

1 of 19

Regression

Jordan Boyd-Graber University of Colorado Boulder

Jordan Boyd-Graber | Boulder Regression |

.

Jordan Boyd-Graber | Boulder Regression |

Administrivia

- Learnability HW due Friday
- SVM HW next week
- I'm out of town next week

Jordan Boyd-Graber | Boulder Regression |

- Default project or choose your own
- I'll meet with your group early in the week of Oct 12
- Project proposal
- First deliverable due Nov 6: data / baseline

Jordan Boyd-Graber | Boulder Regression

Plan

Basics

Regularization

Sklearr

Jordan Boyd-Graber | Boulder Regression |

dimension	weight
Ь	1
w_1	2.0
W_2	-1.0
σ	1.0

1.
$$\mathbf{x}_1 = \{0.0, 0.0\}; y_1 =$$

2.
$$\mathbf{x}_2 = \{1.0, 1.0\}; y_2 =$$

3.
$$\mathbf{x}_3 = \{.5, 2\}; y_3 =$$

dimension	weight
Ь	1
w_1	2.0
W_2	-1.0
σ	1.0

1.
$$\mathbf{x}_1 = \{0.0, 0.0\}; y_1 = 1.0$$

6 of 19

2.
$$\mathbf{x}_2 = \{1.0, 1.0\}; y_2 =$$

3.
$$\mathbf{x}_3 = \{.5, 2\}; y_3 =$$

Jordan Boyd-Graber | Boulder Regression |

dimension	weight
Ь	1
w_1	2.0
w_2	-1.0
σ	1.0

1.
$$\mathbf{x}_1 = \{0.0, 0.0\}; y_1 = 1.0$$

2.
$$\mathbf{x}_2 = \{1.0, 1.0\}; y_2 = 2.0$$

6 of 19

3.
$$\mathbf{x}_3 = \{.5, 2\}; y_3 =$$

Jordan Boyd-Graber | Boulder Regression |

dimension	weight
Ь	1
w_1	2.0
W_2	-1.0
σ	1.0

1.
$$\mathbf{x}_1 = \{0.0, 0.0\}; y_1 = 1.0$$

2.
$$\mathbf{x}_2 = \{1.0, 1.0\}; y_2 = 2.0$$

3.
$$\mathbf{x}_3 = \{.5, 2\}; y_3 = 0.0$$

Jordan Boyd-Graber Boulder Regression

dimension	weight
w_0	1
w_1	2.0
w_2	-1.0
σ	1.0

$$p(y \mid x) = y \sim N \left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2 \right)$$
$$\exp\left\{ -\frac{(y-\hat{y})^2}{2} \right\}$$

1.
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) =$$

2.
$$p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) =$$

3.
$$p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) =$$

7 of 19

Jordan Boyd-Graber | Boulder Regression |

dimension	weight
w_0	1
w_1	2.0
w_2	-1.0
σ	1.0

$$p(y \mid x) = y \sim N \left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2 \right)$$

$$= \exp \left\{ -\frac{(y - \hat{y})^2}{2} \right\}$$
2. $p(y_2 = 3 \mid \mathbf{x}_2 = \{1.0, 1.0\}) = \{0.399$
3. $p(y_3 = -1 \mid \mathbf{x}_3 = \{.5, 2\}) = \{0.399$

$$p(y \mid x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

1.
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) = 0.399$$

2.
$$p(y_2 = 3 \mid \mathbf{x}_2 = \{1.0, 1.0\}) =$$

7 of 19

3.
$$p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) =$$

Jordan Boyd-Graber Boulder Regression

dimension	weight
w_0	1
w_1	2.0
w_2	-1.0
σ	1.0

$$p(y \mid x) = y \sim N\left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2\right) \quad 3. \quad p(y_3 = -1 \mid \mathbf{x}_3 = \{.5, 2\}) =$$

$$p(y \mid x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

1.
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) = 0.399$$

2.
$$p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) = 0.242$$

3.
$$p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) =$$

7 of 19

Jordan Boyd-Graber Boulder Regression

dimension	weight
w_0	1
w_1	2.0
w_2	-1.0
σ	1.0

$$p(y \mid x) = y \sim N \left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2 \right)$$
 3.
$$p(y_3 = -1 \mid \mathbf{x}_3 = \{.5, 2\}) =$$

$$p(y \mid x) = \frac{\exp\left\{-\frac{(y - \hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

1.
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) = 0.399$$

2.
$$p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) = 0.242$$

3.
$$p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) = 0.242$$

Plan

Basics

Regularization

Sklearr

Jordan Boyd-Graber | Boulder Regression |

Jordan Boyd-Graber | Boulder Regression |

Which is the better OLS solution?

Jordan Boyd-Graber Boulder Regression

Blue! It has lower RSS.

Jordan Boyd-Graber | Boulder Regression | 9 of 19

What is the RSS of the better solution?

Jordan Boyd-Graber | Boulder Regression | 9 of 19

$$\sum_{i} r_i^2 = (1-1)^2 + (2.5-2)^2 + (3.5-3)^2 = .5$$

Jordan Boyd-Graber Boulder Regression

What is the RSS of the red line?

Jordan Boyd-Graber | Boulder Regression | 9 of 19

$$\sum_{i} r_i^2 = (1-1)^2 + (2.5-1.5)^2 + (2.5-2.5)^2 = 1$$

Jordan Boyd-Graber Boulder Regression

For what λ does the blue line have a better regularized solution with L_2 and L_1 ?

Jordan Boyd-Graber | Boulder Regression |

 L_2

 L_1

10 of 19

Jordan Boyd-Graber | Boulder Regression

 L_2

$$\mathsf{RSS}(x, y, w) + \lambda \sum_d w_d^2 > \mathsf{RSS}(x, y, w) + \lambda \sum_d w_d^2$$

 L_1

Jordan Boyd-Graber Boulder Regression

 L_2

$$RSS(x, y, w) + \lambda \sum_{d} w_d^2 > RSS(x, y, w) + \lambda \sum_{d} w_d^2$$
$$.5 + \lambda 1 > 1 + \lambda \frac{9}{16}$$

 L_1

Jordan Boyd-Graber | Boulder Regression |

 L_2

$$.5 + \lambda 1 > 1 + \lambda \frac{9}{16}$$
$$\frac{7}{16}\lambda > \frac{1}{2}$$

 L_1

Jordan Boyd-Graber | Boulder

 L_2

$$\frac{7}{16}\lambda > \frac{1}{2}$$
$$\lambda > \frac{8}{7}$$

 L_1

Jordan Boyd-Graber

 L_2

$$\lambda > \frac{8}{7}$$

 L_1

$$\mathsf{RSS}(x, y, w) + \lambda \sum_{d} |w_d| > \mathsf{RSS}(x, y, w) + \lambda \sum_{d} |w_d|$$

Jordan Boyd-Graber | Boulder Regression |

 L_2

$$\lambda > \frac{8}{7}$$

 L_1

$$\mathsf{RSS}(x, y, w) + \lambda \sum_{d} |w_{d}| > \mathsf{RSS}(x, y, w) + \lambda \sum_{d} |w_{d}|$$
$$.5 + \lambda 1 > 1 + \lambda \frac{3}{4}$$

Jordan Boyd-Graber | Boulder Regression |

 L_2

$$\lambda > \frac{8}{7}$$

 L_1

$$.5 + \lambda 1 > 1 + \lambda \frac{3}{4}$$

Jordan Boyd-Graber

 L_2

$$\lambda > \frac{8}{7}$$

 L_1

$$\frac{1}{4}\lambda > \frac{1}{2}$$

Jordan Boyd-Graber

 L_2

$$\lambda > \frac{8}{7}$$

 L_1

$$\frac{1}{4}\lambda > \frac{1}{2}$$
$$\lambda > 2$$

Jordan Boyd-Graber

 L_2

$$\lambda>\frac{8}{7}$$

 L_1

$$\lambda > 2$$

Bigger λ : preference for lower weights w

Jordan Boyd-Graber | Boulder Regression |

Plan

Basics

Regularization

Sklearn

Jordan Boyd-Graber | Boulder Regression

MPG Dataset

- Predict mpg from features of a car
 - 1. Number of cylinders
 - Displacement
 - 3. Horsepower
 - 4. Weight
 - 5. Acceleration
 - 6. Year
 - 7. Country (ignore this)

Jordan Boyd-Graber | Boulder Regression |

Simple Regression

If w = 0, what's the intercept?

Jordan Boyd-Graber | Boulder Regression |

Simple Regression

If w = 0, what's the intercept? 23.4

Jordan Boyd-Graber Boulder Regression

What are the coefficients for OLS?

Jordan Boyd-Graber Boulder Regression

What are the coefficients for OLS?

```
cyl -0.329859
dis 0.007678
hp -0.000391
wgt -0.006795
acl 0.085273
yr 0.753367
```

Jordan Boyd-Graber | Boulder Regression |

What are the coefficients for OLS?

```
cyl -0.329859
dis 0.007678
hp -0.000391
wgt -0.006795
acl 0.085273
yr 0.753367
```

Intercept: -14.5

Jordan Boyd-Graber | Boulder Regression |

```
from sklearn import linear_model
linear_model.LinearRegression()
fit = model.fit(x, y)
```

Jordan Boyd-Graber | Boulder Regression |

Lasso

- As you increase the weight of alpha, what feature dominates?
- What happens to the other features?

Jordan Boyd-Graber | Boulder Regression |

Weight is Everything

Jordan Boyd-Graber | Boulder Regression |

How is ridge different?

Jordan Boyd-Graber | Boulder Regression |

Regression isn't special

- Feature engineering
- Regularization
- Overfitting
- Development / Test Data

Jordan Boyd-Graber | Boulder Regression | 19 of 19