

Chinese Restaurants and Backoff

Natural Language Processing: Jordan Boyd-Graber University of Colorado Boulder SEPTEMBER 10, 2014

Roadmap

After this class, you'll be able to:

- Understand probability distributions through the metaphor of the Chinese Restaurant Process
- Be able to calculate Kneser-Ney smoothing
- Understand the role of contexts in language models

Intuition

- Some words are "sticky"
- "San Francisco" is very common (high ungram)
- But Francisco only appears after one word

Intuition

- Some words are "sticky"
- "San Francisco" is very common (high ungram)
- But Francisco only appears after one word
- Our goal: to tell a statistical story of bay area restaurants to account for this phenomenon

Outline

How does a $\ensuremath{\mathtt{CRP}}$ encode a probability distribution?

How do many CRPs encode backoff?

Language Model Probabilities

Let's remember what a language model is

- It is a distribution over the *next word* in a sentence
- Given the previous n-1 words

Let's remember what a language model is

- It is a distribution over the next word in a sentence
- Given the previous n-1 words
- The challenge: backoff and sparsity

To generate a word, you first sit down at a table. You sit down at a table proportional to the number of people sitting at the table.

But this is just Maximum Likelihood

Why are we talking about Chinese Restaurants?

What to do with a new table?

What to do with a new table?

What can be a base distribution?

• Uniform (Dirichlet smoothing)

What to do with a new table?

What can be a base distribution?

- Uniform (Dirichlet smoothing)
- Specific contexts → less-specific contexts (backoff)

Outline

How does a CRP encode a probability distribution?

How do many CRPs encode backoff?

Language Model Probabilities

A hierarchy of Chinese Restaurants

Dataset:

<s> a a a b a c </s>

Dataset:

Unigram Restaurant

<s> Restaurant

a Restaurant

b Restaurant

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

<s> Restaurant

b Restaurant

a Restaurant

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

<s> Restaurant

b Restaurant

a Restaurant

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

a)

<s> Restaurant

 $\begin{bmatrix} a \end{bmatrix}^1$

b Restaurant

a Restaurant

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

a]

<s> Restaurant

 $\begin{bmatrix} a \end{bmatrix}^1$

b Restaurant

a Restaurant

*

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

a

<s> Restaurant

a]1

b Restaurant

a Restaurant

*

Dataset:

$\langle s \rangle$ a a b a c $\langle s \rangle$

Unigram Restaurant

a)

<s> Restaurant

 \mathbf{a}

b Restaurant

a Restaurant

a

Dataset:

$\langle s \rangle$ a a b a c $\langle s \rangle$

Unigram Restaurant

 $\begin{bmatrix} \mathbf{a} \end{bmatrix}^2$

<s> Restaurant

a]1

b Restaurant

a Restaurant

a

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

 $\begin{bmatrix} \mathbf{a} \end{bmatrix}^2$

<s> Restaurant

a]1

b Restaurant

a Restaurant

a 2

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

a

<s> Restaurant

 $\left[\begin{array}{c} \mathtt{a} \end{array}\right]^{\!1}$

b Restaurant

a Restaurant

a

Dataset:

Unigram Restaurant

<s> Restaurant

b Restaurant

a Restaurant

a

Dataset:

Unigram Restaurant

$$\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1$$

<s> Restaurant

 $\begin{bmatrix} a \end{bmatrix}^1$

b Restaurant

a Restaurant

a

Dataset:

$$\langle s \rangle$$
 a a a b a c $\langle /s \rangle$

Unigram Restaurant

$$\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1$$

 $\left(\begin{array}{c} \mathbf{a} \end{array}\right)^{\!1}$

b Restaurant

a Restaurant

 $\left(\begin{array}{c} \mathbf{a} \end{array}\right)^2 \left(\begin{array}{c} \mathbf{b} \end{array}\right)$

Dataset:

Unigram Restaurant

$$\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1$$

<s> Restaurant

 $\begin{bmatrix} a \end{bmatrix}^1$

b Restaurant

a Restaurant

 a^2 b

Dataset:

Unigram Restaurant

$$\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1$$

b Restaurant

Dataset:

 $\langle s \rangle$ a a a b a c $\langle /s \rangle$

Unigram Restaurant

 $\left(\begin{array}{c} \mathbf{a} \end{array}\right)^2$

$$\begin{bmatrix} b \end{bmatrix}^1$$

<s> Restaurant

a]1

b Restaurant

a Restaurant

 $\begin{bmatrix} a \end{bmatrix}^2$

 \int_{a}^{b}

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

 $\begin{bmatrix} a \end{bmatrix}^3 \begin{bmatrix} b \end{bmatrix}^1$

<s> Restaurant

a]1

b Restaurant

a

a Restaurant

 a^2 b

Dataset:

Unigram Restaurant

$$\begin{bmatrix} a \end{bmatrix}^3 \begin{bmatrix} b \end{bmatrix}^1$$

<s> Restaurant

b Restaurant

a Restaurant

Dataset:

$$\langle s \rangle$$
 a a a b a c $\langle s \rangle$

Unigram Restaurant

$$\left(\begin{array}{c} a \end{array}\right)^3 \left(\begin{array}{c} b \end{array}\right)^1$$

<s> Restaurant

b Restaurant

a Restaurant

Dataset:

$$\langle s \rangle$$
 a a a b a c $\langle s \rangle$

Unigram Restaurant

$$\begin{bmatrix} a \end{bmatrix}^3 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} * \end{bmatrix}^1$$

b Restaurant

a Restaurant

Dataset:

Unigram Restaurant

$$\begin{bmatrix} a \end{bmatrix}^3 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1$$

<s> Restaurant

a

b Restaurant

a

a Restaurant

 $\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1$

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

$$\begin{bmatrix} a \end{bmatrix}^3 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1$$

<s> Restaurant

b Restaurant

a Restaurant

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

$$\begin{bmatrix} a \end{bmatrix}^3 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1$$

 $\begin{bmatrix} a \end{bmatrix}^1$

b Restaurant

a

c Restaurant

*

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

$$\begin{bmatrix} a \end{bmatrix}^3 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1 \begin{bmatrix} * \end{bmatrix}^1$$

 $\begin{bmatrix} a \end{bmatrix}^1$

b Restaurant

a

a Restaurant

c Restaurant

*

Dataset:

Unigram Restaurant

<s> Restaurant

a

b Restaurant

a

a Restaurant

 $\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1$

c Restaurant

</s>

Outline

How does a CRP encode a probability distribution?

How do many CRPs encode backoff?

Language Model Probabilities

The rich get richer

$$p(w = \mathbf{x}|\vec{s}, \theta, u) = \underbrace{\frac{c_{u,x}}{\theta + c_{u,.}}}_{\text{existing table}} + \underbrace{\frac{\theta}{\theta + c_{u,.}}}_{\text{new table}} p(w = \mathbf{x}|\vec{s}, \theta, \pi(u))$$
(1)

- Word type x
- Seating assignments \vec{s}
- Concentration θ
- Context u
- Number seated at table serving x in restaurant u, $c_{u,x}$
- Number seated at all tables in restaurant u, c_{u} .
- The backoff context $\pi(u)$

$$p(w = x | \vec{s}, \theta, u) = \underbrace{\frac{c_{u,x}}{\theta + c_{u,x}}}_{\text{existing table}} + \underbrace{\frac{\theta}{\theta + c_{u,x}}}_{\text{new table}} p(w = x | \vec{s}, \theta, \pi(u))$$
(1)

- Word type x
- Seating assignments s
- Concentration θ
- Context u
- Number seated at table serving x in restaurant u, $c_{u,x}$
- Number seated at all tables in restaurant u, c_{u} .
- The backoff context $\pi(u)$

$$p(w = x | \vec{s}, \theta, u) = \underbrace{\frac{c_{u,x}}{\theta + c_{u,x}}}_{\text{existing table}} + \underbrace{\frac{\theta}{\theta + c_{u,x}}}_{\text{new table}} p(w = x | \vec{s}, \theta, \pi(u))$$
(1)

- Word type x
- Seating assignments \vec{s}
- Concentration θ
- Context u
- Number seated at table serving x in restaurant u, $c_{u,x}$
- Number seated at all tables in restaurant u, c_{u} .
- The backoff context $\pi(u)$

$$p(w = x | \vec{s}, \theta, \mathbf{u}) = \underbrace{\frac{c_{u,x}}{\theta + c_{u,\cdot}}}_{\text{existing table}} + \underbrace{\frac{\theta}{\theta + c_{u,\cdot}}}_{\text{new table}} p(w = x | \vec{s}, \theta, \pi(\mathbf{u}))$$
(1)

- Word type x
- Seating assignments \vec{s}
- Concentration θ
- Context u
- Number seated at table serving x in restaurant u, $c_{u,x}$
- Number seated at all tables in restaurant u, c_{u} .
- The backoff context $\pi(u)$

$$p(w = x | \vec{s}, \theta, u) = \underbrace{\frac{c_{u,x}}{\theta + c_{u,x}}}_{\text{existing table}} + \underbrace{\frac{\theta}{\theta + c_{u,x}} p(w = x | \vec{s}, \theta, \pi(u))}_{\text{new table}}$$
(1)

- Word type x
- Seating assignments \vec{s}
- Concentration θ
- Context u
- Number seated at table serving x in restaurant u, c_{u,x}
- Number seated at all tables in restaurant u, c_{u} .
- The backoff context $\pi(u)$

$$p(w = x | \vec{s}, \theta, u) = \underbrace{\frac{c_{u,x}}{\theta + c_{u,x}}}_{\text{existing table}} + \underbrace{\frac{\theta}{\theta + c_{u,x}} p(w = x | \vec{s}, \theta, \pi(u))}_{\text{new table}}$$
(1)

- Word type x
- Seating assignments \vec{s}
- Concentration θ
- Context u
- Number seated at table serving x in restaurant u, $c_{u,x}$
- Number seated at all tables in restaurant u, cu.
- The backoff context $\pi(u)$

$$p(w = x | \vec{s}, \theta, u) = \underbrace{\frac{c_{u,x}}{\theta + c_{u,x}}}_{\text{existing table}} + \underbrace{\frac{\theta}{\theta + c_{u,x}} p(w = x | \vec{s}, \theta, \pi(u))}_{\text{new table}}$$
(1)

- Word type x
- Seating assignments \vec{s}
- Concentration θ
- Context u
- Number seated at table serving x in restaurant u, $c_{u,x}$
- Number seated at all tables in restaurant u, c_{u} .
- The backoff context $\pi(u)$

Unigram Restaurant

<s> Restaurant

$$\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1$$

$$p(w = b| \dots) = \frac{c_{a,b}}{\theta + c_{u,\cdot}} + \frac{\theta}{\theta + c_{u,\cdot}} p(w = x|\vec{s}, \theta, \pi(u))$$
(2)

Unigram Restaurant

<s> Restaurant

$$\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1$$

$$oxed{\mathsf{a}}^1$$

$$p(w = b| \dots) = \frac{c_{a,b}}{\theta + c_{u,\cdot}} + \frac{\theta}{\theta + c_{u,\cdot}} p(w = x|\vec{s}, \theta, \pi(u))$$
(2)

Unigram Restaurant

<s> Restaurant

$$p(w = b | \dots) = \frac{1}{\theta + c_{m}}$$

$$p(w = b| \dots) = \frac{1}{\theta + c_{u,\cdot}} + \frac{\theta}{\theta + c_{u,\cdot}} p(w = x|\vec{s}, \theta, \pi(u))$$
 (2)

Unigram Restaurant

<s> Restaurant

a

a Restaurant

a 2 b 1 c 1

b Restaurant

 $\begin{bmatrix} a \end{bmatrix}^1$

$$p(w = b|...) = \frac{1}{1.0 + c_{\mu}} + \frac{1.0}{1.0 + c_{\mu}} p(w = x|\vec{s}, \theta, \pi(u))$$
(2)

Unigram Restaurant

$$\boxed{a}^{3} \boxed{b}^{1} \boxed{c}^{1} \boxed{\langle/s\rangle}^{1}$$

<s> Restaurant

a Restaurant

b Restaurant

</s>

$$p(w = b|\dots) = \frac{1}{1.0 + a}$$

$$p(w = b|...) = \frac{1}{1.0+4} + \frac{1.0}{1.0+4}p(w = x|\vec{s}, \theta, \pi(u))$$
 (2)

Unigram Restaurant

$$\begin{bmatrix} a \end{bmatrix}^3 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1 \begin{bmatrix} \end{bmatrix}^1$$

<s> Restaurant

a 1

a Restaurant

 $\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}$

b Restaurant

a

$$p(w = b|...) = \frac{1}{1.0+4} + \frac{1.0}{1.0+4} p(w = x|\vec{s}, \theta, \pi(u))$$
 (2)

Unigram Restaurant

 $\boxed{a}^{3} \boxed{b}^{1} \boxed{c}^{1} \boxed{\langle/s\rangle}^{1}$

<s> Restaurant

a 1

a Restaurant

 $\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}$

b Restaurant

(a)

$$p(w = b|...) = \frac{1}{1.0+4} + \frac{1.0}{1.0+4}p(w = x|\vec{s}, \theta, \pi(\emptyset))$$
 (2)

Unigram Restaurant

 $\boxed{a}^{3} \boxed{b}^{1} \boxed{c}^{1} \boxed{\langle/s\rangle}^{1}$

<s> Restaurant

a 1

a Restaurant

 $\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}$

b Restaurant

(a)

$$p(w = b|...) = \frac{1}{1.0+4} + \frac{1.0}{1.0+4}p(w = x|\vec{s}, \theta, \pi(\emptyset))$$
 (2)

Unigram Restaurant

<s> Restaurant

a

a Restaurant

 $\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1$

b Restaurant

a

c Restaurant

$$p(w = b|\dots) = \frac{1}{5} + \frac{1}{5} \left(\frac{c_{\emptyset,b}}{c_{\emptyset,\cdot} + \theta} + \frac{\theta}{c_{\emptyset,\cdot} + \theta} \frac{1}{V} \right)$$
(2)

Unigram Restaurant

<s> Restaurant

a

a Restaurant

 $\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1$

b Restaurant

a

c Restaurant

$$p(w = b|\dots) = \frac{1}{5} + \frac{1}{5} \left(\frac{c_{\emptyset,b}}{c_{\emptyset,\cdot} + \theta} + \frac{\theta}{c_{\emptyset,\cdot} + \theta} \frac{1}{5} \right)$$
(2)

Unigram Restaurant

<s> Restaurant

a

 $\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1$

b Restaurant

a

$$p(w = b|...) = \frac{1}{5} + \frac{1}{5} \left(\frac{c_{\emptyset,b}}{c_{\emptyset,\cdot} + 1.0} + \frac{1.0}{c_{\emptyset,\cdot} + 1.0} \frac{1}{5} \right)$$
(2)

Unigram Restaurant

<s> Restaurant

a

a Restaurant

 $\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1$

b Restaurant

a

c Restaurant

$$p(w = b|...) = \frac{1}{5} + \frac{1}{5} \left(\frac{1}{c_{\emptyset,\cdot} + 1.0} + \frac{1.0}{c_{\emptyset,\cdot} + 1.0} \frac{1}{5} \right)$$
(2)

Unigram Restaurant

<s> Restaurant

a]1

a Restaurant

 $\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1$

b Restaurant

 $oxed{\mathsf{a}}^1$

c Restaurant

$$p(w = b|...) = \frac{1}{5} + \frac{1}{5} \left(\frac{1}{6+1.0} + \frac{1.0}{6+1.0} \frac{1}{5} \right)$$
 (2)

Unigram Restaurant

<s> Restaurant

a]1

a Restaurant

 $\begin{bmatrix} a \end{bmatrix}^2 \begin{bmatrix} b \end{bmatrix}^1 \begin{bmatrix} c \end{bmatrix}^1$

b Restaurant

 $\left(\begin{array}{c} \mathtt{a} \end{array}\right)^{\!1}$

c Restaurant

$$p(w = b|...) = \frac{1}{5} + \frac{1}{5} \left(\frac{1}{7} + \frac{1}{7} \frac{1}{5}\right) = 0.24$$
 (2)

- Empirically, it helps favor the backoff if you have more tables
- Otherwise, it gets too close to maximum likelihood

Boulder

- Idea is called discounting
- Steal a little bit of probability mass δ from every table and give it to the new table (backoff)

- Empirically, it helps favor the backoff if you have more tables
- · Otherwise, it gets too close to maximum likelihood
- Idea is called discounting
- Steal a little bit of probability mass δ from every table and give it to the new table (backoff)

$$p(w = x | \vec{s}, \theta, u) = \underbrace{\frac{c_{u,x}}{\theta + c_{u,x}}}_{\text{existing table}} + \underbrace{\frac{\theta}{\theta + c_{u,x}} p(w = x | \vec{s}, \theta, \pi(u))}_{\text{new table}}$$
(3)

- Empirically, it helps favor the backoff if you have more tables
- Otherwise, it gets too close to maximum likelihood
- Idea is called discounting
- Steal a little bit of probability mass δ from every table and give it to the new table (backoff)

$$p(w = x | \vec{s}, \theta, u) = \underbrace{\frac{c_{u,x} - \delta}{\theta + c_{u,x}}}_{\text{existing table}} + \underbrace{\frac{\theta + T\delta}{\theta + c_{u,x}}}_{\text{new table}} p(w = x | \vec{s}, \theta, \pi(u))$$
(3)

- Empirically, it helps favor the backoff if you have more tables
- Otherwise, it gets too close to maximum likelihood
- Idea is called discounting
- Steal a little bit of probability mass δ from every table and give it to the new table (backoff)

$$p(w = x | \vec{s}, \theta, u) = \underbrace{\frac{c_{u,x} - \delta}{\theta + c_{u,x}}}_{\text{existing table}} + \underbrace{\frac{\theta + T\delta}{\theta + c_{u,x}}}_{\text{new table}} p(w = x | \vec{s}, \theta, \pi(u))$$
(3)

- Empirically, it helps favor the backoff if you have more tables
- Otherwise, it gets too close to maximum likelihood
- Idea is called discounting
- Steal a little bit of probability mass δ from every table and give it to the new table (backoff)

$$p(w = x | \vec{s}, \theta, u) = \underbrace{\frac{c_{u,x} - \delta}{\theta + c_{u,.}}}_{\text{existing table}} + \underbrace{\frac{\theta + T\delta}{\theta + c_{u,.}}}_{\text{new table}} p(w = x | \vec{s}, \theta, \pi(u))$$
(3)

Interpolated Kneser-Ney!

More advanced models

- Interpolated Kneser-Ney assumes one table with a dish (word) per restaurant
- Can get slightly better performance by assuming you can have duplicated tables: Pitman-Yor language model
- Requires Gibbs Sampling of the seating assignments (GS, later, but not for language models)

Exercise

- Start with restaurant we had before
- Assume you see <s> b b a c </s>; add those counts to tables
- ullet Compute probability of ${ t b}$ following a $(heta=1.0, \delta=0.5)$
- Compute the probability of a following b
- Compute probability of </s> following <s>