A Bits

time limit per test: 1 second memory limit per test: 256 megabytes

> input: standard input output: standard output

Let's denote as the number of bits set ('1' bits) in the binary representation of the non-negative integer x.

You are given multiple queries consisting of pairs of integers l and r. For each query, find the χ such that $l \le x \le r$, and is maximum possible. If there are multiple such numbers find the smallest of them.

Input

The first line contains integer n — the number of queries ($1 \le n \le 10000$).

Each of the following n lines contain two integers l_i , r_i — the arguments for the corresponding query ($0 \le l_i \le r_i \le 10^{18}$)

Output

For each query print the answer in a separate line.

Examples

input		
3		
1 2		
2 4		
1 10		
output		
1		
3		

Note

The binary representations of numbers from 1 to 10 are listed below:

$$1_{10} = 1_2$$
 $2_{10} = 10_2$
 $3_{10} = 11_2$
 $4_{10} = 100_2$
 $5_{10} = 101_2$
 $6_{10} = 110_2$

$$7_{10} = 111_2$$

$$8_{10} = 1000_2$$

$$9_{10} = 1001_2$$

$$10_{10} = 1010_2$$