

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

SLIDE SHOW

XỬ LÝ TÍN HIỆU SỐ

Giảng viên: TS. Nguyễn Lương Nhật

Bộ môn: Xử lý tín hiệu & Truyền thông

Khoa: Kỹ Thuật Điện Tử 2

ĐIỂM THÀNH PHẦN MÔN XLTHS

1. Chuyên cần: 10%

2. Bài tập: 20%

(Làm ra giấy nộp)

3. Kiểm tra ½ kỳ: 20%

(Kiểm tra phần bài tập)

4. Thi cuối kỳ: 50%

(Thi trắc nghiệm trên máy tính)

TÀI LIỆU THAM KHẢO

- 1. Slide "Xử lý tín hiệu số", Nguyễn Lương Nhật
- 2. Nguyễn Quốc Trung "Xử lý tín hiệu & Lọc số", Nhà xuất bản khoa học và kỹ thuật, 2001
- 3. Hà Thu Lan, Bài giảng "Xử lý tín hiệu số", Học viện công nghệ BC-VT, 2010
- 4. Quách Tuấn Ngọc, "Xử lý tín hiệu số", Nhà xuất bản giáo dục, 1999
- 5. Monson H. Hayes, "Digital Signal Processing", McGraw-Hill, New York, 1999

KIẾN THỰC TOÁN

1. SỐ PHỰC

$$|z| = a + jb = |z|e^{j\varphi} = |z|\cos\varphi + j.|z|\sin\varphi$$

Với:
$$\begin{cases} |\mathbf{z}| = \sqrt{\mathbf{a}^2 + \mathbf{b}^2} \\ \varphi = \arg(\mathbf{z}) = \arctan(\frac{\mathbf{b}}{\mathbf{a}}) \end{cases}$$

Liên hiệp phức: $\mathbf{z}^* = \mathbf{a} - \mathbf{j}\mathbf{b} = |\mathbf{z}|\mathbf{e}^{-\mathbf{j}\varphi}$

Ví dụ:
$$z = 2 + j2 = 2\sqrt{2} e^{j\frac{\pi}{4}} = 2\sqrt{2} \cos{\frac{\pi}{4}} + j2\sqrt{2} \sin{\frac{\pi}{4}}$$

Các phép tính trên số phức:

$$z_1 = a_1 + jb_1 = |z_1|e^{j\varphi_1}$$
 $z_2 = a_2 + jb_2 = |z_2|e^{j\varphi_2}$

• Cộng trừ:
$$\mathbf{z}_1 \pm \mathbf{z}_2 = (\mathbf{a}_1 \pm \mathbf{a}_2) + \mathbf{j}(\mathbf{b}_1 \pm \mathbf{b}_2)$$

• Nhân:
$$\mathbf{z}_1 \mathbf{z}_2 = |\mathbf{z}_1| \mathbf{z}_2 |\mathbf{e}^{j(\varphi_1 + \varphi_2)}$$

Thia:
$$\frac{\mathbf{z}_1}{\mathbf{z}_2} = \frac{|\mathbf{z}_1|}{|\mathbf{z}_2|} e^{j(\varphi_1 - \varphi_2)}$$

■ Tính chất:
$$\mathbf{Z}_{1}^{*}\mathbf{Z}_{2}^{*} = (\mathbf{Z}_{1}\mathbf{Z}_{2})^{*}$$

2. CHUÕI SỐ

$$\sum_{n=0}^{\infty} a^n = \begin{cases} \frac{1}{1-a} : & |a| < 1\\ \infty : & |a| \ge 1 \end{cases}$$

$$\sum_{n=0}^{N} a^{n} = \frac{1 - a^{N+1}}{1 - a} \quad (a \neq 1)$$

$$\sum_{n=0}^{N} n = \frac{N(N+1)}{2}$$

ĐỀ CƯƠNG MÔN HỌC - XỬ LÝ TÍN HIỆU SỐ

Chương 1: Tín hiệu & hệ thống rời rạc

Chương 2: Biểu diễn tín hiệu & hệ thống trong miền phức Z

Chương 3: Biểu diễn tín hiệu & hệ thống trong miền tần số liên tục

Chương 4: Biểu diễn tín hiệu & hệ thống trong miền tần số rời rạc

Chương 5: Bộ lọc số FIR & IIR

Chương 1: TÍN HIỆU & HỆ THỐNG RỜI RẠC

- 1.1 Khái niệm tín hiệu và hệ thống
- 1.2 Tín hiệu rời rạc
- 1.3 Hệ thống tuyến tính bất biến
- 1.4 Phương trình sai phân tuyến tính hệ số hằng
- 1.5 Sơ đồ thực hiện hệ thống
- 1.6 Tương quan các tín hiệu

1.1 KHÁI NIỆM TÍN HIỆU VÀ HỆ THỐNG

Sơ đồ các khối chức năng của hệ thống thông tin số

1.1 KHÁI NIỆM TÍN HIỆU VÀ HỆ THỐNG

1.1.1 KHÁI NIỆM VÀ PHÂN LOẠI TÍN HIỆU

- a. Khái niệm tín hiệu
- Tín hiệu là biểu hiện vật lý của thông tin
- ✓ Tín hiệu được biểu diễn một hàm theo một hay nhiều biến số độc lập.
- Ví dụ về tín hiệu:
- ▼ Tín hiệu âm thanh, tiếng nói là sự thay đổi áp suất không khí theo thời gian
- ▼ Tín hiệu hình ảnh là hàm độ sáng theo 2 biến không gian và thời gian
- ▼ Tín hiệu điện là sự thay đổi điện áp, dòng điện theo thời gian

b. Phân loại tín hiệu

- Theo các tính chất đặc trưng:
- ✓ Tín hiệu xác định & tín hiệu ngẫu nhiên
 - Tín hiệu xác định: biểu diễn theo một hàm số
 - Tín hiệu ngẫu nhiên: không thể dự kiến trước hành vi
- ✓ Tín hiệu tuần hoàn & tín hiệu không tuần hoàn
 - Tín hiệu tuần hoàn: x(t)=x(t+T)=x(t+nT)
 - Tín hiệu không tuần hoàn: không thoả tính chất trên
- ✓ Tín hiệu nhân quả & không nhân quả
 - Tín hiệu nhân quả: x(t)=0 : t<0</p>
 - Tín hiệu không nhân quả: không thoả tính chất trên

- ✓ Tín hiệu thực & tín hiệu phức
 - Tín hiệu thực: hàm theo biến số thực
 - Tín hiệu phức: hàm theo biến số phức
- ✓ Tín hiệu năng lượng & tín hiệu công suất
 - ➤ Tín hiệu năng lượng: 0<E<∞
 </p>
 - ➤ Tín hiệu công suất: 0<P<∞
 </p>
- ▼ Tín hiệu đối xứng (chẵn) & tín hiệu phản đối xứng (lẽ)
 - Tín hiệu đối xứng: x(-n)=x(n)
 - Tín hiệu phản đối xứng: -x(-n)=x(n)

Theo biến thời gian:

- ✓ Tín hiệu liên tục: có biến thời gian liên tục
- ✓ Tín hiệu rời rạc: có biến thời gian rời rạc
- Theo biến thời gian và biên độ:

	Tín hiệu tương tự (analog)	Tín hiệu rời rạc (lấy mẫu)	Tín hiệu lượng tử	Tín hiệu số
Biên độ	Liên tục	Liên tục	Rời rạc	Rời rạc
Thời gian	Liên tục	Rời rạc	Liên tục	Rời rạc

1.1.2 KHÁI NIỆM VÀ PHÂN LOẠI HỆ THỐNG

a. Khái niệm hệ thống

Hệ thống đặc trưng toán tử T làm nhiệm vụ biến đổi tín hiệu vào x thành tín hiệu ra y

- Các hệ thống xử lý tín hiệu:
- ✓ Hệ thống tương tự: Tín hiệu vào và ra là tương tự
- ✓ Hệ thống rời rạc: Tín hiệu vào và ra là rời rạc
- ✓ Hệ thống số: Tín hiệu vào và ra là tín hiệu số

b. Phân loại các hệ thống xử lý tín hiệu rời rạc

Hệ thống tuyến tính & phi tuyến

- \rightarrow <u>Hệ tuyến tính</u>: T[a₁x₁(n)+a₂x₂(n)]=a₁T[x₁(n)]+a₂T[x₂(n)]
- Hệ phi tuyến: không thoả tính chất trên

Hệ thống bất biến & thay đổi theo thời gian

- Hệ bất biến theo thời gian: nếu tín hiệu vào x dịch đi k đơn vị thì tín hiệu ra y cũng dịch đi k đơn vị.
- Hệ thay đổi theo thời gian: không thoả tính chất trên

Hệ thống nhân quả & không nhân quả

- Hệ nhân quả: Tín hiệu ra chỉ phụ thuộc tín hiệu vào ở thời điểm quá khứ và hiện tại
- Hệ không nhân quả: không thoả tính chất trên

Hệ thống ổn định & không ổn định

- Hệ thống ổn định: nếu tín hiệu vào bị chặn /x(n)/ < ∞ thì tín hiệu ra cũng bị chặn /y(n)/ < ∞</p>
- Hệ thống không ổn định: không thoả tính chất trên

1.2 TÍN HIỆU RỜI RẠC

1.2.1 BIỂU DIỄN TÍN HIỆU RỜI RẠC

Tín hiệu rời rạc được biểu diễn bằng một dãy các giá trị với phần tử thứ n được ký hiệu x(n).

Tín hiệu liên tục
$$x_a(t)$$
 Lấy mẫu $t = nT_s$ Tín hiệu rời rạc $x_a(nT_s) \equiv x(n)$ $T_s=1$

Với \mathbf{T}_{s} – chu kỳ lấy mẫu và \mathbf{n} – số nguyên

✓ Tín hiệu rời rạc có thể biểu diễn bằng một trong các dạng: hàm số, dãy số & đồ thị.

* Hàm số:
$$\mathbf{x}(\mathbf{n}) = \begin{cases} (0.5)^{\mathbf{n}} : 0 \le \mathbf{n} \le 3 \\ 0 : \mathbf{n} \text{ còn lại} \end{cases}$$

* Dãy số:
$$\mathbf{x(n)} = \left\{ \frac{1}{2}, \frac{1}{4}, \frac{1}{8} \right\}$$
 \(\tau - Gốc thời gian n=0\)

1.2.2 MỘT SỐ DÃY RỜI RẠC CƠ BẢN

Dãy xung đơn vị:

$$\delta(n) = \begin{cases} 1: n = 0 \\ 0: n \text{ còn lại} \end{cases}$$

Dãy nhảy bậc đơn vị:

$$u(n) = \begin{cases} 1: n \ge 0 \\ 0: n < 0 \end{cases}$$

Dãy chữ nhật:

$$rect_N(n) = \begin{cases} 1: N-1 \ge n \ge 0 \\ 0: n \text{ còn lại} \end{cases}$$

Dãy dốc đơn vị:

$$r(n) = \begin{cases} n: n \ge 0 \\ 0: n < 0 \end{cases}$$

Dãy hàm mũ thực:

$$e(n) = \begin{cases} a^n : n \ge 0 \\ 0 : n < 0 \end{cases}$$

1.2.3 CÁC PHÉP TOÁN TRÊN TÍN HIỆU RỜI RẠC

Cho 2 dãy:
$$x_1(n) = \{1,2,3\}; x_2(n) = \{2,3,4\}$$

a. Cộng 2 dãy:

Cộng các mẫu 2 dãy với nhau tương ứng với chỉ số n

$$x_1(n) + x_2(n) = \{2,4,6,3\}$$

b. Nhân 2 dãy:

Nhân các mẫu 2 dãy với nhau tương ứng với chỉ số n

$$x_1(n).x_2(n) = \{3,8\}$$

1.2.3 CÁC PHÉP TOÁN TRÊN TÍN HIỆU RỜI RAC

Cho dãy:
$$x(n) = \{1, 2, 3, 4\}$$

c. Dich: $x(n) -> x(n-n_0)$

$$n_0>0$$
 – dịch sang phải n_0 đơn vị

$$n_0 < 0$$
 – dịch sang trái n_0 đơn vị

Lấy đối xứng qua trục tung

$$x(n-1) = \{1,2,3,4\}$$

$$x(n+1) = \{1,2,3,4\}$$

$$x(-n) = \{4,3,2,1\}$$

1.2.4 NĂNG LƯƠNG VÀ CÔNG SUẤT TÍN HIỀU

a. Năng lượng dãy x(n)

$$E_{x} = \sum_{n=\infty}^{\infty} |x(n)|^{2} \qquad \Box$$

Nếu ∞> E_x >0 thì x(n) gọi là tín hiệu năng lượng

b. Công suất trung bình dãy x(n)

$$P_{x} = \lim_{N \to \infty} \frac{1}{(2N+1)} \sum_{n=-N}^{N} |x(n)|^{2}$$

Nếu ∞> P_x >0 thì x(n) gọi là tín hiệu công suất

<u>Ví dụ 1.2.1:</u> Cho $x(n) = rect_{10}(n); y(n) = u(n)$

Các tín hiệu trên tín hiệu nào là công suất, năng lượng?

$$E_{x} = \sum_{n=-\infty}^{\infty} |x(n)|^{2} = \sum_{n=0}^{9} |rect_{10}(n)|^{2} = 10$$

x(n)- năng lượng

$$P_{X} = \lim_{N \to \infty} \frac{1}{(2N+1)} \sum_{n=0}^{9} \left| rect_{10}(n) \right|^{2} = \lim_{N \to \infty} \frac{10}{(2N+1)} = 0$$

$$E_y = \sum_{n=\infty}^{\infty} |y(n)|^2 = \sum_{n=0}^{\infty} |u(n)|^2 = \infty$$

y(n)- công suất

$$P_{y} = \lim_{N \to \infty} \frac{1}{(2N+1)} \sum_{n=0}^{N} |u(n)|^{2} = \lim_{N \to \infty} \frac{N+1}{(2N+1)} = \frac{1}{2}$$

1.3 HỆ THỐNG TUYẾN TÍNH BẤT BIẾN

1.3.1 ĐÁP ỨNG XUNG CỦA HỆ THỐNG

a. Biểu diễn tín hiệu theo các xung đơn vị

Ví dụ 1.3.1: Biểu diễn dãy
$$x(n) = \{1,2,3,4,5\}$$
 theo các xung đơn vị

$$x(n) = 1\delta(n+2) + 2\delta(n+1) + 3\delta(n) + 4\delta(n-1) + 5\delta(n-2) + 5\delta(n-2)$$

$$x(n) = x(-2)\delta(n+2) + x(-1)\delta(n+1) + x(0)\delta(n) + x(1)\delta(n-1) + x(2)\delta(n-2)$$

Tổng quát:
$$x(n) = \sum_{k=\infty}^{\infty} x(k)\delta(n-k)$$

b. Đáp ứng xung của hệ thống tuyến tính bất biến

$$\begin{array}{c|c} x(n) & y(n) = T[x(n)] \\ \hline \delta(n) & h(n) = T[\delta(n)] \end{array} \qquad \begin{array}{c|c} h(n) = y(n) \big|_{X(n) = \delta(n)} \end{array}$$

• Đáp ứng xung h(n) của hệ thống là đáp ứng ra khi tín hiệu vào là dãy xung đơn vị $\delta(n)$

Với
$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$
, suy ra:

$$y(n) = T[x(n)] = T\left[\sum_{k=-\infty}^{\infty} x(k)\delta(n-k)\right] = \sum_{k=-\infty}^{\infty} x(k)T[\delta(n-k)]$$

$$y(n) = \sum_{k=\infty}^{\infty} x(k)h(n-k) = x(n)*h(n)$$

Phép tổng chập 2 dãy x(n) và h(n)

$$x(n) \longrightarrow h(n) \longrightarrow y(n)=x(n) * h(n)$$

h(n) đặc trưng hòan tòan cho hệ thống trong miền n

c. Cách tìm tổng chập

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

- Đổi biến số n ->k: x(k) & h(k)
- Gập h(k) qua trục tung, được h(-k)
- Dịch h(-k) đi n đơn vị: sang phải nếu n>0, sang trái nếu n<0 được h(n-k)
- Nhân các mẫu 2 dãy x(k) và h(n-k) và cộng lại

Ví dụ 1.3.2: Cho 2 dãy
$$x(n) = \{2,3,4\} \text{ và } h(n) = \{1,2,3\}$$

Hãy tìm $y(n) = x(n)*h(n)$

- Đổi biến số n->k: $x(k) = \{2,3,4\} \text{ và } h(k) = \{1,2,3\}$
- Gập h(k) qua trục tung: $h(-k) = \{3,2,1\}$
- Xác định h(n-k):

n>0 dịch sang phải:

$$h(1-k) = \{3,2,1\}$$

 $h(2-k) = \{0,3,2,1\}$
 $h(3-k) = \{0,0,3,2,1\}$

$$y(0) = \sum_{k} x(k)h(0-k) = 7$$

$$y(1) = \sum_{k} x(k)h(1-k) = 16$$

$$y(2) = \sum_{k} x(k)h(2-k) = 17$$

$$y(3) = \sum_{k} x(k)h(3-k) = 12$$

n<0 dịch sang trái:

$$h(-1-k) = \{3,2,1\}$$

 $h(-2-k) = \{3,2,1,0\}$

$$y(-1) = \sum_{k} x(k)h(-1-k) = 2$$

$$y(-2) = \sum_{k} x(k)h(-2-k) = 0$$

$$y(n) = \{2, 7, 16, 17, 12\}$$

d. Các tính chất của tổng chập

- Giao hoán: y(n) = x(n)*h(n) = h(n)*x(n)
- Kết hợp: $y(n) = x(n) * [h_1(n)*h_2(n)]$ = $[x(n)*h_1(n)] * h_2(n)$
- Phân phối: $y(n) = x(n) * [h_1(n) + h_2(n)]$ = $x(n) * h_1(n) + x(n) * h_2(n)$

1.3.2 TÍNH NHÂN QUẢ & ỔN ĐỊNH CỦA HỆ TTBB

Định lý 1: Hệ thống TTBB là nhân quả ⇔ h(n)=0: n<0

Ví dụ 1.3.3: Xét tính nhân quả các hệ thống cho bởi:

a)
$$y(n)=x(n-1)+2x(n-2)$$
 b) $y(n)=x(n+1)+2x(n)+3x(n-1)$

Thay $x(n)=\delta(n)$, ta được biểu thức h(n) các hệ:

- a) $h(n) = \delta(n-1) + 2\delta(n-2) = \{0,1,2\}$ Do h(n) = 0: $n < 0 -> h\hat{e} \ nh \hat{a} n \ qu \hat{a}$
- b) $h(n)=\delta(n+1)+2\delta(n)+3\delta(n-1)=\{1,2,3\}$ Do $h(-1)=1 -> h\hat{e}$ không nhân quả

1.3.2 TÍNH NHÂN QUẢ & ỔN ĐỊNH CỦA HỆ TTBB

Định lý 2: Hệ thống TTBB là ổn định $\iff \sum_{n=\infty}^{\infty} |h(n)| < \infty$

Ví dụ 1.3.4: Xét tính ổn định của hệ thống: $h(n)=a^nu(n)$

$$S = \sum_{n=\infty}^{\infty} |h(n)| = \sum_{n=\infty}^{\infty} |a^n u(n)| = \sum_{n=0}^{\infty} |a|^n$$

- /a/< 1 -> S=1/(1-/a/) : hệ ổn định
- la/≥ 1 ->S=∞: hệ không ổn định

1.4 PHƯƠNG TRÌNH SAI PHÂN TTHSH

1.4.1 PHƯƠNG TRÌNH SAI PHÂN TUYẾN TÍNH

Hệ thống tuyến tính được đặc trưng bởi PTSP tuyến tính:

$$\sum_{k=0}^{N} a_k(n) y(n-k) = \sum_{r=0}^{M} b_r(n) x(n-r)$$

Với: N – gọi là bậc của phương trình sai phân: N,M>0 $a_k(n)$, $b_r(n)$ – các hệ số của phương trình sai phân

1.4.2 PHƯƠNG TRÌNH SAI PHÂN TUYẾN TÍNH HSH

Hệ thống tuyến tính bất biến được đặc trưng bởi PTSPTTHSH

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{r=0}^{M} b_r x(n-r)$$

$$\mathbf{a_k}, \mathbf{b_r} - \text{không phụ thuộc}$$
vào biến số n

1.4.3 GIẢI PTSP TUYẾN TÍNH HỆ SỐ HẰNG

- Tìm nghiệm của PTSP thuần nhất: y_h(n)
- Tìm nghiệm riêng của PTSP: $y_p(n)$
- Nghiệm tổng quát của PTSP: $y(n) = y_h(n) + y_p(n)$

a. Nghiệm của PTSP thuần nhất:

Giả thiết α^n là nghiệm của PTSP thuần nhất:

$$\sum_{k=0}^{N} a_k y(n-k) = 0$$

Phương trình đặc trưng có dạng:

$$a_0 \alpha^N + a_1 \alpha^{N-1} + \dots + a_{N-1} \alpha^1 + a_N = 0$$

a. Nghiệm của PTSP thuần nhất (tt):

• Phương trình đặc trưng có nghiệm đơn $\alpha_1, \alpha_2, ... \alpha_N$

$$y_h(n) = A_1 \alpha_1^n + A_2 \alpha_2^n + \dots + A_N \alpha_N^n$$

• Phương trình đặc trưng có nghiệm α_1 bội r

$$y_h(n) = (A_0 + A_1 n + \dots + A_{r-1} n^{r-1})\alpha_1^n + A_2 \alpha_2^n + \dots + A_N \alpha_N^n$$

b. Nghiệm riêng của PTSP:

Thường chọn riêng y_p(n) có dạng giống với x(n)

Ví dụ 1.4.1: Giải PTSP:
$$y(n)$$
- $3y(n-1)$ + $2y(n-2)$ = $x(n)$ (*) với $n \ge 0$, biết $y(n)$ =0: $n < 0$ và $x(n)$ =3ⁿ

Tìm nghiệm của PTSP thuần nhất y_h(n)

 $y_h(n)$ là nghiệm của phương trình:

$$y(n) - 3y(n-1) + 2y(n-2) = 0$$

Phương trình đặc tính: $\alpha^2 - 3\alpha + 2 = 0 \Rightarrow \alpha_1 = 1; \alpha_2 = 2$

$$\Rightarrow y_h(n) = (A_1 1^n + A_2 2^n)$$

Tìm nghiệm riêng của PTSP y_p(n)

Chọn $y_p(n)$ có dạng $y_p(n)=B3^n$, thay vào PTSP (*):

$$B3^{n} - 3B3^{n-1} + 2B3^{n-2} = 3^{n} \Rightarrow B = 9/2$$

Nghiệm tổng quát của PTSP:

$$y(n) = y_h(n) + y_p(n) = (A_1 1^n + A_2 2^n) + 4.5 3^n$$

Nghiệm tổng quát của PTSP:

$$y(n) = (A_11^n + A_22^n) + 4.53^n$$

Dựa vào điều kiện đầu: y(n)=0: n<0:

Từ:
$$y(n)=3y(n-1)-2y(n-2)+x(n)$$
 với $x(n)=3^n$

$$\Rightarrow$$
 y(0)=3y(-1)-2y(-2)+3⁰=1=A₁+A₂+4.5

$$A_1 = 0.5$$

 $A_2 = -4$

$$\Rightarrow$$
 y(1)= 3y(0)-2y(-1)+3¹=6=A₁+A₂2¹+4,5.3¹

Vậy:
$$y(n) = 0.5 1^n - 4 2^n + 4.5 3^n$$
 : n≥0

1.5 SƠ ĐỒ THỰC HIỆN HỆ THỐNG

1.5.1 HỆ THỐNG ĐỆ QUI & KHÔNG ĐỆ QUI

- a. Hệ thống không đệ qui
- Hệ thống không đệ qui là hệ thống đặc trưng bởi PTSP TTHSH bậc N=0

$$y(n) = \sum_{r=0}^{M} b_r x(n-r): a_0 = 1$$

$$h(r) = b_r \Rightarrow y(n) = \sum_{r=0}^{M} h(r)x(n-r) \Rightarrow L[h(r)] = M+1$$

 Hệ thống không đệ qui còn gọi là hệ thống có đáp ứng xung độ dài hữu hạn – FIR (Finite Impulse Response) Hệ thống không đệ qui luôn luôn ổn định do:

$$S = \sum_{r=0}^{\infty} |h(r)| = \sum_{r=0}^{M} |b_r| < \infty$$

b. Hệ thống đệ qui

Hệ thống đệ qui là hệ thống đặc trưng bởi PTSP TTHSH bậc
 N>0

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{r=0}^{M} b_r x(n-r)$$

- Hệ thống đệ qui còn gọi là hệ thống có đáp ứng xung độ dài vô hạn – IIR (Infinite Impulse Response)
- Hệ thống đệ qui có thể ổn định hoặc không ổn định

Ví du 1.5.1: Xét tính ổn định của hệ thống cho bởi: y(n) - ay(n-1) = x(n), biết y(n)=0:n<0

$$h(n) = y(n)|_{x(n) = \delta(n)} \Rightarrow h(n) = y(n) = \delta(n) + ay(n-1)$$

•
$$n=0 \rightarrow y(0) = \delta(0) + y(-1) = 1$$

•
$$n=1 -> y(1) = \delta(1) + ay(0) = a$$

■ n=2 -> y(2)=
$$\delta(2)$$
 + ay(1) = a^2 $h(n) = a^n : n \ge 0$

• n=3 -> y(3)=
$$\delta(3)$$
 + ay(2) = a^3

$$h(n) = a^n : n \ge 0$$

$$S = \sum_{n=0}^{\infty} |h(n)| = \sum_{n=0}^{\infty} |a|^n : \nearrow /a < 1 -> S = 1/(1 - /a /): hệ ổn định > /a /> S = \infty: hệ không ổn định$$

1.5.2 SƠ ĐỒ THỰC HIỆN HỆ THỐNG

a. Các phần tử thực hiện hệ thống

■ Bộ trễ: $x(n) \longrightarrow D \longrightarrow y(n)=x(n-1)$

■ Bộ cộng:
$$x_1(n)$$

$$x_2(n)$$

$$x_2(n)$$

$$x_2(n)$$

$$x_3(n)$$

$$x_4(n)$$

$$x_1(n)$$

$$x_2(n)$$

$$x_3(n)$$

■ Bộ nhân: $x(n) \xrightarrow{\alpha} y(n) = \alpha x(n)$

b. Sơ đồ thực hiện hệ thống không đệ qui

$$y(n) = \sum_{r=0}^{M} b_r x(n-r) = b_0 x(n) + b_1 x(n-1) + ... + b_M x(n-M)$$

Ví dụ 1.5.2: Hãy vẽ sơ đồ thực hiện hệ thống cho bởi:

$$y(n) = x(n) - 2x(n-1) + 3x(n-3)$$

c. Sơ đồ thực hiện hệ thống đệ qui

$$y(n) = \sum_{r=0}^{M} b_r x(n-r) - \sum_{k=1}^{N} a_k y(n-k)$$
: $a_0 = 1$

Ví dụ 1.5.3: Hãy vẽ sơ đồ thực hiện hệ thống cho bởi: y(n) - 3y(n-1) + 2y(n-2) = 4x(n) - 5x(n-2)

$$y(n) = 4x(n) - 5x(n-2) + 3y(n-1) - 2y(n-2)$$

1.6 TƯƠNG QUAN CÁC TÍN HIỆU

✓ Nếu có mục tiêu:

$$y(n) = A x(n-n_0) + \gamma(n)$$

✓ Nếu không có mục tiêu:

$$y(n) = \gamma(n)$$

Với: **A** - hệ số suy hao

γ(n) - nhiễu cộng

Tương quan các tín hiệu dùng để so sánh các tín hiệu với nhau

1.6.1 TƯƠNG QUAN CHÉO 2 TÍN HIỆU

Tương quan chéo 2 dãy năng lượng x(n) & y(n) định nghĩa:

$$r_{xy}(n) = \sum_{m=-\infty}^{\infty} x(m)y(m-n)$$

1.6.2 TỰ TƯƠNG QUAN TÍN HIỆU

Tự tương quan của dãy x(n) được định nghĩa:

$$r_{xx}(n) = \sum_{m=-\infty}^{\infty} x(m)x(m-n)$$

✓ Tự tương quan của dãy x(n) nhận giá trị lớn nhất tại n=0