A Proof of Theorem 1

Theorem 1 (Mean aggregation encourages exploration). Suppose π and $\{\pi_i\}_{1 \leq i \leq K}$ are sampled from $P(\pi)$, then the entropy of the ensemble policy $\hat{\pi}$ is no less than the entropy of the single policy in expectation, i.e., $\mathbb{E}_{\pi_1,\pi_2,...,\pi_K}[\mathcal{H}(\hat{\pi})] \geq \mathbb{E}_{\pi}[\mathcal{H}(\pi)]$.

Proof.

$$\begin{split} H(\hat{\pi}) - \frac{1}{K} \sum_{k=1}^{K} \mathcal{H}(\pi_k) &= -\sum_{a} \frac{\sum_{k=1}^{K} \pi_k(a|s)}{K} \log \left(\frac{\sum_{k'=1}^{K} \pi_{k'}(a|s)}{K} \right) \\ &+ \frac{1}{K} \sum_{k=1}^{K} \sum_{a} \pi_k(a|s) \log(\pi_k(a|s)) \\ &= -\frac{1}{K} \sum_{k=1}^{K} \sum_{a} \pi_k(a|s) \left(\log \left(\frac{\sum_{k'=1}^{K} \pi_{k'}(a|s)}{K} \right) - \log(\pi_k(a|s)) \right) \\ &= -\frac{1}{K} \sum_{k=1}^{K} \sum_{a} \pi_k(a|s) \log \left(\frac{\sum_{k'=1}^{K} \pi_{k'}(a|s)}{K\pi_k(a|s)} \right) \\ &\geq -\frac{1}{K} \sum_{k=1}^{K} \log \left(\sum_{a} \pi_k(a|s) \frac{\sum_{k'=1}^{K} \pi_{k'}(a|s)}{K\pi_k(a|s)} \right) & \text{(Jensen's inequality)} \\ &= -\frac{1}{K} \sum_{k=1}^{K} \log \left(\frac{1}{K} \sum_{a} \sum_{k'=1}^{K} \pi_{k'}(a|s) \right) \\ &= -\frac{1}{K} \sum_{k=1}^{K} \log(1) = 0 \; . \end{split}$$

$$\Rightarrow H(\hat{\pi}) \geq \frac{1}{K} \sum_{k=1}^{K} \mathcal{H}(\pi_k)$$

Then

$$\mathbb{E}_{\pi_1,\pi_2,...,\pi_K}[\mathcal{H}(\hat{\pi})] \geq \mathbb{E}_{\pi_1,\pi_2,...,\pi_K} \left[\frac{1}{K} \sum_{k=1}^K \mathcal{H}(\pi_k) \right]$$

$$\geq \frac{1}{K} \sum_{k=1}^K \mathbb{E}_{\pi_1,\pi_2,...,\pi_K}[\mathcal{H}(\pi_k)]$$

$$\geq \frac{1}{K} \sum_{k=1}^K \mathbb{E}_{\pi}[\mathcal{H}(\pi)]$$

$$\geq \mathbb{E}_{\pi}[\mathcal{H}(\pi)].$$