AD-R183 894 CHARACTERIZATION OF SURFACE STRUCTURE AND PROPERTIES IN 1/1
ORIENTED POLYMERS(U) CONNECTICUT UNIV STORRS INST OF
MATERIALS SCIENCE N H SUNG ET AL. 24 JUL 87 TR-8
F/G 7/6 NL

END
9-81
DIIG

MICROCOPY RESOLUTION TEST CHART
MITONAL BUREAU OF STANDARDS-1988-A

AD—A 183 894 Continued Co							
22. SECURITY CLASSFICATION AUTHOR 23. DECLASSFICATION AUTHOR 24. DECLASSFICATION AUTHOR 25. DECLASSFICATION AUTHOR 26. DECLASSFICATION AUTHOR 27. REPORT NUMBERS 28. DECLASSFICATION AUTHOR 28. DECLASSFICATION AUTHOR 29. DECLASSFICATION AUTHOR 29. DECLASSFICATION AUTHOR 20. DESCAPATION 20. DECLASSFICATION AUTHOR 20. NOR 20. N	AD_ A 102 00/ -	REPORT ODCU	MENTATION	PAGE			
Distribution Unlimited Properties Properti	AD-4 103 034						
Technical February Classification author Aug 05 987 Technical Report No. 8 Superimental Properties in Oriented Polymers		FOTE		MWWIIAGS			
AUR 0.5 1987 Declassification/Downgaadung is Due 1 PERFORMING DRGAMIZATION REPORT NUMBER(S) Technical Report No. 8 64. NAME OF PERFORMING ORGAMIZATION University of Connecticut 64. PADMESS (Cip. State. and ZIP Code) 97. N. Eagleville Rd. Institute of Materials Science, U-136 85. NORTH Quincy Avenue Arlington, VA 22217 80. North Quincy Avenue Arlington, VA 22217 10. SOURCE OF FUNDING INSTITUTION ON COMMERCE (Cip. Strate. and ZIP Code) 80. North Quincy Avenue Arlington, VA 22217 11. Title Roccuse Security Classification Characterization of Surface Structure and Properties in Oriented Polymers 12. PERSONAL AUTHORIS) N. H. Sung, H. Y. Lee, P. Yuan and C.S.P. Sung 13. Interior of Report 14. OATE OF REPORT 15. Title Roccuse Security Classification ACS Polymer Preprints, 2B-2, in press, 1987. 17. COSATI COSAT 18. SUBJECT SERMS (Continue on reverse if necessary and admentity by block number) 19. ABSTRACT (Continue on reverse if necessary and admentity by block number) 19. ABSTRACT (Continue on reverse of necessary and admentity by block number) 19. ABSTRACT (Continue on reverse of necessary and admentity by block number) 19. ABSTRACT (Continue on reverse of necessary and admentity by block number) 19. ABSTRACT (Continue on reverse of necessary and admentity by block number) 19. ABSTRACT (Continue on reverse of necessary and admentity by block number) 19. ABSTRACT (Continue on reverse of necessary and admentity by block number) 19. ABSTRACT (Continue on reverse of necessary and admentity by block number) 19. ABSTRACT (Continue on reverse of necessary and admentity by block number) 19. ABSTRACT (Continue on reverse of necessary and admentity by block number) 19. ABSTRACT (Continue on reverse of necessary and admentity by block number) 19. ABSTRACT (Continue on reverse of necessary and admentity by block number) 19. ABSTRACT (Continue on reverse of necessary and admentity by block number) 19. ABSTRACT (Continue on reverse of necessary and admentity by block number) 19. ABSTRACT (Contin				/AVAILABILITY O	E REPORT		
T. DECLASSIFICATION/COMMORADING SEQUE Distribution Unlimited	22. SECONITY CONSINCENTION ACTION						
T PERFORMING ORGANIZATION REPORT NUMBER(S) Technical Report No. 8 Sea Name of Personaing Decanization of Properties of Properties of Connecticut of Applicable) Sea Connecticut of Connecticut of Applicable of Properties of Connecticut of Applicable of Applicab	26 DECLASSIFICATION / DOWNGRADING SE DU						
Technical Report No. 8 Sa. NAME OF PERFORMING ORGANIZATION (If applicables) No. 19 ADDRESS (City, State, and ZIP Code) 97 N. Eagleville Rd. Institute of Materials Science, U-136 Storrs, CT 06268 San Name Of Funding SPONSORING ORGANIZATION (If applicables) No. 22217 PROGRAM ALINGTON, VA 22217 10 SOURCE OF FUNDING NUMBERS RE ADDRESS (City, State, and ZIP Code) 800 North Quincy Avenue Arlington, VA 22217 11 TITLE (Include Security, Classification) Characterization of Surface Structure and Properties in Oriented Polymers 12 PERSONAL AUTHORS) N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13 TYPE, OF REPORT 14 DATE OF REPORT 15 SUPPLEMENTARY NOTATION ACS Polymer Preprints, 28-2, in press, 1987. 17 COSATI CODES 18 SUBJECT TERMS (Continue on reveire if necessary and identify by block number) New surfaces generated during uniaxial or blaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface Structure have been characterized by measuring molecular orientation and degree of crystall inity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring molecular orientation and degree of crystall inity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring molecular orientation and degree of crystall inity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring molecular orientation and degree of crystall inity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring molecular orientation and degree of crystall inity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by shighle-stroke friction measurements. Unlaystal drawing increases surface crystallini		Distribution onlimited					
Technical Report No. 8 Sa. NAME OF PERFORMING ORGANIZATION (If applicables) No. 19 ADDRESS (City, State, and ZIP Code) 97 N. Eagleville Rd. Institute of Materials Science, U-136 Storrs, CT 06268 San Name Of Funding SPONSORING ORGANIZATION (If applicables) No. 22217 PROGRAM ALINGTON, VA 22217 10 SOURCE OF FUNDING NUMBERS RE ADDRESS (City, State, and ZIP Code) 800 North Quincy Avenue Arlington, VA 22217 11 TITLE (Include Security, Classification) Characterization of Surface Structure and Properties in Oriented Polymers 12 PERSONAL AUTHORS) N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13 TYPE, OF REPORT 14 DATE OF REPORT 15 SUPPLEMENTARY NOTATION ACS Polymer Preprints, 28-2, in press, 1987. 17 COSATI CODES 18 SUBJECT TERMS (Continue on reveire if necessary and identify by block number) New surfaces generated during uniaxial or blaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface Structure have been characterized by measuring molecular orientation and degree of crystall inity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring molecular orientation and degree of crystall inity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring molecular orientation and degree of crystall inity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring molecular orientation and degree of crystall inity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring molecular orientation and degree of crystall inity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by shighle-stroke friction measurements. Unlaystal drawing increases surface crystallini	4 PERFORMING ORGANIZATION REPORT NUMBER	R(S)	S. MONITORING	ORGANIZATION R	EPORT NUMBER	(S)	
Se. NAME OF PERFORMING ORGANIZATION University of Connecticut (if applicable) Sc. ADDRESS (Gry, State, and ZiP Code) 97 N. Eagleville Rd.							
University of Connecticut (*** applicable**) Sc. ADDRESS (City, State, and 2IP Code**) 97 N. Eagleville Rd. Institute of Materials Science, U-136 Storrs, CT 06268 800 North Quincy Avenue Arlington, VA 22217 \$ PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION ONR 8c. ADDRESS (City, State, and ZIP Code**) 8d. OFFICE SYMBOL ORGANIZATION ONR 8c. ADDRESS (City, State, and ZIP Code**) 8d. ONORTH Quincy Avenue Arlington, VA 22217 11. ITILE Unclude Security Classification Characterization of Surface Structure and Properties in Oriented Polymers 12. PERSONAL AUTHORIS) N. H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13. TYPE OF REPORT TO 14. DATE OF REPORT, (Year, Month, Day) 15. Supplementary NOTATION ACS Polymer Preprints, 28-2, in press, 1987. 17. COSATI CODES FIELD GROUP Sub-GROUP 18. Subject Terms (Continue on reverse if necessary and identify by block number) Wew surfaces generated during unfaxfal or blaxfal stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tends and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Unlaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyetylyleneterephthalate (PPT). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 Distributions Availability of ABSTRACT Sunklassifications 21 ABSTRACT SECURITY CLASSIFICATION 21 ABSTRACT SECURITY CLASSIFICATION 22 NAME OF REPORT PROBLEM AND PROJECT IN ABSTRACT SECURCLASSIFICATION 22 NAME OF REPORT PROBLEM AND PROJECT IN ABSTRACT SECURCLASSIFICATION 22 NAME OF REPORT PROBLEM AND PROJECT IN	mare -	-u					
SC ADDRESS (City, State, and ZiP Code) 97 N. Eagleville Rd. Institute of Materials Science, U-136 Storrs, CT 06268 8800 North Quincy Avenue Arlington, VA 22217 8800 North Quincy Avenue Arlington, VA 22217 10 SOURCE OF FUNDING NUMBER 8800 North Quincy Avenue Arlington, VA 22217 10 SOURCE OF FUNDING NUMBER 8800 North Quincy Avenue Arlington, VA 22217 11 ITIE (Include Secury) Clistification) Characterization of Surface Structure and Properties in Oriented Polymers 12 PERSONAL AUTHORIS) N. H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13 IYPE OF REPORT	62 NAME OF PERFORMING ORGANIZATION 60. OFFICE SYMBOL		7a. NAME OF MONITORING ORGANIZATION				
Sc. ADDRESS (City, State, and ZIP Code) 97 N. Eagleville Rd. Institute of Materials Science, U-136 Storrs, CT 05268 8a. Name of Funding Sponsoring OnCanatarion ONR 8c. ADDRESS (City, State, and ZIP Code) 8d. ONOrth Quincy Avenue Arlington, VA 22217 10 SQUECE OF FUNDING NUMBERS 800 North Quincy Avenue Arlington, VA 22217 11. ITLE Unclude Security Classification Characterization of Surface Structure and Properties in Oriented Polymers 12 PERSONAL AUTHOR(S) N. H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13a IVPE OF REPORT 13b TIME COVERED July 24, 1987 15. SUPPLEMENTARY NOTATION ACS Polymer Preprints, 28-2, in press, 1987. 172 COSATI CODES FIELD GROUP Sub-GROUP New Surface Structure and Properties on Coefficient, Surface Roughness 193 ASSIRACT (Continue on reverse il necessary and signify by block number) New surfaces generated during uniaxial or blaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using F1-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Unlaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRESURTION/NAVALABILITY OF AESTRACT © DISTRESURTION NAVALABILITY OF AESTRACT © DISTRESURTION NAVALABILITY OF AESTRACT EDUCATION			ONR				
97 N. Eagleville Rd. Institute of Materials Science, U-136 Storrs, CT 06268 8- Name of Funding Sponsoning ONR RE. ADDRESS (City, State, and ZIP Code) 8- Name of Funding Sponsoning ONR RE. ADDRESS (City, State, and ZIP Code) 8- Name of Funding Sponsoning ONR RE. ADDRESS (City, State, and ZIP Code) 8- Name of Funding Numbers Re. ADDRESS (City, State, and ZIP Code) 8- Name of Funding Numbers Re. ADDRESS (City, State, and ZIP Code) 8- Name of Funding Numbers Re. ADDRESS (City, State, and ZIP Code) 8- Name of Report Of Surface Structure and Properties in Oriented Polymers 11- TITLE (Include Security, Classification) Characterization of Surface Structure and Properties in Oriented Polymers 12- PERSONAL AUTHORIS) N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13- TYPE OF REPORT (Type, Monith, Day) 13- TYPE OF REPORT (Type, Monith, Day) 13- Surplementary Motation ACS Polymer Preprints, 28-2, in press, 1987. 17- COSATI CODES (Type, Monith, Day) 19- ABSENACT (Continue on reverse if necessary and identify by block number) New Surfaces generated during uniaxial or blaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made t		ONK					
97 N. Eagleville Rd. Institute of Materials Science, U-136 Storrs, CT 06268 8- Name of Funding Sponsoning ONR RE. ADDRESS (City, State, and ZIP Code) 8- Name of Funding Sponsoning ONR RE. ADDRESS (City, State, and ZIP Code) 8- Name of Funding Sponsoning ONR RE. ADDRESS (City, State, and ZIP Code) 8- Name of Funding Numbers Re. ADDRESS (City, State, and ZIP Code) 8- Name of Funding Numbers Re. ADDRESS (City, State, and ZIP Code) 8- Name of Funding Numbers Re. ADDRESS (City, State, and ZIP Code) 8- Name of Report Of Surface Structure and Properties in Oriented Polymers 11- TITLE (Include Security, Classification) Characterization of Surface Structure and Properties in Oriented Polymers 12- PERSONAL AUTHORIS) N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13- TYPE OF REPORT (Type, Monith, Day) 13- TYPE OF REPORT (Type, Monith, Day) 13- Surplementary Motation ACS Polymer Preprints, 28-2, in press, 1987. 17- COSATI CODES (Type, Monith, Day) 19- ABSENACT (Continue on reverse if necessary and identify by block number) New Surfaces generated during uniaxial or blaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made t	6c. ADDRESS (City, State, and ZIP Code)		7b ADDRESS (City, State, and ZIP Code)				
Institute of Materials Science, U-136 Storrs, CT 06268 84. NAME OF FUNDING/SPONSORING ON BLOOMERS 84. NAME OF FUNDING/SPONSORING ON BLOOMERS 85. ADDRESS (Ciry, State, and ZIP Code) 86. ADDRESS (Ciry, State, and ZIP Code) 87. ADDRESS (Ciry, State, and ZIP Code) 88. ADDRESS (Ciry, State, and ZIP Code) 88. ADDRESS (Ciry, State, and ZIP Code) 89. North Quincy Avenue Arlington, VA 22217 10. SOURCE OF FUNDING NUMBERS 10. SOURCE OF FUNDING NUMBERS 10. SOURCE OF FUNDING NUMBERS 11. THE (Include Security, Classification) 12. PERSONAL AUTHOR(S) 13. THE (Include Security, Classification) 13. THE (Include Security, Classification) 14. The Code of Funding Security Classification of Surface Structure and Properties in Oriented Polymers 15. Supplementary NOTATION 16. Supplementary NOTATION ACS Polymer Preprints, 28-2, in press, 1987. 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify, by blook number) New Surfaces generated during unfaxial or blaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring melecular orientation and degree or crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn propension contact angles measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20. DISTABLIBITION AVAILABILITY OF ABSTRACT 80. DISCAMBLIBITION AVAILABILITY OF ABSTRACT 80. DISCAM	97 N. Eagleville Rd.						
Storrs, CT 06268 B. NAME OF EURODIA'S PONSORING ORGANIZATION ONR B. ADDRESS (City, State, and ZIP Code) BOO North Quincy Avenue Arlington, VA 22217 11. TITLE (Include Security Classification) Characterization of Surface Structure and Properties in Oriented Polymers 12. PERSONAL AUTHOR(S) N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13. TYPE OF REPORT 13b TIME COVERED TO July 24, 1987 13. TYPE OF REPORT 15b TIME COVERED July 24, 1987 13. Supplementary Notation ACS Polymer Preprints, 28-2, in press, 1987. 17. COSAI CODES Sub-GROUP Sub							
ORANIZATION ONR 8. ADDRESS (City, State, and ZIP Code) 800 North Quincy Avenue Arlington, VA 22217 11. TITLE (Include Security Classification) Characterization of Surface Structure and Properties in Oriented Polymers 12. PERSONAL AUTHORIS) M.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13. Type OF REPORT 130 TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 16 SUPPLEMENTARY NOTATION ACS Polymer Preprints, 28-2, in press, 1987. 17. COSAIT CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) New surfaces generated during unfaxial or blaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-rotentation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFICIATION 21 ABSTRACT SECURITY CLASSIFICATION 22 NAME OF REPORTS SECURITY CLASSIFICATION 23 NAME OF REPORTS SECURITY CLASSIFICATION 24 ABSTRACT SECURITY CLASSIFICATION 25 NAME OF REPORTS SECURITY CLASSIFICATION 25 NAME OF REPORTS SECURITY CLASSIFICATION 26 DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFICATION AVAILABILITY OF ABSTRA	Storrs, CT 06268						
ONR 8c. ADDRESS (City, State, and ZIP Code) 800 North Quincy Avenue Arlington, VA 22217 11. TITLE (Include Security Classification) Characterization of Surface Structure and Properties in Oriented Polymers 12. PERSONAL AUTHOR(S) N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13a TYPE OF REPORT 15b TIME COVERED 16 LOPPLEMENTARY NOTATION ACS Polymer Preprints, 28-2, in press, 1987. 17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) New surfaces generated during unlaxial or blaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR AIR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Unlaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented Pp and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/NYAILABILITY OF ABSTRACT CONSTRIBUTION/NYAILABILITY OF ABSTR		9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER					
80. North Quincy Avenue Arlington, VA 22217 11. TITLE (Include Security Classification) Characterization of Surface Structure and Properties in Oriented Polymers 12. PERSONAL AUTHOR(S) N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13a. Type OF REPORT technical FROM ID July 24, 1987 15b. TIME COVERED TO July 24, 1987 16. SuppleMentary Notation ACS Polymer Preprints, 28-2, in press, 1987. 17 COSATI CODES Surface Structure and Topology, FT-IR AIR Dichroism, Contact Angle Anisotropy, Friction Coefficient, Surface Roughness 19. ABSTRACT (Continue on reverse if necessary and dentity by block number) New surfaces generated during uniaxial or blaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 Distribution/Navalability of Abstract © UNICLASSIPICIONIUMINED SAME AS RPT DICHOSON							
ROO North Quincy Avenue Arlington, VA 22217 11. Title (Include Seturing Classification) Characterization of Surface Structure and Properties in Oriented Polymers 12. PERSONAL AUTHOR(S) N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT technical 16. Supplementary NOTATION 16. Supplementary NOTATION 18. Subject TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) New surfaces generated during uniaxial or blaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Unlaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polypthylenterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 Distribution of ABSTRACT OIIC USERS 21 ABSTRACT SECURITY CLASSIFICATION 222 TELEPHONE (Include Area Code) 22c OFFICE SYMBOL 203-486-4630	ONR						
Arlington, VA 22217 11. Title (Include Security Classification) Characterization of Surface Structure and Properties in Oriented Polymers 12. PERSONAL AUTHOR(S) N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13a Type OF REPORT	8c. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF FUNDING NUMBERS				
Arlington, VA 22217 The fire (Include Security Classification) Characterization of Surface Structure and Properties in Oriented Polymers 12 PERSONAL AUTHOR(S) M.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13a Type of Report 14 Date of Report (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION ACS Polymer Preprints, 28-2, in press, 1987. 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) New surfaces generated during uniaxial or biaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 Distribution/Avalicability Of ABSTRACT ©UNICLASSIFICATION 222 NAME OF RESPONSIBLE INDIVIDUAL C. S. P. Sung 223 NAME OF RESPONSIBLE INDIVIDUAL C. S. P. Sung	800 North Ouingy Avenue						
11. Title (include Security Classification) Characterization of Surface Structure and Properties in Oriented Polymers 12. PERSONAL AUTHOR(S) N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13a TYPE OF REPORT technical FROM TO 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT technical FROM TO July 24, 1987 16. SUPPLEMENTARY NOTATION ACS Polymer Preprints, 28-2, in press, 1987. 17. COSATI CODES Sub-GROUP Sub-GROUP Angle Anisotropy, Friction Coefficient, Surface Roughness 19. ABSTRACT (Continue on reverse if necessary and identify by block number) New surfaces generated during uniaxial or blaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters 20 Distribution/Ayalicability OF ABSTRACT ©UNICLASSIFICATION 21. ABSTRACT SECURITY CLASSIFICATION 22. NAME OF REPORT CLASSI		•	ELEMENT NO.	NQ.	NO.	ACCESSION NO	
Characterization of Surface Structure and Properties in Oriented Polymers 12. PERSONAL AUTHOR(S) N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13a type of Report technical 13b TIME COVERED technical 14 Date of Report (Year, Month, Day) 15. PAGE COUNT technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number in number) 19. ABSTRACT (Continue on reverse if necessary and id					1		
12 PERSONAL AUTHOR(S) N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13a Type OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 16. SUPPLEMENTARY NOTATION ACS Polymer Preprints, 28-2, in press, 1987. 17	11. TITLE (Include Security Classification)						
N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT TECHNICal 16. SUPPLEMENTARY NOTATION 17. ACS Polymer Preprints, 28-2, in press, 1987. 17	Characterization of Surface	Structure and Pr	operties in	uriented Poi	ymers		
N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT TECHNICal 16. SUPPLEMENTARY NOTATION 17. ACS Polymer Preprints, 28-2, in press, 1987. 17							
13a TYPE OF REPORT technical 13b TIME COVERED TO July 24, 1987 15. PAGE COUNT technical 16. SUPPLEMENTARY NOTATION ACS Polymer Preprints, 28-2, in press, 1987. 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify, by block number) Surface Structure and Topology, FT-TR ATR Dichroism, Contact Angle Anisotropy, Friction Coefficient, Surface Roughness 19 ABSERACT (Continue on reverse if necessary and identify by block number) New surfaces generated during uniaxial or blaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-TR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 221 ABSTRACT SECURITY CLASSIFICATION 222 NAME OF RESPONSIBLE INDIVIDUAL 222 NAME OF RESPONSIBLE INDIVIDUAL 222 NAME OF RESPONSIBLE INDIVIDUAL 223 NAME OF RESPONSIBLE INDIVIDUAL 220 ABSTRACT SECURITY CLASSIFICATION 221 ABSTRACT SECURITY CLASSIFICATION 222 NAME OF RESPONSIBLE INDIVIDUAL 223 NAME OF RESPONSIBLE INDIVIDUAL 223 NAME OF RESPONSIBLE INDIVIDUAL 223 NAME OF RESPONSIBLE INDIVIDUAL 224 NAME OF RESPONSIBLE INDIVIDUAL	12. PERSONAL AUTHOR(S)						
TO July 24, 1987 16. SUPPLEMENTARY NOTATION ACS Polymer Preprints, 28-2, in press, 1987. 17. COSATI CODES FIELD GROUP SUB-GROUP New surfaces generated during unitaxial or biaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT ©UNCLASSIFICATION 21 ABSTRACT SECURITY CLASSIFICATION 220 A866-4630 220 OFFICE SYMBOL 203-486-4630 20	N.H. Sung, H.Y. Lee, P. Yuan and C.S.P. Sung						
ACS Polymer Preprints, 28-2, in press, 1987. COSATI CODES 18. Subject Terms (Continue on reverse if necessary and identify by block number)		RT (Year, Month, I	Day) 15. PAGE	COUNT			
ACS Polymer Preprints, 28-2, in press, 1987. COSATI CODES SUB-GROUP SUB-GROUP Surface Structure and Topology, FT-IR ATR Dichroism, Contact Angle Anisotropy, Friction Coefficient, Surface Roughness	technical FROM	July 24,	1987	1	1		
19 ABSTRACT (Continue on reverse if necessary and identify by block number) New surfaces generated during uniaxial or biaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT DIIC USERS 21 ABSTRACT SECURITY CLASSIFICATION 203-486-4630 22c. OFFICE SYMBOL 203-486-4630 203	16. SUPPLEMENTARY NOTATION						
19 ABSTRACT (Continue on reverse if necessary and identify by block number) New surfaces generated during uniaxial or biaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT DIIC USERS 21 ABSTRACT SECURITY CLASSIFICATION 203-486-4630 22c. OFFICE SYMBOL 203-486-4630 203	ACS Polymer Preprints, 28-2, in press, 1987.						
New surfaces generated during uniaxial or biaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT © UNCLASSIFIEDJUNLIMITED							
New surfaces generated during uniaxial or biaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT © UNCLASSIFIEDJUNLIMITED		18. SUBJECT TERMS (C	ontinue on reverse	of necessary and	dentify by blo	ck number)	
New surfaces generated during uniaxial or biaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIEDUINLIMITED SAME AS RPT DICCUSERS 21 ABSTRACT SECURITY CLASSIFICATION 22 DISTRIBUTION/AVAILABILITY OF ABSTRACT C. S. P. Sung 22 DISTRIBUTION (Include Area Code) 22 OFFICE SYMBOL C. S. P. Sung	FIELD GROUP SUB-GROUP SUTTACE STRUCTURE and TOPOTOGY, FI-IK AIK DICHTOISM, CONTACT						
New surfaces generated during uniaxial or biaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT Sunccessification 21 ABSTRACT SECURITY CLASSIFICATION 22 ABSTRACT SECURITY CLASSIFICATION 23 ABSTRACT SECURITY CLASSIFICATION 24 ABSTRACT SECURITY CLASSIFICATION 25 TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL C. S. P. Sung	Angle Antisocropy, Triction Coefficient, Surface Roughness						
New surfaces generated during uniaxial or biaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT Sunccessification 21 ABSTRACT SECURITY CLASSIFICATION 22 ABSTRACT SECURITY CLASSIFICATION 23 ABSTRACT SECURITY CLASSIFICATION 24 ABSTRACT SECURITY CLASSIFICATION 25 TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL C. S. P. Sung	<u> </u>						
substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT Sunclassified Junclassified Junclassified Distriction 21 ABSTRACT SECURITY CLASSIFICATION 21 ABSTRACT SECURITY CLASSIFICATION 22 NAME OF RESPONSIBLE INDIVIDUAL C. S. P. Sung 21 ABSTRACT SECURITY CLASSIFICATION 22 OFFICE SYMBOL 23 -486-4630							
have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT Sunclassified/unklimited Same as RPT Dotic users 21 ABSTRACT SECURITY CLASSIFICATION 22 NAME OF RESPONSIBLE INDIVIDUAL C. S. P. Sung 22 TELEPHONE (Include Area Code) 22 C. OFFICE SYMBOL 203-486-4630	New surfaces generated during unlaxial or blaxial stretching of polymer films are						
FT-IR ATR dichroism technique. Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT Sunclassificorunkimited Same as RPT DICCUSERS 21 ABSTRACT SECURITY CLASSIFICATION 22 ABSTRACT SECURITY CLASSIFICATION 23 ABSTRACT SECURITY CLASSIFICATION 24 ABSTRACT SECURITY CLASSIFICATION 25 DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFICORUNKITED SAME AS RPT DICCUSERS 26 DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFICORUNKITED SAME AS RPT DICCUSERS 27 ABSTRACT SECURITY CLASSIFICATION 27 ABSTRACT SECURITY CLASSIFICATION 27 ABSTRACT SECURITY CLASSIFICATION 28 DISTRIBUTION/AVAILABILITY OF ABSTRACT SOURCE SYMBOL C. S. P. Sung	substantially different from their unoriented counterparts. Changes in surface structure						
coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIED/JUNIMITED SAME AS RPT DTIC USERS 21 ABSTRACT SECURITY CLASSIFICATION 22 DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIED/JUNIMITED SAME AS RPT DTIC USERS 22 DESTRIBUTION/AVAILABILITY OF ABSTRACT C. S. P. Sung 22 DESCRIPTIONE (Include Area Code) 22c. OFFICE SYMBOL 203-486-4630	have been characterized by mea	suring molecular	orientation	and degree	of crystal	linity using	
ments. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT © UNCLASSIFIED/UNLIMITED	FT-IR ATR dichroism technique.	Surface proper	rties, such	as surface 1	tension and	triction	
polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIED/UNILIMITED SAME AS RPT DITIC USERS 21 ABSTRACT SECURITY CLASSIFICATION 222a NAME OF RESPONSIBLE INDIVIDUAL C. S. P. Sung 223 TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL 203-486-4630	coefficient, are studied by measuring contact angles and by single-stroke friction measure-						
friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT Sunct an anisotropy in oriented PP and not properties with surface structural parameters. 21 ABSTRACT SECURITY CLASSIFICATION 22 DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIED/UNLIMITED SAME AS RPT DITIC USERS 22 NAME OF RESPONSIBLE INDIVIDUAL C. S. P. Sung 22 DIELEPHONE (Include Area Code) 22c OFFICE SYMBOL 203-486-4630	ments. Uniaxial drawing increa	ses surface cry	stallinity a	nd molecular	r orientati	ion in both	
Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT © UNCLASSIFIED/UNLIMITED	polypropylene (PP) and polyet	hyleneterephthal	ate (PET).	This also	leads to ar	nisotropic	
and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT © UNCLASSIFIED/UNLIMITED	triction coefficients when measured parallel and perpendicular to the drawing direction.						
And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIED/UNLIMITED SAME AS RPT DITIC USERS 21 ABSTRACT SECURITY CLASSIFICATION 21 ABSTRACT SECURITY CLASSIFICATION 22 ABSTRACT SECURITY CLASSIFICATION 22 DITIC USERS 22 NAME OF RESPONSIBLE INDIVIDUAL C. S. P. Sung 220 TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL 203-486-4630	Lontact angles measured with tour different liquids also exhibit anisotropy in oriented PP						
fully examined. Attempts are made to correlate surface properties with surface structural parameters. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIED/JUNLIMITED SAME AS RPT DTIC USERS 21 ABSTRACT SECURITY CLASSIFICATION 21 ABSTRACT SECURITY CLASSIFICATION 22 ANAME OF RESPONSIBLE INDIVIDUAL C. S. P. Sung 22 TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL 203-486-4630	and not in PEI. Surface roughness of drawn PP is directional whereas that of PEI is uniform.						
parameters 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS 222a NAME OF RESPONSIBLE INDIVIDUAL C. S. P. Sung 22 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 22 DISTRIBUTION/AVAILABILITY OF ABSTRACT 23 DISTRIBUTION/AVAILABILITY OF ABSTRACT 24 DISTRIBUTION/AVAILABILITY OF ABSTRACT 25 DISTRIBUTION/AVAILABILITY OF ABSTRACT 26 DISTRIBUTION/AVAILABILITY OF ABSTRACT 27 DISTRIBUTION/AVAILABILITY OF ABSTRACT 28 DISTRIBUTION/AVAILABILITY OF ABSTRACT 29 DISTRIBUTION/AVAILABILITY OF ABSTRACT 20 DIST	And the possible influence of anisotropic roughness on contact angle measurements are care-						
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT © UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS 222 NAME OF RESPONSIBLE INDIVIDUAL C. S. P. Sung 223 TELEPHONE (Include Area Code) 226 TELEPHONE (Include Area Code) 227 TELEPHONE (Include Area Code) 228 TELEPHONE (Include Area Code) 229 TELEPHONE (Include Area Code)							
Qunclassified/unlimited SAME AS RPT DTIC USERS 22a NAME OF RESPONSIBLE INDIVIDUAL C. S. P. Sung 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL 203-486-4630	parameters						
Qunclassified/unlimited SAME AS RPT DTIC USERS 22a NAME OF RESPONSIBLE INDIVIDUAL C. S. P. Sung 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL 203-486-4630	20 DISTRIBUTION/AVAILABILITY OF ABSTRACT	21 ABSTRACT SECURITY CLASSIFICATION					
22a NAME OF RESPONSIBLE INDIVIDUAL C. S. P. Sung 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL 203-486-4630			_				
C. S. P. Sung 203-486-4630		226 TELEPHONE	Include Area Code	22c. OFFICE S	YMBOL		
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE	C. S. P. Sung		203-486-	4630	1		
	DD FORM 1473, 84 MAR 83 AF	PR edition may be used un	til exhausted.	SECURITY	CLASSIFICATION	OF THIS PAGE	

All other editions are obsolete

Office of Naval Research

Contract N00014-86-K-0200

R&T Code NR413C022

Technical Report No. 8

Characterization of Surface Structure and Properties in Oriented Polymers

by

N. H. Sung, H. Y. Lee, P. Yuan and C.S.P. Sung

Prepared for

ACS Polymer Preprints

University of Connecticut Institute of Materials Science Department of Chemistry Storrs, CT 06268

July 24, 1987

Reproduction in whole or in part is permitted for any purpose of the United States Government

Secretary Practices are secretary

C.C. (1939)

This document has been approved for public release and sale; its distribution is unlimited.

CHARACTERIZATION OF SURFACE STRUCTURE AND PROPERTIES IN ORIENTED POLYMERS

by

N. H. Sung
Department of Chemical Engineering
Tufts University
Medford, Massachusetts 02155

H. Y. Lee, P. Yuan and C.S.P. Sung Institute of Materials Science University of Connecticut Storrs, CT 06268

ABSTRACT

New surfaces generated during uniaxial or biaxial stretching of polymer films are substantially different from their unoriented counterparts. Changes in surface structure have been characterized by measuring molecular orientation and degree of crystallinity using FT-IR ATR dichroism Surface properties, such as surface tension and friction coefficient, are studied by measuring contact angles and by single-stroke friction measurements. Uniaxial drawing increases surface crystallinity and molecular orientation in both polypropylene (PP) and polyethyleneterephthalate (PET). This also leads to anisotropic friction coefficients when measured parallel and perpendicular to the drawing direction. Contact angles measured with four different liquids also exhibit anisotropy in oriented PP and not in PET. Surface roughness of drawn PP is directional whereas that of PET is uniform. And the possible influence of anisotropic roughness on contact angle measurements are carefully examined. Attempts are made to correlate surface properties with surface structural Di Libatio / parameters.

> OTIC COPY INSPECTED

COCOCA A

TOTAL STREET, STREET,

Availability Codes

Avail and/or

Special

Dist

INTRODUCTION

Polymers in oriented states are highly anisotropic in their mechanical and physico-chemical properties, and bulk structure-properties relationship has been extensively studied in the past. Relatively little attention has been paid, however, to the surface properties of oriented polymers. When a polymer is subjected to drawing or stretching, surface/mass ratio increases sharply, thereby creating new surfaces along with molecular orientation. In crystalline polymers, molecular ordering on the surface may not be the same as in the bulk. Also when surface is created under no constraints (i.e. air/polymer interface), surface topology, such as roughness, may vary depending on the surface fluid dynamics at any given condition of temperature and strain rate.

In this paper, we are reporting our attempt to characterize the surface structure (molecular orientation and relative crystallinity) and the roughness of oriented polymers and to relate them to the surface properties, such as surface energy and friction coefficient, in two crystalline polymers, polypropylene (PP) and polyethyleneterephthalate (PET).

EXPERIMENTAL

PP films obtained from Hercules Co. were uniaxially drawn at $150^{\circ}-155^{\circ}$ C in an environmental chamber of Instron machine. Uniaxially drawn (at 80° C) PET films were provided by SKC Ltd. of Korea. Surface orientation and relative degree of crystallinity were estimated by FT-IR ATR dichroism technique using a special ATR crystal and ATR attachment (1,2). Contact angle was measured by a Rame-Hart Goniometer, using four different liquids; water ($\gamma = 72.8 \text{ dynes/cm}^2$), glycerol ($\gamma = 63.4 \text{ dynes/cm}^2$), formaldehyde (γ

= 58.2 dynes/cm^2) and ethylene glycol (γ = 47.7 dynes/cm^2) at ambient temperature. Surface roughness was measured by Talysurf profilometer. Friction coefficient was measured by a low-speed, single-stroke method using a stainless steel pin in the direction parallel and perpendicular to the draw direction. Applied load was between 50-100gr.

RESULTS AND DISCUSSION

Figures 1 and 2 show how the uniaxial drawing changes the molecular orientation and the relative crystallinity on the surface (~lµ in depth) of PP and PET respectively. As seen in Fig. 1, orientation function, fxy, initially increases rapidly with increasing draw ratio up to 3, then levels beyond that. In this work, X is the draw direction, while Y is perpendicular to X within the surface plane. Also noted is that the orientation of crystalline domains measured at 998 cm⁻¹ is greater than the average orientation measured at 973 cm⁻¹. The relative crystallinity (Xc) increases modestly with draw ratio from about 56% to about 66% from PP. For drawn PET film surfaces, the molecular orientation of trans ethylene glycol unit (at 975 cm⁻¹) is highest, followed by that of benzene ring (at 795 cm⁻¹) and gauche ethylene glycol unit (at 896 cm⁻¹). Relative amount of trans conformer increases from about 40% to 60% indicating that relative crystallinity increases slightly with drawing. This trend is similar to the changes observed in bulk PET. Relative crystallinity of the bulk measured by DSC also shows a good correlation with surface crystallinity estimated by FTIR-ATR.

Figure 3 shows the contact angles measured on the PET surfaces in both parallel $(\Theta_{||})$ and perpendicular $(\Theta_{||})$ directions to the draw direction, as a function of draw ratio. All four test liquids used exhibit isotropic contact angles $(\Theta_{||} \equiv \Theta_{||})$ within the experimental error, and the average

values for each liquid does not change with draw ratio. Compared to PET, PP surfaces show different behavior; θ_{\parallel} gradually decreases while θ_{\parallel} increases with draw ratio leading to an increasing anisotropy in contact angles. The same trend was found with all four test liquids as shown in Figure 4. Anisotropic contact angles on oriented polymer surfaces have been reported earlier by Good et al (3) on fluoropolymers and by Wang and Porter (4) on polystyrene. These authors attributed those unequal contact angles to the anisotropic surface tensions resulting from oriented molecules. Schonohorn (5), on the other hand, has demonstrated that anisotropic contact angles can be observed in unoriented polymer surfaces when surface roughness is directional, i.e. parallel grooved.

To assess the possible role of surface roughness on the anisotropy of contact angles surface profiles were measured along the directions parallel and perpendicular to draw direction. The results are shown in Figure 5. Overall, PET surface is smooth and no discernable difference in roughness are detected between the two directions. In PP, however, surface is rough (center line average $\sim 2\mu$) and the profiles differ significantly when scanned along two directions; the number of peaks and valleys per unit length is much larger along the perpendicular direction, suggesting that the peaks and valleys are elongated along the draw direction. The directionally oriented surface texture, thus, appears to influence the anisotropy in contact angle. The extent of the roughness effect on the contact angle is currently under investigation by systematically varying the surface roughness without altering the molecular orientation.

ACKNOWLEDGEMENT

This work was supported in part by ONR. We acknowledge the helpful discussions with Dr. H. Schonhorn of Kendall and Dr. S. H. Wu of Dupont.

REFERENCES

- 1. C.S.P. Sung, Macromolecules, <u>14</u>, 591 (1981).
- 2. J. P. Hobbs, C.S.P. Sung, K. Krishnan and S. Hill, Macromolecules, <u>16</u>, 193 (1983).
- 3. R. J. Good, J. A. Kuikstad and W. O. Bailey, J. Coll. & Interface Sci., <u>35</u>, 314 (1971).
- 4. L. H. Wang and R. S. Porter, J. Appl. Sci., 28, 1439 (1983).
- 5. H. Schonhorn, Abstracts of the Tenth Annual Meeting of the Adhesion Society, Williamsburg, Va, Feb. (1987).

Fig. 1. Surface Orientation Function (fxy) and Relative Surface Crystallinity (Xc) as a function of Draw Ratio (λ) in uniaxially oriented polypropylene.

Fig. 2. Surface Orientation Function (fxy) and Relative Surface Crystallinity (Xc) as a function of Draw Ratio (λ) in uniaxially oriented PET.

Fig. 3. Contact Angles as a function of draw ratio (λ) for PET from four different liquids in the perpendicular and parallel direction.

Fig. 4. Anisotropy in contact angles (θ₂-θ₂) as a function of draw ratio (λ) from four different liquids for polypropylene.

Fig. 5. Surface Roughness profiles of oriented PP and PET measured in the direction parallel and perpendicular to the draw direction.