Prerequisites:

At first we must recall the following summation formulas:

$$\bullet \quad \sum_{i=1}^{n} (i) = \frac{n(n+1)}{2}$$

Solution:

Things we need to understand,

- There is no repetition of a single number. Every number in the series is unique.
- The numbers are incrementing by 1.
- The i-th parenthesized term has exactly i- numbers within the parentheses.

Now to find out the last integer of the i-th parenthesized term, it is actually the $\sum\limits_{i=1}^n(i)=\frac{n(n+1)}{2}$. For example:

i	i-th term	Last number within the i-th parenthesized term	$\sum_{i=1}^{n} (i) = \frac{n(n+1)}{2}$
1	1	1	1
2	(2+3)	3	3
3	(4+5+6)	6	6
4	(7+8+9+10)	10	10
n	X	X _z	$\sum_{i=1}^{n} (i)$

So, basically we are just summing from 1 to $\frac{n(n+1)}{2}$. So, the expression should be:

ression should be:
$$\frac{\frac{n(n+1)}{2}}{\sum_{i=1}^{2} (i)} = \frac{\frac{n(n+1)}{2} (\frac{n(n+1)}{2} + 1)}{2}$$

$$= \frac{n(n^3 + 2n^2 + 3n + 2)}{8}$$
Hene,
$$\frac{n(n+1)}{2} = \frac{n(n^3 + 2n^2 + 3n + 2)}{8}$$
Hene,
$$\frac{n(n+1)}{2} = \frac{n(n+1)}{2} =$$

Contributor:

A. A. Noman Ansary

GitHub : showrav-ansary LinkedIn: showrav-ansary

Edited: Md-Minhajw-Islam

$$1+2+3+...+\frac{m(n+1)}{2}$$