Analysis of Top Quark

Laura Trujillo T

2020-03-30

Goals

- Top-Antitop (ttbar) cross section measurement.
- Comparison of background and signal (MC): selections, purity and trigger efficiencies.
- Application to data

Signal and Backgrounds

Table 1: Images from Useful Feynman Diagrams

Invariant Di-Muon Mass

```
int N_IsoMuon = 0, N_IsoTriggerMuon = 0;
MyMuon *muon1, *muon2;
for (vector<MyMuon>::iterator jt = Muons.begin();
     jt != Muons.end(); ++jt){
   if (jt->IsIsolated(MuonReIsoCut)){
     ++N IsoMuon:
      if (N_IsoMuon == 1) muon1 = &(*jt);
      if (N_IsoMuon == 2) muon2 = &(*jt);
   if (jt->IsIsolated(MuonReIsoCut) && (triggerIsoMu24 == 1)){
      ++N_IsoTriggerMuon;
 if (N_IsoMuon > 1 && triggerIsoMu24){
     if (muon1->Pt()>MuonPtCut){
        h_Mmumu->Fill((*muon1 + *muon2).M(), EventWeight);
 }
```

Results: Invariant Di-Muon Mass

Table 2: Plots obtained for $m_{\mu\mu}$

Results: Trigger efficiency

Table 3: Results from exercise 1

Top Kinematics

```
int N_Jets = 0, N_BJets = 0;
MyJet *jet1, *jet2, *jet3, *jet4, *bjet1, *bjet2;
if (N_IsoMuon > 0) {
   for (vector < MyJet>::iterator jt = Jets.begin(); jt != Jets.end(); ++jt){
++N Jets:
         if (jt->Pt()>30){ // Jets with pT > 30 GeV
             if (N_Jets == 1) jet1 = &(*jt);
             if (N Jets == 2) jet2 = &(*jt);
             if (N_Jets == 3) jet3 = &(*jt);
             if (N_Jets == 4) jet4 = &(*jt);
        if (jt->IsBTagged() == 1){
             ++N_BJets;
             if (N_BJets == 1) bjet1 = &(*jt);
             if (N_BJets == 2) bjet2 = &(*jt);
   }
}
```

Results: Jet multiplicity, MET and Pileup

Table 4: Results from exercise 2

Top kinematics

```
if (N_Jets > 0 && triggerIsoMu24 == 1){
    h_trigJet1_pt->Fill((*jet1).Pt(), EventWeight);
}

if (N_Jets > 1 && triggerIsoMu24 == 1){
    h_trigJet2_pt->Fill((*jet2).Pt(), EventWeight);
}

if (N_Jets > 2 && triggerIsoMu24 == 1){
    h_trigJet3_pt->Fill((*jet3).Pt(), EventWeight);
}

if (N_BJets > 0 && triggerIsoMu24 == 1){
    h_trigBJet1_pt->Fill((*jet3).Pt(), EventWeight);
}
```

Results: Transverse momenta of jets

Table 5: Results from exercise 2

Results: MET after cuts

```
if (N_IsoMuon > 0 && triggerIsoMu24 == 1){
    if (N_Jets > 1 && N_BJets > 1){
        h_MEvents_sel->Fill(1.0, EventWeight);
        h_ttbar->Fill(met.Pt(), EventWeight);
    }
}
```


Figure 1: MET after selection

Results: Acceptance, Purity and Efficiency

	ttbar	DY	Total
NEvents_Sel	231.901	7.155	269.278
NEvents_1I	1215.68	32314.6	_
Data	255	_	224217
Purity		_	$94.69\%\pm5.30\%$
Acceptance	_	_	$19\%\pm2\%$
Efficiency	_		0.029 ± 0.003
X-section	_	_	149.38 ± 15.61 [pb]

Modified Cross Section Formula

$$\sigma = \frac{N_{data} - N_{bkg}^{MC}}{L \times \epsilon \times BR}$$