

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań	
Egzamin:	Egzamin maturalny Arkusz pokazowy	
Przedmiot:	Matematyka	
Poziom:	Poziom rozszerzony	
Formy arkusza:	MMAP-R0-100, MMAP-R0-200, MMAP-R0-300, MMAP-R0-400, MMAP-R0-660, MMAP-R0-700, MMAP-R0-Q00	
Data publikacji dokumentu:	4 marca 2022 r.	

Uwaga: Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.

Zadanie 1. (0-3)

Wymagania egzaminacyjne 2023 i 2024¹		
Wymagania ogólne	Wymagania szczegółowe	
I. Sprawność rachunkowa. Wykonywanie obliczeń na liczbach rzeczywistych, także przy użyciu kalkulatora, stosowanie praw działań matematycznych przy przekształcaniu wyrażeń algebraicznych oraz wykorzystywanie tych umiejętności przy rozwiązywaniu problemów w kontekstach rzeczywistych i teoretycznych. III. Wykorzystanie i interpretowanie	Zdający: I.1) wykonuje działania (dodawanie, odejmowanie, mnożenie, dzielenie, potęgowanie, pierwiastkowanie, logarytmowanie) w zbiorze liczb rzeczywistych; I.9) stosuje związek logarytmowania z potęgowaniem, posługuje się wzorami na logarytm iloczynu, logarytm ilorazu i logarytm potęgi.	
reprezentacji. 1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	I.1) (R) stosuje wzór na zamianę podstawy logarytmu.	

Zasady oceniania

- 3 pkt zastosowanie ciągu poprawnych przekształceń i wyrażenie $\log_4 49$ za pomocą danych liczb a oraz b: $\log_4 49 = a \cdot b$.
- 2 pkt zastosowanie do $\log_3 4$ wzoru na zamianę podstawy logarytmu i przekształcenie $\log_3 4$ do postaci $\log_3 4 = \frac{2}{\log_2 3}$.
- 1 pkt zastosowanie wzoru na zamianę podstawy logarytmu i zapisanie $\log_4 49$ za pomocą logarytmów o podstawie 3 z liczb naturalnych, np. $\log_4 49 = \frac{\log_3 49}{\log_3 4}$, $\log_4 49 = 2 \cdot \frac{\log_3 7}{\log_3 4}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Przekształcamy $\log_4 49$, stosując wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu, i otrzymujemy

¹ Komunikat o wymaganiach egzaminacyjnych obowiązujących w roku 2023 i 2024, https://www.gov.pl/web/edukacja-i-nauka/wymagania-egzaminacyjne-obowiazujace-na-egzaminie-maturalnym-w-roku-2023-i-2024

$$\log_4 49 = 2 \cdot \log_4 7 = 2 \cdot \frac{\log_3 7}{\log_3 4} = 2 \cdot \frac{\log_3 7}{\frac{\log_2 4}{\log_2 3}} = 2 \cdot \log_3 7 \cdot \frac{\log_2 3}{\log_2 4} = 2 \cdot \log_3 7 \cdot \frac{\log_2 3}{2}$$

Zatem

$$\log_4 49 = 2 \cdot b \cdot \frac{a}{2} = a \cdot b$$

Odp. $\log_4 49 = a \cdot b$.

Zadanie 2. (0-3)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji. 1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: XIII.2) (R) stosuje definicję pochodnej funkcji, podaje interpretację geometryczną pochodnej; XIII.3) (R) oblicza pochodną funkcji o wykładniku rzeczywistym oraz oblicza pochodną, korzystając z twierdzeń o pochodnej sumy, różnicy, iloczynu i ilorazu.

Zasady oceniania

- 3 pkt poprawna metoda wyznaczenia równania stycznej do wykresu funkcji f w punkcie P=(-3,-3) i podanie prawidłowego wyniku: $y=\frac{3}{4}x-\frac{3}{4}$.
- 2 pkt podanie poprawnej interpretacji liczby f'(-3) jako współczynnika kierunkowego stycznej i obliczenie f'(-3): $f'(-3) = \frac{3}{4}$.
- 1 pkt wyznaczenie pochodnej funkcji f: $f'(x) = \frac{x^2 2x 3}{(x 1)^2}$ dla każdego $x \in \mathbb{R} \setminus \{1\}$.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Wyznaczamy pochodną funkcji f:

$$f'(x) = \frac{2x \cdot (x-1) - (x^2+3) \cdot 1}{(x-1)^2} = \frac{x^2 - 2x - 3}{(x-1)^2}$$

dla każdego $x \in \mathbb{R} \setminus \{1\}$.

Obliczamy współczynnik kierunkowy szukanej stycznej:

$$f'(-3) = \frac{(-3)^2 - 2 \cdot (-3) - 3}{(-3 - 1)^2} = \frac{9 + 6 - 3}{16} = \frac{3}{4}$$

Zatem równanie stycznej do wykresu funkcji f w punkcie P=(-3,-3) ma postać:

$$y = \frac{3}{4}x + b$$

Obliczamy współczynnik b. Ponieważ punkt P leży na prostej stycznej, więc

$$-3 = \frac{3}{4} \cdot (-3) + b$$
. Stad $b = -\frac{3}{4}$.

Równanie stycznej do wykresu funkcji f w punkcie P=(-3,-3) ma postać $y=\frac{3}{4}x-\frac{3}{4}$.

Zadanie 3. (0-4)

Wymaganie ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:	
reprezentacji.	VI.5) stosuje wzór na n –ty wyraz i na sumę	
Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	$\it n$ początkowych wyrazów ciągu	
	geometrycznego.	
	VI.2) (R) rozpoznaje zbieżne szeregi	
	geometryczne i oblicza ich sumę.	

Zasady oceniania

- 4 pkt poprawna metoda wyznaczenia ilorazu ciągu i poprawna metoda rozwiązania nierówności $\left|\frac{S-S_n}{S_n}\right| < 0.001\,$ w zbiorze liczb naturalnych dodatnich oraz poprawny wynik: n>9.
- 3 pkt zapisanie, że $1-q^n>0$ (albo $0<1-q^n<1$) i przekształcenie nierówności $\left|\frac{S-S_n}{S_n}\right|<0.001$ do postaci nierówności wymiernej z niewiadomą t ($t=q^n$), np. $\frac{t}{1-t}<0.001, \frac{q^n}{1-q^n}<0.001$ LUB

przekształcenie nierówności $\left|\frac{S-S_n}{S_n}\right| < 0,001$ do koniunkcji dwóch nierówności wymiernych z niewiadomą t $(t=q^n)$, np. $\frac{t}{1-t} > -0,001$ i $\frac{t}{1-t} < 0,001$ (albo: $\frac{q^n}{1-q^n} < 0,001$ i $\frac{q^n}{1-q^n} > -0,001$), i zapisanie, że nierówność $\frac{t}{1-t} > -0,001$ jest spełniona dla każdej liczby $t \in (0,1)$ (analogicznie: zapisanie, że nierówność $\frac{q^n}{1-q^n} > -0,001$ jest prawdziwa dla każdej liczby naturalnej dodatniej n).

- 2 pkt obliczenie ilorazu q ciągu (a_n) : $q = \frac{1}{2}$.
- 1 pkt skorzystanie ze wzorów na sumę n początkowych wyrazów ciągu geometrycznego oraz sumę wszystkich wyrazów ciągu geometrycznego i zapisanie równania $a_1+a_2+a_3=S\cdot(1-q^3)$ LUB

zapisanie dwóch równań z niewiadomymi a_1 oraz q, wynikających z treści zadania, np. $a_1\cdot(1+q+q^2)=7$ i $8=\frac{a_1}{1-q}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Ponieważ suma wszystkich wyrazów ciągu (a_n) istnieje i jest różna od zera, więc $a_1 \neq 0$ i iloraz q tego ciągu spełnia warunek |q| < 1.

Korzystamy ze wzorów na sumę n początkowych wyrazów ciągu geometrycznego oraz na sumę wszystkich wyrazów ciągu geometrycznego i obliczamy iloraz q ciągu (a_n) :

$$a_1 + a_2 + a_3 = a_1 \cdot \frac{1 - q^3}{1 - q} = \frac{a_1}{1 - q} \cdot (1 - q^3) = S \cdot (1 - q^3)$$
$$7 = 8(1 - q^3)$$
$$q = \frac{1}{2}$$

Zatem $S = a_1 \cdot \frac{1}{1 - \frac{1}{2}} = 2a_1$ i $S_n = a_1 \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = 2a_1 \cdot \left[1 - \left(\frac{1}{2}\right)^n\right]$. Stąd, wobec $a_1 \neq 0$, otrzymujemy $\frac{S - S_n}{S_n} = \frac{2a_1 - 2a_1 \cdot \left[1 - \left(\frac{1}{2}\right)^n\right]}{2a_1 \cdot \left[1 - \left(\frac{1}{2}\right)^n\right]} = \frac{2a_1 \cdot \left(\frac{1}{2}\right)^n}{2a_1 \cdot \left[1 - \left(\frac{1}{2}\right)^n\right]} = \frac{\left(\frac{1}{2}\right)^n}{1 - \left(\frac{1}{2}\right)^n}$.

Rozwiązujemy nierówność $\left| \frac{S-S_n}{S_n} \right| < 0.001\,$ w zbiorze liczb całkowitych dodatnich:

$$\left| \frac{S - S_n}{S_n} \right| < 0.001$$

$$\left| \frac{\left(\frac{1}{2}\right)^n}{1 - \left(\frac{1}{2}\right)^n} \right| < 0.001$$

Ponieważ $q=\frac{1}{2}\in(0,1)$, więc $1-\left(\frac{1}{2}\right)^n>0$. Zatem nierówność $\left|\frac{\left(\frac{1}{2}\right)^n}{1-\left(\frac{1}{2}\right)^n}\right|<0.001$

możemy przekształcić do postaci $\frac{\left(\frac{1}{2}\right)^n}{1-\left(\frac{1}{2}\right)^n} < 0,001$. Stąd otrzymujemy dalej

$$\left(\frac{1}{2}\right)^{n} < 0.001 \left[1 - \left(\frac{1}{2}\right)^{n}\right] / \cdot 2^{n}$$

$$1 < 0.001(2^{n} - 1)$$

$$2^{n} > 1001$$

Ponieważ $2^9 = 512$ i $2^{10} = 1024$, więc n > 9.

Rozwiązaniem nierówności $\left|\frac{S-S_n}{S_n}\right| < 0{,}001\,$ w zbiorze liczb całkowitych dodatnich są wszystkie liczby naturalne większe od 9.

Zadanie 4. (0-5)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	III.3) (R) stosuje wzory Viète'a dla równań
2. Dobieranie i tworzenie modeli	kwadratowych;
matematycznych przy rozwiązywaniu	III.5) (R) analizuje równania i nierówności
problemów praktycznych i teoretycznych.	liniowe z parametrami oraz równania
IV. Rozumowanie i argumentacja.	i nierówności kwadratowe z parametrami,
1. Przeprowadzanie rozumowań, także	w szczególności wyznacza liczbę
kilkuetapowych, podawanie argumentów uzasadniających poprawność rozumowania [].	rozwiązań w zależności od parametrów,
	podaje warunki, przy których rozwiązania
	mają żądaną własność, i wyznacza
	rozwiązania w zależności od parametrów.

Zasady oceniania

- 5 pkt wyznaczenie części wspólnej rozwiązań warunków (W1)–(W5) i podanie poprawnego wyniku: $m \in \left(-\infty, -\frac{19}{3}\right) \cup (2,11) \cup (11,+\infty).$
- 4 pkt zapisanie, że dla $\,m=2\,$ warunki zadania nie są spełnione oraz rozwiązanie warunków (W1)–(W5):

(W1)
$$m \neq 2$$

(W2)
$$m \in \left(-\infty, -\frac{19}{3}\right) \cup (-2, +\infty)$$

(W3)
$$m \in (-\infty, -1) \cup (2, +\infty)$$

(W4)
$$m \in (-\infty, -3) \cup (2, +\infty)$$

(W5)
$$m \neq 11$$
.

3 pkt - rozwiązanie warunków (W2)-(W4):

(W2)
$$m \in \left(-\infty, -\frac{19}{3}\right) \cup \left(-2, +\infty\right)$$

(W3)
$$m \in (-\infty, -1) \cup (2, +\infty)$$

(W4)
$$m \in (-\infty, -3) \cup (2, +\infty)$$
.

2 pkt – zapisanie, że dla m=2 warunki zadania nie są spełnione oraz zapisanie warunków koniecznych i dostatecznych na to, aby równanie (2) było równaniem kwadratowym, które ma dwa różne rozwiązania rzeczywiste dodatnie różne od liczby $6: m-2 \neq 0$ i $\Delta>0$ i $x_1\cdot x_2>0$ i $x_1+x_2>0$ i $(m-2)\cdot 6^2-4\cdot (m+3)\cdot 6+m+1\neq 0$ LUB

zapisanie, że dla $\,m=2\,$ warunki zadania nie są spełnione oraz zapisanie warunków

$$x_1\cdot x_2>0$$
 i $x_1+x_2>0$ w zależności od parametru $m\colon \frac{m+1}{m-2}>0$ i $-\frac{-4(m+3)}{m-2}>0$

LUB

zapisanie, że dla m=2 warunki zadania nie są spełnione oraz wyznaczenie tych wszystkich wartości parametru m, dla których wyróżnik Δ trójmianu $(m-2)x^2-4(m+3)x+m+1=0$ jest dodatni.

1 pkt – zapisanie, że równanie (1) ma trzy różne rozwiązania rzeczywiste tego samego znaku tylko wtedy, gdy równanie (2) ma dwa różne rozwiązania dodatnie różne od liczby 6.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Zauważmy, że jednym z rozwiązań równania

$$(x-6) \cdot [(m-2)x^2 - 4(m+3)x + m + 1] = 0 \tag{1}$$

jest liczba 6. Zatem równanie (1) ma trzy różne rozwiązania rzeczywiste tego samego znaku wtedy i tylko wtedy, gdy równanie

$$(m-2)x^2 - 4(m+3)x + m + 1 = 0 (2)$$

ma dokładnie dwa różne rozwiązania dodatnie x_1 , x_2 takie, że $x_1 \neq 6$ i $x_2 \neq 6$. Dla m=2 równanie (2) przyjmuje postać -20x+3=0 i ma tylko jedno rozwiązanie. Pozostaje wyznaczyć te wartości parametru m, dla których warunki zadania są spełnione, a równanie (2) jest kwadratowe, tj. wyznaczyć te wartości parametru, dla których spełnione są jednocześnie następujące warunki:

(W1)
$$m - 2 \neq 0$$

(W2)
$$\Delta > 0$$

(W3)
$$x_1 \cdot x_2 > 0$$

(W4)
$$x_1 + x_2 > 0$$

(W5)
$$(m-2) \cdot 6^2 - 4 \cdot (m+3) \cdot 6 + m + 1 \neq 0$$

Rozwiązaniem warunku (W1) jest $m \neq 2$.

Rozwiązujemy nierówność $\Delta > 0$:

$$[-4(m+3)]^{2} - 4 \cdot (m-2) \cdot (m+1) > 0$$

$$16m^{2} + 96m + 144 - 4m^{2} + 4m + 8 = 0$$

$$12m^{2} + 100m + 152 > 0$$

$$m \in \left(-\infty, -\frac{19}{3}\right) \cup (-2, +\infty)$$

Korzystając ze wzorów Viète'a, rozwiązujemy warunek (W3):

$$x_1 \cdot x_2 > 0$$

$$\frac{m+1}{m-2} > 0$$

$$(m+1)(m-2) > 0 \land m \neq 2$$

$$m \in (-\infty, -1) \cup (2, +\infty)$$

Korzystając ze wzorów Viète'a, rozwiązujemy warunek (W4):

$$x_1 + x_2 > 0$$

$$-\frac{-4(m+3)}{m-2} > 0$$

$$(m+3)(m-2) > 0 \quad \land \quad m \neq 2$$

$$m \in (-\infty, -3) \cup (2, +\infty)$$

Rozwiązujemy warunek (W5):

$$(m-2) \cdot 6^2 - 4 \cdot (m+3) \cdot 6 + m + 1 \neq 0$$

 $13m - 143 \neq 0$
 $m \neq 11$

Wyznaczamy część wspólną rozwiązań warunków (W1)–(W5) i otrzymujemy $m \in \left(-\infty, -\frac{19}{3}\right) \cup (2,11) \cup (11,+\infty)$. Równanie (1) ma trzy różne rozwiązania tego samego znaku dla

 $m \in \left(-\infty, -\frac{19}{3}\right) \cup (2, 11) \cup (11, +\infty).$

700	lanie		(0 2)
Zau	ame	J. (เบ–ง

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
Przeprowadzanie rozumowań, także kilkuetapowych, podawanie argumentów uzasadniających poprawność rozumowania, odróżnianie dowodu od przykładu.	I.2) (R) przeprowadza proste dowody dotyczące podzielności liczb całkowitych i reszt z dzielenia nie trudniejsze niż dowód własności: jeśli liczba przy dzieleniu przez 5 daje resztę 3, to jej trzecia potęga przy dzieleniu przez 5 daje resztę 2.

Zasady oceniania

dla sposobu 1.

- 3 pkt przeprowadzenie pełnego dowodu.
- 2 pkt przekształcenie wyrażenia $(a-1)^3+a^3+(a+1)^3$ do postaci $3a(a^2+2)$, gdzie a jest liczbą parzystą niepodzielną przez 4, i wykazanie, że liczba $3a(a^2+2)$ jest podzielna przez 4 LUB

przekształcenie wyrażenia $(a-1)^3+a^3+(a+1)^3$ do postaci $3a(a^2+2)$, gdzie a jest liczbą parzystą niepodzielną przez 4, i wykazanie, że liczba $3a(a^2+2)$ jest podzielna przez 9.

1 pkt – zapisanie sumy sześcianów trzech kolejnych liczb całkowitych niepodzielnych przez 4 w postaci $(a-1)^3 + a^3 + (a+1)^3$, gdzie a jest liczbą parzystą niepodzielną przez 4.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

dla sposobu 2.

- 3 pkt przeprowadzenie pełnego dowodu.
- 2 pkt przekształcenie wyrażenia $(4k+1)^3+(4k+2)^3+(4k+3)^3$ do postaci $36\cdot P(k)+12\cdot Q(k)$, gdzie P i Q są wielomianami o współczynnikach całkowitych, np. $12(16k^3+24k^2+14k+3)$, $36(5k^3+8k^2+4k+1)+12k(k^2+2)$.
- 1 pkt zapisanie sumy sześcianów trzech kolejnych liczb całkowitych niepodzielnych przez 4 w postaci $(4k+1)^3 + (4k+2)^3 + (4k+3)^3$, gdzie $k \in \mathbb{Z}$.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób 1.

Sumę sześcianów trzech kolejnych liczb całkowitych niepodzielnych przez 4 można zapisać w postaci $(a-1)^3+a^3+(a+1)^3$, gdzie a jest liczbą parzystą niepodzielną przez 4. Ponieważ

$$(a-1)^3 + a^3 + (a+1)^3 = a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a + 1 = 3a(a^2 + 2),$$

więc liczba $(a-1)^3 + a^3 + (a+1)^3$ jest podzielna przez 4 jako iloczyn liczby parzystej 3a i liczby parzystej $a^2 + 2$.

Jeżeli a=3k, przy pewnym $k\in\mathbb{Z}$, to $3a(a^2+2)=9k(9k^2+2)$ jest liczbą podzielną przez 9.

Jeżeli a=3k+1, przy pewnym $k\in\mathbb{Z}$, to $3a(a^2+2)=3(3k+1)[(3k+1)^2+2]=$ $=3(3k+1)(9k^2+6k+3)=9(3k+1)(3k^2+2k+1)$ jest liczbą podzielną przez 9. Jeżeli a=3k+2, przy pewnym $k\in\mathbb{Z}$, to liczba $3a(a^2+2)=$ $=3(3k+2)[(3k+2)^2+2]=3(3k+2)(9k^2+12k+6)=9(3k+2)(3k^2+4k+2)$

jest liczbą podzielną przez 9.

Zatem suma sześcianów trzech kolejnych liczb całkowitych niepodzielnych przez 4 jest

zatem suma szescianow trzech kolejnych liczb całkowitych niepodzielnych przez 4 jest podzielna przez 9.

Ponieważ suma trzech kolejnych liczb całkowitych niepodzielnych przez 4 jest liczbą podzielną przez 4 i przez 9 oraz liczby 4 i 9 są względnie pierwsze, więc ta suma jest liczbą podzielną przez 36.

Sposób 2.

Sumę sześcianów trzech kolejnych liczb całkowitych niepodzielnych przez 4 można zapisać w postaci $(4k+1)^3 + (4k+2)^3 + (4k+3)^3$, gdzie $k \in \mathbb{Z}$.

Ponieważ $(4k+1)^3 + (4k+2)^3 + (4k+3)^3 =$

$$= 64k^3 + 48k^2 + 12k + 1 + 64k^3 + 96k^2 + 48k + 8 + 64k^3 + 144k^2 + 108k + 27 =$$

$$= 192k^3 + 288k^2 + 168k + 36 = 12(16k^3 + 24k^2 + 14k + 3) =$$

= $36(5k^3+8k^2+4k+1)+12k(k^2+2)$, więc wystarczy pokazać, że liczba $k(k^2+2)$ jest podzielna przez 3 dla każdego $k\in\mathbb{Z}$.

Jeżeli k=3m, gdzie $m\in\mathbb{Z}$, to liczba $k(k^2+2)=3m(9m^2+2)$ jest podzielna przez 3 jako iloczyn liczby 3 i liczby całkowitej $m(9m^2+2)$.

Jeżeli k = 3m + 1, gdzie $m \in \mathbb{Z}$, to liczba $k(k^2 + 2) = (3m + 1)[(3m + 1)^2 + 2] = (3m + 1)(9m^2 + 6m + 3) = 3(3m + 1)(3m^2 + 2m + 1)$ jest podzielna przez 3 jako iloczyn liczby 3 i liczby całkowitej $(3m + 1)(3m^2 + 2m + 1)$.

Jeżeli k=3m+2, gdzie $m\in\mathbb{Z}$, to liczba $k(k^2+2)=(3m+2)[(3m+2)^2+2]=(3m+2)(9m^2+12m+6)=3(3m+2)(3m^2+4m+2)$ jest podzielna przez 3 jako iloczyn liczby 3 i liczby całkowitej $(3m+2)(3m^2+4m+2)$.

Zadanie 6.1. (0-2)

Wymagania ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie informacjami przedstawionymi w tekście zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	II.1) stosuje wzory skróconego mnożenia na: $(a+b)^2$, $(a-b)^2$, a^2-b^2 . IX.3) oblicza odległość dwóch punktów w układzie współrzędnych.
III. Wykorzystanie i interpretowanie reprezentacji.	
Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych;	
3. Tworzenie pomocniczych obiektów matematycznych na podstawie istniejących, w celu przeprowadzenia argumentacji lub rozwiązania problemu.	

Zasady oceniania

2 pkt – doprowadzenie wyrażenia określającego długość odcinka PR do postaci

$$\sqrt{\frac{1}{4}x^4 - \frac{1}{2}x^3 - \frac{13}{8}x^2 + \frac{39}{8}x + \frac{593}{64}}.$$

1 pkt – przyjęcie $R = (x, -0.5(x - 0.5)^2 + 4)$ (lub R = (x, g(x))) i zastosowanie wzoru na odległość dwóch punktów do wyznaczenia długości odcinka PR:

$$|PR| = \sqrt{(x+1)^2 + (-0.5(x-0.5)^2 + 4 - 1)^2}$$

(lub $|PR| = \sqrt{(x+1)^2 + (g(x)-1)^2}$).

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Ponieważ $R \in g$, więc $R = (x, -0.5(x - 0.5)^2 + 4)$. Zatem

$$|PR| = \sqrt{(x - (-1))^2 + (-0.5(x - 0.5)^2 + 4 - 1)^2}$$

Stosując wzór na kwadrat sumy dwóch wyrażeń, otrzymujemy

$$|PR| = \sqrt{x^2 + 2x + 1 + (-0.5(x - 0.5)^2)^2 + 2 \cdot (-0.5)(x - 0.5)^2 \cdot 3 + 9}$$

$$|PR| = \sqrt{x^2 + 2x + 1 + \frac{1}{4} \left(x^2 - x + \frac{1}{4}\right) \left(x^2 - x + \frac{1}{4}\right) - 3\left(x^2 - x + \frac{1}{4}\right) + 9}$$

$$|PR| = \sqrt{x^2 + 2x + 1 + \frac{1}{4} \left(x^4 - 2x^3 + \frac{3}{2}x^2 - \frac{1}{2}x + \frac{1}{16} \right) - 3x^2 + 3x - \frac{3}{4} + 9}$$

$$|PR| = \sqrt{\frac{1}{4}x^4 - \frac{1}{2}x^3 - \frac{13}{8}x^2 + \frac{39}{8}x + \frac{593}{64}}$$

To należało pokazać.

Zadanie 6.2. (0-6)

Wymagania ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:	
reprezentacji.	XIII.3) (R) oblicza pochodną funkcji	
1. Stosowanie obiektów matematycznych	potęgowej o wykładniku rzeczywistym [];	
i operowanie nimi, interpretowanie pojęć	XIII.4) (R) stosuje pochodną do badania	
matematycznych.	monotoniczności funkcji;	
IV. Rozumowanie i argumentacja.	XIII.5) (R) rozwiązuje zadania	
4. Stosowanie i tworzenie strategii przy	optymalizacyjne z zastosowaniem	
rozwiązywaniu zadań, również	pochodnej.	
w sytuacjach nietypowych.		

Zasady oceniania

- 6 pkt uzasadnienie, że punkt K musi należeć do wykresu funkcji g i poprawne uzasadnienie, że funkcja d przyjmuje wartość największą dla argumentu $x=\frac{3}{2}$, obliczenie współrzędnych punktu K oraz długości |PK| toru: $K=\left(\frac{3}{2},\frac{7}{2}\right)$, $|PK|=\frac{5\sqrt{2}}{2}$.
- 5 pkt uzasadnienie, że punkt K musi należeć do wykresu funkcji g i uzasadnienie, że funkcja k przyjmuje wartość największą dla argumentu $x=\frac{3}{2}$ LUB poprawne uzasadnienie, że funkcja d przyjmuje wartość największą dla argumentu $x=\frac{3}{2}$ oraz obliczenie $g\left(\frac{3}{2}\right)$, oraz obliczenie $d\left(\frac{3}{2}\right)$: $g\left(\frac{3}{2}\right)=\frac{7}{2}$, $d\left(\frac{3}{2}\right)=\frac{5\sqrt{2}}{2}$.
- 4 pkt uzasadnienie, że punkt K musi należeć do wykresu funkcji g i obliczenie miejsc zerowych pochodnej funkcji k: $x=\frac{3}{2}$ LUB

uzasadnienie, że funkcja k przyjmuje wartość największą dla argumentu $x=\frac{3}{2}$.

- 3 pkt uzasadnienie, że punkt K musi należeć do wykresu funkcji g i wyznaczenie pochodnej funkcji k: $k'(x) = x^3 \frac{3}{2}x^2 \frac{13}{4}x^2 + \frac{39}{8}$ dla $x \in \left[\frac{1-\sqrt{94}}{6}, \frac{1+\sqrt{94}}{6}\right]$ LUB
 - obliczenie miejsc zerowych pochodnej funkcji k: $x = \frac{3}{2}$.

2 pkt – uzasadnienie, że punkt K musi należeć do wykresu funkcji g i określenie dziedziny

funkcji
$$d$$
: $x \in \left[\frac{1-\sqrt{94}}{6}, \frac{1+\sqrt{94}}{6}\right]$

LUB

wyznaczenie pochodnej funkcji k: $k'(x) = x^3 - \frac{3}{2}x^2 - \frac{13}{4}x^2 + \frac{39}{8}$ dla

$$x \in \left[\frac{1 - \sqrt{94}}{6}, \frac{1 + \sqrt{94}}{6}\right].$$

1 pkt – uzasadnienie, że punkt $\,K\,$ musi należeć do wykresu funkcji $\,g\,$ $\,LUB\,$

określenie dziedziny funkcji d: $x \in \left[\frac{1-\sqrt{94}}{6}, \frac{1+\sqrt{94}}{6}\right]$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Pokażemy najpierw, że optymalna lokalizacja końca toru regatowego musi znajdować się na linii brzegowej określonej przez funkcję g.

Niech $A=(x_A,y_A)$ i $B=(x_B,y_B)$ będą punktami przecięcia wykresów funkcji f i g (zobacz rysunek).

Współrzędne każdego punktu $C=(x_C,y_C)$ leżącego na fragmencie paraboli (będącej wykresem funkcji f) pomiędzy punktami A i B spełniają nierówności

$$|x_C - x_P| \le |x_B - x_P|$$
 \land $|y_C - y_P| \le |y_B - y_P|$

więc

$$|x_C - x_P|^2 + |y_C - y_P|^2 \le |x_B - x_P|^2 + |y_B - y_P|^2$$

 $|PC|^2 \le |PB|^2$
 $|PC| \le |PB|$

Ponieważ $B \in g$, więc optymalna lokalizacja końca toru musi znajdować się na linii brzegowej określonej przez funkcję g.

Obliczamy pierwsze współrzędne punktów przecięcia wykresów funkcji f i g:

$$x^{2} = -0.5(x - 0.5)^{2} + 4$$

$$\frac{3}{2}x^{2} - \frac{1}{2}x - \frac{31}{8} = 0$$

$$12x^{2} - 4x - 31 = 0$$

$$x = \frac{1 - \sqrt{94}}{6} \approx -1.45 \quad \forall \quad x = \frac{1 + \sqrt{94}}{6} \approx 1.78$$

Zatem $x_A = \frac{1 - \sqrt{94}}{6}$ oraz $x_B = \frac{1 + \sqrt{94}}{6}$.

W celu wyznaczenia punktu, w którym należy umiejscowić koniec toru, rozpatrujemy funkcję d określoną wzorem

$$d(x) = \sqrt{\frac{1}{4}x^4 - \frac{1}{2}x^3 - \frac{13}{8}x^2 + \frac{39}{8}x + \frac{593}{64}}$$

dla każdego $x \in \left[\frac{1-\sqrt{94}}{6}, \frac{1+\sqrt{94}}{6}\right]$ i szukamy argumentu, dla którego funkcja ta osiąga wartość największą.

Funkcja d określa odległość punktu P od punktu R (leżącego na linii brzegowej określonej przez funkcję g) w zależności od pierwszej współrzędnej x punktu R.

Tworzymy funkcję pomocniczą $\,k\,$ określoną wzorem

$$k(x) = \frac{1}{4}x^4 - \frac{1}{2}x^3 - \frac{13}{8}x^2 + \frac{39}{8}x + \frac{593}{64} \text{ dla } x \in \left[\frac{1 - \sqrt{94}}{6}, \frac{1 + \sqrt{94}}{6}\right].$$

Obliczamy pochodną funkcji k:

$$k'(x) = x^3 - \frac{3}{2}x^2 - \frac{13}{4}x^2 + \frac{39}{8}$$

i miejsca zerowe pochodnej:

$$x^{3} - \frac{3}{2}x^{2} - \frac{13}{4}x^{2} + \frac{39}{8} = 0$$

$$8x^{3} - 12x^{2} - 26x + 39 = 0$$

$$4x^{2}(2x - 3) - 13(2x - 3) = 0$$

$$(4x^{2} - 13)(2x - 3) = 0$$

$$x = -\frac{\sqrt{13}}{2} \quad \forall \quad x = \frac{\sqrt{13}}{2} \quad \forall \quad x = \frac{3}{2}$$

Spośród liczb $\left(-\frac{\sqrt{13}}{2}\right)$, $\frac{\sqrt{13}}{2}$, $\frac{3}{2}$ tylko liczba $\frac{3}{2}$ należy do przedziału $\left[\frac{1-\sqrt{94}}{6},\frac{1+\sqrt{94}}{6}\right]$

Zatem k'(x) = 0 tylko dla $x = \frac{3}{2}$.

Ponieważ:

Arkusz pokazowy z egzaminu maturalnego z matematyki (poziom rozszerzony)

$$k'(x) > 0$$
 dla $x \in \left[\frac{1-\sqrt{94}}{6}, \frac{3}{2}\right)$ oraz

$$k'(x) < 0$$
 dla $x \in \left(\frac{3}{2}, \frac{1+\sqrt{94}}{6}\right]$

więc

funkcja k jest rosnąca w zbiorze $\left[\frac{1-\sqrt{94}}{6},\frac{3}{2}\right]$ oraz malejąca w zbiorze $\left[\frac{3}{2},\frac{1+\sqrt{94}}{6}\right]$.

Zatem funkcja k osiąga wartość największą dla argumentu $x = \frac{3}{2}$.

Ponieważ funkcja $h(t)=\sqrt{t}$ jest rosnąca w zbiorze $[0,+\infty)$, więc funkcja d osiąga wartość największą dla tego samego argumentu, dla którego funkcja k osiąga wartość największą.

Stąd wynika, że funkcja d osiąga wartość największą dla argumentu $x=\frac{3}{2}$.

Obliczamy współrzędne punktu K oraz |PK|:

$$g\left(\frac{3}{2}\right) = -0.5\left(\frac{3}{2} - 0.5\right)^{2} + 4 = 3.5$$

$$K = \left(\frac{3}{2}, \frac{7}{2}\right)$$

$$|PK| = d\left(\frac{3}{2}\right) = \sqrt{\left(\frac{3}{2} + 1\right)^{2} + \left(\frac{7}{2} - 1\right)^{2}} = \frac{5\sqrt{2}}{2}$$

Koniec toru regatowego należy zlokalizować w punkcie, który odpowiada punktowi $K=\left(\frac{3}{2},\frac{7}{2}\right)$. Największa możliwa długość toru regatowego jest równa $\frac{5\sqrt{2}}{2}$ (j).

Zadanie 7. (0-4)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji. 1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: VII.5 (R) korzysta z wzorów na sinus, cosinus i tangens sumy i różnicy kątów, a także na funkcje trygonometryczne kątów podwojonych; VII.6) (R) rozwiązuje równania trygonometryczne o stopniu trudności nie większym niż w przykładzie $4\cos 2x\cos 5x = 2\cos 7x + 1$.

Zasady oceniania

- 4 pkt poprawne rozwiązanie równania $\sin(3x) = 2\sin x$ w zbiorze $[0,\pi]$: $x = 0 \lor x = \frac{1}{6}\pi \lor x = \frac{5}{6}\pi \lor x = \pi$.
- 3 pkt przekształcenie równoważne równania $\sin(3x)=2\sin x$ do postaci alternatywy równań $\sin x=\frac{1}{2}$, $\sin x=-\frac{1}{2}$ oraz $\sin x=0$ i zapisanie, że równanie $\sin x=-\frac{1}{2}$ nie ma rozwiązań w zbiorze $[0,\pi]$, i rozwiązanie równania $\sin x=\frac{1}{2}$ (lub $\sin x=0$) w zbiorze $[0,\pi]$: $x=\frac{1}{6}\pi$ V $x=\frac{5}{6}\pi$ (lub x=0 V $x=\pi$).
- 2 pkt przekształcenie równoważne równania $\sin(3x) = 2\sin x$ do postaci alternatywy dwóch równań: $1 4\sin^2 x = 0$ lub $\sin x = 0$.
- 1 pkt przekształcenie równania $\sin(3x) = 2\sin x$ do postaci, w której występuje jedna funkcja trygonometryczna zmiennej x, np.

$$2\sin x (1 - \sin^2 x) + (1 - 2\sin^2 x)\sin x = 2\sin x.$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Przekształcamy równanie $\sin(3x) = 2\sin x$ równoważnie do postaci, w której występuje tylko jedna funkcja trygonometryczna zmiennej x. Skorzystamy ze wzoru na sinus sumy kątów, wzorów na cosinus i sinus podwojonego kąta oraz z jedynki trygonometrycznej:

$$\sin(3x) = 2\sin x$$

$$\sin(2x + x) = 2\sin x$$

$$\sin(2x) \cdot \cos x + \cos(2x) \cdot \sin x = 2\sin x$$

$$2\sin x \cos^2 x + (\cos^2 x - \sin^2 x)\sin x = 2\sin x$$

$$2\sin x (1 - \sin^2 x) + (1 - 2\sin^2 x)\sin x = 2\sin x$$

$$-4\sin^3 x + \sin x = 0$$

Stad otrzymujemy dalej

Arkusz pokazowy z egzaminu maturalnego z matematyki (poziom rozszerzony)

$$(-4\sin^2 x + 1)\sin x = 0$$

$$-4\sin^2 x + 1 = 0 \quad \forall \quad \sin x = 0$$

$$\sin x = \frac{1}{2} \quad \forall \quad \sin x = -\frac{1}{2} \quad \forall \quad \sin x = 0$$

Równanie $\sin x = \frac{1}{2}$ ma w zbiorze $[0,\pi]$ dwa rozwiązania: $x = \frac{1}{6}\pi$ oraz $x = \frac{5}{6}\pi$.

Równanie $\sin x = -\frac{1}{2}$ nie ma w zbiorze $[0,\pi]$ rozwiązań.

Równanie $\sin x = 0$ ma w zbiorze $[0,\pi]$ dwa rozwiązania: x=0 oraz $x=\pi$.

Równanie $\sin(3x) = 2\sin x$ ma w zbiorze $[0,\pi]$ cztery rozwiązania: $0,\frac{1}{6}\pi,\frac{5}{6}\pi,\pi$.

Zadanie 8. (0-4)

,	
Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	VIII.1) (R) stosuje własności czworokątów
kilkuetapowych, podawanie argumentów uzasadniających poprawność	wpisanych w okrąg i opisanych na okręgu; VIII.2) (R) przeprowadza dowody
rozumowania, odróżnianie dowodu od	geometryczne.
przykładu.	9000,020.

Zasady oceniania

4 pkt – poprawne zastosowanie twierdzeń i zależności prowadzących do obliczenia promienia R okręgu opisanego na trapezie ABCD i pokazanie, że

$$R = \frac{d \cdot l}{2\sqrt{16d^2 - l^2}} \,.$$

3 pkt – zastosowanie twierdzenia sinusów do trójkąta *ABC* i zapisanie równości $2R = \frac{d}{\sin \alpha}$.

2 pkt – obliczenie wysokości h trapezu ABCD: $h = \frac{\sqrt{16d^2 - l^2}}{4}$.

1 pkt – zastosowanie własności czworokąta opisanego na okręgu i obliczenie c: $c=\frac{1}{4}l$ LUB zastosowanie twierdzenia Pitagorasa do trójkąta AEC i zapisanie równości $\left(\frac{a+b}{2}\right)^2+h^2=d^2.$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Przyjmijmy następujące oznaczenia:

a – długość podstawy AB trapezu,

b – długość podstawy CD trapezu,

h – wysokość trapezu ABCD,

c – długość ramienia trapezu ABCD,

lpha - miara kąta ABC trapezu.

E – punkt wspólny prostej
 przechodzącej przez C i zawierającej
 wysokość trapezu oraz odcinka AB
 (zobacz rysunek).

Trapez ABCD jest równoramienny, więc $|EB| = \frac{a-b}{2}$ oraz $|AE| = \frac{a+b}{2}$.

Ponieważ a+b+2c=l (z warunków zadania) oraz a+b=2c (z własności czworokąta opisanego na okręgu otrzymujemy), więc 4c=l, czyli $c=\frac{1}{4}l$. Stąd też $|AE|=\frac{a+b}{2}=c$. Stosujemy twierdzenie Pitagorasa do trójkąta AEC i wyznaczamy wysokość h trapezu:

Arkusz pokazowy z egzaminu maturalnego z matematyki (poziom rozszerzony)

$$|AE|^{2} + |EC|^{2} = |AC|^{2}$$

$$c^{2} + h^{2} = d^{2}.$$

$$h^{2} = d^{2} - c^{2} = d^{2} - \left(\frac{l}{4}\right)^{2}$$

$$h = \frac{\sqrt{16d^{2} - l^{2}}}{4}$$

Okrąg opisany na trapezie ABCD jest jednocześnie okręgiem opisanym na trójkącie ABC. Stosujemy twierdzenie sinusów do wyznaczenia promienia R okręgu opisanego na trójkącie ABC:

$$2R = \frac{|AC|}{\sin \alpha}$$

Sinus kąta α obliczamy z trójkąta prostokątnego BEC:

$$\sin \alpha = \frac{h}{c} = \frac{\frac{\sqrt{16d^2 - l^2}}{\frac{l}{4}}}{\frac{l}{4}} = \frac{\sqrt{16d^2 - l^2}}{l}$$

Zatem promień R jest równy

$$R = \frac{|AC|}{2\sin\alpha} = \frac{d \cdot l}{2\sqrt{16d^2 - l^2}}$$

To kończy dowód.

Zadani	ie 9. ((0–6)
--------	---------	-------

Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
 Stosowanie i tworzenie strategii przy rozwiązywaniu zadań, również w sytuacjach nietypowych. Wykorzystanie i interpretowanie reprezentacji. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych. 	IX.1) (R) posługuje się równaniem prostej w postaci ogólnej na płaszczyźnie, w tym wyznacza równanie prostej o zadanych własnościach []; IX.3) (R) znajduje punkty wspólne prostej i okręgu [].

Zasady oceniania

- 6 pkt wyznaczenie równania prostej BC i obliczenie współrzędnych punktu styczności prostej BC z okręgiem O: y = 0 i (8,0).
- 5 pkt uzasadnienie, że prosta o równaniu $y=-\frac{12}{5}x+\frac{168}{5}$ nie przechodzi przez punkt B i obliczenie współrzędnych punktu B: B=(0,0).
- 4 pkt obliczenie współrzędnych punktu B: B = (0,0) LUB
 - uzasadnienie, że prosta o równaniu $y=-\frac{12}{5}x+\frac{168}{5}$ nie przechodzi przez punkt B.
- 3 pkt wyznaczenie równań prostych, które są styczne do okręgu $\mathcal O$ i przechodzą przez punkt A, np. $y=\frac{4}{3}x$ i $y=-\frac{12}{5}x+\frac{168}{5}$.
- 2 pkt zastosowanie wzoru na odległość punktu od prostej i zapisanie równania z jedną niewiadomą, prowadzącego do wyznaczenia współczynników występujących w równaniu prostej, która jest styczna do okręgu $\mathcal O$ i przechodzi przez punkt A, np. $\frac{|a\cdot 8-4+12-9a|}{\sqrt{a^2+(-1)^2}}=4.$
- 1 pkt zapisanie równania prostej, która jest styczna do okręgu i przechodzi przez punkt A w postaci kierunkowej (lub ogólnej), ze współczynnikami zależnymi od jednego parametru, np. y = ax + 12 9a.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Oznaczmy przez l prostą, która przechodzi przez wierzchołki A i B trójkąta ABC. Prosta ta jest styczna do okręgu \mathcal{O} . Równanie prostej l można zapisać w postaci kierunkowej y=ax+b (prosta o równaniu x=9 nie jest styczna do okręgu, gdyż równanie $(9-8)^2+(y-4)^2=16$ ma dwa rozwiązania). Ponieważ $A\in l$, więc 12=9a+b, czyli b=12-9a.

Prosta l ma równanie ax - y + 12 - 9a = 0 i jest styczna do okręgu o środku S = (8,4) i promieniu 4. Zatem odległość punktu S od prostej l jest równa 4:

$$\frac{|a \cdot 8 - 4 + 12 - 9a|}{\sqrt{a^2 + (-1)^2}} = 4$$

Stąd, poprzez przekształcenia równoważne, otrzymujemy kolejno

$$|8 - a| = 16\sqrt{a^2 + 1}$$

$$64 - 16a + a^2 = 16a^2 + 16$$

$$15a^2 + 16a - 48 = 0$$

$$a = \frac{4}{3} \quad \forall \quad a = -\frac{12}{5}$$

Rozważamy przypadek $a = \frac{4}{3}$.

Gdy $a = \frac{4}{3}$, to b = 0 i równanie prostej l ma postać $y = \frac{4}{3}x$.

Wierzchołek B trójkąta ABC jest punktem przecięcia prostych k i l.

Rozwiązaniem układu równań $\begin{cases} y=\frac{4}{3}x\\ y=\frac{1}{2}x \end{cases}$ jest (x,y)=(0,0). Zatem B=(0,0). Ponieważ

okrąg \mathcal{O} jest styczny do osi $\mathcal{O}x$ i $\mathcal{B}=(0,0)$, więc prosta o równaniu y=0 zawiera bok \mathcal{BC} trójkąta \mathcal{ABC} styczny do danego okręgu w punkcie (8,0).

Rozważamy przypadek $a = -\frac{12}{5}$.

Gdy $a=-\frac{12}{5}$, to $b=\frac{168}{5}$ i otrzymujemy prostą l o równaniu $y=-\frac{12}{5}x+\frac{168}{5}$.

Zauważmy jednak, że prosta o równaniu $y = \frac{5}{12}x$ jest prostopadła do prostej

 $y=-rac{12}{5}x+rac{168}{5}$ i tworzy z osią $\it Ox$ kąt ostry o mierze $\it lpha$ takiej, że $\, {
m tg}\, \it lpha=rac{5}{12}$. Prosta $\it k$

tworzy z osią Ox kąt ostry o mierze β takiej, że $\tan \beta = \frac{1}{2}$. Zatem, korzystając

z własności funkcji tangens, otrzymujemy $\, \alpha < \beta \,$. Wynika stąd, że $\, | \not ABS | > 90^\circ \,$, gdzie $\, B \,$ jest punktem przecięcia prostych $\, k \,$ i $\, l \,$. To jest jednak niemożliwe, gdyż (z założenia)

$$|\angle ABS| = \frac{1}{2}|\angle ABC|$$
, a $\frac{1}{2}|\angle ABC| < \frac{1}{2} \cdot 180^{\circ}$.

Zadanie 10. (0-6)

Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja. 4. Stosowanie i tworzenie strategii przy rozwiązywaniu zadań, również w sytuacjach nietypowych.	Zdający: X.4) oblicza objętości i pola powierzchni [] ostrosłupów, również z wykorzystaniem trygonometrii i poznanych twierdzeń. X.5) (R) wyznacza przekroje [] ostrosłupów prawidłowych oraz oblicza ich pola, także z wykorzystaniem trygonometrii.

Zasady oceniania

dla sposobu 1.

6 pkt – poprawne zastosowanie wzoru na objętość V ostrosłupa i poprawne obliczenie współczynnika $k\colon k=\frac{\sqrt{2}}{36}$.

5 pkt – obliczenie, przy obranych wartościach P i α , wysokości H ostrosłupa:

$$H = \sqrt{\frac{P \cdot \cos(2\alpha)}{4\sqrt{2} \cdot \sin \alpha}}$$

4 pkt – obliczenie, przy obranych wartościach P i α , kwadratu długości krawędzi podstawy oraz kwadratu wysokości ściany bocznej ostrosłupa: $\alpha^2 = \sqrt{2}P \cdot \sin \alpha$,

$$h^2 = \frac{P}{4\sqrt{2} \cdot \sin \alpha} \,.$$

3 pkt – obliczenie, przy obranych wartościach P i α , kwadratu długości krawędzi podstawy ostrosłupa: $a^2=\sqrt{2}P\cdot\sin\alpha$

LUB

obliczenie, przy obranych wartościach P i α , kwadratu wysokości ściany bocznej ostrosłupa: $h^2=\frac{P}{4\sqrt{2}\cdot\sin\alpha}$.

2 pkt – zastosowanie, przy obranych wartościach P i α , definicji sinusa w trójkącie EGS (albo twierdzenia cosinusów do trójkąta EFS) i zapisanie równania z jedną niewiadomą a, np.

$$\frac{\frac{a\sqrt{2}}{4}}{\frac{P}{2a}} = \sin \alpha, \ \left(\frac{P}{2a}\right)^2 + \left(\frac{P}{2a}\right)^2 - 2 \cdot \frac{P}{2a} \cdot \frac{P}{2a} \cdot \cos(2\alpha) = \left(\frac{a\sqrt{2}}{2}\right)^2$$

$$LUB$$

zapisanie, przy obranych wartościach P i α , zależności między h oraz a,

wynikających ze związków miarowych w trójkącie ESF (lub EGS), np. $h=\frac{a\sqrt{2}}{2}$ LUB

zastosowanie, przy obranych wartościach P i α , definicji sinusa w trójkącie EGS (albo twierdzenia cosinusów do trójkąta EFS) i zapisanie równania z jedną niewiadomą h, np.

$$\frac{\frac{P\sqrt{2}}{8h}}{h} = \sin \alpha, \ h^2 + h^2 - 2 \cdot h \cdot h \cdot \cos(2\alpha) = \left(\frac{P\sqrt{2}}{4h}\right)^2.$$

1 pkt – przypisanie wielkościom P i α konkretnych wartości liczbowych (pod warunkami: P>0 i $\alpha\in(0,45^\circ)$) i wyznaczenie wysokości h ściany bocznej w zależności od długości α krawędzi podstawy ostrosłupa: $h=\frac{P}{2\alpha}$ LUB przypisanie wielkościom P i α konkretnych wartości liczbowych (pod warunkami: P>0 i $\alpha\in(0,45^\circ)$) i wyznaczenie długości α krawędzi bocznej

(pod warunkami: P>0 i $\alpha\in(0,45^\circ)$) i wyznaczenie długości a krawędzi bocznej w zależności od wysokości h ściany bocznej ostrosłupa: $a=\frac{P}{2h}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

dla sposobu 2.

6 pkt – poprawne zastosowanie wzoru na objętość V ostrosłupa i poprawne obliczenie współczynnika $k\colon k=\frac{\sqrt{2}}{36}$.

5 pkt – obliczenie wysokości
$$H$$
 ostrosłupa: $H = \sqrt{\frac{P}{4\sqrt{2}\cdot\sin\alpha} - \frac{\sqrt{2}P\cdot\sin\alpha}{4}}$.

- 4 pkt obliczenie kwadratu długości krawędzi podstawy oraz kwadratu wysokości ściany bocznej ostrosłupa: $a^2=\sqrt{2}P\cdot\sin\alpha,\ h^2=\frac{P}{4\sqrt{2}\cdot\sin\alpha}$.
- 3 pkt obliczenie kwadratu długości krawędzi podstawy ostrosłupa: $a^2 = \sqrt{2}P \cdot \sin \alpha$ *LUB* obliczenie kwadratu wysokości ściany bocznej ostrosłupa: $h^2 = \frac{P}{4\sqrt{2}\cdot \sin \alpha}$.
- 2 pkt zastosowanie definicji sinusa w trójkącie EGS (albo twierdzenia cosinusów do trójkąta EFS) i zapisanie równania z jedną niewiadomą a, np.

$$\frac{\frac{a\sqrt{2}}{4}}{\frac{P}{2a}} = \sin \alpha, \ \left(\frac{P}{2a}\right)^2 + \left(\frac{P}{2a}\right)^2 - 2 \cdot \frac{P}{2a} \cdot \frac{P}{2a} \cdot \cos(2\alpha) = \left(\frac{a\sqrt{2}}{2}\right)^2$$
LUB

zastosowanie definicji sinusa w trójkącie EGS (albo twierdzenia cosinusów do trójkąta EFS) i zapisanie równania z jedną niewiadomą h, np.

$$\frac{\frac{P\sqrt{2}}{8h}}{h} = \sin \alpha, \ h^2 + h^2 - 2 \cdot h \cdot h \cdot \cos(2\alpha) = \left(\frac{P\sqrt{2}}{4h}\right)^2.$$

1 pkt – wyznaczenie wysokości h ściany bocznej w zależności od długości a krawędzi podstawy ostrosłupa: $h=\frac{P}{2a}$ LUB

wyznaczenie długości a krawędzi bocznej w zależności od wysokości h ściany bocznej ostrosłupa: $a=\frac{P}{2h}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób 1.

Ponieważ k jest współczynnikiem liczbowym, który nie zależy od P ani od α , więc obliczymy objętość ostrosłupa prawidłowego o polu powierzchni bocznej $P=\sqrt{2}$, w którym $\alpha=30^\circ.$

Przyjmijmy oznaczenia jak na rysunku:

a – długość krawędzi podstawy ostrosłupa,

h – wysokość ściany bocznej ostrosłupa poprowadzonej z wierzchołka S,

H – wysokość ostrosłupa,

0 – punkt przecięcia przekątnych podstawy ABCD,

SE, SF – wysokości sąsiednich ścian bocznych,

SG – wysokość trójkąta SEG poprowadzona z wierzchołka S.

Wyznaczamy wysokość h ściany bocznej ostrosłupa ABCDS poprowadzonej z wierzchołka S w zależności od długości a krawędzi podstawy ostrosłupa:

$$\sqrt{2} = 4 \cdot \frac{1}{2}ah$$

$$h = \frac{\sqrt{2}}{2a}$$

Ponieważ $\alpha=30^\circ$, więc trójkąt równoramienny ESF jest równoboczny. Zatem

$$h = |EF| = \sqrt{2} \cdot |EB| = \frac{a\sqrt{2}}{2}$$
 . Stąd

$$\frac{\sqrt{2}}{2a} = \frac{a\sqrt{2}}{2}$$

$$a = 1$$

więc

$$h^2 = \left(\frac{\sqrt{2}}{2a}\right)^2 = \frac{1}{2}$$

Stosujemy twierdzenie Pitagorasa do trójkąta FOS i obliczamy wysokość H ostrosłupa ABCDS:

$$|OS|^2 = |FS|^2 - |OF|^2$$

$$H^2 = h^2 - \left(\frac{a}{2}\right)^2$$

$$H^2 = \frac{1}{2} - \left(\frac{1}{2}\right)^2$$

$$H = \frac{1}{2}$$

Obliczamy objętość V ostrosłupa ABCDS:

$$V = \frac{1}{3}a^2H = \frac{1}{3} \cdot 1 \cdot \frac{1}{2} = \frac{1}{6}$$

Z treści zadania wiadomo, że $V = \sqrt{k \cdot P^3 \cdot \sin \alpha \cdot \cos(2\alpha)}$, więc $V = \sqrt{k \cdot \left(\sqrt{2}\right)^3 \cdot \frac{1}{2} \cdot \frac{1}{2}}$. Porównując otrzymane wartości objętości, obliczamy k:

$$\frac{1}{6} = \sqrt{k \cdot \frac{\sqrt{2}}{2}}$$

$$k = \frac{\sqrt{2}}{36}$$

Współczynnik k ma wartość $\frac{\sqrt{2}}{36}$.

Sposób 2.

Przyjmijmy oznaczenia jak na rysunku:

a – długość krawędzi podstawy ostrosłupa,

h – wysokość ściany bocznej ostrosłupa poprowadzonej z wierzchołka S,

H – wysokość ostrosłupa,

O – punkt przecięcia przekątnych podstawy ABCD,

SE, SF – wysokości sąsiednich ścian bocznych,

SG – wysokość trójkąta SEG poprowadzona z wierzchołka S.

Wyznaczamy wysokość h ściany bocznej ostrosłupa ABCDS poprowadzonej z wierzchołka S w zależności od długości a krawędzi podstawy ostrosłupa:

$$P = 4 \cdot \frac{1}{2}ah$$
$$h = \frac{P}{2a}$$

Ponieważ
$$|EF|=\sqrt{2}\cdot |EB|=\frac{a\sqrt{2}}{2}$$
 , więc $|EG|=\frac{1}{2}|EF|=\frac{a\sqrt{2}}{4}$. Zatem
$$\frac{|EG|}{|ES|}=\sin\alpha$$

$$\frac{\frac{a\sqrt{2}}{4}}{\frac{P}{2a}}=\sin\alpha$$

$$a^2=\sqrt{2}P\cdot\sin\alpha$$

Stąd

$$h^2 = \left(\frac{P}{2a}\right)^2 = \frac{P}{4\sqrt{2} \cdot \sin \alpha}$$

Stosujemy twierdzenie Pitagorasa do trójkąta FOS i obliczamy wysokość H ostrosłupa ABCDS:

$$|OS|^2 = |FS|^2 - |OF|^2$$

 $H^2 = h^2 - \left(\frac{a}{2}\right)^2$

Arkusz pokazowy z egzaminu maturalnego z matematyki (poziom rozszerzony)

$$H^{2} = \frac{P}{4\sqrt{2} \cdot \sin \alpha} - \frac{\sqrt{2}P \cdot \sin \alpha}{4}$$

$$H^{2} = \frac{P(1 - 2\sin^{2} \alpha)}{4\sqrt{2} \cdot \sin \alpha}$$

$$H = \sqrt{\frac{P \cdot \cos(2\alpha)}{4\sqrt{2} \cdot \sin \alpha}}$$

Obliczamy objętość V ostrosłupa ABCDS:

$$V = \frac{1}{3}\alpha^2 H = \frac{1}{3} \cdot \sqrt{2}P \cdot \sin \alpha \cdot \sqrt{\frac{P\cos(2\alpha)}{4\sqrt{2}\sin \alpha}} = \sqrt{\frac{\sqrt{2}}{36}} \cdot P^3 \cdot \sin \alpha \cdot \cos(2\alpha)$$

Zatem
$$k = \frac{\sqrt{2}}{36}$$
.

Zadanie 11. (0-4)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XII.2) (R) stosuje schemat Bernoullego.
2. Dobieranie i tworzenie modeli	
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

- 4 pkt poprawna metoda obliczenia prawdopodobieństwa zaliczenia egzaminu przez studenta i poprawny wynik: $\frac{123841}{4^{15}}$.
- 3 pkt poprawne zastosowanie wzoru na prawdopodobieństwo uzyskania k sukcesów w n próbach i skorzystanie z addytywności prawdopodobieństwa dla zdarzeń parami rozłącznych.
- 2 pkt wyznaczenie zdarzenia odpowiadającego zaliczeniu egzaminu za pomocą zdarzeń S_{15}^k , gdzie $k \in \{11,12,13,14,15\}$: $S_{15}^{11} \cup S_{15}^{12} \cup S_{15}^{13} \cup S_{15}^{14} \cup S_{15}^{15}$.
- 1 pkt obliczenie prawdopodobieństwa sukcesu i porażki.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Próbą Bernoullego jest losowe wybranie przez studenta odpowiedzi w zadaniu. Sukcesem w tej próbie jest wybranie odpowiedzi, która jest poprawna.

Prawdopodobieństwo sukcesu jest równe p=0.25, natomiast prawdopodobieństwo porażki jest równe q=0.75.

Niech S_{15}^k oznacza zdarzenie polegające na wybraniu przez studenta poprawnych odpowiedzi w dokładnie k zadaniach spośród 15.

Korzystamy ze schematu Bernoullego. Prawdopodobieństwo zaliczenia przez studenta egzaminu jest równe $P(S_{15}^{11} \cup S_{15}^{12} \cup S_{15}^{13} \cup S_{15}^{14} \cup S_{15}^{15})$. Zdarzenia $S_{15}^{11}, S_{15}^{12}, S_{15}^{13}, S_{15}^{14}, S_{15}^{15}$ są parami rozłączne, więc

$$\begin{split} &P\left(S_{15}^{11} \cup S_{15}^{12} \cup S_{15}^{13} \cup S_{15}^{14} \cup S_{15}^{15}\right) = P\left(S_{15}^{11}\right) + P\left(S_{15}^{12}\right) + P\left(S_{15}^{13}\right) + P\left(S_{15}^{14}\right) + P\left(S_{15}^{15}\right) = \\ &= \binom{15}{11} \cdot (0,25)^{11} \cdot (0,75)^4 + \binom{15}{12} \cdot (0,25)^{12} \cdot (0,75)^3 + \binom{15}{13} \cdot (0,25)^{13} \cdot (0,75)^2 + \\ &+ \binom{15}{14} \cdot (0,25)^{14} \cdot (0,75)^1 + \binom{15}{15} \cdot (0,25)^{15} = \\ &= \left(\frac{1}{4}\right)^{15} \cdot (1365 \cdot 81 + 455 \cdot 27 + 105 \cdot 9 + 15 \cdot 3 + 1) = \left(\frac{1}{4}\right)^{15} \cdot 123841 \approx 0,00012 \end{split}$$

Prawdopodobieństwo zaliczenia przez studenta egzaminu jest równe $\frac{123841}{1024^3}$.

