Top Down Specialization for Apache Spark™

Why data privacy?

A city's voter list was used to identify voters' medical records

97% of voters were identified by only using ZIP Codes and birth dates

A New York Times reporter identified a woman by using her web searches

96% of Netflix subscribers were uniquely identified in 2006

Important Definitions

Quasi-Identifiers

Attributes that when combined together can identify an individual

Sensitive Attributes

Attributes that we are trying to conceal when datasets are released

Taxonomy Trees

Hierarchy of distinct values in a dataset

Education	Gender	City	Income
Grade 12	Female	Nepean	\$65,000
Bachelor's	Male	Ottawa	\$50,000
Master's	Male	Orleans	\$50,000
PhD	Male	Gloucester	\$100,000
Grade 12	Female	Nepean	\$80,000
Associate	Female	Kanata	\$90,000
Associate	Female	Kanata	\$105,000
Bachelor's	Male	Ottawa	\$50,000

Education	Gender	City	Income
Grade 12	Female	Nepean	\$65,000
Bachelor's	Male	Ottawa	\$50,000
Master's	Male	Orleans	\$50,000
PhD	Male	Gloucester	\$100,000
Grade 12	Female	Nepean	\$80,000
Associate	Female	Kanata	\$90,000
Associate	Female	Kanata	\$105,000
Bachelor's	Male	Ottawa	\$50,000

Education	Gender	City	Income
Grade 12	Female	Nepean	\$65,000
Bachelor's	Male	Ottawa	\$50,000
Master's	Male	Orleans	\$50,000
PhD	Male	Gloucester	\$100,000
Grade 12	Female	Nepean	\$80,000
Associate	Female	Kanata	\$90,000
Associate	Female	Kanata	\$105,000
Bachelor's	Male	Ottawa	\$50,000

Education	Gender	City	Income
Grade 12	Female	Nepean	\$65,000
Bachelor's	Male	Ottawa	\$50,000
Master's	Male	Orleans	\$50,000
PhD	Male	Gloucester	\$100,000
Grade 12	Female	Nepean	\$80,000
Associate	Female	Kanata	\$90,000
Associate	Female	Kanata	\$105,000
Bachelor's	Male	Ottawa	\$50,000

Education	Gender	City	Income
Grade 12	Female	Nepean	\$65,000
Bachelor's	Male	Ottawa	\$50,000
Master's	Male	Orleans	\$50,000
PhD	Male	Gloucester	\$100,000
Grade 12	Female	Nepean	\$80,000
Associate	Female	Kanata	\$90,000
Associate	Female	Kanata	\$105,000
Bachelor's	Male	Ottawa	\$50,000

Education	Gender	City	Income
Grade 12	Female	Nepean	\$65,000
Bachelor's	Male	Ottawa	\$50,000
Master's	Male	Orleans	\$50,000
PhD	Male	Gloucester	\$100,000
Grade 12	Female	Nepean	\$80,000
Associate	Female	Kanata	\$90,000
Associate	Female	Kanata	\$105,000
Bachelor's	Male	Ottawa	\$50,000

Education	Gender	City	Income
Grade 12	Female	Nepean	\$65,000
Bachelor's	Male	Ottawa	\$50,000
Master's	Male	Orleans	\$50,000
PhD	Male	Gloucester	\$100,000
Grade 12	Female	Nepean	\$80,000
Associate	Female	Kanata	\$90,000
Associate	Female	Kanata	\$105,000
Bachelor's	Male	Ottawa	\$50,000

Education	Gender	City	Income	
Grade 12	Female	Nepean	\$65,000	
Bachelor's	Male	Ottawa	\$50,000	
Master's Graduate	Male	Orleans Ottawa East	\$50,000	
PhD Graduate	Male	Gloucester Ottawa East	\$100,000	
Grade 12	Female	Nepean	\$80,000	
Associate	Female	Kanata	\$90,000	
Associate	Female	Kanata	\$105,000	
Bachelor's	Male	Ottawa	\$50,000	

Education	Gender	City	Income
Grade 12	Female	Nepean	\$65,000
Bachelor's	Male	Ottawa	\$50,000
Graduate	Male	Ottawa East	\$50,000
Graduate	Male	Ottawa East	\$100,000
Grade 12	Female	Nepean	\$80,000
Associate	Female	Kanata	\$90,000
Associate	Female	Kanata	\$105,000
Bachelor's	Male	Ottawa	\$50,000

Top Down Specialization - Overview

Pre-Processing

- Non QIDs are removed from the dataset
- QIDs and distinct values of SAs are grouped together and count calculated

Education	Gender	City	Income	Count
12 th	Female	Orleans	<=50k	3
Bachelors	Female	Gloucester	>50k	4
Doctorate	Female	Gloucester	>50k	1
Bachelors	Female	Nepean	>50k	4
Associate	Male	Kanata	<=50k	4
11 th	Male	Barrhaven	<=50k	2
Masters	Female	Perth	>50k	3

Step 1 - Generalization

• Generalize all QIDs to the root of the anonymization level.

Education	Gender	City	Income	Count	Aggregate
Any	Any	Any	<=50k	3	
Any	Any	Any	>50k	4	
Any	Any	Any	>50k	1	
Any	Any	Any	>50k	4	
Any	Any	Any	<=50k	4	
Any	Any	Any	<=50k	2	
Any	Any	Any	>50k	3	

Step 1 – Pick Anonymization Level

- Generalize all QIDs to the root of the anonymization level
- For every anonymization level, calculate information gain and privacy loss

Education	Gender	City	Income	Count	Aggregate
WPS	Any	Any	<=50k	3	7
WPS	Any	Any	>50k	4	
PS	Any	Any	>50k	1	14
PS	Any	Any	>50k	4	
PS	Any	Any	<=50k	4	
PS	Any	Any	<=50k	2	
PS	Any	Any	>50k	3	

Step 2 – Pick Anonymization Level

- Generalize all QIDs to the root of the anonymization level
- For every anonymization level, calculate information gain and privacy loss

Education	Gender	City	Income	Count	Aggregate
Any	Any	East	<=50k	3	8
Any	Any	East	>50k	4	
Any	Any	East	>50k	1	
Any	Any	West	>50k	4	13
Any	Any	West	<=50k	4	
Any	Any	West	<=50k	2	
Any	Any	West	>50k	3	

- Anonymization level values are aggregated for every partition
- Aggregations are merged into one-row table with the totals

Education	Gender	City	Income	Count	Edu_Agg	City_Agg
WPS	Any	East	<=50k	3	7	8
WPS	Any	East	>50k	4		
PS	Any	East	>50k	1	14	
PS	Any	West	>50k	4		13
PS	Any	West	<=50k	4		
PS	Any	West	<=50k	2		
PS	Any	West	>50k	3		

Best Score: City
Orleans: Any ⇒ Canada ⇒
Ontario ⇒ Eastern Ontario ⇒
Greater Ottawa Area ⇒
Ottawa East ⇒ Orleans

Chicago: Any ⇒ United
States ⇒ North East ⇒
Illinois ⇒ North Illinois ⇒
Cook County ⇒ Chicago

- Anonymization level values are aggregated for every partition
- Aggregations are merged into one-row table with the totals
- Final individual scores stored in a map, best option chosen, anonymization levels updated, k calculated, reiterate if required.

Best Score: City
Orleans: Any → Canada →
Ontario → Eastern Ontario →
Greater Ottawa Area →
Ottawa East → Orleans

Chicago: Any → United
States → North East →
Illinois → North Illinois →
Cook County → Chicago

- Anonymization level values are aggregated for every partition
- Aggregations are merged into one-row table with the totals
- Final individual scores stored in a map, best option chosen, anonymization levels updated, k calculated, reiterate if required.

Best Score: City
Orleans: Any ⇒ Canada ⇒
Ontario ⇒ Eastern Ontario ⇒
Greater Ottawa Area ⇒
Ottawa East ⇒ Orleans

Chicago: Any ⇒ United
States ⇒ North East ⇒
Illinois ⇒ North Illinois ⇒
Cook County ⇒ Chicago

- Anonymization level values are aggregated for every partition
- Aggregations are merged into one-row table with the totals
- Final individual scores stored in a map, best option chosen, anonymization levels updated, k calculated, reiterate if required.

Best Score: City
Orleans: Any→ Canada ⇒
Ontario ⇒ Eastern Ontario ⇒
Greater Ottawa Area ⇒
Ottawa East ⇒ Orleans

Chicago: Any→ United
States ⇒ North East ⇒
Illinois ⇒ North Illinois ⇒
Cook County ⇒ Chicago

Enhancing performance

- Apache Spark is a fast and general-purpose cluster computing system
- Maximum partitions set to p where p is number of processors
- Prefer tail recursion over looping for code that runs on Spark
- Minimize aggregations to maximum 1 per iteration
- Partition over ID

Test Environment

- OpenStack configuration with 16 GB disk space, 4 GB RAM, 4 vCPU per node
- Ran tests for k=100 over 1, 2, 4, 8 and 16 nodes
- Dataset sizes: 250,000 rows, 5 million rows and 10 million rows
- Spark and Java installed on every node
- Public/private keys added to every node and hosts file updated

Number of Partitions

Set number of partitions to number of worker cores

Partitioning for 8-node cluster & 5,00,000 rows

Test Results

250,000 rows

10,000,000 rows

Performance by dataset size

100% increase in dataset size only resulted in 55-65% increase in time

16-node cluster, 64 partitions

Comparison with Original Paper

My Implementation

Original Paper

Comparison with Original Paper

My Implementation

Original Paper

Questions

- What's the difference between Quasi-Identifiers and Sensitive Attributes?
- What change contributed the most to performance improvement?
- What should be the number of partitions compared to number of processors?