CLAIM SEVERITY

FOR ALLSTATE

TING SIT

JULY 2020

OBJECTIVE

Predict claim severity in absolute dollar amount (known as "loss" in this project)

- Benefits:
 - Reduce human errors on calculations, which improve company's profit line
 - Reduce labor hours with calculations being automated, increase productity
 - Improve consumer experience with faster/more accurate claim reimbursement

- Model Evaluation requirements:
 - Mean Absolute Error (MAE)

MODEL CONSIDERATION

- Regression problem: target variables = "loss"
- 4 models: SGD Regression, Lightbgm, Xgboost, Catboost
- Features:
 - 10 continuous variables
 - 1033 starting categorical variables, narrowed to 102 through features reduction

RESULTS

Model	MAE	Time
Dummy	1783	Is
SGD Regression	1266	4 s
XGBoost	1149	44s
LightGBM	1129	I4s
CatBoost	1122	43s

- Catboost has the lowest MAE
 - Recommend as the winning model

CONCLUSION

- I. CatBoost has the smallest MAE and is the winning model
- 2. Model tend to underpredict for high value claims, and will need special audit.
- 3. Overprediction on small values claims happen in a fair frequency. Need further investigation on the drivers

NEXT STEPS

- Further improvement would require knowing the definition of the features for better feature engineering
- Align expectations with clients on the MAE that is "good enough"
- MAE tend to underestimate the impacts from over/under predictions in claims, and could results in financial burden as well as customer's dissatisfactions
 - Need to introduce other KPIs to ensure control to the model outputs.