Statistics and Machine Learning 1

Lecture 7D: Conjugate Priors

Mark Muldoon
Department of Mathematics, Alan Turing Building
University of Manchester

Week 7

Bayesian polling: the ingredients

In our polling example, k out of N people polled supported Asha and we sought to infer p the proportion of voters who support her.

The Bayesian ingredients were:

 $P(k \mid p, N)$ the likelihood,

$$P(k \mid p, N) = \frac{N!}{k! (N - k)!} p^{k} (1 - p)^{N - k}.$$

- P(p) the prior on the parameter. We chose an uninformative, uniform prior which turns out to be a Beta distribution with $\alpha=\beta=1$.
- P(D) the prior over the data. Determined by the likelihood and the prior on the parameter: we'll compute it soon.
- $P(p \mid D)$ the posterior distribution over p. We'll compute this too.

The Beta distribution, a refresher

The density of the Beta distribution depends on two positive *shape* parameters, α and β , and is given by

$$f_{\alpha\beta}(x) = \left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right) x^{\alpha-1} (1-x)^{\beta-1}.$$

where $\Gamma(z)$ is a function that, among other properties, satisfies $\Gamma(n)=(n-1)!$ for positive integers n. The mean of the Beta distribution is $\mu=\alpha/(\alpha+\beta)$.

A useful integral

The Beta distribution is a properly-normalised probability distribution, so:

$$1 = \int_0^1 f_{\alpha\beta}(x) dx$$

$$= \int_0^1 \left(\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\right) x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$

$$= \left(\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\right) \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$

which implies the following useful result:

$$\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx.$$

Binomial Bayes: priors on the data

To compute the prior on the data, we need to do the following integral

$$P(k) = \int_0^1 P(k \mid p, N) f_{\alpha\beta}(p) dp$$

$$= \int_0^1 \left(\frac{N!}{k! (N-k)!} p^k (1-p)^{N-k} \right) \left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1} \right) dp$$

$$= \frac{N!}{k! (N-k)!} \left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \right) \int_0^1 p^{k+\alpha-1} (1-p)^{N-k+\beta-1} dp$$

Note that, except for the constants out front, this looks like an integral over a Beta distribution with shape parameters

$$\alpha' = k + \alpha$$
 and $\beta' = N - k + \beta$,

which implies

$$P(k) = \frac{N!}{k! (N-k)!} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(k+\alpha)\Gamma(N-k+\beta)}{\Gamma(N+\alpha+\beta)}$$

Binomial Bayes: the posterior distribution

Using Bayes' Theorem to combine all the results from the previous slides produces

$$P(p \mid N, k, \alpha, \beta) = \frac{\Gamma(N + \alpha + \beta)}{\Gamma(k + \alpha)\Gamma(N - k + \beta)} p^{k + \alpha - 1} (1 - p)^{N - k + \beta - 1}$$

That is, the posterior is a Beta distribution! This the main reason to use a Beta distribution for the prior on p.

For this reason, the Beta distribution is called the *conjugate prior* to the Binomial likelihood. There are a handful of commonly-used conjugate pairs of distributions:

Likelihood	Prior	Posterior
Binomial	Beta	Beta
Gaussian	Gaussian	Gaussian
Gaussian	Gamma	Gamma