More detailed table/chart data

Ecological Protection Law_Enforcement/Supervision

Figure-1 Proportion of different types of China's EP policies (2015-2025)

Water Environment Treatment —— Pollution Control

Low Carbon Emissions

• Hypothesis test result: h=True means the null hypothesis (no trend) is **rejected**.

2. ** h=np.True_ **

relationship).

7. ** var s=162.0 **

8. ** slope=0.0389 **

6. ** s=52.0 **

- o There is significant evidence of a trend in the data.
- 3. ** p=6.15e-05 **
- p-value (extremely small: ~0.0000615).
- Indicates strong statistical significance (p < 0.05 is typically considered significant). The probability of
- observing this trend by chance is nearly 0. 4. ** z=4.007 **
- **Z-score**, a measure of trend strength and direction.
- A large positive value (4.007) confirms a strong upward trend. Negative values would indicate a downward trend.
- 5. ** Tau=0.945 ** • Kendall's Tau coefficient (ranges from -1 to 1).
- Values close to **+1** indicate near-perfect agreement in upward trend (very strong monotonic

• **Sen's slope** (non-parametric estimate of trend magnitude).

1.5

24

0.8

3.2

2.1

5.8

0.5

38

120

TOPSIS Test Result generated by Python

 $\mathbf{D_{i^+}}$

0.099

52

Industrial Upgrades

Renewable Energy

Afforestation

Measure

Afforestation

Analysis of Each Measure:

• D+ = 0.099 (very close to the ideal solution).

• **Ci** = **0.748** (highest among all measures).

• D- = 0.293 (relatively far from the non-ideal solution).

• **D+ = 0.270** (farther from ideal than Afforestation).

• **D-** = **0.099** (very close to the non-ideal solution).

1. Afforestation

2. Renewable Energy

• **Ci = 0.268** (lowest Ci value).

• Indicates the variable increases by ~0.0389 units per time step on average.

• Represents the estimated baseline value at the start of the time series.

• **Test statistic S**. Positive values suggest increasing trends. • Represents the number of concordant pairs minus discordant pairs in the data.

• Variance of S, used to calculate the Z-score. Larger datasets or more variability may increase this value.

截图(Alt + A)

- 9. ** intercept=0.0556 ** • Intercept of the trend line (if modeled as a linear relationship: y = slope * x + intercept).

Figure-2 Comparison Table of Emission Reduction Effects and Costs of China's Major Low Carbon Policy Measures (2013-2023)

■ Cost-Effectiveness Ratio (CNY/Ton

■ Cumulative Emission Reduction (Billion

Annual Actual Emission Reduction (Billion

 C_{i}

0.748

CO₂·Year)

Tons CO₂)

Tons CO₂)

■ Total Cost (Trillion CNY)

■ Unit Cost (CNY/Ton CO₂)

800

 $\mathbf{D_{i-}}$

0.293

8 Transportation Electrification 1.2

333

404

500

Renewable Energy 0.2700.0990.268 0.426 0.346 **Industrial Upgrades** 0.225**Transportation** 0.426 0.000 0.000Electrification **Key Terms: D+ (Distance from Ideal Solution)**: Measures how far a solution is from the "best possible" scenario (lower = better). • D- (Distance from Non-Ideal Solution): Measures how far a solution is from the "worst possible" scenario (higher = better).• Ci (Closeness Index): Ranges from 0 (worst) to 1 (best). Calculated as Ci = D- / (D+ + D-). Higher Ci values indicate better overall performance.

- Ci = 0.000 (lowest possible score).

2012

Area

(hectares)

1000000

2000

6600

1000

300000

200000

Regression Analysis Result generated by SPSS

Afforestation area (10000) 300 200 100

2010

Project/Cooperation

Content

China-Africa "Green

Great Wall" Initiative

China-Kazakhstan

Border Afforestation

China-Mongolia

Desertification Control

Dubai Desert Greening

Pilot Project

Laos/Cambodia

Economic Forest

Plantation

Eucalyptus Plantations

by Chinese Firms

 $\beta_1 = 11.87$ (million hectares/year),

• Conclusion: Weakest performance (poor balance between D+ and D-). 3. Industrial Upgrades • **D+** = **0.426** (farthest from ideal). • **D-** = **0.225** (moderate distance from non-ideal). • **Ci** = **0.346** (second-highest Ci). • Conclusion: Moderate performance, but significantly worse than Afforestation. 4. Transportation Electrification • **D+ = 0.426** (same as Industrial Upgrades). • **D- = 0.000** (directly overlaps with the non-ideal solution).

Conclusion: Worst-performing option (identical to the non-ideal scenario).

Figure-3 Changes in annual afforestation area in China (2010-2021)

2014

2016

Year

Partners/Implementing

Entities

China and African Union

Chinese Academy of

Sciences and Kazakh

institutions

China Green Foundation

and partners

Chinese firms and Dubai

Government

Chinese agricultural

enterprises

Chinese paper companies

2018

2020

Data Sources

China National Forestry and Grassland

Administration (2021), AU Green Wall

Progress Report

Northwest Institute of Eco-Environment

and Resources, CAS (2021)

China Green Foundation Annual Report

(2023), Mongolia Ministry of

Environment

The National (UAE, 2023), Qingdao

Seawater Rice R&D Center Agreement

World Bank Report on SE Asia

Forestry (2020), China Ministry of

Commerce

Brazilian Tree Industry Report (2020),

APP Sustainability Report

Figure-4 Newly added

Global Green Area Contributions (2019)

Others

58%

China

42%

2022

• Conclusion: Best-performing option (closest to ideal and farthest from non-ideal).

4. Transportation Electrification (Ci = 0.000)

800

700

2008

Country/R

egion

Africa

Kazakhsta

Mongolia

UAE

Southeast

Asia

Brazil

p = 0.0041

(context-dependent).

effect on the dependent variable.

3. Correlation Coefficient (r = 0.76)

2. p-value = 0.0041

Conclusion:

• Conclusion:

r = 0.76

Ranking (Best to Worst):

1. Afforestation (Ci = 0.748)

2. Industrial Upgrades (Ci = 0.346)

3. Renewable Energy (Ci = 0.268)

Q...... 600 500 400

- 1. Regression Coefficient ($\beta_1 = 11.87$ million hectares/year) • Interpretation: For every 1-unit increase in the independent variable (e.g., time in years), the dependent variable (e.g., forest area, agricultural land, etc.) increases by an average of 11.87 million hectares per year. • Practical Implication: This indicates a strong positive relationship between the variables. For example, if
 - studying deforestation over time, β_1 = 11.87 might suggest a yearly loss of 11.87 million hectares of forest • **Interpretation**: The p-value tests the statistical significance of the regression coefficient (β_1). \circ Since **p < 0.05** (a common significance threshold), the independent variable has a **statistically significant** The extremely small p-value (0.0041) strongly rejects the null hypothesis (no relationship), meaning the

observed trend is highly unlikely to be due to random chance.

• The model explains $r^2 = 0.76^2 \approx 57.8\%$ of the variance in the dependent variable, meaning the independent variable accounts for 57.8% of its variability.

 \circ **r = 0.76** indicates a **strong positive correlation** (values range from -1 to +1).

3/19/2025 Jiaxi Huang 5670238

• Interpretation: Measures the strength and direction of the linear relationship between variables.