Резонанс напряжений в последовательном контуре.

Дмитрий Павлов, 790 5 октября 2018 г.

Содержание

1	Вст	упление.	3
	1.1	Цель работы	3
		Оборудование	
	1.3	Экспериментальная установка	3
2	Teo	ретическая часть.	4
3	Осн	овная работа.	5
	3.1	Резонансные частоты	5
	3.2	Амплитудно-частотные характеристики	7
	3.3	Фазово-частотные характеристики	8
	3.4	Добротность	9
	3.5	Зависимость $R_L(f_{0n})$	10
	3.6	Вывод	11

1 Вступление.

1.1 Цель работы.

Исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

1.2 Оборудование.

- Генератор сигналов;
- Источник напряжения;
- Нагруженный на последовательный колебательный контур с переменной ёмкостью;
- Двулучевой осциллограф;
- Цифровые вольтметры;

1.3 Экспериментальная установка.

Схема экспериментального стенда для изучения резонанса напряжений в последовательном колебательном контуре показана на рис. 1а. Синусоидальный сигнал от генератора GFG-8255A поступает через согласующую RCцепочку на вход источника напряжения, собранного на операционном усилителе ОУ. Питание операционного усилителя осуществляется встроенным блокомвыпрямителем от сети переменного тока 220 Вольт (цепь питания на схеме не показана). Источник напряжения, обладающий по

Рисунок 1 – Схема экспериментального стенда.

определению нулевым внутренним сопротивлением, фактически обеспечивает с высокой точностью постоянство амплитуды сигнала $\mathscr{E} = \mathscr{E}_0 \cos{(\omega t + \phi_0)}$ на меняющейся по величине нагрузке – последовательном колебательном контуре, изображенном на рис. 1а в виде эквивалентной схемы. Источник напряжения с согласующей цепочкой, колебательный контур и блок питания заключены в отдельный корпус с названием «Резонанс напряжений», отмеченный на рисунке штриховой линией.

Также имеются 7 конденсаторов, переключение между ними осуществляется вращающейся ручкой.

2 Теоретическая часть.

Будем пользоваться понятиями:

- АЧХ амплитудно-частотная характеристика зависимость амплитуды от частоты.
- ФЗЧ фазово-частотная характеристика зависимость сдвига фаз от частоты.
- Добротность величина пропорциональная отношению запасенной в системе энергии к потерям за период, $Q=2\pi \frac{W}{\Delta W_T}.$
- Колебательный контур:

• Векторные диаграммы:

Рис. В.6. Последовательный контур

Рис. В.7. Векторная диаграмма (последовательный контур)

3 Основная работа.

3.1 Резонансные частоты

Для контуров с семью различными ёмкостями, меняя их с помощью переключателя на блоке, измерим резонансные частоты f_{0n} и напряжение $U_C(f_{0n})$. Также будем регистрировать напряжение $E(f_{0n})$. Приближение к резонансу будем фиксировать при помощи фигур Лиссажу, переключая осциллограф в режим X-Y. Фигура Лиссажу будет представлять эллипс, оси которого направлены вдоль осей X и Y.

Таблица 1а – Резонансные частоты и напряжения для контуров с разными

конденсаторами.									
C , н Φ	f_{0n} , к Γ ц	U_c , B	U_E , B						
24.8	32.423	0.55	0.0212						
33.2	28.023	0.494	0.0221						
47.6	23.423	0.425	0.0221						
57.5	21.337	0.3924	0.0220						
68.0	19.633	0.3644	0.0219						
81.6	17.901	0.3375	0.0218						
102.8	15.983	0.3046	0.0217						

Сопротивление конденсатора $R = 3.5\Omega$. Заполним таблицу:

Таблица 16 – Резонансные частоты и напряжения для контуров с разными конденсаторами.

C , н Φ	L , мк Γ н	Q	ρ , Om	R сумм, Ом	$R_{s_{max}}$, Om	R_L , Om	I, мА
24.8	971.6	25.9	197.9	7.63	0.198	197,901	2.78
33.2	971.6	22.4	171.1	7.65	0.171	171,067	2.89
47.6	969,9	19.2	142.7	7.42	0.143	142,706	2.98
57.5	967,6	17.8	129.7	7.27	0.130	129,766	3.02
68.0	966,4	16.6	119.2	7.16	0.119	119,231	3.06
81.6	968,7	15.5	109.0	7.04	0.109	109,005	3.10
102.8	964,6	14.0	96.9	6.9	0.097	98,000	3.14
Ср.знач	968.6	18.8	138.1	7.30	0.138	138	3.00
Ср. квадратичная погр.	0.154	0.242	2.084	0.017	0.002	2.07	0,007
Стьюдента, $t_{7,0.95} = 1,8946$	18.41	0.49	3.75	0.14	0.01	0.5	0,05
Случайная погрешность	1.18	0.056	0.11	0.02	0.00011	4.26	0.01

$$1/\nu = 2\pi \sqrt{L/C}$$
 (условие резонанса) , значит $L = \frac{C}{4\pi^2 \nu^2}$.

$$Q=U_E/U_C$$
 - добротность.

 $\rho = \sqrt{L/C}$ - волновое (реактивное) сопротивление контура.

$$Q=rac{
ho}{R_{\sum}},$$
 значит $R_{\sum}=rac{
ho}{Q}.$

$$R_{s_{max}} = 10^{-3} \rho.$$

$$R_L = 2\pi \nu \cdot L.$$

$$I = E/R_{\Sigma}.$$

- Точность вольтметра: 0.001 В;
- Точность емкости конденсатора: 0.05 нФ;
- Точность генератора: 0.01 кГц;

Случайная погрешность L:

$$\sigma_L = L \cdot \sqrt{(\sigma_C/C)^2 + 2 * (\sigma_f/f)^2} = 968.6 \cdot \sqrt{(0.05/50)^2 + 2 * (0.01/20)} = 30.$$

Случайная погрешность Q:

$$\sigma_Q = Q \cdot \sqrt{(\sigma_{U_C}/U_C)^2 + (\sigma_{U_E}/U_E)} = 18.8 \cdot \sqrt{(0.001/0.5)^2 + (0.001/0.5)^2} = 0.056.$$

Случайная погрешность ρ :

$$\sigma_{\rho} = 0.5\rho \cdot \sqrt{(\sigma_L/L)^2 + (\sigma_C/C)} = 138.1 \cdot \sqrt{(1.18/970)^2 + (0.05/50)^2} = 0.11.$$

Случайная погрешность R_{Σ} :

$$\sigma_{R_{\Sigma}} = R_{\Sigma} \cdot \sqrt{(\sigma_{\rho}/\rho)^2 + (\sigma_{Q}/Q)} = 7.3 \cdot \sqrt{(0.11/140)^2 + (0.056/20)^2} = 0.02.$$

Случайная погрешность R_L :

$$\sigma_{R_L} = R_L \cdot \sqrt{(\sigma_f/f)^2 + (\sigma_L/L)} = 138 \cdot \sqrt{(0.01/20)^2 + (30/970)^2} = 4.26.$$

Случайная погрешность I:

$$\sigma_I = I \cdot \sqrt{(\sigma_{U_E}/U_E)^2 + (\sigma_{R_{\Sigma}}/R_{\Sigma})} = 3 \cdot \sqrt{(0.001/0.5)^2 + (0.02/7)^2} = 0.01.$$

Оценим вклад активных потерь в конденсаторах (tg $\delta = 0.001$):

$$R_s = \frac{1}{\omega C} \operatorname{tg} \delta = \frac{1}{2\pi 25 \kappa \Gamma \Pi} \cdot 0.001 = 6 \cdot 10^{-9}$$
 - можно пренебречь.

3.2 Амплитудно-частотные характеристики.

Для контуров с двумя разными ёмкостями C_2 и C_6 снимем амплитудно-частотные характеристики (AЧX) $U_C(f)$ для значений $U_C(f) \ge 0.6U_C(f_{0n})$ (16-17 точек в сумме по обе стороны от резонанса) при старом напряжении E.

Таблица 2 – Значения амплитуды напряжения в зависимости от частоты для C_2 .

f , к Γ ц	27.237	27.293	27.644	27.571	27.441	27.395	27.793	27.962
U_c , B	0.302	0.313	0.413	0.391	0.354	0.340	0.458	0.487
f , к Γ ц	28.268	28.321	28.381	28.422	28.386	28.636	28.552	28.679
U_c , B	0.454	0.439	0.390	0.410	0.422	0.345	0.363	0.324

Таблица 3 – Значения амплитуды напряжения в зависимости от частоты для C_6 .

f , к Γ ц	17.301	17.162	17.395	17.685	17.565	17.614	17.910	17.518
U_c , B	0.232	0.205	0.25	0.310	0.287	0.300	0.333	0.221
f , к Γ ц	18.540	18.471	18.77	18.17	18.601	18.206	18.360	18.585
U_c , B	0.276	0.235	0.302	0.249	0.336	0.295	0.260	0.212

Построим на одном графике амплитудно-частотные характеристики в координатах $U_C(f)$, для выбранных контуров.

По графикам видно, что с ростом емкости конденсатора, подключенного в цепь, уменьшается амплитуда напряжения.

По данным таблиц 2 и 3 построим на одном графике амплитудно-частотные характеристики в безразмерных координатах: $x = f/f_{0n}, y = U_c(x)/U_{c1}$.

АЧХ в безымянных координатах

Заполненные кружки соответствуют конденсатору C_6 , пустые - C_2 .

3.3 Фазово-частотные характеристики.

Для тех же двух контуров снимем фазово-частотные характеристики $\varphi_C(f)$ для значений $U_C(f) \ge 0.3 U_C(f_{0n})$ (16-17 точек в сумме по обе стороны от резонанса) при старом напряжении E.

Таблица 4 – Значения фазы в зависимости от частоты для C_2 (слева) и C_6 (справа).

	x, cm	x_0 , cm	U_c , B	f , к Γ ц		x, cm	x_0 , cm	U_c , B	f , к Γ ц
1	2	2.5	0.49	28.012	1	1.8	1.3	0.327	17.784
2	4.2	3	0.178	26.429	2	3.6	1.9	0.107	16.264
3	4.2	3	0.186	26.523	3	3.2	1.6	0.181	17.00
4	4.4	2.8	0.248	26.985	4	2.8	1.4	0.245	17.367
5	4.3	2.9	0.211	26.735	5	0.6	1.2	0.280	18.273
6	4.6	2.8	0.282	27.161	6	3.4	1.7	0.148	16.722
7	5	2.6	0.345	27.415	7	3	1.6	0.207	17.17
8	3.6	2.6	0.413	27.640	8	2.2	1.4	0.303	17.640
9	3.2	2.6	0.450	27.760	9	1	1.2	0.312	18.120
10	0.6	2.4	0.420	28.400	10	0.6	1.2	0.284	18.260
11	0.2	2.4	0.381	28.520	11	0.4	1.2	0.246	18.421
12	0.2	2.3	0.315	28.741	12	0.2	1.1	0.221	18.543
13	0.6	2.2	0.254	29.024	13	0.1	1	0.168	18.863
14	0.8	2.1	0.199	29.362	14	0.1	0.9	0.126	19.252
15	3.8	2.6	0.391	27.572	15	0.2	0.9	0.112	19.443
16	4.4	2.7	0.325	27.340	16	0.1	1.1	0.209	18.665
17	5	2.9	0.222	26.820	17	0.6	1.2	0.278	18.278

Фазово-частотные характеристики контура в зависимости от емкости конденсатора.

Заполненные кружки соответствуют конденсатору C_6 , пустые - C_2 .

3.4 Добротность.

Найдем добротность Q, используя амплитудно-частотные и фазово-частотные характеристики.

• По ширине резонансных кривых на уровне 0.707 определим добротности Q соответствующих контуров:

$$Q = \omega_0/2\Delta\Omega$$

$$-Q_{C_2}=21;$$

$$-Q_{C_6}=18.$$

Более острая совокупность точек соответствует C_2 , более широкая - C_6 . Чем пик острее тем добротность больше.

Оценим погрешность:

$$\sigma_Q = 0.1$$

$$\epsilon_{Q_{C_2}} = 0.5/21 = 0.024 = 2.4\%$$

$$\epsilon_{Q_{C_6}} = 0.5/18 = 0.027 = 2.7\%$$

Итого:

$$Q_{C_2} = 21 \pm 0.1, \epsilon_{Q_{C_2}} = 2.4\%$$

 $Q_{C_6} = 18 \pm 0.1, \epsilon_{Q_{C_6}} = 2.7\%$

• По расстоянию между точками по оси x, в которых y меняется от -1/4 до 1/4. Это расстояние равно 1/Q.

$$-x_1 = 0.04$$

$$-x_2=0.06$$

Более быстрорастущая совокупность точек соответствует C_2 , более широкая - C_6 . Чем рост быстрее тем добротность больше.

$$1/Q_{C_2} = x_1 = 0.04$$
$$1/Q_{C_6} = x_2 = 0.06$$
$$Q_{C_2} = 20$$
$$Q_{C_6} = 16.6$$

Оценим погрешность:

$$\sigma_x = 0.01$$

$$\sigma_{Q_{C_2}} = Q_{C_2} \cdot 0.01/0.04 = 20 \cdot 0.25 = 5$$

$$\sigma_{Q_{C_6}} = Q_{C_6} \cdot 0.01/0.06 = 16.6 \cdot 0.16 = 2.8$$

Итого:

$$Q_{C_2} = 20 \pm 5, \epsilon_{Q_{C_2}} = 25\%$$

 $Q_{C_6} = 16.6 \pm 2.8, \epsilon_{Q_{C_6}} = 16.7\%$

3.5 Зависимость $R_L(f_{0n})$.

По данным таблиц 1 и 2 построим зависимость $R_L(f_{0n})$.

Зависимость $R_L(f_{0n})$

Возможной причиной роста сопротивления с увеличением частоты могут быть возникающие в катушке паразитные токи, на которые тратится энергия.

3.6 Вывод.

В работе исследовали резонанс напряжений в последовательном контуре. Нашли резонансную частоту при помощи фигур Лиссажу. Определили добротность колебательного контура тремя способами. Обнаружили зависимость между сопротивлением катушки, добротностью и частотой на примере двух конденсаторов.