Emmanuel Filiot
Nicolas Mazzocchi
Jean-François Raskin

Université libre de Bruxelles FCT 2017 – Bordeaux

Decidable Weighted **Expressions** with Presburger **Combinators**

Boolean vs Quantitative Languages

$$L:\Sigma^* \to \{0,1\}$$

Classical decision problems

```
 \begin{array}{ll} \textbf{Emptiness} & \exists u.f(u) \geq 1 \\ \textbf{Universality} & \forall u.f(u) \geq 1 \\ \textbf{Inclusion} & \forall u.f(u) \geq g(u) \\ \textbf{Equivalence} & \forall u.f(u) = g(u) \\ \end{array}
```

Boolean vs Quantitative Languages

$$L: \Sigma^* \to \{0,1\} \mathbb{Z} \cup \{-\infty\}$$

Classical quantitative decision problems

Emptiness	$\exists u.t(u) \geq \not\perp \nu$
Universality	$\forall u.f(u) \geq 1 \nu$
Inclusion	$\forall u.f(u) \geq g(u)$
Equivalence	$\forall u.f(u) = g(u)$

for some threshold ν for some threshold ν

Classical Model: Weighted Automata

(max,+) WA

Classical Model: Weighted Automata

Transition sequence

Undecidability [Krob 1994]

Quantitative language-inclusion is undecidable for (max,+) WA

► Even for linearly ambiguous automata [Colcombet 2010]

Decidable Formalisms: Restriction

Finitely ambiguous (max,+) WA

Define functions of the form,

$$u \mapsto \max\{A_1(u), \ldots, A_k(u)\}$$

 A_i : Unambiguous WA

- © Quantitative decision problems are DECIDABLE [Filiot et al. 2012]
- Closed under max and sum
- © Limited expressive power (min, minus, ...)

Decidable Formalisms: New model

Mean-payoff expressions [Chatterjee et al. 2010]

$$E ::= A \mid \max(E, E) \mid \min(E, E) \mid E + E \mid -E$$

A: Deterministic WA

- © Quantitative decision problems are PSPACE-COMPLETE [Velner 2012]
- © Closed under max, min, sum and minus
- Determinism (define Lipschitz continuous functions)
- Does **not** contain all finitely ambiguous (max,+) WA
- (apply on the whole word)

Contributions

1 Simple expressions

$E := A \mid \phi(E, E)$

 \mathcal{A} : Unambiguous WA

 $\phi: \exists FO[\leq,+,0,1]$ formula defining function with arity two

Contributions

1 S

Simple expressions

 $E := A \mid \phi(E, E)$

 \mathcal{A} : Unambiguous WA

 ϕ : $\exists FO[\leq,+,0,1]$ formula defining function with arity two

- © Quantitative decision problems are PSPACE-COMPLETE
- © Closed under Presburger definable functions
- © Contain all finitely ambiguous (max,+) WA
- Monolithism (apply on the whole word)

Contributions

2 Iterable expressions

$$E := \mathcal{A} \mid \phi(E, E) \mid E^{\circledast}$$

- Unique decomposition required
- Sum arbitrarily many factors

Examples

$$E^*$$

$$u_1 \vee u_2 \vee \ldots u_n \vee \mapsto \sum_{i=1}^n E(u_i)$$

$$\phi(E^\circledast,F^\circledast)$$

$$u \mapsto \phi\left(\sum_{i=1}^n E(u_i), \sum_{j=1}^m F(v_i)\right)$$

Undecidability

Theorem

Quantitative decision problems are ${\tt UNDECIDABLE}$ for iterable expressions

Proof by reduction from the 2-counter machine halting problem

Run ...
$$(q_1, (x \mapsto c_1, y \mapsto d_1)) (q_2, (x \mapsto c_2, y \mapsto d_2)) ...$$

Input ... $\vdash q_1 a^{c_1} b^{d_1} \triangleleft \triangleright q_2 a^{c_2} b^{d_2} \dashv \vdash q_2 a^{c_2} b^{d_2} \triangleleft ...$

- ▶ regular constraints: initial, final, transitions, $(\vdash Qa^*b^* \rhd \lhd Qa^*b^* \dashv)^*$
- ▶ copy: E on factors $\triangleright \cdots \triangleleft$ return 0 if correct and \lessdot 0 otherwise
- ▶ incr. / decr.: F on factors $\vdash \cdots \dashv$ return 0 if correct < 0 otherwise
- decide: $E^* + F^* \ge 0$

Synchronisation of expressions

Theorem

- ▶ Synchronisation property is decidable in PTIME
- ▶ Synchronised iterable-expression are Decidable

New model

- Generalise unambiguous WA
- Recursive definition

Regular language

New model

- ▶ Generalise unambiguous WA
- Recursive definition

Regular language

Presburger formula using sub-WCA

New model

- ▶ Generalise unambiguous WA
- Recursive definition

Regular language

Presburger formula using sub-WCA

New model

- ▶ Generalise unambiguous WA
- ▶ Recursive definition

Example

```
input : aa \lor ba \lor

dec : (aa \lor, \phi(\mathcal{C}_1, \mathcal{C}_2))(ba \lor, \phi'(\mathcal{C}'))

val : \phi(\mathcal{C}_1(aa \lor), \mathcal{C}_2(aa \lor)) + \phi'(\mathcal{C}'(ba \lor))
```

Regular language

Presburger formula using sub-WCA

New model

- ▶ Generalise unambiguous WA
- Recursive definition

Example

```
input : aa \lor ba \lor

dec : (aa \lor, \phi(\mathcal{C}_1, \mathcal{C}_2))(ba \lor, \phi'(\mathcal{C}'))

val : \phi(\mathcal{C}_1(aa \lor), \mathcal{C}_2(aa \lor)) + \phi'(\mathcal{C}'(ba \lor))
```

Operators for expressiveness equivalence

$$E \odot F : u_1 u_2 \mapsto E(u_1) + F(u_2)$$

$$E \rhd F : u \mapsto \text{if } u \in \text{dom}(E) \text{ then } E(u) \text{ else } F(u)$$
 [Alur 2014]

Synchronisation of WCA

Definition of $C_1 \parallel C_2$

Given C_1, C_2 two k-WCA, for all $u \in \text{dom}(C_1) \cap \text{dom}(C_2)$ such that

$$dec_{C_1}(u) = (u_1, \phi_1)(u_2, \phi_2) \dots (u_n, \phi_n)$$

$$dec_{C_2}(u) = (v_1, \psi_1)(v_2, \psi_2) \dots (v_m, \psi_m)$$

then n=m, $u_i=v_i$ and $\phi_i\parallel\psi_i$

Proposition

The product is well defined for synchronised k-WCA

$$p \xrightarrow{L|\phi} q$$
 , $p' \xrightarrow{L'|\phi'} q' \leadsto (p,p') \xrightarrow{L\cap L'|(\phi,\phi')} (q,q')$

Decidability

Theorem

The range of a synchronised WCA is semilinear

Proof by structural induction on the WCA.

- Base case: Simple expressions have a semilinear range
- ► Induction step: Assume $p \xrightarrow{L_{p,q} | \phi(C_1, ..., C_n)} q$ have semilinear range $S_{p,q}$
 - 1. Morphism μ from $(Q \times Q)^*$ to the monoid of semilinear sets: $\mu((p,q)) = S_{p,q}$ If L regular then $\mu(L)$ is semilinear Take L as the set of accepting run, regular since all $L_{p,q}$ are
 - 2. $\prod_{i=1}^n C_i$ has a semilinear range $S_C \subseteq \mathbb{Z}^n$ by induction on n $\phi(x_1,\ldots,x_n)$ has a semilinear range $S_\phi \subseteq \mathbb{Z}^n$ Take $S_\phi \cap S_C$

Synchronised translation

Theorem

A quantitative language realised by a synchronised iterableexpression can be realised by a synchronised WCA

Proof by structural induction of the expression

- A: obvious
- $\phi(E_1, E_2)$: construct C_1 , C_2 by induction such that $C_1 \parallel C_2$ then define C as $q_0 \xrightarrow{\operatorname{dom}(C_1) \cap \operatorname{dom}(C_2) | \phi(C_1, C_2)} q_1$
- ► (*A*, *E*[®]):
 - 1. chop A into smaller WA $A_{s,t}$ restricted to dom(E)
 - 2. construct all $C_{s,t}$ and C by induction
 - 3. define C_A as $p \xrightarrow{L(A_{p,q})|\phi_{id}(C_{p,q})} q$ (same set of states than A)
 - 4. define C^\circledast with the trivial loop $q_0 \xrightarrow{\mathsf{dom}(E)|\phi_{id}(C)} q_0$

Conclusion

Summary

Simple expressions: PSPACE-COMPLETE Sum-iterable expressions: UNDECIDABLE

Synchronised sum-iterable expressions: Decidable

Perspective

Iterate other operations (max, Presburger definable functions, ...)

Thanks!