SCIPPLY Series SCIPPLY FECHNICAL MANUAL PROVERS OF THE CHARGE LINE AND THE CHARGE LINE

NOTICE

No part of this material may be reproduced or duplicated in any from or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notics. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no repersesnation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Low of Japan and may require an export licenes from the Ministry of International Trade and Industry or other approval from another government agency.

HD44103 is a registered trademark of Hitachi, Ltd.

All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©Seiko Epson Corporation 1999 All rights reserved.

SCIPPLY Series SCOVER SUPPLY Factinical Manual Factinical Manual

Introduction	1
Selection Guide	2
1. DC/DC Converter	
SCI7660 Series	
DESCRIPTION	1–1
FEATURES	1–1
APPLICATIONS	1–1
BLOCK DIAGRAM	1–1
PIN CONFIGURATION	1–1
PIN DESCRIPTION	1–1
SPECIFICATIONS	1–2
FUNCTIONAL DESCRIPTION	1–7
TYPICAL APPLICATIONS	1–8
2. DC/DC Converter & Voltage Regulator	
SCI7661 Series	
DESCRIPTION	2–1
FEATURES	2–1
APPLICATIONS	2–1
BLOCK DIAGRAM	2–1
PIN CONFIGURATION	2–2
PIN DESCRIPTION	2–2
SPECIFICATIONS	2–3
FUNCTIONAL DESCRIPTION	2–11
TYPICAL APPLICATIONS	2–12
SCI7654 Series	
DESCRIPTION	2–15
FEATURES	2–15
APPLICATIONS	2–15
BLOCK DIAGRAM	2–16
PIN DESCRIPTION	2–16
ELECTRICAL CHARACTERISTICS	2–19
EXPLANATION OF FUNCTIONS	2–22
CHARACTERISTICS GRAPHICS	2–29
APPLICATION CIRCUIT EXAMPLES	2–30

Contents

3. Voltage Regulator	
SCI7810Y Series	
DESCRIPTION	3–1
FEATURES	3–1
BLOCK DIAGRAM	3–1
MODEL CLASSIFICATION	3–2
PIN DESCRIPTION	3–2
DESCRIPTION OF FUNCTION	3–3
ABSOLUTE MAXIMUM RATING	3–4
ELECTRIC CHARACTERISTICS	3–5
EXAMPLES OF APPLIED CIRCUITS	3–12
SCI7910Y Series	
DESCRIPTION	3–14
FEATURES	3–14
APPLICATIONS	3–14
LINE-UP	3–14
BLOCK DIAGRAM	3–14
PIN CONFIGURATION	3–14
PIN DESCRIPTION	3–15
SPECIFICATIONS	3–15
PACKAGE MARKINGS	3–28
FUNCTIONAL DESCRIPTION	3–28
TYPICAL APPLICATIONS	
4. DC/DC Switching Regulators	
SCI7630 Series	
SCI7631, SCI7638 Series	
DESCRIPTION	4–1
FEATURES	4–1
APPLICATIONS	4–1
LINE-UP	4–1
BLOCK DIAGRAMS	4–2
PIN CONFIGURATIONS	4–3
PIN DESCRIPTIONS	4–3
SPECIFICATIONS	4–4
PACKAGE MARKINGS	4–13
FUNCTIONAL DESCRIPTION	4–13

TYPICAL APPLICATIONS	4–15
SCI7633 Series	
DESCRIPTION	4–21
FEATURES	4–21
APPLICATIONS	4–21
LINE-UP	4–22
BLOCK DIAGRAMS	4–22
PIN CONFIGURATIONS	4–22
PIN DESCRIPTIONS	4–22
SPECIFICATIONS	4–23
PACKAGE MARKINGS	4–25
FUNCTIONAL DESCRIPTION	4–26
TYPICAL APPLICATIONS	4–27
5. Voltage Detector	
SCI7720Y Series	
DESCRIPTION	5–1
FEATURES	5–1
MODEL GROUPS	5–2
BLOCK DIAGRAM	5–3
PIN DESCRIPTION	5–4
DESCRIPTION OF FUNCTION	5–4
ABSOLUTE MAXIMUM RATINGS	5–5
ELECTRIC CHARACTERISTICS	5–6
EXAMPLES OF EXTERNAL CONNECTION	5–19
SAMPLE CIRCUITS (SCI7721Y SERIES)	5–20
SAMPLE CIRCUITS (SCI7720Y SERIES)	5–21
PRECAUTIONS	5–22
6. Appendix	
ORDERING INFORMATION	6–1
CMOS LSI LINEUP	6–2
ABSOLUTE MAXIMUM RATINGS	6–3
RECOMMENDER OPERATING CONDITIONS	6–3
ELECTRICAL CHARACTERISTICS	6–3
POWER DISSIPATION CONDITIONS	6–3
PARAMETER SUMMARY	6–4

Contents

DIMENSIONS	6–6
EMBOSS CARRIER TAPING STANDARD (3-PIN SOT89)	
TAPING INFORMATION	6–8
REEL SPECIFICATIONS	6–9
DEVICE POSITIONING	6–9
EMBOSS CARRIER TAPING STANDARD (8-PIN SOP3)	
TAPING INFORMATION	6–10
REEL SPECIFICATIONS	6–11
DEVICE POSITIONING	6–11
EMBOSS CARRIER TAPING STANDARD (14-PIN SOP5)	
TAPING INFORMATION	6–13
REEL SPECIFICATIONS	6–14
DEVICE POSITIONING	6–14
EMBOSS CARRIER TAPING STANDARD (24-PIN SOP2)	
TAPING INFORMATION	6–16
REEL SPECIFICATIONS	6–18
DEVICE POSITIONING	6–18

Introduction

This book describes SEIKO EPSON's full line of power supply ICs and includes a complete set of product specifications. Also included are sections on quality assurance and packaging.

We suggest that you use the selector guide beginning on the following page to choose the IC or IC series that most closely matches your application. You can then use the detailed product descriptions in subsequent sections to confirm device specifications and characteristics.

Please contact your local SEIKO EPSON sales representative for further information or assistance on these or other products.

Selection Guide

DC/DC Converter

Part number	Features	Package
SCI7660C _{0B}	Supply voltage conversion IC. It effectively converts input voltage into two levels in positive potential or	DIP-8pin
SCI7660M _{0B}	negative potential (millipedes by 1 the in reverse polarity and doubles in the same polarity). • Power conversion efficiency: 95%, as standard.	SOP4-8pin

DC/DC Converter and Voltage Regulator

Part number	Features	Package
SCI7661C0B	 Supply voltage conversion IC. If effectively converts input voltage in for levels in positive potential or negative potential (millipedes by 1 or doubles in the reverse polarity and 	DIP-14pin
SCI7661Mob/Mbb	doubles or triples in the same polarity). • Power conversion efficiency: 95%, as standard. • It is capable of selecting temperature gradient for LCD power supply.	SOP5-14pin SSOP2-16pin
SCI7654C0A	Supply voltage conversion IC. It effectively converts input voltage in for levels in negative potential.	DIP-16pin
SCI7654M0A	Power conversion efficiency: 95%, as standard. It is capable of selecting temperature gradient for LCD power supply.	SSOP2-16pin

Voltage regulator

Part number	Features	Package
SCI7810YAA	 6.00V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7810YBA	 5.00V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7810YMA	 4.50V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7810YPA	 4.00V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7810YKA	 3.90V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7810Yna	3.50V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V).	SOT89-3pin
SCI7810YTA	 3.30V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7810Yca	 3.20V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7810YDA	 3.00V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7810YRA	 2.80V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7810YLA	 2.60V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin

Selection Guide

Part number	Features	Package
SCI7810YFA	 2.20V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7810YgA	 1.80V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7810YHA	 1.50V positive output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7910YBA	 -5.00V negative output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7910YPA	 -4.00V negative output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7910YDA	 -3.00V negative output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin
SCI7910YgA	 -1.80V negative output voltage regulator. Low operating current (typ 1.5 uA). Input voltage stability (typ 0.1%/V). 	SOT89-3pin

DC/DC Switching regulator

Part number	Features	Package
SCI7631MHA	Step-up switching regulator (from 1.5V to 2.2V). Low operating voltage (0.9V at minimum). Low operating current High precision voltage detection function and battery backup function. Built-in CR oscillator circuit. Power-on clear function.	SOP3-8pin
SCI7631MLA	Step-up switching regulator (from 1.5V to 2.4V). Low operating voltage (0.9V at minimum). Low operating current High precision voltage detection function and battery backup function. Built-in CR oscillator circuit. Power-on clear function.	SOP3-8pin
SCI7631MBA	Step-up switching regulator (from 1.5V to 3.0V). Low operating voltage (0.9V at minimum). Low operating current High precision voltage detection function and battery backup function. Built-in CR oscillator circuit. Power-on clear function.	SOP3-8pin
SCI7631Mka	Step-up switching regulator (from 1.5V to 3.5V). Low operating voltage (0.9V at minimum). Low operating current High precision voltage detection function and battery backup function. Built-in CR oscillator circuit. Power-on clear function.	SOP3-8pin
SCI7631MAA	Step-up switching regulator (from 1.5V to 5.0V). Low operating voltage (0.9V at minimum). Low operating current High precision voltage detection function and battery backup function. Built-in CR oscillator circuit. Power-on clear function.	SOP3-8pin

Part number	Features	Package
SCI7638Mha	Step-up switching regulator (from 1.5V to 2.2V). Low operating voltage (0.9V at minimum). Low operating current. Built-in CR oscillator circuit. High precision voltage detection. Output voltage response compensation. Temperature characteristics of output voltage for LCD panel (-4.5mV/C).	SOP3-8pin
SCI7638MLA	Step-up switching regulator (from 1.5V to 2.4V). Low operating voltage (0.9V at minimum). Low operating current. Built-in CR oscillator circuit. High precision voltage detection. Output voltage response compensation. Temperature characteristics of output voltage for LCD panel (-4.0mV/C).	SOP3-8pin
SCI7633Mba	Step-up switching regulator (from 1.5V to 3.0V). Low operating voltage (0.9V at minimum). Low operating current. Built-in crystal oscillator circuit. Equipped with crystal oscillator output pin.	SOP3-8pin

Voltage detector

Part number	Features	Package
SCI7720YTA	 Voltage detection (Typ 4.00V). Output format: N-ch open drain. Low operating power (Typ 2.0 uA, VDD = 5.0V). 	SOP89-3pin
SCI7720YFA	 Voltage detection (Typ 2.65V). Output format: N-ch open drain. Low operating power (Typ 2.0 uA, VDD = 3.0V). 	SOP89-3pin
SCI7720Yca	 Voltage detection (Typ 2.15V). Output format: N-ch open drain. Low operating power (Typ 2.0 uA, VDD = 3.0V). 	SOP89-3pin
SCI7720Yna	 Voltage detection (Typ 1.90V). Output format: N-ch open drain. Low operating power (Typ 2.0 uA, VDD = 3.0V). 	SOP89-3pin
SCI7720YBA	 Voltage detection (Typ 1.15V). Output format: N-ch open drain. Low operating power (Typ 1.5 uA, VDD = 1.5V). 	SOP89-3pin
SCI7720Yya	Voltage detection (Typ 1.10V). Output format: N-ch open drain. Low operating power (Typ 1.5 uA, VDD = 1.5V).	SOP89-3pin
SCI7720YAA	 Voltage detection (Typ 1.05V). Output format: N-ch open drain. Low operating power (Typ 1.5 uA, VDD = 1.5V). 	SOP89-3pin
SCI7720Yva	 Voltage detection (Typ 0.95V). Output format: N-ch open drain. Low operating power (Typ 1.5 uA, VDD = 1.5V). 	SOP89-3pin
SCI7721YLA	 Voltage detection (Typ 5.00V). Output format: COMS. Low operating power (Typ 2.0 uA. Vdd = 6.0V). 	SOP89-3pin
SCI7721Yka	 Voltage detection (Typ 4.80V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 5.0V). 	SOP89-3pin

Part number	Features	Package
SCI7721Y2A	 Voltage detection (Typ 4.60V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 5.0V). 	SOP89-3pin
SCI7721YJA	 Voltage detection (Typ 4.40V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 5.0V). 	SOP89-3pin
SCI7721YMA	 Voltage detection (Typ 4.20V). Output format: COMS. Low operating power (Typ 2.0 uA. Vbb = 5.0V). 	SOP89-3pin
SCI7721YTA	 Voltage detection (Typ 4.00V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 5.0V). 	SOP89-3pin
SCI7721Y3A	 Voltage detection (Typ 3.50V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 4.0V). 	SOP89-3pin
SCI7721YHA	Voltage detection (Typ 3.20V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 4.0V).	SOP89-3pin
SCI7721YgA	Voltage detection (Typ 3.00V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 4.0V).	SOP89-3pin
SCI7721YRA	 Voltage detection (Typ 2.80V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 3.0V). 	SOP89-3pin
SCI7721YFA	Voltage detection (Typ 2.65V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 3.0V).	SOP89-3pin
SCI7721YEA	Voltage detection (Typ 2.55V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 3.0V).	SOP89-3pin
SCI7721Ysa	 Voltage detection (Typ 2.35V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 3.0V). 	SOP89-3pin
SCI7721YPA	 Voltage detection (Typ 2.25V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 3.0V). 	SOP89-3pin
SCI7721Yca	 Voltage detection (Typ 2.15V). Output format: COMS. Low operating power (Typ 2.0 uA. Vbb = 3.0V). 	SOP89-3pin
SCI7721YFB	 Voltage detection (Typ 2.65V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 3.0V). 	SOP89-3pin
SCI7721YcB	 Voltage detection (Typ 2.15V). Output format: COMS. Low operating power (Typ 2.0 uA. VDD = 3.0V). 	SOP89-3pin
SCI7722YDB	 Voltage detection (Typ. 1.25V). Output format: P-ch open drain. Low operating power (Typ 1.5 uA. Vpb = 1.5V). 	SOP89-3pin

SCIPPLY CONVERTER DCIDC CONVERTER 1.

DESCRIPTION

The SCI7660 Series is a highly efficient CMOS DC/DC converter for doubling an input voltage. This power-saving IC allows portable computers and similar handheld equipment to operate from a single power supply, even when they incorporate LSIs that operate at voltages different from those of logic circuits, for example, LCD drivers and analog LSIs.

The SCI7660C0B is available in 8-pin plastic DIPs, and the SCI7660M0B, in 8-pin plastic SOPs.

FEATURES

- 95% (typ.) conversion efficiency
- Two output voltages, Vo, relative to VDD and VI
- 30mA maximum output current at 5V
- Two-in-series configuration doubles negative output voltage.
- Low operating voltage
- On-chip RC oscillator
- · 8-pin plastic DIP and 8-pin plastic SOP

APPLICATIONS

- Fixed-voltage power supplies for battery-operated equipment
- Power supplies for pagers, memory cards, calculators and similar hand-held equipment
- Fixed-voltage power supplies for medical equipment
- Fixed-voltage power supplies for communications equipment
- · Uninterruptable power supplies

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

Number	Name	Description
1	NC	No connection
2	OSC2	Resistor connection. Open when using external clock
3	OSC1	Resistor connection. Clock input when using external clock
4	Vdd	Positive supply (system Vcc)
5	CAP1+	Positive charge-pump connection
6	CAP1-	Negative charge-pump connection
7	Vo	×2 multiplier output
8	Vı	Negative supply (system ground)

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	
Input voltage range	VI	-10.0 to 0.5	V	
Output voltage range	Vo	Min. –20.0	V	
Power dissipation	Pp	300 (DIP)	mW	
Power dissipation	Pυ	150 (SOP)	11100	
Operating temperature range	Topr	-40 to 85	°C	
Storage temperature range	Tstg	-65 to 150	°C	
Soldering temperature(for 10s). See note.	Tsol	260	°C	

Note:

Temperatures during reflow soldering must remain within the limits set out in LSI Device Precautions. Never use solder dip to mount SCI7000 series power supply devices.

Recommended Operating Conditions

VDD = 0V, Ta = -40 to $85^{\circ}C$ unless otherwise noted

Dovernator	Cumbal	Condition		l locit		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillator startup voltage	VSTA	Rosc = 1MΩ, C ₁ /C ₂ ≤1/20, C ₂ ≥10μF, Ta = -40 to 85°C See note 1.	_	_	-1.5	V
		$Rosc = 1M\Omega$	_	_	-2.2	
Oscillator shutdown voltage	VSTP	$Rosc = 1M\Omega$	-1.5	_	_	V
Load resistance	RL		RL min See note 2.	_	_	Ω
Output current	lo		_	_	30.0	mA
Clock frequency	fosc		10.0	_	30.0	kHz
RC oscillator network resistance	Rosc		680	_	2,000	kΩ
Capacitance	C1, C2		3.3	_	_	μF

Notes

- 1. The recommended circuit configuration for low-voltage operation (when Vi is between –1.2V and –2.2V) is shown in the following figure. Note that diode D1 should have a maximum forward voltage of 0.6V with 1.0mA forward current.
- 2. RL min can be varied depending on the input voltage.

3. RL min is a function of VI.

Electrical Characteristics

VDD = 0V, Ta = -40 to $85^{\circ}C$ unless otherwise noted

Danamatan	0	0		1126		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input voltage	Vı		-8.0	_	-1.5	V
Output voltage	Vo		-16.0	_	_	V
Multiplier current	lopr	$RL = \infty$, $ROSC = 1M\Omega$ VI = -5V	_	20	30	μΑ
Quiescent current	IQ	RL =∞, VI = −8V	_	_	2.0	μΑ
Clock frequency	fosc	Rosc = $1M\Omega$, $VI = -5V$	16	20	24	kHz
Output impedance	Ro	Io = 10mA, VI = -5V	_	75	100	Ω
Multiplication efficiency	Peff	Io = 5mA, VI = -5V	90	95	_	%
OSC1 Input leakage current	ILKI	VI = -8V	_	_	2.0	μΑ

Typical Performance Characteristics

Clock frequency vs. External resistance

Clock frequency vs. Ambient temperature

Multiplier current vs. Input voltage

Output voltage vs. Output current

Output voltage vs. Output current

Output impedance vs. Input voltage

Output voltage vs. Output current

Output impedance vs. Input voltage

Multiplication efficiency vs. Clock frequency

Multiplication efficiency vs. Clock frequency

Multiplication efficiency/input current vs.
Output current

Multiplication efficiency/input current vs.
Output current

Multiplication efficiency/input current vs.
Output current

FUNCTIONAL DESCRIPTION

RC Oscillator

The on-chip RC oscillator network frequency is determined by the external resistor, Rosc, connected between OSC1 and OSC2. This oscillator can be disabled in favor of an external clock by leaving OSC2 open and applying an external clock signal to OSC1.

Voltage Multiplier

The voltage multiplier uses the clock signal from the oscillator to double the input voltage. This requires two external capacitors—a charge-pump capacitor, C1, between CAP1+ and CAP1-, and a smoothing capacitor, C2, between VI and Vo.

Doubled potential levels

TYPICAL APPLICATIONS

Parallel Connection

Connecting two or more chips in parallel reduces the output impedance by 1/n, where n is the number of devices used.

Serial Connection

Connecting two or more chips in series obtains a higher output voltage than can be obtained using a parallel connection, however, this also raises the output impedance.

Potential levels

Positive Voltage Conversion

Diodes can be added to a circuit connected in parallel to make a negative voltage positive.

Simultaneous Voltage Conversion

Combining a multiplier circuit with a positive voltage conversion circuit generates both -10 and $3.8~\rm V$ outputs from a single input.

Potential levels

SCI 1661 Series SCI 165 SUPPLY SCIPPLY SCIPPLY SUPPLY SUPP DCIDC Converter & Voltage Regulator

DESCRIPTION

The SCI7661 Series is a highly effecient CMOS DC/DC converter for doubling or tripling an input voltage. It incorporates an on-chip voltage regulator to ensure stable output at the specified voltage. The SCI7661 Series offers a choice of three, optional temperature gradients for applications such as LCD panel power supplies. The SCI7661C0B is available in 14-pin plastic DIPs, the SCI7661M0B, in 14-pin plastic SOPs, and the SCI7661MBB in 16-pin plastic SSOPs.

FEATURES

- 95% (Typ.) conversion efficiency
- Up to four output voltages, Vo, relative to the input voltage, VI
- On-chip voltage regulator
- 20mA maximum output current at VI = -5V
- Three temperature gradients—0.1, 0.4 and 0.6%/°C
- · External shut-down control
- 2µA maximum output current when shut-down
- Two-in-series configuration doubles negative output voltage.
- · On-chip RC oscillator
- SCI7661C0Bpladtic DIP-14 pin SCI7661M0Bpladtic SOP5-14 Pin SCI7661MBBpladtic SSOP2-16 pin

APPLICATIONS

- · Power supplies for LCD panels
- Fixed-voltage power supplies for battery-operated equipment
- Power supplies for pagers, memory cards, calculators and similar hand-held equipment
- Fixed-voltage power supplies for medical equipment
- Fixed-voltage power supplies for communications equipment
- · Power supplies for microcomputers
- Uninterruptable power supplies

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

Number	Name	Description
1	CAP1+	Positive charge-pump connection for ×2 multiplier
2	CAP1-	Negative charge-pump connection for ×2 multiplier
3	CAP2+	Positive charge-pump connection for ×3 multiplier
4	CAP2-	Negative charge-pump connection for ×3 multiplier or ×2 multiplier output
5	TC1	Tomporature gradient calcate
6	TC2	Temperature gradient selects
7	Vı	Negative supply (system ground)
8	Vo	×3 multiplier output
9	VREG	Voltage regulator output
10	Rv	Voltage regulator output adjust
11	POFF	Voltage regulator output ON/OFF control
12	OSC2	Resistor connection. Open when using external clock
13	OSC1	Resistor connection. Clock input when using external clock
14	Vdd	Positive supply (system Vcc)

SPECIFICATIONS

Absolute Maximum Ratings

Items	Codes	Ratings	Units	Remarks
lanut ouanhu voltogo	Vı – Vdd	-20/N to Vpp + 0.3	V	N = 2: Boosting to a double voltage
Input supply voltage	VI — VDD	-20/N to VDD + 0.3	V	N = 3: Boosting to a triple voltage
Innut to minal valtage	\/: \/==	Vı – 0.3 to VDD + 0.3	V	OSC1, OSC2, POFF
Input terminal voltage	VI – VDD	Vo – 0.3 to VDD + 0.3	V	TC1, TC2, RV
Output voltage	Vo – Vdd	-20 to VDD + 0.3	V	Vo Note 3)
Output voltage	VO — VDD	Vo to VDD + 0.3	V	VREG Note 3)
Allowable dissipation	Pd	Max. 300	mW	
Working temperature	Topr	-40 to 85	°C	Plastic package
Storage temperature	Tstg	-55 to 150	°C	
Soldering temperature	Tsol	260°C		
and time	1 301	10 s (at leads)	_	

Notes

- Using the IC under conditions exceeding the aforementioned absolute maximum ratings may lead to permanent destruction of the IC. Also, if an IC is operated at the absolute maximum ratings for a longer period of time, its functional reliability may be substantially deteriorated.
- 2. All the voltage ratings are based on VDD = 0V.
- 3. The output terminals (Vo,VREG) are meant to output boosted voltage or stabilized boosted voltage. They, therefore, are not the terminals to apply an external voltage. In case the using specifications unavoidably call for application of an external voltage, keep such voltage below the voltage ratings given above.

Recommended Operating Conditions

VDD = 0V, Ta = -40 to $85^{\circ}C$ unless otherwise noted

Parameter	Symbol	Conditions				
Farameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Oscillator startup voltage	VSTA	Rosc =1MΩ C ₃ = 10 μF, CL/C ₃ ≤ 1/20, Ta = -40 to 85 $^{\circ}$ C. See note 1.	-	_	-1.8	V
		$Rosc = 1M\Omega$	_	-	-2.2	
Oscillator shutdown voltage	VSTP	$Rosc = 1M\Omega$	-1.8	-	-	V
Load resistance	RL		RL min. See note 2.	_	_	Ω
Output current	lo		_	-	20.0	mA
Clock frequency	fosc		10.0	-	30.0	kHz
RC oscillator network resistance	Rosc		680		2,000	kΩ
Capacitance	C1, C2, C3		3.3		_	μF
Stabilization voltage sensing resistance	Rrv		100	_	1,000	kΩ

Notes

- 1. The recommended circuit configuration for low-valtage operation (when VI is between -1.2V and -2.2V) is shown in the following figure. Note that diode D1 should have a maximum forward voltage of 0.6V with 1.0mA forward current.
- 2. RL min can be varied depending on the input voltage.

3. RL min is a function of V_1

Electrical Characteristics

VDD = 0V, V1 = -5V, Ta = -40 to $85^{\circ}C$ unless otherwise noted

Parameter	Symbol	Conditions	Rating			
i arameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input voltage	Vı		-6.0	-	-1.8	V
Output voltage	Vo		-18.0	-	-	V
Regulator voltage	VREG	$RL = \infty$, $RRV = 1M\Omega$, Vo = -18V	-18.0	_	-2.6	V
Stabilization circuit operating voltage	Vo		-18.0	_	-3.2	V
Multiplier current	lopr1	$RL = \infty$, $Rosc = 1M\Omega$	_	40	80	μΑ
Stabilization current	lopr2	$RL = \infty$, $RRV = 1M\Omega$, Vo = -15V	_	5.0	12.0	μΑ
Quiescent current	ΙQ	TC2 = TC1 = Vo, RL = ∞	_	_	2.0	μΑ
Clock frequency	fosc	$Rosc = 1M\Omega$	16.0	20.0	24.0	kHz

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Output impedance	Ro	lo = 10mA	_	150	200	Ω	
Multiplication efficiency	Peff	Io = 5mA	90.0	95.0	-	%	
Stabilization output voltage differential	$\frac{\Delta V_{REG}}{\Delta V_{O} \cdot V_{REG}}$	Vo = -18 to -8 V, VREG = -8 V, RL = ∞, Ta = 25 °C	-	0.2	_	%/V	
Stabilization output load differential	ΔVREG ΔIO	Vo = -15V, $VREG = -8V$, $Ta = 25^{\circ}C$, $Io = 0$ to $10\mu A$, TC1 = VDD, $TC2 = VO$	_	5.0	_	Ω	
Stabilization output saturation resistance	Rsat	RSAT = Δ (VREG - Vo)/ Δ Io, Io = 0 to 10 μ A, RV = VDD, Ta = 25 $^{\circ}$ C	_	8.0	_	Ω	
		RC2 = Vo, TC1 = VDD, Ta = 25°C	-2.3	-1.5	-1.0		
Reference voltage	VRV	TC2 = TC1 = Vo, Ta = 25°C	-1.7	-1.3	-1.1	V	
		TC2 = V _{DD} , TC1 = V _O , Ta = 25°C	-1.1	-0.9	-0.8		
			-0.25	-0.1	-0.01		
Temperature gradient	Ст	See note.	-0.5	-0.4	-0.3	%/°C	
			-0.7	-0.6	-0.5		
POFF, TC1, TC2, OSC1, and RV input leakage current	ILKI		_	_	2.0	μА	

Note

$$C_T = \frac{|V_{REG}\left(50^\circ C\right)| - |V_{REG}\left(0^\circ C\right)|}{50^\circ C - 0^\circ C} \times \frac{100}{\left|V_{REG}\left(25^\circ C\right)\right|}$$

Typical Performance Characteristics

26 25 24 23 22 21 20 19 18 $V_1 = -3.0V$ 17 $V_1 = -2.0V$ 16 15 14 13 12 11 10 9 8 -40 -20 20 40 60 80 100 Ta [°C]

Clock frequency vs. External resistance

Multiplier current vs. Input voltage

Output voltage vs. Output current

Output voltage vs. Output current

Output voltage vs. Output current

Multiplication efficiency/input current vs.
Output current

Multiplication efficiency/input current vs.
Output current

Multiplication efficiency/input current vs.
Output current

Output impedance vs. Input voltage

Output impedance vs. Input voltage

Multiplication efficiency vs. Clock frequency

Multiplication efficiency vs. Clock frequency

Output voltage vs. Output current

Output voltage vs. Output current

Output voltage vs. Output current

Regulator voltage vs. Output current

Regulator output stability ratio vs. **Ambient temperature**

Temperature Gradient Control

The SCI7661C_{0B} offers a choice of three temperature gradients which can be used to adjust the voltage regulator output in applications such as power supplies for driving LCDs.

POFF	TC2	TC1	Temperature gradient (%/°C)	Voltage regulator	RC osciliator	Remarks
	See note 1.			output	NO OSCINATOR	Remarks
1 (VDD)	LOW (Vo)	LOW (Vo)	-0.4	ON	ON	
1	LOW	HIGH (VDD)	-0.1	ON	ON	
1	HIGH (VDD)	LOW	-0.6	ON	ON	
1	HIGH	HIGH	-0.6	ON	OFF	Serial connection
0 (V1)	LOW	LOW	-	OFF (high impedance)	OFF	
0	LOW	HIGH	-	OFF (high impedance)	OFF	
0	HIGH	LOW	_	OFF (high impedance)	OFF	
0	HIGH	HIGH	_	OFF (high impedance)	OFF	Multiplier operational

Notes

- 1. The definition of LOW for \overline{POFF} differs from that for TC1 and TC2.
- The temperature gradient affects the voltage between VDD and VREG.

FUNCTIONAL DESCRIPTION

Oscillator

The on-chip RC oscillator network frequency is determined by the external resistor, Rosc, connected between OSC1 and OSC2. This oscillator can be disabled in favor of an external clock by leaving OSC2 open and applying an external clock signal to OSC1.

Reference Volatge Generator and Voltage Regulator

The reference voltage generator supplies a reference voltage to the voltage regulator to control the output. This voltage can be switched ON and OFF.

Voltage Multiplier

The voltage multiplier uses the clock signal from the oscillator to double or triple the input voltage. This requires three external capacitors—two charge-pump capacitors between CAP1+ and CAP1- and CAP2+ and CAP2-, respectively, and a smoothing capacitor between VI and Vo.

Double voltage potential levels

Tripled voltage potential levels

TYPICAL APPLICATIONS

Voltage Tripler with Regulator

The following figure shows the circuit required to triple the input voltage, regulate the result and add a temperature gradient of -0.4%°C. Note that the high input impedance of RV requires appropriate noise countermeasures.

Converting a Voltage Tripler to a Voltage Doubler

To convert this curcuit to a voltage doubler, remove capacitor C2 and short circuit CAP2– to Vo.

Parallel Connection

Connecting two or more chips in parallel reduces the output impedance by 1/n, where n is the number of devices used.

Only the single output smoothing capacitor, C3, is re-

quired when any number of devices are connected in parallel. Also, the voltage regulator in one chip is sufficient to regulate the combined output.

Serial Connection

Connecting two or more chips in series obtains a higher output voltage than can be obtained using a parallel connection, however, this also raises the output impedance.

<Pre><Pre>cautions when connecting loads>

In case of series connections, when connecting loads between the first stage VDD (or other potential of the second stage VDD or up) and the second stage VREG as shown in Fig. 2-13, be cautions about the following point.

* When normal output is not occurring at the VREG terminal such as at times of starting up or when turning the VREG off by Poff signals, if current flows into the second stage VREG terminal through the load from

the first stage VDD (or other potential of the second stage VDD or up) to cause a voltage exceeding the absolute maximum rating for the second stage VDD at the VREG terminal, normal operation of the IC may be hampered. Consequently, When making a series connection, insert a diode D1 between the second stage VI and VREG as shown in Fig. 2-13 so that a voltage exceeding the second stage VDD or up may not be applied to the VREG terminal.

Positive Voltage Conversion

Adding diodes converts a negative voltage to a positive one.

To convert the voltage tripler shown earlier to a voltage doubler, remove C2 and D2, and short circuit D3. Small Schottky diodes are recommended for all three diodes. The resulting voltage is lowered by VF, the voltage drop in the forward direction for each diode used. For example, if VDD = 0V, VI = -5V, and VF = 0.6V, the resulting voltages would be as follows.

- For a voltage tripler,
 - $Vo = 10 (3 \times 0.6) = 8.2V$
- · For a voltage doubler,

$$Vo = 5 - (2 \times 0.6) = 3.8V$$

Simultaneous Voltage Conversion

Combining a standard voltage tripler circuit with one for positive voltage conversion generates both –15 and 8.2V outputs from a single input, however, it also raises the output impedance.

A voltage doubler generates –10 and 3.8V outputs.

Using an External Gradient

The SCI7661C0B/M0B offers three built-in temperature gradients— -0.1, -0.4 and $-0.6\%/^{\circ}C$.

To set the gradient externally, place a thermistor, RT, in series with the variable resistor, RRV, used to adjust the output voltage.

Potential levels

DESCRIPTION

The SCI7654 C0A/M0A is a CMOS process, charge-pumping DC/DC converter and voltage regulator featuring the very high efficiency but low power consumption. An addition of four, three, or two external capacitors can generate four-, three- or two-time output voltage in negative direction than the input voltage. Also, the built-in voltage regulator can set any output voltage of DC/DC converter and can output the regulated voltage using two external resistances. As the regulator output can have a negative temperature gradient that is required for LCD panels, it is optimum for the LCD panel power supply.

FEATURES

 Charge-pumping, DC-to-DC converter (four-, threeor two-time negative boosting)

Built-in voltage regulator (regulated voltage output circuit)

High power conversion

efficiency : 95%

• Low current consumption : 130 μ A (VI = -5.0 V

during four-time boosting, Typ.)

• High output capacity : 20 mA (Max.)

• Input voltages : -2.4 to -5.5 V (during four-time boosting)

: 2.4 to -7.3 V (during three-time boosting) : 2.4 to -11 V (during two-time boosting)

• DC/DC converter output

voltage : $|Input \ voltage| \times 4$

(Max.)

• Built-in reference voltage for

high-precision regulator : 1.5 + -0.05 V (at CT0)

• Temperature gradient function of regulator

output voltages : -0.04, -0.15, -0.35,

-0.55 (%/°C)

• Low standby current

(during power-off) : 5.0 μA • Power-off by the external signal

• Full built-in oscillator circuit

• Lineup : SCI7654M0A, 16-pin

SSOP

: SCI7654C0A, 16-pin

DIP

APPLICATIONS

- Power supply of medium- and small-capacity LCD panels
- Regulated power supply of battery driven devices

BLOCK DIAGRAM

Figure 2.1 Block diagram

PIN DESCRIPTION

Figure 2.2 SCI7654MoA/CoA pin assignment

Table 2.1 Functions of the terminal

Pin name	Pin No.	PAD No.	Function
Vo	1	18	Four-time booster output
VRI	2	19	Regulator input
VREG	3	20	Regulator output
Rv	4	21	Regulator output voltage adjustment input
VDD	5	22, 23	Power pin (positive)
FC	6	24	Internal clock frequency input, and clock input in serial/parallel connection
TC1	7	3	Regulator output temperature gradient setup input (1)
TC2	8	4	Regulator output temperature gradient setup input (2)
POFF2	9	5	Power-off control input (2)
POFF1	10	6	Power-off control input (1)
Vı	11	11, 12	Power voltage (negative)
C1P	12	13	Two- or four-time booster capacitor positive pin
C1N	13	14	Two-time booster capacitor negative pin
C3N	14	15	Four-time booster capacitor negative pin
C2N	15	16	Three-time booster capacitor negative pin
C2P	16	17	Three-time booster capacitor positive pin

Table 2.2 Absolute maximum ratings

V_{DD} reference

Donomotor	Complete	Rat	ing	l lmit	Domonico
Parameter	Symbol	Min.	Max.	Unit	Remarks
Input power voltage	Vı	-26.0/N	V _{DD} + 0.3	V	N = Boost time Vı pin
Input pin voltage	V ₁	V _I – 0.3	V _{DD} + 0.3	V	POFF1, POFF2, TC1, TC2 and FC pins
Output pin voltage 1	Voc1	Vı – 0.3	VDD + 0.3	V	C1P and C2P pins
Output pin voltage 2	Voc2	2 × Vı – 0.3	Vı + 0.3	V	C1N pin
Output pin voltage 3	Vосз	3 × Vı – 0.3	2 × Vı + 0.3	V	C2N pin
Output pin voltage 4	Voc4	4 × Vı – 0.3	3 × Vı + 0.3	V	C3N pin
Regulator input power voltage	V _{RI}	$N \times V_I - 0.3$	V _{DD} + 0.3	V	N = Boost time, V _{RI} pin
Regulator input pin voltage	VRV	N × Vı – 0.3	VDD + 0.3	V	N = Boost time, RV pin
Output voltage	Vo	$N \times V_I - 0.3$	V _{DD} + 0.3	V	N = Boost time Vo and VREG pins
Input current	lı		80	mA	Vı pin
Output current	lo		N ≤ 4: 20 N > 4: 80/N	mA	N = Boost time Vo and VREG pins
Allowable loss	Pd		210	mW	Ta ≤ 25°C
Operating temperature	Topr	-30	85	°C	
Storage temperature	Tstg	- 55	150	°C	
Soldering temperature and time	Tsol		260 • 10	°C•S	At leads

Notes: 1. An operation exceeding the above absolute maximum ratings may cause a malfunction or permanent damage of devices. The device reliability may drop excessively even if the devices temporarily operate normally.

Electrical potential to peripheral systems:
 The SCI7654 common power supply has the highest potential (VDD). The electrical potential given by this specification is based on VDD = 0 V. Take care to avoid a potential problem during connection to a peripheral system.

Figure 2.3 Potential relationship

ELECTRICAL CHARACTERISTICS

Table 2.3 DC characteristics (1)

Ta = -30°C to +85°C, VDD = 0 V, VI = -5.0 V unless otherwise noted

Parameter	Symbol	Symbol Characteristics		Тур.	Max.	Unit
		N = Boost time if CT0 is selected	-22/N		-2.4	V
Input power voltage	Vı	N = Boost time if CT1 is selected	-22/N		-2.4	٧
input power voltage	VI	N = Boost time if CT2 is selected	-22/N		-2.4	V
	ľ	N = Boost time if CT3 is selected	-22/N		-2.4	V
Boost start input power voltage	VSTA	N = Boost time, FC = VDD during no loading	-22/N		-2.4	>
Boost output voltage	Vo		-22			V
Regulator input voltage	VRI		-22		-2.4	V
Regulator output voltage	VREG	IREG = 0, $VRI = -22 V$ $RRV = 1M\Omega$			-2.4	>

Table 2.3 DC characteristics (2)

Ta = -30°C to +85°C, VDD = 0 V, VI = -5.0 V unless otherwise noted

Parameter	Symbol	Characteristics	Min.	Тур.	Max.	Unit
Boost output impedance	Ro	Io = 10 mA, VI = -5.0 V during 4-time boosting C1, C2, C3, Co = 10 μ F (tantalum)		200	300	Ω
Boost output impedance	KO	Io = 10 mA, Vi = -3.0 V, Ta = 25°C during 4-time boosting C1, C2, C3, Co = 10 μ F (tantalum)		250	300	Ω
Boost power conversion	Peff	Io = 2 mA, VI = -5.0 V during 4-time boosting C1, C2, C3, Co = 10 μF (tantalum)		95		%
efficiency	1 611	Io = 2 mA, V _I = -3.0 V, Ta = 25 °C during 4-time boosting C1, C2, C3, Co = 10μ F (tantalum)		94		%
Booster operation current	lopr1	FC = VDD, $\overline{POFF1}$ = VI, $\overline{POFF2}$ = VDD, VI = -5.0 V during no loading C1, C2, C3, C0 = 10 μ F (tantalum)		130	220	μΑ
consumption 1	Iopr1	FC = VDD, $\overline{POFF1}$ = VI, $\overline{POFF2}$ = VDD, VI = -3.0 V, Ta = 25°C during no loading C1, C2, C3, C0 = 10 μ F (tantalum)		90	150	μΑ
Booster operation current	lopr2	FC = VI, $\overline{POFF1}$ = VI, $\overline{POFF2}$ = VDD, VI = -5.0 V during no loading C1, C2, C3, C0 = 10 μ F (tantalum)		520	880	μΑ
consumption 2	ΙορίΖ	FC = VI, $\overline{POFF1}$ = VI, $\overline{POFF2}$ = VDD, VI = -3.0 V, Ta = 25°C during no loading C1, C2, C3, C0 = 10 μ F (tantalum)		360	600	μΑ
Regulator operation current consumption	IOPVR	$VRI = -20 \text{ V}, RRV = 1 \text{ M}\Omega \text{ during}$ no loading		10	15	μА
Static current	IQ	POFF1 = VI, POFF2 = VI FC = VDD			5.0	μА
Input leakage current	lLi	Pins used: POFF1, POFF2, FC, TC1, TC2			0.5	μА
Regulated output saturation resistance	RSAT (*1)	0 < IREG < 20 mA Rv = VDD Ta = 25°C		10	20	Ω
Regulated output voltage stability	ΔVR (*2)	-20 V < VRI < -10 V, IREG = 1 mA VREG = -9 V Ta = 25°C			0.2	%/V

Table 2.3 DC characteristics (3)

Ta = -30°C to +85°C, VDD = 0 V, VI = -5.0 V unless otherwise noted

Parameter	Symbol	Characteristics	Min.	Тур.	Max.	Unit
Regulated output load variation	ΔVο (*3)	VRI = -20 V, VREG = -15 V, Ta = 25°C setup 0 < IREG < 20 mA		30	50	mV
	VREF0	TC1 = VDD, TC2 = VDD	-1.55	-1.50	-1.45	V
Reference voltage	VREF1	TC1 = VDD, TC2 = VI	-1.70	-1.50	-1.30	V
(Ta = 25°C)	VREF2	TC1 = VI, TC2 = VDD	-1.90	-1.50	-1.10	V
	VREF3	TC1 = VI, TC2 = VI	-2.15	-1.50	-0.85	V
D (СТО	TC1 = VDD, TC2 = VDD, SSOP product	-0.07	-0.04	0	%/°C
Reference voltage temperature coefficient	CT1	TC1 = VDD, TC2 = VI, SSOP product	-0.25	-0.15	-0.07	%/°C
(*4, *5)	CT2	TC1 = VI, TC2 = VDD, SSOP product	-0.45	-0.35	-0.20	%/°C
	СТЗ	TC1 = Vi, TC2 = Vi, SSOP product	-0.75	-0.55	-0.30	%/°C
Input voltage level	Vı	VI = -2.4 to -5.5 V Pins used: $\overrightarrow{POFF1}$, $\overrightarrow{POFF2}$, FC, TC1, TC2	0.2 Vı			V
mput voltago lovo.	VIL	VI = -2.4 to -5.5 V Pins used: $\overrightarrow{POFF1}$, $\overrightarrow{POFF2}$, FC, TC1, TC2			0.8 Vı	V
Booster capacitance	CMAX	Capacitors used: C1, C2 and C3			47	μF

*1 RSAT =
$$\frac{\Delta (VREG - VRI)}{\Delta IREG}$$

*2
$$\Delta V_R = \frac{V_{REG} (V_{RI} = -20 \text{ V}) - V_{REG} (V_{RI} = -10 \text{ V})}{\Delta V_{RI} \cdot V_{REG} (V_{RI} = -10 \text{ V})}$$

*3
$$\Delta V_0 = \frac{V_{REG} (I_{REG} = 20 \text{ mA}) - V_{REG} (I_{REG} = 0 \text{ mA})}{\Delta I_{REG}}$$

*4
$$CT = \frac{|V_{REF}(50^{\circ}C)| - |V_{REF}(0^{\circ}C)|}{50^{\circ}C - 0^{\circ}C} \times \frac{100}{|V_{REF}(25^{\circ}C)|}$$

*5 The reference voltage and temperature coefficient of the chip products may vary depending on the moldings used on each chip. Use these chips only after the temperature test.

Table 2.4 AC characteristics

VDD = 0 V and VI = -5.0 V unless otherwise noted

Parameter	Symbol	Characteris	Min.	Тур.	Max.	Unit	
Internal clock frequency 1	fCL1	$\frac{FC = VDD,}{POFF1} = VI$	Ta = 25°C	3.0	4.0	6.0	kHz
	ICL1	POFF2 = VDD Pin used: C1P	Ta = -30°C to +85°C	2.0	4.0	7.0	kHz
Internal clock frequency 2	fCL2	$\frac{FC = VI,}{POFF1} = VI$	Ta = 25°C	12.0	16.0	24.0	kHz
	TOLZ	POFF2 = VDD Pin used: C1P	$Ta = -30^{\circ}C$ to +85°C	8.0	16.0	28.0	kHz

EXPLANATION OF FUNCTIONS

Clock Generator Circuit

As the SCI7654 has a built-in clock generator circuit, no more parts are required for voltage boost control. The clock frequency changes according to the FC pin voltage level as defined on Table 2.5. Low Output mode or High Output mode is selectable. This allows frequency selection according to the used capacitance and load

current as the boost output impedance changes depending on the clock frequency and external booster capacitance. However, the High Output mode has the current consumption approximately four times larger than the Low Output mode.

Table 2.5 FC pin setup

					Charac	eteristics	
	FC pin	Mode	Clock frequency	Current consumption	Output ripple	Output impedance	Capacitance
	H (VDD)	Low Output	4.0 kHz (Typ.)	IOP (*1)	VRR (*2)	See Figure A1.	See Figure A1.
ĺ	L (VI)	High Output	16.0 kHz (Typ.)	IOP × Approx. 4	VRI × Approx. 1/4	See Figure A1.	See Figure A1.

^{*1} See the DC characteristics table for current consumption.

^{*2} See Section Page 2-32 for the output ripple definition and calculation.

Figure A1 Characteristic chart: Capacitance vs. output impedance when 4X pressure is applied NOTE: This characteristic chart simply indicates an approximate trend in the characteristics, which may vary depending on evaluation environment, parts used, and other factors.

Capacitance vs. output impedance characteristic when 4X pressure is applied Load current = 10 mA, Ta = 25°C, C1 = C2 = $C_{\bar{0}}$ Capacitor used: Tantalum electrolytic capacitor

- V_I = -3.0V FC = "H"
- □ V_I = -3.0V FC = "L"
- V_I = -5.0V FC = "H"
- O $V_{I} = -5.0V$ FC = "L"

Voltage Converter

The voltage converter, consisting of a boost control circuit and a voltage converter circuit, receives clocks from the clock generator circuit and boosts the input power voltage (VI) four, three or two times. During four-time boosting, however, the three-time and twotime boost outputs cannot be obtained simultaneously. Figure 2.4 gives the potential relationship during four-, three- and two-time boosting. The C2P pin is also used as the master clock output during parallel connection.

Figure 2.4 Electrical potentials during boosting (at -5V input)

Caution:

• When connecting a capacitor to the C1P, C2P, C1N, C2N, C3N, or Vo pin for voltage conversion, close the capacitor to the IC package as much as possible to minimize the wiring length.

Reference Voltage Circuit

The SCI7654 has a built-in reference voltage circuit for voltage regulation. The regulated voltage (explained in the next "voltage regulator circuit" section) is set depending on the division ratio between this reference

voltage and the external resistance. The reference voltage can be used to change the temperature coefficient at pins TC1 and TC2. One of four states can be selected as listed on Table 2.6.

Table 2.6 Setup of reference voltage and temperature coefficient

	TC1 (H = V _{DD})	TC2 (H = V _{DD})	Reference voltage, VREF (V)				rature coef CT (%/°C)	fficient,
Mode	(L = V _I)	(L = V _I)	Min.	Тур.	Max.	Min.	Тур.	Max.
СТО	Н	Н	-1.55	-1.5	-1.45	-0.07	-0.04	0
CT1	Н	L	-1.70	-1.5	-1.30	-0.25	-0.15	-0.07
CT2	L	Н	-1.90	-1.5	-1.10	-0.45	-0.35	-0.20
СТЗ	L	L	-2.15	-1.5	-0.85	-0.75	-0.55	-0.30

Notes: 1. The reference voltage is given at $Ta = 25^{\circ}C$.

2. The reference voltage and temperature coefficient of the chip products may vary depending on the moldings used on each chip. Use these chips only after the temperature test.

The temperature coefficient (CT) is defined by the following equation. The negative sign of the temperature coefficient (CT) means that the |VREF| value decreases when the temperature rises.

$$CT = \frac{\mid V_{REF} (50^{\circ}C) \mid - \mid V_{REF} (0^{\circ}C) \mid}{50^{\circ}C - 0^{\circ}C} \times \frac{100}{\mid V_{REF} (25^{\circ}C) \mid}$$

Notes on TC1 and TC2 pin replacement:

• When replacing the TC1 and TC2 pins after power-on, always select the power-off mode ($\overline{POFF1} = \overline{POFF2} = VI$) and replace them by each other.

Voltage Regulator Circuit

The voltage regulator circuit regulates a voltage entered in the VRI pin and can output any voltage. It uses the series voltage regulation. As shown in Figure 2.5, the VRI and VO pins must be short-circuited by a jumper as short as possible except for larger time boosting by using external diodes.

As shown by equation (1), any output voltage can be set by the ratio of external division resistors R1 and R2. The sum of division resistance is recommended to be small as possible to avoid an external noise interference. As the current consumed by division resistors (equation (2)) flows, the 100 ohms to 1M ohms are recommended to use.

The temperature coefficient of the regulated voltage is equal to the temperature coefficient of the reference voltage that is explained in the "reference voltage circuit" section.

Figure 2.5 VREG setup and mounting notes

Setup:

• Relationship between VREG and reference voltage

$$V_{REG} = \frac{R1 + R2}{R1} \times \text{ (Reference voltage)}$$
•••• Equation (1)

• Current consumption of division resistors

$$IREG = \frac{|VREG|}{R1 + R2}$$
 •••• Equation (2)

Setup example:

• To output VREG = -18 V by four-time boosting if VI = -5 V and VO = -20 V

First, determine the total resistance of division resistors R1 and R2. If the current consumption is assumed to be 20 μ A, the total resistance can be obtained from equation (2) as follows:

$$R1+R2=12V\div20~\mu A=900~k\Omega$$

If the reference voltage is -1.5 V, the division resistance ratio can be obtained from equation (1) as follows:

$$(R1 + R2) / R2 = (-18 \text{ V}) \div (-1.5 \text{ V}) = 12$$

Therefore, R1 and R2 are:

$$R1 = 75 \text{ k}\Omega$$
$$R2 = 825 \text{ k}\Omega$$

Changing the temperature coefficient:

• The temperature coefficient of the regulated voltage depends on the temperature coefficient of the reference voltage (if the division ratio of setup resistors does not depend on the temperature). It is necessary to change the temperature coefficient using thermistors, resistors or others to set any other temperature coefficient of the regulated voltage. The following explains how to calculate the VREG voltage in temperature T.

$$V_{REG}\left(T\right) = \left\{1 + \frac{C_{TR2} \times R2\left(T0\right)}{C_{TR1} \times R1\left(T0\right)}\right\} \times C_{TRF} \times \left(T - T0\right) \times V_{REF}\left(T0\right)$$
•••• Equation (3)

To : 25°C

CTR1 : Temperature coefficient of resistor R1 (Ratio to the value at 25°C)
CTR2 : Temperature coefficient of resistor R2 (Ratio to the value at 25°C)
CTREF : Temperature coefficient of internal reference voltage (%/°C)

R1 (T0) : R1 value (Ω) at 25°C R2 (T0) : R2 value (Ω) at 25°C

VREF (T0) : Internal reference voltage (V) at 25°C

If the temperature coefficient of R1 and R2 is identical in equation (3), the VREG voltage depends on the temperature coefficient of internal reference voltage only.

Application notes on voltage regulator circuit:

- To satisfy the absolute maximum ratings of the SCI7654, the setup resistor(s) must be inserted between VDD and VREG pins of the SCI7654 that uses the voltage regulator. The SCI7654 IC itself may be degraded or destroyed if the R1 resistor is connected to pin VDD of SCI7654 that does not use the regulator during serial connection.
- The regulation voltage adjustment input (pin RV) has the very high input impedance, and its noise insertion can drop the regulator stability. As shown in Figure 2.5, shield the cable between the division resistor and RV pin or use a cable as short as possible between them.

Power-off Control Function

The SCI7654 has the power-off function and turns on or off each circuit function when control signals are entered in the POFF1 and POFF2 pins from an external system (such as microprocessor) as defined on Table 2.7. This power-off function can also cut the reactive

current in parallel connection and other application circuits

To use the dual-state, power-off control (all ON and all OFF states) only, connect pin POFF2 to pin VI and use only pin POFF1 for power-off control.

Table 2.7 Available combination of power-off control

	POFF1	POFF2		Functions	3	
Mode	(H = V _{DD}) (L = V _I)		Oscillator	Booster circuit	Regulator circuit	Applications
PS1	Н	L	On	On	On	All circuits are turned on.
PS2	L	L	Off	Off (*1)	Off (*2)	All circuits are turned off.
PS3	Н	Н	Off	On	On	Slave unit side of parallel connection (Booster and regulator)
PS4	L	Н	On	On	Off	Master unit side of parallel connection (Booster only)

^{*1} When the booster circuit is off, approximately VI + 0.6 V voltage appears at VO pin.

Application notes on power-off function:

• When using external system signals for power-on control, start to control the power only when VI voltage becomes stable after power-on. Unstable VI voltage may destroy the IC permanently during on/off control.

Figure 2.6 Start timing of power-off control

^{*2} When the regulator is off, the VREG pin becomes high-impedance state.

2-29

CHARACTERISTICS GRAPHICS

Figure 2.7 Characteristics graphics

APPLICATION CIRCUIT EXAMPLES

Four-time Booster and Regulator

Figure 2.8 gives a wiring example of four-time booster and regulator that is the typical SCI7654 application. This example boosts the input voltage (VI) four times in

negative direction, and outputs the regulated voltage at VREG pin.

Figure 2.8 Wiring example of 4-time booster and regulator

♦ Setup conditions of Figure 2.8

• Internal clock : On (Low Output mode)

• Booster circuit: On

• Regulator : On (if CT = -0.04%/°C)

♦ Power-off procedure

• Set the POFF1 pin to logical low (VI) to turn off all circuits.

♦ Regulator

• For the regulator setup and notes, see the "voltage regulator circuit" section.

♦ Application in other setup conditions

- 1) When used in the High Output mode
 - Connect the FC pin to the VI pin.
- 2 When changing the temperature coefficient (CT)
 - Change the TC1 and TC2 pin setup by following the definition of Table 2.7.

4-time Booster

Only the booster circuit operates, and it boosts the input voltage (VI) four times in negative direction and outputs it at the VO pin. As the regulator is not used, the voltage

appearing at the Vo pin may contain ripple components. Figure 2.9 gives a wiring example.

Figure 2.9 Wiring example of 4-time booster

♦ Setup conditions of Figure 2.9

• Internal clock : On (Low Output mode)

• Booster circuit : On • Regulator : Off

♦ Power-off procedure

• Set the POFF2 pin to low (VI) to turn off all circuits.

♦ Ripple voltage

• As the output at Vo pin is unstable, it can contain ripple components as shown in Figure 2.10. The ripple voltage (VRP) increases according to the load current, and it can roughly be calculated by equation (4).

Figure 2.10 Ripple waveforms

where,

IO : Load current (A) fCL : Clock frequency (Hz)

RCOUT : Serial equivalent resistance (Ω) of output capacitor Co

♦ Application in other setup conditions

- 1) When used in the High Output mode
 - Connect the FC pin to the VI pin.

Parallel Connection (for Increased Boosting)

The parallel connection is useful for reduction of booster output impedance or reduction of ripple voltage. In the parallel connection of "n" lines, the booster output impedance can be reduced to approximately "1/n". Only the smoothing capacitor (Co) for booster output can be used commonly in the parallel connection. When using the regulator, use only one of "n" SCI7654

chips which are in parallel connection. (If multiple regulators are operated in parallel mode, the reactive current consumption occurs.) Figure 2.11 gives a wiring example of 4-time booster and regulator where two SCI7654's are parallelly connected.

Figure 2.11 Parallel connection example

♦ Setup conditions of Figure 2.11

First stage

Internal clock : On (Low Output mode)
 Booster circuit : On
 Booster circuit : On

• Regulator : Off • Regulator : On (if CT = -0.04%/°C)

♦ Power-off procedure

- In Figure 2.11, when the POFF2 pin of the first-stage SCI7654 is set to low (VI), voltage boosting is stopped at the first and second stages. However, the regulator at the second stage does not stop. Therefore, the voltage that is approximately VI appears at VREG pin during |VREG| > |VI| setup.
- To set the VREG pin to high-impedance state, set both POFF1 and POFF2 pins to low at the first and second stages.
- ♦ Application in other setup conditions
 - 1) When used in the High Output mode
 - Connect the FC pin of the first-stage SCI7654 to the VI pin.
 - (2) When changing the temperature coefficient (CT)
 - Change the TC1 and TC2 pin setup by following the definition of Table 2.7.

Larger Time Boosting Using Diodes

The SCI7654 can be configured to have the five-time or larger voltage boosting and regulation by adding external diodes. As the booster output impedance increases due to the diode forward voltage drop (VF), the diodes having a smaller VF are recommended to use.

Figure 2.12 gives a wiring example of 6-time booster and regulator that use two diodes. The wiring between Vo and VRI must be minimal. Figure 2.13 provides the potential relationship.

Second stage

Figure 2.12 Wiring example for 6-time boosting using diodes

SCI7654 Series

♦ Setup conditions of Figure 2.12

• Internal clock : On (Low Output mode)

• Booster circuit: On

 Regulator : On (if $CT = -0.04\% / ^{\circ}C$)

Figure 2.13 Potential relationship during 6-time boosting using diodes

♦ Power-off procedure

• Set the POFF1 pin to low (VI) to turn off all circuits.

♦ Output voltages

• When diodes are used for voltage boosting, the characteristics of diodes directly affect on the voltage boosting characteristics. The forward voltage drop (VF) of diodes can reduce the booster output voltage. As the example of Figure 2.12 uses two diodes, the drop of "VF" voltage multiplied by two occurs as shown in Figure 2.13. The booster output voltage is expressed by equation (5).

To increase the |Vo'| value, use the diodes having a smaller VF.

$$|VO'| = 6 \times |VI| - 2 \times VF$$
 •••• Equation (5)

♦ Notes

(1) Input and output current conditions

To satisfy the input and output current ratings, limit the total current does not exceed the rated input current. The total current means the total boost time multiplied by the output load current. The example of Figure 2.12 has the maximum load current of 13.3 mA (= 80 mA divided by 6).

(2) Input and output voltage conditions

To satisfy the input and output voltage ratings, take care not to violate the electric potential relationship of higher time boosting using diodes. The example of Figure 2.12 must have the "Vi" that can satisfy the input voltage conditions during 6-time boosting (see Table 2.3).

- ♦ Application in other setup conditions
 - (1) When used in the High Output mode

Connect the FC pin to the VI pin.

2 When changing the temperature coefficient (CT)

Change the TC1 and TC2 pin setup by following the definition of Table 2.7.

Positive Voltage Conversion

The SCI7654 can also boost up a voltage to the positive potential using external diodes. In such case, however, the regulator function is unavailable. Figure 2.14 gives

a wiring example for three-time positive boosting, and Figure 2.15 provides its electrical potential relationship.

Figure 2.14 Wiring example of positive voltage conversion (3-time boosting)

♦ Setup conditions of Figure 2.14

• Internal clock : On (Low Output mode)

• Booster circuit: On • Regulator: Off

Figure 2.15 Potential relationship during positive voltage conversion (3-time boosting)

- ♦ Power-off procedure
 - Set the POFF2 pin to low (VI) to turn off all circuits.
- ♦ Two-time boosting
 - To boost up a voltage two times, remove capacitor C1 and diode D1 of Figure 2.14, and connect the anode of diode D2 to the VDD pin.

♦ Output voltages

• When diodes are used for voltage boosting, the characteristics of diodes directly affect on the voltage boosting characteristics. The forward voltage drop (VF) of diodes can reduce the booster output voltage. As the example of Figure 2.14 uses three diodes, the drop of "VF" voltage multiplied by three occurs. The booster output voltage is expressed by equation (5).

To increase the |Vo'| value, use the diodes having a smaller VF.

$$|VO'| = 3 \times |VI| - (3 \times VF)$$
 •••• Equation (6)

♦ Notes

- 1 Input and output current conditions
 - To satisfy the input and output current ratings, take care to limit the input current below the ratings.
- ② Input and output voltage conditions During forward voltage conversion, the input voltage ratings are the same as two-time negative voltage boosting (see Table 2.3).
- ♦ Application in other setup conditions

When used in the High Output mode, connect the FC pin to the VI pin.

Wiring Example When Changing the Regulator Temperature Coefficient

The temperature coefficient of the regulator depends on the temperature coefficient of the internal reference voltage. To set another temperature coefficient, use a thermistor resistor or others as shown in Figure 2.16.

Figure 2.16 Wiring example when changing the regulator temperature coefficient

♦ Setup conditions of Figure 2.16

• Internal clock : On (Low Output mode)

Booster circuit : OnRegulator : OnThermistor resistor : RT

♦ Power-off procedure

• Set the POFF1 pin to low (VI) to turn off all circuits.

♦ Regulator temperature coefficient

- For the regulator setup and notes, see the "voltage regulator circuit" section of the function.
- The thermistor resistor (RT) has the non-linear temperature characteristics. To correct them to the linear characteristics, insert the RP as shown Figure 2.16.

♦ Application in other setup conditions

• When used in the High Output mode, connect the FC pin to the VI pin.

SCI 1810 Series SCI 1910 Series SCI 1910 Series SCI 1910 Series SCI 1910 Series Voltage Regulator

DESCRIPTION

The SCI7810Y series products are the fixed type positive voltage regulators being developed utilizing the CMOS silicon gate process. It is mainly consisted of the reference voltage circuit driven with low operating current, differential amplifier, transistor for output control and voltage setting resistor.

Output voltage is fixed on ICs. A wide variety of standard voltage products are prepared.

The package used is the SOT89-3 pins plastic package.

FEATURES

- A wide variety of lineups: 12 types are offered in the range of 2V to 6V.
- Low operating current: Typ. 1.5 μ A (VDD = 5.0V).
- Smaller difference between the input and output voltage: Typ. 0.02V (Io = 10 mA, Vo = 5.0V).
- Built-in, highly stable reference voltage source: Typ. 1.0V.
- Smaller temperature factor on output voltage: Typ. 100 ppm/°C.
- Wider operating voltage range: Maximum 15V.

BLOCK DIAGRAM

MODEL CLASSIFICATION

Product name	Out	put volt	tage
i roddot ridirie	Min.	Тур.	Max.
SCI7810YAA	5.75	6.00	6.25
SCI7810YBA	4.90	5.00	5.10
SCI7810YMA	4.40	4.50	4.60
SCI7810YPA	3.90	4.00	4.10
SCI7810YKA	3.80	3.90	4.00
SCI7810YNA	3.43	3.50	3.57
SCI7810YTA	3.23	3.30	3.37
SCI7810Yca	3.13	3.20	3.27
SCI7810YDA	2.93	3.00	3.07
SCI7810YRA	2.73	2.80	2.87
SCI7810YLA	2.53	2.60	2.67
SCI7810YFA	2.15	2.20	2.25
SCI7810YGA	1.75	1.80	1.85
SCI7810YHA	1.45	1.50	1.55
·			

PIN DESCRIPTION Pin Function

Pin No.	Pin name	Pin function
1	Vss	Input voltage pin (negative side)
2	VDD	Input voltage pin (positive side)
3	Vo	Output voltage pin

Pin Layout

DESCRIPTION OF FUNCTION

The SCI7810Y series products are the fixed type positive output voltage regulators. They employ the series regulation approach using CMOS transistors between the input and output for control of the output.

The voltage divided by the built-in resistors R1 and R2 (VREG) is fed back to the operational amplifier and compared against the reference voltage (Vref). This process enables to control the gate voltage of the output control transistor so that stable output voltage (Vo) independent of input voltage is ensured. Output voltage is internally fixed and determined by the following formula.

$$Vo = \frac{R_1 + R_2}{R_1} \bullet Vref$$

ABSOLUTE MAXIMUM RATING

Parameter	Symbol	Rating	Unit
Input voltage	VDD - VSS	18	V
Output voltage	Vo	VDD + 0.3 to Vss - 0.3	•
Output current	lo	100	mA
Allowable dissipation	PD	200	mW
Operating temperature	Topr	-30 to +85	°C
Storage temperature	Tstg	-65 to +150	
Soldering time Soldering temperature	Tsol	260°C 10 seconds (at lead)	_

ELECTRIC CHARACTERISTICS

SCI7810YAA

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ shall be assumed except where otherwise specified.})$

•		•			•	,
Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı		_	_	15	V
Output voltage	Vo	VDD = 8.0V, IO = -10mA Ta = 25°C	5.75	6.00	6.25	V
Operating current	ЮР	VDD = 6.0V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 6.0V, Io = -10mA	_	0.16	0.32	٧
Output voltage temperature characteristics	Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to +85°C (At the same temperature level) VDD = 7.0V to 15.0V IO = -10 mA	_	0.1	_	%/V
Load stability	ΔVο	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 8.0V$ $I_{D} = -1$ mA to -50 mA	_	50	_	mV
Supply voltage regulation rejection ratio	PSRR	VDD = 8.0V, fin = $50kHzCL = 10\mu F, IO = -10mA$	_	-40	_	dB

SCI7810YBA

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ shall be assumed except where otherwise specified.})$

_		· · · · · · · · · · · · · · · · · · ·				
Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı		_	_	15	V
Output voltage	Vo	VDD = 7.0V, IO = −10mA Ta = 25°C	4.90	5.00	5.10	\
Operating current	ЮР	VDD = 5.0V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 5.0V, Io = -10mA	_	0.17	0.34	V
Output voltage temperature characteristics	ΔVo Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to +85°C (At the same temperature level) VDD = 6.0V to 15.0V IO = -10 mA	_	0.1	_	%/V
Load stability	ΔVο	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 7.0V$ $I_{DD} = -1$ mA to -50 mA	_	50	_	mV
Supply voltage regulation rejection ratio	PSRR	$VDD = 7.0V$, fin = 50kHz $CL = 10\mu F$, $IO = -10mA$	_	-40	_	dB

SCI7810YMA

(Ta = -30° C to $+85^{\circ}$ C shall be assumed except where otherwise specified.)

Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı		_	_	15	V
Output voltage	Vo	VDD = 6.0V, IO = −10mA Ta = 25°C	4.40	4.50	4.60	V
Operating current	ЮР	VDD = 4.5V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 4.5V, Io = -10mA	_	0.18	0.36	V
Output voltage temperature characteristics	ΔVo Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 6.0V$ to $15.0V$ $I_{O} = -10$ mA	_	0.1	_	%/V
Load stability	ΔVο	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) VDD = 6.0 V IO = -1 mA to -40 mA	_	40	_	mV
Supply voltage regulation rejection ratio	PSRR	$VDD = 6.0V$, fin = 50kHz $CL = 10\mu F$, $IO = -10mA$	_	-40	_	dB

SCI7810YPA

(Ta = -30° C to $+85^{\circ}$ C shall be assumed except where otherwise specified.)

Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı		_	_	15	V
Output voltage	Vo	VDD = 6.0V, IO = -10mA Ta = 25°C	3.90	4.00	4.10	٧
Operating current	ЮР	VDD = 4.0V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 4.0V, Io = -10mA	_	0.19	0.38	V
Output voltage temperature characteristics	ΔVo Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to +85°C (At the same temperature level) VDD = 5.0V to 15.0V IO = -10 mA	_	0.1	_	%/V
Load stability	ΔVο	Ta = -30° C to +85°C (At the same temperature level) VDD = 6.0V IO = -1 mA to -40 mA	_	40	_	mV
Supply voltage regulation rejection ratio	PSRR	$VDD = 6.0V, fin = 50kHz$ $CL = 10\mu F, Io = -10mA$	_	-40	_	dB

SCI7810YKA

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ shall be assumed except where otherwise specified.})$

Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı		_	_	15	V
Output voltage	Vo	VDD = 6.0V, IO = -10mA Ta = 25°C	3.80	3.90	4.00	V
Operating current	ЮР	VDD = 3.9V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 3.9V, Io = -10mA	_	0.19	0.38	V
Output voltage temperature characteristics	ΔVo Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) VDD = 5.0 V to 15.0 V IO = -10 mA	_	0.1	_	%/V
Load stability	ΔVο	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) VDD = 6.0 V IO = -1 mA to -40 mA	_	40	_	mV
Supply voltage regulation rejection ratio	PSRR	$VDD = 6.0V$, fin = 50kHz $CL = 10\mu F$, $IO = -10mA$	_	-40	_	dB

SCI7810YNA

(Ta = -30°C to +85°C shall be assumed except where otherwise specified.)

Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı	·	_	_	15	V
Output voltage	Vo	VDD = 5.0V, IO = −10mA Ta = 25°C	3.43	3.50	3.57	V
Operating current	ЮР	VDD = 3.5V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 3.5V, Io = -10mA	_	0.21	0.42	V
Output voltage temperature characteristics	ΔVo Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 5.0V$ to $15.0V$ $I_{O} = -10$ mA	_	0.1	_	%/V
Load stability	ΔVο	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) VDD = 5.0V IO = -1mA to $-30mA$	_	30	_	mV
Supply voltage regulation rejection ratio	PSRR	VDD = 5.0V, fin = $50kHzCL = 10\mu F, IO = -10mA$	_	-40	_	dB

SCI7810YTA

(Ta = -30° C to $+85^{\circ}$ C shall be assumed except where otherwise specified.)

Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı		_	_	15	V
Output voltage	Vo	VDD = 5.0V, IO = −10mA Ta = 25°C	3.23	3.30	3.37	V
Operating current	ЮР	VDD = 3.3V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 3.3V, Io = -10mA	_	0.22	0.44	V
Output voltage temperature characteristics	ΔVo Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 4.0V$ to $15.0V$ $I_{O} = -10$ mA	_	0.1	_	%/V
Load stability	ΔVο	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 5.0V$ $I_{D} = -1$ mA to -40 mA	_	30	_	mV
Supply voltage regulation rejection ratio	PSRR	VDD = 5.0V, fin = $50kHzCL = 10\mu F, IO = -10mA$	_	-40	_	dB

SCI7810YCA

$(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ shall be assumed except where otherwise specified.})$

Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı		_	_	15	V
Output voltage	Vo	VDD = 5.0V, IO = -10mA Ta = 25°C	3.13	3.20	3.27	V
Operating current	ЮР	VDD = 3.2V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 3.2V, Io = -10mA	_	0.22	0.44	V
Output voltage temperature characteristics	ΔVo Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 4.0V$ to $15.0V$ $I_{O} = -10$ mA	_	0.1		%/V
Load stability	ΔVο	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 5.0V$ $I_{D} = -1$ mA to -30 mA	_	30	_	mV
Supply voltage regulation rejection ratio	PSRR	$VDD = 5.0V, fin = 50kHz \\ CL = 10\mu F, IO = -10mA$	_	-40	_	dB

SCI7810YDA

(Ta = -30° C to $+85^{\circ}$ C shall be assumed except where otherwise specified.)

Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı		_	_	15	V
Output voltage	Vo	VDD = 5.0V, IO = -10mA Ta = 25°C	2.93	3.00	3.07	V
Operating current	ЮР	VDD = 3.0V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 3.0V, Io = -10mA	_	0.23	0.46	V
Output voltage temperature characteristics	ΔVo Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to +85°C (At the same temperature level) VDD = 4.0V to 15.0V IO = -10 mA	_	0.1	_	%/V
Load stability	ΔVο	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 5.0V$ $I_{DD} = -1$ mA to -30 mA	_	30	_	mV
Supply voltage regulation rejection ratio	PSRR	VDD = 5.0V, fin = $50kHzCL = 10\mu F, IO = -10mA$	_	-40	_	dB

SCI7810YRA

(Ta = -30°C to +85°C shall be assumed except where otherwise specified.)

,		-			-	
Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı		_	_	15	V
Output voltage	Vo	VDD = 5.0V, IO = −10mA Ta = 25°C	2.73	2.80	2.87	V
Operating current	ЮР	VDD = 2.8V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 2.8V, Io = -10mA	_	0.24	0.48	V
Output voltage temperature characteristics	ΔVo Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) VDD = 4.0V to $15.0VIO = -10$ mA	_	0.1	_	%/V
Load stability	ΔVο	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 5.0V$ $I_{DD} = -1$ mA to -30 mA	_	30	_	mV
Supply voltage regulation rejection ratio	PSRR	VDD = 5.0V, fin = $50kHzCL = 10\mu F, IO = -10mA$	_	-40	_	dB

SCI7810YLA

(Ta = -30° C to $+85^{\circ}$ C shall be assumed except where otherwise specified.)

Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı		_	_	15	V
Output voltage	Vo	VDD = 5.0V, IO = -10mA Ta = 25°C	2.53	2.60	2.67	V
Operating current	ЮР	VDD = 2.6V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 2.6V, Io = -10mA	_	0.25	0.50	V
Output voltage temperature characteristics	ΔVo Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to +85°C (At the same temperature level) VDD = 4.0V to 15.0V IO = -10 mA	_	0.1	_	%/V
Load stability	ΔVο	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 5.0V$ $I_{D} = -1$ mA to -30 mA	_	30	_	mV
Supply voltage regulation rejection ratio	PSRR	VDD = 5.0V, fin = $50kHzCL = 10\mu F, IO = -10mA$	_	-40	_	dB

SCI7810YFA

$(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ shall be assumed except where otherwise specified.})$

Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı		_	_	15	V
Output voltage	Vo	VDD = 3.0V, IO = -10mA Ta = 25°C	2.15	2.20	2.25	V
Operating current	ЮР	VDD = 2.2V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 2.2V, Io = -10mA	_	0.28	0.56	V
Output voltage temperature characteristics	<u>ΔVo</u> Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) VDD = 3.0 V to 15.0 V IO = -10 mA	_	0.1	_	%/V
Load stability	ΔVο	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 3.0V$ $I_{D} = -1$ mA to -30 mA	_	20	_	mV
Supply voltage regulation rejection ratio	PSRR	$VDD = 3.0V, \ fin = 50kHz \\ CL = 10\mu F, \ Io = -10mA$	_	-40	_	dB

SCI7810YGA

(Ta = -30° C to $+85^{\circ}$ C shall be assumed except where otherwise specified.)

Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı		_	_	15	V
Output voltage	Vo	VDD = 3.0V, IO = -10mA Ta = 25°C	1.75	1.80	1.85	V
Operating current	ЮР	VDD = 2.2V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 1.8V, Io = -1mA	_	35	90	V
Output voltage temperature characteristics	ΔVo Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to +85°C (At the same temperature level) VDD = 3.0V to 15.0V IO = -10 mA	_	0.1	_	%/V
Load stability	ΔVο	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 3.0V$ $I_{DD} = -1$ mA to -30 mA	_	20	_	mV
Supply voltage regulation rejection ratio	PSRR	VDD = 3.0V, fin = $50kHzCL = 10\mu F, IO = -10mA$	_	-40	_	dB

SCI7810YHA

(Ta = -30°C to +85°C shall be assumed except where otherwise specified.)

Parameter	Symbol	Conditions (Vss = 0.0v)	Min.	Тур.	Max.	Unit
Input voltage	Vı		_	_	15	V
Output voltage	Vo	VDD = 3.0V, IO = -10mA Ta = 25°C	1.45	1.50	1.55	V
Operating current	ЮР	VDD = 2.2V to 15.0V No load	_	1.5	5.0	μΑ
Voltage difference between input and output	Vı – Vo	Vo = 1.5V, Io = -1mA	_	40	110	V
Output voltage temperature characteristics	ΔVo Vo		-300	-100	+100	ppm /°C
Input voltage stability	dVo dVı • Vo	Ta = -30° C to +85°C (At the same temperature level) VDD = 3.0V to 15.0V IO = -10 mA	_	0.1	_	%/V
Load stability	ΔVο	Ta = -30° C to $+85^{\circ}$ C (At the same temperature level) $V_{DD} = 3.0V$ $I_{DD} = -1$ mA to -10 mA	_	20	_	mV
Supply voltage regulation rejection ratio	PSRR	VDD = 3.0V, fin = $50kHzCL = 10\mu F, IO = -10mA$	_	-40	_	dB

EXAMPLES OF APPLIED CIRCUITSCurrent Boost Circuit

Configuring the current boost circuit as shown in Figure 3-4 enables to create a voltage regulator that is capable of providing higher output current at lower operating current.

Figure 3-4 Current boost circuit

Variable Voltage Circuit 1

The SCI7810Y series consists of 3-pin regulators with fixed output voltage. Their output voltage, however, can be changed providing resistors externally as shown in Figure 3-5. In this case, the output voltage Vo is determined by the following formula.

$$Vo = \frac{R_1 + R_2}{R_2} Vr$$

But, this arrangement requires to provide bias current (IB) enough to offset increased resistance on R1 that results from operating current (Iopr) of the SCI7810Y series.

Figure 3-5 Providing resistors

Variable Voltage Circuit 2

It is also possible to increase output voltage using the SCI7810 series and diode, and configuring the circuit shown in Figure 3-6.

The circuit shown in Figure 3-6 takes into consideration of dispersion of the forward voltage VF resulting from the circuit element, temperature and IC's operating current Iss. This circuit is an example of using forward

characteristic of the diode, but reverse voltage (Zener diode) can also be utilized depending on a given input voltage.

When you want to reduce Iss-dependent dispersion of VF or when Iss is not sufficient as the diode bias current, think of externally adding the resistor R1.

Figure 3-6

When Higher Input Voltage is Needed

When you want to apply an input voltage higher than the rating, add the regulator circuit in to the preceding stage so that the input voltage to the IC becomes less than the rating. See Figure 3-7.

Figure 3-7

When Turning On or Off Output

The SCI7810Y series products are constantly in the operation mode, so applying an input voltage generates the specified output voltage. If, however, a SCI7810Y

series product is connected to the external circuit configured with transistors and resistors (see Figure 3-8), its output voltage can be turned on or off.

Figure 3-8

SCI7910Y Series CMOS Negative Voltage Regulators

DESCRIPTION

SCI7910Y series voltage regulators provide step-down and stabilization for an input voltage to a specified fixed voltage. The four devices in the series incorporate a precision, power-saving reference voltage generator, a transistorized differential amplifier and resistors for determining the output voltage.

The SCI7910Y series is available in 3-pin plastic SOT89s.

APPLICATIONS

- Fixed-voltage power supplies for battery-operated equipment such as portable video cassette recorders, video cameras and radios
- Fixed-voltage power supplies for communications equipment
- High-stability reference voltage generators

FEATURES

- Wide range of operating voltages
- 0.1%/V (Typ.) input stability
- On-chip reference voltage generator
- On-chip differential amplifier

LINE-UP

Device	Volta	Voltage (V) Current consumption		Operating temperature
Device	Input	Output	(μA)	(°C)
SCI7910YHA		-1.5	4.0	
SCI7910YGA		-1.8	4.0	
SCI7910YDA	– 15	-3.0	4.0	-40 to 85
SCI7910YPA		-4.0	4.0	
SCI7910YBA		-5.0	4.0	

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

Number	Name	Description
1	Vı	Input voltage
2	GND	Ground
3	Vo	Output voltage

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Input voltage	VI	-18	V
Output current	lo	100	mA
Output voltage	Vo	GND + 0.3 to VI – 0.3	V
Power dissipation	Pb	200	mW
Operating temperature range	Topr	-40 to 85	°C
Storage temperature range	Tstg	-65 to 150	°C
Soldering temperature (for 10 s). See note.	Tsol	260	°C

Note

Temperatures during reflow soldering must remain within the limits set out in LSI Device Precautions. Never use solder dip to mount SCI7000 series power supply devices.

Electrical Characteristics SCI7910YHA

 $(Ta = -40^{\circ}C \text{ to } 85^{\circ}C)$

Parameter	Symbol	Symbol Conditions (CND = 0.01/)		Rating			
Farameter	Symbol Conditions (GND = 0.0V)		Min.	Тур.	Max.	Unit	
Input voltage	Vı		-15.0	_	_	V	
Output voltage	Vo	Vi = -3.0V, Io = 10mA Ta = 25°C	-1.57	-1.50	-1.43	V	
Operating current	ЮР	$V_I = -1.5V$ to $-15V$	_	4.0	18.0	μΑ	
Input/output voltage differential	Vı – Vo	VI = −1.5V, IO = 5mA	_	0.25	0.60	V	
Input voltage stabilization ratio	dVo dVı • Vo	Vi = -3.0V to -15.0V, Io = 5mA	_	0.10	_	%/V	
Output voltage drift	ΔVο	Vi = -3.0V, Io = 1mA to $5mA$	_	20.0	_	mV	

SCI7910YGA

(VDD = 0V, $Ta = -40^{\circ}C$ to $85^{\circ}C$ unless otherwise noted)

Parameter	Symbol Conditions			Unit		
raiailletei			Min.	Тур.	Max.	Ollit
Input voltage	Vı	_	-15.0	_	_	V
Output voltage	Vo	$V_1 = -3.0V$, $I_0 = 10mA$ $T_0 = 25^{\circ}C$	-1.87	-1.80	-1.73	V
Operating current	Iddo	$V_I = -1.8V$ to $-15.0V$	_	4.0	18.0	μΑ
Input/output voltage differential	Vı – Vo	Vi = −1.8V, Io = 10mA	_	0.35	0.70	V
Input voltage stabilization ratio	<u> </u> ΔV0 ΔVι • V0	$V_I = -3.0V$ to $-15.0V$, $I_O = 10$ mA, Isothermal	_	0.10	_	%/V
Output voltage drift	ΔVο	$V_1 = -3.0V$, $I_0 = 1 \text{mA}$ to 10 mA, Isothermal	_	20.0	_	mV

SCI7910YDA

(VDD = 0V, $Ta = -40^{\circ}C$ to $85^{\circ}C$ unless otherwise noted)

Parameter	Symbol Conditions			Unit		
raiailletei			Min.	Тур.	Max.	Oill
Input voltage	Vı	_	-15.0	_	_	V
Output voltage	Vo	Vi = -5.0V, Io = 10mA Ta = 25°C	-3.07	-3.00	-2.93	V
Operating current	Iddo	$V_{I} = -3.0V \text{ to } -15.0V$	_	4.0	18.0	μΑ
Input/output voltage differential	Vı – Vo	VI = −3.0V, IO = 10mA	_	0.23	0.46	V
Input voltage stabilization ratio	ΔV0 ΔVι • V0	Vi = -4.0V to $-15.0V$, $Io = 10mA$, $Isothermal$	_	0.10	_	%/V
Output voltage drift	ΔVο	VI = -5.0V, IO = 1mA to 30mA	_	30.0	_	mV

SCI7910YPA

(VDD = 0V, $Ta = -40^{\circ}C$ to $85^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Symbol Conditions		Rating			
Faranietei	Symbol		Min.	Тур.	Max.	Unit	
Input voltage	Vı	_	-15.0	_	_	V	
Output voltage	Vo	Vi = -6.0V, Io = 10mA Ta = 25°C	-4.10	-4.00	-3.90	V	
Operating current	Iddo	$V_{I} = -4.0V \text{ to } -15.0V$	_	4.0	18.0	μΑ	
Input/output voltage differential	Vı – Vo	VI = -4.0V, IO = 10mA	_	0.19	0.38	V	
Input voltage stabilization ratio	ΔV0 ΔVι • V0	Vi = -5.0V to $-15V$, $Io = 10mA$, Isothermal	_	0.10	_	%/V	
Output voltage drift	ΔVο	$V_1 = -7V$, $I_0 = 1$ mA to 30mA	_	40.0	_	mV	

SCI7910YBA

(VDD = 0V, Ta = -40° C to 85° C unless otherwise noted)

Parameter	Symbol Conditions -			Unit		
Faranietei			Min.	Тур.	Max.	0
Input voltage	Vı		-15.0	_	_	V
Output voltage	Vo	Vi = -7.0V, Io = 10mA Ta = 25°C	-5.10	-5.00	-4.90	V
Operating current	Iddo	$V_{I} = -5.0V \text{ to } -15.0V$	_	4.0	18.0	μΑ
Input/output voltage differential	Vı – Vo	VI = -5.0V, IO = 10mA	_	0.17	0.34	V
Input voltage stabilization ratio	ΔV0 ΔVι • V0	Vi = -6.0V to $-15.0V$, $Io = 10mA$, Isothermal	_	0.10	_	%/V
Output voltage drift	ΔVο	$V_{I} = -7.0V$, $I_{O} = 1 \text{mA to } 50 \text{mA}$	_	50.0	_	mV

Typical Performance Characteristics SCI7910YBA

Iop – Ta

 $\Delta Vo - Ta$

Vo – Io

SCI7910YPA

Iop – Ta

IOP - VI

|Vı – Vo| – Io

SCI7910YDA

Iop – Ta

6.0 Ta = 25°C 5.0 -lo = 0mA 4.0 4.0 2.0 1.0 0.0 0 -5 -10 -15 VI [V]

IOP - VI

|Vı – Vo| – Io

40

30

20

10

-40 -20

ΔVo [mV]

 $V_I = -5V$

. 1mA ≤ lo ≤ 30mA

0

20 40

 $\Delta Vo - Ta$

Ta [°C]

60

SCI7910YGA

Iop – Ta

|Vo – Vı| – Ta

0.8 Ta = 25°C 0.7 Vı = −1.75V 0.6 0.5 [VI-Vo] [V] 0.4 0.3 0.2 0.1 0.0 0 2 6 8 10 lo [mA]

|Vı – Vo| – Io

Vo – Ta

 $\Delta Vo - Ta$

SCI7910YHA

Iop – Ta

6.0
Ta = 25°C
5.0
Io = 0mA

4.0
2.0
1.0
0.0
0 -5 -10 -15
VI [V]

IOP - VI

PACKAGE MARKINGS

The markings on SCI7910Y series device packages use the following abbreviations.

Parameter	Code	Description
Output voltage code	В	5 V
Calpat Vollage edge	D	3 V
Voltage regulator code	Р	Positive
voltage regulator code	N	Negative

Note

The reflow furnace temperature profile requirements must be satisfied during package reflow. Avoid soldering on surface mount package (including SOT89) as it causes a quick temperature change of package and a device damage.

Marking locations

FUNCTIONAL DESCRIPTION

Basic Operation

The SCI7910Y series uses a 3-pin series regulator feedback loop. An operational amplifier compares VREG from the voltage divider formed by R1 and R2, with VREF. The amplifier output adjusts the output transistor gate bias to equalize the voltages and compensate for fluctuations in VI.

The following equation shows the relationship between Vo and VREF.

$$Vo = \frac{R_1 + R_2}{R_1} V_{REF}$$

Internal Circuits

Reference voltage generator

The offset structure used in all three transistors results in a high breakdown voltage that ensures a stable reference voltage output over a wide range of input voltages.

Differential amplifier

The built-in differential amplifier generates a potential at point X that adjusts the gate bias of the output transistor if there is any difference between VREF and VREG.

Output transistor

The output side of the p-channel MOS transistors in the output transistor circuit is connected to the voltage divider resistors in the feedback loop.

TYPICAL APPLICATIONS

Current Booster

At the cost of a small increase in current consumption, the voltage is regulated while maintaining high current output.

External Voltage Converter

The following circuit raises the output voltage of a SCI7910Y series IC.

The following equation shows the relationship between the old and new voltages.

$$V_O = \frac{R_1 + R_2}{R_2} V_R$$

Note that the application must supply a bias current, IB, high enough to offset the increase in voltage across R1 due to Iopr.

An alternative circuit for raising the output voltage is shown in the following figure.

This configuration, however, introduces two design problems.

- 1. It reduces the output voltage by VF, the forward voltage drop across the diode.
- 2. It is sensitive to fluctuations in VF due to differences in diodes, operating temperatures and Iss.

R1 helps reduce the affect of Iss on VF. It is also required when Iss is lower than the diode bias current. For certain input voltages, a Zener diode with the reverse polarity can be used.

High Input Voltages

A preliminary regulator circuit is required to bring the input voltage within the SCI7910Y series rated range.

Switching output

SCI7910Y series devices are designed for continuous operation. An external switching circuit allows the regulated output to be switched ON and OFF.

Note) Temperatures during reflow soldering must remain within the limits set out under LSI Device Precautions in this catalog. Do not immerse QFP and SOT89 packages during soldering, as the rapid temperature gradient during dipping can cause damage.

SCIPPLY 165 SUPPLY 165 DCIDC Switching Regulators A. DCIDC Switching Regulators

The SCI7630 series of CMOS switching regulators comprises nine series—the SCI7631, SCI7638 series

featuring built-in RC oscillators, the SCI7633 series requiring external crystal oscillators.

SCI7631, SCI7638 Series CMOS Switching Regulators

DESCRIPTION

The SCI7631, SCI7638 series of CMOS switching regulators provide input voltage step-up and regulation to a specified fixed voltage using an external coil. The devices in these series incorporate precision, low-power reference voltage generators and transistors for driving an internal comparator. They feature low power consumption, low operating voltages, voltage detection and standby operation.

The devices offer a range of fixed output voltages, from 2.0 to 5.0V. The SCI7631 series features battery backup and power-on clear, the SCI7638 series features power-on clear and response compensation, the SCI7638 series offer an output voltage temperature characteristic for driving an LCD. They are available in 8-pin SOP3s.

FEATURES

- 0.9V (Min.) operating voltage
- 10µA (Typ.) maximum current consumption
- Standby operation
- 3µA (Typ.) standby current consumption
- 1.05 ±0.05V high-accuracy voltage detection
- Battery backup (available on SCI7631 series)
- On-chip RC oscillator
- Power-on clear (available on SCI7631 and SCI7638 series)
- Output voltage temperature characteristic for driving an LCD (available on SCI7638 series)
- 8-pin SOP3

APPLICATIONS

- Fixed-voltage power supplies for battery-operated equipment such as portable video cassette recorders, video cameras and radios
- Power supplies for pagers, memory cards, calculators and similar hand-held equipment
- Fixed-voltage power supplies for medical equipment
- Fixed-voltage power supplies for communications equipment
- Power supplies for microcomputers
- Uninterruptable power supplies
- LCD panel supplies

LINE-UP

Device	Volt (\	age /)	. , l detection i		Power-on clear	Battery backup	Response compensation	Output voltage temperature	Package
	Input	Output	source	4010011011			ooporiodi.ori	characteristic	
SCI7631MLA		2.4							SOP3-8pin
SCI7631MBA	1.5	3.0	On-chip RC			Yes	No	No	SOP3-8pin
SCI7631MKA	(0.9 min.)	3.5	oscillator	Yes	Yes	162	INO	INO	SOP3-8pin
SCI7631MAA		5.0		162	162				SOP3-8pin
SCI7638MHA	1.5	2.2	On-chip RC			No	Yes	-4.5 mV/°C	SOP3-8pin
SCI7638MLA	(0.9 min.)	2.4	oscillator			INO	168	-4.0 mV/°C	SOP3-8pin

SCI7000 Series EPSON 4–1 Technical Manual

BLOCK DIAGRAMS SCI7631 Series

SCI7638 Series

PIN CONFIGURATIONS SCI7631 Series

SCI7638 Series

PIN DESCRIPTIONS

SCI7631 Series

Number	Name	Description
1	PWCR	Power-on clear. See note 1.
2	RST	Reset signal output. See note 1.
3	GND	Ground
4	Vsw	External inductor drive
5	Vo	Output votlage
6	VI2	Backup input voltage
7	VI1	Step-up input voltage
8	PS	Power save. See note 2.

Notes

- 1. See voltage detection and power-on clear in the functional description.
- 2. See standby mode and battery backup in the functional description.

SCI7638 Series

Number	Name	Description
1	PWCR	Power-on clear. See note 1.
2	RST	Reset signal output. See note 1.
3	GND	Ground
4	Vsw	External inductor drive
5	Vo	Output votlage
6	VCONT	Comparator input
7	VI1	Step-up input voltage
8	PS	Power save. See note 2.

Notes

- 1. See voltage detection and power-on clear in the functional description.
- 2. See standby mode and battery backup in the functional description.

SPECIFICATIONS

Absolute Maximum Ratings

SCI7631 series

Parameter	Symbol	Rating	Unit
Input voltage	VI1	7	V
Output current	lo	100	mA
Output voltage	Vo	7	V
Power dissipation	Pb	200 (SOP3) 300 (DIP)	mW
Operating temperature range	Topr	-30 to 85	°C
Storage temperature range	Tstg	-65 to 150	°C
Soldering temperature (for 10 s). See note.	Tsol	260	°C

Notes

Temperatures during reflow soldering must remain within the limits set out in LSI Device Precautions. Never use solder dip to mount SCI7000 series power supply devices.

SCI7638 series

Parameter	Symbol	Rating	Unit
Input voltage	VI1	7	V
Output current	lo	100	mA
Output voltage	Vo	7	V
Power dissipation	Pb	200 (SOP3) 300 (DIP)	mW
Operating temperature range	Topr	-30 to 85	°C
Storage temperature range	Tstg	-65 to 150	°C
Soldering temperature (for 10 s). See note.	Tsol	260	°C

Parameter	Symbol	Rating	Unit
Input voltage	Vı	7	V
Output voltage	Vo	7	V
Power dissipation	Po	250	mW
Operating temperature range	Topr	-30 to 85	°C
Storage temperature range	Tstg	-65 to 150	°C

Notes

Temperatures during reflow soldering must remain within the limits set out in LSI Device Precautions. Never use solder dip to mount SCI7000 series power supply devices.

Electrical Characteristics

SCI7631MLA

Vss = 0V, Ta = 25 °C unless otherwise noted

Danie water	0	On a Pilan	Rating			1.120
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input voltage	VI1	Max Mis	0.9	_	1.8	V
	VI2	V0 > V12	0.9	_	1.8	V
Output voltage	Vo	Vı1 = 1.5V	2.32	2.40	2.48	V
Detection voltage	VDET		1.00	1.05	1.10	V
Detection voltage hysteresis ratio	ΔVDET		_	5	_	%
Operating current	Iddo	V ₁₁ = 1.5V, Io = 1.0mA	_	7	35	μΑ
Standby current	Idds	VI1 = 1.5V	_	3	10	μΑ
Switching transistor ON resistance	Rswon	VI1 = 1.5V, V0 = 2.4V, Vsw = 0.2V	_	7	14	Ω
Switching transistor leakage current	Iswq	VI1 = 1.5V, Vo = 1.5V, Vsw = 7.0V	_	_	0.5	μΑ
Backup switch ON resistance	RBSON	VI1 = 1.0V, VI2 = 1.5V, IO = 1.0mA	_	100	250	Ω
Backup switching leakage current	IBSQ	VI1 = 1.0V, V0 = 2.4V, VI2 = 2.0V	_	_	0.1	μΑ
RST LOW-level output current	lol	VI1 = 0.9V, VDS = 0.2V	0.05	0.15	_	mΑ
PS pull-up current	lін	VI1 = 1.5V	_	_	0.5	μΑ
Multiplication clock frequency	fclk	VI1 = 1.5V	25	35	45	kHz

SCI7631MBA

Vss = 0V, Ta = 25 °C unless otherwise noted

Donomotor	Coursells and	Condition		Rating		Unit	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Offic	
Input voltage	VI1	V0 > V12	0.9	_	2.0	V	
Input voltage	VI2	VO > VI2	0.9	_	2.0	V	
Output voltage	Vo	VI1 = 1.5V	2.90	3.00	3.10	V	
Detection voltage	VDET		1.00	1.05	1.10	V	
Detection voltage hysteresis ratio	ΔVDET		_	5	_	%	
Operating current	Iddo	VI1 = 1.5V, I0 = 1.0mA	_	8	40	μΑ	
Standby current	IDDS	VI1 = 1.5V	_	3	10	μΑ	
Switching transistor ON resistance	Rswon	VI1 = 1.5V, Vo = 3.0V, Vsw = 0.2V	_	6	12	Ω	
Switching transistor leakage current	Iswq	VI1 = 1.5V, Vo = 1.5V, Vsw = 7.0V	_	_	0.5	μА	
Backup switch ON resistance	RBSON	VI1 = 1.0V, VI2 = 2.0V, IO = 1.0mA	_	70	160	Ω	
Backup switching leakage current	IBSQ	VI1 = 1.0V, V0 = 3.0V, VI2 = 2.0V	_	_	0.1	μΑ	
RST LOW-level output current	lol	VI1 = 0.9V, VDS = 0.2V	0.05	0.15	_	mA	
PS pull-up current	Iн	VI1 = 1.5V	_	_	0.5	μΑ	
Multiplication clock frequency	fclk	VI1 = 1.5V	30	40	50	kHz	

SCI7631MKA

Vss = 0V, Ta = 25 °C unless otherwise noted

Danamatan	0	0	Rating			
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input voltage	VI1	V0 > V12	0.9	_	2.0	V
Input voltage	VI2	VO > VI2	0.9	_	2.0	V
Output voltage	Vo	VI1 = 1.5V	3.40	3.50	3.60	V
Detection voltage	VDET		1.00	1.05	1.10	V
Detection voltage hysteresis ratio	ΔVDET		_	5	_	%
Operating current	Iddo	VI1 = 1.5V, Io = 1.0mA	_	8	40	μΑ
Standby current	Idds	VI1 = 1.5V	_	3	10	μΑ
Switching transistor ON resistance	Rswon	V ₁₁ = 1.5V, V ₀ = 3.5V, V _{SW} = 0.2V	_	6	12	Ω
Switching transistor leakage current	Iswq	VI1 = 1.5V, Vo = 1.5V, Vsw = 7.0V	_	_	0.5	μА
Backup switch ON resistance	RBSON	V ₁₁ = 1.0V, V ₁₂ = 2.0V, I ₀ = 1.0mA	_	70	160	Ω
Backup switching leakage current	IBSQ	V ₁₁ = 1.0V, V ₀ = 3.5V, V ₁₂ = 2.0V	-	_	0.1	μА
RST LOW-level output current	lol	VI1 = 0.9V, VDS = 0.2V	0.05	0.15	_	mA
PS pull-up current	Іін	VI1 = 1.5V	_	_	0.5	μΑ
Multiplication clock frequency	fclk	VI1 = 1.5V	30	40	50	kHz

SCI7631MAA

Vss = 0V, Ta = 25 °C unless otherwise noted

Demonstra	0		Rating			l lait
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
long the colonia	VI1	Ma Ma	0.9	_	2.0	V
Input voltage	VI2	VO > V12	0.9	_	2.0	V
Output voltage	Vo	VI1 = 1.5V	4.80	5.00	5.20	V
Detection voltage	VDET		1.00	1.05	1.10	V
Detection voltage hysteresis ratio	ΔV DET		_	5	_	%
Operating current	Iddo	VI1 = 1.5V, I0 = 1.0mA	_	10	50	μΑ
Standby current	IDDS	VI1 = 1.5V	_	3	10	μΑ
Switching transistor ON resistance	Rswon	VI1 = 1.5V, Vo = 5.0V, Vsw = 0.2V	-	5	10	Ω
Switching transistor leakage current	Iswq	VI1 = 1.5V, Vo = 1.5V, Vsw = 7.0V	_	_	0.5	μА
Backup switch ON resistance	RBSON	V ₁₁ = 1.0V, V ₁₂ = 3.0V, I ₀ = 1.0mA	_	50	100	Ω
Backup switching leakage current	IBSQ	V ₁₁ = 1.0V, V ₀ = 5.0V, V ₁₂ = 3.0V		_	0.1	μА
RST LOW-level output current	lol	VI1 = 0.9V, VDS = 0.2V	0.05	0.15	_	mA
PS pull-up current	lін	VI1 = 1.5V		_	0.5	μΑ
Multiplication clock frequency	fclk	VI1 = 1.5V	35	45	55	kHz

SCI7638MHA

Vss = 0V, Ta = 25 °C unless otherwise noted

Damanatan	0	On a differen				
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input voltage	VI1		0.9	_	2.0	V
Output voltage	Vo	Vı1 = 1.5V	2.10	2.20	2.30	V
Output voltage temperature gradient	Kt		-5.5	-4.5	-3.5	mV/°C
Detection voltage	VDET		1.00	1.05	1.10	V
Detection voltage hysteresis ratio	ΔVDET		_	5	_	%
Operating current	Iddo	VI1 = 1.5V, Io = 1.0mA	_	7	35	μΑ
Standby current	Idds	VI1 = 1.5V	_	3	10	μΑ
Switching transistor ON resistance	Rswon	VI1 = 1.5V, V0 = 2.2V, Vsw = 0.2V	_	7	14	Ω
Switching transistor leakage current	Iswq	VI1 = 1.5V, V0 = 1.5V, Vsw = 7.0V	_	_	0.5	μА
RST LOW-level output current	lol	VI1 = 0.9V, VOL = 0.2V	0.05	0.15	_	mA
PS pull-up current	lін	VI1 = 1.5V	_	_	0.5	μА
Multiplication clock frequency	fclk	VI1 = 1.5V	25	35	45	kHz

SCI7638MLA

Vss = 0V, Ta = 25 °C unless otherwise noted

Parameter	Courselle all	Condition	Rating			Linit
Parameter	Symbol		Mmin.	Тур.	Max.	Unit
Input voltage	VI1		0.9	_	2.0	V
Output voltage	Vo	V ₁₁ = 1.5V	2.30	2.40	2.50	V
Output voltage temperature gradient	Kt		-5.5	-4.0	-3.5	mV/°C
Detection voltage	VDET		1.00	1.05	1.10	V
Detection voltage hysteresis ratio	ΔVDET		_	5	_	%
Operating current	Iddo	VI1 = 1.5V, I0 = 1.0mA	_	7	35	μΑ
Standby current	Idds	VI1 = 1.5V	_	3	10	μА
Switching transistor ON resistance	Rswon	VI1 = 1.5V, V0 = 2.4V, Vsw = 0.2V	_	7	14	Ω
Switching transistor leakage current	Iswq	VI1 = 1.5V, V0 = 1.5V, Vsw = 7.0V	_	_	0.5	μА
RST LOW-level output current	lol	VI1 = 0.9V, VOL = 0.2V	0.05	0.15	_	mA
PS pull-up current	Iн	Vi1 = 1.5V	_	_	0.5	μΑ
Multiplication clock frequency	fclk	VI1 = 1.5V	25	35	45	kHz

Typical Performance Characteristics Fixed-output voltage temperature characteristic

Standby current vs. ambient temperature

Detection voltage vs. ambient temperature

Detection voltage vs. ambient temperature

SCI7638MHA and SCI7638MLA Clock frequency VS. Input voltage

Clock frequency vs. ambient temperature

Output voltage vs. ambient temperature (SCI7638MHA)

Output voltage vs. ambient temperature (SCI7638MLA)

SCI7631MBA, SCI7631MKA Clock frequency vs. input voltage

Clock frequency vs. ambient temperature

SCI7631MAA Clock frequency vs. input voltage

Clock frequency vs. ambient temperature

Load Characteristics SCI7631MAA

Inductor: TDK NLF453232-221k (220µH) Diode: Shindengen DINS4 Schottky barrier diode

Capacitor: NEC MSUB20J106M (10µF)

Notes

1. $V_{I1} = 1.5V$

2. Inductor: TDK NLF453232 series

Diode: Shindengen DINS4 Schottky barrier diode

Capacitor: NEC MSUB20J106M (10µF)

SCI7631MBA

Notes

Inductor: TDK NLF453232-221k (220µH) Diode: Shindengen DINS4 Schottky barrier diode

Capacitor: NEC MSUB20J106M (10µF)

Notes

1. $V_{I1} = 1.5V$

2. Inductor: TDK NLF453232 series
Diode: Shindengen DINS4 Schottky barrier diode

Capacitor: NEC MSUB20J106M (10µF)

SCI7638MLA

Notes

Inductor: TDK NLF453232-221k (220μH) Diode: Shindengen DINS4 Schottky barrier diode

Capacitor: NEC MSUB20J106M (10µF)

SCI7638MHA

Notes

Inductor: TDK NLF453232-221k (220μH) Diode: Shindengen DINS4 Schottky barrier diode

Capacitor: NEC MSUB20J106M (10µF)

Notes

- 1. $V_{I1} = 1.5V$
- 2. Inductor: TDK NLF453232 series

Diode: Shindengen DINS4 Schottky barrier diode

Capacitor: NEC MSUB20J106M (10µF)

Notes

- 1. $V_{I1} = 1.5V$
- 2. Inductor: TDK NLF453232 series

Diode: Shindengen DINS4 Schottky barrier diode

Capacitor: NEC MSUB20J106M (10µF)

Reset delays SCI7631MAA

SCI7631MKA

SCI7631MBA

SCI7631MLA and SCI7638MLA

SCI7638MHA

Timing diagram

Measurement circuit

PACKAGE MARKINGS

SCI7631, SCI7638 series device packages use the following markings.

FUNCTIONAL DESCRIPTION Basic Voltage Booster Operation

TR1 switches ON and OFF at half the frequency of the clock pulses from the built-in RC oscillator. When the transistor is ON, the circuit stores energy in L. When it is off, this energy flows through D to change C.

Internal Circuits RC oscillator

The SCI7631, SCI7638 series use a built-in RC oscillator to drive the voltage booster circuit. The circuit is supplied by VII. All circuit components are on-chip and thus the drive frequency is set internally. To ensure 50% duty, this frequency is twice that used by the voltage booster circuit.

When \overline{PS} is LOW, the oscillator is disabled and the chip is in standby mode.

Reference voltage generator and output voltage regulator

The reference voltage generator regulates VII to generate a votlage for the voltage regulator and voltage detection circuits.

The voltage regulator regulates the boosted output votlage. This is determined by the level at point A between the two resistors connecting Vo and GND. These series use an on-chip resistor to set the output at a specified voltage.

Note

In step-up voltage operation, the ripple voltage created by the switching operation is large relative to the output voltage described above. This ripple voltage is affected by external components and load conditions. The user is advised to check this voltage carefully.

Voltage detection

The SCI7631, SCI7632, SCI7638, and SCI7639 series are equipped with a built-in voltage detection function. The detection voltage, VDET, is fixed internally at 1.05 ± 0.05 V.

Power-on clear function

The SCI7631 series and SCI7638 series are equipped with a built-in power-on clear function. As shown in the following figure, R1 and C1 are connected to PWCR, and R2 is connected to RST to operate the function. If V11 drops below VDET, TR1 and TR2 conduct and PWCR and RST are grounded. If V11 recovers and rises higher than VREL, TR1 turns OFF. The detection voltage hysteresis is 5% (Typ.) and VREL is VDET × 1.05 (Typ.).

Vo returns to its normal value when the voltage of PWCR increases and TR2 turns OFF, so that \overline{RST} returns to Vo after a delay specified by the time coefficient of R1 and C1. Thus, after normal output has been obtained, a reset pulse of adjustable width can be obtained which can reset a system connected to \overline{RST} . The output from \overline{RST} is an N-channel, open-drain. When VII exceeds VDET, the drain is opened and, when VII drops below VDET again, the output transistor conducts and the output is grounded. The characteristic response is shown in the following figure.

Disabling power-on clear

Always connect PWCR to either Vo or GND. If voltage detection only is required, remove the resistor between PWCR and Vo and monitor the level at RST. If neither function is required, connect PWCR to GND. Leaving PWCR unconnected results in an undefined inverter gate voltage in the Vo circuit, causing transient currents to flow between Vo and GND.

Output voltage response compensation

The SCI7638 series are provided with a response compensation input. A response compensation capacitor is connected between VCONT and VO, allowing the ripple voltage generated by the boosted output voltage to be suppressed to a minimum.

Standby mode and battery backup

The SCI7631 series are equipped with a standby mode, initiated by connecting \overline{PS} to GND.

In standby mode, the booster, including the crystal oscillator, is disabled (the switching transistor used to drive the inductor is turned OFF) and the built-in backup switch is turned ON, so that the input voltage at V12 is output at V0. This enables the battery backup function. \overline{PS} is pulled-up internally, so when standby mode is not required, the pin should be left open.

Powering up

Ensure that V_0 is at least the minimum operating voltage (0.9V) before switching on the booster circuit. One way to do this is to attach a battery so that V_0 never drops below the minimum required for backup mode. If no such external power supply is available, connect V_{12} to V_{11} and hold \overline{PS} LOW when applying power for the first time.

TYPICAL APPLICATIONS Example Circuits

The output current, Io, and power conversion efficiency, Peff of a particular device in a series depends on

factors such as the switching frequency, type of coil, and the size and type of other external components.

SCI7631 series

SCI7638 series

Notes

- $100\mu\text{H} \le \text{L} \le 1\text{mH}$, $\text{C} \le 10\mu\text{F}$, D = Schottky diode
- SCI7631MAA
 - Peff = 70% when L = 220μH (leadless inductor),
 V₁₁ = 1.5V, f_{CLK} = 32kHz, I_O = 4mA
 - Peff = 75% when L = 220µH (drum coil), VII = 1.5V, fclk = 32kHz, Io = 6mA
 - Peff = 80% when L = 300µH (toroidal coil), VII = 1.5V, fclk = 32kHz, Io = 7mA
- SCI7631MBA
 - Peff = 70% when L = 220µH (leadless inductor), VII = 1.5V, fclk = 32kHz, Io = 8mA
 - Peff = 75% when L = 220μH (drum coil), VII =1.5V, fCLK = 32kHz, IO = 9mA
 - Peff = 80% when L = 300µH (toroidal coil), VII = 1.5V, fclk = 32kHz, Io = 10mA

External components

The performance characteristics of switching regulators depend greatly on the choice of external components. Observing the following guidelines will ensure high performance and maximum efficiency.

Inductor

Use an inductor with low direct-current resistance and low losses.

Leadless

Pre-wound, leadless inductors using surface-mount technology are the most suitable for portable equipment and other space-critical applications.

Drum coil

Avoid using drum coils because their magnetic field can induce noise.

Toroidal coil

Use a toroidal coil to virtually eliminate magnetic field leakage, reduce losses and improve performance.

Diode

Use a Schottky barrier diode with a high switching speed and low forward voltage drop, VF.

Capacitor

To minimize ripple voltages, use a capacitor with a small equivalent direct-current resistance for smoothing.

Sample External Components

Leadless Inductors

TDK NKF453232 series magnetically shielded leadless inductors

Device	Inductance (μH)	Qmin	LQ frequency (MHz)	Device frequency (MHz-Min.)	DC resistance (Ω-Max.)	Rated current (mA-Max.)
NLF453232-390K	39.0 ±10%	50	2.52	13	1.89	44
NLF453232-470K	47.0 ±10%	50	2.52	12	2.10	41
NLF453232-560K	56.0 ±10%	50	2.52	11	2.34	39
NLF453232-680K	68.0 ±10%	50	2.52	10	2.60	36
NLF453232-820K	82.0 ±10%	50	2.52	10	2.86	34
NLF453232-101K	100.0 ±10%	50	0.796	9	3.25	32
NLF453232-121K	120.0 ±10%	50	0.796	8	3.64	30
NLF453232-151K	150.0 ±10%	50	0.796	7	4.16	28
NLF453232-181K	180.0 ±10%	40	0.796	6	5.72	26
NLF453232-221K	220.0 ±10%	40	0.796	5.5	6.30	24
NLF453232-271K	270.0 ±10%	40	0.796	5	6.90	23
NLF453232-331K	330.0 ±10%	40	0.796	4.5	7.54	23
NLF453232-391K	390.0 ±10%	40	0.796	4	8.20	21
NLF453232-471K	470.0 ±10%	40	0.796	3.8	9.20	19
NLF453232-561K	560.0 ±10%	40	0.796	3.6	10.50	18
NLF453232-681K	680.0 ±10%	40	0.796	3.4	12.00	17
NLF453232-821K	820.0 ±10%	40	0.796	3	13.50	16
NLF453232-102K	1000.0 ±10%	40	0.252	2.5	16.00	15

Characteristic response

Measurement circuit

Drum coil inductors

Taiyo Yuuden FL series micro-inductors

Device	Inductance	Direct current (mA)
FL3H	0.22μH to 10μH	280 to 670
FL4H	0.47μH to 12μH	300 to 680
FL5H	10μH to 1mH	50 to 320
FL7H	680μH to 8.2mH	50 to 170
FL9H	330μH to 33mH	50 to 500
FL11H	10mH to 150mH	35 to 110

Toroidal coil inductors

Tohoku Metal Industries HP series toroidal coil inductors

Device Rated current IDC		Inductance (μΗ	l) at 20kHz, 5V	Diameter × height	Wire gauge
Device	(A)	IDC = 0	IDC = rating	(mm-Max.)	(mm)
HP011	1	200	160		0.5
HP021	2	65	55	φ 20 × 12	0.7
HP031	3	30	23		0.8
HP012	1	600	450		0.5
HP022	2	180	135	φ 22 × 13	0.7
HP032	3	120	80	Ψ 22 × 13	0.8
HP052	5	45	30		1.0
HP013	1	1000	800		0.5
HP023	2	500	330	φ 26 × 14	0.7
HP033	3	130	100	Ψ 20 × 14	0.8
HP055	5	90	55		1.0
HP034S	3	400	250		0.8
HP054S	5	350	160	φ 36 × 18	1.0
HP104S	10	50	30		1.6
HP024	2	1500	950		0.7
HP034	3	300	230	φ 36 × 21	0.8
HP054	3	210	140	Ψ 30 × 21	1.0
HP104	10	45	30		1.6
HP035	3	700	500		0.5
HP055	5	600	330	φ 43 × 23	1.0
HP105	10	180	95	Ψ 43 × 23	1.6
HP205	20	20	14		1.8 × 2 P

Diodes

Shindengen DINS4 Schottky barrier diodes

Parameter	Symbol	Condition		Rating	Unit	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Onit
Forward voltage	VF	IF = 1.1A, pulse measurement	_	_	0.55	V
Reverse current	lR	VR = VRM, pulse measurement	_	_	1	mA
Junction-to-lead thermal resistance	θјΙ		_	_	23	°C/W
Junction-to-ambient thermal resistance	θја		_	_	157	°C/W

Characteristics

Smoothing capacitors

NEC MSV series capacitors

Device	Package type	Rated voltage (V)	Static capacitance (µF)	+25, +85 °C	Tan δ +125 °C	–55 °C	Leakage current (μA)
MSVAOJ475M	А	6.3	4.7	0.08	0.1	0.12	0.5
MSVB2OJ106M	B2	6.3	10	0.08	0.1	0.12	0.6
MSVB2OJ156M	B2	6.3	15	0.08	0.1	0.12	0.9
MSVBOJ156M	В	6.3	15	0.08	0.1	0.12	0.9
MSVCOJ336M	С	6.3	33	0.08	0.1	0.12	2.0
MSVD2OJ686M	D2	6.3	68	0.08	0.1	0.12	4.2
MSVDOJ686M	D	6.3	68	0.08	0.1	0.12	4.2

Note

The figures on the previous pages show data from the documents of various manufactures. For further details, please contact the relevant manufacture.

Other Applications Voltage booster

Combining an SCI7631 switching regulator with an SCI7661C/M DC/DC converter and voltage regulator

creates the voltage booster circuit shown in the following figure.

Potential levels are shown in the following figure.

Although the circuit appears to have two ON/OFF control points, \overline{PS} on the SCI7631CAA/MAA and \overline{POFF} on the SCI7661C/M, PS only shuts down the

SCI7631MAA. The input voltage still reaches the SCI7661C/M through L and D.

Output voltage adjustment

To ensure stable output, any circuit that adjusts the output voltage must contain C1, RA and RB. To stop switching current from affecting VO, the circuit must also satisfy the condition IO < IR.

The following figure summarizes the relevant circuits inside an SCI7630 series chip.

Vo is connected to the level shift and buffer circuit, which provide the gate bias for the switching transistor driving the inductor. The current drain, Io1, varies with the load and is typically $10\mu A$. The current, Io2, through the internal resistors R1 and R2, is typically $1\mu A$.

SCI7633 Series CMOS Switching Regulators DESCRIPTION APP

The SCI7633 series of CMOS switching regulators provide input voltage step-up and regulation to a specified voltage using an external coil. The devices in these series incorporate precision, low-power reference voltage generators and transistors for driving an internal comparator. They feature low power consumption, low operating voltages and standby operation.

The devices offer a range of fixed output voltages, from 2.35 to 5.00V.

They are available in 8-pin SOP3s.

FEATURES

- 0.9V (Min.) operating voltage
- 8µA (Typ.) maximum current consumption
- Standby operation
- 3µA (Typ.) standby current consumption
- Built-in oscillator circuit for use with external crystal oscillator
- 8-pin SOP3

APPLICATIONS

- Fixed-voltage power supplies for battery-operated equipment such as portable video cassette recorders, video cameras and radios
- Power supplies for pages, memory cards, calculators and similar hand-held equipment
- Fixed-voltage power supplies for medical equipment
- Fixed-voltage power for communications equipment
- Power supplies for microcomputers
- Uninterruptable power supplies

LINE-UP

	Voltage	(V)	Multiplication					Output	
Device	Input	Output	frequency	Voltage detection	Power-on clear	Battery backup	Response compensation	voltage temperature characteristic	Package
SCI7633MBA	1.5 (0.9 min.)	3.00	Crystal oscillator	No	No	No	No	No	SOP3-8pin

BLOCK DIAGRAMS SCI7633 series

PIN CONFIGURATIONS SCI7633 series

PIN DESCRIPTIONS SCI7633 series

Number	Name	Description
1	Co	Crystal drain
2	Cı	Crystal gate
3	GND	Ground
4	Vsw	External inductor drive
5	Vo	Output voltage
6	CLo	Oscillator output
7	Vı	Step-up input voltage
8	PS	Power save. See note.

Note

See standby mode in the functional description.

SPECIFICATIONS Absolute Maximum Ratings SCI7633 series

Parameter	Symbol	Rating	Unit
Input voltage	VI1	7	V
Output current	lo	100	mA
Output voltage	Vo	7	V
Power dissipation	PD	200 (SOP) 300 (DIP)	mW
Operating temperature range	Topr	-30 to 85	°C
Storage temperature range	Tstg	-65 to 150	°C
Solding temperature (for 10 s. See note.)	Tsol	260	°C

Note

Temperatures during reflow soldering must remain within the limits set out in LSI Device Precautions. Never use solder dip to mount SCI7000 series power supply devices.

Electrical Characteristics

SCI7633MBA

Vss = 0V, Ta = 25 °C unless otherwise noted

Parameter	Cumbal	Conditions		Rating		Unit
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Offic
Input voltage	VI1	Vo > Vı2	0.9	_	2.0	V
Output voltage	Vo	VI1 = 1.5V	2.90	3.00	3.10	V
Operating current	IDDO	VI1 = 1.5V, fcLK = 32kHz, IO = 1.0mA	_	5	30	μА
Standby current	IDDS	VI1 = 1.5V	_	3	10	μΑ
Switching transistor ON resistance	Rswon	VI1 = 1.5V, VO = 3.0V, VSW = 0.2V	_	6	12	Ω
Switching transistor leakage current	Iswq	VI1 = 1.5V, VO = 1.5V, VSW = 7.0V	_	_	0.5	μΑ
CLO LOW-level output current	lol	VI1 = 1.5V, VO = 3.0V, VOL = 0.2V	0.5	1.0	_	μΑ
CLO HIGH-level output current	Іон	VI1 = 1.5V, VO = 3.0V, VOH = 0.2V	0.55	1.1	_	μΑ
PS pull-up current	lін	VIH = 1.5V	_	_	0.5	μΑ
Oscillator start-up voltage	VSTA	CG = 10pF, CD = 10pF,	0.9	_	_	V
Oscillator shut-down voltage	VSTP	$RD = 300k\Omega$, fosc = 32kHz	_	_	0.9	V

Typical Performance Characteristics Fixed output voltage temperature characteristic

Standby current vs. ambient temperature

Normalized frequency deviation vs. input voltage 1

Normalized frequency deviation vs. gate capacitance 1

Normalized frequency deviation vs. input voltage 2

Normalized frequency deviation vs. gate capacitance 2

Load characteristics SCI7633MBA

Notes

Inductor: TDK NLF453232-221k (220μH) Diode: Shindengen DINS4 Schottky barrier diode

Capacitor: NEC MSUB20J106M (10µF)

Notes

- 1. VI1 = 1.5V
- 2. Inductor: TDK NLF453232 series

Diode: Shindengen DINS4 Schottky barrier diode Capacitor: NEC MSUB20J106M ($10\mu F$)

PACKAGE MARKINGS

SCI7633 device packages use the following marking.

FUNCTIONAL DESCRIPTION

Basic Voltage Booster Operation

TR1 switches ON and OFF at the frequency of the clock pulses from the crystal oscillator. When the transistor is ON, the circuit stores energy in L. When it is OFF, this energy flows through D to charge C.

Internal Circuits

Crystal oscillator

The SCI7633 series incorporate a crystal oscillator circuit. An external crystal and drain resistor are used to generate the booster circuit clock. The crystal oscillator is connected to CI and Co as shown in the following figure.

In the SCI7633 series, the crystal oscillator output is sent to CLO as the VO system signal. The crystal oscillator circuit is activated by VI but, because the output level is shifted and the output is connected to CLO, the oscillator output cannot be obtained without a voltage at VO. Since the crystal oscillator is activated when an input voltage is applied, oscillation continues even in standby mode.

Reference voltage generator and output voltage regulator

The reference voltage generator regulates $V\!\!\;\mathrm{II}$ to generate a voltage for the voltage regulator circuit.

The output voltage regulator regulates the boosted output voltage. This voltage is determined by the level at point A between the two resistors connecting Vo and GND. These series use an on-chip resistor to set the output at a specified voltage.

Note

In step-up voltage operation, the ripple voltage created by the switching operation is large relative to the output voltage described above. This ripple voltage is affected by external components and load conditions. The user is advised to check this voltage carefully.

Standby mode

Connecting \overline{PS} to GND places the chip in standby mode. In this mode, the crystal oscillator is disabled, switching off the inductor drive transistor and the voltage booster circuit. Typically, \overline{PS} is connected to \overline{RST} . If standby mode is not required, leave \overline{PS} open as it has a pull-up resistor.

Output voltage response compensation

The SCI7634 series incorporates a response compensation input. A response compensation capacitor is connected between VCONT and VO, allowing the ripple voltage generated by the boosted output voltage to be suppressed to a minimum.

Powering up

Ensure that Vo is at least the minimum operating voltage (0.9V) before switching on the booster circuit. One way to do this is to connect a capacitor between \overline{PS} and GND so that the chip connects Vo to VI when the power is applied for the first time.

TYPICAL APPLICATIONS Example Circuits

The output current, Io, and power conversion efficiency Peff, of a particular device in the series depends on fac-

tors such as the switching frequency, type of coil, and the size and type of other external components.

SCI7633 series

Notes

- $100\mu\text{H} \le L \le 1\text{mH}$, $C \le 10\mu\text{F}$, D: Schottky diode
- SCI7633MBA
 - Peff = 70% when L = 220μH (leadless inductor),
 VII = 1.5V, fCLK = 32kHz, Io = 8mA
 - Peff = 75% when L = 220μH (drum coil), VII = 1.5V, fclk = 32kHz, Io = 9mA
 - Peff = 80% when L = $300\mu H$ (toroidal coil), VII = 1.5V, fCLK = 32kHz, IO = 10mA

External Components

The performance characteristics of switching regulators depend greatly on the choice of external components. Observing the following guidelines will ensure high performance and maximum efficiency.

Inductor

Use an inductor with low direct-current resistance and low losses.

Leadless

Pre-wound, leadless inductors using surface-mount technology are the most suitable for portable equipment and other space-critical applications.

Drum coll

Avoid drum coils because their magnetic field can induce noise.

Toroidal coil

Use a toroidal coil to virtually eliminate magnetic field leakage, reduce losses and improve performance.

Diode

Use a Schottky barrier diode with a high switching speed and low forward voltage drop, VF.

Capacitor

To minimize ripple voltages, use capacitors with a small equivalent direct-current resistance for smoothing

Sample External Components

Leadless inductors

TDK NLF453232 series magnetically-shielded leadless inductors

Device	Inductance (μH)	Qmin	LQ frequency (MHz)	Device freuquency (MHz-Min.)	DC resistance (Ω-Max.)	Rated current (mA-Max.)
NLF453232-390K	39.0 ±10%	50	2.52	13	1.89	44
NLF453232-470K	47.0 ±10%	50	2.52	12	2.10	41
NLF453232-560K	56.0 ±10%	50	2.52	11	2.34	39
NLF453232-680K	68.0 ±10%	50	2.52	10	2.60	36
NLF453232-820K	82.0 ±10%	50	2.52	10	2.86	34
NLF453232-101K	100.0 ±10%	50	0.796	9	3.25	32
NLF453232-121K	120.0 ±10%	50	0.796	8	3.64	30
NLF453232-151K	150.0 ±10%	50	0.796	7	4.16	28
NLF453232-181K	180.0 ±10%	40	0.796	6	5.72	26
NLF453232-221K	220.0 ±10%	40	0.796	5.5	6.30	24
NLF453232-271K	270.0 ±10%	40	0.796	5	6.90	23
NLF453232-331K	330.0 ±10%	40	0.796	4.5	7.54	23
NLF453232-391K	390.0 ±10%	40	0.796	4	8.20	21
NLF453232-471K	470.0 ±10%	40	0.796	3.8	9.20	19
NLF453232-561K	560.0 ±10%	40	0.796	3.6	10.50	18
NLF453232-681K	680.0 ±10%	40	0.796	3.4	12.00	17
NLF453232-821K	820.0 ±10%	40	0.796	3	13.50	16
NLF453232-102K	1000.0 ±10%	40	0.252	2.5	16.00	15

Characteristic response

Measurement circuit

Drum coil inductors

Taiyo Yuuden FL series micro inductors

Device	Inductance	Direct current (mA)
FL3H	0.22μH to 10μH	280 to 670
FL4H	0.47μH to 12μH	300 to 680
FL5H	10μH to 1mH	50 to 320
FL7H	680μH to 8.2mH	50 to 170
FL9H	330μH to 33mH	50 to 500
FL11H	10μH to 150mH	35 to 110

Toroidal coil inductors

Tohoku Metal Industries HP series toroidal coil inductors

Device	Rated current IDC	Inductance (μΗ	l) at 20kHz, 5V	Diameter × height	Wire gauge
Device	(A)	IDC = 0	IDC = rating	(mm-Max.)	(mm)
HP011	1	200	160		0.5
HP021	2	65	55	20 × 12	0.7
HP031	3	30	23		0.8
HP012	1	600	450		0.5
HP022	2	180	135	22 × 13	0.7
HP032	3	120	80	22 X 13	0.8
HP052	5	45	30]	1.0
HP013	1	1000	800		0.5
HP023	2	500	330	26 × 14	0.7
HP033	3	130	100	20 X 14	0.8
HP055	5	90	55		1.0
HP034S	3	400	250		0.8
HP054S	5	350	160	36 × 14	1.0
HP104S	10	50	30		1.6
HP024	2	1500	950		0.7
HP034	3	300	230	36 × 21	0.8
HP054	5	210	140	30 × 21	1.0
HP104	10	45	30		1.6
HP035	3	700	500		0.8
HP055	5	600	330	43 × 23	1.0
HP105	10	180	95	43 × 23	1.6
HP205	20	20	14		1.8 × 2 P

Diodes

Shindengen DINS4 Schottky barrier diodes

Parameter	Symbol Conditions -		Rating			Unit
Farameter	Symbol	Conditions	Min.	Тур.	Max.	Offic
Forward voltage	VF	IF = 1.1A, pulse measurement	_	_	0.55	V
Reverse current	lR	VR = VRM, pulse measurement	_	_	1	mA
Junction-to-lead thermal resistance	θјΙ		_	_	23	°C/W
Junction-to-ambient thermal resistance	θја		_	_	157	°C/W

Characteristics

Smoothing capacitors

NEC MSV series capacitors

	Package		Static capacitance		Leakage		
Device	type	Voltage (V)	(μF)	+25, +85	+125	– 55	current (μA)
	туре		(μι)	°C	°C	°C	current (μA)
MSVA0J475M	Α	6.3	4.7	0.08	0.1	0.12	0.5
MSVB20J106M	B2	6.3	10	0.08	0.1	0.12	0.6
MSVB20J156M	B2	6.3	15	0.08	0.1	0.12	0.9
MSVB0J156M	В	6.3	15	0.08	0.1	0.12	0.9
MSVC0J336M	С	6.3	33	0.08	0.1	0.12	2.0
MSVD20J686M	D2	6.3	68	0.08	0.1	0.12	4.2
MSVD0J686M	D	6.3	68	0.08	0.1	0.12	4.2

Note

The figures on the previous pages show data from the documents of various manufacturers. For further details, please contact the relevant manufacturer.

Other Applications

Voltage booster

Combining an SCI7633MBA switching regulator with an SCI7661C/M DC/DC converter and voltage regula-

tor creates the voltage booster circuit shown in the following figure.

Potential levels are shown in the following figure.

Although the circuit appears to have two ON/OFF control points, \overline{PS} on the SCI7633MBA and \overline{POFF} on the SCI7661C/M, \overline{PS} only shuts down the SCI7633MBA. The input voltage still reaches the SCI7661C/M through L and D.

Output voltage adjustment

To ensure stable output, any circuit that adjusts the output voltage must contain C1, RA and RB. To stop switching current from affecting VO, the circuit must also satisfy the condition IO < IR.

The following figure summarizes the relevant circuits inside an SCI7000 series chip.

Vo is connected to the level shift and buffer circuit, which provide the gate bias for the switching transistor driving the inductor. The current drain Io1, varies with the load and is typically $10\mu A$. The current, Io2, through the internal resistors R1 and R2 is typically $1\mu A$.

SCARSUPPLY Series Voltage Detector 5.

DESCRIPTION

The SCI7720Y series products are non-adjusting voltage detectors being developed utilizing he base of the CMOS silicon gate process.

This voltage detector consists of the reference voltage circuit, voltage comparator, hysteresis circuit and output circuit, all operating on smaller current.

A voltage range to be detected is internally set on respective detectors. A wide variety of our standard products are grouped as shown below according to the output format employed for the voltage detector output pin. The SCI7720Y series employs N-channel open drain output approach. And the SCI7721Y series and SCI 7722Y series employ the CMOS output and P-channel output, respectively.

The package used is the SOT89-3 pin plastic package. Our voltage detectors are used for determining battery life, and also for monitoring supply voltage fed to microcomputers and LSI systems.

FEATURES

- Full lineups: 19 types are prepared for the detection range between 2.0V to 5.0V.
 - For the detection range from 0.8V to 2.5V, 7 types are available (products designed for lower voltage detection).
- Low operating current: Typ. 2.0 uA (VDD = 5.0 V).
- Low operating voltage: 0.8V at minimum (designed for lower voltage operation).
- Absolute maximum rated voltage: 15V maximum.
- Highly stable built-in reference voltage source: Typ. 1.0V/0.8V (designed for lower voltage operation).
- Better temperature characteristics of output voltage: Typ. -100ppm/°C.

SCI7000 Series EPSON 5–1 Technical Manual

MODEL GROUPS

Table 5-1

Product name	Voltag	ge dete	ctable	Output format	Output	phase
i loudet flame	Min.	Тур.	Max.	Output format	Less than VDET	VDET or above
SCI7721Yca	2.10	2.15	2.20	CMOS	Low level	High level
SCI7721YPA	2.20	2.25	2.30	CMOS	Low level	High level
SCI7721Ysa	2.30	2.35	2.40	CMOS	Low level	High level
SCI7721YEA	2.50	2.55	2.60	CMOS	Low level	High level
SCI7721YFA	2.60	2.65	2.70	CMOS	Low level	High level
SCI7721YRA	2.73	2.80	2.87	CMOS	Low level	High level
SCI7721YGA	2.93	3.00	3.07	CMOS	Low level	High level
SCI7721YHA	3.13	3.20	3.27	CMOS	Low level	High level
SCI7721Y3A	3.43	3.50	3.57	CMOS	Low level	High level
SCI7721YTA	3.90	4.00	4.10	CMOS	Low level	High level
SCI7721YMA	4.10	4.20	4.30	CMOS	Low level	High level
SCI7721YJA	4.30	4.40	4.50	CMOS	Low level	High level
SCI7721 _{Y2A}	4.50	4.60	4.70	CMOS	Low level	High level
SCI7721YKA	4.70	4.80	4.90	CMOS	Low level	High level
SCI7721YLA	4.90	5.00	5.10	CMOS	Low level	High level
SCI7721YCB	2.10	2.15	2.20	CMOS	High level	Low level
SCI7721YFB	2.60	2.65	2.70	CMOS	High level	Low level

Table 5-2

Product name	Volta	ge dete	ctable	Output format	Output	phase
1 Toddet Harrie	Min.	Тур.	Max.	Output format	Less than VDET	VDET or above
SCI7720YTA	3.90	4.00	4.10	N ch Open Drain	Low level	Hi–Z
SCI7720YFA	2.60	2.65	2.70	N ch Open Drain	Low level	Hi–Z
SCI7720Yca	2.10	2.15	2.20	N ch Open Drain	Low level	Hi–Z
SCI7720YNA	1.85	1.90	1.95	N ch Open Drain	Low level	Hi–Z
SCI7720YBA	1.10	1.15	1.20	N ch Open Drain	Low level	Hi–Z
SCI7720YYA	1.05	1.10	1.15	N ch Open Drain	Low level	Hi–Z
SCI7720YAA	1.00	1.05	1.10	N ch Open Drain	Low level	Hi–Z
SCI7720YVA	0.90	0.95	1.00	N ch Open Drain	Low level	Hi–Z
SCI7722YDB	1.20	1.25	1.30	P ch Open Drain	High level	Hi–Z

BLOCK DIAGRAM

SCI7720Y*A Type

SCI7720Y*B Type

SCI7721Y*A Type

SCI7721Y*B Type

SCI7722Y*A Type

SCI7722Y*B Type

Note: A different code can be employed for the ones preceded by ★ marking depending on their detecting voltage specification.

PIN DESCRIPTION

Pin function

Pin No.	Pin name	Pin function
1	OUT	Voltage detection output pin
2 VDD		Input voltage pin (positive side)
3	Vss	Input voltage pin (negative side)

Pin assignment

DESCRIPTION OF FUNCTION

The SCI7720Y series has the circuit configuration as shown in the figure below. For the detection, divided potential (VREG) across the resistors inserted across the power supply and the reference voltage (Vref) generated on the IC are entered to the voltage comparator. Since the voltage comparator is designed to detect a target voltage even when potential difference between VREG and Vref minute, hysteresis is added so that the comparator may not fail due to noise on the power supply and such. In the example shown in the figure below,

detection voltage (VDET) for the input voltage drop and relief voltage (VREL) for the increased input voltage are set based the following formula.

$$\label{eq:detection_voltage:VDET} \mbox{ Detection voltage: } \mbox{ VDET} = \frac{R1 + R2 + R3}{R2 + R3} \bullet \mbox{ V ref}$$

Relief voltage:
$$V_{REL} = \frac{R1 + R2 + R3}{R3} \cdot V_{ref}$$

The following figures show the input and output characteristics of the SCI7720Y series.

Note: The above input/output characteristics assumes that the pull up resistor is connected to the output pin for the SCI7720Y series. For the SCI7722Y series, it assumes that the pull down resistor is connected between the OUT and VDD pins.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Supply voltage range	VDD - VSS	15	V
		VDD + 0.3 to Vss - 0.3 (SCI7721)	
Output voltage	Vo	15 to Vss – 0.3 (SCI7720)	V
		VDD + 0.3 to VDD - 15 (SCI7722)	
Output current	lo	50	mA
Allowable dissipation	Pb	200	mW
Operating temperature	Topr	-30 to +85	°C
Storage temperature	Tstg	-65 to +150	
Soldering time Soldering temperature	Tsol	260°C 10 seconds (at lead)	_

ELECTRIC CHARACTERISTICS

SCI7721YCA

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ is assumed except where otherwise specified.})$

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	2.10	2.15	2.20	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.05	0.10	0.15	V
Operating current	IDD	VDD = 3.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Юн	VDD = 3.0V OUT = 2.7V	_	-1.00	-0.25	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00		mA
Detection voltage	Трні	$VDD = 3V \rightarrow 2V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	1111	$VDD = 3V \rightarrow 2V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721YPA

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	2.20	2.25	2.30	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.05	0.10	0.15	V
Operating current	IDD	VDD = 3.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Іон	VDD = 3.0V OUT = 2.7V	_	-1.00	-0.25	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00	_	mA
Detection voltage	Трнг	V _{DD} = 3V→2V Ta = 25°C	_	8	40	μS
response time	IFAL	V _{DD} = 3V→2V Ta = -30°C to 85°C	_	_	200	μS

SCI7721Ysa

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ is assumed except where otherwise specified.})$

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	2.30	2.35	2.40	٧
Hysteresis width	VHYS	VHYS = VREL - VDET	0.05	0.10	0.15	V
Operating current	IDD	VDD = 3.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Іон	VDD = 3.0V OUT = 2.7V		-1.00	-0.25	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00		mA
Detection voltage	TPHL	$VDD = 3V \rightarrow 2V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	IFML	$VDD = 3V \rightarrow 2V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721YEA

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	2.50	2.55	2.60	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.05	0.10	0.15	V
Operating current	IDD	VDD = 3.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Іон	VDD = 3.0V OUT = 2.7V	_	-1.00	-0.25	mA
Low level output current	loL	VDD = 2.0V OUT = 0.2V	0.20	1.00	_	mA
Detection voltage	TPHL	$VDD = 3V \rightarrow 2V$ $Ta = 25^{\circ}C$		8	40	μS
response time	IFAL	$VDD = 3V \rightarrow 2V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721YFA

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ is assumed except where otherwise specified.})$

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	2.60	2.65	2.70	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.05	0.10	0.15	V
Operating current	IDD	VDD = 3.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Іон	VDD = 3.0V OUT = 2.7V	_	-1.00	-0.25	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00	_	mA
Detection voltage	Трні	$VDD = 3V \rightarrow 2V$ $Ta = 25^{\circ}C$		8	40	μS
response time	11111	$VDD = 3V \rightarrow 2V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721YRA

(Ta = -30°C to +85°C is assumed except where otherwise specified.)

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	2.73	2.80	2.87	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.05	0.10	0.15	V
Operating current	IDD	VDD = 3.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Іон	VDD = 3.0V OUT = 2.7V	_	-1.00	-0.25	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00	_	mA
Detection voltage	Трнг	$VDD = 3V \rightarrow 2V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	IFML	$VDD = 3V \rightarrow 2V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721YGA

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ is assumed except where otherwise specified.})$

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	2.93	3.00	3.07	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.09	0.15	0.21	V
Operating current	IDD	VDD = 4.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Іон	VDD = 4.0V OUT = 3.6V	_	-1.60	-0.40	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00		mA
Detection voltage	Трнц	$VDD = 4V \rightarrow 3V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	IPAL	$VDD = 4V \rightarrow 3V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721YHA

(Ta = -30°C to +85°C is assumed except where otherwise specified.)

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	3.13	3.20	3.27	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.09	0.15	0.21	V
Operating current	IDD	VDD = 4.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Іон	VDD = 4.0V OUT = 3.6V	_	-1.60	-0.40	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00	_	mA
Detection voltage	TPHL	$VDD = 4V \rightarrow 3V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	IFAL	$VDD = 4V \rightarrow 3V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721Y3A

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ is assumed except where otherwise specified.})$

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	3.43	3.50	3.57	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.09	0.15	0.21	V
Operating current	IDD	VDD = 4.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Іон	VDD = 4.0V OUT = 3.6V	_	-1.60	-0.40	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00		mA
Detection voltage	Трні	$VDD = 4V \rightarrow 3V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	IFAL	$VDD = 4V \rightarrow 3V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721YTA

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	3.90	4.00	4.10	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.13	0.20	0.27	V
Operating current	IDD	VDD = 5.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Іон	VDD = 5.0V OUT = 4.5V	_	-2.00	-0.50	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00	_	mA
Detection voltage	Трнц	$VDD = 5V \rightarrow 4V$ $Ta = 25^{\circ}C$		8	40	μS
response time	IFAL	$VDD = 5V \rightarrow 4V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721YMA

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ is assumed except where otherwise specified.})$

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	4.10	4.20	4.30	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.13	0.20	0.27	V
Operating current	IDD	VDD = 5.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Іон	VDD = 5.0V OUT = 4.5V	_	-2.00	-0.50	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00	_	mA
Detection voltage	Трнц	$VDD = 5V \rightarrow 4V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	IFAL	$VDD = 5V \rightarrow 4V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721YJA

(Ta = -30°C to +85°C is assumed except where otherwise specified.)

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	4.30	4.40	4.50	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.13	0.20	0.27	V
Operating current	IDD	VDD = 5.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Іон	VDD = 5.0V OUT = 4.5V	_	-2.00	-0.50	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00	_	mA
Detection voltage	Трнг	$VDD = 5V \rightarrow 4V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	IPAL	$VDD = 5V \rightarrow 4V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721Y2A

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ is assumed except where otherwise specified.})$

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	4.50	4.60	4.70	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.08	0.15	0.22	V
Operating current	IDD	VDD = 5.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Іон	VDD = 5.0V OUT = 4.5V	_	-2.00	-0.50	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00	_	mA
Detection voltage	Трні	$VDD = 5V \rightarrow 4V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	IFIL	$VDD = 5V \rightarrow 4V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$		_	200	μS

SCI7721YKA

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	4.70	4.80	4.90	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.13	0.20	0.27	V
Operating current	IDD	VDD = 5.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Юн	VDD = 5.0V OUT = 4.5V	_	-2.00	-0.50	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00	_	mA
Detection voltage	Трнц	$VDD = 5V \rightarrow 4V$ $Ta = 25^{\circ}C$		8	40	μS
response time	IFAL	$VDD = 5V \rightarrow 4V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721YLA

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ is assumed except where otherwise specified.})$

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	4.90	5.00	5.10	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.13	0.20	0.27	V
Operating current	IDD	VDD = 6.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Юн	VDD = 6.0V OUT = 5.4V	_	-2.40	-0.60	mA
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00		mA
Detection voltage	Трні	$VDD = 6V \rightarrow 4V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	IFAL	$VDD = 6V \rightarrow 4V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721YCB

(Ta = -30°C to +85°C is assumed except where otherwise specified.)

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	2.10	2.15	2.20	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.05	0.10	0.15	V
Operating current	IDD	VDD = 3.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Іон	VDD = 2.0V OUT = 1.8V	_	-0.40	-0.10	mA
Low level output current	lol	VDD = 3.0V OUT = 0.3V	0.50	2.00	_	mA
Detection voltage	Трні	$VDD = 3V \rightarrow 2V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	11111	$VDD = 3V \rightarrow 2V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7721YFB

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ is assumed except where otherwise specified.})$

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	2.60	2.65	2.70	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.05	0.10	0.15	V
Operating current	IDD	VDD = 3.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
High level output current	Юн	VDD = 2.0V OUT = 1.8V	_	-0.40	-0.10	mA
Low level output current	lol	VDD = 3.0V OUT = 0.3V	0.50	2.00		mA
Detection voltage	Трні	$VDD = 3V \rightarrow 2V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	IFAL	V _{DD} = 3V→2V Ta = -30°C to 85°C	_	_	200	μS

SCI7720YTA

(Ta = -30°C to +85°C is assumed except where otherwise specified.)

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	3.90	4.00	4.10	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.13	0.20	0.27	V
Operating current	IDD	VDD = 5.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00	_	mA
Detection voltage	Трнг	V _{DD} = 5V→4V Ta = 25°C	_	8	40	μS
response time	IPHL -	$VDD = 5V \rightarrow 4V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7720YFA

(Ta = -30° C to $+85^{\circ}$ C is assumed except where otherwise specified.)

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		1.50	_	12.0	V
Detection voltage	VDET	Ta = 25°C	2.60	2.65	2.70	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.05	0.10	0.15	V
Operating current	IDD	VDD = 3.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
Low level output current	lol	VDD = 2.0V OUT = 0.2V	0.20	1.00	_	mA
Detection voltage	Трнг	V _{DD} = 3V→2V Ta = 25°C		8	40	μS
response time	1711	$VDD = 3V \rightarrow 2V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7720YCA

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		0.80	_	10.0	V
Detection voltage	VDET	Ta = 25°C	2.10	2.15	2.20	٧
Hysteresis width	VHYS	VHYS = VREL - VDET	0.05	0.10	0.15	V
Operating current	IDD	VDD = 3.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
Low level output current	lol	VDD = 1.5V OUT = 0.15V	0.15	0.75	_	mA
Detection voltage	Трнц	$VDD = 3V \rightarrow 2V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	IFIIL	$VDD = 3V \rightarrow 2V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7720YNA

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ is assumed except where otherwise specified.})$

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		0.80	_	10.0	V
Detection voltage	VDET	Ta = 25°C	1.85	1.90	1.95	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.03	0.05	0.08	V
Operating current	IDD	VDD = 3.0V	_	2.00	5.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
Low level output current	lol	VDD = 1.5V OUT = 0.15V	0.15	0.75	_	mA
Detection voltage	Трнц	$VDD = 2V \rightarrow 1V$ $Ta = 25^{\circ}C$	_	8	40	μS
response time	11111	$VDD = 2V \rightarrow 1V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7720YBA

(a see to read a leaderning except miles each mess eposition)							
Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit	
Operating voltage	VDD		0.80	_	10.0	V	
Detection voltage	VDET	Ta = 25°C	1.10	1.15	1.20	V	
Hysteresis width	VHYS	VHYS = VREL - VDET	0.03	0.05	0.08	V	
Operating current	IDD	VDD = 1.5V	_	1.50	4.00	μΑ	
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C	
Low level output current	loL	VDD = 0.8V OUT = 0.16V	0.05	0.40	_	mA	
Detection voltage	TPHL	VDD = 1.5V→0.8V Ta = 25°C	_	8	40	μS	
response time	11111	$V_{DD} = 1.5V \rightarrow 0.8V$ Ta = -30°C to 85°C	_	_	200	μS	

SCI7720YYA

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ is assumed except where otherwise specified.})$

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		0.80	_	10.0	V
Detection voltage	VDET	Ta = 25°C	1.05	1.10	1.15	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.03	0.05	0.08	V
Operating current	IDD	VDD = 1.5V	_	1.50	4.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
Low level output current	lol	VDD = 0.8V OUT = 0.16V	0.05	0.40	_	mA
Detection voltage	TPHL	V _{DD} = 1.5V→0.8V Ta = 25°C		8	40	μS
response time	11111	$V_{DD} = 1.5V \rightarrow 0.8V$ Ta = -30°C to 85°C	_	_	200	μS

SCI7720YAA

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		0.80	_	10.0	V
Detection voltage	VDET	Ta = 25°C	1.00	1.05	1.10	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.03	0.05	0.08	V
Operating current	IDD	VDD = 1.5V	_	1.50	4.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
Low level output current	lol	VDD = 0.8V OUT = 0.16V	0.05	0.40	_	mA
Detection voltage	Трні	VDD = 1.5V→0.8V Ta = 25°C	_	8	40	μS
response time	IPAL	$VDD = 1.5V \rightarrow 0.8V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_	_	200	μS

SCI7720YVA

 $(Ta = -30^{\circ}C \text{ to } +85^{\circ}C \text{ is assumed except where otherwise specified.})$

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		0.80	_	10.0	V
Detection voltage	VDET	Ta = 25°C	0.90	0.95	1.00	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.03	0.05	0.08	V
Operating current	IDD	VDD = 1.5V	_	1.50	4.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
Low level output current	lol	VDD = 0.8V OUT = 0.16V	0.05	0.40	_	mA
Detection voltage	Трнг	VDD = 1.5V→0.8V Ta = 25°C	_	8	40	μS
response time	11111	$V_{DD} = 1.5V \rightarrow 0.8V$ Ta = -30°C to 85°C	_		200	μS

SCI7722YDB

(Ta = -30°C to +85°C is assumed except where otherwise specified.)

Parameter	Symbol	Condition (Vss = 0.0V)	Min.	Тур.	Max.	Unit
Operating voltage	VDD		0.80	_	10.0	V
Detection voltage	VDET	Ta = 25°C	1.20	1.25	1.30	V
Hysteresis width	VHYS	VHYS = VREL - VDET	0.03	0.05	0.08	V
Operating current	IDD	VDD = 1.5V	_	1.50	4.00	μΑ
Detection voltage temperature characteristics	ΔVDET VDET		-300	-100	+100	ppm/°C
Low level output current	lol	VDD = 0.8V OUT = 0.64V	_	-0.08	-0.01	mA
Detection voltage	Трнц	VDD = 1.5V→0.8V Ta = 25°C	_	8	40	μS
response time	11111	$V_{DD} = 1.5V \rightarrow 0.8V$ $Ta = -30^{\circ}C \text{ to } 85^{\circ}C$	_		200	μS

EXAMPLES OF EXTERNAL CONNECTION

SAMPLE CIRCUITS (SCI7721Y SERIES)

CR timer circuit

When the SCI7721Y circuit configured as shown in Figure 5-14, it can be used as a CR timer circuit.

Figure 5-14 CR timer circuit

Battery backup circuit

The following is an example of the supply voltage switching circuit for the battery backup supply configured featuring the SCI7721Y series.

Figure 5-15 Battery backup circuit

SAMPLE CIRCUITS (SCI7720Y SERIES)

CR timer circuit

When the SCI77210 circuit is configured as shown in Figure 5-16, it can be used as a CR timer circuit.

Figure 5-16 CR timer circuit

Battery backup circuit

The following is an example of the supply voltage switching circuit for the battery backup configured featuring the SCI7720Y series.

Figure 5-17 Battery backup circuit

PRECAUTIONS

Short cut current on the SCI 7721 (CMOS output voltage detector)

Since the SCI772Y series employs CMOS output, as an input voltage nears the detection voltage range, short cut current is flown between VDD and Vss. The short cut current is voltage sensitive, and approximately 2 mA flows at 5V level or so (our products are not check for short cut current after volume production has been started).

Although duration of the short cut current depends on operating conditions (such as type the circuit used and supply impedance), normally it is assumed to continue several usec to several dozens of usec.

If a load with high impedance is inserted across the power supply, oscillation can be introduced by the short cut current. In order to reject this trouble, the following measures should be considered:

- (1) Reduce the resistance value.
- (2) Insert a capacitor.
- (3) Replace with the SCI7720Y series (it employs N-channel open drain approach).

SCIPPLY Series
Spowers Suppendix
6.

ORDERING INFORMATION

SEIKO EPSON IC products are ordered by part number.

CMOS LSI LINEUP

Product Type	Device	Series
ASICs (application-specific ICs)	Gate arrays	SLA
	Standard cells	SSC
ASMICs (application-specific	4-bit microcomputers	E0C
microcomputer ICs)	Peripherals	E0C
ASSPs (application-specific standard products)	Graphic ICs	SPC
	LCD controllers	SED
	LCD drivers	SED
	Disk storage management ICs	SED/SPC/E0C
	Font processor ICs	SPC

Product Type	Device	Series
ASSPs (application-specific standard products)	Telecom ICs	STC/SVM
	Melody ICs	SVM
	Power supply ICs	SCI
	Analog switch ICs	SED
	Timepiece ICs	SRM
Memories	Static RAMs	SRM
	Mask ROMs	SMM
	EEPROMs	SPM

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are the maximum physical and electrical ratings of a device beyond which performance degradation or damage will occur. Always check circuit conditions before using a device to avoid exceeding these ratings. Typically, absolute maximum ratings include the following parameters.

1. Power supply voltage

Steady state applied voltages, noise, reverse voltage transients and power-on-transients can degrade or damage the integrated circuit if they exceed the maximum power supply voltage rating.

2. Input signal voltage

Input signals exceeding this rate can damage input protection circuits

3. Output current

Generally, specifications are not set for CMOS devices with small output currents. Devices that provide large drive currents will have output current specifications.

4. Power dissipation

The maximum power dissipation of a device is limited by its construction and package type. Maximum output current limits are set to prevent thermal damage.

5. Operating temperature range

The temperature range for normal device operation with no change in performance characteristics.

6. Storage temperature range

The temperature range for device storage with no degradation or damage. This specification is particularly important when ICs are being transported by air.

7. Soldering temperature and the duration

The maximum soldering temperature and the time for which the leads can be at this temperature.

RECOMMENDED OPERATING CONDITIONS

Recommended operating conditions are the conditions under which a device functions correctly. These include power supply voltage, input conditions and output current. These conditions are sometimes listed as part of the electrical characteristics.

ELECTRICAL CHARACTERISTICS

Electrical characteristics specify the DC and AC characteristics of a device under the worst measurement conditions.

POWER DISSIPATION CONDITIONS

To prevent damage always consider the following points when designing with power regulation ICs.

1. A precise thermal design is necessary to ensure adequate heat dissipation.

The following figure shows the power dissipation capacity in relation to ambient temperature.

The following figure shows the cost and reliability of a product and is significant when designing a system.

The following figure shows a thermal design model which can be used to determine heatsink capacity.

2. Ensure that the regulator common pin is a single-point ground to prevent earth loops. Make ground lines as thick and short as possible. Use the specified bypass capacitors for inputs and outputs. If there is a switching load, use a tantalum or ceramic capacitor, as these devices have a high frequency response between the power supply and ground.

PARAMETER SUMMARY

Symbol	Parameter
CD	Drain capacitance
CF8	Field slew capacitance
Cg	Gate capacitance
Cı	Input capacitance
Cn	Capacitance
СТ	Crosstalk
Стп	Temperature gradient
fclk	Clock frequency
fmax	Maximum clock frequency
fosc	Oscillator frequency
FT	Field through (channel OFF)
IBSQ	Backup switching leakage current
IDDO	Operating current
Idds	Standby current
IDD	Power supply current
lін	HIGH-level input current
lıL	LOW-level input current
ILK1	input leakage current
IMAX	Maximum current
lo	Output current
Іон	HIGH-level output current
lol	LOW-level output current
lopr1	Multiplier circuit power dissipation

Symbol	Parameter
lopr2	Stabilization circuit power dissipation
Iq	Quiescent current
IR	Reverse current
Iswq	Switching transistor leakage current
Kı	Output voltage temperature gradient
PD	Power dissipation
Peff	Voltage multiplication efficiency
RBSON	Backup switch ON resistance
RL	Load resistance
Ro	Output impedance
Ron	ON resistance
Rosc	Oscillator network resistor
Rrv	Stabilization voltage sensing resistor
RRVn	Reference voltage
Rsat	Stabilization output saturation resistance
Rswon	Switching transistor ON resistance
Ta	Ambient temperature
tae	Minimum pulsewidth
tha	Address hold time
tho	Data hold time
THD	Total harmonic distortion
θjn	Thermal resistance
tmrr	Memory reset recovery time

Symbol	Parameter
tmr	Memory reset
Topr	Operating temperature
tpae	Propagation delay
tphL	LOW-level transition time
tры	HIGH-level transition time
tpls	Propagation delay
tpop	Propagation delay
tps	Propagation delay
tsa	Address setup time
tsp	Data setup time
Tsol	Soldering temperature and time
Tstg	Storage temperature
VDD	Power supply voltage
VDET	Detection voltage
VF	Forward voltage

Symbol	Parameter
Vı	Input voltage
ViH	HIGH-level input voltage
VIL	LOW-level input voltage
Vı	Input voltage
Vo	Output voltage
Voff	Input offset voltage
V _{op+}	Input voltage range
VOPMAX	Maximum output voltage
Vopmin	Minimum output voltage
VREF	Reference voltage
VREG	Output voltage (regulated)
Vss	Power supply voltage
Vssn	Power supply voltage
VSTA	Oscillator start-up voltage
VSTP	Oscillator shut-down voltage

DIMENSIONS

EMBOSS CARRIER TAPING STANDARD (3-PIN SOT89)

TAPING INFORMATION

The emboss carrier taping standard is shown in the following table and figure. This standard conforms to

Dimension code	Dimensions/angles (mm/°)
A	5.0
В	4.6
D	1.5 +0.1, -0.05
E	1.50 ±0.1
F	5.65 ±0.05
P1	8.0 ±0.1
P0	4.0 ±0.1

the EIAJ RCI00B electronic parts taping specification. Each tape holds 1,000 devices.

Dimension code	Dimensions/angles (mm/°)
P2	2.0 ±0.05
Т	0.3
T2	2.3
W	12.0 ±0.2
W1	9.5
θ	30°max

Note

The tape thickness is 0.1 mm max.

There are no joints in either the cover or carrier tapes. Less than 0.2% of the total device count is comprised of non-sequential blanks. There are no sequential blanks. This does not apply to the tape leader and trailer.

REEL SPECIFICATIONS

The reel specifications are shown in the following table and figure. The reel is made of paperboard.

	•
Dimension code	Dimensions (mm)
А	178 ±2.0
В	80 ±1.0
С	13.0 ±0.5
D	21.0 ±1.0
E	2.0 ±0.5
W	14.0 (See note.)
W1	1.5 ±0.1
W2	17 (See note.)
r	1.0

Note

W and W2 are measured at the reel core.

DEVICE POSITIONING

Small molded power IC devices are positioned as shown in the following figure.

EMBOSS CARRIER TAPING STANDARD (8-PIN SOP3)

TAPING INFORMATION

The emboss carrier taping standard is shown in the following table and figure. This standard conforms to

Dimension code	Dimensions/angles (mm/°)
A	6.7
В	5.4
D	1.55 +0.05, -0
D1	1.55 ±0.05
E	1.75 ±0.1
F	5.5 ±0.1
P1	8.0 ±0.1
P0	4.0 ±0.1

the EIAJ RCI009B electronic parts taping specification. Each tape holds 2,000 devices.

Dimension code	Dimensions/angles (mm/°)
P2	2.0 ±0.05
Т	0.3 ±0.05
T2	2.5
W	12.0 ±0.3
W1	9.5
θ	15°max

Note

The tape thickness is 0.1 mm max.

There are no joints in either the cover or carrier tapes. Less than 0.2% of the total device count is comprised of non-sequential blanks. There are no sequential

blanks. This does not apply to the tape leader and trailer.

REEL SPECIFICATIONS

The reel specifications are shown in the following table and figure. The reel is made of paperboard.

	1 1
Dimension code	Dimensions (mm)
A	330 ±2.0
В	80 ±1.0
С	13.0 ±0.5
D	21.0 ±0.5
E	2.0 ±0.5
W	15.4 ±1.0 (See note.)
W1	2.0 ±0.5
W2	23.4 (See note.)
r	1.0

Note

W and W2 are measured at the reel core.

DEVICE POSITIONING

Type B products are positioned so that the index mark is on the sprocket hole side of the tape, as shown in the following figure.

Appendix

Type F product are positioned so that the index mark is on the opposite side to the sprocket holes, as shown in the following figure.

EMBOSS CARRIER TAPING STANDARD (14-PIN SOP5)

TAPING INFORMATION

The emboss carrier taping standard is shown in the following table and figure. This standard conforms to

Dimension code	Dimensions (mm/°)
А	8.4
В	10.6
D0	1.55 ±0.05
D1	1.55 ±0.05
E	1.75 ±0.1
F	7.5 ±0.1
P1	12 ±0.1
P0	4.0 ±0.1

the EIAJ RCI009B electronic parts taping specification. Each tape holds 2,000 devices.

Dimension code	Dimensions (mm/°)
P2	2.0 ±0.1
Т	0.3 ±0.05
T2	3.0
W	16.0 ±0.3
W1	13.5

Note

The tape thickness is 0.1 mm max.

There are no joints in either the cover or carrier tapes. Less than 0.1% of the total device count is comprised of non-sequential blanks. There are no sequential

blanks. This does not apply to the tape leader and trailer.

REEL SPECIFICATIONS

The reel specifications are shown in the following table and figure. The reel is made of paperboard.

Dimension code	Dimensions (mm)
A	330 ±2.0
В	80 ±1.0
С	13.0 ±0.5
D	21.0 ±1.0
E	2.0 ±0.5
W	14.0 ±1.5 (See note.)
W1	2.0 ±0.5
W2	20.5 max (See note.)
r	1.0

Note

W and W2 are measured at the reel core.

DEVICE POSITIONING

Type B products are positioned so that the index mark is on the sprocket hole side of the tape, as shown in the following figure.

Type F products are positioned so that the index mark is on the opposite side to the sprocket holes, as shown in the following figure.

EMBOSS CARRIER TAPING STANDARD (24-PIN SOP2)

TAPING INFORMATION

The emboss carrier taping standard is shown in the following table and figure. This standard conforms to

Dimension code	Dimensions (mm)
А	12.4
В	15.6
D0	1.55 +0.1, -0
D1	2.0 +0.1, -0
E	1.75 ±0.1
F	11.5 ±0.1
P1	16 ±0.1
D1 E	2.0 +0.1, -0 1.75 ±0.1 11.5 ±0.1

the EIAJ RCI009B electronic parts taping specification. Each tape holds 1,000 devices.

_	
Dimension code	Dimensions (mm)
P0	4.0 ±0.1
P2	2.0 ±0.1
Т	0.3 ±0.05
T2	3.0 ±0.1
W	24 ±0.2
W1	21.5 typ

Note

The tape thickness is 0.1 mm max.

There are no joints in either the cover or carrier tapes. Less than 0.2% of the total device count is comprised of non-sequential blanks. There are no sequential blanks. This does not apply to the tape leader and

trailer. The tape tension should be approximately 10 N (1 kgf). A label indicates the part name, quantity and lot number.

Tape configuration

The tape configuration is shown in the following figure. Blank sections are provided as a leader and trailer, with 1,000 SOP2 packages fitted into the component mounting section between them. At the begin-

ning of the leader section there is an extra section of tape which contains the cover tape only.

REEL SPECIFICATIONS

The reel specifications are shown in the following table and figure. The reel is made of conductive PVC.

Dimension code	Dimensions (mm)
A	330 ±2.0
В	80 ±1.0
С	13.0 ±0.5
D	21.0 ±1.0
E	2.0 ±0.5
W	24.4 +2, -0 (See note.)
W1	2.0 ±0.5
W2	31.4 max (See note.)
r	1.0

Note

W and W2 are measured at the reel core.

DEVICE POSITIONING

Type B products are positioned so that the index mark is on the sprocket hole side of the tape, as shown in the following figure.

Type F products are positioned so that the index mark is on the opposite side to the sprocket holes, as shown in the following figure.

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC. HEADQUARTERS

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A.

Phone: +1-310-955-5300 Fax: +1-310-955-5400

SALES OFFICES

West

150 River Oaks Parkway San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A.

Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A.

Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A.

Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH HEADQUARTERS

Riesstrasse 15

80992 Munic, GERMANY

Phone: +49-(0) 89-14005-0 Fax: +49-(0) 89-14005-110

- GERMANY -

SALES OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49- (0) 2171-5045-0 Fax: +49- (0) 2171-5045-10

- UNITED KINGDOM -

UK BRANCH OFFICE

Unit 2.4 Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44- (0) 1344-381700 Fax: +44- (0) 1344-381701

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33- (0) 1-64862350 Fax: +33- (0) 1-64862355

ASIA

- CHINA -

EPSON (CHINA) CO., LTD.

28F, Beijing Silver Tower 2# North RD DongSanHuan

ChaoYang District, Beijing, CHINA

Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA

Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA-

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road

Wanchai, HONG KONG

Phone: +852-2585-4600 Fax: +852-2827-4346

Telex: 65542 EPSCO HX

- TAIWAN -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

10F, No. 287, Nanking East Road, Sec. 3

Taipei, TAIWAN

Phone: 02-2717-7360 Fax: 02-2712-9164

Telex: 24444 EPSONTB

HSINCHU OFFICE

13F-3, No.295, Kuang-Fu Road, Sec. 2

HsinChu 300, TAIWAN

Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192

Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-Dong

Youngdeungpo-Ku, Seoul, 150-010, KOREA Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department IC Marketing & Engineering Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.)

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia)

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of "Saving" Technology, Epson electronic devices.

Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams.

Epson IS energy savings.

SCI 7000 Series POWER SUPPLY I©

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

■ Electronic Devices Information on the EPSON WWW Server

http://www.epson.co.jp/device/