Triple Integals.

Let D be a region in 123 and f a function of three variables: w = f(x,y,z)

Subdivide the region D in small boxes

(x,x,y,z,z,z) The volume of this box is DV, notice that now we have 6 options to compute DV.

DU= DXDYDZ =DxDf DA - Dy Dx Dz = DY D 7 Dx = OZDXDY - 75920x

Pick a point in this box, say (xk, yk, Zk), then evaluate the function: f(xk, yk, zk), now, we form the product: \$ (Xk, yk, zk) DV

Finally, we form the sum of these products over all the boxes that lie inside D

> f(x*, y*, z*) DV, at the limit we obtain what we call the triple integral.

Det Triple integral of f over D:

 $\iiint_{D} f(x,y,t) dV = \lim_{\Delta x \to 0} \sum_{k=1}^{n} f(x_{k}^{*}, y_{k}^{*}, z_{k}^{*}) \Delta V$

Finding limits of integration.

Let D in 1123 be a region defined as follows:

$$D = \left\{ (x_1 y_1 \pm) \mid \alpha \leq x \leq b, \quad g(x) \leq y \leq h(x), \quad G(xy) \leq \xi \leq H(x,y) \right\}$$

fix x, then by the general slicing principle $\iiint_D f(x_iy_i \pm) dV = \int_a^b V(x) dx$

now, lets compute V(x):

V(x):

V(x) is the volume vander the function f(x,y,z) (x-tix)

over the 2-dimensional region defined by y and z.

over the 2-dimensional volume
$$V(x) = \int_{0}^{h(x)} \int_{0}^{h(x)} f(x,y) dx dy$$

$$\int_{0}^{h(x)} \int_{0}^{h(x)} f(x,y) dx dy$$

$$\therefore \iiint_{D} f(x_1y_1 \neq 1) dV = \int_{a}^{b} \int_{g(x)}^{h(x)} \int_{G(x_1y_1)}^{H(x_1y_1)} d\chi dx.$$

Other orders of integration are often possible, and the order we choose will depend on the specific problem we want to solve.

where D is the region bounded by the coordinate planes and the plane x+y+z=1

Lets integrate first with respect to \$ 3, then we trace a line parallel to the z-axis and see where the line enters the region (this will be the lower limit of integration) and then see where the line leaves the region Lthis will be the upper limit of integration).

So far, we have:

So far, we have.
$$\iint_{R} z \, dv = \iint_{R} \int_{0}^{1-x-y} z \, dz \, dA$$

X+4+2=1 => 2=1-x-y To compute the other limits of integration, we project the region D into the xy-plane.

Example continues ...

projection of D into the xy-plane.

$$= \int_{0}^{1} \int_{0}^{1-x} \frac{z^{2}}{2} \Big|_{0}^{1-x-y} dy dx = \int_{0}^{1} \int_{0}^{1-x} \frac{(1-x-y)^{2}}{2} dy dx = \int_{0}^{1} \frac{(1-x-y)^{2}}{2} dy dx = \int_{0}$$

$$\int \frac{(1-x-y)^2}{2} dy = -\int \frac{u^2}{2} du = -\frac{u^3}{6} = -\frac{(1-x-y)^3}{6}$$

Let
$$u = 1 - x - y$$

 $du = - dy$
 $-du = dy$

$$\int_{0}^{1} - \left(\frac{1-x-y}{6}\right)^{3} \int_{0}^{1-x} dx = -\frac{1}{6} \int_{0}^{1} \left[0 - \left(\frac{1-x}{6}\right)^{3}\right] dx$$

$$= \frac{1}{6} \left\{ \int_{0}^{1} (1-x)^{3} dx = \frac{1}{6} \left[-\frac{(1-x)^{4}}{4} \Big|_{0}^{1} \right] = -\frac{1}{6} \left[\frac{(1-x)^{4}}{4} \Big|_{0}^{1} \right] \right\}$$

$$=-\frac{1}{6}\left(0-\frac{1}{4}\right)=\frac{1}{24}$$

Volume of
$$D = \iiint_D 1 dv$$

 $\frac{Ex.}{Ex.}$ Find the volume of the region in the first octant bounded by the cylinder $x = 4-y^2$, and the planes y = z, x = 0, z = 0.

$$V = \iiint_D 1 dx = \int_0^2 \int_0^{4-y^2} dz dx dy$$

D:
$$\{(x_1,y_1,z) \mid 0 \le z \le y, 0 \le x \le 4 - y^2, 0 \le y \le 2\}$$

projection of D:

$$\int_{0}^{2} \int_{0}^{4-y^{2}} \frac{1}{2} \int_{0}^{4-y^{2}} dx dy = \int_{0}^{2} \int_{0}^{4-y^{2}} y dx dy$$

$$= \int_{0}^{2} yx \Big|_{0}^{4-y^{2}} dy = \int_{0}^{2} y(4-y^{2}) dy$$

$$= \int_{0}^{2} 4y - y^{3} dy = 2y^{2} - \frac{y^{4}}{4} \Big|_{0}^{2} = 8 - 4 = \frac{4}{4} \int_{0}^{4} y dx dy$$