

Техническое описание

Когенерационная установка JMS 420 GS-N.LC

with Island Operation сетевого кодеска нет

JMS 420 10,5 kV

Электрическая выходная 1497 кВт эл.

мощность

Тепловая выходная мощность 1546 кВт

Выбросы

NOx < 500 mg/Nm³ (5% O2) CO < 650 mg/Nm³ (5% O2)

0.01 Технические характеристики (модуля)	5
Габариты и вес (модуля)	6
Соединения	6
Мощность / расход топлива	6
0.02 Технические характеристики двигателя	7
Баланс тепловой энергии Характеристики выхлопного газа	7 7
Данные воздуха горения	7
Уровень звукового давления	8
Уровень звуковой мощности	8
0.03 Технические характеристики генератора	9
Константы реактивности и времени (предельный) при Номинальная выход. Мощ	
0.04 Технические характеристики рекуперации тепла	10 10
Общие данные - контур охлаждающей воды	10
Теплообменник выхлопного газа	10
Вариант обвязки т/обменниками F	11
0.10 Технические параметры	12
1.00 Объём поставки - агрегат	13
1.01 Газовый двигатель внутреннего сгорания	14
1.01.01 Устройство двигателя	14
1.01.02 Дополнительная оснастка мотора	16
1.01.03 Дополнительное оборудование к двигателю	16
1.01.04 Стандартные инструменты (1 набор на станцию)	16
1.02 Синхронный генератор средних напряжений	16
1.03 Оборудование модуля	19
1.03.01 Система водяного охлаждения двигателя	20
1.03.02 Автоматическая система пополнения смазочного масла	20
1.03.03 Окислительный катализатор	21
1.04 Рекуперация тепла	21
1.05.02 Газовая рампа >500мбар	22
1.07 Покраска	22
1.11 Шкаф управления модулями для каждого модуля с Dia.ne XT4 с	
индивидуальной синхронизацией выключателя генератора	22
Визуализация посредством сенсорного дисплея: Центральная система управления двигателем и агрегатом:	23 27
центральная система управления двигателем и агрегатом. Сообщения о неисправностях шкафа управления модулями:	28
1.11.03 Дистанционный сигнал через PROFIBUS-DP	31

1.11.06 Передача информации посредством DIA.NE XT4	31
1.11.14 Защита генератора от перегрузки и короткого замыкания	35
1.11.15 Дифференциальная защита генератора	35
1.11.16 Защита генератора от замыкания на землю (ненаправленная)	35
1.20.03 Пусковая система	36
1.20.05 Электрический подогрев водяной рубашки	36
1.20.08 Гибкие соединения	37
1.20.10 Байпас выхлопного газа	 37
1.20.25 Система безопасности на линии горячей воды	 37
1.20.26 Насос на линии горячей воды –насос модульного типа	38
1.20.27 Устройство регулировки температуры на линии обратной воды _	
1.20.28 Расширительный бак	38
2.00 Электрическое оборудование	38
2.01.06 Система соединения с внешней сетью и автоматика обратной	0
синхронизации	39
2.02 Система соединения с внешней сетью	41
2.03.02 Система регулирования мощности станции	42
2.04 Распределительное устройство генератора низковольтного напряжов соответствии с IEC/EN	ения 42
3.03.01 Шумоглушитель выхлопных газов	43
3.10.01 Система Охлаждения –контур низкой температуры	44
3.10.02 Система Охлаждения –контур высокой температуры	44
3.50 Силовые и контрольные кабели	44
4.00 Поставка и установка	45
4.01 Транспортировка	 45
4.02 Разгрузка	45
4.03 Монтаж	45
4.04 Складирование	45
4.05 Запуск и ввод в эксплуатацию	45
4.06 Пробная эксплуатация (не включена)	45
4.07 Измерение вредных веществ (газоанализатор)	45
5.01 Объём поставки	45
5.02 Испытания и приёмка	46
5.02.01 Испытания двигателя	47
5.02.02 Испытания генератора	47
5.02.03 Испытания агрегата	47

5.03 документация ______48

0.01 Технические характеристики (модуля)

			100%	75%	50%
Подведенная энергия топлива	[2]	кВт	3 457	2 664	1 870
Расход газа	*)	Нм³/ч	364	280	197
Механическая выходная мощность	[1]	кВт	1 540	1 155	770
Электрическая выходная мощность	[4]	кВт эл.	1 497	1 123	745
Полезная тепловая энергия					
~ Интеркулер смеси 1-ой ступени	[9]	кВт	362	182	51
~ Масло		кВт	208	192	174
~ Водяная рубашка		кВт	359	301	241
~ Выхлопного газа, охлажденного до 120 °C		кВт	617	527	405
Общая тепловая вых. мощность	[5]	кВт	1 546	1 202	871
Общая генерируемая выходная мощность		кВт общий	3 042	2 325	1 616
Отводимое тепло для рассеивания					
~ Интеркулер смеси 2-ой ступени		кВт	102	86	71
~ Масло		кВт	~	~	~
~ Излучаемое тепло повехностей	ca. [7]	кВт	117	~	~
Уд.коэфф. потребления топлива эл.	[2]	кВтч/кВтч эл.	2,31	2,37	2,51
Уд.коэфф. потребления топлива	[2]	кВтч/кВтч	2,25	2,31	2,43
Расход смазочного масла	ca. [3]	кг/ч	0,31	~	~
Электрический КПД			43,3%	42,1%	39,9%
Тепловой КПД			44,7%	45,1%	46,6%
Общий КПД	[6]		88,0%	87,3%	86,4%
Контур горячей воды:					
Температура прямой воды		°C	90,0	85,6	81,3
Температура обратной воды		°C	70,0	70,0	70,0
Расход горячей воды		м ³ /ч	66,4	66,4	66,4
Топливный газ LHV		кВтч/Нм³	9,5		

^{*)} Приближенное значение для задания размеров монтажа трубопровода

Указанные данные по теплу основаны на стандартных условиях эксплуатации согласно положению главы 0.10. Отклонения от стандартных условий могут привести к изменениям в тепловом балансе, которые необходимо учитывать при проектировании последовательности расположения охлаждающих теплообменников (газовоздушной смеси; аварийного;...). К общему отклонению ±8 % на отводимую тепловую мощность рекомендуется запланировать дополнительный расчетный резерв минимум +5 % для расчета параметров обратной охлаждающей мощности.

[[]_] Объяснения: см. 0.10 - Технические параметры

Габариты и вес (модуля)				
Длина	ММ	~ 7 100		
Ширина	ММ	~ 1 800		
Высота	ММ	~ 2 200		
Вес сухой	КГ	~ 17 900		
Вес рабочий	КГ	~ 18 600		
Соединения				
Вход и выход горячей воды [А/В]	DN/PN	100/10		
Выход выхлопного газа [С]	DN/PN	300/10		
Топливный газ (модуля) [D]	DN/PN	125/16		
Дренаж воды ISO 228 (водогрейный контур)	G	1/2"		
Отвод конденсата	DN/PN	50/10		
Предохранительный клапан - водяная рубашка ISO 228 [G]	DN/PN	2x1½"/2,5		
Предохранительный клапан - горячая вода	DN/PN	65/16		
Пополнение смазочным маслом (трубопровод) [I]	ММ	28		
Дренаж отработанного масла (трубопровод) [J]	ММ	28		
Водяная рубашка - наполнение (гибкий трубопровод) [L]	ММ	13		
Вода интеркулера 1-ой ступени - вход/выход	DN/PN	100/10		
Вода интеркулера 2-ой ступени - вход/выход [M/N]	DN/PN	65/10		

Мощность / расход топлива		
Мощность при ISO усл.экспл-ции и топливе в соотв. с ICFN	кВт	1 540
Ср.эффективное давление в цилиндрах	бар	20,17
Тип топливного газа		Природный газ
Расчетное метановое число Мин. метан.число	мч	94 80 d)
Степень сжатия	Epsilon	13,5
Мин./макс. давл.топливн. газа на вх. в сист. подачи газа	мбар	120 - 200 c)
Макс. уровень колебаний давления топливного газа	мбар/сек	10
Макс. т-ра воды на входе в интеркулер 2-ой ступени	°C	40
Уд.коэфф. потребления топлива	кВтч/кВтч	2,25
Уд.расход масла	г/кВтч	0,20
Макс. температура масла	°C	85
Макс. температура водяной рубашки	°C	95
Требуемый объем масла при замене	л	~ 437

с) Более низкое давление газа по запросу
 d) На основе подсчета метанового числа программным обеспечением AVL 3.2 (подсчет без учета N2 и CO2)

0.02 Технические характеристики двигателя

Производитель		GE Jenbacher
Тип двигателя		J 420 GS-B09
Принцип работы		4х тактный вн.сгорания
Конфигурация		V 70°
Количество цилиндров		20
Внутренний диаметр цилиндра	ММ	145
Ход поршня	ММ	185
Рабочий объем	Л	61,10
Частота вращения КВ	об/мин	1 500
Средняя скорость поршня	м/с	9,25
Длина	ММ	3 750
Ширина	ММ	1 580
Высота	ММ	2 033
Вес сухой (дв-ля)	КГ	7 200
Вес рабочий	КГ	7 900
Момент инерции маховика	KΓM ²	11,64
Направление вращения (глядя на маховик)		против часовой
Уровень радиопомех VDE 0875		N
Мощность стартера	кВт	13
Напряжение стартера	В	24
Баланс тепловой энергии		
Подведенная энергия топлива	кВт	3 457
Интеркулер смеси	кВт	464
Масло	кВт	208
Водяная рубашка	кВт	359
Выхлопного газа, охлажденного до 180 °C	кВт	472
Выхлопного газа, охлажденного до 100 °C	кВт	665
Излучаемое тепло повехностей	кВт	63
Характеристики выхлопного газа		
	°C	000
Т-ра выхлопн. газа при полной нагрузке [8]	°C	369
Т-ра выхлопн. газа при bmpe= 15,1 [бар]	_	~ 400
Т-ра выхлопн. газа при bmpe= 10,1 [бар]	°C	~ 431
Уд. массовый расход выхлопн. газа, влажного	кг/ч	8 071
Уд. массовый расход выхлопн. газа, сухого	кг/ч	7 533
Объем выхлопного газа, влажного	Нм³/ч	6 395
Объем выхлопного газа, сухого	Нм³/ч	5 725
Макс.допуст.противодавл. выхлопа на разветвление	мбар	60
трубопровода		
Данные воздуха горения		
Уд. массовый расход воздуха горения	кг/ч	7 831
Объем воздуха горения	Нм³/ч	6 060
Максимально допустимое падение давления в воздушном фильтре	мбар	10

Уров	ень звукового давления		
Агрега		dB(A) re 20μPa	97
31,5	Гц	дБ	79
63	Гц	дБ	87
125	Гц	дБ	98
250	Гц	дБ	95
500	Гц	дБ	91
1000	Гц	дБ	86
2000	Гц	дБ	88
4000	Гц	дБ	92
8000	Гц	дБ	89
Выхло	оп b)	dB(A) re 20μPa	115
31,5	Гц	дБ	95
63	Гц	дБ	117
125	Гц	дБ	115
250	Гц	дБ	113
500	Гц	дБ	108
1000	Гц	дБ	105
2000	Гц	дБ	108
4000	Гц	дБ	109
8000	Гц	дБ	107
Уров	ень звуковой мощности		
Агрега	та	dB(A) re 1pW	117
Площа	дь измерения	M ²	110
Выхло	п	dB(A) re 1pW	123
Плоша	дь измерения	M ²	6,28

<sup>а) средн. уровень мощн. звука на поверхности на расстоянии 1 м (при пересчете на распостранение звука в свободном пространстве) в соответствии с DIN 45635, точность - класс 3.
b) средн. уровень мощн. звука на поверхности на расстоянии 1 м в соответствии с DIN 45635, точность - класс 2.</sup>

давления на 1 бар). Допустимые отклонения при измерениях ± 3 dB

Диапазон действтелен для агрегатов до bmep =20 бар. (Добавить допуск на 1 дБ для всех значений при увеличении

0.03 Технические характеристики генератора

Производитель		STAMFORD e)
Тип		HVSI 804 S e)
Номинальная мощность данного типа	кВА	1 891
Приводная мощность	кВт	1 540
Номинальная мощность при p.f. = 1,0	кВт	1 497
Номинальная мощность при p.f. = 0,8	кВт	1 486
Номинальная выход. мощность при р.f. = 0,8	кВА	1 858
Номинальная реактивная мощность при р.f. = 0,8	кВАр	1 115
Номинальная сила тока при р.f. = 0,8	Α	102
Частота тока	Гц	50
Напряжение	кВ	10,5
Скорость вращения	об/мин	1 500
Предельное значение скорости вращения	об/мин	1 800
Коэффициент мощности (Запаздывающий - Опережающий)		0,8 - 1,0
КПД при cos phi = 1,0		97,2%
КПД при cos phi = 0,8		96,5%
Момент инерции маховика	KΓM ²	80,72
Macca	КГ	5 341
Уровень радиопомех EN 55011 Class A (EN 61000-6-4)		N
Ik" начальный ток при симметричном коротком замыкании	кА	0,78
Is максимальный ток в асимметричной цепи короткого замыкания	кА	1,98
Класс изоляции		F
Класс нагрева под нагрузкой		F
Макс. температура окружающей среды	°C	40

Константы реактивности и времени (предельный) при Номинальная выход. Мощность

хd продольная ось синхронная реактивность	p.u.	1,91
хd' продольная ось переходное реактивное сопротивление	p.u.	0,17
xd" продольная ось сверхпереходное реактивное сопротивление	p.u.	0,13
х2 реактивное сопротивление обратной последовательности	p.u.	0,18
Td" постоянная времени сверхпереходного реакт. сопрот	мс	15
Та постоянная времени прямого тока	мс	64
Tdo' постоянная времени разомкнутой цепи	С	4,15

e) GE Jenbacher оставляет за собой право заменить поставщика и тип генератора. Указанные в Договоре параметры генератора изменяются при этом лишь в незначительной степени. Вырабатываемая электрическая мощность останется неизменной.

0.04 Технические характеристики рекуперации тепла

Общие данные - контур горячей воды		
Общая тепловая вых. мощность	кВт	1 546
Температура обратной воды	°C	70,0
Температура прямой воды	°C	90,0
Расход горячей воды	м ³ /ч	66,4
Давление в контуре горячей воды	PN	10
минимальное рабочее давление	бар	3,5
максимальное рабочее давление	бар	9,0
Падение давления при циркуляции воды	бар	1,20
Макс. отклонения тем-ры в обратном трубопроводе	°C	+0/-5
Макс. уровень колебаний тем-ры в обратном трубопроводе	°С/мин.	10
Общие данные - контур охлаждающей воды		
Отводимое тепло для рассеивания	кВт	102
Температура обратной воды	°C	40
Расход холодной воды	м³/ч	20
Ном.давл-е контуре хол.воды	PN	10
минимальное рабочее давление	бар	0,5
максимальное рабочее давление	бар	5,0
Потеря давл-я контуре хол.воды	бар	~
Макс. отклонения тем-ры в обратном трубопроводе	°C	+0/-5
Макс. уровень колебаний тем-ры в обратном трубопроводе	°С/мин.	10
Теплообменник выхлопного газа		
Тип	трубчатый теплообменник	
ПЕРВИЧНЫЙ:		
Приблизит. падение давления выхлопного газа	бар	0,02
Подсоединение выхлопного газа	DN/PN	300/10
вторичный:	1	
Падение давления при циркуляции воды	бар	0,20

В случае заказа окончательная потеря давления определяется в ходе технических переговоров и отражается на технологической схеме.

DN/PN

Подсоединение горячей воды

100/10

Вариант обвязки т/обменниками F JMS 420 10,5 kV J 420 GS-B09

Контур горячей воды

Полезная тепловая энергия = 1 546 kW (±8 % дополн.расч. резерв +5 % резерв в системе охлажденя)

Расход горячей воды = 66,4 m³/h

Контур холодной воды (содержанием гликоля 37%)

Отводимое тепло для рассеивания = 102 kW (±8 % дополн.расч. резерв +5 % резерв в системе охлажденя) — 20,0 m³/h

0.10 Технические параметры

Все данные в технической спецификации основаны на полной нагрузке двигателя (если не указано другое) при указанных температурах и метановом числе и могут изменяться в связи с техническим развитием и модификациями.

Все значения давления следует понимать как избыточное давление.

- (1) Постоянная стандартная мощность ISO ICFN при указанном номинальном числе оборотов и стандартных условиях в соответствии с DIN-ISO 3046 и DIN 6271
- (2) Согласно DIN-ISO 3046 и DIN в 6271 с +5 % допустимым отклонением. Указанный КПД соответствует новому двигателю. Соблюдение инструкций GEJ по обслуживанию будет предотвращать значительное снижение эффективности в течение эксплуатации установки.
- (3)Среднее значение между интервалами смены масла в соответствии с графиком технического обслуживания, без объема заменяемого масла
- (4) При cos.phi = 1,0 в соответствии с VDE 0530 REM / IEC 34.1 с соответствующими допустимыми отклонениями, все насосы, приводимые в действие напрямую, включены в комплект поставки
- (5) Как общая мощность с допустимым отклонением ±8 %
- (6) В соответствии с вышеуказанными параметрами с (1) по (5).
- (7) Действительно только для двигателя и генератора; модуль и детали установки не учитываются (При cos.phi = 0,8) ,(guiding value)
- (8) Температура выхлопного газа с допустимым отклонением ±8 %
- (9) Тепло интеркулера:
 - * Стандартные условия (Vxx) если турбонагнетатель спроектирован для темературы воздуха на сгорание >30°C без снижения мощности, тепло интеркулера первой ступени повышается на 2%/°C начиная с 25°C. Отклонения в диапазоне 25-30°C будут охватываться стандартной погрешностью.
 - * Условия стран с повышенной температурой окружающей среды (Vxxx) если турбонагнетатель спроектирован для темературы воздуха на сгорание >40°C без снижения мощности, тепло интеркулера первой ступени повышается на 2%/°C начиная с 35°C. Отклонения в диапазоне 35-40°C будут охватываться стандартной погрешностью.

Уровень радиопомех

Системой зажигания газовых двигателей соблюдается граничный показатель по уровню радиопомех по норме CISPR 12 (30-75 МГц, 75-400 МГц, 400-1000 МГц) и по норме EN 55011 класс В (30-230 МГц, 230-1000 МГц).

Определение мощности

• Постоянная номинальная мощность ISO-ICFN:

Определение мощности, которую, по заявлению изготовителя, постоянно способен выдавать двигатель при указанной частоте оборотов, при выполнении предписанного изготовителем технического обслуживания в период времени между определенными им интервалами для необходимого капитального ремонта двигателя. Мощность определяется при рабочих условиях испытательного стенда изготовителя и перерасчитывается под стандартные условия.

• Стандартные условия:

Барометрическое давление: 1000 мбар или 100 м над уров. моря

Температура воздуха: 25°C Относительная влажность: 30%

• Объёмные данные при нормальных условиях (топливный газ, воздух для горения, выхлопные газы):

Давление 1013 мбар

Температура 0°C

Снижение мощности для двигателей с турбонаддувом

Стандартные параметры двигателей рассчитаны для работы на высоте ≤ **500 м** и при температуре всасываемого воздуха ≤ **30 °C** (T1)

Максимальная температура в машинном зале: 50 °C (T2) -> ошибка с остановом

При снижении метанового числа ниже указанного, включается система антидетонационного регулирования, которая сначала изменяет момент зажигания при полной номинальной нагрузке, затем следует снижение номинальной мощности.

В случае превышения граничных параметров напряжения и частоты для генератора, приведенных в ІЕС 60034-1 зона А, производится понижение мощности.

Граничные условия для газовых двигателей GE Jenbacher

Системная установка сконструирована с амортизацией колебаний согласно стандарту ISO 8528-9 и соответствует приведенным в данном стандарте граничным значениям.

Производственные материалы и системные установки должны соответствовать предписанию № **ТА 1100-0110, ТА 1100-0111 и ТА 1100-0112**.

Для консервирования необходимо соблюдать ТА 1000-0004.

Следует избегать транспортировки с помощью рельсового транспорта (см. ТА 1000-0046).

Несоблюдение вышеупомянутых ТА может привести к повреждениям двигателя/агрегата и, следовательно, к утрате гарантии!

Граничные условия для коммутационного устройства и электрического оборудования

Относительная влажность воздуха 50%, максимальная температура +40°.

Размещение на высоте не более 2000 м над уровнем моря.

1.00 Объём поставки - агрегат

Концепция агрегата:

Агрегат сконструирован компактно; двигатель и генератор соединены между собой и установлены эластично на опорной раме. Этим обеспечивается изоляция опорной рамы агрегата от и без того

уже достаточно слабой вибрации двигателя и генератора. Остаточные незначительные вибрации устраняются установкой агрегата на изолирующие маты (например, силомерные). Это в принципе позволяет размещать агрегат на любой поверхности, способной нести статическую нагрузку. Строительство специального фундамента не требуется, со стороны заказчика необходимо только принять меры для предотвращения передачи звука материалом пола.

1.01 Газовый двигатель внутреннего сгорания

Четырёхтактный, газовый двигатель внутреннего сгорания, с турбонаддувом и охладителем смеси, с высоковольтной системой зажигания и электронной системой контроля за подготовкой газовоздушной смеси. Двигатель оснащён новейшей

системой сжигания обеднённой газовоздушной смеси LEANOX,

разработанной и запатентованной GE JENBACHER.

1.01.01 Устройство двигателя

Блок двигателя

Цельный, сделан из специального чугуна с боковыми крышками на корпусе для легкого доступа к двигателю во время инспекционных осмотров.

Коленвал и коренные подшипники

Горячей штамповки, с закалённой и отполированной поверхностью, статически и динамически отбалансирован, расположен между цилиндрами; вкладыши коренных подшипников (верхний вкладыш: трёхкомпонентный / нижний вкладыш — с напылением), отверстия для принудительной смазки шатуна.

Гаситель крутильных колебаний

Необслуживаемая виско-муфта

Маховик

С зубчатым венцом для привода стартёром

Поршни

Цельные, сделанные из лёгкого сплава, с канавками для поршневых колец и масляными каналами для охлаждения; поршневые кольца и маслосъемные кольца из высококачественного материала, камера сгорания специально сконструирована и оптимизирована для работы на обедненной смеси.

Шатун

Горячей штамповки, термически обработанные, ; вкладыши подшипников шатуна (верхний вкладыш: с напылением / нижний вкладыш: с напылением) и вкладыш подшипника поршневого пальца.

Гильзы цилиндров

Центробежное литье, мокрые, заменяемые.

Головка цилиндров

Сконструирована для работы на меняющемся газе с наименьшими потерями и оптимальным расходом, специально разработана для двигателей GE Jenbacher, работающих на обедненной смеси; с водяным охлаждением, сделана из специального чугуна, индивидуально заменяемая; впрессованные кольца седла клапана, направляющие втулки клапанов и втулки свечей зажигания; впускные и выпускные клапаны - из высококачественного материала.

Вентиляция картера

Соединена с системой забора воздуха

Газораспределительный механизм

Кулачковый вал, со сменными толкателями, приводимый в движение коленвалом через промежуточный привод, смазка клапанов разбрызгиванием из коромысла

Система подготовки смеси

Газосмеситель, турбонагнетатель, трубопроводы смеси с компенсаторами, промежуточный охладитель с водяным охлаждением, дроссельная заслонка и распределительные трубопроводы к цилиндрам.

Система зажигания

Новейшая, полностью электронная, бесконтактная высоковольтная система зажигания с регулируемым извне моментом зажигания.

MORIS: автоматический, выборочный по каждому цилиндру контроль и регистрация актуального необходимого напряжения зажигания.

Система смазки

Все подвижные детали смазываются отфильтрованным маслом, подающимся с помощью центрального зубчатого масляного насоса. В контур смазочного масла включены редукционный и перепускной клапаны. Охлаждение смазочного масла осуществляется посредством теплообменника

Система охлаждения двигателя

Насос водяной рубашки охлаждения двигателя в комплекте с распределительными и сборными трубопроводами.

Выхлопная система

Турбонагнетатель и коллектор выхлопных газов

Измерение температуры выхлопного газа

Термопара на каждом цилиндре

Электронный регулятор

Для регулировки числа оборотов и мощности

Электронная регистрация числа оборотов для регулирования числа оборотов и мощности С помощью магнитного чувствительного элемента на зубчатом венце маховика.

Стартер

Электрический стартер, установлен на двигателе

1.01.02 Дополнительная оснастка мотора

В объём поставки входит набор первичных и деталей для обслуживания во время ввода в эксплуатацию.

1.01.03 Дополнительное оборудование к двигателю

Изоляция выхлопного трубопровода:

Изоляция выхлопного трубопровода легко устанавливается и снимается.

Датчики на двигателе:

- датчик температуры в водяной рубашке
- датчик давления в водяной рубашке
- датчик температуры смазочного масла
- датчик давления смазочного масла
- датчик температуры смеси
- датчик давления наддува
- датчик минимального и максимального уровня смазочного масла
- термопара для выхлопного газа на каждом цилиндре
- датчики детонации
- Датчик положения газосмеситель/дозатор подачи газа

Приводы на двигателе:

- соленоид дроссельная заслонка
- байпас турбонагнетателя
- управление газосмесителем/дозатором подачи газа

1.01.04 Стандартные инструменты (1 набор на станцию)

Инструменты, необходимые для проведения основных операций техобслуживания, входят в объём поставки и поставляются в инструментальном ящике.

1.02 Синхронный генератор средних напряжений

Двухподшипниковый агрегат состоит из основного генератора с внутренними полюсами, возбудителя с наружными полюсами и цифровой системы возбуждения ABB UNITROL 1010. Регулятор получает питание от вспомогательной обмотки основного статора или от МЭГ.

Компоненты/узлы

- Сварной стальной корпус
- Сердечник статора из тонких изолированных пластин электротехнической стали с интегрированными каналами охлаждения
- Двухслойная обмотка статора/стержня
- Коэффициент укорочения обмотки: 5/6
- Вал ротора с насаженными пластинчатыми полюсами, ротором возбудителя, МЭГ (зависит от типа) и вентилятором.
- Демпферная клетка

- Возбудитель с вращающимися выпрямляющими диодами и защитой от сверхнапряжений
- Динамическое балансирование по ISO 1940, качество балансирования G2,5
- Щит подшипника А, смазываемый подшипник качения
- Щит подшипника Б, смазываемый подшипник качения
- Охлаждение IC01: открытая вентиляция, вход воздуха напротив привода, выход на стороне привода
- Основная распределительная коробка с клеммами для подключения силового кабеля
- Преобразователь тока для защиты и измерений в нейтральной точке xx/1A, 10P10 15BA , xx/1A, 1FS5, 15BA
- Распределительная коробка регулятора с дополнительными клеммами для управления регулятора и для температурного датчика
- Антиконденсатный обогрев
- 3 датчика Pt100 для контроля температуры обмотки + 3 резервных датчика
- 2 датчика Pt100 для контроля температуры подшипников

Электрические характеристики

- Исполнение согласно нормам IEC 60034, EN 60034, VDE 0530, ISO 8528-3, ISO 8528-9
- Диапазон регулирования напряжения:

 □ 10 % номинального напряжения (длительно)
- Диапазон частоты: от -6 до +4% номинальной частоты
- Устойчивость к перегрузкам: 10% на час в течение 6 часов, 50% на 30 секунд
- Несимметричная нагрузка: максимум 8% I₂ при длительных нагрузках, I₂□t=20 при неисправностях
- Высота над уровнем моря: < 1000 м
- Допустимая температура воздуха на входе в генератор: 5°C 40°C
- Максимальная относительная влажность воздуха: 90%
- Характеристика напряжения THD Ph-Ph: <3% на холостом ходу и <3% при полной линейной симметричной нагрузке
- Генератор способен работать параллельной с коммунальной сетью, а также с другими генераторами в автономном режиме
- Установившийся ток КЗ при 3-полюсном КЗ на клеммах: как минимум 3□номинальный ток в течение 5 сек.
- Угонная скорость: испытание на разнос длится 2 минуты со скоростью 1,2 номинальной согласно IEC 60034.

Цифровая система возбуждения ABB Unitrol 1010 в распределительной коробке регулятора (или дополнительной коробке – зависит от типа):

- Компактная прочная цифровая система возбуждения для номинальных токов возбуждения до 10 А (сверхток 20 А в течение 10 секунд)
- Быстрая регулировка и максимальное напряжение возбуждения улучшает стабильность работы при краткосрочных сбоях сетевого снабжения
- Входы/выходы для цифровых или аналоговых измерений свободного назначения, которое задается с помощью ПК-программы СМТ1000.
- Клеммы для тока:
 - Вход трехфазного питания от МЭГ или вспомогательной обмотки
 - Вход питания регулятора 24 В=
 - Выход возбуждения

- Клеммы для измерений: 3-фазное напряжение машины, 1-фазное напряжение в сети, 1-фазный ток машины
- Аналоговые входы/выходы: 2 выхода и 3 входа (произвольного назначения), опорные выходы +10B/-10B
- Цифровые входы/выходы: 4 входа (произвольного назначения) и 8 входов/выходов (произвольного назначения)
- Шина RS485 для Modbus RTU или переменного тока (распределение реактивной нагрузки в автономных сетях размером до 31 агрегата GEJ), шина CAN для передачи данных по двум каналам
- Регулировка с плавным переходом между режимами работы:
 - Автоматический регулятор напряжения (AVR), точность 0,1% при температуре 25°C
 - Регулятор тока возбуждения (FCR)
 - Регулятор коэффициента мощности (PF)
 - Регулятор реактивной мощности (VAR)
- Ограничители, пресекающие выход из надежного и стабильного диапазона работы:
 - Ограничитель тока возбуждения (UEL min / OEL max.)
 - Ограничитель PQ-minimum
 - Ограничитель тока машины
 - Ограничитель В/Гц
 - Ограничитель напряжения машины
- Подстройка напряжения в процессе синхронизации
- Контроль вращающихся диодов -> контроль отказа диодов
- Два канала контроля разрешают следовать опорному значению, приходящему по шине CAN, на базе параллельно текущей автодиагностики. Предоставляется по заказу.
- Синхронизация предоставляется по заказу.
- Функция PSS расширение диапазона стабильного хода согласно IEEE 421.5-2005 2A/2B предоставляется по заказу.
- Компьютерное представление для исследования стабильности работы силовых установок (PSS Power System Stability) ABB 3BHS354059 E01
- Сертификаты: CE, cUL по UL508c (согласно CSA), DNV класс В

Программа пусконаладки и техобслуживания СМТ1000

(для обученных техников)

Компьютерная программа позволяет настраивать все параметры и ПИД-регуляторы, обеспечивающие стабильную работу, и наблюдать за поведением системы, опознавая и предупреждая на месте проблемы в ходе пусконаладки. СМТ1000 связана с UNITROL 1000 через Ethernet или USB-интерфейс, причем Ethernet разрешает дистанционное управление на расстояниях до 100 м.

- Главное окно:
 - Вид доступа и данные приборов
 - Настройка параметров разрешена только при доступе CONTROL
 - Светодиод сигнализирует, что все параметры сохранены в постоянной памяти.
- Окно опорных значений:
 - Перечень всех регуляторов и их режимов, перечень тревог, статус генератора и активных ограничителей.
 - Настройка опорных значений и рабочие шаги ПИД-настройки
- Осциллоскоп:

Запись по 20 каналам, можно выбрать 6 сигналов. Разрешение по времени 50 мсек. Данные можно сохранить на компьютере для последующего анализа.

• Измерения:

Все измерения, относящиеся к генератору, на одном экране.

Заводские испытания

Стандартная программа заводских испытаний производителя генератора содержит:

- Измерение сопротивления постоянного тока обмоток статора и ротора
- Проверка работы всех встроенных элементов (Pt100, антиконденсатный обогрев и т.п.)
- Измерение сопротивления изоляции следующих элементов:
 - обмотки статора и ротора
 - Pt100 или позистора в обмотке статора
 - Pt100 подшипников
 - антиконденсатного обогрева
- Характеристики холостого хода (остаточная намагниченность)
- Симметричность напряжения статора
- Направление вращающегося поля
- Высоковольтный тест обмотки статора (2□Uном + 1000В) и ротора (минимум 1500В).

1.03Оборудование модуля

Опорная рама агрегата

Сварена из конструкционной стали, служит основанием для двигателя, генератора и теплообменников.

Эластичная муфта

Вставная, беззазорная муфта, с ограничителем крутящего момента, для соединения двигателя с генератором. Муфта изолирует от генератора основные крутильные колебания двигателя, создающие импульсы.

Защита муфты

Для центрированного и прочного соединения двигателя с генератором. С двумя окнами для вентиляции и контроля, с покрытием для муфты из перфорированного листа.

Антивибрационные крепления

Антивибрационные прорезиненные прокладки равномерно расположены между корпусами двигателя, генератора и опорной рамой, в зависимости от пункта тяжести. Антивибрационные прокладки (силомерные маты) для установки между опорной рамой и фундаментом поставляются отдельно.

Трубопровод выхлопного газа на агрегате

Подсоединение турбонагнетателя; вкл. компенсатор для выравнивания тепловых растяжений и вибраций.

Фильтр всасываемого воздуха

Воздушный фильтр сухого типа со сменными фильтрующими элементами, имеет гибкое соединение с газосмесителем и сервисный индикатор для контроля.

Шкаф интерфейсов

Закрытый со всех сторон стальной шкаф, передняя дверь с профильным резиновым уплотнением. Установлен на агрегате, подключен, готов к работе.

Покраска: RAL 7035

Защита: внешняя IP 54 внутренняя IP 20 (защита от прямого контакта с активными деталями)

Конструкция в соответствии с DIN VDE 0660, часть 500 или IEC 439-1 или EN 60 439-1/1990. Температура окружающей среды 5 - 40° C, Относительная влажность 70%

Размеры:

• высота 1000 mm

• ширина 800 mm (1000 mm в 4-й производственной серии)

• глубина 300 mm

Напряжение подаётся от зарядного устройства аккумуляторов.

Питание вспомогательных систем (заказывается у соответствующих поставщиков) $3 \times 400/230 \, \text{B}$, $50 \, \text{Гц}$, $16 \, \text{A}$

Состоит из:

- Клеммная шина
- Узлы децентрализованного ввода и вывода, соединённые интерфейсом шины с центральным управлением двигателя в шкафу управления модуля
- Блоков контроля частоты оборотов
- Измерительный преобразователь напряжения возбуждения
- Реле, защитные устройства, автоматы, защитный выключатель двигателя для управления клапанами и вспомогательными устройствами
- Система кондицирования воздуха (опции)

1.03.01 Система водяного охлаждения двигателя

Система водяного охлаждения двигателя

Контур охлаждения закрытого типа, состоит из:

- Расширительного бака
- Арматуры заполнения (запорный клапан и клапан ограничения давления, манометр)
- Аварийного(-ых) клапана (-ов)
- Закорачивающего термостата (механический регулятор температуры)
- Всех без исключения необходимых трубопроводов на модуле
- Выпускных устройств и дренажных кранов
- Электрического водяного насоса, включая обратный клапан
- Предподогрева охлаждающей воды

1.03.02 Автоматическая система пополнения смазочного масла

Автоматическое пополнение смазочного масла

Магнитный клапан в линии подачи смазочного масла регулируется с помощью датчика уровня, визуальный контроль - через смотровое стекло; контроль уровня масла с остановкой двигателя при достижении отметки "МИН" и "МАКС"; ручное управление клапаном для первого заполнения системы или при замене масла.

Дренаж масла

Через запорный кран, проведенный через раму модуля

Насос предварительной смазки и охлаждающий масляный насос

Смонтирован на опорной раме модуля; используется для предварительной смазки и охлаждения турбонагнетателя.

Время работы: Предварительная смазка: 1 мин.

Охлаждающая смазка: 15 мин. после остановки двигателя

Состоит из:

- 1 масляного насоса 1500 Вт. 24 В
- всех необходимых клапанов
- необходимых трубопроводов

1.03.03 Окислительный катализатор

Неуправляемый каталитический нейтрализатор с металлическим корпусом и покрытием из нержавеющей стали служит для снижения уровня эмиссий.

Поставляется отдельно и устанавливается в трубопровод выхлопных газов после введения двигателя в эксплуатацию и проведения необходимых настроек.

1.04 Рекуперация тепла

Теплообменники компактно монтированы на двигателе или раме модуля и полностью соединены трубопроводами.

Размещение теплообменников в гидросистеме зависит от соответствующего проекта. Вариант интеграции, значения температуры и расхода представлены на странице 11 Интерфейсом к контуру заказчика являются присоединительные фланцы A и B (см. стр.6).

Теплообменник для отработавших газов

Одноходовой кожухотрубный теплообменник для рекуперации тепла отработавших газов

Теплообменник для отработавших газов состоит из следующих компонентов:

- впускная камера;
- трубный теплообменник с неразъемным пучком труб;
- выпускная камера, со стоком для конденсата;
- термопара для индикации температуры отработавших газов на выходе, после обработки в теплообменнике.

Теплообменник для отработавших газов поставляется в несмонтированном состоянии и включен в объем поставки.

Изолирование трубопроводов и теплообменников не входит в объем поставки и, при необходимости, выполняется заказчиком.

1.05.02 Газовая рампа >500мбар

Поставляется в сборе, как отдельный блок, для установки в газовый трубопровод модуля.

Состоит из:

- запорная арматура
- Газового фильтра с чистотой фильтрации <3 мкм
- Регулятора высокого давления с предохранительным запорным клапаном
- Отрезком стабилизации со снижением давления
- Предохранительного спускного клапана
- Манометра с краном с нажимной кнопкой
- Электромагнитных клапанов
- Детектора утечек
- Переключателя давления газа (мин.)
- TEC JET (должен быть смонтирован горизонтально)
- Газсчетчик (опции)
- Р / Т Выравнивание (опции)

Газовая рампа соответствует требованиям DIN-DVGW.

Максимальное расстояние от TEC JET до входа газа на двигателе, включая гибкие соединения, составляет 1 м.

1.07 Покраска

• Структура: Маслостойкий грунт

Лаковое синтетическое покрытие

• Цвет: Двигатель: RAL 6018 (зелёный)

Опорная рама: RAL 6018 (зелёный) Генератор: RAL 6018 (зелёный) Шкаф интерфейса модуля: RAL 7035 (серый) Шкаф управления: RAL 7035 (серый)

1.11 Шкаф управления модулями для каждого модуля с Dia.ne XT4 с индивидуальной синхронизацией выключателя генератора

Размеры:

• Высота: 2200 мм (с цоколем 200 мм) *)

Ширина: 800-1200 мм*)Глубина: 600 мм *)

Тип защиты:

- ІР42 внешняя
- ІР 20 внутренняя (защита от прямого контакта с активным частями)

*) исполнение шкафов управления зависит от проекта, технические характеристики определяются на основании предварительной проектной документации.

Питание стартовой аккумуляторной батареи и секционного блока управления 24 В пост. тока (минус заземлен).

Питание вспомогательного оборудования: (от поставщика энергоснабжающего оборудования) 3 x **400/230** B, **50** Гц

Включает:

Систему управления двигателем DIA.NE

Конструкция:

- Визуализация посредством сенсорного дисплея
- Центральная система управления двигателем и агрегатом

Визуализация посредством сенсорного дисплея:

15" промышленный цветографический резистивный сенсорный дисплей.

Интерфейсы:

- Питание 24 В
- Разъем для VGA-дисплея
- USB-порт для резистивного сенсорного дисплея

Тип защиты передней панели DIA.NE XT: IP 65

Размеры: $ШxВx\Gamma$ = ок. 410x310x80 мм

На экране отображается графическая мнемосхема и измеренные значения параметров.

Навигация осуществляется посредством экранных клавиш выбора, управляемых нажатием. Ввод чисел (заданных значений, параметров ...) выполняется с помощью блока сенсорной десятичной клавиатуры или ползунка.

Выбор рабочих параметров и синхронизации осуществляется с помощью сенсорной панели клавиш, которая может быть постоянно включена на любом экране.

Основные экраны (примеры):

Главный экран: Представление общего вида, состояния вспомогательного оборудования, запуск двигателя и рабочие параметры

ELE: Представление интеграции генератора с измеренными электрическими параметрами, синхронизация

Анализ тенденций:

Тенденция с разрешением 100 мс

Измеренные значения:

- 500 точек на графике наносятся историческим способом
- Интервал считывания = 100 мс
- Возможность доступа к исходным данным с разрешением 100 мс: 3 часа + макс. 50 000 000 изменений значения при остановках (60 мин. за одну остановку)
- Архивация степень 1: мин., макс., среднее значение при разрешении 1000 мс: 1 день
- Архивация степень 2: мин., макс., среднее значение при разрешении 30 с: 1 месяц
- Архивация степень 3: мин., макс., среднее значение при разрешении 10 мин.: 10 лет

Сообщения:

1 000 000 сообщений

Действия (управляющие действия) 100 000 действий

Системные сообщения:

100 000 системных сообщений

Центральная система управления двигателем и агрегатом:

Промышленная система управления на основе промышленного ПК модульной конструкции выполняет все функции управления процессом на стороне агрегата и двигателя (подготовка запуска, запуск, останов, последующее охлаждение, управление вспомогательным оборудованием), а также все функции регулирования.

Интерфейсы:

- Ethernet (витая пара) для доступа для дистанционного обслуживания
- Ethernet (витая пара) для соединения нескольких двигателей между собой
- Ethernet (витая пара) для соединения Powerlink с вводами и выводами системы управления.
- USB-порт для обновления программного обеспечения

Подсоединение к системе управления заказчика согласно списку дополнительного оборудования GE Jenbacher (ОПЦИЯ)

- Подчиненное устройство MODBUS-RTU
- Подчиненное устройство MODBUS-TCP,
- Подчиненное устройство PROFIBUS-DP (120 слов),
- Подчиненное устройство PROFIBUS-DP (190 слов),
- Подчиненное устройство ProfiNet
- OPC

Функции регулирования:

- Регулирование частоты вращения на холостом ходу и в автономном режиме работы
- Регулирование мощности в параллельном режиме работы, в зависимости от поставленной задачи по внутреннему или внешнему заданному значению
- Регулирование LEANOX для регулирования давления наддува в зависимости от мощности генератора на клеммах и температуры наддува посредством газосмесителя с моторным приводом
- Регулирование по детонации: Перестановка момента зажигания, регулирование мощности и снижения температуры наддува (если предусмотрено заказчиком) при обнаружении детонации
- Выравнивание активной нагрузки нескольких модулей в автономном режиме (в зависимости от поставленной задачи)
- Линейное снижение мощности при превышении температуры нагрева и пропусках зажигания
- Линейное снижение мощности в зависимости от сигнала СН4 (если сигнал СН4 присутствует (в зависимости от поставленной задачи)
- Линейное снижение мощности в зависимости от давления газа (в зависимости от поставленной задачи)
- Линейное снижение мощности в зависимости от температуры впускаемого воздуха (в зависимости от поставленной задачи)

Измерительный мульти-преобразователь для регистрации следующих электрических измеренных значений генератора:

- Фазовые токи (с контрольной стрелкой)
- Ток в нейтрали

- Напряжения Ph/Ph и Ph/N
- Активная мощность (с контрольной стрелкой)
- Реактивная мощность
- Кажущаяся мощность
- Коэффициент мощности
- Частота
- Счетчики активной и реактивной энергии

Дополнительный вывод 0(4)-20 мА для активной мощности и импульсный вывод для активной энергии

В измерительный мульти-преобразователь встроены следующие функции контроля генератора:

- Ток перегрузки/короткое замыкание [51], [50]
- Перенапряжение [59]
- Пониженное напряжение [27]
- Асимметрия напряжения [64], [59N]
- Несимметричная нагрузка [46]
- Сбой возбудителя [40]
- Завышенная частота [81>]
- Пониженная частота [81<]

Выбор режимов работы, управляемый и блокируемый с помощью сенсорного дисплея, с возможностями выбора:

- ВЫКЛ.: пуск невозможен, работающий модуль сразу останавливается;
- РУЧНОЙ РЕЖИМ: возможна работа на полную мощность в ручном режиме (пуск, останов), неработающий модуль недоступен для автоматического режима работы.
- АВТОМАТИЧЕСКИЙ РЕЖИМ: автоматический режим по запросу на основании поступившего внешнего сигнала:

Выбор запроса, управляемый с помощью сенсорного дисплея, с возможностями выбора:

• Внешний запрос Выкл.: ВЫКЛ.

• Внешний запрос: ДИСТАНЦИОННО

• Перемыкание внешнего запроса: ВКЛ.

Сообщения о неисправностях шкафа управления модулями:

согласно «Списку сообщений о неисправностях» (часть документации)

Контроль - останавливающий, например:

- Давление масла мин.
- Уровень масла в двигателе мин.
- Уровень масла в двигателе макс.
- Температура масла макс.
- Давление охлаждающей жидкости мин.
- Давление охлаждающей жидкости макс.
- Температура охлаждающей жидкости макс.
- Превышенная частота вращения

- Контур аварийного останова/предохранительный контур
- Неисправность газового тракта
- Сбой запуска
- Сбой останова
- Условия пуска двигателя отсутствуют
- Условия работы двигателя отсутствуют
- Пропуски зажигания
- Температура смеси макс.
- Нарушения измерительного сигнала
- Силовой сигнал перегрузки/сбоя
- Перегрузка/короткое замыкание генератора
- Перенапряжение/пониженное напряжение генератора
- Завышенная/пониженная частота генератора
- Асимметрия напряжения генератора
- Несимметричная нагрузка генератора
- Обратная мощность генератора
- Температура обмотки генератора макс.
- Сбой синхронизации
- отдельных цилиндров Детонационный сбой

Контроль – предупреждающий, например:

- Температура охлаждающей жидкости мин.
- Давление охлаждающей жидкости мин.
- Температура обмотки генератора макс.

Дистанционные сообщения:

(беспотенциальные контакты)

1S = 1 замыкающий контакт

1Ö = 1 размыкающий контакт

1W = 1 переключающий контакт

	,	
• Готов для запроса автоматического режима (на систе	му управления верхнего уровня)	1S
• Работа (двигатель работает)	1S	
• Запрос вспомогательного оборудования	1S	
• Общая неисправность ОСТАНОВ	1Ö	
• Общая неисправность ПРЕДУПРЕЖДЕНИЕ	1Ö	

Следующие сообщения и команды должны быть предоставлены заказчиком фирме GE Jenbacher:

•	Запрос модуля (от системы управления в	верхнего уровня) 1S
•	Деблокировка в	спомогательного оборудс	вания	1S

Индивидуальная синхронизация выключателя генератора в автоматическом режиме

Для автоматической синхронизации модуля с помощью выключателя генератора на шине питания/общей шине ПЛК (встроен в шкаф управления модулями).

Включает:

- Расширение аппаратных средств программируемого логического контроллера для автоматического выбора синхронизации и синхронизации модуля, а также для контроля ответного сигнала «Выключатель ВКЛ.».
- Выбор режимов синхронизации, управляемый и блокируемый с помощью сенсорного дисплея, с возможностями выбора:
 - РУЧНОЙ РЕЖИМ: Модуль необходимо выбрать вручную путем кратковременного нажатия кнопки выбора для синхронизации. Затем выполняется автоматическая синхронизация модуля
 - АВТОМАТИЧЕСКИЙ РЕЖИМ: Автоматическая синхронизация модуля после успешной деблокировки в системе управления модулем
 - ВЫКЛ. Выбор и синхронизация заблокированы Управление выключателем генератора в зависимости от режима синхронизации системы управления модулем, выбранного на сенсорной панели управления.
 - Выключатель генератора ВКЛ. сенсорная кнопка на DIA.NE XT
 - Выключатель генератора ВЫКЛ. сенсорная кнопка на DIA.NE XT
- Функция синхронизации с подстройкой частоты и следующей индикацией:
 - Двойной вольметр для контроля напряжения общей шины и генератора.
 - Двойной частотомер для контроля частоты общей шины и генератора.
 - Синхроноскоп для контроля условий синхронизации во время синхронизации.
- Реле напряжения для контроля напряжения общей шины (только в автономном режиме)

Сообщения о работе оборудования:

Выключатель генератора закрыт Выключатель генератора открыт

Дистанционные сообщения:

(беспотенциальные контакты)

Выключатель генератора ВКЛ.

1 S

Следующие сообщения и сигналы должны быть предоставлены фирме GE Jenbacher поставщиком распределительного устройства:

Ответные сигналы: Выключатель генератора ВКЛ. 1 S Выключатель генератора ВЫКЛ. 1 S Выключатель генератора готов к включению 1 S

Сетевой выключатель ВКЛ. 1 S

Сетевой выключатель ВЫКЛ. 1 S

Сетевое напряжение 3 х 400/230 В или 3 х 110 В/v3 – другие измерительные напряжения по запросу!

Напряжение общей шины 3 x 400/230 В или 3 x 110 В/v3 – другие измерительные напряжения по

Напряжение генератора 3 x Ошибка! Источник ссылки не найден. или 3 x 110 B/v3 – другие измерительные напряжения по запросу!

Реле напряжения с соединением звезда-звезда мин. с 50 ВА и кл. 0,5

Следующие сигналы и сообщения монтируются на клеммах фирмой GE Jenbacher для поставщика распределительного устройства:

- Команда ВКЛ./ВЫКЛ. для выключателя генератора (контакт длительного включения) 1 S + 1 Ö
- Подача сигналов на расцепитель минимального напряжения 1 S

Максимальное расстояние между шкафом управления агрегатом и агрегатом/интерфейсным шкафом 30 м

Максимальное расстояние между шкафом управления агрегатом и силовым выключателем: 50

Максимальное расстояние между шкафом управления агрегатом и шкафом управления ведущего устройства: 50 м

Максимальное расстояние между генератором и панелью генератора: 30 м

1.11.03 Дистанционный сигнал через PROFIBUS-DP

Передача данных от системы управления модулем Jenbacher к системе управления и защиты заказчика по шине PROFIBUS-DP-Netzwerk в соответствии с нормой EN 50170/2. Скорость передачи данных: до 1,5 МБит/сек.

Передача данных через ведущую систему заказчика должна выполняться циклически.

Передаваемые данные:

Единичные сообщения о неполадках, рабочие сообщения, измерительные показатели мощности генератора, давление масла, температура масла, давление и температура охлаждающей воды

Границы поставки GE Jenbacher:

Клемма шины RS485 в шкафу управления модулем

1.11.06 Передача информации посредством DIA.NE XT4

Общая информация

DIA.NE XT4 предлагает удаленный доступ через Ethernet.

Приложения:

1. DIA.NE XT4 HMI

DIA.NE XT4 HMI представляет собой человеко-машинный интерфейс (Human-Machine-Interface) системы управления модулями и визуализации DIA.NE XT4 газовых двигателей GE Jenbacher. Система предлагает широкие возможности при вводе в эксплуатацию, контроле, техобслуживании и диагностике установок.

Посредством установки программы DIA.NE XT4 HMI Client при существующем сетевом соединении и правах доступа можно создать связь с установками. Система работает с операционными системами Microsoft Windows (Windows XP, Windows 7, Windows 8, Windows 10)

Состав выполняемых функций

Функции визуализации на шкафе управления двигателем могут использоваться удаленно. К ним относятся управление и наблюдение, представление тенденций, управление аварийными сигналами, параметрами и доступ к записи данных в долговременную память. Доступ к нескольким установкам, а также с несколькими клиентами параллельно, обеспечивает дополнительные полезные функции, такие как многопользовательская система, дистанционное управление, возможности печати и экспорта, а также резервное копирование данных. DIA.NE XT4 существует в версиях на нескольких языках.

Опция – дистанционный запрос/дистанционное блокирование

Если переключатель режимов находится в положении «Автоматический режим», а переключатель запросов в положении «Дистанционно», то посредством элемента управления (кнопки) на DIA.NE XT4 HMI можно деблокировать (запросить) или блокировать (отозвать) модуль. Примечание:

С этой опцией дополнительный запрос со стороны заказчика (посредством аппаратных средств или шины передачи данных) или автономный режим работы (система управления станцией GE Jenbacher, сетевое базовое регулирование и т. д.) нецелесообразен.

Опция – дистанционное квитирование (ТА 1100 - 0111 глава 1.7 и 1.9)

Комплект поставки:

- Пакет программного обеспечения DIA.NE XT4 HMI Client Setup (загрузка)
- Количество лицензий на DIA.NE XT4 HMI Client (одновременный доступ пользователя к серверу установки) как опция/лицензия

Количество лицензий	Доступ
1	1 пользователь может зарегистрироваться в то же самое время с одного ПК (рабочего места, диспетчерской или дома)
2	2 пользователя могут зарегистрироваться в то же самое время с одного ПК (рабочего места, диспетчерской или дома). Если уже зарегистрировались 2 пользователя с компьютеров, объединенных в локальную сеть (офис, диспетчерская,), то регистрация с домашнего компьютера уже невозможна.

Внимание! Данная опция включает только приложение DIA.NE XT4 HMI Client и лицензию – надежное соединение, предлагаемое компанией GE Jenbacher, HE обеспечивается! Надежное соединение должно быть обеспечено заказчиком (соединение по локальной сети или VPN-соединение) или может быть реализовано с помощью опции myPlant™.

Работы, выполняемые заказчиком

- Широкополосное сетевое соединение посредством Ethernet (100/1000BASE-TX) на штекере RJ45 (ETH3) на сервере DIA.NE XT4 в шкафу управления модулями.
- Стандартный ПК с клавиатурой, мышью или сенсорным дисплеем (расширение мин. 1024 * 768)
- Операционная система Windows XP SP3, Windows 7, Windows 8, Windows 10
- Совместимый с DirectX 9.0c или новее 3D-видеоадаптер с памятью 64 МБ или более

2.) myPlant™

myPlant™ – это решение для удаленной передачи данных и диагностики от компании GE Jenbacher

	Предлагаемые функции	Connect	Protect
Управление ресурсами	Передача данных онлайн	✓	✓
	Облачная память для больших данных	✓	✓
	Состояние машины	✓	✓
	Аварийные сигналы и предупреждения	✓	✓
	Основные тренды данных	✓	✓
	Дистанционный доступ к ЧМИ	-	✓
	Безлимитный тренд данных	-	✓
	Расширенная диагностика	-	✓
Управление парком	Состояние парка на карте мира	-	✓
	Суммарные данные и отчеты о парке двигателей	-	√
Мобильность	Уведомления по SMS/эл. почте	-	√
	Приложение для смартфонов	√	√

Веб-приложение со следующими функциями:

- Визуализация текущего состояния двигателя (доступен, в работе, неисправность)
- Экран разных измеренных значений генераторной установки
- Визуализация показаний счетчика в виде графика тенденций (если к установке обеспечен «онлайн»-доступ или путем ручного ввода показаний счетчиков)
- График тенденций величины мощности (малое разрешение; только в случае «онлайн»доступа к установке)

myPlant™ Connect бесплатно для зарегистрированных пользователей myPlant™ Protect на время действия гарантии входит в стандартную комплектацию (ограничено 1 годом) и в дальнейшем доступно как часть договора о техобслуживании (CSA).

Комплект поставки

- Доступ к myPlant™
- Соединение установки с системой myPlant™

Работы, выполняемые заказчиком

- Постоянное подключение к Интернету (кабельное или мобильное) (см. также опцию 4)
- Технические требования согласно ТА 2300-0008
- Исходящий канал передачи данных (от сервера установки в Интернет) ВХОДЯЩИЕ каналы должны быть ЗАПРЕЩЕНЫ!

ВНИМАНИЕ! Заказчик должен принять технические меры защиты от прямого доступа из Интернета к серверу установки! (Например, путем использования сетевого брандмауэра)
Такая защита НЕ входит в объем услуг и не обеспечивается компанией GE Jenbacher!

3.) Мобильный Интернет (опция)

Связь установка-клиент посредством надежного Интернет-соединения См. также техническую инструкцию **ТА 2300 - 0006**

Комплект поставки

• Мобильный Интернет-маршрутизатор с антенной для подключения к серверу DIA.NE XT4

Работы, выполняемые заказчиком

• SIM-карта для 3G / 4G

4.) Схема сети

Для информации!

1.11.14 Защита генератора от перегрузки и короткого замыкания

Код функции ANSI 50/51

Цифровое защитное реле, 3-фазное, монтаж в модульном шкафу управления. Подсоединение к защитным преобразователям тока в нейтральной точке звезды генератора. Воздействие на силовой выключатель генератора и развозбуждение генератора. Сигнальное сообщение на экране DIA.NE.

Характеристики / настраиваемые значения:

- настройка для перегрузки: до 1,1-кратного номинального тока агрегата,
- характеристика срабатывания, зависящая от времени, согласно IEC 60255-151: сильно инверсная, фактор времени 0,6.
- настройка для короткого замыкания: до 2,0-кратного номинального тока агрегата,
- независимая задержка по времени: 300 мс (при динамической поддержкой сетевого соединения 800 мс).

1.11.15 Дифференциальная защита генератора

Код функционирования ANSI 87

Цифровое защитное реле, 3-фазное, монтаж в модульном шкафу управления. Подсоединение к защитным преобразователям тока в нейтральной точке звезды генератора (входит в объем поставки GEJ) и защитный преобразователь тока в распределительном устройстве генератора (преобразователь тока заказчика, вторичный 1A, опция: 5A). Воздействие на силовой выключатель генератора и развозбуждение генератора. Сигнальное сообщение на экране DIA.NE.

В установках с блочным трансформатором защита выполнена в виде дифференциальной защиты генератора/трансформатора.

1.11.16 Защита генератора от замыкания на землю (ненаправленная)

Цифровое защитное реле, монтаж в модульном шкафу управления. Воздействие на силовой выключатель генератора и развозбуждение генератора. Сигнальное сообщение на экране DIA.NE.

В зависимости от вида заземления нейтрали генератора используется одна из следующих защитных функций:

Код функции ANSI 50N/G
Регистрация тока замыкания на землю, например, посредством измерительного
трансформатора
(трансформатор тока предоставляется заказчиком, вторичный 1A, опция: 5A).

2) Код функции ANSI 59N/G

Регистрация напряжения при несимметричной нагрузке, например, посредством открытой обмотки, соединенной треугольником, измерительного трансформатора напряжения с однополюсной изоляцией (трансформатор напряжения предоставляется заказчиком).

1.20.03 Пусковая система

Стартерная батарея (не входит в объём поставки):

4 шт. 12 В свинцовая стартерная батарея, 160/200 А/ч (в соответствии с DIN 72311), в комплекте с защитным корпусом, клеммами и ареометром.

Контроль за уровнем зарядки аккумулятора

Контроль посредством регулятора зарядки

Зарядное устройство

Для зарядки стартерной батареи в соответствии с I/U-характеристикой и для питания подключенных потребителей постоянного тока.

Смонтирована в шкафу интерфейсов модуля или в шкафу управления модуля.

• Технические данные

Подключение к сети
 3 x 320 - 550 B, 47 - 63 Гц

Макс. потребление мощности
 Номинальное постоянное напряжение
 Устанавливаемый диапазон напряжения
 24 В (+/-1%)
 24B до 28,8В

• Номинальный ток 40 А

Габариты (ширина х высота х глубина)
 Класс защиты
 250 х 125 х 125 мм
 IP20 по норме IEC 529

Рабочая температура
 0 °С - 60 °С

• Класс защиты

• Класс влажности 3К3, без конденсации

• Самоохлаждение воздухом

Предписания
 EN60950, EN50178

UL/cUL (UL508/CSA 22.2)

Сигнализация:

Зелёный индикатор: Напряжение на выходе> 20,5 В

Жёлтый индикатор: Перегрузка, напряжение на выходе < 20,5 B

Красный индикатор: выключение

Управляющая память:

Аккумулятор 24 VDC/18 А/ч

1.20.05 Электрический подогрев водяной рубашки

Установлен в первичном контуре охлаждения водяной рубашки, состоит из:

• нагревательных элементов

• водяного насоса

При неработающем двигателе в водяной рубашке постоянно поддерживается температура между 56°C и 60°C. Благодаря этому сразу после запуска двигателя возможна его работа на полную мощность.

1.20.08 Гибкие соединения

В объём поставки GE Jenbacher входят следующие гибкие соединения на каждый модуль:

Штук Соединение	Блок	Размер Материал
2 Вход / выход горячей воды	DN/PN	100/10 нержавеющая
сталь 1 Выход выхлопного газа	DN/PN	300/10 нержавеющая
сталь 1 Вход топливного газа	DN/PN	125/10 нержавеющая
сталь	DIVEN	•
2 Вход / выход воды в охладителе смеси2 Подключение смазочного масла	DN/PN MM	65/10 нержавеющая сталь 28 шланг

Все гибкие соединения поставляются в комплекте с необходимыми фланцами и уплотнениями.

1.20.10 Байпас выхлопного газа

Байпас выхлопных газов состоит из двух заслонок (приводимые в движение электрическим приводом), для закрытия входа и выхода выхлопных газов из теплообменника выхлопного газа, а также для открытия самого байпаса выхлопных газов. Байпас выхлопных газов начинает работать так только телпо выхлопных газов не может быть полностью использовано.

Объём поставки:

- 2 заслонки, **DN/PN** 300/10
- Привод от электродвигателя 3 х 400/230 В, 50 Гц
- Необходимые фланцы, ответные фланцы, уплотнения
- Управление заслонкой ОТКР/ЗАКР
- Байпас

1.20.25 Система безопасности на линии горячей воды

Датчики встроены в контур горячей воды. Поставляются отдельно.

Состоит из:

- 1 контрольный датчик потока (Сигнал выключения: поток МИН)
- 1 контрольный датчик давления (Сигнал выключения: давление МАКС)
- 1 температурный переключатель (Сигнал выключения: температура МАКС)
- 1 предохранительный клапан

1.20.26 Насос на линии горячей воды –насос модульного типа

Состоит из:

• насос модульного типа:

с постоянным числом оборотов, для прокачки необходимого количества воды на каждом модуле (поставляется отдельно), 3 x 400/230 B , 50 Гц

• 2 манометра, до и после насоса

Параметры насоса рассчитываются исходя из потери давления в компонентах контура горячей воды, поставляемых GE Jenbacher, и максимальной внешней потери давления 0,5 бар.

1.20.27 Устройство регулировки температуры на линии обратной воды

Предназначена для поддержания постоянной температуры на входе в модуль путём подмешивания прямой воды.

Состоит из:

- 1 3-х ходового клапана с электроприводом (поставляется отдельно)
- 1 РТ 100 (Поставляется приложением или уже установлено на агрегате)
- 1 PID блок управления (смонтирован в шкафу управления)

1.20.28 Расширительный бак

Расширительный бак предназначен для контура теплой воды соответствующего модуля.

Состоит из:

- расширительного бака объемом 150 л (поставляется отдельно)
- манометра (поставляется отдельно)

2.00 Электрическое оборудование

Закрытый со всех сторон стальной шкаф, передняя дверь с профильным резиновым уплотнителем, все внутренние соединения выведены на клеммную колодку. Готов к монтажу над соответствующим кабельным каналом заказчика (двойное дно). Естественная вентиляция.

Класс защиты: внешняя ІР 42

внутренняя IP 20 (защита от прямого контакта с активными

деталями)

Конструкция в соответствии с EN 61439-2 / IEC 61439-2 и ISO 8528-4 Температура окружающей среды 5 - 40°C, относительная влажность воздуха 70%

Покраска: шкаф RAL 7035

основание RAL 7020

2.01.06 Система соединения с внешней сетью и автоматика обратной синхронизации

(встроены в систему синхронизации модуля)

Предназначена для автоматической синхронизации (обратная синхронизация) модуля с выключателем сети с сетью по технологии SPS (программное управление от запоминающего устройства).

Состоит из:

Дополнение аппаратного обеспечения программируемой системы управления для полностью автоматического включения синхронизации и синхронизации модуля с выключателем соединения с сетью.

Логическая система наблюдения за:

- непоследовательными включениями
- помехами при включении
- помехами при выключении

Управляющий выключатель

Секционный выключатель сети ВЫКЛ./ ВКЛ./ ВЫБОР

- для ручного отключения секционного выключателя сети
- для ручного включения синхронизации в положении переключателя режима синхронизации РУЧНОЙ
- для ручного включения секционного выключателя сети на вводах сборных шин с отсутствием напряжения
 - (первичное включение) при положении переключателя режима синхронизации РУЧНОЙ

Автоматический выбор режима синхронизации и синхронизация модуля после стабилизации сети с помощью секционного выключателя сети в положении переключателя режимов синхронизации "АВТОМАТИЧЕСКИЙ".

В ручном режиме синхронизация модуля с секционным выключателем сети в положении переключателя режима синхронизации РУЧНОЙ проводится путем короткого нажатия кнопки секционного выключателя сети управляющего выключателя.

После этого синхронизация модуля с секционным выключателем сети выполняется автоматически.

• Различные управляющие реле.

Управление секционным выключателем сети, т.е. его выключение в положении переключателя режимов синхронизации "РУЧНОЙ" и первичное ручное включение.

Функция:

Для автоматической обратной синхронизации всех модулей после стабилизации сети в положении переключателя режимов синхронизации "АВТОМАТИЧЕСКИЙ".

В положении переключателя режимов синхронизации "РУЧНОЙ" обратная синхронизация всех модулей включается после короткого нажатия кнопки обратной синхронизации. После этого обратная синхронизация выполняется автоматически.

В момент синхронизации автоматически включается секционный выключатель.

Рабочие сообщения:

- Секционный выключатель сети замкнут
- Секционный выключатель сети разомкнут

Сообщение о неисправностях:

- Секционный выключатель сети, неполадки при ответном сигнале о положении
- Секционный выключатель сети, перегрузка / короткое замыкание
- Секционный выключатель сети, неполадки при включении
- Секционный выключатель сети, неполадки при выключении

Дистанционные сигналы:

(беспотенциальные контакты)

• Секционный выключатель сети замкнут 1 S • Неполадки в сети 1 S

Следующие сигналы или сообщения должны быть предоставлены в распоряжение GE Jenbacher поставщиками электротехнического оборудования:

• Ответные сигналы:

Секционный выключатель сети ГОТОВ К ВКЛЮЧЕНИЮ
или выкатная тележка ячейки распред. устройства в задвинутом положении 1S
Секционный выключатель сети замкнут 1S
Секционный выключатель сети разомкнут 1S
Секционный выключатель сети, перегрузка / короткое замыкание 1S
Секционный выключатель сети, местное управление
в положении FERN (дистанционный) 1S
(если имеется местное управление)

- Напряжение сети до секционного выключателя сети 3 x 400/230 В или 3 x 110 В/в3 иное измеряемое напряжение по запросу!
- Напряжение сети после секционного выключателя сети 3 x 400/230 В или 3 x 110 В/в3 иное измеряемое напряжение по запросу!

Преобразователь напряжения по схеме "звезда-звезда" с мин. 50 вА и класса 1

Следующие сигналы или сообщения будут предоставлены GE Jenbacher в распоряжение поставщиков электротехнического оборудования на беспотенциальных контактах:

для секционного выключателя сети ВКЛ.
для секционного выключателя сети ВЫКЛ.
1S

2.02 Система соединения с внешней сетью

Функция:

Для немедленного отключения генератора от сети в случае неполадок в сети.

- двухступенчатый контроль с ограничителем по высокому и низкому напряжению
- двухступенчатый контроль с ограничителем по высокой и низкой частоте тока
- отдельно устанавливаемые независимые интервалы контроля напряжения и частоты тока
- контроль скачковых изменений векторной характеристики или контроль df/dt для немедленного отключения генератора от сети, например, при автоматическом повторном включении
- общая индикация световыми диодами и буквенно-цифровая индикация на дисплее всех измеряемых и устанавливаемых параметров в рабочем и аварийном режимах
- блокировка несанкционированного доступа в систему управления посредством пароля

Объем поставки:

Цифровое защитное реле с блоком сохранения всех данных по измеряемым рабочим параметрам, неполадкам, а также система самодиагностики.

Parameter	Parameter limit	Max time delay[s]	Comments
49-51Hz			Do work normal
f<[ANSI 81U]	49Hz	0,5	Load reduction with 10% /HZ below 49Hz!
f<<[ANSI 81U]	48.5Hz	0,1	
f>[ANSI 810]	51,5Hz	0,1	Load reduction with 30% /HZ higher 51Hz!
U<[ANSI 27]	90%	1	Load reduction with 1%P /%U below 95%
U<<[ANSI 27]	80%	0,2	Load reduction with 1%P /%U below 95%
U>[ANSI 59]	110%	30	Load reduction with 1%P /%U above 105%
U>>[ANSI 59]	115%	0,2	Load reduction with 1% P/%U above 105%

Df/dt [ANSI 81R]	2Hz/s, 5 Periods	Cos phi range:
Or	Or	0,8ind (overexcited)
Vector shift	8° -3pol	- 1
[ANSI 78]		

2.03.02 Система регулирования мощности станции

Осуществляется по стандартному аналоговому сигналу, предоставляемому заказчиком Принцип работы:

Беспотенциальный сигнал (предоставляемый заказчиком) (0/4 - 20 mA = 50-100% номинальной мощности) является для регулятора мощности заданным значением, на основе которого соответствующая система управления агрегата регулирует мощность.

На станциях с несколькими агрегатами этот сигнал может последовательлно проходить через все регуляторы мощности и ими выравниваться. Таким образом обеспечивается равномерное распределение нагрузки на все работающие агрегаты.

2.04 Распределительное устройство генератора низковольтного напряжения в соответствии с IEC/EN

Номинальное напряжение: 3x10500/(Wert nicht vorhanden)V, 50Гц

 Номинальный ток:
 800A

 Структура сети:
 TN-CS

Тип защиты: снаружи IP54, внутри IP20

Температура окружающего

пространства: от +5°до 40° С (50°С со снижением) **Стандарт/норма**: IEC/EN61439-1+2 и IEC/EN60204-1

Цвет шкафа: RAL 7035

Размеры: Высота: 2000 мм (+ цоколь)

Ширина: 1000ммГлубина: 800мм

Функции

Выключатель генератора в случае возникновения ошибки и при рабочем останове газового мотора отсоединяет генератор от сети. Включение выключателя генератора осуществляется исключительно посредством системы управления газового мотора.

• Длина кабеля между распределительным устройством и шкафом управления модуля: < 50 м

В шкаф встраиваются следующие элементы:

• - 1 силовой выключатель:

Монтаж: фиксированный

3-полюсный, с э/моторным приводом

Встроенное электронное отключающее устройство, состоящее из следующих элементов: регулируемый расцепитель с долговременной задержкой для защиты от перегрузки регулируемый селективный расцепитель для защиты от короткого замыкания расцепитель при недостаточном напряжении, разрядник рабочего тока, замыкающая катушка: 24 В пост. тока, сообщения о состоянии, команды и сигналы поступают через клеммы.

Запирается с помощью навесного замка

 Время включения:
 < 70 мсек.</td>

 Время отключения:
 < 60 мсек.</td>

Стойкость при коротких замыканиях 65кА:

Отключающая способность Icu; Ics (440/690 В перем. тока): 65/50кА Включающая способность Icm (440/690 В перем. тока): 143/105кА Стойкость при кратковременном воздействии тока Icw (1 сек.): 65кА

- - 3 преобразователя тока: **800**A1 A, 1FS5, 30 BA (0,5FS5, 15 BA) на клеммах
- - 1 система медных шин, 5-полюсная (L1, L2, L3, PE, N + перемычка PEN) для подключения кабелей
- - клеммная колодка для управляющего кабеля
- - вентилятор в шкафу управления с термостатической регулировкой
- - ограничитель перенапряжений типа 2 EN 61643-11, макс. превышение 2,5 кВ, для вспомогательных систем
- - напряжение генератора для синхронизации и измерения через клеммы
- - напряжение на сборной шине для синхронизации через клеммы
- - отвод для вспомогательных систем GEJ (3-полюсн., с хххА, только при 3х400/230 В,50 Гц)

3.03.01 Шумоглушитель выхлопных газов

Звуковая эмиссия:

Глушитель рассчитан на остаточный уровень шума **65** дБ (A) на расстоянии 10 м согласно норме DIN 45635 и ISO 3744. Расстояние измеряется от выхода выхлопного газа.

Материал:

Сталь или нержавеющая сталь, в зависимости от температуры выхлопного газа.

Объём поставки:

- шумоглушитель
- необходимые фланцы, уплотнения

Изоляция:

Со стороны заказчика следует предусмотреть изоляцию для снижения поверхностного излучения.

Толщина изоляции при размещении двигателей вне помещения:

• Для 50 дБ(А) на расстоянии 10 м

100 мм минеральной ваты, с покрытием из оцинкованной стали толщиной 1 мм

От 55 дБ (A) на расстоянии 10 м

• Для < 50 дБ (А) на расстоянии 10 м

100 мм минеральной ваты, с покрытием из оцинкованной стали толщиной 0,75 мм Толщина изоляции определяется индивидуально для каждого проекта

Толщина изоляции при размещении двигателей в помещении:

Толщину изоляции необходимо рассчитывать исходя из допустимого теплового излучения.

3.10.01 Система Охлаждения –контур низкой температуры

Для отвода неиспользуемой тепловой энергии газовоздушной смеси.

Уровень звукового давления 65 dB(A) на расстоянии 10 м (в соответствии с DIN 45635)

Состоит из (поставляется отдельно): • радиатора • насоса • термостата • предохранительных клапанов

• Переключателя давления газа мин. (опции)

Рассчитана по теплообмену на окружающую температуру 35°C.

3.10.02 Система Охлаждения –контур высокой температуры

Для отвода тепловой энергии, если она не используется потребителем вообще или только частично.

Тепловая энергия из рубашки водяного охлаждения двигателя, системы охлаждения смеси, выхлопных газов и смазочного масла отводится через систему охлаждения с радиатором.

Уровень звукового давления 65 **dB(A) на расстоянии 10 м** (в соответствии с ISO 3744 или. EN 13487)

Состоит из: (поставляется в несмонтированном виде)

- радиатора
- 3-х-ходового клапана

Рассчитана по теплообмену на окружающую температуру 35°C. Специальное изготовление по запросу.

3.50 Силовые и контрольные кабели

- Контрольный кабель между панелями управления модулем, максимальная длина кабеля 10 м
- Силовой кабель между выходом генератором и его силовой частью, максимальная длина кабеля 10 м
- Кабель стартера от батареи к стартеру, максимальная длина кабеля 5 м

4.00 Поставка и установка

4.01 Транспортировка

согласно контракту.

4.02 Разгрузка

Разгрузка, перемещение до места установки, установка и подгонка поставленного оборудования на подготовленный заказчиком фундамент в объём поставки GE Jenbacher не включены.

4.03 Монтаж

Сборка всех компонентов оборудования Jenbacher в объём поставки GE Jenbacher не включены.

4.04 Складирование

Заказчик должен подготовить достаточную по размерам площадку для складирования и хранения поставленного.

4.05 Запуск и ввод в эксплуатацию

Запуск и ввод в эксплуатацию проводится на основании контрольных листов GE Jenbacher не включены. На станциях в островном режиме необходимо интернет- соединение.

4.06 Пробная эксплуатация (не включена)

После ввода в эксплуатацию проводится 8-часовая пробная эксплуатация всей установки для подтверждения запрошенных параметров.

В это же время проводится инструктаж обслуживающего персонала по функционированию установки и ее экономичной эксплуатации.

4.07 Измерение вредных веществ (газоанализатор)

Измерение уровня вредных веществ для подтверждения гарантированного уровня эмиссий проводится работниками GE Jenbacher (затраты, на проведение таких замеров сотрудниками соответствующих служб по выбору заказчика, оплачиваются заказчиком).

5.01 Объём поставки

Электрическая часть

- Модуль
 - до клемм в шкафу интерфейса модуля
 - до клемм в клеммной коробке генератора (со стороны заказчика необходимо наличие креплений типа PG)
- Шкаф управления модуля
- до клеммной колодки
- Вспомогательные системы

• до клемм каждого из компонентов, поставляемых отдельно

Горячая вода

- До соединительных фланцев на линии прямой и обратной воды на модуле
- До соединительных фланцев на линии прямой и обратной воды на теплообменнике выхлопных газов

Вода с низкой температурой

До соединительных фланцев на модуле

Выхлопной газ

- До выходного фланца выхлопной трубы
- До входного и выходного фланца на теплообменнике выхлопных газов

Воздух для сжигания газа

Установленный на агрегате воздушный фильтр

Топливный газ

- до входного и выходного фланца газовой рампы
- до соединительного фланца линии топливного газа модуле

Система смазки

До фланцев системы смазки на модуле

Трубопроводы слива рабочих жидкостей и предохранительные стоки

До выхода трубопроводов на модуле

Коденсат

До слива кондесата на теплообменнике выхлопных газов

Изоляция

Изоляция теплообменников и трубопроводов в объем поставки не входит и должна быть выполнена заказчиком.

Первое заполнение генераторной установки

Рабочие жидкости для первого заполнения генераторной установки (смазочное масло, жидкость для охлаждения двигателя, антифриз, антикоррозионные добавки и электролит) не входят в объём поставки.

Состав и качество используемых материалов должны строго соответствовать "Техническим инструкциям" GE Jenbacher.

Для всех подключений со **стороны заказчика** должны быть предусмотрены соответствующие компенсаторы или гибкие соединения.

Все подключаемые к модулю кабели должны быть гибкими.

5.02 Испытания и приёмка

Внимание: имеются IF-поля

Компоненты модуля проходят следующие испытания и тесты.

5.02.01 Испытания двигателя

Проводятся в качестве комбинированного испытания двигателя и агрегата в соответствии с DIN ISO 3046 на испытательном стенде GE JENBACHER при 100%, 75% и 50% нагрузке. Результаты указываются в протоколе испытаний, на основании которого выдаётся соответствующий сертификат.

Испытываются:

- мощность двигателя
- расход топлива
- температура воды в рубашке охлаждения
- давление в системе смазки
- температура в системе смазки
- давление наддува
- температура выхлопного газа в каждом цилиндре

5.02.02 Испытания генератора

Проводит поставщик генератора на заводе-изготовителе.

5.02.03 Испытания агрегата

Двигатель тестируется на природном газе (метановое число 94). Из-за различий в качестве топлива, данные о производительности, достигаемые на испытательном стенде, могут отличаться от данных, заявленных в технической спецификации.

Комбинированные испытания двигателя и агрегата проводятся вместе со шкафами управления на испытательном стенде GE JENBACHER в соответствии требованиями ISO 8528, DIN 6280; результаты указываются в протоколе испытаний, на основании которого выдаётся соответствующий сертификат.

Среди прочих испытаний проводятся:

- Визуальный осмотр объёма поставки в соответствии со спецификациями.
- Функциональные тесты управления в соответствии с технической спецификацией:
 - запуск модуля в ручном и автоматическом режимах
 - регулирование мощности в ручном и автоматическом режиме
 - функционирование всех систем безопасности на модуле
- Измерения при 100%, 75% и 50% нагрузки:
 - частота
 - напряжение
 - сила тока
 - мощность генератора
 - коэффициент мощности
 - расход топлива
 - давление смазочного масла после фильтра
 - температура охлаждающей воды на выходе из двигателя
 - давление наддува
 - температура смеси
 - эмиссия выхлопного газа (NOx)

Испытания агрегата проводятся с помощью оригинального генератора, за исключением случаев, когда он отсутствует по причине несоблюдения сроков. В этом случае испытания модуля проводятся с помощью тестового генератора.

Определенные технические характеристики компонентов, указанных выше, но которые не проходят испытания на испытательном стенде GE JENBACHER, подтверждаются соответствующими документами фирмы-изготовителя.

5.03 документация

Предварительная документация предоставляется через 60 дней после заказа, предусматривающего ясность по всем техническим вопросам

- чертеж агрегата 1)
- техническая схема 1)
- чертежи шкафов управления 3)
- перечень электрических интерфейсов 2)
- техническая спецификация системы управления 2)
- технические чертежи дополнительного оборудования (если входит в объём поставки GE Jenbacher) 1)

При поставке:

- схемы электрических соединений 3)
- список кабелей 3)

При сдаче в эксплуатацию (или по требованию заказчика):

- руководство по эксплуатации и техническому обслуживанию 4)
- каталог запасных частей 4)
- рабочий журнал 4)

Информация возможна на следующих языках:

- 1) немецкий, английский
- 2) немецкий, английский, французский, итальянский, испанский
- 3) немецкий, английский, французский, итальянский, испанский, голландский, венгерский, русский, польский, турецкий, чешский
- 4) немецкий, английский, французский, итальянский, испанский, голландский, венгерский, русский, польский, турецкий, чешский, словенский, словакский, сербский, шведский, румынский, португальский, норвежский, литовский, латвийский, болгарский, китайский, датский, эстонский, финский, греческий, хорватский