Exercício orientado

1- Construa a tabela da verdade para as portas AND, OR, XOR, NOT, NAND, NOR com 2 entradas (A e B).

AND	TABELA VERDADE			
	Α	В	С	
A c	0	0	0	
	0	1	0	
	1	0	0	
A*B= C	1	1	1	

OR	TABELA VERDADE			
_	Α	В	С	
A — —	0	0	0	
c	0	1	1	
	1	0	1	
A+B = C	1	1	1	

XOR	TABELA VERDADE			
	A	В	С	
$A \longrightarrow A$	0	0	0	
	0	1	1	
	1	0	1	
A⊕B = C	1	1	0	

NOT	TABELA \	/ERDADE
7	A	С
$A \longrightarrow C = \overline{A}$	0	0
	1	1

NAND	TABELA VERDADE			
	Α	В	С	
C = A.B	0	0	1	
	0	1	1	
A'*B' =C	1	0	1	
	1	1	0	

NOR	TABELA VERDADE			
	Α	В	С	
A — —	0	0	1	
$B \longrightarrow C = \overline{A} + \overline{B}$	0	1	0	
	1	0	0	
A'+B' =C	1	1	0	

2- Construa a tabela da verdade para a porta AND com três entradas (A, B e C).

Solução: A tabela da verdade deve listar todas as combinações possíveis das entradas e a respectiva saída.

AND	TABELA VERDADE			
Porta AND com 3 entradas	Α	В	С	Х
A	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	0
X= A*B*C	1	0	0	0
	1	0	1	0
	1	1	0	0
	1	1	1	1

3- Desenhe um circuito usando portas OR que tenha três entradas (A, B, C) e uma saída que seja 1 se pelo menos uma das entradas for 1. Desenhe a tabela da verdade correspondente.Solução: Utilize duas portas OR para combinar as três entradas:

Tabela da Verdade						
А	В	С	X = A+B+C			
0	0	0	0			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	1			
1	0	1	1			
1	1	0	1			
1	1	1	1			

4- Crie um circuito combinacional usando portas AND, OR e NOT para a função lógica:

Crie a tabela da verdade correspondente ao circuito.

Tabela da Verdade							
А	В	С	X1 = A*B	X2 = C	$X = (A^*B) + \overline{C}$		
0	0	0	0	1	1		
0	0	1	0	0	0		
0	1	0	0	1	1		
0	1	1	0	0	0		
1	0	0	0	1	1		
1	0	1	0	0	0		
1	1	0	1	1	1		
1	1	1	1	0	1		

5- Crie um circuito usando portas AND, OR, e NOT que implemente a seguinte função lógica:

$$X = (A' * B) + (A*C')$$

Construa a tabela da verdade para o circuito.

Solução:

	Tabela da Verdade							
А	В	С	Ā	C	Ā*B	A*C	$X = (\overline{A}^*B) + (A^*\overline{C})$	
0	0	0	1	1	0	0	0	
0	0	1	1	0	0	0	0	
0	1	0	1	1	1	0	1	
0	1	1	1	0	1	0	1	
1	0	0	0	1	0	1	1	
1	0	1	0	0	0	0	0	
1	1	0	0	1	0	1	1	
1	1	1	0	0	0	0	0	

6 – Use portas AND e NOT para implementar uma porta NAND com duas entradas (A e B). Crie a tabela da verdade do circuito

Solução: Primeiro, crie uma porta AND e, em seguida, conecte a saída dessa porta a uma porta NOT:

Tabela da Verdade					
А	В	A*B	X = A*B		
0	0	0	1		
0	1	0	1		
1	0	0	1		
1	1	1	0		

7– Analise o seguinte circuito e preencha a tabela da verdade:

	Tabela da Verdade							
Α	В	С	A*B	c	$X = (A^*B) + \overline{C}$			
0	0	0	0	1	1			
0	0	1	0	0	0			
0	1	0	0	1	1			
0	1	1	0	0	0			
1	0	0	0	1	1			
1	0	1	0	0	0			
1	1	0	1	1	1			
1	1	1	1	0	1			

8 – Crie a função lógica e a tabela da verdade para o seguinte circuito:

	Tabela da Verdade					
А	В	С	A*B	B+C	X = (A*B)*(B+C)	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	0	1	0	
1	0	0	0	0	0	
1	0	1	0	1	0	
1	1	0	1	1	1	
1	1	1	1	1	1	

9- Dado o circuito lógico a seguir, determine a expressão para S.

A)
$$S = \overline{C} + B \cdot A$$

$$B)S = \overline{B} + C \cdot A$$

C)
$$S = \overline{A} + C \cdot B$$

D) $S = C + B \cdot A$

$$D)S = C + B \cdot A$$

GABARITO

A resposta correta é: $S = \overline{C} + B \cdot A$

10- Assinale a alternativa que representa o circuito da função booleana $S1 = C \cdot B + (A + \overline{C})$, com portas lógicas.

A)

B)

C)

D)

GABARITO

A resposta correta é:

Justificativa

Porta AND entrada de C e B, e saída C.B.

Porta OR, entrada A e \overline{C} , e saída $(A + \overline{C})$.

E, portanto, a última porta lógica OR com entrada de (C.B) e $(A + \overline{C})$, e saída $S1 = C \cdot B + (A + \overline{C})$.

11- Obtenha a tabela verdade do circuito abaixo

Α	В	С	u= A	<u>V</u> = AB	W= BC	X= V+W
0	0	0	1	0	0	0
0	0	1	1	0	0	0
0	1	0	1	1	0	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	0	0	1	1

12- Construa o circuito lógico a partir a da expressão X= (A+B) * (B'+C)

Resolução

13- Obtenha a tabela verdade do seguinte circuito:

S= (A' * B') + (A * B)

Α	В	(A * B)	A'	B'	(A' * B')	(A' * B') + (A * B)
0	0	0	1	1	1	1
0	1	0	1	0	0	0
1	0	0	0	1	0	0
1	1	1	0	0	0	1

14- Considere o circuito digital ilustrado na figura, onde as entradas são indicadas pelas letras A até D e a saída é indicada pela letra S:

Assinale a alternativa que determina a expressão booleana característica do circuito:

A)
$$S = AB + C + \overline{CD}$$

B)
$$S = AB + \overline{C} + CD$$

C)
$$S = AB + \overline{C} + \overline{C}D$$

D)
$$S = A\overline{B} + \overline{C} + CD$$

$$S = \overline{AB} + \overline{C} + CD$$

15- A figura a seguir apresenta uma tabela verdade de uma porta lógica com entradas A e B e saída S.

TABELA VERDADE					
Α	В	S			
0	0	1			
0	1	1			
1	0	1			
1	1	0			

Esta tabela é referente a uma porta

- A) OR.
- B) NOR.
- C) AND.
- D) NAND.
- E) XOR.