12/2	Experiment 3 Shashwat Shah
1.75	60004220126
	Div B (2-2
FO 14	de existe and conference or expendences to marginish
- 9 479	Aim: To implement Classification using Decision tree 103
5 .8	and Naive Bayes Algorithm.
-7-1	and the contract of the second
	Theory 1 It is a supervised learning technique that involves
	training a model to predict the class or category of
<u> </u>	instance based on their ottibutes.
	The model is consumed using a labelled destard where instance
70	are paired with their corresponding class cabels.
N - 2 12	es - t worthough the man stronger of in this is
	During trainning it leaves decision boardonies rule that distinguis
	Setucen different Classes. Common models include decision the
	raine boyes SVM13 and k neasest mes reighborry.
	Evaluation metrics sum as accuracy precision and the
	conjusion motion are used.
	It finds application in diverse fields such as spom detection
	image recognition, medical dignors, audit survey.
1,	
	Decision trees - It is a structured tree like flowchart which
\parallel	onists of nodes represently decision points branches denoting
- 11	ossible outcomer, and leaves signifying final predicted classes.
	essione essenting that breaked construction
7	use are susceptible to overlyting which maybe nutigated
11	by techniques like privilege.
- 11	, -
	They are valued for their transparency.
	FOR EDUCATIONAL USE

10	Naive Bayes! It is a probabilistic machine leasning algorith
	based on Bayes theorum. It opendes on assumption of
)	Jeathers independence where the impact of a positivelas
	Jeature of classification & considered independently of other
$-\parallel$	features. It performs well in text classification and
	span filtebing. It calculates the probability of an instance
	belonging to a partillar class given bits features
1	Values: Internal Little of the Control
	min result of they or whom a six out
	Conclusion: we compared 5 datosets and observed E
	that Naine Bayes classification has a higher accuracy
	then decision tree algorithm, we also used k- (ross
	validation & ensemble methods to enhance the occurracy-
0	the state of the s
-	become dutie ! there is nearly heart he'rde de
	Control hour Super Ord & Correct part of the
	(ve (not) to the same of the
	have 100 miles = 100/000
	AREA TO DESCRIPTION
2	was to the stand of the standard of it is
	The rest of the contract of the state of the contract of the c
- 1	and will not browning a start of the like the
	English of the order of the state of the same
(1)	where I a show the last a low and the
1	warmer the time to the will be a wear
	- Company and a second of the
	invocational of the other policy and and
	FOR EDUCATIONAL USE

NAME: Shashwat Shah

SAP ID: 60004220126

DIV: C22

DMW Experiment 3

Aim: Implementation of Classification Algorithm

Theory:

In data mining, classification is a supervised learning technique used to categorize or assign objects into predefined classes or categories based on their characteristics. It is a fundamental task in machine learning and data analysis and is used in a wide range of applications, including text classification, image recognition, spam detection, medical diagnosis, and many more.

Here are the key components and steps involved in classification in data mining:

Dataset: Classification begins with a dataset containing labeled examples. Each example consists of a set of features (attributes) and a class label. The features represent the characteristics or attributes of the data, while the class label indicates the category or class to which the example belongs.

Training and Testing Data: The dataset is typically divided into two subsets:

Training Data: This subset is used to train the classification model. The model learns the patterns and relationships in the data, which will enable it to make predictions.

Testing Data: This subset is used to evaluate the performance of the trained model. It helps assess how well the model generalizes to new, unseen data.

Feature Selection/Extraction: Feature selection involves choosing the most relevant features for the classification task. Feature extraction can transform and reduce the dimensionality of the data to improve model performance.

Classifier Selection: Select a classification algorithm (classifier) that best fits the problem. Common classifiers include decision trees, support vector machines, logistic regression, knearest neighbors, and Naive Bayes, among others.

Model Training: The selected classifier is trained on the training data by learning the relationships between the features and class labels.

Model Evaluation: The trained model is tested on the testing data to assess its performance. Common evaluation metrics include accuracy, precision, recall, F1 score, and the receiver operating characteristic (ROC) curve.

Model Tuning: If the model's performance is not satisfactory, you can fine-tune hyperparameters, adjust feature selection, or try different classifiers to improve accuracy.

Model Deployment: Once you are satisfied with the model's performance, you can deploy it to make predictions on new, unlabeled data. The deployed model can be used for automated classification tasks.

Monitoring and Maintenance: Continuously monitor the model's performance in a real-world setting. Models may require periodic updates as the data distribution or requirements change.

Classification in data mining is a powerful tool for automating decision-making processes and organizing data into meaningful categories. The choice of classifier and the quality of the dataset play a significant role in the success of a classification task.

Gaussian Naive Bayes (GNB) Classification:

Gaussian Naive Bayes is a probabilistic classification algorithm based on Bayes' theorem with the "naive" assumption that all features are conditionally independent given the class label. In GNB, each feature's distribution is assumed to be Gaussian, which is often a reasonable assumption for continuous data. GNB is particularly useful when dealing with highdimensional data and is known for its simplicity and computational efficiency. It's widely used in various applications, including text classification and spam detection. While GNB's independence assumption doesn't always hold in practice, it can still provide surprisingly good results and serves as a baseline for more complex classification techniques.

Decision Tree Classification:

Decision Tree is a non-parametric supervised learning algorithm that recursively splits the dataset into subsets based on the most significant feature, ultimately forming a tree-like structure. Each internal node of the tree represents a decision based on a specific feature, while the leaf nodes correspond to class labels. Decision Trees are intuitive and easily interpretable, making them valuable for tasks where transparency is important. They can handle both categorical and continuous data and can be used for classification and regression tasks. However, Decision Trees can suffer from overfitting if not pruned or regularized properly, which is why techniques like Random Forests and Gradient Boosting Trees have been developed to improve their performance and robustness.

Credit Card Fraud Detection:

Cell 1:

```
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier from sklearn.metrics import accuracy_score from sklearn.metrics import ( accuracy_score, confusion_matrix, ConfusionMatrixDisplay, f1_score, )
```

Output: Successfully Imported

Cell 2:

```
raw_mail_data=pd.read_csv("/content/card_transdata.csv")
mail_data=raw_mail_data.where(pd.notnull(raw_mail_data)) mail_data.shape
Output: (13747, 8)
```

Cell 3:

Output: Accuracy: 0.9476363636363636

Cell 4:

labels = [0,1] cm = confusion_matrix(Y_test, NB_predicted, labels=labels) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels) disp.plot();

Ouput:

Cell 5:

```
clf = DecisionTreeClassifier() clf.fit(X_train,Y_train)
DT_predicted=clf.predict(X_test) accuray =
accuracy_score(DT_predicted, Y_test) print("Accuracy:", accuray)
```

Output: Accuracy: 0.9996363636363637

Cell 6:

 $labels = [0,1] \ cm = confusion_matrix(Y_test, DT_predicted, labels=labels) \ disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels) \ disp.plot()$

Output:

Airline Passenger Satisfaction Classification Cell 7:

```
airline=pd.read_csv("/content/airline_passenger.csv") airline['Gender'].replace({'Male': 0, 'Female': 1}, inplace=True) airline['Customer Type'].replace({'Loyal Customer': 1, 'disloyal Customer': 0}, inplace=True) airline['Type of Travel'].replace({'Personal Travel': 0, 'Business travel': 1}, inplace=True) airline['Class'].replace({'Eco': 0, 'Eco Plus': 1,'Business':2}, inplace=True) airline['satisfaction'].replace({'neutral or dissatisfied':0,'satisfied':1}, inplace=True) airline.head()
```

Output: Successfully Imported and Replaced Values

U	nnamed:	id	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrival time convenient		Inflight entertainment		Leg room service	Baggage handling	Checkin service	Inflight service	Cleanliness	Departure Delay in Minutes	Arrival Delay in Minutes	satisfaction
0	0	70172	0.0	1.0	13.0	0.0	1.0	460.0	3.0	4.0		5.0	4.0	3.0	4.0	4,0	5.0	5.0	25.0	18.0	0.0
1	1	5047	0.0	0.0	25.0	1.0	2.0	235.0	3.0	2.0		1.0	1.0	5.0	3.0	1.0	4.0	1.0	1.0	6.0	0.0
2	2	110028	1.0	1.0	26.0	1.0	2.0	1142.0	2.0	2.0		5.0	4.0	3.0	4.0	4.0	4.0	5.0	0.0	0.0	1.0
3	3	24026	1.0	1.0	25.0	1.0	2.0	562.0	2.0	5.0	***	2.0	2.0	5.0	3.0	1.0	4.0	2.0	11.0	9.0	0.0
4	4	119299	0.0	1.0	61.0	1.0	2.0	214.0	3.0	3.0		3.0	3.0	4.0	4.0	3.0	3.0	3.0	0.0	0.0	1.0
5 rows	× 25 colu	mns																			

Cell 8:

```
airline = airline.fillna(0) X= airline.iloc[:, :-
1].values

Y = airline.iloc[:, -1].values

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size)

=
0.2, random_state=0) clf =
GaussianNB()
clf.fit(X_train,Y_train)

NB_predicted2 = clf.predict(X_test)

NB2 = accuracy_score(NB_predicted2, Y_test)

print("Accuracy:", NB2)
```

Output: Accuracy: 0.8168822871745728

Cell 9:

labels = [0,1] cm = confusion_matrix(Y_test, NB_predicted2, labels=labels) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels) disp.plot()

Output:

Cell 10:

```
clf = DecisionTreeClassifier() clf.fit(X_train,Y_train)
DT_predicted2 = clf.predict(X_test)
DT2 = accuracy_score(DT_predicted2, Y_test) print("Accuracy:", DT2)
```

Output:

Accuracy: 0.9444178246286535

Cell 11:

labels = [0,1] cm = confusion_matrix(Y_test, DT_predicted2, labels=labels) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels) disp.plot()

Output:

Breast Cancer Classification

Cell 12:

```
bst=pd.read_csv("/content/Breast_Cancer.csv") bst['Race'].replace({'White': 0, 'Black': 1,'Other':2}, inplace=True) bst['Marital Status'].replace({'Single': 0, 'Married': 1,'Divorced':2,'Widowed':3,'Single ':0,'Separated':2}, inplace=True) bst['T Stage '].replace({'T1': 1, 'T2': 2, 'T3': 3, 'T4': 4}, inplace=True) bst['N Stage'].replace({'N1': 1, 'N2': 2, 'N3': 3}, inplace=True) bst['6th Stage'].replace({'IIA': 0, 'IIIA': 1,'IIB':2,'IIIB':3,'IIIC':4}, inplace=True) bst['differentiate'].replace({'Poorly differentiated':0,'Moderately differentiated':1,'Well differentiated':2,'Undifferentiated':3}, inplace=True)
```

```
bst['Grade'].replace({'anaplastic; Grade IV':4,' anaplastic; Grade IV':4},inplace=True)
bst['A Stage'].replace({'Regional':0,'Distant':1,}, inplace=True) bst['Estrogen
Status'].replace({'Positive':1,'Negative':0}, inplace=True) bst['Progesterone
Status'].replace({'Positive':1,'Negative':0}, inplace=True)
bst['Status'].replace({'Alive':0,'Dead':1}, inplace=True) bst.head()
```

Cell 13:

```
bst = bst.fillna(0) X= bst.iloc[:, :-
1].values

Y = bst.iloc[:, -1].values

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size =

0.2, random_state=0) clf =

GaussianNB()
clf.fit(X_train,Y_train)

NB_predicted3 = clf.predict(X_test)

NB3 = accuracy_score(NB_predicted3, Y_test)

print("Accuracy:", NB3)
```

Output: Accuracy: 0.8248447204968944 Cell 14:

labels = [0,1] cm = confusion_matrix(Y_test, NB_predicted3, labels=labels) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels) disp.plot()

Output:

Cell 15:

```
clf = DecisionTreeClassifier() clf.fit(X_train,Y_train)
DT_predicted3 = clf.predict(X_test)
DT3 = accuracy_score(DT_predicted3, Y_test) print("Accuracy:", DT3)
```

Output: Accuracy: 0.8198757763975155

Cell 16:

```
labels = [0,1]
cm = confusion_matrix(Y_test, DT_predicted3, labels=labels) disp =
ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels) disp.plot()
```


Mobile Price Range Classification

Cell 17:

```
mobile_price=pd.read_csv("/content/mobile_price_range.csv")

X= mobile_price.iloc[:, :-1].values

Y = mobile_price.iloc[:, -1].values

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size)

= 0.2, random_state=0) clf = GaussianNB()
clf.fit(X_train, Y_train)

NB_predicted4 = clf.predict(X_test)

NB4 = accuracy_score(NB_predicted4, Y_test)

print("Accuracy:", NB4)
```

Output: Accuracy: 0.835

Cell 18:

labels = [0,1,2,3] cm = confusion_matrix(Y_test, NB_predicted4, labels=labels) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels) disp.plot()

Cell 19:

 $clf = DecisionTreeClassifier() \ clf.fit(X_train, Y_train)$

 $DT_predicted4 = clf.predict(X_test)$

DT4 = accuracy_score(DT_predicted4, Y_test) print("Accuracy:", DT4)

Output: Accuracy: 0.8325

Cell 20:

labels = [0,1,2,3]

cm = confusion_matrix(Y_test, DT_predicted4, labels=labels) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels) disp.plot()

Diabetes Prediction(Present-Absent) Classification

Cell 21:

```
diabetes=pd.read_csv("/content/diabetes_prediction_dataset.csv")
diabetes['gender'].replace({'Male': 0, 'Female': 1,'Other':2},
inplace=True) diabetes['smoking_history'].replace({'never': 0,
'No Info':

1,'current':2,'former':3,'ever':4,'not current':5}, inplace=True)

X= diabetes.iloc[:,:-1].values

Y = diabetes.iloc[:,:-1].values

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size)

=

0.2, random_state=0) clf =

GaussianNB()
clf.fit(X_train,Y_train)

NB_predicted5 = clf.predict(X_test)
```

Ou	tput:	
NB.	5 = accuracy_score(NB_predicted5, Y_test) at("Accuracy:", NB5)	
pm	it Accuracy. (NB3)	
Out	tout: A course ou 0 00255	
Ou	tput: Accuracy: 0.90355	

Cell 22:

labels = [0,1] cm = confusion_matrix(Y_test, NB_predicted5, labels=labels) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels) disp.plot()

Output:

Cell 23:

 $clf = DecisionTreeClassifier() \ clf.fit(X_train, Y_train)$

DT_predicted5= clf.predict(X_test)

DT5 = accuracy_score(DT_predicted5, Y_test) print("Accuracy:", DT5)

Output: Accuracy: 0.95105

Cell 24:

labels = [0,1] cm = confusion_matrix(Y_test, DT_predicted5, labels=labels) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels) disp.plot() Output:

Comparison of Accuracy(Naïve Bayes vs Decision Tree)

Cell 25:

```
import matplotlib.pyplot as plt import numpy as np width = 0.35 datasets = ['CCF', 'ACS', 'Breast Cancer', 'Mobile Price', 'Diabetes'] x = np.arange(len(datasets)) naive_bayes_accuracy = [NB1,NB2,NB3,NB4,NB5] # Replace with your actual values decision_tree_accuracy = [DT1,DT2,DT3,DT4,DT5] # Replace with your actual values fig, ax = plt.subplots() rects1 = ax.bar(x - width/2, decision_tree_accuracy, width, label='Decision Tree') rects2 = ax.bar(x + width/2, naive_bayes_accuracy, width, label='Naive Bayes') ax.set_xlabel('Datasets') ax.set_ylabel('Accuracy') ax.set_ylabel('Accuracy Comparison: Decision Tree vs. Naive Bayes') ax.set_xticks(x) ax.set_xticklabels(datasets) ax.legend() plt.tight_layout() plt.show()
```


KFOLD

Cell 26:

from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score kfold = KFold(n_splits=10, shuffle=True, random_state=42) scores = cross_val_score(clf, X, Y, cv=kfold, scoring='accuracy') for i in scores:

print(i)

Output:

1.0

0.9992727272727273

0.9992727272727273

1.0

 $0.999272727272727273 \ 0.999272727272727273$

0.9985454545454545450.9985443959243085

0.9985443959243085

0.9978165938864629

ADABOOST

Cell 27:

```
from sklearn.ensemble import AdaBoostClassifier

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

ada = AdaBoostClassifier(n_estimators=50,learning_rate=1) model = ada.fit(X_train,

Y_train) Ada_pred = model.predict(X_test) accuray = accuracy_score(Y_test,

Ada_pred) print("Accuracy",accuray)
```

Output: Accuracy 0.9996363636363637

RandomForest

Cell 28:

```
from sklearn.ensemble import RandomForestClassifier X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42) random_forest = RandomForestClassifier(n_estimators=100, random_state=42) model = random_forest.fit(X_train, Y_train) RF_pred = model.predict(X_test) accuray = accuracy_score(Y_test, RF_pred) print("Accuracy",accuray)
```

Output: Accuracy 0.9996363636363637

Bagging

Cell 29:

```
from sklearn.ensemble import BaggingClassifier

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

bg_clf=BaggingClassifier(n_estimators=100, random_state=42)

model=bg_clf.fit(X_train,Y_train) BG_pred=model.predict(X_test)

accuracy = accuracy_score(Y_test, BG_pred) print("Accuracy",accuracy)
```

Output: Accuracy 0.9996363636363637

GradientBoosting

Cell 30:

```
from sklearn.ensemble import GradientBoostingClassifier X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

grad_clf=BaggingClassifier(n_estimators=100, random_state=42)

model=grad_clf.fit(X_train,Y_train) grad_pred=model.predict(X_test)

accuracy = accuracy_score(Y_test, grad_pred) print("Accuracy",accuracy)
```

Output: Accuracy 0.9996363636363637		

Plotting AUROC for first dataset(Naïve Bayes):

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, roc_auc_score, auc fpr, tpr, thresholds =
roc_curve(Y_test, NB_predicted) auroc = roc_auc_score(Y_test, NB_predicted)
print(f"AUROC: {auroc}") plt.figure(figsize=(8, 6)) plt.plot(fpr, tpr, color='darkorange',
lw=2, label=f'AUROC =
{auroc:.2f}')
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0,
1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver
Operating Characteristic (ROC) Curve') plt.legend(loc='lower right') plt.show()
```

Output:

Plotting AUROC for first dataset(Decision Tree):

```
fpr, tpr, thresholds = roc_curve(Y_test, NB_predicted) auroc = roc_auc_score(Y_test, DT_predicted) print(f"AUROC: {auroc}") plt.figure(figsize=(8, 6)) plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'AUROC = {auroc:.2f}') plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic (ROC) Curve') plt.legend(loc='lower right') plt.show()
```


Conclusion: Thus, we implemented classification algorithms on five datasets and compared the accuracies of Naïve Bayes and Decision Tree Classification Algorithm. Also, implemented ensemble models and k-fold cross validation.