

igus Motion Editor (IME) quick start

Benötigte Komponenten

- robolink® Gelenkarm mit Antriebseinheit NEMA 17 oder 23 inkl. Winkelsensorik
- Motorkabel igus CF.INI-P5-M12-BW-3 (bei Litzenmotoren nicht erforderlich)
- Software/Treiber-Paket www.igus.de/robolink (gratis unter www.igus.de/robolink/software)

Lieferumfang igus®

- Nanotec SMCI47-S2 (RS485) Steuerung (1 pro Achse)*
- NanoJEasy 1.04 (gratis download bei www.nanotec.de)*
- Crumb2560 AVR ATmega Modul und Programmer (www.chip45.com)
- Spannungsversorgung 24V oder 48V für Steuerungen, Motoren / 5V für Crumb2560
- Verbindungskabel für RS485 Netzwerk Steuerung
- PC oder Laptop mit WinXP/7

Aufbau Schema

Sechs Schritte zum Start

- 1. Aufbau realisieren,
- 2. Bootloader und Firmware auf das Crumb2560-Modul übertragen,
- 3. Motoradressen der Steuerungen einstellen,
- 4. Silicon Labs CP210x Treiber installieren,
- 5. Java-Programm auf die SMCI47-S Steuerungen laden,
- 6. Kalibrierungsdatei robot.ini konfigurieren (Informationen im IME-Handbuch).

Hinweise

- Der Hall-Sensor wird an den Analog-In der Steuerung angeschlossen,
- Das Java-Programm NanoJMotorControl muss für das System angepasst werden (individuell je nach System, wir geben Hilfestellung)

Anschluss Crumb2560 AVR ATmega Modul

RS485	
Pin	Funktion
1	NC
3	Rx+
3	NC
4	Tx+
5	NC
6	NC
7	Rx-
8	GND
9	Tx-

Kalibrierungsdatei "robot.ini" *

[Joint0]
name=X1
type=X
address=1
lower_limit=-1.0
upper_limit=1.0
offset=0.0
encoder_steps_per_turn=6400
motor_steps_per_turn=6400
invert=1
length=0.10
joystick_axis=0
joystick_invert=1

- # Angezeigter Name
- # X=Schwenkgelenk / Z=Drehgelenk
- # Steuerungsadresse
- # Unterer Winkel in Radiant ($-\pi$ bis π)
- # Oberer Winkel in Radiant ($-\pi$ bis π)
- # Korrektur in Radiant ($-\pi$ bis π)
- # Schritte Encoder einer Umdrehung (400*i)
- # Schritte Motor einer Umdrehung (400*i)
- # Animierte Achse invertieren (0 / 1)
- # Animierte Achse Länge in m
- # Achse auf Joystick/Gamepad (0=Aus / 1-4 = Zuweisung)
- # Achse auf Joystick/Gamepad invertieren (0 / 1)

Max. 8 Achsen konfigurierbar!

Bedienoberfläche*

A: Keyframe Editor

Im Keyframe Editor werden die Winkel der Gelenke eingestellt und als Keyframe in der Sandbox gespeichert.

B: Konfiguration

In der Konfiguration werden Bewegungs- und Einrichtgeschwindigkeit eingestellt. Außerdem können hier die Motoren für manuelle Bewegungen deaktiviert werden.

C: Keyframe Grabber

Aufnahme-Funktion: Die (manuelle) Bewegung des Arms wird als Keyframes in der Sandbox gespeichert.

D: Status Message Area

Anzeige vom aktuellen Status und Fehlermeldungen

E: File Manager

Im File Manager können programmierte Sequenzen gespeichert sowie geladen werden.

F: Motion Sequence

In diesem Bereich wird die Bewegung des Gelenkarms programmiert. Die Keyframes werden per Drag & Drop aus der Sandbox in die Motion Sequence kopiert und erzeugen in ihrer Reihenfolge die Bewegung des Arms (max. 128 Keyframes).

G: Sandbox

Speicherort für Keyframes

^{*}Ausführliche Beschreibung im IME User Guide