Нам нужно доказать, что паросочетание размера |L| существует \iff для любого A, подмножества L, верно: $|A| \leq |N(A)|$.

 \Longrightarrow :

Рассмотрим некоторое A — подмножество L. Существует паросочетание размера |L|, значит каждая вершина a_i из A соединена ребром из этого паросочетания с вершиной b_i из R, причём так как (a_i, b_i) — рёбра паросочетания, то все b_i различны. Так как $b_i \in N(A)$, то $|N(A)| \geqslant |A|$.

⇐= :

Рассмотрим максимальное паросочетание H, пусть его размер меньше |L|. Ориентируем рёбра в графе: если ребро (a,b) $(a \in A,b \in B)$ есть в паросочетании H, то ориентируем его как $(a \leftarrow b)$, иначе $(a \rightarrow b)$. Пусть a — вершина из L, не вошедшая в паросочетание. Запустим из неё dfs (в графе с ориентированными рёбрами), множество посещённых вершин обозначим за X, множество посещённых вершин из левой доли за X_L , правой — X_R . Если в X_R есть вершина не вошедшая в H, то мы нашли удлиняющую цепь, противоречие с выбором H. Значит все вершины из X_R входят в H, значит из каждой вершины r_i из X_R по ребру из R в L (которое входит в H) мы пройдём в вершину $l_i \in X_L$, причём все l_i различны и ни одна из них не совпадает с a. Также понятно, что так как в вершины X_L мы приходим только по обратным рёбрам из X_R , то $X_L \cup \{a\} == X_R$. Значит $|X_L| = |X_R| + 1$, но $|X_L| \leqslant |N(X_L)| = |X_R|$. Противоречие, значит размер H как раз и равен |L|.