Lecture 5. Camera Models: Extrinsic Parameters ECEN 5283 Computer Vision

Dr. Guoliang Fan School of Electrical and Computer Engineering Oklahoma State University

Goals

To review the role of intrinsic parameters for geometric camera modeling.

To study the role of extrinsic parameters for geometric camera modeling.

▶ To introduce the camera projection matrix that incorporates both intrinsic and extrinsic parameters.

Geometric Camera Modeling: Intrinsic and Extrinsic Parameters

OKLANOMA

Normalized Image Plane

Figure 2.8 Physical and normalized image coordinate systems.

$$\begin{cases} \hat{u} = \frac{x}{z} \\ \hat{v} = \frac{y}{z} \end{cases} \begin{bmatrix} \hat{u} \\ \hat{v} \\ 1 \end{bmatrix} = \frac{1}{z} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \Leftrightarrow \hat{\mathbf{p}} = \frac{1}{z} (\mathbf{I} \quad 0) \mathbf{P} \end{cases} \text{ where } \begin{cases} \mathbf{P} = (x \quad y \quad z \quad 1)^T \\ \hat{\mathbf{p}} = (\hat{u} \quad \hat{v} \quad 1)^T \\ \mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{cases}$$
Perspective projection

Physical Retina of the Camera

Figure 2.8 Physical and normalized image coordinate systems.

$$\begin{cases} u = kf \frac{x}{z} \\ v = lf \frac{y}{z} \end{cases}$$
 where a pixel has dimension $\frac{1}{k} \times \frac{1}{l}$, f is the focal length. \Rightarrow Pixel coordinates
$$\begin{cases} u = \alpha \frac{x}{z} + u_0 \\ v = \beta \frac{y}{z} + v_0 \end{cases}$$

(assuming
$$\theta = \frac{\pi}{2}$$
)

1/l Pixel

 $\alpha = \frac{\pi}{2}$

$$\alpha = kf$$
 and $\beta = lf$

Affine Transformation Review

An affine transformation can differentially scale the data, skew it, rotate it, and translate it.

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{u} \\ \hat{v} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
s_u & 0 & 0 \\
0 & s_v & 0 \\
0 & 0 & 1
\end{pmatrix}$$
DIFFE

$$\begin{pmatrix} 1 & h_x & 0 \\ h_y & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & u_0 \\
0 & 1 & v_0 \\
0 & 0 & 1
\end{pmatrix}$$

Normalized Image Plan and Physical Retina: Revisited

Figure 2.8 Physical and normalized image coordinate systems.

$$\begin{cases} \hat{u} = \frac{x}{z} \\ \hat{v} = \frac{y}{z} \end{cases}$$
Affine Transformation
$$\begin{cases} u = \alpha \hat{u} - \alpha \cot \theta \hat{v} + u_0 \\ v = \frac{\beta}{\sin \theta} \hat{v} + v_0 \end{cases}$$

$$\alpha = kf, \beta = lf$$

Planar Affine Transformation

$$\mathbf{p} = \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \Rightarrow \begin{cases} u = \alpha \hat{u} - \alpha \cot \theta \hat{v} + u_0 \\ v = \frac{\beta}{\sin \theta} \hat{v} + v_0 \end{cases} \qquad \mathbf{\hat{p}} = \begin{pmatrix} \hat{u} \\ \hat{v} \\ 1 \end{pmatrix} \Rightarrow \begin{cases} \hat{u} = \frac{x}{z} \\ \hat{v} = \frac{y}{z} \end{cases}$$

$$(3D \text{ to } 2D \text{ perspective projection on the normalized image plane})$$

$$\mathbf{p} = K \hat{\mathbf{p}}, \qquad \mathbf{p} = K \frac{1}{z} (\mathbf{I} \quad 0) \mathbf{P}$$

$$\mathbf{p} = K \frac{1}{z} (\mathbf{I} \quad 0) \mathbf{P}$$

ORLAHOMA DINIVERSITY

Extrinsic Parameters

Let us consider the case where the camera frame (C) is distinct from the world frame (W). Noting that,

$$\begin{pmatrix} {}^{C}P \\ 1 \end{pmatrix} = \begin{pmatrix} {}^{C}R & {}^{C}O_{W} \\ \mathbf{0}^{T} & 1 \end{pmatrix} \begin{pmatrix} {}^{W}P \\ 1 \end{pmatrix},$$

$$\begin{pmatrix} {}^{C}P \\ 1 \end{pmatrix} = {}^{C}T \begin{pmatrix} {}^{W}P \\ 1 \end{pmatrix}, \text{ where } {}^{C}T = \begin{pmatrix} {}^{C}R & {}^{C}O_{W} \\ \mathbf{0}^{T} & 1 \end{pmatrix}$$

$$\mathbf{p} = \frac{1}{Z}M'\mathbf{P}',$$

$$\mathbf{p} = \frac{1}{Z}M'\mathbf{P}'$$

$$\mathbf{p} = \frac{1}{Z}M'\mathbf{T}\mathbf{P}$$

$$\mathbf{p} = \frac{1}{Z}M'\mathbf{T}\mathbf{P}$$

Projection Matrix: Definition

$$\mathbf{p} = \frac{1}{z} M 'T\mathbf{P} \text{ where } M' = \begin{pmatrix} K & \mathbf{0} \end{pmatrix} \text{ and } T = \begin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{pmatrix}.$$

$$\mathbf{p} = \frac{1}{z} M\mathbf{P} \text{ where } M_{3\times 4} = M 'T = K_{3\times 3} (R \mathbf{t})_{3\times 4}.$$

 $R = {}^{C}_{W}R$ is a rotation matrix;

 $\mathbf{t} = {}^{C}O_{W}$ is a translation vector;

$$\mathbf{P} = \begin{pmatrix} W_x \\ W_y \\ W_z \\ 1 \end{pmatrix}$$
 denotes the homogeneous coordinate vector of P is the frame W .

Projection Matrix: Depth Constraint

It is important to understand the the depth z is not independent of M and P.

$$\mathbf{p} = \frac{1}{z} M \mathbf{P} \text{ where } \mathbf{p} = \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \text{ and } M = \begin{pmatrix} \mathbf{m}_{1}^{T} \\ \mathbf{m}_{2}^{T} \\ \mathbf{m}_{3}^{T} \end{pmatrix}$$

What is this z?

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \frac{1}{z} \begin{pmatrix} \mathbf{m}_{1}^{T} \mathbf{P} \\ \mathbf{m}_{2}^{T} \mathbf{P} \\ \mathbf{m}_{3}^{T} \mathbf{P} \end{pmatrix} = \frac{1}{z} \begin{pmatrix} \mathbf{m}_{1} \cdot \mathbf{P} \\ \mathbf{m}_{2} \cdot \mathbf{P} \\ \mathbf{m}_{3} \cdot \mathbf{P} \end{pmatrix} \Rightarrow \begin{cases} z = \mathbf{m}_{3} \cdot \mathbf{P} \\ u = \frac{\mathbf{m}_{1} \cdot \mathbf{P}}{\mathbf{m}_{3} \cdot \mathbf{P}} \\ v = \frac{\mathbf{m}_{2} \cdot \mathbf{P}}{\mathbf{m}_{3} \cdot \mathbf{P}} \end{cases}$$

$$1 = \frac{\mathbf{m}_{3}^{T} \mathbf{P}}{z} \rightarrow \mathbf{m}_{3}^{T} \mathbf{P} = z$$
Computer Vision

Lecture 5. Camera Model: Extrin

Projection Matrix: Parameters

- A projection matrix is written explicitly as a function of both intrinsic and extrinsic parameters as follows
 - Five intrinsic parameters α , β , u_0 , v_0 , θ
 - ▶ Six extrinsic ones (three angles and three coordinates of t).

$$\mathbf{p} = \frac{1}{z} M \mathbf{P} \text{ where } M = K \begin{pmatrix} R & \mathbf{t} \end{pmatrix} K = \begin{pmatrix} \alpha & -\alpha \cot \theta & u_0 \\ 0 & \frac{\beta}{\sin \theta} & v_0 \\ 0 & 0 & 1 \end{pmatrix} R = \begin{pmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \mathbf{r}_3^T \end{pmatrix} \text{ and } \mathbf{t} = \begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix}$$

$$M = K(R \quad \mathbf{t}) = \begin{pmatrix} \alpha \mathbf{r}_{1}^{T} - \alpha \cot \theta \mathbf{r}_{2}^{T} + u_{0} \mathbf{r}_{3}^{T} & \alpha t_{x} - \alpha \cot \theta t_{y} + u_{0} t_{z} \\ \frac{\beta}{\sin \theta} \mathbf{r}_{2}^{T} + v_{0} \mathbf{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y} + v_{0} t_{z} \\ \mathbf{r}_{3}^{T} & t_{z} \end{pmatrix}_{3 \times 4}$$