CORPORATE FINANCE Financial and Real Options

GENERAL AGENDA

- Futures contract
 - Long position, Short position
 - Example
 - Future Valuation

- Financial and Real Options
 - Calls, Puts and Shares
 - Financial Alchemy with Options
 - What Determines Option Value
 - Option Valuation

TOPICS COVERED

- Calls, Puts and Shares
- Financial Alchemy with Options
- What Determines Option Value
- Option Valuation

FUTURE OBLIGATIONS

	Buyer	Seller		
Long position	Obligation to buy asset	Obligation to sell asset		
Short position	Obligation to sell asset	Obligation to buy asset		

FUTURE TERMINOLGY

Long Position

Obligation to buy an asset at a specified exercise on or before the exercise date.

Short Option

Obligation to sell an asset at a specified exercise on or before the exercise date.

FUTURES CONTRACT VALUE

The value of future at expiration is a function of the asset price and the exercise price.

FUTURE VALUE

 The value of a Future at expiration is a function of the asset price and the exercise price.

Example - Future values given a exercise price of \$85

Asset price	\$60	70	80	90	100	110
Long Position Value	- 25	-15	-5	5	15	25
Short Position	25	15	5	- 5	-10	-15

Long position value (graphic a given a \$85 exercise price.

Short position value (graphic) given a \$85 exercise price.

Long position value payoff (to seller) given a \$85 exercise price.

Short position value pay off (to seller) a given a \$85

2020

Future Contract example

En avril, lors du semis et compte-tenu du contexte spécifique à son exploitation (niveau des charges, revenu souhaité, ...), il estime qu'un prix de 210 €/t serait satisfaisant et lui permettrait de couvrir ses charges. Ces 210 €/t vont constituer son prix objectif. A la même période, la cotation des contrats de maïs à échéance Novembre indique un prix de 225 €/t. Notre agriculteur craint une baisse des prix d'ici la récolte. Il décide donc de vendre une partie de sa récolte sur le MAT pour se protéger contre une baisse des cours (cf slide suivant). Au moment de vendre sa récolte sur le marché physique, il va également déboucler sa position sur le MAT, c'est -à dire qu'il va prendre une position inverse à celle de départ. Il va donc racheter le même nombre de contrats que ceux qu'il a vendus.

A ce moment, deux cas de figure peuvent se présenter :

- 1. les cours ont baissé. Il va donc obtenir un gain sur le MAT égal à la différence entre le prix de vente et le prix d'achat de ses contrats,
- 2. les cours ont monté. Il va donc obtenir une perte.

Néanmoins comme le MAT et le marché physique sont corrélés, les pertes sur le MAT sont compensées par un gain sur le marché physique et inversement. Pour les éleveurs, les marchés à terme peuvent présenter un double intérêt. Ils peuvent se protéger contre une baisse des cours des céréales dans le cas où ils vendent leur production. Ils ont également la possibilité de se couvrir contre les hausses des cours des aliments. Tout dépend de leur stratégie de commercialisation. Dans le cas de la production porcine, les éleveurs peuvent même s'assurer une marge, en fixant un prix de vente des porcs et un prix d'achat d'aliment.

2020

Future Contract example

Exemple d'application pour un producteur de maïs

En avril :				
Sur le marché à terme : Vente d'un contrat à terme à échéance novembre	225 €/t			
En novembre :	Baisse des cours	Hausse des cours		
Sur le marché à terme : Achat d'un contrat identique à échéance novembre Gain/Perte (A)	205 €/t + 20 €/t	245 €/t - 20 €/t		
Sur le marché physique				
Vente de la récolte (B)	190 €/t	230 €/t		
L'agriculteur perçoit au total (A+B), soit son prix objectif	210 €/t	210 €/t		

En avril, un agriculteur sème son maïs. Il se fixe un prix objectif de 210 €/t. Il craint une baisse des prix d'ici la récolte. Il décide donc de se positionner sur le marché à terme et effectue les opérations suivantes

Ainsi, que les prix montent ou chutent, la couverture sur le marché à terme a permis à l'agriculteur d'obtenir son prix objectif.

Future Contract example

La couverture du risque				
Type Risque sur le d'utilisateur marché physique		Prise de position sur le MAT	Opération sur le MAT à échéance	Opération sur le physique
		Vente de contrat à terme à échéance A	Achat de contrat à terme à échéance A	Vente de la récolte
	1	Achat de contrat à terme à échéance A	Vente de contrat à terme à échéance A	Achat de matière première

Short position value (graphic) given a \$85 exercise price.

OPTION OBLIGATIONS

	Buyer	Seller		
Call option	Right to buy asset	Obligation to sell asset		
Put option	Right to sell asset	Obligation to buy asset		

OPTION TERMINOLGY

Call Option

Right to buy an asset at a specified exercise price on or before the exercise date.

Put Option

Right to sell an asset at a specified exercise price on or before the exercise date.

The value of an option at expiration is a function of the stock price and the exercise price.

 The value of an option at expiration is a function of the stock price and the exercise price.

Example - Option values given a exercise price of \$85

Stock Price	\$60	70	80	90	100	110
Call Value	0	0	0	5	15	25
Put Value	25	15	5	0	0	0

Call option value (graphic) given a \$85 exercise price.

Put option value (graphic) given a \$85 exercise price.

Put option value

Call option payoff (to seller) given a \$85 exercise price.

Call option \$ payoff

Put option payoff (to seller) given a \$85 exercise price.

Put option \$ payoff

Protective Put - Long stock and long put

Position Value

Protective Put - Long stock and long put

Position Value

Protective Put - Long stock and long put

Position Value

Protective Put - Long stock and long put

Position Value

Straddle - Long call and long put

- Strategy for profiting from high volatility

Position Value

Straddle - Long call and long put

- Strategy for profiting from high volatility

Position Value

Straddle - Long call and long put

- Strategy for profiting from high volatility

Position Value

Straddle - Long call and long put

- Strategy for profiting from high volatility

Position Value

Strip – 1 Long call and 2 long put

- Strategy for profiting from high volatility

Position Value

2020

Strip – 1 Long call and 2 long put

- Strategy for profiting from high volatility

Position Value

Strip – 1 Long call and 2 long put

- Strategy for profiting from high volatility

Position Value

Strip – 1 Long call and 2 long put

- Strategy for profiting from high volatility

2020

Strap – 2 Long call and 1 long put

- Strategy for profiting from high volatility

Position Value

2 Long call

Share Price

Strap – 2 Long call and 1 long put

- Strategy for profiting from high volatility

Position Value

Strap – 2 Long call and 1 long put

- Strategy for profiting from high volatility

Strap – 2 Long call and 1 long put

- Strategy for profiting from high volatility

Position Value

Stock Price

Upper Limit

Stock Price

Upper Limit

Lower Limit

(Stock price - exercise price) or 0 whichever is higher

Components of the Option Price

- 1 Underlying stock price
- 2 Striking or Exercise price
- 3 Volatility of the stock returns (standard deviation of annual returns)
- 4 Time to option expiration
- 5 Time value of money (discount rate)

Black-Scholes Option Pricing Model

$$O_C = P_s[N(d_1)] - S[N(d_2)]e^{-rt}$$

Black-Scholes Option Pricing Model

$$O_C = P_s[N(d_1)] - S[N(d_2)]e^{-rt}$$

O_C- Call Option Price

P_s - Stock Price

N(d₁) - Cumulative normal density function of (d₁)

Fonction de répartition $F_X(x) = \int_{-x}^{x} f_X(t) dt$.

$$F_X(x) = \int_{-\infty}^x f_X(t) \, \mathrm{d}t$$

S - Strike or Exercise price

 $N(d_2)$ - Cumulative normal density function of (d_2)

r - discount rate (90 day comm paper rate or risk free rate)

t - time to maturity of option (as % of year)

v - volatility - annualized standard deviation of daily returns

Black-Scholes Option Pricing Model

$$(d_1) = \frac{\ln \frac{P_s}{S} + (r + \frac{v^2}{2})t}{v\sqrt{t}}$$

Cumulative Normal Density Function

$$(d_1) = \frac{\ln \frac{P_s}{S} + (r + \frac{v^2}{2})t}{v\sqrt{t}}$$

$$(d_2) = d_1 - v \sqrt{t}$$

Example

What is the price of a call option given the following?

$$P = 36$$
 $r = 10\%$ $v = .40$

$$S = 40$$
 $t = 90 days / 365$

Example

What is the price of a call option given the following?

$$\mathbf{P} = \mathbf{36}$$

$$r = 10\%$$

$$\mathbf{v} = .40$$

$$S = 40$$

$$t = 90 \text{ days} / 365$$

$$(d_1) = \frac{-\ln \frac{P_s}{S} + (r + \frac{v^2}{2})t}{v\sqrt{t}}$$

$$(d_1) = -.3070$$

$$N(d_1) = 1 - .6206 = .3794$$

Example

What is the price of a call option given the following?

$$P = 36$$

$$P = 36$$
 $r = 10\%$

$$v = .40$$

$$S = 40$$

$$S = 40$$
 $t = 90 days / 365$

$$(d_2) = d_1 - v \sqrt{t}$$

$$(d_2) = -.5056$$

$$N(d_2) = 1 - .6935 = .3065$$

Example

What is the price of a call option given the following?

$$P = 36$$
 $r = 10\%$ $v = .40$

$$S = 40$$
 $t = 90 days / 365$

$$O_C = P_s[N(d_1)] - S[N(d_2)]e^{-rt}$$

$$O_C = 36[.3794] - 40[.3065]e^{-(.10)(.2466)}$$

$$O_C = $1.70$$

OPTION TO WAIT

Intrinsic Value

Stock Price

OPTION TO WAIT

Intrinsic Value + Time Premium = Option Value

Time Premium = Vale of being able to wait

Stock Price

OPTION TO WAIT

More time = More value

Stock Price

