ORIE 7391: Faster: Algorithmic Ideas for Speeding Up Optimization

Randomized Numerical Linear Algebra

Professor Udell

Operations Research and Information Engineering
Cornell

February 7, 2022

Outline

Why randomize?

Trace estimation

Maximum eigenvectors

Minimum eigenvectors

Rangefinder

SVE

Why randomize?

trade time for accuracy when you're solving a subproblem

Basic building block: random matvec

given

- ightharpoonup operator $A: \mathbf{R}^n \to \mathbf{R}^m$
- ightharpoonup random test vector $\omega \in \mathbf{R}^n$

form

 $A\omega$

Basic building block: random matvec

given

- ightharpoonup operator $A: \mathbf{R}^n \to \mathbf{R}^m$
- ightharpoonup random test vector $\omega \in \mathbf{R}^n$

form

 $A\omega$

what random vectors?

- ▶ Gaussian $\omega \sim \mathcal{N}(0, I_n)$
- ▶ Rademacher $\omega \sim \mathcal{U}\{\pm 1\}^n$
- sparse
- ▶ fast Johnson-Lindenstrauss transform
- subsampled randomized fourier transform
- **.** . . .

Outline

Why randomize?

Trace estimation

Maximum eigenvectors

Minimum eigenvectors

Rangefinder

SVE

compute tr(A) without randomization:

compute tr(A) without randomization:

► $\sum_{i=1}^{n} A_{ii}$ requires access to individual entries of A, O(n) flops

compute tr(A) without randomization:

- $ightharpoonup \sum_{i=1}^{n} A_{ii}$ requires access to individual entries of A, O(n) flops
- $ightharpoonup \sum_{i=1}^{n} e_i^T A e_i$ can be computed with n matvecs + O(n) flops

compute tr(A) without randomization:

- ▶ $\sum_{i=1}^{n} A_{ii}$ requires access to individual entries of A, O(n) flops
- $ightharpoonup \sum_{i=1}^n e_i^T A e_i$ can be computed with n matvecs + O(n) flops

can we do it with fewer matvecs?

Trace estimation

suppose
$$\omega \in \mathbf{R}^n$$
 is isotropic: $\mathbb{E}\omega\omega^T = I$. then

$$X = \omega^T A \omega$$
 satisfies $\mathbb{E}X = \mathbf{tr}(A)$

Trace estimation

suppose
$$\omega \in \mathbf{R}^n$$
 is isotropic: $\mathbb{E}\omega\omega^T = I$. then

$$X = \omega^T A \omega$$
 satisfies $\mathbb{E}X = \mathbf{tr}(A)$

proof:

$$\omega^{T} A \omega = \operatorname{tr}(\omega^{T} A \omega) = \operatorname{tr}(A \omega \omega^{T})$$
$$\mathbb{E} \omega^{T} A \omega = \mathbb{E} \operatorname{tr}(A \omega \omega^{T}) = \operatorname{tr}(AI) = \operatorname{tr}(A)$$

Improve variance by averaging

estimate trace by averaging over many iid copies:

$$ar{X}_k = rac{1}{k} \sum_{i=1}^k X_i$$
 where $X_i \sim X$ are iid

cost: k random n-vectors + k matvecs + O(kn) arithmetic

Improve variance by averaging

estimate trace by averaging over many iid copies:

$$ar{X}_k = rac{1}{k} \sum_{i=1^k} X_i$$
 where $X_i \sim X$ are iid

cost: k random n-vectors + k matvecs + O(kn) arithmetic

$$\mathbb{E}[\bar{X}_k] = \mathbf{tr}(A)$$
 $\operatorname{Var}[\bar{X}_k] = \frac{1}{k} \operatorname{Var}[X]$

Outline

Why randomize?

Trace estimation

Maximum eigenvectors

Minimum eigenvectors

Rangefinder

SVD

Approximate eigenvectors

Definition

For a symmetric matrix $M \in \mathbf{S}_+^n$, we say a unit vector v is an ε -approximate maximum eigenvector if

$$v^*Mv \geq (1-\varepsilon)\lambda_{\max}(M).$$

Approximate eigenvectors

Definition

For a symmetric matrix $M \in \mathbf{S}_{+}^{n}$, we say a unit vector v is an ε -approximate maximum eigenvector if

$$v^*Mv \geq (1-\varepsilon)\lambda_{\max}(M).$$

how to find approximate maximum eigenvector (efficiently)?

- ► (-) Krylov methods (e.g., ARPACK eigs)
 - unstable, hard to control precision
- ► (+) power method
 - ▶ converges in $\mathcal{O}(\varepsilon^{-1})$ iterations, needs $\mathcal{O}(n)$ storage
- (+) randomized Lanczos method
 - converges in $q = \mathcal{O}(\varepsilon^{-1/2})$ iterations, needs $\mathcal{O}(nq)$ storage
 - (or can use $\mathcal{O}(n)$ storage by running it twice)

Approximate eigenvectors: power method

```
Algorithm ApproxMaxEvec via randomized power method
Input: M \in \mathbf{S}_n, and maxiters q
Output: Approximate minimum eigenpair (\xi, v) \in \mathbf{R} \times \mathbf{R}^n of M
     function APPROXMAXEVEC(M; q)
         \omega \leftarrow \text{randn}(n)
2
         \mathbf{v} \leftarrow \omega / \|\omega\|
         for i \leftarrow 1, 2, 3, \ldots, q do
              v \leftarrow Av
5
              v \leftarrow v/\|v\|
         return (v^*(Mv), v)
```

Power method: guarantees

Fact (Randomized power method ([?]))

Let M be a real psd matrix. After $q \geq 2$ iterations, the randomized power method computes an ϵ -approximate maximum eigenvector v with

$$\mathbb{E}\epsilon \geq 0.871 \frac{\log n}{q-1}.$$

- ▶ arithmetic cost is $\mathcal{O}(q)$ matrix–vector multiplies with M and $\mathcal{O}(qn)$ extra operations
- working storage is about 2n numbers

Outline

Why randomize?

Trace estimation

Maximum eigenvectors

Minimum eigenvectors

Rangefinder

SVE

Approximate eigenvectors

Definition

For a symmetric matrix $M \in \mathbf{S}_{+}^{n}$, we say a unit vector v is an ε -approximate minimum eigenvector if

$$v^*Mv \leq \lambda_{\min}(M) + \varepsilon \|M\|.$$

Approximate eigenvectors

Definition

For a symmetric matrix $M \in \mathbf{S}_{+}^{n}$, we say a unit vector v is an ε -approximate minimum eigenvector if

$$v^*Mv \leq \lambda_{\min}(M) + \varepsilon ||M||.$$

how to find approximate minimum eigenvector (efficiently)?

- ► (-) Krylov methods (e.g., ARPACK eigs)
 - unstable, hard to control precision
- (+) shifted power method
 - converges in $\mathcal{O}(\varepsilon^{-1})$ iterations, needs $\mathcal{O}(n)$ storage
- (+) randomized Lanczos method
 - ightharpoonup converges in $q = \mathcal{O}(\varepsilon^{-1/2})$ iterations, needs $\mathcal{O}(nq)$ storage
 - (or can use $\mathcal{O}(n)$ storage by running it twice)

Approximate eigenvectors: shifted power method

- use power iteration to find max eigenvalue
- ▶ min eigenvalue of M is max eigenvalue of ||M||I M

```
Algorithm ApproxMinEvec via randomized shifted power method
Input: M \in \mathbf{S}_n, and maxiters q
Output: Approximate minimum eigenpair (\xi, v) \in \mathbf{R} \times \mathbf{R}^n of M
     function APPROXMINEVEC(M; q)
         \sigma \leftarrow \|M\|
 2
         v \leftarrow \text{randn}(n,1)/\sqrt{n}
         for i \leftarrow 1, 2, 3, \ldots, q do
              v \leftarrow \sigma v - Mv
              v \leftarrow v/\|v\|
         return (v^*(Mv), v)
 7
```

Power method: guarantees

Fact (Randomized shifted power method ([?]))

Let $M \in \mathbf{S}_n$. For $\varepsilon \in (0,1]$ and $\delta \in (0,1]$, the shifted power method computes a unit vector $u \in \mathbf{R}^n$ that satisfies

$$u^*Mu \le \lambda_{\min}(M) + \varepsilon ||M|| \quad w/prob \ge 1 - \delta$$

after
$$q \geq \frac{1}{2} + \varepsilon^{-1} \log(n/\delta^2)$$
 iterations.^a

- ▶ arithmetic cost is $\mathcal{O}(q)$ matrix–vector multiplies with M and $\mathcal{O}(qn)$ extra operations
- working storage is about 2n numbers

^aAll logarithms are base-e.

Outline

Why randomize?

Trace estimation

Maximum eigenvectors

Minimum eigenvectors

Rangefinder

SVE

Randomized rangefinder

given matrix $A \in \mathbf{R}^{m \times n}$, subspace dimension ℓ

- ightharpoonup draw random test matrix $\Omega \in \mathbf{R}^{n \times \ell}$
- ► compute sketch $Y = A\Omega$ \triangleright (ℓ matvecs)
- ▶ form QR decomposition QR = Y $\rhd (O(m\ell^2) \text{ flops})$

Randomized rangefinder

given matrix $A \in \mathbf{R}^{m \times n}$, subspace dimension ℓ

- ightharpoonup draw random test matrix $\Omega \in \mathbf{R}^{n \times \ell}$
- ► compute sketch $Y = A\Omega$ \triangleright (ℓ matvecs)
- ▶ form QR decomposition QR = Y $\triangleright (O(m\ell^2) \text{ flops})$

then

- $ightharpoonup Q \in \operatorname{range}(A)$
- ▶ if $\ell > \operatorname{Rank}(A)$, then $\operatorname{span}(Q) = \operatorname{range}(A)$ w/probability 1
- ▶ for quantitative error bounds, see ch 11 PGMJAT20

Outline

Why randomize?

Trace estimation

Maximum eigenvectors

Minimum eigenvectors

Rangefinder

SVD

How to catch a low rank matrix

if \hat{X} has the same rank as X^* , and \hat{X} acts like X^* (on its range and co-range), then \hat{X} is X^*

use single-pass randomized sketch [?, ?, ?]

- learn how the matrix acts on a random subspace
- reconstruct a low rank matrix that acts like X*
- ▶ storage cost for sketch and arithmetic cost of update are $\mathcal{O}(r(m+n))$
- ▶ reconstruction is $\mathcal{O}(r^2(m+n))$

Draw and fix two independent standard normal matrices

$$\Omega \in \mathbf{R}^{n \times k}$$
 and $\Psi \in \mathbf{R}^{\ell \times m}$

with k > r, $\ell > k$.

Draw and fix two independent standard normal matrices

$$\Omega \in \mathbf{R}^{n \times k}$$
 and $\Psi \in \mathbf{R}^{\ell \times m}$

with k > r, $\ell > k$.

► The sketch consists of two matrices that capture the range and co-range of *X*:

$$Y = X\Omega \in \mathbf{R}^{n \times k}$$
 and $W = \Psi X \in \mathbf{R}^{\ell \times m}$

Draw and fix two independent standard normal matrices

$$\Omega \in \mathbf{R}^{n \times k}$$
 and $\Psi \in \mathbf{R}^{\ell \times m}$

with k > r, $\ell > k$.

► The sketch consists of two matrices that capture the range and co-range of *X*:

$$Y = X\Omega \in \mathbf{R}^{n \times k}$$
 and $W = \Psi X \in \mathbf{R}^{\ell \times m}$

▶ Rank-1 updates to *X* can be performed on sketch:

▶ Draw and fix two independent standard normal matrices

$$\Omega \in \mathbf{R}^{n imes k}$$
 and $\Psi \in \mathbf{R}^{\ell imes m}$

with k > r, $\ell > k$.

► The sketch consists of two matrices that capture the range and co-range of *X*:

$$Y = X\Omega \in \mathbf{R}^{n \times k}$$
 and $W = \Psi X \in \mathbf{R}^{\ell \times m}$

▶ Rank-1 updates to X can be performed on sketch:

▶ Both the storage cost for the sketch and the arithmetic cost of an update are $\mathcal{O}(r(m+n))$.

Recovery from sketch

To recover rank-r approximation \hat{X} from the sketch, compute

1.
$$Y = QR$$
 \triangleright (tall-skinny QR)

2.
$$B = (\Psi Q)^{\dagger} W$$
 \triangleright (small QR + backsub)

3.
$$\hat{X} = Q[B]_r$$
 \triangleright (tall-skinny SVD)

Recovery from sketch

To recover rank-r approximation \hat{X} from the sketch, compute

1.
$$Y = QR$$

2.
$$B = (\Psi Q)^{\dagger} W$$

3.
$$\hat{X} = Q[B]_r$$

Theorem (Reconstruction [?])

Fix a target rank r. Let X be a matrix, and let (Y, W) be a sketch of X with k = 2r + 1, $\ell = 4r + 2$. The reconstruction procedure above yields a rank-r matrix \hat{X} with

$$\mathbb{E}||X - \hat{X}||_{F} \le 2||X - [X]_{r}||_{F}.$$

Similar bounds hold with high probability.

Expectation bound yields high probability bound

Let A be a positive random variable with

$$\mathbb{E}[A] \leq a$$

Then use Markov's inequality: for any $\epsilon > 0$

$$\epsilon \mathbb{P}[A > \epsilon] \leq \mathbb{E}[A]$$

to see

$$\mathbb{P}[A > \epsilon] \le a/\epsilon.$$

Expectation bound yields high probability bound

Let A be a positive random variable with

$$\mathbb{E}[A] \leq a$$

Then use Markov's inequality: for any $\epsilon > 0$

$$\epsilon \mathbb{P}[A > \epsilon] \leq \mathbb{E}[A]$$

to see

$$\mathbb{P}[A > \epsilon] \leq a/\epsilon$$
.

Can get improved bounds with stronger assumptions using concentration inequalities like Chebyshev, Chernoff, . . .

recall

$$Y = X\Omega \in \mathbf{R}^{n imes k}$$
 and $W = \Psi X \in \mathbf{R}^{\ell imes m}$

recall

$$Y = X\Omega \in \mathbf{R}^{n imes k}$$
 and $W = \Psi X \in \mathbf{R}^{\ell imes m}$

ightharpoonup if Q is an orthonormal basis for range(X), then

$$X = QQ^*X$$

recall

$$Y = X\Omega \in \mathbf{R}^{n \times k}$$
 and $W = \Psi X \in \mathbf{R}^{\ell \times m}$

▶ if Q is an orthonormal basis for range(X), then

$$X = QQ^*X$$

• if $QR = X\Omega$, then Q is (approximately) a basis for range(X)

recall

$$Y = X\Omega \in \mathbf{R}^{n \times k}$$
 and $W = \Psi X \in \mathbf{R}^{\ell \times m}$

ightharpoonup if Q is an orthonormal basis for range(X), then

$$X = QQ^*X$$

- if $QR = X\Omega$, then Q is (approximately) a basis for range(X)
- \blacktriangleright and if $W = \Psi X$, we can estimate

$$W = \Psi X$$

$$\approx \Psi Q Q^* X$$

$$(\Psi Q)^{\dagger} W \approx Q^* X$$

recall

$$Y = X\Omega \in \mathbf{R}^{n \times k}$$
 and $W = \Psi X \in \mathbf{R}^{\ell \times m}$

▶ if Q is an orthonormal basis for range(X), then

$$X = QQ^*X$$

- if $QR = X\Omega$, then Q is (approximately) a basis for range(X)
- ightharpoonup and if $W = \Psi X$, we can estimate

$$W = \Psi X$$

$$\approx \Psi Q Q^* X$$

$$(\Psi Q)^{\dagger} W \approx Q^* X$$

 \triangleright hence we may reconstruct X as

$$X \approx QQ^*X \approx Q(\Psi Q)^{\dagger}W$$

Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start.

SIAM J. Matrix Anal. Appl., 13(4):1094-1122, 1992.

J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher. Practical sketching algorithms for low-rank matrix approximation.

SIAM Journal of Matrix Analysis and Applications (SIMAX), 38(4):1454–1485, 2017.

Joel A. Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher.

Fixed-rank approximation of a positive-semidefinite matrix from streaming data.

In Advances in Neural Information Processing Systems, 2017.

Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher.

Streaming low-rank matrix approximation with an application to scientific simulation. SIAM Scientific Computing (SISC), 2019.

Alp Yurtsever, Madeleine Udell, Joel Tropp, and Volkan Cevher.

Sketchy decisions: Convex low-rank matrix optimization with optimal storage.

In *Artificial Intelligence and Statistics*, pages 1188–1196, 2017.