Further Stochastic Differential Equations and Stochastic Integration

 W_t is a Brownian Motion (Wiener Process) and dW_t or dW(t) is its increment. $W_0 = 0$.

1. The change in a share price S(t) satisfies

$$dS = A(S, t) dW_t + B(S, t) dt,$$

for some functions A and B. If f = f(S, t), then Itô's lemma gives the following SDE

$$df = \left(\frac{\partial f}{\partial t} + B\frac{\partial f}{\partial S} + \frac{1}{2}A^2\frac{\partial^2 f}{\partial S^2}\right)dt + A\frac{\partial f}{\partial S}dW_t.$$

Can A and B be chosen so that a function g = g(S) has a change which has zero drift, but non-zero diffusion? State any appropriate conditions.

2. Show that $F(W_t) = \arcsin(2aW_t + \sin F_0)$ is a solution of the SDE

$$dF = 2a^2 (\tan F) (\sec^2 F) dt + 2a (\sec F) dW_t,$$

Ignore this problem

where F_0 and a is a constant. The following standard result may be used

$$\frac{d}{dx}\sin^{-1}ax = \frac{a}{\sqrt{1 - a^2x^2}}$$

3. Show that

$$\int_{0}^{t} W_{\tau} \left(1 - e^{-W_{\tau}^{2}} \right) dW_{\tau} = \overline{F} \left(W_{t} \right) + \int_{0}^{t} G \left(W_{\tau} \right) d\tau.$$

where the functions \overline{F} and G should be determined.

4. Consider the process

$$d(\log y) = (\alpha - \beta \log y) dt + \delta dW_t.$$

The parameters α , β , δ are constant. Show that y satisfies

$$\frac{dy}{y} = \left(\alpha - \beta \log y + \frac{1}{2}\delta^2\right)dt + \delta dW_t.$$

5. Show that

$$G_t = e^{t + ae^{W_t}}$$

is a solution of the stochastic differential equation

$$dG_t = G_t \left(1 + \frac{1}{2} (\ln G_t - t) + \frac{1}{2} (\ln G_t - t)^2\right) dt + G_t (\ln G_t - t) dW,$$

where a is a constant.

6. A spot rate r_t , evolves according to the popular form

$$dr_t = u(r_t) dt + \nu r_t^{\beta} dW_t, \tag{*}$$

where ν and β are constants. Suppose such a model has a **steady state transition probability density function** $p_{\infty}(r)$ that satisfies the forward Fokker Planck Equation. Show that this implies the drift structure of (*) is given by

$$u(r_t) = \nu^2 \beta r_t^{2\beta - 1} + \frac{1}{2} \nu^2 r_t^{2\beta} \frac{d}{dr} (\log p_{\infty}).$$