קורס: 20425 ״הסתברות לתלמידי מדעי המחשב״

(84 / 44 מועד א 2014 - 2014 (סמסטר א 3.2.2014 - מועד א 14 א

חומר העזר המותר: מחשבון מדעי בלבד.

ספר הקורס, מדריך הלמידה או כל חומר כתוב אחר – אסורים לשימוש!

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם חשבו את התוצאה הסופית (כמובן, במידת האפשר).

לבחינה מצורפים: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית ודף נוסחאות הכולל 2 עמודים.

שאלה 1 (25 נקודות)

נתונים 10 כדים.

0.8, ..., 2, 1 כל כד מכיל 0.8, ..., 0.8 כל כד מכיל

מוציאים באקראי כדור אחד מכל כד

- (6 נקי) א. מהי ההסתברות שהמספר 1 יוצא בדיוק שלוש פעמים והמספר 4 יוצא בדיוק פעמיים!
 - (6 נקי) ב. אם ידוע שהמספר 1 הוצא בדיוק 3 פעמים,

מהי תוחלת מספר הפעמים שהמספר 4 הוצא מהכדים?

- (7 נקי) ג. אם ידוע שהמספר 1 הוצא בדיוק 3 פעמים, מהי ההסתברות שהפעם השלישית שהוא הוצא היתה מהכד השמיני (שממנו הוצא כדור)!
 - (6 נקי) ד. מהי ההסתברות ש- 6 הוא המספר הגדול ביותר שהוצא מהכדים! (פעם אחת או יותר.)

שאלה 2 (25 נקודות)

מטילים מטבע תקין 50 פעמים.

 $_{
m i}$ אורעות: A=A= בכל A הטלות המטבע האחרונות התקבל

H בכל 4 הטלות המטבע הראשונות התקבל = B

.(ב- 50 ההטלות) אחקבל 20 פעמים H בסך-הכל C

- . א. האם המאורעות B ו- B זרים זה לזה! נמק את תשובתך.
- . ביה: נמק את תשובתך B, A ו-B, מק את תשובתך בה: נמק את תשובתך.
 - (15 נקי) ג. חשב את ההסתברויות שלהלן:
 - $P(A \cup B)$.1
 - $P(A^C \cap B \cap C)$.2
 - $P(A \mid B \cup C)$.3

שאלה 3 (25 נקודות)

מטילים מטבע תקין 50 פעמים.

- + מספר ה- H שהתקבלו ב-50 הטלות מספר + א יהיו
- . שהתקבלו ב-20 ההטלות הראשונות של המטבע H מספר Y
 - (8 נקי) א. האם X ו-Y בלתי-מתואמים:
- . i=0,1,...,50 לכל , X=i בהינתן של Y בהינתן המחתנית ההסתברות פונקציית המתאימים לה. את ההתפלגות המותנית שקיבלת. רשום את שמה ואת הפרמטרים המתאימים לה.
- . j=0,1,...,20 לכל Y=j , לכל X בהינתן של X בהינתן ההסתברות המתנית את פונקציית ההסתברות המותנית את j=0,1,...,20 , לכל $E\left[X\mid Y=j\right]$, חשב את ב.

הערה: בסעיפים ב ו- ג, הקפד לכתוב את תחומי הערכים אפשריים של ההתפלגויות המותנות.

שאלה 4 (25 נקודות)

 \cdot אורך-החיים (בשנים) של מנוע מסוג מסוים הוא משתנה מקרי רציף X, שפונקציית הצפיפות שלו היא

$$f_X(x) = cx^2(10 - x)$$
 , $0 < x < 10$

- . c א. חשב את הערך של 6)
- (6 נקי) ב. חשב את תוחלת אורך-החיים של המנוע.
- . ידוע שמנוע מסוים, מהסוג שלעיל, פועל כבר 7 שנים. מהי ההסתברות שיפעל עוד שנתיים לפחות!
 - (6 נקי) ד. אדם קנה 20 מנועים מהסוג שלעיל.

בהנחה שאין תלות בין אורכי-החיים של מנועים שונים,

חשב **קירוב** להסתברות ש<u>ממוצע</u> אורכי-החיים של 20 מנועים אלה יעלה על 5.5 שנים.

שאלה 5 (25 נקודות)

, הוא משתנה אי-שליליים, אם אי-שליליים, אם אי-שליליים, או אם N הוא הוכח: אם הוכח:

 ${,}N$ בזה וב- זה הם משתנים ובלתי-תלויים שווי-התפלגות מקריים הם הם הה ${,}X_{2}\,{,}X_{1}$ ואם ואם הם הח

$$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = E[N]\operatorname{Var}(X_{1}) + (E[X_{1}])^{2}\operatorname{Var}(N) \qquad :$$
יים אז מתקיים

(12 נקי) ב. נתונה קופסה ובה 10 כדורים ממוספרים מ-1 עד 10.

מוציאים באקראי כדור אחד מהקופסה.

נסמן ב-X את המספר הרשום על הכדור שהוצא.

לאחר מכן, מטילים מטבע תקין, שוב ושוב, עד שמקבלים בסך-הכל X פעמים H לאחר מכן, מטילים מטבע תקין, שוב ושוב, עד שמקבלים הכי את המטבע מייד עם קבלת X .

נסמן ב-Y את מספר ההטלות שנעשות במטבע.

מהן התוחלת והשונות של Y!

בהצלחה!

$\Phi(z)$, ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

$$\Phi(z)pprox \Phi(z_1) + rac{z-z_1}{z_2-z_1} [\Phi(z_2) - \Phi(z_1)]$$
 : נוסחת האינטרפולציה

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.0	0.5398	0.5438	0.5478	0.5120	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.1	0.0331	0.0571	0.0020	0.0001	0.0700	0.0750	0.0772	0.0000	0.0011	0.0079
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$\Phi(z)$									
z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
Z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

דף נוסחאות לבחינה

הפונקציה יוצרת המומנטים	השונות	התוחלת	פונקציית ההסתברות / פונקציית הצפיפות	ההתפלגות
$(pe^t + 1 - p)^n$	np(1-p)	np	$\binom{n}{i} \cdot p^i \cdot (1-p)^{n-i} , i = 0, 1,, n$	בינומית
$pe^{t}/(1-(1-p)e^{t})$ $t<-\ln(1-p)$	$(1-p)/p^2$	1/ p	$(1-p)^{i-1} \cdot p$, $i=1,2,$	גיאומטרית
$\exp\{\lambda(e^t-1)\}$	λ	λ	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0,1,$	פואסונית
$ \left(pe^t / (1 - (1-p)e^t) \right)^r $ $ t < -\ln(1-p) $	$(1-p)r/p^2$	r/p	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i = r, r+1,$	בינומית שלילית
	$\frac{N-n}{N-1}n\frac{m}{N}(1-\frac{m}{N})$	nm/N	$ \binom{m}{i} \binom{N-m}{n-i} / \binom{N}{n} , i = 0, 1,, m $	היפרגיאומטרית
	$(n^2-1)/12$	m + (1+n)/2	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	אחידה בדידה
$(e^{bt}-e^{at})/(tb-ta), t\neq 0$	$(b-a)^2/12$	(a+b)/2	$1/(b-a) , a \le x \le b$	אחידה
$\exp\{\mu t + \sigma^2 t^2/2\}$	σ^2	μ	$(1/\sqrt{2\pi}\sigma)\cdot e^{-(x-\mu)^2/(2\sigma^2)}$, $-\infty < x < \infty$	נורמלית
$\lambda/(\lambda-t)$, $t<\lambda$	$1/\lambda^2$	1/λ	$\lambda e^{-\lambda x}$, $x > 0$	מעריכית
			$\binom{n}{n_1,\dots,n_r} \cdot p_1^{n_1} \cdot \dots \cdot p_r^{n_r} , \sum n_i = n, \sum p_i = 1$	מולטינומית

נוטחת הבינום
$$P(A) = \sum_{i=0}^{n} \binom{n}{i} x^{i} y^{n-i}$$
 נוטחת הבינום
$$P(A) = P(A \cap B) + P(A \cap B^{C})$$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \ldots + (-1)^{n+1} P(A_{1} \cap A_{2} \cap \ldots \cap A_{n})$$
 הסתברות מותנית
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 מוסחת הכפל
$$P(A_{1} \cap A_{2} \cap \ldots \cap A_{n}) = P(A_{1}) P(A_{2} \mid A_{1}) P(A_{3} \mid A_{1} \cap A_{2}) \cdot \ldots \cdot P(A_{n} \mid A_{1} \cap A_{2} \cap \ldots \cap A_{n-1})$$
 נוסחת ההסתברות השלמה
$$P(A) = \sum_{i=1}^{n} P(A \mid B_{i}) P(B_{i})$$
 , S זרים ואיחודם הוא
$$P(B_{j} \mid A) = \frac{P(A \mid B_{j}) P(B_{j})}{\sum_{i=1}^{n} P(A \mid B_{i}) P(B_{i})}$$
 , S זרים ואיחודם הוא
$$E[X] = \sum_{x} x p_{X}(x) = \int x f(x) dx$$

 $\operatorname{Var}(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$

תוחלת של פונקציה של מ"מ

E[aX+b]=aE[X]+b תוחלת ושונות של פונקציה לינארית

 $Var(aX + b) = a^2 Var(X)$

 $E[g(X)] = \sum_{x} g(x)p_X(x) = \int g(x)f(x)dx$

אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של **תהליך פואסון** עם קצב λ ליחידת זמן אחת, אז מספר המופעים שמתרחשים ביחידת זמן אחת הוא משתנה מקרי פואסוני עם הפרמטר λ .

$$P\{X>s+t \, \big| \, X>t\}=P\{X>s\}$$
 , $s,t\geq 0$

 $E[X \mid Y = y] = \sum_{x} x p_{X|Y}(x \mid y) = \int x f_{X|Y}(x \mid y) dx$ תוחלת מותנית

 $Var(X | Y = y) = E[X^{2} | Y = y] - (E[X | Y = y])^{2}$ שונות מותנית $E[X] = E[E[X \mid Y]] = \sum_{y} E[X \mid Y = y] p_{Y}(y)$ נוסחת התוחלת המותנית (טענה מתרגיל ת26, עמוד 430) $E[X \cdot g(Y)] = E[g(Y)E[X \mid Y]]$ Var(X) = E[Var(X|Y)] + Var(E[X|Y])נוסחת השונות המותנית $E\left|\sum_{i=1}^{n} X_i\right| = \sum_{i=1}^{n} E[X_i]$ תוחלת של סכום משתנים מקריים Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]שונות משותפת $\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}(X_{i}, Y_{j})$ $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i \leq i} \operatorname{Cov}(X_{i}, X_{j})$ שונות של סכום משתנים מקריים $\rho(X,Y) = \text{Cov}(X,Y) / \sqrt{\text{Var}(X)\text{Var}(Y)}$ מקדם המתאם הלינארי $M_X(t) = E[e^{tX}]$; $M_{aX+b}(t) = e^{bt}M_X(at)$ פונקציה יוצרת מומנטים $M_{X_1+\ldots+X_n}(t)=M_{X_1}(t)\cdot\ldots\cdot M_{X_n}(t)$: באשר מיימ ביית מתקיים מיימ מיימ אוים מיים אוים מיים $E \left| \sum_{i=1}^{N} X_i \right| = E[N]E[X]$ תוחלת, שונות ופונקציה יוצרת מומנטים של סכום מקרי $\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = E[N]\operatorname{Var}(X) + (E[X])^{2}\operatorname{Var}(N)$ (כאשר X_i מיימ ביית שייה X_i $M_Y(t) = E\Big[\big(M_X(t)\big)^N\Big]$ $P\{X \ge a\} \le E[X]/a$, a > 0 , Xאי-שוויון מרקוב $P\{\left|X-\mu\right|\geq a\}\leq\sigma^2\left/a^2\right. \qquad , \qquad a>0 \ \ , \ \ \, \mu,\sigma^2<\infty$ $P\Big\{\left(\sum\limits_{i=1}^{n}X_{i}-n\mu
ight)igg/\sqrt{n\sigma^{2}}\leq a\Big\} \underset{n o\infty}{ o}\Phi(a) \quad , \quad \mu,\sigma^{2}<\infty \ , \ \ n$ משפט הגבול המרכזי וש"ה X_{i}

- אם A ו- B מאורעות זרים של ניסוי מקרי, אז ההסתברות שבחזרות ב"ת על הניסוי המאורע A יתרחש לפני המאורע B היא P(A)/[P(A)+P(B)] .
- סכום של מיימ בינומיים (גיאומטריים) ביית עם אותו הפרמטר p הוא מיימ בינומי (בינומי-שלילי). ullet
 - סכום של מיימ פואסוניים ביית הוא מיימ פואסוני.
 - סכום של מיימ נורמליים ביית הוא מיימ נורמלי.

$$\begin{split} \sum_{i=0}^{n} i &= \frac{n(n+1)}{2} \qquad ; \qquad \sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad ; \qquad \sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4} \\ \sum_{i=0}^{\infty} \frac{x^i}{i!} &= e^x \qquad ; \qquad \sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x} \qquad ; \qquad \sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \quad , \quad -1 < x < 1 \\ \int (ax+b)^n dx &= \frac{1}{a(n+1)}(ax+b)^{n+1} \quad , \quad n \neq -1 \qquad ; \qquad \int \frac{1}{ax+b} dx = \frac{1}{a}\ln(ax+b) \\ \int e^{ax} dx &= \frac{1}{a}e^{ax} \qquad ; \qquad \int b^{ax} dx = \frac{1}{a\ln b}b^{ax} \qquad ; \qquad \int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx \\ \log_n a &= \log_m a/\log_m n \qquad ; \qquad \log_n(a^b) = b \cdot \log_n a \qquad ; \qquad \log_n(ab) = \log_n a + \log_n b \end{split}$$

6