Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра высшей математики

СБОРНИК ЗАДАЧ ПО ВЫСШЕЙ МАТЕМАТИКЕ

В 10-ти частях

А. А. Карпук, В. В. Цегельник, Е. А. Баркова

Часть 7

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

Допущено Министерством образования Республики Беларусь в качестве учебного пособия для студентов учреждений, обеспечивающих получение высшего образования по техническим специальностям

УДК 517 (075.8) ББК 22.1. я 73 К 26

Рецензенты:

кафедра математики Минского высшего радиотехнического колледжа; профессор кафедры высшей математики Белорусского государственного аграрного технического университета, доктор физико-математических наук, профессор А. П. Рябушко

Карпук, А. А.

К 26 Сборник задач по высшей математике. В 10 ч. Ч. 7: Интегральное исчисление функций многих переменных : учеб. пособие / А. А. Карпук, В. В. Цегельник, Е. А. Баркова. – Минск : БГУИР, 2007. – 119 с.: ил. ISBN 978-985-488-148-5 (ч.7)

В части 7 сборника приводятся задачи по интегральному исчислению функций многих переменных.

УДК 517 (075.8) ББК 22.1. я 73

- Ч.1: Сборник задач по высшей математике: учеб. пособие. В 10 ч. Ч.1: Аналитическая геометрия / А.А.Карпук, Р.М.Жевняк. Мн.: БГУИР, 2002. 112 с.: ил.; 2-е изд. 2003, 3-е изд. 2004.
- Ч.2: Сборник задач по высшей математике. В 10 ч. Ч.2: Линейная алгебра (с решениями и комментариями) / А.А.Карпук, Р.М.Жевняк, В.В.Цегельник. Мн.: БГУИР, 2004. 154 с.
- Ч.3: Сборник задач по высшей математике. Ч.3: Введение в анализ / Н.Н.Третьякова, Т.М.Пушкарева, О.Н.Малышева. Мн.: БГУИР, 2005. 116 с.
- Ч.4: Сборник задач по высшей математике. В 10 ч. Ч.4: Дифференциальное исчисление функций одной переменной / А.А. Карпук [и др.]. Мн.: БГУИР, 2006. 107 с.
- Ч.5: Сборник задач по высшей математике. В 10 ч. Ч. 5 : Функции многих переменных / А.А. Карпук [и др.]. Мн.: БГУИР, 2004. 64 с.
- Ч.6: Сборник задач по высшей математике. В 10 ч. Ч. 6: Интегральное исчисление функций одной переменной / А. А. Карпук [и др.]. Минск: БГУИР, 2006. 148 с.

ISBN 978-985-488-148-5 (ч.7) ISBN 978-985-444-727-8 ISBN 985-444-727-8

- © Карпук А. А., Цегельник В. В., Баркова Е. А., 2007
- © УО «Белорусский государственный университет информатики и радиоэлектроники», 2007

ВВЕДЕНИЕ

Настоящее издание является 7-й частью «Сборника задач по высшей математике» в 10-ти частях и посвящено интегральному исчислению функций переменных. В него вошли разделы «Кратные интегралы», «Криволинейные интегралы», «Поверхностные интегралы», «Элементы векторного анализа». Структура 7-й части, как и предыдущих 6-ти частей, следующая. Сначала приводятся теоретические сведения по рассматриваемому вопросу, затем решения наиболее характерных задач этого типа и, наконец, приводятся задачи и упражнения для практических занятий в аудитории и для домашних заданий. Начало решения примера отмечено знаком Δ , конец решения – знаком ▲.

Книга будет полезной не только для студентов вузов, но и для преподавателей, ведущих практические занятия со студентами.

1. Кратные интегралы

1.1. Двойные интегралы

Определение двойного интеграла и его свойства. Вычисление двойных интегралов в прямоугольной декартовой системе координат. Замена переменных в двойных интегралах. Двойной интеграл в прямоугольной системе координат и обобщенной прямоугольной системе координат.

Пусть в области D с границей Γ задана непрерывная функция f(x,y). Разобьем область D произвольным образом на n частичных областей D_i (рис. 1.1), площади которых равны ΔS_i ,

 $i = \overline{1, n}$. В каждой частичной области выберем произвольную точку $P_i = (x_i, h_i)$ и

составим сумму
$$\mathbf{S}_n = \sum_{i=1}^n f(\mathbf{x}_i, \mathbf{h}_i) \Delta S_i$$
,

называемую *интегральной суммой Римана* для функции f(x,y) по области D. Пусть Δ — наибольший из диаметров областей Δ_i и назовем его *диаметром разбиения* области D.

Если существует предел $\lim_{\Delta \to 0} \sum_{i=1}^n f(\mathbf{x}_i, \mathbf{h}_i) \Delta S_i, \quad \text{не зависящий ни от}$

способа разбиения D на части D_i , ни от

Итак, по определению

$$\iint\limits_{D} f(x, y) dx dy = \lim_{\Delta \to 0} \sum_{i=1}^{n} f(\mathbf{x}_{i}, \mathbf{h}_{i}) \Delta S_{i}.$$
 (1.1)

0

Рис. 1.1

X

Геометрически двойной интеграл (1.1) выражает собой объем v

криволинейного цилиндра v — тела, ограниченного сверху поверхностью уравнением S c $z = f(x, y) \ge 0$, снизу – областью D, проекцией являюшейся ХҮ (границей служит плоскость кривая Γ) замкнутая образующими, параллельными оси Ζ.

Итак,

$$v = \iint_D f(x, y) dx dy.$$
 (1.2)

При $f(x,y) \equiv 1$, $\forall (x,y) \in D$ двойной интеграл

$$S = \iint_{D} dx dy \tag{1.3}$$

 $\int dx dy$ (1.3) Рис. 1.2

есть площадь области D.

Если D – плоская пластинка, по поверхности которой непрерывно распределена масса с плотностью m(x, y), то масса m такой пластинки выражается интегралом:

$$m = \iint_{D} \mathbf{m}(x, y) dx dy. \tag{1.4}$$

Пусть f(x,y) непрерывна в замкнутой области D (а значит, и

интегрируема в ней). Справедливы следующие свойства двойных интегралов (функция g(x,y) также интегрируема в

D)

 1° . (*Линейность*). Для любых a и b из R

$$\iint_{D} (af(x, y) + bg(x, y)) dxdy =$$

$$= a \iint_{D} f(x, y) dxdy + b \iint_{D} g(x, y) dxdy.$$

 2° . (Аддитивность). Если $D = D_1 \ \mathbf{U} \ D_2 \ \mathbf{u} \ D_1 \ \mathbf{u} \ D_2$ не имеют общих внутренних точек, то

$$D_1$$
 D_2
 D_2
 X
Puc. 1.3

$$\iint_{D} f(x, y) dxdy$$

$$= \iint_{D_{1}} f(x, y) dxdy + \iint_{D_{2}} f(x, y) dxdy.$$

3°. Если
$$f(x,y) \ge 0$$
, $\forall (x,y) \in D$, то $\iint_D f(x,y) dx dy \ge 0$.

4°. Если
$$f(x,y) \ge g(x,y)$$
, $\forall (x,y) \in D$, то $\iint_D f(x,y) dx dy \ge \iint_D g(x,y) dx dy$.

5°. (Оценка модуля интеграла).

$$\left| \iint\limits_{D} f(x, y) dx dy \right| \le \iint\limits_{D} \left| f(x, y) dx dy. \right| \tag{1.5}$$

6°. (Оценка интеграла).

Пусть $M = \max_{(x,y)\in D} f(x,y)$, $m = \min_{(x,y)\in D} f(x,y)$. Тогда

$$mS \le \iint_D f(x, y) dx dy \le MS,$$
 (1.6)

где S – площадь области D.

7°. Пусть D — прямоугольник $\left\{a \le x \le b, c \le y \le d\right\}$ и f(x,y) = j(x)g(y). Тогда

$$\iint\limits_{D} j(x)g(y)dxdy = \int\limits_{a}^{b} j(x)dx \cdot \int\limits_{c}^{d} g(y)dy.$$

8°. (**Теорема о среднем**). Пусть f(x,y) — функция, непрерывная в ограниченной замкнутой связной области D. Тогда существует точка $(x,h) \in D$ такая, что

$$\iint_{D} f(x, y) dx dy = f(x, h) \cdot S, \qquad (1.7)$$

где S – площадь области D.

Величина

$$f(x,h) = \frac{1}{S} \iint_{D} f(x,y) dx dy \qquad (1.8)$$

называется средним значением функции f(x,y) в области D.

Bычисление двойных интегралов сводится к последовательному вычислению однократных интегралов.

Рис. 1.4

На плоскости XY множество D вида

$$D = \{(x, y) | a \le x \le b, \ j_1(x) \le y \le j_2(x), \ \forall x \in [a, b] \}$$
 (1.9)

называют элементарным относительно оси Y (рис. 1.4). Здесь функции $\boldsymbol{j}_1(x)$ и $\boldsymbol{j}_2(x)$ непрерывны на [a,b].

Аналогично определяется множество D, элементарное относительно оси X (рис. 1.5).

Теорема 1.1. Если функция f интегрируема на множестве Y вида (1.9), элементарном относительно оси Y, то

$$\iint_{D} f(x, y) dx dy = \int_{a}^{b} \int_{j_{1}(x)}^{j_{2}(x)} f(x, y) dy.$$
 (1.10)

Правая часть в (1.10) является повторным интегралом, т.е. результатом

последовательного вычисления сначала интеграла по y (внутреннего интеграла) при фиксированном x, а затем интеграла по \boldsymbol{x} от получившейся функции.

Если множество D элементарно относительно оси X (рис. 1.5), то для интегрируемой по x функции f(x, y) верно равенство

$$\iint_{D} f(x, y) dx dy = \int_{c}^{d} dy \int_{g_{1}(y)}^{g_{2}(y)} f(x, y) dx.$$
 (1.11)

Множество D, элементарное относительно каждой из осей X и Y,

Рис. 1.5

называется элементарным. Для него верно каждое из равенств (1.10) и (1.11), в частности,

$$\int_{a}^{b} dx \int_{1}^{j_{2}(x)} f(x, y) dy = \int_{c}^{d} dy \int_{g_{1}(y)}^{g_{2}(y)} f(x, y) dx.$$
 (1.12)

Равенство (1.12) используется для перемены порядка интегрирования в повторном интеграле.

- **1.1.** Вычислить интеграл $I_j = \iint_{D_j} f_j(x, y) dx dy$, если
- 1) $f_1(x,y) = (1+x+y)^{-2}$, D_1 треугольник, ограниченный прямыми x=2y, y=2x, x+y=6;
 - 2) $f_2(x,y) = y^2$, область D_2 ограничена линиями $x = y^2$, y = x 2;
 - 3*) $f_3(x, y) = x$, $D_3 = \{2rx \le x^2 + y^2 \le R^2, 0 < 2r < R\}$
- г 1) Треугольник D_1 изображен на рис. 1.6. Отрезком AB разделим D_1 на два треугольника $\ \Delta_1$ и $\ \Delta_2$. Тогда в силу свойства аддитивности

$$I_{1} = \iint_{D_{1}} f_{1}(x, y) dxdy = \iint_{\Delta_{1}} f_{1}(x, y) dxdy + \iint_{\Delta_{2}} f_{2}(x, y) dxdy.$$

По формуле (1.10) имеем:

$$\iint_{\Delta_1} f_1(x, y) dx dy = \int_0^2 dx \int_{x/2}^{2x} \frac{dy}{(1 + x + y)^2} =$$

$$= \int_0^2 \left(-\frac{1}{1 + x + y} \middle| \begin{array}{c} y = 2x \\ y = x/2 \end{array} \right) dx =$$

$$= \int_{0}^{2} \left(-\frac{1}{1+3x} + \frac{1}{1+3x/2} \right) dx = -\frac{1}{3} \ln 7 + \frac{2}{3} \ln 4,$$

$$\iint_{\Delta_{2}} f_{1}(x, y) dx dy = \int_{2}^{4} dx \int_{x/2}^{6-x} \frac{dy}{\left(1+x+y\right)^{2}} = \int_{2}^{4} \left(-\frac{1}{7} + \frac{1}{1+3x/2} \right) dx = -\frac{2}{7} + \frac{2}{3} \ln \frac{7}{4};$$

следовательно, $I_1 = \frac{1}{3} \ln 7 - \frac{2}{7}$.

2) Множество D_2 изображено на рис. 1.7. Оно элементарно относительно оси X:

$$D_2 = \{(x, y) | -1 \le y \le 2, y^2 \le x \le y + 2 \}$$

Интеграл I_2 вычисляем по формуле (1.11):

$$I_{2} = \int_{-1}^{2} dy \int_{y^{2}}^{y+2} y^{2} dx = \int_{-1}^{2} y^{2} \left(x \left| \frac{y+2}{y^{2}} \right) dy =$$

$$= \int_{-1}^{2} \left(y^{3} + 2y^{2} - y^{4} \right) dy = \frac{63}{20}.$$

3) Неконцентричное кольцо D_3 изображено на рис. 1.8 и заштриховано вертикальными линиями. Вычисление интеграла I_3 производим следующим образом. Обозначим K_1 – круг $x^2+y^2 \le R^2$, K_2 – круг $x^2+y^2 \le 2rx$. Откуда $D_3=K_1\setminus K_2$. Тогда по свойству аддитивности двойного интеграла будем

$$I_3 = \iint_{K_1} x dx dy - \iint_{K_2} x dx dy,$$

 K_2 R XPuc. 1.8

первый интеграл здесь обозначим J_1 , второй $-J_2$. Круги K_1 и K_2 зададим в виде

$$K_{1} = \left\{ -R \le y \le R, -\sqrt{R^{2} - y^{2}} \le x \le \sqrt{R^{2} - y^{2}} \right\},$$

$$K_{2} = \left\{ -r \le y \le r, r - \sqrt{r^{2} - y^{2}} \le x \le r + \sqrt{r^{2} - y^{2}} \right\}.$$

По формуле (1.11) находим

иметь

$$J_1 = \int_{-R}^{R} dy \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} x dx = 0,$$

так как функция x во внутреннем интеграле нечетна, то

$$J_2 = \int_{-r}^{r} dy \int_{r-\sqrt{r^2-y^2}}^{r+\sqrt{r^2-y^2}} x dx = 2r \int_{-r}^{r} \sqrt{r^2-y^2} dy = \mathbf{p}r^3.$$

Следовательно, $I_3 = J_1 - J_2 = -p r^3$. p

1.2. Изменить порядок интегрирования в интеграле

$$I = \int_{0}^{1} dx \int_{x^{2}/9}^{x} f(x, y) dy + \int_{1}^{3} dx \int_{x^{2}/9}^{1} f(x, y) dy.$$
 (1.13)

 ${f r}$ Восстановим область интегрирования ${f D}$. В первом повторном интеграле область в правой части равенства (1.13) определяется следующим образом:

$$D_1 = \left\{ 0 \le x \le 1, \frac{x^2}{9} \le y \le x \right\},\,$$

а область D_2 во втором повторном интеграле выражается так:

$$D_2 = \left\{ 1 \le x \le 3, \frac{x^2}{9} \le y \le 1 \right\}.$$

Рис. 1.9

Так как область $D = D_1 \mathbf{U} D_2$ элементарна по X , то по формуле (1.11) получаем

$$I = \int_{0}^{1} dy \int_{y}^{3\sqrt{y}} f(x, y) dx.$$

Корень берем с положительным знаком потому, что все точки области D имеют неотрицательные абсциссы. $\mathbf p$

1.3. Оценить интеграл
$$I = \iint_D \sin \frac{x^2 - y + 1}{x^2 + y^2 + 1} dx dy$$
, где $D - \text{круг } x^2 + y^2 \le 9$.

г Воспользуемся оценкой интеграла (1.6). В нашем случае $S = pr^2 = 9p$. Так как $|\sin t| \le 1, \forall t$, то в качестве границ подынтегральной функции можно взять m = -1, M = 1. Тогда, согласно (1.6), $-9p \le I \le 9p$. р

1.4. Вычислить двойные интегралы:

1)
$$\iint_{D} (x \sin y + y \cos x) dx dy, \quad D = \{0 \le x \le p/2, 0 \le y \le p/2\}.$$

2)
$$\iint_{D} \frac{y}{x^2} dxdy, \quad D = \{0 < x, x^3 \le y \le x^2\}.$$

3)
$$\iint_D x^2 y^2 dxdy$$
, D ограничена линиями $x = y^2, x = 1$.

4)
$$\iint_D xy^2 dxdy, \quad D = \{x^2 + y^2 \le a^2, x \ge 0\}.$$

5)
$$\iint_{D} (x^3 + y^3) dx dy, \quad D = \{x^2 + y^2 \le R^2, y \ge 0\}.$$

6)
$$\iint (x+2y)dxdy$$
, D – ограничена прямыми $y = x$, $y = 2x$, $x = 2$, $x = 3$.

6)
$$\iint_D (x+2y) dxdy$$
, D – ограничена прямыми $y=x$, $y=2x$, $x=2$, $x=3$.
7) $\iint_D (x^2+y^2) dxdy$, D – ограничена прямыми $y=x$, $y=x+a$, $y=a$, $y=3a$.

8)
$$\iint_{D} \sqrt{x - y} \, dx dy, \quad D = \left\{ \frac{4}{5} x \le y \le x, 1 \le y \le 4 \right\}.$$

9)
$$\iint_D \sin p(x-y) dxdy$$
, D – треугольник с вершинами (-4,1),(-1,1),(7/2,17/2).

10)
$$\iint_D y \, dx dy, \quad D = \{0 \le y \le 6, x < 6, xy > 3, y - x < 2\}$$

10)
$$\iint_D y \, dx dy$$
, $D = \{0 \le y \le 6, x < 6, xy > 3, y - x < 2\}$.
OTB.: 1) $p^2/4$; 2) $1/15$; 3) $4/27$; 4) $2a^5/15$; 5) $4R^5/15$; 6) $76/3$; $14a^4$; 8) $31/30$; 9) $(10-45p)/6p^2$; 10) $255/4$.

7)
$$14a^4$$
; **8)** $31/30$; **9)** $(10-45p)/6p^2$; **10)** $255/4$

1.5*. Доказать, что при
$$|a| \neq 1$$
:
$$\int_{0}^{p} \ln(a^2 + 1 - 2a\cos j) dj = \begin{cases} 2p \ln|a|, |a| > 1, \\ 0, |a| < 1. \end{cases}$$

1.6. Изменить порядок интегрирования в повторных интегралах:

1)
$$\int_{-6}^{2} dx \int_{x^{2}/4-1}^{2-x} f(x,y)dy;$$
 2) $\int_{0}^{1} dx \int_{0}^{x} f(x,y)dy;$

1)
$$\int_{-6}^{2} dx \int_{x^{2}/4-1}^{2-x} f(x,y)dy;$$
2)
$$\int_{0}^{1} dx \int_{0}^{x} f(x,y)dy;$$
3)
$$\int_{0}^{p} dx \int_{0}^{\sin x} f(x,y)dy;$$
4)
$$\int_{0}^{1} dx \int_{x^{2}}^{2-x} f(x,y)dy;$$
5)
$$\int_{0}^{1} dy \int_{-\sqrt{1-y^{2}}}^{1-y} f(x,y)dx;$$
6)
$$\int_{-2}^{6} dx \int_{-3-\sqrt{12+4x-x^{2}}}^{6} f(x,y)dy.$$

4)
$$\int_{0}^{1} dx \int_{x^{2}}^{2-x} f(x, y) dy;$$

5)
$$\int_{0}^{1} dy \int_{1-x^{2}}^{1-y} f(x,y)dx;$$

6)
$$\int_{-2}^{6} dx \int_{-3-\sqrt{12+4x-x^2}}^{-3+\sqrt{12+4x-x^2}} f(x,y) dy$$

OTB.: 1)
$$\int_{-1}^{0} dy \int_{-2\sqrt{1+y}}^{2\sqrt{1+y}} f(x,y) dx + \int_{0}^{8} dy \int_{-2\sqrt{1+y}}^{2-y} f(x,y) dx;$$

2)
$$\int_{0}^{1} dy \int_{y}^{1} f(x, y) dx;$$

3)
$$\int_{0}^{1} dy \int_{\text{arcsin } y}^{p-\arcsin y} f(x, y) dx;$$

4)
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f(x, y) dx + \int_{1}^{2} dy \int_{0}^{2-y} f(x, y) dx$$

OTB.: 1)
$$\int_{-1}^{0} dy \int_{-2\sqrt{1+y}}^{0} f(x,y) dx + \int_{0}^{8} dy \int_{-2\sqrt{1+y}}^{2-y} f(x,y) dx;$$
2)
$$\int_{0}^{1} dy \int_{y}^{1} f(x,y) dx;$$
3)
$$\int_{0}^{1} dy \int_{arcsin y}^{p-arcsin y} f(x,y) dx;$$
4)
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f(x,y) dx + \int_{1}^{2} dy \int_{0}^{2-y} f(x,y) dx;$$
5)
$$\int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy + \int_{0}^{1} dx \int_{0}^{1-x} f(x,y) dy;$$
6)
$$\int_{-7}^{1} dy \int_{2-\sqrt{7-6y-y^{2}}}^{2+\sqrt{7-6y-y^{2}}} f(x,y) dx.$$

6)
$$\int_{-7}^{1} dy \int_{2-\sqrt{7-6y-y^2}}^{2+\sqrt{7-6y-y^2}} f(x,y) dx.$$

1.7. Оценить интегралы:

1)
$$I = \iint_D (x^2 - y^2) dx dy$$
, $D = \{x^2 + y^2 - 2x \le 0\}$,

2)
$$I = \iint_D (4 + \cos xy) dx dy$$
, $D = \{x^2 + y^2 \le 4\}$;

3)
$$I = \iint_D (1 + x + y) dx dy$$
, $D = \{0 \le x \le 1, 0 \le y \le 2\}$;

4)
$$I = \iint_D (x^2 + y^2 - 4x - 4y + 10) dxdy$$
, $D = \{x^2 + 4y^2 - 2x - 16y + 13 \le 0\}$.

OTB.: 1)
$$-p/2 < I < 4p$$
; 2) $12p < I < 20p$; 3) $2 < I < 8$; 4) $4p < I < 22p$.

1.8. Найти средние значения заданных функций в указанных областях:

- 1) $f(x, y) = \sin^2 x \sin^2 y$ в квадрате $\{0 \le x \le p, 0 \le y \le p\}$;
- 2) $f(x,y) = x^2 + xy + 2y^2$ в треугольнике, ограниченном осями координат и прямой x + y = 1;
 - 3) $f(x, y) = \cos(x + y)$ в области, ограниченной прямыми x = 0, y = p, y = x;
- 4) f(x, y) = xy в области, ограниченной осью X и верхней полуокружностью $(x-2)^2 + y^2 = 1$;

5)
$$f(x, y) = \sqrt{R^2 - x^2 - y^2}$$
 в круге $x^2 + y^2 \le R^2$.

OTB.: 1) 1/4; 2) 7/12; 3) $-4/p^2$; 4) 4/3p;

1.9. Найти площадь области, ограниченной кривыми:

- 1) $x^2 + y^2 = 2ax$, y = 2ax, x = a (первый квадрант);
- 2) $4y = x^2 4x, x = y + 3$;
- 3) $v^2 = 10x + 25$, $v^2 = 9 6x$:
- 4) $y^2 = 2px + p^2$, $y^2 = q^2 2qx$, p > 0, q > 0;
- 5) $x^2 + y^2 = 4$, $y^2 = 4 4x$, x < 1;
- 6) $y^2 = 2x$, $y^2 = 4x x^2$, $2x < y^2$;
- 7) $y = \cos x$, $y = \cos 2x$, $0 \le x \le 2p/3$;
- 8) $2x^2 + 2y^2 = 2x + 1, x^2 + y^2 \ge 1$;
- 9)* $\sqrt{x} + \sqrt{y} = \sqrt{a}, x + y = a;$

10)*
$$(x + y)^2 + x^2 = a^2$$
.

Отв.: 1) $8a^2/3 - pa^2/2$; 2) 8/3;

- 3) $16\sqrt{15}/3$; 4) $(p+q)\sqrt{pq}/3$;

- **5)** (6p+8)/3; **6)** (6p-16)/3; **7)** $3\sqrt{3}/4$; **8)** $(p+6\sqrt{3})/24$;
- **9**) $a^2/3$; **10**) pa^2 .

Пусть функции

$$x = x(u, v), y = y(u, v)$$
 (1.14)

осуществляют взаимно однозначное непрерывно дифференцируемое отображение области D плоскости UV на область G плоскости XY. Это существует обратное дифференцируемое означает, что непрерывно отображение u = u(x, y), v = v(x, y) области G на область D и в области Dякобиан преобразования, т.е.

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \neq 0, \forall (u,v) \in D.$$

Величины и и у можно рассматривать как прямоугольные координаты точек области D и в то же время как *криволинейные координаты* точек области G.

Если в двойном интеграле $\iint f(x,y)dxdy$ произвести замену по формулам

(1.14), то областью интегрирования полученного интеграла будет уже область D, которая при надлежащем выборе функций x(u,v), y(u,v) может оказаться проще области G, и имеет место формула

$$\iint_{G} f(x,y)dxdy = \iint_{D} f(x(u,v),y(u,v)) |J(u,v)| dudv.$$
 (1.15)

1.10. Вычислить $I = \iint \sqrt{xy} \, dx \, dy$,если область G ограничена кривыми

 $y^2 = ax$, $y^2 = bx$, xy = p, xy = q (0 < a < b, 0).**r**Перейдем к новым переменным <math>u и v по формулам $y^2 = ux$, xy = v. Тогда $x = u^{-1/3}v^{2/3}$, $y = u^{1/3}v^{1/3}$,

$$\frac{\partial x}{\partial u} = -\frac{1}{3}u^{-4/3}v^{2/3}, \frac{\partial x}{\partial v} = \frac{2}{3}u^{-1/3}v^{-1/3}, \frac{\partial y}{\partial u} = \frac{1}{3}u^{-2/3}v^{2/3}, \frac{\partial y}{\partial v} = \frac{1}{3}u^{1/3}v^{-2/3},$$

$$J(u,v) = \begin{vmatrix} -\frac{1}{3}u^{-4/3}v^{2/3} & \frac{2}{3}u^{-1/3}v^{-1/3} \\ \frac{1}{3}u^{-2/3}v^{1/3} & \frac{1}{3}u^{1/3}v^{-2/3} \end{vmatrix} = -\frac{1}{3u} \Rightarrow |J(u,v)| = \frac{1}{3u}$$

при u > 0.

Уравнения линий принимают вид u=a, u=b, v=p, v=q. Область Gплоскости XY преобразуется в прямоугольник D плоскости UV (рис. 1.10).

Рис. 1.10

Применив формулу (1.15), получим

$$I = \iint_{D} \sqrt{v} \frac{dudv}{3u} = \frac{1}{3} \int_{a}^{b} \frac{du}{u} \int_{p}^{q} \sqrt{v} dv = \frac{2}{9} (q^{3/2} - p^{3/2}) \ln \frac{b}{a}. \quad \mathbf{p}$$

Наиболее употребительными из криволинейных координат являются полярные координаты (полярная система координат (ПСК)):

$$x=r\cos j$$
, $y=r\sin j$,

для которых

$$J(r,j) = \begin{vmatrix} \cos j & -r\sin j \\ \sin j & r\cos j \end{vmatrix} = r,$$

и формула (1.15) записывается в виде

$$\iint_{G} f(x,y)dxdy = \iint_{D} f(r\cos j, r\sin j) r dr dj.$$
 (1.16)

 $\iint_G f(x,y) dx dy = \iint_D f(r\cos j, r\sin j) r dr dj. \tag{1.16}$ **1.11.** Вычислить $I = \iint_D \ln(x^2 + y^2) dx dy$, если G – кольцо между окружностями $x^2+y^2=e^2$, $x^2+y^2=e^4$.

r Перейдем к полярным координатам

$$I = \iint_{D} \ln r^{2} \cdot r \ dr \ dj = 2 \iint_{D} r \ln r \ dr \ dj = 2 \int_{0}^{2p} dj \int_{e}^{e^{2}} r \ln r \ dr.$$

Взяв внутренний интеграл по частям, получим $I = pe^2(3e^2-1)$.

Другой распространенной системой координат на плоскости является обобщенная полярная система координат (обобщенная ΠCK). ней обобщенные полярные координаты вводятся по формулам

$$\frac{x}{a} = r\cos j, \ \frac{y}{b} = r\sin j, \ r \ge 0, \ 0 \le j \le 2p.$$
 (1.17)

Рис. 1.12 Рис. 1.11

Согласно (1.17) для эллипса $x^2/a^2+y^2/b^2=1$ в обобщенной ПСК получаем уравнение r=1, т.е. обобщенные полярные координаты отображают эллипс с полуосями a и b (рис. 1.11) на прямоугольник $\{0 \le r \le 1, 0 \le j \le 2p\}$ (рис. 1.12).

Для обобщеных полярных координат J = abr, так что формула замены переменных в обощенной ПСК имеет вид

$$\iint_{G} f(x,y)dxdy = ab\iint_{D} f(ar\cos j, br\sin j) r dr dj . \tag{1.18}$$

Для конкретной области G пределы изменения обобщенных полярных координат r и j находят из уравнений линий, ограничивающих эту область.

1.12. Найти массу пластины G, заданной неравенствами $1 \le x^2/4 + y^2/9 \le 36, x \ge 0, y \ge 3x/2$, имеющей поверхностную плотность $m = 9x/y^3$.

 ${f r}$ Вводим обобщенные полярные координаты ${f r}$ и ${f j}$ по формулам $x = 2r\cos j$, $y = 3r\sin j \Rightarrow J = abr = 6r$. Из неравенств $1 \le x^2/4 + y^2/6 \le 36$ $1 \le r^2 \le 36 \Rightarrow 1 \le r \le 6$. Из неравенства имеем $x \ge 0$ вытекает, что

 $2r\cos j \ge 0 \Rightarrow -\frac{p}{2} \le j \le \frac{p}{2}$, а из неравенства $y \ge 3x/2$ следует, что $tgj \ge 1 \Rightarrow \left(\frac{p}{4} \le j \le \frac{p}{2}\right) \mathbf{U}\left(\frac{5p}{4} \le j \le \frac{3p}{2}\right)$.

Значит, $p_4 \le j \le p_2$. В таком случае масса пластинки (эллиптическое кольцо)

$$m = \iint_{G} \frac{9x}{y^{3}} dx dy = 4 \iint_{D} \frac{\cos j}{\sin^{3} j} \cdot \frac{1}{r} dr dj = 4 \int_{p/4}^{p/2} \frac{\cos j}{\sin^{3} j} \int_{1}^{6} \frac{dr}{r} = 2 \ln 6. \quad \mathbf{p}$$

1.13. Произвести указанную замену переменных и вычислить интеграл:

1)
$$\iint_D (2x-y) dx dy$$
, где D – параллелограмм, ограниченный прямыми $x+y=1$,

$$x+y=2$$
, $2x-y=1$, $2x-y=3$. 3ameta: $x + y = u$, $2x-y = v$;

2)
$$\iint_D (x^2 + y^2) dx dy$$
, где D – область, ограниченная окружностями

$$x^2 + y^2 + 2x - 10 = 0$$
, $x^2 + y^2 + 2x = 0$. Замена : $x + 1 = r\cos j$, $y = r\sin j$;

3)
$$\iint_D xy dx dy$$
, где D – область, ограниченная линиями $xy = 1, x + y = \frac{5}{2}$.

Замена: x + y = u, xy = v;

4)
$$\iint_D e^{k(x+y)^2} dxdy$$
, где область D определяется неравенствами

$$x \ge 0$$
, $x + y \le 1$. Замена : $x = u - uv$, $y = uv$;

$$(5)*$$
 $\iint_D x^2 y dx dy$, где D – область, ограниченная гиперболами

$$xy = p, xy = q \ (0 . Замена: $x = \sqrt{u/v}, y = \sqrt{uv}$.$$

Otb.: 1)
$$\frac{4}{3}$$
; 2) $70p$; 3) $\frac{165}{128} - \ln 2$; 4) $(e^k - 1)/2k$;

5)
$$\frac{2}{5} \cdot \frac{\sqrt{b} - \sqrt{a}}{\sqrt{ab}} \left(\sqrt{q^5} - \sqrt{p^5} \right)$$
.

1.14. Вычислить интегралы, перейдя к полярным координатам:

1)
$$\iint_D x dx dy$$
, $D = \{2x \le x^2 + y^2 \le 6x, y \le x\}$,

2)
$$\iint_{D} \frac{dxdy}{x^2 + y^2 - 1}, \quad D = \left\{ 9 \le x^2 + y^2 \le 25 \right\},$$

3)
$$\iint_D xy^2 dxdy$$
, $D = \{x^2 + y^2 \le a^2, x \ge 0\}$,

4)
$$\iint_{D} (ax + by) dx dy$$
, $D = \{x^2 + y^2 \le R^2, x \le y\}$,

5)
$$\iint_D y dx dy$$
, $D = \{x^2 + y^2 \le 2x, x > y\}$;

6)
$$\iint_D x dx dy, \quad D = \left\{ ax \le x^2 + y^2 \le 2ax, y \ge 0 \right\}, \ a > 0;$$
7)*
$$\iint_D \frac{dx dy}{\left(x^2 + y^2\right)^2}, \quad D \text{ ограничена линиями } x^2 - y^2 = 6, x = 3;$$

8)*
$$\iint_D y dx dy, \ D = \left\{ 0 \le x \le (x^2 + y^2)^{3/2} \le 1, y \ge 0 \right\}.$$

Otb.: 1)
$$\frac{13(9p+8)}{6}$$
; 2) $p \ln 3$; 3) $\frac{2a^{5}}{15}$; 4) $\frac{\sqrt{2}(b-a)R^{3}}{3}$; 5) $-\frac{1}{6}$; 6) $\frac{pa^{2}}{16}$; 7) $\frac{(3\sqrt{3}-p)}{108}$; 8) $\frac{1}{5}$.

Согласно формулам (1.3) и (1.16), площадь плоской фигуры G в ПСК выражается интегралом

$$S = \iint_{D} r dr dj , \qquad (1.19)$$

где D – образ фигуры G при отображении $x = r\cos j$, $y = r\sin j$.

1.15. Найти площадь области, ограниченной кривыми:

1)
$$x^2 + y^2 = 2ax, x^2 + y^2 = 2bx, y = x, y = 0, b > a > 0$$
;

2)
$$(x^2 + y^2)^2 = 2a^2(x^2 - y^2), x^2 + y^2 = a^2(\sqrt{x^2 + y^2} \ge a > 0);$$

3)* $(x^2 + y^2 - ax) = a^2(x^2 + y^2), x^2 + y^2 = a\sqrt{3}y$ (область вне кардиоиды, но внутри окружности); 4)* $(x^2 + y^2)^2 = a^2x^2 - b^2y^2$;

$$(x^2 + y^2)^2 = a^2x^2 - b^2y^2$$
;

5)
$$(x^2 + y^2)^3 = a(x^3 + y^3)$$
.

Отв.: 1)
$$(p+2)(b^2-a^2)/4$$
; 2) $(3\sqrt{3}-p)a^2/3$; 3) $3a^2\sqrt{3}/4$;

4)
$$ab + (a^2 - b^2)arctg(a/b)$$
; **5)** $5pa^2/16$.

Масса плоской пластинки G с поверхностной плотностью m(x, y), согласно формулам (1.4) и (1.16), выражается формулой

$$\mathbf{m} = \iint_{D} \mathbf{m} (a \cos j, b \sin j) ab \quad rd \quad rdj , \qquad (1.20)$$

где D – образ пластинки G при отображении (1.18).

1.16. Найти массу пластинки G, заданной неравенствами, если m – поверхностная площадь:

1)
$$G: x^2 + y^2/4 \le 1; m = y^2$$
. OTB.: 2p;

2) $G: 1 \le x^2/4 + y^2/16 \le 5, x \ge 0, y \ge 2x; m = x/y.$ OTB.: $4\ln 2$;

3) $G: 1 \le x^2/9 + y^2/4 \le 5, x \ge 0, y \ge 2x/3; m = x/y.$ OTB.: 9ln2;

4) $G: x^2/4 + y^2/9 \le 1, x \ge 0, y \ge 0; m = x^5y.$ OTB.: 12.

1.2. Тройные интегралы

Определение тройного интеграла и его свойства. Вычисление тройных интегралов в ПДСК. Замена переменных интегрирования в тройных интегралах. Тройной интеграл в цилиндрической системе координат (ЦСК) и в сферической системе координат (ССК).

Пусть функция f(x,y,z) ограничена и непрерывна в замкнутой ограниченной области $V \subset R^3$ с границей Γ . Разобьем область V с помощью конечного числа гладких поверхностей на частичные области (ячейки) V_i , $i=\overline{1,n}$, объем каждой из которых равен Δv_i . В ячейке V_i выберем произвольно точку (x_i,h_i,z_i) и построим интегральную сумму Римана:

$$\mathbf{S}_{n} = \sum_{i=1}^{n} f\left(\mathbf{x}_{i}, \mathbf{h}_{i}, \mathbf{z}_{i}\right) \Delta v_{i}. \tag{1.21}$$

Пусть $\Delta = \max_{1 \le i \le n} diam V_i$. Если существует предел интегральных сумм

(1.21) при $\Delta \to 0$, не зависящий ни от способа разбиения области V на V_i , ни от выбора точек $(x_i,h_i,z_i) \in V_i$, то его называют *тройным интегралом* от функции f(x,y,z) по области V и обозначают $\iiint_V f(x,y,z) dx dy dz$ или

 $\iiint\limits_V f(x,y,z)dv$. Функция f при этом называется интегрируемой по Риману в области V.

Основные свойства тройных интегралов аналогичны свойствам двойных интегралов.

В случае *прямоугольной области* $V = \{a \le x \le b, c \le y \le d, p \le z \le q\}$ вычисление тройного интеграла сводится к вычислению *повторных интегралов* по формулам:

$$\iiint\limits_V f(x,y,z)\,dxdydz = \int\limits_a^b dx \int\limits_c^d dy \int\limits_p^q fdz = \int\limits_c^d dy \int\limits_a^b dx \int\limits_p^q fdz = \int\limits_p^q dz \int\limits_c^d dy \int\limits_a^b fdx$$
и т.д.

(всего имеется 6 возможностей).

1.17. Вычислить тройные интегралы:

1)
$$\iiint_{V} (x + y + z) dv, \quad V = \{0 \le x \le a, \ 0 \le y \le b, \ 0 \le z \le c\};$$

2)
$$\iiint_V xy dv$$
, $V = \left\{ 1 \le x \le 2, -2 \le y \le -1, 0 \le z \le \frac{1}{2} \right\}$;

3)
$$\iiint_{V} r \sin q dr dj dq, \quad V = \left\{ 0 \le j \le \frac{p}{2}, \ 0 \le r \le 2, \ 0 \le q \le \frac{p}{2} \right\};$$

4)
$$\iiint_{V} \frac{dv}{(x+y+z)^{3}}, \quad V = \{1 \le x \le 2, \ 1 \le y \le 2, \ 1 \le z \le 2\}.$$

OTB.: 1)
$$\frac{abc}{2}(a+b+c)$$
; 2) $-\frac{9}{8}$; 3) p ; 4) $\frac{1}{2}\ln\frac{128}{125}$.

В случае криволинейной области $V = \left\{ a \le x \le b, j_1(x) \le y \le j_2(x), \ q_1(x,y) \le z \le q_2(x,y) \right\}$ имеет место следующая формула вычисления тройного интеграла:

$$\iiint_{V} f(x, y, z) dv = \int_{a}^{b} \int_{j_{1}(x)}^{j_{2}(x)} \int_{q_{1}(x, y)}^{q_{2}(x, y)} f(x, y, z) dz.$$
(1.22)

Это означает, что сначала функция f(x, y, z) интегрируется по z при фиксированных x и y, затем результат интегрируется по y при фиксированном x и, наконец, интегрирование производится по x в постоянных пределах от a до b.

Тройной интеграл

$$v = \iiint_{V} dx dy dz \tag{1.23}$$

выражает собой объем v области (тела) V. Если подынтегральная функция f(x,y,z) задает плотность $\mathbf{m}(x,y,z)$ тела, занимающего область V, то тройной интеграл выражает массу m этого тела:

$$m = \iiint\limits_V \mathbf{m}(x, y, z) \, dx dy dz.$$
 (1.24)
1.18. Вычислить интеграл

1.18. Вычислить интеграл $I = \iiint_V (x + y + z) \ dv$, где область V

ограничена плоскостями x = 0, y = 0, z = 0, x + y + z = 1.

 ${f r}$ Множество V- тетраэдр, который можно задать в виде $V=\left\{0\leq x\leq 1,0\leq y\leq 1-x,0\leq z\leq 1-x-y\right\}$ (рис. 1.13).

По формуле (1.22) имеем

$$I = \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} (x+y+z) dz = \int_{0}^{1} dx \int_{0}^{1-x} \frac{1}{2} (x+y+z)^{2} \Big|_{z=0}^{z=1-x-y} dy = \frac{1}{2} \int_{0}^{1} dx \int_{0}^{1-x} (1-(x+y)^{2}) dy = \frac{1}{2} \int_{0}^{1} (y-\frac{1}{3}(x+y)^{3}) \Big|_{y=0}^{y=1-x} dx = \frac{1}{2} \int_{0}^{1} (y-\frac{1}{3}(1-x^{3})-x) dx = \frac{1}{8}.$$

1.19. Вычислить тройные интегралы по областям, ограниченным указанными поверхностями:

1)
$$\iiint_{V} yzdv; \quad x^{2} + y^{2} + z^{2} = R^{2}, z \ge 0;$$

2)
$$\iiint_V xyzdv$$
; $x^2 + y^2 + z^2 = R^2$, $x^2 + y^2 + z^2 = 2Rz$; $x \ge 0$, $y \ge 0$; (общая часть)

3)
$$\iiint_V (x^2 + y^2 + z^2) dv$$
; $y^2 + z^2 = x^2$, $x^2 + y^2 + z^2 = R^2$, $x \ge 0$; (общая часть)

4)
$$\iiint_{U} xyzdv$$
; $y = x^2, x = y^2, z = xy, z = 0$;

5)
$$\iiint_{V} (x^2 + y^2) dv; \quad z = y^2 - x^2, z = 0, y = 1.$$

OTB.: 1) 0; 2)
$$53R^6/_{3840}$$
; 3) $(2-\sqrt{2})pR^5/_5$; 4) $1/_{96}$; 5) $4/_{15}$.

1.20. Вычислить с помощью тройного интеграла объемы тел, ограниченных указанными поверхностями:

1)
$$x^2 + y^2 + 4z^2 = 1$$
;

2)
$$z = x^2 + y^2$$
, $z = 2x^2 + 2y^2$, $y = x$, $y = x^2$;

3)
$$az = x^2 + y^2, z = \sqrt{x^2 + y^2} (a > 0);$$

4)
$$x + y + z = a, x + y + z = 2a, x + y = z, x + y = 2z, x \ge 0, y \ge 0, z \ge 0$$
;

5)
$$y^2 = 4a^2 - 3ax$$
, $y^2 = ax$, $z = \pm h$;

6)
$$y^2 / b^2 + z^2 / c^2 = 2 x / a, x = a.$$

OTB.: 1)
$$2p/_3$$
; 2) $3/_{35}$; 3) $pa^3/_6$; 4) $49a^3/_{864}$; 5) $32a^2h/_9$; 6) $pabc$.

Пусть переход от переменных x,y,z к новым переменным u,v,w осуществляется по формулам x=x(u,v,w), y=y(u,v,w),z=z(u,v,w), где функции x(u,v,w), y(u,v,w), z(u,v,w) непрерывны вместе со своими частными производными первого порядка и устанавливают взаимно однозначное и в обе стороны непрерывное соответствие между точками области V пространства XYZ и точками некоторой области V' пространства UVW. Пусть далее якобиан J в области V' не обращается в нуль:

$$J = \begin{vmatrix} x'_{u} & x'_{v} & x'_{w} \\ y'_{u} & y'_{v} & y'_{w} \\ z'_{u} & z'_{v} & z'_{w} \end{vmatrix} \neq 0.$$
 (1.25)

Тогда пользуются формулой

$$\iiint\limits_{V} f(x,y,z)dxdydz = \iiint\limits_{V} f[x(u,v,w),y(u,v,w),z(u,v,w)]|J|dudvdw. \qquad (1.26)$$

В частности, при переходе от декартовых координат к цилиндрическим координатам r, j, z (ЦСК) (рис. 1.14), связанным с x, y, z соотношениями

$$x = r\cos j, y = r\sin j, z = z, \tag{1.27}$$

 $(0 \le r < +\infty, 0 \le j < 2p$ или $-p \le j < p, |z| < \infty)$, якобиан J преобразования (1.27), согласно формуле (1.25) (u = r, v = j, w = z), равен J = r. Тогда, согласно (1.26), формула преобразования тройного интеграла к цилиндрическим координатам имеет вид

$$\iiint_{V} f(x, y, z) dx dy dz = \iiint_{V} f(r \cos j, r \sin j, z) r dr dj dz.$$
 (1.28)

Заметим, что в ЦСК $x^2 + y^2 = r^2$. Далее, согласно (1.28), формулы (1.23) и (1.24) для объема тела V и его массы с плотностью m(x,y,z) в ЦСК принимают вид соответственно:

$$v = \iiint_{V'} r dr dj dz, \tag{1.29}$$

$$v = \iiint_{V'} r dr dj dz, \qquad (1.29)$$

$$m = \iiint_{V'} m(r \cos j, r \sin j, z) r dr dj dz, \qquad (1.30)$$

где V' – образ области V при преобразовании (1.28).

При переходе от декартовых координат х, у, z к сферическим координатам r, j, q (ССК), связанным с x, y, z соотношениями

$$x = r \sin q \cos j, y = r \sin q \sin j, z = r \cos q, \qquad (1.31)$$

или $\left(-p \leq j < p, 0 \leq q \leq p\right)$, модуль якобиана J $(0 \le r \le +\infty, 0 \le j < 2p)$ согласно (1.31),преобразования (1.25)формуле $(u = r, v = j, w = q), |J| = r^2 \sin q.$ Тогда, согласно (1.26),формула преобразования тройного интеграла к сферическим координатам имеет вид

$$\iiint\limits_V f(x,y,z)dxdydz = \iiint\limits_V f(r\sin q\cos j, r\sin q\sin j, r\cos q)r^2\sin q\,drdj\,dq, (1.32)$$

где V' – образ области V при преобразовании (1.31).

В ССК $x^2 + y^2 + z^2 = r^2$. Далее, согласно (1.28), формулы (1.23) и (1.24) для объема тела V и его массы с плотностью m(x, y, z) в ССК принимают вид соответственно:

$$v = \iiint_{V'} r^2 \sin q \, dr \, dq \, dj \,, \tag{1.33}$$

$$m = \iiint_{V'} m(r \sin q \cos j, r \sin q \sin j, r \cos q) r^2 \sin q \, dr \, dq \, dj, \qquad (1.34)$$

где, по-прежнему, V' – образ области V при преобразовании (1.31).

1.21. Расставить пределы интегрирования в тройном интеграле

$$I = \iiint_{V} f(x, y, z) dx dy dz:$$

а) в ПДСК; б) в ЦСК; в) в ССК, если V- цилиндр, ограниченный поверхностями $x^2+y^2=a^2, z=0, z=H$ (рис. 1.16).

r a) В ПДСК задача решается наиболее просто:

$$I = \int_{-a}^{a} dx \int_{-\sqrt{a^2 - x^2}}^{\sqrt{a^2 - x^2}} \int_{0}^{H} f(x, y, z) dz;$$

б) В ЦСК угловая координата j изменяется, очевидно, от 0 до 2p, полярная координата r в круге $x^2 + y^2 \le a^2$ изменяется от r = 0 до r = a. Координата z в ЦСК имеет тот же смысл, что и в ПДСК. Поэтому в данном цилиндре z изменяется от 0 до H. Таким образом, в ЦСК, в силу формулы (1.30),

$$I = \int_{0}^{2p} dj \int_{0}^{a} r dr \int_{0}^{H} f(r\cos j, r\sin j, z) dz;$$

в) В ССК одним тройным интегралом не удастся обойтись, ибо луч OL на поверхности цилиндра разделяет

Рис. 1.16

точки B, лежащие на поверхности z=H, от точек A, лежащих на боковой поверхности цилиндра. Уравнение поверхности z=H в ССК, согласно (1.31), имеет вид $H=r\cos q \Rightarrow r=\frac{H}{\cos q}$. Уравнение боковой поверхности цилиндра $x^2+y^2=a^2$ в ССК, согласно (1.31), принимает вид

$$r^{2}\sin^{2}q\cos^{2}j + r^{2}\sin^{2}q\sin^{2}j = a^{2} \Rightarrow r^{2}\sin^{2}q = a^{2} \Rightarrow r = a/\sin q.$$

Для точек поверхности z=H угол q очевидно изменяется в пределах от

q = 0 до $q = q_1 = arctg(a/H)$, а для точек боковой поверхности $x^2 + y^2 = a^2$ координата q изменяется от $q = arctg(\frac{a}{H})$ до $q = \frac{p}{2}$. Координата j в обоих случаях изменяется от 0 до 2p.

Таким образом, согласно (1.32), имеем

$$I = \int_{0}^{2p} dj \int_{0}^{arctg(a/H)} \sin q \, dq \int_{0}^{H/\cos q} r^{2} f(r \sin q \cos j, r \sin q \sin j, r \cos q) dr +$$

$$+ \int_{0}^{2p} dj \int_{arctg(a/H)}^{\frac{p}{2}} \sin q \, dq \int_{0}^{a/\sin q} r^{2} f(r \sin q \cos j, r \sin q \sin j, r \cos q) dr. \quad \mathbf{p}$$

1.22. Вычислить интеграл a)
$$I_1 = \iiint_V \frac{(x^2 + y^2)dv}{\sqrt{x^2 + y^2 + z^2}}, \qquad V = \left\{ \sqrt{x^2 + y^2} \le z \le a \right\};$$

6)*
$$I_2 = \iiint_V dx dy dz$$
, $V = \{(x^2 + y^2 + z^2)^2 \le 4xyz, x \ge 0, y \ge 0\}$.

 ${f r}$ а) Перейдем к цилиндрическим координатам $x=r\cos j$, $y=r\sin j$, z=z. Область интегрирования V – конус в ПДСК (рис. 1.17).

 $V' = \{0 \le j \le 2p, 0 \le r \le z \le a\}$, т.е. является призмой (рис. 1.18). Вычисляем интеграл:

$$I_{1} = \iiint_{V^{+}} \frac{\mathbf{r}^{2}}{\sqrt{\mathbf{r}^{2} + z^{2}}} \mathbf{r} d\mathbf{r} d\mathbf{j} dz = \int_{0}^{2p} d\mathbf{j} \int_{0}^{a} dz \int_{0}^{z} \frac{\mathbf{r}^{3} d\mathbf{r}}{\sqrt{\mathbf{r}^{2} + z^{2}}} = 2\mathbf{p} \int_{0}^{a} \frac{2 - \sqrt{2}}{3} z^{3} dz = \frac{\mathbf{p}}{6} (2 - \sqrt{2}) a^{4}.$$

б*) Перейдем к сферическим координатам

$$x = r\cos j \cos q$$
, $y = r\cos j \sin q$, $z = r\sin q$, (1.31')

 $0 \le j \le 2p$, $-p/2 \le 0 \le p/2$. Подстановка в заданные неравенства где $r \ge 0$, дает

$$\begin{cases} r^4 \le 4r^3 \cos j \sin j \cos^2 q \sin q, \\ r \cos j \cos q \ge 0, r \sin j \cos q \ge 0. \end{cases}$$

Так как $r \ge 0$, $\cos q \ge 0$, то эта система равносильна следующей:

$$\begin{cases} r \le 2\sin 2j \cos^2 q \sin q, \\ \cos j \ge 0, \sin j \ge 0 \Rightarrow 0 \le j \le P/2. \end{cases}$$

Первое неравенство системы имеет место тогда и только тогда, когда $\sin q \geq 0$, $0 \le q \le p/2$. Следовательно, образ V' области V при преобразовании декартовых координат в сферические по формулам (1.31') имеет вид

$$V' = \left\{ 0 \le r \le 2\sin 2j \cos^2 q \sin q, 0 \le j \le \frac{p}{2}, 0 \le q \le \frac{p}{2} \right\}.$$

Совершаем замену в интеграле I_2 и вычисляем его (в этом случае $J=r^2\cos q$)

$$I_{2} = \iiint_{V^{-}} r^{2} \cos q \ dr dq \ dj = \int_{0}^{2p} dj \int_{0}^{\frac{p}{2}} \cos q \ dq \int_{0}^{2\sin 2j \cos^{2}q \sin q} r^{2} dr =$$

$$= \frac{8}{3} \int_{0}^{\frac{p}{2}} \sin^{3} 2j \ dj \int_{0}^{\frac{p}{2}} \cos^{7}q \sin^{3}q \ dq.$$

Первый интеграл вычисляется с помощью замены $\cos 2j = t$, второй – замены $\cos q = J$. В результате получим $I_2 = \frac{2}{45}$. р

- 1.23. Вычислить интегралы, перейдя к цилиндрическим координатам:
- 1) $\iiint y dx dy dz$, где V ограничена поверхностями $x^2 + y^2 = a^2, z = 0, z = h$;
- 2) $\iiint z dx dy dz$, где V ограничена поверхностями $x^2 + y^2 = z^2, z = a;$

3)
$$\int_{0}^{\sqrt{3}} dx \int_{0}^{\sqrt{3-x^2}} \sqrt{4-x^2-y^2} dz ;$$

$$\int_{0}^{\sqrt{3}} dx \int_{0}^{\sqrt{3}} dy \int_{(x^2+y^2)/3}^{\sqrt{3}} dz ;$$

$$\int_{0}^{\sqrt{3}} \sqrt{a^2-y^2} (x^2-y^2)/a \int_{0}^{\sqrt{3}} dx \int_$$

4)
$$\int_{0}^{a/\sqrt{2}} \int_{y}^{\sqrt{a^{2}-y^{2}}} \int_{0}^{(x^{2}-y^{2})/a} \sqrt{x^{2}+y^{2}} dz.$$

Отв.: 1) $-4a^3h/3$; **2**) $pa^4/2$; **3**) 19p/24; **4**) $a^4/10$.

1.24. Вычислить интегралы, перейдя к сферическим координатам по областям, ограниченным указанными поверхностями:

1)
$$\iiint_V yz dx dy dz$$
, $x^2 + y^2 + z^2 = 1, z \ge 0$;

2)
$$\iiint_{V} \frac{z \ln(x^{2} + y^{2} + z^{2} + 1) dx dy dz}{x^{2} + y^{2} + z^{2} + 1}, \quad x^{2} + y^{2} + z^{2} = 1;$$

3)
$$\iiint_{V} xyzdxdydz, \ x^{2} + y^{2} + z^{2} = R^{2}, \ x^{2} + y^{2} + z^{2} = 2Rz \text{ (общая часть)},$$

 $x \ge 0, y \ge 0$;

4)
$$\iiint_{V} (x^{2} + y^{2} + z^{2}) dxdydz, \quad y^{2} + z^{2} = x^{2}, \quad x^{2} + y^{2} + z^{2} = R^{2}, \quad x \ge 0$$

(общая часть);

$$5^*) \iiint_V dx dy dz, \ (x^2 + y^2 + z^2)^2 = a^3 x$$

(3) Fig. (4) $(x^2 + y^2 + z^2)^2 = a^3 x$.

OTB.: 1) 0; 2) 0; 3) $53R^6/3840$; 4) $pR^5(2-\sqrt{2})/5$; 5) $pa^2/2$

1.3. Приложения кратных интегралов

Геометрические и механические приложения двойных интегралов: площадь поверхности, объем криволинейного цилиндра, центр масс пластинки, статические моменты и моменты инерции пластинки. Геометрические и механические приложения тройных интегралов: объем тела, центр масс тела. Статические моменты и моменты инерции тела.

Кратные интегралы широко применяются при решении геометрических и физических задач. Двойные интегралы используются для вычисления объема криволинейного цилиндра (1.2), площади плоской фигуры (1.3), массы плоской пластинки с заданной поверхностной плотностью (1.4).

Примеры вычисления площади и массы плоской пластинки приведены выше. Вычислим некоторые объемы.

1.25. Вычислить объем тела. ограниченного поверхностями $z = 1 - x^2 - y^2$, y = x, $y = x\sqrt{3}$, z = 0 и расположенного в 1-м октанте.

r Данное тело ограничено сверху параболоидом $z = 1 - x^2 - y^2$ и плоскостями

 $y=x,y=x\sqrt{3},z=0$ (рис.1.19). Область интегрирования D- круговой сектор OAB, ограниченный линией пересечения параболоида $z=1-x^2-y^2$ с плоскостью z=0 и прямыми $y=x\sqrt{3},z=0$ и y=x,z=0. Следовательно, $v=\iint_D 1-x^2-y^2 dxdy$. Перейдя в этом интеграле к полярным координатам r и j , получим

Рис.

$$v = \iint_{D} (1 - r^{2}) r dr dj = \int_{p/4}^{p/3} \int_{0}^{1} (r - r^{3}) dr = \frac{p}{48}.$$
 p

1.26. Найти объем тела, ограниченного поверхностями $x^2 + y^2 = a^2, x^2 + z^2 = a^2$ (рис. 1.20).

r Для объема части заданного тела имеем

$$\frac{1}{8}v = \iint_{D} \sqrt{a^2 - x^2} \, dx \, dy = \int_{0}^{a} \sqrt{a^2 - x^2} \, dx \int_{0}^{\sqrt{a^2 - x^2}} \, dy = \int_{0}^{a} (a^2 - x^2) \, dx = \frac{2}{3}a^3 \Rightarrow v = \frac{16}{3}a^3. \mathbf{p}$$

1.27. Вычислить объем тела, ограниченного заданными поверхностями:

1)
$$x^2 + y^2 = 8, x = y = z = 0, x + y + z = 4$$
.

2)
$$x^2 + 4y^2 + z = 1, z = 0$$
.

3)
$$x = 2y^2, x + 2y + z = 4, x = y = 0$$
.

4)
$$z = x^2 + y^2$$
, $y = x^2$, $y = 1$, $z = 0$.

5)
$$z = 4 - x^2, 2x + y = 4, x = y = z = 0.$$

6)
$$z^2 = xy$$
, $y = 4$, $x = y = z = 0$.

7)
$$z = 5x, x^2 + y^2 = 9, z = 0$$
.

8)
$$x + y + z = 6$$
, $3x + 2y = 12$, $3x + y = 6$, $y = z = 0$.

9)
$$z = x + y + 1$$
, $y^2 = x$, $x = 1$, $y = 0$, $z = 0$.

10)
$$z = xy, x^2 + y^2 = 4, z = 0.$$

11)
$$x^2/a^2 + y^2/b^2 = 1$$
, $y = 0$, $z = x/2$, $z = x$.

 $z = \sqrt{a^2 - x^2}$ a A Y

Рис. 1.20

Otb.: 1) $8p - 32\sqrt{2}/3$; 2) p/4; 3) 17/5; 4) 88/105; 5) 40/3; 6) 39/9; 7) 90; 8) 12; 9) 79/60; 10) 4; 11) $a^2b/3$.

Если гладкая однозначная поверхность задана уравнением z = f(x, y), то

площадь поверхности выражается формулой

$$S = \iint_{D} \sqrt{1 + z_{x}^{2} + z_{y}^{2}} dx dy, \qquad (1.35)$$

где D – проекция данной поверхности на плоскость XY. Аналогично, если поверхность задана уравнением x = f(y, z), то

$$S = \iint_{D} \sqrt{1 + x'_{y}^{2} + x'_{z}^{2}} dy dz, \qquad (1.36)$$

где D – проекция поверхности на плоскость YZ. Если же уравнение поверхности имеет вид y = f(x, z), то

$$S = \iint_{D} \sqrt{1 + y_{x}^{2} + y_{z}^{2}} dxdz, \qquad (1.37)$$

где D – проекция поверхности на плоскость XZ.

1.28. Найти площадь части сферы $x^2 + y^2 + z^2 = a^2$, заключенной внутри цилиндра $x^2 + y^2 = ay$ (рис. 1.21).

r Из уравнения сферы (для 1-го октанта) имеем: $z = \sqrt{a^2 - x^2 - y^2}$

$$\frac{\partial z}{\partial x} = -\frac{x}{\sqrt{a^2 - x^2 - y^2}}, \quad \frac{\partial z}{\partial y} = -\frac{y}{\sqrt{a^2 - x^2 - y^2}},$$

$$\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = \frac{a}{\sqrt{a^2 - x^2 - y^2}}.$$

Часть сферы, расположенная в 1-м октанте, проектируется в полукруг, ограниченный окружностью $x^2 + y^2 = ay$ и осью Y. Этот полукруг и является областью интегрирования D.

Рис. 1.21

Поверхность расположена в 4-х октантах, поэтому искомая площадь вычисляется по формуле (1.35):

$$S = 4a \iint_{D} \frac{dxdy}{\sqrt{a^2 - x^2 - y^2}}.$$

В ПСК уравнение окружности $x^2 + y^2 = ay$ имеет вид $r = a \sin q$, и в этой системе

$$S = 4a \int_{0}^{p/2} dj \int_{0}^{a \sin q} \frac{rdr}{\sqrt{a^2 - r^2}} = 2a^2(p - 2). p$$

- **1.29.** Вычислить площадь части поверхности параболоида $x = 1 y^2 z^2$, вырезанной цилиндром $y^2 + z^2 = 1$ (рис. 1.22).
 - Область интегрирования D –

окружность $y^2+z^2=1$, расположенная в плоскости YZ. Из уравнения параболоида имеем $x'_y=-2y, x'_z=-2z$.

Тогда по формуле (1.36) $S = \iint\limits_{D} \sqrt{1 + 4 \left(y^2 + z^2 \right)} \, dy dz \,. \qquad \text{Вводим полярные}$

координаты r и j по формулам $y = r\cos j$, $z = r\sin j$. В итоге

$$S = \int_{0}^{2p} dj \int_{0}^{1} r \sqrt{1 + 4r^{2}} dr = \frac{5\sqrt{5} - 1}{6}.p$$

Рис. 1.22

1.30. Найти площадь части конуса $z = \sqrt{x^2 + y^2}$, заключенной внутри цилиндра $x^2 + y^2 = 2x$.

Отв.: $p\sqrt{2}$.

1.31. Вычислить площадь поверхности цилиндра $x^2 = 2z$, отсеченной плоскостями $x = 2y, y = 2x, x = 2\sqrt{2}$.

Отв.: 13.

1.32. Найти площадь части поверхности $y = x^2 + z^2$, вырезанной цилиндром $x^2 + z^2 = 1$ и расположенной в 1-м октанте.

Отв.: $p(5\sqrt{5}-1)/24$.

1.33. Найти площадь части поверхности цилиндра $z=x^2$, вырезанной плоскостями $x+y=\sqrt{2}$, x=0 , y=0.

Отв.: $5/6 + (\sqrt{2}/4) \cdot \ln(3 + 2\sqrt{2})$.

1.34. Вычислить площадь поверхности конуса $x^2 = y^2 + z^2$, расположенной внутри цилиндра $x^2 + z^2 = 1$.

Отв.: π.

1.35. Найти площадь поверхности цилиндра $x^2 + z^2 = 4$, расположенной внутри цилиндра $x^2 + y^2 = 4$.

Отв.: 32.

1.36. Найти площадь части поверхности $z^2 = 2xy$, вырезанной плоскостями x = 1, y = 4, z = 0.

Отв.: $40\sqrt{2}/3$.

Если пластинка занимает область D в плоскости XY и имеет поверхностную плотность m(x,y), то, согласно формуле (1.4), ее масса вычисляется по формуле

$$m = \iint_D \mathbf{m}(x, y) \, dx dy \, .$$

C тамические моменты пластинки D относительно осей X и Y находятся по формулам

$$M_x = \iint_D y \mathbf{m}(x, y) dx dy, \quad M_y = \iint_D x \mathbf{m}(x, y) dx dy. \tag{1.38}$$

 $Koopдинаты \ x_c$, y_c центра тяжести пластинки D вычисляются по формулам

$$x_c = \frac{M_y}{m}, y_c = \frac{M_x}{m},$$
 (1.39)

где m — масса пластинки. Если пластинка D однородна ($\mathbf{m}(x,y) = const$), то формулы (1.39) принимают вид

$$x_c = \frac{1}{S} \iint_D x dx dy, y_c = \frac{1}{S} \iint_D y dx dy, \qquad (1.40)$$

где S – площадь пластинки D.

Моменты инерции пластинки D относительно осей X и Y вычисляются по формулам

$$I_x = \iint_D y^2 m(x, y) dx dy, \ I_y = \iint_D x^2 m(x, y) dx dy,$$
 (1.41)

а момент инерции относительно начала координат – по формуле

$$I_0 = I_x + I_y = \iint_D (x^2 + y^2) dx dy.$$
 (1.42)

Положив в формулах (1.41), (1.42) m(x, y) = const, получим формулы для вычисления моментов инерции плоской однородной фигуры.

1.37. Найти координаты центра тяжести фигуры, ограниченной линиями $y^2 = 4x + 4$, $y^2 = -2x + 4$ (рис. 1.23), m = 1.

 ${f r}$ Так как фигура симметрична относительно оси ${\it X}$, то ${\it y}_c=0$. Находим площадь области ${\it D}$. Поскольку она симметрична относительно оси ${\it X}$, то ее площадь

$$S = \iint_D dx dy = 2 \int_0^2 dy \int_{(y^2 - 4)/4}^{(4 - y^2)/2} dx = 8.$$

Рис. 1.23

Находим статический момент M_y по формуле (1.38):

$$M_y = \iint_D x dx dy = 2 \int_0^2 dy \int_{(y^2 - 4)/4}^{(4 - y^2)/2} x dx = \frac{16}{5}.$$

Следовательно, $x_c = M_y/s = 2/5$. Итак, центр тяжести данной плоской фигуры расположен в точке C = (2/5,0). р

1.38. Найти координаты центра тяжести и моменты инерции пластинки $D = \{y \ge x^2, y \le 1\}$, изображенной на рис. 1.24, если плотность $m(x, y) = x^2 y$.

Δ Находим массу пластинки

$$m = \iint_D x^2 y dx dy = \int_{-1}^1 x^2 dx \int_{x^2}^1 y dy = \frac{4}{21}.$$

Координаты центра тяжести находим по формулам (1.40):

$$x_c = \frac{1}{m} \iint_D x^3 y dx dy = \frac{21}{4} \int_{-1}^1 x^3 dx \int_{x^2}^1 y dy = 0,$$

Рис. 1.24

(этого и следовало ожидать, поскольку D и m(x, y) симметричны относительно оси Y).

$$y_c = \frac{1}{m} \iint_D x^2 y^2 dx dy = \frac{21}{4} \int_{-1}^1 x^2 dx \int_{x^2}^1 y^2 dy = \frac{7}{9}.$$

Итак, C = (0.7/9).

По формулам (1.41), (1.42) определяем моменты инерции пластинки D:

$$I_{x} = \iint_{D} x^{2} y^{3} dx dy = \int_{-1}^{1} x^{2} dx \int_{x^{2}}^{1} y^{3} dy = \frac{4}{33};$$

$$I_{y} = \iint_{D} x^{4} y dx dy = \int_{-1}^{1} x^{4} dx \int_{x^{2}}^{1} y dy = \frac{4}{45};$$

$$I_{0} = I_{x} + I_{y} = \frac{104}{495}. \mathbf{p}$$

- **1.39.** Найти координаты центра тяжести фигуры, ограниченной эллипсом $\frac{x^2}{25} + \frac{y^2}{9} = 1$ и его хордой x/5 + y/3 = 1. **Отв.:** $\left(\frac{10}{3(p-2)}, \frac{2}{p-2}\right)$
- **1.40.** Найти координаты центра тяжести фигуры, ограниченной линиями y = x, y = 2x, x = 2, если ее плотность m(x, y) = xy. **Отв.:** (8/5, 112/45).
- **1.41.** Найти координаты центра тяжести кардиоиды $r = a(1 + \cos j)$ с плотностью m(x, y) = 1. Отв.: (5a/6, 0).
- **1.42.** Найти центр тяжести фигуры, ограниченной параболами $y^2 = x$ и $x^2 = y$. Отв.: (9/20, 9/20).
- **1.43.** Найти центр тяжести фигуры, ограниченной замкнутой кривой $y^2 = x^2 x^4$, $x \ge 0$. **Отв.:** (3p/16, 0).
 - 1.44. Найти центр тяжести фигуры, ограниченной кривой

 $x = a(t - \sin t), y = a(1 - \cos t), 0 \le t \le 2p$ и осью X. Отв.: (pa, 5a/6).

1.45. Вычислить момент инерции I_0 фигуры, ограниченной линиями $\frac{x}{x} + \frac{y}{x} = 1$, x = 0, y = 0. **Отв.:** $ab(a^2 + b^2)/12$.

1.46. Вычислить момент инерции I_x кардиоиды $r = a(1 + \cos j)$.

Отв.: $21pa^4/32$.

- **1.47.** Вычислить момент инерции I_0 фигуры, ограниченной линией $x^2 + y^2 - 2x = 0$, если ее плотность m(x, y) = 3.5. **Отв.:** 21p/4.
 - Вычислить момент инерции I_y эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (m = 1). 1.48.

Отв.: $pa^3b/4$.

- Вычислить момент инерции I_x треугольника, ограниченного 1.49. прямыми x + y = 2, x = 2, y = 2 (m = 1).Отв.: 4.
- **1.50.** Вычислить момент инерции I_x фигуры, ограниченной линиями $y = 2\sqrt{x}, x + y = 3, y = 0 \ (m = 1).$ Отв.: 2.4.

Объем v тела V в пространстве обычно вычисляется по формуле (1.23):

$$v = \iiint\limits_V dx dy dz,$$

 $v=\iiint\limits_V dxdydz,$ в которой в тройном интеграле в случае необходимости можно переходить к различным координатам (цилиндрическим, сферическим и др.).

1.51. Вычислить объем тела, ограниченного поверхностями $z = 1, z = 5 - x^2 - y^2$ (рис. 1.25).

В ЦСК искомый объем $v = \iiint\limits_V r \, dr \, dj \, dz$,

где

$$V = \{0 \le j \le 2p, 0 \le r \le 2, 1 \le z \le 5 - r^2\}.$$

где
$$V = \Big\{0 \le \pmb{j} \le 2\pmb{p}, 0 \le \pmb{r} \le 2, 1 \le z \le 5 - \pmb{r}^2\Big\}.$$
 Тогда $v = \int\limits_0^{2\pmb{p}} d\pmb{j} \int\limits_0^2 \pmb{r} d\pmb{r} \int\limits_1^{5-\pmb{r}^2} dz = 8\pmb{p}.$ \mathbf{p}

Масса т тела V вычисляется по формуле (1.24):

$$m = \iiint\limits_V \mathbf{m}(x, y, z) dx dy dz,$$

где m(x, y, z) – объемная плотность тела.

- 1.52. Найти шара радиусом R = 3, плотность массу пропорциональна расстоянию от центра шара, причем на расстоянии единицы от центра плотность равна двум.
- Поместим начало ССК в центр шара. В этой системе уравнение сферы есть r = 3. По условию задачи плотность m = kr, где k -коэффициент пропорциональности. При r=1 плотность m=2, т. е. $2=k\cdot 1 \Rightarrow k=2 \Rightarrow m=2r$.

Поэтому масса шара

$$m = \iiint_{V} 2r \cdot r^{2} \sin q \, dr \, dq \, dj = 2 \int_{0}^{2p} dj \int_{0}^{p} \sin q \, dq \int_{0}^{3} r^{3} dr = 162p. \ \mathbf{p}$$

- **1.53.** Вычислить с помощью тройного интеграла объемы тел, ограниченных указанными поверхностями:
 - 1) $x^2 + y^2 + 4z^2 = 1$.
 - 2) $z = x^2 + y^2$, $z = 2x^2 + 2y^2$, y = x, $y = x^2$.
 - 3) $az = x^2 + y^2$, $z = \sqrt{x^2 + y^2}$, a > 0.
 - 4) x + y + z = a, x + y + z = 2a, x + y = z, x + y = 2z.
 - 5) $y^2 = 4a^2 3ax$, $y^2 = ax$, $z = \pm h$.
 - 6) $y^2/b^2+z^2/c^2=2x/a, x=a$.

OTB.: 1) 2p/3; 2) 3/35; 3) $pa^3/6$; 4) $49a^3/864$; 5) $32a^2h/9$; 6) pabc.

1.54. Из октанта шара $x^2 + y^2 + z^2 \le c^2$, $x \ge 0$, $y \ge 0$, $z \ge 0$ вырезано тело, ограниченное координатными плоскостями и плоскостью x/a + y/b = 1, $a \le c$, $b \le c$. Найти массу этого тела, если плотность в каждой его точке (x, y, z) пропорциональна аппликате точки.

Отв.: $ab(bc^2 - a^2 - b^2)/24$.

- **1.55.** Определить массу пирамиды, образованной плоскостями x + y + z = a, x = y = z = 0, если плотность в каждой ее точке пропорциональна аппликате этой точки. **Отв.:** $a^4/24$.
- **1.56.** Определить массу тела, ограниченного поверхностями $z = h, z^2 = x^2 + y^2$, если плотность в каждой его точке пропорциональна аппликате этой точки.

Отв.: $p h^4 / 4$.

- **1.57.** Вычислить массу цилиндра радиусом R и высотой H, если его плотность в любой точке пропорциональна квадрату расстояния этой точки от центра основания цилиндра. Отв.: $pR^2H(3R^2+2H^2)/6$.
- **1.58.** Определить массу сферического слоя между сферами $x^2 + y^2 + z^2 = a^2$ и $x^2 + y^2 + z^2 = 4a^2$, если плотность в каждой его точке обратно пропорциональна расстоянию точки от начала координат.

Отв.: $6kpa^2$,

где k – коэффициент пропорциональности.

Координаты центра тяжести C тела V с объемной плотностью $\mathbf{m}(x,y,z)$ вычисляются по формулам:

$$x_{c} = \frac{1}{m} \iiint_{V} x m(x, y, z) dv, y_{c} = \frac{1}{m} \iiint_{V} y m(x, y, z) dv, z_{c} = \frac{1}{m} \iiint_{V} z m(x, y, z) dv, (1.43)$$

где m — масса тела.

Величины

$$M_{yz} = \iiint_{V} x m(x, y, z) dv, M_{xz} = \iiint_{V} y m(x, y, z) dv, M_{xy} = \iiint_{V} z m(x, y, z) dv \quad (1.44)$$

называются *статическими моментами тела* относительно плоскостей YOZ, XOZ, XOY соответственно.

Моменты инерции относительно координатных осей X, Y, Z тела V определяются соответственно:

$$I_{x} = \iiint_{V} (y^{2} + z^{2}) \mathbf{m}(x, y, z) dv, I_{y} = \iiint_{V} (x^{2} + z^{2}) \mathbf{m}(x, y, z) dv,$$

$$I_{z} = \iiint_{V} (x^{2} + y^{2}) \mathbf{m}(x, y, z) dv,$$
(1.45)

а момент инерции тела V относительно начала координат выражается формулой

$$I_{0} = I_{x} + I_{y} + I_{z} = \iiint_{V} (x^{2} + y^{2} + y^{2}) m(x, y, z) dx dy dz.$$
(1.46)

Mоменты инерции тела V относительно координатных плоскостей XY, YZ, XZ вычисляются по формулам соответственно:

мулам соответственно:
$$I_{xy} = \iiint_{V} z^{2} \mathbf{m}(x, y, z) dv, I_{yz} = \iiint_{V} x^{2} \mathbf{m}(x, y, z) dv, I_{xz} = \iiint_{V} y^{2} \mathbf{m}(x, y, z) dv. \quad (1.47)$$

- **1.59.** Найти координаты центра тяжести призматического тела, ограниченного плоскостями x = 0, z = 0, y = 1, y = 3, x + 2z = 3; плотность m = 1 (рис. 1.26).
- ${f r}$ Находим объем тела V (по сути дела его массу, поскольку плотность ${\it m}=1$):

$$v = \iiint_V dx dy dz = \int_0^3 dx \int_1^3 dy \int_0^{(3-x)/2} dz = \frac{9}{2}.$$

Тогда

$$x_{c} = \frac{2}{9} \iiint_{V} x dx dy dz = \frac{2}{9} \int_{0}^{3} x dx \int_{1}^{3} dy \int_{0}^{(3-x)/2} dz = 1;$$

$$y_{c} = \frac{2}{9} \iiint_{V} y dx dy dz = \frac{2}{9} \int_{0}^{3} dx \int_{1}^{3} y dy \int_{0}^{(3-x)/2} dz = 2;$$

$$z_{c} = \frac{2}{9} \iiint_{V} z dx dy dz = \frac{2}{9} \int_{0}^{3} dx \int_{1}^{3} dy \int_{0}^{(3-x)/2} z dz = \frac{1}{2}.$$

Итак, C = (1, 2, 1/2). р

1.60. Вычислить моменты инерции однородного шара радиусом R и весом P относительно его центра и диаметра.

Очевидно, что плотность шара $m = P/vg = 3P/4pgR^3$. Поместим центр шара в начале координат, тогда его поверхность будет определяться уравнением $x^2 + y^2 + z^2 = R^2$. Момент инерции относительно центра шара вычислим в ССК:

$$I_0 = m \iiint_V (x^2 + y^2 + z^2) dv = m \iiint_{V'} r^4 \sin q \, dr \, dq \, dj =$$

$$= m \int_0^{2p} dj \int_0^p \sin q \, dq \int_0^R r^4 dr = m \cdot 2p \cdot 2 \cdot \frac{R^5}{5} = \frac{3PR^2}{5g}.$$

Ясно, что вследствие однородности (m = const) и симметрии шара его моменты инерции относительно любого диаметра равны. Вычислим, к примеру, момент инерции относительно диаметра, лежащего на оси Z_{\bullet}

$$I_{z} = m \iiint_{V} (x^{2} + y^{2}) dx dy dz = m \iiint_{V'} r^{2} \sin^{2} q r^{2} \sin q dr dq dj =$$

$$= m \int_{0}^{2p} dj \int_{0}^{p} \sin^{3} q dq \int_{0}^{R} r^{4} dr = \frac{2PR^{2}}{5g}. \mathbf{p}$$

1.61. Найти центр тяжести тела с плотностью $m (m_0 - const)$:

1)
$$x^2 + y^2 + z^2 \le R^2, x \ge 0, m = m_0 / \sqrt{x^2 + y^2}.$$

2)
$$\sqrt{x^2 + y^2} \le z \le h$$
, $m = m_0 z^2$.

2)
$$\sqrt{x^2 + y^2} \le z \le h$$
, $m = m_0 z^2$.
3) $x^2 + y^2 \le z \le h$, $m = m_0 \sqrt{h - z}$.

4)
$$x^2 + y^2 - z^2 \le a^2$$
, $0 \le z \le h$, $m = m_0 z$.

5)
$$0 \le z \le x^2 - y^2$$
, $x^2 + y^2 \le 1$, $x \ge 0$, $m = m_0 z$.

Отв.: 1) $(8R/3p^2,0,0)$; 2) (0,0,5h/6); 3) (0,0,4h/7);

4)
$$\left(0,0,\frac{4(5a^2+3h^2)}{15(2a^2+h^2)}\cdot h\right)$$
; 5) $(64\sqrt{2}/35p,0,4/3p)$.

Найти момент инерции I_{τ} однородных тел (m=1):

1)
$$2ax \ge z^2$$
, $x^2 + y^2 \le ax$. 2) $x^2 + y^2 \le a^2$, $x + y + z \le a\sqrt{2}$, $z \ge 0$.

3)
$$0 \le z \le x^2 + y^2$$
, $|x + y| \le 1$, $|x - y| \le 1$. 4) $|x^2 + y^2 + z^2 \le 2$, $|x - y| \le 1$.

5)
$$\sqrt{y^2/b^2 + z^2/c^2} \le x/a \le 1, a > 0, b > 0, c > 0.$$

Отв.: 1)
$$\frac{64\sqrt{2}}{135}a^5$$
; 2) $pa^5/\sqrt{2}$; 3) 14/45;

4)
$$4p(4\sqrt{2}-5)/15$$
; **5)** $pabc(b^2+4a^2)/20$.

1.63. Найти моменты инерции относительно координатных плоскостей однородных (m=1) тел:

1)
$$x/a + y/b + z/c \le 1, x \ge 0, y \ge 0, z \ge 0, a > 0, b > 0, c > 0.$$

2)
$$\sqrt{x^2/a^2 + y^2/b^2} \le z/c \le 1$$
.

3)
$$\frac{1}{2}(x^2/a^2 + y^2/b^2) \le z/c \le x/a + y/b, a > 0, b > 0, c > 0.$$

Отв.:

1)
$$I_{xy} = abc^3/60$$
, $I_{yz} = a^3bc/60$, $I_{zx} = ab^3c/60$.

2)
$$I_{xy} = pabc^3 / 5$$
, $I_{yz} = pa^3bc / 20$, $I_{zx} = pab^3c / 20$.

3)
$$I_{xy} = 7pabc^3/2$$
, $I_{yz} = 4pa^3bc/3$, $I_{zx} = 4pab^3c/3$.

2. Криволинейные интегралы

2.1. Криволинейные интегралы 1-го (КрИ-1) и 2-го (КрИ-2) рода

Определение и свойства КрИ-1. Вычисление КрИ-1 и их приложения. Определение и свойства КрИ-2. Вычисление КрИ-2 и их приложения.

Пусть на плоскости XY задана гладкая кривая l, в точках которой определена непрерывная функция f(x,y). Кривую l произвольным образом разобьем на части l_i длиной Δl_i $i=\overline{1,n}$. В части l_i выберем произвольную точку (x_i,h_i) и составим интегральную сумму

$$\mathbf{S}_n = \sum_{i=1}^n f(\mathbf{x}_i, \mathbf{h}_i) \Delta l_i. \tag{2.1}$$

Обозначим $\Delta = \max_{1 \le i \le n} \Delta l_i$. Если существует предел интегральной суммы (2.1) при $\Delta \to 0$, не зависящий ни от способа деления l на части l_i , ни от выбора точек $(\mathbf{x}_i, \mathbf{h}_i) \in l_i$, то этот предел называется *криволинейным интегралом* l-го рода (КрИ-1) по дуге l от функции f(x,y) и обозначается $\int f(x,y) dl$.

Итак, по определению

$$\int_{l} f(x, y) dl = \lim_{\Delta \to 0} \sum_{i=1}^{n} f(\mathbf{x}_{i}, \mathbf{h}_{i}) \Delta l_{i},$$

(dl - дифференциал длины дуги).

Аналогично, если l – гладкая кривая в \mathbf{R}^3 , а f(x,y,z) – непрерывная функция в точках этой кривой, то КрИ-1 по l определяется равенством

$$\int_{l} f(x, y, z) dl = \lim_{\Delta \to 0} \sum_{i=1}^{n} f(\mathbf{x}_{i}, \mathbf{h}_{i}, \mathbf{V}_{i}) \Delta l_{i}.$$

Пусть A — начальная точка кривой l , B — конечная. Eсли кривая AB задана явно уравнением y = g(x), $a \le x \le b$, то КрИ-1 вычисляется по формуле

$$\int_{AB} f(x, y)dl = \int_{a}^{b} f(x, g(x))\sqrt{1 + g^{2}(x)}dx.$$
 (2.2)

Eсли кривая l задана в полярных координатах равенством r=r(j), $a\leq j\leq b,$ то

$$\int_{AB} f(x, y) dl = \int_{a}^{b} f(r(j) \cos j, r(j) \sin j) \sqrt{r^{2} + r^{2}} dj, \qquad (2.3)$$

где a, b – значения j, определяющие на кривой точки A и B.

В случае, *если l задана параметрически* уравнениями x = x(t), y = y(t) и параметр t изменяется монотонно на отрезке [a,b], (a < b) при перемещении по кривой l из A в B, верна следующая формула вычисления КрИ-1:

$$\int_{AB} f(x, y) dl = \int_{a}^{b} f(x(t), y(t)) \sqrt{x'^2 + y'^2} dt.$$
 (2.4)

Для пространственной кривой $l=l_{AB}$, заданной параметрически уравнениями x=x(t), y=y(t), z=z(t), $a\leq t\leq b$, формула (2.4) заменяется формулой

$$\int_{AB} f(x, y, z) dl = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x'^2 + y'^2 + z'^2} dt.$$
 (2.5)

КрИ-1 обладает следующими свойствами:

1. (Линейность). Если f(x,y) и g(x,y) – непрерывные функции вдоль кривой l, то $\forall a,b \in \mathbf{R}$:

$$\int_{I} (af(x,y) + bg(x,y))dl = a \int_{I} f(x,y)dl + b \int_{I} g(x,y)dl.$$

2. (Аддитивность). Если кусочно-гладкая кривая l состоит из конечного числа k гладких дуг l_k , $k=\overline{1,m}$, то

$$\int_{l} f(x, y)dl = \sum_{k=1}^{m} \int_{l_{k}} f(x, y)dl.$$

3. КрИ-1 не зависит от направления пути интегрирования, т. е.

$$\int_{AB} f(x, y)dl = \int_{BA} f(x, y)dl.$$

4. (Оценка модуля интеграла):

$$\left| \int_{l} f(x, y) dl \right| \leq \int_{l} |f(x, y)| dl.$$

- 5. $\int_{l} dl = L$, где L длина кривой l.
- 6. (**Теорема о среднем**). Если f(x,y) непрерывна в точках кривой l, то $\exists (x,h) \in l: \int f(x,y) dl = f(x,h) L$, где L- длина кривой l.
- **2.1.** Вычислить КрИ-1:

 $I = \int_{l}^{\infty} \frac{x}{y} dl$, где l – дуга параболы $y^2 = 2x$, соединяющая точки $(1, \sqrt{2})$ и (2,2).

$${f r}$$
 Имеем: $y = \sqrt{2x}$, $y' = \frac{1}{\sqrt{2x}}$, $dl = \sqrt{1 + {y'}^2} dx = \frac{\sqrt{1 + 2x}}{\sqrt{2x}} dx$, $1 \le x \le 2$.

По формуле (2.2) получаем

$$\int_{1}^{\infty} \frac{x}{y} dl = \int_{1}^{2} \frac{x}{\sqrt{2x}} \frac{\sqrt{1+2x}}{\sqrt{2x}} dx = \frac{1}{6} (5\sqrt{5} - 3\sqrt{3}). \quad \mathbf{p}$$

2.2. Вычислить КрИ-1:

$$I = \int_{l} y^{2} dl$$
, где l – арка циклоиды $x = a(t - \sin t)$, $y = a(1 - \cos t)$, $0 \le t \le 2p$.

r Имеем:

 $dl = \sqrt{x'^2(t) + y'^2(t)}dt = \sqrt{a^2(1-\cos t)^2 + a^2\sin^2 t}dt = a\sqrt{2}\sqrt{1-\cos t}dt,$ и потому по формуле (2.4)

$$\int_{l} y^{2} dl = \int_{0}^{2p} a^{2} (1 - \cos t)^{2} a \sqrt{2} \sqrt{1 - \cos t} dt = \frac{256}{15} a^{3}. \quad \mathbf{p}$$

2.3. Вычислить $I = \int\limits_{l} (2z - \sqrt{x^2 + y^2}) dl$, где l — первый виток конической винтовой линии $x = t\cos t$, $y = t\sin t$, z = t, $0 \le t \le 2p$.

r Находим

$$dl = \sqrt{x'^2(t) + y'^2(t) + z'^2(t)}dt = \sqrt{(\cos t - t \sin t)^2 + (\sin t + t \cos t)^2 + 1} dt = \sqrt{2 + t^2} dt.$$
Тогда
$$\int_{0}^{2p} (2t - t)\sqrt{2 + t^2} dt = \int_{0}^{2p} t\sqrt{2 + t^2} dt = \frac{2\sqrt{2}}{3} ((1 + 2p^2)^{3/2} - 1).$$
 p

2.4. Вычислить КрИ-1:

$$I = \int_{l} \sqrt{x^2 + y^2} dl$$
, где l – кривая, заданная уравнением $(x^2 + y^2)^{3/2} = a^2(x^2 - y^2)$.

 ${f r}$ Перейдем к полярным координатам: $x=r\cos j$, $y=r\sin j$. Уравнение l примет вид ${f r}=a^2\cos 2j$, где ${f j}\in \Phi=\{{f j}\,|\, -p/4\le j\le p/4,\ 3p/4\le j\le 5p/4\}.$

Для вычисления интеграла применим формулу (2.3). Так как $\sqrt{x^2+y^2}=r=a^2\cos 2j$, $\sqrt{r^2+r'^2}\,dj=a^2\sqrt{1+3\sin^2 2j}\,\,dj$, то

$$I = \int_{j \in \Phi} a^4 \cos 2j \sqrt{1 + 3\sin^2 2j} \, dj =$$

$$= \frac{2a^4}{2\sqrt{3}} \int_{-p/4}^{p/4} \sqrt{1 + 3\sin^2 2j} \ d(\sqrt{3}\sin 2j) = 2a^4 + \frac{a^4}{\sqrt{3}} \ln(\sqrt{3} + 2). \ \mathbf{p}$$

2.5. Вычислить $I = \int\limits_{l} z dl$, где l – линия пересечения поверхностей $x^2 + y^2 = z^2$, $y^2 = ax$, пробегаемая от точки (0,0,0) до точки $(a,a,a\sqrt{2})$.

 ${f r}$ В качестве параметра возьмем x=t. Тогда параметрические

уравнения кривой l примут вид x = t, $y = \sqrt{at}$, $z = \sqrt{t^2 + at}$, $0 \le t \le a$.

 $dz = \frac{2t+a}{2\sqrt{t^2+at}}dt, dy = \frac{1}{2}\sqrt{\frac{a}{t}}dt, dl = \sqrt{dx^2+dy^2+dz^2},$ TO

применив формулу (2.5), получим

$$I = \frac{1}{2} \int_{0}^{a} \sqrt{8t^{2} + 9at + 2a^{2}} dt = \frac{1}{2} \int_{0}^{a} \sqrt{\left(2\sqrt{2}t + \frac{9a}{4\sqrt{2}}\right)^{2} - \frac{17}{32}a^{2}} dt =$$

$$= \frac{1}{4\sqrt{2}} \left(\left(2\sqrt{2}t + \frac{9a}{4\sqrt{2}}\right)\sqrt{8t^{2} + 9at + 2a^{2}} - \frac{17}{32}\ln\left(2\sqrt{2}t + \frac{9a}{4\sqrt{2}} + \sqrt{8t^{2} + 9at + 2a^{2}}\right)\right)_{0}^{a} =$$

$$= \frac{a^{2}}{256\sqrt{2}} \left(100\sqrt{38} - 72 - 17\ln\frac{25 + 4\sqrt{38}}{17}\right). \mathbf{p}$$

2.6. Вычислить Kp H - 1 по плоской кривой Γ :

1) $\int x dl$, Γ – отрезок с концами (0,0) и (1,2). **Отв.:** $\sqrt{5}/2$.

2) $\int (2x+y)dl$, Γ – ломаная ABOA, где A = (1,0), B = (0,2), O = (0,0).

OTB.: $3 + 2\sqrt{5}$.

3) $\int (x+y)dl$, Γ – граница треугольника с вершинами (0,0),(1,0),(0,1).

Отв.: $1 + \sqrt{2}$.

4) $\int_{\Gamma} \frac{dl}{\sqrt{x^2 + y^2 + 4}}$, Γ – отрезок с концами (0,0) и (1,2).

OTB.: $\ln((3+\sqrt{5})/2)$.

5) $\int_{\Gamma} xydl$, Γ – граница прямоугольника с вершинами (0,0),(4,0),(4,2),(0,2).

Отв.: 24.

6) $\int x^2 dl$, Γ – дуга окружности $x^2 + y^2 = a^2$, $y \ge 0$. **Отв.:** $pa^3/2$.

7) $\int (x^2 + y^2)^n dl$, Γ – окружность $x^2 + y^2 = a^2$, n > 0. **Отв.:** $2pa^{2n+1}$.

8) $\int (x-y) dl$, Γ – окружность $x^2 + y^2 = ax$. **Отв.:** $pa^2/2$.

9) $\int \sqrt{x^2 + y^2} dl$, Γ – окружность $x^2 + y^2 = ax$. **Отв.:** $2a^2$.

10) $\int_{\Gamma} (x+y)dl$, Γ – правый лепесток лемнискаты $r=a^2\cos 2j$.

OTB.: $a^2 \sqrt{2}$

11) $\int_{\Gamma} x \sqrt{x^2 - y^2} dl$, Γ – правый лепесток лемнискаты $r = a^2 \cos 2j$.

OTB.: $2a^3\sqrt{2}/3$

12)
$$\int_{\Gamma} (x^{4/3} + y^{4/3}) dl$$
, Γ – астроида $x^{2/3} + y^{2/3} = a^{2/3}$. **Отв.:** $4a^{7/3}$. 13) $\int_{\Gamma} y dl$, Γ – арка циклоиды $x = a(t - \sin t)$, $y = a(1 - \cos t)$, $0 \le t \le 2p$.

13)
$$\int_{\Gamma} y dl$$
, Γ – арка циклоиды $x = a(t - \sin t)$, $y = a(1 - \cos t)$, $0 \le t \le 2p$.

Отв.: $32a^2/3$.

14) $\int_{\Gamma} (x^2 + y^2) dl$, Γ – дуга развертки окружности $x = a(\cos t + t \sin t)$,

 $y = a(\sin t - t\cos t), 0 \le t \le 2p$.

 $a(\sin t - t\cos t), 0 \le t \le 2p.$ Отв.: $2p^2a^3(1 + 2p^2).$ 15) $\int_{\Gamma} \sqrt{x^2 + y^2} dl$, Γ – дуга развертки окружности $x = a(\cos t + t\sin t)$,

 $y = a(\sin t - t\cos t), 0 \le t \le 2p$.

Отв.: $(1+4p^2)^{3/2}-1)a^2/3$.

2.7. Вычислить КрИ-1 по пространственной кривой Γ :

1) $\int_{\Gamma} \frac{z^2}{x^2+y^2} dl$, Γ – первый виток винтовой линии $x=a\cos t$, $y=a\sin t$, t.

z = bt.

Отв.:
$$8p^3b^2\sqrt{a^2+b^2}/(3a^2)$$
.

2) $\int_{\Gamma} z dl$, Γ – дуга конической винтовой линии $x = t \cos t$, $y = t \sin t$, z = t,

OTB.:
$$((1+2p^2)^{3/2}-1)2\sqrt{2}/3$$
.

3)
$$\int_{\Gamma} \sqrt{2y^2 + z^2} dl$$
, Γ – окружность $x^2 + y^2 + z^2 = a^2$, $x = y$. Отв.: $2pa^2$.

 $0 \le t \le 2p$.
OTB.: $((1+2p^2)^{3/2}-1)2\sqrt{2}/3$.

3) $\int_{\Gamma} \sqrt{2y^2+z^2} dl$, Γ – окружность $x^2+y^2+z^2=a^2$, x=y. OTB.: $2pa^2$.

4) $\int_{\Gamma} xyzdl$, Γ – четверть окружности $x^2+y^2+z^2=a^2$, x=y, расположенная в первом октанте.

5) $\int_{\Gamma} x^2 dl$, Γ – окружность $x^2 + y^2 + z^2 = a^2$, x + y + z = 0. Отв.: $2pa^3/3$.

6) $\int_{\Gamma} z dl$, Γ – дуга кривой $x^2 + y^2 = z^2$, $y^2 = ax$ от точки (0,0,0) до точки $a\sqrt{2}$, a>0

Отв.: $100\sqrt{38} - 72 - 17\ln((25 + 4\sqrt{38})/17))a^2\sqrt{2}/512$.

КрИ-1 применяется в геометрии и физике:

- 1) $\int dl = L$, где L длина дуги AB (см. свойство 5 КрИ-1).
- 2) Macca дуги l_{AB} вычисляется по формуле

$$m = \int_{l_{AB}} \mathbf{m}(x, y, z) dl, \qquad (2.6)$$

где m(x, y, z) – линейная плотность дуги.

3) Координаты центра тяжести дуги l_{AB} с линейной плотностью m(x, y, z) вычисляются по следующим формулам:

$$x_{c} = \frac{1}{m} \int_{l_{AB}} x \mathbf{m}(x, y, z) dl, \quad y_{c} = \frac{1}{m} \int_{l_{AB}} y \mathbf{m}(x, y, z) dl, \quad z_{c} = \frac{1}{m} \int_{l_{AB}} z \mathbf{m}(x, y, z) dl, \quad (2.7)$$

где m – масса дуги l_{AR} .

4) Моменты инерции относительно начала координат O, осей координат X, Y, Z и координатных плоскостей XY, XZ, YZ дуги l_{AB} с плотностью $\mathbf{m}(x,y,z)$ вычисляются соответственно по формулам

$$I_{0} = \int_{l_{AB}} (x^{2} + y^{2} + z^{2}) \mathbf{m} \, dl, \qquad I_{x} = \int_{l_{AB}} (y^{2} + z^{2}) \mathbf{m} \, dl,$$

$$I_{y} = \int_{l_{AB}} (x^{2} + z^{2}) \mathbf{m} \, dl, \quad I_{z} = \int_{l_{AB}} (x^{2} + y^{2}) \mathbf{m} \, dl,$$

$$I_{xy} = \int_{l_{AB}} z^{2} \mathbf{m} \, dl, \qquad I_{xz} = \int_{l_{AB}} y^{2} \mathbf{m} \, dl, \qquad I_{yz} = \int_{l_{AB}} x^{2} \mathbf{m} \, dl.$$

$$I_{xy} = \int_{l_{AB}} z^{2} \mathbf{m} \, dl, \qquad I_{xz} = \int_{l_{AB}} y^{2} \mathbf{m} \, dl, \qquad I_{yz} = \int_{l_{AB}} x^{2} \mathbf{m} \, dl.$$

Моменты инерции связаны следующими соотношениями:

$$2I_0 = I_x + I_y + I_z,$$
 $I_0 = I_{xy} + I_{xz} + I_{yz}.$

Если дуга l_{AB} лежит в плоскости XY, то рассматриваются только моменты I_0, I_x, I_y (при условии, что z=0).

2.8. Найти массу m кривой l: $y = \ln x$, $1 \le x \le e$, если линейная плотность ее в каждой точке пропорциональна квадрату абсциссы, т. е. $m(x,y) = kx^2$.

r Имеем

$$m = \int_{l} kx^{2} dl = \int_{1}^{e} kx^{2} \sqrt{1 + y'^{2}} dx = k \int_{1}^{e} x^{2} \frac{\sqrt{1 + x^{2}}}{x} dx =$$

$$= \frac{k}{3} (1 + x^{2})^{3/2} \Big|_{1}^{e} = \frac{k}{3} [(1 + e^{2})^{3/2} - 2\sqrt{2}].$$

2.9. Найти координаты x_c, y_c, z_c центра тяжести первого полувитка винтовой линии $l: x = a \cos t, y = a \sin t, z = bt, 0 \le t \le p$, если ее линейная плотность постоянна и равна m.

$${f r}$$
 Находим массу $m=\int\limits_l {m m}\,dl$ этой линии. Так как
$$\sqrt{{x'}^2+{y'}^2+{z'}^2}=\sqrt{a^2\sin^2t+a^2\cos^2t+b^2}=\sqrt{a^2+b^2},$$
 то $m={m m}\int\limits_0^p \sqrt{a^2+b^2}\,dt={m p}{m m}\sqrt{a^2+b^2}.$

Значения x_c, y_c, z_c находим по формулам (2.7):

$$x_c = \frac{m}{m} \int_{l} x dl = \frac{m}{pm\sqrt{a^2 + b^2}} \int_{0}^{p} a\sqrt{a^2 + b^2} \cos t dt = 0;$$

$$y_{c} = \frac{m}{m} \int_{l} y dl = \frac{m}{pm\sqrt{a^{2} + b^{2}}} \int_{0}^{p} a\sqrt{a^{2} + b^{2}} \sin t dt = 2a/p;$$

$$z_{c} = \frac{m}{m} \int_{l} z dl = \frac{m}{m\sqrt{a^{2} + t^{2}}} \int_{0}^{p} bt \sqrt{a^{2} + t^{2}} dt = \frac{pb^{2}}{2}.$$

Итак, центр тяжести $C = (0.2a/p, pb^2/2)$. р

2.10.* Найти момент инерции I относительно диаметра окружности l: $x^2 + y^2 = a^2$, если ее линейная плотность m = 1.

 ${f r}$ Зафиксируем какой-нибудь диаметр окружности. Тогда момент инерции I окружности l относительно этого диаметра выразится интегралом $I = \int \! d^2(x,y) dl,$ где d(x,y) — расстояние от

точки $M=(x,y)\in l$ до диаметра (рис. 2.1). Перейдем к полярным координатам: $x=r\cos j$, $y=r\sin j$, $0\le j\le 2p$. В этих координатах уравнение окружности примет вид r=a. Пусть диаметр лежит на прямой, образующей угол j_0 с осью X, где $j_0\in [0,p]$. M(x,y) При этом

 $\frac{C}{\sqrt{r^2+{r'}^2}}=a$, находим

Рис. 2.1

$$I = \int_{0}^{2p} a^{2} \sin^{2}(j - j_{0}) a dj = a^{3} \int_{0}^{2p} \left(\frac{1}{2} - \frac{1}{2} \cos(2j - 2j_{0})\right) dj = pa^{3}.$$
 p

- **2.11.** Найти массу дуги AB плоской кривой Γ с линейной плотностью m = m(x, y), если:
 - 1) Γ отрезок AB, A = (1,1), B = (2,3); m = 2x + y.
 - 2) Γ : $y = x^2/2$, A = (1,3/2), B = (2,2); m = y/x.
 - 3) Γ : $y^2 = x$, A = (1,1), B = (4,2); m = y.
- 4) Γ : $y = \frac{2}{3}x^{3/2}$, A = (0,0), $B = \left(4, \frac{16}{3}\right)$; m = kL, где L длина дуги от точки (0,0).

OTB.: 1) $5\sqrt{5}$; 2) $(5\sqrt{5} - 2\sqrt{2})/6$; 3) $(17\sqrt{17} - 5\sqrt{5})/12$; 4) $4(63 - 5\sqrt{5})k/9$.

2.12. Найти массу плоской кривой Γ с линейной плотностью m.

- 1) Γ : $r = a\sqrt{\cos 2j}$; m = kr.
- 2) Γ : $r = a\sqrt{1 + \cos j}$; $m = \sqrt{kr}$.
- 3) Γ : $x = a (t \sin t)$, $y = a (1 \cos t)$, $0 \le t \le 2p$; $m = y^{3/2}$.
- 4) Γ : $x = \ln(1+t^2)$, y = 2arctgt t, $0 \le t \le 1$, $m = ye^{-x}$.

5)
$$\Gamma$$
: $x^{2/3} + y^{2/3} = a^{2/3}$; $m = |xy|$.

6)
$$\Gamma$$
: $x^2 + y^2 = ax$; $m = \sqrt{x^2 + y^2}$.

Отв.: 1)
$$kpa^2$$
;

2)
$$pk(2a)^{3/2}$$
;

2)
$$pk(2a)^{3/2}$$
; **3)** $3\sqrt{2}pa^{5/2}$;

4)
$$(p^2 - 8 \ln 2)/16$$
; **5)** $9pa^3/64$; **6)** $2a^2$.

5)
$$9pa^3/64$$
;

6)
$$2a^2$$
.

массу пространственной кривой Г с линейной 2.13. Найти плотностью т:

1)
$$\Gamma$$
: $x = at$, $y = at^2/2$, $z = at^3/3$, $0 \le t \le 1$; $m = \sqrt{2y/a}$.

2)
$$\Gamma: x = t \cos t, y = t \sin t, z = t, 0 \le t \le 2p; m = \sqrt{x^2 + y^2 + z^2}$$
.

3)
$$\Gamma$$
: $x = ae^t \cos t$, $y = ae^t \sin t$, $z = ae^t$, $|t| < \infty$; $m = kz$.

4) Γ – дуга кривой $y = x^2 / \sqrt{2}$, $z = x^3 / 3$ с началом в точке A = (0,0,0) и концом $B = (4.8\sqrt{2},64/3); m = k\sqrt{x^2 + y^2}.$

5)
$$\Gamma = \{x^2 + y^2 + z^2 = a^2, x + y + z = a\}, \mathbf{m} = x^2.$$

OTB.: 1)
$$\frac{3a}{16} \left(\ln \frac{\sqrt{3}+2}{\sqrt{3}} + 2\sqrt{3} - \frac{2}{3} \right);$$
 2) $4 \left(\left(1 + 2p^2 \right)^{3/2} - 1 \right) / 3;$

3)
$$\sqrt{3}ka^2/2$$
;

4)
$$2644k/15$$
; **5)** $2\sqrt{6pa^3/9}$.

5)
$$2\sqrt{6}pa^3/9$$
.

2.14. Найти координаты центра тяжести кривой Г с линейной плотностью m=1:

1)
$$\Gamma$$
: $y = a \, ch(x/a), |x| \le a$.

2)
$$\Gamma$$
: $x = a(t - \sin t)$, $y = a(1 - \cos t)$, $0 \le t \le 2p$.

3)
$$\Gamma$$
 – дуга окружности $r = R, |j| \le j_0 \le p$.

4)
$$\Gamma$$
 – кардиоида $r = a(1 + \cos j)$.

5)
$$\Gamma$$
: $\sqrt{x} + \sqrt{y} = \sqrt{a}$.

6)
$$\Gamma: x^{2/3} + y^{2/3} = a^{2/3}, y \ge 0.$$

7)
$$\Gamma: y^2 = ax^3 - x^4$$
.

OTB.: 1)
$$\left(0, \frac{sh2 + 2}{4sh1}a\right)$$
; 2) $(pa, 4a/3)$; 3) $\left((R\sin j_0)/j_0, 0\right)$;

4)
$$(4a/5,0)$$
; **5)** $x_c = y_c = \frac{7\sqrt{2} + 3\ln(1 + \sqrt{2})}{\sqrt{2} + \ln(1 + \sqrt{2})} \cdot \frac{a}{6}$; **6)** $(0,2a/5)$; **7)** $2\sqrt{6}pa^3/9$.

2.15.* Найти координаты центра тяжести винтовой линии $x = R \cos j$, $y = R \sin j$, z = hj/2p, $0 \le j \le j_0$ с линейной плотностью $m = m_0 e^{-z/h}$, считая, что $j_0 = 2pn, n \in N$.

OTB:
$$(R/(1+4p^2); 2pR/(1+4p^2); h(1-(n+1)e^{-n})/(1-e^{-n})).$$

2.16. Найти координаты центра тяжести:

1. Однородной (m = 1) кривой $x = e^{-t} \cos t$, $y = e^{-t} \sin t$, $z = e^{-t}$, $0 \le t < +\infty$.

2. Однородного края поверхности $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a} \, (\mathbf{m} = 1)$.

Отв.:
$$x_c = y_c = z_c = \frac{a}{24} \cdot \frac{7\sqrt{2} + 3\ln(\sqrt{2} + 1)}{\sqrt{2} + \ln(\sqrt{2} + 1)}.$$

2.17. Найти момент инерции I_{y} окружности $x^{2} + y^{2} = 2Rx$, m = 1

Отв.: $3pR^3$.

2.18. Найти моменты инерции I_x, I_y, I_z одного витка винтовой линии $x = a \cos t$, $y = a \sin t$, z = ht/2p, $0 \le t \le 2p$; m = 1.

ОТВ.:
$$I_x = I_y = \sqrt{4p^2a^2 + h^2} (3a^2 + 2h^2)/6$$
, $I_z = \sqrt{4p^2a^2 + h^2}a^3$.

2.19. Найти моменты инерции I_x и I_y одной арки циклоиды $x = a(t - \sin t)$, $y = a(1 - \cos t), |t| \le p; m = 1.$

Отв.:
$$I_x = 32a^3 / 5$$
, $I_y = 8(p^2 - 256 / 45)a^3$.

2.20. Найти момент инерции I_0 плоской однородной кривой $\Gamma(m=1)$ относительно начала координат, если:

1)
$$\Gamma: |x| + |y| = a;$$

2)
$$\Gamma$$
: $x^{2/3} + y^{2/3} = a^{2/3}$;

3) Γ : $x = a(\cos t + t\sin t)$, $y = a(\sin t - t\cos t)$, $0 \le t \le 2p$.

Отв.: 1)
$$8\sqrt{2}a^3/3$$
;

2)
$$3a^3$$
:

2)
$$3a^3$$
; **3)** $2p^2(2p^2+1)a^3$.

Пусть функции P(x,y) и Q(x,y) непрерывны в точках дуги AB гладкой кривой l, имеющей уравнение y = j(x), $a \le x \le b$.

Интегральной суммой для функций P(x,y) и Q(x,y) по координатам называется сумма вида $\sum_{k=1}^{n} (P(\mathbf{x}_k, \mathbf{h}_k) \Delta x_k + Q(\mathbf{x}_k, \mathbf{h}_k) \Delta y_k)$, где $\Delta x_k, \Delta y_k$ – проекции элементарной дуги Δl_k на оси X и Y соответственно.

Криволинейным интегралом 2-го рода (КрИ-2) (или криволинейным интегралом по координатам от выражения P(x,y)dx + Q(x,y)dy по направленной дуге AB называется предел интегральной суммы при $\max \Delta x_k \to 0$ и $\max \Delta y_k \to 0$:

$$\int_{AB} P(x, y) dx + Q(x, y) dy = \lim_{\substack{\max \Delta x_k \to 0 \\ \max \Delta y_k \to 0}} \sum_{k=1}^n P(x_k, h_k) \Delta x_k + Q(x_k, h_k) \Delta y_k.$$

C механической точки зрения (КрИ-2) есть работа, совершаемая переменной силой $\ddot{f} = P(x,y)\ddot{i} + Q(x,y)\ddot{j} = (P,Q)$ на криволинейном пути AB. Если кривая l замкнутая, то КрИ-2 по такой кривой обозначается символом ϕ .

Из свойств КрИ-2 отметим следующие:

1.
$$\int_{BA} Pdx + Qdy = -\int_{AB} Pdx + Qdy,$$

т. е. КрИ-2 меняет свой знак на противоположный при изменении направления

пути интегрирования.

2. (Аддитивность) Если кривая l разбита на две части l_1 и l_2 , т. е. $l = l_1 + l_2$, To

$$\int_{l} Pdx + Qdy = \int_{l_1} Pdx + Qdy + \int_{l_2} Pdx + Qdy.$$

Остальные свойства КрИ-2 аналогичны свойствам КрИ-1.

Если кривая l задана явно уравнением $y = j(x), x \in [a,b]$, то в этом случае КрИ-2 вычисляется по формуле

$$\int_{l} P(x,y)dx + Q(x,y)dy = \int_{a}^{b} \{P[x,j(x)] + j'(x)Q[x,j(x)]\}dx.$$
 (2.9)

l задана параметрическими уравнениями кривая $x = x(t), y = y(t), t_1 \le t \le t_2$, To

$$\int_{l} P(x, y)dx + Q(x, y)dy = \int_{t_{1}}^{t_{2}} \{P[x(t), y(t)]x'(t) + Q[x(t), y(t)]y'(t)\}dt.$$
 (2.10)

Аналогичная формула имеет место для вычисления КрИ-2 пространственной кривой l, заданной уравнениями x = x(t), y = y(t), z = z(t), $t_1 \le t \le t_2$:

$$\int_{l}^{t} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =$$

$$= \int_{t_{1}}^{t_{2}} \{ P[x(t), y(t), z(t)]x'(t) + Q[x(t), y(t), z(t)]y'(t) + R[x(t), y(t), z(t)]z'(t) \} dt . (2.11)$$

2.21. Вычислить КрИ-2: $I = \int xy dx + (x^2 + y) dy$, если AB – дуга параболы

 $y = x^2$, расположенная между точками A = (0,0) и B = (2,4).

В данном случае $j(x) = x^2, j'(x) = 2x, 0 \le x \le 2$. Тогда по формулам (2.9) получаем

$$I = \int_{0}^{2} (xx^{2} + (x^{2} + x^{2})2x)dx = \int_{0}^{2} 5x^{3}dx = 20. \mathbf{p}$$
2.22. Вычислить
$$\oint_{l} ydx - x^{2}dy + (x + y)dz, \text{ если } l - \text{ линия}$$

$$\oint y dx - x^2 dy + (x+y)dz, \text{ если } l - \text{линия}$$

пересечения цилиндра $x^2 + y^2 = 4$ плоскостью x + y - z = 0, «пробегаемая» в положительном направлении, когда при обходе этой линии (эллипса, очевидно) плоскость, ограниченная эллипсом, остается слева (рис. 2.2).

Составим параметрические уравнения эллипса 1. Так как проекцией

Рис. 2.2

l на плоскость *XY* является окружность $x^2 + y^2 = 4$, то можно записать, что $x = 2\cos t$, $y = 2\sin t$. Тогда ИЗ уравнения плоскости находим, что $z = 2(\cos t + \sin t)$. Таким образом,

$$\begin{cases} x = 2\cos t, \\ y = 2\sin t, \\ z = 2(\cos t + \sin t), t \in [0, 2p] \end{cases} \Rightarrow \begin{cases} dx = -2\sin t dt, \\ dy = 2\cos t dt, \\ dz = 2(-\sin t + \cos t) dt. \end{cases}$$

Отсюда по формулам (2.11) имеем

ода по формулам (2.11) имеем
$$I = \int_0^{2p} \left(-4\sin^2 t - 8\cos^3 t + 4(\cos^2 t - \sin^2 t) \right) dt =$$

$$= \int_0^{2p} \left(-2 + 2\cos 2t - 8\cos t + 8\sin^2 t \cos t + 4\cos 2t \right) dt = -4p.$$
 р 2.23. Вычислить $I = \int_{AB} y dx + (x+z) dy + (x-y) dz$, где AB – отрезок, иняющий точки $A = (1,-1,1), B = (2,3,4)$.

соединяющий точки A = (1,-1,1), B = (2,3,4).

Составим параметрические уравнения прямой, проходящей через точки A и B: x = 1 + t, y = -1 + 4t, z = 1 + 3t. На отрезке AB параметр $0 \le t \le 1$. Тогда по формуле (2.11)

$$I = \int_{0}^{1} ((-1+4t) + (2+4t) \cdot 4 + (2-3t) \cdot 3) dt = \int_{0}^{1} (13+11t) dt = 18,5.$$
 р 2.24. Вычислить работу *A* силы $\mathbf{F} = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$ вдоль отрезка прямой

BC, если B = (1,1,1), C = (2,3,4).

r Запишем параметрические отрезка BC: уравнения $x=1+t,\;y=1+2t,\;z=1+3t,\;0\leq t\leq 1.$ Тогда работа A силы \vec{F} на пути BCвыразится интегралом

$$A = \int_{BC} yzdx + xzdy + xydz =$$

$$= \int_{0}^{1} [(1+2t)(1+3t) + (1+t)(1+3t) \cdot 2 + (1+t)(1+2t) \cdot 3] dt = 23. \mathbf{p}$$

2.25. Вычислить КрИ-2 по кривой Г, пробегаемой в направлении возрастания ее параметра x:

1)
$$\int_{\Gamma} \left(x - \frac{1}{y}\right) dy,$$

$$\Gamma: y = x^{2}, 1 \le x \le 2.$$
2)
$$\int_{\Gamma} x dy - y dx,$$

$$\Gamma: y = x^{3}, 0 \le x \le 2.$$
3)
$$\int_{\Gamma} \frac{y}{x} dx + dy,$$

$$\Gamma: y = \ln x, 1 \le x \le e.$$
4)
$$\int_{\Gamma} 2xy dx - x^{2} dy,$$

$$\Gamma: y = \sqrt{x/2}, 0 \le x \le 2.$$

5)
$$\int_{\Gamma} \cos y dx - \sin y dy, \qquad \Gamma: y = -x, -2 \le x \le 2.$$

6)
$$\int_{\Gamma}^{1} (x^2 + y^2) dx + (x^2 - y^2) dy, \quad \Gamma: y = 1 - |x - 1|, 0 \le x \le 2.$$

OTB.: 1) $(14-3\ln 4)3$; 2) 8; 3) 3/2; 4) 12/5; 5) $2\sin 2$; 6) 4/3.

2.26. Вычислить КрИ-2 по кривой Γ , пробегаемой от точки A до точки B:

1)
$$\int_{\Gamma} x dy - y dx$$
, Γ – ломаная ACB , где $A = (0,0), B = (1,2), C = (0,1)$.

2)
$$\int_{\Gamma} \frac{3x}{y} dx - \frac{2y^3}{x} dy$$
, $\Gamma: x = y^2, A = (4,2), B = (1,1).$

2)
$$\int_{\Gamma} \frac{3x}{y} dx - \frac{2y^3}{x} dy$$
, $\Gamma: x = y^2, A = (4,2), B = (1,1)$.
3) $\int_{\Gamma} x dy$, $\Gamma: \{x^2 + y^2 = a^2, x \ge 0\}, A = (0,-a), B = (0,a)$.

4)
$$\int_{\Gamma} \left(\frac{x}{x^2 + y^2} + y \right) dx + \left(\frac{y}{x^2 + y^2} + x \right) dy, \quad A = (1,0), B = (3,4).$$

5)
$$\int_{\Gamma} (x+y)dx + (x-y)dy, \quad A = (0,1), B = (2,3).$$

OTB.: 1) 2; 2) -11; 3) $(5 - \ln 8)/3$; 4) $12 + \ln 5$; 5) 4.

2.27. Вычислить КрИ-2 по кривой Г, пробегаемой в направлении возрастания ее параметра t:

1)
$$\int_{\Gamma} x dy + y dx$$
, $\Gamma : \{x = R \cos t, y = R \sin t, 0 \le t \le p / 2\}$.
2) $\int_{\Gamma} y^2 dx + x^2 dy$, $\Gamma : \{x = a \cos t, y = b \sin t, 0 \le t \le p\}$.

2)
$$\int_{\Gamma} y^2 dx + x^2 dy$$
, $\Gamma : \{ x = a \cos t, y = b \sin t, 0 \le t \le p \}$.

$$\int_{\Gamma}^{\Gamma}$$
 3) $\int_{\Gamma}^{\Gamma} (2a-y)dx + (y-a)dy$, Γ – дуга циклоиды $x = a(t-\sin t)$, $y = a(1-\cos t)$, $\leq t \leq 2p$.

$$t \le 2p$$
.
4) $\int_{\Gamma} \frac{x^2 dy - y^2 dx}{x^{5/3} + y^{5/3}}$, Γ – дуга астроиды $x = a \cos^3 t$, $y = a \sin^3 t$, $0 \le t \le p/2$.

Отв.: 1) 0; 2) $-4ab^2/3$; 3) pa^2 ; 4) $3pa^{4/3}/16$.

2.28. Вычислить КрИ-2 по замкнутой кривой Г, пробегаемой так, что ее внутренность остается слева:

1)
$$\oint_{\Gamma} (x^2 - 2xy) dx + (x - 2y)^2 dy$$
, Γ – граница прямоугольника,

образованного прямыми x = 0, x = 2, y = 0, y = 1.

2)
$$\oint_{\Gamma} (3x^2 - y) dx + (1 - 2x) dy$$
, Γ – граница треугольника с вершинами $(0,0),(1,0),(1,1)$.

3)*
$$\oint_{\Gamma} \frac{dx + dy}{|x| + |y|}$$
, Γ – граница квадрата с вершинами (1,0),(0,1),(-1,0),(0,-1).

4)
$$\oint_{\Gamma} \frac{xy^2dx - x^2ydy}{x^2 + y^2}$$
, Γ – правый лепесток лемнискаты $r^2 = a^2 \cos 2j$.

Otb.: 1) 4; **2)** -1/2; **3)** 0; **4)** 0.

2.29. Вычислить КрИ-2 по пространственной кривой Γ , пробегаемой в направлении возрастания ее параметра t:

1)
$$\int_{\Gamma} (y^2 - z^2) dx + 2yz dy - x^2 dz$$
, Γ – кривая $x = t$, $y = t^2$, $z = t^3$, $0 \le t \le 1$.

2)
$$\int_{\Gamma}^{\Gamma} yzdx + z\sqrt{a^2 - y^2}dy + xydz$$
, Γ – дуга винтовой линии $x = a\cos t$,

$$y = a \sin t$$
, $z = \frac{a}{2p}t$, $0 \le t \le 2p$.

3)
$$\int_{\Gamma} x dx + (x+y)dy + (x+y+z)dz, \ \Gamma$$
 –кривая $x = a \sin t, y = a \cos t,$

 $z = a(\sin t + \cos t), \quad 0 \le t \le 2p.$

4)
$$\int_{\Gamma} y dx + z dy + x dz$$
, Γ – окружность $x = a \cos a \cos t$, $y = a \cos a \sin t$, $z = a \sin a (a - const)$.

Отв.: 1) 1/35; **2)** 0; **3)** $-pa^2$; **4)** $-pa^2\cos^2 a$.

2.30. Вычислить КрИ-2 по пространственной кривой Г:

1)
$$\int_{\Gamma} x dx + y dy + (x + y - 1) dz$$
, Γ – отрезок AB, соединяющий точки $A = (1,1,1), B = (2,3,4)$.

(1,1,1),
$$B = (2,3,4)$$
.
2)* $\oint_{\Gamma} y^2 dx + z^2 dy + x^2 dz$, Γ – линия пересечения поверхностей

 $x^2 + y^2 + z^2 = R^2, x^2 + y^2 = Rx(R > 0, z \ge 0)$, пробегаемая против хода часовой стрелки, если смотреть из точки (0,0,0).

3)*
$$\oint_{\Gamma} (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz$$
, Γ – граница части сферы $x^2 + y^2 + z^2 = 1$ (лежащей в первом октанте), пробегаемая по ходу часовой стрелки, если смотреть из точки $(0,0,0)$.

4)
$$\oint_{\Gamma} (y+z)dx + (z+x)dy + (x+y)dz$$
, Γ – окружность

 $x^2 + y^2 + z^2 = a^2$, x + y + z = 0, пробегаемая против хода часовой стрелки, если смотреть с положительной полуоси оси Y.

Отв.: 1) 13; **2)**
$$-pR^3/4$$
; **3)** -4 ; **4)** 0.

2.31. Найти работу силы F вдоль дуги AB, если:

1)
$$F = (xy, -y)$$
; $\Gamma : y = x^2 - 1$, $A = (1,0)$, $B = (2,3)$.

2)
$$\mathbf{F} = (3xy^2, -x - y); \ \Gamma : y^2 = x + 1, \ A = (0,1), \ B = (3,2).$$

3)
$$\mathbf{F} = (-y, x)$$
; $\Gamma : x = a(t - \sin t)$, $y = a(1 - \cos t)$, $A = (0, 0)$, $B = (2pa, 0)$.

4)
$$\mathbf{F} = (y, -2x)$$
; $\Gamma : x^2 + y^2 = 1$, $y \ge 0$, $A = (1,0)$, $B = (-1,0)$.

5)
$$F = (0.2x)$$
; $\Gamma : x = a \cos t$, $y = b \sin t$, $y \ge 0$, $A = (a.0)$, $B = (-a.0)$.

6)
$$F = (yz, zx, xy)$$
; Γ – ломаная $ABCD$ с вершинами $A = (1,1,1), B = (2,1,1), C = (2,3,1), D = (2,3,4).$

7)
$$F = (x^2 / y, y / x, \cos z)$$
; Γ – виток винтовой линии $x = a \cos t, \ y = a \sin t, \ z = bt$, от точки $(a,0,0)$ до точки $(0,0,2pb)$.

- 8) $\mathbf{F} = (y, -z, x)$; Γ кривая $x^2 + y^2 + z^2 = 2a^2$, y = x, ориентированная против часовой стрелки, если смотреть с положительной полуоси оси X.
- 9) $\boldsymbol{F}=(z,x,y); \ \Gamma$ окружность $x^2+y^2+z^2=R^2, x+y+z=R,$ ориентированная против часовой стрелки, если смотреть с положительной полуоси оси Z.

Otb.: 1) 0; 2) 113/3; 3)
$$-6pa^2$$
; 4) $-3p/2$; 5) pab ; 6) 1; 7) $\sin(2pb) - pa^2$; 8) $2pa^2$; 9) $2pR^2/\sqrt{3}$.

2.2. Формула Грина

Независимость криволинейного интеграла от пути интегрирования. Восстановление функции по ее полному дифференциалу. Формула Грина и ее применение к вычислению площадей плоских фигур.

Пусть V — область в \mathbf{R}^3 и P(x,y,z), Q(x,y,z), R(x,y,z) — непрерывно дифференцируемые в V функции. Пусть $l \in V$ — произвольная ориентированная кривая с начальной точкой M и конечной точкой N (рис. 2.3).

Криволинейный интеграл

$$\int_{l} Pdx + Qdy + Rdz \tag{2.12}$$

в общем случае зависит не только от положения начальной и конечной точек пути интегрирования, но и от пути, соединяющего эти точки. Если значение интеграла (2.12) одно и то же при любом выборе пути l, соединяющего M и N, то говорят, что криволинейный интеграл не зависит от пути интегрирования.

Рис. 2.3

2.32. Вычислить КрИ-2
$$I = \int_{\Gamma} y dx + x dy$$
 по кривой Γ с началом

O = (0,0) и концом A = (1,1), если:

1) Γ – отрезок OA;

2) Γ – дуга параболы $y = x^2$; 3) Γ – дуга окружности радиусом 1 с центром в точке (1,0).

 ${\bf r}$ 1) Отрезок *OA* задается уравнением $y=x,0\leq x\leq 1$.

Тогда
$$I = \int_{0}^{1} x dx + \int_{0}^{1} y dy = 1.$$

Рис. 2.4

2) Если
$$\Gamma$$
 – дуга параболы, то $\int_{\Gamma} y dx = \int_{0}^{1} x^{2} dx$, $\int_{\Gamma} x dy = \int_{0}^{1} 2x^{2} dx$, $I = \int_{0}^{1} 3x^{2} dx = 1$.

3) Так как уравнение дуги окружности можно записать в виде $x = 1 + \cos t$, $y = \sin t$, $0 \le t \le p/2$, то

$$I = \int_{0}^{p/2} (\sin t(-\sin t) + (1+\cos t)\cos t)dt = 1.$$

Таким образом, интеграл I оказался не зависящим от выбранных трех путей интегрирования. $\mathbf p$

Напомним, что область V называется *односвязной*, если любой гладкий замкнутый контур, лежащий в области, является краем некоторой гладкой поверхности, целиком содержащейся в области V.

Справедлива следующая

Теорема 2.1. Пусть P,Q,R — непрерывно дифференцируемые функции в односвязной области V. Тогда следующие четыре условия равносильны.

1. По любому замкнутому пути $l \in V$

$$\oint_{I} Pdx + Qdy + Rdz = 0.$$

2. Интеграл (2.12) не зависит от пути интегрирования, т.е.

$$\int_{l_1} Pdx + Qdy + Rdz = \int_{l_2} Pdx + Qdy + Rdz,$$

 $\int\limits_{l_1}Pdx+Qdy+Rdz=\int\limits_{l_2}Pdx+Qdy+Rdz,$ где l_1 и l_2 – произвольные пути, расположенные в V и имеющие общие начало и конец.

Существует непрерывно дифференцируемая функция u = u(x, y, z)3. такая, что Pdx + Qdy + Rdz является ее полным дифференциалом, т. е.

$$(du = Pdx + Qdy + Rdz) \Leftrightarrow \frac{\partial u}{\partial x} = P, \quad \frac{\partial u}{\partial y} = Q, \quad \frac{\partial u}{\partial z} = R. \quad (2.13)$$

4. Для дифференциальной формы W = Pdx + Qdy + Rdz выполнены условия

$$\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z}, \quad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y},$$
 (2.14)

называемые условиями интегрируемости.

выполнены условия интегрируемости (2.14), то выражение P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz является ПОЛНЫМ дифференциалом функции u = u(x, y, z), которую можно найти по формуле

$$u(x,y,z) = \int_{MN} Pdx + Qdy + Rdz + C = \int_{(x_0,y_0,z_0)}^{(x,y,z)} Pdx + Qdy + Rdz + C, \qquad (2.15)$$
 где $M = (x_0,y_0,z_0)$ — начальная точка, $N = (x,y,z)$ — конечная точка пути

интегрирования, целиком лежащем в V.

Формуле (2.15) равносильна следующая:

$$u(x,y,z) = \int_{x_0}^{x} P(t,y_0,z_0)dt + \int_{y_0}^{y} Q(x,t,z_0)dt + \int_{z_0}^{z} R(x,y,t)dt + C.$$
 (2.16)

Здесь путем интегрирования является некоторая ломаная линия МАВЛ, составленная из отрезков, параллельных координатным осям X,Y и Z и где $M = (x_0, y_0, z_0)$ — начальная точка, $A = (x, y_0, z_0)$, $B = (x, y, z_0)$ — промежуточные точки, N = (x, y, z) – конечная точка ломаной.

Эти результаты сформулируем для случая функций двух переменных. При выполнении условия

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \tag{2.17}$$

выражение W = P(x, y)dx + Q(x, y)dy является полным дифференциалом в односвязной области V некоторой функции u = u(x, y), которая находится по формуле

$$u(x,y) = \int_{(x_0,y_0)}^{(x,y)} Pdx + Qdy + C = \int_{x_0}^{x} P(t,y_0)dt + \int_{y_0}^{y} Q(x,t)dt + C.$$
 (2.18)

2.33. Восстановить функцию по ее полному дифференциалу

$$du = (1/x + 1/y)dx + (2/y - x/y^2)dy.$$

r Имеем
$$P = 1/x + 1/y$$
, $Q = 2/y - x/y^2 \Rightarrow \frac{\partial P}{\partial y} = -\frac{1}{y^2} = \frac{\partial Q}{\partial x}$,

т. е. условие (2.17) выполнено. В качестве точки (x_0, y_0) возьмем точку (1,1). Тогда по формуле (2.18) находим

$$u(x,y) = \int_{1}^{x} \left(\frac{1}{t} + 1\right) dt + \int_{1}^{y} \left(\frac{2}{t} - \frac{x}{t^{2}}\right) dt =$$

$$= \left(\ln|t| + t\right) \left| \frac{x}{1} + \left(2\ln|t| + \frac{x}{t}\right) \right| t = y + C = \ln|x| + 2\ln|y| + \frac{x}{y} - 1 + C. \text{ p}$$

2.34. Показать, что КрИ-2 $I = \int_{(0;1)}^{(2;3)} (x+y)dx + (x-y)dy$ не зависит от пути

интегрирования и вычислить его.

 Δ Функции P(x,y) = x + y и Q(x,y) = x - y вместе со своими частными производными $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = 1$ непрерывны на всей плоскости XY, и данный интеграл не зависит от пути интегрирования. Поэтому для вычисления интеграла I можно выбрать любой путь, соединяющий точки A = (0,1) и B = (2,3). Поскольку удобнее всего вычислять КрИ по отрезкам, параллельным осям координат, то выберем путь в виде ломаной, состоящей из двух звеньев AC и CB, параллельных осям координат (рис. 2.5).

$$AC$$
 и CB , параллельных осям координат (рис. 2.5).
Тогда $I = \int_{(0,1)}^{(2,1)} + \int_{(2,1)}^{(2,1)} Ha \quad AC$: $Y = 1 \Rightarrow dy = 0$. Тогда $\int_{(0,1)}^{(2,1)} \int_{(0,1)}^{2} (x+1)dx = 4$. $A = (0,1)$ $A = (0,1)$

Следовательно, I = 4. р

Рис. 2.5

2.35. Проверить, является ли выражение $W = \left(3x^2y + \frac{1}{y}\right)dx + \left(x^3 - \frac{x}{y^2}\right)dy$ полным дифференциалом некоторой функции u = u(x, y); если да, то найти эту функцию.

$$\Delta$$
 Частные производные $\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \left(3x^2 + y + \frac{1}{y} \right) = 3x^2 - \frac{1}{y^2}$ и

$$\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left(x^3 - \frac{x}{y^2} \right) = 3x^2 - \frac{1}{y^2}$$
 равны между собой. Непрерывность функций

 $P,Q,\frac{\partial P}{\partial y},\frac{\partial Q}{\partial x}$ имеет место для всех точек плоскости XY, за исключением точек

оси *X*. Следовательно, КрИ-2
$$\int_{\Gamma} \left(3x^2y + \frac{1}{y}\right) dx + \left(x^3 - \frac{x}{y^2}\right) dy$$
 не зависит от пути

интегрирования и его можно вычислять по любому пути от точки (x_0, y_0) до точки (x, y), лишь бы только сам путь интегрирования, как и эти точки,

находились в области непрерывности функций $P,Q,\frac{\partial P}{\partial y},\frac{\partial Q}{\partial x}$. Выберем путь

интегрирования, как показано на рис. 2.6. Тогда $u(x,y) = \int_{(0,1)}^{(x,y)} \left(3x^2y + \frac{1}{y}\right) dx + \left(x^3 - \frac{x}{y^2}\right) dy = A = (0,1)$ $= \int_{(0,1)}^{(0,y)} \int_{(0,y)}^{(x,y)} \int_{(0,y)}^{(x,y)} dx + C. p$ Puc. 2.6

При нахождении функции u=u(x,y) по ее полному дифференциалу du=Pdx+Qdy часто поступают следующим образом. Из равенства $\frac{\partial u}{\partial x}=P$ имеем $u=\int P(x,y)dx+g(y)$, где g(y) — некоторая дифференцируемая функция, играющая роль постоянной при интегрировании по x. Дифференцируя последнее равенство по y с учетом соотношения $\frac{\partial u}{\partial y}=Q$, получаем

$$\frac{\partial u}{\partial y} = \int \frac{\partial P(x, y)}{\partial y} dx + g'(y) = Q(x, y) \Rightarrow g(y) = \int \left(Q(x, y) - \int \frac{\partial P}{\partial y} dx \right) dy + C.$$

Таким образом,

$$u = \int P(x, y)dx + \int \left(Q(x, y) - \int \frac{\partial P}{\partial y}dx\right)dy + C.$$

- **2.36.** Найти функцию u = u(x, y) по ее полному дифференциалу $du = e^{-y} dx + (1 xe^{-y}) dy$.
- ${f r}$ То, что это действительно полный дифференциал, следует из равенства $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = -e^{-y}$, где $P = e^{-y}, Q = 1 xe^{-y}$. В таком случае существует

функция u = u(x, y) такая, что $\frac{\partial u}{\partial x} = e^{-y}$, $\frac{\partial u}{\partial y} = 1 - xe^{-y}$. Интегрированием по x обеих частей первого равенства находим

$$u = \int e^{-y} dx + g(y) = xe^{-y} + g(y) \Rightarrow \frac{\partial u}{\partial y} = -xe^{-y} + g'(y) = 1 - xe^{-y} \Rightarrow$$
$$\Rightarrow g'(y) = 1 \Rightarrow g(y) = y + C.$$

Тогда искомая функция $u(x, y) = xe^{-y} + g(y) = xe^{-y} + y + C$. **р**

По этой же методике можно восстанавливать функцию трех переменных по ее полному дифференциалу.

- **2.37.** Является ли выражение $W = (2xy + z)dx + (x^2 2y)dy + xdz$ полным дифференциалом некоторой функции u = u(x, y, z)? Если да, то восстановить эту функцию.
 - r Здесь условия интегрируемости (2.14) выполнены:

$$\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z} = 0, \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} = 1, \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = 2x.$$

Тогда существует функция u = u(x, y, z), для которой

$$\frac{\partial u}{\partial x} = 2xy + z, \ \frac{\partial u}{\partial y} = x^2 - 2y, \ \frac{\partial u}{\partial z} = x. \tag{2.19}$$

Из первого уравнения системы (2.19) интегрированием по x получим $u = x^2y + zx + j$ (y, z), где j (y, z) — дифференцируемая функция, выполняющая роль константы при интегрировании по x. Ее найдем, используя второе уравнение системы (2.19):

$$\frac{\partial u}{\partial y} = x^2 + \frac{\partial j}{\partial y} = x^2 - 2y \Rightarrow \frac{\partial j}{\partial y} = -2y \Rightarrow j = \int -2y dy + y(z),$$

где y(z) — некоторая дифференцируемая функция, играющая роль константы при интегрировании по y. Таким образом, $u = x^2y + zx - y^2 + y(z)$. Отсюда и из третьего уравнения системы (2.19) находим

$$\frac{\partial u}{\partial z} = x + y'(z) = x \Rightarrow y'(z) = 0 \Rightarrow y(z) = C - const.$$

Итак, окончательно, искомая функция $u(x, y, z) = x^2y + zx - y^2 + C$. **р**

- **2.38.** Убедившись в том, что подынтегральное выражение является полным дифференциалом, вычислить КрИ-2 по кривой Γ с началом в точке A и концом в точке B:
 - 1) $\int_{\Gamma} (x+y)dx + (x-y)dy$, A = (2,-1), B = (1,0).
 - 2) $\int_{\Gamma} 2xydx + x^2dy$, A = (0,0), B = (-2,-1).
 - 3) $\int_{\Gamma} (x^2 + 2xy y^2) dx + (x^2 2xy y^2) dy, \quad A = (3,0), B = (0,-3).$

4)
$$\int_{\Gamma} f(x+y)(dx+dy)$$
, $f(t)$ – непрерывная функция, $A=(0,0)$, $B=(x_0,y_0)$.

5)
$$\int_{\Gamma} j(x)dx + y(y)dy$$
, $j(t)$, $y(t)$ – непрерывные функции,

$$A = (x_1, y_1), B = (x_2, y_2).$$

6)
$$\int_{\Gamma} e^x \cos y dx - e^x \sin y dy$$
, $A = (0,0), B = (x_0, y_0)$.

7)
$$\int_{\Gamma} x dx + y^2 dy - z^3 dz$$
, $A = (-1,0,2), B = (0,1,-2)$.

8)
$$\int_{\Gamma} yzdx + xzdy + xydz$$
, $A = (2,-1,0), B = (1,2,3)$.

9)
$$\int_{\Gamma} \frac{xdx + ydy + zdz}{\sqrt{x^2 + y^2 + z^2}}$$
, $A \in S_1$, $B \in S_2$, где

$$S_1$$
 – cфepa $x^2 + y^2 + z^2 = R_1^2$, S_2 – cфepa $x^2 + y^2 + z^2 = R_2^2$ $(R_1 > 0, R_2 > 0)$.

OTB.: 1) 1; 2) -4; 3) 0; 4)
$$\int_{0}^{x_0+y_0} f(t)dt$$
; 5) $\int_{x_1}^{x_2} f(t)dt + \int_{y_1}^{y_2} y(t)dt$;

6)
$$e^{x_0} \cos y_0 - 1;$$
 7) $-1/6;$ **8**) 6;

$$-1/6$$
; **8**)

9)
$$R_2 - R_1$$

2.39. Найти функцию по ее заданному полному дифференциалу:

1)
$$du = (e^{2y} - 5y^3 e^x) dx + (2xe^{2y} - 15y^2 e^x) dy$$
.

2)
$$du = \frac{2x(1-e^y)}{(1+x^2)^2}dx + \left(\frac{e^y}{1+x^2} + 1\right)dy$$
.

3)
$$du = \frac{yzdx + zxdy + xydz}{1 + x^2y^2z^2}$$
.

4)
$$du = (x^2 - 2yz)dx + (y^2 - 2zx)dy + (z^2 - 2xy)dz$$
.

5)
$$du = \left(1 - \frac{1}{y} + \frac{y}{z}\right)dx + \left(\frac{x}{z} + \frac{x}{y^2}\right)dy - \frac{xy}{z^2}dz.$$

OTB.: 1)
$$u = xe^{2y} - 5y^3e^x + C$$
; 2) $u = \frac{e^y - 1}{1 + x^2} + y + C$; 3) $u = arctg(xyz) + C$;

4)
$$u = (x^3 + y^3 + z^3)/3 - 2xyz + C$$
;

5)
$$u = x - x/y + xy/z + C$$
.

2.40. Какому условию должна дифференцируемая функция удовлетворять F(x, y), чтобы КрИ-2 $\int F(x, y)(ydx + xdy)$ не

зависел от пути интегрирования Γ_{AB} между **Отв.:** $xF_x' = yF_y'$. точками A и B?

Пусть граница Г плоской ограниченной области D состоит из конечного набора кусочно-гладких кривых. Тогда если функции $P,Q,\frac{\partial P}{\partial y},\frac{\partial Q}{\partial x}$ непрерывны в D вплоть до ее границы, то справедлива формула Грина

$$\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint\limits_{\Gamma} P dx + Q dy, \tag{2.20}$$

где контур Γ ориентирован положительно, то есть при его обходе против часовой стрелки область D остается слева (рис. 2.7).

Из формулы (2.20) при Q = x, P = -y получаем, что площадь S области D, ограниченной контуром Г, выражается через КрИ-2 формулой

$$S = \frac{1}{2} \oint_{\Gamma} x dy - y dx. \tag{2.21}$$

2.41. Вычислить с помощью формулы Грина КрИ-2 $I = \oint_{\Gamma} x^2 y dx - xy^2 dy$, где Γ – окружность $x^2 + x^2 = x^2$

 Γ – окружность $x^2 + y^2 = R^2$ (обход контура положителен)

 Δ По формуле Грина (2.20), где $P = x^2 y, Q = -xy^2, \frac{\partial Q}{\partial x} = -y^2, \frac{\partial P}{\partial y} = x^2,$

получаем
$$I = \iint_D (x^2 + y^2) dx dy = -\int_0^{2p} dj \int_0^R r^3 dr = -pR^4/2$$
. p

- **2.42.** Пользуясь формулой (2.21), найти площадь S, ограниченную астроидой $x = a\cos^3 t$, $y = a\sin^3 t$, $0 \le t \le 2p$.
 - Δ Применяя формулы (2.21) и (2.10), получаем

$$S = \frac{1}{2} \int_{0}^{2p} (x(t)y'(t) - y(t)x'(t))dt = \frac{3a^{2}}{2} \int_{0}^{2p} (\cos^{4}t \sin^{2}t + \sin^{4}t \cos^{2}t)dt =$$

$$= \frac{3a^{2}}{8} \int_{0}^{2p} \sin^{2}2t dt = \frac{3a^{2}}{16} \int_{0}^{2p} (1 - \cos 4t) dt = \frac{3pa^{2}}{8}. \mathbf{p}$$

2.43. Применяя формулу Грина, вычислить КрИ-2 по контуру Г (обход контура положителен):

1)
$$\oint_{\Gamma} (xy + x + y) dx + (xy + x - y) dy$$
, $\Gamma : x^2 + y^2 = ax$.

2)
$$\oint_{\Gamma} (2xy - y)dx + x^2 dy, \quad \Gamma: x^2 / a^2 + y^2 / b^2 = 1.$$

3)
$$\oint_{\Gamma} (x+y)^2 dx - (x^2+y^2) dy$$
, Γ_{-} граница треугольника с вершинами (1,1),(3,2),(2,5).

4)
$$\oint_{\Gamma} (y-x^2)dx - (x+y^2)dy$$
, Γ – граница кругового сектора $0 < r < R, 0 < j < a \le p/2; (r,j)$ – полярные координаты.

5)
$$\oint_{\Gamma} \frac{dx - dy}{x + y}$$
, Γ – граница квадрата с вершинами (1,0),(0,1),(-1,0),(0,-1).

6)
$$\oint_{\Gamma} \sqrt{x^2 + y^2} dx + y(xy + \ln(x + \sqrt{x^2 + y^2})) dy, \quad \Gamma: x^2 + y^2 = R^2.$$

7)* $\oint_{\Gamma} (x+y)^2 dx - (x-y)^2 dy$, Γ – граница области, образованной отрезком

[A,B], где $A=(1,1),\ B=(2,6),\ _{\rm H}$ дугой параболы $y=ax^2+bx+c,\$ проходящей через точки A, B, O = (0,0).

OTB.: 1) $-pa^3/8$; 2) pab; 3) -140/3; 4) 0;5) -4; 6) $pR^4/4$; 7) -2.

2.44. Применяя формулу Грина, найти площадь области, ограниченной плоскими кривыми:

1)
$$y=1-x^2, x-y=1.$$

2)
$$x = 12\sin^3 t$$
, $y = 3\cos^3 t$.

3)
$$x = a \sin 2j \cos^2 j$$
, $y = a \cos 2j \cos^2 j$, $|j| \le p/2$.

4)
$$x^2/a^2 + y^2/b^2 < 1$$
, $x/a - y/b < (\sqrt{3} - 1)/2$.

5)*
$$(y-x)^2 + x^2 = 1$$
.

6)
$$(x+y)^2 = ax$$
, $y = 0$.

7)
$$y^2 = x^2 - x^4$$
.

8)
$$(x^2 + y^2)^2 = a^2(x^2 - y^2), x \ge 0.$$

9)
$$(x^2 + y^2)^2 = 2ax^3$$
.

10)*
$$x^3 + y^3 = x^2 + y^2$$
, $x = 0$, $y = 0$.

OTB.: 1) 9/2; 2) 27p/2; 3) $3pa^2/8$; 4) (7p+3)ab/12; 5) p; 6) $a^2/6$; 7) 4/3; 8) a^2 ; 9) $5pa^2/8$; 10) $(3\sqrt{3}+4p)/9\sqrt{3}$.

2.45.* Найти площадь области, ограниченной петлей кривой:

1)
$$x = 3t/(1+t^2)$$
, $y = 3t^2(1+t^2)$. **OTB.:** 3/2.

2)
$$x = a \cos j$$
, $y = a \sin 2j$, $x \ge 0$. **OTB.:** $4a^2/3$.

3)
$$(\sqrt{x} + \sqrt{y})^{12} = xy$$
.

Отв.: 1/30.

2.46. Найти площадь плоской фигуры, ограниченной следующими кривыми:

- Кардиоидой $x = a(2\cos t \cos 2t)$, $y = a(2\sin t \sin 2t)$.
- 2)* Петлей декартова листа $x^3 + y^3 = 3axy(a > 0)$ (положить y = tx).
- 3) Лемнискатой $(x^2 + y^2)^2 = a^2(x^2 y^2)$ (положить y = xtgj).
- 4) Параболой $(x + y)^2 = ax(a > 0)$ и осью X.

OTB.: 1) $6pa^2$; 2) $3a^2/2$; 3) a^2 ; 4) $a^2/3$.

3. Поверхностные интегралы

3.1. Поверхностные интегралы 1-го рода (ПИ-1)

Определение ПИ-1 и его основные свойства. Вычисление ПИ-1 в случае явного и неявного задания поверхности. Приложения ПИ-1

Пусть $S \subset \mathbb{R}^3$ – гладкая поверхность и f(x, y, z) – непрерывная в точках S функция. Разобьем поверхность S на части S_i , площадь каждой из которых равна ΔS_i , $i = \overline{1, n}$. В каждой части S_i произвольно выберем точку $M_i = (x_i, y_i, z_i)$

cymmy $S_n = \sum_{i=1}^n f(x_i, y_i, z_i) \Delta S_i$. интегральную И составим

 $\Delta = \max \, diam \Delta S_i$. Если существует предел интегральных сумм \boldsymbol{S}_n при $\Delta \to 0,$

не зависящий ни от способа разбиения S на части S_i , ни от выбора точек $M_{i} \in S_{i}$, то он называется поверхностным интегралом 1-го рода (ПИ-1) от функции f(x, y, z) по поверхности S и обозначается $\iint f(x, y, z) ds$.

Таким образом
$$\iint\limits_{S} f(x,y,z)ds = \lim_{\Delta \to 0} \sum_{i=1}^{n} f(x_{i},y_{i},z_{i}) \Delta S_{i}.$$

ПИ-1 свойствами линейности, аддитивности, ДЛЯ них справедлива теорема о среднем, их величина не зависит от выбора стороны поверхности (см. [3]).

Если поверхность задана явно уравнением $z = g(x, y), (x, y) \in D_{xy}$, где D_{xy} – проекция S на плоскость XY, то ПИ-1 вычисляется следующим образом:

$$\iint_{S} f(x, y, z) ds = \iint_{D_{xy}} f(x, y, g(x, y)) \sqrt{1 + g'_{x}^{2} + g'_{y}^{2}} dx dy.$$
 (3.1)

В случае задания поверхности явно уравнением x = j(y, z) или уравнением y=y(x,z), где $(y,z)\in D_{yz}$ — проекция S на плоскость $Y\!Z$, а $(x,z)\in D_{xz}$ проекция S на плоскость XZ, то ΠU -1вычисляется по формуле соответственно

$$\iint_{S} f(x, y, z) ds = \iint_{D} f(j(y, z), y, z) \sqrt{1 + j'_{y}^{2} + j'_{z}^{2}} dy dz,$$
(3.2)

$$\iint_{S} f(x, y, z) ds = \iint_{D_{yz}} f(j(y, z), y, z) \sqrt{1 + j'_{y}^{2} + j'_{z}^{2}} dy dz,$$

$$\iint_{S} f(x, y, z) ds = \iint_{D_{xz}} f(x, y(x, z), z) \sqrt{1 + y'_{x}^{2} + y'_{z}^{2}} dx dz.$$
(3.2)

Если же поверхность S задана неявно уравнением $F(x, y, z) = 0, F'_z \neq 0$, $\forall (x, y, z) \in S$, тогда формула (3.1) принимает вид

$$\iint_{S} f(x, y, z) ds = \iint_{D_{xy}} f(x, y, z) \frac{1}{|F'_{z}|} \sqrt{|F'_{x}|^{2} + |F'_{y}|^{2} + |F'_{z}|^{2}} dx dy, \tag{3.4}$$

где D_{xy} – проекция S на плоскость XY.

При вычислении интеграла в правой части формулы (3.4) необходимо z выразить из уравнения поверхности F(x, y, z) = 0 (предполагаем, что это возможно).

Вычислить ПИ-1 $I = \iint_{S} z ds$, где S — часть гиперболического 3.1. параболоида z = xy, вырезанная цилиндром $x^2 + y^2 = 4$.

Поверхность S задана явно, ее проекцией $r^3 \cos j \sin j \sqrt{1+r^2} dr$ r

 D_{xy} на плоскость XY является круг $x^2 + y^2 = 4$. Применив формулу (3.1) и перейдя к полярным координатам, получим

$$I = \iint_{D_{xy}} z \sqrt{1 + z'_{x}^{2} + z'_{y}^{2}} dxdy = \iint_{D_{xy}} xy \sqrt{1 + y^{2} + x^{2}} dxdy =$$

$$= \int_{0}^{2p} dj \int_{0}^{2} r^{3} \cos j \sin j \sqrt{1 + r^{2}} dr = \frac{1}{2} \int_{0}^{2p} \sin 2j dj \int_{0}^{2} r^{3} \sqrt{1 + r^{2}} dr = 0.$$
 p

3.2.* Вычислить интеграл $I = \iint_S y ds$, где S — часть поверхности цилиндра $x = 2y^2 + 1$ при y > 0, вырезанная поверхностями $x = y^2 + z^2$, x = 2, x = 3.

г Вычислим *I* двойным интегрированием по области D_{xz} – проекции *S* на плоскость *XZ*. Для отыскания границы области D_{xz} исключим переменную у из уравнений $x = 2y^2 + 1$ и $x = y^2 + z^2$; получим $2z^2 = x + 1$. Граница области D_{xz} состоит из двух дуг этой параболы и отрезков прямых x = 2, x = 3 (рис. 3.1).

Из уравнения поверхности $S: y = \sqrt{\frac{x-1}{2}}$ следует, что $\sqrt{\frac{x-1}{2}}$ следует, что

$$\sqrt{1+y'_x^2+y'_z^2} = \sqrt{\frac{8x-7}{8x-8}}.$$

Воспользовавшись формулой (3.3), получим

$$I = \iint_{D_{xz}} \sqrt{\frac{x-1}{2}} \cdot \sqrt{\frac{8x-7}{8x-8}} dx dz =$$

$$= \frac{1}{2\sqrt{2}} \int_{2}^{3} \sqrt{8x^{2} + x - 7} dx =$$

$$= \int_{2}^{3} \sqrt{\left(x + \frac{1}{16}\right)^{2} - \left(\frac{15}{16}\right)^{2}} dx =$$

$$= \left(\frac{x+1/16}{2}\sqrt{x^2+x/8-7/8} - \left(\frac{15}{16}\right)^2 \cdot \frac{1}{2}\ln\left|x + \frac{1}{16} + \sqrt{x^2+x/8-7/8}\right|\right) \begin{vmatrix} x=3\\ x=2 \end{vmatrix} =$$

$$= \frac{98\sqrt{17} - 99\sqrt{3}}{64\sqrt{2}} + \left(\frac{15}{16}\right)^2 \ln\frac{33+12\sqrt{6}}{49+8\sqrt{3}\cdot 4} \approx 2,2. \text{ p}$$

3.3. Вычислить интеграл $I = \iint_{S} \sqrt{x^2 + y^2} ds$, где S — часть конической

поверхности $x^2 + y^2 - z^2 = 0$, $0 \le z \le 1$.

г Поверхность S задана неявно уравнением $F(x,y,z)=x^2+y^2-z^2=0$. Ее проекция D_{xy} на плоскость XY есть круг $x^2+y^2\leq 1$. Так как $F'_x=2x, F'_y=2y, F'_z=-2z$ и для конуса $z=\sqrt{x^2+y^2}$, то по формуле (3.4)

$$I = \iint_{D_{xy}} \frac{1}{2z} 2\sqrt{x^2 + y^2 + z^2} dxdy = \sqrt{2} \iint_{D_{xy}} \sqrt{x^2 + y^2} dxdy = \sqrt{2} \int_{0}^{2p} dj \int_{0}^{1} r^2 dr = \frac{2\sqrt{2}p}{3}.$$
 p

3.4. Вычислить ПИ-1:

1.
$$\iint_{S} (x+y+z)ds$$
, где:

1) S — часть плоскости x + 2y + 4z = 1, определяемая условием $x \ge 0, y \ge 0, z \ge 0$. Отв.: $7\sqrt{21}/3$.

2) S – часть сферы $x^2 + y^2 + z^2 = 1$, определяемая условием $z \ge 0$.

Отв.: р.

2.
$$\iint_{S} (x^2 + y^2) ds$$
, где:

1)
$$S - \text{chepa } x^2 + y^2 + z^2 = R^2$$
. OTB.: $8pR^4/3$.

2)
$$S$$
 – поверхность конуса $\sqrt{x^2 + y^2} \le z \le 1$. Отв.: $p(1 + \sqrt{2})/2$.

3.
$$\iint_{S} (x^2 + y^2 + z^2) ds$$
, где:

1)
$$S - \text{cdepa } x^2 + y^2 + z^2 = R^2$$
, OTB.: $4pR^4$.

2)
$$S$$
 – поверхность куба $|x| \le a, |y| \le a, |z| \le a$. Отв.: $40a^4$.

3)
$$S$$
 – поверхность октаэдра $|x| + |y| + |z| \le a$. Отв.: $2\sqrt{3}a^4$.

4) S – полная поверхность цилиндра $x^2 + y^2 \le R^2$, $0 \le z \le H$.

Отв.:
$$pR(R^3 + 2R^2H + RH^2 + 2H^3/3)$$
.

4. 1)
$$\iint_{S} (xy + yz + zx)ds$$
. 2)
$$\iint_{S} (x^{2}y^{2} + y^{2}z^{2} + z^{2}x^{2})ds$$
.

S — часть конической поверхности $z = \sqrt{x^2 + y^2}$, расположенная внутри цилиндра $x^2 + y^2 = 2x$. Отв.: 1) $64\sqrt{2}/15$; 2) $29p\sqrt{2}/8$.

3.5.* Доказать формулу Пуассона

$$\iint_{S} f(ax+by+cz)ds = 2p \int_{-1}^{1} f(\sqrt{a^{2}+b^{2}+c^{2}}) t dt,$$

где f(t), $|t| \le \sqrt{a^2 + b^2 + c^2}$ – непрерывная функция, S – сфера $x^2 + y^2 + z^2 = 1$.

Отметим следующие *геометрические и механические приложения ПИ-1*. Пусть S — материальная поверхность с поверхностной плотностью $\mathbf{m}(x, y, z)$ в каждой точке $(x, y, z) \in S$. Тогда справедливы следующие формулы:

$$1^{\circ}$$
. $\iint_{S} ds = s$, где $s - n$ лощадь поверхности S ;

$$2^{\circ}$$
. $m = \iint_{S} \mathbf{m}(x, y, z) ds$ - масса поверхности S ;

3°.
$$M_{xy} = \iint_{S} z m(x, y, z) ds$$
, $M_{xz} = \iint_{S} y m(x, y, z) ds$, $M_{yz} = \iint_{S} x m(x, y, z) ds$ -

статические моменты поверхности относительно координатных плоскостей XY, XZ, YZ соответственно.

 4° . $z_c = M_{yz}/m$, $y_c = M_{xz}/m$, $z_c = M_{xy}/m$ – координаты центра тяжести поверхности;

5°.
$$I_x = \iint_S (y^2 + z^2) \mathbf{m}(x, y, z) ds$$
, $I_y = \iint_S (x^2 + z^2) \mathbf{m}(x, y, z) ds$, $I_z = \iint_S (x^2 + y^2) \mathbf{m}(x, y, z) ds$, $I_0 = \iint_S (x^2 + y^2 + z^2) \mathbf{m}(x, y, z) ds$

$$I_{y} = \iint_{S} (x^{2} + z^{2}) m(x, y, z) ds,$$

$$I_{0} = \iint_{S} (x^{2} + y^{2} + z^{2}) m(x, y, z) ds$$

- моменты инерции поверхности относительно координатных осей Х, Ү, Z и начала координат соответственно.

3.6. Найти координаты центра тяжести плоскости z = xограниченной плоскостями x + y = 1, y = 0, x = 03.2). (рис. Поверхностная плотность m=1.

Так как m=1, то масса этой части плоскости численно равна ее площади. Найдем ее. Имеем $z'_{x} = 1$, $z'_{y} = 0$. Тогда

Рис. 3.2

$$S = \iint_{D_{yy}} \sqrt{1 + {z'_x}^2 + {z'_y}^2} \, dx dy = \sqrt{2} \int_0^1 dx \int_0^{1-x} dy = \frac{\sqrt{2}}{2}.$$

Далее находим

$$x_{c} = \frac{1}{S} \iint_{S} x ds = \frac{2}{\sqrt{2}} \int_{0}^{1} x dx \int_{0}^{1-x} \sqrt{2} dy = \frac{1}{3}; \quad y_{c} = \frac{1}{S} \iint_{S} y ds = \frac{2}{\sqrt{2}} \int_{0}^{1} x dx \int_{0}^{1-x} \sqrt{2} y dy = \frac{1}{3};$$
$$z_{c} = \frac{1}{S} \iint_{S} z ds = \frac{1}{S} \iint_{S} x ds = \frac{1}{3}.$$

Итак, центр тяжести C = (1/3, 1/3, 1/3).

- Определить массу, распределенную:
- 1) по поверхности куба $0 \le x \le a$, $0 \le y \le a$, $0 \le z \le a$ с плотностью **Отв.:** $3m_0a^3/4$; $m = m_0 xyz$.

2) по сфере
$$x^2 + y^2 + z^2 = R^2$$
 с плотностью $\mathbf{m} = \mathbf{m}_0 \sqrt{x^2 + y^2}$.

Отв.:
$$m_0 p^2 R^3$$
;

- 3) по части эллиптического параболоида $x^2 + y^2 = 2z$, $z \le 1$ с плотностью $\mathbf{m} = \mathbf{m}_0 z$. Отв.: $2p(1+6\sqrt{3})\mathbf{m}_0/15$.
- 4) по части гиперболического параболоида $x^2 y^2 = 2z$, вырезаемой цилиндром $x^2 + y^2 = 1$, с плотностью $\mathbf{m} = \mathbf{m}_0 |z|$. Отв.: $8(1 + \sqrt{2})\mathbf{m}_0 / 15$.
- **3.8.** Определить статический момент относительно плоскости z = 0 однородной ($m = m_0 = const$) поверхности:

1)
$$x + y + z = a$$
, $x \ge 0$, $y \ge 0$, $z \ge 0$.

Отв.: $\sqrt{3} m_0 a^3 / 6$.

2) $x^2 + y^2 + z^2 = R^2$, $z \ge 0$.

OTB.: pm_0R^3 .

- **3.9.** Определить аппликату z_c центра тяжести С полусферы $x^2 + y^2 + z^2 = R^2$, $z \ge 0$ с поверхностной плотностью:
 - 1) $\mathbf{m} = \mathbf{m}_0$, 2) $\mathbf{m} = \mathbf{m}_0 \sqrt{x^2 + y^2}$, 3) $\mathbf{m} = \mathbf{m}_0 (x^2 + y^2)$, $\mathbf{m}_0 = const.$

Отв.: 1) R/2; **2)** 4R/3p; **3)** 3R/8.

- **3.10.** Определить координаты центра тяжести однородных поверхностей (m = 1):
 - 1) $x^2 + y^2 + z^2 = R^2$, $x \ge 0$, $y \ge 0$, $z \ge 0$.
 - 2) $z = \sqrt{R^2 x^2 y^2}$, $x \ge 0$, $y \ge 0$, $y + x \le R$.
 - 3) $z = \sqrt{x^2 + y^2}$, $x^2 + y^2 \le x$.
 - 4) $z = 2 (x^2 + y^2)/2, z \ge 0.$
 - **Отв.:** 1) (R/2, R/2, R/2);
- 2) $(R\sqrt{2}/4, R\sqrt{2}/4, R(\sqrt{2}+1)/4);$
 - **3**) (1/2, 0, 16/(9*p*));
- 4) $(0, 0, (307 15\sqrt{5})/310)$.
- **3.11.** Вычислить момент инерции относительно координатных плоскостей однородной ($m = m_0 = const$) поверхности $x + y + z = 1, x \ge 0, y \ge 0, z \ge 0$. **Отв.:** $m_0 \sqrt{3}/12$.
- **3.12.** Вычислить момент инерции однородной ($m = m_0 = const$) поверхности $x^2 + y^2 = 2az$, $z \le a$ относительно оси Z.

Отв.:
$$4p(6\sqrt{3}+1)m_0a^4/15$$
.

- **3.13.** Вычислить момент инерции I_z относительно оси Z части однородной конической поверхности $x^2 + z^2 = y^2$, y > 0, плотности m_0 , заключенной внутри цилиндра $x^2 + y^2 = a^2$. **Отв.:** $pa^4m_0/2$.
- **3.14.*** Вычислить момент инерции однородной конической поверхности $x^2/a^2+y^2/a^2-z^2/b^2=0, 0 \le z \le b$ с плотностью m_0 относительно прямой x/1=y/0=(z-b)/0.

$$(1/12)$$
pm₀ $a(3a^2 + 2b^2)\sqrt{a^2 + b^2}$.

3.15. Вычислить моменты инерции относительно начала координат однородных поверхностей S_1, S_2 плотности m = 1, где S_1 – поверхность куба с центром в начале координат и ребром 2a; S_2 – полная поверхность цилиндра $x^2 + y^2 \le R^2, 0 \le z \le H$. **Отв.:** $40a^4$; $pR(R(R+H)^2 + 2H^3/3)$.

3.2. Поверхностные интегралы 2-го рода (ПИ-2)

Ориентация и нормаль к поверхности. Определение ПИ-2 и его основные свойства. Вычисление ПИ-2

Пусть в пространстве R^3 задана гладкая поверхность S, описываемая явно, неявно или параметрически, причем нормаль к S отлична от нуля $\forall (x,y,z) \in S$. Тогда в каждой точке (x,y,z) поверхности определен единичный вектор нормали $n^0 = n^0(x,y,z)$, являющийся непрерывной функцией точек поверхности (рис. 3.3).

Если n — вектор нормали к поверхности, то единичный вектор $n = \pm \frac{1}{|n|}$.

Знаку «+» соответствует одна сторона поверхности S, а знаку «-» – другая сторона. Выбор вектора $\overset{\mathbf{r}}{n}$ с определенным знаком называется ориентаций с помощью $\overset{\mathbf{r}}{n}$ 0 или $\overset{\mathbf{r}}{n}$ 0 называется положительной, а другая отрицательной.

Гладкая поверхность, у которой выбрана одна из ориентаций, называется ориентированной помощи при Сторона поверхности S, обращенная в сторону вектора называется положительной внешней или обозначается S^+ . Другая сторона обращенная в сторону вектора отрицательной называется или обозначается внутренней И Поверхности, у которых различаются отрицательные положительные И стороны, называются двусторонними. К ним относятся, например, плоскость, параболоиды, гиперболоиды,

Рис. 3.3

конусы, цилиндры и т. д. Двусторонние поверхности характеризуются тем, что

если вектор $n^{\mathbf{r}_0}$ перемещать по любому замкнутому контуру l, лежащему на поверхности, то он всегда возвращается в исходную точку с первоначальным направлением (рис. 3.3).

Примером односторонней поверхности является лист Мёбиуса (см. [3]).

В каждой точке гладкой двусторонней поверхности Ѕ определены два направления вектора нормали $n \in S$, являющиеся взаимно противоположными. При выборе \hat{n} необходимо следить за тем, чтобы он имел нужное направление, что соответствует правильному выбору нужной стороны поверхности. Так на рис. 3.4, a, δ вектор n определяет положительную (верхнюю) сторону поверхности. Часто при выборе стороны поверхности указывается, какой угол, острый или тупой, составляет нормаль n к поверхности S с осью Z. Координатами единичного вектора нормали являются его направляющие $n = (\cos a, \cos b, \cos g)$. Поэтому для то есть косинусы, (положительной) стороны поверхности $\cos g > 0, 0 < g < p/2$, а для нижней (отрицательной) стороны поверхности $\cos g < 0, p/2 < g < p$. Координаты способов задания поверхности имеют вектора нормали для различных следующую запись.

1. Поверхность S задана явно уравнением $z = f(x, y), (x, y) \in D_{xy}$ проекция S на плоскость XY:

$$\overset{1}{n} = (f'_x f'_y, -1), \cos g < 0.$$
(3.6)

2. Поверхность S задана неявно уравнением $F(x, y, z) = 0, F'_{z} \neq 0, \forall (x, y, z) \in S$:

$$\frac{\mathbf{r}}{n} = \frac{1}{F'_z} (F'_x, F'_y, F'_z) = \frac{1}{F'_z} \operatorname{grad} F, \cos g > 0;$$
(3.7)

$$\frac{\mathbf{r}}{n} = -\frac{1}{F'_z} (F'_x, F'_y, F'_z) = -\frac{1}{F'_z} \operatorname{grad} F, \cos g < 0.$$
(3.8)

3. Поверхность S задана параметрически равенствами x = x(u, v), y = y(u, v), z = z(u, v), $(u, v) \in W$. Вектор нормали имеет вид [3]:

$$\overset{\mathbf{r}}{n} = \left(\frac{D(y,z)}{D(u,v)}, \frac{D(z,x)}{D(u,v)}, \frac{D(x,y)}{D(u,v)} \right)$$
(3.9)

где

$$\frac{D(y,z)}{D(u,v)} = \begin{vmatrix} y'_{u} & z'_{u} \\ y'_{v} & z'_{v} \end{vmatrix}, \quad \frac{D(z,x)}{D(u,v)} = \begin{vmatrix} z'_{u} & x'_{u} \\ z'_{v} & x'_{v} \end{vmatrix}, \quad \frac{D(x,y)}{D(u,v)} = \begin{vmatrix} x'_{u} & y'_{u} \\ x'_{v} & y'_{v} \end{vmatrix}.$$

Пусть теперь в точках гладкой ориентированной поверхности S определена непрерывная вектор-функция:

 $\ddot{a} = \ddot{a}(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)) = (P, Q, R)$ и $\ddot{n}^0 = \ddot{n}^0(x, y, z)$ единичный вектор ориентации этой поверхности.

Для скалярной непрерывной функции

$$f(x, y, z) = (\stackrel{\mathbf{r}}{a}(x, y, z), \stackrel{\mathbf{r}}{n}{}^{0}(x, y, z)) = (\stackrel{\mathbf{r}}{a}, \stackrel{\mathbf{r}}{n}{}^{0})$$

$$\iint_{S} f(x, y, z)ds = \iint_{S} (\overset{\mathbf{r}}{a}, \overset{\mathbf{r}}{n}^{0})ds$$
(3.10)

называется поверхностным интегралом второго рода (ПИ-2) от векторафункции $\overset{\blacksquare}{a} = (P,Q,R)$ по поверхности S . Он обладает следующими свойствами.

1°. Если
$$\overset{\mathbf{r}}{a} = a_1 \overset{\mathbf{r}}{a}^1 + a_2 \overset{\mathbf{r}}{a}^2$$
, то
$$\iint_S (\overset{\mathbf{r}}{a}, \overset{\mathbf{r}}{n}^0) ds = a_1 \iint_S (\overset{\mathbf{r}}{a}^1, \overset{\mathbf{r}}{n}^0) ds + a_2 \iint_S (\overset{\mathbf{r}}{a}^2, \overset{\mathbf{r}}{n}^0) ds.$$

$$2^{\circ}$$
. $\iint_{S^+} {\mathbf{r} \choose a, n^0} ds = -\iint_{S^-} {\mathbf{r} \choose a, n^0} ds$, т. е. при смене ориентации S знак ПИ-2

меняется на противоположный.

3°. Если
$$S = \bigcup_{k=1}^n S_k$$
, то $\iint_S {\mathbf{r} \cdot \mathbf{r}_0 \choose a, n^0} ds = \sum_{k=1}^n \iint_S {\mathbf{r} \cdot \mathbf{r}_0 \choose a, n^0} ds$.

Приведем формулы вычисления ПИ-2 для различных способов задания поверхностей.

Пусть в пространстве S поверхность задана *явно* уравнением z = f(x, y) или *неявно* соотношением F(x, y, z) = 0 и D_{xy} – проекция S на плоскость XY. Тогда

$$\iint_{S} {\mathbf{r} \cdot \mathbf{r}_{0} \choose a, n} ds = \iint_{D_{xy}} {\mathbf{r} \cdot \mathbf{r} \choose a, n} dx dy, \tag{3.11}$$

где \hbar – выбранная нормаль к поверхности.

При параметрическом задании поверхности S в виде x = x(u,v), $y = y(u,v), z = z(u,v), (u,v) \in W$ (u,v) — параметры) вычисление ПИ-2 осуществляется по формуле

$$\iint_{S} {\begin{pmatrix} \mathbf{r} & \mathbf{r} \\ a, n \end{pmatrix}} ds = \iint_{W} {\begin{pmatrix} \mathbf{r} & \mathbf{r} \\ a, n \end{pmatrix}} du dv = \iint_{W} \left(P \left| \frac{D(y, z)}{D(u, v)} \right| + Q \left| \frac{D(z, x)}{D(u, v)} \right| + R \left| \frac{D(x, y)}{D(u, v)} \right| \right) du dv. \quad (3.12)$$

Элемент площади dudv в криволинейных координатах связан с элементами площадей dxdy, dydz, dzdx соотношениями

$$\left| \frac{D(x,y)}{D(u,v)} \right| dudv = dxdy, \quad \left| \frac{D(y,z)}{D(u,v)} \right| dudv = dydz, \quad \left| \frac{D(z,x)}{D(u,v)} \right| dudv = dzdx.$$

Поэтому формула (3.12) принимает вид

$$\iint_{S} {\mathbf{r} \cdot \mathbf{r}_{0} \choose a, n} ds = \iint_{S} P dy dz + Q dz dx + R dx dy.$$
(3.13)

Поскольку $\binom{\mathbf{r}}{a}, \binom{\mathbf{r}}{n} = P\cos a + Q\cos b + R\cos g$, то равенство (3.13) приводится к виду

$$\iint_{S} {\mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot ds} ds = \iint_{S} (P\cos a + Q\cos b + R\cos g) ds =$$

$$= \iint_{S} Pdydz + Qdzdx + Rdxdy. \tag{3.14}$$

Формула (3.14) устанавливает связь между ΠU -1 и ΠU -2. И, наконец, из формул (3.11) и (3.14) получаем равенство

$$\iint_{S} Pdydz + Qdzdx + Rdxdy = \iint_{D_{xy}} {\mathbf{r} \choose a, n} dxdy.$$
 (3.15)

3амечание. Если же поверхность S проектируется на плоскость YZ или ZX, то соответствующим образом изменяется двойной интеграл в правой части (3.15): в первом случае интегрирование проводится по проекции поверхности S на плоскость YZ от выражения $\binom{1}{a}$, $\binom{1}{n}$ dydz. Кроме того, в первом случае уравнение поверхности задается в виде x = f(x, y), а во втором – в виде y = f(x, z). Далее, для первого случая вектор нормали ($\cos a > 0$)

$$\stackrel{1}{n} = (1, -f'_{y}, -f'_{z}),
 (3.16)$$

а во втором случае ($\cos b > 0$) -

$$\overset{1}{n} = (-f'_{x}, 1, -f'_{z}).$$
(3.17)'

Вычислить ПИ-2 $I = \iint_{S} z dy dz - 4y dz dx + 8x^{2} dx dy$, где Sчасть

поверхности $z = x^2 + y^2, 0 \le z \le 1$. Нормаль указана на рис. 3.5.

B данном случае $\ddot{a} = (P, Q, R) =$ $=(z, -4y, 8x^2)$. Вектор нормали имеет вид (3.6), так как он составляет тупой угол с осью Z. Тогда $\vec{n} = (f'_x, f'_y, -1) = (2x, 2y, -1),$ и по формуле (3.15) находим

$$I = \iint_{D_{xy}} (\vec{a}, \vec{n}) dx dy = \iint_{x^2 + y^2 \le 1} (z^2 - 8y^2 - 8x^2) dx dy =$$

$$= -2 \iint_{D_{xy}} (x^2 + y^2) (4 - x) dx dy.$$

этом двойном интеграле Перейдя

Рис. 3.5

полярным координатам $x = r \cos j$, $y = r \sin j$, $0 \le j \le 2p$, $0 \le r \le 1$, получим

$$I = -2\int_{0}^{2p} dj \int_{0}^{1} r^{3} (4 - r \cos j) dr = -2\int_{0}^{2p} \left(1 - \frac{1}{5} \cos j\right) dj = -4p.$$
 p

 $I = -2\int_{0}^{2p} dj \int_{0}^{1} r^{3} (4 - r \cos j) dr = -2\int_{0}^{2p} \left(1 - \frac{1}{5} \cos j\right) dj = -4p.$ **р 3.17.** Вычислить ПИ-2: $I = \iint_{S} (x + y) dy dz + (y - x) dz dx + (z - 2) dx dy$, где S –

часть конуса $x^2 + y^2 - z^2 = 0$, $0 \le z \le 1$. Нормаль указана на рис. 3.6.

 Δ Поверхность задана неявно уравнением $F = x^2 + y^2 - z^2 = 0$. Согласно (3.8), вектор нормали $\overset{\bullet}{n}$ к S имеет вид

$$\mathbf{r} = -\frac{1}{F'_z} \left(F'_x, F'_y, F'_z \right) = \frac{1}{2z} (2x, 2y, -2z) = \frac{1}{z} (x, y, -z).$$

По формуле (3.15) ПИ-2
$$I = \iint_{D_{xy}} \frac{1}{z} (x(x+y) + y(y-x) - z(z-2)) dxdy =$$
$$= \iint_{x^2+y^2 \le 1} \frac{1}{z} (x^2 + y^2 - z^2 + 2z) dxdy.$$

Подставив в это выражение z из уравнения поверхности $x^2 + y^2 - z^2 = 0$, получим $I = 2 \iint_{D_{xy}} dx dy = 2p$, где p – площадь

Рис. 3.6

круга
$$x^2 + y^2 \le 1.$$
 р

3.18. Вычислить ПИ-2:
$$I = \iint_S x dy dz + (y+z) dz dx + (z-y) dx dy$$
, где $S-$ внешняя сторона верхней полусферы $x^2 + y^2 + z^2 = 9$.

r Запишем уравнение сферы параметрически (рис. 3.7):

$$x = 3\sin q \cos j$$
, $y = 3\sin q \sin j$, $z = 3\cos q$;

$$W = \{0 \le q \le p / 2, 0 \le j \le 2p\}.$$

Роль параметров здесь играют u = q, v = j. Так как в нашем случае

$$P = x, Q = y + z, R = z - y$$
 и

$$\left| \frac{D(y,z)}{D(q,j)} \right| = 9\sin^2 q \cos j,$$

$$\left| \frac{D(z,x)}{D(q,j)} \right| = 9\sin^2 q \sin j,$$

$$\left| \frac{D(x,y)}{D(q,j)} \right| = 9\cos q \sin j,$$

Рис. 3.7

TO

$$I = \iint_{W} (3\sin q \cos j \left| \frac{D(y,z)}{D(q,j)} \right| + (3\sin q \sin j + 3\cos q) \left| \frac{D(z,x)}{D(q,j)} \right| +$$

$$+ (3\cos q - 3\sin q \sin j) \left| \frac{D(x,y)}{D(q,j)} \right|) dqdj =$$

$$= 27 \iint_{W} (\sin^{3} q + \sin q \cos^{2} q) dqdj = 27 \int_{0}^{2p} dj \int_{0}^{p/2} \sin qdq = 54p. p$$

3.19. Вычислить ПИ-2:

$$I = \iint_{S} x dy dz + z dx dy$$
, где S — сторона

боковой поверхности цилиндра $y = \sqrt{R^2 - x^2}$, ограниченной плоскостями z = 0 и z = h > 0 (puc. 3.8).

 \mathbf{r} Имеем $\mathbf{a} = (x,0,z)$. Так как поверхность S задана явно в виде $y = \sqrt{R^2 - x^2}$ и $\cos b > 0$, согласно условию, то

$$\mathbf{r}$$
 $n = (-f'_x, 1, -f'_z) = \left(\frac{x}{\sqrt{R^2 - x^2}}, 1, 0\right)$

Тогда $\binom{\mathbf{r}}{a}, \binom{\mathbf{r}}{n} = x^2 / \sqrt{R^2 - x^2}$ и, значит,

Рис. 3.8

$$I = \iint_{D_{yx}} \frac{x^2}{\sqrt{R^2 - x^2}} dx dz = \int_0^h dz \int_{-R}^R \frac{x^2 dx}{\sqrt{R^2 - x^2}} = \frac{1}{2} pR^2 h. \ \mathbf{p}$$

Вычислить ПИ-2 по поверхности S:

1)
$$I = \iint_{S} x dy dz + z^{3} dx dy$$
; $S - \text{сфера } x^{2} + y^{2} + z^{2} = 1$ (нормаль внешняя).

Отв.:
$$32p/15$$
.
 $2*)$ $I = \iint_S x dy dz + y dz dx + z dx dy; S — внешняя сторона части цилиндра$

 $x^{2} + y^{2} = 9$, заключенная между плоскостями z = 0 и z = h.

3)
$$I = \iint_{S} z dy dz - 4y dz dx + 8x^{2} dx dy$$
; S – часть поверхности $z = x^{2} + y^{2} + 1$,

отсеченной плоскостью z = 2 (нормаль внешняя). Oтв.: -4p.

$$4*) \ I = \iint_{S} \frac{1}{x} dy dz + \frac{1}{y} dz dx + \frac{1}{z} dx dy; \ S$$
 — внешняя часть эллипсоида

 $x = a\cos u\cos v, y = b\sin u\cos v, z = c\sin v, u \in [p/4, p/3], v \in [p/6, p/4].$

OTB.:
$$\frac{p(\sqrt{2}-1)}{24} \left(\frac{ab}{c} + \frac{ac}{b} + \frac{bc}{a} \right)$$

5)
$$I = \iint_S x dy dz + dz dx + xz^2 dx dy$$
; S – внешняя сторона части сферы

 $x^2 + y^2 + z^2 = 1$, расположенная в первом октанте. Отв.: 5p/12 + 2/15.

6)
$$I = \iint_{S} (y^2 + z^2) dy dz$$
; S – часть поверхности параболоида $x = 9 - y^2 - z^2$,

нормальный вектор \hbar которой образует острый угол с осью X, отсеченная плоскостью x = 0. **Отв.:** 81p/2.

7)
$$I = \iint_S z^2 dx dy$$
; S – внешняя сторона поверхности эллипсоида $x^2 + y^2 + 2z^2 = 2$. **Отв.:** 0.

8) $I = \iint xzdydz + xydzdx + yzdxdy$; S — внешняя поверхность цилиндра $x^{2} + y^{2} = 1$, отсеченная плоскостями z = 0, z = 5.

9) $I = \iint xzdydz + x^2ydzdx + y^2zdxdy$; S — часть поверхности параболоида $z = x^2 + y^2$, нормальный вектор \hbar которой образует тупой угол с осью Z,

вырезаемая цилиндром $x^2 + y^2 = 1$. **Отв.:** p/8.

10)
$$I = \iint_{S} \frac{dxdy}{\sqrt{x^2 + y^2 - 1}}; S$$
 – часть поверхности гиперболоида

 $x^2 + y^2 = z^2 + 1$, отсекаемая плоскостями z = 0, $z = \sqrt{3}$ (cos g < 0). Отв.: $-2\sqrt{3}/p$.

11*) $I = \iint 2x dy dz + (1-z) dx dy$; S – внутренняя сторона цилиндра

 $x^{2} + y^{2} = 4$, отсекаемая плоскостями z = 0, z = 1. Oтв.: -8p.

 $y^2 = 4$, отсекаемая плоскостями z = 0, z = 1. 12) $I = \iint (y^2 + z^2) dy dz - y^2 dz dx + 2yz^2 dx dy$; S – часть поверхности конуса

 $x^2 + z^2 = y^2$, отсекаемая плоскостями y = 0, y = 1 (cos g < 0). Отв.: p/2.

13) $I = \iint_{S} (y-z)dydz + (z-x)dzdx + (x-y)dxdy$; S – одна из сторон поверхности $x^2 + y^2 = z^2$, 0 < z < H.

Отв.: 0.

14*) $I = \iint_{\mathbb{R}} x dy dz + y dz dx + z dx dy$; S — верхняя сторона части гиперболического параболоида $z = x^2 - y^2, |y| \le x \le a$.

Отв.: $-a^4/3$.

3.3. Формула Остроградского-Гаусса. Формула Стокса

Пусть функции $z_1(x,y)$ и $z_2(x,y)$ определены и непрерывны в замкнутой области D и $z_1(x,y) \le z_2(x,y)$. ограниченной $V = \{(x, y, z) | (x, y) \in D, \quad z_1(x, y) \le z \le z_2(x, y) \}$ называется z-цилиндрической (рис. 3.9). Аналогично определяются х-цилиндрическая и у-цилиндрическая области.

Область V называется *простой*, если ее можно разбить на конечное число как х-цилиндрических, так и у- цилиндрических и z-цилиндрических областей.

Теорема **3.1.** функции Пусть P(x, y, z), Q(x, y, z), R(x, y, z)их $\partial P \partial Q \partial R$ производные частные $\partial x' \partial y' \partial z$ непрерывны простой замкнутой области V. ограниченной кусочногладкой поверхностью S. Тогда справедлива формула

Рис. 3.9

$$\iint_{S} P dy dz + Q dx dz + R dx dy = \iiint_{V} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv, \tag{3.17}$$

где поверхностный интеграл берется по внешней стороне поверхности (знак \oiint означает, что поверхностный интеграл вычисляется по замкнутой поверхности S).

Формула (3.17) называется формулой Остроградского-Гаусса.

При P = x, Q = y, R = z из формулы (3.17) вытекает, что объём n области V, ограниченной кусочно-гладкой поверхностью S, можно вычислить с помощью ПИ-2 по формуле

$$n = \frac{1}{3} \iint_{S} x dy dz + y dz dx + z dx dy, \qquad (3.18)$$

где ПИ-2 вычисляется по внешней стороне S .

3.21. Пользуясь формулой Остроградского-Гаусса, вычислить ПИ-2

$$I = \iint_{S} x^{2} dy dz + y^{2} dz dx + z^{2} dx dy,$$

где S – внешняя сторона сферы $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$.

∆ Применяя формулу (3.17), получаем

$$I = \iiint\limits_V (2x + 2y + 2z) dx dy dz,$$

где V — шар $(x-a)^2 + (y-b)^2 + (z-c)^2 \le R^2$. Для вычисления интеграла Iперейдём к сферическим координатам

 $x=a+r\cos j\,\sin q,\,y=b+r\sin j\,\sin q,\,z=c+r\cos q,\,0\le r\le R,\,0\le j\le 2p\,,\,0\le q\le p\,.$ Якобиан перехода $J=r^2\sin q$. Тогда

$$I = 2 \int_{0}^{2p} dj \int_{0}^{p} \sin q dq \int_{0}^{R} r^{2} [a+b+c+r(\cos j \sin q + \sin j \sin q + \cos q] dr = \frac{8}{3} p(a+b+c)R^{3}.$$
 p

3.22.* Вычислить ПИ-2 $I = \iint_S x^3 dy dz + y^3 dz dx + z^2 dx dy$, где S — нижняя сторона части параболоида $z = x^2 + y^2$, отсекаемая плоскостью z = 2x.

 Δ Дополним поверхность S до замкнутой частью плоскости z=2x . Обозначим плоскую часть через S_1 и выберем её верхнюю сторону. Для вычисления интеграла по замкнутой кусочно-гладкой поверхности $S \cup S_1$ применим формулу Остроградского–Гаусса. Тогда с учётом свойства аддитивности ПИ-2 для интеграла I получим

$$I = \iiint_{V} (3x^{2} + 3y^{2} + 2z) dx dy dz - \iint_{S_{1}} x^{3} dy dz + y^{3} dz dx + x^{2} dx dy,$$

где V — тело, ограниченное поверхностями $z=x^2+y^2, z=2x$. Область V проектируется на плоскость XY в область D, границей которой является окружность $2x=x^2+y^2 \Leftrightarrow (x-1)^2+y^2=1$.

Нахолим

$$I_{1} = \iiint_{V} (3x^{2} + 3y^{2} + 2z)dv =$$

$$= \iint_{D} dxdy \int_{x^{2} + y^{2}}^{2x} [3(x^{2} + y^{2}) + 2z]dz =$$

$$= \iint_{D} [6x(x^{2} + y^{2}) + 4x^{2} - 4(x^{2} + y^{2})^{2}]dxdy.$$

Двойной интеграл вычислим в ПСК (рис. 3.10). В этой системе уравнение окружности имеет вид $r = 2\cos j$, и поэтому двойной интеграл равен

Рис. 3.10

$$I_{1} = \int_{-p/2}^{p/2} dj \int_{0}^{2\cos j} r[6r^{3}\cos j + 4r^{2}\cos^{2}j - 4r^{4}]dr =$$

$$= \int_{-p/2}^{p/2} (\frac{6}{5}r^{5}\cos j + r^{4}\cos^{2}j - \frac{2}{3}r^{6})\Big|_{r=0}^{r=2\cos j} dj = \frac{176}{15} \int_{-p/2}^{p/2} \cos^{6}j \, dj = \frac{11}{3}p.$$

Вычислим теперь интеграл по верхней стороне поверхности $S_1: z=2x$.Для неё вектор нормали $(\cos g>0)$ есть $\overset{\bf r}{n}=(-z_x',-z_y',1)=(-2,0,1)$, и по формуле (3.14) будем иметь

$$\begin{split} I_2 &= \iint\limits_{S_1} x^3 dy dz + y^3 dz dx + z^2 dx dy = \iint\limits_{D} (-2x^3 + z^2) dx dy = \iint\limits_{D} (-2x^3 + 4x^2) dx dy = \\ &= \int\limits_{-p/2}^{p/2} dj \int\limits_{0}^{2\cos j} (-2r^3\cos^3 j + 4r^2\cos^2 j) r dr = \int\limits_{-p/2}^{p/2} (-\frac{64}{5}\cos^8 j + 16\cos^6 j) dj = \frac{3}{2}p \,. \end{split}$$

Таким образом, данный интеграл $I = I_1 - I_2 = \frac{11}{3}p - \frac{3}{2}p = \frac{13}{6}p$. р

3.23. Пользуясь формулой Остроградского-Гаусса, вычислить ПИ-2 по внешней стороне поверхности S (если поверхность не замкнутая, дополнить её до замкнутой):

 $\iint\limits_{S} (y-z) dy dz + (z-x) dz dx + (x-y) dx dy \,, \quad S \quad - \quad \text{часть} \quad \text{конической}$ поверхности $x^2 + y^2 = z^2$, $0 \le z \le h$.

Отв.: 0.

Отв.: 0.
2)
$$\iint_{S} x dy dz + y dz dx + z dx dy$$
, S – часть поверхности $z = 1 - \sqrt{x^2 + y^2}$, $0 \le z \le 1$.

Отв.: р.

3) $\iint y dy dz + z dz dx + x dx dy$, S – поверхность пирамиды, ограниченной плоскостями x + y + z = a (a > 0), x = 0, y = 0, z = 0. Отв.: 0.

4)
$$\iint_{S} x^{3} dy dz + y^{3} dz dx + z^{3} dx dy$$
, $S - \text{coepa} \ x^{2} + y^{2} + z^{2} = x$. **Otb.:** $p / 5$.

4)
$$\iint_{S} x^{3} dy dz + y^{3} dz dx + z^{3} dx dy$$
, $S - \text{сфера } x^{2} + y^{2} + z^{2} = x$. Отв.: $p/5$.

5) $\iint_{S} x^{3} dy dz + y^{3} dz dx + z^{3} dx dy$, $S - \text{сфера } x^{2} + y^{2} + z^{2} = a^{2}$. Отв.: $12pa^{5}/5$.

6) $\iint_{S} x^{2} dy dz + y^{2} dz dx + z^{2} dx dy$, $S - \text{поверхность куба}$

0 $\leq x \leq a$ $0 \leq y \leq a$ $0 \leq z \leq a$

6)
$$\iint_{S} x^{2} dy dz + y^{2} dz dx + z^{2} dx dy, S - поверхность куба$$

$$0 \le x \le a, 0 \le y \le a, 0 \le z \le a.$$

Отв.: $3a^4$.

7)
$$\iint_{S} z dx dy + (5x + y) dy dz$$
, где S :

а) внутренняя сторона эллипсоида $x^2/4 + y^2/9 + z^2 = 1$. Отв.: -48р.

б) внешняя сторона границы области $1 < x^2 + y^2 + z^2 < 4$. Отв.: 56р.

3.24. Вычислить интеграл Гаусса

$$I = \iint_{S} \frac{\cos g}{r^2} ds \,,$$

где S – поверхность ограничивающая простую замкнутую область V, – фиксированная точка вне области V, $M = (x, y, z) \in S$ $\mathbf{r} = (x - x, y - h, z - z), r = |\mathbf{r}|, \quad \mathbf{r}^{0} = (\cos a, \cos b, \cos g) - \text{вектор}$ внешней единичной нормали к поверхности S в точке M. **Отв.:** 0.

Формула Стокса связывает криволинейный интеграл по замкнутой

пространственной кривой поверхностным интегралом по поверхности, краем которой является Γ . При этом ориентации кривой Γ и поверхности Sсогласованными, считаются наблюдатель, «идущий» по контуру Γ указанном направлении, видит поверхность Sслева от себя. Другими словами, вектор нормали κ поверхности S и направление, к голове наблюдателя, идущее от НОГ составляют между собой острый угол (рис. 3.11).

Справедлива следующая

Теорема 3.2. Пусть Γ — замкнутая кусочно-гладкая кривая в R^3 и S — гладкая поверхность с краем Γ , причем ориентации Γ и S согласованы (рис. 3.11).

Рис. 3.11

Пусть, далее, в окрестности S задана вектор-функция $\overset{\bullet}{a}=(P,Q,R)$, координатные функции P,Q,R которой непрерывны вместе со своими первыми частными производными в этой окрестности. Тогда имеет место формула Стокса:

$$\oint_{\Gamma} Pdx + Qdy + Rdz = \iint_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) dydz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) dzdx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy.$$
(3.19)

Формула Стокса легко запоминается, если воспользоваться следующим приёмом. Формально составим определитель

$$\begin{vmatrix} \dot{d}ydz & dzdx & dxdy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & O & R \end{vmatrix} . \tag{3.20}$$

Раскладывая его по элементам первой строки и учитывая, что произведение $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$ на функцию понимается как операция частного дифференцирования по соответствующей переменной, получаем подынтегральное выражение в правой части формулы Стокса (3.19). Таким образом, формально формула

Стокса может быть записана в виде

$$\oint_{\Gamma} Pdx + Qdy + Rdz = \iint_{S} \begin{vmatrix} dydz & dzdx & dxdy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}.$$
(3.21)

Отметим, что в формуле Стокса вид поверхности S с краем Γ не играет никакой роли. Важна лишь ориентация S в пространстве. Поэтому при решении конкретных примеров поверхность выбирается такой, чтобы ПИ по ней вычислялся наиболее простым способом.

Учитывая связь ПИ-1 и ПИ-2 (3.13), формулу Стокса можно переписать в виде

$$\oint_{\Gamma} Pdx + Qdy + Rdz = \iint_{S} \left(\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cos a + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos b + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos g \right) ds,$$

где $n^{\mathbf{r}_0} = (\cos a, \cos b, \cos g)$ — единичный вектор нормали к S.

3.25. Вычислить КрИ-2, используя формулу Стокса

$$I = \oint_{\Gamma} (x+3y+2z)dx + (2x+z)dy + (x-y)dz,$$

где Γ – контур треугольника с вершинами A=(2,0,0), B=(0,3,0), C=(0,0,1)(обход контура указан на рис. 3.12).

 ${\bf r}$ По условию P = x + 3y + 2z, Q = 2x + z, R = x - y. За поверхность Sпримем плоскость треугольника АВС, уравнение которой (в отрезках) имеет

вид
$$\frac{x}{2} + \frac{y}{3} + \frac{z}{1} = 1$$
 или $F = 3x + 2y + 6z - 6 = 0$. По фо

F = 3x + 2y + 6z - 6 = 0. По формуле

Стокса (3.19) (или(3.20)) имеем

$$I = \iint_{S} -2dydz + dzdx - dxdy.$$

Вектор нормали к S (градиент) имеет координаты $F'_x = 3$, $F'_y = 2$, $F'_z = 6$, т.е

$$\mathbf{r} = \frac{1}{6}(3,2,6).$$

Тогда по формуле (3.14)

$$I = \int_{\Delta AOB} \frac{1}{6} (-2 \cdot 3 + 1 \cdot 2 - 1 \cdot 6) dx dy = -\frac{5}{3} \iint_{\Delta AOB} dx dy = -5,$$

так как площадь треугольника АОВ равна 3. р

3.26. Вычислить интеграл

$$I = \oint_{\Gamma} (z^{2} - x^{2}) dx + (x^{2} - y^{2}) dy + (y^{2} - z^{2}) dz$$

по контуру $\begin{cases} x^2 + y^2 + z^2 = 4, \\ x^2 + y^2 = z^2, z > 0. \end{cases}$ пробегаемому против часовой стрелки.

Контур интегрирования Γ есть окружность $x^2 + y^2 = 2$, $z = \sqrt{2}$ – результат пересечения сферы $x^2 + y^2 + z^2 = 4$ и конуса $x^2 + y^2 = z^2$ (рис. 3.13)

За поверхность S возьмём плоскость круга с краем Γ . По формуле Стокса $I = 2\iint y dy dz + z dz dx + x dx dy.$

Так как $z=\sqrt{2}$ — уравнение поверхности S (плоскости), то вектор нормали к ней n=(0,0,1). По формуле Z_{\blacktriangle}

$$I = 2 \iint_{D_{rx}} x dx dy = 2 \int_{0}^{2p} dj \int_{0}^{\sqrt{2}} r^{2} \cos j dr = 0. \mathbf{p}$$

3.27. Пользуясь формулой Стокса, вычислить КрИ-2:

$$\oint_{\Gamma} (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz$$
, где Γ – кривая пересечения параболоида $x^2 + y^2 + z = 3$ с плоскостью $x + y + z = 2$,

ориентированная положительно относительно вектора n = (1,0,0). Отв.: -12p.

2)
$$\oint_{\Gamma} (y-z)dx + (z-x)dy + (x-y)dz$$
, где Γ – окружность $x^2 + y^2 + z^2 = a^2$,

x = xtga, 0 < a < p/2, обход которой совершается против хода часовой стрелки, если смотреть из точки (2a, 0, 0). **Отв.:** $2\sqrt{2}pa^2\sin(p/4-a)$.

3*) $\int_{\Gamma} y dx + z dy + x dz$, где Γ – виток винтовой линии $x = \cos t$, $y = \sin t$, z = t, $0 \le t \le 2p$, пробегаемый от точки (1,0,0) до точки (1,0,2p). Отв.: -2p. Указание. Дополнить кривую Γ отрезком так, чтобы контур стал замкнутым.

4) $\oint_{\Gamma} (y^2 + z^2) dx + (x^2 + z^2) dy + (x^2 + y^2) dz$, где Γ – линия пересечения верхней полусферы $x^2 + y^2 + z^2 = 2Rx$ (z > 0) с цилиндром $x^2 + y^2 = 2rx$, 0 < r < R. Линия Γ пробегается против хода часовой стрелки, если смотреть из точки (0,0,2R). Отв.: $2pRr^2$.

5) $\oint (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dx$, где Γ – граница сечения куба $\{0 \le x \le a, 0 \le y \le a, 0 \le z \le a\}$ плоскостью x + y + z = 3a/2, пробегаемая против хода часовой стрелки, если смотреть из точки (2a,0,0). Отв.: $-9a^3/2$.

6)
$$\oint_{\Gamma} (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dx$$
, где Γ - контур,

ограничивающий часть сферы $x^2 + y^2 + z^2 = 1$ при $x \ge 0, y \ge 0, z \ge 0$. Направление обхода Γ берётся против хода часовой стрелки, если смотреть из точки (2,0,0). **Отв.:** -4.

3.28.* Пользуясь формулой Стокса, вычислить КрИ-2:

$$I = \int_{OA} yzdx + 3xzdy + 2xydz$$
, где OA – кривая

$$x = t \cos t$$
, $y = t \sin t$, $z = t^2$, $0 \le t \le 2p$,
 $O = (0,0,0)$, $A = (2p, 0, 4p^2)$.

Δ Незамкнутая кривая $OA = OB \mathbf{U} BC \mathbf{U} CA$ лежит на поверхности параболоида $z = x^2 + y^2$. Действительно, $x^2 + y^2 = t^2(\cos^2 t + \sin^2 t) = t^2$, r.e. $x^2 + y^2 = z$. Дополним кривую интегрирования ОА до замкнутого контура Γ дугой AO параболы $z = x^2$, лежащей в плоскости XZ. Заметим, что эта парабола лежит также на поверхности $z = x^2 + y^2$ (рис. 3.14). Тогда

Рис. 3.14

$$I = \oint_{\Gamma} yzdz + 3xzdy + 2xydz - \int_{A_0} yzdz + 3xzdy + 2xydz.$$

Но так как вдоль кривой AO y = 0, dy = 0, то $\int_{0}^{\infty} 0$, и поэтому $I = \oint_{\Gamma} yzdz + 3xzdy + 2xydz.$

Контур Γ лежит на параболоиде $S: z = x^2 + y^2$ и обходится направлении, указанном на рис. 3.14.

Выберем на части параболоида непрерывное множество единичных $\mathbf{r}_0(M) = \{\cos a, \cos b, \cos g\} \text{так},$ нормалей чтобы обход контура положительным, т.е. внутреннюю сторону параболоида.

Hаходим $\hat{n} = (-2x, -2y, 1) \Rightarrow$

$$\overset{\mathbf{r}}{n}^{0} = \left\{ \frac{-2x}{\sqrt{4x^{2} + 4y^{2} + 1}}, \frac{-2y}{\sqrt{4x^{2} + 4x^{2} + 1}}, \frac{1}{\sqrt{4x^{2} + 4y^{2} + 1}} \right\}.$$

Для нахождения КрИ-2 по замкнутому контуру Γ применим формулу Стокса. Так как P = yz, Q = 3xz, R = 2xy, то

$$\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} = -x, \ \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} = -y, \ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2z.$$

По формуле Стокса (3.19) находим $I = \int yzdx + 3xzdy + 2xydz =$

$$= \iint_{S} \left[\frac{-2x}{\sqrt{4x^2 + 4y^2 + 1}} (-x) + \frac{-2y}{\sqrt{4x^2 + 4y^2 + 1}} (-y) + \frac{2z}{\sqrt{4x^2 + 4y^2 + 1}} \right] ds =$$

$$=2\iint_{S} \frac{x^2+y^2+z}{\sqrt{4x^2+4y^2+1}} dx.$$
 (3.22)

Этот интеграл вычислим по формуле

$$\iint_{S} f(x, y, z) ds = \iint_{D_{xy}} f(x, y, z(x, y)) \sqrt{1 + {z'_{x}}^{2} + {z'_{y}}^{2}} dx dy,$$

где z = z(x,y) — явное уравнение поверхности S , D_{xy} — проекция S на плоскость XY . В нашем случае

$$z = x^2 + y^2$$
, $z'_x = 2x$, $z'_y = 2y$, $\sqrt{1 + {z'_x}^2 + {z'_y}^2} = \sqrt{4x^2 + 4y^2 + 1}$

Поэтому из (3.22) имеем
$$I = 2\iint_{S} \frac{x^2 + y^2 + z}{\sqrt{4x^2 + 4y^2 + 1}} ds = 4\iint_{D_{xy}} (x^2 + y^2) dxdy,$$

где D_{xy} — область на плоскости, ограниченная кривой $g: x = t \cos t$, $y = t \sin t$, $(0 \le t \le 2p)$ и отрезком [0,2p] оси X (см. рис. 3.14).

Двойной интеграл по D_{xy} вычислим в ПСК. Перейдя к полярным координатам $x = r\cos j$, $y = r\sin j$ и подставив эти выражения для x и y в уравнения кривой Γ , получим $r\cos j = t\cos t$, $r\sin j = t\sin t$

Отсюда, учитывая, что t и j изменяются в одних и тех же пределах от 0 до 2p находим r=t, j=t , т.е. уравнение кривой Γ в ПСК имеет вид

$$r = j$$
, $0 \le j \le 2p$. Таким образом, $I = 4 \iint_{D_{xy}} (x^2 + y^2) dx dy = 4 \int_0^{2p} dj \int_0^j r^3 dr = \frac{32}{5} p^5$. p

4. Элементы векторного анализа

4.1. Скалярные и векторные поля

Скалярное поле. Линии и поверхности уровня скалярного поля. Градиент скалярного поля. Единичный вектор нормали к поверхности. Векторное поле и его векторные линии

Пространство (или часть его V), в каждой точке которого определена скалярная величина, называется *скалярным полем*. Таким образом, скалярное поле определяется числовой функцией u = u(x, y, z), заданной в некоторой области V пространства. В этом случае говорят, что в V задано скалярное поле. Если скалярное поле задано функцией двух переменных u = u(x, y), то оно называется *плоским*.

Графически скалярное поле u изображается с помощью *поверхностей* уровня, определяемых равенством u(x, y, z) = C, где C - const. Если поле u плоское, то равенство u(x, y) = C определяет линию уровня поля.

Пусть u = u(x, y, z) — гладкая функция, определяющая скалярное поле. Напомним, что производной скалярного поля u по направлению вектора

 $\vec{l} = (l_x, l_y, l_z)$ в точке $M_0 = (x_0, y_0, z_0)$ называется число

$$\frac{\partial u(M_0)}{\partial l} = \frac{\partial u(M_0)}{\partial x} \cos a + \frac{\partial u(M_0)}{\partial y} \cos b + \frac{\partial u(M_0)}{\partial z} \cos g, \tag{4.1}$$

 $\cos a, \cos b, \cos g$ — направляющие косинусы вектора l.

 Γ радиентом скалярного поля U в точке M_0 называется вектор

$$\operatorname{grad} U(M_0) = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)_{M_0} = \frac{\partial u(M_0)}{\partial x} \overset{\mathbf{r}}{i} + \frac{\partial u(M_0)}{\partial y} \overset{\mathbf{r}}{j} + \frac{\partial u(M_0)}{\partial z} \overset{\mathbf{r}}{k}. \quad (4.2)$$

Из равенств (4.1) и (4.2) следует, что
$$\frac{\partial u}{\partial l} = (\mathbf{grad} \ u, l)$$
. (4.3)

Вектор (*grad* u) часто обозначается ∇u (читается «набла» u). Итак, $\nabla u = (u_x', u_y', u_z')$.

Производная поля в данной точке M_0 по направлению \hat{l} характеризует скорость изменения поля в направлении вектора \hat{l} . Градиент скалярного поля в точке M_0 есть вектор, в направлении которого производная поля максимальна

и равна $|grad\ u(M_0)|$. Вектор-градиент, как известно, направлен по нормали к поверхности уровня поля в сторону наибольшего возрастания функции u. Отсюда следует, что edunuunu вектор нормали κ поверхности определяется формулой

$$\overset{\mathbf{r}}{n}^{0} = \pm \frac{\operatorname{grad} \ u(M_{0})}{|\operatorname{grad} \ u(M_{0})|}.$$
(4.4)

4.1. Найти и изобразить на чертеже линии уровня скалярного поля u = xy. Вычертить и изобразить на чертеже градиент этой функции в точках (1,1) и (1,-1).

Рис. 4.1

 Δ Линии уровня функции u = xy

задаются соотношением xy = C - const, т.е. семейство гипербол y = C/x, а также две прямые x = 0, y = 0 (рис. 4.1).

Далее, по формуле (4.2) **grad** u = yi + xj. Тогда **grad** u(1,1) = i + j = (1,1), **grad** u(1,-1) = -i + j = (-1,1).

На рисунке видно, что в указанных точках **grad** u перпендикулярен линиям уровня, проходящим через эти точки. В точке (1,1) функция u = xy быстрее всего возрастает в направлении от начала координат по биссектрисе 1-го квадранта, и скорость её возрастания в этом направлении равна

$$\frac{\partial u(1,1)}{\partial l} = |\mathbf{grad} \ u(1,1)| = \sqrt{2}.$$

В точке (1,-1) функция u=xy возрастает быстрее всего в направлении к началу координат по биссектрисе 4-го квадранта и скорость её возрастания в этом направлении также равна $\sqrt{2}$. \mathbf{p}

4.2. Найти градиент скалярного поля u = xyz в точке M = (-2,3,4). Чему равна в этой точке производная поля u в направлении вектора $\overset{\bullet}{a} = (3,-4,12)$?

$$\Delta$$
 По формуле (4.2) имеем **grad** $u(M) = \left(\frac{\partial u(M)}{\partial x}, \frac{\partial u(M)}{\partial y}, \frac{\partial u(M)}{\partial z}\right) = (yz, zx, xy)_M = (12, -8, -6).$

Находим теперь орт $\overset{\mathbf{r}}{a}^0$ вектора $\overset{\mathbf{r}}{a}$: $\overset{\mathbf{r}}{a}^0 = \frac{\overset{\mathbf{r}}{a}}{|\overset{\mathbf{r}}{a}|} = (3/13, -4/13, 12/13).$

По формуле (4.3) получаем $\frac{\partial u(M)}{\partial l} = \frac{3}{13} \cdot 12 + \frac{4}{13} \cdot 8 - \frac{12}{13} \cdot 6 = -\frac{4}{13}$. р

4.3. Найти градиент функции f(r), где $r = |\vec{r}|, \vec{r} = (x, y, z)$ - радиус-вектор точки (x, y, z).

r Имеем

- **4.4.** Найти поверхность уровня поля $u=x^2-y^2+z^2$, содержащую точку (1,2,1). **Отв.:** $x^2-y^2+z^2=-2$.
- **4.5.** Написать уравнение нормали в точке (2,2,-2) к поверхности уровня поля $u = \arccos \frac{z}{\sqrt{x^2 + y^2}}$, проходящей через эту точку.

Отв.:
$$x - 2 = y - 2 = (z + 2)/2$$
.

- **4.6.*** Пусть $\overset{\bf l}{a}$ и $\overset{\bf l}{b}$ постоянные векторы, $\overset{\bf r}{a} \neq \overset{\bf l}{0}, \overset{\bf l}{b} \neq \overset{\bf l}{0}, \overset{\bf r}{r} = (x,y,z)$. Найти поверхности уровня поля $u = e^{(\overset{\bf r}{a},\overset{\bf l}{b},\overset{\bf r}{r})}$, где $(\overset{\bf r}{a},\overset{\bf l}{b},\overset{\bf r}{r})$ смешанное произведение векторов. **Отв.:** плоскости $(\overset{\bf r}{a},\overset{\bf l}{b},\overset{\bf r}{r})$ = C.
- **4.7.** Найти линии уровня скалярного поля $u = e^{\frac{2\pi}{x^2 + y^2}}$ и нарисовать линии уровня u(x, y) = e и $u(x, y) = e^{\frac{1}{2}}$. Вычислить и начертить вектор **grad** u в точках (1,1),(2,0),(1,-1).

Otb.:
$$(x-c)^2 + y^2 = c^2, x^2 + y^2 \neq 0, (x-1)^2 + y^2 = 1, (x-2)^2 + y^2 = 4,$$

grad $u(2,0) = -(e/2)i$, **grad** $u(1,-1) = ej$, **grad** $u(1,1) = -ej$.

4.8. Найти *grad* $u(M_0)$, если:

1)
$$u = xy + yz + zx$$
, $M_0 = (1,1,1)$.
2) $u = \ln(x^2 + y^2 + z^2)$, $M_0 = (1,1,-1)$.

3)
$$u = \frac{9(x+y+z)}{\sqrt{x^2+y^2+z^2}}$$
, $M_0 = (1,-2,-2)$. 4) $u = ze^{x^2+y^2+z^2}$, $M_0 = (0,0,0)$.

OTB.: 1)
$$(2,2,2)$$
; 2) $(\frac{2}{3},\frac{2}{3},-\frac{2}{3})$; 3) $(4,1,1)$; 4) $(0,0,1)$.

4.9. Найти угол между $\operatorname{\textit{grad}}\ u(M_1)$ и $\operatorname{\textit{grad}}\ u(M_2)$, если:

1)
$$u = arctg \frac{x}{y+z}$$
, $M_1 = (1,1,0)$, $M_2 = (-1,0,1)$.

2)
$$u = \frac{z}{\sqrt{x^2 + y^2 + z^2}}, M_1 = (3, \sqrt{3}, -2), M_2 = (\sqrt{3}, 1, 2\sqrt{3}).$$

Отв.: 1) arccos(-1/3); 2) p/2.

4.10. На поверхности уровня поля $u = \frac{x}{x^2 + y^2 + z^2}$, проходящей через точку (1,1,1), найти наименьшее значение | **grad** u|. **Отв.:** 1/9.

4.11. Доказать, что: a) **grad** $r = \frac{1}{r}$; б) **grad** $\frac{1}{r} = -\frac{1}{r^3}$;

- в) **grad** $\sin r = \cos r \cdot \frac{r}{r}$; где r = (x, y, z).
- **4.12.** Для скалярного поля u = u(x, y) найти **grad** u, если функция u(x, y) определяется неявно уравнением

a)
$$u^3 - 3xyu = a^2$$
; 6) $x + y + u = e^u$; B) $x + y + u = e^{-(x+y+u)}$.

OTB.: a)
$$\frac{u}{u^2 - xy}(y\vec{i} + x\vec{j});$$
 6) $(e^u - 1)^{-1}(\vec{i} + \vec{j});$ **B**) $-\vec{i} - \vec{j}.$

- **4.13.** Найти производную поля *u* по направлению единичного вектора $\mathbf{r}^0 = (\cos a, \cos b, \cos b),$ если $r = \sqrt{x^2 + y^2 + z^2},$ $\mathbf{r}^0 = (x, y, z)$:
 - 1) u = r. 2) u = 1/r. 3) $u = (\bar{a}, \bar{r}), \bar{a} = const.$ 4) u = f(r).

Otb.: 1)
$$(r, n^0)/r$$
; 2) $-(r, n^0)/r^3$; 3) (r^0, n^0, a) ; 4) $f'(r)(r^0, r^0)/r$.

4.14. Найти производную поля $u = x^2/a^2 + y^2/b^2 + z^2/c^2$ в точке M = (x, y, z) по направлению радиус-вектора r этой точки.

Отв.:
$$2u/r$$
, $r = |r|$.

4.15. Пусть u и v – дифференцируемые поля. Найти производную поля u по направлению вектора $\operatorname{\textit{grad}} v$.

OTB.: $(\operatorname{grad} u, \operatorname{grad} v)/|\operatorname{grad} v|$.

4.16.* Пусть u- дифференцируемое поле, f(t)- дифференцируемая функция, $t \in R$.

Доказать, что $\nabla f(u) = f'(u) \nabla u$.

4.17.* Пусть u и v — дифференцируемые поля, f(t,s) — дифференцируемая функция, $(t,s) \in \mathbb{R}^2$. Доказать, что

$$\nabla f(u,v) = \frac{\partial f(t,s)}{\partial t} \nabla u + \frac{\partial f(t,s)}{\partial s} \nabla v.$$

Если в каждой точке пространства или его части v определен вектор a = (P,Q,R), где P = P(x,y,z), Q = Q(x,y,z), R = R(x,y,z) — скалярные

функции, то говорят, что в пространстве или в области v задано векторное поле a.

Одной из важных характеристик векторного поля \hat{a} является векторная или силовая линия поля. Векторной (силовой) линией поля называется кривая, в каждой точке M которой касательная к ней совпадает с направлением поля \hat{a} (рис. 4.2).

Для составления уравнений векторных линий поля $\overset{1}{a} = (P,Q,R)$ нужно составить соотношения

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R},\tag{4.6}$$

называемые дифференциальными уравнениями (ДУ) векторных линий.

4.18. Найти векторные линии поля:

1)
$$\vec{a} = (y + z, -x, -x);$$
 2) $\vec{a} = grad \ u, \ u = xyz.$

r a) Согласно соотношениям (4.6) имеем

$$\left(\frac{dx}{y+z} = \frac{dy}{-x} = \frac{dz}{-x}\right) \Rightarrow \begin{cases} xdy = xdz, \\ xdx = -(y+z)dy \end{cases} \Rightarrow \begin{cases} x(dy - dz) = 0, \\ xdx = -(y+z)dy. \end{cases}$$
(4.7)

Из первого уровня этой системы получаем $dy - dx = 0 \Rightarrow y - z = C - const$. Согласно равенству dy = dz, из второго уровня системы (4.7) находим $(xdx + ydy + zdz = 0) \Rightarrow x^2 + y^2 + z^2 = R^2$, R - const.

Таким образом, векторными линиями поля \bar{a} являются линии пересечения сфер $x^2+y^2+z^2=R^2$ и параллельных плоскостей y-z=C т.е. окружности $\{x+y+z=R\,,\,y-z=C\}.$

 $a(M) = \nabla u = yzi + zxj + xyk$ из уравнений (4.6) находим $a(X) = \frac{dy}{yz} = \frac{dz}{zy}$ или xdx = ydy и ydy = zdz, откуда $\frac{x^2}{2} = \frac{y^2}{2} + C_1$, $\frac{y^2}{2} = \frac{z^2}{2} + C_2$. Эти уравнения определяют два семейства гиперболических цилиндров с образующими, параллельными соответственно осям z = xy и z

4.19. Найти векторные линии поля a:

1) Кулоновского поля $a = \frac{ke}{r} r$ точечного заряда e, находящегося в начале координат r = (x, y, z), r = |r|.

Отв.: Лучи, исходящие из начала координат.

 2^*) Векторного поля $\vec{a} = [\vec{c}, \vec{r}]$, где \vec{c} – постоянный вектор.

Отв.: Окружности, лежащие в плоскостях, перпендикулярных прямой $l \parallel \dot{c}$ и проходящей через начало координат; центры этих окружностей лежат на l.

3) Векторного поля
$$\stackrel{\mathbf{r}}{a} = \left(-a^2y, b^2x\right), \ a, b \in \mathbf{R}$$
. Отв.: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

4) Векторного поля
$$\stackrel{\mathbf{r}}{a} = (x^2, y^2)$$
. Отв.: $\frac{1}{x} - \frac{1}{y} = C_1$, $z = C_2$.

5) Векторного поля $\overset{1}{a} = (z - y, x - z, y - x)$.

Отв.:
$$x^2 + y^2 + z^2 = R^2$$
, $x + y + z = C$.

4.20. Найти векторную линию поля $\overset{1}{a}$, проходящую через точку M_0 , если

1)
$$\vec{a} = (-y, x, c), c - const, M_0 = (1,0,0).$$

2)
$$\vec{a} = (x^2, -y^3, z^2), M_0 = (\frac{1}{2}, -\frac{1}{2}, 1).$$

2)
$$a = (x, -y, z), M_0 = (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2})$$

3) $a = (xz, yz, x^2 + y^2), M_0 = (1,1,0)$
OTB.: 1) $x = \cos t, y = \sin t, z = ct$

2)
$$\frac{1}{x} - \frac{1}{y} = 1$$
, $\frac{1}{x} + \frac{1}{2y^2} = 4$. 3) $y = x$, $z^2 = 2(x^2 - 1)$.

4.21. Найти линии наибыстрейшего изменения скалярных полей:

1)
$$u = x^2 - y^2$$
. 2) $u = \frac{x^2}{2} + y^2$. 3) $u = x^2 + 2y^2 + z^2$.

OTB.: 1)
$$xy = C$$
; 2) $y = Cx^2$ if $x = 0$, $x^2 + y^2 \neq 0$; 3) $z^2 = 2(x^2 - 1)$.

4.2. Поток векторного поля через поверхность

Поток векторного поля через ориентированную поверхность. Поток векторного поля через замкнутую поверхность. Дивергенция векторного поля и её некоторые свойства

Пусть $\ddot{a} = (P, Q, R)$ – векторное поле, а S – ориентированная гладкая поверхность в R^3 . Потоком векторного поля $\overset{1}{a}$ (или вектора $\overset{1}{a}$) через поверхность S в направлении единичного вектора $\stackrel{\mathbf{r}}{n}^0$ нормали $\stackrel{\mathbf{r}}{n}$ к поверхности называется ПИ-2

$$\Pi = \iint_{S} {\mathbf{r} \choose a} {\mathbf{n} \choose b} ds = \iint_{S} P dy dz + Q dz dx + R dx dy =
= \iint_{S} (P \cos a + Q \cos b + R \cos g) ds,$$
(4.8)

где $M = (x, y, z) \in S$; $\cos a$, $\cos b$, $\cos g$ — направляющие косинусы вектора нормали к S.

Поток – скалярная величина. При этом, если $(\stackrel{\bf r}{a}, \stackrel{\bf r}{n}^0) < p/2$, то $\Pi > 0$. В этом случае поток вектора $\stackrel{\bf r}{a}$ идёт с внутренней на внешнюю сторону поверхности S. Если же $(\stackrel{\bf r}{a}, \stackrel{\bf r}{n}^0) > p/2$, то $\Pi < 0$, и значит, поток вектора идёт с внешней на внутреннюю сторону поверхности S. При смене ориентации поверхности S знак потока Π изменяется на противоположный. Способы вычисления Π И-2, выражающих поток Π , в случае явного, неявного и параметрического заданий поверхности изложены в Π 3.2. Для этих способов ещё раз приведём соответствующие формулы. Пусть $g = \binom{\bf r}{n}, z \le \frac{\bf p}{2}$.

1°. Если S задана явно уравнением z = f(x, y), $(x, y) \in D_{xy}$ – проекция S на плоскость XY, то $\overset{\mathbf{r}}{n} = \left(-f_x', -f_y', 1\right)$, и из формулы (4.8) получаем $\Pi = \iint \left(-f'_x P(x, y, f(x, y)) - f'_y Q(x, y, z(f(x, y)) + R(x, y, f(x, y)) dx dy. \right) (4.9)$

2°. Если S задана неявно уравнением

 $F(x,y,z) = 0, F'_z \neq 0$, то $n = \frac{1}{F'_z} (F'_x, F'_y, F'_z) = -\frac{1}{F'_z} \nabla F$ и, следовательно,

$$\Pi = \iint_{D_{xy}} \left(\frac{1}{F'_z} (F'_x P(x, y, z) + F'_y Q(x, y, z) + F'_z R(x, y, z) \right) dx dy, \tag{4.10}$$

где z необходимо выразить из уравнения поверхности S.

Замечание. Если g > p/2, то в $1^0 \overset{\mathbf{r}}{n} = \left(f_x', f_y', -1\right)$, а в $2^0 \overset{\mathbf{r}}{n} = -\frac{1}{F_z'} \nabla F$. Соответствующим образом изменятся формулы (4.9) и (4.10).

3°. Если поверхность S задана параметрически в виде $x = x(u,v), y = y(u,v), z = z(u,v), (u,v) \in W$, то, согласно формуле (3.11),

$$\Pi = \iint_{W} \left(P(u,v) \left| \frac{D(y,z)}{D(u,v)} \right| + Q(u,v) \left| \frac{D(z,x)}{D(u,v)} \right| + R(u,v) \left| \frac{D(x,y)}{D(u,v)} \right| \right) du dv, \quad (4.11)$$
где $P(u,v) = P(x(u,v), y(u,v), z(u,v)), \quad Q(u,v) = Q(x(u,v), y(u,v), z(u,v)),$

$$R(u,v) = R(x(u,v), y(u,v), z(u,v)).$$

4.22. Вычислить поток вектора $\stackrel{\bf r}{a} = (y,x,z^2)$ через часть поверхности параболоида $1-z=x^2+y^2$, отсекаемой от него плоскостью z=0 (рис 4.3, нормаль внешняя).

 Δ Так как $P=y, Q=x, R=z^2, \quad z_x'=-2x, z_y'=-2y$ и проекцией D_{xy} поверхности параболоида на плоскость XY является круг $x^2+y^2\leq 1$, то по формуле (4.9) с последующим переходом к полярным координатам получаем

$$\Pi = \iint_{D_{xy}} (2xy + 2yx + z^2) dxdy = \iint_{D_{xy}} (4xy + (1 - (x^2 + y^2))^2) dxdy =$$

$$= \int_{0}^{2p} dj \int_{0}^{1} (4r^{2} \cos j \sin j - (1-r^{2})^{2}) r dr =$$

$$= \int_{0}^{2p} dj \int_{0}^{1} (2r^{3} \sin 2j - r(1-r^{2})^{2}) dr = p/3.p$$

4.23. Найти поток векторного поля a = (2, -x, 5z) через верхнюю сторону треугольника, полученного при пересечении плоскости x + 2y + 3z = 6 с координатными плоскостями (рис. 4.4).

 ${f r}$ Поверхность S треугольника ABC задана неявно уравнением

$$F = x + 2y + 3z - 6 = 0$$
. Так как

$$P = 2, Q = -x, R = 5z$$
 и $F'_x = 1, F'_y = 2, F'_z = 3$, то по формуле (4.10) $(g < p/2)$

$$\Pi = \iint_{D_{xy}} \frac{1}{3} (2 - 2x + 15z) dx dy$$
, где D_{xy} –

треугольник AOB. Из уравнения плоскости имеем z = 2 - x/3 - 2y/3. Поэтому

$$\Pi = \iint_{D_{xy}} (32 - 7x - 10y) dx dy =
= \frac{1}{3} \int_{0}^{3} dy \int_{0}^{6 - 2y} (32 - 7x - 10y) dx = 24.\mathbf{p}$$

4.24. Найти поток вектора $\overset{\mathbf{r}}{a} = (x + xy^2, y - yx^2, z)$ через полусферу $x^2 + y^2 + z^2 = 9, z \ge 0$. Нормаль внешняя.

Рис. 4.4

 ${f r}$ Зададим полусферу параметрически в виде $x=3\sin q\cos j$, $y=3\sin q\sin j$,

 $z = 3\cos q$, $W: \{0 \le q \le p/2, 0 \le j \le 2p\}$. Так как

$$\left|\frac{D(y,z)}{D(q,j)}\right| = 9\sin^2 q \cos j, \left|\frac{D(z,x)}{D(q,j)}\right| = 9\sin^2 q \sin j, \left|\frac{D(x,y)}{D(q,j)}\right| = 9\cos q \sin q.$$

 $P = x(1+y^2), Q = y(1-y^2), R = z$, то по формуле (4.11) получаем

 $\Pi = \iint_{W} (3\sin q \cos j \left(1 + 9\sin^{2} q \sin^{2} j\right)) + 3\sin q \sin j \left(1 - 9\sin^{2} q \cos^{2} j\right) 9\sin^{2} q \sin j +$

$$+3\cos q 9\cos q \sin q)dq dj = 27 \iint_{W} \sin q dq dj = 27 \int_{0}^{2p} dj \int_{0}^{p/2} \sin q dq = 54p.$$

4.25. Найти поток вектора электрической напряженности $\stackrel{\bf r}{E} = q \cdot \stackrel{\bf r}{r}_{r^3}$,

 $r = | \overset{\mathbf{v}}{r} |$, точечного заряда q через поверхность сферы радиусом R в направлении внешней нормали к сфере, если заряд q расположен в её центре.

 ${f r}$ В нашем случае ${f a}={f E}$. В каждой точке сферы вектор внешней нормали совпадает с её радиус-вектором ${f r}$, если за начало координат принять центр сферы. Тогда ${f n}^0={f r}/r$ и по формуле (4.8) поток

 $\Pi = \iint_S \left(\stackrel{\mathbf{r}}{E}, \stackrel{\mathbf{r}}{n^0} \right) ds = \iint_S \left(q \frac{\stackrel{\mathbf{r}}{r}, \stackrel{\mathbf{r}}{r}}{r^3}, \frac{\stackrel{\mathbf{r}}{r}}{r} \right) ds = q \iint_S \frac{|\stackrel{\mathbf{r}}{r}|^2}{r^4} ds = q \iint_S \frac{ds}{r^2} = q \iint_S \frac{ds}{R^2} = \frac{q}{R^2} \iint_S ds = \frac{q}{R^2} \cdot 4pR^2 = 4pq,$ так как на сфере r = R, а интеграл $\iint_S ds$ равен $4pR^2$ — площади поверхности сферы радиусом $R \cdot \mathbf{p}$

- **4.26.** Найти поток поля a через ориентированную нормалью n поверхность S (r = (x, y, z), r = |r|):
- 1) $\overset{1}{a} = (a_x, a_y, a_z)$ постоянный вектор, S круг радиусом R, лежащий в плоскости $(\overset{1}{r}, \overset{1}{n}) = d$. Отв.: $pR^2(\overset{1}{a}, \overset{1}{n})$.
 - 2) a = r; S внешняя сторона конуса $\sqrt{x^2 + y^2} \le z \le h$. Отв.: ph^3 .
 - 3) a = r; S внешняя сторона поверхности цилиндра $x^2 + y^2 \le R^2$, $0 \le z \le h$. Отв.: $3phR^2$.
- 4*) a = f(r)r; S внешняя сторона сферы $x^2 + y^2 + z^2 = R^2$. Отв.: $4pR^3 f(R)$.
- 5) $a = (y^2, x^2, z^2)$; S часть внешней стороны цилиндра $x^2 + y^2 = a^2$, расположенная в 1-м октанте между плоскостями z = 0 и z = a, a > 0. Отв.: $2a^4/3$.
- 6) $a = (0, y^2, z)$; S ограниченная часть внешней стороны параболоида $z = x^2 + y^2$, отсеченная плоскостью z = 2. Отв.: 2p.
- 7) $a = (x, y, \sqrt{x^2 + y^2 1}); S$ часть внешней стороны гиперболоида $x^2 + y^2 z^2 = 1$, заключенная между плоскостями $z = 0, z = \sqrt{3}$. Отв.: $2p\sqrt{3}$.
- a^*) a = (y, z, x); S часть внутренней стороны цилиндра $x^2 + y^2 = R^2$, расположенная в области x > |z|. Отв.: 0.
- 9) a = (3x, -y, -z); S часть внешней стороны параболоида $x^2 + y^2 = 9 z$, расположенная в 1-м октанте. Отв.: 81p/8.
- 10) $a = (xz, yz, z^2)$; S часть внешней стороны сферы $x^2 + y^2 + z^2 = 9$, расположенная в области z > 2. Отв.:
- 11*) a = (x, y, xyz); S часть внешней стороны цилиндра $x^2 + y^2 = R^2$, расположенная в области x > |y| и отсеченная плоскостью z = 0 и параболоидом

$$z = x^2 - y^2$$
. OTB.: R^4 .

12*) $a = (xy - y^2, -x^2 + xy + 2x, z)$; S – часть внешней стороны цилиндра $x^2 + y^2 = 1$, отсеченная конусом $z^2 = x^2/2 + y^2$ Отв.: 0.

Пусть S — замкнутая кусочно-гладкая поверхность с единичным вектором внешней нормали n^0 . Тогда *поток* Π вектора a = (P,Q,R) через замкнутую поверхность S можно вычислить с помощью формулы Остроградского—Гаусса (3.17):

$$\Pi = \iint_{S} \left(\stackrel{\mathbf{r}}{a}, \stackrel{\mathbf{r}}{n}^{0} \right) ds = \iiint_{V} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz .$$
(4.12)

Пусть a(M) – поле скоростей несжимаемой жидкости. Если $\Pi > 0$, то из (4.12) следует, что из области V вытекает больше жидкости, чем втекает. Это означает, что внутри области V имеются ucmovhuku – точки, из которых жидкость вытекает. Если $\Pi < 0$, то из области V вытекает меньше жидкости, чем втекает в неё. В этом случае говорят, что внутри V имеются cmoku, т.е. точки, в которые жидкость втекает. При $\Pi = 0$ в V втекает столько же жидкости, сколько вытекает.

Пусть в области V задано векторное поле a(M) = (P,Q,R), где функции P(x,y,z), Q(x,y,z), R(x,y,z) имеют непрерывные частные производные в точке $M = (x,y,z) \in V$ по x,y,z соответственно. Дивергенцией или расходимостью векторного поля a(M) в точке M, обозначаемой div a(M), называется скалярная величина

$$\operatorname{div} \overset{\mathbf{r}}{a}(M) = \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right)_{M}.$$
 (4.13)

С физической точки зрения $div \, \overset{1}{a}(M)$ характеризует плотность источников и стоков векторного поля $\overset{1}{a}(M)$ в точке M. Если $div \, \overset{1}{a}(M) > 0$, то точка M является источником, если $div \, \overset{1}{a}(M) < 0$, то – стоком. Если $div \, \overset{1}{a}(M) = 0$, то в точке M нет ни источников, ни стоков.

4.27. Найти $div \stackrel{\mathbf{a}}{a}(M)$, если $\stackrel{\mathbf{r}}{a} = (x, y^2, z^3)$, M = (-2,4,5).

r По формуле (4.13) находим

$$|div \stackrel{\mathbf{r}}{a}(M)| = (1 + 2y + 3z^2)_{M} = 1 + 2 \cdot 4 + 3 \cdot 25 = 84. \mathbf{p}$$

4.28. Найти дивергенцию электрического поля $E = \frac{ke}{r^3} \frac{\mathbf{r}}{r}, \frac{\mathbf{r}}{r}$ – радиус-вектор точки $M = (x, y, z), r = |\mathbf{r}|, e$ – точечный заряд, помещённый в начале координат. Δ Имеем по определению:

$$div \stackrel{\mathbf{r}}{E} = ke \left[\frac{\partial}{\partial x} \left(\frac{x}{r^3} \right) + \frac{\partial}{\partial y} \left(\frac{y}{r^3} \right) + \frac{\partial}{\partial z} \left(\frac{z}{r^3} \right) \right] = ke \left(\frac{r^2 - 3x^2}{r^5} + \frac{r^2 - 3y^2}{r^5} + \frac{r^2 - 3z^2}{r^5} \right) = ke \frac{3r^2 - 3\left(x^2 + y^2 + z^2\right)}{r^5} = ke \frac{3r^2 - 3r^2}{r^5} = 0 \quad (\text{при } r \neq 0).$$

Физически это означает отсутствие источников электрического поля, кроме начала координат. В нём $div \bar{E} = \infty$ (бесконечная плотность заряда). р

Дивергенция обладает следующими свойствами:

- $div \overset{\bullet}{c} = 0, \quad \overset{\bullet}{c}$ –постоянный вектор.
- 2^{0} . $div(aa + bb) = a div a + b div b, a, b \in \mathbf{R}$.
- 3^0 . $div(j\overset{\mathbf{r}}{a}) = j div\overset{\mathbf{r}}{a} + (\overset{\mathbf{r}}{a}, \mathbf{grad} j), j = j(x, y, z)$ скалярная функция.
- **4.29.** Найти $div(x^2y_i^r + xy^2j + z^2k)$ в точке M = (1,2,-1).

4.30. Найти
$$div\left(\frac{{\displaystyle \mathbf{r} \quad \mathbf{r} \quad \mathbf{r}}}{{\displaystyle \sqrt[3]{(x+y+z)^2}}}\right)$$
 Отв.: $-2/(x+y+z)^{5/3}$.

4.31. Магнитное поле, создаваемое электрическим током силы I, текущим по бесконечному проводу, определяется формулой

$$\mathbf{r}$$
 $H(M) = \mathbf{H}(x, y) = 2I \cdot \frac{xj - yi}{x^2 + y^2}$. Вычислить $div \mathbf{H}(M)$. Отв.: 0.

- **4.32.** Haŭtu (r = (x, y, z), r = |r|):
- 1) $\operatorname{div} \operatorname{grad} r^2$; 2) $\operatorname{div} \operatorname{grad} (1/r)$; 3) $\operatorname{div} r^2$, $c \operatorname{const}$;

4) div grad
$$f(r)$$
; 5) div $(f(r)\dot{c})$, $\dot{c} - const$; 6) div $[\dot{c}, \dot{r}]$; 7) div $[\dot{r}, [\dot{c}, \dot{r}]]$.
OTB.: 1) 6; 2) 0; 3) $(\ddot{r}, \dot{c})/r$; 4) $f''(r) + 2f'(r)/r$; 5) $(\dot{r}, \dot{c})f'(r)/r$; 6) 0; 7) $-2(\dot{c}, \dot{r})$.

- **4.33.** Найти поток поля a через полную поверхность S:
- 1) $a = (x^3, y^3, z^3)$; S внешняя поверхность куба $|x| \le a, |y| \le a, |z| \le a$.
- a = (z y, x z, y x); S внешняя поверхность тетраэдра, ограниченного плоскостями x + y + z = 1, x + y - z = 1, x = 0, y = 0.
- 3) $\stackrel{\mathbf{r}}{a} = (y^2z, -yz^2, x(y^2+z^2)); S$ внешняя поверхность цилиндра $y^2+z^2 \le a^2$, $0 \le x \le a$.
 - 4) $\overset{1}{a} = (2x, 2y, -z); S$ внешняя поверхность конуса $\sqrt{x^2 + y^2} \le z \le H$.
 - 5) $\vec{a} = (x + z, y + x, z + y)$; S поверхность тела $x^2 + y^2 \le R^2$, $0 \le z \le y$.
 - 6) $a = (x^2y, xy^2, xyz)$; S поверхность тела

$$x^2 + y^2 + z^2 \le R^2$$
, $x \ge 0$, $y \ge 0$, $z \ge 0$.

Отв.: 1)
$$24a^5$$
; **2)** 0; **3)** $-pa^{5/4}$; **4)** pH^3 ; **5)** $2R^3$; **6)** $R^5/3$.

Если замкнутая поверхность S образована двумя поверхностями S_1 и S_2 , т.е. $S = S_1 \cup S_2$, то вследствие аддитивности ПИ-2 поток вектора $\overset{1}{a} = (P, Q, R)$, например, через поверхность S_1 можно вычислить по формуле

$$\iint_{S_1} {\begin{pmatrix} \mathbf{r}, \mathbf{r}_0 \\ a, n \end{pmatrix}} ds = \iint_{S} {\begin{pmatrix} \mathbf{r}, \mathbf{r}_0 \\ a, n \end{pmatrix}} ds - \iint_{S_2} {\begin{pmatrix} \mathbf{r}, \mathbf{r}_0 \\ a, n \end{pmatrix}} ds = \iiint_{V} div \stackrel{\mathbf{r}}{a} dx dy dz - \iint_{S_2} {\begin{pmatrix} \mathbf{r}, \mathbf{v}_0 \\ a, n \end{pmatrix}} ds , \qquad (4.14)$$

где V — тело, ограниченное поверхностью S.

4.34. Найти поток поля $\overset{\mathbf{r}}{a} = (x - y, x + y, z^2)$ через боковую поверхность цилиндра $x^2 + y^2 = 1$, заключенную между плоскостями z = 0 и z = 2 (рис. 4.5, нормаль внешняя).

 Δ В нашем случае P = x - y, Q = x + y, $R = z^2$, div = (2 + 2z). Образуем замкнутую поверхность S, состоящую из цилиндрической поверхности $x^2 + y^2 = 1$ и плоскостей $P_1: z = 0$ и $P_2: z = 2$. Тогда в соответствии с формулой (4.14) искомый поток $\Pi = \iiint 2(1+z) dx dy dz - \iint \begin{pmatrix} \mathbf{r} & \mathbf{r}_0 \\ a, n_1 \end{pmatrix} ds - \iint \begin{pmatrix} \mathbf{r} & \mathbf{r}_0 \\ a, n_2 \end{pmatrix} ds.$

Вычислим каждый из интегралов по отдельности. Для тройного интеграла цилиндрическим координатам переходом находим

$$2\iiint\limits_V(1+z)dxdydz=2\int\limits_0^{2p}dj\int\limits_0^1rdr\int\limits_0^2(1+z)dz=8p$$
. Так как нормаль к плоскости P_1 имеет вид $n_1^0=(0,0,-1)$, то
$$\iint\limits_{P_1}(a,n_1^0)ds=-\iint\limits_{x^2+y^2\leq 1}z^2dxdy=0,$$
 поскольку $z=0$ в плоскости P_1 .

Далее, на плоскости P_2 имеем z = 2, $n_2^0 = (0,0,1)$. Поэтому $\iint_{P_2} {\mathbf{r} \cdot \mathbf{r} \cdot 0 \choose a, n_2^0} ds = \iint_{x^2 + y^2 \le 1} z^2 dx dy = 4 \iint_{x^2 + y^2 \le 1} dx dy = 4 \mathbf{p}.$

Рис. 4.5

Таким образом, $\Pi = 8p - 0 - 4p = 4p$. р **4.35.** Найти поток поля $\stackrel{\mathbf{r}}{a} = \left(x^2yz, xy^2z, xyz^2\right)$ через часть внешней эллипсоида $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$, расположенную в первом стороны октанте.

Отв.: $a^2b^2c^2/8$.

- **4.36.** Найти поток поля $\overset{\mathbf{r}}{a} = (x^3, y^3, z^3)$ через половину внешней стороны сферы $x^2 + y^2 + z^2 = 2x, z \ge 0.$ **Отв.:** 0.
- **4.37.** Найти поток поля $\overset{\mathbf{r}}{a} = (x + xy^2, y yx^2, z 3)$ через часть поверхности S, вырезаемую плоскостью P (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями):

1)
$$a = (x + xy^2, y - yx^2, z - 3); S : x^2 + y^2 = z^2 (z \ge 0), P : z = 1.$$

2)
$$a = (x + xz, y, z - x^2)$$
; $S: x^2 + y^2 + z^2 = 4 (z \ge 0), P: z = 0$.

Отв.: 1) 3p; 2) 16p.

4.3. Циркуляция векторного поля

Циркуляция векторного поля вдоль контура и её физический смысл. Ротор векторного поля и его некоторые свойства

Пусть в прямоугольной ДСК определено векторное поле $\overset{\mathbf{1}}{a} = (P,Q,R)$. Криволинейный интеграл

 $C = \oint_{\Gamma} {\mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \choose a} dl = \oint_{\Gamma} P dx + Q dy + R dz, \tag{4.15}$

взятый по замкнутому контуру Γ , называется *циркуляцией вектора а вдоль* этого *контура*. Здесь t^0 — единичный вектор касательной к контуру Γ , указывающий направление движения вдоль этого контура. Если a — вектор силы, то циркуляция (4.15) представляет собой работу этой силы по замкнутому контуру Γ . В этом и состоит физический смысл циркуляции. Если контур Γ не является замкнутым, то КрИ $\int_{\Gamma} (t^0) dt$ обычно называют

линейным интегралом от вектора $\overset{\mathbf{r}}{a}$ вдоль ориентированной с помощью $\overset{\mathbf{r}}{t}^0$ кривой Γ .

4.38. Вычислить циркуляцию поля $a(M) = (x, -2z^2, y)$ вдоль линии Γ пересечения цилиндра $x^2/16 + y^2/9 = 1$ с плоскостью z = x + 2y + 2 в положительном направлении обхода относительно вектора нормали плоскости n = (-1, -2, 1).

∆ Составим параметрические уравнения кривой Г. Параметрические уравнения направляющей цилиндра $x^2/16 + y^2/9 = 1$ имеют вид $x = 4\cos t$, $y = 3\sin t$, $t \in [0,2p]$. Тогда параметрическими уравнениями кривой Г (в плоскости сечения – это эллипс) будут $x = 4\cos t$, $y = 3\sin t$, $z = 4\cos t + 6\sin t + 2$, $0 \le t \le 2p$. Поэтому искомая циркуляция будет равна

$$C = \oint_{\Gamma} x dx - 2z^2 dy + y dz =$$

 $= \int_{0}^{2p} (4\cos t(-4\sin t) - 2(4\cos t + 6\sin t + 2)^{2} 3\cos t + 3\sin t(-4\sin t + 6\cos t)dt =$

$$=-\int\limits_{0}^{2p}(96\cos^{2}t+12\sin^{2}t)dt=-\int\limits_{0}^{2p}48(1+\cos2t)dt-6\int\limits_{0}^{2p}(1-\cos2t)dt=$$
$$=-48\cdot2p-6\cdot2p=-108p. \quad \mathbf{p}$$
 4.39. Найти циркуляцию поля a вдоль контура Γ в направлении,

4.39. Найти циркуляцию поля \hat{a} вдоль контура Γ в направлении, соответствующем возрастанию параметра t:

- 1) $a = (x, -z^2, y)$; $\Gamma : x = 2\cos t$, $y = 3\sin t$, $z = 4\cos t 3\sin t 3$.
- 2) $\ddot{a} = (y z, z x, x y); \Gamma: x = 2\cos t, y = 2\sin t, z = 3(1 \cos t).$
- 3) $\vec{a} = (-2z, -x, x^2); \ \Gamma : x = (\cos t)/3, \ y = (\sin t)/3, \ z = 8.$
- 4) $a = (x, -3z^2, y)$; $\Gamma: x = \cos t, y = 4\sin t, z = 2\cos t 4\sin t + 3$.

5)
$$\vec{a} = (x, -2z^2, y)$$
; $\Gamma : x = 3\cos t, y = 4\sin t, z = 6\cos t - 4\sin t + 1$.

OTB.: 1) 60p; 2) -20p; 3) -p/9; 4) -152p; 5) -120p.

4.40. Вычислить циркуляцию вектора $\overset{1}{a} = (y, -z, x)$ вдоль эллипса $\left\{\frac{(x^2+y^2)}{2}+z^2=a^2, z=x\right\}$ в положительном направлении относительно орта i.

Отв.: $2pa^2$.

Ротором или *вихрем векторного поля* a(M) = (P, Q, R) называется вектор

$$rota^{\mathbf{r}}(M) = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)^{\mathbf{r}}_{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)^{\mathbf{r}}_{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)^{\mathbf{r}}_{k}.$$
 (4.16)

Этот вектор можно символически (формально) получить из определителя

$$rot \stackrel{\mathbf{r}}{a} = \begin{vmatrix} \frac{1}{i} & \frac{1}{j} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix},$$

разложив его по элементам первой строки.

Используя понятие ротора и циркуляции, формулу Стокса (3.19) можно Использул поше: записать в векторной форме: $C = \oint (a, t^0) dl = \iint_S (rot \, a, n^0) ds,$

$$C = \oint_{\Gamma} (a, t^{0}) dl = \iint_{S} (rot a, n^{0}) ds, \tag{4.17}$$

т. е. циркуляция векторного поля $\dot{a}(M)$ вдоль замкнутого контура Γ равна потоку ротора этого поля через любую гладкую поверхность S, краем которой является Γ (направление обхода по Γ и сторона поверхности Sсогласованы).

Если **rot** $a \neq 0$, то это свидетельствует о вращении поля a(M), то есть поле носит вихревой характер.

Отметим некоторые свойства ротора векторного поля.

- 1. $rot \stackrel{1}{c} = 0$, где $\stackrel{1}{c}$ постоянный вектор.
- 2. rot(aa + bb) = a rot a + b rot b, $a, b \in R$.
- 3. rot(ja) = j rot a + [grad j, a], где j(x, y, z) скалярная гладкая функция.
- **4.41.** Вычислить циркуляцию векторного поля $\overset{\mathbf{r}}{a}(M) = (y, x^2, -z)$ по окружности $\Gamma: x^2 + y^2 = 4, z = 3$ в положительном направлении относительно орта двумя способами: 1) по формуле (4.15); 2) по формуле Стокса (4.17).
- Δ 1) При возрастании параметра t от 0 до 2p движение по окружности Γ происходит против хода часовой стрелки относительно орта k (рис. 4.6).

Поэтому параметрические уравнения $x = 2\cos t, y = 2\sin t, z = 3,0 \le t \le 2p$. есть Тогда

$$C = \oint_{\Gamma} y dx + x^2 dy - z dz = \int_{0}^{2p} (2\sin t(-2\sin t) +$$

Γ

Рис. 4.6

$$+4\cos^2 t 2\cos t dt = 8 \int_0^{2p} \cos^3 t dt - 4 \int_0^{2p} \sin^2 t dt = -4p.$$

2) В качестве поверхности S с краем Γ удобнее всего выбрать круг $x^2+y^2\leq 4, z=3$ (рис. 4.6). Тогда $\overset{\mathbf{r}}{n}{}^0=\overset{\mathbf{r}}{k}$. Далее rot $\overset{\mathbf{r}}{a}=(2x-1)\overset{\mathbf{r}}{k}$, и тогда, применив полярные координаты, получим

$$C = \oiint (\mathbf{rota}, \overset{\mathbf{r}}{n} \overset{\mathbf{r}}{n}) ds = \iint (2x - 1) dx dy =$$

$$= \iint_{S} (2r \cos j - 1) dr dj = \int_{0}^{2p} dj \int_{0}^{2} (2r \cos j - 1) r dr = -4p.$$

$$= \iint_{S} (2r\cos j - 1)drdj = \int_{0}^{2p} dj \int_{0}^{2} (2r\cos j - 1)rdr = -4p.$$
 p

Вершины D,B,A' куба ABCDA'B'C'D' находятся соответственно в точках (1,0,0), (0,1,0), (0,0,1). Применяя формулу Стокса, вычислить циркуляцию поля $\ddot{a} = (y, z, x)$ векторного вдоль ломаной *C'CDABB'A'D'* (рис. 4.7).

∆ Обозначим данную ломаную через L_{1} . Чтобы сделать возможным применение формулы Стокса ДЛЯ вычисления искомого интеграла

$$\int_{L_1}^{\mathbf{r}} (\overset{\mathbf{r}}{a}, \overset{\mathbf{r}}{t}^0) dl,$$

работу, выражающего дополним ломаную L_1 до замкнутой кривой Lотрезком L_2 прямой, соединяющим точки D' и C'. На контур L «натянем» кусочно-гладкую поверхность состоящую из квадратов С'СОО', D'DAA'

и A'ABB'. Их обозначим соответственно S_1, S_2, S_3 . Применяя формулу (4.17) к контуру L и поверхности S, имеем

$$\int\limits_{L_{1}}^{\mathbf{r}} (\overset{\mathbf{r}}{a},\overset{\mathbf{r}}{t}^{0}) dl + \int\limits_{L_{2}}^{\mathbf{r}} (\overset{\mathbf{r}}{a},\overset{\mathbf{r}}{t}^{0}) dl = \iint\limits_{S_{1}} (\boldsymbol{rot}\overset{\mathbf{r}}{a},\overset{\mathbf{r}}{n}^{0}) ds + \iint\limits_{S_{2}} (\boldsymbol{rot}\overset{\mathbf{r}}{a},\overset{\mathbf{r}}{n}^{0}) ds + \iint\limits_{S_{3}} (\boldsymbol{rot}\overset{\mathbf{r}}{a},\overset{\mathbf{r}}{n}^{0}) ds. \tag{4.18}$$
 Находим $\boldsymbol{rot}\overset{\mathbf{r}}{a} = (-1,-1,-1)$. Орты нормалей на частях S_{1},S_{2},S_{3} поверхности

S с учетом направления обхода контура L_1 имеют вид $n^{(i)}(S_1) = -i, n^{(i)}(S_2) = i,$ $n^{\mathbf{r}_0}(S_3) = i$. Вычисляем поток вектора **rot** a через поверхность S, т. е. величину

$$\iint\limits_{S} (\operatorname{rot} \overset{\mathbf{r}}{a}, \overset{\mathbf{r}}{n}^{0}) ds = \iint\limits_{S_{1}} ds - \iint\limits_{S_{2}} ds - \iint\limits_{S_{2}} ds = -1.$$

выражения в правой части (4.18): $\iint\limits_{S} (\textbf{rot}\, a, n^0) ds = \iint\limits_{S_1} ds - \iint\limits_{S_2} ds - \iint\limits_{S_3} ds = -1.$ Находим теперь циркуляцию поля a вдоль отрезка L_2 от точки D' до точки прямой вектор $\overset{\mathbf{r}}{a} = (y,1,1), \overset{\mathbf{r}}{t}{}^0, dl = \overset{\mathbf{l}}{j} dy$ C'. Ha этой значит, $\int_{a} (a, t^{0}) dl = \int_{a}^{1} dy = 1.$

Из формулы (4.18) следует, что искомый интеграл $\int (\overset{\mathbf{r}}{a},\overset{\mathbf{r}}{t}{}^{0})dl$ (циркуляция поля $\overset{\bullet}{a}$ вдоль $L_{\scriptscriptstyle 1}$) равен разности ПИ (поток $rot\,\overset{\bullet}{a}$ через поверхность S) и КрИ $\int_{L_2}^{\mathbf{r}} (\overset{\mathbf{r}}{a}, \overset{\mathbf{r}}{t}^0) dl$ (циркуляция вдоль L_2): $\int_{L_1}^{\mathbf{r}} (\overset{\mathbf{r}}{a}, \overset{\mathbf{r}}{t}^0) dl = -1 - 1 = -2$. \mathbf{p} **4.43.** Проверить указанные равенства в координатной L_2

- форме $(a,b\in R;j,\overset{1}{a},b$ – дифференцируемые скалярное и векторные поля, $\overset{1}{c}$ – постоянный вектор):
 - 1) $\operatorname{rot} j \stackrel{\cdot}{c} = [\operatorname{grad} j, \stackrel{\cdot}{c}].$ 2) $\operatorname{rot} [\stackrel{\cdot}{c}, \stackrel{\cdot}{a}] = \stackrel{\cdot}{c} \operatorname{div} \stackrel{\cdot}{a} (\stackrel{\cdot}{c}, \nabla) \stackrel{\cdot}{a}.$ 3*) $\operatorname{rot} [\stackrel{\cdot}{a}, \stackrel{\cdot}{b}] = \stackrel{\cdot}{a} \operatorname{div} \stackrel{\cdot}{b} \stackrel{\cdot}{b} \operatorname{div} \stackrel{\cdot}{a} + (\stackrel{\cdot}{b}, \nabla) \stackrel{\cdot}{a} (\stackrel{\cdot}{a}, \nabla) \stackrel{\cdot}{b}.$

 - 4) div[a,b] = b(rot a) (a,rot b).
- **4.44.** Найти $(r = (x, y, z), r = |\mathbf{r}|; \mathbf{a}, \mathbf{b}$ постоянные векторы, j(r) дифференцируемое поле):
 - 1) rot(ra). 2) rot((r,a)b). 3) rot(j(r)a). 4) rot(j(r)r).

OTB.: 1) [r,a]/r; 2) [a,b]; 3) j'(r)[r,a]/r; 4) 0.

4.45. Найти угол между **rot** $a(M_1)$ и **rot** $a(M_2)$ если

- 1) $\vec{a} = (x^2 + y^2, y^2 + z^2, z^2 + x^2); M_1 = (1,2,3), M_2 = (1,1,-1).$
- 2) $\vec{a} = (z^3, x^3 + y^3, xyz); M_1 = (1,2,0), M_2 = (1,12,4).$

OTB.: 1) p/2; 2) $\arccos(3/5)$.

- Показать, что поле $rot \stackrel{1}{a}(M)$ свободно от источников и стоков. 4.46.
- 4.47. Найти функцию f(x, z), если rot(yz, f(x, z), xy) = (-1,0,1).

OTB.:
$$f(x, z) = xz + x + z + c, c - const.$$

4.4. Соленоидальные и потенциальные векторные поля

Соленоидальные векторные поля. Потенциальные векторные поля. Потенциалы. Криволинейный интеграл в потенциальном поле

Векторное поле a(M) называется *соленоидальным* в области V, если в этой области

$$div\left(\mathbf{a}(M)\right) = 0. \tag{4.19}$$

Равенство (4.19) называется *условием соленоидальности* векторного поля $\overset{1}{a}(M)$ в V .

Так как $div(\mathring{a}(M))$ характеризует плотность источников поля \mathring{a} , то в области соленоидальности поля нет источников и стоков этого поля. Например, электрическое поле \mathring{E} точечного заряда соленоидально, ибо $div\mathring{E}=0$ всюду вне точки нахождения заряда (в этой точке $div\mathring{E}=\infty$).

В соленоидальном поле V векторные (силовые) линии не могут начинаться или заканчиваться. Они могут быть либо замкнутыми кривыми, либо иметь концы на границе поля.

Из формулы Остроградского–Гаусса следует, что в соленоидальном поле поток векторного поля $\ddot{a}(M)$ через любую замкнутую поверхность S, лежащую в этом поле, равен нулю:

$$\oint_{S} (\overset{\mathbf{r}}{a}, \overset{\mathbf{r}}{n}^{0}) ds = 0.$$

Если векторное поле a(M) можно представить в виде ротора некоторого векторного поля b(M), то b(M) называется векторным потенциалом поля a(M).

Легко проверить, что $div \, rot \, b = 0$, т.е поле вектора $a = rot \, b$ является соленоидальным.

4.48. Является ли векторное поле a соленоидальным, если

1)
$$\vec{a} = (x(z^2 - y^2), y(x^2 - z^2), z(y^2 - x^2)).$$

2)
$$\vec{a} = (y^2, -(x^2 + y^3), z(3y^2 + 1)).$$

3)
$$a = (1 + 2xy, -y^2z, z^2 - 2zy + 1).$$

4)
$$\dot{a} = [\dot{u}, \dot{v}], \dot{u} = (x, y, z), \dot{v} = (y, z, x).$$

Отв.: 1) Да. 2) Нет. 3) Да. 4) Нет.

- **4.49.** Найти дивергенцию *сферического векторного поля* $\overset{\bullet}{a} = f(r) \cdot \overset{\bullet}{r},$ $\overset{\bullet}{r} = (x, y, z), r = |\overset{\bullet}{r}|$. Определить вид функции f(r), для которой поле $\overset{\bullet}{a}$ является соленоидальным. **Отв.:** $div\overset{\bullet}{a} = f'(r)r + 3f(r); f(r) = c/r^3, c-const.$
 - **4.50.** Показать, что поле вектора $\stackrel{\mathbf{r}}{E} = \frac{q}{r^2} \stackrel{\mathbf{r}}{r^0}, \stackrel{\mathbf{r}}{r} = (x, y, z), r = |\stackrel{\mathbf{r}}{r}|$ является

соленоидальным во всякой области, не содержащей начала координат O = (0,0,0).

Векторное поле $\ddot{a} = (P, Q, R)$ называется *потенциальным* или *безвихревым* в некоторой области V, если

$$\operatorname{rot} \overset{\mathbf{r}}{a}(M) = \overset{\mathbf{l}}{0}, \forall M \in V. \tag{4.20}$$

Равенство (4.20) называется условием потенциальности поля a. Это условие, согласно определению ротора, равносильно выполнению равенств

$$\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}.$$
 (4.21)

Имеет место следующее утверждение: *если в односвязной области V* задано векторное поле $\ddot{a}=(P,Q,R)$, где P,Q,R – гладкие функции, то для того, чтобы поле \dot{a} было потенциальным, в V необходимо и достаточно, чтобы существовала дважды непрерывно дифференцируемая скалярная ϕ ункция u = u(x, y, z), такая, что

$$a = \mathbf{grad} \ u. \tag{4.22}$$

Функция u = u(x, y, z), удовлетворяющая в области V равенству (4.22), называется *потенциалом* или *потенциальной функцией* векторного поля a.

Соотношение (4.22) равносильно следующим трем скалярным равенствам:

$$\frac{\partial u}{\partial x} = P(x, y, z), \quad \frac{\partial u}{\partial y} = Q(x, y, z), \quad \frac{\partial u}{\partial z} = R(x, y, z).$$
 (4.23)

Потенциал поля определяется неоднозначно с точностью до постоянной.

случае потенциальности поля $\ddot{a}=(P,Q,R)$ задача нахождения потенциала и равносильна восстановлению функции и по ее полному $\partial u \phi \phi$ еренциалу du = Pdx + Qdy + Rdz.

Потенциал u поля $\overset{1}{a} = (P, Q, R)$ можно найти по формуле

ленциалу
$$du = Pax + Qay + Raz$$
.

тенциал u поля $a = (P,Q,R)$ можно найти по формуле
$$u(x,y,z) = \int_{(x_0,y_0,z_0)}^{(x,y,z)} P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz, \qquad (4.24)$$

$$(x_0,y_0,z_0) - \text{Hекоторая}$$

$$Z \uparrow \qquad M = (x,y,z)$$

где фиксированная точка поля, а (x, y, z) – произвольная текущая точка. Обычно в качестве пути, соединяющего точку M = (x, y, z), $M_0 = (x_0, y_0, z_0)$ И выбирают ломаную $M_0 ABM$, звенья которой параллельны координатным осям и не выходят за пределы области: M_0A параллельно X, AB параллельно Y, BM параллельно Z (рис. 4.8). Тогда формула (4.24) примет вид

$$u(x, y, z) = \int_{x_0}^{x} P(x, y_0, z_0) dx + \int_{y_0}^{y} Q(x, y, z_0) dy + \int_{z_0}^{z} R(x, y, z) dz,$$
 (4.25)

где x,y,z — координаты текущей точки на звеньях ломаной, вдоль которых ведется интегрирование.

Линейный интеграл $\int_{\Gamma} (\overset{\mathbf{r}}{a},\overset{\mathbf{r}}{t}^{0}) dl = \int_{\Gamma} (\overset{\mathbf{r}}{a},d\overset{\mathbf{r}}{r}),$ где $d\overset{\mathbf{r}}{r} = \overset{\mathbf{r}}{t}^{0} dl$ в потенциальном поле $\overset{\mathbf{a}}{a}(M)$ равен разности значений потенциала u(M) в конечной M_{2} и начальной M_{1} точках интегрирования:

$$\int_{M_1}^{M_2} (\mathbf{r}, d\mathbf{r}) = u(M_2) - u(M_1). \tag{4.26}$$

4.51. Являются ли следующие векторные поля потенциальными?

1)
$$\dot{a} = (xz, 2y, xy)$$
.

2)
$$\vec{a} = (2xy + z^2, 2yz + x^2, 2xz + y^2).$$

3)
$$\vec{a} = \frac{1}{3}(x^3, y^3, xz^3).$$

4)
$$\dot{a} = (yz\cos xy, xz\cos xy, \sin xy).$$

5)
$$\vec{a} = (\ln(1+z^2), \ln(1+x^2), xz).$$
 6) $\vec{a} = \left(\frac{z}{x^2} + \frac{1}{y}, \frac{x}{y^2} + \frac{1}{z}, \frac{y}{z^2} + \frac{1}{x}\right)$

Отв.: 1) Нет. 2) Да. 3) Нет. 4) Да. 5) Нет. 6) Нет.

4.52. Доказать, что поле $\vec{a} = f(r) \cdot \vec{r}$, где $\vec{r} = (x, y, z), r = |\vec{r}|, f(r)$ – дифференцируемая функция, является потенциальным.

4.53. Доказать, что векторное поле $\dot{a} = (y+z, z+x, x+y)$ является потенциальным, и найти его потенциал.

Δ 1-й способ. Имеем

$$rot \ a(M) = 0 \Leftrightarrow \begin{vmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (y+z) & (z+x) & (x+y) \end{vmatrix} = (1-1)i + (1-1)j + (1-1)k \equiv 0,$$

т. е. поле \dot{a} является потенциальным. Потенциал этого поля найдем с помощью формулы (4.25). За начальную фиксированную точку возьмем начало координат O = (0,0,0). Тогда

$$u(x, y, z) = \int_{0}^{x} (0+0)dx + \int_{0}^{y} (x+0)dy + \int_{0}^{z} (x+y)dz = xy + xz + yz + c, c - const.$$

2-й способ. Векторное равенство $\overset{\bullet}{a} = \operatorname{\textit{grad}} u$ равносильно трем скалярным равенствам

$$\frac{\partial u}{\partial x} = y + z,\tag{4.27}$$

$$\frac{\partial u}{\partial y} = x + z,\tag{4.28}$$

$$\frac{\partial u}{\partial z} = x + y. \tag{4.29}$$

Интегрируя (4.27) по x, получаем

$$u(x, y, z) = \int_{0}^{x} (y+z)dx = xy + xz + f(y, z),$$
 (4.30)

где f(y,z) – произвольная дифференцируемая функция, играющая роль константы при интегрировании по x. Дифференцируя обе части (4.30) по y с учетом (4.28), получаем

$$\frac{\partial u}{\partial y} = x + \frac{\partial f}{\partial y} \iff x + z = x + \frac{\partial f}{\partial y} \implies z = \frac{\partial f}{\partial y}.$$
 (4.31)

Равенство (4.31) интегрируем по у:

$$f(y,z) = \int_{0}^{y} f(y,z)dy = \int_{0}^{y} zdy = zy + F(z),$$
 (4.32)

где F(z) – неопределенная пока функция от z. Из (4.32) и (4.30) имеем

$$u(x, y, z) = xy + xz + F(z).$$

Это равенство дифференцируем по z и с учетом (4.29) получим

$$x + y = x + y + \frac{\partial F}{\partial z} \Rightarrow \frac{\partial F}{\partial z} = 0 \Rightarrow F = c - const.$$

Итак, u(x, y, z) = xy + xz + zy + c.**р**

4.54. Вычислить криволинейный интеграл в поле вектора $\dot{a} = (yz+1, xz, xy)$ вдоль отрезка прямой, соединяющей точки O = (0,0,0) и A = (1,2,3).

 Δ Убедившись, что поле a потенциально, как и в примере 4.53, найдем его потенциал u(x, y, z) = x + xyz + c. По формуле (4.26) искомый КрИ

$$\int_{0}^{A} (yz+1)dx + xzdy + xydz = u(A) - u(0) = (1 \cdot 2 \cdot 3 + 1 + c) - c = 7. \mathbf{p}$$

4.55. Доказать потенциальность поля и найти его потенциал:

1)
$$\overset{\mathbf{r}}{a} = (3x^2y - y^3, x^3 - 3xy^2).$$

2)
$$a = \left(\frac{\sin 2x \cos 2y}{\sqrt{\cos^2 x \sin^2 y + \sin^2 x \cos^2 y}}, \frac{\cos 2x \sin 2y}{\sqrt{\cos^2 x \sin^2 y + \sin^2 x \cos^2 y}}\right)$$

3)
$$a = (yz - xy, xz - x^2/2 + yz^2, xy + y^2z).$$

4*)
$$\vec{a} = \left(\frac{1}{z} - \frac{y}{x^2}, \frac{1}{x} - \frac{z}{y^2}, \frac{1}{y} - \frac{x}{z^2}\right)$$

5*)
$$\vec{a} = \left(\frac{z}{y^2} - \frac{y}{z^2} - \frac{2yz}{z^3}, \frac{z}{z^2} - \frac{x}{z^2} - \frac{2xz}{y^3}, \frac{y}{z^2} + \frac{x}{y^2} + \frac{2xy}{z^3}\right)$$

OTB.: 1)
$$xy(x^2 - y^2) + c;$$
 2) $\sqrt{\cos^2 x \sin^2 y + \sin^2 x \cos^2 y} + c;$

3)
$$xyz - \frac{1}{2}(x^2y + y^2z^2) + c;$$
 4) $\frac{y}{x} + \frac{z}{y} + \frac{x}{z} + c;$ 5) $\frac{yz}{x^2} + \frac{xz}{y^2} - \frac{xy}{z^2} + c.$

- **4.56.** Доказать потенциальность поля a(M), найти его потенциал и вычислить значения соответствующего КрИ-2 по дуге AB, где A начало дуги, B ее конец:
 - 1) $\vec{a} = (2xyz, x^2z, x^2y), A = (1,-1,2), B = (-2,4,2).$
 - 2) $\vec{a} = (x^2 2yz, y^2 2xz, z^2 2xy), A = (1,-1,1), B = (-2,2,3).$
 - 3) $\stackrel{\mathbf{r}}{a} = (2xy + z^2, 2xy + x^2, 2xz + y^2), \quad A = (0,1,-2), B = (2,3,1).$

Отв.: 1) 34; **2)** 92/3; **3)** 25.

4.5. Дифференциальные операции 2-го порядка. Векторные операции в криволинейных ортогональных координатах

Оператор Гамильтона «набла». Дифференциальные операции второго порядка. Оператор Лапласа. Гармонические функции. Криволинейные ортогональные координаты в пространстве. Коэффициенты Ламэ в различных ортогональных системах координат. Градиент, дивергенция, ротор и оператор Лапласа в цилиндрической и сферической системах координат

Операции **grad** u, div a, **rot** a, a = (P, Q, R) выражаются через частные производные первого порядка:

$$\operatorname{grad} u = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right) \operatorname{div} \overset{\mathbf{r}}{a} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}; \quad \operatorname{rot} \overset{\mathbf{r}}{a} = \begin{vmatrix} \mathbf{i} & \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}.$$

Эти соотношения могут быть записаны кратко с помощью символического вектора «набла» (*оператора Гамильтона*):

$$\nabla = \frac{\partial}{\partial x} \mathbf{r}^{\mathbf{r}} + \frac{\partial}{\partial y} \mathbf{r}^{\mathbf{r}} + \frac{\partial}{\partial z} \mathbf{r}^{\mathbf{r}} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \quad \text{T. e.}$$

$$\nabla u = \mathbf{grad} \ u \ .$$

Для производной поля u в точке M по направлению произвольного единичного вектора $\overset{\bullet}{l}{}^0=(l_x^0,l_y^0,l_z^0)$ верна формула

$$\frac{\partial u}{\partial l} = (l^0, \mathbf{grad} \ u). \tag{4.33}$$

Вводя скалярный дифференциальный символ $(\stackrel{1}{l}{}^0,\nabla)$, имеющий координатный вид

$$(l^{0}, \nabla) = l_{x}^{0} \frac{\partial u}{\partial x} + l_{y}^{0} \frac{\partial u}{\partial y} + l_{z}^{0} \frac{\partial u}{\partial z},$$

равенство (4.33) записывают в виде

$$\frac{\partial u}{\partial l} = (\overset{\mathbf{r}}{l}{}^{0}, \nabla)u. \tag{4.34}$$

Далее,

$$(\nabla, \overset{\mathbf{r}}{a}) = \frac{\partial}{\partial x} P + \frac{\partial}{\partial y} Q + \frac{\partial}{\partial z} R = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z},$$

т. е.

Кроме того,
$$[\nabla, \overset{\mathbf{r}}{a}] = \begin{vmatrix} \overset{\mathbf{l}}{i} & \overset{\mathbf{l}}{j} & \overset{\mathbf{k}}{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$
, т. е.
$$[\nabla, \overset{\mathbf{l}}{a}] = \mathbf{rot} \overset{\mathbf{l}}{a}. \tag{4.36}$$

действует на произведение, то Если символический оператор ∇ необходимо применять его к каждому сомножителю отдельно, считая другой сомножитель постоянным. Затем, пользуясь правилами векторной алгебры, следует преобразовать каждое слагаемое так, чтобы оператор ∇ стоял перед последним сомножителем.

- Используя правила действия с ∇ , показать, что
- a) grad (uv) = v grad u + u grad v;
- 6) $rot[a,c] = (c,\nabla)a c div a, c const.$
- а) Имеем: $\operatorname{grad}(uv) = \nabla(u,v) + \nabla(u,v)$ («шапочка» \cap указывает функцию, на которую «действует» оператор). Но

 $\nabla(uv) = v\nabla u = v$ **grad** u, $\nabla(uv) = u\nabla v = u$ **grad** v, и формула a) доказана.

б) По известной формуле векторной алгебры [a, [b, c]] = (a, c)b - (a, b)c.

Учитывая соотношение $[\nabla, [a, c]] = 0$, (c - const, u поэтому результат

Но $(\nabla, \dot{c})\dot{a} = (\dot{c}, \nabla)\dot{a}$, а это и есть производная вектора \dot{a} по направлению вектора \dot{c} (см. 4.34). Таким образом, равенство б) доказано. р

- **4.58.** С помощью оператора ∇ доказать следующие равенства (\dot{c} постоянный, $\overset{1}{a}$ и $\overset{1}{b}$ – переменные векторы):

 1) $div(\overset{1}{c}u) = (\overset{1}{c}, \operatorname{grad} u)$.

 2) $div(\overset{1}{a}u) = udiv\overset{1}{a} + (\overset{1}{a}, \operatorname{grad} u)$.

- 3) $\operatorname{grad}(a,c) = [c,\operatorname{rot} a] + (c,\nabla)a$. 4) $\operatorname{grad}(a,b) = [b,\operatorname{rot} a] + [a,\operatorname{rot} b] + (b,\nabla)a + (a,\nabla)b$.
- 5) $div \begin{bmatrix} a, c \end{bmatrix} = (c, rot a)$.

 6) $div \begin{bmatrix} a, b \end{bmatrix} = (b, rot a) (a, rot b)$.

 7) rot (cu) = [grad u. c].

9)
$$\operatorname{rot}[a,b] = (b,\nabla)a - (a,\nabla)b + a\operatorname{div}b - b\operatorname{div}a.$$

Пусть u = u(x, y, z) — скалярное поле, a = (P, Q, R) — векторное поле. Предполагаем, что в области задания V этих полей функции u, P, Q, R имеют непрерывные частные производные второго порядка. Тогда $\operatorname{grad} u(M)$ и $\operatorname{rot} a(M)$ являются дифференцируемыми векторными полями, а $\operatorname{div} a(M)$ — дифференцируемым скалярным полем.

К дифференциальным операциям второго порядка относятся следующие: div grad u, rot grad u, grad div a, div rot a, rot rot a.

Эти операции с помощью оператора Гамильтона ∇ записываются следующим образом:

div grad
$$u = (\nabla, \nabla u)$$
; rot grad $u = [\nabla, \nabla u]$; grad div $a = \nabla((\nabla, a))$;

$$div rot a = (\nabla, [\nabla, a]); \quad rot rot a = [\nabla, [\nabla, a]]. \tag{4.37}$$

Символ ∇ может встречаться в выражении не раз, создавая дифференциальные символы второго и более высоких порядков.

Символ $div \, {\it grad} = (\nabla, \nabla) = \nabla^2$ обозначается Δ и называется one pamopom $\it Лапласа, или лапласианом.$ Нетрудно видеть, что

$$\Delta u = \nabla^2 u = \operatorname{div} \operatorname{grad} u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}.$$
 (4.38)

Уравнение $\Delta u = 0$ называется *уравнением Лапласа*. Оно используется в уравнениях математической физики. Функция u = u(x, y, z), удовлетворяющая в области V уравнению Лапласа, называется *гармонической* в этой области.

Можно легко показать, что

$$\operatorname{div}\operatorname{rot}\overset{1}{a} \equiv 0, \quad \operatorname{rot}\operatorname{grad}u \equiv \overset{1}{0}.$$
 (4.39)

- **4.59.** Доказать следующие равенства ($u \ v$ скалярные поля):
- a) $div(u \operatorname{grad} v) = (\operatorname{grad} u, \operatorname{grad} v) + u\Delta v;$
- δ)* Δ(uv) = vΔu + 2(grad u, grad v) + uΔv.
- ${f r}$ а) Используя оператор Гамильтона, получаем $div(u\,{\it grad}\,v) = (\nabla,(u\nabla v)) = (\nabla u,\nabla v) + u\nabla^2 v = ({\it grad}\,u,{\it grad}\,v) + u\Delta v.$
- б) Используя формулы

$$\Delta u = \nabla^2 u = (\nabla, \nabla u), \quad \nabla(uv) = v \nabla u + u \nabla v, \quad (\nabla, v \nabla u) = (\nabla u, \nabla v) + v \nabla^2 u,$$
 находим

$$\Delta(uv) = (\nabla, \nabla(uv)) = (\nabla, (v\nabla u + u\nabla v)) = (\nabla, v\nabla u) + (\nabla, u\nabla v) =$$

$$= (\nabla v, \nabla u) + v\nabla^2 u + u\nabla^2 v = v\nabla^2 u + 2(\nabla u, \nabla v) + u\nabla^2 v =$$

$$= v\Delta u + 2(\mathbf{grad}\ u, \mathbf{grad}\ v) + u\Delta v. \qquad \mathbf{p}$$

4.60.* Доказать, что для векторного поля a справедлива формула $rot\ rot\ a = grad\ div\ a - \Delta a$.

4.61. Вычислить:

1)
$$\Delta(1/r)$$
, где $r = \sqrt{x^2 + y^2 + z^2}, r \neq 0$. Отв.: 0.

2)
$$\Delta a$$
, если $a = ((y^2 + z^2)x, (x^2 + z^2)y, (x^2 + y^2)z)$. Отв: $4r = 4(x, y, z)$.

4.62.

Доказать гармоничность плоского поля
$$\stackrel{\bf r}{a} = \stackrel{\bf r}{r}/r^2, \quad \stackrel{\bf r}{r} = (x,y), r = |\stackrel{\bf r}{r}|.$$

4.63. Доказать гармоничность поля сил тяготения точечной массы и поля кулоновских сил точечного заряда.

Пусть x, y, z – прямоугольные координаты точки M . Как отмечено в п. 1.2, ее положение можно задать также с помощью криволинейных координат q_1, q_2, q_3 , связь которых с x, y, z запишем в виде

$$x = x(q_1, q_2, q_3), y = y(q_1, q_2, q_3), z = z(q_1, q_2, q_3).$$
 (4.40)

При изменении q_1 и фиксированных значениях q_2, q_3 точка с координатами x, y, z, определяемая формулами (4.40), описывает в пространстве некоторую q_1 . Аналогично определяются кривую, называемую координатной линией q_{2}, q_{3} . Криволинейные координаты называются координатные ЛИНИИ ортогональными, если в любой точке три координатные линии, проходящие через нее, попарно ортогональны, т. е. попарно ортогональны касательные к координатным линиям в этой точке.

Элементы dl_1, dl_2, dl_3 длин дуг координатных линий q_1, q_2, q_3 выражаются $dl_1 = H_1 dq_1$, $dl_2 = H_2 dq_2$, $dl_3 = H_3 dq_3$, соответственно. формулами величины

$$H_{1} = \sqrt{\left(\frac{\partial x}{\partial q_{1}}\right)^{2} + \left(\frac{\partial y}{\partial q_{1}}\right)^{2} + \left(\frac{\partial z}{\partial q_{1}}\right)^{2}},$$

$$H_{2} = \sqrt{\left(\frac{\partial x}{\partial q_{2}}\right)^{2} + \left(\frac{\partial y}{\partial q_{2}}\right)^{2} + \left(\frac{\partial z}{\partial q_{2}}\right)^{2}},$$

$$H_{3} = \sqrt{\left(\frac{\partial x}{\partial q_{3}}\right)^{2} + \left(\frac{\partial y}{\partial q_{3}}\right)^{2} + \left(\frac{\partial z}{\partial q_{3}}\right)^{2}}$$

$$(4.41)$$

называются параметрами Ламэ криволинейных координат q_1, q_2, q_3 . Они характеризуют в каждой точке пространства изменение длины координатной линии dl_i в зависимости от изменения dq_i соответствующей криволинейной координаты q_i , i = 1,2,3.

В цилиндрической системе координат $q_1 = r, q_2 = j$, $q_3 = z$ формулы (4.41) дают $H_1 = 1$, $H_2 = r$, $H_3 = 1$, а в сферической системе координат $q_1 = r$, $q_2 = q$, $q_3 = j$ $-H_1 = 1$, $H_2 = r$, $H_3 = r \sin q$.

Запишем теперь операции grad, div, rot, Δ в цилиндрической сферической системах координат.

Цилиндрическая система координат (ЦСК)

Пусть $\left\{ \stackrel{\mathbf{r}}{e}_r, \stackrel{\mathbf{r}}{e}_j, \stackrel{\mathbf{r}}{e}_z \right\}$ — базис в точке M (базисные единичные векторы $\stackrel{1}{e}_r, \stackrel{1}{e}_j, \stackrel{1}{e}_z$ направлены по касательным к координатным линиям в точке M в сторону возрастания r,j,z). Тогда в ЦСК для скалярного поля u(M) и

векторного поля $\overset{\bullet}{a}(M) = (P, Q, R)$:

$$\operatorname{grad} u = \frac{\partial u}{\partial r} \overset{\mathbf{r}}{e}_{r} + \frac{1}{r} \frac{\partial u}{\partial j} \overset{\mathbf{r}}{e}_{j} + \frac{\partial u}{\partial z} \overset{\mathbf{r}}{e}_{z};$$

$$\operatorname{div} \overset{\mathbf{r}}{a} = \frac{1}{r} \frac{\partial (rP)}{\partial r} + \frac{1}{r} \frac{\partial Q}{\partial j} + \frac{1}{r} \frac{\partial R}{\partial z};$$

$$\operatorname{rota} = \left(\frac{1}{r} \frac{\partial R}{\partial j} - \frac{\partial Q}{\partial z}\right) \overset{\mathbf{r}}{e}_{r} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial j}\right) \overset{\mathbf{r}}{e}_{j} + \frac{1}{r} \left(\frac{\partial (rQ)}{\partial r} - \frac{\partial P}{\partial j}\right) \overset{\mathbf{r}}{e}_{z};$$

$$\Delta u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r}\right) + \frac{1}{r^{2}} \frac{\partial^{2} u}{\partial j^{2}}.$$

$$(4.42)$$

Сферическая система координат (ССК) Пусть теперь $\left\{\stackrel{1}{e}_r, \stackrel{1}{e}_q, \stackrel{1}{e}_j\right\}$ — базис в точке M в ССК r,q,j . Тогда

$$\operatorname{grad} u = \frac{\partial u}{\partial r} \overset{\mathbf{r}}{e}_{r} + \frac{1}{r} \frac{\partial u}{\partial q} \overset{\mathbf{r}}{e}_{q} + \frac{1}{r \sin q} \frac{\partial u}{\partial j} \overset{\mathbf{r}}{e}_{j};$$

$$\operatorname{div} \overset{\mathbf{r}}{a} = \frac{1}{r^{2}} \frac{\partial (r^{2}P)}{\partial r} + \frac{1}{r \sin q} \frac{\partial (Q \sin q)}{\partial q} + \frac{1}{r \sin q} \frac{\partial R}{\partial j};$$

$$\operatorname{rot} \overset{\mathbf{r}}{a} = \frac{1}{r \sin q} \left(\frac{\partial (R \sin q)}{\partial q} - \frac{\partial Q}{\partial j} \right) \overset{\mathbf{r}}{e}_{r} + \frac{1}{r} \left(\frac{1}{\sin q} \frac{\partial P}{\partial j} - Q \frac{\partial (rR)}{\partial r} \right) \overset{\mathbf{r}}{e}_{q} + \frac{1}{r} \left(\frac{\partial (rQ)}{\partial r} - \frac{\partial P}{\partial q} \right) \overset{\mathbf{r}}{e}_{j};$$

$$\Delta u = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial u}{\partial r} \right) + \frac{1}{r^{2} \sin q} \frac{\partial}{\partial q} \left(\sin q \frac{\partial u}{\partial q} \right) + \frac{1}{r^{2} \sin^{2} q} \frac{\partial^{2} u}{\partial j^{2}}.$$

$$(4.43)$$

Найти общий вид потенциального поля \bar{a} координатах с проекциями, зависящими только от радиальной координаты \hat{r}

(сферически симметричное поле).

$$\Delta$$
 В ССК поле $a = a_r e_r + a_q e_q + a_j e_j$, где по условию
$$a_r = a_r(r), a_q = a_q(q), a_j = a_j(r). \tag{4.44}$$

Для поля \dot{a} , согласно (4.43) и условию задачи, имеем

$$rota = \frac{1}{r\sin q} \left(\frac{\partial (a_j \sin q)}{\partial q} - \frac{\partial a_q}{\partial j} \right) \stackrel{\mathbf{r}}{e_r} + \frac{1}{r} \left(\frac{1}{\sin q} \frac{\partial a_r}{\partial j} - \frac{\partial (ra_j)}{\partial r} \right) \stackrel{\mathbf{r}}{e_q} + \frac{1}{r} \left(\frac{\partial (ra_q)}{\partial r} - \frac{\partial a_r}{\partial q} \right) \stackrel{\mathbf{r}}{e_j} = 0.$$

Отсюда, приравнивая к нулю координаты, с учетом (4.44), получаем

$$\frac{a_{j}(r)}{r}ctgq = 0,
-\frac{da_{j}(r)}{dr} - \frac{a_{j}(r)}{r} = 0,
\frac{da_{q}(r)}{dr} + \frac{a_{q}(r)}{r} = 0$$
(4.45)

(здесь принято обозначение дифференцирования через d, так как функции зависят только от r). Из первого равенства системы (4.45) имеем a_r, a_a, a_i

 $a_i(r) = 0$, а из третьего равенства получим

$$\frac{da_q}{dr} = -\frac{a_q}{r} \Rightarrow \frac{da_q}{a_q} = -\frac{dr}{r} \Rightarrow d \ln a_q = d(-\ln r).$$

Так как функции с равными дифференциалами отличаются на постоянную, которую для удобства обозначим $\ln c$, c > 0, то

$$\ln a_q = -\ln r + \ln c \Rightarrow a_q = \frac{c}{r}, \quad c - const.$$

Таким образом, искомое поле имеет вид

$$\stackrel{{\bf r}}{a}=f(r)\stackrel{{\bf r}}{e_r}+\frac{c}{r}\stackrel{{\bf r}}{e_q}$$
 , где $f(r)$ – произвольная дифференцируемая функция. ${\bf p}$

4.65. Найти сферически симметричное решение уравнения Пуассона $\Delta u = 1/r$, т. е. решение, зависящее только от r.

OTB: $u = r/2 - c_1/r + c_2$; $c_1, c_2 - const.$

4.66. *Перейти к цилиндрическим координатам в выражении для $\ddot{a} = \dot{r}/r$, $\dot{r} = (x, y, 0)$, $r = |\dot{r}|$ и найти $div \ \dot{a}$ и $rot \ \dot{a}$.

OTB.:
$$div \overset{\mathbf{r}}{a} = 2z^2/(r^2+z^2)^{3/2}$$
, $rot \overset{\mathbf{r}}{a} = -(2rz/(r^2+z^2)^{3/2})\overset{\mathbf{r}}{e_j}$.

4.67. Найти все гармонические функции вида: a) u = f(r); б) u = f(j);

в) u = f(z). (r, j, z) – цилиндрические координаты.

ОТВ.: a) $u = c_1 \ln r + c_2$; **б**) $u = c_1 \mathbf{j} + c_2$; **в**) $u = c_1 z + c_2$.

4.68. Найти все гармонические функции вида: а) u = f(q); б) u = f(j). (q, j) — две из трех сферических координат r, q, j.

Отв.: a)
$$u = c_1 \ln tg \frac{q}{2} + c_2$$
; **б)** $u = c_1 \mathbf{j} + c_2$.

4.69. Перейти к сферическим координатам в выражении $\vec{a} = (xj - yi)/\sqrt{x^2 + y^2 + z^2}$ и найти \vec{a} , div a, $rot \vec{a}$.

OTB.:
$$\ddot{a} = \sin q \overset{\mathbf{r}}{e_j}$$
, $div \overset{\mathbf{r}}{a} = 0$, $rot \overset{\mathbf{r}}{a} = \frac{1}{r} (2\cos q \overset{\mathbf{r}}{e_r} - \sin q \overset{\mathbf{r}}{e_q})$.

4.70. Найти градиенты скалярных полей в цилиндрических координатах:

1)
$$u = r + z \cos j$$
.

$$2) \quad u = r^2 + 2r\cos j - e^z \sin j.$$

3)
$$u = r \cos j + z \sin^2 j - 3^r$$
.

Отв.:

1)
$$e_r - \frac{1}{r} \sin j e_j + \cos j e_z$$
.

2)
$$2(r+\cos j) \stackrel{\mathbf{r}}{e}_r - \left(2\sin j + \frac{1}{r}e^z\cos j\right) \stackrel{\mathbf{r}}{e}_j - e^z\sin j \stackrel{\mathbf{r}}{e}_z$$
.

3)
$$(\cos j - 3^r \ln 3) \stackrel{\mathbf{r}}{e_r} + \left(\frac{z}{r} \sin 2j - \sin j\right) \stackrel{\mathbf{r}}{e_j} - e^z \sin j \stackrel{\mathbf{r}}{e_z}.$$

4.71. Найти градиенты скалярных полей в сферических координатах:

1)
$$u = r + \frac{\sin q}{r} - \sin q \cos j$$
. 2) $u = r^2 \cos q$.

3)
$$u = 3r^2 \sin q + e^g \cos j$$
. 4) $u = m \frac{\cos q}{r^2}, m - const.$

Otb.: 1)
$$\left(1 - \frac{\sin q}{r}\right) e_r^{\mathbf{r}} + \frac{\cos q}{r} \left(\frac{1}{r} - \cos j\right) e_q^{\mathbf{r}} + \frac{\sin j}{r} e_j^{\mathbf{r}}; 2) 2r \cos q e_r^{\mathbf{r}} - r \sin q e_q;$$

3)
$$\left(6r\sin q + e^r\cos j - 1\right)$$
 $\stackrel{\mathbf{r}}{e_r} + 3r\cos q$ $\stackrel{\mathbf{r}}{e_q} - \frac{e^r\sin j}{r\sin q} \stackrel{\mathbf{r}}{e_j}$; 4) $- m\left(\frac{2\cos q}{r^3} \stackrel{\mathbf{r}}{e_r} + \frac{\sin q}{r^3}\right) \stackrel{\mathbf{r}}{e_q}$

4.72. Вычислить дивергенцию векторов:

1)
$$\vec{a} = r \vec{e}_r + z \sin j \quad \vec{e}_j + e^j \cos z \quad \vec{e}_z$$
.

2) $\vec{a} = 2arctg r \vec{e}_r + 2e_j + z^2 e^z e_z$.

3)
$$\vec{a} = r^2 \vec{e}_r - 2\cos^2 j \ \vec{e}_q + \frac{j}{r^2 + 1} \vec{e}_j$$
.

OTB.: 1)
$$2 + \frac{z}{r} \cos j - e^j \sin z$$
; 2) $\frac{j}{r} \operatorname{arctg} r + \frac{j}{1+r^2} - (z^2 + 2z)e^{rz}$;

3)
$$4r - \frac{2}{r}\cos^2 j \ ctg q + \frac{1}{r(r^2+1)\sin q}$$
.

4.73. Вычислить ротор векторного поля
$$a$$
:
1) $a = (2r + a \cos j)e_r - a \sin q e_q + r \cos q e_j$, $a - const$.

2)
$$\ddot{a} = r^2 \overset{\mathbf{r}}{e_r} + 2\cos q \overset{\mathbf{r}}{e_q} - j \overset{\mathbf{r}}{e_j}$$
. 3) $\ddot{a} = \cos j \overset{\mathbf{r}}{e_r} - \frac{\sin j}{r} \overset{\mathbf{r}}{e_j} + r^2 \overset{\mathbf{r}}{e_z}$.

OTB.: 1)
$$\frac{\cos 2q}{\sin q} \stackrel{\mathbf{r}}{e_r} - \left(2\cos q + \frac{a\sin j}{r\sin q}\right) \stackrel{\mathbf{r}}{e_q} - \frac{a\sin q}{r} \stackrel{\mathbf{r}}{e_j};$$

2)
$$-\frac{j}{r}ctgq$$
 $\stackrel{\mathbf{r}}{e_r} + \frac{j}{r} \stackrel{\mathbf{r}}{e_q} + \frac{2\cos q}{r} \stackrel{\mathbf{r}}{e_j};$ 3) $-2r \stackrel{\mathbf{r}}{e_j} + \frac{\sin j}{r} \stackrel{\mathbf{r}}{e_z}.$

4.74. Доказать потенциальность поля
$$\ddot{a} = \frac{2\cos q}{r^3} \dot{e}_r + \frac{\sin q}{r^3} \dot{e}_q$$
.

Пусть S – часть координатной поверхности u = c - const, ограниченная координатными линиями

$$q_1 = a_1, \quad q_2 = a_2(a_1 < a_2);$$

 $q_3 = b_1, \quad q_3 = b_2(b_1 < b_2).$

Тогда поток вектора $\overset{\mathbf{1}}{a} = P(q_1, q_2, q_3)\overset{\mathbf{1}}{e}_1 + Q(q_1, q_2, q_3)\overset{\mathbf{1}}{e}_2 + R(q_1, q_2, q_3)\overset{\mathbf{1}}{e}_3$ через поверхность S в направлении вектора \vec{e}_1 вычисляется по формуле

$$\Pi = \int_{a_1}^{a_2b_2} \int_{b_1}^{b_2} P(c, q_2, q_3) H_2(c, q_2, q_3) H_3(c, q_2, q_3) dq_1 dq_2, \tag{4.46}$$

где H_2, H_3 – коэффициенты Ламэ.

Аналогично вычисляется поток через часть поверхности $q_2 = c$ или через часть поверхности $q_3 = c$, где c = const.

Найти поток векторного поля, заданного в сферических координатах: $\overset{\mathbf{r}}{a} = r^2 q \overset{\mathbf{r}}{e}_r + r^2 e^{2q} \overset{\mathbf{r}}{e}_q$ через внешнюю сторону верхней полусферы S радиусом R с центром в начале координат.

 Δ Полусфера S – часть координатной поверхности r = const, именно, r = R. На S имеем

$$q_1 = r = R, q_2 = q, q_3 = j; 0 \le q \le p/2, 0 \le j \le 2p.$$

Учитывая, что в сферических координатах $H_1 = H_r = 1, H_2 = H_q = r,$ $H_3 = H_i = r \sin q$, по формуле (4.46) найдем

$$\Pi = \int_{0}^{p/2} dq \int_{0}^{2p} R^{4}q \sin q \, dj = 2pR^{4} \int_{0}^{p/2} q \sin q \, dq = 2pR^{4}. \quad \mathbf{p}$$

Вычислить поток векторного поля, заданного в цилиндрических координатах: $\overset{\bullet}{a} = r\overset{\bullet}{e}_r + z\overset{\bullet}{e}_j$ через замкнутую поверхность $S = \{z = 0, z = 1, r = 1\}$ по формуле Гаусса-Остроградского.

 Δ Искомый поток $\Pi = \iiint div \overset{\mathbf{r}}{a} dv$.

Так как в цилиндрических координатах

ких координатах
$$div \stackrel{\mathbf{r}}{a} = \frac{1}{r} \frac{\partial}{\partial r} (rP) + \frac{1}{r} \frac{\partial Q}{\partial j} + \frac{\partial R}{\partial z},$$

в нашем случае получим

$$\operatorname{div} \overset{\mathbf{r}}{a} = \frac{1}{r} \frac{\partial}{\partial r} (r^2) + \frac{1}{r} \frac{\partial z}{\partial j} = 2.$$

Поэтому искомый поток $\Pi = \iiint 2dv = 2p$.

- Вычислить поток векторного поля $\overset{\bullet}{a}$, 4.77. заданного цилиндрических координатах, через данную поверхность S непосредственно и с помощью формулы Гаусса-Остроградского.
 - 1. $\vec{a} = r\vec{e}_r \cos j \vec{e}_i + z\vec{e}_z$; $S = \{r = 2, z = 0, z = 2\}$.
 - 2. $\vec{a} = r \vec{e}_r + r \vec{j} \vec{e}_j 2z \vec{e}_z$; $S = \{r = 1, j = 0, j = p/2, z = -1, z = 1\}$. Otb.: p/2.
- **4.78.** Найти поток вектора $\ddot{a} = r\dot{e}_r + r\sin q\dot{e}_q 3rj\sin q\dot{e}_j$, заданного в сферических координатах, через замкнутую поверхность S, ограниченную верхней полусферой радиуса R и поверхностью q = p/2.
- **Отв.:** $2pR^3/3$. Указание. При непосредственном вычислении потока надо рассматривать потоки через все координатные поверхности r = 0, r = R,

$$q = 0, q = p/2, \quad j = 0, j = 2p.$$

 $q=0, q=p/2, \quad j=0, j=2p.$ Найти поток вектора $\stackrel{\mathbf{r}}{a}=r^2\stackrel{\mathbf{r}}{e_r}+R^2r\sin q\cos j\stackrel{\mathbf{r}}{e_j}$, заданного в 4.79. сферических координатах, через замкнутую поверхность, ограниченную r = R, j = 0,j = p/2, q = p/2,поверхностями координатными непосредственно и с помощью формулы Остроградского-Гаусса.

Отв.:
$$\frac{1}{2}pR^4 - \frac{R^5}{3}$$
.

Пусть в криволинейных координатах q_1,q_2,q_3 задано векторное поле $\overset{\mathbf{r}}{a}(M)=P(q_1,q_2,q_3)\overset{\mathbf{r}}{e}^1+Q(q_1,q_2,q_3)\overset{\mathbf{r}}{e}^2+R(q_1,q_2,q_3)\overset{\mathbf{r}}{e}^3,$ которое является потенциальным в некоторой области Ω изменения переменных q_1,q_2,q_3 , т.е. $\overset{\mathbf{r}}{a}=\overset{\mathbf{r}}{0}$ в Ω .

Для нахождения потенциала $u = u(q_1, q_2, q_3)$ этого поля равенство $a(M) = \operatorname{\textit{grad}} u(M)$ записывается в виде

$$P_e^{\mathbf{r}_1} + Q_e^{\mathbf{r}_2} + R_e^{\mathbf{r}_3} = \frac{1}{H_1} \frac{\partial u}{\partial q_1} e^{\mathbf{r}_1} + \frac{1}{H_2} \frac{\partial u}{\partial q_2} e^{\mathbf{r}_2} + \frac{1}{H_3} \frac{\partial u}{\partial q_3} e^{\mathbf{r}_3}.$$

Отсюда следует, что

$$\frac{\partial u}{\partial q_1} = PH_1, \qquad \frac{\partial u}{\partial q_2} = QH_2, \qquad \frac{\partial u}{\partial q_3} = RH_3. \tag{4.47}$$

Система уравнений (4.47) решается так же, как при нахождении потенциала в декартовых координатах.

В цилиндрических координатах ($q_1 = r, q_2 = j, q_3 = z$) система (4.47) имеет вид

$$\frac{\partial u}{\partial r} = a_r, \quad \frac{\partial u}{\partial j} = r a_j, \quad \frac{\partial u}{\partial z} = a_z; \tag{4.48}$$

в сферических координатах ($q_1 = r, q_2 = q, q_3 = j$) — вид

$$\frac{\partial u}{\partial r} = a_r, \quad \frac{\partial u}{\partial q} = ra_q, \quad \frac{\partial u}{\partial j} = r\sin q \ a_j \ .$$
 (4.49)

4.80. Найти потенциал векторного поля:

1)
$$\vec{a} = \left(\frac{arctgz}{r} + \cos j\right) \stackrel{\mathbf{r}}{e_r} - \sin j \stackrel{\mathbf{r}}{e_j} + \frac{\ln r}{1 + z^2} \stackrel{\mathbf{r}}{e_z}.$$

2)
$$a = \frac{1}{r}e^{qj} \stackrel{\mathbf{r}}{e}_r + \frac{q \ln r}{r \sin q}e^{qj} \stackrel{\mathbf{r}}{e}_j + \frac{\ln r}{r} j e^{qj} \stackrel{\mathbf{r}}{e}_q$$
.

 Δ По формуле (4.42) для **rot** a в цилиндрических координатах убеждаемся, что **rot** a = 0, то есть поле a потенциально. Согласно (4.48), его потенциал $u = u(\mathbf{r}, \mathbf{j}, z)$ является решением следующей системы:

$$\frac{\partial u}{\partial r} = \frac{arctgz}{r} + \cos j, \quad \frac{\partial u}{\partial j} = -\sin j \cdot r, \frac{\partial u}{\partial z} = \frac{\ln r}{1 + z^2}.$$
 (4.50)

Из первого уравнения этой системы интегрированием по $\,r\,$ находим, что

$$u = \ln r \cdot arctgz + r \cos j + c(j, z)$$
(4.51)

(c(j,z)) играет роль константы при интегрировании по r). Дифференцируя (4.51) по j и используя второе соотношение из (4.50), получаем

$$\frac{\partial u}{\partial j} = -r \sin j + \frac{\partial c}{\partial j} = -r \sin j \implies \frac{\partial c}{\partial j} \equiv 0$$
, τ . e. $c(j, z) = c_1(z)$.

Тем самым,

$$u = \ln \mathbf{r} \cdot arctgz + \mathbf{r}\cos\mathbf{j} + c_1(z) \Rightarrow \frac{\partial u}{\partial z} = \frac{\ln \mathbf{r}}{1+z^2} + c_1'(z) = \frac{\ln \mathbf{r}}{1+z^2}$$

в силу третьего соотношения из (4.51). Значит, $c_1'(z) \equiv 0 \Rightarrow c_1(z) = c - const.$ Итак, потенциал данного поля $u(r,j,z) = \ln r \cdot arctgz + r \cos j + c.$

По формуле (4.43) для $rot \stackrel{\bf i}{a}$ в ССК убеждаемся, что $rot \stackrel{\bf r}{a} = 0$, т. е. поле потенциально в области $\{r > 0, q \neq np; n \in {\bf Z}\}$.

Система равенств (4.49) для отыскания потенциала u = u(r, q, j) имеет вид

$$\frac{\partial u}{\partial r} = \frac{e^{qj}}{r}, \quad \frac{\partial u}{\partial q} = j \ e^{qj} \ln r, \qquad \frac{\partial u}{\partial j} = q \ e^{qj} \ln r. \tag{4.52}$$

Интегрируя по r первое из равенств этой системы, получаем $u=e^{qj} \ln r + c(q,j)$. Отсюда и из второго уравнения системы (4.52) имеем $\frac{\partial u}{\partial a} = j \ e^{qj} \ln r = j \ e^{qj} \ln r + \frac{\partial c}{\partial a} \Rightarrow \frac{\partial c}{\partial a} \equiv 0$, т. е. $c(q,j) \equiv c_1(j)$, и, значит,

 $u = e^{qj} \ln r + c_1(j)$. Отсюда с учетом третьего уравнения системы (4.52) находим $\frac{\partial u}{\partial j} = q e^{qj} \ln r = q e^{qj} \ln r + c_1'(j) \Rightarrow c_1'(j) = 0$, то есть $c_1(j) = c - const$.

Искомый потенциал равен $u(r,q,j) = e^{qj} \ln r + C$.

4.81. Установить потенциальность следующих векторных полей и найти их потенциалы:

1)
$$a = r e_r + \frac{j}{r} e_j + z e_z$$
.
2) $a = j z e_r + z e_j + r j e_z$.

3)
$$\stackrel{\mathbf{r}}{a} = e^r \sin j \stackrel{\mathbf{r}}{e}_r + \frac{1}{r} e^r \cos j \stackrel{\mathbf{r}}{e}_j + 2z \stackrel{\mathbf{r}}{e}_z$$
. 4) $\stackrel{\mathbf{a}}{a} = j \cos z \stackrel{\mathbf{e}}{e}_r + \cos z \stackrel{\mathbf{e}}{e}_j - rj \sin z \stackrel{\mathbf{e}}{e}_z$.

5)
$$\vec{a} = 2r\vec{e}_r + \frac{1}{r\sin q}\vec{e}_j + \frac{1}{r}\vec{e}_q$$
. 6) $\vec{a} = \frac{1}{2}j^2\vec{e}_r + \frac{j}{\sin q}\vec{e}_j + \frac{q}{r}\vec{e}_q$.

7) $\vec{a} = \cos j \sin q \, \vec{e}_r + \cos j \cos q \, \vec{e}_q - \sin j \, \vec{e}_j$.

8)
$$\ddot{a} = e^r \sin q \overset{\mathbf{r}}{e}_r + \frac{1}{r} e^r \cos q \overset{\mathbf{r}}{e}_q + \frac{2j}{(1+j^2)r \sin q} \overset{\mathbf{r}}{e}_j$$
.

OTB.: 1) $u = (r^2 + j^2 + z^2)/2 + c;$ 2) u = rj z + c;

3)
$$u = e^r \sin j + z^2 + c;$$
 4) $u = rj \cos z + c;$ 5) $u = r^2 + j + q + c;$

6)
$$u = (rj^2 + q^2)/2 + c$$
; 7) $u = r\cos j \sin q + c$; 8) $u = e^r \sin q + \ln(1+j^2) + c$.

Пусть векторное поле $\overset{\bullet}{a}$ в криволинейных координатах q_1,q_2,q_3 определено и непрерывно в области Ω их изменения и имеет вид

$$\mathbf{r} \\
a(M) = P(q_1, q_2, q_3) e^{\mathbf{r}_1} + Q(q_1, q_2, q_3) e^{\mathbf{r}_2} + R(q_1, q_2, q_3) e^{\mathbf{r}_3}.$$

Как известно [4], дифференциал $d \vec{r}$ радиуса-вектора \vec{r} любой точки $M \in \Omega$ равен

$$d_r^{\mathbf{r}} = H_1 dq_1 e^{\mathbf{r}_1} + H_2 dq_2 e^{\mathbf{r}_2} + H_3 dq_3 e^{\mathbf{r}_3}.$$

Поэтому линейный интеграл вектора $\stackrel{1}{a}(M)$ по ориентированной гладкой или кусочно-гладкой кривой $L \subset \Omega$ будет равен

$$\int_{L} (\vec{a}, d\vec{r}) = \int_{L} PH_1 dq_1 + QH_2 dq_2 + RH_3 dq_3.$$
 (4.53)

В частности, для цилиндрических координат $q_1 = r, q_2 = j, q_3 = z$ будем иметь

$$\dot{a} = a_r(r,j,z)\dot{e}_r + a_j(r,j,z)\dot{e}_j + a_z(r,j,z)\dot{e}_z,$$

$$d\dot{r} = dr\dot{e}_r + rdj\dot{e}_j + dz\dot{e}_z.$$

Поэтому в ЦСК линейный интеграл

$$\int_{L} (\vec{a}, d\vec{r}) = \int_{L} a_{r} dr + a_{j} r dj + a_{z} dz. \tag{4.54}$$

Для сферических координат $q_1 = r, q_2 = q, q_3 = j$ имеем

$$\begin{split} \ddot{a} &= a_r (r,q,j) \stackrel{1}{e}_r + a_q (r,q,j) \stackrel{1}{e}_q + a_j (r,q,j) \stackrel{1}{e}_j , \\ dr &= dr \stackrel{1}{e}_r + r dq \stackrel{1}{e}_q + r \sin q dj \stackrel{1}{e}_j , \end{split}$$

и, значит, в ССК линейный интеграл

$$\int_{L} (\mathbf{a}, d\mathbf{r}') = \int_{L} a_r dr + ra_q d\mathbf{q} + ra_j \sin \mathbf{q} d\mathbf{j}. \tag{4.55}$$

Циркуляция C поля $\overset{\bullet}{a}(M)$ в криволинейных координатах q_1,q_2,q_3 в общем случае вычисляется по формуле (4.53), а в ЦСК или ССК — по формулам (4.54) или (4.55).

4.82. Вычислить линейный интеграл в поле $\stackrel{\bf r}{a}=4r\sin j\stackrel{\bf r}{e}_r+ze^r\stackrel{\bf r}{e}_j+$ $+(r+f)\stackrel{\bf r}{e}_z$ вдоль прямой $L=\{j=p/4,z=0\}$ от точки O=(0,p/4,0) до точки A=(1,p/4,0).

 ${f r}$ В нашем случае $a_r=4\,{f r}\sin{m j}$, $a_j=ze^r$, $a_z=r+{m j}$. По формуле (4.54) искомый линейный интеграл

$$I = \int_{I} {\mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r}} = \int_{I} 4 \mathbf{r} \sin j \, d\mathbf{r} + rze^{r} dj + (r+j) \, dz.$$

На прямой L имеем $\ddot{j} = p/4, d\ddot{j} = 0; z = 0, dz = 0; 0 \le r \le 1.$

Поэтому

$$I = \int_{L} 2\sqrt{2}r dr = \sqrt{2} \int_{0}^{1} 2r dr = \sqrt{2}.$$
 p

4.83. Вычислить циркуляцию поля $\overset{\mathbf{r}}{a} = r \sin j \overset{\mathbf{r}}{e}_r + r z \overset{\mathbf{r}}{e}_j + r^3 \overset{\mathbf{r}}{e}_z$ по кривой $L = \{z = 0, r = \sin j, 0 \le j \le p\}$ непосредственно и по формуле Стокса.

 \mathbf{r} Контур L есть окружность с центром Рис. 4.9 в точке (0,1), расположенная в плоскости z=0 (рис. 4.9). Координаты вектора \mathbf{a} : $a_r = r \sin j$, $a_i = r z$, $a_z = r^3$.

1. Вычисляем циркуляцию непосредственно. По формуле (4.54) имеем

$$C = \oint_{L} r \sin j \ dr + r^2 z dj + r^3 dz.$$

На кривой $L: z=0, dz=0; r=\sin j, dr=\cos j dj$, $0 \le j \le p$. Поэтому

$$C = \oint_L r \sin j \, dr = \int_0^p \sin^2 j \, \cos j \, dj = 0.$$

2. Вычисляем циркуляцию по формуле Стокса:

$$C = \oint_{L} (\overset{\mathbf{r}}{a}, d\overset{\mathbf{r}}{r}) = \iint_{S} (\mathbf{rot} \overset{\mathbf{r}}{a}, \overset{\mathbf{r}}{n}) ds,$$

где S – поверхность, натянутая на контур L.

Находим далее:

$$\operatorname{rot} \overset{\mathbf{r}}{a} = \frac{1}{r} \begin{vmatrix} \frac{\partial}{\partial r} & r \overset{\mathbf{r}}{e_j} & \frac{\mathbf{r}}{e_z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial j} & \frac{\partial}{\partial z} \\ r \sin j & r^2 z & r^3 \end{vmatrix} = -r \overset{\mathbf{r}}{e_r} - 3r^2 \overset{\mathbf{r}}{e_j} + (2z - \cos j) \overset{\mathbf{r}}{e_z}, \quad r \neq 0.$$

При r = 0 имеем **rot** $a(0, j, z) = (2z - \cos j) e_z$

В качестве поверхности S возьмем часть плоскости z = 0, ограниченной контуром L. Тогда $\overset{\mathbf{r}}{n}^0 = \overset{\mathbf{r}}{e}_z$, и, значит, $(\overset{\mathbf{r}}{rota},\overset{\mathbf{r}}{n}^0) = (-\overset{\mathbf{r}}{r}\overset{\mathbf{r}}{e}_r - 3\overset{\mathbf{r}}{r}^2\overset{\mathbf{r}}{e}_j + (2z - \cos j)\overset{\mathbf{r}}{e}_z,\overset{\mathbf{r}}{e}_z) = 2z - \cos j$,

$$(\mathbf{rota}, \mathbf{n}^{\mathbf{r}}) = (-\mathbf{r} \mathbf{e}_{\mathbf{r}} - 3\mathbf{r}^{2} \mathbf{e}_{\mathbf{j}}^{\mathbf{r}} + (2z - \cos\mathbf{j}) \mathbf{e}_{z}^{\mathbf{r}}, \mathbf{e}_{z}) = 2z - \cos\mathbf{j}$$

в силу ортонормированности базиса $\{e_r, e_i, e_z\}$.

Искомая циркуляция равна: $C = \iint (2z - \cos j) dS$.

Учитывая, что z=0 на S и элемент площади dS координатной поверхности z=0 равен dS=rdrdj, окончательно получаем

$$C=-\iint_S\cos j\ dS=-\int\limits_0^p\cos j\ dj\int\limits_0^{\sin j}r\,dr=0.$$
 р
Вычислить циркуляцию вектора $\stackrel{1}{a}=r\stackrel{1}{e}_r+(R+r)\sin q\stackrel{1}{e}_j$

- 4.84. окружности $L = \{r = R, q = p/2\}$ в направлении возрастания угла j.
- В данном случае $a_r = r$, $a_q = 0$, $a_j = (R+r)\sin q$. По формуле (4.55) искомая циркуляция равна

$$C = \oint_L rdr + (R+r)\sin q \, r\sin q \, dj = \oint_L rdr + r(R+r)\sin^2 q \, dj.$$

На данной окружности L, центр которой находится в начале координат, имеем:

$$r = R, dr = 0; q = p / 2; 0 \le j < 2p$$
, и, значит, $C = 2R^2 \oint_L dj = 2R^2 \int_0^{2p} dj = 4pR^2$. р

4.85. Вычислить линейный интеграл по данным линиям L в векторных полях, заданных в цилиндрических или сферических координатах:

1)
$$a = ze_r + rj e_j + \cos j e_z$$
; L – отрезок прямой $\{r = a, j = 0, 0 \le z \le 1\}$.

2) $\stackrel{\mathbf{r}}{a} = e^r \cos j \stackrel{\mathbf{r}}{e}_r + r \sin j \stackrel{\mathbf{r}}{e}_j + r \stackrel{\mathbf{r}}{e}_z$; L – виток винтовой линии $\{r = R, z = j, 0 \le j \le 2p\}$.

3) $\stackrel{\mathbf{r}}{a} = e^r \cos q \stackrel{\mathbf{r}}{e}_r + 2q \cos j \stackrel{\mathbf{r}}{e}_q + j \stackrel{\mathbf{r}}{e}_j$; L – полуокружность $\{r = 1, j = 0, 0 \le q \le p\}$.

4) $\stackrel{\mathbf{r}}{a} = \sin^2 q \stackrel{\mathbf{r}}{e}_r + \sin q \stackrel{\mathbf{r}}{e}_q + rj \stackrel{\mathbf{r}}{e}_j$; L – отрезок прямой $\{j = p/2, r = 1/\sin q, p/4 \le q \le p/2\}$.

Otb.: 1) 1; 2) 2pR; 3) p^2 ; 4) $p/4 + \sqrt{2}/2 - 1$.

Самостоятельная работа

«Интегральное исчисление функций многих переменных»

Структура

- 1. Изменить порядок интегрирования в двойном интеграле.
- 2. Вычислить площадь фигуры D с помощью двойного интеграла.
- 3. Пластинка D задана неравенствами, m поверхностная плотность. Найти массу пластинки.
- 4. С помощью двойного интеграла найти объем тела V, заданного ограничивающими его поверхностями.
- 5. Вычислить тройной интеграл в ПДСК.
- 6. Найти объем тела V, заданного ограничивающими его поверхностями, перейдя: а) к цилиндрическим координатам; б) к сферическим координатам.
- 7. Тело V задано ограничивающими его поверхностями, m плотность. Найти массу тела.
- 8. Вычислить КрИ-1 по плоской кривой Γ .
- 9. Вычислить КрИ-2 по кривой Г.
- 10. Применяя формулу Грина, вычислить криволинейный интеграл (обход контура положителен).
- 11. Найти векторные линии поля a.
- 12. Найти поток векторного поля \ddot{a} через часть плоскости P, расположенную в первом октанте (нормаль образует острый угол с осью Z).
- 13. Найти поток векторного поля \ddot{a} через замкнутую поверхность S (нормаль внешняя).
- 14. Найти циркуляцию векторного поля a вдоль контура Γ (в направлении, соответствующем возрастанию параметра t).
- 15. Доказать потенциальность векторного поля \dot{a} и найти его потенциал.

Вариант 1

1.
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{1-x^2} f(x,y) dy$$
.

OTB.:
$$\int_{0}^{1} dy \int_{-\sqrt{1-y}}^{\sqrt{1-y}} f(x,y) dx + \int_{-1}^{0} dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx.$$

2. D – фигура, лежащая в первом квадранте, ограниченная окружностью $x^2 + y^2 = 2ax$, параболой $y^2 = 2ax$ и прямой x = 2a. Отв.: $8a^2/3 - pa^2/2$.

3.
$$D = \{x^2 / 4 + y^2 \le 1, x \ge 0, y \ge 0\}, m = 6x^3 y^3.$$

Отв.: 1.

4.
$$V = \{y = 1 + x^2, z = 3x, y = 5, z \ge 0, y \ge 0, x \ge 0\}.$$

Отв.: 12.

5.
$$\iiint_V (4+8z^3) dx dy dz; \quad V = \left\{ y = x, y = 0, x = 1, z = 0, z = \sqrt{xy} \right\}.$$
 OTB.: 1

6. a)
$$V = \{z = \sqrt{9 - x^2 - y^2}, 9z/2 = x^2 + y^2\}.$$

6)
$$V = \{1 \le x^2 + y^2 + z^2 \le 49, -\sqrt{(x^2 + y^2)/35} \le z \le \sqrt{(x^2 + y^2)/3} \}$$
. **OTB.:** 19p.

7. V — цилиндр радиусом R и высотой h. Плотность m в каждой точке пропорциональна высоте этой точки и равна 1 на нижнем основании.

Отв.:
$$pR^2h(kh+2)/2$$
.

8.
$$\int_{\Gamma} \frac{x}{y} ds$$
, где Γ – дуга параболы $y^2 = 2x$, лежащая между точками $(1, \sqrt{2})$ и (2.2). **Отв.:** $(5\sqrt{5} - 3\sqrt{3})/6$.

ОТВ.: $(5\sqrt{5}-3\sqrt{3})/6$. **9.** $\oint_{\Gamma} (xy-y^2)dx + xdy$, Γ – кривая $y=2\sqrt{x}$, пробегаемая от точки (0,0) до точки (1.2)

10.
$$\int_{\Gamma} (x^2 - y^2) dx + (x^2 + y^2) dy$$
, Γ – эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. **Отв.:** 0.

11.
$$\vec{a} = (4y, -9x)$$
. **OTB.:** $9x^2 + 4y^2 = C$.

11.
$$a = (4y, -9x)$$
.
12. $a = (2x, 5y, 5z)$, $P: x/2 + y/3 + z = 1$.

OTB.: 23.

13.
$$\vec{a} = (y + 6x, 5x + 5z, 4y), S: \{y = x, y = 2x, y = 2, z = x^2 + y^2, z = 0\}.$$
 OTB.: 19.

14.
$$\overset{\mathbf{I}}{a} = (4y, -3x, x), \quad \Gamma : \{x = 4\cos t, y = 4\sin t, z = 4 - 4\cos t\}.$$
 OTB.: $-128p$.

15.
$$\vec{a} = (2xy, x^2 - 2yz, -y^2).$$

Отв.: $u = x^2 y - y^2 z + c$.

Вариант 2

1.
$$\int_{-6}^{2} dx \int_{x^2/4}^{2-x} f(x,y) dy.$$
 OTB.:
$$\int_{-1}^{0} dy \int_{-2\sqrt{1+y}}^{2\sqrt{1+y}} f(x,y) dx + \int_{0}^{8} dy \int_{-2\sqrt{1+y}}^{2-y} f(x,y) dx.$$

2.
$$D = \left\{ x = \sqrt{36 - y^2}, x = 6 - \sqrt{36 - y^2} \right\}$$
 OTB.: $24p - 18\sqrt{3}$.

3.
$$D = \{1 \le x^2/4 + y^2 \le 25, x \ge 0, y \ge x/2\}, m = x/y^2.$$
 OTB.: $2 \ln 5$.

4.
$$V = \{ z = 1 - x^2 - y^2, y = x, y = x\sqrt{3}, z \ge 0, y \ge 0, x \ge 0 \}$$
 OTB.: $p / 48$.

5.
$$\iiint_{V} (1+2x^3) dx dy dz; V = \left\{ y = 36x, y = 0, x = 1, z = 0, z = \sqrt{xy} \right\}.$$
 Отв.: 96.

6. а) $V = \left\{ z = \sqrt{4-x^2-y^2}, z = \sqrt{(x^2+y^2)/255} \right\}.$ Отв.: 5р.

6) $V = \left\{ 4 \le x^2 + y^2 + z^2 \le 64, z \le \sqrt{(x^2+y^2)/3}, -x\sqrt{3} \le y \le 0 \right\}.$ Отв.: 42р.

7. $V - \text{шар } x^2 + y^2 + z^2 = 2x$, плотность **m** в каждой точке равна расстоянию от начала координат до этой точки.

OTв.: 8р/5.

8.
$$\int_{\Gamma} y^3 ds, \ \Gamma = \Gamma - \text{арка циклоиды } x = a(t-\sin t), \ y = a(1-\cos t), \ 0 \le t \le 2p.$$

OTв.: 256 a^3 /15.

9.
$$\int_{\Gamma} (y+x^2) dx + (2x-y) dy, \ \Gamma - \text{дуга параболы } y = 2x-x^2, \ \text{расположенная } \text{между точками } (1,1) \text{ и } (3,-3).$$

OTв.: 12.

10.
$$\oint_{\Gamma} (y+x^5) dx + (3x+y^8) dy, \ \Gamma : \left\{ x^2 + y^2 = 1, x^2 + y^2 = 4, y = 0, (y \ge 0) \right\}.$$

OTB.: 3p.

OTB.: 3p.

OTB.: 25.

11.
$$\mathring{a} = (2y,3x).$$

OTB.: 25.

12.
$$\mathring{a} = (x,y,z), \ P : 2x+y/2+z=1.$$

OTB.: 25.

13.
$$\mathring{a} = (y+2z,-y,3x), \ S : \left\{ 3z = 27-2(x^2+y^2), z = x^2+y^2(z \ge 0) \right\}.$$

OTB.: -36p.

14.
$$\mathring{a} = (-z,-x,xz), \ \Gamma : \left\{ x = 5\cos t, y = 5\sin t, z = 4 \right\}.$$

OTB.: -25p.

Вариант 3

OTB.: $u = x^3 y - xy^3 + c$.

Отв.: $\frac{kph^4}{6} \left| \left(\frac{R^2}{h^2} + 1 \right)^{3/2} - 1 \right|.$

15. $\overset{\mathbf{r}}{a} = (3x^2y - y^3, x^3 - 3xy^2).$

1.
$$\int_{0}^{2/3} dx \int_{2x}^{2-x} f(x,y) dy$$
. OTB.: $\int_{0}^{4/3} dy \int_{0}^{y/2} f(x,y) dx + \int_{4/3}^{2} dy \int_{0}^{2-y} f(x,y) dx$.

2. $D = \left\{ x^2 + y^2 = 72,6y = -x^2(y \le 0) \right\}$ OTB.: $18p + 12$.

3. $D = \left\{ x^2 / 9 + y^2 / 4 \le 1 \right\}, m = x^2 y^2$. OTB.: $9p$.

4. * $V = \left\{ x^2 + y^2 = a^2, x^2 + z^2 = a^2 \right\}$. OTB.: $16a^3 / 3$.

5. $\iiint_{V} 21xzdxdydz$; $V = \left\{ y = 0, y = x, x = 2, z = 0, z = xy \right\}$. OTB.: 64 .

6. a) $V = \left\{ z = \sqrt{\frac{16}{9} - x^2 - y^2}, 2z = x^2 + y^2 \right\}$. OTB.: $\frac{76}{81}p$.

6) $V = \left\{ 1 \le x^2 + y^2 + z^2 \le 36, z \ge \sqrt{(x^2 + y^2)/99}, -x\sqrt{3} \le y \le x\sqrt{3} \right\}$ ОТВ.: $43p$.

7. * V — конус высотой h и радиусом основания R , плотность m в каждой точке пропорциональна расстоянию от вершины до этой точки.

8.
$$\int \frac{ds}{x+y}$$
, где Γ – отрезок прямой $y=x+2$, соединяющей точки (2,4) и (1,3).
Отв.: $\frac{\sqrt{2}}{2} \ln 2$.

9. $\int (x^2-2xy)dx+(2xy+y^2)dy$, Γ – отрезок прямой, соединяющей точки (1,1,1)

10.
$$\oint_{\Gamma} e^{-(x^2+y^2)} (\cos 2xy dx + \sin 2xy dy), \ \Gamma - \text{контур } x^2 + y^2 = R^2.$$
 Отв.: 0.

11.
$$\dot{a} = (2x, 4y)$$
. **OTB.:** $y = cx^2$.

12.
$$\dot{a} = (2x, y, -2z), P: 2x + y/2 + z = 1.$$
 OTB.: 34.

13.
$$\vec{a} = (z, 3y - x, -z), \quad S : \{x^2 + y^2 = 1, z = x^2 + y^2 + 2, z = 0\}.$$
 OTB.: 5p.

14.
$$a = (z, x, y), \quad \Gamma : \{x = 2\cos t, y = 2\sin t, z = 0\}.$$
 OTB.: $4p$.

15.
$$\overset{\bullet}{a} = (y+2, x+z, y+x).$$
 OTB.: $u = xy + yz + xz + c.$

Вариант 4

1.
$$\int_{0}^{1} dx \int_{x^{2}/9}^{x} f(x,y) dy + \int_{1}^{3} dx \int_{x^{2}/9}^{1} f(x,y) dy.$$
OTB.:
$$\int_{0}^{1} dy \int_{y}^{3\sqrt{y}} f(x,y) dx.$$

2.
$$D = \{y^2 = 4ax + 4a^2, x + y = 2a(a > 0)\}$$
 OTB.: $64a^2/3$.

3.
$$D = \{x^2/16 + y^2 \le 1, x \ge 0, y \ge 0\}, m = 5xy^7.$$
 OTB.: 1.

4.
$$V = \{x = 2y^2, x + 2y + z = 4, y = 0, z = 0\}$$
 OTB.: 17/5.

5.
$$\iiint_{V} \frac{dxdydz}{\left(1 + \frac{x}{10} + \frac{y}{8} + \frac{z}{3}\right)^{6}}; \quad V = \left\{\frac{x}{10} + \frac{y}{8} + \frac{z}{3} = 1, x = 0, y = 0, z = 0\right\}.$$
 OTB.: 2.

6. a)
$$V = \left\{z = \sqrt{25 - x^2 - y^2}, z = \sqrt{(x^2 + y^2)/99}\right\}$$
. **OTB.:** 75 p .

6. b) $V = \left\{25 \le x^2 + y^2 + z^2 \le 49, 0 \le z \le \sqrt{(x^2 + y^2)/24}, y \le -x/\sqrt{3}, y \le -x/\sqrt{3}\right\}$
OTB.: 175 p .

7.
$$V = \{(z-2)^2 = x^2 + y^2, z = 0\}; m = z.$$
 OTB.: $8p/3$.

8.
$$\int_{\Gamma} x^2 ds$$
, где Γ – верхняя половина окружности $x^2 + y^2 = a^2$. **Отв.:** $pa^3/2$.

9.
$$\int_{\Gamma} \frac{x^2 dy - y^2 dx}{\sqrt[3]{x^5} + \sqrt[3]{y^5}}$$
, Γ – дуга астроиды $x = 2\cos^3 t$, $y = 2\sin^3 t$ от точки (2,0) до

точки
$$(0,2)$$
. Отв.: $3\sqrt[3]{2p}/8$.

10.
$$\oint_{\Gamma} 2(x^2 + y^2) dx + (x + y)^2 dy$$
, Γ – контур треугольника с вершинами в точках $A = (1,1), B = (2,2), C = (1,3)$.

11. a = (x,3y). **Отв.:** $y = cx^3$.

12. $\vec{a} = (x, y, 2z)$, P: 2x + y/2 + z = 1. Отв.: 128.

13. $\dot{a} = (y, x + 2y, x), S: \{x^2 + y^2 = 2x, z = x^2 + y^2, z = 0\}.$ Отв.: 3р.

14. $a = (y - z, z - x, x - y), \Gamma: \{x = 3\cos t, y = 3\sin t, z = 2(1 - \cos t)\}.$ **OTB.:** -30p.

15.
$$a = \left(e^{y/x}, \frac{1}{z}\left(e^{y/x}(x+1)\right) + ze^{yz}, -\frac{e^{y/x}(x+1)}{z^2}y + ye^{yz} + e^{-z}\right).$$
OTB.: $u = e^{y/x}(x+1) + e^{yz} + e^{-z} + c.$

Вариант 5

1.
$$\int_{-3}^{0} dx \int_{-x}^{3} f(x, y) dy + \int_{0}^{3} dx \int_{x}^{3} f(x, y) dy.$$
OTB.:
$$\int_{1}^{3} dy \int_{-y}^{y} f(x, y) dx.$$
2.
$$D = \left\{ y = \frac{8a^{3}}{x^{2} + 4a^{2}}, x = 2y, x = 0, (a > 0) \right\}.$$
OTB.:
$$a^{2}(p - 1).$$

2.
$$D = \left\{ y = \frac{8a^3}{x^2 + 4a^2}, x = 2y, x = 0, (a > 0) \right\}.$$
 OTB.: $a^2(p-1)$.

3. $D = \{x^2/4 + y^2 \le 1, x \ge 0, y \ge 0\}, m = 30x^3y^7$. **OTB.:** 1.

4.
$$V = \{x^2 + 4y^2 + z = 1, z = 0\}$$
 OTB.: $p/4$.

5.
$$\iiint_{V} (x^2 + 3y^2) dx dy dz; \quad V = \{z = 10x, x + y = 1, x = 0, y = 0, z = 0\}.$$
 OTB.: 1.

6. a)
$$V = \{z = 21\sqrt{x^2 + y^2} / 2, z = 23/2 - x^2 - y^2\}.$$
 OTB.: $4p$.
6) $V = \{1 \le x^2 + y^2 + z^2 \le 49, 0 \le z \le \sqrt{(x^2 + y^2)/24}, y \le -x/\sqrt{3}, y \le -x\sqrt{3}\}.$ **OTB.:** $112p$.

7.
$$V = \{x + y + z = 1, x = y = z = 0\}; m = 1/(x + y + z + 1)^4$$
. OTB.: 1/48.

8.
$$\int_{\Gamma} \sqrt{x^2 + y^2} ds$$
, где Γ – кривая $x = a(\cos t + t \sin t)$, $y = a(\sin t - t \cos t)$, $0 \le t \le 2p$.

Отв.:
$$a^2 \left[(1 + 4p^2)^{3/2} - 1 \right] / 6.$$

9.
$$\int_{\Gamma} (x^2 + y^2) dx + (x + y^2) dy, \ \Gamma - \text{поманая } ABC; \ A = (1,2), B = (3,2), C = (3,5).$$

Отв.: 194/3.

10. $\oint (x+y)dx - (x-y)dy$, Γ – контур, образованный параболой *AmB* и хордой AnB, где A = (1,0), B = (2,3).

11.
$$a = (x, 4y)$$
. **OTB.:** $y = cx^4$.

12.
$$\dot{a} = (-x, y, 12z), P: 2x + y/2 + z = 1.$$

13.
$$\vec{a} = (x + y + z, 2y - x, 3z + y), S: \{y = x, y = 2x, x = 1, z = x^2 + y^2, z = 0\}$$

Отв.: 5.

14.
$$a = (2y, -z, x), \quad \Gamma : \{x = \cos t, y = \sin t, z = 4 - \cos t - \sin t\}.$$
 OTB.: $-2p$.

15.
$$a = (yz \cos xy, xz \sin xy, \sin xy)$$
. **OTB.:** $u = z \sin xy + c$.

Вариант 6

1.
$$\int_{0}^{\sqrt{2}/2} dy \int_{y}^{\sqrt{1-y^2}} f(x,y) dx + \int_{-\sqrt{2}/2}^{0} dy \int_{-y}^{\sqrt{1-y^2}} f(x,y) dx.$$

OTB.:
$$\int_{0}^{\sqrt{2}/2} dx \int_{-x}^{x} f(x, y) dy + \int_{-\sqrt{2}/2}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(x, y) dy.$$

2.
$$D = \{x^2 + y^2 = 2ax, x^2 + y^2 = 2bx, y = x, y = 0, (0 < a < b)\}.$$

Отв.:
$$\frac{1}{4}(b^2 - a^2)(p+2)$$
.

3.
$$D = \{1 \le x^2 / 9 + y^2 / 4 \le 3, y \ge 0, y \le 2x / 3\}, m = y / x.$$
 OTB.: $2 \ln 2$.

4.
$$V = \{z = 4 - x^2, 2x + y = 4, x = 0, y = 0, z = 0\}$$

5.
$$\iiint_{V} (60y + 90z) dx dy dz; \quad V = \{ y = x, y = 0, x = 1, z = x^{2} + y^{2}, z = 0 \}.$$
 OTB.: 23.

6. a)
$$V = \left\{ z = \sqrt{9 - x^2 - y^2}, z = \sqrt{\left(x^2 + y^2\right)/80} \right\}.$$
 OTB.: 16*p*. **6)** $V = \left\{ 16 \le x^2 + y^2 + z^2 \le 100, z \le \sqrt{\left(x^2 + y^2\right)/3}, -x\sqrt{3} \le y \le -x/\sqrt{3} \right\}.$

Отв.: 78р.

7. V – круговой цилиндр радиусом R и высотой h; плотность m в каждой точке равна квадрату расстояния от этой точки до центра основания цилиндра.

Отв.:
$$pR^2h(3R^2+2h^2)/6$$
.

8.
$$\int \frac{ds}{\sqrt{x^2 + y^2 + 4}}$$
, где Γ – отрезок прямой, соединяющей точки (0,0) и (1,2).

OTB.:
$$\ln \frac{\sqrt{5} + 3}{2}$$
.

9.
$$\int_{\Gamma} xydx + yzdy + zxdz$$
, Γ – четверть окружности $OA: x = \cos t, y = \sin t, z = 1$,

пробегаемая в направлении возрастания t.

10.
$$\oint_{\Gamma} (x+y)^2 dx - (x^2+y^2) dy$$
, Γ – контур треугольника с вершинами в точках

$$A = (1,1), B = (3,2), C = (2,5).$$

Отв.:
$$-140/3$$
.

11.
$$a = (3x, 6z)$$
. **OTB.:** $y = cx^2$.

12.
$$\dot{a} = (x,3y,8z); P: x + 2y + z/2 = 1.$$
 OTB.: 1.

13.
$$\vec{a} = (7x, z, x - y + 5z), S: \{z = x^2 + y^2, z = x^2 + 2y^2, y = x, y = 2x, x = 1\}.$$

14.
$$\overset{\mathbf{r}}{a} = (xz, x, z^2), \quad \Gamma : \{x = \cos t, y = \sin t, z = \sin t\}.$$
 Отв.: p .

15.
$$a = (yz + 1, xz, xy)$$
. **OTB.:** $u = x + xyz + c$.

1.
$$\int_{0}^{2} dx \int_{0}^{x^{2}} f(x, y) dy + \int_{2}^{4} dx \int_{0}^{10-x} f(x, y) dy + \int_{4}^{7} dx \int_{x-4}^{10-x} f(x, y) dy.$$

OTB.:
$$\int_{0}^{3} dy \int_{\sqrt[3]{y}}^{y+4} f(x,y) dx + \int_{3}^{8} dy \int_{\sqrt[3]{y}}^{10-y} f(x,y) dx.$$

2.
$$D = \{y = \sqrt{x}/2, y = 1/(2x), x = 16\}$$

3.
$$D = \{x^2 + y^2 / 25 \le 1, y \ge 0\}, m = 7x^4y.$$

4.
$$V = \{z = 5x, x^2 + y^2 = 9, z = 0\}$$

5.
$$\iiint_{V} \left(\frac{10}{3} x + \frac{5}{3} \right) dx dy dz; \quad V = \left\{ y = 9x, y = 0, x = 1, z = \sqrt{xy}, z = 0 \right\}.$$
 OTB.: 25.

6. a)
$$V = \{z = \sqrt{1 - x^2 - y^2}, 3z/2 = x^2 + y^2\}.$$

6)
$$V = \{4 \le x^2 + y^2 + z^2 \le 49, z \ge \sqrt{(x^2 + y^2)/99}, y \le 0, y \le x\sqrt{3}\}$$
. **OTB.:** 78 p .

7. V – тело, вырезанное из октанта шара $x^2 + y^2 + z^2 \le c^2$, $x \ge 0, y \ge 0, z \ge 0$, ограниченное координатными плоскостями и плоскостью $x/a + y/b = 1, (a \le c, b \le c);$ плотность в каждой точке пропорциональна m

аппликате этой точки.

Отв.:
$$\frac{ab}{24}(bc^2-a^2-b^2)$$
.

8.
$$\int_{\Gamma} (x+y)ds$$
, где Γ – правый лепесток лемнискаты $r^2 = a^2 \cos 2j$.

Отв.:
$$\frac{1}{54}(56\sqrt{7}-1)$$
.

9.
$$\int \frac{xdx + ydy + zdz}{\sqrt{x^2 + y^2 + z^2 - x - y + 2z}}$$
, Γ – отрезок, пробегаемый от точки (1,1,1) до

точки (4,4,4).

Отв.:
$$3\sqrt{3}$$
.

10.
$$\oint_{\Gamma} e^x ((1-\cos y)dx - (y-\sin y)dy), \ \Gamma = \{0 \le x \le p, 0 \le y \le \sin x\}.$$

Отв.: (1-p)/5.

11.
$$\dot{a} = (4z, -9x)$$
.

Отв.:
$$9x^2 + 4z^2 = c$$
.

12.
$$a = (x, -y, 6z); P: x + 2y + z/2 = 1.$$

13.
$$a = (17x, 7y, 11z), S: \{z = x^2 + y^2, z = 2(x + y^2), y = x^2, y = x\}$$
 OTB.: 3.

14.
$$\overset{\mathbf{r}}{a} = (-x^2 y^3, 3, y), \quad \Gamma : \{x = \cos t, y = \sin t, z = 5\}.$$

Отв.:
$$p/8$$
.

15.
$$\overset{1}{a} = (2x + 5yz, 5xz - 6y, 5xy + 4z)$$
. **OTB.:** $u = x^2 - 3y^2 + 5xyz + 2z^2 + c$.

Вариант 8

1.
$$\int_{1}^{e} dx \int_{0}^{\ln x} f(x, y) dy$$
.

ОТВ.:
$$\int_{0}^{1} dy \int_{e^{y}}^{e} f(x, y) dx.$$

2.
$$D = \{x = 4y - y^2, x + y = 6\}$$
. Otb.: $1/6$.
3. $D = \{x^2 + y^2/9 \le 1, y \ge 0\}$, $m = 35x^4y^3$. Otb.: 36.
4. $V = \{x + y + z = 6, 3x + 2y = 12, 3x + y = 6, y = 0, z = 0\}$. Otb.: 12.
5. $\iiint (9 + 18z) dx dy dz; \ V = \{y = 4x, y = 0, x = 1, z = \sqrt{xy}, z = 0\}$. Otb.: 34.
6. a) $V = \{z = \sqrt{36 - x^2 - y^2}, z = \sqrt{(x^2 + y^2)/63}\}$ Otb.: 126p.
6. b) $V = \{4 \le x^2 + y^2 + z^2 \le 64, 0 \le z \le \sqrt{(x^2 + y^2)/24}, y \le x\sqrt{3}, y \le x/\sqrt{3}\}$ Otb.: 28p.
7. $V = \{x + y + z = a, x = 0, y = 0, z = 0\}$, indothocts m b karmon towe. Otb.: $a^4/24$.
8. $\int \sqrt{x^2 + y^2} ds$, the Γ -order one of the indothocts $x^2 + y^2 = ax$. Otb.: $2a^2$.
9. $\int x(z - y) dx + y(x - z) dy + z(y - x) dz$, the Γ -domahan Γ
ABCA: $A = (a,0,0)$, $B = (0,a,0)$, $C = (0,0,a)$. Otb.: a^3 .
10. $\int \{(y - x^2) dx + (x + y^2) dy, \ \Gamma$ - kohtyp, of pahuyubandhun kyptoron certop pahuyucom R c ythom $0 \le j \le p/2$. Otb.: $2/3$.
11. $a = (2z, 3x)$. Otb.: $z = cx^4$. Otb.: $z = cx^4$.
12. $a = (x, 2y, 5z)$; $P : x + 2y + z/2 = 1$. Otb.: $a = (x, 2y, 3z)$, $S : \{z = x^2 + y^2, z = 2x\}$. Otb.: $a = (yz, xz, xy)$. Otb.

7. $V = \{z = h, x^2 + y^2 = z^2\}$, плотность **m** в каждой точке пропорциональна

аппликате этой точки.

Отв.: $ph^4/4$.

8. $\int \frac{yds}{\sqrt{x}}$, где Γ - дуга полукубической параболы $y^2 = (4/9)x^3$ от $A = (3, 2\sqrt{3})$ до

 $B = (8.32\sqrt{2}/3).$ Отв.: 2152/45.

9. $\int_{\Gamma} (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz, \quad \Gamma \quad - \quad \text{граница} \quad \text{части} \quad \text{сферы}$

 $x^2 + y^2 + z^2 = 1$, (лежащей в первом октанте), пробегаемая по ходу часовой стрелки с положительной полуоси Ү. Отв.: 0.

10. $\int \sqrt{x^2 + y^2} dx + y \left[xy + \ln(x + \sqrt{x^2 + y^2}) \right] dy$, Γ – контур прямоугольника

Вариант 10

OTB.: $\int_{1}^{1/2} dy \int_{\sqrt{1-2y}}^{\sqrt{1-y^2}} f(x,y) dx + \int_{1/2}^{1} dy \int_{0}^{\sqrt{1-y^2}} f(x,y) dx.$ 1. $\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy$.

2. $D = \{y^2 = 4x - x^2, y^2 = 2x\}$ (вне параболы). **Отв.:** 2p - 16/3.

3. $D = \{1 \le x^2 + y^2 / 16 \le 9, y \ge 0, y \ge 4x\}, m = y / x^3.$ **Отв.:** $8 \ln 3$. **Отв.:** $a^2b/3$.

4. $V = \{x^2/a^2 + y^2/b^2 = 1, y = 0, z = x/2, z = x\}$

5. $\iiint_V \frac{dxdydz}{(1+x/2+y/4+z/6)^4}; V = \{x/2+y/4+z/6=1, x=y=z=0\}.$ **OTB.:**1.

6. a) $V = \{z = x^2 + y^2, z = 2(x^2 + y^2), y = x, y^2 = x\}.$ Отв.: 3/35. **6)*** $V = \{(x^2 + y^2 + z^2)^2 = 2axyz, (a > 0)\}$ **Отв.:** $a^3/45$.

7. V – сферический слой между поверхностями $x^2 + y^2 + z^2 = a^2$, $x^2 + y^2 + z^2 = 4a^2$; плотность **m** в каждой точке обратно пропорциональна **Отв.:** $61pa^2$. расстоянию точки от начала координат.

 $\int xyds$, где Γ – контур прямоугольника, ограниченного прямыми x = 0, y = 0, x = 4, y = 2. Отв.: 24.

9. $\int_{\Gamma} y dx + z dy + x dz$, Γ – отрезок CO, где C = (0,0,a). **Отв.:** $-3a^2/2$.

10. $\oint_{\Gamma} y^2 dx + (x+y)^2 dy$, Γ – контур треугольника вершинами A = (2,0), B = (2,2), C = (0,2).

Отв.: 16/3.

11. a = (y,3z).

Отв.: $z = cy^3$.

12. a = (x, y, z); P: 2x + 3y + z = 1.

Отв.: 5.

13.
$$\overset{\bullet}{a} = (2y - 3z, 3x + 2z, x + y + z), S: \{x^2 + y^2 = 1, z = 4 - x - y, z = 0\}.$$
 OTB.: 4p.

14.
$$\overset{\Gamma}{a} = (x, -z^2, y), \quad \Gamma : \{x = 2\cos t, y = 3\sin t, z = 4\cos t - 3\sin t - 3\}.$$
 OTB.: 60*p*.

15.
$$\overset{\mathbf{r}}{a} = (2xyz, x^2z, x^2y).$$

Отв.: $u = x^2 yz + c$.

Вариант 11

1.
$$\int_{0}^{1} dx \int_{1-x}^{1} f(x,y) dy + \int_{1}^{e} dx \int_{\ln x}^{1} f(x,y) dy.$$

OTB.:
$$\int_{0}^{1} dy \int_{\sqrt{1-y}}^{e^{y}} f(x, y) dx.$$

2. $D = \{y^2 + 2y - 3x + 1 = 0, 3x - 3y = 7\}.$

)тв.: 125/18.

3. $D = \{x^2/9 + y^2 \le 1, x \ge 0\}, m = 11xy^8.$

Отв.: 2.

4.
$$V = \{z = x^2 + y^2 + 1, x = 4, x = 0, y = 4, y = 0, z = 0\}.$$

Отв.: 560/3.

5.
$$\iiint_{V} x^{2} dx dy dz; \quad V = \{z = 10(x + 3y), x + y = 1, x = y = z = 0\}. \quad \textbf{Otb.:} \ 1.$$

6. a)
$$V = \{x^2 / a^2 + y^2 / b^2 + z^2 / c^2 = 1\}.$$

Отв.: $\frac{4}{3}$ pabc.

a)
$$V = \{x^2 / a^2 + y^2 / b^2 + z^2 / c^2 = 1\}.$$
6) $V = \left\{ 36 \le x^2 + y^2 + z^2 \le 144, z \le \sqrt{\frac{x^2 + y^2}{3}}, x\sqrt{3} \le y \le \frac{x}{\sqrt{3}} \right\}.$

Отв.: 126р.

7.
$$V = \{25(x^2 + y^2) = z^2, x^2 + y^2 = 4, x = 0, y = 0, z = 0\}; m = 2(x^2 + y^2).$$

Отв.: 32*p*.

8.
$$\int_{\Gamma} (x^{4/3} + y^{4/3}) ds$$
, где Γ – дуга астроиды $x^{2/3} + y^{2/3} = a^{2/3}, a > 0$.

Отв.: $4a^{7/3}$.

9.
$$\int\limits_{\Gamma} (y-z)dx + (z-x)dy + (x-y)dz, \quad \Gamma \quad - \quad \text{виток} \quad \text{винтовой} \quad \text{линии}$$

 $x = a\cos t, y = a\sin t, z = bt, 0 \le t \le 2p.$

Отв.: -2pa(a+b).

10.
$$\int_{\Gamma} x dy - y dx$$
, Γ – контур, ограниченный параболами $y^2 = x, x^2 = y$.

Отв.: 2/3.

11.
$$\dot{a} = (2x,8z)$$
.

Отв.: $z = cx^4$.

12.
$$\dot{a} = (2x, y, z); P: 2x + 3y + z = 1.$$

Отв.: 4.

13.
$$\overset{\bullet}{a} = (-2x, z, x + y), \quad S: \{x^2 + y^2 = 2y, z = x^2 + y^2, z = 0\}$$
 OTB.: $-3p$.

14.
$$a = (y - z, z - x, x - y), \quad \Gamma : \{x = 2\cos t, y = 2\sin t, z = 3(1 - \cos t)\}.$$
 OTB.: $-20p$.

15.
$$\overset{\mathbf{r}}{a} = (yz - xy, xz - x^2/2, xy + y^2z).$$

OTB.: $u = xyz - x^2y/2 + y^2z^2/2 + c$.

Вариант 12

1.
$$\int_{0}^{1} dy \int_{0}^{\sqrt[3]{y}} f(x, y) dx + \int_{1}^{2} dy \int_{0}^{2-y} f(x, y) dx.$$
OTB.:
$$\int_{0}^{1} dx \int_{x^{3}}^{2-x} f(x, y) dy.$$

2.
$$D = \{y = 4x - x^2, y = 2x^2 - 5x\}.$$

Отв.: 27/2.

3.
$$D = \{1 \le x^2 / 4 + y^2 / 16 \le 5, x \ge 0, y \ge 2x\}, m = x / y.$$

Отв.: 4 ln 2.

4.
$$V = \{z = y^2 / 2, 2x + 3y - 12 = 0\}.$$

Отв.: 16.

5.
$$\iiint_{V} (8y + 12z) dx dy dz; \quad V = \{ y = x, y = 0, x = 1, z = 3x^{2} + 2y^{2}, z = 0 \}$$
 OTB.: 17.

6. a)
$$V = \{z = x^2 + y^2, z = 0, y = 1, y = 2x, y = 6 - x\}$$

Отв.: $78\frac{15}{32}$

6)
$$V = \{(x^2 + y^2 + z^2)^2 = a^2(x^2 + y^2)\}.$$

Отв.: $\frac{p^2a^3}{4}$.

7.
$$V = \{x^2 + y^2 + z^2 = 9, x^2 + y^2 \le 4, y \ge 0\}$$

Отв.: 14р.

8.
$$\int_{\Gamma} xy ds$$
, где Γ - контур квадрата $|x| + |y| = a, a > 0$.

Отв.: 0.

9.*
$$\int_{\Gamma} y dx + z dy + x dz$$
, Γ – окружность: $x = R \cos a \cos t$, $y = R \cos a \sin t$,

 $z = R \sin a$, (a = const), пробегаемая в направлении возрастания параметра. Отв.:

$$-pR^2\cos^2 a$$
.

10.
$$\oint_{\Gamma} x dy - y dx$$
, $\Gamma - \text{астроида: } x = a \cos^3 t, y = a \sin^3 t, 0 \le t \le 2p$.

Отв.: $3pa^2/4$.

11.
$$a = (x,3z)$$
.

Отв.: $z = cx^3$.

12.
$$\vec{a} = (2x, 3y, z); P: 2x + 3y + z = 1.$$

Отв.: 1.

13.
$$\vec{a} = (2y - 5x, z - y, 3y - x), S: \{z = 3x^2 + y^2 + 1, x^2 + y^2 = 1/4, z = 0\}.$$
OTB.: -5p.

14.
$$\overset{\mathbf{r}}{a} = (-2z, -x, x^2), \quad \Gamma : \left\{ x = \frac{1}{3} \cos t, y = \frac{1}{3} \sin t, z = 8 \right\}.$$

Отв.:-*p*/9.

15.
$$\vec{a} = \left(\frac{yz}{1 + x^2 y^2 z^2}, \frac{zx}{1 + x^2 y^2 z^2}, \frac{xy}{1 + x^2 y^2 z^2}\right)$$
 OTB.: $u = c + arctg(xyz)$.

Вариант 13

1.
$$\int_{0}^{p/4} dy \int_{0}^{\sin y} f(x, y) dx + \int_{p/4}^{p/2} dy \int_{0}^{\cos y} f(x, y) dx.$$
OTB.:
$$\int_{0}^{1/\sqrt{2}} dx \int_{arcsin x}^{1/\sqrt{2}} f(x, y) dy.$$

2.
$$D = \{y = 2/x, y = 5e^x, y = 2, y = 5\}.$$

Отв.: 3.

3.
$$D = \{1 \le x^2/9 + y^2/4 \le 5, x \ge 0, y \ge 2x/3\}, m = x/y.$$

Отв.: 9ln 2.

4.
$$V = \{z = 4 - y^2, y = x^2/2, z = 0\}$$
. Otb.: $12\frac{4}{21}$.

5. $\iiint_V 63(1 + 2\sqrt{y}) dx dy dz; V = \{y = x, y = 0, x = 1, z = \sqrt{xy}, z = 0\}$ Otb.: 32 .

6. a) $V = \{z = \sqrt{(x^2 + y^2)^3}, z = 8, z \ge 0\}$. Otb.: $96p/5$.

6) $V = \{(x^2 + y^2 + z^2)^3 = a^3 xyz\}$. Otb.: $a^3/6$.

7. $V = \{x^2 + y^2 = 1, x^2 + y^2 = 6z, z = 0, x \ge 0, y \ge 0\}$; $m = 90y$. Otb.: 3 .

8. $\int_{\Gamma} (x^2 + y^2) ds$, $\Gamma = \Gamma$ — дуга погарифмической спирали $\Gamma = ae^{3f}$ от $A = (a,0)$ до $\Gamma = (0,0)$. Otb.: $a^5\sqrt{10}/15$.

9.* $\int_{\Gamma} xydx + yzdy + zxdz$, $\Gamma = \int_{\Gamma} xydx = 0$ окружности $x^2 + y^2 + z^2 = 2Rx, z = x$, pacinonowerhham no try ctopony of плоскости XZ , $\Gamma = y > 0$. Otb.: $(1/6 + p\sqrt{2}/16)R^3$.

10. $\int_{\Gamma} \frac{dx + dy}{|x| + |y|}$, $\Gamma = \Gamma$ траница квадрата с вершинами $(1,0), (0,1), (-1,0), (0,-1)$. Otb.: $9y^2 + 4z^2 = c$.

11. $\frac{1}{a} = (4z, -9y)$. Otb.: $9y^2 + 4z^2 = c$.

12. $\frac{1}{a} = (2x, 3y, 4z)$; $P : 2x + 3y + z = 1$. Otb.: $9y^2 + 4z^2 = c$.

13. $\frac{1}{a} = (y + z, x - 2y + z, x)$, $S : \{x^2 + y^2 = 1, z = x^2 + y^2 - 1, z = 0\}$. Otb.: $-p$.

14. $\frac{1}{a} = (x, -3z^2, y)$, $\Gamma : \{x = \cos t, y = 4\sin t, z = 2\cos t - 4\sin t + 3\}$. Otb.: $-152p$.

15. $\frac{1}{a} = (y, x, e^z)$. Otb.: $\frac{1}{a} = \frac{y}{3} = \frac{y}{$

7. $V = \{x^2 + y^2 + z^2 = 4, x^2 + y^2 = 9z^2, x \ge 0, y \ge 0, z \ge 0\}, m = 10z.$ OTB.: 9p.

6) $V = \left\{ x^2 + y^2 + z^2 = 2az, z \ge \sqrt{x^2 + y^2} \right\}$

8.
$$\int_{\Gamma} xy ds$$
, где Γ – четверть эллипса $x^2/a^2 + y^2/b^2 = 1$, лежащая в первом

квадранте.

Отв.:
$$ab(a^2 + ab + b^2)/(3(a+b))$$
.

9.*
$$\int_{\Gamma} (y^2 + z^2) dx + (x^2 + z^2) dy + (x^2 + y^2) dz, \quad \Gamma \quad - \quad \text{линия} \quad \text{пересечения}$$

 $x^{2} + y^{2} + z^{2} = 2Rx, x^{2} + y^{2} = 2rx, 0 < r < R, z \ge 0,$ поверхностей пробегаемая против хода часовой стрелки, если смотреть с положительной полуоси Z.

10.
$$\oint_{\Gamma} \frac{(x+y)dx + (y-x)dy}{x^2 + y^2}$$
, Γ – окружность $x^2 + y^2 = R^2$. Отв.: $-2p$.

11.
$$\dot{a} = (2z, 3y)$$
.

Отв.:
$$3y^2 - 2z^2 = c$$
.

12.
$$\dot{a} = (x,9y,8z); P: x+2y+3z=1.$$

13.
$$\vec{a} = (3x - y - z, 3y, 2z), S: \{z = x^2 + y^2, z = 2y\}.$$

14.
$$\overset{\mathbf{r}}{a} = (x, -2z^2, y), \quad \Gamma : \{x = 6\cos t, y = 4\sin t, z = 6\cos t - 4\sin t + 1\}.$$
 Otb.: $-120p$.

15.
$$\vec{a} = \frac{1}{\sqrt{x^2 + y^2 + z^2}} (x, y, z).$$

OTB.:
$$u = \sqrt{x^2 + y^2 + z^2} + c$$
.

Вариант 15

1.
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f(x, y) dx + \int_{1}^{e} dy \int_{\ln y}^{1} f(x, y) dx.$$

ОТВ.:
$$\int_{0}^{1} dx \int_{x^{2}}^{e^{x}} f(x, y) dy.$$

2.
$$D = \left\{ x = \sqrt{72 - y^2}, 6x = y^2, y = 0, (y \ge 0) \right\}$$

Отв.:
$$9p + 6$$
.

3.
$$D = \{x^2/4 + y^2/25 \le 1\}, m = x^4.$$

4.
$$V = \{z = xy/a, x^2 + y^2 = ax, z = 0\}$$

Отв.:
$$a^3/24$$
.

5.
$$\iiint_V \frac{dxdydz}{(1+x/6+y/4+z/16)^5}; V = \{x/6+y/4+z/16=1, x=y=z=0\}.$$

6. a*)
$$V = \{x^2 + y^2 = 1, x^2 + y^2 = 4, z(x + y) = ax + by\}, \{z = 0, x > 0, y > 0, \}$$

 $\{a > 0, b > 0\}.$ **OTB.:** $3p(a + b)/8.$

$$\{z = 0, x > 0, y > 0, \}$$

6)
$$V = \{(x^2 + y^2 + z^2)^2 = a^3 x, a > 0\}$$

Отв.:
$$3p(a+b)/8$$
.

7.
$$V = \{x^2 + y^2 + z^2 = 16, x^2 + y^2 \le 4\};$$
 $m = |z|.$

Отв.: $pa^3/3$.

8.
$$\int |y| ds$$
, где Γ – лемниската $r^2 = a^2 \cos 2j$. **Отв.:** $2a^2(2-\sqrt{2})$.

Отв.:
$$2a^2(2-\sqrt{2})$$
.

9.
$$\int_{\Gamma} yzdx + xzdy + xydz$$
, Γ – окружность $x^2 + y^2 + z^2 = 9$, $x^2 + y^2 = 9$. **Отв.:** 0.

10*. $\oint_{\Gamma} \frac{xy^2 dx - x^2 y dy}{x^2 + y^2}$, Γ – правый лепесток лемнискаты $r^2 = a^2 \cos 2j$. Отв.: 0.

11.
$$\dot{a} = (5x,10y)$$
. **OTB.:** $y = cx^2$.

12.
$$\overset{\bullet}{a} = (8x,11y,17z); P: x+2y+3z=1.$$
 OTB.: 1.

13.
$$\overset{\bullet}{a} = (x + y, y + z, z + x), \quad S : \{y = 2x, y = 4x, x = 1, z = y^2, z = 0\}.$$
 OTB.: 14.

14.
$$\overset{\mathbf{r}}{a} = (-x^2y^3, 4, x), \quad \Gamma : \{x = 2\cos t, y = 2\sin t, z = 4\}.$$
 OTB.: 8*p*.

15.
$$\overset{\mathbf{r}}{a} = \sqrt{x^2 + y^2 + z^2} (x, y, z).$$
 OTB.: $u = \sqrt{(x^2 + y^2 + z^2)^3} + c.$

Литература

- 1. Сборник задач по математике для втузов. Специальные разделы математического анализа : учеб. пособие для втузов. В 3-х ч. Ч. 2./ В. А. Болгов [и др.]; под ред. А. В. Ефимова и Б. П. Демидовича. Изд. 2-е М. : Наука, 1986.
- 2. Данко, П. Е. Высшая математика в упражнениях и задачах. В 2-х ч. Ч. 2 : учеб. пособие для студентов втузов. / П. Е. Данко [и др.] 3-е изд., перераб. и доп. М. : Высш. школа, 1980.
- 3. Жевняк, Р. М. Высшая математика: Функции многих переменных. Интегральное исчисление функций одной и многих переменных / Р. М. Жевняк // Векторный анализ. Минск, Выш. шк., 1993.
- 4. Краснов, М. Л. Векторный анализ : сб. задач / М. Л. Краснов, А. И. Киселев, Г. И. Макаренко. М. : Наука, 1978.
- 5. Кузнецов, Л. А. Сборник заданий по высшей математике (Типовые расчеты) : учеб. пособие для втузов. / Л. А. Кузнецов М. : Высш. шк., 1994.
- 6. Кудрявцев, Л. Д. Сборник задач по математическому анализу. Функции нескольких переменных : учеб. пособие для втузов / Л. Д. Кудрявцев; под ред. Л. Д. Кудрявцева. СПб. : ИЧП «Кристалл», 1994.
- 7. Сборник индивидуальных заданий по высшей математике: учеб. пособие. В 3 ч. Ч. 3. / А. П. Рябушко [и др.].; под общ. ред. А. П. Рябушко. Минск: Выш. шк., 2004.

Содержание

Введение	3
1. Кратные интегралы	4
1.1. Двойные интегралы	
1.2. Тройные интегралы	
1.3. Приложения кратных интегралов	
2. Криволинейные интегралы	
2.1. Криволинейные интегралы 1-го (КрИ-1) и 2-го (КрИ-2) рода	
2.2. Формула Грина	46
3. Поверхностные интегралы	53
3.1. Поверхностные интегралы 1-го рода (ПИ-1)	53
3.2. Поверхностные интегралы 2-го рода (ПИ-2)	59
3.3. Формула Остроградского-Гаусса. Формула Стокса	65
4. Элементы векторного анализа	72
4.1. Скалярные и векторные поля	72
4.2. Поток векторного поля через поверхность	77
4.3. Циркуляция векторного поля	
4.4. Соленоидальные и потенциальные векторные поля	
4.5. Дифференциальные операции 2-го порядка. Векторные	
операции в криволинейных ортогональных координатах	92
Самостоятельная работа «Интегральное исчисление	
функций многих переменных»	104
Литепатупа	117

Учебное издание

Карпук Андрей Андреевич **Цегельник** Владимир Владимирович **Баркова** Елена Александровна

СБОРНИК ЗАДАЧ ПО ВЫСШЕЙ МАТЕМАТИКЕ

В 10-ти частях

Часть 7

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

Учебное пособие

Редактор Т. П. Андрейченко Корректор М. В. Тезина Компьютерная верстка Е. Н. Мирошниченко

Подписано в печать 14.08.2007. Формат $60 \times 84\ 1/16$. Бумага офсетная. Гарнитура «Таймс». Печать ризографическая. Усл. печ. л. 7,09. Уч.-изд. л. 7,0. Тираж 500 экз. Заказ 1.

Издатель и полиграфическое исполнение: Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» ЛИ № 02330/0056964 от 01.04.2004. ЛП № 02330/0131666 от 30.04.2004. 220013, Минск, П. Бровки, 6