

Recommender Systems: Interaction-Based

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — https://chato.cl/teach

Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Section 18.5) – <u>slides by Lijun Zhang</u>
- . Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 9) slides A, B

Interaction-based recommendations

Missing-value estimation/completion

. The matrix is extremely large and sparse

Only black squares have non-zero values.

Types of algorithms

- Neighborhood-Based Methods
 - User-Based or Item-Based Similarity with Ratings
- Graph-Based Methods
- Clustering Methods
 - Adapting k-Means Clustering or Adapting Co-Clustering
- Latent Factor Models
 - Matrix Factorization, e.g., Singular Value Decomposition

User-based similarity with ratings

- . Let I be common ratings between two users
- . Similarity: Pearson correlation coefficient

$$sim(u, v) = \frac{\sum_{i \in I_{u,v}} (u_i - \hat{u}) \cdot (v_i - \hat{v})}{\sqrt{\sum_{i \in I_{u,v}} (u_i - \hat{u})^2 \cdot \sum_{i \in I_{u,v}} (v_i - \hat{v})^2}}$$

$$\hat{u} = \frac{1}{|u|} \sum_{i=1}^{|u|} u_i \qquad \hat{v} = \frac{1}{|v|} \sum_{i=1}^{|v|} v_i$$

Note: averages are taken over all elements, not only ones in common

User-based similarity with ratings (cont.)

$$sim(u, v) = \frac{\sum_{i \in I_{u,v}} (u_i - \hat{u}) \cdot (v_i - \hat{v})}{\sqrt{\sum_{i \in I_{u,v}} (u_i - \hat{u})^2 \cdot \sum_{i \in I_{u,v}} (v_i - \hat{v})^2}}$$

Score of recommendation

$$score(u, i) = \hat{u} + \frac{\sum_{v:v_i \neq \text{NULL}} sim(v, u) \cdot (v_i - \hat{v})}{\sum_{v:I_{u,v} \neq \emptyset} |sim(v, u)|}$$

Note: for efficiency one can take only the most similar users

I Exercise

$$score(u, i) = \hat{u} + \frac{\sum_{v:v_i \neq \text{NULL}} sim(v, u) \cdot (v_i - \hat{v})}{\sum_{v:I_{u,v} \neq \emptyset} |sim(v, u)|}$$

Complete yellow cells in spreadsheet:

- 1. Similarities sim(u,v)
- 2. Predicted rating of all movies that user *u* has not seen yet
- 3. Which movie is recommended?

Spreadsheet link:

https://upfbarcelona.padlet.org/sandrabuda1/theory-exercises-tdmvfhddcnvfj5b8

Answer

		2 U/A c	Soul.		Avenuens		ENCANTO	avg(v)	sim(u,v
		2			4	5		3.67	NULL
	0	5		4			1	3.33	0.87
	3			5		2		3.50	1.00
			1		5		4	3.33	-1.00
u		3.51	3.81	4	2.42	2.48	2	3.00	
ĺ		4	5		1			3.33	NULL

$$\sin(u, v) = \frac{\sum_{i \in I_{u,v}} (u_i - \hat{u}) \cdot (v_i - \hat{v})}{\sqrt{\sum_{i \in I_{u,v}} (u_i - \hat{u})^2 \cdot \sum_{i \in I_{u,v}} (v_i - \hat{v})^2}} \operatorname{score}(u, i) = \hat{u} + \frac{\sum_{v: v_i \neq \text{NULL }} \sin(v, u) \cdot (v_i - \hat{v})}{\sum_{v: I_{u,v} \neq \emptyset} |\sin(v, u)|}$$

You can do the same with items!

. Item-based similarities with ratings

$$sim(i,j) = \frac{\sum_{u \in I_{i,j}} (u_i - \hat{i}) \cdot (u_j - \hat{j})}{\sqrt{\sum_{u \in I_{i,j}} (u_i - \hat{i})^2 \cdot \sum_{u \in I_{i,j}} (u_j - \hat{j})^2}}$$

Item-based recommendations

$$score(u, i) = \hat{i} + \frac{\sum_{j:u_j \neq \text{NULL}} sim(i, j) \cdot (u_j - \hat{j})}{\sum_{j:I_{i,j} \neq \emptyset} |sim(i, j)|}$$

(Do it at home)

- 1. Compute avg(j) for all items
- 2. Compute sim(i,j) for all items for which there is some intersection with i
- Compute score(u,i) for all users who have not seen i yet

$$sim(i,j) = \frac{\sum_{u \in I_{i,j}} (u_i - \hat{i}) \cdot (u_j - \hat{j})}{\sqrt{\sum_{u \in I_{i,j}} (u_i - \hat{i})^2 \cdot \sum_{u \in I_{i,j}} (u_j - \hat{j})^2}}$$

$$score(u, i) = \hat{i} + \frac{\sum_{j: u_j \neq \text{NULL}} sim(i, j) \cdot (u_j - \hat{j})}{\sum_{j: I_{i, j} \neq \emptyset} |sim(i, j)|}$$

avg(j)

sim(i,i)

3.66

-1 -1 0.86

3 4.33 3.33 3.5 2.33

NULL

1

$$2.33 + \frac{-1 \cdot (2 - 3.66) + 1 \cdot (4 - 3.33)}{|-1| + |-1| + |0.86| + |1|} = 2.94$$

$$2.33 + \frac{0.86 \cdot (5 - 4.33)}{|-1| + |-1| + |0.86| + |1|} = 2.48$$

$$2.33 + \frac{-1 \cdot (4 - 3.66) - 1 \cdot (5 - 3) + 1 \cdot (1 - 3.33)}{|-1| + |-1| + |0.86| + |1|} = 1.12$$

$$sim(i,j) = \frac{\sum_{u \in I_{i,j}} (u_i - \hat{i}) \cdot (u_j - \hat{j})}{\sqrt{\sum_{u \in I_{i,j}} (u_i - \hat{i})^2 \cdot \sum_{u \in I_{i,j}} (u_j - \hat{j})^2}}$$

$$score(u, i) = \hat{i} + \frac{\sum_{j: u_j \neq \text{NULL}} sim(i, j) \cdot (u_j - \hat{j})}{\sum_{j: I_{i, j} \neq \emptyset} |sim(i, j)|}$$

Note

- There are many ways of computing user-based similarity and item-based similarity
- There are many ways of using these to generate recommendations
- The method we have described is aware of the bias of users, in the sense of some users being more positive/negative than others in general

Graph- and clustering-based methods

Graph-based methods

- Bipartite user-item graph with nodes N_u U N_i
- \cdot N_u users
- . N_u items
- . Non-zero utility \Rightarrow edge

Graph-based methods (cont.)

- . Use graph-based methods
 - Random walk with restart to a user or item
 - SimRank (not seen in class)
- Low "random jump" probability might favor popular items

Graph-based methods (cont.)

- Signed networks can be used
 - Remember to interpret ratings with respect to user and item averages
 - Below average rating ⇒ -
 - Above average rating ⇒ +
- Positive link prediction problem

Clustering methods

Motivations

- Reduce computational cost
- To some extent address data sparsity

Results of clustering

- Clusters of users for user-user similarity recs.
- Clusters of items for item-item similarity recs.

Clustering methods (cont.)

- . User-user recommendation approach
 - Cluster users into groups
 - For any user u, compute average normalized rating for each item it the user has not seen
 - Report these ratings for (u,i)
- Same with item-item recommendations
- . Neighborhoods will be smaller

Co-Clustering Approach

Summary

Things to remember

- Interaction-based recommendations
 - User-based
 - Item-based
- Graph-based / clustering-based recommendations

Exercises for TT16-TT18

- . Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. Note that some exercises cover advanced concepts:
 - Exercises 9.2.8
 - Exercises 9.3.4
 - Exercises 9.4.6