1.2 事件的概率

- 把刻划事件发生的可能性大小的数量指标 叫做事件的概率。
- 事件A的概率以P(A) 表示。

- 统计概率
- ■古典概率
- ■几何概率

■在概率的发展史上,人们针对不同的问题, 从不同的角度给出了定义概率和计算的各种方法。然而所定义的概率都存在一定的 缺陷。

一、统计概率

统计定义 基于频率的定义

频率

设在 n 次试验中,事件 A 发生了 $\mu(A)$ 次,

则称 $f_n(A) = \frac{\mu(A)}{n}$ 为事件 A 发生的 频率.

频率的性质

□
$$0 \le f_n(A) \le 1$$
 非负性

□ 事件A, B互不相容,即 $AB = \phi$

$$f_n(A \cup B) = f_n(A) + f_n(B)$$
 可加性

可推广到有限个两两互不相容事件的和事件

$$f_n(\bigcup_{i=1}^k A_i) = \sum_{i=1}^k f_n(A_i)$$
 — **JIII**

其中 A_1, A_2, \dots, A_k 两两互不相容。

频率稳定性的实例

实验者	掷硬币的 次数n	正面出现 次数	正面出现 的频率
Deorgan	2048	1061	0.5181
Buffon	4040	2048	0.5069
Feller	10000	4979	0.4979
Pearson	12000	6019	0.5016
Pearson	24000	12012	0.5005

从上述实例可以看出:当投掷次数充分大时,正面 出现的频率在0.5左右摆动。

定义:在相同的条件下,将某试验重复进行n次,事件A发生的频率 $f_n(A)$ 随着n 增大,总在某一固定常数p 左右摆动,则称 p 为事件A的概率,记作 P(A).

__对本定义的评价 __

优点:直观 易懂 缺点:粗糙 不便 模糊 使用

由概率的统计定义与频率的性质,知概率必具备下列性质

- □ 非负性: $\forall A \subset \Omega$, $P(A) \geq 0$
- □ 规范性: $P(\Omega) = 1$
- \Box 可加性:事件A, B互不相容,则

$$P(A \cup B) = P(A) + P(B)$$

概率的物理意义:概率是衡量事件发生可能性大小的度量。

二、古典概型

定义:如果试验T满足

(1) 样本空间只有有限个样本点;

$$\Omega = \{\omega_1\} \cup \{\omega_2\} \cup ... \cup \{\omega_n\}$$

(2) 每个样本点是等可能发生的,即

$$P(\{\omega_i\}) = 1/n, i=1,2,...n$$

则称这样的试验模型为古典概型。

古典概型中概率的计算:

$$P(A) = \frac{m}{n} = \frac{\$ \text{ μ} + A \text{ 2} \text{ 2} \text{ 2} \text{ 2} \text{ 4} \text{$$

古典概型中事件概率求法

1、摸球问题

例1:设盒中有3个白球,2个红球,现从盒中

任抽2个球,求取到一红一白的概率。

解:设A-----取到一红一白

$$N(\Omega) = C_5^2$$
 $N(A) = C_3^1 C_2^1$

$$\therefore P(A) = \frac{C_3^1 C_2^1}{C_5^2} = \frac{3}{5}$$

答:取到一红一白的概率为3/5

例 2 将10张标有0,1,2,…,9数字的相同卡片 搅混在一起,再任意抽取一张,以*X*表示所取卡 片上的数字,求

(1)
$$P(X=i)$$
; $i=0,1,2,...$, 9;

(2) P(X为奇数).

解(1)
$$P(X=i) = \frac{1}{10}$$

(2)
$$P(X$$
为奇数) = $\frac{5}{10}$ = 0.5

例3 一箱中有10件产品,其中2件次品,从中随机取3件,抽得的次品数为X,求

- $(1) \{X=0\}$ 即 "抽得的三件产品中全是正品" 的概率;
- (2) { X=1} 即 "抽得的三件产品中有一件次品" 的概率;
- $(3) \{X=2\}$ 即"抽得的三件产品中两件是次品"的概率。 $(3) \{X=2\}$ 可以 $(3) \{X=2\}$ 可以 (

$$P(X=0) = \frac{C_8^3}{C_{10}^3} = \frac{7}{15}$$

$$P(X=1) = \frac{C_2^1 C_8^2}{C_{10}^3} = \frac{7}{15}$$

$$P(X=2) = \frac{C_2^2 C_8^1}{C_{10}^3} = \frac{1}{15}$$

2、分球入盒问题

例4:设有n个球等可能落入N个盒子里(N>n),求

- (1)在n个指定的盒子里各有一个球的概率?
- (2) n个球落入任意n个盒子里中的概率?

解:设A: n个指定的盒子里各有一个球;

B:任意n 个盒子里中各有一只球

$$N(\Omega) = N^n$$
 $N(A) = n!$

$$P(A) = \frac{n!}{N^n}$$
 $P(B) = \frac{C_N^n n!}{N^n} = \frac{N!}{N^n (N-n)!}$

3.分组问题

例5 30名学生中有3名运动员,将这30名学生平均分成3组,求:

- (1)每组有一名运动员的概率;
- (2)3名运动员集中在一个组的概率。

设A:每组有一名运动员;B: 3名运动员集中在一组

$$N(\Omega) = C_{30}^{10} C_{20}^{10} C_{10}^{10} = \frac{30!}{10! \ 10! \ 10!}$$

$$P(A) = \frac{3! \frac{27!}{9! \ 9! \ 9!}}{N(\Omega)} = \frac{50}{203} \qquad P(B) = \frac{3 \times C_{27}^7 C_{20}^{10} C_{10}^{10}}{N(\Omega)}$$

- 4 随机取数问题
- 例6从1到200这200个自然数中任取一个,
- (1)求取到的数能被6整除的概率;
- (2)求取到的数能被8整除的概率;
- (3)求取到的数既能被6整除也能被8整除的概率.

解:
$$N(\Omega) = 200$$
 $N(1)=[200/6]=33$,

$$N(2)=[200/8]=25$$
 $N(3)=[200/24]=8$

(1),(2),(3)的概率分别为:33/200,1/8,1/25

三几何概率

设样本空间为有限区域 Ω , 若样本点落入 Ω 内任何区域 A 中的概率与区域 A 的测度成正比,则样本点落入 A 内的概率为

$$P(A) = \frac{A$$
的测度 Ω 的测度

例7(约会问题) 两人相约7:00-8:00在某地见面,先到的一人等待另一人20分钟,这时就离去,试求两人能会面的概率.

解以x, y分别记两人到达的时刻,则两人能见到面的充分必要条件为

$$|x - y| \le 20$$

这是一个几何概率问题,可能的结果为边长为60的正方形里的点,能会面的点为在区域中阴影部分。因此所求概率为

$$p = \frac{60^2 - 40^2}{60^2} = \frac{5}{9}$$

几何概率的性质可概括如下

- 口 非负性: $\forall A \subset \Omega$, $P(A) \geq 0$
- □ 规范性: $P(\Omega) = 1$
- □ 可列可加性:事件 *A₁, A₂, ··· , A₂, ···* 两两互不相容。

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

概率的公理化定义与性质

概率的公理化理论由前苏联数学家柯尔莫哥洛夫1933年建立.

柯尔莫哥洛夫

(А. Н. Колмогоров1903-1987)

俄国数学家 1939年任苏联科学院院 士.先后当选美,法,意,荷,英, 德 等国的外籍院士 及皇家 学会会员. 为 20 世纪最有影响的俄国数学家.

一、定义

设 Ω 是随机试验 / 的样本空间, 若能找到 一个法则,使得对于7的每一事件A,总有唯一确

定的实数P(A)与之对应, 且P(A)满足

- 1. 非负性: $\forall A \subset \Omega, P(A) \geq 0$
- 2. 规范性: $P(\Omega) = 1$ 3. 可列可加性: $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$

其中 A_1, A_2, \cdots 为两两互不相容事件,

P(A)称为事件A的概率。

P(A)是事件A的函数,自变量为事件A,其定义域为 $\{A \mid A \subset \Omega\}$ 值域为 [0,1].

二、概率的性质

性质1 $P(\phi)=0$

性质2 (有限可加性) 设 $A_1, A_2, \cdots A_n$ 两两互不

相容,则
$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

性质3
$$P(A) + P(\overline{A}) = 1$$

性质4 (可减性)
$$A \subset B \Rightarrow P(B-A) = P(B) - P(A)$$

(单调性)
$$A \subset B \Rightarrow P(A) \leq P(B)$$

性质5. (加法公式) 对任意两个事件A, B, 有

$$P(A \cup B) = P(A) + P(B) - P(AB)$$
 加法公式

$$P(A \cup B) \le P(A) + P(B)$$

推广:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

$$-P(AB) - P(AC) - P(BC)$$

$$+ P(ABC)$$

一般:

加法公式

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j) + \sum_{i=1}^{n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) - \sum_{1 \le i < j \le n} P(A_i A_j) + \sum_{i=1}^{n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) - \sum_{1 \le i < j \le n} P(A_i A_j) + \sum_{1 \le i \le n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) - \sum_{1 \le i \le n} P(A_i A_j) + \sum_{1 \le i \le n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) - \sum_{1 \le i \le n} P(A_i A_j) + \sum_{1 \le i \le n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) + \sum_{1 \le i \le n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) + \sum_{1 \le i \le n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) + \sum_{1 \le i \le n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) + \sum_{1 \le i \le n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) + \sum_{1 \le i \le n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) + \sum_{i=1}^{n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) + \sum_{i=1}^{n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) = \sum_{i=1}^{n} P(A_i A_i) + \sum_{i=1}^{n} P(A_i A_i) = \sum_{i=1}^{n} P($$

$$+ \sum_{1 \le i < j < k \le n}^{n} P(A_i A_j A_k) + \dots + (-1)^{n-1} P(A_1 A_2 \dots A_n)$$

例1 对任意两个事件A, B,有

$$P(B-A) = P(B) - P(AB)$$

也可以利用

$$B = AB + (B - A)$$

应用性质2

$$P(B) = P(AB) +$$

$$P(B-AB)$$

$$B - A = B - AB$$

$$B = AB + \overline{A}B$$

例2 P(A)=1/4, P(B)=1/2, 就下列三种情况 (1)A与B互不相容; (2) $A \subset B$

$$(3) P(AB) = 1/8$$

 $\mathbf{p}(1)$ 由于A与B不相容,即 $AB = \phi$

$$\overline{A} \supset B$$
 $B - A = B\overline{A} = B$

$$P(B-A)=P(B)=1/2$$

(2)
$$P(B - A) = P(B) - P(A) = \frac{1}{4}$$

应用例1

(3)
$$P(B - A) = P(B) - P(AB) = \frac{3}{8}$$

作业:一只口袋中有45只白球,5只黑球,今从中任取3只球,求其中有黑球的概率.

