6.3 线性空间的子空间

6.3.1 子空间

三维空间中有时需要考虑坐标平面: xy-平面, yz-平面, xz-平面, 然后考虑 空间中向量在这些平面的投影. 这些xy-平面, yz-平面, xz-平面就是子空间.

三维空间还可以考虑过原点的其它平面, 如两个无关向量 α_1 , α_2 构成的平面,这也是子空间.

若 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是空间 V的一组基,由部分向量 $\alpha_{i1}, \alpha_{i2}, \ldots, \alpha_{ir}$ 构成的空间 { $k_1\alpha_{i1}+k_2\alpha_{i2}+\ldots+k_r\alpha_{ir}\mid k_1,k_2,\ldots,k_r\in \mathbf{R}$ } 就称为空间 V的子空间.

定义6.3.1 (子空间) 设W是数域K上的线性空间V的一个非空子集,若W关于V上的加法和数乘也构成数域K上的一个线性空间,则称W是V的一个线性子空间,简称子空间,记为W $\subseteq V$,若 $W \neq V$,记为W $\subset V$.

子空间的判定

- 定理6.3.1 线性空间1/的一个非空子集1/2上的子空间的充要条件是
 - (1) 对任意的 α , $\beta \in W$, 有 $\alpha + \beta \in W$, 即对加法封闭;
 - (2) 对任意的 $\alpha \in W$, $\lambda \in K$, 有 $\lambda \alpha \in W$, 即对数乘封闭.

说明: "<=" $0=0\alpha \in W$, $-\alpha=(-1)\alpha \in W$,其它加法和数乘的性质自然满足

定理6.3.2 线性空间V的一个非空子集W是V的子空间的充要条件是对任意的 α , $\beta \in W$, λ , $\mu \in K$, $\beta \in W$.

说明: "=>" α , $\beta \in W => \lambda \alpha$, $\mu \beta \in W => \lambda \alpha + \mu \beta \in W$ "<=" 取 λ , μ 为1,1得 $1\alpha+1\beta=\alpha+\beta\in W$, 取 λ , μ 为 λ ,0得 $\lambda\alpha+0\alpha=\lambda\alpha\in W$

每个线性空间V都有两个子空间:零子空间 $\{0\}$ 和自身V,称为平凡子空间,其余子空间称为非平凡子空间(或真子空间).

定义6.3.2 设V是数域K上的线性空间,向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \in V$,由这组向量所有可能的线性组合构成的集合

 $W(\alpha_1, \alpha_2, ..., \alpha_s) = \{ \alpha \mid \alpha = \sum k_i \alpha_i, k_i \in K, i = 1, 2, ..., s \}$ 是非空集合,且构成V的子空间,称为由向量组 $\alpha_1, \alpha_2, ..., \alpha_s$ 生成的子空间,记作 span $\{ \alpha_1, \alpha_2, ..., \alpha_s \}$ 或 L $\{ \alpha_1, \alpha_2, ..., \alpha_s \}$ 特别地,零子空间是由零向量生成的子空间 span $\{ 0 \}$.

齐次方程组 $Ax=\theta$, $A∈R^m×n$ 的解集是Rⁿ的一个子空间,称为解空间.

6.3.2 子空间的交与和

定义6.3.3 (子空间的交与和) 设 W_1 与 W_2 是数域K上线性空间V的两个子空间,定义 W_1 与 W_2 的交为

$$W_1 \cap W_2 = \{ \alpha \mid \alpha \in W_1, \alpha \in W_2 \}$$
, $W_1 = W_2$ 的和为 $W_1 + W_2 = \{ \gamma \mid \gamma = \alpha + \beta, \ \, \forall \beta \in W_1, \ \, \beta \in W_2 \}$.

定理6.3.3 数域K上线性空间V的两个子空间 W_1 与 W_2 的交与和仍是V的子空间.

说明:
$$\alpha$$
 , $\beta \in W_1$, $W_2 => \lambda \alpha + \mu \beta \in W_1$, W_2 ; $\alpha = \alpha_1 + \alpha_2$, $\beta = \beta_1 + \beta_2 => \lambda \alpha + \mu \beta = (\lambda \alpha_1 + \mu \beta_1) + (\lambda \alpha_2 + \mu \beta_2) \in W_1 + W_2$

例6.3.1 \mathbb{R}^3 中子空间 W_1 直线, W_2 垂直平面,则 $W_1 \cap W_2 = \{0\}, W_1 + W_2 = \mathbb{R}^3$.

子空间的交与和满足交换律和结合律:子空间 $W_1, W_2, W_3 \subseteq V$

$$W_1 + W_2 = W_2 + W_1,$$

$$(W_1 + W_2) + W_3 = W_1 + (W_2 + W_3),$$

$$W_1 \cap W_2 = W_2 \cap W_1,$$

$$(W_1 \cap W_2) \cap W_3 = W_1 \cap (W_2 \cap W_3).$$

多个子空间的交与和: 子空间 $W_1, W_2, \dots, W_m \subseteq V$ $W_1 \cap W_2 \cap \dots \cap W_m = (W_1 \cap W_2 \cap \dots \cap W_{m-1}) \cap W_m, W_1 + W_2 + \dots + W_m = (W_1 + W_2 + \dots + W_{m-1}) + W_m.$

定理6.3.4 若 W_1 , W_2 是线性空间V的两个有限维子空间,则 $\dim W_1 + \dim W_2 = \dim(W_1 + W_2) + \dim(W_1 \cap W_2)$.

 $\alpha_1, \ldots, \alpha_n$

 $W_1 \cap W_2$

证明思路:

证 $A:\alpha_1,\ldots,\alpha_p,\beta_1,\ldots,\beta_{n1-p},\gamma_1,\ldots,\gamma_{n2-p}$ 是 W_1+W_2 的一组基.

显然A可表示 W_1+W_2 的任意向量. 下面证A无关性:

故 $c_1\alpha_1+...+c_p\alpha_p+t_1\gamma_1+...+t_{n2-p}\gamma_{n2-p}=\theta$, W_2 的基向量无关

得到 $c_1 = \dots = c_p = t_1 = \dots = t_{n2-p} = 0$,进一步: $k_1 \alpha_1 + \dots + k_p \alpha_p + s_1 \beta_1 + \dots + s_{n1-p} \beta_{n1-p} = 0$

得到 $k_1 = ... = k_p = s_1 = ... = s_{n1-p} = 0$

注意: $W_1 \cup W_2$ 通常不是子空间(W_1, W_2 包含除外)

 W_1+W_2

定义6.3.4 (直和) 若 W_1+W_2 中任一向量只能唯一地表示为子空间 W_1 的一个向量与子空间 W_2 的一个向量的和,则称 W_1+W_2 是直和(或直接和),记为 $W_1\oplus W_2$ 或 W_1+W_2 . 若 $W=W_1\oplus W_2$,则称在W内 W_1 是 W_2 的补空间,或 W_2 是 W_1 的补空间.

定理6.3.5 W_1+W_2 是直和的充要条件是 $W_1 \cap W_2=\{0\}$.

证明思路: 若 $W_1 \cap W_2 = \{0\}$, $\gamma = \alpha_1 + \beta_1 = \alpha_2 + \beta_2$, $\xi = \alpha_1 - \alpha_2 = \beta_2 - \beta_1 \in W_1 \cap W_2 = \{0\}$ 若 $W_1 + W_2$ 是直和, $\alpha \in W_1 \cap W_2$,则 $-\alpha \in W_1 \cap W_2$,α+ $(-\alpha) = 0 = 0 + 0$, $\alpha = 0$

推论6.3.6 W_1+W_2 是直和的充要条件是 $\dim(W_1+W_2)=\dim W_1+\dim W_2$.

证明: W_1+W_2 是直和 $\Leftrightarrow W_1\cap W_2=\{0\}\Leftrightarrow \dim(W_1+W_2)=\dim W_1+\dim W_2$

W_1+W_2 是直和表示子空间 W_1 和 W_2 没有非零重叠部分.

定义6.3.5 设 W_1, W_2, \ldots, W_m 是线性空间V的子空间,若

- (1) $W_1 + W_2 + ... + W_m = V$;
- (2) $W_1 \cap W_2 = \{0\}$, $(W_1 + W_2) \cap W_3 = \{0\}$, ... , $(W_1 + W_2 + ... + W_{m-1}) \cap W_m = \{0\}$, 则称 $V = W_1, W_2, ..., W_m$ 的直和,记作

$$V=W_1\oplus W_2\oplus \ldots \oplus W_m$$
.

例6.3.2 设 F^n 是数域F上的n维列向量空间,A是F上的n阶方阵,令 $V_1 = \{Ax : 任给<math>x \in F^n\}$, $V_2 = \{x : Ax = 0, x \in F^n\}$, 试证: (1) $V_1, V_2 \in F^n$ 的子空间; (2) 若A是幂等矩阵, 即 $A^2 = A$,则 $F^n = V_1 \oplus V_2$,

证明 (1) 易见 V_1,V_2 都是 F^n 的非空子集,对任意 $k,l \in F$ 和任意 $x,y \in F^n$,因 $kAx+lAy=A(kx+ly) \in V_1$,

故 V_1 是 F^n 的子空间;

任给 $\xi, \eta \in V_2$,有 $A\xi=0$, $A\eta=0$,且对任意 $k,l \in F$,有 $A(k\xi+l\eta)=kA\xi+lA\eta=0$,

故 $k\xi + l\eta \in V_2$, 即 V_2 是 F^n 的子空间.

(2) 当A是幂等矩阵时,将 F^n 中任一向量表示成: x=Ax+(x-Ax),注意到 $Ax \in V_1$,以及因 $A(x-Ax)=Ax-A^2x=0$,得 $x-Ax \in V_2$,所以 $F^n \subseteq V_1+V_2$,从而 $F^n = V_1+V_2$.

设 $\xi \in V_1 \cap V_2$ 中的任一向量,因 $\xi \in V_1$,所以存在 $\eta \in F^n$ 使得 $\xi = A\eta$. 又因 $\xi \in V_2$,所以 $A\xi = 0$,于是 $\xi = A\eta = A^2\eta = A(A\eta) = A\xi = 0$,即 $V_1 \cap V_2 = \{0\}$,所以 $F^n = V_1 \oplus V_2$.

补充例6C 设有4个三维向量

 α_1 =(-2,-3,-4)^T, α_2 =(4,6,8)^T, β_1 =(2,4,4)^T, β_2 =(7,4,15)^T. 考虑以下两个子空间 S_1 =span{ α_1,α_2 }, S_2 =span{ β_1,β_2 }.

求子空间的交 $S_1 \cap S_2$ 与和 $S_1 + S_2$.

解:求交: $S_1 \cap S_2$ 中取 $\xi = t_1\alpha_1 + t_2\alpha_2 = t_3\beta_1 + t_4\beta_2$,移项得 $t_1\alpha_1 + t_2\alpha_2 - t_3\beta_1 - t_4\beta_2 = 0$.

即方程组
$$\begin{pmatrix}
-2 & 4 & 2 & 7 \\
-3 & 6 & 4 & 4 \\
-4 & 8 & 4 & 15
\end{pmatrix}
\begin{pmatrix}
t_1 \\
t_2 \\
-t_3 \\
-t_4
\end{pmatrix} = \theta.$$

求解方程组
$$\begin{pmatrix} -2 & 4 & 2 & 7 \\ -3 & 6 & 4 & 4 \\ -4 & 8 & 4 & 15 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
. **解得** $\begin{pmatrix} t_1 \\ t_2 \\ -t_3 \\ -t_4 \end{pmatrix} = k \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$.

求和: $\{\alpha_1,\alpha_2,\beta_1,\beta_2\}$ 中找极大无关组,即为 和 S_1+S_2 的基. 由前面解方程组时的 初等行变换后的行简化梯形矩阵知, $\{\alpha_1,\beta_1,\beta_2\}$ 为和 S_1+S_2 的一个基.

补充例6D 已知 $P_3[x]$ 中

$$p_1(x)=3x^3-11x^2+x$$
, $p_2(x)=2x^3-4x^2+x+1$, $p_3(x)=7x^3+x^2+5x+8$, $p_4(x)=x^3-x^2-x-1$,

 $W_1 = \operatorname{span}\{p_1(x), p_2(x), p_3(x)\}, W_2 = \operatorname{span}\{p_4(x)\}, W = W_1 + W_2$.

- (1) $p_1(x), p_2(x), p_3(x), p_4(x)$ 是否线性无关;
- (2) 求 W 的基; (3) W_1+W_2 是否是直和?

解: 多项式 $p_1(x) = 3x^3 - 11x^2 + x$, $p_2(x) = 2x^3 - 4x^2 + x + 1$, $p_3(x) = 7x^3 + x^2 + 5x + 8$, $p_4(x)=x^3-x^2-x-1$ 在基 x^3 , x^2 , x, 1下的坐标为 $\beta_1 = (3,-11,1,0)^T$, $\beta_2 = (2,-4,1,1)^T$, $\beta_3 = (7,1,5,8)^T$, $\beta_4 = (1,-1,-1,-1)^T$.

(1)
$$B = (\beta_1, \beta_2, \beta_3, \beta_4) = \begin{pmatrix} 3 & 2 & 7 & 1 \\ -11 & -4 & 1 & -1 \\ 1 & 1 & 5 & -1 \\ 0 & 1 & 8 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -3 & 0 \\ 0 & 1 & 8 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$
 (*)

因为 $\mathbf{r}(B)=3<4$,则 $\beta_1,\beta_2,\beta_3,\beta_4$ 相关,故 $p_1(x),p_2(x),p_3(x),p_4(x)$ 相关.

- (2) 易知W=span $\{p_1(x), p_2(x), p_3(x), p_4(x)\}$,W的基对应 $\{\beta_1, \beta_2, \beta_3, \beta_4\}$ 的一个 极大无关组,由上述(*)式可知 $\{\beta_1,\beta_2,\beta_3,\beta_4\}$ 有一个极大无关 β_1,β_2,β_4 , 故W的一组基为: $p_1(x), p_2(x), p_4(x)$.
- (3) 求空间 $W_1 \cap W_2$,即求 $\xi = t_1 p_1(x) + t_2 p_2(x) + t_3 p_3(x) = t_4 p_4(x)$,对应地要求 $t_1\beta_1+t_2\beta_2+t_3\beta_3=t_4\beta_4$,即解方程组 $t_1\beta_1+t_2\beta_2+t_3\beta_3-t_4\beta_4=0$, 由(*)式解得 $(t_1, t_2, t_3, -t_4)=k(3, -8, 1, 0)$,故 $W_1 \cap W_2=\{t_4p_4(x)\}=\{0\}$,故是直和.