Пример построения остова (остовного дерева) минимального веса с помощью алгоритма Прима

<u>Постановка задачи</u>. Неограф G задан матрицей весов Ω . Построить остов G' минимального веса с помощью алгоритма Прима и определить вес полученного остова $\omega(G')$.

	$\mathbf{x_1}$	\mathbf{x}_2	\mathbf{x}_3	X_4	X 5	X ₆	X ₇
$\mathbf{x_1}$	-	11	5	8	∞	8	∞
\mathbf{x}_2	11	•	6	13	∞	10	∞
\mathbf{x}_3	5	6	•	8	7	8	9
$\mathbf{x_4}$	8	13	∞	-	3	5	8
X ₅	∞	∞	7	3	-	9	7
\mathbf{x}_6	8	10	∞	5	9	•	∞
X ₇	∞	∞	9	8	7	∞	-

Предварительные замечания. (1) Присутствие символа ∞ в матрице весов означает отсутствие ребра, что соответствует бесконечности веса. (2) В данном алгоритме принципиально важно работать с полной матрицей весов, хотя для задания графа достаточно верхней или нижней треугольной матрицы.

$$\coprod \text{III} \text{ar } 1. \ S_1 = \{x_1\}, \ S_2 = S \setminus S_1 = \{x_2, x_3, ..., x_7\}, \ U' = \emptyset.$$

Итерация 1

ШαΓ 2. $d(S_1, S_2) = min[ω(x_1, x_2), ω(x_1, x_3), ω(x_1, x_4), ω(x_1, x_6)] = min[11, 5, 8, 8] = ω(x_1, x_3) = 5.$ $S_1 = \{x_1, x_3\}, S_2 = S \setminus S_1 = \{x_2, x_4, x_5, x_6, x_7\}, \underline{U'} = \{(x_1, x_3)\}.$

Шаг 3. $S_1 \neq S$, переход к итерации 2.

Итерация 2

 $\coprod \text{ar 2. } d(S_1, S_2) = \min[\omega(x_1, x_2), \omega(x_1, x_4), \omega(x_1, x_6), \omega(x_3, x_2), \omega(x_3, x_5), \omega(x_3, x_7)] = \omega(x_3, x_2) = 6.$

 $S_1 = \{x_1, \, x_2, \, x_3\}, \, S_2 = \{x_4, \, x_5, \, x_6, \, x_7\}, \, \underline{U' = \{(x_1, \, x_3), \, (x_3, \, x_2)\}}.$

Шаг 3. $S_1 \neq S$, переход к итерации 3.

Итерация 3

 $\text{IIIar 2. } d(S_1, S_2) = \min[\omega(x_1, x_4), \omega(x_1, x_6), \omega(x_2, x_4), \omega(x_2, x_6), \omega(x_3, x_5), \omega(x_3, x_7)] = \omega(x_3, x_5) = 7.$

 $S_1 = \{x_1, x_2, x_3, x_5\}, S_2 = \{x_4, x_6, x_7\}, \underline{U'} = \{(\underline{x_1}, \underline{x_3}), (\underline{x_3}, \underline{x_2}), (\underline{x_3}, \underline{x_5})\}.$

Шаг 3. $S_1 \neq S$, переход к итерации 4.

Итерация 4

ШαΓ 2. $d(S_1, S_2) = min[\omega(x_1, x_4), \omega(x_1, x_6), \omega(x_2, x_4), \omega(x_2, x_6), \omega(x_3, x_7), \omega(x_5, x_4), \omega(x_5, x_6), \omega(x_5, x_7)] = \omega(x_5, x_4) = 3.$

 $S_1 = \{x_1, x_2, x_3, x_4, x_5\}, S_2 = \{x_6, x_7\}, \underline{U'} = \{(x_1, x_3), (x_3, x_2), (x_3, x_5), (x_5, x_4)\}.$

Шаг 3. $S_1 \neq S$, переход к итерации 5.

Итерация 5

 $S_1 = \{x_1, x_2, x_3, x_4, x_5, x_6\}, S_2 = \{x_7\}, \underline{U'} = \{(x_1, x_3), (x_3, x_2), (x_3, x_5), (x_5, x_4), (x_4, x_6)\}.$

Шаг 3. $S_1 \neq S$, переход к итерации 6.

Итерация 6

 $\text{IIIar 2. } d(S_1, S_2) = \min[\omega(x_3, x_7), \omega(x_4, x_7), \omega(x_5, x_7)] = \omega(x_5, x_7) = 7.$

 $S_1 = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}, S_2 = \emptyset, \underline{U'} = \{(x_1, x_3), (x_3, x_2), (x_3, x_5), (x_5, x_4), (x_4, x_6), (x_5, x_7)\}.$

Шаг 3. $S_1 = S$, останов.

Искомый остов: G'(S, U'). $ω(G') = \sum_{i=1}^{6} ω(u_i) \mid u_i \in U'$. ω(G') = 5+6+7+3+5+7 = 33.

Заметим: n = |S| = 7, m = |U| = 14, k = 1; $\nu(G) = m-n+k = 8$. Действительно, $m-\nu(G) = |U'| = 6$; $\nu^*(G) = n-k = |U'| = 6$.

Полученный остов минимального веса:

