AUE 817 Final Project Presentation

Project Overview

Process Flow

- Components sizing need to consider the competing requirements of fuel economy and power. Bigger engine means higher power and lower efficiency.
- Iteration is needed due to the change of one component will affect other components and total weight.

Project Overview Vehicle Configuration

Note: Engine and electric motor are connected by road

Vehicle parameters:

Frontal area $A = 2.48 \text{ m}^2$

Curb weight = 1300 kg, GVWR = 1750 kg

Rolling resistance coefficient = 0.008

Aerodynamic drag coefficient Cd = 0.32

Tire size: 255/55R18, dynamic rolling radius = 357mm

Rotating inertia: 1.4 kgm2 (per wheel)

Transmission:

4 speed Automatic Transmission:

Gear ratio: 2.847, 1.552, 1.000, 0.700

Differential ration: 4.13

Shift points under normal driving loads

1→2 1,500 RPM

 $2 \rightarrow 32,000 \text{ RPM}$

 $3 \rightarrow 42,500 \text{ RPM}$

Engine

$$P_{me} = eP_{ma} - P_{ml}$$

$$e = (c_1 + c_2C_m + c_3C_m^2) - (c_4 + c_5C_m)P_{ma}$$

$$P_{ml} = c_6 + c_7C_m^2$$

Engine

Maximum torque: 174 Nm @4400 RPM

Motor

1. Willan's line model: Convert initials motor efficiency map from *Torque* and *RPM* to *pme* (mean effective pressure) and *cm* (mean piston speed).

$$c_m = r\omega, \qquad p_{me} = \frac{T_e}{2\pi r^2 l}$$

 $P = T_e \omega = 2\pi r l c_m p_{me}$

2. Curve fitting (Least square method): parameterize *e* and *ploss* with polynomial functions of cm.

$$e = \alpha_0 + \alpha_1 c_m + \alpha_2 c_m^2$$

$$p_{loss} = \beta_0 + \beta_1 c_m + \beta_2 c_m^2$$

$$\alpha_0 = 0.554; \ \alpha_1 = 0.00806, \alpha_2 = -4.84e-05$$

$$\beta_0 = -605.6; \ \beta_1 = 13.3; \ \beta_2 = -0.08218$$

3. Sizing: Convert dimensionless model back to dimensional model to acquire the efficiency map of a machine of new size

Dimensionless model

1.Convert Initial map to *pme* and *cn*

2. Curve fitting

As is done in HW4, peukert effect is taken into consideration, and the least square fitting method is implemented when building up the battery model. Validation is executed, and the results show the fitting is acceptable.

Battery Pack

Peukert Equation Fitting

Picking points using Plot Digitizer

Results

Battery Pack

V_oc_vs_SOC_ch

Battery Pack

Thermal Model Description

Thermal Model added

Subsystem: Obtain SOC

Battery&Fuel tank Pack

Battery sizing

Volume: 144 Litrers

Mass: 105 kg

Cell: 247

Fuel tank sizing

Volume: 8.5 gallon with 350 miles

UDDS&HWFET combined cycle

Control Strategy

ECMS

Equivalent Consumption Minimization Strategy (ECMS):

Minimize instantaneous fuel consumption instead of global

$$min\left[\int \dot{m}_f(t)dt\right] \to \int min\left[\dot{m}_f(t)\right]dt$$

Steps:

- 1. Calculate motor speed at a given engine speed by gear ratio.
- 2. Discretization: Split torque between engine an motor

$$T_{ice} = linspace(0, T_{max}, n)$$

 $T_{em} = T_{request} - T_{ice}$

3. Calculation Equivalent fuel consumption of electrical motor

$$m_{equ\ em} = f_{penalty} * \left(\frac{gamma}{S_{chag}} + \frac{1 - gamma}{S_{dischg}}\right) * \frac{em_{trq} * ice_w}{QHLV}$$

$$gamma = \frac{1 + sign(em_{trq})}{2}; \qquad f_{penalty} = (1 - x_{soc}^3/2) * weight$$

4. Minimize fuel consumption of Engine and Motor combined

$$\min(m_{ice} + m_{equ_em})$$

Control Strategy Lookup Table

 A 3+1D look up (engine speed, torque request, x_soc + gear) table of motor torque request is pre-computed to reduce online computational cost.

Note: X_SOC is mapping of SOC between [-1, 1]

 As x _soc decreases, less is requested from electrical motor due to the penalty function on low SOC

Control Strategy Simulink Implement

Results

Urban (UDDS) Cycle

Results

Highway (HWFET) Cycle

Results Accelerating (0-60 MPH) Time: 8.29s 143Kw EM Efficiency Map 1.3L I4 Gasoline Engine Efficiency Map 140 500 Engine Torque [Nm] 400 120 300 0.3 100 200 0.31 0.9 EM Torque [Nm] 100 0.9 Ø.85 0.835 0.835 ₩ ₩ ₩ 0.7 0.32 0.83Q 835 60 -100 0.9 0.9 0.31 0.75 0.8 0.9 -200 0.29 D.85 0.2 0.27 -300 0.22 0.250.25 0.22 - 0.22 -400 0.2 Iso-Efficiency Contours Iso-Efficiency Contours Maximum Torque Curve -500 Maximum Torque Curve 200 300 500 600 100 400 100 600 0 200 300 400 500 700 Engine Speed [rad/s] EM Speed [rad/s] acceleration test 50 40 Vehicle Velocity [m/s] 10

5

10

15

Time [s]

20

25

30

Summary Downsizing + EM Boosting

Specifications:

Engine specs		
	64.7 kW	
Max power	@ 6000 RPM	
	114.9 Nm	
Max Torque	@4400 RPM	
Displacement	1.3 L	

Motor specs		
Мах Нр	143 kW	
	400 Nm (0-357	
Max Torque	rad/s)	
Radius	57.6 mm	
Length	392 mm	

Battery pack		
S. I. I	4700 41	
Single battery capacity	1729 Ah	
Max power	187 Kw	
Battery cell weight	*105 kg	
Number of cells	247	

*Note: Weight factor 1.8

Vehicle weight		
Curb wieght	1720 kg	
Battery	105 kg	
Driver	75 kg	
Total	1900 kg	

Testing Results:

Fuel economy test	
Cycles	MPG
UDDS	56.18
HWFET	53.61
combined	54.99
US06	**25.34
Cycle4.87 miles	49.53
Cycle10.6 miles	42.85

Acceleration test	
Top speed	103 mph
0-60 MPH	8.29 sec
0-20	2.32 sec
20-40	2.50 sec
30-50	2.94 sec
50-70	3.89 sec
1/4 mi time	19 sec
1/4 mi exit spd	92 mph

Goal:
Top speed >100
mph
0-60 mph: <9 sec

^{**}Note: low mpg due to aggressive acceleration and deceleration in the cycle. Change exceeds the battery maximum capacity. Battery cannot recuperate all the energy in breaking.

Thank you! Questions?

