Aprendizado Profundo 1

Inicialização de Pesos – Explosão e Dissipação de Gradientes

Professor: Lucas Silveira Kupssinskü

Agenda

- Revisão sobre funções de ativação
- Breve Estudo de Caso
- Inicialização de Pesos
 - He
 - Xavier

Funções de Ativação

- São aplicadas na pré-ativação
- Nas camadas ocultas
 - são responsáveis por adicionar "não linearidades"
- Na camada de saída
 - são escolhidas conforme a tarefa
- Idealmente devem ser:
 - contínuas
 - diferenciáveis

Funções de Ativação

- Sigmoid e Tanh
 - Caíram em desuso para camadas ocultas
 - Facilitam o fenômeno de Vanishing Gradient
 - Você consegue identificar o motivo?

- Vamos usar um MLP para fazer a classificação dos dígitos escritos a mão (MNIST)
- Obviamente, não conseguimos acompanhar as ativações e os gradientes individualmente
 - Mas Podemos acompanhar os histogramas

Inicializando $\theta=0$

Inicializando heta=0

Inicializando $heta=\mathcal{N}(0,1)$

Inicializando $heta=\mathcal{N}(0,1)$

Inicializando $heta=\mathcal{U}(-1,1)$

Inicializando $heta=\mathcal{U}(-1,1)$

Conclusão: precisamos fazer melhor ©

• Considere que:

$$s^{(l)} = b^{(l)} + \theta^{(l)} \varphi(s^{(l-1)})$$

 $s^{(l)}$: pré-ativações camada l

 $b^{(l)}$: bias da camada l, inicializados com 0

 $heta^{(l)}$: parâmetros camada l, inicializados com $\mathcal{N}(0,\sigma^2)$

 φ : função de ativação (nesse caso ReLU)

$$s^{(l)} = b^{(l)} + \theta^{(l)} \varphi(s^{(l-1)})$$

Se σ^2 for muito pequeno, o que vai acontecer com as pré-ativações de camadas mais internas da rede?

$$s^{(l)} = b^{(l)} + \theta^{(l)} \varphi(s^{(l-1)})$$

Se σ^2 for muito pequeno, o que vai acontecer com as pré-ativações de camadas mais internas da rede?

• Como $s^{(l)}$ é uma soma ponderada que vai considerar pesos $\theta^{(l)}$ pequenos, a tendência é que a saída tenha uma magnitude menor que a entrada

$$s^{(l)} = b^{(l)} + \theta^{(l)} \varphi(s^{(l-1)})$$

Se σ^2 for muito grande, o que vai acontecer com as pré-ativações de camadas mais internas da rede?

$$s^{(l)} = b^{(l)} + \theta^{(l)} \varphi(s^{(l-1)})$$

Se σ^2 for muito grande, o que vai acontecer com as pré-ativações de camadas mais internas da rede?

• Como $s^{(l)}$ é uma soma ponderada que vai considerar pesos $\theta^{(l)}$ grande, a tendência é que a saída tenha uma magnitude maior que a entrada

• Ocorre mesmo com ReLU cortando os valores negativos

- Nas duas situações vistas anteriormente as pré-ativações se tornam muito pequenas ou muito grandes
 - Intratável para aritmética de ponto flutuante
- A mesma lógica se aplica ao gradiente (lembram das expressões do Backpropagation?)
- Esses casos são chamados de *Vanishing* e *Exploding Gradient* respectivamente

- Vamos tentar fazer melhor
- Como será que as pré-ativações de uma camada se comportam em relação as pré-ativações da camada anterior?
- Considere que:

$$s^{(l)} = b^{(l)} + \theta^{(l)} \varphi(s^{(l-1)})$$

- $s^{(l)}$: pré-ativações camada l
- $b^{(l)}$: bias da camada l, inicializados com 0
- $heta^{(l)}$: parâmetros camada l, inicializados com $\mathcal{N}ig(0,\sigma_{ heta}^2ig)$
- φ : função de ativação (nesse caso ReLU)

$$s^{(l)} = b^{(l)} + \theta^{(l)} \varphi(s^{(l-1)})$$

 Vamos tentar descobrir como a média e o variância da camada subsequente se comportam

$$s_i^{(l)} = b_i^{(l)} + \sum_{j=1}^n \theta_{ij}^{(l)} \varphi\left(s_j^{(l-1)}\right)$$

$$\mathbb{E}[s^{(l)}] = \mathbb{E}\left[b_i^{(l)} + \sum_{j=1}^n \theta_{ij}^{(l)} \varphi\left(s_j^{(l-1)}\right)\right]$$

$$s_i^{(l)} = b_i^{(l)} + \sum_{j=1}^n \theta_{ij}^{(l)} \varphi\left(s_j^{(l-1)}\right)$$

$$\mathbb{E}[s^{(l)}] = \mathbb{E}\left[b_i^{(l)} + \sum_{j=1}^n \theta_{ij}^{(l)} \varphi\left(s_j^{(l-1)}\right)\right]$$

$$\mathbb{E}[s^{(l)}] = \mathbb{E}\left[b_i^{(l)}\right] + \mathbb{E}\left[\sum_{j=1}^n \theta_{ij}^{(l)} \varphi\left(s_j^{(l-1)}\right)\right]$$

$$s_i^{(l)} = b_i^{(l)} + \sum_{j=1}^n \theta_{ij}^{(l)} \varphi\left(s_j^{(l-1)}\right)$$

$$\mathbb{E}[s^{(l)}] = \mathbb{E}\left[b_i^{(l)}\right] + \mathbb{E}\left[\sum_{j=1}^n \theta_{ij}^{(l)} \varphi\left(s_j^{(l-1)}\right)\right]$$

$$\mathbb{E}[s^{(l)}] = \sum_{j=1}^n \mathbb{E}\left[\theta_{ij}^{(l)} \varphi\left(s_j^{(l-1)}\right)\right]$$

$$s_i^{(l)} = b_i^{(l)} + \sum_{j=1}^n \theta_{ij}^{(l)} \varphi\left(s_j^{(l-1)}\right)$$

$$\mathbb{E}[s^{(l)}] = \mathbb{E}\left[b_i^{(l)}\right] + \mathbb{E}\left[\sum_{j=1}^n \theta_{ij}^{(l)} \varphi\left(s_j^{(l-1)}\right)\right]$$

$$\mathbb{E}[s^{(l)}] = \sum_{j=1}^U \mathbb{E}\left[\theta_{ij}^{(l)}\right] \mathbb{E}\left[\varphi\left(s_j^{(l-1)}\right)\right]$$
Assumindo que $\theta_{ij}^{(l)} \in \varphi\left(s_j^{(l-1)}\right)$ são independentes

$$s_i^{(l)} = b_i^{(l)} + \sum_{j=1}^{n} \theta_{ij}^{(l)} \varphi \left(s_j^{(l-1)} \right)$$

$$\mathbb{E}[s^{(l)}] = \sum_{j=1}^{n} \mathbb{E} \left[\theta_{ij}^{(l)} \right] \mathbb{E} \left[\varphi \left(s_j^{(l-1)} \right) \right]$$

$$\mathbb{E}[s^{(l)}] = \sum_{j=1}^{n} 0 \cdot \mathbb{E} \left[\varphi \left(s_j^{(l-1)} \right) \right]$$

$$\mathbb{E}\big[s^{(l)}\big] = 0$$

Vamos usar esse resultado para computar a variância

$$\mathbb{E}\big[s^{(l)}\big] = 0$$

$$\sigma_{s^{(l)}}^2 = \mathbb{E}\left[\left(s^{(l)}\right)^2\right] - \mathbb{E}\left[s^{(l)}\right]^2$$

$$\sigma_{s^{(l)}}^2 = \mathbb{E}\left[\left(s^{(l)}\right)^2\right] - \mathbb{E}\left[s^{(l)}\right]^2$$

$$\sigma_{s^{(l)}}^2 = \mathbb{E}\left[\left(b_i^{(l)} + \sum_{j=1}^n \theta_{ij}^{(l)} \varphi\left(s_j^{(l-1)}\right)\right)^2\right]$$

$$\sigma_{s^{(l)}}^{2} = \mathbb{E}\left[\left(\sum_{j=1}^{n} \theta_{ij}^{(l)} \varphi\left(s_{j}^{(l-1)}\right)\right)^{2}\right]$$

$$\sigma_{s^{(l)}}^{2} = \sum_{j=1}^{U} \mathbb{E}\left[\left(\theta_{ij}^{(l)}\right)^{2}\right] \mathbb{E}\left[\left(\varphi\left(s_{j}^{(l-1)}\right)^{2}\right)\right]$$

$$\sigma_{s^{(l)}}^{2} = \sum_{i=1}^{U} \mathbb{E}\left[\left(\theta_{ij}^{(l)}\right)^{2}\right] \mathbb{E}\left[\left(\varphi\left(s_{j}^{(l-1)}\right)^{2}\right)\right]$$

$$\sigma_{s^{(l)}}^{2} = \sum_{j=1}^{n} \mathbb{E}\left[\left(\theta_{ij}^{(l)}\right)^{2}\right] \mathbb{E}\left[\left(\varphi\left(s_{j}^{(l-1)}\right)^{2}\right)\right]$$

$$\sigma_{s^{(l)}}^{2} = \sum_{j=1}^{n} \sigma_{\theta}^{2} \mathbb{E}\left[\left(\varphi\left(s_{j}^{(l-1)}\right)^{2}\right)\right]$$

$$\sigma_{s^{(l)}}^{2} = \sigma_{\theta}^{2} \sum_{j=1}^{n} \mathbb{E}\left[\left(\varphi\left(s_{j}^{(l-1)}\right)^{2}\right)\right]$$

$$\sigma_{s^{(l)}}^{2} = \sigma_{\theta}^{2} \sum_{j=1}^{n} \mathbb{E}\left[\left(\varphi\left(s_{j}^{(l-1)}\right)^{2}\right)\right]$$

$$\sigma_{S^{(l)}}^2 = \sigma_{\theta}^2 \sum_{j=1}^n \frac{\sigma_{S^{(l-1)}}^2}{2}$$

$$\mathbb{E}\left[\left(\varphi\left(s_j^{(l-1)}\right)^2\right)\right] = \frac{\sigma_{s^{(l-1)}}^2}{2}$$

$$\sigma_{s^{(l)}}^2 = \sigma_{\theta}^2 \sum_{j=1}^n \frac{\sigma_{s^{(l-1)}}^2}{2}$$

$$\sigma_{S^{(l)}}^2 = \frac{n}{2} \sigma_{\theta}^2 \sigma_{S^{(l-1)}}^2$$

$$\sigma_{S^{(l)}}^2 = \frac{n}{2} \sigma_{\theta}^2 \sigma_{S^{(l-1)}}^2$$

$$\sigma_{\theta}^2 = \frac{2}{n}$$

$$\sigma_{s^{(l)}}^2 = \sigma_{s^{(l-1)}}^2$$

$$\theta \sim \mathcal{N}(0, 2/n)$$

Essa inicialização é conhecida como Kaiming (He)

Um argumento similar pode ser feito usando a função de ativação tanh, levando a inicialização *Xavier* $\theta \sim \mathcal{N}(0, 1/n)$

 $\theta \sim \mathcal{N}(0, 1/n)$

 $\hat{y} = A^{[5]}$

output probability over 10 classes for a batch of 100 images \hat{v} .shape = (10,100)

- Tanto as ativações quanto os gradientes podem dissipar ou explodir
 - Nosso argumento levou em conta apenas o forward pass
- Para contabilizar tanto *forward* quanto *backward* podemos modificar a inicialização para considerar o número médio de unidades

$$\theta^l \sim \mathcal{N}\left(0, \frac{4}{(n^{(l)} + n^{(l-1)})}\right)$$

Exercício

- Considerando uma variável aleatória a cuja variância $Var[a] = \sigma^2$ com uma distribuição simétrica em relação à média $\mathbb{E}[a] = 0$
- Prove que se passarmos a variável por uma ReLU, o segundo momento da variável transformada $\mathbb{E}[b^2]=rac{\sigma^2}{2}$

$$b = ReLU(a) = \max(0, a)$$

Dicas:

$$\mathbb{E}[x] = \int_{-\infty}^{+\infty} xp(x)dx$$

$$Var[x] = \mathbb{E}[(x - \mathbb{E}[x])^2]$$

Referências:

- Sugere-se *fortemente* a leitura de:
 - Capítulo 7 de Understanding Deep Learning
 - https://udlbook.github.io/udlbook/