ANSWER KEY (AIPMT-2007)

Oues.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans	1	1	2	4	2	3	3	2	3	3	3	1	4	1	1	3	4	2	1	4
Ques.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	1	2	1	2	3	4	4	1	2	3	3	4	2	3	3	2	4	2	2	2
Ques.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	3	2	3	3	1	2	2	4	1	1	4	2	1	4	4	1	2	3	1	4
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	4	2	4	3	2	3	3	2	3	1	1	3	3	2	3	2	4	2	3	4
Ques.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans	2	4	4	4	1	3	2	1	3	3	1	1	2	1	3	4	1	2	1	2
Ques.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	2	2	2	4	4	3	2	2	3	3	4	1	2	2	1	3	2	2	3	1
Ques.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans	1	3	3	1	4	1	1	2	2	3	3	2	3	1	2	2	1	1	2	1
Ques.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans	3	2	3	1	2	2	2	1	3	3	1	4	4	2	2	3	3	1	2	2
Ques.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans	2	2	2	2	2	1	4	4	3	3	3	2	2	4	1	1	4	1	4	1
Ques.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Ans	1	1	3	3	2	3	3	2	4	4	4	1	1	4	2	1	2	4	4	3

HINTS & SOLUTIONS

1.
$$R = \frac{V}{I} = \frac{J}{IC} = \frac{ML^2T^{-2}}{I^2T} = ML^2T^{-3}T^{-2}$$

2. Acceleration
$$\frac{dv}{dt} = f = f_0 \left(1 - \frac{t}{T} \right)$$

$$\Rightarrow \int_0^v dv = f_0 \int_0^T \left(1 - \frac{t}{T} \right) dt$$

$$\Rightarrow \mathbf{v} = \mathbf{f}_0 \left(\mathbf{t} - \frac{\mathbf{t}^2}{2T} \right)_0^T = \mathbf{f}_0 \left(\mathbf{T} - \frac{\mathbf{T}^2}{2T} \right) = \frac{1}{2} \mathbf{f}_0 \mathbf{T}$$

3. Average speed =
$$\frac{\text{Total distance}}{\text{Total time}}$$

$$= \frac{2d}{\frac{d}{v_u} + \frac{d}{v_d}} = \frac{2v_d v_u}{v_d + v_u}$$

4.

$$\tan \theta = \frac{3}{\sqrt{3}} = \sqrt{3}$$

$$\Rightarrow \theta = 60^{\circ}$$

5. By using
$$v = u + at$$
,

$$0 = v - \mu gt \Rightarrow t = \frac{v}{\mu g}$$

6. Net work done = work done by gravitational force + work done by spring force

$$= mg(h+d) - \frac{1}{2}Kd^2$$

7.
$$\theta = \omega t + \frac{1}{2} \alpha t^2 = (2) (2) + \frac{1}{2} (3)(2)^2$$

= 4 + 6 = 10 rad

8.
$$: |\vec{A} \times \vec{B}| = \sqrt{3}(\vec{A}.\vec{B})$$

$$\therefore AB \sin\theta = \sqrt{3}AB\cos\theta$$

$$\Rightarrow \tan\theta = \sqrt{3} \Rightarrow \theta = 60^{\circ}$$

9.
$$x = 9t^{2} - t^{3} \qquad \therefore v = 18t - 3t^{2}$$
$$\Rightarrow \frac{dv}{dt} = 18 - 6t$$

for maximum speed $\frac{dv}{dt} = 0$, and $\frac{d^2v}{dt^2}$ negative

so
$$18 - 6t = 0 \Rightarrow t = 3s$$

at
$$t = 3s$$
, $x = 9(3)^2 - (3)^3 = 81 - 27 = 54 m$

10. For given conditions $mg = m\omega^2 a = ka$

$$\Rightarrow$$
 a = $\frac{\text{mg}}{\text{k}} = \frac{2 \times 10}{200} = 0.1 = 10 \text{ cm}$

12.
$$\because \tau = I\alpha \therefore (mg) \frac{\ell}{2} = \left(\frac{m\ell^2}{3}\right)\alpha \Rightarrow \alpha = \frac{3g}{2\ell}$$
.

13. K.E. =
$$\frac{\text{GMm}}{2\text{r}}$$
 \Rightarrow Kinetic energies are unequal

$$T = \frac{2\pi r^{3/2}}{\sqrt{GM}} \Rightarrow \text{Time period are equal}$$

P.E. =
$$-\frac{GMm}{r}$$
 \Rightarrow Potential energies are unequal

$$v = \sqrt{\frac{GM}{r}} \implies Orbital \text{ speeds are equal}$$

14. Solar constant =
$$\frac{\sigma(4\pi r^2)T^4}{(4\pi R^2)} = \frac{\sigma r^2(t+273)^4}{R^2}$$

15.
$$\eta = 1 - \frac{T_2}{T_1} \Rightarrow \frac{1}{6} = 1 - \frac{T_2}{T_1}$$
and
$$\frac{1}{3} = 1 - \frac{(T_2 - 62)}{T_1} \Rightarrow \frac{1}{3} = 1 - \frac{T_2}{T_1} + \frac{62}{T_1}$$

$$\Rightarrow \frac{1}{3} = \frac{1}{6} + \frac{62}{T_1} = \frac{1}{6} = \frac{62}{T_1}$$

16.
$$E = \sigma T^4 : E \propto (727 + 273)^4 \Rightarrow E \propto (1000)^4$$

17. Refractive index
$$\mu = \frac{c}{v} = \frac{c}{v\lambda}$$

$$= \frac{3 \times 10^8}{2 \times 10^{14} \times 5000 \times 10^{-10}} = 3$$

18. If
$$v = v_0 \sin \omega t$$
 then $a = a_0 \cos \omega t$
 \Rightarrow phase difference $= \frac{\pi}{2} = 0.5\pi$

$$2$$
19. \therefore K.E. = $K_0 \cos^2 \omega t$

:. Maximum P.E. = Maximum K.E.
= Total energy =
$$K_0$$

20.
$$\therefore x = a \sin \omega t$$

$$\therefore \frac{a}{2} = a i s n \omega t \Rightarrow \omega t = \frac{\pi}{6}$$

$$\Rightarrow \left(\frac{2\pi}{T}\right) t = \frac{\pi}{6} \Rightarrow t = \frac{T}{12}$$

21. In EM waves
$$\vec{E}$$
 and \vec{B} are in same phase and perpendicular to each other.

$$\frac{1}{\mu} = \sin\theta_{\rm C} = \frac{3}{5} \Rightarrow \mu = \frac{5}{3}$$

$$\Rightarrow \mu = \frac{5}{3}$$

22.

$$\Rightarrow v = \frac{c}{\mu} = \frac{3 \times 10^8}{5/3} = \frac{9}{5} \times 10^8$$
$$= 1.8 \times 10^8 \text{ ms}^{-1}$$

23.
$$W = \Delta U = Q(V_D - V_C)$$
 here $V_C = 0$
= $Q \left[\frac{q}{4\pi \in_0 (3L)} - \frac{q}{4\pi \in_0 (L)} - 0 \right] = \frac{-Qq}{6\pi \in_0 L}$

24.
$$\phi_{\text{total}} = \phi_{\text{curved}} + \phi_{\text{plane surfaces}} = \frac{q}{\epsilon_0}$$

$$\phi + 2\phi_A = \frac{q}{\epsilon_0} \Rightarrow \phi_A = \frac{1}{2} \left(\frac{q}{\epsilon_0} - \phi \right)$$

25. Magnitute =
$$\sqrt{p^2 + p^2} = \sqrt{2}p = \sqrt{2}qa$$

Direction is shown in figure.

26. Work done in charging fully both the condensers
$$=\frac{1}{2}CV^2 + \frac{1}{2}\left(\frac{C}{2}\right)V^2 = \frac{3}{4}CV^2$$

Total power dissipated =
$$\frac{V^2}{R} = \frac{(18) (18)}{6}$$

= 54 W

28. $m = ZIt = (30 \times 10^{-3}) (1.5) (10 \times 60) = 0.27 gm$

29.
$$T_n = \frac{T_C + T_i}{2} \& T_C = 0 C : T_n = \frac{T_i}{2}$$

30. for balanced wheatstone bridge circuit

$$\frac{2}{2} = \frac{2}{\left(\frac{6S}{S+6}\right)} \Rightarrow S+6 = 3S \Rightarrow S = 3\Omega$$

31.

 $13 \times 100 = 650 \times R$

$$\Rightarrow$$
 R = 2 Ω

32. $T = \frac{2\pi m}{aB}$ which is independent of both R and v.

33. Magnetic moment
$$M = IA = \left(\frac{qv}{2\pi R}\right)(\pi R^2)$$
$$= \frac{qvR}{2}$$

34. In magnetic field a charged particle moves in a circular orbit.

35. Induced emf in primary coil

$$E_P = \frac{d\phi}{dt} = \frac{d}{dt}(\phi_0 + 4t) = 4\text{volt}$$

Induced emf in secondary coil

$$\frac{E_S}{E_P} = \frac{N_S}{N_P} \Rightarrow \frac{E_S}{4} = \frac{1500}{50} \Rightarrow E_S = 120 \text{ volt}$$

36. Current is maximum at resonance

$$\Rightarrow \omega^{2} = \frac{1}{LC} \Rightarrow L = \frac{1}{\omega^{2}C}$$
$$= \frac{1}{(1000)^{2}(10 \times 10^{-6})} = 0.1H = 100mH$$

37. The efficiency of transformer

$$\eta = \frac{V_S I_S}{V_P I_P} \times 100 = \frac{100}{220 \times 0.5} \times 100 \approx 90\%$$

38. Above curie temperature ferromagnetic material behaves as paramagnetic material.

39. No. of photoelectrons or intensity $\propto \frac{1}{(\text{distance})^2}$

40.
$$n = \frac{P}{hv} = \frac{2 \times 10^{-3}}{6.62 \times 10^{-34} \times 6 \times 10^{14}} = 5 \times 10^{15}$$

41. Radius of semicircular path

$$R = \frac{mv}{qB} = \frac{\sqrt{2mqV}}{qB}$$

As V and B are constant so

$$R \alpha \frac{\sqrt{mq}}{q} \Rightarrow \frac{q}{m} \propto \frac{1}{R^2}$$

42. $: R = R_0 A^{1/3}$

$$\therefore \frac{R_{Te}}{R_{Al}} = \left(\frac{125}{27}\right)^{1/3} = \left(\frac{5^3}{3^3}\right)^{1/3} = \frac{5}{3}$$

$$\Rightarrow R_{Te} = \left(\frac{5}{3}\right)(3.6) = 6 \text{ fm}$$

45.
$$\frac{N_A}{N_B} = \frac{N_0 e^{-\lambda_A t}}{N_0 e^{-\lambda_B t}} = \frac{e^{-5\lambda t}}{e^{-\lambda t}}$$
$$\Rightarrow \frac{1}{e^{4\lambda t}} = \frac{1}{e^2} \Rightarrow t = \frac{1}{2\lambda}$$

46. Total energy in first excited state

$$=-\frac{13.4}{4}=-3.4 \text{ eV}$$

K.E. in first excited state = - total energy in that state = -(-3.4) = 3.4 eV

48. Voltage gain =
$$(\beta) \left(\frac{R_0}{R_i} \right) = 50$$

$$\Rightarrow \beta = \frac{(50)(100)}{(200)} = 25$$

Power gain =
$$(\beta^2) \left(\frac{R_0}{R_i} \right) = (25)^2 \left(\frac{200}{100} \right)$$

= $625 \times 2 = 1250$

49. For given logic circuit

$$Y = \overline{\overline{A + B}} = A + B \Rightarrow OR$$
 gate

50. For cubic crystal structure $a = b = c & \alpha = \beta = \gamma = 90^{\circ}$