LaTeX Physics Package in MathJax Mimicking Some of the Commands in LaTeX Physics Package

Kolen Cheung University of California, Berkeley khcheung@berkeley.edu

April 12, 2016

 \odot 2015-2016 Kolen Cheung All Rights Reserved.

Contents

Contents		1
1	LaTeX Physics Package	1
2	Some Commands are not Working	1
3	Organization	2
4	Tests	2

1 LaTeX Physics Package

This extension is to mimics the LaTeX Physics Package¹ in MathJax. For details, see the GitHub pages² and the GitHub repository³ of this extension.

2 Some Commands are not Working

The following commands in the Physics Package is not implemented yet:

- All Matrix Macros
- So far everything done here is by string substitution. Whenever commands involving the following cannot be done simply by string substitution and hence not working:
 - 1. * modified command

¹http://www.ctan.org/pkg/physics

²https://ickc.github.io/MathJax-third-party-extensions/physics/

³https://github.com/ickc/MathJax-third-party-extensions

3. ORGANIZATION

2

- 2. [] (or ()) is involved
- 3. variable no. of arguments
- Examples of commands that doesn't work: \dv: has all the properties mentioned above

As I mentioned, everything done so far is by string substitution only. Some hints are given in Pull Request#16—MathJax-third-party-extensions⁴ but my skill is too limited to understand how the above cases should be handled. Feel free to improve it though.

3 Organization

physics.xlsx is the master file.

- Columns A-L are copied to test/tables.md
- Columns M-V are copied to unpacked/physics.js
- Columns M-V excluding column O are copied to test/macro.js

License.js is used to store the license that should be appended to the .js files.

Other files are built automatically by physics.sh. MultiMarkdown⁵, UglifyJS2, LaTeX are assumed. I used it on Mac and have no idea if the way my bash script is written is OS

agnostic or not.

Tests

A few tests are given:

- Using MathJax's CDN⁶ ⁷
- Using this repository⁸
- Using this repository (unpacked version)⁹
- $\bullet~{\rm As~a~Macro^{10~11}}$
- As a PDF generated by LaTeX¹²: this is the reference file using the LaTeX's the Physics Package. You can compare the LaTeX output and HTML output and you will see which one is working now or yet to be implemented.

⁴https://github.com/mathjax/MathJax-third-party-extensions/pull/16

⁵http://fletcherpenney.net/multimarkdown/download/

 $^{^6}$ https://ickc.github.io/MathJax-third-party-extensions/physics/

⁷ i.e. only the one pushed to MathJax's official third parties extensions repository is tested

 $^{^{8}} https://ickc.github.io/MathJax-third-party-extensions/physics/test/test-physics-js.html$

 $^{{}^{9}} https://ickc.github.io/MathJax-third-party-extensions/physics/test/test-physics-js-unpacked.html$

 $^{^{10} \}rm https://ickc.github.io/MathJax-third-party-extensions/physics/test/macro.html$

 $^{^{11}}$ Rather than as an extension loaded separately, this one is a macro put in the file directly

 $^{^{12} \}rm https://ickc.github.io/MathJax-third-party-extensions/physics/index.pdf$

Automatic Bracing	Code
$\left\{\frac{1}{1+\frac{1}{2}}\right\}$	
$\left\{\frac{1}{1+\frac{1}{2}}\right\}$	
$\left(\frac{1}{1+\frac{1}{2}}\right)$	
$\left[\frac{1}{1+\frac{1}{2}}\right]$	
$\begin{bmatrix} \frac{1}{1+\frac{1}{2}} \end{bmatrix}$	
$\left\{\frac{1}{1+\frac{1}{2}}\right\}$	$\Bqty\{\ \}$
$\left\lfloor \frac{1}{1+\frac{1}{2}} \right\rfloor$	$\verb \absolutevalue{ } \}$
$\begin{bmatrix} \frac{1}{1+\frac{1}{2}} \\ \frac{1}{1+\frac{1}{2}} \end{bmatrix}$	
$\left\ \frac{1}{1 + \frac{1}{2}} \right\ _{12}$	
$\frac{1}{1+\frac{1}{2}} \Big _{\frac{1}{2}}^{2}$	$\ensuremath{\verb } evaluated{ } \ensuremath{ } 1^2$
$\frac{1}{1+\frac{1}{2}}\Big _{1}^{2}$	$\left\{ \right{-}1^{2}$
$\mathcal{O}\left(\frac{x}{2}\right)^{1}$	$\operatorname{\setminus} order\{\ \}$
[A, B]	$\commutator{A} \ {B}$
[A,B]	$\operatorname{Comm}\{\mathtt{A}\}\ \{\mathtt{B}\}$
$\{A,B\}$	$\anticommutator{A} \B$
$\{A,B\}$	$\acomm{A} {B}$
$\{A, B\}$ $\{A, B\}$	$\poissonbracket{A} {B} \\ pb{A} {B}$
(,)	\r~(~) (~)

Vector Notation	Code
a	<pre>vectorbold{ }</pre>
a	
ψ	
$oldsymbol{a}$	\vb*{ }
ψ	\vb*{ }
$ec{\mathbf{a}}$	
$\vec{\vec{y}}$	\ua\]
\vec{a}	\va()
$\vec{\vec{d}}$	 \va*{ } \va*{ }
$ec{f a}$ $ec{\psi}$ $ec{m a}$ $ec{\psi}$	
â	
\hat{y}	
$\hat{m{a}}$	\vu*{ }
$\hat{\psi}$	\vu*{ }
$\begin{array}{l} \hat{\mathbf{a}} \\ \hat{\psi} \\ \hat{a} \\ \hat{\psi} \\ \cdot \\ \cdot \\ \times \\ \times \end{array}$	\dotproduct
•	\vdot
×	\crossproduct
×	\cross
×	\cp
$\mathbf{\nabla}(\psi)$	\gradient()
$\mathbf{\nabla}(\psi)$	\grad()
$\mathbf{\nabla}[\psi]$	\grad[]
$\mathbf{\nabla}\psi$	$\grad\{\ \}$
$\nabla \cdot (\psi)$	\divergence()
$\nabla \cdot (\psi)$	\div()
$\mathbf{\nabla}\cdot[\psi]$	\div[]
$\nabla \cdot \psi$	
$\nabla \times (\psi)$	\curl()
$\nabla \times [\psi]$	\curl[]
$\nabla \times \psi$	
$\nabla^2(\psi) \\ \nabla^2[\psi]$	\laplacian()
$\nabla [\psi] \\ \nabla^2 \psi$	\laplacian[]
<u>ν</u> ψ	

Operators	Code
$\frac{1}{\sin x}$	\sin
$\sin(x)$	$\setminus sin()$
$\sin^2(x)$	\sin[2]()
$\operatorname{tr} \rho$	\tr
$\operatorname{Tr} \rho$	\Tr
${\rm rank} M$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\operatorname{erf}(x)$	\erf()
$\operatorname{Res}[f(z)]$	\Res[]
$\mathcal{P} \int f(z) dz$	
$\mathcal{P} \int f(z) dz$	
$P.V.\int f(z) dz$	
$\operatorname{Re}\left\{\frac{1}{1+\frac{i}{2}}\right\}$	$\mathbb{Re}\{\ \}$
$\operatorname{Im}\left\{\frac{1}{1+\frac{i}{2}}\right\}$	

Quick Quad Text	Code
some texts	
some texts	
some texts	\qq*{ }
,	$\backslash \mathtt{qcomma}$
,	\qc
c.c.	\qcc
if	\q if
then	\setminus qthen
else	$\setminus \mathtt{qelse}$
otherwise	\setminus qotherwise
unless	$\setminus qunless$
given	\setminus qgiven
using	$\setminus \mathtt{qusing}$
assume	$\setminus \mathtt{qassume}$
since	$\setminus \texttt{qsince}$
let	$\setminus exttt{qlet}$
for	\qfor
all	\qall
even	\setminus qeven
odd	\setminus qodd
integer	\setminus qinteger
and	\setminus qand
or	\qor
as	\setminus qas
in	\neq

Derivatives	Code
$\mathrm{d}x$	$\differential\{\ \}$
$\mathrm{d}x$	
d^3x	\dd[3] {x}
$d(\cos \theta)$	\dd()
$\frac{\mathrm{d}}{\mathrm{d}x}$ $\mathrm{d}f$	$\det\{$
$\frac{df}{dx}$	$\det\{\ \}\{x\}$
$\frac{\mathrm{d}f}{\mathrm{d}x}$	{x}
$\frac{\mathrm{d}^n f}{\mathrm{d} n^n}$	\dv[]{f}{x}
$\frac{\frac{\mathrm{d}f}{\mathrm{d}x}}{\frac{\mathrm{d}f}{\mathrm{d}x}}$ $\frac{\mathrm{d}^{n}f}{\frac{\mathrm{d}x^{n}}{\mathrm{d}x}}(x^{2} + x^{3})$	\dv{x}()
$\mathrm{d}f/\mathrm{d}x$	\dv*{ }{x}
$ \frac{\partial}{\partial x} f $ $ \frac{\partial}{\partial f} g $ $ \frac{\partial}{\partial x} f $ $ \frac{\partial}{\partial x} f $ $ \frac{\partial}{\partial x} f $	
$\frac{\partial \overline{f}}{\partial x}$	$\operatorname{\mathtt{ar{p}artialderivative}}\{\ \}\{\mathtt{x}\}$
$\frac{\partial f}{\partial x}$	$ \{x\}$
$\frac{\partial^{\overline{n}} f}{\partial x^n}$	\pdv[]{f}{x}
$\frac{\frac{\partial}{\partial x^n}}{\frac{\partial}{\partial x}} (x^2 + x^3)$	\pdv{x}()
$\frac{\partial^2 f}{\partial x^2}$	{x}{y}
$\delta F[g(x)]$	
$\delta F[g(x)]$	
	\var()
$\frac{\delta}{\delta}$	
$\frac{\delta q}{\delta F}$	{g}
$\frac{\delta g}{\delta F}$ $\frac{\delta F}{\delta g}$	{g}
$\frac{\delta g}{\delta V}(E - TS)$	
	\fdv*{ }{x}
$\frac{\delta F/\delta x}{}$	\1UV*{ }{X}

```
Dirac Bracket Notation
                                                                             Code
 \begin{vmatrix} \frac{\psi+\phi}{2} \\ \end{vmatrix}
                                                                              \ket{}
                                                                              \ket*{}
                                                                              \bra{ }
                                                                              \bra*{ }
                                                                              \displaystyle \prod_{i=1}^{r} \frac{1}{rac} + \frac{1}{rac}
                                                                              \phi {2} {\frac{psi + phi}{2}}
\left\langle \frac{\psi+\phi}{2} \middle| \frac{\psi+\phi}{2} \right\rangle
                                                                              \displaystyle \left\{ \frac{\psi + \phi}{2} \right\} \left\{ \frac{\psi}{2} \right\}
                                                                              + \phi}{2}}
 \langle \frac{\psi+\phi}{2} | \frac{\psi+\phi}{2} \rangle
                                                                              \braket*{\frac{\psi +}{}}
                                                                              \phi_{2}_{c} \simeq \phi_{2}
 \left\langle \frac{\psi+\phi}{2} \middle| \frac{\psi+\phi}{2} \right\rangle\left| \frac{\psi+\phi}{2} \middle| \frac{\psi+\phi}{2} \middle| \frac{\psi+\phi}{2} \middle|
                                                                              \braket{ }
                                                                              \operatorname{\operatorname{\operatorname{Nouterproduct}}}\operatorname{\operatorname{\operatorname{\operatorname{Imac}}}}\operatorname{\operatorname{\operatorname{\operatorname{Imac}}}}
                                                                              \phi_{2}_{2}_{rac}\
\left|\frac{\psi+\phi}{2}\right\rangle\left\langle\frac{\psi+\phi}{2}\right\rangle
                                                                              \dyad{\frac{psi + phi}{2}}{\frac{psi + phi}{2}}
                                                                              \phi}{2}}
\left|\frac{\psi+\phi}{2}\right\rangle\left\langle\frac{\psi+\phi}{2}\right|
                                                                              \ \left[ \frac{\psi}{2} \right] 
                                                                              + \phi}{2}}
\left|\frac{\psi+\phi}{2}\right\rangle\left\langle\frac{\psi+\phi}{2}\right|
                                                                              \inf{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}}
                                                                              \phi}{2}}
\left|\frac{\psi+\phi}{2}\right\rangle\left\langle\frac{\psi+\phi}{2}\right|
                                                                              \ketbra*{\frac{\psi}+}
                                                                              \phi_{2}_{c} \simeq \phi_{2}
 \begin{vmatrix} \frac{\psi+\phi}{2} \middle\backslash \frac{\psi+\phi}{2} \middle| \\ \frac{\psi+\phi}{2} \middle\rangle \\ \frac{\psi+\phi}{2} \middle\rangle \\ \frac{\psi+\phi}{2} \middle\rangle \\ \langle \psi| \frac{A+B}{2} \middle| \psi \rangle \\ \langle \frac{\psi+\phi}{2} \middle\rangle \\ \langle \frac{\psi+\phi}{2} \middle\rangle \\ \langle m| \frac{A+B}{2} \middle| n \rangle 
                                                                              \ketbra{ }
                                                                              \ensuremath{\setminus} \mathtt{expectationvalue}\{\ensuremath{\ }\}
                                                                              \left\{ \right.
                                                                              \ensuremath{\texttt{ev}\{\ \}\{\psi\}}
                                                                              \ev*{ }
                                                                              \ev**{ }
                                                                              \matrixelement{m}{ }{n}
                                                                              \mathsf{matrixel}\{m\}\{\ \}\{n\}
                                                                              \mathbb{m}{n}{n}{n}
                                                                              \mathbf{m}
\frac{\langle m | \frac{A+B}{2} | n \rangle}{|n|}
                                                                              \mathbf{mel}**\{m\}\{n\}
```