CMSC 417 Computer Networks

Fall 2017

Second Third-Term Exam

Open notes; In class

Tuesday, November 21st

- \oplus Do not forget to write your name on the first page. Initial each subsequent page.
- \oplus Be neat and precise. I will not grade answers I cannot read.
- \oplus You should draw simple figures if you think it will make your answers clearer.
- \oplus Good luck and remember, brevity is the soul of wit
- All problems are mandatory
- I cannot stress this point enough: **Be precise**. If you have written something incorrect along with the correct answer, you should **not** expect to get all the points. I will grade based upon what you **wrote**, not what you **meant**.
- Maximum possible points: 50.

Name:		
name:		

Problem	Points	
1		
2		
3		
4		
5		
Total		

1. Nomenclature

- (a) Describe the following terms: (2 points each)
 - Glue record

• Silly Window Syndrome

• Cumulative Ack

• Finger Table

• Base-64 Encoding

2. Rel		iable Transfer/UDP		
	(a)	What is the TCP service model? (2 points)		
	(b)	What service(s), beyond checksumming, does UDP provide over IP? (2 points)		
	(c)	What is the maximum end-to-end throughput you could achieve on a 1Gbps, 100ms RTT link, with send window-size $\leq 4,$ packet size ≤ 125 bytes. Show your work. (3 points)		

(d) Give an example where a sliding window transfer protocol that uses 7 sequence numbers fails when RWS = 4, SWS= 3. Explain your assumptions. (3 points)

3. TCP

(a) What header field(s) are used in TCP congestion control? How? (1+2 points)

(b) The maximum window scaling defined in TCP increases the window sizes by 2^{14} . Would 2^{15} or even 2^{16} be reasonable? Explain. (3 points)

(c) (How) does the TCP Window Scale option affect performance? Explain with an example. (4 points)

4.	4. DNS/Application-Layer		
	(a)	You administer the $\mathtt{umd.edu.}$ domain, and want to delegate the $\mathtt{a.umd.edu.}$ subdomain. Explain what records you would add to your zone to enable this. (2 points)	
	(b)	Why does a NS record contain a name as opposed to a IP address? (2 points)	
	(c)	Why did HTTP-proxies present a problem when HTTP (version 1.1) (or keep alive connections) were introduced? (2 points)	
	(d)	When might a mail server issue a reverse DNS query? What additional protections (if any) do SPF records provide beyond such queries? $(1+3 \text{ points})$	

5. Design (Choices)		
	(a)	Nameserver s queries d for DNS name ${\tt fb.com}$ over UDP. What prevents some other (rogue) host r on the Internet from supplying a (perhaps incorrect) answer to s ? (2 points)
	(b)	What steps can r take to improve its probability of success? (2 points)
		Describe one mechanism that would reduce the probability of success for the attack described above to below 2^{-160} .(3 points)
	(d)	Suppose all DNS servers form a Chord ring and names are resolved using Chord. Discuss two positives and two negatives of such a design. (3 points)