

Description

The VSM40P04 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for high current load applications.

General Features

V_{DS} =-40V,I_D =-40A

 $R_{DS(ON)}$ <14m Ω @ V_{GS} =-10V

 $R_{DS(ON)}$ <24m Ω @ V_{GS} =-4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM40P04-T2	VSM40P04	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-40	V	
Gate-Source Voltage	V _{GS} ±20		V	
Drain Current-Continuous	I _D	-40	A A	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	-28		
Pulsed Drain Current	I _{DM}	-160	А	
Maximum Power Dissipation T _C =25°C	P _D	80	W	
Derating factor		0.53	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	544	mJ	
Drain Source voltage slope, V _{DS} ≤-32 V,	dv/dt	50	V/ns	
Reverse diode dv/dt, V _{DS} ≤-32 V, I _{SD} <i<sub>D</i<sub>	dv/dt	15	V/ns	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{θJC}	1.88	°C/W
Thermal Resistance,Junction-to-Ambient ^(Note 2)	$R_{\theta JA}$	50	°C/W

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	•		•			•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250µA	-40	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-40V,V _{GS} =0V	-	-	-1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)		•				
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1.5	-1.9	-2.5	V
Drain-Source On-State Resistance	В	V _{GS} =-10V, I _D =-12A	-	12	14	mΩ
	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-12A	-	18.5	24	mΩ
Forward Transconductance	G FS	V _{DS} =-5V,I _D =-12A	-	34	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V = 20VV =0V	-	2960	-	PF
Output Capacitance	C _{oss}	V_{DS} =-20V, V_{GS} =0V, F=1.0MHz	-	370	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0WHZ	-	310	-	PF
Switching Characteristics (Note 4)		•				
Turn-on Delay Time	t _{d(on)}		-	10	-	nS
Turn-on Rise Time	t _r	V _{DD} =-20V,I _D =-12A	-	18	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{G} =3 Ω	-	38	-	nS
Turn-Off Fall Time	t _f		-	24	-	nS
Total Gate Charge	Qg	\/ - 20 - 424	-	42.2	72	nC
Gate-Source Charge	Q _{gs}	V_{DS} =-20, I_{D} =-12A, V_{GS} =-10V	-	6.9		nC
Gate-Drain Charge	Q_{gd}	V _{GS} 10V	-	9.7		nC
Drain-Source Diode Characteristics	•		•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-12A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-40	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F =- 12A	-	40		nS
Reverse Recovery Charge	Qrr	di/dt = -100A/µs ^(Note3)	-	42		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature.}$
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- 5. E_{AS} condition: Tj=25 $^{\circ}\text{C}$,V_{DD}=-20V,V_G=-10V,L=1mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance(m 🛭)

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds 1000 100 Ip- Drain Current (A) R_{DS(ON)} limited 10 1ms 10ms 1 $T_{J(Max)}$ =175° $T_c=25^{\circ}$ C 0.1 0.1 10 100 Vds Drain-Source Voltage (V)

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature 40 Ip- Drain Current (A) 30 20 10 0 0 25 50 75 100 125 150 175 T_J-Junction Temperature(°C)

Figure 10 ID Current Derating vs Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance