פתרון לגיליון תרגילים מספר 5

כך $a_x\in A$ קיימת $x\in\Re$ לכל ביועה סגורה. איימת $a\in\Re$ קיימת ביועה כך כונה $|a_x-x|\le |a-x|:$ שלכל $a\in A$ מתקיים

הוכחה:

תהי $b\in\mathfrak{R}$ כלשהי. נבנה פונקציה : a=|x-b| נסתכל על קבוצת נבנה $b\in\mathfrak{R}$ תהי $a\in\mathfrak{R}$ כלשהי. נבנה פונקציה : $f(A)=\left\{f_b(a)|a\in A\right\}\subset\mathfrak{R}$ המספרים a=(a) לכן יש לה אינפימום.נסמן : a=(a) ע"פ הגדרת , a=(a) לכן יש לה אינפימום a=(a) כך שa=(a) לכל a=(a) קיים a=(a) קיים a=(a) כך שa=(a) כלומר , כלומר

-ם שכל איבריה גדולים מ a_{n_k} נסמנה a_n יש תת-סדרה של a_n יש תת-סדרה של . $d+rac{1}{n}>\left|a_n-b
ight|$ ע"פ) $\lim_{k o\infty}a_{n_k}=d+b$ אז קטנים מb. נניח כי לכל b

סנדביץ').

2

אם קיים A-ם כך ש- $a_{n_l}=d+b$ אז סיימנו – כי זוהי הנקודה ב-k=l ביותר ל-.

,A אחרת הנקודה d+b היא נקודת הצטברות של הקבוצה הסגורה d+b ולכן שייכת לA. זוהי הנקודה הקרובה ביותר ל

. תהי $A \subseteq R$ קבוצה גם פתוחה וגם סגורה

x- טגורה ולכן לכל $\overline{a} \in A$ יש נקודה $\overline{a} \in A$ יש נקודה אינ יש זיער לכל לכל לכל אינ אינ יש מגורה ולכן לכל

.($x \in \Re$ לכל $x \in A$ כלומר) $\overline{a} = x$: טענה

נניח כי \overline{a} בלי הגבלת הכלליות : $x > \overline{a}$ פתוחה ולכן $x \neq \overline{a}$ פנימית ב- $(\overline{a} + \delta, \overline{a} - \delta) \subset A$ כך ש- $(\overline{a} + \delta, \overline{a} - \delta)$. נקבל ש-

 $.\overline{a}$ נקודה קרובה יותר ל $\overline{a}+rac{\delta}{2}\in A$

 $A=\Re$ לכן קיבלנו שאם $\phi
eq A \subseteq R$ פתוחה וסגורה

א. קבוצות צפופות ב- \Re שאינן \Re עצמו:

$$A = Q , A = \bigcup_{n=-\infty}^{\infty} (n, n+1)$$

3

4

-ב. צ"ל: $A \in A$ קיים $\delta > 0$ ולכל $b \in B$ לכל $\Leftrightarrow B$ כך ש- $a \in (b - \delta, b + \delta)$

מכאן $b \in A'$ או $b \in A$ אז וומר ש $b \in A$ או מכאן הוכחה: התנאי שמצד שמאל אומר ש

. $\{ 8 \}$ לדוגמא היחידון : $A' = \phi$

. [0,1] הקטע :
$$A' = A$$

$$A = \left\{ \frac{1}{n} \mid n \in N \right\} \cup \left\{ 0 \right\} : A' \neq A, A' \subset A$$

$$A = \left\{ \frac{1}{n} \middle| n \in N \right\} : A' \neq \emptyset , A \cap A' = \emptyset$$

.
$$A = \left\{ \frac{1}{n} \mid n \in N \right\} \cup \{0\} : A' \neq \emptyset$$
, $A'' = \emptyset$

- g מתקיים $f(x) \neq f(y)$ נגדיר פונקציה $f(x) \neq g(y)$ מתקיים $g \neq g$ מתקיים $g \neq g$ אז ע"פ ההגדרה $g(f(x)) = g \neq g \neq g$ ע"י $g : f(\Re) \to \Re : f(\Re) = id(x)$
 - y = f(x) -על איים $x \in \Re$ קיים $y \in \Re$ לכל אלכל f

-x הרבה לכן, לכל y=f(x) שמקיים שמקיים לשהו בחר $y\in\Re$ לכן, לכל

: נקבל . g(y) = x ונגדיר אחד ווער נבחר אבל נבחר אחד ווער ים כאלו, אבל נבחר אחד

. פנדרש
$$f \circ g(y) = f(g(y)) = f(x) = y = id(y)$$

$$g(y) = \tan(y)$$
 ותהי $f(x) = \arctan(x)$ אז

מכיוון שאם $f \circ g \neq id$ אבל, $g \circ f(x) = g(\arctan(x)) = \tan(\arctan(x)) = x$

.
$$\arctan(\tan(a)) \neq a$$
 ולכן $\frac{\pi}{2} \leq \arctan(\tan(a)) \leq \frac{\pi}{2}$ ולכן $a > \frac{\pi}{2}$

$$.h = id \circ h = (g \circ f) \circ h = g \circ (f \circ h) = g \circ id = g . \mathbf{T}$$

חשבון אינפי 1, סמסטר אביב תשס"ב

:טומר נדרוש $\forall x,y \quad |f(x)-f(y)| \leq |x-y|$ כלומר נדרוש 6

ל x נדרוש שערכו המוחלט של שיפוע המיתר בין . $\left| \frac{f(x) - f(y)}{x - y} \right| \le 1$

 $.\sin(x)$ יהיה קטן או שוה ל1. לדוגמא: y

ב.נתון כי $f(x) - f(y) \le (x - y)^2 : x, y$ אז מקיימת לכל

$$|f(x) - f(y)| = \left| f(x) - f\left(\frac{x+y}{2}\right) + f\left(\frac{x+y}{2}\right) - f(y) \right|$$

$$\leq \left| f(x) - f\left(\frac{x+y}{2}\right) \right| + \left| f\left(\frac{x+y}{2}\right) - f(y) \right| \leq \left(\frac{x-y}{2}\right)^2 + \left(\frac{x-y}{2}\right)^2 = \frac{1}{2}(x-y)^2$$
 באופן כללי נקבל:

$$|f(x) - f(y)| \le \sum_{k=0}^{n-1} |f(x + \frac{x-y}{n}k) - f(x + \frac{x-y}{n}(k+1))| = n \cdot \left(\frac{x-y}{n}\right)^2 = \frac{1}{n}(x-y)^2$$

כלומר עבור [f(x)-f(y)] כלומר עבור [x,y] כלומר עבור אבל זה יתכן רק כאשר

. בועה.
$$f$$
 קבועה. $|f(x) - f(y)| = 0$