Departamento de Análisis Matemático, Universidad de Granada

Prueba intermedia de Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Ejercicio 1. (**4 puntos**) Probar que la serie $\sum_{n\geqslant 1}\frac{1}{n^z}$ converge absolutamente en todo punto del dominio $\Omega=\{z\in\mathbb{C}: \operatorname{Re} z>1\}$ y uniformemente en cada subconjunto compacto contenido en Ω . Deducir que la función $g:\Omega\to\mathbb{C}$ dada por

$$g(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$$
 $(z \in \Omega)$

es continua en Ω y calcular $\int_{C(\pi,1)} g(z) dz$.

Ejercicio 2. (3 puntos) Estudiar la derivabilidad de la función $f: \mathbb{C} \to \mathbb{C}$ dada por

$$f(z) = ze^{\overline{z}}$$
 $(z \in \mathbb{C}).$

Ejercicio 3.

- a) (1.5 puntos) Calcular $\int_{C(0,1)} \frac{\cos(z)}{z(z-3)^3} dz.$
- **b)** (1.5 puntos) Sean f y g dos funciones enteras verificando f(z) = g(z) para cada $z \in \mathbb{T}$. Demostrar que f(z) = g(z) para cada $z \in \overline{D}(0,1)$. Extra (1.5 puntos) Probar que, de hecho, f = g.