Web Search Engines

Popular Search Engines & types

Google	Search by keywords
Alta Vista	
Bing	
Yahoo	Search by categories
Ask jeeves	Interview simulation

Without search engines, the web wouldn't work

- Without search, content is hard to find.
- Without search, there is no incentive to create content.
 - Why publish something if nobody will read it?
 - Why publish something if I don't get ad revenue from it?
- Interest aggregation
 - Unique feature of the web: A small number of geographically dispersed people with similar interests can find each other
- Somebody needs to pay for the web.
 - Servers, web infrastructure, content creation
 - A large part today is paid by search ads.

Issues with web search engines

- Dynamic data
- Quality is variable & user has to make judgement
- Factual knowledge is not objective
- Scope of web is not fixed

Structure of the web

Bow-tie structure of web

Bow-tie structure of web

Strongly connected component (SCC) in the center

Bow-tie structure of web

Lots of pages that get linked to, but don't link (OUT)
Lots of pages that link to other pages, but don't get linked to (IN)

Bow-tie structure of web

Tendrils: that either lead nowhere from IN, or from nowhere to OUT. Tubes: small sets of pages outside SCC that lead directly from IN to OUT

Users

Web queries are short

Web search architecture (Components)

Search Index (indexer)

Inverted index

chess → [www.chess.co.uk, www.chessclub.com, www.uschess.org]

- Information of hyperlinks in link database
 - Organized like inverted index
 - Source URL contains all destination URLs

Query Engine

- Algorithmic heart
- Interface between search index, the user and the web
- Two steps:
 - Retrieves the results as per matching keywords
 - Ranking the web pages

Search Interface

- Provides look and feel of search engine
- Allows user to submit queries
- Browse result list
- Click on chosen web page
- User should be able to differentiate between sponsored links and organic links

Sec. 19.4.1

User Needs

- Need [Brod02, RL04]
 - Informational want to learn about something (~40% / 65%)

Low hemoglobin

Navigational – want to go to that page (~25% / 15%)

United Airlines

- <u>Transactional</u> want to do something (web-mediated) (~35% / 20%)
 - Access a service

Seattle weather

Car rental Brasil

Downloads

Mars surface images

Shop

Canon S410

- Gray areas
 - Find a good hub
 - Exploratory search "see what's there"

How far do people look for results?

"When you perform a search on a search engine and don't find what you are looking for, at what point do you typically either revise your search, or move on to another search engine? (Select one)"

(Source: <u>iprospect.com</u> WhitePaper_2006_SearchEngineUserBehavior.pdf)

Users' empirical evaluation of results

- Quality of pages varies widely
 - Relevance is not enough
 - Other desirable qualities (non IR!!)
 - Content: Trustworthy, diverse, non-duplicated, well maintained
 - Web readability: display correctly & fast
 - No annoyances: pop-ups, etc
- Precision vs. recall
 - On the web, recall seldom matters
- What matters
 - Precision at 1? Precision within top-K?
 - Comprehensiveness must be able to deal with obscure queries
 - Recall matters when the number of matches is very small
- User perceptions may be unscientific, but are significant over a large aggregate

Users' empirical evaluation of engines

- Relevance and validity of results
- UI Simple, no clutter, error tolerant
- Trust Results are objective
- Coverage of topics for polysemic queries
- Pre/Post process tools provided
 - Mitigate user errors (auto spell check, search assist,...)
 - Explicit: Search within results, more like this, refine ...
 - Anticipative: related searches, instant searches (next slide)
 - Impact on stemming, spell-check, etc
 - Web addresses typed in the search box

The Web document collection

- No design/co-ordination
- Distributed content creation, linking, democratization of publishing
- Content includes truth, lies, obsolete information, contradictions ...
- Unstructured (text, html, ...), semistructured (XML, annotated photos), structured (Databases)...
- Scale much larger than previous text collections ... but corporate records are catching up
- Growth slowed down from initial "volume doubling every few months" but still expanding
- Content can be dynamically generated

The trouble with paid search ads ...

- It costs money. What's the alternative?
- Search Engine Optimization (SEO):
 - "Tuning" your web page to rank highly in the algorithmic search results for select keywords
 - Alternative to paying for placement
 - Thus, intrinsically a marketing function
- Performed by companies, webmasters and consultants ("Search engine optimizers") for their clients
- Some perfectly legitimate, some very shady

Search engine optimization (Spam)

Motives

- Commercial, political, religious, lobbies
- Promotion funded by advertising budget

Operators

- Contractors (Search Engine Optimizers) for lobbies, companies
- Web masters
- Hosting services

Forums

E.g., Web master world (<u>www.webmasterworld.com</u>)

Simplest forms: Keyword Stuffing

- First generation engines relied heavily on tf/idf
 - The top-ranked pages for the query maui resort were the ones containing the most maui s and resort s
- SEOs -- dense repetitions of chosen terms
 - e.g., maui resort maui resort maui resort
 - Often, the repetitions would be in the same color as the background of the web page
 - Repeated terms got indexed by crawlers
 - But not visible to humans on browsers

Pure word density cannot be trusted as an IR signal

The war against spam

- Quality signals Prefer authoritative pages based on:
 - Votes from authors (linkage signals)
 - Votes from users (usage signals)
- Policing of URL submissions
 - Anti robot test
- Limits on meta-keywords
- Robust link analysis
 - Ignore statistically implausible linkage (or text)
 - Use link analysis to detect spammers (guilt by association)

- Spam recognition by machine learning
 - Training set based on known spam
- Family friendly filters
 - Linguistic analysis, general classification techniques, etc.
 - For images: flesh tone detectors, source text analysis, etc.
- Editorial intervention
 - Blacklists
 - Top queries audited
 - Complaints addressed
 - Suspect pattern detection

Duplicate documents

- The web is full of duplicated content
- Strict duplicate detection = exact match
 - Not as common
- But many, many cases of near duplicates
 - E.g., Last modified date the only difference between two copies of a page

Eg, Near-duplicate videos

< Original Video>

Contrast

Brightne

Crop

Color

Color

T\/

Multiediting

Low resolution

Noise/Blur

Small Logo

Eg, Near-duplicate videos

Original video

Elongated

Duplicate/Near-Duplicate Detection

- Duplication: Exact match can be detected with fingerprints
- Near-Duplication: Approximate match
 - Compute syntactic similarity with an editdistance measure
 - Use similarity threshold to detect near-duplicates
 - E.g., Similarity > 80% => Documents are "near duplicates"
 - Not transitive though sometimes used transitively

Computing Similarity

- **Features:**
 - Segments of a document (natural or artificial breakpoints)
 - Shingles (Word N-Grams)
 - a rose is a rose is a rose

```
a rose is a
  rose is a rose
       is a rose is
              a rose is a
```

my rose is a rose is yours

- Similarity Measure between two docs (= sets of shingles)
 - Set intersection
 - Specifically (Size of Intersection / Size of Union)

Shingles + Set Intersection

• Issue: Computing <u>exact</u> set intersection of shingles between <u>all</u> pairs of documents is <u>expensive</u>

Sec. 19.6

Shingles + Set Intersection

- Issue: Computing <u>exact</u> set intersection of shingles between <u>all</u> pairs of documents is <u>expensive</u>
 - –Solution → Approximate using a cleverly chosen subset of shingles from each (called a sketch)
- Estimate (size_of_intersection / size_of_union) based on a short sketch

