») neue fische

School and Pool for Digital Talent

Recommender Systems, an Introduction

Code of Conduct

We expect all participants to our events and community to abide to this code of conduct: **LadyNerds Code of Conduct** (http://bit.ly/LadyNerds-CoC).

We follow the **LadyNerds Code of Conduct** because we are dedicated to providing a safe, inclusive, welcoming, and harassment-free space and experience for all members and guests, regardless of gender identity and expression, sexual orientation, disability, physical appearance, socioeconomic status, body size, ethnicity, nationality, level of experience, age, or religion (or lack thereof).

The Code of Conduct exists because of that dedication. We do not tolerate harassment in any form and we prioritise marginalised people's safety over privileged people's comfort.

Team

Alexandra Zimmermann-Rösner

- Biologist
- Coach Data Science Bootcamp
- the sea, crochet and my family

Team

Aljoscha Wilhelm

Physicist

- 5
- Coach Data Science Bootcamp
- Chess, Hiking and his dog Ryu

Agenda

About

At the beginning...

Who are we and what is neuefische?

content based model

...shortly afterwards...

Intro and how to build a content based model

collaborative filtering

...roughly second half...

what is collaborative filtering and how do we predict user ratings?

Q&A

...when everyone is enlightened.

Any more questions? Ask us anything.

>>> neue fische School and Pool for Digital Talent

- founded 2018 by Dalia Das
- large alumni and partner network

12 Week Bootcamps:

Web Development

Data Science

Data Analytics

Java Development

Cloud Development

AWS

neuefische - upcoming Data Science Bootcamps

- Data Science Bootcamps:
 - 17.10., 24.10. (part-time)
- for more details of our Bootcamps, checkout our website:
 - o neuefische.de
- or get in touch with us:
 - studienberatung@neuefische.de

Previously on ...

What happened before?

... there was a girl called Larissa.

What happened before?

... there was a girl called Larissa.

a heartbroken

What happened before?

And Larissa was happy again

Happy Larissa!

As time passes by ...

our colleague Larissa

I'll buy new fish!

Similar to my old ones but also a little different

new fish for Larissa

Let's help her to digest all the information by building a recommender!

What are recommenders?

- Algorithms to find similar items and recommend them to user
- Examples: Youtube, Amazon, Netflix and Spotify

Types

- Content based
- Collaborative filtering
- Hybrid models

Content based model

item features only

How to find similar items?

Similarity measures:

- euclidean distance
- pearson correlation
- cosine similarity ⇒ most used

Cosine similarity

can take values between 1 and 0

Cosine similarity

Dot product of the vectors divided by the product of their lengths

$$\cos\left(heta
ight) \,=\, rac{\overrightarrow{x}\cdot\overrightarrow{y}}{\|x\|\cdot\|y\|} = rac{\sum_{i}x_{i}y_{i}}{\sqrt{\sum_{i}x_{i}^{2}}\sqrt{\sum_{i}y_{i}^{2}}}$$

Example

pink	blue	yellow	green
1	1	0	1
1	0	0	0
0	0	1	0
1	1	0	0

Calculation example?

vector has the values x = (1,1,0,1)

vector has the values y = (1,0,0,0)

$$\cos\left(heta
ight) \,=\, rac{\overrightarrow{x}\cdot\overrightarrow{y}}{\|x\|\cdot\|y\|} = rac{\sum_{i}x_{i}y_{i}}{\sqrt{\sum_{i}x_{i}^{2}}\sqrt{\sum_{i}y_{i}^{2}}}$$

$$x * y = 1*1 + 1*0 + 0*0 + 1*0 = 1$$

 $||x|| = \sqrt{1^2 + 1^2 + 0^2 + 1^2} = 1.732$
 $||y|| = \sqrt{1^2 + 0^2 + 0^2 + 0^2} = 1$
 $\cos(x,y) = 1/(1.732 * 1) = 0.577$

Similarity

Outcome

Notebook time

We shared the link with you. Please look into the chat:)

Collaborative filtering

based on user behavior

Types:

- item based
 - similarities between items based on user ratings
- user based
 - similarities between users based on their ratings

User-Item-Rating Matrix

User-Item-Rating Matrix

We usually deal with sparse matrices

	◎			
	1	1	3	1
1	2		1	3
3	1	1	3	
4		5		4

A simple user based Example

We want to use most similar user's rating to predict rating of other user

- calculate similarity matrix (e.g. Cosine, Pearson, Euclidean)
- use most similar user to predict the rating

User-User-Similarity Matrix

First we calculate the similarity matrix

1	0.60	0.71	0.34
0.60	1	0.46	0.55
0.71	0.46	1	0.50
0.34	0.55	0.5	1

User-User-Similarity Matrix

Then we look for the most similar user

1	0.60	0.71	0.34
0.60	1	0.46	0.55
0.71	0.46	1	0.50
0.34	0.55	0.5	1

Predict Rating

Then we use the rating of the most similar user to predict the rating

	◎			
3	1	1	3	1
	2		1	3
3	1	1	3	
4		5		4

User-User-Similarity Matrix

Again we look for the most similar user

1	0.60	0.71	0.34
0.60	1	0.46	0.55
0.71	0.46	1	0.50
0.34	0.55	0.5	1

Predict Rating

Then we use the rating of the most similar user to predict the rating

	◎			
3	1	1	3	1
1	2		1	3
3		1	**	
4	2	5	1	4

Predict Rating

Do this for all users

Recommend Item

recommend highest rated item which was not rated before

A not so simple Example

SVD - Singular Value Decomposition

- Approximate Rating Matrix by product of three matrices
- Latent features can often be interpreted (genre etc.)
- Won the Netflix Prize

Singular Value Decomposition

 $Approx U\Sigma V^T$

 V^{T}

How to predict the missing ratings

		\bigcirc				
0	3	1	1	3	1	colorfu
1	1	2	4	1	3	builds swarms

1	0
0	1
1	0
1	1

4

$$0x1 + 1x4 = 4$$

How to predict the missing ratings

				$\bigcirc \mathbb{N}$			
colorfu	1	3	1	1	3	0	1
builds swarms	3	1	4	2	1	1	0

1x1 + 1x2 = 3

optimal decomposition can be found using gradient descent

How to predict the missing ratings

13311191	atinge		0					
	1	0	3	1	1	3	1	colorful
	0	1	1	2	4	1	3	builds swarms
	1	0	3	1	1	3	1	
	0	1	1	2	4	1	3	
	1	0	3	1	1	3	1	
	1	1	4	3	5	4	4	

Recommend Item

recommend highest rated item which was not rated before

Evaluation Metrics

How to evaluate your model

- Offline metrics
 - regression metrics like MAE, RMSE
 - hit rate
 - diversity
 - novelty
 - o churn
- online metrics
 - A/B test
 - feedback

Icons

www.vecteezy.com www.flaticon.com

Notebook time

We shared the link with you. Please look into the chat:)

Kontakt

Noch Fragen? So könnt ihr uns erreichen:

Online:

studienberatung@neuefische.de www.neuefische.de

Offline:

neue fische GmbH Gasstraße 6a 22761 Hamburg

