Twierdzenie 1. X_n nadmartyngał, $\sup_n \mathbb{E} X_n^- < \infty$, wtedy $X_n \to X$ p.n. oraz $\mathbb{E}|X| < \infty$.

Wniosek 2. X_n podmartyngał, sup $\mathbb{E}X_n^+ < \infty$, to $X_n \to X$ p.n. i $\mathbb{E}|X| < \infty$.

Wniosek 3. Każdy nieujemny nadmartyngał i niedodatni podmartyngał jest zbieżny p.n.

Nierówności maksymalne Dooba

Twierdzenie 4. (M_k) martyngał, to:

•
$$\mathbb{P}\left(\max_{1 \leq k \leq n} |M_k| \geqslant t\right) \leqslant \frac{1}{t} \mathbb{E}|M_n| \mathbb{1}_{\left\{\max_{1 \leq k \leq n} |M_k| \geqslant t\right\}} \leqslant \frac{1}{t} \mathbb{E}|M_n|,$$

•
$$p > 1$$
, $\mathbb{E} \max_{1 \le k \le n} |M_k|^p \le \left(\frac{p}{p-1}\right)^n \mathbb{E} |M_n|^p$.

Wniosek 5. $(M_k)_{k\geqslant 1}$ martyngał, wtedy

•
$$t > 0$$
, $\mathbb{P}\left(\sup_{k \ge 1} |M_k| \ge t\right) \le \frac{1}{t} \sup_{k \ge 1} \mathbb{E}|M_k|$,

Uwaga 6. Dla (M_k) podmartyngału lub nadmartyngału też są odpowiednie nierówności maksymalne (np. w notatkach http://mst.mimuw.edu.pl/lecture.php?lecture=rp2&part=Ch5).

Jednostajna całkowalność zmiennych losowych

Definicja 7. $(X_i)_{i\in I}$ rodzina zmiennych losowych jest jednostajnie całkowalna, jeśli $\lim_{C\to\infty}\sup_i \mathbb{E}|X_i|\mathbb{1}_{\{|X_i|\geqslant C\}}=0.$

Fakt 8. (X_i) jest jednostajnie całkowalna wtw, gdy spełnione są dwa warunki:

- $\sup_{i} \mathbb{E}|X_{i}| < \infty$,
- $\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{i\in I} \mathbb{P}(A) \leqslant \delta \implies \mathbb{E}|X_i| \mathbb{1}_A \leqslant \varepsilon$.

Przykład9. $\mathbb{E}|X|<\infty\implies \{X\}$ jest jednostajnie całkowalna (z tw. Lebesgue'a o zbieżności zmajoryzowanej).

Przykład 10. $\mathbb{E}\sup_{i}|X_{i}|<\infty \implies \{(X_{i})_{i\in I}\}$ jest jednostajnie całkowalna.

Twierdzenie 11. p > 0, $\{|X_n|^p\}$ jednostajnie całkowalna, $X_n \xrightarrow{\mathbb{P}} X$, to $X_n \to X$ w L^p , czyli $\mathbb{E}|X_n - X|^p \to 0$.

Twierdzenie 12. (M_n, \mathcal{F}_n) martyngał, NWSR:

- 1. $\{M_n\}_{n\geq 0}$ jednostajnie całkowalna,
- 2. M_n zbieżny w L^1 (czyli $\exists_M \mathbb{E} |M_n M| \to 0$),
- 3. M_n jest prawostronnie domknięty (czyli \exists_M , M całkowalne, $M_n = \mathbb{E}(M|\mathcal{F}_n)$),
- 4. $\exists_{M_{\infty}}, \ \mathcal{F}_{\infty} = \sigma\left(\bigcup_{n=1}^{\infty} \mathcal{F}_{n}\right)$ -mierzalna, $M_{n} = \mathbb{E}(M_{\infty}|\mathcal{F}_{n}) \ p.n.$

Ponadto wtedy $M_n \to M_\infty$ p.n. i w L^1 .

Wniosek 13 (tw. Levy'ego). X całkowalna, (\mathcal{F}_n) filtracja, $\mathcal{F}_{\infty} = \sigma (\bigcup_{n=1}^{\infty} \mathcal{F}_n)$, $\mathbb{E}(X|\mathcal{F}_n) \to \mathbb{E}(X|\mathcal{F}_{\infty})$ p.n. i w L^1 .

Wniosek 14 (prawo 0-1 Kołmogorowa). X_1, X_2, \ldots niezależne, $A \in \mathcal{F} = \bigcap_{n=1}^{\infty} \sigma(X_n, X_{n+1}, \ldots)$, wówczas $\mathbb{P}(A) \in \{0, 1\}$.