Guide to Computer Forensics and Investigations Sixth Edition

Chapter 10

Virtual Machine Forensics, Live Acquisitions, and Network Forensics

Objectives

- Explain standard procedures for conducting forensic analysis of virtual machines
- Describe the process of a live acquisition
- Explain network intrusions and unauthorized access
- Describe standard procedures in network forensics and network-monitoring tools

An Overview of Virtual Machine Forensics (1 of 2)

- Virtual machines are common for both personal and business use
- Investigators need to know how to analyze them and use them to analyze other suspect drives
- The software that runs virtual machines is called a "hypervisor"
- Two types of **hypervisor**:
 - Type 1 loads on physical hardware and doesn't require a separate OS
 - Type 2 rests on top of an existing OS

- Type 2 hypervisors are usually the ones you find loaded on a suspect machine
- Type 1 hypervisors are typically loaded on servers or workstations with a lot of RAM and storage

Type 2 Hypervisors (1 of 4)

- Before installing a type 2 hypervisor, enable virtualization in the BIOS before attempting to create a VM
- Virtualization Technology (VT) Intel's CPU design for security and performance enhancements that enable the BIOS to support virtualization
- Virtualization Machine Extensions (VMX) instruction sets created for Intel processors to handle virtualization

Type 2 Hypervisors (2 of 4)

- Most widely used type 2 hypervisors:
 - Parallels Desktop created for Macintosh users who also use Windows applications
 - KVM (Kernel-based Virtual Machine) for Linux OS
 - Microsoft Hyper-V new hypervisor built into Windows 10
 - VMware Workstation and Player can be installed on almost any device, including tablets
 - Can install Microsoft Hyper-V Server on it
 - Can create encrypted VMs
 - Can support up to 16 CPUs, 8 TB storage, and 20 VM

Type 2 Hypervisors (3 of 4)

Figure 10-2 The default location of VMware Workstation Player files

Source: VMware, www.vmware.com

Type 2 Hypervisors (4 of 4)

- Most widely used type 2 hypervisors (cont'd):
 - VirtualBox supports all Windows and Linux OSs as well as Macintosh and Solaris
 - Allows selecting types associated with other applications, such as VMware VMDK type or the Parallels HDD type
- Type 2 hypervisors come with templates for different OSs

Conducting an Investigation with Type 2 Hypervisors (1 of 9)

- Begin by acquiring a forensic image of the host computer as well as network logs
 - By linking the VM's IP address to log files, you may determine what Web sites the VM accessed
- To detect whether a VM is on a host computer:
 - Look in the Users or Documents folder (in Windows) or user directories (in Linux)
 - Check the host's Registry for clues that VMs have been installed or uninstalled
 - Existence of a virtual network adapter

Conducting an Investigation with Type 2 Hypervisors (2 of 9)

Figure 10-7 Ethernet Connections on a Windows 10 computer

Conducting an Investigation with Type 2 Hypervisors (3 of 9)

- In addition to searching for network adapters, you need to determine whether
 USB drives have been attached to the host
 - They could have live VMs running on them
- A VM can also be nested inside other VMs on the host machine or a USB drive
 - Some newer Windows systems log when USB drives are attached
 - Search the Windows Registry or the system log files

Conducting an Investigation with Type 2 Hypervisors (4 of 9)

Figure 10-9 A VM nested inside another VM

Source: VMware, www.vmware.com

Conducting an Investigation with Type 2 Hypervisors (5 of 9)

- Follow a consistent procedure:
 - 1. Image the host machine
 - 2. Locate the virtualization software and VMs, using information learned about file extensions and network adapters
 - 3. Export from the host machine all files associated with VMs
 - 4. Record the hash values of associated files
 - 5. Open a VM as an image file in forensics software and create a forensic image or mount the VM as a drive

Conducting an Investigation with Type 2 Hypervisors (6 of 9)

- Live acquisitions of VMs are often necessary
 - They include all snapshots, which records the state of a VM at a particular moment (records only changes in state, not a complete backup)
- When acquiring an image of a VM file, snapshots might not be included
 - In this case, you have only the original VM
- Doing live acquisitions of VMs is important to make sure snapshots are incorporated

Conducting an Investigation with Type 2 Hypervisors (7 of 9)

- Follow the steps in the activity on page 426 to see how to examine your own system for evidence of a VM
- Follow the steps starting on page 427 to acquire an image of a VM

Conducting an Investigation with Type 2 Hypervisors (8 of 9)

- Other VM Examination Methods
 - FTK Imager, Magnet AXIOM and OSForensics can mount VMs as an external drive
 - By mounting a VM as a drive, you can make it behave more like a physical computer
 - Allows you to use the same standard examination procedures for a static hard drive
 - Make a copy of a VM's forensic image and open the copy while it's running
 - Start it as a live VM so that forensics software can be used to search for clues

Conducting an Investigation with Type 2 Hypervisors (9 of 9)

- Using VMs as Forensic Tools
 - Investigators can use VMs to run forensics tools stored on USB drives
- Follow steps starting on page 430 to see how to set up a VM on a USB drive

Working with Type 1 Hypervisors (1 of 2)

- This section is meant to help you understand the impact Type 1 hypervisors have on forensic investigations
 - Having a good working relationship with network administrators and lead technicians can be helpful
- Type 1 hypervisors are installed directly on hardware
 - Can be installed on a VM for testing purposes
 - Capability is limited only by the amount of available RAM, storage, and throughput

Working with Type 1 Hypervisors (2 of 2)

- Common type 1 hypervisors:
 - VMware vSphere
 - Microsoft Hyper-V 2016
 - XenProject XenServer
 - IBM PowerVM
 - Parallels Desktop for Mac
- Follow steps starting on page 433 to install XenServer as a VM in VirtualBox

Performing Live Acquisitions (1 of 2)

- Live acquisitions are especially useful when you're dealing with active network intrusions or attacks
- Live acquisitions done before taking a system offline are also becoming a necessity
 - Attacks might leave footprints only in running processes or RAM
- Live acquisitions don't follow typical forensics procedures
- Order of volatility (OOV)
 - How long a piece of information lasts on a system

Performing Live Acquisitions (2 of 2)

- Steps
 - Create or download a bootable forensic CD or USB drive
 - Make sure you keep a log of all your actions
 - A network drive is ideal as a place to send the information you collect
 - Copy the physical memory (RAM)
 - The next step varies, depending on the incident you're investigating
 - Be sure to get a forensic digital hash value of all files you recover during the live acquisition

Performing a Live Acquisition in Windows

- Several tools are available to capture the RAM.
 - Mandiant Memoryze
 - Belkasoft RamCapturer
 - Kali Linux (updated version of BackTrack)
- GUI tools are easy to use
 - But they often require a lot of system resources
 - Might get false readings in Windows OSs
- Command-line tools give you more control

Network Forensics Overview

Network forensics

- Process of collecting and analyzing raw network data and tracking network traffic
 - To ascertain how an attack was carried out or how an event occurred on a network
- Intruders leave a trail behind
 - Knowing your network's typical traffic patterns is important in spotting variations in network traffic
- Can also help you determine whether a network is truly under attack

The Need for Established Procedures

- Network forensics examiners must establish standard procedures for how to acquire data after an attack or intrusion
 - Essential to ensure that all compromised systems have been found
- Procedures must be based on an organization's needs and complement network infrastructure
- NIST created "Guide to Integrating Forensic Techniques into Incident Response" to address these needs

Securing a Network (1 of 2)

Layered network defense strategy

 Sets up layers of protection to hide the most valuable data at the innermost part of the network

Defense in depth (DiD)

- Similar approach developed by the NSA
- Modes of protection
 - People
 - Technology
 - Operations

Securing a Network (2 of 2)

- Testing networks is as important as testing servers
- You need to be up to date on the latest methods intruders use to infiltrate networks
 - As well as methods internal employees use to sabotage networks
- Small companies of fewer than 10 employees often don't consider security precautions against internal threats necessary
 - Can be more susceptible to problems caused by employees revealing proprietary information

Developing Procedures for Network Forensics (1 of 2)

- Network forensics can be a long, tedious process
- Standard procedure that is often used:
 - Always use a standard installation image for systems on a network
 - Fix any vulnerability after an attack
 - Attempt to retrieve all volatile data
 - Acquire all compromised drives
 - Compare files on the forensic image to the original installation image

Developing Procedures for Network Forensics (2 of 2)

- In digital forensics
 - You can work from the image to find most of the deleted or hidden files and partitions
- In network forensics
 - You have to restore drives to understand attack

Reviewing Network Logs

- Network logs record ingoing and outgoing traffic
 - Network servers
 - Routers
 - Firewalls
- Tcpdump and Wireshark tools for examining network traffic
 - Can generate top 10 lists
 - Can identify patterns

Using Network Tools

- Variety of tools
 - Splunk
 - Spiceworks
 - Nagios
 - Cacti

Using Packet Analyzers (1 of 5)

Packet analyzers

- Devices or software that monitor network traffic
- Most work at layer 2 or 3 of the OSI model
- Most tools follow the Pcap (packet capture) format
- Some packets can be identified by examining the flags in their TCP headers
- Tools
 - Tcpdump
 - Tethereal

Using Packet Analyzers (2 of 5)

Figure 10-15 A TCP header

Using Packet Analyzers (3 of 5)

- Tools (cont'd)
 - Tcpslice
 - Tcpreplay
 - Etherape
 - Netdude
 - Argus
 - Wireshark
 - Follow the steps starting on page 442 to see how the Wireshark tool works

Using Packet Analyzers (4 of 5)

Figure 10-16 The opening window in Wireshark

Source: Wireshark Foundation, www.wireshark.org

Using Packet Analyzers (5 of 5)

Figure 10-17 Following a UDP stream

Source: Wireshark Foundation, www.wireshark.org

Investigating Virtual Networks

- Virtual switch is a little different from a physical switch
 - There's no spanning tree between virtual switches
- Additional complications
 - Hypervisors can assign MAC addresses to virtual devices
 - Devices can have the same MAC address on different virtual networks
 - Cloud service providers host networks for several to hundreds of companies
- Tools
 - Wireshark
 - Network Miner

Examining the Honeynet Project (1 of 2)

- The Honeynet Project was developed to make information widely available in an attempt to thwart Internet and network attackers
 - Provides information about attacks methods and how to protect against them
- Objectives are awareness, information, and tools
- Distributed denial-of-service (DDoS) attacks
 - A major threat that may go through other organizations' networks, not just yours
 - Hundreds or even thousands of machines (zombies) can be used

Examining the Honeynet Project (2 of 2)

Zero day attacks

- Another major threat
- Attackers look for holes in networks and OSs and exploit these weaknesses before patches are available

Honeypot

Normal looking computer that lures attackers to it

Honeywalls

 Monitor what's happening to honeypots on your network and record what attackers are doing

Summary (1 of 3)

- Virtual machines are used extensively in organizations and are a common part of forensic investigations
- There are two types of hypervisors for running virtual machines: Type 1 and Type 2
- Virtualization Technology is Intel's CPU design for security and performance enhancements that enable the BIOS to support virtualization
- Forensic procedures for VMs start by creating an image of the host machine, and then exporting files associated with a VM

Summary (2 of 3)

- Live acquisitions are necessary to retrieve volatile items, such as RAM and running processes
- Network forensics is the process of collecting and analyzing raw network data and systematically tracking network traffic to ascertain how an attack took place
- Steps must be taken to harden networks before a security breach happens
- Being able to spot variations in network traffic can help you track intrusions

Summary (3 of 3)

- Several tools are available for monitoring network traffic, such as packet analyzers and honeypots
- The Honeynet Project is designed to help people learn the latest intrusion techniques that attackers are using

