MAXWELL BRIDGE

AIM

To study the Maxwell Bridge and determine the self inductance of an unknown coil.

THEORY

Inf the ci	runil is known	as the Maxi	of self-inductur	
17t is the	advisored form	n of the whe	aistone billige.	-
Maxwell	Bridge Works	on the principl	e of the comparison	1-
the value	of Unknown	indultance 15	determined by	<u> </u>
Comparin	g it with the	Known Value	or stundard value	_
Cixcuit T	liagram:			
		243		
	**************************************	The		
-	, 000			
		(my)	>	,
	R ₂	1		
	L ₂ Z	Man		
	灰			-
	82			
		(a)		
		E		
Let.				
Li= Unl	nown self induc	tance of resist	Cance R.	
		I I TIXED YOU'L	1	
12 - Va	ruble resistance	2 connected in	(1)	
K3, R4= K	nown non-induction	ve resistance	(navital o	<u>r </u>

	At balance condition,
	$(R_1 + j\omega L_1)(R_4) = (R_2 + 8_2 + j\omega L_2)R_3$ ci)
	Equating both the real and imaginary parts in equi) and separating them,
	$L_{1} = \begin{pmatrix} R_{3} \\ R_{4} \end{pmatrix} L_{2} \qquad (ii)$
	$R_1 = \begin{pmatrix} R_3 \\ R_4 \end{pmatrix} \begin{pmatrix} R_2 + V_2 \end{pmatrix} - Ciii)$
	\ R4)
7	

PROCEDURE

- 1)Apply Supply voltage from the signal generator with arbitrary frequency. (V = 3v). Also set the unknown Inductance value from 'Set Inductor Value' tab.
- 2) Then switch on the supply to get millivoltmeter deflection.
- 3)Choose the values of L2, r2, R2, R3 and R4 from the inductance and resistance box. Varry the values to some particular values to achieve "NULL".
- 4)Observe the millivoltmeter pointer to achieve "NULL".
- 5) If "NULL" is achieved, switch to 'Measure Inductor Value' tab and click on 'Simulate'. Observe the calculated values of unknown inductance (L1) and it's internal resistance (R1) of the inductor.

SIMULATION

• For Air core

• For Iron core

OBSERVATION TABLE:

Core	RI	RL	₹2	R ₃	R4	L2	11(H)	L1 (H)	4. Error
	(v)	(v)	7			(H)	(Measurd)	(7701)	
Air	40.2	1/	0.01	7.68M	11-09M	64.98m	45.805 m	45 m	0.01
	eg.		angerte		ALL A				
Iron	40-2	1	0.01	IIIIM	2.58 M	104.5m	450.009m	450 m	0.001
	n votable		1	19			at A		
			12	1		As A			
		Name to the State of the State				- ¥	A.	verage 7. Er	mor= 0.00
					1			·	
		(1) Air 40.2	(A) (A) Air 40.2 1	(a) (a) (a) Air 40.2 1 0.01	(a) (a) (a) (a) Air 40.2 1 0.01 7.68M	(A) (A) (A) (A) (A) Air 40.2 1 0.01 7.68M 11.09M	(A) (A) (A) (A) (A) (H) Air 40.2 1 0.01 7.68M 11.09M 64.98m Iron 40.2 1 0.01 11.11M 2.58M 104.5m	(A) (A) (A) (A) (A) (H) (Measurd) Air 40.2 1 0.01 7.68M 11.09M 64.98m 45.605 m Iron 40.2 1 0.01 11.11M 2.58M 104.5m 450.009 m	(A) (A) (A) (A) (A) (H) (Measurd) (True) Air 40.2 1 0.01 7.68M 11.09M 64.98m 45.605 m 45 m Iron 40.2 1 0.01 11.11M 2.58M 104.5m 450.009m 450 m

CONCLUSION

In this experiment we studied about the working of Maxwell Bridge to determine the self inductance of an unknown coil by comparing it with standard value and verified the results with the help of simulation.