виду задачи линейного программирования:

$$f(x_1, x_2) = x_1 - 2x_2 \to \min$$

$$X: \begin{cases} 2x_1 - x_2 + 1 \ge 0 \\ x_1 - 2x_2 + 5 \ge 0 \\ -x_1 - x_2 + 7 \ge 0 \\ -x_1 + x_2 + 3 \ge 0 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Графическое решение

Решим задачу линейного программирования графически. На рис. 2 представлено графическое решение задачи с определением допустимого множества, линии уровня целевой функции и отрезком, на котором достигается минимум целевой функции на допустимом множестве. Область допустимого множества не закрашена.

Рисунок 2 – Графическое решение

Минимум целевой функции на допустимом множестве достигается на отрезке, заключенном между точками ($x_1=1,x_2=3$) и ($x_1=3,x_2=4$)

Программное решение

Запустим программу на ПК и, отвечая на вопросы, выдаваемые программой, решим задачу линейного программирования симплекс-методом.

o *Шаг 1*

	x1	x2	b[i]
y1 y2 y3 y4	2.00 1.00 -1.00 -1.00	-1.00 -2.00 -1.00 1.00	1.00 5.00 7.00 3.00
c[j]¦	1.00	-2.00	0.00

Начинаем решение с точки ($x_1=0, x_2=0$), в которой значение функции равно 0.

На графике можно отобразить линию целевой функции и точку.

В представленной таблице нет строк, где свободный член отрицательный, следовательно крайняя точка существует и найдена.

В таблице нет столбцов, в которых c[j] < 0 и все a[i,j] > 0 при любом i, следовательно оптимальная точка существует.

Оптимальная точка не найдена, так как в векторе-строке C присутствует отрицательный элемент.

Номер столбца для разрешающего элемента может быть только 2.

Номер строки для разрешающего элемента – строка, где отрицательное отношение b[r]/a[r,s] максимальное $(r=1:1/_{-1}=-1,\ r=2:5/_{-2}=-2.5,r=3:7/_{-1}=-7)$. Это строка 1.

Разрешающий элемент - a_{12}

Для перехода к следующему шагу производятся преобразования таблицы по формулам, представленным выше.

o *Шаг 2*

	x1	y1	b[i]
x2 y2 y3 y4	2.00 -3.00 -3.00 1.00	-1.00¦ 2.00¦ 1.00¦ -1.00¦	1.00 3.00 6.00 4.00
c[j]¦	-3.00	2.00	-2.00

Рассматриваем точку ($x_1 = 0$, $x_2 = 1$), в которой значение функции -2. На графике можно отобразить линию целевой функции и точку.

В таблице нет столбцов, в которых c[j] < 0 и все a[i,j] > 0 при любом i, следовательно оптимальная точка существует.

Оптимальная точка не найдена, так как в векторе-строке ${\it C}$ присутствует отрицательный элемент.

Номер столбца для разрешающего элемента — столбец с элементом $c < \theta$. Это столбец 1.

Номер строки для разрешающего элемента — строка, где отрицательное отношение b[r]/a[r,s] максимальное (r=2: $^3/_{-3}=-1$, r=3: $^6/_{-3}=-2$). Это строка 2.

Разрешающий элемент - a_{21} .

o *Шаг 3*

	у2	у1 ¦	b[i]
x2 x1 y3 y4	-0.67 -0.33 1.00 -0.33	0.33 0.67 -1.00 -0.33	3.00 1.00 3.00 5.00
c[j]¦	1.00	0.00¦	-5.00

Рассматриваем точку ($x_1 = 1, x_2 = 3$), в которой значение функции равно -5.

На графике можно отобразить линию целевой функции и точку.

Оптимальная точка существует и найдена, так как все элементы векторастроки C >= 0 (при этом все элементы вектор-столбца B >= 0)

Итак, в результате применения симплекс-метода было получено решение: минимум функции на допустимом множестве достигается в точке $x_1=1, x_2=3$. Крайняя точка ($x_1=1, x_2=3$), найденная программной, принадлежит отрезку, который был получен с помощью графического решения.

Однако с помощью программы дойти до точки ($x_1 = 3$, $x_2 = 4$) не получается, значит данную задачу можно решить только графически.

Выводы.

В процессе выполнения лабораторной работы, был изучен симплекс-метод, с помощью которого была решена задача линейного программирования. Шаги симплекс-метода были дополнены графически, и была проведена проверка корректности результата с помощью графического решения задачи. Данную задачу следует решать графическим путем, так как программа не может выдать нам решение в виде отрезка, и выдает нам лишь одно из возможных решений.