Topic: Symbols, Formulae, and Equations I

Lesson Outline

Subtopics:

- 1. Chemical Symbols of Elements
- 2. Valency: Definition and Common Valencies
- 3. Writing Chemical Formulae from Valency
- 4. Empirical and Molecular Formulae
- 5. Law of Conservation of Matter
- 6. Periodic Table (Arrangement in Order)

1. Chemical Symbols of Elements

What is a Chemical Symbol?

A **chemical symbol** is a **short representation** of an element using **letters**.

- The **first letter** is always **capitalized**.
- The **second letter** (if any) is always **lowercase**.

Why Use Symbols?

- To simplify writing chemical reactions.
- To create universal understanding among scientists.
- To avoid writing long element names repeatedly.

Examples of Symbols:

Element Symbol Origin

Hydrogen H First letter

Element Symbol Origin

Helium He First + second letter

Sodium Na Latin: Natrium

Potassium K Latin: Kalium

Iron Fe Latin: Ferrum

Copper Cu Latin: Cuprum

Gold Au Latin: Aurum

Silver Ag Latin: Argentum

Lead Pb Latin: Plumbum

2. Valency

Definition:

Valency is the combining capacity of an element.

It tells us how many bonds an atom can form when combining with other atoms.

Understanding Valency:

- Metals usually lose electrons to become stable (positive valency).
- Non-metals usually gain or share electrons (negative valency or sharing).

Common Valencies of Elements:

Element	Valency
Hydrogen (H)	1
Oxygen (O)	2
Nitrogen (N)	3

Element	Valency
Carbon (C)	4
Sodium (Na)	1
Calcium (Ca)	2
Aluminium (Al)	3
Chlorine (CI)	1
Sulphur (S)	2 (sometimes 6)
Magnesium (Mg)	2

Valencies of Common Radicals:

Radical	Valency
Hydroxide (OH⁻)	1
Nitrate (NO₃⁻)	1
Carbonate (CO ₃ ²⁻)	2
Sulphate (SO ₄ ²⁻)	2
Ammonium (NH ₄ +)	1
Phosphate (PO ₄ ³-)	3

3. Writing Chemical Formulae

Steps to Write Formulae:

- 1. Write the symbols of the elements or radicals involved.
- 2. Write their valencies.
- 3. **Cross-multiply** the valencies to balance the formula.
- 4. Simplify if necessary.

Examples:

Compound Elements/Radicals Valencies Formula

Sodium chloride Na (1), Cl (1) 1:1 NaCl

Magnesium chloride Mg (2), Cl (1) 2:1 MgCl₂

Calcium nitrate Ca(2), $NO_3(1)$ 2:1 $Ca(NO_3)_2$

Aluminium sulphate Al (3), SO_4 (2) 3:2 $Al_2(SO_4)_3$

Ammonium carbonate NH_4 (1), CO_3 (2) 1:2 $(NH_4)_2CO_3$

Why Use Brackets?

When a radical appears more than once, use brackets to avoid confusion:

Example: Calcium nitrate → Ca(NO₃)₂

4. Empirical and Molecular Formulae

Empirical Formula:

• The **simplest ratio** of atoms in a compound.

Molecular Formula:

• The actual number of atoms in a compound.

Examples:

Compound Molecular Formula Empirical Formula

Glucose C₆H₁₂O₆ CH₂O

Ethene C₂H₄ CH₂

Compound Molecular Formula Empirical Formula

Benzene C₆H₆ CH

Water H₂O H₂O

How to Derive Empirical Formula:

- 1. Write the molecular formula.
- 2. Find the greatest common factor (GCF) of the subscripts.
- 3. Divide all subscripts by the GCF.

Example:

Glucose ($C_6H_{12}O_6$):

- GCF = 6
- Empirical Formula = CH₂O

5. Law of Conservation of Matter

Statement:

"Matter cannot be created or destroyed during a chemical reaction."

Meaning:

- The total mass of reactants = total mass of products.
- No atoms are lost or created—only **rearranged**.

Example:

 $2H2+O2 \rightarrow 2H2O2H_2 + O_2 \land 2H2O2H2+O2 \rightarrow 2H2O$

• Reactants: 4 hydrogen atoms, 2 oxygen atoms

- Products: 4 hydrogen atoms, 2 oxygen atoms
- Mass is conserved

Importance:

- It helps in balancing chemical equations.
- Prevents errors in chemical calculations.

6. The Periodic Table

Definition:

The **Periodic Table** is a **systematic arrangement of elements** in order of their **atomic numbers**.

Features of the Periodic Table:

- Groups (columns): Elements with similar chemical properties
- Periods (rows): Elements arranged by increasing atomic number

First 20 Elements of the Periodic Table (in order):

Atomic Number Element Name Symbol

1	Hydrogen	Н
2	Helium	He
3	Lithium	Li
4	Beryllium	Be
5	Boron	В
6	Carbon	С
7	Nitrogen	N

Atomic Number Element Name Symbol

8	Oxygen	0
9	Fluorine	F
10	Neon	Ne
11	Sodium	Na
12	Magnesium	Mg
13	Aluminium	Al
14	Silicon	Si
15	Phosphorus	Р
16	Sulphur	S
17	Chlorine	Cl
18	Argon	Ar
19	Potassium	K
20	Calcium	Ca

Periodic Trends:

Property	Trend	
Atomic Size	Decreases across a period, increases down a group	
Reactivity (Metals)	Increases down a group	
Reactivity (Non-metals) Increases up a group		
Valency	Changes across a period	

Importance of the Periodic Table:

- Predicts chemical behavior
- Helps in writing formulae
- Organizes elements systematically

Summary of Key Points

Term Meaning

Chemical Symbol Short form of an element

Valency Combining power of an atom

Chemical Formula Representation of a compound

Empirical Formula Simplest ratio of atoms

Molecular Formula Actual number of atoms

Law of Conservation of Matter Matter cannot be created or destroyed

Periodic Table Systematic arrangement of elements

Conclusion

Understanding **symbols**, **valency**, **and formulae** is critical for writing **chemical reactions correctly**. The **Periodic Table** is a tool that helps you predict element properties and reactions.