

THUPC2022 快速最小公倍数变换

ltst

THU IIIS

2023年3月2日

简要题意

给定 n 个数 a_1, a_2, \dots, a_n ,选择两个数删掉并将它们的和加入,求所有的方案的最小公倍数的和,对 998244353 取模。 $n < 5 \times 10^5, 1 < a_i < 10^6$

定义

对于正整数 A 和素数 p,定义 $v_p(A)$ 为 A 的唯一质因子分解中 p 的出现次数。因此 $p^{v_p(A)} \mid A$ 而 $p^{v_p(A)+1} \nmid A$ 。 定义 M(p) 和 m(p) 为 $\{v_p(a_1), \cdots, v_p(a_n)\}$ 中的最大值和非严格 次大值,即当最大值出现超过一次时,m(p) = M(p)。

定义

对于正整数 A 和素数 p,定义 $v_p(A)$ 为 A 的唯一质因子分解中p 的出现次数。因此 $p^{v_p(A)} \mid A$ 而 $p^{v_p(A)+1} \nmid A$ 。 定义 M(p) 和 m(p) 为 $\{v_p(a_1), \cdots, v_p(a_n)\}$ 中的最大值和非严格次大值,即当最大值出现超过一次时,m(p) = M(p)。那么 $\prod_{p \in \text{Prime}} p^{M(p)}$ 就是整个序列的最小公倍数。接下来删掉两个数并加上一个数时,可以仅考虑 M(p) 的变化量。

观察

删除 a_i 和 a_j 并加入 $a_i + a_j$ 时,我们期待 M(p) 的变化可以由

- 仅和 a_i 相关的量;
- 仅和 a_i 相关的量;
- 仅和 $a_i + a_j$ 相关的量

这三部分刻画,这样贡献的独立性更方便我们进行卷积操作。

定理

定理 1

对于任意 a_i 和 a_j ,设将 a_i 和 a_j 删去并加入 $a_i + a_j$ 后整个序列 的最小公倍数中 p 的指数的变化量为 $\Delta M_p(a_i, a_j)$,则

$$\Delta M_p(a_i, a_j) = [M(p) = v_p(a_i)](m(p) - M(p))$$

$$+ [M(p) = v_p(a_j)](m(p) - M(p))$$

$$+ \max(v_p(a_i + a_j) - M(p), 0).$$

定理

定理 1

对于任意 a_i 和 a_j ,设将 a_i 和 a_j 删去并加入 $a_i + a_j$ 后整个序列 的最小公倍数中 p 的指数的变化量为 $\Delta M_p(a_i, a_j)$,则

$$\Delta M_p(a_i, a_j) = [M(p) = v_p(a_i)](m(p) - M(p))$$

$$+ [M(p) = v_p(a_j)](m(p) - M(p))$$

$$+ \max(v_p(a_i + a_j) - M(p), 0).$$

也就是说, $\Delta M_p(a_i,a_j)$ 直接由删去 a_i 造成的指数减小、删去 a_j 造成的指数减小和加入 a_i+a_j 造成的指数增大三部分贡献。这三部分贡献的基准都是 M(p),这是非常反直觉的,而在删除超过两个数时类似结论不成立。

证明

$$\Delta M_p(a_i, a_j) = [M(p) = v_p(a_i)](m(p) - M(p))$$

$$+ [M(p) = v_p(a_j)](m(p) - M(p))$$

$$+ \max(v_p(a_i + a_j) - M(p), 0).$$

定义
$$f_i = [M(p) = v_p(a_i)], f_j = [M(p) = v_p(a_j)], f_k = [v_p(a_i + a_j) \ge M(p)], f_l = [m(p) = M(p)]$$
。分类讨论:

■ $f_i = f_j = 0$: 上式显然成立。

证明

$$\Delta M_p(a_i, a_j) = [M(p) = v_p(a_i)](m(p) - M(p))$$

$$+ [M(p) = v_p(a_j)](m(p) - M(p))$$

$$+ \max(v_p(a_i + a_j) - M(p), 0).$$

定义 $f_i = [M(p) = v_p(a_i)], f_j = [M(p) = v_p(a_j)], f_k = [v_p(a_i + a_j) \ge M(p)]$ 。 分类讨论:

■ $f_i = 1, f_j = 0$: 此时 $v_p(a_i) = M(p) > v_p(a_j)$, 故 $v_p(a_i + a_j) = v_p(a_j)$, $\{v_p(a_i)\}$ 集合只删掉了一个最大值。因此 $f_k = 0$ 且 $\Delta M_p(a_i, a_j) = (m(p) - M(p))$, 与上式相符。

证明

$$\Delta M_p(a_i, a_j) = [M(p) = v_p(a_i)](m(p) - M(p))$$

$$+ [M(p) = v_p(a_j)](m(p) - M(p))$$

$$+ \max(v_p(a_i + a_j) - M(p), 0).$$

定义
$$f_i = [M(p) = v_p(a_i)], f_j = [M(p) = v_p(a_j)], f_k = [v_p(a_i + a_j) \ge M(p)], f_l = [m(p) = M(p)]$$
。分类讨论:

■ $f_i = f_j = 1$: 此时 m(p) = M(p), 且 $v_p(a_i + a_j) \ge M(p)$ 。 因此 $f_k = 1$ 且 $\Delta M_p(a_i, a_j) = v_p(a_i + a_j) - M(p)$, 与上式相符。

解法

由此,设

$$\mathit{f}(\mathit{i}) = \prod_{p \in \mathtt{Prime}} p^{[\mathit{M}(p) = v_p(\mathit{i})](\mathit{m}(p) - \mathit{M}(p))},$$

$$g(j) = \prod_{p \in \texttt{Prime}} p^{\max(v_p(j) - M(p), 0)},$$

则答案为

$$\sum_{1 \le i \le j \le n} f(a_i) f(a_j) g(a_i + a_j).$$

解法

此时对值域维度卷积的方法较为显然。定义

$$F(x) = \sum_{i=1}^{n} f(a_i) x^{a_i},$$

则有

$$[x^p]F^2(x) = \sum_{1 \le i,j \le n} f(a_i)f(a_j)[a_i + a_j = p].$$

计算 $\frac{1}{2}\left(F^2(x)\cdot\sum_{i\geq 0}g(i)x^i\right)$ 并去除 i=j 的多余贡献即可。使用 $O(\max a_i)-O(\log\max a_i)$ 分解质因数方法,复杂度 $O((n+\max a_i)\log(\max a_i))$ 。

