

Микропроцессорные устройства обработки сигналов

Лекция L14 «Звуковой интерфейс»

http://vykhovanets.ru/course67/

Звуковые интерфейсы

I²S – Integrated Inter-chip Sound (интегрированный межмикросхемный звук)

SPDIF – Sony-Philips Digital Interface

AES/EBU – Audio Engineering Society/European Broadcasting Union

Использование I2S

	CLK	I2S_CLK	
Звуковой кодек	WCLK	I2S_FS	Контроллер
	DIN	I2S_DX	l ² S
	DOUT	I2S_RX	

Состав микропроцессора

Подключение устройств I2S

Форматы I2S

Формат I²S – Integrated Inter-chip Sound (интегрированный межмикросхемный звук)

Формат DSP – Digital Signal Processing (цифровая обработка сигналов)

Организация контроллера I²S

Тактовое питание

$$f_{I2S_CLK} = \frac{f_{SYSCLK}}{2^{CLKDIV+1}}$$

$$f_{I2S_FS} = \frac{f_{I2S_CLK}}{2^{FSDIV+1}}$$

PCGCR1 (1C02h) – Peripheral Clock Gating Configuration Register 1

15	14	13	12	11	10	9	8
SYSCLKDIS	I2S2CG	TMR2CG	TMR1CG	EMIFCG	TMR0CG	I2S1CG	I2S0CG
7	6	5	4	3	2	1	0
MMCSD1CG	I2CCG	Reserved	MMCSD0CG	DMA0CG	UARTCG	SPICG	I2S3CG

Регистры I²S

Базовые адреса: I2S0 – 2800h; I2S1 – 2900h; I2S2 – 2A00h; I2S3 – 2B00h.

Адрес	Обозначение	Описание
2800h	I2SSCTRL	Serializer Control Register (регистр управления)
2804h	I2SSRATE	Sample Rate Generator Register (регистр скорости выборки)
2808h	I2STXLT0	Transmit Left Data 0 Register (регистр передачи левый 0)
280Ch	I2STXLT1	Transmit Left Data 1 Register (регистр передачи левый 1)
2810h	I2STXRT0	Transmit Right Data 0 Register (регистр передачи правый 0)
2814h	I2STXRT1	Transmit Right Data 1 Register (регистр передачи правый 1)
2818h	I2SINTFL	Interrupt Flag Register (регистр флагов прерываний)
281Ch	I2SINTMASK	Interrupt Mask Register (регистр маски прерываний)
2820h	I2SRXLT0	Receive Left Data 0 Register (регистр приема левый 0)
2824h	I2SRXLT1	Receive Left Data 1 Register (регистр приема левый 1)
2828h	I2SRXRT0	Receive Right Data 0 Register (регистр приема правый 0)
282Ch	I2SRXRT1	Receive Right Data 1 Register (регистр приема правый 1)

PRCR (1C05h) – Peripheral Reset Control Register (регистр управления сбросом)

PG4_RST: LCD, I2S2, I2S3, UART, SPI.

PG3_RST: MMC/SD0, MMC/SD1, I2S0, I2S1.

Запись нуля без эффекта, запись 1 запускает сброс, чтение 1 сигнализирует о состоянии сброса, чтение 0 – окончание сброса.

Вектор прерываний

Век	тор	Прерывание	Приоритет	Адрес
00	RESET	Сброса и инициализации	00	IVPD:00h
01	NMI	Внутреннее немаскируемое	01	IVPD:08h
02	INT0	Внешнее по входу INT0	03	IVPD:10h
03	INT1	Внешнее по входу INT1	05	IVPD:18h
04	TINT	Агрегированное таймера	06	IVPD:20h
05	PROG0	I2S0, MMC/SD0 передачи	07	IVPD:28h
07	PROG1	I2S0,MMC/SD0 приема	10	IVPD:38h
80	DMA	Прямого доступа к памяти	11	IVPD:40h
09	PROG2	I2S1,MMC/SD1 передачи	13	IVPD:48h
11	PROG3	I2S1,MMC/SD1 приема	15	IVPD:58h
13	SAR	Агрегированное АЦП	18	IVPD:68h
14	XTM2	I2S2 передачи	21	IVPD:70h
15	RCV2	I2S2 приема	22	IVPD:78h
16	XMT3	I2S3 передачи	04	IVPH:80h
17	RCV3	I2S3 приема	09	IVPH:88h
18	RTC	Часов реального времени	12	IVPH:90h
21	GPIO	Портов ввода-вывода	20	IVPH:A8h
23	I2C	Контроллера I2C	24	IVPH:B8h

Регистр управления

I2SSCTRL (2800h) – I2Sx Serializer Control Register (регистр управления)

15	14	13	12	11	10	9	8
ENABLE	Reserved		MONO	LOOPBACK	FSPOL	CLKPOL	DATADLY
7	6	5			2	1	0
PACK	SIGN_EXT	WDLNGTH			MODE	FRMT	

- **ENABLE** Enable (разрешение работы контроллера)
- MONO Mono (режим моно)
- LOOPBACK Loopback (режим обратной петли)
- FSPOL Frame-synchronization polarity (полярность кадровой синхронизации I2S_FS: 0 высокий уровень, 1 низкий уровень)
- CLKPOL Clock polarity (полярность битовой синхронизации I2S_CLK: 0 переход от 0 к 1, 1 переход от 1 к 0)
- **DATADLY** Data delay (задержка данных: 0 1 бит, 1 2 бита)
- PACK Pack (упаковка данных: 0 запрещена, 1 разрешена)
- SIGN_EXT Sign extension (расширение знака)
- WDLNGTH Word length(длина слова: 0 8 бит, 1 10 бит, 2 12 бит, 3 14 бит, 4 16 бит, 5 18 бит, 6 20 бит, 7 24 бита, 8 32 бита)
- MODE Mode (режим: 1 ведущий, master; 0 ведомый, slave)
- FRMT Format (формат: 0 I2S, 1 DSP)

Упаковка данных

Регистры делителей и данных

I2SSRATE (2804h) – I2Sn Sample Rate Generator Register (регистр делителей)

15 6 5 3 2 0

Reserved FSDIV CLKDIV

```
I2STXLT0 (2808h) — I2Sx Transmit Left Data 0 Register (регистр передачи левый 0)
I2STXLT1 (280Ch) — I2Sx Transmit Left Data 1 Register (регистр передачи левый 1)
I2STXRT0 (2810h) — I2Sx Transmit Right Data 0 Register (регистр передачи правый 0)
I2STXRT1 (2814h) — I2Sx Transmit Right Data 1 Register (регистр передачи правый 1)
I2SRXLT0 (2820h) — I2Sx Receive Left Data 0 Register (регистр передачи левый 0)
I2SRXLT1 (2824h) — I2Sx Receive Left Data 1 Register (регистр передачи левый 1)
I2SRXRT0 (2828h) — I2Sx Receive Right Data 0 Register (регистр передачи правый 0)
I2SRXRT1 (282Ch) — I2Sx Receive Right Data 1 Register (регистр передачи правый 1)

I2SRXRT1 (282Ch) — I2Sx Receive Right Data 1 Register (регистр передачи правый 1)
```

- **FSDIV** Frame-synchronization divider (делитель кадровой синхронизации: 0 8, 1 16, 2 32, 3 64, 4 128, 5 256)
- CLKDIV Clock divider (делитель битовой синхронизации: 0 2, 1 4, 2 8, 3 16, 4 32, 5 64, 6 128, 7 256)
- DATA Data (данные)

Регистры прерываний

I2SINTFL (2818h) – I2Sx Interrupt Flag Register (регистр флагов прерываний)
I2SINTMASK (281Ch) – I2Sx Interrupt Mask Register (регистр масок прерываний)

	Reserved							
7	6	5	4	3	2	1	0	
Rese	erved	XMITSTFL	XMITMONFL	RCVSTFL	RCVMONFL	FERRFL	OUERR	

- XMITSTFL Stereo data transmit (флаг или маска прерывания по готовности стерео передатчика)
- XMITMONFL Mono data transmit (флаг или маска прерывания по готовности моно передатчика)
- RCVSTFL Stereo data receive (флаг или маска прерывания по готовности стерео приемника)
- RCVMONFL Mono data receive (флаг или маска прерывания по готовности моно приемника)
- FERRFL Frame-synchronization error (флаг или маска прерывания по ошибки кадровой синхронизации)
- OUERRFL Overrun or Underrun condition (флаг или маска прерывания по передержке или недодержке)

Инициализация контроллера

- Сброс PRCR[PGx_RST] и ожидание нуля.
- Подача тактового питания PCGCR1[I2SxCG]=0.
- Сброс канала прямого доступа*.
- Запрет прерываний и очистка флагов I2Sx.
- Инициализация канала прямого доступа*.
- Конфигурирование внешнего устройства I2S.
- Разрешение прерываний.
- Конфигурирование контроллера I2S:
 - трассировка сигналов I2S на внешние входы;
 - если I2S ведущее устройство, то задать тактовую частоту в I2SSRATE;
 - разрешить прерывания в I2SINTMASK;
 - сконфигурировать I2SSCTRL.
- Обработка прерываний контроллера и канала*

Обработчик прерываний

- Чтение I2SINTFL для сброса флагов прерываний.
- Чтение или запись данных в регистры данных I2S, если не используется канал прямого доступа.
- Возврат из прерывания.

Завершение ввода-вывода

- Запрет прерываний и очистка флагов I2Sx.
- Останов канала прямого доступа*.
- Снятие тактового питания PCGCR1[I2SxCG]=0.

Функции I²S

```
void i2s2_init(void)
   .text
   .global _port_read
                                     int tmp = 0x04 << 2; // WORD 16
   .global _port_write
                                     tmp |= 0x0082; // Master, Pack
                                     port_write(0x2A00, tmp); // 16 bit
; int port_read(int reg)
_port_read:
                                     tmp = port read(0x2A00); // I2SSCTRL
   MOV T0, AR0
   MOV port(*AR0), T0
                                     tmp = 0x2 << 3; // FS 32;
   ret
                                     tmp |= 0x0005; // Clock = CPU / 4
                                     port_write(0x2A04, tmp); // I2SSRATE
; void port_write(int reg, int data)
port write:
                                     port_write(0x2A1C, 0x20);// I2SINTMASK
   MOV T0, AR0
   MOV T1, port(*AR0)
   ret
                 port_write(0x2A08, 0x5678); // I2STXLT0
                 port_write(0x2A0C, 0x1234); // I2STXLT1
                 port write(0x2A10, 0x5678); // I2STXRT0
                 port_write(0x2A14, 0x1234); // I2STXRT1
```

Определения I²S

```
#define I2S2 CR
                        *(volatile ioport Uint16*)(0x2A00)
#define I2S2 SRGR
                      *(volatile ioport Uint16*)(0x2A04)
#define I2S2 W0 LSW W *(volatile ioport Uint16*)(0x2A08)
#define I252 W0 MSW W *(volatile ioport Uint16*)(0x2A09)
#define I2S2 W1 LSW W *(volatile ioport Uint16*)(0x2A0C)
#define I2S2 W1 MSW W *(volatile ioport Uint16*)(0x2A0D)
#define I2S2 IR
                     *(volatile ioport Uint16*)(0x2A10)
#define I2S2 ICMR
                       *(volatile ioport Uint16*)(0x2A14)
#define I2S2 W0 LSW R *(volatile ioport Uint16*)(0x2A28)
#define I2S2 W0 MSW R *(volatile ioport Uint16*)(0x2A29)
#define I252 W1 LSW R *(volatile ioport Uint16*)(0x2A2C)
#define I2S2 W1 MSW R *(volatile ioport Uint16*)(0x2A2D)
```

Инициализация

```
/* Initialize CPU */
                                                                    TLV320AIC3204IRHBT
c5515 init();
/* Configure Parallel Port */
SYS EXBUSSEL &= ~0x7000;
                                                                        ddy
SYS EXBUSSEL |= 0x1000; // Configure Parallel
/* Configure Serial Port */
SYS EXBUSSEL &= ~0x0C00;
SYS EXBUSSEL |= 0x0400; // Serial Port mode 1 (
c5515 GPIO init();
                                                     AIC MBIAS
                                                                19
c5515 GPIO setDirection(GPIO10, GPIO OUT);
                                                                    MICBIAS
                                                     AIC MIC1L
                                                                                         31 nRESET
                                                                13
                                                                                  RESET
                                                                    IN1 L
c5515 GPIO setOutput (GPIO10, 1); // Take AIC320
                                                    AIC MIC1R
                                                                    IN1 R
                                                                                           12S2 CLK
                                                     AIC LINE2L
/* Initialize I2C */
                                                                                   BCLK
                                                                    IN2 L
                                                                                            12S2 FS
                                                     AIC LINE2R
                                                                    IN2 R
                                                                                   WCLK
I2C init();
                                                                                            12S2 DX
                                                     AIC LINE3L
                                                                20
                                                                                     DIN
                                                                    IN3 L
                                                                                         5 12S2 RX
                                                     AIC LINE3R 21
/* Interrupts */
                                                                                   DOUT
                                                                    IN<sub>3</sub> R
asm (" BSET INTM");
                                                                                            CLKIN
                                                     HEAD LOUT 25
                                                                    HPL
                                                                                   MCLK
unsigned long int vector;
                                                     HEAD ROUT
                                                                27
                                                                    HPR
                                                     AIC LOUT
vector = (unsigned long int) &VECSTART;
                                                                    LOL
                                                                                         9 I2C SCL
                                                     AIC ROUT
                                                                                 SCL/SSZ
                                                                    LOR
                                                                                         10 I2C SDA
vector = vector >> 8;
                                                                    LDO SEL
                                                                               SDA/MOSI
                                                        TP5
IVPD = (unsigned short) vector;
                                                                    GPIO
                                                                                 SPI SEL
IVPH = (unsigned short) vector;
                                                                                   MISO
                                                                                         8 MIC DET
                                                                            SCLK/MIC DET
IER0 |= 0x4000;
                                                                18
                                                                    REF
                                                                           IOVSS
AVSS
DVSS
                                                                                  PPAD
asm (" BCLR INTM");
/* I2S settings */
I2S2 SRGR = 0 \times 0015;
                                                             C30
                                                                 C128
I2S2 ICMR = 0x0028; // Enable interrupts
                                                             10uF | 0.1uF
I2S2 CR = 0x8012; // 16-bit word, Master, enal
                                                                                     GND-A
/* Aution codec */
aic3204 stereo in1();
```

/* ... */

Секция прерываний

```
.sect "vectors"
    .global VECSTART
    .global i2s2 tx isr
    .global i2s2 rx isr
   .global Reset
   .ref c int00
VECSTART:
Reset .ivec c int00, USE RETA
nmi .ivec no isr
int0 .ivec no isr
. . . .
int11 .ivec no isr
int12 .ivec i2s2 tx isr
int13 .ivec no isr
. . . . .
int29 .ivec no isr
       .text
       .def no isr
no isr: b #no isr
```

```
MEMORY
PAGE 0:
MMR (RWIX): origin = 0x000000, length = 0x000000
DARAMO (RWIX): origin = 0x0000c0, length = 0x00ff40
SARAMO (RWIX): origin = 0x010000, length = 0x010000
SARAM1 (RWIX): origin = 0x020000, length = 0x020000
SARAM2 (RWIX): origin = 0x040000, length = 0x00FE00
VECS (RWIX): origin = 0x04FE00, length = 0x000200
PDROM (RIX): origin = 0xff8000, length = 0x008000
PAGE 2:
IOPORT (RWI) : origin = 0x000000, length = 0x020000
SECTIONS
.text >> SARAM1|SARAM2|SARAM0
.stack > DARAMO
.sysstack > DARAMO
.data >> DARAMO|SARAMO|SARAM1
.bss >> DARAMO|SARAMO|SARAM1
.const >> DARAMO | SARAMO | SARAM1
.sysmem > DARAMO|SARAMO|SARAM1
.switch > SARAM2
.cinit > SARAM2
.pinit > SARAM2
.cio > SARAM2
.args > SARAM2
vectors > VECS
.ioport > IOPORT PAGE 2
```

Обработчик прерываний I²S

```
interrupt void i2s2 tx isr()
   I2S2 W0 MSW W = buf out left 2[buf index];
    I2S2 W1 MSW W = buf out right 2[buf index];
   while ((Rcv & I2S2 IR) == 0);
   buf in left 2[buf index] = I2S2 W0 MSW R;
   buf in right 2[buf_index] = I2S2_W1_MSW_R;
   buf index++;
    if (buf index >= W LEN) {
       change = buf in left 2;
       buf in left 2 = buf in left 1;
       buf in left 1 = change;
       change = buf out left 2;
       buf out left 2 = buf out left 1;
       buf out left 1 = change;
       change = buf in right 2;
       buf in right 2 = buf in right 1;
       buf in right 1 = change;
        change = buf out right 2;
       buf out right 2 = buf out right 1;
       buf out right 1 = change;
       buf index = 0;
       effect flag = EFFECT FLAG;
```

```
Int16 b1[W LEN] = { 0 };
Int16 b2 [W LEN] = { 0 };
Int16 b3[W LEN] = \{ 0 \};
Int16 b4[W LEN] = { 0 };
Int16 b5[W LEN] = { 0 };
Int16 b6[W LEN] = { 0 };
Int16 b7 [W LEN] = \{ 0 \};
Int16 b8[W LEN] = \{ 0 \};
Int16* buf in left 1 = b1;
Int16* buf in right 1 = b2;
Int16* buf out left 1 = b3;
Int16* buf out right 1 = b4;
Int16* buf in left 2 = b5;
Int16* buf in right 2 = b6;
Int16* buf out left 2 = b7;
Int16* buf out right 2 = b8;
```