SUP Maths Quick Sheet

Author: Matthieu Stombellini | Published on kb.zoroark.guru

Last revision: 2019-10-06

Not intended for cheating. Contact: matthieu.stombellini@epita.fr

Derivatives

$$[f(u(x))]' = f'(u(x)) \times u'(x)$$
$$[e^{u(x)}]' = e^{u(x)} \times u'(x)$$
$$[u(x)^{\alpha}]' = \alpha u^{\alpha - 1}(x) \times u'(x)$$
$$[\ln(u(x))]' = \frac{u'(x)}{u(x)}$$
$$\cos(x)' = -\sin(x)$$
$$\sin(x)' = \cos(x)$$

Primitives

$$u'e^{u} \to e^{u}$$

$$u^{\alpha}u' \to \frac{u^{\alpha+1}}{\alpha+1}$$

$$\frac{u'}{u} \to \ln(u(x))$$

$$u'\sin(u) \to -\cos(u)$$

$$u'\cos(u) \to \sin(u)$$

Taylor Expansions in 0

Exponential:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + o(x^{4})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + o(x^{3})$$

$$\frac{1}{1+x} = (1+x)^{-1} = 1 - x + x^{2} - x^{3} + x^{4} + o(x^{4})$$

$$\frac{1}{1-x} = 1 + x + x^{2} + x^{3} + x^{4} + o(x^{4})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + o(x^{4})$$

$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \begin{vmatrix} o(x^{4}) \\ o(x^{5}) \end{vmatrix}$$

$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \begin{vmatrix} o(x^{5}) \\ o(x^{6}) \end{vmatrix}$$

General formula for f(x) when $x \to a$

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a)^1 + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Manipulation of $o(x^{\alpha})$

- $o(x^{\alpha}) o(x^{\alpha}) = o(x^{\alpha})$
- $o(x^{\alpha}) o(x^{\alpha+1}) = o(x^{\alpha})$
- $o(\lambda x^{\alpha}) = o(x^{\alpha})$
- $x^n \times o(x^\alpha) = o(x^n \times x^\alpha) = o(x^{\alpha+n})$
- $\bullet \quad \frac{1}{x^n}o(x^2) = o\left(\frac{1}{x^n} \times x^2\right) = o(x^{2-n})$

Polynomials

Let r be a root of P

ullet r is a root of order of multiplicity at least m iff

$$(X-r)^m \mid P$$

• r is a root of order of multiplicity exactly m iff

$$\begin{cases} (X-r)^m & \mid P \\ (X-r)^{m+1} \nmid P \end{cases}$$

• r is a root of order of multiplicity at least m iff

$$P(r) = 0$$

$$P'(r) = 0$$

$$\vdots$$

$$P^{(m-1)}(r) = 0$$
 $m \text{ conditions}$

• r is a root of order of multiplicity exactly m iff

$$\begin{cases} (X-r)^m & | P \\ (X-r)^{m+1} \nmid P \end{cases}$$

Differential equations

Don't question these formulas. They Just Work™.

First order

With
$$ay' + by = c$$

$$y_0 = ke^{-\int \frac{b}{a}}$$
$$y_p = y_0 \int \frac{c}{ay_0}$$
$$y = y_0 + y_p$$

Second order (constant terms for a b c)

With ay'' + by' + cy = d(t)

- 1. Compute root(s) of $ar^2 + br + c$
 - a. $\Delta > 0$: Two real roots r_1 and r_2

$$y_0 = k_1 e^{r_1 t} + k_2 e^{r_2 t}$$

b. $\Delta = 0$: One real root r_1

$$y_0 = (k_1 + k_2 t)e^{r_1 t}$$

c. $\Delta < 0$: Two complex roots $r_1 = \alpha i + \beta$ and $r_2 = \alpha i - \beta$ $v_0 = e^{\alpha t} (k_1 \cos(\beta t) + k_2 \sin(\beta t))$

- 2. Getting y_p
 - a. d(t) = P(t) (polynomial)

Then
$$y_p = Q(t)$$

$$c \neq 0$$
 $\rightarrow \deg(Q) = \deg(P)$

$$c = 0, b \neq 0 \rightarrow \deg(Q) = \deg(P) + 1$$

$$c = 0, b = 0 \rightarrow \deg(Q) = \deg(P) + 2$$

We then know the expression of Q(t).

Compute the expressions of Q'(t) and Q''(t).

$$aQ''(t) + bQ'(t) + cQ(t) = d(t)$$

Use the coefficients of d(t) to deduce the coefficients of the left side of the equation

b. $d(t) = P(t)e^{mt}$ (polynomial times exponential) Then $y_n = Q(t)e^{mt}$

Derive y_p twice to get y_p' and y_p''

$$ay_p'' + by_p' + cy = P(t)e^{mt}$$

Factorize the left side by e^{mt} and divide both sides by e^{mt} .

You should find an equation

$$\alpha Q''(t) + \beta Q'(t) + \gamma Q(t) = P(t)$$

Once you get this, find Q(t) using the previous method (d(t) = P(t)).

c. For any other kind of d(t)

I'll quote Mehdi for this one:

"You either Taylor the shit out of it and try to solve for a polynomial, or send it back to the hell it comes from because it won't be on MCQ anyway"

$$3. \quad y = y_0 + y_p$$

Vector spaces

Direct sum/Supplementary subspaces

 $E = F \oplus G$ if both conditions are true:

- $F \cap G = \{0_E\}$
- -F+G=E

$$\circ$$
 $\forall w \in E$, $\exists u \in F$, $\exists v \in G$, $w = u + v$

Linear (in)dependence

A set $X = (x_1, \dots, x_n) \in E^n$ is linearly independent if

$$\forall (\lambda_i)_{i \in [\![1,n]\!]} \in \mathbb{K}^n, \left(\sum_{i=1}^n \lambda_i x_i = 0 \Rightarrow \forall i, \lambda_i = 0\right)$$

If it is not linearly independent, it is linearly dependent.

- Adding vectors to a linearly dependent set makes it remain dependent.
- Removing vectors from (i.e. taking a subset of) a linearly independent set makes it remain independent.

Span(X)

Let E be a \mathbb{R} vector space.

$$\begin{split} X &= \{u_1, u_2, \dots, u_n\} \subset E \\ Span(X) &= \{\lambda_1 u_1 + \dots + \lambda_n u_n \mid (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^{\mathbb{N}}\} \\ &= \{\text{linear combinations of } u_1, \dots, u_n\} \end{split}$$

Span(X) is a \mathbb{R} -vs with $X \subset Span(X)$

Spanning set

Let $X \subset E$. We say that X is a spanning set of E if E = Span(X)

Basis

A linearly independent spanning set of E is called a basis of E.

 $(e_1, ..., e_n)$ is a basis of $E \Leftrightarrow \forall u \in E$, there exists a unique decomposition of u as a linear combination of the basis $\left(u = \sum_{i=1}^n \lambda_i e_i\right)$

$$\forall u \in E, \exists! (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n, u = \lambda_1 e_1 + \cdots + \lambda_n e_n$$

Let
$$\dim(E) = n$$
, $B = (e_1, ..., e_p)$ family of E

Then

- p < n, B cannot be a spanning set
- p > n, B cannot be independent
- p = n, spanning set \Leftrightarrow independent

Linear maps

E and F two \mathbb{R} -vs.

$$f: E \to F$$

Then f is a linear map if $\forall (u, v) \in E^2$, $\forall \lambda \in \mathbb{R}$,

• $f(\lambda u + v) = \lambda f(u) + f(v)$

Or

• f(u+v) = f(u) + f(v)And $f(\lambda u) = \lambda f(u)$

Then:

•
$$f(0_E) = 0_F$$

Proof: $f(-u+u) = -f(u) + f(u) \Rightarrow f(0_E) = 0_F$
All the linear maps $\mathbb{R}^n \to \mathbb{R}^p$ have the form

$$f\left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}\right) = \begin{pmatrix} a_{1,1}x_1 + \dots + a_{1,n}x_n \\ \vdots \\ a_{p,1}x_1 + \dots + a_{p,n}x_n \end{pmatrix}$$

- f(-u) = -f(u)
- If $f: E \to E$, then f is called an endomorphism
- If f is a bijection, it is called an isomorphism

Kernel and image

Let $f: E \to F$ be a linear map $(f \in \mathcal{L}(E, F))$

$$Ker(f) = \{ preimages of 0_F \text{ by } F \}$$

= $\{ u \in E \text{ such that } f(u) = 0_F \}$
= $f^{-1}(\{0_F\})$

$$Im(f) = f(E)$$

$$= \{f(u), u \in E\}$$

$$= \{v \in F \text{ such that } \exists u \in E, v = f(u)\}$$

Dimension

The dimension of E corresponds to the cardinal of its basis.

$$F \subset G \Rightarrow \dim(F) \leq \dim(G)$$

$$F \subset G$$
 and $\dim(F) = \dim(G) \Rightarrow F = G$

Let F and G be two subspaces of E such that $F \cap G = \{0_E\}$, then

$$\dim(F \oplus G) = \dim(F) + \dim(G)$$

Generally,
$$\dim(F) + \dim(G) = \dim(F + G) + \dim(F \cap G)$$

Rank theorem

 $f \in \mathcal{L}(E, F)$, E finite dimension, $\dim(E) = \dim(Ker(f)) + \dim(Im(f))$

Reminder:

$$f \circ g = 0 \Leftrightarrow Im(g) \subset Ker(f)$$

Matrices

Multiplication

$$\underbrace{A}_{n \times p} \times \underbrace{B}_{p \times q} = \underbrace{C}_{n \times q}$$

e.g.
$$A = (2 - 1)$$
, $B = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, $A \times B = \begin{pmatrix} 2 \\ 1 \times 2 \end{pmatrix}$ and $A \times A = \begin{pmatrix} 6 & -3 \\ 8 & -4 \end{pmatrix}$

Matrix of a linear map

Let $f: E \to F$ be a linear map, $\mathcal{B}_1 = (e_1, ..., e_p)$ a basis of E (dim(E) = p), $\mathcal{B}_2 = (\varepsilon_1, ..., \varepsilon_n)$ a basis of F (dim(F) = n). In \mathcal{B}_1 and \mathcal{B}_2 .

$$A = Mat(f) = \begin{pmatrix} f(e_1) \text{ coord along } \varepsilon_1 & \cdots & f(e_p) \text{ coord along } \varepsilon_1 \\ \vdots & \cdots & \vdots \\ f(e_1) \text{ coord along } \varepsilon_n & \cdots & f(e_p) \text{ coord along } \varepsilon_n \end{pmatrix}$$

If $u \in E$ has coordinates $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$ in the basis \mathcal{B}_1 and v = f(u) has

coordinates
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 in the basis \mathcal{B}_2 , then $Y = AX$