Back to solution me thod: matrix Amxn has on columns Recall, from a system of (affine) linear equations we write a matrix (augmented) of scalar roefficients and solve using row reduction moves. Two matrices are now equivalent, AnB, when you get from A to B by now reduction moves. a pirot in a matrix B is a "1" in a row of B with . all "O"s before it in its now and · all "O"s above and below, in its column The now reduced echelon form of A (r.r.e.f.) is a matrix B-A where each row of B is either all O's or has a pirot 1 and the pirots in earlier (higher) rows are in earlier (further left) columns, and "O" rows are at bottom. 00102030200-1/2) lots of 000001305-203/s numbers after ex; 00000001-4101) (but not above 0000000000 or below) pirots → If A~B in rine.f, a privat column of A) is a column of A where that column in B has a pinot

- a system is solved when its matrix A
of wefficients is put in r.v.e.f. B
(the moves are also done on the
augmented column of constants, but
that column doesn't have to be in rire.f.)
Then the rine, f. B is returned to
equations as follows:
· each column corresponds to an
original variable x, y, Z or x, x2, X3, X4,
(except the augment column, which
is constants).
· each pinot in B is a determined.
variable of the solution: it will be
on the left of an equation.
· each non-pivot column of Bis
a free variable, it can be any real
number.
ex: B (augment)
$0100-2053$ $x_1 = x_1$ (free!)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\chi \times \chi \times \chi \times \chi$ $\chi_3 = \chi_3 \text{(Tree!)}$
xy + xs + 3x7 = 14
pinots $\chi_s = \chi_s$ (free!)
Next we solve $\chi_6 = \chi_6$ (free!)
the non-free $\chi_1 = \chi_2$ (free!)
equations, one Time free?
for each pivot. { unimbles = 5 dimensional
Solution

\longrightarrow	$\chi_1 = \chi_1$	7	
	$\chi_2 = 3 + 2\chi_5 - 5\chi_7$	This is the	
	$\chi_3 = \chi_3$	final general solution.	
	X4= 14-X5-3x7	There are solution	
	$\chi_{S} = \chi_{S}$	points since choosing	
	$\chi_6 = \chi_6$	any values for the free	
	$\chi_{\gamma} = \chi_{\gamma}$	uriables gives a	
	specific solution.		
S p	pecific solution exam	ple:	
	X = 0 to pick any!	X,=0	
	$\chi_2 = ? \leftarrow find: 3+2(-2)$	$(x) - 5(0) = -1$ $\chi_2 = -1$	
	X3=1 ← pick any!	χ ₃ =	
	xy=? ← find: 4-(-2)	$-3(0) = \frac{9}{4} \qquad \qquad \chi_4 = \frac{9}{4}$	
	Xs=-2 ← pick any!	$\chi_s = -2$	
	x6 = 3 ← pick any!	$\chi_6 = 3$	
	x, = 0 ← pick any!	X7 = 0	
-			