Hackathon Project Phases - Code Crackers

Project Title:

Gesture-Based Human-Computer Interaction System

Team Name:

Code Crackers

Team Members:

- Akshay Kumar (Team Leader)
- Aashish Jawalkar
- Shravan Kumar
- Surya Teja

Phase-1: Brainstorming & Ideation

Objective:

Develop a vision-based system that enables users to interact with a computer using hand gestures captured by a normal webcam.

Key Points:

1. Problem Statement:

- o Traditional input devices require physical contact, limiting accessibility.
- o Hands-free control enhances accessibility and convenience.

2. **Proposed Solution:**

 A gesture recognition system using OpenCV, Mediapipe, and AI models to process hand gestures and execute commands.

3. Target Users:

- o Professionals needing hands-free control.
- Users with mobility impairments.
- General users looking for intuitive interaction.

4. Expected Outcome:

 A functional AI-powered gesture-controlled interface with real-time accuracy and seamless application integration.

Phase-2: Requirement Analysis

Objective:

Define the technical and functional requirements for the project.

Key Points:

1. Technical Requirements:

o Programming Language: Python

o Backend: OpenCV, Mediapipe, TensorFlow

o Frontend: Flask / PyQt

o OS: Windows

Hardware: Normal webcam

2. Functional Requirements:

o Recognize hand gestures accurately.

o Execute system commands based on gestures.

o Provide a seamless and interactive UI.

3. Constraints & Challenges:

o Ensuring real-time responsiveness.

o Handling varying lighting conditions.

o Improving model accuracy.

Phase-3: Project Design

Objective:

Develop the architecture and user flow of the system.

Key Points:

1. System Architecture:

- Webcam captures hand gestures.
- o Al model processes the gesture.
- System executes the corresponding command.

2. User Flow:

- o Step 1: User performs a hand gesture.
- o Step 2: Model processes and matches it with predefined commands.
- Step 3: System executes the respective command.

3. UI/UX Considerations:

- Minimalist and user-friendly interface.
- Visual feedback for detected gestures.

Phase-4: Project Planning (Agile Methodology)

Objective:

Break down development tasks for efficient completion.

Sprint Planning & Tasks:

Sprint Task	Priority	Duration	Assigned To
Sprint 1 Research & Dataset Collection	High	6 hours	Entire Team
Sprint 1 Model Training	High	6 hours	Akshay
Sprint 2 Vision Processing Integration	High	5 hours	Aashish
Sprint 2 Gesture-Command Mapping	High	4 hours	Shravan
Sprint 3 UI Design & Testing	Medium	n 5 hours	Surya
Sprint 3 Debugging & Final Fixes	High	3 hours	Entire Team
Sprint 3 Final Presentation & Deploymen	t Low	2 hours	Entire Team

Phase-5: Project Development

Objective:

Develop the core functionalities of the gesture-based system.

Key Points:

1. Technology Stack Used:

o Frontend: Flask / Pyautogui

o Backend: TensorFlow, Mediapipe, OpenCV

o Programming Language: Python

2. Development Process:

- o Integrate real-time gesture-to-command mapping.
- o Optimize system responsiveness.

3. Challenges & Fixes:

- o **Challenge:** Low accuracy under poor lighting conditions.
 - **Fix:** Implement adaptive lighting adjustments.

- o **Challenge:** High latency in real-time processing.
 - **Fix:** Optimize model performance.

Phase-6: Functional & Performance Testing

Objective:

Ensure the system functions correctly and performs efficiently.

Test Cases & Results:

Test Case	Category	Test Scenario	Expected Outcome	Status
TC-001	Functional Testing	Recognize common hand gestures	Accurate detection	Passed
TC-002	Performance Testing	Gesture response time < 500ms	Fast response time	⚠ Needs Optimization
TC-003	Bug Fixes & Improvements	Handling different lighting conditions	Consistent accuracy	✓ Fixed
TC-004	UI Validation	Ensure responsiveness across devices	Works on Windows	Passed

Final Submission

- 1. Project Report (This document)
- 2. Demo Video (3-5 Minutes)
- 3. **GitHub Repository**
- 4. Presentation