SQL Introduction

Lesson Objectives

After completing this lesson, you should be able to do the following:

- Discuss the theoretical and physical aspects of a relational database
- Describe Oracle server's implementation of RDBMS and object relational database management system (ORDBMS)
- Identify the development environments that can be used for this course
- Describe the database and schema used in this course

Relational and Object Relational Database Management Systems

- Relational model and object relational model
- User-defined data types and objects
- Fully compatible with relational database
- Supports multimedia and large objects
- High-quality database server features

_

Data Storage on Different Media DEPARTMENT_ID & DEPARTMENT_NAME & MANAGER_ID & LOCATION_ID 10 Administration 1700 20 Marketing 201 1800 50 Shipping GRADE_LEVEL & LOWEST_SAL & HIGHEST_SAL 60 IT 1000 2999 80 Sales 3000 5999 90 Executive 3 C 6000 9999 110 Accounting 4 D 10000 14999 5 E 190 Contracting 15000 24999 25000 40000 Electronic Filing cabinet Database spreadsheet

Relational Database Concept

- Dr. E. F. Codd proposed the relational model for database systems in 1970.
- It is the basis for the relational database management system (RDBMS).
- The relational model consists of the following:
 - Collection of objects or relations
 - Set of operators to act on the relations
 - Data integrity for accuracy and consistency

5

Definition of a Relational Database

A relational database is a collection of relations or two-dimensional tables controlled by the Oracle server.

Table name: EMPLOYEES

B EMPLOYEEJD B FIRST_NAME B LAST_NAME B EMAIL

100 Steven King

101 Neena Kochhar NKOCHHAR

102 Lex De Haan LDEHAAN

Table name: DEPARTMENTS

B DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID

10 Administration 200

20 Marketing 201

50 Shipping

- - -

Entity Relationship Model

 Create an entity relationship diagram from business specifications or narratives:

- Scenario:
 - "... Assign one or more employees to a department ..."
 - "... Some departments do not yet have assigned employees ..."

- Each row of data in a table can be uniquely identified by a primary key.
- You can logically relate data from multiple tables using foreign keys.

Using SQL to Query Your Database

Structured query language (SQL) is:

- The ANSI standard language for operating relational databases
- · Efficient, easy to learn, and use
- Functionally complete (With SQL, you can define, retrieve, and manipulate data in tables.)

SQL Statements Used in the Course

11

Development Environments for SQL

There are two development environments for this course:

- · The primary tool is Oracle SQL Developer.
- SQL*Plus command-line interface can also be used.

Summary

In this lesson, you should have learned:

- The theoretical and physical aspects of a relational database
- Oracle server's implementation of RDBMS and object relational database management system (ORDBMS)
- The development environments that can be used for this course
- About the database and schema used in this course