Spherocity-Dependent study of $K^*(892)$ production in pp collisions at $\sqrt{s} = 13.6 \, TeV$

Sayan Dhani(M.Sc. Physics, IITB) Prof. Sadhana Dash, Prof. Basanta Kumar Nandi

Department of Physics, IIT Bombay

December, 2023

Contents

- Introduction
- Motivation
- Spherocity
- **Event and Track Selection Criterion**
- Particle Identification
- Quality Assurance
- Results

Introduction $K^*(892)$ Resonance

- Invariant mass $M_{K^*(892)}$ is 891.66 \pm 0.26 MeV
- Decay width Γ of $K^*(892)$ is 46.2 ± 1.3 MeV
- Mean lifetime of $K^*(892)$ in its rest frame is $\sim 4 fm/c$
- Some dominant decay modes of K*(892) resonance,
 - \bullet $K^* \rightarrow K\pi$
- Branching Ratio $\Gamma(K\pi)/\Gamma_{Total}$ is 99.901 \pm 0.009 to \sim 100

ref:Particle Data Group

Qark-Gluon Plasma and its Evolution

Figure: Phase Transition to QGP

Figure: Spacetime Evolution of QGP

Motivation

- K*'s short lifetime(τ) ~ 4 fm/C. (avg.)
- So, decays, re-scatter, and re-generate within QGP's hadronic medium.
- K* has a strange quark→Helps strangeness production study→leads to QGP Formation.

Figure: Decay, Re-scatter, and Re-generation of K* in QGP phase

Spherocity-dependent perspective → Identity the Jetty and Isotropic Events.

Transverse Spherocity

An event shape variable,

Def: Transverse Spherocity

$$S_0 = rac{\pi^2}{4} min_{\hat{n}} \left(rac{\Sigma_i | ec{P_{T_i}} imes \hat{n}|}{\Sigma_i | ec{P_{T_i}}|}
ight)^2 \ orall \ |ec{P_{T_i}}| = 1$$

Figure: Event Shape corresponds p-p collisions

Figure: Transverse Spherocity distribution in p-p collision

Event and Track Selection Condition

p-p Collision

Center of Mass energy,

$$\sqrt{s} = 13.6 TeV$$

Data Set

LHC22o pass4 medium

Event Selection

- |Vz | < 10cm
- sel8() Trigger

Track Selection

- P_T > 0.15 GeV/c
- $|\eta| < 0.8$
- |DCAz | < 1 cm
- |DCAxy | < 0.1 cm
- GlobalTracks() and PVContributor()

Figure: ΔZ distribution around the **Primary Vertex**

TPC and TOF PID for Kaons and Protons

PID Setections

- TPC only cuts $P_T \leq 1.1 \, GeV/c$ for Pions
 - $|n\sigma TPC| < 3 \quad \forall \ 0.15 < P_T < 1.1$
- TPC only cuts $P_T < 0.6 GeV/c$ for Kaons,
 - $|n\sigma TPC| < 3 \,\forall \, 0.15 < P_T < 0.6$
- TPC + TOF cuts for $P_T \ge 1.1 \, GeV/c$ for Pions and $P_T > 0.6 GeV/c$ for Kaons.
 - $|n\sigma TOF| < 3$ and $|n\sigma TPC| < 3$
 - Only those TPC tracks are selected which are also present in TOF otherwise, they are discarded

Figure: Specific energy loss (dE/dx) in the TPC versus particle momentum

Quality Assurance PID: before PID

Figure: before PID: Kaons

Quality Assurance PID: before PID

Figure: before PID: Pions

Quality Assurance PID: After PID

Figure: After PID

Results

Analysis Details

Spherocity Classes :

- 0 100 % FT0M 20 % Jetty :: Spherocity Range: 0.00 - 0.62.
- 0 − 100 % FT0M 20 % Jetty & Isotropic Mixed :: Spherocity Range: 0.62 - 0.88.
- 0 − 100 % FT0M 20 % Isotropic :: Spherocity Range : 0.88 - 1.00.
- Normalization mass range for like Sign Background in all Spherocity Classes: 1.1 - 1.4.
- Fitting is done using the Breit-Wigner Function.
- Fitting range: 0.64 1.14 (for all Spherocity(S_0) classes).

Figure: Transverse Spherocity distribution

K*(892) Invariant Mass

Figure: Unlike Sign($K^+\pi^-$ or $K^-\pi^+$)

Figure: Like Sign($K^+\pi^+$ or $K^-\pi^-$)

Figure: Unlike and Like Sign together

Figure: Normalization of Like Sign

Figure: Extracted Signal(integrated P_T bins

Figure: Fitting with **Breit-Wigner Function**

0 - 100% FT0M: 20% Jetty

0-100% FT0M: 20-80% Jetty & Isotropic Mixed

0-100% FT0M : 20% Isotropic

Conclusion and Future Work

- Reconstruction of invariant mass distribution in integrated P_T bins was achieved successfully. Need to do it in the differential P_T bins.
- Peaks in the invariant mass distribution indicate a mass shift in the true mass of K^* (892). Also need to see whether it also happens in differential P_{τ} bins.
- We need to perform corrections and need higher statistics for that.

Comments, Questions?

Backup

Quality Assurance

Specific energy loss (dE/dx) in the TPC v/s particle momentum

