

#### **Data Mining and Machine Learning**

#### **Lecture Notes – Module 2**

**Classification**: Basic Concepts, Decision Tree Induction, Bayes Classification Methods, Model Evaluation and Selection, Techniques to Improve Classification Accuracy.

**Classification and Prediction:** Support Vector Machines – Associative Classification – Lazy Learners – Other Classification Methods – Prediction.

#### **Textbooks:**

- 1. Jiawei Han and Micheline Kamber: Data Mining Concepts and Techniques, Elsevier, 2nd Edition, 2009.
- 2. Stephen Marsland, "Machine Learning An Algorithmic Perspective", Second Edition, CRC Press Taylor and Francis Group, 2015.
- 3. Ethem Alpaydin, "Introduction to Machine Learning", Second Edition, MITPress, Prentice Hall of India (PHI) Learning Pvt. Ltd. 2010.
- 4. Xindong Wu and Vipin Kumar: The top ten Algorithms in Data Mining, Chapman and Hall/CRC press.
- 5. Pang-Ning Tan, Michael Steinbach and Vipin Kumar, "Introduction to Data Mining", Pearson Education, 2007.
- 6. DISCOVERING KNOWLEDGE IN DATA, An Introduction to Data Mining, Second Edition, Daniel T. Larose, Chantal D. Larose.

#### **Reference Books:**

- 1. K.P. Soman, ShyamDiwakar and V. Aja, "Insight into Data Mining Theory and Practice", Eastern Economy Edition, Prentice Hall of India, 2006.
- 2. G. K. Gupta, "Introduction to Data Mining with Case Studies", Eastern Economy Edition, Prentice Hall of India, 2006.
- 3. Christopher Bishop, "Pattern Recognition and Machine Learning", CBS Publishers & Distributors, 2010.
- **4.** Mehryar Mohri, Afshin R, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.



- 1. What is classification? Explain the general approach to classification.
- Classification
  - predicts categorical class labels (discrete or nominal)
  - classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

# **Classification—A Two-Step Process**

- Model construction: describing a set of predetermined classes
  - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
  - The set of tuples used for model construction is training set
  - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
  - Estimate accuracy of the model
    - The known label of test sample is compared with the classified result from the model
    - Accuracy rate is the percentage of test set samples that are correctly classified by the model
    - Test set is independent of training set (otherwise overfitting)
  - If the accuracy is acceptable, use the model to classify new data
- Note: If *the test set* is used to select models, it is called validation (test) set



**Figure : Model Construction** 





**Figure : Model Prediction** 

# 2. Explain Decision Tree Induction in detail.

# ID3 Basic algorithm (a greedy algorithm)

- Tree is constructed in a top-down recursive divide-and-conquer manner
- At start, all the training examples are at the root
- Attributes are categorical (if continuous-valued, they are discretized in advance)
- Examples are partitioned recursively based on selected attributes
- Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)

#### **Conditions for stopping partitioning**

- All samples for a given node belong to the same class
- There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
- There are no samples left



# **Example:**

no

- ☐ Training data set: Buys\_computer
- ☐ The data set follows an example of Quinlan's ID3 (Playing Tennis)



| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| <=30 | high   | no      | fair          | no            |
| <=30 | high   | no      | excellent     | no            |
| 3140 | high   | no      | fair          | yes           |
| >40  | medium | no      | fair          | yes           |
| >40  | low    | yes     | fair          | yes           |
| >40  | low    | yes     | excellent     | no            |
| 3140 | low    | yes     | excellent     | yes           |
| <=30 | medium | no      | fair          | no            |
| <=30 | low    | yes     | fair          | yes           |
| >40  | medium | yes     | fair          | yes           |
| <=30 | medium | yes     | excellent     | yes           |
| 3140 | medium | no      | excellent     | yes           |
| 3140 | high   | yes     | fair          | yes           |
| >40  | medium | no      | excellent     | no            |

fair

3. Explain the Terms Information Gain, Entropy, Gini Index, Gini Ratio.

no

- Entropy (Information Theory)
  - A measure of uncertainty associated with a random variable
  - Calculation: For a discrete random variable Y taking m distinct values  $\{y_1, \dots, y_m\}$ ,

• 
$$H(Y) = -\sum_{i=1}^m p_i \log(p_i)$$
 , where  $p_i = P(Y = y_i)$ 

- Interpretation:
  - Higher entropy => higher uncertainty
  - Lower entropy => lower uncertainty
- Conditional Entropy
  - $H(Y|X) = \sum_{x} p(x)H(Y|X = x)$



- Select the attribute with the highest information gain
- Let p<sub>i</sub> be the probability that an arbitrary tuple in D belongs to class  $C_i$ , estimated by  $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_{i} \log_{2}(p_{i})$$

 $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$ • Information needed (after using A to split D into v partitions) to classify D:

 $Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$ 

Information gained by branching on attribute.

$$Gain(A) = Info(D) - Info_{A}(D)$$

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$SplitInfo_{A}(D) = -\sum_{i=1}^{v} \frac{|D_{i}|}{|D|} \times \log_{2}(\frac{|D_{i}|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- **EX.**  $SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2(\frac{4}{14}) \frac{6}{14} \times \log_2(\frac{6}{14}) \frac{4}{14} \times \log_2(\frac{4}{14}) = 1.557$ 
  - gain\_ratio(income) = 0.029/1.557 = 0.019
- The attribute with the maximum gain ratio is selected as the splitting attribute
- If a data set D contains examples from n classes, gini index, qini(D) is defined as gini  $(D) = 1 - \sum_{j=1}^{n} p_{j}^{2}$

where  $p_i$  is the relative frequency of class j in D

 If a data set D is split on A into two subsets D<sub>1</sub> and D<sub>2</sub>, the gini index gini(D) is defined as  $gini_A(D) = \frac{|D_1|}{|D|}gini_A(D_1) + \frac{|D_2|}{|D|}gini_A(D_2)$ 

Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

 The attribute provides the smallest gini<sub>split</sub>(D) (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)



#### 4. Explain Naïve Bayes Classifier with an Example.

A statistical classifier: performs probabilistic prediction, i.e., predicts class membership probabilities

Foundation: Based on Bayes' Theorem.

Performance: A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers

Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct — prior knowledge can be combined with observed data Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

■ Total probability Theorem: 
$$P(B) = \frac{M}{\Sigma} P(B|A_i) P(A_i)$$
  
 $i = 1$ 

Bayes' Theorem:  $P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H) / P(\mathbf{X})$ 

Bayes' Theorem: 
$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- Let **X** be a data sample ("evidence"): class label is unknown
- Let H be a *hypothesis* that X belongs to class C
- $\blacksquare$  Classification is to determine P(H|X), (i.e., posteriori probability): the probability that the hypothesis holds given the observed data sample X
- P(H) (*prior probability*): the initial probability
  - E.g., X will buy computer, regardless of age, income, ...
- $\blacksquare$  P(X): probability that sample data is observed
- $\blacksquare$  P(X|H) (likelihood): the probability of observing the sample X, given that the hypothesis holds
  - $\blacksquare$  E.g., Given that **X** will buy computer, the prob. that X is 31..40, medium income
- Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes' theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- Informally, this can be viewed as posteriori = likelihood x prior/evidence
- Predicts **X** belongs to  $C_i$  iff the probability  $P(C_i|\mathbf{X})$  is the highest among all the  $P(C_k|X)$  for all the *k* classes
- Practical difficulty: It requires initial knowledge of many probabilities, involving significant computational cost
- Let D be a training set of tuples and their associated class labels, and each tuple is



represented by an n-D attribute vector  $\mathbf{X} = (x_1, x_2, ..., x_n)$ 

- Suppose there are m classes  $C_1, C_2, ..., C_m$ .
- $\blacksquare$  Classification is to derive the maximum posteriori, i.e., the maximal  $P(C_i|X)$
- This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

 $\blacksquare$  Since P(X) is constant for all classes, only needs to be maximized

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

- Advantages
  - Easy to implement
  - Good results obtained in most of the cases
- Disadvantages
  - Assumption: class conditional independence, therefore loss of accuracy
  - Practically, dependencies exist among variables
    - E.g., hospitals: patients: Profile: age, family history, etc.

Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.

- Dependencies among these cannot be modeled by Naïve Bayes Classifier
- 5. Explain Classifier Evaluation Metrics: Confusion Matrix, Accuracy, Error Rate, Sensitivity and Specificity, Precision and Recall, and F-measures Confusion Matrix:

| Actual class\Predicted class | C <sub>1</sub>       | ¬ C <sub>1</sub>     |
|------------------------------|----------------------|----------------------|
| C <sub>1</sub>               | True Positives (TP)  | False Negatives (FN) |
| ¬ C <sub>1</sub>             | False Positives (FP) | True Negatives (TN)  |

#### **Example of Confusion Matrix:**

| Actual class\Predicted | buy_computer<br>= yes | buy_computer<br>= no | Total |
|------------------------|-----------------------|----------------------|-------|
| buy_computer = yes     | 6954                  | 46                   | 7000  |
| buy_computer = no      | 412                   | 2588                 | 3000  |
| Total                  | 7366                  | 2634                 | 10000 |

- Given m classes, an entry, CM<sub>i,j</sub> in a confusion matrix indicates # of tuples in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals
- Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified



Accuracy = (TP + TN)/All

**Error rate:** 1 - accuracy, or

Error rate = (FP + FN)/All

■ **Sensitivity**: True Positive recognition rate

■ Sensitivity = TP/P

■ **Specificity**: True Negative recognition rate

■ Specificity = TN/N

Precision: exactness – what % of tuples that the classifier labeled as positive are actually positive

 $precision = \frac{TP}{TP + FP}$ 

■ Recall: completeness – what % of positive tuples did the  $recall = \frac{TP}{TP + FN}$ classifier label as positive?

Perfect score is 1.0

- Inverse relationship between precision & recall
- F measure (F₁ or F-score): harmonic mean of precision and  $F = \frac{2 \times precision \times recall}{precision + recall}$ • assigns ß times as much war in the second recall  $\mathbf{F}_{\beta}$ :

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$$

# 6. What is Holdout, Cross-Validation Methods & Boosting, ROC Curves? Holdout method

- a. Given data is randomly partitioned into two independent sets
  - i. Training set (e.g., 2/3) for model construction
  - ii. Test set (e.g., 1/3) for accuracy estimation
- b. Random sampling: a variation of holdout
  - i. Repeat holdout k times, accuracy = avg. of the accuracies obtained

**Cross-validation** (k-fold, where k = 10 is most popular)

- c. Randomly partition the data into k mutually exclusive subsets, each approximately equal size
- d. At i-th iteration, use D<sub>i</sub> as test set and others as training set
- e. Leave-one-out: k folds where k = # of tuples, for small sized data



f. \*Stratified cross-validation\*: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

# **Bootstrap**

- Works well with small data sets
- Samples the given training tuples uniformly with replacement
- i.e., each time a tuple is selected, it is equally likely to be selected again and readded to the training set

Several bootstrap methods, and a common one is .632 boostrap

- A data set with d tuples is sampled d times, with replacement, resulting in a training set of d samples. The data tuples that did not make it into the training set end up forming the test set. About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since  $(1 1/d)^d \approx e^{-1} = 0.368$ )
- Repeat the sampling procedure *k* times, overall accuracy of the model:

$$Acc(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test\_set} + 0.368 \times Acc(M_i)_{train\_set})$$

#### **ROC Curves**

- ROC (Receiver Operating Characteristics) curves: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between the true positive rate and the false positive rate
- The area under the ROC curve is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: the one that is most likely to belong to the positive class appears at the top of the list



- The closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model
- Vertical axis represents the true positive rate
- Horizontal axis rep. the false positive rate
- The plot also shows a diagonal line



■ A model with perfect accuracy will have an area of 1.0

# 7. Explain Ensemble Methods, Bagging: Bootstrap Aggregation, AdaBoost and Random Forest to improve classification accuracy.

#### Ensemble methods

- a. Use a combination of models to increase accuracy
- b. Combine a series of k learned models,  $M_1, M_2, ..., M_k$ , with the aim of creating an improved model  $M^*$

#### Popular ensemble methods

- c. Bagging: averaging the prediction over a collection of classifiers
- d. Boosting: weighted vote with a collection of classifiers
- e. Ensemble: combining a set of heterogeneous classifiers



#### **Bagging: Bootstrap Aggregation**

- Analogy: Diagnosis based on multiple doctors' majority vote
- Training
  - Given a set D of d tuples, at each iteration i, a training set D<sub>i</sub> of d tuples is sampled with replacement from D (i.e., bootstrap)
  - A classifier model M<sub>i</sub> is learned for each training set D<sub>i</sub>
- Classification: classify an unknown sample **X** 
  - Each classifier M<sub>i</sub> returns its class prediction
  - The bagged classifier M\* counts the votes and assigns the class with the most votes to X
- Prediction: can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple
- Accuracy



- Often significantly better than a single classifier derived from D
- For noise data: not considerably worse, more robust
- Proved improved accuracy in prediction

# **Boosting**

- Analogy: Consult several doctors, based on a combination of weighted diagnoses—weight assigned based on the previous diagnosis accuracy
- How boosting works?
  - Weights are assigned to each training tuple
  - A series of k classifiers is iteratively learned
  - After a classifier  $M_i$  is learned, the weights are updated to allow the subsequent classifier,  $M_{i+1}$ , to pay more attention to the training tuples that were misclassified by  $M_i$
  - The final **M\* combines the votes** of each individual classifier, where the weight of each classifier's vote is a function of its accuracy
- Boosting algorithm can be extended for numeric prediction
- Comparing with bagging: Boosting tends to have greater accuracy, but it also risks overfitting the model to misclassified data

#### Adaboost

- Given a set of d class-labeled tuples,  $(\mathbf{X_1}, \mathbf{y_1}), ..., (\mathbf{X_d}, \mathbf{y_d})$
- Initially, all the weights of tuples are set the same (1/d)
- Generate k classifiers in k rounds. At round i,
  - Tuples from D are sampled (with replacement) to form a training set D<sub>i</sub> of the same size
  - Each tuple's chance of being selected is based on its weight
  - A classification model M<sub>i</sub> is derived from D<sub>i</sub>
  - Its error rate is calculated using D<sub>i</sub> as a test set
  - If a tuple is misclassified, its weight is increased, o.w. it is decreased
- Error rate:  $err(\mathbf{X_j})$  is the misclassification error of tuple  $\mathbf{X_j}$ . Classifier  $M_i$  error rate is the sum of the weights of the misclassified tuples:

$$error(M_i) = \sum_{j}^{d} w_j \times err(\mathbf{X_j})$$

■ The weight of classifier M<sub>i</sub>'s vote is

$$\log \frac{1 - error(M_i)}{error(M_i)}$$



#### **Random Forest**

- Each classifier in the ensemble is a *decision tree* classifier and is generated using a random selection of attributes at each node to determine the split
- During classification, each tree votes and the most popular class is returned
- Two Methods to construct Random Forest:
  - Forest-RI (*random input selection*): Randomly select, at each node, F attributes as candidates for the split at the node. The CART methodology is used to grow the trees to maximum size
  - Forest-RC (*random linear combinations*): Creates new attributes (or features) that are a linear combination of the existing attributes (reduces the correlation between individual classifiers)
- Comparable in accuracy to Adaboost, but more robust to errors and outliers
- Insensitive to the number of attributes selected for consideration at each split, and faster than bagging or boosting

# **Classification of Class-Imbalanced Data Sets**

- Class-imbalance problem: Rare positive example but numerous negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.
- Traditional methods assume a balanced distribution of classes and equal error costs: not suitable for class-imbalanced data
- Typical methods for imbalance data in 2-class classification:
  - Oversampling: re-sampling of data from positive class
  - Under-sampling: randomly eliminate tuples from negative class
  - Threshold-moving: moves the decision threshold, t, so that the rare class tuples are easier to classify, and hence, less chance of costly false negative errors
  - Ensemble techniques: Ensemble multiple classifiers introduced above
- Still difficult for class imbalance problem on multiclass tasks

#### 8. Explain Support Vector Machines

- A relatively new classification method for both <u>linear and nonlinear</u> data
- It uses a <u>nonlinear mapping</u> to transform the original training data into a higher dimension
- With the new dimension, it searches for the linear optimal separating **hyperplane** (i.e., "decision boundary")



- With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane
- SVM finds this hyperplane using **support vectors** ("essential" training tuples) and **margins** (defined by the support vectors)



**SVM**—When Data Is Linearly Separable



Let data D be  $(\mathbf{X}_1, \mathbf{y}_1)$ , ...,  $(\mathbf{X}_{|D|}, \mathbf{y}_{|D|})$ , where  $\mathbf{X}_i$  is the set of training tuples associated with the class labels  $\mathbf{y}_i$ 

There are infinite lines (<u>hyperplanes</u>) separating the two classes but we want to <u>find the best one</u> (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum marginal hyperplane (MMH)

■ A separating hyperplane can be written as

 $\mathbf{W} \bullet \mathbf{X} + \mathbf{b} = 0$ 

where  $W = \{w_1, w_2, ..., w_n\}$  is a weight vector and b a scalar (bias)

■ For 2-D it can be written as



$$w_0 + w_1 x_1 + w_2 x_2 = 0$$

■ The hyperplane defining the sides of the margin:

$$H_1$$
:  $w_0 + w_1 x_1 + w_2 x_2 \ge 1$  for  $y_i = +1$ , and

$$H_2$$
:  $w_0 + w_1 x_1 + w_2 x_2 \le -1$  for  $y_i = -1$ 

- Any training tuples that fall on hyperplanes  $H_1$  or  $H_2$  (i.e., the sides defining the margin) are **support vectors**
- This becomes a **constrained** (**convex**) **quadratic optimization** problem: Quadratic objective function and linear constraints  $\rightarrow$  Quadratic Programming (QP)  $\rightarrow$  Lagrangian multipliers

#### Why Is SVM Effective on High Dimensional Data?

- The **complexity** of trained classifier is characterized by the # of support vectors rather than the dimensionality of the data
- The **support vectors** are the <u>essential or critical training examples</u> —they lie closest to the decision boundary (MMH)
- If all other training examples are removed and the training is repeated, the same separating hyperplane would be found
- The number of support vectors found can be used to compute an (upper) bound on the expected error rate of the SVM classifier, which is independent of the data dimensionality
- Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high

#### **SVM**—Linearly Inseparable

- Instead of computing the dot product on the transformed data, it is math. equivalent to applying a kernel function  $K(X_i, X_j)$  to the original data, i.e.,  $K(X_i, X_j) = \Phi(X_i)$   $\Phi(X_i)$
- Typical Kernel Functions

Polynomial kernel of degree 
$$h: K(X_i, X_j) = (X_i \cdot X_j + 1)^h$$

Gaussian radial basis function kernel:  $K(X_i, X_j) = e^{-||X_i - X_j||^2/2\sigma^2}$ 

Sigmoid kernel: 
$$K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$$

■ SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)



#### 9. What is Associative Classification?

- Associative classification: Major steps
  - Mine data to find strong associations between frequent patterns (conjunctions of attribute-value pairs) and class labels
  - Association rules are generated in the form of

$$P_1 \wedge p_2 \dots \wedge p_l \rightarrow \text{``}A_{class} = C\text{''}(conf, sup)$$

- Organize the rules to form a rule-based classifier
- Why effective?
  - It explores highly confident associations among multiple attributes and may overcome some constraints introduced by decision-tree induction, which considers only one attribute at a time
  - Associative classification has been found to be often more accurate than some traditional classification methods, such as C4.5
- **CBA** (Classification Based on Associations
  - Mine possible association rules in the form of
    - Cond-set (a set of attribute-value pairs)  $\rightarrow$  class label
  - Build classifier: Organize rules according to decreasing precedence based on confidence and then support
- CMAR (Classification based on Multiple Association Rules: Li, Han, Pei, ICDM'01)
  - Classification: Statistical analysis on multiple rules
- CPAR (Classification based on Predictive Association Rules: Yin & Han, SDM'03)
  - Generation of predictive rules (FOIL-like analysis) but allow covered rules to retain with reduced weight
  - Prediction using best k rules

High efficiency, accuracy similar to CMAR

#### 10. Explain the k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of Euclidean distance,  $dist(X_1, X_2)$
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to  $x_q$



 Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples





- $\blacksquare$  k-NN for <u>real-valued prediction</u> for a given unknown tuple
  - $\blacksquare$  Returns the mean values of the k nearest neighbors
- Distance-weighted nearest neighbor algorithm
  - Weight the contribution of each of the k neighbors according to their distance to the query  $x_q$ 
    - Give greater weight to closer neighbors
- $\blacksquare$  Robust to noisy data by averaging k-nearest neighbors
- <u>Curse of dimensionality</u>: distance between neighbors could be dominated by irrelevant attributes
  - To overcome it, axes stretch or elimination of the least relevant attributes

#### 11. Explain Genetic Algorithms (GA), Rough Set Approach, Fuzzy Set Approaches

Genetic Algorithm: based on an analogy to biological evolution

- An initial **population** is created consisting of randomly generated rules
  - o Each rule is represented by a string of bits
  - $\circ$  E.g., if A<sub>1</sub> and  $\neg$ A<sub>2</sub> then C<sub>2</sub> can be encoded as 100
  - o If an attribute has k > 2 values, k bits can be used
- Based on the notion of survival of the fittest, a new population is formed to consist
  of the fittest rules and their offspring
- The *fitness of a rule* is represented by its classification accuracy on a set of training examples
- Offspring are generated by crossover and mutation
- The process continues until a population P evolves when each rule in P satisfies a prespecified threshold, Slow but easily parallelizable



#### **Rough Set Approach**

- Rough sets are used to approximately or "roughly" define equivalent classes
- A rough set for a given class C is approximated by two sets: a lower approximation (certain to be in C) and an upper approximation (cannot be described as not belonging to C)
- Finding the minimal subsets (**reducts**) of attributes for feature reduction is NP-hard but a **discernibility matrix** (which stores the differences between attribute values for each pair of data tuples) is used to reduce the computation intensity



#### **Fuzzy Set Approaches**

- Fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of membership (such as in a *fuzzy membership graph*)
- Attribute values are converted to fuzzy values. Ex.:
  - Income, *x*, is assigned a fuzzy membership value to each of the discrete categories {low, medium, high}, e.g. \$49K belongs to "medium income" with fuzzy value 0.15 but belongs to "high income" with fuzzy value 0.96
  - Fuzzy membership values do not have to sum to 1.
- Each applicable rule contributes a vote for membership in the categories
- Typically, the truth values for each predicted category are summed, and these sums are combined





# **Possible Questions:**

- 1. a) Illustrate Bayesian Classification with a neat diagram.
  - b) Discuss the relationship between the association mining and correlation analysis with examples.
- 2. a) Outline the steps to select the best attribute for the root of a Decision tree" to play tennis "using ID3 algorithm with the given dataset.

| Day | Outlook  | Temp | Humidity | Wind   | Tennis? |
|-----|----------|------|----------|--------|---------|
| D1  | Sunny    | Hot  | High     | Weak   | No      |
| D2  | Sunny    | Hot  | High     | Strong | No      |
| D3  | Overcast | Hot  | High     | Weak   | Yes     |
| D4  | Rain     | Mild | High     | Weak   | Yes     |
| D5  | Rain     | Cool | Normal   | Weak   | Yes     |
| D6  | Rain     | Cool | Normal   | Strong | No      |
| D7  | Overcast | Cool | Normal   | Strong | Yes     |
| D8  | Sunny    | Mild | High     | Weak   | No      |
| D9  | Sunny    | Cool | Normal   | Weak   | Yes     |
| D10 | Rain     | Mild | Normal   | Weak   | Yes     |
| D11 | Sunny    | Mild | Normal   | Strong | Yes     |
| D12 | Overcast | Mild | High     | Strong | Yes     |
| D13 | Overcast | Hot  | Normal   | Weak   | Yes     |
| D14 | Rain     | Mild | High     | Strong | No      |

b) Using Naïve Bayes classifier classify a "Red Domestic SUV "as stolen or not. Use the given below data set.

| Example No. | Color  | Type   | Origin   | Stolen? |
|-------------|--------|--------|----------|---------|
| 1           | Red    | Sports | Domestic | Yes     |
| 2           | Red    | Sports | Domestic | No      |
| 3           | Red    | Sports | Domestic | Yes     |
| 4           | Yellow | Sports | Domestic | No      |
| 5           | Yellow | Sports | Imported | Yes     |
| 6           | Yellow | SUV    | Imported | No      |
| 7           | Yellow | SUV    | Imported | Yes     |
| 8           | Yellow | SUV    | Domestic | No      |
| 9           | Red    | SUV    | Imported | No      |
| 10          | Red    | Sports | Imported | Yes     |

- 3 A)Explain two step procedures for Classification.
- B) Define classification. Explain different types of attributes.
- C) Explain Naiive Bayesian Classification with an example.



3. a) For the data set given below, calculate Information gain, Gain ratio and  $\Delta$ Gini for the attribute "Humidity".

| Outlook  | Temperature | Humidit      | Windy | Play |
|----------|-------------|--------------|-------|------|
|          |             | $\mathbf{y}$ |       |      |
| Sunny    | Hot         | High         | False | No   |
| Sunny    | Hot         | High         | True  | No   |
| Overcast | Hot         | High         | False | Yes  |
| Rainy    | Mild        | High         | False | Yes  |
| Rainy    | Cool        | Normal       | False | Yes  |
| Rainy    | Cool        | Normal       | True  | No   |
| Overcast | Cool        | Normal       | True  | Yes  |
| Sunny    | Mild        | High         | False | No   |
| Sunny    | Cool        | Normal       | False | Yes  |
| Rainy    | Mild        | Normal       | False | Yes  |
| Sunny    | Mild        | Normal       | True  | Yes  |
| Overcast | Mild        | High         | True  | Yes  |
| Overcast | Hot         | Normal       | False | Yes  |
| Rainy    | Mild        | High         | True  | No   |

b) Explain Naïve Bayesian classification. What is the Naïve Bayesian classifier prediction of buys\_computer for tuple X where age= "senior" and income="low" in the dataset given below.

| Age          | Income | Student | Credit rating | Buys<br>Computer |
|--------------|--------|---------|---------------|------------------|
| Youth        | Low    | No      | Fair          | No               |
| Youth        | High   | Yes     | Excellent     | Yes              |
| Middle_age d | Low    | Yes     | Fair          | No               |
| Middle_age d | High   | Yes     | Excellent     | Yes              |
| Senior       | Low    | No      | Excellent     | No               |
| Senior       | high   | No      | Fair          | Yes              |

c) Use KNN classifier to predict whether the new data point (x1,y1) = (57kg, 170cm) belongs to the class **Under Weight** or **Normal**. Also find appropriate K value for classification.

| Weight (x2) | Height(y2) | Class        |
|-------------|------------|--------------|
| 51          | 167        | Under Weight |
| 62          | 182        | Normal       |
| 69          | 176        | Normal       |
| 64          | 173        | Normal       |
| 65          | 172        | Normal       |
| 56          | 174        | Under Weight |
| 58          | 169        | Normal       |
| 57          | 173        | Normal       |
| 55          | 170        | Normal       |



4.

a) The following contingency table summarizes supermarket transaction data, where hot dogs refers to the transactions containing hot dogs,

hot dogs

refers to the transactions that do not contain hot dogs

 $\frac{hamburgers}{hamburgers}$  refers to the transactions containing hamburgers, and

refers to the transactions that do not contain hamburgers.

|                | hot dogs | hot dogs | $\Sigma_{row}$ |
|----------------|----------|----------|----------------|
| hamburgers     | 2000     | 500      | 2500           |
| hamburgers     | 1000     | 1500     | 2500           |
| $\Sigma_{col}$ | 3000     | 2000     | 5000           |

- i) Suppose that the association rule "hot dogs => hamburgers" is mined. Given a minimum support threshold of 25% and a minimum confidence threshold of 50%, is this association rule strong?
- ii) Based on the given data, is the purchase of hot dogs independent of the purchase of hamburgers? If not, what kind of correlation relationship exists between the two?
- b) Explain decision tree induction with an example.