水以下コンテスト 解説

運営メンバーのなまえ

2024/03/30

X: Unions

Writer: yasunori

X: Unions

N $(2 \leq N \leq 10^5)$ 個の国と,複数の国による同盟が M $(1 \leq M \leq 10^5)$ 個あり,i 個目の同盟には C_i 個の国 $A_{i,1},A_{i,2},...,A_{i,C_i}$ の国が所属している.(ここで, C_i は $\sum_{i=0}^M C_i \leq 10^5$ を満たす.)

同じ同盟に所属している国同士は直接行き来でき,同盟iに属している国同士は D_i 分で移動できる.同じ同盟に属していない国同士は直接行き来できない.

国 2,3,...,N について、国 1 から移動するのにかかる時間の最小値を求めよ.

X: Unions

N個の国と,複数の国で構成される同盟が M 個ある. i 個目の同盟には C_i 個の国 $A_{i,1},A_{i,2},...,A_{i,C_i}$ の国が所属している.

同じ同盟に所属している国同士は直接行き来でき,同盟iに属している国同士は D_i 分で移動できる.同じ同盟に属していない国同士は直接行き来できない.

国 2,3,...,N について、国 1 から移動するのにかかる時間の最小値を求めよ.

- $2 < N < 10^5$
- $1 < M < 10^5$
- $\sum_{i=1}^{M} C_i \le 10^5$

X: Unions 部分点1解法

• $C_i = 2 \ (1 \le i \le M)$

X: Unions 部分点1解法

•
$$C_i = 2 \ (1 \le i \le M)$$

すべての同盟がちょうど 2 個の国からなるため,同盟 i は「 $A_{i,1}$ と $A_{i,2}$ は移動に D_i 分かかる道でつながっている」と言い換えることができる.

X: Unions 部分点1解法

•
$$C_i = 2 \ (1 \le i \le M)$$

すべての同盟がちょうど 2 個の国からなるため、同盟 i は「 $A_{i,1}$ と $A_{i,2}$ は移動に D_i 分かかる道でつながっている」と言い換えることができる.

つまり,国 1 から国 2,3,...,N への最短距離を求める問題に帰着できる. \rightarrow このグラフは頂点の数が N,辺の数が M であるため,ダイクストラ法で解ける!

国1を始点として、ダイクストラ法を使って各国への最短距離を求めることで、部分点1に正解できる.

X: Unions 部分点 2 解法

$$\bullet \ \sum_{i=1}^{M} C_i \le 10^3$$

X: Unions 部分点 2 解法

$$\bullet \ \sum_{i=1}^{M} C_i \le 10^3$$

同じ同盟に属する国同士は 「 D_i 分かかる道でつながっている」 と言い換えることができる.

X: Unions 部分点 2 解法

$$\bullet \ \sum_{i=1}^{M} C_i \le 10^3$$

同じ同盟に属する国同士は 「 D_i 分かかる道でつながっている」 と言い換えることができる.

 $\sum_{i=1}^M C_i \leq 10^3$ の制約から,同じ同盟に属する国同士のペアすべてに D_i の重みを持つ辺を張っても十分間に合う.実際,辺数を |E| とすると,

$$|E| = \sum_{i=1}^{M} \frac{C_i(C_i - 1)}{2} < \frac{1}{2} \sum_{i=1}^{M} C_i^2 \le \frac{1}{2} \left(\sum_{i=1}^{M} C_i \right)^2 \le 5 \times 10^5$$

となる.

部分点1と同様にダイクストラ法を用いれば、部分点2に正解できる.

X: Unions 満点解法

X: Unions 満点解法

部分点2の方法だと、張る辺の本数が多すぎて間に合わない.

超頂点を導入することで間に合う!

X: Unions 満点解法

部分点2の方法だと、張る辺の本数が多すぎて間に合わない.

超頂点を導入することで間に合う!

各国 1,2,...,N と,同盟 1,2,...,M を頂点とするグラフを考える.

$$i = 1, 2, ..., M, j = 1, 2, ..., C_i$$
 について,

- ullet 国 $A_{i,j}$ から 同盟 i に、重み D_i の辺を張る
- 同盟iから 国 $A_{i,j}$ に、重み0の辺を張る

とすると,同じ同盟に属する国同士は同盟の頂点を経由することで D_i 分のコストで移動できる.

このグラフの辺数は $2 \times \sum_{i=1}^{M} C_i$ であるため,このグラフ上でダイクストラ法をすればよい.

5/5