## 大学物理 II 考卷 (A 卷) 05/06 学年上学期 2004 级

| 一、 选择题(每题:                  | 3分,共30分                           | ,答案请填              | 在各题后面                      | 的 [          | _ ] 中)             |               |
|-----------------------------|-----------------------------------|--------------------|----------------------------|--------------|--------------------|---------------|
| 1. 如图所示,导位                  | <b>棒 AB</b> 在均々                   | J磁场 $\bar{B}$ 中级   | <b></b> 尧通                 |              | $O$ $\bar{\omega}$ |               |
| 过 $C$ 点垂直于棒长,               | 且沿磁场方向                            | ]的轴 00′车           | 专动                         |              | <b>1</b>           | 3             |
| (角速度 <i>ō</i> 与 <i>Ē</i> 同) | 方向), <i>BC</i> 的                  | 长度为棒长              | <b>上的</b> A                |              | <i>C</i> !         | В             |
| 1/3,则 [                     | ]                                 |                    |                            |              | 0'                 |               |
| (A) A 点的电势比<br>(C) A 点的电势比  |                                   | •                  | (B) <i>A</i> 点的<br>(D) 有稳恒 |              |                    | •             |
| 2. 两个距离不太远的轴线恰通过另一约         |                                   | 圈,怎样可 <sup>/</sup> | 使其互感系数                     | 数近似为零        | 零?设其中              | 1一线圈          |
| (A)两线圈的轴线<br>(C)两线圈的轴线      |                                   |                    |                            |              | []                 | ]             |
| 3. 当质点以频率、                  | 作简谐振动的                            | <b>寸,它的</b> 动自     | <b></b>                    | <b>×</b> 为   |                    |               |
| (A) 4 v (B                  | ) 2 v                             | (C) v              | (D)                        | v /2         | [                  | . ]           |
| 4. 在波长为λ的驱                  | 主波中,两个相                           | 目邻波节之间             | 目的距离为                      |              |                    |               |
| $(A)$ $\lambda$ $(B)$       | ) 3λ/4                            | (C) \(\lambda/2\)  | (D)                        | $\lambda$ /4 | [                  | . ]           |
| 5. 电磁波的电场弧                  | 虽度 $ar{E}$ 、磁场强                   | 虽度 <i>且</i> 和传     | 播速度 ū 的 为                  | 关系是:         |                    |               |
|                             | 直,而 $ar{E}$ 和 $ar{H}$             |                    |                            |              |                    |               |
|                             | 直,而且 $ar{E}$ 、 $1ar{H}$ 是同方向的     |                    |                            | 标系。          |                    |               |
|                             | $I\vec{H}$ 元四万四的 $I\vec{H}$ 可以是任意 |                    |                            | 垂直。          | [                  | _ ]           |
| 6. 用劈尖干涉法词                  | 工检测工化丰品                           | 5年122 <b>- 当</b> 3 | 3长光》的                      |              |                    |               |
| 单色平行光垂直入                    |                                   |                    |                            | 1            |                    |               |
| 示,每一条纹弯曲音<br>部分的连线相切,则      |                                   |                    |                            | ())          | ا کرا              |               |
|                             |                                   | 《汉号 四处》            | 7 1777 BJ BB (2 <b>1)</b>  | D            |                    | P玻璃           |
| (A) 凸起,且高<br>(B) 凸起,且高      |                                   |                    |                            | /            | 空气劈                | <b>一</b><br>尘 |
| (C) 凹陷,且深                   |                                   |                    |                            |              | 工(另<br>工件          | Î             |
| (D) 凹陷,且深                   | 医 度为 λ /4 。                       | [                  | ]                          |              | - , ,              | _             |

7. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看 到干涉条纹,则在接触点P处形成的圆斑为 (A) 全明。 (B) 全暗。 1.62 (C) 右半部明,左半部暗。 P 1.52 1.75 (D) 右半部暗, 左半部明。 [ ] 图中数字为各处的折射率 8. 在单缝夫琅禾费衍射实验中,波长为 $\lambda$ 的单色光垂直入射在宽度为 $\alpha=4\lambda$ 的单 缝上,对应于衍射角为30°的方向,单缝处波阵面可以分成的半波带数目为 (A)  $2 \uparrow$  (B)  $4 \uparrow$  (C)  $6 \uparrow$  (D)  $8 \uparrow$  [ 9. 一单色光照射在钠表面上,测得光电子的最大动能是 $E_k$ ,若钠的红限波长是 $\lambda_0$ , 那么入射光的波长为: [\_\_\_\_]
(A)  $\frac{1}{(\frac{E_k}{hc} + \lambda_0)}$  (B)  $\frac{1}{(\frac{hc}{E_\iota} + \frac{1}{\lambda_0})}$  (C)  $\frac{E_k}{hc} + \lambda_0$  (D)  $\frac{1}{(\frac{E_k}{hc} + \frac{1}{\lambda_0})}$ 不确定关系式  $\Delta x \cdot \Delta p_x \ge h$  表示在 x 方向上 10. (A) 粒子位置不能准确确定。 (B) 粒子动量不能准确确定。 (C) 粒子位置和动量都不能准确确定。 (D) 粒子位置和动量不能同时准确确定。 [ \_\_\_\_\_ ] 填空题 (每题 3 分共 30 分) 1. 如图,真空中一导线载有电流 I,弯成半径为 R的 1/4 圆弧,放在磁感强度为 $\vec{B}$  的均匀磁场中,则载流 导线 ab 所受磁场作用力的大小为 方向\_\_\_\_\_。 2. 图示为三种不同的磁介质的  $B\sim H$  关系曲线,其中虚线表示的是  $B=\mu_0 H$  的关系。 写出 a、b、c 各代表哪一类磁介质的 B~H 关系曲线。 c 代表 的 *B~H* 关系曲线。

3. 反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:

$$\begin{cases}
\oint_{S} \vec{D} \cdot d\vec{S} = \int_{V} \rho dV & \text{(1)} \\
\oint_{L} \vec{E} \cdot d\vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} & \text{(2)} \\
\oint_{S} \vec{B} \cdot d\vec{S} = 0 & \text{(3)} \\
\oint_{L} \vec{H} \cdot d\vec{l} = \int_{S} (\vec{j} + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{S} & \text{(4)}
\end{cases}$$

试判断下列结论是包含于或等效于哪一个麦克斯韦方程式中的。将你确定的方程式号码填在相应结论后的空白处:

- (1) 变化的磁场一定伴随有电场: \_\_\_\_\_\_。
- (2) 磁感线是无头无尾的: \_\_\_\_\_。
- (3) 电荷总伴随有电场:



\_\_\_\_\_\_

5. 一质点同时参与了两个同方向、同频率的简谐振动,它们的振动方程分别为  $x_1=0.05\cos(\omega t+\frac{\pi}{4}) \quad \text{(SI)}, \qquad x_2=0.05\cos(\omega t+\frac{9\pi}{12}) \quad \text{(SI)}$ 

则该质点合成运动的振动方程为: x=\_\_\_\_\_。

- 8. 康普顿散射中,当散射光子与入射光子方向成夹角  $\phi =$  \_\_\_\_\_\_时,散射光子的频率变小得最多,当  $\phi =$  \_\_\_\_\_\_时,散射光子的频率与入射光子相同。

| 9. | 静止  | 质量为 $m_e$ 的电子, | 从静止起经电势   | \差为U <sub>12</sub> 的静电  | 1场加速后, | 若不考虑相对     |
|----|-----|----------------|-----------|-------------------------|--------|------------|
| 论  | 效应, | 则电子的德布罗        | 意波长为: λ = |                         |        | o          |
|    |     |                |           |                         |        |            |
| 10 | 沿井  | 古法微观粒子运动       | 的波函数为Ψ(デ  | $(t)$ $\Psi(\vec{r},t)$ |        | <b>华</b> 县 |

## 三、 计算题(共40分)

1. (本题 5 分)将通有电流 I = 5.0A 的无限 长导线折成如图形状 (在同一个平面内),已知 半圆环的半径为 R = 0.10m,求真空中圆心 O 点 磁感强度的大小。( $\mu_0 = 4\pi \times 10^{-7} \, \mathrm{H} \cdot \mathrm{m}^{-1}$ )



2. (本题 5 分) 如图所示,一无限长载流薄圆筒,半径为 R,均匀通有电流 I,求圆筒内、外各点(即 r<R 和 r>R 处)磁感应强度的大小。



3. (本题 10 分) 如图所示,两条平行直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,它到两长直导线的距离分别为 $r_1$ 、 $r_2$ 。已知两导线中电流都为 $I=I_0\sin\omega t$ ,其中 $I_0$ 和 $\omega$ 为常数,t为时间。导线框长为a,宽为b,求导线框中感应电动势的大小。



- 4. (本题 10 分)某质点作简谐振动,周期为 2 s,振幅为 0.06m,t=0 时刻,质点恰好处在负向最大位移处,求
- (1) 该质点的振动方程;
- (2) 此振动以波速 *u*=2m/s 沿 *x* 轴正向传播时,形成的一维简谐波的波动表达式, (以该质点的平衡位置为坐标原点)
- (3) 该波的波长。

## 5. (本题 10分)

- (1) 单缝夫琅禾费衍射实验中,垂直入射的光有两种波长, $\lambda_1$ =400nm, $\lambda_2$ =760nm (1 nm=10<sup>-9</sup>m)。已知单缝宽度a=1.0×10<sup>-2</sup>cm,透镜焦距f=50cm。求两种光第一级衍射明纹中心之间的距离。
- (2) 若用光栅常数 $d=1.0\times10^{-3}$ cm的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离。