```
% Optimization of two-link robot arm tracking
clear; clc;
% Define desired trajectory and Middle Points
qDes = [-0.4986]
                 2.5681;
          0.5371
                    1.5108 ];
qMid = [inverse kinematics(0.4, 0.6, 1, 1), ...
        inverse kinematics (0.4, 0.7, 1, 1), ...
        inverse kinematics(0.4, 0.8, 1, 1), ...
        inverse kinematics (0.4, 0.9, 1, 1), ...
        inverse kinematics (0.4, 1.0, 1, 1), ...
        inverse kinematics (0.4, 1.1, 1, 1), ...
        inverse kinematics (0.4, 1.2, 1, 1);
% Parameters
time = [10 \ 20];
                    % time
wn = [2 1.5];
                   % Prefilter Omega
kj = [40 \ 25 \ 40 \ 25]; % Spring [t1q1 t1q2 t2q1 t2q2]
bj = [10 \ 30 \ 10 \ 30]; \% Damping [t1q1 t1q2 t2q1 t2q2]
wt = [400, .5, 1800]; % weights [qDes, Time, qMid]
% Optimization setup
initParams = [time wn bj kj]; % Initial guess for [time, wn, bj, kj]
[init T, init Y] = ode45(@(t, x) myTwolinkwithprefilter(t, x, wn,
initParams(1:2), qDes, bj, kj), [0 initParams(2)], zeros(8, 1));
% Lower and upper boundaries
1b = [0 \ 0 \ 1.5 \ 1.5]
                       10 10 10 10
                                             2
                                                  2
                                                      2
                                                            1;
                                                                 % Lower
bounds
                        100 100 100 100 200 200 200 200 ];
ub = [2 \ 4]
          10 10
                                                                 % Upper
bounds
% Objective Function
objectiveFunc = @(params) objectiveFunction(params, qDes, wt, qMid);
% Run optimization
options = optimset('Display', 'iter', 'TolFun', 1e-6, 'MaxIter', 400);
optimalParams = fmincon(objectiveFunc, initParams, [], [], [], lb, ub,
[], options);
\ensuremath{\$} Simulate with optimal parameters and plot results
[t, y] = ode45(@(t, x) myTwolinkwithprefilter(t, x, optimalParams(3:4),
optimalParams(1:2), qDes, optimalParams(5:8), optimalParams(9:12)), [0
optimalParams(2)], zeros(8, 1));
% Output
xAct = forward kinematics(y(:, 5), y(:, 6), 1, 1);
xDes = forward kinematics(qDes(:, 1), qDes(:, 2), 1, 1);
xInit = forward kinematics(init Y(:, 5), init Y(:, 6), 1, 1);
```

```
% Plotting
% Desired, Actual and Optimised Data
figure(1); hold on; grid on;
plot(xInit(:, 1), xInit(:, 2), '-');
plot(xAct(:, 1), xAct(:, 2), '-');
plot(xDes(:, 1), xDes(:, 2), 'o-');
plot(0.4,0.6, '*',0.4,0.7, '*',0.4,0.8, '*',0.4,0.9, '*',0.4,1.0,
'*', 0.4, 1.1, '*', 0.4, 1.2, '*');
xlabel('X axis'); ylabel('Y axis');
legend('Initial','Optimised', 'Desired');
title('Optimized Trajectory Tracking');
disp(['Opt Time: ', num2str(optimalParams(1:2))])
disp(['Opt Wn : ', num2str(optimalParams(3:4))])
disp(['Opt bj : ', num2str(optimalParams(5:8))])
disp(['Opt kj : ', num2str(optimalParams(9:12))])
% Mid points in joint space
figure (2); plot (y(:,5),y(:,6),qMid(1,:),qMid(2,:),'o');
xlabel('Joint 1 position')
ylabel('Joint 2 position')
title('joint space of a (near) optimal staight line in cartesian space')
% joint space plot
figure(3); grid on; hold on;
plot(t, y(:, 5:6));
xlabel('Time (s)')
ylabel('Position (rad)')
legend('Q1','Q2')
title('Joint position (rad)')
% cartesian space plot
figure(4); hold on; grid on;
plot(xAct(:,1),xAct(:,2))
xlabel('X axis')
ylabel('Y axis')
legend('X','Y')
title('Cartesian Position (m)')
% x/y vs time
figure(5); grid on; hold on;
plot(t, xAct(:,1:2))
xlabel('Time (s)')
ylabel('Position')
legend('X','Y')
title('Cartesian Position vs Time')
% publish('simOpt.m','pdf');
% disp(sprintf('KY %s \t %s \t %s',mfilename,pwd,datetime("now")));
% Objective function
function error = objectiveFunction(params, qDes,wt,qMid)
    % Initial conditions
```

```
x0 = zeros(8, 1);
    x0(1:2) = [qDes(1, 1); qDes(1, 2)];
    % Simulate the system
    [t, y] = ode45(@(t, x) myTwolinkwithprefilter(t, x, params(3:4),
params(1:2), qDes, params(5:8), params(9:12)), [0 params(2)], x0);
    % Calculate the error metric
    distto1 = min(sum((y(:, 5:6) - qDes(1,:)).^2,2) + sum((params(1) - qDes(1,:)).^2,2))
t).^2, 2);
    distto2 = min(sum((y(:, 5:6) - qDes(2,:)).^2,2) + sum((params(2) - qDes(2,:)).^2,2))
t).^2,2));
    distMid1 = min(sum((y(:, 5:6) - qMid(:,1)').^2,2));
    distMid2 = min(sum((y(:, 5:6) - qMid(:, 2)').^2, 2));
    distMid3 = min(sum((y(:, 5:6) - qMid(:,3)').^2,2));
    distMid4 = min(sum((y(:, 5:6) - qMid(:,4)').^2,2));
    distMid5 = min(sum((y(:, 5:6) - qMid(:, 5)').^2, 2));
    distMid6 = min(sum((y(:, 5:6) - qMid(:, 6)').^2, 2));
    distMid7 = min(sum((y(:, 5:6) - qMid(:,7)').^2,2));
    % time1 = min(sum((params(1) - t).^2, 2));
    % time2 = min(sum((params(2) - t).^2, 2));
    time1 = params(1);
    time2 = params(2);
    error = wt(1) * distto1 + wt(1) * distto2 + ... % Desired
              wt(2) * time1
                              + wt(2) * time2
              wt(3) * distMid1 + wt(3) * distMid2 + ... % Mid-point
              wt(3) * distMid3 + wt(3) * distMid4 + ... % Mid-point
              wt(3) * distMid5 + wt(3) * distMid6 + ... % Mid-point
              wt(3) * distMid7;
                                                           % Mid-point
    % distto5 = 5000 * sum((y(:, 5:6) - qMid3'), 2) + w2 *
(sum((time(1) + (time(2) - time(1))/2) - t).^2, 2));
end
% myTwolinkwithprefilter function
function dxdt = myTwolinkwithprefilter(t, x, wn, time, qDes, bj, kj)
    zeta = 1;
    A1 = [zeros([2 2]) eye(2); -eye(2)*wn(1)^2 -eye(2)*2*zeta*wn(1)];
    B1 = [0 \ 0; \ 0 \ 0; \ wn(1)^2 \ 0; \ 0 \ wn(1)^2];
    A2 = [zeros([2\ 2]) eye(2); -eye(2)*wn(2)^2 -eye(2)*2*zeta*wn(2)];
    B2 = [0 \ 0; \ 0 \ 0; \ wn(2)^2 \ 0; \ 0 \ wn(2)^2];
    % Actual position and velocity
    q = x(5:6);
    qd = x(7:8);
    q1p = x(7); q2p = x(8);
    q1 = x(5); q2 = x(6);
    % Robot constants
```

```
L 1 = 1; L 2 = 1; m 1 = 1; m 2 = 1;
    ka = L 2^2 * m 2;
    kb = L 1 * L 2 * m 2;
    kc = L 1^2 * (m 1 + m 2);
    M = [ka + 2*kb*cos(q2) + kc, ka + kb*cos(q2);
          ka + kb*cos(q2), ka];
    V = ka*sin(q2)*([0 -1; 1 0] * [q1p^2; q2p^2] + [-2*q1p*q2p; 0]);
    % Numerator = V + [-bj(1) \ 0; \ 0 -bj(2)]*qd + [-kj(1) \ 0; \ 0 -kj(2)]*(q - bj(2)]*(q - bj(2)]*(q - bj(2))
x(1:2));
    % qdd = M\Numerator;
    if t < time(1)
         Numerator = V + [-bj(1) \ 0; \ 0 - bj(2)]*qd + [-kj(1) \ 0; \ 0 - kj(2)]*(q - bj(2))
x(1:2));
         qdd = M\Numerator;
         dotx = A1*x(1:4) + B1*qDes(1, :)';
         Numerator = V + [-bj(3) \ 0; \ 0 - bj(4)]*qd + [-kj(3) \ 0; \ 0 - kj(4)]*(q - bj(4)]*(q - bj(4))
x(1:2));
         qdd = M\Numerator;
         dotx = A2*x(1:4) + B2*qDes(2, :)';
    dxdt = [dotx; qd; qdd];
end
```

Initial point X0 is not between bounds LB and UB; FMINCON shifted X0 to strictly satisfy the bounds.

				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
0	13	1.435564e+03	0.000e+00	3.742e+02	
1	26	2.201101e+02	0.000e+00	2.225e+02	2.388e+01
2	39	4.684079e+01	0.000e+00	1.988e+02	4.224e+00
3	52	2.291971e+01	0.000e+00	2.196e+02	4.946e+00
4	65	2.220989e+01	0.000e+00	6.802e+01	1.253e-01
5	80	1.829532e+01	0.000e+00	6.824e+01	2.936e+00
6	99	1.785620e+01	0.000e+00	1.483e+01	3.543e-01
7	113	1.748082e+01	0.000e+00	3.345e+00	5.850e-01
8	127	1.670010e+01	0.000e+00	1.211e+01	9.053e-01
9	140	1.441588e+01	0.000e+00	2.210e+01	9.550e-01
10	161	1.430170e+01	0.000e+00	2.126e+00	1.456e-01
11	182	1.427675e+01	0.000e+00	9.470e-01	9.154e-03
12	196	1.426723e+01	0.000e+00	3.823e+00	1.412e-02
13	226	1.426720e+01	0.000e+00	2.901e+00	4.344e-06
14	241	1.426720e+01	0.000e+00	2.901e+00	1.370e-05
15	258	1.426700e+01	0.000e+00	2.879e+00	3.041e-05
16	272	1.426687e+01	0.000e+00	2.878e+00	2.628e-04
17	287	1.415640e+01	0.000e+00	5.316e+00	2.300e-01
18	302	1.386612e+01	0.000e+00	3.226e+00	1.048e+00
19	315	1.312882e+01	0.000e+00	1.127e+01	3.225e+00
20	333	1.244487e+01	0.000e+00	1.060e+01	3.340e+00
21	346	1.230746e+01	0.000e+00	1.991e+00	1.325e+00
22	360	1.217994e+01	0.000e+00	2.874e+00	2.445e+00

23	373	1.112840e+01	0.000e+00	1.034e+01	9.327e+00
24	386	1.123582e+01	0.000e+00	4.679e+00	3.812e+00
25	399	1.097960e+01	0.000e+00	1.920e+00	3.934e+00
26	412	1.021450e+01	0.000e+00	4.959e+00	8.181e+00
27	425	8.157047e+00	0.000e+00	8.583e+00	4.149e+01
28	438	7.879307e+00	0.000e+00	6.380e+00	1.175e+02
29	451	6.964305e+00	0.000e+00	4.066e+00	1.217e+01
30	464	6.525154e+00	0.000e+00	5.403e+00	4.577e+00
30	404	0.3231346700	0.000e700	J.403e700	4.3776100
				First-order	Norm of
Ttar	F-count	f (x)	Feasibility	optimality	step
31	478	6.364799e+00	0.000e+00	1.942e+01	2.389e+00
32	491	5.983465e+00	0.000e+00	1.436e+01	6.719e+00
33	517	5.951188e+00	0.000e+00	3.593e+00	5.872e-03
34	540	5.945809e+00	0.000e+00	2.886e+00	5.322e-04
35	553		0.000e+00	1.334e+00	7.862e-01
		5.935179e+00			2.281e-01
36	569	5.899038e+00	0.000e+00	1.081e+01	
37	583	5.885097e+00	0.000e+00	9.115e+00	2.814e-01
38	596	5.889310e+00	0.000e+00	6.693e+00	1.666e+00
39	610	5.849384e+00	0.000e+00	2.762e+00	4.799e-01
40	635	5.848818e+00	0.000e+00	2.335e+00	2.296e-04
41	649	5.848714e+00	0.000e+00	2.316e+00	2.564e-03
42	662	5.832734e+00	0.000e+00	7.758e+00	4.591e-01
43	676	5.876316e+00	0.000e+00	3.689e+00	2.075e+00
44	701	5.861968e+00	0.000e+00	1.321e+00	1.726e-03
45	719	5.845735e+00	0.000e+00	1.678e+00	5.831e-03
46	7 <i>43</i>	5.845145e+00	0.000e+00	1.318e+00	3.800e-04
47	757	5.844948e+00	0.000e+00	1.312e+00	3.419e-03
48	778	5.844513e+00	0.000e+00	1.010e+00	3.461e-04
49	7 <i>92</i>	5.844104e+00	0.000e+00	1.010e+00	2.961e-03
50	821	5.844103e+00	0.000e+00	1.007e+00	1.236e-06
51	834	5.675282e+00	0.000e+00	3.081e+00	1.954e+00
52	847	5.547220e+00	0.000e+00	3.658e+00	2.194e+00
53	861	5.531441e+00	0.000e+00	1.083e+00	6.423e-01
54	875	5.529843e+00	0.000e+00	7.527e+00	3.982e-01
55	890	5.488433e+00	0.000e+00	1.398e+01	2.040e+00
56	903	5.390490e+00	0.000e+00	7.863e+00	1.077e+00
57	917	5.241316e+00	0.000e+00	2.415e+00	7.129e+00
58	935	5.092270e+00	0.000e+00	1.957e+00	2.567e+00
59	955	5.086614e+00	0.000e+00	1.923e+00	6.534e-01
60	973	5.072686e+00	0.000e+00	1.742e+00	3.269e-01
				First-order	Norm of
Iter	F-count	f (x)	Feasibility	optimality	step
61	986	4.917467e+00	0.000e+00	1.851e+01	3.202e+00
62	1000	4.812662e+00	0.000e+00	1.269e+01	3.445e+00
63	1022	4.787421e+00	0.000e+00	1.943e+00	1.336e-01
64	1035	4.758598e+00	0.000e+00	1.705e+00	2.178e+00
65	1065	4.758497e+00	0.000e+00	1.374e+00	7.141e-05
66	1003	4.758482e+00	0.000e+00	1.375e+00	9.813e-04
67	1102	4.758460e+00	0.000e+00	1.356e+00	1.582e-05
68	1116	4.758455e+00	0.000e+00	1.355e+00	2.156e-04
69	1116	4.742448e+00	0.000e+00	3.601e+00	4.773e+00
70		4.7424486+00 4.700137e+00			3.688e+00
70	1143	4.7001376+00	0.000e+00	2.442e+00	J.000E+UU

71	1156	4.623466e+00	0.000e+00	6.489e+00	1.347e+00
72	1170	4.601237e+00	0.000e+00	5.554e+00	1.008e+00
73	1185	4.579377e+00	0.000e+00	1.296e+07	5.625e-01
74	1202	4.564270e+00	0.000e+00	2.196e+01	4.096e-02
75	1217	4.506464e+00	0.000e+00	1.044e+01	3.521e-02
76	1234	4.475379e+00	0.000e+00	1.955e+00	4.870e-02
77	1252	4.468708e+00	0.000e+00	1.689e+00	6.604e-02
78	1280	4.467976e+00	0.000e+00	1.610e+00	1.209e-04
79	1299	4.466647e+00	0.000e+00	1.445e+00	2.703e-04
80	1312	4.457330e+00	0.000e+00	1.228e+01	1.786e+00
81	1326	4.422030e+00	0.000e+00	5.136e+00	1.579e+00
82	1339	4.405408e+00	0.000e+00	9.572e+00	1.421e+00
83	1363	4.392107e+00	0.000e+00	6.376e+00	2.012e-03
84	1376	4.367898e+00	0.000e+00	4.163e-01	2.089e+00
85	1389	4.322757e+00	0.000e+00	1.852e+00	3.957e+00
86	1411	4.310231e+00	0.000e+00	2.328e+00	5.102e-02
87	1425	4.306148e+00	0.000e+00	5.587e-01	3.586e-01
88	1438	4.303808e+00	0.000e+00	6.906e+00	2.139e+00
89	1453	4.282216e+00	0.000e+00	3.299e+00	1.939e+00
90	1466	4.264330e+00	0.000e+00	6.021e+00	5.134e-01
				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
91	1484	4.239597e+00	0.000e+00	7.848e+00	3.082e-01
92	1505	4.232595e+00	0.000e+00	3.205e+00	1.342e-01
93	1520	4.229167e+00	0.000e+00	1.616e-01	1.308e-01
94	1545	4.227782e+00	0.000e+00	9.493e-01	3.774e-03
95	1560	4.227080e+00	0.000e+00	8.926e-01	1.712e-02
96	1575	4.185855e+00	0.000e+00	2.595e+00	5.131e-01
97	1603	4.185314e+00	0.000e+00	2.231e+00	2.388e-04
98	1617	4.185169e+00	0.000e+00	2.224e+00	3.782e-03
99	1637	4.184419e+00	0.000e+00	1.600e+00	4.109e-04
100	1650	4.083505e+00	0.000e+00	2.365e+00	2.577e+00
101	1665	4.038388e+00	0.000e+00	3.274e+00	3.680e+00
102	1678	4.026301e+00	0.000e+00	1.355e+01	2.483e+00
103	1693	3.780690e+00	0.000e+00	1.092e+01	1.252e+01
104	1709	3.778464e+00	0.000e+00	7.565e+00	3.260e-01
105	1726	3.719588e+00	0.000e+00	7.120e+00	6.544e-01
106	1743	3.700321e+00	0.000e+00	3.359e+00	1.476e+00
107	1756	3.598661e+00	0.000e+00	3.576e+00	6.289e+01
108	1770	3.474408e+00	0.000e+00	1.175e+00	5.762e+00
109	1785	3.456396e+00	0.000e+00	4.876e+00	1.722e+00
110	1801	3.439921e+00	0.000e+00	3.581e+00	6.645e-01
111	1824	3.437818e+00	0.000e+00	3.334e+00	8.224e-03
112	1849	3.437536e+00	0.000e+00	3.237e+00	2.094e-04
113	1863	3.437513e+00	0.000e+00	3.234e+00	1.526e-03
114	1882	3.436484e+00	0.000e+00	2.883e+00	7.096e-04
115	1895	3.419829e+00	0.000e+00	4.003e+00	3.279e-01
116	1911	3.416564e+00	0.000e+00	5.030e-01	1.108e-01
117	1935	3.415492e+00	0.000e+00	1.232e+00	1.779e-03
118	1950	3.415424e+00	0.000e+00	1.262e+00	6.079e-03
119	1964	3.396581e+00	0.000e+00	4.655e+00	2.588e+00
120	1994	3.396515e+00	0.000e+00	4.621e+00	1.437e-05
		2.22.22.20.00			

				First-order	Norm of
Iter	F-count	f (x)	Feasibility	optimality	step
121	2017	3.396507e+00	0.000e+00	4.601e+00	1.569e-06
122	2032	3.396507e+00	0.000e+00	4.614e+00	8.524e-06
123	2054	3.396506e+00	0.000e+00	4.606e+00	3.432e-07
124	2067	3.377520e+00	0.000e+00	3.199e+00	1.695e+00
125	2080	3.342641e+00	0.000e+00	1.606e+00	2.009e+00
126	2107	3.342573e+00	0.000e+00	1.547e+00	1.817e-04
127	2122	3.342558e+00	0.000e+00	1.542e+00	5.938e-04
128	2141	3.342387e+00	0.000e+00	1.427e+00	3.009e-04
129	2159	3.341866e+00	0.000e+00	9.966e-01	1.042e-03
130	2176	3.337293e+00	0.000e+00	1.930e+00	7.720e-03
131	2204	3.337259e+00	0.000e+00	1.911e+00	1.736e-05
132	2218	3.337251e+00	0.000e+00	1.898e+00	1.915e-04
133	2240	3.337237e+00	0.000e+00	1.895e+00	7.555e-06
134	2254	3.337236e+00	0.000e+00	1.930e+00	7.382e-05
135	2275	3.337223e+00	0.000e+00	1.854e+00	6.609e-06
136	2289	3.337222e+00	0.000e+00	1.840e+00	6.491e-05
137	2313	3.337221e+00	0.000e+00	1.910e+00	7.237e-07
138	2313	3.337221e+00	0.000e+00	1.910e+00	1.893e-06
139	2342	3.314594e+00	0.000e+00	5.288e-01	4.239e+00
140	2342	3.289038e+00	0.000e+00	1.585e+00	1.142e+00
141	2382	3.286653e+00	0.000e+00	7.881e-01	1.142e+00 1.427e-02
	2302		0.000e+00		
142		3.286624e+00		7.881e-01	6.959e-03
143	2418	3.285858e+00	0.000e+00	2.224e+00	9.209e-04
144	2432	3.285867e+00	0.000e+00	2.125e+00	5.607e-03
145	2445	3.284321e+00	0.000e+00	2.599e+00	1.630e-01
146	2458	3.274713e+00	0.000e+00	7.937e-01	7.143e-01
147	2484	3.274630e+00	0.000e+00	7.845e-01	1.901e-04
148	2498	3.274599e+00	0.000e+00	7.753e-01	1.306e-03
149	2518	3.274446e+00	0.000e+00	7.013e-01	3.122e-04
150	2532	3.274405e+00	0.000e+00	6.796e-01	2.347e-03
				First-order	Norm of
Tter	F-count	f(x)	Feasibility	optimality	step
151	2551	3.273919e+00	0.000e+00	4.939e-01	1.152e-03
152	2569	3.272554e+00	0.000e+00	4.058e-01	3.988e-03
153	2594	3.272510e+00	0.000e+00	4.031e-01	1.158e-04
154	2609	3.272502e+00	0.000e+00	4.039e-01	3.920e-04
155	2623	3.266508e+00	0.000e+00	1.611e+01	3.180e+00
156	2639	3.259234e+00	0.000e+00	5.557e+00	4.123e-01
157	2653	3.230421e+00	0.000e+00	1.387e+01	2.329e-01
158	2670	3.208279e+00	0.000e+00	9.095e-01	5.563e-03
159	2690	3.202602e+00	0.000e+00	9.093e-01 9.844e+00	3.355e-02
160	2705	3.192585e+00	0.000e+00	2.533e+00	1.049e-01
	2703	3.192363E+00			1.049e-01 1.850e-03
161			0.000e+00	3.676e+00	
162	2745	3.187084e+00	0.000e+00 0.000e+00	3.664e+00	2.919e-03
163	2758	3.167077e+00		4.192e+00	3.005e+00
164	2781	3.153975e+00	0.000e+00	9.564e-01	5.087e-03
165	2805	3.153885e+00	0.000e+00	8.958e-01	2.800e-04
166	2819	3.153825e+00	0.000e+00	8.961e-01	1.906e-03
167	2839	3.153613e+00	0.000e+00	8.200e-01	4.819e-04
168	2854	3.153554e+00	0.000e+00	8.200e-01	1.691e-03
169	2872	3.152918e+00	0.000e+00	8.197e-01	1.693e-03

170	2888	3.152819e+00	0.000e+00	8.196e-01	2.998e-03
171	2905	3.151500e+00	0.000e+00	4.017e-01	5.902e-03
172	2928	3.151421e+00	0.000e+00	4.020e-01	6.502e-04
173	2943	3.151347e+00	0.000e+00	4.017e-01	2.297e-03
174	2961	3.151119e+00	0.000e+00	4.024e-01	2.310e-03
175	2985	3.151103e+00	0.000e+00	4.063e-01	1.261e-04
176	2999	3.151073e+00	0.000e+00	4.010e-01	8.827e-04

Solver stopped prematurely.

fmincon stopped because it exceeded the function evaluation limit, options. MaxFunctionEvaluations = 3.000000e+03.

Opt Time: 1.2437 3.9825 Opt Wn : 6.3031 2.3182

Warning: Ignoring extra legend entries.

