

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009

Departamento de Matemáticas Puras y Aplicadas.

SEGUNDO EXAMEN PARCIAL: TIPO D

[duración : una hora y 45 minutos]

SOLUCIONES

SE1.- (10 ptos.) Sea r la recta intersección de los dos planos de ecuaciones x+y-z = 0, x-y+3z = 6;

1a) Halle una ecuación del plano, α , que contiene la recta r y es paralelo al vector $\mathbf{u} = (2, -1, 3)$;

Hallemos previamente ecuaciones paramétricas de la recta r :

$$\begin{cases} x+y-z=0 \\ x-y+3z=6 \end{cases} \Rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ -3 \end{bmatrix} \Rightarrow \begin{cases} x=3-t \\ y=-3+2t \\ z=t \end{cases} ;$$

nos percatamos que A(3,-3,0) es un punto de la recta r y (l, m, n)=(-1, 2, 1) un vector paralelo a r;

Como el plano, α , buscado, pasa por A y es paralelo a los dos vectores (1, m, n)=(-1, 2, 1),

 $\mathbf{u} = (2, -1, 3)$, podemos hallar un vector normal al plano:

$$(a, b, c) =$$

$$\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 2 & 1 \\
2 & -1 & 3
\end{vmatrix} = (7, 5 - 3) \text{ y escribir una ecuación del plano :}$$

$$a(x-x_A)+b(y-y_A)+c(z-z_A) = 0 \implies 7(x-3)+5(y+3)-3(z-0) = 0 \implies 7x+5y-3z-6 = 0.$$

Nota. Acerca de otros métodos para resolver la parte 1a vea las dos observaciones en la hoja #3.

1b) halle el seno del ángulo agudo que forma el plano α con la recta, s, de ecuaciones

Como ecuaciones paramétricas de la recta s son : $\begin{cases} x=t/2 \\ y=t/3 \end{cases}$, un vector paralelo a la recta s es

 $\mathbf{v} = 6(1/2; 1/3; 1) = (3, 2, 6).$

El ángulo agudo, φ , que forman la recta s y el plano α dados, es igual al complemento del ángulo, ψ, que forma la recta dada con la normal al plano dado. Por consiguiente tenemos

$$\operatorname{sen}(\phi) = \cos(\frac{\pi}{2} - \phi) = \cos(\psi) = \frac{(3, 2, 6).(7, 5 - 3)}{\sqrt{9 + 4 + 36}\sqrt{49 + 25 + 9}} = \frac{13}{7\sqrt{83}}.$$

2.- (5 ptos.) Dados los ptos. A(2, 5, 7), B(1, 0, 1), C(1, 2, 7), halle el área del triángulo de vértices A, B, C.

Area del triángulo ABC = $\frac{1}{2}$ | **AB**x**AC** | ; AB = (-1,-5,-6) , **AC**=(-1,-3,0) , **AB**x**AC** = $\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 5 & 6 \\ 1 & 3 & 0 \end{bmatrix}$ = (-18, 6,-2) \Rightarrow

$$\mathbf{AB} \times \mathbf{AC} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 5 & 6 \\ 1 & 3 & 0 \end{bmatrix} = (-18, 6, -2) \Rightarrow$$

área = $\frac{1}{2} |\mathbf{AB} \times \mathbf{AC}| = |(-9, 3, -1)| = \sqrt{91}$ unidades cuadradas de medida.

UNIVERSIDAD SIMON BOLIVAR

MA1116 abril-julio de 2009

Departamento de Matemáticas Puras y Aplicadas.

SEGUNDO EXAMEN PARCIAL: TIPO D

[duración : una hora y 45 minutos]

SOLUCIONES

3.(6 ptos.)En el espacio vectorial, **P3**, [de todos los polinomios de grado menor o igual que 3], considere los polinomios: $p_1 = t^3 + t$, $p_2 = t^3 + t^2$, $p_3 = t^3 + 2t^2 + 1$, $p_4 = t^2 + 1$;

3a.Halle las condiciones sobre a, b, c para que el polinomio at $^3+3t^2+bt+c$ pertenezca al subespacio W = gen{ p_1, p_2, p_3, p_4 };

El polinomio at $^3+3t^2+bt+c$ pertenece al subespacio W si y sólo si existen números x_1 , x_2 , x_3 , x_4 tales que :

 $x_1(t^3+t)+x_2(t^3+t^2)+x_3(t^3+2t^2+1)+x_4(t^2+1)=at^3+3t^2+bt+c$, \Leftrightarrow

 \Leftrightarrow $(x_1+x_2+x_3)t^3+(x_2+2x_3+x_4)t^2+(x_1)t+(x_3+x_4)=at^3+3t^2+bt+c$ luego el polinomio at^3+3t^2+bt+c pertenece al subespacio W si y sólo si es consistente el siguiente sistema :

 $\begin{cases}
 x_1 + x_2 + x_3 = a \\
 x_2 + 2x_3 + x_4 = 3 \\
 x_1 = b \\
 x_3 + x_4 = c
\end{cases}
\Rightarrow
\begin{bmatrix}
 1 & 1 & 1 & 0 & a \\
 0 & 1 & 2 & 1 & | & 3 \\
 1 & 0 & 0 & 0 & | & b \\
 0 & 0 & 1 & 1 & c
\end{bmatrix}
\Rightarrow \dots \Rightarrow
\begin{bmatrix}
 1 & 1 & 1 & 0 & a \\
 0 & 1 & 2 & 1 & | & 3 \\
 0 & -1 - 1 & 0 & | & b - a \\
 0 & 0 & 0 & 0 & c - 3 - b + a
\end{bmatrix}$

por lo tanto el sistema es consistente si y sólo si c-3-b+a=0;

3b. diga, justificando, si el polinomio t^3+3t^2+4t+2 pertenece o no al subespacio W. Como para este polinomio a=1,b=4,c=2, $\Rightarrow c-3-b+a=2-3-4+1=-4\neq 0$, el polinomio t^3+3t^2+4t+2 no pertenece al subespacio.

4.(4 ptos.) En el espacio vectorial, $V = M_{2,2}$ de las matrices de tamaño 2x2, averigüe para cada uno de los subconjuntos que se definen a continuación, si es o no es subespacio de V:

4a. $W_1 = \{ H=[a_{ij}] \in V | a_{ij} = -a_{ji} \} = \text{subconjunto de todas las matrices antisimétricas ;}$

S4a. W₁ es subespacio, ya que (por ejemplo) la matriz nula es antisimétrica y además :

 $A=[a_{ij}] \in W_1$, $B=[b_{ij}] \in W_1 \implies a_{ij}=-a_{ji}$, $b_{ij}=-b_{ji} \implies$

para la matriz suma $C=A+B=[c_{ij}]=[a_{ij}+b_{ij}]$ se cumple : $c_{ij}=a_{ij}+b_{ij}=-a_{ji}+(-b_{ji})=-c_{ji}$ [cierre de W_1 respecto a la suma de vectores] y tambien :

 $A=[a_{ij}] \in W_1$, $\lambda \in R \implies para \ la \ matriz \ D=\lambda A=[\lambda a_{ij}] \ se \ cumple \ d_{ij}=\lambda a_{ij}=\lambda (-a_{ji})=-d_{ji}$ [cierre de W_1 respecto a la multiplicación de vectores por números].

S4b. $W_2 = \{ H=[a_{ij}] \in V | a_{11}a_{22} = 0 \} = \text{subconjunto de todas las matrices para las cuales el producto de las dos componentes de su diagonal es nulo .$

 W_2 no es subespacio, ya que no cumple con la propiedad de cierre respecto a la suma. En

efecto, si por ejemplo
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in W_2$$
, $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in W_2$ resulta $A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \notin W_2$.

UNIVERSIDAD SIMON BOLIVAR Departamento de Matemáticas Puras y Aplicadas.

MA1116 abril-julio de 2009

SEGUNDO EXAMEN PARCIAL: TIPO D

[duración : una hora y 45 minutos]

SOLUCIONES

Observaciones para el ejercicio #1, parte 1a.

Observación 1.

Una manera de hallar un vector (l, m, n), paralelo a la recta r, podía ser tambien:

$$(1, m, n) =$$

$$\begin{bmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & -1 \\
1 & -1 & 3
\end{bmatrix} = (2, -4, -2) = 2(1, -2, -1) \text{ [ya que esta recta, intersección de los dos]}$$

planos dados, es paralela a ámbos planos y por lo tanto perpendicular a ámbos vectores normales de los mismos planos];

Observación 2.

Otra manera de hallar la ecuación del plano, α , es la siguiente :

observemos que cualesquiera que sean los números (no ámbos nulos) λ , μ , la ecuación : $\lambda(x+y-z)+\mu(x-y+3z-6)=0$ representa un plano que contiene a la recta r [ya que una ecuación de primer grado en x, y, z, representa, en un sistema de coordenadas cartesianas, un plano y las coordenadas de todo punto de la recta r anulan las expresiones x+y-z, x-y+3z-6].

Si entonces ponemos la condición de que este plano sea paralelo al vector $\mathbf{u} = (2, -1, 3)$, obtenemos :

(a, b, c).(2, -1, 3)=
$$(\lambda + \mu, \lambda - \mu, -\lambda + 3\mu)$$
.(2, -1, 3)= $2(\lambda + \mu)$ - $(\lambda - \mu)$ + $3(-\lambda + 3\mu)$ = 0 \Rightarrow -2 λ +12 μ =0, condición que se cumple si por ejemplo λ =6, μ =1 \Rightarrow 7x+5y-3z-6 = 0.