Problem 2

Ha Vu Anh

Let I_A, I_B, I_C be the A, B, C - Excenter of ABC respectively, W be the circumcenter of (II_BI_C) . We will prove: QT is the radical axis of (W) and (APD). Claim 1: Q lies on the radical axis of (W) and (APD).

Let QI cut (W) at S, the claim is equivalent to DISP being cyclic. Let I_AQ cut (W) at R, U such that R is nearer to I_A than U.

We can easily see that P lies on I_BI_C .

Let I_AP cut $(I_AI_BI_C)$ at VM be the midpoint of I_BI_C then it is well known that M, I, D, V are collinear and $\angle MVI_A = 90^\circ$

We have: Homothety center I_A , scaling factor 2 sends (ABC)to (W) therefore Q is the midpoint of I_AR and so $PI_A = PR$.

Also, consider an inversion about a circle at I_A with radius $\sqrt{I_A I \cdot I_A A}$. It sends $(ABC) \mapsto (W)$.

Therefore, it also sends $Q \mapsto U$ or $I_A Q \cdot I_A U = I_A I \cdot I_A A = I_A V \cdot I_A P$, which implies that VQUP is cyclic.

From this, we get $\angle UVP = \angle UQP = 90^{\circ} = \angle IVP$ or V, D, I, M, U are collinear.

Also, we have $\angle QSR = \angle VUQ = \angle VPQ = \angle QPR$ or QRSP is cyclic. Therefore $\angle VDP = \angle PAQ = \angle PRQ = \angle PSQ$, which yields that DISP being cyclic, as desired. Hence the claim is proved

Back to the main problem,

Since $AIBI_C$ is cyclic then $\overline{FI} \cdot \overline{FI_C} = \overline{FA} \cdot \overline{FB}$.

Therefore, E lies on radical axis of (W) and (O), similarly we get F lies on radical axis of (W) and (O).

Therefore, EF is the radical axis of (W) and (O).

Therefore T lies on radical axis of (W), (O) and (APD), (O),

which yields T lies on the radical axis of (W), (APD).

From the claim above we have Q lies on the radical of (W), (APD)

therefore QT is the radical axis of (W) and (APD).

This implies that $QT \perp WL$.

Let O' be the midpoint of IW then $O'R \parallel LW$, O' is the circumcenter of (IB'C') with B', C' being the midpoint of II_B, II_C .

Simple angle chasing yields O, O' are reflections wrt B'C', which is also the perpendicular bisector of AI. Since R, J are also reflection wrt the perpendicular bisector of AI, we get $\angle(OJ, AI) = \angle(O'R, AI) = \angle(LW, AI) = 90^{\circ} - \angle(AI, QT) = 90^{\circ} - \angle XZY$.

Therefore we get $\angle XZY = 90^{\circ} - \angle(OJ, AI) = \angle XYZ$ or XY = XZ.

Hence the problem is proved.