rslidar_sdk教程——Nanny版

rslidar_sdk使用教程

一、驱动简介

1. rslidar_sdk适配环境:

- Ubuntu 16.04 ROS Kinetic desktop
- Ubuntu 18.04 ROS Melodic desktop
- Ubuntu 20.04 ROS Noetic desktop

2. 支持雷达型号

- RS-LiDAR-16
- RS-LiDAR-32
- RS-Bpearl
- RS-Helios
- RS-Helios-16P

- RS-Ruby-Plus-80
- RS-Ruby-128
- RS-Ruby-80
- RS-Ruby-48
- RS-Ruby-Plus-128

- RS-Ruby-Plus-48
- RS-LiDAR-M1
- RS-LiDAR-M2
- RS-LiDAR-E1

3. 支持点的类型

- XYZI x, y, z, intensity(反射率)
- XYZIRT x, y, z, intensity(反射率), ring(激光通道), timestamp(时间戳)

二、驱动剖析

1. config.yaml参数介绍请查看: rslidar_sdk/doc/intro

02参数介绍	02_parameter_intro.md 02_parameter_intro_CN.md	Hugo Xu
03隐藏参数介绍	03_hiding_parameters_intro.md 03_hiding_parameters_intro_CN.md	Hußo Xn

2. 使用说明请查看: rslidar_sdk/doc/howto

04如何与rslidar_sdk_node v1.3.x共存	04_how_to_work_along_with_rslidar_sdk_node_v1.3.x_		
	CN.md		
05如何改变点类型的定义	05_how_to_change_point_type.md		
Hn8o Xn Hn8o Xn	□ 05_how_to_change_point_type_CN.md		
м No. C-12 (7) X-12 X-14	■ 06_how_to_decode_online_lidar.md		
06如何连接在线雷达	06_how_to_decode_online_lidar_CN.md		
0.7大华南头 克尔文斯			
07在线雷达 - 高级主题	07_online_lidar_advanced_topics_CN.md		
	Hnão Xn Hnão Xn Hnão Xn Hnão Xn		

08如何解码PCAP文件	08_how_to_decode_pcap_file.md						
			to_decode_pcap_	file_CN.md			
00DCAD女伙		№ 09_pcap_	_file_advanced_to	pics_CN.md		Hugo Xu	
09PCAP文件 - 高级主题			_file_advanced_to	pics.md			
10如何使用坐标变换功能		№ 10_how_	to_use_coordinate	e_transformati	on.md	Hugo Xu	
10如阿使用主你支换功能		to_use_coordinate	e_transformati	on_CN.m	d		
		Hugo Xu				Hugo Xu	
11如何录制与回放 Packet	rosbag	11_how_to_record_replay_packet_rosbag_CN.md					
		№ 11_how_	to_record_replay_	_packet_rosbag	g.md	Hugo Xu	

3. **驱动源码解析请查看:** rslidar_sdk/src_intro

三、使用步骤方法

步骤一: 主机接收雷达数据

1. 下载安装wireshark,查看网口报文。

1 user@user:~\$ sudo apt-get install wireshark

2 user@user:~\$ sudo wireshark

2. 根据实际安装网口左键双击选择对应网卡。

捕获

3. 进入捕抓界面如无雷达UDP数据(正常接收到雷达UDP数据跳转到"步骤三/4"),请查看雷达ARP报文,配置主机网卡静态IP为雷达数据目的IP,如下:

4. 修改电脑静态地址为雷达目的地址,并查看修改参数是否生效,修改方式例:

```
1 user@user:~$ sudo ifconfig 192.168.1.102
2 user@user:~$ ifconfig
```

```
eidv@eidv:~$ sudo ifconfig eno1 192.168.1.102 🔷
eidv@eidv:~$ ifconfig 🛶
docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
       inet 172.17.0.1 netmask 255.255.0.0 broadcast 172.17.255.255
       ether 02:42:a5:e8:21:6a txqueuelen 0 (以太网)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
eno1: flags=4<u>163<UP,BROADC</u>AST,RUNNING,MULTICAST>  mtu  1500
       inet 192.168.1.102 netmask 255.255.255.0 broadcast 192.168.1.255
       inet6 fe80::94d2:3ad8:8a19:67b5 prefixlen_64 scopeid 0x20<link>
       ether f8:0d:ac:25:d8:69 txqueuelen 1000 (以太网)
       RX packets 241202 bytes 146264992 (146.2 MB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 4904 bytes 327796 (327.7 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

5. wireshark查看雷达UDP数据MSOP/DIFOP端口号,如下图雷达MSOP端口号为6699,DIFOP端口号为7788.

data.data[0:1]==a5			HnP _e Xa	Hale XII Hale XII		Hato _{XD}		+	+ helios-r
No.	Time	Source	Destination	Protocol	Length Info	LLIGO XU	UX OBLU		, , , , go X
26127	160.357020	192.168.1.200	192.168.1.102	Hines	1290 6699 → 6699 Len=	:1248	HITE		HITE
26128	160.358105	192.168.1.200	192.168.1.102		1290 6699 → 6699 Len=	1248			
26129	160.359496	192.168.1.200	192.168.1.102		1290 7788 → 7788 Len=	-1248	4192	1992	

步骤二:下载rslidar sdk最新驱动工程包

- 1. 工程包链接: https://github.com/RoboSense-LiDAR/rslidar_sdk/tree/release
- 2. 建议使用命令下载,如下:

```
1 user@user:~$ git clone https://github.com/RoboSense-LiDAR/rslidar_sdk.git
2 user@user:~$ cd rslidar_sdk
3 user@user:~/rslidar_sdk$ git submodule init
4 user@user:~/rslidar_sdk$ git submodule update
```

步骤三:编译与启动

1. 编译前安装环境依赖

```
1 user@user:~$ sudo apt-get update
2 user@user:~$ sudo apt-get install -y libyaml-cpp-dev
3 user@user:~$ sudo apt-get install -y libpcap-dev
```

2. rslidar_sdk支持三种编译方式,可参考 rslidar_sdk/README_CN.md 文件,详情如下:

3.1.1 直接编译

1. 打开工程内的* CMakeLists.txt *文件

2. 将文件顶部的变量 *COMPILE_METHOD* 设置为 *ORIGINAL* 。

3. 编译命令如下:

```
1 user@user:~\frac{\text{scd rslidar_sdk}}
2 user@user:~\rslidar_sdk\frac{\text{mkdir build && cd build}}{\text{3 user@user:~\rslidar_sdk\build\frac{\text{cmake ... && make -j4}}{\text{3 user}}}
```

3.1.2 运行节点

1. 打开 *rslidar_sdk/config.yaml* 文件配置解析参数,yaml参数详解请查看 *rslidar_sdk/doc/intro* 文件夹。

2. 启动命令如下:

Terminal 1

1 user@user:~\$ roscore

Hugo Xu Hugo X

- 1 user@user:~\$ cd rslidar_sdk/build
- 2 user@user:~/rslidar_sdk/build\$./rslidar_sdk_node

Terminal 3

1 user@user:~\$ rviz -d rslidar_sdk/rviz/rviz.rviz

3.2.1 依赖于ROS-catkin编译

1. 打开工程内的* CMakeLists.txt *文件。

2. 将文件顶部的变量 *COMPILE_METHOD* 设置为 *CATKIN* 。

- 2 # Compile setup (ORIGINAL, CATKIN, COLCON)
- 3 #===========
- 4 set(COMPILE_METHOD CATKIN)

3. 在rslidar_sdk目录下新建文件夹,将rslidar_sdk目录下的文件全部剪切进新建夹里面,剪切粘贴完后将新建文件夹重新命名为src。

4. 编译命令如下:

1 user@user:~\$ cd rslida_sdk

2 user@user:~/rslidar_sdk\$ catkin_make

322运行节占

1. 打开 rslidar_sdk/src/config.yaml 文件配置解析参数,yaml参数详解请查看 rslidar_sdk/src/doc/intro

```
rslidar_sdk src config ▼

config.yaml
```

2. 启动命令如下:

```
1 user@user:~/rslidar_sdk$ source devel/setup.bash
2 user@user:~/rslidar_sdk$ roslaunch rslidar_sdk start.launch
```

3.3.1 依赖于ROS2-colcon编译

1. 打开工程删除原有的package.xml,将package_ros2.xml复制粘贴命名为package.xml。

2. 打开工程内的* CMakeLists.txt *文件

3. 将文件顶部的变量 COMPILE_METHOD 设置为 COLCON。

4. 在rslidar_sdk目录下新建文件夹命名为"rslidar_sdk",将原始rslidar_sdk目录下的文件全部剪切进新建的rslidar_sdk文件夹下,如下图:

5. 返回上一级目录,目录下新建终端下载工程"rslidar_msg"。

6. 在此目录下新建文件夹src,将rslidar_sdk与rslidar_msg剪切粘贴进新建的src文件夹下,结构如图:

7. 编译命令如下:

```
1 user@user:~$ cd rslidar_sdk
2 user@user:~/rslidar_sdk$ ls #终端报文: src
3 user@user:~/rslidar_sdk$ colcon build
```

3.2.2 运行节点

1. 打开 rslidar_sdk/src/rslidar_sdk/config.yaml 文件配置解析参数,yaml参数详解请查看 rslidar_sdk/src/rslidar_sdk/doc/intro 文件夹。

2. 启动命令如下:

config.yaml

```
1 user@user:~$ cd rslidar_sdk
2 user@user:~/rslidar_sdk$ ls #终端报文: build install log src
3 user@user:~/rslidar_sdk$ source install/setup.bash
4 user@user:~/rslidar_sdk$ ros2 launch rslidar_sdk start.py
```


四、ubuntu防火墙

如经过以上步骤在线解析雷达数据仍不能显示点云,节点终端持续报<mark>MSOP TIMEOUT</mark>和<mark>DIFOP TIMEOUT</mark>,请将系统防火墙关掉, ubuntu常见防火墙如下:

1. UFW

```
1 user@user:~$ sudo ufw status #查看防火墙状态
2 user@user:~$ sudo ufw disable #关闭防火墙
3 user@user:~$ sudo ufw enable #打开防火墙
```

2. Firewall

```
1 user@user:~$ sudo firewall-cmd --state #查看防火墙状态
2 user@user:~$ sudo systemctl stop firewalld.service #关闭防火墙
3 user@user:~$ sudo systemctl disable firewalld.service #关闭自启动
4 user@user:~$ sudo systemctl restart firewalld.service #打开防火墙
5 user@user:~$ sudo systemctl enable firewalld.service #打开自启动
```

3. Iptables

```
1 user@user:~$ sudo service iptables status
                                                       #查看防火墙状态
2 user@user:~$ sudo iptables -F
                                                       #清空所有规则
                                                       #删除所有用户自定义链
3 user@user:~$ sudo iptables -X
 4 user@user:~$ sudo iptables -Z
                                                       #将所有计数器清零
5 user@user:~$ sudo iptables -P INPUT ACCEPT
                                                       #开放所有端口
6 user@user:~$ sudo iptables -P INPUT OUTPUT ACCEPT
                                                       #开放所有端口
7 user@user:~$ sudo iptables -P OUTPUT ACCEPT
                                                       #开放所有端口
8 user@user:~$ sudo iptables -P FORWARD ACCEPT
9 user@user:~$ sudo modprode -r iptables
10 user@user:~$ sudo service iptables stop
                                                        #暂时关闭防火墙
11 user@user:~$ sudo chkconfig iptables off
                                                        #永久关闭防火墙
```