

华中科技大学 2020~2021 学年第一学期 " 复变函数与积分变换 " 考试试卷(A 卷)

考试方式: ___ 闭 卷__ 考试日期: __2020-12-3__ 考试时长: __150_分钟

	院(系): 专业班级:	
	学 号: 姓 名:	
_	一、单项选择题 (每题 2 分,共 24 分).	
1.	复数 $(\sqrt{3}+i)^3$ 的值为 ().	
	A.8i, B8, C8i, D. 8.	
2.	e ⁻³⁻⁴ⁱ 的主辐角为 ().	
	A . $\arctan \frac{4}{3} - \pi$, B . $-4 + \pi$, C . $\arctan \frac{3}{4} - \pi$, D . $-4 + 2\pi$.	
3.	下列说法不正确的是 ().	
	A. 指数函数 e^z 是周期函数, B. 幂函数 z^α 一定是多值函数,	
	C. 正弦函数 $\sin z$ 是无界函数, D. $Lnz + Lnz = Lnz^2$.	
4.	函数 $f(z) = 2xy + (y^2 - x^2)i$ 在 $z = 1$ 处的导数值为().	
	A. -2 , B. $2i$, C. $-2i$, D. 2 .	
5.	积分 $\oint_{ z =1} (1 + \frac{1}{z} + \frac{z}{\sin z}) dz$ 的值为().	
	A.0, B. $2\pi i$, C. $4\pi i$, D. $6\pi i$.	
6.	若有向曲线 C 为从 $-i$ 到 i 的右半单位圆周,则积分 $\int_{C} 3z^2 dz$ 的值为().	
	A. 0, B. 2, C. $-2i$, D. $2i$.	
7.	若幂级数 $\sum_{n=0}^{+\infty} a_n (z-i)^n$ 在点 $z=1$ 发散,则该级数一定发散的点为 ().	
	A. $-i$, B.0, C. i , D. $2i$.	
	第 1	

- 8. 函数 $\frac{z}{\sin(z/2 \pi/8)}$ 在点 $z = -\pi$ 展开成 Taylor 级数的收敛半径为().

- A. $\frac{\pi}{4}$, B. $\frac{\pi}{2}$, C. $\frac{3\pi}{4}$, D. $\frac{5\pi}{4}$.
- 9. 下列函数中,∞为可去奇点的是().
- A. $\frac{1}{e^z-1}$, B. $z\sin\frac{1}{z}$, C. $\frac{1}{z}\sin z$, D. $ze^{\frac{1}{z}}$.
- 10. 下列哪个函数是区域|z|<4上的共形映射? ()
- A. $w = z^2$, B. $w = \ln z$, C. $w = e^z$, D. $w = \frac{1}{z}$.
- 11. 设 $F(\omega) = 2\pi\delta(\omega 1)\sin\omega$,则 $F(\omega)$ 的 Fourier 逆变换为(
 - A. $2\pi \sin 1$,
- $B. \sin 1$,
- C. $2\pi e^{jt} \sin 1$, D. $e^{jt} \sin 1$.
- 12. 连续函数 $h(t-t_0)$ 与单位冲激函数 $\delta(t-t_1)$ 的卷积 $h(t-t_0)*\delta(t-t_1)$ 为(
- A. $h(t-t_0-t_1)$, B. $h(t-t_0+t_1)$, C. $h(t+t_0-t_1)$, D. $h(t+t_0+t_1)$.
- 二、(12 %) 已知 f(z) = u(x,y) + iv(x,y) 为复平面上的解析函数,且满足

$$u(x, y) + v(x, y) = y^2 + 2xy - x^2 + 2(x - y)$$
, 求函数 $f(z)$.

- 三、(12 含) 把函数 $f(z) = \frac{1}{(z-2)(z-3)}$ 在点 $z_0 = 4$ 处展开为 Laurent 级数.
- 四、计算下列积分(每题5分,共10分)。
 - $1. \quad \oint \frac{1+z-e^z}{z^{10}} dz$
- $2. \oint \frac{1-\cos z}{\sin^3 z} dz$
- 五、计算下列积分(每题5分,共10分)。
 - 1. $\oint_{|z|=2} \frac{z}{1-z^2} \cos \frac{1}{z} dz$

2. $\int_0^{2\pi} \frac{1}{5+3\sin\theta} d\theta$

六、(6 **今**) 求区域 $D = \{z: |z| > 2, \operatorname{Im} z > 0\}$ 在映射 $w = i \left(\frac{z-2}{z+2}\right)^2$ 下的像。(**答题过程需用** 图形表示)

七、(n **4**) 求一共形映射 w = f(z),将 z 平面上的区域 $D = \{z: |z-i| > 1, |z-4i| > 2\}$ 映射到 w 平面的上半平面。(答题过程需用图形表示)

八、(10 含) 利用 Laplace 变换求解下面常微分方程:

$$f^{(4)}(t) - f(t) = 1$$
, $\exists f(0) = 0$, $f'(0) = 0$, $f''(0) = 1$, $f'''(0) = 2$.

九、(65) 若函数 f(z)在|z|<2 内解析且只有一个零点 z=0, $f'(z)\neq 0$,证明

$$\frac{1}{2\pi i} \oint_{|z|=1} \frac{f(z)}{z^2 f'(z)} dz + \frac{1}{2\pi i} \oint_{|z|=1} \frac{zf'(z)}{f(z)} dz = 1.$$