MDA 720 FINAL: Twitter Synthetic Control

Carter Ekberg and Ari Bazigos

Overview

- Objective & Data Source
- Data Preprocessing
- Exploratory Analysis
- Synthetic Control for Sentiment Score
- Synthetic Control for Stock Price and Volume

Objectives

- Effectively scrape Tweets with various keywords
- Use VaderSentiment to calculate sentiment scores for tweets.
- Calculate sentiments related to various social media platforms.
 - o Included Twitter, Facebook, LinkedIn, Instagram, Snapchat, and Reddit
- Observe the effect of Elon Musk buying Twitter on Sentiment scores using Synthetic Control
- Observe the effect of Elon Musk buying Twitter on Stock Price using Synthetic Control

References and Data Source

- Twitter (Data Source)
- Causal Inference: The Mixtape (Scott Cunningham)
- Causal Inference for The Brave and True (Matheus Facure Alves)

DATA PRICESSING

Data Preprocessing

- Scraped for tweets with various keywords using "snscrape"
- Keywords included Twitter, Facebook, Instagram, Snapchat, LinkedIn, and Reddit
- Scraped 2,000 tweets per day for each platform from 4/19/22 to 4/30/22
- Elon Musk bought Twitter on 4/25/22, needed days before and after.
- Combined all the CSVs created by the scraping function
- Created a column to signify which social media platform the tweet was about.

	id	date	user	content	likes	retweets	quotes	replies	company
0	1516567316531748866	2022-04-19 23:59:59+00:00	https://twitter.com/Jazzboneplyr1	@Alex343 @eb454 @paulkrugman @Twitter we were speaking about harassment of people wearing masks	1	0	0	2	Twitter

Sentiment Scores

- Applied VaderSentiment to obtain sentiment scores for each of the 144,000 tweets in the dataframe
- Grouped by date and found the average positive, negative, and compound scores for each social media platform.
- This new dataframe allowed us to apply Synthetic Control

id	date	user	content	likes	retweets	quotes	replies	company	neg	neu	pos	compound
6531748866	2022-04-19 23:59:59+00:00	https://twitter.com/Jazzboneplyr1	@Alex343 @eb454 @paulkrugman @Twitter we were speaking about harassment of people wearing masks	1	0	0	2	Twitter	0.226	0.774	0.000	-0.5423
6292644864	2022-04-19 23:59:59+00:00	https://twitter.com/SandaraMary	@mhdksafa @Twitter Support your views!	0	0	0	0	Twitter	0.000	0.572	0.428	0.4574

EXPLORATORY ANALYSIS

Structuring Data for Plotting

		neg	pos	neu	compound
company	Date				
Facebook	2022-04-19	0.074993	0.101807	0.823210	0.109483
	2022-04-20	0.071859	0.099841	0.828300	0.104920
	2022-04-21	0.070761	0.105739	0.823495	0.117222
	2022-04-22	0.069179	0.107949	0.822871	0.123297
	2022-04-23	0.068549	0.107415	0.824033	0.127343
	•••		***		
Twitter	2022-04-26	0.075836	0.116013	0.808158	0.117697
	2022-04-27	0.076698	0.118579	0.804717	0.123595
	2022-04-28	0.074909	0.118820	0.806273	0.119560
	2022-04-29	0.080138	0.115161	0.804706	0.097044
	2022-04-30	0.078179	0.118354	0.803474	0.119938

- Grouped all sentiment scores by 'company' and 'Date'
- Split df into Twitter and all others
- Re-aggregated all others
- Plotted mean Twitter sentiment score per day against all others combined
- "By-hand" Synthetic Control

S(H(1)) HS

Initial Issues

- Importing enough tweets for each company per day to create an accurate
 Synthetic Twitter
 - At first, didn't import enough tweets for an accurate representation
- Getting data into a position where synthetic control and its visualization may be implemented
 - Needed to create a column for each company AKA transpose our original dataframe

Applying Synthetic Control

- Construct dataframe like the one below with a column for each company
- Run Linear Regression to calculate weights
- Dot the weights with the specified data to create synthetic Twitter and plot

Weight

0.863

-0.358

0.143

0.026

0.312

	company	Facebook	Instagram	LinkedIn	Reddit	Snapchat	Twitter		
	Day							<u> </u>	Company
neg	19	0.074993	0.058905	0.053629	0.070246	0.082121	0.077192	0	Facebook
	20	0.071859	0.053891	0.044284	0.076901	0.085793	0.078219	1	Instagram
	21	0.070761	0.056804	0.048032	0.086847	0.077386	0.080174		9
	22	0.069179	0.056787	0.046276	0.094155	0.077692	0.081254	2	LinkedIn
	23	0.068549	0.052056	0.047593	0.088407	0.085577	0.086941	3	Snapchat
	24	0.068891	0.058554	0.041865	0.075534	0.080165	0.081282	4	Reddit
pos	19	0.101807	0.105516	0.111208	0.093052	0.104254	0.116656		

Twitter Compound Sentiment Score vs. Synthetic Twitter (Round 1)

Twitter Compound Sentiment Score vs. Synthetic Twitter (Round 2)

- Company Weight

 O Facebook 0.2176
- I Instagram 0.0000
- ! LinkedIn 0.1798
- 3 Snapchat 0.0000
- Snaponat 0.0
- Reddit 0.6026

Applying Synthetic Control for Stock Price

- Not all original social media platforms are publicly traded
- We were now limited to Twitter, Facebook, Snapchat, and Pinterest
- Calculated weights again using Linear Regression

	Company	Weight
0	Facebook	-1.041
1	Pinterest	7.439
2	Snapchat	3.152

Then applied new weights to stock price to create Synthetic Twitter price

Twitter Stock Price vs. Synthetic Twitter

Conclusions

- Applying synthetic control of Twitter's Stock Price allowed us to see the treatment effect most clearly.
- On April 29, Twitter's stock price was around \$49, and the Synthetic Twitter forecasts \$33, showing a 33% difference.
- Treatment Effect: Elon Musk purchasing Twitter caused the stock price to increase 33% more than if he did not purchase it.
- May need better/more "control groups" for effective Sentiment Synthetic
- Compound score was most effective as it is a combination of the other 3 scores, and we could see some treatment effect.