EE126 Mini-Project 1

Ajeya Cotra, Leah Dickstein, Davis Foote, Ena Hariyoshi

October 19, 2014

x =Number of WW

y =Number of Wg

z = Number of gg

List of "random" things in the simulation:

- Randomly pair
- Children traits (Punnett square)
- Death

At each timestep, pick two moths to breed (table of probability):

	WW, WW	WW, Wg	WW, gg	Wg, Wg	Wg, gg	gg, gg
WW	1	1/2	0	1/4	0	0
Wg	0	1/2	1	1/2	1/2	0
gg	0	0	0	1/4	1/2	1
	$(N(WW))_2$	$ \mathcal{O}(N(WW)) \setminus N(Wg) \rangle$	$\Omega(N(WW)) \cap N(gg)$	$N(Wg) \setminus 2$	2(N(WW))(N(gg))	$N(gg) \setminus 2$

 $\left| \begin{array}{c} \left(\frac{N(WW)}{N(all)}\right)^2 \end{array} \right| \ 2\left(\frac{N(WW)}{N(all)}\right) \left(\frac{N(Wg)}{N(all)}\right) \ \left| \ 2\left(\frac{N(WW)}{N(all)}\right) \left(\frac{N(gg)}{N(all)}\right) \ \left| \ \left(\frac{N(Wg)}{N(all)}\right)^2 \ \right| \ 2\left(\frac{N(WW)}{N(all)}\right) \left(\frac{N(gg)}{N(all)}\right) \ \left| \ \left(\frac{N(gg)}{N(all)}\right)^2 \ \right| \ 2\left(\frac{N(WW)}{N(all)}\right) \left(\frac{N(gg)}{N(all)}\right) \ \left| \ \left(\frac{N(gg)}{N(all)}\right)^2 \ \right|$

So the probabilities of birth for each genotype should be:

$$b_{WW} = \left(\frac{WW}{all}\right)^2 + \frac{WW * gg}{all^2} + \frac{1}{4} \left(\frac{Wg}{all}\right)^2$$

$$b_{Wg} = \frac{WW * Wg}{all^2} + \frac{1}{2} \left(\frac{Wg * gg}{all^2}\right) + \frac{1}{2} \left(\frac{Wg}{all}\right)^2 + 2 * \frac{WW * gg}{all^2}$$

$$b_{gg} = \left(\frac{gg}{all}\right)^2 + \frac{gg * Wg}{all^2} + \frac{1}{4} \left(\frac{Wg}{all}\right)^2$$

In addition, at each timestep we certainly kill a moth, but we randomly choose which moth to kill. The probability is greater for white instead of gray.

$$d_{WW} = \frac{d(WW)}{WW + Wg}$$
$$d_{Wg} = \frac{d(Wg)}{WW + Wg}$$
$$d_{gg} = 1 - d$$