A Short Introduction to Monte Carlo Methods in Financial Mathematics

Workshop Part 1

Dialid Santiago
VP Quantitative Strategist at Bank of America¹

©Quant_Girl
quantgirl.blog
https://github.com/quantgirluk/ICMM

October, 2022

5th International Conference on Mathematical Modelling Universidad Tecnológica de la Mixteca

《中》《圖》《意》《意》

 $^{^{1}}$ This talk represents the views of the author alone, and not the views of BofA Securities, Inc., Citigroup, or any of her previous employers.

Contents

1. Welcome

2. Basic Conceps

3. Stochastic Processes

Objectives

For the short course:

- Get you interested on financial mathematics and maybe on pursuing a career as a Quant after graduating or after postgraduate education
- Show you the type of problems we encounter so you can get a flavour of the job that quants
 do everyday. In particular, we aim to price an European option under the Black-Scholes
 model by two methods: obtaining the analytical formula, and using Monte Carlo
- Show you what kind of mathematical tools are required and illustrate how these concepts are translated into code in Python

For today:

- Recall concepts on Probaility and Stochastic Processes Theory
 - Random Variables, Stochastic Processes
 - Brownian Motion
 - ► Ito's formula
 - ► Geometric Brownian Motion
- See how these concepts are translated into code in Python
- Take a first look at financial time series in Python

3 / 13

Basic Concepts

Random Variables

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and (S, Σ) a measurable space. Then, an (S, Σ) random variable is a measurable function

$$X:\Omega\to S$$
,

which means that, for every subset $B \in \Sigma$, its pre-image is $\mathcal{F}-$ measurable, i.e.;

$$X^{-1}(B) \in \mathcal{F},$$

where

$$X^{-1}(B) = \{\omega : X(\omega) \in B\}.$$

- Tipically, $S = \mathbb{R}^d$ for some $d \ge 1$, and $\Sigma = \mathcal{B}(\mathbb{R}^d)$ is the corresponding Borel sigma-algebra.
- Examples
 - Discrete random variables: Bernoulli, Binomial, Poisson
 - Continuous random variables: Uniform, Gaussian, Log-normal, t-Student

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

DSR

Python Time

5 / 13

October, 2022

Stochastic Processes

Stochastic Process

For given probability space (Ω, \mathcal{F}, P) and measurable space (S, Σ) , a stochastic process is a collection of S-valued random variables

$${X_t: t \in I},$$

where the set I is called index set.

- Tipically, $S=\mathbb{R}^d$ for some $d\geq 1$ and $\Sigma=\mathcal{B}(\mathbb{R}^d)$ is the corresponding Borel sigma-algebra
- The index set can be discrete, e.g. $I=\mathbb{N}$, or continuous e.g. I=[0,T] for some $T\geq 0$.

DSR ICMM October, 2022 6 / 13

Stochastic Processes

Brownian Motion or Wiener process

A standard Brownian motion, or Wiener process, is a stochastic process $\{W_t : t \ge 0\}$ characterised by the following four properties:

- $W_0 = 0$
- $\mathbf{2}$ W_t has independent increments
- $W_t W_s \sim \mathcal{N}(0, t s)$ for any $0 \le s \le t$
- $\mathbf{4}$ W_t is almost surely continuous

Here $\mathcal{N}(\mu, \sigma^2)$ denotes the normal or Gaussian distribution with given mean μ and variance σ .

7 / 13

DSR ICMM October, 2022

Python Time

8 / 13

Ito's Lemma

Suppose that $X = \{X_t : t \ge 0\}$ is a stochastic process which satisfies the following stochastic differential equation (SDE)

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t, \qquad t \ge 0,$$

i.e.

$$X_t = X_0 + \int_0^t \mu(s,X_s) ds + \int_0^t \sigma(s,X_s) dW_s, \qquad t \geq 0,$$

where W denotes a standard Brownian motion. Let f(t, X) be a twice differentiable function. Then the process $Y = \{Y_t = f(t, X_t), t \ge 0\}$ satisfies the following SDE

$$df(t, X_t) = \left(\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{1}{2} \sigma_t^2 \frac{\partial^2 f}{\partial x^2}\right) dt + \sigma_t \frac{\partial f}{\partial x} dW_t,$$

i.e.

$$f(t, X_t) = f(0, X_0) + \int_0^t \left(\frac{\partial f}{\partial s} + \mu_s \frac{\partial f}{\partial x} + \frac{1}{2} \sigma_s^2 \frac{\partial^2 f}{\partial x^2} \right) ds + \int_0^t \sigma_s \frac{\partial f}{\partial x} dW_s, \qquad t \ge 0.$$

◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

ICMM October, 2022 9 / 13

Geometric Brownian Motion

A geometric Brownian motion is a stochastic process defined by the following SDE

$$dS_t = \mu S_t dt + \sigma S_t W_t, \quad t > 0, \tag{1}$$

where $S_0 = s_0 > 0$, $\mu \in \mathbb{R}$, $\sigma > 0$, are constants; and W is a standard Brownian motion.

Solution: Let us set a new process as $X_t = log(S_t)$. Using Ito's formula, we obtain

$$X_t = X_0 + \left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma W_t,$$

or equivalently

$$log(S_t) = log(s_0) + \left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma W_t.$$

Note that the last expression implies that $\log(S_t)$ follows a normal distribution

 $\mathcal{N}\left(\log(s_0) + \left(\mu - \frac{1}{2}\sigma^2\right)t, \sigma^2t\right)$. This, in turn implies that

$$S_t = s_0 \exp\left\{\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma W_t\right\}, \quad \forall t > 0,$$

follows a log-normal distribution.

4 D > 4 D > 4 E > 4 E > E 9 Q C

DSR ICMM October, 2022 10 / 13

Python Time

October, 2022

11 / 13

DSR

To finish this session let's take a look at financial time series in Python

DSR ICMM October, 2022 12 / 13

Many thanks for your attention See you tomorrow!

DSR ICMM October, 2022 13 / 13