A integral e a integral de linha

Prof. Flavio Dickstein.

1 Introdução

Vamos pensar como Leibnitz, que criou os infinitésimos, com das seguintes propriedades:

- (i) Um infinitésimo dx satisfaz 0 < dx < s para todo s real positivo.
- (ii) A soma finita de infinitésimos é um infinitésimo. O produto fdx de um infinitésimo dx por um número real f é um infinitésimo.
- (iii) Mesmo a soma enumerável de infinitésimos é infinitesimal.
- (iv) Mas a soma de um contínuo de infinitésimos é um número real.

Se $x \in (a,b)$ e $f:(a,b) \to \mathbb{R}$, então f(x)dx é um infinitésimo. Mas a soma de f(x)dx para todo x dá, em geral, um número real

$$I = \int_{a}^{b} f(x) \, dx.$$

2 Integral de um campo escalar ao longo de uma curva

Suponha agora que $f: \mathbb{R}^2 \to \mathbb{R}$ e que $\gamma \subset \mathbb{R}^2$ seja uma curva.

Figura 1: Variação infinitesimal

Ao percorrer a curva γ , a contribuição infinitesimal df do segmento infinitesimal (s, s + ds) é df = f(s)ds. A soma total das contribuições é

$$\int f(s) \, ds.$$

A expressão da integral não faz muito sentido. Afinal, s é um vetor ou um escalar? Um sentido preciso aparece quando parametrizamos a curva.

Seja g(s) a parametrização pelo comprimento de arco. s varia de 0 a L, o comprimento de γ . A definição da integral é:

$$\int f(s) \, ds = \int_0^L f(g(s)) \, ds.$$

Agora a integral sobre uma curva está bem definida. Mas ela não é operacional, porque a parametrização raramente está disponível.

Se $\alpha(t)$ é uma outra parametrização **bijetora** de γ , com $t \in [a, b]$, então existe a função s(t) tal que $\alpha(t) = q(s)$. Usando mudança de variáveis, obtemos

$$\int f(s) ds = \int_0^L f(g(s)) ds = \int f(\alpha(t))s'(t) dt.$$

Estão faltando as extremidades na integral, que discutimos agora. Observe que

$$\alpha'(t) = q'(s)s'(t) \Longrightarrow |\alpha'(t)| = |q'(s)||s'(t)| = |s'(t)|,$$

pois g(s) é a parametrização por comprimento de arco. Há dois casos: suponha que s(a)=0 e s(b)=L. Isto significa que $s'(t)\geq 0$. Logo, $s'(t)=|\alpha'(t)|$. Neste caso, a integral fica

$$\int f(s) ds = \int_a^b f(\alpha(t)) |\alpha'(t)| dt.$$

Se s(a) = L e s(b) = 0, então $s'(t) \le 0$ e $s'(t) = -|\alpha'(t)|$. Neste caso, temos

$$\int f(s) ds = \int_b^a f(\alpha(t))(-|\alpha'(t)|) dt = \int_a^b f(\alpha(t))|\alpha'(t)| dt.$$

Portanto, nos dois casos temos a expressão

$$\int f(s) ds = \int_a^b f(\alpha(t)) |\alpha'(t)| dt, \qquad (2.1)$$

que é o que vamos usar.

Última observação: em nenhum lugar acima foi usado que estamos no plano \mathbb{R}^2 . Se f é um campo escalar em \mathbb{R}^N e a curva γ está em \mathbb{R}^N , nada muda.

3 Integral de linha

Considere agora um campo vetorial em \mathbb{R}^2 , $F: \mathbb{R}^2 \to \mathbb{R}^2$. A integral de linha de F ao longo de uma curva γ é definida como sendo a integral das componente tangenciais à curva de F. Se τ é um vetor tangencial unitário em certo ponto P da curva (há dois vetores assim), a componente tangencial F_{τ} vale $F_{\tau} = F \cdot \tau$. (A integral de linha também é dita do trabalho de F sobre γ .)

Figura 2: Campo F e campo tangencial

Usaremos a notação $\int_{\mathcal{L}} F \cdot dl$ para a integral de linha. Então,

$$\int_{\gamma} F \cdot dl = \int_{\gamma} F_{\tau} ds.$$

Façamos as contas. Se $\alpha(t)$ é uma parametrização de γ , então $\tau = \frac{\alpha'(t)}{|\alpha'(t)|}$, de modo que $F_{\tau}(\alpha(t)) = F(\alpha(t)) \cdot \frac{\alpha'(t)}{|\alpha'(t)|}$. (Supondo $\alpha'(t) \neq 0$). Usando (??), obtemos

$$\int_{\gamma} F \cdot dl = \int_{a}^{b} F(\alpha(t)) \cdot \frac{\alpha'(t)}{|\alpha'(t)|} |\alpha'(t)| dt = \int_{a}^{b} F(\alpha(t)) \cdot \alpha'(t) dt.$$

Uma observação importante é que a integral de linha **depende de modo como a curva é** percorrida:

Exercício 3.1. Se percorremos γ de A a B, ela terá um valor I. Se percorremos γ no sentido inverso, a integral de linha valerá -I. Mostre isto.

Um campo F é dito **conservativo** ou **gradiente** se existe uma função **escalar** $G: \mathbb{R}^2 \to \mathbb{R}$ tal que $F = \nabla G$. Mostramos no curso o seguinte resultado (para funções regulares).

Teorema 3.2. São equivalentes as seguintes afirmações:

- (i) F é conservativo.
- (ii) Se γ é uma curva percorrida de A a B, então $\int_{\gamma} F \cdot dl$ só depende de A e de B.
- (iii) Se γ é uma curva fechada, então $\int_{\gamma} F \cdot dl = 0$.

Além disso, se $F = \nabla G$, então $\int_{\gamma} F \cdot dl = G(B) - G(A)$.

Exercício 3.3. Refaça a demonstração do teorema.

Definimos ainda o **rotacional** de um campo $F = (F_1, F_2)$ como sendo

$$\nabla \times F = \partial_1 F_2 - \partial_2 F_1.$$

É fácil ver o seguinte.

Exercício 3.4. Se F é gradiente, então $\nabla \times F = 0$.

A recíproca é mais delicada, discutiremos isto no futuro.

Uma notação conveniente para a integral de linha aparece quando escrevemos

$$\int_a^b F(\alpha(t)) \cdot \alpha'(t) dt = \int_a^b F_1(\alpha(t)) \alpha_1'(t) + F_2(\alpha(t)) \alpha_2'(t) dt.$$

Definimos $\int_{\gamma} F_1 dx = \int_a^b F_1(\alpha(t))\alpha_1'(t) dt$ e $\int_{\gamma} F_2 dx = \int_a^b F_2(\alpha(t))\alpha_2'(t) dt$. Com esta notação, temos

$$\int_{\gamma} F \cdot dl = \int_{\gamma} F_1 \, dx + \int_{\gamma} F_2 \, dy. \tag{3.1}$$

Vejamos um exemplo de uso desta notação.

Exemplo 3.5. Seja $F(x,y)=(x^2+y,y^2+x)$ e γ a parte superior (y>0) do circulo unitário, indo de (-1,0) a (1,0). Vamos calcular $\int_{\gamma} F \cdot dl$. $\alpha(t)=(\cos t,\sin t)$, $t\in (-\pi,0)$ parametriza γ . Escrevemos $x(t)=\cos t$, $y(t)=\sin t$, $F_1=x^2+y$, $F_2=y^2+x$. Então, $dx=x'(t)dt=-\sin tt$ e $dy=y'(t)dt=\cos tdt$. Assim,

$$\int_{\gamma} F_1 dx + \int_{\gamma} F_2 dy = \int_{-\pi}^{0} [-(\cos^2 t + \sin t)\sin t + (\sin^2 t + \cos t)\cos t]dt.$$

Usando que $\cos^2 t - \sin^2 t = \cos 2t$, obtemos

$$\int_{\gamma} F_1 dx + \int_{\gamma} F_2 dy = \frac{1}{3} \cos^3 t + \frac{1}{3} \sin^3 t + \frac{1}{2} \sin 2t \Big|_{-\pi}^0 = \frac{2}{3}.$$

A integral de linha em \mathbb{R}^3 , e mesmo em \mathbb{R}^N , pode ser definida de forma inteiramente análoga ao caso do plano. Vejamos um exemplo.

Exemplo 3.6. Seja F(x,y,z)=(y+z,x+z,x+y) um campo em \mathbb{R}^3 e seja γ a espiral parametrizada por $\alpha(t)=(\cos t,\sin t,t),\ t\in(0,\pi),\ indo\ de\ (-1,0)\ a\ (1,0).$ Vamos calcular

$$\int_{\gamma} F \cdot dl = \int_{\gamma} F_1 dx + F - 2dy + F_3 dz.$$

Escrevemos $x(t) = \cos t$, $y(t) = \sin t$, z(t) = t, $F_1 = y + x$, $F_2 = x + z$, $F_3 = x + y$. Então, $dx = -\sin tt \ e \ dy = \cos t dt$, dz = dt. Assim,

$$\int_{\gamma} F_1 \, dx + \int_{\gamma} F_2 \, dy + F_3 \, dz = \int_0^{\pi} [-(\sin t + t)\sin t + (\cos t + t)\cos t + (\cos t + \sin t)] dt.$$

Resolvemos a integral usando que $\cos^2 t - \sin^2 t = \cos 2t$, e integrando $t \sin t$, $t \cos t$ por partes.

Encerramos esta seção observando que apenas a definição do rotacional é específica ao plano. Em \mathbb{R}^N o rotacional envolve todas as derivadas cruzadas. É fácil ver o seguinte. (No caso em que F é de classe C^1 .)

Exercício 3.7. Seja $F = (F_1, F_2, \dots, F_N)$ um campo gradiente, ou seja, da forma $F = \nabla G$. Então $\partial_j F_i - \partial_i F_j = 0$ para todo $1 \leq i, j \leq N$.

4 O fluxo de um campo através de uma curva

A integral de linha de um campo é uma soma das componentes tangenciais de um campo. Podemos somar as componentes **normais** de F. Se η é um vetor normal unitário (existem dois) a γ em um ponto P, a componente normal F_{η} é igual a $F \cdot \eta$. A integral de F_{η} é chamada do **fluxo** de f através de γ e é denotado por $\int_{\gamma} F \cdot d\eta$. Existe aqui a mesma ambiguidade que antes: há duas normais, como há duas tangentes. O fluxo dependerá da escolha da normal. Isto significa que **o fluxo dependerá da escolha da orientação normal da curva**. Mudando a escolha, o sinal da integral é invertido.

Figura 3: Campo F e campo normal

O cálculo do fluxo é simples. Se $F=(F_1,F_2)$ e $\tau=(\tau_1,\tau_2)$, então $\eta=(\tau_2,-\tau_1)$ ou $\eta=(-\tau_2,\tau_1)$. Suponha que a normal escolhida seja a primeira. Neste caso, $F\cdot\eta=F_1\eta_1+F_2\eta_2=$

 $F_1\eta_2 - F_2\eta_1$. Definindo $F^{\perp} = (-F_2, F_1)$, temos $F \cdot \eta = F^{\perp} \cdot \tau$. Portanto, o fluxo de F através γ é o trabalho de F^{\perp} ao longo de γ . Usando (3.1), temos

$$\int_{\gamma} F \cdot d\eta = \int -F_2 \, dx + F_1 \, dy.$$

O fluxo de um campo através de uma curva **não** se estende a \mathbb{R}^3 , pelo fato que a direção normal a uma curva não pode ser definida em \mathbb{R}^N para $N \geq 3$.

Exemplo 4.1. Considere o campo F(x,y)=(x,y) e γ o círculo unitário centrado na origem. Quanto vale a circulação $\oint_{\gamma} F \cdot dl$ e o fluxo $\int_{\gamma} F \cdot d\eta$?

É fácil saber as respostas sem fazer as contas, mas vamos fazê-las. É preciso definir uma direção tangencial τ e uma direção normal η . Vamos parametrizar γ por $\alpha(\theta) = (\cos \theta, \sin \theta)$, $\theta \in (0, 2\pi)$. Então, $F(\alpha(\theta)) = (\cos \theta, \sin \theta)$ e $\alpha'(\theta) = (-\sin \theta, \cos \theta)$, de modo que $F(\alpha(\theta)) \cdot \alpha'(\theta) = 0$. Portanto,

$$\int_{\gamma} F \cdot dl = \int_{0}^{2\pi} 0 \, d\theta = 0.$$

Observe que o vetor α' já é unitário (pois α é a parametrização pelo comprimento de arco) de modo que $\eta = (\cos \theta, \sin \theta)$ é uma normal possível. Neste caso $F(\alpha(t)) \cdot \eta(\alpha(t)) = 1$, de modo que

$$\oint_{\gamma} F \cdot d\eta = \int_{0}^{2\pi} 1 \, d\theta = 2\pi.$$

Estes dois resultados poderiam ter sido obtidos sem fazer contas, basta olhar a Figura 4 abaixo. O campo F é um campo radial (escrevemos $F(x,y)=r\vec{r}$, onde $r=\sqrt{x^2+y^2}$ e $\vec{r}=\frac{1}{r}(x,y)$ é o vetor unitário normal.) Portanto, em cada ponto do círculo a componente tangencial F_{τ} vale zero e a componente normal F_{η} vale 1. Com isto, temos o resultado. Além disso, F é um campo conservativo, pois é fácil ver que $G(x,y)=\frac{1}{5}(x^2+y^2)$. Então, a integral de linha de F ao longo de qualquer curva fechada (circulação de F) vale zero.

Figura 4: Campo radial

Exemplo 4.2. Considere agora o campo $F^{\perp} = (-y, x)$, que é um campo ortogonal ao do exemplo anterior. Então, a integral de linha de F vira o fluxo de F^{\perp} e o fluxo de F vira a integral de linha de F^{\perp} . Portanto, se γ é o círculo unitário, $\int_{\gamma} F^{\perp} \cdot dl = 2\pi$ e $\oint_{\gamma} F^{\perp} \cdot \eta = 0$.

Na verdade, o fluxo de F^{\perp} através de **qualquer** curva fechada vale zero, porque a circulação de F em qualquer curva fechada é zero. Isto tem um significa físico, ou geométrico: o total de campo que está entrando em γ é igual ao que está saindo de γ . (Tudo que entra, sai.) No caso de F, esta conta não está balanceada. (Entra mais do que sai, ou sai mais do que entra.) Se o fluxo de F através de toda curva fechada é zero, F é dito um **campo incompressível**.

Figura 5: Fluxo através de curvas

Se $F=(F_1,F_2)$ é incompressível, então $F^{\perp}=(-F_2,F_1)$ é conservativo. Logo,

$$\nabla \times F^{\perp} = \partial_1 F_1 - \partial_2 (-F_2) = \partial_1 F_1 + \partial_2 F_2 = 0.$$

Definimos o **divergente** de um campo F como $\nabla \cdot F = \partial_1 F_1 + \partial_2 F_2$. Então, se F é incompressível, seu divergente é nulo. (Pensando $(\partial_1, \partial_2) \cdot (F_1, F_2)$ como um produto interno.) A recíproca é (quase) verdade. Veremos mais tarde.