Complexity of PR - An Example

Problem: Sorting incoming fish on a conveyor belt.

Assumption: Two

kind of fish:

(1) sea bass

(2) salmon

salmon

salmon

Pre-processing Step

Example

- (1) Image enhancement
- (2) Separate touching or occluding fish
- (3) Find the boundary of each fish

Feature Extraction

 Assume a fisherman told us that a sea bass is generally longer than a salmon.

 We can use length as a feature and decide between sea bass and salmon according to a threshold on length.

How should we choose the threshold?

"Length" Histograms

 Even though sea bass is longer than salmon on the average, there are many examples of fish where this observation does not hold.

"Average Lightness" Histograms

 Consider a different feature such as "average lightness"

 It seems easier to choose the threshold X* but we still cannot make a perfect decision.

Multiple Features

- To improve recognition accuracy, we might have to use more than one features at a time.
 - Single features might not yield the best performance.
 - Using combinations of features might yield better performance.

 $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ • x_1 : length • x_2 : lightness

How many features should we choose?

How Many Features?

- Does adding more features always improve performance?
 - It might be difficult and computationally expensive to extract certain features.
 - Correlated features might not improve performance.
 - "Curse" of dimensionality.

Feature Extraction

- How to choose a good set of features?
 - Discriminative features

- Invariant features (e.g., translation, rotation and scale)
- Are there ways to automatically learn which features are best?

Curse of Dimensionality

- Adding too many features can, paradoxically, lead to a worsening of performance.
 - Divide each of the input features into a number of intervals, so that the value of a feature can be specified approximately by saying in which interval it lies.

- If each input feature is divided into M divisions, then the total number of cells is M^d (d: # of features).
- Since each cell must contain at least one point, the number of training data grows exponentially with d.

Curse of Dimensionalitydefinition

- As the number of features or dimensions grows, the amount of data we need to generalize accurately grows exponentially."
- In applied maths, COD refers to the problem caused by the exponential increase in volume associated with adding extra dimensions to a mathematical space.

Curse of Dimensionality-(contd)

• Fig. 1 (a) shows 10 data points in one dimension i.e. there is only one feature in the data set. It can be easily represented on a line with only 10 values, x=1, 2, 3... 10.

Curse of Dimensionality-(contd)

- But if we add one more feature, same data will be represented in 2 dimensions (Fig.1 (b)) causing increase in dimension space to 10*10 = 100.
- And again if we add 3rd feature, dimension space will increase to 10*10*10 = 1000. As dimensions grows, dimensions space increases exponentially.
- $10^{1} = 10$
- $10^2 = 100$
- 10³ = 1000 and so on...

Missing Features

- Certain features might be missing (e.g., due to occlusion).
- How should we train the classifier with missing features?
- How should the classifier make the best decision with missing features?

Classification

 Partition the feature space into two regions by finding the decision boundary that minimizes the error.

How shot

Main Classification Approaches

x: input vector (pattern)

y: class label (class)

Generative

- Model the joint probability, p(x, y)
- Make predictions by using Bayes rules to calculate p(ylx)
- Pick the most likely label y

Discriminative

- Estimate p(ylx) directly (e.g., learn a direct map from inputs x to the class labels y)
- Pick the most likely label y

Complexity

- We can get perfect classification performance on the training data by choosing complex models.
- Complex models are tuned to the particular training samples, rather than on the characteristics of the true model.

How well can the model generalize to unknown samples?

Generalization

- Generalization is defined as the ability of a classifier to produce correct results on novel patterns.
- How can we improve generalization performance?
 - More training examples (i.e., better model estimates).
 - Simpler models usually yield better performance.

Ensembles of Classifiers

 Performance can be improved using a "pool" of classifiers.

 How should we build and combine different classifiers?

Would it be possible to build a "general purpose" PR system?

- Humans have the ability to switch rapidly and seamlessly between different pattern recognition tasks.
- It is very difficult to design a system that is capable of performing a variety of classification tasks.
 - Different decision tasks may require different features.
 - Different features might yield different solutions.
 - Different tradeoffs exist for different tasks.