1. Setup

Dimensions:

- Time (t): Currently yearly, solved independently
- Counties (r): 3121 in CONUS
- Crops (c): 9 (alfalfa, other hay, summer barley, winter barley, maize, sorghum, soybeans, spring wheat, winter wheat)
- Gauges (g): 22 559 nodes in the water network
- Canals (p): 21 598 extraction links between gauges and counties
- Edges (e): 18561 county-to-county transportation connections

Optimization parameters:

- Conjunctive Use: Pumping_{rt} $(1000m^3/year)$
- Conjunctive Use: Withdrawals_{pt} $(1000m^3/year)$
- Agriculture: IrrigatedArea $_{rct}$ (Ha)
- Agriculture: RainfedArea $_{rct}$ (Ha)
- Transportation: Imported_{ect} (Lb or Bu by crop)
- Market: International Sales_{rct} (Lb or Bu by crop)

Constraint variables:

- Water Network: Outflows_{qt} $(1000m^3/year)$
- Conjunctive Use: SWBalance_{rt} $(1000m^3/year)$
- Market: Available_{rct} (Lb or Bu by crop)
- Market: DomesticCropBalance $_{rct}$ (Lb or Bu by crop)

2. Agriculture

- LogIrrigatedYield $_{rc}$: intercept of statistical model (later add temperatures)
- WaterDemand_c (mm): Water requirement by crop
- Precipitation_{rt} (mm)

Equations:

 $Production_{rct} = Irrigated Area_{rct} e^{LogIrrigatedYield_{rc}} + Rainfed Area_{rct} e^{LogIrrigatedYield_{rc} - b_{rc}min(0, Water Demand_c - Precipitation_{rt})}$

 $Irrigation_{rt} = IrrigatedArea_{rct}min(0, WaterDemand_c - Precipitation_{rt})/100$

3. Conjunctive Use

Parameters:

• PumpingCost_{rt} ($USD/1000m^3$): Currently \$100 / 1000 m^3 everywhere

Equations:

$$SWBalance_{rt} = DomesticWaterUse_{rt} + Irrigation_{rt} - Pumping_{rt} - \sum_{p \in P(r)} Withdrawals_{pt} > 0$$

 $PumpingSpending_{rt} = Pumping_{rt}PumpingCost_{rt}$

4. Domestic Demand

Parameters:

- Population_{rt} (people): From census (later from SSPs)
- WaterPerPerson $(m^3/year)$: 575 liter/year
- CropPerPerson_c (Lb/year or Bu/year by crop): In daily units, 1 Lb hay, 0.005 Bu barley, 0.05 Bu maize, 0.01 Lb sorghum, 0.02 Bu soybeans, 0.05 Bu wheat

Equations:

 $DomesticWaterUse_{rt} = WaterPerPersonPopulation_{rt}$

 $DomesticCropDemand_{rct} = CropPerPerson_cPopulation_{rt}$

5. Market

Parameters:

- Domestic Prices_c (USD/Lb or USD/Bu by crop): \$0.046 / Lb hay, \$2.62 / Bu barley, \$4.08 / Bu maize, \$4.44 / Lb sorghum, \$9.51 / Bu soybeans, \$4.92 / Bu wheat
- International Prices (USD/Lb or USD/Bu by crop): Domestic Prices 2

Equations:

 $Available_{rct} = Production_{rct} + RegionImports_{rct} - RegionExports_{rct} > 0$

 $Revenue_{rct} = Available_{rct}DomesticPrices_c + (InternationalPrices_c - DomesticPrices_c)InternationalSales_{rct}$

 $DomesticCropBalance_{rct} = Available_{rct} - InternationalSales_{rct} - DomesticCropDemand_{rct} < 0$

6. Transportation

Parameters:

- EdgeCost_{et} (USD/m^3) : Set to \$0.76 everywhere (40' container = 76.5 m^3 , Average rate is \$1.58 per mile, Distance from SF to NYC is 2906 miles, Counties crossed is $.5X^2 = 3121$, or 79; Average distance between counties = 37 mile
- VolumeCrop_c $(m^3/Lb \text{ or } m^3/Bu \text{ by crop})$: 0.0018 for pound crops, 0.035 for bushel crops

Equations:

$$RegionImports_{rct} = \sum_{e \in I(r)} Imported_{ect}$$

$$RegionExports_{rct} = \sum_{e \in E(r)} Imported_{ect}$$

 $TransitCost_{ect} = EdgeCost_{et}VolumeCrop_cImported_{ect}$

7. Water Network

Parameters:

• Runoff_{rt} (1000 $m^3/year$): From VIC, scaled by area of county

Equations:

$$Added_{gt} = \frac{1}{N(R(g))}Runoff_{R(g),t}$$

$$Outflows_{gt} = Added_{gt} - Withdrawals_{gt} + \sum_{g \in U(g)} Outflows_{gt}$$