

Группа <u>M3102</u>	К работе допущен		
Студент_ Фадеев Артем Владимирович	Работа выполнена		
Преподаватель Герт А. В	Отчет принят		

Рабочий протокол и отчет по лабораторной работе №

Вынужденные электромагнитные колебания в последовательном колебательном контуре

- 1. Цель работы:
 - Изучение вынужденных колебаний и явления резонанса напряжений в последовательном колебательном контуре.
 - Изучение закона Ома для цепи переменного тока.
- 2. Задачи, решаемые во время выполнения работы:
 - Изучение явлений резонанса и зависимостей резонансных частот.
- 3. Объект исследования:
 - Вынужденные электромагнитные колебания.
- 4. Метод экспериментального исследования:
 - Виртуальная исследование.
- 5. Рабочие формулы и исходные данные:
 - C = 100 нФ
 - L = 10 мкГн
 - R1 = 1 Ом
 - R2 = 3 Ом
 - $\epsilon = 5B$

$$\begin{split} &\frac{U_{C_{res}}}{\mathscr{E}_0} = \frac{\sqrt{LC}}{RC} = \frac{1}{R}\sqrt{\frac{L}{C}} = Q. \quad \Omega_{I_{res}} = \Omega_0 = \frac{1}{\sqrt{LC}}. \quad Q = \frac{\Omega_0}{\Delta\Omega}, \\ &\beta_{1,2} = \frac{R_{1,2}}{2L} \quad \Omega = 2\pi f \\ &\left\{ \Omega_{R_{res}} = \Omega_0 = \frac{1}{\sqrt{LC}}; \\ &\Omega_{C_{res}} = \Omega_0 \sqrt{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2}; \\ &\Omega_{L_{res}} = \frac{\Omega_0}{\sqrt{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2}}; \\ &\alpha_{L_{res}} = \frac{\Omega_0}{\sqrt{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2}}; \end{split}$$

6. Измерительные приборы:

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Резистор		0-3 Ом	0.05 Ом
2	Конденсатор		0-100нФ	0.5нФ
3	Катушка		0-10мкГн	0.5мкГн
4				

7. Схема установки:

8. Результаты прямых измерений и их обработки:

R = 1 OM					
Nº	f	w, рад / c	Uc, B	UI, B	Ur, B
1	10	62 831,85	5,02	0,02	0,03
2	19	119 380,52	5,07	0,07	0,06
3	28	175 929,19	5,16	0,16	0,09
4	37	232 477,86	5,28	0,29	0,12
5	46	289 026,52	5,46	0,46	0,16
6	55	345 575,19	5,67	0,68	0,20
7	64	402 123,86	5,95	0,97	0,24
8	73	458 672,53	6,32	1,33	0,29
9	82	515 221,20	6,79	1,80	0,35
10	91	571 769,86	7,41	2,43	0,42
11	100	628 318,53	8,23	3,26	0,52
12	109	684 867,20	9,37	4,42	0,64
13	118	741 415,87	11,02	6,09	0,82
14	127	797 964,53	13,57	8,70	1,08
15	130	816 814,09	14,77	9,92	1,21
16	133	835 663,65	16,21	11,40	1,36
17	136	854 513,20	17,98	13,23	1,54
18	139	873 362,76	20,21	15,53	1,77
19	142	892 212,31	23,05	18,50	2,06
20	145	911 061,87	26,75	22,39	2,44
21	148	929 911,43	31,60	27,57	2,95
22	151	948 760,98	37,82	34,35	3,60
23	154	967 610,54	44,80	42,34	4,35
24	157	986 460,09	49,69	48,83	4,92
25	160	1 005 309,65	48,44	49,45	4,89
26	163	1 024 159,21	41,93	44,45	4,31
27	166	1 043 008,76	34,51	37,96	3,62
28	169	1 061 858,32	28,33	32,31	3,026

		R = 3	3 Ом		
Nº	f	w, рад / с	Uc, B	UI, B	Ur, B
1	10	62 831,85	5,01	0,02	0,09
2	19	119 380,52	5,06	0,07	0,18
3	28	175 929,19	5,15	0,16	0,27
4	37	232 477,86	5,27	0,29	0,37
5	46	289 026,52	5,43	0,45	0,47
6	55	345 575,19	5,64	0,67	0,59
7	64	402 123,86	5,90	0,96	0,71
8	73	458 672,53	6,24	1,31	0,86
9	82	515 221,20	6,66	1,77	1,03
10	91	571 769,86	7,20	2,37	1,24
11	100	628 318,53	7,90	3,14	1,49
12	109	684 867,20	8,81	4,16	1,82
13	118	741 415,87	10,00	5,55	2,24
14	127	797 964,53	11,55	7,46	2,79
15	130	816 814,09	12,19	8,24	3,01
16	133	835 663,65	12,85	9,10	3,25
17	136	854 513,20	13,55	10,04	3,50
18	139	873 362,76	14,27	11,06	3,77
19	142	892 212,31	14,99	12,12	4,05
20	145	911 061,87	15,66	13,21	4,32
21	148	929 911,43	16,23	14,27	4,57
22	151	948 760,98	16,65	15,22	4,78
23	154	967 610,54	16,84	16,00	4,92
24	157	986 460,09	16,78	16,54	4,99
25	160	1 005 309,65	16,45	16,82	4,98
26	163	1 024 159,21	15,88	16,84	4,9
27	166	1 043 008,76	15,14	16,65	4,76
28	169	1 061 858,32	14,29	16,3	4,57

9. Расчет погрешностей:

- Относительная погрешность значений экспериментальных и расчётных добротностей:

- Относительная погрешность значений экспериментальных добротностей из графиков и расчётных добротностей:

- Относительные погрешности резонансных частот при R = 1 Ом:

```
δ ΩRres = (1 - 1000000 / 1005309) * 100% = 0,52% δ ΩCres = (1 - 997496 / 1005309) * 100% = 0,7%
```

 $\delta \Omega Lres = (1 - 1002510 / 1005309) * 100\% = 0,52\%$

- Относительные погрешности резонансных частот при R = 3 Ом:

```
\delta \Omega Rres = (1 - 1000000 / 986460) * 100% = 1,37%
```

 $\delta \Omega Lres = (1 - 1002510 / 1024159) * 100% = 2,11%$

10. Графики:

11. Окончательные результаты.

- Резонансная частота без учета активного сопротивления: fpacч= 10000 кГц

- Экспериментальные значения добротностей:

Q1 = 10 Q2 = 3,33 U(C,res1) = 49,69B $f = 157 \ \kappa \Gamma \mu$ U(C,res2) = 16,84B $f = 154 \ \kappa \Gamma \mu$

- Расчетные значения добротностей:

Q1 = U(C,res1) / ϵ = 49,69B / 5B = 9,938 Q2 = U(C,res2) / ϵ = 16,84B / 5B = 3,368

- Экспериментальные значения добротностей, полученные из графиков:

Ширина первой кривой $Uc(\Omega)$ в резонансе = 105008 Ширина второй кривой $Uc(\Omega)$ в резонансе = 320442 Q1 = 9,52

Q1 = 9,52Q2 = 3,12

Расчетные значения резонансных частот для R1 = 1 Ом:

ΩRres = 1000000Γμ ΩCres = 997496Γμ ΩLres = 1002510Γμ

Экспериментальные значения резонансных частот для R1 = 1 Ом:

 Ω Rres = Ω Cres = Ω Lres = 1005309Γμ

Расчетные значения резонансных частот для R2 = 3 Ом:

ΩRres = 1000000Γμ ΩCres = 997241Γμ ΩLres = 1023290Γμ

Экспериментальные значения резонансных частот для R2 = 3 Ом:

 Ω Rres = 986460Γμ Ω Cres = 967610Γμ Ω Lres =1024159Γμ β 1 = 50000 β 2 = 150000

12. Выводы и анализ работы:

- В ходе выполнения работы были проведены измерения резонансных частот и были выполнены их теоретические расчеты для разных значений активного сопротивления. Погрешности получились небольшими, не более трех процентов. При меньшем коэффициенте затухания получены более близкие к собственной частоте колебания контура значения резонансных частот. Проведены так же измерения добротностей контуров и их теоритические вычисления.