Assignment – Terro's real estate agency

1)Generate the summary statistics for each variable in the table.

CRIME_RATE					
Mean	4.871976285				
Standard Error	0.129860152				
Median	4.82				
Mode	3.43				
Standard Deviation	2.921131892				
Sample Variance	8.533011532				
Kurtosis	-1.189122464				
Skewness	0.021728079				
Range	9.95				
Minimum	0.04				
Maximum	9.99				
Sum	2465.22				
Count	506				

As the Kurtosis value is -1.18, It's a flat curve. As the k It has positive skewness. It has no

INDUS					
Mean	11.13677866				
Standard Error	0.304979888				
Median	9.69				
Mode	18.1				
Standard Deviation	6.860352941				
Sample Variance	47.06444247				
Kurtosis	-1.233539601				
Skewness	0.295021568				
Range	27.28				
Minimum	0.46				
Maximum	27.74				
Sum	5635.21				
Count	506				

As the Kurtosis value is -1.23, It's a flat curve. It has positive skewness.

AGE				
Mean	68.57490119			
Standard Error	1.251369525			
Median	77.5			
Mode	100			
Standard Deviation	28.14886141			
Sample Variance	792.3583985			
Kurtosis	-0.967715594			
Skewness	-0.59896264			
Range	97.1			
Minimum	2.9			
Maximum	100			
Sum	34698.9			
Count	506			

As the Kurtosis value is -0.96, It's a flat curve. It has negative skewness.

NOX	
Mean	0.554695059
Standard Error	0.005151391
Median	0.538
Mode	0.538
Standard Deviation	0.115877676
Sample Variance	0.013427636
Kurtosis	-0.064667133
Skewness	0.729307923
Range	0.486
Minimum	0.385
Maximum	0.871
Sum	280.6757
Count	506

As the Kurtosis value is -0.06, It's a flat curve. It has positive skewness.

DISTANCE					
Mean	9.549407115				
Standard Error	0.387084894				
Median	5				
Mode	24				
Standard Deviation	8.707259384				
Sample Variance	75.81636598				
Kurtosis	-0.867231994				
Skewness	1.004814648				
Range	23				
Minimum	1				
Maximum	24				
Sum	4832				
Count	506				

As the Kurtosis value is -0.86, It's a flat curve. It has positive skewness.

PTRATIO				
Mean	18.4555336			
Standard Error	0.096243568			
Median	19.05			
Mode	20.2			
Standard Deviation	2.164945524			
Sample Variance	4.686989121			
Kurtosis	-0.285091383			
Skewness	-0.802324927			
Range	9.4			
Minimum	12.6			
Maximum	22			
Sum	9338.5			
Count	506			

As the Kurtosis value is -0.28, It's a flat curve. It has negative skewness.

TAX	
Mean	408.2371542
Standard Error	7.492388692
Median	330
Mode	666
Standard Deviation	168.5371161
Sample Variance	28404.75949
Kurtosis	-1.142407992
Skewness	0.669955942
Range	524
Minimum	187
Maximum	711
Sum	206568
Count	506

As the Kurtosis value is -1.14, It's a flat curve. It has positive skewness.

AVG_ROOM					
Mean	6.284634387				
Standard Error	0.031235142				
Median	6.2085				
Mode	5.713				
Standard Deviation	0.702617143				
Sample Variance	0.49367085				
Kurtosis	1.891500366				
Skewness	0.403612133				
Range	5.219				
Minimum	3.561				
Maximum	8.78				
Sum	3180.025				
Count	506				

As the Kurtosis value is -1.89, It's a flat curve. It has positive skewness.

LSTAT	
Mean	12.65306324
Standard Error	0.317458906
Median	11.36
Mode	8.05
Standard Deviation	7.141061511
Sample Variance	50.99475951
Kurtosis	0.493239517
Skewness	0.906460094
Range	36.24
Minimum	1.73
Maximum	37.97
Sum	6402.45
Count	506

As the Kurtosis value is 0.49, It's a flat curve.
It has positive skewness.

AVG_PRICE					
Mean	22.53280632				
Standard Error	0.408861147				
Median	21.2				
Mode	50				
Standard Deviation	9.197104087				
Sample Variance	84.58672359				
Kurtosis	1.495196944				
Skewness	1.108098408				
Range	45				
Minimum	5				
Maximum	50				
Sum	11401.6				
Count	506				

As the Kurtosis value is 1.49, It's a flat curve. It has positive skewness.

2) Plot a histogram of the Avg_Price variable. What do you infer?

The Average Price curve has the positive skewness.

3) Compute the covariance matrix. Share your observations.

	CRIME_RATE	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	AVG_ROOM	LSTAT	AVG_PRICE
CRIME_RATE	8.516147873									
AGE	0.562915215	790.7 <mark>92472</mark> 8								
INDUS	-0.110215175	124.2 <mark>6</mark> 78282	46.97142974							
NOX	0.000625308	2.381211931	0.605873943	0.013401099						
DISTANCE	-0.229860488	111.5 <mark>4</mark> 99555	35.47971449	0.615710224	75.66653127					
TAX	-8.229322439	2397. <mark>941723</mark>	831.7 <mark>13333</mark> 1	13.02050236	1333. <mark>116741</mark>	2834 <mark>8.6236</mark>				
PTRATIO	0.068168906	15.90542545	5.680854782	0.047303654	8.74340249	167.8 <mark>2</mark> 08221	4.677726296			
AVG_ROOM	0.056117778	-4.74253803	-1.884225427	-0.024554826	-1.281277391	-34.51510104	-0.539694518	0.492695216		
LSTAT	-0.882680362	120.8 <mark>3</mark> 84405	29.52181125	0.487979871	30.32539213	653.4 <mark>2061</mark> 74	5.771300243	-3.073654967	50.89	
AVG_PRICE	1.16201224	-97.3 <mark>9</mark> 615288	-30.46050499	-0.454512407	-30.50083035	- <mark>724.8</mark> 204284	-10.09067561	4.484565552	-48.35179219	84.41955616

4) Create a correlation matrix of all the variables

	CRIME_RATE	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	AVG_ROOM	LSTAT	AVG_PRICE
CRIME_RATE	1									
AGE	0.006859463	1								
INDUS	-0.005510651	0.64 <mark>47785</mark> 11	1							
NOX	0.001850982	0.73 <mark>14701</mark> 04	0.76 <mark>365144</mark> 7	1						
DISTANCE	-0.009055049	0.45 <mark>602</mark> 2452	0.59 <mark>5129</mark> 275	0.61 <mark>1440</mark> 563	1					
TAX	-0.016748522	0.50 <mark>6455</mark> 594	0.7 <mark>20760</mark> 18	0. <mark>66802</mark> 32	0.91 <mark>0228189</mark>	1				
PTRATIO	0.010800586	0.26 <mark>15</mark> 15012	0.38 <mark>324</mark> 7556	0.18 <mark>89</mark> 32677	0.46 <mark>474</mark> 1179	0.46 <mark>085</mark> 3035	1			
AVG_ROOM	0.02739616	-0. <mark>24</mark> 0264931	-0 <mark>.39</mark> 1675853	-0. <mark>30</mark> 2188188	-0.2 <mark>0</mark> 9846668	-0. <mark>29</mark> 2047833	-0 <mark>.35</mark> 5501495	1		
LSTAT	-0.042398321	0.60 <mark>23385</mark> 29	0.60 <mark>3799</mark> 716	0.59 <mark>0878</mark> 921	0.48 <mark>8676</mark> 335	0.54 <mark>3993</mark> 412	0.37 <mark>404</mark> 4317	-0.61 <mark>3808272</mark>	1	
AVG_PRICE	0.043337871	-0 <mark>.37</mark> 6954565	<mark>-0.4</mark> 8372516	-0 <mark>.42</mark> 7320772	-0 <mark>.38</mark> 1626231	- <mark>0.46</mark> 8535934	- <mark>0.50</mark> 7786686	0.69 <mark>53599</mark> 47	<mark>-0.73</mark> 7662726	1

a)

Positively correlated pairs	Top 3
DISTANCE vs TAX	0.910228189
INDUS vs NOX	0.763651447
AGE vs NOX	0.731470104

b)

Negatively correlated pairs	Top 3
LSTAT vs AVG_PRICE	-0.737662726
LSTAT vs AVG_ROOM	-0.613808272
PTRATIO vs AVG_PRICE	-0.507786686

5) Build an initial regression model with AVG_PRICE as 'y' (Dependent variable and LSTAT variable as Independent Variable. Generate the residual plot.

a) What do you infer from the Regression Summary output in terms of variance explained, coefficient value, Intercept, and the Residual plot?

R Square	0.544146298
Intercept	34.55384088
LSTAT	-0.95004935

- R Square value here is about 0.5, it should be near to 1, So it's not significant
- Coefficient of LSTAT is -0.95005. It is inferred that for each \$1000 increase in Average price, there will be a 0.95% decrease in population.
- It is inferred that the Intercept value is 34.5538.
- Residual Plot inferred that all the values are equally distributed.
- b) Is LSTAT variable significant for the analysis based on your model?

The p-value for LSTAT variable is 5.08110339438E-88. It is less than 0.05. So, it is inferred that LSTAT variable is significant for the analysis.

- 6) Build a new Regression model including LSTAT and AVG_ROOM together as independent variables and AVG_PRICE as dependent variable.
- a) Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT, then what will be the value of AVG_PRICE? How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/ Undercharging?

```
AVG_PRICE = Intercept+ (Coefficient of AVG_ROOM * value of AVG_ROOM) + (Coefficient of LSTAT * value of LSTAT)
```

```
AVG_PRICE = -1.35827281187456 + (5.09478798433655 * 7) + (-0.642358334244129 * 20)
AVG_PRICE = 21.4581
```

It is inferred that the Average price is \$21.4581. But the company quoting a value of 30000 USD for this locality. By the result, it is concluded that the company is overcharging.

```
R Square = 0.637124475470123 (Qn. 6)
R Square = 0.543241825954707 (Qn. 5)
```

b) Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square and explain.

It is inferred that the value of R Square is close to 1, if the count of independent variable increases.

Based on the analysis, the performance of this model is better than the previous model. (Qn. 5)

7) Build another Regression model with all variables where AVG_PRICE alone be the Dependent Variable and all the other variables are independent. Interpret the output in terms of adjusted Rsquare, coefficient and Intercept values. Explain the significance of each independent variable with respect to AVG_PRICE.

Coefficients			
Intercept	29.24131526		
CRIME_RATE	0.048725141		
AGE	0.032770689		
INDUS	0.130551399		
NOX	-10.3211828		
DISTANCE	0.261093575		
TAX	-0.01440119		
PTRATIO	-1.074305348		
AVG_ROOM	4.125409152		
LSTAT	-0.603486589		

For every \$1000 of avg. price of houses,

- per capita crime rate by town increases by 0.0487.
- proportion of houses built prior to 1940 increases by 0.03%.
- proportion of non-retail business acres per town increases by 0.13%.
- nitric oxides concentration decreases by 10 million.
- distance from highway increases by 0.2610 miles.
- full-value property-tax rate decreases by 0.0144.
- pupil-teacher ratio by town decreases by 1.0743.
- average number of rooms per house increases by 4.12540.
- lower status (LSTAT) of the population decreases by 0.603%.

- 8) Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked and answer the questions below:
- a) Interpret the output of this model.

	Coefficients	P-value	
Intercept	29.42847349	1.84597E-09	
AGE	0.03293496	0.012162875	
INDUS	0.130710007	0.038761669	
NOX	-10.27270508	0.008545718	
DISTANCE	0.261506423	0.000132887	
TAX	-0.014452345	0.000236072	
PTRATIO	-1.071702473	7.08251E-15	
AVG_ROOM	4.125468959	3.68969E-19	
LSTAT	-0.605159282	5.41844E-27	

Adjusted R Square = 0.68868

b) Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square?

Adjusted R Square = 0.6886836818 (Qn.8) Adjusted R Square = 0.6882986468 (Qn.7)

Adjusted R square for this model is greater comparing to the previous model. So, it is concluded that this model performs better than previous model.

c) Sort the values of the Coefficients in ascending order. What will happen to the average price if the value of NOX is more in a locality in this town?

	Coefficients
NOX	-10.27270508
PTRATIO	-1.071702473
LSTAT	-0.605159282
TAX	-0.014452345
AGE	0.03293496
INDUS	0.130710007
DISTANCE	0.261506423
AVG_ROOM	4.125468959
Intercept	29.42847349

It is inferred that if the value of NOX is more in a locality in this town, the value of the average price will be reduced.

d) Write the regression equation from this model.

AVG_PRICE = Intercept + (coefficient of Age * value of Age) + (coefficient of Indus * value of Indus) + (coefficient of NOX * value of NOX) + (coefficient of Distance * value of Distance) + (coefficient of Tax * value of Tax) + (coefficient of PTRATIO * value of PTRATIO) + (Coefficient of Avg_room * value of Avg_room) + (coefficient of LSTAT * value of LSTAT)