

Environment Canada

Environnement Canada

Atmospheric Environment Service Service de l'environnement atmosphérique

RAINFALL INTENSITY-DURATION FREQUENCY VALUES FOR CANADIAN LOCATIONS

VALEUR D'INTENSITE, DUREE ET FREQUENCE DES PLUIES A DES EMPLACEMENTS CANADIENS

by/par

W.D. Hogg, D.A. Carr and B. Routledge

A publication of the Canadian Climate Program Publication du Programme climatologique canadien

UDG: 551, 506: 551,557,37(71)

^{Ртюе} \$1.25

CONTENTS/TABLE DES MATIÈRES

	F	TSe
1.	Introduction/Introduction	i
2.	Rainfall Intensity/Intensités de pluies	ív
	2.1 Duration Frequency Tables and Graphs/Courbes et tableaux de durée et de fréquence	iv
3.	Analysis Method/Méthode d'analyse	viii
	3.1 Extreme Value Analysis/Analyse des valeurs extrêmes 3.2 Adjustment to Partial Duration Series/Adaptation aux séries	
	de durée partielle	
4.	References/Références	xi ii
5.	List of information centres/Liste des centres d'information	xiv
6.	Index of Stations/Index des stations	1
7.	Index of Supplementary Stations/Index Supplémentaires Des Stations	15

RAINFALL INTENSITY-DURATION FREQUENCY VALUES FOR CANADIAN LOCATIONS

by

W.D. Hogg, D.A. Carr, B. Routledge

INTRODUCTION

Millions of dollars are spent each year in Canada on the design and construction of hydrological structures to carry water runoff from small catchments. These structures range in size from eavestroughs for roof drainage through road culverts and bridges to large, multi-million dollar storm sewer systems for urban areas. Unfortunately, since these structures are mostly on intermittent or very small watercourses, stream gauge data, on which to base the design, are not generally available.

In the absence of adequate streamflow information, the hydrological design engineer frequently turns to rainfall data to aid in the synthesis of peak flows. Rainfall records are frequently of longer duration and for more numerous locations than streamflow records. Although precipitation gauge records may not be representative of precipitation over large areas for individual storms, the general characteristics of precipitation usually vary in a regular manner. Thus, parameters like frequency of precipitation above a given value, can be transposed or interpolated to areas with no data.

VALEUR D'INTENSITÉ, DURÉE ET FRÉQUENCE DES PLUIES À DES EMPLACEMENTS CANADIENS

par

W.D. Hogg, D.A. Carr, B. Routledge

INTRODUCTION

Le Canada consacre chaque année des millions de dollars à la conception et à la construction de canalisations et autres structures d'évacuation des eaux. La taille et le coût de ces structures varient : il peut s'agir de simples gouttières tout comme de fossés et de leurs ponceaux ou d'importants réseaux d'égouts, de plusieurs millions de dollars, aménagés dans les zones urbaines en cas de pluies d'orage. Malheureusement, comme ces structures sont en générales établies pour des cours d'eau intermittents ou très petits, on dispose rarement de données de limnimètre sur lesquelles on peu baser les calculs pour les concevoir.

En l'absence de données adéquates sur l'écoulement, l'ingénieur, au niveau de la conception, utilise souvent les données pluviométriques pour calculer les débits de pointe. Fréquemment, les relevés pluviométriques couvrent une période plus longue et se rapportent à un nombre d'emplacements plus important que celui des relevés sur l'écoulement. Bien que, lors de tempêtes isolées, les relevés pluviométriques ne soient pas toujours représentatifs des précipitations dans de grandes régions, les caractéristiques des précipitations varient en général de façon assez régulière. On peut ainsi interpoler ou transposer, pour les régions où l'on ne dispose pas de données, certains paramètres comme la fréquence des précipitations au-dessus d'une valeur donnée.

Once the rainfall information is obtained, there are several techniques available to convert it into estimates of peak flow on a small watershed. Among these methods are several different hydrological computer models and the popular "rational method". To make use of the rainfall data, the design engineer must independently determine the duration of rainstorm which is significant to the watercourse in guestion. In general, the longer the basin the larger the duration critical for design. The specific duration is frequently chosen through "time of concentration" calculations or through similar formulae as described in any basic hydrology text (e.g. Bruce and Clark, 1966).

The design engineer must also select a frequency with which the capacity of the structure can be exceeded. This is usually expressed in terms of return period, which is the average interval between occurrences of events equalling or exceeding a given magnitude. For example, a 5-year return period event is one that is expected to be equalled or exceeded 20 times in 100 years or once every five years, on the average over a long period of time. The return period for the capacity of the structure must be selected so that the cost of the estimated damage, when the capacity is exceeded, does not outweigh the cost of increasing the size of the structure. Of course, other considerations such as public convenience and safety, and government regulations must also be taken into account.

To obtain the runoff or flow with a given return period, knowing only the rainfall with that return period, the assumption commonly made is that rainfall of a given frequency produces

Lorsqu'on possède les données pluviométriques, il existe plusieurs techniques pour en déduire le débit de pointe dans un petit bassin hydrographique. Par exemple, on peut utiliser divers modèles hydrologiques informatiques ou suivre la fameuse méthode "rationnelle". Pour utiliser pluviométriques, l'indonnées génieur doit déterminer la durée de la pluie affectant le cours d'eau considéré. En général, plus le bassin est grand, plus la durée du phénomène est critique du point de vue de la conception. On détermine souvent la durée spécifique à partir des valeurs du "temps de concentration" ou à l'aide de formules analogues, données dans n'importe quel ouvrage élémentaire d'hydrologie (p.ex. Bruce et Clark, 1966).

L'ingénieur doit aussi choisir la fréquence avec laquelle la capacité de la structure peut être dépassée. On l'exprime en général en termes de période de récurrence, c'est à dire : l'intervalle de temps moyen entre des manifestations d'amplitude égale supérieure à une amplitude donnée. Par exemple, en moyenne et à longue échéance, l'amplitude d'un phénomène dont la période de récurrence est de cinq ans sera vraisemblablement égalée ou dépassée 20 fois en 100 ans ou une fois tous les cinq ans. La période de récurrence pour la capacité de la structure doit être choisie de sorte que le coût des dommages anticipés si la capacité était dépassée soit inférieur au coût d'agrandissement de la structure. Bien entendu, il faut aussi tenir compte de la commodité et de la sécurité du public ainsi que des règlements gouvernementaux.

Pour connaître le ruissellement ou l'écoulement avec une période de récurrence donnée lorsque l'on ne dispose que des données pluviométriques sur cette période de récurrence, on assume streamflow of the same frequency. It should be realized that this is a fairly coarse assumption when the variability of antecedent moisture conditions and time distribution of rainfall events are considered.

The majority of stations with recording precipitation gauges in Canada are equipped with MSC tippingbucket rain gauges (Meteorological Branch, 1952). This instrument has many advantages in simplicity and reliability of operation, but in common with other gauges of this type, it is prone to systematic errors or biases, especially at high rainfall rates. For this reason it is the practice in the Atmospheric Environment Service (AES) to adjust the data from the tipping-bucket gauges so that daily totals agree with the totals from the non-recording standard gauge operated at each recording gauge site. The ratio of standard gauge total to recording gauge total for the day has been used to adjust all of the tipping-bucket rainfall data.

The long duration recording gauge is a weighing gauge and, as operated by AES, does not have the same biases at high rainfall rates, but it does have reduced sensitivity and time resolution. For this reason reliable rainfall amounts for durations less than 30 minutes were not available from the long duration recording gauges. Adjustment factors are not applied to the long duration recording gauge data since the non-recording standard gauges are not operated at these remote sites.

en général que les pluies d'une fréquence donnée produisent des écoulements de même fréquence. Il ne faut pas oublier qu'il s'agit là d'une hypothèse très grossière si l'on considère la variabilité des conditions d'humidité et la distribution temporelle des précipitations pluviales.

La plupart des stations étudiées sont équipées de pluviomètres à augets basculeurs du Service météorologique canadien (Direction de la météorologie, 1952). Cet instrument présente plusieurs avantages car il est simple et fiable; toutefois, comme d'autres pluviomètres de ce type, il a tendance à donner systématiquement de fausses indications, surtout lorsque l'intensité des précipitations est élevée. Pour cette raison, le Service de l'environnement atmosphérique (SEA) rectifie les relevés des pluviomètres à augets basculeurs afin que les totaux journaliers concordent avec ceux des pluviomètres standard non enregistreurs dont chaque station pluviométrique est équipée. Pour corriger toutes les données des pluviomètres à augets basculeurs sur lesquelles est fondée cette étude, on a pris le rapport entre le total enregistré avec les pluviomètres standard et celui mesuré avec les pluviomètres.

Le pluviomètre enregistreur longue durée est un pluviomètre balance; tel qu'utilisé au SEA, il ne donne pas lieu aux mêmes erreurs que le pluviomètre à augets basculeurs lorsque l'intensité des précipitations est élevée; toutefois, sa sensibilité et sa résolution dans le temps sont réduites. Ce type de pluviomètre ne nous donne donc pas de données fiables sur la hauteur des pluies pour des périodes de moins de 30 Les données relevées par minutes. pluviomètres enregistreurs longue durée n'ont pas fait l'objet de rectification parce qu' il n'y a pas de pluivomètres standard non enregistreurs dans les stations éloignées.

2. RAINFALL INTENSITY

2.1 Duration Frequency Tables and Graph

For each station in Canada, with seven years or more recording rain gauge data, extreme value frequency analyses, for durations of 5 minutes to 24 hours, have been performed. The resulting information is shown on three separate tables (Tables 1, 2, 3) and a graph (Fig. 1) referred to as IDF Tabulations and IDF Curves. A brief explanation of these tables follows.

Table #1 - This table lists the maximum rainfall intensity for the durations of 5 min. to 24 hours for each year the station operated.

Summary values are shown for each duration for the following:

Mean Extreme
Standard Deviation
Years of Record
Coefficient of Skew
Coefficient of Kurtosis

It should be noted that the term 'annual' rainfall generally applies to the months April to October in most locations in Canada. During the winter months, most recording rain gauges are taken out of service.

Table #2 - The heading of this table contains the current station name, the climatological number; latitude, longitude and elevation. The remainder of the table is made up of two sections showing the rainfall durations (5 min. to 24 hours) and the return period values for: 2, 5, 10, 25, 50 and 100

2. INTENSITÉ DES PLUIES

2.1 Courbes et tableaux de durée et de fréquence

Pour chaque station du Canada pour laquelle on dispose d'au moins sept années de données fournies par des pluviographes, on a effectué des analyses de fréquences des extrêmes, pour des durées de 5 minutes à 24 heures. Les renseignements qui en découlent figurent sur les trois tableaux (tableaux 1, 2 et 3) et dans un graphique (figure 1) appelés tableaux et courbes IDF. Voici une brève explication de ces tableaux.

Tableau n° 1 - Ce tableau énumère l'intensité maximale des pluies pour des durées allant de 5 min à 24 h et ce, pour chacune des années pendant lesquelles la station a fonctionné.

Les valeurs récapitulatives correspondant à chaque durée figurent pour :

> Moyenne des extrêmes Écart type Années d'observation Coefficient de dissymétrie Coefficient d'aplatissement

Notons que le terme de pluies "annuelles" s'applique en général, dans la plupart des emplacements du Canada, aux mois allant d'avril à octobre. Pendant les mois d'hiver, on ne se sert pas de la plupart des pluviographes.

Tableau n° 2 - L'en-tête de ce tableau comprend le nom actuel de la station, le numéro climatologique, la latitude, la longitude et l'altitude. Le reste du tableau comprend deux parties qui indiquent la durée des précipitations (de 5 min à 24 h) et les valeurs de la période de retour pour 2, 5, 10, 25, 50

years. The first section shows the expected total amount for each duration and return period. The second section expresses the expected value for each duration as a mean hourly rate of rainfall averaged over the duration in question, with 50% confidence limits.

Table #3 - Indicates the results of the interpolation equation -

et 100 années. La première partie indique le total attendu pour chaque durée et période de retour. La seconde partie exprime la valeur attendue pour chaque durée. Il s'agit de la moyenne horaire de l'intensité des précipitations, calculée pour la durée en question, dans des limites de confiance de 50%.

Tableau n° 3 - indique les résultats de l'équation d'interpolation -

 $R = AT^B$

...(3-1)

Values are shown for each return period (2 yrs. to 100 yrs) for the following statistics:

mean of intensity standard deviation of intensity standard error of estimate (R) coefficient (A) exponent (B) mean of the percentage error.

Coefficients (A) and (B) are determined by taking the logarithm of the interpolation equation and performing a least squares fit. The resulting equation gives the best fit straight line on a log-log plot of intensity vs duration and is used as the interpolation line on the IDF graph (Fig. 1) For a given return period, the expected rainfall intensity for any duration can be obtained by substituting the appropriate values for (A), (B) and duration (T) into equation (3-1). For a few stations equation (3-1) is not suitable. In these cases a line with pronounced curvature is plotted on the IDF graph but the (A) and (B) in Table 3 is still presented as derived for equation (3-1). Manual interpolation from the graph is the preferable method when this occurs.

Pour chaque période de récurrence (de 2 à 100 ans), ce tableau indique les valeurs des statistiques suivantes:

la moyenne de l'intensité l'écart type de l'intensité l'erreur type de l'estimation (R) le coefficient (A) l'exposant (B) la moyenne de l'erreur de pourcentage.

Pour déterminer les coefficients (A) et (B), on calcule le logarithme de l'équation d'interpolation et on opère un ajustement par les moindres carrés. L'équation qui en résulte donne la droite la mieux ajustée sur un graphique bilogarithmique comparatif de l'intensité et de la durée et sert de ligne d'interpolation sur le graphique IDF (fig. 1). Pour une période de retour donnée, on peut obtenir, pour toute durée, l'intensité attendue des pluies en substituant la valeur appropriée au coefficient (A), à l'exposant (B) et à la durée T dans l'équation (3-1). Pour quelques stations, l'équation (3-1) ne convient pas. Dans ces cas-là, on trace une ligne de courbure prononcée sur le graphique IDF, mais les coefficients A et B du tableau 3 figurent toujours comme dérivées pour

TABLE 1

ATMOSPHERIC ENVIRONMENT SERVICE SERVICE DE L'ENVIRONNEMENT ATMOSPHERIQUE

RAINFALL INTENSITY-DURATION FREQUENCY VALUES INTENSITE, DUREE ET FREQUENCE DES PLUIES

PREPARED BY / PREPARE PAR
THE HYDROMETEOROLOGY AND MARINE DIVISION
LA DIVISION DE L'HYDROMETEOROLOGIE ET DU CLIMAT MARITIME

*****	****	*****	*****	****	****	*****	*****	*****	*****
TABLE	1	WATSO	n lake	AIRPORT	Ϋ́	ж.		210	01200
LATITU	DE 6007			DE 12849		ELEVATI			588 M
YEAR		10 MIN			1 H	2 H	6 H	12 H	24 H
ANNEE	- 1121	20 222							2
1970	3.8	4.6	5.1	5.8	7.4	12.2	16.0	26.2	31.2
1971	2.3	3.3	3.8	4.1	4.3	5.6	11.4	14.0	15.7
1972	2.0	3.8	4.1	5.8	7.4	8.6	12.4	16.8	16.8
1973	2.3	3.0	4.1	5.1	6.1	8.1	12.7	13.7	16.5
1974	3.6	4.6	6.1	7.4	7.9	11.4	27.4	37.3	45.5
1975	2.8	4.3	5.3	6.1	6.6	9.1	15.2	20.8	32.0
1976	3.0	4.6	6.1	6.1	6.1	8.1	18.3	26.7	37.1
1977	2.3	3.8	4.3	4.6	6.6	8.9	12.4	19.6	26.2
1978	2.1	3.3	4.5	9,0	11.3	15.7	16.5	21.9	24.8
1979	3.2	5.0	7.1	7.6	8.2	14.3	33.7	45.1	46.4
1980	2.6	4.4	6.6	9.5	9.5	9.7	11.1	13.8	16.8
1981	1.4	2.6	3.3	3.9	7.0	10.3	14.9	16.2	27.1
1982	1.9	3.2	3.6	4.4	5.2	9.4	24.4	34.0	39.3
1983	0.9	1.3	1.6	3.1	6.1	8.8	14.7	16.3	18.7
1984	4.1	5.0	5.2	6.3	8.9	10.8	13.0	15.4	18.2
1985	2.2	2.8	3.1	3.4	3.6		8.1	9.6	12.4
1986	4.3	6.5	9.8	12.6	15.1	17.0	19.7	23.7	39.4
NOTE:	-99.9 IN								
	DC	ONNEES M	IANQUANT	ES					
# YRS.		17	17	17	17	17	17	17	17
MEAN	2.6	3.9	4.9	6.2	7.5	10.1	16.6	21.8	27.3
MOYENNE									
STD. DEV. ECART-TYPE		1.2	1.9	2.5	2.7	3.3	6.5	9.5	11.1
SKEW DISSYMETRIE	0.20	-0.01	0.88	1.18	1.41	0.50	1.42	1.16	0.40
KURTOSIS KURTOSIS	3.06	4.28	5.18	4.90	6.34	3.82	5.23	4.31	2.32

TABLE 2

ATMOSPHERIC ENVIRONMENT SERVICE SERVICE DE L'ENVIRONNEMENT ATMOSPHERIQUE

RAINFALL INTENSITY-DURATION FREQUENCY VALUES INTENSITE, DUREE ET FREQUENCE DES PLUIES

TABLE 2	WATSON LAKE AIRPORT	YUK.	2101200						

LATITUDE 6007 LONGITUDE 12849 ELEVATION/ALTITUDE 688 M

RETURN PERIOD RAINFALL AMOUNTS (MM) PERIODE DE RETOUR QUANTITIES DE PLUIE (MM)

DURATION	2	5	10	25	50	100	# YEARS
DUREE	YR/ANS	YR/ANS	YR/ANS	YR/ANS	YR/ANS	YR/ANS	ANNEES
5 MIN	2.5	3.3	3.9	4.5	5.1	5.6	17
10 MIN	3.7	4.7	5.4	6.3	7.0	7.6	17
15 MIN	4.6	6.3	7.4	8.8	9.8	10.8	17
30 MIN	5.8	7.9	9.4	11.2	12.6	13.9	17
1 H	7.0	9.4	11.0	13.0	14.5	16.0	17
2 H	9.6	12.5	14.4	16.9	18.7	20.5	17
6 H	15.5	21.3	25.1	29.9	33.5	37.1	17
12 H	20.3	28.7	34.3	41.3	46.5	51.7	17
24 H	25.5	35.3	41.8	50.0	56.1	62.2	17

RETURN PERIOD RAINFALL RATES EXPRESSED AS MM/HR
INTENSITE DE LA PLUIE PAR PERIODE DE RETOUR, EXPRIMEE EN MM/H
WITH 50% CONFIDENCE LIMITS / AVEC DES LIMITES DE CONFIANCE DE 50%

DURATION DUREE	2 3	r/ans	5 3	r/ans	10	YR/ANS	25	YR/ANS	50	YR/ANS	100	YR/ANS
5 MIN								54.6 15.0				
10 MIN	+/-	22.2 3.1	+/-	28.5 5.3	+/-	32.7 7.1	+/-	38.0 9.6	+/-	41.9 11.5	+/-	45.8 13.3
15 MIN	+/-	18.5 3.3	+/-	25.1 5.5	+/-	29.5 7.4	+/-	35.0 10.0	+/-	39.1 12.0	+/•	43.2 14.0
30 MIN	+/-	11.5	+/-	15.9 3.6	+/-	18.8	+/-	22.4	+/-	25.1 7.9	+/•	27.8 9.2
1 H	+/-	7.0 1.2	+/-	9.4 2.0	+/-	11.0	+/-	13.0 3.6	+/-	14.5 4.3	+/-	16.0 5.1
2 H	+/-	4.8 0.7	+/-	6.2 1.2	+/-	7.2 1.6	+/-	8.4 2.2	+/-	9.3 2.6	+/-	10.2 3.1
6 н	+/-	2.6	+/-	3.5 0.8	+/-	4.2 1.1	+/-	5.0 1.5	+/-	5.6 1.7	+/-	6.2 2.0
12 H	+/-	1.7	+/-	2.4 0.6	+/-	2.9 0.8	+/-	3.4 1.1	+/-	3.9 1.3	+/-	4.3 1.5
24 H	+/-	1.1	+/-	1.5	+/•	1.7	+/-	2.1 0.6	+/-	2.3 0.7	+/•	2.6 0.9

TABLE 3

ATMOSPHERIC ENVIRONMENT SERVICE SERVICE DE L'ENVIRONNEMENT ATMOSPHERIQUE

RAINFALL INTENSITY-DURATION FREQUENCY VALUES INTENSITE, DUREE ET FREQUENCE DES PLUIES

!	*********				*****	******
TABLE 3	NATSON LAKE A	IRPORT	YUK.		2	101200
LATITUDE 6007						
	JATION / EQUATION / EQUATION / IN HOURS / TI	NTENSITE D	E LA PLUI			** B
STATISTICS STATISTIQUES		YR 5 YR NS ANS		25 YR ! ANS		100 YR ANS
MEAN OF R MOYENNE DE R	11	1.0 14.6	17.1	20.2	22.4	24.7
STD. DEV. R ECART-TYPE	10).2 13.5	15.7	18,5.	20.6	22.6
STD. ERROR ERREUR STANDARD		2 1.6	1.9	2.3	2.6	3.0
COEFF. (A) COEFFICIENT (A)		.3 9.9	11.6	13.7	15.3	16.9

4.1

5.1

-0.599 -0.589 -0.586 -0.582 -0.580 -0.578

5.8 6.4 6.7

7.0

EXPONENT (B)
EXPOSANT (B)

MEAN & ERROR

* D'ERREUR

FIGURE 1

SEBAICE DE Γ . ENAIBQNNEWENT BIWQS5HEBIQNE - ENAIBQNNEMENT CUNDOB BIWQS5HEBIC ENAIBQNWENT SEBAICE - ENAIBQNWENT CUNDOB

Figure 1 - The Rainfall rates for 2, 5, 10, 25, 50, and 100 year return periods are plotted on log-log graphs. The horizontal axis indicates the rainfall durations from 5 minutes to 24 hours. The vertical axis indicates the rainfall rates in millimeters.

ANALYSIS METHOD

3.1 Extreme Value Analysis

Generally, the frequency of only the heavier rainfalls is of interest. To reduce data and processing requirements, techniques have been developed to derive these extreme rainfall frequencies by grouping the heavier rainfall events into special series. The series of all rainfall values above a selected base is referred to as a partial or partial duration series. The collection of the greatest event from each year is known as an annual series.

Determination of the frequency of extreme events is carried out by what are referred to as extreme value analysis procedures. The annual series is the one most commonly used in extreme value analysis for the sake of data availability, and because there is a theoretical basis for extrapolating annual series data beyond the duration of the record. This theory is based upon the assertion that annual maxima can be assumed to be the maxima of independent samples drawn from the population of all possible events. The assumption of independence is not

l'équation (1). Quand cette situation se présente, il est préférable de procéder à la main à une interpolation à partir du graphique.

Figure 1 - L'intensité des pluies pour les périodes de retour de 2, 5, 10, 25, 50 et 100 ans sont pointées sur les graphiques bilogarithmiques. L'axe horizontal indique les durées des précipitations, de 5 minutes à 24 heures. L'axe vertical indique l'intensité des précipitations, en millimètres.

MÉTHODE D'ANALYSE

3.1 Analyse des valeurs extrêmes

Généralement, seule la fréquence des pluies les plus abondantes présente un intérêt. Pour réduire les exigences en matière de données et de traitement des données, on a mis au point des méthodes pour dériver la fréquence de ces pluies extrêmes en les regroupant selon des séries spéciales : la série de toutes les pluies où la fréquence est supérieure à une fréquence de référence est appelée série partielle ou de durée partielle; l'ensemble des pluies maximales de chaque année est appelé série annuelle.

On détermine la fréquence des phénomènes extrêmes par la méthode appelée "analyse des valeurs extrêmes". C'est la série annuelle que l'on utilise le plus couramment pour cette analyse vu la disponibilité des données et parce qu'il existe une base théorique pour extrapoler les données des séries annuelles au delà de la durée du relevé. Cette théorie est fondée sur l'hypothèse que les maxima annuels peuvent être considérés comme les maxima des échantillons indépendants de la population de tous les phénomènes possibles. Cette notion "d'indépen-

necessarily valid for the partial series.

An incredible amount of effort has been expended in the past in an attempt to derive theoretical or empirical relationships, which would accurately describe the probability distributions of hydrological variables, with emphasis on low probability, long return period events. Pioneers in the field (Frechet, 1927, Fisher and Tippett, 1928) studied the distribution of extreme values and found that the distribution of the largest (or smallest) values, each of which is selected from independent samples, approaches a limiting (asymptotic) form as the sample size is increased. The type of limiting form depends on the type of the initial distribution. For three different types of initial distributions, three asymptotic extremal distributions can be derived. They are known as the Fisher-Tippett Types I, II and III distributions.

An easy method for applying the Type I distribution was developed by Gumbel (1954). As a result the Type I is commonly referred to as the Gumbel distribution. It is this distribution which is used by AES and most national meteorological services in the world (WMO, 1981) to describe the frequency of extreme rainfall events.

In the past, AES has used Gumbel's fitting method to fit the Gumbel distribution to extreme rainfall and other extreme value data. Numerous investigators have shown that this introduces a bias (e.g. Watt and Nozdryn-Plotnicki, 1980; Cunnane, 1978; and Lowery and Nash, 1970). The same investigators have shown that the method of moments and method of maximum likelihood are both nearly unbiased and more efficient fitting techniques. The maximum likeli-

dance" n'est pas nécessairement valable pour les séries partielles.

Dans le passé, on a fait des efforts considérables pour déduire des relations théoriques ou empiriques pouvant donner une description exacte des distributions de probabilité des variables hydrologiques, en mettant l'accent sur les phénomènes de faible probabilité et de longue période de retour. Les pionniers dans le domaine (Frechet, 1927, Fischer et Tippett, 1928) ont étudié la distribution des valeurs extrêmes et ont découvert que la distribution des valeurs les plus grandes (ou les plus petites), chacune sélectionnée dans des échantillons indépendants, tend vers une limite (asymptotique) lorsqu'on accroit la dimension de l'échantillon. Le type de limite dépend du type de distribution initiale. Pour trois différents types de distribution initiale, on peut dériver trois distributions asymptotiques extrêmes, appelées Types I, II, III de distributions Fischer-Tippett.

Gumbel (1954) a mis au point une méthode facile pour appliquer le type I de distribution. C'est pourquoi le type I est souvent appelé "distribution de Gumbel". C'est cette distribution que le SEA et la plupart des services météorologiques officiels (p.ex. OMM, 1981) utilisent pour décrire la fréquence des chutes de pluie extrêmement fortes.

Dans le passé, le SEA a utilisé la méthode d'ajustement de Gumbel pour adapter la distribution de Gumbel aux précipitations extrêmes et aux autres données extrêmes. De nombreux chercheurs ont montré que cette méthode introduit une erreur systématique (p.ex. Watt et Nozdryn-Plotnicki, 1980; Cunnane, 1978; Lowery et Nash, 1970). Ces mêmes chercheurs ont établi que la méthode des moments-et celle des probabilités n'introduisent pratiquement pas

hood method is considered marginally better but the differences are negligible. For these graphs the method of moments was used because of its simplicity and ease of implementation.

The Gumbel double exponential distribution for annual extremes can be expressed as:

d'erreur et sont des techniques d'ajustement plus efficaces. La méthode du maximum de probabilité est considérée meilleure aux limites mais les différences sont négligeables. Pour les graphiques on a utilisé la méthode des moments à cause de sa simplicité et de sa facilité de mise en oeuvre.

La distribution bi-exponentielle de Gumbel pour les extrêmes annuels peut s'exprimer par la formule :

$$X = \mu + K(T)\sigma \qquad ... (1)$$

where X is the exceedence value, μ and σ are the population mean and standard deviation of the annual extremes, T is return period and K(T) is defined by

où X représente l'excédent, μ et σ la moyenne de la population et l'écart-type des extrêmes annuels, T est la période de retour, et K(T) est défini par :

$$K(T) = -\frac{\sqrt{6}}{\pi} (0.5772 + \ln \ln \frac{T}{T-1})$$
 ... (2)

The most obvious and direct method of fitting the distribution to a sample of data is to use the sample mean (\overline{X}) and standard deviation (S) to estimate μ and σ of (1). Since \overline{X} and S can be determined from the first and second moments of the data, this method is referred to as the method of moments. Thus, if n is the number of events in the sample, μ is estimated by

La méthode la plus évidente et la plus directe pour adapter la distribution à un ensemble de données est de prendre la moyenne de l'échantillon (X) et l'écart-type (s) pour calculer µ et σ de l'équation (1). Puisque X et S peuvent être déterminés à partir du premier et du second moment des données, on appelle cette méthode la "méthode des moments". Donc, si "n" est le nombre de phénomènes dans un échantillon, µ est calculé par la formule :

$$\bar{X} = (\Sigma X)/n$$
 ... (3)

and o by

et o par la formule:

$$S = \sqrt{\sum (\bar{X} - \bar{X})^2 / (n-1)} \qquad \dots (4)$$

The new prediction equation then becomes:

La nouvelle équation de prévision devient donc :

$$X(T) = \overline{X} + K(T) S \qquad \dots (5)$$

and using (2), (3), (4) and (5) the exceedance values for all return periods can be determined. To minimize duplication of effort the values of K(T) for commonly required return periods are tabulated.

En utilisant (2), (3), (4) et (5), on peut donc déterminer les excédents pour toutes les périodes de retour. Afin de minimiser les calculs répétitifs, on a mis sous forme de tableau les valeurs de K(T) pour les périodes de retour dont on a souvent besoin.

T 2 YR/ANS 5 YR/ANS 10 YR/ANS 25 YR/ANS 50 YR/ANS 100 YR/ANS K(T) -0.164 0.719 1.305 2.044 2.592 3.137

3.2 Adjustment to Partial Duration Series

Basing the analysis on the annual maximum series has major advantages in ease of analysis and in having a reasonably sound theoretical basis for extrapolation beyond the period of record. This analysis answers the question of the probability that the greatest annual amount will equal or exceed some value. However such a series ignores the 2nd and 3rd largest amounts in each year, and in some cases these may be greater than the maximum values of other years. The design engineer is often interested in the probability that a value greater than a given amount will occur within a given number of years, which is the type of result which arises from a partial duration series analysis.

Fortunately there has been some empirical and theoretical work to find the relationship between extreme values estimated from both the annual maximum series and the partial duration series (Pugsley, 1981). These studies show that the estimates based on annual maxima are equal to those based on the partial duration series for return

3.2 Adaptation aux séries de durée partielle

Le fait que l'analyse soit fondée sur les séries annuelles de maxima présente plusieurs avantages majeurs : cela facilite l'analyse et permet d'avoir une base théorique relativement solide pour l'extrapolation au-delà de la période couverte par le relevé. Cette analyse permet de déterminer avec quelle probabilité la hauteur maximale annuelle sera égale ou supérieure à une certaine valeur. Néanmoins, ces séries ne tiennent pas compte des hauteurs de pluies classées en 2e et 3e positions et qui sont parfois supérieures aux hauteurs maximales enregistrées au cours d'autres années. En conception, l'ingénieur s'intéresse à la probabilité que se produise sur un nombre d'années donné, une valeur supérieure à une hauteur donnée (type de résultat obtenu à partir d'une analyse de série de durée partielle).

Heureusement, des études empiriques et théoriques ont été faites pour établir la relation entre les valeurs extrêmes calculées à partir des séries de maxima annuels et des séries de durée partielle (Pugsley, 1981). Ces études montrent que les calculs basés sur les maxima annuels donnent des résultats semblables à ceux basés sur

periods longer than 10 years. For shorter return periods the partial duration series results are higher than those obtained from the annual maximum series, by 14% for the 2-year return period, 4% for the 5-year return period and 1% for 10-year return period values. The values in the tables and graphs have not been adjusted to account for these differences.

3.3 Other Statistical Analyses

Supplemental to AES analyses, Howard (1979) reports on a statistical summary of rainfall data from 35 Canadian urban centres, produced for the Environmental Protection Service (EPS) for water pollution control design purposes. The results of the analyses consist of yearly tables summarizing events and statistical tables for storm rainfall depth, duration, average intensity and inter-event time. Statistical tables of moisture deficit estimates are also given. This data base could prove particularly useful to hydrological modellers. It is available from EPS Water Pollution Control Directorate, Ottawa, Ontario, K1A 1C8.

les séries de durée partielle pour des périodes de retour supérieures à 10 ans. Pour des périodes de retour plus courtes, les résultats des séries de durée partielle sont supérieurs à ceux obtenus à partir des séries de maxima annuels : de 14% pour une période de retour de 2 ans, de 4% pour une période de retour de 5 ans et de 1% pour une période de retour de 10 ans. Les valeurs de tableaux n'ont pas été corrigées pour tenir compte de ces différences.

3.3 Autres analyses statistiques

En supplément aux analyses du SEA, Howard (1979) fait rapport d'un sommaire statistique de données pluviométriques provenant de 35 centres urbains au Canada, établi pour le Service de la protection de l'environnement (SPE) aux fins du contrôle de la pollution des eaux. Les résultats de ces analyses sont présentés sous forme de tableaux annuels répertoriant les phénomènes et sous forme de tableaux statistiques pour la hauteur, la durée et l'intensité moyenne des pluies ainsi que pour la période inter-phénomènes. Les résultats comprennent aussi des tableaux statistiques des valeurs estimées du déficit de la teneur en eau. Cette base de données pourrait être très utile pour les modélisateurs en hydrologie; elle est disponible auprès du SPE, Direction générale du contrôle de la pollution de l'eau, Ottawa (Ont.), K1A 1C8.

4. REFERENCES

- Bruce, J.P. and R.H. Clark, 1966: Introduction to Hydrometeorology, Pergamon Press, Oxford, 319 p.
- Fisher, R.A. and L.H.C. Tippett, 1928: "Limiting forms of the frequency distribution of the smallest and largest member of a sample", Proc. Cambridge Phil. Soc., Vol. 24, pp. 180-190.
- Frechet, M., 1927: "Sur la loi de proabilité de l'écart maximum (on the probability law of maximum error)". Ann. Soc. Polonaise Math. (Cracow), Vol. 6, pp. 93-116.
- Gumbel, E.J., 1954: Statistical theory of extreme values and some practical applications. National Bureau of Standards, Applied Mathematics Series 33, Washington, D.C.
- Lowery, M.D. and J.E. Nash, 1970: A Comparison of Methods of Fitting the Double Exponential Distribution. J. Hydrology 10, pp. 259-275.
- Meteorological Branch, 1952: The Tipping-Bucket Rain Gauge. Instrument Manual 41, Atmospheric Environment Service, Downsview, Ont.
- Pugsley, W.I., 1981: Flood hydrology guide for Canada: hydrometeorological design techniques. CLI 3-81, 102 p. Atmospheric Environment Service, Downsview.
- Pugsley, W.I., 1981: Guide hydrologique des crues au Canada techniques de conception hydrométéorologiques. CLI 3-81, 102 p. Service de l'environnement atmosphérique, Downsview, (Ont.).
- Watt, W.E. and M.J. Nozdryn-Plotnicki, 1980: Rainfall Frequency Analysis for Urban Design. Proc. Cdn Hydrol. Symp: 80, pp. 42-52, NRC, Ottawa.
- WMO, 1981: Selection of distribution types for extremes of precipitation by B. Sevruk and H. Geiger. World Meteorological Organization, Op. Hydrol. Report No. 15, WMO No. 560, 64 p. Geneva.

For additional information about publications, climatic data, services and on climate-related activities of national scope, please contact:

Canadian Climate Centre Atmospheric Environment Service 4905 Dufferin Street Downsview, Ontario M3H 5T4

Climatological Services Division Phone: (416)739-4328

Hydrometeorology Division Phone: (416)739-4338 or 739-4355

Information about regional climatic programs and services is available from these regional offices of AES:

Pacific Region (604)666-2980 Suite 700, 1200 West 73rd Avenue Vancouver, B.C. V6P 6H9

Western Region (403)495-3143 Twin Atria Building 4999 - 99 Avenue, 2nd Floor Edmonton, Alberta T6B 2X3

Central Region (204)983-2082 Room 1000, 266 Graham Avenue Winnipeg, Manitoba R3C 3V4

Central Region (306)780-5739 P.O. Box 4800 Regina, Saskatchewan S4P 3Y4

Ontario Region (416)973-8775 25 St. Clair Avenue, East Toronto, Ontario M4T 1M2

Québec Region (514)283-1296 100 Alexis Nihon Blvd., 3rd Floor Ville St. Laurent, P.Q. H4M 2N6

Atlantic Region (902)426-9226 1496 Bedford Highway Bedford, Nova Scotia B4A 1E5

and in Québec,

Service de la Météorologie (418)643-4588 Ministère de l'Environnement du Québec 194 Saint Sacrement Québec, P.Q. ElN 4S5 Pour obtenir des renseignements sur les publications, les données clima logiques, les services et les activites climatologiques à l'échelle nationale, veuillez communiquer avec le :

Centre climatologique canadien Service de l'environnement atmosphérique 4905, rue Dufferin Downsview (Ontario) M3H 5T4

Division des services climatologiques Tél: (416)739-4328

Division de l'hydrométéorologie Tél: (416)739-4338 ou 739-4355

On peut se renseigner sur les programmes et services climatologiques régionaux auprès des bureaux régionaux du Service de l'environnement atmosphérique (voir ci-dessous):

Région du Pacifique (604)732-4875 Suite 700, 1200 ouest, 73^e avenue Vancouver (C.B.) V6P 6H9

Région de l'Ouest (403)495-3143 Twin Atria Building 4999 - 99 Avenue, 2º étage Edmonton (Alberta) T6B 2X3

Région du Centre (204)983-2082 266 avenue Graham, Bureau 1000 Winnipeg (Manitoba) R3C 3V4

Région du Centre (306)780-5739 C.P. 4800 Regina (Saskatchewan) S4P 3Y4

Région de l'Ontario (416)973-8775 25 est, avenue St. Clair Toronto (Ontario) M4T 1M2

Région de Québec (514)283-1296 100 boul. Alex-Nihon 3^e étage Ville Saint-Laurent (Québec) H4M 2N6

Région de l'Atlantique (902)426-9226 1496 autoroute Bedford Bedford (Nouvelle-Ecosse) B4A 1E5

et au Québec,

Service de la Météorologique (418)643-4588 Ministère de l'Environnement du Québec 194 Saint Sacrement Québec, P.Q. E1N 4S5

ATMOSPHERIC ENVIRONMENT SERVICE SERVICE DE L'ENVIRONMENT ATMOSPHERIQUE

INDEX OF STATIONS/INDEX DES CARTES (1986) with/avec

Rainfall Intensity-Duration Frequency Values Intensite, duree et frequence des averses

STATION	Lat.	Long.	Elev. (m)	Years of record	Disk Identifier
STATION	Lat.	Long.	Alt. (m)	Annees D'observation	Identificateur n de Disque
BRITISH COLUMBIA/ COLOMBIE-BRITANNIQUE				. ,	IDF_BC IDF_BC
Abbotsford A	49 02	122 22	57	10	1
Agassiz CDA	49 15	121 46	15	29	1
Alouette Lake	49 17	122 29	117	12	1
Atlin	59 34	133 42	673	10	3
Bella Coola BC Hydro	52 22	126 49	13	16	2
Blue River A	52 07	119 17	682	17	2
Buntzen Lake	49 23	122 52	16	15	2
Burnaby Mtn. BCHPA	49 17	122 55	464	12	1
Burns Lake	54 14	125 46	704	17	3
Campbell River Airport	49 57	125 16	106	13	2
Campbell River STP	50 01	125 14	3	14	2
Carnation Creek CDF	48 54	125 00	60	11	1
Castlegar A	49 18	117 38	494	14	1
Castlegar BCHPA Dam	49 20	117 48	475	16	1
Chetwynd BCFS	55 42	121 37	659	18	3
Chilliwack Microwave	40 07	121 54	228	16	1
Clowhom Falls	49 43	123 32	22	18	2
Comox A	49 43	124 54	24	24	2
Coquitlam Lake	49 22	122 48	160	12	1
Courtenay Puntledge BCHP	49 41	125 02	24	23	2
Cranbrook A	49 36	115 47	939	18	2
Daisy Lake Dam	49 59	123 08	380	15	2
Dawson Creek A	55 44	120 11	654	14	3
Dease Lake	58 25	130 00	816	14	3
Duncan Lake Dam	50 15	116 58	548	17	2
Estevan Point	49 23	126 33	7	10	2
Fauquier	49 52	118 04	472	12	3
Fort Nelson A	58 50	122 34	381	20	3
Fort St. James	54 27	124 15	685	11	3
Fort St. John A	56 14	120 44	694	12	3
Germansen Landing	55 47	124 42	746	22	3

STATION	Lat.	Long.	Elev. (m)	Years of record	Disk Identifier		
STATION	Lat.	Long.	Alt. Annees (m) D'observation		Identificateur on de Disque		
Cont'd/ suite			·		IDF_BC IDF_BC		
Golden	51 18	116 59	784	13	2		
Haney Microwave	49 12	122 31	320	21	1		
Haney UBC RF ADMIN	49 16	122 34	143	24	1		
Hope A	49 22	121 29	39	23	1		
Horsefly BCFS	52 20	121 25	784	14	2		
Hudson Hope BCHPA Dam	56 01	122 12	678	14	3		
Jordan River Diversion	48 30	124 00	393	20	1 ·		
Jordan River Gen Sta.	48 25	124 03	4	14	1		
Kamloops A	50 42	120 27	345	22	2		
Kelowna A	49 58	119 23	429	18	2		
Kelowna Ok College	49 52	119 29	349	15	2		
Kimberley PCC	49 38	115 59	888	11	2		
Kitimat	54 00	128 42	16	17	2		
Ladner BCHPA	49 05	123 03	1	13	. 1		
Lajoie Dam	50 50	122 52	685	12	2		
Langley Lochiel	49 03	122 35	100	15	1		
Lillooet Seton BCHPA	50, 40	121 55	198	14	2		
Lytton	50 14	121 35	258	17	2		
Mackenzie A	55 18	123 08	700	16	3		
McBride North	53 22	120 15	771	14	2		
Mica Dam	52 03	118 35	579	10	2		
Mission West Abbey	49 09	122 16	220	24	1		
Nanaimo Departure Bay	49 13	123 57	7	16	1		
N Vancouver Lynn Creek	49 22	123 02	190	19	1		
Oliver Stp	49 11	119 33	297	14	1		
Pemberton BCFS	50 19	122 49	218	14	2		
Penticton A	49 28	119 36	344	30	2		
Pitt Meadows Stp	49 13	122 42	5	12	1		
Pitt Polder	49 18	122 38	1	22	1		
Port Alberni A	49 15	124 50	2	18	1		
Port Coquitlam City Yard	49 16	122 47	6	16	1		
Port Hardy	50 41	127 22	. 21	13	2		
Port Mellon	49 31	123 29	7	11	2 .		
Port Moody Gulf Oil RFY	49 17	122 53	129	16	1		
Port Renfrew BCFP	48 35	124 24	6	10	1		
Prince George A	53 53	122 40	6 76	27	2		

STATION	Lat.	Long.	Elev. (m)	Years of record	Disk Identifier
STATION	Lat.	Long.	Alt. (m)	Annees D'observatio	Identificateur n de Disque
Cont'd/ suite					IDF_BC IDF_BC
Prince Rupert A	54 18	130 26	33	17	3
Quick	54 37	126 54	533	19	3
Revelstoke A	50 58	118 11	442	17	2
Saanich Camosum	48 .30	123 35	38	12	1
Salmon Arm	50 42	119 15	505	21	2
Sandspit A	53 15	131 49	6	15	. 2
Smithers A	54 49	127 11	523	16	3
Southbank	54 02	125 46	729	12	2
Strathcona Dam	50 00	125 35	201	14	2
Summerland CDA	49 34	119 39	454	29	2
Surrey Kwantlen Park	49 12	122 52	92	25	1
Surrey Municipal Hall	49 06	122 50	76	23	1
Terrace A	54 28	128 35	217	18	3
Terrace PCC	54 30	128 37	58	18	3
Todagin Ranch	57 36	130 04	899	11	3
Tofino A	49 05	125 46	19	16	1
Trail Birchbank	49 11	117 44	594	21	1
Valemount North	52 51	119 15	891	15	2
Vancouver Harbour	49 18	123 07	0	17	1
Vancouver Int'l A	49 11	123 10	1	34	<u> </u>
Vancouver Kitsiland	49 16	123 11	22	30	1
Vancouver UBC	49 15	123 15	86	29	1
Vernon	50 14	119 17	555	15	2
Victoria Gonzales Hts		123 19	69	54	1
Victoria Int'l A	48 39	123 26		22	ī
Victoria Marine	48 22	123 45	31	20	ī
Victoria U Vic	48 28	123 20	45	20	ī
Ware	57 26	125 38	777	13	3
White Rock Stp	49 01	122 46	15	23	1
Yoho Nat Park Boulder		116 32	1219	12	2
Whistler	50 08	122 57		16	2

STATION	Lat.	Long.	Elev (m)	Years of record	Disk Identifier
STATION	Lat.	Long.	A1t.	Annees D'observation	Identificateur n de Disque
YUKON/ YUKON					IDF_YN IDF_YN
Burwash A	61 22	139 03	798	11	1
Carmacks	62 06	136 18	522	15	1
Dawson A	64 03	139 08	369	11	1
Fort Selkirk	62 49	137 22	454	20	1
Haines Junction	60 46	137 35	598	14	1
Teslin A	60 10	132 45	704	14	1
Watson Lake A	60 07	128 49	689	17	1
Whitehorse A	60 43	135 04	702	25	1
NORTHWEST TERRITORIES/ TERRITORIES DU NORD-OUEST					IDF_YN IDF_YN
Cambridge Bay A	69 06	105 07	27	13	1
Cape Dorset A	64 13	76 32	46	12	. 1
Fort Reliance	62 43	109 10	164	14	1
Fort Simpson A	61 45	121 14	168	17	<u></u>
Hay River A	60 50	115 47	165	16	ī
Inuvik A	68 18	133 29	67	14	ī
Norman Wells A	65 17	126 48	73	10	i
Yellowknife	62 28	114 27	205	24	i
ALBERTA/ ALBERTA					IDF_AL IDF_AL
Beaverlodge CDA	55 12	119 24	731	24	1
Brooks AHRC	50 33	111 51	758	20	1
Calgary Int'l A	51 06	114 01	1084	36	1
Cold Lake	54 25	110 17	540	21	1
Edmonton Int'1 A	53 18	113 35	715	25	1
Edmonton Municipal A	53 34	113 31	670	54	1
Edmonton Namao A	53 40	113 28	687	22	<u></u>
Edson A	53 35	116 27	921	17	1
Ellerslie	53 25	113 33	693	19	ī
Fort Chipewyan A	58 46	111 07	231	18	ī
Fort McMurray a	56 39	111 13	369	21	î
Grande Prairie A	55 11	118 53	669	18	. 1
Jasper	52 53	118 04	1060	23	i
LaCombe CDA	52 28	113 45	874	17	· î

STATION	Lat.	Long.	Elev (m)	. Years of record	Disk Identifier
STATION	Lat.	Long.	Alt. (m)	Annees D'observation	Identificateur n de Disque
Cont'd/ suite					IDF_AL IDF_AL
Lethbridge A	49 38	112 48	928	27	1
Manyberries CDA	49 07	110 28	934	16	1
Medicine Hat A	50 01	110 43	716	16	- ·
Peace River A	56 14	117 26	570	21	ī
Pincher Creek A	49 30	113 57	1155	22	ī
Red Deer A	52 11	113 54	905	23	ī
Rocky Mtn. House A	52 26	114 55	1014	21	i
Slave Lake A	55 18	114 47	580	14	i
Vauxhall CDA	50 03	112 08	778	31	i
	53 29				
Vegreville CDA		112 02	635	13	1
Watino	55 43	117 37	384	15	1
SASKATCHEWAN/					IDF SA
SASKATCHEWAN		٠.			IDF_SA
Bad Lake 102	51 19	108 25	637	15	1
Broadview	50 23	102 41	601	22	1
Buffalo Narrows A	55 51	108 28	422	17	ī
Collins Bay	58 11	103 41	490	13	ī
Cree Lake	57 21	107 08	496	17	i
Davin 5	50 23	104 10	647	25	i
Estevan A	49 04	103 00	571	23	1
Hudson Bay A	52 52	102 24	371	21	i
Indian Head CDA	50 32	103 40	586	25	
Indian Head PFRA	50 32	103 40	604		1
Island Falls	55 32	103 41		25	1
	51 28		299	19	1
Kindersley KY		109 10	683	21	1
La Ronge A	55 09	105 15	374	21	1
Melfort CDA	52 49	104 36	480	13	1
Moose Jaw A	50 20	105 33	576	27	1
Nipawin A	53 20	104 00	373	13	1
North Battleford A	54 46	108 15	548	12	1
Ormision	49 43	105 22	685	16	1
Outlook PFRA	51 29	107 03	540	22	1
Prince Albert A	53 13	105 41	428	24	1
Regina A	50 26	104 40	577	44	1
Saskatoon A	52 10	106 41	500	26	1
Saskatoon U of S.	52 08	106 38	515	33	1

STATION	Lat.	Long.	Elev. Years of (m) record	Disk Identifier
STATION	Lat.	Long.	Alt. Annees (m) D'observati	Identificateur on de Disque
Cont'd/ suite				IDF_SA IDF_SA
Scott CDA	52 22	108 50	659 24	1
Swift Current A	50 17	107 41	817 17	1
Swift Current CDA	50 16	107 44	825 28	. 1
Uranium City A	59 34	108 29	318 20	1
Weyburn	49 39	103 50	569 24	1
Wynyard	51 46	104 12	560 22	1
Yorkton A	51 16	102 28	498 17	1
MANITOBA/ MANITOBA				IDF_MN IDF_MN
Bissett	51 02	95 40	257 16	1
Brandon A	49 55	99 57	409 17	1
Brandon CDA	49 52	99 59	362 25	1
Churchill A	58 45	94 04	28 24	1
Dauphin A	51 06	100 03	304 33	1
Deerwood	49 24	98 19	338 21	1
Flin Flon A	54 41	101 41	303 15	1
Gillam A	56 21	94 42	144 15	1
Gimili	50 38	97 03	220 23	, 1
Glenlea	49 39	97 07	234 20	1
Grand Rapids	53 09	99 17	222 13	1
Indian Bay	49 37	95 12	326 24	1
Island Lake	53 52	94 40	238 16	1
Lynn Lake	56 52	101 04	356 18	1
Norway House Forestry	54 00	97 48	217 18	1
Pilot Mound PO	49 12	98 54	474 22	1
Portage la Prairie A	49 54	98 16	269 23	1
The Pas A	53 58	101 06	270 16	1
Thompson A	55 48	97 52	214 16	1 .
Winnipeg Int'l A	49 54	97 14	238 39	1
Winnipeg St. Boniface	49 53	97 06	231 20	1
Winnipeg Stp	49 57	97 06	232 19	1

STATION	Lat.	Long.	Elev. (m)	Years of record	Disk Identifier
STATION	Lat.	Long.	Alt. (m) I	Annees O'observation	Identificateur on de Disque
ONTARIO/ ONTARIO					IDF_ON IDF_ON
Armstrong A	50 17	88 54	320	14	3
Atikokan	48 45	91 37	392	20	3
Bark Lake Dam	45 25	77 48	335	14	3
Belleville	44 09	77 24	76	19	2
Big Trout Lake	53 50	89 52	219	20	3
Blue Springs Creek	43 38	80 07	373	11	1
Bowmanville Mostert	43 55	78 40	99	18	2
Brantford MOE	43 08	80 14	195	25	1
Brockville PCC	44 36	75 40	91	19	2
Burketon McLaughlin	44 02	78 48	312	18	2
Burlington Fire HQ's	43 21	79 49	114	10	1
Campbellford	44 18	77 48	146	14	2
Caribou Island	47 20	85 50	186	20	3
Chapleau A	47 49	83 21	445	13	3
Chatham Waterworks	42 25	82 11	182	20	1
Combermere	45 22	77 37	287	20	2
Cornwall Ont Hydro	45 02	74 48	76	27	2
Cove Island	45 20	81 44	179	18	2
Delhi CDA	42 52	80 33	231	24	1
Dorset MOE	45 13	78 56	323	13	2
Ear Falls	50 38	93 13	360	33	3
Elora Research Stn.	43 39	80 25	376	17	1
Fergus Shand Dam	43 44	80 20	417	23	2
Geraldton	49 42	86 57	330	32	3
Glen Allan	43 41	80 43	404	10	1
Goderich A	43 46	81 42	213	11	2
Great Duck Island	45 39	82 58	182	18	3
Greenwood MTRCA	43 54	79 04	128	22	2
Guelph Arboretum	43 33	80 13	327	31	ī
Guelph Smallfield	43 32	80 18	344	11	ī
Hamilton A	43 10	79 56	236	16	î
Hamilton RBG	43 17	79 53	102	23	i
Harrow CDA	42 02	82 54	190	19	• 1

STATION	Lat.	Long.	Elev.	Years of record	Disk Identifier	
STATION	Lat.	Long.	Alt. Annees (m) D'observation		Identificateur on de Disque	
Cont'd/ suite					IDF_ON IDF_ON	
Kapuskasing CDA	49 24	82 26	217	20	3	
Kemptville	45 00	75 38	99	17	2	
Kenora A	49 47	94 22	410	21	3	
Kingston Pumping Sta.	44 14	76 29	76	43	2	
Kitchener City ENG	43 27	80 29	320	13	. 1	
La Cave	46 22	78 44	172	10	3.	
Lake Traverse	45 57	78 04	236	13	3	
Lansdowne House	52 14	87 53	256	16	3	
Lindsay Filt Plant	44 21	78 44	251	22	2	
London A	43 02	81 09	277	39	1	
Long Point	42 33	80 03	175	18	1	
Main Duck Island	43 56	76 38	77	21	2	
Mississagi Ont Hydro	46 26	83 23	225	14	3	
Moosonee	51 16	80 39	10	19	3	
Mount Forest	43 59	80 45	414	25	2	
Niagara Falls	43 08	79 05	182	22	1	
North Bay A	46 21	79 26	357	23	3	
Oak Ridges	43 58	79 28	339	17	2	
Oakville SE OWRC	43 29	79 38	86	12	1	
Orillia TS	44 37	79 25	219	21	2	
Oshawa WPCP	43 52	78 50	83	16	2	
Ottawa CDA	45 23	75 43	79	34	2	
Ottawa Int'l A	45 19	75 40	113	20	2	
Owen Sound MOE	44 35	80 56	178	21	2	
Petawawa Nat Forestry	46 00	77 26	167	26	3	
Peterborough A	44 14	78 21	191	16	2	
Peterborough STP	44 17	78 19	192	22	2	
Pickle Lake	51 - 28	90 12	368	29	.3	
Picton	44 01	77 08	76	21	2	
Pinard	49 51	81 36	231	25	3	
Point Pelee	41 57	82 31	176	12	i	
Porcupine Ont Hydro	48 28	81 16	298	32	3	
Port Colborne	42 53	79 15	175	23	i	
Preston WPCP	43 23	80 21	272	14	ī	

STATION	Lat.	Long.	Elev. (m)	Years of record	Disk Identifier		
STATION	Lat.	Long.	Alt. Annees (m) D'observat		Identificateur ion de Disque		
Cont'd/ suite					IDF_ON IDF_ON		
Prospect Hill	43 13	81 14	312	10	1 .		
Ragged Rapids	45 01	79 41	228	14	2		
Rawson Lake	49 39	93 43	358	15	3		
Rayner Ont	46 20	83 30	243	16	3		
Ridgetown	42 27	81 53	205	27	1		
St. Catharines A	43 12	79 10	97	24	1		
St. Thomas WPCP	42 47	81 10	236	57	1		
Sarnia A	43 00	82 18	181	17	1		
Sault Ste. Marie A	46 29	84 30	192	25	3		
Simcoe	42 51	80 16	240	25	1		
Sioux Lookout A	50 07	91 54	390	23	3		
Slate Island	48 37	87 00	185	20	3		
Smithfield CDA	44 05	77 40	121	14	2		
Smiths Falls WPCP	44 54	76 00	121	19	2		
Stouffville	44 00	79 16	312	11	2		
Stratford MOE	43 22	81 00	353	20	1		
Sudbury Science	46 28	81 00	262	12	3		
Sudbury A	46 37	80 48	347	16	3		
Thunder Bay A	48 22	89 19	199	35	3		
Toronto	43 40	79 24	110	43	1		
Toronto Bermondsey	43 43	79 19	138	21	ī		
Toronto Booth	43 45	79 29	198	19	2		
Toronto Etobicoke	43 38	79 32	118	16	ī		
Toronto Greenwood	43 40	79 19	99	16	ī		
Toronto Int'l A	43 40	79 38	172	36	ī		
Toronto Island A	43 38	79 24	76	16	<u> </u>		
Toronto Keele-Finch	43 46	79 29	199	20	2		
Toronto Leslie Eglington	43 43	79 21	131	12	1		
Toronto Met Res Stn.	43 48	79 33	193	18	2		
Toronto Old Weston Rd.	43 39	79 28	121	21	1		
Toronto York Mills	43 45	79 23	153	13	2		
Trenton A	44 07	77 32	86	21	2		
[weed	44 30	77 17	145	13	2		
Upper Notch	47 15	49 35	240	16	3		
Utterson Ont Hydro	45 12	79 21	297	11	2		
Vineland Station	43 11	79 24	79	19	1		

STATION	Lat.	Long.	Elev. (m)	Years of record	Disk Identifier
STATION	Lat.	Long.	Alt. (m) I	Annees O'observation	Identificateur de Disque
Cont'd/ suite					IDF_ON IDF_ON
Waterloo Wellington A	43 27	80 23	314	16	1 ·
West Guilford	45 06	78 41	327	15	. 2
White River	48 36	85 17	378	21	3
Wiarton A	44 45	81 06	222	14	2
Wilcox Lake	43 57	79 26	290	10	2
Windsor A	42 16	82 58	189	40	1
Windsor Univ.	42 18	83 04	179	12	<u></u>
Woodstock	43 08	80 46	281	10	1
QUEBEC/		•			IDF_QU
QUEBEC		• .			IDF_QU
Amos	48 34	78 08	309	. 18	3
Arthabaska	46 01	71 57	134	19	1
Bagotville	48 20	71 00	158	24	3
Baie Comeau A	49 08	68 12	21	18	3
Barrage des Quinze	47 33	79 14	265	20	2
Barrage Mercier	46 43	75 59	236	13	2
Barrage Temiscamingue	46 43	79 06	181	19	2
Blanc Sablon	51 25	57 13	19	12	3
Brome	45 11	72 34	205	15	1
Cap Madeleine	49 15	65 20	28	19	3
Cap Seize	49 01	66 24	213	18	3
Cap Tourmente	47 04	70 74	6	11	2
Charlesbourg Parc Orlean	46 52	71 16	114	. 15	2
Chartierville	45 17	71 12	518	19	1
Cheneville	45 54	75 05	222	13	1
Chibougamau Chapais A	49 46	74 32	387	23	3
Courville de Poissy	46 53	71 10	114	11	2
Deschambault	46 40	71 56	15	14	2
Drummondville	45 53	72 29	82	16	1
Duberger	46 49	71 18	15	14	2
Duchesnay	46 52	71 39	166	15	2
Forestville	48 44	69 05	76	17	3
Foret Montmorency	47 19	71 09	640	20	2
Fortierville	46 29	72 03	53	13	2

STATION	Lat.	Long.	Elev. (m)	Years of record	Disk Identifier	
STATION	Lat.	Long.	Alt. Annees (m) D'observation		Identificateur n de Disque	
Cont'd/ suite					IDF_QU	
Gagnon A	51 57	68 08	575	17	. 3	
Georgeville	45 08	72 14	266	19	1	
Granby	45 23	72 42	167	17	1	
Grande Riviere	48 24	64 29	17	15	3	
Grand Fonds	47 45	70 07	365	14	2	
Inukjuak A	58 27	78 07	4	17	3	
Island Brook	45 23	71 28	345	16	. 1	
Joliette Ville	46 00	73 25	45	14	1	
Kuujjuaq A	58 06	68 25	36	16	3	
Kuujjuarapik A	55 17	77 46	18	16	3	
Lac Humqui	48 17	67 34	235	14	2	
Lac Megantic 2	45 36	70 53	464	17	1 .	
Lac Ste Croix	48 25	71 45	160	. 15	3	
La Pocatiere CDA	47 21	70 02	30	25	2	
L'Assumption CDA	45 49	73 26	21	24	1	
Lennoxville CDA	45 22	71 51	151	26	1	
Lingwick	45 38	71 22	266	18	1	
Maniwaki	46 23	75 58	170	21	2	
Maple Leaf East	45 20	71 24	444	16	1	
Matagami A	49 46	77 48	281	17	3	
Mont Apica	47 58	71 25	548	16	2	
Mont Joli A	48 37	68 13	52	. 19.	3	
Montreal Int'l A	45 28	73 45	35	44	1	
Montreal Jean Brebeuf	45 30	73 37	132	16	1	
Montreal Lafontaine	45 31	73 34	41	13	1	
Montreal McGill	45 30	73 35	56	76	1	
Murdochville	48 57	65 31	574	10	·· 3	
Natashquan A	50 11	61 49	10	18	3	
Nitchequon	53 12	70 54	536	18	3	
Nominingue	46 23	75 03	274	15	2	
Normandin CDA	48 51	72 32	137	24	3	
Nouvelle	48 06	66 18	15	15	2	
Oka	45 30	74 04	91	17	1	
Ormstown	45 07	74 03	45	21	1	
Portage des Roches	48 18	71 13	164	15	2	
Quebec City	46 48	71 13	90	30	2	

STATION	Lat.	Long.	Elev. (m)	Years of record	Disk Identifier
STATION	Lat.	Long.	Alt.	Annees O'observation	Identificateu de Disque
Cont'd/ suite		-			IDF_QU IDF_QU
Overhee A	1.6 1.9	71 00	70	24	-
Quebec A Rimouski	46 48 48 27	71 23 68 31	72 35	26 20	2
Riviere du Loup	48 27 47 48	69 33	148	10	3 2
Riviere du Loup Riviere au Renard	49 01	64 24	39	11	3
Riviere au kenard Roberval A					3
		72 16	178	16	
Ste Agathe des Monts	46 03	74 17	399	21	1
St. Alban	46 43	72 05	76	17	2
Ste Anne de Bellevue	45 26	73 56	40	23	1
St. Augustin	46 44	71 30	57	21	2
St. Bendoit	45 34	74 03	53	13	1 .
St. Bruno Kamouraska	47 27	69 47	198	17	2
Ste Catharine	46 51	71 37	152	19	2
St. Charles Garnier	48 20	68 03	323	15	. 2
Ste Clothilde CDA	45 10	73 41	56	17	1
St. Coeur de Marie	48 38	71 43	106	20	3
St. Donat	46 19	74 12	388	13	1
Ste Edwidge	45 12	71 41	380	16	1
St. Ephrem	46 04	70 58	312	19	1
Ste Foy Matapedia	46 45	71 17	45	13	2
Ste Foy Pie XII	46 46	71 19	79	15	2
St. Georges	46 09	70 42	167	20	2
Ste Germaine	46 25	70 28	510	21	2
St. Guillaume	45 53	72 46	43	14	1
St. Hubert A	45 31	73 25	27	20	1
St. Isidore d'Auckland	45 16	71 31	393	16	1
St. Jean de Cherbourg	48 53	67 07	350	15	· 3
St. Jerome	45 48	74 03	169	14	1
St. Malachie	46 33	70 49	220	21	2 .
St. Michel des Saints	46 41	73 55	350	16	2
St. Modeste	47 51	69 23	152	11	2
St. Pierre de Broughton	46 15	71 13	365	15	2 2
St. Sebastien	45 46	70 57	441	14	1
St. Theophile	45 56	70 29	510	19	ī
St. Zacharie	46 07	70 23	480	14	ī
Sawyerville Nord	45 22	71 32	345	20	ī
Schefferville A	54 48	66 49	541	18	3
Sept-Iles A	50 13	66 16	54	17	3
Shawinigan	46 34	72 45	121	19	2
Shawville	45 36	76 30	167	17	1
Sherbrooke	45 24	71 54	181	13	1
Sherbrooke A	45 26	71 41	241	24	1

STATION	Lat.	Long.	Elev.	Years of record	Disk Identifier
STATION	Lat.	Lat. Long.		Annees o'observation	Identificateur de Disque
Cont'd/ suite					IDF_QU IDF_QU
Thetford Mines	46 06	71 21	380	20	1
Trois Rivieres Aqueduc	46 23	72 37	54	10	2
Val d'Or A	48 04	77.47	337	25 ⋅	2
Vallee Junction	46 23	70 56	152	18	2
West Ditton	45 24	71 18	507	21	1
Woburn	45 23	70 52	396	14	, 1
NEW BRUNSWICK/ NOUVEAU BRUNSWICK					IDF_MA
Belledune	47 54	65 50	7	15	1
Centreville	46 26	67 41	121	18	1
Charlo A	47 59	66 20	37	28	1
Chatham A	47 01	65 27	33	23	1
Fredericton CDA	45 55	66 37	39	28	1
Moncton A	46 07	64 41	70	37	. <u>1</u>
Royal Road	46 03	66 43	115	20	ī
Royal Road West	46 05	66 44	160	12	ī
Saint John	45 16	66 05	33	20	i
Saint John A	45 19	65 53	108	29	i
Summit Depot	47 47	68 20	411	17	i
Summit Depot	4/ 4/	08 20	411	17	
NOVA SCOTIA/ TERRE-ECOSSE					IDF_MA IDF_MA
Eddy Point	45 31	61 15	66	13	1
Greenwood A	44 59	64 55	27	22	. 1
Halifax	44 39	63 34	31	23	1 .
Halifax Int'l A	44 53	63 31	145	10	1
Kentville CDA	45 04	64 29	48	25	1
Sable Island	43 56	60 01	3	25	1
Sharpe Brook	45 01	64 38	137	10	1
Shearwater A	44 38	63 30	50	31	1
Shelburne	43 43	65 15	27	14	ī
Sydney A	46 10	60 03	55	25	ī

STATION	Lat.	Long.	Elev. (m)	Years of record	Disk Identifier	
STATION	Lat.	Long.	Alt. Annees (m) D'observation		Identificateur n de Disque	
Cont'd/ suite					IDF_MA IDF_MA	
Truro	45 22	63 16	39	26	1	
Yarmouth A	43 50	66 05	42	16	1	
PRINCE EDWARD ISLAND/ ÎLE-DU-PRINCE-EDOUARD					IDF_MA	
Charlottetown CDA	46 15	63 08	22	20	. 1	
Summerside A	46 26	63 50	23	23	1	
NEWFOUNDLAND/ TERRE-NEUVE					IDF_MA IDF_MA	
Battle Harbour LOR	52 15	55 36	9	11	1	
Burgeo	47 37	57 37	12	19	1	
Churchill Falls A	53 33	64 0 6	439	18	1	
Comfort Cove	49 16	54 53	99	19	1	
Daniels Harbour	50 14	57 35	19	18	1	
Deer Lake A	49 13	57 24	21	21	1	
Gander Int'l A	48 57	53 34	151	44	1	
Goose A	53 19	60 25	48	24	1	
Port aux Basques	47 34	59 10	40	12	1	
St. Albans	47 52	55 51	13	14	1	
St. Anthony	51 22	55 38	105	15	1	
St. John's A	47 37	52 45	140	27	1	
St. Lawrence	46 55	55 23	46	18	1	
Stephenville A	48 32	58 33	26 5/8	19	1	
Wabush Lake A	52 56	66 52	548	12	1	

ATMOSPHERIC ENVIRONMENT SERVICE SERVICE DE L'ENVIRONMENT ATMOSPHERIQUE

INDEX OF SUPPLEMENTARY STATIONS*/INDEX SUPPLÉMENTAIRES DES STATIONS (1986) with/avec

Rainfall Intensity-Duration Frequency Values
Intensite, duree et frequence des averses

STATION	Lat	: .	Long.	Elev.	Years of record	Disk Number	
STATION	Lat.		Long.	Alt.	Annees O'observati	ion	
BRITISH COLUMBIA/ COLOMBIE-BRITANNIQUE		-		-			
Albert River	50	30	115 32	1310	10	IDF_ADR_	
Big Creek Upper	51		123 07	1691	- 11		
Boston Bar Summit	49		123 07	1204	10		
Boston Bar Box Canyon	49		121 13	1324	-11		
MacKay River	52		120 43	1219	14		
Morfee Mountain	55		123 03	1402	15		
Mt. Kobau Observatory	49		119 41	1862	11		
YUKON/ YUKON							
Frances River Hyland River Strip	60 61		12 911 12 816	731 853	13 12		
NORTHWEST TERRITORIES/ TERRITORIES DU NORD-OUEST						IDE ADD	
Baker Creek	62	30	11 422	181	11	IDF_ADR.	
Cantung		01	12 823	1493	10		
Nahanni Hot Springs	61		12 402	609	10		
ALBERTA/ ALBERTA			•				
Brewster Creek	51	06	115 40	1951	16		
Elbow	50	54	114 42	1371	10		
Hendrickson Creek	53	47	118 23	1371	13		
Highwood Summit	50	36	114 59	2209	17		
Marmot Twin One	50	58	115 12	2285	16		
Salt River	59	49	111 58	213	12		
Spring Creek Moose	54	57	117 44	719	16		

^{*} Fischer & Porter Precipitation Gauge Pluiviographie Fischer & Porter

STATION	Lat.	Long.	Elev.	Years of record	Disk Number
STATION	Lat.	Long.	Alt.	Annees observat:	ion
Cont'd/				-	
suite					
Spring Creek Wolverine	54 55	117 49	664	16	
Streeter Site 2	50 07	114 04	1402	10	
Sunshine Village	51 04	115 47	2186	11	
Waterton Cameron Lake	49 01	114 03	1676	10	
Waterton Chief Customs	49 00	113 38	1698	15	
Waterton Red Dock	49 08	114 02	1523	14	
SASKATCHEWAN/ SASKATCHEWAN					
Bad Lake IHD 102	51 19	108 25	637	13	
Wynyard	51 46	104 12	560	16	
ONTARIO/					
ONTARIO					TDD 400 4
Apsley	44 46	78 06	289	15	IDF_ADR.1
Coboconk DHO	44 39	78 49	274	15	
Guelph	43 32	80 19	342	11	
Karl Lake	52 35	90 11	316	13	
Lansdowne House	52 14	87 53	256	13	
Mammamattawa	50 25	84 21	121	16	
Mattice TCPL	49 36	83 10	233	14	
Onakawana	50 36	81 25	60	15	
Ormsby	44 53	77 43	365	16	
Tory Hill	44 58	78 17	387	14	
Tweed	44 28	77 19	152	11	
NEW BRUNSWICK/ NOUVEAU BRUNSWICK					
Mount Carleton	47 26	66 55	259	10	
Nashwaak Project	46 17	67 01	198	15	
NOVA SCOTIA/ TERRE ECOSSE		,			
Kelley River IHD	45 32	64 32	70	14	
Mill Village	44 11	64 40	15	17	

STATION	Lat.	Long.	Elev.	Years of record	Disk Number
STATION	Lat.	Lat. Long.		Annees D'observat:	lon
NEWFOUNDLAND/ TERRE NEUVE					
Cat Arm River Esker Kepimits Lake	50 05 53 52 52 42	56 55 66 25 64 51	365 493 518	11 14 13	