Predicting wine quality using Random forest model

```
1 import numpy as np
2 import pandas as pd
3 import seaborn as sns
4 import matplotlib.pyplot as plt
5 from sklearn.model_selection import train_test_split
6 from sklearn.ensemble import RandomForestClassifier
7 from sklearn.metrics import accuracy_score
```

1 data = pd.read_csv('/content/winequality-red.csv')

1 data.head(3)

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	E
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5	
4													•

```
1 data.info()
2 # (shape = (1599,12))
3 # no null value
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)
memory usage: 150.0 KB

1 data.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.00
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.31
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.15
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.74
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.21
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.31
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.40
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010

Number of values for each quality of wine

```
1 data['quality'].value_counts()

5    681
6    638
7    199
4    53
8    18
3    10
Name: quality, dtype: int64
```

→ Data Visualisation

Plotting multiple graphs to check the correlation struture

```
1 plot = plt.figure(figsize=(5,5))
2 sns.barplot(x='quality', y='volatile acidity', data=data)
```

<Axes: xlabel='quality', ylabel='volatile acidity'>

```
1.0 -
```

```
1 plot = plt.figure(figsize=(5,5))
2 sns.barplot(x='quality', y='citric acid', data=data)
```

<Axes: xlabel='quality', ylabel='citric acid'>


```
1 corr_matrix = data.corr()
2 plt.figure(figsize=(8, 4))
3 sns.heatmap(corr_matrix[['quality']], annot=True, cmap='coolwarm', vmin=-1, vmax=1)
4 plt.title('Correlation Heatmap with Quality')
5 plt.show()
6
7 # data.corr(): This calculates the correlation matrix for all numeric columns in your DataFrame.
8 # corr_matrix[['quality']]: This selects the correlation values between all columns and the 'quality' column.
9 # sns.heatmap(): This creates a heatmap using Seaborn to visualize the correlation matrix.
10 # annot=True: This adds the numerical values in each cell of the heatmap.
11 # cmap='coolwarm': This sets the color map for the heatmap.
12 # vmin and vmax: These set the minimum and maximum values for the color scale. Setting them to -1 and 1 ensures that
```



```
1 plt.figure(figsize=(8, 4))
2 filtered_corr = corr_matrix[(corr_matrix['quality'] > 0.4) | (corr_matrix['quality'] < -0.4)]
3 sns.heatmap(filtered_corr, annot=True, cmap='Blues', annot_kws={'size':8}, fmt='.1f', square=True, cbar=True)
4 plt.title('Correlation Heatmap with Quality')
5 plt.show()</pre>
```



```
1 # Filter correlations greater than 0.40 or lesser than -0.40
2 filtered_corr = corr_matrix[(corr_matrix['quality'] > 0.25) | (corr_matrix['quality'] < -0.25)]
3
4 print("Filtered Correlation Matrix:")
5 print(filtered_corr[['quality']])</pre>
```

Data Preprocesing

Label Binarisation

```
1 y = data['quality'].apply(lambda y_val: 1 if y_val >= 6 else 0)
2 # data['quality']: This extracts the 'quality' column from DataFrame data.
3 # .apply(lambda y_val: 1 if y_val >= 6 else 0): This applies a lambda function to each element in the 'quality' col
1 x = data.drop("quality", axis=1)
```

1 y.head()
2 x.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	Sι
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	•

Splitting train and test data

```
1 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42, stratify=y)
1 print(len(x_train)/(len(x_train)+len(x_test)))
0.7998749218261413
```

Model training

```
1 model = RandomForestClassifier()

1 model.fit(x_train, y_train)

v RandomForestClassifier
RandomForestClassifier()
```

Model Evaluation

```
1 # accuracy on test_data
2 x_test_pred = model.predict(x_test)
3 test_data_acc = accuracy_score(x_test_pred, y_test)
4 print('Accuracy on test data is:', test_data_acc)
```

Accuracy on test data is: 0.8125

▼ Building a predictioin system