

# Рекурсивные и рекурсивноперечислимые множества

Определение 19.1. Множество называется разрешимым, если существует ответ на вопрос: "Является ли данный объект элементом этого множества?" Этот алгоритм, единый для всех объектов данного множества называется разрешающей процедурой.

Множество называется *перечислимым*, если существует алгоритм перечисления всех его элементов.

Здесь важно отметить следующее:

- 1. Перечисляются только элементы этого множества.
- 2. Любой элемент этого множества обязательно будет перечислен.

#### Определение 19.1.

Множество называется **разрешимым**, если существует ответ на вопрос: "Является ли данный объект элементом этого множества?" Этот алгоритм, единый для всех объектов данного множества, называется **разрешающей процедурой**.

Множество называется **перечислимым**, если существует алгоритм перечисления всех его элементов.

Пример перечисления:  $f(n) = \begin{cases} 1, & \text{если } n \text{ девяток встретится в числе } \pi \\ 0, & \text{если } n \text{ девяток не встретится в } \pi \end{cases}$ 

Класс разрешимых множеств <u>является подмножеством</u> класса перечислимых множеств.

#### Определение 19.2.

Множество  $A \subseteq \mathbb{N}^k$  называется **рекурсивным** (примитивно рекурсивным), если его характеристическая функция

$$\chi_A(x) = egin{cases} 1, & x \in A \ 0, & x \notin A \end{cases}$$
 является **орф (прф).**

#### Замечание 19.4.

Пусть  $A\subseteq \mathbb{N}^k$ . Тогда  $\chi_A(x)$  -  $\mathbf{op} \boldsymbol{\varphi} \Leftrightarrow \chi_A(x)$  -  $\mathbf{чp} \boldsymbol{\varphi}$ .

Доказательство: упражнение.

miro

#### Определение 19.3.

Множество  $A\subseteq \mathbb{N}^k$  называется **рекурсивно перечислимым**, если  $A=\varnothing$  или существуют  $\mathbf{op}\Phi^1$   $f_1,\ldots,f_k$  такие, что

 $A = \{ \langle f_1(n), \dots, f_k(n) \rangle \mid n \in \mathbb{N} \}.$ 

В частности, если  $A \subseteq \mathbb{N}$  и существует  $\mathbf{op}\Phi^1$  f такая, что  $A = \rho f = \{f(n) \mid n \in \mathbb{N}\}$  - область значений, то A является рекурсивно перечислимым.



#### Предложение 19.5.

Пусть множества  $A, B \subseteq \mathbb{N}^k$ ,  $C \subseteq N^l$  - рекурсивны (примитивно рекурсивны). Тогда множества  $A \cup B$ ,  $A \cap B$ ,  $A \setminus B$ ,  $\overline{A}$ ,  $A \times C$  так же рекурсивны (примитивно рекурсивны).

Доказательство:

Пусть функции  $\chi_A$ ,  $\chi_B$  и  $\chi_C$  являются **орф** (**прф**). Тогда следующие функции также будут **орф** (**прф**):

- 1)  $\chi_{A\cap B}(x)=\chi_A(x)\cdot\chi_B(x)$ ; умножение как-бы отражает "и"
- $(2) \; \chi_{A \cup B}(x) = sg(\chi_A(x) + \chi_B(x));$  чтобы не было двойки оборачиваем в сигнум, + отражает или
- 3)  $\chi_{\overline{A}}(x) = \overline{sg} \chi_{A}(x)$ ;
- $(4) \; \chi_{A imes C}(x,y) = \chi_A(x) \cdot \chi_C(y)$  первая координата в множестве A а вторая координата в С
- $\chi_{A\setminus B}(x)=\chi_A(x)\cdot \overline{sg}(\chi_B(x))$ . лежит в А и не лежит в Б Д\В = Д\В = Д\В Предложение доказано.

## Предложение 19.6.

Пусть множества  $A,B\subseteq \mathbb{N}^k,\ C\subseteq N^l$  рекурсивно перечислимы. Тогда  $A\cup B,\ A\cap B,\ A\times C$  также рекурсивно перечислимы.

Доказательство: упражнение.

#### Замечание 19.7.

Класс  $\Pi PM \subseteq PM$ .

Доказательство:

Т.к.  $\Pi P\Phi \subseteq OP\Phi \Rightarrow \Pi PM \subseteq PM$ .

Замечание доказано.

# Предложение 19.8.

Пусть  $A \subseteq \mathbb{N}^k$ ,  $B = \{c^k(x_1, \dots, x_k) \mid \langle x_1, \dots, x_k \rangle \in A\} \subseteq \mathbb{N}$ .

Тогда A - **рм** (**прм**)  $\Leftrightarrow B$  - **рм** (**прм**).

Доказательство:

 $(\Rightarrow)$  Пусть A - **рм** (**прм**)  $\Rightarrow \chi_A$  - **орф** (**прф**). Построим характеристическую функцию для  $B: \chi_B(y) = \chi_A(c_1^k(y), \dots, c_k^k(y))$  - **орф** (**прф**).

 $(\Leftarrow)$  Если  $\chi_B(y)$  - **орф (прф)**. Построим характеристическую функцию  $\chi_A(\langle x_1,\ldots,x_k\rangle)=\chi_B(c^k(x_1,\ldots,x_k))$  - **орф (прф)**.

Предложение доказано.

miro

#### Предложение 19.9.

#### $PM \subseteq P\Pi M$ .

Доказательство:

- $1)\;A=arnothing
  ightarrow A$   $\mathbf{p}\mathbf{\Pi}\mathbf{M};\;$  по определению
- 2)  $A \neq \emptyset \Rightarrow$  при k=1  $\exists a \in \mathbb{N}: a \in A.$  A  $\mathbf{pm} \Rightarrow \chi_A$   $\mathbf{op} \Phi$ . Построим

функцию  $f(n)=n\cdot \chi_A(n)+a\cdot \overline{sg}(\chi_A(n))$  - орф. Тогда  $A=\rho f$ , т.е. f будет

перечислять множество  $A\Rightarrow A$  -  $\mathbf{p}\mathbf{\Pi}\mathbf{m}$ .

Предложение доказано.

то есть если текущий эл-т не принадлежит, то возвращаем какой-то один элемент иначе просто исходный элемент

### ТЕОРЕМА 19.10.(Поста)

Пусть  $A \subseteq \mathbb{N}^k$ .

раз мы можем перечислить те, что принадлежат, и те, что не принадлежат - можем и сказать принадлежит ли множеству какой то эл-т

Тогда A рекурсивно  $\Leftrightarrow A, \overline{A}$  являются **рпм**.

Доказательство:

из 19.5 пункт 3 про дополнение

 $(\Rightarrow)$  Пусть A - рекурсивно  $\Rightarrow A, \overline{A}$  - рпм.

и предл. 19.9

 $(\Leftarrow)$  Пусть  $A, \overline{A}$  - рпм.

Рассмотрим случай, когда k=1 :



- ullet Если A=arnothing
  ightarrow A рекурсивно (упр.). хи тождественно = 0
- ullet Если  $\overline{A}=arnothing \Rightarrow A=\mathbb{N}\Rightarrow A$  рекурсивно (упр.). хи тождественно = 1
- Рассмотрим случай, когда  $A \neq \emptyset$ ,  $\overline{A} \neq \emptyset$ , т.е.  $A \neq \mathbb{N} \Rightarrow \exists \mathbf{opd} \ f, g$ :

 $A=\rho f$  и  $\overline{A}=\rho g$ . Тогда  $\chi_A(x)=\overline{sg}(|f(\mu y[|f(y)-x|\cdot|g(y)-x|=0])-x|),$ 

что является **орф** (упр.).

onepamop минимизации аргумент при котором либо f либо g вернёт х если x принадлежит A то вернет аргумент f иначе аргумент g

Случай k > 1: без доказательства.

onepamop минимизации - аргумент f если в 1) вернули арумент f то результатом будет x и мы получим 0

Теорема доказана.  $A = \rho f = \{f(n) \mid n \in \mathbb{N}\}, \quad \bar{A} = \rho g = \{g(n) \mid n \in \mathbb{N}\}.$ 

дополнение sg(0) = 1 что нам и нужно

# ТЕОРЕМА 19.11. (об эквивалентных определениях рпм)

Пусть  $A \subseteq \mathbb{N}$ , тогда будут эквивалентны следующие условия:

- A рпм;
- 2)  $\exists$ **чрф** f такая, что  $A = \rho f$ ;
- 3)  $A = \emptyset$ , либо  $\exists \mathbf{прф} \ f$  такая, что  $A = \rho f$ ;
- 4)  $\exists$ **прм**  $B\subseteq \mathbb{N}^2$  такое, что  $A=\{x\mid \exists y: (x,y)\in B\}$ , т.е. A проекция;
- 5)  $\exists$ **рм**  $B \subseteq \mathbb{N}^2$  такое, что  $A = \{x \mid \exists y : (x, y) \in B\};$
- 6)  $\exists \mathbf{чрф}\ f$  такая, что  $A = \delta f = \{x \mid f(x) \text{ определена}\}.$  БЕЗ ДОКАЗАТЕЛЬСТВА.

Если же  $A \neq \emptyset$ , то, по определению, найдется такая общерекурсивная функция f, что  $A = \rho f$ . Из того, что f – общерекурсивная функция следует, что f – частично рекурсивная функция.

 $(2 \Rightarrow 3)$  Пусть  $A = \rho g$ , где g — частично рекурсивная функция. Тогда  $g(z) = l(\mu y [\ h(z,y) = 0\ ])$ , где h — примитивно рекурсивная функция.

Пусть  $x \leftrightharpoons c(y,z)$  и  $t(x) \leftrightharpoons \overline{sg}h(r(x),l(x)) \cdot sg(\prod_{i=0}^{l(x)-1} h(r(x),i).$  Очевидно, что t(x) – примитивно рекурсивная функция.

Если  $A \neq \emptyset$ , то найдется элемент  $a \in A$  такой, что функция

$$f(x) = l(l(x)) \cdot t(x) + a \cdot \overline{sg}(t(x))$$

является примитивно рекурсивной. Докажем, что  $A = \rho f$ .

- а) Пусть b = f(n) покажем, что  $b \in A$ . Если t(n) = 0, то  $b = f(n) = a \in A$ . Если же t(n) = 1, то, при  $y \leftrightharpoons l(n)$  и z = r(n), получим, что y m минимальный элемент такой, что h(z,y) = 0. Тогда  $g(z) = l(y) = l(l(n)) = f(n) \in A$ . Таким образом, получили, что  $\rho f \subseteq A$ .
- б) Пусть  $b \in A$ . Тогда найдется такой элемент  $z \in \mathbb{N}$ , что  $g(z) = b = l(\mu y[h(z,y)=0])$ . Следовательно, найдется такой элемент y, что для любого p < y имеет место  $h(z,p) \neq 0$  и h(z,y) = 0. Положим  $n \leftrightharpoons c(y,z)$ . Тогда t(n) = 1. Следовательно, f(n) = l(l(n)) = l(y) = b. Таким образом, получим, что  $A \subseteq \rho f$ .
  - $(3 \Rightarrow 4)$  Если  $A = \emptyset$ , то берём  $B = \emptyset$ , которое, очевидно, является примитвно рекурсивным.

Пусть  $A = \rho f$ , где f — примитивно рекурсивная функция. Положим  $B = \{(x,y) | f(y) = x\}$ . Очевидно, что характеристическая функция  $\chi_B(x,y) = \overline{sg}|f(y)-x|$  является примитивно рекурсивной. Следовательно, множество B примитивно рекурсивно. Тогда получим, что 

A =  $\{f(n) | n - \text{натуральное число}\}$  - это было по определнию Далее сказали, что то же самое можно записать как  $\{x | ...\}$ 

$$A = \rho f = \{x | \exists y : f(y) = x \} = \{x | \exists y : (x, y) \in B\}.$$

(4 ⇒ 5) Если B — примитивно рекурсивное множество, то, очевидно, B — рекурсивное множество. 

характ. фун-я - прф , тогда она и орф

- (5 ⇒ 6) Пусть  $A = \{x | \exists y : (x,y) \in B\}$ , где B рекурсивное множество. Тогда характеристическая функция  $\chi_B$  является общерекурсивной. Тогда функция  $f(x,y) = \mu y [\overline{sg} \chi_B(x,y) = 0]$  является частично рекурсивной. Не трудно понять, что  $A = \overline{b}f$ .
- $(6\Rightarrow 2)$  Пусть  $A=\overline{b}g$ , где g частично рекурсивная функция. Положим  $f(x)\leftrightharpoons x+O(g(x))$ . Тогда
- а) Если  $x \in A$ , то  $x \in g$ , т. е. функция g определена. Следовательно, f(x) определена и f(x) = x. А значит, получим, что  $x \in \rho f$ .
- б) Если  $x \notin A$ , то  $x \notin G$ , т. е. функция g не определена. Следовательно, f(x) не определена. А значит  $x \notin \rho f$ .

Таким образом, получили что  $A = \rho f$ .

(3 ⇒ 1) Пусть  $A \neq \emptyset$ . Тогда найдется такая примитивно рекурсивная функция f, что  $A = \rho f$ . Следовательно, f является общерекурсивной функцией. А значит A – рекурсивно перечислимое множество.

А = пустому множеству - это просто по определению будет РПМ

Теорема 19.12 доказана.

miro