(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-330285

(43)公開日 平成10年(1998)12月15日

(51) Int.Cl. ⁶	識別記号	FI
A61K 38/22	ADP	A 6 1 K 37/24 ADP
// CO7K 14/50	ZNA	C 0 7 K 14/50 Z N A
C12N 15/09		C 1 2 P 21/02 H
C 1 2 P 21/02		C 1 2 N 15/00 A
(C 1 2 P 21/02		
(0121 01/00		審査請求 未請求 請求項の数5 FD (全 8 頁) 最終 頁に続く
(21)出願番号	特願平9-158080	(71) 出願人 000183370
		住友製薬株式会社
(22) 出顧日	平成9年(1997)5月30日	大阪府大阪市中央区道修町2丁目2番8号
		(72)発明者 小北 季世子
		大阪市此花区春日出中3-1-98 住友製
		薬株式会社内
		(72)発明者 橋本 学育
		大阪市此花区春日出中3-1-98 住友製
		薬株式会社内
		(74)代理人 弁理士 中村 敏夫
		·

(54) 【発明の名称】 血糖降下剤

(57)【要約】

【課題】新規な血糖降下剤を提供する。

【解決手段】FGF-10を有効成分として含有する血糖降下剤、特にII型糖尿病における血糖降下剤を提供する。血糖降下剤の主流であるインスリンや経口血糖降下剤と異なり、緩徐かつ適度な血糖値コントロール作用を有する。

【特許請求の範囲】

【請求項1】線維芽細胞増殖因子10(FGF-10)、あるいはケラチノサイト増殖因子2(KGF-2)を有効成分として含有する血糖降下剤。

【請求項2】配列番号:1のアミノ酸配列から成るポリペプチド、もしくはその付加、欠失、あるいは置換改変体である増殖因子を有効成分として含有する血糖降下剤。

【請求項3】増殖因子が大腸菌宿主が産生する組換えタンパクである請求項1または2の血糖降下剤。

【請求項4】糖尿病の治療に用いられる請求項1ないし 3の血糖降下剤。

【請求項5】糖尿病がインシュリン非依存性糖尿病(I I 型糖尿病、N I D D M)である請求項 4 の血糖降下 剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は血糖降下剤、より詳しくは、線維芽細胞増殖因子10(FGF-10)を有効成分として含有する糖尿病治療用の血糖降下剤に関する。

[0002]

【従来の技術】近年、生活水準の向上により、欧米型の 食生活への変化、あるいは運動不足傾向の増加に伴っ て、糖尿病および糖尿病性合併症の患者が増加してい る。

【0003】一般に糖尿病は、インスリン依存性(I型、NIDDM)とインスリン非依存性(II型、NIDDM)とに分類され、糖尿病患者の90%以上は後者である。IDDMの治療にはインスリン注射が、NIDDMの治療には、運動療法や食事療法と共にスルホニルウレアやビグアナイド系の経口糖尿病治療薬が選択される[「今日の治療指針 TODAY'S THERAPY1993」日野原重明、阿部正和監修、医学書院、494から498頁]。しかし、未だに糖尿病に対する根本的な薬物療法は確立されておらず、持続的な高血糖状態に起因する視力障害や末梢神経障害、創傷治癒の遅延・潰瘍化、肥満など種々の合併症を引き起こしているのが現状である。

【0004】一方、線維芽細胞増殖因子10(FGF-10)は、京都大学の伊藤らのグループが初めて、組換え製法による発現および生理活性の確認を行った増殖因子である[特願平8-214378]。構造的にはFGFファミリーに属し、特にケラチノサイト増殖因子: KGF-1とも呼ばれている線維芽細胞増殖因子7(FGF-7)と約60%のアミノ酸相同性を有する。また、ほぼ同時期に、グラバー(Gruber, J. R.)他も、FGF-10と同じアミノ酸配列をコードする、KGF-2遺伝子を発見している[Wo96/25422: Human Genome Science In

c.]。このFGF-10(KGF-2)は、上皮細胞や骨細胞の増殖作用が確認されているものの、高血糖状態の生体の血糖値を下げる作用は未だ報告されていない。

[0005]

【発明が解決しようとする課題】本発明の目的は、糖尿病患者の血糖値を安全にコントロールしうる、新規な血圧降下剤を提供することにある。特に、インシュリン非依存性である I I 型糖尿病において有効な血圧降下剤を提供する。

[0006]

【課題を解決するための手段】本発明者らは、種々の糖尿病モデル動物にて、末梢投与された神経栄養因子が与える影響を検討していたところ、II型の糖尿病のモデル動物の一種である高血糖自然発症マウス(ob/obマウス)[ハーバーグおよびコールマン、メタボリズム、第26巻、59-99頁(1977年): Herberg、L.、 and D. L.Coleman. 1977. Laboratory animals exhibiting obesity and diabetes syndromes. Metabol ism 26:59-99.] に、FGF-10を投与することにより血糖値を低下させうることを知った。この知見に基づき、更なる検討の結果、本発明を完成した。

【0007】すなわち、本発明は、下記の医薬に関する ものである。

- (1) 線維芽紀胞増殖因子10(FGF-10)、あるいはケラチノサイト増殖因子2(KGF-2)を有効成分として含有する血糖降下剤。
- (2)配列番号:1のアミノ酸配列から成るポリペプチド、もしくはその付加、欠失、あるいは置換改変体である増殖因子を有効成分として含有する血糖降下剤。
- (3)増殖因子が大腸菌宿主が産生する組換えタンパク である(1)または(2)の血糖降下剤。
- (4) 糖尿病の治療に用いられる(1) ないし(3) の 血糖降下剤。
- (5)糖尿病がインシュリン非依存性糖尿病 (II型糖尿病、NIDDM)である(4)の血糖降下剤。
- 【0008】以下、詳細に本発明を説明する。本明細書 において、「線維芽細胞増殖因子10(FGF-1
- 0)、あるいはケラチノサイト増殖因子2(KGF-2)」とは、1996年に伊藤らによって発見されたF
- 27] とは、1990年に序録らによって元之に、GFファミリーの細胞増殖因子 [特顯平8-214378] で、配列番号:1のアミノ酸配列を有し、FRSK細胞(上皮細胞系の培養細胞)などの増殖作用、ラット骨形成促進を有するタンパク質を意味する。以後の説明では、FGF-10の改変体、即ち、配列番号:1のアミノ酸配列から成るポリペプチドの付加、欠失、あるいは置換改変体をも含めて、「FGF-10」と総称する。代表的な改変体の作成方法や活性の測定法は、特願
- 【0009】なお、天然FGF-10は糖鎖を有するタ

平8-214378号明細書に示されている。

ンパク質であるが、糖鎖の有無、種類に関わらず、同種の細胞増殖活性を有する限り、FGF-10という概念に含まれるものとする。また、FGF-10成熟タンパク質としては、(1)配列番号:1の40位ロイシン(Leu40)から始まり、208位セリン(Ser208)に終わる169アミノ酸のタンパク質、および、(2)69位セリン(Ser69)に始まり、208位セリン(Ser208)に終わる140アミノ酸のタンパク質、が現在判明しているが、上記のようにFGF-10はこの二種の成熟タンパク質に限定されるものではない。

【0010】「血糖降下剤」とは、病的な高血糖状態に ある患者に投与し、血糖値を下げる医薬を意味する。 「糖尿病」とは、通常100~120mg/d1程度に コントロールされている血糖値が異常に上昇する病気で ある。現在の診断基準では、血糖値が、グルコース75 g負荷2時間後で200mg/d1以上、空腹時血糖が 140mg/d1以上となっている。一般に糖尿病は、 インシュリン産生細胞の減少を伴うインスリン依存性 (I型、IDDM)とインシュリン感受性の低下によっ て生じるとされるインスリン非依存性(II型、NID DM)とに分類され、糖尿病患者の90%以上は後者で ある。前者は、若年発症型で、自己免疫的にインシュリ ン産生細胞が破壊され、インシュリンの量が足りなくな るとされている。ケトーシス傾向が強く、生命維持に継 続的なインシュリン注射が必須とされている。「インシ ュリン非依存性糖尿病(II型糖尿病、NIDDM)」 は、主に中年以降に発症するタイプの糖尿病で、インシ ュリンに対する体細胞の感受性鈍化が原因とされる。血 中インシュリン濃度はむしろ高い。ケトーシス傾向弱 く、緩慢な進行のため、インシュリン注射より経口の血 糖降下剤が常用されるが、高血糖が間接的に様々な合併 症状を引き起こす。本発明、本明細書においては糖質コ ルチコイド等のステロイド剤を連投したときに生じる病 的な高血糖状態(ステロイド糖尿病)、クッシング症候 群(Cushing Syndrome)や末端肥大症 に於ける高血糖状態も、正常ないしは高インシュリン状 態での糖尿、という意味でII型糖尿病に含めるものと する。

【0011】(製造)本発明の血糖降下剤に用いるFGF-10は、固有の生理活性を示すもので有れば、天然抽出品、遺伝子組換え品を問わず、精製して本発明に使用することができる。FGF-10の生産方法としては、(1)FGF-10産生組織からの抽出、(2)FGF-10産生細胞(初代培養細胞や株化細胞)の培養および抽出、(3)組換えDNAを導入した宿主細胞の培養および抽出などが考えられるが、一般的には、

(3)組換えDNAを導入した宿主からの抽出が大量生産に適している。組換え技術によるFGF-10の製造方法を以下に簡単に記載するが、詳細は、特願平8-2

14378に記載されている。

【0012】(組換え工程)配列番号:2で示されるD NA配列を含むFGF-10のcDNAを発現ベクター に組み込む。ベクターとしては、適当な大腸菌、枯草 菌、酵母、動物昆虫細胞等の宿主内で増殖できるプラス ミドやファージが選ばれるが、例えば、大腸菌由来のp BR322、pBR325 [ジーン (Gene) 4巻1 21頁(1978)]、枯草菌由来pUB110[バイ オケミカル・バイオフィジカル・リサーチ・コミュニケ ーション (Biochem. Biophys. Res. Commun.)112卷,678頁(1983)]、 COS細胞に好適なpCDM8等が挙げられる。cDN Aをプラスミドに組み込む方法としては、常法が、マニ アティス (T. Maniatis) 他、モレキュラー・ クローニング (Molecular clonin g)、コールドスプリング ハーバー ラボラトリー (Cold spring harbar lab.) 239頁(1982)に記載されている。

【0013】(宿主)宿主は、ベクターの導入により形質転換され、FGF-10を産生できる生物や培養細胞であれば、特に限定されない。細菌としては、大腸菌、枯草菌(バチルス類)等、酵母としては、サッカロマイセス属、トルラ属、ビキア属等、動物細胞としては、COS細胞、CHO細胞、NSO細胞等が代表例である。培養昆虫細胞、真菌、植物細胞、単細胞系だけでなく、目的蛋白質遺伝子を組み込まれた昆虫や哺乳類、植物も宿主の範疇に入る。

【0014】(活性測定)形質転換体から、公知の方法、例えば、コロニー・ハイブリダイゼイション法[ジーン(Gene),10巻 63頁(1980)]およびDNA塩基配列決定法[プロシーディングス オブナショナル アカデミー オブサイエンス(Proc. Natl. Acad. Sci. USA)74巻560頁(1977)]を用い、所望のクローンを選出する。また、COS細胞にて一過性に発現させ、培養上清の生理活性を評価してクローン選択することも可能である。発現されたFGF-10蛋白の生理活性は、FRSK細胞などの上皮細胞の増殖促進作用を測定することにより評価できる。

【0015】(精製)組換え技術により生産されたFGF-10蛋白は、生化学の分野で常用される精製方法にて精製が可能である。イオン交換クロマトグラフィー、ゲル沪過、逆相HPLC、硫安沈澱、限外沪過、SDS-PAGEなどが適宜組み合わせて用いられるが、FGF類の場合、特にヘパリン等のリガンドを用いたアフィニティークロマトグラフィー、抗体カラムクロマトグラフィーなどが大量精製に好適である。FGF-10蛋白に対する抗体は、ポリクローナル、モノクローナル共に、自体公知の方法で作製し得る。FGF-10特異的抗体は抗体カラムに使用出来るだけでなく、ELISA

等の免疫化学的定量法に使用できる。

【0016】(製剤)製剤としては、注射剤、経口剤、液剤、凍結乾燥品いずれも用いることが出来るが、特に皮下投与用注射製剤が好ましい。これら非経口投与製剤には、当該分野にて公知の安定化剤、担体を用いることができ、使用時に等張溶液として用いるのが好ましい。医薬担体としては、例えば、アルブミン等の血漿由来の白、グリシン等のアミノ酸、マンニトール等の糖を用いることができ、通常、皮下あるいは筋肉内投与用凍結乾燥製剤に用いられる。また、水溶製剤、凍結乾燥製剤とて使用する場合、凝集を防ぐためにTween80などの界面活性剤を添加するのが好ましい。長期の薬効を要する場合は、公知のタンパク除放性製剤担体を用いて製剤する事もできる。

【0017】(使用方法)本発明の血糖降下剤は、主成 分がFGF-10の場合は、通常成人キログラムあたり O. 5μg~5mgを静脈内、皮下、または筋肉内投与 する。投与回数は投与量、投与経路や患者の症状により 適宜増減されるものであるが、月一回から一日三回の投 与が可能であり、一般的には週1から5回、数週間の投 薬治療が行われる。この治療により、血糖値はゆっくり と減少し、従来の血圧降下剤にない適度な血糖値の低下 と安定が得られる。FGF-10による血糖降下作用 は、従来の知見から説明できるものではないが、少なく とも、インシュリンあるいはIGFの作用とは全く異な る、新しい薬理機序を介したものであると考えられる。 【0018】(毒性)正常マウス (C57BL/6N、 雄性、5週齢:日本チャールスリバー社)に一週間、お よび肥満型糖尿病マウス(C57BL/6J-Lep< ○b>、雌性、6週齡:日本チャールスリバー社、Ja ckson laboratory)に二週間、最大5 mg/kgのFGF-10を腹腔内、あるいは皮下投与 したが、体重減少や死亡例はなかった。一般的に毒性は 低いと考えられる。

[0019]

【発明の効果】本発明の血糖降下剤は、インスリンのように急激な低血糖を起こすこと無く、緩徐に高血糖状態を改善する。

[0020]

【実施例】以下、本発明を実施例にて説明する。

(FGF-10の発現および精製) ヒトFGF-10の構造遺伝子に相当するDNA断片(配列番号:2)と、大腸菌発現ベクターであるpET11c(ストラタジーン社)をNdeIおよびBamHIで消化し、アガロースゲル電気泳動にて分取することにより直鎖化したベクターDNAをライゲーションし、大腸菌JM109を形質転換することによりクローン化した。これらの中からFGF-10cDNAが正しい方向に挿入されたプラスミドを単離し、塩基配列の確認を行い、pET-hFGF-10を得た。これを用いて大腸菌BL21(DE

3)を形質転換した。得られた組換えクローンのうちの 1つをBL21(DE3)/pET-hFGF-10と 名づけ、これを用いてヒトFGF-10の発現生産を行った。

【0021】(培養) BL21 (DE3) / pET-h FGF-10をアンピシリン100μg/mlを含むL B培地10mlに植菌したものを4本用意し、37℃で一晩前培養を行った。翌日それぞれ全量を100μg/mlを含むTB培地500ml×4本に植え込み37℃で振とう培養した。OD600=0.8に達した時点で IPTGを最終濃度が1mMになるように添加し、培養温度を28℃に下げてさらに6時間培養を継続した。

【0022】(抽出精製)培養液を遠心分離し、得られ た菌体をう0mMTris-HCI, pH8. 0にて1 回洗浄し、1mM EDTA、2μg/mlロイベプチ ン、2μg/mlペプスタチン、1 mM PMSFを含 む50mMTris-HC1, pH8.0に懸濁した。 超音波破砕により菌体を破砕し、ベックマンJ2-21 M/E高速冷却遠心機にてJA-20ローターを用い て、15000回転で1時間遠心分離することにより上 清を採取した。HiTrap Heparin (5m 1, ファルマシア) を50mMTris-HC!. pH --8.0で平衡化し、先に調製した菌体破砕上清をアプラ イした。続いて50mMTris-HCl,pHS.0 で溶出液のA260がベースラインに戻るまで洗浄した 後、連続的にNaCI濃度勾配を3Mまで増加させるこ とにより、蛋白を溶出した。組換えヒトFGF-10に 相当する約19kDaの蛋白は約1.2M NaClの 位置に溶出された。なお、流速は2m1/分で行った。 【0023】(製剤例)本発明のFGF-10製剤のう ち、代表的なものである皮下投与用水溶/凍結乾燥製剤 は、以下のように製造することができる。

(1)精製組換えFGF-10:1mgに対し、グリシン0.34mg、マンニトール9mg、非イオン性界面活性剤:ポリソルベート80、0.2mgを加え、燐酸緩衝液1ml(pH7.4、5mM)に溶解させ、上記溶液を凍結乾燥する。(2)150mM塩化ナトリウム、0.01%Tween80を含有する10mMリン酸緩衝液(pH7.0)でFGF-10を5mg/mlになるように調製し、FGF-10水溶液を得る。

(3)150mM塩化ナトリウム、0.01%Twee n80を含有する10mMリン酸緩衝液(pH7.0)でFGF-10を5mg/mlになるように調製した。続いて、マンニトールを10mg/mlになるように活製した。加し、FGF-10水溶液を得る。無菌的にバイアル充填し、常法に従って凍結乾燥して、FGF-10凍結乾燥製剤を得る。バイアル内に窒素を封入し、打栓する。【0024】(薬理試験)一群10匹の肥満型糖尿病obese(ob/ob)マウス[C57BL/6JーLep<ob>、雌性、6週齡:日本チャールスリバー

社、Jackson laboratory]を自由摂食させ、1および5mg/kgのFGF-10を一日一回二週間投与した(皮下投与)。対照群(N=5)には生理食塩水を投与した。また、一群5匹の正常マウス[C57BL/6N、雄性、4週齢:日本チャールスリバー社]を自由摂食させ、1および5mg/kgのFGF-10を一日一回一週間投与した(腹腔内投与)。全表1:ob/obマウスの血糖値

ての群において最後の投与の5時間後に腹部大動脈より 採血し、血清を得た。血中グルコース濃度は、超微量多 目的生化学自動分析装置CHEM1 [ヘキソキナーゼ 法、バイエル]を用いて測定した。

【0025】FGF-10を用いて得られた結果を表1 および表2に示す。スチューデントも検定により、FG F-10投与群と対照群の血糖値の有意差を検定した。

血糖値(平均値±SD) (mg/dl)

対照群

FGF-10(1mg/kg)投与群 FGF-10(5mg/kg)投与群 453±17 307±42**

355±27**

**:p<0.01

[0026]

表2:正常マウスの血糖値

血糖値(平均値±SD) (mg/dl)

対照群

FGF-10 (1mg/kg) 投与群

 215 ± 17 224 ± 15

209±32

FGF-10(5mg/kg)投与群 【0027】表1に示すようにFGF-10を投与され

配列の長さ:208 配列の型:アミノ酸 トポロジー:直鎖状

た糖尿病モデル群では、血中グルコース濃度が、対照群 に比べて有意に減少したが、正常マウスの場合、血糖値 は下がらなかった(表2)。低血糖を起こしやすいイン

配列の種類:ペプチド

は下がらなかった(表2)。低血糖を起こしやすいインスリンとは異なり、FGF-10では血糖値を正常域に調節する作用が期待される。

起源

生物名:ヒト

【0028】配列番号:1

配列

日にグリ

Met Trp Lys Trp IIe Leu Thr His Cys Ala Ser Ala Phe Pro His Leu

1 5 10 15

Pro Gly Cys Cys Cys Cys Phe Leu Leu Leu Phe Leu Val Ser Ser 20 25 30

Val Pro Val Thr Cys Gin Ala Leu Gly Gin Asp Met Val Ser Pro Glu 35 40 45

Ala Thr Asn Ser Ser Ser Ser Ser Phe Ser Ser Pro Ser Ser Ala Gly
50 55 60

Arg His Val Arg Ser Tyr Asn His Leu Gln Gly Asp Val Arg Trp Arg 65 70 75 80

Lys Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys IIe Glu Lys Asn Gly 85 90 95

Lys Val Ser Gly Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu 100 105 110

Ile Thr Ser Val Glu Ile Gly Val Val Ala Val Lys Ala Ile Asn Ser 115 120 125

Asn Tyr Tyr Leu Ala Met Asn Lys Lys Gly Lys Leu Tyr Gly Ser Lys 130 135 140

Glu Phe Asn Asn Asp Cys Lys Leu Lys Glu Arg Ile Glu Glu Asn Gly

155

150

Tyr Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg Gln Met
165 170 175

Tyr Val Ala Leu Asn Gly Lys Gly Ala Pro Arg Gly Gln Lys Thr

185 180 Arg Arg Lys Asn Thr Ser Ala His Phe Leu Pro Met Val Val His Ser 205 200 トポロジー:直鎖状

【0029】配列番号:2 配列の長さ:690bp

配列の型:核酸

起源 生物名:ヒト

配列の種類:cDNA

鎖の数: 二本鎖

配列

CTTCCAGTAT GTTCCTTCTG ATGAGACAAT TTCCAGTGCC GAGAGTTCCA GTACA ATG TGG AAA TGG ATA CTG ACA CAT TGT GCC TCA GCC TTT CCC CAC CTG CCC GGC TGC TGC TGC TGC TTT TTG TTG CTG TTC TTG GTG TCT TCC GTC 154 CCT GTC ACC TGC CAA GCC CTT GGT CAG GAC ATG GTG TCA CCA GAG GCC 202 250 CAT GTG CGG AGC TAC AAT CAC CTT CAA GGA GAT GTC CGC TGG AGA AAG CTA TTC TCT TTC ACC AAG TAC TTT CTC AAG ATT GAG AAG AAC GGG AAG 346 GTC AGC GGG ACC AAG AAG GAG AAC TGC CCG TAC AGC ATC CTG GAG ATA 394 ACA TCA GTA GAA ATC GGA GTT GTT GCC GTC AAA GCC ATT AAC AGC AAC 442 TAT TAC TTA GCC ATG AAC AAG AAG GGG AAA CTC TAT GGC TCA AAA GAA 490 TTT AAC AAT GAC TGT AAG CTG AAG GAG AGG ATA GAG GAA AAT GGA TAC 538 -AAT ACC TAT GCA TCA TTT AAC TGG CAG CAT AAT GGG AGG CAA ATG TAT 586 GTG GCA TTG AAT GGA AAA GGA GCT CCA AGG AGA GGA CAG AAA ACA CGA AGG AAA AAC ACC TCT GCT CAC TTT CTT CCA ATG GTG GTA CAC TCA TAGAG 684 690 GAAGGC

【手続補正書】

【提出日】平成10年8月18日

【手続補正1】

【補正対象書類名】明細書 【補正対象項目名】0028

【補正方法】変更

【補正内容】

[0028] 【配列表】

配列番号:1

配列の長さ:208

配列の型:アミノ酸 トポロジー:直鎖状

配列の種類:ペプチド

起源

生物名:ヒト

配列

Met Trp Lys Trp Ile Leu Thr His Cys Ala Ser Ala Phe Pro His Leu 10 5

Pro Gly Cys Cys Cys Cys Phe Leu Leu Phe Leu Val Ser Ser

25 20

Val Pro Val Thr Cys Gln Ala Leu Gly Gln Asp Met Val Ser Pro Glu 45 40

35 Ala Thr Asn Ser Ser Ser Ser Ser Phe Ser Ser Pro Ser Ser Ala Gly 60

55 50 Arg His Val Arg Ser Tyr Asn His Leu Gln Gly Asp Val Arg Trp Arg 75 70

【手続補正1】

【補正方法】変更

【補正対象書類名】明細書

【補正対象項目名】0028

【補正内容】

```
Lys Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys Ile Glu Lys Asn Gly
                               85
                                                 90
                 Lys Val Ser Gly Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu
                           100
                                              105
                 lie Thr Ser Val Glu lie Gly Val Val Ala Val Lys Ala lie Asn Ser
                                          120
                                                             125
                 Asn Tyr Tyr Leu Ala Met Asn Lys Lys Gly Lys Leu Tyr Gly Ser Lys
                                      135
                                                       140 Glu Phe Asn Asn Asp Cys
                 Lys Leu Lys Glu Arg Ile Glu Glu Asn Gly
                                  150
                 Tyr Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg Gln Met
                               165
                                                 170
                 Tyr Val Ala Leu Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr
                          180
                                             185
                 Arg Arg Lys Asn Thr Ser Ala His Phe Leu Pro Met Val Val His Ser
                        195
                                          200
                                                            205
【手続補正2】
                                                   配列の型:核酸
【補正対象書類名】明細書
                                                   鎖の数:二本鎖
【補正対象項目名】0029
                                                   トポロジー:直鎖状
【補正方法】変更
                                                   配列の種類: cDNA
【補正内容】
                                                   起源
【0029】配列番号:2
                                                   生物名:ヒト
配列の長さ:690bp
                CTTCCAGTAT GTTCCTTCTG ATGAGACAAT TTCCAGTGCC GAGAGTTCCA GTACA ATG
                                                                                58
                TGG AAA TGG ATA CTG ACA CAT TGT GCC TCA GCC TTT CCC CAC CTG CCC
                                                                               106
                GGC TGC TGC TGC TGC TTT TTG TTG CTG TTC TTG GTG TCT TCC GTC
                                                                               154
                CCT GTC ACC TGC CAA GCC CTT GGT CAG GAC ATG GTG TCA CCA GAG GCC
                                                                               202
                ACC AAC TCT TCT TCC TCC TCC TTC TCC TCT CCT TCC AGC GCG GGA AGG
                                                                               250
【手続補正2】
                                                   【補正方法】変更
【補正対象書類名】明細書
                                                   【補正内容】
【補正対象項目名】0029
                CAT GTG CGG AGC TAC AAT CAC CTT CAA GGA GAT GTC CGC TGG AGA AAG
                                                                               298
                CTA TTC TCT TTC ACC AAG TAC TTT CTC AAG ATT GAG AAG AAC GGG AAG
                                                                               346
                GTC AGC GGG ACC AAG AAG GAG AAC TGC CCG TAC AGC ATC CTG GAG ATA
                                                                               394
                ACA TCA GTA GAA ATC GGA GTT GTT GCC GTC AAA GCC ATT AAC AGC AAC
                                                                               442
                TAT TAC TTA GCC ATG AAC AAG AAG GGG AAA CTC TAT GGC TCA AAA GAA
                                                                               490
【手続補正2】
                                                   【補正方法】変更
【補正対象書類名】明細書
                                                   【補正内容】
【補正対象項目名】0029
                TTT AAC AAT GAC TGT AAG CTG AAG GAG AGG ATA GAG GAA AAT GGA TAC
                                                                               538
                AAT ACC TAT GCA TCA TTT AAC TGG CAG CAT AAT GGG AGG CAA ATG TAT
                                                                               586
                GTG GCA TTG AAT GGA AAA GGA GCT CCA AGG AGA GGA CAG AAA ACA CGA
                                                                               634
                AGG AAA AAC ACC TCT GCT CAC TTT CTT CCA ATG GTG GTA CAC TCA TAGAG
                                                                               684
                GAAGGC
                                                                            690
```

(8)

特開平10-330285

フロントページの続き

(51)Int.Cl.6 識別記号

ĖΙ

C 1 2 R 1:19)