Matlab/Octave basics

Ágnes Baran, Csaba Noszály

Vectors

The row and column vectors are different!

creating row-vectors:

The vector a = (-1.2, 3.1, 4.7, 1.9) can be created by listing its elements enclosed by square brackets, separating them by comma:

$$a = [-1.2, 3.1, 4.7, 1.9]$$

or by space:

$$a = [-1.2 \ 3.1 \ 4.7 \ 1.9]$$

Vectors

- 1 The indexing starts at 1.
- 2 the *i*-th element of the vector is a(i).
- 1 length(a) returns the number of elements in a.
- 4 the empty vector is []

Vectors as regular sequences

the colon operator:

It is the most useful syntax for defining vectors.

- for the vector b = (1, 2, 3, 4, 5) simply use: b = 1:5
- for c = (5, 4, 3, 2, 1): c = 5:-1:1
- for d = (2, 2.2, 2.4, 2.6, 2.8, 3): d = 2:0.2:3

the colon syntax:

x = first:stepsize:last

where the default value of stepsize is one, that is

x = first:last

is the shorter form of

x = first:1:last

the linspace function:

• the vector e = (1, 1.2, 1.4, 1.6, 1.8, 2) can be created by:

$$e = linspace(1,2,6)$$

• for a 100 element vector f:

$$f = linspace(1,2)$$

linspace syntax:

x = linspace(first, last, numberOfElements)

The elements in the resulting vector are equally spaced. The default number of elements is 100:

x = linspace(first, last)

is the shorter form of

x = linspace(first, last, 100)

Column-vectors

creation:

by listing the elements separated by semicolon, enclosing them in square brackets:

$$m = [-3; 0; 7]$$

transposing a row-vector:

$$n=[1 -2 4 -1]'$$

Note that: the operator apostrophe is the conjugate-transpose operator, so the result is not the expected one for complex valued vectors. For "transposing only" complex vectors use the function transpose

Column-vectors

```
The usage of x(i)
                       and
                              length(x)
row-vectors.
The call size(x) returns the vector
                   [numOfRows, numOfColumns]
where numOfRows=1 for row-vectors and numOfColumns=1 for
column-vectors. In Octave/Matlab the vectors are 2 -dimensional objects.
```

is the same as for

Common ways of defining vectors

- [a, b]: extending along the 2nd-dimension, the sizes of the 1st dimension must agree
- [m;n]: extending along the 1st-dimension, the sizes of the 2nd dimension must agree
- [-4 a 3 -1] : extending along the 2nd dimension by listing the new elements
- [1;m;-3]: extending along the 1st dimension by listing the new elements
- h(2:4): extract a subvector by specifying the indices of the desired elements
- h([1 4 5]): extract a subvector by specifying the indices of the desired elements
- h(2)=[] : clear individual elements
- h([2 4])=[]: clear elements specified by an index vector

Important! For a=[-1 3 2] the result of the command a(6)=4 is the vector a=[-1 3 2 0 0 4]. Not that on could expect. The undefined new elements will be set to zero. There is no warning issued by the system!

Agnes Baran, Csaba Noszály

Matlab/Octave basics

11/42

Some useful functions

- $\min(x)$ and $\max(x)$ returns the smallest and the largest element of x
- sort(x) returns the sorted instance of x (the default order: increasing)
- sort(x,'descend') returns the reversely sorted instance of x
- flip(x) returns a new vector (matrix) with elements of x in reverse order (for matrices the elements are the rows by default)
- length(x) number of elements
- sum(x) sum of the elements
- prod(x) product of the elements
- mean(x) arithmetic mean of the elements of x
- x(end) in vector (matrix) context the end has special meaning: the last element of the object

Vector operations

For the same shaped vectors a and b

- a+b and a-b is the elementwise sum and difference
- x=a+1 for convenience the basic operations with a scalar defined elementwise
- x=a.^ 2 see above
- $\mathbf{x}=\mathbf{a}.*\mathbf{b}$ it is the elementwise product, results in a new vector a_ib_i
- x=a./b see above
- x=1./a shorter version of ones(size(a))./a
- dot(a,b) the scalar, inner product, the sum-product of the vectors

Important! The dot before the operator results elementwise operations.

The builtin functions sin, cos, tan, exp, log, sqrt, abs, can have vector and matrix parameters, resulting the function called elementwise.

NaN : Not a Number is a result of undefined operation. For example 0/0, Inf/Inf)

- (a) Without typing the elements, create the following vectors:
 - (1) $a = (0, 1, \dots, 30)$
 - (2) $b = (2, 4, 6, \dots, 100),$
 - (3) $c = (2, 1.9, 1.8, \cdots, 0.1, 0)$
 - (4) $d = (0, 3, 6, \dots, 27, 30, -100, 30, 27, \dots, 6, 3, 0)$
 - (5) $e = (\frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{20})$
 - (6) $f = (\frac{1}{2}, \frac{2}{3}, \dots, \frac{19}{20})$
- (b) You are given the vector x = 1:100. Define the vector
 - (1) with elements of x, but in the reverse order
 - (2) of the first 5 elements of x
 - (3) with elements of x, except the 4th one.
 - (4) with elements of x, except the 5.,72 and 93. ones.
 - (5) of the odd indexed elements of x
 - (6) of the 2., 5., 17. and 81. elements of x

Your are given the vector x = randi(10, 1, 10). Without using any loop construct, define the vector y for which

- (1) y(i) = x(i) + 2
- (2) $y(i) = x(i)^2$
- (3) y(i) = 1/x(i)
- (4) $y(i) = \sin(x(i)^3 1)$
- (5) y(i) = x(i) i

Matrices in Octave/Matlab

Defining matrices by listing

A = [1, 2, 3; 4, 5, 6; 7, 8, 9] or $A = \begin{bmatrix} 1 & 2 & 3; & 4 & 5 & 6; & 7 & 8 & 9 \end{bmatrix}$ results in:

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right)$$

The comma separates the elements of the row, the semicolon separates the rows

The indexing for matrices is one based, as for vectors.

A(i,j) is the (i,j)-th element of A

Defining matrices from vectors

```
For vectors a=[1 -2 0]; b=[2 -11 7]; m=[-3;0;7];
n=[1; -2; 0];
the result of
B=[a:b]:
                                        B = \begin{pmatrix} 1 & -2 & 0 \\ 2 & -11 & 7 \end{pmatrix}
C=[a' b'] and D=[m' a'] :
                      C = \begin{pmatrix} 1 & 2 \\ -2 & -11 \\ 0 & 7 \end{pmatrix} \qquad D = \begin{pmatrix} -3 & 1 \\ 0 & -2 \\ 7 & 0 \end{pmatrix}
```

Extending matrices

For matrices and vectors defined above the result of E=[A;a] (or E=[A;[1,-2,0]]):

$$E = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 1 & -2 & 0 \end{pmatrix}$$

The result of F=[A m] (or F=[A, m]):

$$F = \begin{pmatrix} 1 & 2 & 3 & -3 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 7 \end{pmatrix}$$

Extending matrices

For G=[C D] and H=[C;D] we get:

$$G = \begin{pmatrix} 1 & 2 & -3 & 1 \\ -2 & -11 & 0 & -2 \\ 0 & 7 & 7 & 0 \end{pmatrix} \qquad H = \begin{pmatrix} 1 & 2 \\ -2 & -11 \\ 0 & 7 \\ -3 & 1 \\ 0 & -2 \\ 7 & 0 \end{pmatrix}$$

For C(4,5)=9:

$$C = \begin{pmatrix} 1 & 2 & 0 & 0 & 0 \\ -2 & -11 & 0 & 0 & 0 \\ 0 & 7 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 9 \end{pmatrix}$$

The size of matrix has changed without warning!

Accessing elements, rows, columns and submatrices

- size(A): the number of rows and columns in A
- length(A) = max(size(A))
- numel(A) the number of elements in A
- A(i,j) the i,j-th element
- A(i,:) the *i*-th row-vector
- \blacksquare A(:,j) the *j*-th column
- A(2:3,:) the 2-nd and 3-rd rows
- A([1 2 4],:) the 1., 2. and 4. rows
- A(:,[1 3]) the 1. and 3. columns
- A(2:3,[1 3]) the 1. and 3. elements of the 2. and 3. rows

Manipulating matrices

Deleting rows and columns

- A(i,:)=[] will delete the *i*-th row
- A(:,j)=[] will delete the *j*-th column
- A([1 3],:)=[] will delete the 1-st and 3-rd rows
- A(:,[1 3])=[] will delete the 1-st and 3-rd columns

Exchanging rows, columns

Swapping the i-th and j-th column:

```
\texttt{A([i,j],:)=A([j,i],:)}, \text{ and } \texttt{A(:,[i,j])=A(:,[j,i])} \text{ respectively}.
```

Transforming to vector:

A(:) the elements of A listed in column major order:

```
[A(:,1);...;A(:,end)]
```

Predefined matrices

eye(n)	the identity matrix of size $n \times n$
eye(n,m)	the identity matrix of size $n \times m$
ones(n)	the $n \times n$ array of all ones
ones(n,m)	the $n \times m$ array of all ones
zeros(n)	the $n \times n$ array of all zeros
zeros(n,m)	the $n \times m$ array of all zeros

Matrix-vector operations

For matrices A and B and a scalar c, the operations

are performed in the usual way (as we learned in mathematics). The operation

is defined for convenience, it is a shorter form of A+c*ones(size(A)). The result of

 $A \cdot B^{-1}$ and $A^{-1} \cdot B$ respectively.

Matrix-vector operations

Elementwise operations

The \cdot before the operator results in elementwise operation, so the ij-th element of

- A.*B is $a_{ij} * b_{ij}$,
- $\blacksquare \quad A \hat{\ } 2 \quad \text{is } a_{ij}^2,$
- A./B is a_{ij}/b_{ij} .

Most of the built-in functions can be called with matrix argument, with elementwise evaluation.

Let

$$x = [-1 \ 4 \ 0], y = [3 \ -2 \ 5] \text{ and } A = [-3 \ 1 \ -4; 6 \ 2 \ -5]$$

For the commands given below describe the result or explain why it cannot be performed!

- (1) z = [x, y]
- (2) z = [x; y]
- (3) z = [x', y']
- (4) z = [x'; y']
- (4) z = [x, y](5) z = [A; x]
- (6) z = [A, x]
- (0) Z = [A, X]
- (7) z = [x; A; y]
- (8) z = [A'; x]
- (9) z = [A', x]

- (10) z = [A', x']
- (11) x + y
- (12) x + y'
- (13) A + y
- (14) A + 2
- (15) x./y
- $(16) A^2$
- (17) A. ^ 2

Let

$$A = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{array}\right)$$

Construct the matrix B, which is made by

- (1) deleting the 1-st row of A
- (2) deleting the 2. and 4. columns row of A
- (3) deleting the last row and column row of A
- (4) putting A next to itself.
- (5) transposing A
- (6) exchanging the 2. and 4. columns of A
- (7) squaring the elements of A

- (8) adding 3 to each element of A
- (9) taking the square root of the elements of A
- (10) taking the sine of the elements of A
- (11) by setting a_{12} to -2
- (12) by setting the second row of A to $\begin{bmatrix} -1 & 0 & -2 & 3 \end{bmatrix}$

Define the matrix below:

- Examine the results of the following commands:
 - (1) sum(A)
 - (2) sum(A,2)
 - (3) reshape(A,6,4)
 - (4) max(A)
 - (5) max(A,[],2)

- $(6) \max(A,2)$
- (7) flipud(A)
- 8) fliplr(A)
- (9) size(A)
- (10) length(A)

Some more builtins

- det(A): determinant of A
- inv(A) : inverse of A
- dot(a,b): scalar (inner) product of a and b
- norm(A) 2-norm of A (also for vectors)
- norm(A,inf) ∞ -norm of A
- norm(A,1) 1-norm of A

Solving the system Ax = b:

 $x=A\b$

Some more builtins

diag

- diag(a) gives a square matrix whose main diagonal is a
- diag(a,k) returns a square matrix whose k-th diagonal is a.
- diag(A,k) returns the k-th diagonal of A

Note

The main diagonal is the 0-th one. The diagonal above the k-th one is the k+1-th one.

Some more builtins

tril and triu

- tril(A): returns the lower triangle part of A.
- triu(A): returns the upper triangle part of A.
- tril(A,k): return the matrix A with elements above the k-th diagonal set to 0.
- triu(A,k): return the matrix A with elements below the k-th
 diagonal set to 0.

Defining functions

The structure (syntax) of Octave/Matlab functions:

```
function outVariables = funName( inVariables )
% body of the function
end
```

Important! The name of file to which your function saved should be
funName.m

Defining functions

Example

The result of the command y=myquad(x) is the value of $2x^2-3x+5$, where x can be a vector or matrix, because we used elementwise operations in the definition.

Logical operators, functions

- <, <=, >, >=, ==, $\sim=$ (for vectors,matrices the comparison is done elementwise)
- A&B , A|B , ~A , xor(A,B) (elementwise evaluationt)
- all(x): is true if all elements of v is nonzero.
- all(A): is a row vector [all(A(:,1),...,all(A(:,end)))],
 that is all is applied column-wise.
- all(A,2) all is applied row-wise.
- any(x): is true if some element of v is nonzero.
- any(A): is a row vector [any(A(:,1),...,any(A(:,end)))],
 that is any is applied column-wise.
- any (A,2) any is applied row-wise.

The find function

- ind=find(A) returns the indices of nonzero elements of A (column-wise ordering is used).
- ind=find(A,n) returns the indices of the first n nonzero elements of A (column-wise ordering is used).
- ind=find(A,n,last) returns the indices of the last n nonzero elements of A (column-wise ordering is used).
- [rowI,colI]=find(A) returns the row-column indices of nonzero elements of A.
- [rowI,colI,elem]=find(A) same as the previous, except that it catches also the nonzero elements.

The find function

The find can be called with logical vector, matrix argument:

- find(A<=B)</pre>
- find(A==5)
- find(A>5,4)
- find(A>5,4,last)
- find(A<5 & A>4)
- find(abs(A-2)<=0.01)

|logical(A)| converts A to a logical array, the nonzeros map to the logical 1.

Branching, if-else

```
if logicalExpression
% body
else
% body
end
```

Example

```
\begin{split} N &= \textbf{input}('Type_{\sqcup}an_{\sqcup}integer:_{\sqcup}');\\ \textbf{if} &\mod(N,3) == 0\\ & \textbf{disp}('divisible_{\sqcup}by_{\sqcup}3');\\ \textbf{else} & \textbf{disp}(\textbf{sprintf}('the_{\sqcup}remainder_{\sqcup}after_{\sqcup}dividing_{\sqcup}by_{\sqcup}3_{\sqcup}is:_{\sqcup}\%d',\ mod(N,3)\ ))\\ \textbf{end} \end{split}
```

Useful structures, functions

- break: immediately exits the execution of the containing for or while loop
- continue: stops the execution of the body's statements, and then continues with the next iteration
- pause: waits for press a key
- \blacksquare pause(n): waits for n seconds
- return : stops the execution of the script (or function)
- error('message') : stops the execution of the script (or function)
 displaying 'message'

Let $x = \begin{bmatrix} 0 \\ -1 \\ 2 \\ 0 \\ 4 \\ 4 \end{bmatrix}$ and $y = \begin{bmatrix} -1 \\ -2 \\ 3 \\ 1 \\ 0 \\ 4 \end{bmatrix}$. What is the result of the evaluation of the following expressions?

- (1) x == y
- (2) x <= y
- (3) x > y
- (4) x > 0

- (5) y <= 3
- (6) x|y
- (7) x & y

Exercise 7

For the vectors of the previous exercise, what is the result of:

- (1) find (x == y)
- (2) find $(x \le y)$

Exercise 8

Let a=rand(1,20) Create the vector b containing the elements of with $a_i > 0.5!$

Find an appropriate loopless expression that creates the following matrices in a given size:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 3 & 0 & 3 & 0 & 0 \\ 0 & 6 & 0 & 4 & 0 \\ 0 & 0 & 9 & 0 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} -2 & 2 & 2 & 2 & 2 \\ 0 & -2 & 2 & 2 & 2 & 2 \\ 0 & 0 & -2 & 2 & 2 \\ 0 & 0 & 0 & -2 & 2 & 2 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix}$$

Exercise 10

Find an expression, which extends (at the end) the rows of a given matrix by the mean of the numbers in the row.

Exercise 10(b)

Find an expression, which extends the columns (at the end) of a given matrix by the sum of the numbers in the row.

Exercise 11(benchmark)

Examine the following snippets:

```
clear all N=100000; % a huge vector \mathbf{x}=rand(1,N);  \begin{aligned} &\text{disp}(\mathsf{'a}_{\sqcup}\mathsf{naive}_{\sqcup}\mathsf{way}:') \\ &\text{tic} \\ &\text{for } i=1:N \\ &\text{ } y(i)=\mathbf{x}(i)+i; \\ &\text{end} \\ &\text{toc} \end{aligned}
```

```
\begin{array}{l} \textbf{disp}(\text{'a}_{\sqcup}|\text{little}_{\sqcup}\text{bit}_{\sqcup}\text{smarter:'}) \\ \textbf{tic} \\ yy = \textbf{zeros}(1, N); \\ \textbf{for} \ i = 1: N \\ yy(i) = x(i) + i; \\ \textbf{end} \\ \textbf{toc} \\ \\ \textbf{disp}(\text{'the}_{\sqcup}\text{expected}_{\sqcup}\text{way:'}) \\ \textbf{tic} \\ yyy = x + 1; \\ \textbf{toc} \end{array}
```

Lesson: Avoid using of loops if possible and use the built-in features instead!