Technische Universität Ilmenau Fakulät IA Institut für Biomedizinische Technik und Informatik

Praktikum Deep Learning in der Biomedizintechnik WS 2021/22

Versuchsprotokoll

16.12.2021

1 Kontrollfragen

- 1. Erklären Sie die Rechenschritte in einem neuronalen Netz.
 - Signaleingang über Axon an Eingang des Neurons
 - Summe aller Eingänge mti Aktivierungsfunktion (Soma) verrechnen
 - Ausgabe der Aktivierungsfunktion mit Ausgabefunktion (Axonhügel) berechnen
 - Ergebnis der Ausgabefunktion auf Ausgang legen
- 2. Nennen Sie drei Aktivierungsfunktionen von neuronalen Netzen.
 - Skalarprodukt $\sum_{i=1}^{n} w_{ij} * x_{I}$
 - Sigma-Pi $\sum_{j=1}^{n} (w_{ij} * \prod_{w=1}^{p} x_{jw})$
 - Manhatten $\sum_{j=1}^{n} |x_j w_{ji}|$
 - Euklidische Distanz $\sqrt{\sum_{j=1}^{n}(x_{j}-w_{ji})^{2}}$
 - Mahalanobis $\sqrt{(x-w_i)^T * C_i^{-1} * (x-w_i)}$ mit $C_i = \frac{1}{n} \sum_{p=1}^{N} (x^p w_i) * (x^p w_i)^T$
 - Maximum-Distanz: $max_{1 \le j \le n} |x_j w_{ij}|$
 - Minimum-Distanz: $min_{1 \le j \le n} |x_j w_{ij}|$
- 3. Nennen Sie verschiedene Arten von Layern in neuronalen Netzen.
 - Input-Layer: Neuronen, die von der Aussenwelt Signale empfangen
 - Hidden-Layer: Neuronen, die sich im inneren des neuronalen Netzes befinden und eine interne Repräsentation der Aussenwelt enthalten
 - Output-Layer: Neuronen, die Signale an die Aussenwelt abgeben
- 4. Warum ist es nicht sinnvoll eine lineare Funktion ($y = \alpha x + b$) als Aktivierungsfunktion in den verdeckten Schichten eines neuronalen Netzes zu verwenden?

•

- 5. Was verstehen Sie unter Backpropagation?
 - Im Wesentlichen ist Backpropagation ein Algorithmus, der zur schnellen

Berechnung von Ableitungen verwendet wird

- auch Fehlerrückführung oder Rückwärtspropagierung
- um einen Gradientenabstieg in Bezug auf Gewichtungen zu berechnen
- gewünschte Ausgaben werden mit erreichten Systemausgaben verglichen, und dann werden die Systeme durch Anpassung der Verbindungsgewichte so eingestellt, dass der Unterschied zwischen den beiden so gering wie möglich ist
- der Algorithmus hat seinen Namen daher, dass die Gewichtungen rückwärts aktualisiert werden, von der Ausgabe zur Eingabe
- 6. Warum ist eine Stufenfunktion (Rosenblatt-Perceptron) ungünstig für den Backpropagation-Algorithmus?
 - Anpassung schlecht möglich
- 7. Was ist die Learning Rate? Was passiert, wenn sie zu hoch oder niedrig gewählt wird?
 - Sein Wert bestimmt, wie schnell das Neuronale Netz zu Minima konvergieren würde
 - wenn er zu niedrig ist, ist der Konvergenzprozess sehr langsam
 - wenn er zu hoch ist, ist die Konvergenz schnell, aber es besteht die Möglichkeit, dass der Verlust überschreitet
- 8. Was verstehen Sie unter Augmentation? Nennen Sie Beispiele für Augmentation.
 - mit Hilfe von verschiedenen Prozessen die Originalbilddaten verändern
 - Beispielsweise kann ein Bild gedreht werden oder es ist möglich einen Filter über das Bild zu legen
- 9. Warum ist es bei neuronalen Netzen besonders wichtig, die Testdaten beim Training außen vor zu lassen?
 - Um einen korrekten Vergleich mit anderen Netzen und unabhängigkeit vom Training nachzuweisen
- 10. Wie können Sie die Güte eines neuronalen Netzes bewerten?

•

- 11. Warum ist es potentiell kritisch, wenn mit einem neuronalen Netz ein unscharfes Bild scharf und hochaufgelöst gemacht wird?
 - kleine fehlerhafte oder ungenaue Bild-Sektionen können zu größeren Fehlern und Abweichungen von dem Original führen die durch die Hochauflösung überdeckt oder verschoben werden

2 Versuchsdurchführung

2.1 Grundkenntnisse zur Anwendung von Deep Learning

2.1.1 Erstellen eines einfachen neuronalen Netzes

Berechnung der Parameter eines neuronalen Netzes per Hand Erstellen und Anwenden eines neuronalen Netzes in Python

2.1.2 Neuronales Netz zur Funktionsapproximation

Approximieren eines QRS-Komplexes 6 durch manuelles und automatisches Setzen der Parameter

2.1.3 Neuronales Netz zur Erkennung handschriftlicher Ziffern

Erweiterung des neuronalen Netzes aus Aufgabe 1a zur Verarbeitung des MNIST-Datensatzes

2.2 Anwendung von Deep Learning in der Biomedizintechnik

2.2.1 Data Sanitization mit Hilfe von Pandas

Nutzen der Pandas-Bibliothek zur Vorverarbeitung von Daten für das Training eines neuronalen Netzes

2.2.2 Neuronales Netz zur Klassifikation von OCT-Aufnahmen

Manuelle und automatische Klassifikation von OCT-Aufnahmen

Optimierung der Accuracy des neuronalen Netzes durch Nutzung von Data Augmentation

2.2.3 Aufgabe 3: Grenzen von Deep Learning

Kennenlernen, worin die Herausforderung bei der Interpretation von neuronalen Netzen besteht

Anwendung von Class Activation Maps