Package 'CohortMethod'

February 2, 2015

```
Type Package

Title New-user cohort method with large scale propensity and outcome models

Version 1.0.0

Date 2015-02-02

Author Martijn J. Schuemie [aut, cre],

Marc A. Suchard [aut],

Patrick B. Ryan [aut]

Maintainer Martijn J. Schuemie <schuemie@ohdsi.org>
```

Description CohortMethod is an R package for performing new-user cohort studies in an observational database in the OMOP Common Data Model. It extracts the necessary data from a database in OMOP Common Data Model format, and uses a large set of covariates for both the propensity and outcome model, including for example all drugs, diagnoses, procedures, as well as age, comorbidity indexes, etc. Large scale regularized regression is used to fit the propensity and outcome models. Functions are included for trimming, stratifying and matching on propensity scores, as well as diagnostic functions, such as propensity score distribution plots and plots showing covariate balance before and after matching and/or trimming. Supported outcome models are (conditional) logistic regression, (conditional) Poisson regression, and (conditional) Cox regression.

```
License Apache License 2.0
VignetteBuilder knitr
Depends R (>= 3.1.0),
      DatabaseConnector,
      Cyclops (>= 1.0.0)
Imports ggplot2,
      ff,
      ffbase,
      plyr,
      Rcpp (>= 0.11.2),
      RJDBC,
      SqlRender (\geq 1.0.0),
      survival
Suggests testthat,
      pROC,
      gnm,
      knitr,
      rmarkdown
```

LinkingTo Rcpp **NeedsCompilation** yes

R topics documented:

	cohortDataSimulationProfile	2
(CohortMethod	3
(computeCovariateBalance	3
	computePsAuc	3
(createCohortDataSimulationProfile	4
(createPs	5
(drawAttritionDiagram	6
1	fitOutcomeModel	6
ş	getDbCohortData	7
ş	getOutcomeModel	13
ş	getPsModel	14
1	oadCohortData	14
1	matchOnPs	15
1	matchOnPsAndCovariates	16
1	olotCovariateBalanceOfTopVariables	17
1	blotCovariateBalanceScatterPlot	18
1	olotKaplanMeier	18
1	olotPs	19
5	saveCohortData	21
5	simulateCohortData	22
5	stratifyByPs	22
9	stratifyByPsAndCovariates	23
	rimByPs	
1	rimByPsToEquipoise	
,	vignetteBalance	25
	vignetteOutcomeModel1	
	vignetteOutcomeModel2	
	vignetteOutcomeModel3	
	vignettePs	
		27

 $cohort {\tt DataSimulationProfile}$

A simulation profile

Description

A simulation profile

Usage

data(cohortDataSimulationProfile)

computePsAuc 3

CohortMethod	CohortMethod

Description

CohortMethod

computeCovariateBalance

Compute covariate balance before and after matching and trimming

Description

For every covariate, prevalence in treatment and comparator groups before and after matching/trimming are computed.

Usage

```
computeCovariateBalance(restrictedCohorts, cohortData,
  outcomeConceptId = NULL)
```

Arguments

restrictedCohorts

A data frame containing the people that are remaining after matching and/or trimming.

cohortData

An object of type cohortData as generated using getDbCohortData.

outcomeConceptId

The concept ID of the outcome. Persons marked for removal for the outcome will be removed when computing the balance before matching/trimming.

Details

The restrictedCohorts data frame should have at least the following columns:

rowId	(integer)	A unique identifier for each row (e.g. the person ID)
treatment	(integer)	Column indicating whether the person is in the treated (1) or comparator (0)
		group

Value

Returns a date frame describing the covariate balance before and after matching/trimming.

computePsAuc	Compute the area under the ROC curve

Description

computePsAuc computes the area under the ROC curve of the propensity score

Usage

```
computePsAuc(data, confidenceIntervals = FALSE)
```

Arguments

data A data frame with at least the two columns described below confidenceIntervals

Compute 95 percent confidence intervals (computationally expensive for large data sets)

Details

The data frame should have a least the following two columns:

treatment (integer) Column indicating whether the person is in the treated (1) or comparator

(0) group

propensityScore (real) Propensity score

Value

A data frame holding the AUC and its 95 percent confidence interval

Examples

```
treatment = rep(0:1, each = 100)
propensityScore = c(rnorm(100, mean=0.4, sd=0.25),rnorm(100, mean=0.6, sd=0.25))
data <- data.frame(treatment = treatment, propensityScore = propensityScore)
data <- data[data$propensityScore > 0 & data$propensityScore < 1,]
computePsAuc(data)</pre>
```

createCohortDataSimulationProfile

Create simulation profile

Description

createCohortDataSimulationProfile creates a profile based on the provided cohortData object, which can be used to generate simulated data that has similar characteristics.

Usage

```
createCohortDataSimulationProfile(cohortData)
```

Arguments

cohortData An object of type cohortData as generated using getDbCohortData.

createPs 5

Details

The output of this function is an object that can be used by the simulateCohortData function to generate a cohortData object.

Value

An object of type cohortDataSimulationProfile.

createPs

Create propensity scores

Description

createPs creates propensity scores using a regularized logistic regression.

Usage

```
createPs(cohortData, checkSorting = TRUE, outcomeConceptId = NULL,
  excludeCovariateIds = NULL, prior = createPrior("laplace", exclude = c(0),
  useCrossValidation = TRUE), control = createControl(noiseLevel = "silent",
  cvType = "auto", startingVariance = 0.1))
```

Arguments

cohortData An object of type cohortData as generated using getDbCohortData.

checkSorting Checks if the covariate data is sorted by rowId (necessary for fitting the model).

Checking can be very time-consuming if the data is already sorted.

outcomeConceptId

The concept ID of the outcome. Persons marked for removal for the outcome

will be removed prior to creating the propensity score model.

excludeCovariateIds

Exclude these covariates from the propensity model.

prior The prior used to fit the model. See createPrior for details.

control The control object used to control the cross-validation used to determine the

hyperparameters of the prior (if applicable). See createControl for details.

Details

createPs creates propensity scores using a regularized logistic regression.

Examples

```
data(cohortDataSimulationProfile)
cohortData <- simulateCohortData(cohortDataSimulationProfile, n=1000)
ps <- createPs(cohortData)</pre>
```

6 fitOutcomeModel

drawAttritionDiagram Draw the attrition diagram

Description

drawAttritionDiagram draws the attition diagram, showing how many people were excluded from the study population, and for what reasons.

Usage

```
drawAttritionDiagram(outcomeModel, treatmentLabel = "Treated",
   comparatorLabel = "Comparator", fileName = NULL)
```

Arguments

outcomeModel An object of type outcomeModel as generated using he createOutcomeMode

function.

treatmentLabel A label to us for the treated cohort.

comparatorLabel

A label to us for the comparator cohort.

fileName Name of the file where the plot should be

Name of the file where the plot should be saved, for example 'plot.png'. See the function ggsave in the ggplot2 package for supported file formats.

Value

A ggplot object. Use the ggsave function to save to file in a different format.

fitOutcomeModel

Create an outcome model, and compute the relative risk

Description

fitOutcomeModel creates an outcome model, and computes the relative risk

Usage

```
fitOutcomeModel(outcomeConceptId, cohortData, subPopulation = NULL,
    stratifiedCox = TRUE, riskWindowStart = 0, riskWindowEnd = 9999,
    addExposureDaysToEnd = FALSE, useCovariates = TRUE, fitModel = TRUE,
    modelType = "cox", prior = createPrior("laplace", useCrossValidation =
    TRUE), control = createControl(cvType = "auto", startingVariance = 0.1,
    selectorType = "byPid", noiseLevel = "quiet"))
```

Arguments

outcomeConceptId

The concept ID of the outcome. Persons marked for removal for the outcome

will be removed prior to creating the outcome model.

cohortData An object of type cohortData as generated using getDbCohortData.

subPopulation A data frame specifying the (matched and/or trimmed) subpopulation to be used

in the study, as well as their strata (for conditional models). This data frame should have at least a RowId, and a StratumId when including stratification.

stratifiedCox Specifically for Cox regressions: specify whether to use the strata defined in

subPopulation in the analysis. For Poisson regression and logistic regression,

this is implied in 'clr' and 'cpr'.

riskWindowStart

The start of the risk window (in days) relative to the index data.

riskWindowEnd The end of the risk window (in days) relative to the index data (+ days of expo-

sure if the addExposureDaysToEnd parameter is specified).

 $add {\tt Exposure Days To End}$

Add the length of exposure the risk window?

useCovariates Whether to use the covariate matrix in the cohortData in the outcome model.

fitModel If false, the model will not be fit, and only summary statistics are available.

modelType The type of model to be fitted. See details for options.

prior The prior used to fit the model. See createPrior for details.

control The control object used to control the cross-validation used to determine the

hyperparameters of the prior (if applicable). See createControl for details.

Details

The model type can be one of these:

lr Logistic regression

clr Conditional logistic regression

cox Cox regression (stratified or not, depending on whether stata is specified)

pr Poisson regression

cpr Conditional Poisson regression

Value

An object of class outcomeModel. Generic function summary, coef, and confint are available.

Examples

#todo

getDbCohortData Get the cohort data from the server

Description

This function executes a large set of SQL statements against the database in OMOP CDM format to extract the data needed to perform the analysis.

Usage

```
getDbCohortData(connectionDetails, cdmDatabaseSchema, resultsDatabaseSchema,
  targetDrugConceptId, comparatorDrugConceptId, indicationConceptIds = c(),
 washoutWindow = 183, indicationLookbackWindow = 183,
  studyStartDate = "", studyEndDate = "", exclusionConceptIds = c(),
 outcomeConceptIds, outcomeConditionTypeConceptIds = c(),
 exposureSchema = cdmDatabaseSchema, exposureTable = "drug_era",
 outcomeSchema = cdmDatabaseSchema, outcomeTable = "condition_occurrence",
 useCovariateDemographics = TRUE, useCovariateConditionOccurrence = TRUE,
 useCovariateConditionOccurrence365d = TRUE,
 useCovariateConditionOccurrence30d = TRUE,
 useCovariateConditionOccurrenceInpt180d = TRUE,
 useCovariateConditionEra = FALSE, useCovariateConditionEraEver = FALSE,
 useCovariateConditionEraOverlap = FALSE,
 useCovariateConditionGroup = FALSE, useCovariateDrugExposure = FALSE,
 useCovariateDrugExposure365d = FALSE, useCovariateDrugExposure30d = FALSE,
 useCovariateDrugEra = FALSE, useCovariateDrugEra365d = FALSE,
 useCovariateDrugEra30d = FALSE, useCovariateDrugEra0verlap = FALSE,
 useCovariateDrugEraEver = FALSE, useCovariateDrugGroup = FALSE,
 useCovariateProcedureOccurrence = FALSE,
 useCovariateProcedureOccurrence365d = FALSE,
 useCovariateProcedureOccurrence30d = FALSE,
 useCovariateProcedureGroup = FALSE, useCovariateObservation = FALSE,
 useCovariateObservation365d = FALSE, useCovariateObservation30d = FALSE,
 useCovariateObservationBelow = FALSE,
 useCovariateObservationAbove = FALSE,
 useCovariateObservationCount365d = FALSE,
 useCovariateConceptCounts = FALSE, useCovariateRiskScores = FALSE,
 useCovariateInteractionYear = FALSE, useCovariateInteractionMonth = FALSE,
 excludedCovariateConceptIds = c(), deleteCovariatesSmallCount = 100)
```

Arguments

connectionDetails

An R object of type

 ${\tt connectionDetails}\ created\ using\ the\ function\ create{\tt ConnectionDetails}\ in\ the\ {\tt DatabaseConnector}\ package.$

cdmDatabaseSchema

The name of the database schema that contains the OMOP CDM instance. Requires read permissions to this database. On SQL Server, this should specify both the database and the schema, so for example 'cdm_instance.dbo'.

resultsDatabaseSchema

The name of the database schema that is the location where you want all temporary tables to be managed and all results tables to persist. Requires create/insert permissions to this database. On SQL Server, this should specify both the database and the schema, so for example 'my_results.dbo'.

targetDrugConceptId

A unique identifier to define the target cohort. If exposureTable = DRUG_ERA, targetDrugConceptId is a CONCEPT_ID and all descendant concepts within that CONCEPT_ID will be used to define the cohort. If exposureTable <> DRUG_ERA, targetDrugConceptId is used to select the COHORT_DEFINITION_ID in the cohort-like table.

comparatorDrugConceptId

A unique identifier to define the comparator cohort. If exposureTable = DRUG_ERA, comparatorDrugConceptId is a CONCEPT_ID and all descendant concepts within that CONCEPT_ID will be used to define the cohort. If exposureTable <> DRUG_ERA, comparatorDrugConceptId is used to select the COHORT_DEFINITION_ID in the cohort-like table.

indicationConceptIds

A list of CONCEPT_IDs used to restrict the target and comparator cohorts, based on any descendant condition of this list occurring at least once within the indicationLookbackWindow prior to the cohort index date.

washoutWindow The minimum required continuous observation time prior to index date for a person to be included in the cohort.

indicationLookbackWindow

The window to look back prior to cohort index date to identify records of a indication condition. Only applicable if indicationConceptIds != ".

studyStartDate A calendar date specifying the minimum date that a cohort index date can appear. Date format is 'yyyymmdd'.

studyEndDate A calendar date specifying the maximum date that a cohort index date can appear. Date format is 'yyyymmdd'.

exclusionConceptIds

A list of CONCEPT_IDs used to restrict the cohorts, based on any descendant conditions/drugs/procedures occurring at least once anytime prior to the cohort index date.

outcomeConceptIds

A list of CONCEPT_IDs used to define outcomes. If outcomeTable = CONDITION_OCCURRENCE, the list is a set of ancestor CONCEPT_IDs, and all occurrences of all descendant concepts will be selected. If outcomeTable <> CONDITION_OCCURRENCE, the list contains records found in COHORT_DEFINITION_ID field.

outcomeConditionTypeConceptIds

A list of TYPE_CONCEPT_ID values that will restrict condition occurrences. Only applicable if outcomeTable = CONDITION_OCCURRENCE.

exposureSchema The name of the database schema that is the location where the exposure data used to define the exposure cohorts is available. If exposureTable = DRUG_ERA, exposureSchema is not used by assumed to be cdmSchema. Requires read permissions to this database.

exposureTable The tablename that contains the exposure cohorts. If exposureTable <> DRUG_ERA, then expectation is exposureTable has format of COHORT table: COHORT_DEFINITION_ID, SUBJECT_ID, COHORT_START_DATE, COHORT_END_DATE.

outcomeSchema The name of the database schema that is the location where the data used to define the outcome cohorts is available. If exposureTable = CONDITION_ERA, exposureSchema is not used by assumed to be cdmSchema. Requires read permissions to this database.

outcomeTable The tablename that contains the outcome cohorts. If outcomeTable <> CONDITION_OCCURRENCE, then expectation is outcomeTable has format of COHORT table: COHORT_DEFINITION_ID, SUBJECT_ID, COHORT_START_DATE, COHORT_END_DATE.

useCovariateDemographics

A boolean value (TRUE/FALSE) to determine if demographic covariates (age in 5-yr increments, gender, race, ethnicity, year of index date, month of index date) will be created and included in future models.

useCovariateConditionOccurrence

A boolean value (TRUE/FALSE) to determine if covariates derived from CON-DITION_OCCURRENCE table will be created and included in future models.

useCovariateConditionOccurrence365d

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of condition in 365d window prior to or on cohort index date. Only applicable if useCovariateConditionOccurrence = TRUE.

useCovariateConditionOccurrence30d

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of condition in 30d window prior to or on cohort index date. Only applicable if useCovariateConditionOccurrence = TRUE.

useCovariateConditionOccurrenceInpt180d

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of condition within inpatient type in 180d window prior to or on cohort index date. Only applicable if useCovariateConditionOccurrence = TRUE.

useCovariateConditionEra

A boolean value (TRUE/FALSE) to determine if covariates derived from CON-DITION_ERA table will be created and included in future models.

useCovariateConditionEraEver

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of condition era anytime prior to or on cohort index date. Only applicable if useCovariateConditionEra = TRUE.

use Covariate Condition Era Overlap

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of condition era that overlaps the cohort index date. Only applicable if useCovariateConditionEra = TRUE.

use Covariate Condition Group

A boolean value (TRUE/FALSE) to determine if all CONDITION_OCCURRENCE and CONDITION_ERA covariates should be aggregated or rolled-up to higher-level concepts based on vocabluary classification.

use Covariate Drug Exposure

A boolean value (TRUE/FALSE) to determine if covariates derived from DRUG_EXPOSURE table will be created and included in future models.

useCovariateDrugExposure365d

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of drug in 365d window prior to or on cohort index date. Only applicable if useCovariateDrugExposure = TRUE.

useCovariateDrugExposure30d

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of drug in 30d window prior to or on cohort index date. Only applicable if useCovariateDrugExposure = TRUE.

useCovariateDrugEra

A boolean value (TRUE/FALSE) to determine if covariates derived from DRUG_ERA table will be created and included in future models.

useCovariateDrugEra365d

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of drug era in 365d window prior to or on cohort index date. Only applicable if useCovariateDrugEra = TRUE.

useCovariateDrugEra30d

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of drug era in 30d window prior to or on cohort index date. Only applicable if useCovariateDrugEra = TRUE.

useCovariateDrugEraOverlap

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of drug era that overlaps the cohort index date. Only applicable if useCovariateDrugEra = TRUE.

useCovariateDrugEraEver

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of drug era anytime prior to or on cohort index date. Only applicable if useCovariateDrugEra = TRUE.

useCovariateDrugGroup

A boolean value (TRUE/FALSE) to determine if all DRUG_EXPOSURE and DRUG_ERA covariates should be aggregated or rolled-up to higher-level concepts of drug classes based on vocabluary classification.

useCovariateProcedureOccurrence

A boolean value (TRUE/FALSE) to determine if covariates derived from PRO-CEDURE_OCCURRENCE table will be created and included in future models.

useCovariateProcedureOccurrence365d

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of procedure in 365d window prior to or on cohort index date. Only applicable if useCovariateProcedureOccurrence = TRUE.

useCovariateProcedureOccurrence30d

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of procedure in 30d window prior to or on cohort index date. Only applicable if useCovariateProcedureOccurrence = TRUE.

useCovariateProcedureGroup

A boolean value (TRUE/FALSE) to determine if all PROCEDURE_OCCURRENCE covariates should be aggregated or rolled-up to higher-level concepts based on vocabluary classification.

use Covariate Observation

A boolean value (TRUE/FALSE) to determine if covariates derived from OB-SERVATION table will be created and included in future models.

useCovariateObservation365d

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of observation in 365d window prior to or on cohort index date. Only applicable if useCovariateObservation = TRUE.

useCovariateObservation30d

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of observation in 30d window

prior to or on cohort index date. Only applicable if useCovariateObservation = TRUE.

useCovariateObservationBelow

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of observation with a numeric value below normal range for latest value within 180d of cohort index. Only applicable if useCovariateObservation = TRUE.

useCovariateObservationAbove

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for presence/absence of observation with a numeric value above normal range for latest value within 180d of cohort index. Only applicable if useCovariateObservation = TRUE.

useCovariateObservationCount365d

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that look for the count of each observation concept in 365d window prior to or on cohort index date. Only applicable if useCovariateObservation = TRUE.

useCovariateConceptCounts

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that count the number of concepts that a person has within each domain (CONDITION, DRUG, PROCEDURE, OBSERVATION)

useCovariateRiskScores

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that calculate various Risk Scores, including Charlson, DCSI.

useCovariateInteractionYear

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that represent interaction terms between all other covariates and the year of the cohort index date.

useCovariateInteractionMonth

A boolean value (TRUE/FALSE) to determine if covariates will be created and used in models that represent interaction terms between all other covariates and the month of the cohort index date.

excludedCovariateConceptIds

A list of Covariate Ids that should be removed from the COVARIATE table prior to fitting any model (either propensity score model or outcome model). Generally required if any covariates perfectly predict exposure status (e.g. the target drug itself).

${\tt deleteCovariatesSmallCount}$

A numeric value used to remove covariates that occur in both cohorts fewer than deleteCovariateSmallCounts time.

Details

Based on the parameters, the treatment and comparator cohorts are constructed. Baseline covariates at or before the index date are extracted, as well as outcomes occurring on or after the index date. The treatment and comparator cohorts can be identified using the drug_era table, or through user-defined cohorts in a cohort table either inside the CDM instance or in a separate schema. Similarly, outcomes are identified using the condition_occurrence or condition_era table, or through user-defined cohorts in a cohort table either inside the CDM instance or in a separate schema. Covariates are automatically extracted from the appropriate tables within the CDM.

getOutcomeModel 13

Value

Returns an object of type cohortData, containing information on the cohorts, their outcomes, and baseline covariates. Information about multiple outcomes can be captured at once for efficiency reasons. This object is a list with the following components:

outcomes An ffdf object listing the outcomes per person, including the time to event, and the outcome conncept ID. Outcomes are not yet filtered based on risk window, since this is done at a later stage.

cohorts An ffdf object listing the persons in each cohort, listing their exposure status as well as the time to the end of the observation period and time to the end of the cohort (usually the end of the exposure era).

covariates An ffdf object listing the baseline covariates per person in the two cohorts. This is done using a sparse representation: covariates with a value of 0 are omitted to save space.

exclude An ffdf object listing for each outcome concept ID the persons that need to be excluded from the analysis because of prior outcomes.

covariateRef An ffdf object describing the covariates that have been extracted.

metaData A list of objects with information on how the cohortData object was constructed.

The generic summary() function has been implemented for this object.

getOutcomeModel Get the outcome model

Description

getFullOutcomeModel shows the full outcome model, so showing the betas of all variables included in the outcome model, not just the treatment variable.

Usage

getOutcomeModel(outcomeModel, cohortData)

Arguments

outcomeModel An object of type outcomeModel as generated using he createOutcomeMode

function.

cohortData An object of type cohortData as generated using getDbCohortData.

Details

Shows the coefficients and names of the covariates with non-zero coefficients.

Examples

#todo

14 loadCohortData

getPsModel

Get the propensity model

Description

getPsModel shows the propensity score model

Usage

```
getPsModel(propensityScore, cohortData)
```

Arguments

propensityScore

The propensity scores as generated using the createPs function.

cohortData

An object of type cohortData as generated using getDbCohortData.

Details

Shows the coefficients and names of the covariates with non-zero coefficients.

Examples

#todo

loadCohortData

Load the cohort data from a folder

Description

loadCohortData loads an object of type cohortData from a folder in the file system.

Usage

```
loadCohortData(file, readOnly = FALSE)
```

Arguments

file The name of the folder containing the data.

readOnly If true, the data is opened read only.

Details

The data will be written to a set of files in the folder specified by the user.

Value

An object of class cohortData.

Examples

#todo

matchOnPs 15

matchOnPs	Match persons by propensity score	
-----------	-----------------------------------	--

Description

matchOnPs uses the provided propensity scores to match treated to comparator persons.

Usage

```
matchOnPs(data, caliper = 0.25, caliperScale = "standardized",
   maxRatio = 1, stratificationColumns = c())
```

Arguments

data A data frame with the three columns described below.

caliper The caliper for matching. A caliper is the distance which is acceptable for any

match. Observations which are outside of the caliper are dropped. A caliper of

0 means no caliper is used.

caliperScale The scale on which the caliper is defined. Two scales are supported:

caliperScale = "propensity score" or caliperScale = "standardized". On the standardized scale, the caliper is interpreted in standard deviations of the

propensity score distribution.

maxRatio The maximum number of persons int the comparator arm to be matched to each

person in the treatment arm. A maxRatio of 0 means no maximum: all com-

parators will be assigned to a treated person.

 ${\it stratification Columns}$

Names or numbers of one or more columns in the data data.frame on which subjects should be stratified prior to matching. No persons will be matched with persons outside of the strata identified by the values in these columns.

Details

The data frame should have at least the following three columns:

rowId (integer) A unique identifier for each row (e.g. the person ID)

treatment (integer) Column indicating whether the person is in the treated (1) or comparator

(0) group

propensityScore (real) Propensity score

This function implements the greedy variable-ratio matching algorithm described in Rassen et al (2012).

Value

Returns a date frame with the same columns as the input data plus one extra column: stratumId. Any rows that could not be matched are removed

References

Rassen JA, Shelat AA, Myers J, Glynn RJ, Rothman KJ, Schneeweiss S. (2012) One-to-many propensity score matching in cohort studies, Pharmacoepidemiology and Drug Safety, May, 21 Suppl 2:69-80.

Examples

matchOnPsAndCovariates

Match by propensity score as well as other covariates

Description

matchOnPsAndCovariates uses the provided propensity scores and a set of covariates to match treated to comparator persons.

Usage

```
matchOnPsAndCovariates(data, caliper = 0.25, caliperScale = "standardized",
    maxRatio = 1, cohortData, covariateIds)
```

Arguments

data	A data frame with the three columns described below.
caliper	The caliper for matching. A caliper is the distance which is acceptable for any match. Observations which are outside of the caliper are dropped. A caliper of 0 means no caliper is used.
caliperScale	The scale on which the caliper is defined. Two scales are supported: caliperScale = "propensity score" or caliperScale = "standardized". On the standardized scale, the caliper is interpreted in standard deviations of the propensity score distribution.
maxRatio	The maximum number of persons int the comparator arm to be matched to each person in the treatment arm. A maxRatio of 0 means no maximum: all comparators will be assigned to a treated person.
cohortData	An object of type cohortData as generated using getDbCohortData.
covariateIds	One or more covariate IDs in the cohortData object on which subjects should be also matched.

Details

The data frame should have at least the following three columns:

rowId (integer) A unique identifier for each row (e.g. the person ID)

treatment (integer) Column indicating whether the person is in the treated (1) or comparator

(0) group

propensityScore (real) Propensity score

This function implements the greedy variable-ratio matching algorithm described in Rassen et al (2012).

Value

Returns a date frame with the same columns as the input data plus one extra column: stratumId. Any rows that could not be matched are removed

References

Rassen JA, Shelat AA, Myers J, Glynn RJ, Rothman KJ, Schneeweiss S. (2012) One-to-many propensity score matching in cohort studies, Pharmacoepidemiology and Drug Safety, May, 21 Suppl 2:69-80.

Examples

#todo

plotCovariateBalanceOfTopVariables

Plot variables with largest imbalance

Description

Create a plot showing those variables having the largest imbalance before matching, and those variables having the largest imbalance after matching. Requires running computeCovariateBalance first

Usage

```
plotCovariateBalanceOfTopVariables(balance, n = 20, maxNameWidth = 100,
    fileName = NULL)
```

Arguments

balance A data frame created by the compute Covariate Balance function.

n Count of variates to plot.

maxNameWidth Covariate names longer than this number of characters are truncated to create a

nicer plot.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

18 plotKaplanMeier

Value

A ggplot object. Use the ggsave function to save to file in a different format.

```
\verb|plotCovariateBalanceScatterPlot|
```

Create a scatterplot of the covariate balance

Description

Create a scatterplot of the covariate balance, showing all variables with balance before and after matching on the x and y axis respectively. Requires running computeCovariateBalance first.

Usage

```
plotCovariateBalanceScatterPlot(balance, fileName = NULL)
```

Arguments

balance A data frame created by the computeCovariateBalance funcion.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Value

A ggplot object. Use the ggsave function to save to file in a different format.

plotKaplanMeier

Plot the Kaplan-Meier curve

Description

plotKaplanMeier creates the Kaplain-Meier survival plot

Usage

```
plotKaplanMeier(outcomeModel, censorMarks = FALSE,
  confidenceIntervals = TRUE, includeZero = TRUE, dataCutoff = 0.99,
  treatmentLabel = "Treated", comparatorLabel = "Comparator",
  fileName = NULL)
```

plotPs 19

Arguments

outcomeModel An object of type outcomeModel as generated using he fitOutcomeModel func-

tion.

censorMarks Whether or not to include censor marks in the plot.

confidenceIntervals

Plot 95 percent confidence intervals?

includeZero Should the y axis include zero, or only go down to the lowest observed survival?

dataCutoff Fraction of the data (number censored) after which the graph will not be shown.

treatmentLabel A label to us for the treated cohort.

comparatorLabel

A label to us for the comparator cohort.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Value

A ggplot object. Use the ggsave function to save to file in a different format.

Examples

#todo

plotPs

Plot the propensity score distribution

Description

plotPs shows the propensity (or preference) score distribution

Usage

```
plotPs(data, unfilteredData = NULL, scale = "preference",
  type = "density", binWidth = 0.05, fileName = NULL)
```

Arguments

data A data frame with at least the two columns described below

unfilteredData To be used when computing preference scores on data from which subjects have

already been removed, e.g. through trimming and/or matching. This data frame

should have the same structure as data.

scale The scale of the graph. Two scales are supported: scale = "propensity" or

scale = "preference". The preference score scale is defined by Walker et al

(2013).

type Type of plot. Two possible values: type = "density" or type = "histogram"

binWidth For histograms, the width of the bins

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

20 plotPs

Details

The data frame should have a least the following two columns:

saveCohortData 21

(0) group

propensityScore (real) Propensity score

Value

A ggplot object. Use the ggsave function to save to file in a different format.

References

Walker AM, Patrick AR, Lauer MS, Hornbrook MC, Marin MG, Platt R, Roger VL, Stang P, and Schneeweiss S. (2013) A tool for assessing the feasibility of comparative effectiveness research, Comparative Effective Research, 3, 11-20

Examples

```
treatment = rep(0:1, each = 100)
propensityScore = c(rnorm(100,mean=0.4, sd=0.25),rnorm(100,mean=0.6, sd=0.25))
data <- data.frame(treatment = treatment, propensityScore = propensityScore)
data <- data[data$propensityScore > 0 & data$propensityScore < 1,]
plotPs(data)</pre>
```

saveCohortData

Save the cohort data to folder

Description

saveCohortData saves an object of type cohortData to folder.

Usage

```
saveCohortData(cohortData, file)
```

Arguments

cohortData An object of type cohortData as generated using getDbCohortData.

file The name of the folder where the data will be written. The folder should not yet

exist.

Details

The data will be written to a set of files in the folder specified by the user.

Examples

#todo

22 stratifyByPs

simulateCohortData

Generate simulated data

Description

simulateCohortData creates a cohortData object with simulated data.

Usage

simulateCohortData(cohortDataSimulationProfile, n = 10000)

Arguments

 $cohort {\tt DataSimulationProfile}$

An object of type cohortDataSimulationProfile as generated using the createCohortDataSimulationProfile function.

n

The size of the population to be generated.

Details

This function generates simulated data that is in many ways similar to the original data on which the simulation profile is based. The contains same outcome, comparator, and outcome concept IDs, and the covariates and their 1st order statistics should be comparable.

Value

An object of type cohortData.

stratifyByPs

Stratify persons by propensity score

Description

stratifyByPs uses the provided propensity scores to stratify persons. Additional stratification variables for stratifications can also be used.

Usage

```
stratifyByPs(data, numberOfStrata = 5, stratificationColumns = c())
```

Arguments

data

A data frame with the three columns described below

numberOfStrata How many strata? The boundaries of the strata are automatically defined to contain equal numbers of treated persons.

stratificationColumns

Names of one or more columns in the data data.frame on which subjects should also be stratified in addition to stratification on propensity score.

Details

The data frame should have the following three columns:

rowId (integer) A unique identifier for each row (e.g. the person ID)

treatment (integer) Column indicating whether the person is in the treated (1) or comparator

(0) group

propensityScore (real) Propensity score

Value

Returns a date frame with the same columns as the input data plus one extra column: stratumId.

Examples

```
rowId = 1:200
treatment = rep(0:1, each = 100)
propensityScore = c(runif(100,min=0,max=1),runif(100,min=0,max=1))
data <- data.frame(rowId = rowId, treatment = treatment, propensityScore = propensityScore)
result <- stratifyByPs(data,5)</pre>
```

stratifyByPsAndCovariates

Stratify persons by propensity score and other covariates

Description

 ${\sf stratifyByPsAndCovariates}$ uses the provided propensity scores and covariates to stratify persons.

Usage

```
stratifyByPsAndCovariates(data, numberOfStrata = 5, cohortData, covariateIds)
```

Arguments

data A data frame with the three columns described below

numberOfStrata Into how many strata should the propensity score be divided? The boundaries of

the strata are automatically defined to contain equal numbers of treated persons.

cohortData An object of type cohortData as generated using getDbCohortData.

covariateIds One or more covariate IDs in the cohortData object on which subjects should

also be stratified.

Details

The data frame should have the following three columns:

rowId (integer) A unique identifier for each row (e.g. the person ID)

treatment (integer) Column indicating whether the person is in the treated (1) or comparator

(0) group

propensityScore (real) Propensity score

24 trimByPs

Value

Returns a date frame with the same columns as the input data plus one extra column: stratumId.

Examples

#todo

trimByPs

Trim persons by propensity score

Description

trimByPs uses the provided propensity scores to trim subjects with extreme scores.

Usage

```
trimByPs(data, trimFraction = 0.05)
```

Arguments

data A data frame with the three columns described below

trimFraction This fraction will be removed from each treatment group. In the treatment group,

persons with the highest propensity scores will be removed, in the comparator

group person with the lowest scores will be removed.

Details

The data frame should have the following three columns:

rowId (integer) A unique identifier for each row (e.g. the person ID)

treatment (integer) Column indicating whether the person is in the treated (1) or comparator

(0) group

propensityScore (real) Propensity score

Value

Returns a date frame with the same three columns as the input.

Examples

```
rowId = 1:2000
treatment = rep(0:1, each = 1000)
propensityScore = c(runif(1000, min = 0, max = 1), runif(1000, min = 0, max = 1))
data <- data.frame(rowId = rowId, treatment = treatment, propensityScore = propensityScore)
result <- trimByPs(data, 0.05)</pre>
```

vignetteBalance 25

trimByPsToEquipoise	Keep only persons in	clinical equipoise
---------------------	----------------------	--------------------

Description

trimByPsToEquipoise uses the preference score to trim subjects that are not in clinical equipoise

Usage

```
trimByPsToEquipoise(data, bounds = c(0.25, 0.75))
```

Arguments

data A data frame with at least the three columns described below

bounds The upper and lower bound on the preference score for keeping persons

Details

The data frame should have the following three columns:

rowId (integer) A unique identifier for each row (e.g. the person ID)

treatment (integer) Column indicating whether the person is in the treated (1) or comparator

(0) group

propensityScore (real) Propensity score

Value

Returns a date frame with the same three columns as the input.

References

Walker AM, Patrick AR, Lauer MS, Hornbrook MC, Marin MG, Platt R, Roger VL, Stang P, and Schneeweiss S. (2013) A tool for assessing the feasibility of comparative effectiveness research, Comparative Effective Research, 3, 11-20

Examples

```
rowId = 1:2000
treatment = rep(0:1, each = 1000)
propensityScore = c(runif(1000,min=0,max=1),runif(1000,min=0,max=1))
data <- data.frame(rowId = rowId, treatment = treatment, propensityScore = propensityScore)
result <- trimByPsToEquipoise(data)</pre>
```

vignetteBalance Balance data for the vignette

Description

Balance data for the vignette

26 vignettePs

Usage

```
data(vignetteBalance)
```

 $\verb|vignetteOutcomeModel1|| Outcome\ data\ for\ the\ vignette$

Description

Outcome data for the vignette

Usage

```
data(vignetteOutcomeModel1)
```

vignetteOutcomeModel2 Outcome data for the vignette

Description

Outcome data for the vignette

Usage

data(vignetteOutcomeModel2)

 ${\tt vignetteOutcomeModel3} \ \ \textit{Outcome data for the vignette}$

Description

Outcome data for the vignette

Usage

data(vignetteOutcomeModel3)

vignettePs

Propensity scores for the vignette

Description

Propensity scores for the vignette

Usage

data(vignettePs)

Index

```
*Topic datasets
    cohortDataSimulationProfile, 2
    vignetteBalance, 25
    vignetteOutcomeModel1, 26
    vignetteOutcomeModel2, 26
    vignetteOutcomeModel3, 26
    vignettePs, 26
cohortDataSimulationProfile, 2
CohortMethod, 3
CohortMethod-package (CohortMethod), 3
computeCovariateBalance, 3
computePsAuc, 3
{\tt createCohortDataSimulationProfile, 4}
createControl, 5, 7
createPrior, 5, 7
createPs, 5
drawAttritionDiagram, 6
fitOutcomeModel, 6
getDbCohortData, 7
getOutcomeModel, 13
getPsModel, 14
ggsave, 6, 18, 19, 21
loadCohortData, 14
matchOnPs, 15
matchOnPsAndCovariates, 16
plotCovariateBalanceOfTopVariables, 17
plotCovariateBalanceScatterPlot, 18
plotKaplanMeier, 18
plotPs, 19
saveCohortData, 21
simulateCohortData, 22
stratifyByPs, 22
{\it stratify} By Ps And Covariates, {\it 23}
trimByPs, 24
trimByPsToEquipoise, 25
vignetteBalance, 25
```

vignetteOutcomeModel1, 26 vignetteOutcomeModel2, 26 vignetteOutcomeModel3, 26 vignettePs, 26