

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

LVQ Neural Network Parameter	Design Value
Input Signals	MCC_PC_AVG (PC_CNTL_REF – MCC_PC_AVG) (ΔPC_CNTL_REF / ΔTIME)
Number of Classes	9 (one for each operating mode defined in Figure 21)
Number of Output Nodes per Class (N _{class})	8 (for each operating mode)
Learning Algorithm	LVQ2.1
Maximum Number of Epochs (neps)	250
Initial Value of the Learning Rate (λ ₀)	0.02
Window Size (ε)	0.5
Number of Training Vector Pairs (n _{LVQ})	500

Figure 17

SSME Signal Parameter ID	SSME Signal Parameter Name
PID40	OPOV_ACT_POS_A
PID42	FPOV_ACT_POS_A
PID52	HPFP_DS_P_A
PID58	FPB_PC_A
PID63	MCC_PC_AVG
PID90	HPOP_DS_P
PID100	FUEL_FLOW_AVG
PID105	HPFT_DS_T_A2
PID106	HPFT_DS_T_A3
PID107	HPFT_DS_T_B2
PID108	HPFT_DS_T_B3
PID200	MCC_PC_A_AVG
PID201	MCC_PC_B_AVG
PID205	HPOT_DS_T_A2
PID206	HPOT_DS_T_A3
PID207	HPOT_DS_T_B2
PID208	HPOT_DS_T_B3

Figure 18

Space Shuttle Flight ID	Engine Position
STS077	E2
STS078	E1
STS081	E3
STS082	E1
STS085	E1
STS085	E2
STS086	E2
STS087	E2
STS087	E3
STS090	E1

Figure 19

Model Description	Number of Signals	Modeled Operating Modes	Number of Process Mem Vectors	Parameter Estimation Method	Fault Detection Method
LVQ mode- partitioned (Model PD)	17 (defined in Figure 18)	Start01 Start12 Start24 SteadyFull SteadyLow Upthrust Downthrust	150 150 150 150 150 150 150	MSET	SPRT mean pos & neg
All-modes (Model A150)	17 (same)	All	150	MSET	SPRT mean pos & neg
All-modes (Model A300)	17 (same)	All	300	MSET	SPRT mean pos & neg

Figure 20

Mode Name	Operating Mode Criteria
PREFIRE	All observations preceding the vehicle start command to the engine. Considered a non-operating mode.
START01	Controller cycles 0 through 24 after receipt of the engine start command.
START12	Controller cycles 25 through 49 after receipt of the engine start command.
START24	Controller cycle 50 through detection of steady-state operation (typically at controller cycle ~110). The rule for transition to STEADY_FULL is: If in START24 and if PC_CNTL_REF - MCC_PC_AVG <= (5 * 3.35), and PC_CNTL_REF >= 2500 transition to STEADY_FULL
STEADY_FULL	STEADY_FULL is declared when either: 1) the last cycle's state was STEADY_FULL and the commanded PC is both unchanged and greater than 2500 psi, e.g., PC_CNTL_REF -LAST_PC_CNTL_REF < 3.35 and PC_CNTL_REF >= 2500; or 2) when the last cycle's state was a transient state and PC_CNTL_REF - MCC_PC_AVG <= (5 * 3.35) and PC_CNTL_REF >= 2500.
STEADY_LOW	STEADY_LOW is declared when either: 1) the last cycle's state was STEADY_LOW and the commanded PC is both unchanged and less than 2500 psi, e.g., PC_CNTL_REF -LAST_PC_CNTL_REF < 3.35 and PC_CNTL_REF < 2500; or 2) when the last cycle's state was a transient state and PC_CNTL_REF - MCC_PC_AVG <= (5 * 3.35) and PC_CNTL_REF < 2500.
UPTHRUST	UPTHRUST is declared when 1) the commanded PC has increased since the last cycle, and 2) PC_CNTL_REF – MCC_PC_AVG > (5 * 3.35)
DOWNTHRUST	DOWNTHRUST is declared when 1) the commanded PC has decreased since the last cycle, and 2) PC_CNTL_REF – MCC_PC_AVG > (5 * 3.35)
SHUTDOWN	All observations following the vehicle shutdown command to the engine. Considered a non-operating mode.

Figure 21

Test No.	Test Description	Sensor Failures	One Cycle Alarms	Total Avg Error %	Avg Cycle Time
PD-01	STS077E1. Nominal flight data.	0	2	0.408%	4.88 msec
PD-02	STS077E2. Nominal flight data.	0	0	0.217%	4.90 msec
PD-03	STS078E1. Nominal flight data.	0	0	0.352%	4.98 msec
PD-04	STS078E2. Nominal flight data.	0	1	0.296%	4.94 msec
PD-05	STS081E1. Nominal flight data.	0	2	0.400%	5.01 msec
PD-06	STS081E3. Nominal flight data.	0	0	0.281%	5.07 msec
PD-07	STS082E2. Nominal flight data.	0	1	0.286%	4.96 msec
PD-08	STS085E3. Nominal flight data.	0	0	0.282%	4.98 msec
PD-09	STS086E2. Nominal flight data.	0	0	0.254%	5.02 msec
PD-10	STS087E2. Nominal flight data.	0	0	0.246%	5.02 msec
	Average for All Tests	0	1	0.302%	4.98 msec

Figure 22

T t No.	T st D scription	S nsor Failures	On Cycle Alarms	Tim to Detect	Error at Detect
PD-11	Drift PID40. 0.14 pct/sec beginning at 10.0 sec.	1 (PID40)	5	28.88 sec	2.8%
PD-12	Noise PID40. ±5 pct random beginning at 10.0 sec.	1 (PID40)	38	10.76 sec	A/N
PD-13	Drift PID42. 0.16 pct/sec beginning at 10.0 sec.	1 (PID42)	o	29.32 sec	2.9%
PD-14	Noise PID42. ±5 pct random beginning at 10.0 sec.	1 (PID42)	99	42.04 sec	N/A
PD-15	Drift PID52. 11.9 psi/sec beginning at 10.0 sec.	1 (PID52)	4	12.24 sec	2.4%
PD-16	Drift PID58. 10.2 psi/sec beginning at 10.0 sec.	1 (PID58)	5	9.44 sec	1.9%
PD-17	Drift PID90. 8.2 psi/sec beginning at 10.0 sec.	1 (PID90)	o,	8.12 sec	1.6%
PD-18	Drift PID100. 31.9 gpm/sec beginning at 10.0 sec.	1 (PID100)	5	12.12 sec	2.4%
PD-19	Drift PID105. 3.4 degR/sec beginning at 10.0 sec.	1 (PID105)	11	16.16 sec	3.2%
PD-20	Drift PID200. 6.3 psi/sec beginning at 10.0 sec.	1 (PID200)	4	3.40 sec	%2'0
PD-21	Drift PID205. 2.7 degR/sec beginning at 10.0 sec.	1 (PID205)	4	18.28 sec	3.7%
	Average for All Drift Tests			15.3 sec	3.1%

Figure 23

Test No.	Test Description	S_nsor Failures	One Cycl_ Alarms	Total Avg Error %	Avg Cycle Time
A150-01	STS077E1. Nominal flight data.	0	0	0.556%	5.27 msec
A150-02	STS077E2. Nominal flight data.	0	9	0.458%	5.28 msec
Å150-03	STS078E1. Nominal flight data.	0	0	0.593%	4.90 msec
A150-04	STS078E2. Nominal flight data.	0	0	0.396%	5.28 msec
A150-05	STS081E1. Nominal flight data.	0	0	0.685%	4.67 msec
A150-06	STS081E3. Nominal flight data.	0	0	0.480%	4.77 msec
A150-07	STS082E2. Nominal flight data.	1 (PID58) False Alarm	13	0.720%	5.28 msec
A150-08	STS085E3. Nominal flight data.	0	0	0.519%	4.73 msec
A150-09	STS086E2. Nominal flight data.	0	0	0.410%	4.77 msec
A150-10	STS087E2. Nominal flight data.	0	0	0.399%	5.22 msec
	Average for All Tests	0	2	0.522%	5.02 msec

Figure 24. Comparative Results

Test No.	Test Description	S nsor	One Cycl	Time to	Error at
		Failures	Alarms	Detect	Detect
A150-11	Drift PID40. 0.14 pct/sec beginning at 10.0 sec.	1 (PID40)	19	125.68 sec	25.1%
A150-12	Noise PID40. ±5 pct random beginning at 10.0 sec.	1 (PID40)	12	95.04 sec	N/A
A150-13	Drift PID42. 0.16 pct/sec beginning at 10.0 sec.	1 (PID42)	12	154.92 sec	31.0%
A150-14	Noise PID42. ±5 pct random beginning at 10.0 sec.	0 (Missed Alarm)	0	Missed Alarm	N/A
A150-15	Drift PID52. 11.9 psi/sec beginning at 10.0 sec.	1 (PID52)	4	27.40 sec	5.5%
A150-16	Drift PID58. 10.2 psi/sec beginning at 10.0 sec.	1 (PID58)	9	18.92 sec	3.8%
A150-17	Drift PID90. 8.2 psi/sec beginning at 10.0 sec.	1 (PID90)	4	60.32 sec	12.1%
A150-18	Drift PID100. 31.9 gpm/sec beginning at 10.0 sec.	2 (PID100) & (PID58 False Alarm)	23	43.24 sec	8.6%
A150-19	Drift PID105. 3.4 degR/sec beginning at 10.0 sec.	1 (PID105)	10	46.20 sec	9.2%
A150-20	Drift PID200. 6.3 psi/sec beginning at 10.0 sec.	1 (PID200)	4	22.72 sec	4.5%
A150-21	Drift PID205. 2.7 degR/sec beginning at 10.0 sec.	1 (PID205)	8	89.04 sec	17.8%
	Average for All Drift Tests			65.4 sec	13.1%

Figure 25. Comparative Results

Test No.	Test Description	Sensor Failures	One Cycle Alarms	Total Avg Error %	Avg Cycle Time
A300-01	STS077E1. Nominal flight data.	0	0	0.488%	17.84 msec
A300-02	STS077E2. Nominal flight data.	0	0	0.379%	17.75 msec
A300-03	STS078E1. Nominal flight data.	0	0	0.424%	19.40 msec
A300-04	STS078E2. Nominal flight data.	0	0	0.359%	19.02 msec
A300-05	STS081E1. Nominal flight data.	0	0	0.633%	17.69 msec
A300-06	STS081E3. Nominal flight data.	0	0	0.501%	17.80 msec
A300-07	STS082E2. Nominal flight data.	0	0	0.620%	19.01 msec
A300-08	STS085E3. Nominal flight data.	0	2	0.521%	17.73 msec
A300-09	STS086E2. Nominal flight data.	0	1	0.340%	17.78 msec
A300-10	STS087E2. Nominal flight data.	0	0	0.319%	18.10 msec
	Average for All Tests	0	0	0.458%	18.21 msec

Figure 26. Comparative Results

Test No.	Test Description	Sensor Failures	One Cycle Alarms ¹	Time to Detect	Error at Detect
A300-11	Drift PID40. 0.14 pct/sec beginning at 10.0 sec.	1 (PID40)	39	138.80 sec	27.8%
A300-12	Noise PID40. ±5 pct random beginning at 10.0 sec.	0 (Missed Alarm)	2	Missed Alarm	W/A
A300-13	Drift PID42. 0.16 pct/sec beginning at 10.0 sec.	1 (PID42)	26	139.08 sec	%8′22
A300-14	Noise PID42. ±5 pct random beginning at 10.0 sec.	0 (Missed Alarm)	2	Missed Alarm	A/N
A300-15	Drift PID52. 11.9 psi/sec beginning at 10.0 sec.	1 (PID52)	6	26.04 sec	2.5%
A300-16	Drift PID58. 10.2 psi/sec beginning at 10.0 sec.	1 (PID58)	8	16.92 sec	3.4%
A300-17	Drift PID90. 8.2 psi/sec beginning at 10.0 sec.	1 (PID90)	9	58.12 sec	11.6%
A300-18	Drift PID100. 31.9 gpm/sec beginning at 10.0 sec.	1 (PID100)	ō	23.36 sec	4.7%
A300-19	Drift PID105. 3.4 degR/sec beginning at 10.0 sec.	1 (PID105)	9	28.32 sec	%2'9
A300-20	Drift PID200. 6.3 psi/sec beginning at 10.0 sec.	1 (PID200)	9	18.52 sec	3.7%
A300-21	Drift PID205. 2.7 degR/sec beginning at 10.0 sec.	1 (PID205)	12	64.32 sec	12.9%
	Average for All Drift Tests			57.1 sec	11.4%

Figure 27. Comparative Results

Figure 28

Figure 29

Figure 30

Node Name	States	Parents	Prior Probabilities	Threshold
Sensor1	good bad	none	P(good)=0.95, P(bad)=0.05	9.0
HR1 element	good bad	none	P(good)=0.9, P(bad)=0.1	0.6
LR1 element	good	none	P(good)=0.9, P(bad)=0.1	9.0
T1 element	good	none	P(good)=0.9, P(bad)=0.1	9.0
HR1 alarm	normal abnormal	HR1 element Sensor1	P(normal HR1 element=good, Sensor1=good)=0.95 P(abnormal HR1 element=good, Sensor1=good)=0.05 P(normal HR1 element=good, Sensor1=bad)=0.05 P(abnormal HR1 element=good, Sensor1=bad)=0.95 P(normal HR1 element=bad, Sensor1=good)=0.05 P(abnormal HR1 element=bad, Sensor1=good)=0.95 P(normal HR1 element=bad, Sensor1=good)=0.95	6.0
LR1 alarm	normal abnormal	LR1 element Sensor1	P(abronnal LR1 element=good, Sensor1=good)=0.35 P(abnormal LR1 element=good, Sensor1=good)=0.95 P(abnormal LR1 element=good, Sensor1=bad)=0.05 P(abnormal LR1 element=good, Sensor1=bad)=0.95 P(normal LR1 element=bad, Sensor1=good)=0.95 P(abnormal LR1 element=bad, Sensor1=bad)=0.95 P(normal LR1 element=bad, Sensor1=bad)=0.99 P(abnormal LR1 element=bad, Sensor1=bad)=0.99	6.0
T1 alarm	normal abnormal	T1 element Sensor1	P(normal T1 element=good, Sensor1=good)=0.95 P(abnormal T1 element=good, Sensor1=good)=0.05 P(normal T1 element=good, Sensor1=bad)=0.05 P(abnormal T1 element=bad, Sensor1=good)=0.95 P(normal T1 element=bad, Sensor1=good)=0.05 P(normal T1 element=bad, Sensor1=good)=0.95 P(normal T1 element=bad, Sensor1=bad)=0.01 P(abnormal T1 element=bad, Sensor1=bad)=0.99	0.9

Figure 31

Prior Probabilities
P(good)=0.95, P(bad)=0.05
P(good)=0.9, P(bad)=0.1
P(good)=0.9, P(bad)=0.1
P(good)=0.9, P(bad)=0.1
P(normal HR2 element=good, Sensor2=good)=0.95 P(abnormal HR2 element=good, Sensor2=good)=0.05 P(normal HR2 element=good, Sensor2=bad)=0.05
P(abnormal HR2 element=good, Sensor2=bad)=0.95 P(normal HR2 element=bad Sensor2=nood)=0.05
P(abnormal HR2 element=bad, Sensor2=good)=0.95
P(normal HR2 element=bad, Sensor2=bad)=0.01 P(abnormal HR2 element=bad, Sensor2=bad)=0.99
P(normal LR2 element=good, Sensor2=good)=0.95
P(abnormal LR2 element=good, Sensorz=good)=0.05 P(normal LR2 element=good, Sensor2=bad)=0.05
P(abnormal LR2 element=good, Sensor2=bad)=0.95
P(normal LR2 element=bad, Sensor2=good)=0.05
P(abriornial LRZ element=bad, Sensorz=good)=0.33 P(normal LR2 element=bad, Sensor2=bad)=0.01
(abnormal LR2 element=bad, Sensor2=bad)=0.99
P(normal T2 element=good, Sensor2=good)=0.95
P(abnormal T2 element=good, Sensor2=good)=0.05
P(normal 12 element=good, Sensorz=bad)=0.05
P(abnormal T2 element=good, Sensor2=bad)=0.95
P(normal T2 element=bad, Sensor2=good)=0.05
P(abnormal T2 element=bad, Sensor2=good)=0.95
P(normal T2 element=bad, Sensor2=bad)=0.01
P(abnormal T2 element=bad, Sensor2=bad)=0.99

Figure 32

Partitioned Model Under OPERATING Conditions				
Fault Simulated	Fault Classified	Fault Classification Probabilities		
H1 Drift High	H1 Element Fault	P(H1 Element = ABNORMAL)= 0.6779		
		P(L1 Element = ABNORMAL)= 0.0058		
		P(T1 Element = ABNORMAL)= 0.0058		
		P(Sensor1= ABNORMAL)= 0.0010		
L1 Drift High	L1 Element Fault	P(L1 Element = ABNORMAL)= 0.6779		
		P(H1 Element = ABNORMAL)= 0.0058		
		P(T1 Element = ABNORMAL)= 0.0058		
		P(Sensor1= ABNORMAL)= 0.0010		
T1 Drift High	T1 Element Fault	P(T1 Element = ABNORMAL)= 0.6779		
		P(H1 Element = ABNORMAL)= 0.0058		
		P(L1 Element = ABNORMAL)= 0.0058		
		P(Sensor1= ABNORMAL)= 0.0010		
H1 & L1 Drift High	H1 Element Fault	P(H1 Element = ABNORMAL)= 0.6121		
	L1 Element Fault	P(L1 Element = ABNORMAL)= 0.6121		
		P(Sensor1= ABNORMAL)= 0.1156		
		P(T1 Element = ABNORMAL)= 0.0077		
H1, L1 & T1 Drift High	Sensor1 Fault	P(Sensor1= ABNORMAL)= 0.9433		
		P(H1 Element = ABNORMAL)= 0.1363		
		P(L1 Element = ABNORMAL)= 0.1363		
		P(T1 Element = ABNORMAL)= 0.1363		

Figure 33

Partitioned Model Under VENTING Conditions				
Fault Simulated	Fault Classified	Fault Classification Probabilities		
H1 Drift High	H1 Element Fault	P(H1 Element = ABNORMAL)= 0.6779		
		P(L1 Element = ABNORMAL)= 0.0058		
		P(T1 Element = ABNORMAL)= 0.0058		
		P(Sensor1= ABNORMAL)= 0.0010		
L1 Drift High	L1 Element Fault	P(L1 Element = ABNORMAL)= 0.6779		
		P(H1 Element = ABNORMAL)= 0.0058		
		P(T1 Element = ABNORMAL)= 0.0058		
		P(Sensor1= ABNORMAL)= 0.0010		
T1 Drift High	T1 Element Fault	P(T1 Element = ABNORMAL)= 0.6779		
		P(H1 Element = ABNORMAL)= 0.0058		
		P(L1 Element = ABNORMAL)= 0.0058		
		P(Sensor1= ABNORMAL)= 0.0010		
H1 & L1 Drift High	H1 Element Fault	P(H1 Element = ABNORMAL)= 0.6121		
	L1 Element Fault	P(L1 Element = ABNORMAL)= 0.6121		
		P(Sensor1= ABNORMAL)= 0.1156		
	*	P(T1 Element = ABNORMAL)= 0.0077		
H1, L1 & T1 Drift High	Sensor1 Fault	P(Sensor1= ABNORMAL)= 0.9433		
		P(H1 Element = ABNORMAL)= 0.1363		
		P(L1 Element = ABNORMAL)= 0.1363		
		P(T1 Element = ABNORMAL)= 0.1363		

Figure 34

Unpartitioned Model Under OPERATING Conditions				
Fault Simulated	Fault Classified	Fault Classification Probabilities		
H1 Drift High	H1 Element Fault	P(H1 Element = ABNORMAL)= 0.6779		
		P(L1 Element = ABNORMAL)= 0.0058		
		P(T1 Element = ABNORMAL)= 0.0058		
		P(Sensor1= ABNORMAL)= 0.0010		
L1 Drift High	L1 Element Fault	P(L1 Element = ABNORMAL)= 0.6779		
		P(H1 Element = ABNORMAL)= 0.0058		
		P(T1 Element = ABNORMAL)= 0.0058		
		P(Sensor1= ABNORMAL)= 0.0010		
T1 Drift High	T1 Element Fault	P(T1 Element = ABNORMAL)= 0.6779		
		P(H1 Element = ABNORMAL)= 0.0058		
		P(L1 Element = ABNORMAL)= 0.0058		
		P(Sensor1= ABNORMAL)= 0.0010		
H1 & L1 Drift High	H1 Element Fault	P(H1 Element = ABNORMAL)= 0.6121		
	L1 Element Fault	P(L1 Element = ABNORMAL)= 0.6121		
		P(Sensor1= ABNORMAL)= 0.1156		
		P(T1 Element = ABNORMAL)= 0.0077		
H1, L1 & T1 Drift High	Sensor1 Fault	P(Sensor1= ABNORMAL)= 0.9433		
,		P(H1 Element = ABNORMAL)= 0.1363		
		P(L1 Element = ABNORMAL)= 0.1363		
		P(T1 Element = ABNORMAL)= 0.1363		

Figure 35 Comparative Results

Unpartitioned Model Under VENTING Conditions				
Fault Simulated	Fault Classified	Fault Classification Probabilities		
H1 Drift High	H1 Element Fault	P(H1 Element = ABNORMAL)= 0.6779		
		P(L1 Element = ABNORMAL)= 0.0058		
		P(T1 Element = ABNORMAL)= 0.0058		
		P(Sensor1= ABNORMAL)= 0.0010		
L1 Drift High	Not Detected	P(L1 Element = ABNORMAL)= 0.1000		
		P(H1 Element = ABNORMAL)= 0.1000		
		P(T1 Element = ABNORMAL)= 0.1000		
		P(Sensor1= ABNORMAL)= 0.0500		
T1 Drift High	T1 Element Fault	P(T1 Element = ABNORMAL)= 0.6779		
		P(H1 Element = ABNORMAL)= 0.0058		
		P(L1 Element = ABNORMAL)= 0.0058		
		P(Sensor1= ABNORMAL)= 0.0010		
H1 & L1 Drift High	H1 Element Fault	P(H1 Element = ABNORMAL)= 0.6779		
	(L1 Fault Not Detected)	P(L1 Element = ABNORMAL)= 0.0058		
		P(T1 Element = ABNORMAL)= 0.0058		
		P(Sensor1= ABNORMAL)= 0.0010		
H1, L1 & T1 Drift High	H1 Element Fault	P(H1 Element = ABNORMAL)= 0.6121		
	T1 Element Fault	P(T1 Element = ABNORMAL)= 0.6121		
	(L1 Fault Not Detected)	P(Sensor1= ABNORMAL)= 0.1156		
		P(L1 Element = ABNORMAL)= 0.0077		

Figure 36 Comparative Results