TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

 $\ddot{\mathbf{U}}\mathbf{bungsklausur}$

Ferienkurs zu Mathematik für Physiker 1 (Lineare Algebra)

Modul PH 9992

29. März 2019, 10:15 - 11:45 Uhr

Laura Louis, Frederik Schnack

Beispiellösung

Aufgabe 1. Wahr oder Falsch? (1 + 1 + 1 + 1 + 1 + 1 = 6) Punkte)

Beantworten Sie die folgenden Fragen jeweils mit Ja oder Nein und begründen Sie Ihre Antwort. Antworten ohne Begründung werden, auch wenn sie korrekt sind, nicht gewertet.

- (a) Ist die Lösungsmenge eines inhomogenen linearen Gleichungssystems ein Vektorraum?
- (b) Sei $f: \mathbb{R} \to \mathbb{R}$ eine \mathbb{R} -lineare Abbildung. Ist dann f von der Form f(x) = ax für ein $a \in \mathbb{R}$?
- (c) Sind $\sqrt{2}$ und $\sqrt{3}$ linear unabhängig im \mathbb{Q} -Vektorraum \mathbb{R} ?
- (d) Sei $A \in \mathbb{R}^{n \times n}$ und alle Diagonaleinträge von A sind 0, d.h. $a_{ii} = 0 \ \forall i \in \{1, ..., n\}$. Kann $A \in GL_n(\mathbb{R})$ liegen?
- (e) Ist die Vereinigung zweier Unterräume stets ein Unterraum?
- (f) Sei V ein \mathbb{R} -Vektorraum und $U\subseteq V$ ein Unterraum von V. Seien weiter u_1,u_2 in V. Gilt folgende Äquivalenz

$$u_1, u_2 \in U \iff u_1 + u_2 \in U$$
?

<u>Lösung:</u>

(a) Nein.

Für ein inhomogenes lineares GLS der Form Ax = b mit $b \neq 0$ ist insbesondere x = 0 keine Lösung. Damit liegt x = 0 nicht in der Lösungsmenge und somit kann diese auch kein Vektorraum sein.

(b) Ja.

Eine verstärkte Version dieser Aussage wurde auf dem Übungsblatt 7 Hausaufgabe H22 bewiesen. Wir wiederholen das Argument:

Sei $x \in \mathbb{R}$. Dann gilt unter Verwendung der Linearität von f

$$f(x) = f(x \cdot 1) = x \cdot f(1).$$

Also existiert ein solches a = f(1), sodass $f(x) = a \cdot x$.

(c) Ja.

Wir führen einen Widerspruchsbeweis. Angenommen $\sqrt{2}$ und $\sqrt{3}$ sind linear abhängig über \mathbb{Q} , dann existiert ein $a \in \mathbb{Q}$ mit: $\sqrt{2} = a \cdot \sqrt{3}$.

Dieses a ist jedoch eindeutig bestimmt als $a = \frac{\sqrt{2}}{\sqrt{3}}$, doch $\frac{\sqrt{2}}{\sqrt{3}} \notin \mathbb{Q}$. Widerspruch zur Annahme! Also muss die Annahme falsch gewesen sein und $\sqrt{2}$ und $\sqrt{3}$ sind linear unabhängig über \mathbb{Q} .

(d) Ja

Die Matrix $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ besitzt nur Nullen als Diagonaleinträge. Gleichzeitig gilt $\det(A) = -1 \neq 0$ also ist A invertierbar und damit $A \in \mathrm{GL}_2(\mathbb{R})$.

(e) Nein.

Standardbeispiel: Betrachte zwei (unterschiedliche) Ursprungsgeraden als Unterraum des \mathbb{R}^2 , z.B. $U_1 = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle$ und $U_2 = \langle \begin{pmatrix} -1 \\ 1 \end{pmatrix} \rangle$. Deren Vereinigung ist kein Unterraum mehr, da diese nicht abge-

schlossen ist, denn z.B. gilt: $\begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \notin U_1 \cup U_2$.

(f) Nein.

Es gilt nur die eine Richtung der Äquivalenz. Die Richtung \Rightarrow gilt offensichtlicherweise, da U ein Unterraum. Die Richtung \Leftarrow gilt jedoch im Allgemeinen nicht, wie folgendes Beispiel zeigt: Sei $V = \mathbb{R}^2$ und $U = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle$. Seien $u_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in V$ und $u_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in V$. Dann gilt $u_1 + u_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in U$, aber $u_1 \notin U$ und $u_2 \notin U$.

Aufgabe 2. Darstellungsmatrizen (2 + 4 + 4 + 2 = 12 Punkte)

Seien

$$\mathcal{B} = \{b_1, b_2\} = \left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 2\\0 \end{pmatrix} \right\} \quad \text{und} \quad \mathcal{C} = \left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 0\\4 \end{pmatrix} \right\}$$

geordnete Basen des \mathbb{R}^2 .

(a) Geben Sie die Basiswechselmatrizen $T_{\mathcal{C}}^{\mathcal{B}}$ und $T_{\mathcal{B}}^{\mathcal{C}}$ an.

Sei $\mathcal{B}^* = \{b_1^*, b_2^*\}$ die Dualbasis zu \mathcal{B} .

- (b) Geben Sie die Darstellungsmatrix von b_1^* und b_2^* bezüglich der Basis $\mathcal{B} \subseteq \mathbb{R}^2$ und der Basis $\mathcal{D} = \{1\} \subseteq \mathbb{R}$ an.
- (c) Geben Sie die Darstellungsmatrix von b_1^* und b_2^* bezüglich der Basis $\mathcal{C} \subseteq \mathbb{R}^2$ und der Basis $\mathcal{D} = \{1\} \subseteq \mathbb{R}$ an.
- (d) Rechnen Sie die Gleichheit

$$M_{\mathcal{D}}^{\mathcal{B}}(b_1^*) = T_{\mathcal{D}}^{\mathcal{D}} \cdot M_{\mathcal{D}}^{\mathcal{C}}(b_1^*) \cdot T_{\mathcal{C}}^{\mathcal{B}}$$

nach und visualisieren Sie den Zusammenhang in einem Diagramm.

(e) Sind die Basiswechselmatrizen $T_{\mathcal{C}}^{\mathcal{B}}$ und $T_{\mathcal{B}}^{\mathcal{C}}$ invertierbar? Kurze Begründung

Lösung:

(a) Für die Basiswechselmatrix $T_{\mathcal{C}}^{\mathcal{B}}$ schreiben wir wir die Basisvektoren der Basis \mathcal{B} als Linearkombinationen der Basisvektoren aus \mathcal{C} :

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \frac{1}{4} \cdot \begin{pmatrix} 0 \\ 4 \end{pmatrix},$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} - 1 \cdot \begin{pmatrix} 0 \\ 4 \end{pmatrix}.$$

Somit ist die Basiswechselmatrix gegeben durch

$$T_{\mathcal{C}}^{\mathcal{B}} = \begin{pmatrix} 1 & 2 \\ -\frac{1}{4} & -1 \end{pmatrix}.$$

Analoge Vorgehensweise für $T_{\mathcal{B}}^{\mathcal{C}}$:

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{1}{2} \cdot \begin{pmatrix} 2 \\ 0 \end{pmatrix},$$

$$\begin{pmatrix} 0 \\ 4 \end{pmatrix} = 4 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 2 \cdot \begin{pmatrix} 2 \\ 0 \end{pmatrix}.$$

Als Basiswechselmatrix erhalten wir

$$T_{\mathcal{B}}^{\mathcal{C}} = \begin{pmatrix} 2 & 4 \\ -\frac{1}{2} & -2 \end{pmatrix}.$$

(b) Wir bestimmen die Bilder der Basisvektoren b_1 und b_2 unter b_1^* . Dazu schreiben wir die Elemente b_1 und b_2 als Linearkombination der Basisvektoren b_1 und b_2 . b_1^* bildet das entsprechende Element auf den Koeffizienten vor dem Basisvektor b_1 ab. Also gilt:

$$b_1^*(b_1) = 1,$$

$$b_1^*(b_2) = 0.$$

Die Darstellungsmatrix von b_1^* bezüglich der Basis $\mathcal{B} \subseteq \mathbb{R}^2$ und der Basis $\mathcal{D} = \{1\} \subseteq \mathbb{R}$ ist demnach gegeben durch

$$M_{\mathcal{D}}^{\mathcal{B}}(b_1^*) = (1,0) \in \mathbb{R}^{1 \times 2}.$$

Analoge Vorgehensweise für $M_{\mathcal{D}}^{\mathcal{B}}(b_2^*)$.

$$b_2^*(b_1) = 0,$$

$$b_2^*(b_2) = 1.$$

Also $M_{\mathcal{D}}^{\mathcal{B}}(b_2^*) = (0,1) \in \mathbb{R}^{1 \times 2}$.

(c) Wir gehen analog zu (b) vor. Wir schreiben die Basisvektoren c_1, c_2 als Linearkombination der Basisvektoren b_1, b_2 . Dies haben wir bereits in (a) getan! Demnach können wir die Bilder unter b_1^*, b_2^*

$$b_1^*(c_1) = 2,$$

$$b_1^*(c_2) = 4.$$

Wir erhalten

$$M_{\mathcal{D}}^{\mathcal{C}}(b_1^*) = (2,4) \in \mathbb{R}^{1 \times 2}.$$

Ebenso gilt

$$b_2^*(c_1) = -\frac{1}{2},$$

$$b_2^*(c_2) = -2.$$

Also $M_{\mathcal{D}}^{\mathcal{C}}(b_2^*) = (-\frac{1}{2}, -2) \in \mathbb{R}^{1 \times 2}$.

(d) Wir rechnen die Gleichheit mit den Ergebnissen der vorherigen Aufgaben nach:

$$M_{\mathcal{D}}^{\mathcal{B}}(b_1^*) = (1,0)$$

$$T_{\mathcal{D}}^{\mathcal{D}}\cdot M_{\mathcal{D}}^{\mathcal{C}}(b_1^*)\cdot T_{\mathcal{C}}^{\mathcal{B}}=1\cdot (2,4)\cdot \begin{pmatrix} 1 & 2\\ -\frac{1}{4} & -1 \end{pmatrix}=(1,0).$$

Also stimmt die Gleichheit! Das ganze kann in einem Diagramm analog zur Vorlesung visualisiert werden (siehe Besprechung).

(e) Die Invertierbarkeit kann man einfach durch Berechnung der Determinante prüfen. $\det(T_{\mathcal{C}}^{\mathcal{B}}) = -\frac{1}{2} \neq 0$. Also ist $T_{\mathcal{C}}^{\mathcal{B}}$ invertierbar. $\det(T_{\mathcal{B}}^{\mathcal{C}}) = -2 \neq 0$. Also ist auch $T_{\mathcal{B}}^{\mathcal{C}}$ invertierbar.

Bemerkung

Basiswechselmatrizen sind immer invertierbar, sonst könnten Basisvektoren nicht auf Basisvektoren abgebildet werden!

Aufgabe 3. Eigenwerte (2+2+2+1=7 Punkte)

Sei

$$A = \begin{pmatrix} 0 & 2 & -3 \\ -4 & 6 & -12 \\ -2 & 2 & -4 \end{pmatrix}.$$

- (a) Berechne das charakteristische Polynom von A.
- (b) Berechne die Eigenwerte von A über \mathbb{Q} .
- (c) Berechnen Sie Basen der Eigenräume von A über \mathbb{Q} .
- (d) Ist A diagonalisierbar über \mathbb{Q} ? Ist A triagonalisierbar über \mathbb{Q} ?

LÖSUNG:

- (a) Es gilt: $\chi_A(x) = \det(xI_3-A) = (x-2)(x^2+2)$.
- (b) Die einzige rationale Nullstelle von $\chi_A(x)$ ist 2. Die anderen Nullstellen liegen nicht in \mathbb{Q} und müssen/dürfen somit nicht angegeben werden.
- (c) Hier muss/darf ebenfalls nur der Eigenraum der einzigen rationalen Nullstelle bestimmt werden. Eig $(2, A) = \ker(2I_3 A) = \langle (1, 1, 0) \rangle$.
- (d) Die Matrix hat genau einen Eigenwert mit Vielfachheit 1 in \mathbb{Q} . Insbesondere zerfällt χ_A über \mathbb{Q} nicht in Linearfaktoren. Also ist A weder triagonalisierbar noch diagonalisierbar über \mathbb{Q} .

Aufgabe 4. Kern und Bild. (1+2+2+1=6) Punkte

Gegeben ist die Matrix $C := \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \mathbb{R}^{3 \times 4}$. Die Matrix C kann als eine Matrixabbildung $\phi_C : \mathbb{R}^s \to \mathbb{R}^t, x \mapsto Cx$ betrachtet werden.

- a) Bestimmen Sie s und t.
- b) Welcher der folgenden Vektoren sind in $\operatorname{im}(\phi_C)$, welche nicht? Begründe.

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \\ 3 \end{pmatrix}.$$

- c) Bestimmen Sie ein von Null verschiedenes Element in ker(C).
- d) Ist ϕ_C eine injektive Abbildung? Ist ϕ_C eine surjektive Abbildung?

Lösung:

- a) Nach Definition der Matrixmultiplikation wird C mit Vektoren aus \mathbb{R}^4 multipliziert und liefert Vektoren in \mathbb{R}^3 . Folglich ist s=4 und t=3.
- b) Da $\phi_c: \mathbb{R}^4 \to \mathbb{R}^3$, müssen Vektoren im Bild im \mathbb{R}^3 liegen. Desweiteren ist bekannt, dass das Bild genau der Span der Spalten von C ist.
 - 1. $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$: Der Nullvektor liegt bei einer linearen Abbildung immer im Bild.
 - 2. $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$: Falsche Dimension, liegt also nicht im Bild.
 - 3. $\begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}$: Ist offensichtlich Linearkombination der Splaten, liegt somit im Bild.
 - 4. $\begin{pmatrix} 1 \\ -2 \\ 0 \\ 0 \end{pmatrix}$: Falsche Dimension, liegt nicht im Bild.
 - 5. $\binom{2}{3}$: Liegt nicht im Span der Spalten, da die letzte Zeile eine Nullzeile ist.
 - 6. $\begin{pmatrix} 2 \\ 1 \\ 0 \\ 3 \end{pmatrix}$: Falsche Dimension, liegt nicht im Bild.
- c) Der dritte Einheitsvektor $e_4 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ wird auf 0 abgebildet, liegt also im Kern.

7

d)	ϕ_C ist nicht injektiv, Komponente = 0 im	ist nicht injektiv, da der Kern nicht trivial ist. ϕ_C ist nicht surjektiv, da nur Vektoren mit letzten nponente = 0 im Bild liegen.		
			8	
			O	

Aufgabe 5. Unitärer Vektorraum. (5 Punkte)

Sei V ein unitärer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und sei $U = \{u_1, ..., u_k\} \subseteq V$ eine orthonormale Menge von Vektoren aus V.

Zeigen Sie: Für jeden Vektor $v \in V$ ist

$$w = v - \sum_{i=1}^{k} \langle u_i, v \rangle u_i$$

orthogonal zu jedem u_i .

<u>Lösung:</u>

Es ist für jedes j = 1, ..., k und $v \in V$

$$\langle w, u_j \rangle = \langle v - \sum_{i=1}^k \langle u_i, v \rangle u_i, u_j \rangle$$

$$= \langle v, u_j \rangle - \langle \sum_{i=1}^k \langle u_i, v \rangle u_i, u_j \rangle$$

$$= \langle v, u_j \rangle - \sum_{i=1}^k \langle \langle u_i, v \rangle u_i, u_j \rangle$$

$$= \langle v, u_j \rangle - \sum_{i=1}^k \overline{\langle u_i, v \rangle} \langle u_i, u_j \rangle$$

$$= \langle v, u_j \rangle - \sum_{i=1}^k \overline{\langle u_i, v \rangle} \delta_{i,j}$$

$$= \langle v, u_j \rangle - \overline{\langle u_j, v \rangle}$$

$$= \langle v, u_j \rangle - \langle v, u_j \rangle = 0.$$

Aufgabe 6. Lineare Unabhängigkeit. (6 Punkte)

Sei V ein \mathbb{R} -Vektorraum. Beweise:

- a) Seien $\{v_1, v_2\} \subset V$ linear unabhängig. Dann sind auch $\{v_1 + v_2, v_1 v_2\}$ linear unabhängig.
- b) Sei $B=\{b_1,b_2\}$ eine Basis von V. Sei weiter $f:V\to V$ eine lineare Abbildung mit

$$f(b_1) = b_1 + b_2, \quad f(b_2)b_1 - b_2.$$

Dann ist f bijektiv.

<u>Lösung:</u>

a) Seien $\lambda, \mu \in \mathbb{R}$ mit:

$$\lambda(v_1 + v_2) + \mu(v_1 - v_2) = 0,$$

$$\iff (\lambda + \mu)v_1 + (\lambda - \mu)v_2 = 0.$$

Nach Vorraussetzung sind v_1 und v_2 linear unabhängig, also folgt daraus:

$$\lambda + \mu = 0$$
 und $\lambda - \mu = 0$.

Durch Addition der beiden Gleichungen erhält man $2\lambda = 0$, also = 0. Einsetzen in eine der beiden Gleichungen liefert auch $\mu = 0$. Also sind $\{v_1 + v_2, v_1 - v_2\}$ linear unabhängig.

b) Aus der Vorlesung ist bekannt, dass f bijektiv ist, wenn f eine Basis von V auf eine Basis von V abbildet. Die Dimension von V ist 2, da $\{b_1, b_2\}$ eine Basis von V ist. Außerdem sind b_1 und b_2 linear unabhängig und mit Aufgabenteil a) folgt, dass $b_1 + b_2$ und $b_1 - b_2$ linear unabhängig sind. Damit ist $\{b_1 + b_2, b_1 - b_2\}$ eine Basis von V und f bijektiv.