区間 $[a,b], [c,d] \subset \mathbb{R}$ に対して、領域 $D \subset \mathbb{R}^2$ を $D = [a,b] \times [c,d]$ とする。 関数 $f:D \to \mathbb{R}$ が連続ならば、f は D 上積分可能である。

領域 D を小領域 D_i に分割し、 D_i の面積を S_i とする。 D_i から任意の点 P_i を取る。 D_i 上の体積 $f(P_i) \times S_i$ とすれば、D の全ての分割上の体積の和をリーマン和という。

$$\sum_{i=1}^{n} f(P_i) \times S_i \tag{1}$$

この分割を細かくし、小領域の個数 n を無限に飛ばす。リーマン和がある値に収束するときに積分可能であるという。

.....

領域 D を小領域に分割する。 $x_i \in [a,b]$ $(i=0,\ldots,n)$ と $y_i \in [c,d]$ $(i=0,\ldots,m)$ を次のような範囲の値とする。

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b \tag{2}$$

$$c = y_0 < y_1 < \dots < y_{m-1} < y_m = d \tag{3}$$

これにより小領域 D_{ij} を定める。

$$D_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \tag{4}$$

小領域 D_{ij} の面積を $|D_{ij}|=(x_i-x_{i-1})(y_j-y_{j-1})$ とし、 D_{ij} の任意の点を取り出し P_{ij} とする。これによりリーマン和は次のようになる。

$$\sum_{D_{ij} \subset D} f(P_{ij})|D_{ij}| \tag{5}$$

閉集合 D_{ij} 上の連続関数 f は上限下限が D_{ij} に存在し、これらを $\sup_{D_{ij}} f$ 、 $\inf_{D_{ij}} f$ とする。これによりリーマン和を次のように書き換える。

$$\overline{S} = \sum_{i,j} \sup_{D_{ij}} f|D_{ij}| \tag{6}$$

$$\underline{S} = \sum_{i,j} \inf_{D_{ij}} f|D_{ij}| \tag{7}$$

これは次のような関係が成り立つ。

$$\underline{S} \le \sum_{D_{ij} \subset D} f(P_{ij}) |D_{ij}| \le \overline{S}$$
(8)

各分割 D_{ij} の面積の最大値を m とする。

$$\delta = \max\{|D_{ij}| \mid 1 \le x \le n, \ 1 \le y \le m\}$$
 (9)

この時、x と y の分割数 n,m を大きくすることで D_{ij} の面積を小さくしていくと次のような極限になる。

$$\lim_{\delta \to 0} \underline{S} = \lim_{\delta \to 0} \overline{S} \tag{10}$$

はさみうちの原理からリーマン和も極限値を持つので積分可能であることが分かる。