SEGUNDA AVALIAÇÃO

Integração Numérica de Equações Diferenciais

FÍSICA COMPUTACIONAL

Aluno Marcos Paulo Gomes De Castro Professor Nuno Crokidakis

Universidade Federal Fluminense 28 de Abril de 2017

1 Derivada Numérica

Temos que f(x) é dada por

$$f(x) = \frac{\sin(x^2)e^{\frac{x}{3}}}{\sqrt{x^2 + 4}}. (1)$$

Calculando a derivada de f(x) aplicada em x=3, com passos de discretização de $\Delta x=10^{-8}$ à 1, utilizando o método de Euler:

$$\frac{d}{dx}f_n(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x},\tag{2}$$

Utilizado o valor analítico da derivada de f(x), aplicado em x = 3,

$$\frac{d}{dx}f(x)|_{x=3} = -4.0896256947,$$

temos então a seguinte tabela:

 1 Derivada Numérica (Tabela 1) $|f'(3) - f'_n(3)|$ $f'_n(3)$ Δx 10^{0} -0.5549280936 $3.53 \ 10^{0}$ 10^{-1} -4.5099963998 $4.20 \ 10^{-1}$ 10^{-2} $6.47 \ 10^{-2}$ -4.1543413789 10^{-3} $6.67 \ 10^{-3}$ -4.0962995738 10^{-4} -4.0902950782 $6.69 \ 10^{-4}$ 10^{-5} -4.0896926530 $6.70 \ 10^{-5}$ 10^{-6} $6.70\ 10^{-6}$ -4.0896323915 10^{-7} $6.61 \ 10^{-7}$ -4.0896263559 10^{-8} -4.0896257270 $3.23 \ 10^{-8}$

² Dada a tabela a cima podemos plotar o gráfico abaixo, onde os pontos em verde se aproximama assintoticamente do valor analítico da derivada no ponto x = 3.

Gráfico 1 - Eixo x em log, Derivada por Δt

 $^{^1}$ Os programas foram compilados via: gcc (Ubuntu 5.4.0-6
ubuntu1 16.04.4) 5.4.0 20160609, Copyright (C) 2015 Free Software Foundation, Inc.

²Os gráficos deste trabalho foram plotados via: gnuplot 5.0 patchlevel 3

Considerando que uma boa aproximação considera um erro inferior a 1%, data venha que $f'_{aprox}(3) = f'(3) \pm 1\% \text{de} f'(3) = -4.0896 \pm 0.0409$, o que é obtido para pontos com valor de seu erro inferior a este.

2 Solução Numérica de Equações Diferenciais

Calculando a integral de df/dt = F(f,t), com F(f,t) dado por

$$F(f,t) = f + e^{\frac{t}{2}} \left[5\cos(5t) - \frac{1}{2}\sin(5t) \right],\tag{3}$$

utilizando a condição de contorno f(0)=1, usando o Método de Euler onde temos que os passos de discretização, Δt , são 0.1, 0.05, 0.01, 0.005, e 0.001 e comparando com a solução exata, $f_{exata}(t)$ nos pontos 1, 2, 3, 4, e 5, onde $f_{exata}(t)$ e o Método de Euler são dados por, respectivamente,

$$f(t) = e^t + e^{\frac{t}{2}}\sin(5t),\tag{4}$$

$$f_{n+1} = f_n + F(f_n, t_n) \Delta t, \tag{5}$$

obtemos a seguinte tabela:

Método de Euler (Tabela 2)

Método de Euler (Tabela 2)							
t	Δt	$f_{exata}(t)$	$f_n(t)$	$ f_{exata}(t) - f_n(t) $	erro~%		
1.00	0.1	1.1372829798	1.6220709091	0.4847879293	29.89		
1.00	0.05	1.1372829798	1.3881811114	0.2508981316	18.07		
1.00	0.01	1.1372829798	1.1890129837	0.0517300039	4.35		
1.00	0.005	1.1372829798	1.1632513042	0.0259683244	2.23		
1.00	0.001	1.1372829798	1.1424933910	0.0052104111	0.46		
2.00	0.1	5.9102533989	7.3802034298	1.4699500309	19.92		
2.00	0.05	5.9102533989	6.6967203456	0.7864669467	11.74		
2.00	0.01	5.9102533989	6.0769482343	0.1666948354	2.74		
2.00	0.005	5.9102533989	5.9942290829	0.0839756840	1.40		
2.00	0.001	5.9102533989	5.9271504404	0.0168970415	0.29		
3.00	0.1	22.9999248290	24.7514918596	1.7515670306	7.08		
3.00	0.05	22.9999248290	24.0260078092	1.0260829802	4.27		
3.00	0.01	22.9999248290	23.2333484030	0.2334235740	1.00		
3.00	0.005	22.9999248290	23.1185491605	0.1186243315	0.51		
3.00	0.001	22.9999248290	23.0239608597	0.0240360307	0.10		
4.00	0.1	61.3439537060	60.8205391378	0.5234145683	0.86		
4.00	0.05	61.3439537060	61.4098321184	0.0658784124	0.11		
4.00	0.01	61.3439537060	61.4221962495	0.0782425435	0.13		
4.00	0.005	61.3439537060	61.3876097566	0.0436560506	0.07		
4.00	0.001	61.3439537060	61.3534268549	0.0094731489	0.02		
5.00	0.1	146.8007847063	139.3455062442	7.4552784622	5.35		
5.00	0.05	146.8007847063	143.7414355185	3.0593491878	2.13		
5.00	0.01	146.8007847063	146.3333355417	0.4674491646	0.32		
5.00	0.005	146.8007847063	146.5775119429	0.2232727634	0.15		
5.00	0.001	146.8007847063	146.7578530251	0.0429316812	0.03		

Plotando o gráfico da solução pelo Método de Euler por tempo, com o valor fixo de $\Delta t = 0.05$ contra a solução exata da função, temos:

Gráfico 2 - $f_n(t)$ no eixo y e t no eixo x

Com o bojetivo de se aprofundar no estudo das soluções numéricas de Equações Diferenciais, exploramos também outro método a fim de comparar os resultados obtidos a posterio. sendo utilizado o Método de Runge-Kutta de 2^a e 4^a ordem, com os mesmos passos de discretização. Temos que o Runge-Kutta de segunda ordem é dado por:

$$k_{1} = F(f_{n}, t_{n})$$

$$k_{2} = F(f_{n} + k_{1}\Delta t, t_{n} + \Delta t)$$

$$f_{n+1} = f_{n} + \frac{\Delta t}{2}(k_{1} + k_{2}),$$
(6)

Temos também que o Runge-Kutta de quarta ordem é dado por

$$k_{1} = F(f_{n}, t_{n})$$

$$k_{2} = F\left(f_{n} + \frac{1}{2}k_{1}\Delta t, t_{n} + \frac{1}{2}\Delta t\right)$$

$$k_{3} = F\left(f_{n} + \frac{1}{2}k_{2}\Delta t, t_{n} + \frac{1}{2}\Delta t\right)$$

$$k_{4} = F(f_{n} + k_{3}\Delta t, t_{n} + \Delta t)$$

$$f_{n+1} = f_{n} + \frac{\Delta t}{6}(k_{1} + 2[k_{2} + k_{3}] + k_{4}).$$
(7)

Fazendo a mesma comparação feita para o método de Euler, obtemos as seguintes tabelas

Método Runge-Kutta de $2^{\rm a}$ Ordem (Tabela 3)

Metodo Kunge-Kutta de 2 Ordeni (Tabela 3)						
t	Δt	$f_n(t)$	$f_{exata}(t)$	$ f_{exata}(t) - f_n(t) $	erro~%	
1.00	0.1	1.1768098396	1.1372829798	0.0395268598	3.35881	
1.00	0.05	1.1472865657	1.1372829798	0.0100035858	0.87193	
1.00	0.01	1.1376878241	1.1372829798	0.0004048443	0.03558	
1.00	0.005	1.1373843499	1.1372829798	0.0001013701	0.00891	
1.00	0.001	1.1372870398	1.1372829798	0.0000040600	0.00036	
2.00	0.1	5.9533413846	5.9102533989	0.0430879857	0.72376	
2.00	0.05	5.9214227128	5.9102533989	0.0111693139	0.18863	
2.00	0.01	5.9107154192	5.9102533989	0.0004620203	0.00782	
2.00	0.005	5.9103694198	5.9102533989	0.0001160209	0.00196	
2.00	0.001	5.9102580565	5.9102533989	0.0000046576	0.00008	
3.00	0.1	22.9176027358	22.9999248290	0.0823220932	0.35921	
3.00	0.05	22.9798526734	22.9999248290	0.0200721556	0.08735	
3.00	0.01	22.9991428988	22.9999248290	0.0007819301	0.00340	
3.00	0.005	22.9997300753	22.9999248290	0.0001947537	0.00085	
3.00	0.001	22.9999170626	22.9999248290	0.0000077663	0.00003	
4.00	0.1	61.0222431740	61.3439537060	0.3217105320	0.52720	
4.00	0.05	61.2633480374	61.3439537060	0.0806056686	0.13157	
4.00	0.01	61.3407329736	61.3439537060	0.0032207325	0.00525	
4.00	0.005	61.3431487767	61.3439537060	0.0008049294	0.00131	
4.00	0.001	61.3439215179	61.3439537060	0.0000321881	0.00005	
5.00	0.1	146.1425495890	146.8007847063	0.6582351173	0.45041	
5.00	0.05	146.6334717248	146.8007847063	0.1673129815	0.11410	
5.00	0.01	146.7940314375	146.8007847063	0.0067532688	0.00460	
5.00	0.005	146.7990949190	146.8007847063	0.0016897873	0.00115	
5.00	0.001	146.8007170705	146.8007847063	0.0000676358	0.00005	

Método Runge-Kutta de 4ª Ordem (Tabela 4)

	Microdo Italige-Itatia de 4 Ordeni (Tabela 4)							
$\underline{}$	Δt	$f_n(t)$	$f_{exata}(t)$	$ f_{exata}(t) - f_n(t) $	erro~%			
1.00	0.1	1.13723777023248	1.13728297983124	0.00004520959876	0.00397538667300			
1.00	0.05	1.13728018266218	1.13728297983124	0.00000279716906	0.00024595250131			
1.00	0.01	1.13728297537613	1.13728297983124	0.00000000445510	0.00000039173220			
1.00	0.05	1.13728297955289	1.13728297983124	0.00000000027835	0.00000002447492			
1.00	0.01	1.13728297983079	1.13728297983124	0.00000000000044	0.00000000003903			
2.00	0.1	5.91015802851975	5.91025339890197	0.00009537038222	0.00161366890294			
2.00	0.05	5.91024756423233	5.91025339890197	0.00000583466964	0.00009872123935			
2.00	0.01	5.91025338969221	5.91025339890197	0.00000000920977	0.00000015582691			
2.00	0.05	5.91025339832753	5.91025339890197	0.00000000057445	0.00000000971952			
2.00	0.01	5.91025339890277	5.91025339890197	0.000000000000079	0.00000000001340			
3.00	0.1	22.99979845355124	22.99992482899356	0.00012637544232	0.00054946325977			
3.00	0.05	22.99991719938262	22.99992482899356	0.00000762961094	0.00003317234092			
3.00	0.01	22.99992481708318	22.99992482899356	0.00000001191038	0.00000005178445			
3.00	0.05	22.99992482825224	22.99992482899356	0.00000000074133	0.00000000322317			
3.00	0.01	22.99992482899752	22.99992482899356	0.00000000000396	0.00000000001722			
4.00	0.1	61.34361678880934	61.34395370602299	0.00033691721364	0.00054922945741			
4.00	0.05	61.34393306452798	61.34395370602299	0.00002064149501	0.00003364879618			
4.00	0.01	61.34395367341735	61.34395370602299	0.00000003260563	0.00000005315216			
4.00	0.05	61.34395370398758	61.34395370602299	0.00000000203541	0.00000000331802			
4.00	0.01	61.34395370601806	61.34395370602299	0.00000000000492	0.00000000000803			
5.00	0.1	146.79939737175198	146.80078470632193	0.00138733456996	0.00094505467651			
5.00	0.05	146.80069872436974	146.80078470632193	0.00008598195220	0.00005857053334			
5.00	0.01	146.80078456924392	146.80078470632193	0.00000013707802	0.00000009337690			
5.00	0.05	146.80078469775324	146.80078470632193	0.00000000856869	0.00000000583695			
5.00	0.01	146.80078470632725	146.80078470632193	0.00000000000531	0.00000000000362			

As tabelas são densas, dado o volume de dados analisado no problema, contudo é possível ver o quanto este método parece promissor em comparação com o Método de Euler.

Novamente, fazendo o gráfico da solução pelo Método de Runge-Kutta por tempo, em 2^a e posteriormente o fazemos para 4^a ordem, com $\Delta t=0.05$ em ambos, confrontando a solução exata, temos:

Gráficamente é difícil enxergar discrepâncias entre as curvas, dando a impressão de que as mesmas são uma só. Nas tabélas 3 e 4 se observa um erro pequeno, da ordem de 10^{-4} , é de se esperar que ao comparar graficamente os valores em t tivesse uma certa sobreposição devido a precisão do pacote gráfico. Em suma,

podemos verificar que para valores maiors de Δt o Método de Euler pode fornecer bons resultados, contudo o Método de Ruge-Kutta de 4ª Ordem pode fornecer bons pontos com menos loopings, sendo mais apropriado para grandes volumes de dados que precisem seer tratados em um tempo curto.