Schematic & Layout Deliberations

Boris Murmann bmurmann@hawaii.edu

Parameter Variations in Integrated Circuits

Wafer-Level Variations

Wafer made yesterday
All NMOS are "slow"
All PMOS are "nominal"
All R are nominal
All C are "fast"

Wafer made today
All NMOS are "fast"
All PMOS are "fast"
All R are nominal
All C are "slow"

Examples:

Parameter	"Slow"	"Nominal"	"Fast"		
V_{t}	0.4V	0.3V	0.2V		
μC_{ox} (NMOS)	240 mA/V ²	300 mA/V ²	360 mA/V ²		
μC_{ox} (PMOS)	80 mA/V ²	100 mA/V ²	120 mA/V ²		
R _{poly}	60Ω/□	50Ω/□	40Ω/□		
R _{nwell}	1.4 kΩ/□	1 kΩ/□	0.6 kΩ/□		
C _{MIM}	1.15 fF/mm ²	1 fF/mm ²	0.85 fF/mm ²		

2.1 NMOS

 $V_{GS} \le 1,65 \text{ V } \textcircled{2} 125^{\circ}\text{C}$

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment
Threshold Voltage Short Channel Device	VTN10x013	V	0.43	0.50	0.55	A.a1	WxL = 10 x 0.13 µm²
Threshold Voltage Long Channel Device	VTN10x10	V	0.16	0.20	0.24	A.a1	WxL = 10 x 10 μm²
Threshold Voltage Small Channel Device	VTN015x013	V	0.4	0.54	0.68	A.a1	WxL = 0.15 x 0.13 µm ²
Saturation Current Short Channel Device	IDSN013	μA/μm	380	480	600	A.b1	WxL = 10 x 0.13 µm²
Off-Current Short Channel Device	IOFFN013	LOG10 (A/µm)		-10	-9	A.c1	WxL = 10 x 0.13 µm²
Drain Induced Barrier Lowering 0.1/1.2V	DIBLN013	mV/V	20	50	80	A.d1	WxL = 10 x 0.13 μm²
Sub Threshold Slope	SSN013	mV/dec	76	82	88	A.e	WxL = 10 x 0.13 µm²

2.12 MIM Capacitor

Parameter	Name	Unit	Min	Target	Max	Meas. Cond.	Comment
Specific Area Capacitance	CMIMA	fF/µm²	1.35	1.5	1.65	A.k	
Specific Capacitance MIM Perimeter	CMIMP	aF/μm		40		A.I	
Breakdown Voltage	BVMIM	V	15	23		A.y	
Voltage Coefficients	VCMIM1 VCMIM2	ppm/V ppm/V ²		-26 5		A.ah	
Temperature Coefficient	TCMIM1 TCMIM2	ppm/K ppm/K²		3.6 0.002		A.ad	
Matching Coefficient	KCMIM	nm					

 $\underline{https://github.com/IHP-GmbH/IHP-Open-PDK/blob/main/ihp-sg13g2/libs.doc/doc/SG13G2_os_process_spec.pdf}$

Characterization Across "Corners"

Corner T = -20 °C	TT	FF	FS	SF	SS
V _{out} (mV)	244.4	248.6	229.7	264.7	249.3
I_{DD} (nA)	256	475	243	227	104
DC Gain (dB)	49.8	52	50	50.4	47.4
UGF (MHz)	0.67	1.58	0.63	0.59	0.22
PM (degrees)	69.2	64.6	69	69.9	76.9
PSRR+ (dB)	54.4	56.7	54.7	55.2	52
PSRR- (dB)	56.9	58.9	57.1	57.4	54.7
1% Ts+/Ts- (ns)	685/438	272/182	566/337	854/336	2632/880
Corner T = 27 °C	TT	FF	FS	SF	SS
V _{out} (mV)	249.9	244.5	249.3	249.9	250
I _{DD} (nA)	488	579	505	479	485
DC Gain (dB)	51.3	51.7	52.1	50.4	51
UGF (MHz)	1.09	1.68	1.13	1.08	0.88
PM (degrees)	69.2	64.3	69.5	69	73.1
PSRR+ (dB)	56.1	56.7	56.9	55.2	55.7
PSRR- (dB)	58.2	58.5	59.8	58.9	58.3
1% Ts+/Ts- (ns)	520/319	240/207	506/322	519/321	719/490
Corner T = 80 °C	TT	FF	FS	SF	SS
V _{out} (mV)	255.8	249.1	233.9	277.1	259.8
I _{DD} (nA)	1177	2417	1338	1061	621
DC Gain (dB)	52.6	53	53	52.1	51.5
UGF (MHz)	2.2	5.68	2.5	1.98	0.97
PM (degrees)	74.3	77.3	75.8	73.3	73.4
PSRR+ (dB)	57.4	57.7	57.9	56.7	56.3
PSRR- (dB)	59.4	59.7	59.8	58.9	58.4
1% Ts+/Ts- (ns)	356/235	130/123	230/239	233/210	838/436

- Complexity explodes very quickly
 - E.g., 5 (process) x 3 (temperature) x 3 (supply voltage) = 45 tests!

Stage Testbench

Next stage samples here

- How close to the "final value" are we at the sampling instant?
 - This is called the dynamic settling error (measured in percent)
- How does the dynamic settling error across corners?
- Need to slow down clock frequency to measure final value (e.g., 4x)

Output with per = 80ns

https://github.com/bmurmann/EE628/blob/main/5_Design/3_Real_circuits/tb_stage_corners.ipynb

Zooming Into 2nd Redistribution Phase

Dynamic Error

Error = (value(t) - final) / final

Dynamic Error on Log Scale

0.1%-settling time ~ 8 , 11, 13 ns (ff, tt, ss) Max clock frequency for slow corner $\sim 1/(2*13\text{ns}) = 38.5 \text{ MHz}$

