Efficient Likelihood Approximation via Gaussian Processes

With an Application to a P. Vivax Malaria Model

Jacob Cumming

University of Melbourne, Walter and Eliza Hall Institute

June 2024

Malaria

- ▶ 600,000 deaths/year, 75% children under 5
- Two main species *P. vivax* and *P. falciparum*
- P. falciparum main cause of death, but P. vivax traditionally underestimated.
- As P. falciparum decrease, P. vivax cases increase

P. vivax has Dormant Stage

Figure: P. vivax lifecycle. Created with BioRender.com

Vivax Model - Champagne et. al

Figure: Champagne et al. 2022 P. vivax model

Champagne Model Parameters

- ightharpoonup lpha : proportion of those infected who clear blood stage infections through treatment
- β : proportion of those cleared of blood stage infection who are also cleared of liver stage parasites (radical cure)
- \triangleright λ : rate of infection
- $ightharpoonup \gamma_{\it L}$: rate of liver stage disease clearance
- f: rate of relapse
- r: rate of blood stage clearance
- $ightharpoonup \delta = 0$ importation rate (fixed)

Ordinary Differential Equations - Champagne et. al

$$\begin{split} \frac{\mathrm{d}I_{\mathrm{L}}}{\mathrm{d}t} = & (1-\alpha)(\lambda I_{\mathrm{total}} + \delta)(S_0 + S_{\mathrm{L}}) + (\lambda I_{\mathrm{total}} + \delta)I_0 \\ & + (1-\alpha)fS_{\mathrm{L}} - \gamma_{\mathrm{L}}I_{\mathrm{L}} - rI_{\mathrm{L}} \\ \frac{\mathrm{d}I_0}{\mathrm{d}t} = & -(\lambda I_{\mathrm{total}} + \delta)I_0 + \gamma_{\mathrm{L}}I_{\mathrm{L}} - rI_0 \\ \frac{\mathrm{d}S_{\mathrm{L}}}{\mathrm{d}t} = & -(1-\alpha(1-\beta))(\lambda I_{\mathrm{total}} + \delta + f)S_{\mathrm{L}} \\ & + \alpha(1-\beta)(\lambda I_{\mathrm{total}} + \delta)S_0 - \gamma_{\mathrm{L}}S_{\mathrm{L}} + rI_{\mathrm{L}} \\ \frac{\mathrm{d}S_0}{\mathrm{d}t} = & -(1-\alpha\beta)(\lambda I_{\mathrm{total}} + \delta)S_0 + (\lambda I_{\mathrm{total}} + \delta)\alpha\beta S_{\mathrm{L}} \\ & + \alpha\beta fS_{\mathrm{L}} + \gamma_{\mathrm{L}}S_{\mathrm{L}} + rI_0 \end{split}$$

Example Simulation

The Problem

► How to parametrise such a model.

The Problem

- ▶ How to parametrise such a model.
- Simulations take long time (and models get a lot more complicated)

Notation

- ▶ θ vector of parameters e.g. $[\alpha, \beta, \gamma_L, \lambda, f, r]^T$
- ► Y_{obs}: a (summary) vector of observed data e.g. (weekly) incidence, prevalence, (monthly) hospitalisations

Notation

- θ vector of parameters e.g. $[\alpha, \beta, \gamma_L, \lambda, f, r]^T$
- ► Y_{obs}: a (summary) vector of observed data e.g. (weekly) incidence, prevalence, (monthly) hospitalisations
- **Y**_{θ}: a random vector of model statistics for given θ .

▶ There would be an explicit form for the likelihood:

$$\mathcal{L}(\boldsymbol{ heta}|\mathbf{Y}_{\mathsf{obs}}) := \mathsf{Pr}(\mathbf{Y}_{\mathsf{obs}}|\boldsymbol{ heta})$$

▶ There would be an explicit form for the likelihood:

$$\mathcal{L}(\boldsymbol{ heta}|\mathbf{Y}_{\mathsf{obs}}) := \mathsf{Pr}(\mathbf{Y}_{\mathsf{obs}}|\boldsymbol{ heta})$$

 $ightharpoonup \hat{ heta} = \operatorname{arg\,max}_{m{ heta}} \mathcal{L}(m{ heta} | \mathbf{Y}_{\mathsf{obs}})$

► There would be an explicit form for the likelihood:

$$\mathcal{L}(\boldsymbol{ heta}|\mathbf{Y}_{\mathsf{obs}}) := \mathsf{Pr}(\mathbf{Y}_{\mathsf{obs}}|\boldsymbol{ heta})$$

- $m{\hat{ heta}} = \mathsf{arg}\,\mathsf{max}_{m{ heta}}\,\mathcal{L}(m{ heta}|\mathbf{Y}_\mathsf{obs})$
- $ightharpoonup \Pr(heta|\mathbf{Y}_{\mathsf{obs}}) \propto \Pr(\mathbf{Y}_{\mathsf{obs}}| heta) \Pr(heta)$

There would be an explicit form for the likelihood:

$$\mathcal{L}(\boldsymbol{ heta}|\mathbf{Y}_{\mathsf{obs}}) := \mathsf{Pr}(\mathbf{Y}_{\mathsf{obs}}|\boldsymbol{ heta})$$

- $m{\hat{ heta}} = \operatorname{arg\,max}_{m{ heta}} \mathcal{L}(m{ heta} | \mathbf{Y}_{\operatorname{obs}})$
- lacksquare $\Pr(heta|\mathbf{Y}_{ ext{obs}}) \propto \Pr(\mathbf{Y}_{ ext{obs}}| heta) \Pr(heta)$
- Off to the pub

Or not...

- Explicit likelihoods often don't exist/are intractible
 - Champagne model
 - Agent based models.

A Standard Bayesian Solution

- Approximate Bayesian Computation (ABC)
 - 1. Sample θ_i from prior
 - 2. Run model and observe \mathbf{Y}_{θ_i}
 - 3. Accept or reject θ_i run based on how well \mathbf{Y}_{θ_i} 'matches' \mathbf{Y}_{obs} .

What is 'matches'

1.
$$\mathbf{Y}_{\theta_i} = \mathbf{Y}_{\text{obs}}$$

What is 'matches'

Y_{θi} = Y_{obs}
 Food luck...

What is 'matches'

- Y_{θi} = Y_{obs}
 Good luck...
- 2. Rescale **Y**s, and use discrepency function $D: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ e.g. p-norm

$$D(\mathbf{Y}_{ heta_i}, \mathbf{Y}_{ ext{obs}}) := \left(\sum_{j=1}^d \left|\{\mathbf{Y}_{ heta_i}\}_j - \{\mathbf{Y}_{ ext{obs}}\}_j
ight|^p
ight)^{1/p}$$

Discrepency Function

 $\mathcal{D}(\theta) := D(\mathbf{Y}_{\theta}, \mathbf{Y}_{\text{obs}})$ how 'close' our model is to the observed data using parameters θ

ABC

- 1. Sample θ_i from prior
- 2. Run model
- 3. Accept θ_i if $\mathcal{D}(\theta_i) < \varepsilon$.

Overall Idea of my Research

- ► ABC fixes one problem but leaves another:
 - ▶ Don't need $\mathcal{L}(\theta)$.
 - lacktriangle Evaluating $\mathcal{D}(m{ heta})$ takes as long as a model run.

Overall Idea of my Research

- ABC fixes one problem but leaves another:
 - ▶ Don't need $\mathcal{L}(\theta)$.
 - ightharpoonup Evaluating $\mathcal{D}(\theta)$ takes as long as a model run.
- $\triangleright \mathcal{D}(\theta), \mathcal{D}(\theta')$ will be highly correlated when θ is near θ' .
 - Gaussian Processes

Gaussian Process Setup

A common assumption is that

$$egin{bmatrix} \mathbb{E}(\mathcal{D}(heta_1)) \ dots \ \mathbb{E}(\mathcal{D}(heta_n)) \end{bmatrix} \sim \mathsf{MVN}\left(\mathbf{0},\,\mathbf{K}
ight)$$

where $\mathbf{K}_{ij} = k(\theta_i, \theta_j)$ for some covariance kernel k that decays to 0 as θ_i is further away than θ_j .

Gaussian Processes on \mathbb{R}^d

Definition (Gaussian Process)

A collection of random variables $\{f(\mathbf{x})\}_{\mathbf{x}\in\mathbb{R}^d}$ is a Gaussian process if all finite dimensional distributions are multivariate normal distributed.

Equivalent GP definition

Definition (Gaussian Process)

A collection of random variables $\{f(\mathbf{x})\}_{\mathbf{x}\in\mathbb{R}^d}$ is a Gaussian process if there is a function $m: \mathbf{x} \to \mathbb{R}$ and covariance kernel $k: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ such that for all $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$,

$$\begin{bmatrix} f(\mathbf{x}_1) \\ f(\mathbf{x}_2) \\ \vdots \\ f(\mathbf{x}_n) \end{bmatrix} \sim \mathsf{MVN} \left(\begin{bmatrix} m(\mathbf{x}_1) \\ m(\mathbf{x}_2) \\ \vdots \\ m(\mathbf{x}_n) \end{bmatrix}, \mathbf{K} \right)$$

where $\mathbf{K}_{ij} := k(\mathbf{x}_i, \mathbf{x}_j)$.

k Determines Smoothness

Figure: Matérn 1/2, 3/2, 5/2, and squared exponential kernels.

Gaussian Process Continuity

▶ Induce continuity by forcing $k(\mathbf{x}, \mathbf{x}') \to \operatorname{Var}(f(\mathbf{x}))$ (hence $\operatorname{Cor}(f(\mathbf{x}), f(\mathbf{x}')) \to 1$) as $\mathbf{x} \to \mathbf{x}'$.

Common Covariance Kernels

- ▶ Matérn Kernel with hyperparameter ν : $\lfloor \nu \rfloor$ times mean square differentiable.
- $u \to \infty$ infinitely mean square differentiable squared exponential covariance kernel (strong assumption)

$$k(x, x') = \sigma_k^2 \exp\left(-\frac{||x - x'||^2}{2\ell^2}\right)$$

k Determines Class of Functions

Figure: Matérn 1/2, 3/2, 5/2, and squared exponential kernels.

Kernel Hyperparameters

- Matérn and squared exponential kernel can both be written in the form $k(\mathbf{x}, \mathbf{x}') = \sigma_k^2 \kappa(||\mathbf{x}, \mathbf{x}'||/\ell)$
- ▶ $1/\ell$ rate of covariance decay

Kernel Hyperparameters

Discrepency Function Context

▶ Long term play: use a Gaussian process as a surrogate model for $\mathbb{E}[\mathcal{D}(\theta)]$

Discrepency Function Context

- ▶ Long term play: use a Gaussian process as a surrogate model for $\mathbb{E}[\mathcal{D}(\boldsymbol{\theta})]$
- ▶ What if we have observations already?

Gaussian Process Regression

$$\begin{bmatrix} f(\mathbf{x}) \\ f(\mathbf{x}_*) \end{bmatrix} \sim \mathsf{MVN} \left(\begin{bmatrix} m(\mathbf{x}) \\ m(\mathbf{x}_*) \end{bmatrix}, \begin{bmatrix} K & K_* \\ K_*^T & K_{**} \end{bmatrix} \right)$$

implies

$$f(\mathbf{x})|f(\mathbf{x}_*) \sim \mathsf{MVN}\left(\textit{m}(\mathbf{x}) + \textit{K}_*\textit{K}_{**}^{-1}(f(\mathbf{x}_*) - \textit{m}(\mathbf{x}_*)), \ \textit{K} - \textit{K}_*\textit{K}_{**}^{-1}\textit{K}_*^T\right).$$

Conditioning Gaussian Processes

GP regression on x(x-1)(x+1)

Normal observation noise

If observations actually $f(\mathbf{x}_i) + \varepsilon_i$, with $\varepsilon_i \sim N(0, \sigma_o^2)$ i.i.d., then

$$\begin{bmatrix} f(\mathbf{x}_1) + \varepsilon_1 \\ \vdots \\ f(\mathbf{x}_n) + \varepsilon_n \end{bmatrix} \sim \mathsf{MVN} \left(\begin{bmatrix} m(\mathbf{x}_1) \\ \vdots \\ m(\mathbf{x}_n) \end{bmatrix}, \, \mathbf{K} + \sigma_o^2 \mathbf{I}_n \right)$$

GP regression on $x(x-1)(x+1) + \varepsilon$, $\varepsilon \sim N(0, \sigma_o^2)$

Key Assumptions

- $\triangleright \mathcal{D}(\theta) \stackrel{d}{\approx} \mathcal{D}(\theta')$ for θ , θ' close.
- ▶ $\mathcal{D}(\theta)$ approximately distributed $N(\cdot, \sigma_0^2)$ with σ_o^2 independent of θ .
- $ightharpoonup \mathbb{E}[\mathcal{D}(\theta)]$ can be well approximated by a Gaussian process.

Key Idea

Approximate $\mathcal{D}(\theta)$ with $\mathcal{D}_{\mathcal{GP}}(\theta)$, a Gaussian process with observation noise.

ABC

- 1. Sample θ_i from prior
- 2. Run model
- 3. Accept θ_i if $\mathcal{D}(\theta_i) < \varepsilon$.

Approximate ABC...??

- 1. Sample θ_i from prior
- 2. Run model
- 3. Accept θ_i if $\mathcal{D}_{\mathcal{GP}}(\theta_i) < \varepsilon$.

Synthetic Likelihood

The probability of drawing and accepting heta under the ABC is

$$\Pr(\mathcal{D}_{\mathcal{GP}}(\boldsymbol{\theta}) < \varepsilon) \Pr(\boldsymbol{\theta})$$

and hence we consider $L(\theta|\mathbf{Y}_{\text{obs}}) := \Pr(\mathcal{D}_{\mathcal{GP}}(\theta) < \varepsilon)$ a synthetic likelihood - an approximation of the true likelihood $\mathcal{L}(\theta|\mathbf{Y}_{\text{obs}})$

Log Gaussian Process

Alternatively we can model $\ln \mathcal{D}(\theta)$ as a Gaussian process $d_{\mathcal{GP}}(\theta)$.

Log Gaussian Process

- Alternatively we can model $\ln \mathcal{D}(\theta)$ as a Gaussian process $d_{\mathcal{GP}}(\theta)$.
- Key assumptions become:
 - ▶ $\ln \mathcal{D}(\theta) \stackrel{d}{\approx} \ln \mathcal{D}(\theta')$ for θ , θ' close.
 - $\triangleright \mathcal{D}(\theta)$ approximately distributed $LN(\cdot, \sigma_0^2)$ with σ_o^2 independent of θ .
 - $ightharpoonup \mathbb{E}[\ln \mathcal{D}(\theta)]$ can be well approximated by a Gaussian process.

Log Gaussian Process

- Alternatively we can model $\ln \mathcal{D}(\theta)$ as a Gaussian process $d_{\mathcal{GP}}(\theta)$.
- ► Key assumptions become:
 - ▶ $\ln \mathcal{D}(\theta) \stackrel{d}{\approx} \ln \mathcal{D}(\theta')$ for θ , θ' close.
 - \triangleright $\mathcal{D}(\theta)$ approximately distributed $LN(\cdot, \sigma_0^2)$ with σ_o^2 independent of θ .
 - $ightharpoonup \mathbb{E}[\ln \mathcal{D}(\theta)]$ can be well approximated by a Gaussian process.

$$\Pr(\mathcal{D}(\theta_i) < \varepsilon) \approx \Pr(d_{\mathcal{GP}}(\theta_i) < \ln \varepsilon)$$

- ▶ To generate a reliable $\mathcal{D}_{\mathcal{GP}}$, we need to sample widely
- ▶ Generating $\mathcal{D}(\theta)$ still costly...
- Therefore sample where:

- ▶ To generate a reliable $\mathcal{D}_{\mathcal{GP}}$, we need to sample widely
- ▶ Generating $\mathcal{D}(\theta)$ still costly...
- ▶ Therefore sample where:
 - $ightharpoonup \mathcal{D}(\theta)$ small.

- ▶ To generate a reliable $\mathcal{D}_{\mathcal{GP}}$, we need to sample widely
- Generating $\mathcal{D}(\theta)$ still costly...
- Therefore sample where:
 - $\triangleright \mathcal{D}(\boldsymbol{\theta})$ small.
 - $\triangleright \mathcal{D}(\theta)$ highly unknown.

- ▶ To generate a reliable $\mathcal{D}_{\mathcal{GP}}$, we need to sample widely
- ▶ Generating $\mathcal{D}(\theta)$ still costly...
- ► Therefore sample where:
 - $ightharpoonup \mathcal{D}(\theta)$ small.
 - $\triangleright \mathcal{D}(\theta)$ highly unknown.

Bayesian Acquisition Functions

▶ Quantify where we expect $\mathcal{D}(\theta)$ small and highly unknown with Bayesian acquisition function A, and choose arg min_{θ} $A(\theta)$

Bayesian Acquisition Functions

▶ Gutmann and Cor 2016 use lower confidence bound

$$A_{\mathsf{LCB}}(\boldsymbol{\theta}) := \mu(\boldsymbol{\theta}) - \eta_t \sqrt{\mathbf{v}(\boldsymbol{\theta})}$$

- $ightharpoonup \mu(m{ heta}),\, {
 m v}(m{ heta})$ are posterior mean and variance of $D_{\mathcal{GP}}(m{ heta})$
- $ightharpoonup \eta_t$ a slowly increasing function in t, the number of previous samples

Bayesian Acquisition Functions

► Expected information

$$A_{\mathsf{EI}}(oldsymbol{ heta}) := \mathbb{E}[\min(\mu_{\mathsf{min}} - \mathcal{D}_{\mathcal{GP}}(oldsymbol{ heta}), 0)]$$

Lower Confidence Bound

Vivax Model - Champagne et. al

Figure: Champagne et al. 2022 P. vivax model

Champagne Model Parameters

- ightharpoonup lpha : proportion of those infected but cleared of blood stage infections (through treatment)
- β : a further proportion that are also cleared of liver stage parasites, given that they were also cleared of blood stage infection (radical cure)
- $\triangleright \lambda$: the rate of infection
- $ightharpoonup \gamma_{\it L}$: rate of clearance of liver stage disease
- f: rate of relapse
- r: rate of blood stage clearance

'Observed' Data

- 'Observed' data from one simulation of 10 initial infections, in a population of 1000 people using the parameters reported in Champagne et al. 2022.
- $ightharpoonup \mathbf{Y}_{\mathrm{obs}} := \{w_{\mathrm{obs}}, p_{\mathrm{obs}}, m_{\mathrm{obs}}\}$
 - ▶ w_{obs} : weekly incidence around (stochastic) equilibrium
 - $ightharpoonup p_{\text{obs}}$: prevalence around (stochastic) equilibrium
 - $ightharpoonup m_{\rm obs}$: incidence in the first month of the epidemic

'Observed' Data

- 'Observed' data from one simulation of 10 initial infections, in a population of 1000 people using the parameters reported in Champagne et al. 2022.
- $ightharpoonup \mathbf{Y}_{\mathrm{obs}} := \{w_{\mathrm{obs}}, p_{\mathrm{obs}}, m_{\mathrm{obs}}\}$
 - ▶ w_{obs} : weekly incidence around (stochastic) equilibrium
 - $ightharpoonup p_{\text{obs}}$: prevalence around (stochastic) equilibrium
 - $ightharpoonup m_{\rm obs}$: incidence in the first month of the epidemic

'Observed' Data

- 'Observed' data from one simulation of 10 initial infections, in a population of 1000 people using the parameters reported in Champagne et al. 2022.
- $ightharpoonup \mathbf{Y}_{\mathrm{obs}} := \{w_{\mathrm{obs}}, p_{\mathrm{obs}}, m_{\mathrm{obs}}\}$
 - ► w_{obs} : weekly incidence around (stochastic) equilibrium
 - $ightharpoonup p_{\text{obs}}$: prevalence around (stochastic) equilibrium
 - $ightharpoonup m_{
 m obs}$: incidence in the first month of the epidemic
- \triangleright $\mathcal{D}(\alpha, \beta, \gamma_L, \lambda, f, r)$ is the L_2 norm of the relative differences

$$\sqrt{\left(\frac{p - p_{\text{obs}}}{p_{\text{obs}}}\right)^2 + \left(\frac{m - m_{\text{obs}}}{m_{\text{obs}}}\right)^2 + \left(\frac{w - w_{\text{obs}}}{w_{\text{obs}}}\right)^2}$$

GP choices

 \triangleright $\mathcal{D}(\alpha, \beta, \gamma_L, \lambda, f, r)$ is the L_2 norm of the relative differences

$$\sqrt{\left(\frac{p - p_{\text{obs}}}{p_{\text{obs}}}\right)^2 + \left(\frac{m - m_{\text{obs}}}{m_{\text{obs}}}\right)^2 + \left(\frac{w - w_{\text{obs}}}{w_{\text{obs}}}\right)^2}$$

- ▶ GP choices
 - ightharpoonup Modelled In \mathcal{D} as a Gaussian process
 - Matern kernel with $\nu = 5/2$
 - $\ell, \sigma_k^2, \sigma_o^2$ selected by leave one out cross validation.

Discussion

- Observation variance is considered constant across the GP (or log GP)
 - Particularly a problem at the threshold
- Assumes that normal/log-normal distribution approximates $\mathcal{D}(oldsymbol{ heta})$
- Jumps where there is threshold/bifurcation behaviour
 - ► Student *t*—Process?

Thanks to

- ► Eamon Conway
- ▶ Jennifer Flegg

Bibliography

Champagne, Clara et al. (Jan. 2022). "Using observed incidence to calibrate the transmission level of a mathematical model for Plasmodium vivax dynamics including case management and importation". In: Mathematical Biosciences 343, p. 108750. ISSN: 00255564. DOI: 10.1016/j.mbs.2021.108750. URL: https://linkinghub.elsevier.com/retrieve/pii/S0025556421001541 (visited on 08/22/2023).

Gutmann, Michael U. and Jukka Cor (2016). "Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models". In: Journal of Machine Learning Research 17.125, pp. 1–47. ISSN: 1533-7928. URL: http://jmlr.org/papers/v17/15-017.html (visited on 04/28/2024).

