UNIVERSIDADE FEDERAL DO AMAZONAS CIÊNCIA DA COMPUTAÇÃO

ISABELLA ALMEIDA MACÊDO DANIEL-(2225044)

LUCAS DO NASCIMENTO DA SILVA-(22250552)

LUIS FELIPE DOS SANTOS LIMA-(22250554)

RONALDO NASCIMENTO MARTINS

RELATÓRIO 10

MANAUS-AM 2024

ISABELLA ALMEIDA MACÊDO DANIEL LUCAS DO NASCIMENTO DA SILVA LUIS FELIPE DOS SANTOS LIMA RONALDO NASCIMENTO MARTINS

RELATÓRIO 10

Relatório apresentado no curso de Ciência da Computação, da Universidade Federal do Amazonas, para a obtenção de nota parcial na disciplina de Comunicação sem Fio.

Docente: Prof. Dr. Edjair de Souza Mota

Introdução

O objetivo deste experimento é medir a umidade e a temperatura ambiental no local onde ocorre a medição da qualidade da água. A relevância deste estudo reside na análise de possíveis correlações entre as condições ambientais e a qualidade da água, fornecendo insights valiosos para o monitoramento ambiental e a gestão de recursos hídricos.

Materiais e Métodos

- Sensor DHT11: Utilizado para medir a umidade e a temperatura do ambiente.
- **ESP32**: Microcontrolador utilizado para coletar dados do sensor e transmiti-los via rede.
- Protoboard e Jumpers: Para montagem do circuito.
- Resistor de 10kΩ: Usado como pull-up no pino de dados do sensor DHT11.

Software Utilizado

- Arduino IDE: Para desenvolvimento e upload do código para o ESP32.
- Bibliotecas: WiFi, WebServer, DHT.

Procedimentos

Configuração do Hardware:

- Conectar o DHT11 ao ESP32 conforme as imagens fornecidas:
 - VCC do DHT11 ao pino 3.3V do ESP32.

- $\circ~$ DATA do DHT11 ao pino GPIO21 do ESP32 com um resistor de pull-up de $10k\Omega.$
- o GND do DHT11 ao GND do ESP32.

3. Resultados

Durante a coleta de dados, os valores de temperatura e umidade foram exibidos na interface web. Os resultados foram coletados com sucesso conforme mostrado na imagem:

Parâmetro	Valor Medido
Temperatura	24°C
Umidade	16%

4. Discussão

Os resultados obtidos mostram valores de temperatura e umidade dentro de uma faixa esperada para um ambiente controlado.

Comparação com Expectativas:

- A temperatura medida de 24°C está dentro da faixa esperada (~20-30°C) para ambientes internos.
- A umidade medida de 16% está abaixo da faixa ideal (~30-50%), indicando um ambiente relativamente seco.

Possíveis Fontes de Erro:

- Calibração: A calibração inicial do sensor pode não ter sido realizada, afetando a precisão das medições.
- Condicionamento do Ambiente: Fatores como ventilação, fontes de calor próximas, ou exposição direta ao sol podem ter influenciado as medições.
- Precisão do Sensor: O sensor DHT11 tem uma precisão limitada, o que pode introduzir erros nas medições.

Conceitos Teóricos:

Temperatura e Umidade: São parâmetros ambientais críticos que podem afetar diversos processos físicos e biológicos, incluindo a qualidade da água. A análise de correlação entre esses parâmetros e a qualidade da água pode revelar padrões significativos.

Conclusão

Os principais conceitos aprendidos incluem a importância da calibração de sensores e a validação dos dados coletados. Para futuras melhorias, recomenda-se:

- Calibração do Sensor: Validar e calibrar os sensores antes do experimento.
- **Revisão do Código:** Garantir que o código esteja configurado corretamente para o tipo de sensor utilizado.
- Documentação Detalhada: Manter um registro detalhado de todas as etapas e configurações do experimento para facilitar a identificação de erros.

Referências

- MÓDULO DHT11. Manual do Sensor DHT11. Disponível em: https://cdn-shop.adafruit.com/datasheets/DHT11.pdf. Acesso em: 31 jul. 2024.
- ADAFRUIT. DHT Sensor Library. Documentação da Biblioteca DHT para Arduino. Disponível em: https://github.com/adafruit/DHT-sensor-library. Acesso em: 31 jul. 2024.
- ESPRESSIF. ESP32 Wi-Fi and Bluetooth Microcontroller. Documentação da Biblioteca WiFi e WebServer para ESP32. Disponível em: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/index.html. Acesso em: 31 jul. 2024.
- THOMAS, Peter L. Measuring Humidity and Temperature in Controlled Environments. Concepts and Methods. Journal of Environmental Measurements, vol. 45, no. 3, 2020.