Singular Value Decomposition Proof: Operator Norm is the Largest Singular Value

©Barry Van Veen 2019

A matrix A may be viewed as an "operator" that acts on a vector x to produce a new vector y = Ax as shown below.

The operator or two norm of a matrix measures the largest possible amplification a given matrix \boldsymbol{A} applies to any vector \boldsymbol{x} . That is, the operator norm is the maximum of the ratio $||\boldsymbol{y}||_2/||\boldsymbol{x}||_2$. This is written formally as

$$||m{A}||_2 = ||m{A}||_{op} = \max_{m{x}
eq m{0}} rac{||m{A}m{x}||_2}{||m{x}||_2}$$

We use the fact that $||c\mathbf{x}||_2 = c||\mathbf{x}||_2$ to rewrite the operator norm in the more convenient form

$$||m{A}||_2 = ||m{A}||_{op} = \max_{||m{x}||_2 = 1} ||m{A}m{x}||_2$$

Theorem: $||\mathbf{A}||_{op} = \sigma_1$ where σ_1 is the largest singular value of the matrix \mathbf{A} .

Proof: Substitute the singular value decomposition for $A = U\Sigma V^T$ where U and V are square matrices (the non-economy or non-skinny SVD) to write

$$||m{A}||_2 = ||m{A}||_{op} = \max_{||m{x}||_2 = 1} ||m{U}m{\Sigma}m{V}^Tm{x}||_2$$

Now let $z = V^T x$ and note that $||z||_2^2 = x^T V V^T x = x^T x = ||x||_2^2$ because the right singular vectors in V are orthonormal. That is, $VV^T = V^T V = I$. Hence we may write

$$||oldsymbol{A}||_2 = ||oldsymbol{A}||_{op} = \max_{||oldsymbol{z}||_2 = 1} ||oldsymbol{U}oldsymbol{\Sigma}oldsymbol{z}||_2$$

We may use the properties of the left singular vectors in U to eliminate the dependence on U. We have $||U\Sigma z||_2^2 = z^T \Sigma^T U^T U \Sigma z = z^T \Sigma^T \Sigma z = ||\Sigma z||_2^2$ since the left singular vectors are also orthonormal, that is, $U^T U = I$. This results in

$$||m{A}||_2^2 = ||m{A}||_{op}^2 = \max_{||m{z}||_2 = 1} ||m{\Sigma}m{z}||_2^2$$

Let A have rank p so there are p nonzero singular values in the diagonal matrix Σ . We thus may write

$$||oldsymbol{\Sigma} oldsymbol{z}||_2^2 = \sum_{i=1}^p \sigma_i^2 z_i^2$$

where σ_i are the singular values and z_i is the i^{th} element of z. We may rewrite the squared norm as

$$||\boldsymbol{A}||_{2}^{2} = ||\boldsymbol{A}||_{op}^{2} = \max_{z_{1}^{2} + z_{2}^{2} + \dots + z_{M}^{2} = 1} \sum_{i=1}^{p} \sigma_{i}^{2} z_{i}^{2}$$

The unit norm constraint on z implies that an increase in the magnitude of any one element z_k must be offset by a decrease in the magnitudes of the other elements of z. Clearly we should set $z_{p+1} = \cdots = z_M = 0$ since these elements do not contribute to the cost function. Since $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p > 0$, the best element to allocate the unit energy in z is z_1 . To see this, consider the case where p = M = 2 and $\sigma_1 > \sigma_2$. In this case we require $z_2^2 = 1 - z_1^2$ and

$$\sum_{i=1}^{p} \sigma_i^2 z_i^2 = \sigma_1^2 z_1^2 + \sigma_2^2 (1 - z_1^2) = z_1^2 (\sigma_1^2 - \sigma_2^2) + \sigma_2^2$$

Since $\sigma_1^2 - \sigma_2^2 > 0$, this quantity is maximized by choosing z_1^2 to be as large or possible, that is, $z_1^2 = 1$. Any energy allocated to z_2 is multiplied by σ_2^2 , which results in a lower value than had that same energy been allocated to z_1 because $\sigma_1 > \sigma_2$. A similar argument applies to the case p > 2. The strategy that maximizes $\sum_{i=1}^p \sigma_i^2 z_i^2$ allocates all of the unit energy in z to z_1 , since σ_1 is the largest singular value.

Thus, we've shown that

$$||m{A}||_2 = ||m{A}||_{op} = \max_{||m{x}||_2 = 1} ||m{A}m{x}||_2 = \sigma_1$$

and this maximum value is obtained when $x = Vz = v_1$ where v_1 is the right singular vector corresponding to the largest singular value.