Геометрия в компьютерных приложениях

Лекция 6: Многообразия

Богачев Николай Владимирович

Московский физико-технический институт, Кафедра дискретной математики, Лаборатория продвинутой комбинаторики и сетевых приложений

12 октября 2017 г.

7. Многообразия

7.1. Определения

Воспоминания из прошлого

Всякая выпуклая ограниченная открытая область $U\subset \mathbb{R}^n$ гомеоморфна открытому n-мерному шару B^n .

Доказательство.

- Можно считать, что $B^n \subset U$.
- ullet Для всякой точки $x\in\mathbb{R}^n\setminus\{0\}$ существует единственное такое число a(x)>0, что

$$a(x)\frac{x}{\|x\|}\in\partial U.$$

ullet Тогда рассмотрим гомеоморфизм $\varphi\colon U o B^n$, где

$$\varphi(0)=0, \quad \varphi(x)=\frac{x}{a(x)}.$$

Пусть M — хаусдорфово топологическое пространство со счетной базой.

Определение

- ullet Карта на M гомеоморфизм arphi некоторого открытого множества $U \subset M$ на некоторую открытую область в \mathbb{R}^n .
- Карты (U, φ) и (V, ψ) называются **согласованными**, если отображение

$$\psi\varphi^{-1}\colon \varphi(U\cap V)\to \psi(U\cap V)$$

является гладким.

- **Атлас** система согласованных карт, $(U_{\alpha}, \varphi_{\alpha})$ покрывающих пространство M.
- ullet Два атласа $(U_{lpha}, arphi_{lpha})$ и (V_{eta}, ψ_{eta}) эквивалентны, если карты одного согласованы со всеми картами второго, то есть функции "склейки"

$$\psi_{\beta}\varphi_{\alpha}^{-1}\colon \varphi_{\alpha}(U_{\alpha}\cap V_{\beta})\to \psi_{\beta}(U_{\alpha}\cap V_{\beta})$$

гладкие.

Определение

Хаусдорфово топологическое пространство M со счетной базой вместе с классом эквивалентных атласов называется п-мерным гладким вещественным многообразием.

Примеры

- (1) \mathbb{R}^n . Здесь достаточно взять карту (\mathbb{R}^n , id);
- Можно взять произвольную открытую область $U \subset \mathbb{R}^n$;
- (3) $\mathbb{S}^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : \sum_{k=1}^{n+1} x_k^2 = 1\}.$ Доказательство. Пусть $N = \{0, ..., 0, 1\}$ и $S = \{0, ..., 0, -1\}$. Рассмотрим стереографические проекции φ_N и φ_S из точек N и Sсоответственно. Имеем две карты $(\mathbb{S}^n \setminus \{N\}, \varphi_N)$ и $(\mathbb{S}^n \setminus \{S\}, \varphi_S)$. Докажите, что это дает определение многообразия.
- (4) $GL_n(\mathbb{R}) = \{ A \in \mathbb{R}^{n^2} \mid \det(A) \neq 0 \}.$

Вопрос

Почему же n во всех картах в определении многообразия берут одинаковое? Можно ли брать карты разной топологической размерности?

ОТВЕТ. На самом деле для связных многообразий нельзя. Иначе мы получим, что \mathbb{R}^n и \mathbb{R}^m гомеоморфны при $n \neq m$, что неверно. Но увы, это доказывается более продвинутыми методами.

Определение

- Локальные координаты в окрестности точки P координаты в образе карты $\varphi(U)$.
- Если $P \in U \cap V$, то имеются две системы координат, причем функции $y_j(x_1,\dots,x_n)$ гладкие.
- ullet Структура многообразия на $\mathit{M}_1 imes \mathit{M}_2$: $(\mathit{U}_{lpha} imes \mathit{V}_{eta}, arphi_{lpha} imes \psi_{eta})$
- Касательный вектор в точке P вектор в \mathbb{R}^n , приложенный к локальным координатам точки P.
- Касательное пространство $T_P M$ множество всех касательных векторов.

7.2. Функции и отображения на многообразиях

Определение

- Пусть функция $f:M\to\mathbb{R}$ непрерывна, тогда ее координатным представлением на карте (U,φ) называется функция $\tilde{f}=f\circ \varphi^{-1}.$
- Аналогично, если имеется непрерывное отображение многообразий $F\colon M^n \to N^k$, то можно его сузить на карты и рассматривать отображение $\tilde{F}\colon \mathbb{R}^n \to \mathbb{R}^k$.
- Функции или отображения называем гладкими, если таковыми являются их координатные представления.
- Если $F \colon M \to N$ гладкий гомеоморфизм, причем F^{-1} тоже гладкое, то F диффеоморфизм многообразий.
- J(F) матрица Якоби отображения F (то есть его координатного представления).

Теорема

Если многообразия M и N диффеоморфны, то их размерности совпадают.

Доказательство.

- ullet Пусть $P \in M$, $F(P) = Q \in N$, $\dim M = m$, $\dim N = n$.
- Известно, что $J(G \circ F)(P) = J(G)(F(P)) \cdot J(F)(P)$
- Тогда применим это к $F \circ F^{-1}$ и $F^{-1} \circ F$:

$$E_m = J(F^{-1})(Q) \cdot J(F)(P), \quad E_n = J(F)(P) \cdot J(F^{-1})(Q).$$

- Известно, что $\operatorname{rk}(AB) \leq \min(\operatorname{rk} A, \operatorname{rk} B)$. В данном случае $\operatorname{rk} J(F)(P) \leq \min(m, n), \operatorname{rk} J(F^{-1})(Q) \leq \min(m, n).$
- ullet Отсюда $m \leq \min(m,n), \quad n \leq \min(m,n).$ Следовательно, m=n.

12 октября 2017 г. 7 / 8

7.3. Задание многообразий уравнениями

Пусть задана система уравнений $f_j(x_1,\ldots,x_n)=c_j$, где $j=1,\ldots,k$, а M — множество ее решений. Обозначим $F=(f_1,\ldots,f_k)$.

Теорема

Если ${
m rk}\ J(F)=k$ в каждой точке M, то M является гладким многообразием размерности n-k, причем система линейных уравнений $df_j=0$ задает касательное пространство в каждой точке многообразия.

8 / 8