

# **Algorithms for Data Science**

Statistical Algorithms: Bayes Classifiers

## **Classifying Under Uncertainty**

### Challenge

How do we classify data in uncertain environments?

#### **Solution**

Leverage probabilistic reason and Bayesian statistics.

### **Key Elements:**

- Provides prior probabilities rather than binary outcomes.
- Incorporates prior knowledge (prior).
- Adjusts dynamically based on observed evidence.





## **Bayes Classifier: Mathematical Foundations**

### Bayes' Theorem:

$$P\left(C_{k}\mid x
ight)=rac{P\left(x\mid C_{k}
ight)P\left(C_{k}
ight)}{P(x)}$$

Where:

 $P(C_k \mid x)$ : Posterior probability

 $P(C_k)$ : Prior probability

 $P\left(x\mid C_{k}\right)$ : Likelihood

P(x) : Marginal probability

#### **Classification Rule:**

$$C(x) = rg \max_{k} P\left(C_{k} \mid x
ight)$$



## **Bayes Classifier: Algorithm Analysis**

### 1. Compute Priors ( $P(C_k)$ ):

 $lue{O(N)}$ 

 Calculate the prior probability for each class based on class freq.

#### 2. Joint Likelihood Calculation:

For each class  $C_k$  compute:

$$P\left(x_{1}, x_{2}, \ldots, x_{D} \mid C_{k}\right)$$

 $O(N \cdot K \cdot 2^D)$ 

 Requires estimating probabilities for all feature combos.

### 3. Apply Bayes' Theorem

$$O(N \cdot K)$$

### 4. Apply Classification Rule

Total Runtime Complexity:  $O(N \cdot K \cdot 2^D)$ 

## **Bayes Classifier: Correctness Proof**

Theorem: The Bayes Classifier minimizes the probability of misclassification under the assumption that the true distributions are known.

#### 1. Posterior Probability:

 Bayes' theorem computes posterior probabilities optimally, incorporating priors and likelihoods.

#### 2. Classification Rule:

• Assign data point x to the class  $C_k$  with the highest posterior.

#### 3. Minimizing Expected Loss:

 By choosing the class with the highest posterior, the classifier minimizes the expected probability of misclassification.



## **Bayes Classifier: Application**

#### **Medical Diagnostics**

- Task: Predict the probability of a disease based on symptoms and test results.
- How it Works: Combine disease prevalence (prior) with test accuracy (likelihood).
- Example: Determining the likelihood of diabetes given glucose levels and patient history.

#### **Spam Filtering**

- Task: Classify emails as spam or not spam based on word usage patterns.
- How it Works: Use word frequencies as features and applies Bayes' theorem.
- Example: "Win now" email classified as spam with high confidence.

#### **Risk Assessment**

- Task: Evaluate the probability of default or fraud in financial transactions.
- How it Works: Incorporates default rates (prior) with transaction details.
- Example: Flagging high-risk loan applicants based on credit scores.



## From Bayes to Naïve Bayes

### **Bayes Classifier**

- Requires estimating joint probabilities for high-dimensional data.
- Computationally expensive with large datasets and many features.
- Prone to overfitting when data is limited.

## **Naïve Bayes**

- Assumes conditional independence between features.
- Reduces the complexity of probability estimation.
- Sacrifices some modeling accuracy for significant computational efficiency.



## **Naïve Bayes: Mathematical Foundations**

**Naïve Bayes Assumption**: Features are conditionally independent given the class:

$$P\left(x_{1}, x_{2}, \ldots, x_{D} \mid C_{k}
ight) = \prod_{d=1}^{D} P\left(x_{d} \mid C_{k}
ight)$$

**Posterior Probability:** 

$$P\left(C_k \mid x
ight) \propto P\left(C_k
ight) \prod_{d=1}^D P\left(x_d \mid C_k
ight)$$

Where:  $P(C_k)$ : Prior probability of class  $C_k$  $P(x_d \mid C_k)$ : Likelihood of feature  $x_d$  given class  $C_k$ 

**Classification Rule:** 

$$C(x) = rg \max_{k} P\left(C_{k}
ight) \prod_{d=1}^{D} P\left(x_{d} \mid C_{k}
ight)$$



## **Naïve Bayes: Algorithm Analysis**

### 1. Compute Priors ( $P(C_k)$ ):

- O(N)

 Calculate the prior probability for each class based on class freq.

### 2. Compute Independent Likelihoods ( $P(x \mid C_k)$ ):

- Estimate probabilities for each feature and class.
  - o For continuous features: Use PDF (e.g. Gaussian)
  - For categorical features: Use freq. counts.

$$O(N \cdot K \cdot D)$$

### 3. Apply Bayes' Theorem

$$O(D \cdot K)$$

4. Apply Classification Rule

Total Runtime Complexity:  $O(N \cdot K \cdot D)$ 



## **Naïve Bayes: Strengths and Limitations**

### **Strengths**

- Computationally efficient and scalable.
- Effectively separates classes when features provide complementary evidence.
- Robust with small datasets.

### Limitations

- Independence Assumption: fails to model features correlations.
- Sensitive to class imbalance due to heavy reliance on prior probabilities.



