LOGISTIC REGRESSION, PERCEPTRON AND SOFTMAX REGRESSION

Activation Functions

Ahmed Hani

July 19, 2017

FCIS'17 Machine Learning Course

TODAY'S OBJECTIVES

Learning

- · Logistic Regression A powerful binary classifier
- · Softmax Regression A Multi-class classification
- · Activation Functions for Decision-making

To Do

- · Implement Logistic and Softmax Regression using Numpy
- · Introducing Plant-Iris and Titanic-survival Datasets

CLASSIFICATION

- Given a features vector X = [x0, x1, ..., xn], the target is to get Y, where Y is a category, class or label which is the entity representation to the given features
- In probabilistic term, the target is to maximize the conditional probability P(Y | X)
- · Binary Classification:

$$Y \in \{0, 1\}$$

· Multi-class Classification:

$$Y \in \{0,1,2,..,M\}$$

CLASSIFICATION VS REGRESSION

BINARY CLASSIFICATION

ACTIVATION FUNCTIONS - BIOLOGICAL INSPIRATION

ACTIVATION FUNCTIONS PROPERTIES

- · Produces non-linear values
- · Differentiable functions
- · Has maximum and minimum value (interval)
- · Examples: *Sigmoid*, Signum, *Tanh*, Rectified Linear Unit (*ReLU*), *Softmax*

SIGMOID FUNCTION

SIGMOID FUNCTION DERIVATIVE

$$egin{aligned} rac{d}{dx}\sigma(x) &= rac{d}{dx} \left[rac{1}{1+e^{-x}}
ight] \ &= rac{d}{dx} \left(1+e^{-x}
ight)^{-1} \ &= -(1+e^{-x})^{-2} (-e^{-x}) \ &= rac{e^{-x}}{(1+e^{-x})^2} \ &= rac{1}{1+e^{-x}} \cdot rac{e^{-x}}{1+e^{-x}} \ &= rac{1}{1+e^{-x}} \cdot rac{(1+e^{-x})-1}{1+e^{-x}} \ &= rac{1}{1+e^{-x}} \cdot \left(1-rac{1}{1+e^{-x}}
ight) \end{aligned}$$

LOGISTIC REGRESSION

LOGISTIC REGRESSION (CONT.)

Logistic Regression Model

$$0 \le h(\theta^{T}x) \le 1$$
$$h_{\theta}(x) = g(\theta^{T}x)$$
$$g(\theta^{T}x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

Hypothesis Probabilistic Interpretation

$$P(y = 0|x; \theta) = h_{\theta}(x)$$

$$P(y = 1|x; \theta) = 1 - h_{\theta}(x)$$

$$P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$$

$$P(y|x; \theta) = (h_{\theta}(x))^{y} (1 - (h_{\theta}(x))^{y-1})^{y-1}$$

PARAMETERS UPDATE: COST FUNCTION

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

PARAMETERS UPDATE: COST FUNCTION (CONT.)

```
repeat until convergence {
    \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)
```

PARAMETERS UPDATE: MAXIMUM LIKELIHOOD ESTIMATION

Assume that we have M training examples that were generated independently, we can then write down the likelihood of the parameters as

$$L(\theta) = p(\vec{y} \mid X; \theta)$$

$$= \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{m} (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}}$$

MAXIMUM LIKELIHOOD ESTIMATION (CONT.)

It will be easier to maximize the *log* likelihood (Summation instead of Product)

$$\ell(\theta) = \log L(\theta)$$

$$= \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log(1 - h(x^{(i)}))$$

MAXIMUM LIKELIHOOD ESTIMATION (CONT.)

$$\begin{split} \frac{\partial}{\partial \theta_j} \ell(\theta) &= \left(y \frac{1}{g(\theta^T x)} - (1 - y) \frac{1}{1 - g(\theta^T x)} \right) \frac{\partial}{\partial \theta_j} g(\theta^T x) \\ &= \left(y \frac{1}{g(\theta^T x)} - (1 - y) \frac{1}{1 - g(\theta^T x)} \right) g(\theta^T x) (1 - g(\theta^T x) \frac{\partial}{\partial \theta_j} \theta^T x) \\ &= \left(y (1 - g(\theta^T x)) - (1 - y) g(\theta^T x) \right) x_j \\ &= \left(y - h_{\theta}(x) \right) x_j \end{split}$$

STOCHASTIC GRADIENT DESCENT UPDATE RULE

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

PERCEPTRON LEARNING

PERCEPTRON LEARNING (CONT.)

$$g(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

MULTI-CLASS CLASSIFICATION

Softmax Regression - Stochastic Gradient Descent

SOFTMAX ACTIVATION FUNCTION

SoftMax

$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for $j = 1, ..., K$.

Given

$$Z = \{z_0, z_1, z_2, ..., z_k\}$$

the function output

$$Z' = \{z'_0, z'_1, z'_2, ..., z'_k\}$$

where the sum of the new elements equals to 1.0 (probability vector)

SOFTMAX DERIVATIVE: YOUR TURN!

SOFTMAX REGRESSION MODEL

IRIS DATASET

IRIS dataset

Iris Versicolor

Iris Virginica

Iris Setosa

IRIS DATASET (CONT.)

IRIS DATASET (CONT.)

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

TITANIC SURVIVAL DATASET

TITANIC SURVIVAL DATASET (CONT.)

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

