We now arrive at our main theorem:

Theorem o.o.i. *[?]* The following are equivalent in ZF:

- 1. Axiom of Choice
- 2. Every non-empty set admits a cancellative groupoid structure

Proof. The theorem is proven in two steps, deriving a single direction implication for each sentence.

I. Groupoid Structure on arbitrary Sets \implies Axiom of Choice

We show that the existence of a groupoid structure on every non-empty set implies that every set can be well-ordered. By Theorem ?? this is equivalent to the Axiom of Choice.

Let A be an arbitrary set and let α be an ordinal as described in Theorem ?? in Section ??. This means that there exists no bijective mapping from α to any subset of A (including A itself). We then let (B, R) be a well-ordered set of type α and such that $A \cap B = \emptyset$.

Now let C be the set $C = A \cup B$, by assumption there exists some operation +, such that (C, +) is a cancellative groupoid. We will show that for every $x \in A$ there exists $y \in B$, such that $x + y \in B$ holds.

Let us assume for a contradiction that the above claim does not hold. This would imply that some $a \in A$ exists for which $a + y \in A$ holds for all $y \in B$. Let $f : B \to A$ be the function defined by f(y) = a + y. We have that + is a cancellative groupoid operation, hence f must be injective; a contradiction by Theorem $\ref{eq:contradiction}$, since we had assumed that B is of type a.

We let $D = B \times B$ be the well-ordered set with respect to the lexicographical ordering R' of R, and define a function $g: A \to D$ by

$$g(x) = \min_{R'} \left\{ \langle u, v \rangle \in D \, | \, x + u = v \right\}.$$

The function g maps every element x of A to the least pair $\langle u, v \rangle$ in $B \times B$ satisfying x + u = v. From earlier in the proof we know that such a pair must exists and that g must in fact be injective. This again follows from + being cancellative, since if x_1 , x_2 are two elements of A, having $f(x_1) = f(x_2)$ would imply that

$$x_1 + u = v = x_2 + u$$

$$\iff x_1 = v + u^{-1} = x_2$$

for some pair $\langle u, v \rangle \in D$. Since $\mathbf{Im}(g)$ is a subset of D it itself is a well-ordered set. As such we can define a well-order R'' on A by letting $x_i R'' x_j$ whenever $g(x_i)R'g(x_j)$.

2. Axiom of Choice \implies Groupoid Structure on arbitrary Sets

. . .