

H3863芯片硬件指南 (小熊派修订版)

Version 1.0 2024年8月7日

目 录

目录

1 封装与管脚	5
1.1 封装与管脚分布	5
1.1.1 封装	5
1.1.2 管脚分布	9
1.2 管脚描述	11
1.2.1 管脚类型说明	11
1.2.2 管脚排列表	13
1.2.3 PMU 控制信号	14
1.2.4 GPIO 管脚	14
1.2.5 电源管脚	15
1.2.6 RF 接口	16
1.2.7 GND 管脚	16
1.2.8 UART 管脚	17
1.2.9 ADC 通道	17
1.2.10 GPIO 复用管脚	18
1.2.11 CLK 管脚	21
2 电性能参数	22
2.1 电流分布	22
2.2 极限工作条件	22
2.3 推荐工作条件	23
2.4 DC/AC 电气参数	24
2.5 上下电要求	26
3 原理图设计建议	30
3.1 小系统设计建议	30
3.1.1 时钟参考设计	30
3.1.2 复位电路	34
3.1.3 硬件初始化系统配置电路	35
3.2 电源参考设计	37
3.2.1 电源方案	37
3.2.2 电源规格	40
3.2.3 AVDD33 电源	42
3.2.4 VBAT_IN 电源	44
3.2.5 DVDD3318 电源	44

3.2.6 内部电源滤波电路	45
3.2.7 BUCK 电源	46
3.2.8 RF 电源	47
3.2.9 注意事项	48
3.3 外围接口设计建议	48
3.3.1 UART接口	48
3.3.2 PWM 接口	49
3.3.3 I2S 接口	50
3.3.4 QSPI&SPI 接口	50
3.3.5 I2C 接口	51
3.3.6 ADC 接口	51
3.4 控制信号应用参考设计	52
3.5 RFIO 设计	52
3.6 RFI 设计	53
4 PCB 设计建议	55
4.1 叠层和布局	55
4.2 Fanout 封装设计建议	57
4.3 PCB 布局	59
4.4 电源	61
4.5 RF 布线指导	62
4.6 时钟布线指导	64
4.7 GND 布线指导	64
4.8 屏蔽罩	65
5 热设计建议	66
5.1 工作条件	66
5.2 电路热设计参考	
5.2.1 器件布局	
5.2.2 PCB	68
6 焊接工艺	69
6.1 概述	69
6.2 无铅回流焊工艺参数要求	70
6.3 混合回流焊工艺参数要求	72
7 潮敏参数	74
7.1 存放与使用	74
7.2 重新烘烤	75
8接口时序	77
8.1 UART 时序	77
8.2 I2C 时序	
8.3 12S 时序	80

8.4 SPI 时序	80
9 注意事项	82
9.1 硬件设计	
9.2 单板生产工艺	
▲ 徐咏五	9.4

封装与管脚

- 1.1 封装与管脚分布
- 1.2 管脚描述

1.1 封装与管脚分布

1.1.1 封装

WS63V100 系列芯片采用 QFN40 封装, 封装尺寸为 5mm×5mm, 管脚间距为 0.4mm, 详细封装请参见图 1-1、图 1-2 和图 1-3。

图1-1芯片封装顶视图

图1-2 芯片封装底视图

图1-3 芯片侧面放大图

芯片封装尺寸参数如表 1-1 所示。

表1-1芯片封装参数说明表

参数	最小值 (mm)	典型值 (mm)	最大值 (mm)	最小值 (inch)	典型值 (inch)	最大值 (inch)
А	0.85	0.90	0.95	0.033	0.035	0.037
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3	0.20 REF			0.008 REF		
b	0.15	0.20	0.25	0.006	0.008	0.010
D	4.90	5.00	5.10	0.193	0.197	0.201
Е	4.90	5.00	5.10	0.193	0.197	0.201
D2	3.50	3.60	3.70	0.138	0.142	0.146
E2	3.50	3.60	3.70	0.138	0.142	0.146
е	0.40 BSC			0.016 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020
L1	0.30	0.40	0.50	0.012	0.016	0.020
К	0.20			0.008		
R	0.08	-	0.13	0.003	-	0.005

参数	最小值 (mm)	典型值 (mm)	最大值 (mm)	最小值 (inch)	典型值 (inch)	最大值 (inch)
aaa	0.10			0.004		
bbb	0.07			0.003		
CCC	0.10			0.004		
ddd	0.05			0.002		
eee	0.08			0.003		
fff	0.10			0.004		

1.1.2 管脚分布

WS63V100 系列芯片管脚分布如图 1-4 和图 1-5 所示。

图1-4 WS63V100 TOP View 管脚分布

		40	39	38	37	36	35	34	33	32	31		
		GND	AVDD33_RF2	PWR_ON	AVDD33_0	AVDD33_1	IOLD018	DVDD3318	VDD_DIG	XOUT	XIN		
1	RFIO											NC	30
2	AVDD33_RF1											UARTO_RX	29
3	AVDD33_RF0											UARTO_TX	28
4	GPI0_00		WS63V100									UART1_RX	27
5	GPIO_01											UART1_TX	26
6	GPIO_02				VV	00.	J V 1	00				GPIO_14	25
7	GPIO_03											GPIO_13	24
8	GPIO_04											PWR_SEL	23
9	GPI0_05											BUCK_OUT	22
10	GPIO_06											AVSS_PGND	21
		GP10_07	80_0195	60 OI dD	GPIO_10	GPIO_11	GPIO_12	VDD33_OUT	VBAT_IN	BUCK_IN	BUCK_LX		
		11	12	13	14	15	16	17	18	19	20		

图1-5 WS63EV100 TOP View 管脚分布

		40	39	38	37	36	35	34	33	32	31		
		RFI	AVDD33_RF2	PWR_ON	AVDD33_0	AVDD33_1	IOLD018	DVDD3318	VDD_DIG	XOUT	XIN		
1	RFIO											NC	30
2	AVDD33_RF1											UARTO_RX	29
3	AVDD33_RF0											UARTO_TX	28
4	GPIO_00		WS63EV100									UART1_RX	27
5	GPIO_01											UART1_TX	26
6	GPIO_02				• • •	,00	LV	100				GPIO_14	25
7	GPIO_03											GPIO_13	24
8	GPIO_04											PWR_SEL	23
9	GPIO_05											BUCK_OUT	22
10	GPIO_06											AVSS_PGND	21
		GPIO_07	80_0195	60 ⁻ 0145	GPIO_10	GPIO_11	GPIO_12	VDD33_OUT	VBAT_IN	BUCK_IN	BUCK_LX		
		11	12	13	14	15	16	17	18	19	20		

L口说明

WS63V100 常规版本芯片 PIN40 管脚为 GND, WS63EV100 雷达版本芯片 PIN40 管脚为 RFI。

1.2 管脚描述

1.2.1 管脚类型说明

管脚 I/O 类型说明如表 1-2 所示。

表1-2 管脚 I/O 类型说明

I/O	说明
-----	----

I/O	说明
I	输入信号。
I _{PD}	输入信号, 内部下拉。
I _{PU}	输入信号, 内部上拉。
Is	输入信号, 带施密特触发器。
ISPD	输入信号, 带施密特触发器, 内部下拉。
Ispu	输入信号, 带施密特触发器, 内部上垃。
0	输出信 号 。
O _{OD}	输出,漏极开路。
I/O	双向输入/输出信号。
I _{PD} /O	双向,输入下拉。
I _{PU} /O	双向,输入上拉。
IspD/O	双向,输入下拉,带施密特触发器。
Ispu/O	双向,输入上拉,带施密特触发器。
IPD/OOD	双向,输入下拉,输出漏极开路。
IPU/OOD	双向,输入上拉,输出漏极开路。
Is/O	双向,输入带施密特触发器。
Is/Ood	双向,输入带施密特触发器,输出漏极开路。
CIN	Crystal Oscillator:晶振输入。
COUT	Crystal Oscillator:晶振输出。
Р	电源。
PI	电源输入。
РО	电源输出。
GND	地。

1.2.2 管脚排列表

WS63V100 系列芯片采用的封装形式为 QFN 40PIN , 管脚按位置排列如表 1-3 所示。

表1-3 WS63EV100 芯片管脚排列

位置	管脚名称	位置	管脚名称
1	RFIO	22	BUCK_OUT
2	AVDD33_RF1	23	PWR_SEL
3	AVDD33_RF0	24	GPIO_13
4	GPIO_00	25	GPIO_14
5	GPIO_01	26	UART1_TX
6	GPIO_02	27	UART1_RX
7	GPIO_03	28	UART0_TX
8	GPIO_04	29	UART0_RX
9	GPIO_05	30	NC(保持悬空)
10	GPIO_06	31	XIN
11	GPIO_07	32	XOUT
12	GPIO_08	33	VDD_DIG
13	GPIO_09	34	DVDD3318
14	GPIO_10	35	IOLDO18
15	GPIO_11	36	AVDD33_1
16	GPIO_12	37	AVDD33_0
17	VDD33_OUT	38	PWR_ON
18	VBAT_IN	39	AVDD33_RF2
19	BUCK_IN	40	RFI
20	BUCK_LX	EPAD	GND
21	AVSS_PGND	-	-

□ 说明

• WS63V100 常规版本芯片 PIN40 管脚为 GND, 板级可选择接地或 NC 悬空。

1.2.3 PMU 控制信号

全局控制信号如表 1-4 所示。

表1-4 全局控制信号管脚列表

PIN	名称	类型	电平 (V)	说明
38	PWR_ON	I	3.3/1.8	PMU 上电使能管脚(跟随 DVDD3318 电平)。 0: 下电; 1: 上电。
23	PWR_SEL	I	3.3	VBAT_IN 电源方案选择管脚。 0: VBAT_IN 采用 5V 供电; 1: VBAT_IN 采用 3.3V 供电。

1.2.4 GPIO 管脚

GPIO 接口如表 1-5 所示。

表1-5 GPIO 管脚列表

PIN	名称	类型	电平(V)	说明
4	GPIO_00	I/O	3.3/1.8	通用 GPIO。
5	GPIO_01	I/O	3.3/1.8	通用 GPIO ,管脚禁止加上拉电阻。
6	GPIO_02	I/O	3.3/1.8	通用 GPIO。
7	GPIO_03	I/O	3.3/1.8	通用 GPIO。
8	GPIO_04	I/O	3.3/1.8	通用 GPIO。
9	GPIO_05	I/O	3.3/1.8	通用 GPIO。
10	GPIO_06	I/O	3.3/1.8	通用 GPIO。
11	GPIO_07	I/O	3.3/1.8	通用 GPIO。
12	GPIO_08	I/O	3.3/1.8	通用 GPIO。

PIN	名称	类型	电平(V)	说明
13	GPIO_09	I/O	3.3/1.8	通用 GPIO,管脚禁止加上拉电阻。
14	GPIO_10	I/O	3.3/1.8	通用 GPIO。
15	GPIO_11	I/O	3.3/1.8	通用 GPIO,管脚禁止加上拉电阻。
16	GPIO_12	I/O	3.3/1.8	通用 GPIO。
24	GPIO_13	I/O	3.3/1.8	通用 GPIO。
25	GPIO_14	I/O	3.3/1.8	通用 GPIO。

1.2.5 电源管脚

电源管脚如表 1-6 所示。

表1-6 电源管脚列表

PIN	名称	类型	电压 (V)	说明
2	AVDD33_RF1	PI	3.0 ~ 3.6	RF 电源输入,外接滤波电容 1µF。
3	AVDD33_RF0	PI	3.0 ~ 3.6	RF 电源输入,外接滤波电容 1µF。
17	VDD33_OUT	PI/P O	3.0 ~ 3.6	芯片采用 VBAT_IN 5V 供电时,该管脚作为 3.3V 电源输出;芯片采用VBAT_IN 3.3V 供电时,该管脚作为3.3V 电源输入。管脚外接滤波电容4.7μF。
18	VBAT_IN	PI	3.3/5	电源输入,可选择 5V 或 3.3V 供电, 外接滤波电容 10μF。
19	BUCK_IN	PI	3.0 ~ 3.6	电源输入,外接滤波电容 4.7μF。
20	BUCK_LX	-	-	LDO 方案下接电源(3.3V), BUCK 方案下接电感,外接 2.2uH 电感。
22	BUCK_OUT	РО	0.9	芯片内部 BUCK 输出, BUCK 电源方 案下外接滤波电容 10µF , LDO 电源 方案下悬空。

PIN	名称	类型	电压 (V)	说明
33	VDD_DIG	PO	0.9	芯片内部电源输出, BUCK 电源方案 下悬空, LDO 电源方案下外接滤波电 容 1µF。
34	DVDD3318	PI	3.3/1.8	IO 电源输入,外接滤波电容 4.7µF。
35	IOLDO18	PI/P O	1.8	IO 电源输入为 3.3V 时,IOLDO 输出 1.8V; IO 电源输入为 1.8V 时, IOLDO 需输入 1.8V 电源。引脚外接 滤波电容 1µF。
36	AVDD33_1	PI	3.0 ~ 3.6	电源输入,外接滤波电容 2.2μF。
37	AVDD33_0	PI	3.0 ~ 3.6	电源输入,外接滤波电容 1µF。
39	AVDD33_RF2	PI	3.0 ~ 3.6	RF 电源输入,外接滤波电容 1µF。

1.2.6 RF 接口

RF 接口如表 1-7 所示。

表1-7 RF 接口管脚列表

PIN	名称	类型	电平 (V)	说明
1	RFIO	ANA	-	WLAN 2.4G RF 输入/输出。
40	RFI	ANA	-	WS63E 芯片雷达天线输入。

1.2.7 GND 管脚

GND 管脚如表 1-8 所示。

表1-8 GND 管脚列表

PIN	名称	电压 (V)	说明
21	AVSS_PGND	-	GND 管脚。

PIN	名称	电压 (V)	说明
EPAD	GND	-	GND 管脚。

1.2.8 UART 管脚

芯片独立的 UART0/1 管脚为耐 5V 管脚,输出管脚类型为 OD 开漏输出, 使用时建议 $\ln 2.2 \mathrm{K}\Omega$ 上拉电阻。可复用为 $12\mathrm{C}$ 接口。

表1-9 GPIO 复用管脚

PIN	管脚名称	类型	电压 (V)	说明
26	UART1_TX	OD	5/3.3/1.8	复用信号 1: UART1_TX
				复用信号 2: I2C1_SDA
27	UART1_RX	1	5/3.3/1.8	复用信号 1: UART1_RX
				复用信号 2: I2C1_SCL
28	UART0_TX	OD	5/3.3/1.8	复用信号 1: UARTO_TX
				复用信号 2: I2C0_SDA
29	UART0_RX	I	5/3.3/1.8	复用信号 1: UARTO_RX
				复用信号 2: I2C0_SCL

1.2.9 ADC 通道

须知

ADC 管脚: LSADC 通道与 GPIO 功能只支持其中 1 种功能, ADC 通道管脚与 GPIO 管脚的对应关系如表 1-10 所示。

表1-10 ADC 通道管脚与复用管脚对应关系

复用管脚名称	ADC 管脚
GPIO_07	ADC0

复用管脚名称	ADC 管脚
GPIO_08	ADC1
GPIO_09	ADC2
GPIO_10	ADC3
GPIO_11	ADC4
GPIO_12	ADC5

1.2.10 GPIO 复用管脚

GPIO (General Purpose Input/Output) 管脚如表 1-11 所示。其中 PIN5、7、8、10 为硬件配置字,使用时必需注意上电前的默认电平,详细设计请参见"3.1.3 硬件初始化系统配置电路"。

表1-11GPIO 复用管脚

PIN	管脚名称	类型	电压 (V)	说明
4	GPIO_00	I/O	3.3/1.8	复用信号 0: GPIO_0 (Default)
				复用信号 1: PWM0
				复用信号 2: 保留
				复用信号 3: SPI1_CSN
				复用信号 4: JTAG_TDI
5	GPIO_01	I/O	3.3/1.8	复用信号 0: GPIO_1 (Default)
				复用信号 1: PWM1
				复用信号 2: 保留
				复用信号 3: SPI1_IO0/SO
6	GPIO_02	I/O	3.3/1.8	复用信号 0: GPIO_2 (Default)
				复用信号 1: PWM2
				复用信号 2: 保留
				复用信号 3: SPI1_IO3
7	GPIO_03	I/O	3.3/1.8	复用信号 0: GPIO_3 (Default)
				复用信号 1: PWM3

DIVI				
PIN	管脚名称	类型	电压 (V)	说明
				复用信号 2: 保留
				复用信号 3: SPI1_IO1/SI
8	GPIO_04	I/O	3.3/1.8	复用信号 0:保留 (Default)
				复用信号 1: PWM4
				复用信号 2: GPIO_4
				复用信号 3: SPI1_IO1/SI (优先使用 pin8)
				复用信号 4:JTAG_ENABLE,硬件配置字
9	GPIO_05	I/O	3.3/1.8	复用信号 0:保留 (Default)
				复用信号 1: PWM5
				复用信号 2: UART2_CTS
				复用信号 3: SPI1_IO2
				复用信号 4: GPIO_5
				复用信号 5: SPIO_IN
10	GPIO_06	I/O	3.3/1.8	复用信号 0: GPIO_6 (Default)
				复用信号 1: PWM6
				复用信号 2: UART2_RTS
				复用信号 3: SPI1_SCK
				复用信号 4:
				REFCLK_FREQ_STATUS,硬件配 置字
				复用信号 5: 保留
				复用信号 6: SPIO_OUT
11	GPIO_07	I/O	3.3/1.8	复用信号 0: GPIO_7 (Default)
				复用信号 1: PWM7
				复用信号 2: UART2_RXD
				复用信号 3: SPIO_SCK
				复用信号 4: I2S_MCLK

PIN	管脚名称	类型	电压 (V)	说明
12	GPIO_08	I/O	3.3/1.8	复用信号 0: GPIO_8 (Default)
				复用信号 1: PWM0
				复用信号 2: UART2_TXD
				复用信号 3: SPIO_CS1_N
				复用信号 4: 保留
13	GPIO_09	I/O	3.3/1.8	复用信号 0: GPIO_9 (Default)
				复用信号 1: PWM1
				复用信号 2: RADAR_ANT0_SW
				复用信号 3: SPIO_OUT
				复用信号 4: I2S_DO
				复用信号 5: 保留
				复用信号 6: 保留
				复用信号 7: JTAG_TDO
14	GPIO_10	I/O	3.3/1.8	复用信号 0: GPIO_10 (Default)
				复用信号 1: PWM2
				复用信号 2: ANTO_SW
				复用信号 3: SPIO_CSO_N
				复用信号 4: I2S_SCLK
15	GPIO_11	I/O	3.3/1.8	复用信号 0: GPIO_11(Default)
				复用信号 1: PWM3
				复用信号 2: RADAR_ANTI_SW
				复用信号 3: SPIO_IN
				复用信号 4: I2S_LRCLK
16	GPIO_12	I/O	3.3/1.8	复用信号 0: GPIO_12 (Default)
				复用信号 1: PWM4
				复用信号 2: ANT1_SW
				复用信号 4: I2S_DI

PIN	管脚名称	类型	电压 (V)	说明
24	GPIO_13	I/O	3.3/1.8	复用信号 0: GPIO_13 (Default)
				复用信号 1: UART1_CTS
				复用信号 2: RADAR_ANT0_SW
				复用信号 3: 保留
				复用信号 4: JTAG_TMS/SWD
25	GPIO_14	I/O	3.3/1.8	复用信号 0: GPIO_14 (Default)
				复用信号 1: UART1_RTS
				复用信号 2: RADAR_ANTI_SW
				复用信号 3: 保留
				复用信号 4: JTAG_TCK/SWC

1.2.11 CLK 管脚

CLK 管脚如表 1-12 所示。

表1-12 CLK 管脚

PIN	管脚名称	电压 (V)	说明
31	XIN	1.6	晶体 XIN,支持 24MHz 或 40MHz 晶体。
32	XOUT	1.6	晶体 XOUT,支持 24MHz 或 40MHz 晶体。

2 电性能参数

- 2.1 电流分布
- 2.2 极限工作条件
- 2.3 推荐工作条件
- 2.4 DC/AC 电气参数
- 2.5 上下电要求

2.1 电流分布

功耗分布如表 2-1 所示。

表2-1电流参数

符号	描述		最小值	典型值	最大值	单位
VBAT_IN	VBAT_IN 电源		-	-	600	mA
DVDD3318	IO 输入电源	BUCK 方案	-	-	110	mA
		LDO 方案	-	-	300	mA

2.2 极限工作条件

须知

极限工作电压参数如表 2-2 所示,超过这些数值,可能导致芯片损坏与可靠性问题。 芯片 ESD 防护能力如表 2-3

表2-2 极限工作电压参数

符号	描述	最小值	最大值	单位
VBAT_IN	VBAT_IN 输入电源	-0.3	5.5	V
DVDD3318	IO 输入电源	-0.3	3.63	V

表2-3 芯片引脚 ESD 防护

ESD 模型	防护能力
ESD-CDM	250V
ESD-HBM	2.5kV
ESD-HBM (UART0/UART1 耐 5V IO 对 GND)	6kV

2.3 推荐工作条件

推荐工作条件如表 2-4 所示。

表2-4 推荐工作条件

符号	描述	最小值	典型值	最大值	单位
VBAT_IN	VBAT_IN 输入电源	3.0	3.3/5	5.25	V
DVDD3318	IO 输入电源	1.62	1.8/3.3	3.63	V

2.4 DC/AC 电气参数

表2-5 DC 电气参数表 (DVDD3318=1.8V GPIO 功能)

符号	描述	最小值	典型值	最大值	单位
DVDD3318	接口电压	1.62	1.8	1.98	V
V _{IH}	高电平输入电压	0.65 × DVDD3318	-	-	V
V _{IL}	低电平输入电压	-0.3	-	0.35 × DVDD3318	V
IL.	输入漏电流	-	-	1.3	μA
loz	三态输出漏电流	-	-	3.8	μA
V _{OH}	高电平输出电压	0.75 × DVDD3318	-	-	V
VoL	低电平输出电压	-	-	0.25 × DVDD3318	V
R _{PU}	内部上拉电阻	25.18	30.11	35.73	kΩ
R _{PD}	内部下拉电阻	23.57	28.0	32.82	kΩ
Іон	高电平输出电流	3.65	3.65	27.31	mA
loL	低电平输出电流	3.46	3.46	27.55	mA

表2-6 DC 电气参数表 (DVDD3318=3.3V GPIO 功能)

符号	描述	最小值	典型值	最大值	单位
DVDD3318	接口电压	2.97	3.3	3.63	V
V _{IH}	高电平输入电压	2.0	-	DVDD3318 +0.3	V
V _{IL}	低电平输入电压	-0.3	-	0.8	V
IL	输入漏电流	-	-	2.0	μA
loz	三态输出漏电流	-	-	9.1	μA

符号	描述	最小值	典型值	最大值	单位
V _{OH}	高电平输出电压	DVDD3318 -0.2	-	-	V
V _{OL}	低电平输出电压	-	-	0.2	V
R _{PU}	内部上拉电阻	23.57	28.0	32.81	kΩ
R _{PD}	内部下拉电阻	25.45	30.67	36.97	kΩ
Іон	高电平输出电流	3.98	3.98	29.87	mA
loL	低电平输出电流	3.18	3.18	25.26	mA

表2-7 DC 电气参数表 (耐 5V GPIO,即 UART/I2C 管脚)

符号	描述	最小值	典型值	最大值	単位
V _{IH}	高电平输入电压	1.5	-	-	V
V _{IL}	低电平输入电压	-0.5	-	0.8	V
V _{OL1}	低电平输出电压 1	0	-	0.4	V
V _{OL2}	低电平输出电压 2	0	-	0.2×DVDD3318	V
I _{OL}	低电平输出电流	-	4.485	-	mA
Tof	Vihmin 到 Vilmax 的输出下降时间	250	-	20 × (DVDD3318/5.5V)	ns
T _{sp}	输入滤波器必须抑制的尖峰 脉冲宽度	0	-	50	ns
li	每个 IO 引脚的输入电流	-10	-	10	μA
Ci	每个 IO 引脚的电容	-	-	10	pF

🗀 说明

• 耐 5V GPIO 输出管脚类型为 OD 管脚,输出高电平跟随上拉电压,支持 1.8V/3.3V/5V 上拉。

2.5 上下电要求

图2-1上电顺序图

□ 说明

- 上下电边沿要单调、无回沟。
- VBAT 对应管脚: VBAT_IN。
- AVDD33 对应管脚: AVDD33_RF0、AVDD33_RF1、AVDD33_RF2、AVDD33_0、AVDD33_1、BUCK_IN。
- DVDD3318 对应管脚: DVDD3318。

表2-8 时间参数说明

参数	描述	说明	最小值 (min)	最大值 (max)	単位
t ₁	上电后, PWR_ON 的高电平 持续时间	-	20	-	ms
t ₂	睡眠后,唤醒的间隔时间 (AVDD33 和 DVDD3318 为 高电平时, PWR_ON 拉低后 再次拉高的间隔时间)	推荐间隔大 于 20ms	5	-	ms
t ₃	下电后,再次上电的间隔时间	-	50	-	ms
t _{D1}	上电时, PWR_ON 相对电源 上电的延时时间;	上电时, PWR_ON 晚 于 AVDD33	1	-	ms

参数	描述	说明	最小值 (min)	最大值 (max)	单位
		和 DVDD3318 上电较晚 者;			
t _{D2} 1	下电时, PWR_ON 相对电源 下电的提前时间。	下电时, PWR_ON 不 晚于 AVDD33 和 DVDD3318 下电较早 者。	0	-	ms
t _{hw1}	上电时,硬件配置字 IO 在 PWR_ON 拉高前的电平建立 时间	-	1	-	ms
t _{hw2}	上电时,硬件配置字 IO 在 POWER_ON 拉高后的电平保 持时间	-	10	-	ms
tr	电源上升时间	-	1	10	ms

注 1: PWR_ON 与 DVDD3318 合并控制时,需要增加 RC 滤波,下电场景下,需要 AVDD33 先下电, PWR_ON 跟随 DVDD3318 下电; PWR_ON 与 DVDD3318 独立控制时,下电场景下,PWR_ON 下电不晚 DVDD3318 和 AVDD33。

表2-9 电压参数说明

参数	描述	阈值	单位
Vth_rst	PWR_ON 的上升/下降沿电平, 芯片内部 PMU 的解复位电压阈值。	1.4	V
VIH_VBAT	AVDD33 的上电阈值电平,LDO33 开始上 电	2.3	V
VIL_VBAT	AVDD33 的下电阈值电平,LDO33 开始下	3.4	V

参数	描述	阈值	单位
	电		
VIH_AVDD33	AVDD33 的上电阈值电平	2.3	V
VIL_AVDD33	AVDD33 的下电阈值电平	2.3	V
V _{IH_DVDD3318}	DVDD3318 的上电阈值电平	0.8 × DVDD3318	V
VIL_DVDD3318	DVDD3318 的下电阈值电平	0.8 × DVDD3318	V
V _{pwron}	芯片上电后 PWR_ON 稳态保持电平	1.6	V
AVDD33	芯片模拟模块供电电源	3.3	V
DVDD3318	芯片数字模块供电电源	3.3 / 1.8	V

上电时序约束:

- 1. 电源 VBAT/DVDD3318 电源上电时间范围为: 1ms-10ms (VBAT 支持上电时间最快 200us)
- 2. VBAT 支持 5V/3.3V,若芯片采用 $5V_BUCK$ 方案,则 AVDD33 由芯片内部 LDO33 产生,上电时间 t_{LDO33} (VBAT 开启上电到 LDO33 输出 3.3V 的时间) 跟随 VBAT 上电时间变化; VBAT<1ms 上电,则 t_{LDO33} =10ms。
- 3. 电源 VBAT、AVDD33、 DVDD3318 间上电顺序无要求,上电完成 1ms 后将 PWR_ON 上拉至高电平(DVDD3318)。当确保 PWR_ON 晚于 DVDD3318 和 AVDD33 电源 1ms(即 Tpwron >=1ms)后,上电达到 1.4V(Vth_rst)时,才可确保 芯片正常工作。
- 4. 电源上电后,在 PWR_ON 拉高前,硬件控制字 IO 需要提前维持至少 1ms, t_{hw1} >=1ms; 在 PWR_ON 拉高后,硬件控制字 IO 需要持续维持至少 10ms, t_{hw2} >=10ms。
- 5. WS63 系列芯片内部 PMU 检测到 PWR_ON 信号为高电平 400us 后,芯片内部开始解复位流程,有序地开启各电源,解复位时间为 21ms,其中硬件配置字在解复位之后 9.5ms 内锁存,然后芯片正常工作。

6. 对于 DVDD3318 和 AVDD33 短接在一起,PWR_ON 无法满足 Tpwron >=1ms 要求的情况,采用板级加 RC 解决,RC 常数要大于等于 20k×220nF=4.4ms≈5ms,能满足要求。

下电时序约束:

- 1. 下电时,电源 VBAT、DVDD3318 和 AVDD33 电压残压要泄放小于 0.8V 才可二次上电。当芯片掉电后,需要保证 VBAT_IN、PWR_ON、DVDD3318 和 AVDD33 电平低于 500mV。
- 2. 芯片 VBAT 采用 5V 方案时, VBAT 小于 3.4V, LDO33 输出的 3.3V 开始掉电。

<u> 注意</u>

防倒灌要求,对 WS63 对端设备的约束为:

- WS63 下电状态 (DVDD3318 下电) , 对端设备 (与 WS63 的 IO 有连接的芯片或器件) 与 WS63 相连的 IO 需要配置为高阻态或低电平。
- WS63 上电状态 (DVDD3318 上电) , 对端设备 (与 WS63 的 IO 有连接的芯片或器件) 与 WS63 相连的 IO 根据实际情况配置为输入或者输出。
- 有上拉电阻的管脚 (例如 UART0/1) 的上拉电源建议连接到 WS63 的 DVDD3318。 芯片下电后, UART0/UART1 串口总线保持低电平, 防止高电平倒灌进芯片。

3 原理图设计建议

- 3.1 小系统设计建议
- 3.2 电源参考设计
- 3.3 外围接口设计建议
- 3.4 控制信号应用参考设计
- 3.5 RFIO 设计
- 3.6 RFI 设计

3.1 小系统设计建议

WS63V100 系列芯片内部集成自研 CPU, 小系统指芯片电路能够正常工作的最小外围电路配置, 此部分的电路主要包括: 时钟电路、复位电路。

3.1.1 时钟参考设计

CPU 支持的晶体时钟 24MHz/40MHz, 在使用外部晶体时, 电路结构如图 3-1 所示。 硬件设计时, 时钟管脚靠近芯片端预留 0Ω电阻串位, 当晶体与 RF 隔离度不满足要求时, 可通过串接电感改善隔离度。

图3-1使用 Crystal 输入参考时钟的参考电路图

WS63 系列芯片时钟电路外部 Crystal 电气特性的要求如表 3-1 和表 3-2 所示。

表3-140MCrystal 电气特性要求

参数	符号	晶体选型规格			单位	说明
标称频率	f	40	40	40	MHz	-
负载电容	CL	8	9	10	pF	-
频率容差	f_tol	±10	±10	±10	ppm	晶体初始频偏
等效电阻	ESR	≤50	≤40	≤35	Ohm	影响起振
动态电容	C1	≥2.8	≥3.4	≥4	fF	影响频率校准
静态电容	C0	≤3	≤3	≤3	pF	-
激励功率	DL	≥150	≥150	≥150	uW	-
工作温度	Т	-40~85	-40~85	-40~85	°C	-
板级负载电容 (单端)	CL1	2.2 (参 考值)	4 (参考值)	6 (参考值)	pF	需根据板级寄 生、封装寄生 电容调整。 8pF CL1 可 选,9pF/10pF CL1 必须上 件。

表3-2 24MCrystal 电气特性要求

参数	符号	晶体选型规格	単位	备注
标称频率	f	24	MHz	-
负载电容	CL	8	pF	-
频率容差	f_tol	±10	ppm	晶体初始频偏
等效电阻	ESR	≤100	Ohm	-
动态电容	C1	≥3	fF	-
静态电容	C0	≤3	pF	-
工作温度	Т	-40~85	℃	-
激励功率	DL	≥150	μW	-
板级负载电容 (单端)	CL1	2.2 (参考值)	pF	根据板级寄 生、封装寄生 电容调整。 CL1 可选。

CL1 实际调测步骤如下 (需要使用综测仪进行测试, 综测仪可以直接测试出频偏):

- 步骤 1 8pF 默认板级无负载电容 CL0=0; 9pF 默认 xin 与 xou 上件 2pF, CL0=2; 10pF 默认 xin 与 xou 上件 4pF, CL0=4。
 - 配置频偏校准粗调码值 xo_trim_coarse=0, 频偏校准细调码值 xo_trim_fine=0,
 记录此时频偏为 fmax。
 - 配置频偏校准粗调码值 xo_trim_coarse=15, 频偏校准细调码值 xo_trim_fine=127, 记录此时频偏为 fmin。
- 步骤 2 若 fmax≥35ppm 且 fmin≤-35ppm,则不需要增加 CL1,调测结束;若不满足,则进行步骤 3~步骤 7。
- 步骤 3 板级负载电容根据 CL=8pF/9pF/10pF 分别在 xin 与 xout 上件 1pF/2pF/4pF; 配置频偏校准粗调码值 xo_trim_coarse=0, 频偏校准细调码值 xo_trim_fine=0, 记录此时频偏为 f0 (此时 CL=9pF/10pF 的 f0 即为第一步的 fmax)。

- 步骤 4 板级负载电容在第 2 步的基础上增大 1pF, 根据 CL=8pF/9pF/10pF 分别在 xin 与 xout 上件 2pF/3pF/5pF; 配置频偏校准粗调码值 xo_trim_coarse=0, 频偏校准细调码值 xo_trim_fine=0, 记录此时频偏为 f1。
- 步骤 5 此时得到频偏调节率 ratio_adjust=(f1-f0)/1pF,则进一步可以计算可以得到 CL1=(fmax+fmin)/2/ratio_adjust+CL0。
- 步骤 6 将得到的 CL1 分别在 xin 与 xout 上件,此时测得 fmax≈-fmin,此时 CL1 为最佳值。
- 步骤 7 为保证测试准确,推荐测试 3pcs 单板来保证一致性。

----结束

以 CL=8pF 为例, 如表 3-3 所示。

表3-3 CL1 测试举例

晶体 CL	xin 与 xou 上 件容值	xo_trim_coa rse	xo_trim_fine	fmax	fmin	f0	f1	
8pF	0	0	0	100 ppm	-	-	-	
	0	15	127	-	-20 ppm	-	-	
	1pF	0	0	-	-	90p pm	-	
	2pF	0	0	-	-	-	80p pm	
此时 ratio	此时 ratio_adjust=10ppm/1pF,CL1=(100-20)/2/10+0=4pF							
8pF	4pF	0	0	60pp m	-	-	-	
	4pF	15	127	-	- 60pp m	-	-	

□ 说明

配置频偏校准粗调码值与细调码值命令详细说明请参见《WS63V100 产线工装用户指南》。

WS63 系列芯片支持 24MHz、40MHz 参考时钟频率。参考时钟频率通过 GPIO_06 的 硬件配置字进行判断,上电时通过读取 GPIO_06 高低电平选择内部分频系数。外部时 钟选择真值如表 3-4 所示。

表3-4 外部时钟选择真值表

时钟频率	REFCLK_FREQ_STATUS	说明
40MHz	0	默认内部下拉。
24MHz	1	上拉 2.2kΩ到 DVDD3318。

图3-2 频率选择管脚参考电路图

3.1.2 复位电路

WS63V100 系列芯片集成内部 POR(Power On Reset)电路以及 Watchdog, PWR_ON 管脚为芯片复位管脚, 低电平使能。 PWR_ON 上电必须要晚于 AVDD33 和 DVDD3318 电源 1ms,建议在 PWR_ON 管脚增加 RC 延时电路,例如 R=20kΩ, C=220nF, RC 参数约为 4.4ms。

图3-3 PWR ON 电路设计参考

L口说明

硬件设计时,power_on 管脚建议上件 RC 延时电路,根据电源上电响应速度,调节 RC 参数,保证上电时序满足芯片规格约束;同时预留下拉电阻位置,作为下电快速泄放通道和 power_on 分压控制电路使用。

3.1.3 硬件初始化系统配置电路

WS63V100 系列芯片的 PIN23 为电源方案配置管脚,当 VBAT 电源选择 3V3 方案时,PIN23 需跟随电源启动拉高。芯片 PIN7、8、10 为硬件配置字,PIN5、13、15 为芯片保留的硬件配置字,硬件配置字管脚在芯片内部默认有 28kΩ左右的下拉电阻。芯片上电初始化时会检测 6 个硬件配置字引脚的电平状态,以进入不同的工作模式,详情见表 3-5,使用时必须注意芯片上电初始化时的引脚初始输入电平。若需通过上拉电阻将硬件配置字上电初始化时设置为高电平,PIN7、PIN8、PIN10 建议通过 2.2kΩ电阻上拉到 DVDD3318。

表3-5 硬件配置字信号描述

信号名	PIN	管脚电平	芯片工作模式
-----	-----	------	--------

信号名	PIN	管脚电平	芯片工作模式
FLASH BOOT (GPIO_03)	7	0	正常启动
		1	进烧录模式
JTAG_ENABLE (GPIO_04)	8	0	正常启动
		1	使能 JTAG 调试接口
REFCLK_FREQ_STATUS (GPIO_06)	10	0	时钟选择 40MHz
(GFIO_00)		1	时钟选择 24MHz
保留 1 (GPIO_01)	5	0	正常工作模式
		1	禁止
保留 2(GPIO_11):保留 3	15 : 13	0:0	正常工作模式
(GPIO_09)		0:1	正常工作模式
		1:0	正常工作模式
		1:1	禁止

- 注: 1. 上电初始化时,硬件配置字 JTAG_ENABLE 高电平使能后,GPIO13 和GPIO14 固定使用为 JTAG 接口。
- 2. 上电初始化时,硬件配置字 FLASH_BOOT 高电平使能后, 芯片启动流程会停留在 BOOT 阶段,等待烧录。

表3-6 电源方案选择管脚说明

信号名	PIN	管脚电平	芯片工作模式
PWR_SEL	23	0	VBAT_IN 采用 5V 供电
		1	VBAT_IN 采用 3V3 供电

须知

- 特別注意: 不要使硬件配置字进入表 3-5 中所描述的禁用状态。
- 芯片使用时,必须注意在上电初始化过程中 PIN5、7、8、10、13、15 所有的 6 个 硬件配置字管脚的电平状态(包含对端芯片及器件以及板级上下拉电阻对硬件配置 字管脚上电初始化电平的影响)。
- 芯片保留的硬件配置字管脚 PIN5、13、15,硬件设计时相应管脚禁止加上拉电阻。
- 上电过程中硬件配置字详细的时序约束请参考图 2-1。
- 芯片上电过程中,在 PWR_ON 管脚拉高前至少 1ms,拉高后至少 10ms 的时间内,需要保证所有硬件配置字管脚电平状态稳定不变;
- 由于硬件配置字管脚对上电时序有约束,所以不建议作为功能 IO 使用,以避免初始化时电平识别错误从而导致功能异常;
- 如果基于设计需求,需要将硬件配置字管脚做 IO 使用,注意引脚上电初始化电平是否满足芯片启动要求,以及默认上下拉电阻所带来的影响。

3.2 电源参考设计

□ 说明

系统电源的设计,详细请参见 WS63 原理图。

3.2.1 电源方案

WS63 系列芯片共有 3 种芯片电源方案, 分别为 5V BUCK 方案, 3.3V BUCK 方案, 3.3V LDO 方案, 因此在不同电源方案芯片引脚及外围电路存在差异。

- 方案一: 5V BUCK 方案。BUCK_LX 连接板级 2.2uH 电感,然后连接到 BUCK_OUT; BUCK_OUT 近端添加 10uF 电容; VDD_DIG 管脚浮空; PWR_SEL 管脚接地。 VBAT_IN 接 5V 板级输入电压; VDD33_OUT 输出 3.3V,通过硬件连接到 BUCK_IN 及整芯片需要 3.3V 电压的管脚。
- 方案二: 3.3V BUCK 方案。BUCK_LX 连接板级 2.2uH 电感,然后连接到 BUCK_OUT; BUCK_OUT 近端添加 10uF 电容; VDD_DIG 管脚浮空; PWR_SEL 管脚接 3.3V。VBAT_IN 接 3.3V 板级输入电压; VDD33_OUT、BUCK_IN 接板级 3.3V。

● 方案三: 3.3V LDO 方案。BUCK_LX 连接板级 3.3V 电压; BUCK_OUT 管脚浮空; VDD_DIG 近端添加 1uF 电容; PWR_SEL 管脚接 3.3V。VBAT_IN 接 3.3V 板级输入电压; VDD33_OUT、BUCK_IN 接板级 3.3V。

图3-4 WS63 系列芯片 5V BUCK 方案

图3-5 WS63 系列芯片 3.3V BUCK 方案

图3-6 WS63 系列芯片 3.3V LDO 方案

□ 说明

- 1. 硬件方案设计时,推荐采用 3V3_BUCK 供电方案,实现更好的性能表现。5V_BUCK 方案和 3V3_LDO 方案仅建议在低功耗场景下采用,且应用场景中芯片位置板温建议不超过 70℃。
- 2. 电源管脚 DVDD3318 支持 3.3V 或 1.8V 供电。当 DVDD3318 采用 1.8V 供电时,硬件设计上需要将 PIN35 (IOLDO18) 和 PIN34 (DVDD3318) 短接,由外部提供 1.8V 电压。

3.2.2 电源规格

需要的外部电源包括:

● 供电电源 VBAT_IN

● IO 电源 DVDD3318

推荐工作条件如表 3-7 所示。

表3-7 推荐工作条件

符号	PIN 序号	说明	最小 值 (V)	典型 值 (V)	最大值 (V)	电压 精度 DC+ AC	PCB 布线参 考电流 (mA) (仅供 布线 考)
AVDD33_RF 1	2	由外部电源提供。	3.0	3.3	3.6	±5%	400
AVDD33_RF 0	3	由外部电源提供。	3.0	3.3	3.6	±5%	100
AVDD33_RF 2	39	由外部电源提供。	3.0	3.3	3.6	±5%	100
AVDD33_0	37	AVDD33 供电电源,由外部电源提供。	3.0	3.3	3.6	±5%	50
AVDD33_1	36	由外部电源提供。	3.0	3.3	3.6	±5%	140
IOLDO18	35	内部 LDO_DECAP, 外置 1µF。	-	1.8	-	±5%	200
DVDD3318	34	IO 电源, 由外 部电源提供。	1.62	1.8/3. 3	3.63	±5%	300
VDD_DIG	33	内部 LDO_DECAP, 外置 1µF。	-	0.9	-	±5%	250
BUCK_OUT	22	内部数字电源输	-	0.9	-	±5%	250

符号	PIN 序号	说明	最小 值 (V)	典型 值 (V)	最大值 (V)	电压 精度 DC+ AC	PCB 布线参 考电流 值 (mA) (仅供 布线参 考)
		出,外置 10µ F。					
BUCK_IN	19	内部数字电源输 入,外置 4.7µ F。	3.0	3.3	3.6	±5%	100
VBAT_IN	18	芯片供电电源, 由外部电源提 供,外置 10µ F。	3.0	3.3/5	5.25	±5%	500
VDD33_OU T	17	内部数字电源输 出,外置 4.7µ F。	3.0	3.3	3.6	±5%	500

3.2.3 AVDD33 电源

WS63V100 系列芯片包含 6 个 AVDD33 电源输入管脚:

- AVDD33_RF0、AVDD33_RF1、AVDD33_RF2: 芯片 RF 模块供电,由外部提供。
- AVDD33_0、AVDD33_1: 电源 AVDD33, 由外部提供。
- BUCK_IN:内部 BUCK 电源输入,由外部提供。

AVDD33 支持 3.0V ~ 3.6V 输入,要求供电电源纹波及噪声峰峰值在±5%以内。 AVDD33 的每个电源输入管脚需要选择合适的去耦电容,参考表 3-8 所示。

表3-8 AVDD33 电源管脚去耦电容

名称	设计建议
----	------

名称	设计建议
AVDD33_RF1	外接 1µF 电容,耐压值≥6.3V。
AVDD33_RF0	外接 1µF 电容,耐压值≥6.3V。
AVDD33_RF2	外接 1µF 电容,耐压值≥6.3V。
AVDD33_0	外接 1µF 电容,耐压值≥6.3V。
AVDD33_1	外接 2.2µF 电容,耐压值≥6.3V。
BUCK_IN	外接 4.7µF 电容,耐压值≥6.3V。
VDD33_OUT	外接 4.7µF 电容,耐压值≥6.3V。

图3-7 WS63V100 AVDD33 输入电路1

图3-8 WS63V100 AVDD33 输入电路2

图3-9 WS63V100 AVDD33 输入电路 3

3.2.4 VBAT_IN 电源

VBAT_IN 给芯片提供工作电源,支持 3.3V 或 5V 输入,VBAT_IN 电源可以由外部 PMU 芯片或者外部 BUCK 电路生成提供。 推荐设计建议如表 3-9 所示,参考电路如图 3-10 所示。

表3-9 VBAT_IN 电源设计建议

名称	设计建议
VBAT_IN	外接 10μF 电容,耐压值≥10V。

图3-10 VBAT_IN 输入电路

3.2.5 DVDD3318 电源

WS63V100 系列芯片包含 1 个 DVDD3318 电源输入管脚:

DVDD3318: 支持 1.8V/3.3V 电压,推荐设计建议如表 3-10 所示,参考电路图如图 3-11 所示。

表3-10 DVDD3318 电源设计建议

名称	设计建议
DVDD3318	外接 4.7µF 电容,耐压值≥6.3V。

图3-11 DVDD3318 输入电路

🗀 说明

当 DVDD3318 选择 1V8 电源供电时,需要将 DVDD3318 和 IOLDO18 短接,即 PIN34 和 PIN35 短接。选择 3V3 电源供电时不需要。

3.2.6 内部电源滤波电路

内部电源中的 IOLDO18、VDD_DIG 需要外接滤波电容, 推荐设计建议如表 3-11 所示, 参考电路如图 3-12 所示。

表3-11 内部电源滤波电路设计建议

名称	设计建议
IOLDO18	内部 LDO_DECAP,外接 1µF 滤波电容。
VDD_DIG	内部 LDO_DECAP ,LDO 电源方案外接 1µF 滤波电容,BUCK方案悬空。

图3-12 内部电源滤波电路

3.2.7 BUCK 电源

VDD_DIG 可以由内部 BUCK 生成或由内部 LDO 电源提供。参考电路如图 3-13 所示

表3-12 BUCK 电源设计建议

名称	设计建议
BUCK_LX	BUCK LX 输出,外接 2.2µH 电感。
BUCK_IN	电压输入,给内部 LDO 等供电,外接 4.7μF 电容。
BUCK_OUT	给芯片内部 LDO 供电,外接 10μF 电容。

图3-13 BUCK 电源参考电路

🗀 说明

BUCK 电感推荐约束条件:

- 电感值 2.2µH, ±20%。
- 直流电阻 (Rdc) ≤0.5Ω。
- 饱和电流≥1A。
- Rdc 增大会导致功耗增加,效率变低。

3.2.8 RF 电源

外部提供 RF 电源供电,可与 AVDD33 电源接在一起,设计建议如表 3-13 所示,参考电路如图 3-14 和图 3-15 所示。

表3-13 RF 供电设计建议

名称	设计建议
AVDD33_RF0	AVDD33 供电,外接 1μF 电容。
AVDD33_RF1	AVDD33 供电,外接 1μF 电容。
AVDD33_RF2	AVDD33 供电,外接 1μF 电容。

图3-14 RF 供电电路设计参考 1

图3-15 RF 供电电路设计参考 2

3.2.9 注意事项

TBD

3.3 外围接口设计建议

3.3.1 UART接口

WS63V100 系列芯片支持三组 UART 接口,UART0 用于芯片烧录、维测、打印。UART1、UART2 用于与其他设备对接,UART1 也可作为业务调试接口。设计建议如表 3-14 所示。硬件设计时引出 UART0、UART1 测试点,可以方便芯片业务功能调测。

表3-14 UART 接口设计建议

名称	设计建议
UART0_RXD	直连,走线≤5inch。
UART0_TXD	直连,走线≤5inch。总线需要上拉, 建议上拉电阻 2.2kΩ。
UART1_TXD	直连,走线≤5inch。总线需要上拉, 建议上拉电阻 2.2kΩ。
UART1_RXD	直连,走线≤5inch。
UART1_RTS	直连,走线≤5inch。
UART1_CTS	直连,走线≤5inch。
UART2_TXD	直连,走线≤5inch。
UART2_RXD	直连,走线≤5inch。
UART2_RTS	直连,走线≤5inch。
UART2_CTS	直连,走线≤5inch。

🗀 说明

- 1. WS63V100 系列芯片 UART 接口 RX 管脚不需要接上拉电阻。为防止电源倒灌,建议 WS63芯片侧串口 RX 不接上拉电阻。
- 2. WS63V100 系列芯片 UARTO/1 接口 TX 管脚为开漏输出,需要接上拉电阻提供高电平驱动能力。为防止通过 WS63 芯片侧 TX 上拉电阻倒灌电源,建议 TX 总线上对端设备不接上拉电阻(对端为 RX 输入管脚,无需上拉)。
- 3. WS63V100 系列芯片 UART2 接口 TX 管脚有高电平驱动能力,不需要接上拉电阻。为防止电源倒灌,建议 UART2 接口TX 总线不接上拉电阻。
- 4. 针对 WS63 单独下电场景,在将 WS63 下电后,建议对端设备 UART 接口主动将 TX、RX 总线驱动低电平。

3.3.2 PWM 接口

WS63V100 系列芯片支持 8 个 PWM 接口信号输出,输出电平与 DVDD3318 管脚电平保持一致,占空比输出范围 (1/65535 到 1)。设计建议如表 3-15 所示。

表3-15 PWM 接口设计建议

名称	设计建议
----	------

名称	设计建议
PWM0	直连,走线≤5inch。
PWM1	直连,走线≤5inch。
PWM2	直连,走线≤5inch。
PWM3	直连,走线≤5inch。
PWM4	直连,走线≤5inch。
PWM5	直连,走线≤5inch。
PWM6	直连,走线≤5inch。
PWM7	直连,走线≤5inch。

3.3.3 I2S 接口

WS63V100 系列芯片支持一个 I2S 接口,输入输出电平与 DVDD3318 管脚电平保持一致。设计建议如表 3-16 所示。

表3-16 I2S 接口设计建议

名称	设计建议
I2S_MCK	直连,包地处理。
12S_DO	直连。
I2S_SCLK	直连,包地处理。
I2S_LRCLK	直连,包地处理。
I2S_DI	直连。

3.3.4 QSPI&SPI 接口

WS63V100 系列芯片支持 QSPI 和 SPI 接口,输入输出电平与 DVDD3318 管脚电平 保持一致。设计建议如表 3-17 所示。

表3-17 QSPI&SPI接口设计建议

名称	设计建议
SPI_CSN	直连,走线≤5inch。
SPI_CLK	两层板,走线≤5inch,芯片端预留一个串接电阻位置, 单根走线包地处理。
	四层板, DVDD3318=1.8V,走线≤5inch,芯片端预留一个串接电阻 位置,单根走线包地处理。
	四层板,DVDD3318=3.3V,走线≤5inch,芯片端预留一个串接电阻 位置,单根走线包地处理
SPI_DATA	两层板,走线≤5inch,芯片端预留一个串接电阻位置, 单根走线包地处理。
	四层板,走线≤5inch,芯片端预留一个串接电阻位置, 单根走线包地处理。

3.3.5 I2C 接口

WS63V100 系列芯片支持两组 I2C 接口,与 UART0/UART1 管脚复用。设计建议如表 3-18 所示。

表3-18 I2C 接口设计建议

名称	设计建议
I2C0_SCL/I2C1_SCL	直连,走线≤5inch,总线需要上拉, 建议上拉电阻 2.2kΩ。
I2C0_SDA/I2C1_SDA	直连,走线≤5inch,总线需要上拉, 建议上拉电阻 2.2kΩ。

3.3.6 ADC 接口

WS63V100 系列芯片支持 6 个 ADC 接口, ADC 电压量测范围 $0.3V\sim3.3V$ 。设计建 议如表 3-19 所示。

表3-19 ADC 接口设计建议

名称	设计建议
AIN0	直连。模拟信号通道,建议两侧包地, 远离高速信号干扰。
AIN1	直连。模拟信号通道,建议两侧包地, 远离高速信号干扰。
AIN2	直连。模拟信号通道,建议两侧包地, 远离高速信号干扰。
AIN3	直连。模拟信号通道,建议两侧包地, 远离高速信号干扰。
AIN4	直连。模拟信号通道,建议两侧包地, 远离高速信号干扰。
AIN5	直连。模拟信号通道,建议两侧包地, 远离高速信号干扰。

3.4 控制信号应用参考设计

表3-20 控制信号应用参考设计

名称	设计建议
PWR_ON	远离高速信号,建议包地处理,预留上拉 20kΩ到 DVDD3318, 220nF 电容接地。
PWR_SEL	远离高速信号,建议包地处理。
BUCK_LX	功率电感靠近芯片放置,减少 BUCK 环路寄生。

3.5 RFIO 设计

WS63 系列芯片集成 2.4G WiFi PA 和 LNA,集成 T/R Switch,支持外接单天线,不支持外置 FEM 和外置 LNA。WS63 系列芯片支持 2.4G,支持全球所有国家定义的 WLAN 频段,支持 b/g/n/11ax 协议版本。

WS63 系列芯片的 PIN1 为 RFIO 管脚,作为 WiFi/BLE/SLE 的接收发送管脚, WS63E 芯片中也可作为雷达发射管脚。射频链路建议使用π型 LC 滤波电路,参考电

路如图 3-16, 图中的 LC 滤波为推荐值, LC 滤波及天线匹配电路请根据实际情况调整。 RF 连接器旁边建议预留 ESD 器件。

图3-16 RFIO 设计参考电路图

3.6 RFI 设计

WS63E 芯片提供了雷达检测解决方案,芯片的 PIN40 为 RFI 管脚,作为雷达检测的射频接收管脚。设计中,为防止 EMI 干扰,在 RFI 通路靠近芯片口预留π型 LC 高通滤波器位置,滤除低频干扰。射频通路天线口建议预留π型 LC 匹配电路,参考电路如图 3-17, LC 滤波及天线匹配值请根据实际情况调整。

图3-17 RFI 设计参考电路图

□ 说明

雷达板载天线设计仅供参考,用户板载天线需要按照产品需求自行设计测试。

- 板载 PCB 天线需要以整机为基础进行设计、仿真,综合考虑天线净空、模组底板、外壳等环境影响。
- 雷达检测方案天线设计规格约束: RFIO 为雷达 Tx 天线, RFI 为雷达 Rx 天线。Tx、Rx 天线 频率 2.4-2.5GHz; VSWR<2; Tx、Rx 射频链路, 天线隔离度>=20dBc, 射频板级走线隔离度>=32dBc; 天线增益>=0dBi; Tx、Rx 天线带内群时延<1ns。
- 雷达检测方案 Tx、Rx 天线保证同极化,天线设计建议均采用板载 PCB 天线。
- RFI 雷达 Rx 天线远离 EMI 干扰源,在 RFI 通路靠近芯片口预留 π 型 LC 高通滤波器位置,滤除低频干扰。
- 整机设计中,为防止感知误触发,雷达模组应远离机械振动部件(例如蜂鸣器)。
- 为规避人感探测区间,要求整机底板大电流器件如需刷新,刷新率应>100Hz (例如 LED 灯、蜂鸣器)

4 PCB 设计建议

- 4.1 叠层和布局
- 4.2 Fanout 封装设计建议
- 4.3 PCB 布局
- 4.4 电源
- 4.5 RF 布线指导
- 4.6 时钟布线指导
- 4.7 GND 布线指导
- 4.8 屏蔽罩

4.1 叠层和布局

WS63 系列芯片封装为 QFN40, 规格大小为 $5 \, \text{mm} \times 5 \, \text{mm}$, PCB 支持 2/4 层板, 支持器件单面贴设计。

- 两层板分层设计建议:
 - TOP 层:信号走线,信号线和电源线尽量走 TOP 层。
 - BOTTOM 层: 地平面层,尽量保持地平面的完整。
- 四层板分层设计建议:
 - TOP 层:信号走线,信号线尽量走 TOP 层。
 - 内一层: 地平面层, 保持一个完整的地平面层。
 - 内二层:电源平面层,电源走线尽量走第三层,且电源之间需要用地隔开。

- BOTTOM 层:可以走少量的信号线,尽量保持 BOTTOM 层为一个完整的地平面层。

● PCB 设计注意事项:

- 推荐 PCB 板厚 On Board 方案一般≥1mm, 防止翘曲, 过孔 8/18 mil。
- PCB 典型材料 FR4 介电常数为 4.0~4.3,表层铜箔厚度建议为 1.2mil (0.5oz+plating), PCB 板厚度一般≥1.0mm, 典型值为 1.2mm, 可选用 1.0mm。
- 2层板设计中,EPAD 和外部地用细线连通, 改善 RF 回流。 常用的叠层设计和阻抗控制可参考表 4-1。

表4-12 层板 1.0mm 参考叠层信息

层标识	设计要求层叠图示	设计要求介质厚度 (oz/mil)	PCB 厂家设计调整 介质厚度(oz/mil)	PCB 厂家设计 调整层叠图示
Art 1	0.5oz+plating		0.5oz+plating	
	CORE	35.4	34.06	CORE
Art 2	0.5oz+plating		0.5oz+plating	
板厚	客户设计板厚: 1.0±0.10 mm		厂家理论板厚: 1.0 ±	-0.10 mm

表4-2 单线线宽、阻抗、参考层控制信息参考

层标识	设计线宽	设计阻抗	调整线宽	调整阻抗	参考层
Art 1	5/19/5 (到地距 离/线宽/到地距 离)	50± 10%	5/19/5 (到地距离/ 线宽/到地距离)	50±10%	L1&L2

注:线宽的计量单位为 mil ,阻抗的计量单位为 Ω 。

表4-3 4 层板 1.2mm 参考叠层信息

层标识	设计要求层	设计要求介质厚	PCB 厂家设计调	PCB 厂家设计
	叠图示	度(oz/mil)	整介质厚度 (oz/mil)	调整层叠图示

层标识	设计要求层叠图示	设计要求介质厚 度(oz/mil)	PCB 厂家设计调整介质厚度 (oz/mil)	PCB 厂家设计 调整层叠图示
Art 1	0.5oz+plating		0.5oz+plating	
	PP	8.2	10.88	PP
Art 2	1oz		1oz	
	CORE	23.8	18	CORE
Art 3	1oz		1oz	
	PP	8.2	10.88	PP
Art 4	0.5oz+plating		0.5oz+plating	
板厚	客户设计板厚:	1.2±0.12 mm	厂家理论板厚: 1.2±0.12 mm	

表4-4 单线线宽、阻抗、参考层控制信息

信号层	接地层	阻抗目标	阻抗公差	设计线宽 (mil)	距铜 (mil)
L1	L1&L2	L1&L2	10%	11	6

4.2 Fanout 封装设计建议

四层板 Fanout 如图 4-1 所示。

图4-1 PCB 四层板 Fanout 参考设计

其中:

● 黄色: AVDD33_RF0, AVDD33_RF1, AVDD33_RF2, AVDD33_0, AVDD33_1, VDD33_OUT

● 绿色: IOLDO18, VDD_DIG

● 紫色: PWR_ON

● 深蓝色: DVDD3318

● 淡蓝色: RF_ANT, RFIO_ANT

● 橙色: BUCK_IN, BUCK_OUT

● 粉色: VBAT_IN

4.3 PCB 布局

应用支持 On Board 和模组两种方案。

- On Board 方案
 - 支持 2 层板设计。
 - On Board 可双面贴片, 空间允许可以选择 0402 封装,空间不足可选择 0201 封装 (inch) 。

● 模组

- 建议用 2 层板。
- 贴片器件建议用 0201 封装 (inch)。

PCB 设计以模组两层板为例,参考设计如图 4-2 和图 4-3 所示。

图4-2 LDO 供电方案模组 PCB 布局参考

其中:

- 黄色: AVDD33_RF0, AVDD33_RF1, AVDD33_RF2, AVDD33_0, AVDD33_1, VDD33_OUT, DVDD3318, BUCK_IN, VBAT_IN
- 绿色: IOLDO18, VDD_DIG
- 紫色: PWR_ON
- 深蓝色: RFIO_ANT

橙色: BUCK_OUT

白色: XIN, XOUT

图4-3 BUCK 供电方案模组 PCB 布局参考

TOP VIEW

BOTTOM VIEW

其中:

黄色: AVDD33_RF0, AVDD33_RF1, AVDD33_RF2, AVDD33_0, AVDD33_1, VDD33_OUT, DVDD3318

绿色: IOLDO18, VDD_DIG

紫色: PWR_ON

深蓝色: RFIO_ANT

橙色: BUCK_IN, BUCK_OUT

粉色: VBAT_IN;

🗀 说明

通常 RF 器件布局比较紧凑,这样会导致近芯片侧π型 LC 滤波网络的两个接地电容的接地过孔 靠的比较近, 这样会影响到 RF 的谐波抑制性能, 建议两个接地电容分布在 RF 走线的两边, 这 样可以提高 RF 电路的谐波抑制效果。

4.4 电源

- 电源走线宽度需要满足"3.2.2 电源规格"中的建议电流值,建议按照 100mA/4mil 的通流能力来设计。
- 所有电源走线需先经过滤波电容再到对应的芯片管脚,滤波电容靠近被滤波芯片 管脚放置。电容就近接地,避免长走线引入电感效应。
- RF 电源对外干扰较大,需远离模拟电源和敏感信号。 RF 电源各个管脚需要有各自的滤波电容,经过各自的滤波电容后分别走线,避免振荡问题。
- AVDD33 电源走线支持串行走线,但星型走线可以带来更好的性能,图 4-4 黄色 走线即为星形走线,深蓝色为 RFIO_ANT 走线。

AVDD33 电源走线(黄色)、 DVDD3318、 IOLDO18 及 VDD_DIG 上的滤波电容摆放位置如图 4-4 所示。

图4-4 模组两层板电源布线参考

4.5 RF 布线指导

- RF 走线控制阻抗 50Ω,线尽量短不允许有锐角和直角。2层板采用共面波导设计, 走线两边包地多打地孔。
- 硬件设计中,如果射频通道上有引入 ESD 风险的点位,例如裸露的射频测试点、 金属天线、外接天线座等,在 ESD 风险点靠近芯片侧 预留 ESD 电感或 TVS 管, 增加 ESD 防护能力。
- EPAD 四个角向外走,建议和表层 GND 连接,以增加隔离度。

RF 匹配滤波电路的π型匹配电路的电容需要单点接地,不能直接在 TOP 层接地。如果是两层板需要打一个过孔连接到 BOTTOM 层的地,如果是多层板过孔不与中间层的地相连,过孔在中间层需要跟 TOP 层一样做禁空处理。这样处理的过孔相当于一个小电感与电容一起组成一个 LC 电路,起到抑制谐波辐射的目的。过孔的位置分布在 RF 线的两边。

图4-5 RF 布线参考

- RF 远离晶体,参考值>5mm,晶体 XOUT 与 RF 的隔离度优于-55dB。
- RF 走线的 S11 参数需要优于-15dB。
- RFI 和 RFIO 隔离度要求-32dB 以上。
- RF 远离时钟钱、电源线、 DDR 和 CPU 等强干扰源。

- 射频走线参考地保证完整,不允许有交叉、换层。若需要换层,换层孔周围打一 圈地孔,形成类同轴结构。
- RF connector、滤波电容电感等大焊盘器件,射频信号对应的 PIN 邻层地需挖空 (2 层板除外),避免寄生电容效应射频信号耦合到地。
- IPEX 座子 TOP 层和 BOTTOM 需要就近接地并打地孔。

🗀 说明

雷达检测模组 PCB 设计约束:

- 雷达模组与整机底板单点接地,避免与整机底板主地大面积连接。
- 雷达模组电源选择低噪声、低纹波的线性电源,或者与整机底板主供电进行滤波隔离。
- 雷达模组贴片的下方整机底板区域禁止走线、铺铜。
- 雷达模组射频走线避免走在靠近整机底板贴片的电气层,例如常规设计中,模组射频走线不要走 BOTTOM 层,消除底板噪声耦合到模组射频通道的风险。
- 雷达模组接口插针远离天线放置,插针选择 L 型侧接类型,焊接建议选用表贴方式,垂直板面的金属高度尽量短。

4.6 时钟布线指导

- 远离天线禁布区,参考值>10mm;远离数据线,参考值>5mm。
- 晶体及其走线远离噪声源和热源。WiFi 系统对时钟要求很高,噪声源(例如 RF、BUCK)会引起系统相噪变差,热源辐射会造成晶体温漂。
- XIN/XOUT 信号走线尽量短,做过孔和包地处理。
- PCB 空间受限的场景,时钟可能会耦合 RF 干扰到芯片内部,建议在 XIN、XOUT 走线靠近芯片端串接一个 0Ω电阻用于调试。
- PCB 为 4 层板时,晶体的 GND pad 建议在 TOP 层和其他地分割,通过过孔连接 到主地,防止单板上的器件发热影响时钟精度。

4.7 GND 布线指导

EPAD 四个角向外走 GND 线,和表层 GND 连接。

EPAD 过孔建议打 6×6 个。两层板受空间限制, EPAD 对应的 BOTTOM 层分 2 个区域。

整机尽量保留一个完整地平面,保证各芯片信号良好共地和回流, 完善地孔,避免孤立铜皮出现。

4.8 屏蔽罩

TBD

5 热设计建议

- 5.1 工作条件
- 5.2 电路热设计参考

5.1 工作条件

须知

- 芯片的极限结温的最大值为 125℃,任何条件下芯片的结温都不能大于该数值。
- 芯片的长期工作结温的最大值为 105℃, 正常工作条件下芯片的结温应该小于该数值。
- 在短期工作条件下, 芯片可以容忍超过 105℃ (长期工作结温的最大值) 而小于 125℃ (极限结温的最大值) 的高温, 但长时间工作在超过 105℃ (长期工作结温 的最大值) 结温下会导致芯片寿命缩减。

表5-1芯片的结温要求

封装形式	正常工作结 温下限(℃)	长期工作最 大结温(℃)	短期工作上 限结温(℃)	破坏性最 大结温 (℃)	生命周期定义
QFN	-40	105	125	125	10年

表5-2 芯片的封装热阻

参数	符号	WS63 系列 芯片	单位
Junction-to-ambient thermal resistance	θја	57.0	°C/W
Junction-to-case thermal resistance	θ _{JC}	27.7	°C/W
Junction-to-top center of case thermal resistance	Ψ_{JT}	-	°C/W
Junction-to-board thermal resistance	ӨЈВ	19.44	°C/W

备注:热阻基于 JEDEC JESD51-2 标准给出,应用时的系统设计及环境可能与 JEDEC JESD51-2 标准不同,需要根据应用条件作出分析。

上述封装热阻参数仿真环境是 JEDEC 标准的 4 层 PCB, 如图 5-1 所示。

图5-1JEDEC 标准的 4 层 PCB 参数

5.2 电路热设计参考

芯片硬件方案设计时,推荐采用 3V3_BUCK 供电方案,实现更好的性能表现。 5V_BUCK 方案和 3V3_LDO 方案仅建议在低功耗场景下采用,且应用场景中芯片位置 板温建议不超过 70℃。

5.2.1 器件布局

结合产品结构和热设计,器件布局建议如下:

- 单板上大功耗且易产生热量器件要均匀分布,避免局部过热,影响器件可靠性和 散热效率。
- 合理设计结构,保证产品内部与外界有热交换途径。
- 对单板关键发热器件充分进行极端应用场景的温升测试,确保器件在安全的温度 范围内长期可靠工作。
- 必要情况下,关键发热器件可以增加散热片,进一步提升散热效果。

5.2.2 PCB

走线热设计建议如下:

- 芯片底下的过孔采用 FULL 孔连接,而不是普通的花孔连接, 以提高单板散热效率。
- 在热量大的器件正下方和周边尽量增大铜皮面积,特别是双面 PCB 单板,发热器件背面的地平面尽量减少分割,完整地平面能够有效分散热量,提高整体散热效果。另外,如果结构允许,将芯片正背面附近地平面进行亮铜处理,也能够进一步提升散热效果。

6 焊接工艺

- 6.1 概述
- 6.2 无铅回流焊工艺参数要求
- 6.3 混合回流焊工艺参数要求

6.1 概述

【目的】Objective

本章规定了客户端在用 SMT 时各温区温度基本设置。

【适用范围】 Scope

芯片产品。

【基本信息】 Basic information

本章主要介绍客户端在使用芯片做回流焊时工艺控制:主要是无铅工艺和混合工艺两类。

【回流焊工艺控制】 Reflow Chart

定义说明:

- 芯片:均满足无铅要求。
- 无铅工艺: 所有器件(主板/所有 IC/电容电阻等)均为无铅器件,并使用无铅锡膏的 纯无铅工艺。

6.2 无铅回流焊工艺参数要求

无铅回流焊接工艺曲线如图 6-1 所示。

图6-1无铅回流焊接工艺曲线

无铅回流焊工艺参数如表 6-1 所示。

表6-1无铅回流焊工艺参数

区域	时间	升温速率	峰值温度	降温速率
预热区(40~ 150℃)	60 ~ 150 s	≤2.0°C/s	-	-
均温区(150~200℃)	60 ~ 120 s	< 1.0°C/s	-	-
回流区 (>217℃)	60 ~ 90 s	-	230 ~ 260 ℃	-
冷却区 (Tmax ~ 180℃)	-	-	-	1.0°C/s≤Slope≤4.0°C/s

说明:

- 预热区: 温度由 40℃~ 150℃, 温度上升速率控制在 2℃/s 左右, 该温区时间为 60s~150s。
- 均温区:温度由 150°C~200°C,稳定缓慢升温,温度上升速率小于 1°C/s,且该区域时间控制在 60s~120s (注意:该区域一定缓慢受热,否则易导致焊接不良)。
- 回流区: 温度由 217°C~ Tmax~217°C,整个区间时间控制在 60s~90s。
- 冷却区:温度由 Tmax~180℃,温度下降速率最大不能超过 4℃/s。
- 温度从室温 25℃升温到 250℃时间不应该超过 6min。
- 该回流焊曲线仅为推荐值,客户端需根据实际生产情况做相应调整。
- 回流时间以 60s ~ 90s 为目标,对于一些热容较大无法满足时间要求的单板可将回流时间放宽至 120s。封装体耐温标准参考 IPC/JEDEC J-STD-020D 标准,封装体测温方法参考 JEP 140 标准。

IPC/JEDEC J-STD-020D 标准, 封装体测温方法按照 JEP 140 标准要求: IPC/JEDEC 020D 中的无铅器件封装体耐温标准如表 6-2 所示。

表6-2 IPC/JEDEC 020D 中的无铅器件封装体耐温标准

Package Thickness	Volume mm ³ < 350	Volume mm ³ 350 ~ 2000	Volume mm ³ > 2000
< 1.6mm	260°C	260°C	260°C
1.6mm ~ 2.5mm	260°C	250℃	245℃
> 2.5mm	250℃	245°C	245℃

体积计算中不计入器件焊端 (焊球,引脚)和外部散热片。

回流焊接工艺曲线测量方法:

JEP140 推荐:对于厚度较小的器件,测量封装体温度时,直接将热电偶贴放在器件表面,对于厚度较大的器件,在器件表面钻孔埋入热电偶进行测量。由于量化器件厚度的要求,推荐全部采用在封装体表面钻孔埋入热电偶的方式(特别薄器件,无法钻孔除外)。如图 6-2 所示。

图6-2 封装体测温示意图

🗀 说明

如果是 QFP 封装的芯片,直接将测温探头放在管脚处即可。

6.3 混合回流焊工艺参数要求

回流焊接过程中,如果出现器件混装现象,应首先保证无铅器件的正常焊接。具体要求如表 6-3 所示。

表6-3 混装回流焊工艺参数表

数值要求		有铅 BGA	无铅 BGA	其它器件		
预热区 (40℃~ 150℃)	时间	60s ~ 150s				
	升温斜率	< 2.5°C/s				
均温区 (150℃~ 183℃)	时间	30s ~ 90s				
	升温斜率	< 1.0°C/s				
回流区(> 183℃)	峰值温度	210°C~240°C	220℃ ~240℃	210°C ~245°C		
	时间	30s~120s	60s~120s	30s~120s		
冷却区 (Tmax ~	降温斜率	1.0°C/s≤Slope≤4.0°C/s				

数值要求	有铅 BGA	无铅 BGA	其它器件
150°C)			

🗀 说明

以上工艺参数要求均针对焊点温度。单板上焊点最热点和最冷点均需要满足以上规范要求。

曲线调制中,还需要满足单板上元器件的封装体耐温要求。封装体耐温标准按照 IPC/JEDEC J-STD-020D 标准,封装体测温方法按照 JEP 140 标准。

IPC/JEDEC 020D 中的有铅器件封装体耐温标准如表 6-4 所示。

表6-4 IPC/JEDEC 020D 中的有铅器件封装体耐温标准

Package Thickness	Volume mm ³ < 350	Volume mm³ ≥350
< 2.5mm	235℃	220°C
≥2.5mm	220℃	220℃

体积计算中不计入器件焊端 (焊球,引脚)和外部散热片。

JEP140 标准规定测量封装体温度方法同无铅工艺, 请参考6.2 无铅回流焊工艺参数 要求要求详细说明。

- 7.1 存放与使用
- 7.2 重新烘烤

7.1 存放与使用

【使用范围】

所有潮敏产品的存放和使用。

【存放环境】

建议产品真空包装存放,存放温度范围: ≥-40°C, ≤150°C。推荐存放在 25°C的环境温度下。

【存储期限】 (shelf life)

存放环境<30。C/60% RH 下,真空包装存放,存储期限(shelf life)不少于 12 个月。

【车间寿命】 (floor life)

在环境条件<30。C/60%下, floor life 参照表如表 7-1 所示。

表7-1车间寿命 (floor life) 参照表

潮湿敏感 等级 (MSL)	含义 (即拆分后放存条件及最长时间)
1	无限制,环境温湿度≦30℃/85% RH (Relative Humidity)

潮湿敏感 等级 (MSL)	含义 (即拆分后放存条件及最长时间)
2	1year , 30°C/60%RH。
2a	4week , 30°C/60%RH。
3	1week , 30°C/60%RH。
4	72h, 30℃/60%RH。
5	48h, 30℃/60%RH。
5a	24h , 30℃/60%RH。
6	Time on Label,30°C/60%RH。

【潮敏产品的使用】

- 产品在≦30℃/60%RH 下连续或累计暴露超过 2 个小时,建议进行重新烘烤后再真空干燥包装。
- 产品在≦30°C/60%RH 下暴露累计没有超过 2 个小时,可以不用重新烘烤,但要更换新的干燥剂,进行真空干燥包装。
- 本产品的潮敏参数等级为3级。

本文没有提到的存储及使用原则,请直接参考 JEDEC J-STD-033A。

7.2 重新烘烤

【适用产品】

所有潮敏产品

【使用范围】

需要重新烘烤的潮敏产品

【重新烘烤参考表】

表7-2 重新烘烤参考表

芯片厚度	MSL 潮 敏等级	烘烤 125℃	烘烤 90℃/≦5% RH	烘烤 40℃/≦5% RH
≤1.4mm	2a	3h	11h	5day
	3	7h	23h	9day
	4	7h	23h	9day
	5	7h	24h	10day
	5a	10h	24h	10day
≤2.0mm	2a	16h	2day	22day
	3	17h	2day	23day
	4	20h	3day	28day
	5	25h	4day	35day
	5a	40h	6day	56day
≤4.5mm	2a	48h	7day	67day
	3	48h	8day	67day
	4	48h	10day	67day
	5	48h	10day	67day
	5a	48h	10day	67day

🗀 说明

- 此表中显示的均是受潮后,必须的最小的烘烤时间。
- 重新烘烤优先选择低温烘烤。
- 详细情况请参考 JEDEC。

8 接口时序

- 8.1 UART 时序
- 8.2 I2C 时序
- 8.3 I2S 时序
- 8.4 SPI 时序

8.1 UART 时序

WS63 系列芯片支持 3 组 UART 接口,其中 UART0 口支持两线连接(RXD、TXD),不支持流控模式,最大波特率 2Mbit/s。UART1/UART2 支持四线的协议(RXD、TXD、CTS、RTS),其中 RXD 和 TXD 用于数据传送,RTS 和 CTS 用于流控,最大波特率5Mbit/s。UART 接口支持多种波特率,波特率大小和传送速率之间成正比关系,其速率可以通过寄存器进行配置。串口发送波特率误差小于 0.5%,串口接收波特率误差容忍度小于 1.5%, UART 接口的时序如图 8-1 所示。

图8-1 UART 接口时序图

注: 图中虚线的信号上升沿按照 0.7×VDD, 下降沿按照 0.3×VDD 选取。

其中:

- 标注 1 为 CTS 信号拉低到 TXD 信号有效的最大延时。
- 标注 2 为结束位的中点到 CTS 信号拉高需要保持的最大时间。
- 标注 3 为结束位的中点到 RTS 信号拉高的最大延时。

UART 时序约束如表 8-1 所示。

表8-1UART 时序约束表

Ref No	Characteristics	Min.	Typical	Max.	Unit
1	CTS low to TXD valid	-	-	1.5	Bit Periods
2	CTS high before mid of stop bit	-	-	0.5	Bit Periods
3	Mid of stop bit to RTS high	-	-	0.5	Bit Periods

8.2 I2C 时序

I2C 接口只支持 master模式,接口传输时序如图 8-2 所示。

图8-2 I2C 传输时序图

I2C 接口时序参数如所示。

表8-2 I2C 接口时序参数表

参数	符号	标准模	标准模	快速模式	快速模式最	单位
		式最小	式最大	最小值	大值	
		值	值			

参数	符号	标准模 式最小 值	标准模 式最大 值	快速模式最小值	快速模式最 大值	单位
SCL 时 钟频率	fscL	-	100	-	400	kHz
启动保持时间	thd;sta	4.0	-	0.6	-	μs
SCL 低 电平周 期	tLOW	4.7	-	1.3	-	μs
SCL 高 电平周 期	tніgн	4.0	-	0.6	-	μs
启动建立时间	tsu;sta	4.7	-	0.6	-	μs
数据保持时间	thd;dat	0	3.45	0	0.9	μs
数据建立时间	tsu;dat	250	-	100	-	ns
SDA、 SCL 上 升时间	tr	-	1000	20+0.1C _b	300	ns
SDA、 SCL 下 降时间	tf	-	300	20+0.1C _b	300	ns
结束建 立时间	tsu;sто	4.0	-	0.6	-	μs
开始与 结束之 间的总 线释放	tвиғ	4.7	-	1.3	-	μѕ

参数	符号	标准模 式最小 值	标准模 式最大 值	快速模式最小值	快速模式最 大值	単位
时间						
总线负 载	Сь	-	400	-	400	pF
低电平 噪声容 限	V _{nL}	0.1V _{DD}	-	0.1V _{DD}	-	V
高电平 噪声容 限	V _{nH}	0.2V _{DD}	-	0.2V _{DD}	-	V

8.3 I2S 时序

I2S 接口支持 Master/Slave 模式,接口时序 TBD。

8.4 SPI 时序

🗀 说明

以下缩略语或字母含义:

MSB: Most Significant Bit

• LSB: Least Significant Bit

SPI_CK(0): spo=0SPI_CK(1): spo=1

标准 SPI 接口支持 Master/Slave模式,接口时序如图 8-3 所示。

图8-3 SPI 接口时序图

注:用作 Master 时,时钟周期最小值为 80ns;用作 Slave 时,时钟周期最小值为 80ns。

SPO (SPICLKOUT Polarity) 表示 SPICLKOUT 极性, SPH (SPICLKOUT Phase) 表示 SPICLKOUT 相位。

表8-3 SPI 接口时序参数表

参数	符号	最小值	最大值	单位
输出数据延迟	T _{dd}	0	17.5	ns
输入控制信号建立时间 (master)	T _{ds}	4	-	ns
输入控制信号保持时间 (master)	T _{dh}	1.6	-	ns
输入控制信号建立时间 (slave)	T _{ds}	4	-	ns
输入控制信号保持时间 (slave)	T _{dh}	1	-	ns

QSPI 接口只支持 Master 模式,不支持 XIP,接口时序 TBD。

9 注意事项

- 9.1 硬件设计
- 9.2 单板生产工艺

9.1 硬件设计

在硬件设计中的几个注意事项:

- 硬件方案设计时,推荐采用 3V3_BUCK 供电方案,实现更好的性能表现。 5V BUCK 方案和 3V3 LDO 方案仅建议在低功耗场景下采用。
- PWR_ON 管脚高电平使能,芯片内部默认有 MΩ级下拉,设计时参考 "3.1.2 复位电路"。
- 硬件配置字相关的 GPIO_01/GPIO_03/GPIO_04/GPIO_06/PWR_SEL (即PIN5/7/8/10/23),设计时参考 "3.1.3 硬件初始化系统配置电路"。
- WS63 系列芯片的参考设计单板经过发射 EVM、接收灵敏度、认证等 WiFi 射频 指标测试。围绕芯片的去耦电容容值及摆放位置尽量不要变动,如果必须修改, 需要针对单板发射 EVM、接收灵敏度、认证等 WiFi 射频指标进行详细摸底测试。
- RF 链路使用 LC 组成的π形低通滤波器建议不要更改,尤其是接地电容的地焊盘 和地孔处理方式。
- 当前提供的参考设计与器件选型主要是实验室测试与样品测试。用户在量产导入时,建议进行全面的产品硬件测试与评估,按照量产流程逐步完成导入。

9.2 单板生产工艺

单板生产工艺的几个注意事项:

- 单板分板需要使用机器分板, 严禁手工分板。
- 手工焊接前请做好静电放电处理,佩戴静电手镯。
- PCB 存储条件建议:
 - OSP (Organic Solderability Preservative) 板

真空包装前后的存放条件: 温度 20℃~ 30℃, 相对湿度 50%。真空包装后寿命 3 个月~ 1 年。储存时间超过 6 个月时,通常拆封后即可组装,但为了避免板材储藏湿气造成爆板,可以烘烤方式来去除板内湿气,烘烤条件为110℃~ 120℃, 1h (最长时间不要超过 1.5h)。

- 喷锡板

真空包装前后的存放条件: 温度 25℃, 相对湿度 60%。真空包装后寿命 1 年。储存时间超过 6 个月时,通常拆封后即可组装,但为了避免板材储藏湿气造成爆板,可以烘烤方式来去除板内湿气,烘烤条件为 120℃, 1h (最长时间不要超过 1.5h)。

人 缩略语

AC Alternating Current 交流 (电)

ADC Analog to Digital Converter 模数转换器

ALE Address Latch Enable 地址锁存使能

С

Α

CPU Central Processing Unit 中央处理单元

CS Chip Select 片选

D

DDR Double Data Rate 双数据速率

Ε

EPAD Exposed PAD

F

FLASH memory 闪速存储器

ı

I2C The Inter-Integrated Circuit —种串行总线协议标准

Inter-IC Sound —种音频数据传输总线标准

IO Input Output 输入输出

IPU Internal Pull-Up 内部上拉

J

JEDEC Joint Electron Device 电子元件工业联合会

Engineering Council

JTAG Joint Test Action Group 联合测试行动小组

L

LSB Least Significant Byte 最低有效字节

M

MSB Most Significant Bit 最高位

Ν

NC No Connection 未连接

0

OD Open Drain 漏极开路门

Ρ

PCB Physical Control Block 物理控制块

PWM Pulse Width Modulation 脉宽调制

R

RST Reset 复位

RX Reception 接收

S

SCL Serial Clock Line 串行时钟线

SDA Serial Data and Address 串行数据地址线

SPI SDH Physical Interface SDH 物理接口

STA Static Timing Analysis 静态时序分析

SYNC Synchronization (network) 同步 (网)

U

Universal Asynchronous 通用异步收发器

Receiver & Transmitter

USB Universal Serial Bus 通用串行总线