着色、对偶

2018年10月30日 13:01

● 对偶图、外平面图

- 一. 对偶图dual graph
 - · 平面图G=<V,E>, G的面集合是R
 - 1 · 对偶图G*=<V*,E*>, G*的面集合是R*, 则V*与R, E*与E, 都是一一对应的

- 2) 即每个面里挑一个点,相邻面间用一根过公共边的边连起来
- 2. 平面图对偶图性质
 - 1) 平面图的对偶图一定是连通平面图;连通平面图的对偶图一定是平面图
 - 2) 环与桥对偶
 - 3) 平行边与两个面间多条边界对偶
 - n*=r, m*=m
 - 4) r*=n-p+1 (n-m+r=1+p, n*-m*+r*=2)
 - d_{G*}(v_i*)=deg_G(R_i)
 - 5) 平面图同构与对偶图同构无关
- 3. 自对偶图: 与自己的对偶图同构的图
 - 1) 连通图一定和其对偶图的对偶图同构,但与对偶图不一定同构

二. 外平面图

- 1. 外平面图: 所有顶点都可在一个面的边界上
 - G是外平面图 ⇔ G不含与K₄或K₂₃同胚子图
 - 1)
 - (G是平面图 ⇔ G不含与K₅或K_{3,3}同胚子图)

- 2. 极大外平面图: 任两不相邻顶点间加边就不再是外平面图的图
 - · 设G是n(≥3)阶外平面图, 所有顶点在外部面
 - 边界上,则 G 是极大外平面图 ⇔
 - 1) G外部面边界是n-圈, 所有内部面边界是3-圈.

- · (⇒) 反证, 分情形讨论.
- (1)有4次以上内部面⇒可加边,矛盾
- (2)外部面边界不是圈 ⇒ 有割点 ⇒ 可加边, 矛
- n(≥3)阶极大外平面图G所有顶点在外部面边
- ⇒ G有n-2个内部面
- ⇒ m=2n-3
- 2) ⇒至少有3个顶点度数≤3
 - ⇒ 至少有2个顶点度数=2
 - $\Rightarrow \kappa=2$.

● 点着色和色多项式

一. 着色

- (点) 着色: 给无环图每个顶点指定一种颜色, 使相邻顶点有不同颜色 1.
 - · 颜色集C={1,2,...,k},
 - f: V→C, 1)

 $\forall u \forall v (u,v \in V \land u 与 v 相邻 \rightarrow f(u) \neq f(v))$

- 2) · k-着色: |C|=k
- 3) 边着色:有公共顶点的边不同色;面着色:有公共边的面不同色
- 2. (点)色数x: 点着色所需最少颜色数(边、面色数分别用x'、x*表示)
 - 1) k-色图: 色数为k的图
 - 2) 完全图色数=点数n
- 3. 其他性质
 - χ(G)=1 ⇔ G是零图

- χ(K_n)=n
- χ(G)=2 ⇔ G是非零图二部图
- · G可2-着色 ⇔ G是二部图 ⇔ G无奇圈
- · χ(C_n)= ſ 2, n偶数

3,n奇数

- · χ(W_n)= [4, n偶数
 - l3, n奇数

- i. Cn是圈图, Wn是轮图
- 4. 点色数上界
 - 1) ・定理12.5: χ(G) ≤ Δ(G)+1
 - · 定理12.6(Brooks):
 - n 阶(n≥3)连通非完全图G非奇圈 ⇒ 2)

 $\chi(G) \leq \Delta(G)$.

5. 定理12.7: 同色关系是等价关系

- 对图G进行χ(G)-着色, 设
 V_i = {v|v∈V(G)∧v着颜色i},
 i=1,2,..., χ(G),
 则Π={V₁,V₂,...,V_{χ(G)}}是V(G)的划分. #
- · 说明: V.中的点构成"独立集"
- · 对图G进行χ(G)-着色,设
- 2) R={ (u,v) | u,v∈V(G) ∧ u,v着同色 },

则R是V(G)上等价关系. #

6. Welch Powell着色法

1)

- 1) 按度数给点排降序
- 2) 给队首点着色,并找不相邻点着相同的色
- 3) 重复2)

二. 色多项式

• 色多项式

1.

f(G,k)=图G的不同的k-着色的总数

- 1) 其中不同的着色: 至少一个顶点的着色不同
 - 完全图 f(K_n,k)=k(k-1)...(k-n+1)=f(K_{n-1},k)(k-n+1)
- 2) ・ 零图 f(N_n,k)=kⁿ
- 2. 递推公式
 - · 若(u,v)不是G中的边
 - 1) $f(G,k)=f(G\cup (u,v),k)+f(G\setminus (u,v),k)$
 - 2) 移项,变形
 - 若e=(u,v)是G中的边

$$f(G,k)=f(G-e,k)-f(G\setminus e,k)$$

3) 推论: 色多项式最小值

- 3. 性质
- · f(G,k)是n次多项式,系数正负号交替
- kn系数为1, kn-1系数为-m, m为边数, 常数项为0
 - 最低非零项为kP, p为连通分支数
- 不同连通分支相乘
 - T是n阶树 ⇔ f(T,k) = k(k-1)ⁿ⁻¹. (用归纳法证明)
- C是n阶圈 ⇒ f(C,k) = (k-1)ⁿ + (-1)ⁿ(k-1).
- 4. 例

- 有n门课程要期末考试,每个学生每天只能参加一门课程的考试,至少需要几天才能考完?在最少天数下最多有几种安排方案?
- 解:以课程为顶点,如果有同一个学生同时选 两门课程,则用边连接这两门课程,得到图G.

最少考试天数= $\chi(G)$; 方案数= $f(G,\chi(G))$ 。

5. 定理12.10

定理12.10

设V₁是G的点割集,且G[V₁]是G的完全子图K_{|V1|},
 若G-V₁有p个连通分支G₁, G₂,..., G_n (p≥2) ,

且 H_i = $G[V_1 \cup V(G_i)]$,则 $f(G,k) = \frac{\prod_{i=1}^p f(H_i,k)}{f(G[V_1],k)^{p-1}}$.

- i. 找点割集为顶点的完全子图,其余点轮流和它并,得到p种导出子图,把p种导出子图的色多项式相乘,除以完全子图色多项式的p-1次方
- ii. 即让完全子图多项式,乘以其他点并上完全子图后多出的多项式证:对G[V₁]的每种k着色,H₁有f(H₁,k)/f(G[V₁],k)种k着色,

2)
$$f(G,k) = f(G[V_1],k) \prod_{i=1}^p \frac{f(H_i,k)}{f(G[V_1],k)} = \frac{\prod_{i=1}^p f(H_i,k)}{f(G[V_1],k)^{p-1}}.$$
#

3) 例: $f(G,k) = f(K_3,k)(k-1)^2 = k(k-1)^3(k-2)$.

● 面着色、边着色

三. 面着色

- 1. (平面) 地图: 连通无桥平面图的平面嵌入及其所有的面
 - 1) 每个面都是一块区域,有公共边的区域是"相邻"的
 - 2) k色地图:可以用k种颜色着色的地图
 - 3) 地图可k面着色等价于其对偶图可以k点着色
- 2. 定理12.15: 任何平面图都可以6着色
 - 证明: (归纳法) (1) n≤7: 结论为真. (2) 设n=k(≥7)时结论为真.

(2) 设n=k(≥7)时结论为真. n=k+1时,∃v∈V(G), d(v)≤5. 令G₁=G-v,对G₁用归纳假设,G₁可6-着色.

- 今G₁=G-v, 对G₁用归纳假设, G₁可6-着色.
 模仿G₁对G着色, 与v相邻的点不超过5个, 至少剩1种颜色给v着色, 所以G可6-着色. #
 - i. 即递归删五度点
- 3. 定理: 任何平面图都可以5着色

i. 从红色出发尝试红-黄-红-黄连通到黄色,从水色出发尝试水-绿-水-绿连通到绿色,一定会交叉,于是红黄链就孤儿了,就可以交换红黄次序,于是五度点就可以着成红色,然后递归删五度点

四. 边着色

- 1. Vizing定理12.17: 简单图的边色数一定是最大度或最大度+1
 - G是简单图 ⇒ Δ(G)≤χ'(G)≤Δ(G)+1
 - 2) 二部图的边色数一定是最大度

- ii. 依旧是用矛盾反证一条分支可以换色,换成e边左右两点是相同的Δ-1种颜色,e本身是第Δ种
- 2. 完全图的边着色:
 - n为奇数时, χ'(K_n)=n.
 - 每边关联2个不同端点, 同色边没有公共端 点, 同色边至多有(n-1)/2条, 至少需要n种颜色, χ'(K_n)≥n. 又存在n-边着色, χ'(K_n)≤n. 所以χ'(K_n)=n.

- ii. 因为同色不相邻,所以最多(n-1)/2条同色边(见图),再由等差求和公式知色数>=n;蓝色圈 孤立了蓝点,绿色圈孤立了绿点 (见图) 所以色数<=顶点数n; 所以色数=n
- n为偶数时, χ'(K_n)=n-1.
 - 每边关联2个不同端点,同色边没有公共端 点, 同色边至多有n/2条, 至少需要n-1种颜色, (K_n)≥n-1. 又存在(n-1)-边着色, χ' (K_n)≤n-
 - 1. 所以χ'(K_n)=n-1. #

- 3. 同色边、边独立集/匹配
 - · 无环图G=<V,E>进行k-边着色, k≥\chi'(G). 令

R = { (e_i,e_i) | e_i与e_i着同色 }

则R是E上等价关系,商集合

 $E/R = \{E_1, E_2, ..., E_k\}$ 1) 是E的划分,划分块中元素着同色

- 说明: 同色边构成"边独立集",或"匹配"
- 4. 应用: 教师集和教室集组成二部图, 最小边色数为最小节数, 最大匹配元素数为最小教室数
 - 某一天内有n个教师给m个班上课.每个教师在同课时只能给一个班上课.
 (1)这一天内至少排多少节课?

 - (2) 不增加节数情况下至少需要几个教室?
 - (3) 若n=4,m=5. 教师是t₁,t₂,t₃,t₃,班是c₁, c₂,c₃c₄c₅. 已如t,给c₁,c₂,c₃,c₄至于,1节,1节课, t₃给c₂,c₃,c₄至上1节课, t₃给c₄,c₅上1节,2节课, 求最省教室的课表.
 - i.
 - ii.
 - iii.
 - iv.
 - ٧.
 - vi.
 - vii.
 - viii.
 - ix.
 - X.

xi.

xii. ------我是底线------