UNIVERSIDAD DE COSTA RICA ESCUELA DE INGENIERÍA ELÉCTRICA, DEPARTAMENTO DE AUTOMÁTICA

IE-0431 Sistemas de Control

Desempeño del Lazo de Control

Leonardo Marín Paniagua, Ph.D.

leonardo.marin@ucr.ac.cr

2018

EIE

Escuela de

Ingeniería Eléctrica

Desempeño de los Lazos de Control

Sistema de Control Realimentado:

Se supondrá que la respuesta del sistema actuando como **servomecanismo** es igual a la respuesta de un sistema de segundo orden subamortiguado: $\omega_n^2 K_{yr}$

$$M_{yr}(s) = \frac{n}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Respuesta Transitoria Subamortiguada

Respuesta Transitoria Subamortiguada

Tiempo de retardo (t_r)

- Tiempo necesario para que la respuesta alcance el 50% de su valor final.
- No existe una expresión analítica para su cálculo, pero se obtiene una aproximación confiable utilizando las expresión:

Más precisa
$$t_r \cong \frac{1,1+0,125\zeta+0,469\zeta^2}{\omega_n}$$
 $0 < \zeta < 1$

$$t_r = \frac{1+0,7\zeta}{\omega_n}$$
 $0 < \zeta < 1$

Tiempo de levantamiento (t_i)

Tiempo necesario para que la respuesta pase del 10% al 90% del valor final, ese tiempo puede aproximarse por la ecuación cuadrática:

Más precisa
$$t_l \cong \frac{1-0,4167\zeta+2,917\zeta^2}{\omega_n}$$

$$0<\zeta<1$$

$$t_l = \frac{0.6 + 2.16\zeta}{\omega_n} \qquad 0.4 \le \zeta \le 0.8$$

Tiempo de asentamiento (t_a)

Es el tiempo necesario para que la respuesta transitoria <u>alcance y se mantenga</u> dentro de una banda (5% o 2%) alrededor del <u>valor final</u>.

Envolventes de la respuesta subamortiguada son exponenciales del tipo $e^{-t/T}$

$$K_{yr} \left(1 \pm \frac{e^{-\varsigma \omega_n t}}{\sqrt{1 - \varsigma^2}} \right)$$

Tiempo de asentamiento (t_a)

Tiempo de asentamiento (t_a)

- Cuando han transcurrido tres constantes de tiempo, el exponencial $e^{-t/T}$ a decaído aproximadamente un 95%
- Entonces el Tiempo de Asentamiento a una banda del 5% es: Solo para subamortiguado

Más simple
$$t_{a5\%} \approx \frac{3}{\zeta \omega_n}$$
 $\zeta \leq 0.83$ $t_{a5\%} \approx \frac{7\zeta - 2.2}{\omega_n}$ 0.8

De forma similar el Tiempo de Asentamiento a una banda del 2% es:

$$t_{a2\%} \approx \frac{4}{\varsigma \omega_n} \qquad \zeta \leq 0.88 \qquad t_{a2\%} \approx \frac{10\zeta - 2.2}{\omega_n} \qquad 0.88 < \zeta \leq 1.4$$

Sobreelongación Porcentual (Mp) y Tp

- Se le conoce también como <u>Sobrepaso Máximo</u> o Desvío dinámico máximo
- Es el máximo valor de la respuesta respecto al valor en régimen permanente.

$$M_{pn} = \frac{y_{\text{max}} - y_u}{\Delta y} 100$$
 (medición desde la gráfica de la respuesta temporal)

- En cada máximo debe cumplirse que $\frac{dy}{dt} = 0$, entonces: $t = \frac{n\pi}{\omega_{11} \sqrt{1-\zeta^2}} \forall n \in N_0$
- Tiempo al primer pico (tp) se da cuando n=1

$$t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

$$T = \frac{2\pi}{\omega_n \sqrt{1 - \zeta^2}}$$
 Periodo

Sobreelongación Porcentual (Mp)

Sustituyendo el Tiempo al pico (tp) en:

$$t_{p} = \frac{\pi}{\omega_{n} \sqrt{1 - \varsigma^{2}}} \longrightarrow y(t) = K_{yr} \left[1 - \frac{e^{-\varsigma \omega_{n} t}}{\sqrt{1 - \varsigma^{2}}} \operatorname{sen} \left(\omega_{n} \sqrt{1 - \varsigma^{2}} \right) t + \theta \right] \Delta r$$

Se obtiene el sobrepaso máximo porcentual:

Sobreelongación Porcentual (Mp)

Sobrepaso máximo absoluto:

$$M_{pa\%} = 100 K_{yr} e^{-\pi \zeta/\sqrt{1-\zeta^2}} \Delta r_{\%}$$

Variaciones entre índices de desempeño:

ζ	$M_{pn\%}$					M					
0,20	52,7					ζ	$M_{pn\%}$	$\omega_n t_l$	$\omega_n t_p$	$\omega_n t_{a5}$	$\omega_n t_{a2}$
0,25	44,4					0.25		1.26	2.26	0.57	11 42
0,30	37,2	$K_{vr}=1$	$\zeta = 0.40$			0,35	30,9	1,36	3,36	8,57	11,43
			3	Μ	M	0,40	25,4	1,46	3,43	7,50	10,00
0,35	30,9	$\frac{\Delta r_{\%}}{}$	$y(t_p)_{\%}$	$M_{pn\%}$	$M_{pa\%}$	0,45	20,5	1,57	3,52	6,67	8,89
0,40	25, <mark>4</mark>	10	12,54	25,4	2,54		5	15		55	
0,45	20,5	20	25,08	25,4	5,08	0,50	16,3	1,68	3,63	6,00	8,00
		40	50,15	25,4	10,15	0,60	9,5	1,90	3,93	5,00	6,67
0,50	16,5		30,13	25,4	10,13			500 200 0		100 march	
0,60	9,5					0,70	4,6	2,11	4,40	4,29	5,72
0,70	4,6	ELA			EN	0,80	1,5	2,33	5,24	3,75	5,00
0,80	1,5				*** ****	2011				DIO	

0.15

0.90

ERSIDAD DE COSTA

Sistema Críticamente Amortiguado (polo doble)

Es la respuesta más rápida posible sin que haya sobrepaso. Tampoco hay tiempo al pico o periodo en la respuesta

$$M_{yr}(s) = \frac{K_{yr}}{\left(T_{c}s + 1\right)^{2}}, \quad \zeta = 1$$

$$Constante de tiempo de lazo cerrado$$

$$t_{l} = 3,36T_{c}$$
 $t_{a5\%} = 4,74T_{c}$
 $t_{r} = 1,68T_{c}$ $t_{a2\%} = 5,83T_{c}$

$$y(t) = K_{yr} \left[1 - \left(1 + \frac{t}{T_c} \right) e^{-t/T_c} \right] \Delta r$$

críticamente amortiquado

Desempeño del control regulatorio

$$M_{yd}(s) = \frac{P(s)}{1 + C(s)P(s)} = \frac{D_c(s)N_p(s)}{D_c(s)D_p(s) + N_c(s)N_p(s)} = \frac{\omega_n^2 K_{yd}s}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- Tiempo de asentamiento al 5%: $t_{a5\%emax}$ entrar y mantenerse en una banda del 5% del e_{max} .
- Sistema sub amortiguado

$$y(t) = \frac{K_{yd}\omega_n}{\sqrt{1-\zeta^2}} e^{-\zeta\omega_n t} \sin\left(\omega_n \sqrt{1-\zeta^2}t\right) \Delta d$$

$$t_{emax} = \frac{\cos^{-1}(\zeta)}{\omega_n \sqrt{1 - \zeta^2}}, \quad e_{max} = \omega_n K_{yd} e^{-\zeta \cos^{-1}(\zeta)/\sqrt{1 - \zeta^2}}$$

Sistema críticamente amortiguado:

$$y(t) = K_{yd}\omega_n^2 t \mathrm{e}^{-\omega_n t} \Delta d, \quad t_{emax} = \frac{1}{\omega_n}, \quad e_{max} = 0.368\omega_n K_{yd}$$
Sistemas de Control Leonardo Marín Paniagua, Ph.D. 2018

Desempeño del control regulatorio

Servo control y control Regulatorio con Error Permanente Cero

Índices integrales del desempeño

Integral del error en el Servomecanismo

Índices integrales del desempeño

Índices integrales del desempeño

Los criterios integrales más utilizados son:

Integral del error absoluto – IAE:

$$J_{IAE} = IAE = \int_0^\infty |e(t)| dt$$

Integral del error cuadrático – ISE:

$$J_{ISE} = ISE = \int_0^\infty e(t)^2 dt$$

Integral del tiempo por el error absoluto – ITAE:

$$J_{ITAE} = ITAE = \int_0^\infty t |e(t)| dt$$

Integral del tiempo por el error cuadrático – ITSE:

$$J_{ITSE} = ITSE = \int_0^\infty te(t)^2 dt$$

Criterio General ITmAEn:

$$J_{IT^mAE^n} = IT^mAE^n = \int_0^\infty t^m \left| e(t) \right|^n dt \quad \underset{n = \{1, 2\}}{\overset{m = \{0, 1, 2\}}{\text{de Control}}}$$

Esfuerzo de control

Variación total del control:

$$TV_u = \sum_{k=1}^{\infty} \doteq |u_{k+1} - u_k|$$

- Evaluada para un cambio en el valor deseado (Tv_{ur}), y en la perturbación (Tv_{ud}). Mide la suavidad del esfuerzo de control.
- "Salto" inicial a la salida del controlador
 - Derivada aplicada solo a la señal realimentada

$$\Delta u_0 \doteq K_p \beta \Delta r$$

- Derivada aplicada directamente al error $\Delta u_0 \doteq K_p \left(\beta + \frac{1}{\alpha} \right) \Delta r$
- Esfuerzo de control máximo Umax

Diseño basado en el desempeño

- lacktriangle De la restricción de M_p se puede elegir el valor de ζ
- El Tiempo de Asentamiento estará determinado por la frecuencia natural ω_n
- Se puede modificar la duración del transitorio sin afectar el sobrepaso máximo
- Esto se cumple siempre y cuando el sistema de control realimentado se comporte de forma similar a un sistema de segundo orden subamortiguado:

$$M_{yr}(s) = \frac{\omega_n^2 K_{yr}}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

■ Servomecanismo: (d(s)=0)

$$y(s) = \underbrace{\frac{C(s)P(s)}{1 + C(s)P(s)}}_{\text{servomecanismo}} r(s)$$

■ Se tiene que la señal de error esta dada por: e(s) = r(s) - y(s)

$$e(s) = r(s) - \frac{C(s)P(s)}{1 + C(s)P(s)}r(s) = \frac{1}{1 + C(s)P(s)}r(s)$$

Error permanente servomecanismo:

 Para evaluar este límite se debe conocer el tipo de señal de entrada al sistema

Señal de entrada general al sistema:

$$r_m(t) = t^m u_s(t) \Longrightarrow r_m(s) = \frac{1}{s^{m+1}}$$

Escalón Unitario (m=0)

$$r_0(s) = \frac{1}{s}$$

Rampa Unitaria (m=1)

$$r_1(s) = \frac{1}{s^2}$$

Parábola Unitaria (m=2)

Se utiliza la entrada general r_m para encontrar el error permanente del servomecanismo $r_m(s) = \frac{1}{m+1}$

$$\Rightarrow e_{prm} = \lim_{s \to 0} \frac{s / s^{m+1}}{1 + C(s)P(s)}$$

$$\Rightarrow e_{prm} = \lim_{s \to 0} \frac{1}{s^m + s^m C(s) P(s)}$$

$$\Rightarrow e_{prm} = \frac{1}{\lim_{s \to 0} s^m + \lim_{s \to 0} s^m C(s) P(s)}$$

$$\therefore e_{prm} = \frac{1}{\lim_{s \to 0} s^m + k_m}$$

Donde se define la constante del error como

$$\sum_{n=1}^{\infty} k_m = \lim_{s \to 0} s^m C(s) P(s)$$

La evaluación del límite de la constante del error depende la FTLA

$$k_m = \lim_{s \to 0} s^m C(s) P(s) = \lim_{s \to 0} s^m L(s)$$

Suponiendo que

$$P(s) = \frac{k \prod_{i=1}^{n} (z_{i}s+1)}{s^{\frac{np}{m}} \prod_{j=1}^{m} (p_{j}s+1)} = \frac{k}{s^{np}} P'(s) \qquad C(s) = \frac{K_{p} \prod_{i=1}^{n} (z_{i}s+1)}{s^{\frac{nc}{m}} \prod_{j=1}^{m} (p_{j}s+1)} = \frac{K_{p} C'(s)}{s^{\frac{nc}{m}} \prod_{j=1}^{m} (p_{j}s+1)}$$

Donde np es el # de polos en el origen de la planta y nc el # de polos en el origen del controlador. Entonces:

$$L(s) = C(s)P(s) = \frac{K_p k \prod_{i=1}^{n} (Ceros de la planta y del controlador)}{s^{np+nc} \prod_{j=1}^{m} (Polos de la planta y del controlador)}$$

- Se define el TIPO de una función de transferencia como el # de polos que tenga en su origen:
 - El Tipo de la planta es np
 - El Tipo del controlador es nc (tipo 0=P, PD, tipo 1=PI, PID)
 - El Tipo del sistema de control es igual al # de polos en el origen que tenga su FTLA y esto es igual a np+nc
- Error Permanente Entrada Tipo Escalón:

$$e_{pr0} = \frac{1}{1 + k_0} \qquad k_0 = \lim_{s \to 0} s^0 L(s) = \lim_{s \to 0} \frac{K_p k}{s^{np + nc}}$$

Para que el error permanente a una entrada escalón sea cero, el sistema debe ser tipo **1** o mayor.

Error Permanente Entrada Tipo Rampa:

$$e_{pr1} = \frac{1}{k_1}$$
 $k_1 = \lim_{s \to 0} s^1 L(s) = \lim_{s \to 0} \frac{sK_p k}{s^{np+nc}}$

Para que el error permanente a una entrada rampa sea cero, el sistema debe ser tipo 2 o mayor.

En resumen:

Regulador:
$$r(s)=0 \Rightarrow e(s)=0-y(s)=0$$

$$e_{s}=\lim se(s)$$

$$1+C(s)P(s)$$

Entrada tipo Escalón

 Para una planta tipo 0 (np=0) y un controlador tipo 0 (nc=0).

$$e_{pd0}(s) = \frac{-k}{1 + K_p k}$$

Para una planta tipo 0 (np=0) y un controlador tipo 1 (nc=1).

$$e_{pd0}(s) = 0$$

Para una planta tipo 1 (np=1, plata integrante) y un controlador tipo 0 (nc=0).

$$e_{pd0}(s) = -\frac{1}{K_p}$$

 Para una planta tipo 1 (np=1) y un controlador tipo 1 (nc=1).

$$e_{pd0}(s) = 0$$

Regulador:
$$r(s)=0 \Rightarrow e(s)=0-y(s)=0$$

$$e_{pd} = \lim_{s \to 0} se(s)$$

$$1+C(s)P(s)$$

Entrada tipo Rampa

Para un controlador tipo 0 (nc=0).

$$e_{pd1}(s) = \infty$$

Para un controlador tipo 1 (nc=1).

$$e_{pd1}(s) = -\frac{1}{K_p}$$

ESCUELA DE INGENIERIA ELECTRICA UNIVERSIDAD DE COSTA RICA

- Servocontrol: Para que el error permanente a un cambio escalón en valor deseado sea cero, e_{pr} = 0, se necesita que L(s) tenga al menos un polo en el origen ("sistema de control Tipo 1"). El polo en el origen puede ser provisto por el controlador C(s) o por el proceso controlado P(s).
- Control Regulatorio: Para que el error permanente a un cambio escalón en la perturbación sea cero, e_{pd} = 0, se necesita que C(s) tenga por lo menos un polo en el origen (PI o PID). Los polos en el origen del proceso, no contribuyen a eliminar el error permanente a un cambio en la perturbación.

Error Permanente normalizado y absoluto

Servo control

Cambio en la respuesta

$$\Delta y_r = K_{yr} \Delta r$$

Error permanente

$$\Delta e_{pr} = \Delta r - \Delta y_r = (1 - K_{yr}) \Delta r$$

Error normalizado

$$\Delta e_{prn} = \frac{\Delta e_{pr}}{\Delta r}$$

• Para tener $\Delta y_r = \Delta r$

$$K_{yr}=1 \Rightarrow M_{yr}(0)=1$$

Control regulatorio

Cambio en la respuesta

$$\Delta y_d = K_{yd} \Delta d$$

Error permanente

$$\Delta e_{pd} = -\Delta y_d = -K_{yd}\Delta d$$

Error normalizado

$$\Delta e_{pdn} = \frac{\Delta e_{pd}}{\Delta d}$$

• Para tener $\Delta y_d = 0$

$$K_{vd}=0 \Rightarrow M_{vd}(0)=0$$

Consideraciones para el Diseño de un sistema de control:

- Operación del sistema de control: Seguimiento de un valor deseado cambiante o atenuación del efecto de las perturbaciones.
- Algoritmo de control: PI, PID (estándar, serie, ...), de uno o dos grados de libertad.
- Índices de desempeño: Características de la respuesta transitoria o del error, índices de error integral.
- Uso del esfuerzo de control: Variación total, cambio inicial y valor máximo.
- Error permanente: error permanente requerido en la operación de lazo de control de acuerdo a su funcionamiento (servo/regulador) y según el tipo de entrada.