

Exercise

Kinematics-2D (Physicsaholics)

Physicsaholics.com

Unacademy

Exercise-2

(Objective Type: Multi Correct)

Physicsaholics

- Q 1. An aero plane flies along straight line from A to B with speed v and back again with the same speed. There is a steady wind speed w. The distance between A and B is d. Total time for the round trip
 - (A) is $\frac{2vd}{v^2 w^2}$ if the wind blows along the line AB.
 - (B) is $\frac{2d}{\sqrt{v^2-w^2}}$ if the wind blows perpendicular to the line AB.
 - (C) is always increased by the presence of wind.
 - (D) depend on the direction of wind.
- **Q 2.** A particle moves in the xy-plane and at time t is at the point $(t^2, t^3 2t)$. Then
 - (A) At t = 2/3 s, directions of velocity and acceleration are perpendicular
 - (B) At t = 0, directions of velocity and acceleration are perpendicular
 - (C) At t = $\sqrt{2/3}$ s, particle is moving parallel to x-axis
 - (D) Acceleration of the particle when it is at point (4, 4) is $2\hat{i} + 12\hat{j}$
- Q 3. A particle moves in the x-y plane with a constant acceleration g in the negative y-direction. Its equation of motion is $y = ax bx^2$, where a and b are constants. Which of the following is/are correct?
 - (A) The x-component of its velocity is constant.
 - (B) At the origin, the y-component of its velocity is $a\sqrt{\frac{g}{2b}}$
 - (C) At the origin, its velocity makes an angle tan⁻¹(a) with the x-axis.
 - (D) The particle moves exactly like a projectile.
- Q 4. A man crosses a river in a boat. If he crosses the river in minimum time he takes 10 minutes with a drift 120 m. If he crosses the river taking shortest path, he takes 12.5 minute:(Assume $v_{b/r} > v_r$)
 - (A) width of the river is 200 m
 - (B) velocity of the boat with respect to water 12 m/min

- (C) speed of the current 20 m/min
- (D) velocity of the boat with respect to water 20 m/min
- **Q 5.** Two particles A and B projected along different directions from the same point P on the ground with the same velocity of 70 m/s in the same vertical plane. They hit the ground at the same point Q such that PQ = 480 m. Then $[g = 9.8 \text{ m/s}^2]$
 - (A) Ratio of their times of flight is 4:5
 - (B) Ratio of their maximum heights is 9:16
 - (C) Ratio of their minimum speeds during flights is 4:3
 - (D) The bisector of the angle between their directions of projection makes 45° with horizontal
- **Q 6.** A train carriage moves along the x-axis with a uniform acceleration \vec{a} . An observer A in the train sets a ball in motion on the frictionless floor of the carriage with the velocity \vec{u} relative to the carriage. The direction \vec{u} of makes an angle θ with the x-axis. Let B be an observer standing on the ground outside train. The path of ball will be-
 - (A) A straight line with respect to observer A
 - (B) A straight line with respect to observer B
 - (C) A parabola with respect to observer A
 - (D) A parabola with respect to observer B
- **Q 7.** Positions of two vehicles A and B with reference to origin O and their velocities are as shown.
 - (A) they will collide
 - (B) distance of closest approach is 100 m.
 - (C) their relative speed is $\frac{40}{\sqrt{3}}\,m\,/\,s$
 - (D) their relative velocity is $\frac{20}{\sqrt{3}}$ m/s

Physicsaholics |

- Q 8. A large rectangular box falls vertically with an acceleration a. A toy gun fixed at A and aimed towards C fires a particle P.
 - (A) P will hit C if a = g.
 - (B) P will hit the roof BC if a > g.
 - (C) P will hit the wall CD if a < g.
 - (D) May be either (a), (b) or (c), depending on the speed of projection of P.
- Q 9. The initial velocity of the particle is given by $\vec{v} = \hat{i} + j k$ and acceleration of the particle is given by $-\hat{i} j + tk$ where t is the time in seconds.
 - (A) Particle may move in a straight line. (B) Particle may come to rest at some time.
 - (C) Particle will never come to rest. instant.
- (D) The work done on the particle is zero at some
- **Q 10.** A particle is moving with a position vector, $\vec{r} = \begin{bmatrix} a_0 \sin(2\pi t)\hat{i} + a_0 \cos(2\pi t)\hat{j} \end{bmatrix}$. Then
 - (A) Magnitude of displacement of the particle between time t = 4 sec and t = 6 sec is zero
 - (B) Distance travelled by the particle in 1 sec is $2\pi a_0$
 - (C) The speed of particle in the whole motion is constant and equal to $2\pi a_0$.
 - (D) None of these
- **Q 11.** A point mass is moving in the x-y plane. Its acceleration is a constant vector perpendicular to the xaxis. Which of the following do/does not change with time?
 - (A) only y-component of its velocity vector
 - (B) only x-component of its velocity vector
 - (C) only y-component of its acceleration vector
 - (D) only x-component of its acceleration vector
- Q 12. A man crosses a river in a boat. If he crosses the river in minimum time he takes 10 minutes with a drift 120 m. If he crosses the river taking shortest path, he takes 12.5 minute:(Assume $v_{b/r} > v_r$)
 - (a) width of the river is 200 m
 - (b) velocity of the boat with respect to water 12 m/min
 - (c) speed of the current 20 m/min

- (d) velocity of the boat with respect to water 20 m/min
- **Q 13.** A ball is thrown from ground such that it just crosses two poles of equal height kept 80 m apart. The maximum height attained by the ball is 80 m. When the ball passes the first pole, its velocity makes 45° with horizontal. The correct alternatives is/are :- (g = 10 m/s^2)
 - (A) Time interval between the two poles is 4 s.
 - (B) Height of the pole is 60 m.
 - (C) Range of the ball is 160 m.
 - (D) Angle of projection is tan⁻¹(2) with horizontal.
- Q 14. The vertical height of point P above ground is twice that of a point Q. A particle is projected vertically downward with speed 5 ms⁻¹ from P and at the same time another particle is projected vertically upward with the same speed from Q. Both particles reach the ground simultaneously, then $(g = 10ms^{-2})$. (P & Q are on the same vertical line).
 - (A) PQ = 30m

(B) PQ = 60m

- (C) Time of flight of stones is 3 s
- (D) Time of flight of stones is $\frac{1}{3}$ s
- **Q 15.** Position vector of a particle is expressed as function of time by equation $\vec{r} = 2t^2 + (3t-1)\hat{j} + 5\hat{k}$, where r is in meters and t is in seconds.
 - (A) It always moves in a plane that is parallel to the x-y plane.
 - (B) At the instant t = 0 s, it is observed at point (0 m, -1 m, 5 m), moving with velocity 3 m/s in the positive y-direction.
 - (C) Its acceleration vector is uniform.
 - (D) It is an example of three dimensional motion.
- **Q 16.** A projectile is thrown with speed u into air from a point on the horizontal ground at an angle θ with horizontal. If the air exerts a constant horizontal resistive force on the projectile then select correct alternative(s).
 - (A) At the farthest point, the velocity is horizontal.
 - (B) The time for ascent equals the time for descent.
 - (C) The path of the projectile may be parabolic.

- (D) The path of the projectile may be a straight line.
- **Q 17.** A block is thrown horizontally with a velocity of 2 m/s (relative to ground) on a belt, which is moving with velocity 4 m/s in opposite direction of the initial velocity of block. If the block stops slipping on the belt after 4 s it was dropped then choose the correct statement(s):-
 - (A) Displacement with respect to ground is zero after 2.66 s and magnitude of displacement with respect to ground is 12 m after 4 s.
 - (B) Magnitude of displacement with respect to ground in 4 s is 4 m.
 - (C) Magnitude of displacement with respect to belt in 4 s is 12 m.
 - (D) Displacement with respect to ground is zero in 8/3 s.
- **Q 18.** A man on a rectilinearly moving cart, facing the direction of motion, throws a ball straight up with respect to himself
 - (A) The ball will always return to him.
 - (B) The ball will never return to him.
 - (C) The ball will return to him if the cart moves with constant velocity.
 - (D) The ball will fall behind him if the cart moves with some positive acceleration.
- **Q 19.** A cubical box dimension L = 5/4 metre starts moving with an acceleration $\vec{a} = 0.5 \text{m/s}^2 \, \hat{i}$ from the state of rest. At the same time, a stone is thrown from the origin with velocity $\vec{V} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}$ with respect to earth. Acceleration due to gravity $\vec{g} = 10 \text{m/s}^2 \left(-\hat{j} \right)$: The stone just touches the roof of box and finally falls at the diagonally opposite point then:

Physicsaholics

- (C) $v_3 = \frac{5}{4}$ (D) $v_3 = \frac{5}{2}$
- Q 20. A large rectangular box moves vertically downward with an acceleration a. A toy gun fixed at A and aimed towards C fires a particle P.

- (A) P will hit C if a = g
- (B) P will hit the roof BC, if a > g
- (C) P will hit the wall CD if a < g
- (D) May be either (A), (B) or (C), depending on the speed of projection of P
- Two cars A & B are moving towards each other. When the separation between them is 30 m, Q 21. the driver of car A takes a left turn at 30°. At the same instant the driver of car B takes turn right to him at an angle 60°. The two cars collide after 2 second. Then

[Assume both cars to be moving with constant speed]

- (A) speed of car A is 7.5 ms⁻¹
- (B) speed of car B is 7.5 ms⁻¹
- (C) speed of car A is $7.5\sqrt{3}ms^{-1}$
- (D) speed of car A with respect to car B after taking turns is 15ms⁻¹

Answer Key

Q.1) A, B, C, D	Q.2) A, B, C, D	Q.3) A, B, C, D	Q.4) A, D	Q.5) B, C, D
Q.6) A, D	Q.7) B, C	Q.8) A, B, C	Q.9) C	Q.10) A, B, C
Q.11) B, C	Q.12) A, D	Q.13) A,B,C,D	Q.14) A, C	Q.15) A, B, C
Q.16) B, C, D	Q.17) B, C, D	Q.18) C, D	Q.19) A, B, C	Q.20) A, B
0.24\0.00				

Q.21) B, C, D