miRNA-mRNA interactions

Izboo 2022/9/16

I Dataset

• PAR-CLIP and CLASH experiment datasets

1.1 Train

• site-level

o **positive**: 33,142

o negative: 32,284

	А	В	С	D	Е	F
1	MIRNA_ID	ENSEMBL_GENE	GENE_SYMBOL	MIRNA_SEQ	MRNA_SEQ	LABEL
2	hsa-let-7a-5p	ENSG00000114573	ATP6V1A	UGAGGUAGUAGGU	GCCTGCTATTGAG	1
3	hsa-let-7a-5p	ENSG00000104497	SNX16	UGAGGUAGUAGGU	ATTTGTTTAGTTTC	1
4	hsa-let-7a-5p	ENSG00000141682	PMAIP1	UGAGGUAGUAGGU	GCACATTGTATATO	1
5	hsa-let-7a-5p	ENSG00000174010	KLHL15	UGAGGUAGUAGGU	GAAGTTAGACACCT	1
6	hsa-let-7b-5p	ENSG00000130402	ACTN4	UGAGGUAGUAGGU	GGCCCTCATCTTCC	1
7	hsa-let-7c-5p	ENSG00000130402	ACTN4	UGAGGUAGUAGGU	GGAGGCCCTCATC	1
8	hsa-let-7a-5p	ENSG00000130402	ACTN4	UGAGGUAGUAGGU	GGAGGCCCTCATC	1
9	hsa-let-7d	ENSG00000130402	ACTN4	UGAGGUAGUAGGU	GGCCCTCATCTTCC	1
10	hsa-let-7b-5p	ENSG00000105202	FBL	UGAGGUAGUAGGU	ACCCCTTCCGCTCC	1
11	hsa-let-7c-5p	ENSG00000105202	FBL	UGAGGUAGUAGGU	ACCCCTTCCGCTCC	1
12	hsa-let-7a-5p	ENSG00000105202	FBL	UGAGGUAGUAGGU	ACCCCTTCCGCTCC	1
13	hsa-let-7d	ENSG00000105202	FBL	UGAGGUAGUAGGU	ACCCCTTCCGCTCC	1
14	hsa-let-7c-5p	ENSG00000170779	CDCA4	UGAGGUAGUAGGU	CGGTGAGCCGCAG	1
15	hsa-let-7a-5p	ENSG00000170779	CDCA4	UGAGGUAGUAGGU	CGGTGAGCCGCAG	1
16	hsa-let-7b-5p	ENSG00000164011	ZNF691	UGAGGUAGUAGGU	TATGTGCCCAGTG	1

1.2 Test

• 10 test sets

• gene-level

o **positive**: 151,956

o **negative**: 548 (randomly sampled 548 positive pairs for ten times to balance the num ber of positive and negative pairs)

541	hsa-miR-99a-5p	NM_030791	0
542	hsa-miR-99a-5p	NM_031459	0
543	hsa-miR-99a-5p	NM_078467	0
544	hsa-miR-99a-5p	NM_153331	0
545	hsa-miR-99a-5p	NM_173595	0
546	hsa-miR-99a-5p	NM_181755	0
547	hsa-miR-99a-5p	NM_183078	0
548	hsa-miR-99a-5p	NM_183356	0
549	hsa-let-7a-5p	NM_032015	1
550	hsa-let-7b-3p	NM_001290257	1
551	hsa-let-7b-5p	NM_001009984	1
552	hsa-let-7b-5p	NM_001083589	1
553	hsa-let-7b-5p	NM_001145314	1
554	hsa-let-7b-5p	NM_001320923	1
555	hsa-let-7b-5p	NM_007055	1
556	hsa-let-7c-5p	NM_001130524	1

II Model

TargetFM

III Train & Inference

3.1 Train

Hyperparameter

- seed_match = 'offset-9-mer-m7'
- level = 'gene'

- batch_size = 32
- epochs = 10

3.2 Inference

Hyperparameter

- seed_match = 'offset-9-mer-m7'
- level = 'gene'

Result

DeepTarget

	accuracy
set 1	0.7729
set 2	0.7934
set 3	0.7948
set 4	0.7690
set 5	0.7707
set 6	0.7758
set 7	0.7787
set 8	0.7822
set 9	0.7753
set 10	0.7907
average	0.7804

Our model

Reference

FIGURE 1. Definition of terminologies in interactions between miRNAs and mRNAs (best viewed in color). The gray, blue, and red box represent a seed region, a relaxed site pattern (e.g., Offset 9-mer-m7), and a CTS of size k = 20, respectively.

1.1.1 Define the CTSs

- 10-mer-m6: six WC pairings from the miRNA nucleotides 1–10
- 10-mer-m7: seven WC pairings from the miRNA nucleotides 1–10
- Offset 9-mer-m7: seven WC pairings from the miRNA nucleotides 2–10

1.2

FIGURE 2. Overview of the proposed methodology.

Algorithm 1 MicroRNA Target Prediction Input: N miRNA-mRNA pairs, $\mathbf{s}_{1}^{\text{mi}}, \cdots, \mathbf{s}_{N}^{\text{mi}}$ and $\mathbf{s}_{1}^{\text{m}}, \cdots, \mathbf{s}_{N}^{\text{m}}$ Output: \mathbf{y} (target/non-target) 1: search CTSs of given miRNA-mRNA pairs (see Algorithm 2) 2: encode miRNA and mRNA sequences in CTSs 3: feedforward a shared [CNNs] layer 4: concatenate two representations, \mathbf{h}^{mi} and \mathbf{h}^{m} , into \mathbf{h} 5: feedforward the additional stacked CNNs and FC layers 6: **repeat**7: minimize the logarithmic loss $\mathcal{L}_{\mathbf{w}}(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{i=1}^{N} (w^{1}y_{i} \log(p_{i}) + w^{0}(1 - y_{i}) \log(1 - p_{i}))$ 8: **until** # of epoch is n_{epoch}

- shared CNNs layer for both miRNAs and mRNAs learns representations of both sequences
- additional stacked CNNs and fully-connected (FC) layers model sequence-to-sequence interactions between miRNA-mRNA pairs (lines 4–8)