TD1

Exercice 1

- 1. 1. G = (V, E)
 - 2. $V = \{v_1, v_2, v_3, v_4, v_5\}$
 - 3. $\mathsf{E} = \{v_1v_3, v_2v_3, v_4v_3, v_5v_3\}$

Exercice 2

1.

Exercice 3

1.

2.

- 1. Ordre, taille, degré
 - 1. Ordre = 8
 - 2. Taille = 12

3. Degré :

1.
$$\delta(a) = 3$$

2.
$$\delta(b) = 4$$

3.
$$\delta(c) = 3$$

4.
$$\delta(d) = 4$$

5.
$$\delta$$
(e) = 3

6.
$$\delta(f) = 2$$

7.
$$\delta(g) = 3$$

8.
$$\delta(h) = 2$$

- 2. Déterminer un cycle, le plus court possible, passant par chaque sommets :
 - 1. a d c b f g h e a

Exercice 5

•
$$0 < m < \frac{n(n-1)}{2}$$

Exercice 6

Graphe de Brujin

$$G=(V,E)$$

$$V=\{a,b,c,d,e\}$$
 Ordre $n=|V|={5\choose 2}=rac{5!}{2!(5-2)!}=rac{5 imes4 imes3 imes2 imes1}{2! imes3!}$

Quelques graphes classiques

La chaîne a 6 sommets

Ensemble de sommet : $V = \{ v1, v2, v3, v4, v5, v6 \}$

Ensembles d'arrêtes : E={ v1v2,v2v3,v3v4,v4v5,v5v6 }

Ordre: n = |V| = 6Taille: |E| = 5Degré min: 1 Degré max: 2

Diamètre : [distance(v1,v6)] = 5

Ex: Distance(v3,v5) = 2

La chaîne a n sommets

Ensemble de sommet : V={ v1,v2,...,vn }

Ensembles d'arrêtes : E={ v1v2,v2v3,...,vn-1vn }

Ordre: n = |V| = n Taille: |E| = n-1 Degré min: 1 Degré max: 2

Somme des degrés : 1+2(n-2)+1 = 2(n-1) = 2 |E|

Diamètre : [distance(v1,vn)] = n-1

Le cycle a 7 sommets

Ensemble de sommet : V={ v1, v2, v3, v4, v5, v6, v7 }

Ensembles d'arrêtes : E={ v1v2,v2v3,v3v4,v4v5,v5v6,v6v7, v7v1 }

Ordre: n = |V| = 7Taille: |E| = 7Degré min: 2 Degré max: 2

Diamètre: [distance(v1,v5)] = 3

Le cycle a n sommets

Ensemble de sommet : V={ v1, v2, v3, ..., vn-1, vn }

Ensembles d'arrêtes : E={ v1v2,v2v3,v3v4,...,vn-1vn, vn1 }

Ordre : n = |V| = n Taille : |E| = n Degré min : 2 Degré max : 2

Diamètre : [distance(v1,vn/2)] si pair ou [distance(v1,(vn-1)/2] si impair

Le graphe complet à 5 sommets

Ensemble de sommet : $V=\{v1,v2,v3,v4,v5\}$

Ensembles d'arrêtes : E={ v1v2,v1v3,v1v4,v1v5,v2v3,v2v4,v2v5,v3v4,v3v5,v4v5 }

Ordre: n = |V| = 5Taille: |E| = 10Degré min: 4 Degré max: 4

Diamètre : [distance(v1,v5)] = 1

Le graphe complet à n sommets

Ensemble de sommet : $V = \{ 1, 2, 3, n-1, n \}$

Ensembles d'arrêtes : E={ 12,13,14,15,16,1n-1,1n,...n-1n }

Ordre: n = |V| = n Taille: |E| = n(n-1)/2 Degré min: n-1 Degré max: n-1

Diamètre : [distance(1,n)] = 1

Le graphe biparti complet $K_{2,4}$

Ensemble de sommet : $V=\{ v1,v2 \} U \{ w1,w2,w3,w4 \}$

Ensembles d'arrêtes : E={ v1w1,v1w2,v1w3,v1w4,v2w1,v2w2,v2w3,v2w4 }

Ordre: n = |V| = 6Taille: |E| = 8Degré min: 2 Degré max: 4

Diamètre : [distance(v1,v2)] = 2

Le graphe biparti complet $K_{p,q}$

Ensemble de sommet : V={ p1,p2,pn-1,pn } U { w1,w2,wn-1,wn } Ensembles d'arrêtes : E={ p1w1,p1w2,p1w3,...,pnw1,pnw2,...,pnwn }

Ordre: n = |V| = p+q

Taille : | E | = Degré min X Degré max

Degré min : w Degré max : p

Diamètre : [distance(p,pn)] = 2

La grille 2D de côté 4

Ensemble de sommet : $V=\{1,2,3,4,5,6,7,...,15,16\}$ Ensembles d'arrêtes : $E=\{12,15,23,26,35,37,48,56,59,67,610,78,711,812,...,1112,1115,1216\}$ Ordre : n=|V|=16

Taille: ||E| = 24 Degré min : 2 Degré max : 4 Diamètre : [distance(1,16)] = 6

Exercice 7

	Graphe complet K_n	Graphe biparti complet $K_{p,q}$	Chaîne élémentaire d'ordre n	Cycle élémentaire d'ordre n	
Ordre	n	p+9	n	n	
Taille	n(n-1)	P9	n - 1	n	
Degré minimum	n - 1	min(p,q)	1	2	
Degré maximum	n - 1	max(p,q)	2	2	
Cardinal d'une clique maximum	n	2	2	3 si n=3 2 si n!=3	
Cardinal d'un stable 1		max(p,q)	<u>E(n-1)</u>		

Nombre de composantes connexes	1	2	2	3	3	4	5
Nombre de sommets par composantes connexe	5	4 - 1	3 - 2	3 - 1 - 1	2 - 2 - 1	2 - 1 - 1 -1	1-1-1-1-1
Taille Max							

Exercice 4

a) Connexité de G

Preuve:

Supposons G non connexe. Alors G a deux composantes C_1 et C_2 d'ordres n_1 et n_2 . Degré minimal $\geq n$ implique $n_1 \geq n+1$ et $n_2 \geq n+1$, donc $n_1+n_2 \geq 2n+2$. Contradiction avec

 $n_1 + n_2 = 2n$.

Conclusion: G est connexe.

b) Diamètre ≤ 2

Preuve:

Pour deux sommets u et v:

• Si adjacents : d(u,v)=1.

• Sinon, $|N(u)\cap N(v)|\geq 2$ (car $\delta_G\geq n$), donc d(u,v)=2.

Conclusion : diamètre ≤ 2 .

Exercice 5

a) Graphes 2-réguliers et 3-réguliers

Ordre 4:

• 2-régulier : Carré (4-cycle C_4)

• 3-régulier : K_4 (graphe complet)

Ordre 5:

• 2-régulier : Pentagone (5-cycle C_5)

• 3-régulier : N'existe pas (somme des degrés impaire)

b) Conditions sur k et n

Parité:

 $\sum \deg = kn$ doit être pair $\Rightarrow k$ et n pas tous deux impairs.

Connexité si n-2k-2<0:

Preuve par l'absurde : si non connexe, une composante aurait $\leq k+1$ sommets \Rightarrow impossible car degré minimal k.

c) Complément d'un graphe régulier

Preuve:

Si G est k-régulier d'ordre n, chaque sommet de \overline{G} a degré $(n-1)-k\Rightarrow \overline{G}$ est (n-k-1)-régulier.

d) Graphe complémentaire \overline{G}

Données:

 ${\it G}$ 5-régulier d'ordre 12.

Propriétés de \overline{G} :

Ordre : 12 (inchangé)

• Degré : $12 - 1 - 5 = 6 \Rightarrow$ 6-régulier

• Taille : $\frac{12\times 6}{2}=36$ arêtes

Exercice 6

Exercice 7:

Graphe orienté D=(V,A) avec V=[0;99] et pour v,w distincts :

$$vw \in A \iff (w \equiv v+10 \mod 100 \text{ ou } w=v^2+1)$$

Analyse:

- Arcs $w \equiv v+10 \mod 100$: Crée 10 cycles de longueur 10 (e.g., $0 \to 10 \to \cdots \to 90 \to 0$).
- Arcs $w=v^2+1$: Liens non linéaires dépendants de v^2 . Par exemple, $0 \to 1, \, 1 \to 2, \, 2 \to 5,$ etc.

Structure: Combinaison de cycles (première règle) et d'arbres/chaînes (deuxième règle).

Exercice 8:

Graphe non orienté où chaque sommet est de degré 2.

Composantes connexes:

- Chaque composante est un cycle (simple ou multiple).
- Raison : Un graphe 2-régulier est une union disjointe de cycles.

Exemple:

• Un triangle (C_3) , un carré (C_4) , etc., ou plusieurs cycles disjoints.

Exercice 9:

Soit G=(V,E) et $\bar{G}=(V,\bar{E})$ son complémentaire.

- 1. G connexe \Rightarrow $ar{G}$ non connexe ?
 - Non. Contre-exemple : $G = P_3$ (chemin à 3 sommets).
 - \bar{G} est connexe (sommet central relié aux autres).
 - Cas particulier : Si G est complet (K_n) , \bar{G} est vide (non connexe pour $n \geq 2$).
- 2. G non connexe $\Rightarrow \bar{G}$ connexe ?
 - \bullet $\,$ $\,$ $\,$ Oui, sauf si G est une union disjointe de deux cliques complètes.
 - **Preuve**: Soit G non connexe avec composantes C_1, C_2, \ldots Pour $u \in C_1$, $v \in C_2$, l'arête $uv \notin E$ donc $uv \in \bar{E}$. Ainsi, \bar{G} relie toutes les composantes.
 - **Exception** : $G = K_n \sqcup K_m$ (alors \bar{G} est deux cliques disjointes).

Conclusion:

- G connexe $\Rightarrow \bar{G}$ non connexe.
- G non connexe $\Rightarrow \bar{G}$ connexe (sauf cas spécifique).

TD 4

Exercice 6

Graphe de précédence :

```
• Sommets : ( T_1 ) à ( T_8 ).
```

Arcs (contraintes):

```
• ( T_5 \to T_2 ), ( T_5 \to T_6 ), ( T_5 \to T_4 ), ( T_5 \to T_8 ),
```

- (T_8 \to T_1),
- (T_2 \to T_3), (T_4 \to T_3), (T_4 \to T_8),
- (T_1 \to T_7).

Ordre topologique possible:

- 1. **Sources initiales** : (T_5) (seule tâche sans prédécesseur).
- 2. Étapes :
 - Retirer (T_5) \rightarrow nouvelles sources : (T_6), (T_2), (T_4), (T_8).
 - Retirer (T_6) \rightarrow nouvelles sources : (T_2), (T_4), (T_8).
 - Retirer (T_2) \rightarrow (T_4), (T_8) restent.
 - Retirer (T_4) \rightarrow (T_8), (T_3) deviennent sources.
 - Retirer (T_8) \rightarrow (T_1), (T_3) restent.
 - Retirer (T_1) \rightarrow (T_3), (T_7) restent.
 - Retirer (T_3), puis (T_7).

Solution:

Un ordre valide est :

(
$$T_5$$
, T_6 , T_2 , T_4 , T_8 , T_1 , T_3 , T_7).

Validation: Toutes les contraintes sont respectées (ex: (T_5) avant (T_6), (T_6) avant (T_1), etc.).

Diagramme de Hasse

Exercice 2

1. Ensemble (E) des arêtes en extension :

À partir de la liste d'adjacence :

- Le sommet **0** est adjacent à **1**, **4**, **5** \rightarrow arêtes : ({0,1}, {0,4}, {0,5}).
- Le sommet 1 est adjacent à 0, 2 \rightarrow arête : ({1,2}) (déjà comptée pour ({0,1})).
- Le sommet ${\bf 2}$ est adjacent à ${\bf 1}$, ${\bf 4} \rightarrow$ arête : ({2,4}) (déjà comptée pour ({1,2})).
- Le sommet 3 n'a pas de voisins → aucune arête.
- Le sommet 4 est adjacent à 0, 2 \rightarrow arêtes déjà comptées.
- Le sommet 5 est adjacent à 0 → arête déjà comptée.

Ensemble final (E):

$$E = \big\{\{0,1\},\{0,4\},\{0,5\},\{1,2\},\{2,4\}\big\}$$

2. Ordre et taille à partir de la liste d'adjacence :

- Ordre: Nombre de sommets (|V|). Ici, (V = [0;5]) \rightarrow ordre = 6.
- Taille :
 - Méthode 1 : Compter les arêtes dans (E) → taille = 5 (voir ci-dessus).
 - Méthode 2 : Somme des degrés divisée par 2.
 Degrés : (3) (sommet 0), (2) (1), (2) (2), (0) (3), (2) (4), (1) (5). (³⁺²⁺²⁺⁰⁺²⁺¹/₂ = ¹⁰/₂ = 5).

Exercice 3

Partie a)

Oui, si on retire **une arête quelconque d'un cycle** dans un graphe connexe, le graphe reste connexe.

Explication : Un cycle est un chemin fermé. Si on enlève une arête, les sommets restent connectés par l'autre partie du cycle.

Contre-exemple si le graphe n'a pas de cycle (arbre) : Retirer une arête déconnecte le graphe.

Partie b)

Les graphes connexes qui se déconnectent en retirant **une seule arête** sont **les arbres** (graphes connexes sans cycle).

Caractérisation:

- Un arbre a exactement (n-1) arêtes (où (n =) nombre de sommets).
- Toute arête est un **isthme** (son retrait déconnecte le graphe).

Preuve:

- Dans un arbre, il existe un unique chemin entre deux sommets. Si on retire une arête, ce chemin est rompu.
- À l'inverse, un graphe avec un cycle reste connexe après suppression d'une arête du cycle.

Conclusion:

Les graphes vérifiant cette propriété sont exactement les arbres.

Partie a) Analyse des graphes proposés

(Les graphes décrits correspondent aux cas classiques suivants :)

- 1. Graphe 1 (Cycle simple, ex : C₄)
 - Eulérien ? Oui
 - Justification: Tous les degrés sont pairs (2) et le graphe est connexe.
- 2. Graphe 2 (Deux cycles partageant un sommet, ex : "∞")
 - Eulérien ? Non
 - **Justification**: Le sommet commun a degré 4 (pair), mais l'ensemble n'est pas un seul cycle (nécessiterait un parcours unique).
- 3. Graphe 3 (Arbre, ex : chemin P₃)
 - Eulérien ? Non
 - Justification : Présence de sommets de degré impair (comme 1 pour les feuilles).
- 4. Graphe 4 (Cycle avec une diagonale, ex : K₃)
 - Eulérien ? Oui
 - Justification: Tous les degrés pairs (ex: dans K₃, chaque sommet a degré 2).

Partie b) Condition nécessaire sur les degrés

Un graphe non orienté est eulérien si et seulement si :

- 1. Tous les sommets ont un degré pair,
- 2. Le graphe est connexe (à l'exception des sommets isolés, qui doivent être absents ici).

Preuve (intuition):

- Un cycle eulérien doit entrer et sortir de chaque sommet autant de fois → degré pair.
- La connexité assure un parcours unique.

Remarque:

 Un graphe avec exactement 2 sommets de degré impair admet un chemin eulérien (non fermé), mais n'est pas eulérien.

S = [0,3]

On commence par 0 ou 3 qui n'on pas de prédecesseurs lci on commence avec 0 :

CH = 0 0 => [1,2] 0 1 => [2] 0 2 => [5] 1 3 => [2,4] 0 4 => [5] 1 5 => [] 2


```
A => B (2)
A => C(1)
B => A(2)
B => C(1)
C => B(1)
V+ => [A+,B+,C+]
0 => X
V- => []
3 => 3 => 3 => 2 => 1 => 0 => X
A+ => [A-,B-]
1 => 0 => X
A- => [V-]
2 => 2 => 1 => 0 => X
B+ => [A-,B-,C-]
1 => 0 => X
B- => [V-]
3 => 3 => 2 => 1 => 0 => X
C+ => [B-,C-]
1 => 0 => X
C - = > [V - ]
3 => 3 => 2 => 1 => 0 => X
S = [V+]
Ch = V+
S = [A+,B+,C+]
Ch = V+, A+ (distance V=>A = 4 donc plus courte) (4)
S = [B+,C+,]
Ch = V+, A+, C+ (5)
S = [B+]
Ch = V+, A+, C+, B+ (6)
S = [A-, B-, C-]
Ch = V+, A+, C+, B+, B- (6)
```

S = [A-, C-]

S = [A-]

Ch = V+, A+, C+, B+, B-, C- (7)

Ch = V+, A+, C+, B+, B-, C-, A- (8)

S= [V-] Ch = V+, A+, C+, B+, B-, C-, A-, V- (12) S = [] Ch = V+, A+, C+, B+, B-, C-, A-, V- (12)