Lista de Exercícios I Otimização de Sistemas

Daniel Gunna Santana da Silva Souza

¹ Pontíficia Universidade Católica de Minas Gerais (PUC Minas) – Instituto de Ciências Exatas e Informática -Ciência da Computação - Otimização de Sistemas - Profo Dorirley

1. Resolução

Table 1. Dados do Problema						
Lucro	Produto	Tamanho	Tempo	Variável		
R\$ 7,00	Soleira	$0,6m^{2}$	24 min	X		
R\$ 8,50	Peitoral	$0.8m^{2}$	20 min	y		

 $16m^2$ de matéria prima p/ dia

São 5 funcionários cada um trabalhando 6 horas diárias resultadno em um total de 1800 horas/dia.

Modelagem:

$$F.O_{max}Lucro = 7x + 8,5y$$

 $R_1: 0, 6x + 0, 8y \le 16$

 $R_2: 24x + 20y \le 1800$

 $R_3: y \ge 0, x \ge 0$

2. Resolução

Table 2. Dados do Problema							
X	Oficina A	Oficina B	Demanda	Variável			
	38	Padrão	1h	2,5h	40	X	
	49	Clássica	1,5h	2,5h	-	y	
N. funcionários			20 8h/dia	32 8h/dia			

Modelagem:

$$F.O_{max}Lucro = 38x + 49y$$

 $R_1: x+1, 5y \le 160$

 $R_2: 2, 5x + 2, 5y \le 196$

 $R_3: y \ge 0, x \ge 0$

3. Resolução

Table 3. Dados do Problema

Table of Base at Toble and								
Lucro	Produto	Parafuso	Cola	Puxadores	Dobradiça	Madeira	Tempo	Demanda
R\$ 45	Estante	14	0,4Kg	8	6	$2,5m^{2}$	3h	16
R\$ 36	Mesa	18	0.2Kg	2	4	$2m^2$	4,5h	5

18 empregados 8h/dia, $9m^2,\,700$ parafusos/dia, 12 Kg/dia , 15x12 puchadores/dia, 17x12 dobradiças/h Modelagem:

$$F.O_{max}Lucro = 45x + 35y$$

$$R_1: 14x + 13y \le 700$$

$$R_2: 0, 4x + 0, 22y \le 12$$

$$R_3: 8x + 2y \le 180$$

$$R_4: 6x + 4y \le (17x12)$$

$$R_5: 4,5x+3y \le (18x8)$$

 $R_6: y \le 45$

 $R_7: x \le 36$

4. Resolução

Table 4. Dados do Problema

			IUDIO II D	4400 40				
Lucro	Cesta	Feijão	Açúcar	Óleo	Café	Farinha	Arroz	Demanda
R\$ 14	Simples	2kg	2Kg	11	1kg	3kg	5kg	44
R\$ 22	Padrão	4kg	4Kg	21	2kg	4kg	8kg	

Modelagem:

250kg feijão / dia, 450 kg / dia

$$F.O_{max}Lucro = 14x + 22y$$

 $R_1: 2x + 9y \le 250$

 $R_2: 5x + 0, 8y \le 450$

 $R_3: y \le 44$

5. Resolução

Table 5. Dados do Problema						
	Reboque	Montagem	Pintura	Lucro		
	Luxo	5	4	360		
	Comercial	2	1	285		
N. funcionários		15 8h/dia	8 8h/dia			

Modelagem:

$$F.O_{max}Lucro = 5x + 2y$$

 $R_1: 5x + 2y \le 120$

 $R_2: 4x + y \le 64$

 $R_3: y \ge 0, x \ge 0$

6. Resolução

Table 6. Dados do Problema							
Produto	M	N	Lucro	Max			
A	4	4	80	3			
В	6	2	60	3			
	24	16					

Modelagem:

$$F.O_{max}Lucro = 80A + 60B$$

 $R_1: 4A + 6B \le 24$

 $R_2: 4A + 2B \le 16$

 $R_3:0\leq A\leq 3$

 $R_4: x \ge 0$

7. Resolução

O produto deve conter ao menos 2g do x, 64g de y e 34g de z. Modelagem:

	_		
Tabla	7 0		Problema
iabie	7. DAG	108 00	Problema

Alimento	X	Y	Z	Custo
A	10g	40g	50g	0,6
В	20g	60g	20g	0,8

$$F.O_{max}Custo = 0, 6A + 0, 8B$$

$$R_1: 10A + 20B \ge 2$$

$$R_2: 40A + 60B \ge 64$$

$$R_3: 50A + 20B \ge 34$$

$$R_4: x \geq 2$$

$$R_5: y \ge 64$$

$$R_4: z \ge 34$$

8. Resolução

Table 8. Dados do Problema

iable of Baade ac i lobicina							
Produto	Preço	Couro	Tempo	Funcionários			
Sandália	22	$0,3m^{2}$	3h	1			
Sapato	48	$0.5m^{2}$	4h	2			

Modelagem:

$$F.O_{max}Lucro = 22x + 48y$$

$$R_1: 0, 3x+0, 5y \le 15$$

$$R_2: 3x + 4y \le 120$$

$$R_3: x + 2y \le 15$$

$$R_4: x \ge 0, y \ge 0$$