Find the impedance in polar form for each of the components below. Assume  $\omega = 500$ 



$$Z_{R} = 50\Omega$$

$$Z_{L} = j\omega L = j(500)(100 \times 10^{3}) = 50j\Omega$$

$$Z_{C} = \frac{1}{j\omega c} = \frac{1}{j(500)(10 \times 10^{6})} = \frac{200}{j} = -200j\Omega$$



Vs(t)=

1) Ideally and in polar form 8 degrees

Ly mode-y complex number-y a+bi me<sup>3i</sup>

Ly angle -> degrees

18e<sup>45i</sup> = 18e<sup>45i</sup> + 5i = 22e

18e<sup>45i</sup> = 18e<sup>45i</sup> + 5i = 22e

ars = 12.7 + 17.7j



**COLLEGE OF ENGINEERING** 

## Impedances

- Learning Objectives:
  - Determine combinations of impedances connected in series or in parallel.



## Calculator

Find the input impedance Z of the circuit below. Assume that  $\omega = 400 \ rad/s$ .







## Example 1

Find the input impedance Z of the circuit below. Assume that  $\omega = 400 \, rad/s$ .





Find the equivalent impedance.

