

LAB 2 (Part 1): PYTORCH INTRODUCTION

University of Washington, Seattle

Fall 2025

OUTLINE

Part 1: Python as Deep Learning Platform

- Deep Learning Libraries in Python
- Installing PyTorch on Your Computer

Part 2: Neural Net Workflow In PyTorch

• Example task: Simple Linear Regression

Part 3: Python Concepts for PyTorch

- Python Classes
- PyTorch Tensors

Supplementary: Additional Platforms

- Google Colab
- Google Cloud

PYTHON AS DEEP LEARNING PLATFORM

Deep Learning Libraries in Python
Installing PyTorch on Your Computer

Deep Learning Libraries in Python

Deep Learning Libraries for Python

Developed by Facebook (Meta)

- Provides modules easy to combine
- Easy to edit network
- Many pre-trained models
- Seamless integration into Python/Numpy framework

Developed by Google

- Provides Tensorboard for visualization
- Supports multiple languages (C++, Java, R)
- Slightly less intuitive to use than PyTorch
- Great community support
- Tensorflow Lite can run models on mobile devices

Developed by Apache

- Supported by Amazon Web Service
- Supports many languages
- Fast and flexible for running DL algorithms
- Features advanced GPU support
- Popular among industrial projects

Deep Learning Libraries for Python

Developed by Facebook (Meta)

- Provides modules easy to combine
- Easy to edit network
- Many pre-trained models
- Seamless integration into Python/Numpy framework

Framework for this class

Developed by Google

- Provides Tensorboard for visualization
- Supports multiple languages (C++, Java, R)
- Slightly less intuitive to use than PyTorch
- Great community support
- Tensorflow Lite can run models on mobile devices

Developed by Apache

- Supported by Amazon Web Service
- Supports many languages
- Fast and flexible for running Dialogorithms
- Features advanced GPU support
- Popular among industrial projects

Installing PyTorch on Your Computer

Installing PyTorch on Your Computer

Windows - Anaconda Prompt

Mac and Linux - Terminal

If your computer has one of these GPUs (CUDA-Enabled GeForce and TITAN Products):

Note: Make sure you have the latest graphics driver installed

Note: For non-local options, see slides 43-45

Verify PyTorch Installation

1

Import PyTorch

Generate randomly initialized torch tensor

2. 1 torch.cuda.is_available()

True

Check if your GPU driver, CUDA is enabled and accessible by PyTorch

NEURAL NETWORK WORKFLOW IN PYTORCH

Example Task: Simple Linear Regression

Neural Net Workflow

Prepare Data

Define Model

Select Hyperparameters

Identify Tracked Values

Train Model

Visualization and Evaluation

Neural Net Workflow

Prepare Data

Define Model

Select Hyperparameters

Identify Tracked Values

Train Model

Visualization and Evaluation

Prepare Data

Raw data

Example 1)
Particle feature data from ATLAS detector @ LHC

Example 2)
Neural recordings from the brain

Processed raw data

- Remove outliers
- Normalization
- Split train, validation, test sets
- etc

For a successful neural net model, dataset should be Large, Clean and Diverse -Andrej Karpathy (Director of Tesla Autopilot AI)

Example Task: Linear Regression

Inputs (features)

Prepare Data (example task)

```
1 %matplotlib inline
2
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import torch

1 x_train = np.arange(11, dtype = np.float32)
2 x_train = x_train[:, np.newaxis]
3
4 y_train = (2 * x_train) + 1
```

Import necessary libraries

Generate training data for x and y

15

```
1 print(y_train)
 1 print(x train)
[[ 0.]
                                                       3.]
  1.]
 2.]
                                                       5.]
[ 3.]
                                                     [7.]
[ 4.]
                                                     [ 9.]
[5.]
            \chi
                                                     [11.]
                                                                       Print the training data (x_train, y_train)
[ 6.]
                                                     [13.]
[7.]
                                                     [15.]
[ 8.]
                                                     [17.]
[ 9.]
                                                     [19.]
[10.]]
                                                     [21.]]
```

Output targets

Neural Net Workflow Steps

Prepare Data

Define Model

Select Hyperparameters

Identify Tracked Values

Train Model

Visualization and Evaluation

Define Model

Define Model (example task)

```
class linearRegression(torch.nn.Module):

def __init__(self, input_dim, output_dim):

super(linearRegression, self).__init__()

self.linear = torch.nn.Linear(input_dim, output_dim)

def forward(self, x):

out = self.linear(x)

return out
```

Neural Network Diagram

$\begin{array}{ccc} x & & y \\ & ax + b \\ & \text{Output} \\ & \text{layer} \end{array}$

Training goal

 $a \cong 2$ (weight) $b \cong 1$ (bias)

Define a model class

Initialize the model with a linear layer with input/output dimension

Define a feed forward function describing the information flow within the network

Input layer dimension = 1

Output layer dimension = 1

No hidden layers

Neural Net Workflow

Prepare Data

Define Model

Select Hyperparameters

Identify Tracked Values

Train Model

Visualization and Evaluation

Select Hyperparameters

Optimizer *minimizes* the loss throughout epochs by changing the connection weights/biases at the pace of learning rate

(Select Hyperparameters (example task)

```
model = linearRegression(input dim = 1, output dim = 1)
learning_rate = 0.01
epochs = 100
loss_func = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr = learning rate)
if torch.cuda.is_available():
    model.cuda()
```

Define the model with input/output layer dimensions

Define learning rate, epochs (# of iterations)

Define loss function (MSE) and optimizer (Gradient Descent)

If using GPU, transfer the model to GPU memory

Neural Net Workflow

Prepare Data

Define Model

Select Hyperparameters

Identify Tracked Values

Train Model

Visualization and Evaluation

Identify Tracked Values

Training Data

Identify Tracked Values (example task)

1 train_loss_list = []

Create an empty list or arrays to contain training loss

Neural Net Workflow

Prepare Data

Define Model

Select Hyperparameters

Identify Tracked Values

Train Model

Visualization and Evaluation

Train the Model

1 Epoch: Model goes through a full training dataset

Train the Model (example task)

```
if torch.cuda.is available():
                                                  Convert inputs and targets into PyTorch tensors
       inputs = torch.from_numpy(x_train).cuda()
       targets = torch.from_numpy(y_train).cuda()
                                                  (GPU)
   else:
       inputs = torch.from_numpy(x_train)
                                                  (CPU)
       targets = torch.from numpy(y train)
   for epoch in range(epochs):
 9
                                                  This ensures learning from each epoch is separate
       optimizer.zero_grad()
10
11
                                                  Forward pass the inputs through the network to produce outputs
       outputs = model(inputs)
12
13
14
       loss = loss func(outputs, targets)
                                                  Compute the loss and append to tracking list
15
16
       train loss list.append(loss.item())
17
       loss.backward()
                                                  Compute how much changes to be made to weights/biases
18
19
                                                  Update the weights/biases
       optimizer.step()
20
21
22
       print('epoch {}, loss {}'.format(epoch, loss.item()))
```

Print the epoch # and loss value

Neural Net Workflow

Prepare Data

Define Model

Select Hyperparameters

Identify Tracked Values

Train Model

Visualization and Evaluation

Visualization and Evaluation

Test sample 1

Test sample 2

Test sample n

Commonly used evaluation metrics:

Mean squared error (MSE), Classification accuracy, etc

Typically, your trained model is tested on an unknown dataset outside of training data (More on this in Lab 3)

layer

layer

Visualization and Evaluation (example task)

```
with torch.no_grad():
       if torch.cuda.is available():
                                                                                            Feed the trained model with the original
           predicted = model(torch.from_numpy(x_train).cuda()).cpu().numpy()
                                                                                            x train to produce y predictions
       else:
           predicted = model(torch.from numpy(x train)).numpy()
10
       print(predicted)
11
       print("a: " + str(model.linear.weight.cpu().numpy()), "b: " + str(model.linear.bias.cpu().numpy()))
[[ 1.1490046]
  3.12752
                                                  20
  5.1060357
  7.0845513]
  9.063067
              Predicted y
                                                  15
                                                                                            Plot the targets vs prediction
 [11.041583
 [13.020099 ]
 [14.998614]
 [16.977129 ]
 [18.955645]
[20.93416 ]]
a: [[1.9782206]] b: [1.1490046]
                                                   5
                                                                        4
                                                                                6
                                                                                         8
                                                                                                 10
                                                                           X
 Input
                            Output
```


PYTHON CONCEPTS FOR PYTORCH

Python Classes

PyTorch Tensors

Python Classes

Python Classes

Class: collection of objects (pokemon) of the same type (pokemon class)

Python Classes

```
class Pokemon():
       def __init__(self, Name, Type, Health):
            self.Name = Name
           self.Type = Type
            self.Health = Health
       def whats_your_name(self):
            print("My name is " + self.Name + "!")
 9
       def attack(self):
10
            print("Electric attack! Zap!!")
11
12
13
       def dodge(self):
            print("Pikachu Dodge!")
14
15
16
       def evolve(self):
            print("Evolving to Raichu!!")
17
```

```
Creating a class "Pokemon"
```

Initialize the Pokemon object with provided Name, Type and Health parameters

Add functions for each method

```
1 pk1 = Pokemon(Name = "Pikachu", Type = "Electric", Health = 70)
```

'Pikachu'

1 pk1.Name

```
Create a Pokemon object named "pk1"
```

Name can be inferred using .Name directive

```
1 pk1.whats_your_name()
```

My name is Pikachu!

```
1 pk1.attack()
Electric attack! Zap!!
```

Calling each function within the class prints the intended statements

Python Classes: super() function

Parent class

```
class linearRegression(torch.nn.Module):
    def __init__(self, inputSize, outputSize):
        [super(linearRegression, self).__init__()]
        self.linear = torch.nn.Linear(inputSize, outputSize)

def forward(self, x):
    out = self.linear(x)
    return out
Initializing the parent class (torch.nn.Module)
allows us to use attributes/methods from
nn.Module - e.g. nn.Linear()
```

More on Python classes: http://introtopython.org/classes.html

PyTorch Tensors

PyTorch Tensors

Main data structure for PyTorch

Like NumPy arrays, but optimized for machine learning

- Can be processed by both CPU and GPU
- Optimized for automatic differentiation (auto-grad)

Three main attributes

- shape dimensions of array
- datatype form of each entry (float, int, etc)
- device CPU or cuda (GPU)

PyTorch Tensors vs NumPy Arrays

Creating a NumPy array

Creating a torch tensor

NumPy Array -> PyTorch Tensor

PyTorch Tensor -> NumPy Array

```
array1 = np.array([1,2,3,4])
 print(array1, type(array1))
[1 2 3 4] <class 'numpy.ndarray'>
 1 tensor1 = torch.tensor([1,2,3,4])
 2 print(tensor1, type(tensor1))
tensor([1, 2, 3, 4]) <class 'torch.Tensor'>
 1 array1_torch = torch.from_numpy(array1)
 2 print(array1 torch, type(array1 torch))
tensor([1, 2, 3, 4], dtype=torch.int32) <class 'torch.Tensor'>
 1 tensor1_numpy = tensor1.numpy()
 2 print(tensor1 numpy, type(tensor1 numpy))
[1 2 3 4] <class 'numpy.ndarray'>
```

More on Numpy arrays vs torch tensors: https://rickwierenga.com/blog/machine%20learning/numpy-vs-pytorch-linalg.html

Handling Torch Tensors

Moving tensors to CPU

.cpu()

cpu

1 tensor1_cpu = tensor1.cpu()

cpu

1 tensor1_gpu = tensor1.cuda()
2 print(tensor1_gpu.device)

cuda:0

Disabling gradient calculation

torch.no_grad()

1 tensor1_gpu = tensor1.cuda()
2 print(tensor1_gpu.device)

cuda:0

1 with torch.no_grad():
2 predicted = model(torch.from numpy(x train)).numpy()

(useful when you just want to inspect the values inside tensors)