

Modélisation du mouvement pour la commande

Objectif

Modéliser le comportement dynamique de l'outil et du porte-outil, puis étudier une commande en position $z_1(t)$ comprenant un correcteur proportionnel.

Le système composé de l'outil et du porte-outil est modélisé sur la figure 2. Le porte-outil, de masse $m_1=5522\,\mathrm{kg}$, est considéré indéformable et en liaison glissière de direction $\overrightarrow{z_0}$ avec le bâti. Une chaîne de motorisation électrique permet de déplacer le porte-outil et une structure de commande associée permet d'asservir la position $z_1(t)$ par rapport à une position de référence. La chaîne de motorisation exerce une force motrice $\overrightarrow{f}_m(t) = f_m(t) \overrightarrow{z_0}$ sur le porte-outil.

La cahier des charges est donné sur la figure suivante.

Les positions du porte-outil et du point C par rapport à leur position de référence sont respectivement paramétrées par $z_1(t)\overrightarrow{z_0}$ et $z_2(t)\overrightarrow{z_0}$, avec $z_1(t)\overrightarrow{z_0}$ et $z_2(t)\overrightarrow{z_0}$ des grandeurs algébriques (figure 2). Les conditions initiales sont toujours supposées nulles.

Le théorème de la résultante dynamique appliqué au porte-outil puis à l'outil permet

Concours Centrale Supelec - PSI 2018.

B2-07

C2-02

FIGURE 2 – Modèle de déformation de l'outil avec le porte-outil piloté

d'obtenir les deux relations suivantes :

$$m_1\ddot{z}_1(t) + \lambda \dot{z}_1(t) + Kz_1(t) = \lambda \dot{z}_2(t) + Kz_2(t) + f_m(t)$$

 $m_2\ddot{z}_2(t) + \lambda \dot{z}_2(t) + Kz_2(t) = \lambda \dot{z}_1(t) + Kz_1(t) + f_c(t)$

Le modèle correspondant est représenté par le schéma bloc de la figure 3.

Question 1 Exprimer les fonctions $H_1(p)$, $H_2(p)$, $H_3(p)$ et $H_4(p)$ en fonction de K, λ , m_1 et m_2 .

Le modèle de la figure 3 est réduit au modèle équivalent de la figure figure 4.

Question 2 Exprimer $N_1(p)$ et $N_2(p)$ en fonction de $H_1(p)$, $H_2(p)$, $H_3(p)$ et $H_4(p)$.

Question 3 Montrer que $N_2(p)$ peut s'écrire sous la forme $N_2(p) = A \frac{p^2 + 2\xi_1\omega_1p + \omega_1^2}{p^2(p^2 + 2\xi_2\omega_2p + \omega_2^2)}$. Exprimer ξ_1 , ξ_2 , ω_1 , ω_2 et A en fonction de m_1 n m_2 , λ et K.

Le diagramme de Bode associé à la fonction de transfert $N_2(p)$ est représenté ci-contre.

Question 4 Compléter ce diagramme par les tracés asymptotiques en module et en phase, et conclure sur la cohérence du diagramme donné.

Question 5 Au regard des valeurs numériques, montrer que la fonction de transfert $N_2(p)$ peut être approchée par la fonction $N_{2\rm app}(p)=\frac{A}{p^2}$. En utilisant une couleur différente, tracer le diagramme de Bode associé à la fonction de transfert $N_{2\rm app}(p)$ sur le document réponse et conclure sur la validité de ce modèle approché.

Le modèle approché $(N_{2\text{app}}(p))$ est retenu pour la suite de l'étude. Le schéma bloc modélisant la régulation de la position $z_1(t)$ est donné en figure figure 5, en considérant un correcteur proportionnel de gain K_p .

Question 6 Justifier qu'une correction proportionnelle ne permet pas de respecter l'ensemble des critères du diagramme des exigences de la figure 1.

FIGURE 3 – Modèle de l'outil et du porteoutil

FIGURE 4 – Modèle équivalent

FIGURE 5 – Modèle de synthèse de la régulation en position $z_1(t)$ du porteoutil

D'un point de vue numérique, $K_f = 1.5 \times 10^9 \text{N m}^{-2}$ et $\tau = 1 \text{ s}$.

FIGURE 6 – Modèle équivalent de la chaîne d'asservissement complète

Analyse de l'influence d'un paramètre

On a d'une part $Q(p) = Q_c(p) - Z_2(p)H_r(p)$.

D'autre part, la quantité de matière enlevée est donnée par $q(t) = q_c(t) - z_2(t) + z_2(t - \tau)$ où τ est la durée nécessaire à la roue pour effectuer un tour complet.

Question 7 Déterminer $H_r(p)$ en fonction de τ .

Le schéma-blocs retenu est donné ci-contre.

La figure 7 représente le diagramme de Bode de la fonction de transfert en boucle ouverte du système modélisé figure 6, avec $b=\frac{5\times 10^{-2}}{\pi} \mathrm{mm\,rad}^{-1}$

FIGURE 7 – Diagramme de Bode de la boucle ouverte du schéma-blocs

Les « zéros de transmission » d'une fonction de transfert H(p) correspondent aux pulsations ω pour lesquelles $H(j\omega)$ est nul.

Question 8 Préciser l'expression de la fonction de transfert en boucle ouverte de la figure 16 puis vérifier la cohérence du diagramme de Bode de la figure 7 en analysant les « zéros de transmission ».

Question 9 Déterminer un ordre de grandeur du paramètre *b* permettant de conserver la stabilité du système en boucle fermée. Conclure sur la compatibilité de cette valeur maximale avec un bon amortissement de l'asservissement.

Éléments de correction

1.
$$H_1(p) = \lambda p + K$$
, $H_2(p) = \frac{1}{m_1 p^2 + \lambda p + K}$, $H_3(p) = \lambda p + K$, $H_4(p) = \frac{1}{m_2 p^2 + \lambda p + K}$.

2.
$$N_1(p) = H_1(p)H_4(p)$$
 et $N_2(p) = \frac{H_2(p)}{1 - H_1(p)H_2(p)H_3(p)H_4(p)}$.

3.
$$\omega_1^2 = \frac{K}{m_2}$$
, $\omega_2^2 = K \frac{m_1 + m_2}{m_1 m_2}$, $\xi_1 = \frac{\lambda}{2\sqrt{m_2 K}}$ et $\xi_2 = \lambda \frac{\sqrt{m_1 + m_2}}{2\sqrt{K m_1 m_2}}$

4

5.
$$A = 1,87 \cdot 10^{-4}$$
.

6.

7.
$$H_r(p) = 1 - e^{-\tau p}$$
.

8.

9.
$$b_{\text{lim}} = 2.83 \,\text{mm rad}^{-1}$$
.

