

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA AUTOMTYKI

Modelowanie układów fizycznych i biologicznych

Podwójne wahadło Double pendulum

Autor: Żaneta Błaszczuk, Rafał Kozik, Filip Kubicz, Jakub Nowak, Jakub Porębski

Kierunek studiów: Automatyka i Robotyka
Opiekun pracy: dr inż. Ireneusz Wochlik

1. Teoria

Wahadło podwójne jest to wahadło matematyczne zawieszone na drugim wahadle matematycznym. Jego schemat pokazuje rys. 1. Wahadło opisuje 5 parametrów: masy m_1 i m_2 , długości l_1 i l_2 oraz przyśpieszenie

Rysunek 1: Schemat wahadła

ziemskie g. Można jednka zmniejszyś ich ilość podstawiając:

$$A = \frac{m_1}{m_2} \qquad B = \frac{l_2}{l_1} \qquad C = \frac{g}{l_1} \tag{1}$$

Stan wahadł opisują cztery parametry: kąty odchylenia od pionu φ_1 i φ_2 oraz prędkości kątowe ω_1 i ω_2 . Ruch opisuje układ czterech równań różniczkowych [1]:

$$\dot{\varphi}_1 = \omega_1 \tag{2}$$

$$\dot{\omega}_{1} = -\frac{\sin(\varphi_{1} - \varphi_{2})(B\omega_{2}^{2} + \omega_{1}^{2}\cos(\varphi_{1} - \varphi_{2})) + C((A+1)\sin(\varphi_{1}) - \sin(\varphi_{2})\cos(\varphi_{1} - \varphi_{2}))}{A + \sin^{2}(\varphi_{1} - \varphi_{2})}$$
(3)

$$\dot{\varphi}_2 = \omega_2 \tag{4}$$

$$\dot{\omega}_{2} = \frac{(A+1)(\omega_{1}^{2}\sin(\varphi_{1}-\varphi_{2}) - C\sin(p_{2})) + \cos(\varphi_{1}-\varphi_{2})((B\omega_{2}^{2}\sin(\varphi_{1}-\varphi_{2})) + C(A+1)\sin(\varphi_{1}))}{B(A+\sin^{2}(\varphi_{1}-\varphi_{2}))}$$
(5)

W modelu nie uwzględniono tarcia.

2. Implementacja

Równiania zostały rozwiązane numerycznie za pomocą metody Rungego-Kutty czwartego rzędu [2] która została zaimplementowana w języku c++. Wyniki zostały zapisane do pliku tekstowego, w każdej lini odzielone spacjami: czas od początku symulacji, kąty φ_1 , φ_2 oraz prędkości kątowe ω_1 i ω_2 . Wykeresy

zostały przygotowane w programie gnuplot. Powstał także program przedstawiający ruch wahadła napisany z wykorzystaniem biblioteki QT. Wygląd programu pokazuje rys. 2. Kody źródłowe przygotowanego oprogramowania znajdują się w repozytorium pod adresem www.github.com/Qbicz/MUFB.

Rysunek 2: Graficzna symulacja ruchu wahadła.

3. Wyniki

Symulacja zosała przeprowadzona dla parametrów A=100, B=1, C=1 oraz stanu w chwili $t_0=0$ $\varphi_1(0)=0, \varphi_2(0)=1, \omega_1(0)=0$ i $\omega_2(0)=0$. Symulacja trwała 300 sekund z krokiem co 0,001 sekundy. Rys. 3 przedstawia wartości kątów $\varphi_1, \varphi_2, \omega_1$ oraz ω_2 w funkcji czasu. Dla tak dobranych parametrów powstają dudnienia. Rys. 3 przedstawia trajektorię ruchu wahadła narysowaną w przestrzenie φ_1, φ_2 . Dla 300 sekund nie da się zaobserwować żadnej regularnonści w ruchu wahadła. Rys. 3 przedstawia trajektorie w przestrzeni fazowej: wykresy prędkości kątowej w funkcji wartości kąta.

4. Bibliografia

- [1] Wróblewski J. praca licencjacka "Wahadło podwójne" Warszawa 2011
- [2] Dudek-Dyduch E., Wąs J., Dutkiewicz L., Grobel-Dębska K., Gudowski B. "Metody numeryczne wybrane zagadnienia" Wydawnictwo AGH Kraków 2011

Rysunek 3: Kąty oraz prędkości kątowe w funkcji czasu.

Rysunek 4: Trajektoria w przestrzenie φ_1, φ_2 a) dla pierwszych 30 sekund i b) dla 300 sekund.

Rysunek 5: Trajektoria w przestrzeni fazowej.