EECS 545 -> Hachine Learning
Lecture 4 - Classification
· Supervised learning - learn to predict 4 from x given data x in feature space and labels to In classification, these labels are discrete-valued · Classification - given an input vector x, assign it to one of K distinct classes Cz where K=1,2,, K
· If k=2,
-y=1 means z is in Cq
-y=0 neans z is in Cz ·If K72,
- use 1-of-k coding
- y = (0,1,0,0) Lucans 2 is in C2
· O-1 Loss = Classification error = \[\int \Z_{j=1}^{N} I[L(\(\chi^{(j)} \neq \mathre{y}_{test}\)]
Logistic Regression
·Decision boundary is madeled as a function of the input n
· Learn PCCk 12) over the data
Directly predict class labels from inputs
· Logistic regression models the class probability (posterior) using a sigmoid function applied to a linear function of the feature vectors
$\rho(C_1 \emptyset) = L(\emptyset) = \sigma(\omega^T \emptyset(n))$
·Logistic signoid function - o(a) =
1+enq(-a)
Inverse of logistic sigmoid is logit function = a = logo aka. colds ratio
Generalization is softman - p = enp(2;)
$\sum_{j \in n_{\mathcal{C}}(Q_{j})} $
· We can define the like lihood of n as,
P(y=1 x,ω)=σ(ω ^T g(z))
ρ(y=0)x,ω)=1-σ(ωτφ(x))
ρ(y/x/w)= σ(ω ^T φ(x)) ³ (1-σ(ω ^T φ(x))) ^{1-y}
ν (n) (n) (n) (n) (n)
The likelihood function is p(ylw) = IT(h(n))y(n) (1-h(n))'-y(n)
where $h^{(n)} = \rho(C_s \phi(n^{(n)})) = \sigma(\omega^T \phi(n^{(n)}))$
where ~ p(c, p(x /)=o(wp(x /)
Define our loss function as E[w]=-log p(ylw), winimizing E[w] will Manielize the likethood

HLS Derivation

$$= \sum_{n} \sqrt{n} \sqrt{n} \left(\frac{\sigma_{n}(1-\sigma_{n})}{\sigma_{n}} \right) - \left(1-\beta_{n}(1)\right) \frac{\sigma_{n}(1-\sigma_{n})}{1-\sigma_{n}} \sqrt{n} \sqrt{n} \left(\frac{1}{2} \right) \right) \right) \right)}{1} \right) \right)}{1} \right)} \right)} \right)} \right)} \right)} \right) \right)}$$

So we have $\nabla E[\omega] = \sum_{n=1}^{\infty} (h^{(n)} - y^{(n)}) \phi(x^{(n)})$, where $h^{(n)} = \rho((1)\phi(x^{(n)}) = \sigma(\omega^T \phi(x^{(n)}))$

· This is very similar to the gradient descent expression from linear regression, with the addition of the signal function o(a)

Newton's Method

· Goal is to minimize a general function E[w]

200

· We do so by repeating the following until convergence,

· In the multivariate case, we have $\omega := \omega - H^{-1}\nabla_{\omega}E$, where H is the Hessian matrix evaluated as $H_{ij}(\omega) = \frac{\partial^{2}E[\omega]}{\partial \omega_{i}\partial \omega_{j}}$

· LR closed Bru solution - was = (\$ T \$) T & q

·WLR closed form solution -> w = (\$TR \$) TRy Ris on NxNdiagonal weight matrix

· In Logistic regression, h(n,w) is non linear and there is no closed form solution

- we can only estimate by repeatedly applying Newton steps

· Iteratively applying NR involves least-squares with weights matrix R, Rn= h(n)(1-h(n))

· R depends on us, us depends on R, so we have iterative reweighted least squares (IRLS)

K-Nearest Neighbor Classification	
Given a test enough x, find the k training enamples that one closest to x	
· Predict as a label for the testing sample the most frequent class among all y's from know(x)	
KNN(n) = {(x(1)', y(1)'), (x(2)', y(2)'),, (x(k)', y(k)')}	
h(n): arg max & 1[y'=y] majority vote 2 (x',y') \(\x\nu \n \n \)	
·Lorger k leads to supporter decision boundary	
·Clossification generally improves as Nincreases	
As N=00, error rate of 1-NN is never more than twice the optimal error, which is obtained from true conditional class dist's	
· Hyperparameters - ODistance metric - D(x, x')	
OValue of K	
'Can turn know into a regression problem by assigning the label of the testing example as the average of the the nearest tax labels,	get
h(n): K	
$h(x) = \frac{1}{K} \sum_{i=1}^{K} y^{i}$ $(x,y) \in kan(x)$	
· KNN odvantages - simple + flen: We	
effective for low dimensional outputs	
· KNN disadvantages - expensive as we have to compute + store distances for the whole training data for every prediction	
all points are far away in high dimensions	
not robust to irrelevant features/outliers	