

Audio Watermarking

Marcas de Agua en Audio Digital: Conceptos y aplicaciones

emilia.gomez@iua.upf.es
http://www.iua.upf.es/mtg

Esquema

- A. Introducción
- B. Watermarking
- c. Descripción de un sistema de marcas de agua
- D. Aplicaciones
- E. Fingerprinting vs watermarking
- F. Aplicación que utiliza las dos técnicas: verificación de integridad

Introduction – watermarking – sistema – Aplicaciones – ringerprinting – sistema *i*vixto

Motivación

- Posibilidad de copia sin pérdidas de un fichero en formato digital
- Se requieren tecnologías de protección del contenido audiovisual:
 - Watermarking: marcas de audio
 - Fingerprinting: identificación de audio
- Ejemplo: un compositor pone una obra en la web

Conceptos

- Criptografía (Cryptography)
 la información se cifra
- Esteganografía (Steganography)
 - Comunicación punto a punto
 - Baja Pe en la transmisión
- Marcas de agua (Watermarking)
 - Comunicación punto a multipunto
 - Robusto frente a ataques
- Identificación (Fingerprinting) tipo de watermarking (insertar una identificación única)

INFORMATIC HIDING

Definición de Watermarking

- Insertar una marca (watermark) en la señal de audio: un mensaje oculto
- La marca se integra en la señal de audio: no necesita espacio de almacenamiento
- Puede contener cualquier información que se quiera (ISBN, información sobre el autor, estudio de grabación, cliente que compró la copia de la grabación...)
- Es inaudible, indetectable
- Puede leerse con el software adecuado

Ventajas

 Hacen posible que se pueda establecer responsabilidad sobre copias de un determinado trabajo en el dominio digital. Ejemplo: este audio lo puso en Napster Pepito

Historia del watermarking

Herodoto 484-426 a.C.

George Sand a Alfred de Musset S. XIX

 S. XX: Muchas publicaciones en digital watermarking de imágenes, desde los años 80.

Propiedades del watermark

- 1. Inaudible (generalmente)
- Robusta (transmisión, cambio de soporte, transmisión, etc)
- Detectable únicamente por personas autorizadas
- 3. Resistente a ataques
- Simétrico o asimétrico

amilia damaz@iua....

1. Inaudible

El grado de audibilidad depende de la aplicación

Utilización de un modelo psicoacústico, que explota las características del sistema auditivo humano

Introduction – watermarking – sistema – Aplicaciones – ringerprinting – sistema mixto

2. Robusta

La marca debe ser robusta ante operaciones « permitidas »:

- Codificación
- Transmisión (ruido aditivo)
- Conversión AD/DA (cambio de soporte)
- Compresión (con o sin pérdidas, MPEG)

amilia a a ma a 7(a) iu a u not a a

introduction – watermarking – sistema – Aplicaciones – ringerprinting – sistema mixto

3. Resistente

- La marca debe ser resistente a ataques intencionados:
 - Que intenten eliminarlo
 - Que intenten hacer que no se pueda descodificar.
 - Que intenten modificar los datos de la marca.

amilia aamaz@iua.unf as

Se puede ver como un canal de comunicación

Propiedades del canal

Fuerte ruido de canal

- Potencia de la señal de audio >> potencia de la marca
- Audio: ruido fuertemente coloreado
- Ruido blanco de canal de transmisión
- Distorsiones (compresión MP3, AD/DA conversion, ...)
- Ataques intencionados

$$\frac{{\bf S}_W^2}{{\bf S}_X^2} \approx -20dB$$
, ancho de banda $W \approx 20 \text{ kHz}$

En teoría
$$\Rightarrow$$
 Rate $R = W \log_2(1+SNR) \approx 300$ bps

Simulaciones: $R \approx 100 \text{ bit/s}$

amilia aamaz@iua.unf aa

introduction – **watermarking** – sistema – Aplicaciones – ringerprinting – sistema *i*mixto

Aproximaciones al problema

- 1. Spread-spectrum watermarking: dominio frecuencial (Boney 1996, Garcia 1999)
- 2. Echo-hiding watermarking: dominio temporal (Bender et al. 1996, Neubauer 2000)
- 3. Bit-stream watermarking: flujo de bits generado por un codificador de audio (Lacy et al. 1998 MPEG-AAC)

introduction – **watermarking** – sistema – Aplicaciones – ringerprinting – sistema *i*mixto

Spread-Spectrum

- Boney & Tewfik 1997
- Se quiere detectar si se ha insertado o no una marca
- v(n): señal. Se conoce x(n) (señal original) y t(n) tanto en emisión como en recepción. Se puede calcular t(n) en recepción si se sabe que existe.

amilia aamaz@iua.unf aa

Esquema estándar

Test de Hipótesis

Teoría de la detección

- Elección de la modulación empleada (diccionario de símbolos)
- H(f): maximixa la potencia del watermark w(n)
- G(f): estimación de la señal v(n) en recepción ⇒ v(n) (Filtro adaptado: Wiener)
- Señal observada: [v(mN) ... v(mN+N-1)]

amilia damaz@iua.unf as

Construcción de v(n)

Transmisión de una serie de mensajes, de palabras de un diccionario

Diccionario de símbolos codebook $v = \{v_i(n)\}, i = 1 \text{K} M$

amilia damaz@iua.unf.as

Construcción del codebook

QPSK (2 bits, 4 símbolos) + Ensanchamiento de espectro (DS): secuencia PN de longitud N_c

Parámetros del codebook

- Frecuencia de la portadora f₀
- Secuencia utilizada para el ensanchamiento de espectro, $W_{\rm C}$ de longitud $N_{\rm C}$

Diccionario S(f₀, W_C

Si los parámetros en recepción ≠ Parámetros en transmisión

Construcción del watermark w(n)

$$s(n) \longrightarrow H(f) \longrightarrow t(n)$$

Definición de un límite de enmascaramiento

$$S_{mask}(f)$$

Condición de inaudibilidad:

$$S_T(f) = s^2 \cdot |H(f)|^2 \le S_{mask}(f)$$

amilia damaz@iua.unf.as

Modelo psicoacústico II

Inicio Short-term analysis Análisis de componentes Eliminación de componentes bajo el umbral absoluto

Componente tonal: máximo local

$$S(k) - S(k+j) \ge 7dB$$

 $j \in [-2,+2] \text{ si } 2 < k < 63$
 $j \in [-3,-2,+2,+3] \text{ si } 63 \le k \le 127$
 $j \in [-6,...,-2,+2,...,+6] \text{ si } 127 \le k \ge 250$

Componentes tonales separadas < 0.5 Barks

$$1 Bark \approx \frac{f}{100} para f < 500 Hz$$

$$1 Bark \approx 9 + 4 \log(\frac{f}{1000}) para f > 500 Hz$$

Fin

Umbrales de enmascaramiento individuales y globales

Modelo psicoacústico II

Límites de enmascaramiento individuales y globales

$$S_{m}(f_{2}) = 10 \cdot \log_{10} [10^{S_{a}(f_{2})}]_{10}$$

$$+ \sum_{j=1}^{N_{t}} 10^{P_{2}(f_{2}, f_{1}, P_{1})} / 10$$

$$+ \sum_{j=1}^{N_{n}} 10^{P_{2}(f_{2}, f_{1}, P_{1})} / 10$$

$$+ \sum_{j=1}^{N_{n}} 10^{P_{2}(f_{2}, f_{1}, P_{1})} / 10$$

amilia damaz@iua.unf.aa

Señal marcada = marca + música (ruido de canal)

• x(n) = ruido fuertemente coloreado σ_x^2 muy variable (hasta 100 dB)

$$\frac{\mathbf{S}_{W}^{2}}{\mathbf{S}_{X}^{2}} \approx -20dB$$

CD-16 bits

$$\rightarrow$$
 SNR $\approx 100dB$

Para que P_w no sea ridícula respecto a P_x, w(n) filtrada por H(f), max(P_w)

amilia aamaz@iua.unf aa

introduction – watermarking – **sistema** – Aplicaciones – ringerprinting – sistema *i*mixto

Observaciones

- El umbral de enmascaramiento H(f) se actualiza aproximadamente cada 20 ms
- Se puede intentar blanquear la contribución de la señal de música x(n) a través de un entrelazador

Señal en el dominio temporal

Espectros

X(f), W(f) e Y(f)

amilia aamaz@iua.unf aa

Detección del watermark

amilia damaz@iua.unf.as

Función de correlación

amilia damaz@iua.unf.aa

amilia damaz@iua.unf.as

Tasa de error para distinta f_{ORX}

Tasa de error para distinta f0 con diferente Nc

Canales de datos

Diccionario utilizado S(f₀, N_C)

amilia damaz@iua.unf.as

Ataques

Degradación de la amplitud de la señal
Relación de potencia marca/música
SNR

Eliminación de muestras

Pérdida de sincronismo

Pérdida de sincronismo

- Razones estándar: retrasos introducidos por
 - filtrado
 - Compresión MPEG
 - Propagación del sonido
- Otras razones
 - ataques: fitro paso-todo, adición/supresión de muestras
 - modificatión de la escala temporal (time stretching)

Solución

- Insertar una secuencia de bits conocida (training sequence o secuencia de entrenemiento) de vez en cuando
- Utilizar ventanas deslizantes para buscar picos de correlacion

- Inconvenientes:
 - Reducción de la tasa de bits
 - Frágil ante ataques

Pérdida de muestras

- Utilización de una ventana deslizante: k∈ [-K,K]
- Búsqueda de la referencia de símbolo

Función de correlación

- Frecuencia de la portadora f₀: separación entre máximos de la función de correlación
- Secuencia utilizada por el ensanchamiento de espectro W_c de longitud N_c: envolvente de los máximos
- Desplazamiento de la ventana deslizante K

Desplazamiento del máximo de la función de autocorrelación

Solución

- Solución propuesta: repartir secuencia de entrenamiento a lo largo de toda la secuencia de bits
- Primer método: un segundo watermark que se utiliza exclusivamente para sincronización

amilia damaz@iua.unf.as

Solución II

 Segundo método: utilizar diversos diccionarios para codificar la información

amilia damaz@iua.unf.as

Solución III

- Para cada M símbolos consecutivos, se realiza la detección para todas sus N posibles localizaciones
- Se obtiene una matriz $M \times N$ con los resultados de detección
- Se utiliza un algoritmo de programación dinámica para seleccionar el camino más adecuado en esta matriz (Viterbi).
- La función de costo tiene en cuenta los coeficientes de intercorrelación y la secuencia de símbolos de sincronización

	Symbols —														
	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th
Possible detection results	4	4	1	1	1	4	2	1	2	2	4	1	2	1	3
	3	1	3	1	2	1	3	4 -	-	→ 2 \	1	3	1	3	3
	1 -	▶ 2 -	→ 3 .	3	1	4	1 3	1	1	3	1	3	1	3	1
	4	4	2	4 -	→ 1 -	2	1	3	4	1	4 ₃ -	→ 4 -	→ 1 ,	4	2
	2	1	4	3	2	3	1	4	4	4	1	1	1	4 ₂ -	→ 3
	2	2	1	2	4	1	2	3	2	1	2	3	1	2	1

amilia damaz@iua.unf.as

Resultados de simulaciones con pérdida y recuperación de sincronismo

- Desincronización global entre transmisor y receptor (translation in time)
- Ataques:
 - adición or supresión de una media de 1/2500 muestras
 - Filtro paso-todo (all-pass filtering)

Bit-rate = 125 bit/s \triangleright error rate > 0.05

Sound_Examples.html

Aplicaciones

- Aplicaciones relacionadas con la gestión de derechos de autor (Copyright-related applications)
- 2. Servicios de valor añadido (Added-value services)
- 3. Aplicaciones de verificación de integridad (Integrity verification applications)

1. © - related

- Prueba de propiedad (proof of ownership):
 - Ataques para hacerla indetectable
 - Ataques de ambigüedad
- Monitorización en el punto de consumo: reproductores MP3, DVD, etc. Enforcement of Usage Policy
 - Violan el Principio de Kerckhoff's 1883
 - Detector mismatch attacks

- Monitorización en el punto de distribución: canales de TV, distribuidores Web: Napster y similares, CD Plants
- Monitorización, identificación en canales de broadcast, cable y otras redes (internet)
- Seguimiento del origen de copias ilícitas
 - Collusion attack
- Determinación del origen de copias ilícitas

From http://www.research.philips.com

hilips Research

New, powerful tool for video and audio rights protection

- *Can't be erased or overwritten
 - Robust and completely unaffected by common audio or video processing operations
 - *Survives broadcast chains and over-the-air tra
 - *Open system with unique 'secret key' mechan
 - *Combines enormous versatility with ease of Installation, integration and operation
 - *Wide range of applications, including copyrigh control and broadcast monitoring
 - Commercially deployed successfully in various

MASTER DE LA GRABACIÓN

insertado la Marca de Agua, sólo queda su fabricación, distribución y venta. Para poder realizar la distribución es necesari

fabricación de las copias a distribuir, para lo o es necesario realizar el Master de la grabación Es precisamente en este punto donde la Marc Agua alcanza su punto más importante. Gracias a haber realizado la Marca de Agua a de generar el Master permite una gran venta ya que cualquier copia posterior de la obra obtenida tendrá ya inserta la Marca de Agua, lo cual cualquier copia distribuida podrá ser rastreada por la SGAE si se emite en cualquie medio, sea autorizado o no, con lo cual se pu realizar una liquidación de los derechos de au

de la obra de una manera más justa y más

2. Servicios de valor-añadido

- Relativos al contenido
 - Transporte de información de contenido: letras, etc.
- Transporte de información de propósito general:
 - Noticias, anuncios

3. Integrity verification

• Verificación de la integridad de una grabación. Ej: de un testimonio, conversación telefónica, etc.

Empresas

Alpha Tec Ltd, Greece, http://www.alphatecltd.com eWatermark, USA, http://www.ewatermark.com BlueSpike, USA, http://www.bluespike.com MediaSec, USA, http://www.mediasec.com Sealtronic, Korea, http://www.sealtronic.com Signum Technologies, UK, http://www.signumtech.com SureSign Audio SDK (Librería C++), VeriData SDK The Dice Company, USA Verance, USA, CONFIRMEDIA. Sistema de monitorización de radio y televisión, SGAE http://codec.sdae.net/ Digimarc http://www.digimarc.com/

Philip's

http://www.research.philips.com/InformationCenter/Global/FArticle Summary.asp?INodeId=985

SDMI Challenge

- Secure Digital Music Initiative: «proteger la reproducción, almacenamiento y la distribución de la música digital» http://www.sdmi.org
- Sistema de protección
- 6 de Septiembre 2000: «An open letter to the Digital Comunity»
- 4 sistemas de marcado
- Princeton University, Rice University: Reading between the lines: Lessons from the SDMI Challenge, Proceedings of the 10th USENIX Security Symposium

SDMI Challenge II

- http://www.cs.princeton.edu/sip/sdmi
- SDMI, RIAA, Verance Corporation.
- 2nd challenge

http://www.technetcast.com/sdmi-challenge.html

Qué se puede conseguir?

- Limitaciones: incapacidad de « cualquier cosa » para evitar copias.
- Bruce Schneier: propiedad inherente al formato digital.
- SDMI: « keep honest people honest »
 - Blue Spike

Fingerprinting

- Watermarking de un código único
- Código que identifica a una obra: fingerprint (huella digital)
- Se almacenan todos los códigos en una base de datos
- El código está relacionado con la señal de audio, se extrae de la misma.

Ventajas

 Hacen posibles monitorizar y detectar qué está sonando

Figure 7: Fingerprinting overall functionality

	Walermarking	Addio Hillgerphili
asa de errores	Baja P _e	Baja P _{e ,} falsos positivos
obustez	Robusto	Más robusto (> SNR & basado en el contenido)
eguridad	No hay un sistema perfecto	Per se más seguro
nperceptibilidad	Compromiso	Sin diferencia
ersatilidad	Audio ya en circulación	Más versátil
scalabilidad	Perfectamente escalable	Menos
omplejidad	Menor	Mayor (necesidad de una base de datos)
dependencia	Independiente de la señal	Relativo al contenido

Comparación

Comparación								
Watermarking	Fingerprinting							
Posibilidad de discriminar entre copias idénticas	Teóricamente robusto a transformaciones que preserven el contenido							
Aplicaciones donde la información es independiente de la señal de audio No lo suficientemente seguro Material sin marcar	 Extensión a medidas de similitud Se necesita una base de datos Alta complejidad que se incrementa con la talla de la base de datos Mismatch attack vs diferenciar entre versiones 							

Integrity-verification

- Verificar si los datos han sufrido manipulaciones
 - VeriData http://www.signumtech.com/
- 2 soluciones:
 - Fragile watermarks
 - No robustos a modificaciones de cambio de contenido.
 - Content-based watermarks: marcas basadas en el contenido
 - Robustos a manipulaciones que preserven el cotenido
 - Que codifiquen el contenido

Encoding

Requerimientos

- 1. Fingerprint robusto a content-preserving transformations (transmisión, equalization) & watermark.
- 2. Watermarking también robusto a estas transformaciones
- 3. Régimen binario del sistema de marcas suficiente para codificar el fingerprint (100 bps)
- 4. Definir un método de codificación eficiente

amilia damaz@iua.unfas

Manipulaciones detectables

- Manipulaciones estructurales
- Adición de señales
- Modificaciones de la escala temporal
- ...

Ventajas

- vs fragile-watermark:
 - Se almacena información de contenido.
 Conocimiento sobre la manipulación realizada.
- vs robust watermark:
 - Rango de modificación más amplio
 - no se necesita una base de datos
- vs fingerprint:
 - Está en el audio: se conoce el match

Referencias watermarking

- Stefan Katzenbeisser, Fabien A.P. Petitcolas editors, Information Hiding Techniques for steganography and digital watermark, Artech House, Computer Security Series, Boston, London, 2000.
- Craver S.A., Wu M., Liu B., What can we reasonable expect from watermarKs?, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, New York, October 2001.
- Craver S.A., Wu M., Liu B., Stubblefield A., Swartzlander B., Wallch D.S., Dean D., Felten E.W., Reading between the lines: Lessons from the SDMI Challenge, Proceedings of the 10th USENIX Security Symposium, Washington, D.C., August 2001.
- http://www.watermarkingworld.org/
- http://www.iis.fhg.de/amm/techinf/water/