La evolución del stack de Internet: IPv6 y QUIC

Carlos M. Martínez

@CagnazzoEng

Junio 2020

Acerca de mi

Gerente de Tecnología en <u>LACNIC</u>

- IPv6, RPKI, DNS, DNSSEC, Security

Antes:

- 15 años en operación de un ISP

Además:

- Comité de Programa de <u>LACNOG</u> (Latin American and Caribbean Network Operators Group)
- Ceremonias de firma de la raíz del DNS (KSK)

Acerca de LACNIC

El stack de Internet

- Capas físicas/enlace heterogéneas
- Capa de red best effort basada en datagramas
- Transporte y aplicaciones sobre ellas

El stack de Internet

Fig. 1. Typical packet switching network.

Estándares, estándares...

IP

IPv4:

- direcciones de 32 bits
- TTL
- bloque fijo de 20 bytes más un bloque de largo variable de opciones
- fragmentación salto a salto posible
 - cualquier nodo intermedio puede fragmentar

UDP

UDP

- servicio de datagramas
 (paquetes individuales) sin garantías de entrega u orden
- puerto de origen y destino
- largo de datagrama
- checksum

TCP

TCP

- entrega confiable y ordenada
- números de secuencia
- ventanas de retransmisión
- slow start
- three-way handshake
 - 2 RTT antes de poder transmitir información útil

Problemas en el stack actual

IP:

- Espacio de direccionamiento (agotamiento de IPv4)

TCP:

- SSL por conexión (múltiples negociaciones de cripto)
- Control de flujo asociado al concepto de slow start vinculado a la congestión
- No integrado con protocolos de capa superior (falta de *pipelining*)

Evolución en capa de red : IPv6

Un poco de historia:

- Cerca de 1994 ya se advierte el problema del posible agotamiento de IPv4
- Necesidad de un nuevo protocolo
- Se analizaron diferentes alternativas, lo que hoy conocemos como IPv6 fue la propuesta "ganadora" de este proceso

Agotamiento de IPv4

¡Situación ya percibida en 1994!

Medidas paliativas:

- eliminación del "classful addressing", introducción del concepto de máscara de red o largo de prefijo
- introducción del Network Address Translation o NAT
 - compartir direcciones públicas entre múltiples dispositivos
- introducción del encabezado "Host:" en HTTP 1.1
 - compartir la misma dirección pública en varios sitios web

IPv6: Evolución de la capa de red

IPv6

Encabezado:

- simplificado con respecto a IPv4
- soporte de *encabezados de extensión*

IPv6: Direcciones

Notación:

- cada dígito representa 4 bits
- cada grupo 16 bits
- los ceros consecutivos se pueden omitir
- los ceros a la izquierda también se omiten

IPv6: Scope de las direcciones

- Las direcciones en IPv6 tienen scopes:
 - Link local
 - Solo válidas en una misma LAN
 - Los routers no las reenvian
 - Global Unicast
 - Ruteables
 - ULAs*
 - Multicast

IPv6: Encabezados de extensión

Encabezados de extensión:

- end to end
- hop by hop

IPv6: ICMPv6

Protocolo de control para IPv6, resumiendo las funcionalidades de:

- ICMP
- IGMP
- ARP

Además agrega funcionalidades:

- Autoconfiguración sin estado

IPv6: Neighbor Discovery

Descubrimiento de direcciones de capa de enlace

- Determina la dirección MAC de los vecinos del mismo enlace
- Reemplaza al protocolo ARP utilizando multicast
- El host envía un mensaje NS con su dirección MAC y pregunta la MAC del vecino

IPv6: Neighbor Discovery

Router discovery:

IPv6: Autoconfiguración de interfaces

- Mecanismo que permite atribuir direcciones unicast a los nodos
 - sin necesidad de realizar configuraciones manuales.
 - sin utilizar servidores adicionales.
 - con una configuración mínima de los routers.

- Genera direcciones IP a partir de información enviada por los routers y datos locales como la dirección MAC
- Genera una dirección para cada prefijo informado en los mensajes RA

QUIC: Evolución de la capa de transporte

QUIC: Evolución de la capa de transporte

Capa de transporte:

- Modelo de servicio entre aplicaciones y la capa de red
- "Confiable y ordenado" vs "No confiable"

Un poco de historia:

- Experimento de Google ("Google QUIC")
- Ahorrar tiempos de negociación SSL
- Incrementar performance a través de adaptar el control de flujo a la realidad de las redes de hoy

HTTP 1.1: Hypertext Transport Protocol

HTTP/2

QUIC

- Quick UDP Internet Connections
- HTTP sobre QUIC

- QUIC es:
 - cifrado por defecto, multiplexa conexiones, no sufre de NAT, basado en UDP (0-RTT connection establishment)

QUIC: Quick UDP Internet Connections

¿Por qué usar UDP?:

- stack ossification**
- kernel space vs. user space
- no hay 3-way handshake
- Criptografía embebida:
 - TLS 1.3
 - 0 RTT handshake

QUIC

Establecimiento de conexiones:

- 0 RTT a un servidor "ya conocido"
- 1 RTT si las claves criptográficas no son recientes
- 2 RTT si la versión de QUIC debe ser negociada

Luego:

 Los pedidos / respuestas de HTTP fluyen dentro de la conexión QUIC

HTTP sobre QUIC

QUIC

Funcionalidades esperadas:

- Relativa facilidad para el despliegue y posterior evolución
- Bajas latencias en el establecimiento de las conexiones
- Streaming
- Mejores características de recuperación y mayor flexibilidad para implementar control de congestión
- Resistencia al NAT-Rebinding
- Multipath para mayor resiliencia y balanceo de carga

QUIC

- El uso de UDP como base permite el despliegue pasando por las middleboxes actuales y permite la implementación a nivel usuario
- Negociación de versiones permite la evolución paulatina del protocolo
- Cifrado incluso hasta en los encabezados
 - problema en potencia para los operadores de red

Conclusiones

Después de casi 40 años del stack TCP/IP, estamos ante la necesidad de evolucionar el mismo.

En capa de red, IPv6 nos permite acceder a direcciones de 128 bits y un procesamiento simplificado de encabezados.

En la capa de transporte QUIC incorpora años de lecciones aprendidas y una serie de optimizaciones y mejoras de seguridad.

¡Muchas gracias por su atención!

¿Preguntas?

¡Muchas gracias por su atención!