The Comparison Test

1. **Quote.** "Comparison is the thief of joy."

(Theodore Roosevelt Jr., 26th American President [1901-1909], 1858-1919)

2. The Comparison Test.

Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with $0 \le a_n \le b_n$ for all n.

- (a) If $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is also convergent. (b) If $\sum_{n=1}^{\infty} a_n$ is divergent, then $\sum_{n=1}^{\infty} b_n$ is also divergent.

3. **Example.** Test if

$$\sum_{n=1}^{\infty} \frac{1}{n^4 + e^n}$$

is convergent.

4. Useful tip.

When applying the comparison test, you can often use geometric series or pseries.

5. **Example.** Test the series

$$\sum_{n=1}^{\infty} \frac{1}{n!} = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$

for convergence.

6. The Limit Comparison Test.

Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms. If

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

where c is a finite number and c > 0, then either both series converge or both diverge.

7. Example. Test for convergence

(a)
$$\sum \frac{3n^2 + n}{n^4 + \sqrt{n}}$$
(b)
$$\sum \frac{1}{2n + \ln n}$$

(b)
$$\sum \frac{1}{2n + \ln n}$$

Notes.