Consideramos um problema de minimização da função objetivo

$$F(x)=F(x_1,x_2,...,x_n)=\sum_{i=1}^n f_i(x_i)$$
 Jobjetive aditive

observando restricões

$$\sum x_i = A$$

 \mathbf{e}

$$x_i \ge 0, \quad i=1,...,n$$

$$\min F(x) = \min \quad \min \quad \dots \quad \min \quad F(x)$$

$$x \in \Omega \quad x_1 \in \Omega_1 \quad x_2 \in \Omega_2(x_1) \quad x_n \in \Omega_n(x_1, \dots, x_{n-1})$$

Principio de Otimalidade de Bellman

Independentemente do estado de sistema ou processo ate passo presente, é necessário escolher uma solução para passo próximo, que junto com soluções para todos os passos posteriores, pode garantir um ganho máximo nos passos restantes, incluindo o passo presente.

Admitimos que a variável n tem o valor x_n . Então, o recurso restante

$$A(x_n) = x_1 + x_2 + \dots + x_{n-1}$$

deve ser distribuído para ter um valor mínimo para $\sum_{i=1}^{n-1} f_i(x_i)$.

Admitimos que

$$\min \sum_{i=1}^{n-1} f_i(x_i) = h_{n-1}(A - x_n).$$

Então, é possível escrever

$$h_{n-1}(A-x_n)+f_n(x_n)$$
. C $\forall x \in C$ $\forall x \in C$

É natural que escolha é ótima se minimizamos a recursividade

$$h_n(A) = \min \{h_{n-1}(A-x_n) + f_n(x_n)\}.$$

Esquema de Cálculos (Marcha Direta)

O esquema permite construir uma sequência das funções

$$h_k(X), k=1,...,n.$$

A função $h_{k-1}(X)$ deve servir para a construção da $h_k(X)$:

$$h_k(X) = \min \{h_{k-1}(X-x_k) + f_k(x_k)\}.$$

A essência dessa recursividade é seguinte: o valor mínimo da função objetivo é $h_k(X)$, para a alocação de volume de recurso X que deve ser distribuído entre k variáveis.

Esquema de Cálculos (Marcha Direta)

O esquema permite construir uma sequência das funções:

$$h_1(X) = f_1(X);$$
 $h_2(X) = \min \{h_1(X-x_2) + f_2(x_2)\};$
 \dots
 $h_k(X) = \min \{h_{k-1}(X-x_k) + f_k(x_k)\};$
 \dots
 $h_n(X) = h_n(A) = \min \{h_{n-1}(X-x_n) + f_n(x_n)\}.$

Esquema de Cálculos (Marcha Direta)

Discretização de X e todas as variáveis x_k , k=1,...,n: $0, \Delta, 2\Delta, ..., A$.

Para o primeiro passo calculamos o conjunto dos valores

$$h_1(X) = f_1(X)$$

para todos os $0, \Delta, 2\Delta, ..., A$ que são permissíveis.

Esquema de Cálculos (Marcha Direta)

Para o <u>segundo passo</u> calculamos o conjunto dos valores:

$$h_2(X) = h_1(X - 0) + f_2(0);$$

 $h_2(X) = h_1(X - \Delta) + f_2(\Delta);$
 $h_2(X) = h_1(X - 2\Delta) + f_2(2\Delta);$

. . .

$$h_2(X) = h_1(\Delta) + f_2(X - 2\Delta);$$

 $h_2(X) = h_1(0) + f_2(X).$

Entre esses valores escolhemos $h_2(X)$ mínimo é memorizamos esse valor junto com correspondente x_2 .

Esquema de Cálculos (Marcha Direta)

Para os <u>passos k=3,...,n-1</u>, os cálculos são realizados da mesma maneira.

Para o <u>passo ultimo</u>, não é necessário considerar todos os valores $0, \Delta, 2\Delta, ..., A$. É suficiente considerar somente A.

$$h_n(A) = \min \{h_{n-1}(X-x_n) + f_n(x_n)\}.$$

De tal forma, sabemos o valor ótimo da função objetivo e correspondente valor x_{0n} .

Esquema de Cálculos (Marcha Inversa)

Sabendo x^{o_n} , é possível definir o valor ótimo de

$$h_{n-1}(A - x^{o}_{n}),$$

que permite achar x^{o}_{n-1} .

Sabendo x^{o}_{n-1} , é possível definir o valor ótimo de

$$h_{n-1}(A - x^{o}_{n} - x^{o}_{n-1}),$$

que permite achar x^{o}_{n-2} .

Esse procedimento é repetido até encontramos o valor ótimo de x^{o}_{1} .

Explicação na 32

· variavol maior primairo roduz volumo cal colo

EXEMPLO

Valores SD 08 valores min

X	<i>x</i> 1	h1(X)	<i>x</i> 2	h2(X)	x3	h3(X)
carge total						
0,0	0,0	0	0,0	0		
0,1	0,1	0,00086	0,0	0,00086		
0,2	0,2	0,00194	0,0	0,00194		
0,3	0,3	0,00324	0,0	0,00324		
0,4	0,4	0,00476	(0,1)	0,00476	ار اور م م	alpor obego
0,5	0,5	0,00651	0,1	0,00628	900-6	carsa total
0,6	0,6	0,00847	0,1	0,00803	era 0,4	carsa total
0,7	Gmex	do XI	0,1	0,00998		
0,8			0,2	0,01196		
0,9			0,3	0,01437		
1,0			0,4	0,01724		
1,1			0,5	0,02055		
1,2			(Incr o	o Xa		
1,3						
1,4						
1,5						
1,6						
1,7						
1,8					0,9	0,02958

dos CÉLCUOI

X, + X, 1,+12+/3

Consideramos um problema de minimização da função

$$F(x)=F(x_1, x_2, ..., x_n; y_1, y_2, ..., y_n) = \sum f_i(x_i, y_i)$$

observando restricoes

$$\sum x_i=A$$
,

$$\sum y_i = B$$

e

$$x_i \ge 0$$
, $i=1,...,n$; $y_i \ge 0$, $i=1,...,n$.

Esse problema gera a seguinte recursividade:

$$h_k(X, Y) = \min_{\substack{0 \le x_k \le A \ 0 \le y_k \le B}} \{h_{k-1}(X-x_k, Y-y_k) + f_k(x_k, y_k)\}.$$

"<u>Maldição de Dimensionalidade</u>"