Terceiro Relatório de Lab de Circuitos II

Henrique da Silva hpsilva@proton.me

6 de março de 2023

Sumário

L	Intr	odução
2	Ana	ilise preliminar
	2.1	
	2.2	
		2.2.1 Análise geral do circuito .
		2.2.2 Análise do circuito 1
		2.2.3 Análise do circuito 2
	2.3	
		2.3.1 Montagem do circuito
	2.4	
	2.5	
3	Med	dições em laboratório
	3.1	Tabela de componentes
	3.2	Circuito 1
		3.2.1 Tabela de valores
		3.2.2 Função transferência
		3.2.3 Estimativas experimentais
		$de H(jw) \dots \dots \dots$
		3.2.4 Valores de corte
	3.3	Circuito 2
		3.3.1 Tabela de valores
		3.3.2 Função transferência
		3.3.3 Estimativas experimentais
		$de H(jw) \dots \dots \dots$
		3.3.4 Valores de corte

4 Conclusões

1 Introdução

Neste relatório, vamos discutir calcular gráficos de Bode de dois circuitos de segunda ordem e medir suas características.

Todos arquivos utilizados para criar este relatório, e o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/5thsemester/CircuitsII/

2 Análise preliminar

Utilizarei o WxMaxima e LTSpice para fazer a análise teórica do circuito antes de montálo fisicamente.

Após terminar as análises compararei os resultados obtidos nas análises numéricas e em laboratório para verificar sua coerência.

2.1 O Circuito

2.2 WxMaxima

2.2.1 Análise geral do circuito

Primeiro fiz manualmente a análise nodal do circuito que vamos construir, e passei ele para o domínio da frequência.

eq1:
$$0 = (Va-Vi)/R1 + Va-s\cdot C1 + (Va/R3) + (Va-V0)/R2;$$

eq2: $0 = -Va/R3 - V0\cdot s\cdot C2;$
 $0 = C1 Va s + \frac{Va-Vi}{R1} + \frac{Va-Vo}{R2} + \frac{Va}{R3}$
 $0 = -C2 V0 s - \frac{Va}{R3}$

Após isso resolvi para Va e V_0

results: linsolve([eq1,eq2],[Va,V0]);

$$[Va = \frac{C2 R2 R3 Vi s}{C1 C2 R1 R2 R3 s^{2} + ((C2 R2 + C2 R1) R3 + C2 R1 R2) s + R1}$$

$$V0 = -\frac{R2 Vi}{C1 C2 R1 R2 R3 s^{2} + ((C2 R2 + C2 R1) R3 + C2 R1 R2) s + R1}$$

Daqui criamos nossa função transferência ${\cal H}.$

Agora com a função H em mãos podemos substituir os valores dos resistores e do capacitor pelos que utilizaremos nos circuitos a serem analisados.

2.2.2 Análise do circuito 1

Fazemos a substituição em H dos valores que utilizaremos no circuito 1.

$$C_1 = 100nF$$

$$C_2 = 10nF$$

$$R_1 = 47k\Omega$$

$$R_2 = 470k\Omega$$

$$R_3 = 470k\Omega$$

H1: at(H, [C1 = 10^-7, C2 = 10^-8,R1=47000, R2=470000, R3=470000]);

Analisamos os pólos e zeros da função transferência e vemos que não há zeros. E os polos estão abaixo:

solve(denom(H1),s);

$$s = -\frac{1000\sqrt{26+6000}}{47}, s = \frac{1000\sqrt{26-6000}}{47}$$

Agora faremos gráficos de Bode para analisar o comportamento da magnitude da função transferência e o ângulo de fase entre as saídas e entradas do circuito.

Figura 1: Magnitude de H(s) do circuito 1.

Figura 2: Fase de H(s) do circuito 1.

Daqui retornei para o domínio do tempo para ter a função que descreve completamente o comportamento da resposta do circuito.

iltH1: ilt((H1·0.8)/s, s, t);
laced -376000.0 by -376000/1 = -376000.0
%e
$$\frac{-\frac{6000 t}{47} \left(\frac{106032 \sinh \left(\frac{1000 \sqrt{26} t}{47} \right)}{\sqrt{26}} + 17672 \cosh \left(\frac{1000 \sqrt{26} t}{47} \right) \right)}{2209}$$

Podemos ver que já que todos termos exceto o -8 dependem de uma exponencial negativa em t, então se nosso tempo tende a infinito, a resposta do circuito tende a -8.

Fazendo esta análise numericamente abaixo verificamos este resultado.

Com a função que descreve o comportamento do circuito no tempo em mãos, podemos montar seu gráfico e analisar seu comportamento a qualquer tempo.

Figura 3: Gráfico de $V_0(t)$ do circuito 1.

Observamos que a função atinge valor final de -8V.

E chega a 10% deste valor em 9.2ms e 90% em 122.2ms.

2.2.3 Análise do circuito 2

Fazemos a substituição em H dos valores que utilizaremos no circuito 1.

$$C_1 = 100nF$$

$$C_2 = 10nF$$

$$R_1 = 470k\Omega$$

$$R_2 = 470k\Omega$$

$$R_3 = 47k\Omega$$

Analisamos os pólos e zeros da função transferência e vemos que não há zeros. E os polos estão abaixo:

solve(denom(H2),s);

$$s = -\frac{8000 \% i + 6000}{47}, s = \frac{8000 \% i - 6000}{47}$$

Agora faremos gráficos de Bode para analisar o comportamento da magnitude da função transferência e o ângulo de fase entre as saídas e entradas do circuito.

Figura 4: Magnitude de H(s) do circuito 2.

Figura 5: Fase de H(s) do circuito 2.

Daqui retornei para o domínio do tempo para ter a função que descreve completamente o comportamento da resposta do circuito.

iltH2: ilt((H2·5)/s, s,t);

%e
$$\frac{-\frac{6000 t}{47} \left(\frac{33135 \sin \left(\frac{8000 t}{47} \right)}{4} + 11045 \cos \left(\frac{8000 t}{47} \right) \right)}{2209}$$

Podemos ver que já que todos termos exceto o -5 dependem de uma exponencial negativa em t, então se nosso tempo tende a infinito, a resposta do circuito tende a -5.

Fazendo esta análise numericamente abaixo verificamos este resultado.

Com a função que descreve o comportamento do circuito no tempo em mãos, podemos montar seu gráfico e analisar seu comportamento a qualquer tempo.

Figura 6: Gráfico de $V_0(t)$ do circuito 2.

Observamos que a função atinge valor final de -5V.

E chega a 10% deste valor em 2.4ms e 90% em 10.9ms.

A partir de 10.9ms a função estará contida entre 90% e 110% do valor final.

2.3 LTSpice

2.3.1 Montagem do circuito

No LTSpice montaremos o circuito e geramos seus gráficos de Bode.

2.4 Circuito 1

Figura 7: Gráficos de Bode do circuito 1.

2.5 Circuito 2

Figura 8: Gráficos de Bode do circuito 2.

3 Medições em laboratório

Vamos inicialmente fazer as medições dos componentes a serem usados.

3.1 Tabela de componentes

$$C_1 = 101.0nF$$

$$C_2 = 10.5nF$$

$$R_1 = 46.6k\Omega$$

$$R_2 = 464.5k\Omega$$

$$R_3 = 474.2k\Omega$$

3.2 Circuito 1

3.2.1 Tabela de valores

Encontrei $f_1 = 3$, daí segue os seguintes valores:

Múltiplos	Freq (Hz)	Entrada (V)	Saída (V)
0.15	0.5	1.67	15.7
0.4	1.2	1.67	14.6
0.6	1.8	1.67	13.4
0.8	2.4	1.67	12.1
1.0	3.0	1.67	10.9
1.2	3.6	1.67	9.9
1.4	4.2	1.67	8.9
1.8	5.4	1.67	7.4
2.5	7.5	1.67	5.8
4	12	1.67	3.6
6	18	1.67	2.4
10	30	1.67	1.3

3.2.2 Função transferência

 $H1: at(H, [C1 = 101 \cdot 10^{-9}, C2 = 10.5 \cdot 10^{-9}, R1 = 46600, R2 = 464500, R3 = 474200]);$

Figura 9: Função transferência do circuito 1.

3.2.3 Estimativas experimentais de |H(jw)|

Múltiplos	Freq (Hz)	H(jw)
0.15	0.5	9.4011
0.4	1.2	8.7425
0.6	1.8	8.0239
0.8	2.4	7.2455
1.0	3.0	6.5269
1.2	3.6	5.9281
1.4	4.2	5.3293
1.8	5.4	4.4310
2.5	7.5	3.4730
4	12	2.1796
6	18	1.4371
10	30	0.7844

Escala log-log da magnitude de H(jw) nos pontos experimentais

Figura 10: |H(jw)| por w em escala log-log.

3.2.4 Valores de corte

Com entrada de 0.8V encontrei os seguintes valores de tempo para a onda atingir 10% e 90% do valor máximo respectivamente:

$$10\% = 8.8ms 90\% = 128.0ms$$
 (1)

3.3 Circuito 2

3.3.1 Tabela de valores

Encontrei $f_m ax = 15$, daí segue os seguintes valores:

Múltiplos	Freq (Hz)	Entrada (V)	Saída (V)
0.15	2.2	5.07	4.9
0.4	6	5.07	4.94
0.6	9	5.07	4.94
0.8	12	5.07	4.98
1.0	15	5.07	5.03
1.2	18	5.07	4.98
1.4	21	5.07	4.94
1.8	27	5.07	4.66
2.5	37	5.07	3.66
4	60	5.07	1.71
6	90	5.07	0.76
10	150	5.07	0.29

3.3.2 Função transferência

H2: $at(H, [C1 = 101 \cdot 10^{-9}, C2 = 10.5 \cdot 10^{-9}, R3 = 46600, R2 = 464500, R1 = 474200]);$

	464500
•	10.88538659187 s ² +2772.09786 s+474200

Figura 11: Função transferência do circuito 1.

3.3.3 Estimativas experimentais de |H(jw)|

Múltiplos	Freq (Hz)	$\mid H(jw) \mid$
0.15	2.2	0.9667
0.4	6	0.9743
0.6	9	0.9743
0.8	12	0.9822
1.0	15	0.9921
1.2	18	0.9822
1.4	21	0.9743
1.8	27	0.9191
2.5	37	0.7218
4	60	0.3372
6	90	0.1499
10	150	0.0572

Escala log-log da magnitude de H(jw) nos 4 pontos experimentais

Figura 12: |H(jw)| por w em escala log-log.

3.3.4 Valores de corte

Com entrada quadrada de 5V encontrei que apos 11ms a onda se enquadrada exclusivamente entre 90% e 110% do seu valor máximo.

4 Conclusões

Conseguimos com sucesso fazer a análise numérica por dois meios, utilizando o LTSpice e WxMaxima, e comparamos os resultados.

Nos resultados práticos, a magnitude da função transferência foi coerente com os resultados esperados.

Os gráficos que geramos a partir dos resultados experimentais foram coerentes com os gráficos gerados numericamente

Mas em suma creio que tivemos sucesso em nos familiarizar com as ferramentas de análise de circuitos elétricos numéricos.