Limitations of Algorithm Power

Madiba Hudson-Quansah

CONTENTS

CHAPTER I	INTRODUCTION	PAGE 2
CHAPTER 2	P, NP and NP-Complete Problems	PAGE 3
2.1	P and NP Problems	3
	Non-deterministic Algorithms $-3 \cdot NP$ Problems -3	
2.2	NP-Complete Problems	4

Chapter 1

Introduction

Chapter 2

P, NP and NP-Complete Problems

Definition 2.0.1: Decision Problem

A problem that requires a yes or no answer.

2.1 P and NP Problems

Definition 2.1.1: Polynomial Time

A problem is said to be in P if there exists an algorithm that can solve the problem in polynomial time in the worst case, i.e the time complexity of the algorithm is of the form $O\left(n^k\right)$ for some constant k. This class of problems is also called **tractable** problems.

Definition 2.1.2: P **Problems**

A class of problems that can be solved in polynomial time by deterministic (non-random) algorithms. Also called **Polynomial Time** problems.

2.1.1 Non-deterministic Algorithms

Definition 2.1.3: Non-deterministic Algorithm

An algorithm that takes in as input an instance I of a decision problem and does the following **Guess** Generates an arbitrary string S that can be thought of as a candidate solution to the given instance I. **Verification** Using a deterministic algorithm that takes in the candidate solution S and the problem instance I as input and outputs a boolean value indicating whether S actually represents a solution to the problem instance I.

A Non-deterministic algorithm is said to solve a decision problem if and only if for every instance *I* and candidate solution *S* it returns the correct answer, and never returns the wrong answer or a false positive, i.e. for a no instance it returns a no answer and for a yes instance it returns a yes answer.

2.1.2 NP Problems

Definition 2.1.4: NP **Problems**

A class of decision problems that can be solved by a non-deterministic algorithm in polynomial time. The NP stands for Non-deterministic Polynomial time.

Most decision problems are in NP:

$$P \subseteq NP$$

This is true because if a problem is in P, we can use the deterministic polynomial time algorithm that solves it in the verification step of the non-deterministic algorithm bypassing the guessing step and as this algorithm used in the verification step is in polynomial time and is the only step in the non-deterministic algorithm, the entire non-deterministic algorithm for the problem instance I is in polynomial time.

NP also contains problems that are not in P:

- Hamiltonian Circuit Problem
- Knapsack Problem
- Travelling Salesman Problem

This leads to the question:

$$P \stackrel{?}{=} NP$$

I.e. are all problems in NP also in P or is P a proper subset of NP?

2.2 NP-Complete Problems

Definition 2.2.1: Polynomially Reducible

A decision problem D_1 is said to be polynomially reducible to a decision problem D_2 , if there exists a function t that transforms instances of D_1 to instances of D_2 such that:

- 1. t maps all yes instances of D_1 to yes instances of D_2 , and all no instances of D_1 to no instances of D_2 .
- 2. t is computable in polynomial time.

Definition 2.2.2: NP Complete

A decision problem *D* is *NP*-Complete if:

- 1. It belongs to the class NP
- 2. Every problem in NP is polynomially reducible to D.