$12n_{0175} \ (K12n_{0175})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.04267 \times 10^{26}u^{13} - 2.24065 \times 10^{27}u^{12} + \dots + 1.09231 \times 10^{29}b + 2.46093 \times 10^{28}, \\ &- 1.28732 \times 10^{26}u^{13} - 2.92904 \times 10^{27}u^{12} + \dots + 2.18462 \times 10^{29}a - 1.14504 \times 10^{29}, \\ &u^{14} + 21u^{13} + \dots + 544u + 256 \rangle \\ I_2^u &= \langle -102u^8 - 440u^7 - 440u^6 - 655u^5 + u^4 - 240u^3 + 269u^2 + 59b - 180u + 261, \\ &- 15u^8 - 30u^7 + 88u^6 + 72u^5 + 283u^4 + 107u^3 + 253u^2 + 59a + 36u + 172, \\ &u^9 + 5u^8 + 8u^7 + 13u^6 + 10u^5 + 11u^4 + 5u^3 + 6u^2 + u + 1 \rangle \\ I_3^u &= \langle -2u^5a + 10u^4a - 2u^5 - 30u^3a + 13u^4 + 33u^2a - 45u^3 - 14au + 78u^2 + 6b + 4a - 62u + 28, \\ &18u^5a + 39u^5 + \dots + 16a - 220, \ u^6 - 7u^5 + 26u^4 - 51u^3 + 52u^2 - 28u + 8 \rangle \\ I_4^u &= \langle 2u^2b + b^2 - bu + 4u^2 + 4b - 2u + 7, \ u^2 + a - u + 2, \ u^3 - u^2 + 2u - 1 \rangle \\ I_1^v &= \langle a, \ -v^3 - 7v^2 + 4b - 12v - 1, \ v^4 + 7v^3 + 16v^2 + 13v + 4 \rangle \\ I_2^v &= \langle a, \ -v^2b + b^2 + 2bv - v^2 + b + 2v + 1, \ v^3 - 3v^2 + 2v - 1 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 51 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1.04 \times 10^{26} u^{13} - 2.24 \times 10^{27} u^{12} + \dots + 1.09 \times 10^{29} b + 2.46 \times 10^{28}, \ -1.29 \times 10^{26} u^{13} - 2.93 \times 10^{27} u^{12} + \dots + 2.18 \times 10^{29} a - 1.15 \times 10^{29}, \ u^{14} + 21 u^{13} + \dots + 544 u + 256 \rangle$$

(i) Arc colorings

$$\begin{array}{l} a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_8 = \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_4 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix} \\ a_{10} = \begin{pmatrix} 0.000589262u^{13} + 0.0134075u^{12} + \cdots - 0.805195u + 0.524136 \\ 0.000954555u^{13} + 0.0205129u^{12} + \cdots + 0.318887u - 0.225296 \end{pmatrix} \\ a_{10} = \begin{pmatrix} 0.000589262u^{13} + 0.0134075u^{12} + \cdots - 0.805195u + 0.524136 \\ 0.000671621u^{13} + 0.0134075u^{12} + \cdots - 0.805195u + 0.524136 \\ 0.000671621u^{13} + 0.0148039u^{12} + \cdots - 0.393936u - 0.489753 \end{pmatrix} \\ a_7 = \begin{pmatrix} u \\ u^3 + u \end{pmatrix} \\ a_6 = \begin{pmatrix} 0.00121747u^{13} + 0.0251618u^{12} + \cdots + 2.10350u + 0.0491900 \\ 0.000115085u^{13} + 0.00299760u^{12} + \cdots + 0.828767u - 0.0553136 \end{pmatrix} \\ a_9 = \begin{pmatrix} 0.00122256u^{13} + 0.0260104u^{12} + \cdots + 0.0388506u + 0.499449 \\ 0.000709347u^{13} + 0.0153553u^{12} + \cdots + 0.361561u - 0.145546 \end{pmatrix} \\ a_{12} = \begin{pmatrix} 0.000261393u^{13} + 0.00718595u^{12} + \cdots - 1.58109u + 0.503456 \\ 0.00106954u^{13} + 0.0235741u^{12} + \cdots - 0.362940u - 0.280603 \end{pmatrix} \\ a_1 = \begin{pmatrix} 0.000424271u^{13} + 0.00989082u^{12} + \cdots - 0.674232u + 0.474041 \\ 0.0000149496u^{13} + 0.00111721u^{12} + \cdots - 0.559577u - 0.359209 \end{pmatrix} \\ a_5 = \begin{pmatrix} 0.000409321u^{13} - 0.00877361u^{12} + \cdots + 0.114654u - 0.833250 \\ 0.0000359381u^{13} + 0.0018264u^{12} + \cdots - 0.358027u - 0.313673 \\ 0.00044996u^{13} + 0.0011721u^{12} + \cdots - 0.559577u - 0.359209 \end{pmatrix} \\ a_2 = \begin{pmatrix} 0.000409321u^{13} + 0.00877361u^{12} + \cdots - 0.114654u + 0.833250 \\ 0.0000149496u^{13} + 0.0011721u^{12} + \cdots - 0.559577u - 0.359209 \end{pmatrix} \\ a_2 = \begin{pmatrix} 0.000409321u^{13} + 0.00877361u^{12} + \cdots - 0.559577u - 0.359209 \\ 0.0000149496u^{13} + 0.0011721u^{12} + \cdots - 0.559577u - 0.359209 \end{pmatrix} \\ a_2 = \begin{pmatrix} 0.000409321u^{13} + 0.00877361u^{12} + \cdots - 0.559577u - 0.359209 \end{pmatrix} \\ a_3 = \begin{pmatrix} 0.000409321u^{13} + 0.00877361u^{12} + \cdots - 0.559577u - 0.359209 \end{pmatrix} \\ a_4 = \begin{pmatrix} 0.000409321u^{13} + 0.00877361u^{12} + \cdots - 0.559577u - 0.359209 \end{pmatrix} \\ a_5 = \begin{pmatrix} 0.000409321u^{13} + 0.00877361u^{12} + \cdots - 0.559577u - 0.359209 \end{pmatrix} \\ a_5 = \begin{pmatrix} 0.000409321u^{13} + 0.00877361u^{12} + \cdots - 0.559577u - 0.359209 \end{pmatrix} \\ a_5 = \begin{pmatrix} 0.000409321u^{13} + 0.00877361u^{12} + \cdots - 0.559577u - 0.359209 \end{pmatrix} \\ a_5 = \begin{pmatrix} 0.000409321u^{13} + 0.00111721u^{12} + \cdots - 0.559577u - 0.359209 \end{pmatrix} \\ a_5 = \begin{pmatrix} 0.000409321u$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.00674689u^{13} 0.136707u^{12} + \cdots 11.6248u 11.8608$

Crossings	u-Polynomials at each crossing
c_1	$u^{14} + 54u^{13} + \dots - 7647u + 256$
c_2, c_4	$u^{14} - 16u^{13} + \dots + 31u - 16$
c_3, c_7	$u^{14} + 21u^{13} + \dots + 544u + 256$
c_5, c_8	$u^{14} + 2u^{13} + \dots + 4u + 1$
c_6, c_9	$u^{14} - 11u^{13} + \dots + 9u - 9$
c_{10}, c_{12}	$u^{14} + 27u^{13} + \dots + 157u - 1$
c_{11}	$u^{14} + 22u^{13} + \dots + 88u + 4$

Crossings	Riley Polynomials at each crossing
c_1	$y^{14} - 910y^{13} + \dots - 40412737y + 65536$
c_{2}, c_{4}	$y^{14} - 54y^{13} + \dots + 7647y + 256$
c_{3}, c_{7}	$y^{14} - 177y^{13} + \dots - 226304y + 65536$
c_{5}, c_{8}	$y^{14} - 2y^{13} + \dots - 6y + 1$
c_{6}, c_{9}	$y^{14} - 61y^{13} + \dots - 927y + 81$
c_{10}, c_{12}	$y^{14} - 413y^{13} + \dots - 22155y + 1$
c_{11}	$y^{14} - 64y^{13} + \dots - 2456y + 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.126413 + 1.064170I		
a = 0.0178207 - 0.1327570I	2.38888 + 2.31349I	1.040974 + 0.185703I
b = 0.073229 + 0.409880I		
u = -0.126413 - 1.064170I		
a = 0.0178207 + 0.1327570I	2.38888 - 2.31349I	1.040974 - 0.185703I
b = 0.073229 - 0.409880I		
u = 0.594510 + 0.411375I		
a = -0.944868 + 0.799301I	-3.64308 + 0.88750I	-15.9778 + 0.0604I
b = -0.88821 + 1.42199I		
u = 0.594510 - 0.411375I		
a = -0.944868 - 0.799301I	-3.64308 - 0.88750I	-15.9778 - 0.0604I
b = -0.88821 - 1.42199I		
u = 1.40610 + 0.22467I		
a = 0.307958 + 1.309810I	0.10775 - 7.50729I	-7.28452 + 4.95143I
b = 0.030088 + 0.287966I		
u = 1.40610 - 0.22467I		
a = 0.307958 - 1.309810I	0.10775 + 7.50729I	-7.28452 - 4.95143I
b = 0.030088 - 0.287966I		
u = -0.560428		
a = -0.0120122	-1.12206	-9.20330
b = -0.522964		
u = -0.345517 + 0.363205I		
a = 1.121570 + 0.274743I	-0.921235 + 1.059300I	-5.51258 - 4.57245I
b = -0.330774 + 0.391733I		
u = -0.345517 - 0.363205I		
a = 1.121570 - 0.274743I	-0.921235 - 1.059300I	-5.51258 + 4.57245I
b = -0.330774 - 0.391733I		
u = -1.80958 + 2.11291I		
a = -1.248730 - 0.134703I	19.0076 + 14.9612I	-6.21836 - 5.88234I
b = -2.16984 + 0.05278I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.80958 - 2.11291I		
a = -1.248730 + 0.134703I	19.0076 - 14.9612I	-6.21836 + 5.88234I
b = -2.16984 - 0.05278I		
u = -3.79852 + 1.13400I		
a = 1.41552 + 0.05510I	-18.1348 - 0.1387I	-2.93027 + 5.79154I
b = 2.07852 + 0.02544I		
u = -3.79852 - 1.13400I		
a = 1.41552 - 0.05510I	-18.1348 + 0.1387I	-2.93027 - 5.79154I
b = 2.07852 - 0.02544I		
u = -12.2807		
a = 1.54847	-17.8723	0
b = 2.18693		

II.
$$I_2^u = \langle -102u^8 - 440u^7 + \dots + 59b + 261, \ -15u^8 - 30u^7 + \dots + 59a + 172, \ u^9 + 5u^8 + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.254237u^{8} + 0.508475u^{7} + \cdots - 0.610169u - 2.91525 \\ 1.72881u^{8} + 7.45763u^{7} + \cdots + 3.05085u - 4.42373 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.254237u^{8} + 0.508475u^{7} + \cdots - 0.610169u - 2.91525 \\ 2.01695u^{8} + 9.03390u^{7} + \cdots + 3.55932u - 3.66102 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.08475u^{8} - 6.16949u^{7} + \cdots - 4.79661u - 2.69492 \\ -0.593220u^{8} - 4.18644u^{7} + \cdots - 3.57627u - 4.86441 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.491525u^{8} + 1.98305u^{7} + \cdots + 1.22034u - 2.16949 \\ 2.38983u^{8} + 10.7797u^{7} + \cdots + 5.86441u - 3.20339 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1.23729u^{8} - 6.47458u^{7} + \cdots - 7.83051u - 1.74576 \\ -2.74576u^{8} - 14.4915u^{7} + \cdots - 13.6102u - 4.91525 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.491525u^{8} + 1.98305u^{7} + \cdots - 0.779661u - 1.16949 \\ 0.0677966u^{8} + 0.135593u^{7} + \cdots - 0.762712u - 1.64407 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.423729u^{8} + 1.84746u^{7} + \cdots - 0.0169492u + 0.474576 \\ -0.254237u^{8} - 0.508475u^{7} + \cdots + 0.610169u + 1.91525 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.423729u^{8} + 1.84746u^{7} + \cdots - 0.0169492u + 0.474576 \\ 0.0677966u^{8} + 0.135593u^{7} + \cdots + 0.610169u + 1.91525 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes
$$= \frac{142}{59}u^8 + \frac{756}{59}u^7 + \frac{1287}{59}u^6 + \frac{1997}{59}u^5 + \frac{2096}{59}u^4 + \frac{1528}{59}u^3 + \frac{1554}{59}u^2 + \frac{792}{59}u + \frac{480}{59}u^3 + \frac{1554}{59}u^3 + \frac{1554}$$

Crossings	u-Polynomials at each crossing
c_1	$u^9 - 10u^8 + 29u^7 - 39u^6 + 26u^5 - 15u^4 + 19u^3 - 8u^2 - 3u - 1$
c_2	$u^9 + 4u^8 + 3u^7 - 5u^6 - 10u^5 - 5u^4 + 3u^3 + 6u^2 + 3u + 1$
<i>C</i> 3	$u^9 + 5u^8 + 8u^7 + 13u^6 + 10u^5 + 11u^4 + 5u^3 + 6u^2 + u + 1$
C ₄	$u^9 - 4u^8 + 3u^7 + 5u^6 - 10u^5 + 5u^4 + 3u^3 - 6u^2 + 3u - 1$
c_5,c_8	$u^9 - 3u^8 + 5u^7 - 4u^6 + 2u^5 - 2u^4 + 4u^3 - 3u^2 + 1$
c_6, c_9	$u^9 - 3u^7 + 4u^6 - 2u^5 + 2u^4 - 4u^3 + 5u^2 - 3u + 1$
C ₇	$u^9 - 5u^8 + 8u^7 - 13u^6 + 10u^5 - 11u^4 + 5u^3 - 6u^2 + u - 1$
c_{10}, c_{12}	$u^9 + 6u^8 + 5u^7 + 12u^6 + 6u^5 + 10u^4 + 5u^2 - u + 1$
c_{11}	$u^9 - 3u^8 - 7u^7 + 61u^6 - 171u^5 + 279u^4 - 297u^3 + 212u^2 - 97u + 23$

Crossings	Riley Polynomials at each crossing
c_1	$y^9 - 42y^8 + \dots - 7y - 1$
c_{2}, c_{4}	$y^9 - 10y^8 + 29y^7 - 39y^6 + 26y^5 - 15y^4 + 19y^3 - 8y^2 - 3y - 1$
c_3, c_7	$y^9 - 9y^8 - 46y^7 - 109y^6 - 164y^5 - 171y^4 - 113y^3 - 48y^2 - 11y - 1$
c_5, c_8	$y^9 + y^8 + 5y^7 + 10y^5 - 6y^4 + 12y^3 - 5y^2 + 6y - 1$
c_6, c_9	$y^9 - 6y^8 + 5y^7 - 12y^6 + 6y^5 - 10y^4 - 5y^2 - y - 1$
c_{10}, c_{12}	$y^9 - 26y^8 + \dots - 9y - 1$
c_{11}	$y^9 - 23y^8 + \dots - 343y - 529$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.699225 + 0.881171I		
a = 0.153901 - 0.439956I	-1.28188 + 7.91801I	-11.0500 - 9.5481I
b = -0.480829 - 0.332872I		
u = -0.699225 - 0.881171I		
a = 0.153901 + 0.439956I	-1.28188 - 7.91801I	-11.0500 + 9.5481I
b = -0.480829 + 0.332872I		
u = -0.293070 + 1.131440I		
a = -0.518996 + 0.755920I	1.91580 - 3.10870I	-3.25080 + 5.79361I
b = -0.365565 - 0.116422I		
u = -0.293070 - 1.131440I		
a = -0.518996 - 0.755920I	1.91580 + 3.10870I	-3.25080 - 5.79361I
b = -0.365565 + 0.116422I		
u = 0.355075 + 0.694524I		
a = -0.776460 - 0.463249I	1.44595 - 4.09337I	-1.10458 + 4.89395I
b = 0.258201 - 0.760917I		
u = 0.355075 - 0.694524I		
a = -0.776460 + 0.463249I	1.44595 + 4.09337I	-1.10458 - 4.89395I
b = 0.258201 + 0.760917I		
u = -0.046807 + 0.509508I		
a = -2.11030 - 0.01768I	-1.03199 - 3.67986I	3.16209 + 3.89016I
b = -3.48539 + 1.47690I		
u = -0.046807 - 0.509508I		
a = -2.11030 + 0.01768I	-1.03199 + 3.67986I	3.16209 - 3.89016I
b = -3.48539 - 1.47690I		
u = -3.63195		
a = 1.50371	-18.5451	-22.5130
b = 2.14716		

III.
$$I_3^u = \langle -2u^5a - 2u^5 + \dots + 4a + 28, \ 18u^5a + 39u^5 + \dots + 16a - 220, \ u^6 - 7u^5 + 26u^4 - 51u^3 + 52u^2 - 28u + 8 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{3}u^{5}a + \frac{1}{3}u^{5} + \dots - \frac{2}{3}a - \frac{14}{3} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{3}u^{5}a + \frac{1}{3}u^{5} + \dots - \frac{2}{3}a - \frac{14}{3} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{12}u^{5}a - \frac{1}{3}u^{5} + \dots - 3a + \frac{17}{6} \\ \frac{1}{2}u^{5}a - \frac{17}{12}u^{5} + \dots - \frac{10}{3}a + 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{6}u^{5}a + \frac{1}{12}u^{5} + \dots + \frac{2}{3}a - \frac{5}{2} \\ \frac{7}{6}u^{5}a + \frac{7}{12}u^{5} + \dots - \frac{14}{3}a - \frac{19}{3} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{8}u^{5} + \frac{7}{12}u^{5} + \dots - \frac{13}{3}u + \frac{7}{2} \\ \frac{1}{6}u^{5}a - \frac{19}{12}u^{5} + \dots - \frac{8}{3}a + \frac{20}{3} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{19}{24}u^{5} - \frac{35}{8}u^{4} + \dots + \frac{35}{3}u - 3 \\ \frac{2}{3}u^{5} - \frac{11}{3}u^{4} + \dots + \frac{32}{3}u - \frac{11}{3} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{8}u^{5} + \frac{17}{24}u^{4} + \dots + u + \frac{2}{3} \\ \frac{1}{2}u^{5} - \frac{17}{6}u^{4} + \dots + 7u - \frac{7}{3} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{8}u^{5} - \frac{17}{24}u^{4} + \dots + u + \frac{2}{3} \\ \frac{2}{3}u^{5} - \frac{11}{3}u^{4} + \dots + \frac{32}{3}u - \frac{11}{3} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{17}{12}u^5 \frac{85}{12}u^4 + 21u^3 \frac{85}{4}u^2 + \frac{25}{6}u \frac{19}{3}$

Crossings	u-Polynomials at each crossing
c_1	$(u^6 + 4u^5 + 24u^4 + 11u^3 + 42u^2 - 11u + 1)^2$
c_2, c_4	$(u^6 - 2u^5 + 3u^3 + 6u^2 - u + 1)^2$
c_3, c_7	$(u^6 - 7u^5 + 26u^4 - 51u^3 + 52u^2 - 28u + 8)^2$
c_5, c_8	$u^{12} + 2u^{11} + \dots + 15u + 9$
c_{6}, c_{9}	$u^{12} - 6u^{11} + \dots - 1017u + 603$
c_{10}, c_{12}	$u^{12} - u^{11} + \dots - 942u + 423$
c_{11}	$(u^6 - u^5 + 5u^3 - 4u + 8)^2$

Crossings	Riley Polynomials at each crossing
c_1	$(y^6 + 32y^5 + 572y^4 + 1985y^3 + 2054y^2 - 37y + 1)^2$
c_{2}, c_{4}	$(y^6 - 4y^5 + 24y^4 - 11y^3 + 42y^2 + 11y + 1)^2$
c_{3}, c_{7}	$(y^6 + 3y^5 + 66y^4 - 273y^3 + 264y^2 + 48y + 64)^2$
c_{5}, c_{8}	$y^{12} + 16y^{10} + \dots + 189y + 81$
c_{6}, c_{9}	$y^{12} + 16y^{11} + \dots + 402057y + 363609$
c_{10}, c_{12}	$y^{12} + 29y^{11} + \dots - 1840806y + 178929$
c_{11}	$(y^6 - y^5 + 10y^4 - 17y^3 + 40y^2 - 16y + 64)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.375593 + 0.540780I		
a = 0.486099 - 0.455368I	0.10873 + 3.16633I	-6.33370 - 4.19720I
b = -0.834769 + 0.886986I		
u = 0.375593 + 0.540780I		
a = 0.92528 + 1.97320I	0.10873 + 3.16633I	-6.33370 - 4.19720I
b = 0.226390 + 0.446346I		
u = 0.375593 - 0.540780I		
a = 0.486099 + 0.455368I	0.10873 - 3.16633I	-6.33370 + 4.19720I
b = -0.834769 - 0.886986I		
u = 0.375593 - 0.540780I		
a = 0.92528 - 1.97320I	0.10873 - 3.16633I	-6.33370 + 4.19720I
b = 0.226390 - 0.446346I		
u = 1.391620 + 0.251770I		
a = -0.698843 - 0.090535I	-0.10873 - 3.16633I	-5.66630 + 4.19720I
b = -2.07845 - 0.66940I		
u = 1.391620 + 0.251770I		
a = -0.09615 - 1.82357I	-0.10873 - 3.16633I	-5.66630 + 4.19720I
b = 0.112878 - 1.032920I		
u = 1.391620 - 0.251770I		
a = -0.698843 + 0.090535I	-0.10873 + 3.16633I	-5.66630 - 4.19720I
b = -2.07845 + 0.66940I		
u = 1.391620 - 0.251770I		
a = -0.09615 + 1.82357I	-0.10873 + 3.16633I	-5.66630 - 4.19720I
b = 0.112878 + 1.032920I		
u = 1.73279 + 2.49487I	10 5000 0 00051	a 00000 + 0 00000 t
a = 1.070440 - 0.329156I	-19.7392 - 6.3327I	-6.00000 + 2.82663I
b = 2.03504 + 0.00711I		
u = 1.73279 + 2.49487I	10 5000 0 00057	0.00000 + 0.000007
a = -1.186840 - 0.318891I	-19.7392 - 6.3327I	-6.00000 + 2.82663I
b = -1.96109 - 0.25888I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.73279 - 2.49487I		
a = 1.070440 + 0.329156I	19.7392 + 6.3327I	-6.00000 - 2.82663I
b = 2.03504 - 0.00711I		
u = 1.73279 - 2.49487I		
a = -1.186840 + 0.318891I	19.7392 + 6.3327I	-6.00000 - 2.82663I
b = -1.96109 + 0.25888I		

 $\text{IV. } I_4^u = \langle 2u^2b + b^2 - bu + 4u^2 + 4b - 2u + 7, \ u^2 + a - u + 2, \ u^3 - u^2 + 2u - 1 \rangle$

(i) Arc colorings

1) Are colorings
$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + u - 2 \\ b - u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + u - 2 \\ b - u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + b + 2 \\ 2u^{2}b + 3u^{2} + b - u + 5 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2}b - 1 \\ -bu + 2b + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ b - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-8u^2 + 7u 16$

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_4	$(u^3 - u^2 + 1)^2$
c_5, c_6, c_8 c_9	$u^6 - 3u^5 + 5u^4 - 5u^3 + 5u^2 - 3u + 1$
	$(u^3 + u^2 + 2u + 1)^2$
c_{10}, c_{12}	$(u+1)^6$
c_{11}	u^6

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4	$(y^3 - y^2 + 2y - 1)^2$
c_5, c_6, c_8 c_9	$y^6 + y^5 + 5y^4 + 9y^3 + 5y^2 + y + 1$
c_{10}, c_{12}	$(y-1)^6$
c_{11}	y^6

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = -0.122561 + 0.744862I	1.37919 - 2.82812I	-1.19557 + 4.65175I
b = -0.715080 - 0.241870I		
u = 0.215080 + 1.307140I		
a = -0.122561 + 0.744862I	1.37919 - 2.82812I	-1.19557 + 4.65175I
b = 0.254878 + 0.424452I		
u = 0.215080 - 1.307140I		
a = -0.122561 - 0.744862I	1.37919 + 2.82812I	-1.19557 - 4.65175I
b = -0.715080 + 0.241870I		
u = 0.215080 - 1.307140I		
a = -0.122561 - 0.744862I	1.37919 + 2.82812I	-1.19557 - 4.65175I
b = 0.254878 - 0.424452I		
u = 0.569840		
a = -1.75488	-2.75839	-14.6090
b = -2.03980 + 1.73159I		
u = 0.569840		
a = -1.75488	-2.75839	-14.6090
b = -2.03980 - 1.73159I		

V.
$$I_1^v = \langle a, -v^3 - 7v^2 + 4b - 12v - 1, v^4 + 7v^3 + 16v^2 + 13v + 4 \rangle$$

(i) Arc colorings

The Are colorings
$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{4}v^{3} + \frac{7}{4}v^{2} + 3v + \frac{1}{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v^{3} + 3v^{2} + v \\ \frac{1}{4}v^{3} + \frac{7}{4}v^{2} + 3v + \frac{1}{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2v^{3} + 9v^{2} + 11v + 4 \\ -\frac{3}{4}v^{3} - \frac{17}{4}v^{2} - 7v - \frac{11}{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2v^{3} + 9v^{2} + 11v + 4 \\ -\frac{3}{4}v^{3} - \frac{17}{4}v^{2} - 7v - \frac{11}{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v^{3} - 3v^{2} - v \\ \frac{1}{4}v^{3} + \frac{3}{4}v^{2} - \frac{3}{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -v^{3} - 3v^{2} - v \\ \frac{1}{4}v^{3} + \frac{3}{4}v^{2} + 7v + \frac{7}{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{3}{4}v^{3} + \frac{17}{4}v^{2} + 7v + \frac{7}{4} \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -v \\ -1 \end{pmatrix}$$

$$a_{24} = \begin{pmatrix} v \\ 1 \end{pmatrix}$$

$$a_{25} = \begin{pmatrix} v \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{51}{16}v^3 \frac{217}{16}v^2 \frac{83}{4}v \frac{311}{16}$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_{3}, c_{7}	u^4
C ₄	$(u+1)^4$
<i>C</i> ₅	$u^4 + 2u^3 + 3u^2 + u + 1$
	$u^4 + u^2 - u + 1$
<i>C</i> ₈	$u^4 - 2u^3 + 3u^2 - u + 1$
c_9, c_{10}, c_{12}	$u^4 + u^2 + u + 1$
c_{11}	$u^4 + 3u^3 + 4u^2 + 3u + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_{3}, c_{7}	y^4
c_5, c_8	$y^4 + 2y^3 + 7y^2 + 5y + 1$
c_6, c_9, c_{10} c_{12}	$y^4 + 2y^3 + 3y^2 + y + 1$
c_{11}	$y^4 - y^3 + 2y^2 + 7y + 4$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.600768 + 0.325640I		
a = 0	-2.62503 + 1.39709I	-10.34643 - 2.46427I
b = -1.112690 + 0.371716I		
v = -0.600768 - 0.325640I		
a = 0	-2.62503 - 1.39709I	-10.34643 + 2.46427I
b = -1.112690 - 0.371716I		
v = -2.89923 + 0.40053I		
a = 0	0.98010 + 7.64338I	2.12768 - 8.80169I
b = 0.237691 - 0.353773I		
v = -2.89923 - 0.40053I		
a = 0	0.98010 - 7.64338I	2.12768 + 8.80169I
b = 0.237691 + 0.353773I		

VI.
$$I_2^v = \langle a, -v^2b + b^2 + 2bv - v^2 + b + 2v + 1, v^3 - 3v^2 + 2v - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -v^{2}b \\ b \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -v^{2}b + bv - v^{2} + 2v \\ -v^{2}b + 3bv - v^{2} - b + 3v - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} v^{2}b - bv + b + v \\ -bv + v^{2} + b - 3v + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -bv + v^{2} - 2v + 1 \\ -v^{2} + 3v - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -bv + v^{2} - 2v + 1 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} bv - v^{2} + 2v - 1 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -bv + v^{2} - 2v + 2 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $7v^2 13v 5$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_{3}, c_{7}	u^6
C ₄	$(u+1)^6$
<i>C</i> ₅	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c_6	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$
c_8	$u^6 - 3u^5 + 4u^4 - 2u^3 + 1$
c_9, c_{10}, c_{12}	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
c_{11}	$(u^3 - u^2 + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_7	y^6
c_5, c_8	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_6, c_9, c_{10} c_{12}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_{11}	$(y^3 - y^2 + 2y - 1)^2$

Solutions to I_2^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.337641 + 0.562280I		
a = 0	-1.37919 + 2.82812I	-10.80443 - 4.65175I
b = -0.960138 + 0.693124I		
v = 0.337641 + 0.562280I		
a = 0	-1.37919 + 2.82812I	-10.80443 - 4.65175I
b = -0.91730 - 1.43799I		
v = 0.337641 - 0.562280I		
a = 0	-1.37919 - 2.82812I	-10.80443 + 4.65175I
b = -0.960138 - 0.693124I		
v = 0.337641 - 0.562280I		
a = 0	-1.37919 - 2.82812I	-10.80443 + 4.65175I
b = -0.91730 + 1.43799I		
v = 2.32472		
a = 0	2.75839	2.60890
b = -0.122561 + 0.479689I		
v = 2.32472		
a = 0	2.75839	2.60890
b = -0.122561 - 0.479689I		

VII. u-Polynomials

	VII. u-Polynomials
Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{10}(u^3-u^2+2u-1)^2$
~1	$ (u^6 + 4u^5 + 24u^4 + 11u^3 + 42u^2 - 11u + 1)^2 $
	$ (u^9 - 10u^8 + 29u^7 - 39u^6 + 26u^5 - 15u^4 + 19u^3 - 8u^2 - 3u - 1) $
	$(u^{14} + 54u^{13} + \dots - 7647u + 256)$
c_2	$(u-1)^{10}(u^3+u^2-1)^2(u^6-2u^5+3u^3+6u^2-u+1)^2$
2	$(u^9 + 4u^8 + 3u^7 - 5u^6 - 10u^5 - 5u^4 + 3u^3 + 6u^2 + 3u + 1)$
	$\cdot (u^{14} - 16u^{13} + \dots + 31u - 16)$
Co	$u^{10}(u^3 - u^2 + 2u - 1)^2(u^6 - 7u^5 + 26u^4 - 51u^3 + 52u^2 - 28u + 8)^2$
c_3	$\cdot (u^9 + 5u^8 + 8u^7 + 13u^6 + 10u^5 + 11u^4 + 5u^3 + 6u^2 + u + 1)$
	$(u^{14} + 21u^{13} + \dots + 544u + 256)$
	$(u+1)^{10}(u^3-u^2+1)^2(u^6-2u^5+3u^3+6u^2-u+1)^2$
c_4	$\cdot (u^9 - 4u^8 + 3u^7 + 5u^6 - 10u^5 + 5u^4 + 3u^3 - 6u^2 + 3u - 1)$
	$(u^{14} - 16u^{13} + \dots + 31u - 16)$
	$(u^4 + 2u^3 + 3u^2 + u + 1)(u^6 - 3u^5 + 5u^4 - 5u^3 + 5u^2 - 3u + 1)$
c_5	$\cdot \left(u^6 + 3u^5 + 4u^4 + 2u^3 + 1 \right)$
	$ (u^9 - 3u^8 + 5u^7 - 4u^6 + 2u^5 - 2u^4 + 4u^3 - 3u^2 + 1) $
	$(u^{12} + 2u^{11} + \dots + 15u + 9)(u^{14} + 2u^{13} + \dots + 4u + 1)$
	$(u^4 + u^2 - u + 1)(u^6 - 3u^5 + 5u^4 - 5u^3 + 5u^2 - 3u + 1)$
c_6	$\cdot \left(u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1\right)$
	$ (u^9 - 3u^7 + 4u^6 - 2u^5 + 2u^4 - 4u^3 + 5u^2 - 3u + 1) $
	$ (u^{12} - 6u^{11} + \dots - 1017u + 603)(u^{14} - 11u^{13} + \dots + 9u - 9) $
c_7	$u^{10}(u^3 + u^2 + 2u + 1)^2(u^6 - 7u^5 + 26u^4 - 51u^3 + 52u^2 - 28u + 8)^2$
01	$\cdot \left(u^9 - 5u^8 + 8u^7 - 13u^6 + 10u^5 - 11u^4 + 5u^3 - 6u^2 + u - 1\right)$
	$(u^{14} + 21u^{13} + \dots + 544u + 256)$
	$ (u^4 - 2u^3 + 3u^2 - u + 1)(u^6 - 3u^5 + 4u^4 - 2u^3 + 1) $
c_8	$\cdot \left(u^6 - 3u^5 + 5u^4 - 5u^3 + 5u^2 - 3u + 1\right)$
	$ (u^9 - 3u^8 + 5u^7 - 4u^6 + 2u^5 - 2u^4 + 4u^3 - 3u^2 + 1) $
	$\frac{(u^{12} + 2u^{11} + \dots + 15u + 9)(u^{14} + 2u^{13} + \dots + 4u + 1)}{(u^4 + u^2 + u + 1)(u^6 - 3u^5 + 5u^4 - 5u^3 + 5u^2 - 3u + 1)}$
c_9	
Cg .	$\cdot \left(u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1\right)$
	$ (u^9 - 3u^7 + 4u^6 - 2u^5 + 2u^4 - 4u^3 + 5u^2 - 3u + 1) $
	$ (u^{12} - 6u^{11} + \dots - 1017u + 603)(u^{14} - 11u^{13} + \dots + 9u - 9) $
c_{10}, c_{12}	$(u+1)^6(u^4+u^2+u+1)(u^6-u^5+2u^4-2u^3+2u^2-2u+1)$
	$(u^9 + 6u^8 + 5u^7 + 12u^6 + 6u^5 + 10u^4 + 5u^2 - u + 1)$
	$ (u^{12} - u^{11} + \dots - 942u + 423)(u^{14} + 27u^{13} + \dots + 157u - 1) $
c_{11}	$u^{6}(u^{3} - u^{2} + 1)^{2}(u^{4} + 3u^{3} + 4u^{2} + 3u + 2)(u^{6} - u^{5} + 5u^{3} - 4u + 8)^{2}$
~11	$ (u^9 - 3u^8 - 7u^7 + 61u^6 - 171u^5 + 279u^4 - 297u^3 + 212u^2 - 97u + 23) $
	$(u^{14} + 22u^{13} + \dots + 88u + 4)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing		
c_1	$(y-1)^{10}(y^3 + 3y^2 + 2y - 1)^2$ $\cdot (y^6 + 32y^5 + 572y^4 + 1985y^3 + 2054y^2 - 37y + 1)^2$ $\cdot (y^9 - 42y^8 + \dots - 7y - 1)(y^{14} - 910y^{13} + \dots - 4.04127 \times 10^7y + 6553)$		
c_2, c_4	$(y-1)^{10}(y^3 - y^2 + 2y - 1)^2$ $\cdot (y^6 - 4y^5 + 24y^4 - 11y^3 + 42y^2 + 11y + 1)^2$ $\cdot (y^9 - 10y^8 + 29y^7 - 39y^6 + 26y^5 - 15y^4 + 19y^3 - 8y^2 - 3y - 1)$ $\cdot (y^{14} - 54y^{13} + \dots + 7647y + 256)$		
c_3, c_7	$y^{10}(y^3 + 3y^2 + 2y - 1)^2$ $\cdot (y^6 + 3y^5 + 66y^4 - 273y^3 + 264y^2 + 48y + 64)^2$ $\cdot (y^9 - 9y^8 - 46y^7 - 109y^6 - 164y^5 - 171y^4 - 113y^3 - 48y^2 - 11y - 1)$ $\cdot (y^{14} - 177y^{13} + \dots - 226304y + 65536)$		
c_5, c_8	$(y^{4} + 2y^{3} + 7y^{2} + 5y + 1)(y^{6} - y^{5} + 4y^{4} - 2y^{3} + 8y^{2} + 1)$ $\cdot (y^{6} + y^{5} + 5y^{4} + 9y^{3} + 5y^{2} + y + 1)$ $\cdot (y^{9} + y^{8} + 5y^{7} + 10y^{5} - 6y^{4} + 12y^{3} - 5y^{2} + 6y - 1)$ $\cdot (y^{12} + 16y^{10} + \dots + 189y + 81)(y^{14} - 2y^{13} + \dots - 6y + 1)$		
c_6, c_9	$(y^{4} + 2y^{3} + 3y^{2} + y + 1)(y^{6} + y^{5} + 5y^{4} + 9y^{3} + 5y^{2} + y + 1)$ $\cdot (y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)$ $\cdot (y^{9} - 6y^{8} + 5y^{7} - 12y^{6} + 6y^{5} - 10y^{4} - 5y^{2} - y - 1)$ $\cdot (y^{12} + 16y^{11} + \dots + 402057y + 363609)$ $\cdot (y^{14} - 61y^{13} + \dots - 927y + 81)$		
c_{10}, c_{12}	$(y-1)^{6}(y^{4} + 2y^{3} + 3y^{2} + y + 1)(y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)$ $\cdot (y^{9} - 26y^{8} + \dots - 9y - 1)(y^{12} + 29y^{11} + \dots - 1840806y + 178929)$ $\cdot (y^{14} - 413y^{13} + \dots - 22155y + 1)$		
c_{11}	$y^{6}(y^{3} - y^{2} + 2y - 1)^{2}(y^{4} - y^{3} + 2y^{2} + 7y + 4)$ $\cdot (y^{6} - y^{5} + 10y^{4} - 17y^{3} + 40y^{2} - 16y + 64)^{2}$ $\cdot (y^{9} - 23y^{8} + \dots - 343y - 529)(y^{14} - 64y^{13} + \dots - 2456y + 16)$		