Kummer theory for algebraic groups

Sebastiano Tronto

Kummer theory

Kummer theory

- $A \leq \mathbb{Q}^{\times}$, $\sqrt[n]{A} = \{x \in \mathbb{C} \mid x^n \in A\}$
- Kummer extension $\mathbb{Q}(\sqrt[n]{A})$
- Galois over \mathbb{Q} , contains $\mathbb{Q}(\zeta_n)$

Kummer theory for algebraic groups

G commutative algebraic group over K number field

- $A \leq G(K)$, $n^{-1}A = \{P \in G(\overline{K}) \mid nP \in A\}$
- "Kummer extension" $K(n^{-1}A)$
- Galois over K, contains $K(G(\overline{K})[n])$
- Classical Kummer theory when $G = \mathbb{G}_m$

Results for elliptic curves

$$G = E$$
 elliptic curve, $A = \langle \alpha \rangle$

- Ribet, 1979: $cn^2 \le [K(n^{-1}A) : K(E(\overline{K})[n])] \le n^2$
- Lombardo-T., 2020: Effective $c = c(E, K, \alpha)$ if no CM
- Lombardo-T., 2021: over $K=\mathbb{Q}$ $c^{-1} < 2^{28} \cdot 3^{18} \cdot 5^8 \cdot 7^7 \cdot 11^5 \cdot 13 \cdot 17 \cdot 19 \cdot 37 \cdot 43 \cdot 67 \cdot 163$
- A. Javan Peykar, 2021: CM case

Endomorphism rings

A. Javan Peykar, 2021: CM case \rightarrow take $\stackrel{A}{\rightarrow}$ an End $_K(E)$ -module

Division modules

R ring, $M \subseteq N$ (left) modules, I (right) ideal

$$(M:_N I) := \{x \in N \mid Ix \subseteq M\}$$

Considering certain families (filters) ${\cal J}$ of ideals

$$(M:_N\mathcal{J}):=\bigcup_{I\in\mathcal{J}}(M:_NI)$$

Ideal filters

Examples

$$\infty := \{ I \text{ ideal of } R \mid I \supseteq nR \text{ for some } n \geq 1 \}$$

$$\mathfrak{p}^{\infty} := \{ I \text{ ideal of } R \mid I \supseteq p^k R \text{ for some } k \ge 0 \} \quad (p \text{ prime})$$

\mathcal{J} -injectivity

 Γ is \mathcal{J} -injective if maps to Γ lift over " \mathcal{J} -extensions"

Remark

- Injective $\iff \mathcal{J}$ -injective for $\mathcal{J} = \{ \text{all ideals} \}$
- Over \mathbb{Z} : p-divisible $\iff \mathfrak{p}^{\infty}$ -injective

$$(\mathcal{J}, T)$$
-extensions

Fix a \mathcal{J} -injective module $T = T[\mathcal{J}] \iff G(\overline{K})_{tors}$

- $M \subseteq N$ with $(M :_N \mathcal{J}) = N$ and $N[\mathcal{J}] \hookrightarrow T$
- Galois-like category
- " \mathcal{J} -injective hull" $\longleftrightarrow \bigcup_{n \ge 1} n^{-1} A$

Galois representations

$$A \leq G(K)$$
 $\Gamma = \bigcup_{n \geq 1} n^{-1} A \subseteq G(\overline{K})$ $T = G(\overline{K})_{tors}$

$$\mathsf{Gal}(K(\Gamma) \mid K)$$

$$\downarrow$$
 $\mathsf{Aut}_A(\Gamma)$

Galois representations

$$A \le G(K)$$
 $\Gamma = \bigcup_{n \ge 1} n^{-1} A \subseteq G(\overline{K})$ $T = G(\overline{K})_{tors}$

$$\mathsf{Gal}(\mathcal{K}(\Gamma)\mid\mathcal{K})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \mathsf{Aut}_{A+T}(\Gamma) \hookrightarrow \qquad \qquad \mathsf{Aut}_{A\mathsf{tors}}(\mathcal{T})$$

Galois representations

$$A \leq G(K)$$
 $\Gamma = \bigcup_{n \geq 1} n^{-1} A \subseteq G(\overline{K})$ $T = G(\overline{K})_{tors}$

$$\operatorname{\mathsf{Gal}}(\mathcal{K}(\Gamma) \mid \mathcal{K}(\mathcal{T})) \hookrightarrow \operatorname{\mathsf{Gal}}(\mathcal{K}(\Gamma) \mid \mathcal{K}) \longrightarrow \operatorname{\mathsf{Gal}}(\mathcal{K}(\mathcal{T}) \mid \mathcal{K})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{\mathsf{Aut}}_{A+T}(\Gamma) \hookrightarrow \operatorname{\mathsf{Aut}}_{A}(\Gamma) \longrightarrow \operatorname{\mathsf{Aut}}_{A_{\mathsf{tors}}}(\mathcal{T})$$

New results

- Completed and unified CM and non-CM cases
- Better understanding of Kummer theory for algebraic groups
- In progress: higher-dimensional abelian varieties

Thank you for your attention