Problem set 5 Solution Probabilistic classifiers 2

Excercise 1

- 1. Let $\overline{W}^T = (w_1, w_2, \dots, w_d)$ and $\overline{P}^T = (p_1, p_2, \dots, p_d)$ be points from R^d and let b be a number from R. Compute the distance from \overline{P} to the hyperplane defined by the equation $\overline{W}^T \overline{X} + b = 0$.
- 2. Show that the distance is proportional to $|\overline{W}^T \overline{P} + b|$, that is the distance is equal to $c \cdot |\overline{W}^T \overline{P} + b|$ for some number c.

Solution 1

We use the fact that the vector \overline{W} is perpendicular to the hyperplane $\overline{W}^T \overline{X} + b = 0$

Let L be the line via the point \overline{P} and parallel to the vector \overline{W} , that is $L = \{\overline{P} + t\overline{W} \mid t \in R\} \subseteq R^d$. Line L intersects the hyperplane $\overline{W}^T \overline{X} + b = 0$ when $\overline{W}^T (\overline{P} + t\overline{W}) + b = 0$, i.e. when

$$t = \frac{-(\overline{W}^T \overline{P} + b)}{||\overline{W}||^2}.$$

The distance between this point of intersection and the starting point \overline{P} is

$$d=||\overline{P}+t\overline{W}-\overline{P}||=||t\overline{W}||=|t|\cdot||\overline{W}||=\frac{|\overline{W}^T\overline{P}+b|}{||\overline{W}||^2}\cdot||\overline{W}||=\frac{|\overline{W}^T\overline{P}+b|}{||\overline{W}||}.$$

The latter is proportional to $|\overline{W}^T \overline{P} + b|$.

Solution 2

In this solution we use the method of Lagrange multipliers. We want to find a point \overline{X} in the hyperplane (meaning that $\overline{W}^T \overline{X} + b = 0$) that has the smallest distance to \overline{P} (meaning that $||\overline{P} - \overline{X}||$ is minimized).

In other words, we want to solve the following optimisation problem:

$$\min_{\overline{X} \in R^d} (\overline{P} - \overline{X})^T (\overline{P} - \overline{X})$$

subject to $\overline{W}^T \overline{X} + b = 0$.

The corresponding Lagrangian is $\mathcal{L}(x_1,\ldots,x_d,\lambda) = (\overline{P}-\overline{X})^T(\overline{P}-\overline{X}) - \lambda$.

The derivative of the Lagrangian is $2(\overline{P} - \overline{X}) - \lambda \overline{W}$.

To solve $2(\overline{P} - \overline{X}) - \lambda \overline{W} = 0$ we first take the dot product of each of the sides of the equation with vector \overline{W} :

$$2\overline{W}^{T}(\overline{P} - \overline{X}) - \lambda \cdot \overline{W}^{T}\overline{W} = 0,$$

from which we derive $\lambda=\frac{2\overline{W}^T(\overline{P}-\overline{X})}{||\overline{W}||^2}$. Similarly, we take the dot product with $(\overline{P}-\overline{X})$:

$$2(\overline{P} - \overline{X})^T(\overline{P} - \overline{X}) - \lambda \cdot (\overline{P} - \overline{X})^T \overline{W} = 0,$$

from which, using the computed value of λ , we derive

$$2(\overline{P} - \overline{X})^T (\overline{P} - \overline{X}) = \frac{2\overline{W}^T (\overline{P} - \overline{X})}{||\overline{W}||^2} \cdot (\overline{P} - \overline{X})^T W$$

$$||\overline{P} - \overline{X}||^2 = \frac{(\overline{W}^T (\overline{P} - \overline{X}))^2}{||\overline{W}||^2}$$

$$||\overline{P} - \overline{X}||^2 = \frac{(\overline{W}^T \overline{P} + b - \overline{W}^T \overline{X} - b)^2}{||\overline{W}||^2} = \frac{(\overline{W}^T \overline{P} + b)^2}{||\overline{W}||^2}$$

$$||\overline{P} - \overline{X}|| = \frac{|\overline{W}^T \overline{P} + b|}{||\overline{W}||}$$

Excercise 2

Show the following properties of the logistic sigmoid function $\sigma(x) = \frac{1}{1+e^{-x}}$.

1.
$$\sigma(x) = 1 - \sigma(-x)$$

$$2. \ \frac{\partial \sigma}{\partial x} = e^{-x} \sigma^2(x)$$

Solution

1.
$$1 - \sigma(-x) = 1 - \frac{1}{1+e^x} = \frac{1+e^x-1}{1+e^x} = \frac{e^x}{1+e^x} \cdot \frac{e^{-x}}{e^{-x}} = \frac{1}{e^{-x}+1} = \sigma(x)$$

2.
$$\frac{\partial \sigma}{\partial x} = \frac{e^{-x}}{(1+e^{-x})^2} = e^{-x}\sigma^2(x)$$