FYS-MEK 1110 / Vår 2018 / Ukesoppgaver #4 (13.-16.2.)

Test deg selv: (Disse oppgavene bør du gjøre hjemme før du kommer på gruppetimen.)

- T1. Et tog kjører med konstant hastighet på 200 km/t gjennom en 90° sving som er del av en sirkel med radius R.
 - a. Finn et uttrykk for akselerasjonen til toget.
 - b. Hvor stor må R minst være slik at akselerasjonen er mindre enn 0.1~g, hvor $g=9.8~\mathrm{m/s^2}$?
 - c. Hvor mye tid bruker toget for å kjøre gjennom svingen?
- T2. Jordens radius er R=6378 km. Du står på ekvator.
 - a. Hva er din hastighet gjennom verdensrommet på grunn av jordens rotasjon?
 - b. Hvor stor er din akselerasjon på grunn av rotasjonen? Hvor stor er denne i forhold til tyngdeakselerasjonen g?
- T3. Du sitter på en karusell og beveger deg i en horisontal sirkel. Setet ditt henger i en 4m lang kjede som er festet på en 3m lang horisontal stang, som vist i figuren. Massen til kjeden er neglisjerbar i forhold til din masse. Mens karusellen roterer med konstant vinkelhastighet er vinkelen mellom kjeden og vertikalen 30°. Hva er vinkelhastigheten?

Gruppeoppgaver: (Disse oppgaver skal du jobbe med i gruppetimen.)

- G1. Ditt romskip er bygget som et stort roterende hjul for å simulere tyngdekraften. Radius på hjulet er $R=50~\mathrm{m}$.
 - a. Hvor mange omdreiinger per minutt kreves for å simulere tyngdekraften på jorden, $g=9.8~{\rm m/s^2}$?
 - b. Hva er forskjellen i akselerasjon mellom dine føtter og ditt hode hvis du er 2m høy?
- G2. En masse m=5 kg er festet til en stav med to snorer som vist i figuren. Når systemet roterer med vinkelhastighet ω så er snordraget i den øvre snoren $F_1=100$ N.
 - a. Hva er snordraget F_2 i den nedre snoren?
 - b. Finn perioden T til rotasjonsbevegelsen.
 - c. Finn vinkelhastigheten ω i tilfelle at snordraget i den nedre snoren er $F_2=0$.
 - d. Hva skjer når vinkelhastigheten er lavere enn i oppgave c?

Fasit:

- T1. b) 3.1 km c) 89 s
- T2. a) 463.8 m/s b) 1/290 g
- T3. 1.06 rad/s
- G1. a) 4.23 omdr./min. b) $a_F=9.81 \text{ m/s}^2$, $a_H=9.42 \text{ m/s}^2$
- G2. a) $38.7 \, \text{N}$ b) $1.89 \, \text{s}$ c) $2.21 \, \text{rad/s}$