Unity Lab

Shader Graph is a tool that enables you to build shaders visually. Instead of writing code, you create and connect nodes in a graph framework.

Shader Graph gives instant feedback that reflects your changes, and it's simple enough for users who are new to shader creation.

- 圖形化介面
 - 不用寫程式
- 自定義 Shader

開新專案

3D(URP) 或是 3D(HDRP) 才能使用 Shader Graph

開新專案

按右鍵選擇 Create -> Shader Graph 就可以建立 Shader Graph

進入編輯 Shader Graph 的畫面

Base Color: 底色 Metallic: 金屬度

Smoothness: 光滑度 Emission: 環境光色

Ambient Occusion: 環境光遮蔽

可以隨意調整 Fragment 的參數

新增節點

- 預設的環境光是均勻的
- 透過新增節點 (Node) 來自定義環境光色

新增節點

- 按空白鍵新增節點
- 搜尋 Fresnel Effect 並新增
 - 邊緣光特效

邊緣光特效

● 改變 Power 的值來調整特效強度

邊緣光特效

- 新增 Color 和 Multiply 節點
 - Multiply 能將向量或是變數相乘

連接節點

- 將 Color 和 Fresnel Effect 結合
 - 將特效加上顏色

儲存檔案

點選左上角 Save Asset 儲存

套用 Shader - 下載模型檔案

套用 Shader

新增 Material

套用 Shader

- 在 Material 的 Inspector 中更換 shader
 - 選擇剛才建立的 shader graph
- 確認 Material 的圖示變更

更換 Shader

- 選擇剛才加入的模型
- 進入 Materials tag
- 將剛才建立的 Material 拉到 defaultMat
- 點選 Apply

Revert

Apply

套用成功

建立外部參數

● 可以從外部修改值的參數

建立外部參數

● 可以拉到 Shader Graph 中當成 Node

建立外部參數

● 可以在 Inspector 看到外部參數

建立 Shader Graph

這次建立 Shader Graph -> URP -> Unlit Shader Graph

建立 Shader Graph

Fragment 只有 Base Color

Shading 基本概念 - diffuse

Diffuse

- N: 法向量
- L: 光源向量
- L 需要 normalize

Reflected light $\sim \cos \theta$

 $N \cdot L$

- Shader Graph 無法取得光源方向
 - 使用外部參數定義
- 順便定義 Base Color

- 建立 Normal node
 - 取得法向量 N

- 結合 Dot Product
 - 調整光源方向

和底色相乘並連接到 Base Color

Shading 基本概念 - Specular

- Specular (Phong Shading)
 - v: View Vector
 - 物體相對於觀察者的向量
 - r: 反射向量
 - a: 光滑度
 - o v, r 需 normalize

$$(v \cdot r)^{\alpha}$$

$$r = \operatorname{reflect}(-L, N)$$

反射向量

● 新增 Reflection 節點

反射向量

● 計算 -L

反射向量

● 計算出 v

View Vector

- 建立 Position 節點
 - Space 選擇 View

Normalize

● 新增 normalize 節點

Normalize

分別將 v, r normalize

Specular

- 連接 dot 和 power 節點
 - power 計算次方

$$(v \cdot r)^{\alpha}$$

Specular

- 新增光滑度外部參數
 - 調整光滑度

Specular

- 新增 Maximum 節點
 - 將小於 0 的部分設成 0

結合 diffuse 與 specular

- 使用 Add 節點
 - 將兩個值相加

進階篇 — Toon Shading

Toon Shading

- 設定閾值
 - 在兩個閾值之間亮度相等

plastic shader

toon shader

- 使用 Comparison 及 Branch 節點
 - 比較並設定值

- Comparison
 - 檢查 A(0.8) 是否小於 B(dot 的結果)
- Branch
 - 接收比較結果
 - True 輸出 1
 - False 輸出 0

- 結合多個條件判斷
 - 調整閾値和輸出値

• 乘上底色

● Specular 也做相同處理

Toon Shader

● 完成 Toon Shader

套用 Shader

• 方法和前面相同

練習

• 繪製簡單的輪廓線

○ 提示:利用 Normal 和 View Matrix

參考資料

Basics of Shader Graph - Unity Tutorial