

DIFFERENTIAL EQUATIONS ANDCONTROL PROCESSES N 1, 2013 Electronic Journal, reg. $N \Phi C77-39410$ at 15.04.2010ISSN 1817-2172

http://www.math.spbu.ru/diffjournal e-mail: jodiff@mail.ru

Ordinary differential equations

Rational solutions of Riccati differential equation with coefficients rational

Nadhem ECHI Université de Tunis El Manar, B.P. 37, 1002-TUNIS Belvédère, Tunisie. E-mail address: nadhemechi_fsg@yahoo.fr

Abstract

This paper presents a simple and efficient method for determining the solution of Riccati differential equation with coefficients rational. In case the differential Galois group of the differential equation $(E_l): y'' = ry, r \in \mathbb{C}(x)$ is reducible, we look for the rational solutions of Riccati differential equation $\theta' + \theta^2 = r$, by reducing the number of check to be made and by accelerating the search for the partial fraction decomposition of the solution reserved for the poles of θ which are false poles of r. This partial fraction decomposition of solution can be used to code r. The examples demonstrate the effectiveness of the method.

Introduction 1

The quadratic Riccati differential equation:

$$(E_R): \sigma' = p_2 \sigma^2 + p_1 \sigma + p_0$$
 (1)

where p_0, p_1 and p_2 are in a differential field $\mathbb{K}, p_2 \neq 0$. The quadratic Riccati differential equation is first converted to a reduced Riccati differential equation:

$$(E_r): \theta' + \theta^2 = r \tag{2}$$

where : $\theta = -p_2\sigma - \frac{1}{2}a$, with $a = \frac{p_2'}{p_2} + p_1$ and $r = \frac{1}{4}a^2 - \frac{1}{2}a' - p_2p_0$. Furthermore, we put: $\frac{y'}{y} = \theta$, reduced Riccati differential equation (2) is converted to a secondorder linear ordinary differential equation:

$$(E_l): y'' = ry \tag{3}$$

If we have a particular solution non-zero of (E_l) then general solution is : y = cu where $c' = \frac{\lambda}{a^2}$, λ constant (see [6,9,14]).

In paper, we base ourselves mainly on the work of J.J. Kovačić [9] where differential Galois group of the differential equation (E_l) is reducible and we take : $\mathbb{K} = \mathbb{C}(X)$.

In case where every solution of (E_l) is Liouvillian corresponds to the case where reduced Riccati differential equation (E_r) have algebraic solution over \mathbb{K} . The case where differential Galois group is reducible corresponds to the case where the Riccati differential equation (E_r) have the rational solution $\frac{u'}{u}$ u solution of (E_l) . The solution u of (E_l) is rational fraction if only if $\frac{u'}{u}$ the fraction of simples poles with the integers residues and negative degree.

The field $\mathbb{C}(X)[u]$ is differential extension of $\mathbb{C}(X)$ by exponential of an integral and if $v' = \frac{1}{u^2}$ then (u, v) two solutions of (E_l) linearly independent over field of constants \mathbb{C} . The ordinary extension $\mathbb{C}(X)[u, v]$ is differential extension of $\mathbb{C}(X)[u]$, by a integral. $\mathbb{C}(X)[u, v]$ is Picard-Vessiot extension of $\mathbb{C}(X)[u]$ for the differential equation (E_l) (see[8-9-10]). The existence of rational solution $\frac{u'}{u}$ of Riccati differential equation (E_r) given all solutions of (E_r) of course research primitive of $\frac{1}{u^2}$.

This paper presents a simple and efficient method for determining the solution of Riccati differential equation with coefficients rational. In case the differential Galois group of the differential equation $(E_l): y'' = ry, r \in \mathbb{C}(x)$ is reducible, we look for the rational solutions of Riccati differential equation $\theta' + \theta^2 = r$, by reducing the number of check to be made and by accelerating the search for the partial fraction decomposition of the solution reserved for the poles of θ which are false poles of r. This partial fraction decomposition of solution can be used to code r. The examples demonstrate the effectiveness of the method.

2 Form of rational solution of equation : (E_r)

Let $r \in \mathbb{C}(x)$ $r \neq 0$ rational fraction and $\theta \in \mathbb{C}(x)$ the rational solution of Riccati differential equation (E_r) : $\theta' + \theta^2 = r$.

2.1 Study in the pole c of multiplicity ν of θ

We put:

$$\theta = \frac{\tau}{(x-c)^{\nu}}$$
 ; where $\tau(c) \neq 0$

We have:

$$r = \theta' + \theta^2 = (x - c)^{-2\nu} \left[\left(\tau - \frac{\nu}{2} (x - c)^{\nu - 1}\right)^2 - \frac{\nu^2}{4} (x - c)^{2\nu - 2} + \tau' (x - c)^{\nu} \right]$$

Thus:

$$(\tau - \frac{\nu}{2}(x-c)^{\nu-1})^2 = (x-c)^{2\nu}r + (x-c)^{\nu}\left[\frac{\nu^2}{4}(x-c)^{\nu-2} - \tau'\right]$$

1. Case $1 : \nu > 2$

The function $(x-c)^{2\nu}r$ define and equal $\tau(c)^2$ at c.

Thus c is pole of multiplicity 2ν of r where :

$$\lim_{x \to c} (x - c)^{2\nu} r = (\lim_{x \to c} (x - c)^{\nu} \theta)^{2}$$

2. $Case\ 2 : \nu = 1$

We have:

$$(\tau - \frac{1}{2})^2 = (x - c)^2 r + \frac{1}{4} - (x - c)\tau'$$

The function $(x-c)^2r$ define and equal $\tau(c)(\tau(c)-1)$ at c.

<u>Situation 1</u>: $\lim_{x\to c} (x-c)^2 r \neq 0, -\frac{1}{4}$

c is double pole of r and the residue $\tau(c)$ of θ at c have tow possibility values following:

$$(\tau(c) - \frac{1}{2})^2 = \lim_{x \to c} (x - c)^2 r + \frac{1}{4}$$

Thus, c is double pole of r and the residue of θ at simple pole c equal:

$$\tau(c) = \alpha_c + \frac{1}{2}$$

where

$$\alpha_c^2 = \lim_{x \to c} (x - c)^2 r + \frac{1}{4}$$

Situation 2: $\lim_{x \to c} (x - c)^2 r = -\frac{1}{4}$ c is double pole of r and the residue of θ at c is $\frac{1}{2}$.

 $\underline{Situation\ 3}$: $\lim(x-c)^2r = 0$

c is simple pole of r and the residue of θ at simple pole c equal 1.

Proposition 1 Let $\theta \in \mathbb{C}(x)$ such as : $\theta' + \theta^2 = r$.

1. The fraction: $r = \frac{N}{D}$ with N and D polynomials relatively prime.

$$D = D_1 D_2^2 D_3^2 D_4^2 (4)$$

where D_1 , D_2 , D_3 and D_4 polynomials relatively prime pair-wise. D_1 , D_2 and D_3 which simples roots, D_4 without simple root.

 $\forall c \in Root(D_2) \lim_{x \to c} (x - c)^2 r = -\frac{1}{4}, \ \forall c \in Root(D_3) \lim_{x \to c} (x - c)^2 r \neq -\frac{1}{4}$

- 2. (a) Let $\nu \geq 2$. c pole of multiplicity ν of $\theta \Leftrightarrow c \in Root(D_4)$
 - (b) c simple pole of θ with $residue \neq 1, \frac{1}{2} \Leftrightarrow c \in Root(D_3)$ The residue of θ there c equal $\alpha_c + \frac{1}{2}$ where

$$\alpha_c^2 = \lim_{x \to c} (x - c)^2 r + \frac{1}{4} \tag{5}$$

- (c) c simple pole of θ with $residue = \frac{1}{2} \iff c \in Roots(D_2)$
- (d) c simple pole of θ with residue = 1 \Leftrightarrow c $\in Roots(D_1)$ or c pole of θ and false pole of r

Corollary 2 We assume that $r = \frac{N}{D}$ with N and D polynomials relatively prime, D = $D_1D_2^2D_3^2D_4^2$ where D_1 , D_2 , D_3 and D_4 polynomials relatively prime pair-wise, D_1 , D_2 and D_3 which simples roots, D_4 without simple root.

 $\forall c \in Root(D_2) \lim_{x \to c} (x - c)^2 r = -\frac{1}{4}, \ \forall c \in Root(D_3) \lim_{x \to c} (x - c)^2 r \neq -\frac{1}{4}$ A rational fraction θ Verify $\theta' + \theta^2 = r$ is the shape:

$$\theta = E(\theta) + \sum_{c \in Roots(D_4)} \theta_c + \sum_{c \in Roots(D_3)} \frac{\alpha_c + \frac{1}{2}}{x - c} + \frac{1}{2} \frac{D_2'}{D_2} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$
 (6)

with D_0 monic polynomial which simples roots and the roots are false poles of r.

2.2 Study in the infinity

Let: $t \in \mathbb{C}(x)$; $t \neq 0$ rational fraction such as : $\frac{dt}{dx} + t^2 = 0$.

case 1: We assume that: $d^{o}(\theta) < 0$

We have : $d^o(\theta') < 0$ and $d^o(\theta^2) < 0$ thus : $d^o(r) < 0$.

We put:

 $\theta = t\sigma(t)$ σ rational fraction defined at 0.

We have:

$$\sigma(0) = \lim_{x \to \infty} x\theta = sum \text{ the residues of } \theta,$$

$$r = \theta' + \theta^2 = (\sigma^2 - \sigma)t^2 - \sigma't^3 \text{ and } \lim_{x \to \infty} x^2r = \sigma(0)^2 - \sigma(0)$$

Thus: $d^{o}r \leq -2$ and $(\sigma(0) - \frac{1}{2})^{2} = \lim_{x \to \infty} x^{2}r + \frac{1}{4}$

If: $\lim_{x\to\infty} x^2 r = -\frac{1}{4}$ then the sum of residues of θ : $\sigma(0) = \frac{1}{2}$

If : $\lim_{x\to\infty}x^2r\neq -\frac14$ then the sum of residues of θ : $\sigma(0)=\alpha_\infty+\frac12$ where

$$\alpha_{\infty}^2 = \lim_{r \to \infty} x^2 r + \frac{1}{4} \tag{7}$$

case 2: We assume that: $d^{o}(\theta) = 0$.

 $E(\theta)$ constant $\neq 0$. We put:

$$\theta = E(\theta) + t\sigma(t);$$
 σ rational fraction defined at 0.

We have:

$$\sigma(0) = \lim_{x \to \infty} x(\theta - E(\theta)) = the sum of residues of \theta$$

and

$$r = \theta' + \theta^2$$

= $(E(\theta))^2 + 2E(\theta)t\sigma + (\sigma^2 - \sigma)t^2 - \sigma't^3$

So E(r) constant equal $E(\theta)^2$:

 $2E(\theta)[$ sum the residues of $\theta]=$ sum the residues of r

case 3: We assume that: $d^{o}(\theta) > 0$

We put:

$$\nu = d^{o}(\theta) > 1$$
 and $\theta = t^{-\nu}\sigma(t)$

 σ rational fraction defined at 0. The scalar $\sigma(0)$ is the dominant coefficient of $E(\theta)$. We have:

$$r = \theta' + \theta^2 = t^{-2\nu} [\sigma^2 + \nu t^{\nu+1} \sigma - t^{\nu+2} \sigma']$$

Thus:

$$t^{2\nu}r = \sigma(0)^2 + o(t)$$

So: $d^o r = 2\nu = 2d^o \theta$ and $\sigma^2(o)$ the dominant coefficient of E(r).

Proposition 3 Let: $\theta \in \mathbb{C}(x)$ such as : $\theta' + \theta^2 = r$.

1. $d^o(\theta) < 0 \iff d^o(r) < 0$. Thus : $d^o(r) \le -2$ and :

the sum of residues of
$$\theta = \begin{cases} \frac{1}{2} & \text{if } \lim_{x \to \infty} x^2 r = -\frac{1}{4} \\ \alpha_{\infty} + \frac{1}{2} & \text{if } \lim_{x \to \infty} x^2 r \neq -\frac{1}{4} \end{cases}$$

2. $d^{o}(\theta) = 0 \Leftrightarrow d^{o}(r) = 0$. In the case : $E(\theta)$ is square root of E(r) :

$$2E(\theta)(sum\ of\ residues\ of\ \theta) = sum\ of\ residues\ of\ r$$

 $= \lim_{x \to \infty} x(r - E(r))$

- 3. We have : $d^o(\theta) > 0 \iff d^o(r) > 0$. In the case :
 - (a) $d^{o}(r) = 2d^{o}(\theta)$
 - (b) The dominant coefficient of $E(\theta)$ is square root of E(r)

2.3 Determination of $E(\theta)$; $d^{o}(r) = 2\nu > 0$

We assume that r is a rational fraction of degree $2\nu > 0$ and $\theta \in \mathbb{C}(x)$ such as : $\theta' + \theta^2 = r$. Let a the dominant coefficient of E(r). Thus: $r \sim ax^{2\nu}$ if x tend to ∞ :

$$t^{2\nu} \frac{E(r)}{a} = 1 + a_1 t + \ldots + a_{2\nu} t^{2\nu}$$

The Taylor's expansion of order $\nu + 1$ at 0:

$$(t^{2\nu} \frac{E(r)}{a})^{\frac{1}{2}} = 1 + s_1 t + \dots + s_{\nu+1} t^{\nu+1} + o(t^{\nu+1})$$

We have:

$$\begin{array}{rcl} t^{2\nu}r & = & t^{2\nu}E(r) + o(t^{2\nu}) \\ & = & t^{2\nu}E(r) + o(t^{\nu+1}) \\ & = & a[(\frac{t^{2\nu}E(r)}{a})^{\frac{1}{2}}]^2 + o(t^{\nu+1}) \end{array}$$

We have: $\theta = t^{-\nu}\sigma(t)$ with σ rational fraction defined at 0, $\sigma(0)^2 = a$ and

$$(\sigma + \frac{\nu}{2}t^{\nu+1})^2 = t^{2\nu}r + \frac{\nu^2}{4}t^{2\nu+2} + t^{\nu+2}\sigma' = a[1 + s_1t + \dots + s_{\nu+1}t^{\nu+1}]^2 + o(t^{\nu+1})$$

$$\sigma + \frac{\nu}{2}t^{\nu+1} = \sigma(0)[1 + s_1t + \ldots + s_{\nu+1}t^{\nu+1}] + o(t^{\nu+1})$$

Thus:

$$\theta = t^{-\nu}\sigma = \sigma(0)[t^{-\nu} + s_1t^{-(\nu-1)} + \ldots + s_{\nu+1}t] - \frac{\nu}{2}t + o(t)$$

Imply:

$$\begin{cases} E(\theta) = \sigma(0)[t^{-\nu} + s_1 t^{-(\nu-1)} + \dots + s_{\nu}] \\ \sigma(0)s_{\nu+1} - \frac{\nu}{2} = sum \ of \ residues \ of \ \theta \end{cases}$$

Proposition 4 Let r is a rational fraction of degree $2\nu > 0$, $\theta \in \mathbb{C}(x)$ such as : $\theta' + \theta^2 = r$ and a the dominant coefficient of E(r). If :

$$(t^{2\nu} \frac{E(r)}{a})^{\frac{1}{2}} = 1 + s_1 t + \ldots + s_{\nu+1} t^{\nu+1} + o(t^{\nu+1})$$
 (8)

Then:

$$E(\theta) = \alpha [t^{-\nu} + s_1 t^{-(\nu-1)} + \dots + s_{\nu}]$$
(9)

$$\alpha s_{\nu+1} - \frac{\nu}{2} = sum \ of \ residues \ of \ \theta$$
 (10)

where

$$\alpha^2 = a \tag{11}$$

3 Determination of partial fraction decomposition

Let $r = \frac{N}{D}$ rational fraction with N and D polynomials relatively prime, $D = D_1 D_2^2 D_3^2 D_4^2$ where D_1 , D_2 , D_3 et D_4 polynomials relatively prime pair-wise, D_1 , D_2 and D_3 which simples roots, D_4 without simple root.

$$\forall c \in Root(D_2) \lim_{x \to c} (x - c)^2 r = -\frac{1}{4}, \ \forall c \in Root(D_3) \lim_{x \to c} (x - c)^2 r \neq -\frac{1}{4}$$

Let $\theta \in \mathbb{C}(x)$ rational fraction Verify: $\theta' + \theta^2 = r$

3.1 Case $d^{o}D_{3} = 0$ and $d^{o}D_{4} = 0$

We have : $r = \frac{N}{D_1 D_2^2}$

This case corresponds to the fact that one pole c of r is or simple or double with:

$$\lim_{x \to c} (x - c)^2 r = -\frac{1}{4}$$

Proposition 5 We assume $d^o r < 0$ and $d^o D_3 = d^o D_4 = 0$. We have :

$$\lim_{x \to \infty} x^2 r + \frac{1}{4} = (\frac{q}{2})^2$$

with q positive integer of parity against that of $d^{o}D_{2}$

$$\theta = \frac{1}{2} \frac{D_2'}{D_2} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0} \tag{12}$$

with D_0 polynomial of degree :

$$d^{o}D_{0} = \frac{1}{2}(q + 1 - d^{o}D_{2}) - d^{o}D_{1}$$
(13)

Proof. We have :

$$\theta = \frac{1}{2} \frac{D_2'}{D_2} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$

Sum of residues of θ equal $\frac{1}{2}d^oD_2 + d^oD_1 + d^oD_0 = \alpha_{\infty} + \frac{1}{2}$

with $\alpha_{\infty}^2 = \lim_{x \to \infty} x^2 r + \frac{1}{4}$. In particular : $\alpha_{\infty} = \frac{q}{2}$ with $q \in \mathbb{N}$

Remark: if
$$\lim_{x\to\infty} x^2 r = -\frac{1}{4}$$
 then: $d^o D_2 = 1$, $d^o D_1 = d^o D_0 = 0$, $\theta = \frac{1}{2} \frac{1}{(x-c)}$ and $r = -\frac{1}{4(x-c)^2}$

Proposition 6: We assume $d^{o}r = 0$ and $d^{o}D_{3} = d^{o}D_{4} = 0$.

- 1. $E(\theta)$ square root of E(r) such as $p = \frac{1}{E(\theta)} \lim_{x \to \infty} x[r E(r)]$ positive integer of same parity as $d^o D_2$.
- 2. We have:

$$\theta = E(\theta) + \frac{1}{2} \frac{D_2'}{D_2} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$
(14)

with D_0 polynomial of degree:

$$d^{o}D_{0} = \frac{1}{2}p - d^{o}D_{1} - \frac{1}{2}d^{o}D_{2}$$

$$\tag{15}$$

Proof. We have:

$$\theta = E(\theta) + \frac{1}{2} \frac{D_2'}{D_2} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$

We have:

 $2E(\theta)sum\ of\ residues(\theta)\ =\ sum\ of\ residues(r) = \lim_{x\to\infty}x[r-E(r)]$

$$2E(\theta)\left[\frac{1}{2}d^{o}D_{2} + d^{o}D_{1} + d^{o}D_{0}\right] = \lim_{x \to \infty} x[r - E(r)]$$

Thus:

$$d^{o}D_{2} + 2d^{o}D_{1} + 2d^{o}D_{0} = \frac{1}{E(\theta)} \lim_{x \to \infty} x[r - E(r)]$$

If r constant then $D_1 = D_2 = D_0 = 1$ and θ constant.

If r non-constant then r is not polynomial thus:

$$p = \frac{1}{E(\theta)} \lim_{x \to \infty} x[r - E(r)]$$

positive integer of same parity as $d^{o}D_{2}$.

Proposition 7:

We assume $d^o r = 2\nu > 0$ and $d^o D_3 = d^o D_4 = 0$

Let a the dominant coefficient of E(r) and we consider the Taylor's expansion at infinity:

1.

$$4as_{\nu+1}^2 = p^2 \tag{17}$$

where p positive integer, $p \ge d^o D_2 + 2 d^o D_1 + \nu$ and same parity of $d^o D_2 + 2 d^o D_1 + \nu$.

2. We have:

$$\theta = E(\theta) + \frac{1}{2} \frac{D_2'}{D_2} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$
(18)

with D_0 polynomial of degree:

$$d^{o}D_{0} = \frac{p - \nu - d^{o}D_{2}}{2} - d^{o}D_{1} \tag{19}$$

and α the dominant coefficient of $E(\theta)$ where :

$$p = 2\alpha s_{\nu+1} \tag{20}$$

Proof. We have :

$$E(\theta) = \alpha [t^{-\nu} + s_1 t^{-(\nu - 1)} + ... + s_{\nu}]$$

$$\alpha s_{\nu + 1} - \frac{\nu}{2} = sum \ of \ residues \ of \theta$$

$$\theta = E(\theta) + \frac{1}{2} \frac{D_2'}{D_2} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$

Thus:

$$\frac{1}{2}d^{o}D_{2} + d^{o}D_{1} + d^{o}D_{0} = \alpha s_{\nu+1} - \frac{\nu}{2}$$

 $\alpha s_{\nu+1} = \frac{p}{2}$ with p positive integer. Thus: $p \geq d^o D_2 + 2 d^o D_1 + \nu$ and same parity of $d^o D_2 + 2 d^o D_1 + \nu$.

3.2 Case: $D_3 = X - c$ and $d^0D_4 = 0$

This case corresponds to the fact that a pole of r is simple or double with a only double pole c such as :

$$\lim_{x \to c} (x - c)^2 r \neq -\frac{1}{4} \tag{21}$$

$$r = \frac{N}{D_1 D_2^2 (x - c)^2} \tag{22}$$

Proposition 8: Consider the Eq. (22) and let $\theta \in \mathbb{C}(x)$ rational fraction Verify: $\theta' + \theta^2 = r$ We assume: $d^{\circ}r < 0$. Accordingly, in view of (5) and (7) we have:

$$\theta = \frac{\alpha_c + \frac{1}{2}}{x - c} + \frac{1}{2} \frac{D_2'}{D_2} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$
(23)

with D_0 polynomial of degree :

$$d^{o}D_{0} = \lambda - \frac{1}{2}d^{o}D_{2} - d^{o}D_{1} \tag{24}$$

where

$$\lambda = \alpha_{\infty} - \alpha_c \tag{25}$$

one half positive integer of same parity as $d^{o}D_{2}$.

Proof. We have :

$$\lim_{x \to \infty} x\theta = \alpha_c + \frac{1}{2} + \frac{1}{2} d^o D_2 + d^o D_1 + d^o D_0$$
$$(\alpha_c + \frac{1}{2} d^o D_2 + d^o D_1 + d^o D_0)^2 = \lim_{x \to \infty} x^2 r + \frac{1}{4} = \alpha_\infty^2$$

Thus:

$$\frac{1}{2}d^{o}D_{2} + d^{o}D_{1} + d^{o}D_{0} = \alpha_{\infty} - \alpha_{c}$$

Proposition 9: Consider the Eq. (22) and let $\theta \in \mathbb{C}(x)$ rational fraction Verify: $\theta' + \theta^2 = r$ We assume: $d^{\circ}r = 0$. We have:

$$\theta = E(\theta) + \frac{\alpha_c + \frac{1}{2}}{x - c} + \frac{1}{2} \frac{D_2'}{D_2} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$
(26)

with $E^2(\theta) = E(r)$ and D_0 polynomial of degree :

$$d^{o}D_{0} = \frac{1}{2}\lambda - \frac{1}{2}d^{o}D_{2} - d^{o}D_{1} - \frac{1}{2}$$
(27)

where

$$\lambda = \frac{1}{E(\theta)} \lim_{x \to \infty} x[r - E(r)] - 2\alpha_c \tag{28}$$

 λ is positive integer of parity against that of $d^{o}D_{2}$.

Proof. We have:

$$2E(\theta)[\alpha_c + \frac{1}{2} + \frac{1}{2}d^oD_2 + d^oD_1 + d^oD_0] = \lim_{x \to \infty} x[r - E(r)]$$

Thus

$$1 + d^{o}D_{2} + 2d^{o}D_{1} + 2d^{o}D_{0} = \frac{1}{E(\theta)} \lim_{x \to \infty} x[r - E(r)] - 2\alpha_{c}$$

Proposition 10: Consider the Eq. (22) and let $\theta \in \mathbb{C}(x)$ rational fraction Verify: $\theta' + \theta^2 = r$ We assume: $d^{\circ}r = 2\nu > 0$. Let a the dominant coefficient of E(r), α the dominant coefficient of $E(\theta)$, $t = \frac{1}{x}$ and Taylors expansion:

$$(t^{2\nu}\frac{E(r)}{a})^{\frac{1}{2}} = 1 + s_1t + \dots + s_{\nu+1}t^{\nu+1} + o(t^{\nu+1})$$

We have:

$$\theta = E(\theta) + \frac{\alpha_c + \frac{1}{2}}{x - c} + \frac{1}{2} \frac{D_2'}{D_2} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$
(29)

 D_0 polynomial of degree :

$$d^{o}D_{0} = \alpha s_{\nu+1} - \alpha_{c} - \frac{1 + \nu + d^{o}D_{2}}{2} - d^{o}D_{1} \quad and \quad \alpha^{2} = a$$
 (30)

Proof. We have:

$$E(\theta) = \alpha [t^{-\nu} + s_1 t^{-(\nu - 1)} + ... + s_{\nu}]$$

and

$$\alpha s_{\nu+1} - \frac{\nu}{2} = sum \ of \ residues \ of \ \theta$$

Thus:

$$\theta = E(\theta) + \frac{\alpha_c + \frac{1}{2}}{x - c} + \frac{1}{2} \frac{D_2'}{D_2} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$

$$\alpha s_{\nu+1} - \frac{\nu}{2} = \alpha_c + \frac{1}{2} + \frac{1}{2} d^o D_2 + d^o D_1 + d^o D_0$$

Thus:

$$d^{o}D_{0} = \alpha s_{\nu+1} - \alpha_{c} - \frac{1 + \nu + d^{o}D_{2}}{2} - d^{o}D_{1}$$

3.3 Case: $(d^o D_3 \neq 0 \text{ and } d^o D_4 \neq 0) \text{ or } (d^o D_3 \geq 2 \text{ and } d^o D_4 = 0)$

 $D_1D_2^2$ and D_3D_4 polynomials relatively prime. Thus there are two only polynomials N_1 and N_2 such as :

$$\begin{cases} D_1 D_2^2 D_3^2 D_4^2 (r - E(r)) = N_1 (D_1 D_2^2) + N_2 (D_3 D_4) \\ d^o N_1 & < d^o (D_3 D_4) \end{cases}$$

Thus

$$r = E(r) + \frac{N_1}{D_3^2 D_4^2} + \frac{N_2}{D_1 D_2^2 D_3 D_4}$$
(31)

We have:

$$d^{o}(\frac{N_{1}}{D_{3}^{2}D_{4}^{2}}) = d^{o}(\frac{N_{1}}{D_{3}D_{4}}\frac{1}{D_{3}D_{4}}) < d^{o}(\frac{1}{D_{3}D_{4}}) \le -2$$
(32)

Because D_4 does not have simple roots verify : $d^oD_4 = 0$ or $d^oD_4 \ge 2$. Thus: $d^o(D_3D_4) \ge 2$. Thus :

$$\lim_{x \to \infty} x^2 \frac{N_1}{D_3^2 D_4^2} = 0 \tag{33}$$

$$d^o(r - E(r)) < 0 (34)$$

$$d^{o}(\frac{N_{2}}{D_{1}D_{2}^{2}D_{3}D_{4}}) < 0 (35)$$

We consider the rational fraction:

$$F = E(r) + \frac{N_1}{D_3^2 D_4^2} - \delta \tag{36}$$

where

$$\delta = \frac{1}{4} \left[\frac{1}{k} \left(\frac{D_3'}{D_3} \right)^2 + \left(\frac{1}{k} + 1 \right) \left(\frac{D_3'}{D_3} \right)' \right]$$
 (37)

$$k = d^o D_3 \neq 0 \tag{38}$$

Proposition 11: We assume
$$\begin{cases} d^o D_3 \neq 0 \\ d^o D_4 \neq 0 \end{cases} or \begin{cases} d^o D_3 \geq 2 \\ d^o D_4 = 0 \end{cases}$$

1. If : $d^o r \ge 0$ then : $d^o F = d^o r$ and E(F) = E(r)

2. If :
$$d^{o}r < 0$$
 then : $d^{o}F = -2$ where $\lim_{x \to \infty} x^{2}F = \frac{1}{4}$.

3. For all c root of D_3 we have:

$$\lim_{x \to c} (x - c)^2 F = \lim_{x \to c} (x - c)^2 r + \frac{1}{4}$$

4. For all c root of D_4 of multiplicity ν we have:

$$(x-c)^{2\nu}r = (x-c)^{2\nu}F + o((x-c)^{\nu-1})$$

Proof.

1. $r - F = \frac{N_2}{D_1 D_2^2 D_3 D_4} + \delta$ is from negative degree.

2.
$$\lim_{x \to \infty} x^2 F = \lim_{x \to \infty} x^2 \frac{N_1}{D_3^2 D_4^2} - \lim_{x \to \infty} x^2 \delta = -\lim_{x \to \infty} x^2 \delta = \frac{1}{4}$$

3. Let c root of D_3 .

$$\lim_{x \to \infty} (x - c)^2 (r - F) = \lim_{x \to c} \frac{N_2}{D_1 D_2^2 D_4} \frac{(x - c)^2}{D_3} + \lim_{x \to c} (x - c)^2 \delta$$
$$= \lim_{x \to c} (x - c)^2 \delta = -\frac{1}{4}$$

4. Let c root of D_4 .

$$(x-c)^{2\nu}(r-F) = \frac{N_2}{D_1 D_2^2 D_3} \frac{(x-c)^{2\nu}}{D_4} + (x-c)^{2\nu} \delta$$
$$= o((x-c)^{\nu-1})$$

Lemma 12 Let Z be non-zero rational fraction. Σ is a finished set such as:

$$\Sigma \cap [Roots(Z) \cup poles(Z)] = \emptyset \tag{39}$$

- 1. Exists O open connected on which we have a square root holomorphic of Z, containing for every $c \in \Sigma$ a half-right closed by origin c.
- 2. If, besides, Z is from even degree then can choose O of complementary compact.

Proof. We fix c_0 not an element of Σ . Let Σ' a finished set containing roots, poles of Z and c_0 . They consider all rights linked to the different pairs of points of $\Sigma \cup \Sigma'$. They choose a point w not being on these rights. For all $c \in \Sigma \cup \Sigma'$, which joins right w in c does not contain any other point of $\Sigma \cup \Sigma'$.

case $1 : \mathbf{d}^{\circ}\mathbf{Z}$ even : Replacing Z by rational fraction: $\frac{Z}{(x-c_0)^{d^{\circ}Z}}$.

Assume $d^{o}Z = 0$. We put: $K = \bigcup_{c \in \Sigma'} [w, c].K$ is compact connected.

We put: $O = \mathbb{C} \setminus K$. O is open at infinity such as for all $c \in \Sigma$ reaching right w in c private of w is contained in O.

If γ a shoelace of O then K is in one connected component of $\mathbb{C} \setminus \gamma$. Thus:

$$\frac{1}{2i\pi} \int_{\gamma} \frac{Z'}{Z}(x) dx = \pm \sum_{c \in \Sigma'} residue(\frac{Z'}{Z}, c) = \pm d^{o}Z = 0$$

Thus exist the primitive of $\frac{Z'}{Z}$ and the determination of logarithm of Z and the square root of Z in O.

<u>case 2 : doZ odd :</u> They use the previous case in replacing Z by rational fraction $\frac{Z}{(x-c_0)}$.

<u>Notation</u>: We choose a square root of the polynomial of even degree : $N_1 + D_3^2 D_4^2 [E(r) - \delta]$ on a connected open at infinity, roots of D_3 and root of D_4 . We put :

$$(F)^{\frac{1}{2}} = \frac{1}{D_3 D_4} (N_1 + D_3^2 D_4^2 [E(r) - \delta])^{\frac{1}{2}}$$
(40)

Proposition 13: We assume $\begin{cases} d^oD_3 \neq 0 \\ d^oD_4 \neq 0 \end{cases}$ or $\begin{cases} d^oD_3 \geq 2 \\ d^oD_4 = 0 \end{cases}$

We have:

$$\theta = E(\theta) + \sum_{c \in Root(D_3) \cup Root(D_4)} \varepsilon_c(partial\ fraction\ of(F)^{\frac{1}{2}}\ at\ c) + \frac{1}{2} \frac{(D_2 D_3 D_4)'}{D_2 D_3 D_4} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$
(41)

where $\varepsilon_c = \pm 1$

Proof. For c root of multiplicity $\nu \geq 2$ of D_4

$$((x-c)^{\nu}\theta - \frac{\nu}{2}(x-c)^{\nu-1})^2 = ((x-c)^{\nu}(F)^{\frac{1}{2}})^2 + o((x-c)^{\nu-1})$$

Thus:

$$(x-c)^{\nu}\theta - \frac{\nu}{2}(x-c)^{\nu-1} = \varepsilon_c(x-c)^{\nu}(F)^{\frac{1}{2}} + o((x-c)^{\nu-1})$$
$$\theta - \frac{\nu}{2(x-c)} = \varepsilon_c(F)^{\frac{1}{2}} + o(\frac{1}{x-c})$$

Polar part of θ , associated in root c of (D_4) , minus $\frac{\nu}{2(x-c)}$, is in sign meadows that of $(F)^{\frac{1}{2}}$. For c root of D_3 :

$$[(residue \ of \ \theta \ at \ c) - \frac{1}{2}]^2 = \lim_{x \to c} ((x - c)(F)^{\frac{1}{2}})^2$$

Thus:

[(residue of
$$\theta$$
 at c) $-\frac{1}{2}$] = ε_c (residue of $(F)^{\frac{1}{2}}$ at c)

Polar part of θ , associated in root c of (D_3) , minus $\frac{1}{2(x-c)}$, is in sign meadows that of $(F)^{\frac{1}{2}}$. Thus:

$$\theta = E(\theta) + \sum_{c \in Root(D_3) \cup Root(D_4)} \varepsilon_c(partial\ fraction\ of(F)^{\frac{1}{2}}\ at\ c) + \frac{1}{2} \frac{(D_2 D_3 D_4)'}{D_2 D_3 D_4} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$

Electronic Journal. http://www.math.spbu.ru/diffjournal 12

Proposition 14: We assume: $d^or < 0$ and $\begin{cases} d^oD_3 \neq 0 \\ d^oD_4 \neq 0 \end{cases}$ or $\begin{cases} d^oD_3 \geq 2 \\ d^oD_4 = 0 \end{cases}$

We have:

$$\theta = \sum_{c \in Root(D_3) \cup Root(D_4)} \varepsilon_c(partial\ fraction\ of(F)^{\frac{1}{2}}\ at\ c) + \frac{1}{2} \frac{(D_2 D_3 D_4)'}{D_2 D_3 D_4} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$
(42)

where D_0 polynomial of degree :

$$\left[\sum_{c \in Roots(D_3) \cup Roots(D_4)} \varepsilon_c \left(residue \ of \ ((F)^{\frac{1}{2}} \ at \ c\right) + \frac{1}{2} d^o(D_2 D_3 D_4) + d^o D_1 + d^o D_0 - \frac{1}{2}\right]^2 = \lim_{x \to \infty} x^2 r + \frac{1}{4} d^o D_0 + \frac{1}{2} d^$$

Proof. We have:

$$\lim_{x \to \infty} x\theta = \sum_{c \in Roots(D_3) \cup Roots(D_4)} \varepsilon_c(residue \quad of \ ((F)^{\frac{1}{2}} \ at \ c) + \frac{1}{2} d^o(D_2 D_3 D_4) + d^o D_1 + d^o D_0$$

and
$$\lim_{x\to\infty} x^2 r + \frac{1}{4} = (\lim_{x\to\infty} x\theta - \frac{1}{2})^2$$
. Thus:

$$[\sum_{c \in Roots(D_3) \cup Z \acute{e}ros(D_4)} \varepsilon_c \ residue \ of \ (F)^{\frac{1}{2}} \ at \ c) + \frac{1}{2} d^o(D_2 D_3 D_4) + d^o D_1 + d^o D_0 - \frac{1}{2}]^2 = \lim_{x \to \infty} x^2 r + \frac{1}{4} d^o(D_2 D_3 D_4) + d^o D_1 + d^o D_0 - \frac{1}{2} d^o(D_2 D_3 D_4) + d^o D_0 - \frac{1}{2} d^o(D_2 D_3 D_$$

Proposition 15: We assume $d^{o}r = 0$. We have:

$$\theta = E(\theta) + \sum_{c \in Root(D_3) \cup Root(D_4)} \varepsilon_c(partial\ fraction\ of(F)^{\frac{1}{2}}\ at\ c) + \frac{1}{2} \frac{(D_2 D_3 D_4)'}{D_2 D_3 D_4} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$
(44)

where $E^2(\theta) = E(r)$ and D_0 polynomial of degree :

$$d^{o}D_{0} = \frac{1}{2E(\theta)} \lim_{x \to \infty} x[r - E(r)] - \left[\sum_{c \in R(D_{3}) \cup R(D_{4})} \varepsilon_{c}(residue \ of \ (F)^{\frac{1}{2}} at \ c) + \frac{1}{2} d^{o}(D_{2}D_{3}D_{4}) + d^{o}D_{1} \right]$$

$$(45)$$

Proof.

$$E^{2}(\theta) = E(r)$$
 and $2E(\theta) \sum_{c}$ residue of θ at $c = \sum_{c}$ residue of r at c

Thus:

$$2E(\theta)\left[\sum_{c \in R(D_3) \cup R(D_4)} \varepsilon_c(residue\ of\ (F)^{\frac{1}{2}}\ at\ c) + \frac{1}{2}d^o(D_2D_3D_4) + d^oD_1 + d^oD_0\right] = \lim_{x \to \infty} x(r - E(r))$$

Electronic Journal. http://www.math.spbu.ru/diffjournal 13

Proposition 16: We assume $d^{o}r = 2\nu > 0$. We have:

$$\theta = E(\theta) + \sum_{c \in Root(D_3) \cup Root(D_4)} \varepsilon_c(partial\ fraction\ of(F)^{\frac{1}{2}}\ at\ c) + \frac{1}{2} \frac{(D_2 D_3 D_4)'}{D_2 D_3 D_4} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$
(46)

where D_0 polynomial of degree :

$$d^{o}D_{0} = \alpha s_{\nu+1} - \frac{\nu}{2} - \left[\sum_{c \in Roots(D_{3}) \cup Roots(D_{4})} \varepsilon_{c}(residue\ of\ (F)^{\frac{1}{2}}at\ c) + \frac{1}{2}d^{o}(D_{2}D_{3}D_{4}) + d^{o}D_{1} \right]$$
(47)

Proof. Let a dominant coefficient of E(r), and we have : $\alpha s_{\nu+1} - \frac{\nu}{2} = \text{sum of residues of } \theta$.

$$\theta = E(\theta) + \sum_{c \in Z\acute{e}ros(D_3) \cup Z\acute{e}ros(D_4)} \varepsilon_c(partial\ fraction\ of\ (F)^{\frac{1}{2}}\ at\ c) + \frac{1}{2} \frac{(D_2 D_3 D_4)'}{D_2 D_3 D_4} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$

Thus:

$$\alpha s_{\nu+1} - \frac{\nu}{2} = \left[\sum_{c \in R(D_3) \cup R(D_4)} \varepsilon_c \ (residue \ of \ (F)^{\frac{1}{2}} \ at \ c) + \frac{1}{2} d^o(D_2 D_3 D_4) + d^o D_1 + d^o D_0 \right]$$

Thus:

$$d^{o}D_{0} = \alpha s_{\nu+1} - \frac{\nu}{2} - \left[\sum_{c \in R(D_{3}) \cup R(D_{4})} \varepsilon_{c} \left(residue \ of \ (F)^{\frac{1}{2}} \ at \ c \right) + \frac{1}{2} d^{o}(D_{2}D_{3}D_{4}) + d^{o}D_{1} \right]$$

3.4 Case $d^{o}D_{3} = 0$ and $d^{o}D_{4} \neq 0$

 $D_1D_2^2$ and D_4 polynomials relatively prime. Thus there are two only polynomials N_1 and N_2 such as :

$$\begin{cases} D_1 D_2^2 D_3^2 D_4^2 (r - E(r)) = N_1 (D_1 D_2^2) + N_2 D_4 \\ d^o N_1 & < d^o D_4 \end{cases}$$

We have:

$$r = E(r) + \frac{N_1}{D_4^2} + \frac{N_2}{D_1 D_2^2 D_4} \tag{48}$$

$$\lim_{x \to \infty} x^2 \frac{N_1}{D_4^2} = 0 \tag{49}$$

We consider the rational fraction:

$$F = E(r) + \frac{N_1}{D_4^2} - \frac{1}{4d^o D_4} (\frac{D_4'}{D_4})'$$
(50)

Proposition 17 : We assume $\begin{cases} d^o D_3 = 0 \\ d^o D_4 \neq 0 \end{cases}$

1. If :
$$d^o r \ge 0$$
 then : $d^o F = d^o r$ and $E(F) = E(r)$

2. If :
$$d^{o}r < 0$$
 then : $d^{o}F = -2$ where $\lim_{x \to \infty} x^{2}F = \frac{1}{4}$.

3. For all c root of D_4 of multiplicity ν we have:

$$(x-c)^{2\nu}r = (x-c)^{2\nu}F + o((x-c)^{\nu-1})$$

Proof.

1. $r - F = \frac{N_2}{D_1 D_2^2 D_4} + \frac{1}{4d^o D_4} (\frac{D_4'}{D_4})'$ is from negative degree.

2.

$$\lim_{x \to \infty} x^2 F = \lim_{x \to \infty} \frac{N_1}{D_4^2} - \lim_{x \to \infty} x^2 \frac{1}{4d^o D_4} (\frac{D_4'}{D_4})'$$
$$= -\lim_{x \to \infty} x^2 \frac{1}{4d^o D_4} (\frac{D_4'}{D_4})' = \frac{1}{4}$$

3. Let c root of D_4 :

$$(x-c)^{2\nu}(r-F) = \frac{N_2}{D_1 D_2^2} \frac{(x-c)^{2\nu}}{D_4} + (x-c)^{2\nu} \frac{1}{4d^o D_4} (\frac{D_4'}{D_4})'$$
$$= o((x-c)^{\nu-1})$$

<u>Notation</u>: We choose a square root of the polynomial of even degree : $N_1 + D_4^2[E(r) - \frac{1}{4d^o D_4}(\frac{D_4'}{D_4})']$ on a connected open at infinity, root of D_4 . We put :

$$(F)^{\frac{1}{2}} = \frac{1}{D_4} (N_1 + D_4^2 [E(r) - \frac{1}{4d^o D_4} (\frac{D_4'}{D_4})'])^{\frac{1}{2}}$$
(51)

Proposition 18: We assume: $d^{o}r < 0$. We have:

$$\theta = \sum_{c \in Roots(D_4)} \varepsilon_c(partial\ fraction\ of\ (F)^{\frac{1}{2}}\ at\ c) + \frac{1}{2} \frac{(D_2 D_4)'}{D_2 D_4} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$
 (52)

where $\varepsilon_c = \pm 1$ and D_0 polynomial of degree :

$$\left[\sum_{c \in Root(D_4)} \varepsilon_c \ (residue \ of \ ((F)^{\frac{1}{2}} \ at \ c) + \frac{1}{2} d^o(D_2 D_4) + d^o D_1 + d^o D_0 - \frac{1}{2}\right]^2 = \lim_{x \to \infty} x^2 r + \frac{1}{4} \ (53)$$

Proof.

$$\lim_{x \to \infty} x\theta = \sum_{c \in Roots(D_4)} \varepsilon_c(residue \ of \ ((F)^{\frac{1}{2}} \ at \ c) + \frac{1}{2} d^o(D_2D_4) + d^oD_1 + d^oD_0$$

$$\lim_{x \to \infty} x^2 r + \frac{1}{4} = (\lim_{x \to \infty} x\theta - \frac{1}{2})^2$$
. Thus:

$$\left[\sum_{c \in Roots(D_4)} \varepsilon_c \ residue \ of \ (F)^{\frac{1}{2}} \ at \ c\right) + \frac{1}{2} d^o(D_2 D_4) + d^o D_1 + d^o D_0 - \frac{1}{2}\right]^2 = \lim_{x \to \infty} x^2 r + \frac{1}{4} d^o D_0 + \frac{1}{2} d^$$

Electronic Journal. http://www.math.spbu.ru/diffjournal 15

Proposition 19: We assume $d^{o}r = 0$. We have:

$$\theta = E(\theta) + \sum_{c \in Roots(D_4)} \varepsilon_c(partial\ fraction\ of\ (F)^{\frac{1}{2}}\ at\ c) + \frac{1}{2} \frac{(D_2 D_4)'}{D_2 D_4} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$
 (54)

where $\varepsilon_c = \pm 1$ and D_0 polynomial of degree :

$$d^{o}D_{0} = \frac{1}{2E(\theta)} \lim_{x \to \infty} x[r - E(r)] - \left[\sum_{c \in Roots(D_{4})} \varepsilon_{c} \ (residue \ of \ (F)^{\frac{1}{2}} \ at \ c) + \frac{1}{2} d^{o}(D_{2}D_{4}) + d^{o}D_{1} \right]$$
(55)

Proof.

$$E^{2}(\theta) = E(r)$$
 and $2E(\theta) \sum_{c}$ residue of θ at $c = \sum_{c}$ residue of r at c

Thus:

$$2E(\theta)\left[\sum_{c \in Roots(D_4)} \varepsilon_c \ (residue \ of \ (F)^{\frac{1}{2}} \ at \ c) + \frac{1}{2} d^o(D_2D_4) + d^oD_1 + d^oD_0\right] = \lim_{x \to \infty} x(r - E(r))$$

Proposition 20 We assume $d^{o}r = 2\nu > 0$. We have :

$$\theta = E(\theta) + \sum_{c \in Roots(D_4)} \varepsilon_c(partial\ fraction\ of\ (F)^{\frac{1}{2}}\ at\ c) + \frac{1}{2} \frac{(D_2 D_4)'}{D_2 D_4} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$
 (56)

where $\varepsilon_c = \pm 1$ and D_0 polynomial of degree:

$$d^{o}D_{0} = \alpha s_{\nu+1} - \frac{\nu}{2} - \left[\sum_{c \in Roots(D_{4})} \varepsilon_{c} \ (residue \ of \ (F)^{\frac{1}{2}} \ at \ c) + \frac{1}{2} d^{o}(D_{2}D_{4}) + d^{o}D_{1} \right]$$
 (57)

Proof. Let a dominant coefficient of E(r). $E(\theta) = \alpha[t^{-\nu} + s_1t^{-(\nu-1)} + ... + s_{\nu}]$. $\alpha s_{\nu+1} - \frac{\nu}{2} = sum \ residue \ of \ \theta$, where $\alpha^2 = a$. Thus:

$$\theta = E(\theta) + \sum_{c \in Roots(D_4)} \varepsilon_c(partial\ fraction\ of\ (F)^{\frac{1}{2}}\ at\ c) + \frac{1}{2} \frac{(D_2 D_4)'}{D_2 D_4} + \frac{D_1'}{D_1} + \frac{D_0'}{D_0}$$

Thus:

$$\alpha s_{\nu+1} - \frac{\nu}{2} = \left[\sum_{c \in Roots(D_4)} \varepsilon_c \ (residue \ of \ (F)^{\frac{1}{2}} \ at \ c) + \frac{1}{2} d^o(D_2 D_4) + d^o D_1 + d^o D_0 \right]$$

Thus:

$$d^{o}D_{0} = \alpha s_{\nu+1} - \frac{\nu}{2} - \left[\sum_{c \in Roots(D_{4})} \varepsilon_{c} \ (residue \ of \ (F)^{\frac{1}{2}} \ at \ c) + \frac{1}{2} d^{o}(D_{2}D_{4}) + d^{o}D_{1} \right]$$

Electronic Journal. http://www.math.spbu.ru/diffjournal 16

4 Recurrent method at infinity

4.1 Presentation of D_0 as determinant:

Proposition 21: Let: c_1, \ldots, c_m complexes constants. We put:

$$P(x) = (x - c_1) \dots (x - c_m)$$

= $x^m - p_1 x^{m-1} + p_2 x^{m-2} - \dots + (-1)^m p_m$ (58)

For
$$j \in \mathbb{N}$$
, we put : $\sigma_j = c_1^j + \ldots + c_m^j$ and $\Delta = \begin{bmatrix} 1 & c_1 & \ldots & c_1^{m-1} \\ 1 & c_2 & \ldots & c_2^{m-1} \\ \vdots & & & \ddots \\ 1 & c_m & \ldots & c_m^{m-1} \end{bmatrix}$

1.

$$\Delta^{2} = \begin{vmatrix} \sigma_{0} & \sigma_{1} & . & . & \sigma_{m-1} \\ \sigma_{1} & \sigma_{2} & . & . & \sigma_{m} \\ . & & . & . \\ . & & . & . \\ \sigma_{m-1} & \sigma_{m} & . & . & \sigma_{2m-2} \end{vmatrix}$$
(59)

2.

$$\Delta^{2}P(x) = \begin{vmatrix} \sigma_{0} & \dots & \sigma_{m-1} & 1\\ & \ddots & & x\\ & & \ddots & \\ & & \ddots & \ddots\\ & & & \ddots & \\ \sigma_{m} & \dots & \sigma_{2m-1} & x^{m} \end{vmatrix}$$
(60)

Proof.
$$\Delta$$
, $\begin{vmatrix} \sigma_0 & \sigma_1 & \dots & \sigma_{m-1} \\ \sigma_1 & \sigma_2 & \dots & \sigma_m \\ \dots & \dots & \dots & \dots \\ \sigma_{m-1} & \sigma_m & \dots & \sigma_{2m-2} \end{vmatrix}$ polynomials at c_1, \dots, c_m with real coefficients. Thus, $\Delta^2 P(x)$ and $\begin{vmatrix} \sigma_0 & \dots & \sigma_{m-1} & 1 \\ \dots & \dots & x \\ \dots & \dots & \dots & \dots \\ \sigma_m & \dots & \sigma_{2m-1} & x^m \end{vmatrix}$ polynomials at c_1, \dots, c_m, x with real coefficients. Thus to

have both identities we can assume c_1, \ldots, c_m, x reals. Furthermore, we can content themselves with the open of Zariski c_1, \ldots, c_m, x distinct real non-zero.

with the open of Zariski c_1, \ldots, c_m, x distinct real non-zero. We have: $\forall j = 1, \ldots, m, \quad c_j^m = p_1 c_j^{m-1} - p_2 c_j^{m-2} - \ldots - (-1)^m p_m$.

We put:

$$\Delta(x) = \begin{vmatrix} 1 & c_1 & \dots & c_1^{m-1} & c_1^m \\ 1 & c_2 & \dots & c_2^{m-1} & c_2^m \\ \vdots & & & \ddots & \vdots \\ 1 & c_m & \dots & c_m^{m-1} & c_m^m \\ 1 & x & \dots & x^{m-1} & x^m \end{vmatrix}$$

$$\Delta(x) = \begin{vmatrix} 1 & c_1 & \dots & c_1^{m-1} & 0 \\ 1 & c_2 & \dots & c_2^{m-1} & 0 \\ \vdots & & & \ddots & \vdots \\ 1 & c_m & \dots & c_m^{m-1} & 0 \\ 1 & x & \dots & x^{m-1} & P(x) \end{vmatrix} = \Delta P(x)$$

We put:

$$v_j = \begin{pmatrix} c_1^{j-1} \\ \cdot \\ \cdot \\ c_m^{j-1} \end{pmatrix}, \quad pour \ j = 1, \dots, m$$

The scalar product:

$$\langle v_j, v_k \rangle = c_1^{j+k-2} + \ldots + c_m^{j+k-2} = \sigma_{j+k-2}$$

Matrix of Gram of v_1, \ldots, v_m is:

$$G = \begin{pmatrix} \sigma_0 & \sigma_1 & \dots & \sigma_{m-1} \\ \sigma_1 & \sigma_2 & \dots & \sigma_m \\ & & & & & \\ & & & & & \\ & & & & & \\ \sigma_{m-1} & \sigma_m & \dots & \sigma_{2m-2} \end{pmatrix}$$

Thus:

$$\Delta^{2} = \begin{vmatrix} \sigma_{0} & \sigma_{1} & \dots & \sigma_{m-1} \\ \sigma_{1} & \sigma_{2} & \dots & \sigma_{m} \\ \dots & & & \dots \\ \sigma_{m-1} & \sigma_{m} & \dots & \sigma_{2m-2} \end{vmatrix}$$

We put :
$$v_j(x)=\begin{pmatrix}c_1^{j-1}\\ \cdot\\ \cdot\\ c_m^{j-1}\\ x^{j-1}\end{pmatrix}, \quad j=1,\ldots,m+1.$$
 We notice:

$$\langle v_j(x), v_k(x) \rangle = \langle v_j, v_k \rangle + x^{j+k-2} = \sigma_{j+k-2} + x^{j+k-2}$$

The j-th column of matrix of Gram of matrix defines $\Delta(x)$ is:

$$\begin{pmatrix} \sigma_{j-1} \\ \sigma_{j} \\ \vdots \\ \sigma_{j+m-1} \end{pmatrix} + x^{j-1} \begin{pmatrix} 1 \\ x \\ \vdots \\ x^{m} \end{pmatrix}$$

Thus:

where

$$M = \begin{pmatrix} \sigma_0 & \sigma_1 & \dots & \sigma_m \\ \sigma_1 & \sigma_2 & \dots & \sigma_{m+1} \\ \dots & & \dots & \dots \\ \sigma_m & \sigma_{m+1} & \dots & \sigma_{2m} \end{pmatrix}$$

We obtain :
$$\Delta^2(x) = \Delta^2 P^2(x) = (1 \ x \dots x^m) Com(M) \begin{pmatrix} 1 \\ x \\ . \\ . \\ x^m \end{pmatrix}$$
.

The cofactor (m+1, m+1) of M is Δ^2 . The adjoint of M is non-zero.

We prove that adjoint of M of rank 1.

$$\det(M) = 0. \text{ Because : } \sigma_m = p_1 \sigma_{m-1} - p_2 \sigma_{m-2} - \dots - (-1)^m p_m \sigma_0$$

et $\forall k \ge m; \ \sigma_k = p_1 \sigma_{k-1} - p_2 \sigma_{k-2} - \dots - (-1)^m p_m \sigma_{k-m}$

Thus, the (m+1)-th column of M is is a linear combination of other column.

$$M + E_{1,1} = \begin{pmatrix} \sigma_0 + 1 & \sigma_1 & \dots & \sigma_m \\ \sigma_1 & \sigma_2 & \dots & \sigma_{m+1} \\ \vdots & & & \vdots \\ \sigma_m & \sigma_{m+1} & \dots & \sigma_{2m} \end{pmatrix} \quad and$$

$$\det(M + E_{1,1}) = \det(M) + \begin{vmatrix} 1 & \sigma_1 & \dots & \sigma_m \\ 0 & \sigma_2 & \dots & \sigma_{m+1} \\ \dots & \dots & \dots \\ 0 & \sigma_{m+1} & \dots & \sigma_{2m} \end{vmatrix} = \begin{vmatrix} \sigma_2 & \sigma_3 & \dots & \sigma_{m+1} \\ \sigma_3 & \sigma_4 & \dots & \sigma_{m+2} \\ \dots & \dots & \dots & \dots \\ \sigma_{m+1} & \sigma_{m+2} & \dots & \sigma_{2m} \end{vmatrix}$$

Thus:

$$\det(M + E_{1,1}) = \begin{vmatrix} c_1 & \dots & c_1^m \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \vdots \\ c_m & \dots & \ddots & c_m^m \end{vmatrix}^2$$

But:

$$\begin{vmatrix} c_1 & \dots & c_1^m \\ \vdots & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ c_m & \dots & c_m^m \end{vmatrix} = (-1)^{m-1} p_m \begin{vmatrix} c_1 & \dots & c_1^{m-1} & 1 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ c_m & \dots & c_m^{m-1} & 1 \end{vmatrix} = p_m \Delta$$

Thus: $\det(M + E_{1,1}) = p_m^2 \Delta^2$. Or $p_m = c_1...c_m$ is scalar non-zero, $M + E_{1,1}$ is invertible matrix. M symmetric matrix, Com(M) symmetric matrix, we have:

$$MCom(M) = Com(M)M = det(M)I = 0$$
; I matrice identité

Thus:

$$(M + E_{1,1})Com(M) = E_{1,1}Com(M)$$

Or $M + E_{1,1}$ is invertible and $Com(M) \neq 0$, Com(M) of rank 1.

Thus:

$$cofactor_{i,j}(M) = \frac{cofactor_{i,m+1}(M)}{cofactor_{m+1,m+1}(M)}cofactor_{m+1,j}(M)$$

For i = 1, ..., m + 1, j = 1, ..., m + 1, we put : $C_{i,j} = cofactor_{i,j}(M)$.

$$\frac{C_{i,j}}{\Delta^2} = \frac{C_{i,m+1}}{\Delta^2} \frac{C_{m+1,j}}{\Delta^2}$$

Thus:

$$P(x)^{2} = \sum_{1 \leq i,j \leq m+1} \frac{C_{i,j}}{\Delta^{2}} x^{i+j-2}$$

$$= \sum_{1 \leq i,j \leq m+1} \frac{C_{i,m+1}}{\Delta^{2}} \frac{C_{j,m+1}}{\Delta^{2}} x^{i+j-2}$$

$$= (\sum_{1 \leq i \leq m+1} \frac{C_{i,m+1}}{\Delta^{2}} x^{i-1})^{2}$$

Or P is monic polynomial and : $\frac{C_{m+1,m+1}}{\Delta^2} = 1$

$$P(x) = \sum_{i} \frac{C_{i,m+1}}{\Delta^{2}} x^{i-1} = \frac{1}{\Delta^{2}} \begin{vmatrix} \sigma_{0} & \dots & \sigma_{m-1} & 1 \\ \sigma_{1} & \dots & \sigma_{m} & x \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{m} & \dots & \sigma_{2m-1} & x^{m} \end{vmatrix}$$

We obtain:

$$\Delta^{2}P(x) = \begin{vmatrix} \sigma_{0} & \dots & \sigma_{m-1} & 1\\ \sigma_{1} & \dots & \sigma_{m} & x\\ \dots & \dots & \dots\\ \sigma_{m} & \dots & \sigma_{2m-1} & x^{m} \end{vmatrix}$$

4.2 Taylor expansion of $\frac{P'}{P}$

Proposition 22: Let c_1, \ldots, c_m are pairwise distinct constant. We put, for $j = 0, \ldots, m$: $\sigma_j = c_1^j + \ldots + c_m^j$ and $P(x) = (x - c_1) \ldots (x - c_m)$

1.

$$\left(\frac{P'}{P}\right)' + \left(\frac{P'}{P}\right)^2 = 2\sum_{i \neq j} \frac{1}{c_i - c_j} \frac{1}{x - c_i}$$
(61)

2. We put: $t = \frac{1}{x}$. Taylor expansion on the neighborhood of infinity:

(a)

$$\left(\frac{P'}{P}\right)' + \left(\frac{P'}{P}\right)^2 = \sum_{l=2}^{\infty} \left[\left(\sum_{\mu=0}^{l-2} \sigma_{\mu} \sigma_{l-2-\mu}\right) - (l-1)\sigma_{l-2}\right]t^l$$
(62)

(b)

$$x\frac{P'}{P} = \sum_{l=0}^{\infty} \sigma_l t^l \tag{63}$$

Proof. We have : $\frac{P'}{P} = \sum_{i=1}^{m} \frac{1}{x - c_i}$

1.

$$(\frac{P'}{P})' + (\frac{P'}{P})^2 = \sum_{i \neq j} \frac{1}{x - c_i} \frac{1}{x - c_j}$$

$$= \sum_{i \neq j} \left[\frac{\frac{1}{c_i - c_j}}{x - c_i} + \frac{\frac{1}{c_j - c_i}}{x - c_j} \right]$$

$$= 2 \sum_{i \neq j} \frac{1}{c_i - c_j} \frac{1}{x - c_i}$$

2. We put: $t = \frac{1}{x}$. We have :

$$(\frac{P'}{P})' + (\frac{P'}{P})^2 = 2t \sum_{i \neq j} \frac{1}{c_i - c_j} \frac{1}{1 - c_i t}$$

$$= 2t \sum_{i \neq j} \frac{1}{c_i - c_j} \sum_{k=0}^{\infty} (c_i t)^k$$

$$= \sum_{k=0}^{\infty} (2 \sum_{i \neq j} \frac{c_i^k}{c_i - c_j}) t^{k+1}$$

$$= \sum_{k=1}^{\infty} \sum_{i \neq j} \frac{c_i^k - c_j^k}{c_i - c_j} t^{k+1}$$

As:

$$\sum_{i \neq j} \frac{c_i^k - c_j^k}{c_i - c_j} = \sum_{i \neq j} \sum_{\mu + \nu = k - 1, \ 0 \le \mu \le k - 1} c_i^{\mu} c_j^{\nu}$$

$$= \sum_{\mu + \nu = k - 1, \ 0 \le \mu \le k - 1} [\sigma_{\mu} \sigma_{\nu} - \sum_{i = 1}^m c_i^{\mu + \nu}]$$

$$= [\sum_{\mu + \nu = k - 1, \ 0 \le \mu \le k - 1} \sigma_{\mu} \sigma_{\nu}] - k \sigma_{k - 1}$$

Thus:

$$(\frac{P'}{P})' + (\frac{P'}{P})^2 = \sum_{k=1}^{\infty} [(\sum_{\mu=0}^{k-1} \sigma_{\mu} \sigma_{k-1-\mu}) - k \sigma_{k-1}] t^l$$

$$= \sum_{l=2}^{\infty} [(\sum_{\mu=0}^{l-2} \sigma_{\mu} \sigma_{l-2-\mu}) - (l-1) \sigma_{l-2}] t^l$$

4.3 Research of D_0

Let $r = \frac{N}{D_1 D_2^2 D_3^2 D_4^2}$ rational fraction and $\theta \in \mathbb{C}(x)$ where : $\theta' + \theta^2 = r$. We put :

$$\theta = S + \frac{D_0'}{D_0} \tag{64}$$

where $S = E(\theta) + \sum_{c \text{ poles of } r} \theta_c$ and D_0 monic polynomial of degree m. We have :

$$\theta' + \theta^2 = S' + S^2 + \left(\frac{D_0'}{D_0}\right)' + \left(\frac{D_0'}{D_0}\right)^2 + 2S\frac{D_0'}{D_0}$$
(65)

$$\theta' + \theta^2 = r \Leftrightarrow \left(\frac{D_0'}{D_0}\right)' + \left(\frac{D_0'}{D_0}\right)^2 + 2S\frac{D_0'}{D_0} = \frac{R}{B}$$
 (66)

with $B = D_1 D_2 D_3 D_4$ and R polynomials as: $r - S' - S^2 = \frac{R}{R}$.

case 1: $d^{o}r = 2\nu \ge 0$

We have: $d^oS = \nu$ and $d^o\frac{R}{B} = \nu - 1$. Taylors expansion of $\frac{1}{x^{\nu}}S$, $\frac{1}{x^{\nu-1}}\frac{R}{B}$ and $x\frac{D_0'}{D_0}$ at order μ .

We obtain the Taylors expansion of $\frac{1}{x^{\nu-1}} \left[\frac{R}{B} - 2S \frac{D_0'}{D_0} \right]$ at order μ .

The Taylors expansion equal the Taylors expansion of : $\frac{1}{x^{\nu-1}} [(\frac{D_0'}{D_0})' + (\frac{D_0'}{D_0})^2]$ Let $t = \frac{1}{x}$. In Taylors expansion of $\frac{1}{x^{\nu-1}} [(\frac{P'}{P})' + (\frac{P'}{P})^2]$ [see proposition 23] the coefficient of $t^{\nu+1}$ is : $\sigma_0^2 - \sigma_0 = m^2 - m$. For $l \geq 2$, coefficient of $t^{l+\nu-1}$ use : $\sigma_0, \ldots, \sigma_{l-2}$.

Besides, we have:

$$x\frac{D'_0}{D_0} = \sum_{i=1}^m \frac{1}{1 - c_i t}$$

$$= \sum_{i=1}^m \sum_{k=0}^\infty c_i^k t^k$$

$$= \sum_{k=0}^\infty \sigma_k t^k$$
(67)

Thus, Taylors expansion of:

$$\Phi = \frac{1}{x^{\nu-1}} \left[\left(\frac{D_0'}{D_0} \right)' + \left(\frac{D_0'}{D_0} \right)^2 \right] - \frac{1}{x^{\nu-1}} \left[\frac{R}{B} - 2S \frac{D_0'}{D_0} \right]$$
 (68)

and the coefficient of t^k is:

$$-2\alpha\sigma_k + polynomial \ at \ \sigma_0, \dots, \sigma_{k-1}$$
 (69)

 $\Phi = 0$ determine σ_k by recurrence at $k = \nu$.

case 2: $d^{o}r < 0$

The coefficient of t^k in Taylors expansion of :

$$\Psi = x^2 \left[\left(\frac{D_0'}{D_0} \right)' + \left(\frac{D_0'}{D_0} \right)^2 \right] - x^2 \frac{R}{B} + 2xS\left(x \frac{D_0'}{D_0} \right)$$
 (70)

is:

$$2m\sigma_k - (k+1)\sigma_k + (2\lim_{x \to \infty} xS)\sigma_k + polynomial \ at \ \sigma_0, \dots, \sigma_{k-1}$$
 (71)

By recurrence σ_k at condition :

$$k \neq 2 \lim_{x \to \infty} xS + 2m - 1$$

We have: $\lim_{r\to\infty} xS + m = \alpha_{\infty}^2 + \frac{1}{2}$ with $\alpha_{\infty}^2 = \lim_{r\to\infty} x^2r + \frac{1}{4}$.

For $k \neq 2\alpha_{\infty}$, to be σ_k at function of $\sigma_0, \ldots, \sigma_{k-1}$

If $2\alpha_{\infty} \in \mathbb{N}$ then coefficient of $t^{2\alpha_{\infty}}$ non-zero thus is no solution or is zero thus $\sigma_{2\alpha_{\infty}}$ is arbitrary and σ_k ; $k > 2\alpha_{\infty}$ depend in a unique way.

 D_0 is polynomial determined by $\sigma_0, \ldots, \sigma_{2m-1}$ by determinant formulae, the problem of nonunique suite $(\sigma_k)_{k\in\mathbb{N}}$ put if $2\alpha_{\infty}$ is positive integer equal to or less than 2m-1, then 4 $\lim x^2r+1$ is square of integer and:

$$\lim_{x \to \infty} x^2 r \le m^2 - m \tag{72}$$

Example 23 In this example we consider the Riccati differential equation (2) where:

$$r = -1 + \frac{z^2 - \frac{1}{4}}{r^2}; \ z \in \mathbb{R}^*$$
 (73)

We have $D_1 = 1$, $D_2 = 1$, $D_3 = x$ and $E^2(\theta) = -1$.

We can assume $E(\theta) = i$.

$$\lim_{x \to 0} x^2 r + \frac{1}{4} = z^2 = \alpha_0^2$$

$$\theta = i + \frac{\alpha_0 + \frac{1}{2}}{x} + \frac{D_0'}{D_0}$$

 $\begin{array}{l} 2i(\alpha_0+\frac{1}{2}+d^oD_0)=0. \ \ Thus: \ m=d^oD_0=-\alpha_0-\frac{1}{2}\in \mathbb{N} \\ Thus: \ \alpha_0=-m-\frac{1}{2}, \ r=-1+\frac{(m+\frac{1}{2})^2-\frac{1}{4}}{x^2}=-1+\frac{m^2+m}{x^2} \ \ and \ \theta \ = \ i-\frac{m}{x}+\frac{D_0'}{D_0}. \\ \theta \ \ solution \ \ of \ Riccati \ \ equation \ \ if \ and \ \ only \ \ if \ D_0 \ \ verify: \end{array}$

$$\left(\frac{D_0'}{D_0}\right)' + \left(\frac{D_0'}{D_0}\right)^2 + 2\left(i - \frac{m}{x}\right)\frac{D_0'}{D_0} = 2i\frac{m}{x}$$

Thus $\Phi = 0$ where

$$\Phi = x\left[\left(\frac{D_0'}{D_0}\right)' + \left(\frac{D_0'}{D_0}\right)^2\right] + 2\left(i - \frac{m}{x}\right)\left(x\frac{D_0'}{D_0}\right) - 2im$$

Taylors expansion of $\Phi = 0$ at $t = \frac{1}{r}$:

$$\Phi = \sum_{k=1}^{\infty} \left[\left(\sum_{\mu=1}^{k-1} \sigma_{\mu} \sigma_{k-1-\mu} \right) - k \sigma_{k-1} - 2m \sigma_{k-1} + 2i \sigma_{k} \right] t^{k}$$

As $\sigma_0 = m$. Thus:

$$\Phi = 0 \Leftrightarrow \forall k \ge 1, \left(\sum_{\mu=0}^{k-1} \sigma_{\mu} \sigma_{k-1-\mu}\right) - k \sigma_{k-1} - 2m \sigma_{k-1} + 2i \sigma_k = 0$$

For k=1, $\sigma_0^2-\sigma_0-2m\sigma_0+2i\sigma_1=0$ equivalent to $2i\sigma_1=m^2+m$.

For all:
$$k \ge 2$$
, $2i\sigma_k = k\sigma_{k-1} - \sum_{\mu=1}^{k-2} \sigma_{\mu}\sigma_{k-1-\mu}$

For example
$$m = 3$$
, :
$$\begin{cases} 2i\sigma_1 = 12 \\ 2i\sigma_2 = 2\sigma_1 \\ 2i\sigma_3 = 3\sigma_2 - \sigma_1^2 \\ 2i\sigma_4 = 4\sigma_3 - 2\sigma_1\sigma_2 \\ 2i\sigma_5 = 5\sigma_4 - 2\sigma_1\sigma_3 - \sigma_2^2 \end{cases}$$

Thus, the polynomial D_0 partner to:

$$\begin{vmatrix} \sigma_0 & \sigma_1 & \sigma_2 & 1 \\ \sigma_1 & \sigma_2 & \sigma_3 & x \\ \sigma_2 & \sigma_3 & \sigma_4 & x^2 \\ \sigma_3 & \sigma_4 & \sigma_5 & x^3 \end{vmatrix} = \begin{vmatrix} 3 & -6i & -6 & 1 \\ -6i & -6 & -9i & x \\ -6 & -9i & -54 & x^2 \\ -9i & -54 & 99i & x^3 \end{vmatrix} = 135x^3 + 810ix^2 - 2025x - 2025i$$

Thus

$$D_0 = x^3 + 6ix^2 - 15x - 15i$$

5 Method of last minor

Let $r = \frac{N}{D_1 D_2^2 D_3^2 D_4^2}$ rational fraction and $\theta \in \mathbb{C}(x)$ as : $\theta' + \theta^2 = r$. θ solution of Eq (2) if and only if D_0 verify :

$$BD_0'' + 2SBD_0' = RD_0 (74)$$

We choose a complex number c not pole of r and we use the expression of polynomials following the powers of x - c.

For the sake of simplicity, in the following we assume that c = 0. Constant coefficient constant of B is non-zero.

Denote by a_k , b_k and r_k coefficients of x^k , in A, B and R respectively, $k \in \mathbb{N}$. If $k \in \mathbb{Z}$ then : $a_k = b_k = r_k = 0$.

5.1 Case $d^{o}r < 0$

We put : $S = \frac{A}{B}$

If $d^oB = 1$ then r are pole unique, it is simple or double. If c simple pole of r then r of degree -1 and Eq (2) has no rational solution.

If c double pole of r then : $A = \alpha_c + \frac{1}{2}$, $r = \frac{\alpha_c^2 - \frac{1}{4}}{(x-c)^2}$ and R = 0.

Thus, Eq (72):

$$\frac{D_0''}{D_0'} = \frac{-2(\alpha_c + \frac{1}{2})}{x - c} \tag{75}$$

The solutions:

$$D_0' = (-2\alpha_c)(x-c)^{-2\alpha_c - 1} \tag{76}$$

$$D_0 = (x - c)^{-2\alpha_c} + \beta \tag{77}$$

where β non-zero constant.

We have, an infinity of the other rational solution when $-2\alpha_c \in \mathbb{N}^*$, with the same parity of S. We assume : $d^oB \geq 2$ and we look D_0 polynomial of degree $m \geq 1$ verify Ed (72).

Proposition 24: We assume: $d^o r < 0$, $\begin{cases} d^o B \ge 2 \\ d^o = m \ge 1 \end{cases}$ and D_0 verify Ed (72).

1. We have:
$$\begin{cases} d^{o}(BD_{0}'' + 2AD_{0}') \leq d^{o}B + m - 2 \\ d^{o}R \leq d^{o}B - 2 \end{cases}$$

2. We have: $r_{d^oB-2} = 2a_{d^oB-1}m + m(m-1)$

3. We have:
$$\begin{cases} a_{d^oB-1} = \frac{1}{2} - m + \alpha_{\infty} \\ r_{d^oB-2} = m(2\alpha_{\infty} - m) \end{cases}$$

Proof.

1. $d^{o}(BD_{0}'' + 2AD_{0}') \le \sup(d^{o}(BD_{0}''), d^{o}(2AD_{0}'))$ If $d^{o}D_{0} = 1$ then:

$$\sup(d^{o}(BD_{0}''), d^{o}(2AD_{0}')) = d^{o}(2AD_{0}') = d^{o}A \le d^{o}B - 1 = d^{o}B + d^{o}D_{0} - 2$$

If
$$d^o D_0 \ge 2$$
 then :
$$\begin{cases} d^o (BD_0'') = d^o B + m - 2 \\ d^o (2AD_0') = d^o A + m - 1 \le d^o B + m - 2 \end{cases}$$

2. We have: $d^o(RD_0) \leq d^oB + m - 2$ and coefficients of x^{d^oB+m-2} in Eq. (72).

3. Accordingly, in view of : $\lim_{x \to \infty} x\theta = \alpha_{\infty} + \frac{1}{2}$.

We put:

The k^{th} element of v(x) is:

$$v_k(x) = B(k-1)(k-2)x^{k-3} + 2A(k-1)x^{k-2} - Rx^{k-1}$$
(79)

 $v_k(x)$ of degree equal to or less than $d^oB + k - 3$ and $x^{d^oB + k - 3}$ of coefficient:

$$(k-1)(k-2) + 2a_{d^oB-1}(k-1) - r_{d^oB-2}$$

$$= (k-m-1)(\frac{r_{d^oB-2}}{m} + k - 1)$$

$$= (k-m-1)(2a_{d^oB-1} + m + k - 2)$$
(80)

For $k \leq m$, the coefficient of x^{d^oB+k-3} is zero if and only if :

$$2a_{d^{o}B-1} = -(m+k-2) \in \{-(m-1), -m, \dots, -2(m-1)\}\$$

 v_{m+1} of degree equal to or less than $d^oB + m - 3$.

For $k \geq 3$ the coefficient of more low degree of v_k is coefficient of: x^{k-3} equal $b_0(k-1)(k-2)$. Let V matrix of m+1 row and k^{th} row is row l_k of coefficients of $v_k(x)$ in basis of $\mathbb{C}_{d^oB+m-3}[X]$. l_3,\ldots,l_{m+1} linearly independent system.

The Eq (72) give:

$$D_0 = d_0 + d_1 x + \ldots + x^m, (81)$$

obtained:

$$d_0v_1(x) + \ldots + d_{m-1}v_m(x) + v_{m+1}(x) = 0$$
(82)

$$d_0 l_1 + \ldots + d_{m-1} l_m + l_{m+1} = 0 (83)$$

Thus, the matrix V is rank m-1, m or m+1 . Accordingly, existence of D_0 correspondent linearly dependent in row l_{m+1} of l_1, \ldots, l_m . Let c_1, \ldots, c_m roots of D_0 distinct.

We put for
$$j \in \mathbb{N}$$
: $\sigma_j = c_1^j + \ldots + c_m^j$ et $\Delta^2 = \begin{bmatrix} \sigma_0 & \sigma_1 & \ldots & \sigma_{m-1} \\ \sigma_1 & \sigma_2 & \ldots & \sigma_m \\ \vdots & \ddots & \ddots & \vdots \\ \sigma_{m-1} & \sigma_m & \ldots & \sigma_{2m-2} \end{bmatrix}$

We put for $j \in \mathbb{N}$: $\sigma_j = c_1^j + \ldots + c_m^j$ et $\Delta^2 = \begin{bmatrix} \sigma_0 & \sigma_1 & \ldots & \sigma_{m-1} \\ \sigma_1 & \sigma_2 & \ldots & \sigma_m \\ \vdots & & & \ddots \\ \sigma_{m-1} & \sigma_m & \ldots & \sigma_{2m-2} \end{bmatrix}$ The m column vector $\begin{pmatrix} \sigma_0 \\ \vdots \\ \vdots \\ \sigma_m \end{pmatrix}$ \ldots $\begin{pmatrix} \sigma_{m-1} \\ \vdots \\ \vdots \\ \sigma_{2m-1} \end{pmatrix}$, of m+1 column of are linearly independent.

The equation of hyperplane H engendered by vectors $\begin{pmatrix} \sigma_0 \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} \dots \begin{pmatrix} \sigma_{m-1} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix}$ is:

$$\begin{vmatrix} \sigma_0 & \dots & \sigma_{m-1} & x_1 \\ \sigma_1 & \dots & \sigma_m & x_2 \\ \dots & \dots & \dots \\ \sigma_m & \dots & \sigma_{2m-1} & x_{m+1} \end{vmatrix} = 0$$
(84)

The coefficient of x_{m+1} is $\Delta^2 \neq 0$ and H as equation:

$$x_{m+1} = \lambda_1 x_1 + \ldots + \lambda_m x_m \tag{85}$$

where $\lambda_1 \dots \lambda_m$ scalar satisfying :

$$(\sigma_m, \dots, \sigma_{2m-1}) = \lambda_1(\sigma_0, \dots, \sigma_{m-1}) + \dots + \lambda_m(\sigma_{m-1}, \dots, \sigma_{2m-2})$$
(86)

$$\begin{vmatrix} \sigma_{0} & \dots & \sigma_{m-1} & 1\\ \sigma_{1} & \dots & \sigma_{m} & v_{1}(x)\\ \dots & \dots & \dots\\ \sigma_{m} & \dots & \sigma_{2m-1} & v_{m+1}(x) \end{vmatrix} = 0$$
(87)

Thus, $\forall x, \ v(x) \in H$. Application of Taylor, this equivalent to columns of matrix V in hyperplane H.

$$l_{m+1} = \lambda_1 l_1 + \ldots + \lambda_m l_m \tag{88}$$

$$\begin{vmatrix} \sigma_{0} & \dots & \sigma_{m-1} & 1 \\ \sigma_{1} & \dots & \sigma_{m} & x \\ \dots & \dots & \dots \\ \sigma_{m} & \dots & \sigma_{2m-1} & x^{m} \end{vmatrix} = \begin{vmatrix} \sigma_{0} & \dots & \sigma_{m-1} & 1 \\ \sigma_{1} & \dots & \sigma_{m} & x \\ \dots & \dots & \dots & \dots \\ \sigma_{m-1} & \dots & \sigma_{2m-2} & x^{m-1} \\ 0 & \dots & 0 & x^{m} - \lambda_{1} - \lambda_{2}x - \dots - \lambda_{m}x^{m-1} \end{vmatrix}$$
(89)

$$= \Delta^2[x^m - \lambda_1 - \lambda_2 x - \ldots - \lambda_m x^{m-1}]$$

The polynomial
$$D_0$$
 partner to
$$\begin{vmatrix} \sigma_0 & . & . & . & \sigma_{m-1} & 1 \\ \sigma_1 & . & . & . & \sigma_m & x \\ . & . & . & . & . \\ \sigma_m & . & . & . & \sigma_{2m-1} & x^m \end{vmatrix}$$
. Thus:

$$D_0(x) = x^m - \lambda_1 - \lambda_2 x - \dots - \lambda_m x^{m-1}$$

$$\tag{90}$$

For $k = 1, \ldots, m + 1$, we put:

$$v_k(x) = \rho_k(x) + x^{d^o B - 2} w_k \tag{91}$$

where $d^o \rho_k(x) \leq d^o B - 3$.

The matrix W partner to: $\begin{pmatrix} w_1 \\ \cdot \\ w_m \end{pmatrix}$ is triangulares where k^{th} entry diagonal equal $(k-1-1)^{th}$

m) $(2a_{d^oB-1} + m + k - 2)$. The coefficient is non-zero except possibly for a single value of k.

Thus, rank of
$$\begin{pmatrix} w_1 \\ w_m \end{pmatrix}$$
 is m or $m-1$.

For rank(V) = m, the Eq (72) as solution equivalent to l_1, \ldots, l_m linearly independent.

Hence, after, we assume: rank(V) = m - 1. In that case l_1 and l_2 are linear combinations of l_3, \ldots, l_{m+1} . One of both combinations has to express l_{m+1} . Thus we have two situations.

Situation 1:

 l_2 linear combination of l_3, \ldots, l_{m+1} where coefficient of l_{m+1} non-zero. By replacement of l_{m+1} , we obtain l_1 is linear combination of l_2, \ldots, l_m .

Thus, w_1 is linear combination of w_2, \ldots, w_m . (w_2, \ldots, w_m) libre system where $d^o w_k = k-1$ for : k = 2, ..., m. Thus : $w_1 = 0$. If

$$l_1 = \sum_{j=2}^{m} \alpha_j l_j \tag{92}$$

where α_j constant, then :

$$w_1 = \sum_{j=2}^{m} \alpha_j w_j \tag{93}$$

As $w_1 = 0$, thus for all $j = 2, \ldots, m$, $\alpha_i = 0$ equivalent to $l_1 = 0$. Thus R = 0

First way of having D_0 :

$$\frac{D_0''}{D_0'} = \frac{-2A}{B} \tag{94}$$

 $\frac{-2A}{B}$ has to be the sum of simple elements of the shape: $\frac{\mu_c}{x-c}$ where μ_c greater or equal than 1. Thus: $D_4 = D_2 = D_1 = 1$ and $D_3 = B$.

For all c root of D_3 , $-2\alpha_c = \mu_c + 1$; where $\alpha_c^2 = \lim_{x \to c} (x - c)^2 r + \frac{1}{4}$

Thus:

$$\alpha_c < 0 \quad and \qquad 4\left[\lim_{x \to c} (x - c)^2 r + \frac{1}{4}\right] = (\mu_c + 1)^2$$
 (95)

Thus:

$$D_0' = m \prod_{c \in Root(D_3)} (x - c)^{\mu_c}$$
(96)

 D_0 is primitive non-zero in roots of D_3 .

Second way of having D_0 :

$$l_{m+1} = \sum_{j=2}^{m} \lambda_j l_j \tag{97}$$

where λ_j constant $(j=2,\ldots,m)$ The relations linearly dependent between l_{m+1} et l_1,\ldots,l_m are:

$$l_{m+1} = \lambda l_1 + \sum_{j=2}^{m} \lambda_j l_j \tag{98}$$

Thus we have an infinity of solutions:

$$D_0 = x^m - \lambda - \sum_{j=2}^m \lambda_j x^{j-1}$$
 (99)

where λ arbitrarily constant.

Situation 2:

 l_1 is linear combination of l_3, \ldots, l_{m+1} where coefficient of l_{m+1} non-zero and l_2 is linear combination of l_3, \ldots, l_m . Thus, w_2 is linear combination of w_3, \ldots, w_m . Thus, $w_2 = 0$. w_1, w_3, \ldots, w_m libre system.

If:

$$l_2 = \sum_{j=3}^{m} \alpha_j l_j \tag{100}$$

then:

$$w_2 = \sum_{j=3}^{m} \alpha_j w_j \tag{101}$$

As: $w_2 = 0$. Thus, for all j = 3, ..., m, $\alpha_j = 0$ equivalent to $l_2 = 0$ and 2A - xR = 0First way of having D_0 :

 $\frac{2A}{x}D_0 = 2AD_0' + BD_0'' \tag{102}$

$$2A(D_0 - xD_0') = xBD_0'' \tag{103}$$

We put : $Q = D_0 - xD'_0$. $\frac{Q'}{Q} = -\frac{2A}{B}$.

$$D_4 = D_2 = D_1 = 1$$
 and $Q = (1 - m) \prod_{c \in Root(D_3)} (x - c)^{\mu_c}$ (104)

Thus: $D_0 = Cx$ avec $C' = -\frac{Q}{x^2}$; C rational function.

The coefficient of x in Q is zero. Q'(0) = 0 (A(0) = 0 ; 2A = xR)

Second way of having D_0 :

$$l_{m+1} = \lambda_1 l_1 + \sum_{j=3}^{m} \lambda_j l_j \tag{105}$$

Thus:

$$D_0 = x^m - \sum_{j=1}^m \lambda_j x^{j-1} \tag{106}$$

 $lambda_2$ arbitrarily constant.

5.2 Case $d^o r = 2\nu > 0$

We put : $E = E(\theta)$ and $S = E + \frac{A}{B}$. We have:

$$\begin{cases}
d^{o}(BD_{0}'') \leq d^{o}B + m - 2 \\
d^{o}(EB + A)D_{0}' = d^{o}B + m - 1 + \nu
\end{cases}$$
(107)

Thus

$$d^{o}(RD_{0}) = d^{o}B + m - 1 + \nu \tag{108}$$

Thus, $d^{o}R = d^{o}B + \nu - 1$ and $r_{d^{o}B+\nu-1} = 2\alpha m$ where α dominant coefficient of E. We put:

The k^{th} element of v(x) is:

$$v_k(x) = B(k-1)(k-2)x^{k-3} + 2(EB+A)(k-1)x^{k-2} - Rx^{k-1}$$
(110)

 $v_k(x)$ of degree equal to or less than $d^oB + \nu + k - 2$ where coefficient of $x^{d^oB + \nu + k - 2}$ equal $2\alpha(k-1-m)$.

For k = 1, ..., m, the k^{th} element of v(x) of degree: $d^{o}R + k - 1$. The $(m+1)^{th}$ element of v(x) of degree equal to or less than $d^{o}R + m - 1$.

Proposition 25 We put: $v_k(x) = \rho_k(x) + x^{d^oR} w_k(x)$ where $d^o\rho_k(x) < d^oR$.

1.

$$\begin{cases}
 d^{o}w_{k}(x) = k - 1 & pour \ k = 1, \dots, m \\
 d^{o}w_{m+1}(x) \leq m - 1
\end{cases}$$
(111)

2. (w_1, \ldots, w_m) libre system and

$$w_{m+1}(x) = \lambda_1 w_1(x) + \ldots + \lambda_m w_m(x)$$
(112)

where $\lambda_1, \ldots, \lambda_m$ constants

3.

$$D_0 = x^m - \lambda_1 - \lambda_2 x - \dots - \lambda_{m-1} x^{m-1}$$
(113)

is solution if and only if

$$l_{m+1} = \lambda_1 l_1 + \ldots + \lambda_m l_m \tag{114}$$

Example 26 In this example we consider the Riccati differential equation (2) where:

$$r = \frac{1}{(x+1)^4} - \frac{5}{(x+1)^3} + \frac{7}{4(x+1)^2} + \frac{1}{x+1} + x^2 + 2$$

 $D_1 = D_2 = D_3 = 1$, $D_4 = (x+1)^2$, $d^o(r) = 2$, $\nu = 1$. We have

$$N_1 = 1 - 5(x+1)$$

$$F = x^{2} + 2 + \frac{1 - 5(x+1)}{(x+1)^{4}} + \frac{1}{4(x+1)^{2}}$$

Study at (-1): Laurent series development at -1.

$$(F)^{\frac{1}{2}} = \varepsilon_{-1}(\frac{1}{(x+1)^2} - \frac{5}{2(x+1)} + \ldots); \ \varepsilon_{-1} = \pm 1$$

Study at infinity: We have : $\frac{E(r)}{x^2} = 1 + t^2$ where $t = \frac{1}{x}$,

$$(1+2t^2)^{\frac{1}{2}} = 1+t^2+o(t^2)$$

Thus: $s_{\nu+1} = 1$ et $E(\theta) = \alpha x$ where $\alpha^2 = 1$.

$$\theta = \alpha x + \varepsilon_{-1} \left(\frac{1}{(x+1)^2} - \frac{5}{2(x+1)} \right) + \frac{1}{(x+1)} + \frac{D_0'}{D_0}$$

$$d^{o}D_{0} = \alpha s_{\nu+1} - \frac{\nu}{2} + \frac{5\varepsilon_{-1}}{2} - 1 = \alpha s_{\nu+1} + \frac{5\varepsilon_{-1}}{2} - \frac{3}{2}$$

Case: $\begin{cases} \alpha = -1 \\ \varepsilon_{-1} = -1 \end{cases}$ and $\begin{cases} \alpha = 1 \\ \varepsilon_{-1} = -1 \end{cases}$ are to be rejected because we obtain negative values

• If:
$$\alpha = 1$$
 and $\varepsilon_{-1} = 1$ then: $d^o D_0 = 2$

. If :
$$\alpha = -1$$
 et $\varepsilon_{-1} = 1$ then : $d^o D_0 = 0$

<u>Case 1</u>: $\alpha = 1$ and $\varepsilon_{-1} = 1$.

$$\theta = x + \frac{1}{(x+1)^2} - \frac{3}{2(x+1)} + \frac{D_0'}{D_0}$$

where $d^{o}D_{0} = 2$. Research of coefficients of D_{0} .

$$S = x + \frac{1}{(x+1)^2} - \frac{3}{2(x+1)}$$
$$= \frac{x^3 + 2x^2 - \frac{1}{2}x - \frac{1}{2}}{(x+1)^2}$$

 $r - S' - S^2 = \frac{R}{B}$, where: $R = 4x^2 + 4x$ and $B = (1+x)^2$.

$$v(x) = -R \begin{pmatrix} 1 \\ x \\ x^2 \end{pmatrix} + 2SB \begin{pmatrix} 0 \\ 1 \\ 2x \end{pmatrix} + B \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -4x - 4x^2 \\ -1 - x - 2x^3 \\ 2 + 2x + 4x^3 \end{pmatrix}$$

$$V = \begin{pmatrix} 0 & -4 & -4 & 0 \\ -1 & -1 & 0 & -2 \\ 2 & 2 & 0 & 4 \end{pmatrix}$$

 $l_3 = -2l_2$. Thus: $D_0 = x^2 + 2x$.

$$\theta = x + \frac{1}{(x+1)^2} - \frac{3}{2(x+1)} + \frac{2(x+1)}{x^2 + 2x} = x + \frac{1}{(x+1)^2} - \frac{3}{2(x+1)} + \frac{1}{x} + \frac{1}{x+2}$$

<u>Case 2</u>: $\alpha = -1$ and $\varepsilon_{-1} = 1$. We obtain the rational fraction:

$$\theta = -x + \frac{1}{(x+1)^2} - \frac{3}{2(x+1)}$$

It cannot be solution because the sum of this fraction with the already found solution is not the logarithmic prime of a rational fraction.

Example 27: In this example we consider the Riccati differential equation (2) where:

$$r = \frac{1}{16} + \frac{1}{(x-1)^8} - \frac{4}{(x-1)^5} - \frac{29}{6(x-1)^4} - \frac{8}{9(x-1)^3} - \frac{64}{27(x-1)^2} - \frac{152}{18(x-1)} + \frac{30}{(x+2)^2} - \frac{10}{81(x+2)}$$

 $D_1 = D_2 = 1$, $D_3 = x + 2$ and $D_4 = (x - 1)^4$. We have:

$$N_1 = (2418x - 2454)(x - 1)^3 + (x + 2)^2, \quad \delta = -\frac{1}{4(x + 2)^2}$$

$$F = \frac{1}{16} + \frac{(2418x - 2454)(x - 1)^3 + (x + 2)^2}{(x - 1)^8(x + 2)^2} + \frac{1}{4(x + 2)^2}$$

Laurent series development at 1:

$$(F)^{\frac{1}{2}} = \varepsilon_1(\frac{1}{(x-1)^4} - \frac{2}{x-1} + \dots); \ \varepsilon_1 = \pm 1$$

Laurent series development at -2:

$$(F)^{\frac{1}{2}} = \varepsilon_{-2}(\frac{11}{2(x+2)} + \dots); \ \varepsilon_{-2} = \pm 1$$

We have:

$$\frac{1}{2}\frac{(D_2D_3D_4)'}{D_2D_3D_4} = \frac{1}{2(x+2)} + \frac{2}{x-1}$$

Thus:

$$\theta = E(\theta) + \varepsilon_1 \left[\frac{1}{(x-1)^4} - \frac{2}{x-1} \right] + \varepsilon_{-2} \left[\frac{11}{2(x+2)} \right] + \frac{1}{2(x+2)} + \frac{2}{x-1} + \frac{D_0'}{D_0}$$

where

$$E^{2}(\theta) = E(r) = \frac{1}{16}$$

$$d^{o}D_{0} = -\frac{1}{E(\theta)} + 2\varepsilon_{1} - \frac{11\varepsilon_{-2}}{2} - \frac{5}{2}$$

Case $\begin{cases} \varepsilon_1 = 1 \\ \varepsilon_{-2} = 1 \end{cases}$ and $\begin{cases} \varepsilon_1 = -1 \\ \varepsilon_{-2} = 1 \end{cases}$ are to be rejected because we obtain negative values of

<u>Case 1</u>: If: $\varepsilon_1 = 1$, $\varepsilon_{-2} = -1$, $E(\theta) = \frac{1}{4}$ then: $d^o D_0 = 1$.

$$\theta = \frac{1}{4} + \frac{1}{(x-1)^4} - \frac{5}{x+2} + \frac{D_0'}{D_0}$$

Research of coefficients of D_0 .

$$S = \frac{1}{4} + \frac{1}{(x-1)^4} - \frac{5}{x+2}$$

 $r - (S' + S^2) = \frac{R}{B}$ where : $R = \frac{1}{2}x^4 - 10x^3 + 19x^2 - 18x + \frac{5}{2}$, $B = (x - 1)^4(x + 2)$

$$v(x) = -R \begin{pmatrix} 1 \\ x \end{pmatrix} + 2SB \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}x^4 + 10x^3 - 19x^2 + 18x - \frac{5}{2} \\ -x^4 + 20x^3 - 38x^2 + 36x - 1 \end{pmatrix}$$

$$V = \begin{pmatrix} -\frac{5}{2} & 18 & -19 & 10 & -\frac{1}{2} \\ -5 & 36 & -38 & 20 & -5 \end{pmatrix}$$

 $l_2 = 2l_1$. Thus: $D_0 = x - 2$

$$\theta_1 = \frac{1}{4} + \frac{1}{(x-1)^4} - \frac{5}{x+2} + \frac{1}{x-2}$$

<u>Case 2</u>: If: $\varepsilon_1 = 1$, $\varepsilon_{-2} = -1$, $E(\theta) = \frac{-1}{4}$ then: $d^o D_0 = 9$.

$$\theta = \frac{-1}{4} + \frac{1}{(x-1)^4} - \frac{5}{x+2} + \frac{D_0'}{D_0}$$

She cannot be solution because the sum of this fraction with the already found solution is not the logarithmic prime of a rational fraction.

<u>Case 3</u>: If: $\varepsilon_1 = -1$, $\varepsilon_{-2} = -1$, $E(\theta) = \frac{-1}{4}$ then: $d^{\circ}D_0 = 5$.

$$\theta_3 = \frac{-1}{4} - \frac{1}{(x-1)^4} - \frac{5}{x+2} + \frac{4}{x-1} + \frac{D_0'}{D_0}$$

Research of coefficients of D_0 .

$$S = \frac{-1}{4} - \frac{1}{(x-1)^4} - \frac{5}{x+2} + \frac{4}{x-1}$$

$$R = \frac{-2}{2}x^4 + 36x^3 - 137x^2 + 168x - 88$$
, $B = (x-1)^4(x+2)$

$$V = \begin{pmatrix} -37 & -168 & 137 & -36 & \frac{5}{2} & 0 & 0 & 0 & 0 \\ -32 & \frac{-151}{2} & -266 & 180 & -37 & 2 & 0 & 0 & 0 \\ 4 & -78 & -162 & -368 & 219 & -36 & \frac{3}{2} & 0 & 0 \\ 0 & 12 & -138 & \frac{-209}{2} & -474 & 254 & -33 & 1 & 0 \\ 0 & 0 & 24 & -212 & -95 & -584 & 285 & -28 & \frac{1}{2} \\ 0 & 0 & 0 & 40 & -300 & \frac{-139}{2} & -698 & 312 & -21 \end{pmatrix}$$

We consider V_p the minor 6×6 obtained by column vector 1, 2, 6, 7, 8, 9. In $\mathbb{Z}/5\mathbb{Z}$:

$$V_p = \begin{pmatrix} -2 & 2 & 0 & 0 & 0 & 0 \\ -2 & 2 & 2 & 0 & 0 & 0 \\ -1 & 2 & -1 & -1 & 0 & 0 \\ 0 & 2 & -1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 2 & -2 \\ 0 & 0 & -2 & 2 & 2 & -1 \end{pmatrix}$$

 $\det V_p = 1$. Accordingly, row 6 is not linear combination of other row and D_0 he does not have D_0 .

References

- [1] **B. Sturmfels:** Algorithms in Invariant Theory. Springer-Verlag, New York, 1993.
- [2] E.R.Kolchin: Algebraic matric and the Picard-Vessiot theory of homogeneous linear ordinary differential equation, Ann. of Math, 49, 1-42(1948).
- [3] **E.R.Kolchin:** Differential Algebra and Algebraic groups, Volume 54 of Pure and Applied Math, Academic Press, New York, (1976).
- [4] E.R.Kolchin: Galois theory of differential fields, Amer. J. of Math, 75,753-824 (1953).
- [5] F. Ulmer: Introduction to differential Galois theory. Cours de DEA, 2000.
- [6] **F. Ulmer:** On liouvillian solutions of linear differential equations. Appl. Algebra in Eng. Comm. and Comp., 226(2):171193, 1992.
- [7] I. Gozard: Théorie de Galois, Paris (1997).
- [8] I. Kaplansky: An introduction to differential algebra, Hermann, Paris, (1957).
- [9] **J.J.Kovačić:** An Algorithm for solving second ordre linear homogeneous differential equations. Journal of symbolic computation, 2:3-43,1986
- [10] M. Singer and F. Ulmer: Galois groups of second and third order linear differential equations. J. Symb. Comp., 16:136, 1993.
- [11] M. Singer and F. Ulmer: Linear differential equations and products of linear forms. J. Pure and Applied Alg., 117 118:549-564, (1997).
- [12] M. Singer and F. Ulmer: Liouvillian and algebraic solutions of second and third order linear differential equations. J. Symb. Comp., 16:3773, (1993).
- [13] M. Singer and F. Ulmer: Necessary conditions for liouvillian solutions of (third order) linear differential equations. J. of Appl. Alg. in Eng. Comm. and Comp., 6:122, 1995.
- [14] M. van der Put and F. Ulmer: Differential equations and finite groups. J. of Algebra, 226:920-966, (2000).
- [15] **P.A.Hendriks and M. van der Put:** Galois action on solutions of a differential equation. Journal of Symbolic Computation, 19(6): 559-576, (1995).