4. (25%) This problem is an example of *universal hashing*, a strategy for picking hash functions for a hash table randomly so that no input always exhibits bad hashing behavior.

Let p be a prime number. I want to hash pairs of numbers (x, y), where x and y are always between 0 and p-1 inclusive. I decide to use a chained hash table with hash function

$$h_{a,b}(x,y) = (ax + by) \bmod p$$

where a and b also lie between 0 and p-1.

(a) Suppose that my a and b are fixed, and that you've discovered what they are (perhaps by hacking into my computer). Describe how to generate p distinct input pairs (x_i, y_i) for which $h_{a,b}(x_i, y_i)$ yields the same value. That is, all the inputs (x_i, y_i) will hash to the same slot of my table.

(Hint: for any c, $1 \le c < p$, and every i, $0 \le i < p$, there exists exactly one j, $0 \le j < p$ for which $cj \equiv i \pmod{p}$.)

Proof. First, note that for any given $p, z \in \{0, 1, 2, \dots, p-1\} = \mathbb{Z}_p$, we have a unique choice of $q \in \mathbb{Z}_p$ such that p+q=z. Further, we know that for any given p, the q described above always exists. That is, to any number in \mathbb{Z}_p , we can always add another, unique number to construct any other number in \mathbb{Z}_p . Therefore, because we want to construct a series of pairs of values $(x_1, y_1), (x_2, y_2) \dots (x_p, y_p)$ such that they all hash to the same value, we must first choose some value in $\{0, 1, 2, \dots, p-1\} = \mathbb{Z}_p$ that we want every value to hash to. Given that sum value, say z, we can allow x_i to vary over each value in \mathbb{Z}_p , in total, p values. Given that we know both a, b, we know the value for each ax_i , so we wish to construct by_i such that $by_i = z - ax_i \mod p$. Given that this by_i is unique, and b is already fixed, we can simply choose the unique y_i as described in the hint such that $by_i \mod p = (z - ax_i) \mod p$. Therefore, we have now constructed p different pairs (x_i, y_i) such that $(ax_i + by_i) \mod p = z$, $i = 1, 2, \dots p$.

(b) To defend against your malicious hackery, I have decided not to fix a and b once and for all, but rather to choose them randomly every time I instantiate my hash table class. Each value will be chosen uniformly at random (with replacement) from the range 0...p-1. Fix two non-identical inputs (x,y) and (x',y'). (They may have the same x or y values, but not both.) For how many distinct pairs (a,b) will these two inputs hash to the same slot? (Use the hint from part (a)).

Proof. Given any (x,y) and (x',y') we wish to find the number of pairs (a,b) such that:

$$(ax + by) \mod p = (ax' + by') \mod p$$
 and
 $(ax + by) \mod p - (ax' + by') \mod p = 0$

given that $a, b, x, y, x', y' \in \mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$. This is the same as the following expression:

$$(ax + by) - (ax' + by') = mp$$

where $m \in \mathbb{Z}$ because mp is congruent to $0 \mod p \ \forall m \in \mathbb{Z}$. Therefore, we can say:

$$a(x - x') + b(y - y') = mp$$
$$= 0 \mod r$$

Based on the initial assumptions, we are left with 2 cases:

i. x = x' or y = y'.

Without lose of generality, assume that x = x' and $y \neq y'$. In this case, from the previous expression, we have:

$$a(0) + b(y - y') = 0 \bmod p$$

Because a(0) = 0, we must have that:b(y - y') = 0. $y - y' \neq 0$ is fixed, therefore, by the hint in part (a), we must choose the unique b such that b(y - y') = 0. Therefore, there can only be a single choice for b, but p choices for a, because a is trivial. Therefore, there are trivially p choices for (a, b), as a varies over all of \mathbb{Z}_p and b is fixed.

ii. $x \neq x'$ and $y \neq y'$. Let x - x' = q and y - y' = r. In this case, we have:

$$a(x - x') + b(y - y') =$$
$$a(q) + b(r) = 0 \mod p$$

By the hint in (a), we know that because $q, r \neq 0$ are fixed, the equation $aq = z \mod p$ has exactly one solution for every element $z \in \mathbb{Z}_p$. Similarly, for every $z \in \mathbb{Z}_p$, there exists exactly one $-z \in \mathbb{Z}_p$ such that -z + z = 0. Therefore, as a is allowed to vary, over the entire set, b must be chosen uniquely such that $aq + br = 0 \mod p$ holds. Because there are p possible choices for a (i.e. every element in \mathbb{Z}_p), there are p unique combinations (a, b) such that $(ax + by) \mod p = (ax' + by') \mod p$.

(c) If I choose each of a and b uniformly at random from $0 \dots p-1$, what is the probability that (x,y) and (x',y') will hash to the same value? We have a $\frac{1}{p}$ chance that (x,y) and (x',y') will hash to the same value.

Proof. Notice that for $\{0, 1, 2, \ldots, p-1\}$ there are p^2 ordered pairs (a, b) that can be formed. From **(b)**, we know that there are p unique pairs (a, b) such that $(ax + by) \mod p = (ax' + by') \mod p$. Therefore, the probability that we choose a, b randomly from $\{0, 1, 2, \ldots, p-1\}$ such that (x, y) and (x', y') hash to the same values is given by:

$$P[(ax + by) \bmod p = (ax' + by') \bmod p] = \frac{p}{p^2} = \frac{1}{p}.$$

(d) Given an arbitrary set of n distinct inputs (x_i, y_i) , what is the expected number (over my random choices of a and b) of pairs i, j, i < j, for which $h_{a,b}(x_i, y_i) = h_{a,b}(x_j, y_j)$?

(*Hint*: use linearity of expectation!)

Proof. We know from (c) that the probability of two pairs colliding is $\frac{1}{p}$. Using the indicator function

$$\chi_{si} = \begin{cases} 1 \text{ if key } i \text{ hashes to slot } s \\ 0 \text{ otherwise} \end{cases}$$

Therefore, we can say that the expected value of $\mathbb{E}(\chi_{si}) = \frac{1}{p}$. Therefore, for n points, the expected number of points that that hash to a slot s (i.e. $h_{a,b}(x_i, y_i) \mod p = s$) is given by:

$$\mathbb{E}\left(\sum_{i=1}^{n} \chi_{si}\right) = \sum_{i=1}^{n} \mathbb{E}(\chi_{si}) = \sum_{i=1}^{n} \frac{1}{p} = \frac{n}{p}$$

Note that this is another way of thinking about the probability that two pairs of points (x_i, y_i) and (x_j, y_j) will collide, because $\frac{n}{p}$ is the expected value of pairs hashed to any slot in the table. \square