

MATHEMATICS SCHEME OF WORK FOR PRIMARY FIVE FOR TERM ONE

W K	P D	ТНЕМЕ	TOPIC	SUBTOPIC	CONTENT	SUBJECT COMPETENCE	LANGUAGE COMPETENC E	METHODS	LIFE SKILLS	T/ AIDS	ACTIVITY	REF
1	1	SET CONCEPTS	SETS	Intersection of sets	Intersection of sets. Given the venn diagram below. Find the intersection set $ \begin{array}{c c} P & Q \\ \hline 1 & 4 & 6 \\ 2 & 5 & 7 \\ \hline \end{array} $ Find: i) POQ ii) \cap (POQ) $ \begin{array}{c c} \underline{Solution} \\ i) & P\cap Q = (4.5) \\ ii) & \cap (P\cap Q) = \underline{2 \ elements} \\ \end{array} $	- The learner identifies an intersection set Finds the number of elements in the intersection set Identifies a symbol for intersection sets	-The learner identifies an intersectio n set Spells the word intersection	Brain storming Guided discovery	Effective communicati	A chart showing sets on a venn diagram	Finding members in the given sets Finding the intersecti on sets	MK pupil's bk5 pg 4-7
	2			Union of sets	Union of sets. Given the venn diagram below. $ \begin{array}{c c} P & Q \\\hline 1 & 4 & 6 \\\hline 2 & 5 & 7 \\\hline i) & \text{Find P } UQ \\\hline ii) & \text{PUQ} = (1,2,3,4,5,6,7) \\\hline iii) & \cap (\text{PUQ}) = (1,2,3,4,5,6,7) \\\hline & = & \underline{7} \text{ elements} \end{array} $	- The learner identifies the members in the union set Finds the number of elements in the union set Identifies the symbol for union sets.	-The learner identifies a union set	Illustration			Finding members in the union sets. Finding the number of elements in the given sets.	Oxford primary maths bk5 pages 8- 14

3			Difference or complement of sets	R-S(R only) Or S ¹ Rifference/complement of sets R-S(R only) S-R (set S only) Or S ¹ R ¹	-	-					
4	set concept	sets	comparing of sets	Given the venn diagram below, study it and answer the questions that follow. A B C C C C C C C C C C C C C C C C C	- Compares the given sets - Counts elements	- Reading the given words. - Pronounce s the new words correctly	Guided discovery Brain storming	Effective communicati on Critical thinking	A chart Chalkboard illustration	drawing Adding	Mk bk 6 pg 23

Π.	1		C. 1 .1 1: 1.1	Y				
5			Study the venn diagram below	- Interprets				
_			showing how people like English	the venn				
			and Maths.	diagram				
				correctly				
			n(ε) =	,	Explanation			
			n(E) = n(M) =		2.ipianation	Confidence		
						dominacinee		
			$\begin{pmatrix} 7 & \begin{pmatrix} 4 & 12 \end{pmatrix} \end{pmatrix}$	-Solves				
			\mathbb{N}^{\wedge}	problems				
		ts		about venn				
		Subsets		diagrams				
		q	Pupils Pupils who					
		Sı	who like don't like					
			both any of the					
			subjects any of the					
			n(E) = 7 + 4 = 11					
			n(M) = 4+12 = 16					
			$n(\varepsilon) = (7+4) + (12+5)$					
			= 11 + 17					
			= <u>28</u>					

		1	Subsets	Cubanta	- defines a	- spells the	Guided	Critical	flash cards		1
	6		Subsets	Subsets: A subset is a smaller set formed	subset	- spells the	discovery	thinking	nasn carus	picking	
				from a bigger set.	Subset	subset.	uiscovery	unnking			
				Symbol for subjects "C"	- draws the	subset.					
				Forming subsets.	symbol for a						
				Example	subset						
				Set A = {a, b}	Subset						
				Form all possible subsets from set	- lists down					listing	
				A	possible					8	
				$A = \{a,b\} = \{ \} \{a\} \{b\} \{a,b\}$	subsets from						
					a given set	- pronounc					
				Note:		es the	Brain				
				i) An empty set is a subset of every		word	storming	Logical			
				set.		subset		thinking			
				ii) Every set is a subset of itself.		correctly.					
						_					
2	1			Finding the number of subsets	- finds the						
4	-			Example	number of		Flti			writing	
				Set P = (1,2,3) Find the number of subsets in set P	subsets by		Explanation				
				i) By listing	using the formular.						
				Set P = $(1,2,3) = (), (1), (2), (3),$	iorniular.						
				(1,2), (1,3), (2,3), (1,2,3)							
				Set P has 8 subsets							
	_		Finding	Sect has 6 subsets			problem				
	2		the	ii) <u>By formular</u>			solving				
			snumbers	Number of subsets = 2 ⁿ	- multiplies the					counting	
			of subsets	where "n" stands for the	numbers						
				number of elements.	correctly.			Confidence			
				set $P = (1,2,3) = 2^n$							
				= 23							
				= (2x2)x2							
				= 4x2							
				= 8 subsets							

3		Differenc e of sets	Example: Study the venn diagram below. $ \begin{array}{cccc} G & H \\ 1 & 5 & 7 \\ 2 & 6 & 8 \\ 3 & 0 & 9 \\ \end{array} $ Find i) G - H $ G - H = (1.2.3) $	- finds the complement and difference of sets finds the number of elements in the difference of sets	- defines difference of sets pronounc es the word complem ent correctly.	Question and answer Brain storming	Effective communicati on	Counting members	MK MTC bk4 pg 15
			ii) Find number of members in set H - G H - G = (7,8,9,10) n(H-G) = 4 elements	-	-	Guided discovery			

	4		Decribi	ng Description of Regions on a venn	- draws venn	- Interprets		A chart	Shading	Collectio
	4		regions		diagrams	set		showing		n MK
			on a ver	a) Describe the shaded region.	_	symbols		shaded	Drawing	bks
			diagran	ı	- Identifies the	correctly		regions	venn	
				XY	shaded	_		_	diagrams	
					regions					
					- identifies the					
					un shaded					
				i) Shaded X n Y	regions					
				ii) Un shaded (X n Y) ¹						
ĺ				1		ĺ				
				AB						
				\ <i>\(\(\)</i> \(\)\(\)						
				i) Shaded						
				Set A						
				ii) Un shaded						
				Set B – A/A ¹						
				P Q						
				((X						
				(()						
ĺ						ĺ				
ĺ						ĺ				
				i) Shaded – Set Q only						[
				ii) Un shaded – Set P		ĺ				
ĺ						ĺ				
l		1								
							1			

5	Probability	Probability (Tossing) Probability is the measure if a chance. Example A dice has 6 faces $(1,2,3,4,5,6)$ Sample space = 6 Prob of getting a 2 on top $= \frac{2}{1,2,3,4,5,6} = \frac{1}{1,2,3,4,5,6}$	- defines the word probability.	-reads and pronounce s the word probability -reads the word problem			A dice	counting	MK pupils bk 6 pg 26-27
		A coin has 2 faces = HT Sample space Prob of getting a head on top = = H HT = ½	- identifies the sample space and the desired chance.	-					
5	ndom Eking	Random picking Example: In a box, there are 6 ripe mangoes and 7 un ripe mangoes. a) i) ripe mango = No. of events sample space = No. of ripe mangoes Total no. = 6 6+7 = 6 13 b) Un ripe mango -	- defines random picking - finds probability of events - adds numbers corrects	- reads the word problems - reads and pronounc es the word random picking	Guided discussion	Sharing			MK book 5 pg 24- 25

2	1				A number is the idea of quantity.	The learner;	- reads and	Guided	Critical	chalkboard	defining a	
3	1				A numeral is a symbol that		uses the	discovery	thinking	illustrations	numeral	
					represents a number.	- finds the sum	words				and a	
					Example:	of the largest	correctly	Brain	Effective		number	
					Given the digits 4,5,6, use them to	and the	Ĭ	storming	communicati			
				<u>د</u>	form all possible numerals.	smallest			on			
				digits	Numerals are 456, 465, 546, 564,	numerals		Problem	-			
				it	654, 645	formed.		solving				
			S	u u	a) Find the sum of the biggest and	101111041		50171118				
			NUMBERS	10	smallest numeral formed.	forms						
		CY	IB.	ji.	Sum = 456 + 654	numerals						
		≴	<u> </u>	als	= 1110	ilulilei als						
		E	Z	er:	-1110	-						
		NUMERACY	프	Ē								
		N	wноге	2	b) Write the even numerals							
			ΗΛ	<u></u>								
			>	<u> </u>	formed.							
				Forming numerals from	<u>456, 546, 564, 654</u>							
				Fo) F: 1:1 (:1 1: :							
					c) Find the range of the biggest							
					and the smallest numerals							
					formed.							

2		Place	PLACE VALUES	The learner;				Underst
4		values of	<u>Example</u>		- writes the			anding
		whole	HTh Tth Th H T O	- identifies the	place			Mathsbk
		numbers	4 3 0 1 5 7	place values	values			5 pg 15-
			ones	if all digits	correctly			19
			Tens		- reads the			
			Hundreds		place			
			Thousands		values of			
			Ten thousands		digits.			
			Hundred thousands					
			2 77 1-1					
			a) Find the sum of all the place values of 3 and 1 in the above numbers.b) find the product of place values of 5 and 7.					
			0. 0 and 7.					

		,							
3	Values of	VALUES OF WHOLE NUMBERS	Finds the	 Reads the 	Brain	Critical	Chart	Finding	New MK
J	whole	<u>Example</u>	value of each	place	storming	thinking		values of	bk 5 pg
	numbers.	Find the value of each digits in the	digit in the	values	_	_	chalkboard	digits	36
		number below.	given		Guided	Effective	illustrations		
		7 4 3 5 2 0	numeral.		discovery	communicati		Finding	
		Hth Tth Th H T 0			,	on		sum,	
					Question and			product,	
					answer			differenc	
		$\int \int 0 \times 1 = 0$						e and	
		$\frac{1}{2} \times 10 = 20$						quotient	
		$\int \frac{2 \times 10^{-20}}{5 \times 100} = 500$						of values	
		$\frac{1}{3} \times 100 = 300$						or varaes	
		3 x 1000 = 3000							
		4 x 10.000 = 40.000							
		4 x 10,000 = 40,000							
		7 x 100,000 = 700,000							
		Note:							
		Sum, product, difference and							
		quotient should be considered.							
4	Writing in	Writing in words	writes	- Reads the					
-	words	<u>Example</u>	numbers in	number					
		Write 230 425 in words	words.	words in					
		230/425 = 230,000		figures					
		425 -							
		<u>230,425</u>							
		230,425 = Two hundred thirty							
		thousand four hundred twenty five							

5	Writing in figures	Writing in figures Example 1. Three thousand, five hundred thirty six. Three thousand 3000 Five hundred 500 thirty six + 36 3.536 2. Eight hundred four thousand, four hundred three. 804,000 + 403 804.403	The learner writes numbers in figures.	- The learner reads the number in words	Guided discovery problem solving	Effective communicati on Critical thinking	Chalkboard illustration	Reading in words Writing in figures	New MK pupils bk 5 pg 29-31
6	Expandin g numbers	EXPANDING IN EXPONENTS a) Expand 49872 using $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	The leaner expands given numbers in values and place values	- reads and writes numbers that have been expanded		Logical flow of ideas		expandin g reading	

4	1		Writing in short	Writing in short or finding expanded number Example: Find the number that has been expanded. a) 20,000 + 700 + 6 = 20,000 700 + 6 20,706		-				MK bk 5 pg 32 Oxford Primary Maths bk5 pages 12-18 Underst anding Maths bk5 pg 36
	2	Roun ding off whole numb ers	Rounding off whole numbers	Rounding off whole numbers Rounding off simply means the estimate to the nearest.	rounds off whole numbers	- reads and pronounc es the words correctly	brain storming	Number cards	Rounding off whole numbers	
	3			Example 1. round off 654 to the nearest Hundred 6 48	- identifies the place values of digits	-			Adding numbers	Oxford Mathsbk 5 pg 20- 24

5	Whole numb ers	Roman numerals	Hindu-Arabic to Roman numerals Basic Roman numerals 1 - I 100 - C 5 - V 500 - D 10 - X 1000 - M 50 - L Example 1. Write 58 in Roman numerals. 58 = 50 + 8 = L + VIII = LVIII 2. Write 29 in Romans 29 = 20 + 9 = XX + IX = XXIX	- Writes Hindu- Arabic numerals	- reads and pronounc es the words correctly	Guided discovery	Effective communicati on	Number cards showing Hindu- Arabic and Roman numerals	expressin g Hindu- Arabic to Roman numerals	MK bk 5 pg 38
6					-					

5	1	Applicatio n of Roman Numerals	Application of Roman numerals Example: Nakku is twenty seven years old. Write her age in Roman symbols. Nakku is 27 years old (20 + 7) years old (XX + VII) years old XXVII years old	The learner: - solves problems involving Roman numerals	- Reads and interprets questions	Explanation	Adding numbers	Chalkboard illustration	Problem solving	New MK pupils bk 5 pg 47-56
	2	Operation on numbers Addition and subtraction	Addition and subtraction of whole numbers Examples: a) Add: 473 442 + 369 215	The learner: Adds and subtracts numbers including word problem	The learner - identifies the key words used in addition and subtraction of whole numbers	Guided discovery Group work	Subtracting numbers Reading statements	use of counters	effective communi cation Explanati on	underst anding Mathsbk 5 pg 40- 50

		Multiplica	Multiplication	The learner:	The learner:	Brain		Oxford
3		tion of	Multiply:	- Multiplies	- reads and	storming		primary
		numbers	32 x 15	by 2 digits	interprets	Storming		Mathem
		numbers	3 2	numbers	word			atics
			N 2 1 / 2/1 3 2	ilullibers				
			1 9/1 1 9/2/2	1 .	problems			book 5
			1 3 13 13	<u> </u>				pg 30- 33
			11 X X 15 15 4 5 01	5				33
			1/ 1/1					
			_					
			32 X 15 = 480					
			or:					
			3 2					
			x <u>1 5</u> 160					
			<u>+ 32</u>					
			480					

	1	I I	D:	D	mı ı	mı ı	P 1	D: 11	01 11 1		3.677.1 1
1	4		Division	<u>Division of whole numbers</u>	The learner:	The learner:	Explanation	Dividing	Chalkboard	Co-	MK book
	T			Example:	- divides 3 -	- reads		numbers	illustration	operation	5 pg 50-
				Divide 864 by 6	digits	problems					56
				Divide 604 by 6		problems					30
					numerals						
				144	using long	- gives the	Guided			Accuracy	
				864	divisions	divisibility	discussion				
					uivisiolis		uiscussioii			ъ .	
				6 - 6V 864 ÷ 6 = 144		facts of				Respect	
				26		2,3,4,5 and					
				$ \begin{vmatrix} 6 & -6 & \\ 26 & \\ -24 & \end{vmatrix} $ 864 ÷ 6 = 144		10					
				2 4		10					
				<u>-24</u>							
				0.0							
				2051 44							
				385 by 11							
				_035							
				385							
				11011 205 44 25							
				$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 3 & 8 \end{bmatrix}$ 385 ÷ 11 = 35							
				'38							
				<u>-3.3</u>							
				5 5							
				<u>-5 5</u>							
				00							
	1	1				1	1				
					I .	1	1		1		

					•			
5		Mixed	BODMAS	The learner:	The learner:		problem	MK book
J	'	operation	Brackets, Of, Division,	- solves	- Uses		solving	5 pg 63
			Multiplication, Addition,	problems	BODMAS			
			Subtraction	with many				
			Example:	signs of	- Gives the			
			a) Work out	operation	meaning of			
			2+6-3		BODMAS			
			(2+6) - 3		2021110			
			8 – 3					
			= <u>5</u>					
			<u> </u>					
			8 x 4 + 3					
			(8x4) + 3					
			32 + 3					
			= 35					
			<u>= 33</u>					
			6-10+7					
			(6+7)-10					
			13 – 10					
			<u>= 3</u>					
			13 W 1 + 40 (4 2) (
			b) Work out: 18-(4x3)÷6					
	+ +		A / / / /	mı ı	mı ı	D: 1:		MIZILE
6		Average	Average / Mean	The learner:	The learner:	Finding		MK bk 5
		or Mean	a)Average = Total of items	- finds	reads	average and		pg 64-
			Number of items	average or	questions	total		65
			Find the average of 0,2,4	mean	and			
			=(0+2+4)=6		interpret			
			3 3 Average = 2	- finds total				
	1			when given				
			b) The average weight of 5 boys	average				
			is 12kgs. Find their total					
	1		weight.					

		ı		_	I	I 1	I 1	I = 1 .	Ta		1	
6	1		Opera	Bases	Bases are systems of counting in	The learner:	The learner	Explanation	Counting in	chalkboard		New MK
U	-	1	tion		groups.	- counts	- defines		Bases	illustration		pupils
			on		Counting in bases	numbers in	Bases					bk 5 pg
		1	Numb		Examples:	bases.		Guided				68-70
		1.	ers		1. 3 (Base five)		- reads the	discovery				
					$3 = \frac{1}{4}$ 3 ones = $\frac{3}{4}$ five	- groups in all	names of					
					<u></u>	bases.	bases and					
					2. 3 (Base two)		units used					
					3 = = 1 group of twos	- writes the	in each					
					$1ones = \frac{11}{1000} two$	place values	base					
					1011C3 - <u>1 1 (wo</u>	of bases.	base					
					3. 17 (Base five)	oi bases.						
					` ′	- write bases						
					17 = (III) (III) (III) II							
					3 groups of fives 2 ones	in words						
					= <u>3 2 five</u>							
	2				Place values of Bases.			Question and		use of	Effective	
					Examples:			answer		counters	communi	
					12 five						cation	
					1 2 five							
					Tones							
					fives						Accuracy	
					Tilves						necuracy	
					1 0 2 four							
					ones							
					1 1 1							
					fours							
					fives							
					Writing base in words							
					Examples							
					4 3 five							
					= 4, 3 base five							
					four, three base five					1		
					203 _{four}					1		
					= 2, 0, 3 base four							
					Two, zero three base four							

values.	
1 group of five and three ones = $(1x5)(3x1)$	

1		 	_	T	T			I		1	
	3	Whole	Bases	P 1: 1		- reads and	Guided	Reading	chalkboard	creative	MK
	-	numb		Expanding bases using powers	-should be	interprets	discovery	questions	illustration	thinking	pupils bk 5
		ers		32 31 30	able to	questions					pg71-73
				1 1 2	change non decimals to		Explanation	changing to		problem	pg/1-/3
					decimal		Explanation	base ten	Use of	solving	
				$(1x3^2) + (1x3^1) + (2x3^0)$	(base ten)				counters		
				(ine) · (ine) · (ine)	(base terr)			changing to			
				Changing to base ten.	- changes from			non-decimals			
				<u>Example</u>	base ten to		changing to				
				Change 121 three to base ten.	non decimals		non-decimals			effective	
				and and an						communi cation	
				32 31 30 1 2 1 _{three}						cation	
				1 2 1 _{three}			Group work				
				$= (1x3x3) + (2x3^1) + (1x3^0)$							
				= (1x9) + (2x3) + (1x1)							
				9 + 6 + 1							
				16 _{ten}							
				Changing to non-decimals							
				Example Change 9ten to base five							
				Change sten to base live							
				9 = (III) IIII							
				= 1 group of fives and 4 ones							
				14 five							
				Or:							
				Base No. Rem							
				5 9 4 9 = 1 4 _{five}							
l				9 = 1 4 _{five}							
	l				ĺ		1	I	1		

	1	-	A 3 3 4 4 4 .	4.1.1	ı		I	1	1	ı	1
4			Addition Of Bases	Adding in Bases Examples: Add:		-					
				1. 11 two + 1two							
				1 1 two + + 1 tv2 100 two							
				100 _{two}							
				1 1	- Adds the	- reads the		Adding in		Critical	
				2. 1 2 3 <u>6</u> / _{Ve} + 32 five	given base numbers	base numbers		bases		thinking	
				210 _{five}		given					
5			Bases	Subtraction In Bases. Examples	The learner: - carries out	The learner reads	Guided discovery	Subtracting in bases	Use of counters	Problem solving	Mk bk 6
				Subtract 231 Five (3+5)-4	subtraction in bases	questions	,				Mk bk 5
				- 40 Five 8-4= 4	III bases	- Identifies					pg 74
				140 Five		the bases used				Critical	
				2. 111 _{Two}					Chalkboard	thinking	
				100. _{Two}					illustration		
				Multiplication In Bases	- Multiplies						
				Example 2 _{five} X 3	bases		Explanation	Multiplying in bases			
				$=6$ $\frac{6}{5} = 1 \text{ rem } 1$							
				6 = 11 5 11 five							
				2. 32 five 6/5 1 rem 1							
				$\begin{array}{c} X & 3 \\ \hline 201_{\text{five}} & 2 \text{ rem o} \end{array}$							

				at 1 t 1.1 (m) 1.				ı	
	6		Finite	Clock Arithmetic/Finite system	The learner	<u>The learner</u>			
	U		system	Clock, Modular or Finite system is	- finds the	 defines 			
				a system of finding remainders, in	equivalent	finite			
				a given base.	numbers in	system.			
				e.g 2(finite 5) 0 (mod 3)	finite system.				
					_	 reads the 			
				V Base V Base		new terms			
				Remainder Remainder		used.			
				Finding equivalent values.					
				1. Find the equivalent value of					
				2(finite 5)					
				2(finite 5) = 2, (2+5), (2+5+5),					
				2(finite 5)					
				= 2, 7, 12, 17					
l									
				Find the equivalent value of					
				0(finite 3)					
				0(finite 3) = 0, (0+3)(0+3+3),					
				(0+3+3+3)					
ĺ				= 0, 3, 6, 9,					

7	1	Whole numbers	Addition in finite Add: $2+3 = \dots$ (finite 5) $2+3 = \dots$ (finite 5) $5 = \dots$ (finite 5) $\frac{5}{5} = 1 \text{ rem 0 (finite 5)}$ $\therefore 2+3 = 0 \text{ (finite 5)}$	The learner: - Adds in finite system with/witho ut using a dial.	The learner Reads questions.					Oxford primary Mathsbk 5 pg 26
	2		2+3=0 (finite 5) Subtraction in finite system. Example Subtract 2-3 =	The learner - Subtracts numbers in finite systen using or without using a dial	The learner reads and interprets questions	Guided discovery	Drawing dials	Chalkboard illustration	Creative thinking Problem solving	Oxford primary Maths bk 5 pgs 26-27
			2 – 3 =4 (finite 5)							

3		Applicati on of finite	Application of finite Example 1. Today is Monday, what day of the week will it be 5 days from today? Monday = 1 Will is represented by (+) ∴ 1+5 = (finite 7) 6 = (finite 7) 6 = Saturday	The learner: - Applies finite systen to slove dial life	The learner: - reads and interprets questions	Brain storming			
4	Number patterns and sequences	Types of Numbers	Types of Numbers The following are the different types of numbers. 1. Whole numbers 2. Counting numbers 3. Odd numbers/ven numbers 4. Prime numbers 5. Composite numbers 6. Triangular numbers	The learner: - Gives examples of different types.	The learner: defines the various groups of numbers.	Guided discussion	Listing numbers in different groups	Effective communi cation	Mk pupils bk 4, 5 & 6

5		Sequenc	Number sequences.	The learner	The learner	Guided discovery	Finding missing	Chalkboard illustration	Creative thinking	Oxford primary
		es	<u>Examples</u>	- determines	Identifies	uiscovery	numbers in	iliustiation	unnking	Mathsbk
			Find the next number.	the patterns	the category		the sequence.			5 pgs
			0 1 3 6 10 15 (sequence)	used.	of numbers					49-51
			+1 +2 +3 +4 +5 (pattern)	- finds the	given.					
			pattern)	next						
			2. 1 4 9 16 25	number in						
			Is a group of square numbers got	sequence						
			by squaring counting numbers.							
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
			12 22 32 42 52 62							
			(1x) (2x2) (3x3) (4x4) (5x5) (6x6)							
6		multiple	<u>Multiples</u>	The learner;	The learner				D 11	Mk
		S	Multiples are numbers got after	- finds	- reads the		Finding		Problem solving	primary bk 5
			multiplying a given number by each of the counting numbers.	multiples	multiples		multiples			Mathspg
			Example	between or	of	Question and answer				s 91, 79- 80
			Find the multiple of 3 less than 15. (3x1), (3x2), (3x3), (3x4), (3x5),	less than	different					
	(3x6)	given	numbers.							
			M ₃ lessthan i5 are 3, 6, 9, 12	numbers						

8	1		Finding L.C.M	The learner	The learner				
O	_		Example	Finds the	Reads				
			Find the lowest common multiple	L.C.M of	through the			Accuracy	
			of 4 and 6.	numbers	numbers	Explanation	Finding L.C.M		
			Method 1				L.G.M		
			M4 = 4, 8, 12, 16, 20, 24						
			M4 = 4, 8, (2,) 6, 20, (4) M6 = 6, (12,) 18, (24)						
			Common multiples					Neatness	
			= 12, 24						
			<u>L.C.M = 12</u>						
			Method 2						
			2 4 6						
			$\frac{2}{2} \frac{2}{3}$ LCM = $2x2x3$						
			$3 1 3 \qquad = 4 \times 3$						
			1 1= 12						

2	Numerac y	Factor	A factor is a number that divides another number exactly. Question 1. How many factors has 12. F12 = 1 x 12 2x6 3x4	The learner; - find the number of factors of a	The learner: defines a factor reads	Explanation	Finding factors Listing	Chalkboard Illustration	Effective communi cation	New Mk pupils' bk 5 pg 81-87
			534 $F_{12} = 1, 2, 3, 4, 6, 12$ $\therefore 12 \text{ has } 6 \text{ factors}$ 2. Find the sum of all factors of 14. $F_{14} = 1 \times 14$ 2×7 $F_{12} = 1, 2, 7, 14$ Sum = $(1+2+7+14)$ = 24	number Finds the form of all factors of a given number.	questions and factors of a number	Question and	factors Reading		Critical thinking	
3			Greatest Common Factor Examples: 1. Find the GCF of 6 and 9. F6 = (1, 2, 3, 6) F9 = (1, 3, 9) Common factors = (1, 3) GCF = 3 2. Find the Greatest Common factor of 10 and 15.	The learner - finds the G.C.F of numbers.	The learner: - Identifies the common factors.	answer	factors	Creative thinking	Accuracy	

4			Prime-factorisation Example Prime factorise 12 and write the answer as below. 2 12 2 6 3 3 1 In Notation form (subscritpt set) $12 = 21, 22, 31$ In multiplication form $12 = 2x2x3$ In exponent form $12 = 2^2 x 3^1$	The learner; - primefactori ses numbers using any possible method	The learner: defines the diefferent forms of writing the primefacto rised numbers.		Dividing numbers	Neatness	
5		Applicati on of venn diagrams	Prime factors on the venn diagram Represent the primefactors of 9 and 12 on the venn diagram. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	The learner: - Uses venn diagrams to show prime factors	The learner: Identifies the common prime factors.	Brain storming Guided discovery	Drawing venn diagram	Effective communi cation	Mk pupils book 6 pg_

	6			Finding G.C.F and L.C.M Study the venn diagram below and use it to answer questions. PfX PfY 2 ₁ 3 ₂ 3 ₁ 5 ₁ i) Find the value of X. ii) Find the value of Y	The learner - finds the L.C.M & G.C.F using a venn diagram	The learner reads prime factors from the venn diagram.	Group discussion	Finding L.C.M	Chalkboard illustration	
9	1		Square numbers	iii) Find the G.C.F of X and Y iv) Find the L.C.M of X and Y Square Numbers Example Find the square of: a) 6 b) 2 = 6 ² = 2 ² = 6x6 = 2x2 = 36= 4	The learner finds the square of number.	The learner defines sqaure numbers	Explanation	Finding G.C.F		

2	Square roots a) Find the square root of 4. Sq. root of $4 = \frac{2}{4}$ $\frac{2}{2}$ $\frac{2}{1}$ $\sqrt{4} = \sqrt{2x^2}$ $= \sqrt{2}^2$ $\sqrt{4} = 2$ b) Find the square root of 36.	The learner finds the square roots of number.	The learner reads questions.	Brain storming	Finding square root	Multiplicatio n tables	Critical thinking	Mk pupils bk 6
	Sq. root of 36 = $\frac{2}{18}$ $\frac{2}{9}$ $\frac{3}{3}$ $\frac{3}{1}$ $\sqrt{36} = \sqrt{2x2x(3x3)}$ = $\sqrt{2^2x3^2}$ = 2 x 3 = 6			Guided discussion	Dividing numbers	Chalkboard illustration	Problem solving	

_										
ı	3		Applicati	Application of square roots	The learner	The learner				
ı	3		on of	Example:	Finds the side	Reads and				
ı			square	Find the side of a sqaure whose	of a square	interpretes				
ı			roots	area is 81cm ²	whose area	questions	F 1			
ı				area is orcin-	has been	_	Explanation			
					given.					
ı					giveii.				Creative	
ı				† †\$					thinking	
				S						
				$Area = S^2$						
				$\sqrt{S^2} = \sqrt{81m^2}$						
				$\sqrt{S^2} = \sqrt{3x3x3x3xmxm}$						
				$S = \sqrt{3^2 \times 3^2 \times m^2}$			Guided			
				S = 3 x 3 x m <u>3 81</u>			discovery			
				S = 9 x m 3 27						
				<u>S = 9m</u> <u>3 9</u>						
				3 3						
l				1						
				One side of a square = 9m						
				1						

	Groups	Whole numbers	The learner	The learner	Brain	Effective	Chalkboard	Listing	Mk
4	of numbers	 Even numbers Odd numbers Prime numbers Composite numbers Square numbers Counting numbers Triangular numbers 	gives examples on different types of numbers	defines various groups of numbers. Pronounces the new words given.	storming	communicati	illustrations	numbers from different groups.	pupils book 4,5,6 pgs 77-92
5	Number sequences	Finding next numbers in the sequence. a) 0, 2, 4, 6, 8, b) 1, 3, 5, 7, 9,,	The learner finds the next number in the sequence. Identifies patterns used in the sequences.	The learner reads the number sequences	Guided discovery Demonstratio	Critical thinking		Finding missing numbers in the sequence	
6	Multiples of numbers	Multiples of 2. $M_2 = (2, 4, 6, 8, 10, (2),)$ Multiples of 3. $M_3 = (3, 6, 9, (2), 15,)$ Common multiples of 2 and 3 $M_2 \cap M_3 = (6, 12)$ L.C.M of 2 and 3 is 6.	The learner Lists multiples of numbers. Identifies common multiples. Finds the Lowest Common Multiples of numbers	The learner reads mutliples of numbers. Writes multiples of numbers	Guided discussion	Sharing	Chalkboard illustrations	Listing multiples of different numbers. Identifyin g common multiples Finding L.C.M	A new Mk Mathsbk 5 pgs 91, 79-80

10	1		Factors of numbers	Factors of 6 1 x 6= 6 F ₆ = $\left\{ (1)(2)(3)(6) \right\}$ 2 x 3 = 6 Factors of 12 1 x 12 = 12 F ₁₂ = $\left\{ (1)(2)(3)(4)(6)(12) \right\}$ 2 x 6 = 12 3 x 4 = 12 Common factors of 6 and 12 = 1, 2, 3, 6 G.C.F of 6 and 12 = 6	The learner lists factors of numbers. Finds the G.C.f of numbers.	The learner reads sentences involving finding factors of numbers, common factors and G.C.F.	Problem solving	Problem solving	Listing factors of numbers. Identifyin g common factors Finding G.C.F	A new Mk Maths bk 5 pgs 81-87
	2		Prime factorisation	 Using factor tree Using a ladder Writing answers in multiplication form Writing answers in subscript/set notation form 	The learner prime factorises numbers using a ladder. Primefactori ses numbers using a factor tree Writes primefactori sed numbers in multiplicatio n and set notation forms.	The leaner reads prime factors writes prime factors actors	Guided discussion Brain storming Guided discovery	Sharing Critical thinking	Prime factorizin g numbers using a ladder and factor tree. Writing answer in multiplic ation and subscript /set notation or power form.	

3	Numbers which have been prime factorised	What number has been prime factorised below? a) 2 ³ x 3 ² = 2x2x2x3x3 = 8 x 9 = 72 b) {2 ₁ , 2 ₂ , 2 ₃ , 3 ₁ } = 2x2x2x3 8 x 3 = 24	The learner finds numbers which have been prime factorised.	The learner reads numbers which have been prime factorised	Demonstratio n	Accuracy	ation	Finding numbers which have been prime factorized	
4	Finding G.C.F and L.C.M using prime factors	Prime factors of 8 = $\{2_1 \ 2_2 \ 2_3 \}$ Prime factors of 12 = $\{2_1 \ 2_2 \ 3_1 \}$ G.C.F = product of PF ₈ \cap PF ₁₂ = $(2x2)$ = 4 L.C.M = product of PF ₈ \cup PF ₁₂ = $(2x2x2x3)$ = 8x3 = 24	The learner Identifies common prime factors. Finds the product of common factors Forms a union set of prime factors Multiplies members in the union set to get the L.C.M	The learner writes common prime factors. Reads common prime factors Reads common prime factors	Problem solving	Effective communicati on	Chalkboard illustration	Finding G.C.F and L.C.M using prime factors.	A new Maths pupils' bk 6 pg 98

5	Prime factoris ation involvin g venn diagram	a) Prime factorise 8 and 12 and represent the prime factors on a venn diagram.	The learner represents prime factors on venn diagram. Finds numbers prime factorised using venn diagram.	Reads prime factors Writes prime factors.	Demonstratio n Brain storming	Sharing Effective communicati on		Representing prime factors Finding G.C.F and L.C.M using venn diagram	A new Maths pupils' bk 6 pg 98
		b) Find the value of X and Y on the venn diagram below. Fix	Uses the venn diagram to find the L.C.M		Guided discussion	Critical thinking	Chalkboard illustration		

	6		Squares of number s	= 2x2=4 $= 3x3=9$	• Finds squares of numbers	Reads new words	Problem solving			Finding square numbers	
11	1		Square roots of number s	Find the square root of 9 $ \begin{array}{c c} 3 & 9 \\ 3 & 3 \\ \hline & 1 \end{array} $ $ \sqrt{9} = 3$	Finds square roots of numbers	Reads square roots of numbers				Finding square roots of numbers.	
	2	Fractions	Reducin g fraction s	Examples Reduce $\frac{8}{12}$ to the lowest terms. $8 \div 4 = 2$ $12 \div 4$ 3	Reduces fractions to lowest terms	Reads fractions	Demonstratio n	sharing		Reducing fractions to lowest terms	Underst anding MTC pupil's bk 5 pg 65
	3	fractions	Compar ing fraction s	Which one is greater? $\frac{1}{2}$ or $\frac{1}{3}$? L.C.D = 6 $\frac{1}{4}x + 63$, $\frac{1}{3}x + 62$, $\frac{1}{2} > \frac{1}{3}$	 Finds L.C.D of given fractions. Identifies greater fractions 	Reads fractionsWrites fractions	Guided discussion	Critical thinking	Chalkboard illustration	Comparin g fractions using L.C.D	Underst anding MTC pupil's bk 5 pg 66

4	1	Orderin g fraction s	Write $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{2}$ and $\frac{3}{4}$ in ascending and descending order. L.C.D = 12 $\frac{1}{3}x \frac{12}{4}, \frac{1}{6}x \frac{12}{2}, \frac{1}{2}x \frac{12}{4}$ i) Ascending: $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{3}{4}$ ii) Descending $\frac{3}{4}$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$	Finds L.C.D Arranges fractions in ascending and descending order	Reads sentences involving ordering fractions	Problem solving		Ordering fraction	New MK MTC bk 5 pg 125
5	1	Additio n of fraction s	With same denominators With different denominators Addition of fraction I,e proper and mixed.	Adds fractions with same denominator s. Adds fractions with different denominator s	Pronounce s new words used.	Brain storming		Adding fractions	A new Mk MTC bk 5 pg 126 Underst anding MTC bk4 pg 68
6	i 1	Subtract ion of fraction s	- Fractions with different denominators. - Fractions involving word problems	Subtracts fractions	• Reads sentences involving subtractio n of fractions			Subtracti ng fractions	Mk MTC bk5 pg 133

12	1	Multipli cation of fraction s	a) $\frac{1}{2} \times 14$ b) $\frac{3}{4}$ of 20 b) $18 \times \frac{1}{6}$ c) $\frac{2}{3} \times \frac{3}{4}$	Multiplies fractions with fractions and fractions with wholes.	Reads fractions				Multiplyi ng fractions with fractions and fractions with wholes	Mk MTC bk 5 pg 137 Underst anding MTC bk5 pg 118
	2	Finding reciproc al	When a number is multiplied by its reciprocal the result is 1. Find the reciprocal of 4. Let the reciprocal be y. $\frac{4}{4} \times y = \frac{1}{4}$ $y = \frac{1}{4}$ The reciprocal of 4 is $\frac{1}{4}$	Finds reciprocal of numbers	Reads questions given	Brain storming	Critical thinking	ation	Finding reciproca ls of numbers	New Mk pupil's bk 5 pg 140
	3	Division of fraction	a) Divide $\frac{2}{3} \div \frac{1}{6}$ i) $\frac{2}{3}x \frac{6}{1} = (2 \times 2)$ (using reciprocal) = 4 ii) $\frac{2}{3}x \cdot 62 \div \frac{1}{6}x \cdot 6\cdot 1$ = 4 ÷ 1 = 4 (using L.C.D)	Divided fractions using L.C.D Divided fractions using reciprocals	Writes fractions Reads fractions	Guided discussion	Effective communicati on	Chalkboard illustration	Dividing fractions	Mk MTC bk 5 pg 142 Underst anding MTC bk5 pg 123
	4	Mixed operati ons	Use of (BODMAS) a) Work out $\frac{2}{3}$ of 24 + 16 - 9	Uses BODMAS to work out given numbers correctly.	Reads word problem involved	Demonstratio n	Sharing		Simplifyi ng numbers	MK MTC bk5 pg 135

5		Applicat ion of fraction s	Word problems involving ftactions	• Interpretes given mathematica l sentences	Reads given sentences	Problem solving	Logical thinking	Solving word problems	A new MK MTC bk 5 pg 138
6		Decimal s	Changing fractions to decimals Ordering decimals Addition of decimals Subtraction of decimals Multiplication of decimals Division of decimals Mixed operations	Changes fractions to decimals. Changes decimals to fractions Orders decimals in ascending and descending order Adds decimals Multiplies decimals	Reads given mathemati cal sentences		Problem solving	Changing fractions to decimals and vice versa. Ordering decimals Adding decimals Subtracti ng decimals	MK MTC pupil's bk5 pg 148-156 Underst anding MTC bk5 pg 126-132
			•	Divides decimals	•			Dividing decimals	

13	1		Additive inverse	What is the inverse of +3. A number added to its inverse the result is 0 i.e Let the inverse be y 3 + y = 0 3 - 3 + y = 0 - 3 $0 + y = \frac{3}{3}$ $y = \frac{3}{3}$	• Finds the inverse of numbers	Reads given questions	Brain storming	Critical thinking	Chalkboard illustrations	Finding inverses of numbers	A new MK MTC pupil's bk5 pg 159
	2	integers	Showing integers on a Ad	The inverse of +3 is -3 Name the integers a) $a = 4$ b) $b = -3$	shows integers on the numberline writes integers shown on the number line	writes integers Reads integers	Guided discussion Problem solving	Sharing Effective communicati on		Writing integers on the number line Writing integers represent ed by arrows on a number line	A new MK MTC pupil's bk5 pg 160-164

3	Ordering integers	Arrange these integers in ascending and descending order using a number line1, +2, -2, +4, +1 i) Ascending order = -2, -1, 1, 2, 4 ii) Descending order 4, 2, 1, -1, -2	Shows integers on a numberline Arranges integers using a number line	Reads integersWrites integers	Guided discovery	Rational thinking		Arrangin g integers	A new MK MTC pupil's bk5 pg 168 Underst anding MTC bk5 pg 99
4	Addition of integers	a) Add: +4 ++3 =+4+3 =+7 b) Show +3 ++2 on the number line 13	Adds integers using a numberline Adds integers without using a number line	Reads integers	Brain storming	Critical thinking	Chalkboard illustration	Adding integers	A new MK MTC pupil's bk5 pg 159 Underst anding MTC bk5 pg 102-103

5			Subtracting integers without	 Subtracts 	•	Guided	Effective	Subtracti	
5		S,	using a numberline.	integers		discussion	communicati	ng	
		teger					on	integers	
		teį	Subtracting integers using a						
		ii	number line.						
		of				Demonstratio	sharing		
		on				n			
		cti							
		ra							
		ıbt				Problems			
		Su				solving			