

Project Title

Computer Aided Diagnosis (CAD) For Heart Diseases using Deep Learning Approach

By

Team Members:

No	Name	Department
1	Wael Mohamed Abd ElMoaty	Scientific Computing
2	Mahmoud Hamed Mohamed	Scientific Computing
3	Asmaa Hamed Mohamed	Scientific Computing
4	Asmaa Sobhy Mostafa	Scientific Computing
5	Gehad Khaled Sayed	Scientific Computing

Under Supervision of

[Manal Mohsen Tantawi]

[Associate Professor], Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University.

[Abdelrahman Mohamed Shaker]

[Teaching Assistant], Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University.

August 2020

Acknowledgements

All praise and thanks to ALLAH, who provided me the ability to complete this work. I hope to accept this work from me.

I am grateful of *my parents* and *my family* who are always providing help and support throughout the whole years of study. I hope I can give that back to them.

I also offer my sincerest gratitude to my supervisors, Associate *Prof. Dr.Manal Mohsen Tantawi*, *and T.A. Abelrahman Mohamed Shaker* who have supported me throughout my thesis with their patience, knowledge and experience.

Finally, I would thank my friends and all people who gave me support and encouragement.

Abstract 2

Abstract

Heart diseases classification based on electrocardiogram (ECG) signal has become a priority topic in the diagnosis of heart diseases because it can be obtained with a simple diagnostic tool of low cost. Since early detection of heart disease can enable us to ease the treatment as well as save people's lives, accurate detection of heart disease using ECG is very important.

In this project, convolutional neural networks are proposed to classify sixteen different ECG beat types in the MIT-BIH arrhythmia database.

We aimed to implement a computer-aided diagnosis system in intensive care to help doctors instead of keeping an eye on the patient 24 hours, the system automatically classifies heartbeats and alarm the doctor.

We have tried Long short-term memory (LSTM), Visual Geometry Group (VGG16), Convolution Neural Network (CNN) and Inception. We have two architectures for classification, one stage and two stages. We tried more than one trail and we got best result from CNN.

One Stage CNN has 91.17 % as average accuracy

And 99.08 % as overall accuracy.

Two stages CNN has 91.98 % as average accuracy

And 98.74 % as overall accuracy.

Table of Contents

Abstract	.3
List of Figures	.7
List of Tables)
List of Abbreviations10)
Chapter 1: Introduction11	
1.1 Problem Definition1	
1.1.1 History	
1.1.2 Applications	13
1.2 Motivation	18
1.3 Objectives	18
1.4 Time plan	18
1.5 Documentation Outline	19
Chapter 2: Background	.20
Background21	
2.1 Related work21	
2.1.1 Using Traditional methods	
2.1.2 Using Deep learning methods22	
2.2 Observations24	ļ
Chapter 3: System Architecture	25

3.1 System A	rchitecture20	6
3.1.1 D	ataset30)
3.1.2 p	reprocessing30	
	3.2.2.1 filtering30	
	3.2.2.2 QRS Detection31	
	3.2.2.3 Dynamic segmentation32	
	3.2.2.4 Resampling and normalization32	
3.1.3 T	esting and training split33	
	3.1.3.1 Beats type split33	
	3.1.3.2 Subject orientation record split34	
3.1.4 (Classification model for one stage34	4
	3.1.4.1 VGG model34	
	3.1.4.2 LSTM model36	
3	3.1.4.3 CNN models38	,
	3.1.4.4 inception model39	
3.1.5	classification model for two stages42	,
Chapter 4: Syste	m Implementation	
_	Reading Dataset44	
	Preprocessing steps44	
	1.2.1 Filtering Signal44	
	1.2.2 Normalization45	
4	1.2.3 Detecting R Peaks Indices Algorithm45	
	1.2.4 Dynamic Segmentation46	
	1.2.5 Resampling	
4.3 (Calculating Accuracy of (Detecting R Peaks Algo.)40	6
4.4 I	Prepare Training Data46	
	4.4.1 Beat Type Split46	
	1.4.2 Data augmentation47	
4	1.4.3 Subject Oriented Record Split48	
4.5 I	Deep Learning Models48	3
	4.5.1 LSTM48	
	1.5.2 VGG16 1D51	
4	1.5.3 Inception 1D54	

4.5.4 CNN 1D	60
Chapter 5: System Testing	64
5.1 Evaluation	
5.2 Results	67
5.2.1 Results of different models	67
5.2.2 Comparison between models	71
5.2.3 Comparison between One Stage and	d Two Stages
models	71
5.2.4 Result of Data augmentation	72
5.2.5 Result for subject orientation	73
5.2.6 Best Result	73
5.3 Interface	74
Chapter 6: Conclusion and Future Work	81
6.1 Conclusion	82
6.2 Future Work	
TOOLS	83
REFERENCES	84

List of Figures

Figure 1.1 Apple watch app15
Figure 1.2 Apple watch16
Figure 1.3 View and share your Health information using Apple watch17
Figure 3.1 shows the classes associated with each category27
Figure 3.2 System Architecture for one stage28
Figure 3.3 System Architecture for Two stage29
Figure 3.4 Before filter30
Figure 3.5 After filter31
Figure 3.6 Example for R peak Detection31
Figure 3.7 Segmented heartbeat using dynamic segmentation strategy32
Figure 3.8 Normalized signal rule33
Figure 3.9 VGG16 Architecture(part1)
Figure 3.10 VGG16 Architecture(part2)36
Figure 3.11 The repeating module in an LSTM contains four interacting layers37
Figure 3.12 our LSTM Architecture37
Figure 3.13 our CNN Architecture38
Figure 3.14 custom inception Architecture (part 1)39
Figure 3.15 custom inception Architecture (part 2)40
Figure 3.16 custom inception Architecture (part 3)41
Figure 4.1 subject oriented split49
Figure 4.2 LSTM Summary50
Figure 4.3 VGG16 Summary (part 1)52
Figure 4.4 VGG16 Summary (part 2)53
Figure 4.5 inception Summary (part 1)55
Figure 4.6 inception Summary (part 2)56
Figure 4.7 inception Summary (part 3)57
Figure 4.8 CNN Summary (part 1)
Figure 4.9 CNN Summary (part 2)62
Figure 5.1 Overall accuracy on 5 trails based on LSTM67
Figure 5.2 Average accuracy on 5 trails based on LSTM67

Figure 5.3 Overall accuracy on 5 trails based on VGG16	68
Figure 5.4 Average accuracy on 5 trails based on VGG16	68
Figure 5.5 Overall accuracy on 5 trails based on Inception	69
Figure 5.6 Average accuracy on 5 trails based on Inception	69
Figure 5.7 Overall accuracy on 5 trails based on CNN	70
Figure 5.8 Average accuracy on 5 trails based on CNN	70
Figure 5.9 Overall accuracy for data augmentation	72
Figure 5.10 Starting lunch project.	74
Figure 5.11 Choose signal for test	75
Figure 5.12 Select test signal	75
Figure 5.13 Wait signal to load	
Figure 5.14 Draw chosen signal	76
Figure 5.15 Classify Result	
Figure 5.16 filtration and detection steps	
Figure 5.17 segmentation and classification steps	
Figure 5.18 Main result form	79
Figure 5.19 first stage on trial 5 based on CNN model	80
Figure 5.20 second stage on trial 4 based on CNN model	80

List of Tables

Table 1.1 The five main categories according to the ANSI/AAMI	EC57: 1998 standard13
Table 2.1 Related work survey	.23
Table 3.1 Training and testing percentages &Number of beats used	132
Table 5.1 Comparison between all used models	65
Table 5.2 Comparison between One Stage and Two Stages in CNN	N65
Table 5.3 Comparison between One Stage and Two Stages in Ince	ption66

List of Abbreviations

AE: Atrial Escape

AP: Aberrated Atrial Premature
APC: Atrial Premature Contraction
BAP: Blocked Atrial Premature
CNN: Convolution Neural Network
Dynseg: Dynamic Segmentation
FBN: Fusion of Paced and Normal
EVN: Fusion of Ventricular and Norm

LBBB: Left Bundle Branch Block LSTM: Long Short-Term Memory NE: Nodal (Junctional) Escape

NN: Neural Network

NOR: Normal

NP: Nodal (Junctional) Premature PCA: Principal Component Analysis PVC: Premature Ventricular Contract RBBB: Right Bundle Branch Block SVM: Support Vector Machine

VE: Ventricular Escape

VF: Ventricular Flutter Wave VGG: Visual Geometry Group

Chapter One:

Introduction

1.1 Problem Definition	12
1.1.1 History	12
1.1.2 Applications	13
1.2Motivation	18
1.3 Objectives	18
1.4 Time plan	
1.5 Documentation Outline	

1-Introduction

1.1 Problem Definition

1.1.1 History

The electrocardiogram (ECG) signal is one of the most important and well-known biological signals used for diagnosing people's health.

The ECG trace shows three successive prominent waves named P, QRS and T waves. The Atria contractions (i.e. both right and left) are shown as the P wave, while the ventricular contractions (both right and left) are shown as QRS complex.

Finally, the T wave reflects the electrical activity produced when the ventricles are recharging for the next contraction.

Detection of QRS complex is one of the most important parts carried out in the ECG signal analysis. QRS detection, especially detection of R wave in heart signal, is easier than other portions of ECG signal due to its structural form and high amplitude.

Hence, cardiac arrhythmias can be indicated by detecting changes that occur in the shape of any of the three waves (P, QRS and T waves). Cardiac arrhythmias mean that there is an abnormal activity in the heart depending upon certain groups

of conditions. Arrhythmias have two main categories: The first one can trigger cardiac arrest and sudden death, such as tachycardia and ventricular fibrillation. On the other hand,

the second category (our interest in this project) needs attention but is not critically as life threatening as the first category.

the non-life-threatening arrhythmias (second category) can be divided into 5 main classes namely: non-ectopic (N), supraventricular ectopic (S), ventricular

ectopic (V), fusion (F), and unknown (Q), each class of them consist of number of diseases mention below in table

ANSI/AAMI Classes	MIT-BIH Classes (diseases)
N	NOR, LBBB, RBBB, AE, NE
S	APC, AP, BAP, NP
V	PVC, VE, VF
F	VFN
Q	FPN, UN

Table 1.1 The five main categories according to the ANSI/AAMI EC57: 1998 standard.

1.1.2 Applications

• Apple Watch app

How the ECG app works

The ECG app on Apple Watch Series 4 or later generates an ECG that is similar to a single-lead (or Lead I) ECG. In a doctor's office, a standard 12-lead ECG is usually taken. This 12-lead ECG records electrical signals from different angles in the heart to produce twelve different waveforms. The ECG app on Apple Watch measures a waveform similar to one of those twelve waveforms. A single-lead ECG is able to provide information about heart rate and heart rhythm and enables classification of AFib. However, a single-lead ECG cannot be used to identify some other conditions, like heart attacks. Single-lead ECGs are often prescribed by doctors for people to wear at home or within the hospital so that the doctor can get a better look at the underlying rate and rhythm of the heart. However, the ECG app on Apple Watch Series 4 or later allows you to generate an ECG similar to a single-lead ECG without a prescription from your doctor.

In studies comparing the ECG app on Apple Watch to a standard 12-lead ECG taken at the same time, there was agreement between the ECG app classification of the rhythm as sinus or AFib compared to the standard 12-lead ECG.

The ability of the ECG app to accurately classify an ECG recording into A Fib and sinus rhythm was tested in a clinical trial of approximately 600 subjects, and demonstrated 99.6% specificity with respect to sinus rhythm classification and 98.3% sensitivity for A Fib classification for the classifiable results.

The clinical validation results reflect use in a controlled environment. Real world use of the ECG app may result in a greater number of strips being deemed inconclusive and not classifiable.

How to use the ECG app

The ECG app can record your heartbeat and rhythm using the electrical heart sensor on Apple Watch Series 4 or later and then check the recording for atrial fibrillation (AFib), a form of irregular rhythm.

The ECG app records an electrocardiogram which represents the electrical pulses that make your heartbeat. The ECG app checks these pulses to get your heart rate and see if the upper and lower chambers of your heart are in rhythm. If they're out of rhythm, that could be AFib.

The ECG app is currently available only in certain countries and regions.

Figure 1.1 Apple watch app

Take an ECG

You can take an ECG at any time, when you're feeling symptoms such as a rapid or skipped heartbeat, when you have other general concerns about your heart health, or when you receive an <u>irregular rhythm notification</u>.

- 1. Make sure that your Apple Watch is snug and on the wrist that you selected in the Apple Watch app. To check, open the Apple Watch app, tap the My Watch tab, then go to General > Watch Orientation.
- 2. Open the ECG app on your Apple Watch.
- 3. Rest your arms on a table or in your lap.
- 4. With the hand opposite your watch, hold your finger on the Digital Crown. You don't need to press the Digital Crown during the session.
- 5. Wait. The recording takes 30 seconds. At the end of the recording, you will receive a classification, then you can tap Add Symptoms and choose your symptoms.
- 6. Tap Save to note any symptoms, then tap Done.

Figure 1.2 Apple watch

View and share your Health information

The ECG waveform, its associated classifications, and any noted symptoms will be saved in the Health app on your iPhone. You can also share a PDF with your doctor.

- 1. Open the Health app.
- 2. Tap the Browse tab, then tap Heart > Electrocardiograms (ECG).
- 3. Tap the chart for your ECG result.
- 4. Tap Export a PDF for Your Doctor.
- 5. Tap the Share button to print or share the PDF.

Figure 1.3 View and share your Health information using Apple watch

1.2 Motivation

Monitoring ECG in intensive care room for 24 hours is a very exhaustive task. Hence automating the diagnosis process through computer aided diagnosis (CAD) can provide great help to clinicians and more care to patients with minimum effort.

1.3 Objectives

The goal of this project is Developing a reliable system using deep learning to diagnose the input ECG heart beats to one of the cardiac arrhythmias.

1.4 Time plan

• Take Background of Signal processing and deep learning.

Start: [October] End: [November]

• Apply Pre-processing for ECG Signals Dataset.

Start: [November] End: [December]

• Construct the deep learning approach.

Start: [December] End: [February]

• Test deep learning approach and modify on it to get better accuracy.

Start: [February] End: [April]

• Create the application.

Start: [April] End: [June]

1.5 Documentation Outline

Documentation Outline will be as follow:

Chapter 2: Background about project, including survey results and summary of published papers.

Chapter 3: Including System architecture and detailed explanation for each part in the architecture like system flow, preprocessing steps, deep learning models and so on.

Chapter 4: Including Implementation for each part in chapter 3.

Chapter 5: Including Results, models evaluation and Interface screenshots.

Chapter6: Conclusion and future work.

Background

Background	21
2.1 Related work	21
2.1.1 Using Traditional methods	21
2.1.2 Using Deep learning methods	22
2.2 Observations	24

2-Background

This project aims to target the **medical field**, especially **Heart Department**, this used in intensive care room for 24 hours is a very exhaustive task. Hence automating the diagnosis process through computer aided diagnosis (CAD) can provide great help to clinicians and more care to patients with minimum effort.

We aim to develop a reliable system using deep learning to diagnose the input ECG heart beats to one of the cardiac arrhythmias.

2.1. Related Work

In this section, a brief survey of some key published studies presented below.

2.1.1 Using Traditional methods

Tapanhavar et al [2] utilized Wavelet transform morphologic to extract features, SVM for classification and different datasets to classify 16 classes. 99% is the best accuracy achieved using random forest classification algorithm and MIT-BIH dataset. It has been applied to both lead 1 and lead 2 separately

Kumar Das el.at et al. [3] proposed utilized mixture of ST and Wavelet Transform to extract feature. then classified using Multilayer perceptron neural network (MLPNN) to classify 5 classes, resulting in an overall accuracy of 97.14 % using MIT-BIH as a validation database

Martis et al. [4] have considered five different Arrhythmia classes (Normal, Right Bundle Branch, Left Bundle Branch, Atrial

Premature Contraction and Premature Ventricular Contraction) and they achieved overall accuracy 98.11% after comparing different approaches for feature extraction which based on PCA, DWT and linear prediction model.

Yazdanian et al. [5] have considered the same five classes and they have achieved overall accuracy 96.67% using SVM, time-domain and wavelet features.

Sahoo et al [6] using SVM and (MLPNN) to achieve 96.9% using MIT-BIH as a validation database to classify 5 classes.

EL saadawy et al [7] utilized Wavelet transform and PCA to extract features, SVM to classify 15 classes mapped to five main categories using MIT-BIH as a validation database .98% is the best accuracy achieved for first stage (Category type) and 94.9% for second stage (Class type) it has been applied to both lead 1 and lead 2 separately

Features from DWT and PCA have been utilized by Elhaj *et al* [8] to classify 5 classes. Using SVM-RBF a 98.91% overall accuracy has been achieved.

Gnecchi *et al.* [9] utilized Wavelet transform Operation to extract features, probabilistic NN for classification and different datasets to classify 8 classes. 98.7% is the best accuracy achieved.

2.1.2 Using Deep learning methods

Zhang *et al.* [10] considered only five classes. Important points of each segmented heartbeat have been derived and the classified using multi layers 1D CNN. An overall accuracy of 97.5% has been achieved using MIT-BIH as a validation database.

Features from 1D-CNN have been utilized by Yildirim *et al* [11] to classify 17 classes. a 91.3% overall accuracy has been achieved using MIT-BIH as a validation database.

Acharya et al. [12] utilized CNN & LSTM to classify 5 classes. 98.1% is the best accuracy achieved.

Paper name	preprocessing	Feature Extraction	Classification	Accuracy	One leads or Two?	Classes
Topannavar et al. [1] 2014	-Filter using a wavelets-based -Segmentation using R-peak	Wavelets transform- Morphological	SVM classifier	99% in "class oriented" -86% in the "subject- oriented	Tow leads	16 classes
Kumar Das et.al. [2] 2014	normalize the amplitude of ECG signals -the bandpass filter	mixture of ST and WT	multilayer perceptron neural network (MLPNN)	97.14%	One leads	5 classes
Martis et al. [3]	(DWT) discrete wavelet transform	principal components of segmented ECG	Fully connected feed forward neural Network - Least Square Support Vector Machine (LSSVM).	average accuracy of 98.11%.	One lead	5 Classes
Yazdanian et al. [4] 2013	combination of moving average filter, Butterworth filter and DWT	DWT (Di Transform)	Support Vector Machines	96.97%	One leads	5 classes
Sahoo et al. [5] 2017	multiresolution wavelet transform Numerous algorithms		neural network (NN) MLP-BP and support vector machines (SVM)	96.67% and 98.39% in NN and SVM	one Leads	4 categories
El-Saadawy et al. [6] 2018	Discrete Wavelet Transform	using DWT and RR features. Principle Component Analysis	(SVM) Support Vector Machine	-first stage is 98.40% -second stage 94.94%	Two Leads	15 classes mapped to 5 categories
Elhaj et al. [7] 2016	Using a filter bank. (DWT), QRS- detection (Pan- Tompkins), ECG- segmentation.	discrete wavelets transform (DWT) -principal component analysis (PCA)	SVM-RBF and NN	98.91%	One Leads	5 Classes
Gnecchi et al. [8] 2017	bandpass filter	Wavelets transform operations	Probabilistic Neural Network	92.75%	One Leads	8 Classes
Zhang et al. [9] 2017	- wavelet threshold method and wavelet decomposition - segmentation using R peaks	1D-CNN method	1D-CNN method	97.5%	One leads	5 classes

Yıldırım et al. [10] 2018	1D-CNN	1D-CNN	overall classification accuracy of 91.33%	One leads	17 classes
Acharya et al. [11] 2017	CNN and long short- term memory (LSTM)	CNN and long short-term memory (LSTM)	98.10%, sensitivity of 97.50% and specificity of 98.70%	One leads	5 classes

Table2.1 Related work survey

2.2 Observations

Note on Dataset:

- Most of the papers used MIT BIH database
- Data don't balance, data for normal classes is significantly more than other classes
- Almost of the papers takes one class from each category especially N, LBBB, RBBB, PVC, APC

Preprocessing:

- Filtering
- segmentation: to do it, we need to detect R-peaks

Feature & classification: we found two way to do these step

- Traditional methods: mainly wavelets & support vector machine (SVM).
- Deep learning using convolutional neural network "CNN".

Accuracy:

It is acceptable and High because almost of people work on 3 or 5 classes only.

We found most of papers classify only 3- 5 classes, few papers considered 15 classes.

Only one paper considers **16 Classes** Which Will Be Our Goal in This Project.

Chapter Three:

System Architecture

3.1 System Architecture	26
3.1.1 Dataset	30
3.1.2 preprocessing	30
3.2.2.1 filtering	30
3.2.2.2 QRS Detection	31
3.2.2.3 Dynamic segmentation	
3.2.2.4 Resampling and normalization	
3.1.3 Testing and training split	33
3.1.3.1 Beats type split	33
3.1.3.2 Subject orientation record split	34
3.1.4 classification model for one stage	34
3.1.4.1 VGG model	34
3.1.4.2 LSTM model	36
3.1.4.3 CNN models	38
3.1.4.4 inception model	39
3.1.5 classification model for two stages	42

3.1 System Architecture

In General Architecture we first load our Dataset (The MIT-BIH dataset), Then we made preprocessing on all data, preprocessing containing four steps:

- 1-filtering.
- 2-QRS Detection.
- 3-Dynamic Segmentation.
- 4-Normalization and Resampling.

Then we split Dataset into training and testing data, then we need to made feature extraction before classification but we follow Deep Learning Models That doing feature extraction and classification in the same network don't need to made feature extraction first, because first layers in network made feature extraction and last layers made classification.

We used four deep learning models

- 1-CNN.
- 2-VGG16.
- 3-LSTM.
- 4-INCEPTION.

Each model we tried it using Five Trials of data to select best trial and best model to using it.

Our project follows two stages of classification, **first** stage makes classification, classify between 16 class(disease).

Second Stage make category classification Classify between five categories (N, S, V, Q, F) then make class classification of each category. This table show classification of two stage.

Figure 3.1 shows the classes associated with each category

Therefore, we have two architectures, first architecture for one stage (class classification), second architecture for two Stage (category classification the make class classification of each class).

→ this figure show architecture for one stage

Figure 3.2 System Architecture for one stage

→ this figure show architecture for Two stage.

Figure 3.3 System Architecture for Two stage

Now we explain each step in two architectures.

3.1.1- Datasets

The MIT-BIH database is the most popular database utilized by the existing studies for training and testing purposes. The MIT-BIH database consists of 48 records, each of them is a 30 min long sample with sampling frequency of 360 Hz but according to the ANSI/AAMI, only 44 records can be utilized as there are four paced records. Moreover, attached with each record a file contains the

annotations of the beats and the locations of the R-peaks. The total number of

samples for each class is not equally distributed which is why the percentage of the training and testing portions are not the same in all the classes.

3.1.2 Preprocessing

3.1.2.1 filtering:

The aim of this step is to improve the signal-to-noise ratio and extract the heartbeats. Noise has been reduced by removing both high and low frequencies out of the ECG spectra. Hence, Butterworth bandpass filter with a range 0.5–40 Hz is applied.

Figure 3.4 Before filter

Figure 3.5 After filter

3.1.2.2 QRS Detection:

QRS complex based on the dual criteria of the amplitude and duration of QRS complex. It consists of simple operations, such as a finite impulse response filter, differentiation. The QRS detection performance is evaluated by using an MIT-BIH arrhythmia database In this step we used python libraries to get it more accurate.

figure[3.6] shown an example for R-peak Detection

Figure 3.6 Example for R peak Detection

The red stars is the detected R peaks using QRS detection algorithm

3.1.2.3 Dynamic Segmentation:

a dynamic segmentation strategy invariant to heart rate variability. The number of samples considered before and after the R peak is derived according to equation (1)&(2).Fig. 9 shows an example for a segmented heartbeat where the previous RR is the number of samples between the current R peak and the previous one. On the other hand, the next RR is the number of samples between the current R peak and the next one

Before R peak =

$$1/3* Max (RR previous, RR next)$$
 (1)
After R peak =

Finally, all the heartbeats are then adjusted to have the same length of 300 samples

Figure 3.7 Segmented heartbeat using dynamic segmentation strategy

3.1.2.4 Resampling and normalization

- Normalize the raw signal in range (0-1).
- Resampling all segmented beats to have the same sampling rate (300 sample/sec).

$$[Normalized Signal] = \frac{[Signal] - min (Signal)}{max(Signal) - min (Signal)}$$

Figure 3.8 Normalized signal rule

3.1.3 Testing and training split

3.1.3.1 Beats Type split

In this way, we split data based on beat type. So, we take all records and collect the beats from same class together, after this step we have dataset as Collection of beats and split it to train and test. In this type from split we follow the method used in El-Saadawy et al. [7] 2018, this split data as the following table

Class	Class Symbol	Split ratio	#Test beats	#Train beats
Normal	N	0.13	65236	9748
Left bundle branch block	L	0.4	4841	3228
Right bundle branch block	R	0.4	4350	2900
Atrial premature	A	0.4	1526	1018
Aberrated atrial premature	a	0.5	75	75
Nodal (junctional) premature	J	0.5	41	42
Premature ventricular contraction	٧	0.4	4276	2852
Fusion of ventricular and normal	F	0.5	401	401
Ventricular flutter wave	!	0.5	236	236
Atrial escape	e	0.5	8	8
Nodal (junctional) escape	j	0.5	114	115
Ventricular escape	E	0.5	53	53
Paced	1	0.4	4212	2808
Fusion of paced and normal	f	0.5	491	491
Non-conducted P-wave	x	0.5	96	97
Unclassifiable	Q	0.5	16	17

Table 3.1 Training and testing percentages & Number of beats used

3.1.3.2 Subject orientation record split

Split data in this type based on record, In this type from split we follow the method used in [13] 2004, this split data as 50% tarin and test.

3.1.4 Classification model for one stage

From the survey we did before, determine we will use deep learning model to classify Heartbeat. For that We did more tries using different deep learning models and Recurrent neural network (RNN). In one stage we used this model to know beat belong to which class

3.1.4.1 VGG model

VGG16 is a convolutional neural network model proposed by K. Simonyan and A. Zisserman from the University of Oxford.

They proposed total 5 configurations, named as A-E. But VGG16 and VGG19 are famous. The main concept is stacking of convolutional layers to create deep neural networks.

- It is a very good architecture for benchmarking on a particular task.
- pre-trained networks for VGG are available freely on the internet, so it is commonly used out of the box for various applications.
- It has so many weight parameters, the models are very heavy, 550 MB + of weight size.
- Which also means long inference time

We try this by this architecture in fig [3.9-3.10]

Figure 3.9 VGG16 Architecture(part1)

Figure 3.10 VGG16 Architecture(part2)

3.1.4.2 LSTM model

LSTMs are explicitly designed to avoid the long-term dependency problem. Remembering information for long periods of time is practically their default behavior, not something they struggle to learn!

All recurrent neural networks have the form of a chain of repeating modules of neural network. In standard RNNs, this repeating module will have a very simple structure, such as a single tanh layer. also have this chain like structure, but the repeating module has a different structure. Instead of having a single neural network layer, there are four, interacting in a very special way [14]

Figure 3.11. The repeating module in an LSTM contains four interacting layers

We used in our architecture several lstm with different units to save more information as shown in [13]

Figure 3.12. our LSTM Architecture

3.1.4.3 CNN model

A CNN is composed of layers that filters(convolve) the inputs to get useful information. These have two kinds of layers: convolution layers and pooling layers. The convolution layer has a set of filters. Its output is a set of feature maps, each one obtained by convolving the image with a filter.

Figure 3.13. our CNN Architecture

We try more than one CNN architecture on data.

Figure.15 shows an architecture that give us best accuracies.

3.1.4.4 inception model

- Inception Modules are used in CNN to allow for more efficient computation and deeper Networks through a dimensionality reduction with stacked 1×1 convolution.
- The main difference between the Inception models and regular CNNs are the inception blocks. These involve convolving the same input tensor with multiple filters and concatenating their result

Figure 3.14. custom inception Architecture (part 1)

We follow inception way by make our custom inception after many tries to get best result from this model

In the next chapter, we will show Our Architecture models in detail.

3.1.5 classification for Two stage

A two-stage hierarchical classification process is introduced. In the first stage, the heartbeat is assigned to one of the five main categories as mentioned in Table [1]. Subsequently, the heartbeat is further classified into one of the classes that belong to its category known from the previous stage as shown in Figure [4]. For doing this type of classification we did the same steps and used the previous explained models has been used in first stage for classification.

Chapter Four: Implementation

4.1	Reading Dataset	44
4.2	Preprocessing steps	4 4
	4.2.1 Filtering Signal	
	4.2.2 Normalization	
	4.2.3 Detecting R Peaks Indices Algorithm	
	4.2.4 Dynamic Segmentation	
	4.2.5 Resampling	
4.3	Calculating Accuracy of (Detecting R Peaks Alg	orithm)46
4.4	Prepare Training Data	46
	4.4.1 Beat Type Split	
	4.4.2 Data augmentation	47
	4.4.3 Subject Oriented Record Split	48
4.5	Deep Learning Models	48
	4.5.1 LSTM	
		48
	4.5.2 VGG16 1D	48 51

4.1 Reading Dataset

We read each record in the dataset using **wfdb** python package and we can read record annotations (R Peaks indices and Beats Types) using the same package

wfdb Package A library of tools for reading, writing, and processing WFDB signals and annotations.

Core components of this package are based on the original WFDB specifications. This package does not contain the exact same functionality as the original WFDB package. It aims to implement as many of its core features as possible, with user-friendly APIs. Additional useful physiological signal-processing tools are added over time.

4.2 Preprocessing steps

These steps are applied to signal before training and also applied to any test signal

- Filtering Signal
- Normalization
- Detecting R peaks Indices Algorithm
- Dynamic Segmentation
- Resampling

Will mention Below in Details

4.2.1 Filtering Signal

Filtering signal to remove noise from the signal Filtering using butter worth band pass filter to save ECG band (0-40)

The **Butterworth filter** is a type of signal processing **filter** designed to have a frequency response as flat as possible in the **passband**. It is also referred to as a maximally flat magnitude **filter**.

Butter band pass filter included from **scipy** library

SciPy is a library that uses **NumPy** for more mathematical functions. **SciPy** uses **NumPy** arrays as the basic data structure, and comes with modules for various commonly used tasks in scientific programming

4.2.2 Normalization

Normalize signal values from (0-1) to make all input signal in the same range of amplitude.

Using Normalization Formula:

$$z_i = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

Where min (x) is minimum Value of Signal and max (x) Is maximum Value of Signal

4.2.3 Detecting R Peaks indices Algorithm

Using wfdb.processing python package.

- 1- load the signal and configuration of parameters.
- 2- bandpass filter the signal between 5 and 20 hz, to get the filtered signal.
- 3- apply moving wave integration (mwi) with a ricker (mexican hat) wavelet onto the filtered signal, and save the square of the integrated signal.
- 4- conduct learning if specified, to initialize running parameters of noise and qrs amplitudes, the qrs detection threshold, and recent rr intervals. If learning is unspecified or fails, use default parameters.
- 5- run the main detection. Iterate through the local maxima of the mwi signal. For each local maximum
- 6- check if it is a qrs complex. To be classified as a qrs.
- 7- if not a qrs, classify it as a noise peak and update running parameters.
- 8- before continuing to the next local maxima, if no qrs was detected within 1.66 times the recent rr interval, perform back search qrs detection.

4.2.4 Dynamic Segmentation

Segment ECG signal into heartbeats using R Peaks indices Dynamic not static as segmentation is based on RR interval, throw RR interval we have three complex waves of heartbeat (P QRS T) which guarantees that beat will be full-featured.

4.2.5 Resampling

Take each segmented heartbeat and resample it to 300 sample/sec Using scipy Library

4.3 Calculating Accuracy of (Detecting R Peaks Algorithm)

- Iterate on each record in the dataset
 - * Read annotations (R Peaks indices).
 - * Calculate R Peaks indices using Algorithm mentioned above
 - * Check difference in R Peaks count in all record
 - * Calculate accuracy for count (total beats with algorithm)/actual total beats * 100
 - * Calculate shift Average (avg difference between actual index and index calculated by the algorithm)

And we got 98.86 % count accuracy and total shift average = 1.51

4.4 Prepare Training Data

4.4.1 Beat Type Split

This step is done by reading all records from MITBIH dataset and all annotations,

Then apply preprocessing steps on each signal record

- Segment each record to beats using R peaks indices loaded from annotation file.
- Cluster each beat type together then write text file includes all beats for each class.
- Then read all text files and split each class to train and test.
- Then concatenate train data and test data together.
- We have followed train test split ratio like [7].

In this type from split we follow the method used in El-Saadawy et al. [7] 2018, this split data as shown in table[3.1]

Training and Testing Data Shapes for one stage and two stages

All x train (24081, 300, 1) y train (24081, 16) **All** x test (85980, 300, 1) y test (85980, 16)

N category x train (15996, 300, 1) y train (15996, 5) **N category** x test (74552, 300, 1) y test (74552, 5)

S category x train (1229, 300, 1), y train (1229, 4) **S category** x test (1741, 300, 1), y test (1741, 4)

V category x train (3140, 300, 1), y train (3140, 3) **V category** x test (4566, 300, 1), y test (4566, 3)

F category x train (401, 300, 1), x test (401, 300, 1)

Q category x train (3315, 300, 1), y train (3315, 3) **Q category** x test (4720, 300, 1), y test (4720, 3)

4.4.2 Data Augmentation

Augmentation Done using SMOTE (Synthetic Minority Oversampling Technique) – Oversampling

SMOTE (synthetic minority oversampling technique) is one of the most commonly used oversampling methods to solve the imbalance problem.

It aims to balance class distribution by randomly increasing minority class examples by replicating them.

SMOTE synthesizes new minority instances between existing minority instances. It generates the **virtual training records by linear interpolation** for the minority class. These synthetic training records are generated by randomly selecting one or more of the knearest neighbors for each example in the minority class. After the oversampling process, the data is reconstructed, and several classification models can be applied for the processed data [15]

Training Data Shapes Before Generate sample and after

- All Data

Before: X train (24081, 300, 1) Y Train (24081, 16) **After**: X Train (155952, 300, 1) Y Train (155952, 16)

- Two Stage Data

First stage

Before: X train (24081, 300, 1) Y Train (24081, 16) **After**: X Train (79980, 300, 1) Y Train (79980, 16)

Category N

Before: X train (15996, 300, 1) Y Train (15996, 16) **After**: X Train (48735, 300, 1) Y Train (48735, 16)

Category S

Before: X train (1229, 300, 1) Y Train (1229, 16) **After**: X Train (4068, 300, 1) Y Train (4068, 16)

Category V

Before: X train (3140, 300, 1) Y Train (3140, 16) **After**: X Train (8553, 300, 1) Y Train (8553, 16)

Category Q

Before: X train (3315, 300, 1) Y Train (3315, 16) **After**: X Train (8424, 300, 1) Y Train (8424, 16)

4.4.3 Subject Oriented Record Split

This is done by considering train records and test record subject oriented means that we train the model with record and test with other records.

For each train and test record

- Read all records
- Segment each record into beats based on R Peaks indices annotations
- Cluster beats based on their classes.
- Write each class to text file

- Read text file for each class the concatenate all data together. In this type from split we follow the method used in [13] 2004 this split data as 50% train and test

HEARTBEAT TYPES ASSOCIATED WITH THE EXTRACTED BEATS FOR THE FULL DATABASE, DATASET 1 (DS1) AND DATASET 2 (DS2) FROM THE MIT-BIH
ARRHYTHMIA DATABASE. HEARTBEAT TYPE AND CLASS ABBREVIATIONS ARE DEFINED IN TABLE I

	Heartbeat type Heartbeat class	NOR N	LBBB N	RBBB N	AP S	aAP S	NP S	SP S	PVC V	fVN F	AE N	NE N	VE V	P Q	fPN Q	U Q	total
Full database	number % of total recs	75054 68.5 40	8074 7.4 4	7259 6.6 6	2544 2.3 27	150 0.1 7	83 0.1 5	2 0.0 1	7129 6.5 37	803 0.7 17	16 0.0 1	229 0.2 5	106 0.1 2	7028 6.4 4	982 0.9 3	33 0.0 6	109492 100.0
DS1	number % of total recs	38104 74.7 18	3949 7.7 2	3783 7.4 3	808 1.6 14	100 0.2 3	32 0.1 3	2 0.0 1	3682 7.2 17	415 0.8 10	16 0.0 1	16 0.0 3	105 0.2 1	0 0.0 0	0 0.0 0	8 0.0 3	51020 100.0
DS2	number % of total recs	36444 73.3 19	4125 8.3 2	3476 7.0 3	1736 3.5 13	50 0.1 4	51 0.1 2	0 0.0 0	3220 6.5 16	388 0.8 7	0 0.0 0	213 0.4 2	1 0.0 1	0 0.0 0	0 0.0 0	7 0.0 2	49711 100.0

Dataset 1 comprises data from recordings 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223 and 230. Dataset 2 comprises data from recordings 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233 and 234. The four paced recordings (102, 104, 107 and 217) were not included in dataset 1 or 2.

Figure 4.1 Subject oriented record split

Dataset 1 is training set. Dataset 2 is testing set.

4.5 Deep Learning Models

To test efficiency for each model we test it on 5 trails as minimum

Evaluate model depend on its results in **overall accuracy** and **Average Accuracy** for all classes and all Trails we will improve some Graphs to express this results after each model

We use keras deep learning Framework to include all models

Keras is an open-source neural-network library written in Python. It can run on top of **TensorFlow**, Microsoft Cognitive Toolkit, R, **Theano**, or **PlaidML**. Designed to enable fast experimentation with deep neural networks, it focuses on being user-friendly, modular, and extensible.

4.5.1 LSTM

- **Long Short-Term Memory networks** usually just called "**LSTMs**" are a special kind of **RNN**, capable of learning long-term dependencies. They were introduced by <u>Hochreiter & Schmidhuber (1997)</u>, and were refined and popularized by many people in following work. They work tremendously well on a large variety of problems and are now widely used. [14]
- **LSTMs** are explicitly designed to avoid the long-term dependency problem. Remembering information for long periods of time is practically their default behavior, not something they struggle to learn!

All recurrent neural networks have the form of a chain of repeating modules of neural network. In standard RNNs, this repeating module will have a very simple structure, such as a single tanh layer. also have this chain like structure, but the repeating module has a different structure. Instead of having a single neural network layer, there are four, interacting in a very special way [14]

- Our model summary using **LSTM** from **Keras** framework

Model: "sequential_10" Layer (type) Output Shape Param # _____ lstm_17 (LSTM) (None, 1, 320) 794880 1stm 18 (LSTM) (None, 1, 200) 416800 dropout_9 (Dropout) (None, 1, 200) 0 (None, 1, 16) dense_8 (Dense) 3216 _____ Total params: 1,214,896 Trainable params: 1,214,896 Non-trainable params: 0

Figure 4.2 LSTM Summary

- Using after LSTMs one dropout layer with Fraction of the input units to drop = 0.1
- Then Traditional Dense Layer With Activation Function Softmax to assigns decimal probabilities to each class from 16 class in our multi-class problem, Those decimal probabilities must add up to 1.0. This

additional constraint helps training converge more quickly than it otherwise would.

Parameters:

o Total Parameters: 1,214,896 parameters

o Trainable parameters: 1,214,896 parameters

Non trainable parameters: 0 parameter

4.5.2 VGG16 1D

General approach:

VGG16 is a convolutional neural network model proposed by K. Simonyan and A. Zisserman from the University of Oxford in the paper "Very Deep Convolutional Networks for Large-Scale Image Recognition". The model achieves 92.7% top-5 test accuracy in ImageNet, which is a dataset of over 14 million images belonging to 1000 classes. It was one of the famous model submitted to ILSVRC-2014. It makes the improvement over AlexNet by replacing large kernel-sized filters (11 and 5 in the first and second convolutional layer, respectively) with multiple 3×3 kernel-sized filters one after another. VGG16 was trained for weeks and was using NVIDIA Titan Black GPU's [16]

For Signals

This model proposed for images but we need to try it on Signals this is Done by follow same Architecture by using one dimension Convolution Neural network instead of Two dimension Convolution Neural Network and using one dimension Max polling layer instead of Two Dimension Max Polling

So this Model done without using built in model in keras frame work like **LSTM** just build sequential model and follow the Same layers of **VGG16**

- Model Summary

Layer (type)	Output	Shape	Param #
conv1d_13 (Conv1D)	(None,	298, 64)	256
conv1d_14 (Conv1D)	(None,	296, 64)	12352
max_pooling1d_5 (MaxPooling1	(None,	148, 64)	0
conv1d_15 (Conv1D)	(None,	146, 128)	24704
conv1d_16 (Conv1D)	(None,	144, 128)	49280
max_pooling1d_6 (MaxPooling1	(None,	72, 128)	0
conv1d_17 (Conv1D)	(None,	70, 256)	98560
conv1d_18 (Conv1D)	(None,	68, 256)	196864
conv1d_19 (Conv1D)	(None,	66, 256)	196864
max_pooling1d_7 (MaxPooling1	(None,	33, 256)	0
conv1d_20 (Conv1D)	(None,	31, 512)	393728
conv1d_21 (Conv1D)	(None,	29, 512)	786944
conv1d_22 (Conv1D)	(None,	27, 512)	786944
max_pooling1d_8 (MaxPooling1	(None,	13, 512)	0
conv1d_23 (Conv1D)	(None,	11, 512)	786944
conv1d_24 (Conv1D)	(None,	9, 512)	786944
conv1d_25 (Conv1D)	(None,	7, 512)	786944

Figure 4.3 VGG Summary (part 1)

max_pooling1d_9 (MaxPooling1	(None,	3, 512)	0
flatten_1 (Flatten)	(None,	1536)	0
dense_4 (Dense)	(None,	4096)	6295552
dense_5 (Dense)	(None,	4096)	16781312
dense_6 (Dense)	(None,	16)	65552

Total params: 28,049,744 Trainable params: 28,049,744

Non-trainable params: 0

Figure 4.5 VGG16 Summary (part 1)

- After all, one-dimension convolution Neural network and one dimension max polling Layers comes the **flatten** layer collapses the spatial dimensions of the input into the channel dimension to make it ready for next Dense Layers
- Then Two traditional Dense Layers with 4096 neurons for each one
- Finally, One Dense Layer with Activation Function SoftMax to assigns decimal probabilities to each class from 16 class in our multi-class problem

Parameters:

o Total Parameters: 28,049,744 parameters

o Trainable parameters: 28,049,744 parameters

o Non trainable parameters: 0 parameter

4.5.3 Inception 1D

The main idea is to make each layer in the model an **inception**Module and the main difference between the Inception models and regular CNNs are the inception blocks

Inception Modules or inception blocks are used in Convolutional Neural Networks to allow for more efficient computation and deeper Networks through a dimensionality reduction with stacked 1×1 convolutions. The modules were designed to solve the problem of computational expense, as well as overfitting, among other issues. The solution, in short, is to take multiple kernel filter sizes within the CNN, and rather than stacking them sequentially, ordering them to operate on the same level. [17]

For Signals

We need to follow same approach with maintaining the appropriate dimensions of the signals.

After many and many experiments with different number of blocks and the architecture of the model this is our proposed model summary using inception modules

Model Summary

Model:	"mod	a1	211
HOUGET.	IIIOu	CT_	~

Layer (type)	Output	Shap	e	Param #	Connected to
input_3 (InputLayer)	(None,	300,	1)	0	=======================================
conv1d_17 (Conv1D)	(None,	300,	32)	128	input_3[0][0]
conv1d_18 (Conv1D)	(None,	300,	64)	6208	conv1d_17[0][0]
conv1d_20 (Conv1D)	(None,	300,	96)	6240	conv1d_18[0][0]
conv1d_22 (Conv1D)	(None,	300,	16)	1040	conv1d_18[0][0]
max_pooling1d_1 (MaxPooling1D)	(None,	300,	64)	0	conv1d_18[0][0]
conv1d_19 (Conv1D)	(None,	300,	64)	4160	conv1d_18[0][0]
conv1d_21 (Conv1D)	(None,	300,	128)	36992	conv1d_20[0][0]
conv1d_23 (Conv1D)	(None,	300,	32)	2592	conv1d_22[0][0]
conv1d_24 (Conv1D)	(None,	300,	32)	2080	max_pooling1d_1[0][0]
concatenate_1 (Concatenate)	(None,	300,	256)	0	conv1d_19[0][0] conv1d_21[0][0] conv1d_23[0][0] conv1d_24[0][0]
batch_normalization_5 (BatchNor	(None,	300,	256)	1024	concatenate_1[0][0]
conv1d_26 (Conv1D)	(None,	300,	96)	24672	batch_normalization_5[0][0]
conv1d_28 (Conv1D)	(None,	300,	16)	4112	batch_normalization_5[0][0]
max_pooling1d_2 (MaxPooling1D)	(None,	300,	256)	0	batch_normalization_5[0][0]
conv1d_25 (Conv1D)	(None,	300,	64)	16448	batch_normalization_5[0][0]

Figure 4.6 inception Summary (part 1)

conv1d_27 (Conv1D)	(None,	300,	128)	36992	conv1d_26[0][0]
conv1d_29 (Conv1D)	(None,	300,	32)	2592	conv1d_28[0][0]
conv1d_30 (Conv1D)	(None,	300,	32)	8224	max_pooling1d_2[0][0]
concatenate_2 (Concatenate)	(None,	300,	256)	0	conv1d_25[0][0] conv1d_27[0][0] conv1d_29[0][0] conv1d_30[0][0]
batch_normalization_6 (BatchNor	(None,	300,	256)	1024	concatenate_2[0][0]
conv1d_32 (Conv1D)	(None,	300,	128)	32896	batch_normalization_6[0][0]
conv1d_34 (Conv1D)	(None,	300,	32)	8224	batch_normalization_6[0][0]
max_pooling1d_3 (MaxPooling1D)	(None,	300,	256)	0	batch_normalization_6[0][0]
conv1d_31 (Conv1D)	(None,	300,	128)	32896	batch_normalization_6[0][0]
conv1d_33 (Conv1D)	(None,	300,	192)	73920	conv1d_32[0][0]
conv1d_35 (Conv1D)	(None,	300,	96)	15456	conv1d_34[0][0]
conv1d_36 (Conv1D)	(None,	300,	64)	16448	max_pooling1d_3[0][0]
concatenate_3 (Concatenate)	(None,	300,	480)	0	conv1d_31[0][0] conv1d_33[0][0] conv1d_35[0][0] conv1d_36[0][0]
batch_normalization_7 (BatchNor	(None,	300,	480)	1920	concatenate_3[0][0]
conv1d_38 (Conv1D)	(None,	300,	128)	61568	batch_normalization_7[0][0]
conv1d_40 (Conv1D)	(None,	300,	32)	15392	batch_normalization_7[0][0]
max_pooling1d_4 (MaxPooling1D)	(None,	300,	480)	0	batch_normalization_7[0][0]
conv1d_37 (Conv1D)	(None,	300,	128)	61568	batch_normalization_7[0][0]

Figure 4.7 inception Summary (part 2)

conv1d_39 (Conv1D)	(None,	300,	192)	73920	conv1d_38[0][0]
conv1d_41 (Conv1D)	(None,	300,	96)	15456	conv1d_40[0][0]
conv1d_42 (Conv1D)	(None,	300,	64)	30784	max_pooling1d_4[0][0]
concatenate_4 (Concatenate)	(None,	300,	480)	0	conv1d_37[0][0] conv1d_39[0][0] conv1d_41[0][0] conv1d_42[0][0]
batch_normalization_8 (BatchNor	(None,	300,	480)	1920	concatenate_4[0][0]
conv1d_44 (Conv1D)	(None,	300,	128)	61568	batch_normalization_8[0][0]
conv1d_46 (Conv1D)	(None,	300,	32)	15392	batch_normalization_8[0][0]
max_pooling1d_5 (MaxPooling1D)	(None,	300,	480)	0	batch_normalization_8[0][0]
conv1d_43 (Conv1D)	(None,	300,	128)	61568	batch_normalization_8[0][0]
conv1d_45 (Conv1D)	(None,	300,	192)	73920	conv1d_44[0][0]
conv1d_47 (Conv1D)	(None,	300,	96)	15456	conv1d_46[0][0]
conv1d_48 (Conv1D)	(None,	300,	64)	30784	max_pooling1d_5[0][0]
concatenate_5 (Concatenate)	(None,	300,	480)	0	conv1d_43[0][0] conv1d_45[0][0] conv1d_47[0][0] conv1d_48[0][0]
batch_normalization_9 (BatchNor	(None,	300,	480)	1920	concatenate_5[0][0]
conv1d_50 (Conv1D)	(None,	300,	128)	61568	batch_normalization_9[0][0]
conv1d_52 (Conv1D)	(None,	300,	64)	30784	batch_normalization_9[0][0]
max_pooling1d_6 (MaxPooling1D)	(None,	300,	480)	0	batch_normalization_9[0][0]
conv1d_49 (Conv1D)	(None,	300,	196)	94276	batch_normalization_9[0][0]

None				
NOTIC,	300,	128)	41088	conv1d_52[0][0]
None,	300,	96)	46176	max_pooling1d_6[0][0]
None,	300,	676)	0	conv1d_49[0][0] conv1d_51[0][0] conv1d_53[0][0] conv1d_54[0][0]
None,	300,	676)	2704	concatenate_6[0][0]
None,	676)		0	batch_normalization_10[0][0]
None,	128)		86656	global_average_pooling1d_1[0][0]
None,	16)		2064	dense_4[0][0]
1	None, None, None,	None, 300,	None, 128)	None, 300, 676) 0 None, 300, 676) 2704 None, 676) 0 None, 128) 86656

Figure 4.8 inception Summary (part 3)

We have found that when the inputs into the inception modules was Features it achieved better result

So, At the beginning of the model before inception module there are two convolution neural networks to extract some features

- Then six inception modules with different number of parameters
- Between each inception module there is **Batch Normalization** layer

We normalize the input layer by adjusting and scaling the activations. For example, when we have features from 0 to 1 and some from 1 to 1000, we should normalize them to speed up learning. If the input layer is benefiting from it, why not do the same thing also for the values in the hidden inception modules layers, that are changing all the time, and get 10 times or more improvement in the training speed.[18]

- **Batch normalization** reduces the amount by what the hidden unit values shift around (covariance shift).[18]
- Batch normalization solve gradient vanishing and exploding problem in our deeper network

so, we use Batch Normalization after every inception Module

 Then using Global Average Pooling (GAP) layer to minimize over-fitting and reducing the total number of parameters in the model.

- Then traditional Dense Layer with 128 neurons
- Finally, Dense Layer with Activation Function Soft max to assigns decimal probabilities to each class in our multiclass problem

Parameters:

o Total Parameters: 1,321,380 parameters

o Trainable parameters: 1,316,124 parameters

o Non trainable parameters: 5,256 parameters

4.5.4 CNN 1D

- A CNN is composed of layers that filters (convolve) the inputs to get useful information. These have two kinds of layers: convolution layers and pooling layers. The convolution layer has a set of filters. Its output is a set of feature maps, each one obtained by convolving the image or signal with a filter
- a simple CNN is a sequence of layers, and every layer of a CNN transforms one volume of activations to another through a differentiable function. We use three main types of layers to build CNN architectures: **Convolutional Layer**, **Pooling Layer**, and **Fully Connected Layer** (exactly as seen in regular Neural Networks). We will stack these layers to form a full CNN architecture.
- CNN Model much faster than Inception model and VGG16 Model
- -This model is clearly based on our own experiences in this problem

Model Summary

Layer (type)	Output Sh	ape	Param #
input_7 (InputLayer)	(None, 30	0, 1)	0
conv1d_85 (Conv1D)	(None, 29	96, 32)	192
conv1d_86 (Conv1D)	(None, 29	2, 32)	5152
average_pooling1d_25 (Averag	(None, 14	6, 32)	0
conv1d_87 (Conv1D)	(None, 14	4, 64)	6208
conv1d_88 (Conv1D)	(None, 14	2, 64)	12352
conv1d_89 (Conv1D)	(None, 14	0, 64)	12352
average_pooling1d_26 (Averag	(None, 70	, 64)	0
dropout_25 (Dropout)	(None, 70	, 64)	0
batch_normalization_25 (Batc	(None, 70	, 64)	256
conv1d_90 (Conv1D)	(None, 68	6, 64)	12352
conv1d_91 (Conv1D)	(None, 66	, 64)	12352
conv1d_92 (Conv1D)	(None, 64	, 64)	12352
average_pooling1d_27 (Averag	(None, 32	, 64)	0
dropout_26 (Dropout)	(None, 32	., 64)	0

Figure 4.9 CNN Summary (part 1)

batch_normalization_26 (Batc	(None,	32, 64)	256
conv1d_93 (Conv1D)	(None,	30, 128)	24704
conv1d_94 (Conv1D)	(None,	28, 128)	49280
conv1d_95 (Conv1D)	(None,	26, 128)	49280
average_pooling1d_28 (Averag	(None,	13, 128)	0
dropout_27 (Dropout)	(None,	13, 128)	0
batch_normalization_27 (Batc	(None,	13, 128)	512
conv1d_96 (Conv1D)	(None,	11, 256)	98560
conv1d_97 (Conv1D)	(None,	9, 256)	196864
conv1d_98 (Conv1D)	(None,	7, 256)	196864
global_max_pooling1d_7 (Glob	(None,	256)	0
dropout_28 (Dropout)	(None,	256)	0
batch_normalization_28 (Batc	(None,	256)	1024
dense_19 (Dense)	(None,	64)	16448
dense_20 (Dense)	(None,	64)	4160
dense 21 (Dense)	(None,	16)	1040

Total params: 712,560 Trainable params: 711,536 Non-trainable params: 1,024

Figure 4.10 CNN Summary (part 2)

Before last Dense layers use Global Average Pooling (GAP)
layer to minimize over-fitting and reducing the total number of
parameters in the model.

- Batch Normalization between CNN layers to solve gradient vanishing and exploding problem and reduces the amount by what the hidden unit values shift around (covariance shift) and to speed up learning

- Then traditional two Dense Layer with 64 neurons for each one

 Finally, Dense Layer with Activation Function Soft max to assigns decimal probabilities to each class in our multiclass problem

Parameters:

o Total Parameter: 712,560 parameters

o Trainable parameters: 711,536 parameters

• Non trainable parameters: 1,024 parameters

Chapter Five:

System Testing

5.2 Results	6
5.2.1 Results of different models	6
5.2.2 Comparison between models	
5.2.3 Comparison between One Stage	and Two Stages mod
71	
	=-
5.2.4 Result of Data augmentation	72

5.1 Evaluation

We evaluate our models by calculating confusion matrix that clarify right and wrong classifications in each class.

Then we use confusion matrix to calculate overall accuracy and calculate accuracy for each class then calculate avg accuracy of all classes.

Overall Accuracy: number of correctly predicted beats/total of beats to predict.

Average Accuracy: it is the average of each accuracy per class (sum of accuracy for each class predicted/number of class)

In unbalanced datasets, **overall accuracy** may be not accurate to test a model.

Average accuracy is a good way to test a model to know if it has learnt all classes almost the same.

i. Build Confusion Matrix

- Given actual classes and predictions output from model
- Define 2D array of zeros of size classes*classes
- Iterate on actual and predictions
- Row index = actual[i]
- Column index = predictions[i]
- Increment confusion_matrix[Row index, Column index]

ii. Calculate Accuracy

- Given Confusion Matrix
- Overall Accuracy = sum(diagonal)/sum (confusion matrix)) *100
- Accuracy for each class = (confusion matrix [i,i]/sum(row i))*100
- Average Accuracy = avg (classes accuracies).

iii. Predict and Evaluate

- Given trained model, x test and y test
- Predict x test using trained model.
- pass predictions and actual

to method that calls Build Confusion Matrix and Calculate Accuracy

iv. Two Stages Predict

- Given first stage model and second stage models.
- Predict each x in x test using the first stage model
- Based on result of prediction, the model of predicted category predicts x again.
- Output prediction from category model is the final prediction.
- Collect all final predictions and it is the output of predicting using two stages model.
- Then Evaluate the model using the same Evaluation methods.

5.2 Results

5.2.1 Results of different models

LSTM:

LSTM model has good overall accuracy, but it is biased to some classes which leads to unacceptable average accuracy.

Overall Accuracy over 5 trails

Result Of LSTM Model

Figure 5.1 Overall accuracy in 5 trails based on LSTM

Average Accuracy over 5 trails

Result Of LSTM Model

Figure 5.2 Average accuracy in 5 trails based on LSTM

VGG16:

VGG16 model has good overall accuracy but moderate average accuracy.

- Overall Accuracy over 5 trails

Result Of VGG16 Model

Figure 5.3 Overall accuracy in 5 trails based on VGG16

- Average Accuracy over 5 trails

Result Of VGG16 Model

Figure 5.4 Average accuracy in 5 trails based on VGG16

Inception:

Inception model has high overall accuracy and good average accuracy.

- Overall Accuracy over 5 trails

Result Of Inception Model

Figure 5.5 Overall accuracy in 5 trails based on inception

- Average Accuracy over 5 trails

Result Of Inception Model

Figure 5.6 Average accuracy in 5 trails based on inception

CNN:

CNN model has high overall accuracy and good average accuracy.

- Overall Accuracy over 5 trails

Result Of CNN Model

Figure 5.7 Overall accuracy in 5 trails based on CNN

- Average Accuracy over 5 trails

Result Of CNN Model

Figure 5.8 Average accuracy in 5 trails based on CNN

5.2.2 Comparison between models

Model	LSTM	VGG16	CNN	Inception
# Params	1,214,896	28,049,744	712,560	1,321,380
Overall Accuracy	97.19 %	98.14 %	98.84 %	98.63 %
Average Accuracy	74.44 %	82.41 %	88.48 %	87.31 %

Table 5.1 Comparison between all used models

Average of accuracies across all trials.

In one stage CNN and Inception are similar.

5.2.3 Comparison between One Stage and Two Stages model

Average of accuracies across all trials for CNN.

	One Stage CNN	Two Stages CNN
Overall Accuracy	98.84 %	98.61 %
Average Accuracy	88.48 %	90.12 %

Table 5.2 Comparison between One Stage and Two Stages in CNN

Using Multistage technique have improved average accuracy in CNN.

Average of accuracies across all trials for Inception.

	One Stage Inception	Two Stages Inception
Overall Accuracy	98.63 %	98.29 %
Average Accuracy	87.31 %	87.39 %

Table 5.3 Comparison between One Stage and Two Stages in Inception

In Inception it is almost the same.

5.2.4 Result of Data augmentation

We have applied data augmentation on training data as we explained before and trained a CNN model on new augmented data

- Overall Accuracy over 5 trails

Overall result for Data augmentation

Figure 5.9 Overall accuracy for data augmentation

5.2.5 Result for subject oriented

This type of classification use data has been split as we mention in previous chapter, using inception model an 81.16% overall accuracy and 50.1% average accuracy have been achieved.

5.2.6 Best Result

After trying different models and different architectures we have found that CNN is the best model fitting the data. In trail 5:

One Stage CNN has 91.17 % as average accuracy And 99.08 % as overall accuracy.

Two stages CNN has 91.98 % as average accuracy And 98.74 % as overall accuracy.

5.3 Interface

Computer Aided Diagnosis for Heart diseases Application

1-The lunch Form Contains (Test, Our Results) Buttons

Figure 5.10 Starting lunch project

When it's lunch we have Two scenario

First scenario If **Test Button** has been chosen, he should Choose from Check boxes between Two types of classification (Subject or Class) Oriented.

Figures from 5. [10-15] Show test Step:

- 1-When Clicking on Load Test Signal Button [5.10]
- 2- Open File Dialog to Choose Test Signal 5. [11,12]

Figure 5.10. Choose signal for test

Figure 5.11 Select test signal

Figure 5.13. Wait signal to load

3- Start Drawing Chosen Signal as Figure [5.13].

Figure 5.14 Draw chosen signal

There are two probabilistic to deal with selected signal

First is click on Classify Button To show total numbers of beat for each class and type of each beat

Figure 5. 15. Classify Result

Second is click on For More Details Button, it shows our project steps to classify each beat in signal

(Filtration and Normalize Signal, Detect R Peaks of Signal, Segmentation, Classification) As Shown in Figure 5. [14-15].

Figure 5.16 filtration and detection steps

Figure 5.17 segmentation and classification steps

Second scenario If **Our Results Button** has been chosen, Result of all what we did, will appear based on what is selected from combo boxes

Figure 5.18. Main result form

In figure [5.17,5.18] show examples for second scenario

Example 1 when user choose **CNN model** and **One Stage** to see result of this model in trail 5

Figure 5.19 first stage on trial 5 based on CNN model

Example 2 when user choose **CNN model** and **Two Stage** to see result of this model in **trail 4**

Figure 5.20 second stage on trial 4 based on CNN model

Chapter Six:

Conclusion and future work

6.1	Conclusion	.82
6.2	Future Work	82

6.1 Conclusion

To sum up, an automatic hybrid hierarchy method of two stages has been developed. The first stage classifies a heartbeat into one of five main categories (N, Q, V, S, F) Thereafter, the heartbeat moves to the second stage to know which class in this category it belongs.

This progress was based on two main steps. The first one is preprocessing that filtering, normalizing and segment signals based on R-peak.

The second one is a classification models that is based on deep learning techniques, we have two architectures for classification, one stage and two stages. And we implemented some models and they are LSTM, VGG16, Inception and CNN Model

dataset (MIT-BIH) which contains 16 classes mapped to five main categories and 48 records

Finally, our method has achieved in One Stage CNN has 91.17% as average accuracy and 99.08% as overall accuracy.

And in Two stages CNN has first stage the best average accuracy of "95.16". and the best result of "99.01" overall accuracy Regarding the second stage "91.98 %" average accuracy and "98.74 %" overall accuracy has been achieved

6.2 Future Work

We will make our project work on real time to be **Real Time System**,

by taking signals live from ECG device and out results without need to save or load any data.

Tools

- **>** Python
- **≻** C#
- ➤ Google Colab
- ➤ Visual studio
- **>** PyCharm
- ➤ Python packages
 - NumPy
 - Pandas
 - Sklearn
 - TensorFlow
 - Keras framework
 - Wfdp
 - SciPy
 - matplotlib

References

- 1- apple watch app https://support.apple.com/en-us/HT208955
- > 2-1N P JOSHI,2P S TOPANNAVAR, SUPPORT VECTOR MACHINE BASED HEARTBEAT CLASSIFICATION, International Journal of Advances in Science Engineering and Technology, ISSN: 2321-9009, Volume- 2, Issue-3, July-2014
- ➤ 3- Manab Kumar Das and Samit Ari, ECG Beats Classification Using Mixture of Features, Hindawi Publishing Corporation, International Scholarly Research Notices, Volume (2014), Article ID 178436
- 4- Roshan Joy Martis, U. Rajendra Acharya, K.M. Mandana c, A.K. Ray, Chandan Chakraborty, Application of principal component analysis to ECG signals for automated diagnosis of cardiac health, Expert Systems with Applications Volume 39,issue 14, 2012, Pages 11792-11800
- 5-Hassan Yazdanian, Ashkan Nomani and Mohammad Reza Yazdchi, Autonomous Detection of Heartbeats and Categorizing them by using Support Vector Machines, Proceedings of 20th Iranian Conference on Biomedical Engineering (ICBME 2013), University of Tehran, Tehran, Iran, December (2013).
- ➢ 6- S. Sahoo, B. Kanungo, S. Behera, S. Sabut, Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities, Measurement (2017)
- > 7- Hadeer El-Saadawy, Manal Tantawi, Howida A. Shedeed, Mohamed F. Tolba, Hybrid hierarchical method for electrocardiogram heartbeat classification, The Institution of Engineering and Technology, Signal Processing, (March 2018)
- 8- Fatin A. Elhaj , Naomie Salima, Arief R. Harris, Tan Tian Swee , Taqwa Ahmeda, Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals, Computer Methods and Programs in Biomedicine , Volume 127, April 2016, Pages 52-63
- 9- Jose Antonio Gutiérrez- Gnecchi, Rodrigo Morfin -Magana, Daniel Lorias -Espinoza, Adriana del Carmen Tellez- Anguianoa, Enrique Reyes- Archundia, Arturo Méndez-Patino, Rodrigo Castaneda-Miranda, DSP-based arrhythmia classification using wavelet transform and probabilistic neural network, Biomedical Signal Processing and Control 32 (2017).
- > 10-Dan Li, Jianxin Zhang*, Qiang Zhang*, Xiaopeng Wei, Classification of ECG Signals Based on 1D Convolution Neural Network, Dalian University, Dalian, P. R. China,IEEE 19th International Conference on e-Health Networking, Applications and Services (2017)

- > 11- Ö. Yıldırım, Pawel. Plawiak, R.-S. Tan, U.R. Acharya, Arrhythmia detection using deep convolutional neural network with long duration ECG signals, Computers in Biology and Medicine (2018).
- ➤ 12- U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan, M. Adam, A. Gertych, T.R. San, A deep convolutional neural network model to classify heartbeats, Computers in Biology and Medicine
- > 13- Philip de Chazal, Member, IEEE, Maria O'Dwyer, and Richard B. Reilly Senior Member, Automatic Classification of Heartbeats Using ECG Morphology and Heartbeat Interval Features, (2004)
- > 14- https://colah.github.io/posts/2015-08-Understanding-LSTMs/
- > 15 <a href="https://www.geeksforgeeks.org/ml-handling-imbalanced-data-with-smote-and-near-miss-algorithm-in-python/#:~:text=SMOTE%20(synthetic%20minority%20oversampling%20technique)%20is%20one%20of%20the%20most,instances%20between%20existing%20minority%20instances.
- ➤ 16 https://neurohive.io/en/popular-networks/vgg16/
- > 17-https://deepai.org/machine-learning-glossary-and-terms/inception-module
- > 18 https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c