

# **CMOS Power**

#### **Outline**

- Power and Energy
- Dynamic Power
- ☐ Static Power

# **Power and Energy**

- □ Power is drawn from a voltage source attached to the V<sub>DD</sub> pin(s) of a chip.
- ☐ Instantaneous Power: P(t) = I(t)V(t)
- $\Box$  Energy:  $E = \int_{0}^{t} P(t)dt$
- Average Power:  $P_{\text{avg}} = \frac{E}{T} = \frac{1}{T} \int_{0}^{T} P(t) dt$

#### **Power in Circuit Elements**

$$P_{VDD}\left(t\right) = I_{DD}\left(t\right)V_{DD}$$

$$P_{R}(t) = \frac{V_{R}^{2}(t)}{R} = I_{R}^{2}(t)R$$

$$E_C = \int_0^\infty I(t)V(t)dt = \int_0^\infty C\frac{dV}{dt}V(t)dt$$
$$= C\int_0^{V_C} V(t)dV = \frac{1}{2}CV_C^2$$

$$\overset{+}{\bigvee}_{C} + \overset{+}{\longleftarrow} C \downarrow I_{C} = C \text{ dV/dt}$$

## **Charging a Capacitor**

- When the gate output rises
  - Energy stored in capacitor is

$$E_C = \frac{1}{2} C_L V_{DD}^2$$

But energy drawn from the supply is

$$E_{VDD} = \int_{0}^{\infty} I(t)V_{DD}dt = \int_{0}^{\infty} C_{L} \frac{dV}{dt}V_{DD}dt$$
$$= C_{L}V_{DD} \int_{0}^{V_{DD}} dV = C_{L}V_{DD}^{2}$$



- Half the energy from V<sub>DD</sub> is dissipated in the pMOS transistor as heat, other half stored in capacitor
- When the gate output falls
  - Energy in capacitor is dumped to GND
  - Dissipated as heat in the nMOS transistor

## **Switching Waveforms**

 $\Box$  Example:  $V_{DD} = 1.0 \text{ V}$ ,  $C_L = 150 \text{ fF}$ , f = 1 GHz



# **Switching Power**

$$P_{\text{switching}} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$

$$= \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt$$

$$= \frac{V_{DD}}{T} \left[ T f_{\text{sw}} C V_{DD} \right]$$

$$= C V_{DD}^{2} f_{\text{sw}}$$



# **Activity Factor**

- ☐ Suppose the system clock frequency = f
- $\Box$  Let  $f_{sw} = \alpha f$ , where  $\alpha =$  activity factor
  - If the signal is a clock,  $\alpha = 1$
  - If the signal switches once per cycle,  $\alpha = \frac{1}{2}$
- Dynamic power:

$$P_{\text{switching}} = \alpha C V_{DD}^2 f$$

#### **Short Circuit Current**

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output
- We will generally ignore this component

## **Power Dissipation Sources**

- Dynamic power: P<sub>dynamic</sub> = P<sub>switching</sub> + P<sub>shortcircuit</sub>
  - Switching load capacitances
  - Short-circuit current
- $\square$  Static power:  $P_{\text{static}} = (I_{\text{sub}} + I_{\text{gate}} + I_{\text{junct}} + I_{\text{contention}})V_{\text{DD}}$ 
  - Subthreshold leakage
  - Gate leakage
  - Junction leakage
  - Contention current

# **Dynamic Power Example**

- ☐ 1 billion transistor chip
  - 50M logic transistors
    - Average width: 12 λ
    - Activity factor = 0.1
  - 950M memory transistors
    - Average width: 4  $\lambda$
    - Activity factor = 0.02
  - 1.0 V 65 nm process
  - $-C = 1 \text{ fF/}\mu\text{m} \text{ (gate)} + 0.8 \text{ fF/}\mu\text{m} \text{ (diffusion)}$
- ☐ Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance and short-circuit current.

#### Solution

$$C_{\text{logic}} = (50 \times 10^6)(12\lambda)(0.025 \mu m / \lambda)(1.8 fF / \mu m) = 27 \text{ nF}$$

$$C_{\text{mem}} = (950 \times 10^6)(4\lambda)(0.025 \mu m / \lambda)(1.8 fF / \mu m) = 171 \text{ nF}$$

$$P_{\text{dynamic}} = \left[0.1C_{\text{logic}} + 0.02C_{\text{mem}}\right](1.0)^2 (1.0 \text{ GHz}) = 6.1 \text{ W}$$

## **Dynamic Power Reduction**

- $P_{\text{switching}} = \alpha C V_{DD}^2 f$
- ☐ Try to minimize:
  - Activity factor
  - Capacitance
  - Supply voltage
  - Frequency