Practical aspects of Machine Learning

Piotr Mazur

Agenda

- How to properly measure & improve our model?
 - Performance metrics
 - Regularization
 - Hyper parameter tunning
 - Transfer Learning
- ML project workflow
- How to keep up with state-of-art?
- Coding session

Performance Metrics

Classification Metrics

- Accuracy
- Precision
- Recall
- F1 score
- ROC
- AUC
- Confusion matrix
- And more...

F1 score

$$F_1 = \left(rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}}
ight) = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

Source: https://en.wikipedia.org/wiki/F1_score

ROC

AUC

Confusion matrix

Regression Metrics

- Max error
- MAE Mean absolute error
- MSE Mean squared error
- R2 score
- And more...

R2 score

Source: https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Bias-Variance Tradeoff

Regularization

What is the purpose?

Methods of regularization

- Dropout
- Early stopping
- Ensemble methods
- Weight decays
- Label smoothing
- Multi-task learning
- Data augmentation
- Adversarial training

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Ensemble Methods

Weight decays

Parameter norm penalties

Label smoothing

Multi-task learning

$$L_{total} = \sum_{t}^{|T|} \lambda_t L_t$$

Data augmentation

Adversarial training

Adversarial training

Hyper parameter tuning

Transfer learning

Finetuning & fixed feature extractor

Coding

ResNet-18

Classic ML Workflow

Source: https://towardsdatascience.com/not-yet-another-article-on-machine-learning-e67f8812ba86

How my team won a hackathon

The challenge

Aviation Challenge

Airspace Intelligence challenges you to predict flight times. To win in this competition you will have to analize historical flight, weather and airport data!

Voice Challenge

VoiceLab Artificial Intelligence challenges your optimization skills! You will have to analize human voice records of various quality and optimize the training of voice models to win the main prize!

Weather Challenge

The Institute of Meteorology and Water Management and Excento will test your abilities to predict weather events! Using historical data you will have to predict sudden changes in weather!

The challenge

Challenge #3: Aviation challenge

Context

NAS (National Airspace System) of US is very dynamic and includes a lot of factors that might affect the airline's operations at network level and at the flight level. Those factors include weather, wind, airport capabilities and congestion in different parts of airspace. It is very difficult to plan efficient routes and be sure they will actually be flown.

Your task will be to help airlines predict the time of a flight.

$$t = \frac{S}{V}$$

First data insights

First data insights

First data insights

Base model

MAE: 367s

- Linear Regression
- Gradient Boosting Regressor
- Random Forest Regressor
- Extra Trees Regressor

Features MAE: 277s

Cycles

- Day of week
- Day of month
- Hour
- Airports
 - Coordinates
 - Angle
 - Distance
 - Top10 busiest airports indicator

MAE: 239s

Features

- Weather calculated at airports
 - Wind speed
 - Clouds
 - Vertically integrated liquid water
- Hyperparameter tuning
 - Extra Trees Regressor

Results

- 1. 243s
- 2. 245s
- 3. 281s
- 4. 295s
- 5. 297s
- 6. 300s
- 7. 301s
- 8. 413s

- 9. 4814s
- 10.5552s

Conclusions & possible enhancements

- More data
- LSTM
- Use weather from fixpoints
- Flight path analysis
- More information

ML Workflow

How to keep up with state-of-art?

Influential people:

- Andrew Ng (Coursera)
- Andrej Karpathy (Tesla, formerly OpenAI)
- Demis Hassabis (DeepMind)
- Animashree Anandkumar (NVIDIA)
- Elon Musk (Tesla)
- Ian Goodfellow (Apple)
- Yann LeCun (Facebook)
- Geoffrey Hinton (Google Brain)
- Yoshua Bengio (University of Montreal)
- Fei-Fei Li (Stanford)

Conferences:

- ML in PL
- InfoShare
- NeurlPS
- PyData

PapersWithCode.com

https://paperswithcode.com/sota

[00]

Browse State-of-the-Art

Follow on **Y** Twitter for updates

Computer Vision

△ 47 leaderboards

781 papers with code

Image Classification

71 leaderboards

659 papers with code

Object Detection

551 papers with code

Image Generation

63 leaderboards

267 papers with code

Pose Estimation

51 leaderboards

259 papers with code

▶ See all 726 tasks

Natural Language Processing

44 leaderboards

549 papers with code

№ 8 leaderboards

487 papers with code

46 leaderboards

464 papers with code

Sentiment Analysis

27 leaderboards

347 papers with code

Text Generation

28 leaderboards

203 papers with code

▶ See all 271 tasks

Image Classification

659 papers with code · Computer Vision

Image classification is the task of classifying an image into a class category. It is the most well-known computer vision task. Famous benchmarks include the MNIST dataset, for handwritten digit classification, and ImageNet, a large-scale image dataset for object classification.

Models are typically evaluated with an Accuracy metric, for example Top 1 and Top 5 Accuracy for ImageNet.

(Image credit: GAL: A Global-Attributes Assisted Labeling System for Outdoor Scenes)

Leaderboards

TREND	DATASET	BEST METHOD	PAPER TITLE	PAPER	CODE	COMPARE
20, 20, 20, 20, 20	ImageNet	NoisyStudent (EfficientNet-L2)	Self-training with Noisy Student improves ImageNet classification		0	See all
20 20 20 20 20 20	CIFAR-10	P BiT-L (ResNet)	Large Scale Learning of General Visual Representations for Transfer		0	See all
20, 20, 20, 20, 20	CIFAR-100	P BiT-L (ResNet)	Large Scale Learning of General Visual Representations for Transfer		0	See all

Image Classification on CIFAR-10

/E46:-:--+NI-+ 1-2\

[m]

Image Classification on ImageNet

Questions?

Coding

ResNet-18

Questions?

Thanks for your attention

Piotr Mazur

piotrmmazur@outlook.com

kontakt@piomazur.pl

http://piomazur.pl/github

http://piomazur.pl/cnn-introduction

http://piomazur.pl/ml-practical