ECONOMETRIE

Prof.univ.dr. Carmen Pintilescu

carmen.pintilescu@uaic.ro

Planul cursului

- 1. Introducere
- 2. Modelul de regresie liniară simplă
- 3. Modelul de regresie liniară multiplă
- 4. Modele de regresie neliniară
- 5. Ipoteze statistice: normalitatea erorilor, homoscedasticitatea, necorelarea erorilor, multicoliniaritatea.

Bibliografie

- 1. Andrei, T., Bourbonnais, R., *Econometrie*, Economica, Bucuresti, 2008
- 2. Bourbonnais, R., *Econométrie*, 5ème édition, Dunod, Paris, 2003
- 3. Greene, W.H., *Econometric analysis*, Mac Millan, 1993.
- 4. Gujarati, D.N., *Basic Econometrics, 3rd Edition*, McGraw-Hill, 1995
- Jemna, D., *Econometrie cu aplicații în R*, Editura Universității "Al. I Cuza" Iași, Iași, 2017
- 6. Jemna, D., Pintilescu, C., Turturean, C., Chirilă, V., Chirilă, C., Viorică, D., *Econometrie. Probleme și teste grilă*, Editura Sedcom Libris, Iași, 2009.

Evaluare

- □ 30% test de evaluare pe parcurs (săptămâna a 9-a) din materia primelor 3 teme;
- □ 30% evaluare la seminar;
- □ 40% examen final din materia temelor 4 și 5.

1. Introducere

- 1.1. Termenul de econometrie
- 1.2. Obiectul de studiu al econometriei
- 1.3. Metoda de lucru
- 1.4. Scopul econometriei
- 1.5. Scurt istoric

1. 1. Termenul de econometrie

Termenul <u>econometrie</u> a fost introdus în anul 1926 de către economistul norvegian R. Frisch prin analogie cu termenul "biometrie" (cercetări biologice cu ajutorul statisticii și matematicii), utilizat de Galton și Pearson.

Econometria este o disciplină care s-a conturat ca o sinteză între economie, matematică și statistică.

1.2. Obiectul de studiu al econometriei

Pe baza datelor din economie, econometria construiește modele (expresii cantitative) pentru realitățile economice studiate care au un corespondent în teoriile economice.

Exemplu: relația dintre rata inflației și rata șomajului poate fi exprimată printr-un model de forma:

$$rata_{inf} = \beta_o + \beta_1 \cdot \frac{1}{somaj}$$

1.3. Metoda de lucru

Econometria studiază realitățile economice sub aspect cantitativ, cu ajutorul unui instrument specific: modelul econometric.

1.4. Scopul econometriei

Scopul principal al econometriei este identificarea, estimarea și testarea modelelor, prin care se surprind relațiile dintre fenomenele economice reale.

1.5. Scurt istoric

- □ Şcoala Aritmeticii politice engleze
- începutul secolului al XVII-lea (W. Petty).
- □ Laboratoarele biometrice engleze
 - sfârşitul sec. al XIX-lea şi începutul sec. al XX-lea (F. Galton, K. Pearson, R.A: Fisher, F.Y. Edgeworth).

□ Societatea de econometrie

La 29 decembrie 1930, la Cleveland (S.U.A.) a fost întemeiată "Societatea de Econometrie", instituție care a creat și promovat termenul de "econometrie".

Dintre membrii societății, menționăm: Irving Fisher, R. A. Fisher, Jan Timbergen, R. Frisch (primul președinte al societății) ș.a.

2. Demersul metodologic al econometriei

2.1. Modelul econometric

Modelul este o schemă simplificată a realității studiate.

a. Forma generală a modelului:

Modelul econometric este o ecuație sau un sistem de ecuații construit pe baza variabilelor statistice.

b. Variabile statistice

În cercetarea econometrică se utilizează variabile statistice între care, în mod logic, există relații de interdependență.

Tipuri de variabile:

- variabile dependente, numite și variabile rezultative sau efect, rezultat. Se notează cu Y. Acestea depind de variația altor variabile.

Exemplu.

- *variabile independente*, numite și *variabile factoriale* sau factori de influență care determină un anumit efect asupra variabilei rezultat. Se notează cu *X*.

Exemplu:

- variabilele reziduale sau eroare. De regulă, aceste variabile apar în model ca sumă a tuturor influențelor necunoscute sau care nu apar explicit în model. În cercetarea econometrică, variabila eroare este o variabilă aleatoare care respectă anumite proprietăți, numite și ipoteze clasice. Se notează cu ε .

$$Y=f(X)+\varepsilon$$
 (forma generală)

Exemplu: un model de regresie liniară simplă poate fi exprimat astfel:

$$Y = \beta_o + \beta_1 X + \varepsilon$$
.

c. Parametri-estimații-estimatori

□ Parametri

- parametrii modelului econometric, numiți și coeficienți de regresie, sunt mărimi reale, fixe dar necunoscute care apar în model în diferite expresii alături de variabile (θ) .
- parametrii fac obiectul procesului de estimare și testare statistică.

Exemplu.

 $\hat{\theta}$

□ Estimatori

Estimatorii sunt variabile aleatoare cu distribuții de probabilitate cunoscute și cu proprietăți specifice în baza cărora se realizează procesul de estimare a parametrilor modelului econometric.

□ Estimații

Estimațiile sunt valori posibile ale estimatorilor calculate la nivelul unui eșantion sau set de date reale observate din realitate.

Exemplu:

- □ Proprietăți ale estimatorilor
 - *nedeplasarea* un estimator este nedeplasat dacă media sau speranța matematică a acestuia este egală cu parametrul:

$$M(\hat{\theta}) = \theta$$

- convergența un estimator este convergent dacă varianța sa tinde spre 0 atunci \sqrt{g} d_0 , \sqrt{g} d_0 , \sqrt{g} eșantionului tinde spre volumul populației:
- *eficiența* estimatorul este eficient dacă are varianța cea mai mică dintre toți estimatorii posibili pentru parametrul θ : $V(\theta) = \min im$

2.2. Clasificarea modelelor de regresie

- a. După natura dependenței dintre variabile:
 - 1. modele de regresie deterministe (matematice): Y=f(X);
 - 2. modele de regresie probabiliste (stochastice): $Y=f(X) + \varepsilon$.

- b. După numărul factorilor de influență (X):
- 1. modele de regresie simplă
- variabila *Y* este explicată printr-un singur factor determinant (*X*).

Exemplu: funcția de consum (consum-venituri).

- 2. modele de regresie multiplă
- variabila Y este explicată de doi sau mai mulți factori (X_i) .

Exemplu: funcția de producție $Q=f(L,K)+\epsilon$,

unde: Q - producția

L - factorul muncă

K – capitalul

- c. După forma legăturii dintre variabile:
- 1. <u>modele de regresie **liniară**</u> dacă Y este o funcție liniară de variabila sau variabilele explicative;

$$Y = \beta_0 + \beta_1 X + \varepsilon \qquad Y = \beta_0 + \beta_i X_i + \varepsilon$$

2. modele de regresie neliniară

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \varepsilon$$

2.3. Natura datelor economice

- Date înregistrate la un moment dat (*cross-sectional data*)

Serii de timp (time series)

Date tip panel.