COSC 290 Discrete Structures

Lecture 6: Predicate Logic

Prof. Michael Hay

Monday, Feb. 5, 2018

Colgate University

Plan for today

- 1. Normal forms: CNF and DNF
- 2. Predicate Logic
- 3. Quantification of variables
- 4. Theorem

Normal forms: CNF and DNF

Literal

Definition (Literal)

A literal is an atomic proposition or the negation of an atomic proposition (i.e. it's either p or $\neg p$ for some variable p).

Example

Let p := "Alice earns an A." and q := "Pigs can fly."

Literals: p, $\neg p$, q, $\neg q$.

Not literals: $p \lor q$, $q \implies p$, etc.

2

Conjunctive Normal Form

Definition (CNF)

A proposition is in conjunctive normal form (CNF) if it consists of:

- · a single clause, or
- a conjunction of two or more clauses

where a clause is

- · a single literal, or
- a disjunction of two or more literals

Conjunctive Normal Form

Definition (CNF)

A proposition is in conjunctive normal form (CNF) if it consists of:

- · a single clause, or
- a conjunction of two or more clauses

where a clause is

- · a single literal, or
- a disjunction of two or more literals

Example

These propositions are in CNF:

- $(p \lor q \lor s) \land (\neg p \lor r \lor \neg q)$
- $(\neg q \lor s)$

These propositions are *not* in CNF:

- $(p \lor q) \implies (\neg p \lor r)$
- $(\neg q \land s) \land (\neg p \lor r)$

3

Disjunctive Normal Form

Disjunctive Normal Form (DNF) is the same idea, just swap the role of ANDs and ORs. See textbook for defintion and examples.

Informally,

- conjunctive-normal form (CNF) is an "AND" of a bunch of "ORs".
- disjunctive-normal form (DNF) is an "OR" of a bunch of "ANDs".

Poll: is proposition in CNF?

Which of these propositions is *not* in CNF?

- A) ¬*p*
- B) $p \vee q$
- C) $(p \lor q) \land (r \lor s)$
- D) $(p \wedge q) \vee (r \wedge \neg p)$
- E) More than one is not CNF / All are in CNF

(Definition restated here) A proposition is in CNF if it is a single clause or the conjunction of two or more clauses where each clause is a single literal or the disjunction of two or more literals.

A literal is an atomic proposition or the negation of an atomic proposition (i.e. it's either p or $\neg p$ for some variable p).

5

Logical equivalence and CNF/DNF

Two important results:

- 1. Given a proposition ψ , it is possible to write a proposition φ such that $\psi \equiv \varphi$ and φ is in conjunctive-normal form (CNF).
- 2. Given a proposition ψ , it is possible to write a proposition φ such that $\psi \equiv \varphi$ and φ is in disjunctive-normal form (DNF).

Why might these results be useful?

Checking a CNF sentence for tautology

If φ is a proposition in CNF. Then checking for a tautology is easy.

- φ is a tautology if and only if each clause is a tautology.
- A clause from a CNF is a tautology if and only if it contains a literal and its opposite.

Poll: is this CNF a tautology?

Consider

$$\varphi := (p \lor q \lor \neg p) \land (r \lor p \lor q \lor \neg q) \land (\neg r \lor p \lor r)$$

Is φ in CNF? Is φ a tautology?

- A) CNF: yes, tautology: yes
- B) CNF: yes, tautology: no
- C) CNF: no, tautology: yes
- D) CNF: no, tautology: no

Predicate Logic

Predicate

An atomic proposition *p* is a Boolean variable.

A predicate P(x) is a Boolean function. A predicate can take one or more arguments.

Examples:

- isPrime(x) returns true if x is a prime number and false otherwise.
- isDivisibleBy(x,y) returns true if x is evenly divisible by y.

Propositions that include predicates

We can form a proposition by supplying arguments to each predicate.

$$\varphi := isPrime(8) \lor isDivisibleBy(8,2)$$

The truth of this proposition requires interpreting the predicates:

Propositions that include predicates

We can form a proposition by supplying arguments to each predicate.

$$\varphi := isPrime(8) \lor isDivisibleBy(8,2)$$

The truth of this proposition requires *interpreting* the predicates: isPrime(8) is false whereas isDivisibleBy(8,2) is true according to definitions of these predicates.

Free variables

[[MH: perhaps talk about free variables here; example – this is not a proposition because it has a free variable – in effect it's an unamed predicate]]

Quantification of variables

Quantification

[[MH: perhaps I need some more basic examples; followed by discussion of free and bound variables; then my colgate/bucknell examples are good]]

[[MH: define a set of integers, then use isDivisibleBy(x,2) have the forall be false, then there exists be true, then perhaps have another one that is isDivisibleBy(x,2) \lor isDivisibleBy(x,3) which is true]]

[[MH: poll: free vs. bound variables; or perhaps is this a proposition?]]

Universal Quantification

Let $P := \{p_1, p_2, \dots, \}$ be the (infinite) set of all persons.

$$\forall p \in P : At(p, Colgate) \implies BrushesTeeth(p)$$

means "Every person at Colgate brushes their teeth."

The above is *roughly* equivalent to

```
(At(p_1, Colgate) \Longrightarrow BrushesTeeth(p_1))
\land (At(p_2, Colgate) \Longrightarrow BrushesTeeth(p_2))
\land (At(p_3, Colgate) \Longrightarrow BrushesTeeth(p_3))
\land \dots
```

Common mistake with universal quantification

Typically, \implies is the main connective with \forall .

Common mistake: using \land as the main connective with \forall :

$$\forall p \in P : At(p, Colgate) \land BrushesTeeth(p)$$

means "Every person is at Colgate and everyone brushes their teeth."

Existential Quantification

Let $P\{p_1, p_2, ..., \}$ be the (infinite) set of all persons.

$$\exists p \in P : At(p, Bucknell) \land BrushesTeeth(p)$$

means "Some person at Bucknell brushes their teeth."

The above is *roughly* equivalent to

```
(At(p_1, Bucknell) \land BrushesTeeth(p_1))
\lor (At(p_2, Bucknell) \land BrushesTeeth(p_2))
\lor (At(p_3, Bucknell) \land BrushesTeeth(p_3))
\lor \dots
```

Common mistake with existential quantification

Typically, \wedge is the main connective with \exists .

Common mistake: using \implies as the main connective with \exists :

$$\exists p \in P : At(p, Bucknell) \implies BrushesTeeth(p)$$

is true provided that there is some person who is not at Bucknell!

Constructing Predicates

In programming, we can define functions that call other functions.

In predicate logic, we can define predicate in terms of other predicates.

Examples:

- follows(x, y) means that x follows the tweets of y
- TrumpFollower(x) := follows(x, @realDonaldTrump)
- $popularTweeter(y) := \forall x \in P : follows(x, y)$

Poll: fastest person

Let faster(x, y) be true if x runs faster than y or x and y run the same speed and false otherwise.

Which of the following is the correct definition for fastest(x)?

- A) $\exists y \in P : faster(x, y)$
- B) $\neg (\exists y \in P : faster(y, x))$
- C) $\forall y \in P : faster(x, y)$
- D) $\neg (\forall y \in P : faster(y, x))$
- E) None of the above / More than one of the above

Poll: fastest lacrosse player

Let faster(x, y) be true if x runs faster than y or x and y run the same speed and false otherwise.

Let lax(x) be true if x plays lacrosse.

Which of the following is the correct definition for fastestLacrossePlayer(x)?

- A) $\forall y \in P : lax(y) \land faster(x, y)$
- B) $\forall y \in P : lax(y) \implies faster(x, y)$
- C) $lax(x) \land \forall y \in P : lax(y) \land faster(x, y)$
- D) $lax(x) \land \forall y \in P : lax(y) \implies faster(x, y)$
- E) None of the above / More than one of the above

Theorem

Theorems

[[MH: need to be careful here... distinction between theorem (true for all P) and proposition (true for specific P)]]

[[MH: we could do this, but there could be a fair bit to this...]]

[[MH: take one theorem from fig. 3.23 and prove it by assuming antecedent; disprove one of the implications that only goes one way. could use the same claim for both things... exercise 3.130 and its converse]]