What:	b 1 1 1 1 1 2 molecul san Resolance
•	Part of Mackine Learning, applied in Reinforce
	Leaming
•	Used when manually designing a reward functs.
	that satisfies the desired behaviour is extremely complex susually complex graphical sequencial actions
	_
	(which is known as trajectory: T = (50, 90-51-9
Classific	ations:
	Behavioural Cloning (BC)
	h, l Planta
	L Directly Policy Learning
	Inverse Reinforcement Learning (IRL)
Pefference	es between IL algorithms:
יאן	
	O Learning algorithm

Advants	· Dyawbacks:
	O Behavroumal Cloning:
	Advantages:
	Sample and efficient an short term planning.
	Dvawbacks:
	MDP doesn't satisfy the IID assumption = (343 F)
	Accumulated Removal can lead to unknown states,
	which causes unknown behaviours
	expert has never rested, so model is never-trained on.
	Directly Policy Learning
	Advantages:
	Dvawbacks:
	Needs iterative experts.

Initial predictor: π_0

For m=1:

- Collect trajectories au by rolling out π_{m-1}
- Estimate state distribution P_m using $s \in \tau$
- Collect interactive feedback $\{\pi^*(s) \mid s \in \tau\}$
- Data Aggregation (e.g. Dagger)
 - o Train π_m on $P_1 \cup ... \cup P_m$
- Policy Aggregation (e.g. SEARN & SMILe)
 - o Train π'_m on P_m

