1. Introduction au problème posé

1.1 Contexte général

Les courbes de taux de trésorerie nationales (Allemagne, France, États-Unis) constituent des références fondamentales pour :

- la valorisation d'obligations et de produits dérivés,
- l'analyse macroéconomique,
- et la politique monétaire.

Elles traduisent les conditions de financement des États et les anticipations du marché sur les taux à court, moyen et long terme.

Dans un contexte post-crise marqué par la normalisation des taux et la fin des politiques de taux zéro, la forme et la pente des courbes diffèrent fortement entre zones économiques (inversion aux États-Unis, normalité en Europe).

1.2 Objectifs du projet

- Construire des courbes de taux pour trois marchés : DE Allemagne, FR France, US États-Unis.
- Lisser ces courbes à partir de données publiques (dépôts, swaps, obligations d'État).
- Visualiser et comparer les profils de pente, convexité et forme.
- Fournir un outil réutilisable pour l'analyse ou la valorisation basique.

1.3 Limites du projet

- Données de marché simulées à partir de sources publiques (pas de feed Bloomberg).
- Pas de calibration dynamique intra-journalière.
- Les obligations d'État sont intégrées via leurs **taux spot** (sans coupon).
- Le projet se concentre sur la **construction et le lissage** (pas de pricing complet).

1.4 Utilisateurs visés

- Étudiants en finance / ingénierie financière.
- Chercheurs ou praticiens souhaitant visualiser les différences de courbes souveraines.
- Formateurs souhaitant illustrer les méthodes de lissage de taux.

1.5 Sources théoriques principales

- Brigo & Mercurio (2007), Interest Rate Models Theory and Practice.
- Hagan & West (2006), Interpolation Methods for Curve Construction.
- Smith & Wilson (2001), FSA Yield Curve Methodology.
- Données : Banque de France, Bundesbank, U.S. Treasury.

2. Expression fonctionnelle du besoin

N°	Fonctionnalité	Description	Objectif	Critère de réussite	Contraintes
ı⊩ı	Import des données	Lecture de fichiers CSV (quotes de dépôts, swaps, obligations)	Alimenter la construction des courbes	Données correctement chargées, formats variés supportés	Délimiteur ; ou , , gestion des nombres FR/EN
F2	Conversion des maturités	Conversion des tenors (1M, 3M, 1Y) en années	Uniformiser les maturités	Tenors correctement transformés	Gestion des suffixes M/Y
ı⊩ ≺ı	Construction de la courbe	Bootstrap d'une courbe de taux zéro à partir des instruments	Obtenir une courbe complète 0–30 ans	Courbe continue et cohérente	Respect conventions ACT/360
F4	Lissage	Implémentation de 3 méthodes : linéaire, Hagan- West, Smith- Wilson	Obtenir une interpolation fluide et réaliste	Monotonicité, continuité, stabilité	Stabilité numérique
11-51	Visualisation graphique	Affichage des courbes zéro et forwards	Analyser et comparer visuellement	Graphiques lisibles et comparatifs	Résolution suffisante (PNG 1000×600)
	Analyse de forme	Calcul de la pente et convexité	Identifier la structure de la courbe	Valeurs cohérentes avec la forme visuelle	Mesures dérivées correctes
IF / I	Comparaison inter-pays	Superposition des 3 courbes (DE, FR, US)		Graphiques clairs, labels distincts	Échelles homogènes

N°	Fonctionnalité	Description	Objectif	Critère de réussite	Contraintes
F8	exportation des résultats	lcourbes et	Réutilisation des résultats	Itichiers (SV et 1	Structure claire d'output

3. Solution proposée

3.1 Données manipulées

- Entrées :
 - o Fichiers CSV pour chaque pays:
 - Dépôts (1M–12M)
 - Swaps (1Y–30Y)
 - **Obligations** (10Y–30Y, taux spot)
- Sorties:
 - o Courbes de taux zéro, discount factors, forwards.
 - o Graphiques comparatifs.
 - o Fichiers CSV et PNG pour reporting.

3.2 Modèles mathématiques

◆ Interpolation linéaire

Formule simple entre deux points successifs (ti,ri),(ti+1,ri+1):

$$r(t) = r_i + (r_{i+1} - r_i) rac{t - t_i}{t_{i+1} - t_i}$$

- → Base de comparaison.
- → Hagan-West (Monotone Convex)

Assure continuité des taux instantanés et monotonicité des discount factors. Très utilisé en pratique (Bloomberg, Murex).

Smith-Wilson

Méthode réglementaire (EIOPA) pour extrapoler la courbe vers un taux ultime u.

$$P(t)=e^{-ut}+\sum_i W(t,t_i)(q_i-e^{-ut_i})$$

→ utilisée pour prolonger les taux longs (30 ans+).

3.3 Structure logicielle (C# .NET 9)

```
/RateCurveProject
├— Data/
  — MarketDataLoader.cs (lecture CSV robuste)
— Models/
  — Curve.cs
  — MarketInstrument.cs
  ├— Interpolation/
    ├— Linear.cs
     ├— HaganWest.cs
    — SmithWilson.cs
├— Engine/
  — Bootstrapper.cs
  — Analyzer.cs
├— UI/
  — CurvePlotter.cs (ScottPlot)
  – Output/
  ├— ExportManager.cs
```

4. Éléments annexes

4.1 Budget et délais

Phase	Tâches principales	Durée (théorique)	Durée (réelle)
1	Collecte & préparation des données	1 j	1 j
2	Conception architecture	1 j	1 j
11 - 1	Implémentation bootstrap & interpolations	3 ј	4 j

Phase	Tâches principales	Durée (théorique)	Durée (réelle)
4	Visualisation et comparaisons	2 j	2 j
5	Analyse & rapport	2 ј	2 j
6	Revue & finalisation	1 j	1 j
Total		IIII IMIII'S	10 jours (2 personnes)

4.2 Livrables attendus

- Code source complet (C# .NET 9).
- Données CSV (DE, FR, US).
- Graphiques comparatifs (zero rates & forwards).
- Rapport PDF / présentation 4 min (avec ce cahier des charges en support).

4.3 Documentation

• Documentation utilisateur :

Comment charger les fichiers, choisir la méthode de lissage, interpréter les graphiques.

• Documentation technique:

Architecture des classes, formules mathématiques, choix de paramètres (λ, u) .

- Analyse des résultats :
 - o DE Allemagne → courbe normalisée, pente légère.
 - \circ FR France \rightarrow pente plus marquée.
 - o US États-Unis → courbe inversée (politique monétaire restrictive).

4.4 Gestion de projet

• Équipe : 2 personnes.

• Organisation : pas encore faite.

• Outils: GitHub, Visual Studio Code.