Outline

- Vector space models
- Advantages
- Applications

Why learn vector space models?

Vector space models applications

- You eat <u>cereal</u> from a <u>bowl</u>
- You <u>buy</u> something and someone else <u>sells</u> it

Information Extraction

Machine Translation

Chatbots

Fundamental concept

"You shall know a word by the company it keeps"

Firth, 1957

(Firth, J. R. 1957:11)

Summary

- Represent words and documents as vectors
- Representation that captures relative meaning

Outline

- Relationships between words/documents

Word by Word Design

Number of times they occur together within a certain distance k

I like simple data
I prefer simple raw data

n

Word by Document Design

Number of times a word occurs within a certain category

	Entertainment	Economy	Machine Learning		
	Entertainment	Economy	Machine Learning		
data	500	6620	9320		
film	7000	4000	1000		

Vector Space

Ente	ertainn	nent E	conom	ıy	ML	
data	500		6620		9320	
film	7000		4000		1000	

Vector Space

Entertainment			Econom	ny ML
data	500		6620	9320
film	7000		4000	1000

Measures of "similarity:"
Angle
Distance

Summary

- W/W and W/D, counts of occurrence
- Vector Spaces Similarity between words/documents

Outline

- Euclidean distance
- N-dimension vector representations comparison

Euclidean distance

Corpus A: (500,7000)

Corpus B: (9320,1000)

$$d(B, A) = \sqrt{(B_1 - A_1)^2 + (B_2 - A_2)^2}$$
$$c^2 = a^2 + b^2$$

$$d(B,A) = \sqrt{(-8820)^2 + (6000)^2}$$

Euclidean distance for n-dimensional vectors

		$ec{w}$	$ec{v}$	
	data	boba	ice-cream	
Al	6	0	1	$= \sqrt{(1-0)^2 + (6-4)^2 + (8-6)^2}$
drinks	0	4	6	·
food	0	6	8	$= \sqrt{1+4+4} = \sqrt{9} = 3$

$$d\left(\vec{v}, \vec{w}\right) = \sqrt{\sum_{i=1}^{n} \left(v_i - w_i\right)^2} \longrightarrow \text{Norm of } (\vec{v} \cdot \vec{w})$$

Euclidean distance in Python

```
# Create numpy vectors v and w
v = np.array([1, 6, 8])
w = np.array([0, 4, 6])

# Calculate the Euclidean distance d
d = np.linalg.norm(v-w)
# Print the result
print("The Euclidean distance between v and w is: ", d)
```

The Euclidean distance between v and w is: 3

Summary

- Straight line between points
- Norm of the difference between vectors

Outline

- Problems with Euclidean Distance
- Cosine similarity

Euclidean distance vs Cosine similarity

Euclidean distance: d₂ < d₁

The cosine of the angle between the vectors

Summary

Cosine similarity when corpora are different sizes

Cosine Similarity

Outline

- How to get the cosine of the angle between two vectors
- Relation of this metric to similarity

Previous definitions

Vector norm

$$\|\vec{v}\| = \sqrt{\sum_{i=1}^n v_i^2}$$

Dot product

$$\vec{v}.\vec{w} = \sum_{i=1}^{n} v_i.w_i$$

Cosine Similarity

$$\hat{v} \cdot \hat{w} = \|\hat{v}\| \|\hat{w}\| \cos(\beta)$$

$$\cos(\beta) = \frac{\hat{v} \cdot \hat{w}}{\|\hat{v}\| \|\hat{w}\|}$$

Cosine Similarity

Cosine Similarity

Summary

- Cosine Similarity gives values between 0 and 1

Outline

How to use vector representations

[Mikolov et al, 2013, Distributed Representations of Words and Phrases and their Compositionality]

[Mikolov et al, 2013, Distributed Representations of Words and Phrases and their Compositionality]

[Mikolov et al, 2013, Distributed Representations of Words and Phrases and their Compositionality]

Summary

• Use known relationships to make predictions

Outline

- Some motivation for visualization
- Principal Component Analysis

Visualization of word vectors

		d > 2	
oil	0.20		0.10
gas	2.10		3.40
city	9.30		52.1
town	6.20		34.3

How can you visualize if your representation captures these relationships?

oil & gas

town & city

Visualization of word vectors

$d \ge 2$						d = 2		
				_				
oil	0.20		0.10		oil	2.30	21.2	
gas	2.10		3.40	PCA	gas	1.56	19.3	
city	9.30		52.1		city	13.4	34.1	
town	6.20		34.3	_	town	15.6	29.8	

Visualization of word vectors

Summary

- Original Space Uncorrelated features Dimension reduction
- Visualization to see words relationships in the vector space