## Tutorato di Logica

Manuel Di Agostino



#### Qualche info utile

• Dove trovo le slide?





- Per qualsiasi domanda:
  - manuel.diagostino@studenti.unipr.it

# Logica proposizionale

## Connettivi logici di base: NOT

| p | q | $\neg p$ | $p \wedge q$ | $p \lor q$ |
|---|---|----------|--------------|------------|
| 1 | 1 | 0        | 1            | 1          |
| 1 | 0 | 0        | 0            | 1          |
| 0 | 1 | 1        | 0            | 1          |
| 0 | 0 | 1        | 0            | 0          |

## Connettivi logici di base: AND

| p | q | $\neg p$ | $p \wedge q$ | $p \lor q$ |
|---|---|----------|--------------|------------|
| 1 | 1 | 0        | 1            | 1          |
| 1 | 0 | 0        | 0            | 1          |
| 0 | 1 | 1        | 0            | 1          |
| 0 | 0 | 1        | 0            | 0          |

## Connettivi logici di base: OR

| p | q | $\neg p$ | $p \wedge q$ | $p \lor q$ |
|---|---|----------|--------------|------------|
| 1 | 1 | 0        | 1            | 1          |
| 1 | 0 | 0        | 0            | 1          |
| 0 | 1 | 1        | 0            | 1          |
| 0 | 0 | 1        | 0            | 0          |

## Alcuni capisaldi

• Principio del terzo escluso



• Principio di non contraddizione

| p | $\neg p$ | $\neg(p \land \neg p)$ |
|---|----------|------------------------|
| 0 | 1        | 1                      |
| 1 | 0        | 1                      |

**Tautologie** 

## Proprietà

commutativa

$$a \wedge b \equiv b \wedge a$$
 $a \vee b \equiv b \vee a$ 

associativa

$$egin{aligned} a \wedge b \wedge c &\equiv (a \wedge b) \wedge c \equiv a \wedge (b \wedge c) \ a ee b ee c &\equiv (a ee b) ee c \equiv a ee (b ee c) \end{aligned}$$

distributiva

$$egin{aligned} (a \wedge b) ee c &\equiv (a ee c) \wedge (b ee c) \ (a ee b) \wedge c &\equiv (a \wedge c) ee (b \wedge c) \end{aligned}$$

## Proprietà

• leggi di De Morgan

$$abla (a \wedge b) \equiv (\neg a \vee \neg b)$$
 $abla (a \vee b) \equiv (\neg a \wedge \neg b)$ 

Tutte queste proprietà si possono dimostrare utilizzando le tavole di verità (esercizio).

## Proposizione contronominale

Possiamo applicare le proprietà viste finora all'implicazione logica:

$$p \Rightarrow q \equiv \neg p \lor q$$

$$\equiv \neg p \lor \neg \neg q$$
 [idempotenza di  $\neg$ ]
$$\equiv \neg (\neg q) \lor \neg p$$
 [commutatività di  $\lor$ ]
$$\equiv \neg q \Rightarrow \neg p.$$

### Esercizi, tavole di verità

1. 
$$a \land (b \Rightarrow a)$$

2. 
$$(a \Rightarrow b) \land ((c \Leftrightarrow \neg a) \lor b)$$

3. 
$$(a \land (a \Rightarrow b)) \Rightarrow b$$

4. 
$$(a \Leftrightarrow a) \Rightarrow (b \Leftrightarrow \neg b)$$

#### Proviamo!

## Esercizio: proposizione dalla tabella di verità

| p | q | $p \implies q$ |
|---|---|----------------|
| 1 | 1 | 1              |
| 1 | 0 | 0              |
| 0 | 1 | 1              |
| 0 | 0 | 1              |

## Esercizio: proposizione dalla tabella di verità

| p           | q | $p \implies q$ |
|-------------|---|----------------|
| 1           | 1 | 1              |
| $\boxed{1}$ | 0 | 0              |
| 0           | 1 | (1)            |
| 0           | 0 | 1              |

$$(p \wedge q) ee (\neg p \wedge q) ee (\neg p \wedge \neg q) \equiv (\neg p ee q)$$

## Esercizio: equivalenza tra le due forme

$$(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q) \equiv (p \land q) \lor ((\neg p) \land (q \lor \neg q))$$

$$\equiv (p \land q) \lor (\neg p)$$

$$\equiv (p \lor \neg p) \land (q \lor \neg p)$$

$$\equiv (q \lor \neg p)$$

$$\equiv (\neg p \lor q) .$$

## Quantificatori: negazione

$$eg ( orall x . p(x) ) \equiv \exists x : \neg p(x) \ 
eg ( \exists x : p(x) ) \equiv orall x . 
eg p(x)$$

La prima equivale a esibire un controesempio per confutare un enunciato:

 "Il quadrato di un intero è sempre pari." → falso, esiste il numero 5 il cui quadrato è 25 (dispari).

#### Confutare le seguenti proposizioni:

- 1.  $\forall n.$  " $3n + 6 \ge 5n$ ", dominio intero
- 2.  $\forall n$ . " $10n^2 > n^3$ ", dominio intero
- 3.  $\forall n.$  " $-\frac{3}{56}n^2+2>e^{\frac{n^2}{577}}$ ", dominio intero \* In questi casi meglio farsi aiutare dal PC :)

# Insiemistica

## Definizione tramite proprietà

$$S := \{x : p(x)\} \equiv \forall x. (x \in S \Rightarrow p(x))$$

Si hanno inoltre le seguenti definizioni (sono proposizioni!):

$$orall x \in S. \ p(x) \equiv orall x. \ (x \in S \Rightarrow p(x))$$
  $\exists x \in S: p(x) \equiv \exists x: (x \in S \land p(x))$ 

Grazie ad esse possiamo dimostrare che:

$$eg ( orall x \in S. \, p(x) ) \equiv \exists x \in S: ( \neg p(x) ) \ 
eg ( \exists x \in S: p(x) ) \equiv \forall x \in S. \, ( \neg p(x) )$$