Задачі до контрольної роботи Вариант 5

Завдання 1

Визначте індивідуальний ризик нещасного випадку без смертельного випадку, індивідуальний ризик загинути, загальний індивідуальний ризик для працівника підприємства, якщо відома статистика нещасних випадків за період спостереження в N років (таблиця 4.2). Оцініть рівень безпеки на підприємстві, прийнявши графічно — допустимий рівень ризику рівним 0,0001 1/рік. Визначте середньорічний очікуваний збиток від існуючих на підприємстві небезпек, якщо збиток у разі травмування в середньому складає 1000 грн., у разі смертельного результату — 4000000 грн.

Кількість робітників = 8340 людей

Період спостереження = 50 років

Отримали травми за 50 років = 2 людей

Загинуло за 50 років = 3 людей

Відсутність на роботі 1 людини в середньому:

- відпустка за рік = 4 тижнів
- відрядження за рік = 2 тижнів
- відсутність на роботі за тиждень, годин = 24

Рішення

Статистична ймовірність небажаних подій = $\frac{Ompимали mpавми}{Kількість робітників} = 2/8340 = \frac{1}{4170}$ Статистична ймовірність летальних випадків = $\frac{3агинуло npaцівників}{Kількість poбітників} = \frac{3}{8340} = \frac{1}{2780}$

$$= \frac{(52-6)\cdot(41-24)}{52\cdot41} = \frac{23\cdot17}{26\cdot41} = \frac{391}{1066}$$

Індивідуальний ризик нещасного випадку без смертельного випадку =

=Cтатистична ймовірність небажаних подій \cdot Ймовірність небезпеки= $\frac{1}{4170}\frac{391}{1066}$ = $\frac{1}{4170}\frac{391}{1066}$

Індивідуальний ризик загинути =

Загальний індивідуальний ризик =

Завдання 2

Встановіть тип особистості

Вхідні дані: Сильний, урівноважений, рухомий

Сангвінік - гарячий, дуже продуктивний діяч, але тільки тоді, коли в нього багато цікавих справ, тобто є постійне збудження. Коли ж таких справ немає, він нудьгує, стає млявим. Нервові процеси у сангвініка дуже рухливі, що зумовлює швидку зміну збудження та гальмування. Для нього характерні легкість і швидкість виникнення нових почуттів та емоційних станів (горя, радості, ненависті, приязні тощо), які швидко змінюють одні одних і в пам'яті зберігаються недовго. Як правило, людина з даним темпераментом має гнучкий розум, дотепна. Вона безжурна, легко пристосовується до умов життя, товариська, швидко знаходить контакт із людьми і може підтримати хороший настрій у колективі. Сангвінік охоче береться до живої справи, але не завжди доводить її до кінця, може втратити інтерес до неї, особливо якщо ця справа вимагає терпіння і тривалої, копіткої праці.

Завдання 3

Побудуйте "дерево небезпек", отримайте логічну функцію небезпеки і визначте ймовірність головної події заданих ситуацій

Вхідні дані: Ситуація 1

Ситуація 1. Машина має ланцюговий привід і пристрій для захисту робітника у разі розриву ланцюга приводу. Захисний пристрій може бути знятий (ймовірність 0,09 1/рік). Ланцюг рветься: у разі зношування (ймовірність 0,01 1/рік) або у разі попадання у ланцюг часток металу від розташованого поблизу різця (ймовірність 0,007 1/рік). У разі розриву ланцюга захисний пристрій, залежно від стану, може забезпечити або не забезпечити захист робітника (ймовірність захисту 0,9 1/рік). Головна подія — "травмування робітника"

Події:

А - Захисний пристрій знятий (ймовірність 0,09 1/рік)

Ланцюг рветься:

- В у разі зношування (ймовірність 0,01 1/рік)
- С у разі попадання у ланцюг часток металу від розташованого поблизу різця (ймовірність 0,007 1/рік)

D - забезпечити захист робітника (ймовірність захисту 0,9 1/рік)

Рішення

Захисний пристрій знятий **та** ланцюг рветься у разі зношування **або** у разі попадання у ланцюг часток металу від розташованого поблизу різця **та** захисний пристрій не забезпечує захист робітника

1.
$$X = A * (B + C) * 1 = 0.09 * (0.01 + 0.007) * 1 = 0.00153 1/pik$$

Захисний пристрій знятий та ланцюг рветься у разі зношування та захисний пристрій не забезпечує захист робітника

2.
$$\mathbf{X} = \mathbf{A} * \mathbf{B} * \mathbf{1} = 0.09 * 0.01 = 0.0009 1/pik$$

Захисний пристрій знятий та ланцюг рветься у разі попадання у ланцюг часток металу від розташованого поблизу різця та захисний пристрій не забезпечує захист робітника

3.
$$\mathbf{X} = \mathbf{A} * \mathbf{C} * \mathbf{1} = 0.09 * 0.007 * 1 = 0.00063 1/pik$$

Захисний пристрій не знятий **та** ланцюг рветься у разі зношування **або** у разі попадання у ланцюг часток металу від розташованого поблизу різця **та** захисний пристрій забезпечує захист робітника

4.
$$X = !A * (B + C) * D = 0.91 * (0.01 + 0.007) * 0.9 = 0.013923 1/pik$$

Захисний пристрій не знятий **та** ланцюг рветься у разі зношування **або** у разі попадання у ланцюг часток металу від розташованого поблизу різця **та** захисний пристрій не забезпечує захист робітника

5.
$$\mathbf{X} = \mathbf{!A} * (\mathbf{B} + \mathbf{C}) * \mathbf{!D} = 0.91 * (0.01 + 0.007) * 0.1 = 0.001547 1/pik$$

Захисний пристрій не знятий та ланцюг рветься у разі зношування та захисний пристрій забезпечує захист робітника

6.
$$\mathbf{X} = \mathbf{!A} * \mathbf{B} * \mathbf{D} = 0.91 * 0.01 * 0.9 = 0.00819 1/pik$$

Захисний пристрій не знятий та ланцюг рветься у разі зношування та захисний пристрій не забезпечує захист робітника

7.
$$\mathbf{X} = \mathbf{!A} * \mathbf{B} * \mathbf{!D} = 0.91 * 0.01 * 0.1 = 0.00091 1/pik$$

Захисний пристрій не знятий та ланцюг рветься у разі попадання у ланцюг часток металу від розташованого поблизу різця та захисний пристрій забезпечує захист робітника

8.
$$\mathbf{X} = \mathbf{!A} * \mathbf{C} * \mathbf{D} = 0.91 * 0.007 * 0.1 = 0.005733$$

Захисний пристрій не знятий та ланцюг рветься у разі попадання у ланцюг часток металу від розташованого поблизу різця та захисний пристрій не забезпечує захист робітника

9.
$$\mathbf{X} = \mathbf{!A} * \mathbf{C} * \mathbf{!D} = 0.91 * 0.007 * 0.1 = 0.000637$$

Завдання 4

Визначити динамічний діапазон вибуховості складної газоповітряної суміші, в яку входять 4 горючих компоненти A, B, C, Д. Нижні (НП) і верхні (ВП) концентраційні межі запалення горючих компонентів в об'ємних відсотках – ПА,ПВ ,ПС ,ПД і концентрація горючих компонентів в об'ємних %%-CA,Св,Сс,Св зазначені в таблиці 4.5.

Таблиця 4.5 – Вихідні дані задачі 4

Варіант	0	1	2	3	4	5	6	7	8	9
C _A , %	30	25	15	19	25	35	25	30	43	25
C _B , %	30	25	25	21	45	29	13	36	20	26
C _C , %	20	25	30	25	18	21	17	14	17	15
С _Д , %	20	25	30	35	12	15	45	20	20	34
Π_{A} , % НП	1,3	1,0	1,4	1,45	1,8	0,64	1.74	1,36	0,66	0,2
ВП	23,0	14,2	15,1	19,3	21,8	17,3	9,6	6,7	16,5	13,0
Π_{B} , % НП	1,0	1,3	1,45	1,4	0,7	1,8	1,4	1,74	0,44	1,3
ВП	14,2	23,0	19,1	15,6	34,2	11,9	7,6	9,4	14,8	17,8
$\Pi_{\rm C}$, % НП	0,44	0,66	0,35	2,1	0,25	0,75	0,4	0,86	1,4	0,44
ВП	11,4	6,3	17,3	26,2	34,5	8,2	11,0	27,0	23,9	22,5
$\Pi_{\text{Д}}$, % Н Π	0,66	0,4	2,1	0,45	0,75	0,38	0,82	0,45	1,3	0,82
ВП	8,9	6,8	14,7	15,8	14,0	16,0	13,5	8,2	13,1	8,25

Завдання 5

Норма постачання води на одного міського жителя становить X л на добу. Яку сумарну продуктивність S кг/доб. повинні мати всі озонаторні установки міста з населенням Y тис. чоловік, щоб знезаразити питну воду, якщо ГДК озону 0.8 мг/л, а обробляють ним Z% усієї води? (Таблиця 4.6)

Таблиця 4.6 – Вихідні дані задачі 5

Номер варіанта	0	1	2	3	4	5	6	7	8	9
Х, л	500	450	400	550	480	490	470	440	480	20
У, тис.люд.	600	300	550	750	270	800	350	340	400	380
Z, %	60	65	54	62	58	59	63	64	57	60

Рішення

$$X = 490 \pi / 1$$
д

$$Y = 800 \cdot 10^3 = 8 \cdot 10^5$$
 люд.

$$Z = 59 \%$$

- 1) $49 \cdot 10 \cdot 8 \cdot 10^5 = 49 \cdot 8 \cdot 10^6 = 392 \cdot 10^6$ л. води на місто
- 2) $392 \cdot 10^6 \cdot 0.59 = 392 \cdot 59 \cdot 10^4 = 23128 * 10^4$ л. води обробляють озоном $1 \, \kappa e \cdot 10^{-6} = 1 \, \text{мe}$
- 3) $0.8 \cdot 23128 \cdot 10^4 = 8 \cdot 23128 \cdot 10^3 = 8 \cdot 23.128 \cdot 10^6 = 185.024 \cdot 10^6$ кг/1 добу

Відповідь: $185.024 \cdot 10^6 \frac{\kappa z}{1 \, \partial o 6y}$ сумарна продуктивність всіх озонаторних установок