Author Name

June 24, 2024

Contents

1 Interior and Boundary Points

Definition 2.1

Let (X, d) be a metric space. If $x \in X$ and r > 0, we define the *open ball of radius* r *centered at* x as $B_r(x) := \{y \in X : d(x, y) < r\}$.

In \mathbb{R}^n with the Euclidean metric d(x,y) = ||x-y||, the open ball $B_r(x)$ is nothing more than the collection of points which are a distance at most r from x. This generalizes the interval, since in \mathbb{R}^1 we have $B_r(x) = \{y \in \mathbb{R} : |x-y| < r\} = (x-r,x+r)$, or if we centre around 0, $B_r(0) = (-r,r)$. In \mathbb{R}^2 we get a disk of radius r, $B_r(0) = \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < r\}$, which we recognize as being the same as $x^2 + y^2 < r^2$.

Figure 2.1: In \mathbb{R}^2 , the open ball of radius r centered at x consists of all points which are a distance at most r from x.

Definition 2.2

A subspace S of a metric space X is bounded if there exists an r>0 and an $a\in X$ such that $S\subseteq B_r(a)$.

Definition 2.3

Let (X, d) be a metric space, and $S \subseteq \mathbb{R}^n$ be an arbitrary set.

- 1. We say that $x \in S$ is an *interior point* of S if there exists an r > 0 such that $B_r(x) \subseteq S$; that is, x is an interior point if we can enclose it in an open ball which is entirely contained in S.
- 2. We say that $x \in S$ is a boundary point of S if for every r > 0, $B_r(x) \cap S \neq \emptyset$ and $B_r(x) \cap \partial S \neq \emptyset$; that is, x is a boundary point if no matter what ball we place around x, that ball lives both inside and outside of S.

The interior of S – denoted S° – is the collection of interior points of S, while boundary of S – denoted ∂S – is the collection of boundary points of S.

Figure 2.2: The point b is a boundary point. No matter what size ball we place around b, that ball will intersect both S and ∂S . On the other hand, p is an interior point, since we can place a ball around it which lives entirely within S.

We should take a moment and think about these definitions, and why they make sense. A boundary point is any point x which occurs at the very fringe of the set; that is, if I push a little further I will leave the set. An interior point should be a point inside of S, such that if I move in any direction a sufficiently small distance, I stay within the set. Note that if x is an interior point then we must have that $x \in S$; however, boundary points do *not* need to be in the set. We start with a simple example.

Example 2.4

Let $S = (-1,1) \subseteq \mathbb{R}$ endowed with the Euclidean metric. What are the interior points and the boundary points of S?

Solution. I claim that any point in (-1,1) is an interior point. To see that this is the case, let $p \in (-1,1)$ be an arbitrary point. We need to place a ball around p which lies entirely within (-1,1). To do this, assume without loss of generality that $p \geq 0$. If p = 0 then we can set r = 1/2 and $B_r(p) \subseteq (-1/2,1/2) \subseteq (-1,1)$. Thus assume that $p \neq 0$ and let r = (1-p)/2, which represents half the distance from p to 1. I claim that $B_r(p) \subseteq (-1,1)$. Indeed, let $x \in B_r(p)$ be any point, so that |x-p| < r by definition. Then $|x| = |x-p+p| \leq |x-p| + p$ $\leq r + p = \frac{1-p}{2} + p$

 $=\frac{1+p}{2}<1$ where in the last inequality we have used the fact that p<1 so 1+p<2. Thus $x\in(-1,1)$, and since x was arbitrary, $B_r(p)\subseteq(-1,1)$.

The boundary points are ± 1 , where we note that even though $-1 \notin (-1,1)$, it is still a boundary point. To see that -1 is a boundary point, let r > 0 be arbitrary, so that $B_r(p) = (-1 - r, 1 + r)$. We then have $B_r(p) \cap (-1,1) = (1-r,1) \neq \emptyset$, $B_r(p) \cap (-1,1)^c = (1,1+r) \neq \emptyset$ as required. The proof for -1 is analogous and left as an exercise.

Example 2.5

What is the boundary of \mathbb{Q} in \mathbb{R} with the Euclidean metric?

Solution. We claim that $\partial \mathbb{Q} = \mathbb{R}$. Since both the irrationals and rationals are dense in the real numbers, we know that every non-empty open interval in \mathbb{R} contains both a rational and irrational number. Thus let $x \in \mathbb{R}$ be any real number, and r > 0 be arbitrary. The set $B_r(x)$ is an open interval around x, and

contains a rational number, showing that $B_r(x) \cap \mathbb{Q} \neq \emptyset$. Similarly, $B_r(x)$ contains an irrational number demonstrating that $B_r(x) \cap \mathbb{Q}^c \neq \emptyset$, so $x \in \partial \mathbb{Q}$. Since x was arbitrary, we conclude that $\partial \mathbb{Q} = \mathbb{R}$.

2 Open and Closed Sets

Definition 2.6

A set S in a metric space (X, d) is said to be open if every point of S is an interior point; that is, S is open if for every $x \in S$ there exists an r > 0 such that $D_d(x) \subseteq S$. The set S is closed if S^c is open. Given a point $x \in X$, an open neighborhood of x is some open set containing x.

Example 2.7

The set $S = \{(x, y) \in \mathbb{R}^2 : y > 0\} \subset \mathbb{R}^2$ is open in the Euclidean metric.

3 Open, Closed, and Everything in Between

Figure 2.3: The upper half plane is open. For any point, look at its y-coordinate p_y and use the ball of radius $p_y/2$.

Proof. We need to show that around every point in S we can place an open ball that remains entirely within S. Choose a point $p = (p_x, p_y) \in S$, so that $p_y > 0$, and let $r = p_y/2$. Consider the ball $B_r(p)$, which we claim lies entirely within S. To see that this is the case, choose any other point $q = (q_x, q_y) \in B_r(p)$. Now

$$|p_y - q_y| \le ||q - p|| < r = \frac{p_y}{2}$$

which implies that $q_y > p_y - p_y/2 = p_y/2 > 0$. Since $q_y > 0$ this shows that $q \in S$, and since q was arbitrary, $B_r(p) \subseteq S$ as required. \blacksquare