High Dimensional Efficient Global Optimization via Multi-Fidelity Surrogate Modeling

Author:

Mr. Mostafa MELIANI

Supervisors:

Dr. Nathalie BARTOLI Pr. Joseph MORLIER Dr. Mohamed A. BOUHLEL

Pr. Joaquim R.R.A MARTINS

September 26, 2018

Plan

Introduction

Surrogate Modeling

Kriging
Multi-Fidelity co-Kriging

Bayesian Optimization

Efficient Global Optimizaton: EGO

Multi-Fidelity Efficient Global Optimizaton: MFEGO

Application to Airfoil Shape Optimization

Conclusion

Plan

Introduction

Surrogate Modeling

Kriging
Multi-Fidelity co-Kriging

Bayesian Optimization

Efficient Global Optimizaton: EGC

Multi-Fidelity Efficient Global Optimizaton: MFEGO

Application to Airfoil Shape Optimization

Conclusion

Introduction

- High-Fidelity computer experiments are too expensive to perform direct Design Optimization, Sensitivity Analysis, Design Exploration...
- Surrogate models can be used to perform these tasks at lower computational costs.

Introduction – Motivations

 Reduce computational costs further: use lower fidelity knowledge to enhance high-fidelity models.

Project objective:

 Global optimization of an aerodynamic shape using multi-fidelity information sources.

Plan

Introduction

Surrogate Modeling
Kriging
Multi-Fidelity co-Kriging

Bayesian Optimization
Efficient Global Optimizaton: EGO
Multi-Fidelity Efficient Global Optimizaton: MFEGO

Application to Airfoil Shape Optimization

Conclusion

Figure: Mean and variance of a Kriging model

$$\hat{y}(x) = \underbrace{m(x)}_{\text{Regression term}} + Z(x; \theta)$$

Figure: correlation model [Forrester 2008]

 The Kriging model considers the 'errors' as deviations to be modeled by a Gaussian Process through a correlation function.

Multi-Fidelity co-Kriging

Figure: Multi-fidelity surrogate modeling illustration

– How to best use low-fidelity information to enhance the high-fidelity model?

Multi-Fidelity co-Kriging - Formulations

– The addition of the term ρ makes the multi-fidelity learning more robust to poor correlation as well as differences in modelization.

Multi-Fidelity co-Kriging - Toy Problem

Animation: evolution of model for increasing signal correlations

$$f_{HF}(x) = \rho f_{LF}(x) + \delta(x)$$

Functions definition for $\alpha \in [0, \pi/2]$:

$$f_{HF}(x) = \cos(x)$$

 $f_{LF}(x) = 2\cos(x + \alpha)$

HF-LF correlation:

$$\mathsf{corr}(\mathit{f}_{\mathit{HF}},\mathit{f}_{\mathit{LF}}) = \mathit{cos}(\alpha)$$

 The use of mutli-fidelity information sources reduces the amount of information to be retrieved by the highest fidelities.

Multi-Fidelity co-Kriging - Contributions

Recursive formulation [Le Gratiet 2013]:

$$\mu_{k} = \rho_{k-1} \ \mu_{k-1} + \mu_{\delta_{k}}$$

$$\sigma_{k}^{2} = \rho_{k-1}^{2} \ \sigma_{k-1}^{2} + \sigma_{\delta_{k}}^{2}$$

- Nested DOEs:

- * MFKPLS MFKPLSK (high dimension)
- * Analytical derivatives w.r.t design variables
- Noise Estimation
- Regression/ Re-interpolation
- multi-fidelity data pre-processing

$$X_{HF} = X_{I} \subseteq X_{I-1} \ldots \subseteq X_{0} = X_{LF}$$

Open source Python library: Surrogate Modeling Toolbox (SMT)

https://github.com/SMTOrg/smt

Plan

Introduction

Surrogate Modeling
Kriging
Multi-Fidelity co-Kriging

Bayesian Optimization

Efficient Global Optimizaton: EGO

Multi-Fidelity Efficient Global Optimizaton: MFEGO

Application to Airfoil Shape Optimization

Conclusion

Bayesian Optimization

- Gradient-based: minimize the objective gradient norm.
- Bayesian (gradient-free): minimize the expected deviation from the extremum of the studied function.

Bayesian Optimization

- Gradient-based: minimize the objective gradient norm.
- Bayesian (gradient-free): minimize the expected deviation from the extremum of the studied function.

- Prediction and uncertainty of the model are used in sequential strategies to balance Exploration/Exploitation
- Bayesian optimization is a global optimization.

Bayesian Optimization - EGO

Efficient Global Optimization [Jones 1998]

- El criterion [Močkus 1975]:

$$E[I(x)] = E[\max(f_{min} - Y, 0)]$$

 El expresses a certain balance between Exploitation and Exploration based on the mean and variance of the Kriging model.

MFEGO:

most promising point: El criterion

$$x^* = \underset{x}{\operatorname{argmax}} (E[I(x)])$$

choice of levels of enrichment: trade-off information gain/cost

$$k^* = \underset{k \in (0,\dots,l)}{\operatorname{argmax}} \quad \frac{\sigma_{red}^2(k, \mathbf{x}^*)}{f(c_k)}$$

Bayesian Optimization - MFEGO

MFEGO:

most promising point: El criterion

$$x^* = \underset{x}{\operatorname{argmax}} (E[I(x)])$$

choice of levels of enrichment: trade-off information gain/cost

$$k^* = \underset{k \in (0,...,l)}{\operatorname{argmax}} \quad \frac{\sigma_{red}^2(k, x^*)}{f(c_k)}$$

- ⇒ By using low-fidelity to reduce the uncertainty we reduce the Exploration contribution to the El criterion
- ⇒ High-fidelity is used for Exploitation and model enhancement

MFEGO Optimization - Toy Problem

$$f_{HF}(x) = (6x - 2)^2 \times \sin(2(6x - 2))$$

 $f_{LF}(x) = 0.5f_{HF} + 10(x - 0.5) - 5$

Cost ratio: 1/1000								
	HF	LF	Cost					
MFEGO	3+2	6+9	5.015					
EGO	4+11	-	15					

Table: Toy problem optimization summary

Plan

Introduction

Surrogate Modeling

Kriging
Multi-Fidelity co-Kriging

Bayesian Optimization

Efficient Global Optimizaton: EGO Multi-Fidelity Efficient Global Optimizaton: MFEGO

Application to Airfoil Shape Optimization

Conclusion

Airfoil shape optimization – Parametrization | \$ 3 8 5

Figure: First thickness (above) and camber (below) modes [Li 2018]

Parametrization [Li 2018]: Mode decomposition of an airfoil database.

Up to 14 modes available (7 camber + 7 thickness modes).

HF: RANS solver (ADflow)

* LF: Xfoil [Drela 1989]

Cost ratio: 1/200

Reference: SNOPT [Gill 2005]

Airfoil shape – Unconstrained optimization

- L/D maximization
- ▶ 15 design variables (7 camber + 7 thickness modes + AoA)

Airfoil shape – Unconstrained optimization

- L/D maximization
- ▶ 15 design variables (7 camber + 7 thickness modes + AoA)

Airfoil shape – Unconstrained optimization

	HF	LF	Cost	Obj
EGO	40 + 30	-	70	104.9
MFEGO	16 + 8	744 + 437	29.89	110.5
SNOPT	21	-	21	110.7

Table: Comparison of EGO and MFEGO for unconstrained optimization

- L/D maximization
- ▶ 15 design variables (7 camber + 7 thickness modes + AoA)

Airfoil shape - Constrained optimization

- Use of SEGOMOE framework [Bartoli 2016]
 - C_d minimization
 - $ightharpoonup C_l$, C_m equality constraints
 - ▶ 15 design variables (7 camber + 7 thickness modes + AoA)

Airfoil shape – Constrained optimization

	HF	LF	Cost	Obj	Feasible	RMSCV
EGO	40 + 60	-	100	89.188	Yes	8.8e-2
MFEGO	24 + 18	964 + 63	47.135	84.67	Yes	4.9e-3
SNOPT	73	-	73	84.68	Yes	-

Table: Comparison of EGO and MFEGO for constrained optimization

$$RMSCV = \sqrt{\frac{1}{N} \sum_{j=1}^{N} (val_j - target)^2}$$

- Use of SEGOMOE framework [Bartoli 2016]
 - ► C_d minimization
 - $ightharpoonup C_l$, C_m equality constraints
 - ▶ 15 design variables (7 camber + 7 thickness modes + AoA)

Plan

Introduction

Surrogate Modeling

Kriging
Multi-Fidelity co-Kriging

Bayesian Optimization

Efficient Global Optimizaton: EGO Multi-Fidelity Efficient Global Optimizaton: MFEGO

Application to Airfoil Shape Optimization

Conclusion

Conclusion & Perspectives

This project has shown it is possible to use multi-fidelity information sources to:

- ► enhance surrogate models → MFK integration in SMT,
- alleviate dimensionality curse → MFKPLS MFKPLSK,
- reduce global search cost (global optimizations) → MFEGO,
- ▶ find better results with lesser cost compared to EGO (and occasionally SNOPT) for multiple constrained and unconstrained problems → SEGOMOE framework extension.
- In progress: AIAA Aviation 2019 Conference abstract submission, aerostructural optimization test case.

Work can be done to improve the approach:

- hybrid models (a different model adapted to each level of fidelity)
- multi-fidelity mixture of experts,
- **.**..

Questions

Thank you for your attention! Do you have any questions?

References I

N Bartoli, I Kurek, R Lafage, T Lefebvre, R Priem,
MA Bouhlel, J Morlier, V Stilz and R Regis.
Improvement of efficient global optimization with mixture of
experts: methodology developments and preliminary
results in aircraft wing design.
In 17th AIAA/ISSMO Multidisciplinary Analysis and

Mark Drela.

XFOIL: An analysis and design system for low Reynolds number airfoils.

In Low Reynolds number aerodynamics, pages 1–12. Springer, 1989.

Optimization Conference, At Washington DC, 2016.

References II

Alexander Forrester, András Sóbester and Andy Keane. Engineering design via surrogate modelling: a practical guide. 2008.

Philip E Gill, Walter Murray and Michael A Saunders. SNOPT: An SQP algorithm for large-scale constrained optimization.

SIAM review, vol. 47, no. 1, pages 99–131, 2005.

Donald R. Jones, Matthias Schonlau and William J. Welch. Efficient Global Optimization of Expensive Black-Box Functions.

J. of Global Optimization, vol. 13, no. 4, pages 455–492, 1998.

References III

- Joseph Katz and Allen Plotkin. Low-speed aerodynamics, volume 13. Cambridge university press, 2001.
- Marc C Kennedy and Anthony O'Hagan. Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 63, no. 3, pages 425–464, 2001.
- Loic Le Gratiet.

 Multi-fidelity Gaussian process regression for computer experiments.

Thesis, Université Paris-Diderot - Paris VII, October 2013.

References IV

R. M. Lewis and S. G. Nash.

A multigrid approach to the optimization of systems governed by differential equations. 2000.

Jichao Li, Mohamed Amine Bouhlel and Joaquim Martins. A Data-based Approach for Fast Airfoil Analysis and Optimization.

01 2018.

J. Močkus.

On bayesian methods for seeking the extremum, pages 400-404.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1975.

References V

CFD Platforms and Coupling.

https://www.onera.fr/en/news/cfd-platforms-and-coupling.
Accessed: 2018-09-19.

ONERA-M6 Wing, Star of CFD.

https://www.onera.fr/en/news/onera-m6-wing-star-of-cfd.
Accessed: 2018-09-19.

References VI

MultiFi Cokriging in OpenMDAO.

http://openmdao.org/twodocs/versions/2.0.0/ _srcdocs/packages/surrogate_models/multifi_ cokriging.html.

Accessed: 2014-11-18.

Remi Vauclin.

Multi-fidelity surrogate models for structural optimization. Rapport technique, ISAE-SUPAERO/ONERA, July 2014.