Tema 06: Análisis espectral de señales: Serie de Fourier

Análisis de señales

Marco Teran

Docente

Escuela de Ciencias exactas e Ingeniería

Outline

- Introducción
- Series de Fourier
- 3 Serie exponencial de Fourier para señales de tiempo continuo
- 4 Serie exponencial de Fourier para señales de tiempo discreto
- 5 Serie trigonométrica de Fourier
- 6 Convergencia de la serie de Fourier de tiempo discreto
- 7 Propiedades de la serie de Fourier

Formula de Euler

$$e^{ix} = \cos x + i\sin x$$
$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos y + i\sin y)$$

Figure 1: Formula de Euler

Si s solo tiene parte imaginaria, $s = i\omega$:

Tiempo continuo:

$$x(t) = Ae^{i\omega t} = A\left(\cos(\omega t) + i\sin(\omega t)\right)$$

Tiempo discreto:

$$x[n] = Ae^{i\Omega n} = A\left(\cos(\Omega n) + i\sin(\Omega n)\right)$$

- Dentro de sus propiedades se encuentra la periodicidad, cuyo periodo fundamental
 - $\begin{tabular}{ll} \hline & {\bf Tiempo continuo:} \ T = {\bf T}\{x(t)\} = \frac{2\pi}{\omega} \\ & {\bf Tiempo discreto:} \ N = {\bf T}\{x[n])\} = \frac{2\pi}{\Omega} \\ \hline \end{tabular}$

Señales sinusoidales de tiempo continuo

Figure 2: Parámetros de una señal sinusoidal de tiempo continuo

$$x(t) = A\cos(\omega t + \phi_0),$$
 donde,
$$A - \text{amplitud real de la señal;}$$

$$\omega = \frac{2\pi}{T} - \text{frecuencia angular } [rad/s];$$

$$T = \frac{1}{f} - \text{periodo fundamental } [s],$$

$$\text{frecuencia } f [Hz];$$

$$\phi_0 - \text{fase inicial } [rad],$$

$$\text{entre } 0 \neq 2\pi. \ \phi_0 \in \mathbb{R}.$$

Introducción

Es posible descomponer cualquier señal en elementos sinusoidales, y el análisis de Fourier muestra como hacerlo.

Análisis:

- Del dominio del tiempo al dominio de la frecuencia
- Encontrar la contribución de cada frecuencia distinta
- Encontrar propiedades ocultas de la señal

Síntesis

- Del dominio de la frecuencia al dominio del tiempo
- Crear señales a partir del conocimiento de la frecuencia
- Fijar señales en regiones especificas de frecuencia

Historia

Según el físico matemático francés *Jean-Baptiste Joseph Fourier* (Auxerre, Francia, 21 de marzo de 1768 - París, 16 de mayo de 1830) cualquier señal, sin importar su complejidad, se puede generar a partir de la suma de armónicos, cuyas frecuencias son múltiplos enteros de una frecuencia fundamental (ligada a un periodo fundamental), con distintas fases y amplitudes.

Figure 3: Retrato de Jean-Baptiste Joseph Fourier realizado por el pintor y dibujante francés Louis Léopold Boilly

Bases matemáticas

- El *análisis de Fourier* se puede representar mediante un **cambio de base**.
- Un cambio de base es un cambio de perspectiva para el análisis.
- Si las bases a las cuales se realizará el cambio son bien escogidas, esta nueva base revelará características hasta ahora desconocidas de la señal.
- $lue{}$ Señal continua **periódica** con periodo T y secuencia discreta **periódica** con periodo N.

Series de Fourier para señales periódicas

- Especial para el análisis de señales y sistemas.
- Muchas similitudes entre la serie de Fourier de tiempo continuo y la serie de tiempo discreto.

Fourier serie

Una señal periódica, de periodo T/N (dependiendo del caso), se puede representar mediante la Serie de Fourier (FS, ing. Fourier Series) y consta de la suma de funciones armónicamente relacionadas.

Series de Fourier para señales periódicas: caso continuo

Tiempo continuo:

Funciones armónicamente relacionadas:

$$s_k(t) = e^{j\frac{2\pi}{T}kt} = e^{j\omega_k t}, \text{ donde } k \in \mathbb{Z}.$$
 (1)

Donde
$$\omega_k = \frac{2\pi}{T}k$$
.

 Cada uno de estos exponenciales complejos, relacionados a T, como productos enteros del inverso de este, se denominan armónicos.

Series de Fourier para señales periódicas: caso discreto

Tiempo discreto:

Funciones armónicamente relacionadas:

$$s_k[n] = e^{j\frac{2\pi}{N}kn} = e^{j\Omega kn} = e^{j\Omega_k n}, \text{ donde } k = 0, 1, 2, 3, \dots, N-1. \tag{2}$$

Donde
$$\Omega_k = \frac{2\pi}{N}k$$
.

- Cada uno de estos exponenciales complejos, relacionados a N, como productos enteros del inverso de este, se denominan armónicos.
- $\mathbf{s}_k[n]$ es periódica de periodo N, $s_k[n] = s_k[n+N]$.

Serie exponencial de Fourier para señales de tiempo continuo

Ecuación de síntesis

$$x(t) = \sum_{k = -\infty}^{\infty} c_k e^{j\omega_k t} \tag{3}$$

Ecuación de análisis

$$c_k = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-j\omega_k t} \, \mathrm{d}t \tag{4}$$

donde, $\omega_k=\omega k=\frac{2\pi}{T}k$ — k-ésimo armónico. ω — frecuencia fundamental de la señal periódica.

Series exponencial de Fourier para señales de tiempo discreto

Ecuación de síntesis

$$x[n] = \sum_{k=\langle N \rangle} c_k e^{j\Omega kn} = \sum_{k=0}^{N-1} c_k e^{j\frac{2\pi}{N}kn}$$
 (5)

Ecuación de análisis

$$c_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j\Omega kn} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$
 (6)

donde, $\Omega_k=\Omega k=\frac{2\pi}{N}k$ — k-ésimo armónico. Ω — frecuencia fundamental de la secuencia periódica.

Características de la Serie exponencial de Fourier

- Los coeficientes de de la serie exponencial de Fourier $c_k=c[k]$ proporcionan una descripción de x[n]/x(t) en el dominio de la frecuencia.
- ullet c_k , de naturaleza compleja, representa la *amplitud* y la *fase* asociada a cada uno de los armónicos, componentes de frecuencia.
- lacksquare Como $s_k[n]$ es periódica, también lo es c_k y su periodo es N, $c_k=c_{k+N}$.
- lacktriangle El espectro de una sea una señal periódica x[n], de periodo N, es una secuencia periódica de periodo N.

Coeficiente especial: cuando k=0 obtenemos el valor promedio de la señal x[n]/x(t)

$$c_0 = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] \tag{7}$$

$$c_0 = \frac{1}{T} \int_{\langle T \rangle} x(t) \, \mathrm{d}t \tag{8}$$

Ejemplo

Considera la siguiente señal periódica con periodo N=10. Calcule el espectro de la señal en función de c_k .

$$x[n] = \begin{cases} 1, & \text{para } 0 \le n \le 4 \\ 0, & \text{para } 5 \le n \le 9. \end{cases}$$

Ejemplo

Considera la siguiente señal periódica con periodo T=4. Calcule el espectro de la señal en función de c_k . Encuentre c_1 y c_2 .

$$x(t) = t$$
, para $-2 \le t < 2$

Serie trigonométrica de Fourier para señales de tiempo continuo

Ecuación de síntesis

$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(\omega_k t) + b_k \sin(\omega_k t)$$
 (9)

Ecuaciones de análisis

$$a_k = \frac{2}{T} \int_{\langle T \rangle} x(t) \cos(\omega_k t) dt$$
 (10)

$$b_k = \frac{2}{T} \int_{\langle T \rangle} x(t) \sin(\omega_k t) dt$$
 (11)

$$a_0 = \frac{2}{T} \int_{\langle T \rangle} x(t) \, \mathrm{d}t \tag{12}$$

Convergencia de la serie de Fourier

■ ¿Que es la convergencia de una serie (sumatoria)?

Convergencia de la serie de Fourier

Si la serie de Fourier es finita, entonces no existen problemas de convergencia.

Se asume que x(t) es periódica con periodo T.

$$x(t) \xrightarrow{FS} c_k = c[k] \tag{13}$$

Linealidad

$$\begin{array}{ccc}
x(t) & \xrightarrow{FS} & a_k \\
y(t) & \xrightarrow{FS} & b_k
\end{array} \tag{14}$$

$$y(t) \stackrel{FS}{\longrightarrow} b_k \tag{15}$$

entonces.

$$\alpha x(t) + \beta y(t) \xrightarrow{FS} \alpha a_k + \beta b_k$$
 (16)

Desplazamiento en el tiempo

$$x(t) \xrightarrow{FS} c_k = c[k] \tag{17}$$

entonces

$$x(t-\tau) \xrightarrow{FS} c_k e^{-j\omega_k \tau}, \ \tau \in \mathbb{R}$$
 (18)

Inversión temporal

$$x(t) \stackrel{FS}{\longrightarrow} c_k \tag{19}$$

$$x(-t) \xrightarrow{FS} c_{-k}$$
 (20)

Multiplicación

$$x(t) \stackrel{FS}{\longrightarrow} a_k$$
 (21)

$$y(t) \xrightarrow{FS} b_k$$
 (22)

entonces

$$x(t)y(t) \xrightarrow{FS} \sum_{p=-\infty}^{\infty} a_p b_{k-p} = a_k * b_k$$
 (23)

Conjugación y simetría conjugada

$$x(t) \xrightarrow{FS} c_k$$
 (24)

$$\begin{array}{cccc} x(t) & \xrightarrow{FS} & c_k & & & \\ y(t) = x^*(t) & \xrightarrow{FS} & c_{-k}^* & & & \\ \end{array}$$

Periodicidad de los coeficientes de la serie de Fourier de tiempo discreto

Es necesario recordar la propiedad de periodicidad del exponencial complejo de tiempo discreto:

$$e^{j(\Omega_0 + 2\pi k)n} = e^{j\Omega_0 n} e^{j2\pi kn} = e^{j\Omega_0 n}$$
(26)

Los coeficientes c_k son periódicos con periodo fundamental N_0 . Es posible escribir entonces

$$c_{k+N_0} = c_k \tag{27}$$

$$e^{j\Omega_0(k+N_0)n} = e^{j\Omega_0kn}e^{j\Omega_0N_0n} = e^{j\Omega_0kn}$$
(28)

Dualidad de la serie de Fourier

Para la relación que existe entre $x[n] \to c_k$ y $c[k] \to x_n$.

$$c[k] = \sum_{n = \langle N_0 \rangle} \frac{1}{N_0} x[n] e^{-j\Omega_0 kn}$$
 (29)

si hacemos n=-m, entonces

$$c[k] = \sum_{m = \langle N_0 \rangle} \frac{1}{N_0} x[-m] e^{j\Omega_0 kn} \tag{30}$$

hacemos k = n y m = k

$$c[n] = \sum_{n=\langle N_0 \rangle} \frac{1}{N_0} x[-k] e^{j\Omega_0 kn}$$
(31)

Si comparamos resultados obtenemos que

$$x[n] \xrightarrow{DTFS} c_k = c[k]$$
 (32)

$$c[n] \xrightarrow{DTFS} \frac{1}{N_o} x[-k]$$
 (33)

Complejo conjugado de la serie de Fourier

$$c_{-k} = c_{N_0 - k} = c_k^* \tag{34}$$

Secuencia par e impar

Una secuencia $x[n] \in \mathbb{R}$ se puede expresar mediante la suma de sus componentes par e impar:

$$x[n] = x_o[n] + x_e[n] (35)$$

Si x[n] es real y par, sus coeficientes de Fourier c_k son reales. Si x[n] es real e impar, sus coeficientes de Fourier c_k son imaginarios.

$$x[n] \xrightarrow{DTFS} c_k$$
 (36)

$$x_e[n] \xrightarrow{DTFS} \Re\{c_k\}$$
 (37)

$$x_o[n] \xrightarrow{DTFS} j\Im m\{c_k\}$$
 (38)

Teorema de Parseval

Tiempo continuo:

$$\frac{1}{T_0} \int_{\langle T_0 \rangle} |x(t)|^2 \, \mathrm{d}t = \sum_{k = -\infty}^{\infty} |c_k|^2$$
 (39)

Tiempo discreto:

$$\frac{1}{N_0} \sum_{n = \langle N_0 \rangle} |x[n]|^2 = \sum_{k = \langle N_0 \rangle} |c_k|^2 \tag{40}$$

Series de Fourier de tiempo continuo

Ejemplo de la onda cuadrada

Determine el espectro de las siguiente señal periódica, con periodo 2π :

$$s(t) \quad = \quad \begin{cases} 1, & \text{ para } 0 \leq t < \pi \\ -1, & \text{ para } \pi \leq t < 2\pi. \end{cases}$$

Ejemplo

Determine el espectro de las siguientes señales:

$$x[n] = \cos\sqrt{2}\pi n$$

$$\mathbf{b} \ y[n] = \cos \frac{\pi n}{3}$$

$${\bf C} \ p[n]$$
 es periódica con periodo $N=4$ y $p[n]=\frac{1}{4},2,0,0$

Ejemplo

Determine el espectro de las siguientes señales:

$$x[n] = \cos\sqrt{2}\pi n$$

$$\mathbf{b} \ y[n] = \cos \frac{\pi n}{3}$$

c
$$p[n]$$
 es periódica con periodo $N=4$ y $p[n]=\underset{\uparrow}{1},2,0,0$

Ejercicio

Determine los coeficientes de Fourier para la secuencia periódica x[n] mostrada en la figura

Figure 4: Señal periódica

Ejercicio

Determine los coeficientes de Fourier para la secuencia periódica x[n]:

$$x[n] = \sum_{k = -\infty}^{\infty} \delta[n - 4k]$$

Ejercicio

Determine el espectro de las siguientes señales:

$$x[n] = \cos\frac{\pi}{4}n$$

$$y[n] = \cos^2 \frac{\pi n}{8}$$

$$w[m] = \cos\frac{\pi}{4}(m-3)$$

 $\mathbf{z}[n]$ es una señal periódica con periodo N=8, y está definida en un periodo por $x[n]=\{-2,-1,0,1,0,0,0,0\}$