

Electronics and Electrical Communications Department

Tanta University

Faculty of Engineering

Course: Communication Systems	Course Code: EECYY £ Y	Year: 2 nd
Date: 4/4/2015		No. of Pages: (1)

1)

An AM signal has the form

$$u(t) = [20 + 2\cos 3000\pi t + 10\cos 6000\pi t]\cos 2\pi f_c t$$

where $f_c = 10^5$ Hz.

- Sketch the (voltage) spectrum of u(t).
- Determine the power in each of the frequency components.
- Determine the modulation index.
- Determine the power in the sidebands, the total power, and the ratio of the sidebands power to the total power.

2)

An AM signal is generated by modulating the carrier $f_c = 800 \text{ kHz}$ by the signal

$$m(t) = \sin 2000\pi t + 5\cos 4000\pi tt$$

The AM signal

$$u(t) = 100[1 + m(t)] \cos 2\pi f_c t$$

is fed to a 50 Ω load.

- Determine and sketch the spectrum of the AM signal.
- Determine the average power in the carrier and in the sidebands.
- 3. What is the modulation index?
- 4. What is the peak power delivered to the load?

3)

The output signal from an AM modulator is

$$u(t) = 5\cos 1800\pi t + 20\cos 2000\pi t + 5\cos 2200\pi t$$

- Determine the modulating signal m(t) and the carrier c(t).
- Determine the modulation index.
- Determine the ratio of the power in the sidebands to the power in the carrier.