Internet of Things (IoT)

architectures et technologies

Chapitre #1 - Equipements

1.équipements

Comment choisir un objet connecté?

Exemple d'anatomie d'équipement connecté

source: https://users.ece.cmu.edu/~agr/old/old-projects/ewatch/hardware.html

Anatomie type

Batterie / alimentation Coeur Capteurs Modules réseau CPU Actionneurs **RAM** Stockage additionnel ROM Entrées/Sorties horloge Eléments sécurisés Afficheurs/Notif

Un Objet Connecté pour...

SENTIR (= mesurer, enregistrer...)

AGIR (= actionner, piloter)

INTERAGIR (= exposer une interface utilisateur)

DÉCIDER (= orchestrer mesures, actions et communications)

.... et COMMUNIQUER!

Sentir: capteurs

accéléromètre:

accélération par axe (X,Y,Z) (unité: m/s^2)

gyroscope:

rotation sur différents axe (Y,Y,Z) (unité: rad/sec)

magnétomètre:

"boussole", indique champ magnétique par axe (X,Y,Z) (unité: uTesla)

thermomètre:

température ambiante (unité: °C/°F/°K)

luxmètre:

illumination (unité: lux)

capteur de distance:

distance à l'obstacle le plus proche (unité: m) (ex: infra-rouge, ultra-sons)

manomètre:

mesure la pression (unité: hPa)

humidité:

(unité: %)

détecteurs de gaz:

capteurs électrochimiques (méthane, butane, alcohol, ethanol, monoxide, hydrogen, ozone...)

(unit: ppm)

source: http://playground.arduino.cc/Main/MQGasSensors

capteur optique:

détection de coupure de faisceau

capteur de position:

via codeur rotatif, interrupteur à lame souple

capteur de contact:

microrupteur / bouton poussoir

microphone:

(onde acoustique)

caméra:

image / flux vidéo

plus d'info: http://philippe.berger2.free.fr/automatique/cours/cpt/les_capteurs.htm

Capteurs - critères

plage de mesure

précision / sensibilité

réactivité / fréquence de rafraîchissement

conditions de fonctionnement

encombrement

consommation électrique

Exemple:

· Accuracy for temperature:

```
-< +/-0.5°C from 0° to +65°C

-< +/-1°C from -30°C to 0°C and

from +65°C to +90°C

-< +/-2°C below -30°C and above

+90°C
```

Accuracy for relative humidity:

```
-< +/- 3% from 20% to 80%
-< +/- 5% below 20% and above
80%
```

- Measurement range: -40 to 120°C and 0 to 100% for relative humidity
- Resolutions: 1/100°C for temperature and 4/100% for relative humidity.
- Luminosity indicator: in % of the luminosity level.

Sentir: géolocalisation

Géolocalisation

GPS (ex-"Navstar") (Global Positioning System)

USA (DoD), 24 satellites disponible depuis 1994 1575 MHz

précision: ~20m

Améliorable via SBAS (Satellite based augmentation system),

en Europe: EGNOS

plus d'info: http://fr.slideshare.net/richard_craig/global-positioning-system-gps

Géolocalisation

GLONASS

Russie, à nouveau disponible depuis 2010 même propriétés que GPS

Europe,

gratuit: même précision que GPS,

commercial: ~10cm

Beidou / COMPASS:

Chine, disponibilité 2020

plus d'info: http://fr.slideshare.net/richard_craig/global-positioning-system-gps

Agir: actionneurs

Actionneurs - examples

relais:

contrôler un courant important

moteur / moteur pas-à-pas / servo-moteur

source: http://playground.arduino.cc/Main/MQGasSensors

Interagir: User-Interfaces

Signaler à l'utilisateur

voyants / LEDs

buzzer / audio

Signaler à l'utilisateur

afficheurs (LCD, LED,

vibreur

Contrôles

boutons poussoir / interrupteurs

Potentiomètres:

Contrôles

écran tactile

autre...

Décider: CPU / mémoires

L'électronique en (très) bref

- 1800 pile électrique (Volta)
- 1827 loi d'Ohm (Ohm), début électromagnétisme (Ampère)
- 1846 induction électromagnétique (Faraday)
- 1873 équations de Maxwell
- 1876 téléphone (Bell)
- 1879 ampoule (Joseph Swan)
- 1890 cohéreur de Branly (détection onde)
- 1895 transmission à distance sans fil (Marconi et Popov)
- 1904 premier tube électronique (Fleming)
- 1907 tube triode (Lee De Forest)
- 1918 premier additionneur binaire (Bloch e Abraham)
- 1947 transistor à pointes
- 1954 premiers ordinateurs à transistors
- 1959 procédé de fabrication planar (Noyce)
- 1959 circuits intégrés (Kilby)
- 1969 mémoire 64 bits (Intel)
- 1971 premier microprocesseur (intel: 4004)
- 1975 RISC (IBM)

John Bardeen, William Shockley et Walter Brattain (Laboratoires Bell)

mémoires

RAM = Random Access Memory / "mémoire vive": mémoire volatile, très performante

(DRAM, SRAM, MRAM)

ROM = Read Only Memory / "mémoire morte":

mémoire non volatile, lecture seul, sauf opération de "programmation" (EEPROM)

Flash:

mémoire réinscriptible, sorte d'EEPROM éditable/réinitialisable par zone (NOR, NAND)

microprocesseur VS microcontrôleur

microprocesseur = unité de calcul générique dans un seul boîtier

micro-contrôleur = une seule puce comprenant microprocesseur + mémoire + I/O + timer...

Exemple

Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V

8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash

DATASHEET

Features

- High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 135 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 16 MIPS Throughput at 16MHz
 - On-Chip 2-cycle Multiplier
- High Endurance Non-volatile Memory Segments
 - 64K/128K/256KBytes of In-System Self-Programmable Flash
 - 4Kbytes EEPROM
 - 8Kbytes Internal SRAM
 - Write/Erase Cycles:10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/ 100 years at 25°C
 - Optional Boot Code Section with Independent Lock Bits
 - In-System Programming by On-chip Boot Program
 - True Read-While-Write Operation
 - Programming Lock for Software Security
- Endurance: Up to 64Kbytes Optional External Memory Space
- Atmel® QTouch® library support
 - Capacitive touch buttons, sliders and wheels
 - QTouch and QMatrix acquisition
 - Up to 64 sense channels
- JTAG (IEEE® std. 1149.1 compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface

Peripheral Features

Exemple

- Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
- Four 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode
- Real Time Counter with Separate Oscillator Four 8-bit PWM Channels
 - Six/Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits
- (ATmega1281/2561, ATmega640/1280/2560)
- Output Compare Modulator
- 8/16-channel, 10-bit ADC (ATmega1281/2561, ATmega640/1280/2560) Two/Four Programmable Serial USART (ATmega1281/2561, ATmega640/1280/2560)
- Master/Slave SPI Serial Interface
- Byte Oriented 2-wire Serial Interface
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources

 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby. and Extended Standby
- I/O and Packages
 - 54/86 Programmable I/O Lines (ATmega1281/2561, ATmega640/1280/2560)
 - 64-pad QFN/MLF, 64-lead TQFP (ATmega1281/2561)
 - 100-lead TQFP, 100-ball CBGA (ATmega640/1280/2560)
 - RoHS/Fully Green Temperature Range:
- -40°C to 85°C Industrial
- Ultra-Low Power Consumption
 - Active Mode: 1MHz, 1.8V: 500µA
 - Power-down Mode: 0.1µA at 1.8V
- Speed Grade:
 - ATmega640V/ATmega1280V/ATmega1281V:

 - 0 4MHz @ 1.8V 5.5V, 0 8MHz @ 2.7V 5.5V
 - ATmega2560V/ATmega2561V; 0 - 2MHz @ 1.8V - 5.5V. 0 - 8MHz @ 2.7V - 5.5V
 - ATmega640/ATmega1280/ATmega1281:
 - 0 8MHz @ 2.7V 5.5V, 0 16MHz @ 4.5V 5.5V
 - ATmega2560/ATmega2561:
 - 0 16MHz @ 4.5V 5.5V

Boot

source: http://duartes.org/gustavo/blog/post/how-computers-boot-up/

Elément Sécurisé (SE)

"Puce" = circuit intégré avec contacts exposés

"Elément sécurisé" = plate-forme matérielle inviolable, peut contenir mémoire, processeur

(typiquement processeur cryptographique + registre de secrets)

Exemple: carte SIM

Alimentation

Alimentation externe (secteur, générateur...):

pas de problématique d'autonomie

Alimentation autonome:

contrôler la consommation et le niveau d'énergie disponible devient un enjeu critique.

Batterie ("accu"):

chimique (lithium, nickel - NiMH, alkaline), capacitors varient en densité, tenue de charge, comportement ε haute/basse températeur

Energie ambiante:

soleil, chaleur, mouvement, radio (ex: WiFi)...

Environnement

Indice de Protection (IP)

établi par "Commission électrotechnique Internationale" (CEI / IEC)

source: https://fr.wikipedia.org/wiki/Indice_de_protection

ref: http://www.parstasis.com/wp-content/uploads/2015/04/IEC-60529-IP-Code.pdf

Conditions opérationnelles

Equipements "Durcis" - capables de fonctionner dans des conditions extrêmes:

Vibrations

Ondes EM / particules (nucléaire, espace)

Commercial: 0 °C to 85 °C

Basses/hautes températudestrial: -40 °C to 100 °C

Automotive: -40 °C to 125 °C

Extended: -40 °C to 125 °C

Military: -55 °C to 125 °C

source: https://en.wikipedia.org/wiki/Operating_temperature

Plateformes embarquées

Plateformes \ Arduino (Genuino)

Architecture matérielle libre, à base de micro-contrôleur Atmel,

programmation: langage dédié (simili C, basé sur <u>Wiring</u>) via des outils (IDE) open-source et cross-platform,

coût: < 50\$

plusieurs dizaines de modèles (différents form-factors et fonctions)

ref: https://www.arduino.cc/

Plateformes \ Raspberry Pl

"nano-ordinateur" (taille carte de crédit) à processeur ARM, à très bas coût. Support audio/video

lancement: 2012

cible: éducation / bricolage (DIY) / multi-media,

	Raspberry Pi 2 Model B v1.2		
Processor Chipset	Broadcom BCM2837 64Bit Quad Core Processor powered Single Board Computer running at 1.2GHz	Broadcom BCM2837 64Bit Quad Core Processor powered Single Board Computer running at 900MHz	
Processor Speed	QUAD Core @1.2 GHz	QUAD Core @900 MHz	
RAM	1GB SDRAM @ 400 MHz	1GB SDRAM @ 400 MHz	
Storage	MicroSD	MicroSD	
USB 2.0	4x USB Ports	4x USB Ports	
Max Power Draw/voltage	2.5A @ 5V	1.8A @ 5V	
GPIO	40 pin	40 pin	
Ethernet Port	Yes	Yes	
WiFi	Built in	No	
Bluetooth LE	Built in	No	

ref: https://www.raspberrypi.org/

Plateformes \ BeagleBone (Texas Instruments)

mini-ordinateur, hardware open-source (CC) basse consommation

lancement: 2008

cible: éducation / bricolage (DIY)

coût: 70-160\$

OS: Linux et plus

ref: http://beagleboard.org/bone

Comparatif

Name	Arduino Uno	Raspberry Pi	BeagleBone
Model Tested	R3	Model B	Rev A5
Price	\$29.95	\$35	\$89
Size	2.95"x2.10"	3.37"x2.125"	3.4"x2.1"
Processor	ATMega 328	ARM11	ARM Cortex-A8
Clock Speed	16MHz	700MHz	700MHz
RAM	2KB	256MB	256MB
Flash	32KB	(SD Card)	4GB(microSD)
EEPROM	1KB		
Input Voltage	7-12v	5v	5v
Min Power	42mA (.3W)	700mA (3.5W)	170mA (.85W)
Digital GPIO	14	8	66
Analog Input	6 10-bit	N/A	7 12-bit
PWM	6		8
TWI/I2C	2	1	2
SPI	1	1	1
UART	1	1	5
Dev IDE	Arduino Tool	IDLE, Scratch, Squeak/Linux	Python, Scratch, Squeak, Cloud9/Linux
Ethernet	N/A	10/100	10/100
USB Master	N/A	2 USB 2.0	1 USB 2.0
Video Out	N/A	HDMI, Composite	N/A
Audio Output	N/A	HDMI, Analog	Analog

Plateformes \ Android (Google)

Système d'exploitation basé sur noyau Linux.

cible principale: smartphones, tablettes

OS le plus utilisé dans le monde (>80% des smartphones)

ve

) dédiée au wearables et montres connectées

Plateformes \ mbed (ARM)

Système d'exploitation pour équipements basés sur processeur ARM Cortex-M (32bits)

Programmation: C/C++, SDK, IDE en ligne

OS "temps réel"

plateforme cloud / services...

Plateformes \ Contiki (open-source)

Système d'exploitation open-source, pour microcontrôleurs Développement C, programmation événementielle (séquentiel)

Contiki

The Open Source OS for the Internet of Things

Hello world

```
/* Declare the process */
PROCESS(hello_world_process, "Hello world");

/* Make the process start when the module is loaded */
AUTOSTART_PROCESSES(&hello_world_process);

/* Define the process code */
PROCESS_THREAD(hello_world_process, ev, data) {
    PROCESS_BEGIN(); /* Must always come first */
    printf("Hello, world!\n"); /* Initialization code goes here */
    while(1) { /* Loop for ever */
        PROCESS_WAIT_EVENT(); /* Wait for something to happen */
    }
    PROCESS_END(); /* Must always come last */
}
```


ref: www.contiki-os.org / http://fr.slideshare.net/DingxinXu/contiki-introduction-i

Conclusion: les enjeux de la conception embarquée

- Fonctionnel: choix périphérique, puissance, mode de communication,
- Autonomie: mode alimentation, consommation
- Coût (\$)
- Contraintes opérationnelles: compatibilité avec environnement/usage ciblé
- Sécurité: protéger les secrets