Theoretische Elektrodynamik

Matthias Vojta

übertragen von Sebastian Schmidt, Lukas Körber und Friedrich Zahn

Wintersemester 2014/2015

Inhaltsverzeichnis

1 Einleitung						
2	Mathematische Hilfsmittel					
	2.1	Skalar- und Vektorfelder	7			
	2.2	Integrale auf Feldern	7			
	2.3	Vektorielle Ableitungen und Integrale	9			
	2.4	Differentialoperatoren in krummlinigen Koordinaten	11			
	2.5	FOURIER-Transformation	11			
	2.6	Delta-Distribution	12			
	2.7	$\mbox{\tt Green's che Funktion}$ zur Lösung inhomogener linearer $\mbox{\tt DGL}$	13			
3	Grundbegriffe und MAXWELL-Gleichungen					
	3.1	Kräfte und Punktladungen	15			
	3.2	Ladungs- und Stromdichte, Ladungserhaltung	15			
	3.3	Die MAXWELL-Gleichungen	17			
	3.4	Konstruktion der MAXWELL-Gleichungen	17			
	3.5	Integrale Fromulierung der MAXWELL-Gleichungen	20			
	3.6	Induktionsgesetz für Leiterschleifen	21			
4	Elektrostatik					
	4.1	Grundgleichungen und elektrostatisches Potential	23			
	4.2	Kugelsymmetrische Ladungsverteilung	23			
	4.3	Feld einer beliebigen räumlich begrenzten Ladungsverteilung	24			
	4.4	Feld eines elektrischen Dipols	25			

Kapitel 1

Einleitung

Gegenstand der Vorlesung ist die (klassische) Theorie der Elektrischen Felder ausgehend von den MAXWELL-Gleichungen (1864):

$$\operatorname{div} \mathbf{B} = 0$$

$$rot \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\varepsilon_0 \text{div } \mathbf{E} = \rho$$

$$\frac{1}{\mu_0} \operatorname{rot} \mathbf{B} - \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} = \mathbf{j}$$

für die Felder **E** und **B** in Abhängigkeit von Ladungs- und Stromverteilung $\rho(r, t)$ und j(r, t) sollen physikalische Erscheinungen geschildert werden.

Die Elektrodynamik ist ein Teil des Standardmodells der Teilchenphysik, das einheitlich Teilichen und ihre Wechselwirkungen beschreibt.

Klassische Elektrodynamik ist ein Grenzfall der Quantenelektrodynamik (gültig für kleine Impuls- und Energiebeträge, große Brechungszahlen für Photonen). Sie ist im Einklang mit der der speziellen Relativitätstheorie (c ist implizit in den Maxwell-Gleichungen enthalten). Viele interessante Effekte von Materie können mit klassischer Theorie nicht beschrieben werden.

Zum Beispiel: Wann sind Atome stabil? Wann ist Eisen ferromagnetisch? Warum wird z.B. Blei bei tiefen Temperaturen supraleitend? Für diese Fragen werden Quanteneffekte wichtig.

Kapitel 2

Mathematische Hilfsmittel

Literaturtipp: Mathematischer Einführungskurs Physik

2.1 Skalar- und Vektorfelder

Felder entsprechen Größen, die an jedem Raumpunkt einen bestimmten Wert haben, der zeitabhängig sein kann.

```
1. skalare Felder: \phi = \phi(x, y, z, t)
```

Bsp.: Temperatur, Druck, Ladung, Energie

2. Vektorfelder: $\mathbf{E} = \mathbf{E}(x, y, z, t)$

Bsp.: Geschwindigkeitsverteilung in einem strömenden Gas, Wärmestromdichte

2.2 Integrale auf Feldern

Integrale über skalare Felder werden wie bekannt bebildet; sie sind zu vermeiden.

Integriert man über ein Vektorfeld, spielt die Richtungsinformation eine entscheidende Rolle. Man unterscheidet je nach Dimension des Parameterbereichs von Linien-, Flächen- und Volumenintegralen.

a. Linienintegrale

$$\varphi = \int_{C} \mathbf{E}(\mathbf{r}) d\mathbf{r}$$

Wir parametrisieren die Kurve durch $r = r(\tau)$ und erhalten somit

$$\varphi = \int_{\tau_0}^{\tau_1} \mathbf{E}(\mathbf{r}(\tau)) \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\tau} \mathrm{d}\tau$$

Ein Speziallfall des Linienintegrals ist das sogenannte **geschlossene Linienintegral**, welches durch ϕ gekennzeichnet wird.

b. Flächenintegrale

$$\Phi = \iint_{S} \mathbf{B} \cdot d\mathbf{A} \quad \text{mit } d\mathbf{A} = d\mathbf{A} \cdot \mathbf{n}$$

Ganz analog zu **a.** kann die Fläche $\mathbf{r} = \mathbf{r}(u, v)$ parametrisiert werden. Es ist jedoch beim Bilden der Funktionaldeterminante auf die Richtung des Flächenelements zu achten. Die beiden möglichen Lösungen unterscheiden sich natürlich nur um ein Vorzeichen. Wir erhalten also

$$\Phi = \int_{v_1}^{v_2} \int_{u_1}^{u_2} \mathbf{B}(u, v) \cdot \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right) du dv$$

Physikalisch lässt sich ein Flächenintegral als sogenannter Fluss interpretieren.

c. Volumenintegrale

$$Q = \iiint_{G} dV \cdot \rho(\mathbf{r}) = \iiint_{G} d^{3} \mathbf{r} \cdot \rho(\mathbf{r}) =$$

Beim Volumenintegral wird wiederum (nicht wie beim Flächenintegral) das Vorzeichen des Volumenelements vernachlässigt, da physikalisch die *Richtung* des Volumens nur sehr selten wirklich von Bedeutung ist. Mit entsprechender Parametrisierung $\mathbf{r} = \mathbf{r}(u, v, w)$ ergibt sich

$$q = \int_{u_1}^{u_2} \int_{v_1}^{v_2} \int_{u_1}^{u_2} \rho(u, v, w) \cdot \left| \frac{\partial \mathbf{r}}{\partial u} \cdot \left(\frac{\partial \mathbf{r}}{\partial v} \times \frac{\partial \mathbf{r}}{\partial w} \right) \right| du dv dw$$

9

2.3 Vektorielle Ableitungen und Integrale

a. Gradient

Der Gradient grad ϕ eines Skalarfeldes beschreibt dessen Änderung und steht senkrecht auf den Äquipotentialflächen (oder allgemeiner: Niveaumengen). Der Gradient lässt sich durch den Nabla-Operator ausdrücken und lautet in karthesischen Koordinaten:

$$\nabla = \frac{\partial}{\partial x} \boldsymbol{e}_x + \frac{\partial}{\partial y} \boldsymbol{e}_y + \frac{\partial}{\partial z} \boldsymbol{e}_z$$

Wichtig ist, dass ∇ ein vektorieller Differenzialoperator ist. Er folgt Ableitungsregeln, wie etwa der Kettenregel, und $\nabla \phi$ verhält sich unter Koordinatentransformation wie ein Vektor.

Andere Schreibweisen: $\frac{\partial}{\partial r}$, ∂_r , ∇_r

Beispiele:

$$\nabla |\mathbf{r}| = \frac{\mathbf{r}}{|\mathbf{r}|} = \mathbf{e}_r$$
$$\nabla \frac{1}{|\mathbf{r}|} = -\frac{1}{r^2} \mathbf{e}_r$$

b. Divergenz (Quellenstärke eines Vektorfeldes)

Die Divergenz div $\mathbf{E} = \nabla \cdot \mathbf{E}$ ist ein Skalar unter Koordinatentransformation und kann als **lokale Quellenstärke** interpretiert werden. Häufig benötigt man auch den Laplace-Operator, der die *zweite Ableitung* repräsentiert.

$$div\ grad\ \phi = \nabla^2 \phi = \Delta \phi$$

Beispiele:

div
$$r = 3$$
 (Anzahl der Dimensionen)
div $(\phi \mathbf{A}) = \nabla \cdot (\phi \mathbf{A}) = \mathbf{A}(\nabla \phi) + \phi(\nabla \mathbf{A}) = \mathbf{A} \cdot \operatorname{grad} \phi + \phi \cdot \operatorname{div} \mathbf{A}$

c. Rotation (Wirbelstärke eines Vektorfeldes)

Die Rotation rot $\mathbf{B} = \nabla \times \mathbf{B}$

$$\nabla \times \mathbf{B} = \begin{vmatrix} \mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ B_{x} & B_{y} & B_{z} \end{vmatrix}$$

kann als **lokale Wirbelstärke** verstanden werden. Ihre Komponenten lassen sich auch als

$$(\nabla \times \mathbf{B})_i = \sum_{j,k} \epsilon_{ijk} \cdot \frac{\partial}{\partial x_j} \cdot \mathbf{B}_k$$

darstellen wobei ϵ_{ijk} der total antisymetrische Tensor 3. Stufe ist.

Beispiele:

$$\mathbf{v} = \mathbf{\omega} \times \mathbf{r} \implies \nabla \times \mathbf{v} = 2\mathbf{\omega}$$

 $\nabla \times \mathbf{r} = 0$

d. GAUSS'scher Satz

$$\iiint\limits_{V} \operatorname{div} \mathbf{E} \cdot dV = \oiint\limits_{\partial V} \mathbf{E} \cdot d\mathbf{A}$$

Der Satz von GAUSS verknüpft Eigenschaften im Inneren eines Volumens mit dem Verhalten auf dem Rand.

e. GREEN'scher Satz

$$\int_{V} (\phi \Delta \psi - \psi \Delta \phi) dV = \oint_{\partial V} (\phi \nabla \psi - \psi \nabla \phi) d\mathbf{A}$$

f. STOKES'scher Satz

$$\iint_{S} \operatorname{rot} \mathbf{B} \cdot d\mathbf{A} = \oint_{\partial A} \mathbf{B} \cdot d\mathbf{r}$$

Analog zu Gauss'schen Satz verknüft der Satz von Stokes das Verhalten eines Feldes auf einer Fläche mit dem auf dem Rand der Fläche. Für geschlossene Flächen gilt

$$\oint_{S=\partial V} \operatorname{rot} \mathbf{B} \cdot d\mathbf{A} = 0$$

2.4 Differentialoperatoren in krummlinigen Koordinaten

Karthesische /Kugel-/Zylinderkoordinaten sind hier wichtig.

z.B:
$$\nabla_x \psi = \partial_x \psi \mathbf{e}_x + \partial_y \psi \mathbf{e}_y + \partial_z \psi \mathbf{e}_z$$

$$\nabla_{\theta} \psi = \frac{\partial}{\partial r} \psi \boldsymbol{e}_r + \frac{1}{r} \frac{\partial}{\partial \theta} \psi \boldsymbol{e}_{\theta} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \psi \boldsymbol{e}_{\phi}$$

Generell:
$$(\nabla \psi)_u \equiv (\nabla \psi) \boldsymbol{e}_u = \frac{1}{g_u} \frac{\partial \psi}{\partial u}$$
 mit $g_u = |\frac{\partial \psi}{\partial u}|$

2.5 FOURIER-Transformation

$$\tilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{f}(t) e^{i\omega t} d\omega$$

Verallgemeinert auf *n* Dimensionen ergibt sich:

$$\tilde{f}(\mathbf{k}) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{-\infty}^{\infty} f(\mathbf{r}) e^{-i\mathbf{k}\mathbf{r}} d^n r$$

a. Differentiation

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} i\omega \tilde{f}(\omega) e^{i\omega t} \mathrm{d}\omega$$

b. Faltung

$$(f * g)(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t - s)G(s)ds$$

$$\widetilde{(f*g)}(\omega) = \tilde{f}(\omega)\tilde{g}(\omega)$$

c. Rechenregeln

$$f'(t) \leftrightarrow i\omega \tilde{f}(\omega)$$

$$-itf(t) \leftrightarrow \tilde{f}'(\omega)$$

$$f(t+a) \leftrightarrow e^{i\omega a} \tilde{f}(\omega)$$

$$e^{i\omega t} f(t) \leftrightarrow \tilde{f}(\omega - a)$$

$$f(at) \leftrightarrow \frac{1}{|a|} \tilde{f}\left(\frac{\omega}{a}\right)$$

$$f^*(t) \leftrightarrow \tilde{f}^*(\omega)$$

$$\tilde{f}(t) \leftrightarrow f(-t)$$

2.6 Delta-Distribution

Die Delta-Distribution ist über folgende Eigenschaften definiert:

1.

$$\delta(\mathbf{r}) = \begin{cases} 0 & \text{für } \mathbf{r} \neq \mathbf{r}_0 \\ \infty & \text{für } \mathbf{r} = \mathbf{r}_0 \end{cases}$$

2.

$$\int_{\mathbf{r}_0 \in V} dV \, \delta(\mathbf{r} - \mathbf{r}_0) = 1$$

Alle Aussagen gelten analog für die Delta-Distribution $\delta(x)$ in einer Dimension. Bei höherdimensionalen Deltadistributionen gilt allerdings nur in kartesischen Koordinaten:

$$\delta(\mathbf{r} - \mathbf{r}_0) = \delta(x - x_0) \cdot \delta(y - y_0) \cdot \delta(z - z_0)$$

Faltet man die Delta-Distribution mit einer Funktion $f(\mathbf{r})$, so ergibt sich aus ihren Eigenschaften:

$$\int_{\boldsymbol{r}_0 \in \mathcal{V}} \mathrm{d} \mathcal{V} \; \delta(\boldsymbol{r} - \boldsymbol{r}_0) \; f(\boldsymbol{r}) = f(\boldsymbol{r}_0)$$

2.7 Green'sche Funktion zur Lösung inhomogener linearer DGL

Wir betrachten die lineare, inhomogene Differentialgleichung

$$L \phi(x_1, ..., x_n) = \rho(x_1, ..., x_n)$$
 oder kurz $L \phi = \rho$

wobei L ein linearer Operator und ρ die Inhomogenität sein soll. Die Green'sche Funktion G(x,x) zum Operator L ist die Lösung der Differentialgleichung mit δ -förmiger Inhomogenität.

L G(x, x') =
$$\delta(x - x')$$
 [= $\delta(x_1 - x'_1) \cdot ... \cdot \delta(x_n - x'_n)$]

Wenn g bekannt ist, dann kann die Lösung für beliebige Inhomogenität durch Superposition gewonnen werden.

$$\phi(x) = \int dx' G(x, x') \rho(x')$$

Den Beweis hierfür erhält man leicht durch Einsetzen:

$$L \phi(x) = \int dx' L G(x, x') \rho(x') = \rho(x)$$

Kapitel 3

Grundbegriffe und MAXWELL-Gleichungen

3.1 Kräfte und Punktladungen

Aus der Erfahrung ergibt sich für eine ruhende Ladung

$$\mathbf{F}(\boldsymbol{r},t) = \mathbf{Q} \cdot \mathbf{E}(\boldsymbol{r},t)$$

Dabei ist die Ladung Q eine Körpereigenschaft und E eine Eigenschaft, die die Umwelt charakterisiert. Über den Vergleich der Kraft auf zwei Körper $\mathbf{F}_1(\boldsymbol{r},t) = \frac{Q_1}{Q_2}\mathbf{F}_2(\boldsymbol{r},t)$ lässt sich so eine Einheit für die Ladung definieren.

Bei bewegten Ladungen beobachten wir etwas anderes. Die Kraft hat hier die Form

$$\mathbf{F} = \mathbf{Q}(\mathbf{E} + \boldsymbol{v} \times \mathbf{B})$$

3.2 Ladungs- und Stromdichte, Ladungserhaltung

Über eine Ladung in einem Volumenelement lässt sich der Begriff der Ladungsdichte definieren.

$$\rho(\boldsymbol{r},t) = \frac{\mathrm{dQ}}{\mathrm{dV}}$$

Eine Ladungsänderung nennen wir schließlich den elektrischen Strom.

$$-\mathbf{I} := \dot{\mathbf{Q}} = \frac{\mathbf{d}}{\mathbf{d}t} \int_{\mathbf{V}} \rho(\mathbf{r}, t) d\mathbf{V} = \int_{\mathbf{V}} \frac{\partial \rho}{\partial t} d\mathbf{V}$$

Betrachten wir nun den Stromfluss durch ein Oberflächenelement d**A**. Die Ladungsträger, welche durch diese Fläche wandern haben die Geschwindigkeit \boldsymbol{v} , sodass anschaulich ein kleines Volumenelement dV= \boldsymbol{v} d $t \cdot$ d**A** aufgespannt wird:

$$dQ = \rho(\mathbf{r}, t) \mathbf{v}(\mathbf{r}, t) dt d\mathbf{A}$$
$$\frac{dQ}{dt} = -I = \rho \mathbf{v} \cdot d\mathbf{A} =: \mathbf{j}(\mathbf{r}, t) \cdot d\mathbf{A}$$

Wir nennen $j = \rho v$ der Anschaulichkeit nach die **Stromdichte**, denn man sieht leicht:

$$\iint_{\mathbf{A}} \mathbf{j} \cdot d\mathbf{A} = I$$

Setzen wir nun dies in die Gleichung für die Ladungserhaltung ein:

$$0 = \dot{\mathbf{Q}} + \mathbf{I} = \iiint_{\mathbf{V}} d\mathbf{V} \frac{\partial \mathbf{p}}{\partial t} + \oiint_{\partial \mathbf{V}} d\mathbf{A} \cdot \mathbf{j} = \iiint_{\mathbf{V}} d\mathbf{V} \left(\frac{\partial \mathbf{p}}{\partial t} + \frac{\partial \mathbf{j}}{\partial \mathbf{r}} \right)$$

Da dies für für alle möglichen Volumina gelten soll, folgt daraus die **Kontinuitätsgleichung**:

$$\dot{\rho} + \text{div } \mathbf{i} = 0$$

Für den Grenzfall eines unendlich großen Volumens gilt zunächst $j\to 0$ auf der Oberfläche, woraus man auf die für diesen Grenzfall logische Konsequenz schließen kann, dass

$$\dot{\mathbf{Q}} = - \iint \mathbf{j} \, d\mathbf{A} = 0$$

die Ladung im gesamten Raum erhalten ist.

Mit der eingeführten Stromdichte \boldsymbol{j} kann man nun auch den Ausdruck der Lorentzkraft-Dichte $\boldsymbol{f}:=\frac{\mathbf{F}}{\mathbf{V}}$ definieren:

$$d\mathbf{F} = d\mathbf{Q}(\mathbf{E} + \boldsymbol{v} \times \mathbf{B})$$

$$\Rightarrow \boldsymbol{f} = \rho(\boldsymbol{r}, t) \cdot (\mathbf{E}(\boldsymbol{r}, t) + \boldsymbol{v}(\boldsymbol{r}, t) \times \mathbf{B}(\boldsymbol{r}, t) = \rho \mathbf{E} + \boldsymbol{j} \times \mathbf{B}$$

3.3 Die MAXWELL-Gleichungen

Die Maxwell-Gleichungen wurden 1864 vom schottischen Physiker James Clerk Maxwell aufgestellt und bilden ein Differentialgleichungssystem für die Felder $\mathbf{B}(r)$ und $\mathbf{E}(r)$. Zusammen mit der Kontinuitätsgleichung beschreiben sie die gesamte (klassische) Elektrodynamik, da ρ und \mathbf{j} die Quellen und Wirbel des \mathbf{B} - und \mathbf{E} -Feldes eindeutig bestimmen:

$$\begin{aligned} \operatorname{div} \mathbf{B} &= 0 & & \varepsilon_0 \operatorname{div} \mathbf{E} &= \rho \\ \operatorname{rot} \mathbf{E} &+ \dot{\mathbf{B}} &= 0 & & \frac{1}{\mu_0} \operatorname{rot} \mathbf{B} - \varepsilon_0 \dot{\mathbf{E}} &= \mathbf{j} \end{aligned}$$

Nun könnte man fragen, ob die Beschreibung der Elektrodynamik über lokale Felder denn zweckmäßig ist oder ob man sie nicht eliminieren könnte. Das COULOMB-Gesetz wäre ein Beispiel für diese Fernwirkungstheorie. Zwei Gründe sprechen für die lokale Feldtheorie: sie ist zum einen schlichtweg einfacher mathematisch zu beschreiben und zum anderen unabhängig vom Vorhandensein von Materie und demzufolge Ladungsträgern.

3.4 Konstruktion der MAXWELL-Gleichungen

Versucht man die Elektrodynamik zu beschreiben, so kann man sich zu Beginn von phänomenologischen Seite diesem Problem nähern und fordern, dass Symmetrien in Zeit und Raum die Gültigkeit der Gleichungen erhalten sollen. Dies ist eine gängige physikalische Vorgehensweise; man verlangt, dass die beschriebene (reale) Physik unabhängig von der Wahl der Koordinaten sein soll. Wir fordern also zunächst, dass die die Form der Gleichungen unter den Symmetrietransformationen der Rauminversion ($r \rightarrow -r$) und der zeitlichen Reversibilität ($t \rightarrow -t$) invariant ist. Zudem wollen wir uns als Ziel setzen, die Gesetze möglichst einfach zu formulieren, das heißt, es sollen maximal Differentialgleichungen 1. Ordnung auftauchen. Betrachten wir nun also zunächst das Transformationsverhalten verschiedener Objekte:

Objekt	$t \rightarrow -t$	$r \rightarrow -r$	Bemerkung
$r, \frac{\partial}{\partial t} \\ r, \frac{\partial}{\partial r}$	-	+	Definition
$r, \frac{\partial}{\partial r}$	+	-	Definition
ř	-	-	durch Multiplikation der Vorzeichen erhalten
\ddot{r}, \mathbf{F}, f	+	-	Erfahrung aus Mechanik: $\ddot{r} = \frac{F}{m}$
Q, ρ	+	+	Annahme
$\boldsymbol{j} \ (= \boldsymbol{\rho} \cdot \dot{\boldsymbol{r}})$	-	-	
E	+	-	Vektor, erhalten aus: $\mathbf{F} = \mathbf{Q}(\mathbf{E} + \boldsymbol{v} \times \mathbf{B})$
В	-	+	Pseudovektor
$\frac{\partial}{\partial r} \cdot \mathbf{E}$	+	+	Skalar
$\frac{\partial}{\partial r} \cdot \mathbf{B}$	-	-	Pseudoskalar
$ \frac{\partial}{\partial r} \cdot \mathbf{E} $ $ \frac{\partial}{\partial r} \cdot \mathbf{B} $ $ \frac{\partial}{\partial r} \times \mathbf{E} $ $ \frac{\partial}{\partial r} \times \mathbf{B} $	+	+	Pseudovektor
$\frac{\partial}{\partial r} \times \mathbf{B}$	-	-	Vektor
$\frac{\partial}{\partial t}\mathbf{E}$	-	-	Vektor
$\frac{\frac{\partial}{\partial t}\mathbf{E}}{\frac{\partial}{\partial t}\mathbf{B}}$	+	+	Pseudovektor

Da wir gefordert hatten, dass unsere gewünschten Gleichungen invariant unter den Transformationen sein sollten, dürfen wir nun nur die Größen mit dem gleichen Transformationsverhalten verknüpfen:

1.
$$++$$
 Skalar ρ , div \mathbf{E}
 $\Rightarrow \rho = \epsilon_0 \cdot \text{div } \mathbf{E}$ (ϵ_0 ist beliebige Konstante)

2. $--$ Vektor \mathbf{j} , rot \mathbf{B} , $\dot{\mathbf{B}}$
 $\Rightarrow \mathbf{j} = \alpha \cdot \dot{\mathbf{E}} + \frac{1}{\mu_0} \cdot \text{rot } \mathbf{B}$ (α , $\frac{1}{\mu_0}$ sind beliebige Konstanten)

3. $--$ Skalar div \mathbf{B}
 $\Rightarrow 0 = \text{div } \mathbf{B}$

4. $++$ Vektor rot \mathbf{E} , $\dot{\mathbf{B}}$
 $\Rightarrow 0 = \text{rot } \mathbf{E} + \beta \cdot \dot{\mathbf{B}}$ (β ist beliebige Konstante)

5.
$$+-$$
 Vektor $\mathbf{E}, (\mathbf{r}, \ddot{\mathbf{r}})$

$$\Rightarrow 0 = \mathbf{E}$$

$$\Rightarrow 0 = \mathbf{B}$$

Das System 1-4 ist ein widerspruchsfreies und vollständiges System von Differentialgleichungen für das **E**- und das **B**-Feld, da diese durch ihre Quellen und Wirbel jeweils eindeutig bis auf Konstanten bestimmt sind. Diese werden problemabhängig aus den gegebenen Randbedingungen bestimmt. Die Gleichungen 5 und 6 werden aus naheliegenden Gründen weggelassen; sie stehen zwar nicht im Widerspruch zu den ersten 4 Gleichungen, doch würde das Differentialgleichungssystem mit ihnen nur noch die Triviallösung ohne physikalisch interessante Bedeutung liefern.

Konstantendiskussion:

- 1. Die Konstante ϵ_0 ist zunächst frei wählbar, da die Ladung Q nur bis auf einen Faktor genau bestimmt ist. Für die Wahl von ϵ_0 gibt es verschiedene Ansätze:
 - (a) ϵ_0 wird als 1 definiert. Diese Defintion wird im cgs-System umgesetzt.
 - (b) $4\pi \cdot \epsilon_0$ wird 1 gesetzt. Das sich aus dieser Definition ergebende Einheitensystem nennt man das GAUSS-System.

Im SI-System wird dagegen ϵ_0 über μ_0 festgelegt, wobei für μ_0 gilt:

$$[\mu_0] = \frac{[\mathbf{E}]}{[\mathbf{I}]} \frac{[l]^2}{[l]} = \frac{[\mathbf{f}]}{[\mathbf{j}]} \frac{[l]}{[\mathbf{I}]} = \frac{[\mathbf{F}]}{[\mathbf{I}]^2} = \frac{N}{A^2}$$
$$\mu_0 = 4\pi \cdot 10^{-7} \frac{N}{A^2}$$

 ϵ_0 erhält man nun daraus über die Fundamentalbeziehung im SI-System:

$$\epsilon_0 \mu_0 = \frac{1}{c^2}$$

2. Die Konstante α erhalten wir, in dem wir von Gleichung (2) die Divergenz bilden und dann div j aus der Kontinuitätsgleichung einsetzen:

$$(\epsilon_0 + \alpha) \frac{\partial}{\partial t} \operatorname{div} \mathbf{E} \stackrel{!}{=} 0 \Rightarrow \alpha = -\epsilon_0$$

3. Dass die Konstante β im SI-System gleich 1 sein musss, erhält man aus Überlegungen, dass die MAXWELL-Gleichungen von Inertialsystem zu Inertialsystem invariant sein müssen.

Bemerkung: Im Gauss-System erhält man aufgrund der Wahl der Konstanten für die Lorentz-Kraft:

$$\mathbf{F} = \mathbf{Q}(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B})$$

woraus folgt:

$$\epsilon_0 \mu_0 \cdot \beta = \frac{1}{c^2}$$
 und $\beta = \frac{1}{c}, \mu_0 = \frac{4\pi}{c}$

3.5 Integrale Fromulierung der MAXWELL-Gleichungen

Die integrale Formulierung der MAXWELL-Gleichungen ist äquivalent zu der differentiellen und ergibt sich entweder aus Volumen- oder Flächenintegration auf beiden Seiten der entsprechenden Gleichung und dann der Anwendung der Integralsätze von GAUSS oder STOKES:

i)
$$\epsilon_0 \operatorname{div} \mathbf{E} = \rho$$
 \Leftrightarrow $\epsilon_0 \oiint d\mathbf{A} \cdot \mathbf{E} = Q_{in}$
ii) $\operatorname{div} \mathbf{B} = 0$ \Leftrightarrow $\oiint d\mathbf{A} \cdot \mathbf{B} = 0$
iii) $\operatorname{rot} \mathbf{E} + \dot{\mathbf{B}} = 0$ \Leftrightarrow $\oint_{\partial A} d\mathbf{r} \cdot \mathbf{E} + \iint_{A} d\mathbf{A} \cdot \dot{\mathbf{B}} = 0$
iv) $\frac{1}{\mu_0} \operatorname{rot} \mathbf{B} - \epsilon_0 \dot{\mathbf{E}} = \mathbf{j}$ \Leftrightarrow $\frac{1}{\mu_0} \oint_{\partial A} d\mathbf{r} \cdot \mathbf{B} - \epsilon_0 \iint_{A} d\mathbf{A} \cdot \dot{\mathbf{E}} = I_{in}$

Bemerkung:

 ${m r}$ und ${m t}$ sind unabhängige Variablen, das heißt, dass die Felder ${m B}$ und ${m E}$ jeweils von ${m r}$ und ${m t}$ abhängen, nicht aber von ${\dot {m r}}$. Zudem ist es aufgrund unserer Forderungen bei der Konstruktion der Maxwell-Gleichungen verboten, dass eine explizite Abhängigkeit der Grundgleichungen von ${m r}$ und ${m t}$ vorliegt, da es sonst außergewöhnliche Zeiten und Orte gäbe, was aber die geforderte Homogenität verletzen würde.

3.6 Induktionsgesetz für Leiterschleifen

Zunächst definieren wir den magnetischen Fluss Φ durch eine Fläche **A** im Raum:

$$\Phi := \iint_{\Delta} d\mathbf{A} \cdot \mathbf{B}$$

Man sieht leicht, dass sich der Fluss Φ bei Flächenänderung und Änderung der magnetischen Flussdichte **B** ändert:

$$\Delta \Phi = \Delta \left(\iint d\mathbf{A} \cdot \mathbf{B} \right) = \iint_{A} d\mathbf{A} \cdot \Delta \mathbf{B} + \iint_{\Delta A} d\mathbf{A} \cdot \mathbf{B}$$

$$= \Delta t \iint_{A} d\mathbf{A} \cdot \frac{\partial \mathbf{B}}{\partial t} + \oint_{\partial A} (\boldsymbol{v} \Delta t \times d\boldsymbol{r}) \cdot \mathbf{B}$$

$$= \Delta t \left(\iint_{A} d\mathbf{V} \cdot \dot{\mathbf{B}} - \oint_{\partial A} d\boldsymbol{r} \cdot (\boldsymbol{v} \times \mathbf{B}) \right)$$

$$\Rightarrow \dot{\Phi} = \iint_{A} d\mathbf{A} \cdot \dot{\mathbf{B}} - \oint_{\partial A} d\boldsymbol{r} \cdot (\boldsymbol{v} \times \mathbf{B})$$

Nach Anwenden der dritten MAXWELL-Gleichung erhält man das **Induktions-gesetz**:

$$\dot{\Phi} = -\oint \partial A d\mathbf{r} \ (\mathbf{E} + \mathbf{v} \times \mathbf{B}) = -\mathbf{U}_{\text{induziert}}$$

Das letzte Minuszeichen nennt man auch die **Lenz'sche Regel**, welche besagt, dass ein induzierter Strom immer ein Magnetfeld erzeugt, welches seiner eigenen Ursache ($U_{induziert}$) entgegengerichtet ist.

Auffällig bei dem Induktionsgesetz ist seine Ähnlichkeit mit der auf eine freie Ladung wirkende Kraft $\mathbf{F} = \mathbf{Q}(\mathbf{E} + \boldsymbol{v} \times \mathbf{B})$. Darin liegt auch die Begründung für ebenjenes Gesetz:

Wir stellen uns eine Leiterschleife vor, welche an einer Stelle durchbrochen ist, damit kein Strom durch die Schleife fließen könnte. Auf einen sich in dieser Schleife bewegenden Ladungsträger wirkt die Kraft:

$$\mathbf{F} = \mathbf{Q}(\mathbf{E} + \boldsymbol{v} \times \mathbf{B}) =: \mathbf{QE'}$$

Man sieht, dass das E-Feld abhängig vom Bezugsystem ist, daher haben wir für $\mathbf{E'}$ ein Bezugssystem konstruiert, welches sich mit der Geschwindigkeit \boldsymbol{v} gegenüber dem Laborsystem bewegt. Damit haben wir im mitbewegeten Bezugssystem erreicht, dass $\boldsymbol{v'}=0$ ist. Bilden wir nun das Weginteral für ein Teilchen entlang der Leiterschleife im E-Feld erhalten wir:

$$\oint_{\text{Schleife}} d\mathbf{r} \cdot (\mathbf{E} + \mathbf{v} \times \mathbf{B}) = \oint_{\text{Schleife}} d\mathbf{r} \cdot \mathbf{E'} = \int_{\text{Beginn}}^{\text{Ende}} d\mathbf{r} \cdot \mathbf{E'} = U_{\text{induziert}}$$

Kapitel 4

Elektrostatik

4.1 Grundgleichungen und elektrostatisches Potential

In der Elektrostatik betrachten wir, wie der Name schon andeutet, zeitunabhängige Felder. Dementsprechend kann man als erste Konsequenz daraus folgern, dass $\dot{\mathbf{E}}=0$ und $\dot{\mathbf{B}}=0$ ist. Fallen nun in den MAXWELL-Gleichungen alle Beiträge mit $\dot{\mathbf{E}}$ und $\dot{\mathbf{B}}$ weg, kann man die Felder \mathbf{E} und \mathbf{B} getrennt voneinander betrachten. Laienhaft gesprochen entkoppeln wir die Phänomene "Elektrizität"und "Magnetismus". Des Weiteren betrachten wir in der Elektrostatik nur ruhende Ladungen, woraus folgt, dass außerdem $\mathbf{j}=0\Rightarrow\mathbf{B}=0$ ist.

Damit erhalten wir aus der dritten MAXWELL-Gleichung, dass rot $\mathbf{E} = 0$ gilt, wodurch das Einführen eines Potentials für \mathbf{E} möglich wird:

$$E =: -grad \varphi$$

Mit div $\mathbf{E} = \frac{\rho}{\epsilon_0}$ erhält man daraus die **Poisson-Gleichung** der Elektrostatik:

$$\Delta \varphi = -\frac{\rho}{\epsilon_0}$$

Für $\Delta \varphi = 0$ nennt man die Poisson-Gleichung auch Laplace-Gleichung.

4.2 Kugelsymmetrische Ladungsverteilung

Für eine kugelsymmetrische Ladungsverteilung gilt:

$$\rho(\mathbf{r}) = \rho(|\mathbf{r}|) = \rho(r) \Rightarrow \phi(\mathbf{r}) = \phi(r)$$

Dem kann man entnehmen, dass die Äquipotentialflächen Kugelflächen sein müssen und somit der Gradient von φ auch parallel zum Ortsvektor stehen muss.($\mathbf{E}(\mathbf{r}) = \mathbf{E}(r)\mathbf{e}_r$ Für das E-Feld gilt weiterhin:

$$\epsilon_0 \iint\limits_{\partial Kugel} d\mathbf{A} \cdot \mathbf{E} \stackrel{\mathbf{A} \parallel \mathbf{E}}{=} \epsilon_0 \iint\limits_{\partial Kugel} d\mathbf{A} \cdot \mathbf{E} = 4\pi \epsilon_0 \cdot r^2 \cdot \mathbf{E}(r) = \mathbf{Q}_{\mathrm{in}}(r)$$

Damit ergibt sich für das E-Feld und das Potential:

$$\mathbf{E}(r) = \frac{Q_{\rm in}(r)}{4\pi\epsilon_0 \cdot r^2} \cdot \boldsymbol{e}_r$$

$$\varphi(r) = \frac{Q_{\text{in}}(r)}{4\pi\epsilon_0 \cdot r} + \varphi_0 \text{ mit } \varphi_0 = \varphi(r \to 0)$$

4.3 Feld einer beliebigen räumlich begrenzten Ladungsverteilung

1. Punktladung bei r_0 :

$$\varphi(\mathbf{r}) = \frac{Q}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}_0|}$$

2. Mehrere Punktladungen (Superpositionsprinzip anwendbar wegen Linearität der MAXWELL-Gleichungen):

$$\varphi(\mathbf{r}) = \sum_{i} \frac{Q_{i}}{4\pi\epsilon_{0} |\mathbf{r} - \mathbf{r}_{i}|}$$

3. Kontinuierliche Ladungsverteilung:

$$\varphi(\mathbf{r}) = \int dV' \frac{Q(\mathbf{r}')}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}'|}$$

Die allgemeine Gleichung für die kontinuerliche Ladugnsverteilung ergibt sich aus der Lösung der Poisson-Gleichung mithilfe der bekannten Green'schen Funktion für eine Punktladung der Größe 1: $G(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0 \cdot |\mathbf{r}|}$

$$-\epsilon_0 \cdot \Delta \phi = \rho$$
$$\Rightarrow -\epsilon_0 \cdot \Delta G(\mathbf{r}) = \delta(\mathbf{r})$$

25

Dabei gilt: $G(\mathbf{r}, \mathbf{r}') = G(\mathbf{r} - \mathbf{r}')$ aufgrund der Translationsinvarianz der Green-Funktion.

$$\Rightarrow \varphi(\mathbf{r}) = \int dV' G(\mathbf{r} - \mathbf{r}') \cdot \rho(\mathbf{r}') = \frac{1}{4\pi\epsilon_0} \int dV' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Aus dieser allgemeinen Form lässt sich natürlich auch im umgekehrten Falle das **E**-Feld einer Punktladung in r_0 herleiten. Dafür muss nur $\rho(r) = Q \cdot \delta(r - r_0)$ gesetzt werden:

$$\phi(\boldsymbol{r}) = \int dV' \frac{\rho(\boldsymbol{r}')}{4\pi\epsilon_0 \cdot |\boldsymbol{r} - \boldsymbol{r}'|} = \frac{Q}{4\pi\epsilon_0} \underbrace{\int dV' \frac{\delta(\boldsymbol{r}' - \boldsymbol{r}_0)}{|\boldsymbol{r} - \boldsymbol{r}'|}}_{=\frac{1}{|\boldsymbol{r} - \boldsymbol{r}_0|}}$$

4.4 Feld eines elektrischen Dipols

Ein Dipol besteht aus zwei gleich großen, entgegengesetzt geladenen Ladungen $\pm Q$, welche einen festen Abstand \boldsymbol{a} voneinander entfernt sind. Daher ergibt es Sinn, als charakteristische Eigenschaft des Dipols das **Dipolmoment** \boldsymbol{p} wie folgt zu definieren:

$$p := Q \cdot a$$

Für das Potentialfeld eines solchen Dipols gilt offensichtlich:

$$\varphi(\mathbf{r}) = \frac{Q}{4\pi\epsilon_0} \cdot \left(\frac{1}{|\mathbf{r}|} - \frac{1}{|\mathbf{r} + \mathbf{a}|}\right)$$

Für große Abständevon diesem Dipol, d.h. $r \gg a$ wollen wir das Potentialfeld Taylor-entwickeln, um besser mit ihm arbeiten zu können. Dazu betrachten wir den Term $\frac{1}{|r+a|}$ ein wenig genauer:

$$\frac{1}{|\boldsymbol{r}+\boldsymbol{a}|} \cong \frac{1}{|\boldsymbol{r}|} + \left(\boldsymbol{a} \cdot \frac{\partial}{\partial \boldsymbol{r}}\right) \frac{1}{|\boldsymbol{r}|} = \frac{1}{|\boldsymbol{r}|} - \boldsymbol{a} \cdot \frac{\boldsymbol{r}}{|\boldsymbol{r}|^3}$$

Damit gilt für das Potential:

$$\varphi(\mathbf{r}) = \frac{Q}{4\pi\epsilon_0} \left(\frac{1}{r} - \frac{1}{r} - \left(\mathbf{a} \cdot \frac{\partial}{\partial \mathbf{r}} \right) \frac{1}{r} \right) = \frac{\mathbf{p} \cdot \mathbf{r}}{4\pi\epsilon_0 \cdot r^3}$$

und das E-Feld:

$$\mathbf{E}(\mathbf{r}) = -\nabla \varphi = \frac{1}{4\pi\epsilon_0} \nabla \left(\mathbf{p} \cdot \nabla \right) \frac{1}{r} = \frac{\mathbf{p}}{4\pi\epsilon_0} \underbrace{\left(\nabla \circ \nabla \right) \frac{1}{r}}_{(*)}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{3(\mathbf{p} \cdot \mathbf{r})\mathbf{r} - \mathbf{p}r^2}{r^5}$$

mit
$$(*) = \left(\frac{\partial}{\partial r} \circ \frac{\partial}{\partial r}\right) \frac{1}{|r|} = -\frac{\partial}{\partial r} \circ \frac{r}{|r|^3} = \frac{3r \circ r - 1 \cdot r^2}{|r|^5}$$