Tutoría Colectiva Inicial

03MIAR – Algoritmos de Optimización

Presentación

Juan Camilo Yepes Borrero

Doctor en Estadística y Optimización por la UPV

Agenda de hoy(I)

1^a Parte. Presentación de la asignatura:

- Material Docente
- Calendario
- Objetivos, Criterios de evaluación y Sistema de evaluación
- Videoconferencias
- Actividades Guiadas
- Trabajo práctico
- Foro
- Examen
- Fechas de Entrega y Entregas tardías
- Honestidad

Agenda de hoy (II)

2ª Parte. Preparación para la asignatura(herramientas y otros conocimientos)

- Formulario de registro
- GitHub
- Google Colaboratory

Calendario

Sesión	Fecha	Contenido/Tema			
SESIÓN 1	29/05/2023	TC1 - Tutoría Colectiva Inicial			
SESIÓN 2	31/05/2023	VC1 – Introducción a los algoritmos			
SESIÓN 3	05/06/2023	VC2 – Diseño de Algoritmos			
SESIÓN 4	07/06/2023	VC3 – Algoritmos de búsqueda y Problemas tipo			
SESIÓN 5	12/06/2023	AG1 – Actividad Guiada			
SESIÓN 6	14/06/2023	VC4 – Descenso del Gradiente			
SESIÓN 7	19/06/2023	AG2 – Actividad Guiada			
SESIÓN 8	21/06/2023	VC5 – Algoritmos Heurísticos			
SESIÓN 9	26/06/2023	AG3 – Actividad Guiada(1ª parte)			
SESIÓN 10	28/06/2023	VC6 – Algoritmos genéticos			
SESIÓN 11	03/07/2023	AG3 – Actividad Guiada(2ª parte)			
SESIÓN 12	05/07/2023	TC1 - Tutoría Colectiva Final			

Objetivos Generales

- Adquirir, a través de las clases magistrales, los conocimientos teóricos para conocer los algoritmos utilizados para resolver problemas de optimización, analizar el coste en recursos(tiempo y memoria) y estudiar la complejidad de los problemas.
- Familiarizase, a través de las actividades guiadas, con las técnicas concretas para resolver problemas de optimización usando técnicas de diseño de algoritmos a través de prácticas realizadas en Python.
- Enfrentarse, a través del trabajo práctico, a problemas reales en los que deberá aplicar tanto los conocimientos teóricos como prácticos.

Criterios de Evaluación

- Conocer el conceptos de complejidad de los problemas y algoritmos.
- Desarrollar, modelar y analizar algoritmos según diferentes técnicas.
- Identificar problemas tipo.
- Conocer los algoritmos de búsqueda asociados a los grafos.
- Conocer la relación del descenso del gradiente y redes neuronales.
- Conocer las diferentes técnicas metaheurísticas

Sistema de Evaluación

03MIAR

ALGORITMOS DE OPTIMIZACIÓ

N

INICIO

Bienvenida

Calendario

Guía didáctica

Videoconferencias

Recursos y materiales

Actividades

Sistema de Evaluación	Ponderación
Portafolio	60 %

Trabajo Práctico(*): 30%

Actividades Guiadas(*): 10%

Estudio y análisis de un artículo científico(*): 10%

Participación en Foro(Evaluable): 10%

Sistema de Evaluación	Ponderación
Prueba final*	40 %

Preguntas tipo test con una sola respuesta válida. Las respuestas no correctas restan, las respuestas no contestadas ni suman ni restan.

Videoconferencias

03MIAR

ALGORITMOS DE OPTIMIZACIÓ

INICIO

Bienvenida

Calendario

■ INFORMACIÓN GENERAL.

Guía didáctica

ACTIVIDAD FORMATIVA

Videoconferencias

Recursos y materiales

Actividades

- VC1 Introducción a los algoritmos
- VC2 Diseño de algoritmos / Algoritmos de Ordenación
- VC3 Problemas tipo / Algoritmos de Búsqueda
- VC4 Descenso del gradiente
- VC5 Algoritmos heurísticos
- VC6 Algoritmos Evolutivos y Genéticos

Foro

Guía didáctica

Videoconferencias

Recursos y materiales

Actividades

Anuncios

FORO	DESCRIPCIÓN	PUBLICACIONES TOTALES	RESPUESTAS PARA MÍ NO LEÍDAS	PARTICIPANTES TOTALES
Cuestiones de la asignatura(No evaluable)		0		0
Aportaciones extraordinarias(Evaluable)		0		0
Foro de debate(Evaluable)	En este foro se debatirá sobre algunas cuestiones planteadas por el profesor/a de la asignatura.	0		0

Actividad. Estudio y análisis de artículo científico (*)

Guía didáctica

GENERAL.

Videoconferencias

Recursos y materiales

Actividades

Anuncios

- Contestar a preguntas sobre el artículo
- Tema: Heurísticas(pendiente de confirmar)

Actividades Guiadas(*). Fechas de entrega

10%

Guía didáctica

ACTIVIDAD FORMATIVA

Videoconferencias

Recursos y materiales

Actividades

♀ COMUNICACIÓN

Anuncios

- Desarrollar, modelar y analizar algoritmos según diferentes técnicas para resolver el problemas planteados en la asignatura de manera guiada
- Entrega de PDF

Actividades Guiadas - AG1 (*). Contenido

- Desarrollar algoritmos con la técnica de vuelta atrás(backtracking) para resolver problemas
- Desarrollar algoritmos con la técnica de divide y vencerás para resolver problemas
- Desarrollar algoritmos con la técnica de **programación dinámica** para resolver problemas

GENERAL

Guía didáctica

Videoconferencias

Recursos y materiales

Actividades

Q COMUNICACIÓN

Anuncios

Foro

Actividades Guiadas - AG2 (*). Contenido

10%

■ INFORMACIÓN GENERAL

Guía didáctica

ACTIVIDAD FORMATIVA

Videoconferencias

Recursos y materiales

Actividades

Q COMUNICACIÓN

Anuncios

Foro

- Desarrollar algoritmos de búsqueda en **amplitud** para resolver problemas
- Desarrollar algoritmos de búsqueda en profundidad para resolver problemas
- Desarrollar algoritmos con la técnica de ramificación y poda para resolver problemas
- Desarrollar algoritmos con la técnica del descenso del gradiente

Actividades Guiadas – AG3(I) (*). Contenido

- Desarrollar algoritmos con la técnica de recocido simulado(simulated annealing)
- Desarrollar algoritmos con la técnica de GRASP(procedimientos de búsqueda voraz aleatorios y adaptativos)

GENERAL.

ACTIVIDAD FORMATIVA

Videoconferencias

Recursos y materiales

Actividades

Anuncios

Actividades Guiadas – AG3(II) (*). Contenido

Guía didáctica

ACTIVIDAD FORMATIVA

Videoconferencias

Recursos y materiales

Actividades

Anuncios

Foro

- Desarrollar algoritmos por colonia de hormigas (ACO)
- Desarrollar algoritmos genéticos (GA)
- Trabajo en grupo

Actividades Guiadas(*)

- Reproducir la actividad realizada por el profesor.
- La entrega en GitHub asegura 8/10 en cada actividad. Mejorable con aportación personal.
- La entrega será un .pdf para el archivo del expediente con la copia del notebook
 - <nombre_apellidos>_AG1.pdf
 - <nombre_apellidos>_ AG2.pdf
 - <nombre_apellidos>_ AG3.pdf
- Para descargar nuestro cuaderno de Google Colab a .pdf

More setting

Actividades Guiadas(*). Generar .pdf

No zips

Actividades Guiadas(*). Fechas de entrega

- Desarrollar, modelar y analizar algoritmos según diferentes técnicas para resolver el problemas planteados en la asignatura de <u>manera guiada</u>
- Entrega de PDF
- Fecha limite de entrega 1ª convocatoria: 21/07/2023
- Fecha limite de entrega 2ª convocatoria: 22/09/2023

Trabajo práctico.(*). Fechas de entrega

- Desarrollar, modelar y analizar algoritmos según diferentes técnicas para resolver el problema planteado en la asignatura.
- •Resolver un problema real. Entrega de PDF
- Deben identificarse los aspectos teóricos en la entrega
- Fecha limite de entrega 1ª convocatoria: 05/07/2024
- Fecha limite de entrega 2ª convocatoria: 27/09/2024

Actividad. Estudio y análisis de artículo científico (*) Fechas de Entrega

- Lectura, análisis e interpretación de un artículo científico
- Contestar a preguntas sobre el artículo
- Tema: Heurísticas(pendiente de confirmar)
- Fecha limite de entrega 1ª convocatoria: 05/07/2024
- Fecha limite de entrega 2ª convocatoria: 27/09/2024

Foro. Fechas de entrega

Una cuestión de debate.

- 10%
- Aportaciones que ayuden a los compañeros serán valoradas.
- Cuestiones particulares deben exponerse por correo electrónico.
- No "forzar" la participación ni "eludirla".
- Leer todas las participaciones y evitar repetir comentarios de otros compañeros.
- Fecha 1^a convocatoria: 05/07/2024

Foro. Aportaciones de código

Incluir código importante con formato

Opción 1: captura parcial en imagen

```
Compañeros, adjunto el código que hice para el problema del cambio de monedas.
def cambioMonedas (totalCuenta,totalPagado):
    monedas=[1,10,50,100,500]
    i=len(monedas)-1
    if(totalCuenta>totalPagado):
        print('Falta Dinero')
    aEntregar=totalPagado-totalCuenta
    print('Cambio :',aEntregar)
    while aEntregar!=suma:
        n=(aEntregar-suma)//monedas[i]
        if (n!=0):
            print('Devolver ',n,' monedas de ',monedas[i])
            suma+=n*monedas[i]
        i-=1
    return
cambioMonedas(540,1000)
Cambio: 460
Devolver 4 monedas de 100
Devolver 1 monedas de 50
Devolver 1 monedas de 10
monedas.png (19,215 KB)
```

Opción 2: pegado con formato

```
Os adjunto otro algoritmo:
se supone sistema monetario está ordenado menor a mayor (0.1.0.2.0.5.1.2.10.20.50.100.200.500)
import numpy as np
def cambio monedas(cantidad, sistema monetario):
  total monedas = len(sistema monetario)
  solucion = np.zeros(total monedas)
  valor acumulado = 0
  for i in range(total monedas-1,0,-1):
    monedas = int( (cantidad-valor acumulado)/sistema monetario[i])
    valor acumulado = valor acumulado + monedas * sistema monetarió[i]
    solucion[i] = monedas
    if valor acumulado == cantidad:
      return solucion
  return []
sistema monetario = (0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500)
solucion = cambio monedas(1111, sistema monetario)
if len(solucion) \equiv 0:
 print("NO HAY SOLUCIÓN")
 for i in range(len(solucion)):
    if solucion[i]>0:
        cantidad = int(solucion[i])
      texto cantidad`=
      if cantidad == 1:
        texto cantidad = " moneda de: "
        texto cantidad = " monedas de: "
      print(cantidad, texto cantidad, sistema monetario[i])
```

Añadir enlace al cuaderno completo

Algoritmo voraz:

https://colab.research.google.com/drive/1t4krkJjdGvkhaCOgO1OOtAOTUrClvRcq

Examen. Fechas de entrega

• Fecha 1a convocatoria: 05/07/2024 a las 20:00

• Fecha 2^a convocatoria: 27/09/2024 a las 20:00

Duración: 1 hora

• 20 preguntas tipo test: Acierto: +.5. Fallo: -0.165

Convocatorias y entregas tardías

* Si es la **primera convocatoria** de la actividad:

En este caso, la entrega se ignora y se suspende directamente con un 0. El alumno puede presentar el mismo trabajo, si así lo desea, en segunda convocatoria, en cuyo caso se corregirá de forma normal sin penalización.

* Si es la **segunda convocatoria** de la actividad (pero se ha entregado antes de publicar las actas):

se procederá a corregir la actividad, pero se quedará en 5 sobre 10.

* Si es la **segunda convocatoria** de la actividad pero se ha entregado tras publicar las actas: se ignorará la entrega y se considerará la actividad como no presentada.

Honestidad

- Todos los **trabajos** deben hacerse de manera **individual** e independiente aunque se permite y fomenta la participación y colaboración.
- Si se utilizan **recursos** externos(libros, paginas web,...) **deben citarse** claramente.
- El plagio descalifica.

Durante el descanso...

• Registro en Google

https://accounts.google.com

 Registro en GitHub https://github.com/

Rellenar formulario:

https://forms.gle/XCHuVL4W4ceirFFN A

Tutoría Colectiva Inicial (II)

03MAIR – Algoritmos de Optimización

Agenda de hoy (II)

2ª Parte. Preparación de herramientas de la asignatura:

- Formulario de registro
- GitHub
- Google Colaboratory
- pdfcrowd.com o similar (opcional)

Lo que no es la asignatura

• No es un curso de programación. Deberíamos tener las bases de python

No es una colección de "recetas" para ser introducidas en el ordenador

Estructura de datos fundamentales

• Listas: arrays, listas, cadenas

Pilas y Colas

Grafos

Árboles

Diccionarios

Vectores, Matrices

Estadística básica

- Población, muestra, muestra aleatoria
- Tipos de variables: Cualitativas y Cuantitativas(Discretas y Continuas)
- Frecuencias, Histogramas
- Estadísticos:
 - o Posición: Cuantiles, percentiles...
 - o Centralización: Moda, Media, Mediana
 - Dispersión: Desviación(media y típica), rango, varianza

Combinatoria básica

Variaciones, Permutaciones y Combinaciones

• El arte de contar

Diferenciación básica

- Derivar funcionas
- Concepto de 1^a y 2^a derivada
- Gradiente y matriz hessiana

$$H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

Crear proyecto en GitHub. Acceso

https://github.com/

Crear proyecto en GitHub. Nuevo repositorio

Crear proyecto en GitHub(I)

03MIAR---Algoritmos-de-Optimizacion

Formulario.

- Rellenar formulario: https://forms.gle/XCHuVL4W4ceirFFNA
- •Importante: Identificar la url correcta del repositorio github

Uso de Google Colaboratory (I)

- Usaremos cuadernos(notebooks) para realizar las prácticas
- Computación gratuita en la nube
- Necesario registro en Google
- ¿Por que Google Colaboratory?
 - ✓ Fácil para compartir
 - √ Fácil de usar
 - √ Fácil de integrar con GitHub y Google Drive
 - ✓ Uso de GPU(Graphics Processing Unit)

https://en.wikipedia.org/wiki/Graphics_processing_unit

https://colab.research.google.com/

Uso de Google Colaboratory (II)

- 1. Nuevo Cuaderno de Python 3
- 2. Cambiar nombre a Untitled1.ipynb
- 3. Importar : import sorting

ModuleNotFoundError: No module named 'sorting'

Instalar:

Collecting sorting
Downloading https://files.pythonhosted.org/packages/5f/c8/2d2318aa6697f8
Building wheels for collected packages: sorting
Building wheel for sorting (setup.py) ... done
Stored in directory: /root/.cache/pip/wheels/1d/69/7d/afb45b857f9cd6d792
Successfully built sorting
Installing collected packages: sorting
Successfully installed sorting-1.0.2

Uso de Google Colaboratory (III)

Primer algoritmo

Uso de Google Colaboratory + **GitHub (IV)**

Guardar en GitHub

Uso de Google Colaboratory + GitHub (V)

Guardar en GitHub

Bibliografía(I)

Fundamentos de algoritmia: Una perspectiva de la ciencia de los computadores

Paul Bratley , Gilles Brassard ISBN 13: 9788489660007

Introducción al diseño y análisis de algoritmos

R.C.T. Lee,...

ISBN 13: 9789701061244

Una introducción a las matemáticas para el análisis y diseño de algoritmos(*)

Pérez Aguila, R.

ISBN 13: 9781413576474

Técnicas de diseño de algoritmos Guerequeta, R., y Vallecillo, A. (2000).

http://www.lcc.uma.es/~av/Libro

Bibliografía(II)

Metaheurísticas(*)

Abraham Duarte,...
ISBN 13: 9788498490169

32.1.73.3733.733.733.73

https://tinyurl.com/y6ekjhft

Genetic Algorithms + Data Structures = Evolution Programs(*)
Michalewicz, Zbigniew

https://go.exlibris.link/LSvz7r0D

¿Preguntas?

Gracias