Discrete Et Geometrique | CM: 1

Par Lorenzo

28 janvier 2025

1 Maths discrètes

1.1 Dénombrement

Définition 1.1. Soit A un ensemble de N éléments $(N \in \mathbb{N})$. Une permutation de A est une application bijective entre A et A.

Remarques 1.1. Ici N sert à que A soit fini.

Définition 1.2. Soit A, B deux ensembles. f est une fonction de A dans B si et seulement si:

- $f \subset A \times B$
- $(a,b) \in f \land (a,b') \in f \implies b = b'$

Proposition 1.1.

Soit A un ensemble de N éléments. Soit $f:A\to A$ une application alors, f est bijective si et seulement si f injective si et seulement si f surjective.

Démonstration 1.1.

- f bijective \implies f injective. Par définition de la bijection.
- f surjective \Longrightarrow f injective. On suppose f n'est pas injective. Alors $\exists a, a' \in A, f(a) = f(a')$ et $a \neq a'$ On sépare A en deux parties: $\{a, a'\}$ et $A \setminus \{a, a'\}$ On a $f(A) = f(\{a, a'\}) \cup f(A \setminus \{a, a'\}) = f(a) \cup f(A \setminus \{a, a'\})$. Or $f(\{a, a'\})$ contient exactement un élément et $f(A \setminus \{a, a'\})$ contient au plus N-2 éléments. Ainsi f(A) contient au plus N-1 éléments. Donc f n'est pas surjective. Donc f est injective.
- f injective \implies f bijective. À faire DM.
- f injective \implies f bijective. f est injective donc f est surjective ainsi par definition f est bijective.

Proposition 1.2.

Soit $N \in \mathbb{N}^*$ et A un ensemble de N éléments. L'ensemble de toutes les permutation de A contient N! éléments.

Démonstration 1.2.

Soit $A = \{1, \dots N\}$ et $f : A \mapsto A$ une permutation. Le nombre de façon de choisir f(1) est N, puis f(2) est N-1 et ainsi de suite. Remplacer par une récurence.

Remarques 1.2. Une permutation peut être vu comme une relation d'order total.

Définition 1.3. Soit $n, m \in \mathbb{N}^*$. Le nombre d'arrangements de m parmi n, noté A_n^m . Le nombre d'application injective $f: \{1, \dots, m\} \to \{1, \dots, n\}$

Proposition 1.3.

- $Si \ m > n \ alors \ A_n^m = 0.$
- $Si \ m=n \ alors \ A_n^m=n!=m!.$

Proposition 1.4.

Si
$$n \ge m$$
 alors $A_n^m = n(n-1)(n-2)\cdots(n-m+1) = \frac{n!}{(n-m)!}$.