## (19) World Intellectual Property Organization

International Bureau





## (43) International Publication Date 27 November 2003 (27.11.2003)

**PCT** 

# (10) International Publication Number WO 03/096984 A2

(51) International Patent Classification<sup>7</sup>: A61K

(21) International Application Number: PCT/US03/15506

(22) International Filing Date: 14 May 2003 (14.05.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

 60/380,761
 14 May 2002 (14.05.2002)
 US

 60/392,782
 28 June 2002 (28.06.2002)
 US

 60/422,933
 31 October 2002 (31.10.2002)
 US

 60/428,033
 20 November 2002 (20.11.2002)
 US

(71) Applicant (for all designated States except US): THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY [US/US]; 1705 El Camino Real, Palo Alto, CA 94306-1106 (US).

(71) Applicants and

- (72) Inventors: SOLLID, Ludvig, M. [NO/NO]; Institute of Immunology, University of Oslo, Rikshospitalet, N-0027 Oslo (NO). HAUSCH, Felix [DE/CH]; Bergstrasse 57/205, CH-8032 Zurich (CH). SHAN, Lu [CN/US]; 63 Abrahms Ct. 4B, Stanford, CA 94305 (US). KHOSLA, Chaitan [US/US]; 740 La Para Avenue, Palo Alto, CA 94306 (US). QUARSTEN, Hanne [NO/NO]; Institute of Immunology, University of Oslo, Rikshospitalet, N-0027 Oslo (NO).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): GRAY, Gary

[US/US]; 460 Gerona Road, Stanford, CA 94305 (US). **KIM, Chu-Young** [KR/US]; 4173 El Camino Real, No. 32, Palo Alto, CA 94306 (US).

- (74) Agent: SHERWOOD, Pamela, J.; Bozicevic, Field & Francis LLP, Suite 200, 200 Middlefield Road, Menlo Park, CA 94025 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### **Published:**

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: DRUG THERAPY FOR CELIAC SPRUE

(57) Abstract: Celiac Sprue and/or dermatitis herpetiformis are treated by interfering with HLA binding of immunogenic gluten peptides. The antigenicity of gluten oligopeptides and the ill effects caused by an immune response thereto are decreased by administration of an HLA-binding peptide inhibitor. Such inhibitors are analogs of immunogenic gluten peptides and (i) retain the ability to bind tightly to HLA molecules; (ii) retain the proteolytic stability of these peptides; but (iii) are unable to activate disease-specific T cells.





## DRUG THERAPY FOR CELIAC SPRUE

### **CROSS-REFERENCE TO RELATED APPLICATIONS**

This application claims priority to U.S. Provisional Application 60/380,761 filed May 14, 2002; to U.S. Provisional Application 60/392,782 filed June 28, 2002; and to U.S. Provisional application no. 60/422,933, filed October 31, 2002, and to U.S. Provisional Application 60/428,033, filed November 20, 2002, each of which are herein specifically incorporated by reference.

## **BACKGROUND OF THE INVENTION**

In 1953, it was first recognized that ingestion of gluten, a common dietary protein present in wheat, barley and rye causes a disease called Celiac Sprue in sensitive individuals. Gluten is a complex mixture of glutamine- and proline-rich gliadin and glutenin molecules and is thought to be responsible for induction of Celiac Sprue. Ingestion of such proteins by sensitive individuals produces flattening of the normally luxurious, rug-like, epithelial lining of the small intestine known to be responsible for efficient and extensive terminal digestion of peptides and other nutrients. Other clinical symptoms of Celiac Sprue include fatigue, chronic diarrhea, malabsorption of nutrients, weight loss, abdominal distension, anemia, as well as an enhanced risk for the development of osteoporosis and intestinal malignancies such as lymphoma and carcinoma. The disease has an incidence of approximately 1 in 200 in European populations and is believed to be significantly under diagnosed in other populations.

A related disease is dermatitis herpetiformis, which is a chronic eruption of the skin characterized by clusters of intensely pruritic vesicles, papules, and urticaria-like lesions. IgA deposits occur in almost all normal-appearing and perilesional skin. Asymptomatic gluten-sensitive enteropathy is found in 75 to 90% of patients and in some of their relatives. Onset is usually gradual. Itching and burning are severe, and scratching often obscures the primary lesions with eczematization of nearby skin, leading to an erroneous diagnosis of eczema. Strict adherence to a gluten-free diet for prolonged periods may control the disease in some patients, obviating or reducing the requirement for drug therapy. Dapsone, sulfapyridine, and colchicines are sometimes prescribed for relief of itching.

Celiac Sprue (CS) is generally considered to be an autoimmune disease and the antibodies found in the serum of the patients support the theory that the disease is immunological in nature. Antibodies to tissue transglutaminase (TG2, tTGase or tTG) and gliadin appear in almost 100% of the patients with active CS, and the presence of such antibodies, particularly of the IgA class, has been used in diagnosis of the disease.

[DQ(a1\*03, b1\*0302)] molecules. It is believed that intestinal damage is caused by interactions between specific gliadin oligopeptides and the HLA-DQ2 or DQ8 antigen, which in turn induce proliferation of T lymphocytes in the sub-epithelial layers. T helper 1 cells and cytokines apparently play a major role in a local inflammatory process leading to villous atrophy of the small intestine.

At the present time, there is no good therapy for the disease, except to avoid completely all foods containing gluten. Although gluten withdrawal has transformed the prognosis for children and substantially improved it for adults, some people still die of the disease, mainly adults who had severe disease at the outset. A leading cause of death is lymphoreticular disease, especially intestinal lymphoma. It is not known whether a glutenfree diet diminishes this risk. Apparent clinical remission is often associated with histologic relapse that is detected only by review biopsies or by increased titers of antibodies to tTGase (also called EMA antibodies).

Gluten is so widely used, for example, in commercial soups, sauces, ice creams, hot dogs, and other foodstuffs, that patients need detailed lists of foodstuffs to avoid and expert advice from a dietitian familiar with celiac disease. Ingesting even small amounts of gluten may prevent remission or induce relapse. Supplementary vitamins, minerals, and hematinics may also be required, depending on deficiency. A few patients respond poorly or not at all to gluten withdrawal, either because the diagnosis is incorrect or because the disease is refractory. In the latter case, oral corticosteroids (e.g., prednisone 10 to 20 mg bid) may induce response.

In view of the serious and widespread nature of Celiac Sprue and the difficulty of removing gluten from the diet, better methods of treatment are of great interest. In particular, there is a need for treatment methods that allow the Celiac Sprue individual to eat gluten-containing foodstuffs without ill effect or at least to tolerate such foodstuffs in small or moderate quantities without inducing relapse. The present invention meets this need for better therapies for Celiac Sprue.

#### SUMMARY OF THE INVENTION

In one aspect, the present invention provides methods for treating Celiac Sprue and/or dermatitis herpetiformis and the symptoms thereof by administration of an HLA-binding peptide inhibitor to the patient. In one embodiment, the HLA-binding peptide inhibitor employed in the method is an analog of an immunogenic gluten peptide, where an immunogenic gluten peptide is altered by the replacement of one or more amino acids, where the replacement may be another naturally occurring amino acid, non-naturally occurring amino acids, modified amino acids, amino acid mimetics, and the like. Analogs of

immunogenic gluten peptides that (i) retain the ability to bind tightly to HLA molecules; (ii) retain the proteolytic stability of these peptides; but (iii) are unable to activate disease-specific or other T cells, are useful agents to treat Celiac Sprue.

[10] In another aspect, the present invention provides novel HLA-binding peptide inhibitors and methods for treating Celiac Sprue and/or dermatitis herpetiformis by administering those compounds.

In another aspect, the invention provides pharmaceutical formulations comprising an HLA-binding peptide inhibitor and a pharmaceutically acceptable carrier. In one embodiment, such formulations comprise an enteric coating that allows delivery of the active agent to the intestine, and the agents are stabilized to resist digestion or acid-catalyzed modification in acidic stomach conditions. In another embodiment, the formulation also comprises one or more glutenases, as described in U.S. Provisional Application 60/392,782 filed June 28, 2002; and U.S. Provisional Application 60/428,033, filed November 20, 2002, both of which are incorporated herein by reference. The invention also provides methods for the administration of enteric formulations of one or more HLA-binding peptide inhibitors to treat Celiac Sprue.

In another aspect, the invention provides methods for screening candidate compounds to determine their suitability for use in the subject methods, by assessing the ability of a candidate agent for its ability to bind to HLA molecules, and/or to inhibit the activity of T cells reactive against gluten antigens.

[13] Methods and compositions are provided for modeling the structure of a soluble (extracellular) domain of human HLA-DQ2 bound to an immunodominant gluten epitope, and for identifying molecules that will compete with the gluten peptide for MHC binding. In one embodiment, the methods of the invention utilize structural modeling, and the identification and design of molecules having a particular structure. The structural data provided herein is used for the rational design of drugs that affect immune system activation in Celiac Sprue and/or dermatitis herpetiformis. Analysis of the crystal structure in conjunction with sequence data identifies residues in the immunogenic gluten peptide that are important for interaction with the MHC molecule, and those that are accessible for interaction with the T cell antigen receptor. This information provides a basis for rational drug design.

These and other aspects and embodiments of the invention and methods for making and using the invention are described in more detail in the description of the drawings and the invention, the examples, the claims, and the drawings that follow.

## DETAILED DESCRIPTION OF THE EMBODIMENTS

Celiac Sprue and/or dermatitis herpetiformis are treated by interfering with HLA binding of immunogenic gluten peptides. Therapeutic benefit can be enhanced in some individuals by increasing the digestion of gluten oligopeptides, whether by pretreatment of foodstuffs to be ingested or by administration of an enzyme capable of digesting the gluten oligopeptides, together with administration of an HLA-binding peptide inhibitor. Gluten oligopeptides are highly resistant to cleavage by gastric and pancreatic peptidases such as pepsin, trypsin, chymotrypsin, and the like, and their prolonged presence in the digestive tract can induce an autoimmune response. The antigenicity of gluten oligopeptides and the ill effects caused by an immune response thereto can be decreased by administration of an HLA-binding peptide inhibitor. Such inhibitors are analogs of immunogenic gluten peptides and (i) retain the ability to bind tightly to HLA molecules; (ii) retain the proteolytic stability of these peptides; but (iii) are unable to activate disease-specific or other T cells.

Methods and compositions are provided for the administration of one or more HLA-binding peptide inhibitors to a patient suffering from Celiac Sprue and/or dermatitis herpetiformis. In some embodiments and for some individuals, the methods of the invention remove the requirement that abstention from ingestion of glutens be maintained to keep the disease in remission. The compositions of the invention include formulations of tTGase inhibitors that comprise an enteric coating that allows delivery of the agents to the intestine in an active form; the agents are stabilized to resist digestion or alternative chemical transformations in acidic stomach conditions. In another embodiment, food is pretreated or combined with glutenase, or a glutenase is co-administered (whether in time or in a formulation of the invention) with an HLA-binding peptide inhibitor of the invention.

[17]

The subject methods are useful for both prophylactic and therapeutic purposes. Thus, as used herein, the term "treating" is used to refer to both prevention of disease, and treatment of a pre-existing condition. The treatment of ongoing disease, to stabilize or improve the clinical symptoms of the patient, is a particularly important benefit provided by the present invention. Such treatment is desirably performed prior to loss of function in the affected tissues; consequently, the prophylactic therapeutic benefits provided by the invention are also important. Evidence of therapeutic effect may be any diminution in the severity of disease, particularly diminution of the severity of such symptoms as fatigue, chronic diarrhea, malabsorption of nutrients, weight loss, abdominal distension, and anemia. Other disease indicia include the presence of antibodies specific for glutens, antibodies specific for tissue transglutaminase, the presence of pro-inflammatory T cells and cytokines, and degradation of the villus structure of the small intestine. Application of the methods and compositions of the invention can result in the improvement of any and all of these disease indicia of Celiac Sprue.

Patients that can benefit from the present invention include both adults and children. Children in particular benefit from prophylactic treatment, as prevention of early exposure to toxic gluten peptides can prevent development of the disease into its more severe forms. Children suitable for prophylaxis in accordance with the methods of the invention can be identified by genetic testing for predisposition, e.g. by HLA typing; by family history, and by other methods known in the art. As is known in the art for other medications, and in accordance with the teachings herein, dosages of the HLA-binding peptide inhibitors of the invention can be adjusted for pediatric use.

Because most proteases and peptidases are unable to hydrolyze the amide bonds of proline residues, the abundance of proline residues in gliadins and related proteins from wheat, rye and barley can constitute a major digestive obstacle for the enzymes involved. This leads to an increased concentration of relatively stable gluten derived oligopeptides in the gut. These stable gluten derived oligopeptides, called "immunogenic oligopeptides" herein, bind to MHC molecules, including HLA HLA-DQ2 or DQ8 molecules, to stimulate an immune response that results in the autoimmune disease aspects of Celiac Sprue. In some cases the enzyme tissue transglutaminase selectively deamidates certain glutamine residues in these peptides, thereby enhancing their potency for the DQ2 ligand binding pocket.

HLA-binding peptide inhibitors of the present invention are analogs of immunogenic gluten oligopeptides that (i) retain the ability to bind tightly to HLA molecules; (ii) retain the proteolytic stability of these peptides; but (iii) are unable to activate disease-specific or other T cells. The inhibitor may comprise oligomers of analogs. Multivalent gluten derived epitopes have markedly enhanced immunogenicity. Consequently, multivalent oligopeptides analogs can also be expected to have increased potency for MHC molecules. In addition, these longer peptides can be more resistant toward intestinal brush border proteolysis.

An immunogenic gluten oligopeptide analog is an analog of a peptide that comprises at least about 8 residues, and may comprise at least about 10 residues; at least about 11 residues, at least about 12 residues, at least about 13 residues, at least about 14 residues, or more, where the term "residue" refers to naturally occurring amino acids, non-naturally occurring amino acids, and amino acid mimetics or derivatives; and where the gluten peptide is altered by the replacement of one or more amino acids. The replacement may be another naturally occurring amino acid, non-naturally occurring amino acids, modified amino acids, amino acid mimetics, and the like; and may further be derivitized to further reduce the affinity of these ligands for disease-specific T cell receptors. The sequence of immunogenic gluten oligopeptides can be determined by one of skill in the art. Immunogenic gliadin oligopeptides are peptides derived during normal human digestion of gliadins and related storage proteins as described above, from dietary cereals, e.g. wheat, rye, barley, and the

like. Such oligopeptides act as antigens for T cells in Celiac Sprue. For binding to Class II MHC proteins, immunogenic peptides are usually from about 8 to 20 amino acids in length, more usually from about 10 to 18 amino acids. Such peptides may include PXP motifs, such as the motif PQPQLP. Determination of whether an oligopeptide is immunogenic for a particular patient is readily determined by standard T cell activation and other assays known to those of skill in the art.

Among gluten proteins with potential harmful effect to Celiac Sprue patients are [22] included the storage proteins of wheat, species of which include Triticum aestivum; Triticum aethiopicum; Triticum baeoticum; Triticum militinae; Triticum monococcum; Triticum sinskajae; Triticum timopheevii; Triticum turgidum; Triticum urartu, Triticum vavilovii; Triticum zhukovskyi; etc. A review of the genes encoding wheat storage proteins may be found in Colot (1990) Genet Eng (N Y) 12:225-41. Gliadin is the alcohol-soluble protein fraction of wheat gluten. Gliadins are typically rich in glutamine and proline, particularly in the N-terminal part. For example, the first 100 amino acids of  $\alpha$ - and  $\gamma$ -gliadins contain ~35% and ~20% of glutamine and proline residues, respectively. Many wheat gliadins have been characterized, and as there are many strains of wheat and other cereals, it is anticipated that many more sequences will be identified using routine methods of molecular biology. Examples of gliadin sequences include but are not limited to wheat alpha gliadin sequences, for example as provided in Genbank, accession numbers AJ133612; AJ133611; AJ133610; AJ133609; AJ133608; AJ133607; AJ133606; AJ133605; AJ133604; AJ133603; AJ133602; D84341.1; U51307; U51306; U51304; U51303; U50984; and U08287. A sequence of wheat omega gliadin is set forth in Genbank accession number AF280605.

Among the immunogenic gluten oligopeptides that may be modified to generate an HLA-binding peptide inhibitor are included the peptide sequence QLQPFPQPELPYP; the sequence PQPELPY; the sequence PFPQPELPYP, PQPELPYPQPQLP, PQQSFPEQQPP, VQGQGIIQPEQPAQ, FPEQPQQPYPQQP, FPQQPEQPYPQQP, FSQPEQEFPQPQ and longer peptides containing such sequences or multiple copies of such sequences. Gliadins, secalins and hordeins contain several PQPQLPY sequences or sequences similar thereto rich in Pro-Gln residues that are high-affinity substrates for tTGase. The tTGase catalyzed deamidation of such sequences increases their affinity for HLA-DQ2, the class II MHC allele present in >90% Celiac Sprue patients. Presentation of these deamidated sequences by DQ2 positive antigen presenting cells effectively stimulates proliferation of gliadin-specific T cells from intestinal biopsies of most Celiac Sprue patients, providing evidence for the proposed mechanism of disease progression in Celiac Sprue.

[24] Analog oligopeptides of the invention comprise at least one difference in amino acid sequence from a native gluten peptide, by the replacement of an amino acid with a different

amino acid; a non-naturally occurring amino acid, a peptidomimetics, substituted amino acid, and the like. An L-amino acid from the native peptide may be altered to any other one of the 20 L-amino acids commonly found in proteins, any one of the corresponding D-amino acids, rare amino acids, such as 4-hydroxyproline, and hydroxylysine, or a non-protein amino acid, such as  $\beta$ -alanine, ornithine and homoserine. Also included with the scope of the present invention are amino acids that have been altered by chemical means such as methylation (e.g.,  $\alpha$ -methylvaline), deamidation, amidation of the C-terminal amino acid by an alkylamine such as ethylamine, ethanolamine, and ethylene diamine, and acylation or methylation of an amino acid side chain function (e.g., acylation of the epsilon amino group of lysine), deimination of arginine to citrulline, isoaspartylation, or phosphorylation on serine, threonine, tyrosine or histidine residues. Importantly, each of these altered amino acids provide a functional handle, e.g. amine, alcohol, aryl halide, and the like, which can be regioselectively derivatized to further reduce the affinity of these ligands for disease-specific T cell receptors. Peptide analogs may be further derivatized with substitutions, including, without limitation, ethers, amines, esters, amides, carbonates, carbamates, carbazates, ureas and C-C coupled derivatives. Other examples include oxidation of alcohols to ketones, followed by further modifications of the resulting carbonyl group, e.g. via preparation of oximes) or the carbon atom adjacent to the ketone. Such derivatives are encompassed by the term "analog".

The proteolytic stability of gluten oligopeptides can be attributed, at least in part, to the presence of PXP motifs, which are resistant to enzymatic degradation. Preferred analogs of immunogenic gluten oligopeptides will comprise one or more proline residues, and may comprise one or more PXP motifs.

An immunogenic gluten peptide of particular interest is the 33-mer LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPP, which is described in detail in International Patent Application US03/04743, herein specifically incorporated by reference. This peptide is both immunogenic and highly stable to proteases. T cell epitopes present in the 33-mer peptide include, *inter alia*, PFPQPQLPY, PQPQLPYPQ, PFPQPELPY; PQPELPYPQ; PYPQPELPY and PYPQPQLPY. In one embodiment of the invention, the immunogenic gluten oligopeptide analog is an analog of a peptide that comprises at least one T cell epitope selected from the group consisting of PFPQPQLPY, PQPQLPYPQ, PFPQPELPY; PQPELPYPQ; PYPQPELPY and PYPQPQLPY.

The structure of an immunogenic gluten oligopeptide bound to a presenting molecule, e.g. HLA-DQ2; HLA-DQ8; etc. can be determined, e.g. by crystallography, NMR, etc., and used to identify residues in a peptide that are involved in the binding to the MHC molecule, and that are involved in the binding to a T cell antigen receptor. Residues identified as accessible for interacting with the T cell receptor may be modified to decrease

the interaction, *e.g.* by increasing steric hindrance, altering hydrophilicity or hydrophobicity, *etc.* Residues identified as involved in interaction with the binding cleft of an MHC molecule may be modified to increase the interaction, *e.g.* by incorporating amino acids known to interact strongly with the binding cleft.

One inhibitor of interest is an oligopeptide or peptidomimetic that comprises the sequence PXPQPELPY, where X is Gly, Ala, Tyr, Trp, Arg, Lys, p-iodo-Phe, 3-iodo-Tyr, p-amino-Phe, 3-amino-Tyr, hydroxylysine, ornithine, Asp, Glu, or any residue that is substantially bulkier or hydrophilic than Phe. Examples of suitable modifications include ethers, amines, esters, amides, carbonates, carbamates, carbazates, ureas and C-C coupled derivatives. Other examples include oxidation of alcohols to ketones, followed by further modifications of the resulting carbonyl group (e.g. via preparation of oximes) or the carbon atom adjacent to the ketone. The peptide may comprise modifications that increase binding potency to an MHC molecule, by varying residues that facilitate peptide docking into the binding cleft. Examples of such residues include Gln-4, Glu-6, Leu-7, and Tyr-9 (numbering based on the epitope PFPQPELPY). Each of these residues interacts closely with several residues in the DQ2 binding pocket. By using structure-based molecular design methods, these interactions can be optimized.

Another inhibitor of interest is a oligopeptide or peptidomimetic that comprises the sequence PFPQX<sub>1</sub>ELX<sub>2</sub>Y, where  $X_1$  and  $X_2$  are independently selected from 4-hydroxy-Pro (either isomer at C-4), 4-amino-Pro (either isomer atC-4), or 3-hydroxy-Pro (either isomer atC-3), and proline, with the proviso that at least one of  $X_1$  and  $X_2$  is a residue other than proline.

Peptides and peptide analogs may be synthesized by standard chemistry techniques, including synthesis by automated procedure. In general, peptide analogs are prepared by solid-phase peptide synthesis methodology which involves coupling each protected amino acid residue to a resin support, preferably a 4-methylbenzhydrylamine resin, by activation with dicyclohexylcarbodiimide to yield a peptide with a C-terminal amide. Alternatively, a chloromethyl resin (Merrifield resin) may be used to yield a peptide with a free carboxylic acid at the C-terminus. After the last residue has been attached, the protected peptide-resin is treated with hydrogen fluoride to cleave the peptide from the resin, as well as deprotect the side chain functional groups. Crude product can be further purified by gel filtration, HPLC, partition chromatography, or ion-exchange chromatography.

The present invention provides crystals and structures of HLA-DQ2 bound to antigen, where the antigen is an immunogenic gluten peptide QLQPFPQPELPYP, which may be referred to for brevity as an "HLA-DQ2/peptide complex". The structures and structural coordinates are useful in structural homology deduction, and in developing and

screening agents that affect the gluten antigen presentation and immunogenicity. The structure information may be provided in a computer readable form, *e.g.* as a database of atomic coordinates, or as a three-dimensional model. The structures are useful, for example, in modeling interactions of the HLA molecule with the antigen, effect of inhibitors, *etc.* The structures are also used to identify molecules that bind to or otherwise interact with structural elements. One aspect of the present invention provides crystals of the HLA-DQ2/peptide complex, which can effectively diffract X-rays for the determination of the atomic coordinates.

The present invention further includes methods of using the structural information provided herein to derive a detailed structure of related peptide binding interactions, particularly other gluten peptides, or analogs and mimetics thereof. Such structural homology determination may utilize modeling, alone or in combination with structure determination.

The present invention provides three-dimensional coordinates for the HLA-DQ2/peptide complex. Such a data set may be provided in computer readable form. Methods of using such coordinates (including in computer readable form) in drug assays and drug screens as exemplified herein, are also part of the present invention. In a particular embodiment of this type, the coordinates contained in the data set can be used to identify potential modulators of the HLA-DQ2/peptide complex, including molecules that mimic the binding of the peptide to the HLA molecule, but which lack, or are substantially diminished in the ability to stimulate a T cell response.

In one embodiment, a potential agent for modulation of HLA-DQ2/peptide complex is selected by performing rational drug design with the three-dimensional coordinates determined for the crystal structures. Preferably the selection is performed in conjunction with computer modeling. Rational design may also be used in the genetic modification of immunogenic peptides by modeling the potential effect of a change in the amino acid sequence.

[35] Computer analysis may be performed with one or more of the computer programs including: GRASP, O (Jones *et al.* (1991) Acta Cryst. **A47**:110); QUANTA, CHARMM, INSIGHT, SYBYL, MACROMODEL; ICM, and CNS (Brunger *et al.* (1998) Acta Cryst. **D54**:905). In a further embodiment of this aspect of the invention, an initial drug screening assay is performed using the three-dimensional structure so obtained, preferably along with a docking computer program. Such computer modeling can be performed with one or more Docking programs such as DOC, GRAM and AUTO DOCK. See, for example, Dunbrack *et al.* (1997) Folding & Design **2**:27-42.

[36] It should be understood that in the drug screening and protein modification assays provided herein, a number of iterative cycles of any or all of the steps may be performed to

optimize the selection. For example, assays and drug screens that monitor the activity of the T cells in the presence and/or absence of a potential inhibitor are also included in the present invention and can be employed as an assay or drug screen, usually as a single step in a multi-step protocol.

The structure of the HLA-DQ2/peptide complex is useful in the design of agents that mimic the activity and/or specificity of the binding interaction. The structures encoded by the data may be computationally evaluated for an ability to associate with chemical entities. This provides insight into an element's ability to associate with chemical entities. Chemical entities that are capable of associating with these domains may alter immunogenicity. Such chemical entities are potential drug candidates. Alternatively, the structure encoded by the data may be displayed in a graphical format. This allows visual inspection of the structure, as well as visual inspection of the structure's association with chemical entities.

In one embodiment of the invention, an invention is provided for evaluating the ability of a chemical entity to associate with any of the molecules or molecular complexes set forth above. This method comprises the steps of employing computational means to perform a fitting operation between the chemical entity and the interacting surface of the polypeptide or nucleic acid; and analyzing the results of the fitting operation to quantify the association. The term "chemical entity", as used herein, refers to chemical compounds, complexes of at least two chemical compounds, and fragments of such compounds or complexes. Molecular design techniques are used to design and select chemical entities, including inhibitory compounds, capable of binding to the HLA molecule, or to the gluten peptide. Such chemical entities may interact directly with certain key features of the structure.

significant contact residue need be present in a competitive binding agent. In fact, it is only those few atoms that shape the loops and actually form important contacts that are likely to be important for activity. Those skilled in the art will be able to identify these important atoms based on the structure model of the invention, which can be constructed using the structural data herein.

The design of compounds that bind to HLA-DQ2 according to this invention generally involves consideration of two factors. First, the compound must be capable of either competing for binding with an immunogenic gluten peptide; or physically and structurally associating with the HLA-DQ2 domains. Non-covalent molecular interactions important in this association include hydrogen bonding, van der Waals interactions, hydrophobic interactions and electrostatic interactions.

[41] The compound must be able to assume a conformation that allows it to interact with the binding pocket. Although certain portions of the compound will not directly participate in

these associations, those portions may still influence the overall conformation of the molecule. This, in turn, may have a significant impact on potency. Such conformational requirements include the overall three-dimensional structure and orientation of the chemical entity in relation to all or a portion of the binding pocket, or the spacing between functional groups of an entity comprising several interacting chemical moieties.

Computer-based methods of analysis fall into two broad classes: database methods [42] and de novo design methods. In database methods the compound of interest is compared to all compounds present in a database of chemical structures and compounds whose structure is in some way similar to the compound of interest are identified. The structures in the database are based on either experimental data, generated by NMR or x-ray crystallography, or modeled three-dimensional structures based on two-dimensional data. In de novo design methods, models of compounds whose structure is in some way similar to the compound of interest are generated by a computer program using information derived from known structures, e.g. data generated by x-ray crystallography and/or theoretical rules. Such design methods can build a compound having a desired structure in either an atomby-atom manner or by assembling stored small molecular fragments. Selected fragments or chemical entities may then be positioned in a variety of orientations, or docked, within the interacting surface of the RNA. Docking may be accomplished using software such as Quanta (Molecular Simulations, San Diego, CA) and Sybyl, followed by energy minimization and molecular dynamics with standard molecular mechanics force fields, such as CHARMM and AMBER.

fragments or chemical entities. These include: SmoG, GRID (Goodford (1985) J. Med. Chem., 28, pp. 849-857; Oxford University, Oxford, UK; MCSS (Miranker *et al.* (1991) Proteins: Structure, Function and Genetics, 11, pp. 29-34; Molecular Simulations, San Diego, CA); AUTODOCK (Goodsell *et al.*, (1990) Proteins: Structure, Function, and Genetics, 8, pp. 195-202; Scripps Research Institute, La Jolla, Calif.); and DOCK (Kuntz *et al.* (1982) J. Mol. Biol., 161:269-288; University of California, San Francisco, Calif.)

Once suitable chemical entities or fragments have been selected, they can be assembled into a single compound or complex. Assembly may be preceded by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates. Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include: CAVEAT (Bartlett *et al.* (1989) In Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc., 78, pp. 182-196; University of California, Berkeley, Calif.); 3D Database systems such as MACCS-3D (MDL Information Systems, San Leandro, Calif); and HOOK (available from Molecular Simulations, San Diego, CA).

Other molecular modeling techniques may also be employed in accordance with this invention. See, e.g., N. C. Cohen et al., "Molecular Modeling Software and Methods for Medicinal Chemistry, J. Med. Chem., 33, pp. 883-894 (1990). See also, M. A. Navia et al., "The Use of Structural Information in Drug Design", Current Opinions in Structural Biology, 2, pp. 202-210 (1992).

Once the binding entity has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted chemical compounds may then be analyzed for efficiency of fit by the same computer methods described above.

Another approach made possible and enabled by this invention, is the computational screening of small molecule databases. In this screening, the quality of fit of such entities to the binding site may be judged either by shape complementarity or by estimated interaction energy. Generally the tighter the fit, the lower the steric hindrances, and the greater the attractive forces, the more potent the potential modulator since these properties are consistent with a tighter binding constant. Furthermore, the more specificity in the design of a potential drug the more likely that the drug will not interact as well with other proteins. This will minimize potential side effects due to unwanted interactions with other proteins.

Compounds of interest can be systematically modified by computer modeling programs until one or more promising potential analogs are identified. In addition systematic modification of selected analogs can then be systematically modified by computer modeling programs until one or more potential analogs are identified. Alternatively a potential modulator could be obtained by initially screening a random peptide library, for example one produced by recombinant bacteriophage. A peptide selected in this manner would then be systematically modified by computer modeling programs as described above, and then treated analogously to a structural analog.

Once a potential modulator/inhibitor is identified it can be either selected from a library of chemicals as are commercially available from most large chemical companies including Merck, GlaxoWelcome, Bristol Meyers Squib, Monsanto/Searle, Eli Lilly, Novartis and Pharmacia UpJohn, or alternatively the potential modulator may be synthesized *de novo*. The *de novo* synthesis of one or even a relatively small group of specific compounds is reasonable in the art of drug design.

[50] The success of both database and *de novo* methods in identifying compounds with activities similar to the compound of interest depends on the identification of the functionally

relevant portion of the compound of interest. For drugs, the functionally relevant portion may be referred to as a pharmacophore, *i.e.* an arrangement of structural features and functional groups important for biological activity. Not all identified compounds having the desired pharmacophore will act as a modulator of inflammation. The actual activity can be finally determined only by measuring the activity of the compound in relevant biological assays. However, the methods of the invention are extremely valuable because they can be used to greatly reduce the number of compounds that must be tested to identify an actual inhibitor.

In order to determine the biological activity of a candidate pharmacophore it is preferable to measure biological activity at several concentrations of candidate compound. The activity at a given concentration of candidate compound can be tested in a number of ways.

[52] For example, an HLA molecule can be attached to a solid support. Methods for placing proteins on a solid support are well known in the art and include such steps as linking biotin to the protein, and linking avidin to the solid support. The solid support can be washed to remove unreacted species. A solution of a labeled candidate agent can be contacted with the solid support. The solid support is washed again to remove the potential modulator not bound to the support. The amount of labeled potential modulator remaining with the solid support and thereby bound to the protein can be determined. Alternatively, or in addition, the dissociation constant between the labeled candidate agent and the protein can be determined.

Crystals of the binding complex of the present invention can be grown by a number of techniques including batch crystallization, vapor diffusion (either by sitting drop or hanging drop) and by microdialysis. Seeding of the crystals in some instances is required to obtain X-ray quality crystals. Standard micro and/or macro seeding of crystals may therefore be used. The crystals may be shrunk by transfer into solutions of different composition, e.g. by the addition of metal ions such as Mn<sup>2+</sup>, Pb<sup>2+</sup>, etc. Crystals may also be generated that include cofactors, substrates, candidate inhibitors, and the like, that interact with the protein, e.g. by cocrystallization of soaking protein crystals in a solution comprising an inhibitor or other agent.

by using X-rays produced in a conventional source (such as a sealed tube or a rotating anode) or using a synchrotron source. Methods of characterization include, but are not limited to, precision photography, oscillation photography and diffractometer data collection. Selenium-methionine may be used as described in the examples provided herein, or alternatively a heavy metal derivative data set (e.g., using PCMB) may be used in place of the selenium-methionine derivatization.

Electron density maps may be built from crystals using phase information from multiple isomorphous heavy-atom derivatives, molecular replacement or selenomethionine incorporated multiwavelength anomalous disperson technique. Model building is facilitated by the use of sequence markers, especially selenomethionine residues. Anomalous difference Fourier maps may be calculated with data from selenomethionine-substituted HLA-DQ2/ GLUTEN EPITOPE and with experimental multiple isomorphous replacement with anomalous scattering (MIRAS) phases (Hemming and Edwards (2000) J. Biol. Chem. 275:2288). Maps are improved by phase combination, where MIRAS phases are combined by the program SIGMAA (Jones et al., supra.) Phase combination may be followed by solvent flattening with DM (Carson (1997) Methods Enzymol. 277:493). Improved maps may be obtained by combination of the MIRAS phases with improved phases from combined polyalanine and atomic models in an iterative process. The model can be refined by classical positional and B-factor minimization, and with manual rebuilding.

HLA-DQ2/peptide complex structure models and databases of structure information are provided. The structural models find use in determining the structure of related and/or analogous peptide complexes. In some cases, modeling will be based on the provided structure. In other embodiments, modeling will utilize the provided structure in combination with features present in homologous and/or related structures, where relationship may be defined by protein sequence similarity, or structural similarity, e.g. in the presence of specific features as described above.

The structure model may be implemented in hardware or software, or a combination of both. For most purposes, in order to use the structure coordinates generated for the structure, it is necessary to convert them into a three-dimensional shape. This is achieved through the use of free or commercially available software that is capable of generating three-dimensional graphical representations of molecules or portions thereof from a set of structure coordinates.

In one embodiment of the invention, a machine-readable storage medium is provided, the medium comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of any of the structures of this invention that have been described above. Specifically, the computer-readable storage medium is capable of displaying a graphical three-dimensional representation of the HLA-DQ2/peptide complex.

Thus, in accordance with the present invention, data providing structural coordinates, alone or in combination with software capable of displaying the resulting three dimensional structure of the complex, portions thereof, and their structurally similar analogs, is stored in a machine-readable storage medium. Such data may be used for a variety of

purposes, such as drug discovery, analysis of interactions between cellular components during translation, modeling of vaccines, and the like.

Preferably, the invention is implemented in computer programs executing on programmable computers, comprising a processor, a data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. Program code is applied to input data to perform the functions described above and generate output information. The output information is applied to one or more output devices, in known fashion. The computer may be, for example, a personal computer, microcomputer, or workstation of conventional design.

Each program is preferably implemented in a high level procedural or object oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language.

[62] Each such computer program is preferably stored on a storage media or device (e.g., ROM or magnetic diskette) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.

The HLA-binding peptide inhibitors are incorporated into a variety of formulations for therapeutic administration. In one aspect, the agents are formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants, gels, microspheres, and aerosols. As such, administration can be achieved in various ways, usually by oral administration. The HLA-binding peptide inhibitors may be systemic after administration or may be localized by virtue of the formulation, or by the use of an implant that acts to retain the active dose at the site of implantation.

In pharmaceutical dosage forms, the HLA-binding peptide inhibitors may be administered in the form of their pharmaceutically acceptable salts, or they may also be used alone or in appropriate association, as well as in combination with other pharmaceutically active compounds. The agents may be combined, as previously described, to provide a cocktail of activities. The following methods and excipients are merely exemplary and are in no way limiting.

For oral preparations, the agents can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional additives, such as lactose, mannitol, corn starch or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with disintegrators, such as corn starch, potato starch or sodium carboxymethylcellulose; with lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives and flavoring agents.

In one embodiment of the invention, the oral formulations comprise enteric coatings, so that the active agent is delivered to the intestinal tract. Enteric formulations are often used to protect an active ingredient from the strongly acid contents of the stomach. Such formulations are created by coating a solid dosage form with a film of a polymer that is insoluble in acid environments, and soluble in basic environments. Exemplary films are cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxypropyl methylcellulose acetate succinate, methacrylate copolymers, and cellulose acetate phthalate.

Other enteric formulation comprise engineered polymer microspheres made of biologically erodable polymers, which display strong adhesive interactions with gastrointestinal mucus and cellular linings, can traverse both the mucosal absorptive epithelium and the follicle-associated epithelium covering the lymphoid tissue of Peyer's patches. The polymers maintain contact with intestinal epithelium for extended periods of time and actually penetrate it, through and between cells. See, for example, Mathiowitz et al. (1997) Nature 386 (6623): 410-414. Drug delivery systems can also utilize a core of superporous hydrogels (SPH) and SPH composite (SPHC), as described by Dorkoosh et al. (2001) J Control Release 71(3):307-18.

Formulations are typically provided in a unit dosage form, where the term "unit dosage form," refers to physically discrete units suitable as unitary dosages for human subjects, each unit containing a predetermined quantity of glutenase calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle. The specifications for the unit dosage forms of the present invention depend on the particular complex employed and the effect to be achieved, and the pharmacodynamics associated with each complex in the host.

The pharmaceutically acceptable excipients, such as vehicles, adjuvants, carriers or diluents, are readily available to the public. Moreover, pharmaceutically acceptable auxiliary substances, such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.

#### **METHODS OF TREATMENT**

The subject methods are used to treat individuals suffering from Celiac Sprue and/or dermatitis herpetiformis, by administering an effective dose through a pharmaceutical formulation. Diagnosis of suitable patients may utilize a variety of criteria known to those of skill in the art. A quantitative increase in antibodies specific for gliadin, and/or tissue transglutaminase is indicative of the disease. Family histories and the presence of the HLA alleles HLA-DQ2 [DQ(a1\*05, b1\*02)] and/or DQ8 [DQ(a1\*03, b1\*0302)] are indicative of a susceptibility to the disease. Specific peptide analogs may be administered therapeutically to decrease inflammation, and/or to induce antigen-specific tolerance to treat autoimmunity. Methods for the delivery of peptides that are altered from a native peptide are known in the art. Alteration of native peptides with selective changes of crucial residues can induce unresponsiveness or change the responsiveness of antigen-specific autoreactive T cells.

The therapeutic effect may be measured in terms of clinical outcome, or may rely on immunological or biochemical tests. Suppression of the deleterious T-cell activity can be measured by enumeration of reactive Th1 cells, by quantitating the release of cytokines at the sites of lesions, or using other assays for the presence of autoimmune T cells known in the art. Alternatively, one may look for a reduction in symptoms of a disease.

Various methods for administration may be employed. The dosage of the [72] therapeutic formulation will vary widely, depending upon the nature of the disease, the frequency of administration, the manner of administration, the clearance of the agent from the host, and the like. Such treatment could either be before meals or on a once-a-day basis or on a once-a-week basis, depending on the half-life of the inhibitor. A typical dose is at least about 1  $\mu g$ , usually at least about 10  $\mu g$ , more usually at least about 0.1 mg, and not more than about 10 mg, usually not more than about 1 mg. Enteric coating of these peptides may also enhance their lifetimes in the gut, thereby permitting delivery to the proximal and distal small intestinal tissue. Treatment of other autoimmune disorders such as Type I diabetes with such ligands may involve oral, intravenous or intramuscular administration. The initial dose may be larger, followed by smaller maintenance doses. The dose may be administered as infrequently as weekly or biweekly, or more often fractionated into smaller doses and administered daily, with meals, semi-weekly, etc. to maintain an effective dosage level.

The HLA-binding peptide inhibitors of the invention may be administered in the treatment of Type 1 diabetes (IDDM). IDDM and celiac disease are both immunologic disorders where specific HLA alleles are associated with disease risk. Transglutaminase autoantibodies can be found in some patients with IDDM. The prevalence of transglutaminase autoantibodies is higher in diabetic patients with HLA DQ2 or DQ8.

Human type I or insulin-dependent diabetes mellitus (IDDM) is characterized by autoimmune destruction of the β cells in the pancreatic islets of Langerhans. The depletion of β cells results in an inability to regulate levels of glucose in the blood. Overt diabetes occurs when the level of glucose in the blood rises above a specific level, usually about 250 mg/dl. In humans a long presymptomatic period precedes the onset of diabetes. During this period there is a gradual loss of pancreatic beta cell function. IDDM is currently treated by monitoring blood glucose levels to guide injection, or pump-based delivery, of recombinant insulin. Diet and exercise regimens contribute to achieving adequate blood glucose control. The inhibitors of the invention may be administered alone, or in combination with other therapies. The route of administration may be oral, as described for treatment of Celiac Sprue, or may be injected, e.g. i.v., i.m., etc. Administration may be performed during the pre-symptomatic phase, or in overt diabetes.

#### **EXPERIMENTAL**

#### **Example**

It has long been known that the principal toxic components of wheat gluten are a family of closely related Pro-Gln rich proteins called gliadins. Recent reports have suggested that peptides from a short segment of α-gliadin appear to account for most of the gluten-specific recognition by CD4+ T cells from Celiac Sprue patients. These peptides are substrates of tissue transglutaminase (tTGase), the primary auto-antigen in Celiac Sprue, and the products of this enzymatic reaction bind to the class II HLA DQ2 molecule. This "immunodominant" region of α-gliadin is part of an unusually long proteolytic product generated by the digestive process that: (a) is exceptionally resistant to further breakdown by gastric, pancreatic and intestinal brush border proteases; (b) is the highest specificity substrate of human tissue transglutaminase (tTGase) discovered to date; (c) contains at least six overlapping copies of epitopes known to be recognized by patient derived T cells; (d) stimulates representative T cell clones that recognize these epitopes with submicromolar efficacy; and (e) has homologs in proteins from all toxic foodgrains but no homologs in non-toxic foodgrain proteins.

Identification of stable peptides from gastric protease, pancreatic protease and brush border membrane peptidase catalyzed digestion of recombinant  $\alpha 2$ -gliadin:  $\alpha 2$ -gliadin, a representative  $\alpha$ -gliadin (Arentz-Hansen et al. (2000) Gut **46**:46), was expressed in recombinant form and purified from E. coli. The  $\alpha 2$ -gliadin gene was cloned in pET28a plasmid (Novagen) and transformed into the expression host BL21(DE3) (Novagen). The transformed cells were grown in 1-liter cultures of LB media containing 50  $\mu$ g/ml of

kanamycin at 37 °C until the OD600 0.6-1 was achieved. The expression of  $\alpha$ 2-gliadin protein was induced with the addition of 0.4 mM isopropyl  $\alpha$ -D-thiogalactoside (Sigma) and the cultures were further incubated at 37 °C for 20 hours. The cells expressing the recombinant  $\alpha 2$ -gliadin were centrifuged at 3600 rpm for 30 minutes. The pellet was resuspended in 15 ml of disruption buffer (200 mM sodium phosphate; 200 mM NaCl; 2.5 mM DTT; 1.5 mM benzamidine; 2.5 mM EDTA; 2 mg/L pepstatin; 2 mg/L leupeptin; 30% v/v glycerol) and lysed by sonication (1 minute; output control set to 6). After centrifugation at 45000g for 45 min, the supernatant was discarded and the pellet containing gliadin protein was resuspended in 50 ml of 7M urea in 50 mM Tris (pH = 8.0). The suspension was again centrifuged at 45000g for 45 min and the supernatant was harvested for purification. The supernatant containing  $\alpha 2$ -gliadin was incubated with 1 ml of nickel-nitrilotriacetic acid resin (Ni-NTA; Qiagen) overnight and then batch-loaded on a column with 2 ml of Ni-NTA. The column was washed with 7M urea in 50 mM Tris (pH = 8.0) and  $\alpha$ 2-gliadin was eluted with 200 mM imidazole, 7 M urea in 50 mM Tris (pH = 4.5). The fractions containing  $\alpha$ 2-gliadin were pooled into a final concentration of 70% ethanol solution and two volumes of 1.5M NaCl were added to precipitate the protein. The solution was incubated at 4 °C overnight and the final precipitate was collected by centrifugation at 45000 g for 30 min, rinsed in water, and re-centrifuged to remove the urea. The final purification step of the  $\alpha$ -2 gliadin was developed with reverse-phase HPLC. The Ni-NTA purified protein fractions were pooled in 7 M urea buffer and injected to a Vydac (Hesperia, CA) polystyrene reversephase column (i.d. 4.6 mm × 25 cm) with the starting solvent (30% of solvent B: 1:1 HPLCgrade acetonitrile/isopropanol: 0.1% TFA). Solvent A was an aqueous solution with 0.1% TFA. The separation gradient extended from 30-100% of solvent B over 120 min at a flow rate of 0.8 ml/min.

Table 2, Amount of Peptides Digested after 15 hours

|      | 33-mer | Control A | Control B |
|------|--------|-----------|-----------|
| H1P0 | <20%   | >90%      | >90%      |
| H2P0 | <20%   | >61%      | >85%      |
| H3P0 | <20%   | >87%      | >95%      |
| H4P0 | <20%   | >96%      | >95%      |
| H5P0 | <20%   | >96%      | >95%      |

The purity of the recombinant gliadin was >95%, which allowed for facile identification and assignment of proteolytic products by LC-MS/MS/UV. Although many previous studies utilized pepsin/trypsin treated gliadins, it was found that, among gastric and pancreatic proteases, chymotrypsin played a major role in the breakdown of  $\alpha$ 2-gliadin,

To establish the physiological relevance of this peptide, composite gastric/pancreatic enzymatic digestion of  $\alpha 2$  gliadin was then examined. As expected, enzymatic digestion with pepsin (1:100 w/w ratio), trypsin (1:100), chymotrypsin (1:100), elastase (1:500) and carboxypeptidase (1:100) was quite efficient, leaving behind only a few peptides longer than 9 residues (the minimum size for a peptide to show class II MHC mediated antigenicity). In addition to the above-mentioned 33-mer, the peptide WQIPEQSR was also identified, and was used as a control in many of the following studies.

The small intestinal brush-border membrane (BBM) enzymes are known to be vital for breaking down any remaining peptides from gastric/pancreatic digestion into amino acids, dipeptides or tripeptides for nutritional uptake. Therefore a comprehensive analysis of gliadin metabolism also required investigations into BBM processing of gliadin peptides of reasonable length derived from gastric and pancreatic protease treatment. BBM fractions were prepared from rat small intestinal mucosa. The specific activities of known BBM peptidases were verified to be within the previously reported range. Whereas the half-life of disappearance of WQIPEQSR was ~60 min in the presence of 12 ng/µl BBM protein, the half-life of LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPP digestion was >20 h. Therefore, the latter peptide remains intact throughout the digestive process in the stomach and upper small intestine, and is poised to act as a potential antigen for T cell proliferation and intestinal toxicity in genetically susceptible individuals.

### Example 2

The 33-mer gliadin peptide is an excellent substrate for tTGase, and the resulting product is a highly potent activator of patient-derived T cells: A number of recent studies have demonstrated that regiospecific deamidation of immunogenic gliadin peptides by tTGase increases their affinity for HLA-DQ2 as well as the potency with which they activate patient-derived gluten-specific T cells. It has been shown the specificity of tTGase for certain short antigenic peptides derived from gliadin is higher than its specificity toward its physiological target site in fibronectin, for example, the specificity of tTGase for the  $\alpha$ -gliadin

Structural characteristics of the 33-mer gliadin peptide and its naturally occurring [81] homologs: Sequence alignment searches using BLASTP in all non-redundant protein databases revealed several homologs (E-value < 0.001) of the 33-mer gliadin peptide. Interestingly, foodgrain derived homologs were only found in gliadins (from wheat), hordeins (from barley) and secalins (from rye), all of which have been proven to be toxic to Celiac patients (Figure 7). Nontoxic foodgrain proteins, such as avenins (in oats), rice and maize, do not contain homologous sequences to the 33-mer gliadin. In contrast, a BLASTP search with the entire  $\alpha$ 2-gliadin sequence identified foodgrain protein homologs from both toxic and nontoxic proteins. Based on available information regarding the substrate specificities of gastric, pancreatic and BBM proteases and peptidases, it is predicted that, although most gluten homologs to the 33-mer gliadin peptide contained multiple proteolytic sites and are therefore unlikely to be completely stable toward digestion, several sequences from wheat, rye and barley are expected to be comparably resistant to gastric and intestinal proteolysis. The stable peptide homologs to the 33-mer α2-gliadin peptide are QPQPFPPQLPYPQTQPFPPQQPYPQPQPQPQPQPQ (from  $\alpha$ 1- and  $\alpha$ 6-gliadins); QQQPFPQQPIPQQPQPYPQQPQPYPQQPFPPQQPF (from B1 hordein); QPFPQPQQTFPQQPQLPFPQQPQQPFPQPQ (from γ-gliadin); VQWPQQQPVPQPHQPF (from  $\gamma$ -gliadin), VQGQGIIQPQQPAQ (from  $\gamma$ -gliadin), FLQPQQPFPQQPQQPYPQQPQQPFPQ (from  $\gamma$ -gliadin), FSQPQQQFPQPQQPQQSFPQQQPP (from  $\gamma$ -gliadin), QPFPQPQQPTPIQPQQPFPQRPQQPFPQPQ (from ω-secalin). These stable peptides are all located at the N-terminal region of the corresponding proteins. The presence of proline residues after otherwise cleavable residues in these peptides would contribute to their proteolytic stability.

The unique primary sequence of the 33-mer gliadin peptide also had homologs among a few non-gluten proteins. Among the strongest homologs were internal sequences from pertactin (a highly immunogenic protein from *Bordetella pertussis*) and a mammalian inositol-polyphosphate 5-phosphatase of unknown function. In both cases available information suggested that the homology could have biologically relevance. For example, the region of pertactin that is homologous to the 33-mer gliadin peptide is known to be part of the immunodominant segment of the protein. In the case of the homologous phosphatase, the corresponding peptide region of the phosphatase is known to be responsible for vesicular trafficking of the phosphatase to the cytoplasmic Golgi. In analogy with the current picture of how gliadin peptides are presented to HLA-DQ2 via a tTGase mediated pathway, these Pro-Gln-rich segments of both pertactin and the phosphatase are likely to be good tTGase substrates.

## Example 3

[83] X-ray Crystallographic Analysis of soluble HLA-DQ2. The soluble extracellular domains of the  $\alpha$ - and  $\beta$ -chains of HLA-DQ2 were co-expressed in insect cells using a baculovirus expression system (pAcAB3 vector, BD Biosciences). The DNA sequence of the engineered  $\alpha$ - and  $\beta$ -chains is provided in SEQ ID NO:1 and SEQ ID NO:2. The  $\beta$ -chain is fused to a sequence encoding the epitope QLQPFPQPELPY at its N-terminal end, and to a biotin recognition sequence at its C-terminal end. Both subunits are also fused to complementary leucine zipper sequences at their C-terminal ends. Since a Factor Xa proteolysis site is engineered between the leucine zipper sequences and the DQ2 subunits, prior to crystallization the leucine zippers were removed from DQ2 by Factor Xa digestion.

[84]

Initial purification of the DQ2 heterodimer from the culture medium was performed on an immunoaffinity column containing an anti-DQ2 monoclonal antibody (2.12.E11) bound to a Protein A Sepharose CL-4B column. Subsequently DQ2 was treated with Factor Xa, and purified from the digestion mixture by anion-exchange chromatography followed by size-exclusion chromatography, and concentrated to 4 mg/ml in 25 mM Tris-HCl, pH 8.0. Crystals of the DQ2-epitope complex were obtained using the hanging drop method. Typically, 2  $\mu$ L of protein solution (2~4 mg/ml DQ2, 25 mM Tris-HCl, pH 8.0) and 2  $\mu$ L of precipitant buffer (200 mM ammonium acetate, 40 mM ammonium sulfate, 4% ethylene glycol, 22~26% PEG 3350) were combined in a single drop hanging over 1 mL of precipitant buffer at room temperature. Small crystals appeared within three days and grew to full size in two weeks.

[85] For data collection, crystals were transferred to a cryoprotectant solution (mother liquor containing 28% ethylene glycol) for 2 hours, and then flash cooled at 100K in liquid nitrogen. X-ray diffraction data were collected from a single crystal to 2.22 Å resolution at

beamline 11-1 of the Stanford Synchrotron Radiation Laboratory using a Quantum 315 CCD detector. Oscillation images were processed with DENZO and data reduction was carried out with SCALEPACK.

The structure of DQ2-epitope complex was determined by molecular replacement using the program AMoRe in the CCP4 suite of programs. The 2.4 Å resolution structure of insulin peptide-HLA-DQ8 complex (RCSB accession code: 1JK8) minus the insulin peptide and solvent molecules was used as the search model. After initial refinement with the maximum likelihood function of program REFMAC, iterative cycles of refinement including simulated annealing, temperature factor refinement, and energy minimization were made with the program CNS. Model building and correction were performed using  $\sigma_A$ -weighted  $F_o$ - $F_c$  and  $2F_o$ - $F_c$  electron density maps with the program O. The current model has R-factor of 0.2209 with a  $R_{\rm free}$  of 0.2793 at 2.22 Å resolution. Analysis of the Ramachandran plot generated using the program PROCHECK shows that 91.2 % of residues are in most favored regions, 7.9 % are in additional allowed regions, 0.5 % are in generously allowed regions, and 0.5 % are in disallowed regions.

There are two molecules of DQ2-epitope in the asymmetric unit. In the first complex,  $\alpha$ -chain of DQ2,  $\beta$ -chain of DQ2, and the alpha-I epitope peptide (sequence QLQPFPQPELPY) are designated A, B, and C respectively. In the second complex,  $\alpha$ -chain,  $\beta$ -chain, and epitope peptide are designated D, E, and F respectively. The model includes 354 water molecules (name: HOH) and 4 ethylene glycol molecules (name: EDO).

Thr-106—His-112 region in chain B and Arg-105—His-112 region in chain E are disordered and thus absent from the model. Superposition of the DQ8 structure suggests that these regions form an extended loop. Side chain conformation of the following residues are undefined due to weak electron density in the corresponding region and therefore only their backbone atoms are included in the model: Asp-135 (in chain B), Leu-2, Gln-3, Tyr-12 (in chain C), Asp-135, Gln-136 (in chain E), and Leu-2, Gln-3 (in chain F).

[89] Structure-based design of DQ2 binding peptide inhibitors. The crystal structure of the DQ2-epitope complex reveals precisely which atoms in the peptide QLQPFPQPELPYP point outward (by inference into the T cell receptor binding pocket). Substitutions at these atoms can yield altered peptide ligands that retain the ability to bind tightly to DQ2 but are no longer able to allow docking of the DQ2-peptide complex into disease specific T cell receptors.

[90] The coordinate of the structure are as follows:

## Coordinates

| REMARK peptide lin | nk removed  | (appli | ed DPI | EP): fro | om B | 105 | to B | 113 |
|--------------------|-------------|--------|--------|----------|------|-----|------|-----|
| REMARK peptide lin | nk removed  | (appli | ed DPI | EP): fro | om E | 104 | to E | 113 |
| REMARK disulphide  |             |        |        | to A     | 163  |     |      |     |
| REMARK disulphide  | added: from | n B    | 15     | to B     | 79   |     |      |     |
| REMARK disulphide  | added: from | n B    | 117    | to B     | 173  |     |      |     |

163

107 to D

REMARK disulphide added: from D

| REMARK       | _        | -        |                      |   |        |    | 15           |     | E              | 79       |      |                |              |
|--------------|----------|----------|----------------------|---|--------|----|--------------|-----|----------------|----------|------|----------------|--------------|
| REMARK       | _        | •        |                      |   |        |    |              |     |                | 173      |      |                |              |
|              |          | •        |                      |   |        |    |              |     |                | by user: | kim  |                |              |
| REMARK       |          | -        |                      |   |        |    |              |     |                | •        |      |                |              |
| MOTA         | 1        | CB       | VAL                  | A | 2      | 31 | .060         | 3   | 8.851          | 4.095    | 1.00 | 39.43          | A            |
| MOTA         | 2        | CG1      | VAL                  | A | 2      | 30 | .078         | 2   | 2.835          | 3.531    | 1.00 | 40.06          | A            |
| ATOM         | 3        | CG2      | VAL                  | A | 2      | 30 | .370         | 5   | .185           | 4.344    | 1.00 | 39.97          | $\mathbf{A}$ |
| MOTA         | 4        | C        | VAL                  | A | 2      | 30 | .653         | 3   | 3.406          | 6.542    | 1.00 | 36.80          | A            |
| MOTA         | 5        | 0        | VAL                  | A | 2      | 29 | .644         |     | 2.702          |          |      | 38.25          | A            |
| MOTA         | 6        | N        | VAL                  | A | 2      | 32 | .189         | 1   | 1.926          |          |      | 36.80          | A            |
| ATOM         | 7        | CA       | VAL                  |   | 2      |    | .684         |     | 3.321          |          |      | 37.95          | A            |
| ATOM         | 8        | N        | ALA                  |   | 3      |    | .910         |     | .267           |          |      | 34.99          |              |
| ATOM         | 9        | CA       | ALA                  |   | 3      |    | .003         |     | 1.416          |          |      | 32.94          | A            |
| MOTA         | 10       | CB       | ALA                  |   | 3      |    | .325         |     | 3.368          |          |      | 33.34          | A            |
| ATOM         | 11       | C        | ALA                  |   | 3      |    | .094         |     | 5.805          |          |      | 30.81          | A            |
| ATOM         | 12       | 0        | ALA                  |   | 3      |    | .980         |     | 5.583          |          |      | 29.57<br>28.70 | A<br>A       |
| ATOM         | 13       | N        | ASP                  |   | 4<br>4 |    | .172<br>.173 |     | 7.416          |          |      | 26.95          | A            |
| ATOM         | 14<br>15 | CA<br>CB | ASP<br>ASP           |   | 4      |    | .812         |     | 7.722          |          |      | 28.65          | A            |
| ATOM<br>ATOM | 15<br>16 | CG       | ASP                  |   | 4      |    | .687         |     | 7.845          |          |      | 31.67          |              |
| ATOM         | 17       |          | ASP                  |   | 4      |    | .904         |     | 3.417          |          |      | 33.31          | A            |
| ATOM         | 18       |          | ASP                  |   | 4      |    | .568         |     | 7.381          |          |      | 33.31          | A            |
| ATOM         | 19       | C        | ASP                  |   | 4      |    | .254         |     | 7.432          |          |      | 26.51          | A            |
| ATOM         | 20       | 0        | ASP                  |   | 4      |    | .857         |     | 3.469          |          |      | 25.25          | A            |
| ATOM         | 21       | N        | HIS                  |   | 5      |    | .493         |     | 5.277          |          |      | 26.22          | A            |
| ATOM         | 22       | CA       | HIS                  |   | 5      | 31 | .527         | e   | 5.164          | 13.544   | 1.00 | 26.52          | A            |
| ATOM         | 23       | CB       | HIS                  | A | 5      | 30 | .939         | E   | 3.339          | 14.950   | 1.00 | 25.34          | A            |
| MOTA         | 24       | CG       | HIS                  | A | 5      | 30 | .240         | -   | 7.647          | 15.156   | 1.00 | 28.69          | A            |
| ATOM         | 25       | CD2      | HIS                  | A | 5      | 30 | .716         | 8   | 3.870          | 15.492   | 1.00 | 29.15          | A            |
| MOTA         | 26       | ND1      | HIS                  | A | 5      | 28 | .881         | 7   | 7.801          | 14.979   | 1.00 | 28.23          | A            |
| MOTA         | 27       | CE1      | HIS                  | A | 5      | 28 | .550         | 9   | 9.062          | 15.198   | 1.00 | 29.92          | A            |
| ATOM         | 28       | NĖ2      | HIS                  | A | 5      | 29 | .645         |     | 732            |          |      |                | A            |
| MOTA         | 29       | C        | HIS                  |   | 5      |    | .246         |     | 1.826          |          | 1.00 | 25.79          | A            |
| ATOM         | 30       | 0        | HIS                  |   | 5      |    | .630         |     | 3.785          |          | 1.00 |                | A            |
| ATOM         | 31       | N        | VAL                  |   | 6      |    | .559         |     | 1.866          |          |      | 24.52          | A            |
| ATOM         | 32       | CA       | VAL                  |   | 6      |    | .385         |     | 3.667          |          |      |                | A            |
| ATOM         | 33       | CB       | VAL                  |   | 6      |    | .311         |     | 3.657          |          |      |                | A            |
| ATOM         | 34       | CG1      | VAL                  |   | 6<br>6 |    | .187<br>.489 |     | 2.414<br>3.708 |          | 1.00 |                | A<br>A       |
| ATOM         | 35<br>36 | CG2<br>C | VAL<br>VAL           |   | 6      |    | .409<br>.256 |     | 3.633          |          |      |                | A            |
| ATOM<br>ATOM | 36<br>37 | 0        | VAL                  |   | 6      |    | .230<br>.937 |     | 1.606          |          |      |                | A            |
| ATOM         | 38       | Ŋ        | ALA                  |   | 7      |    | .239         |     | 2.513          |          |      |                | A            |
| ATOM         | 39       | CA       | ALA                  |   | 7      |    | .038         |     | 2.382          |          |      |                | A            |
| ATOM         | 40       | CB       | ALA                  |   | 7      |    | .132         |     | 2.394          |          |      |                | A            |
| ATOM         | 41       | C        | ALA                  |   | 7      |    | .867         |     | 1.111          |          |      |                | A            |
| ATOM         | 42       | 0        | ALA                  |   | 7      |    | .548         |     | 0.153          |          |      | 20.78          | A            |
| ATOM         | 43       | N        | SER                  |   | 8      |    | .947         |     | 1.120          | 17.560   | 1.00 | 16.95          | A            |
| ATOM         | 44       | CA       | SER                  | A | 8      | 38 | .807         | - ( | 0.048          | 17.700   | 1.00 | 18.62          | A            |
| ATOM         | 45       | CB       | SER                  | A | 8      | 40 | .211         | (   | 0.215          | 17.153   | 1.00 | 17.69          | A            |
| ATOM         | 46       | OG       | SER                  | A | 8      | 40 | .209         | (   | 0.271          | 15,738   | 1.00 | 19.81          | A            |
| MOTA         | 47       | C        | SER                  | A | 8      | 38 | .868         | - ( | 0.310          | 19.199   |      | 18.76          | A            |
| MOTA         | 48       | 0        | SER                  |   | 8      |    | .570         |     | 0.376          |          |      | 19.35          | A            |
| MOTA         | 49       | N        | TYR                  |   | 9      |    | .070         |     | 1.268          |          |      |                | A            |
| ATOM         | 50       | CA       | TYR                  |   | 9      |    | .038         |     | 1.608          |          |      | 19.44          | A            |
| ATOM         | 51       | CB       | TYR                  |   | 9      |    | .628         |     | 1.980          |          |      |                | A            |
| ATOM         | 52       | CG       | TYR                  |   | 9      |    | .714         |     | 0.785          |          |      |                | A<br>A       |
| ATOM         | 53<br>54 | CD1      |                      |   | 9<br>9 |    | .073         |     | 0.435<br>1.537 |          |      | 17.39          | A            |
| ATOM<br>ATOM | 54<br>55 | CD2      | TYR<br>TYR           |   | 9      |    | .493         |     | 0.865          |          |      | 17.15          | A            |
| ATOM         | 55<br>56 | CE2      |                      |   | 9      |    | .641         |     | 0.003<br>0.235 |          |      |                | A            |
| ATOM         | 57       | CEZ      | TYR                  |   | 9      |    | .020         |     | 1.431          |          |      |                | A            |
| ATOM         | 58       | OH       | TYR                  |   | 9      |    | .169         |     | 2.509          |          |      |                | A            |
| ATOM         | 59       | C        | TYR                  |   | 9      |    | .993         |     | 2.751          |          |      |                | A            |
| ATOM         | 60       | o        | TYR                  |   | 9      |    | .652         |     | 3.911          |          |      |                | A            |
| ATOM         | 61       | N        | GLY                  |   | 10     |    | .225         |     | 2.357          |          |      | 21.69          | A            |
| ATOM         | 62       | CA       | GLY                  |   | 10     | 41 | .311         | :   | 3.275          | 20.808   | 1.00 | 22.54          | A            |
| MOTA         | 63       | C        | $\operatorname{GLY}$ | A | 10     | 42 | .276         | -:  | 3.080          | 19.655   | 1.00 | 21.74          | A            |
| ATOM         | 64       | 0        | GLY                  | A | 10     |    | .248         |     | 3.863          |          |      |                | A            |
| MOTA         | 65       | N        | VAL                  | A | 11     |    | .083         |     | 2.023          |          |      |                | A            |
| ATOM         | 66       | CA       | VAL                  |   | 11     |    | .119         |     | 1.949          |          |      |                | A            |
| ATOM         | 67       | CB       | VAL                  |   | 11     |    | .554         |     | 0.506          |          |      |                | A            |
| ATOM         | 68       | CG1      |                      |   | 11     |    | .845         |     | 0.558          |          |      |                | A            |
| ATOM         | 69       | CG2      | VAL                  | A | 11     | 43 | .481         | •   | 0.165          | 17.432   | 1.00 | 15.25          | A            |

| ATOM         | 70         | С         | VAL        | A | 11       | 45.228           | -2.644                   | 19.447           | 1.00 17.05               | A          |
|--------------|------------|-----------|------------|---|----------|------------------|--------------------------|------------------|--------------------------|------------|
| ATOM         | 71         | 0         | VAL        | A | 11       | 45.679           | -2.145                   | 20.481           | 1.00 19.34               | A          |
| ATOM         | 72         | N         | ASN        |   | 12       | 45.616           | -3.828                   | 19.005           | 1.00 17.39               | <b>A</b> . |
| ATOM         | 73         | CA        | ASN        |   | 12       | 46.643           | -4.597                   | 19.693           | 1.00 17.18               | A          |
| ATOM         | 74         | CB        | ASN        |   | 12       | 46.113<br>44.834 | -5.994<br>-5.947         | 20.052           | 1.00 15.04<br>1.00 15.96 | A<br>A     |
| ATOM<br>ATOM | 75<br>76   | CG<br>OD1 | ASN<br>ASN |   | 12<br>12 | 43.780           | -5.490                   | 20.882           | 1.00 18.20               | A          |
| ATOM         | 77         | ND2       | ASN        |   | 12       | 44.921           | -6.420                   | 22.114           | 1.00 10.46               | A          |
| ATOM         | 78         | C         | ASN        |   | 12       | 47.863           | -4.739                   | 18.797           | 1.00 18.90               | A          |
| ATOM         | 79         | 0         | ASN        |   | 12       | 47.752           | -5.162                   | 17.641           | 1.00 18.80               | A          |
| ATOM         | 80         | N         | LEU        | A | 13       | 49.026           | -4.403                   | 19.343           | 1.00 18.60               | A          |
| ATOM         | 81         | CA        | LEU        | A | 13       | 50.264           | -4.478                   | 18.599           | 1.00 19.90               | A          |
| ATOM         | 82         | CB        |            | A | 13       | 50.695           | -3.064                   | 18.217           | 1.00 23.26               | A          |
| ATOM         | 83         | CG        |            | A | 13       | 52.077           | -2.881                   | 17.594           | 1.00 24.86               | A          |
| ATOM         | 84         | CD1       |            | A | 13       | 52.085           | -3.494<br>-1.402         | 16.201<br>17.534 | 1.00 26.92<br>1.00 24.75 | A<br>A     |
| ATOM<br>ATOM | 85<br>86   | CD2<br>C  | LEU<br>LEU |   | 13<br>13 | 52.417<br>51.391 | -1.40 <i>2</i><br>-5.165 | 19.370           | 1.00 24.73               | A          |
| ATOM         | 87         | 0         | LEU        |   | 13       | 51.559           | -4.953                   | 20.566           | 1.00 21.11               | A          |
| ATOM         | 88         | N         | TYR        |   | 14       | 52.145           | -6.004                   | 18.673           | 1.00 21.04               | A          |
| ATOM         | 89         | CA        | TYR        | A | 14       | 53.291           | -6.691                   | 19.255           | 1.00 24.07               | A          |
| ATOM         | 90         | CB        | TYR        | A | 14       | 52.909           | -8.050                   | 19.844           | 1.00 27.05               | A          |
| ATOM         | 91         | CG        | TYR        | Α | 14       | 54.091           | -8.729                   | 20.489           | 1.00 29.27               | A          |
| ATOM         | 92         | CD1       | TYR        |   | 14       | 54.569           | -8.304                   | 21.723           | 1.00 30.07               | A          |
| ATOM         | 93         | CE1       | TYR        |   | 14       | 55.709           | -8.867                   | 22.285           | 1.00 31.38               | A          |
| MOTA         | 94         | CD2       |            |   | 14       | 54.783           | -9.744<br>-10.314        | 19.830<br>20.383 | 1.00 31.63<br>1.00 30.29 | A<br>A     |
| ATOM<br>ATOM | 95<br>96   | CE2<br>CZ | TYR<br>TYR |   | 14<br>14 | 55.923<br>56.381 | -9.868                   | 20.363           | 1.00 30.25               | A          |
| ATOM         | 97         | OH        | TYR        |   | 14       |                  | -10.413                  | 22.160           | 1.00 34.48               | A          |
| ATOM         | 98         | C         | TYR        |   | 14       | 54.291           | -6.900                   | 18.128           | 1.00 25.30               | A          |
| ATOM         | 99         | 0         | TYR        |   | 14       | 53.907           | -7.206                   | 16.994           | 1.00 25.51               | A          |
| ATOM         | 100        | N         | GLN        | A | 15       | 55.571           | -6.725                   | 18.429           | 1.00 24.61               | A          |
| ATOM         | 101        | CA        | GLN        | A | 15       | 56.603           | -6.891                   | 17.414           | 1.00 25.19               | A          |
| MOTA         | 102        | CB        | GLN        | A | 15       | 56.932           | -5.549                   | 16.754           | 1.00 23.54               | A          |
| MOTA         | 103        | CG        | GLN        |   | 15       | 57.278           | -4.443                   | 17.738           | 1.00 23.98               | A          |
| ATOM         | 104        | CD        | GLN        |   | 15       | 57.567           | -3.116                   | 17.056           | 1.00 26.32               | A<br>A     |
| ATOM         | 105        | OE1       |            |   | 15<br>15 | 57.575<br>57.810 | -2.062<br>-3.159         | 17.702<br>15.749 | 1.00 28.26<br>1.00 24.64 | A          |
| ATOM<br>ATOM | 106<br>107 | NE2<br>C  | GLN<br>GLN |   | 15<br>15 | 57.848           | -7.487                   | 18.036           | 1.00 24.04               | A          |
| ATOM         | 108        | 0         | GLN        |   | 15       | 58.134           | -7.263                   | 19.211           | 1.00 24.31               | A          |
| ATOM         | 109        | N         | SER        |   | 16       | 58.583           | -8.252                   | 17.236           | 1.00 28.72               | A          |
| ATOM         | 110        | CA        | SER        |   | 16       | 59.801           | -8.912                   | 17.698           | 1.00 30.37               | A          |
| ATOM         | 111        | CB        | SER        | A | 16       | 60.341           | -9.830                   | 16.603           | 1.00 28.35               | A          |
| ATOM         | 112        | OG        | SER        | A | 16       | 60.569           | -9.100                   | 15.407           | 1.00 31.43               | A          |
| ATOM         | 113        | C         | SER        |   | 16       | 60.883           | -7.918                   | 18.111           | 1.00 32.37               | A          |
| ATOM         | 114        | 0         | SER        |   | 16       | 61.538           | -8.104                   | 19.134           | 1.00 33.91<br>1.00 32.49 | A<br>A     |
| ATOM         | 115        | N         | TYR<br>TYR |   | 17<br>17 | 61.073<br>62.096 | -6.863<br>-5.890         | 17.325<br>17.664 | 1.00 32.49               | A          |
| ATOM<br>ATOM | 116<br>117 | CA<br>CB  | TYR        |   | 17       | 62.030           | -4.788                   | 16.620           | 1.00 35.41               | A          |
| ATOM         | 118        | CG        | TYR        |   | 17       | 63.371           | -3.911                   | 16.837           | 1.00 37.77               | A          |
| ATOM         | 119        | CD1       |            |   | 17       | 64.646           | -4.347                   | 16.470           | 1.00 39.38               | A          |
| ATOM         | 120        | CE1       |            |   | 17       | 65.769           | -3.569                   | 16.715           | 1.00 40.15               | A          |
| ATOM         | 121        | CD2       | TYR        | A | 17       | 63.247           | -2.671                   | 17.456           | 1.00 36.31               | A          |
| ATOM         | 122        | CE2       |            |   | 17       | 64.360           | -1.886                   | 17.707           | 1.00 39.40               | A          |
| MOTA         | 123        | CZ        | TYR        |   | 17       | 65.621           | -2.338                   | 17.335           | 1.00 41.42               | A          |
| ATOM         | 124        | OH        | TYR        |   | 17       | 66.732           | -1.562                   | 17.580           | 1.00 43.02<br>1.00 34.43 | A<br>A     |
| ATOM         | 125        | C         | TYR        |   | 17<br>17 | 61.821<br>60.765 | -5.270<br>-4.682         | 19.027<br>19.248 | 1.00 34.43               | Ā          |
| ATOM<br>ATOM | 126<br>127 | И         | TYR<br>GLY |   | 1.8      | 62.783           | -5.390                   | 19.240           | 1.00 33.30               | A          |
| ATOM         | 128        | CA        | GLY        |   | 18       | 62.609           | -4.854                   | 21.270           | 1.00 35.78               | A          |
| ATOM         | 129        | C         | GLY        |   | 18       | 62.730           | -5.968                   | 22.292           | 1.00 36.87               | A          |
| ATOM         | 130        | Ō         | GLY        |   | 18       | 63.761           | -6.082                   | 22.952           | 1.00 38.48               | A          |
| ATOM         | 131        | N         | PRO        | A | 19       | 61.692           | -6.807                   | 22.459           | 1.00 37.06               | A          |
| ATOM         | 132        | CD        | PRO        | A | 19       | 61.745           | -7.967                   | 23.368           | 1.00 35.58               | A          |
| MOTA         | 133        | CA        | PRO        |   | 19       | 60.409           | -6.769                   | 21.747           | 1.00 34.79               | A          |
| ATOM         | 134        | CB        | PRO        |   | 19       | 59.853           | -8.166                   | 21.981           | 1.00 35.91               | A<br>N     |
| ATOM         | 135        | CG        | PRO        |   | 19<br>10 | 60.300           | -8.437                   | 23.394           | 1.00 36.88<br>1.00 33.10 | A<br>A     |
| ATOM         | 136        | C         | PRO        |   | 19<br>19 | 59.531<br>59.844 | -5.706<br>-5.209         | 22.379<br>23.456 | 1.00 33.10               | A          |
| ATOM<br>ATOM | 137<br>138 | O<br>N    | PRO<br>SER |   | 20       | 58.435           | -5.349                   | 23.436           | 1.00 33.71               | A          |
| ATOM         | 139        | CA        | SER        |   | 20       | 57.548           | -4.341                   | 22.290           | 1.00 30.25               | A          |
| ATOM         | 140        | CB        | SER        |   | 20       | 58.060           | -2.932                   | 21.965           | 1.00 29.00               | A '        |
| MOTA         | 141        | OG        | SER        |   | 20       | 58.072           | -2.689                   | 20.567           | 1.00 32.27               | A          |
| ATOM         | 142        | C         | SER        |   | 20       | 56.108           | -4.497                   | 21.820           | 1.00 27.93               | A          |
| MOTA         | 143        | 0         | SER        | A | 20       | 55.829           | -5.129                   | 20.805           | 1.00 28.23               | A          |
|              |            |           |            |   |          |                  | _                        |                  |                          |            |

|              |            |           |            |            |          |                  |                  |                  | - 00 05 05               | מל     |
|--------------|------------|-----------|------------|------------|----------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 144        | N         | GLY        |            | 21       | 55.191           | -3.911<br>-4.001 | 22.576           | 1.00 25.87<br>1.00 23.78 | A<br>A |
| ATOM<br>ATOM | 145<br>146 | CA<br>C   | GLY<br>GLY |            | 21<br>21 | 53.797<br>53.076 | -4.001<br>-2.732 | 22.598           | 1.00 23.76               | A      |
| ATOM         | 147        | 0         | GLY        |            | 21       | 53.638           | -1.840           | 23.247           | 1.00 24.81               | A      |
| ATOM         | 148        | N         | GLN        |            | 22       | 51.821           | -2.641           | 22.187           | 1.00 20.60               | A      |
| ATOM         | 149        | CA        | GLN        | A          | 22       | 51.033           | -1.470           | 22.495           | 1.00 19.67               | A      |
| ATOM         | 150        | CB        | GLN        |            | 22       | 51.239           | -0.400           | 21.415           | 1.00 19.28               | A      |
| ATOM         | 151        | CG        | GLN        |            | 22       | 50.584           | 0.943<br>1.971   | 21.736<br>20.613 | 1.00 18.12<br>1.00 18.84 | A<br>A |
| ATOM         | 152        | CD<br>OE1 | GLN<br>GLN |            | 22<br>22 | 50.732<br>51.694 | 2.749            | 20.515           | 1.00 10.04               | A      |
| ATOM<br>ATOM | 153<br>154 | NE2       | GLN        |            | 22       | 49.777           | 1.968            | 19.688           | 1.00 16.83               | A      |
| ATOM         | 155        | C         | GLN        |            | 22       | 49.573           | -1.873           | 22.566           | 1.00 18.66               | A      |
| ATOM         | 156        | 0         | GLN        | A          | 22       | 49.128           | -2.747           | 21.826           | 1.00 18.45               | A      |
| ATOM         | 157        | N         | TYR        | A          | 23       | 48.842           | -1.257           | 23.484           | 1.00 17.25               | A      |
| ATOM         | 158        | CA        | TYR        |            | 23       | 47.423           | -1.529           | 23.615<br>24.752 | 1.00 16.53<br>1.00 14.51 | A<br>A |
| ATOM         | 159        | CB<br>CG  | TYR<br>TYR |            | 23<br>23 | 47.127<br>45.674 | -2.497<br>-2.904 | 24.752           | 1.00 12.67               | A      |
| ATOM<br>ATOM | 160<br>161 | CD1       | TYR        |            | 23       | 45.251           | -4.070           | 24.121           | 1.00 13.38               | A      |
| ATOM         | 162        | CE1       | TYR        |            | 23       | 43.904           | -4.415           | 24.070           | 1.00 13.23               | A      |
| MOTA         | 163        | CD2       | TYR        | A          | 23       | 44.713           | -2.093           | 25.346           | 1.00 11.07               | A      |
| MOTA         | 164        | CE2       | TYR        |            | 23       | 43.365           | -2.425           | 25.299           | 1.00 12.99               | A<br>A |
| MOTA         | 165        | CZ        | TYR        |            | 23       | 42.964<br>41.624 | -3.583<br>-3.907 | 24.664<br>24.611 | 1.00 13.72<br>1.00 17.15 | A      |
| MOTA         | 166<br>167 | OH<br>C   | TYR<br>TYR |            | 23<br>23 | 46.694           | -0.220           | 23.860           | 1.00 16.88               | A      |
| ATOM<br>ATOM | 168        | 0         | TYR        |            | 23       | 46.975           | 0.491            | 24.824           | 1.00 16.57               | A      |
| ATOM         | 169        | N         | THR        |            | 24       | 45.757           | 0.085            | 22.969           | 1.00 16.16               | A      |
| MOTA         | 170        | CA        | THR        | . A        | 24       | 44.975           | 1.311            | 23.038           | 1.00 16.43               | A      |
| MOTA         | 171        | CB        | THR        |            | 24       | 45.594           | 2.405            | 22.136           | 1.00 18.41<br>1.00 17.20 | A<br>A |
| ATOM         | 172        | OG1       |            |            | 24       | 45.581<br>47.029 | 1.954<br>2.692   | 20.771<br>22.537 | 1.00 17.20               | A      |
| ATOM<br>ATOM | 173<br>174 | CG2<br>C  | THR        |            | 24<br>24 | 43.570           | 1.058            | 22.499           | 1.00 15.15               | A      |
| ATOM         | 175        | 0         | THR        |            | 24       | 43.314           | 0.037            | 21.879           | 1.00 15.70               | A      |
| ATOM         | 176        | N         | HIS        | A          | 25       | 42.667           | 1.993            | 22.754           | 1.00 15.66               | A      |
| MOTA         | 177        | CA        | HIS        |            | 25       | 41.320           | 1.924            | 22.210           | 1.00 15.79               | A      |
| MOTA         | 178        | CB        | HIS        |            | 25       | 40.243           | 1.834<br>0.430   | 23.297<br>23.734 | 1.00 13.55<br>1.00 15.91 | A<br>A |
| MOTA         | 179        | CG<br>CD2 | HIS<br>HIS |            | 25<br>25 | 39.956<br>40.688 | -0.704           | 23.624           | 1.00 13.86               | A      |
| ATOM<br>ATOM | 180<br>181 | ND1       |            |            | 25       | 38.790           | 0.071            | 24.374           | 1.00 15.91               | A      |
| MOTA         | 182        | CE1       |            |            | 25       | 38.815           | -1.222           | 24.639           | 1.00 14.38               | A      |
| ATOM         | 183        | NE2       | HIS        | A          | 25       | 39.956           | -1.715           | 24.193           | 1.00 16.99               | A      |
| MOTA         | 184        | C         | HIS        |            | 25       | 41.176           | 3.212            | 21.437<br>21.865 | 1.00 14.18<br>1.00 13.52 | A<br>A |
| ATOM         | 185        | O<br>N    | HIS<br>GLU |            | 25<br>26 | 41.677<br>40.510 | 4.241<br>3.150   | 20.292           | 1.00 13.32               | A      |
| ATOM<br>ATOM | 186<br>187 | N<br>CA   | GLU        |            | 26       | 40.333           | 4.329            | 19.462           | 1.00 16.96               | A      |
| ATOM         | 188        | CB        |            | JA         | 26       | 41.132           | 4.188            | 18.164           | 1.00 16.34               | A      |
| ATOM         | 189        | CG        | GLU        | JA         | 26       | 42.644           | 4.158            | 18.311           | 1.00 18.80               | A      |
| ATOM         | 190        | CD        |            | JA         | 26       | 43.345           | 4.036            | 16.958           | 1.00 22.68               | A<br>A |
| ATOM         | 191        | OE1       | _          | JA         | 26<br>26 | 42.744           | 4.456<br>3.539   | 15.946<br>16.901 | 1.00 26.77<br>1.00 20.46 | A      |
| ATOM<br>ATOM | 192<br>193 | OE2       |            | JA<br>JA   | 26<br>26 | 44.490<br>38.875 | 4.543            | 19.101           | 1.00 17.22               | A      |
| ATOM         | 194        | 0         |            | JA         |          | 38.104           | 3.597            | 18.996           | 1.00 18.66               | A      |
| ATOM         | 195        | N         | PHI        | EΑ         | 27       | 38.503           | 5.802            |                  | 1.00 18.91               | A      |
| MOTA         | 196        | CA        |            | E A        |          | 37.150           | 6.135            | 18.509           | 1.00 19.32               | A.     |
| MOTA         | 197        | CB        |            | E A        |          | 36.290           | 6.546<br>6.653   | 19.698<br>19.357 | 1.00 20.19<br>1.00 23.33 | A<br>A |
| ATOM         | 198        |           |            | E A<br>E A |          | 34.834<br>34.024 |                  |                  | 1.00 22.07               | A      |
| ATOM<br>ATOM | 199<br>200 |           |            | E A        |          | 34.289           |                  |                  | 1.00 23.24               | A      |
| ATOM         | 201        | CE:       | _          | ΕA         |          | 32.692           | 5.606            | 18.980           | 1.00 26.16               | A      |
| ATOM         | 202        | CE        | 2 PH       | E A        |          | 32.954           |                  |                  | 1.00 25.99               | A      |
| MOTA         | 203        |           |            | E A        |          | 32.155           |                  |                  | 1.00 25.46<br>1.00 19.10 | A<br>A |
| ATOM         | 204        |           |            | E A<br>E A |          | 37.260<br>37.733 |                  |                  | 1.00 19.83               | A      |
| MOTA<br>MOTA | 205<br>206 |           |            | r A<br>P A |          | 36.831           |                  |                  |                          | A      |
| ATOM         | 200        |           |            | PA         |          | 36.901           | _                |                  | 1.00 18.94               | A      |
| ATOM         | 208        |           |            | P A        | . 28     | 35.910           | 9.203            |                  |                          | A      |
| MOTA         | 209        |           |            | P A        |          | 34.472           |                  |                  |                          | A<br>z |
| ATOM         | 210        |           | 1 AS       |            |          | 34.266           |                  |                  |                          | A<br>A |
| MOTA         | 211        |           | 2 AS       | PA         |          | 33.552<br>38.297 |                  |                  |                          | A      |
| MOTA<br>MOTA | 212<br>213 |           |            | PA         |          | 38.467           |                  |                  |                          | A      |
| ATOM         | 214        |           |            | Y A        |          | 39.292           | _                | 15.002           |                          | A      |
| ATOM         | 215        |           |            | Y A        |          | 40.658           |                  |                  |                          | A.     |
| ATOM         | 216        |           |            | Y A        |          | 41.437           |                  |                  |                          | A<br>A |
| MOTA         | 217        | 0         | GL         | Y A        | A 29     | 42.621           |                  |                  | J. 00 LJ. 20             | £.3*   |
|              |            |           |            |            |          |                  |                  | <b>96</b>        |                          |        |

| ATOM 219 CA ASP A 30 41.511 9.438 18.254 1.00 16.83 A ATOM 220 CB ASP A 30 40.816 10.678 18.796 1.00 18.99 A ATOM 221 CG ASP A 30 40.988 11.864 17.888 1.00 21.09 A ATOM 222 OD1 ASP A 30 42.145 12.177 17.538 1.00 22.94 A ATOM 223 OD2 ASP A 30 42.145 12.177 17.538 1.00 22.94 A ATOM 224 C ASP A 30 41.656 8.392 19.345 1.00 17.25 A ATOM 225 O ASP A 30 40.777 7.553 19.545 1.00 15.40 A ATOM 226 N GLU A 31 42.784 8.453 20.041 1.00 16.77 A ATOM 227 CA GLU A 31 43.111 7.514 21.107 1.00 18.43 A ATOM 228 CB GLU A 31 44.620 7.607 21.392 1.00 20.90 A ATOM 229 CG GLU A 31 45.147 6.853 22.608 1.00 24.68 A ATOM 230 CD GLU A 31 46.678 6.924 22.702 1.00 27.25 A ATOM 231 OE1 GLU A 31 47.258 7.931 22.239 1.00 26.93 A ATOM 233 C GLU A 31 47.258 7.931 22.239 1.00 27.21 A ATOM 233 C GLU A 31 47.302 5.985 23.242 1.00 27.21 A ATOM 233 C GLU A 31 42.296 7.777 22.375 1.00 17.51 A ATOM 234 O GLU A 31 42.361 8.863 22.952 1.00 17.51 A ATOM 235 N GLU A 32 41.525 6.784 22.807 1.00 15.91 A ATOM 236 CA GLU A 32 41.525 6.784 22.807 1.00 15.91 A ATOM 237 CB GLU A 32 39.542 5.980 24.020 1.00 15.91 A ATOM 237 CB GLU A 32 39.542 5.980 24.020 1.00 15.91 A ATOM 238 CG GLU A 32 39.542 5.980 24.020 1.00 15.91 A ATOM 238 CG GLU A 32 39.542 5.980 24.020 1.00 15.91 A ATOM 238 CG GLU A 32 39.542 5.980 24.020 1.00 15.91 A ATOM 238 CG GLU A 32 39.542 5.980 24.020 1.00 15.97 A ATOM 238 CG GLU A 32 39.542 5.980 24.020 1.00 15.97 A ATOM 240 OE1 GLU A 32 37.478 4.228 22.808 1.00 18.09 A ATOM 240 OE1 GLU A 32 37.478 4.228 22.808 1.00 18.09 A ATOM 241 NE2 GLU A 32 37.478 4.228 22.808 1.00 15.51 A ATOM 244 N PHE A 33 42.470 5.912 23.374 1.00 20.57 A ATOM 245 CA PHE A 33 42.470 5.720 25.151 1.00 15.51 A ATOM 245 CA PHE A 33 42.583 4.854 27.443 1.00 17.21 A ATOM 246 CB PHE A 33 42.583 4.854 27.443 1.00 17.21 A ATOM 245 CA PHE A 33 42.583 4.854 27.443 1.00 17.21 A ATOM 246 CB PHE A 33 42.583 4.854 27.443 1.00 17.21 A ATOM 246 CB PHE A 33 42.583 4.854 27.443 1.00 17.21 A ATOM 247 CG PHE A 33 42.583 4.854 27.443 1.00 17.21 A ATOM 247 CG PHE A 33 42.583 4.854 27.443 1.00 1 |      |     |     |     |     |    |        |        |        |            |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|-----|-----|----|--------|--------|--------|------------|---|
| NEON   200   CB   ASP   A   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATOM | 218 | N   | ASP | A   | 30 | 40.797 | 8.922  | 17.098 |            |   |
| NECON   221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATOM | 219 | CA  | ASP | A   | 30 | 41.511 |        |        |            |   |
| NEW   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1976   1   | MOTA | 220 | CB  | ASP | A   | 30 | 40.816 |        |        |            |   |
| NATION   223   ODE   ARP   A 30   39.971   12.478   17.525   1.00   21.68   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATOM | 221 |     |     |     |    |        |        |        |            |   |
| NEON   224   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATOM | 222 |     |     |     |    |        |        |        |            |   |
| NECON   225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATOM | 223 |     |     |     |    |        |        |        |            |   |
| NOON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM |     |     |     |     |    |        |        |        |            |   |
| NEON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM |     |     |     |     |    |        |        |        |            |   |
| ATOM 298 CB GLU A 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM |     |     |     |     |    |        |        |        |            |   |
| ANDMIN 229 CG GLU A 31 45.147 6.853 22.608 1.00 24.68 A NATOM 230 CD GLU A 31 45.147 6.853 22.608 1.00 24.68 A NATOM 231 ORD GLU A 31 47.288 7.931 22.239 1.00 25.93 A NATOM 233 C GLU A 31 47.302 5.985 23.242 1.00 27.25 A NATOM 235 C GLU A 31 42.296 7.777 22.375 1.00 17.51 A NATOM 235 N GLU A 31 42.296 7.777 22.375 1.00 17.51 A NATOM 235 N GLU A 32 41.525 6.784 22.807 1.00 15.52 A NATOM 235 C G GLU A 32 41.525 6.784 22.807 1.00 15.52 A NATOM 236 CA GLU A 32 41.525 6.784 22.807 1.00 15.57 A NATOM 236 CA GLU A 32 41.525 6.784 22.807 1.00 15.57 A NATOM 236 CA GLU A 32 41.525 6.784 22.807 1.00 15.97 A NATOM 238 CG GLU A 32 37.478 4.288 23.005 1.00 15.97 A NATOM 238 CG GLU A 32 37.478 4.288 22.808 1.00 18.99 A NATOM 241 NE2 GLU A 32 37.478 4.288 22.808 1.00 18.99 A NATOM 241 NE2 GLU A 32 37.478 4.288 22.808 1.00 18.09 A NATOM 242 C GLU A 32 41.584 6.701 25.255 1.00 16.67 A NATOM 243 C GLU A 32 41.584 6.701 25.255 1.00 16.67 A ANATOM 244 N PHE A 33 42.470 5.720 25.151 1.00 16.34 A ANATOM 244 N PHE A 33 42.470 5.720 25.151 1.00 16.34 A ANATOM 245 CA PHE A 33 42.588 24.884 27.443 1.00 17.21 A ANATOM 248 CD PHE A 33 42.583 4.884 27.443 1.00 15.57 A ANATOM 248 CD PHE A 33 42.586 22.333 27.406 1.00 16.34 A ANATOM 247 CG PHE A 33 42.583 2.892 27.22 1.00 16.63 A ANATOM 247 CG PHE A 33 42.586 22.333 27.406 1.00 16.34 A ANATOM 248 CD PHE A 33 42.586 22.333 27.406 1.00 16.34 A ANATOM 248 CD PHE A 33 42.586 22.333 27.406 1.00 16.34 A ANATOM 248 CD PHE A 33 42.586 22.333 27.406 1.00 16.34 A ANATOM 250 CE2 PHE A 33 42.586 22.333 27.406 1.00 16.557 A ANATOM 250 CE2 PHE A 33 42.586 22.333 27.406 1.00 16.34 A ANATOM 250 CE2 PHE A 33 42.586 22.333 27.406 1.00 16.34 A ANATOM 250 CE2 PHE A 33 42.586 22.333 27.406 1.00 16.558 A ANATOM 250 CE2 PHE A 33 42.586 22.333 27.406 1.00 16.558 A ANATOM 250 CE2 PHE A 33 42.586 22.337 27.306 1.00 16.66 A ANATOM 250 CE2 PHE A 33 42.586 22.337 27.306 1.00 16.558 A ANATOM 250 CE2 PHE A 33 42.586 22.337 27.306 1.00 16.68 A ANATOM 250 CE2 PHE A 33 42.586 22.337 27.306 1.00 16.58 A ANATOM 250 CE2 PHE A 33 |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 230 CD GLU A 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |     |     |     |    |        |        |        |            |   |
| ARCON 231 ORD GLU A 31 47.258 7.931 22.239 1.00 26.93 A A STORM 232 ORD GLU A 31 47.302 5.985 23.242 1.00 27.21 A A STORM 233 C GLU A 31 42.296 7.777 22.375 1.00 17.51 A A STORM 235 C GLU A 31 42.296 7.777 22.375 1.00 17.13 A A STORM 235 N GLN A 32 41.525 6.794 22.807 1.00 15.52 A A STORM 235 N GLN A 32 41.525 6.794 22.807 1.00 15.52 A A STORM 235 C GLN A 32 41.525 6.794 22.807 1.00 15.52 A A STORM 235 C GLN A 32 40.726 6.932 24.009 1.00 15.97 A A STORM 238 CG GLN A 32 39.542 6.932 24.009 1.00 15.97 A A STORM 238 CG GLN A 32 39.542 6.932 23.065 1.00 15.97 A A STORM 238 CG GLN A 32 39.542 6.939 23.065 1.00 15.97 A A STORM 240 OBL GLN A 32 37.292 5.419 23.065 1.00 16.47 A A STORM 241 NB2 GLN A 32 37.292 5.419 23.065 1.00 16.99 A A STORM 242 C GLN A 32 37.478 4.286 22.808 1.00 18.09 A A STORM 242 C GLN A 32 37.478 4.286 22.808 1.00 18.09 A A STORM 242 C GLN A 32 41.584 6.701 5.12 23.374 1.00 20.57 A A STORM 244 N PHE A 33 42.470 5.720 25.151 1.00 16.61 A A STORM 246 CB PHE A 33 42.593 20.806 239 1.00 16.54 A A STORM 246 CB PHE A 33 42.593 20.806 239 1.00 16.34 A A STORM 246 CB PHE A 33 42.593 2.802 25.151 1.00 16.61 A A STORM 246 CD PHE A 33 42.593 2.702 25.151 1.00 16.64 A A STORM 246 CD PHE A 33 42.593 2.702 25.151 1.00 16.56 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.34 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.34 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.56 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.56 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.55 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.55 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.55 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.55 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.55 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.55 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.55 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.55 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.55 A A STORM 250 CE PHE A 33 42.593 2.707 27.288 1.00 16.55 A A |      |     |     |     |     |    |        |        |        |            |   |
| AROM 232 OEZ GLU A 31 47.302 5.985 23.242 1.00 27.21 A A ATOM 233 C GLU A 31 42.366 7.777 22.375 1.00 17.51 A A A A A COMPANY  |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 233 C GLU A 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 234 O GIU A 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 235 N GIN A 32 41.525 6.784 22.807 1.00 15.52 A A ATOM 236 CA GIN A 32 39.542 5.980 24.009 1.00 16.47 A A ATOM 238 CB GIN A 32 39.542 5.980 24.009 1.00 15.91 A A ATOM 238 CB GIN A 32 39.542 5.980 24.009 1.00 15.91 A A ATOM 238 CB GIN A 32 37.292 5.419 23.071 1.00 20.520 A A ATOM 240 CBI GIN A 32 37.478 4.228 22.808 1.00 18.09 A ATOM 241 NE2 GIN A 32 37.478 4.228 22.808 1.00 18.09 A ATOM 241 NE2 GIN A 32 36.091 5.912 23.374 1.00 20.57 A A ATOM 242 C GIN A 32 41.584 6.701 25.255 1.00 15.51 A A ATOM 243 C GIN A 32 41.584 6.701 25.255 1.00 15.51 A A ATOM 245 CA PHE A 33 42.470 5.720 25.151 1.00 15.59 A A ATOM 246 CB PHE A 33 42.470 5.730 25.151 1.00 15.57 A A ATOM 246 CB PHE A 33 42.470 5.730 25.151 1.00 16.61 A A ATOM 247 CG PHE A 33 42.686 2.333 27.406 1.00 16.34 A A ATOM 247 CG PHE A 33 42.686 2.333 27.406 1.00 18.57 A A ATOM 247 CD PHE A 33 42.686 2.333 27.406 1.00 18.57 A A ATOM 247 CD PHE A 33 42.683 1.397 2.222 1.00 16.34 A A ATOM 247 CD PHE A 33 42.683 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.58 A A ATOM 250 CEP PHE A 33 42.583 1.00 2.00 18.58 A A ATOM 250 CEP PHE A 33 42.584 1.392 2.5776 1.00 16.66 A A ATOM 250 CEP PHE A 33 44.563 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 44.563 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 40.598 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 44.563 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 44.563 1.00 2.00 18.54 A A ATOM 250 CEP PHE A 33 44.563 1.00 2.00 18.54 A A ATOM 250 CEP  |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 236 CA GIN A 32 40,726 6.942 24.020 1.00 16.97 A STOM 237 CB GIN A 32 39.542 5.980 24.009 1.00 15.91 A A STOM 238 CG GIN A 32 38.439 6.399 23.065 1.00 15.97 A A ATOM 239 CD GIN A 32 37.272 5.419 23.071 1.00 20.20 A A CATOM 240 CE GIN A 32 37.478 4.228 22.808 1.00 18.09 A A CATOM 240 CE GIN A 32 37.478 4.228 22.808 1.00 18.09 A A CATOM 241 NE2 GIN A 32 36.091 5.912 23.374 1.00 20.27 A A CATOM 242 C GIN A 32 36.091 5.912 23.374 1.00 20.27 A A CATOM 243 O GIN A 32 41.584 6.701 25.255 1.00 16.51 A A CATOM 244 N P HE A 33 42.470 5.720 25.55 1.00 16.51 A CATOM 244 N P HE A 33 42.470 5.720 25.151 1.00 15.59 A CATOM 245 CA PHE A 33 42.578 3.889 26.229 1.00 15.54 A CATOM 245 CA PHE A 33 42.583 4.884 27.443 1.00 17.21 A CATOM 246 CB PHE A 33 42.583 1.884 27.443 1.00 17.21 A CATOM 246 CB PHE A 33 42.583 1.894 27.22 1.00 15.54 A CATOM 246 CB PHE A 33 42.686 2.333 27.246 1.00 15.57 A CATOM 247 CC PHE A 33 42.686 2.333 27.246 1.00 15.57 A CATOM 249 CD2 PHE A 33 40.598 3.397 26.903 1.00 15.54 A CATOM 250 CEI PHE A 33 40.598 3.397 26.903 1.00 16.54 A CATOM 250 CEI PHE A 33 40.598 3.397 26.903 1.00 16.55 A CATOM 250 CEI PHE A 33 40.598 3.397 26.903 1.00 16.56 A CATOM 250 CEI PHE A 33 40.598 3.397 26.903 1.00 16.56 A CATOM 250 CEI PHE A 33 40.598 3.397 26.903 1.00 16.56 A CATOM 250 CEI PHE A 33 40.598 3.397 26.903 1.00 16.56 A CATOM 250 CEI PHE A 33 40.598 4.139 25.776 1.00 16.55 A CATOM 250 CEI PHE A 33 40.598 4.139 25.776 1.00 16.55 A CATOM 250 CEI PHE A 33 40.598 4.139 25.776 1.00 16.56 A CATOM 250 CEI PHE A 33 40.598 4.139 25.776 1.00 16.56 A CATOM 250 CEI PHE A 33 40.598 4.139 25.776 1.00 16.58 A CATOM 250 CEI PHE A 33 40.598 4.139 25.776 1.00 16.56 A CATOM 250 CEI PHE A 33 40.598 4.139 25.776 1.00 16.58 A CATOM 250 CEI PHE A 33 40.598 4.139 25.776 1.00 16.58 A CATOM 250 CEI PHE A 33 40.598 4.139 25.776 1.00 16.59 A CATOM 250 CEI PHE A 33 40.598 4.139 25.776 1.00 16.59 A CATOM 250 CEI PHE A 34 46.599 4.139 25.772 1.00 16.59 A CATOM 250 CEI PHE A 34 46.599 4.139 25.772 1.00 16.59 A CATOM 250 CEI PHE A 34 46.599 4.139 25 |      |     |     |     |     |    |        |        |        | 1.00 15.52 | A |
| ATOM 237 CB GIN A 32 39.542 5.980 24.009 1.00 15.91 A ATOM 238 CO GIN A 32 38.439 6.399 23.065 1.00 15.97 A ATOM 240 CB GIN A 32 37.478 4.228 22.808 1.00 18.09 A ATOM 241 NE2 GIN A 32 37.478 4.228 22.808 1.00 20.57 A ATOM 241 NE2 GIN A 32 37.478 4.228 22.808 1.00 20.57 A ATOM 241 NE2 GIN A 32 41.584 6.701 25.255 1.00 16.61 A ATOM 242 C GIN A 32 41.584 6.701 25.255 1.00 16.61 A ATOM 243 C GIN A 32 41.584 6.701 25.255 1.00 16.51 A ATOM 244 N PHE A 33 42.470 5.720 25.151 1.00 15.55 A ATOM 245 CA PHE A 33 42.470 5.730 25.151 1.00 16.84 A ATOM 246 CB PHE A 33 42.470 5.730 25.151 1.00 16.84 A ATOM 246 CB PHE A 33 42.686 2.333 27.406 1.00 16.86 A ATOM 247 CG PHE A 33 42.983 1.076 27.222 1.00 16.84 A ATOM 249 CD2 PHE A 33 42.686 2.333 27.406 1.00 16.84 A ATOM 249 CD2 PHE A 33 42.083 1.076 27.228 1.00 16.34 A ATOM 250 CEI PHE A 33 40.598 3.397 26.903 1.00 18.57 A ATOM 250 CEI PHE A 33 40.598 3.397 26.903 1.00 16.34 A ATOM 250 CEI PHE A 33 40.729 0.983 26.978 1.00 16.56 A ATOM 251 CE PHE A 33 40.729 0.983 26.978 1.00 16.56 A ATOM 252 CZ PHE A 33 40.729 0.983 26.978 1.00 16.56 A ATOM 255 N TYR A 34 44.363 4.363 4.363 25.776 1.00 16.66 A ATOM 255 CZ PHE A 33 44.209 3.746 24.772 1.00 16.66 A ATOM 255 N TYR A 34 45.398 4.139 26.572 1.00 17.35 A ATOM 256 CA TYR A 34 46.377 3.125 26.244 1.00 16.33 A ATOM 256 CA TYR A 34 47.636 3.730 25.621 1.00 17.36 A ATOM 256 CA TYR A 34 47.636 3.730 25.621 1.00 16.03 A ATOM 256 CA TYR A 34 47.636 3.730 25.621 1.00 17.48 A ATOM 259 CDI TYR A 34 47.636 3.730 25.621 1.00 17.48 A ATOM 259 CDI TYR A 34 47.636 3.730 25.621 1.00 17.68 A ATOM 257 CB TYR A 34 47.636 3.730 25.621 1.00 17.68 A ATOM 257 CB TYR A 34 47.539 4.591 3.930 27.291 1.00 17.68 A ATOM 257 CB TYR A 34 47.539 4.591 3.930 27.291 1.00 17.68 A ATOM 259 CDI TYR A 34 47.539 4.139 26.572 1.00 17.38 A ATOM 259 CDI TYR A 34 47.539 4.139 26.572 1.00 17.68 A ATOM 250 CDI TYR A 34 47.510 4.689 2.291 1.00 17.68 A ATOM 250 CDI TYR A 34 47.510 1.00 25.621 1.00 17.68 A ATOM 250 CDI TYR A 34 47.510 1.00 25.621 1.00 17.68 A ATOM 250 CDI TYR A 34 4 |      |     |     |     |     |    |        |        |        | 1.00 16.47 | A |
| ARTON 238 CG GIN A 32 38.439 6.399 23.065 1.00 15.97 A ARTON 239 CD GIN A 32 37.292 5.419 23.071 1.00 20.20 A ARTON 240 CBI GIN A 32 37.478 4.228 22.808 1.00 10.00 20.20 A ARTON 241 NR22 GIN A 32 37.478 4.228 22.808 1.00 10.00 20.20 A ARTON 241 NR22 GIN A 32 37.478 4.228 22.808 1.00 10.057 A ARTON 243 C GIN A 32 41.594 6.701 25.255 1.00 16.61 A ARTON 244 NP PIB A 33 42.470 5.720 25.255 1.00 16.61 A ARTON 244 NP PIB A 33 42.470 5.720 25.255 1.00 15.51 A ARTON 245 CR PIB A 33 42.470 5.720 25.251 1.00 15.54 A ARTON 246 CB PIB A 33 42.583 4.854 27.443 1.00 17.21 A ARTON 248 CD1 PIB A 33 42.583 4.854 27.243 1.00 17.21 A ARTON 248 CD1 PIB A 33 42.686 2.333 27.406 1.00 15.57 A ARTON 249 CD2 PIB A 33 40.598 3.397 26.903 1.00 16.68 A ARTON 250 CE1 PIB A 33 42.686 2.333 27.466 1.00 15.55 A ARTON 250 CE1 PIB A 33 40.598 3.397 26.903 1.00 16.54 A ARTON 251 CE2 PIB A 33 40.598 3.397 26.903 1.00 16.56 A ARTON 251 CE2 PIB A 33 40.729 0.983 2.647 26.782 1.00 17.35 A ARTON 251 CE2 PIB A 33 40.729 0.983 2.647 26.782 1.00 17.35 A ARTON 252 CZ PIB A 33 40.729 0.983 2.647 26.782 1.00 17.35 A ARTON 255 C PIB A 33 40.729 0.983 2.647 26.782 1.00 16.56 A ARTON 255 C PIB A 33 40.729 0.983 26.978 1.00 16.56 A ARTON 255 C PIB A 33 40.729 0.983 26.978 1.00 16.56 A ARTON 255 C PIB A 33 40.729 0.983 26.978 1.00 16.56 A ARTON 255 C PIB A 33 40.759 3.745 2.700 16.60 A ARTON 255 C PIB A 34 44.5398 4.139 26.572 1.00 16.63 A ARTON 256 CA TYR A 34 46.577 3.125 26.264 1.00 16.63 A ARTON 256 C PIB A 34 44.5398 4.139 26.572 1.00 16.63 A ARTON 257 C TYR A 34 46.579 3.125 26.264 1.00 16.69 A ARTON 257 C TYR A 34 46.579 3.125 26.264 1.00 16.69 A ARTON 258 CG TYR A 34 49.546 4.924 4.130 26.572 1.00 16.03 A ARTON 258 CG TYR A 34 49.546 4.690 27.291 1.00 17.31 A ARTON 258 CG TYR A 34 49.546 4.690 27.388 1.00 17.31 A ARTON 258 CG TYR A 34 49.546 6.600 28.141 1.00 20.10 17.31 A ARTON 256 C CB TYR A 34 49.546 6.600 28.141 1.00 20.10 17.31 A ARTON 256 C CB TYR A 34 49.546 6.600 28.141 1.00 20.17.88 A ARTON 257 C CB VAL A 35 49.606 1.00 22.755 A ARTON 277 C CB  |      |     |     |     |     |    |        | 5.980  | 24.009 | 1.00 15.91 | A |
| ARTOM 240 ORI GIAN A 32 37.4978 4.228 22.808 1.00 18.09 A RATOM 241 NE2 GIAN A 32 36.091 5.391 23.374 1.00 20.57 A A ARTOM 243 O GIAN A 32 41.584 6.701 25.255 1.00 16.67 A A ARTOM 243 O GIAN A 32 41.584 6.701 25.255 1.00 16.67 A A ARTOM 244 N PHE A 33 42.470 5.720 25.151 1.00 15.59 A ARTOM 244 N PHE A 33 42.470 5.395 26.239 1.00 15.59 A ARTOM 245 CA PHE A 33 42.583 4.854 27.443 1.00 17.21 A ARTOM 246 CB PHE A 33 42.583 4.854 27.443 1.00 16.34 A ARTOM 246 CB PHE A 33 42.583 4.854 27.423 1.00 16.34 A ARTOM 247 CG PHE A 33 42.583 4.854 27.423 1.00 16.34 A ARTOM 248 CDI PHE A 33 40.598 3.397 26.903 1.00 18.57 A ARTOM 249 CDZ PHE A 33 40.598 3.397 26.903 1.00 18.57 A ARTOM 250 CEI PHE A 33 40.598 3.397 26.903 1.00 16.34 A ARTOM 251 CEI PHE A 33 40.598 3.397 26.903 1.00 16.34 A ARTOM 251 CEI PHE A 33 40.598 3.397 26.903 1.00 16.34 A ARTOM 252 CZ PHE A 33 40.598 3.397 26.903 1.00 16.34 A ARTOM 252 CZ PHE A 33 40.598 3.397 26.903 1.00 16.55 A ARTOM 252 CZ PHE A 33 40.598 3.197 26.782 1.00 16.34 A ARTOM 252 CZ PHE A 33 40.598 3.197 26.782 1.00 16.34 A ARTOM 252 CZ PHE A 33 44.363 4.1343 25.776 1.00 16.66 A ARTOM 255 N TYR A 34 45.398 4.139 26.572 1.00 16.66 A ARTOM 255 N TYR A 34 45.398 4.139 26.572 1.00 16.63 A ARTOM 255 CR TYR A 34 46.377 3.125 26.264 1.00 16.93 A ARTOM 257 CB TYR A 34 47.636 3.730 25.621 1.00 16.33 A ARTOM 257 CB TYR A 34 47.636 3.730 25.621 1.00 16.33 A ARTOM 258 CG TYR A 34 49.519 3.930 27.291 1.00 16.33 A ARTOM 260 CEI TYR A 34 49.519 3.930 27.291 1.00 17.48 A ARTOM 261 CD2 TYR A 34 49.519 3.930 27.291 1.00 17.48 A ARTOM 267 CB TYR A 34 49.519 3.930 27.291 1.00 17.48 A ARTOM 267 CB TYR A 34 49.519 3.930 27.291 1.00 17.48 A ARTOM 267 CB TYR A 34 49.519 3.930 27.291 1.00 17.48 A ARTOM 267 CB TYR A 34 49.519 3.930 27.291 1.00 17.48 A ARTOM 267 CB TYR A 34 49.519 3.930 27.291 1.00 17.48 A ARTOM 267 CB TYR A 34 49.519 3.930 27.291 1.00 19.79 A ARTOM 267 CB TYR A 34 49.519 3.930 27.291 1.00 19.79 A ARTOM 267 CB TYR A 34 49.519 3.930 27.291 1.00 19.79 A ARTOM 267 CB TYR A 34 49.519 3.00 3.00 3.00 3.00 3. | ATOM |     |     |     |     | 32 |        | 6.399  | 23.065 | 1.00 15.97 | A |
| ATOM 240 OEL GLN A 32 37.478 4.228 22.808 1.00 18.09 A RICOM 241 NE2 GLN A 32 36.091 5.912 23.374 1.00 20.57 A RICOM 242 C GLN A 32 41.584 6.701 25.255 1.00 16.61 A RICOM 243 O GLN A 32 41.584 6.701 25.255 1.00 16.61 A RICOM 243 O GLN A 32 41.488 7.387 26.272 1.00 15.51 A RICOM 243 C GLN A 32 41.488 7.387 26.272 1.00 15.59 A RICOM 245 CA PHE A 33 42.547 5.720 25.151 1.00 15.59 A RICOM 245 CA PHE A 33 42.543 4.854 27.443 1.00 17.21 A RICOM 245 CA PHE A 33 42.543 4.854 27.443 1.00 17.21 A RICOM 247 CG PHE A 33 42.545 31.502 27.222 1.00 16.68 A RICOM 249 CD2 PHE A 33 42.686 2.333 27.406 1.00 15.57 A RICOM 249 CD2 PHE A 33 42.686 2.333 27.406 1.00 15.57 A RICOM 249 CD2 PHE A 33 42.686 2.333 27.406 1.00 15.57 A RICOM 250 CE1 PHE A 33 42.686 2.333 27.406 1.00 15.57 A RICOM 250 CE1 PHE A 33 42.683 1.006 27.288 1.00 16.56 A RICOM 250 C PHE A 33 44.369 2.147 26.782 1.00 16.56 A RICOM 250 C PHE A 33 44.363 2.147 26.782 1.00 16.56 A RICOM 250 C PHE A 33 44.363 2.147 26.782 1.00 16.56 A RICOM 250 C PHE A 33 44.363 4.344 25.776 1.00 16.65 A RICOM 255 C PHE A 33 44.369 4.343 26.572 1.00 16.03 A RICOM 255 C PHE A 33 44.363 84.139 26.572 1.00 16.03 A RICOM 255 C PHE A 33 44.363 84.139 26.572 1.00 16.03 A RICOM 255 C PHE A 33 44.363 84.139 26.572 1.00 16.03 A RICOM 255 C PHE A 34 45.398 4.139 26.572 1.00 16.03 A RICOM 256 C PHE A 34 45.598 4.139 26.572 1.00 16.03 A RICOM 256 C PHE A 34 45.598 4.139 26.572 1.00 16.03 A RICOM 256 C PHE A 34 45.598 4.139 26.572 1.00 16.03 A RICOM 256 C PHE A 34 45.598 4.139 26.572 1.00 16.03 A RICOM 256 C PHE A 34 45.598 4.139 26.572 1.00 16.03 A RICOM 256 C PHE A 34 45.598 4.139 26.572 1.00 16.03 A RICOM 256 C PHE A 34 45.598 4.139 26.572 1.00 16.03 A RICOM 256 C PHE A 34 45.598 4.139 26.572 1.00 16.03 A RICOM 256 C PHE A 34 45.598 4.139 26.572 1.00 16.03 A RICOM 256 C PHE A 34 45.598 4.139 26.572 1.00 16.03 A RICOM 256 C PHE A 34 45.598 4.139 26.572 1.00 16.03 A RICOM 256 C PHE A 34 45.598 4.139 26.572 1.00 16.03 A RICOM 256 C PHE A 34 45.598 4.139 26.598 1.00 17.31 A RICOM 256 C PHE A 34 45.598 | ATOM |     |     |     |     |    | 37.292 | 5.419  | 23.071 | 1.00 20.20 | A |
| AROM 241 NEZ GLN A 32 36.091 5.912 23.374 1.00 20.57 A RITOM 242 C GLN A 32 41.594 6.701 25.255 1.00 16.61 A RITOM 243 O GLN A 32 41.594 6.701 25.255 1.00 16.51 A RITOM 244 N PHE A 33 42.470 5.720 25.151 1.00 16.634 A RITOM 246 CR PHE A 33 42.470 5.389 26.239 1.00 16.34 A RITOM 246 CR PHE A 33 42.583 4.854 27.443 1.00 17.21 A RITOM 240 CR PHE A 33 42.583 4.854 27.443 1.00 17.21 A RITOM 240 CR PHE A 33 42.583 4.854 27.443 1.00 16.56 A RITOM 240 CR PHE A 33 42.583 4.951 1.00 27.22 1.00 16.63 A RITOM 240 CR PHE A 33 42.686 2.333 27.406 1.00 16.557 A RITOM 240 CR PHE A 33 42.083 1.076 27.288 1.00 16.34 A RITOM 250 CR PHE A 33 49.083 2.147 26.903 1.00 18.54 A RITOM 250 CR PHE A 33 49.729 0.993 26.903 1.00 18.56 A RITOM 251 CR PHE A 33 49.729 0.993 26.903 1.00 16.34 A RITOM 250 CR PHE A 33 49.729 0.993 26.978 1.00 16.56 A RITOM 250 CR PHE A 33 44.363 4.343 25.776 1.00 16.66 A RITOM 250 CR PHE A 33 44.363 4.343 25.776 1.00 16.66 A RITOM 250 CR PHE A 33 44.363 4.343 25.776 1.00 16.66 A RITOM 250 CR PHE A 34 46.377 3.125 26.251 1.00 16.03 A RITOM 250 CR PHE A 34 46.377 3.125 26.264 1.00 16.03 A RITOM 250 CR PHE A 34 46.377 3.125 26.264 1.00 16.03 A RITOM 250 CR PHE A 34 49.519 3.993 27.291 1.00 17.31 A RITOM 250 CR PHE A 34 49.519 3.993 27.291 1.00 17.38 A RITOM 250 CR PHE A 34 49.519 3.993 27.291 1.00 17.38 A RITOM 250 CR PHE A 34 49.519 3.993 27.291 1.00 17.38 A RITOM 250 CR PHE A 34 49.519 3.993 26.578 1.00 17.31 A RITOM 250 CR PHE A 34 49.519 3.993 27.291 1.00 17.38 A RITOM 250 CR PHE A 34 49.519 3.993 26.586 1.00 17.38 A RITOM 250 CR PHE A 34 49.519 3.993 26.593 1.00 17.31 A RITOM 250 CR PHE A 34 49.519 3.993 26.593 1.00 17.31 A RITOM 250 CR PHE A 34 49.519 3.993 26.593 1.00 17.31 A RITOM 250 CR PHE A 34 49.519 3.993 27.291 1.00 17.48 A RITOM 250 CR PHE A 34 49.519 3.993 27.291 1.00 17.48 A RITOM 250 CR PHE A 34 49.519 3.993 27.291 1.00 17.48 A RITOM 250 CR PHE A 34 49.519 3.993 27.291 1.00 17.48 A RITOM 250 CR PHE A 34 49.519 3.993 27.291 1.00 17.31 A RITOM 250 CR PHE A 34 49.519 3.993 27.291 1.00 17.31 A RITOM 25 | ATOM |     |     |     |     | 32 | 37.478 | 4.228  | 22.808 | 1.00 18.09 |   |
| ARDOM 242 C GLN A 32 41.584 6.701 25.255 1.00 16.61 A ARDOM 243 O GLN A 32 41.448 7.387 26.272 1.00 15.59 A ARDOM 244 N PHE A 33 42.470 5.720 25.151 1.00 15.59 A ARDOM 245 CA PHE A 33 42.583 4.854 27.443 1.00 17.21 A ARDOM 246 CB PHE A 33 42.583 4.854 27.443 1.00 17.21 A ARDOM 247 CG PHE A 33 42.583 4.854 27.463 1.00 17.21 A ARDOM 247 CG PHE A 33 42.583 1.002 27.222 1.00 16.68 A ARDOM 249 CD2 PHE A 33 42.583 1.002 27.222 1.00 16.68 A ARDOM 249 CD2 PHE A 33 42.686 2.333 27.406 1.00 15.57 A ARDOM 249 CD2 PHE A 33 42.686 2.333 27.406 1.00 16.56 A ARDOM 251 CE2 PHE A 33 40.598 3.397 26.903 1.00 18.54 A ARDOM 251 CE2 PHE A 33 42.083 1.006 27.288 1.00 16.34 A ARDOM 251 CE2 PHE A 33 40.729 0.983 26.978 1.00 16.66 A ARDOM 251 CE2 PHE A 33 44.053 4.343 25.776 1.00 16.66 A ARDOM 255 C TRY A 34 45.398 4.139 26.978 1.00 16.66 A ARDOM 255 N TYR A 34 45.398 4.139 26.572 1.00 16.03 A ARDOM 256 CA TYR A 34 46.377 3.125 26.264 1.00 16.93 A ARDOM 256 CA TYR A 34 46.377 3.125 26.264 1.00 16.93 A ARDOM 256 CB TYR A 34 47.636 3.730 25.621 1.00 16.93 A ARDOM 258 CG TYR A 34 49.519 3.993 27.291 1.00 17.31 A ARDOM 250 CD1 TYR A 34 49.519 3.993 27.291 1.00 17.31 A ARDOM 250 CD1 TYR A 34 49.519 3.993 27.291 1.00 17.31 A ARDOM 250 CD1 TYR A 34 49.519 3.993 27.291 1.00 17.31 A ARDOM 250 CD1 TYR A 34 49.519 3.993 27.291 1.00 17.31 A ARDOM 260 CD1 TYR A 34 49.519 3.993 27.291 1.00 17.31 A ARDOM 260 CD1 TYR A 34 49.519 3.993 27.291 1.00 17.68 ARDOM 260 CD1 TYR A 34 49.519 3.993 27.291 1.00 17.68 ARDOM 260 CD1 TYR A 34 49.519 3.993 27.291 1.00 17.68 ARDOM 260 CD1 TYR A 34 49.519 3.993 27.291 1.00 17.68 ARDOM 260 CD1 TYR A 34 49.519 3.993 27.291 1.00 17.68 ARDOM 260 CD1 TYR A 34 49.519 3.993 27.291 1.00 17.68 ARDOM 260 CD2 TYR A 34 49.510 49.291 3.993 27.398 1.00 19.73 ARDOM 260 CD2 TYR A 34 49.519 3.993 27.398 1.00 19.76 ARDOM 260 CD2 TYR A 34 49.519 3.993 37.391 37.301 37.301 37.301 ARDOM 260 CD2 TYR A 34 49.519 3.993 37.301 37.301 37.301 37.301 37.301 37.301 37.301 37.301 37.301 37.301 37.301 37.301 37.301 37.301 37.301 37.301 37.301 37.301 | ATOM |     | NE2 | GLN | A   | 32 | 36.091 |        |        |            | A |
| ARDOM 244 N PHE A 33 42.647 5.7.02 25.151 1.00 15.59 A ARDOM 246 CB PHE A 33 42.670 5.702 25.151 1.00 15.59 A ARDOM 246 CB PHE A 33 42.583 42.640 5.702 25.151 1.00 16.34 A ARDOM 246 CB PHE A 33 42.583 42.646 2.333 27.406 1.00 17.21 A ARDOM 248 CD1 PHE A 33 42.686 2.333 27.406 1.00 15.57 A ARDOM 248 CD1 PHE A 33 40.598 3.397 26.903 1.00 18.54 A ARDOM 249 CD2 PHE A 33 40.598 3.397 26.903 1.00 18.54 A ARDOM 250 CE1 PHE A 33 40.598 3.397 26.903 1.00 16.34 A ARDOM 251 CE2 PHE A 33 40.729 0.983 26.978 1.00 16.34 A ARDOM 251 CE2 PHE A 33 40.729 0.983 26.978 1.00 16.34 A ARDOM 252 CZ PHE A 33 40.729 0.983 26.978 1.00 16.56 A ARDOM 253 C PHE A 33 44.363 25.776 1.00 16.56 A ARDOM 253 C PHE A 33 44.363 25.776 1.00 16.66 A ARDOM 255 N TYR A 34 44.5398 4.139 26.572 1.00 16.68 A ARDOM 255 N TYR A 34 46.377 3.125 26.264 1.00 16.93 ARDOM 256 CA TYR A 34 46.377 3.125 26.264 1.00 16.93 ARDOM 257 CB TYR A 34 49.519 3.930 27.291 1.00 16.93 ARDOM 259 CD1 TYR A 34 49.519 3.930 27.291 1.00 17.31 ARDOM 259 CD1 TYR A 34 49.519 3.930 27.291 1.00 17.31 ARDOM 250 CD1 TYR A 34 49.519 3.930 27.291 1.00 17.31 ARDOM 250 CD1 TYR A 34 49.519 3.930 27.291 1.00 17.38 ARDOM 260 CE1 TYR A 34 49.244 6.690 27.388 1.00 17.31 ARDOM 261 CD2 TYR A 34 48.504 5.932 26.586 1.00 17.68 ARDOM 263 CZ TYR A 34 48.504 5.932 27.291 1.00 17.48 ARDOM 264 CH2 TYR A 34 48.504 5.932 27.291 1.00 17.48 ARDOM 265 C TYR A 34 48.504 5.932 27.291 1.00 17.48 ARDOM 266 CB1 TYR A 34 48.504 5.932 27.291 1.00 17.31 ARDOM 266 CB2 TYR A 34 48.504 5.932 27.291 1.00 17.31 ARDOM 267 N VAL A 35 46.692 2.473 27.588 1.00 17.31 ARDOM 268 C TYR A 34 48.504 5.932 27.291 1.00 17.68 ARDOM 267 N VAL A 35 47.513 1.261 27.555 1.00 17.31 ARDOM 268 C TYR A 34 46.692 2.473 27.588 1.00 17.68 ARDOM 267 N VAL A 35 47.513 1.261 27.555 1.00 17.31 ARDOM 267 N VAL A 35 47.513 1.261 27.555 1.00 17.31 ARDOM 268 C TYR A 34 46.692 2.473 27.291 1.00 17.68 ARDOM 267 N VAL A 35 47.513 1.261 27.555 1.00 17.31 ARDOM 268 C TYR A 36 51.544 1.122 29.048 1.00 19.75 ARDOM 277 C TYR A 36 51.546 1.00 18.89 ARDOM 277 C TY | ATOM |     | C   | GLN | A   | 32 |        |        |        |            |   |
| ARTOM 245 CA PHE A 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOTA | 243 | 0   | GLN | A   | 32 |        |        |        |            |   |
| ATOM 246 CB PHE A 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MOTA | 244 | N   | PHE | A   | 33 |        |        |        |            |   |
| ATOM 247 CG PHE A 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM | 245 | CA  | PHE | A   | 33 |        |        |        |            |   |
| ATOM 248 CD1 PHE A 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOTA | 246 |     |     |     |    |        |        |        |            |   |
| ATOM 249 CD2 PHE A 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOTA |     |     |     |     |    |        |        |        |            |   |
| ATOM 250 CEL PHE A 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM |     |     |     |     |    |        |        |        |            |   |
| ATOM 251 CE2 PHE A 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 252 CZ PHE A 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 253 C PHE A 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 254 O PHE A 33 44.209 3.746 24.712 1.00 16.85 A ATOM 255 N TYR A 34 45.398 4.139 26.572 1.00 16.03 A ATOM 256 CA TYR A 34 46.377 3.125 26.264 1.00 16.93 A ATOM 257 CB TYR A 34 47.636 3.730 25.621 1.00 16.33 A ATOM 258 CG TYR A 34 48.528 4.541 26.523 1.00 17.31 A ATOM 259 CD1 TYR A 34 49.519 3.930 27.291 1.00 17.48 A ATOM 250 CE1 TYR A 34 49.519 3.930 27.291 1.00 17.48 A ATOM 260 CE1 TYR A 34 48.404 5.928 26.586 1.00 17.68 A ATOM 261 CD2 TYR A 34 48.404 5.928 26.586 1.00 17.68 A ATOM 262 CE2 TYR A 34 49.244 6.690 27.388 1.00 19.73 A ATOM 263 CZ TYR A 34 49.244 6.690 28.141 1.00 20.10 A ATOM 264 ON TYR A 34 50.224 6.060 28.141 1.00 20.10 A ATOM 265 C TYR A 34 46.692 2.473 27.588 1.00 19.73 A ATOM 266 O TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 O TYR A 34 46.429 3.042 28.646 1.00 17.88 A ATOM 266 O TYR A 34 46.429 3.042 28.646 1.00 17.31 A ATOM 267 N VAL A 35 47.213 1.261 27.535 1.00 17.31 A ATOM 268 CA VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 269 CB VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 270 CG1 VAL A 35 47.589 -1.660 29.912 1.00 17.56 A ATOM 271 CG2 VAL A 35 49.701 -0.050 27.877 1.00 18.84 A ATOM 273 O VAL A 35 49.701 -0.050 27.877 1.00 18.84 A ATOM 273 O VAL A 35 49.701 -0.050 27.877 1.00 16.51 A ATOM 275 CA ASP A 36 51.521 0.984 29.996 1.00 25.86 A ATOM 275 CA ASP A 36 51.521 0.984 29.996 1.00 25.86 A ATOM 275 CA ASP A 36 51.521 0.984 29.996 1.00 25.86 A ATOM 276 CB ASP A 36 51.542 1.872 31.270 1.00 26.55 A ATOM 279 OD2 ASF A 36 51.542 1.872 31.270 1.00 26.55 A ATOM 278 OD1 ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 280 C ASP A 36 51.544 -0.742 29.387 1.00 25.55 A ATOM 280 C ASP A 36 51.544 -0.742 29.387 1.00 25.55 A ATOM 280 C ASP A 36 51.545 -0.742 29.387 1.00 25.55 A ATOM 278 OD1 ASP A 36 51.546 -0.742 29.387 1.00 25.55 A ATOM 280 C ASP A 36 51.546 -0.742 29.387 1.00 25.55 A ATOM 280 C ASP A 36 51.546 -0.742 29.387 1.00 25.55 A ATOM 280 C ASP A 36 51.546 -0.742 29.387 1.00 25.55 A ATOM 280 C ASP A 36 51.546 -0.742 29.387 1.00 25.55 A ATOM 280 C ASP A 36 51.546 -0.742 29.387 1 |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 255 N TYR A 34 45.398 4.139 26.572 1.00 16.03 A ATOM 256 CA TYR A 34 47.636 3.730 25.621 1.00 16.33 A ATOM 257 CB TYR A 34 47.636 3.730 25.621 1.00 16.33 A ATOM 258 CG TYR A 34 48.528 4.541 26.523 1.00 17.31 A ATOM 259 CD1 TYR A 34 48.528 4.541 26.523 1.00 17.31 A ATOM 259 CD1 TYR A 34 49.519 3.930 27.291 1.00 17.48 A ATOM 260 CE1 TYR A 34 48.404 5.928 26.586 1.00 17.68 A ATOM 261 CD2 TYR A 34 48.404 5.928 26.586 1.00 17.68 A ATOM 262 CE2 TYR A 34 49.244 6.690 27.388 1.00 19.73 A ATOM 263 CZ TYR A 34 50.224 6.060 28.141 1.00 20.10 A ATOM 264 OH TYR A 34 51.044 6.815 28.941 1.00 23.02 A ATOM 266 O TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 O TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 267 N VAL A 35 47.213 1.261 27.535 1.00 17.31 A ATOM 269 CB VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 269 CB VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 270 CG1 VAL A 35 47.581 -0.600 29.912 1.00 17.56 A ATOM 270 CG1 VAL A 35 49.084 0.478 28.804 1.00 19.12 A ATOM 271 CG2 VAL A 35 49.084 0.478 28.786 1.00 17.86 A ATOM 272 C VAL A 35 49.084 0.478 28.786 1.00 17.56 A ATOM 273 O VAL A 35 49.084 0.478 28.786 1.00 17.56 A ATOM 273 O VAL A 35 49.084 0.478 28.786 1.00 17.56 A ATOM 274 N ASP A 36 51.121 0.984 29.996 1.00 22.55 A ATOM 275 CA ASP A 36 51.121 0.984 29.996 1.00 22.55 A ATOM 276 CB ASP A 36 51.542 1.872 31.172 1.00 26.89 A ATOM 277 CG ASP A 36 51.542 1.872 31.172 1.00 26.55 A ATOM 278 OD ASP A 36 51.542 1.872 31.172 1.00 26.55 A ATOM 278 OD ASP A 36 51.542 1.872 31.172 1.00 26.55 A ATOM 278 OD ASP A 36 51.542 1.872 31.172 1.00 26.55 A ATOM 278 OD ASP A 36 51.121 0.984 29.996 1.00 27.56 A ATOM 278 OD ASP A 36 51.121 0.984 29.996 1.00 27.56 A ATOM 278 OD ASP A 36 51.121 0.984 29.996 1.00 27.51 A ATOM 280 C ASP A 36 51.121 0.984 29.996 1.00 27.55 A ATOM 280 C ASP A 36 51.121 0.984 29.996 1.00 22.55 A ATOM 280 C ASP A 36 51.121 0.984 29.996 1.00 22.55 A ATOM 280 C ASP A 36 51.101 0.0976 31.378 1.00 29.51 A ATOM 280 C ASP A 36 51.101 0.0976 31.378 1.00 27.38 A ATOM 280 C ASP A 36 51.101 0.0976 31.378 1.00 27.5 |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 256 CA TYR A 34 46.377 3.125 26.264 1.00 16.93 A ATOM 257 CB TYR A 34 47.636 3.730 25.621 1.00 16.33 A ATOM 258 CG TYR A 34 48.528 4.541 26.523 1.00 17.31 A ATOM 259 CD1 TYR A 34 49.519 3.930 27.291 1.00 17.48 A ATOM 260 CE1 TYR A 34 50.367 4.683 28.097 1.00 19.16 A ATOM 261 CD2 TYR A 34 49.244 6.692 27.388 1.00 19.73 A ATOM 263 CZ TYR A 34 49.244 6.690 27.388 1.00 19.73 A ATOM 263 CZ TYR A 34 50.224 6.060 28.141 1.00 20.10 A ATOM 264 OH TYR A 34 51.044 6.815 28.941 1.00 20.10 A ATOM 265 C TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 C TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 C TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 C TYR A 35 47.213 1.261 27.535 1.00 17.31 A ATOM 268 CA VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 269 CB VAL A 35 46.950 -0.848 28.804 1.00 19.12 A ATOM 270 CG1 VAL A 35 47.589 -1.660 29.912 1.00 17.56 A ATOM 271 CG2 VAL A 35 49.701 -0.050 27.877 1.00 18.84 A ATOM 272 C VAL A 35 49.701 -0.050 27.877 1.00 18.84 A ATOM 273 O VAL A 35 49.084 0.478 28.786 1.00 19.75 A ATOM 274 N ASP A 36 49.676 1.039 29.830 1.00 25.55 A ATOM 275 CA ASP A 36 51.121 0.984 29.996 1.00 25.86 A ATOM 276 CB ASP A 36 51.542 1.872 31.172 1.00 26.89 A ATOM 277 CG ASP A 36 53.033 2.108 31.270 1.00 25.55 A ATOM 279 OD2 ASP A 36 51.542 1.872 31.172 1.00 26.89 A ATOM 279 OD2 ASP A 36 53.033 2.108 31.271 1.00 26.39 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 29.78 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 29.78 A ATOM 281 O ASP A 36 51.393 -0.484 30.314 1.00 29.75 A ATOM 282 N LEU A 37 52.055 -2.600 29.588 1.00 27.38 A ATOM 283 CA LEU A 37 52.055 -3.630 29.987 1.00 27.51 A ATOM 284 CB LEU A 37 52.754 -3.231 28.270 1.00 26.39 A ATOM 286 CD LEU A 37 53.245 -3.630 25.852 1.00 21.32 A ATOM 286 CD LEU A 37 53.246 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 53.246 -3.231 28.270 1.00 25.10 A ATOM 286 CD LEU A 37 53.246 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 53.246 -3.231 28.270 1.00 30.955 A ATOM 287 CD2 LEU A 37 53.246 -3.231 28.270 1.00 30.955 A ATOM 288 C LEU A 37 53.246 -3.2 |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 257 CB TYR A 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 258 CG TYR A 34 48.528 4.541 26.523 1.00 17.31 A ATOM 259 CD1 TYR A 34 49.519 3.930 27.291 1.00 17.48 A ATOM 260 CE1 TYR A 34 50.367 4.683 28.097 1.00 19.16 A ATOM 261 CD2 TYR A 34 48.404 5.928 26.586 1.00 17.68 A ATOM 262 CE2 TYR A 34 49.244 6.690 27.388 1.00 19.73 A ATOM 263 CZ TYR A 34 50.224 6.060 28.141 1.00 20.10 A ATOM 264 OH TYR A 34 51.044 6.815 28.941 1.00 23.02 A ATOM 265 C TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 O TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 C TYR A 34 46.429 3.042 28.646 1.00 21.13 A ATOM 267 N VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 268 CA VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 269 CB VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 270 CG1 VAL A 35 47.589 -1.660 29.912 1.00 17.56 A ATOM 271 CG2 VAL A 35 49.084 0.478 28.786 1.00 17.56 A ATOM 272 C VAL A 35 49.084 0.478 28.786 1.00 19.75 A ATOM 273 O VAL A 35 49.084 0.478 28.786 1.00 18.84 A ATOM 274 N ASP A 36 51.121 0.984 29.996 1.00 22.55 A ATOM 275 CA ASP A 36 51.121 0.984 29.996 1.00 22.586 A ATOM 276 CB ASP A 36 51.542 1.872 31.172 1.00 26.89 A ATOM 277 CG ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 278 ODL ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 279 OD2 ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 278 ODL ASP A 36 53.441 3.285 31.213 1.00 30.03 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.55 A ATOM 278 ODL ASP A 36 51.393 -0.484 30.314 1.00 26.39 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.55 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.55 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.55 A ATOM 281 O ASP A 36 51.016 -0.976 31.378 1.00 27.51 A ATOM 282 N LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 285 CG LEU A 37 52.265 -3.630 25.852 1.00 22.55 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 22.55 A ATOM 286 CD LEU A 37 53.348 -2.838 30.674 1.00 33.46 A ATOM 280 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.6 |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 259 CD1 TYR A 34 49.519 3.930 27.291 1.00 17.48 A ATOM 260 CE1 TYR A 34 50.367 4.683 28.097 1.00 19.16 A ATOM 261 CD2 TYR A 34 48.404 5.928 26.586 1.00 17.68 A ATOM 262 CE2 TYR A 34 49.244 6.690 27.388 1.00 19.73 A ATOM 263 CZ TYR A 34 50.224 6.060 28.141 1.00 20.10 A ATOM 264 OH TYR A 34 51.044 6.815 28.941 1.00 23.02 A ATOM 265 C TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 O TYR A 34 46.429 3.042 28.646 1.00 17.88 A ATOM 267 N VAL A 35 47.213 1.261 27.535 1.00 17.31 A ATOM 268 CA VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 269 CB VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 270 CG1 VAL A 35 47.589 -1.660 29.912 1.00 17.56 A ATOM 271 CG2 VAL A 35 49.084 0.478 28.786 1.00 19.75 A ATOM 273 O VAL A 35 49.084 0.478 28.786 1.00 18.84 A ATOM 274 N ASP A 36 51.542 1.872 31.172 1.00 25.86 A ATOM 275 CA ASP A 36 51.542 1.872 31.172 1.00 25.86 A ATOM 276 CB ASP A 36 53.033 2.108 31.221 1.00 25.86 A ATOM 277 CG ASP A 36 53.441 3.285 31.221 1.00 25.86 A ATOM 279 OD2 ASP A 36 53.796 1.125 31.270 1.00 27.38 A ATOM 280 C ASP A 36 53.796 1.125 31.270 1.00 27.51 A ATOM 280 C ASP A 36 53.441 3.285 31.213 1.00 30.03 A ATOM 280 C ASP A 36 53.493 -0.484 30.314 1.00 27.51 A ATOM 280 C ASP A 36 53.796 1.125 31.270 1.00 27.51 A ATOM 280 C ASP A 36 53.796 1.125 31.270 1.00 27.51 A ATOM 280 C ASP A 36 53.493 -0.484 30.314 1.00 27.51 A ATOM 280 C ASP A 36 53.796 1.125 31.270 1.00 27.51 A ATOM 280 C ASP A 36 53.491 3.285 31.213 1.00 30.03 A ATOM 280 C ASP A 36 53.491 3.285 31.213 1.00 27.51 A ATOM 280 C ASP A 36 53.491 3.285 31.213 1.00 27.51 A ATOM 280 C ASP A 36 53.491 3.285 31.213 1.00 27.51 A ATOM 280 C LEU A 37 52.265 -3.630 25.852 1.00 27.51 A ATOM 280 C LEU A 37 52.265 -3.630 25.852 1.00 27.51 A ATOM 280 C LEU A 37 52.265 -3.630 25.852 1.00 27.51 A ATOM 280 C LEU A 37 52.265 -3.630 25.852 1.00 27.51 A ATOM 280 C LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 280 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 280 C LEU A 37 53.348 -2.838 30.674 1.00 30.44 A ATOM 280 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A  |      |     |     |     |     |    |        |        |        |            | A |
| ATOM 260 CE1 TYR A 34 50.367 4.683 28.097 1.00 19.16 A ATOM 261 CD2 TYR A 34 48.404 5.928 26.586 1.00 17.68 A ATOM 262 CE2 TYR A 34 49.244 6.690 27.388 1.00 19.73 A ATOM 263 CZ TYR A 34 50.224 6.060 28.141 1.00 20.10 A ATOM 264 OH TYR A 34 51.044 6.815 28.941 1.00 23.02 A ATOM 265 C TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 O TYR A 34 46.429 3.042 28.646 1.00 21.13 A ATOM 267 N VAL A 35 47.213 1.261 27.535 1.00 17.31 A ATOM 268 CA VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 269 CB VAL A 35 47.571 0.570 28.749 1.00 17.56 A ATOM 270 CG1 VAL A 35 47.589 -1.660 29.912 1.00 17.56 A ATOM 271 CG2 VAL A 35 45.454 -0.742 29.048 1.00 19.75 A ATOM 272 C VAL A 35 49.084 0.478 28.786 1.00 18.84 A ATOM 273 O VAL A 35 49.084 0.478 28.786 1.00 22.55 A ATOM 274 N ASP A 36 51.121 0.984 29.996 1.00 22.55 A ATOM 275 CA ASP A 36 51.121 0.984 29.996 1.00 22.55 A ATOM 276 CB ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 277 CG ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 279 OD2 ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 279 OD2 ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 280 C ASP A 36 53.033 -0.484 30.314 1.00 26.55 A ATOM 280 C ASP A 36 53.033 -0.484 30.314 1.00 27.38 A ATOM 281 O ASP A 36 53.033 -0.484 30.314 1.00 27.38 A ATOM 282 N LEU A 37 52.204 -1.187 29.387 1.00 27.38 A ATOM 283 CA LEU A 37 52.204 -1.187 29.387 1.00 27.38 A ATOM 284 CB LEU A 37 52.204 -1.187 29.387 1.00 27.38 A ATOM 286 CD1 LEU A 37 52.205 -3.630 25.852 1.00 27.31 A ATOM 286 CD1 LEU A 37 52.205 -3.630 25.852 1.00 27.31 A ATOM 286 CD1 LEU A 37 52.205 -3.630 25.852 1.00 21.32 A ATOM 286 CD LEU A 37 53.348 -2.838 30.6734 1.00 30.95 A ATOM 286 CD LEU A 37 53.348 -2.838 30.6734 1.00 30.95 A ATOM 287 CD2 LEU A 37 53.348 -2.838 30.0734 1.00 31.43 A ATOM 289 O LEU A 37 53.348 -2.838 30.0734 1.00 31.44 A ATOM 280 C LEU A 37 53.348 -2.838 30.0734 1.00 31.44 A ATOM 280 C LEU A 37 53.348 -2.838 30.0734 1.00 31.44 A ATOM 280 O LEU A 37 53.348 -2.838 30.0734 1.00 31.44 A ATOM 280 O LEU A 37 53.348 -2.838 30.0734 1.00 31.44 A                           |      |     |     |     |     |    |        |        | 27.291 | 1.00 17.48 | A |
| ATOM 261 CD2 TYR A 34 48.404 5.928 26.586 1.00 17.68 A ATOM 262 CE2 TYR A 34 49.244 6.690 27.388 1.00 19.73 A ATOM 263 CZ TYR A 34 49.244 6.690 27.388 1.00 19.73 A ATOM 264 OH TYR A 34 50.224 6.060 28.141 1.00 20.10 A ATOM 265 C TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 O TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 O TYR A 34 46.429 3.042 28.646 1.00 21.13 A ATOM 267 N VAL A 35 47.571 0.570 28.749 1.00 17.31 A ATOM 268 CA VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 269 CB VAL A 35 46.950 -0.848 28.804 1.00 19.12 A ATOM 270 CG1 VAL A 35 47.589 -1.660 29.912 1.00 17.56 A ATOM 271 CG2 VAL A 35 49.084 0.478 28.786 1.00 19.75 A ATOM 273 O VAL A 35 49.701 -0.050 27.877 1.00 16.51 A ATOM 274 N ASP A 36 49.676 1.039 29.830 1.00 22.55 A ATOM 275 CA ASP A 36 51.542 1.872 31.172 1.00 26.89 A ATOM 276 CB ASP A 36 51.542 1.872 31.172 1.00 26.89 A ATOM 277 CG ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 278 OD1 ASP A 36 51.393 -0.484 30.314 1.00 29.78 A ATOM 279 OD2 ASP A 36 53.033 2.108 31.213 1.00 30.03 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 29.78 A ATOM 281 O ASP A 36 51.393 -0.484 30.314 1.00 27.318 A ATOM 282 N LEU A 37 52.265 -3.630 25.852 1.00 27.32 A ATOM 283 CA LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 31.44 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 31.44 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 31.46 A                                                                                                                                                                                                                                                                                                                      |      |     |     |     |     |    |        | 4.683  | 28.097 | 1.00 19.16 | A |
| ATOM 263 CZ TYR A 34 49.244 6.690 27.388 1.00 19.73 A ATOM 263 CZ TYR A 34 50.224 6.060 28.141 1.00 20.10 A ATOM 264 OH TYR A 34 51.044 6.815 28.941 1.00 23.02 A ATOM 265 C TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 O TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 267 N VAL A 35 47.213 1.261 27.535 1.00 17.31 A ATOM 268 CA VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 269 CB VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 270 CG1 VAL A 35 47.589 -1.660 29.912 1.00 17.56 A ATOM 271 CG2 VAL A 35 45.454 -0.742 29.048 1.00 19.12 A ATOM 272 C VAL A 35 49.084 0.478 28.786 1.00 18.84 A ATOM 273 O VAL A 35 49.084 0.478 28.786 1.00 18.84 A ATOM 273 O VAL A 35 49.676 1.039 29.830 1.00 22.55 A ATOM 275 CA ASP A 36 51.121 0.984 29.996 1.00 26.89 A ATOM 276 CB ASP A 36 51.542 1.872 31.272 1.00 26.89 A ATOM 277 CG ASP A 36 53.033 2.108 31.221 1.00 26.89 A ATOM 278 OD1 ASP A 36 53.033 2.108 31.221 1.00 26.89 A ATOM 279 OD2 ASP A 36 51.393 -0.484 30.314 1.00 26.39 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.39 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 27.38 A ATOM 280 C ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 281 O ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 282 C LEU A 37 52.265 -3.630 25.852 1.00 27.38 A ATOM 283 CG LEU A 37 52.265 -3.630 25.852 1.00 27.38 A ATOM 284 CB LEU A 37 52.265 -3.630 25.852 1.00 27.38 A ATOM 285 CG LEU A 37 52.265 -3.630 25.852 1.00 27.51 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 27.51 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 27.51 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 27.51 A ATOM 288 C LEU A 37 50.455 -3.876 27.557 1.00 25.51 A ATOM 289 O LEU A 37 50.455 -3.876 27.557 1.00 25.51 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 289 O LEU A 37 53.222 -3.774 31.4 |      |     |     |     |     | 34 | 48.404 | 5.928  | 26.586 | 1.00 17.68 | A |
| ATOM 263 CZ TYR A 34 50.224 6.060 28.141 1.00 20.10 A ATOM 264 OH TYR A 34 51.044 6.815 28.941 1.00 23.02 A ATOM 265 C TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 O TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 O TYR A 34 46.429 3.042 28.646 1.00 21.13 A ATOM 267 N VAL A 35 47.213 1.261 27.535 1.00 17.31 A ATOM 268 CA VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 269 CB VAL A 35 46.950 -0.848 28.804 1.00 19.12 A ATOM 270 CG1 VAL A 35 47.589 -1.660 29.912 1.00 17.56 A ATOM 271 CG2 VAL A 35 45.454 -0.742 29.048 1.00 19.75 A ATOM 273 O VAL A 35 49.084 0.478 28.786 1.00 18.84 A ATOM 273 O VAL A 35 49.701 -0.050 27.877 1.00 16.51 A ATOM 274 N ASP A 36 49.676 1.039 29.830 1.00 22.55 A ATOM 275 CA ASP A 36 51.121 0.984 29.996 1.00 25.86 A ATOM 276 CB ASP A 36 51.542 1.872 31.172 1.00 26.89 A ATOM 277 CG ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 278 OD1 ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 279 OD2 ASP A 36 53.033 2.108 31.211 1.00 26.55 A ATOM 279 OD2 ASP A 36 53.033 2.108 31.213 1.00 30.03 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.39 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.39 A ATOM 281 O ASP A 36 51.393 -0.484 30.314 1.00 27.38 A ATOM 282 N LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 283 CA LEU A 37 52.754 -3.231 28.270 1.00 29.51 A ATOM 284 CB LEU A 37 52.754 -3.231 28.270 1.00 29.51 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A                                                                                                                                                                                                                                                                                                                                                                                |      |     |     |     | A S | 34 | 49.244 | 6.690  | 27.388 | 1.00 19.73 | A |
| ATOM 264 OH TYR A 34 51.044 6.815 28.941 1.00 23.02 A ATOM 265 C TYR A 34 46.692 2.473 27.588 1.00 17.88 A ATOM 266 O TYR A 34 46.692 3.042 28.646 1.00 21.13 A ATOM 267 N VAL A 35 47.213 1.261 27.535 1.00 17.31 A ATOM 268 CA VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 269 CB VAL A 35 46.950 -0.848 28.804 1.00 19.12 A ATOM 270 CG1 VAL A 35 45.454 -0.742 29.048 1.00 19.75 A ATOM 271 CG2 VAL A 35 45.454 -0.742 29.048 1.00 19.75 A ATOM 273 O VAL A 35 49.084 0.478 28.786 1.00 18.84 A ATOM 273 O VAL A 35 49.701 -0.050 27.877 1.00 16.51 A ATOM 274 N ASP A 36 51.121 0.984 29.996 1.00 22.55 A ATOM 275 CA ASP A 36 51.542 1.872 31.172 1.00 25.86 A ATOM 276 CB ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 277 CG ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 279 OD2 ASP A 36 51.393 -0.484 30.314 1.00 29.78 A ATOM 280 C ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 281 O ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 282 N LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 284 CB LEU A 37 52.024 -1.187 29.387 1.00 25.10 A ATOM 285 CG LEU A 37 52.024 -1.187 29.387 1.00 25.10 A ATOM 286 CD1 LEU A 37 52.024 -1.187 29.387 1.00 25.10 A ATOM 287 CD2 LEU A 37 52.025 -3.630 25.852 1.00 21.32 A ATOM 288 C LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 288 C D LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     | CZ  | TYR | A   | 34 | 50.224 | 6.060  | 28.141 | 1.00 20.10 | A |
| ATOM 266 O TYR A 34 46.429 3.042 28.646 1.00 21.13 A ATOM 267 N VAL A 35 47.213 1.261 27.535 1.00 17.31 A ATOM 268 CA VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 269 CB VAL A 35 46.950 -0.848 28.804 1.00 19.12 A ATOM 270 CG1 VAL A 35 47.589 -1.660 29.912 1.00 17.56 A ATOM 271 CG2 VAL A 35 45.454 -0.742 29.048 1.00 19.75 A ATOM 272 C VAL A 35 49.084 0.478 28.786 1.00 19.75 A ATOM 273 O VAL A 35 49.084 0.478 28.786 1.00 18.84 A ATOM 273 O VAL A 35 49.676 1.039 29.830 1.00 22.55 A ATOM 275 CA ASP A 36 51.542 1.872 31.172 1.00 26.89 A ATOM 276 CB ASP A 36 51.542 1.872 31.172 1.00 26.89 A ATOM 277 CG ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 278 OD1 ASP A 36 53.033 2.108 31.221 1.00 29.78 A ATOM 279 OD2 ASP A 36 53.441 3.285 31.213 1.00 30.03 A ATOM 280 C ASP A 36 51.394 -0.484 30.314 1.00 27.38 A ATOM 281 O ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 282 N LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 283 CA LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 284 CB LEU A 37 52.265 -3.630 25.852 1.00 25.51 A ATOM 285 CG LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 286 C D1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     | OH  | TYR | A S | 34 | 51.044 | 6.815  | 28.941 | 1.00 23.02 | A |
| ATOM 266 O TYR A 34 46.429 3.042 28.646 1.00 21.13 A ATOM 267 N VAL A 35 47.213 1.261 27.535 1.00 17.31 A ATOM 268 CA VAL A 35 47.571 0.570 28.749 1.00 18.89 A ATOM 269 CB VAL A 35 46.950 -0.848 28.804 1.00 19.12 A ATOM 270 CG1 VAL A 35 47.589 -1.660 29.912 1.00 17.56 A ATOM 271 CG2 VAL A 35 45.454 -0.742 29.048 1.00 19.75 A ATOM 272 C VAL A 35 49.084 0.478 28.786 1.00 18.84 A ATOM 273 O VAL A 35 49.084 0.478 28.786 1.00 18.84 A ATOM 274 N ASP A 36 49.676 1.039 29.830 1.00 22.55 A ATOM 275 CA ASP A 36 51.121 0.984 29.996 1.00 25.86 A ATOM 276 CB ASP A 36 51.542 1.872 31.172 1.00 26.89 A ATOM 277 CG ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 278 OD1 ASP A 36 53.441 3.285 31.213 1.00 30.03 A ATOM 279 OD2 ASP A 36 51.393 -0.484 30.314 1.00 29.78 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 27.38 A ATOM 281 O ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 282 N LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 283 CA LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 284 CB LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 285 CG LEU A 37 52.024 -3.231 28.270 1.00 29.51 A ATOM 286 CD1 LEU A 37 52.024 -3.231 28.270 1.00 29.51 A ATOM 287 CD2 LEU A 37 52.024 -3.231 28.270 1.00 25.10 A ATOM 288 C LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.348 -2.838 30.674 1.00 30.95 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     | C   | TYR | A S | 34 | 46.692 | 2.473  |        |            |   |
| ATOM 268 CA VAL A 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     | 0   | TYR | A S | 34 |        |        |        |            |   |
| ATOM 269 CB VAL A 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 267 | N   | VAI | A   |    |        |        |        |            |   |
| ATOM 270 CG1 VAL A 35 47.589 -1.660 29.912 1.00 17.56 A ATOM 271 CG2 VAL A 35 45.454 -0.742 29.048 1.00 19.75 A ATOM 272 C VAL A 35 49.084 0.478 28.786 1.00 18.84 A ATOM 273 O VAL A 35 49.701 -0.050 27.877 1.00 16.51 A ATOM 274 N ASP A 36 49.676 1.039 29.830 1.00 22.55 A ATOM 275 CA ASP A 36 51.121 0.984 29.996 1.00 25.86 A ATOM 276 CB ASP A 36 51.542 1.872 31.172 1.00 26.89 A ATOM 277 CG ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 278 OD1 ASP A 36 53.796 1.125 31.270 1.00 29.78 A ATOM 279 OD2 ASP A 36 53.441 3.285 31.213 1.00 30.03 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.39 A ATOM 281 O ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 282 N LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 283 CA LEU A 37 52.305 -2.600 29.588 1.00 29.51 A ATOM 284 CB LEU A 37 52.754 -3.231 28.270 1.00 26.29 A ATOM 285 CG LEU A 37 52.754 -3.231 28.270 1.00 26.59 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MOTA | 268 | CA  | IAV | A   | 35 |        |        |        |            |   |
| ATOM 271 CG2 VAL A 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOTA | 269 | CB  |     |     |    |        |        |        |            |   |
| ATOM 271 CG VAL A 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MOTA | 270 |     |     |     |    |        |        |        |            |   |
| ATOM 273 O VAL A 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOTA |     |     |     |     |    |        |        |        |            |   |
| ATOM 274 N ASP A 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 275 CA ASP A 36 51.121 0.984 29.996 1.00 25.86 A ATOM 276 CB ASP A 36 51.542 1.872 31.172 1.00 26.89 A ATOM 277 CG ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 278 OD1 ASP A 36 53.796 1.125 31.270 1.00 29.78 A ATOM 279 OD2 ASP A 36 53.441 3.285 31.213 1.00 30.03 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.39 A ATOM 281 O ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 282 N LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 283 CA LEU A 37 52.305 -2.600 29.588 1.00 29.51 A ATOM 284 CB LEU A 37 52.754 -3.231 28.270 1.00 26.29 A ATOM 285 CG LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 289 O LEU A 38 54.362 -1.980 30.734 1.00 33.46 A ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 276 CB ASP A 36 51.542 1.872 31.172 1.00 26.89 A ATOM 277 CG ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 278 OD1 ASP A 36 53.796 1.125 31.270 1.00 29.78 A ATOM 279 OD2 ASP A 36 53.441 3.285 31.213 1.00 30.03 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.39 A ATOM 281 O ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 282 N LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 283 CA LEU A 37 52.305 -2.600 29.588 1.00 27.51 A ATOM 284 CB LEU A 37 52.754 -3.231 28.270 1.00 26.29 A ATOM 285 CG LEU A 37 52.754 -3.231 28.270 1.00 25.10 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 289 O LEU A 38 54.362 -1.980 30.734 1.00 33.46 A ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 277 CG ASP A 36 53.033 2.108 31.221 1.00 26.55 A ATOM 278 OD1 ASP A 36 53.796 1.125 31.270 1.00 29.78 A ATOM 279 OD2 ASP A 36 53.441 3.285 31.213 1.00 30.03 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.39 A ATOM 281 O ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 282 N LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 283 CA LEU A 37 52.305 -2.600 29.588 1.00 29.51 A ATOM 284 CB LEU A 37 52.754 -3.231 28.270 1.00 26.29 A ATOM 285 CG LEU A 37 52.754 -3.231 28.270 1.00 26.29 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 278 OD1 ASP A 36 53.796 1.125 31.270 1.00 29.78 A ATOM 279 OD2 ASP A 36 53.441 3.285 31.213 1.00 30.03 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.39 A ATOM 281 O ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 282 N LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 283 CA LEU A 37 52.305 -2.600 29.588 1.00 29.51 A ATOM 284 CB LEU A 37 52.754 -3.231 28.270 1.00 26.29 A ATOM 285 CG LEU A 37 51.704 -3.111 27.160 1.00 25.10 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 279 OD2 ASP A 36 53.441 3.285 31.213 1.00 30.03 A ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.39 A ATOM 281 O ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 282 N LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 283 CA LEU A 37 52.305 -2.600 29.588 1.00 29.51 A ATOM 284 CB LEU A 37 52.754 -3.231 28.270 1.00 26.29 A ATOM 285 CG LEU A 37 51.704 -3.111 27.160 1.00 25.10 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |     |     |     |    |        |        |        | ·          |   |
| ATOM 280 C ASP A 36 51.393 -0.484 30.314 1.00 26.39 A ATOM 281 O ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 282 N LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 283 CA LEU A 37 52.305 -2.600 29.588 1.00 29.51 A ATOM 284 CB LEU A 37 52.754 -3.231 28.270 1.00 26.29 A ATOM 285 CG LEU A 37 51.704 -3.111 27.160 1.00 25.10 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 281 O ASP A 36 51.016 -0.976 31.378 1.00 27.38 A ATOM 282 N LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 283 CA LEU A 37 52.305 -2.600 29.588 1.00 29.51 A ATOM 284 CB LEU A 37 52.754 -3.231 28.270 1.00 26.29 A ATOM 285 CG LEU A 37 51.704 -3.111 27.160 1.00 25.10 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 282 N LEU A 37 52.024 -1.187 29.387 1.00 27.51 A ATOM 283 CA LEU A 37 52.305 -2.600 29.588 1.00 29.51 A ATOM 284 CB LEU A 37 52.754 -3.231 28.270 1.00 26.29 A ATOM 285 CG LEU A 37 51.704 -3.111 27.160 1.00 25.10 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     |     |     |     |    |        | _      |        |            |   |
| ATOM 283 CA LEU A 37 52.305 -2.600 29.588 1.00 29.51 A  ATOM 284 CB LEU A 37 52.754 -3.231 28.270 1.00 26.29 A  ATOM 285 CG LEU A 37 51.704 -3.111 27.160 1.00 25.10 A  ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A  ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A  ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A  ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A  ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 284 CB LEU A 37 52.754 -3.231 28.270 1.00 26.29 A ATOM 285 CG LEU A 37 51.704 -3.111 27.160 1.00 25.10 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 285 CG LEU A 37 51.704 -3.111 27.160 1.00 25.10 A ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 286 CD1 LEU A 37 52.265 -3.630 25.852 1.00 21.32 A  ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A  ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A  ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A  ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 287 CD2 LEU A 37 50.455 -3.876 27.557 1.00 22.51 A  ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A  ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A  ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     |     |     |     |    |        |        |        |            |   |
| ATOM 288 C LEU A 37 53.348 -2.838 30.674 1.00 30.95 A ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |     |     |     |    |        |        |        |            | A |
| ATOM 289 O LEU A 37 53.222 -3.774 31.457 1.00 31.43 A ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |     |     |     |    |        |        |        | 1.00 30.95 | A |
| ATOM 290 N GLY A 38 54.362 -1.980 30.734 1.00 33.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |     |     |     |    |        |        |        |            | A |
| THE TOTAL TO |      |     |     |     |     |    |        |        | 30.734 | 1.00 33.46 | A |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |     |     |     |    | 55.403 | -2.140 | 31.737 | 1.00 35.44 | A |

| MOTA | 292          | C                | GLY | A        | 38 | 54.956 | -1.863 | 33.162 | 1.00 37.63 | A        |
|------|--------------|------------------|-----|----------|----|--------|--------|--------|------------|----------|
| ATOM | 293          | 0                | GLY | A        | 38 | 55.369 | -2.549 | 34.098 | 1.00 38.42 | ${f A}$  |
| ATOM | 294          | N                |     | A        | 39 | 54.101 | -0.861 | 33.334 | 1.00 38.93 | ${f A}$  |
| ATOM | 295          | CA               |     | A        | 39 | 53.625 | -0.499 | 34.660 | 1.00 40.81 | A        |
|      |              |                  |     |          | 39 | 53.645 | 1.029  | 34.803 | 1.00 42.41 | A        |
| MOTA | 296          | CB               | ARG | A.       |    |        | 1.627  | 34.339 | 1.00 44.76 | A        |
| ATOM | 297          | CG               |     | A        | 39 | 54.968 |        |        |            |          |
| ATOM | 298          | CD               | ARG | A        | 39 | 55.113 | 3.118  | 34.619 | 1.00 47.83 | A        |
| MOTA | 299          | NE               | ARG | A        | 39 | 56.318 | 3.644  | 33.976 | 1.00 50.52 | A        |
| ATOM | 300          | CZ               | ARG | A        | 39 | 56.902 | 4.799  | 34.281 | 1.00 53.40 | A        |
| ATOM | 301          | NHl              | ARG | A        | 39 | 56.399 | 5.575  | 35.235 | 1.00 54.01 | A        |
| ATOM | 302          | NH2              | ARG | A        | 39 | 57.998 | 5.179  | 33.633 | 1.00 54.18 | Α        |
|      |              | C                | ARG |          | 39 | 52.229 | -1.057 | 34.936 | 1.00 41.12 | A        |
| ATOM | 303          |                  |     |          |    | 51.664 | -0.847 | 36.014 | 1.00 39.71 | A        |
| ATOM | 304          | 0                | ARG |          | 39 |        |        |        | 1.00 40.65 | A        |
| MOTA | 305          | N                | LYS |          | 40 | 51.687 | -1.779 | 33.955 |            |          |
| ATOM | 306          | CA               | LYS | A        | 40 | 50.365 | -2.380 | 34.070 | 1.00 39.55 | A        |
| MOTA | 307          | CB               | LYS | A        | 40 | 50.415 | -3.554 | 35.053 | 1.00 42.42 | A        |
| ATOM | 308          | CG               | LYS | A        | 40 | 49.196 | -4.467 | 34.996 | 1.00 46.46 | A        |
| ATOM | 309          | CD               | LYS | A        | 40 | 49.266 | -5.563 | 36.054 | 1.00 50.42 | A        |
| ATOM | 310          | CE               | LYS |          | 40 | 48.077 | -6.513 | 35.947 | 1.00 51.25 | A        |
|      |              | NZ               |     |          | 40 | 46.781 | -5.779 | 35.970 | 1.00 52.15 | A        |
| MOTA | 311          |                  |     |          |    | 49.338 | -1.348 | 34.540 | 1.00 37.45 | A        |
| ATOM | 312          | C                | LYS |          | 40 |        |        |        | 1.00 35.78 | A        |
| ATOM | 313          | 0                | LYS |          | 40 | 48.647 | -1.560 | 35.533 |            |          |
| MOTA | 314          | N                | GLU | A        | 41 | 49.245 | -0.237 | 33.812 | 1.00 35.81 | <b>A</b> |
| ATOM | 315          | CA               | GLU | A        | 41 | 48.317 | 0.847  | 34.142 | 1.00 33.83 | A        |
| ATOM | 316          | CB               | GLU | A        | 41 | 49.077 | 2.079  | 34.655 | 1.00 36.46 | A        |
| ATOM | 317          | CG               | GLU |          | 41 | 49.660 | 1.997  | 36.049 | 1.00 41.33 | A        |
| ATOM | 318          | CD               | GLU |          | 41 | 50.500 | 3.224  | 36.374 | 1.00 44.23 | A        |
|      |              | OE1              |     |          | 41 | 50.067 | 4.343  | 36.022 | 1.00 46.67 | A        |
| MOTA | 319          |                  |     |          |    | 51.585 | 3.076  | 36.981 | 1.00 45.55 | А        |
| MOTA | 320          | OE2              |     |          | 41 |        |        | 32.937 | 1.00 30.89 | A        |
| ATOM | 321          | C                | GLU |          | 41 | 47.492 | 1.301  |        |            |          |
| MOTA | 322          | 0                | GLU | Α        | 41 | 47.995 | 1.373  | 31.816 | 1.00 27.89 | A        |
| MOTA | 323          | N                | THR | A        | 42 | 46.227 | 1.623  | 33.182 | 1.00 28.11 | A        |
| ATOM | 324          | CA               | THR | . A      | 42 | 45.354 | 2.127  | 32.135 | 1.00 26.58 | A        |
| ATOM | 325          | CB               | THR | . A      | 42 | 43.882 | 1.773  | 32.406 | 1.00 27.67 | A        |
| ATOM | 326          | OG1              |     |          | 42 | 43.716 | 0.349  | 32.394 | 1.00 25.55 | A        |
|      | 327          | CG2              |     |          | 42 | 42.979 | 2.419  | 31.357 | 1.00 25.33 | A        |
| ATOM |              |                  |     |          |    | 45.506 | 3.642  | 32.212 | 1.00 26.90 | A        |
| MOTA | 328          | C                | THR |          | 42 |        |        | 33.269 | 1.00 25.79 | A        |
| ATOM | 329          | 0                | THR |          | 42 | 45.305 | 4.232  |        |            |          |
| MOTA | 330          | N                | VAL | A        | 43 | 45.881 | 4.273  | 31.108 | 1.00 25.87 | A        |
| ATOM | 331          | CA               | VAL | A        | 43 | 46.045 | 5.720  | 31.106 | 1.00 24.36 | A        |
| ATOM | 332          | CB               | VAL | A        | 43 | 47.474 | 6.119  | 30.670 | 1.00 24.45 | A        |
| ATOM | 333          | CG1              | VAL | A        | 43 | 47.698 | 7.606  | 30.906 | 1.00 24.38 | A        |
| MOTA | 334          | CG2              |     |          | 43 | 48.504 | 5.289  | 31.433 | 1.00 22.82 | A        |
|      |              |                  | VAI |          | 43 | 45.039 | 6.331  | 30.141 | 1.00 24.94 | ${f A}$  |
| MOTA | 335          | C                |     |          |    |        | 6.133  | 28.930 | 1.00 24.72 | A        |
| MOTA | 336          | 0                | VAI |          | 43 | 45.143 |        |        | 1.00 24.50 | A        |
| ATOM | 337          | N                | TRE |          | 44 | 44.063 | 7.065  | 30.672 |            |          |
| ATOM | 338          | $^{\mathrm{CA}}$ | TRE | A        | 44 | 43.050 | 7.681  | 29.824 | 1.00 25.64 | A        |
| ATOM | 339          | CB               | TRE | <b>A</b> | 44 | 41.804 | 8.033  | 30.642 | 1.00 25.03 | A        |
| ATOM | 340          | CG               | TRE | A        | 44 | 41.224 | 6.859  | 31.370 | 1.00 25.96 | ${f A}$  |
| MOTA | 341          | CD2              | TRE | A        | 44 | 40.281 | 5.906  | 30.858 | 1.00 25.77 | A        |
| ATOM | 342          | CE2              |     |          | 44 | 40.067 | 4.946  | 31.870 | 1.00 26.64 | A        |
|      |              | CE3              |     |          | 44 | 39.599 | 5.766  | 29.641 | 1.00 24.94 | A        |
| ATOM | 343          |                  |     |          | 44 | 41.529 | 6.450  | 32.634 | 1.00 26.43 | A        |
| MOTA | 344          | CD1              |     |          |    |        |        | 32.942 | 1.00 26.28 | A        |
| MOTA | 345          | NEI              |     |          | 44 | 40.840 | 5.305  |        |            |          |
| MOTA | 346          | CZ2              | TRI | ) A      | 44 | 39.197 | 3.860  | 31.704 | 1.00 25.00 | A        |
| MOTA | 347          | CZ3              | TRI | ? A      | 44 | 38.734 | 4.688  | 29.476 | 1.00 22.40 | A        |
| ATOM | 348          | CH2              | TRI | ? A      | 44 | 38.542 | 3.749  | 30.501 | 1.00 24.18 | A        |
| ATOM | 349          | C                | TRI | P A      | 44 | 43.578 | 8.925  | 29.116 | 1.00 26.30 | A        |
| ATOM | 350          | 0                |     | ? A      | 44 | 44.321 | 9.713  | 29.700 | 1.00 24.42 | A        |
|      |              | N                |     | 5 A      | 45 | 43.193 | 9.090  | 27.853 | 1.00 28.01 | A        |
| MOTA | 351          |                  |     |          |    | 43.635 |        | 27.062 | 1.00 30.22 | A        |
| MOTA | 352          | CA               |     | S A      | 45 |        |        | 25.666 | 1.00 29.51 | A        |
| MOTA | 353          | CB               | CY  |          | 45 | 44.069 |        |        |            |          |
| MOTA | 354          | SG               | CY  |          |    | 45.547 |        | 25.680 | 1.00 30.66 | A        |
| ATOM | 355          | C                | CY  | S A      | 45 | 42.574 | 11.317 |        | 1.00 31.06 | A        |
| ATOM | 356          | 0                | CY  | S A      | 45 | 42.836 | 12.399 | 26.428 | 1.00 34.14 | A        |
| ATOM | 357          | N                |     | A U      |    | 41.375 | 11.016 | 27.439 | 1.00 31.99 | A        |
| ATOM | 358          | CA               |     | UΑ       |    | 40.261 |        | 27.436 | 1.00 32.61 | A        |
|      |              | CB               |     | U A      |    | 39.137 |        | 26.506 | 1.00 31.72 | A        |
| MOTA | 359          | CG               |     | ÜΑ       |    | 38.810 |        |        | 1.00 32.47 | A        |
| ATOM | 360          |                  |     |          |    |        |        |        |            | A        |
| ATOM | 361          | CD:              |     | U A      |    | 37.492 |        |        |            | A        |
| ATOM | 362          | CD:              |     | U A      |    | 38.710 |        |        | 1.00 29.99 |          |
| ATOM | 363          | C                |     | U A      |    | 39.734 | _      |        |            | A        |
| MOTA | 364          | 0                | LE  | U A      | 46 | 39.195 | 11.066 |        | 1.00 33.99 | A        |
| ATOM | 365          | N                | PR  | O A      | 47 | 39.893 | 13.201 | 29.521 | 1.00 32.52 | A        |
| 1    | <del>-</del> |                  |     |          |    |        |        |        |            |          |

|      |     |     |       |   |                      |        |        |        |            | _            |
|------|-----|-----|-------|---|----------------------|--------|--------|--------|------------|--------------|
| ATOM | 366 | CD  | PRO   | A | 47                   | 40.488 | 14.442 | 28.986 | 1.00 32.23 | A            |
| ATOM | 367 | CA  | PRO   | A | 47                   | 39.437 | 13.392 | 30.901 | 1.00 32.18 | A            |
| ATOM | 368 | CB  | PRO   | A | 47                   | 39.487 | 14.908 | 31.063 | 1.00 32.11 | A            |
| ATOM | 369 | CG  | PRO   | A | 47                   | 40.690 | 15.270 | 30.236 | 1.00 31.60 | A            |
| MOTA | 370 | C   | PRO   | Α | 47                   | 38.066 | 12.800 | 31.245 | 1.00 30.96 | ${f A}$      |
| ATOM | 371 | 0   | PRO   |   | 47                   | 37.927 | 12.103 | 32.243 | 1.00 30.17 | A            |
|      |     |     | VAL   |   | 48                   | 37.064 | 13.068 | 30.418 | 1.00 30.75 | A            |
| ATOM | 372 | N   |       |   |                      |        |        |        |            | A            |
| ATOM | 373 | CA  | VAL   |   | 48                   | 35.715 | 12.563 | 30.663 |            |              |
| ATOM | 374 | CB  | VAL   |   | 48                   | 34.748 | 13.040 | 29.560 | 1.00 34.04 | A            |
| MOTA | 375 | CG1 | VAL   | A | 48                   | 33.320 | 12.683 | 29.932 | 1.00 34.16 | A            |
| MOTA | 376 | CG2 | VAL   | A | 48                   | 34.881 | 14.556 | 29.368 | 1.00 38.02 | A            |
| ATOM | 377 | C   | VAL   | A | 48                   | 35.633 | 11.033 | 30.765 | 1.00 33.13 | $\mathbf{A}$ |
| ATOM | 378 | 0   | VAL   | A | 48                   | 34.698 | 10.485 | 31.355 | 1.00 33.55 | A            |
| ATOM | 379 | N   | LEU   | A | 49                   | 36.615 | 10.350 | 30.192 | 1.00 33.30 | A            |
| ATOM | 380 | CA  | LEU   |   | 49                   | 36.661 | 8.892  | 30.208 | 1.00 32.44 | A            |
| ATOM | 381 | CB  | LEU   | A | 49                   | 37.498 | 8.391  | 29.023 | 1.00 30.62 | A            |
|      |     |     | LEU   |   | 49                   | 36.792 | 8.027  | 27.702 | 1.00 31.64 | A            |
| ATOM | 382 | CG  |       |   |                      |        |        |        | 1.00 32.04 | A            |
|      | 383 | CD1 | LEU   | A | 49                   | 35.578 | 8.888  | 27.464 |            |              |
| ATOM | 384 | CD2 | LEU   |   | 49                   | 37.783 | 8.157  | 26.551 | 1.00 31.05 | A            |
| MOTA | 385 | С   | LEU   | A | 49                   | 37.226 | 8.343  | 31.519 | 1.00 33.77 | A            |
| MOTA | 386 | 0   | LEU   | A | 49                   | 37.138 | 7.142  | 31.787 | 1.00 34.14 | A            |
| ATOM | 387 | N   | ARG   | A | 50                   | 37.794 | 9.221  | 32.339 | 1.00 34.56 | A            |
| ATOM | 388 | CA  | ARG   | A | 50                   | 38.367 | 8.810  | 33.618 | 1.00 35.58 | A            |
| ATOM | 389 | CB  | ARG   | A | 50                   | 38.987 | 10.009 | 34.345 | 1.00 37.99 | A            |
| ATOM | 390 | CG  | ARG   |   | 50                   | 40.137 | 10.720 | 33.636 | 1.00 40.65 | A            |
| MOTA | 391 | CD  | ARG   |   | 50                   | 40.657 | 11.846 | 34.529 | 1.00 43.05 | A            |
|      |     | NE  | ARG   |   | 50                   | 41.603 | 12.748 | 33.872 | 1.00 44.85 | A            |
| ATOM | 392 |     |       |   |                      |        | 12.403 | 33.444 | 1.00 46.08 | A            |
| ATOM | 393 | CZ  | ARG   |   | 50                   | 42.815 |        |        |            |              |
| ATOM | 394 | NHl | ARG   |   | 50                   | 43.254 | 11.159 | 33.592 | 1.00 46.76 | A            |
| ATOM | 395 | NH2 | ARG   | A | 50                   | 43.599 | 13.314 | 32.880 | 1.00 46.08 | A            |
| ATOM | 396 | C   | ARG   | A | 50                   | 37.334 | 8.168  | 34.547 | 1.00 35.55 | A            |
| MOTA | 397 | 0   | ARG   | A | 50                   | 37.693 | 7.475  | 35.495 | 1.00 35.21 | A            |
| ATOM | 398 | N   | GLN   | A | 51                   | 36.054 | 8.412  | 34.284 | 1.00 36.77 | A            |
| ATOM | 399 | CA  | GLN   | A | 51                   | 34.987 | 7.859  | 35.116 | 1.00 37.34 | A            |
| ATOM | 400 | СВ  | GLN   |   | 51                   | 33.658 | 8.558  | 34.821 | 1.00 39.02 | A            |
| ATOM | 401 | CG  | GLN   |   | 51                   | 33.123 | 8.306  | 33.418 | 1.00 41.24 | A            |
|      |     | CD  | GLN   |   | 51                   | 31.765 | 8.947  | 33.189 | 1.00 43.49 | A            |
| ATOM | 402 |     |       |   |                      | 30.781 | 8.597  | 33.843 | 1.00 43.80 | A            |
| ATOM | 403 | OE1 | GLN   |   | 51                   |        |        |        | 1.00 44.01 | A            |
| MOTA | 404 | NE2 | GLN   |   | 51                   | 31.706 | 9.895  | 32.260 |            |              |
| ATOM | 405 | C   | GLN   |   | 51                   | 34.821 | 6.362  | 34.896 | 1.00 36.85 | A            |
| MOTA | 406 | 0   | GLN   | A | 51                   | 34.250 | 5.665  | 35.734 | 1.00 37.06 | A            |
| MOTA | 407 | N   | PHE   | A | 52                   | 35.316 | 5.871  | 33.764 | 1.00 35.13 | A            |
| MOTA | 408 | CA  | PHE   | A | 52                   | 35.218 | 4.454  | 33.446 | 1.00 32.82 | A            |
| MOTA | 409 | CB  | PHE   | A | 52                   | 35.143 | 4.258  | 31.931 | 1.00 31.28 | A            |
| ATOM | 410 | CG  | PHE   | A | 52                   | 33.902 | 4.838  | 31.301 | 1.00 29.86 | A            |
| ATOM | 411 | CD1 |       |   | 52                   | 32.640 | 4.549  | 31.821 | 1.00 27.82 | A            |
| MOTA | 412 | CD2 |       |   | 52                   | 33.992 | 5.652  | 30.177 | 1.00 27.71 | A            |
|      |     | CE1 |       |   | 52                   | 31.490 | 5.060  | 31.234 | 1.00 25.58 | A            |
| ATOM | 413 |     |       |   |                      |        | 6.171  | 29.580 | 1.00 28.10 | A            |
| ATOM | 414 | CE2 |       |   | 52                   | 32.847 |        |        |            |              |
| ATOM | 415 | CZ  | PHE   |   | 52                   | 31.592 | 5.873  | 30.111 | 1.00 28.21 | A            |
| MOTA | 416 | C   | PHE   | A | 52                   | 36.405 | 3.675  | 34.004 | 1.00 32.57 | A            |
| ATOM | 417 | 0   | PHE   | A | 52                   | 37.370 | 4.256  | 34.494 | 1.00 32.22 | A            |
| ATOM | 418 | N   | ARG   | A | 53                   | 36.327 | 2.353  | 33.927 | 1.00 32.80 | A            |
| MOTA | 419 | CA  | ARG   | A | 53                   | 37.397 | 1.498  | 34.419 | 1.00 32.77 | A            |
| ATOM | 420 | CB  | ARG   | A | 53                   | 37.005 | 0.862  | 35.760 | 1.00 36.56 | A            |
| ATOM | 421 | CG  | ARG   | A | 53                   | 36.741 | 1.867  | 36.881 | 1.00 42.83 | A            |
| ATOM | 422 | CD  | ARG   | A | 53                   | 36.523 | 1.168  | 38.214 | 1.00 49.04 | A            |
| ATOM | 423 | NE  | ARG   |   | 53                   | 36.308 | 2.111  | 39.312 | 1.00 53.82 | A            |
|      | 424 | CZ  | ARG   |   | 53                   | 36.195 | 1.758  | 40.589 | 1.00 54.70 | A            |
| ATOM |     |     |       |   |                      | 36.277 | 0.478  | 40.937 | 1.00 55.50 | A            |
| MOTA | 425 | NH1 |       |   | 53                   |        |        |        | 1.00 55.64 |              |
| MOTA | 426 | NH2 |       |   | 53                   | 36.004 | 2.683  | 41.520 |            | A            |
| MOTA | 427 | C   | ARG   |   | 53                   | 37.706 | 0.404  | 33.405 | 1.00 29.88 | A            |
| MOTA | 428 | 0   | ARG   | A | 53                   | 36.806 | -0.117 | 32.743 | 1.00 28.71 | A            |
| ATOM | 429 | N   | PHE   | A | 54                   | 38.986 | 0.066  | 33.293 | 1.00 26.44 | A            |
| ATOM | 430 | CA  | PHE   | A | 54                   | 39.440 | -0.960 | 32.371 | 1.00 22.47 | A            |
| ATOM | 431 | CB  | PHE   | A | 54                   | 39.905 | -0.325 | 31.060 | 1.00 21.88 | A            |
| ATOM | 432 | CG  | PHE   |   | 54                   | 40.181 | -1.320 | 29.974 | 1.00 20.69 | A            |
| ATOM | 433 | CD1 |       |   | 54                   | 39.150 | -1.801 | 29.180 | 1.00 19.52 | A            |
| ATOM | 434 |     | PHE   |   | 5 <del>4</del><br>54 | 41.471 | -1.782 | 29.750 | 1.00 18.68 | A            |
|      | 435 |     | . PHE |   | 5 <del>4</del>       | 39.399 | -2.734 | 28.170 | 1.00 22.81 | A            |
| MOTA |     |     |       |   |                      | 41.733 | -2.734 | 28.746 | 1.00 20.58 | A            |
| ATOM | 436 | CE2 |       |   | 54<br>54             |        |        | 27.954 | 1.00 20.86 | A            |
| MOTA | 437 | CZ  | PHE   |   | 54                   | 40.697 | -3.190 |        |            |              |
| MOTA | 438 | C   | PHE   |   | <b>54</b>            | 40.597 | -1.711 | 33.017 | 1.00 23.43 | A            |
| MOTA | 439 | 0   | PHE   | A | 54                   | 41.631 | -1.122 | 33.351 | 1.00 23.53 | A            |

| ATOM         | 440        | N          | ASP        | A | 55         | 40.408           | -3.011             | 33.198           | 1.00 22.82               | A      |
|--------------|------------|------------|------------|---|------------|------------------|--------------------|------------------|--------------------------|--------|
| ATOM         | 441        | CA         | ASP        | A | 55         | 41.411           | -3.874             | 33.805           | 1.00 24.70               | A      |
| ATOM         | 442        | CB         | ASP        | A | 55         | 40.785           | -5.246             | 34.083           | 1.00 23.26               | A      |
| ATOM         | 443        | CG         | ASP        | A | 55         | 41.729           | -6.190             | 34.789           | 1.00 26.24               | A      |
| MOTA         | 444        | OD1        | ASP        | A | 55         | 42.924           | -5.853             | 34.933           | 1.00 28.75               | A      |
| ATOM         | 445        | OD2        | ASP        | A | 55         | 41.274           | -7.279             | 35.192           | 1.00 26.38               | A      |
| ATOM         | 446        | C          | ASP        | A | 55         | 42.613           | -4.011             | 32.861           | 1.00 24.24               | A      |
| ATOM         | 447        | 0          | ASP        | A | 55         | 42.510           | -4.629             | 31.802           | 1.00 23.91               | A      |
| MOTA         | 448        | N          | PRO        | A | 56         | 43.770           | -3.437             | 33.238           | 1.00 23.69               | A      |
| ATOM         | 449        | CD         | PRO        | A | 56         | 44.084           | -2.761             | 34.509           | 1.00 23.79               | A      |
| ATOM         | 450        | CA         | PRO        |   | 56         | 44.961           | -3.522             | 32.387           | 1,00 23.45               | A      |
| ATOM         | 451        | CB         | PRO        |   | 56         | 46.002           | -2.707             | 33.162           | 1.00 23.35               | A      |
| ATOM         | 452        | CG         | PRO        |   | 56         | 45.592           | -2.897             | 34.580           | 1.00 23.31               | A      |
| MOTA         | 453        | C          | PRO        |   | 56         | 45.413           | -4.952             | 32.114           | 1.00 23.66               | A      |
| MOTA         | 454        | 0          | PRO        |   | 56         | 46.099           | -5.220             | 31.125           | 1.00 23.15               | A      |
| ATOM         | 455        | N          | GLN        |   | 57         | 45.025           | -5.871             | 32.991           | 1.00 21.84               | A      |
| ATOM         | 456        | CA         | GLN        |   | 57         | 45.397           | -7.261             | 32.818           | 1.00 22.47<br>1.00 23.11 | A<br>A |
| ATOM         | 457        | CB         | GLN        |   | 57         | 44.834           | -8.108             | 33.965           | 1.00 23.11<br>1.00 20.82 | A      |
| ATOM         | 458        | CG         | GLN        |   | 57         | 45.226           | -9.568<br>-9.745   | 33.873<br>33.733 | 1.00 20.82               | A      |
| ATOM         | 459        | CD         | GLN        |   | 57<br>57   | 46.722<br>47.497 | -9.745<br>-9.227   | 34.539           | 1.00 22.23               | A      |
| ATOM         | 460        | OE1<br>NE2 | GLN<br>GLN |   | 57<br>57   | 47.138           | -10.475            | 32.707           | 1.00 23.15               | A      |
| ATOM         | 461<br>462 | C<br>NF2   | GLN        |   | 5 <i>7</i> | 44.882           | -7.792             | 31.482           | 1.00 22.21               | A      |
| ATOM<br>ATOM | 462        | 0          | GLN        |   | 57         | 45.452           | -8.723             | 30.913           | 1.00 23.00               | A      |
| ATOM         | 463        | И          | PHE        |   | 58         | 43.801           | -7.203             | 30.980           | 1.00 22.42               | A      |
| ATOM         | 465        | CA         | PHE        |   | 58         | 43.254           | -7.640             | 29.704           | 1.00 21.07               | A      |
| ATOM         | 466        | CB         | PHE        |   | 58         | 42.004           | -6.857             | 29.338           | 1.00 20.45               | A      |
| ATOM         | 467        | CG         | PHE        |   | 58         | 41.411           | -7.287             | 28.031           | 1.00 21.03               | A      |
| ATOM         | 468        | CD1        | PHE        |   | 58         | 40.472           | -8.312             | 27.988           | 1.00 18.42               | A      |
| MOTA         | 469        |            | PHE        |   | 58         | 41.864           | -6.736             | 26.835           | 1.00 18.79               | A      |
| ATOM         | 470        | CE1        | PHE        |   | 58         | 39.992           | -8.792             | 26.765           | 1.00 21.25               | A      |
| ATOM         | 471        | CE2        | PHE        | A | 58         | 41.393           | -7.207             | 25.610           | 1.00 20.28               | A      |
| ATOM         | 472        | CZ         | PHE        | A | 58         | 40.457           | -8.238             | 25.578           | 1.00 21.18               | A      |
| ATOM         | 473        | C          | PHE        | A | 58         | 44.278           | -7.401             | 28.612           | 1.00 21.79               | Α      |
| ATOM         | 474        | 0          | PHE        | A | 58         | 44.529           | -8.260             | 27.763           | 1.00 21.84               | A      |
| ATOM         | 475        | N          | ALA        | A | 59         | 44.849           | -6.202             | 28.637           | 1.00 21.80               | A      |
| MOTA         | 476        | CA         | ALA        | A | 59         | 45.840           | -5.801             | 27.657           | 1.00 21.67               | A      |
| ATOM         | 477        | CB         | ALA        | A | 59         | 46.254           | -4.346             | 27.892           | 1.00 21.11               | A      |
| ATOM         | 478        | C          | ALA        | A | 59         | 47.053           | -6.711             | 27.732           | 1.00 22.06               | A      |
| ATOM         | 479        | 0          | ALA        | A | 59         | 47.518           | -7.213             | 26.706           | 1.00 22.53               | A      |
| ATOM         | 480        | N          | LEU        | A | 60         | 47.561           | -6.925             | 28.945           | 1.00 19.83               | A      |
| MOTA         | 481        | CA         | LEU        | A | 60         | 48.729           | -7.777             | 29.116           | 1.00 20.88               | A      |
| MOTA         | 482        | CB         | LEU        |   | 60         | 49.163           | -7.815             | 30.585           | 1.00 20.57               | A      |
| MOTA         | 483        | CG         | LEU        |   | 60         | 50.060           | -6.657             | 31.053           | 1.00 24.17               | A      |
| ATOM         | 484        | CD1        |            |   | 60         | 49.239           | -5.392             | 31.205           | 1.00 24.16               | A      |
| ATOM         | 485        | CD2        |            |   | 60         | 50.717           | -7.012             | 32.382           | 1.00 24.31               | A      |
| MOTA         | 486        | C          | LEU        |   | 60         | 48.496           | -9.193             | 28.598           | 1.00 20.44               | A      |
| ATOM         | 487        | 0          | LEU        |   | 60         | 49.367           | -9.770             | 27.955           | 1.00 21.97               | A      |
| ATOM         | 488        | N          | THR        |   | 61         | 47.319           | -9.749             | 28.871<br>28.418 | 1.00 20.69<br>1.00 19.49 | A<br>A |
| ATOM         | 489        | CA         | THR        |   | 61         |                  | -11.101<br>-11.629 | 29.084           | 1.00 19.49               | A      |
| ATOM         | 490        | CB         | THR        |   | 61         |                  | -11.830            | 30.489           | 1.00 13.33               | A      |
| ATOM         | 491        | OG1<br>CG2 |            |   | 61<br>61   |                  | -12.942            | 28.453           | 1.00 21.12               | A      |
| ATOM         | 492<br>493 | CGZ        | THR        |   | 61         |                  | -11.140            | 26.903           | 1.00 19.22               | A      |
| MOTA<br>ATOM | 494        | 0          | THR        |   | 61         |                  | -12.059            | 26.242           | 1.00 21.19               | Ą      |
| ATOM         | 495        | N          | ASN        |   | 62         |                  | -10.142            | 26.351           | 1.00 18.05               | A      |
| ATOM         | 496        | CA         | ASN        |   | 62         |                  | -10.092            | 24.910           | 1.00 19.26               | A      |
| ATOM         | 497        | CB         | ASN        |   | 62         | 45.020           |                    | 24.552           | 1.00 20.51               | A      |
| ATOM         | 498        | CG         | ASN        |   | 62         | 43.835           |                    | 23.680           | 1.00 22.06               | A      |
| ATOM         | 499        | OD1        |            |   | 62         | 43.406           |                    | 23.693           | 1.00 21.71               | A      |
| ATOM         | 500        | ND2        |            |   | 62         | 43.294           | -8.371             | 22.930           | 1.00 20.64               | A      |
| ATOM         | 501        | C          | ASN        |   | 62         | 47.270           | -9.975             | 24.188           | 1.00 18.14               | A      |
| ATOM         | 502        | 0          | ASN        |   | 62         | 47.517           | -10.681            | 23.217           | 1.00 19.73               | A      |
| MOTA         | 503        | N          | ILE        |   | 63         | 48.146           | -9.108             | 24.684           | 1.00 18.98               | A      |
| ATOM         | 504        | CA         | ${ m ILE}$ | A | 63         | 49.448           | -8.921             | 24.061           | 1.00 19.88               | A      |
| ATOM         | 505        | CB         | ILE        | Α | 63         | 50.229           | -7.757             | 24.725           | 1.00 21.31               | A      |
| ATOM         | 506        | CG2        | ILE        | A | 63         | 51.601           | -7.590             | 24.064           | 1.00 20.11               | A      |
| MOTA         | 507        | CG1        | . ILE      | A | 63         | 49.425           | -6.457             | 24.599           | 1.00 20.91               | A      |
| MOTA         | 508        | CD1        | . ILE      | A | 63         | 49.037           | -6.092             | 23.171           | 1.00 16.67               | A      |
| ATOM         | 509        | C          | ILE        | Α | 63,        | 50.247           |                    | 24.169           | 1.00 20.35               | A      |
| MOTA         | 510        | 0          | ILE        | A | 63         |                  | -10.538            | 23.297           | 1.00 21.37               | A      |
| MOTA         | 511        | N          | ALA        |   | 64         | 50.028           |                    | 25.247           | 1.00 22.48               | A      |
| MOTA         | 512        | CA         | ALA        |   | 64         | 50.713           |                    | 25.423           | 1.00 23.35               | A      |
| MOTA         | 513        | CB         | ALA        | A | 64         | 50.373           | -12.816            | 26.785           | 1.00 22.29               | A      |

| MOTA   | 514   | С   | ALA A   | 64    | 50.252   | -13.158   | 24.301 | 1.00 23.03 | A              |
|--------|-------|-----|---------|-------|----------|-----------|--------|------------|----------------|
| ATOM   | 515   | 0   | ALA A   | 64    | 51.032   | -13.939   | 23.766 | 1.00 25.08 | A              |
| ATOM   | 516   | N   | VAL A   | 65    | 48.976   | -13.072   | 23.948 | 1.00 23.28 | A              |
| ATOM   |       | CA  | VAL A   | 65    | 48.437   | -13.905   | 22.888 | 1.00 22.97 | A              |
|        | 517   |     |         |       | 46.887   | -13.840   | 22.859 | 1.00 24.28 | A              |
| MOTA   | 518   | CB  | VAL A   | 65    |          |           |        |            |                |
| ATOM   | 519   | CG1 | VAL A   | 65    | 46.338   | -14.722   | 21.729 | 1.00 22.40 | A              |
| MOTA   | 520   | CG2 | VAL A   | 65    | 46.325   | -14.296   | 24.209 | 1.00 19.61 | A              |
| MOTA   | 521   | C   | VAL A   | 65    | 49.013   | -13.471   | 21.538 | 1.00 23.88 | A              |
| ATOM   | 522   | 0   | VAL A   | 65    | 49.313   | -14.314   | 20.692 | 1.00 22.01 | A              |
| ATOM   | 523   | N   | LEU A   | 66    | 49.179   | -12.164   | 21.332 | 1.00 24.00 | A              |
| ATOM   | 524   | CA  | LEU A   | 66    | 49.747   | -11.692   | 20.064 | 1.00 24.66 | A              |
|        |       |     |         |       |          | -10.171   | 20.011 | 1.00 22.13 | A              |
| MOTA   | 525   | CB  | LEU A   | 66    | 49.872   |           |        |            |                |
| ATOM   | 526   | CG  | LEU A   | 66    | 48.679   | -9.228    | 20.117 | 1.00 23.81 | A              |
| MOTA   | 527   | CD1 | LEU A   | 66    | 49.014   | -8.001    | 19.277 | 1.00 20.24 | A              |
| MOTA   | 528   | CD2 | LEU A   | 66    | 47.407   | -9.866    | 19.627 | 1.00 20.49 | A              |
| ATOM   | 529   | C   | LEU A   | 66    | 51.143   | -12.267   | 19.906 | 1.00 23.53 | A              |
| ATOM   | 530   | 0   | LEU A   | 66    | 51.548   | -12.644   | 18.813 | 1.00 22.08 | A              |
| ATOM   | 531   | N   | LYS A   | 67    | 51.879   | -12.303   | 21.011 | 1.00 26.17 | A              |
| ATOM   |       | CA  | LYS A   | 67    | 53.237   | -12.832   | 21.019 | 1.00 28.99 | A              |
|        | 532   |     |         |       | 53.839   | -12.698   | 22.421 | 1.00 29.27 | A              |
| MOTA   | 533   | CB  | LYS A   | 67    |          |           |        |            |                |
| ATOM   | 534   | CG  | LYS A   | 67    | 55.278   | -13.174   | 22.548 |            | A.             |
| MOTA   | 535   | CD  | LYS A   | 67    | 55.779   | -13.001   | 23.976 | 1.00 32.41 | A              |
| ATOM - | 536   | CE  | LYS A   | 67    | 57.159   | -13.609   | 24.157 | 1.00 35.25 | A              |
| MOTA   | 537   | NZ  | LYS A   | 67    | 58.144   | -13.036   | 23.199 | 1.00 38.78 | A              |
| ATOM   | 538   | C   | LYS A   | 67    | 53.200   | -14.299   | 20.598 | 1.00 29.87 | A              |
| ATOM   | 539   | 0   | LYS A   | 67    | 53.952   | -14.719   | 19.716 | 1.00 30.35 | A              |
|        |       | N   | HIS A   | 68    | 52.313   | -15.066   | 21.230 | 1.00 30.48 | A              |
| MOTA   | 540   |     |         |       | 52.163   | -16.483   | 20.922 | 1.00 31.95 | A              |
| MOTA   | 541   | CA  | HIS A   | 68    |          |           |        |            |                |
| ATOM   | 542   | CB  | HIS A   | 68    | 51.051   |           | 21.775 | 1.00 34.42 | A              |
| ATOM   | 543   | CG  | HIS A   | 68    | 50.827   | -18.557   | 21.520 | 1.00 38.63 | A              |
| ATOM   | 544   | CD2 | HIS A   | 68    | , 49.859 | -19.203   | 20.826 | 1.00 40.18 | A              |
| ATOM   | 545   | ND1 | HIS A   | 68    | 51.676   | -19.536   | 21.992 | 1.00 41.00 | A              |
| ATOM   | 546   | CE1 | HIS A   | 68    | 51.241   | -20.721   | 21.601 | 1.00 39.93 | A              |
| ATOM   | 547   | NE2 |         | 68    | 50.141   | -20.547   | 20.891 | 1.00 39.69 | A              |
|        |       | C   | HIS A   | 68    | 51.828   |           | 19.448 | 1.00 31.53 | A              |
| ATOM   | 548   |     |         |       |          |           | 18.746 | 1.00 32.07 | A              |
| MOTA   | 549   | 0   | HIS A   | 68    | 52.463   |           |        |            |                |
| ATOM   | 550   | N   | ASN A   | 69    | 50.826   |           | 18.977 | 1.00 29.53 | A              |
| ATOM   | 551   | CA  | ASN A   | 69    | 50.427   | -16.024   | 17.583 | 1.00 29.99 | A              |
| MOTA   | 552   | CB  | ASN A   | 69    | 49.180   | -15.173   | 17.332 | 1.00 30.27 | A              |
| ATOM   | 553   | CG  | ASN A   | 69    | 47.918   | -15.814   | 17.885 | 1.00 31.83 | A              |
| ATOM   | 554   | OD1 |         | 69    | 47.986   | -16.728   | 18.703 | 1.00 32.19 | A              |
|        |       | ND2 |         | 69    | 46.759   |           | 17.447 | 1.00 31.41 | A              |
| ATOM   | 555   |     |         |       |          |           | 16.638 | 1.00 30.37 | A              |
| ATOM   | 556   | C   | ASN A   | 69    | 51.552   |           |        |            |                |
| ATOM   | 557   | 0   | ASN A   | 69    | 51.722   |           | 15.571 | 1.00 29.41 | A              |
| MOTA   | 558   | N   | LEU A   | 70    | 52.324   | -14.593   | 17.026 | 1.00 29.86 | A              |
| ATOM   | 559   | CA  | LEU A   | 70    | 53.413   | -14.131   | 16.175 | 1.00 31.35 | A              |
| ATOM   | 560   | CB  | LEU A   | 70    | 54.039   | -12.857   | 16.751 | 1.00 28.55 | A              |
| ATOM   | 561   | CG  | LEU A   | 70    | 55.190   | -12.237   | 15.950 | 1.00 28.77 | A              |
| ATOM   | 562   | CD1 |         | 70    | 54.745   | -11.949   | 14.519 | 1.00 28.48 | A              |
| ATOM   | 563   | CD2 |         | 70    | 55.651   |           | 16.627 | 1.00 27.89 | A              |
|        |       |     |         |       |          | -15.214   | 16.009 | 1.00 31.92 | A              |
| MOTA   | 564   | C   | LEU A   | 70    |          |           | 14.914 | 1.00 31.72 | A              |
| ATOM   | 565   | 0   | LEU A   | 70    |          | -15.422   |        |            |                |
| MOTA   | 566   | N   | asn a   | 71    |          | -15.905   | 17.097 | 1.00 34.09 | A              |
| MOTA   | 567   | ÇA  | ASN A   | 71    |          | -16.968   | 17.060 | 1.00 38.27 | A              |
| MOTA   | 568   | CB  | ASN A   | 71    | 55.884   | -17.651   | 18.427 | 1.00 39.70 | A              |
| ATOM   | 569   | CG  | ASN A   | 71    | 56.490   | -16.748   | 19.490 | 1.00 44.05 | ${f A}$        |
| ATOM   | 570   | OD1 | ASN A   | 71    | 56.290   | -16.955   | 20.693 | 1.00 44.98 | A              |
| ATOM   | 571   | ND2 |         | 71    |          | -15.746   | 19.049 | 1.00 44.44 | A              |
|        |       | C   |         |       |          | -18.003   | 15.983 | 1.00 38.32 | A              |
| ATOM   | 572   |     | ASN A   |       |          |           | 15.224 | 1.00 37.91 | . A            |
| MOTA   | 573   | 0   | ASN A   | 71    |          | -18.417   |        |            |                |
| ATOM   | 574   | N   | SER A   |       |          | 18.407    | 15.919 | 1.00 39.49 | A              |
| MOTA   | 575   | CA  | SER A   | 72    | · ·      | -19.390   | 14.944 | 1.00 40.10 | A              |
| ATOM   | 576   | CB  | SER A   | 72    | 52.341   | -19.816   | 15.256 | 1.00 41.05 | A              |
| MOTA   | 577   | OG  | SER A   | 72    | 51.867   | -20.763   | 14.311 | 1.00 42.44 | A              |
| ATOM   | 578   | C   | SER A   |       |          | -18.838   | 13.523 | 1.00 40.66 | A              |
| ATOM   | 579   | 0   | SER A   |       |          | -19.516   | 12.608 | 1.00 40.90 | A              |
|        |       |     |         |       |          | -17.608   | 13.341 | 1.00 39.86 | A              |
| ATOM   | 580   | N   | LEU A   |       |          |           |        | 1.00 39.32 | A              |
| ATOM   | 581   | CA  | LEU A   |       |          | -16.973   | 12.030 |            |                |
| ATOM   | 582   | CB  | LEU A   |       |          | -15.632   | 12.082 | 1.00 38.99 | A              |
| MOTA   | 583   | CG  | LEU A   | 73    |          | -15.651   | 11.598 | 1.00 40.31 | A              |
| MOTA   | 584   | CD: | L LEU A | 73    | 50.482   | 2 -16.860 | 12.152 | 1.00 39.79 | A              |
| ATOM   | 585   | CD: | LEU A   | 73    | 50.539   | -14.363   | 12.024 | 1.00 40.04 | A              |
| ATOM   | 586   | C   | LEU A   |       |          | -16.778   | 11.492 | 1.00 38.55 | A              |
|        | 587   | 0   | LEU A   |       |          | 3 -16.806 | 10.280 | 1.00 36.83 | A              |
| ATOM   | J 4 7 | •   | Line Pr | . , , | 55.020   |           |        |            | - <del>-</del> |

| ATOM         | 588        | N        | ILE A            | 74          | 55.780 -1                               |                    | 12.383<br>11.942 | 1.00 39.70<br>1.00 41.87 | A<br>A   |
|--------------|------------|----------|------------------|-------------|-----------------------------------------|--------------------|------------------|--------------------------|----------|
| ATOM<br>ATOM | 589<br>590 | CA<br>CB | ILE A            | 74<br>74    |                                         | L6.402<br>L6.084   | 13.123           | 1.00 41.88               | A        |
| ATOM<br>ATOM | 590<br>591 | CG2      | ILE A            | 74          |                                         | L6.054             | 12.640           | 1.00 41.29               | A        |
| ATOM         | 592        | CG1      | ILE A            | 74          | 57.729 <b>-</b> 3                       | L4.734             | 13.738           | 1.00 41.53               | A        |
| ATOM         | 593        | CD1      | ILE A            | 74          |                                         | L4.380             | 14.990           | 1.00 40.94               | A        |
| MOTA         | 594        | C        | ILE A            | 74          |                                         | 17.699             | 11.273           | 1.00 42.04               | A.       |
| ATOM         | 595        | 0        | ILE A            | 74<br>75    | 58.119 -:<br>57.364 -:                  | 17.689<br>18.816   | 10.157<br>11.954 | 1.00 41.12<br>1.00 43.51 | A<br>A   |
| ATOM<br>ATOM | 596<br>597 | N<br>CA  | LYS A            | 75<br>75    |                                         | 20.125             | 11.423           | 1.00 46.61               | A        |
| ATOM         | 597<br>598 | CB       | LYS A            | 75<br>75    |                                         | 21.217             | 12.466           | 1.00 47.84               | A        |
| ATOM         | 599        | CG       | LYS A            |             | 58.096 -2                               | 20.964             | 13.828           | 1.00 50.82               | A        |
| ATOM         | 600        | CD       | LYS A            | 75          |                                         | 22.029             | 14.828           | 1.00 53.97               | A        |
| ATOM         | 601        | CE       | LYS A            |             | 58.005 -                                |                    | 16.269           | 1.00 55.95               | · A<br>A |
| ATOM         | 602        | NZ       | LYS A            |             | 59.472 -:<br>56.944 -:                  | 21.572<br>20.452   | 16.531<br>10.151 | 1.00 56.31<br>1.00 47.99 | A        |
| ATOM<br>ATOM | 603<br>604 | С<br>О   | LYS A            |             | 57.530 -                                |                    | 9.106            | 1.00 48.11               | A        |
| ATOM         | 605        | И        | ARG A            |             |                                         | 20.419             | 10.242           | 1.00 49.31               | A        |
| ATOM         | 606        | CA       | ARG A            |             | 54.763 -                                | 20.742             | 9.103            | 1.00 50.89               | A        |
| ATOM         | 607        | CB       | ARG A            | 76          | <del> </del>                            | 20.744             | 9.530            | 1.00 53.08               | A        |
| MOTA         | 608        | CG       | ARG A            |             | <del>-</del>                            | 21.847             | 10.538           | 1.00 56.83               | A        |
| ATOM         | 609        | CD       | ARG A            | _           | 51.478 -:<br>50.620 -:                  | 22.247             | 10.574<br>11.212 | 1.00 58.85<br>1.00 60.24 | A<br>A   |
| MOTA<br>MOTA | 610<br>611 | NE<br>CZ | ARG A            |             | 49.786                                  |                    | 10.557           | 1.00 61.29               | A        |
| ATOM         | 612        |          | ARG A            |             | 49.692 -                                |                    | 9.234            | 1.00 60.08               | A        |
| ATOM         | 613        | NH2      |                  |             | 49.044 -                                | 19.578             | 11.226           | 1.00 61.97               | A        |
| ATOM         | 614        | C        | ARG A            | . 76        | 54.947 -                                |                    | 7.864            | 1.00 50.93               | A        |
| MOTA         | 615        | 0        | ARG A            |             | 54.705 -                                |                    | 6.747            | 1.00 51.19<br>1.00 50.61 | A<br>A   |
| ATOM         | 616        | N        | SER A            |             | 55.380 -<br>55.574 -                    |                    | 8.046<br>6.900   | 1.00 50.01               | A        |
| ATOM<br>ATOM | 617<br>618 | CA<br>CB | SER A            |             | 55.262 -                                |                    | 7.282            | 1.00 50.05               | A        |
| ATOM         | 619        | OG       | SER A            |             |                                         | 15.787             | 8.193            | 1.00 49.23               | A        |
| ATOM         | 620        | C        | SER A            |             | 57.006 -                                | 17.827             | 6.386            | 1.00 49.56               | A        |
| ATOM         | 621        | 0        | SER A            | . 77        | - · · · · · · · · · · · · · · · · · · · | 17.015             | 5.558            | 1.00 49.40               | A        |
| MOTA         | 622        | N        | ASN A            |             |                                         | 18.817             | 6.866            | 1.00 49.24<br>1.00 49.14 | A<br>A   |
| ATOM         | 623        | CA       | ASN A            |             | 59.148 -<br>59.256 -                    | 18.982             | 6.472<br>4.976   | 1.00 49.14               | A        |
| ATOM<br>ATOM | 624<br>625 | CB<br>CG | ASN A            |             | 60.668 -                                |                    | 4.558            | 1.00 48.09               | A        |
| ATOM         | 626        | OD1      |                  |             | 61.347 -                                |                    | 5.254            | 1.00 46.05               | A        |
| ATOM         | 627        | ND2      |                  | 78          | 61.109 -                                | 19.182             | 3.409            | 1.00 47.78               | A        |
| MOTA         | 628        | C        | ASN A            |             | 59.857 -                                |                    | 6.803            | 1.00 49.08               | A        |
| ATOM         | 629        | 0        | ASN A            |             | 60.614 -<br>59.571 -                    |                    | 6.001<br>8.006   | 1.00 48.39<br>1.00 48.58 | A<br>A   |
| MOTA         | 630        | N<br>CA  | SER A            |             | 60.139 -                                |                    | 8.538            | 1.00 48.38               | A        |
| ATOM<br>ATOM | 631<br>632 | CB       | SER A            |             |                                         | 16.208             | 9.071            | 1.00 48.53               | A        |
| ATOM         | 633        | OG       | SER A            |             | 62.415 -                                | 16.612             | 8.027            | 1.00 50.05               | A        |
| ATOM         | 634        | C        | SER A            | A 79        | 60.176 -                                |                    | 7.573            | 1.00 47.13               | A        |
| MOTA         | 635        | 0        | SER A            |             | • •                                     | 14.098             | 7.444            | 1.00 47.66<br>1.00 45.82 | A<br>A   |
| ATOM         | 636        | N        | THR A            |             | 59.069 -<br>59.008 -                    | 14.516             | 6.887<br>5.982   | 1.00 45.82               | A        |
| ATOM<br>ATOM | 637<br>638 | CA<br>CB | THR A            |             | 57.814 -                                |                    | 5.016            | 1.00 47.03               | A        |
| ATOM         | 639        | OG1      |                  |             |                                         | -13.963            | 5.731            | 1.00 47.95               | A        |
| ATOM         | 640        | CG2      |                  | 08 <i>I</i> | 58.134 -                                | 14.487             | 3.909            | 1.00 47.59               | A        |
| ATOM         | 641        | C        | THR A            |             |                                         | -12.147            | 6.882            | 1.00 44.25               | A.       |
| ATOM         | 642        | 0        | THR A            |             |                                         | -11.976<br>-11.311 | 7.556<br>6.903   | 1.00 43.69<br>1.00 41.47 | A<br>A   |
| ATOM<br>ATOM | 643<br>644 | N<br>CA  | ALA A            |             | ·                                       | -10.119            | 7.740            | 1.00 38.59               | A        |
| ATOM         | 645        | CB       | ALA A            |             | 61.363                                  | -9.734             | 8.039            | 1.00 38.61               | A        |
| ATOM         | 646        | C        | ALA A            |             | 59.168                                  | -8.915             | 7.185            | 1.00 36.89               | A        |
| MOTA         | 647        | 0        | ALA A            | A 81        | 58.766                                  | -8.884             | 6.018            | 1.00 35.83               | A        |
| MOTA         | 648        | N        | ALA A            |             | 58.993                                  | -7.920             | 8.050            | 1.00 34.86<br>1.00 33.41 | A<br>A   |
| ATOM         | 649        | CA       | ALA A            |             | 58.300<br>57.957                        | -6.690<br>-5.912   | 7.698<br>8.961   | 1.00 33.41               | A        |
| ATOM<br>ATOM | 650<br>651 | CB<br>C  | ALA A            |             | 59.141                                  | -5.824             | 6.770            | 1.00 32.28               | A        |
| ATOM         | 652        |          | ALA I            |             | 60.372                                  | -5.807             | 6.859            | 1.00 28.62               | A        |
| ATOM         | 653        | N        | THR              |             | 58.457                                  | -5.113             | 5.878            | 1.00 31.60               | A        |
| MOTA         | 654        | CA       | THR I            | A 83        | 59.100                                  | -4.217             | 4.931            | 1.00 32.87               | A        |
| ATOM         | 655        |          | THR I            |             | 58.377                                  | -4.224             | 3.575            | 1.00 34.31<br>1.00 36.90 | A<br>A   |
| ATOM         | 656<br>657 |          |                  |             | 58.347<br>59.098                        | -5.562<br>-3.309   | 3.058<br>2.578   | 1.00 36.90               | A        |
| ATOM<br>ATOM | 657<br>658 |          | 2 THR 2<br>THR 2 |             | 59.098                                  | -2.808             | 5.500            | 1.00 32.84               | A        |
| MOTA         | 659        |          | THR .            |             | 58.029                                  | -2.406             | 6.067            | 1.00 33.97               | A        |
| MOTA         | 660        |          | ASN .            |             | 60.130                                  | -2.062             | 5.356            | 1.00 34.76               | A        |
| MOTA         | 661        | CA       | ASN .            | A 84        | 60.188                                  | -0.697             | 5.858            | 1.00 34.66               | A        |
|              |            |          |                  |             |                                         |                    |                  |                          |          |

| ATOM | 662 | СВ  | ASN   | A   | 84 | 61.634 | -0.252 | 6.069  | 1.00 36.13 | A      |
|------|-----|-----|-------|-----|----|--------|--------|--------|------------|--------|
| ATOM | 663 | CG  | ASN   | A   | 84 | 62.337 | -1.045 | 7.132  | 1.00 37.22 | A      |
| ATOM | 664 |     | ASN   |     | 84 | 61.809 | -1.241 | 8.220  | 1.00 39.34 | A      |
| ATOM | 665 |     | ASN   |     | 84 | 63.548 | -1.497 | 6.830  | 1.00 38.89 | A      |
| ATOM | 666 | C   | ASN   |     | 84 | 59.549 | 0.267  | 4.881  | 1.00 35.51 | A      |
| ATOM | 667 | 0   | ASN   |     | 84 | 59.961 | 0.343  | 3.724  | 1.00 38.89 | A      |
| ATOM | 668 | N   | GLU   |     | 85 | 58.546 | 1.004  | 5.344  | 1.00 34.17 | A      |
| ATOM | 669 | CA  | GLU   |     | 85 | 57.890 | 2.001  | 4.507  | 1.00 32.82 | A      |
| ATOM | 670 | CB  | GLU   |     | 85 | 56.427 | 2.183  | 4.921  | 1.00 36.55 | A      |
|      |     | CG  | GLU   |     | 85 | 55.523 | 0.993  | 4.645  | 1.00 42.74 | A      |
| MOTA | 671 |     | GLU   |     | 85 | 55.271 | 0.782  | 3.167  | 1.00 46.65 | A      |
| ATOM | 672 | CD  |       |     | 85 | 54.829 | 1.741  | 2.494  | 1.00 49.22 | A      |
| ATOM | 673 | OE1 | GLU   |     |    | 55.508 | -0.345 | 2.679  | 1.00 48.74 | A      |
| ATOM | 674 | OE2 | GLU   |     | 85 |        |        | 4.701  | 1.00 30.10 | A      |
| ATOM | 675 | C   | GLU   |     | 85 | 58.624 | 3.328  | 5.571  | 1.00 30.10 | A      |
| MOTA | 676 | 0   | GLU   |     | 85 | 59.489 | 3.453  | 3.878  | 1.00 27.23 | A      |
| ATOM | 677 | N   | JAV   |     | 86 | 58.274 | 4.308  |        | 1.00 23.37 | A      |
| ATOM | 678 | CA  | VAL   |     | 86 | 58.849 | 5.641  | 3.951  | 1.00 27.33 | A      |
| ATOM | 679 | CB  | VAL   |     | 86 | 59.146 | 6.202  | 2.539  |            |        |
| ATOM | 680 | CG1 | VAL   |     | 86 | 59.688 | 7.637  | 2.640  | 1.00 22.06 | A.     |
| ATOM | 681 | CG2 | VAL   |     | 86 | 60.139 | 5.289  | 1.815  | 1.00 25.30 | A      |
| MOTA | 682 | С   | VAL   | A   | 86 | 57.786 | 6.519  | 4.614  | 1.00 27.98 | A      |
| MOTA | 683 | 0   | LAV   | A   | 86 | 56.685 | 6.671  | 4.086  | 1.00 28.76 | A<br>~ |
| MOTA | 684 | N   | PRO   | A   | 87 | 58.095 | 7.098  | 5.784  | 1.00 27.39 | A      |
| ATOM | 685 | CD  | PRO   | A   | 87 | 59.268 | 6.861  | 6.644  | 1.00 26.00 | A      |
| MOTA | 686 | CA  | PRO   | A   | 87 | 57.106 | 7.949  | 6.458  | 1.00 28.38 | A      |
| ATOM | 687 | CB  | PRO   | A   | 87 | 57.611 | 7.989  | 7.899  | 1.00 26.97 | A      |
| MOTA | 688 | CG  | PRO   | A   | 87 | 59.099 | 7.915  | 7.727  | 1.00 27.97 | A      |
| ATOM | 689 | С   | PRO   | A   | 87 | 56.963 | 9.341  | 5.848  | 1.00 30.15 | A      |
| ATOM | 690 | 0   | PRO   | A   | 87 | 57.902 | 9.871  | 5.245  | 1.00 31.62 | A      |
| ATOM | 691 | N   | GLU   | A   | 88 | 55.778 | 9.922  | 6.004  | 1.00 29.70 | A      |
| ATOM | 692 | CA  | GLU   |     | 88 | 55.489 | 11.252 | 5.481  | 1.00 29.65 | A      |
| ATOM | 693 | CB  | GLU   |     | 88 | 54.173 | 11.229 | 4.699  | 1.00 32.09 | A      |
| ATOM | 694 | CG  | GLU   |     | 88 | 54.038 | 12.330 | 3.655  | 1.00 38.40 | A      |
| ATOM | 695 | CD  | GLU   |     | 88 | 52.790 | 12.172 | 2.792  | 1.00 41.07 | A      |
| ATOM | 696 | OE1 |       |     | 88 | 51.675 | 12.411 | 3.303  | 1.00 42.35 | A      |
|      |     | OE2 |       |     | 88 | 52.925 | 11.800 | 1.604  | 1.00 43.46 | A      |
| ATOM | 697 |     | GLU   |     | 88 | 55.385 | 12.191 | 6.680  | 1.00 27.98 | A      |
| ATOM | 698 | C   |       |     | 88 | 54.588 | 11.954 | 7.597  | 1.00 26.16 | A      |
| MOTA | 699 | 0   | GLU   |     |    | 56.187 | 13.253 | 6.672  | 1.00 23.90 | A      |
| ATOM | 700 | N   | VAL   |     | 89 |        | 14.194 | 7.788  | 1.00 21.62 | A      |
| MOTA | 701 | CA  | VAL   |     | 89 | 56.201 |        | 8.333  | 1.00 21.02 | A      |
| MOTA | 702 | CB  | VAL   |     | 89 | 57.637 | 14.358 |        | 1.00 13.30 | A      |
| MOTA | 703 | CG1 |       |     | 89 | 57.639 | 15.295 | 9.534  |            | A      |
| ATOM | 704 | CG2 |       |     | 89 | 58.204 | 12.990 | 8.719  | 1.00 16.77 |        |
| ATOM | 705 | C   | VAL   |     | 89 | 55.626 | 15.575 | 7.483  | 1.00 21.60 | A      |
| MOTA | 706 | 0   | VAL   |     | 89 | 55.859 | 16.143 | 6.420  | 1.00 21.72 | A      |
| MOTA | 707 | N   | THR   | A   | 90 | 54.886 | 16.115 | 8.444  | 1.00 21.28 | A      |
| MOTA | 708 | CA  | THR   | A   | 90 | 54.269 | 17.425 | 8.301  | 1.00 20.62 | A      |
| MOTA | 709 | CB  | THR   | A   | 90 | 52.813 | 17.303 | 7.823  | 1.00 21.90 | A      |
| ATOM | 710 | OG1 | THR   | A   | 90 | 52.770 | 16.537 | 6.613  | 1.00 26.43 | A      |
| ATOM | 711 | CG2 | THR   | L A | 90 | 52.220 | 18.678 | 7.558  | 1.00 23.70 | A      |
| MOTA | 712 | C   | THR   | A   | 90 | 54.264 | 18.153 | 9.639  | 1.00 21.08 | A      |
| ATOM | 713 | 0   | THE   | A J | 90 | 53.887 | 17.578 | 10.667 | 1.00 20.41 | A      |
| ATOM | 714 | N   | VAI   | A   | 91 | 54.670 | 19.423 | 9.618  | 1.00 19.24 | A      |
| MOTA | 715 | CA  | VAI   | A   | 91 | 54.712 | 20.243 | 10.822 | 1.00 19.55 | A      |
| MOTA | 716 | CB  | IAV   | A   | 91 | 56.149 | 20.739 | 11.102 | 1.00 19.97 | A      |
| ATOM | 717 | CG1 | . VAI | A   | 91 | 56.167 | 21.629 | 12.338 | 1.00 16.82 | A      |
| MOTA | 718 | CG2 | XAI   | A   | 91 | 57.072 | 19.547 | 11.280 | 1.00 17.43 | A      |
| ATOM | 719 | C   | VAI   |     | 91 | 53.789 | 21.452 | 10.703 | 1.00 19.10 | A      |
| ATOM | 720 | 0   | VAI   |     | 91 | 53.735 | 22.108 | 9.666  | 1.00 20.59 | A      |
| ATOM | 721 | N   | PHE   |     | 92 | 53.059 | 21.739 | 11.772 | 1.00 18.65 | A      |
| ATOM | 722 | CA  |       | A   | 92 | 52.146 | 22.870 | 11.785 | 1.00 19.10 | A      |
| ATOM | 723 | CB  |       | A   | 92 | 50.853 | 22.516 | 11.030 | 1.00 18.89 | A      |
| ATOM | 724 | CG  | PHE   |     | 92 | 50.176 | 21.264 | 11.525 | 1.00 16.16 | A      |
| ATOM | 725 | CD1 |       |     | 92 | 49.165 | 21.331 | 12.480 | 1.00 16.77 | A      |
| ATOM | 725 | CD2 |       |     |    | 50.561 | 20.017 | 11.047 | 1.00 16.62 | A      |
|      |     | CE1 |       | E A |    | 48.543 | 20.168 | 12.955 | 1.00 18.06 | A      |
| MOTA | 727 |     |       |     |    | 49.954 | 18.848 | 11.511 | 1.00 18.17 | A      |
| ATOM | 728 | CE2 |       | E A | 92 | 48.936 | 18.922 | 12.471 | 1.00 17.05 | A      |
| MOTA | 729 | CZ  | PHI   |     | 92 | 51.844 | 23.236 | 13.229 | 1.00 17.05 | A      |
| ATOM | 730 | C   |       | EA  |    | 51.844 |        | 14.134 | 1.00 19.48 | A      |
| ATOM | 731 | 0   |       | EA  |    |        |        | 13.445 | 1.00 19.64 | A      |
| ATOM | 732 |     |       | R A |    | 51.365 |        |        | 1.00 18.69 | A      |
| MOTA | 733 | CA  |       | R A |    | 51.052 |        | 14.792 |            | A      |
| MOTA | 734 |     |       | R A |    | 51.275 |        | 14.921 | 1.00 17.24 | A      |
| MOTA | 735 | OG  | SE    | R A | 93 | 50.435 | 27.132 | 14.043 | 1.00 20.17 | A      |
|      |     |     |       |     |    |        | _      |        |            |        |

| ATOM         | 736        | C          | SER        | A      | 93         | 49.618           | 24.554           | 15.172           | 1.00 19.04               | A      |
|--------------|------------|------------|------------|--------|------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 737        | 0          | SER        |        | 93         | 48.748           | 24.417           | 14.316           | 1.00 17.44               | A      |
| ATOM         | 738        |            | •          | A      | 94         | 49.390           | 24.418           | 16.472           | 1.00 20.26               | A      |
| ATOM         | 739        |            |            | A      | 94         | 48.077           | 24.108           | 17.010<br>18.464 | 1.00 21.70<br>1.00 22.45 | A<br>A |
| ATOM<br>ATOM | 740<br>741 |            |            | A<br>A | 94<br>94   | 48.227<br>46.938 | 23.670<br>23.273 | 19.139           | 1.00 22.45               | A      |
| ATOM         | 742        |            |            | A      | 94         | 47.189           | 22.867           | 20.587           | 1.00 25.48               | A      |
| ATOM         | 743        | CE         |            | A      | 94         | 45.881           | 22.548           | 21.297           | 1.00 25.73               | A      |
| ATOM         | 744        | NZ         | LYS        |        | 94         | 45.122           | 21.533           | 20.517           | 1.00 26.34               | A      |
| ATOM         | 745        | C          |            | A      | 94         | 47.169           | 25.340           | 16.921           | 1.00 23.44               | A      |
| ATOM         | 746        | 0          | LYS        | A      | 94         | 45.984           | 25.235           | 16.598           | 1.00 20.95               | A      |
| MOTA         | 747        | N          | SER        | A      | 95         | 47.742           | 26.505           | 17.212           | 1.00 24.82               | A      |
| ATOM         | 748        | CA         | SER        |        | 95         | 47.013           | 27.769           | 17.172           | 1.00 27.69               | A      |
| ATOM         | 749        | CB         | SER        |        | 95         | 46.969           | 28.408           | 18.565           | 1.00 26.33               | A      |
| ATOM         | 750        | OG         | SER        |        | 95<br>05   | 46.202<br>47.688 | 27.635<br>28.747 | 19.468<br>16.219 | 1.00 32.56<br>1.00 27.36 | A<br>A |
| ATOM<br>ATOM | 751<br>752 | С<br>О     | SER<br>SER |        | 95<br>95   | 48.824           | 28.747           | 15.797           | 1.00 27.94               | A      |
| ATOM         | 753        | И          | PRO        |        | 96         | 46.985           | 29.830           | 15.849           | 1.00 27.27               | A      |
| ATOM         | 754        | CD         | PRO        |        | 96         | 45.611           | 30.232           | 16.193           | 1.00 28.85               | A      |
| ATOM         | 755        | CA         | PRO        | A      | 96         | 47.606           | 30.801           | 14.946           | 1.00 26.90               | A      |
| ATOM         | 756        | CB         | PRO        | A      | 96         | 46.471           | 31.788           | 14.663           | 1.00 28.13               | A      |
| ATOM         | 757        | CG         | PRO        | A      | 96         | 45.634           | 31.719           | 15.907           | 1.00 28.36               | A      |
| MOTA         | 758        | C          |            | A      | 96         | 48.786           | 31.421           | 15.700           | 1.00 24.92               | A      |
| ATOM         | 759        | 0          |            | A      | 96         | 48.757           | 31.556           | 16.925           | 1.00 24.65               | A      |
| ATOM         | 760        | N          | VAL        |        | 97<br>97   | 49.828<br>51.016 | 31.786<br>32.332 | 14.973<br>15.601 | 1.00 24.24<br>1.00 25.15 | A<br>A |
| MOTA         | 761<br>762 | CA<br>CB   | VAL<br>VAL |        | 97<br>97   | 52.261           | 32.332           | 14.715           | 1.00 26.78               | A      |
| ATOM<br>ATOM | 763        | CG1        | VAL        |        | 97         | 53.531           | 32.372           | 15.508           | 1.00 26.15               | A      |
| ATOM         | 764        |            | VAL        |        | 97         | 52.255           | 30.659           | 14.198           | 1.00 26.15               | A      |
| ATOM         | 765        | C          | VAL        |        | 97         | 50.935           | 33.820           | 15.920           | 1.00 25.62               | A      |
| ATOM         | 766        | 0          | VAL        | A      | 97         | 50.624           | 34.638           | 15.054           | 1.00 25.01               | A      |
| ATOM         | 767        | N          | THR        | A      | 98         | 51.207           | 34.157           | 17.175           | 1.00 24.46               | A      |
| MOTA         | 768        | CA         | THR        |        | 98         | 51.212           | 35.542           | 17.627           | 1.00 25.36               | A      |
| ATOM         | 769        | CB         | THR        |        | 98         | 49.835           | 35.941           | 18.283           | 1.00 25.29               | A      |
| ATOM         | 770        | OG1        | THR        |        | 98         | 50.030           | 37.008           | 19.217<br>18.985 | 1.00 30.50<br>1.00 29.80 | A<br>A |
| ATOM         | 771        | CG2        | THR        |        | 98<br>98   | 49.196<br>52.382 | 34.771<br>35.678 | 18.605           | 1.00 24.87               | A      |
| ATOM<br>ATOM | 772<br>773 | C<br>O     | THR        |        | 98         | 52.382           | 34.902           | 19.554           | 1.00 23.01               | A      |
| ATOM         | 774        | N          | LEU        |        | 99         | 53.273           | 36.634           | 18.344           | 1.00 25.94               | A      |
| ATOM         | 775        | CA         | LEU        |        | 99         | 54.445           | 36.843           | 19.198           | 1.00 28.02               | A      |
| ATOM         | 776        | CB         | LEU        |        | 99         | 55.194           | 38.114           | 18.797           | 1.00 31.12               | A      |
| ATOM         | 777        | CG         | LEU        | A      | 99         | 55.950           | 38.211           | 17.469           | 1.00 35.44               | A      |
| ATOM         | 778        | CD1        | LEU        | A      | 99         | 56.650           | 39.577           | 17.416           | 1.00 35.45               | A      |
| MOTA         | 779        | CD2        | LEU        |        | 99         | 56.970           | 37.087           | 17.341           | 1.00 35.62               | A      |
| ATOM         | 780        | C          | LEU        |        | 99         | 54.135           | 36.932<br>37.616 | 20.689<br>21.097 | 1.00 27.10<br>1.00 25.34 | A<br>A |
| ATOM         | 781        | O<br>N     | GLY        |        | 99         | 53.201<br>54.935 | 36.233           | 21.492           | 1.00 25.34               | A      |
| ATOM<br>ATOM | 782<br>783 | N<br>CA    | GLY        |        |            | 54.762           | 36.253           | 22.935           | 1.00 26.48               | A      |
| ATOM         | 784        | C          | GLY        |        |            | 53.635           | 35.398           | 23.479           | 1.00 26.32               | A      |
| ATOM         | 785        | 0          | GLY        |        |            | 53.428           | 35.323           | 24.695           | 1.00 25.37               | A      |
| ATOM         | 786        | N          | GLN        | A      | 101        | 52.913           | 34.734           | 22.585           | 1.00 25.16               | A      |
| ATOM         | 787        | CA         | GLN        | A      | 101        | 51.796           | 33.896           | 22.999           | 1.00 25.74               | A      |
| ATOM         | 788        | CB         | GLN        |        |            | 50.573           | 34.219           | 22.143           | 1.00 28.06               | A      |
| MOTA         | 789        | CG         | GLN        |        |            | 49.258           | 33.911           | 22.814           | 1.00 30.50<br>1.00 32.88 | A<br>A |
| ATOM         | 790        | CD         | GLN<br>GLN |        |            | 49.123<br>48.953 | 34.599<br>35.820 | 24.162<br>24.251 | 1.00 32.88               | A      |
| ATOM<br>ATOM | 791<br>792 | OE1<br>NE2 | GLN        |        |            | 49.202           | 33.813           | 25.221           | 1.00 33.04               | A      |
| ATOM         | 793        | C          |            |        | 101        | 52.117           | 32.409           | 22.901           | 1.00 24.01               | A      |
| ATOM         | 794        | Ô          |            |        | 101        | 52.280           | 31.881           | 21.807           | 1.00 24.25               | A      |
| MOTA         | 795        | N          |            |        | 102        | 52.199           | 31.715           | 24.051           | 1.00 22.08               | A      |
| ATOM         | 796        | CD         | PRO        | A      | 102        | 51.959           | 32.244           | 25.410           | 1.00 22.41               | A      |
| MOTA         | 797        | CA         | PRO        | A      | 102        | 52.500           | 30.278           | 24.096           | 1.00 21.37               | A      |
| ATOM         | 798        | CB         |            |        | 102        | 52.136           | 29.898           | 25.526           | 1.00 21.61               | A      |
| ATOM         | 799        | CG         | PRO        |        | 102        | 52.521           | 31.147           | 26.297           | 1.00 21.90<br>1.00 21.30 | A<br>A |
| ATOM         | 800        | C          |            |        | 102        | 51.706           | 29.480           | 23.068           | 1.00 21.30               | A      |
| ATOM         | 801        | O<br>NT    | PRO<br>ASN |        | 102<br>103 | 50.496<br>52.396 | 29.644<br>28.618 | 22.947<br>22.327 | 1.00 21.95               | A      |
| ATOM<br>ATOM | 802<br>803 | N<br>CA    |            |        | 103        | 51.749           | 27.802           | 21.305           | 1.00 17.69               | A      |
| ATOM         | 804        | CB         |            |        | 103        | 52.040           | 28.379           | 19.913           | 1.00 17.99               | A      |
| ATOM         | 805        | CG         |            |        | 103        | 50.899           | 28.162           | 18.929           | 1.00 18.28               | A      |
| ATOM         | 806        | OD1        |            |        | 103        | 50.348           | 27.060           | 18.808           | 1.00 17.82               | A      |
| MOTA         | 807        | ND2        | ASN        | A      | 103        | 50.549           | 29.223           | 18.204           | 1.00 17.71               | A      |
| ATOM         | 808        | C          |            |        | 103        | 52.281           | 26.370           | 21.385           | 1.00 15.57               | A      |
| MOTA         | 809        | 0          | ASN        | A      | 103        | 53.000           | 26.012           | 22.310           | 1.00 14.67               | A      |

| ATOM | 810 | N    | ILE A    | 104        | 51.918 | 25.565 | 20.397 | 1.00 15.80 | A            |
|------|-----|------|----------|------------|--------|--------|--------|------------|--------------|
| ATOM | 811 | CA   | ILE A    |            | 52.335 | 24.177 | 20.328 | 1.00 13.66 | A            |
|      |     |      |          |            |        |        | 20.888 | 1.00 15.40 | A            |
| ATOM | 812 | CB   | ILE A    |            | 51.255 | 23.235 |        |            |              |
| MOTA | 813 | CG2  | ILE A    | 104        | 51.589 | 21.792 | 20.539 | 1.00 13.82 | A            |
| ATOM | 814 | CG1  | ILE A    | 104        | 51.132 | 23.421 | 22.400 | 1.00 17.40 | A            |
| MOTA | 815 | CD1  | ILE A    | 104        | 50.129 | 22.494 | 23.047 | 1.00 18.65 | A            |
| ATOM | 816 | C    | ILE A    |            | 52.588 | 23.775 | 18.896 | 1.00 14.36 | A            |
|      |     |      |          |            |        |        |        |            |              |
| MOTA | 817 | 0    |          | 104        | 51.716 | 23.924 | 18.052 | 1.00 16.86 | A            |
| MOTA | 818 | N    | LEU A    | 105        | 53.785 | 23.272 | 18.616 | 1.00 15.67 | A            |
| ATOM | 819 | CA   | LEU A    | 105        | 54.090 | 22.822 | 17.272 | 1.00 15.52 | A            |
| ATOM | 820 | CB   | LEU A    | 105        | 55.568 | 22.978 | 16.940 | 1.00 15.73 | ${f A}$      |
|      |     |      |          |            | 56.058 | 24.391 | 16.649 | 1.00 20.75 | A            |
| MOTA | 821 | CG   | LEU A    |            |        |        |        |            |              |
| ATOM | 822 | CD1  | LEU A    | 1.05       | 57.400 | 24.298 | 15.919 | 1.00 20.19 | A            |
| ATOM | 823 | CD2  | LEU A    | 105        | 55.030 | 25.141 | 15.791 | 1.00 21.31 | A            |
| MOTA | 824 | С    | LEU A    | 105        | 53.709 | 21.362 | 17.202 | 1.00 15.97 | A            |
| ATOM | 825 | 0    | LEU A    |            | 53.968 | 20.589 | 18.133 | 1.00 14.11 | ${f A}$      |
|      |     |      |          |            |        |        | 16.099 | 1.00 14.18 | A            |
| ATOM | 826 | N    | ILE A    |            | 53.078 | 20.993 |        |            |              |
| ATOM | 827 | CA   | ILE A    | 106        | 52.643 | 19.630 | 15.903 | 1.00 15.40 | A            |
| ATOM | 828 | CB   | ILE A    | 106        | 51.122 | 19.576 | 15.636 | 1.00 15.11 | A            |
| ATOM | 829 | CG2  | ILE A    | 106        | 50.661 | 18.135 | 15.592 | 1.00 12.46 | A            |
|      |     |      |          |            | 50.380 | 20.354 | 16.734 | 1.00 15.51 | A            |
| ATOM | 830 | CG1  | ILE A    |            |        |        |        |            |              |
| ATOM | 831 | CD1  | ILE A    | 106        | 48.862 | 20.413 | 16.565 | 1.00 12.83 | A            |
| ATOM | 832 | C    | ILE A    | 106        | 53.381 | 19.011 | 14.725 | 1.00 16.48 | A            |
| ATOM | 833 | 0    | ILE A    | 106        | 53.484 | 19.607 | 13.651 | 1.00 17.37 | ${f A}$      |
| ATOM | 834 | N    | CYS A    | 107        | 53.900 | 17.811 | 14.944 | 1.00 17.86 | A            |
|      |     |      |          |            | 54.621 | 17.083 | 13.917 | 1.00 18.32 | A            |
| ATOM | 835 | CA   |          | 107        |        |        |        |            |              |
| ATOM | 836 | C    | CYS A    | 107        | 53.886 | 15.776 | 13.663 | 1.00 18.29 | A            |
| ATOM | 837 | 0    | CYS A    | 107        | 53.846 | 14.909 | 14.533 | 1.00 18.13 | A            |
| ATOM | 838 | CB   | CYS A    | 107        | 56.041 | 16.792 | 14.382 | 1.00 19.33 | A            |
|      |     | SG   |          | 107        | 57.029 | 15.889 | 13.158 | 1.00 25.82 | A            |
| MOTA | 839 |      |          |            |        |        |        |            |              |
| MOTA | 840 | N    | LEU A    | 108        | 53.304 | 15.649 | 12.472 | 1.00 17.89 | A            |
| MOTA | 841 | CA   | LEU A    | 108        | 52.556 | 14.456 | 12.088 | 1.00 18.82 | A            |
| MOTA | 842 | CB.  | LEU A    | 108        | 51.330 | 14.850 | 11.252 | 1.00 20.17 | A            |
| ATOM | 843 | CG   | LEU A    | 3.08       | 50.129 | 13.900 | 11.053 | 1.00 21.48 | A            |
|      |     |      |          |            | 49.623 | 14.049 | 9.624  | 1.00 20.62 | A            |
| MOTA | 844 | CD1  |          |            |        |        |        |            |              |
| ATOM | 845 | CD2  | LEU A    | 108        | 50.493 | 12.458 | 11.316 | 1.00 18.40 | A            |
| MOTA | 846 | C    | LEU A    | 108        | 53.445 | 13.538 | 11.252 | 1.00 19.49 | A            |
| ATOM | 847 | 0    | LEU A    | 108        | 53.841 | 13.892 | 10.144 | 1.00 20.39 | $\mathbf{A}$ |
| ATOM | 848 | N    | VAL A    | •          | 53.760 | 12.368 | 11.789 | 1.00 18.45 | A            |
|      |     |      |          |            | 54.586 | 11.398 | 11.087 | 1.00 19.04 | A            |
| ATOM | 849 | CA   | VAL A    |            |        |        |        |            |              |
| ATOM | 850 | CB   | VAL A    | 109        | 55.665 | 10.805 | 12.042 | 1.00 18.71 | A            |
| MOTA | 851 | CG1  | VAL A    | 109        | 56.626 | 9.923  | 11.279 | 1.00 15.16 | A            |
| ATOM | 852 | CG2  | VAL A    | 109        | 56.431 | 11.949 | 12.729 | 1.00 17.68 | ${f A}$      |
| ATOM | 853 | C    | VAL A    | :          | 53.611 | 10.322 | 10.606 | 1.00 20.50 | ${f A}$      |
|      |     |      |          |            | 53.115 | 9.516  | 11.393 | 1.00 21.55 | A            |
| ATOM | 854 | 0    | VAL A    |            |        |        |        |            |              |
| ATOM | 855 | N    | ASP A    | 110        | 53.326 | 10.337 | 9.308  | 1.00 21.50 | A            |
| ATOM | 856 | CA   | ASP A    | 110        | 52.376 | 9.407  | 8.700  | 1.00 21.95 | A            |
| ATOM | 857 | CB   | ASP A    | 110        | 51.493 | 10.165 | 7.701  | 1.00 22.25 | $\mathbf{A}$ |
| ATOM | 858 | CG   | ASP A    | 110        | 50.084 | 9.612  | 7.622  | 1.00 24.20 | $\mathbf{A}$ |
|      |     |      |          |            | 49.874 | 8.435  | 7.989  | 1.00 23.87 | A            |
| ATOM | 859 |      | ASP A    |            |        |        |        |            |              |
| MOTA | 860 | OD2  | ASP A    | 110        | 49.182 | 10.356 | 7.182  | 1.00 25.94 | A            |
| MOTA | 861 | C    | ASP A    | 110        | 53.059 | 8.240  | 7.985  | 1.00 21.53 | A            |
| MOTA | 862 | 0    | ASP A    | 110        | 54.273 | 8.254  | 7.782  | 1.00 18.80 | A            |
| ATOM | 863 | N    | ASN A    | 111        | 52.254 | 7.245  | 7.603  | 1.00 23.78 | A            |
|      |     | CA   | ASN A    |            | 52.706 | 6.037  | 6.900  | 1.00 23.32 | A            |
| MOTA | 864 |      |          |            |        |        |        | 1.00 24.67 |              |
| MOTA | 865 | CB   | ASN A    |            | 53.046 | 6.360  | 5.437  |            | A.           |
| MOTA | 866 | CG   | ASN A    | 111        | 53.181 | 5.102  | 4.575  | 1.00 31.76 | A            |
| ATOM | 867 | OD1  | ASN A    | 111        | 52.291 | 4.240  | 4.567  | 1.00 31.05 | ${f A}$      |
| MOTA | 868 | ND2  |          |            | 54.292 | 4.994  | 3.842  | 1.00 29.09 | A            |
|      |     |      | ASN A    |            | 53.905 | 5.389  | 7.587  | 1.00 23.68 | A            |
| MOTA | 869 | C    |          |            |        |        |        |            |              |
| MOTA | 870 | 0    | ASN A    |            | 54.953 | 5.156  | 6.976  | 1.00 22.88 | A            |
| MOTA | 871 | N    | ILE A    | 112        | 53.738 | 5.090  | 8.868  | 1.00 22.97 | A            |
| ATOM | 872 | CA   | ILE A    | 112        | 54.797 | 4.473  | 9.646  | 1.00 20.73 | A            |
| ATOM | 873 | CB   | ILE A    |            | 54.791 | 4.967  | 11.108 | 1.00 20.13 | A            |
|      |     |      |          |            | 55.979 | 4.363  | 11.864 | 1.00 15.53 | A            |
| ATOM | 874 | CG2  |          |            |        |        |        |            |              |
| MOTA | 875 | CG1  |          |            | 54.833 | 6.495  | 11.158 | 1.00 19.14 | A            |
| MOTA | 876 | CD1. | ILE A    | 112        | 54.671 | 7.058  | 12.575 | 1.00 20.42 | A            |
| ATOM | 877 | С    | ILE A    |            | 54.658 | 2.960  | 9.699  | 1.00 22.54 | A            |
| ATOM | 878 | 0    | ILE A    |            | 53.605 | 2.436  | 10.054 | 1.00 22.65 | A            |
|      |     |      |          |            |        |        |        | 1.00 21.37 | A            |
| ATOM | 879 | N    | PHE A    |            | 55.732 | 2.266  | 9.343  |            |              |
| MOTA | 880 | CA   | PHE A    |            | 55.769 | 0.819  | 9.412  | 1.00 21.74 | A            |
| ATOM | 881 | CB   | PHE A    | 113        | 54.742 | 0.167  | 8.483  | 1.00 21.64 | A            |
| ATOM | 882 | CG   | PHE A    |            | 54.451 | -1.252 | 8.850  | 1.00 21.22 | A            |
|      |     |      | PHE A    |            | 53.528 |        | 9.856  | 1.00 20.25 | A            |
| MOTA | 883 | -DT  | . EIID ∺ | حه ملت بين |        |        | 2.000  |            |              |

| ATOM         | 884        | CD2        | PHE                                     | A  | 113        | 55.183           | -2.296           | 8.285            | 1.00 20.76               | A      |
|--------------|------------|------------|-----------------------------------------|----|------------|------------------|------------------|------------------|--------------------------|--------|
| MOTA         | 885        | CE1        | PHE                                     | A  | 113        | 53.341           | -2.848           | 10.302           | 1.00 19.85               | A      |
| ATOM         | 886        | CE2        |                                         |    | 113        | 55.008           | -3.607           | 8.721            | 1.00 20.75               | A      |
| ATOM         | 887        | CZ         |                                         |    | 113        | 54.086           | -3.887           | 9.735            | 1.00 21.24               | A      |
| ATOM         | 888        | C          |                                         |    | 113        | 57.157<br>57.700 | 0.329<br>0.719   | 9.042<br>8.011   | 1.00 21.21<br>1.00 19.97 | A<br>A |
| ATOM<br>ATOM | 889<br>890 | N          |                                         |    | 113<br>114 | 57.765           | -0.509           | 9.893            | 1.00 19.97               | A      |
| ATOM         | 891        | CD         |                                         |    | 114        | 59.118           | -1.018           | 9.614            | 1.00 22.88               | A      |
| ATOM         | 892        | CA         |                                         |    | 114        | 57.263           | -1.040           | 11.170           | 1.00 23.38               | A      |
| ATOM         | 893        | CB         |                                         |    | 114        | 58.340           | -2.045           | 11.571           | 1.00 23.68               | A      |
| ATOM         | 894        | CG         | PRO                                     | A  | 114        | 59.592           | -1.435           | 10.984           | 1.00 23.26               | A      |
| ATOM         | 895        | C          | PRO                                     | A  | 114        | 57.078           | 0.059            | 12.221           | 1.00 24.33               | A      |
| ATOM         | 896        | 0          |                                         |    | 114        | 57.571           | 1.174            | 12.054           | 1.00 24.35               | A      |
| ATOM         | 897        | N          |                                         |    | 115        | 56.363           | -0.247           | 13.319           | 1.00 24.59               | A      |
| ATOM         | 898        | CD         | PRO                                     |    |            | 55.579           | -1.472           | 13.567           | 1.00 22.60               | A      |
| ATOM         | 899        | CA         | PRO                                     |    |            | 56.135<br>54.923 | 0.751<br>0.194   | 14.372<br>15.107 | 1.00 23.79<br>1.00 23.96 | A<br>A |
| ATOM<br>ATOM | 900<br>901 | CB<br>CG   |                                         |    | 115<br>115 | 55.129           | -1.291           | 14.998           | 1.00 23.30               | A      |
| ATOM         | 902        | C          |                                         |    | 115        | 57.337           | 0.996            | 15.289           | 1.00 24.97               | A      |
| ATOM         | 903        | 0          |                                         |    | 115        | 57.322           | 0.670            | 16.482           | 1.00 23.11               | A      |
| ATOM         | 904        | N          |                                         |    | 116        | 58.380           | 1.573            | 14.705           | 1.00 24.77               | A      |
| ATOM         | 905        | CA         | VAL                                     | A  | 116        | 59.607           | 1.902            | 15.423           | 1.00 24.05               | A      |
| ATOM         | 906        | CB         | VAL                                     | A  | 116        | 60.733           | 0.881            | 15.135           | 1.00 26.45               | A      |
| ATOM         | 907        | CG1        | LAV                                     | A  | 116        | 61.977           | 1.250            | 15.933           | 1.00 24.89               | A      |
| ATOM         | 908        |            | VAL                                     |    |            | 60.267           | -0.539           | 15.470           | 1.00 26.43               | A      |
| ATOM         | 909        | C          | VAL                                     |    |            | 60.043           | 3.254            | 14.875           | 1.00 24.47               | A      |
| MOTA         | 910        | 0          | VAL                                     |    |            | 60.340           | 3.381            | 13.684           | 1.00 23.94               | A      |
| ATOM         | 911        | N          | VAL                                     |    |            | 60.088<br>60.472 | 4.269<br>5.577   | 15.728<br>15.239 | 1.00 22.43<br>1.00 22.18 | A<br>A |
| ATOM<br>ATOM | 912<br>913 | CA<br>CB   | VAL<br>VAL                              |    |            | 59.247           | 6.277            | 14.565           | 1.00 22.18               | A      |
| ATOM         | 914        |            | VAL                                     |    |            | 58.276           | 6.807            | 15.631           | 1.00 17.87               | A      |
| ATOM         | 915        | CG2        | VAL                                     |    |            | 59.710           | 7.387            | 13.653           | 1.00 19.98               | A      |
| ATOM         | 916        | C          | VAL                                     |    |            | 61.035           | 6.484            | 16.326           | 1.00 23.40               | A      |
| ATOM         | 917        | 0 /        | VAL                                     | A  | 117        | 60.743           | 6.323            | 17.512           | 1.00 22.77               | A      |
| MOTA         | 918        | N          | ASN                                     | A  | 118        | 61.868           | 7.427            | 15.909           | 1.00 24.87               | A      |
| MOTA         | 919        | CA         | ASN                                     | A  | 118        | 62.434           | 8.398            | 16.833           | 1.00 25.96               | A      |
| MOTA         | 920        | CB         | ASN                                     |    |            | 63.970           | 8.341            | 16.858           | 1.00 29.36               | A      |
| ATOM         | 921        | CG         | ASN                                     |    |            | 64.506           | 7.213            | 17.728           | 1.00 31.24               | A      |
| ATOM         | 922        | OD1        |                                         |    |            | 63.885           | 6.833            | 18.722           | 1.00 34.20               | A      |
| ATOM         | 923        | ND2        | ASN<br>ASN                              |    |            | 65.679<br>61.989 | 6.694<br>9.746   | 17.374<br>16.312 | 1.00 34.04<br>1.00 24.87 | A<br>A |
| ATOM<br>ATOM | 924<br>925 | С<br>0     | ASN                                     |    |            | 62.298           | 10.112           | 15.177           | 1.00 24.07               | A      |
| ATOM         | 926        | N          | ILE                                     |    |            | 61.229           | 10.468           | 17.122           | 1.00 23.82               | A      |
| ATOM         | 927        | CA         | ILE                                     |    |            | 60.774           | 11.793           | 16.727           | 1.00 23.07               | A      |
| ATOM         | 928        | CB         | ILE                                     | A  | 119        | 59.231           | 11.892           | 16.711           | 1.00 22.65               | A      |
| MOTA         | 929        | CG2        | ILE                                     | A  | 119        | 58.797           | 13.197           | 16.051           | 1.00 18.01               | A      |
| MOTA         | 930        | CG1        | ILE                                     |    |            | 58.642           | 10.716           | 15.936           | 1.00 21.02               | A      |
| MOTA         | 931        | CD1        | ILE                                     |    |            | 57.135           | 10.714           | 15.921           | 1.00 21.88               | A      |
| ATOM         | 932        | C          |                                         |    | 119        | 61.323           | 12.771           | 17.754           | 1.00 22.76               | A      |
| ATOM         | 933        | 0          |                                         |    | 119        | 61.013           | 12.680           | 18.940<br>17.303 | 1.00 22.92<br>1.00 23.11 | A<br>A |
| ATOM         | 934        | N<br>CA    | THR                                     |    | 120        | 62.162<br>62.737 | 13.691<br>14.673 | 18.205           | 1.00 23.11               | A      |
| ATOM<br>ATOM | 935<br>936 | CB         |                                         |    | 120        | 64.216           | 14.363           | 18.495           | 1.00 25.23               | A      |
| MOTA         | 937        | OG1        |                                         |    | 120        | 64.921           | 14.199           | 17.258           | 1.00 26.55               | A      |
| ATOM         | 938        | CG2        |                                         |    | 120        | 64.335           | 13.081           | 19.331           | 1.00 23.93               | A      |
| ATOM         | 939        | C          | THR                                     | A  | 120        | 62.622           | 16.064           | 17.616           | 1.00 23.20               | A      |
| ATOM         | 940        | 0          | THR                                     | A  | 120        | 62.437           | 16.232           | 16.412           | 1.00 23.15               | A      |
| MOTA         | 941        | N          |                                         |    | 121        | 62.725           | 17.069           | 18.470           | 1.00 22.54               | A      |
| MOTA         | 942        | CA         | _                                       |    | 121        | 62.619           | 18.432           | 17.998           | 1.00 21.37               | A      |
| MOTA         | 943        | CB         |                                         |    | 121        | 61.563           | 19.196           | 18.791           | 1.00 19.43               | A      |
| MOTA         | 944        | CG         |                                         |    | 121<br>121 | 60.173           | 18.679<br>19.179 | 18.616<br>17.703 | 1.00 18.76<br>1.00 19.96 | A<br>A |
| ATOM         | 945        | CD2        |                                         |    | 121        | 59.191<br>58.002 | 18.454           | 17.703           | 1.00 18.06               | A      |
| ATOM<br>ATOM | 946<br>947 | CE2<br>CE3 |                                         |    | 121        | 59.200           | 20.178           | 16.715           | 1.00 16.07               | A      |
| ATOM         | 947<br>948 | CD1        |                                         |    | 121        | 59.567           | 17.694           | 19.330           | 1.00 18.18               | A      |
| ATOM         | 949        | NE1        | TRP                                     |    | 121        | 58.261           | 17.553           | 18.929           | 1.00 19.21               | A      |
| ATOM         | 950        | CZ2        | • • • • • • • • • • • • • • • • • • • • |    | 121        | 56.827           | 18.694           | 17.210           | 1.00 16.20               | A      |
| ATOM         | 951        | CZ3        | TRP                                     | A  | 121        | 58.036           | 20.419           | 16.000           | 1.00 16.43               | A      |
| ATOM         | 952        | CH2        | TRP                                     |    | 121        | 56.864           | 19.679           | 16.252           | 1.00 17.37               | A      |
| MOTA         | 953        | C          | TRP                                     |    | 121        | 63.927           | 19.178           | 18.097           | 1.00 22.88               | A      |
| ATOM         | 954        | 0          | TRP                                     |    | 121        | 64.743           | 18.937           | 18.992           | 1.00 22.75               | A      |
| ATOM         | 955        | N          |                                         |    | 122        | 64.109           | 20.100           | 17.164           | 1.00 23.24<br>1.00 22.66 | A<br>A |
| ATOM         | 956<br>957 | CA         |                                         |    | 122<br>122 | 65.291<br>66.094 | 20.930<br>20.699 | 17.136<br>15.850 | 1.00 22.66               | A<br>A |
| MOTA         | 957        | CB         | חשת                                     | ъ. | 1. & &     | 00.054           | 20.033           | T3.03U           | <u></u>                  | A      |

| ATOM         | 958          | CG        | LEU A          | 122   | 66.638           | 19.293           | 15.563           | 1.00 22.23               | A      |
|--------------|--------------|-----------|----------------|-------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 959          | CD1       | LEU A          | 122   | 67.404           | 19.326           | 14.253           | 1.00 20.93               | A      |
| ATOM         | 960          | CD2       | LEU A          | 122   | 67.542           | 18.830           | 16.700           | 1.00 20.21               | A      |
| MOTA         | 961          | C         | LEU A          | 122   | 64.837           | 22.376           | 17.186           | 1.00 23.52               | A      |
| ATOM         | 962          | 0         |                | 122   | 63.830           | 22.752           | 16.572           | 1.00 21.74               | A      |
| ATOM         | 963          | N         | SER A          |       | 65.579           | 23.174           | 17.945           | 1.00 23.69               | A      |
| ATOM         | 964          | CA        | SER A          |       | 65.330           | 24.597           | 18.063           | 1.00 24.10               | A      |
| ATOM         | 965          | CB        | SER A          |       | 64.998           | 24.983           | 19.504           | 1.00 25.22               | A      |
| ATOM         | 966          | OG<br>G   |                | 123   | 64.735<br>66.664 | 26.373<br>25.200 | 19.591<br>17.650 | 1.00 25.55<br>1.00 24.79 | A<br>A |
| ATOM         | 967          | C<br>O    | SER A          |       | 67.670           | 25.200           | 18.335           | 1.00 24.79               | Ā      |
| ATOM<br>ATOM | 968<br>969   | N         | ASN A          |       | 66.666           | 25.903           | 16.521           | 1.00 25.02               | A      |
| ATOM         | 970          | CA        |                | 124   | 67.880           | 26.513           | 15.986           | 1.00 25.63               | A      |
| ATOM         | 971          | CB        | ASN A          |       | 68.351           | 27.676           | 16.868           | 1.00 24.46               | A      |
| ATOM         | 972          | CG        | ASN A          |       | 67.376           | 28.839           | 16.873           | 1.00 25.33               | A      |
| ATOM         | 973          | OD1       | ASN A          | 124   | 66.636           | 29.056           | 15.907           | 1.00 26.04               | A      |
| ATOM         | 974          | ND2       | ASN A          | 124   | 67.381           | 29.606           | 17.956           | 1.00 21.77               | A      |
| MOTA         | 975          | C         | ASN A          | 124   | 69.006           | 25.487           | 15.838           | 1.00 26.53               | A      |
| ATOM         | 976          | 0         | ASN A          |       | 70.132           | 25.706           | 16.301           | 1.00 26.36               | A      |
| ATOM         | 977          | N         | GLY A          |       | 68.684           | 24.361           | 15.205           | 1.00 24.78               | A      |
| MOTA         | 978          | CA        | GLY A          |       | 69.669           | 23.326           | 14.964           | 1.00 26.09               | A<br>A |
| ATOM         | 979          | C         | GLY A          |       | 70.030<br>70.728 | 22.377<br>21.395 | 16.089<br>15.846 | 1.00 27.35<br>1.00 28.21 | A<br>A |
| ATOM         | 980          | N<br>O    | GLY A<br>HIS A | 125   | 69.566           | 22.645           | 17.307           | 1.00 28.65               | A      |
| MOTA         | 981<br>982   | CA        |                | 126   | 69.889           | 21.774           | 18.430           | 1.00 30.12               | A      |
| ATOM<br>ATOM | 983          | CB        | HIS A          |       | 70.816           | 22.507           | 19.408           | 1.00 32.68               | A      |
| ATOM         | 984          | CG        | HIS A          |       | 70.226           | 23.750           | 19.996           | 1.00 35.25               | A      |
| ATOM         | 985          | CD2       | HIS A          |       | 70.296           | 25.044           | 19.601           | 1.00 36.90               | A      |
| ATOM         | 986          |           | HIS A          |       | 69.475           | 23.743           | 21.151           | 1.00 35.93               | A      |
| ATOM         | 987          | CE1       | HIS A          | 126   | 69.110           | 24.979           | 21.445           | 1.00 36.88               | A      |
| ATOM         | 988          | NE2       | HIS A          | 126   | 69.595           | 25.788           | 20.520           | 1.00 36.73               | A      |
| MOTA         | 989          | C         | HIS A          | 126   | 68.661           | 21.220           | 19.149           | 1.00 30.87               | A      |
| ATOM         | 990          | 0         | HIS A          |       | 67.634           | 21.889           | 19.270           | 1.00 31.49               | A      |
| ATOM         | 991          | N         | SER A          |       | 68.789           | 19.990           | 19.635           | 1.00 30.93               | A      |
| ATOM         | 992          | CA        | SER A          |       | 67.697           | 19.286<br>17.889 | 20.302<br>20.714 | 1.00 33.08<br>1.00 33.91 | A<br>A |
| MOTA         | 993          | CB        | SER A          |       | 68.165<br>69.231 | 17.979           | 21.645           | 1.00 38.34               | Ā      |
| ATOM<br>ATOM | 994<br>995   | OG<br>C   | SER A          |       | 67.050           | 19.971           | 21.501           | 1.00 32.98               | A      |
| ATOM         | 996          | 0         | SER A          |       | 67.708           | 20.654           | 22.288           | 1.00 34.83               | A      |
| ATOM         | 997          | N         | VAL A          |       | 65.743           | 19.770           | 21.624           | 1.00 32.42               | A      |
| ATOM         | 998          | CA        | VAL A          | 128   | 64.960           | 20.325           | 22.716           | 1.00 31.29               | A      |
| MOTA         | 999          | CB        | VAL A          | . 128 | 63.645           | 20.921           | 22.202           | 1.00 30.48               | A      |
| MOTA         | 1000         | CG1       |                |       | 62.856           | 21.520           | 23.358           | 1.00 27.06               | A      |
| ATOM         | 1001         | CG2       |                |       | 63.937           | 21.970           | 21.142           | 1.00 28.52               | A      |
| ATOM         | 1002         | C         | VAL A          |       | 64.645           | 19.183           | 23.669<br>23.237 | 1.00 32.28<br>1.00 32.80 | A<br>A |
| MOTA         | 1003         | N         | VAL A          |       | 64.275<br>64.786 | 18.093<br>19.437 | 24.965           | 1.00 32.80               | A      |
| MOTA<br>MOTA | 1004<br>1005 | CA        | THR A          |       | 64.546           | 18.411           | 25.981           | 1.00 33.70               | A      |
| ATOM         | 1005         | CB        | THR A          |       | 65.740           | 18.344           | 26.966           | 1.00 34.52               | A      |
| ATOM         | 1007         | OG1       |                |       | 65.969           | 19.643           | 27.528           | 1.00 38.18               | A      |
| ATOM         | 1008         | CG2       | THR A          |       | 67.006           | 17.898           | 26.245           | 1.00 34.60               | A      |
| MOTA         | 1009         | C         | THR A          | 129   | 63.257           | 18.591           | 26.791           | 1.00 32.08               | A      |
| MOTA         | 1010         | 0         | THR A          | 129   | 62.645           | 17.615           | 27.220           | 1.00 34.04               | A      |
| ATOM         | 1011         | N         | GLU A          |       | 62.843           | 19.835           | 26.993           | 1.00 28.85               | A      |
| MOTA         | 1012         | CA        | GLU A          |       | 61.639           | 20.119           | 27.762           | 1.00 26.09               | A      |
| ATOM         | 1013         | CB        | GLU A          |       | 61.926           | 21.236           | 28.770           | 1.00 28.58<br>1.00 32.87 | A<br>A |
| ATOM         | 1014         | CG        | GLU A          |       | 62.962<br>62.592 | 20.894<br>19.654 | 29.822<br>30.609 | 1.00 32.87               | A      |
| ATOM         | 1015<br>1016 | CD<br>OE1 |                |       | 61.392           | 19.475           | 30.907           | 1.00 37.85               | A      |
| ATOM<br>ATOM | 1017         | OE2       |                |       | 63.501           | 18.865           | 30.941           | 1.00 36.29               | A      |
| ATOM         | 1018         | C         | GLU A          |       | 60.451           | 20.534           | 26.893           | 1.00 23.53               | A      |
| ATOM         | 1019         | 0         | GLU A          |       | 60.629           | 21.166           | 25.859           | 1.00 19.76               | A      |
| ATOM         | 1020         | N         | GLY F          | 131   | 59.243           | 20.188           | 27.334           | 1.00 21.13               | A      |
| ATOM         | 1021         | CA        | GLY A          | 131   | 58.046           | 20.563           | 26.601           | 1.00 20.14               | A      |
| MOTA         | 1022         | C         | GLY A          |       | 57.693           | 19.684           | 25.421           | 1.00 20.64               | A      |
| MOTA         | 1023         | 0         | GLY A          |       | 56.989           | 20.109           | 24.507           | 1.00 20.11               | A      |
| MOTA         | 1024         | N         | VAL A          |       | 58.164           | 18.447           | 25.444           | 1.00 18.28               | A      |
| ATOM         | 1025         | CA        | VAL A          |       | 57.899           | 17.527           | 24.355           | 1.00 20.08<br>1.00 20.35 | A<br>A |
| MOTA         | 1026         | CB<br>cca | VAL ?<br>VAL ? |       | 59.230<br>58.946 | 16.985<br>15.874 | 23.767<br>22.772 | 1.00 20.35               | A      |
| ATOM<br>ATOM | 1027<br>1028 | CG1       | _              |       | 60.006           | 18.114           | 23.093           | 1.00 20.17               | Ā      |
| ATOM         | 1026         | CGZ       | VAL I          |       | 57.027           | 16.340           | 24.786           | 1.00 20.06               | A      |
| ATOM         | 1020         | 0         | VAL A          |       | 57.194           | 15.794           | 25.875           | 1.00 18.65               | A      |
| ATOM         | 1031         | N         | SER A          | 133   | 56.094           | 15.948           | 23.925           | 1.00 17.90               | A      |

| MOTA         | 1032         | CA       | SER A 133                | 55.238           | 14.802           | 24.215           | 1.00 18.16               | A      |
|--------------|--------------|----------|--------------------------|------------------|------------------|------------------|--------------------------|--------|
| MOTA         | 1033         | CB       | SER A 133                | 54.045           | 15.206           | 25.094           | 1.00 18.24               | A      |
| ATOM         | 1034         | OG<br>G  | SER A 133                | 53.202<br>54.738 | 16.143<br>14.200 | 24.440<br>22.914 | 1.00 24.24<br>1.00 16.52 | A<br>A |
| ATOM<br>ATOM | 1035<br>1036 | С<br>О   | SER A 133<br>SER A 133   | 54.876           | 14.794           | 21.843           | 1.00 16.18               | A      |
| ATOM         | 1037         | N        | GLU A 134                | 54.166           | 13.009           | 22.996           | 1.00 17.45               | A      |
| ATOM         | 1038         | CA       | GLU A 134                | 53.653           | 12.369           | 21.800           | 1.00 18.50               | A      |
| ATOM         | 1039         | СВ       | GLU A 134                | 54.797           | 11.661           | 21.050           | 1.00 22.31               | A      |
| ATOM         | 1040         | CG       | GLU A 134                | 55.475           | 10.513           | 21.801           | 1.00 24.62               | A      |
| ATOM         | 1041         | CD       | GLU A 134                | 56.610           | 9.859            | 20.992           | 1.00 28.65               | A      |
| MOTA         | 1042         | OE1      | GLU A 134                | 56.932           | 8.680            | 21.254           | 1.00 29.58               | A      |
| ATOM         | 1043         | OE2      | GLU A 134                | 57.188<br>52.523 | 10.521<br>11.389 | 20.099<br>22.087 | 1.00 27.96<br>1.00 18.44 | A<br>A |
| ATOM<br>ATOM | 1044<br>1045 | C<br>O   | GLU A 134<br>GLU A 134   | 52.279           | 11.003           | 23.234           | 1.00 17.30               | Ā      |
| ATOM         | 1045         | N        | THR A 135                | 51.824           | 11.008           | 21.027           | 1.00 16.71               | A      |
| ATOM         | 1047         | CA       | THR A 135                | 50.733           | 10.059           | 21.119           | 1.00 15.49               | A      |
| MOTA         | 1048         | CB       | THR A 135                | 49.738           | 10.246           | 19.967           | 1.00 16.16               | A      |
| MOTA         | 1049         | OG1      | THR A 135                | 50.369           | 9.867            | 18.731           | 1.00 16.02               | A      |
| ATOM         | 1050         | CG2      | THR A 135                | 49.280           | 11.697           | 19.879           | 1.00 14.19               | A      |
| ATOM         | 1051         | C        | THR A 135                | 51.346           | 8.682            | 20.946           | 1.00 17.19<br>1.00 17.26 | A<br>A |
| MOTA         | 1052         | O<br>N   | THR A 135                | 52.551<br>50.519 | 8.554<br>7.650   | 20.733<br>21.047 | 1.00 17.28               | A      |
| ATOM<br>ATOM | 1053<br>1054 | N<br>CA  | SER A 136<br>SER A 136   | 51.001           | 6.297            | 20.818           | 1.00 15.92               | A      |
| ATOM         | 1055         | CB       | SER A 136                | 50.035           | 5.266            | 21.416           | 1.00 16.85               | A      |
| ATOM         | 1056         | OG       | SER A 136                | 49.756           | 5.532            | 22.781           | 1.00 18.22               | A      |
| ATOM         | 1057         | C        | SER A 136                | 50.967           | 6.187            | 19.294           | 1.00 15.84               | A      |
| MOTA         | 1058         | 0        | SER A 136                | 50.715           | 7.169            | 18.596           | 1.00 17.25               | A      |
| MOTA         | 1059         | N        | PHE A 1.37               | 51.236           | 5.003            | 18.767           | 1.00 17.08               | A      |
| MOTA         | 1060         | CA       | PHE A 137                | 51.155           | 4.806            | 17.333<br>16.936 | 1.00 15.67<br>1.00 13.47 | A<br>A |
| ATOM         | 1061         | CB<br>CG | PHE A 137<br>PHE A 137   | 51.874<br>53.363 | 3.519<br>3.628   | 16.951           | 1.00 13.47               | A      |
| ATOM<br>ATOM | 1062<br>1063 | CD1      |                          | 54.037           | 4.255            | 15.907           | 1.00 15.82               | A      |
| ATOM         | 1064         | CD2      | <del></del>              | 54.100           | 3.112            | 18.010           | 1.00 15.21               | A      |
| ATOM         | 1065         | CE1      |                          | 55.427           | 4.367            | 15.918           | 1.00 15.72               | A      |
| ATOM         | 1066         | CE2      | PHE A 137                | 55.490           | 3.220            | 18.031           | 1.00 15.14               | A      |
| ATOM         | 1067         | CZ       | PHE A 137                | 56.152           | 3.848            | 16.983           | 1.00 14.35               | A      |
| ATOM         | 1068         | C        | PHE A 137                | 49.659           | 4.657            | 17.067           | 1.00 16.21<br>1.00 18.05 | A<br>A |
| ATOM         | 1069         | 0        | PHE A 137                | 49.037<br>49.074 | 3.767<br>5.534   | 17.622<br>16.259 | 1.00 17.51               | A      |
| MOTA<br>MOTA | 1070<br>1071 | N<br>CA  | LEU A 138<br>LEU A 138   | 47.648           | 5.433            | 15.953           | 1.00 19.20               | A      |
| ATOM         | 1071         | CB       | LEU A 138                | 47.017           | 6.822            | 15.800           | 1.00 20.80               | A      |
| ATOM         | 1073         | CG       | LEU A 138                | 46.809           | 7.688            | 17.044           | 1.00 23.47               | A      |
| ATOM         | 1074         | CD1      | LEU A 138                | 46.141           | 6.879            | 18.144           | 1.00 24.75               | A      |
| ATOM         | 1075         | CD2      |                          | 48.140           | 8.212            | 17.529           | 1.00 27.62               | A      |
| MOTA         | 1076         | C        | LEU A 138                | 47.490           | 4.637<br>4.862   | 14.658<br>13.698 | 1.00 18.41<br>1.00 16.16 | A<br>A |
| MOTA         | 1077         | N<br>O   | LEU A 138<br>SER A 139   | 48.218<br>46.530 | 3.716            | 14.630           | 1.00 18.51               | A      |
| MOTA<br>MOTA | 1078<br>1079 | CA       | SER A 139                | 46.333           | 2.863            | 13.460           | 1.00 17.61               | A      |
| ATOM         | 1080         | CB       | SER A 139                | 45.481           | 1.656            | 13.836           | 1.00 18.17               | A      |
| MOTA         | 1081         | OG       | SER A 139                | 44.134           | 2.036            | 14.040           | 1.00 20.80               | A      |
| MOTA         | 1082         | C        | SER A 139                | 45.729           | 3.510            | 12.216           | 1.00 17.44               | A      |
| MOTA         | 1083         | 0        | SER A 139                | 45.122           | 4.578            | 12.276           | 1.00 16.41               | A      |
| MOTA         | 1084         | N        | LYS A 140                | 45.908           | 2.822            | 11.088<br>9.778  | 1.00 18.56<br>1.00 18.37 | A<br>A |
| MOTA         | 1085         | CA<br>CB | LYS A 140<br>LYS A 140   | 45.402<br>46.543 | 3.237<br>3.751   | 8.895            | 1.00 21.60               | A      |
| MOTA<br>MOTA | 1086<br>1087 | CG       | LYS A 140                | 47.149           | 5.085            | 9.326            | 1.00 24.86               | A      |
| ATOM         | 1088         | CD       | LYS A 140                | 46.513           | 6.267            | 8.602            | 1.00 30.27               | A      |
| ATOM         | 1089         | CE       | LYS A 140                | 46.961           | 6.345            | 7.150            | 1.00 29.93               | A      |
| MOTA         | 1090         | NZ       | LYS A 140                | 48.440           | 6.349            |                  | 1.00 30.14               | A      |
| ATOM         | 1091         | C        | LYS A 140                | 44.773           | 2.012            | 9.118            | 1.00 17.79               | A      |
| MOTA         | 1092         | 0        | LYS A 140                | 45.106           | 0.878            | 9.458<br>8.160   | 1.00 17.76<br>1.00 18.54 | A<br>A |
| ATOM         | 1093         | N        | SER A 141<br>SER A 141   | 43.882<br>43.220 | 2.234<br>1.124   | 7.481            | 1.00 21.55               | A      |
| ATOM<br>ATOM | 1094<br>1095 | CA<br>CB | SER A 141                | 42.047           |                  | 6.630            | 1.00 21.05               | A      |
| ATOM         | 1095         |          | SER A 141                | 42.490           |                  | 5.588            | 1.00 28.41               | A      |
| MOTA         | 1097         | C        | SER A 141                | 44.154           |                  | 6.625            | 1.00 21.42               | A      |
| ATOM         | 1098         | 0        | SER A 141                | 43.828           |                  | 6.332            | 1.00 21.49               | A      |
| MOTA         | 1099         | N        | ASP A 142                | 45.311           |                  | 6.226            |                          | A.     |
| ATOM         | 1100         | CA       | ASP A 142                | 46.234           |                  | 5.430<br>4.420   |                          | A<br>A |
| MOTA         | 1101         | CB       | ASP A 142<br>ASP A 142   | 47.008<br>47.949 |                  |                  |                          | A      |
| ATOM         | 1102<br>1103 |          | ASP A 142<br>1 ASP A 142 | 47.949           |                  |                  |                          | A      |
| ATOM<br>ATOM | 1103         |          |                          | 48.799           |                  |                  |                          | A      |
| ATOM         | 1105         |          | ASP A 142                | 47.176           |                  |                  | 1.00 20.11               | A      |
|              |              |          | ,                        |                  |                  |                  |                          |        |

| ATOM | 1106 | 0   | ASP A 142 | 48.127 | -1.416 | 5.946  | 1.00 19.21 | A |
|------|------|-----|-----------|--------|--------|--------|------------|---|
| ATOM | 1107 | И   | HIS A 143 | 46.885 | -0.626 | 7.659  | 1.00 18.99 | A |
|      | 1108 | CA  | HIS A 143 | 47.637 | -1.295 | 8.706  | 1.00 17.27 | A |
| ATOM |      |     |           | 47.686 | -2.792 | 8.409  | 1.00 16.45 | A |
| ATOM | 1109 | CB  |           | 46.329 | -3.396 | 8.190  | 1.00 18.33 | A |
| ATOM | 1110 | CG  | HIS A 143 |        | -4.211 | 7.213  | 1.00 17.59 | A |
| ATOM | 1111 | CD2 | HIS A 143 | 45.860 |        |        | 1.00 17.33 | A |
| MOTA | 1112 | ND1 | HIS A 143 | 45.262 | -3.151 | 9.032  |            | A |
| ATOM | 1113 | CE1 | HIS A 143 | 44.194 | -3.786 | 8.580  | 1.00 19.46 |   |
| ATOM | 1114 | NE2 | HIS A 143 | 44.529 | -4.436 | 7.478  | 1.00 18.06 | A |
| ATOM | 1115 | C   | HIS A 143 | 49.019 | -0.749 | 9.030  | 1.00 19.46 | A |
| ATOM | 1116 | 0   | HIS A 143 | 49.812 | -1.401 | 9.715  | 1.00 19.95 | A |
| ATOM | 1117 | N   | SER A 144 | 49.301 | 0.454  | 8.536  | 1.00 19.70 | A |
| ATOM | 1118 | CA  | SER A 144 | 50.542 | 1.141  | 8.852  | 1.00 20.18 | A |
| ATOM | 1119 | CB  | SER A 144 | 51.018 | 2.011  | 7.678  | 1.00 19.91 | A |
| ATOM | 1120 | OG  | SER A 144 | 50.099 | 3.044  | 7.364  | 1.00 23.64 | A |
| ATOM | 1121 | C   | SER A 144 | 50.109 | 2.018  | 10.034 | 1.00 19.40 | A |
| ATOM | 1122 | 0   | SER A 144 | 48.970 | 1.906  | 10.499 | 1.00 19.70 | A |
|      | 1123 | N   | PHE A 145 | 50.986 | 2.883  | 10.525 | 1.00 16.99 | A |
| ATOM |      |     |           | 50.614 | 3.728  | 11.649 | 1.00 16.06 | A |
| ATOM | 1124 | CA  |           |        | 3.274  | 12.929 | 1.00 16.25 | A |
| MOTA | 1125 | CB  | PHE A 145 | 51.325 |        |        | 1.00 10.23 | A |
| MOTA | 1126 | CG  | PHE A 145 | 51.062 | 1.841  | 13.297 |            | A |
| ATOM | 1127 | CD1 |           | 51.754 | 0.807  | 12.672 | 1.00 20.17 |   |
| ATOM | 1128 | CD2 | PHE A 145 | 50.114 | 1.522  | 14.263 | 1.00 18.18 | A |
| MOTA | 1129 | CEl | PHE A 145 | 51.505 | -0.525 | 13.005 | 1.00 21.33 | A |
| MOTA | 1130 | CE2 | PHE A 145 | 49.856 | 0.193  | 14.606 | 1.00 19.50 | A |
| MOTA | 1131 | CZ  | PHE A 145 | 50.553 | -0.831 | 13.975 | 1.00 20.23 | A |
| MOTA | 1132 | C   | PHE A 145 | 50.955 | 5.182  | 11.419 | 1.00 15.69 | A |
| ATOM | 1133 | 0   | PHE A 145 | 51.548 | 5.538  | 10.404 | 1.00 16.69 | A |
| ATOM | 1134 | N   | PHE A 146 | 50.530 | 6.021  | 12.357 | 1.00 14.53 | A |
| ATOM | 1135 | CA  | PHE A 146 | 50.869 | 7.429  | 12.332 | 1.00 16.67 | A |
| ATOM | 1136 | CB  | PHE A 146 | 49.841 | 8.279  | 11.552 | 1.00 16.59 | A |
|      |      | CG  | PHE A 146 | 48.535 | 8.528  | 12.259 | 1.00 15.25 | A |
| ATOM | 1137 |     |           | 48.370 | 9.644  | 13.071 | 1.00 15.42 | A |
| MOTA | 1138 | CD1 | _         |        | 7.708  | 12.019 | 1.00 16.06 | A |
| ATOM | 1139 | CD2 |           | 47.433 |        |        | 1.00 17.50 | A |
| MOTA | 1140 | CE1 |           | 47.123 | 9.952  | 13.629 |            | A |
| ATOM | 1141 | CE2 |           | 46.180 | 8.003  | 12.571 | 1.00 16.80 |   |
| MOTA | 1142 | CZ  | PHE A 146 | 46.023 | 9.126  | 13.375 | 1.00 17.47 | A |
| MOTA | 1143 | С   | PHE A 146 | 51.017 | 7.841  | 13.783 | 1.00 17.00 | A |
| ATOM | 1144 | 0   | PHE A 146 | 50.345 | 7.308  | 14.661 | 1.00 19.50 | A |
| ATOM | 1145 | N   | LYS A 147 | 51.950 | 8.747  | 14.032 | 1.00 17.82 | A |
| MOTA | 1146 | CA  | LYS A 147 | 52.224 | 9.221  | 15.377 | 1.00 18.67 | A |
| ATOM | 1147 | CB  | LYS A 147 | 53.540 | 8.604  | 15.863 | 1.00 20.48 | A |
| ATOM | 1148 | CG  | LYS A 147 | 53.771 | 8.668  | 17.359 | 1.00 25.54 | A |
| ATOM | 1149 | CD  | LYS A 147 | 54.822 | 7.645  | 17.774 | 1.00 29.96 | A |
| ATOM | 1150 | CE  | LYS A 147 | 54.835 | 7.417  | 19.282 | 1.00 30.05 | A |
| ATOM | 1151 | NZ  | LYS A 147 | 55.740 | 6.291  | 19.643 | 1.00 33.05 | A |
| ATOM | 1152 | C   | LYS A 147 | 52.315 | 10.743 | 15.338 | 1.00 17.25 | A |
|      | 1153 | 0   | LYS A 147 | 52.716 | 11.320 | 14.329 | 1.00 19.15 | A |
| ATOM |      |     | ILE A 148 | 51.932 | 11.391 | 16.428 | 1.00 15.47 | A |
| ATOM | 1154 | N   | ILE A 148 | 51.969 | 12.846 | 16.494 | 1.00 14.99 | A |
| MOTA | 1155 | CA  |           |        | 13.424 | 16.642 | 1.00 15.37 | A |
| ATOM | 1156 | CB  | ILE A 148 | 50.529 | 14.932 | 16.740 | 1.00 14.06 | A |
| MOTA | 1157 | CG2 |           | 50.566 |        | 15.426 | 1.00 16.41 | A |
| MOTA | 1158 | CG: |           | 49.689 | 13.025 |        | 1.00 18.41 | A |
| MOTA | 1159 | CD: |           | 48.223 | 13.325 | 15.550 |            |   |
| MOTA | 1160 | C   | ILE A 148 | 52.829 | 13.271 | 17.682 | 1.00 17.07 | A |
| MOTA | 1161 | O   | ILE A 148 | 52.721 | 12.702 | 18.772 | 1.00 15.61 | A |
| ATOM | 1162 | N   | SER A 149 | 53.696 | 14.255 | 17.458 | 1.00 16.79 | A |
| ATOM | 1163 | CA  | SER A 149 | 54.570 | 14.757 | 18.514 | 1.00 17.66 | A |
| ATOM | 1164 | CB  | SER A 149 | 56.042 | 14.612 | 18.116 | 1.00 15.95 | A |
| ATOM | 1165 | OG  | SER A 149 | 56.900 | 14.956 | 19.190 | 1.00 17.31 | A |
| MOTA | 1166 | C   | SER A 149 | 54.239 | 16.225 | 18.763 | 1.00 18.34 | A |
| ATOM | 1167 | 0   | SER A 149 | 53.854 | 16.949 | 17.842 | 1.00 18.33 | A |
| ATOM | 1168 | N   | TYR A 150 | 54.401 | 16.665 | 20.005 | 1.00 16.95 | A |
| ATOM | 1169 | CA  |           | 54.085 | 18.040 | 20.362 | 1.00 17.59 | A |
|      |      | CB  |           | 52.893 | 18.057 | 21.310 | 1.00 17.57 | A |
| MOTA | 1170 |     |           | 51.679 | 17.314 | 20.797 | 1.00 18.52 | A |
| ATOM | 1171 | CG  |           |        | 17.851 | 19.789 | 1.00 17.12 | A |
| MOTA | 1172 |     |           | 50.879 |        | 19.769 | 1.00 17.12 | A |
| MOTA | 1173 | CE  |           | 49.733 | 17.182 |        | 1.00 18.32 | A |
| MOTA | 1174 |     |           | 51.313 | 16.078 | 21.345 |            |   |
| MOTA | 1175 |     |           | 50.176 | 15.399 | 20.901 |            | A |
| MOTA | 1176 | CZ  | TYR A 150 | 49.391 |        | 19.900 | 1.00 17.92 | A |
| MOTA | 1177 | OH  | TYR A 150 | 48.275 |        | 19.457 |            | A |
| MOTA | 1178 | C   | TYR A 150 | 55.237 | 18.768 |        | 1.00 17.16 | A |
| ATOM | 1179 | 0   | TYR A 150 | 55.953 | 18.207 | 21.847 | 1.00 19.65 | A |
|      |      |     |           |        | _      |        |            |   |

| ATOM | 1180 | N   | LEU | <b>Z</b> Z | 151 | 55.409 | 20.029 | 20.649 | 1.00 | 17.01 | A |
|------|------|-----|-----|------------|-----|--------|--------|--------|------|-------|---|
| ATOM | 1181 | CA  | LEU |            |     | 56.449 | 20.868 | 21.224 | 1.00 | 15.24 | A |
| ATOM | 1182 | CB  | LEU |            |     | 57.540 | 21.182 | 20.197 | 1.00 | 16.33 | A |
| ATOM | 1183 | CG  | LEU |            |     | 58.487 | 22.335 | 20.575 | 1.00 | 16.27 | A |
| ATOM | 1184 | CD1 | LEU |            |     | 59.402 | 21.906 | 21.706 | 1.00 | 17.13 | A |
| ATOM | 1185 | CD2 | LEU |            |     | 59.315 | 22.755 | 19.359 | 1.00 | 19.34 | A |
| ATOM | 1186 | C   | LEU |            |     | 55.825 | 22.174 | 21.666 | 1.00 | 16.08 | A |
| ATOM | 1187 | 0   | LEU |            |     | 55.221 | 22.881 | 20.860 | 1.00 | 16.22 | A |
| ATOM | 1188 | N   | THR |            |     | 55.952 | 22.497 | 22.945 | 1.00 | 16.84 | A |
| ATOM | 1189 | CA  | THR |            |     | 55.428 | 23.765 | 23.424 | 1.00 | 18.70 | A |
| ATOM | 1190 | CB  | THR |            |     | 55.283 | 23.799 | 24.946 | 1.00 | 20.14 | A |
| ATOM | 1191 | OG1 | THR |            |     | 56.576 | 23.633 | 25.544 | 1.00 | 23.32 | A |
| ATOM | 1192 | CG2 | THR |            |     | 54.355 | 22.694 | 25.419 | 1.00 | 18.36 | A |
| ATOM | 1193 | C   | THR |            |     | 56.498 | 24.772 | 23.050 | 1.00 | 20.04 | A |
| ATOM | 1194 | 0   | THR |            |     | 57.689 | 24.448 | 23.034 | 1.00 | 20.72 | A |
| ATOM | 1195 | N   | LEU |            |     | 56.085 | 25.986 | 22.735 | 1.00 | 20.63 | A |
| ATOM | 1196 | CA  |     |            | 153 | 57.043 | 27.014 | 22.389 | 1.00 | 24.69 | A |
| ATOM | 1197 | CB  |     |            | 153 | 57.579 | 26.794 | 20.960 | 1.00 | 24.19 | A |
| ATOM | 1198 | CG  |     |            | 153 | 56.716 | 26.942 | 19.694 | 1.00 | 26.72 | A |
| ATOM | 1199 | CD1 |     |            | 153 | 55.303 | 26.451 | 19.959 | 1.00 | 27.32 | A |
| ATOM | 1200 | CD2 |     |            | 153 | 56.686 | 28.393 | 19.249 | 1.00 | 26.15 | A |
| ATOM | 1201 | C   |     |            | 153 | 56.410 | 28.385 | 22.531 | 1.00 | 26.36 | A |
| ATOM | 1202 | 0   |     |            | 153 | 55.180 | 28.511 | 22.597 | 1.00 | 29.59 | A |
| ATOM | 1203 | N   |     |            | 154 | 57.262 | 29.401 | 22.620 | 1.00 | 26.29 | A |
| ATOM | 1204 | CA  | LEU |            |     | 56.830 | 30.787 | 22.729 | 1.00 | 26.89 | A |
| MOTA | 1205 | CB  | LEU |            |     | 57.459 | 31.444 | 23.965 |      | 26.94 | A |
| MOTA | 1206 | CG  |     |            | 154 | 56.966 | 32.833 | 24.407 | 1.00 | 28.58 | A |
| ATOM | 1207 | CD1 |     |            | 154 | 55.507 | 32.755 | 24.864 |      | 24.43 | A |
| MOTA | 1208 | CD2 |     |            | 154 | 57.845 | 33.342 | 25.549 | 1.00 | 27.14 | A |
| MOTA | 1209 | C   | LEU |            |     | 57.337 | 31.458 | 21.456 | 1.00 |       | A |
| ATOM | 1210 | o   | LEU |            |     | 58.538 | 31.689 | 21.304 | 1.00 | 30.73 | A |
| ATOM | 1211 | N   | PRO |            |     | 56.428 | 31.773 | 20.518 | 1.00 | 30.57 | A |
| ATOM | 1212 | CD  | PRO |            |     | 54.975 | 31.534 | 20.559 | 1.00 | 29.60 | A |
| ATOM | 1213 | CA  | PRO |            |     | 56.806 | 32.412 | 19.254 | 1.00 | 31.63 | A |
| ATOM | 1214 | CB  | PRO |            |     | 55.460 | 32.668 | 18.581 | 1.00 | 30.63 | A |
| ATOM | 1215 | CG  | PRO |            |     | 54.612 | 31.552 | 19.087 | 1.00 | 28.73 | A |
| ATOM | 1216 | C   | PRO |            |     | 57.639 | 33.688 | 19.370 |      | 33.58 | A |
| ATOM | 1217 | 0   | PRO |            |     | 57.322 | 34.593 | 20.136 |      | 33.98 | A |
| ATOM | 1218 | N   | SER |            |     | 58.706 | 33.741 | 18.586 | 1.00 | 35.79 | A |
| ATOM | 1219 | CA  | SER |            |     | 59.595 | 34.888 | 18.546 | 1.00 | 37.77 | A |
| ATOM | 1220 | CB  | SER |            |     | 60.604 | 34.839 | 19.694 | 1.00 |       | A |
| ATOM | 1221 | OG  | SER |            |     | 59.955 | 34.966 | 20.949 | 1.00 |       | A |
| ATOM | 1222 | C   | SER |            |     | 60.332 | 34.841 | 17.222 |      | 38.83 | A |
| ATOM | 1223 | 0   | SER |            |     | 60.257 | 33.849 | 16.492 | 1.00 |       | A |
| ATOM | 1224 | N   | ALA |            |     | 61.042 | 35.915 | 16.909 |      | 40.38 | A |
| ATOM | 1225 | CA  | ALA |            |     | 61.796 | 35.972 | 15.670 | 1.00 |       | A |
| ATOM | 1226 | СВ  | ALA |            |     | 61.822 | 37.401 | 15.148 | 1.00 | 40.36 | A |
| ATOM | 1227 | C   | ALA |            |     | 63.214 | 35.466 | 15.918 | 1.00 | 39.65 | A |
| MOTA | 1228 | 0   | ALA |            |     | 64.058 | 35.504 | 15.021 | 1.00 | 39.72 | A |
| ATOM | 1229 | N   | GLU |            |     | 63.463 | 34.984 | 17.135 | 1.00 | 39.12 | A |
| MOTA | 1230 | CA  | GLU | A          | 158 | 64.784 | 34.480 | 17.517 | 1.00 | 40.24 | A |
| ATOM | 1231 | CB  | GLU |            |     | 65.082 | 34.808 | 18.988 | 1.00 | 44.21 | A |
| ATOM | 1232 | CG  | GLU | A          | 158 | 65.426 | 36.268 | 19.287 | 1.00 | 50.31 | A |
| ATOM | 1233 | CD  | GLU | A          | 158 | 64.204 | 37.174 | 19.356 | 1.00 | 55.36 | A |
| ATOM | 1234 | OE1 | GLU | A          | 158 | 64.353 | 38.351 | 19.765 | 1.00 | 55.75 | A |
| ATOM | 1235 | OE2 | GLU | A          | 158 | 63.095 | 36.712 | 19.002 | 1.00 | 58.12 | A |
| ATOM | 1236 | С   | GLU | A          | 158 | 65.005 | 32.979 | 17.303 | 1.00 | 38.02 | A |
| ATOM | 1237 | 0   | GLU | A          | 158 | 66.130 | 32.493 | 17.419 | 1.00 | 36.30 | A |
| ATOM | 1238 | N   | GLU | A          | 159 | 63.950 | 32.234 | 17.002 | 1.00 | 35.79 | A |
| MOTA | 1239 | CA  | GLU | A          | 159 | 64.136 | 30.807 | 16.805 | 1.00 | 35.02 | A |
| MOTA | 1240 | CB  | GLU | A          | 159 | 63.949 | 30.066 | 18.135 | 1.00 | 36.97 | A |
| ATOM | 1241 | CG  | GLU | A          | 159 | 62.699 | 30.439 | 18.891 | 1.00 | 41.68 | A |
| MOTA | 1242 | CD  | GLU | A          | 159 | 62.717 | 29.933 | 20.323 | 1.00 | 44.82 | A |
| MOTA | 1243 | OE1 | GLU | A          | 159 | 62.819 | 28.705 | 20.527 | 1.00 | 46.62 | A |
| MOTA | 1244 | OE2 | GLU | A          | 159 | 62.631 | 30.767 | 21.248 | 1.00 | 47.25 | A |
| MOTA | 1245 | C   | GLU | A          | 159 | 63.277 | 30.162 | 15.735 | 1.00 | 32.21 | A |
| ATOM | 1246 | 0   | GLU | A          | 159 | 62.147 | 30.574 | 15.473 | 1.00 | 32.05 | A |
| MOTA | 1247 | N   | SER | A          | 160 | 63.849 | 29.147 | 15.107 | 1.00 | 29.55 | A |
| ATOM | 1248 | CA  | SER | A          | 160 | 63.167 | 28.394 | 14.076 | 1.00 | 28.89 | A |
| MOTA | 1249 | CB  | SER | A          | 160 | 63.885 | 28.551 | 12.734 | 1.00 | 27.34 | A |
| MOTA | 1250 | OG  | SER |            |     | 65.206 | 28.053 | 12.807 |      | 29.49 | A |
| MOTA | 1251 | C   | SER |            |     | 63.241 | 26.957 | 14.565 |      | 27.42 | A |
| ATOM | 1252 | 0   | SER |            |     | 64.092 | 26.628 | 15.392 |      | 25.45 | A |
| MOTA | 1253 | N   | TYR | A          | 161 | 62.359 | 26.101 | 14.066 | 1.00 | 24.73 | A |

| ATOM         | 1254         | CA         | TYR | A | 161        | 62.359           | 24.725            | 14.517           | 1.00         | 24.26          | A        |
|--------------|--------------|------------|-----|---|------------|------------------|-------------------|------------------|--------------|----------------|----------|
| MOTA         | 1255         | CB         | TYR |   |            | 61.172           | 24.480            | 15.451           |              | 23.50          | A        |
| ATOM         | 1256         | CG         | TYR |   |            | 60.935           | 25.593            | 16.434           |              | 24.01          | A        |
| ATOM         | 1257         | CDI        |     |   |            | 60.255           | 26.748            | 16.052           |              | 26.02          | A        |
| ATOM         | 1258         | CE1        | TYR | A | 161        | 60.009           | 27.774            | 16.959           |              | 27.93          | A        |
| MOTA         | 1259         | CD2        | TYR | A | 161        | 61.374           | 25.491            | 17.753           |              | 24.78          | A        |
| ATOM         | 1260         | CE2        | TYR | A | 161        | 61.136           | 26.514            | 18.674           | 1.00         | 25.93          | A        |
| ATOM         | 1261         | CZ         | TYR | A | 161        | 60.450           | 27.650            | 18.270           | 1.00         | 27.56          | A        |
| MOTA         | 1262         | OH         | TYR | A | 161        | 60.182           | 28.650            | 19.173           | 1.00         | 29.78          | A        |
| MOTA         | 1263         | C          | TYR | A | 161        | 62.330           | 23.700            | 13.397           | 1.00         | 25.15          | A        |
| ATOM         | 1264         | 0          | TYR | A | 161        | 62.082           | 24.021            | 12.239           | 1.00         | 24.96          | A        |
| ATOM         | 1265         | N          | ASP | A | 162        | 62.600           | 22.455            | 13.775           | 1.00         | 26.26          | A        |
| MOTA         | 1266         | CA         | ASP | A | 162        | 62.598           | 21.331            | 12.858           | 1.00         | 26.94          | A        |
| ATOM         | 1267         | CB         | ASP |   | 162        | 64.007           | 21.014            | 12.356           | 1.00         | 30.11          | A        |
| ATOM         | 1268         | CG         | ASP |   | 162        | 64.548           | 22.067            | 11.434           | 1.00         | 32.85          | A        |
| MOTA         | 1269         | OD1        | ASP |   | 162        | 64.075           | 22.138            | 10.277           |              | 33.31          | A        |
| ATOM         | 1270         | OD2        | ASP |   | 162        | 65.443           | 22.819            | 11.874           |              | 33.08          | A        |
| ATOM         | 1271         | C          | ASP |   | 162        | 62.122           | 20.117            | 13.613           |              | 25.87          | A        |
| ATOM         | 1272         | 0          | ASP |   | 162        | 62.449           | 19.947            | 14.789           |              | 24.38          | A        |
| ATOM         | 1273         | N          | CYS |   |            | 61.352           | 19.277            | 12.935           |              | 23.95          | A        |
| ATOM         | 1274         | CA         | CYS |   | 163        | 60.914           | 18.027            | 13.530           |              | 24.46          | A        |
| ATOM<br>ATOM | 1275<br>1276 | С<br>0     | CYS |   | 163<br>163 | 61.916           | 17.043            | 12.938           |              | 22.46          | A        |
| ATOM         | 1277         | CB         | CYS |   | 163        | 62.110<br>59.497 | 17.021<br>17.658  | 11.726<br>13.083 |              | 24.01<br>24.14 | A        |
| ATOM         | 1278         | SG         | CYS |   |            | 58.931           | 16.101            | 13.836           |              | 30.35          | A.       |
| ATOM         | 1279         | И          | LYS |   |            | 62.571           | 16.259            | 13.782           |              | 22.96          | A<br>A   |
| ATOM         | 1280         | CA         | LYS |   |            | 63.559           | 15.292            | 13.702           |              | 24.69          | A        |
| ATOM         | 1281         | CB         | LYS |   |            | 64.867           |                   |                  |              | 27.54          | A        |
| ATOM         | 1282         | CG         | LYS |   |            | 65.977           | 14.490            | 13.689           |              | 28.93          | A        |
| ATOM         | 1283         | CD         | LYS |   |            | 67.179           | 14.643            |                  |              | 32.03          | A        |
| ATOM         | 1284         | CE         | LYS |   |            | 68.254           | 13.596            | 14.350           |              | 33.85          | A        |
| MOTA         | 1285         | NZ         | LYS |   |            | 69.319           | 13.607            |                  |              | 36.46          | A        |
| ATOM         | 1286         | С          | LYS | A |            | 63.023           | 13.875            | 13.463           |              | 24.25          | A        |
| ATOM         | 1287         | 0          | LYS | A | 164        | 62.697           | 13.443            | 14.570           | 1.00         | 23.52          | A        |
| MOTA         | 1288         | N          | VAL | A | 165        | 62.931           | 13.160            | 12.345           | 1.00         | 23.37          | A        |
| MOTA         | 1289         | CA         | VAL | A | 165        | 62.415           | 11.797            | 12.344           | 1.00         | 24.06          | A        |
| MOTA         | 1290         | CB         | VAL | A | 165        | 61.174           | 11.682            | 11.408           | 1.00         | 23.45          | A        |
| MOTA         | 1291         | CG1        | LAV | A | 165        | 60.657           | 10.248            | 11.382           | 1.00         | 18.80          | A        |
| ATOM         | 1292         | CG2        | VAL | A | 165        | 60.078           | 12.632            | 11.878           | 1.00         | 22.37          | A        |
| MOTA         | 1293         | C          | VAL | A |            | 63.457           | 10.772            | 11.903           | 1.00         | 25.04          | A        |
| ATOM         | 1294         | 0          | VAL |   |            | 64.103           | 10.931            | 10.869           |              | 25.12          | A        |
| ATOM         | 1295         | N          | GLU |   |            | 63.621           | 9.725             | 12.703           |              | 26.91          | A        |
| ATOM         | 1296         | CA         | GLU |   |            | 64.556           |                   | 12.383           |              | 28.84          | A        |
| MOTA         | 1297         | CB         | GLU |   |            | 65.554           |                   | 13.523           | 1.00         |                | A        |
| ATOM         | 1298         | CG         | GLU |   |            | 66.382           |                   |                  |              | 36.90          | A        |
| ATOM         | 1299         | CD<br>OF1  | GLU |   |            | 67.247           | 9.356             | 15.147           | 1.00         |                | A        |
| ATOM<br>ATOM | 1300<br>1301 | OE1<br>OE2 | GLU |   |            | 67.466<br>67.714 | 10.286            | 15.954           | 1.00         | 43.02          | A.       |
| ATOM         | 1302         | C          | GLU |   | •          | 63.739           | 8.206<br>7.369    | 15.301<br>12.183 | 1.00         |                | A<br>A   |
| ATOM         | 1303         | 0          | GLU |   |            | 62.975           | 6.971             | 13.067           | 1.00         |                | A        |
| ATOM         |              | N          | HIS |   |            | 63.910           |                   | 11.029           |              |                | A        |
| ATOM         | 1305         | CA         | HIS |   |            | 63.189           | 5.496             | 10.713           | 1.00         |                | A        |
| ATOM         | 1306         | CB         | HIS |   |            | 61.838           | 5.833             | 10.084           |              | 30.90          | A        |
| ATOM         | 1307         | CG         | HIS |   |            | 60.932           | 4.655             | 9.933            |              | 34.01          | A        |
| ATOM         | 1308         | CD2        | HIS | A | 167        | 60.698           | 3.842             | 8.876            | 1.00         |                | A        |
| ATOM         | 1309         | ND1        | HIS | A | 167        | 60.159           | 4.172             | 10.967           | 1.00         | 36.69          | A        |
| MOTA         | 1310         | CE1        | HIS | A | 167        | 59.488           | 3.112             | 10.554           | 1.00         | 34.84          | A        |
| ATOM         | 1311         | NE2        | HIS | A | 167        | 59.798           | 2.890             | 9.290            | 1.00         | 34.90          | A        |
| MOTA         | 1312         | C          | HIS | А | 167        | 63.999           | 4.639             | 9.739            | 1.00         | 31.21          | A        |
| MOTA         | 1313         | 0          | HIS | A | 167        | 64.696           | 5.167             | 8.866            | 1.00         | 29.44          | A        |
| ATOM         | 1314         | N          | TRP | A | 168        | 63.895           | 3.320             | 9.879            | 1.00         | 31.70          | A        |
| ATOM         | 1315         | CA         | TRP | A | 168        | 64.625           | 2.402             | 9.006            | 1.00         | 31.76          | A        |
| MOTA         | 1316         | CB         | TRP |   |            | 64.344           | 0.954             | 9.396            | 1.00         |                | A        |
| MOTA         | 1317         | CG         | TRP |   |            | 64.735           | 0.650             | 10.797           | 1.00         |                | A        |
| ATOM         | 1318         | CD2        | TRP |   |            | 64.115           | -0.297            | 11.666           | 1.00         |                | A        |
| ATOM         | 1319         |            | TRP |   |            | 64.837           | -0.288            | 12.878           | 1.00         |                | A        |
| ATOM         | 1320         | CE3        | TRP |   |            | 63.017           | -1.157            | 11.538           | 1.00         |                | A        |
| ATOM         | 1321         | CD1        | TRP |   |            | 65.778           | 1.184             | 11.491           | 1.00         |                | A        |
| ATOM<br>ATOM | 1322         | NE1        | TRP |   |            | 65.849           | 0.627             | 12.744           | 1.00         |                | A.       |
| ATOM<br>ATOM | 1323<br>1324 | CZ2        | TRP |   |            | 64.498           | -1.107            | 13.958           | 1.00         |                | A.       |
| ATOM         | 1324         | CZ3<br>CH2 | TRP |   | 168        | 62.678<br>63.418 | -1.970<br>-1.940  | 12.608<br>13.805 | 1.00<br>1.00 |                | A.<br>20 |
| ATOM         | 1326         | CHZ        | TRP |   |            | 64.332           | 2.588             | 7.523            | 1.00         |                | A<br>A   |
| ATOM         | 1327         | 0          | TRP |   |            | 65.190           | 2.314             | 6.682            | 1.00         |                | A        |
|              | ·            | _          |     |   |            |                  | <i>⊾ . ↓ ಸ.</i> ಇ | J. J. J. Z.      |              |                | ₹3       |

| ATOM         | 1328         | N          | GLY        | A | 169            | 63 | 3.126          | 3       | .049           | 7           | .202           | 1. | 00  | 34 | .81        | A        |
|--------------|--------------|------------|------------|---|----------------|----|----------------|---------|----------------|-------------|----------------|----|-----|----|------------|----------|
| MOTA         | 1329         | CA         | GLY        | A | 169            | 62 | 2.760          | 3       | .263           | 5           | .810           | 1. | 00  | 35 | .23        | A        |
| ATOM         | 1330         | C          | GLY        | A | 169            | 63 | 3.267          | 4       | .588           | 5           | .266           |    |     | 37 |            | A        |
| ATOM         | 1331         | 0          | GLY        | A | 169            | 62 | 2.907          |         | .992           |             | .162           |    | 00  |    | . 65       | A        |
| MOTA         | 1332         | N          | LEU        |   |                |    | 1.100          |         | .268           |             | .049           |    |     | 39 |            | A        |
| ATOM         | 1333         | CA         | LEU        |   |                |    | 1.673          |         | .555           |             | .660           |    | 00  |    | .10        | A        |
| ATOM         | 1334         | CB         | LEU        |   |                |    | 4.354          |         | .626           |             | .706           |    |     |    | .47        | <b>A</b> |
| MOTA         | 1335         | CG         | LEU        |   |                |    | 2.923          |         | .143           |             | .843           |    | 00  |    | .66        | A        |
| MOTA         | 1336         | CD1        | LEU        |   |                |    | 2.790          |         | .919           |             | .142           |    |     |    | .48        | A        |
| MOTA         | 1337         | CD2        | LEU        |   |                |    | 2.572          |         | .017           |             | .653           |    | 00  |    | .65        | A        |
| ATOM         | 1338         | C          | LEU        |   |                |    | 5.183          |         | .425           |             | .556           |    |     |    | .62        | A        |
| ATOM         | 1339         | 0          | LEU        |   |                |    | 5.809          |         | .762           |             | .382           |    | 00  |    | .45        | A<br>n   |
| ATOM         | 1340         | N          | ASP        |   | 171            |    | 5.764          |         | .066           |             | .545           |    | 00  |    | .98        | A<br>A   |
| ATOM         | 1341         | CA         | ASP        |   | 171            |    | 8.211          |         | .036           |             | .350<br>.086   |    | 00  |    | .99<br>.12 | A<br>A   |
| ATOM         | 1342         | CB         | ASP        |   | 171<br>171     |    | 8.602<br>7.735 |         | .466           |             | .895           |    |     |    | .30        | A        |
| ATOM         | 1343<br>1344 | CG<br>OD1  | ASP<br>ASP |   | 171            |    | 6.520          |         | .761           |             | .936           |    |     |    | .82        | A        |
| ATOM<br>ATOM | 1345         | ODI<br>ODI | ASP        |   | 171            |    | 8.271          |         | .903           |             | .917           |    |     |    | .86        | A        |
| ATOM         | 1345         | C C        | ASP        |   | 171            |    | 8.836          |         | .726           |             | .554           |    | 00  |    | .82        | A        |
| ATOM         | 1347         | 0          | ASP        |   | 171            |    | 9.437          |         | .093           |             | .420           |    | 00  |    | .88        | A        |
| ATOM         | 1348         | N          |            |   | 172            |    | 8.673          |         | .044           |             | .585           |    | 00  |    | .96        | A        |
| ATOM         | 1349         | CA         |            |   | 172            |    | 9.192          |         | .877           |             | .659           |    |     |    | .79        | A        |
| ATOM         | 1350         | CB         |            |   | 172            |    | 9.986          |         | .059           |             | .084           |    | 00  |    | .32        | A        |
| ATOM         | 1351         | CG         | LYS        |   | 172            |    | 1.074          |         | .698           |             | .075           |    |     |    | .53        | A        |
| ATOM         | 1352         | CD         | LYS        |   |                |    | 1.799          |         | .952           |             | .571           |    |     | 57 |            | A        |
| ATOM         | 1353         | CE         | LYS        |   | 172            |    | 2.859          |         | .621           |             | .518           |    |     |    | .22        | A        |
| ATOM         | 1354         | NZ         | LYS        |   | 172            |    | 3.912          | 10      | .702           | 4           | .038           | 1. | 00  | 58 | .32        | A        |
| ATOM         | 1355         | C          | LYS        |   | 172            | 6' | 7.990          | 10      | .419           | 7           | .420           | 1. | 00  | 46 | .36        | A        |
| ATOM         | 1356         | 0          | LYS        | A | 172            | 6  | 6.862          | 10      | .381           | 6           | .919           | 1. | 00  | 44 | .39        | A        |
| MOTA         | 1357         | N          | PRO        | A | 173            | 6  | 8.211          | 10      | .920           | 8           | .645           | 1. | 00  | 44 | .20        | A        |
| MOTA         | 1358         | CD         | PRO        | A | 173            | 6: | 9.432          | 10      | .866           | 9           | .469           | 1. | 00  | 44 | .15        | A        |
| MOTA         | 1359         | CA         | PRO        | A | 173            | 6  | 7.089          | 11      | .462           | 9           | .410           | 1. | 00  | 42 | .74        | A        |
| ATOM         | 1360         | CB         | PRO        | A | 173            | 6  | 7.768          | 12      | .050           | 10          | .637           | 1. | 00  | 42 | .02        | A        |
| MOTA         | 1361         | CG         | PRO        | A | 173            | 6  | 8.887          | 11      | .080           |             | .872           |    |     |    | .25        | A        |
| MOTA         | 1362         | C          | PRO        | A | 173            |    | 6.369          |         | .517           |             | .578           |    |     |    | .09        | A        |
| ATOM         | 1363         | 0          |            |   | 173            |    | 7.002          |         | .309           |             | .877           |    |     |    | .67        | A        |
| ATOM         | 1364         | N          |            |   | 174            |    | 5.044          |         | .502           |             | .636           |    |     |    | .80        | A        |
| MOTA         | 1365         | CA         |            |   | 174            |    | 4.241          |         | .457           |             | .888           |    |     |    | .58        | A        |
| ATOM         | 1366         | СВ         |            |   | 174            |    | 2.894          |         | .838           |             | .522           |    | 00  |    | .73        | A        |
| ATOM         | 1367         | CG         |            |   | 174            |    | 2.202          |         | .329           |             | .251           |    |     |    | .18        | A<br>7   |
| ATOM         | 1368         | CD1        | LEU        |   | 174            |    | 0.826          |         | .691           |             | .170           |    |     |    | .20<br>.87 | A<br>A   |
| MOTA         | 1369         | CD2        | LEU        |   | 174            |    | 2.093          |         | .836           |             | .785           |    |     |    | .43        | A        |
| ATOM         | 1370         | C          |            |   | 174<br>174     |    | 4.019<br>3.630 |         | .514           |             | .943           |    |     |    | .68        | A        |
| ATOM<br>ATOM | 1371<br>1372 | N<br>O     |            |   | 175            |    | 4.284          |         | .849           |             | .255           |    |     |    | .85        | A        |
| ATOM         | 1373         | CA         |            |   | 175            |    | 4.098          |         | .077           |             | .012           |    |     |    | .38        | A        |
| ATOM         | 1374         | CB         |            |   | 175            |    | 5.400          |         | .882           |             | .074           |    | 00  |    | .21        | A        |
| ATOM         | 1375         | CG         | LEU        |   | 175            |    | 6.425          |         | 7.502          |             | .147           |    | 00  |    | .82        | A        |
| ATOM         | 1376         | CD1        |            |   | 175            |    | 5.838          |         | 7.768          |             | .526           |    | 00  |    | .32        | A        |
| ATOM         | 1377         |            | LEU        |   |                |    | 6.819          |         | .038           |             | .008           | 1. | 00  | 35 | .37        | A        |
| MOTA         | 1378         | C          |            |   | 175            |    | 3.020          | 17      | 7.898          | 8           | .337           | 1. | .00 | 33 | .09        | A        |
| ATOM         | 1379         | 0          | LEU        | A | 175            | 6  | 3.080          | 18      | 3.137          | 7           | .132           | 1. | .00 | 33 | .84        | A        |
| ATOM         | 1380         | N          | LYS        | A | 176            | 6  | 2.023          | 18      | 3.312          | 9           | .108           | 1. | .00 | 30 | .14        | A        |
| ATOM         | 1381         | CA         | LYS        | A | 176            | 6  | 0.943          | 19      | .119           | 8           | .566           | 1. | .00 | 30 | .03        | A        |
| MOTA         | 1382         | CB         | LYS        | A | 176            | 5  | 9.598          | 18      | 3.416          | 8           | .772           | 1. | .00 | 30 | .60        | A        |
| MOTA         | 1383         | CG         | LYS        | A | 176            | 5  | 8.463          | 19      | 0.049          | 8           | .010           | 1. | .00 | 33 | .60        | A        |
| MOTA         | 1384         | CD         | LYS        | A | 176            | 5  | 8.742          | 19      | 0.054          | 6           | .508           | 1. | .00 | 37 | .73        | A        |
| ATOM         | 1385         | CE         | LYS        | A | 176            | 5  | 8.869          | 17      | 7.642          | 5           | .960           |    |     |    | .37        | A        |
| MOTA         | 1386         | NZ         | LYS        | A | 176            | 5  | 9.075          | 17      | 7.629          |             | .484           |    |     |    | 15         | A        |
| MOTA         | 1387         | C          | LYS        | A | 176            | 6  | 0.976          |         | .457           |             | .292           |    |     |    | .62        | A        |
| ATOM         | 1388         | 0          |            |   | 176            |    | 0.764          |         | ).524          |             | .501           |    |     |    | .68        | A        |
| ATOM         | 1389         | N          |            |   | . 177          |    | 1.238          |         | L.520          |             | .539           |    |     |    | .72        | A        |
| ATOM         | 1390         | CA         |            |   | . 177          |    | 1.353          |         | 2.868          |             | .088           |    |     |    | .54        | A        |
| MOTA         | 1391         | CB         |            |   | . 177          |    | 2.284          |         | 3.691          |             | 1.195          |    |     |    | .51        | A        |
| ATOM         | 1392         | CG         |            |   | 177            |    | 2.485          |         | 5.097          |             | 3.663          |    |     |    | .53        | A        |
| MOTA         | 1393         |            |            |   | . 177          |    | 2.124          |         | 5.282          |             | 3.114          |    |     |    | 99         | A        |
| ATOM         | 1394         |            |            |   | . 177          |    | 3.117          |         | 5.401          |             | .849           |    |     |    | .09        | A<br>7   |
| ATOM         | 1395         |            |            |   | 177            |    | 3.138          |         | 5.713          |             | 0.010          |    |     |    | 2.65       | A<br>A   |
| ATOM         | 1396         | NE2        |            |   | 177            |    | 2.542          |         | 7.271          |             | 3.971          |    |     |    | 2.04       | A        |
| MOTA         | 1397         | C          |            |   | 177            |    | 0.059          |         | 3.654          |             | 3.304<br>3.549 |    |     |    | 7.66       | A        |
| MOTA         | 1398         | O<br>M     | HIS        |   | . 177<br>. 178 |    | 9.100          |         | 3.519<br>4.492 |             | 3.549          |    |     |    | ).09       | A        |
| MOTA         | 1399<br>1400 | N<br>CA    |            |   | 178            |    | 8.926          |         | 5.350          |             | 0.340          |    |     |    | 3.43       | A        |
| ATOM<br>ATOM | 1400         | CB         |            |   | 178            |    | 7.959          |         | 4.647          |             | 1.632          |    |     |    | 3.07       | A        |
| TT OLI       |              |            | _ I.C.E    |   | / 0            | ~  |                | - ALA T |                | <b></b> , J | _ , _ , ., .,  |    |     | \  | •          |          |

| ATOM | 1402 | CG  | TRP                  | 2\ | 178 | 56.681 | 25.422  | 11.851 | 1.00 25.25 | A        |
|------|------|-----|----------------------|----|-----|--------|---------|--------|------------|----------|
| ATOM | 1403 | CD2 |                      |    | 178 | 56.476 | 26.518  | 12.761 | 1.00 21.68 | A        |
| ATOM | 1404 | CE2 |                      |    | 178 | 55.138 | 26.942  | 12.611 | 1.00 20.86 | A        |
|      | 1405 | CE3 |                      |    | 178 | 57.292 | 27.178  | 13.688 | 1.00 20.72 | A        |
| ATOM |      |     |                      |    | 178 | 57.292 | 25.239  | 11.206 | 1.00 24.81 | A        |
| ATOM | 1406 | CD1 |                      |    |     | 54.559 | 26.146  | 11.657 | 1.00 21.51 | A        |
| ATOM | 1407 | NE1 |                      |    | 178 |        |         | 13.354 | 1.00 21.11 | A        |
| ATOM | 1408 | CZ2 |                      |    | 178 | 54.598 | 27.999  |        |            |          |
| ATOM | 1409 | CZ3 |                      | A. | 178 | 56.754 | 28.229  | 14.428 | 1.00 21.58 | A        |
| ATOM | 1410 | CH2 |                      |    | 178 | 55.419 | 28.627  | 14.255 | 1.00 20.94 | A.       |
| MOTA | 1411 | C   |                      |    | 178 | 59.425 | 26.628  | 11.348 | 1.00 36.30 | A        |
| MOTA | 1412 | 0   | TRP                  | A  | 178 | 60.314 | 26.591  | 12.195 | 1.00 36.91 | A.       |
| MOTA | 1413 | N   | GLU                  | A  | 179 | 58.852 | 27.761  | 10.975 | 1.00 40.65 | A        |
| MOTA | 1414 | CA  | GLU                  | A  | 179 | 59.240 | 29.029  | 11.587 | 1.00 45.62 | A        |
| MOTA | 1415 | CB  | GLU                  | A  | 179 | 60.481 | 29.622  | 10.899 | 1.00 47.42 | A        |
| ATOM | 1416 | CG  | GLU                  | A  | 179 | 60.323 | 29.868  | 9.404  | 1.00 52.77 | A        |
| ATOM | 1417 | CD  | GLU                  | A  | 179 | 61.498 | 30.624  | 8.806  | 1.00 55.17 | A        |
| MOTA | 1418 | OE1 | $\operatorname{GLU}$ | A  | 179 | 62.653 | 30.179  | 8.987  | 1.00 57.20 | A        |
| ATOM | 1419 | OE2 | GLÜ                  | A  | 179 | 61.265 | 31.663  | 8.149  | 1.00 57.21 | A        |
| ATOM | 1420 | С   | GLU                  | Α  | 179 | 58.074 | 30.001  | 11.489 | 1.00 46.47 | A        |
| ATOM | 1421 | 0   | GLU                  | A  | 179 | 57.322 | 29.983  | 10.513 | 1.00 45.49 | ${f A}$  |
| ATOM | 1422 | N   |                      |    | 180 | 57.898 | 30.855  | 12.509 | 1.00 47.97 | A        |
| ATOM | 1423 | CD  |                      |    | 180 | 58.679 | 31.008  | 13.752 | 1.00 48.35 | A        |
| ATOM | 1424 | CA  |                      |    | 180 | 56.789 | 31.810  | 12.460 | 1.00 49.45 | A        |
|      |      | CB  |                      |    | 180 | 56.763 | 32.372  | 13.880 | 1.00 49.39 | A        |
| ATOM | 1425 |     |                      |    |     | 58.214 | 32.358  | 14.266 | 1.00 48.65 | A        |
| ATOM | 1426 | CG  | PRO                  |    |     |        | 32.336  | 11.401 | 1.00 50.21 | A        |
| ATOM | 1427 | C   | PRO                  |    |     | 57.014 | 32.691  |        | 1.00 30.21 | A        |
| ATOM | 1428 | 0   | PRO                  |    |     | 58.174 |         | 10.950 |            |          |
| MOTA | 1429 | OXT | PRO                  |    |     | 56.030 | 33.578  | 11.043 | 1.00 50.90 | A        |
| MOTA | 1430 | CB  | SER                  |    | 3   | 67.953 | -2.426  | 7.203  | 1.00 59.72 | В        |
| ATOM | 1431 | OG  | SER                  |    | 3   | 68.517 | -3.384  | 6.321  | 1.00 60.71 | В        |
| MOTA | 1432 | C   | SER                  | В  | 3   | 68.164 | -3.822  | 9.277  | 1.00 57.49 | В        |
| MOTA | 1433 | 0   | SER                  | В  | 3   | 68.117 | -4.879  | 8.642  | 1.00 57.32 | B<br>-   |
| ATOM | 1434 | N   | SER                  | В  | 3   | 70.072 | -2.418  | 8.486  | 1.00 59.35 | В        |
| MOTA | 1435 | CA  | SER                  | В  | 3   | 68.586 | -2.517  | 8.597  | 1.00 58.84 | В        |
| MOTA | 1436 | N   | PRO                  | В  | 4   | 67.855 | -3.763  | 10.585 | 1.00 55.71 | В        |
| ATOM | 1437 | CD  | PRO                  | В  | 4   | 67.914 | -2.580  | 11.463 | 1.00 54.97 | В        |
| MOTA | 1438 | CA  | PRO                  | В  | 4   | 67.438 | -4.952  | 11.338 | 1.00 53.72 | В        |
| ATOM | 1439 | СВ  | PRO                  | В  | 4   | 67.457 | -4.467  | 12.787 | 1.00 54.71 | В        |
| MOTA | 1440 | CG  | PRO                  | В  | 4   | 67.095 | -3.021  | 12.660 | 1.00 54.93 | В        |
| ATOM | 1441 | С   | PRO                  | В  | 4   | 66.069 | -5.487  | 10.918 | 1.00 51.05 | В        |
| ATOM | 1442 | 0   | PRO                  |    | 4   | 65.240 | -4.753  | 10.379 | 1.00 50.96 | В        |
| ATOM | 1443 | N   | GLU                  |    | 5   | 65.843 | -6.773  | 11.165 | 1.00 47.90 | В        |
| ATOM | 1444 | CA  | GLU                  |    |     | 64.581 |         | 10.810 | 1.00 45.24 | В        |
| ATOM | 1445 | CB  | GLU                  |    |     | 64.811 |         | 10.489 | 1.00 48.23 | В        |
|      |      | CG  | GLU                  |    |     | 65.603 | -9.656  | 11.545 | 1.00 54.54 | В        |
| ATOM | 1446 |     | GLU                  |    |     | 65.896 |         | 11.140 | 1.00 57.83 | В        |
| ATOM | 1447 | CD  |                      |    |     |        | -11.317 | 10.024 | 1.00 59.67 | В        |
| ATOM | 1448 | OE1 | GLU                  |    |     |        |         |        |            | В        |
| ATOM | 1449 | OE2 | GLU                  |    |     |        | -12.020 | 11.941 | 1.00 59.33 |          |
| ATOM | 1450 | C   | GLU                  |    |     | 63.548 |         | 11.920 | 1.00 40.85 | В        |
| ATOM | 1451 | 0   | GLU                  |    |     | 63.876 |         | 13.105 | 1.00 40.81 | В        |
| ATOM | 1452 | N   | ASP                  | В  | 6   | 62.294 |         | 11.532 | 1.00 36.03 | B<br>-   |
| MOTA | 1453 | CA  | ASP                  | B  | 6   | 61.223 | -6.936  | 12.508 | 1.00 32.11 | <b>B</b> |
| MOTA | 1454 | CB  | ASP                  | В  | 6   | 60.833 | -5.460  | 12.616 | 1.00 29.96 | В        |
| ATOM | 1455 | CG  | ASP                  | В  | 6   | 59.933 | -5.171  | 13.798 | 1.00 27.91 | B        |
| ATOM | 1456 | OD1 | ASP                  | В  | 6   | 59.280 | -4.110  | 13.785 | 1.00 29.62 | В        |
| ATOM | 1457 | OD2 | ASP                  | В  | 6   | 59.884 | -5.982  | 14.745 | 1.00 29.86 | В        |
| MOTA | 1458 | C   | ASP                  | В  | 6   | 60.014 | -7.766  | 12.077 | 1.00 29.68 | В        |
| MOTA | 1459 | 0   | ASP                  | В  | 6   | 59.676 | -7.802  | 10.899 | 1.00 29.14 | В        |
| ATOM | 1460 | N   | PHE                  | В  | 7   | 59.380 | -8.438  | 13.032 | 1.00 27.77 | В        |
| ATOM | 1461 | CA  | PHE                  |    |     | 58.193 | -9.249  | 12.765 | 1.00 28.11 | В        |
| ATOM | 1462 | CB  | PHE                  |    |     | 58,453 |         | 13.161 | 1.00 29.55 | В        |
| ATOM | 1463 | CG  | PHE                  |    |     |        | -11.385 | 12.282 | 1.00 31.06 | В        |
| ATOM | 1464 | CD1 |                      |    |     |        | -11.766 | 10.989 | 1.00 29.85 | В        |
|      |      |     |                      |    |     |        | -11.603 | 12.730 | 1.00 32.21 | В        |
| MOTA | 1465 | CD2 |                      |    |     | 60.761 |         | 10.145 | 1.00 32.21 | В        |
| ATOM | 1466 |     | PHE                  |    |     |        |         | 11.897 | 1.00 33.73 | B        |
| ATOM | 1467 | CE2 |                      |    |     | 61.719 |         |        | 1.00 34.27 | B        |
| ATOM | 1468 | CZ  | PHE                  |    |     | 61.373 |         | 10.599 |            | В        |
| ATOM | 1469 | C   | PHE                  |    |     | 57.032 |         | 13.562 | 1.00 26.58 |          |
| ATOM | 1470 | 0   | PHE                  |    |     | 57.046 |         | 14.794 | 1.00 25.72 | В        |
| MOTA | 1471 | N   | VAL                  |    |     | 56.023 |         | 12.849 | 1.00 25.17 | В        |
| ATOM | 1472 | CA  | VAL                  |    |     | 54.891 |         | 13.493 | 1.00 23.46 | В        |
| MOTA | 1473 | CB  | VAL                  |    |     | 54.670 |         | 12.871 | 1.00 21.55 | В        |
| MOTA | 1474 | CG1 | . VAL                | E  | 8   | 53.573 |         | 13.612 | 1.00 21.83 | В        |
| MOTA | 1475 | CG2 | VAL                  | E  | 8   | 55.975 | -5.342  | 12.895 | 1.00 21.30 | В        |

VAL B 53.556 -8.255 13.467 1.00 24.08 MOTA 1476 C 8  $\mathbf{B}$ В MOTA 1477 0 VAL B 53.204 -8.912 12.491 1.00 23.46 1478  $\mathbf{N}$ TYR B 52.804 -8.127 14.554 1.00 23.26 В MOTA TYR B В ATOM 1479 CA 51.493 -8.74714.619 1.00 23.18 ATOM 1480 CB TYR B 51.510 -9.978 15.520 1.00 23.12 B TYR B В ATOM 1481 CG 50.231 -10.786 15.465 1.00 24.54 14.722 CD1 TYR B 50.158 -11.962 1.00 26.50 В ATOM 1482 CE1 TYR B 14.716  $\mathbb{B}$ ATOM 1483 49.000 -12.743 1.00 25.08 ATOM 1484 CD2 TYR B 49.108 -10.399 16.190 1.00 22.88  $\mathbf{B}$ TYR B B CE2 47.948 -11.165 16.188 1.00 23.91 ATOM 1485 TYR B 47.902 -12.342  $\mathbb{B}$ 1486 CZ9 15.455 1.00 24.87 ATOM 9 46.780 -13.140 1.00 25.45 B ATOM 1487 OH TYR B 15.501 В ATOM 1488 C TYR B 9 50.509 -7.72315.163 1.00 21.33 1.00 22.92 В 1489 TYR B 9 50.798 -7.028 16.133 ATOM 0 14.521 1.00 19.98  $\mathbf{B}$ MOTA 1490 GLN B 10 49.353 -7.622 N CA GLN B 48.326 -6.687 14.952 1.00 19.52 В ATOM 1491 10 В **ATOM** 1492 CB GLN B 10 48.171 -5.523 13.962 1.00 19.13 В 13.509 ATOM 1493 CG GLN B 10 49.433 -4.8101.00 19.33 1.00 17.96 В -3.708 12.499 MOTA 1494 CD GLN B 10 49.117  $\mathbf{B}$ ATOM 1495 OE1 GLN B 10 48.336 -2.802 12.783 1.00 18.49 1.00 19.41 В GLN B -3.790  $\cdot$ 11.316 MOTA 1496 NE2 10 49.715 В C -7.37515.029 1.00 19.74 1497 GLN B 10 46.967 ATOM 1498 GLN B 10 46.626 -8.227 14.192 1.00 18.98 В MOTA 0 1.00 19.06 B PHE B -6.996 16.040 MOTA 1499  $\mathbf{N}$ 11 46.195 PHE B 44.842 -7.48716.182 1.00 16.54 В MOTA 1500 CA 1.1 1501 PHE B 1.00 17.48 В CB 11 44.668 -8.45417.336 MOTA B MOTA 1502 CG PHE B 11 43.237 -8.847 17.544 1.00 16.17 1.00 17.49 -9.604 16.582 В CD1 PHE B 11 42.570 ATOM 1503 B 18.656 CD2 PHE B 11 42.536 -8.406 1.00 14.41 ATOM 1504 CE1 PHE B 41.219 -9.913 16.725 1.00 18.03  $\mathbf{B}$ MOTA 1505 11 В 18.814 1.00 16.34 ATOM 1506 CE2 PHE B 11 41.191 -8.708 В PHE B 40.528 -9.463 17.845 1.00 17.60 1507 CZ11 MOTA -6.271  $\mathbf{B}$ C PHE B 43.984 16.450 1.00 18.14 MOTA 1508 11 В 1509 PHE B 11 44.241 -5.506 17.386 1.00 15.63 MOTA 0 В 1.00 17.33 LYS B 42.961 -6.094 15.625 MOTA 1510 N12 В LYS B -4.958 15.770 1.00 17.63 1511 12 42.082 ATOM CA В LYS B -4.06714.536 1.00 18.71 ATOM 1512 CB 12 42.188  $\mathbb{B}$ 43.599 14.192 1.00 15.90 ATOM 1513 CG LYS B 12 -3.642 В 12.871 1.00 17.33 LYS B 12 43.602 -2.909MOTA 1514 CD 12.570 1.00 18.72 В LYS B 12 44.946 -2.297ATOM 1515 CE 1.00 20.93 В NZLYS B 12 44.838 -1.45011.340 MOTA 1516  $\mathbf{B}$ -5.387 15.968 1.00 18.92 C LYS B 12 40.632 ATOM 1517 LYS B В 12 40.041 -6.050 15.109 1.00 17.25 1518 0 MOTA  $\mathbf{B}$ GLY B 40.076 -5.002 17.114 1.00 17.59 1519 N ATOM  $\mathbf{B}$ MOTA 1520 CA GLY B 13 38.701 -5.322 17.430 1.00 19.88 1.00 20.12  $\mathbf{B}$ GLY B 37.874 MOTA 1521 C 13 -4.11317.064 В 37.515 -3.309 17.923 1.00 21.08 1522 0 GLY B 13 ATOM В ATOM 1523 NMET B 14 37.561 -4.00015.779 1.00 20.42 1.00 22.96  $\mathbf{B}$ 14 36.817 -2.866 15.262 1524 CA MET B ATOM 13.866 1.00 23.02 В MET B 37.334 -2.554 ATOM 1525 CB 14 1.00 23.58 1526 MET B 14 38.846 -2.485 13.820 В ATOM CG 12.191 1.00 26.23 В 1527 MET B 39.449 -2.095 MOTA SD 14 12.182 В 1528 MET B 39.260 -0.318 1.00 25.78 ATOM CE14 35.295 -2.997 15.242 1.00 23.12 В MOTA 1529 C MET B 14 15.081  $\mathbf{B}$ ATOM 1530 0 MET B 14 34.751 -4.0891.00 24.36 В 34.628 15.427 1531 N CYS B 15 -1.860 1.00 24.04 ATOM 1.00 24.91 В 33.173 -1.76815.433 ATOM 1532 ÇA CYS B 15  $\mathbf{B}$ C 15 32.808 -0.58714.547 1.00 25.49 ATOM 1533 CYS B В 33.369 0.504 14.700 1.00 23.97 ATOM 1534 0 CYS B 15 1.00 26.02 32.630 -1.48916.847 В 1535 CYS B 15 MOTA CB 1536 32.691 -2.831 18.084 1.00 33.69  $\mathbf{B}$ ATOM SG CYS B 15 31.871 -0.805 13.630 1.00 25.87  $\mathbf{B}$ ATOM 1537 NTYR B 16 В 31.413 0.244 12.724 1.00 25.59 MOTA 1538 CA TYR B 16 31.539 -0.223 11.274 В 1539 TYR B 1.00 24.73 ATOM CB 16 32.958  $\mathbf{B}$ ATOM 1540 TYR B -0.575 10.879 1.00 26.05 CG 16  $\mathbf{B}$ 33.523 11.239 CD1 TYR B -1.7951.00 22.96 ATOM 1541 16 В 34.843 -2.102 10.904 1.00 25.81 ATOM 1542 CE1 TYR B 16 В ATOM CD2 TYR B 33.748 0.334 10.171 1.00 25.30 1543 16 B TYR B 35.066 0.041 9.835 1.00 25.12 ATOM 1544 CE2 16 В 10.202 ATOM 1545 TYR B 16 35.607 -1.1761.00 26.66 CZ $\mathbf{B}$ 36.908 -1.4639.868 1.00 29.22 ATOM 1546 OH TYR B 16  $\mathbf{B}$ ATOM 1547 C TYR B 16 29.960 0.575 13.045 1.00 26.48 В 29.113 -0.315 13.091 ATOM 1548 0 TYR B 16 1.00 26.41 В 29.684 1.859 13.266 ATOM 1549 N PHE B 17 1.00 27.76

| ATOM | 1550 | CA  | PHE | В   | 17       | 28.346 | 2.338  | 13.613 | 1.00 29.09 | В |
|------|------|-----|-----|-----|----------|--------|--------|--------|------------|---|
| ATOM | 1551 | CB  | PHE | B   | 17       | 28.382 | 3.047  | 14.967 | 1.00 28.08 | В |
| ATOM | 1552 | CG  | PHE | В   | 17       | 28.885 | 2.194  | 16.091 | 1.00 28.21 | В |
| ATOM | 1553 | CD1 | PHE |     | 17       | 28.056 | 1.253  | 16.693 | 1.00 27.20 | В |
| ATOM | 1554 |     | PHE |     | 17       | 30.188 | 2.340  | 16.558 | 1.00 26.60 | В |
|      |      |     |     |     |          |        |        | 17.752 | 1.00 28.13 | В |
| MOTA | 1555 | CEI | PHE |     | 17       | 28.519 | 0.470  |        |            |   |
| MOTA | 1556 | CE2 | PHE |     | 17       | 30.662 | 1.565  | 17.610 | 1.00 25.62 | В |
| MOTA | 1557 | CZ  | PHE | В   | 17       | 29.828 | 0.629  | 18.210 | 1.00 26.17 | В |
| MOTA | 1558 | Ĉ   | PHE | В   | 17       | 27.772 | 3.318  | 12.592 | 1.00 30.71 | В |
| ATOM | 1559 | 0   | PHE | В   | 17       | 28.452 | 4.239  | 12.155 | 1.00 31.05 | В |
| ATOM | 1560 | N   | THR |     | 18       | 26.506 | 3.125  | 12.237 | 1.00 33.51 | В |
| ATOM | 1561 | CA  | THR |     | 18       | 25.831 | 4.005  | 11.291 | 1.00 36.95 | В |
|      |      |     |     |     |          | 25.797 | 3.395  | 9.875  | 1.00 37.23 | В |
| ATOM | 1562 | CB  | THR |     | 18       |        |        |        |            |   |
| ATOM | 1563 | OG1 | THR |     | 18       | 27.133 | 3.105  | 9.447  | 1.00 40.77 | B |
| ATOM | 1564 | CG2 | THR | В   | 18       | 25.171 | 4.369  | 8.891  | 1.00 38.43 | В |
| ATOM | 1565 | C   | THR | В   | 18       | 24.398 | 4.273  | 11.753 | 1.00 38.56 | В |
| ATOM | 1566 | 0   | THR | В   | 18       | 23.671 | 3.351  | 12.131 | 1.00 38.36 | B |
| ATOM | 1567 | N   | ASN | В   | 19       | 24.007 | 5.544  | 11.726 | 1.00 39.80 | В |
| ATOM | 1568 | CA  | ASN |     | 19       | 22.668 | 5.961  | 12.132 | 1.00 41.35 | В |
| ATOM | 1569 | CB  | ASN |     | 19       | 21.638 | 5.465  | 11.110 | 1.00 41.21 | В |
|      |      |     |     |     |          |        | 6.190  | 11.223 | 1.00 42.85 | В |
| MOTA | 1570 | CG  | ASN |     | 19       | 20.311 |        |        |            |   |
| ATOM | 1571 | OD1 | ASN |     | 19       | 20.271 | 7.378  | 11.548 | 1.00 42.24 | B |
| MOTA | 1572 | ND2 | ASN | В   | 19       | 19.219 | 5.485  | 10.937 | 1.00 42.57 | В |
| ATOM | 1573 | C   | ASN | В   | 19       | 22.352 | 5.416  | 13.521 | 1.00 42.37 | В |
| ATOM | 1574 | 0   | ASN | В   | 19       | 21.540 | 4.503  | 13.673 | 1.00 43.36 | В |
| ATOM | 1575 | N   | GLY |     | 20       | 22.997 | 5.989  | 14.533 | 1.00 42.56 | В |
| ATOM | 1576 | CA  | GLY |     | 20       | 22.790 | 5.535  | 15.894 | 1.00 43.89 | В |
|      |      | C   | GLY |     | 20       | 23.293 | 4.110  | 16.031 | 1.00 45.10 | В |
| ATOM | 1577 |     |     |     |          |        |        | 15.646 | 1.00 44.28 | В |
| ATOM | 1578 | 0   | GLY |     | 20       | 24.421 | 3.807  |        |            |   |
| MOTA | 1579 | N   | THR | В   | 21       | 22.458 | 3.232  | 16.575 | 1.00 46.37 | B |
| MOTA | 1580 | CA  | THR | В   | 21       | 22.824 | 1.832  | 16.738 | 1.00 47.42 | B |
| ATOM | 1581 | CB  | THR | В   | 21       | 22.667 | 1.373  | 18.199 | 1.00 48.57 | В |
| ATOM | 1582 | OG1 | THR | В   | 21       | 21.438 | 1.885  | 18.731 | 1.00 49.14 | В |
| ATOM | 1583 | CG2 | THR |     | 21       | 23.843 | 1.856  | 19.043 | 1.00 47.59 | В |
|      |      | C   | THR |     | 21       | 21.958 | 0.947  | 15.846 | 1.00 48.74 | В |
| ATOM | 1584 |     |     |     |          |        | -0.276 | 16.016 | 1.00 48.04 | В |
| ATOM | 1585 | 0   | THR |     | 21       | 21.925 |        |        |            |   |
| MOTA | 1586 | N   | GLU |     | 22       | 21.253 | 1.570  | 14.902 | 1.00 48.57 | В |
| ATOM | 1587 | CA  | GLU | В   | 22       | 20.405 | 0.822  | 13.979 | 1.00 48.90 | В |
| MOTA | 1588 | CB  | GLU | В   | 22       | 19.741 | 1.745  | 12.957 | 1.00 52.60 | В |
| ATOM | 1589 | CG  | GLU | В   | 22       | 18.669 | 2.667  | 13.493 | 1.00 58.06 | В |
| ATOM | 1590 | CD  | GLU | В   | 22       | 17.862 | 3.297  | 12.368 | 1.00 62.27 | В |
| ATOM | 1591 | OE1 | GLU |     | 22       | 17.027 | 4.185  | 12.648 | 1.00 63.99 | В |
|      |      |     |     |     | 22       | 18.065 | 2.894  | 11.199 | 1.00 64.70 | В |
| ATOM | 1592 | OE2 | GLU |     |          |        |        |        | 1.00 46.38 | B |
| ATOM | 1593 | C   | GLU |     | 22       | 21.285 | -0.156 | 13.229 |            |   |
| ATOM | 1594 | 0   | GLU | В   | 22       | 21.029 | -1.356 | 13.209 | 1.00 45.52 | B |
| ATOM | 1595 | N   | ARG | В   | 23       | 22.324 | 0.379  | 12.601 | 1.00 45.42 | В |
| ATOM | 1596 | CA  | ARG | В   | 23       | 23.260 | -0.438 | 11.844 | 1.00 44.59 | В |
| ATOM | 1597 | CB  | ARG | В   | 23       | 23.423 | 0.127  | 10.422 | 1.00 45.69 | В |
| ATOM | 1598 | CG  | ARG |     | 23       | 22.169 | -0.062 | 9.554  | 1.00 49.95 | В |
|      |      |     | ARG |     | 23       | 22.406 | 0.237  | 8.074  | 1.00 53.34 | В |
| ATOM | 1599 | CD  |     |     |          |        |        | 7.708  | 1.00 55.57 | B |
| ATOM | 1600 | NE  | ARG |     | 23       | 22.153 | 1.632  |        |            |   |
| ATOM | 1601 | CZ  | ARG |     | 23       | 20.949 | 2.200  | 7.700  | 1.00 57.20 | В |
| MOTA | 1602 | NH1 | ARG | В   | 23       | 19.878 | 1.495  | 8.042  | 1.00 58.09 | B |
| ATOM | 1603 | NH2 | ARG | В   | 23       | 20.813 | 3.471  | 7.340  | 1.00 56.82 | В |
| ATOM | 1604 | C   | ARG | В   | 23       | 24.606 | -0.534 | 12.567 | 1.00 40.56 | В |
| ATOM | 1605 | 0   | ARG | В   | 23       | 25.306 | 0.459  | 12.748 | 1.00 41.15 | В |
| ATOM | 1606 | N   | VAL |     | 24       | 24.944 | -1.743 | 12.995 | 1.00 38.17 | В |
| ATOM |      | CA  | VAL |     | 24       | 26.191 | -1.996 | 13.708 | 1.00 34.88 | В |
|      | 1607 |     |     |     |          | 25.931 | -2.314 | 15.200 | 1.00 34.41 | В |
| ATOM | 1608 | CB  | VAL |     | 24       |        |        |        |            | В |
| MOTA | 1609 | CG1 |     |     | 24       | 27.251 | -2.526 | 15.918 | 1.00 35.28 |   |
| ATOM | 1610 | CG2 | VAL | В   | 24       | 25.146 | -1.190 | 15.852 | 1.00 34.70 | В |
| ATOM | 1611 | C   | VAL | В   | 24       | 26.909 | -3.194 | 13.100 | 1.00 32.34 | В |
| ATOM | 1612 | 0   | VAL | В   | 24       | 26.287 | -4.214 | 12.812 | 1.00 33.23 | В |
| ATOM | 1613 | N   | ARG |     | 25       | 28.217 | -3.076 | 12.898 | 1.00 30.18 | В |
| ATOM | 1614 | CA  | ARG |     | 25       | 28.970 | -4.194 | 12.354 | 1.00 26.97 | В |
|      |      |     |     |     |          | 29.225 | -4.022 | 10.852 | 1.00 27.67 | B |
| ATOM | 1615 | CB  | ARG |     | 25       |        |        |        |            | В |
| MOTA | 1616 | CG  | ARG |     | 25       | 29.400 | -5.362 | 10.170 | 1.00 29.58 |   |
| ATOM | 1617 | CD  | ARG | B   | 25       | 30.406 | -5.363 | 9.052  | 1.00 31.26 | В |
| ATOM | 1618 | NE  | ARG | В   | 25       | 30.058 | -4.454 | 7.974  | 1.00 33.12 | В |
| ATOM | 1619 | ÇZ  | ARG | В   | 25       | 30.415 | -4.631 | 6.705  | 1.00 32.27 | В |
| ATOM | 1620 | NH1 |     |     | 25       | 31.124 | -5.695 | 6.346  | 1.00 31.13 | В |
| ATOM | 1621 | NH2 |     |     | 25       | 30.087 | -3.726 | 5.799  | 1.00 30.62 | В |
|      |      |     |     |     | 25<br>25 | 30.305 | -4.402 | 13.065 | 1.00 24.10 | В |
| ATOM | 1622 | C   | ARG |     |          | 31.095 |        | 13.225 | 1.00 24.16 | В |
| ATOM | 1623 | 0   | ARG | , R | 25       | 21.032 | -3.477 | 13.443 | 1.00 22.30 |   |

| ATOM         | 1624         | N         | LEU        | В | 26         | 30.551           | -5.630             | 13.495           | 1.00 22.65               | В      |
|--------------|--------------|-----------|------------|---|------------|------------------|--------------------|------------------|--------------------------|--------|
| ATOM         | 1625         | CA        | LEU        | В | 26         | 31.801           | -5.942             | 14.163           | 1.00 22.38               | В      |
| MOTA         | 1626         | CB        | LEU        | В | 26         | 31.558           | -6.888             | 15.345           | 1.00 20.25               | В      |
| MOTA         | 1627         | CG        |            | В | 26         | 32.795           | -7.389             | 16.100           | 1.00 19.86               | В      |
| ATOM         | 1628         | CD1       | LEU        |   | 26         | 32.452           | -7.613             | 17.568           | 1.00 22.49               | B      |
| ATOM<br>ATOM | 1629<br>1630 | CD2<br>C  | LEU        |   | 26<br>26   | 33.304<br>32.726 | -8.665<br>-6.591   | 15.464<br>13.150 | 1.00 18.43<br>1.00 21.50 | B<br>B |
| ATOM         | 1631         | 0         |            | В | 26         | 32.720           | -7.402             | 12.342           | 1.00 22.83               | В      |
| ATOM         | 1632         | N         | VAL        |   | 27         | 33.998           | -6.208             | 13.177           | 1.00 21.29               | В      |
| ATOM         | 1633         | CA        | VAL        |   | 27         | 34.984           | -6.780             | 12.270           | 1.00 20.66               | В      |
| MOTA         | 1634         | CB        | VAL        | В | 27         | 35.178           | -5.911             | 11.004           | 1.00 20.59               | В      |
| MOTA         | 1635         | CG1       | VAL        | В | 27         | 36.169           | -6.576             | 10.069           | 1.00 19.45               | В      |
| MOTA         | 1636         | CG2       | VAL        |   | 27         | 33.849           | -5.696             | 10.297           | 1.00 22.37               | В      |
| ATOM         | 1637         | C         | VAL        |   | 27         | 36.330           | -6.885             | 12.988           | 1.00 22.39               | В      |
| ATOM         | 1638         | 0         | VAL        |   | 27         | 37.046           | -5.889             | 13.135           | 1.00 22.63               | В      |
| ATOM<br>ATOM | 1639<br>1640 | N<br>CA   | SER<br>SER |   | 28<br>28   | 36.673<br>37.947 | -8.083<br>-8.259   | 13.450<br>14.130 | 1.00 21.32<br>1.00 21.51 | B<br>B |
| ATOM         | 1641         | CB        | SER        |   | 28         | 37.831           | -9.284             | 15.275           | 1.00 19.72               | В      |
| ATOM         | 1642         | OG        | SER        |   | 28         | 37.542           | -10.581            | 14.819           | 1.00 24.33               | В      |
| ATOM         | 1643         | C         | SER        |   | 28         | 38.954           | -8.693             | 13.074           | 1.00 21.25               | В      |
| ATOM         | 1644         | 0         | SER        | В | 28         | 38.661           | -9.537             | 12.229           | 1.00 19.44               | В      |
| ATOM         | 1645         | N         | ARG        | В | 29         | 40.137           | -8.089             | 13.106           | 1.00 20.61               | В      |
| ATOM         | 1646         | CA        | ARG        | В | 29         | 41.158           | -8.402             | 12.115           | 1.00 19.66               | В      |
| ATOM         | 1647         | CB        | ARG        |   | 29         | 41.418           | -7.169             | 11.230           | 1.00 19.91               | В      |
| ATOM         | 1648         | CG        | ARG        |   | 29         | 40.178           | -6.407             | 10.754           | 1.00 16.79               | В      |
| ATOM         | 1649         | CD        | ARG        |   | 29<br>29   | 40.608           | -5.121<br>-4.318   | 10.031<br>9.553  | 1.00 18.10<br>1.00 19.38 | B<br>B |
| ATOM<br>ATOM | 1650<br>1651 | NE<br>CZ  | ARG<br>ARG |   | 29         | 38.738           | -4.510             | 9.553<br>8.497   | 1.00 20.62               | В      |
| MOTA         | 1652         | NH1       | ARG        |   | 29         | 38.983           | -5.714             | 7.789            | 1.00 19.50               | В      |
| ATOM         | 1653         | NH2       | ARG        |   | 29         | 37.736           | -3.822             | 8.149            | 1.00 21.90               | В      |
| ATOM         | 1654         | C         | ARG        | В | 29         | 42.482           | -8.833             | 12.738           | 1.00 18.57               | В      |
| ATOM         | 1655         | 0         | ARG        | В | 29         | 43.024           | -8.121             | 13.584           | 1.00 19.40               | В      |
| ATOM         | 1656         | N         | SER        |   | 30         | 42.991           | -9.995             | 12.326           | 1.00 18.99               | В      |
| ATOM         | 1657         | CA        | SER        |   | 30         | 44.284           | -10.501            | 12.797           | 1.00 21.66               | В      |
| ATOM         | 1658         | CB        | SER        |   | 30         | 44.241           | -12.015<br>-12.352 | 13.023<br>14.106 | 1.00 22.77<br>1.00 26.81 | B<br>B |
| ATOM<br>ATOM | 1659<br>1660 | OG<br>C   | SER<br>SER |   | 30<br>30   | 45.265           |                    | 11.673           | 1.00 23.37               | В      |
| ATOM         | 1661         | 0         | SER        |   | 30         | 45.055           |                    | 10.522           | 1.00 21.31               | В      |
| ATOM         | 1662         | N         | ILE        |   | 31         | 46.338           | -9.450             | 12.009           | 1.00 24.76               | В      |
| ATOM         | 1663         | CA        | ILE        | В | 31         | 47.298           | -8.998             | 10.999           | 1.00 24.33               | В      |
| ATOM         | 1664         | CB        | ILE        | В | 31         | 47.341           | -7.440             | 10.958           | 1.00 25.20               | В      |
| ATOM         | 1665         | CG2       | ILE        |   | 31         | 47.982           |                    | 9.672            | 1.00 23.24               | В      |
| MOTA         | 1666         |           | ILE        |   | 31         | 45.934           | -6.857             | 11.106           | 1.00 26.96               | В      |
| ATOM         | 1667         | CD1       |            |   | 31         | 45.032<br>48.741 | -7.136<br>-9.460   | 9.947<br>11.187  | 1.00 31.25<br>1.00 23.98 | B<br>B |
| ATOM<br>ATOM | 1668<br>1669 | С<br>О    | ILE        |   | 31<br>31   | 49.298           | -9.318             | 12.272           | 1.00 23.38               | В      |
| ATOM         | 1670         | И         | TYR        |   | 32         | 49.345           | -9.993             | 10.123           | 1.00 25.50               | B      |
| ATOM         | 1671         | CA        | TYR        |   | 32         |                  | -10.405            | 10.162           | 1.00 26.21               | В      |
| ATOM         | 1672         | CB        | TYR        |   | 32         | 50.965           | -11.764            | 9.492            | 1.00 28.46               | В      |
| ATOM         | 1673         | CG        | TYR        | В | 32         | 52.406           | -12.224            | 9.544            | 1.00 31.10               | В      |
| MOTA         | 1674         | CD1       | TYR        |   | 32         |                  |                    | 10.765           | 1.00 32.47               | В      |
| ATOM         | 1675         |           | TYR        |   | 32         |                  | -12.780            | 10.827           | 1.00 34.69               | В      |
| ATOM         | 1676         | CD2       | TYR        |   | 32         |                  | -12.424            | 8.375<br>8.422   | 1.00 33.60<br>1.00 34.50 | B<br>B |
| ATOM<br>ATOM | 1677<br>1678 | CE2       | TYR<br>TYR |   | 32<br>32   |                  | -12.795<br>-12.965 | 9.654            | 1.00 35.65               | В      |
| ATOM         | 1679         | OH        | TYR        |   | 32         | 56.438           | -13.281            | 9.717            | 1.00 37.73               | В      |
| ATOM         | 1680         | C         | TYR        |   | 32         | 51.478           | -9.307             | 9.384            | 1.00 25.67               | В      |
| ATOM         | 1681         | Ō         | TYR        |   | 32         | 51.273           | -9.140             | 8.174            | 1.00 24.75               | В      |
| MOTA         | 1682         | N         | ASN        | В | 33         | 52.319           | -8.559             | 10.094           | 1.00 25.63               | В      |
| MOTA         | 1683         | CA        | ASN        | B | <b>3</b> 3 | 53.036           | -7.416             | 9.526            | 1.00 24.95               | В      |
| ATOM         | 1684         | CB        | ASN        |   | 33         | 53.955           | -7.848             | 8.379            | 1.00 23.75               | В      |
| ATOM         | 1685         | CG        | ASN        |   | 33         | 55.171           | -8.615             | 8.878            | 1.00 24.11<br>1.00 25.42 | B<br>B |
| MOTA         | 1686         | OD1       |            |   | 33<br>33   | 55.803<br>55.506 | -8.223<br>-9.708   | 9.861<br>8.204   | 1.00 25.42<br>1.00 25.18 | В      |
| ATOM<br>ATOM | 1687<br>1688 | ND2<br>C  | ASN        |   | 33         | 51.990           | -6.392             | 9.070            | 1.00 25.11               | B      |
| ATOM         | 1689         | 0         | ASN        |   | 33         | 51.491           | -5.618             | 9.893            | 1.00 26.06               | В      |
| ATOM         | 1690         | √N        | ARG        |   | 34         | 51.652           | -6.375             | 7.786            | 1.00 25.75               | В      |
| MOTA         | 1691         | CA        | ARG        |   | 34         | 50.631           | -5.449             | 7.296            | 1.00 27.64               | В      |
| MOTA         | 1692         | CB        | ARG        |   | 34         | 51.244           | -4.362             | 6.408            | 1.00 27.74               | В      |
| ATOM         | 1693         | CG        | ARG        |   | 34         | 51.972           | -3.257             | 7.158            | 1.00 29.94               | В      |
| ATOM         | 1694         | CD        | ARG        |   | 34         | 51.664           | -1.888             | 6.541            | 1.00 32.95               | B<br>B |
| MOTA         | 1695         | NE        | ARG        |   | 34<br>34   | 51.897<br>51.392 | -1.875<br>-0.973   | 5.101<br>4.267   | 1.00 35.17<br>1.00 37.51 | B      |
| MOTA<br>MOTA | 1696<br>1697 | CZ<br>NH1 | ARG<br>ARG |   | 34<br>34   | 50.622           | 0.003              | 4.729            | 1.00 37.31               | В      |
| *** O1.7     | TO 9 1       | ヤイエナ      | באינים     | • |            |                  | 5.555              |                  |                          |        |

| ATOM    | 1698       | NH2 | ARG      | В | 34 | 51.642 | -1.058       | 2.967  | 1.00 36.90 | В |
|---------|------------|-----|----------|---|----|--------|--------------|--------|------------|---|
| ATOM    | 1699       | С   |          | В | 34 | 49.587 | -6.218       | 6.498  | 1.00 26.48 | В |
| ATOM    | 1700       | 0   | ARG      | В | 34 | 48.740 | -5.639       | 5.825  | 1.00 27.17 | В |
| ATOM    | 1701       | N   | GLU      | В | 35 | 49.647 | -7.534       | 6.602  | 1.00 25.66 | В |
| ATOM    | 1702       | CA  | GLU      | В | 35 | 48.746 | -8.394       | 5.867  | 1.00 26.99 | В |
| ATOM    | 1703       | CB  | GLU      | В | 35 | 49.570 | -9.483       | 5.175  | 1.00 31.53 | В |
| ATOM    | 1704       | CG  | GLU      | В | 35 | 48.814 | -10.396      | 4.235  | 1.00 36.29 | В |
| ATOM    | 1705       | CD  | GLU      | В | 35 | 49.695 | -11.530      | 3.731  | 1.00 40.61 | В |
| ATOM    | 1706       | OE1 | GLU      | В | 35 | 50.825 | -11.240      | 3.276  | 1.00 45.20 | В |
| ATOM    | 1707       | OE2 | GLU      | В | 35 | 49.266 | -12.705      | 3.791  | 1.00 41.13 | В |
| ATOM    | 1708       | C   | GLU      | В | 35 | 47.699 | -9.031       | 6.764  | 1.00 25.09 | В |
| ATOM    | 1709       | 0   |          |   | 35 | 48.028 | -9.807       | 7.663  | 1.00 23.31 | В |
| ATOM    | 1710       | N   | GLU      |   | 36 | 46.439 | -8.689       | 6.522  | 1.00 24.53 | В |
| ATOM    | 1711       | CA  | GLU      |   | 36 | 45.332 | -9.263       | 7.275  | 1.00 25.73 | В |
| ATOM    | 1712       | CB  | GLU      |   | 36 | 44.023 | -8.519       | 6.958  | 1.00 26.62 | В |
| ATOM    | 1713       | CG  | GLU      |   | 36 | 42.783 | -9.095       | 7.636  | 1.00 28.26 | В |
| ATOM    | 1714       | CD  | GLU      |   | 36 | 41.545 | -8.232       | 7.442  | 1.00 31.08 | В |
| ATOM    | 1715       | OE1 | GLU      |   | 36 | 41.420 | -7.590       | 6.377  | 1.00 32.56 | В |
| ATOM    | 1716       | OE2 | GLU      |   | 36 | 40.685 | -8.206       | 8.349  | 1.00 32.83 | В |
| ATOM    | 1717       | C   | GLU      |   | 36 | 45.238 | -10.717      | 6.822  | 1.00 24.67 | В |
| ATOM    | 1718       | 0   |          |   | 36 | 45.141 | -10.992      | 5.626  | 1.00 23.91 | В |
| ATOM    | 1719       | N   |          | В | 37 | 45.282 | -11.647      | 7.771  | 1.00 26.11 | В |
| ATOM    | 1720       | CA  |          | В | 37 | 45.219 | -13.067      | 7.433  | 1.00 27.80 | В |
| ATOM    | 1721       | CB  |          | В | 37 | 46.444 | -13.822      | 8.013  | 1.00 27.27 | В |
| ATOM    | 1722       | CG2 | ILE      |   | 37 | 47.728 |              | 7.516  | 1.00 27.41 | В |
| ATOM    | 1723       | CG1 | ILE      |   | 37 |        | -13.767      | 9.537  | 1.00 29.35 | В |
| ATOM    | 1724       | CD1 | ILE      |   | 37 |        | -14.509      | 10.175 | 1.00 30.27 | В |
| ATOM    | 1725       | C   | ILE      |   | 37 |        | -13.750      | 7.879  | 1.00 27.86 | В |
| ATOM    | 1726       | 0   | ILE      |   | 37 |        | -14.674      | 7.221  | 1.00 28.29 | В |
| ATOM    | 1727       | N   | VAL      |   | 38 |        | -13.296      | 8.989  | 1.00 28.78 | В |
| ATOM    | 1728       | CA  | VAL      |   | 38 |        |              | 9.487  | 1.00 29.29 | В |
| ATOM    | 1729       | CB  | VAL      |   | 38 |        | -14.751      | 10.741 | 1.00 30.18 | В |
| ATOM    | 1730       | CG1 |          |   | 38 |        | -15.452      | 11.071 | 1.00 33.17 | В |
| ATOM    | 1731       | CG2 |          |   | 38 |        | -15.764      | 10.520 | 1.00 31.09 | В |
| ATOM    | 1732       | C   | VAL      |   | 38 |        | -12.745      | 9.882  | 1.00 28.75 | В |
| ATOM    | 1733       | 0   | VAL      |   | 38 |        | -11.758      | 10.480 | 1.00 29.70 | В |
| ATOM    | 1734       | N   | ARG      |   | 39 |        | -12.911      | 9.581  | 1.00 27.05 | В |
| ATOM    | 1735       | CA  | ARG      |   | 39 |        | -11.890      | 9.892  | 1.00 25.46 | В |
| ATOM    | 1736       | CB  | ARG      |   | 39 |        | -11.064      |        | 1.00 27.23 | В |
| ATOM    | 1737       | CG  | ARG      |   | 39 |        | -10.011      | 8.765  | 1.00 30.84 | В |
| ATOM    | 1738       | CD  | ARG      |   | 39 | 37.111 |              |        | 1.00 29.34 | В |
| ATOM    | 1739       | NE  | ARG      |   | 39 | 38.218 |              | 6.673  | 1.00 30.83 | В |
| ATOM    | 1740       | CZ  | ARG      |   | 39 | 38.116 |              |        | 1.00 31.23 | В |
| ATOM    | 1741       | NH1 | ARG      |   | 39 | 36.951 |              |        | 1.00 31.08 | В |
| ATOM    | 1742       | NH2 |          |   | 39 | 39.178 |              | 4.883  | 1.00 30.81 | В |
| ATOM    | 1742       | C   | ARG      |   | 39 |        | -12.476      | 10.381 | 1.00 25.41 | В |
| ATOM    | 1744       | 0   | ARG      |   | 39 |        |              | 9.996  | 1.00 25.06 | В |
| ATOM    | 1745       | N   | PHE      |   | 40 |        | -11.742      | 11.252 | 1.00 23.72 | В |
| ATOM    | 1745       | CA  | PHE      |   | 40 |        | -12.164      | 11.696 | 1.00 24.04 | В |
| ATOM    | 1747       | CB  | PHE      |   | 40 |        | -12.554      | 13.171 | 1.00 22.69 | В |
| ATOM    | 1748       | CG  | PHE      |   | 40 |        | -13.036      |        | 1.00 20.75 | B |
| ATOM    | 1749       | CD1 |          | В | 40 |        | -14.370      | 13.413 | 1.00 21.07 | В |
| ATOM    | 1750       | CD2 |          | В | 40 |        | -12.135      | 14.003 | 1.00 21.00 | В |
| ATOM    | 1751       | CE1 |          | В | 40 | 32.475 |              | 13.670 | 1.00 20.86 | В |
| ATOM    | 1752       | CE2 | PHE      | В | 40 |        | -12.553      | 14.261 | 1.00 19.95 | В |
| ATOM    | 1753       | CZ  | PHE      | B | 40 | 31.517 |              | 14.092 | 1.00 19.78 | B |
| ATOM    | 1754       | C   | PHE      | В | 40 | 34.662 |              | 11.474 | 1.00 24.27 | В |
| ATOM    | 1755       | 0   | PHE      | В | 40 | 34.755 |              | 12.183 | 1.00 22.94 | В |
| ATOM    | 1756       | N   | ASP      | В | 41 | 33.800 |              | 10.471 | 1.00 24.75 | В |
| MOTA    | 1757       | CA  | ASP      | B | 41 | 32.857 |              | 10.101 | 1.00 24.98 | В |
| ATOM    | 1758       | CB  | ASP      | В | 41 | 32.863 |              | 8.578  | 1.00 25.64 | В |
| MOTA    | 1759       | CG  | ASP      | В | 41 | 32.162 |              | 8.116  | 1.00 27.70 | В |
| ATOM    | 1760       | OD1 |          | B | 41 | 31.163 |              | 8.749  | 1.00 26.21 | В |
| MOTA    | 1761       | OD1 |          | В | 41 | 32.607 |              | 7.102  | 1.00 30.42 | B |
| ATOM    | 1761       | C   | ASP      |   | 41 | 31.477 |              | 10.560 | 1.00 24.50 | В |
| ATOM    | 1762       | 0   | ASP      | В | 41 | 31.011 |              | 10.151 | 1.00 24.95 | В |
| ATOM    | 1764       | N   | SER      |   | 42 | 30.822 |              | 11.404 | 1.00 24.16 | В |
| ATOM    | 1765       | CA  | SER      |   | 42 |        | -10.096      | 11.882 | 1.00 26.13 | В |
| ATOM    | 1766       | CB  | SER      |   | 42 | 29.013 |              | 12.972 | 1.00 24.53 | В |
| ATOM    | 1767       | OG  | SER      |   | 42 | 28.932 |              | 12.497 | 1.00 23.39 | В |
| ATOM    | 1768       | G   | SER      |   | 42 | 28.497 |              | 10.729 | 1.00 27.68 | В |
| ATOM    | 1769       | 0   | SER      |   | 42 |        | -10.833      | 10.818 | 1.00 27.31 | В |
| ATOM    | 1770       | N   | ASP      |   | 43 | 28.789 |              | 9.654  | 1.00 28.17 | В |
| ATOM    | 1771       | CA  | ASP      |   | 43 | 27.924 |              | 8.477  | 1.00 29.40 | В |
| TAT CIT | مكب الاستد | ~~~ | ڪ لياد ۽ | _ |    | 224    | ليەملە ش • - |        |            | _ |

| ATOM | 1772 | CB        | ASP        | В   | 43             | 28.332         | -8.298             | 7.508         | 1.00 29.57 | В        |
|------|------|-----------|------------|-----|----------------|----------------|--------------------|---------------|------------|----------|
| ATOM | 1773 | CG        | ASP        | В   | 43             | 27.587         | -7.006             | 7.766         | 1.00 32.71 | В        |
| ATOM | 1774 | OD1       | ASP        | В   | 43             | 26.999         | -6.868             | 8.862         | 1.00 33.94 | В        |
| ATOM | 1775 | OD2       | ASP        | В   | 43             | 27.593         | -6.120             | 6.881         | 1.00 33.98 | В        |
| ATOM | 1776 | C         | ASP        | В   | 43             | 28.036         | -10.762            | 7.782         | 1.00 29.46 | В        |
| ATOM | 1777 | 0         | ASP        | B   | 43             | 27.162         | -11.150            | 7.009         | 1.00 30.77 | В        |
| MOTA | 1778 | N         | VAL        | В   | 44             | 29.123         | -11.471            | 8.068         | 1.00 27.98 | В        |
| ATOM | 1779 | CA        | VAL        | В   | 44             | 29.365         | -12.780            | 7.486         | 1.00 27.16 | В        |
| ATOM | 1780 | CB        | VAL        | В   | 44             | 30.846         | -12.939            | 7.075         | 1.00 27.32 | В        |
| ATOM | 1781 | CG1       | VAL        | В   | 44             | 31.083         | -14.323            | 6.488         | 1.00 24.09 | В        |
| MOTA | 1782 | CG2       | VAL        | В   | 44             | 31.218         | -11.857            | 6.073         | 1.00 24.66 | В        |
| ATOM | 1783 | C         | VAL        |     | 44             | 28.990         | -13.867            | 8.490         | 1.00 28.43 | В        |
| ATOM | 1784 | 0         | VAL        | В   | 44             | 28.558         | -14.948            | 8.108         | 1.00 29.45 | В        |
| ATOM | 1785 | N         | GLY        |     | 45             | 29.177         | -13.590            | 9.774         | 1.00 28.05 | В        |
| ATOM | 1786 | CA        | GLY        |     | 45             | 28.794         | -14.561            | 10.780        | 1.00 28.67 | В        |
| ATOM | 1787 | C         | GLY        |     | 45             | 29.758         | -15.679            | 11.125        | 1.00 28.25 | В        |
| ATOM | 1788 | 0         | GLY        | В   | 45             | 29.458         | -16.486            | 12.002        | 1.00 29.67 | В        |
| ATOM | 1789 | N         | GLU        | _   | 46             | 30.895         | -15.755            | 10.443        | 1.00 27.03 | В        |
| ATOM | 1790 | CA        | GLU        |     | 46             | 31.873         | -16.787            | 10.757        | 1.00 29.26 | В        |
| ATOM | 1791 | CB        |            | В   | 46             | 31.571         | -18.087            | 10.000        | 1.00 32.16 | В        |
| ATOM | 1792 | CG        | GLU        | В   | 46             | 32.039         | -18.121            | 8.554         | 1.00 37.36 | В        |
| ATOM | 1793 | CD        | GLU        |     | 46             | 31.752         | -19.458            | 7.885         | 1.00 41.59 | В        |
| ATOM | 1794 | OE1       | GLU        |     | 46             |                | -20.505            | 8.433         | 1.00 43.30 | В        |
| ATOM | 1795 | OE2       | GLU        |     | 46             | 31.116         | -19.463            | 6.810         | 1.00 43.54 | В        |
| ATOM | 1796 | C         | GLU        |     | 46             | 33.272         | -16.295            | 10.413        | 1.00 29.29 | В        |
| ATOM | 1797 | 0         | GLU        | В   | 46             |                | -15.288            | 9.722         | 1.00 30.45 | В        |
| ATOM | 1798 | N         |            | В   | 47             |                | -17.005            | 10.904        | 1.00 28.00 | В        |
| ATOM | 1799 | CA        | PHE        | В   | 47             |                | -16.650            | 10.651        | 1.00 28.10 | В        |
| ATOM | 1800 | CB        | PHE        |     | 47             |                | -17.445            | 11.566        | 1.00 28.74 | В        |
| ATOM | 1801 | CG        | PHE        | В   | 47             | 36.487         |                    | 13.016        | 1.00 30.23 | В        |
| ATOM | 1802 | CD1       |            | В   | 47             | 37.248         |                    | 13.535        | 1.00 28.96 | В        |
| ATOM | 1803 | CD2       |            | В   | 47             | 35.636         | -17.768            | 13.870        | 1.00 30.80 | В        |
| ATOM | 1804 | CE1       |            | В   | 47             |                | -15.683            | 14.888        | 1.00 31.59 | В        |
| ATOM | 1805 | CE2       | PHE        | В   | 47             |                | -17.435            | 15.229        | 1.00 31.97 | В        |
| ATOM | 1806 | CZ        | PHE        | В   | 47             | 36.311         |                    | 15.737        | 1.00 30.36 | В        |
| ATOM | 1807 | C         | PHE        | В   | 47             |                | -16.948            | 9.211         | 1.00 28.71 | В        |
| ATOM | 1808 | 0         | PHE        | В   | 47             | 35.576         | -17.937            | 8.640         | 1.00 28.03 | В        |
| ATOM | 1809 | N         | ARG        |     | 48             | 36.872         | -16.091            | 8.637         | 1.00 27.96 | В        |
| ATOM | 1810 | CA        | ARG        |     | 48             | 37,327         |                    | 7.261         | 1.00 26.41 | В        |
| ATOM | 1811 | CB        | ARG        |     | 48             | 36.513         |                    | 6.326         | 1.00 26.57 | В        |
|      | 1812 | CG        | ARG        |     | 48             | 35.068         |                    | 6.108         | 1.00 26.19 | В        |
| ATOM | 1813 | CD        | ARG        |     | 48             |                | -17.079            | 5.352         | 1.00 24.98 | В        |
| ATOM | 1814 | NE        | ARG        |     | 48             | 33.579         |                    | 5.146         | 1.00 26.01 | В        |
| ATOM |      | CZ        | ARG        |     | 48             | 32.755         |                    | 4.294         | 1.00 26.84 | В        |
| ATOM | 1815 | NH1       |            |     | 48             | 33.181         |                    | 3.554         | 1.00 26.92 | В        |
| MOTA | 1816 |           | •          |     | 48             | 31.492         |                    | 4.204         | 1.00 30.22 | В        |
| MOTA | 1817 | NH2       | ARG        |     | 48             | 38.799         |                    | 7.140         | 1.00 26.95 | B        |
| MOTA | 1818 | C         | ARG        |     | 48             |                | -14.878            | 7.737         | 1.00 24.36 | B        |
| ATOM | 1819 | 0         | ALA        |     | 49             | 39.542         |                    | 6.373         | 1.00 24.93 | В        |
| ATOM | 1820 | N         |            |     | 49             |                | -16.349            | 6.143         | 1.00 26.58 | В        |
| ATOM | 1821 | CA        | ALA        |     | 49             |                | -17.619            | 5.792         | 1.00 27.05 | В        |
| ATOM | 1822 | CB        | ALA        |     | 49<br>49       |                | -15.397            | 4.956         | 1.00 26.47 | В        |
| ATOM | 1823 | C         | ALA<br>ALA |     | 49             | _              | -15.635            | 3.983         | 1.00 26.12 | В        |
| MOTA | 1824 | O<br>N    | VAL        |     | <del>4</del> 0 |                | -14.302            | 5.044         | 1.00 27.06 | В        |
| MOTA | 1825 | CA        | VAL        |     | 50             |                | -13.357            | 3.936         | 1.00 26.50 | В        |
| ATOM | 1826 |           | VAL        |     | 50             |                | -11.876            | 4.439         | 1.00 27.14 | В        |
| MOTA | 1827 | CB<br>CG1 |            |     | 50             |                | -11.827            | 5.846         | 1.00 29.89 | В        |
| ATOM | 1828 | CG2       |            |     | 50             |                | -11.020            | 3.501         | 1.00 27.33 | В        |
| ATOM | 1829 | C         | VAL        |     | 50             |                | -13.742            | 3.037         | 1.00 26.58 | В        |
| ATOM | 1830 | 0         | VAL        |     | 50             |                | -13.390            | 1.860         | 1.00 27.84 | В        |
| MOTA | 1831 |           | THR        |     | 51             |                | -14.489            | 3.598         | 1.00 26.61 | В        |
| MOTA | 1832 | N         |            |     | 51             |                | -15.011            | 2.846         | 1.00 28.59 | В        |
| MOTA | 1833 | CA        | THR        |     | 51             |                | -14.193            | 3.056         | 1.00 28.25 | В        |
| ATOM | 1834 | CB        | THR        |     |                |                | -14.464            | 4.356         | 1.00 28.56 | В        |
| ATOM | 1835 | OG1       |            |     | 51<br>51       |                | -12.699            | 2.899         | 1.00 27.40 | В        |
| MOTA | 1836 | CG2       |            |     | 51<br>51       |                | -12.699            | 3.344         | 1.00 27.40 | В        |
| MOTA | 1837 | C         | THR        |     | 51<br>51       |                | 7 -16.435          | 4.418         | 1.00 20.25 | В        |
| MOTA | 1838 | O         | THR        |     | 51<br>52       |                |                    | 2.575         | 1.00 30.18 | В        |
| ATOM | 1839 | N         | LEU        |     |                |                | -17.217<br>-18.596 | 2.575         | 1.00 30.34 | В        |
| ATOM | 1840 | CA        | LEU        |     | 52<br>52       |                |                    | 1.963         | 1.00 32.19 | В        |
| ATOM | 1841 | CB        | LEU        |     | 52<br>52       |                | 7 -19.237          | 0.624         | 1.00 36.90 | В        |
| ATOM | 1842 | CG        | LEU        |     | 52<br>52       |                | -19.724            | -0.216        | 1.00 35.68 | В        |
| MOTA | 1843 | CD1       |            |     | 52<br>52       |                | -20.306<br>-20.775 | 0.861         | 1.00 35.34 | В        |
| ATOM | 1844 | CD2       |            |     | 52<br>52       |                | 2 -18.724          | 4.359         | 1.00 33.54 | В        |
| MOTA | 1845 | С         | LEU        | , 5 | JA             | <b>∓0.</b> 07∠ | -10./24            | <b>4.33</b> 3 | <u> </u>   | <b>.</b> |

| ATOM          | 1846 | 0   | LEU                     | B            | 52 | 46.570 -19. | 656   | 5.097  | 1.00 31.50 | В      |
|---------------|------|-----|-------------------------|--------------|----|-------------|-------|--------|------------|--------|
| ATOM          | 1847 | N   | LEU                     | В            | 53 | 47.753 -17. | 786   | 4.723  | 1.00 31.09 | В      |
| ATOM          | 1848 | CA  | LEU                     | В            | 53 | 48.388 -17. | 815   | 6.029  | 1.00 30.93 | В      |
| ATOM          | 1849 | CB  |                         | В            | 53 | 49.160 -16. |       | 6.246  | 1.00 31.99 | В      |
|               |      | CG  |                         | В            | 53 | 50.338 -16. |       | 7.221  | 1.00 35.20 | В      |
| ATOM          | 1850 |     |                         |              |    |             |       |        |            |        |
| ATOM          | 1851 | CD1 | LEU                     |              | 53 | 51.364 -17. |       | 6.763  | 1.00 35.92 | В      |
| ATOM          | 1852 | CD2 | LEU                     | В            | 53 | 50.975 -15. | 148   | 7.284  | 1.00 34.96 | B      |
| ATOM          | 1853 | C   | LEU                     | В            | 53 | 47.377 -18. | 017   | 7.160  | 1.00 29.90 | В      |
| ATOM          | 1854 | 0   | LEU                     | В            | 53 | 47.663 -18. | 709   | 8.138  | 1.00 30.68 | В      |
| ATOM          | 1855 | N   | GLY                     | R            | 54 | 46.192 -17. | 430   | 7.015  | 1.00 28.63 | В      |
|               |      | CA  | GLY                     |              | 54 | 45.181 -17. |       | 8.057  | 1.00 29.75 | В      |
| ATOM          | 1856 |     |                         |              |    |             |       | 7.901  |            | В      |
| MOTA          | 1857 | C   | GLY                     |              | 54 | 44.140 -18. |       |        |            |        |
| ATOM          | 1858 | 0   | GLY                     | В            | 54 | 43.146 -18. | 664   | 8.630  | 1.00 28.02 | В      |
| ATOM          | 1859 | N   | LEU                     | В            | 55 | 44.364 -19. | 547   | 6.964  | 1.00 30.54 | В      |
| MOTA          | 1860 | CA  | LEU                     | В            | 55 | 43.417 -20. | 630   | 6.732  | 1.00 32.59 | В      |
| ATOM          | 1861 | CB  | LEU                     | В            | 55 | 43.765 -21. | 344   | 5.422  | 1.00 35.94 | В      |
| ATOM          | 1862 | CG  |                         | В            | 55 | 42.776 -22. | 383   | 4.889  | 1.00 38.88 | В      |
|               |      |     |                         | В            | 55 | 41.355 -21. |       | 4.927  | 1.00 38.23 | B      |
| ATOM          | 1863 | CD1 |                         |              |    |             |       |        |            |        |
| ATOM          | 1864 | CD2 |                         | В            | 55 | 43.173 -22. |       | 3.467  | 1.00 39.03 | B      |
| ATOM          | 1865 | C   | LEU                     | В            | 55 | 43.330 -21. | 631   | 7.892  | 1.00 32.20 | В      |
| ATOM          | 1866 | 0   | LEU                     | В            | 55 | 42.235 -22. | .026  | 8.291  | 1.00 33.32 | В      |
| ATOM          | 1867 | N   | PRO                     | В            | 56 | 44.478 -22. | 058   | 8.447  | 1.00 31.03 | В      |
| ATOM          | 1868 | CD  | PRO                     | В            | 56 | 45.862 -21. | .802  | 8.009  | 1.00 30.17 | В      |
| ATOM          | 1869 | CA  |                         | В            | 56 | 44.451 -23. |       | 9.561  | 1.00 30.23 | В      |
|               |      |     |                         |              |    | 45.925 -23. |       | 9.931  | 1.00 30.27 | В      |
| ATOM          | 1870 | CB  | PRO                     |              | 56 |             |       |        |            | В      |
| ATOM          | 1871 | CG  | PRO                     |              | 56 | 46.609 -22  |       | 8.610  | 1.00 28.92 |        |
| MOTA          | 1872 | C   | PRO                     | В            | 56 | 43.613 -22  | .525  | 10.740 | 1.00 31.42 | B      |
| ATOM          | 1873 | 0   | PRO                     | В            | 56 | 42.730 -23  | .237  | 11.222 | 1.00 33.17 | В      |
| ATOM          | 1874 | N   | ALA                     | В            | 57 | 43.893 -21  | 305   | 11.196 | 1.00 30.04 | В      |
| ATOM          | 1875 | CA  | ALA                     | В            | 57 | 43.181 -20  | 719   | 12.322 | 1.00 28.60 | В      |
| ATOM          | 1876 | CB  | ALA                     |              | 57 | 43.818 -19  | .389  | 12.697 | 1.00 26.81 | В      |
|               |      |     |                         |              | 57 | 41.695 -20  |       | 12.021 | 1.00 29.08 | В      |
| ATOM          | 1877 | C   | ALA                     |              |    |             |       |        |            | В      |
| MOTA          | 1878 | 0   | ALA                     |              | 57 |             | . 737 | 12.887 | 1.00 28.22 |        |
| MOTA          | 1879 | N   | ALA                     | В            | 58 | 41.385 -20  | .135  | 10.791 | 1.00 28.84 | В      |
| ATOM          | 1880 | CA  | ALA                     | В            | 58 | 40.002 -19  | .922  | 10.386 | 1.00 31.06 | В      |
| ATOM          | 1881 | CB  | ALA                     | В            | 58 | 39.955 -19  | .426  | 8.947  | 1.00 29.79 | В      |
| ATOM          | 1882 | C   | ALA                     | В            | 58 | 39.169 -21  | .199  | 10.529 | 1.00 32.38 | В      |
| ATOM          | 1883 | 0   | ALA                     |              | 58 |             | .197  | 11.170 | 1.00 31.57 | В      |
|               |      |     |                         |              | 59 |             | .285  | 9.929  | 1.00 33.50 | В      |
| MOTA          | 1884 | N   | GLU                     |              |    |             |       |        |            |        |
| ATOM          | 1885 | CA  | GLU                     |              | 59 | 38.949 -23  |       | 9.993  | 1.00 33.91 | В      |
| MOTA          | 1886 | CB  | GLU                     | B            | 59 | 39.706 -24  |       | 9.195  | 1.00 35.67 | В      |
| MOTA          | 1887 | CG  | $\mathtt{GL}\mathtt{U}$ | В            | 59 | 39.619 -24  | .457  | 7.696  | 1.00 39.73 | В      |
| ATOM          | 1888 | CD  | GLU                     | В            | 59 | 40.327 -25  | .583  | 6.957  | 1.00 43.58 | В      |
| ATOM          | 1889 | OE1 | GLU                     | В            | 59 | 41.561 -25  | .715  | 7.119  | 1.00 44.52 | В      |
| ATOM          | 1890 | OE2 | GLU                     | В            | 59 | 39.648 -26  | .337  | 6.222  | 1.00 44.30 | В      |
|               |      | C   | GLU                     |              | 59 | 38.771 -24  |       | 11.425 | 1.00 33.56 | В      |
| ATOM          | 1891 |     |                         |              |    |             |       | 11.790 | 1.00 34.40 | В      |
| ATOM          | 1892 | 0   | GLU                     |              | 59 | 37.708 -24  |       |        |            |        |
| MOTA          | 1893 | N   | TYR                     |              | 60 | 39.815 -23  |       | 12.233 | 1.00 31.99 | B      |
| ATOM          | 1894 | CA  | TYR                     | B            | 60 | 39.754 -24  | .369  | 13.611 | 1.00 31.01 | В      |
| MOTA          | 1895 | CB  | TYR                     | В            | 60 | 41.112 -24  | .202  | 14.292 | 1.00 31.13 | B      |
| ATOM          | 1896 | CG  | TYR                     | В            | 60 | 41.051 -24  | .548  | 15.750 | 1.00 30.99 | В      |
| ATOM          | 1897 | CD1 | TYR                     | В            | 60 | 40.919 -25  | .871  | 16.162 | 1.00 32.55 | В      |
| ATOM          | 1898 |     | TYR                     |              | 60 | 40.770 -26  |       | 17.508 | 1.00 35.39 | В      |
|               |      |     |                         |              | 60 | 41.039 -23  |       | 16.716 | 1.00 32.67 | В      |
| ATOM          | 1899 | CD2 |                         |              |    |             |       |        |            |        |
| MOTA          | 1900 | CE2 |                         |              | 60 | 40.890 -23  |       | 18.064 |            | В      |
| ATOM          | 1901 | CZ  | TYR                     | В            | 60 | 40.756 -25  |       | 18.455 | 1.00 36.91 | B<br>- |
| MOTA          | 1902 | OH  | TYR                     | B            | 60 | 40.606 -25  | .483  | 19.791 | 1.00 40.06 | В      |
| ATOM          | 1903 | C   | TYR                     | $\mathbf{B}$ | 60 | 38.695 -23  | .631  | 14.426 | 1.00 31.72 | В      |
| MOTA          | 1904 | 0   | TYR                     | В            | 60 | 37.840 -24  | .258  | 15.050 | 1.00 31.72 | В      |
| ATOM          | 1905 | N   | TRP                     |              | 61 | 38.752 -22  | .303  | 14.428 | 1.00 30.37 | В      |
|               |      |     | TRP                     |              | 61 | 37.790 -21  |       | 15.194 | 1.00 31.57 | В      |
| ATOM          | 1906 | CA  |                         |              |    |             |       |        | 1.00 32.14 | В      |
| MOTA          | 1907 | CB  | TRP                     |              | 61 | 38.129 -20  |       | 15.140 |            |        |
| MOTA          | 1908 | CG  | TRP                     | В            | 61 | 39.430 -19  |       | 15.824 | 1.00 33.73 | В      |
| MOTA          | 1909 | CD2 | TRP                     | B            | 61 | 40.359 -18  |       | 15.429 | 1.00 35.16 | В      |
| ATOM          | 1910 | CE2 | TRP                     | В            | 61 | 41.418 -18  | .662  | 16.362 | 1.00 35.99 | В      |
| MOTA          | 1911 | CE3 | TRP                     | B            | 61 | 40.397 -17  | .719  | 14.378 | 1.00 38.30 | В      |
| MOTA          | 1912 | CD1 |                         |              | 61 | 39.949 -20  |       | 16.949 | 1.00 33.63 | В      |
| ATOM          | 1913 |     | TRP                     |              | 61 | 41.142 -19  |       | 17.278 | 1.00 33.97 | В      |
|               |      |     |                         |              | 61 | 42.512 -17  |       | 16.277 | 1.00 38.13 | В      |
| ATOM          | 1914 | CZ2 |                         |              |    |             |       |        |            | В      |
| MOTA          | 1915 | CZ3 |                         |              | 61 | 41.487 -16  |       | 14.293 | 1.00 39.26 |        |
| MOTA          | 1916 | CH2 |                         |              | 61 | 42.527 -16  |       | 15.240 | 1.00 38.22 | В      |
| ATOM          | 1917 | C   | TRP                     | В            | 61 | 36.349 -21  |       | 14.739 | 1.00 31.22 | B      |
| ATOM          | 1918 | 0   | TRP                     | В            | 61 | 35.436 -21  | .758  | 15.559 | 1.00 29.98 | B      |
| ATOM          | 1919 | N   | ASN                     | В            | 62 | 36.137 -21  | .955  | 13.440 | 1.00 31.63 | В      |
| <del></del> - |      |     |                         |              |    |             |       |        |            |        |

| MOTA | 1920 | CA      | ASN | В            | 62       | 34.781 -22.191 12.950 1.00 32.57 | В   |
|------|------|---------|-----|--------------|----------|----------------------------------|-----|
| ATOM | 1921 | СВ      | ASN | В            | 62       | 34.701 -22.021 11.434 1.00 30.37 | В   |
| ATOM | 1922 | CG      | ASN | В            | 62       | 34.575 -20.574 11.025 1.00 29.69 | В   |
| ATOM | 1923 | OD1     | ASN | В            | 62       | 33.889 -19.794 11.680 1.00 29.42 | В   |
| ATOM | 1924 | ND2     | ASN | В            | 62       | 35.222 -20.209 9.926 1.00 31.50  | В   |
| ATOM | 1925 | C       | ASN |              | 62       | 34.238 -23.561 13.339 1.00 32.87 | В   |
| ATOM | 1926 | 0       | ASN |              | 62       | 33.028 -23.789 13.292 1.00 34.70 |     |
| ATOM | 1927 | N       | SER |              | 63       | 35.128 -24.469 13.725 1.00 32.43 |     |
|      | 1928 | CA      | SER |              | 63       | 34.705 -25.797 14.140 1.00 32.38 |     |
| ATOM |      |         |     |              |          | 35.818 -26.819 13.879 1.00 32.20 |     |
| ATOM | 1929 | CB      | SER |              | 63       |                                  |     |
| MOTA | 1930 | OG      | SER |              | 63       | 36.905 -26.626 14.760 1.00 33.33 |     |
| MOTA | 1931 | C       | SER |              | 63       | 34.348 -25.768 15.630 1.00 32.14 |     |
| MOTA | 1932 | 0       | SER |              | 63       | 33.677 -26.667 16.138 1.00 32.86 |     |
| MOTA | 1933 | N       | GLN | B            | 64       | 34.794 -24.724 16.325 1.00 31.10 |     |
| ATOM | 1934 | CA      | GLN | В            | 64       | 34.513 -24.569 17.752 1.00 30.99 |     |
| MOTA | 1935 | CB      | GLN | B            | 64       | 35.661 -23.837 18.446 1.00 32.54 |     |
| ATOM | 1936 | CG      | GLN | В            | 64       | 36.988 -24.557 18.383 1.00 34.49 | B   |
| MOTA | 1937 | CD      | GLN | В            | 64       | 36.870 -25.998 18.810 1.00 38.20 | ) B |
| ATOM | 1938 | OE1     | GLN | В            | 64       | 36.629 -26.884 17.984 1.00 40.82 | B B |
| ATOM | 1939 | NE2     | GLN | В            | 64       | 37.022 -26.245 20.108 1.00 38.34 | B   |
| ATOM | 1940 | C       | GLN | В            | 64       | 33.226 -23.775 17.944 1.00 29.88 | B B |
| ATOM | 1941 | 0       |     | В            | 64       | 33.252 -22.549 18.064 1.00 29.28 | B   |
| MOTA | 1942 | N       | LYS |              | 65       | 32.101 -24.476 17.979 1.00 28.74 | В   |
| ATOM | 1943 | CA      |     | В            | 65       | 30.815 -23.812 18.123 1.00 29.18 |     |
|      |      | CB      | LYS |              | 65       | 29.688 -24.851 18.132 1.00 30.63 |     |
| ATOM | 1944 |         |     |              |          | 29.575 -25.612 16.812 1.00 32.20 |     |
| ATOM | 1945 | CG      | LYS |              | 65       |                                  |     |
| ATOM | 1946 | CD      | LYS |              | 65       |                                  |     |
| ATOM | 1947 | CE      | LYS |              | 65       | 29.688 -25.327 14.284 1.00 37.24 |     |
| MOTA | 1948 | NZ      | LYS |              | 65       | 29.430 -24.427 13.109 1.00 37.89 |     |
| ATOM | 1949 | С       | LYS | В            | 65       | 30.745 -22.919 19.352 1.00 28.19 |     |
| MOTA | 1950 | 0       | LYS | В            | 65       | 30.075 -21.891 19.333 1.00 28.16 |     |
| MOTA | 1951 | N       | ASP | В            | 66       | 31.440 -23.304 20.417 1.00 27.58 |     |
| ATOM | 1952 | CA      | ASP | B            | 66       | 31.460 -22.504 21.636 1.00 27.43 | L B |
| ATOM | 1953 | CB      | ASP | ${\tt B}$    | 66       | 32.283 -23.208 22.727 1.00 28.49 | 5 B |
| MOTA | 1954 | CG      | ASP | В            | 66       | 33.559 -23.847 22.184 1.00 32.24 | a B |
| ATOM | 1955 | QD1     | ASP | В            | 66       | 33.478 -24.591 21.183 1.00 33.1  | 7 B |
| ATOM | 1956 | OD2     |     | В            | 66       | 34.642 -23.623 22.765 1.00 33.25 | 5 B |
| ATOM | 1957 | C       |     | В            | 66       | 32.050 -21.131 21.316 1.00 26.63 | B B |
| ATOM | 1958 | 0       |     | В            | 66       | 31.468 -20.102 21.662 1.00 24.32 |     |
| ATOM | 1959 | N       | ILE | В            | 67       | 33.198 -21.116 20.640 1.00 26.13 |     |
|      |      |         |     | В            | 67       | 33.840 -19.855 20.273 1.00 26.42 |     |
| ATOM | 1960 | CA      |     |              | 67       | 35.206 -20.088 19.613 1.00 28.29 |     |
| ATOM | 1961 | CB      | ILE |              |          |                                  |     |
| MOTA | 1962 | CG2     | ILE |              | 67<br>67 |                                  |     |
| ATOM | 1963 | CG1     |     | В            | 67       |                                  |     |
| ATOM | 1964 | CD1     |     |              | 67       | 36.319 -20.321 21.906 1.00 32.60 |     |
| MOTA | 1965 | C       | ILE | В            | 67       | 32.968 -19.061 19.300 1.00 26.30 |     |
| MOTA | 1966 | 0       | ILE | B            | 67       | 32.747 -17.869 19.491 1.00 25.3  |     |
| ATOM | 1967 | N       | LEU | В            | 68       | 32.472 -19.730 18.261 1.00 26.13 |     |
| ATOM | 1968 | CA      | LEU | B            | 68       | 31.617 -19.086 17.267 1.00 26.6  |     |
| MOTA | 1969 | CB      | LEU | В            | 68       | 31.132 -20.102 16.235 1.00 27.63 |     |
| ATOM | 1970 | CG      | LEU | B            | 68       | 31.807 -20.171 14.872 1.00 30.13 |     |
| ATOM | 1971 | CD1     | LEU | В            | 68       | 31.081 -21.216 14.031 1.00 33.0  |     |
| MOTA | 1972 | CD2     | LEU | $\mathbb{B}$ | 68       | 31.766 -18.812 14.190 1.00 30.0  | 1 B |
| MOTA | 1973 | C       | LEU | В            | 68       | 30.394 -18.415 17.878 1.00 26.8  | 1 B |
| ATOM | 1974 | 0       | LEU | В            | 68       | 30.067 -17.280 17.541 1.00 26.1  | 9 B |
| MOTA | 1975 | N       | GLU | В            | 69       | 29.706 -19.135 18.756 1.00 28.8  | 7 B |
| ATOM | 1976 | CA      | GLU | В            | 69       | 28.509 -18.614 19.404 1.00 31.5  | 5 B |
| ATOM | 1977 | CB      | GLU |              | 69       | 27.945 -19.654 20.382 1.00 35.7  | 5 B |
| MOTA | 1978 | CG      | GLU |              | 69       | 27.304 -20.862 19.695 1.00 43.7  | 1 B |
| ATOM | 1979 | CD      | GLU |              | 69       | 26.883 -21.954 20.673 1.00 47.9  | 2 В |
| ATOM | 1980 | OE1     |     |              | 69       | 27.756 -22.454 21.418 1.00 49.2  |     |
|      | 1981 | OE2     |     |              | 69       | 25.683 -22.316 20.694 1.00 50.4  |     |
| MOTA |      | C       | GLU |              | 69       | 28.773 -17.295 20.130 1.00 29.8  |     |
| ATOM | 1982 |         |     |              |          |                                  |     |
| ATOM | 1983 | O<br>NT | GLU |              | 69<br>70 | 27.986 -16.356                   |     |
| ATOM | 1984 | N       | ARG |              | 70<br>70 |                                  |     |
| ATOM | 1985 | CA      | ARG |              | 70<br>70 |                                  |     |
| MOTA | 1986 | CB      | ARG |              | 70       | 31.347 -16.315 22.606 1.00 28.9  |     |
| ATOM | 1987 | CG      | ARG |              | 70       | 30.982 -17.344 23.673 1.00 30.5  |     |
| MOTA | 1988 | CD      | ARG |              | 70       | 32.251 -17.810 24.371 1.00 32.3  |     |
| MOTA | 1989 | NE      | ARG |              | 70       | 32.040 -19.037 25.117 1.00 34.8  |     |
| ATOM | 1990 | CZ      | ARG |              | 70       | 32.946 -19.997 25.232 1.00 34.9  |     |
| ATOM | 1991 | NH1     | ARG | B            | 70       | 34.131 -19.875 24.647 1.00 35.0  |     |
| MOTA | 1992 | NH2     | ARG | В            | 70       | 32.662 -21.083 25.930 1.00 39.4  |     |
| MOTA | 1993 | C       | ARG | В            | 70       | 30.691 -14.888 20.682 1.00 26.7  | 7 B |
|      |      |         |     |              |          |                                  |     |

| ATOM | 1994 | 0   | ARG B   | 70   | 30.412       | -13.725 | 20.951 | 1.00 26.95 | В        |
|------|------|-----|---------|------|--------------|---------|--------|------------|----------|
| ATOM | 1995 | N   | LYS B   | 71   | 31.395       | -15.235 | 19.608 | 1.00 25.97 | В        |
| ATOM | 1996 | CA  | LYS B   | 71   | 31.885       | -14.236 | 18.670 | 1.00 25.98 | В        |
| •    |      | CB  | LYS B   | 71   |              | -14.877 | 17.652 | 1.00 27.62 | В        |
| ATOM | 1997 |     |         |      |              | -13.873 | 16.924 | 1.00 29.24 | В        |
| ATOM | 1998 | CG  | LYS B   | 71   |              |         |        |            |          |
| MOTA | 1999 | CD  | LYS B   | 71   |              | -13.137 | 17.909 | 1.00 32.14 | <b>B</b> |
| ATOM | 2000 | CE  | LYS B   | 71   | 35.430       | -12.035 | 17.236 | 1.00 33.13 | В        |
| ATOM | 2001 | NZ  | LYS B   | 71   | 36.093       | -11.164 | 18.245 | 1.00 34.18 | В        |
| ATOM | 2002 | С   | LYS B   | 71   | 30.710       | -13.591 | 17.952 | 1.00 25.22 | В        |
|      |      |     |         |      |              | -12.395 | 17.671 | 1.00 24.39 | В        |
| MOTA | 2003 | 0   | LYS B   | 71   |              |         |        |            |          |
| MOTA | 2004 | N   | ARG B   | 72   | _ · · · ·    | -14.399 | 17.657 | 1.00 25.08 | В        |
| MOTA | 2005 | CA  | ARG B   | 72   | 28.500       | -13.922 | 16.989 | 1.00 26.32 | В        |
| ATOM | 2006 | CB  | ARG B   | 72   | 27.628       | -15.101 | 16.561 | 1.00 28.02 | В        |
| ATOM | 2007 | CG  | ARG B   | 72   | 28.116       | -15.830 | 15.340 | 1.00 28.10 | В        |
| ATOM | 2008 | CD  | ARG B   | 72   |              | -17.013 | 15.083 | 1.00 32.02 | В        |
|      |      |     |         |      |              | -17.583 | 13.766 | 1.00 36.46 | В        |
| MOTA | 2009 | NE  | ARG B   | 72   |              |         |        |            |          |
| MOTA | 2010 | CZ  | ARG B   | 72   |              | -18.779 | 13.389 | 1.00 38.62 | B        |
| MOTA | 2011 | NHl | ARG B   | 72   | 26.324       | -19.538 | 14.238 | 1.00 37.88 | B        |
| ATOM | 2012 | NH2 | ARG B   | 72   | 27.270       | -19.212 | 12.163 | 1.00 38.55 | В        |
| ATOM | 2013 | С   | ARG B   | 72   | 27.687       | -13.017 | 17.898 | 1.00 24.31 | В        |
|      |      |     | ARG B   |      |              | -12.326 | 17.439 | 1.00 24.84 | В        |
| ATOM | 2014 | 0   |         |      |              |         |        | 1.00 26.18 | В        |
| ATOM | 2015 | N   | ALA B   |      | 27.990       | -13.028 | 19.189 |            |          |
| MOTA | 2016 | CA  | ALA B   | 73   | 27.267       | -12.185 | 20.140 | 1.00 28.18 | <b>B</b> |
| ATOM | 2017 | CB  | ALA B   | 73   | 26.973       | -12.974 | 21.418 | 1.00 28.97 | В        |
| ATOM | 2018 | C   | ALA B   | 73   | 28.056       | -10.916 | 20.472 | 1.00 28.97 | В        |
| ATOM | 2019 | Ō   | ALA B   |      | 27.528       | -9.977  | 21.066 | 1.00 30.50 | В        |
|      |      |     |         |      | 29.320       | -10.882 | 20.070 | 1.00 29.65 | В        |
| ATOM | 2020 | N   | ALA B   |      |              |         |        | 1.00 30.77 | В        |
| ATOM | 2021 | CA  | ALA B   |      | 30.170       | -9.732  | 20.347 |            |          |
| MOTA | 2022 | CB  | ALA B   | 74   | 31.558       | -9.966  | 19.764 | 1.00 30.77 | В        |
| ATOM | 2023 | С   | ALA B   | 74   | 29.594       | -8.414  | 19.827 | 1.00 31.78 | В        |
| ATOM | 2024 | 0   | ALA B   | 74   | 29.789       | -7.359  | 20.438 | 1.00 32.74 | В        |
| ATOM | 2025 | N   | VAL B   |      | 28.886       | -8.465  | 18.704 | 1.00 31.60 | В        |
|      |      |     |         |      | 28.308       | -7.248  | 18.145 | 1.00 32.38 | В        |
| MOTA | 2026 | CA  | VAL B   |      |              |         |        |            | В        |
| MOTA | 2027 | CB  | VAL B   | 75   | 27.397       | -7.539  | 16.929 | 1.00 30.51 |          |
| MOTA | 2028 | CG1 | VAL B   | 75   | 27.291       | -6.295  | 16.062 | 1.00 31.44 | В        |
| ATOM | 2029 | CG2 | VAL B   | 75   | 27.931       | -8.696  | 16.137 | 1.00 33.08 | В        |
| ATOM | 2030 | C   | VAL B   | 75   | 27.465       | -6.529  | 19.201 | 1.00 33.07 | В        |
|      |      | 0   | VAL B   |      | 27.402       | -5.302  | 19.218 | 1.00 33.54 | В        |
| ATOM | 2031 |     |         |      |              |         | 20.065 | 1.00 34.70 | В        |
| MOTA | 2032 | N   | ASP B   |      | 26.811       | -7.302  |        |            |          |
| ATOM | 2033 | CA  | ASP B   | 76   | 25.971       | -6.748  | 21.130 | 1.00 36.27 | B<br>-   |
| ATOM | 2034 | CB  | ASP B   | 76   | 24.780       | -7.670  | 21.420 | 1.00 38.57 | В        |
| ATOM | 2035 | CG  | ASP B   | 76   | 23.889       | -7.881  | 20.215 | 1.00 41.48 | В        |
| ATOM | 2036 | OD1 | ASP B   | 76   | 23.335       | -6.887  | 19.694 | 1.00 43.46 | В        |
|      |      |     |         |      | 23.739       | -9.048  | 19.792 | 1.00 43.76 | В        |
| ATOM | 2037 | OD2 |         |      |              |         | 22.411 | 1.00 35.56 | В        |
| MOTA | 2038 | C   | ASP B   |      | 26.780       | -6.600  |        |            |          |
| MOTA | 2039 | 0   | ASP E   | 76   | 26.731       | -5.569  | 23.081 | 1.00 34.13 | B<br>-   |
| ATOM | 2040 | N   | ARG E   | 3 77 | 27.508       | -7.661  | 22.744 | 1.00 35.22 | В        |
| ATOM | 2041 | CA  | ARG E   | 3 77 | 28.343       | -7.708  | 23.937 | 1.00 34.49 | В        |
| ATOM | 2042 | CB  | ARG E   | 3 77 | 29.071       | -9.052  | 23.991 | 1.00 37.16 | B        |
|      | 2043 | CG  | ARG E   |      | 29.841       | -9.328  | 25.271 | 1.00 40.90 | В        |
| MOTA |      |     |         |      |              |         | 25.102 | 1.00 43.79 | В        |
| ATOM | 2044 | CD  | ARG E   |      |              | -10.553 |        |            | В        |
| MOTA | 2045 | NE  | ARG E   |      | 30.004       |         | 24.665 | 1.00 48.65 |          |
| MOTA | 2046 | CZ  | ARG E   | 3 77 | 29.103       | -12.385 | 25.406 | 1.00 51.36 | В        |
| MOTA | 2047 | NH1 | . ARG E | 3 77 | 28.816       | -11.949 | 26.626 | 1.00 52.34 | В        |
| MOTA | 2048 | NH2 | ARG E   | 3 77 | 28.499       | -13.470 | 24.935 | 1.00 50.76 | В        |
| ATOM | 2049 | C   | ARG E   |      | 29.362       | -6.576  | 23.927 | 1.00 32.18 | В        |
|      |      |     |         |      | 29.499       |         | 24.896 | 1.00 32.49 | В        |
| MOTA | 2050 | 0   | ARG E   |      |              |         |        | 1.00 30.66 | В        |
| MOTA | 2051 | N   | VAL E   |      | 30.073       |         | 22.818 |            |          |
| ATOM | 2052 | CA  | VAL E   | 3 78 | 31.086       | -5.414  | 22.707 | 1.00 29.00 | В        |
| MOTA | 2053 | CB  | VAL E   | 3 78 | 32.276       | -5.917  | 21.867 | 1.00 27.82 | В        |
| ATOM | 2054 | CG1 | VAL E   | 3 78 | 33.327       | -4.815  | 21.740 | 1.00 25.08 | В        |
| ATOM | 2055 | CG2 |         |      | 32.870       |         | 22.504 | 1.00 23.27 | В        |
|      |      |     |         |      |              |         | 22.113 | 1.00 29.33 | В        |
| MOTA | 2056 | C   | VAL I   |      | 30.594       |         |        |            | В        |
| MOTA | 2057 | 0   | VAL I   |      | 30.435       |         | 22.831 | 1.00 29.83 |          |
| MOTA | 2058 | N   | CYS I   | 3 79 | 30.354       | -4.091  | 20.804 | 1.00 28.42 | В        |
| ATOM | 2059 | CA  | CYS I   | B 79 | 29.927       | -2.891  | 20.083 | 1.00 29.14 | В        |
| ATOM | 2060 | C   | CYS I   | B 79 | 28.724       | -2.107  | 20.629 | 1.00 28.59 | В        |
| ATOM | 2061 | 0   |         | B 79 | 28.883       |         | 21.062 | 1.00 26.06 | В        |
|      |      |     |         |      | 29.675       |         | 18.604 | 1.00 29.19 | В        |
| MOTA | 2062 | CB  | CYS I   |      |              |         |        |            | В        |
| ATOM | 2063 | SG  | CYS I   |      | 31.052       |         | 17.680 | 1.00 31.71 |          |
| MOTA | 2064 | N   | ARG I   | B 80 | 27.527       | -2.693  | 20.586 | 1.00 28.34 | В        |
| ATOM | 2065 | CA  | ARG     | B 80 | 26.347       | -1.980  | 21.071 | 1.00 30.77 | В        |
| ATOM | 2066 | CB  | ARG 1   | B 80 | 25.079       | -2.828  | 20.915 | 1.00 32.82 | В        |
|      | 2067 | CG  | ARG :   |      | 24.612       |         | 19.474 | 1.00 35.65 | В        |
| MOTA | 2007 |     |         |      | محدث و بر بد |         | ,,,    |            |          |

| ATOM      | 2068          | CD  | ARG   | R            | 80 | 23.120 | -3.273 | 19.387 | 1.00 36.01 | В          |
|-----------|---------------|-----|-------|--------------|----|--------|--------|--------|------------|------------|
| ATOM      | 2069          | NE  |       | В            | 80 | 22.649 | -3.243 | 18.005 | 1.00 35.49 | B          |
|           |               |     |       |              | 80 | 22.913 | -4.188 | 17.108 | 1.00 33.19 | B          |
| ATOM      | 2070          | CZ  | ARG   |              |    |        |        |        |            | В          |
| ATOM      | 2071          | NH1 |       | B            | 80 | 23.640 | -5.242 | 17.449 | 1.00 40.57 |            |
| MOTA      | 2072          | NH2 | ARG   | В            | 80 | 22.467 | -4.075 | 15.864 | 1.00 38.86 | B          |
| MOTA      | 2073          | C   | ARG   | В            | 80 | 26.507 | -1.552 | 22.524 | 1.00 31.24 | В          |
| ATOM      | 2074          | 0   | ARG   | В            | 80 | 25.975 | -0.525 | 22.944 | 1.00 32.07 | В          |
| ATOM      | 2075          | N   | HIS   | В            | 81 | 27.257 | -2.337 | 23.283 | 1.00 31.40 | В          |
| ATOM      | 2076          | CA  | HIS   | В            | 81 | 27.492 | -2.028 | 24.683 | 1.00 32.20 | В          |
| ATOM      | 2077          | CB  |       | В            | 81 | 28.220 | -3.185 | 25.366 | 1.00 33.00 | В          |
| ATOM      | 2078          | CG  |       | В            | 81 | 28.595 | -2.899 | 26.787 | 1.00 37.24 | В          |
|           | 2079          | CD2 |       | В            | 81 | 29.764 | -2.490 | 27.335 | 1.00 38.05 | В          |
| ATOM      |               |     |       |              |    | 27.692 | -2.981 | 27.826 | 1.00 39.11 | В          |
| ATOM      | 2080          | ND1 |       | B            | 81 |        |        |        |            |            |
| ATOM      | 2081          | CE1 |       | В            | 81 | 28.290 | -2.635 | 28.952 | 1.00 40.49 | В          |
| MOTA      | 2082          | NE2 | HIS   | В            | 81 | 29.548 | -2.332 | 28.682 | 1.00 39.16 | <b>B</b>   |
| MOTA      | 2083          | C   | HIS   | В            | 81 | 28.326 | -0.762 | 24.831 | 1.00 30.87 | В          |
| ATOM      | 2084          | 0   | HIS   | B            | 81 | 27.906 | 0.206  | 25.470 | 1.00 31.38 | В          |
| MOTA      | 2085          | N   | ASN   | В            | 82 | 29.511 | -0.770 | 24.233 | 1.00 29.77 | , <b>B</b> |
| ATOM      | 2086          | CA  | ASN   | В            | 82 | 30.403 | 0.375  | 24.332 | 1.00 28.02 | В          |
| ATOM      | 2087          | CB  | ASN   | В            | 82 | 31.755 | 0.056  | 23.683 | 1.00 26.64 | В          |
| ATOM      | 2088          | ÇG  | ASN   |              | 82 | 32.470 | -1.092 | 24.373 | 1.00 25.02 | В          |
|           | 2089          | OD1 | ASN   |              | 82 | 32.305 | -1.305 | 25.572 | 1.00 24.06 | В          |
| ATOM      |               |     |       |              | 82 | 33.278 | -1.829 | 23.619 | 1.00 26.38 | В          |
| MOTA      | 2090          | ND2 |       | B            |    |        |        |        |            | В          |
| MOTA      | 2091          | C   |       | В            | 82 | 29.819 | 1.648  | 23.741 |            |            |
| MOTA      | 2092          | 0   | ASN   |              | 82 | 30.163 | 2.747  | 24.174 | 1.00 25.71 | В          |
| MOTA      | 2093          | N   | TYR   | В            | 83 | 28.930 | 1.512  | 22.765 | 1.00 25.90 | В          |
| MOTA      | 2094          | CA  | TYR   | В            | 83 | 28.324 | 2.693  | 22.156 | 1.00 25.91 | В          |
| MOTA      | 2095          | CB  | TYR   | B            | 83 | 27.462 | 2.297  | 20.946 | 1.00 25.69 | В          |
| ATOM      | 2096          | CG  | TYR   | В            | 83 | 27.102 | 3.462  | 20.056 | 1.00 25.95 | В          |
| ATOM      | 2097          | CD1 | TYR   | В            | 83 | 26.022 | 4.294  | 20.353 | 1.00 27.11 | В          |
| ATOM      | 2098          | CEI |       |              | 83 | 25.712 | 5.403  | 19.545 | 1.00 25.98 | В          |
|           | 2099          | CD2 |       |              | 83 | 27.865 | 3.759  | 18.933 | 1.00 27.72 | В          |
| ATOM      |               |     |       |              |    | 27.567 | 4.862  | 18.121 | 1.00 28.05 | В          |
| ATOM      | 2100          | CE2 | TYR   |              | 83 |        |        |        | 1.00 27.73 | В          |
| ATOM      | 2101          | CZ  | TYR   |              | 83 | 26.493 | 5.680  | 18.434 |            |            |
| ATOM      | 2102          | OH  | TYR   |              | 83 | 26.225 | 6.781  | 17.645 | 1.00 27.55 | В          |
| MOTA      | 2103          | С   | TYR   | В            | 83 | 27.485 | 3.458  | 23.181 | 1.00 25.87 | B          |
| MOTA      | 2104          | 0   | TYR   | $\mathbb{B}$ | 83 | 27.315 | 4.673  | 23.070 | 1.00 26.05 | В          |
| ATOM      | 2105          | N   | GLN   | В            | 84 | 26.975 | 2.750  | 24.186 | 1.00 28.25 | В          |
| ATOM      | 2106          | CA  | GLN   | В            | 84 | 26.159 | 3.375  | 25.229 | 1.00 30.44 | B          |
| ATOM      | 2107          | CB  | GLN   |              | 84 | 25.467 | 2.310  | 26.093 | 1.00 34.30 | В          |
| ATOM      | 2108          | CG  | GLN   |              | 84 | 24.595 | 1.343  | 25.301 | 1.00 40.52 | В          |
| ATOM      | 2109          | CD  | GLN   |              | 84 | 23.515 | 2.047  | 24.496 | 1.00 43.21 | В          |
|           |               | OE1 | GLN   |              | 84 | 23.023 | 1.516  | 23.499 | 1.00 46.12 | В          |
| ATOM      | 2110          |     |       |              |    |        | 3.244  | 24.932 | 1.00 45.41 | В          |
| MOTA      | 2111          | NE2 | GLN   |              | 84 | 23.133 |        |        | 1.00 29.01 | В          |
| MOTA      | 2112          | C   | GLN   |              | 84 | 27.030 | 4.254  | 26.111 |            |            |
| MOTA      | 2113          | 0   | GLN   |              | 84 | 26.633 | 5.353  | 26.494 | 1.00 27.82 | В          |
| MOTA      | 2114          | N   | LEU   | B            | 85 | 28.219 | 3.757  | 26.436 | 1.00 28.32 | В          |
| MOTA      | 2115          | CA  | LEU   | В            | 85 | 29.150 | 4.505  | 27.263 | 1.00 28.76 | В          |
| MOTA      | 2116          | CB  | LEU   | В            | 85 | 30.355 | 3.631  | 27.631 | 1.00 28.92 | В          |
| ATOM      | 2117          | CG  | LEU   | В            | 85 | 30.065 | 2.226  | 28.184 | 1.00 30.98 | В          |
| ATOM      | 2118          | CD1 | LEU   | В            | 85 | 31.343 | 1.631  | 28.758 | 1.00 30.59 | В          |
| ATOM      | 2119          | CD2 |       |              | 85 | 29.006 | 2.291  | 29.265 | 1.00 31.87 | В          |
| ATOM      | 2120          | C   | LEU   |              | 85 | 29.609 | 5.719  | 26.461 | 1.00 29.95 | В          |
| ATOM      | 2121          | 0   | LEU   |              | 85 | 29.836 | 6.798  | 27.010 | 1.00 30.93 | В          |
|           |               |     | GLU   |              | 86 | 29.724 | 5.529  | 25.150 | 1.00 30.31 | В          |
| ATOM      | 2122          | N   |       |              |    |        | 6.577  | 24.245 | 1.00 31.41 | В          |
| ATOM      | 2123          | CA  | GLU   |              | 86 | 30.160 |        |        |            | В          |
| MOTA      | 2124          | CB  | - GLU |              | 86 | 30.426 | 5.981  | 22.861 | 1.00 32.60 |            |
| ATOM      | 2125          | CG  | GLU   |              | 86 | 31.741 | 6.420  | 22.236 | 1.00 39.25 | В          |
| MOTA      | 2126          | CD  | GLU   | В            | 86 | 32.962 | 5.854  | 22.953 | 1.00 41.02 | <b>B</b>   |
| MOTA      | 2127          | OE1 | GLU   | В            | 86 | 33.379 | 4.714  | 22.636 | 1.00 40.75 | В          |
| ATOM      | 2128          | OE2 | GLU   | В            | 86 | 33.497 | 6.553  | 23.843 | 1.00 41.96 | В          |
| ATOM      | 2129          | C   | GLU   | В            | 86 | 29.113 | 7.684  | 24.146 | 1.00 32.44 | В          |
| MOTA      | 2130          | 0   | GLU   |              | 86 | 29.454 | 8.865  | 24.109 | 1.00 30.73 | В          |
| ATOM      | 2131          | N   | LEU   |              | 87 | 27.838 | 7.303  | 24.103 | 1.00 33.77 | В          |
|           | 2132          | CA  | LEU   |              | 87 | 26.755 | 8.282  | 24.015 | 1.00 34.65 | В          |
| ATOM      |               |     |       |              |    | 25.398 | 7.583  | 23.899 | 1.00 34.69 | В          |
| MOTA      | 2133          | CB  | LEU   |              | 87 |        |        |        |            | В          |
| ATOM      | 2134          | CG  | LEU   |              | 87 | 24.916 | 7.169  | 22.508 | 1.00 36.86 |            |
| ATOM      | 2135          |     | . LEU |              | 87 | 23.655 | 6.326  | 22.642 | 1.00 35.43 | В          |
| ATOM      | 2136          | CD2 | LEU   | В            | 87 | 24.645 | 8.411  | 21.660 | 1.00 35.76 | B          |
| ATOM      | 2137          | С   | LEU   | В            | 87 | 26.740 | 9.199  | 25.231 | 1.00 35.16 | В          |
| ATOM      | 2138          | 0   | LEU   | В            | 87 | 26.250 | 10.326 | 25.164 | 1.00 34.29 | В          |
| ATOM      | 2139          | N   | ARG   | В            | 88 | 27.280 | 8.711  | 26.343 | 1.00 36.69 | В          |
| ATOM      | 2140          | CA  | ARG   |              | 88 | 27.317 | 9.493  | 27.573 | 1.00 37.64 | В          |
| ATOM      | 2141          | CB  | ARG   |              | 88 | 27.173 | 8.575  | 28.791 | 1.00 39.79 | В          |
| 7.7. Ot.1 | عقد ما بدر می | صدب |       |              |    |        |        |        |            |            |

| 7           |      | ~~  | * 5.0                | *  | 0.0 | 05 007 | 7 070  | 20 000 | 7 00 45 10 | В   |
|-------------|------|-----|----------------------|----|-----|--------|--------|--------|------------|-----|
| ATOM        | 2142 | CG  | ARG                  | B  | 88  | 25.827 | 7.878  | 28.908 | 1.00 45.19 |     |
| ATOM        | 2143 | CD  | ARG                  | B  | 88  | 25.704 | 7.173  | 30.253 | 1.00 49.04 | В   |
| ATOM        | 2144 | NE  | ARG                  | В  | 88  | 26.657 | 6.074  | 30.388 | 1.00 54.57 | В   |
|             |      |     |                      |    |     |        |        |        |            | В   |
| ATOM        | 2145 | CZ  | ARG                  | В  | 88  | 27.101 | 5.603  | 31.552 | 1.00 55.76 |     |
| MOTA        | 2146 | NH1 | ARG                  | В  | 88  | 26.683 | 6.137  | 32.694 | 1.00 55.56 | В   |
| ATOM        | 2147 | NH2 | ARG                  | В  | 88  | 27.963 | 4.595  | 31.574 | 1.00 56.11 | В   |
|             |      |     |                      |    |     |        |        |        |            |     |
| ATOM        | 2148 | C   | ARG                  | В  | 88  | 28.601 | 10.299 | 27.714 | 1.00 36.93 | В   |
| ATOM        | 2149 | 0   | ARG                  | В  | 88  | 28.702 | 11.160 | 28.589 | 1.00 37.24 | В   |
|             |      | _   |                      | В  | 89  | 29.571 | 10.035 | 26.842 | 1.00 35.19 | В   |
| MOTA        | 2150 | N   |                      |    |     |        |        |        |            |     |
| ATOM        | 2151 | CA  | THR                  | В  | 89  | 30.860 | 10.712 | 26.914 | 1.00 31.71 | В   |
| ATOM        | 2152 | CB  | THR                  | В  | 89  | 31.916 | 9.767  | 27.529 | 1.00 31.61 | В   |
|             |      |     |                      |    |     |        |        | 26.762 | 1.00 29.72 | В   |
| ATOM        | 2153 | OG1 | THR                  | B  | 89  | 31.980 | 8.554  |        |            |     |
| ATOM        | 2154 | CG2 | THR                  | В  | 89  | 31.557 | 9.436  | 28.963 | 1.00 25.87 | В   |
| ATOM        | 2155 | C   | THR                  | R  | 89  | 31.420 | 11.254 | 25.600 | 1.00 31.31 | В   |
|             |      |     |                      |    |     |        |        |        |            | В   |
| MOTA        | 2156 | 0   | THR                  | В  | 89  | 31.214 | 12.415 | 25.249 | 1.00 32.41 |     |
| ATOM        | 2157 | N   | THR                  | В  | 90  | 32.139 | 10.403 | 24.880 | 1.00 30.72 | В   |
|             | 2158 | CA  | THR                  | מי | 90  | 32.766 | 10.786 | 23.623 | 1.00 30.43 | В   |
| ATOM        |      |     |                      |    |     |        |        |        |            |     |
| ATOM        | 2159 | CB  | THR                  | В  | 90  | 33.368 | 9.558  | 22.925 | 1.00 30.54 | В   |
| ATOM        | 2160 | OG1 | THR                  | В  | 90  | 34.297 | 8.919  | 23.808 | 1.00 33.70 | В   |
|             |      |     |                      |    |     | 34.099 | 9.970  | 21.666 | 1.00 31.65 | В   |
| ATOM        | 2161 | CG2 | THR                  | B  | 90  |        |        |        |            |     |
| ATOM        | 2162 | C   | THR                  | В  | 90  | 31.874 | 11.512 | 22.625 | 1.00 30.61 | , B |
| ATOM        | 2163 | 0   | THR                  | R  | 90  | 32.267 | 12.543 | 22.070 | 1.00 30.24 | В   |
|             |      |     |                      |    |     |        |        |        |            | В   |
| ATOM        | 2164 | N   | LEU                  | В  | 91  | 30.683 | 10.977 | 22.385 |            |     |
| MOTA        | 2165 | ÇA  | LEU                  | В  | 91  | 29.767 | 11.581 | 21.425 | 1.00 31.93 | В   |
| ATOM        | 2166 | СВ  | LEU                  | בר | 91  | 28.709 | 10.554 | 21.007 | 1.00 32.55 | В   |
|             |      |     |                      |    |     |        |        |        |            |     |
| ATOM        | 2167 | CG  | LEU                  | В  | 91  | 29.268 | 9.315  | 20.292 | 1.00 33.01 | В   |
| ATOM        | 2168 | CD1 | LEU                  | В  | 91  | 28.201 | 8.233  | 20.205 | 1.00 33.73 | В   |
|             |      | CD2 |                      | В  | 91  | 29.761 | 9.700  | 18.902 | 1.00 31.26 | В   |
| MOTA        | 2169 |     |                      |    |     |        |        |        |            |     |
| MOTA        | 2170 | C   | $\mathtt{LEU}$       | B  | 91  | 29.096 | 12.872 | 21.907 | 1.00 32.38 | В   |
| ATOM        | 2171 | 0   | LEU                  | В  | 91  | 28.402 | 13.534 | 21.139 | 1.00 32.08 | В   |
|             |      |     |                      |    |     | 29.303 | 13.229 | 23.173 | 1.00 32.44 | В   |
| MOTA        | 2172 | N   | GLN                  | В  | 92  |        |        |        |            |     |
| ATOM        | 2173 | CA  | ${	t GLN}$           | В  | 92  | 28.725 | 14.454 | 23.713 | 1.00 34.54 | В   |
| ATOM        | 2174 | CB  | GLN                  | В  | 92  | 28.138 | 14.217 | 25.110 | 1.00 38.48 | В   |
|             |      |     |                      |    |     |        |        | 25.121 | 1.00 44.66 | В   |
| MOTA        | 2175 | CG  | GLN                  | B  | 92  | 26.836 | 13.419 |        |            |     |
| MOTA        | 2176 | CD  | $\operatorname{GLN}$ | В  | 92  | 26.233 | 13.291 | 26.516 | 1.00 49.27 | В   |
| ATOM        | 2177 | OE1 | GLN                  | Þ  | 92  | 25.239 | 12.588 | 26.712 | 1.00 51.65 | В   |
|             |      |     |                      |    |     |        |        |        |            | В   |
| ATOM        | 2178 | NE2 | GLN                  | В  | 92  | 26.832 | 13.975 | 27.491 | 1.00 49.93 |     |
| MOTA        | 2179 | C   | GLN                  | В  | 92  | 29.779 | 15.557 | 23.777 | 1.00 32.86 | ' B |
|             |      |     |                      |    | 92  | 29.457 | 16.721 | 24.019 | 1.00 32.19 | В   |
| ATOM        | 2180 | 0   | GLN                  |    |     |        |        |        |            |     |
| ATOM        | 2181 | N   | ARG                  | В  | 93  | 31.038 | 15.187 | 23.555 | 1.00 31.53 | В   |
| ATOM        | 2182 | CA  | ARG                  | B  | 93  | 32.132 | 16.157 | 23.576 | 1.00 29.87 | В   |
|             |      |     |                      |    |     |        |        | 23.302 | 1.00 28.14 | В   |
| MOTA        | 2183 | CB  | ARG                  | В  | 93  | 33.477 | 15.472 |        |            |     |
| ATOM        | 2184 | CG  | ARG                  | B  | 93  | 34.681 | 16.433 | 23.217 | 1.00 23.56 | В   |
| ATOM        | 2185 | CD  | ARG                  | R  | 93  | 35.953 | 15.656 | 22.925 | 1.00 22.53 | В   |
|             |      |     |                      |    |     |        |        |        |            | В   |
| ATOM        | 2186 | NE  | ARG                  | В  | 93  | 37.128 | 16.486 | 22.662 |            |     |
| ATOM        | 2187 | CZ  | ARG                  | В  | 93  | 37.769 | 17.205 | 23.581 | 1.00 18.66 | В   |
| ATOM        | 2188 | NH1 | ARG                  | Þ  | 93  | 37.352 | 17.214 | 24.843 | 1.00 17.45 | В   |
|             |      |     |                      |    |     |        |        |        |            | В   |
| ATOM        | 2189 | NH2 | ARG                  | В  | 93  | 38.847 | 17.898 | 23.242 | 1.00 16.56 |     |
| MOTA        | 2190 | C   | ARG                  | В  | 93  | 31.921 | 17.245 | 22.535 | 1.00 29.02 | B   |
|             | 2191 | 0   | ARG                  |    | 93  | 31.755 | 16.965 | 21.349 | 1.00 29.55 | В   |
| ATOM        |      |     |                      |    |     |        |        |        |            |     |
| MOTA        | 2192 | N   | ARG                  | В  | 94  | 31.933 | 18.490 | 22.987 | 1.00 28.71 | В   |
| MOTA        | 2193 | CA  | ARG                  | В  | 94  | 31.767 | 19.613 | 22.087 | 1.00 29.63 | B   |
|             | 2194 | CB  | ARG                  |    | 94  | 30.299 | 20.046 | 22.041 | 1.00 32.44 | В   |
| MOTA        |      |     |                      |    |     |        |        |        |            |     |
| MOTA        | 2195 | CG  | ARG                  | В  | 94  | 29.506 | 19.196 | 21.060 | 1.00 37.10 | В   |
| ATOM        | 2196 | CD  | ARG                  | В  | 94  | 28.016 | 19.414 | 21.124 | 1.00 39.80 | В   |
|             |      |     |                      |    | 94  | 27.350 | 18.742 | 20.008 | 1.00 44.04 | В   |
| MOTA        | 2197 | NE  | ARG                  |    |     |        |        |        |            |     |
| ATOM        | 2198 | CZ  | ARG                  | В  | 94  | 27.372 | 17.428 | 19.791 | 1.00 44.11 | В   |
| ATOM        | 2199 | NH1 | ARG                  | В  | 94  | 28.026 | 16.625 | 20.617 | 1.00 45.60 | В   |
|             |      |     |                      |    |     |        | 16.916 | 18.739 | 1.00 44.45 | В   |
| ATOM        | 2200 | NH2 | ARG                  | В  | 94  | 26.747 |        |        |            |     |
| ATOM        | 2201 | C   | ARG                  | В  | 94  | 32.656 | 20.760 | 22.498 | 1.00 28.84 | В   |
| MOTA        | 2202 | 0   | ARG                  | B  | 94  | 32.464 | 21.363 | 23.550 | 1.00 29.13 | В   |
|             |      |     |                      |    |     |        |        |        |            |     |
| ATOM        | 2203 | N   | VAL                  | В  | 95  | 33.650 | 21.038 | 21.663 | 1.00 27.49 | В   |
| ATOM        | 2204 | CA  | VAL                  | В  | 95  | 34.592 | 22.117 | 21.916 | 1.00 26.47 | В   |
|             | 2205 | CB  | VAL                  |    | 95  | 36.047 | 21.605 | 21.890 | 1.00 25.65 | В   |
| MOTA        |      |     |                      |    |     |        |        |        |            |     |
| MOTA        | 2206 | CG1 | . VAL                | В  | 95  | 37.004 | 22.734 | 22.260 | 1.00 22.82 | В   |
| ATOM        | 2207 | CG2 | VAL                  | B  | 95  | 36.202 | 20.423 | 22.849 | 1.00 26.01 | В   |
|             |      |     |                      |    |     |        | 23.180 | 20.840 | 1.00 27.00 | В   |
| MOTA        | 2208 | C   | VAL                  |    | 95  | 34.415 |        |        |            |     |
| ATOM        | 2209 | 0   | VAL                  | В  | 95  | 34.721 | 22.945 | 19.665 | 1.00 27.00 | В   |
| ATOM        | 2210 | N   | GLU                  | R  | 96  | 33.912 | 24.340 | 21.253 | 1.00 26.94 | В   |
|             |      |     |                      |    |     |        |        |        | 1.00 26.50 | В   |
| ATOM        | 2211 | CA  | GLU                  |    | 96  | 33.673 | 25.462 | 20.348 |            |     |
| MOTA        | 2212 | CB  | GLU                  | В  | 96  | 33.072 | 26.649 | 21.107 | 1.00 29.19 | В   |
| ATOM        | 2213 | CG  | GLU                  |    | 96  | 31.736 | 26.372 | 21.775 | 1.00 36.47 | В   |
|             |      |     |                      |    |     |        |        |        |            |     |
| MOTA        | 2214 | CD  | GLU                  | В  | 96  | 31.211 | 27.582 | 22.537 | 1.00 40.45 | В   |
| ATOM        | 2215 | OE1 | L GLU                | В  | 96  | 30.121 | 27.477 | 23.144 | 1.00 42.85 | В   |
| <del></del> |      |     |                      | _  | -   |        |        |        |            |     |

28.634 22.526 OE2 GLU B 31.891 1.00 40.11 В MOTA 2216 96 В GLU B 34.960 25.916 19.689 1.00 25.02 MOTA 2217 96 C GLU B 96 35.999 26.022 20.338 1.00 24.73  $\mathbf{B}$ ATOM 2218 0 1.00 24.54  $\mathbf{B}$ PRO B 26.204 18.383 MOTA 2219 N 97 34.900 26.011 17.493 1.00 22.89 В 2220 PRO B 97 33.744 MOTA CD PRO B 36.069 26.655 17.626 1.00 23.87  $\mathbf{B}$ MOTA 2221 CA 97 1.00 22.81  $\mathbf{B}$ MOTA 2222 CB PRO B 97 35.580 26.633 16.175 В 25.663 16.202 1.00 25.55 MOTA 2223 CG PRO B 97 34.411 В 36.498 28.061 18.021 1.00 23.80 MOTA 2224 C PRO B 97 В PRO B 97 35.665 28.905 18.353 1.00 24.40 MOTA 2225 0 В 28.307 17.990 1.00 22.02 MOTA 2226 N THR B 98 37.799 В 18.266 1.00 24.00 38.306 29.634 ATOM 2227 CA THR B 98 29.592 1.00 27.31  $\mathbf{B}$ THR B 39.569 19.150 ATOM 2228 CB 98 1.00 35.69 В THR B 98 40.626 28.929 18.449 ATOM 2229 OG1 1.00 26.76 В 39.282 28.839 20.439 ATOM 2230 CG2 THR B 98 1.00 22.38 В 38.631 30.143 16.860 THR B 98 ATOM 2231 C 1.00 19.48  $\mathbf{B}$ 39.376 29.504 16.116 THR B 98 ATOM 2232 0 31.274 1.00 21.55 В 38.041 16.487 2233 N VAL B 99 ATOM В 38.242 1.00 21.20 VAL B 31.824 15.152 99 ATOM 2234 CA 36.871 32.153 14.509 1.00 21.09 B VAL B MOTA 2235 CB 99 В 13.050 1.00 19.62 CG1 VAL B 99 37.043 32.541 ATOM 2236 В 30.944 14.625 1.00 18.29 CG2 VAL B 35.950 MOTA 2237 99 1.00 21.59 В VAL B 33.059 15.167 99 39.140 MOTA 2238 C 1.00 21.57 В VAL B 38.970 33.962 15.982 MOTA 2239 0 99  $\mathbb{B}$ 1.00 22.65 THR B 100 33.084 14.252 MOTA 2240 N40.099 В 14.168 1.00 24.95 THR B 100 41.056 34.179 2241 CA MOTA В THR B 100 42.399 33.770 14.820 1.00 26.31 CB MOTA 2242 B33.321 1.00 30.10 2243 THR B 100 42.162 16.160 MOTA OG1 В 34.942 14.854 1.00 29.07 THR B 100 43.359 MOTA 2244 CG2 1.00 24.61 В 34.556 12.717 THR B 100 41.329 2245 C MOTA 1.00 23.89 В THR B 100 41.514 33.689 11.869 2246 ATOM 0 В 1.00 26.18 ILE B 101 41.363 35.852 12.435 ATOM 2247 N  $\mathbf{B}$ 1.00 29.32 41.638 36.315 11.080 ILE B 101 ATOM 2248 CA В 10.582 1.00 29.37 40.572 37.327 ILE B 101 ATOM 2249 CB В 9.231 1.00 29.49 CG2 ILE B 101 40.986 37.885 2250 ATOM  $\mathbb{B}$ 10.492 1.00 30.11 36.664 2251 CG1 ILE B 101 39.198 ATOM 1.00 29.81 В 37.605 10.002 CD1 ILE B 101 38.110 2252 ATOM В 42.988 37.015 11.040 1.00 31.04 ILE B 101 2253 C ATOM 1.00 31.24 В 37.868 11.877 2254 0 ILE B 101 43.270 MOTA В 1.00 34.47 **SER B 102** 36.664 10.066 43.820 ATOM 2255 N 37.303 9.940 1.00 39.17 В **SER B 102** 45.124 2256 CA ATOM В 36.617 1.00 37.33 **SER B 102** 46.143 10.844 **ATOM** 2257 CB 35.265 В 1.00 41.93 **SER B 102** 46.326 10.462 ATOM 2258 OG В 45.632 37.289 8.501 1.00 42.45 C 2259 SER B 102 MOTA 45.641 36.248 7.845 1.00 42.45  $\mathbf{B}$ 0 SER B 102 ATOM 2260 В 7.988 1.00 45.38 N PRO B 103 46.052 38.455 ATOM 2261  $\mathbf{B}$ 45.938 39.793 8.596 1.00 45.47 MOTA 2262 CD PRO B 103  $\mathbf{B}$ 38.545 6.617 1.00 48.91 46.564 PRO B 103 ATOM 2263 CA В 6.312 46.446 40.032 1.00 47.74 ATOM 2264 CB PRO B 103 В 1.00 47.08 7.642 46.739 40.652 MOTA 2265 CG PRO B 103  $\mathbf{B}$ 1.00 51.96 38.042 6.545 PRO B 103 48.010 2266 C ATOM  $\mathbf{B}$ 48.688 37.957 7.568 1.00 52.51 PRO B 103 ATOM 2267 0 B 1.00 55.84 48.475 37.699 5.346 2268  $\mathbf{N}$ **SER B 104** ATOM  $\mathbf{B}$ 49.843 37.209 5.177 1.00 60.00 2269 CA SER B 104 ATOM B 50.018 36.578 3.791 1.00 59.60 ATOM 2270 CB SER B 104 В 37.520 2.759 1.00 59.05 ATOM 2271 SER B 104 49.778 OG В 5.368 1.00 63.75 50.842 38.353 ATOM 2272 C SER B 104 В 50.853 39.325 4.605 1.00 64.64 ATOM 2273 SER B 104 0 В 38.228 6.398 1.00 66.99 **ARG B 105** 51.677 ATOM 2274 N  $\mathbf{B}$ 52.674 6.736 1.00 69.17 39.242 MOTA 2275 CA ARG B 105  $\mathbf{B}$ 53.631 38.700 7.808 1.00 70.33 2276 ARG B 105 MOTA CB В 54.672 37.690 7.318 1.00 72.24 2277 ARG B 105 ATOM CG В 6.449 1.00 73.51 54.073 36.586 ATOM 2278 CD ARG B 105 В 52.981 35.859 7.095 1.00 75.02 ATOM 2279 NE ARG B 105  $\mathbf{B}$ 53.120 35.051 8.142 1.00 76.07 ATOM 2280 ARG B 105 ÇZ В 1.00 77.38 54.314 34.852 8.684 2281 ARG B 105 ATOM NHl  $\mathbf{B}$ 8.644 52.059 34.431 1.00 76.05 ATOM 2282 ARG B 105 NH2  $\mathbf{B}$ 1.00 70.38 5.523 53.464 39.720 ATOM 2283 C ARG B 105 В 53.134 40.746 4.923 1.00 71.56 ARG B 105 ATOM 2284 0 46.629  $\mathbf{B}$ 1.00 49.25 -1.86740.478 ATOM 2285 **ASN B 113** N В 46.963 40.039 -0.5151.00 48.42 ATOM 2286 CA**ASN B 113** В 0.477 1.00 51.23 46.726 41.181 MOTA 2287 CB **ASN B 113** В 1.00 53.89 47.268 40.875 1.863 ATOM **ASN B 113** 2288 CG  $\mathbf{B}$ 48.429 2.019 1.00 55.14 40.498 ATOM 2289 OD1 ASN B 113

| ATOM | 2290 | ND2 | ASN B   | 113        | 46.428 | 41.048 | 2.880  | 1.00 55.30 | В        |
|------|------|-----|---------|------------|--------|--------|--------|------------|----------|
| MOTA | 2291 | С   | ASN B : | 113        | 46.143 | 38.808 | -0.118 | 1.00 45.78 | В        |
| ATOM | 2292 |     | ASN B   | 113        | 45.155 | 38.471 | -0.774 | 1.00 44.99 | В        |
| ATOM | 2293 |     | LEU B   |            | 46.550 | 38.146 | 0.961  | 1.00 42.27 | В        |
| ATOM | 2294 |     |         | 114        | 45.862 | 36.944 | 1.415  | 1.00 38.77 | В        |
| ATOM | 2295 |     |         | 114        | 46.770 | 35.739 | 1.182  | 1.00 39.10 | В        |
| ATOM | 2296 |     |         | 114        | 46.238 | 34.330 | 1.421  | 1.00 40.81 | В        |
| ATOM | 2296 |     |         | 114        | 45.097 | 34.023 | 0.459  | 1.00 41.59 | В        |
|      |      | =   | •       | 114        | 47.379 | 33.341 | 1.222  | 1.00 41.03 | В        |
| ATOM | 2298 |     |         |            |        | 36.986 | 2.883  | 1.00 36.39 | В        |
| ATOM | 2299 | C   |         | 114        | 45.424 |        |        | 1.00 35.98 | В        |
| ATOM | 2300 | 0   |         | 114        | 46.237 | 37.204 | 3.783  |            |          |
| ATOM | 2301 |     |         | 115        | 44.130 | 36.777 | 3.112  | 1.00 31.79 | В        |
| MOTA | 2302 | CA  |         | 115        | 43.576 | 36.766 | 4.460  | 1.00 28.77 | В        |
| ATOM | 2303 | CB  |         | 115        | 42.231 | 37.496 | 4.493  | 1.00 29.52 | В        |
| ATOM | 2304 | CG  |         | 115        | 42.156 | 38.843 | 5.218  | 1.00 30.12 | В        |
| MOTA | 2305 | CD1 | LEU B   | 115        | 43.281 | 39.751 | 4.764  | 1.00 30.28 | В        |
| ATOM | 2306 | CD2 | LEU B   | 115        | 40.799 | 39.479 | 4.951  | 1.00 28.39 | В        |
| MOTA | 2307 | C   | LEU B   | 115        | 43.374 | 35.323 | 4.896  | 1.00 27.23 | В        |
| MOTA | 2308 | 0   | LEU B   | 115        | 42.815 | 34.513 | 4.154  | 1.00 25.72 | В        |
| MOTA | 2309 | N   | VAL B   | 116        | 43.825 | 35.002 | 6.103  | 1.00 24.13 | В        |
| ATOM | 2310 | CA  | VAL B   | 116        | 43.695 | 33.651 | 6.618  | 1.00 20.76 | В        |
| ATOM | 2311 | CB  | VAL B   | 116        | 45.078 | 33.098 | 7.078  | 1.00 20.02 | В        |
| ATOM | 2312 | CG1 | VAL B   | 116        | 44.915 | 31.757 | 7.777  | 1.00 17.46 | В        |
| ATOM | 2313 |     | VAL B   |            | 45.996 | 32.944 | 5.880  | 1.00 19.44 | В        |
| ATOM | 2314 | C   | VAL B   |            | 42.723 | 33.568 | 7.784  | 1.00 20.38 | В        |
| ATOM | 2315 | 0   |         | 116        | 42.860 | 34.293 | 8.766  | 1.00 19.54 | В        |
| ATOM | 2316 | И   |         | 117        | 41.724 | 32.701 | 7.669  | 1.00 20.87 | В        |
| ATOM | 2317 | CA  |         | 117        | 40.793 | 32.523 | 8.774  | 1.00 22.57 | В        |
|      |      | CA  |         | 117        | 41.132 | 31.196 | 9.444  | 1.00 21.84 | В        |
| MOTA | 2318 | -   |         |            |        | 30.123 | 8.892  | 1.00 22.98 | В        |
| ATOM | 2319 | 0   | ·       | 117<br>117 | 40.867 |        | 8.315  | 1.00 23.53 | В        |
| ATOM | 2320 | CB  |         | 117        | 39.332 | 32.486 |        |            |          |
| ATOM | 2321 | SG  |         | 117        | 38.217 | 32.222 | 9.734  |            | В        |
| ATOM | 2322 | N   | SER B   |            | 41.728 | 31.277 | 10.627 | 1.00 19.87 | В        |
| MOTA | 2323 | CA  |         | 118        | 42.094 | 30.092 | 11.381 | 1.00 18.65 | В        |
| MOTA | 2324 | CB  | SER B   | 118        | 43.345 | 30.356 | 12.226 | 1.00 19.67 | B        |
| ATOM | 2325 | OG  | SER B   | 118        | 44.463 | 30.672 | 11.421 | 1.00 22.97 | <b>B</b> |
| MOTA | 2326 | C   | SER B   | 118        | 40.962 | 29.656 | 12.300 | 1.00 18.03 | B        |
| MOTA | 2327 | 0   | SER B   | 118        | 40.579 | 30.389 | 13.209 | 1.00 19.82 | В        |
| ATOM | 2328 | N   | VAL B   | 119        | 40.426 | 28.463 | 12.050 | 1.00 17.57 | В        |
| ATOM | 2329 | CA  | VAL B   | 119        | 39.365 | 27.889 | 12.874 | 1.00 15.30 | В        |
| ATOM | 2330 | CB  | VAL B   | 119        | 38.202 | 27.364 | 12.006 | 1.00 15.69 | В        |
| ATOM | 2331 | CG1 | VAL B   | 119        | 37.091 | 26.852 | 12.892 | 1.00 11.64 | В        |
| ATOM | 2332 | CG2 | VAL B   | 119        | 37.695 | 28.484 | 11.076 | 1.00 13.82 | В        |
| ATOM | 2333 | C   | VAL B   | 119        | 40.073 | 26.739 | 13.579 | 1.00 15.38 | В        |
| ATOM | 2334 | 0   | VAL B   | 119        | 40.318 | 25.680 | 12.992 | 1.00 16.76 | B        |
| ATOM | 2335 | N   |         | 120        | 40.404 | 26.958 | 14.844 | 1.00 16.03 | В        |
| ATOM | 2336 | CA  |         | 120        | 41.165 | 25.988 | 15.615 | 1.00 15.04 | В        |
| ATOM | 2337 | CB  |         | 120        | 42.487 | 26.613 | 16.031 | 1.00 13.75 | В        |
| MOTA | 2338 | OG1 |         | 120        | 42.221 | 27.713 | 16.915 | 1.00 17.84 | В        |
| ATOM | 2339 | CG2 |         |            | 43.230 | 27.144 | 14.815 | 1.00 12.18 | В        |
|      |      |     | THR B   |            | 40.533 | 25.405 | 16.872 | 1.00 17.87 | В        |
| ATOM | 2340 | C   |         |            | 39.571 | 25.944 | 17.425 | 1.00 17.71 | В        |
| ATOM | 2341 | 0   | THR B   |            |        | 24.303 |        | 1.00 17.71 | В        |
| ATOM | 2342 | N   |         | 121        | 41.132 |        | 17.317 |            | В        |
| ATOM | 2343 | CA  |         | 121        | 40.738 | 23.576 | 18.511 | 1.00 20.97 |          |
| MOTA | 2344 | CB  | ASP B   |            | 41.268 | 24.291 | 19.766 | 1.00 24.82 | В        |
| MOTA | 2345 | CG  |         | 121        | 42.797 | 24.330 | 19.831 | 1.00 31.04 | В        |
| ATOM | 2346 | OD1 | ASP B   | 121        | 43.460 | 23.360 | 19.397 | 1.00 30.81 | B        |
| ATOM | 2347 | OD2 | ASP B   | 121        | 43.339 | 25.333 | 20.346 | 1.00 34.38 | B        |
| MOTA | 2348 | C   | ASP B   | 121        | 39.238 | 23.293 | 18.679 | 1.00 21.27 | В        |
| MOTA | 2349 | 0   | ASP B   | 121        | 38.629 | 23.671 | 19.683 | 1.00 23.00 | В        |
| ATOM | 2350 | N   | PHE B   | 122        | 38.641 | 22.613 | 17.710 | 1.00 20.38 | B        |
| ATOM | 2351 | CA  | PHE B   | 122        | 37.233 | 22.280 | 17.818 | 1.00 18.51 | В        |
| ATOM | 2352 | CB  | PHE B   | 122        | 36.414 | 22.988 | 16.732 | 1.00 16.18 | В        |
| ATOM | 2353 | CG  |         | 122        | 36.817 | 22.644 | 15.319 | 1.00 13.31 | В        |
| ATOM | 2354 | CD1 |         | 122        | 37.695 | 23.463 | 14.615 | 1.00 11.43 | В        |
| ATOM | 2355 | CD2 |         | 122        | 36.247 | 21.547 | 14.664 | 1.00 10.93 | В        |
| ATOM | 2356 | CE1 | PHE B   | 122        | 37.998 | 23.210 | 13.272 | 1.00 10.91 | В        |
|      |      |     |         | 122        | 36.541 | 21.280 | 13.317 | 1.00 12.31 | B        |
| MOTA | 2357 | CE2 |         |            | 37.419 | 22.118 | 12.618 | 1.00 12.31 | В        |
| ATOM | 2358 | CZ  | PHE B   |            | 37.011 | 20.778 | 17.739 | 1.00 19.55 | В        |
| MOTA | 2359 | C   |         | 122        |        |        |        | 1.00 19.55 | В        |
| ATOM | 2360 | 0   | PHE B   | 122        | 37.889 | 20.029 | 17.301 |            | В        |
| ATOM | 2361 | N   | TYR B   |            | 35.829 | 20.357 | 18.182 | 1.00 20.50 | В        |
| ATOM | 2362 | CA  | TYR B   |            | 35.412 | 18.959 | 18.180 | 1.00 21.08 |          |
| ATOM | 2363 | CB  | TYR B   | 123        | 36.067 | 18.201 | 19.340 | 1.00 19.11 | В        |

| ATOM         | 2364         | CG      | TYR B          | 123        | 35.919           | 16.702           | 19.228           | 1.00 18.56               | В        |
|--------------|--------------|---------|----------------|------------|------------------|------------------|------------------|--------------------------|----------|
| ATOM         | 2365         | CD1     | TYR B          | 123        | 34.746           | 16.062           | 19.629           | 1.00 19.13               | В        |
| ATOM         | 2366         | CE1     | TYR B          | 123        | 34.572           | 14.695           | 19.446           | 1.00 17.75               | В        |
| MOTA         | 2367         | CD2     | TYR B          | 123        | 36.920           | 15.932           | 18.647           | 1.00 17.20               | В        |
| ATOM         | 2368         | CE2     | TYR B          | 123        | 36.762           | 14.566           | 18.455           | 1.00 17.38               | B        |
| ATOM         | 2369         | CZ      | TYR B          | 123        | 35.584           | 13.953           | 18.853           | 1.00 19.59               | В        |
| MOTA         | 2370         | OH      | TYR B          | 123        | 35.412           | 12.608           | 18.631           | 1.00 22.32               | В        |
| MOTA         | 2371         | C       | TYR B          | 123        | 33.896           | 18.957           | 18.351           | 1.00 21.83               | В        |
| MOTA         | 2372         | 0       | TYR B          | 123        | 33.365           | 19.708           | 19.165           | 1.00 23.26               | B        |
| ATOM         | 2373         | N       |                | 124        | 33.175           | 18.126           | 17.584           | 1.00 21.65               | В        |
| ATOM         | 2374         | CD      |                | 124        | 31.725           | 17.996           | 17.808           | 1.00 23.81               | B        |
| ATOM         | 2375         | CA      |                | 124        | 33.627           | 17.177           | 16.562           | 1.00 22.30               | В        |
| ATOM         | 2376         | CB      | PRO B          | 124        | 32.398           | 16.290           | 16.353           | 1.00 21.95               | В        |
| ATOM         | 2377         | CG      | PRO B          | 124        | 31.270           | 17.237           | 16.586           | 1.00 23.07               | В        |
| ATOM         | 2378         | C       | PRO B          | 124        | 34.128           | 17.813           | 15.266           | 1.00 22.20<br>1.00 24.43 | B<br>B   |
| ATOM         | 2379         | 0       | PRO B          | 124        | 34.204           | 19.035<br>16.971 | 15.149<br>14.291 | 1.00 24.43               | В        |
| ATOM         | 2380         | N<br>CA |                | 125<br>125 | 34.457<br>34.987 | 17.428           | 13,007           | 1.00 20.03               | В        |
| ATOM         | 2381<br>2382 | CB      | ALA B          |            | 35.571           | 16.236           | 12.244           | 1.00 20.20               | В        |
| MOTA<br>MOTA | 2382         | CD      |                | 125        | 34.057           | 18.222           | 12.078           | 1.00 22.42               | В        |
| ATOM         | 2384         | 0       |                | 125        | 34.512           | 19.129           | 11.400           | 1.00 24.48               | В        |
| ATOM         | 2385         | N       | GLN B          | 126        | 32,772           | 17.893           | 12.036           | 1.00 25.59               | B        |
| ATOM         | 2386         | CA      | GLN B          |            | 31.845           | 18.598           | 11.147           | 1.00 27.46               | В        |
| ATOM         | 2387         | CB      | GLN B          |            | 30.414           | 18,101           | 11.357           | 1.00 29.99               | В        |
| ATOM         | 2388         | CG      | GLN B          | 126        | 30.283           | 16.595           | 11.480           | 1.00 36.21               | В        |
| ATOM         | 2389         | CD      | GLN B          |            | 30.625           | 16.102           | 12.870           | 1.00 38.28               | В        |
| ATOM         | 2390         | OE1     | GLN B          | 126        | 30.558           | 14.905           | 13.158           | 1.00 40.46               | В        |
| ATOM         | 2391         | NE2     | GLN B          | 126        | 30.989           | 17.030           | 13.745           | 1.0040.92                | В        |
| ATOM         | 2392         | C       | GLN B          | 126        | 31.876           | 20.112           | 11.333           | 1.00 28.28               | В        |
| ATOM         | 2393         | 0       |                | 126        | 31.571           | 20.627           | 12.410           | 1.00 29.36               | В        |
| ATOM         | 2394         | N       | ILE B          | 127        | 32.221           | 20.831           | 10.273           | 1.00 27.17               | В        |
| MOTA         | 2395         | CA      | ILE B          | 127        | 32.292           | 22.279           | 10.353           | 1.00 27.02               | В        |
| ATOM         | 2396         | CB      | ILE B          | 127        | 33.656           | 22.716           | 10.931           | 1.00 27.21               | В        |
| ATOM         | 2397         | CG2     | ILE B          | 127        | 34.767           | 22.453           | 9.898            | 1.00 21.63               | В        |
| ATOM         | 2398         | CG1     | ILE B          | 127        | 33.612           | 24.195           | 11.316           | 1.00 24.63               | В        |
| ATOM         | 2399         | CD1     | ILE B          | 127        | 34.760           | 24.633           | 12.198           | 1.00 25.86               | В        |
| ATOM         | 2400         | C       | ILE B          | 127        | 32.117           | 22.903           | 8.969            | 1.00 27.10               | В        |
| ATOM         | 2401         | 0       | ILE B          | 127        | 32.393           | 22.258           | 7.956            | 1.00 26.58               | В        |
| ATOM         | 2402         | N       | LYS B          | 128        | 31.666           | 24.155           | 8.940            | 1.00 25.41               | В        |
| MOTA         | 2403         | CA      | LYS B          | 128        | 31.457           | 24.884           | 7.689            | 1.00 27.45               | В        |
| ATOM         | 2404         | CB      | LYS B          | 128        | 29.964           | 24.927           | 7.334            | 1.00 29.68               | В        |
| MOTA         | 2405         | CG      | LYS B          | 128        | 29.633           | 25.685           | 6.046            | 1.00 34.69               | В        |
| ATOM         | 2406         | CD      | LYS B          |            | 30.129           | 24.954           | 4.793            | 1.00 38.25               | В        |
| ATOM         | 2407         | CE      | LYS B          |            | 29.802           | 25.742           | 3.517            | 1.00 40.20               | B<br>B   |
| ATOM         | 2408         | NZ      | LYS B          |            | 30.281           | 25.071           | 2.271<br>7.861   | 1.00 39.87<br>1.00 25.41 | В        |
| ATOM         | 2409         | C       | LYS B          |            | 31.983           | 26.301<br>27.019 | 8.759            | 1.00 25.41               | В        |
| ATOM         | 2410         | O<br>NT | LYS B<br>VAL B |            | 31.559<br>32.911 | 26.700           | 7.002            | 1.00 25.70               | В        |
| MOTA         | 2411         | N<br>CA | VAL B          |            | 33.493           | 28.034           | 7.078            | 1.00 24.82               | В        |
| MOTA<br>MOTA | 2412<br>2413 | CB      | VAL B          |            | 35.013           | 27.956           | 7.329            | 1.00 24.17               | В        |
| ATOM         | 2413         |         | VAL B          |            | 35.592           | 29.351           | 7.452            | 1.00 22.14               | В        |
| ATOM         | 2414         | CG2     |                |            | 35.295           | 27.136           | 8.583            | 1.00 22.44               | В        |
| ATOM         | 2416         | C       | VAL B          |            | 33.248           | 28.791           | 5.778            | 1.00 25.17               | В        |
| ATOM         | 2417         | 0       | VAL B          |            | 33.532           | 28.283           | 4.701            | 1.00 25.50               | В        |
| MOTA         | 2418         | N       | ARG B          |            | 32.724           | 30.007           | 5.884            | 1.00 27.21               | В        |
| ATOM         | 2419         | CA      | ARG B          |            | 32.445           | 30.814           | 4.701            | 1.00 28.49               | В        |
| ATOM         | 2420         | CB      |                | 130        | 30.931           | 30.920           | 4.470            | 1.00 31.77               | В        |
| ATOM         | 2421         | CG      | ARG B          | 130        | 30.239           | 29.591           | 4.183            | 1.00 34.92               | В        |
| ATOM         | 2422         | CD      | ARG B          | 130        | 28.927           | 29.813           | 3.432            | 1.00 41.30               | В        |
| ATOM         | 2423         | NE      | ARG B          | 130        | 27.834           | 30.254           | 4.291            | 1.00 42.15               | В        |
| MOTA         | 2424         | CZ      | ARG B          | 130        | 27.032           | 29.426           | 4.953            | 1.00 46.05               | В        |
| MOTA         | 2425         | NH1     | ARG B          | 130        | 27.200           | 28.112           | 4.849            | 1.00 45.50               | В        |
| ATOM         | 2426         | NH2     | ARG B          | 130        | 26.061           | 29.910           | 5.718            | 1.00 48.30               | В        |
| MOTA         | 2427         | C       | ARG B          | 130        | 33.036           | 32.211           | 4.792            | 1.00 27.57               | В        |
| ATOM         | 2428         | 0       | ARG B          | 130        | 33.130           | 32.789           | 5.874            | 1.00 26.00               | В        |
| MOTA         | 2429         | N       | TRP B          | 131        | 33.440           | 32.744           | 3.645            | 1.00 27.37               | В        |
| MOTA         | 2430         | CA      | TRP B          |            | 34.004           | 34.085           | 3.571            | 1.00 30.27               | В        |
| MOTA         | 2431         | CB      | TRP B          |            | 35.281           | 34.083           | 2.737            | 1.00 30.21               | В        |
| MOTA         | 2432         | CG      | TRP B          |            | 36.532           | 33.844           | 3.521            | 1.00 32.32               | В        |
| MOTA         | 2433         | CD2     |                |            | 37.155           | 34.757           | 4.432            | 1.00 32.41               | B<br>B   |
| ATOM         | 2434         | CE2     |                |            | 38.334           | 34.142           | 4.900            | 1.00 33.07               | В        |
| ATOM         | 2435         | CE3     |                |            | 36.831           | 36.039           | 4.897            | 1.00 31.75<br>1.00 32.80 | В        |
| ATOM         | 2436         | CD1     |                |            | 37.333           | 32.741           | 3.478            | 1.00 32.80               | B        |
| MOTA         | 2437         | NE1     | TRP B          | 131        | 38.420           | 32.913           | 4.300            | T.00 3T.33               | <i>ن</i> |

| ATOM | 2438 | CZ2 | TRP B | 131  | 39.193 | 34.764 | 5.812  | 1.00 32.82 | В |
|------|------|-----|-------|------|--------|--------|--------|------------|---|
| ATOM | 2439 | CZ3 |       | 131  | 37.680 | 36.656 | 5.800  | 1.00 32.08 | В |
| ATOM | 2440 | CH2 |       | 131  | 38.849 | 36.017 | 6.249  | 1.00 33.40 | В |
|      |      |     |       | 131  | 33.003 | 35.064 | 2.949  | 1.00 32.99 | В |
| ATOM | 2441 | C   |       |      |        |        |        |            | В |
| MOTA | 2442 | 0   |       | 131  | 32.367 | 34.759 | 1.940  | 1.00 32.18 |   |
| MOTA | 2443 | N   |       | 132  | 32.879 | 36.242 | 3.550  | 1.00 35.48 | В |
| ATOM | 2444 | CA  | PHE B | 132  | 31.962 | 37.263 | 3.058  | 1.00 39.35 | В |
| MOTA | 2445 | CB  | PHE B | 132  | 30.856 | 37.501 | 4.077  | 1.00 38.14 | В |
| ATOM | 2446 | CG  | PHE B | 132  | 29.843 | 36.407 | 4.123  | 1.00 38.39 | В |
| ATOM | 2447 | CD1 | PHE B | 132  | 28.804 | 36.373 | 3.202  | 1.00 38.31 | В |
| ATOM | 2448 | CD2 |       | 132  | 29.930 | 35.399 | 5.075  | 1.00 38.21 | В |
| ATOM | 2449 | CE1 |       | 132  | 27.860 | 35.348 | 3.229  | 1.00 39.26 | В |
|      |      |     |       |      | 28.992 | 34.369 | 5.111  | 1.00 38.83 | В |
| ATOM | 2450 | CE2 |       | 132  |        |        |        |            |   |
| MOTA | 2451 | CZ  |       | 132  | 27.954 | 34.345 | 4.184  |            | В |
| MOTA | 2452 | C   |       | 132  | 32.650 | 38.583 | 2.755  | 1.00 41.59 | В |
| ATOM | 2453 | 0   | PHE B | 132  | 33.515 | 39.025 | 3.508  | 1.00 42.72 | B |
| ATOM | 2454 | N   | ARG B | 133  | 32.267 | 39.203 | 1.640  | 1.00 45.04 | B |
| ATOM | 2455 | CA  | ARG B | 133  | 32.829 | 40.490 | 1.242  | 1.00 48.28 | В |
| ATOM | 2456 | CB  | ARG B | 133  | 32.510 | 40.787 | -0.227 | 1.00 51.68 | В |
| ATOM | 2457 | CG  |       | 133  | 33.293 | 41.958 | -0.829 | 1.00 55.78 | В |
| ATOM | 2458 | CD  |       | 133  | 34.787 | 41.655 | -0.867 | 1.00 57.07 | В |
|      |      |     |       | 133  | 35.580 | 42.741 | -1.440 | 1.00 59.30 | В |
| ATOM | 2459 | NE  |       |      |        |        |        | 1.00 60.93 | В |
| ATOM | 2460 | CZ  |       | 133  | 35.523 | 43.135 | -2.710 |            |   |
| ATOM | 2461 | NHI |       | 133  | 34.702 | 42.536 | -3.564 | 1.00 61.44 | В |
| MOTA | 2462 | NH2 | ARG B | 133  | 36.295 | 44.132 | -3.128 | 1.00 61.77 | В |
| MOTA | 2463 | C   | ARG B | 133  | 32.129 | 41.492 | 2.145  | 1.00 49.07 | В |
| ATOM | 2464 | 0   | ARG B | 133  | 32.299 | 41.460 | 3.358  | 1.00 51.26 | В |
| ATOM | 2465 | N   | ASN B | 134  | 31.331 | 42.376 | 1.572  | 1.00 49.23 | В |
| ATOM | 2466 | CA  | ASN B |      | 30.614 | 43.336 | 2.393  | 1.00 48.83 | В |
| ATOM | 2467 | CB  | ASN B |      | 30.582 | 44.702 | 1.710  | 1.00 45.93 | В |
|      |      |     |       |      | 31.973 | 45.290 | 1.523  | 1.00 45.10 | В |
| ATOM | 2468 | CG  | ASN B |      |        |        |        | 1.00 41.81 | В |
| MOTA | 2469 | OD1 |       |      | 32.450 | 45.440 | 0.397  |            |   |
| ATOM | 2470 | ND2 | ASN B |      | 32.634 | 45.618 | 2.634  | 1.00 41.82 | В |
| MOTA | 2471 | C   | asn b | 134  | 29.203 | 42.795 | 2.594  | 1.00 50.25 | В |
| ATOM | 2472 | 0   | ASN B | 134  | 28.222 | 43.529 | 2.508  | 1.00 52.28 | B |
| ATOM | 2473 | N   | ASP B | 135  | 29.122 | 41.496 | 2.868  | 1.00 50.15 | В |
| ATOM | 2474 | CA  | ASP B | 135  | 27.847 | 40.819 | 3.072  | 1.00 51.07 | В |
| ATOM | 2475 | C   | ASP B | 135  | 27.590 | 39.855 | 1.910  | 1.00 51.76 | В |
| ATOM | 2476 | 0   | ASP B |      | 26.586 | 39.136 | 1.893  | 1.00 51.82 | В |
|      |      |     | GLN B |      | 28.507 | 39.856 | 0.944  | 1.00 50.97 | В |
| ATOM | 2477 | N   |       |      |        | 38.999 | -0.240 | 1.00 51.24 | В |
| MOTA | 2478 | CA  |       | 136  | 28.421 |        |        |            |   |
| MOTA | 2479 | CB  | 7     | 136  | 28.766 | 39.805 | -1.493 | 1.00 53.78 | B |
| ATOM | 2480 | CG  | GLN B | 136  | 28.736 | 39.000 | -2.783 | 1.00 58.16 | В |
| ATOM | 2481 | CD  | GLN B | 136  | 29.675 | 39.559 | -3.839 | 1.00 59.39 | В |
| ATOM | 2482 | OE1 | GLN B | 136  | 30.895 | 39.527 | -3.675 | 1.00 60.12 | В |
| MOTA | 2483 | NE2 | GLN B | 136  | 29.110 | 40.078 | -4.926 | 1.00 59.45 | В |
| ATOM | 2484 | С   | GLN B | 136  | 29.395 | 37.825 | -0.124 | 1.00 49.46 | В |
| ATOM | 2485 | Ō   | GLN B |      | 30.607 | 38.026 | -0.035 | 1.00 48.29 | В |
| ATOM | 2486 | N   |       | 137  | 28.873 | 36.603 | -0.144 | 1.00 47.64 | В |
|      |      |     | GLU B |      | 29.730 | 35.432 | -0.027 | 1.00 46.85 | В |
| ATOM | 2487 | CA  |       |      |        |        |        | 1.00 47.17 | В |
| MOTA | 2488 | СВ  | GLU B |      | 28.899 | 34.152 | 0.022  |            |   |
| MOTA | 2489 | CG  | GLU B |      | 29.695 | 32.975 | 0.556  | 1.00 50.22 | В |
| ATOM | 2490 | CD  | GLU B |      | 28.866 | 31.726 | 0.743  | 1.00 52.65 | В |
| MOTA | 2491 | OE1 | GLU B | 137  | 27.699 | 31.842 | 1.171  | 1.00 55.57 | В |
| MOTA | 2492 | OE2 | GLU B | 137  | 29.391 | 30.623 | 0.478  | 1.00 54.41 | В |
| ATOM | 2493 | С   | GLU B | 137  | 30.755 | 35.320 | -1.149 | 1.00 45.23 | В |
| ATOM | 2494 | 0   | GLU B |      | 30.445 | 35.544 | -2.314 | 1.00 45.04 | В |
| ATOM | 2495 | N   | GLU B |      | 31.983 | 34.977 | -0.776 | 1.00 44.63 | В |
|      |      |     |       | 138  | 33.078 | 34.808 | -1.724 | 1.00 44.36 | В |
| ATOM | 2496 | CA  |       |      |        |        |        | 1.00 45.65 | В |
| MOTA | 2497 | CB  | GLU B |      | 34.284 | 35.658 | -1.307 |            |   |
| MOTA | 2498 | CG  | GLU B |      | 34.076 | 37.166 | -1.320 | 1.00 48.42 | В |
| MOTA | 2499 | CD  | GLU B | 138  | 34.144 | 37.761 | -2.717 | 1.00 50.71 | В |
| MOTA | 2500 | OE1 | GLU B | 138  | 35.120 | 37.471 | -3.442 | 1.00 51.60 | В |
| ATOM | 2501 | OE2 | GLU B | 138  | 33.227 | 38.526 | -3.086 | 1.00 50.99 | В |
| ATOM | 2502 | C   |       | 1.38 | 33.498 | 33.335 | -1.740 | 1.00 43.68 | В |
| ATOM | 2502 | 0   | GLU B |      | 33.831 | 32.769 | -0.697 | 1.00 43.53 | В |
| ATOM | 2503 | N   | THR B | 139  | 33.468 | 32.711 | -2.914 | 1.00 42.58 | В |
|      |      |     | THR B | 139  | 33.400 | 31.313 | -3.044 | 1.00 41.76 | В |
| ATOM | 2505 | CA  |       |      | 32.739 | 30.415 | -3.543 | 1.00 41.04 | В |
| ATOM | 2506 | CB  | THR B | 139  |        |        |        |            | В |
| ATOM | 2507 | OG1 |       |      | 32.207 | 30.948 | -4.759 | 1.00 40.71 |   |
| ATOM | 2508 | CG2 |       | 139  | 31.641 | 30.325 | -2.492 | 1.00 41.89 | В |
| ATOM | 2509 | C   | THR B |      | 35.038 | 31.245 | -4.026 | 1.00 40.93 | В |
| ATOM | 2510 | 0   | THR B | 139  | 35.855 | 30.326 | -3.981 | 1.00 40.04 | В |
| ATOM | 2511 | N   | ALA B | 140  | 35.096 | 32.224 | -4.920 | 1.00 40.67 | В |
| •    |      |     |       |      |        |        |        |            |   |

| ATOM | 2512 | CA      | ALA B 1 | 40               | 36.179 | 32.305 | -5.887         | 1.00 41.22 | В          |
|------|------|---------|---------|------------------|--------|--------|----------------|------------|------------|
| ATOM | 2513 | CB      | ALA B 1 | .40              | 35.714 | 33.016 | -7.158         | 1.00 41.13 | B          |
| ATOM | 2514 | C       | ALA B 1 | 40               | 37.247 | 33.126 | -5.177         | 1.00 41.09 | В          |
| ATOM | 2515 | 0       | ALA B 1 | .40              | 36.976 | 34.232 | -4.693         | 1.00 43.11 | В          |
| ATOM | 2516 | N       | GLY B 1 | .41              | 38.455 | 32.582 | -5.102         | 1.00 39.60 | В          |
| ATOM | 2517 | CA      | GLY B 1 |                  | 39.526 | 33.278 | -4.418         | 1.00 35.11 | В          |
| ATOM | 2518 | C       | GLY B 1 |                  | 39.739 | 32,651 | -3.051         | 1.00 33.42 | В          |
| ATOM | 2519 | 0       |         | 41               | 40.605 | 33.076 | -2.287         | 1.00 31.24 | В          |
| ATOM | 2520 | И       |         | L42              | 38.945 | 31.628 | -2.750         | 1.00 31.89 | В          |
| ATOM | 2521 | CA      |         | L42              | 39.033 | 30.937 | -1.470         | 1.00 32.27 | В          |
| ATOM | 2521 | CB      |         | L <del>1</del> 2 | 37.645 | 30.790 | -0.813         | 1.00 31.90 | В          |
|      |      | CG1     |         | L42<br>L42       | 37.733 |        | 0.400          | 1.00 32.37 | В          |
| MOTA | 2523 | CG2     |         | L42<br>L42       | 37.735 | 32.161 | -0.402         | 1.00 32.57 | В          |
| ATOM | 2524 |         |         |                  |        |        |                | 1.00 32.33 | В          |
| ATOM | 2525 | C       |         | L42              | 39.652 | 29.552 | -1.564         |            |            |
| ATOM | 2526 | 0       |         | L42              | 39.211 | 28.712 | -2.343         | 1.00 32.44 | В          |
| ATOM | 2527 | N       |         | L43              | 40.676 | 29.326 | -0.752         | 1.00 30.76 | В          |
| ATOM | 2528 | CA      |         | L43              | 41.357 | 28.045 | -0.702         | 1.00 29.79 | В          |
| ATOM | 2529 | CB      |         | L43              | 42.815 | 28.154 | -1.162         | 1.00 29.63 | В          |
| ATOM | 2530 | CG1     |         | L <b>4</b> 3     | 43.439 | 26.768 | -1.212         | 1.00 31.60 | B          |
| ATOM | 2531 | CG2     |         | L43              | 42.885 | 28.819 | -2.514         | 1.00 33.43 | B          |
| ATOM | 2532 | С       | VAL B 1 | L43              | 41.357 | 27.575 | 0.749          | 1.00 30.61 | В          |
| MOTA | 2533 | 0       | VAL B 1 | L43              | 41.665 | 28.338 | 1.667          | 1.00 28.64 | В          |
| MOTA | 2534 | N       | SER B 1 | L44              | 41.017 | 26.313 | 0.950          | 1.00 29.65 | B          |
| ATOM | 2535 | CA      | SER B 3 | L44              | 40.970 | 25.756 | 2.282          | 1.00 28.42 | В          |
| ATOM | 2536 | CB      | SER B   | L <b>44</b>      | 39.541 | 25.325 | 2.605          | 1.00 29.23 | В          |
| MOTA | 2537 | OG      | SER B   | L <b>44</b>      | 39.457 | 24.705 | 3.875          | 1.00 33.81 | В          |
| ATOM | 2538 | C       | SER B 1 | L44              | 41.900 | 24.562 | 2.373          | 1.00 27.32 | В          |
| MOTA | 2539 | 0       | SER B 1 | L44              | 42.101 | 23.840 | 1.397          | 1.00 27.40 | В          |
| ATOM | 2540 | N       | THR B   | L <b>4</b> 5     | 42.492 | 24.372 | 3.542          | 1.00 25.70 | В          |
| ATOM | 2541 | CA      | THR B 1 | L45              | 43.364 | 23.227 | 3.755          | 1.00 24.82 | В          |
| ATOM | 2542 | CB      | THR B   | 145              | 44.272 | 23.418 | 4.995          | 1.00 25.01 | В          |
| ATOM | 2543 | OG1     | THR B   | 145              | 43.467 | 23.399 | 6.186          | 1.00 25.18 | В          |
| ATOM | 2544 | CG2     |         | 145              | 45.022 | 24.743 | 4.923          | 1.00 23.27 | В          |
| ATOM | 2545 | C       |         | 145              | 42.392 | 22.100 | 4.071          | 1.00 24.16 | В          |
| ATOM | 2546 | 0       |         | 145              | 41.200 | 22.335 | 4.272          | 1.00 23.86 | В          |
| ATOM | 2547 | N       |         | 146              | 42.865 | 20.854 | 4.081          | 1.00 23.17 | В          |
| ATOM | 2548 | CD      |         | 146              | 44.116 | 20.231 | 3.618          | 1.00 22.29 | В          |
| ATOM | 2549 | CA      |         | 146              | 41.854 | 19.852 | 4.419          | 1.00 23.18 | В          |
| ATOM | 2550 | CB      |         | 146              | 42.521 | 18.536 | 4.008          | 1.00 24.20 | В          |
| ATOM | 2551 | CG      |         | 146              | 43.998 | 18.833 | 4.162          | 1.00 22.82 | В          |
|      |      | C       |         | 146              | 41.597 | 19.945 | 5.933          | 1.00 22.63 | В          |
| ATOM | 2552 |         |         | 146              | 42.213 | 20.766 | 6.625          | 1.00 21.32 | В          |
| ATOM | 2553 | O<br>74 |         |                  | 40.667 | 19.146 | 6.445          | 1.00 22.60 | В          |
| ATOM | 2554 | N       | LEU B   |                  |        | 19.140 | 7.883          | 1.00 22.34 | В          |
| ATOM | 2555 | CA      |         | 147              | 40.414 | 18.216 | 8.213          | 1.00 22.34 | В          |
| ATOM | 2556 | CB      |         | 147              | 39.241 |        | 9.691          | 1.00 22.17 | В          |
| ATOM | 2557 | CG      |         | 147              | 38.934 | 17.973 |                |            | В          |
| ATOM | 2558 | CD1     |         | 147              | 38.629 | 19.288 | 10.368         |            |            |
| MOTA | 2559 | CD2     |         |                  | 37.746 | 17.026 | 9.826          | 1.00 25.55 | В          |
| ATOM | 2560 | C       | LEU B   |                  | 41.710 | 18.609 | 8.515          | 1.00 21.99 | В          |
| ATOM | 2561 | 0       | LEU B : |                  | 42.290 | 17.640 | 8.024          | 1.00 21.35 | В          |
| ATOM | 2562 | N       | ILE B   |                  | 42.175 |        | 9.581          | 1.00 20.48 | В          |
| ATOM | 2563 | CA      | ILE B   |                  | 43.406 | 18.813 | 10.228         | 1.00 19.15 | B          |
| ATOM | 2564 | CB      | ILE B   |                  | 44.392 | 19.990 | 10.403         | 1.00 21.68 | В          |
| ATOM | 2565 | CG2     |         |                  | 45.666 | 19.505 | 11.065         | 1.00 20.10 | В          |
| ATOM | 2566 | CG1     |         |                  | 44.728 | 20.609 |                | 1.00 25.04 | В          |
| ATOM | 2567 | CD1     |         |                  | 45.416 | 19.649 |                | 1.00 29.06 | В          |
| MOTA | 2568 | C       | ILE B   | 148              | 43.160 | 18.208 | 11.603         | 1.00 17.56 | В          |
| MOTA | 2569 | 0       | ILE B   | 148              | 42.566 | 18.852 | 12.467         | 1.00 14.88 | В          |
| MOTA | 2570 | N       | ARG B   | 149              | 43.625 | 16.973 | 11.795         | 1.00 15.95 | В          |
| MOTA | 2571 | CA      | ARG B   | 149              | 43.492 | 16.273 | 13.077         | 1.00 17.47 | . <b>B</b> |
| MOTA | 2572 | CB      | ARG B   | 149              | 43.420 | 14.763 | 12.852         | 1.00 16.94 | В          |
| MOTA | 2573 | CG      | ARG B   | 149              | 43.202 | 13.941 | 14.128         | 1.00 20.29 | В          |
| ATOM | 2574 | CD      | ARG B   | 149              | 43.252 | 12.448 | 13.821         |            | В          |
| ATOM | 2575 | NE      | ARG B   |                  | 42.168 | 12.028 | 12.938         | 1.00 21.97 | В          |
| ATOM | 2576 | CZ      | ARG B   |                  | 40.934 | 11.742 | 13.348         | 1.00 23.22 | В          |
| ATOM | 2577 | NH1     |         |                  | 40.015 | 11.374 | 12.471         | 1.00 23.89 | В          |
| ATOM | 2578 | NH2     |         |                  | 40.623 | 11.803 | 14.636         |            | В          |
| ATOM | 2579 | C       | ARG B   |                  | 44.720 | 16.603 | 13.937         | 1.00 17.66 | В          |
| ATOM | 2579 | 0       | ARG B   |                  | 45.850 | 16.311 | 13.549         |            | В          |
| ATOM | 2580 | N       | ASN B   |                  | 44.496 | 17.210 | 15.098         | 1.00 16.67 | В          |
|      | 2581 | CA      | ASN B   |                  | 45.592 | 17.593 | 15.980         | 1.00 16.94 | В          |
| ATOM |      | CA      | ASN B   |                  | 45.174 | 18.756 | 16.890         | 1.00 15.38 | В          |
| MOTA | 2583 |         | ASN B   |                  | 44.899 | 20.034 | 16.118         | 1.00 18.41 | В          |
| MOTA | 2584 | CG      |         | 150              |        |        |                |            | В          |
| ATOM | 2585 | OD1     | . מייאט | ·                | 005    | 20.300 | <del>.</del> . |            |            |

| ATOM | 2586 | ND2         | ASN I       | 3 150         | 43.790 | 20.691 | 16.440 | 1.00 17.88 | В |
|------|------|-------------|-------------|---------------|--------|--------|--------|------------|---|
|      |      | C           |             | 3 150         | 46.116 | 16.452 | 16.841 | 1.00 18.47 | B |
| ATOM | 2587 |             |             |               |        |        |        |            |   |
| ATOM | 2588 | 0           | ASN I       | 3 150         | 47.220 | 16.540 | 17.384 | 1.00 17.03 | В |
| ATOM | 2589 | N           | GLY I       | 3 151         | 45.324 | 15.391 | 16.968 | 1.00 17.77 | В |
| ATOM | 2590 | CA          | GLY I       | 3 151         | 45.734 | 14.251 | 17.770 | 1.00 19.16 | В |
|      |      |             |             |               |        |        |        |            |   |
| MOTA | 2591 | C           | GLY I       |               | 45.258 | 14.293 | 19.213 | 1.00 20.44 | В |
| ATOM | 2592 | 0           | GLY I       | 3 151         | 45.198 | 13.264 | 19.877 | 1.00 22.31 | В |
| ATOM | 2593 | N           | ASP I       | 3 152         | 44.906 | 15.475 | 19.701 | 1.00 20.79 | В |
|      |      |             |             |               |        |        |        |            |   |
| MOTA | 2594 | CA          |             | 3 152         | 44.450 | 15.624 | 21.077 | 1.00 21.97 | В |
| ATOM | 2595 | CB          | ASP I       | 3 152         | 45.192 | 16.790 | 21.748 | 1.00 21.95 | В |
| MOTA | 2596 | CG          | ASP I       | 3 152         | 45.027 | 18.101 | 20.992 | 1.00 28.05 | В |
|      |      |             |             | 3 152         | 45.764 | 19.060 | 21.300 | 1.00 30.94 | В |
| ATOM | 2597 | OD1         |             |               |        |        |        |            |   |
| ATOM | 2598 | QD2         | ASP I       | 3 152         | 44.158 | 18.181 | 20.090 | 1.00 28.02 | В |
| ATOM | 2599 | C           | ASP I       | 3 152         | 42.939 | 15.847 | 21.175 | 1.00 20.51 | В |
| ATOM | 2600 | 0           |             | 3 152         | 42.474 | 16.619 | 22.010 | 1.00 21.63 | В |
|      |      |             |             |               |        |        |        |            |   |
| ATOM | 2601 | N           |             | 3 153         | 42.183 | 15.166 | 20.322 | 1.00 19.19 | В |
| MOTA | 2602 | CA          | TRP I       | 3 153         | 40.724 | 15.278 | 20.300 | 1.00 16.82 | В |
| ATOM | 2603 | CB          | TRP I       | 3 153         | 40.121 | 14.865 | 21.657 | 1.00 15.80 | В |
|      |      |             |             |               |        |        | 22.005 | 1.00 16.21 | В |
| ATOM | 2604 | CG          |             | 3 153         | 40.326 | 13.408 |        |            |   |
| ATOM | 2605 | CD2         | TRP I       | 3 153         | 39.415 | 12.322 | 21.756 | 1.00 16.58 | В |
| ATOM | 2606 | CE2         | TRP I       | 3 153         | 40.047 | 11.134 | 22.188 | 1.00 15.08 | В |
| ATOM | 2607 | CE3         | TRP I       | 3 153         | 38.125 | 12.238 | 21.211 | 1.00 15.69 | В |
|      |      |             |             |               |        |        |        |            |   |
| ATOM | 2608 | CDI         | TRP I       | 3 153         | 41.435 | 12.848 | 22.564 | 1.00 14.68 | B |
| MOTA | 2609 | NE1         | TRP I       | 3 153         | 41.278 | 11.483 | 22.677 | 1.00 15.53 | В |
| ATOM | 2610 | CZ2         | TRP F       | 3 153         | 39.438 | 9.879  | 22.087 | 1.00 15.60 | В |
|      |      |             | <del></del> |               |        |        |        |            | В |
| MOTA | 2611 | CZ3         |             | 3 153         | 37.518 | 10.987 | 21.112 | 1.00 14.22 |   |
| MOTA | 2612 | CH2         | TRP 1       | B <b>1</b> 53 | 38.176 | 9.827  | 21.549 | 1.00 13.89 | В |
| ATOM | 2613 | C           | TRP I       | B 153         | 40.194 | 16.660 | 19.890 | 1.00 16.09 | В |
|      |      |             |             | 3 153         | 39.159 | 17.110 | 20.379 | 1.00 14.28 | В |
| ATOM | 2614 | 0           |             |               |        |        |        |            |   |
| ATOM | 2615 | N           | THR I       | 3 154         | 40.929 | 17.342 | 19.020 | 1.00 15.11 | В |
| ATOM | 2616 | CA          | THR I       | B 154         | 40.499 | 18.627 | 18.483 | 1.00 16.19 | В |
| ATOM | 2617 | CB          | ו קאיזי     | 3 154         | 41.176 | 19.877 | 19.150 | 1.00 18.02 | В |
|      |      |             |             |               |        |        |        |            |   |
| ATOM | 2618 | OG1         | THR I       | B 154         | 42.602 | 19.804 | 19.008 | 1.00 19.50 | В |
| MOTA | 2619 | CG2         | THR I       | B 154         | 40.788 | 20.000 | 20.608 | 1.00 15.03 | В |
| ATOM | 2620 | С           | THR 1       | B 154         | 40.908 | 18.602 | 17.024 | 1.00 15.24 | В |
|      |      |             |             |               |        | 17.832 | 16.635 | 1.00 15.24 | В |
| ATOM | 2621 | 0           |             | B 154         | 41.773 |        |        |            |   |
| MOTA | 2622 | N           | PHE ]       | B 155         | 40.269 | 19.437 | 16.220 | 1.00 18.04 | В |
| ATOM | 2623 | CA          | PHE I       | B 155         | 40.577 | 19.538 | 14.801 | 1.00 16.03 | В |
| ATOM | 2624 | CB          |             | B 155         | 39.404 | 19.042 | 13.938 | 1.00 16.98 | В |
|      |      |             |             |               |        |        |        |            |   |
| MOTA | 2625 | CG          | PHE ]       | B 155         | 39.069 | 17.579 | 14.118 | 1.00 17.58 | В |
| ATOM | 2626 | CD1         | PHE 1       | B 155         | 38.133 | 17.170 | 15.074 | 1.00 18.20 | В |
| ATOM | 2627 | CD2         | PHE         | B 155         | 39.670 | 16.611 | 13.312 | 1.00 17.71 | В |
|      |      |             |             |               |        |        |        |            | В |
| MOTA | 2628 | CE1         |             | B 155         | 37.799 | 15.810 | 15.223 | 1.00 17.81 |   |
| MOTA | 2629 | CE2         | PHE :       | B 155         | 39.346 | 15.250 | 13.451 | 1.00 17.57 | B |
| MOTA | 2630 | CZ          | PHE :       | B 155         | 38.407 | 14.849 | 14.409 | 1.00 16.39 | В |
|      |      | C           |             | B 155         | 40.793 | 21.015 | 14.503 | 1.00 16.67 | В |
| ATOM | 2631 |             |             |               |        |        |        |            |   |
| MOTA | 2632 | 0           | PHE :       | B 155         | 40.532 | 21.870 | 15.352 | 1.00 16.84 | В |
| ATOM | 2633 | N           | GLN :       | B 156         | 41.281 | 21.312 | 13.304 | 1.00 14.72 | В |
| ATOM | 2634 | CA          | GLN :       | B 156         | 41.467 | 22.689 | 12.886 | 1.00 14.66 | В |
|      |      |             |             |               |        |        |        | 1.00 16.69 | В |
| ATOM | 2635 | CB          |             | B 156         | 42.811 | 23.264 | 13.357 |            |   |
| MOTA | 2636 | CG          | GLN :       | B 156         | 44.039 | 22.698 | 12.669 | 1.00 15.65 | В |
| ATOM | 2637 | $^{\rm CD}$ | GLN :       | B 156         | 45.292 | 23.486 | 13.011 | 1.00 17.87 | В |
| ATOM | 2638 | OE1         | GLN :       | B 156         | 45.477 | 24.617 | 12.555 | 1.00 17.56 | В |
|      |      |             |             |               |        |        |        |            |   |
| MOTA | 2639 | NE2         | GLN :       | B 156         | 46.153 | 22.897 | 13.830 | 1.00 15.40 | В |
| ATOM | 2640 | C           | GLN :       | B 156         | 41.398 | 22.722 | 11.371 | 1.00 14.00 | В |
| ATOM | 2641 | 0           | GLN :       | B 156         | 41.477 | 21.691 | 10.716 | 1.00 15.17 | В |
|      |      |             | ILE :       |               | 41.241 | 23.911 | 10.818 | 1.00 15.34 | В |
| MOTA | 2642 | N           |             |               |        |        |        |            |   |
| MOTA | 2643 | CA          | ILE :       | B 157         | 41.165 | 24.057 | 9.383  | 1.00 17.26 | В |
| ATOM | 2644 | CB          | ILE         | B 157         | 39.791 | 23.585 | 8.856  | 1.00 16.56 | В |
| ATOM | 2645 | CG2         | TT.E        | B 157         | 38.675 | 24.429 | 9.474  | 1.00 13.07 | В |
|      |      |             | ·           |               |        |        |        |            |   |
| MOTA | 2646 | CG1         |             |               | 39.765 | 23.649 | 7.326  | 1.00 17.72 | В |
| MOTA | 2647 | CD1         | ILE :       | B 157         | 38.583 | 22.913 | 6.712  | 1.00 14.50 | В |
| ATOM | 2648 | C           | ILE         | B 157         | 41.379 | 25.523 | 9.074  | 1.00 18.67 | В |
|      |      |             |             | B 157         | 40.823 | 26.391 | 9.745  | 1.00 22.28 | В |
| ATOM | 2649 | 0           |             |               |        |        |        |            |   |
| ATOM | 2650 | N           |             | B 158         | 42.217 | 25.795 | 8.083  | 1.00 18.98 | В |
| MOTA | 2651 | CA          | LEU         | B 158         | 42.508 | 27.162 | 7.690  | 1.00 20.77 | В |
| MOTA | 2652 | CB          |             | в 158         | 44.022 | 27.368 | 7.555  | 1.00 22.23 | В |
|      |      |             |             |               |        |        |        | 1.00 26.12 |   |
| ATOM | 2653 | CG          |             | B 158         | 44.851 | 27.525 | 8.838  |            | В |
| MOTA | 2654 | CD1         | LEU         | B 158         | 44.689 | 26.320 | 9.740  | 1.00 29.01 | В |
| MOTA | 2655 | CD2         | LEU         | B 158         | 46.311 | 27.701 | 8.465  | 1.00 28.46 | В |
|      |      | C           |             | B 158         | 41.817 | 27.484 | 6.371  | 1.00 20.61 | В |
| ATOM | 2656 | -           |             |               |        |        |        |            |   |
| MOTA | 2657 | 0           |             | B 158         | 41.934 | 26.734 | 5.401  | 1.00 19.39 | В |
| MOTA | 2658 | N           | VAL         | B 159         | 41.088 | 28.596 | 6.346  | 1.00 21.67 | В |
| ATOM | 2659 | CA          | VAL         | B 159         | 40.380 | 29.011 | 5.141  | 1.00 21.90 | В |
|      |      | <del></del> | . —         |               |        |        |        |            | _ |

| ATOM                                    | 2660                                                                                                                                                                                                                                 | CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 159                                                                       | 38.855                                                                                                                                                                                                                                                                              | 29.061                                                                                                                                                                                             | 5.365                                                                                                                                                                                     | 1.00 22.06                                                                                                                                                                                                                                                                                                                               | В                                                                  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| ATOM                                    | 2661                                                                                                                                                                                                                                 | CG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 159                                                                       | 38.147                                                                                                                                                                                                                                                                              | 29.252                                                                                                                                                                                             | 4.043                                                                                                                                                                                     | 1.00 20.55                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2662                                                                                                                                                                                                                                 | CG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 159                                                                       | 38.381                                                                                                                                                                                                                                                                              | 27.766                                                                                                                                                                                             | 6.009                                                                                                                                                                                     | 1.00 20.83                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2663                                                                                                                                                                                                                                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                            | 159                                                                       | 40.899                                                                                                                                                                                                                                                                              | 30.379                                                                                                                                                                                             | 4.749                                                                                                                                                                                     | 1.00 21.80                                                                                                                                                                                                                                                                                                                               | В                                                                  |
|                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                           |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                                                                           | 1.00 20.82                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2664                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | 159                                                                       | 40.721                                                                                                                                                                                                                                                                              | 31.357                                                                                                                                                                                             | 5.473                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| ATOM                                    | 2665                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                            | 160                                                                       | 41.555                                                                                                                                                                                                                                                                              | 30.416                                                                                                                                                                                             | 3.592                                                                                                                                                                                     | 1.00 23.56                                                                                                                                                                                                                                                                                                                               | B                                                                  |
| ATOM                                    | 2666                                                                                                                                                                                                                                 | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 160                                                                       | 42.179                                                                                                                                                                                                                                                                              | 31.613                                                                                                                                                                                             | 3.055                                                                                                                                                                                     | 1.00 25.12                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2667                                                                                                                                                                                                                                 | CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 160                                                                       | 43.580                                                                                                                                                                                                                                                                              | 31.257                                                                                                                                                                                             | 2.559                                                                                                                                                                                     | 1.00 26.80                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| MOTA                                    | 2668                                                                                                                                                                                                                                 | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 160                                                                       | 44.479                                                                                                                                                                                                                                                                              | 30.736                                                                                                                                                                                             | 3.678                                                                                                                                                                                     | 1.00 32.00                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2669                                                                                                                                                                                                                                 | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 160                                                                       | 45.850                                                                                                                                                                                                                                                                              | 29.700                                                                                                                                                                                             | 3.145                                                                                                                                                                                     | 1.00 38.02                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2670                                                                                                                                                                                                                                 | CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 160                                                                       | 45.094                                                                                                                                                                                                                                                                              | 28.065                                                                                                                                                                                             | 3.307                                                                                                                                                                                     | 1.00 35.43                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2671                                                                                                                                                                                                                                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                            | 160                                                                       | 41.387                                                                                                                                                                                                                                                                              | 32.269                                                                                                                                                                                             | 1.941                                                                                                                                                                                     | 1.00 28.27                                                                                                                                                                                                                                                                                                                               | В                                                                  |
|                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                           |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| ATOM                                    | 2672                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                            | 160                                                                       | 40.684                                                                                                                                                                                                                                                                              | 31.602                                                                                                                                                                                             | 1.177                                                                                                                                                                                     | 1.00 28.76                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2673                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                            | 161                                                                       | 41.518                                                                                                                                                                                                                                                                              | 33.588                                                                                                                                                                                             | 1.854                                                                                                                                                                                     | 1.00 29.59                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| MOTA                                    | 2674                                                                                                                                                                                                                                 | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 161                                                                       | 40.820                                                                                                                                                                                                                                                                              | 34.366                                                                                                                                                                                             | 0.845                                                                                                                                                                                     | 1.00 32.69                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| MOTA                                    | 2675                                                                                                                                                                                                                                 | CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B                                            | 161                                                                       | 39.669                                                                                                                                                                                                                                                                              | 35.142                                                                                                                                                                                             | 1.487                                                                                                                                                                                     | 1.00 30.80                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2676                                                                                                                                                                                                                                 | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 161                                                                       | 39.031                                                                                                                                                                                                                                                                              | 36.199                                                                                                                                                                                             | 0.586                                                                                                                                                                                     | 1.00 31.56                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2677                                                                                                                                                                                                                                 | CD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 161                                                                       | 38.156                                                                                                                                                                                                                                                                              | 35.516                                                                                                                                                                                             | -0.460                                                                                                                                                                                    | 1.00 29.64                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2678                                                                                                                                                                                                                                 | CD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 161                                                                       | 38.213                                                                                                                                                                                                                                                                              | 37.167                                                                                                                                                                                             | 1.423                                                                                                                                                                                     | 1.00 29.89                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2679                                                                                                                                                                                                                                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                            | 161                                                                       | 41.755                                                                                                                                                                                                                                                                              | 35.349                                                                                                                                                                                             | 0.154                                                                                                                                                                                     | 1.00 35.59                                                                                                                                                                                                                                                                                                                               | В                                                                  |
|                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                            | 161                                                                       | 42.350                                                                                                                                                                                                                                                                              | 36.216                                                                                                                                                                                             | 0.801                                                                                                                                                                                     | 1.00 35.54                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2680                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                           |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| ATOM                                    | 2681                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B                                            | 162                                                                       | 41.895                                                                                                                                                                                                                                                                              | 35.203                                                                                                                                                                                             | -1.158                                                                                                                                                                                    | 1.00 39.87                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| MOTA                                    | 2682                                                                                                                                                                                                                                 | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | 162                                                                       | 42.728                                                                                                                                                                                                                                                                              | 36.118                                                                                                                                                                                             | -1.927                                                                                                                                                                                    | 1.00 44.05                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2683                                                                                                                                                                                                                                 | CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 162                                                                       | 42.995                                                                                                                                                                                                                                                                              | 35.565                                                                                                                                                                                             | -3.331                                                                                                                                                                                    | 1.00 46.86                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2684                                                                                                                                                                                                                                 | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathbf{B}$                                 | 162                                                                       | 43.795                                                                                                                                                                                                                                                                              | 36.497                                                                                                                                                                                             | -4.239                                                                                                                                                                                    | 1.00 50.98                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2685                                                                                                                                                                                                                                 | CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 162                                                                       | 45.274                                                                                                                                                                                                                                                                              | 36.537                                                                                                                                                                                             | -3.891                                                                                                                                                                                    | 1.00 54.75                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2686                                                                                                                                                                                                                                 | OE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 162                                                                       | 45.604                                                                                                                                                                                                                                                                              | 36.802                                                                                                                                                                                             | -2.715                                                                                                                                                                                    | 1.00 56.53                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2687                                                                                                                                                                                                                                 | OE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | 162                                                                       | 46.108                                                                                                                                                                                                                                                                              | 36.308                                                                                                                                                                                             | -4.796                                                                                                                                                                                    | 1.00 55.16                                                                                                                                                                                                                                                                                                                               | В                                                                  |
|                                         |                                                                                                                                                                                                                                      | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | 162                                                                       | 41.879                                                                                                                                                                                                                                                                              | 37.372                                                                                                                                                                                             | -2.029                                                                                                                                                                                    | 1.00 44.69                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2688                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                           |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| ATOM                                    | 2689                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                            | 162                                                                       | 40.719                                                                                                                                                                                                                                                                              | 37.302                                                                                                                                                                                             | -2.434                                                                                                                                                                                    | 1.00 44.39                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| MOTA                                    | 2690                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 163                                                                       | 42.436                                                                                                                                                                                                                                                                              | 38.514                                                                                                                                                                                             | -1.648                                                                                                                                                                                    | 1.00 46.67                                                                                                                                                                                                                                                                                                                               | B                                                                  |
| MOTA                                    | 2691                                                                                                                                                                                                                                 | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 163                                                                       | 41.670                                                                                                                                                                                                                                                                              | 39.746                                                                                                                                                                                             | -1.716                                                                                                                                                                                    | 1.00 49.56                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| MOTA                                    | 2692                                                                                                                                                                                                                                 | CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 163                                                                       | 40.881                                                                                                                                                                                                                                                                              | 39.949                                                                                                                                                                                             | -0.412                                                                                                                                                                                    | 1.00 51.22                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2693                                                                                                                                                                                                                                 | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 163                                                                       | 41.652                                                                                                                                                                                                                                                                              | 39.675                                                                                                                                                                                             | 0.876                                                                                                                                                                                     | 1.00 51.58                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2694                                                                                                                                                                                                                                 | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 163                                                                       | 42.910                                                                                                                                                                                                                                                                              | 40.901                                                                                                                                                                                             | 1.274                                                                                                                                                                                     | 1.00 56.87                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2695                                                                                                                                                                                                                                 | CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                            | 163                                                                       | 41.915                                                                                                                                                                                                                                                                              | 42.187                                                                                                                                                                                             | 2.029~                                                                                                                                                                                    | 1.00 54.89                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2696                                                                                                                                                                                                                                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                            | 163                                                                       | 42.487                                                                                                                                                                                                                                                                              | 40.986                                                                                                                                                                                             | -2.028                                                                                                                                                                                    | 1.00 51.43                                                                                                                                                                                                                                                                                                                               | В                                                                  |
|                                         |                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                            | 163                                                                       | 43.717                                                                                                                                                                                                                                                                              | 40.988                                                                                                                                                                                             | -1.942                                                                                                                                                                                    | 1.00 51.02                                                                                                                                                                                                                                                                                                                               | B                                                                  |
| ATOM                                    | 2697                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                           |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                                                                           | 1.00 51.02                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2698                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | THR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | 164                                                                       | 41.777                                                                                                                                                                                                                                                                              | 42.038                                                                                                                                                                                             | -2.412                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| ATOM                                    | 2699                                                                                                                                                                                                                                 | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | THR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | 164                                                                       | 42.385                                                                                                                                                                                                                                                                              | 43.316                                                                                                                                                                                             | -2.738                                                                                                                                                                                    | 1.00 56.61                                                                                                                                                                                                                                                                                                                               | B                                                                  |
| ATOM                                    | 2700                                                                                                                                                                                                                                 | CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | THR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 164                                                                       | 41.889                                                                                                                                                                                                                                                                              | 43.820                                                                                                                                                                                             | -4.116                                                                                                                                                                                    | 1.00 57.48                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| MOTA                                    | 2701                                                                                                                                                                                                                                 | OG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            | 164                                                                       | 40.457                                                                                                                                                                                                                                                                              | 43.744                                                                                                                                                                                             | -4.172                                                                                                                                                                                    | 1.00 57.81                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| MOTA                                    | 2702                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R                                            | 164                                                                       | 42.480                                                                                                                                                                                                                                                                              | 42.967                                                                                                                                                                                             | -5.234                                                                                                                                                                                    | 1.00 57.23                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2102                                                                                                                                                                                                                                 | CG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                                                           |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                          |                                                                    |
|                                         |                                                                                                                                                                                                                                      | CG2<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | 164                                                                       | 42.012                                                                                                                                                                                                                                                                              | 44.318                                                                                                                                                                                             | -1.642                                                                                                                                                                                    | 1.00 57.80                                                                                                                                                                                                                                                                                                                               | В                                                                  |
| ATOM                                    | 2703                                                                                                                                                                                                                                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | THR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                            |                                                                           | 42.012                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                    | -1.642                                                                                                                                                                                    | 1.00 57.80                                                                                                                                                                                                                                                                                                                               |                                                                    |
| ATOM<br>ATOM                            | 2703<br>2704                                                                                                                                                                                                                         | C<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THR<br>THR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B<br>B                                       | 164                                                                       | 42.012<br>40.866                                                                                                                                                                                                                                                                    | 44.766                                                                                                                                                                                             | -1.642<br>-1.555                                                                                                                                                                          | 1.00 57.80<br>1.00 57.08                                                                                                                                                                                                                                                                                                                 | B<br>B                                                             |
| ATOM                                    | 2703<br>2704<br>2705                                                                                                                                                                                                                 | 0<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THR<br>THR<br>PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B<br>B<br>B                                  | 164<br>165                                                                | 42.012<br>40.866<br>42.976                                                                                                                                                                                                                                                          | 44.766<br>44.658                                                                                                                                                                                   | -1.642<br>-1.555<br>-0.770                                                                                                                                                                | 1.00 57.80<br>1.00 57.08<br>1.00 58.98                                                                                                                                                                                                                                                                                                   | В<br>В<br>В                                                        |
| ATOM<br>ATOM                            | 2703<br>2704<br>2705<br>2706                                                                                                                                                                                                         | C<br>O<br>N<br>CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | THR<br>THR<br>PRO<br>PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B<br>B<br>B                                  | 164<br>165<br>165                                                         | 42.012<br>40.866<br>42.976<br>44.315                                                                                                                                                                                                                                                | 44.766<br>44.658<br>44.055                                                                                                                                                                         | -1.642<br>-1.555<br>-0.770<br>-0.647                                                                                                                                                      | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54                                                                                                                                                                                                                                                                                     | В<br>В<br>В                                                        |
| ATOM<br>ATOM<br>ATOM                    | 2703<br>2704<br>2705<br>2706<br>2707                                                                                                                                                                                                 | C<br>O<br>N<br>CD<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | THR<br>THR<br>PRO<br>PRO<br>PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B<br>B<br>B<br>B                             | 164<br>165<br>165<br>165                                                  | 42.012<br>40.866<br>42.976<br>44.315<br>42.734                                                                                                                                                                                                                                      | 44.766<br>44.658<br>44.055<br>45.605                                                                                                                                                               | -1.642<br>-1.555<br>-0.770<br>-0.647<br>0.322                                                                                                                                             | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52                                                                                                                                                                                                                                                                       | B<br>B<br>B<br>B                                                   |
| ATOM<br>ATOM                            | 2703<br>2704<br>2705<br>2706                                                                                                                                                                                                         | C<br>O<br>N<br>CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | THR<br>THR<br>PRO<br>PRO<br>PRO<br>PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B<br>B<br>B<br>B                             | 164<br>165<br>165<br>165<br>165                                           | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063                                                                                                                                                                                                                            | 44.766<br>44.658<br>44.055<br>45.605<br>45.608                                                                                                                                                     | -1.642<br>-1.555<br>-0.770<br>-0.647<br>0.322<br>1.078                                                                                                                                    | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.33                                                                                                                                                                                                                                                         | B<br>B<br>B<br>B                                                   |
| ATOM<br>ATOM<br>ATOM                    | 2703<br>2704<br>2705<br>2706<br>2707                                                                                                                                                                                                 | C<br>O<br>N<br>CD<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | THR<br>THR<br>PRO<br>PRO<br>PRO<br>PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B<br>B<br>B<br>B                             | 164<br>165<br>165<br>165                                                  | 42.012<br>40.866<br>42.976<br>44.315<br>42.734                                                                                                                                                                                                                                      | 44.766<br>44.658<br>44.055<br>45.605                                                                                                                                                               | -1.642<br>-1.555<br>-0.770<br>-0.647<br>0.322<br>1.078<br>0.822                                                                                                                           | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.33<br>1.00 60.42                                                                                                                                                                                                                                           | B<br>B<br>B<br>B                                                   |
| ATOM<br>ATOM<br>ATOM<br>ATOM            | 2703<br>2704<br>2705<br>2706<br>2707<br>2708                                                                                                                                                                                         | C<br>O<br>N<br>CD<br>CA<br>CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THR THR PRO PRO PRO PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B<br>B<br>B<br>B<br>B<br>B                   | 164<br>165<br>165<br>165<br>165                                           | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063                                                                                                                                                                                                                            | 44.766<br>44.658<br>44.055<br>45.605<br>45.608                                                                                                                                                     | -1.642<br>-1.555<br>-0.770<br>-0.647<br>0.322<br>1.078                                                                                                                                    | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.33<br>1.00 60.42<br>1.00 61.65                                                                                                                                                                                                                             | B<br>B<br>B<br>B                                                   |
| ATOM<br>ATOM<br>ATOM<br>ATOM<br>ATOM    | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709                                                                                                                                                                                 | C<br>O<br>N<br>CD<br>CA<br>CB<br>CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THR THR PRO PRO PRO PRO PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B<br>B<br>B<br>B<br>B<br>B<br>B              | 164<br>165<br>165<br>165<br>165<br>165                                    | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604                                                                                                                                                                                                                  | 44.766<br>44.658<br>44.055<br>45.605<br>45.608<br>44.236                                                                                                                                           | -1.642<br>-1.555<br>-0.770<br>-0.647<br>0.322<br>1.078<br>0.822                                                                                                                           | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.33<br>1.00 60.42                                                                                                                                                                                                                                           | B<br>B<br>B<br>B                                                   |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711                                                                                                                                                                 | C<br>O<br>N<br>CD<br>CA<br>CB<br>CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THR THR PRO PRO PRO PRO PRO PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B         | 164<br>165<br>165<br>165<br>165<br>165                                    | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347                                                                                                                                                                                                        | 44.766<br>44.658<br>44.055<br>45.605<br>45.608<br>44.236<br>47.002                                                                                                                                 | -1.642<br>-1.555<br>-0.770<br>-0.647<br>0.322<br>1.078<br>0.822<br>-0.163                                                                                                                 | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.33<br>1.00 60.42<br>1.00 61.65                                                                                                                                                                                                                             | B<br>B<br>B<br>B<br>B                                              |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712                                                                                                                                                         | CONCACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | THR THR PRO PRO PRO PRO PRO PRO PRO PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B B B B B B B B B B                          | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>165                      | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110                                                                                                                                                                                    | 44.766<br>44.658<br>44.055<br>45.605<br>45.608<br>44.236<br>47.002<br>47.698<br>47.395                                                                                                             | -1.642<br>-1.555<br>-0.770<br>-0.647<br>0.322<br>1.078<br>0.822<br>-0.163<br>-0.790<br>0.126                                                                                              | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.33<br>1.00 60.42<br>1.00 61.65<br>1.00 61.24<br>1.00 62.45                                                                                                                                                                                                 | B<br>B<br>B<br>B<br>B<br>B<br>B                                    |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713                                                                                                                                                 | CONCACGONCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | THR THR PRO PRO PRO PRO PRO PRO GLN GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B B B B B B B B B B B                        | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>166               | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598                                                                                                                                                                          | 44.766<br>44.658<br>44.055<br>45.605<br>45.608<br>44.236<br>47.002<br>47.698<br>47.395<br>48.709                                                                                                   | -1.642<br>-1.555<br>-0.770<br>-0.647<br>0.322<br>1.078<br>0.822<br>-0.163<br>-0.790<br>0.126<br>-0.250                                                                                    | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.33<br>1.00 60.42<br>1.00 61.65<br>1.00 61.24<br>1.00 62.45<br>1.00 63.32                                                                                                                                                                                   | B<br>B<br>B<br>B<br>B<br>B<br>B                                    |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714                                                                                                                                         | CONCACBCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THR THR PRO PRO PRO PRO PRO GLN GLN GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B B B B B B B B B B B B B B B B B B B        | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166               | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605                                                                                                                                                                | 44.766<br>44.658<br>44.055<br>45.605<br>45.608<br>44.236<br>47.002<br>47.698<br>47.395<br>48.709<br>48.590                                                                                         | -1.642<br>-1.555<br>-0.770<br>-0.647<br>0.322<br>1.078<br>0.822<br>-0.163<br>-0.790<br>0.126<br>-0.250<br>-1.410                                                                          | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.33<br>1.00 60.42<br>1.00 61.65<br>1.00 61.24<br>1.00 62.45<br>1.00 63.32<br>1.00 65.46                                                                                                                                                                     | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                     |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715                                                                                                                                 | CONCACBCCONCACCBCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THR THR PRO PRO PRO PRO PRO GLN GLN GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B B B B B B B B B B B B B B B B B B B        | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166        | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177                                                                                                                                                      | 44.766<br>44.658<br>44.055<br>45.605<br>45.608<br>44.236<br>47.002<br>47.698<br>47.395<br>48.709<br>48.590<br>47.945                                                                               | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661                                                                                                    | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.33<br>1.00 60.42<br>1.00 61.65<br>1.00 61.24<br>1.00 62.45<br>1.00 63.32<br>1.00 65.46<br>1.00 69.00                                                                                                                                                       | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                     |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716                                                                                                                         | CONCACBCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THR THR PRO PRO PRO PRO PRO GLN GLN GLN GLN GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166        | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195                                                                                                                                            | 44.766<br>44.658<br>44.055<br>45.605<br>45.608<br>44.236<br>47.002<br>47.698<br>47.395<br>48.709<br>48.590<br>47.945<br>47.942                                                                     | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819                                                                                             | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.33<br>1.00 60.42<br>1.00 61.65<br>1.00 61.24<br>1.00 62.45<br>1.00 63.32<br>1.00 65.46<br>1.00 69.00<br>1.00 71.19                                                                                                                                         | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715                                                                                                                                 | CONCACBCCCONCACCBCCCONCACCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THR THR PRO PRO PRO PRO PRO GLN GLN GLN GLN GLN GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195<br>38.071                                                                                                                                  | 44.766<br>44.658<br>44.055<br>45.605<br>45.608<br>44.236<br>47.002<br>47.698<br>47.395<br>48.709<br>48.590<br>47.945<br>47.945<br>47.942<br>47.448                                                 | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697                                                                                      | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.42<br>1.00 61.65<br>1.00 61.24<br>1.00 62.45<br>1.00 63.32<br>1.00 65.46<br>1.00 69.00<br>1.00 71.19<br>1.00 72.48                                                                                                                                         | B B B B B B B B B B B B B B B B B B B                              |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716                                                                                                                         | CONCACBCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THR THR PRO PRO PRO PRO PRO GLN GLN GLN GLN GLN GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166        | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195                                                                                                                                            | 44.766<br>44.658<br>44.055<br>45.605<br>45.608<br>44.236<br>47.002<br>47.698<br>47.395<br>48.709<br>48.590<br>47.945<br>47.942                                                                     | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819                                                                                             | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.42<br>1.00 61.65<br>1.00 61.24<br>1.00 62.45<br>1.00 63.32<br>1.00 65.46<br>1.00 69.00<br>1.00 71.19<br>1.00 72.48<br>1.00 72.65                                                                                                                           | B                                                                  |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717                                                                                                                 | CONCACBCCCONCACCBCCCONCACCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THR THR PRO PRO PRO PRO PRO GLN GLN GLN GLN GLN GLN GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195<br>38.071                                                                                                                                  | 44.766<br>44.658<br>44.055<br>45.605<br>45.608<br>44.236<br>47.002<br>47.698<br>47.395<br>48.709<br>48.590<br>47.945<br>47.945<br>47.942<br>47.448                                                 | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697                                                                                      | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.42<br>1.00 61.65<br>1.00 61.24<br>1.00 62.45<br>1.00 63.32<br>1.00 65.46<br>1.00 69.00<br>1.00 71.19<br>1.00 72.48                                                                                                                                         | B B B B B B B B B B B B B B B B B B B                              |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719                                                                                                 | CONCACBCCONCACBCCCONCACCBCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THR THR PRO PRO PRO PRO PRO GLN GLN GLN GLN GLN GLN GLN GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195<br>38.071<br>39.617                                                                                                                        | 44.766<br>44.658<br>44.055<br>45.605<br>45.608<br>44.236<br>47.002<br>47.698<br>47.395<br>48.709<br>48.590<br>47.945<br>47.945<br>47.448<br>48.492                                                 | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954                                                                               | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.42<br>1.00 61.65<br>1.00 61.24<br>1.00 62.45<br>1.00 63.32<br>1.00 65.46<br>1.00 69.00<br>1.00 71.19<br>1.00 72.48<br>1.00 72.65                                                                                                                           | B                                                                  |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720                                                                                         | CONCACE CONCACE CONE CONE CONE CONCACE CONE CONE CONE CONE CONE CONE CONE CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | THR THR PRO PRO PRO PRO PRO GLN GLN GLN GLN GLN GLN GLN GLN GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195<br>38.071<br>39.893<br>39.021                                                                                                              | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.942 47.448 48.492 49.287 48.635                                                                             | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970                                                                         | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.33<br>1.00 60.42<br>1.00 61.65<br>1.00 61.24<br>1.00 62.45<br>1.00 63.32<br>1.00 65.46<br>1.00 69.00<br>1.00 71.19<br>1.00 72.48<br>1.00 72.65<br>1.00 62.65                                                                                               | B                                                                  |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720<br>2721                                                                                 | CONCACE CONCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THR THR PRO PRO PRO PRO PRO GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195<br>38.071<br>39.617<br>39.893<br>39.021<br>40.266                                                                                          | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.945 47.448 48.492 49.287 48.635 50.501                                                                      | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970 1.550 1.366                                                             | 1.00 57.80 1.00 57.08 1.00 58.98 1.00 59.54 1.00 60.52 1.00 60.33 1.00 60.42 1.00 61.65 1.00 61.24 1.00 62.45 1.00 63.32 1.00 65.46 1.00 69.00 1.00 71.19 1.00 72.48 1.00 62.65 1.00 62.16                                                                                                                                               | B                                                                  |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720<br>2721<br>2722                                                                         | CONCACGONACONCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | THR THR PRO PRO PRO PRO PRO GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195<br>38.071<br>39.617<br>39.893<br>39.617<br>39.893<br>39.021<br>40.266<br>39.645                                                            | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.945 47.448 48.492 49.287 48.635 50.501 51.111                                                               | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970 1.550 1.366 2.535                                                       | 1.00 57.80 1.00 57.08 1.00 58.98 1.00 59.54 1.00 60.52 1.00 60.33 1.00 60.42 1.00 61.65 1.00 61.24 1.00 62.45 1.00 63.32 1.00 65.46 1.00 69.00 1.00 71.19 1.00 72.48 1.00 72.65 1.00 62.65 1.00 62.65 1.00 62.16 1.00 60.86                                                                                                              | B                                                                  |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720<br>2721<br>2722<br>2723                                                                 | CONCACONCACONCACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | THR PRO PRO PRO PRO PRO PRO GLN GLN GLN GLN GLN GLN ARG ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195<br>38.071<br>39.893<br>39.021<br>40.266<br>39.645<br>40.190                                                                                | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.942 47.448 48.492 49.287 48.635 50.501 51.111 52.525                                                        | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970 1.550 1.366 2.535 2.777                                                 | 1.00 57.80 1.00 57.08 1.00 58.98 1.00 59.54 1.00 60.52 1.00 60.33 1.00 60.42 1.00 61.65 1.00 62.45 1.00 63.32 1.00 65.46 1.00 69.00 1.00 71.19 1.00 72.48 1.00 72.65 1.00 62.65 1.00 62.65 1.00 62.57                                                                                                                                    | B                                                                  |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720<br>2721<br>2722<br>2723<br>2724                                                         | CONCABG CONCABGONE CONCAGONE CONCAGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THR THR PRO PRO PRO PRO PRO PRO GLIN GLIN GLIN GLIN GLIN GLIN GLIN GLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195<br>38.071<br>39.617<br>39.893<br>39.021<br>40.266<br>39.645<br>40.190<br>39.953                                                            | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.942 47.448 48.492 49.287 48.635 50.501 51.111 52.525 53.029                                                 | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970 1.550 1.366 2.535 2.777 4.204                                           | 1.00 57.80 1.00 57.08 1.00 58.98 1.00 59.54 1.00 60.52 1.00 60.33 1.00 60.42 1.00 61.65 1.00 61.24 1.00 62.45 1.00 65.46 1.00 69.00 1.00 71.19 1.00 72.48 1.00 72.65 1.00 62.65 1.00 62.65 1.00 62.65 1.00 62.57 1.00 64.82                                                                                                              | 888888888888888888888888888888888888                               |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720<br>2721<br>2722<br>2723<br>2724<br>2725                                                 | CONCABGONA CONCABGONE CONCABGONA CONCAGONA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THR PRO PRO PRO PRO PRO GLIN GLIN GLIN GLIN GLIN ARG ARG ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195<br>38.071<br>39.617<br>39.893<br>39.617<br>39.893<br>39.621<br>40.266<br>39.645<br>40.190<br>39.953<br>40.742                              | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.942 47.448 48.492 49.287 48.635 50.501 51.111 52.525 53.029 52.198                                          | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970 1.550 1.366 2.535 2.777 4.204 5.227                                     | 1.00 57.80<br>1.00 57.08<br>1.00 58.98<br>1.00 59.54<br>1.00 60.52<br>1.00 60.42<br>1.00 61.65<br>1.00 61.24<br>1.00 62.45<br>1.00 63.32<br>1.00 65.46<br>1.00 69.00<br>1.00 71.19<br>1.00 72.48<br>1.00 72.65<br>1.00 62.65<br>1.00 62.65<br>1.00 62.16<br>1.00 61.62<br>1.00 62.57<br>1.00 64.82<br>1.00 67.31                         | 888888888888888888888888888888888888                               |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720<br>2721<br>2722<br>2723<br>2724                                                         | CONCABG CONCABGONE CONCAGONE CONCAGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THR PRO PRO PRO PRO PRO GLIN GLIN GLIN GLIN GLIN GLIN GLIN GLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195<br>38.071<br>39.617<br>39.893<br>39.617<br>39.893<br>39.021<br>40.266<br>39.645<br>40.190<br>39.953<br>40.742<br>40.094                    | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.942 47.448 48.492 49.287 48.635 50.501 51.111 52.525 53.029 52.143                                          | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970 1.550 1.366 2.535 2.777 4.204 5.227 6.539                               | 1.00 57.80 1.00 57.08 1.00 58.98 1.00 59.54 1.00 60.52 1.00 60.33 1.00 60.42 1.00 61.65 1.00 61.24 1.00 62.45 1.00 63.32 1.00 65.46 1.00 69.00 1.00 71.19 1.00 72.48 1.00 72.65 1.00 62.65 1.00 62.65 1.00 62.65 1.00 62.57 1.00 64.82 1.00 67.31 1.00 69.03                                                                             | 888888888888888888888888888888888888                               |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720<br>2721<br>2722<br>2723<br>2724<br>2725                                                 | CONCABGONA CONCABGONE CONCABGONA CONCAGONA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THR PRO PRO PRO PRO PRO GLIN GLIN GLIN GLIN GLIN GLIN GLIN GLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195<br>38.071<br>39.617<br>39.893<br>39.617<br>39.893<br>39.621<br>40.266<br>39.645<br>40.190<br>39.953<br>40.742                              | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.942 47.448 48.492 49.287 48.635 50.501 51.111 52.525 53.029 52.198                                          | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970 1.550 1.366 2.535 2.777 4.204 5.227 6.539 7.591                         | 1.00 57.80 1.00 57.08 1.00 58.98 1.00 59.54 1.00 60.52 1.00 60.42 1.00 61.65 1.00 61.65 1.00 62.45 1.00 65.46 1.00 69.00 1.00 71.19 1.00 72.48 1.00 72.65 1.00 62.65 1.00 62.65 1.00 62.65 1.00 62.65 1.00 62.57 1.00 64.82 1.00 69.03 1.00 69.14                                                                                        | 888888888888888888888888888888888888                               |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720<br>2721<br>2722<br>2723<br>2724<br>2725<br>2726                                         | CONCABGONCONCONCONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THR PRO PRO PRO PRO PRO PRO GLIN GLIN GLIN GLIN GLIN GLIN ARG ARG ARG ARG ARG ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195<br>38.071<br>39.617<br>39.893<br>39.617<br>39.893<br>39.021<br>40.266<br>39.645<br>40.190<br>39.953<br>40.742<br>40.094                    | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.942 47.448 48.492 49.287 48.635 50.501 51.111 52.525 53.029 52.143                                          | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970 1.550 1.366 2.535 2.777 4.204 5.227 6.539                               | 1.00 57.80 1.00 57.08 1.00 58.98 1.00 59.54 1.00 60.52 1.00 60.33 1.00 60.42 1.00 61.65 1.00 61.24 1.00 62.45 1.00 63.32 1.00 65.46 1.00 69.00 1.00 71.19 1.00 72.48 1.00 72.65 1.00 62.65 1.00 62.65 1.00 62.65 1.00 62.57 1.00 64.82 1.00 67.31 1.00 69.03                                                                             | 888888888888888888888888888888888888                               |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720<br>2721<br>2722<br>2723<br>2724<br>2725<br>2726<br>2727<br>2728                         | CONCABGONA CONCABGONE CONCABGONA CONCAGONA CONCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THR PRO PRO PRO PRO PRO GLIN GLIN GLIN GLIN ARG ARG ARG ARG ARG ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.605<br>40.177<br>39.617<br>39.893<br>39.021<br>40.266<br>39.645<br>40.190<br>39.953<br>40.742<br>40.094<br>40.570                              | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.942 47.448 48.492 49.287 48.635 50.501 51.111 52.525 53.029 52.198 52.143 51.477                            | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970 1.550 1.366 2.535 2.777 4.204 5.227 6.539 7.591                         | 1.00 57.80 1.00 57.08 1.00 58.98 1.00 59.54 1.00 60.52 1.00 60.42 1.00 61.65 1.00 61.65 1.00 62.45 1.00 65.46 1.00 69.00 1.00 71.19 1.00 72.48 1.00 72.65 1.00 62.65 1.00 62.65 1.00 62.65 1.00 62.65 1.00 62.57 1.00 64.82 1.00 69.03 1.00 69.14                                                                                        | 888888888888888888888888888888888888                               |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720<br>2721<br>2722<br>2723<br>2724<br>2725<br>2726<br>2727<br>2728<br>2729                 | CONCABGONCONCOCCEZHI<br>CONCABGONE<br>CONCABGONE<br>NA CONCABGONE<br>NA CONCABONE<br>NA CONCABONE<br>N | THR PRO PRO PRO PRO PRO PRO PRO GLIN GLIN GLIN GLIN ARG ARG ARG ARG ARG ARG ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.195<br>38.071<br>39.617<br>39.893<br>39.021<br>40.266<br>39.645<br>40.190<br>39.953<br>40.742<br>40.094<br>40.570<br>41.710<br>39.897          | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.942 47.448 48.492 49.287 48.635 50.501 51.111 52.525 53.029 52.198 52.143 51.477 50.804 51.471              | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970 1.550 1.366 2.535 2.777 4.204 5.227 6.539 7.499 8.735                   | 1.00 57.80 1.00 57.08 1.00 58.98 1.00 59.54 1.00 60.52 1.00 60.42 1.00 61.65 1.00 61.24 1.00 62.45 1.00 63.32 1.00 65.46 1.00 69.00 1.00 71.19 1.00 72.48 1.00 72.65 1.00 62.65 1.00 62.65 1.00 62.65 1.00 62.57 1.00 64.82 1.00 69.03 1.00 69.34 1.00 69.34                                                                             | 888888888888888888888888888888888888                               |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720<br>2721<br>2722<br>2723<br>2724<br>2725<br>2726<br>2727<br>2728<br>2729<br>2730         | CONCABGONABGONE CONABGONE CHILLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | THR PRO PRO PRO PRO PRO PRO GLIN GLIN GLIN GLIN GLIN ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.893<br>39.021<br>40.266<br>39.645<br>40.190<br>39.953<br>40.190<br>39.953<br>40.742<br>40.094<br>40.570<br>41.710<br>39.897<br>38.136          | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.942 47.448 48.492 49.287 48.635 50.501 51.111 52.525 53.029 52.198 52.143 51.477 50.804 51.471 51.154       | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970 1.550 1.366 2.535 2.777 4.204 5.227 6.539 7.499 8.735 2.333             | 1.00 57.80 1.00 57.08 1.00 58.98 1.00 59.54 1.00 60.52 1.00 60.33 1.00 60.42 1.00 61.65 1.00 61.24 1.00 62.45 1.00 63.32 1.00 65.46 1.00 69.00 1.00 71.19 1.00 72.48 1.00 72.65 1.00 62.65 1.00 62.65 1.00 62.65 1.00 62.57 1.00 64.82 1.00 69.31 1.00 69.31 1.00 69.34 1.00 69.34 1.00 69.52 1.00 59.19                                 | **************************************                             |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720<br>2721<br>2722<br>2723<br>2724<br>2725<br>2726<br>2727<br>2728<br>2729<br>2730<br>2731 | CONCABGONES ON CONCABGONES ON CONCABONES ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THR PRO PRO PRO PRO PRO PRO GLIN GLIN GLIN ARG ARG ARG ARG ARG ARG ARG ARG ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB      | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.893<br>39.617<br>39.893<br>39.621<br>40.266<br>39.645<br>40.190<br>39.953<br>40.742<br>40.94<br>40.570<br>41.710<br>39.897<br>38.136<br>37.647 | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.942 47.448 48.492 49.287 48.492 49.287 48.635 50.501 51.11 52.525 53.029 52.198 52.143 51.477 50.804 51.615 | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970 1.556 2.535 2.777 4.204 5.237 4.204 5.237 6.539 7.499 8.735 2.333 1.303 | 1.00 57.80 1.00 57.08 1.00 58.98 1.00 59.54 1.00 60.52 1.00 60.33 1.00 60.42 1.00 61.65 1.00 62.45 1.00 63.32 1.00 65.46 1.00 69.00 1.00 71.19 1.00 72.48 1.00 62.65 1.00 62.65 1.00 62.65 1.00 62.65 1.00 62.65 1.00 62.7 1.00 64.82 1.00 69.31 1.00 69.34 1.00 69.34 1.00 69.34 1.00 69.34 1.00 69.34 1.00 69.39 1.00 59.19 1.00 58.60 | ***************************************                            |
| ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM | 2703<br>2704<br>2705<br>2706<br>2707<br>2708<br>2709<br>2710<br>2711<br>2712<br>2713<br>2714<br>2715<br>2716<br>2717<br>2718<br>2719<br>2720<br>2721<br>2722<br>2723<br>2724<br>2725<br>2726<br>2727<br>2728<br>2729<br>2730         | CONCABGONABGONE CONABGONE CHILLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | THR PROOF PR | <b>BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB</b> | 164<br>165<br>165<br>165<br>165<br>165<br>165<br>166<br>166<br>166<br>166 | 42.012<br>40.866<br>42.976<br>44.315<br>42.734<br>44.063<br>44.604<br>42.347<br>43.149<br>41.110<br>40.598<br>39.605<br>40.177<br>39.893<br>39.021<br>40.266<br>39.645<br>40.190<br>39.953<br>40.190<br>39.953<br>40.742<br>40.094<br>40.570<br>41.710<br>39.897<br>38.136          | 44.766 44.658 44.055 45.605 45.608 44.236 47.002 47.698 47.395 48.709 48.590 47.945 47.942 47.448 48.492 49.287 48.635 50.501 51.111 52.525 53.029 52.198 52.143 51.477 50.804 51.471 51.154       | -1.642 -1.555 -0.770 -0.647 0.322 1.078 0.822 -0.163 -0.790 0.126 -0.250 -1.410 -2.661 -3.819 -3.697 -4.954 0.970 1.550 1.366 2.535 2.777 4.204 5.227 6.539 7.499 8.735 2.333             | 1.00 57.80 1.00 57.08 1.00 58.98 1.00 59.54 1.00 60.52 1.00 60.33 1.00 60.42 1.00 61.65 1.00 61.24 1.00 62.45 1.00 63.32 1.00 65.46 1.00 69.00 1.00 71.19 1.00 72.48 1.00 72.65 1.00 62.65 1.00 62.65 1.00 62.65 1.00 62.57 1.00 64.82 1.00 69.31 1.00 69.31 1.00 69.34 1.00 69.34 1.00 69.52 1.00 59.19                                 | **************************************                             |

| ATOM | 2734 | С   | GLY E | 168           | 35.466 | 49.200 | 3.191  | 1.00 55.42 | В      |
|------|------|-----|-------|---------------|--------|--------|--------|------------|--------|
|      |      |     | GLY E |               | 34.306 | 48.924 | 3.495  | 1.00 55.98 | В      |
| ATOM | 2735 | 0   |       |               |        |        |        |            |        |
| MOTA | 2736 | N   |       | 3 169         | 36.350 | 48.280 | 2.814  | 1.00 53.44 | В      |
| ATOM | 2737 | CA  | ASP E | 169           | 35.979 | 46.871 | 2.757  | 1.00 51.76 | В      |
| ATOM | 2738 | CB  | ASP E | 169           | 36.841 | 46.115 | 1.740  | 1.00 50.49 | В      |
| ATOM | 2739 | CG  | ASP E | 3 169         | 36.428 | 46.392 | 0.311  | 1.00 50.57 | В      |
| ATOM | 2740 | OD1 | ASP E |               | 35.207 | 46.479 | 0.060  | 1.00 49.92 | В      |
|      |      |     |       |               |        |        | -0.559 | 1.00 49.84 | В      |
| MOTA | 2741 | OD2 |       | 3 169         | 37.318 | 46.507 |        |            |        |
| MOTA | 2742 | C   | ASP E | 3 169         | 36.083 | 46.181 | 4.110  | 1.00 49.36 | В      |
| ATOM | 2743 | 0   | ASP E | 3 169         | 37.066 | 46.343 | 4.836  | 1.00 48.92 | В      |
| ATOM | 2744 | N   | VAL E | 3 170         | 35.047 | 45.418 | 4.436  | 1.00 47.48 | В      |
| ATOM | 2745 | CA  | VAL F |               | 34.981 | 44.667 | 5.680  | 1.00 45.10 | В      |
|      |      |     |       |               | 33.800 | 45.130 | 6.543  | 1.00 45.86 | В      |
| ATOM | 2746 | CB  | VAL E |               |        |        |        |            |        |
| ATOM | 2747 | CG1 | VAL I |               | 33.702 | 44.268 | 7.795  | 1.00 46.26 | B      |
| MOTA | 2748 | CG2 | VAL I | 3 170         | 33.974 | 46.598 | 6.906  | 1.00 46.23 | В      |
| ATOM | 2749 | C   | VAL E | 3 170         | 34.787 | 43.191 | 5.342  | 1.00 43.62 | В      |
| ATOM | 2750 | 0   | VAL I | 3 170         | 33.774 | 42.807 | 4.762  | 1.00 42.86 | В      |
| ATOM | 2751 | N   | TYR F |               | 35.762 | 42.367 | 5.704  | 1.00 41.69 | В      |
|      |      |     |       |               |        |        |        | 1.00 38.95 | В      |
| ATOM | 2752 | CA  | TYR I |               | 35.694 | 40.935 | 5.425  |            |        |
| MOTA | 2753 | CB  | TYR I | 3 171         | 37.044 | 40.455 | 4.899  | 1.00 37.52 | В      |
| ATOM | 2754 | CG  | TYR I | 3 171         | 37.405 | 41.031 | 3.553  | 1.00 38.12 | В      |
| ATOM | 2755 | CD1 | TYR I | 3 171         | 37.023 | 40.391 | 2.376  | 1.00 37.52 | В      |
| ATOM | 2756 | CE1 | TYR I |               | 37.342 | 40.923 | 1.131  | 1.00 38.06 | В      |
|      |      |     |       |               | 38.118 | 42.224 | 3.454  | 1.00 37.54 | В      |
| MOTA | 2757 | CD2 | TYR I |               |        |        |        |            |        |
| MOTA | 2758 | CE2 | TYR I | 3 171         | 38.442 | 42.767 | 2.216  | 1.00 38.45 | B      |
| MOTA | 2759 | CZ  | TYR I | 3 <b>171</b>  | 38.052 | 42.110 | 1.056  | 1.00 39.25 | В      |
| ATOM | 2760 | OH  | TYR I | 3 171         | 38.372 | 42.641 | -0.172 | 1.00 38.84 | В      |
| ATOM | 2761 | С   | TYR I | 3 171         | 35.314 | 40.139 | 6.671  | 1.00 37.46 | В      |
|      |      | o   |       | 3 171         | 35.791 | 40.428 | 7.773  | 1.00 34.85 | В      |
| ATOM | 2762 |     |       |               |        |        |        | 1.00 35.06 | В      |
| ATOM | 2763 | N   | THR I |               | 34.452 | 39.140 | 6.501  |            |        |
| MOTA | 2764 | CA  | THR I | 3 172         | 34.049 | 38.328 | 7.638  | 1.00 35.81 | В      |
| ATOM | 2765 | CB  | THR 1 | 3 172         | 32.589 | 38.622 | 8.064  | 1.00 38.37 | В      |
| ATOM | 2766 | OG1 | THR 1 | 3 172         | 31.688 | 38.177 | 7.043  | 1.00 42.02 | В      |
| ATOM | 2767 | CG2 |       | 3 172         | 32.390 | 40.119 | 8.292  | 1.00 39.83 | В      |
|      |      |     |       |               | 34.182 | 36.830 | 7.406  | 1.00 33.71 | В      |
| MOTA | 2768 | C   |       | 3 172         |        |        |        |            |        |
| MOTA | 2769 | 0   |       | B 172         | 33.953 | 36.335 | 6.300  | 1.00 32.99 | B<br>- |
| ATOM | 2770 | N   | CYS : | B 173         | 34.578 | 36.123 | 8.463  | 1.00 32.09 | В      |
| ATOM | 2771 | CA  | CYS I | B 173         | 34.714 | 34.670 | 8.438  | 1.00 31.08 | В      |
| ATOM | 2772 | C   | CYS   | B <b>17</b> 3 | 33.497 | 34.183 | 9.200  | 1.00 30.92 | В      |
| ATOM | 2773 | 0   | CYS   |               | 33.240 |        | 10.326 | 1.00 32.70 | В      |
|      |      |     |       |               |        |        | 9.155  | 1.00 31.48 | В      |
| MOTA | 2774 | CB  |       | B 173         | 35.988 | _      |        |            |        |
| ATOM | 2775 | SG  | CYS : | B 173         | 36.338 |        | 8.983  | 1.00 31.85 | В      |
| ATOM | 2776 | N   | HIS : | B 174         | 32.748 | 33.288 | 8.578  | 1.00 30.26 | В      |
| ATOM | 2777 | CA  | HIS : | B 174         | 31.524 | 32.754 | 9.152  | 1.00 29.72 | В      |
| ATOM | 2778 | CB  | HIS : | B 174         | 30.401 | 32.977 | 8.128  | 1.00 30.80 | В      |
|      | 2779 | CG  |       | B 174         | 29.030 |        | 8.615  | 1.00 32.90 | В      |
| MOTA |      |     |       |               |        |        | 9.058  | 1.00 33.11 | В      |
| MOTA | 2780 | CD2 |       | B 174         | 28.016 |        |        |            |        |
| MOTA | 2781 | ND1 | HIS   | B 174         | 28.551 |        | 8.621  | 1.00 34.85 | В      |
| ATOM | 2782 | CE1 | HIS   | B 174         | 27.299 | 31.332 | 9.044  | 1.00 37.21 | В      |
| MOTA | 2783 | NE2 | HIS   | B 174         | 26.950 | 32.577 | 9.316  | 1.00 34.95 | В      |
| ATOM | 2784 | C   | HIS   | B 174         | 31.751 | 31.271 | 9.449  | 1.00 28.49 | В      |
| ATOM | 2785 | Ō   |       | B 174         | 32.080 | 30.494 | 8.554  | 1.00 27.69 | В      |
|      |      |     |       |               |        | 30.888 | 10.710 | 1.00 27.48 | В      |
| ATOM | 2786 | N   |       | B 175         | 31.584 |        | 11.121 | 1.00 27.40 | В      |
| ATOM | 2787 | CA  |       | B 175         | 31.810 | 29.508 |        |            |        |
| MOTA | 2788 | CB  | VAL   | B 175         | 32.988 | 29.418 | 12.126 | 1.00 25.31 | B      |
| MOTA | 2789 | CG1 | . VAL | B 175         | 33.147 | 27.982 | 12.629 | 1.00 21.10 | В      |
| ATOM | 2790 | CG2 | VAL   | B 175         | 34.271 | 29.896 | 11.462 | 1.00 22.12 | В      |
| ATOM | 2791 | C   | VAT   | B 175         | 30.606 | 28.821 | 11.748 | 1.00 26.58 | В      |
|      |      | Ō   |       | B 175         | 30.004 | 29.328 | 12.694 | 1.00 27.01 | В      |
| ATOM | 2792 |     |       |               |        |        | 11.212 | 1.00 27.17 | В      |
| MOTA | 2793 | N   |       | B 176         | 30.274 | 27.652 |        |            |        |
| MOTA | 2794 | CA  | GLU   | B 176         | 29.168 | 26.846 | 11.712 | 1.00 28.51 | В      |
| ATOM | 2795 | CB  | GLU   | B 176         | 28.166 | 26.573 | 10.588 | 1.00 32.35 | В      |
| ATOM | 2796 | CG  | GLU   | B 176         | 27.454 | 27.827 | 10.082 | 1.00 38.87 | В      |
| MOTA | 2797 | CD  |       | B 176         | 26.776 | 27.616 | 8.735  | 1.00 42.45 | В      |
|      |      |     |       |               |        | 26.684 | 8.618  | 1.00 43.07 | В      |
| ATOM | 2798 | OE1 |       | B 176         | 25.947 |        |        |            |        |
| MOTA | 2799 | OE2 |       | B 176         | 27.075 | 28.386 | 7.794  | 1.00 42.94 | В      |
| MOTA | 2800 | C   | GLU   | B 176         | 29.750 | 25.536 | 12.235 | 1.00 27.34 | В      |
| ATOM | 2801 | 0   | GLU   | B 176         | 30.576 | 24.900 | 11.574 | 1.00 26.12 | В      |
| MOTA | 2802 | N   | HIS   | B 177         | 29.308 | 25.134 | 13.420 | 1.00 26.08 | В      |
| ATOM | 2803 | CA  |       | B 177         | 29.800 | 23.921 | 14.049 | 1.00 26.30 | В      |
|      |      |     |       |               |        | 24.244 | 14.738 | 1.00 24.58 | B      |
| MOTA | 2804 | CB  |       | B 177         | 31.132 | _1     |        |            |        |
| MOTA | 2805 | CG  |       | B 177         | 31.759 | 23.076 | 15.422 | 1.00 22.32 | В      |
| ATOM | 2806 | CD2 |       | B 177         | 32.646 | 22.156 | 14.977 | 1.00 21.05 | B      |
| ATOM | 2807 | ND  | L HIS | B 177         | 31.437 | 22.711 | 16.710 | 1.00 21.01 | В      |
|      |      |     |       |               |        |        |        |            |        |

| MOTA         | 2808         | CE1       | HIS F          | В 177          | 32.097           | 21.613           | 17.030           | 1.00 23.72               | В      |
|--------------|--------------|-----------|----------------|----------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 2809         | NE2       |                | B 177          | 32.838           | 21.255           | 15.995<br>15.057 | 1.00 23.87<br>1.00 27.87 | B<br>B |
| ATOM<br>ATOM | 2810<br>2811 | С<br>О    |                | B 177<br>B 177 | 28.762<br>28.059 | 23.413 24.205    | 15.672           | 1.00 27.87               | В      |
| ATOM         | 2812         | И         |                | B 178          | 28.654           | 22.085           | 15.237           | 1.00 29.57               | В      |
| ATOM         | 2813         | CD        |                | B 178          | 29.365           | 21.025           | 14.501           | 1.00 28.96               | В      |
| ATOM         | 2814         | CA        | PRO I          | B 178          | 27.687           | 21.497           | 16.175           | 1.00 31.71               | В      |
| ATOM         | 2815         | CB        |                | B 178          | 28.062           | 20.019           | 16.166           | 1.00 30.49               | B<br>B |
| ATOM         | 2816         | CG        |                | B 178          | 28.503<br>27.649 | 19.810<br>22.071 | 14.769<br>17.595 | 1.00 30.01<br>1.00 33.29 | В      |
| ATOM<br>ATOM | 2817<br>2818 | С<br>О    |                | B 178<br>B 178 | 26.619           | 22.020           | 18.256           | 1.00 35.00               | В      |
| ATOM         | 2819         | N         |                | B 179          | 28.762           | 22.615           | 18.067           | 1.00 34.96               | В      |
| ATOM         | 2820         | CA        | SER 3          | B 179          | 28.813           | 23.168           | 19.418           | 1.00 36.85               | В      |
| ATOM         | 2821         | CB        |                | B 179          | 30.261           | 23.228           | 19.896           | 1.00 35.35               | В      |
| ATOM         | 2822         | OG<br>~   |                | B 179          | 31.023           | 24.053<br>24.564 | 19.034<br>19.522 | 1.00 35.14<br>1.00 38.40 | B<br>B |
| ATOM         | 2823<br>2824 | С<br>О    |                | B 179<br>B 179 | 28.206<br>27.953 | 25.056           | 20.619           | 1.00 37.27               | В      |
| ATOM<br>ATOM | 2825         | И         |                | B 180          | 27.971           | 25.192           | 18.377           | 1.00 40.10               | В      |
| ATOM         | 2826         | CA        |                | B 180          | 27.434           | 26.545           | 18.340           | 1.00 41.36               | В      |
| MOTA         | 2827         | CB        | LEU :          | B 180          | 28.162           | 27.352           | 17.269           | 1.00 39.74               | В      |
| MOTA         | 2828         | CG        |                | B 180          | 29.677           | 27.432           | 17.422           | 1.00 39.93               | В      |
| ATOM         | 2829         | CD1       |                | B 180          | 30.286<br>30.021 | 28.013<br>28.279 | 16.157<br>18.636 | 1.00 39.41<br>1.00 39.61 | B<br>B |
| MOTA<br>ATOM | 2830<br>2831 | CD2<br>C  |                | B 180<br>B 180 | 25.944           | 26.633           | 18.078           | 1.00 43.85               | В      |
| ATOM         | 2832         | 0         |                | B 180          | 25.449           | 26.125           | 17.072           | 1.00 44.25               | В      |
| MOTA         | 2833         | N         | GLN            |                | 25.230           | 27.289           | 18.984           | 1.00 47.20               | В      |
| ATOM         | 2834         | CA        | $\mathtt{GLN}$ |                | 23.794           | 27.475           | 18.814           | 1.00 49.93               | В      |
| ATOM         | 2835         | CB        | GLN            |                | 23.158           | 27.956           | 20.121           | 1.00 52.00<br>1.00 56.40 | B<br>B |
| ATOM         | 2836         | CG        | GLN<br>GLN     | B 181<br>B 181 | 23.873<br>23.263 | 29.134<br>29.538 | 20.758<br>22.084 | 1.00 59.03               | В      |
| ATOM<br>ATOM | 2837<br>2838 | CD<br>OE1 |                | B 181          | 22.087           | 29.908           | 22.153           | 1.00 60.55               | B      |
| ATOM         | 2839         | NE2       |                | B 181          | 24.059           | 29.468           | 23.149           | 1.00 58.44               | B      |
| ATOM         | 2840         | C         | ${	t GLN}$     | B 181          | 23.635           | 28.522           | 17.715           | 1.00 49.23               | В _    |
| ATOM         | 2841         | 0         |                | B 181          | 22.712           | 28.465           | 16.906           | 1.00 49.91               | В      |
| ATOM         | 2842         | N         | SER            |                | 24.560<br>24.555 | 29.474<br>30.523 | 17.688<br>16.679 | 1.00 48.48<br>1.00 47.89 | B<br>B |
| ATOM<br>ATOM | 2843<br>2844 | CA<br>CB  | SER<br>SER     | B 182<br>B 182 | 24.333           | 31.879           | 17.314           | 1.00 48.68               | В      |
| ATOM         | 2845         | OG        | SER            |                | 25.211           | 32.223           | 18.286           | 1.00 50.58               | В      |
| MOTA         | 2846         | С         | SER            | B 182          | 25.938           | 30.550           | 16.038           | 1.00 45.93               | В      |
| MOTA         | 2847         | 0         | SER            |                | 26.945           | 30.354           | 16.714           | 1.00 45.13               | В      |
| MOTA         | 2848         | N         |                |                | 26.004           | 30.783<br>31.096 | 14.721<br>13.784 | 1.00 45.12<br>1.00 44.93 | B<br>B |
| MOTA         | 2849<br>2850 | CD<br>CA  |                | B 183<br>B 183 | 24.911<br>27.302 | 30.819           | 14.042           | 1.00 43.29               | В      |
| MOTA<br>MOTA | 2851         | CB        |                | B 183          | 26.923           | 31.070           | 12.581           | 1.00 43.70               | В      |
| MOTA         | 2852         | CG        | PRO            | B 183          | 25.642           | 31.833           | 12.688           | 1.00 44.70               | В      |
| ATOM         | 2853         | C         | PRO            | B 183          | 28.254           | 31.876           | 14.593           | 1.00 40.67               | В      |
| MOTA         | 2854         | 0         |                | B 183          | 27.828           | 32.851           | 15.209           | 1.00 40.46<br>1.00 37.76 | B<br>B |
| ATOM         | 2855         | N         |                | B 184<br>B 184 | 29.547<br>30.550 | 31.664<br>32.607 | 14.382<br>14.842 | 1.00 37.78               | В      |
| ATOM<br>ATOM | 2856<br>2857 | CA<br>CB  |                | B 184          | 31.759           | 31.889           | 15.468           | 1.00 35.92               | В      |
| ATOM         | 2858         | CG2       |                | B 184          | 32.907           | 32.867           | 15.657           | 1.00 35.57               | В      |
| ATOM         | 2859         | CGI       | L ILE          | B 184          | 31.362           | 31.270           | 16.806           | 1.00 36.74               | В      |
| MOTA         | 2860         | CD        |                | B 184          | 32.475           | 30.477           | 17.458           | 1.00 36.59               | В      |
| MOTA         | 2861         | C         | ILE            | B 184          | 31.040           | 33.453<br>32.932 | 13.680<br>12.630 | 1.00 34.88<br>1.00 35.06 | B<br>B |
| MOTA         | 2862<br>2863 | N         | ILE<br>THR     |                | 31.412<br>31.043 | 34.764           | 13.876           | 1.00 33.00               | В      |
| MOTA<br>MOTA | 2864         | CA        | THR            |                | 31.500           | 35.675           | 12.845           | 1.00 34.32               | В      |
| ATOM         | 2865         | CB        | THR            |                | 30.356           | 36.592           | 12.341           | 1.00 35.40               | В      |
| MOTA         | 2866         | OG:       | 1 THR          | B 185          | 29.770           | 37.285           | 13.450           | 1.00 37.01               | В      |
| ATOM         | 2867         | CG:       |                |                | 29.286           | 35.774           | 11.631           | 1.00 35.73<br>1.00 33.38 | B<br>B |
| MOTA         | 2868         | C         |                | B 185          | 32.622<br>32.559 | 36.548<br>37.050 | 13.375<br>14.494 | 1.00 33.38<br>1.00 32.86 | В      |
| ATOM<br>ATOM | 2869<br>2870 | N         | THR.           | B 185<br>B 186 | 33.652           |                  | 12.560           | 1.00 32.69               | В      |
| ATOM         | 2871         | CA        |                |                | 34.791           | 37.538           | 12.911           | 1.00 33.21               | В      |
| MOTA         | 2872         | CB        | VAL            |                | 36.041           | 36.683           |                  | 1.00 33.39               | В      |
| ATOM         | 2873         | CG        |                |                | 37.212           |                  |                  | 1.00 33.93               | В      |
| ATOM         | 2874         | CG:       |                |                | 35.766           | 35.674<br>38.454 |                  | 1.00 33.67<br>1.00 34.68 | B<br>B |
| ATOM         | 2875<br>2876 | С<br>О    | VAL<br>VAL     |                | 35.023<br>35.060 |                  |                  | 1.00 34.68               | В      |
| MOTA<br>MOTA | 2876<br>2877 | N         | GLU            |                | 35.000           |                  |                  | 1.00 36.30               | В      |
| ATOM         | 2878         | CA        |                |                | 35.373           |                  |                  | 1.00 38.96               | В      |
| ATOM         | 2879         | CB        |                |                | 34.484           |                  |                  | 1.00 40.90               | В      |
| MOTA         | 2880         | CG        |                |                | 33.008           |                  |                  | 1.00 46.09               | В      |
| ATOM         | 2881         | CD        | GLU            | B 187          | 32.146           | 42.876           | 11.421           | 1.00 48.81               | В      |

| ATOM | 2882 | OE1 | GLU E                | 3            | 187  | 30.909 | 42.73 | 9   | 11.545 | 1.00 | 51.77 | В |
|------|------|-----|----------------------|--------------|------|--------|-------|-----|--------|------|-------|---|
| ATOM | 2883 | OE2 | GLU F                | 3 :          | 187  | 32.701 | 43.99 | 7   | 11.363 | 1.00 | 49.79 | В |
| ATOM | 2884 | C   | GLU E                |              | 187  | 36.816 | 41.17 |     | 10.784 | 1.00 | 39.59 | В |
|      |      |     |                      |              |      | 37.637 | 40.99 |     | 11.684 |      | 39.84 | В |
| MOTA | 2885 | 0   | GLU E                |              | 187  |        |       |     |        |      |       | В |
| ATOM | 2886 | N   | TRP F                |              | 188  | 37.113 | 41.76 |     | 9.635  |      | 39.59 |   |
| MOTA | 2887 | CA  | TRP E                | 3            | 188  | 38.430 | 42.30 | 2   | 9.360  |      | 40.86 | В |
| MOTA | 2888 | CB  | TRP F                | 3            | 188  | 39.339 | 41.25 | 2   | 8.736  | 1.00 | 38.70 | B |
| ATOM | 2889 | CG  | TRP I                | 3            | 188  | 40.769 | 41.70 | 4   | 8.693  | 1.00 | 37.82 | В |
| ATOM | 2890 | CD2 | TRP F                |              | 188  | 41.421 | 42.38 | 13  | 7.615  | 1.00 | 36.62 | В |
|      |      |     |                      |              |      |        | 42.64 |     | 8.023  |      | 36.31 | В |
| ATOM | 2891 | CE2 | TRP I                |              | 188  | 42.748 |       |     |        |      |       |   |
| ATOM | 2892 | CE3 | TRP I                | 3            | 188  | 41.013 | 42.79 |     | 6.340  |      | 36.14 | B |
| ATOM | 2893 | CD1 | TRP I                | 3            | 188  | 41.698 | 41.58 | 33  | 9.686  | 1.00 | 37.31 | В |
| ATOM | 2894 | NE1 | TRP I                | 3            | 188  | 42.890 | 42.14 | 1   | 9.291  | 1.00 | 37.27 | В |
| ATOM | 2895 | CZ2 | TRP I                | 3            | 188  | 43.673 | 43.29 | 96  | 7.204  | 1.00 | 37.17 | В |
|      |      | CZ3 |                      |              | 188  | 41.932 | 43.45 |     | 5.522  | 1.00 | 38.70 | В |
| ATOM | 2896 |     |                      |              |      |        | 43.69 |     | 5.960  | 1.00 | 37.13 | В |
| ATOM | 2897 | CH2 |                      |              | 188  | 43.249 |       |     |        |      |       |   |
| MOTA | 2898 | C   | TRP 1                | 3            | 188  | 38.258 | 43.45 |     | 8.383  |      | 42.97 | В |
| MOTA | 2899 | O   | TRP I                | 3            | 188  | 37.946 | 43.24 | f O | 7.211  | 1.00 | 42.37 | B |
| ATOM | 2900 | N   | ARG I                | 3            | 189  | 38.442 | 44.67 | 78  | 8.864  | 1.00 | 46.69 | В |
| ATOM | 2901 | CA  | ARG I                | В            | 1.89 | 38.303 | 45.84 | 12  | 7.999  | 1.00 | 50.32 | В |
|      | 2902 | CB  |                      |              | 189  | 37.731 | 47.04 | ın  | 8.776  | 1.00 | 52.18 | В |
| ATOM | _    |     |                      |              |      | 38.615 | 47.59 |     | 9.893  | 1.00 | 56.00 | В |
| ATOM | 2903 | CG  |                      |              | 189  |        |       |     |        |      |       | В |
| ATOM | 2904 | CD  | ARG I                | В            | 189  | 38.234 | 47.04 |     | 11.270 | 1.00 | 59.95 |   |
| MOTA | 2905 | NE  | ARG :                | В            | 189  | 38.639 | 45.65 | 50  | 11.479 | 1.00 |       | В |
| ATOM | 2906 | CZ  | ARG I                | В            | 189  | 39.903 | 45.23 | 36  | 11.559 | 1.00 | 64.33 | В |
| MOTA | 2907 | NH1 | ARG :                | В            | 189  | 40.899 | 46.10 | )5  | 11.447 | 1.00 | 65.45 | В |
| ATOM | 2908 | NH2 |                      |              | 189  | 40.172 | 43.95 | 5.1 | 11.760 | 1.00 | 64.46 | В |
|      |      |     |                      |              |      | 39.664 | 46.19 |     | 7.412  | 1.00 | 50.56 | В |
| MOTA | 2909 | C   |                      |              | 189  |        |       |     |        |      |       | В |
| ATOM | 2910 | 0   | ARG :                |              | 189  | 40.680 | 46.1  |     | 8.100  | 1.00 | 50.34 |   |
| ATOM | 2911 | N   | ALA                  | В            | 190  | 39.684 | 46.55 | 54  | 6.135  | 1.00 | 52.30 | В |
| ATOM | 2912 | CA  | ALA                  | В            | 190  | 40.933 | 46.91 | L1  | 5.476  | 1.00 | 54.16 | В |
| ATOM | 2913 | CB  | ALA                  | В            | 190  | 40.846 | 46.59 | 92  | 3.987  | 1.00 | 55.33 | В |
| ATOM | 2914 | C   | ALA                  |              |      | 41.238 | 48.39 | 92  | 5.679  | 1.00 | 55.19 | В |
|      |      |     | ALA                  |              |      | 40.300 | 49.14 |     | 6.023  |      | 54.90 | В |
| ATOM | 2915 | 0   |                      |              |      |        |       |     | 5.481  |      | 56.19 | B |
| ATOM | 2916 | OXT |                      |              |      | 42.408 | 48.78 |     |        |      |       |   |
| MOTA | 2917 | C   | LEU                  | C            | 1.   | 32.073 | 1.03  |     | 33.225 | 1.00 |       | C |
| MOTA | 2918 | 0   | LEU                  | C            | 1    | 33.091 | 1.60  | 07  | 33.619 |      | 35.87 | C |
| ATOM | 2919 | N   | LEU                  | C            | 1    | 29.791 | 1.90  | 06  | 32.702 | 1.00 | 36.17 | C |
| ATOM | 2920 | CA  | LEU                  | C            | 1    | 30.699 | 1.40  | 09  | 33.777 | 1.00 | 34.35 | C |
| ATOM | 2921 | N   | GLN                  |              | 2    | 32.105 | 0.0   | 72  | 32.307 | 1.00 | 34.64 | C |
|      |      |     | GLN                  |              | 2    | 33.374 | -0.3  |     | 31.737 | 1.00 | 34.20 | C |
| MOTA | 2922 | CA  |                      |              |      |        | -0.8  |     | 30.294 | 1.00 |       | C |
| MOTA | 2923 | C   | $\operatorname{GLN}$ |              | 2    | 33.250 |       |     |        |      |       | C |
| ATOM | 2924 | 0   | GLN                  | C            | 2    | 32.373 | -1.6  |     | 29.955 | 1.00 |       |   |
| MOTA | 2925 | И   | PRO                  | C            | 3    | 34.130 | -0.3  | 29  | 29.418 | 1.00 |       | C |
| ATOM | 2926 | CD  | PRO                  | C            | 3    | 35.226 | 0.63  | 32  | 29.639 | 1.00 | 33.81 | C |
| MOTA | 2927 | CA  | PRO                  | C            | 3    | 34.064 | -0.7  | 42  | 28.015 | 1.00 | 34.77 | C |
| MOTA | 2928 | CB  | PRO                  |              | 3    | 35.027 | 0.2   | 22  | 27.329 | 1.00 | 34.33 | C |
|      |      |     |                      |              | 3    | 36.070 |       |     | 28.393 | 1.00 |       | C |
| MOTA | 2929 | CG  | PRO                  |              |      |        |       |     | 27.890 | 1.00 |       | Ċ |
| MOTA | 2930 | C   | PRO                  |              | 3    | 34.508 |       |     |        |      |       | C |
| MOTA | 2931 | 0   | PRO                  | C            | 3    | 35.435 |       |     | 28.579 | 1.00 |       |   |
| ATOM | 2932 | N   | PHE                  | C            | 4    | 33.837 | -2.9  | 47  | 27.024 | 1.00 | 31.97 | C |
| MOTA | 2933 | CA  | PHE                  | C            | 4    | 34.173 | -4.3  | 55  | 26.812 | 1.00 | 32.26 | С |
| MOTA | 2934 | CB  | PHE                  | C            | 4    | 32.897 | -5.1  | 93  | 26.632 | 1.00 | 34.22 | C |
| ATOM | 2935 | CG  | PHE                  |              | 4    | 32.006 | -5.2  | 35  | 27.852 | 1.00 | 37.02 | С |
|      | 2936 | CD  |                      |              | 4    | 32.481 |       |     | 29.103 | 1.00 | 38.53 | C |
| ATOM |      |     |                      |              |      |        |       |     | 27.756 | 1.00 |       | C |
| MOTA | 2937 | CD2 |                      |              | 4    | 30.701 |       |     |        |      |       | C |
| MOTA | 2938 | CE  | L PHE                | C            | 4    | 31.673 |       |     | 30.248 |      | 40.80 |   |
| ATOM | 2939 | CE  | PHE                  | C            | 4    | 29.878 |       |     | 28.891 | 1.00 |       | C |
| ATOM | 2940 | CZ  | PHE                  | C            | 4    | 30.369 | -5.4  | 21  | 30.142 | 1.00 | 40.74 | C |
| ATOM | 2941 | C   | PHE                  | C            | 4    | 35.052 | -4.4  | 83  | 25.571 | 1.00 | 29.17 | C |
| ATOM | 2942 | 0   | PHE                  | $\mathbf{C}$ | 4    | 34.655 | -4.0  | 72  | 24.482 | 1.00 | 30.93 | C |
| ATOM | 2943 | N   | PRO                  |              | 5    | 36.257 |       | 59  | 25.715 | 1.00 | 26.63 | C |
|      |      |     |                      |              |      | 36.936 |       |     | 26.974 |      | 24.97 | C |
| MOTA | 2944 | CD  | PRO                  |              | 5    |        |       |     |        |      |       | Ċ |
| MOTA | 2945 | CA  | PRO                  |              |      | 37.168 |       |     | 24.577 | 1.00 |       |   |
| MOTA | 2946 | CB  | PRO                  | C            | 5    | 38.527 | _     |     | 25.227 | 1.00 |       | C |
| ATOM | 2947 | CG  | PRO                  | C            | 5    | 38.335 |       |     | 26.504 | 1.00 |       | C |
| ATOM | 2948 | C   | PRO                  | C            | 5    | 37.043 | -6.5  | 69  | 23.887 | 1.00 | 22.95 | C |
| ATOM | 2949 | 0   | PRO                  | C            | 5    | 36.403 | -7.4  | 75  | 24.404 | 1.00 | 22.96 | C |
| ATOM | 2950 | N   | GLN                  |              |      | 37.666 | _     | 96  | 22.719 | 1.00 | 23.53 | C |
|      | 2951 | CA  |                      |              |      | 37.659 | _     |     | 21.967 | 1.00 |       | C |
| ATOM |      |     |                      |              |      | 37.506 | _     |     | 20.475 | 1.00 |       | C |
| MOTA | 2952 | CB  | GLN                  |              |      |        |       |     |        | 1.00 |       | C |
| MOTA | 2953 | CG  | GLN                  |              |      | 36.170 |       |     | 20.063 |      |       |   |
| MOTA | 2954 | CD  |                      |              |      | 36.074 |       |     | 18.557 | 1.00 |       | C |
| MOTA | 2955 | OE  | 1 GLN                | C            | 6    | 36.483 | -7.7  | 760 | 17.773 | 1.00 | 23.94 | C |
|      |      |     |                      |              |      |        |       | _   |        |      |       |   |

| MOTA | 2956 | NE2 | GLN            | C | 6      | 35.525 | -5.766  | 18.149        | 1.00 20.70 | C |
|------|------|-----|----------------|---|--------|--------|---------|---------------|------------|---|
| MOTA | 2957 | C   | GLN            | C | 6      | 38.996 | -8.637  | 22.204        | 1.00 20.71 | C |
| ATOM | 2958 | 0   | GLN            | C | 6      | 40.046 | -8.008  | 22.105        | 1.00 19.85 | C |
| ATOM | 2959 | N   | PRO            | C | 7      | 38.974 | -9.932  | 22.548        | 1.00 21.37 | C |
| ATOM | 2960 | CD  | PRO            |   | 7      | 37.810 | -10.710 | 23.017        | 1.00 21.21 | C |
| ATOM | 2961 | CA  | PRO            |   | 7      | 40.215 | -10.673 | 22.790        | 1.00 21.62 | С |
|      |      | CB  | PRO            |   | 7      |        | -11.730 | 23.795        | 1.00 21.96 | Ċ |
| ATOM | 2962 |     |                |   |        |        |         | 23.755        | 1.00 20.65 | C |
| ATOM | 2963 | CG  | PRO            |   | 7      |        | -12.085 |               |            |   |
| ATOM | 2964 | C   | PRO            |   | 7      |        | -11.316 | 21.511        | 1.00 24.05 | C |
| ATOM | 2965 | 0   | PRO            | С | 7      |        | -11.577 | 20.588        | 1.00 22.84 | C |
| MOTA | 2966 | N   | GLU            | C | 8      | 42.051 | -11.550 | 21.448        | 1.00 26.22 | C |
| MOTA | 2967 | CA  | GLU            | C | 8      | 42.631 | -12.215 | 20.292        | 1.00 27.00 | C |
| MOTA | 2968 | CB  | GLU            | C | 8      | 44.038 | -11.687 | 19.988        | 1.00 27.94 | С |
| ATOM | 2969 | CG  | GLU            | C | 8      | 44.803 | -12.494 | 18.915        | 1.00 28.38 | C |
| ATOM | 2970 | CD  | GLU            | C | 8      | 44.043 | -12.649 | 17.589        | 1.00 31.32 | C |
| ATOM | 2971 | OE1 | GLU            |   | 8      | 42.980 | -13.309 | 17.564        | 1.00 31.69 | С |
| ATOM | 2972 | OE2 | GLU            |   | 8      |        | -12.112 | 16.563        | 1.00 29.86 | C |
|      |      | C   | GLU            |   | 8      | 42.678 |         | 20.676        | 1.00 28.48 | C |
| ATOM | 2973 |     |                |   | 8      |        | -14.029 | 21.829        | 1.00 28.74 | C |
| ATOM | 2974 | 0   | GLU            |   |        |        |         |               |            | C |
| ATOM | 2975 | N   | LEU            |   | 9      |        | -14.571 | 19.721        |            |   |
| MOTA | 2976 | ÇA  | LEU            |   | 9      |        | -15.998 | 20.002        | 1.00 31.21 | C |
| ATOM | 2977 | CB  | LEU            | C | 9      | 41.313 | -16.688 | 19.183        | 1.00 32.12 | C |
| MOTA | 2978 | CG  | $\mathbf{LEU}$ | C | 9      | 39.918 | -16.072 | 19.302        | 1.00 33.78 | C |
| ATOM | 2979 | CD1 | LEU            | C | 9      | 38.941 | -16.866 | 18.457        | 1.00 35.00 | C |
| ATOM | 2980 | CD2 | LEU            | C | 9      | 39.481 | -16.061 | 20.761        | 1.00 35.59 | C |
| ATOM | 2981 | C   | LEU            | C | 9      | 43.748 | -16.641 | 19.712        | 1.00 31.83 | C |
| ATOM | 2982 | 0   | LEU            | С | 9      | 44.342 | -16.415 | 18.658        | 1.00 30.94 | C |
| ATOM | 2983 | N   |                | C | 10     | 44.256 | -17.442 | 20.657        | 1.00 33.31 | C |
| ATOM | 2984 | CD  | PRO            |   | 10     |        | -17.661 | 22.032        | 1.00 33.12 | С |
|      | 2985 | CA  |                |   | 10     | 45.545 |         | 20.439        | 1.00 36.08 | C |
| ATOM |      |     |                |   |        |        | -18.590 | 21.836        | 1.00 36.62 | Ċ |
| ATOM | 2986 | CB  | PRO            |   | 10     |        |         |               | 1.00 35.26 | C |
| MOTA | 2987 | CG  | PRO            |   | 1.0    | 44.598 |         | 22.476        |            |   |
| ATOM | 2988 | C   | PRO            |   | 10     | 45.428 |         | 19.430        | 1.00 37.51 | C |
| MOTA | 2989 | 0   | PRO            | C | 10     | 44.495 |         | 19.491        | 1.00 39.49 | C |
| ATOM | 2990 | N   | TYR            | C | 11     | 46.365 | -19.269 | 18.488        | 1.00 38.68 | C |
| ATOM | 2991 | CA  | TYR            | C | 11.    | 46.392 | -20.305 | 17.463        | 1.00 40.24 | C |
| ATOM | 2992 | С   | TYR            | C | 11     | 47.834 | -20.782 | 17.290        | 1.00 42.03 | C |
| ATOM | 2993 | 0   | TYR            | C | 11     | 48.121 | -21.967 | 17.586        | 1.00 42.72 | C |
| ATOM | 2994 | OXT | TYR            | C | 11     | 48.665 | -19.949 | 16.870        | 1.00 42.75 | C |
| ATOM | 2995 | CB  | VAL            |   | 2      | 76.722 | 40.050  | 4.030         | 1.00 35.81 | D |
| ATOM | 2996 | CG1 | VAL            |   | 2      | 77.537 | 40.465  | 2.823         | 1.00 36.64 | D |
| ATOM | 2997 | CG2 | VAL            |   | 2      | 76.313 | 38.577  | 3.893         | 1.00 37.71 | D |
|      |      | C   | VAL            |   | 2      | 76.622 | 40.298  | <i>c</i> ==== | 1.00 31.61 | D |
| ATOM | 2998 |     |                |   |        | 75.696 | 39.494  | 6.653         | 1.00 31.96 | D |
| ATOM | 2999 | 0   | VAL            |   | 2      |        |         |               | 1.00 32.12 | D |
| ATOM | 3000 | N   | VAL            |   | 2      | 78.625 | 39.207  | 5.418         |            |   |
| ATOM | 3001 | CA  | VAL            |   | 2      | 77.560 | 40.255  | 5.317         | 1.00 33.74 | D |
| MOTA | 3002 | N   | ALA            | D | 3      | 76.864 | 41.246  | 7.441         | 1.00 29.52 | D |
| MOTA | 3003 | CA  | ALA            | D | 3      | 76.053 | 41.379  | 8.653         | 1.00 27.92 | D |
| MOTA | 3004 | CB  | ALA            | D | 3      | 76.480 | 40.321  | 9.684         | 1.00 27.11 | D |
| MOTA | 3005 | C   | ALA            | D | 3      | 76.128 | 42.767  | 9.286         | 1.00 25.71 | D |
| ATOM | 3006 | 0   | ALA            | D | 3      | 77.050 | 43.540  | 9.016         | 1.00 23.11 | D |
| ATOM | 3007 | N   | ASP            | D | 4      | 75.152 | 43.070  | 10.137        | 1.00 24.26 | D |
| MOTA | 3008 | CA  | ASP            | D | 4      | 75.109 | 44.354  | 10.825        | 1.00 24.77 | D |
| ATOM | 3009 | CB  | ASP            |   | 4      | 73.774 | 44.533  | 11.555        | 1.00 25.88 | D |
| MOTA | 3010 | CG  | ASP            |   | 4      | 72.595 |         | 10.611        | 1.00 26.24 | D |
| ATOM | 3011 |     | ASP            |   | 4      | 71.449 |         | 11.080        | 1.00 24.74 | D |
|      |      |     |                |   |        | 72.811 |         | 9.416         | 1.00 28.25 | D |
| ATOM | 3012 |     | ASP            |   | 4      |        |         | 11.857        | 1.00 25.25 | D |
| ATOM | 3013 | C   | ASP            |   | 4      | 76.230 |         |               |            |   |
| MOTA | 3014 | 0   | ASP            |   | 4      | 76.882 |         | 12.027        | 1.00 26.40 | D |
| ATOM | 3015 | N   | HIS            | D | 5      | 76.440 |         | 12.549        | 1.00 24.52 | D |
| ATOM | 3016 | CA  | HIS            | D | 5      | 77.469 |         | 13.582        | 1.00 24.25 | D |
| MOTA | 3017 | CB  | HIS            | D | 5      | 76.836 | 43.302  | 14.972        | 1.00 23.42 | D |
| MOTA | 3018 | CG  | HIS            | D | 5      | 76.138 | 44.599  | 15.231        | 1.00 26.12 | D |
| MOTA | 3019 | CD2 | HIS            | D | 5      | 76.567 | 45.879  | 15.126        | 1.00 26.16 | D |
| ATOM | 3020 |     | HIS            |   | 5      | 74.830 | 44.667  | 15.657        | 1.00 25.67 | D |
| ATOM | 3021 |     | HIS            |   | 5      | 74.481 |         | 15.799        | 1.00 26.53 | D |
| ATOM | 3022 | NE2 |                |   | 5      | 75.516 |         | 15.484        | 1.00 25.96 | D |
| ATOM | 3022 | C   | HIS            |   | 5      | 78.241 |         | 13.492        | 1.00 22.88 | D |
|      |      |     |                |   | 5<br>5 | 77.657 | _       | 13.452        | 1.00 22.31 | D |
| ATOM | 3024 | O   | HIS            |   |        |        |         | 13.691        | 1.00 20.27 | D |
| ATOM | 3025 | N   | VAL            |   | 6      | 79.552 |         |               |            | D |
| ATOM | 3026 | CA  | VAL            |   | 6      | 80.421 |         | 13.657        |            |   |
| MOTA | 3027 | CB  | VAL            |   | 6 `    | 81.419 |         | 12.486        | 1.00 20.45 | D |
| MOTA | 3028 | CG1 |                |   | 6      | 82.357 |         | 12.564        | 1.00 19.85 | D |
| MOTA | 3029 | CG2 | VAL            | D | 6      | 80.674 | 40.869  | 11.161        | 1.00 25.29 | D |
|      |      |     |                |   |        |        |         |               |            |   |

| ATOM         | 3030             | С         | VAL        | D | 6        | 81.223             | 40.792           | 14.944           | 1.00 18.77               | D        |
|--------------|------------------|-----------|------------|---|----------|--------------------|------------------|------------------|--------------------------|----------|
| MOTA         | 3031             | 0         | VAL        | D | 6        | 81.767             | 41.812           | 15.352           | 1.00 17.70               | D        |
| MOTA         | 3032             | N         | ALA        |   | 7        | 81.304             | 39.626           | 15.575           | 1.00 18.23               | D        |
| MOTA         | 3033             | CA        | ALA        |   | 7        | 82.046             | 39.489           | 16.821           | 1.00 18.01               | Ď        |
| ATOM         | 3034             | CB        | ALA        |   | 7        | 81.080             | 39.452           | 18.006           | 1.00 17.61               | D        |
| ATOM         | 3035             | C         | ALA        |   | 7        | 82.899             | 38.239           | 16.838           | 1.00 17.37<br>1.00 19.56 | D<br>D   |
| ATOM         | 3036             | N         | ALA<br>SER |   | 7<br>8   | 82.568<br>84.008   | 37.242<br>38.306 | 16.208<br>17.562 | 1.00 19.56               | D<br>D   |
| ATOM<br>ATOM | 3037<br>3038     | CA        | SER        |   | 8        | 84.892             | 37.158           | 17.712           | 1.00 17.07               | D        |
| MOTA         | 3038             | CB        | SER        |   | 8        | 86.297             | 37.455           | 17.202           | 1.00 12.56               | D        |
| ATOM         | 3040             | OG        | SER        |   | 8        | 86.324             | 37.492           | 15.789           | 1.00 18.97               | D        |
| ATOM         | 3041             | C         | SER        |   | 8        | 84.932             | 36.904           | 19.201           | 1.00 16.39               | D        |
| ATOM         | 3042             | 0         | SER        |   | 8        | 85.613             | 37.614           | 19.951           | 1.00 15.61               | D        |
| ATOM         | 3043             | N         | TYR        |   | 9        | 84.144             | 35.930           | 19.637           | 1.00 17.58               | D        |
| ATOM         | 3044             | CA        | TYR        | D | 9        | 84.096             | 35.587           | 21.044           | 1.00 18.51               | D        |
| ATOM         | 3045             | CB        | TYR        | D | 9        | 82.698             | 35.133           | 21.444           | 1.00 17.92               | D        |
| ATOM         | 3046             | CG        | TYR        | D | 9        | 81.730             | 36.290           | 21.362           | 1.00 17.41               | Ð        |
| ATOM         | 3047             | CD1       | TYR        |   | 9        | 82.056             | 37.523           | 21.928           | 1.00 16.27               | D        |
| ATOM         | 3048             | CE1       | TYR        |   | 9        | 81.208             | 38.603           | 21.840           | 1.00 15.18               | D        |
| MOTA         | 3049             | CD2       | TYR        |   | 9        | 80.515             | 36.169           | 20.701           | 1.00 17.05               | D        |
| ATOM         | 3050             | CE2       | TYR        |   | 9        | 79.649             | 37.252           | 20.608           | 1.00 18.01<br>1.00 16.67 | D<br>D   |
| ATOM         | 3051             | CZ        | TYR        |   | 9<br>9   | 80.005<br>79.157   | 38.466<br>39.543 | 21.181<br>21.104 | 1.00 20.30               | D        |
| ATOM         | 3052             | OH<br>C   | TYR<br>TYR |   | 9        | 85.120             | 34.508           | 21.104           | 1.00 20.30               | D        |
| ATOM<br>ATOM | 3053<br>3054     | 0         | TYR        |   | 9        | 84.856             | 33.323           | 21.337           | 1.00 17.21               | D        |
| ATOM         | 305 <del>4</del> | N         | GLY        |   | 10       | 86.321             | 34.989           | 20.843           | 1.00 22.61               | D        |
| ATOM         | 3056             | CA        | GLY        |   | 10       | 87.478             | 34.160           | 20.836           | 1.00 20.96               | D        |
| ATOM         | 3057             | C         | GLY        |   | 10       | 88.358             | 34.354           | 19.624           | 1.00 18.79               | D        |
| ATOM         | 3058             | 0         | GLY        |   | 10       | 88.170             | 33.693           | 18.618           | 1.00 16.79               | D        |
| ATOM         | 3059             | N         | VAL        |   | 11       | 89.275             | 35.307           | 19.683           | 1.00 17.75               | D        |
| ATOM         | 3060             | CA        | VAL        | D | 11       | 90.256             | 35.394           | 18.616           | 1.00 16.92               | D        |
| ATOM         | 3061             | CB        | VAL        | D | 11       | 90.666             | 36.829           | 18.242           | 1.00 17.76               | D        |
| MOTA         | 3062             | CG1       | VAL        | D | 11       | 91.873             | 36.778           | 17.313           | 1.00 15.46               | D        |
| ATOM         | 3063             | CG2       | VAL        | D | 11       | 89.522             | 37.544           | 17.544           | 1.00 13.00               | D        |
| MOTA         | 3064             | C         | LAV        |   | 11       | 91.391             | 34.728           | 19.395           | 1.00 17.46               | D        |
| ATOM         | 3065             | 0         | VAL        |   | 11       | 91.865             | 35.266           | 20.405           | 1.00 18.93               | D        |
| ATOM         | 3066             | N         | ASN        |   | 12       | 91.773             | 33.531           | 18.973           | 1.00 17.46<br>1.00 18.01 | D<br>D   |
| ATOM         | 3067             | CA        | ASN        |   | 12       | 92.831             | 32.779<br>31.360 | 19.644<br>19.969 | 1.00 16.68               | D        |
| MOTA         | 3068             | CB        | ASN        |   | 12<br>12 | 92.339<br>91.179   | 31.356           | 20.955           | 1.00 16.27               | D        |
| MOTA         | 3069<br>3070     | CG<br>OD1 | ASN<br>ASN |   | 1.2      | 91.346             | 30.989           | 22.115           | 1.00 14.97               | D        |
| ATOM<br>ATOM | 3070             | ND2       |            |   | 12       | 90.000             | 31.779           | 20.497           | 1.00 14.97               | D        |
| ATOM         | 3072             | C         | ASN        |   | 12       | 94.061             | 32.699           | 18.759           | 1.00 18.74               | D        |
| ATOM         | 3073             | 0         | ASN        |   | 12       | 93.963             | 32.373           | 17.578           | 1.00 19.66               | D        |
| ATOM         | 3074             | N         | LEU        |   | 13       | 95.221             | 32.969           | 19.344           | 1.00 20.75               | D        |
| ATOM         | 3075             | CA        | LEU        | D | 13       | 96.471             | 32.949           | 18.600           | 1.00 22.59               | D        |
| MOTA         | 3076             | CB        | LEU        | D | 13       | 96.841             | 34.387           | 18.234           | 1.00 24.32               | D        |
| ATOM         | 3077             | CG        | LEU        | D | 13       | 98.215             | 34.672           | 17.632           | 1.00 25.29               | D        |
| ATOM         | 3078             |           | LEU        |   | 13       | 98.355             | 33.966           | 16.289           | 1.00 24.58               | D        |
| MOTA         | 3079             |           | LEU        |   | 13       | 98.380             | 36.177           | 17.475           | 1.00 23.52               | D        |
| ATOM         | 3080             |           |            |   |          | 97.646             | 32.290           | 19.330           | 1.00 22.44<br>1.00 24.67 | D<br>D   |
| MOTA         | 3081             | 0         | LEU        |   | 13       | 97.900<br>98.350   | 32.578<br>31.397 | 20.494<br>18.641 | 1.00 24.67               | D        |
| ATOM         | 3082<br>3083     | N<br>CA   | TYR<br>TYR |   | 14<br>14 | 99.535             | 30.740           | 19.196           | 1.00 25.57               | D        |
| ATOM<br>ATOM | 3084             | CB        | TYR        |   | 14       | 99.223             | 29.360           | 19.765           | 1.00 26.53               | D        |
| ATOM         | 3085             | CG        | TYR        |   | 14       | 100.445            | 28.712           | 20.383           | 1.00 28.87               | D        |
| ATOM         | 3086             | CD1       |            |   | 14       | 100.872            | 29.057           | 21.668           | 1.00 28.57               | $\alpha$ |
| ATOM         | 3087             | CE1       |            |   | 14       | 102.032            | 28.500           | 22.218           | 1.00 27.29               | D        |
| ATOM         | 3088             | CD2       |            | D | 14       | 101.209            | 27.793           | 19.664           | 1.00 29.65               | D        |
| ATOM         | 3089             | CE2       | TYR        | D | 14       | 102.369            | 27.235           | 20.204           | 1.00 26.94               | D        |
| MOTA         | 3090             | CZ        | TYR        | D | 14       | 102.773            | 27.592           | 21.477           | 1.00 27.22               | D        |
| ATOM         | 3091             | OH        | TYR        | D | 14       | 103.914            | 27.039           | 22.008           | 1.00 29.69               | D        |
| MOTA         | 3092             | C         | TYR        |   | 14       | 100.553            | 30.574           | 18.074           | 1.00 26.73               | D        |
| MOTA         | 3093             | 0         | TYR        |   | 14       | 100.210            | 30.128           | 16.980           | 1.00 27.22               | D        |
| ATOM         | 3094             | N         | GLN        |   | 15       | 101.800            | 30.945           | 18.338           | 1.00 26.92               | D<br>D   |
| MOTA         | 3095             | CA        | GLN        |   | 15       | 102.847            | 30.820           | 17.332<br>16.710 | 1.00 27.70<br>1.00 27.39 | D        |
| MOTA         | 3096             | CB        | GLN        |   | 15<br>15 | 103.164<br>103.534 | 32.179<br>33.251 | 17.704           | 1.00 27.39               | D        |
| ATOM<br>ATOM | 3097<br>3098     | CG<br>CD  | GLN<br>GLN |   | 15<br>15 | 103.806            | 34.590           | 17.704           | 1.00 27.78               | D        |
| ATOM         | 3098             | OE1       |            |   | 15       | 103.723            | 35.638           | 17.685           | 1.00 31.07               | D        |
| ATOM         | 3100             | NE2       |            |   | 15       | 104.142            | 34.562           | 15.763           | 1.00 25.83               | D        |
| ATOM         | 3101             | C         | GLN        |   | 15       | 104.097            | 30.222           | 17.952           | 1.00 28.40               | D        |
| ATOM         | 3102             | ō         | GLN        |   | 15       | 104.368            | 30.416           | 19.141           | 1.00 28.81               | D        |
| ATOM         | 3103             | N         | SER        | D | 16       | 104.852            | 29.488           | 17.143           | 1.00 27.95               | D        |

| ATOM         | 3104         | CA         | SER        | D   | 16       | 106.070          | 28.834           | 17.611           | 1.00 28.04               | D      |
|--------------|--------------|------------|------------|-----|----------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 3105         | CB         | SER        |     | 16       | 106.613          | 27.887           | 16.534           | 1.00 25.04               | D      |
| ATOM         | 3106         | OG         | SER        |     | 16       | 106.879          | 28.581           | 15.330           | 1.00 26.28               | D      |
| ATOM         | 3107         | C          | SER        |     | 16       | 107.155          | 29.824           | 18.024           | 1.00 27.77               | D      |
| ATOM         | 3108         | 0          | SER        |     | 16       | 107.922          | 29.558           | 18.946           | 1.00 26.81               | D      |
| ATOM         | 3109         | N          | TYR        |     | 17       | 107.221          | 30.965           | 17.351           | 1.00 29.70               | D      |
| ATOM         | 3110         | CA         | TYR        |     | 17       | 108.228          | 31.953           | 17.694           | 1.00 32.41               | D      |
| ATOM         | 3111         | CB         | TYR        |     | 17       | 108.248          | 33.086           | 16.672           | 1.00 35.15               | D      |
| ATOM         | 3112         | CG         | TYR        |     | 17       | 109.440          | 33.986           | 16.864           | 1.00 40.80               | D      |
| ATOM         | 3113         | CD1        |            | D   | 17       | 110.719          | 33.556           | 16.508           | 1.00 43.28               | D      |
| ATOM         | 3114         | CE1        | TYR        | _   | 17       | 111.836          | 34.345           | 16.743           | 1.00 44.62               | D      |
| ATOM         | 3115         | CD2        | TYR        |     | 17       | 109.308          | 35.235           | 17.460           | 1.00 40.97               | D      |
| ATOM         | 3116         | CE2        | TYR        |     | 17       | 110.419          | 36.032           | 17.702           | 1.00 44.83               | D      |
| ATOM         | 3117         | CZ         | TYR        |     | 17       | 111.679          | 35.580           | 17.341           | 1.00 45.74               | D      |
| ATOM         | 3118         | OH         | TYR        |     | 17       | 112.788          | 36.353           | 17.590           | 1.00 49.39               | D      |
| ATOM         | 3119         | C          | TYR        | D   | 17       | 107.954          | 32.525           | 19.084           | 1.00 33.13               | D      |
| ATOM         | 3120         | 0          | TYR        | Ð   | 17       | 106.888          | 33.092           | 19.332           | 1.00 32.77               | D      |
| ATOM         | 3121         | N          | GLY        | D   | 18       | 108.930          | 32.383           | 19.981           | 1.00 32.74               | D      |
| ATOM         | 3122         | CA         | GLY        |     | 1.8      | 108.780          | 32.867           | 21.341           | 1.00 31.76               | D      |
| ATOM         | 3123         | C          | GLY        | D   | 18       | 108.958          | 31.716           | 22.311           | 1.00 32.63               | D      |
| ATOM         | 3124         | 0          | GLY        | D   | 18       | 110.005          | 31.600           | 22.948           | 1.00 34.20               | D      |
| ATOM         | 3125         | N          | PRO        | D   | 19       | 107.946          | 30.840           | 22.452           | 1.00 33.13               | D      |
| ATOM         | 3126         | CD         | PRO        | D   | 19       | 108.029          | 29.606           | 23.256           | 1.00 31.73               | D      |
| ATOM         | 3127         | CA         | PRO        | D   | 19       | 106.663          | 30.906           | 21.741           | 1.00 32.71               | D      |
| ATOM         | 3128         | СВ         | PRO        | D   | 19       | 106.115          | 29.492           | 21.903           | 1.00 33.20               | D      |
| ATOM         | 3129         | CG         | PRO        | D   | 19       | 106.591          | 29.128           | 23.280           | 1.00 31.76               | D      |
| ATOM         | 3130         | C          | PRO        | D   | 19       | 105.768          | 31.948           | 22.406           | 1.00 32.52               | D      |
| MOTA         | 3131         | 0          | PRO        | D   | 19       | 105.970          | 32.282           | 23.568           | 1.00 33.11               | D      |
| MOTA         | 3132         | N          | SER        | D   | 20       | 104.786          | 32.463           | 21.676           | 1.00 31.92               | D      |
| ATOM         | 3133         | CA         | SER        | D   | 20       | 103.886          | 33.455           | 22.246           | 1.00 30.99               | D      |
| MOTA         | 3134         | CB         | SER        | D   | 20       | 104.287          | 34.867           | 21.795           | 1.00 30.92               | D      |
| MOTA         | 3135         | OG         | SER        | D   | 20       | 104.263          | 34.988           | 20.381           | 1.00 33.16               | D      |
| ATOM         | 3136         | C          | SER        | D   | 20       | 102.441          | 33.172           | 21.852           | 1.00 30.01               | D<br>- |
| ATOM         | 3137         | O          | SER        | D   | 20       | 102.179          | 32.428           | 20.902           | 1.00 29.42               | D<br>- |
| ATOM         | 3138         | N          | GLY        | D   | 21       | 101.512          | 33.763           | 22.598           | 1.00 27.60               | D      |
| MOTA         | 3139         | CA         | GLY        | D   | 21       | 100.101          | 33.580           | 22.318           | 1.00 25.70               | D      |
| MOTA         | 3140         | C          | GLY        |     | 21       | 99.309           | 34.836           | 22.632           | 1.00 24.66               | D      |
| ATOM         | 3141         | 0          | GLY        |     | 21       | 99.848           | 35.798           | 23.187           | 1.00 23.84               | D      |
| MOTA         | 3142         | N          | GLN        |     | 22       | 98.030           | 34.834           | 22.268           | 1.00 22.55               | D      |
| ATOM         | 3143         | CA         | GLN        |     | 22       | 97.149           | 35.974           | 22.527           | 1.00 20.16               | D      |
| MOTA         | 3144         | CB         | GLN        |     | 22       | 97.301           | 37.049           | 21.445           | 1.00 18.28               | D<br>D |
| MOTA         | 3145         | CG         | GLN        |     | 22       | 96.416           | 38.284           | 21.672           | 1.00 18.60<br>1.00 18.36 | D      |
| ATOM         | 3146         | CD         | GLN        |     | 22       | 96.513           | 39.327           | 20.562           | 1.00 19.82               | D      |
| MOTA         | 3147         | OE1        |            |     | 22       | 97.379           | 40.207           | 20.587           | 1.00 17.69               | D      |
| MOTA         | 3148         | NE2        |            |     | 22       | 95.617           | 39.232           | 19.582<br>22.561 | 1.00 17.69               | D      |
| ATOM         | 3149         | C          | GLN        |     | 22       | 95.699           | 35.517           | 22.301           | 1.00 17.26               | D      |
| MOTA         | 3150         | 0          | GLN        |     | 22       | 95.301           | 34.638           | 23.475           | 1.00 17.20               | D      |
| ATOM         | 3151         | N          | TYR        |     | 23       | 94.926<br>93.507 | 36.097<br>35.785 | 23.592           | 1.00 16.21               | D      |
| ATOM         | 3152         | CA         | TYR        |     | 23       | 93.212           | 34.839           | 24.762           | 1.00 14.97               | D      |
| MOTA         | 3153         | CB         | TYR        |     | 23       | 91.750           | 34.438           | 24.798           | 1.00 14.24               | D      |
| ATOM         | 3154         | CG         | TYR        |     | 23<br>23 | 91.730           | 33.318           | 24.109           | 1.00 14.49               | D      |
| ATOM         | 3155         | CD1        | TYR<br>TYR |     | 23       | 89.969           | 33.004           | 24.029           | 1.00 14.23               | D      |
| ATOM         | 3156         |            |            |     | 23       | 90.795           | 35.240           | 25.421           | 1.00 13.21               | D      |
| ATOM         | 3157         | CD2<br>CE2 |            |     | 23       | 89.443           | 34.934           | 25.344           | 1.00 13.08               | D      |
| ATOM         | 3158         | CE2        | TYR        |     | 23       | 89.039           | 33.814           | 24.647           | 1.00 12.88               | D      |
| ATOM<br>ATOM | 3159<br>3160 | OH         | TYR        |     | 23       | 87.710           | 33.471           | 24.566           | 1.00 16.44               | D      |
| ATOM         | 3161         | C          | TYR        |     | 23       | 92.751           | 37.089           | 23.806           | 1.00 15.56               | D      |
| ATOM         | 3162         | 0          | TYR        |     | 23       | 93.014           | 37.817           | 24.763           | 1.00 16.57               | D      |
| MOTA         | 3163         | N          | THR        |     | 24       | 91.811           | 37.377           | 22.914           | 1.00 14.11               | D      |
| ATOM         | 3164         | CA         | THR        |     | 24       | 91.026           | 38.598           | 22.995           | 1.00 13.31               | D      |
| ATOM         | 3165         | CB         | THR        |     | 24       | 91.606           | 39.692           | 22.071           | 1.00 16.07               | D      |
| ATOM         | 3166         | OG1        |            |     | 24       | 91.682           | 39.176           | 20.734           | 1.00 17.94               | D      |
| ATOM         | 3167         | CG2        |            |     | 24       | 92.992           | 40.116           | 22.514           | 1.00 13.19               | D      |
| ATOM         | 3168         | C          | THR        |     | 24       | 89.604           | 38.342           | 22.519           | 1.00 12.68               | D      |
| ATOM         | 3169         | 0          | THR        |     | 24       | 89.306           | 37.287           | 21.994           | 1.00 15.13               | D      |
| ATOM         | 3170         | N          | HIS        |     | 25       | 88.726           | 39.312           | 22.727           | 1.00 13.47               | D      |
| ATOM         | 3171         | CA         | HIS        |     | 25       | 87.360           | 39.224           | 22.229           | 1.00 13.83               | D      |
| ATOM         | 3172         | CB         | HIS        |     | 25       | 86.326           | 39.132           | 23.346           | 1.00 11.26               | D      |
| ATOM         | 3173         | CG         | HIS        |     | 25       | 86.053           | 37.727           | 23.785           | 1.00 14.42               | D      |
| ATOM         | 3174         | CD2        |            |     | 25       | 86.815           | 36.610           | 23.723           | 1.00 12.09               | D      |
| ATOM         | 3175         | NDI        |            |     | 25       | 84.876           | 37.351           | 24.392           | 1.00 15.93               | D      |
| ATOM         | 3176         | CE1        | L HIS      | S D | 25       | 84.922           | 36.064           | 24.685           | 1.00 14.24               | D      |
| ATOM         | 3177         | NE         | HIS        | D   | 25       | 86.089           | 35.591           | 24.289           | 1.00 13.67               | D      |
|              |              |            |            |     |          |                  |                  | 30               |                          |        |

| MOTA | 3178 | С   | HIS | D | 25  | 87.158 | 40.495 | 21.436 | 1.00 13.30 | D          |
|------|------|-----|-----|---|-----|--------|--------|--------|------------|------------|
| ATOM | 3179 | 0   | HIS | D | 25  | 87.573 | 41.563 | 21.859 | 1.00 13.77 | D          |
| ATOM | 3180 | N   | GLU | D | 26  | 86.544 | 40.376 | 20.271 | 1.00 15.40 | D          |
|      |      |     | GLU |   | 26  | 86.318 | 41.540 | 19.434 | 1.00 16.53 | D          |
| ATOM | 3181 | CA  |     |   |     |        |        |        |            |            |
| ATOM | 3182 | CB  | GLU |   | 26  | 87.109 | 41.396 | 18.133 | 1.00 14.47 | D          |
| ATOM | 3183 | CG  | GLU | D | 26  | 88.627 | 41.460 | 18.277 | 1.00 14.81 | D          |
| ATOM | 3184 | CD  | GLU | D | 26  | 89.341 | 41.205 | 16.947 | 1.00 19.22 | D          |
| ATOM | 3185 | OE1 | GLU | D | 26  | 88.726 | 41.429 | 15.884 | 1.00 22.84 | D          |
| ATOM | 3186 | OE2 | GLU |   | 26  | 90.512 | 40.792 | 16.953 | 1.00 17.41 | D          |
|      |      |     |     |   |     |        |        |        |            |            |
| ATOM | 3187 | C   | GLU |   | 26  | 84.841 | 41.721 | 19.111 | 1.00 17.28 | D          |
| ATOM | 3188 | 0   | GLU | D | 26  | 84.073 | 40.760 | 19.100 | 1.00 16.62 | D          |
| ATOM | 3189 | N   | PHE | D | 27  | 84.455 | 42.971 | 18.879 | 1.00 19.63 | D          |
| ATOM | 3190 | CA  | PHE | D | 27  | 83.092 | 43.313 | 18.494 | 1.00 19.71 | D          |
| ATOM | 3191 | CB  |     | D | 27  | 82.231 | 43.722 | 19.684 | 1.00 21.05 | D          |
|      |      |     |     |   | 27  |        | 43.816 | 19.348 | 1.00 24.29 | D          |
| ATOM | 3192 | CG  | PHE |   |     | 80.758 |        |        |            |            |
| ATOM | 3193 | CD1 | PHE |   | 27  | 79.971 | 42.668 | 19.278 | 1.00 23.22 | D          |
| ATOM | 3194 | CD2 | PHE | D | 27  | 80.169 | 45.047 | 19.073 | 1.00 22.47 | D          |
| ATOM | 3195 | CE1 | PHE | D | 27  | 78.617 | 42.744 | 18.940 | 1.00 24.89 | D          |
| ATOM | 3196 | CE2 | PHE | D | 27  | 78.818 | 45.132 | 18.733 | 1.00 24.72 | D          |
| ATOM | 3197 | CZ  | PHE | D | 27  | 78.041 | 43.980 | 18.667 | 1.00 22.80 | D          |
|      |      | C   | PHE |   | 27  | 83.182 | 44.482 | 17.532 | 1.00 18.41 | D          |
| ATOM | 3198 |     |     |   |     |        |        |        |            |            |
| ATOM | 3199 | 0   |     | D | 27  | 83.700 | 45.545 | 17.879 | 1.00 19.21 | D          |
| MOTA | 3200 | N   | ASP | D | 28  | 82.680 | 44.272 | 16.321 | 1.00 18.46 | D          |
| ATOM | 3201 | CA  | ASP | D | 28  | 82.700 | 45.284 | 15.272 | 1.00 18.63 | D          |
| ATOM | 3202 | CB  | ASP | D | 28  | 81.702 | 46.404 | 15.568 | 1.00 19.29 | D          |
| ATOM | 3203 | CG  |     | D | 28  | 80.268 | 45.981 | 15.305 | 1.00 22.52 | D          |
|      |      |     |     |   |     |        |        |        |            |            |
| ATOM | 3204 | OD1 |     | D | 28  | 80.076 | 44.885 | 14.738 |            | D          |
| ATOM | 3205 | OD2 | ASP | D | 28  | 79.333 | 46.736 | 15.651 | 1.00 24.61 | D          |
| ATOM | 3206 | C   | ASP | D | 28  | 84.075 | 45.865 | 15.037 | 1.00 17.83 | D          |
| ATOM | 3207 | 0   | ASP | D | 28  | 84.225 | 47.069 | 14.860 | 1.00 20.60 | D          |
| ATOM | 3208 | N   | GLY | D | 29  | 85.079 | 44.997 | 15.042 | 1.00 18.44 | D          |
| ATOM | 3209 | CA  | GLY |   | 29  | 86.439 | 45.431 | 14.788 | 1.00 19.49 | D          |
|      |      |     |     |   |     |        |        |        |            | D          |
| ATOM | 3210 | C   | GLY |   | 29  | 87.218 | 46.011 | 15.949 | 1.00 18.93 |            |
| ATOM | 3211 | 0   | GLY | D | 29  | 88.382 | 46.359 | 15.784 | 1.00 19.51 | D          |
| ATOM | 3212 | N   | ASP | D | 30  | 86.595 | 46.122 | 17.117 | 1.00 17.91 | D          |
| ATOM | 3213 | CA  | ASP | D | 30  | 87.279 | 46.667 | 18.288 | 1.00 17.21 | D          |
| ATOM | 3214 | CB  | ASP | D | 30  | 86.499 | 47.858 | 18.831 | 1.00 15.85 | D          |
| ATOM | 3215 | CG  |     | D | 30  | 86.594 | 49.060 | 17.924 | 1.00 18.96 | D          |
|      |      |     |     |   |     |        |        |        |            |            |
| ATOM | 3216 | OD1 | ASP |   | 30  | 87.731 | 49.515 | 17.668 |            | D          |
| ATOM | 3217 | OD2 | ASP | D | 30  | 85.541 | 49.544 | 17.466 | 1.00 19.00 |            |
| MOTA | 3218 | C   | ASP | D | 30  | 87.491 | 45.629 | 19.389 | 1.00 17.20 | D          |
| ATOM | 3219 | 0   | ASP | D | 30  | 86.651 | 44.763 | 19.621 | 1.00 15.68 | D          |
| ATOM | 3220 | N   | GLU | D | 31  | 88.629 | 45.739 | 20.062 | 1.00 18.79 | D          |
| ATOM | 3221 | CA  | GLU |   | 31  | 89.015 | 44.829 | 21.131 | 1.00 17.52 |            |
|      |      |     |     |   |     |        |        |        |            |            |
| MOTA | 3222 | CB  | GLU |   | 31  | 90.531 | 44.947 | 21.363 | 1.00 19.03 | D          |
| ATOM | 3223 | CG  | GLU | D | 31  | 91.074 | 44.215 | 22.579 | 1.00 22.08 | D          |
| ATOM | 3224 | CD  | GLU | D | 31. | 92.596 | 44.254 | 22.653 | 1.00 25.29 | D          |
| ATOM | 3225 | OE1 | GLU | D | 31  | 93.198 | 45.159 | 22.041 | 1.00 26.54 | D          |
| ATOM | 3226 | OE2 | GLU | D | 31  | 93.193 | 43.387 | 23.331 | 1.00 25.19 | D          |
| ATOM | 3227 | C   | GLU |   | 31  | 88.248 | 45.109 | 22.421 | 1.00 17.80 |            |
|      |      |     |     |   |     |        |        |        |            |            |
| MOTA | 3228 | 0   | GLU |   | 31  | 88.360 | 46.195 | 23.004 | 1.00 16.81 |            |
| MOTA | 3229 | N   | GLN |   | 32  | 87.478 | 44.118 | 22.862 | 1.00 15.25 |            |
| MOTA | 3230 | CA  | GLN | D | 32  | 86.685 | 44.230 | 24.085 | 1.00 15.53 | D          |
| MOTA | 3231 | CB  | GLN | D | 32  | 85.502 | 43.260 | 24.044 | 1.00 12.86 | D          |
| ATOM | 3232 | CG  | GLN | D | 32  | 84.391 | 43.680 | 23.101 | 1.00 13.72 | D          |
| ATOM | 3233 | CD  | GLN |   | 32  | 83.233 | 42.708 | 23.111 | 1.00 16.53 |            |
|      |      |     |     |   |     |        |        |        | 1.00 20.27 |            |
| ATOM | 3234 | OE1 | GLN |   | 32  | 83.407 | 41.526 | 22.838 |            |            |
| MOTA | 3235 | NE2 | GLN | D | 32  | 82.044 | 43.203 | 23.423 | 1.00 17.48 |            |
| ATOM | 3236 | C   | GLN | D | 32  | 87.528 | 43.956 | 25.329 | 1.00 16.00 | D          |
| ATOM | 3237 | 0   | GLN | D | 32  | 87.356 | 44.603 | 26.366 | 1.00 15.18 | D          |
| ATOM | 3238 | N   | PHE | D | 33  | 88.423 | 42.981 | 25.222 | 1.00 16.17 | D          |
| ATOM | 3239 | CA  | PHE |   | 33  | 89.315 | 42.638 | 26.321 | 1.00 15.74 | D          |
|      |      |     | PHE |   | 33  | 88.520 | 42.083 | 27.515 | 1.00 15.40 |            |
| ATOM | 3240 | CB  |     |   |     |        |        |        |            |            |
| ATOM | 3241 | CG  | PHE |   | 33  | 87.969 | 40.693 | 27.307 | 1.00 15.83 |            |
| MOTA | 3242 | CD1 | PHE | D | 33  | 88.781 | 39.572 | 27.480 | 1.00 16.23 |            |
| ATOM | 3243 | CD2 | PHE | D | 33  | 86.625 | 40.503 | 26.977 | 1.00 17.27 | D          |
| ATOM | 3244 |     | PHE |   | 33  | 88.262 | 38.282 | 27.332 | 1.00 15.79 | D          |
| ATOM | 3245 | CE2 | PHE |   | 33  | 86.088 | 39.218 | 26.827 | 1.00 15.20 | . <b>D</b> |
| ATOM | 3246 | CZ  | PHE |   | 33  | 86.909 | 38.108 | 27.006 | 1.00 17.77 |            |
|      |      |     |     |   |     |        |        |        |            |            |
| ATOM | 3247 | C   | PHE |   | 33  | 90.330 | 41.614 | 25.860 |            |            |
| MOTA | 3248 | 0   | PHE |   | 33  | 90.157 | 40.979 | 24.825 | 1.00 15.16 |            |
| MOTA | 3249 | N   | TYR | D | 34  | 91.405 | 41.476 | 26.620 | 1.00 15.54 |            |
| ATOM | 3250 | CA  | TYR | D | 34  | 92.414 | 40.480 | 26.314 | 1.00 16.00 | D          |
| ATOM | 3251 | CB  | TYR |   | 34  | 93.649 | 41.124 | 25.670 | 1.00 17.46 | D          |
|      |      |     |     |   |     |        |        |        |            |            |

| ATOM         | 3252         | CG         | TYR          | D      | 34        | 94.508             | 41.970           | 26.588           | 1.00 20.90                | D      |
|--------------|--------------|------------|--------------|--------|-----------|--------------------|------------------|------------------|---------------------------|--------|
| MOTA         | 3253         | CD1        | TYR          | D      | 34        | 95.488             | 41.390           | 27.391           | 1.00 21.91                | D      |
| ATOM         | 3254         | CE1        | TYR          |        | 34        | 96.295             | 42.174           | 28.221           | 1.00 24.17<br>1.00 20.26  | D<br>D |
| ATOM         | 3255         | CD2<br>CE2 | TYR<br>TYR   |        | 34<br>34  | 94.351<br>95.147   | 43.354<br>44.141 | 26.638<br>27.463 | 1.00 20.26<br>1.00 24.97  | D      |
| ATOM<br>ATOM | 3256<br>3257 | CEZ        | TYR          |        | 34        | 96.117             | 43.546           | 28.251           | 1.00 23.87                | D      |
| ATOM         | 3258         | OH         | TYR          |        | 34        | 96.904             | 44.326           | 29.065           | 1.00 26.29                | D      |
| ATOM         | 3259         | C          | TYR          |        | 34        | 92.766             | 39.836           | 27.642           | 1.00 16.56                | D      |
| ATOM         | 3260         | 0          | TYR          | D      | 34        | 92.476             | 40.386           | 28.699           | 1.00 15.36                | D      |
| MOTA         | 3261         | N          | VAL          |        | 35        | 93.354             | 38.653           | 27.586           | 1.00 18.29                | D      |
| ATOM         | 3262         | CA         | VAL          |        | 35        | 93.768             | 37.971           | 28.795           | 1.00 19.11                | D<br>D |
| ATOM         | 3263         | CB         | VAL<br>VAL   |        | 35<br>35  | 93.257<br>93.910   | 36.514<br>35.780 | 28.842<br>29.992 | 1.00 17.61<br>1.00 17.99  | D      |
| ATOM<br>ATOM | 3264<br>3265 | CG1<br>CG2 | VAL          |        | 35        | 91.744             | 36.493           | 29.003           | 1.00 17.82                | D      |
| ATOM         | 3266         | C          | VAL          |        | 35        | 95.290             | 37.950           | 28.813           | 1.00 19.96                | D      |
| ATOM         | 3267         | 0          | VAL          |        | 35        | 95.914             | 37.492           | 27.866           | 1.00 17.73                | D      |
| MOTA         | 3268         | N          | ASP          | D      | 36        | 95.883             | 38.473           | 29.880           | 1.00 22.63                | D      |
| ATOM         | 3269         | CA         | ASP          |        | 36        | 97.333             | 38.456           | 30.005           | 1.00 24.79                | D      |
| ATOM         | 3270         | CB         | ASP          |        | 36<br>36  | 97.795<br>99.298   | 39.409<br>39.574 | 31.106<br>31.131 | 1.00 26.41<br>1.00 30.12  | , D    |
| ATOM<br>ATOM | 3271<br>3272 | CG<br>OD1  | ASP<br>ASP   | D<br>D | ,36<br>36 | 100.002            | 38.547           | 31.252           | 1.00 32.04                | D      |
| ATOM         | 3272         | OD2        |              | D      | 36        | 99.776             | 40.726           | 31.028           | 1.00 32.20                | D      |
| ATOM         | 3274         | C          |              | D      | 36        | 97.650             | 37.011           | 30.389           | 1.00 25.23                | D      |
| MOTA         | 3275         | 0          | ASP          | D      | 36        | 97.349             | 36.575           | 31.502           | 1.00 25.21                | D      |
| ATOM         | 3276         | N          | LEU          |        | 37        | 98.236             | 36.272           | 29.455           | 1.00 23.64                | D      |
| ATOM         | 3277         | CA         | LEU          |        | 37        | 98.549             | 34.870<br>34.232 | 29.676<br>28.355 | 1.00 25.25<br>1.00 21.08  | D<br>D |
| ATOM         | 3278<br>3279 | CB<br>CG   | LEU          |        | 37<br>37  | 98.992<br>97.955   | 34.252           | 27.225           | 1.00 20.24                | Đ      |
| ATOM<br>ATOM | 3279         | CD1        |              |        | 37        | 98.568             | 33.934           | 25.899           | 1.00 17.23                | D      |
| ATOM         | 3281         | CD2        |              |        | 37        | 96.730             | 33.516           | 27.541           | 1.00 19.11                | D      |
| MOTA         | 3282         | C          | LEU          | D      | 37        | 99.590             | 34.626           | 30.770           | 1.00 27.73                | D      |
| ATOM         | 3283         | 0          | LEU          |        | 37        | 99.464             | 33.682           | 31.554           | 1.00 27.92                | D      |
| ATOM         | 3284         | N          | GLY          |        | 38        | 100.608            | 35.474<br>35.292 | 30.837<br>31.851 | 1.00 29.31<br>1.00 30.44  | D<br>D |
| ATOM         | 3285<br>3286 | CA<br>C    | GLY          |        | 38<br>38  | 101.629<br>101.141 | 35.232           | 33.242           | 1.00 30.44                | D      |
| ATOM<br>ATOM | 3280         | 0          | GLY          |        | 38        | 101.502            | 34.986           | 34.220           | 1.00 34.37                | D      |
| ATOM         | 3288         | N          | ARG          |        | 39        | 100.309            | 36.669           | 33.335           | 1.00 35.10                | D      |
| ATOM         | 3289         | CA         | ARG          | D      | 39        | 99.786             | 37.103           | 34.623           | 1.00 36.92                | D      |
| ATOM         | 3290         | CB         | ARG          |        | 39        | 99.693             | 38.632           | 34.653           | 1.00 39.96                | D      |
| ATOM         | 3291         | CG         | ARG          |        | 39        | 101.011            | 39.318           | 34.301           | 1.00 44.57<br>1.00 49.71  | D<br>D |
| ATOM         | 3292         | CD         | ARG<br>ARG   |        | 39<br>39  | 101.006<br>102.240 | 40.798<br>41.484 | 34.667<br>34.270 | 1.00 53.08                | D      |
| ATOM<br>ATOM | 3293<br>3294 | NE<br>CZ   | ARG          |        | 39        | 103.460            | 41.164           | 34.698           | 1.00 55.33                | D      |
| ATOM         | 3295         | NH1        |              |        | 39        | 103.635            | 40.158           | 35.546           | 1.00 56.98                | D      |
| MOTA         | 3296         | NH2        | ARG          | D      | 39        | 104.512            | 41.859           | 34.282           | 1.00 56.80                | D      |
| MOTA         | 3297         | C          | ARG          |        | 39        | 98.429             | 36.476           | 34.924           | 1.00 35.86                | D      |
| MOTA         | 3298         | 0          | ARG          |        | 39        | 97.886             | 36.630<br>35.757 | 36.022<br>33.944 | 1.00 35.27<br>1.00 34.51  | D<br>D |
| ATOM         | 3299<br>3300 | N<br>CA    | LYS<br>LYS   |        | 40<br>40  | 97.893<br>96.602   | 35.757           | 34.090           | 1.00 33.49                | D      |
| ATOM<br>ATOM | 3300         | CB         | LYS          |        | 40        | 96.714             | 33.939           | 35.088           | 1.00 34.77                | D      |
| ATOM         | 3302         | CG         | LYS          |        | 40        | 95.482             | 33.040           | 35.133           | 1.00 41.38                | D      |
| MOTA         | 3303         | CD         | LYS          | D      | 40        | 95.703             | 31.839           | 36.046           | 1.00 45.02                | D      |
| MOTA         | 3304         | CE         | LYS          |        | 40        | 94.443             | 31.001           | 36.185<br>37.112 | 1.00 46.54<br>1.00 48.98  | D<br>D |
| ATOM         | 3305         | NZ         | LYS<br>LYS   |        | 40<br>40  | 94.652<br>95.511   | 29.853<br>36.064 | 34.542           | 1.00 \( \frac{1}{3} \).95 | D      |
| ATOM<br>ATOM | 3306<br>3307 | C<br>O     | LYS          |        |           | 94.780             | 35.794           | 35.492           | 1.00 28.23                | D      |
| ATOM         | 3308         | N          | GLU          |        |           | 95.401             | 37.197           | 33.858           | 1.00 30.54                | D      |
| MOTA         | 3309         | CA         | GLU          | D      | 41        | 94.384             | 38.175           | 34.210           | 1.00 30.41                | D      |
| ATOM         | 3310         | CB         | GLU          |        |           | 94.980             | 39.302           | 35.078           | 1.00 34.10                | D      |
| ATOM         | 3311         | CG         | GLU          |        |           | 96.180<br>96.834   | 40.034           | 34.488<br>35.482 | 1.00 41.52<br>1.00 45.72  | D<br>D |
| ATOM<br>ATOM | 3312<br>3313 | CD<br>OE 3 | GLU<br>GLU   |        |           | 97.826             | 41.665           | 35.108           | 1.00 48.68                | D      |
| ATOM         | 3314         | OE2        |              |        |           | 96.362             | 41.086           | 36.638           | 1.00 47.60                | D      |
| ATOM         | 3315         | C          | GLU          |        |           | 93.651             | 38.766           | 33.014           | 1.00 28.03                | D      |
| MOTA         | 3316         | 0          | GLU          | J D    | 41        | 94.220             | 38.981           | 31.940           | 1.00 25.49                | D      |
| MOTA         | 3317         | N          | THE          |        |           | 92.364             |                  | 33.226           | 1.00 25.48                | D      |
| ATOM         | 3318         | CA         | THR          |        |           | 91.488<br>90.035   | 39.582           | 32.224<br>32.511 | 1.00 23.42<br>1.00 22.07  | D<br>D |
| MOTA<br>MOTA | 3319<br>3320 | CB<br>OG:  | THR<br>L THR |        |           | 89.927             | 39.187<br>37.761 | 32.511           | 1.00 22.07                | D      |
| ATOM         | 3320         | CG2        |              |        |           | 89.087             | 39.817           | 31.497           | 1.00 20.32                | D      |
| ATOM         | 3322         | C          | THE          |        |           | 91.615             | 41.098           | 32.301           | 1.00 22.29                | D      |
| ATOM         | 3323         | 0          | THE          |        | 42        | 91.492             | 41.680           | 33.373           | 1.00 21.54                | D      |
| MOTA         | 3324         | N          | VAI          |        | _         | 91.874             |                  | 31.167           | 1.00 21.50                | D<br>D |
| ATOM         | 3325         | CA         | VAI          | , D    | 43        | 92.004             | 43.183           | 31.136           | 1.00 19.88                | ע      |
|              |              |            |              |        |           |                    |                  | 20               |                           |        |

| ATOM 3326 CE VAL D 43 93.428 43.584 30.697 1.00 21.56   ATOM 3327 CG1 VAL D 43 93.620 45.091 30.828 1.00 20.99   ATOM 3328 CG2 VAL D 43 94.456 42.827 31.539 1.00 19.79   ATOM 3328 C VAL D 43 94.456 42.827 31.539 1.00 19.79   ATOM 3330 O VAL D 43 91.045 43.513 28.959 1.00 19.79   ATOM 3331 N FEP D 44 89.987 44.466 30.690 1.00 21.49   ATOM 3332 CA TRP D 44 88.946 45.028 29.836 1.00 22.48   ATOM 3332 CB TRP D 44 87.685 45.326 30.649 1.00 21.57   ATOM 3335 CD2 TRP D 44 87.685 45.326 30.649 1.00 21.57   ATOM 3336 CE2 TRP D 44 86.280 43.125 30.854 1.00 22.20   ATOM 3337 CE3 TRP D 44 86.280 43.125 30.854 1.00 22.20   ATOM 3336 CD2 TRP D 44 86.119 42.150 31.862 1.00 22.20   ATOM 3337 CE3 TRP D 44 87.492 43.736 32.633 1.00 23.17   ATOM 3338 NEI TRP D 44 86.886 42.548 29.836 1.00 22.19   ATOM 3340 CZ2 TRP D 44 86.886 42.548 32.937 1.00 23.17   ATOM 3341 CZ3 TRP D 44 86.886 42.548 32.937 1.00 23.17   ATOM 3341 CZ2 TRP D 44 86.886 42.548 32.937 1.00 23.17   ATOM 3341 CZ2 TRP D 44 86.886 42.548 32.937 1.00 24.30   ATOM 3342 CH2 TRP D 44 86.886 42.548 32.937 1.00 24.30   ATOM 3343 C TRP D 44 86.866 40.870 30.487 1.00 24.30   ATOM 3343 C TRP D 44 84.807 41.824 99.461 1.00 24.30   ATOM 3343 C TRP D 44 84.807 41.824 99.461 1.00 24.30   ATOM 3343 C TRP D 44 89.425 46.291 29.143 1.00 24.05   ATOM 3345 N CWS D 45 89.998 46.417 27.859 1.00 24.24   ATOM 3346 CA CWS D 45 89.998 46.417 27.859 1.00 24.24   ATOM 3345 C C WS D 45 89.998 46.417 27.859 1.00 24.24   ATOM 3345 C C WS D 45 89.998 46.417 27.859 1.00 24.24   ATOM 3345 C C CWS D 45 89.998 46.417 27.859 1.00 24.24   ATOM 3355 C C LBU D 46 86.002 49.087 27.232 1.00 27.07   ATOM 3356 C C WS D 45 89.991 47.141 25.672 1.00 25.96   ATOM 3357 C LBU D 46 86.002 49.087 27.232 1.00 27.07   ATOM 3356 C C WS D 45 88.377 48.608 26.995 1.00 27.07   ATOM 3356 C C WS D 46 86.902 49.987 27.232 1.00 28.23   ATOM 3356 C C WS D 46 86.902 49.987 27.232 1.00 28.23   ATOM 3356 C C WS D 46 86.902 49.987 27.232 1.00 28.23   ATOM 3356 C C WS D 46 86.902 49.987 27.232 1.00 28.23   ATOM 3356 C C WS D 46 86 |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| ATOM 3328 CG2 VAL D 43 99.4.456 42.827 31.539 1.00 19.79 ATOM 3329 C VAL D 43 90.968 43.744 30.164 1.00 20.50 ATOM 3330 O VAL D 43 91.045 43.513 28.559 1.00 19.49 ATOM 3331 N TRP D 44 89.987 44.466 30.650 1.00 21.49 ATOM 3331 N TRP D 44 88.946 45.022 29.836 1.00 22.88 ATOM 3333 CB TRP D 44 87.685 45.326 30.649 1.00 21.57 ATOM 3333 CB TRP D 44 87.685 45.326 30.649 1.00 22.88 ATOM 3335 CD2 TRP D 44 86.119 42.150 31.862 1.00 22.20 ATOM 3336 CE2 TRP D 44 86.119 42.150 31.862 1.00 22.20 ATOM 3337 CE3 TRP D 44 86.119 42.150 31.862 1.00 22.20 ATOM 3338 CD1 TRP D 44 85.611 42.951 29.634 1.00 20.96 ATOM 3339 NEI TRP D 44 85.611 42.951 29.634 1.00 20.96 ATOM 3339 NEI TRP D 44 86.868 42.848 32.937 1.00 23.17 ATOM 3339 NEI TRP D 44 86.868 42.848 32.937 1.00 23.70 ATOM 3340 CZ2 TRP D 44 86.868 42.848 32.937 1.00 23.70 ATOM 3341 CZ3 TRP D 44 86.868 42.848 32.937 1.00 23.70 ATOM 3341 CZ3 TRP D 44 86.866 40.870 30.467 1.00 24.30 ATOM 3341 CZ3 TRP D 44 84.807 41.824 29.461 1.00 22.81 ATOM 3342 CR2 TRP D 44 84.807 41.824 29.461 1.00 24.05 ATOM 3343 C TRP D 44 84.807 41.824 29.461 1.00 24.05 ATOM 3344 C TRP D 44 89.425 46.291 29.143 1.00 24.05 ATOM 3344 C TRP D 44 89.425 46.291 29.143 1.00 24.05 ATOM 3344 C TRP D 44 89.425 46.291 29.143 1.00 24.50 ATOM 3347 CB CYS D 45 89.98 47.800 27.069 1.00 26.23 ATOM 3347 CB CYS D 45 89.98 47.500 27.069 1.00 26.23 ATOM 3347 CB CYS D 45 89.98 47.500 27.069 1.00 26.23 ATOM 3348 SG CYS D 45 89.98 47.500 27.07 B.00 24.24 ATOM 3350 C CYS D 45 89.98 47.500 27.07 B.00 24.24 ATOM 3350 C CYS D 45 89.99 46.417 27.859 1.00 24.25 ATOM 3351 N LEU D 46 87.1757 48.99 27.222 1.00 25.96 ATOM 3354 CR LEU D 46 87.157 48.99 32.72.73 1.00 27.18 ATOM 3355 CD LEU D 46 84.907 48.508 25.951 1.00 29.70 ATOM 3355 C DL LEU D 46 84.907 48.508 25.951 1.00 29.97 ATOM 3356 CP LEU D 46 84.907 48.509 29.318 1.00 29.97 ATOM 3356 CP LEU D 46 85.504 49.133 29.216 1.00 29.97 ATOM 3356 CP LEU D 46 85.504 49.133 29.216 1.00 29.97 ATOM 3356 CP LEU D 46 85.504 49.133 29.216 1.00 29.97 ATOM 3356 CP LEU D 46 85.504 49.133 29.236 1.00 2 |                               |
| ATOM 3329 C VAL D 43 90.968 43.744 30.164 1.00 20.50 ATOM 3330 N TAP D 44 89.987 44.466 30.690 1.00 21.49 ATOM 3331 N TAP D 44 89.987 44.466 30.690 1.00 21.49 ATOM 3331 C TAP D 44 88.946 45.028 29.836 1.00 22.48 ATOM 3333 CB TAP D 44 87.685 45.326 30.649 1.00 21.57 ATOM 3335 CB TAP D 44 87.685 45.326 30.649 1.00 21.57 ATOM 3336 CG2 TRP D 44 87.685 45.326 30.649 1.00 21.57 ATOM 3336 CG2 TRP D 44 86.280 43.125 30.854 1.00 22.19 ATOM 3336 CG2 TRP D 44 86.19 42.150 31.862 1.00 22.19 ATOM 3338 CD1 TRP D 44 86.19 42.150 31.862 1.00 22.19 ATOM 3338 CD1 TRP D 44 86.19 42.150 31.862 1.00 22.19 ATOM 3338 CD1 TRP D 44 86.86.86 42.548 32.937 1.00 23.17 ATOM 3339 NEI TRP D 44 86.86.86 42.548 32.937 1.00 23.17 ATOM 3340 CZ2 TRP D 44 86.86.86 42.548 32.937 1.00 23.70 ATOM 3341 CZ3 TRP D 44 86.86.86 42.548 32.937 1.00 23.70 ATOM 3341 CZ3 TRP D 44 86.866 40.870 30.487 1.00 22.81 ATOM 3342 CH2 TRP D 44 89.425 46.291 29.143 1.00 22.81 ATOM 3343 C TRP D 44 89.425 46.291 29.143 1.00 23.92 ATOM 3346 CG TRP D 44 89.425 46.291 29.143 1.00 23.92 ATOM 3346 CG CYS D 45 89.988 47.580 27.069 1.00 24.50 ATOM 3346 CG CYS D 45 89.498 47.580 27.069 1.00 24.24 ATOM 3346 CG CYS D 45 89.498 47.580 27.069 1.00 24.25 ATOM 3347 CB CYS D 45 89.498 47.580 27.069 1.00 24.25 ATOM 3348 CG CYS D 45 89.498 47.580 27.069 1.00 26.23 ATOM 3347 CB CYS D 45 89.498 47.580 27.069 1.00 26.23 ATOM 3351 N LEU D 46 87.157 48.692 25.652 1.00 25.42 ATOM 3355 CD LEU D 46 84.907 48.525 26.320 1.00 27.07 ATOM 3355 CD LEU D 46 84.907 48.525 26.320 1.00 27.07 ATOM 3356 CD EU D 46 84.907 49.525 26.320 1.00 27.07 ATOM 3356 CD EU D 46 84.907 49.525 26.320 1.00 27.07 ATOM 3356 CD EU D 46 84.907 49.525 26.320 1.00 27.07 ATOM 3356 CD EU D 46 84.907 49.525 26.320 1.00 27.07 ATOM 3356 CD EU D 46 84.907 49.525 26.320 1.00 27.07 ATOM 3356 CD EU D 46 84.907 49.525 26.320 1.00 27.07 ATOM 3356 CD EU D 46 84.907 49.525 26.320 1.00 27.07 ATOM 3356 CD EU D 46 84.907 49.525 26.320 1.00 27.07 ATOM 3356 CD EU D 46 85.504 94.133 29.216 1.00 29.32 ATOM 3356 CD EU D 47 85.504 94.9138 29.915 1.00 |                               |
| ATCM 3330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
| ATOM 3331 N TRP D 44 89.987 44.465 30.690 1.00 21.49 ATOM 3332 CA TRP D 44 88.946 45.028 29.836 1.00 22.88 ATOM 3333 CB TRP D 44 87.167 44.129 31.372 1.00 21.57 ATOM 3334 CG TRP D 44 86.880 43.125 30.649 1.00 22.57 ATOM 3335 CDZ TRP D 44 86.280 43.125 30.649 1.00 22.20 ATOM 3336 CGZ TRP D 44 86.280 43.125 30.854 1.00 22.20 ATOM 3337 CE3 TRP D 44 86.811 42.951 29.634 1.00 22.29 ATOM 3338 CDL TRP D 44 86.811 42.951 29.634 1.00 22.19 ATOM 3338 CDL TRP D 44 87.492 43.736 32.633 1.00 23.17 ATOM 3340 CZZ TRP D 44 86.868 42.548 32.937 1.00 23.70 ATOM 3340 CZZ TRP D 44 84.867 41.824 29.461 1.00 24.30 ATOM 3340 CZZ TRP D 44 84.867 41.824 29.461 1.00 24.30 ATOM 3340 CZZ TRP D 44 84.867 41.824 29.461 1.00 24.30 ATOM 3343 C TRP D 44 84.867 41.824 29.461 1.00 24.30 ATOM 3343 C TRP D 44 89.425 46.291 29.143 1.00 23.92 ATOM 3346 CZZ TRP D 44 89.425 46.291 29.143 1.00 23.92 ATOM 3345 N CYS D 45 89.988 47.580 27.069 1.00 24.50 ATOM 3348 CD TRP D 44 89.425 46.291 29.143 1.00 23.92 ATOM 3345 N CYS D 45 89.498 47.580 27.069 1.00 24.50 ATOM 3348 CD CYS D 45 89.498 47.580 27.069 1.00 24.50 ATOM 3348 CD CYS D 45 89.498 47.580 27.069 1.00 24.50 ATOM 3348 SG CYS D 45 89.498 47.580 27.069 1.00 25.42 ATOM 3349 CC CYS D 45 89.498 47.580 27.069 1.00 25.42 ATOM 3349 CC CYS D 45 88.377 48.608 26.950 1.00 27.07 ATOM 3350 C CYS D 45 88.377 48.608 26.950 1.00 27.07 ATOM 3351 N LEU D 46 87.157 48.193 27.273 1.00 28.23 ATOM 3351 N LEU D 46 87.957 48.193 27.273 1.00 28.23 ATOM 3355 CD LEU D 46 84.907 48.525 26.320 1.00 27.02 8.24 ATOM 3355 CD LEU D 46 84.907 48.525 26.320 1.00 27.02 8.23 ATOM 3355 CD LEU D 46 84.907 48.525 26.320 1.00 27.02 8.23 ATOM 3355 CD LEU D 46 85.504 49.138 29.216 1.00 28.23 ATOM 3355 CD LEU D 46 85.504 49.138 29.216 1.00 28.23 ATOM 3350 CD PRO D 47 86.615 50.309 29.318 1.00 29.72 ATOM 3357 C LEU D 46 85.504 49.138 29.216 1.00 28.73 ATOM 3357 C LEU D 46 85.504 49.138 29.216 1.00 29.72 ATOM 3358 CD LEU D 46 85.504 49.138 29.216 1.00 29.72 ATOM 3356 CD PRO D 47 86.630 50.309 29.318 1.00 29.72 ATOM 3360 CD PRO D 47 86.307 52.4 |                               |
| ATOM   3332   CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
| ATOM 3334 CG TRP D 44 87.167 44.129 31.372 1.00 21.99 ATOM 3335 CD2 TRP D 44 86.280 43.125 30.854 1.00 22.19 ATOM 3336 CD2 TRP D 44 86.199 42.150 31.862 1.00 22.19 ATOM 3337 CB3 TRP D 44 85.611 42.951 29.634 1.00 22.21 ATOM 3338 CD1 TRP D 44 85.661 42.951 29.634 1.00 23.70 ATOM 3339 NEIL TRP D 44 85.661 42.951 29.634 1.00 23.70 ATOM 3339 NEIL D 44 85.661 42.951 29.634 1.00 23.70 ATOM 3340 CZ2 TRP D 44 85.311 41.016 31.693 1.00 23.70 ATOM 3341 CZ3 TRP D 44 84.866 40.870 30.487 1.00 24.30 ATOM 3342 CH2 TRP D 44 84.666 40.870 30.487 1.00 24.05 ATOM 3343 C TRP D 44 89.425 46.291 29.143 1.00 24.05 ATOM 3344 C TRP D 44 89.425 46.291 29.143 1.00 23.92 ATOM 3345 N CYS D 45 89.098 46.417 27.859 1.00 24.50 ATOM 3346 CA CYB D 45 89.498 47.580 27.069 1.00 26.23 ATOM 3347 CB CYS D 45 89.498 47.580 27.069 1.00 26.23 ATOM 3348 SG CYS D 45 89.498 47.580 27.069 1.00 26.23 ATOM 3348 SG CYS D 45 89.951 47.141 25.672 1.00 27.96 ATOM 3350 O CYS D 45 88.377 48.608 26.950 1.00 27.07 ATOM 3351 N LEU D 46 87.157 48.193 27.273 1.00 27.82 ATOM 3352 CA LEU D 46 87.157 48.193 27.273 1.00 27.82 ATOM 3355 CD LEU D 46 84.907 49.552 26.320 1.00 27.82 ATOM 3355 CD LEU D 46 84.907 49.552 26.320 1.00 27.82 ATOM 3356 CD 2 LEU D 46 85.504 49.138 28.675 1.00 28.23 ATOM 3357 C LEU D 46 85.492 49.602 25.372 1.00 30.22 ATOM 3358 CD LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3356 CD 2 LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 28.92 ATOM 3358 CD LEU D 46 85.504 49.138 28.675 1.00 28.92 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 28.92 ATOM 3358 CD LEU D 46 85.504 99.875 31.169 1.00 28.93 ATOM 3359 N PRO D 47 85.161 51.554 48.717 1.00 28.93 ATOM 3360 CD PRO D 47 85.160 50.309 29.318 1.00 29.93 ATOM 3361 CD PRO D 47 85.139 52.051 30.806 1.00 29.93 ATOM 3362 CB PRO D 47 85.139 52.051 30.806 1.00 29.93 ATOM 3363 CB LEU D 48 80.406 49.918 29.910 1.00 28.51 ATOM 3360 CD PRO D 47 86.106 49.918 29.910 1.00 28.51 ATOM 3361 CB PRO D 47 86.106 49.918 29.910 1.00 28.51 ATOM 3360 CB PRO D 47 86.307 52.447 29.929 1.0 |                               |
| ATOM 3335 CD2 TRP D 44 86.280 43.125 30.854 1.00 22.20 ATOM 3336 CE2 TRP D 44 86.119 42.150 31.862 1.00 22.19 ATOM 3336 CE2 TRP D 44 86.6119 42.150 31.862 1.00 22.19 ATOM 3337 CB3 TRP D 44 86.611 42.951 29.634 1.00 23.17 ATOM 3339 NEI TRP D 44 86.868 42.951 29.634 1.00 23.17 ATOM 3339 NEI TRP D 44 86.868 42.548 32.937 1.00 23.70 ATOM 3340 CZ2 TRP D 44 85.311 41.016 31.693 1.00 24.30 ATOM 3341 CZ3 TRP D 44 84.807 41.824 29.461 1.00 22.81 ATOM 3341 CZ3 TRP D 44 84.807 41.824 29.461 1.00 22.81 ATOM 3342 CH2 TRP D 44 84.807 41.824 29.461 1.00 22.81 ATOM 3345 N CYS D 45 89.495 46.291 29.143 1.00 23.92 ATOM 3345 N CYS D 45 89.988 47.580 27.089 1.00 24.25 ATOM 3345 N CYS D 45 89.995 47.141 29.759 1.00 24.24 ATOM 3347 CB CYS D 45 89.995 47.141 25.672 1.00 25.96 ATOM 3348 SG CYS D 45 89.995 47.141 25.672 1.00 25.96 ATOM 3351 N LEU D 46 86.024 49.087 27.273 1.00 27.07 ATOM 3351 N LEU D 46 86.024 49.087 27.232 1.00 28.23 ATOM 3351 N LEU D 46 86.024 49.087 27.232 1.00 28.23 ATOM 3352 CA LEU D 46 86.002 49.087 27.232 1.00 27.08 ATOM 3355 CD1 LEU D 46 86.002 49.087 27.232 1.00 27.82 ATOM 3356 CD2 LEU D 46 82.792 48.827 25.040 1.00 27.07 ATOM 3357 C LEU D 46 82.792 48.827 25.040 1.00 27.07 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 27.82 ATOM 3356 CD2 LEU D 46 85.504 49.138 28.675 1.00 27.82 ATOM 3356 CD2 LEU D 46 85.504 49.138 28.675 1.00 28.93 ATOM 3356 CD2 LEU D 46 85.504 49.138 28.675 1.00 28.93 ATOM 3356 CD2 LEU D 46 85.504 49.138 29.216 1.00 27.03 29.21 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3366 CD PRO D 47 85.192 50.533 30.806 1.00 29.32 ATOM 3366 CD PRO D 47 85.192 50.533 30.806 1.00 29.32 ATOM 3366 CD PRO D 47 85.192 50.533 30.806 1.00 29.32 ATOM 3366 CD PRO D 47 85.192 50.533 30.806 1.00 28.23 ATOM 3366 CD PRO D 47 85.192 50.533 30.3079 1.00 28.23 ATOM 3366 CD PRO D 47 85.809 49.875 31.169 1.00 28.53 ATOM 3366 CD PRO D 47 85.809 49.875 31.169 1.00 28.51 ATOM 3367 CD PRO D 47 85.809 49. |                               |
| ATOM 3336 CE2 TRP D 44 86.119 42.150 31.862 1.00 22.19 ATOM 3337 CE3 TRP D 44 85.611 42.951 29.634 1.00 20.96 ATOM 3338 CD1 TRP D 44 87.492 43.736 32.633 1.00 23.17 ATOM 3339 NE1 TRP D 44 86.868 42.548 32.937 1.00 23.70 ATOM 3340 CZ2 TRP D 44 86.868 42.548 32.937 1.00 23.70 ATOM 3341 CZ3 TRP D 44 84.866 40.870 30.487 1.00 22.81 ATOM 3341 CZ3 TRP D 44 84.666 40.870 30.487 1.00 22.81 ATOM 3342 CH2 TRP D 44 84.666 40.870 30.487 1.00 24.05 ATOM 3343 C TRP D 44 84.666 40.870 30.487 1.00 24.05 ATOM 3344 CH2 TRP D 44 89.425 46.291 29.143 1.00 23.92 ATOM 3345 N CYS D 45 89.098 46.417 27.859 1.00 24.50 ATOM 3346 CA CYS D 45 89.498 47.580 27.069 1.00 26.23 ATOM 3347 CB CYS D 45 89.951 47.141 25.672 1.00 25.96 ATOM 3348 SG CYS D 45 89.951 47.141 25.672 1.00 25.96 ATOM 3350 O CYS D 45 88.377 48.608 25.665 1.00 25.96 ATOM 3351 N LEU D 46 87.157 48.193 27.273 1.00 27.18 ATOM 3352 CA LEU D 46 86.002 49.087 27.273 1.00 28.16 ATOM 3355 CD LEU D 46 84.907 48.525 26.320 1.00 28.16 ATOM 3355 CD LEU D 46 84.907 48.525 26.320 1.00 28.16 ATOM 3356 CD LEU D 46 85.504 49.138 28.675 1.00 28.72 ATOM 3357 C LEU D 46 85.504 49.138 29.216 1.00 29.72 ATOM 3358 O LEU D 46 85.504 49.138 29.216 1.00 29.72 ATOM 3356 CD LEU D 46 85.504 49.138 29.216 1.00 29.72 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3356 CD LEU D 46 85.504 49.138 29.216 1.00 29.72 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 29.73 ATOM 3361 CA PRO D 47 85.601 50.309 29.318 1.00 29.01 ATOM 3362 CR PRO D 47 85.615 50.49 49.87 27.232 1.00 30.62 ATOM 3363 CR PRO D 47 85.615 50.49 49.87 31.169 1.00 28.53 ATOM 3366 CD PRO D 47 85.615 50.49 49.87 30.806 1.00 29.72 ATOM 3367 C LEU D 46 85.049 48.133 29.216 1.00 28.53 ATOM 3368 CR PRO D 47 85.601 50.309 29.318 1.00 29.01 ATOM 3367 CA PRO D 47 85.601 50.309 29.318 1.00 29.01 ATOM 3368 CR PRO D 47 85.601 50.309 29.318 1.00 29.02 ATOM 3367 CA PRO D 47 85.604 49.138 29.256 1.00 28.551 ATOM 3367 CA PRO D 47 83.867 49.151 32.163 1.00 27.43 ATOM 3367 CA PRO D 47 83.867 49.151 32.163 1.00 27.43 ATOM 3373 CD LEU D 49 82.405 44 |                               |
| ATOM 3337 CE3 TRP D 44 85.611 42.951 29.634 1.00 20.96 ATOM 3338 CD1 TRP D 44 87.492 43.736 32.633 1.00 23.17 ATOM 3339 NEI TRP D 44 86.868 42.548 32.937 1.00 23.70 ATOM 3340 CZ2 TRP D 44 86.868 42.548 32.937 1.00 23.70 ATOM 3341 CZ3 TRP D 44 84.807 41.824 29.461 1.00 22.81 ATOM 3342 CH2 TRP D 44 84.807 41.824 29.461 1.00 22.81 ATOM 3342 CH2 TRP D 44 84.807 41.824 29.461 1.00 23.92 ATOM 3344 C TRP D 44 89.425 46.291 29.143 1.00 23.92 ATOM 3345 N CYS D 45 89.988 47.580 27.069 1.00 24.25 ATOM 3346 CA CYS D 45 89.998 47.580 27.069 1.00 24.24 ATOM 3347 CB CYS D 45 89.991 47.141 25.672 1.00 25.96 ATOM 3348 SG CYS D 45 88.377 48.608 26.950 1.00 27.07 ATOM 3350 C CYS D 45 88.612 49.749 26.549 1.00 27.07 ATOM 3351 N LEU D 46 86.002 49.087 27.232 1.00 28.23 ATOM 3352 CA LEU D 46 84.907 48.525 26.320 1.00 27.18 ATOM 3355 CD LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3356 CD2 LEU D 46 85.504 49.138 28.675 1.00 29.72 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 29.72 ATOM 3358 C CD2 LEU D 46 85.504 49.138 28.675 1.00 29.72 ATOM 3356 CD PRO D 47 85.504 49.138 28.675 1.00 29.35 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 29.72 ATOM 3356 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 29.35 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 28.33 ATOM 3362 CB PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3363 C C PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 28.25 ATOM 3366 CD PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3367 CA VAL D 48 80.949 49.744 28.398 1.00 28.73 ATOM 3367 CA VAL D 48 80.949 49.744 28.398 1.00 28.73 ATOM 3368 CB VAL D 48 80.949 49.744 28.398 1.00 28.73 ATOM 3367 CA VAL D 48 80.949 49.745 28.797 1.00 28.25 ATOM 3367 CA VAL D 48 80.949 49.745 28.398 1.00 27.43 ATOM 3370 CD1 LEU D 49 82.406 49.88 27.794 1.00 27.43 ATOM 3371 C VAL D 48 80.949 49.746 28.398 1.00 27.47 ATOM 3373 C D LEU D 49 82.406 49.838 27.794 1.00 27.47 ATOM 3376 CB LEU D 49 82.406 49.88 27.794 1 |                               |
| ATOM 3338 CD1 TRP D 44 87.492 43.736 32.633 1.00 23.17 ATOM 3339 NE1 TRP D 44 86.868 42.548 32.937 1.00 23.70 ATOM 3340 CZ2 TRP D 44 84.866 42.548 32.937 1.00 23.70 ATOM 3341 CZ3 TRP D 44 84.807 41.824 29.461 1.00 22.81 ATOM 3342 CH2 TRP D 44 84.666 40.870 30.487 1.00 23.92 ATOM 3343 C TRP D 44 84.666 40.870 30.487 1.00 24.05 ATOM 3344 C TRP D 44 89.425 46.291 29.143 1.00 23.92 ATOM 3345 N CYS D 45 89.098 46.417 27.859 1.00 24.50 ATOM 3346 CA CYS D 45 89.098 47.580 27.069 1.00 24.24 ATOM 3346 CA CYS D 45 89.951 47.141 25.672 1.00 25.42 ATOM 3348 SG CYS D 45 89.951 47.141 25.672 1.00 25.42 ATOM 3349 C CYS D 45 88.377 48.608 26.950 1.00 27.07 ATOM 3350 O CYS D 45 88.612 49.749 26.549 1.00 27.18 ATOM 3351 N LEU D 46 87.157 48.193 27.273 1.00 27.18 ATOM 3353 CB LEU D 46 84.907 48.525 26.320 1.00 27.18 ATOM 3355 CD LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3356 CD LEU D 46 83.928 50.827 25.994 1.00 30.22 ATOM 3357 C LEU D 46 85.504 94.138 28.675 1.00 27.27 ATOM 3358 O LEU D 46 85.504 94.138 28.675 1.00 29.72 ATOM 3357 C LEU D 46 85.504 94.138 28.675 1.00 28.23 ATOM 3357 C LEU D 46 85.504 94.138 28.675 1.00 28.73 ATOM 3356 CD PRO D 47 85.601 50.309 29.338 1.00 29.35 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 85.615 50.49 1.36 28.675 1.00 28.23 ATOM 3360 CD PRO D 47 85.615 50.49 1.36 28.675 1.00 28.23 ATOM 3360 CD PRO D 47 85.615 50.49 1.36 28.675 1.00 28.33 ATOM 3360 CD PRO D 47 85.615 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 85.615 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 85.616 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 28.51 ATOM 3361 CA PRO D 48 80.406 49.918 29.810 1.00 28.51 ATOM 3366 CB VAL D 48 80.496 49.918 29.810 1.00 26.51 ATOM 3367 CA VAL D 48 80.496 49.918 29.810 1.00 26.57 ATOM 3367 CB LEU D 49 82.494 47.353 30.332 1.00 27.43 ATOM 3370 CD2 VAL D 48 80.496 49.918 29.810 1.00 27.43 ATOM 3371 CD VAL D 48 80.496 49.918 29.8 |                               |
| ATOM 3339 NET TRP D 44 86.868 42.548 32.937 1.00 23.70 ATOM 3340 CZZ TRP D 44 85.311 41.016 31.693 1.00 22.81 ATOM 3341 CZ3 TRP D 44 84.807 41.824 29.461 1.00 22.81 ATOM 3342 CH2 TRP D 44 84.666 40.870 30.487 1.00 24.05 ATOM 3342 CH2 TRP D 44 89.425 46.291 29.143 1.00 24.05 ATOM 3343 C TRP D 44 89.425 46.291 29.143 1.00 24.50 ATOM 3345 N CYS D 45 89.098 46.417 27.859 1.00 24.24 ATOM 3346 CA CYS D 45 89.098 46.417 27.859 1.00 24.24 ATOM 3346 CA CYS D 45 89.498 47.580 27.069 1.00 25.23 ATOM 3347 CB CYS D 45 89.951 47.141 25.672 1.00 25.96 ATOM 3348 SG CYS D 45 89.951 47.141 25.672 1.00 25.96 ATOM 3349 C CYS D 45 88.377 48.608 26.950 1.00 27.07 ATOM 3350 O CYS D 45 88.377 48.608 26.950 1.00 27.07 ATOM 3351 N LEU D 46 87.157 48.193 27.273 1.00 27.18 ATOM 3352 CA LEU D 46 86.002 49.087 27.232 1.00 28.16 ATOM 3353 CB LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3355 CD1 LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3356 CD2 LEU D 46 85.504 49.138 28.675 1.00 29.72 ATOM 3356 CD2 LEU D 46 85.504 49.138 28.675 1.00 29.73 ATOM 3357 C LEU D 46 85.604 48.133 29.216 1.00 28.73 ATOM 3356 CD LEU D 46 85.504 49.138 28.675 1.00 29.73 ATOM 3356 CD LEU D 46 85.604 49.138 28.675 1.00 29.73 ATOM 3356 CD LEU D 46 85.504 49.138 28.675 1.00 29.73 ATOM 3356 CD LEU D 46 85.604 49.138 28.675 1.00 29.73 ATOM 3356 CD LEU D 46 85.504 49.138 28.675 1.00 29.73 ATOM 3356 CD LEU D 46 85.604 48.133 29.216 1.00 29.73 ATOM 3360 CD PRO D 47 86.616 51.554 28.717 1.00 28.33 ATOM 3361 CA PRO D 47 85.601 50.309 29.318 1.00 29.31 ATOM 3366 CD PRO D 47 85.601 50.309 29.318 1.00 29.32 ATOM 3366 CD PRO D 47 85.601 50.309 29.318 1.00 29.32 ATOM 3366 CD PRO D 47 85.601 50.309 29.318 1.00 29.32 ATOM 3366 CD PRO D 47 85.601 50.309 29.318 1.00 29.32 ATOM 3366 CD PRO D 47 85.601 50.309 29.318 1.00 29.32 ATOM 3366 CD PRO D 47 85.601 50.309 29.318 1.00 28.51 ATOM 3367 CA VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3367 CD VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3370 CD VAL D 48 80.406 49.918 29.810 1.00 27.41 ATOM 3370 CD VAL D 48 80.406 49.918 29.810 1.0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| ATOM 3340 CZZ TRP D 44 85.311 41.016 31.693 1.00 24.30 ATOM 3341 CZZ TRP D 44 84.867 41.824 29.461 1.00 22.81 ATOM 3342 CH2 TRP D 44 84.666 40.870 30.487 1.00 22.81 ATOM 3343 C TRP D 44 84.666 40.870 30.487 1.00 22.81 ATOM 3344 C TRP D 44 89.425 46.291 29.143 1.00 23.92 ATOM 3345 N CYS D 45 89.098 46.417 27.859 1.00 24.50 ATOM 3346 CA CYS D 45 89.498 47.580 27.069 1.00 26.23 ATOM 3346 CA CYS D 45 89.498 47.580 27.069 1.00 26.23 ATOM 3348 SG CYS D 45 89.498 47.580 27.069 1.00 25.96 ATOM 3348 SG CYS D 45 89.498 47.580 27.069 1.00 25.96 ATOM 3350 O CYS D 45 88.377 48.608 26.950 1.00 27.07 ATOM 3351 N LEU D 46 86.002 49.087 27.232 1.00 28.23 ATOM 3351 N LEU D 46 86.002 49.087 27.232 1.00 28.16 ATOM 3353 CB LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3355 CD LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3355 CD LEU D 46 83.928 50.827 25.994 1.00 31.10 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 29.72 ATOM 3358 O LEU D 46 85.504 49.138 28.675 1.00 29.72 ATOM 3359 N PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3361 CA PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3361 CA PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3361 CA PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3366 CD PRO D 47 85.160 50.539 30.709 1.00 29.32 ATOM 3366 CD PRO D 47 85.160 50.539 29.318 1.00 29.32 ATOM 3366 CD PRO D 47 85.160 50.539 29.318 1.00 29.35 ATOM 3366 CD PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3366 CD PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3366 CD PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3366 CD PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3366 CD PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3366 CD PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3366 CD PRO D 47 86.116 51.554 28.717 1.00 26.31 ATOM 3367 CA VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3367 CA VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3367 CA VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3370 CG2 VAL D 48 80.406 49.918 29.810 1.00 27.43 ATOM 3371 C VAL D 48 80.406 49.918 29.810 1.00 27.43 ATOM 3373 C CB LEU D 49 82.445 44.866 27.944 1.00 29.7 | 0 0 0 0 0 0 0 0 0 0 0 0 0     |
| ATOM 3341 C23 TRP D 44 84.807 41.824 29.461 1.00 22.81 ATOM 3342 CH2 TRP D 44 84.666 40.870 30.487 1.00 23.92 ATOM 3343 C TRP D 44 89.425 46.291 29.143 1.00 23.92 ATOM 3344 O TRP D 44 90.081 47.131 29.759 1.00 24.50 ATOM 3345 N CYS D 45 89.098 46.417 27.859 1.00 24.24 ATOM 3346 CA CYS D 45 89.991 47.141 25.672 1.00 25.96 ATOM 3347 CB CYS D 45 89.991 47.141 25.672 1.00 25.96 ATOM 3348 SG CYS D 45 89.991 47.141 25.672 1.00 25.96 ATOM 3349 C CYS D 45 88.612 49.749 26.549 1.00 27.07 ATOM 3351 N LEU D 46 87.157 48.193 27.273 1.00 27.18 ATOM 3352 CA LEU D 46 86.002 49.087 27.232 1.00 28.23 ATOM 3353 CB LEU D 46 86.002 49.087 27.232 1.00 27.82 ATOM 3355 CD1 LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3355 CD1 LEU D 46 82.792 48.827 25.040 1.00 27.82 ATOM 3355 CD2 LEU D 46 85.504 49.138 28.675 1.00 29.72 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 29.72 ATOM 3359 N PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3356 CD2 LEU D 46 85.504 49.138 28.675 1.00 29.72 ATOM 3356 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3356 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3356 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 85.601 50.509 29.318 1.00 29.32 ATOM 3360 CD PRO D 47 85.182 50.533 30.709 1.00 29.32 ATOM 3360 CD PRO D 47 85.182 50.533 30.709 1.00 29.32 ATOM 3366 CB PRO D 47 85.182 50.533 30.709 1.00 29.32 ATOM 3366 CB PRO D 47 85.182 50.533 30.709 1.00 29.32 ATOM 3366 CB PRO D 47 85.182 50.533 30.709 1.00 29.32 ATOM 3366 CB PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3367 CA VAL D 48 80.406 49.918 29.806 1.00 28.22 ATOM 3366 CB PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3367 CA VAL D 48 80.406 49.918 29.806 1.00 27.41 ATOM 3366 CB VAL D 48 80.406 49.918 29.806 1.00 27.41 ATOM 3370 CG2 VAL D 48 80.406 49.918 29.809 1.00 27.43 ATOM 3370 CG2 VAL D 48 80.406 49.918 29.809 1.00 27.43 ATOM 3373 N LEU D 49 82.517 45.886 27.944 1.00 27.46 ATOM 3375 CB LEU D 49 82.445 44.886 27.944 1.00  | 0 0 0 0 0 0 0 0 0 0 0 0       |
| ATOM 3342 CH2 TRP D 44 84.666 40.870 30.487 1.00 24.05 ATOM 3343 C TRP D 44 89.425 46.291 29.143 1.00 23.92 ATOM 3345 N CYS D 45 89.098 46.417 27.859 1.00 24.50 ATOM 3346 CA CYS D 45 89.498 47.580 27.069 1.00 24.24 ATOM 3346 CA CYS D 45 89.498 47.580 27.069 1.00 26.23 ATOM 3347 CB CYS D 45 89.498 47.580 27.069 1.00 25.96 ATOM 3348 SG CYS D 45 89.951 47.141 25.672 1.00 25.96 ATOM 3349 C CYS D 45 89.951 47.141 25.672 1.00 25.96 ATOM 3350 O CYS D 45 88.377 48.608 26.950 1.00 27.07 ATOM 3351 N LEU D 46 87.157 48.193 27.273 1.00 27.18 ATOM 3352 CA LEU D 46 86.002 49.087 27.232 1.00 28.16 ATOM 3353 CB LEU D 46 84.907 48.525 26.320 1.00 27.27 ATOM 3355 CD1 LEU D 46 82.792 48.827 25.040 1.00 29.72 ATOM 3355 CD1 LEU D 46 82.792 48.827 25.040 1.00 29.72 ATOM 3356 CD2 LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3358 O LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3361 CA PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3362 CB PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3365 CD PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 CD PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 CD PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 CD PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 CD PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 CD PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 CD PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 CD PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 CD PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 CD PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3367 CA VAL D 48 80.406 49.918 29.810 1.00 28.51 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3370 CG2 VAL D 48 80.406 49.918 29.810 1.00 26.77 ATOM 3371 C VAL D 48 80.406 49.918 29.810 1.00 27.41 ATOM 3373 N LEU D 49 82.517 45.898 30.395 1.00 27.41 ATOM 3375 CB LEU D 49 82.517 45.898 30.395 1.00 27.47 ATOM 3376 CG LEU D 49 82.449 47.353 30.335 1.00 27.4 | 0 0 0 0 0 0 0 0 0 0 0         |
| ATOM 3344 O TRP D 44 90.081 47.131 29.759 1.00 24.50 ATOM 3345 N CYS D 45 89.098 46.417 27.859 1.00 24.24 ATOM 3346 CA CYS D 45 89.498 47.580 27.069 1.00 26.23 ATOM 3347 CB CYS D 45 89.498 47.580 27.069 1.00 25.96 ATOM 3348 SG CYS D 45 89.951 47.141 25.672 1.00 25.96 ATOM 3349 C CYS D 45 88.377 48.608 26.950 1.00 27.07 ATOM 3350 O CYS D 45 88.612 49.749 26.549 1.00 28.23 ATOM 3351 N LEU D 46 87.157 48.193 27.273 1.00 27.18 ATOM 3352 CA LEU D 46 86.002 49.087 27.232 1.00 28.16 ATOM 3353 CB LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3355 CD1 LEU D 46 84.912 49.460 25.372 1.00 30.22 ATOM 3355 CD1 LEU D 46 82.792 48.827 25.040 1.00 29.72 ATOM 3356 CD2 LEU D 46 83.928 50.827 25.994 1.00 28.73 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3358 O LEU D 46 85.504 48.133 29.216 1.00 28.73 ATOM 3356 CD2 LEU D 46 85.504 48.133 29.216 1.00 28.73 ATOM 3360 CD PRO D 47 85.182 50.339 30.709 1.00 29.35 ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.35 ATOM 3362 CB PRO D 47 85.182 50.533 30.709 1.00 29.31 ATOM 3362 CB PRO D 47 85.182 50.533 30.709 1.00 29.31 ATOM 3365 CD PRO D 47 85.182 50.533 30.709 1.00 29.31 ATOM 3366 CD PRO D 47 85.182 50.533 30.709 1.00 29.31 ATOM 3366 CD PRO D 47 85.182 50.533 30.709 1.00 29.31 ATOM 3366 CD PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3366 CD PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3366 CD PRO D 47 85.182 50.533 30.709 1.00 29.31 ATOM 3366 CD PRO D 47 85.182 50.533 30.709 1.00 29.31 ATOM 3366 CD PRO D 47 83.879 49.875 31.169 1.00 28.51 ATOM 3366 CD PRO D 47 83.879 49.875 31.169 1.00 28.51 ATOM 3366 CD PRO D 47 83.867 49.151 32.163 1.00 28.51 ATOM 3366 CD PRO D 47 83.867 49.151 32.163 1.00 28.51 ATOM 3366 CD PRO D 47 83.867 49.151 32.163 1.00 26.31 ATOM 3367 CA WAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3376 CB LEU D 49 82.517 45.898 30.395 1.00 27.41 ATOM 3376 CB LEU D 49 82.517 45.898 30.395 1.00 27.47 ATOM 3376 CB LEU D 49 82.517 45.898 30.395 1.00 27.47 ATOM 3376 CB LEU D 49 82.449 47.353 30.335 1.00 27.47 ATOM 3376 CB LEU D 49 82.449 47.455 30.395 1.00 27. |                               |
| ATOM 3345 N CYS D 45 89.098 46.417 27.859 1.00 24.24 ATOM 3346 CA CYS D 45 89.498 47.580 27.069 1.00 26.23 ATOM 3347 CB CYS D 45 89.951 47.141 25.672 1.00 25.96 ATOM 3348 SG CYS D 45 89.951 47.141 25.672 1.00 25.96 ATOM 3348 SG CYS D 45 88.377 48.608 26.950 1.00 27.07 ATOM 3350 O CYS D 45 88.612 49.749 26.549 1.00 28.23 ATOM 3351 N LEU D 46 87.157 48.193 27.273 1.00 27.18 ATOM 3352 CA LEU D 46 86.002 49.087 27.232 1.00 28.16 ATOM 3353 CB LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3354 CG LEU D 46 84.142 49.460 25.372 1.00 27.82 ATOM 3355 CD1 LEU D 46 82.792 48.827 25.040 1.00 29.72 ATOM 3356 CD2 LEU D 46 85.504 49.138 28.675 1.00 29.72 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 29.35 ATOM 3358 O LEU D 46 85.049 48.133 29.216 1.00 28.92 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3363 CG PRO D 47 86.316 51.554 28.717 1.00 28.33 ATOM 3363 CG PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3366 CD PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 28.51 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.52 ATOM 3367 CA VAL D 48 80.406 49.918 29.810 1.00 28.51 ATOM 3367 CA VAL D 48 80.406 49.918 29.810 1.00 28.51 ATOM 3367 CA VAL D 48 80.406 49.918 29.810 1.00 26.71 ATOM 3367 CG VAL D 48 80.406 49.918 29.810 1.00 26.71 ATOM 3367 CG VAL D 48 80.406 49.918 29.810 1.00 26.71 ATOM 3367 CG VAL D 48 80.406 49.918 29.810 1.00 26.77 ATOM 3367 CG VAL D 48 80.406 49.918 29.810 1.00 26.77 ATOM 3370 CG2 VAL D 48 80.406 49.918 29.810 1.00 26.77 ATOM 3371 C VAL D 48 80.406 49.918 29.810 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.395 1.00 27.43 ATOM 3375 CB LEU D 49 82.449 47.353 30.395 1.00 27.43 ATOM 3376 CG LEU D 49 82.449 47.353 30.395 1.00 27.43 ATOM 3377 CDL LEU D 49 82.449 47.353 30.395 1.00 27.43 ATOM 3378 CD2 LEU D 49 83.327 45.354 29.153 1.00 29.72                                                                                                                                                                 | 0 0 0 0 0 0 0 0 0             |
| ATOM 3346 CA CYS D 45 89.498 47.580 27.069 1.00 26.23 ATOM 3347 CB CYS D 45 89.951 47.141 25.672 1.00 25.96 ATOM 3348 SG CYS D 45 91.422 46.098 25.665 1.00 25.42 ATOM 3349 C CYS D 45 88.377 48.608 26.950 1.00 27.07 ATOM 3350 O CYS D 45 88.612 49.749 26.549 1.00 28.23 ATOM 3351 N LEU D 46 86.002 49.087 27.232 1.00 28.16 ATOM 3352 CA LEU D 46 86.002 49.087 27.232 1.00 28.16 ATOM 3355 CB LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3355 CDI LEU D 46 84.142 49.460 25.372 1.00 30.22 ATOM 3355 CDI LEU D 46 82.792 48.827 25.040 1.00 29.72 ATOM 3356 CD2 LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3357 C LEU D 46 85.049 48.133 29.216 1.00 28.92 ATOM 3358 O LEU D 46 85.049 48.133 29.216 1.00 28.92 ATOM 3360 CD PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.31 ATOM 3362 CB PRO D 47 85.182 50.533 30.709 1.00 29.32 ATOM 3366 CD PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3366 N VAL D 48 81.492 49.875 31.169 1.00 28.51 ATOM 3366 N VAL D 48 81.492 49.875 31.169 1.00 28.51 ATOM 3367 CA VAL D 48 81.492 49.875 31.169 1.00 28.51 ATOM 3369 CGI VAL D 48 80.949 49.875 31.169 1.00 28.51 ATOM 3369 CGI VAL D 48 80.949 49.744 28.398 1.00 27.41 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 27.43 ATOM 3371 C VAL D 48 80.949 49.744 28.398 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.335 1.00 27.43 ATOM 3375 CB LEU D 49 82.449 47.353 30.395 1.00 27.43 ATOM 3375 CB LEU D 49 82.449 47.353 30.395 1.00 27.43 ATOM 3375 CB LEU D 49 82.449 47.353 30.395 1.00 27.43 ATOM 3377 CDI LEU D 49 82.449 47.353 30.395 1.00 27.43 ATOM 3378 CD2 LEU D 49 83.327 45.898 27.578 1.00 29.28 ATOM 3377 CDI LEU D 49 83.327 45.898 27.578 1.00 29.28                                                                                                                                                                                                                                                                                                                                                                                      | 0 0 0 0 0 0 0 0               |
| ATOM 3347 CB CYS D 45 89.951 47.141 25.672 1.00 25.96 ATOM 3348 SG CYS D 45 89.951 47.141 25.672 1.00 25.96 ATOM 3349 C CYS D 45 88.377 48.608 26.950 1.00 27.07 ATOM 3350 O CYS D 45 88.377 48.608 26.549 1.00 28.23 ATOM 3351 N LEU D 46 87.157 48.193 27.273 1.00 27.18 ATOM 3352 CA LEU D 46 86.002 49.087 27.232 1.00 28.16 ATOM 3353 CB LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3355 CD1 LEU D 46 84.142 49.460 25.372 1.00 30.22 ATOM 3356 CD2 LEU D 46 83.928 50.827 25.904 1.00 30.22 ATOM 3357 C LEU D 46 83.928 50.827 25.904 1.00 29.72 ATOM 3358 O LEU D 46 85.004 49.138 28.675 1.00 28.73 ATOM 3359 N PRO D 47 85.601 50.309 29.318 1.00 28.92 ATOM 3360 CD PRO D 47 86.116 51.554 28.717 1.00 29.35 ATOM 3361 CA PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3363 CG PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 N VAL D 48 81.492 49.875 31.169 1.00 28.51 ATOM 3366 CD PRO D 47 83.879 49.875 31.169 1.00 28.51 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 28.51 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 28.73 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 28.51 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3367 CG VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3367 CG VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 27.43 ATOM 3375 CB LEU D 49 82.449 47.353 30.395 1.00 27.43 ATOM 3375 CB LEU D 49 82.449 47.353 30.395 1.00 27.47 ATOM 3376 CG LEU D 49 82.449 47.353 30.395 1.00 27.47 ATOM 3376 CG LEU D 49 82.449 47.353 30.395 1.00 27.47 ATOM 3376 CG LEU D 49 82.449 47.353 30.395 1.00 27.47 ATOM 3376 CG LEU D 49 82.449 47.353 30.395 1.00 27.47 ATOM 3376 CG LEU D 49 82.449 47.353 30.395 1.00 27.47 ATOM 3376 CG LEU D 49 82.449 47.353 30.395 1.00 27.47 ATOM 3376 CG LEU D 49 82.449 47.353 30.395 1.00 27.47 ATOM 3377 CD1 LEU D 49 82.440 44.627 26.753 1.00 29.74 ATOM 3378 CD2 LEU D 49 82.440 44.627 26.753 1.00 29.74                                                                                                             |                               |
| ATOM 3348 SG CYS D 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D<br>D<br>D<br>D<br>D<br>D    |
| ATOM 3349 C CYS D 45 88.377 48.608 26.950 1.00 27.07  ATOM 3350 O CYS D 45 88.612 49.749 26.549 1.00 28.23  ATOM 3351 N LEU D 46 87.157 48.193 27.273 1.00 27.18  ATOM 3352 CA LEU D 46 86.002 49.087 27.232 1.00 28.16  ATOM 3353 CB LEU D 46 84.907 48.525 26.320 1.00 27.82  ATOM 3355 CD1 LEU D 46 84.907 48.525 26.320 1.00 27.82  ATOM 3355 CD1 LEU D 46 84.942 49.460 25.372 1.00 30.22  ATOM 3355 CD1 LEU D 46 83.928 50.827 25.040 1.00 29.72  ATOM 3357 C LEU D 46 83.928 50.827 25.994 1.00 31.10  ATOM 3358 O LEU D 46 85.504 49.138 28.675 1.00 28.73  ATOM 3359 N PRO D 47 85.601 50.309 29.318 1.00 29.35  ATOM 3360 CD PRO D 47 86.116 51.554 28.717 1.00 28.33  ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.01  ATOM 3362 CB PRO D 47 85.182 50.533 30.709 1.00 29.01  ATOM 3363 CG PRO D 47 85.182 50.533 30.709 1.00 29.01  ATOM 3365 O PRO D 47 86.116 51.554 28.717 1.00 28.33  ATOM 3363 CG PRO D 47 85.182 50.533 30.709 1.00 29.01  ATOM 3365 O PRO D 47 85.839 52.051 30.806 1.00 29.32  ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.51  ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.22  ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 27.41  ATOM 3369 CG1 VAL D 48 80.406 49.918 29.810 1.00 26.77  ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 27.43  ATOM 3371 C VAL D 48 80.949 49.744 28.398 1.00 26.11  ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 26.77  ATOM 3375 CB LEU D 49 82.449 47.353 30.332 1.00 27.43  ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74  ATOM 3377 CD1 LEU D 49 82.405 44.886 27.944 1.00 29.74  ATOM 3377 CD1 LEU D 49 82.405 44.886 27.974 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D<br>D<br>D<br>D<br>D<br>D    |
| ATOM 3350 O CYS D 45 88.612 49.749 26.549 1.00 28.23 ATOM 3351 N LEU D 46 87.157 48.193 27.273 1.00 27.18 ATOM 3352 CA LEU D 46 86.002 49.087 27.232 1.00 28.16 ATOM 3353 CB LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3354 CG LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3355 CD1 LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3355 CD1 LEU D 46 82.792 48.827 25.040 1.00 30.22 ATOM 3356 CD2 LEU D 46 83.928 50.827 25.994 1.00 31.10 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3358 O LEU D 46 85.049 48.133 29.216 1.00 28.73 ATOM 3359 N PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 86.116 51.554 28.717 1.00 28.33 ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3363 CG PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3363 CG PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3365 O PRO D 47 83.879 49.875 31.169 1.00 28.51 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.22 ATOM 3366 CB VAL D 48 80.406 49.918 29.810 1.00 28.05 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3367 CA VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3367 CA VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3367 CG VAL D 48 80.406 49.918 29.810 1.00 26.77 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 80.622 47.462 31.627 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 25.75 ATOM 3376 CG LEU D 49 82.449 47.353 30.332 1.00 27.47 ATOM 3377 CD LEU D 49 82.449 47.353 30.332 1.00 27.47 ATOM 3377 CD LEU D 49 82.449 47.353 30.332 1.00 27.47 ATOM 3377 CD LEU D 49 82.449 47.353 30.332 1.00 27.47 ATOM 3377 CD LEU D 49 82.449 47.353 30.332 1.00 27.47 ATOM 3377 CD LEU D 49 82.449 47.353 30.332 1.00 27.47 ATOM 3377 CD LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3378 CD LEU D 49 82.405 44.886 27.944 1.00 29.74                                                                                                                                                                                                                         | D<br>D<br>D<br>D<br>D         |
| ATOM 3351 N LEU D 46 87.157 48.193 27.273 1.00 27.18 ATOM 3352 CA LEU D 46 86.002 49.087 27.232 1.00 28.16 ATOM 3353 CB LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3355 CD1 LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3355 CD1 LEU D 46 82.792 48.827 25.040 1.00 29.72 ATOM 3355 CD2 LEU D 46 83.928 50.827 25.994 1.00 31.10 ATOM 3355 C LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3358 O LEU D 46 85.049 48.133 29.216 1.00 28.73 ATOM 3359 N PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 86.116 51.554 28.717 1.00 28.33 ATOM 3361 CA PRO D 47 86.116 51.554 28.717 1.00 28.33 ATOM 3362 CB PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3364 C PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.22 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.25 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3368 CB VAL D 48 80.949 49.744 28.398 1.00 26.31 ATOM 3367 CA VAL D 48 80.949 49.744 28.398 1.00 26.31 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 80.949 49.744 28.398 1.00 26.31 ATOM 3373 N LEU D 49 82.445 45.898 30.395 1.00 27.43 ATOM 3375 CB LEU D 49 82.445 45.898 27.578 1.00 29.78 ATOM 3377 CD1 LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 82.405 44.886 27.944 1.00 29.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D<br>D<br>D<br>D<br>D         |
| ATOM 3352 CA LEU D 46 86.002 49.087 27.232 1.00 28.16 ATOM 3353 CB LEU D 46 84.907 48.525 26.320 1.00 27.82 ATOM 3354 CG LEU D 46 84.142 49.460 25.372 1.00 30.22 ATOM 3355 CD1 LEU D 46 82.792 48.827 25.040 1.00 29.72 ATOM 3356 CD2 LEU D 46 83.928 50.827 25.994 1.00 31.10 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3358 O LEU D 46 85.049 48.133 29.216 1.00 28.92 ATOM 3359 N PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3362 CB PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3363 CG PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 C PRO D 47 83.867 49.151 32.163 1.00 28.51 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.22 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 28.05 ATOM 3367 CA VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 80.622 47.462 31.627 1.00 27.41 ATOM 3373 N LEU D 49 82.449 47.353 30.395 1.00 27.43 ATOM 3375 CB LEU D 49 82.455 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 82.405 44.886 27.944 1.00 29.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D<br>D<br>D<br>D              |
| ATOM 3353 CG LEU D 46 84.142 49.460 25.372 1.00 30.22 ATOM 3355 CD1 LEU D 46 82.792 48.827 25.040 1.00 29.72 ATOM 3356 CD2 LEU D 46 83.928 50.827 25.994 1.00 31.10 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3358 O LEU D 46 85.049 48.133 29.216 1.00 28.92 ATOM 3359 N PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 86.116 51.554 28.717 1.00 28.33 ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3362 CB PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3363 CG PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3365 O PRO D 47 83.867 49.875 31.169 1.00 28.51 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.22 ATOM 3366 N VAL D 48 81.492 49.545 30.826 1.00 28.22 ATOM 3369 CG1 VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3370 CG2 VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3371 C VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3371 C VAL D 48 80.406 49.918 29.810 1.00 26.77 ATOM 3371 C VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3373 N LEU D 49 82.449 47.353 30.325 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.325 1.00 27.43 ATOM 3375 CB LEU D 49 82.517 45.898 30.335 1.00 27.47 ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 29.78 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 29.78 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 27.47 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 27.47 ATOM 3377 CD1 LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 27.47 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 27.47 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 27.47 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 27.47 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 27.47 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 27.47 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 27.47 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 27.47 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.7 | D<br>D<br>D                   |
| ATOM 3355 CD1 LEU D 46 82.792 48.827 25.040 1.00 29.72 ATOM 3356 CD2 LEU D 46 83.928 50.827 25.994 1.00 31.10 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3358 O LEU D 46 85.049 48.133 29.216 1.00 28.92 ATOM 3359 N PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 86.116 51.554 28.717 1.00 28.33 ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3362 CB PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3363 CG PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 C PRO D 47 83.879 49.875 31.169 1.00 28.51 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.05 ATOM 3366 N VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 80.622 47.462 31.627 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 27.43 ATOM 3375 CB LEU D 49 82.449 47.353 30.395 1.00 27.47 ATOM 3376 CG LEU D 49 83.237 45.898 27.578 1.00 29.74 ATOM 3376 CG LEU D 49 83.227 44.627 26.753 1.00 29.74 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 29.74 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 29.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D<br>D<br>D                   |
| ATOM 3356 CD2 LEU D 46 83.928 50.827 25.994 1.00 31.10 ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3358 O LEU D 46 85.049 48.133 29.216 1.00 28.92 ATOM 3359 N PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 86.116 51.554 28.717 1.00 28.33 ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3362 CB PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3363 CG PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3366 C PRO D 47 83.879 49.875 31.169 1.00 28.51 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.22 ATOM 3366 N VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3369 CG1 VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 81.490 48.022 30.961 1.00 26.74 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 25.75 ATOM 3375 CB LEU D 49 82.449 47.353 30.332 1.00 25.75 ATOM 3376 CG LEU D 49 82.449 47.353 30.395 1.00 27.47 ATOM 3375 CB LEU D 49 82.445 44.886 27.944 1.00 29.74 ATOM 3376 CG LEU D 49 83.237 45.354 29.153 1.00 27.47 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 29.78 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 29.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D<br>D                        |
| ATOM 3357 C LEU D 46 85.504 49.138 28.675 1.00 28.73 ATOM 3358 O LEU D 46 85.049 48.133 29.216 1.00 28.92 ATOM 3359 N PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 86.116 51.554 28.717 1.00 28.33 ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3362 CB PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3363 CG PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3364 C PRO D 47 83.879 49.875 31.169 1.00 28.51 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.05 ATOM 3366 N VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3369 CG1 VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 81.490 48.022 30.961 1.00 26.77 ATOM 3372 O VAL D 48 80.622 47.462 31.627 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 25.75 ATOM 3375 CB LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3376 CG LEU D 49 83.237 45.354 29.153 1.00 27.47 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.758 1.00 29.72 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                             |
| ATOM 3358 O LEU D 46 85.049 48.133 29.216 1.00 28.92 ATOM 3359 N PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 86.116 51.554 28.717 1.00 28.33 ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3362 CB PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3363 CG PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3364 C PRO D 47 83.879 49.875 31.169 1.00 28.51 ATOM 3365 O PRO D 47 83.867 49.151 32.163 1.00 28.22 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.05 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3369 CGI VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 81.490 48.022 30.961 1.00 26.77 ATOM 3372 O VAL D 48 80.622 47.462 31.627 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 25.75 ATOM 3374 CA LEU D 49 82.449 47.353 30.332 1.00 27.21 ATOM 3375 CB LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.72 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |
| ATOM 3359 N PRO D 47 85.601 50.309 29.318 1.00 29.35 ATOM 3360 CD PRO D 47 86.116 51.554 28.717 1.00 28.33 ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3362 CB PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3363 CG PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3364 C PRO D 47 83.879 49.875 31.169 1.00 28.51 ATOM 3365 O PRO D 47 83.867 49.151 32.163 1.00 28.22 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.05 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3369 CG1 VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3370 CG2 VAL D 48 80.406 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3372 O VAL D 48 80.622 47.462 31.627 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 27.41 ATOM 3374 CA LEU D 49 82.449 47.353 30.395 1.00 27.21 ATOM 3375 CB LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 29.28 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 29.28 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 27.47 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ע                             |
| ATOM 3360 CD PRO D 47 86.116 51.554 28.717 1.00 28.33 ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3362 CB PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3363 CG PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3364 C PRO D 47 83.879 49.875 31.169 1.00 28.51 ATOM 3365 O PRO D 47 83.867 49.151 32.163 1.00 28.22 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.05 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3370 CG2 VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3371 C VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3372 O VAL D 48 81.490 48.022 30.961 1.00 26.77 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 27.43 ATOM 3374 CA LEU D 49 82.449 47.353 30.332 1.00 27.47 ATOM 3375 CB LEU D 49 82.517 45.898 30.395 1.00 27.47 ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.758 1.00 29.78 ATOM 3378 CD2 LEU D 49 83.329 44 | D                             |
| ATOM 3361 CA PRO D 47 85.182 50.533 30.709 1.00 29.01 ATOM 3362 CB PRO D 47 85.139 52.051 30.806 1.00 29.32 ATOM 3363 CG PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3364 C PRO D 47 83.879 49.875 31.169 1.00 28.51 ATOM 3365 O PRO D 47 83.867 49.151 32.163 1.00 28.22 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.05 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 80.949 49.744 28.398 1.00 26.77 ATOM 3372 O VAL D 48 80.622 47.462 31.627 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 27.43 ATOM 3375 CB LEU D 49 82.517 45.898 30.395 1.00 27.47 ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 27.21 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 27.47 ATOM 3377 CD1 LEU D 49 83.329 44.627 26.753 1.00 27.27 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 27.47 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 27.72 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 27.72 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 27.72 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 27.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D                             |
| ATOM 3363 CG PRO D 47 86.307 52.447 29.929 1.00 30.61 ATOM 3364 C PRO D 47 83.879 49.875 31.169 1.00 28.51 ATOM 3365 O PRO D 47 83.867 49.151 32.163 1.00 28.22 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.05 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3369 CG1 VAL D 48 79.955 51.345 30.027 1.00 30.25 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 81.490 48.022 30.961 1.00 26.77 ATOM 3372 O VAL D 48 80.622 47.462 31.627 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 25.75 ATOM 3374 CA LEU D 49 82.517 45.898 30.395 1.00 27.21 ATOM 3375 CB LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3376 CG LEU D 49 81.361 45.898 27.578 1.00 29.28 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D                             |
| ATOM 3364 C PRO D 47 83.879 49.875 31.169 1.00 28.51 ATOM 3365 O PRO D 47 83.867 49.151 32.163 1.00 28.22 ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.05 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3372 O VAL D 48 81.490 48.022 30.961 1.00 26.77 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 27.43 ATOM 3374 CA LEU D 49 82.449 47.353 30.332 1.00 25.75 ATOM 3375 CB LEU D 49 82.517 45.898 30.395 1.00 27.21 ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D                             |
| ATOM 3365 O PRO D 47  ATOM 3366 N VAL D 48  ATOM 3366 N VAL D 48  ATOM 3367 CA VAL D 48  ATOM 3368 CB VAL D 48  ATOM 3369 CG1 VAL D 48  ATOM 3370 CG2 VAL D 48  ATOM 3371 C VAL D 48  ATOM 3372 O VAL D 48  ATOM 3373 N LEU D 49  ATOM 3374 CA LEU D 49  ATOM 3375 CB LEU D 49  ATOM 3376 CG LEU D 49  ATOM 3377 CD1 LEU D 49  ATOM 3377 CD1 LEU D 49  ATOM 3377 CD1 LEU D 49  ATOM 3378 CD2 LEU D 49  ATOM 3388 CD2 LEU D 49  ATOM 3388 CD2 LEU D 49  ATOM 3388 CD2 LEU D 49  | D                             |
| ATOM 3366 N VAL D 48 82.784 50.126 30.458 1.00 28.05 ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3369 CG1 VAL D 48 79.955 51.345 30.027 1.00 30.25 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 81.490 48.022 30.961 1.00 26.77 ATOM 3372 O VAL D 48 80.622 47.462 31.627 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 25.75 ATOM 3374 CA LEU D 49 82.517 45.898 30.395 1.00 27.21 ATOM 3375 CB LEU D 49 83.237 45.354 29.153 1.00 27.47 ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.72 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D<br>D                        |
| ATOM 3367 CA VAL D 48 81.492 49.545 30.826 1.00 27.41 ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3369 CG1 VAL D 48 79.955 51.345 30.027 1.00 30.25 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 81.490 48.022 30.961 1.00 26.77 ATOM 3372 O VAL D 48 80.622 47.462 31.627 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 25.75 ATOM 3374 CA LEU D 49 82.517 45.898 30.395 1.00 27.21 ATOM 3375 CB LEU D 49 83.237 45.354 29.153 1.00 27.47 ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D                             |
| ATOM 3368 CB VAL D 48 80.406 49.918 29.810 1.00 26.31 ATOM 3369 CG1 VAL D 48 79.955 51.345 30.027 1.00 30.25 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 81.490 48.022 30.961 1.00 26.77 ATOM 3372 O VAL D 48 80.622 47.462 31.627 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 25.75 ATOM 3374 CA LEU D 49 82.517 45.898 30.395 1.00 27.21 ATOM 3375 CB LEU D 49 83.237 45.354 29.153 1.00 27.47 ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                             |
| ATOM 3369 CG1 VAL D 48 79.955 51.345 30.027 1.00 30.25 ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 81.490 48.022 30.961 1.00 26.77 ATOM 3372 O VAL D 48 80.622 47.462 31.627 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 25.75 ATOM 3374 CA LEU D 49 82.517 45.898 30.395 1.00 27.21 ATOM 3375 CB LEU D 49 83.237 45.354 29.153 1.00 27.47 ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D                             |
| ATOM 3370 CG2 VAL D 48 80.949 49.744 28.398 1.00 26.11 ATOM 3371 C VAL D 48 81.490 48.022 30.961 1.00 26.77 ATOM 3372 O VAL D 48 80.622 47.462 31.627 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 25.75 ATOM 3374 CA LEU D 49 82.517 45.898 30.395 1.00 27.21 ATOM 3375 CB LEU D 49 83.237 45.354 29.153 1.00 27.47 ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                             |
| ATOM 3372 O VAL D 48 80.622 47.462 31.627 1.00 27.43 ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 25.75 ATOM 3374 CA LEU D 49 82.517 45.898 30.395 1.00 27.21 ATOM 3375 CB LEU D 49 83.237 45.354 29.153 1.00 27.47 ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D                             |
| ATOM 3373 N LEU D 49 82.449 47.353 30.332 1.00 25.75  ATOM 3374 CA LEU D 49 82.517 45.898 30.395 1.00 27.21  ATOM 3375 CB LEU D 49 83.237 45.354 29.153 1.00 27.47  ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74  ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28  ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D                             |
| ATOM 3374 CA LEU D 49 82.517 45.898 30.395 1.00 27.21 ATOM 3375 CB LEU D 49 83.237 45.354 29.153 1.00 27.47 ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                             |
| ATOM 3375 CB LEU D 49 83.237 45.354 29.153 1.00 27.47  ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74  ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28  ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D<br>D                        |
| ATOM 3376 CG LEU D 49 82.405 44.886 27.944 1.00 29.74 ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28 ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D                             |
| ATOM 3377 CD1 LEU D 49 81.361 45.898 27.578 1.00 29.28<br>ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D                             |
| ATOM 3378 CD2 LEU D 49 83.329 44.627 26.753 1.00 29.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                             |
| 20 10 17 27 27 17 27 27 27 27 27 27 27 27 27 27 27 27 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                             |
| ATOM 3380 O LEU D 49 83.246 44.163 31.900 1.00 25.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D<br>-                        |
| ATOM 3381 N ARG D 50 83.680 46.283 32.508 1.00 29.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                             |
| ATOM 3382 CA ARG D 50 84.319 45.892 33.768 1.00 32.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D<br>D                        |
| ATOM 3383 CB ARG D 50 84.900 47.105 34.509 1.00 35.49<br>ATOM 3384 CG ARG D 50 86.010 47.890 33.824 1.00 40.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                             |
| A10M 3304 CG 14CC 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D                             |
| ATOM 3385 CD ARG D 50 86.524 48.968 34.786 1.00 42.89<br>ATOM 3386 NE ARG D 50 87.297 50.017 34.125 1.00 46.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                             |
| ATOM 3387 CZ ARG D 50 88.484 49.836 33.555 1.00 46.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                             |
| ATOM 3388 NH1 ARG D 50 89.049 48.636 33.564 1.00 46.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                             |
| ATOM 3389 NH2 ARG D 50 89.100 50.857 32.968 1.00 43.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                             |
| ATOM 3390 C ARG D 50 83.283 45.247 34.690 1.00 31.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                             |
| ATOM 3391 O ARG D 50 83.631 44.577 35.664 1.00 31.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D<br>D                        |
| AIOM 3592 N GIIN B 32 02.000 20.000 35 001 1 00 20 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                             |
| ATOM 3393 CA GLN D 51 80.942 44.921 35.221 1.00 30.10<br>ATOM 3394 CB GLN D 51 79.610 45.592 34.880 1.00 31.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ם                             |
| MIOM 3394 CB 3227 2 22 707 45 45 450 22 406 1 00 22 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                             |
| ATOM 3395 CG GLN D 51 79.194 45.469 33.426 1.00 33.44<br>ATOM 3396 CD GLN D 51 77.888 46.188 33.144 1.00 37.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |
| ATOM 3396 CD GLN D 51 77.000 10.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 2 | D                             |
| ATOM 3398 NE2 GLN D 51 77.951 47.222 32.309 1.00 34.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |
| ATOM 3399 C GLN D 51 80.830 43.411 35.049 1.00 29.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                             |

| MOTA         | 3400         | 0          | GLN        | D      | 51         | 80.291           | 42.721           | 35.911           | 1.00 29.09               | D      |
|--------------|--------------|------------|------------|--------|------------|------------------|------------------|------------------|--------------------------|--------|
| MOTA         | 3401         | N          |            | D      | 52         | 81.342           | 42.899           | 33.935           | 1.00 28.19               | D      |
| ATOM         | 3402         | CA         |            | D<br>D | 52<br>52   | 81.300<br>81.218 | 41.468<br>41.188 | 33.676<br>32.178 | 1.00 26.27<br>1.00 25.00 | D<br>D |
| ATOM<br>ATOM | 3403<br>3404 | CB<br>CG   |            | D      | 52<br>52   | 80.030           | 41.801           | 31.513           | 1.00 23.07               | D      |
| ATOM         | 3405         | CD1        |            | D      | 52         | 78.744           | 41.569           | 31.999           | 1.00 22.75               | D      |
| MOTA         | 3406         | CD2        |            | D      | 52         | 80.188           | 42.594           | 30.380           | 1.00 23.46               | D      |
| MOTA         | 3407         | CE1        | PHE        | D      | 52         | 77.627           | 42.122           | 31.364           | 1.00 21.26               | D      |
| ATOM         | 3408         | CE2        | PHE        | D      | 52         | 79.079           | 43.151           | 29.735           | 1.00 21.92               | D      |
| ATOM         | 3409         | CZ         |            | D      | 52         | 77.799           | 42.913           | 30.231           | 1.00 21.69               | D      |
| ATOM         | 3410         | C          |            | D      | 52<br>52   | 82.547<br>83.477 | 40.797<br>41.461 | 34.217<br>34.669 | 1.00 27.11<br>1.00 27.64 | D<br>D |
| ATOM<br>ATOM | 3411<br>3412 | N<br>O     | PHE        |        | 52<br>53   | 82.556           | 39.471           | 34.152           | 1.00 27.25               | D      |
| MOTA         | 3413         | CA         | ARG        |        | 53         | 83.683           | 38.672           | 34.609           | 1.00 28.31               | Ð      |
| ATOM         | 3414         | CB         | ARG        |        | 53         | 83.347           | 37.976           | 35.939           | 1.00 32.75               | D      |
| MOTA         | 3415         | CG         | ARG        | D      | 53         | 83.263           | 38.921           | 37.143           | 1.00 40.59               | D      |
| MOTA         | 3416         | CD         | ARG        | D      | 53         | 82.418           | 38.325           | 38.269           | 1.00 45.99               | D      |
| MOTA         | 3417         | NE         | ARG        |        | 53         | 81.007           | 38.229           | 37.892           | 1.00 52.14               | D      |
| ATOM         | 3418         | CZ         | ARG        |        | 53         | 80.172           | 39.265<br>40.493 | 37.808<br>38.080 | 1.00 53.70<br>1.00 53.85 | D<br>D |
| MOTA         | 3419<br>3420 | NH1<br>NH2 | ARG<br>ARG |        | 53<br>53   | 80.597<br>78.910 | 39.071           | 37.440           | 1.00 54.61               | D      |
| ATOM<br>ATOM | 3421         | C          | ARG        |        | 53         | 84.007           | 37.624           | 33.548           | 1.00 25.73               | D      |
| ATOM         | 3422         | 0          | ARG        |        | 53         | 83.120           | 37.103           | 32.875           | 1.00 23.84               | D      |
| MOTA         | 3423         | N          | PHE        | D      | 54         | 85.290           | 37.335           | 33.387           | 1.00 23.47               | D      |
| ATOM         | 3424         | CA         | PHE        | D      | 54         | 85.716           | 36.336           | 32.425           | 1.00 19.92               | D      |
| ATOM         | 3425         | CB         |            | D      | 54         | 86.159           | 36.980           | 31.113           | 1.00 15.46               | D      |
| MOTA         | 3426         | CG         | PHE        |        | 5 <b>4</b> | 86.346           | 35.994           | 30.007           | 1.00 17.29<br>1.00 15.32 | D<br>D |
| ATOM         | 3427         | CD1        | PHE        | D      | 54<br>54   | 85.249<br>87.615 | 35.506<br>35.503 | 29.303<br>29.701 | 1.00 15.32               | D      |
| ATOM<br>ATOM | 3428<br>3429 | CD2<br>CE1 | PHE        |        | 54<br>54   | 85.415           | 34.539           | 28.309           | 1.00 16.04               | D      |
| ATOM         | 3430         | CE2        | PHE        |        | 54         | 87.788           | 34.535           | 28.709           | 1.00 13.99               | D      |
| ATOM         | 3431         | CZ         | PHE        |        | 54         | 86.688           | 34.055           | 28.014           | 1.00 14.35               | D      |
| MOTA         | 3432         | C          | PHE        | D      | 54         | 86.879           | 35.598           | 33.055           | 1.00 18.63               | D      |
| MOTA         | 3433         | O          | PHE        |        | 54         | 87.922           | 36.188           | 33.329           | 1.00 19.50               | D      |
| MOTA         | 3434         | N          | ASP        |        | 55         | 86.676           | 34.312           | 33.309           | 1.00 19.05<br>1.00 19.33 | D<br>D |
| ATOM         | 3435         | CA         | ASP        |        | 55<br>55   | 87.689<br>87.084 | 33.466<br>32.100 | 33.921<br>34.237 | 1.00 19.33<br>1.00 21.38 | D      |
| ATOM<br>ATOM | 3436<br>3437 | CB<br>CG   | ASP<br>ASP |        | 55<br>55   | 88.090           | 31.138           | 34.832           | 1.00 24.95               | D      |
| ATOM         | 3438         | OD1        | ASP        |        | 55<br>55   | 89.264           | 31.528           | 35.021           | 1.00 27.01               | D      |
| ATOM         | 3439         | OD2        |            |        | 55         | 87.703           | 29.985           | 35.112           | 1.00 27.48               | D      |
| ATOM         | 3440         | C          | ASP        | D      | 55         | 88.863           | 33.323           | 32.955           | 1.00 19.84               | D      |
| MOTA         | 3441         | 0          | ASP        | D      | 55         | 88.741           | 32.691           | 31.904           | 1.00 18.07               | D      |
| ATOM         | 3442         | N          | PRO        |        | 56         | 90.024           | 33.909           | 33.311<br>34.593 | 1.00 19.36<br>1.00 16.09 | D<br>D |
| ATOM         | 3443         | CD         | PRO<br>PRO |        | 56<br>56   | 90.285<br>91.240 | 34.584<br>33.867 | 34.593           | 1.00 18.34               | D      |
| ATOM<br>ATOM | 3444<br>3445 | CA<br>CB   | PRO        |        | 56         | 92.228           | 34.729           | 33.278           | 1.00 19.78               | D      |
| ATOM         | 3446         | CG         | PRO        |        | 56         | 91.792           | 34.517           | 34.692           | 1.00 18.66               | D      |
| ATOM         | 3447         | C          | PRO        |        | 56         | 91.770           | 32.468           | 32.206           | 1.00 18.30               | D      |
| MOTA         | 3448         | 0          | PRO        | D      | 56         | 92.583           | 32.277           | 31.299           | 1.00 17.41               | D      |
| MOTA         | 3449         | N          | GLN        |        | 57         | 91.304           | 31.489           | 32.977           | 1.00 18.31               | D      |
| MOTA         | 3450         | CA         | GLN        |        | 57<br>57   | 91.744           | 30.114           | 32.781           | 1.00 18.39<br>1.00 19.94 | D<br>D |
| MOTA         | 3451         | CB         | GLN<br>GLN |        | 57<br>57   | 91.314<br>91.738 | 29.233<br>27.773 | 33.963<br>33.856 | 1.00 19.54               | D      |
| ATOM<br>ATOM | 3452<br>3453 | CG<br>CD   | GLN        |        | 5 <i>7</i> | 93.252           | 27.73            | 33.765           | 1.00 23.86               | D      |
| MOTA         | 3454         | OE1        |            |        | 5 <i>7</i> | 94.000           |                  | 34.612           | 1.00 23.68               | D      |
| ATOM         | 3455         | NE2        |            |        | 57         | 93.709           | 26.885           | 32.739           | 1.00 19.56               | D      |
| MOTA         | 3456         | C          | GLN        | D      | 57         | 91.174           |                  | 31.480           | 1.00 20.01               | D      |
| ATOM         | 3457         | 0          | GLN        |        | 57         | 91.733           |                  | 30.903           | 1.00 19.26               | D      |
| ATOM         | 3458         | N          | PHE        |        | 58         | 90.059           |                  | 31.016           | 1.00 19.19<br>1.00 20.37 | D<br>D |
| ATOM         | 3459         | CA         | PHE        |        | 58<br>58   | 89.490<br>88.178 |                  | 29.765<br>29.427 | 1.00 20.57               | D      |
| MOTA<br>MOTA | 3460<br>3461 | CB<br>CG   | PHE        |        | 58         | 87.587           |                  |                  | 1.00 20.67               | D      |
| ATOM         | 3462         | CD1        |            |        | 58         | 88.040           |                  |                  | 1.00 19.84               | D      |
| ATOM         | 3463         | CD2        |            |        | 58         | 86.640           | 28.891           | 28.070           | 1.00 19.87               | D      |
| ATOM         | 3464         | CE1        |            | D      | 58         | 87.562           |                  | 25.682           | 1.00 19.25               | D      |
| ATOM         | 3465         | CE2        |            |        | 58         | 86.156           |                  |                  | 1.00 20.67               | D      |
| MOTA         | 3466         | CZ         | PHE        |        | 58         | 86.623           |                  |                  | 1.00 19.50<br>1.00 20.46 | D<br>D |
| MOTA         | 3467         | C          | PHE        |        |            | 90.508<br>90.745 |                  |                  | 1.00 20.46               | D<br>D |
| MOTA         | 3468<br>3469 | N<br>O     | ALA        |        |            | 91.115           |                  |                  | 1.00 20.85               | D      |
| ATOM<br>ATOM | 3469         | CA         | ALA        |        |            | 92.111           | •                |                  | 1.00 21.87               | D      |
| MOTA         | 3471         | CB         | ALA        |        |            | 92.458           |                  |                  |                          | D      |
| ATOM         | 3472         | C          | ALA        |        |            | 93.374           |                  |                  | 1.00 22.41               | D      |
| ATOM         | 3473         | 0          | ALA        | D      | 59         | 93.877           | 30.151           | 26.796           | 1.00 22.54               | D      |
|              |              |            |            |        |            |                  |                  |                  |                          |        |

| ATOM         | 3474         | N          | LEU        | D      | 60       | 93.890             | 30.409           | 29.030           | 1.00 21.24               | D      |
|--------------|--------------|------------|------------|--------|----------|--------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 3475         | CA         | LEU        |        | 60       | 95.101             | 29.601           | 29.188           | 1.00 22.31               | D      |
| ATOM         | 3476         | CB         | LEU        | D      | 60       | 95.501             | 29.474           | 30.663           | 1.00 22.79               | D      |
| ATOM         | 3477         | CG         | LEU        | D      | 60       | 96.063             | 30.698           | 31.393           | 1.00 25.87               | D      |
| ATOM         | 3478         | CD1        | LEU        | D      | 60       | 96.455             | 30.303           | 32.805           | 1.00 28.75               | D      |
| ATOM         | 3479         | CD2        |            | D      | 60       | 97.270             | 31.223           | 30.670           | 1.00 28.42               | D      |
| MOTA         | 3480         | C          |            | D      | 60       | 94.891             | 28.207           | 28.617           | 1.00 21.85               | D      |
| ATOM         | 3481         | 0          |            | D      | 60       | 95.731             | 27.691           | 27.875           | 1.00 22.48<br>1.00 19.32 | D<br>D |
| ATOM         | 3482         | N          |            | D      | 61       | 93.763             | 27.600<br>26.259 | 28.966<br>28.489 | 1.00 19.32               | D      |
| ATOM         | 3483         | CA         |            | D      | 61<br>61 | 93.457<br>92.175   | 25.721           | 29.158           | 1.00 20.04               | D      |
| ATOM         | 3484         | CB<br>OG1  |            | D<br>D | 61       | 92.175             | 25.721           | 30.558           | 1.00 23.09               | D      |
| ATOM<br>ATOM | 3485<br>3486 | CG2        |            | D      | 61       | 91.759             | 24.393           | 28.546           | 1.00 21.15               | D      |
| ATOM         | 3487         | C          | THR        |        | 61       | 93.283             | 26.240           | 26.974           | 1.00 19.50               | D      |
| ATOM         | 3488         | 0          | THR        |        | 61       | 93.805             | 25.363           | 26.288           | 1.00 18.76               | D      |
| ATOM         | 3489         | N          | ASN        |        | 62       | 92.565             | 27.229           | 26.456           | 1.00 19.66               | D      |
| ATOM         | 3490         | CA         | ASN        | D      | 62       | 92.310             | 27.300           | 25.032           | 1.00 19.00               | D      |
| ATOM         | 3491         | CB         | ASN        | D      | 62       | 91.356             | 28.453           | 24.729           | 1.00 18.52               | D      |
| ATOM         | 3492         | CG         | ASN        | D      | 62       | 90.262             | 28.052           | 23.760           | 1.00, 20.31              | D      |
| ATOM         | 3493         | OD1        | ASN        | D      | 62       | 89.726             | 26.942           | 23.833           | 1.00 19.27               | D      |
| ATOM         | 3494         | ND2        | ASN        | D      | 62       | 89.917             | 28.952           | 22.854           | 1.00 22.25               | D      |
| ATOM         | 3495         | C          | ASN        |        | 62       | 93.599             | 27.445           | 24.244           | 1.00 19.63               | D      |
| ATOM         | 3496         | 0          | ASN        |        | 62       | 93.774             | 26.788           | 23.221           | 1.00 21.16               | D<br>D |
| ATOM         | 3497         | N          | ILE        | D      | 63       | 94.509             | 28.290           | 24.724           | 1.00 19.68               | D      |
| ATOM         | 3498         | CA         | ILE        |        | 63       | 95.779             | 28.481           | 24.033<br>24.645 | 1.00 18.76<br>1.00 18.72 | D      |
| ATOM         | 3499         | CB         | ILE        |        | 63       | 96.587<br>97.946   | 29.660<br>29.780 | 23.966           | 1.00 13.72               | D      |
| ATOM         | 3500         | CG2        |            |        | 63<br>63 | 97.946             | 30.968           | 24.471           | 1.00 17.09               | D      |
| ATOM         | 3501         | CG1<br>CD1 | ILE<br>ILE |        | 63       | 95.507             | 31.313           | 23.017           | 1.00 17.47               | D      |
| ATOM         | 3502<br>3503 | CDI        | ILE        |        | 63       | 96.613             | 27.195           | 24.094           | 1.00 18.86               | D      |
| ATOM<br>ATOM | 3503         | 0          | ILE        |        | 63       | 97.354             | 26.885           | 23.164           | 1.00 20.67               | D      |
| ATOM         | 3505         | N          | ALA        |        | 64       | 96.497             | 26.448           | 25.188           | 1.00 18.22               | D      |
| ATOM         | 3506         | CA         | ALA        |        | 64       | 97.244             | 25.193           | 25.316           | 1.00 20.33               | D      |
| ATOM         | 3507         | CB         | ALA        |        | 64       | 97.039             | 24.574           | 26.708           | 1.00 17.30               | D      |
| ATOM         | 3508         | C          | ALA        | D      | 64       | 96.756             | 24.232           | 24.233           | 1.00 21.38               | D      |
| ATOM         | 3509         | 0          | ALA        | D      | 64       | 97.536             | 23.459           | 23.677           | 1.00 23.44               | D      |
| MOTA         | 3510         | N          | VAL        | D      | 65       | 95.459             | 24.290           | 23.940           | 1.00 21.97               | D      |
| MOTA         | 3511         | CA         | VAL        | D      | 65       | 94.872             | 23.444           | 22.910           | 1.00 22.59               | D      |
| ATOM         | 3512         | CB         | VAL        | D      | 65       | 93.324             | 23.570           | 22.890           | 1.00 22.30               | D      |
| ATOM         | 3513         | CG1        |            |        | 65       | 92.744             | 22.781           | 21.728           | 1.00 17.73               | D      |
| MOTA         | 3514         | CG2        |            |        | 65       | 92.747             | 23.053           | 24.204           | 1.00 19.10               | D      |
| ATOM         | 3515         | C          | VAL        |        | 65       | 95.441             | 23.832           | 21.541           | 1.00 23.65<br>1.00 23.24 | D<br>D |
| ATOM         | 3516         | 0          | VAL        |        | 65<br>66 | 95.783             | 22.961<br>25.133 | 20.746<br>21.271 | 1.00 25.24               | D      |
| ATOM         | 3517         | N          | LEU        |        | 66<br>66 | 95.552<br>96.102   | 25.580           | 19.991           | 1.00 25.05               | D      |
| MOTA         | 3518         | CA<br>CB   | LEU<br>LEU |        | 66       | 96.104             | 27.111           | 19.870           | 1.00 23.98               | Ď      |
| ATOM<br>ATOM | 3519<br>3520 | CG         | LEU        |        | 66       | 94.826             | 27.953           | 19.969           | 1.00 25.20               | D      |
| ATOM         | 3521         | CD1        |            |        | 66       | 95.030             | 29.233           | 19.169           | 1.00 21.70               | D      |
| ATOM         | 3522         | CD2        |            |        | 66       | 93.629             | 27.211           | 19.435           | 1.00 26.16               | D      |
| ATOM         | 3523         | C          | LEU        | D      | 66       | 97.533             | 25.078           | 19.880           | 1.00 26.24               | D      |
| ATOM         | 3524         | 0          | LEU        | D      | 66       | 97.971             | 24.667           | 18.816           | 1.00 27.10               | D      |
| ATOM         | 3525         | N          | LYS        | D      | 67       | 98.262             | 25.131           | 20.989           | 1.00 27.93               | Ð      |
| MOTA         | 3526         | CA         | LYS        |        | 67       | 99.642             | 24.658           | 21.024           | 1.00 28.00               | D      |
| ATOM         | 3527         | CB         | LYS        |        | 67       | 100.215            | 24.827           | 22.437           | 1.00 27.69               | D      |
| ATOM         | 3528         | CG         | LYS        |        | 67       | 101.633            | 24.316           | 22.625           | 1.00 28.46               | D<br>D |
| ATOM         | 3529         | CD         | LYS        |        | 67<br>67 | 102.086            | 24.504           | 24.069<br>24.356 | 1.00 30.94<br>1.00 32.95 | D      |
| MOTA         | 3530         | CE         | LYS        |        | 67<br>67 | 103.401<br>104.517 | 23.791<br>24.279 | 23.503           | 1.00 35.64               | D      |
| ATOM         | 3531         | NZ         | LYS<br>LYS |        | 67<br>67 | 99.642             | 23.182           | 20.629           | 1.00 27.56               | D      |
| MOTA         | 3532<br>3533 | C<br>O     | LYS        |        | 67       | 100.414            | 22.759           | 19.767           | 1.00 27.65               | D      |
| MOTA<br>MOTA | 3534         | И          | HIS        |        | 68       | 98.761             | 22.405           | 21.254           | 1.00 27.05               | D      |
| ATOM         | 3535         | CA         | HIS        |        | 68       | 98.665             | 20.982           | 20.956           | 1.00 26.31               | D      |
| MOTA         | 3536         | CB         | HIS        |        | 68       | 97.600             |                  | 21.844           | 1.00 27.74               | D      |
| ATOM         | 3537         | CG         | HIS        |        | 68       | 97.356             |                  | 21.531           | 1.00 31.20               | D      |
| ATOM         | 3538         | CD2        | 2 HIS      | D      | 68       | 97.801             | 17.748           | 22.130           | 1.00 31.26               | D      |
| ATOM         | 3539         | ND         | L HIS      | D      | 68       | 96.582             | 18.466           | 20.465           | 1.00 32.71               | D      |
| ATOM         | 3540         | CE:        | L HIS      | D      | 68       | 96.560             |                  | 20.423           | 1.00 31.32               | D      |
| MOTA         | 3541         | NE:        | 2 HIS      | S D    | 68       | 97.292             |                  |                  | 1.00 31.58               | D      |
| MOTA         | 3542         | C          | HIS        |        | 68       | 98.341             |                  |                  | 1.00 25.27               | D      |
| MOTA         | 3543         | 0          | HIS        |        | 68       | 98.958             |                  |                  | 1.00 25.67               | D      |
| MOTA         | 3544         | N          | ASI        |        | 69       | 97.386             | _                |                  | 1.00 22.00               | D      |
| ATOM         | 3545         | CA         | ASI        |        | 69<br>60 | 96.986             | _                |                  | 1.00 23.20<br>1.00 23.27 | D<br>D |
| ATOM         | 3546         | CB         | ASI        |        | 69       | 95.706             | _                |                  | 1.00 23.27               | D      |
| ATOM         | 3547         | CG         | ASI        | 1 D    | 69       | 94.447             | 21.504           | £7.00D           | L.UU AT.AU               | ט      |

| ATOM | 3548 | COL                    | ASN   | D    | 69 | 94.521  | 20.536           | 18.562           | 1.00 26.69               | D      |
|------|------|------------------------|-------|------|----|---------|------------------|------------------|--------------------------|--------|
| ATOM | 3549 | ND2                    | ASN   |      | 69 | 93.283  | 21.994           | 17.381           | 1.00 21.03               | D      |
| ATOM | 3550 | C                      | ASN   | D    | 69 | 98.091  | 21.855           | 16.601           | 1.00 24.52               | D      |
| ATOM | 3551 | 0                      | ASN   | D    | 69 | 98.329  | 21.223           | 15.570           | 1.00 22.82               | D      |
| ATOM | 3552 | N                      | LEU   | D    | 70 | 98.763  | 22.954           | 16.934           | 1.00 24.56               | D      |
| ATOM | 3553 | CA                     | LEU   | D    | 70 | 99.831  | 23.459           | 16.078           | 1.00 26.89               | D      |
| ATOM | 3554 | CB                     | LEU   | D    | 70 | 100.478 | 24.707           | 16.690           | 1.00 23.85               | D      |
| ATOM | 3555 | CG                     | LEU   | D    | 70 | 101.619 | 25.306           | 15.857           | 1.00 22.71               | D      |
| ATOM | 3556 | CD1                    | LEU   | D    | 70 | 101.082 | 25.776           | 14.519           | 1.00 19.18               | D      |
| ATOM | 3557 | CD2                    | LEU   | D    | 70 | 102.254 | 26.472           | 16.592           | 1.00 23.62               | D      |
| ATOM | 3558 | C                      | LEU   | D    | 70 | 100.900 | 22.388           | 15.882           | 1.00 28.63               | D      |
| ATOM | 3559 | 0                      | LEU   | D    | 70 | 101.413 | 22.210           | 14.780           | 1.00 27.56               | D      |
| ATOM | 3560 | N                      | ASN   | D    | 71 | 101.224 | 21.687           | 16.967           | 1.00 31.13               | D      |
| ATOM | 3561 | CA                     | ASN   | D    | 71 | 102.238 | 20.637           | 16.962           | 1.00 35.25               | D      |
| ATOM | 3562 | CB                     | ASN   | D    | 71 | 102.393 | 20.052           | 18.370           | 1.00 35.30               | D      |
| ATOM | 3563 | CG                     | ASN   | D    | 71 | 103.149 | 20.978           | 19.307           | 1.00 38.03               | D      |
| MOTA | 3564 | OD1                    | ASN   | D    | 71 | 103.197 | 20.751           | 20.518           | 1.00 40.05               | D      |
| ATOM | 3565 | ND2                    | ASN   | D    | 71 | 103.752 | 22.026           | 18.748           | 1.00 38.78               | D      |
| ATOM | 3566 | C                      | ASN   | D    | 71 | 101.931 | 19.521           | 15.975           | 1.00 36.85               | D      |
| ATOM | 3567 | 0                      | ASN   | D    | 71 | 102.829 | 18.997           | 15.316           | 1.00 36.91               | D      |
| ATOM | 3568 | N                      | SER   | D    | 72 | 100.660 | 19.157           | 15.876           | 1.00 38.08               | D      |
| ATOM | 3569 | CA                     | SER   | D    | 72 | 100.261 | 18.104           | 14.961           | 1.00 39.44               | D      |
| MOTA | 3570 | CB                     | SER   | D    | 72 | 98.847  | 17.623           | 15.306           | 1.00 40.69               | D      |
| ATOM | 3571 | OG                     | SER   | D    | 72 | 98.529  | 16.427           | 14.611           | 1.00 44.84               | D      |
| ATOM | 3572 | C                      | SER   | D    | 72 | 100.320 | 18.614           | 13.520           | 1.00 39.55               | D      |
| MOTA | 3573 | 0                      | SER   | D    | 72 | 100.798 | 17.915           | 12.625           | 1.00 38.61               | D      |
| ATOM | 3574 | N                      | LEU   | D    | 73 | 99.846  | 19.839           | 13.305           | 1.00 40.64               | D      |
| MOTA | 3575 | $\mathbf{C}\mathbf{A}$ | LEU   | D    | 73 | 99.844  | 20.443           | 11.974           | 1.00 42.19               | D      |
| ATOM | 3576 | СВ                     | LEU   | D    | 73 | 99.085  | 21.768           | 11.990           | 1.00 42.17               | D      |
| ATOM | 3577 | CG                     | LEU   | D    | 73 | 97.608  | 21.700           | 11.608           | 1.00 43.12               | D      |
| MOTA | 3578 | CD1                    | LEU   | D    | 73 | 96.891  | 20.664           | 12.443           | 1.00 44.19               | D      |
| ATOM | 3579 | CD2                    | LEU   | D    | 73 | 96.988  | 23.072           | 11.801           | 1.00 44.59               | D      |
| MOTA | 3580 | C                      | LEU   | D    | 73 | 101.237 | 20.678           | 11.407           | 1.00 43.27               | D      |
| ATOM | 3581 | 0                      | LEU   | D    | 73 | 101.466 | 20.479           | 10.215           | 1.00 43.00               | D      |
| ATOM | 3582 | N                      | ILE   | D    | 74 | 102.162 | 21.116           | 12.253           | 1.00 44.60               | D      |
| ATOM | 3583 | CA                     | ILE   | D    | 74 | 103.529 | 21.364           | 11.812           | 1.00 46.44               | D      |
| ATOM | 3584 | CB                     | ILE   | D    | 74 | 104.431 | 21.770           | 13.000           | 1.00 46.31               | D      |
| MOTA | 3585 | CG2                    | ILE   | D    | 74 | 105.893 | 21.792           | 12.571           | 1.00 46.14               | D      |
| ATOM | 3586 | CG1                    | ILE   | D    | 74 | 103.996 | 23.140           | 13.529           | 1.00 45.97               | D      |
| ATOM | 3587 | CD1                    | ILE   | D    | 74 | 104.683 | 23.561           | 14.812           | 1.00 43.97               | D      |
| ATOM | 3588 | C                      | ILE   | D    | 74 | 104.077 | 20.095           | 11.166           | 1.00 48.14               | D      |
| MOTA | 3589 | 0                      | ILE   | D    | 74 | 104.724 | 20.147           | 10.119           | 1.00 48.28               | D      |
| ATOM | 3590 | N                      | LYS   | D    | 75 | 103.800 | 18.957           | 11.795           | 1.00 49.68               | D<br>- |
| ATOM | 3591 | CA                     | LYS   | D    | 75 | 104.252 | 17.669           | 11.290           | 1.00 51.82               | D      |
| MOTA | 3592 | CB                     | LYS   | D    | 75 | 104.060 | 16.589           | 12.356           | 1.00 52.85               | D      |
| ATOM | 3593 | CG                     | LYS   | D    | 75 | 104.856 | 16.839           | 13.621           | 1.00 54.78               | D      |
| MOTA | 3594 | CD                     | LYS   | D    | 75 | 104.517 | 15.831           | 14.704           | 1.00 57.28               | D      |
| MOTA | 3595 | CE                     | LYS   | D    | 75 | 105.222 | 16.170           | 16.010           | 1.00 58.75               | D      |
| MOTA | 3596 | NZ                     | LYS   |      | 75 | 104.803 | 15.266           | 17.116           | 1.00 59.97               | D      |
| MOTA | 3597 | C                      | LYS   |      | 75 | 103.499 | 17.276           | 10.023           | 1.00 52.37               | D      |
| MOTA | 3598 | 0                      | LYS   |      |    | 104.106 | 17.086           | 8.972            | 1.00 52.78               | D      |
| MOTA | 3599 | N                      | ARG   |      | 76 | 102.177 | 17.171           | 10.124           | 1.00 52.67               | D      |
| ATOM | 3600 | CA                     | ARG   |      | 76 | 101.353 | 16.783           | 8.986            | 1.00 52.67               | D<br>D |
| ATOM | 3601 | CB                     | ARG   |      | 76 | 99.911  | 16.546           | 9.439            | 1.00 53.54<br>1.00 55.62 | D      |
| MOTA | 3602 | CG                     | ARG   |      | 76 | 99.764  | 15.339           | 10.346<br>10.639 | 1.00 58.29               | D      |
| MOTA | 3603 | CD                     | ARG   |      | 76 | 98.310  | 15.011           | 11.319           | 1.00 58.25               | D      |
| ATOM | 3604 | NE                     | ARG   |      | 76 | 97.628  | 16.107<br>16.000 | 11.900           | 1.00 62.21               | D      |
| MOTA | 3605 | CZ                     | ARG   |      |    | 96.437  | 14.840           | 11.885           | 1.00 62.71               | D      |
| MOTA | 3606 | NH1                    |       |      |    | 95.793  | 17.055           | 12.492           | 1.00 61.94               | D      |
| ATOM | 3607 | NH2                    |       |      |    | 95.889  | 17.761           | 7.816            | 1.00 52.35               | D      |
| MOTA | 3608 | C                      | ARG   |      |    | 101.375 | 17.751           | 6.817            | 1.00 52.65               | D      |
| MOTA | 3609 | 0                      | ARG   |      |    | 100.691 | 18.824           | 7.932            | 1.00 52.03               | D      |
| MOTA | 3610 | N                      | SER   |      |    | 102.160 | 19.807           | 6.856            | 1.00 51.87               | D      |
| ATOM | 3611 | CA                     | SER   |      |    | 102.255 |                  | 7.379            | 1.00 50.95               | D      |
| ATOM | 3612 | CB                     | SER   |      |    | 101.945 | 21.212<br>21.668 |                  | 1.00 30.93               | D      |
| ATOM | 3613 | OG                     | SER   |      |    | 102.975 |                  | 6.233            | 1.00 48.11               | D      |
| ATOM | 3614 | C                      | SER   |      |    | 103.667 | 19.789           |                  | 1.00 52.25               | D      |
| MOTA | 3615 | 0                      | SER   |      |    | 104.028 | 20.633           | 6.731            | 1.00 51.87               | D      |
| ATOM | 3616 | N                      | ASN   |      |    | 104.455 | 18.814           |                  | 1.00 52.79               | D      |
| MOTA | 3617 | CA                     | ASN   |      |    | 105.841 | 18.675           |                  | 1.00 55.53               | D      |
| ATOM | 3618 | CB                     | ASN   |      |    | 105.912 | 18.364<br>17.901 |                  | 1.00 55.33               | D      |
| MOTA | 3619 | CG                     | ASN   |      |    | 107.298 | 17.301           |                  | 1.00 57.31               | D      |
| ATOM | 3620 | OD:                    |       |      |    | 107.959 | 18.360           | _                | 1.00 58.41               | D      |
| MOTA | 3621 | נתמ                    | 2 ASN | נו ו | 78 | 107.732 | TO.200           | 5,104            | 50.05                    | ****   |

| ATOM | 3622 | С   | ASN | מ | 78 | 106.549 | 19.985 | 6.632 | 1.00 52.90 | D  |
|------|------|-----|-----|---|----|---------|--------|-------|------------|----|
|      |      | _   |     |   |    | 107.300 | 20.536 | 5.826 | 1.00 53.98 | D  |
| ATOM | 3623 | 0   | ASN |   | 78 |         | ·      |       |            |    |
| ATOM | 3624 | N   | SER | D | 79 | 106.275 | 20.479 | 7.835 | 1.00 51.25 | D. |
| MOTA | 3625 | CA  | SER | Ð | 79 | 106.856 | 21.715 | 8.341 | 1.00 49.59 | D  |
| ATOM | 3626 | CB  | SER | D | 79 | 108.333 | 21.498 | 8.664 | 1.00 49.69 | D  |
| ATOM | 3627 | OG  | SER | D | 79 | 108.472 | 20.604 | 9.753 | 1.00 52.23 | D  |
| ATOM | 3628 | C   | SER | Ð | 79 | 106.711 | 22.931 | 7.437 | 1.00 47.21 | D  |
|      |      | 0   | SER |   | 79 | 107.699 | 23.588 | 7.111 | 1.00 47.49 | D  |
| ATOM | 3629 | _   |     |   |    |         |        |       |            | D  |
| ATOM | 3630 | N   | THR |   | 80 | 105.483 | 23.235 | 7.032 | 1.00 44.68 |    |
| MOTA | 3631 | CA  | THR | D | 80 | 105.245 | 24.401 | 6.189 | 1.00 43.69 | D  |
| MOTA | 3632 | CB  | THR | D | 80 | 103.928 | 24.274 | 5.407 | 1.00 45.12 | D  |
| ATOM | 3633 | OG1 | THR | D | 80 | 103.976 | 23.112 | 4.570 | 1.00 47.94 | D  |
| ATOM | 3634 | CG2 | THR | D | 80 | 103.706 | 25.505 | 4.541 | 1.00 44.11 | D  |
| ATOM | 3635 | C   | THR |   | 80 | 105.166 | 25.634 | 7.094 | 1.00 42.94 | D  |
|      |      |     |     |   |    |         | 25.783 | 7.874 | 1.00 41.60 | D  |
| ATOM | 3636 | 0   | THR |   | 80 | 104.225 |        |       |            |    |
| ATOM | 3637 | N   | ALA |   | 81 | 106.162 | 26.510 | 6.988 | 1.00 40.39 | D  |
| MOTA | 3638 | CA  | ALA | D | 81 | 106.215 | 27.715 | 7.804 | 1.00 37.86 | D  |
| MOTA | 3639 | CB  | ALA | D | 81 | 107.657 | 28.171 | 7.958 | 1.00 39.23 | D  |
| ATOM | 3640 | С   | ALA | D | 81 | 105.372 | 28.846 | 7.234 | 1.00 36.29 | D  |
| ATOM | 3641 | 0   | ALA |   | 81 | 104.988 | 28.829 | 6.065 | 1.00 35.21 | D  |
|      |      | N   | ALA |   | 82 | 105.087 | 29.829 | 8.079 | 1.00 34.40 | D  |
| ATOM | 3642 |     |     |   |    |         |        | 7.685 | 1.00 32.51 | D  |
| MOTA | 3643 | CA  | ALA |   | 82 | 104.294 | 30.984 |       |            |    |
| MOTA | 3644 | CB  | ALA | Đ | 82 | 103.915 | 31.789 | 8.920 | 1.00 32.45 | D  |
| ATOM | 3645 | C   | ALA | D | 82 | 105.064 | 31.866 | 6.707 | 1.00 32.78 | D  |
| ATOM | 3646 | 0   | ALA | D | 82 | 106.294 | 31.913 | 6.740 | 1.00 30.87 | D  |
| ATOM | 3647 | N   | THR | D | 83 | 104.333 | 32.561 | 5.839 | 1.00 32.79 | D  |
| ATOM | 3648 | CA. | THR |   | 83 | 104.940 | 33.459 | 4.867 | 1.00 34.48 | D  |
|      |      | CB  | THR |   | 83 | 104,195 | 33.429 | 3.521 | 1.00 35.64 | D  |
| ATOM | 3649 |     |     |   |    |         | 32.094 | 3.006 | 1.00 38.88 | D  |
| ATOM | 3650 | OG1 | THR |   | 83 | 104.179 |        |       |            |    |
| MOTA | 3651 | CG2 | THR | D | 83 | 104.880 | 34.342 | 2.521 | 1.00 35.33 | D  |
| MOTA | 3652 | C   | THR | D | 83 | 104.886 | 34.887 | 5.401 | 1.00 35.30 | D  |
| MOTA | 3653 | 0   | THR | D | 83 | 103.827 | 35.355 | 5.824 | 1.00 36.88 | D  |
| MOTA | 3654 | N   | ASN | D | 84 | 106.025 | 35.575 | 5.379 | 1.00 35.07 | D  |
| ATOM | 3655 | CA  | ASN |   | 84 | 106.095 | 36.949 | 5.855 | 1.00 33.90 | D  |
|      |      | CB  | ASN |   | 84 | 107.548 | 37.413 | 6.010 | 1.00 34.23 | D  |
| ATOM | 3656 |     |     |   |    |         |        | 6.954 | 1.00 36.16 | D  |
| ATOM | 3657 | CG  | ASN |   | 84 | 108.351 | 36.545 |       |            |    |
| MOTA | 3658 | OD1 | ASN | D | 84 | 107.895 | 36.195 | 8.043 | 1.00 34.99 | D  |
| ATOM | 3659 | ND2 | ASN | D | 84 | 109.572 | 36.205 | 6.545 | 1.00 37.40 | D  |
| ATOM | 3660 | C   | ASN | D | 84 | 105.419 | 37.879 | 4.865 | 1.00 34.74 | D  |
| ATOM | 3661 | 0   | ASN | D | 84 | 105.814 | 37.940 | 3.699 | 1.00 35.59 | D  |
| ATOM | 3662 | N   | GLU |   | 85 | 104.401 | 38.599 | 5.327 | 1.00 34.09 | D  |
|      | 3663 | CA  | GLU |   | 85 | 103.695 | 39.561 | 4.489 | 1.00 32.99 | Ð  |
| ATOM |      |     |     |   |    |         |        | 4.939 | 1.00 35.56 | D  |
| MOTA | 3664 | CB  | GLU |   | 85 | 102.239 | 39.714 |       |            | D  |
| MOTA | 3665 | CG  | GLU |   | 85 | 101.370 | 38.475 | 4.746 | 1.00 40.80 |    |
| MOTA | 3666 | CD  | GLU | D | 85 | 101.019 | 38.215 | 3.291 | 1.00 43.32 | D  |
| MOTA | 3667 | OE1 | GLU | D | 85 | 100.409 | 39.104 | 2.658 | 1.00 46.21 | D  |
| ATOM | 3668 | OE2 | GLU | D | 85 | 101.345 | 37.119 | 2.782 | 1.00 44.58 | D  |
| ATOM | 3669 | C   | GLU |   | 85 | 104.418 | 40.886 | 4.681 | 1.00 31.21 | D  |
|      | 3670 | 0   | GLU |   | 85 | 105.220 | 41.024 | 5.602 | 1.00 32.36 | D  |
| ATOM |      |     |     |   |    |         |        | 3.808 | 1.00 29.71 | D  |
| MOTA | 3671 | N   | VAL |   | 86 | 104.140 | 41.848 |       |            | D  |
| ATOM | 3672 | CA  | VAL |   |    | 104.749 | 43.170 | 3.882 | 1.00 27.94 | _  |
| MOTA | 3673 | CB  | VAL | D | 86 | 105.079 | 43.712 | 2.467 | 1.00 26.90 | D  |
| MOTA | 3674 | CG1 | VAL | D | 86 | 105.569 | 45.166 | 2.543 | 1.00 23.11 | D  |
| ATOM | 3675 | CG2 | VAL | D | 86 | 106.134 | 42.829 | 1.821 | 1.00 24.31 | Ð  |
| ATOM | 3676 | C   | VAL |   | 86 | 103.767 | 44.114 | 4.574 | 1.00 29.81 | D  |
|      | 3677 | 0   | VAL |   | 86 | 102.658 | 44.343 | 4.088 | 1.00 30.28 | D  |
| ATOM |      |     |     |   |    |         |        | 5.729 | 1.00 29.08 | D  |
| MOTA | 3678 | N   | PRO |   | 87 | 104.162 | 44.666 |       |            |    |
| ATOM | 3679 | CD  | PRO |   | 87 | 105.356 | 44.310 | 6.509 | 1.00 29.37 | D  |
| ATOM | 3680 | CA  | PRO | D | 87 | 103.306 | 45.583 | 6.485 | 1.00 30.85 | D  |
| MOTA | 3681 | CB  | PRO | D | 87 | 104.083 | 45.791 | 7.786 | 1.00 30.80 | D  |
| MOTA | 3682 | CG  | PRO | D | 87 | 104.878 | 44.551 | 7.920 | 1.00 30.83 | D  |
| ATOM | 3683 | C   | PRO |   | 87 | 103.049 | 46.907 | 5.772 | 1.00 31.43 | D  |
|      | 3684 | 0   | PRO |   | 87 | 103.863 | 47.357 | 4.968 | 1.00 31.78 | D  |
| ATOM |      |     |     |   |    |         |        |       | 1.00 31.85 | D  |
| MOTA | 3685 | N   | GLU |   | 88 | 101.907 | 47.517 | 6.081 |            |    |
| MOTA | 3686 | CA  | GLU |   | 88 | 101.516 | 48.808 | 5.521 | 1.00 32.77 | D  |
| MOTA | 3687 | CB  | GLU | D | 88 | 100.195 | 48.687 | 4.744 | 1.00 35.18 | D  |
| MOTA | 3688 | CG  | GLU | D | 88 | 99.814  | 49.960 | 3.987 | 1.00 43.00 | D  |
| MOTA | 3689 | CD  | GLU | D | 88 | 98.512  | 49.839 | 3.205 | 1.00 46.30 | D  |
| ATOM | 3690 | OE1 |     |   | 88 | 97.439  | 49.745 | 3.837 | 1.00 47.40 | D  |
| ATOM | 3691 | OE2 |     |   | 88 | 98.564  | 49.840 | 1.954 | 1.00 48.25 | D  |
|      |      |     |     |   |    |         | 49.748 | 6.721 | 1.00 31.26 | D  |
| MOTA | 3692 | C   | GLU |   | 88 | 101.338 |        |       |            | D  |
| ATOM | 3693 | 0   | GLU |   | 88 | 100.556 | 49.457 | 7.630 | 1.00 31.21 |    |
| MOTA | 3694 | N   | VAL | D | 89 | 102.060 | 50.864 | 6.728 | 1.00 28.43 | D  |
| MOTA | 3695 | CA  | VAL | D | 89 | 101.988 | 51.806 | 7.842 | 1.00 26.87 | D  |
|      |      |     |     |   |    |         |        |       |            |    |

| ATOM | 3696 | СВ  | VAL : | D              | 89 | 103.385 | 52.024       | 8.454  | 1.00 26.58 | D |
|------|------|-----|-------|----------------|----|---------|--------------|--------|------------|---|
|      |      |     | VAL : |                | 89 | 103.277 | 52.886       | 9.699  | 1.00 26.80 | D |
| ATOM | 3697 | CG1 |       |                |    |         |              |        |            | D |
| MOTA | 3698 | CG2 | VAL : |                | 89 | 104.021 | 50.679       | 8.787  | 1.00 24.58 |   |
| ATOM | 3699 | C   | VAL   | D              | 89 | 101.389 | 53.174       | 7.505  | 1.00 27.02 | D |
| ATOM | 3700 | 0   | VAL   | D              | 89 | 101.698 | 53.772       | 6.473  | 1.00 26.22 | D |
| MOTA | 3701 | N   | THR   | D              | 90 | 100.530 | 53.662       | 8.394  | 1.00 26.33 | D |
| ATOM | 3702 | CA  | THR   | מ              | 90 | 99.881  | 54.955       | 8.219  | 1.00 26.05 | D |
|      | 3703 | CB  | THR   |                | 90 | 98.414  | 54.802       | 7.769  | 1.00 27.24 | D |
| ATOM |      |     |       |                |    |         |              |        | 1.00 31.41 | D |
| MOTA | 3704 | OG1 | THR   |                | 90 | 98.359  | 54.063       | 6.543  |            |   |
| ATOM | 3705 | CG2 | THR   | D              | 90 | 97.786  | 56.163       | 7.545  | 1.00 28.57 | D |
| ATOM | 3706 | C   | THR   | D              | 90 | 99.883  | 55.698       | 9.546  | 1.00 24.83 | D |
| ATOM | 3707 | 0   | THR   | D              | 90 | 99.542  | 55.120       | 10.581 | 1.00 25.45 | D |
| ATOM | 3708 | N   | VAL   |                | 91 | 100.266 | 56.972       | 9.512  | 1.00 22.04 | D |
|      |      | CA  | VAL   |                | 91 | 100.300 | 57.791       | 10.716 | 1.00 21.50 | D |
| ATOM | 3709 |     |       |                |    |         |              | 11.031 | 1.00 23.04 | D |
| MOTA | 3710 | CB  | VAL   |                | 91 | 101.749 | 58.280       |        |            |   |
| ATOM | 3711 | CG1 | VAL   | D              | 91 | 101.737 | 59.245       | 12.225 | 1.00 22.74 | D |
| MOTA | 3712 | CG2 | VAL   | D              | 91 | 102.650 | 57.082       | 11.340 | 1.00 20.38 | D |
| MOTA | 3713 | C   | VAL   | D              | 91 | 99.369  | 58.993       | 10.553 | 1.00 21.65 | D |
| ATOM | 3714 | 0   | VAL   | D              | 91 | 99.357  | 59.653       | 9.509  | 1.00 21.70 | D |
| ATOM | 3715 | N   |       | D              | 92 | 98.573  | 59.252       | 11.586 | 1.00 21.34 | D |
|      |      |     |       |                |    | 97.633  | 60.363       | 11.580 | 1.00 21.48 | D |
| MOTA | 3716 | CA  |       | D<br>-         | 92 |         |              |        |            | D |
| ATOM | 3717 | CB  | PHE   | D              | 92 | 96.370  | 59.985       | 10.788 | 1.00 21.60 |   |
| MOTA | 3718 | CG  | PHE   | D              | 92 | 95.652  | 58.771       | 11.314 | 1.00 22.22 | D |
| MOTA | 3719 | CD1 | PHE   | D              | 92 | 94.601  | 58.902       | 12.215 | 1.00 24.10 | Ð |
| ATOM | 3720 | CD2 | PHE   | D              | 92 | 96.038  | 57.495       | 10.925 | 1.00 24.53 | D |
| ATOM | 3721 | CE1 |       | D              | 92 | 93.940  | 57.774       | 12.724 | 1.00 22.72 | D |
|      |      |     |       |                |    | 95.386  | 56.355       | 11.428 | 1.00 23.87 | D |
| ATOM | 3722 | CE2 | PHE   |                | 92 |         |              |        | 1.00 21.18 | D |
| MOTA | 3723 | CZ  | PHE   |                | 92 | 94.335  | 56.501       | 12.329 |            |   |
| ATOM | 3724 | С   | PHE   | D              | 92 | 97.303  | 60.700       | 13.030 | 1.00 22.72 | D |
| ATOM | 3725 | 0   | PHE   | D              | 92 | 97.607  | 59.921       | 13.933 | 1.00 22.31 | D |
| MOTA | 3726 | N   | SER   | D              | 93 | 96.696  | 61.859       | 13.261 | 1.00 22.45 | D |
| ATOM | 3727 | CA  | SER   |                | 93 | 96.366  | 62.262       | 14.623 | 1.00 21.69 | D |
|      |      | CB  | SER   |                | 93 | 96.599  | 63.764       | 14.799 | 1.00 20.96 | D |
| MOTA | 3728 |     |       |                |    |         |              | 14.010 | 1.00 25.08 | D |
| MOTA | 3729 | OG  | SER   |                | 93 | 95.696  | 64.508       |        |            |   |
| MOTA | 3730 | C   | SER   | D              | 93 | 94.931  | 61.913       | 14.990 | 1.00 21.02 | D |
| ATOM | 3731 | 0   | SER   | D              | 93 | 94.078  | 61.755       | 14.127 | 1.00 20.62 | D |
| MOTA | 3732 | N   | LYS   | D              | 94 | 94.676  | 61.791       | 16.283 | 1.00 20.66 | D |
| ATOM | 3733 | CA  | LYS   | D              | 94 | 93.350  | 61.453       | 16.768 | 1.00 24.11 | D |
| ATOM | 3734 | CB  | LYS   |                | 94 | 93.444  | 60.985       | 18.223 | 1.00 24.91 | D |
|      |      |     |       |                | 94 | 92.121  | 60.605       | 18.865 | 1.00 29.49 | D |
| ATOM | 3735 | CG  | LYS   |                |    |         |              |        | 1.00 32.97 | D |
| ATOM | 3736 | CD  | LYS   |                | 94 | 92.353  | 60.101       | 20.293 |            |   |
| MOTA | 3737 | CE  | LYS   | D              | 94 | 91.050  | 59.909       | 21.052 | 1.00 33.37 | D |
| MOTA | 3738 | NZ  | LYS   | D              | 94 | 90.175  | 58.897       | 20.399 | 1.00 34.08 | D |
| ATOM | 3739 | С   | LYS   | D              | 94 | 92.406  | 62.646       | 16.654 | 1.00 24.40 | D |
| ATOM | 3740 | 0   | LYS   | D              | 94 | 91.224  | 62.495       | 16.356 | 1.00 24.55 | D |
| ATOM | 3741 | N   | SER   |                | 95 | 92.935  | 63.834       | 16.894 | 1.00 25.54 | D |
|      |      |     |       |                | 95 | 92.133  | 65.040       | 16.815 | 1.00 29.22 | D |
| MOTA | 3742 | CA  | SER   |                |    |         |              | 18.208 | 1.00 30.47 | D |
| MOTA | 3743 | CB  | SER   |                | 95 | 91.932  | 65.643       |        |            |   |
| ATOM | 3744 | OG  | SER   | D              | 95 | 91.236  | 64.746       | 19.060 | 1.00 36.11 | D |
| ATOM | 3745 | C   | SER   | D              | 95 | 92.843  | 66.046       | 15.932 | 1.00 29.71 | D |
| MOTA | 3746 | 0   | SER   | D              | 95 | 93.993  | 65.834       | 15.531 | 1.00 29.68 | D |
| ATOM | 3747 | N   | PRO   | D              | 96 | 92.159  | 67.146       | 15.588 | 1.00 29.93 | D |
| ATOM | 3748 | CD  | PRO   | D              | 96 | 90.760  | 67.532       | 15.843 | 1.00 31.14 | D |
|      | 3749 | CA  | PRO   |                | 96 | 92.836  | 68.129       | 14.747 | 1.00 29.29 | D |
| ATOM |      |     |       |                |    |         | 69.097       | 14.369 | 1.00 31.65 | D |
| ATOM | 3750 | CB  | PRO   |                | 96 | 91.714  |              |        |            | D |
| MOTA | 3751 | CG  | PRO   | D              | 96 | 90.777  | 69.010       | 15.545 | 1.00 30.66 |   |
| MOTA | 3752 | C   | PRO   | D              | 96 | 93.939  | 68.765       | 15.587 | 1.00 27.35 | D |
| MOTA | 3753 | 0   | PRO   | D              | 96 | 93.818  | 68.904       | 16.806 | 1.00 24.86 | D |
| ATOM | 3754 | N   | VAL   | D              | 97 | 95.025  | 69.127       | 14.929 | 1.00 26.81 | D |
| ATOM | 3755 | CA  | VAL   |                | 97 | 96.158  | 69.706       | 15.615 | 1.00 29.25 | D |
|      |      |     |       |                | 97 | 97.438  | 69.501       | 14.783 | 1.00 31.49 | D |
| ATOM | 3756 | CB  | VAL   |                |    |         | 69.998       | 15.556 | 1.00 33.50 | D |
| MOTA | 3757 | CG1 |       |                | 97 | 98.652  |              |        |            |   |
| ATOM | 3758 | CG2 | VAL   | D              | 97 | 97.583  | 68.029       | 14.415 | 1.00 34.03 | D |
| ATOM | 3759 | C   | VAL   | D              | 97 | 96.007  | 71.196       | 15.910 | 1.00 28.80 | D |
| ATOM | 3760 | 0   | VAL   | $\mathfrak{D}$ | 97 | 95.749  | 71.998       | 15.012 | 1.00 28.78 | D |
| ATOM | 3761 | N   | THR   |                | 98 | 96.144  | 71.559       | 17.178 | 1.00 27.47 | D |
| ATOM | 3762 | CA  | THR   |                | 98 | 96.091  | 72.960       | 17.572 | 1.00 26.55 | D |
|      |      |     |       |                | 98 | 94.723  | 73.365       | 18.209 | 1.00 26.16 | D |
| ATOM | 3763 | CB  | THR   |                |    |         |              | 19.575 | 1.00 31.83 | D |
| MOTA | 3764 | OG3 |       |                | 98 | 94.684  | 72.961       |        |            |   |
| MOTA | 3765 | CG2 |       |                | 98 | 93.567  | 72.717       | 17.469 | 1.00 23.66 | D |
| MOTA | 3766 | C   | THR   | D              | 98 | 97.220  | 73.114       | 18.581 | 1.00 25.73 | D |
| MOTA | 3767 | 0   | THR   | D              | 98 | 97.260  | 72.412       | 19.591 | 1.00 27.12 | D |
| ATOM | 3768 | N   | LEU   | D              | 99 | 98.159  | 74.005       | 18.285 | 1.00 26.12 | D |
| ATOM | 3769 | CA  | LEU   |                | 99 | 99.307  | 74.236       | 19.156 | 1.00 27.47 | D |
| ~    | _ ,  |     |       |                |    |         | - <b>-</b> - |        |            |   |

| ATOM         | 3770         | CB      | LEU D     | 99             | 100.089          | 75.459           | 18.675           | 1.00 31.04               | D      |
|--------------|--------------|---------|-----------|----------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 3771         | CG      | LEU D     | 99             | 100.758          | 75.309           | 17.310           | 1.00 33.09               | D      |
| ATOM         | 3772         | CD1     | rea D     | 99             | 101.458          | 76.607           | 16.940           | 1.00 36.20               | D      |
| ATOM         | 3773         | CD2     | LEU D     | 99             | 101.754          | 74.165           | 17.361           | 1.00 35.56               | D      |
| ATOM         | 3774         | C       | LEU D     | 99             | 98.935           | 74.416           | 20.621           | 1.00 26.08               | D      |
| ATOM         | 3775         | 0       | LEU D     | 99             | 98.077           | 75.222           | 20.946           | 1.00 25.97               | D      |
| ATOM         | 3776         | N       | GLY D     | 100            | 99.585           | 73.654           | 21.500           | 1.00 26.97               | D<br>D |
| ATOM         | 3777         | CA      | GLY D     | 100            | 99.310           | 73.749           | 22.924           | 1.00 26.03<br>1.00 26.02 | D<br>D |
| ATOM         | 3778         | C       | GLY D     | 100            | 98.233           | 72.798<br>72.662 | 23.422<br>24.629 | 1.00 26.02<br>1.00 25.51 | D      |
| ATOM         | 3779         | O       | GLY D     | 100<br>101     | 98.020<br>97.553 | 72.062           | 22.491           | 1.00 25.73               | D      |
| ATOM         | 3780<br>3781 | N<br>CA | GLN D     | 101            | 96.490           | 71.199           | 22.820           | 1.00 28.13               | D      |
| ATOM<br>ATOM | 3782         | CB      |           | 101            | 95.372           | 71.297           | 21.776           | 1.00 32.24               | D      |
| ATOM         | 3783         | CG      | GLN D     | 101            | 94.617           | 69.981           | 21.560           | 1.00 38.65               | D      |
| ATOM         | 3784         | CD      | GLN D     | 101            | 94.680           | 69.459           | 20.115           | 1.00 41.08               | D      |
| ATOM         | 3785         | OE1     | GLN D     | 101            | 95.760           | 69.348           | 19.511           | 1.00 38.18               | D      |
| ATOM         | 3786         | NE2     | GLN D     | 101            | 93.515           | 69.119           | 19.566           | 1.00 40.87               | D      |
| ATOM         | 3787         | C       | GLN D     | 101            | 96.994           | 69.756           | 22.861           | 1.00 25.22               | D      |
| ATOM         | 3788         | 0       | GLN D     | 101            | 97.477           | 69.245           | 21.857           | 1.00 24.55               | D      |
| ATOM         | 3789         | N       | PRO D     | 102            | 96.885           | 69.078           | 24.019           | 1.00 24.18               | D      |
| ATOM         | 3790         | CD      | PRO D     |                | 96.436           | 69.544           | 25.343           | 1.00 22.22               | D      |
| MOTA         | 3791         | CA      | PRO D     |                | 97.359           | 67.683           | 24.080           | 1.00 22.76               | D      |
| ATOM         | 3792         | CB      | PRO D     | 102            | 96.983           | 67.253           | 25.494           | 1.00 22.02               | D<br>D |
| MOTA         | 3793         | CG      | PRO D     |                | 97.088           | 68.542           | 26.274<br>23.015 | 1.00 22.44<br>1.00 21.72 | D      |
| ATOM         | 3794         | C       | PRO D     |                | 96.649           | 66.845<br>66.922 | 23.015           | 1.00 21.72               | D      |
| ATOM         | 3795         | 0       | PRO D     | 102<br>103     | 95.429<br>97.409 | 66.055           | 22.264           | 1.00 19.84               | D      |
| ATOM         | 3796<br>3797 | N<br>CA | ASN D     |                | 96.833           | 65.225           | 21.209           | 1.00 17.89               | D      |
| ATOM<br>ATOM | 3798         | CB      |           | 103            | 97.112           | 65.856           | 19.838           | 1.00 16.30               | D      |
| ATOM         | 3799         | CG      | ASN D     |                | 96.005           | 65.587           | 18.824           | 1.00 16.50               | D      |
| ATOM         | 3800         | OD1     |           | 103            | 95.552           | 64.446           | 18.636           | 1.00 16.80               | D      |
| ATOM         | 3801         | ND2     |           |                | 95.569           | 66.643           | 18.160           | 1.00 14.61               | D      |
| ATOM         | 3802         | C       |           | 103            | 97.410           | 63.805           | 21.248           | 1.00 17.24               | D      |
| ATOM         | 3803         | 0       | ASN D     | 103            | 98.199           | 63.473           | 22.129           | 1.00 15.74               | D      |
| ATOM         | 3804         | N       | ILE D     | 104            | 97.010           | 62.977           | 20.284           | 1.00 17.39               | D      |
| ATOM         | 3805         | CA      | ILE D     | 104            | 97.465           | 61.595           | 20.198           | 1.00 15.30               | D      |
| MOTA         | 3806         | CB      | ILE D     | 104            | 96.402           | 60.627           | 20.755           | 1.00 17.89               | D      |
| MOTA         | 3807         | CG2     | ILE D     |                | 96.818           | 59.175           | 20.498           | 1.00 13.27               | D      |
| ATOM         | 3808         | CG1     |           |                | 96.202           | 60.886           | 22.253           | 1.00 18.46               | D      |
| ATOM         | 3809         | CD1     |           |                | 95.179           | 59.965           | 22.895           | 1.00 17.98<br>1.00 17.15 | Ð<br>D |
| ATOM         | 3810         | C       | ILE D     |                | 97.760           | 61.185<br>61.283 | 18.763<br>17.902 | 1.00 17.15               | D      |
| MOTA         | 3811         | O       | LEU D     |                | 96.887<br>98.987 | 60.727           | 18.509           | 1.00 16.66               | D      |
| ATOM         | 3812<br>3813 | N<br>CA | LEU D     |                | 99.370           | 60.272           | 17.177           | 1.00 16.59               | D      |
| ATOM<br>ATOM | 3814         | CB      | LEU D     |                | 100.864          | 60.482           | 16.895           | 1.00 17.56               | D      |
| ATOM         | 3815         | CG      | LEU D     |                | 101.375          | 61.926           | 16.842           | 1.00 21.66               | D      |
| ATOM         | 3816         | CD1     |           |                | 102.811          | 61.943           | 16.302           | 1.00 21.26               | D      |
| ATOM         | 3817         | CD2     |           | 105            | 100.460          | 62.771           | 15.951           | 1.00 21.56               | D      |
| ATOM         | 3818         | С       | LEU D     | 105            | 99.061           | 58.804           | 17.128           | 1.00 17.13               | D      |
| MOTA         | 3819         | 0       | LEU D     | 105            | 99.368           | 58.056           | 18.056           | 1.00 18.35               | D      |
| ATOM         | 3820         | N       | ILE D     | 106            | 98.432           | 58.399           | 16.039           | 1.00 17.88               | D      |
| ATOM         | 3821         | CA      | ILE D     | 106            | 98.045           | 57.016           | 15.839           | 1.00 17.14               | D      |
| ATOM         | 3822         | CB      | ILE D     |                | 96.525           | 56.939           | 15.492           | 1.00 16.99               | D<br>D |
| ATOM         | 3823         | CG2     |           |                | 96.093           | 55.496<br>57.619 | 15.318<br>16.604 | 1.00 15.63<br>1.00 19.04 | D      |
| ATOM         | 3824         | CG1     |           |                | 95.711<br>94.238 | 57.877           | 16.260           | 1.00 15.04               | D      |
| ATOM         | 3825         | CD1     | ILE D     |                | 98.876           | 56.431           | 14.700           | 1.00 17.19               | D      |
| MOTA<br>MOTA | 3826<br>3827 | 0       | ILE D     |                | 98.941           | 57.004           | 13.618           | 1.00 16.06               | D      |
| ATOM         | 3828         | N       | CYS D     |                | 99.540           | 55.312           | 14.966           | 1.00 18.84               | D      |
| ATOM         | 3829         | CA      | CYS I     |                | 100.339          | 54.637           | 13.954           | 1.00 19.74               | D      |
| ATOM         | 3830         | C       | CYS I     |                | 99.634           | 53.323           | 13.670           | 1.00 20.17               | D      |
| MOTA         | 3831         | 0       | CYS I     |                | 99.632           | 52.421           | 14.507           | 1.00 20.08               | D      |
| ATOM         | 3832         | CB      | CYS I     | 107            | 101.755          | 54.349           | 14.453           | 1.00 22.00               | D      |
| ATOM         | 3833         | SG      | CYS I     | 107            | 102.800          | 53.514           | 13.211           | 1.00 28.61               | D      |
| MOTA         | 3834         | N       | LEU I     | 108            | 99.027           | 53.221           | 12.493           | 1.00 19.48               | D      |
| ATOM         | 3835         | CA      | LEU I     | 108            | 98.313           | 52.015           | 12.113           | 1.00 19.67               | D      |
| MOTA         | 3836         | CB      | LEU I     |                | 97.024           | 52.391           | 11.369           | 1.00 19.98               | D      |
| MOTA         | 3837         | CG      | LEU I     |                | 95.977           | 51.358           | 10.925           | 1.00 20.40               | D      |
| ATOM         | 3838         | CD:     |           |                | 95.883           | 51.366           | 9.412            | 1.00 20.15               | D<br>D |
| MOTA         | 3839         | CD:     |           |                | 96.301           | 49.971           | 11.454           | 1.00 19.44<br>1.00 19.84 | D<br>D |
| MOTA         | 3840         | C       | LEU I     |                | 99.207<br>99.657 | 51.145<br>51.563 | 11.237<br>10.170 | 1.00 19.84               | D      |
| MOTA         | 3841         | O<br>M  | LEU I     |                | 99.657           | 49.940           | 11.721           | 1.00 20.11               | D      |
| MOTA<br>MOTA | 3842<br>3843 | N<br>CA | VAL I     |                | 100.289          | 48.972           | 11.016           | 1.00 19.64               | D      |
| WT OIL       | 2042         | CM      | A 42771 T | الت الماسات ال | 2001202          |                  |                  |                          |        |

| MOTA | 3844 | CB   | VAL   | D              | 109 | 10 | 1.368   | 4  | 8.402            | 13  | L.958  | 1.0 | 00  | 19.40 | D   |   |
|------|------|------|-------|----------------|-----|----|---------|----|------------------|-----|--------|-----|-----|-------|-----|---|
| ATOM | 3845 | CGl  | VAL   | D              | 109 | 10 | 2.290   | 4  | 7.474            | 13  | 1.202  | 1.0 | 00  | 18.01 | D   |   |
| ATOM | 3846 | CG2  | VAL   | D              | 109 | 10 | 2.155   | 4  | 9.560            | 12  | 2.590  | 1.0 | 00  | 17.30 | D   |   |
| ATOM | 3847 | C    | VAL   | D              | 109 | 9  | 99.321  | 4  | 7.876            | 10  | 0.568  | 1.0 | 00  | 21.45 | D   |   |
| ATOM | 3848 | 0    | VAL   |                |     |    | 8.845   | 4  | 7.079            | 13  | 1.382  | 1.0 | 00  | 22.65 | D   |   |
| ATOM | 3849 | N    |       |                | 110 |    | 99.022  |    | 7.861            |     | 9.274  | 1.0 | 00  | 22.00 | D   |   |
| ATOM | 3850 | CA   | ASP   |                |     |    | 98.086  |    | 6.901            |     | 3.689  |     |     | 23.80 | D   |   |
|      |      | CB   |       |                | 110 |    | 97.156  |    | 7.648            |     | 7.728  |     |     | 24.68 | D   |   |
| ATOM | 3851 |      |       |                |     |    |         |    |                  |     | 7.603  |     |     | 26.64 | D   |   |
| ATOM | 3852 | CG   | ASP   |                |     |    | 95.790  |    | 17.002           |     |        |     |     |       |     |   |
| MOTA | 3853 | OD1  | ASP   |                |     |    | 95.582  |    | 15.915           |     | 3.177  |     |     | 28.80 | D   |   |
| ATOM | 3854 | OD2  | ASP   |                |     |    | 94.920  |    | 17.591           |     | 5.926  |     |     | 27.99 | D   |   |
| ATOM | 3855 | C    | ASP   | D              | 110 |    | 98.802  |    | 15.756           |     | 7.944  |     |     | 23.77 | D   |   |
| ATOM | 3856 | 0    | ASP   | D              | 110 | 10 | 00.005  | 4  | 15.831           |     | 7.684  |     |     | 22.82 | D   |   |
| ATOM | 3857 | N    | ASN   | D              | 111 | 2  | 98.044  | 4  | 4.711            | ,   | 7.604  | 1.0 | 00  | 23.55 | D   |   |
| MOTA | 3858 | CA   | ASN   | D              | 111 | 9  | 98.548  | 4  | 13.530           | 6   | 5.889  | 1.0 | 00  | 23.79 | D   |   |
| ATOM | 3859 | CB   | ASN   | D              | 111 | 9  | 98.880  | 4  | 13.867           | Ĭ   | 5.425  | 1.  | 00  | 25.36 | D   |   |
| ATOM | 3860 | CG   | ASN   | D              | 111 | 9  | 99.079  | 4  | 12.610           | 4   | 4.562  | 1.0 | 00  | 29.95 | D   |   |
| ATOM | 3861 | OD1  | ASN   | D              | 111 | 9  | 99.981  | 4  | 12.547           |     | 3.724  | 1.0 | 00  | 29.58 | D   |   |
| ATOM | 3862 | ND2  |       |                | 111 | g  | 98.220  | 4  | 1.611            | 4   | 4.761  | 1.0 | 00  | 30.51 | D   |   |
| ATOM | 3863 | C    | ASN   |                |     |    | 99.786  |    | 12.941           |     | 7.556  |     |     | 22.70 | D   |   |
|      |      | 0    | ASN   |                |     |    | 00.834  |    | 12.784           |     | 6.929  |     |     | 22.97 | D   |   |
| MOTA | 3864 |      |       |                |     |    |         |    | 12.612           |     | 8.835  |     |     | 22.14 | D   |   |
| ATOM | 3865 | N    | ILE   |                | 112 |    | 99.656  |    |                  |     |        |     |     |       | D   |   |
| ATOM | 3866 | CA   | ILE   |                | 112 |    | 00.754  |    | 12.038           |     | 9.598  |     |     | 20.20 |     |   |
| MOTA | 3867 | CB   |       |                | 112 |    | 00.746  |    | 12.536           |     | 1.055  |     |     | 18.82 | D   |   |
| ATOM | 3868 | CG2  | ILE   | D              | 112 | 10 | 01.926  |    | 1.950            |     | 1.808  |     |     | 15.77 | D   |   |
| ATOM | 3869 | CG1  | ILE   | D              | 112 | 10 | 00.770  | 4  | 14.058           | 1:  | 1.103  |     |     | 19.09 | D   |   |
| ATOM | 3870 | CD1  | ILE   | D              | 112 | 10 | 00.630  | 4  | 14.602           | 1:  | 2.514  | 1.  | 00  | 21.18 | D   |   |
| MOTA | 3871 | С    | ILE   | D              | 112 | 10 | 00.666  | 4  | 10.512           |     | 9.659  | 1.  | 00  | 21.41 | D   |   |
| ATOM | 3872 | 0    | ILE   | D              | 112 | 9  | 99.626  | 3  | 39.960           | 1   | 0.002  | 1.  | 00  | 22.04 | D   |   |
| ATOM | 3873 | N    | PHE   | D              | 113 | 10 | 01.765  | 3  | 39.838           |     | 9.338  | 1.  | 00  | 21.35 | ם   |   |
| ATOM | 3874 | CA   | PHE   |                |     | 10 | 01.818  | 3  | 38.386           | (   | 9.409  | 1.  | 00  | 19.93 | D   |   |
| ATOM | 3875 | CB   |       |                | 113 |    | 00.822  |    | 37.726           |     | 8.462  | 1.  | 00  | 21.28 | D   |   |
|      | 3876 | CG   |       |                | 113 |    | 00.537  |    | 36.306           |     | 8.825  |     |     | 20.91 | D   |   |
| ATOM |      |      | PHE   |                |     |    | 99.630  |    | 36.012           |     | 9.838  |     |     | 19.85 | D   |   |
| ATOM | 3877 | CD1  |       |                |     |    |         |    |                  |     | 8.230  |     |     | 22.61 | D   |   |
| MOTA | 3878 | CD2  |       |                | 113 |    | 01.244  |    | 35.261           |     |        |     |     |       | D   |   |
| ATOM | 3879 | CE1  |       |                | 113 |    | 99.430  |    | 34.698           |     | 0.264  |     |     | 20.63 |     |   |
| ATOM | 3880 | CE2  |       |                | 113 |    | 01.054  |    | 33.942           |     | 8.646  | 1.  |     | 21.21 | D   |   |
| ATOM | 3881 | CZ   | PHE   | D              | 113 |    | 00.144  |    | 33.660           |     | 9.669  |     |     | 20.87 | D   |   |
| MOTA | 3882 | C    | PHE   | D              | 113 | 10 | 03.201  | 3  | 37.871           |     | 9.071  |     |     | 19.98 | D   |   |
| ATOM | 3883 | 0    | PHE   | D              | 113 | 1  | 03.762  | 3  | 38.238           |     | 8.044  | 1.  | 00  | 20.80 | D   |   |
| ATOM | 3884 | N    | PRO   | D              | 114 | 1  | 03.765  |    | 37.005           |     | 9.925  | 1.  | 00  | 21.26 | D   |   |
| ATOM | 3885 | CD.  | PRO   | D              | 114 | 1  | 05.101  | :  | 36.414           |     | 9.732  | 1.  | 00  | 21.94 | D   |   |
| ATOM | 3886 | CA   | PRO   | D              | 114 | 1  | 03.150  |    | 36.518           | 1   | 1.166  | 1.  | 00  | 21.41 | D   |   |
| ATOM | 3887 | CB   | PRO   | D              | 114 | 1  | 04.117  | :  | 35.424           | 1   | 1.625  | 1.  | 00  | 21.03 | D   |   |
| ATOM | 3888 | CG   | PRO   | D              | 114 | 1  | 05.441  | •  | 35.912           | 1   | 1.115  | 1.  | 00  | 22.98 | D   |   |
| ATOM | 3889 | C    |       |                | 114 | 1  | 03.002  |    | 37.648           | 1   | 2.185  | 1.  | 00  | 21.84 | D   |   |
| ATOM | 3890 | Ō    |       |                | 114 |    | 03.621  |    | 38.711           |     | 2.034  | 1.  | 00  | 20.41 | D   |   |
| MOTA | 3891 | N    |       |                | 115 |    | 02.167  |    | 37.441           |     | 3.222  |     |     | 22.52 | D   |   |
|      |      | CD   |       |                | 115 |    | 01.314  |    | 36.256           |     | 3.445  |     |     | 22.08 | D   |   |
| ATOM | 3892 |      |       |                |     |    | 01.937  |    | 38.448           |     | 4.266  |     |     | 21.19 | D   |   |
| ATOM | 3893 | CA   |       |                | 115 |    |         |    |                  |     | 5.025  |     |     | 20.92 | D   |   |
| ATOM | 3894 | CB   |       |                | 115 |    | 00.730  |    | 37.895           |     |        |     |     |       | D   |   |
| ATOM | 3895 | CG   |       |                | 115 |    | 00.917  |    | 36.410           |     | 4.902  |     |     | 19.88 |     |   |
| MOTA | 3896 | C    |       |                | 115 |    | 03.139  |    | 38.683           |     | 5.171  |     |     | 21.62 | D   |   |
| ATOM | 3897 | 0    | PRO   | D              | 115 |    | 03.127  |    | 38.336           |     | 6.356  |     |     | 22.92 | D   |   |
| MOTA | 3898 | N    | VAL   | D              | 116 | 1  | 04.179  |    | 39.263           |     | 4.588  |     |     | 21.58 | D   |   |
| ATOM | 3899 | CA   | VAL   | D              | 116 | 1  | 05.405  |    | 39.598           | 1   | 5.300  | 1.  | 00  | 22.53 | D   |   |
| MOTA | 3900 | CB   | VAL   | $\mathfrak{D}$ | 116 | 1  | 06.520  |    | 38.554           | 1   | 5.067  | 1.  | 00  | 24.90 | D   |   |
| MOTA | 3901 | CG1  | VAL   | D              | 116 | 1  | 07.817  | ,  | 39.035           | 1   | 5.713  | 1.  | 00  | 24.06 | D   | t |
| ATOM | 3902 | CG2  | VAL   | D              | 116 | 1  | 06.104  |    | 37.195           | 1   | 5.641  | 1.  | 00  | 24.88 | D   | ı |
| ATOM | 3903 | C    |       |                | 116 | 1  | .05.855 |    | 40.929           | 1   | 4.708  | 1.  | 00  | 21.86 | . D | , |
| ATOM | 3904 | 0    |       |                | 116 | 1  | 06.114  |    | 41.027           | 1   | 3.509  | 1.  | 00  | 20.87 | D   | ) |
| ATOM | 3905 | N    |       |                | 117 | 1  | 05.935  | ,  | 41.962           | 1   | 5.534  | 1.  | 00  | 20.65 | D   | ) |
|      |      |      |       |                | 117 |    | .06.338 |    | 43.255           |     | 5.007  |     | 00  |       | D   | , |
| MOTA | 3906 | CA   |       |                | 117 |    | .05.126 |    | 43.233<br>43.978 |     | 4.345  |     |     | 18.11 | D   |   |
| ATOM | 3907 | CB   |       |                |     |    | .04.156 |    | 44.473           |     | .5.403 |     | 00  |       | D   |   |
| ATOM | 3908 | CG1  |       |                |     |    |         |    |                  |     |        |     | 00  |       | D   |   |
| ATOM | 3909 | CG2  |       |                | 117 |    | .05.599 |    | 45.101           |     | .3.469 |     |     |       | D   |   |
| ATOM | 3910 | C    |       |                | 117 |    | .06.928 |    | 44.137           |     | .6.092 |     |     | 23.84 |     |   |
| MOTA | 3911 | 0    |       |                | 117 |    | .06.677 |    | 43.936           |     | .7.280 |     |     | 24.78 | D   |   |
| ATOM | 3912 | N    |       |                | 118 |    | .07.719 |    | 45.113           |     | .5.670 |     |     | 27.93 | D   |   |
| MOTA | 3913 | CA   | ASN   | D              | 118 |    | .08.348 |    | 46.051           |     | .6.593 |     |     | 30.45 | D   |   |
| ATOM | 3914 | CB   | ASN   | D              | 118 |    | .09.866 |    | 45.898           | 3 1 | 6.538  |     |     | 33.93 | D   |   |
| ATOM | 3915 | CG   | ASN   | D              | 118 | 1  | 10.564  | Į. | 46.644           | . 1 | 7.650  |     |     | 39.88 | D   |   |
| ATOM | 3916 | OD I | L ASN | D              | 118 | 1  | .10.327 | 7  | 47.834           | . 1 | 7.856  | 1.  | .00 | 42.45 |     |   |
| MOTA | 3917 | ND2  | asn   | D              | 118 | 3  | 11.438  | 3  | 45.946           | ; 1 | L8.375 | 1.  | .00 | 43.14 | D   | ) |
|      |      |      |       |                |     |    |         |    |                  |     |        |     |     |       |     |   |

| ATOM         | 3918         | C         | ASN D   | 118        | 107.960            | 47.465           | 16.181           | 1.00 27.72               | D      |
|--------------|--------------|-----------|---------|------------|--------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 3919         | 0         |         |            | 108.398            | 47.952           | 15.140           | 1.00 26.88               | D<br>D |
| ATOM         | 3920         | N         |         | 119        | 107.126<br>106.680 | 48.113<br>49.476 | 16.988<br>16.700 | 1.00 27.59<br>1.00 27.12 | D      |
| ATOM<br>ATOM | 3921<br>3922 | CA<br>CB  | ILE D   | 119<br>119 | 105.133            | 49.580           | 16.719           | 1.00 27.12               | D      |
| ATOM         | 3923         | CG2       | ILE D   | 119        | 104.698            | 50.994           | 16.346           | 1.00 26.16               | D      |
| ATOM         | 3924         | CG1       | ILE D   | 119        | 104.528            | 48.572           | 15.741           | 1.00 24.63               | D      |
| ATOM         | 3925         | CD1       | ILE D   | 119        | 103.026            | 48.423           | 15.877           | 1.00 24.19               | D      |
| ATOM         | 3926         | C         | ILE D   | 119        | 107.243            | 50.436           | 17.746           | 1.00 27.72               | D      |
| MOTA         | 3927         | 0         | ILE D   | 119        | 107.050            | 50.248           | 18.946           | 1.00 26.86               | D      |
| ATOM         | 3928         | N         | THR D   | 120        | 107.951            | 51.460<br>52.423 | 17.291<br>18.214 | 1.00 27.54<br>1.00 29.37 | D<br>D |
| ATOM         | 3929         | CA<br>CB  | THR D   | 120<br>120 | 108.524<br>110.022 | 52.423           | 18.477           | 1.00 25.37               | D      |
| ATOM<br>ATOM | 3930<br>3931 | OG1       |         |            | 110.722            | 52.034           | 17.229           | 1.00 35.14               | D      |
| ATOM         | 3932         | CG2       |         | 120        | 110.176            | 50.817           | 19.247           | 1.00 35.67               | D      |
| MOTA         | 3933         | C         | THR D   | 120        | 108.369            | 53.826           | 17.668           | 1.00 27.95               | D      |
| ATOM         | 3934         | 0         | THR D   | 120        | 108.398            | 54.035           | 16.459           | 1.00 29.89               | D      |
| MOTA         | 3935         | N         | TRP D   |            | 108.187            | 54.789           | 18.560           | 1.00 26.28               | D      |
| MOTA         | 3936         | CA        | TRP D   |            | 108.031            | 56.171           | 18.135<br>18.940 | 1.00 26.93<br>1.00 24.20 | D<br>D |
| ATOM         | 3937         | CB        | TRP D   |            | 106.935<br>105.568 | 56.866<br>56.343 | 18.687           | 1.00 24.20               | D      |
| ATOM<br>ATOM | 3938<br>3939 | CG<br>CD2 |         |            | 104.643            | 56.826           | 17.707           | 1.00 20.30               | D      |
| ATOM         | 3940         | CE2       |         |            | 103.454            | 56.085           | 17.856           | 1.00 20.70               | D      |
| ATOM         | 3941         | CE3       |         |            | 104.705            | 57.817           | 16.717           | 1.00 17.15               | D      |
| MOTA         | 3942         | CD1       | TRP D   | 121        | 104.929            | 55.351           | 19.365           | 1.00 21.06               | D      |
| ATOM         | 3943         | NE1       | TRP D   | 121        | 103.655            | 55.190           | 18.875           | 1.00 22.39               | D      |
| MOTA         | 3944         | CZ2       |         |            | 102.332            | 56.305           | 17.057           | 1.00 17.25               | D<br>D |
| ATOM         | 3945         | CZ3       |         |            | 103.593            | 58.036<br>57.282 | 15.924<br>16.099 | 1.00 17.92<br>1.00 19.11 | D      |
| ATOM         | 3946         | CH2<br>C  | TRP D   |            | 102.419<br>109.319 | 56.957           | 18.284           | 1.00 26.88               | D      |
| ATOM<br>ATOM | 3947<br>3948 | 0         | TRP D   |            | 110.059            | 56.789           | 19.251           | 1.00 27.48               | D      |
| ATOM         | 3949         | N         | LEU D   |            | 109.572            | 57.830           | 17.321           | 1.00 29.82               | D      |
| ATOM         | 3950         | CA        | LEU D   | 122        | 110.764            | 58.658           | 17.343           | 1.00 31.91               | D      |
| ATOM         | 3951         | CB        | LEU D   | 122        | 111.664            | 58.331           | 16.144           | 1.00 34.65               | D      |
| ATOM         | 3952         | CG        | LEU D   |            | 112.391            | 56.977           | 16.112           | 1.00 37.28               | D      |
| ATOM         | 3953         | CD1       |         |            | 113.247            | 56.828<br>55.840 | 17.360<br>16.025 | 1.00 37.11<br>1.00 39.41 | D<br>D |
| MOTA         | 3954<br>3955 | CD2<br>C  | LEU D   |            | 111.394<br>110.416 | 60.142           | 17.324           | 1.00 33.11               | D      |
| ATOM<br>ATOM | 3956         | 0         | LEU D   |            | 109.619            | 60.593           | 16.503           | 1.00 31.46               | D      |
| ATOM         | 3957         | N         | SER D   |            | 111.010            | 60.889           | 18.250           | 1.00 31.03               | D      |
| ATOM         | 3958         | CA        | SER D   | 123        | 110.813            | 62.331           | 18.326           | 1.00 33.04               | D      |
| MOTA         | 3959         | CB        | SER D   | 123        | 110.312            | 62.745           | 19.712           | 1.00 32.42               | D      |
| MOTA         | 3960         | OG        | SER D   |            | 110.169            | 64.154           | 19.793<br>18.062 | 1.00 32.43<br>1.00 33.10 | D<br>D |
| ATOM         | 3961         | C         | SER D   |            | 112.184<br>113.108 | 62.948<br>62.784 | 18.860           | 1.00 33.10               | D      |
| ATOM<br>ATOM | 3962<br>3963 | N         |         | 124        | 112.309            | 63.646           | 16.941           | 1.00 33.51               | D      |
| ATOM         | 3964         | CA        | ASN D   |            | 113.575            | 64.258           | 16.553           | 1.00 36.20               | D      |
| ATOM         | 3965         | CB        | ASN D   | 124        | 113.963            | 65.392           | 17.510           | 1.00 34.61               | D      |
| ATOM         | 3966         | CG        | ASN D   |            | 112.946            | 66.512           | 17.531           | 1.00 34.17               | D      |
| ATOM         | 3967         |           | L ASN I |            | 112.262            | 66.764           | 16.539           | 1.00 34.73<br>1.00 35.34 | D<br>D |
| MOTA         | 3968         |           | 2 ASN D |            | 112.850<br>114.664 | 67.202<br>63.191 | 18.660<br>16.561 | 1.00 35.34               | D      |
| ATOM<br>ATOM | 3969<br>3970 | C<br>O    | ASN I   |            | 115.747            | 63.401           | 17.104           | 1.00 37.93               | D      |
| ATOM         | 3971         | Ŋ         | GLY I   |            | 114.358            | 62.039           | 15.970           | 1.00 38.73               | D      |
| ATOM         | 3972         | CA        | GLY I   |            | 115.317            | 60.951           | 15.910           | 1.00 39.56               | D      |
| MOTA         | 3973         | C         | GLY I   | 125        | 115.457            | 60.131           | 17.183           | 1.00 40.55               | D      |
| ATOM         | 3974         | 0         | GLY I   |            | 116.051            | 59.054           | 17.157           | 1.00 42.52               | Ð      |
| MOTA         | 3975         | N         | HIS I   |            | 114.911            | 60.622           | 18.291           | 1.00 40.35<br>1.00 41.15 | D<br>D |
| ATOM         | 3976         | CA        | HIS I   |            | 115.009<br>115.234 | 59.918<br>60.923 | 19.569<br>20.702 | 1.00 43.51               | , D    |
| ATOM<br>ATOM | 3977<br>3978 | CB<br>CG  | HIS I   |            | 116.525            | 61.678           | 20.702           | 1.00 47.67               | D      |
| ATOM         | 3979         |           | HIS I   |            | 116.775            | 62.997           | 20.422           | 1.00 47.36               | D      |
| MOTA         | 3980         |           | l HIS I |            | 117.757            | 61.064           | 20.694           | 1.00 49.39               | D      |
| ATOM         | 3981         |           | 1 HIS I |            | 118.709            | 61.973           | 20.581           | 1.00 48.59               | D      |
| MOTA         | 3982         |           | 2 HIS I |            | 118.140            | 63.154           | 20.415           | 1.00 48.17               | D      |
| ATOM         | 3983         | C         |         | 126        | 113.794            |                  | 19.907           | 1.00 40.38<br>1.00 39.87 | D<br>D |
| ATOM         | 3984         | 0         | HIS I   |            | 112.648<br>114.056 | 59.458<br>57.863 | 19.706<br>20.438 | 1.00 39.87               | D      |
| ATOM<br>ATOM | 3985         | N<br>CV   | SER I   |            | 112.995            | 56.939           | 20.436           | 1.00 39.54               | D      |
| ATOM<br>ATOM | 3986<br>3987 | CA<br>CB  | SER I   |            | 113.592            |                  | 21.232           | 1.00 40.04               | D      |
| MOTA         | 3988         | OG        | SER I   |            | 114.299            |                  | 20.159           | 1.00 45.08               | D      |
| ATOM         | 3989         | C         | SER I   |            | 112.167            |                  | 21.979           | 1.00 38.18               | D      |
| MOTA         | 3990         | 0         | SER I   |            | 112.707            |                  | 22.930           |                          | D<br>D |
| MOTA         | 3991         | N         | VAL I   | D 128      | 110.854            | 57.326           | 21.894           | 1.00 36.40               | ע      |
|              |              |           |         |            |                    | _                | 777              |                          |        |

| ATOM         | 3992         | CA         | VAL D 128                | 109.967            | 57.800           | 22.942           | 1.00 35.00               | D      |
|--------------|--------------|------------|--------------------------|--------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 3993         | CB         | VAL D 128                | 108.699<br>107.834 | 58.444<br>59.001 | 22.358<br>23.479 | 1.00 33.68<br>1.00 32.31 | D<br>D |
| MOTA<br>MOTA | 3994<br>3995 | CG1<br>CG2 | VAL D 128<br>VAL D 128   | 107.834            | 59.543           | 21.383           | 1.00 32.51               | D      |
| MOTA         | 3996         | C          | VAL D 128                | 109.574            | 56.608           | 23.790           | 1.00 34.62               | D      |
| ATOM         | 3997         | 0          | VAL D 128                | 109.150            | 55.584           | 23.268           | 1.00 35.98               | D      |
| ATOM         | 3998         | N          | THR D 129                | 109.715            | 56.743           | 25.100           | 1.00 35.57               | D      |
| ATOM         | 3999         | CA         | THR D 129                | 109.393            | 55.653           | 26.007           | 1.00 38.21<br>1.00 40.63 | D<br>D |
| ATOM         | 4000         | CB         | THR D 129<br>THR D 129   | 110.562<br>110.184 | 55.410<br>54.413 | 26.992<br>27.949 | 1.00 44.78               | D      |
| ATOM<br>ATOM | 4001<br>4002 | OG1<br>CG2 | THR D 129                | 110.929            | 56.700           | 27.715           | 1.00 42.66               | D      |
| ATOM         | 4003         | Ç          | THR D 129                | 108.103            | 55.862           | 26.799           | 1.00 36.54               | D      |
| ATOM         | 4004         | 0          | THR D 129                | 107.359            | 54.911           | 27.042           | 1.00 38.87               | D      |
| ATOM         | 4005         | N          | GLU D 130                | 107.833            | 57.101           | 27.195           | 1.00 33.00<br>1.00 31.03 | D ·    |
| ATOM         | 4006         | CA<br>CB   | GLU D 130<br>GLU D 130   | 106.631<br>106.935 | 57.401<br>58.453 | 27.963<br>29.039 | 1.00 31.03               | D      |
| ATOM<br>ATOM | 4007<br>4008 | CG         | GLU D 130                | 108.067            | 58.089           | 29.987           | 1.00 38.08               | D      |
| ATOM         | 4009         | CD         | GLU D 130                | 107.809            | 56.788           | 30.731           | 1.00 43.43               | D      |
| MOTA         | 4010         | OE1        | GLU D 130                | 106.744            | 56.672           | 31.375           | 1.00 45.61               | D      |
| MOTA         | 4011         | OE2        | GLU D 130                | 108.671            | 55.879           | 30.675           | 1.00 45.67               | D<br>D |
| ATOM         | 4012         | C          | GLU D 130                | 105.521<br>105.795 | 57.922<br>58.527 | 27.058<br>26.029 | 1.00 27.87<br>1.00 24.56 | D      |
| MOTA<br>MOTA | 4013<br>4014 | N          | GLU D 130<br>GLY D 131   | 104.272            | 57.692           | 27.457           | 1.00 26.29               | D      |
| ATOM         | 4015         | CA         | GLY D 131                | 103.140            | 58.166           | 26.679           | 1.00 25.19               | D      |
| ATOM         | 4016         | C          | GLY D 131                | 102.826            | 57.304           | 25.474           | 1.00 24.46               | D      |
| MOTA         | 4017         | 0          | GLY D 131                | 102.130            | 57.725           | 24.559           | 1.00 23.65               | D      |
| ATOM         | 4018         | N          | VAL D 132                | 103.349            | 56.089           | 25.476<br>24.379 | 1.00 22.83<br>1.00 23.04 | D<br>D |
| ATOM         | 4019         | CA         | VAL D 132<br>VAL D 132   | 103.117<br>104.448 | 55.169<br>54.674 | 23.784           | 1.00 23.04               | D      |
| ATOM<br>ATOM | 4020<br>4021 | CB<br>CG1  |                          | 104.182            | 53.538           | 22.821           | 1.00 24.12               | D      |
| ATOM         | 4022         | CG2        |                          | 105.164            | 55.816           | 23.076           | 1.00 22.85               | D      |
| ATOM         | 4023         | C          | VAL D 132                | 102.326            | 53.943           | 24.829           | 1.00 21.91               | D      |
| MOTA         | 4024         | 0          | VAL D 132                | 102.535            | 53.416           | 25.917           | 1.00 21.27<br>1.00 22.08 | D<br>D |
| MOTA         | 4025         | N          | SER D 133                | 101.412<br>100.622 | 53.499<br>52.307 | 23.979<br>24.251 | 1.00 22.08               | D      |
| ATOM<br>ATOM | 4026<br>4027 | CA<br>CB   | SER D 133<br>SER D 133   | 99.405             | 52.637           | 25.119           | 1.00 21.95               | D      |
| ATOM         | 4028         | OG         | SER D 133                | 98.567             | 53.595           | 24.498           | 1.00 27.01               | D      |
| ATOM         | 4029         | C          | SER D 133                | 100.178            | 51.738           | 22.908           | 1.00 21.27               | D      |
| MOTA         | 4030         | 0          | SER D 133                | 100.344            | 52.369           | 21.864           | 1.00 19.82               | D<br>D |
| ATOM         | 4031         | N          | GLU D 134                | 99.627<br>99.182   | 50.538<br>49.938 | 22.926<br>21.689 | 1.00 20.29<br>1.00 24.12 | D      |
| ATOM<br>ATOM | 4032<br>4033 | CA<br>CB   | GLU D 134<br>GLU D 134   | 100.370            | 49.323           | 20.932           | 1.00 26.01               | D      |
| ATOM         | 4034         | CG         | GLU D 134                | 100.932            | 48.045           | 21.532           | 1.00 30.80               | D      |
| MOTA         | 4035         | CD         | GLU D 134                | 102.080            | 47.480           | 20.704           | 1.00 35.43               | D      |
| MOTA         | 4036         | OE1        |                          | 102.273            | 46.243           | 20.702           | 1.00 36.93<br>1.00 37.66 | D<br>D |
| ATOM         | 4037         | OE2        |                          | 102.793<br>98.127  | 48.278<br>48.882 | 20.057<br>21.955 | 1.00 37.88               | D      |
| ATOM<br>ATOM | 4038<br>4039 | С<br>0     | GLU D 134<br>GLU D 134   | 97.968             | 48.416           | 23.081           | 1.00 22.94               | D      |
| ATOM         | 4040         | N          | THR D 135                | 97.400             | 48.522           | 20.908           | 1.00 21.95               | D      |
| MOTA         | 4041         | CA         | THR D 135                | 96.361             | 47.519           | 21.009           | 1.00 20.78               | D      |
| ATOM         | 4042         | CB         | THR D 135                | 95.368             | 47.625           | 19.843           | 1.00 20.82<br>1.00 22.24 | D<br>D |
| ATOM         | 4043         | OG1        |                          | 96.032<br>94.833   | 47.262<br>49.046 | 18.623<br>19.721 | 1.00 22.24               | D      |
| ATOM<br>ATOM | 4044<br>4045 | CG2<br>C   | THR D 135                | 97.037             | 46.168           | 20.890           | 1.00 20.80               | D      |
| ATOM         | 4046         | 0          | THR D 135                | 98.259             | 46.084           | 20.742           | 1.00 21.08               | D      |
| ATOM         | 4047         | N          | SER D 136                | 96.234             | 45.116           | 20.972           | 1.00 19.11               | D      |
| ATOM         | 4048         | CA         | SER D 136                | 96.728             | 43.764           | 20.790           | 1.00 16.93<br>1.00 19.17 | D<br>D |
| ATOM         | 4049         | CB         | SER D 136                | 95.769<br>95.656   | 42.755<br>42.951 | 21.428<br>22.831 | 1.00 19.17               | D      |
| MOTA         | 4050<br>4051 | OG<br>C    | SER D 136<br>SER D 136   | 96.665             | 43.635           | 19.267           | 1.00 15.30               | D      |
| ATOM<br>ATOM | 4051         | 0          | SER D 136                | 96.325             | 44.592           | 18.580           | 1.00 13.19               | D      |
| MOTA         | 4053         | N          | PHE D 137                | 97.002             | 42.472           | 18.733           | 1.00 16.43               | D      |
| MOTA         | 4054         | CA         |                          | 96.896             |                  |                  | 1.00 16.20               | D      |
| MOTA         | 4055         | CB         | PHE D 137                | 97.652             |                  |                  | 1.00 15.86<br>1.00 17.29 | D<br>D |
| ATOM         | 4056         |            | PHE D 137<br>1 PHE D 137 | 99.138<br>99.792   |                  |                  | 1.00 17.23               | D      |
| MOTA<br>MOTA | 4057<br>4058 | CD:        |                          | 99.894             |                  |                  | 1.00 17.79               | D      |
| ATOM         | 4058         |            |                          | 101.187            |                  |                  | 1.00 21.20               | D      |
| ATOM         | 4060         |            | 2 PHE D 137              | 101.291            |                  |                  |                          | D      |
| ATOM         | 4061         |            |                          | 101.935            |                  |                  |                          | D<br>D |
| MOTA         | 4062         |            | PHE D 137                | 95.402<br>94.823   |                  | _                |                          | D<br>D |
| MOTA<br>MOTA | 4063<br>4064 |            | PHE D 137<br>LEU D 138   | 94.823             |                  |                  |                          | D      |
| MOTA         | 4064         |            |                          | 93.367             |                  |                  |                          | D      |
|              |              |            |                          |                    |                  |                  |                          |        |

| ATOM  | 4066 | CB               | LEU D   | 138   | 92.722 | 44.175           | 15.678  | 1.00 21.40 | D      |
|-------|------|------------------|---------|-------|--------|------------------|---------|------------|--------|
| ATOM  | 4067 | CG               | LEU D   | 138   | 92.452 | 45.087           | 16.881  | 1.00 22.42 | D      |
| MOTA  | 4068 | CD1              | LEU D   | 138   | 91.889 | 44.277           | 18.032  | 1.00 23.38 | D      |
| MOTA  | 4069 | CD2              | LEU D   | 138   | 93.732 | 45.764           | 17.301  | 1.00 28.68 | D      |
| ATOM  | 4070 | C                | LEU D   | 138   | 93.230 | 41.982           | 14.593  | 1.00 20.56 | D      |
| ATOM  | 4071 | 0                | LEU D   | 138   | 93.919 | 42.244           | 13.615  | 1.00 22.27 | D      |
| ATOM  | 4072 | N                | SER D   | 139   | 92.326 | 41.013           | 14.586  | 1.00 20.44 | D      |
| ATOM  | 4073 | CA               | SER D   | 139   | 92.143 | 40.142           | 13.427  | 1.00 19.23 | D      |
| ATOM  | 4074 | CB               | SER D   | 139   | 91.222 | 38.986           | 13.788  | 1.00 19.74 | D      |
| ATOM  | 4075 | OG               | SER D   | 139   | 89.888 | 39.443           | 13.861  | 1.00 21.32 | D      |
| ATOM  | 4076 | C                | SER D   | 139   | 91.594 | 40.802           | 12.168  | 1.00 19.43 | D,     |
| ATOM  | 4077 | 0                | SER D   | 139   | 91.028 | 41.893           | 12.210  | 1.00 19.49 | D      |
| ATOM  | 4078 | N                | LYS D   | 140   | 91.755 | 40.102           | 11.050  | 1.00 18.62 | D      |
| ATOM  | 4079 | CA               | LYS D   | 140   | 91.276 | 40.553           | 9.749   | 1.00 19.20 | D      |
| ATOM  | 4080 | CB               | LYS D   | 140   | 92.437 | 41.058           | 8.895   | 1.00 18.92 | D      |
| ATOM  | 4081 | CG               | LYS D   | 1.40  | 93.286 | 42.126           | 9.554   | 1.00 19.38 | D      |
| ATOM  | 4082 | CD               | LYS D   | 140   | 93.254 | 43.393           | 8.758   | 1.00 20.95 | D      |
| ATOM  | 4083 | CE               | LYS D   | 140   | 93.833 | 43.195           | 7.377   | 1.00 18.23 | D      |
|       | 4084 | NZ               | LYS D   | 140   | 93.743 | 44.457           | 6.617   | 1.00 20.40 | D      |
| ATOM  | 4084 | C                | LYS D   |       | 90.660 | 39.339           | 9.068   | 1.00 19.16 | D      |
| MOTA  |      | 0                | LYS D   |       | 91.091 | 38.217           | 9.312   | 1.00 19.77 | D      |
| MOTA  | 4086 |                  | SER D   | 141   | 89.670 | 39.552           | 8.207   | 1.00 21.60 | D      |
| ATOM  | 4087 | N                |         |       | 89.030 | 38.438           | 7.507   | 1.00 23.19 | D      |
| ATOM  | 4088 | CA               | SER D   |       | 87.859 | 38.948           | 6.653   | 1.00 24.88 | D      |
| ATOM  | 4089 | CB               | SER D   |       |        |                  | 5.655   | 1.00 28.69 | D      |
| MOTA  | 4090 | OG<br>~          | SER D   |       | 88.288 | 39.858<br>37.605 | 6.636   | 1.00 23.26 | Đ      |
| ATOM  | 4091 | C                | SER D   |       | 89.989 |                  | 6.327   | 1.00 23.23 | D      |
| ATOM  | 4092 | 0                | SER D   |       | 89.692 | 36.454           | 6.251   | 1.00 23.33 | D      |
| MOTA  | 4093 | N                | ASP D   |       | 91.137 | 38.159           | 5.429   | 1.00 22.54 | D      |
| MOTA  | 4094 | CA               |         | 142   | 92.075 | 37.387           | 4.466   | 1.00 25.84 | D      |
| ATOM  | 4095 | CB               | ASP D   |       | 92.834 | 38.303           |         | 1.00 29.78 | D      |
| ATOM  | 4096 | CG               | ASP D   |       | 93.943 | 39.064           | 5.143   | 1.00 25.76 | D      |
| MOTA  | 4097 | OD1              |         |       | 93.760 | 39.486           | 6.309   | 1.00 34.64 | D      |
| MOTA  | 4098 | OD2              |         | 142   | 94.997 | 39.246           | 4.500   |            | D      |
| MOTA  | 4099 | C                | ASP D   |       | 93.045 | 36.637           | 6.336   |            | D      |
| MOTA  | 4100 | 0                | ASP D   |       | 94.027 | 36.037           | 5.883   | 1.00 20.54 |        |
| ATOM  | 4101 | $oldsymbol{N}_i$ | HIS D   |       | 92.753 | 36.700           | 7.632   | 1.00 21.06 | D      |
| ATOM. | 4102 | CA               | HIS D   |       | 93.522 | 36.020           | 8.659   | 1.00 19.58 | D      |
| MOTA  | 4103 | CB               | HIS D   |       | 93.628 | 34.534           | 8.317   | 1.00 19.03 | D      |
| MOTA  | 4104 | CG               | HIS D   |       | 92.295 | 33.892           | 8.104   | 1.00 23.00 | D<br>G |
| MOTA  | 4105 | CD2              | HIS D   | 143   | 91.827 | 33.108           | 7.104   | 1.00 24.78 | D      |
| MOTA  | 4106 | ND1              | HIS D   | 143   | 91.237 | 34.087           | 8.967   | 1.00 21.97 | D      |
| MOTA  | 4107 | CE1              | . HIS D | 143   | 90.174 | 33.455           | 8.505   | 1.00 24.67 | D      |
| MOTA  | 4108 | NE2              | HIS D   |       | 90.504 | 32.853           | 7.375   | 1.00 24.72 | D      |
| MOTA  | 4109 | C                | HIS D   | 143   | 94.878 | 36.602           | 8.986   | 1.00 20.11 | D      |
| MOTA  | 4110 | 0                | HIS D   | 143   | 95.691 | 35.962           | 9.654   | 1.00 21.09 | D      |
| MOTA  | 4111 | N                | SER D   | 144   | 95.118 | 37.820           | 8.514   | 1.00 21.24 | D      |
| ATOM  | 4112 | CA               | SER D   | 144   | 96.352 | 38.525           | 8.826   | 1.00 21.79 | D      |
| ATOM  | 4113 | CB               | SER D   | 144   | 96.834 | 39.353           | 7.627   | 1.00 20.33 | D      |
| MOTA  | 4114 | OG               | SER D   | 144   | 96.047 | 40.511           | , 7.434 | 1.00 24.32 | D      |
| ATOM  | 4115 | C                | SER D   | 144   | 95.940 | 39.440           | 9.990   | 1.00 21.43 | D      |
| ATOM  | 4116 | 0                | SER I   | 144   | 94.830 | 39.317           | 10.504  | 1.00 20.74 | D      |
| ATOM  | 4117 | И                | PHE I   | 145   | 96.809 | 40.352           | 10.412  | 1.00 21.56 | D      |
| ATOM  | 4118 | CA               | PHE I   | 145   | 96.463 | 41.235           | 11.523  | 1.00 22.54 | D<br>- |
| MOTA  | 4119 | CB               | PHE I   | 145   | 97.156 | 40.791           | 12.817  | 1.00 22.63 | D      |
| ATOM  | 4120 | CG               | PHE I   | 145   | 96.896 | 39.368           | 13.200  | 1.00 25.73 | D      |
| MOTA  | 4121 | CDI              | L PHE I | 145   | 97.565 | 38.329           | 12.562  | 1.00 26.67 | D<br>- |
| MOTA  | 4122 | CD2              | PHE I   | 145   | 95.987 | 39.063           | 14.207  | 1.00 23.65 | D      |
| MOTA  | 4123 | CEI              | L PHE I | 1.45  | 97.333 | 37.004           | 12.921  | 1.00 27.30 | D      |
| ATOM  | 4124 | CE2              | PHE I   | 145   | 95.750 | 37.746           | 14.572  | 1.00 25.43 | D      |
| MOTA  | 4125 | CZ               | PHE I   | 1.45  | 96.426 | 36.713           | 13.926  | 1.00 24.90 | D      |
| ATOM  | 4126 | С                | PHE I   | 145   | 96.850 | 42.687           | 11.299  | 1.00 22.51 | D      |
| ATOM  | 4127 | 0                | PHE I   | 145   | 97.540 | 43.028           | 10.339  | 1.00 23.97 | D      |
| MOTA  | 4128 | N                | PHE I   | 146   | 96.371 | 43.540           | 12.198  | 1.00 20.96 | D      |
| ATOM  | 4129 | CA               | PHE I   |       | 96.729 | 44.946           | 12.190  | 1.00 19.68 | D      |
| ATOM  | 4130 | CB               | PHE I   |       | 95.696 | 45.817           | 11.439  | 1.00 17.70 | D      |
| MOTA  | 4131 | CG               | PHE I   | 146   | 94.392 | 46.041           | 12.159  | 1.00 15.76 | D      |
| ATOM  | 4132 | CD:              |         |       | 94.201 | 47.173           | 12.948  | 1.00 16.08 | D      |
| ATOM  | 4133 | CD:              |         |       | 93.321 | 45.170           | 11.976  | 1.00 14.70 | D      |
| ATOM  | 4134 | CE:              | _       |       | 92.961 | 47.442           | 13.543  | 1.00 13.47 | D      |
| ATOM  | 4135 | CE:              |         |       | 92.080 | 45.426           | 12.563  | 1.00 15.43 | D      |
| MOTA  | 4136 | CZ.              |         | 146   | 91.900 | 46.567           | 13.350  | 1.00 14.68 | D      |
| ATOM  | 4137 |                  | PHE 1   |       | 96.893 | 45.335           |         | 1.00 19.66 | D      |
| MOTA  | 4138 |                  | PHE 1   |       | 96.373 | 44.672           |         | 1.00 19.92 | D      |
| ATOM  | 4139 | N                |         | D 147 | 97.666 | 46.379           | 13.901  | 1.00 20.23 | D      |
|       |      | <del>-</del>     |         |       |        |                  |         |            |        |

| ATOM | 4140 | CA               | LYS D 147   | 97.910  | 46.817 | 15.260    | 1.00 19.84 | Ð      |
|------|------|------------------|-------------|---------|--------|-----------|------------|--------|
| ATOM | 4141 | СВ               | LYS D 147   | 99.184  | 46.148 | 15.796    | 1.00 21.50 | D      |
| ATOM | 4142 | CG               | LYS D 147   | 99.651  | 46.679 | 17.134    | 1.00 24.87 | D      |
|      |      |                  | LYS D 147   | 100.764 | 45.832 | 17.724    | 1.00 27.18 | D      |
| ATOM | 4143 | CD               |             |         |        |           | 1.00 31.41 | D      |
| MOTA | 4144 | CE               | LYS D 147   | 100.220 | 44.515 | 18.253    |            |        |
| MOTA | 4145 | NZ               | LYS D 147   | 101.086 | 43.984 | 19.341    | 1.00 32.97 | D      |
| ATOM | 4146 | C                | LYS D 147   | 98.038  | 48.324 | 15.274    | 1.00 18.69 | D      |
| ATOM | 4147 | 0                | LYS D 147   | 98.603  | 48.914 | 14.352    | 1.00 20.14 | D      |
| ATOM | 4148 | N                | ILE D 148   | 97.497  | 48.944 | 16.314    | 1.00 18.22 | D      |
| ATOM | 4149 | CA               | ILE D 148   | 97.530  | 50.387 | 16.446    | 1.00 18.25 | D      |
|      |      |                  |             | 96.092  | 50.942 | 16.548    | 1.00 20.80 | D      |
| MOTA | 4150 | CB               | ILE D 148   |         |        |           |            | D      |
| ATOM | 4151 | CG2              | ILE D 148   | 96.113  | 52.459 | 16.659    |            |        |
| MOTA | 4152 | CG1              | ILE D 148   | 95.308  | 50.533 | 15.292    | 1.00 23.89 | D      |
| ATOM | 4153 | CD1              | ILE D 148   | 93.840  | 50.858 | 15.314    | 1.00 24.42 | D      |
| ATOM | 4154 | C                | ILE D 148   | 98.369  | 50.816 | 17.646    | 1.00 19.71 | D      |
| ATOM | 4155 | 0                | ILE D 148   | 98.213  | 50.294 | 18.757    | 1.00 17.77 | D      |
| ATOM | 4156 | N                | SER D 149   | 99.284  | 51.753 | 17.395    | 1.00 19.08 | D      |
|      |      |                  | SER D 149   | 100.173 | 52.278 | 18.424    | 1.00 18.19 | D      |
| ATOM | 4157 | CA               |             |         |        |           | 1.00 18.51 | D      |
| ATOM | 4158 | CB               | SER D 149   | 101.633 | 52.137 | 17.991    |            |        |
| ATOM | 4159 | OG               | SER D 149   | 102.518 | 52.492 | 19.040    | 1.00 19.49 | D<br>- |
| ATOM | 4160 | C                | SER D 149   | 99.839  | 53.744 | 18.646    | 1.00 18.14 | D      |
| ATOM | 4161 | 0                | SER D 149   | 99.591  | 54.490 | 17.693    | 1.00 18.17 | D      |
| ATOM | 4162 | N                | TYR D 150   | 99.843  | 54.155 | 19.905    | 1.00 16.95 | D      |
| ATOM | 4163 | CA               | TYR D 150   | 99.503  | 55.524 | 20.261    | 1.00 16.12 | D      |
|      |      | CB               | TYR D 150   | 98.310  | 55.524 | 21.213    | 1.00 15.57 | D      |
| ATOM | 4164 |                  |             |         | 54.750 | 20.701    | 1.00 16.81 | D      |
| ATOM | 4165 | CG               | TYR D 150   | 97.116  |        |           |            | D      |
| ATOM | 4166 | CD1              |             | 96.291  | 55.276 | 19.709    | 1.00 14.33 |        |
| MOTA | 4167 | CE1              | TYR D 150   | 95.197  | 54.554 | 19.222    | 1.00 17.50 | D      |
| ATOM | 4168 | CD2              | TYR D 150   | 96.819  | 53.486 | 21.199    | 1.00 15.90 | D      |
| ATOM | 4169 | CE2              | TYR D 150   | 95.731  | 52.760 | 20.719    | 1.00 18.41 | D      |
| ATOM | 4170 | CZ               | TYR D 150   | 94.928  | 53.297 | 19.732    | 1.00 16.27 | D      |
| ATOM | 4171 | OH               | TYR D 150   | 93.868  | 52.574 | 19.244    | 1.00 20.03 | D      |
|      |      | C                | TYR D 150   | 100.650 | 56.266 | 20.922    | 1.00 16.35 | D      |
| ATOM | 4172 |                  |             | 101.438 | 55.690 | 21.669    | 1.00 16.95 | D      |
| MOTA | 4173 | 0                | TYR D 150   |         |        |           | 1.00 16.64 | D      |
| MOTA | 4174 | N                | LEU D 151   | 100.732 | 57.558 | 20.643    |            |        |
| ATOM | 4175 | $^{\mathrm{CA}}$ | LEU D 151   | 101.760 | 58.396 | 21.227    | 1.00 16.50 | D      |
| ATOM | 4176 | CB               | LEU D 151   | 102.849 | 58.705 | 20.203    | 1.00 15.48 | D      |
| ATOM | 4177 | CG               | LEU D 151   | 103.806 | 59.825 | 20.639    | 1.00 17.55 | D      |
| ATOM | 4178 | CD1              | LEU D 151   | 104.641 | 59.374 | 21.834    | 1.00 16.60 | Ð      |
| ATOM | 4179 | CD2              |             | 104.702 | 60.213 | 19.476    | 1.00 16.11 | D      |
| ATOM | 4180 | C                | LEU D 151   | 101.140 | 59.701 | 21.693    | 1.00 17.56 | D      |
|      |      |                  |             | 100.577 | 60.440 | 20.888    | 1.00 17.18 | D      |
| MOTA | 4181 | 0                | LEU D 151   |         |        |           | 1.00 16.14 | D      |
| ATOM | 4182 | N                | THR D 152   | 101.233 | 59.997 | 22.983    |            |        |
| ATOM | 4183 | CA               | THR D 152   | 100.690 | 61.259 | 23.448    | 1.00 19.47 | D      |
| MOTA | 4184 | CB               | THR D 152   | 100.359 | 61.248 | 24.966    | 1.00 21.24 | D      |
| ATOM | 4185 | OG1              | THR D 152   | 101.517 | 60.871 | 25.725    | 1.00 25.03 | D      |
| ATOM | 4186 | CG2              | THR D 152   | 99.214  | 60.281 | 25.247    | 1.00 20.79 | D      |
| ATOM | 4187 | C                | THR D 152   | 101.717 | 62.345 | 23.151    | 1.00 19.82 | D      |
|      |      | 0                | THR D 152   | 102.921 | 62.113 | 23.218    | 1.00 21.31 | D      |
| MOTA | 4188 | _                | <del></del> | 101.241 | 63.523 | 22.781    | 1.00 20.76 | D      |
| MOTA | 4189 | N                | LEU D 153   |         |        |           | 1.00 24.15 | D      |
| MOTA | 4190 | CA               | LEU D 153   | 102.143 | 64.617 | 22.488    |            |        |
| MOTA | 4191 | CB               | LEU D 153   | 102.760 | 64.450 | 21.089    | 1.00 25.45 | Ď      |
| MOTA | 4192 | CG               | LEU D 153   | 101.959 | 64.575 | 19.785    | 1.00 27.17 | D      |
| MOTA | 4193 | CD1              | LEU D 153   | 100.520 | 64.101 | 19.986    | 1.00 27.83 | D      |
| ATOM | 4194 | CD2              | LEU D 153   | 101.982 | 66.015 | 19.319    | 1.00 27.38 | D      |
|      | 4195 | C                | LEU D 153   | 101.440 | 65.952 | 22.601    | 1.00 25.73 | D      |
| MOTA |      |                  |             | 100,208 | 66.028 | 22.681    | 1.00 26.55 | D      |
| MOTA | 4196 | 0                | LEU D 153   |         |        |           | 1.00 26.77 | D      |
| ATOM | 4197 | N                | LEU D 154   | 102.251 | 67.000 | 22.640    |            |        |
| MOTA | 4198 | CA               | LEU D 154   | 101.781 | 68.369 | 22.734    | 1.00 26.34 | D      |
| MOTA | 4199 | CB               | LEU D 154   | 102.298 | 69.027 | 24.019    | 1.00 25.08 | D      |
| MOTA | 4200 | CG               | LEU D 154   | 101.877 | 70.478 | 24.288    | 1.00 26.28 | D      |
| ATOM | 4201 | CD1              | LEU D 154   | 100.377 | 70.531 | 24.570    | 1.00 24.44 | D      |
| ATOM | 4202 | CD2              |             | 102.667 | 71.031 | 25.477    | 1.00 23.08 | D      |
| ATOM | 4202 | C                | LEU D 154   | 102.374 |        |           | 1.00 28.41 | D      |
|      |      | _                | LEU D 154   | 102.574 |        |           | 1.00 27.19 | D      |
| ATOM | 4204 | 0                |             |         |        |           | 1.00 27.13 | D      |
| MOTA | 4205 | N                | PRO D 155   | 101.534 |        | 20.523    |            |        |
| MOTA | 4206 | CD               | PRO D 155   | 100.109 | 68.979 | 20.453    | 1.00 30.25 | D      |
| MOTA | 4207 | CA               | PRO D 155   | 101.965 | 70.014 |           | 1.00 31.71 | D      |
| MOTA | 4208 | CB               | PRO D 155   | 100.667 | 70.160 | 18.510    | 1.00 31.92 | D      |
| ATOM | 4209 | CG               | PRO D 155   | 99.861  | 68.968 | 18.963    | 1.00 31.51 | D      |
| ATOM | 4210 | C                | PRO D 155   | 102.663 | 71.354 | 19.508    | 1.00 35.12 | D      |
| ATOM | 4211 | -                | PRO D 155   | 102.110 |        |           | 1.00 35.64 | D      |
|      |      |                  | SER D 156   | 103.893 | 71.436 |           | 1.00 39.00 | D      |
| ATOM | 4212 | N                |             |         |        |           | 1.00 42.94 | D      |
| MOTA | 4213 | CA               | SER D 156   | 104.706 | 14.043 | J. 7. UOJ | T.00 TZ.7T | مدة    |
|      |      |                  |             |         | ,      | 20        |            |        |

| ATOM         | 4214         | CB         | SER D          | 156        | 105.819            | 72.492           | 20.121           | 1.00 43.03               | D      |
|--------------|--------------|------------|----------------|------------|--------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 4215         | OG         | SER D          | 156        | 105.288            | 72.385           | 21.430           | 1.00 45.30               | D      |
| ATOM         | 4216         | C          | SER D          | 156        | 105.311            | 72.763           | 17.694           | 1.00 46.03               | D      |
| MOTA         | 4217         | 0          | SER D          | 156        | 104.875            | 72.084           | 16.770           | 1.00 47.06               | D      |
| MOTA         | 4218         | N          | ALA D          | 157        | 106.316            | 73.609           | 17.534           | 1.00 49.61               | D<br>_ |
| ATOM         | 4219         | CA         | ALA D          | 157        | 106.931            | 73.756           | 16.222           | 1.00 51.03               | D      |
| ATOM         | 4220         | CB         | ALA D          | 157        | 106.977            | 75.231           | 15.828           | 1.00 51.20               | D      |
| ATOM         | 4221         | C          | ALA D          | 157        | 108.334<br>108.985 | 73.163<br>73.147 | 16.195<br>15.150 | 1.00 51.50<br>1.00 52.20 | D<br>D |
| ATOM         | 4222         | O<br>N     | ALA D<br>GLU D | 157<br>158 | 108.797            | 72.669           | 17.339           | 1.00 52.20               | D      |
| ATOM<br>ATOM | 4223<br>4224 | N<br>CA    | GLU D          | 158        | 110.141            | 72.103           | 17.411           | 1.00 53.43               | D      |
| ATOM         | 4224         | CB         | GLU D          | 158        | 110.946            | 72.785           | 18.524           | 1.00 57.17               | D      |
| MOTA         | 4225         | CG         | GLU D          | 158        | 110.401            | 72.570           | 19.934           | 1.00 61.50               | D      |
| ATOM         | 4227         | CD         | GLU D          | 158        | 109.278            | 73.529           | 20.291           | 1.00 63.75               | D      |
| ATOM         | 4228         | OE1        | GLU D          | 158        | 108.757            | 73.431           | 21.425           | 1.00 63.56               | D      |
| ATOM         | 4229         | OE2        | GLU D          | 158        | 108.922            | 74.381           | 19.445           | 1.00 65.17               | D      |
| ATOM         | 4230         | C          | GLU D          | 158        | 110.190            | 70.592           | 17.614           | 1.00 51.03               | D      |
| ATOM         | 4231         | 0          | GLU D          | 158        | 111.103            | 70.084           | 18.265           | 1.00 51.07               | D      |
| ATOM         | 4232         | N          | GLU D          | 159        | 109.219            | 69.876           | 17.057           | 1.00 47.47               | D      |
| ATOM         | 4233         | CA         | GLU D          | 159        | 109.185            | 68.425           | 17.193           | 1.00 46.22               | D      |
| ATOM         | 4234         | CB         | GLU D          | 159        | 108.337            | 68.013           | 18.406           | 1.00 47.11               | D      |
| MOTA         | 4235         | CG         | GLU D          | 159        | 109.127            | 67.692           | 19.671           | 1.00 48.53               | D      |
| MOTA         | 4236         | CD         | GLU D          | 159        | 108.268            | 67.042           | 20.751           | 1.00 50.37               | D      |
| ATOM         | 4237         | OE1        | GLU D          |            | 107.319            | 67.694           | 21.238           | 1.00 50.39               | D      |
| ATOM         | 4238         | OE2        | GLU D          |            | 108.537            | 65.873           | 21.112<br>15.960 | 1.00 50.03<br>1.00 43.84 | D<br>D |
| ATOM         | 4239         | C          | GLU D          |            | 108.641<br>107.515 | 67.714<br>67.974 | 15.535           | 1.00 43.84               | D      |
| ATOM         | 4240         | O<br>N     | GLU D<br>SER D |            | 107.515            | 66.825           | 15.380           | 1.00 39.56               | D      |
| ATOM<br>ATOM | 4241<br>4242 | N<br>CA    | SER D          |            | 108.993            | 66.054           | 14.229           | 1.00 37.29               | D      |
| ATOM         | 4242         | CB         | SER D          |            | 109.971            | 66.172           | 13.055           | 1.00 37.41               | D      |
| ATOM         | 4244         | OG         | SER D          |            | 111.070            | 65.298           | 13.206           | 1.00 41.72               | D      |
| ATOM         | 4245         | C          | SER D          |            | 108.933            | 64.615           | 14.734           | 1.00 35.08               | D      |
| ATOM         | 4246         | 0          | SER D          |            | 109.754            | 64.207           | 15.557           | 1.00 33.66               | D      |
| MOTA         | 4247         | N          | TYR D          |            | 107.961            | 63.846           | 14.260           | 1.00 32.11               | D      |
| ATOM         | 4248         | CA         | TYR D          | 161        | 107.828            | 62.478           | 14.728           | 1.00 29.69               | D      |
| ATOM         | 4249         | CB         | TYR D          | 161        | 106.550            | 62.315           | 15.547           | 1.00 29.62               | D      |
| MOTA         | 4250         | CG         | TYR D          | 161        | 106.347            | 63.349           | 16.620           | 1.00 29.33               | D      |
| MOTA         | 4251         | CD1        | TYR D          | 161        | 105.761            | 64.577           | 16.327           | 1.00 31.31               | D<br>- |
| MOTA         | 4252         | CE1        |                |            | 105.513            | 65.515           | 17.329           | 1.00 32.70               | D      |
| ATOM         | 4253         | CD2        |                |            | 106.695            | 63.085           | 17.937           | 1.00 30.13               | D      |
| ATOM         | 4254         | CE2        |                |            |                    | 64.013           | 18.947           | 1.00 30.43<br>1.00 31.92 | D<br>D |
| ATOM         | 4255         | CZ         | TYR D          |            | 105.863<br>105.592 | 65.223<br>66.128 | 18.638<br>19.643 | 1.00 31.92               | D      |
| ATOM         | 4256         | OH<br>C    | TYR D          |            | 105.552            | 61.441           | 13.627           | 1.00 29.60               | D      |
| ATOM<br>ATOM | 4257<br>4258 | 0          | TYR D          |            | 107.493            | 61.728           | 12.473           | 1.00 29.45               | D      |
| ATOM         | 4259         | N          | ASP D          |            | 108.172            | 60.221           | 14.005           | 1.00 29.35               | D      |
| ATOM         | 4260         | CA         | ASP D          |            | 108.201            | 59.109           | 13.075           | 1.00 30.15               | D      |
| ATOM         | 4261         | CB         | ASP D          |            | 109.618            | 58.863           | 12.548           | 1.00 34.90               | D      |
| ATOM         | 4262         | CG         | ASP D          |            | 110.154            | 60.016           | 11.733           | 1.00 37.70               | D      |
| MOTA         | 4263         | OD1        | ASP D          | 162        | 109.669            | 60.218           | 10.597           | 1.00 40.13               | D      |
| MOTA         | 4264         | OD2        | ASP D          | 162        | 111.061            | 60.716           | 12.235           | 1.00 38.68               | D      |
| ATOM         | 4265         | C          | ASP D          | 162        | 107.759            | 57.851           | 13.784           | 1.00 29.84               | D      |
| MOTA         | 4266         | 0          |                | 162        | 108.010            | 57.672           | 14.978           | 1.00 26.72               | D      |
| ATOM         | 4267         | N          | CYS I          |            | 107.088            | 56.984           | 13.039           | 1.00 29.31               | D      |
| MOTA         | 4268         | CA         | CYS I          |            | 106.684            | 55.700           | 13.569           | 1.00 29.59<br>1.00 28.04 | D      |
| ATOM         | 4269         | C          | CYS I          |            | 107.689            | 54.769           | 12.902<br>11.685 | 1.00 26.22               | D<br>D |
| ATOM         | 4270         | O          | CYS I          |            | 107.822<br>105.265 | 54.772<br>55.326 | 13.134           | 1.00 20.22               | D      |
| MOTA         | 4271<br>4272 | CB<br>SG   | CYS I          |            | 103.203            | 53.760           | 13.878           | 1.00 34.32               | D      |
| ATOM<br>ATOM | 4272         | N          | LYS I          |            | 108.417            | 54.001           | 13.699           | 1.00 29.03               | D      |
| ATOM         | 4274         | CA         | LYS I          |            | 109.404            | 53.072           | 13.161           | 1.00 29.67               | D      |
| ATOM         | 4275         | CB         | LYS I          |            | 110.730            | 53.238           | 13.911           | 1.00 32.54               | D      |
| ATOM         | 4276         | CG         | LYS I          |            | 111.874            | 52.352           | 13.416           | 1.00 34.76               | D      |
| ATOM         | 4277         | CD         | LYS I          | 164        | 113.109            | 52.528           | 14.297           | 1.00 34.79               | D      |
| ATOM         | 4278         | CE         | LYS I          | 164        | 114.254            | 51.630           | 13.850           | 1.00 38.29               | D      |
| ATOM         | 4279         | NZ         | LYS I          | 164        | 115.425            | 51.702           | 14.775           | 1.00 36.58               | D      |
| MOTA         | 4280         | C          | LYS I          |            | 108.863            | 51.651           | 13.322           | 1.00 28.94               | D      |
| ATOM         | 4281         | 0          | LYS I          |            | 108.642            | 51.189           | 14.443           | 1.00 29.32               | D      |
| MOTA         | 4282         | N          | VAL I          |            | 108.632            | 50.974           | 12.197           | 1.00 27.33               | D      |
| ATOM         | 4283         | CA         | VAL I          |            | 108.100            | 49.618           | 12.212           | 1.00 26.58               | D      |
| ATOM         | 4284         | CB         | VAL I          |            | 106.797            | 49.516           | 11.359<br>11.462 | 1.00 27.12<br>1.00 25.56 | D<br>D |
| MOTA         | 4285         | CG1<br>CG2 |                |            | 106.199<br>105.787 | 48.122<br>50.544 | 11.402           | 1.00 25.56               | D      |
| MOTA<br>MOTA | 4286<br>4287 | CGZ        | VAL I          |            | 109.113            | 48.600           | 11.690           | 1.00 26.91               | D      |
| ETT OLI      | U /          | _          |                |            |                    | _ >              |                  | / -                      |        |

| ATOM         | 4288         | 0          | VAL D 1        | L65        | 109.621            | 48.720           | 10.583           | 1.00 25.56               | D      |
|--------------|--------------|------------|----------------|------------|--------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 4289         | N          | Gra D          | L66        | 109.414            | 47.606           | 12.513           | 1.00 28.75               | D      |
| ATOM         | 4290         | CA         |                | 166        | 110.338            | 46.544           | 12.139           | 1.00 30.67               | D      |
| ATOM         | 4291         | CB         |                | L66        | 111.445            | 46.410           | 13.194           | 1.00 33.57               | D<br>D |
| ATOM         | 4292         | CG         |                | L66        | 112.452            | 47.565<br>47.526 | 13.142<br>14.244 | 1.00 41.68<br>1.00 46.12 | D<br>D |
| ATOM         | 4293         | CD         |                | 166<br>166 | 113.506<br>114.482 | 48.304           | 14.146           | 1.00 49.01               | D      |
| ATOM<br>ATOM | 4294<br>4295 | OE1<br>OE2 |                | 166        | 113.363            | 46.736           | 15.206           | 1.00 49.40               | D      |
| ATOM         | 4296         | C          |                | 1.66       | 109.543            | 45.243           | 12.008           | 1.00 30.18               | D      |
| ATOM         | 4297         | 0          |                | 166        | 108.737            | 44.900           | 12.878           | 1.00 28.51               | D      |
| ATOM         | 4298         | N          |                | 167        | 109.759            | 44.535           | 10.907           | 1.00 29.48               | D      |
| ATOM         | 4299         | CA         | HIS D          | 167        | 109.056            | 43.281           | 10.648           | 1.00 30.29               | D      |
| ATOM         | 4300         | CB         | HIS D          | 167        | 107.686            | 43.569           | 10.025           | 1.00 29.56               | D      |
| ATOM         | 4301         | CG         |                | 167        | 106.808            | 42.363           | 9.903            | 1.00 30.02               | D      |
| ATOM         | 4302         | CD2        |                | 167        | 106.562            | 41.541           | 8.856            | 1.00 29.91<br>1.00 31.27 | D<br>D |
| ATOM         | 4303         | ND1        |                | 167<br>167 | 106.068<br>105.404 | 41.871<br>40.798 | 10.957<br>10.564 | 1.00 31.27               | D      |
| MOTA<br>MOTA | 4304<br>4305 | CE1<br>NE2 |                | 167<br>167 | 105.404            | 40.736           | 9.293            | 1.00 28.97               | D      |
| ATOM         | 4305         | C          |                | 167        | 109.886            | 42.440           | 9.684            | 1.00 30.36               | D      |
| ATOM         | 4307         | 0          |                | 167        | 110.607            | 42.976           | 8.842            | 1.00 30.66               | D      |
| ATOM         | 4308         | N          |                | 168        | 109.775            | 41.122           | 9.801            | 1.00 31.13               | D      |
| ATOM         | 4309         | CA         | TRP D          | 168        | 110.521            | 40.219           | 8.930            | 1.00 32.08               | D      |
| ATOM         | 4310         | CB         | TRP D          | 168        | 110.270            | 38.765           | 9.336            | 1.00 28.28               | D      |
| ATOM         | 4311         | CG         |                | 168        | 110.665            | 38.475           | 10.739           | 1.00 26.36               | D      |
| MOTA         | 4312         | CD2        |                | 168        | 110.031            | 37.556           | 11.635<br>12.842 | 1.00 25.51<br>1.00 26.35 | D<br>D |
| MOTA         | 4313         | CE2        |                | 168<br>168 | 110.759<br>108.916 | 37.578<br>36.715 | 11.534           | 1.00 24.88               | D      |
| ATOM<br>ATOM | 4314<br>4315 | CE3        |                | 168        | 111.721            | 39.004           | 11.416           | 1.00 27.27               | D      |
| ATOM         | 4316         | NE1        |                | 168        | 111.786            | 38.471           | 12.682           | 1.00 28.25               | D      |
| ATOM         | 4317         | CZ2        |                | 168        | 110.412            | 36.791           | 13.943           | 1.00 27.00               | D      |
| ATOM         | 4318         | CZ3        | TRP D          | 168        | 108.568            | 35.932           | 12.628           | 1.00 25.90               | D      |
| MOTA         | 4319         | CH2        | TRP D          | 168        | 109.315            | 35.976           | 13.817           | 1.00 26.65               | D<br>- |
| ATOM         | 4320         | C          | TRP D          | 168        | 110.180            | 40.403           | 7.452            | 1.00 33.22               | D      |
| MOTA         | 4321         | 0          |                | 168        | 111.011            | 40.139           | 6.582            | 1.00 33.90               | D      |
| ATOM         | 4322         | N          | GLY D          |            | 108.959            | 40.853           | 7.174            | 1.00 34.75<br>1.00 36.14 | D<br>D |
| ATOM         | 4323         | CA         |                | 169        | 108.533<br>109.056 | 41.060<br>42.359 | 5.797<br>5.215   | 1.00 37.80               | D      |
| ATOM         | 4324         | C          | GLY D          | 169        | 109.038            | 42.796           | 4.139            | 1.00 37.00               | D      |
| ATOM<br>ATOM | 4325<br>4326 | N<br>O     | LEU D          |            | 109.979            |                  | 5.938            | 1.00 38.89               | D      |
| ATOM         | 4327         | CA         | LEU D          |            | 110.578            | 44.234           | 5.509            | 1.00 40.79               | D      |
| ATOM         | 4328         | CB         | LEU D          |            | 110.212            | 45.356           | 6.480            | 1.00 39.77               | D      |
| ATOM         | 4329         | CG         | LEU D          | 170        | 108.745            | 45.765           | 6.581            | 1.00 39.57               | D      |
| ATOM         | 4330         | CD1        | LEU D          | 170        | 108.592            | 46.809           | 7.671            | 1.00 38.10               | D      |
| MOTA         | 4331         | CD2        |                | 170        | 108.267            | 46.308           | 5.243            | 1.00 39.58               | D      |
| ATOM         | 4332         | C          | LEU D          |            | 112.092            | 44.085           | 5.465<br>6.370   | 1.00 42.12<br>1.00 41.54 | D<br>D |
| ATOM         | 4333         | 0          | LEU D          |            | 112.688<br>112.706 | 43.506<br>44.613 | 4.411            | 1.00 45.36               | D      |
| ATOM         | 4334         | N<br>CA    | ASP D<br>ASP D |            | 114.158            | 44.559           | 4.252            | 1.00 48.35               | D      |
| MOTA<br>MOTA | 4335<br>4336 | CB         | ASP D          |            | 114.539            | 44.947           | 2.820            | 1.00 50.69               | D      |
| ATOM         | 4337         | CG         | ASP D          |            | 113.467            | 45.775           | 2.137            | 1.00 52.75               | D      |
| ATOM         | 4338         |            | ASP D          |            | 113.076            | 46.827           | 2.689            | 1.00 54.19               | D      |
| ATOM         | 4339         | OD2        | ASP D          | 171        | 113.012            | 45.372           | 1.046            | 1.00 54.32               | D      |
| ATOM         | 4340         | C          | ASP D          | 171        | 114.849            | 45.485           | 5.255            | 1.00 48.43               | D      |
| MOTA         | 4341         | 0          | ASP D          |            | 115.816            | 45.090           | 5.910            | 1.00 48.29               | D      |
| MOTA         | 4342         | N          | LYS D          |            | 114.348            | 46.715           | 5.364            | 1.00 48.92<br>1.00 49.86 | D      |
| MOTA         | 4343         | CA         | LYS D          |            | 114.883            | 47.707           | 6.299<br>5.552   | 1.00 49.88               | D<br>D |
| MOTA         | 4344         | CB         | LYS D          |            | 115.502<br>116.667 | 48.898<br>48.566 | 4.637            | 1.00 55.86               | D      |
| ATOM         | 4345<br>4346 | CG<br>CD   | LYS D          |            | 116.203            | 47.963           |                  | 1.00 58.23               | D      |
| ATOM<br>ATOM | 4347         | CE         | LYS D          |            | 115.408            | 48.966           | 2.493            | 1.00 59.62               | D      |
| ATOM         | 4348         | NZ         | LYS D          |            | 114.946            | 48.368           | 1.211            | 1.00 59.53               | D      |
| ATOM         | 4349         | C          | LYS D          |            | 113.734            | 48.224           | 7.165            | 1.00 48.46               | D      |
| ATOM         | 4350         | 0          | LYS D          | 172        | 112.564            | 48.026           |                  | 1.00 48.43               | D      |
| ATOM         | 4351         | N          | PRO D          | 173        | 114.050            | 48.885           | 8.291            | 1.00 46.54               | D      |
| ATOM         | 4352         | CD         | PRO D          |            | 115.355            | 49.048           |                  |                          | D      |
| ATOM         | 4353         | CA         | PRO D          |            | 112.974            | 49.400           |                  |                          | D<br>D |
| MOTA         | 4354         | CB         | PRO D          |            | 113.722            | 50.029<br>49.197 |                  | 1.00 44.19               | D<br>D |
| MOTA         | 4355<br>4356 | CG<br>C    | PRO D          |            | 114.950<br>112.180 | 50.430           |                  | 1.00 43.26               | D      |
| ATOM<br>ATOM | 4356<br>4357 | 0          | PRO D          |            | 112.746            | 51.197           |                  | 1.00 43.42               | D      |
| ATOM         | 4358         | N          | LEU D          |            | 110.869            | 50.434           |                  | 1.00 41.53               | D      |
| MOTA         | 4359         |            | LEU D          |            | 110.023            | 51.381           |                  | 1.00 39.96               | D      |
| ATOM         | 4360         |            | LEU D          |            | 108.675            | 50.730           |                  | 1.00 40.30               | D      |
| MOTA         | 4361         | CG         | LEU D          | 174        | 107.900            | 51.223           | 6.303            | 1.00 40.55               | D      |

| ATOM | 4362 | CD1 | LEU            | D            | 174 | 10 | 06.637                       | 5        | 50.397 | 6  | .151  | 1.0 | 00   | 42.25 | D   |
|------|------|-----|----------------|--------------|-----|----|------------------------------|----------|--------|----|-------|-----|------|-------|-----|
| ATOM | 4363 | CD2 | LEU            | D            | 174 | 10 | 7.568                        |          | 52.698 | 6  | .448  | 1.0 | 00   | 42.67 | D   |
| ATOM | 4364 | С   | LEU            | D            | 174 | 10 | 9.845                        |          | 52.586 | 8  | .753  | 1.0 | 00   | 39.80 | D   |
| ATOM | 4365 | 0   | LEU            |              | 174 | 10 | 9.645                        |          | 52.420 | 9  | .955  | 1.0 | 00   | 39.99 | D   |
| ATOM | 4366 | N   |                | D            | 175 | 10 | 9.947                        | <u> </u> | 53.792 | 8  | 3.200 | 1.  | 00   | 38.49 | D   |
| ATOM | 4367 | CA  |                | D            | 175 |    | 09.787                       |          | 55.016 |    | .983  | 1.0 |      |       | D   |
| ATOM | 4368 | CB  |                | D            | 175 |    | 11.095                       |          | 55.812 |    | .045  |     |      | 38.62 | D   |
| ATOM | 4369 | CG  | LEU            |              | 175 |    | 12.127                       |          | 55.442 |    | 1113  | 1.  |      |       | Đ   |
|      |      |     | LEU            |              | 175 |    | 11.518                       |          | 55.648 |    | 489   |     |      | 39.24 | D   |
| ATOM | 4370 | CD1 |                |              |     |    |                              |          |        |    |       | 1.0 |      |       | D   |
| ATOM | 4371 | CD2 | LEU            |              | 175 |    | 12.577                       |          | 54.001 |    | 9.936 |     |      |       |     |
| ATOM | 4372 | C   | LEU            |              | 175 |    | 08.712                       |          | 55.892 |    | 3.372 |     |      | 37.31 | D   |
| ATOM | 4373 | 0   | LEU            |              | 175 |    | 08.885                       |          | 56.432 |    | 7.282 | 1.  |      |       | D   |
| ATOM | 4374 | N   | LYS            |              | 176 |    | 07.599                       |          | 56.033 |    | 0.076 |     |      | 35.14 | D   |
| ATOM | 4375 | CA  | LYS            |              | 176 |    | 06.511                       |          | 56.850 |    | 3.577 | 1.  |      |       |     |
| MOTA | 4376 | CB  | LYS            | D            | 176 | 10 | 05.175                       |          | 56.124 |    | 3.768 |     |      | 33.88 | D   |
| MOTA | 4377 | CG  | LYS            | D            | 176 | 10 | 04.204                       | : !      | 56.325 | 7  | 7.620 | 1.  | 00   | 36.72 | D   |
| ATOM | 4378 | CD  | LYS            | D            | 176 | 10 | 04.829                       | !        | 55.887 | e  | 5.295 | 1.  | 00   | 37.68 | D   |
| MOTA | 4379 | CE  | LYS            | D            | 176 | 10 | 03.820                       | ) !      | 55.913 | 5  | 5.155 | 1.  | 00   | 39.32 | D   |
| MOTA | 4380 | NZ  | LYS            | D            | 176 | 10 | 03.195                       | ; !      | 57.254 | 4  | 1.974 | 1.  | 00   | 40.75 | D   |
| ATOM | 4381 | C   | LYS            | D            | 176 | 10 | 06.523                       | , ,      | 58.166 | 9  | 3.335 | 1.  | 00   | 32.22 | D   |
| ATOM | 4382 | 0   | LYS            | D            | 176 | 10 | 06.272                       |          | 58.204 | 10 | .537  | 1.  | 00   | 32.35 | D   |
| ATOM | 4383 | N   | HIS            | D            | 177 | 10 | 06.825                       | ; !      | 59.243 | 8  | 3.625 | 1.  | 00   | 29.85 | D   |
| ATOM | 4384 | CA  | HIS            | D            | 177 | 10 | 06.897                       | , (      | 60.563 | ç  | 229   | 1.  | 00   | 29.87 | D   |
| ATOM | 4385 | CB  |                |              | 177 |    | 07.836                       |          | 61.456 |    | 3.411 | 1.  | 00   | 30.84 | D   |
| ATOM | 4386 | CG  | HIS            |              |     |    | 08.014                       |          | 62.830 |    | 3.979 |     |      | 31.41 | D   |
| ATOM | 4387 | CD2 |                | D            | 177 |    | 07.607                       |          | 64.042 |    | 3.529 |     |      | 32.01 | D   |
|      | 4388 | ND1 |                | D            | 177 |    | 08.695                       |          | 63.067 |    | 0.155 | 1.  |      |       | D   |
| ATOM |      |     | HIS            | D            | 177 |    | 08.704                       |          | 64.365 |    | 0.402 | 1.  |      |       | D   |
| ATOM | 4389 | CE1 |                |              | 177 |    | 08.70 <del>1</del><br>08.051 |          | 64.979 |    | 9.431 | 1.  |      |       | D   |
| ATOM | 4390 | NE2 |                | D            |     |    | 05.532                       |          | 61.228 |    | 9.332 | 1.  |      |       |     |
| ATOM | 4391 | C   | •              | D            | 177 |    | 03.33 <i>2</i><br>04.709     |          | 61.121 |    | 3.429 | 1.  |      |       |     |
| ATOM | 4392 | 0   |                | D            | 177 |    |                              |          | 61.922 |    | 0.439 | 1.  |      |       | D   |
| ATOM | 4393 | N   | TRP            | D            | 178 |    | 05.295                       |          | 62.617 |    | 0.619 | 1.  |      |       | D   |
| ATOM | 4394 | CA  | TRP            | D            | 178 |    | 04.031                       |          |        |    | 2.048 | 1.  |      |       | D   |
| ATOM | 4395 | CB  | TRP            | D            | 178 |    | 03.518                       |          | 62.464 |    | 2.243 | 1.  |      |       |     |
| ATOM | 4396 | CG  | TRP            | D            | 178 |    | 02.205                       |          | 63.165 |    |       |     |      |       |     |
| MOTA | 4397 | CD2 |                | D            | 178 |    | 01.939                       |          | 64.262 |    | 3.122 | 1.  |      |       |     |
| ATOM | 4398 | CE2 | TRP            | D            | 178 |    | 00.580                       |          | 64.608 |    | 2.959 | 1.  |      |       |     |
| ATOM | 4399 | CE3 |                | D            | 178 |    | 02.714                       |          | 64.986 |    | 4.033 |     |      |       |     |
| ATOM | 4400 | CD1 |                | D            | 178 |    | 01.028                       |          | 62.898 |    | 1.599 |     | 00   |       |     |
| MOTA | 4401 | NE1 |                | D            | 178 |    | 00.050                       |          | 63.759 |    | 2.023 | 1.  |      |       |     |
| MOTA | 4402 | CZ2 |                | D            |     |    | 99.980                       |          | 65.649 |    | 3.675 |     | 00   |       |     |
| MOTA | 4403 | CZ3 | TRP            | D            |     |    | 02.118                       |          | 66.021 |    | 4.746 |     |      | 27.98 |     |
| MOTA | 4404 | CH2 | TRP            | D            |     |    | 00.763                       |          | 66.340 |    | 4.562 |     |      | 27.02 |     |
| MOTA | 4405 | C   | TRP            | D            |     |    | 04.185                       |          | 64.100 |    | 0.294 |     |      | 30.33 |     |
| ATOM | 4406 | 0   | TRP            | D            |     |    | 04.756                       |          | 64.824 |    | 1.143 |     | 00   |       |     |
| ATOM | 4407 | OXT | TRP            | D            | 178 |    | 03.745                       |          | 64.512 |    | 9.193 |     | 00   |       |     |
| MOTA | 4408 | CB  | SER            | E            | 3   |    | 13.641                       |          | 35.776 |    | 8.019 |     | 00   |       |     |
| MOTA | 4409 | OG  | SER            | E            | 3   | 1. | 12.349                       |          | 35.748 |    | 8.608 |     |      | 59.65 |     |
| ATOM | 4410 | C   | SER            | E            | 3   | 1  | 14.352                       | 2        | 33.977 |    | 9.601 |     | 00   |       |     |
| ATOM | 4411 | 0   | SER            | E            | 3   | 1  | 14.571                       |          | 32.945 |    | 8.970 |     |      | 57.45 |     |
| ATOM | 4412 | N   | SER            | $\mathbf{E}$ | 3   |    | 16.055                       |          | 35.305 |    | 8.352 |     |      | 59.31 |     |
| ATOM | 4413 | CA  | SER            | E            | 3   | 1  | 14.719                       | €        | 35.342 | -  | 9.020 |     |      | 58.85 |     |
| MOTA | 4414 | N   | PRO            | E            | 4   | 1  | 13.799                       | €        | 33.958 | 1  | 0.824 |     | 00   |       |     |
| ATOM | 4415 | CD  | PRO            | E            | 4   | 1  | 13.679                       | €        | 35.092 | 1: | 1.759 | 1.  | 00   | 56.20 |     |
| ATOM | 4416 | CA  | PRO            | E            | 4   | 1  | 13.403                       | 3        | 32.704 | 1. | 1.472 | 1.  | 00   | 55.50 |     |
| ATOM | 4417 | CB  | PRO            | E            | 4   | 1  | 13.362                       | 2        | 33.086 | 1: | 2.946 | 1.  | 00   | 56.49 | E   |
| ATOM | 4418 | CG  | PRO            | E            | 4   | 1  | 12.870                       | 3        | 34.493 | 1. | 2.893 | 1.  | 00   | 56.56 | E   |
| ATOM | 4419 | С   | PRO            | E            | 4   | 1  | 12.046                       | 5        | 32.217 | 1  | 0.957 | 1.  | 00   | 53.68 | E   |
| ATOM | 4420 | 0   | PRO            | E            | 4   | 1  | 11.168                       | В        | 33.024 | 1  | 0.648 | 1.  | 00   | 54.06 | E   |
| ATOM | 4421 | N   | GLU            | E            | 5   | 1  | 11.875                       | 5        | 30.903 | 1  | 0.855 | 1.  | 00   | 51.52 | E   |
| MOTA | 4422 | CA  | GLU            | E            | 5   | 1  | 10.610                       | 0        | 30.360 | 1  | 0.373 | 1.  | 00   | 49.69 | E   |
| MOTA | 4423 | СВ  | GĽU            |              |     | 1  | 10.831                       | 1.       | 29.007 |    | 9.676 | 1.  | 0.0  | 53.42 | E   |
| ATOM | 4424 | CG  | GLU            |              |     | 1  | 11.305                       | 5        | 27.867 | 1  | 0.561 | 1.  | 00   | 57.99 | E   |
| MOTA | 4425 | CD  | GLU            |              |     | 1  | 11.671                       | 1        | 26.626 |    | 9.758 | 1.  | 00   | 60.86 | E   |
| ATOM | 4426 | OE1 |                |              |     |    | 10.857                       |          | 26.196 |    | 8.908 |     |      | 62.41 |     |
| ATOM | 4427 | OE2 |                |              |     |    | 12.772                       |          | 26.077 |    | 9.979 | 1.  | 00   | 63.42 | E   |
| ATOM | 4428 | C   | GLU            |              |     |    | .09.619                      |          | 30.231 |    | 1.525 | 1.  | 00   | 45.48 | E   |
| ATOM | 4429 | 0   | GLU            |              |     |    | .09.919                      |          | 29.644 |    | 2.564 | 1.  | 00   | 46.07 | E   |
| ATOM | 4430 | N   | ASP            |              |     |    | .08.436                      |          | 30.800 | 1  | 1.337 | 1.  | 00   | 40.87 | E   |
| ATOM | 4431 | CA  | ASP            |              |     |    | 07.403                       |          | 30.782 |    | 2.363 |     |      | 36.20 |     |
| ATOM | 4432 | CB  | ASP            |              |     |    | .06.911                      |          | 32.214 |    | 2.617 |     |      | 35.53 |     |
| ATOM | 4433 | CG  | ASP            |              |     |    | .05.995                      |          | 32.323 |    | 3.827 |     |      | 33.60 |     |
| ATOM | 4434 |     | ASP            |              |     |    | .05.185                      |          | 33.268 |    | 3.864 |     |      | 34.88 |     |
| ATOM | 4435 |     | ASP            |              |     |    | .06.089                      |          | 31.487 |    | 4.748 |     | . 00 | 33.84 | E E |
|      | _    |     | - <del>-</del> |              |     |    |                              |          |        |    |       |     |      |       |     |

| ATOM | 4436 | C   | ASP | E            | 6   | 106.229 | 29.915 | 11.938 | 1.00 33.07 | ${f E}$    |
|------|------|-----|-----|--------------|-----|---------|--------|--------|------------|------------|
| ATOM | 4437 | 0   | ASP | E            | 6   | 105.882 | 29.867 | 10.762 | 1.00 32.95 | E          |
| ATOM | 4438 | N   |     | E            | 7   | 105.632 | 29.228 | 12.906 | 1.00 31.08 | E          |
|      |      | CA  |     | E            | 7   | 104.466 | 28.380 | 12.669 | 1.00 29.18 | E          |
| ATOM | 4439 |     |     |              |     |         |        | 13.116 | 1.00 31.11 | E          |
| ATOM | 4440 | CB  | PHE | E            | 7   | 104.760 | 26.950 |        |            |            |
| MOTA | 4441 | CG  | PHE | E            | 7   | 105.833 | 26.278 | 12.305 | 1.00 31.97 | E          |
| ATOM | 4442 | CD1 | PHE | $\mathbf{E}$ | 7   | 105.544 | 25.745 | 11.053 | 1.00 31.67 | E          |
| ATOM | 4443 | CD2 | PHE | E            | 7   | 107.141 | 26.200 | 12.782 | 1.00 32.49 | E          |
| ATOM | 4444 | CE1 | PHE | E            | 7   | 106.546 | 25.141 | 10.282 | 1.00 33.41 | E          |
| ATOM | 4445 | CE2 | PHE | E            | 7   | 108.148 | 25.602 | 12.023 | 1.00 32.29 | E          |
|      |      |     |     |              |     | 107.850 | 25.071 | 10.770 | 1.00 31.62 | E          |
| ATOM | 4446 | CZ  | PHE | E            | 7   |         |        |        |            |            |
| ATOM | 4447 | C   | PHE | E            | 7   | 103.345 | 28.994 | 13.504 | 1.00 27.19 | E          |
| MOTA | 4448 | 0   | PHE | E            | 7   | 103.483 | 29.151 | 14.715 | 1.00 25.77 | E          |
| MOTA | 4449 | N   | VAL | E            | 8   | 102.238 | 29.340 | 12.855 | 1.00 25.52 | E          |
| ATOM | 4450 | CA  | VAL | E            | 8   | 101.127 | 29.998 | 13.538 | 1.00 23.97 | E          |
| ATOM | 4451 | CB  | VAL | E            | 8   | 100.903 | 31.411 | 12.949 | 1.00 22.51 | E          |
| ATOM | 4452 | CG1 |     | E            | 8   | 99.789  | 32.130 | 13.703 | 1.00 20.58 | E          |
|      |      |     |     |              |     | 102.205 | 32.211 | 13.002 | 1.00 22.51 | E          |
| ATOM | 4453 | CG2 |     | E            | 8   |         |        |        |            |            |
| MOTA | 4454 | C   |     | E            | 8   | 99.785  | 29.275 | 13.510 | 1.00 24.21 | E          |
| ATOM | 4455 | 0   | VAL | E            | 8   | 99.369  | 28.736 | 12.485 | 1.00 25.26 | E          |
| ATOM | 4456 | N   | TYR | E            | 9 ' | 99.096  | 29.288 | 14.643 | 1.00 23.98 | E          |
| MOTA | 4457 | CA  | TYR | $\mathbf{E}$ | 9   | 97.786  | 28.663 | 14.724 | 1.00 23.53 | E          |
| ATOM | 4458 | CB  | TYR | E            | 9   | 97.796  | 27.505 | 15.718 | 1.00 24.07 | E          |
| ATOM | 4459 | CG  | TYR |              | 9   | 96.562  | 26.640 | 15.627 | 1.00 25.27 | E          |
|      |      |     |     |              |     |         | 25.460 | 14.889 | 1.00 27.68 | E          |
| ATOM | 4460 | CD1 | TYR |              | 9   | 96.570  |        |        |            | E          |
| MOTA | 4461 | CE1 | TYR |              | 9   | 95.435  | 24.658 | 14.801 | 1.00 27.67 |            |
| MOTA | 4462 | CD2 | TYR | E            | 9   | 95.384  | 27.002 | 16.272 | 1.00 24.82 | E          |
| MOTA | 4463 | CE2 | TYR | $\mathbf{E}$ | 9   | 94.245  | 26.211 | 16.191 | 1.00 25.29 | E          |
| ATOM | 4464 | CZ  | TYR | E            | 9   | 94.277  | 25.040 | 15.458 | 1.00 26.82 | E          |
| ATOM | 4465 | OH  | TYR | E            | 9   | 93.163  | 24.240 | 15.403 | 1.00 27.65 | ${f E}$    |
| ATOM | 4466 | C   | TYR |              | 9   | 96.775  | 29.707 | 15.179 | 1.00 23.14 | E          |
|      | 4467 | 0   | TYR |              | 9   | 97.037  | 30.476 | 16.106 | 1.00 23.66 | E          |
| MOTA |      |     |     |              |     |         |        | 14.523 | 1.00 21.64 | E          |
| MOTA | 4468 | N   | GLN |              | 10  | 95.622  | 29.739 |        |            |            |
| ATOM | 4469 | CA  | GLN | E            | 10  | 94.582  | 30.686 | 14.892 | 1.00 21.14 | E          |
| ATOM | 4470 | CB  | GLN | $\mathbf{E}$ | 10  | 94.438  | 31.793 | 13.843 | 1.00 20.35 | E          |
| ATOM | 4471 | CG  | GLN | $\mathbf{E}$ | 10  | 95.677  | 32.598 | 13.529 | 1.00 19.58 | E          |
| ATOM | 4472 | CD  | GLN | E            | 10  | 95.410  | 33.655 | 12.461 | 1.00 18.44 | E          |
| ATOM | 4473 | OE1 | GLN | E            | 10  | 94.498  | 34.474 | 12.593 | 1.00 19.00 | ${f E}$    |
| ATOM | 4474 | NE2 | GLN |              | 10  | 96.206  | 33.640 | 11.400 | 1.00 18.89 | E          |
|      |      |     |     |              |     | 93.232  | 29.997 | 15.006 | 1.00 19.74 | E          |
| ATOM | 4475 | C   | GLN |              | 10  |         |        |        |            | E          |
| MOTA | 4476 | 0   | -   |              | 10  | 92.904  | 29.113 | 14.223 | 1.00 21.71 |            |
| ATOM | 4477 | N   | PHE | E            | 11  | 92.450  | 30.408 | 15.991 | 1.00 19.13 | E          |
| ATOM | 4478 | CA  | PHE | $\mathbf{E}$ | 11  | 91.108  | 29.887 | 16.145 | 1.00 16.86 | E          |
| ATOM | 4479 | CB  | PHE | E            | 11  | 90.981  | 28.881 | 17.271 | 1.00 16.74 | E          |
| ATOM | 4480 | CG  | PHE | E            | 11  | 89.562  | 28.466 | 17.517 | 1.00 18.71 | E          |
| MOTA | 4481 | CD1 | PHE | E            | 11  | 88.910  | 27.615 | 16.626 | 1.00 21.10 | E          |
| ATOM | 4482 | CD2 |     |              | 11  | 88.849  | 28.985 | 18.595 | 1.00 18.11 | E          |
|      |      |     |     |              |     | 87.559  | 27.290 | 16.807 | 1.00 22.40 | E          |
| MOTA | 4483 | CE1 |     |              | 11  |         |        |        |            |            |
| MOTA | 4484 | CE2 | PHE | E            | 11  | 87.499  | 28.671 | 18.789 | 1.00 15.75 | E          |
| ATOM | 4485 | CZ  | PHE | E            | 11  | 86.854  | 27.826 | 17.898 | 1.00 21.25 | E          |
| MOTA | 4486 | C   | PHE | E            | 11  | 90.218  | 31.069 | 16.451 | 1.00 17.10 | E          |
| ATOM | 4487 | 0   | PHE | E            | 11  | 90.461  | 31.819 | 17.406 | 1.00 13.97 | ${f E}$    |
| ATOM | 4488 | N   | LYS |              | 12  | 89.197  | 31.241 | 15.622 | 1.00 16.07 | E          |
| ATOM | 4489 | CA  | LYS |              | 12  | 88.266  | 32.338 | 15.789 | 1.00 16.96 | E          |
|      |      |     |     |              |     | 88.308  | 33.246 | 14.564 | 1.00 17.05 | E          |
| MOTA | 4490 | CB  | LYS |              | 12  |         |        |        |            | E          |
| MOTA | 4491 | CG  | LYS |              | 12  | 89.703  | 33.748 | 14.200 | 1.00 17.57 |            |
| MOTA | 4492 | CD  | LYS | E            | 12  | 89.663  | 34.535 | 12.888 | 1.00 18.92 | E          |
| ATOM | 4493 | CE  | LYS | E            | 12  | 91.018  | 35.136 | 12.532 | 1.00 17.07 | E          |
| MOTA | 4494 | NZ  | LYS | E            | 12  | 90.920  | 36.063 | 11.362 | 1.00 14.26 | ${f E}$    |
| ATOM | 4495 | C   | LYS | E            | 12  | 86.856  | 31.803 | 15.987 | 1.00 17.87 | · <b>E</b> |
| ATOM | 4496 | Ō   | LYS |              | 12  | 86.354  | 31.039 | 15.165 | 1.00 16.82 | E          |
|      |      |     |     |              |     | 86.235  | 32.195 | 17.098 | 1.00 18.19 | E          |
| MOTA | 4497 | N   | GLY |              | 13  |         |        |        | 1.00 19.62 | E          |
| ATOM | 4498 | CA  | GLY |              | 13  | 84.875  | 31.776 | 17.391 |            |            |
| MOTA | 4499 | C   | GLY |              | 13  | 83.991  | 32.939 | 17.010 | 1.00 19.93 | E          |
| ATOM | 4500 | 0   | GLY | E            | 13  | 83.539  | 33.695 | 17.868 | 1.00 21.65 | E          |
| ATOM | 4501 | N   | MET | E            | 14  | 83.728  | 33.070 | 15.715 | 1.00 19.89 | E          |
| ATOM | 4502 | CA  | MET |              | 14  | 82.947  | 34.184 | 15.197 | 1.00 20.54 | E          |
| ATOM | 4503 | CB  | MET |              | 14  | 83.430  | 34.490 | 13.785 | 1.00 21.02 | E          |
| MOTA | 4504 | CG  | MET |              | 14  | 84.937  | 34.657 | 13.751 | 1.00 23.04 | E          |
|      |      |     |     |              |     | 85.587  | 35.218 | 12.190 | 1.00 25.32 | E          |
| ATOM | 4505 | SD  | MET |              | 14  |         |        |        |            | E          |
| ATOM | 4506 | CE  | MET |              | 14  | 85.218  | 36.938 | 12.284 | 1.00 20.32 |            |
| MOTA | 4507 | C   | MET |              | 14  | 81.429  | 34.078 | 15.219 | 1.00 20.83 | E          |
| ATOM | 4508 | 0   | MET | E            | 14  | 80.859  | 32.999 | 15.101 | 1.00 20.77 | E          |
| MOTA | 4509 | N   | CYS | E            | 15  | 80.789  | 35.232 | 15.377 | 1.00 20.66 | E          |
|      |      |     |     |              |     |         |        |        |            |            |

| MOTA | 4510          | CA          | CYS | E            | 15 | 79.332 | 35.336 | 15.418 | 1.00 22.09 | E   |
|------|---------------|-------------|-----|--------------|----|--------|--------|--------|------------|-----|
| ATOM | 4511          | С           | CYS | E            | 15 | 78.882 | 36.495 | 14.524 | 1.00 21.39 | E   |
| ATOM | 4512          | 0           | CYS | E            | 15 | 79.393 | 37.614 | 14.644 | 1.00 19.38 | E   |
| ATOM | 4513          | CB          |     | E            | 15 | 78.841 | 35.616 | 16.848 | 1.00 22.10 | E   |
| ATOM | 4514          | SG          |     | E            | 15 | 78.970 | 34.281 | 18.094 | 1.00 26.75 | E   |
| ATOM | 4515          | N           | TYR |              | 16 | 77.931 | 36.229 | 13.633 | 1.00 20.94 | E   |
| ATOM | 4516          | CA          | TYR |              | 16 | 77.408 | 37.270 | 12.752 | 1.00 21.23 | E   |
| ATOM | 4517          | CB          | TYR |              | 16 | 77.548 | 36.858 | 11.287 | 1.00 18.37 | E   |
|      | 4518          | CG          | TYR |              | 16 | 78.972 | 36.574 | 10.876 | 1.00 19.23 | E   |
| ATOM |               | CD1         | TYR |              | 16 | 79.576 | 35.354 | 11.178 | 1.00 18.71 | · E |
| ATOM | 4519          |             |     |              |    | 80.875 | 35.084 | 10.789 | 1.00 18.69 | E   |
| ATOM | 4520          | CE1         | TYR |              | 16 |        | 37.524 | 10.733 | 1.00 20.25 | E   |
| ATOM | 4521          | CD2         | TYR |              | 16 | 79.715 | 37.324 | 9.785  | 1.00 20.25 | E   |
| ATOM | 4522          | CE2         | TYR |              | 16 | 81.022 | 36.047 | 10.088 | 1.00 21.03 | E   |
| ATOM | 4523          | CZ          | TYR |              | 16 | 81.595 |        |        | 1.00 21.03 | E   |
| ATOM | 4524          | OH          | TYR |              | 16 | 82.872 | 35.775 | 9.662  |            | E   |
| ATOM | 4525          | C           | TYR |              | 16 | 75.938 | 37.543 | 13.085 |            | E   |
| ATOM | 4526          | 0           | TYR |              | 16 | 75.132 | 36.612 | 13.199 | 1.00 21.71 |     |
| ATOM | 4527          | N           | PHE | E            | 17 | 75.607 | 38.825 | 13.247 | 1.00 23.05 | E   |
| ATOM | 4528          | CA          | PHE | E            | 17 | 74.254 | 39.263 | 13.591 | 1.00 23.67 | E   |
| ATOM | 4529          | CB          | PHE | E            | 17 | 74.261 | 39.988 | 14.942 | 1.00 22.49 | E   |
| ATOM | 4530          | CG          | PHE | E            | 17 | 74.813 | 39.172 | 16.084 | 1.00 25.10 | E   |
| ATOM | 4531          | CD1         | PHE | E            | 17 | 74.007 | 38.270 | 16.772 | 1.00 24.22 | E   |
| ATOM | 4532          | CD2         | PHE | E            | 17 | 76.140 | 39.318 | 16.482 | 1.00 24.67 | E   |
| MOTA | 4533          | CE1         | PHE | E            | 17 | 74.516 | 37.526 | 17.844 | 1.00 24.68 | E   |
| MOTA | 4534          | CE2         | PHE | E            | 17 | 76.656 | 38.579 | 17.548 | 1.00 24.45 | E   |
| MOTA | 4535          | CZ          | PHE | E            | 17 | 75.843 | 37.684 | 18.228 | 1.00 24.13 | E   |
| MOTA | 4536          | C           | PHE | E            | 17 | 73.673 | 40.223 | 12.549 | 1.00 25.10 | E   |
| MOTA | 4537          | 0           | PHE | E            | 17 | 74.390 | 41.034 | 11.971 | 1.00 24.65 | E   |
| ATOM | 4538          | N           | THR | E            | 18 | 72.365 | 40.122 | 12.333 | 1.00 27.15 | E   |
| ATOM | 4539          | CA          | THR | E            | 18 | 71.638 | 40.983 | 11.405 | 1.00 29.69 | E   |
| ATOM | 4540          | CB          | THR | $\mathbf{E}$ | 18 | 71.609 | 40.397 | 9.978  | 1.00 29.46 | E   |
| ATOM | 4541          | OG1         | THR | E            | 18 | 72.949 | 40.252 | 9.500  | 1.00 32.31 | E   |
| ATOM | 4542          | CG2         | THR | E            | 18 | 70.863 | 41.321 | 9.032  | 1.00 28.09 | E   |
| ATOM | 4543          | C           | THR | E            | 18 | 70.217 | 41.080 | 11.950 | 1.00 31.56 | E   |
| MOTA | 4544          | 0           | THR | E            | 18 | 69.638 | 40.071 | 12.355 | 1.00 32.09 | E   |
| ATOM | 4545          | N           | ASN | E            | 19 | 69.661 | 42.290 | 11.969 | 1.00 33.38 | E   |
| ATOM | 4546          | CA.         | ASN | E            | 19 | 68.316 | 42.495 | 12.497 | 1.00 35.02 | E   |
| ATOM | 4547          | CB          | ASN |              | 19 | 67.279 | 41.755 | 11.647 | 1.00 37.99 | E   |
| ATOM | 4548          | CG          | ASN |              | 19 | 66.779 | 42.587 | 10.489 | 1.00 42.21 | E   |
| ATOM | 4549          | OD1         | ASN |              | 19 | 66.271 | 43.695 | 10.687 | 1.00 47.70 | E   |
| ATOM | 4550          | ND2         |     |              | 19 | 66.910 | 42.063 | 9.273  | 1.00 43.13 | E   |
| ATOM | 4551          | C           | ASN |              | 19 | 68.264 | 41.977 | 13.924 | 1.00 34.10 | E   |
| ATOM | 4552          | 0           | ASN |              | 19 | 67.487 | 41.077 | 14.233 | 1.00 34.27 | E   |
| ATOM | 4553          | N           | GLY |              | 20 | 69.088 | 42.553 | 14.795 | 1.00 33.50 | E   |
| ATOM | 4554          | CA          | GLY |              | 20 | 69.120 | 42.106 | 16.175 | 1.00 33.61 | E   |
| ATOM | 4555          | C           | GLY |              | 20 | 69.575 | 40.663 | 16.175 | 1.00 33.98 | E   |
| ATOM | 4556          | 0           | GLY |              | 20 | 70.580 | 40.343 | 15.541 | 1.00 34.56 | E   |
|      | 4557          |             | THR |              | 21 | 68.847 | 39.789 | 16.866 | 1.00 34.08 | E   |
| ATOM |               | N           | THR |              | 21 | 69.198 | 38.372 | 16.897 | 1.00 35.71 | E   |
| ATOM | 4558          | CA          |     |              | 21 | 69.193 | 37.809 | 18.335 | 1.00 37.69 | E   |
| ATOM | 4559          | CB          | THR |              |    | 67.907 | 38.026 | 18.930 | 1.00 37.33 | E   |
| ATOM | 4560          | OG1         |     |              | 21 | 70.268 | 38.480 | 19.174 | 1.00 38.05 | E   |
| ATOM | 4561          | CG2         |     |              | 21 | 68.251 | 37.517 | 16.050 | 1.00 35.19 | E   |
| ATOM | 4562          | C           | THR |              | 21 | 68.251 | 36.324 | 16.303 | 1.00 36.08 | E   |
| ATOM | 4563          | 0           | THR |              | 21 |        | 38.129 | 15.052 | 1.00 34.15 | E   |
| MOTA | 4564          | И           | GLU |              | 22 | 67.619 |        | 14.176 | 1.00 34.13 | E   |
| ATOM | 4565          | CA          | GLU |              | 22 | 66.705 | 37.405 |        | 1.00 34.00 | E   |
| MOTA | 4566          | CB          | GLU |              | 22 | 65.868 | 38.388 | 13.354 |            | E   |
| MOTA | 4567          | CG          | GLU |              | 22 | 64.781 | 39.073 | 14.164 | 1.00 33.66 | E   |
| ATOM | 4568          | CD          | GLU |              | 22 | 64.173 | 40.266 | 13.451 | 1.00 35.85 | E   |
| ATOM | 4569          | OE1         |     |              | 22 | 63.865 | 40.151 | 12.244 | 1.00 35.10 | E   |
| MOTA | 4570          | OE2         |     |              | 22 | 63.995 | 41.317 | 14.105 | 1.00 38.34 |     |
| ATOM | 4571          | C           | GLU | E            | 22 | 67.523 | 36.503 | 13.265 | 1.00 33.80 | E   |
| ATOM | 4572          | 0           | GLU | E            | 22 | 67.205 | 35.329 | 13.092 | 1.00 34.50 | E   |
| MOTA | 4573          | N           | ARG | E            | 23 | 68.574 | 37.065 | 12.678 | 1.00 33.59 | E   |
| MOTA | 4574          | CA          | ARG | E            | 23 | 69.467 | 36.298 | 11.818 | 1.00 33.75 | E   |
| ATOM | 4575          | CB          | ARG | E            | 23 | 69.703 | 36.996 | 10.470 | 1.00 36.33 | E   |
| ATOM | 4576          | CG          | ARG | E            | 23 | 68.599 | 36.815 | 9.434  | 1.00 42.06 | E   |
| MOTA | 4577          | CD          | ARG | E            | 23 | 67.342 | 37.577 | 9.813  | 1.00 47.83 | E   |
| ATOM | 4578          | NE          | ARG | E            | 23 | 66.408 | 37.696 | 8.695  | 1.00 51.02 | E   |
| ATOM | 4579          | CZ          | ARG |              | 23 | 65.349 | 38.502 | 8.690  | 1.00 52.66 | E   |
| ATOM | 4580          | NHI         |     |              | 23 | 65.087 | 39.263 | 9.747  | 1.00 50.82 | E   |
| MOTA | 4581          | NH2         |     |              | 23 | 64.555 | 38.555 | 7.626  | 1.00 53.53 | E   |
| ATOM | 4582          | C           | ARG |              | 23 | 70.788 | 36.177 | 12.560 | 1.00 30.98 | E   |
| MOTA | 4583          | 0           | ARG |              | 23 | 71.465 | 37.172 | 12.827 | 1.00 30.90 | E   |
|      | - <del></del> | <del></del> |     | •            |    |        | _      | `      |            |     |

| ATOM | 4584 | N                | VAL   | E            | 24 | 71.149 34.955 12.                       | 909 1 | L.00 28.33 | E            |
|------|------|------------------|-------|--------------|----|-----------------------------------------|-------|------------|--------------|
| ATOM | 4585 | CA               | VAL   |              | 24 | 72.394 34.735 13.                       | 621 ] | L.00 25.06 | E            |
| ATOM | 4586 | CB               | VAL   |              | 24 | 72.148 34.500 15.                       | 129   | L.00 22.98 | E            |
| ATOM | 4587 | CG1              | VAL   |              | 24 | 73.456 34.106 15.                       | 817   | 1.00 21.05 | E            |
| ATOM | 4588 | CG2              | VAL   |              | 24 | 71.582 35.762 15.                       | 763   | L.00 21.04 | E            |
| ATOM | 4589 | C                | VAL   |              | 24 |                                         | .049  | 1.00 23.08 | E            |
| ATOM | 4590 | 0                | VAL   |              | 24 |                                         | .914  | 1.00 24.17 | E            |
| ATOM | 4591 | N                | ARG   |              | 25 |                                         |       | 1.00 23.02 | E            |
|      | 4592 | CA               | ARG   |              | 25 | • • • • • •                             |       | 1.00 23.30 | E            |
| ATOM |      |                  | ARG   |              | 25 |                                         |       | 1.00 24.06 | E            |
| ATOM | 4593 | CB               |       |              | 25 | , = - =                                 |       | 1.00 25.99 | E            |
| ATOM | 4594 | CG               | ARG   |              |    | , , , , , , , , , , , , , , , , , , , , |       | 1.00 28.29 | E            |
| ATOM | 4595 | CD               | ARG   |              | 25 |                                         |       | 1.00 29.69 | E            |
| ATOM | 4596 | NE               | ARG   |              | 25 | _                                       |       | 1.00 29.57 | E            |
| ATOM | 4597 | CZ               | ARG   |              | 25 | _                                       | -     | 1.00 27.28 | E            |
| ATOM | 4598 | NH1              | ARG   |              | 25 |                                         |       |            | E            |
| ATOM | 4599 | NH2              | ARG   |              | 25 |                                         |       | -          | E<br>E       |
| ATOM | 4600 | C                | ARG   |              | 25 |                                         |       | 1.00 22.65 |              |
| ATOM | 4601 | 0                | ARG   | E            | 25 |                                         |       | 1.00 22.47 | E            |
| MOTA | 4602 | N                | LEU   | E            | 26 |                                         | _     | 1.00 21.04 | E            |
| MOTA | 4603 | CA               | LEU   | E            | 26 | , , , , , , , , , , , , , , , , , , , , |       | 1.00 21.94 | E            |
| MOTA | 4604 | CB               | LEU   | E            | 26 |                                         |       | 1.00 21.37 | E            |
| MOTA | 4605 | CG               | LEU   | E            | 26 | ·                                       | -     | 1.00 22.89 | E            |
| MOTA | 4606 | CD1              | LEU   | E            | 26 | 78.723 29.567 17.                       | •     | 1.00 25.16 | E            |
| ATOM | 4607 | CD2              | LEU   | E            | 26 | 79.483 28.466 15                        | .493  | 1.00 23.51 | E            |
| ATOM | 4608 | С                | LEU   | $\mathbf{E}$ | 26 | 79.032 30.552 13                        | .193  | 1.00 21.17 | E            |
| ATOM | 4609 | 0                | LEU   | E            | 26 | 78.637 29.674 12                        | .432  | 1.00 21.77 | E            |
| ATOM | 4610 | N                | VAL   | E            | 27 | 80.285 30.983 13                        | .201  | 1.00 19.92 | ${f E}$      |
| ATOM | 4611 | CA               | VAL   |              | 27 | 81.278 30.358 12                        | .345  | 1.00 21.31 | E            |
| ATOM | 4612 | CB               | VAL   |              | 27 | 81.530 31.166 11                        | .039  | 1.00 20.44 | E            |
| ATOM | 4613 | CG1              |       |              | 27 | 82.524 30.420 10                        | .156  | 1.00 21.63 | E            |
| ATOM | 4614 | CG2              |       |              | 27 |                                         | .275  | 1.00 20.48 | E            |
| MOTA | 4615 | C                | VAL   |              | 27 |                                         | .112  | 1.00 21.74 | E            |
| MOTA | 4616 | 0                | VAL   |              | 27 |                                         |       | 1.00 24.11 | E            |
|      |      | N                | SER   |              | 28 |                                         |       | 1.00 20.88 | $\mathbf{E}$ |
| ATOM | 4617 |                  | SER   |              | 28 | <b>4 - 1 - - - - - - - - - -</b>        |       | 1.00 21.53 | E            |
| ATOM | 4618 | CA               |       |              | 28 | <u> </u>                                | _     | 1.00 20.62 | E            |
| MOTA | 4619 | CB               | SER   |              |    | ••••                                    |       | 1.00 29.22 | E            |
| ATOM | 4620 | OG               | SER   |              | 28 |                                         |       | 1.00 21.41 | E            |
| MOTA | 4621 | C                | SER   |              | 28 |                                         |       | 1.00 19.11 | E            |
| MOTA | 4622 | 0                | SER   |              | 28 | <u> </u>                                |       | 1.00 18.23 | E            |
| MOTA | 4623 | N                | ARG   |              | 29 |                                         | .105  | 1.00 18.45 | E            |
| ATOM | 4624 | CA               | ARG   |              | 29 |                                         |       | 1.00 16.45 | E            |
| ATOM | 4625 | CB               | ARG   |              | 29 |                                         |       |            | E            |
| MOTA | 4626 | CG               | ARG   |              | 29 |                                         | .810  | 1.00 17.70 |              |
| ATOM | 4627 | $^{\mathrm{CD}}$ | ARG   | E            | 29 |                                         | .109  | 1.00 18.98 | E            |
| ATOM | 4628 | NE               | ARG   | E            | 29 |                                         | .705  | 1.00 20.82 | E            |
| ATOM | 4629 | CZ               | ARG   | E            | 29 |                                         | .586  | 1.00 22.76 | E            |
| MOTA | 4630 | NH1              | . ARG | E            | 29 |                                         | .743  | 1.00 21.05 | E            |
| MOTA | 4631 | NH2              | ARG   | E            | 29 | <del></del>                             | .309  | 1.00 20.13 | E            |
| ATOM | 4632 | C                | ARG   | E            | 29 | 88.842 28.435 12                        | .710  | 1.00 18.44 | E            |
| ATOM | 4633 | 0                | ARG   | E            | 29 | 89.401 29.171 13                        | .520  | 1.00 19.35 | E            |
| ATOM | 4634 | N                | SER   | E            | 30 | 89.351 27.269 12                        | 2.315 | 1.00 18.98 | E            |
| ATOM | 4635 | CA               | SER   | E            | 30 | 90.657 26.788 12                        | 2.774 | 1.00 21.70 | E            |
| ATOM | 4636 | СВ               | SEF   | E S          | 30 | 90.619 25.284 13                        | .028  | 1.00 22.10 | E            |
| ATOM | 4637 | OG               | SEF   |              | 30 | 89.718 24.969 14                        | 1.072 | 1.00 27.24 | ${f E}$      |
| ATOM | 4638 | C                | SEF   |              | 30 | 91.637 27.119 11                        | 639   | 1.00 23.03 | $\mathbf{E}$ |
| ATOM | 4639 | 0                | SEF   |              | 30 | 91.509 26.604 10                        | .528  | 1.00 23.56 | E            |
| ATOM | 4640 | N                |       | EE           | 31 |                                         | 1.927 | 1.00 23.05 | E            |
|      | 4641 | CA               |       | EE           | 31 | <del>-</del>                            | ).923 | 1.00 22.24 | E            |
| ATOM |      | CB               |       | E            | 31 |                                         | 0.856 | 1.00 22.84 | E            |
| ATOM | 4642 |                  |       |              | 31 | · · · · · · · · · · · · · · · · · ·     | 9.545 | 1.00 19.19 | E            |
| MOTA | 4643 | CG2              |       | E            | 31 | -                                       | L.043 | 1.00 24.76 | E            |
| ATOM | 4644 | CG               |       | E            |    |                                         | 0.047 | 1.00 29.25 | E            |
| MOTA | 4645 | CD:              |       | <b>E</b> 5   | 31 |                                         | 1.134 | 1.00 24.53 | E            |
| ATOM | 4646 |                  |       | E            | 31 |                                         | 2.225 | 1.00 24.33 | E            |
| ATOM | 4647 |                  |       | EE           |    | _                                       | 0.081 | 1.00 22.34 | E            |
| ATOM | 4648 |                  |       | R E          |    |                                         |       | 1.00 24.41 | E            |
| MOTA | 4649 |                  |       | RE           | 32 |                                         | 0.120 | 1.00 24.27 | E            |
| MOTA | 4650 |                  |       | RE           | 32 |                                         | 9.417 |            | E            |
| MOTA | 4651 |                  |       | RE           |    |                                         | 9.444 | 1.00 29.24 | E            |
| ATOM | 4652 |                  |       | R E          |    |                                         | 0.649 | 1.00 30.69 | E            |
| MOTA | 4653 |                  |       | R E          |    |                                         | 0.683 | 1.00 32.83 | E            |
| MOTA | 4654 |                  |       | R E          |    | <del>-</del>                            | 8.267 | 1.00 31.46 | E            |
| MOTA | 4655 | CE               |       | R E          |    |                                         | 8.288 | 1.00 32.58 |              |
| MOTA | 4656 | CZ               | TY.   | R E          | 32 | —                                       | 9.497 | 1.00 32.80 | E<br>E       |
| MOTA | 4657 | OH               | TY    | R E          | 32 | 102.768 24.280                          | 9.522 | 1.00 33.44 | Ti.          |
|      |      |                  |       |              |    | 00                                      |       |            |              |

| ATOM         | 4658         | С          | TYR        | E            | 32       | 97.700           | 28.225           | 9.353            | 1.00 24.83               | E      |
|--------------|--------------|------------|------------|--------------|----------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 4659         | 0          | TYR        | E            | 32       | 97.444           | 28.415           | 8.164            | 1.00 25.49               | E      |
| ATOM         | 4660         | N          | ASN        | E            | 33       | 98.543           | 28.985           | 10.045           | 1.00 24.28               | E      |
| ATOM         | 4661         | CA         | ASN        | $\mathbf{E}$ | 33       | 99.202           | 30.146           | 9.461            | 1.00 24.25               | E      |
| ATOM         | 4662         | CB         | ASN        | E            | 33       | 100.144          | 29.740           | 8.324            | 1.00 23.93               | E      |
| MOTA         | 4663         | CG         | ASN        | E            | 33       | 101.379          | 29.014           | 8.834            | 1.00 25.26               | E      |
| ATOM         | 4664         | OD1        |            | E            | 33       | 102.003          | 29.439           | 9.808            | 1.00 26.40               | E      |
| ATOM         | 4665         | ND2        | ASN        | E            | 33       | 101.737          | 27.918           | 8.181            | 1.00 25.47               | E      |
| MOTA         | 4666         | C          | ASN        |              | 33       | 98.114           | 31.099           | 8.980            | 1.00 24.88               | E      |
| ATOM         | 4667         | 0          | ASN        |              | 33       | 97.494           | 31.780           | 9.799            | 1.00 25.88               | E      |
| MOTA         | 4668         | N          | ARG        |              | 34       | 97.864           | 31.163           | 7.677            | 1.00 24.52               | E      |
| MOTA         | 4669         | CA         | ARG        |              | 34       | 96.815           | 32.055           | 7.194            | 1.00 26.32<br>1.00 26.61 | E<br>E |
| ATOM         | 4670         | CB         | ARG        |              | 34       | 97.385           | 33.175           | 6.317<br>7.072   | 1.00 26.81               | E      |
| ATOM         | 4671         | CG         | ARG        |              | 34       | 97.999<br>97.776 | 34.346<br>35.646 | 6.304            | 1.00 28.18               | E      |
| ATOM         | 4672         | CD         | ARG<br>ARG |              | 34<br>34 | 97.76            | 35.429           | 4.865            | 1.00 31.86               | E      |
| ATOM         | 4673<br>4674 | NE<br>CZ   | ARG        |              | 34       | 97.607           | 36.332           | 3.931            | 1.00 33.42               | E      |
| ATOM<br>ATOM | 4675         | NH1        | ARG        |              | 34       | 97.197           | 37.550           | 4.265            | 1.00 35.40               | E      |
| ATOM         | 4676         | NH2        | ARG        |              | 34       | 97.722           | 36.003           | 2.653            | 1.00 35.29               | E      |
| ATOM         | 4677         | C          | ARG        |              | 34       | 95.728           | 31.333           | 6.417            | 1.00 26.98               | E      |
| ATOM         | 4678         | 0          | ARG        |              | 34       | 94.896           | 31.968           | 5.763            | 1.00 28.88               | E      |
| ATOM         | 4679         | N          | GLU        |              | 35       | 95.719           | 30.010           | 6.481            | 1.00 26.13               | E      |
| ATOM         | 4680         | CA         | GLU        |              | 35       | 94.698           | 29.279           | 5.759            | 1.00 27.02               | E      |
| ATOM         | 4681         | CB         | GLU        | E            | 35       | 95.350           | 28.359           | 4.720            | 1.00 31.96               | E      |
| MOTA         | 4682         | ÇG         | GLU        | E            | 35       | 96.284           | 27.301           | 5.278            | 1.00 38.52               | 玉      |
| ATOM         | 4683         | CD         | GLU        | $\mathbf{E}$ | 35       | 97.116           | 26.633           | 4.192            | 1.00 42.24               | E      |
| MOTA         | 4684         | OE1        | GLU        | E            | 35       | 98.180           | 27.187           | 3.832            | 1.00 44.86               | E      |
| MOTA         | 4685         | OE2        | GLU        | E            | 35       | 96.699           | 25.565           | 3.690            | 1.00 43.70               | E      |
| MOTA         | 4686         | C          | GLU        | E            | 35       | 93.754           | 28.498           | 6.671            | 1.00 25.31               | E      |
| ATOM         | 4687         | 0          | GLU        |              | 35       | 94.175           | 27.709           | 7.522            | 1.00 22.18               | E      |
| MOTA         | 4688         | N          | GLU        |              | 36       | 92.464           | 28.756           | 6.498            | 1.00 24.46               | E<br>E |
| MOTA         | 4689         | CA         | GLU        |              | 36       | 91.438           | 28.085           | 7.272            | 1.00 24.13<br>1.00 24.37 | E      |
| MOTA         | 4690         | CB         | GLU        |              | 36       | 90.085           | 28.731           | 7.001<br>7.928   | 1.00 25.26               | E      |
| ATOM         | 4691         | CG         | GLU        |              | 36       | 88.975           | 28.295<br>28.991 | 7.604            | 1.00 25.20               | E      |
| ATOM         | 4692         | CD         | GLU        |              | 36<br>36 | 87.669<br>87.672 | 29.847           | 6.694            | 1.00 27.25               | E      |
| ATOM         | 4693         | OE1        |            |              | 36<br>36 | 86.646           | 28.689           | 8.253            | 1.00 27.12               | E      |
| MOTA         | 4694<br>4695 | OE2<br>C   | GLU        |              | 36       | 91.413           | 26.630           | 6.826            | 1.00 23.40               | E      |
| ATOM<br>ATOM | 4695         | 0          | GLU        |              | 36       | 91.252           | 26.347           | 5.645            | 1.00 23.72               | E      |
| ATOM         | 4697         | И          | ILE        |              | 37       | 91.576           | 25.707           | 7.767            | 1.00 23.97               | E      |
| ATOM         | 4698         | CA         | ILE        |              | 37       | 91.579           | 24.294           | 7.419            | 1.00 24.33               | E      |
| ATOM         | 4699         | CB         | ILE        |              | 37       | 92.818           | 23.578           | 8.019            | 1.00 24.98               | E      |
| ATOM         | 4700         | CG2        |            |              | 37       | 94.096           | 24.255           | 7.532            | 1.00 24.26               | E      |
| MOTA         | 4701         | CG1        | ILE        | E            | 37       | 92.771           | 23.616           | 9.544            | 1.00 25.10               | E      |
| ATOM         | 4702         | CD3        | ILE        | E            | 37       | 93.822           | 22.742           | 10.204           | 1.00 26.49               | E      |
| ATOM         | 4703         | C          | ILE        | E            | 37       | 90.301           | 23.555           | 7.836            | 1.00 23.49               | E      |
| ATOM         | 4704         | 0          | ILE        | EE           | 37       | 89.871           | 22.627           | 7.162            | 1.00 23.62               | E      |
| ATOM         | 4705         | И          | VAI        | E            | 38       | 89.690           | 23.975           | 8.936            | 1.00 25.16               | E      |
| ATOM         | 4706         | CA         | IAV        |              | 38       | 88.465           | 23.342           | 9.415            | 1.00 25.85               | E<br>E |
| ATOM         | 4707         | CB         | VAI        |              | 38       | 88.715           | 22.489           | 10.667           | 1.00 26.44<br>1.00 27.10 | E      |
| MOTA         | 4708         |            | L VAI      |              | 38       | 87.516           | 21.610           | 10.932<br>10.495 | 1.00 27.10               | E      |
| ATOM         | 4709         | CG2        |            |              | 38       | 89.980           | 21.671<br>24.428 | 9.792            | 1.00 24.45               | E      |
| ATOM         | 4710         | C          | IAV        |              | 38<br>38 | 87.481<br>87.885 | 25.471           | 10.288           | 1.00 24.36               | E      |
| MOTA         | 4711         | O<br>N     | VAI        |              | 39       | 86.193           | 24.168           | 9.594            | 1.00 24.90               | E      |
| MOTA<br>MOTA | 4712<br>4713 | N<br>CA    | ARC        |              | 39       | 85.175           | 25.161           | 9.904            | 1.00 23.66               | E      |
| ATOM         | 4714         | CB         | ARC        |              | 39       | 84.975           | 26.055           | 8.678            | 1.00 25.55               | E      |
| ATOM         | 4715         | CG         | ARC        |              | 39       | 83.956           | 27.174           | 8.857            | 1.00 29.11               | E      |
| ATOM         | 4716         | CD         | ARO        |              | 39       | 83.514           | 27.755           | 7.515            | 1.00 29.37               | E      |
| ATOM         | 4717         | NE         |            | 3 E          | 39       | 84.626           | 28.289           | 6.739            | 1.00 29.70               | E      |
| ATOM         | 4718         | CZ         | ARO        | 3 E          |          | 84.505           | 28.798           | 5.516            | 1.00 31.37               | E      |
| ATOM         | 4719         | NH:        | 1 ARG      | 3 E          | 39       | 83.314           | 28.842           | 4.930            | 1.00 33.54               | E      |
| ATOM         | 4720         | NH:        | 2 ARC      | 3 E          | 39       | 85.572           | 29.266           | 4.879            | 1.00 27.78               | E      |
| MOTA         | 4721         | C          | ARO        | 3 E          | 39       | 83.813           | 24.594           | 10.328           | 1.00 23.51               | E      |
| ATOM         | 4722         | 0          | AR         | З Е          | 39       | 83.385           |                  | 9.853            | 1.00 23.83               | E      |
| MOTA         | 4723         | N          | PH         | E E          |          | 83.147           |                  | 11.242           | 1.00 22.04               | E      |
| MOTA         | 4724         |            |            |              |          | 81.799           |                  | 11.655           | 1.00 21.92<br>1.00 21.36 | E<br>E |
| MOTA         | 4725         | CB         | PH         |              |          | 81.682           |                  | 13.137           | 1.00 21.36<br>1.00 17.04 | E      |
| ATOM         | 4726         |            |            |              |          | 80.296           |                  | 13.514           | 1.00 17.04               | E      |
| MOTA         | 4727         |            |            |              |          | 79.944<br>79.315 |                  | 13.407<br>13.875 | 1.00 16.82               | E      |
| ATOM         | 4728         |            |            |              |          | 79.315<br>78.628 |                  |                  | 1.00 17.84               | E      |
| MOTA         | 4729         |            |            |              |          | 78.028           |                  |                  | 1.00 18.10               | E      |
| ATOM         | 4730         |            |            | E E<br>E E   |          | 77.661           |                  |                  | 1.00 16.61               | E      |
| ATOM         | 4731         | <b>L</b> 4 | EU         | i £          | , 10     |                  |                  | 27               |                          |        |

| ATOM  | 4732                 | C   | PHE | E     | 40             | 80.938 | 26.148 | 11.395 | 1.00 21.77 | E       |
|-------|----------------------|-----|-----|-------|----------------|--------|--------|--------|------------|---------|
| ATOM  | 4733                 | 0   | PHE | E     | 40             | 81.064 | 27.167 | 12.071 | 1.00 20.81 | E       |
| ATOM  | 4734                 | N   | ASP | E     | 41             | 80.067 | 26.033 | 10.404 | 1.00 21.82 | ${f E}$ |
| ATOM  | 4735                 | CA  | ASP | E     | 41             | 79.181 | 27.110 | 9.995  | 1.00 21.76 | E       |
| ATOM  | 4736                 | CB  | ASP | E     | 41             | 79.190 | 27.182 | 8.470  | 1.00 22.62 | E       |
|       |                      | CG  | ASP | E     | 41             | 78.492 | 28.400 | 7.929  | 1.00 23.09 | E       |
| ATOM  | 4737                 |     |     |       | 41             | 77.507 | 28.864 | 8.546  | 1.00 22.57 | E       |
| ATOM  | 4738                 | OD1 | ASP | E     |                |        |        | 6.861  | 1.00 25.40 | E       |
| MOTA  | 4739                 | OD2 | ASP | E     | 41             | 78.929 | 28.881 |        |            | E       |
| MOTA  | 4740                 | C   | ASP | E     | 41             | 77.801 | 26.713 | 10.493 | 1.00 21.43 |         |
| ATOM  | 4741                 | 0   | ASP | E     | 41             | 77.277 | 25.672 | 10.085 | 1.00 22.83 | E       |
| MOTA  | 4742                 | N   | SER | E     | 42             | 77.210 | 27.520 | 11.369 | 1.00 19.04 | E       |
| ATOM  | 4743                 | CA  | SER | E     | 42             | 75.896 | 27.173 | 11.895 | 1.00 20.39 | E       |
| MOTA  | 4744                 | CB  | SER | E     | 42             | 75.399 | 28.220 | 12.907 | 1.00 19.13 | E       |
| MOTA  | 4745                 | OG  | SER | E     | 42             | 75.271 | 29.505 | 12.323 | 1.00 24.30 | E       |
| ATOM  | 4746                 | С   | SER | E     | 42             | 74.891 | 27.000 | 10.762 | 1.00 20.23 | E       |
| ATOM  | 4747                 | 0   | SER | E     | 42             | 73.916 | 26.267 | 10.910 | 1.00 18.97 | E       |
| ATOM  | 4748                 | N   | ASP | E     | 43             | 75.145 | 27.660 | 9.631  | 1.00 21.77 | ${f E}$ |
|       | 4749                 | CA  | ASP | E     | 43             | 74.261 | 27.556 | 8.470  | 1.00 24.99 | E       |
| ATOM  |                      |     | ASP | E     | 43             | 74.561 | 28.651 | 7.439  | 1.00 26.10 | ${f E}$ |
| ATOM  | 4750                 | CB  |     |       |                | 73.819 | 29.947 | 7.727  | 1.00 28.71 | E       |
| ATOM  | 4751                 | CG  | ASP | E     | 43             |        | 30.013 | 8.737  | 1.00 28.83 | E       |
| MOTA  | 4752                 | OD1 |     | E<br> | 43             | 73.078 |        |        | 1.00 20.05 | E       |
| ATOM  | 4753                 | OD2 | ASP | E     | 43             | 73.976 | 30.902 | 6.939  |            | E       |
| ATOM  | 4754                 | С   | ASP | E     | 43             | 74.378 | 26.193 | 7.809  | 1.00 25.68 |         |
| MOTA  | 4755                 | 0   | ASP | E     | 43             | 73.424 | 25.727 | 7.190  | 1.00 28.27 | E       |
| MOTA  | 4756                 | N   | VAL | E     | 44             | 75.544 | 25.558 | 7.937  | 1.00 25.47 | E       |
| ATOM  | 4757                 | CA  | VAL | E     | 44             | 75.764 | 24.229 | 7.362  | 1.00 23.51 | E       |
| ATOM  | 4758                 | CB  | VAL | E     | 44             | 77.251 | 24.007 | 6.964  | 1.00 24.39 | E       |
| ATOM  | 4759                 | CG1 | VAL | E     | 44             | 77.456 | 22.579 | 6.491  | 1.00 19.52 | E       |
| ATOM  | 4760                 | CG2 | VAL | E     | 44             | 77.655 | 24.984 | 5.867  | 1.00 23.79 | E       |
| ATOM  | 4761                 | C   | VAL |       | 44             | 75.356 | 23.154 | 8.373  | 1.00 23.25 | E       |
| ATOM  | 4762                 | 0   | VAL |       | 44             | 74.774 | 22.136 | 8.005  | 1.00 22.01 | E       |
|       |                      | И   | GLY |       | 45             | 75.683 | 23.370 | 9.644  | 1.00 22.52 | E       |
| ATOM  | 4763                 |     |     |       | <del>4</del> 5 | 75.292 | 22.411 | 10.664 | 1.00 21.82 | E       |
| ATOM  | 4764                 | CA  | GLY |       |                |        | 21.311 | 11.001 | 1.00 22.07 | E       |
| ATOM  | 4765                 | C   | GLY |       | 45             | 76.275 |        |        | 1.00 22.49 | E       |
| MOTA  | 4766                 | 0   | GLY |       | 45             | 75.982 | 20.442 | 11.818 |            | E       |
| ATOM  | 4767                 | N   | GLU |       | 46             | 77.439 | 21.317 | 10.373 | 1.00 22.18 |         |
| MOTA  | 4768                 | CA  | GLU | E     | 46             | 78.421 | 20.295 | 10.691 | 1.00 23.77 | E       |
| ATOM  | 4769                 | CB  | GLU | E     | 46             | 78.147 | 19.017 | 9.891  | 1.00 26.29 | E       |
| ATOM  | 4770                 | CG  | GLU | E     | 46             | 78.455 | 19.112 | 8.411  | 1.00 28.23 | E       |
| ATOM  | 4771                 | CD  | GLU | E     | 46             | 78.214 | 17.795 | 7.677  | 1.00 32.67 | E       |
| ATOM  | 4772                 | OE1 | GLU | E     | 46             | 78.575 | 17.706 | 6.482  | 1.00 33.19 | E       |
| ATOM  | 4773                 | OE2 | GLU | E     | 46             | 77.661 | 16.855 | 8.290  | 1.00 33.19 | ${f E}$ |
| ATOM  | 4774                 | C   | GLÜ | E     | 46             | 79.807 | 20.839 | 10.383 | 1.00 23.15 | E       |
| ATOM  | 4775                 | Ō   | GLU |       | 46             | 79.943 | 21.880 | 9.747  | 1.00 23.06 | E       |
| ATOM  | 4776                 | N   | PHE |       | 47             | 80.835 | 20.153 | 10.857 | 1.00 21.79 | E       |
|       | 4777                 | CA  | PHE |       | 47             | 82.192 | 20.595 | 10.599 | 1.00 22.22 | E       |
| MOTA  |                      |     | PHE |       | 47             | 83.175 | 19.864 | 11.515 | 1.00 22.30 | E       |
| ATOM  | 4778                 | CB  |     |       | 47             | 83.058 | 20.249 | 12.968 | 1.00 22.20 | E       |
| MOTA  | 4779                 | CG  | PHE |       | •              | 83.867 | 21.246 | 13.508 | 1.00 19.80 | E       |
| MOTA  | 4780                 | CD1 |     |       | 47             |        |        | 13.802 | 1.00 23.06 | E       |
| MOTA  | 4781                 | CD2 |     |       | 47             | 82.151 | 19.598 | 14.858 | 1.00 18.93 | E       |
| MOTA  | 4782                 |     | PHE |       | 47             | 83.781 | 21.585 |        | 1.00 22.63 | E       |
| ATOM  | 4783                 | CE2 |     |       | 47             | 82.055 | 19.931 | 15.157 |            | E       |
| MOTA  | 4784                 | CZ  | PHE |       | 47             | 82.872 | 20.925 | 15.684 |            |         |
| ATOM  | 4785                 | C   | PHE | EE    | 47             | 82.513 | 20.278 | 9.147  | 1.00 24.14 | E       |
| ATOM  | 4786                 | 0   | PHE | E     | 47             | 82.064 | 19.258 | 8.609  | 1.00 23.25 | E       |
| MOTA  | 4787                 | N   | ARG | E     | 48             | 83.272 | 21.164 | 8.511  | 1.00 22.66 | E       |
| MOTA  | 4788                 | CA  | ARG | E     | 48             | 83.672 | 20.966 | 7.131  | 1.00 23.86 | E       |
| ATOM  | 4789                 | CB  | ARG | E     | 48             | 82.801 | 21.795 | 6.181  | 1.00 23.48 | E       |
| ATOM  | 4790                 | CG  | ARG | E     | 48             | 81.339 | 21.375 | 6.091  | 1.00 25.01 | E       |
| ATOM  | 4791                 | CD  | ARC |       | 48             | 81.155 | 20.061 | 5.348  | 1.00 25.08 | E       |
| ATOM  | 4792                 | NE  | ARC |       |                | 79.747 | 19.811 | 5.044  | 1.00 27.17 | E       |
|       | 4793                 | CZ  | ARC |       | 48             | 79.038 | 20.515 | 4.164  | 1.00 29.38 | E       |
| MOTA  |                      |     |     |       | 48             | 79.604 |        | 3.498  | 1.00 31.36 | E       |
| ATOM  | 4794                 | CHN | _   |       |                | 77.763 | 20.226 | 3.946  | 1.00 30.50 | E       |
| MOTA  | 4795                 | NH2 |     |       |                |        |        |        | 1.00 24.13 | E       |
| MOTA  | 4796                 | C   |     | 3 E   |                | 85.119 | 21.395 |        | 1.00 25.58 | E       |
| ATOM  | 4797                 | 0   |     | E     |                | 85.507 |        | 7.416  | 1.00 23.36 | E       |
| ATOM  | 4798                 | N   |     | A E   |                | 85.924 | 20.537 | 6.360  |            |         |
| MOTA  | 4799                 | CA  |     | A E   |                | 87.316 | 20.875 | 6.122  | 1.00 23.11 | E       |
| MOTA  | 4800                 | CB  | ALA | A E   |                | 88.102 |        |        | 1.00 22.46 | E       |
| MOTA  | 4801                 | C   | AL  | A E   | 49             | 87.290 | 21.875 | 4.980  | 1.00 22.04 | E       |
| MOTA  | 4802                 | 0   | AL  | A E   | 49             | 86.507 | 21.722 | 4.048  | 1.00 23.16 | E       |
| ATOM  | 4803                 | N   | VA  | L E   | 50             | 88.108 | 22.916 | 5.050  | 1.00 23.56 | E       |
| MOTA  | 4804                 |     |     | L E   |                | 88.135 | 23.875 | 3.953  | 1.00 23.79 | E       |
| ATOM  | 4805                 | CB  |     | L E   |                | 88.059 | 25.360 | 4.478  | 1.00 24.14 | E       |
| ET ON | , <del>, , , ,</del> |     |     |       |                |        |        | 28     |            |         |
|       |                      |     |     |       |                |        | •      | _ =    |            |         |

,

| ATOM | 4806 | CG1 | VAL | E            | 50             | 88.341 | 25.408 | 5.959  | 1.00 24.71 | E       |
|------|------|-----|-----|--------------|----------------|--------|--------|--------|------------|---------|
| ATOM | 4807 | CG2 | VAL | E            | 50             | 89.010 | 26.268 | 3.704  | 1.00 22.47 | E       |
| ATOM | 4808 | C   | VAL | E            | 50             | 89.374 | 23.578 | 3.098  | 1.00 23.50 | E       |
| ATOM | 4809 | 0   | VAL | E            | 50             | 89.485 | 24.041 | 1.963  | 1.00 24.92 | E       |
| ATOM | 4810 | N   | THR |              | 51             | 90.281 | 22.770 | 3.650  | 1.00 24.49 | E       |
| ATOM | 4811 | CA  | THR |              | 51             | 91.492 | 22.317 | 2.951  | 1.00 25.50 | E       |
| ATOM | 4812 | CB  | THR |              | 51             | 92.742 | 23.198 | 3.234  | 1.00 25.69 | E       |
| ATOM | 4812 | OG1 | THR |              | 51             | 93.171 | 23.007 | 4.586  | 1.00 27.89 | E       |
|      |      | CG2 | THR |              | 51             | 92.443 | 24.670 | 2.985  | 1.00 23.29 | E       |
| ATOM | 4814 |     |     |              |                | 91.817 | 20.895 | 3.420  | 1.00 26.59 | E       |
| ATOM | 4815 | C   | THR |              | 51             |        |        |        | 1.00 27.35 | E       |
| ATOM | 4816 | 0   | THR |              | 51             | 91.387 | 20.477 | 4.496  |            | E       |
| ATOM | 4817 | N   |     | E            | 52             | 92.576 | 20.154 | 2.617  |            |         |
| ATOM | 4818 | CA  |     | E            | 52             | 92.949 | 18.783 | 2.956  | 1.00 28.49 | E       |
| ATOM | 4819 | CB  |     | E            | 52             |        | 18.259 | 1.969  | 1.00 30.33 | E       |
| ATOM | 4820 | CG  |     | E            | 52             | 93.536 | 17.892 | 0.556  | 1.00 34.17 | E       |
| ATOM | 4821 | CD1 | LEU | E            | 52             | 94.749 | 17.628 | -0.334 | 1.00 34.41 | E       |
| ATOM | 4822 | CD2 | LEU | E            | 52             | 92.644 | 16.668 | 0.620  | 1.00 34.30 | E       |
| MOTA | 4823 | C   | LEU | E            | 52             | 93.494 | 18.645 | 4.374  | 1.00 28.20 | E       |
| MOTA | 4824 | 0   | LEU | E            | 52             | 93.304 | 17.624 | 5.027  | 1.00 29.17 | E       |
| MOTA | 4825 | N   | LEU | E            | 53             | 94.179 | 19.677 | 4.839  | 1.00 28.30 | E       |
| MOTA | 4826 | CA  | LEU | E            | 53             | 94.766 | 19.682 | 6.171  | 1.00 28.75 | E       |
| MOTA | 4827 | CB  | LEU | E            | 53             | 95.490 | 21.015 | 6.387  | 1.00 30.37 | E       |
| ATOM | 4828 | CG  | LEU | E            | 53             | 96.939 | 21.010 | 6.882  | 1.00 32.74 | E       |
| ATOM | 4829 | CD1 | LEU | E            | 53             | 97.777 | 20.085 | 6.008  | 1.00 31.60 | E       |
| ATOM | 4830 |     | LEU |              | 53             | 97.498 | 22.444 | 6.854  | 1.00 30.06 | E       |
| ATOM | 4831 | C   | LEU |              | 53             | 93.727 | 19.464 | 7.278  | 1.00 27.82 | E       |
| ATOM | 4832 | 0   | LEU |              | 53             | 94.027 | 18.858 | 8.312  | 1.00 25.47 | E       |
| ATOM | 4833 | N   | GLY |              | 5 <b>4</b>     | 92.508 | 19.957 | 7.059  | 1.00 27.39 | E       |
| ATOM | 4834 | CA  | GLY |              | 54             | 91.466 | 19.813 | 8.062  | 1.00 26.92 | E       |
|      |      |     | GLY |              | 5 <del>4</del> | 90.569 | 18.589 | 7.949  | 1.00 28.33 | E       |
| ATOM | 4835 | C   |     |              |                | 89.725 | 18.348 | 8.813  | 1.00 28.02 | E       |
| ATOM | 4836 | 0   | GLY |              | 54             |        | 17.801 | 6.898  | 1.00 20.02 | E       |
| MOTA | 4837 | N   | LEU |              | 55             | 90.755 |        |        | 1.00 25.28 | E       |
| ATOM | 4838 | CA  | LEU |              | 55             | 89.930 | 16.620 | 6.675  |            |         |
| MOTA | 4839 | CB  | LEU |              | 55             | 90.410 | 15.885 | 5.419  | 1.00 32.39 | E       |
| ATOM | 4840 | CG  | LEU |              | 55             | 89.426 | 14.934 | 4.731  | 1.00 35.68 | E       |
| ATOM | 4841 | CD1 |     |              | 55             | 88.086 | 15.627 | 4.504  | 1.00 34.41 | E       |
| ATOM | 4842 | CD2 | LEU | E            | 55             | 90.018 | 14.473 | 3.406  | 1.00 35.99 | E       |
| MOTA | 4843 | C   | LEU | E            | 55             | 89.865 | 15.659 | 7.867  | 1.00 32.09 | E       |
| MOTA | 4844 | 0   | LEU | $\mathbf{E}$ | 55             | 88.778 | 15.294 | 8.312  | 1.00 32.58 | E       |
| ATOM | 4845 | N   | PRO | E            | 56             | 91.023 | 15.235 | 8.402  | 1.00 31.67 | E       |
| MOTA | 4846 | CD  | PRO | E            | 56             | 92.411 | 15.520 | 8.000  | 1.00 31.37 | E       |
| ATOM | 4847 | CA  | PRO | E            | 56             | 90.986 | 14.316 | 9.546  | 1.00 31.17 | E       |
| ATOM | 4848 | CB  | PRO | E            | 56             | 92.459 | 14.163 | 9.919  | 1.00 30.50 | E       |
| ATOM | 4849 | CG  | PRO | E            | 56             | 93.161 | 14.352 | 8.611  | 1.00 31.19 | E       |
| ATOM | 4850 | С   | PRO | E            | 56             | 90.158 | 14.865 | 10.708 | 1.00 31.43 | E       |
| ATOM | 4851 | 0   | PRO |              | 56             | 89.250 | 14.195 | 11.205 | 1.00 32.17 | E       |
| ATOM | 4852 | N   | ALA |              | 57             | 90.473 | 16.086 | 11.138 | 1.00 29.94 | E       |
| ATOM | 4853 | CA  | ALA |              | 57             | 89.748 | 16.709 | 12.244 | 1.00 28.45 | E       |
| ATOM | 4854 | CB  | ALA |              | 57             | 90.314 | 18.098 | 12.532 | 1.00 27.09 | E       |
| ATOM | 4855 | C   | ALA |              | 5 <i>7</i>     | 88.249 | 16.807 | 11.960 | 1.00 27.57 | E       |
|      | 4856 | 0   | ALA |              | 5 <i>7</i>     | 87.436 | 16.466 | 12.812 | 1.00 26.57 | E       |
| ATOM |      |     | ALA |              | 58             | 87.899 | 17.270 | 10.761 | 1.00 27.40 | E       |
| ATOM | 4857 | N   |     |              |                |        | 17.422 | 10.349 | 1.00 28.85 | E       |
| ATOM | 4858 | CA  | ALA |              | 58             | 86.505 |        | 8.939  | 1.00 27.80 | E       |
| MOTA | 4859 | CB  | ALA |              | 58             | 86.439 | 18.007 |        | 1.00 27.80 | E       |
| MOTA | 4860 | C   | ALA |              | 58             | 85.726 | 16.110 | 10.406 |            |         |
| ATOM | 4861 | 0   | ALA |              | 58             | 84.624 | 16.058 | 10.954 | 1.00 29.58 | E       |
| ATOM | 4862 | N   | GLU |              | 59             | 86.292 | 15.052 | 9.837  | 1.00 32.24 | E       |
| MOTA | 4863 | CA  | GLŪ |              | 59             | 85.632 | 13.750 | 9.845  | 1.00 35.22 | E       |
| MOTA | 4864 | CB  | GLU | E            | 59             | 86.441 | 12.724 | 9.049  | 1.00 36.81 | E       |
| MOTA | 4865 | CG  | GLU | $\mathbf{E}$ | 59             | 86.392 | 12.917 | 7.549  | 1.00 40.89 | . E     |
| MOTA | 4866 | CD  | GLU | E            | 59             | 87.057 | 11.775 | 6.805  | 1.00 44.28 | E       |
| ATOM | 4867 | OE1 | GLU | E            | 59             | 88.291 | 11.597 | 6.955  | 1.00 45.76 | ${f E}$ |
| ATOM | 4868 | OE2 | GLU | E            | 59             | 86.342 | 11.052 | 6.075  | 1.00 45.12 | E       |
| ATOM | 4869 | C   | GLU | E            | 59             | 85.441 | 13.231 | 11.260 | 1.00 34.08 | E       |
| ATOM | 4870 | 0   | GLU |              | 59             | 84.384 | 12.697 | 11.596 | 1.00 34.48 | E       |
| ATOM | 4871 | N   | TYR |              | 60             | 86.466 | 13.387 | 12.090 | 1.00 33.21 | E       |
| ATOM | 4872 | CA  | TYR |              | 60             | 86.390 | 12.919 | 13.463 | 1.00 32.36 | E       |
| ATOM | 4873 | CB  | TYR |              | 60             | 87.724 | 13.101 | 14.177 | 1.00 33.78 | E       |
| ATOM | 4874 | CG  | TYR |              | 60             | 87.657 | 12.617 | 15.594 | 1.00 35.68 | E       |
| ATOM | 4874 | CD1 |     |              | 60             | 87.543 | 11.259 | 15.872 | 1.00 37.48 | E       |
|      |      | CE1 |     |              | 60             | 87.394 | 10.802 | 17.173 | 1.00 41.14 | E       |
| MOTA | 4876 |     |     |              | 60             | 87.628 | 13.514 | 16.655 | 1.00 37.26 | E       |
| MOTA | 4877 | CD2 |     |              | 60             |        | 13.073 | 17.965 | 1.00 37.26 | E       |
| ATOM | 4878 | CE2 |     |              |                | 87.478 |        |        | 1.00 40.26 | E       |
| MOTA | 4879 | CZ  | TYR | ഥ            | б0             | 87.360 | 11.714 | 18.218 | T.00 #T.00 | Ţ       |

| ATOM   | 4880  | OH  | TYR     | E            | 60       | 87.198       | 11.262 | 19.508 | 1.00 44.51 | ${f E}$      |
|--------|-------|-----|---------|--------------|----------|--------------|--------|--------|------------|--------------|
| ATOM   | 4881  | C   | TYR     |              | 60       | 85.312       | 13.623 | 14.275 | 1.00 32.30 | E            |
|        | 4882  | 0   | TYR     |              | 60       | 84.430       | 12.976 | 14.839 | 1.00 30.56 | E            |
| ATOM   |       |     |         |              |          |              |        |        | 1.00 31.42 | E            |
| ATOM   | 4883  | N   |         | E            | 61       | 85.391       | 14.950 | 14.347 |            |              |
| ATOM   | 4884  | CA  | TRP     | E            | 61       | 84.412       | 15.715 | 15.112 | 1.00 31.35 | E            |
| ATOM   | 4885  | CB  | TRP     | E            | 61       | 84.744       | 17.219 | 15.071 | 1.00 32.78 | E            |
| ATOM   | 4886  | CG  | TRP     | E            | 61       | 86.051       | 17.584 | 15.748 | 1.00 35.14 | E            |
| ATOM   | 4887  | CD2 | TRP     | E            | 61       | 86.909       | 18.687 | 15.425 | 1.00 37.07 | E            |
| ATOM   | 4888  | CE2 |         | E            | 61       | 87.994       | 18.655 | 16.331 | 1.00 37.15 | ${f E}$      |
|        |       |     |         |              |          |              | 19.706 | 14.458 | 1.00 39.50 | E            |
| ATOM   | 4889  | CE3 | TRP     | E            | 61       | 86.864       |        |        |            |              |
| ATOM   | 4890  | CD1 | TRP     | E            | 61       | 86.635       | 16.947 | 16.809 | 1.00 35.82 | E            |
| ATOM   | 4891  | NE1 | TRP     | E            | 61       | 87.800       | 17.582 | 17.163 | 1.00 35.66 | E            |
| ATOM   | 4892  | CZ2 | TRP     | E            | 61       | 89.034       | 19.602 | 16.300 | 1.00 38.95 | E            |
| ATOM   | 4893  | CZ3 | TRP     | E            | 61       | 87.902       | 20.656 | 14.427 | 1.00 41.16 | E            |
| ATOM   | 4894  | CH2 | TRP     | E            | 61       | 88.971       | 20.591 | 15.346 | 1.00 40.81 | E            |
|        |       | C   | TRP     | E            | 61       | 82.968       | 15.472 | 14.653 | 1.00 29.29 | E            |
| ATOM   | 4895  |     |         |              |          |              |        |        |            | E            |
| ATOM   | 4896  | 0   | TRP     | E            | 61       | 82.045       | 15.563 | 15.458 |            |              |
| ATOM   | 4897  | N   | ASN     | E            | 62       | 82.772       | 15.162 | 13.373 | 1.00 27.86 | E            |
| ATOM   | 4898  | CA  | ASN     | E            | 62       | 81.428       | 14.902 | 12.853 | 1.00 29.09 | ${f E}$      |
| ATOM   | 4899  | CB  | ASN     | $\mathbf{E}$ | 62       | 81.379       | 15.051 | 11.331 | 1.00 29.42 | E            |
| ATOM   | 4900  | CG  | ASN     | E            | 62       | 81.241       | 16.492 | 10.893 | 1.00 31.22 | ${f E}$      |
| ATOM   | 4901  | OD1 | ASN     | E            | 62       | 80.563       | 17.288 | 11.545 | 1.00 29.56 | E            |
|        |       |     |         |              |          | 81.870       | 16.834 | 9.772  | 1.00 31.73 | E            |
| ATOM   | 4902  | ND2 |         | E            | 62       |              |        |        |            | E            |
| ATOM   | 4903  | C   |         | $\mathbf{E}$ | 62       | 80.906       | 13.519 | 13.220 | 1.00 28.26 |              |
| MOTA   | 4904  | 0   | ASN     | E            | 62 ,     | 79.716       | 13.242 | 13.086 | 1.00 27.48 | E            |
| ATOM   | 4905  | N   | SER     | ${f E}$      | 63       | 81.795       | 12.647 | 13.672 | 1.00 27.47 | ${f E}$      |
| ATOM   | 4906  | CA  | SER     | E            | 63       | 81.381       | 11.311 | 14.056 | 1.00 29.39 | E            |
| ATOM   | 4907  | CB  | SER     |              | 63       | 82.511       | 10.310 | 13.803 | 1.00 28.56 | ${f E}$      |
|        | 4908  | OG  | SER     |              | 63       | 83.607       | 10.545 | 14.671 | 1.00 32.72 | E            |
| ATOM   |       |     |         |              |          | 80.987       | 11.310 | 15.534 | 1.00 30.11 | E            |
| MOTA   | 4909  | C   | SER     |              | 63       |              |        |        |            | E            |
| MOTA   | 4910  | 0   | SER     |              | 63       | 80.515       | 10.297 | 16.055 | 1.00 31.52 |              |
| MOTA   | 4911  | N   | GLN     | E            | 64       | 81.173       | 12.453 | 16.196 | 1.00 28.86 | E            |
| ATOM   | 4912  | CA  | GLN     | E            | 64       | 80.834       | 12.604 | 17.612 | 1.00 28.28 | E            |
| ATOM   | 4913  | CB  | GLN     | E            | 64       | 81.929       | 13.379 | 18.350 | 1.00 29.50 | E            |
| MOTA   | 4914  | CG  | GLN     | E            | 64       | 83.330       | 12.787 | 18.266 | 1.00 29.72 | E            |
| ATOM   | 4915  | CD  |         |              | 64       | 83.418       | 11.412 | 18.888 | 1.00 32.69 | E            |
|        |       |     | GLN     |              | 64       | 83.055       | 10.405 | 18.267 | 1.00 35.22 | E            |
| ATOM   | 4916  | OE1 |         |              |          |              | 11.358 | 20.128 | 1.00 31.92 | E            |
| MOTA   | 4917  | NE2 | GLN     |              | 64       | 83.887       |        |        |            |              |
| MOTA   | 4918  | C   | GLN     |              | 64       | 79.522       | 13.366 | 17.783 | 1.00 28.42 | E            |
| MOTA   | 4919  | 0   | GLN     | E            | 64       | 79.525       | 14.599 | 17.800 | 1.00 27.68 | E            |
| ATOM   | 4920  | N   | LYS     | ${f E}$      | 65       | 78.410       | 12.648 | 17.926 | 1.00 27.17 | E            |
| ATOM   | 4921  | CA  | LYS     | E            | 65       | 77.111       | 13.300 | 18.097 | 1.00 29.82 | ${f E}$      |
| ATOM   | 4922  | CB  | LYS     | E            | 65       | 75.994       | 12.258 | 18.253 | 1.00 31.43 | E            |
| ATOM   | 4923  | CG  | LYS     |              | 65       | 75.479       | 11.692 | 16.936 | 1.00 37.61 | E            |
|        |       |     |         |              |          | 74.801       | 12.766 | 16.072 | 1.00 41.12 | E            |
| MOTA   | 4924  | CD  | LYS     |              | 65<br>65 |              |        |        | 1.00 44.25 | E            |
| ATOM   | 4925  | CE  | LYS     |              | 65       | 73.489       | 13.267 | 16.696 |            |              |
| MOTA   | 4926  | NZ  | LYS     | E            | 65       | 72.832       | 14.322 | 15.861 | 1.00 44.10 | E            |
| ATOM   | 4927  | C   | LYS     | ${f E}$      | 65       | 77.067       | 14.273 | 19.278 | 1.00 28.07 | E            |
| ATOM   | 4928  | 0   | LYS     | E            | 65       | 76.406       | 15.308 | 19.211 | 1.00 27.46 | E            |
| ATOM   | 4929  | N   | ASP     | E            | 66       | 77.758       | 13.938 | 20.361 | 1.00 27.40 | ${f E}$      |
| MOTA   | 4930  | CA  | ASP     |              | 66       | 77.783       | 14.809 | 21.532 | 1.00 26.85 | E            |
|        |       |     | ASP     |              | 66       | 78.566       | 14.142 | 22.670 | 1.00 26.10 | E            |
| ATOM   | 4931  | CB  |         |              |          |              |        | 22.212 | 1.00 29.25 | E            |
| MOTA   | 4932  | CG  | ASP     |              | 66       | 79.899       | 13.576 |        |            |              |
| MOTA   | 4933  | OD1 | ASP     | E            | 66       | 79.915       | 12.836 | 21.205 | 1.00 28.95 | E            |
| MOTA   | 4934  | OD2 | ASP     | ${f E}$      | 66       | 80.929       | 13.858 | 22.864 | 1.00 31.03 | E            |
| ATOM   | 4935  | C   | ASP     | E            | 66       | 78.390       | 16.174 | 21.193 | 1.00 26.21 | E            |
| MOTA   | 4936  | 0   | ASP     | E            | 66       | 77.844       | 17.215 | 21.559 | 1.00 26.58 | E            |
| ATOM   | 4937  | N   | ILE     |              | 67       | 79.510       | 16.170 | 20.478 | 1.00 26.25 | E            |
|        |       | CA  | ILE     |              | 67       | 80.164       | 17.414 | 20.100 | 1.00 25.76 | E            |
| MOTA   | 4938  |     |         |              |          |              |        | 19.477 | 1.00 27.31 | E            |
| MOTA   | 4939  | CB  | ILE     |              | 67       | 81.551       | 17.153 |        |            |              |
| MOTA   | 4940  | CG2 | ILE     |              | 67       | 82.261       | 18.467 | 19.210 | 1.00 25.90 | E            |
| MOTA   | 4941  | CG1 | ILE     | $\mathbf{E}$ | 67       | 82.396       | 16.304 | 20.429 | 1.00 28.85 | E            |
| MOTA   | 4942  | CD1 | ILE     | E            | 67       | 82.494       | 16.871 | 21.844 | 1.00 32.35 | ${f E}$      |
| ATOM   | 4943  | C   | ILE     | E            | 67       | 79.307       | 18.189 | 19.108 | 1.00 25.95 | E            |
| ATOM   | 4944  | Ō   | ILE     |              | 67       | 79.125       | 19.392 | 19.255 | 1.00 26.97 | E            |
| ATOM   | 4945  | N   | LEU     |              | 68       | 78.775       | 17.504 | 18.100 | 1.00 26.05 | E            |
|        |       |     |         |              |          | 77.927       | 18.172 | 17.113 | 1.00 26.36 | E            |
| ATOM   | 4946  | CA  | LEU     |              | 68       |              |        |        | 1.00 26.91 | E            |
| ATOM   | 4947  | CB  | LEU     |              | 68       | 77.382       | 17.169 | 16.094 |            |              |
| MOTA   | 4948  | CG  | LEU     |              | 68       | 78.154       | 16.987 | 14.790 | 1.00 27.01 | E            |
| ATOM   | 4949  | CD1 |         |              | 68       | 77.389       | 16.002 | 13.913 | 1.00 26.26 | E            |
| MOTA   | 4950  | CD2 | LEU     | E            | 68       | 78.311       | 18.342 | 14.076 | 1.00 24.04 | $\mathbf{E}$ |
| ATOM   | 4951  | C   | LEU     | E            | 68       | 76.760       | 18.870 | 17.792 | 1.00 26.03 | E            |
| ATOM   | 4952  | 0   | LEU     |              | 68       | 76.433       | 20.011 | 17.465 | 1.00 25.76 | $\mathbf{E}$ |
| ATOM   | 4953  | N   | GLU     |              | 69       | 76.134       | 18.175 | 18.737 | 1.00 27.50 | E            |
| Wr Old | - 233 | T4  | ∨ بید ب |              | ~ ~      | ت تنهن و ت . | ,,     | , , ,  |            | <del></del>  |

| ATOM    | 4954  | CA  | GLU | E            | 69 | 75.000 | 18.726 | 19.471 | 1.00 | 30.38 | E                       |
|---------|-------|-----|-----|--------------|----|--------|--------|--------|------|-------|-------------------------|
| ATOM    | 4955  | CB  | GLU | F.           | 69 | 74.481 | 17.720 | 20.508 | 1.00 | 34.06 | E                       |
| ATOM    | 4956  | CG  | GLU |              | 69 | 73.426 | 16.742 | 19.989 | 1.00 | 40.55 | E                       |
|         |       |     |     |              |    |        |        |        |      |       |                         |
| ATOM    | 4957  | CD  | GLU |              | 69 | 72.211 | 17.444 | 19.392 | 1.00 | 44.43 | E                       |
| ATOM    | 4958  | OE1 | GLU | E            | 69 | 71.802 | 18.505 | 19.922 | 1.00 | 43.73 | E                       |
| ATOM    | 4959  | OE2 | GLU | E            | 69 | 71.656 | 16.926 | 18.397 | 1.00 | 48.15 | E                       |
| ATOM    | 4960  | С   | GLU | F:           | 69 | 75.335 | 20.034 | 20.178 | 1.00 | 29.17 | E                       |
|         |       |     | GLU |              | 69 |        | 21.009 | 20.071 | 1.00 | 29.71 | E                       |
| ATOM    | 4961  | 0   |     |              |    | 74.587 |        |        |      |       |                         |
| ATOM    | 4962  | N   | ARG |              | 70 | 76.453 | 20.059 | 20.899 | 1.00 | 26.65 | E                       |
| ATOM    | 4963  | CA  | ARG | $\mathbf{E}$ | 70 | 76.844 | 21.262 | 21.620 | 1.00 | 25.51 | E                       |
| MOTA    | 4964  | CB  | ARG | E            | 70 | 78.001 | 20.965 | 22.572 | 1.00 | 27.14 | E                       |
| ATOM    | 4965  | CG  |     | E            | 70 | 77.711 | 19.855 | 23.563 | 1.00 | 31.22 | E                       |
|         |       |     |     |              |    |        |        |        |      |       |                         |
| ATOM    | 4966  | CD  | ARG |              | 70 | 78.637 | 19.934 | 24.769 | 1.00 | 35.11 | E                       |
| ATOM    | 4967  | NE  | ARG | E            | 70 | 78.758 | 18.647 | 25.440 | 1.00 | 39.19 | E                       |
| ATOM    | 4968  | CZ  | ARG | E            | 70 | 79.456 | 17.628 | 24.956 | 1.00 | 41.08 | E                       |
| ATOM    | 4969  | NH1 | ARG | E            | 70 | 80.096 | 17.752 | 23.802 | 1.00 | 45.32 | ${f E}$                 |
| ATOM    | 4970  | NH2 | ARG | E            | 70 | 79.511 | 16.486 | 25.618 | 1.00 | 44.01 | E                       |
|         |       |     |     |              | 70 | 77.230 | 22.395 | 20.677 | 1.00 | 24.57 | E                       |
| ATOM    | 4971  | C   |     | E            |    |        |        |        |      |       |                         |
| ATOM    | 4972  | 0   | ARG | E            | 70 | 76.927 | 23.557 | 20.941 | 1.00 | 21.44 | E                       |
| ATOM    | 4973  | N   | LYS | $\mathbf{E}$ | 71 | 77.897 | 22.057 | 19.576 | 1.00 | 24.56 | ${f E}$                 |
| ATOM    | 4974  | CA  | LYS | E            | 71 | 78.309 | 23.071 | 18.612 | 1.00 | 24.08 | E                       |
| ATOM    | 4975  | CB  | LYS | E            | 71 | 79.202 | 22.452 | 17.534 | 1.00 | 25.39 | E                       |
|         |       | CG  |     | E            | 71 | 80.100 | 23.474 | 16.852 | 1.00 | 29.73 | E                       |
| ATOM    | 4976  |     |     |              |    |        |        |        |      |       |                         |
| ATOM    | 4977  | CD  |     | E            | 71 | 81.067 | 24.095 | 17.862 | 1.00 | 30.94 | E                       |
| ATOM    | 4978  | CE  | LYS | E            | 71 | 81.905 | 25.205 | 17.256 | 1.00 | 31.82 | E                       |
| ATOM    | 4979  | NZ  | LYS | E            | 71 | 82.774 | 25.849 | 18.290 | 1.00 | 33.45 | E                       |
| ATOM    | 4980  | C   | LYS | E            | 71 | 77.087 | 23.732 | 17.960 | 1.00 | 22.42 | E                       |
| ATOM    | 4981  |     |     | E            | 71 | 77.045 | 24.951 | 17.780 | 1.00 | 18.65 | E                       |
|         |       | 0   |     |              |    |        |        |        |      |       |                         |
| ATOM    | 4982  | N   |     | E            | 72 | 76.092 | 22.919 | 17.620 | 1.00 | 22.31 | E                       |
| ATOM    | 4983  | CA  | ARG | $\mathbf{E}$ | 72 | 74.867 | 23.419 | 17.002 | 1.00 | 21.44 | ${f E}$                 |
| MOTA    | 4984  | CB  | ARG | E            | 72 | 73.984 | 22.250 | 16.578 | 1.00 | 19.93 | E                       |
| ATOM    | 4985  | CG  | ARG | E            | 72 | 74.534 | 21.497 | 15.407 | 1.00 | 21.45 | E                       |
| ATOM    | 4986  | CD  | ARG |              | 72 | 73.779 | 20.223 | 15.141 | 1.00 | 23.34 | E                       |
|         |       |     |     |              |    |        |        |        |      |       |                         |
| ATOM    | 4987  | NE  | ARG |              | 72 | 74.211 | 19.643 | 13.877 | 1.00 | 24.99 | E                       |
| MOTA    | 4988  | CZ  | ARG | E            | 72 | 74.028 | 18.377 | 13.522 | 1.00 | 27.42 | ${f E}$                 |
| MOTA    | 4989  | NHl | ARG | E            | 72 | 73.411 | 17.533 | 14.344 | 1.00 | 25.90 | ${f E}$                 |
| ATOM    | 4990  | NH2 | ARG | E            | 72 | 74.475 | 17.955 | 12.341 | 1.00 | 25.41 | E                       |
| ATOM    | 4991  | C   |     | E            | 72 | 74.093 | 24.315 | 17.961 | 1.00 | 21.34 | E                       |
|         |       |     |     |              |    |        |        |        |      | 23.67 | E                       |
| ATOM    | 4992  | 0   |     | E            | 72 | 73.336 | 25.182 | 17.535 | 1.00 |       |                         |
| ATOM    | 4993  | N   | ALA | E            | 73 | 74.293 | 24.105 | 19.256 | 1.00 | 21.13 | E                       |
| MOTA    | 4994  | CA  | ALA | E            | 73 | 73.610 | 24.887 | 20.281 | 1.00 | 22.11 | E                       |
| MOTA    | 4995  | CB  | ALA | E            | 73 | 73.476 | 24.052 | 21.568 | 1.00 | 21.20 | E                       |
| ATOM    | 4996  | C   | ALA | E            | 73 | 74.347 | 26.189 | 20.576 | 1.00 | 22.67 | E                       |
|         |       |     | ALA |              | 73 | 73.773 | 27.133 | 21.125 | 1.00 | 25.58 | E                       |
| MOTA    | 4997  | 0   |     |              |    |        |        |        |      |       |                         |
| MOTA    | 4998  | N   | ALA |              | 74 | 75.614 | 26.248 | 20.195 | 1.00 | 22.52 | E                       |
| MOTA    | 4999  | CA  | ALA | $\mathbf{E}$ | 74 | 76.420 | 27.432 | 20.448 | 1.00 | 22.20 | E                       |
| ATOM    | 5000  | CB  | ALA | E            | 74 | 77.830 | 27.219 | 19.910 | 1.00 | 24.81 | E                       |
| MOTA    | 5001  | C   | ALA | E            | 74 | 75.828 | 28.722 | 19.882 | 1.00 | 22.28 | E                       |
| ATOM    | 5002  | 0   | ALA |              | 74 | 76.027 | 29.796 | 20.452 | 1.00 | 20.24 | E                       |
|         |       |     |     |              |    |        |        |        |      |       | E                       |
| ATOM    | 5003  | N   | VAL |              | 75 | 75.102 | 28.634 | 18.770 |      | 21.92 |                         |
| ATOM    | 5004  | CA  | VAL | E            | 75 | 74.519 | 29.841 | 18.185 | 1.00 | 21.69 | E                       |
| MOTA    | 5005  | CB  | VAL | E            | 75 | 73.700 | 29.517 | 16.890 | 1.00 | 22.61 | E                       |
| ATOM    | 5006  | CG1 | VAL | E            | 75 | 72.488 | 28.657 | 17.219 | 1.00 | 24.39 | ${f E}$                 |
| ATOM    | 5007  | CG2 | VAL | E            | 75 | 73.270 | 30.798 | 16.218 | 1.00 | 24.00 | E                       |
| ATOM    | 5008  | C   | VAL |              | 75 | 73.639 | 30.558 | 19.219 | 1.00 | 21.26 | E                       |
|         |       |     |     |              |    |        |        |        |      |       |                         |
| MOTA    | 5009  | 0   | JAV |              | 75 | 73.464 | 31.777 | 19.164 | 1.00 | 20.64 | E                       |
| MOTA    | 5010  | N   | ASP | $\mathbf{E}$ | 76 | 73.106 | 29.802 | 20.171 | 1.00 | 20.84 | E                       |
| MOTA    | 5011  | CA  | ASP | E            | 76 | 72.273 | 30.385 | 21.220 | 1.00 | 23.98 | E                       |
| ATOM    | 5012  | CB  | ASP | E            | 76 | 71.022 | 29.532 | 21.471 | 1.00 | 25.33 | E                       |
| ATOM    | 5013  | CG  | ASP |              | 76 | 70.010 | 29.605 | 20.331 |      | 27.46 | $oldsymbol{\mathrm{E}}$ |
| -       |       |     |     |              |    |        |        | 19.763 |      |       |                         |
| MOTA    | 50,14 | OD1 | ASP |              | 76 | 69.807 | 30.697 |        |      | 29.45 | <b>E</b> .              |
| MOTA    | 5015  | OD2 | ASP |              | 76 | 69.398 | 28.566 | 20.020 |      | 31.17 | E                       |
| MOTA    | 5016  | C   | ASP | E            | 76 | 73.044 | 30.525 | 22.538 | 1.00 | 24.46 | E                       |
| ATOM    | 5017  | 0   | ASP | E            | 76 | 72.910 | 31.524 | 23.247 | 1.00 | 25.64 | E                       |
| ATOM    | 5018  | N   | ARG |              | 77 | 73.846 | 29.515 | 22.855 |      | 23.56 | E                       |
|         | 5019  | CA  | ARG |              | 77 | 74.627 | 29.486 | 24.085 |      | 22.99 | E                       |
| ATOM    |       |     |     |              |    |        |        |        |      |       |                         |
| ATOM    | 5020  | CB  | ARG |              | 77 | 75.176 | 28.077 | 24.279 |      | 26.55 | E                       |
| ATOM    | 5021  | CG  | ARG |              | 77 | 75.848 | 27.806 | 25.607 |      | 33.45 | E                       |
| ATOM    | 5022  | CD  | ARG | E            | 77 | 75.961 | 26.295 | 25.825 | 1.00 | 37.66 | E                       |
| ATOM    | 5023  | NE  | ARG | E            | 77 | 74.639 | 25.666 | 25.883 | 1.00 | 40.99 | E                       |
| ATOM    | 5024  | CZ  | ARG |              | 77 | 74.423 | 24.352 | 25.862 |      | 43.13 | E                       |
| 100,000 | 5025  | NH1 |     |              | 77 | 75.438 | 23.503 | 25.782 |      | 43.11 | E                       |
| ATOM    |       |     |     |              |    |        |        |        |      |       |                         |
| MOTA    | 5026  | NH2 | ARG |              | 77 | 73.183 | 23.885 | 25.914 |      | 44.93 | E                       |
| MOTA    | 5027  | C   | ARG | E            | 77 | 75.763 | 30.509 | 24.078 | 1.00 | 23.23 | E                       |
|         |       |     |     |              |    |        |        |        |      |       |                         |

| ATOM         | 5028         | 0       | ARO        | S E          | 77       | 76.162              | 31.022 | 25.129 | 1.00 23.14 | E |
|--------------|--------------|---------|------------|--------------|----------|---------------------|--------|--------|------------|---|
| ATOM         | 5029         | N       | VAI        | E            | 78       | 76.275              | 30.808 |        | 1.00 20.54 | E |
| MOTA         | 5030         | CA      | VAI        | E            | 78       | 77.354              | 31.767 |        | 1.00 19.56 | E |
| ATOM         | 5031         | CB      | VAI        | E            | 78       | 78.500              | 31.181 |        | 1.00 19.17 | E |
| ATOM         | 5032         | CG1     | L VAI      | E            | 78       | 79.612              | 32.208 | 21.724 | 1.00 17.69 | E |
| ATOM         | 5033         | CG2     | IAV S      | E            | 78       | 79.032              | 29.921 |        | 1.00 19.40 | E |
| ATOM         | 5034         | C       | VAI        | E            |          | 76.888              | 33.075 | 22.093 | 1.00 19.95 | E |
| ATOM         | 5035         | 0       | VAI        |              |          | 76.786              | 34.110 | 22.756 | 1.00 21.57 |   |
| ATOM         | 5036         | N       | CYS        |              |          | 76.595              | 33.021 | 20.799 | 1.00 21.57 | E |
| ATOM         | 5037         | CA      | CYS        |              |          | 76.181              | 34.205 | 20.799 |            | E |
| ATOM         | 5038         | C       | CYS        |              |          | 74.967              |        |        | 1.00 17.48 | E |
| ATOM         | 5039         | 0       | CYS        |              | · -      |                     | 34.966 | 20.620 | 1.00 18.40 | E |
| ATOM         | 5040         | CB      | CYS        |              |          | 75.087              | 36.146 | 20.967 | 1.00 16.69 | E |
| ATOM         | 5041         | SG      | CYS        |              | · -      | 75.946              | 33.847 | 18.592 | 1.00 17.30 | E |
| ATOM         | 5042         | N       | ARG        |              | _        | 77.361              | 33.071 | 17.722 | 1.00 27.04 | E |
| MOTA         | 5042         |         |            |              | 80       | 73.802              | 34.326 | 20.717 | 1.00 17.59 | E |
| ATOM         |              | CA      | ARG        |              |          | 72.641              | 35.050 | 21.240 | 1.00 20.01 | E |
|              | 5044         | CB      | ARG        |              | 80       | 71.340              | 34.256 | 21.032 | 1.00 20.22 | E |
| MOTA         | 5045         | CG      | ARG        |              |          | 70.886              | 34.213 | 19.584 | 1.00 22.92 | E |
| ATOM         | 5046         | CD      | ARG        |              | 80       | 69.423              | 33.811 | 19.439 | 1.00 23.91 | E |
| ATOM         | 5047         | NE      | ARG        |              | 80       | 68.972              | 33.965 | 18.057 | 1.00 23.49 | E |
| ATOM         | 5048         | CZ      | ARG        |              | 80       | 69.206              | 33.089 | 17.082 | 1.00 25.16 | E |
| ATOM         | 5049         | NHl     |            |              | 80       | 69.884              | 31.975 | 17.326 | 1.00 24.15 | E |
| MOTA         | 5050         | NH2     |            |              | 80       | 68.778              | 33.336 | 15.851 | 1.00 25.51 | E |
| ATOM         | 5051         | С       | ARG        | E            | 80       | 72.804              | 35.423 | 22.716 | 1.00 20.35 | E |
| ATOM         | 5052         | 0       | ARG        | E            | 80       | 72.317              | 36.464 | 23.153 | 1.00 17.98 | E |
| ATOM         | 5053         | N       | HIS        | E            | 81       | 73.495              | 34.581 | 23.479 | 1.00 21.22 | E |
| ATOM         | 5054         | CA      | HIS        | E            | 81       | 73.717              | 34.867 | 24.895 | 1.00 22.79 | E |
| MOTA         | 5055         | CB      | HIS        | E            | 81       | 74.467              | 33.717 | 25.572 | 1.00 24.38 | E |
| ATOM         | 5056         | CG      | HIS        | E            | 81       | 74.955              | 34.046 | 26.950 | 1.00 26.42 | E |
| ATOM         | 5057         | CD2     | HIS        | E            | 81       | 76.188              | 34.381 | 27.404 | 1.00 26.61 | E |
| ATOM         | 5058         | ND1     | HIS        | $\mathbf{E}$ | 81       | 74.122              | 34.080 | 28.048 | 1.00 26.60 | E |
| ATOM         | 5059         | CE1     | HIS        | E            | 81       | 74.819              | 34.420 | 29.117 | 1.00 25.75 | E |
| ATOM         | 5060         | NE2     | HIS        | E            | 81       | 76.075              | 34.609 | 28.754 | 1.00 26.16 | E |
| ATOM         | 5061         | C       | HIS        | E            | 81       | 74.531              | 36.146 | 25.060 | 1.00 21.41 | E |
| ATOM         | 5062         | 0       | HIS        |              | 81       | 74.109              | 37.076 | 25.742 | 1.00 19.84 | E |
| ATOM         | 5063         | N       | ASN        |              | 82       | 75.700              | 36.188 | 24.426 | 1.00 22.13 | E |
| ATOM         | 5064         | CA      | ASN        |              | 82       | 76.568              | 37.361 | 24.535 | 1.00 22.13 | E |
| ATOM         | 5065         | CB      | ASN        |              | 82       | 77.927              | 37.111 | 23.864 | 1.00 21.51 |   |
| ATOM         | 5066         | CG      | ASN        |              | 82       | 78.702              | 35.982 | 24.515 |            | E |
| ATOM         | 5067         | OD1     |            |              | 82       | 78.453              | 35.632 | 25.669 |            | E |
| ATOM         | 5068         | ND2     |            |              | 82       | 78. <del>4</del> 55 |        |        | 1.00 19.05 | E |
| ATOM         | 5069         | C       | ASN        |              | 82       |                     | 35.409 | 23.777 | 1.00 15.06 | E |
| ATOM         | 5070         | 0       | ASN        |              |          | 75.936              | 38.612 | 23.949 | 1.00 20.33 | E |
| ATOM         | 5071         | И       |            |              | 82       | 76.212              | 39.716 | 24.412 | 1.00 22.84 | E |
| ATOM         | 5072         |         | TYR        |              | 83       | 75.089              | 38.454 | 22.940 | 1.00 19.71 | E |
| ATOM         |              | CA      | TYR        |              | 83       | 74.454              | 39.620 | 22.336 | 1.00 20.96 | E |
| MOTA         | 5073         | CB      | TYR        |              | 83       | 73.619              | 39.211 | 21.114 | 1.00 21.58 | E |
|              | 5074         | CG      | TYR        |              | 83       | 73.223              | 40.368 | 20.218 | 1.00 22.56 | E |
| ATOM         | 5075         | CD1     | TYR        |              | 83       | 72.047              | 41.090 | 20.439 | 1.00 23.70 | E |
| MOTA         | 5076         | CE1     | TYR        |              | 83       | 71.682              | 42.152 | 19.593 | 1.00 25.46 | E |
| ATOM         | 5077         | CD2     |            |              | 83       | 74.027              | 40.736 | 19.140 | 1.00 22.35 | E |
| ATOM         | 5078         | CE2     | TYR        |              | 83       | 73.675              | 41.788 | 18.297 | 1.00 24.48 | E |
| ATOM         | 5079         | CZ      | TYR        |              | 83       | 72.508              | 42.491 | 18.523 | 1.00 26.06 | E |
| ATOM         | 5080         | OH      | TYR        |              | 83       | 72.185              | 43.524 | 17.671 | 1.00 28.63 | E |
| ATOM         | 5081         | C       | TYR        |              | 83       | 73.583              | 40.345 | 23.363 | 1.00 21.22 | E |
| MOTA         | 5082         | 0       | TYR        | E            | 83       | 73.399              | 41.557 | 23.276 | 1.00 21.25 | E |
| ATOM         | 5083         | N       | GLN        | E            | 84       | 73.046              | 39.606 | 24.333 | 1.00 22.94 | E |
| MOTA         | 5084         | CA      | GLN        | E            | 84       | 72.234              | 40.226 | 25.377 | 1.00 25.07 | E |
| ATOM         | 5085         | CB      | GLN        | E            | 84       | 71.631              | 39.180 | 26.324 | 1.00 25.76 | E |
| ATOM         | 5086         | CG      | ${	t GLN}$ | $\mathbf{E}$ | 84       | 70.863              | 38.047 | 25.653 | 1.00 30.97 | E |
| ATOM         | 5087         | CD      | GLN        | E            | 84       | 69.889              | 38.525 | 24.594 | 1.00 33.95 | E |
| ATOM         | 5088         | OE1     | GLN        | E            | 84       | 69.055              | 39.401 | 24.840 | 1.00 36.35 | E |
| MOTA         | 5089         | NE2     | GLN        | E            | 84       | 69.986              | 37.940 | 23.401 | 1.00 36.25 | E |
| ATOM         | 5090         | C       |            | E            | 84       | 73.158              | 41.145 | 26.174 | 1.00 25.41 | E |
| ATOM         | 5091         | 0       | GLN        | E            | 84       | 72.804              | 42.290 | 26.473 | 1.00 27.11 | E |
| MOTA         | 5092         | N       |            | E            | 85       | 74.344              | 40.637 | 26.510 | 1.00 27.11 | E |
| ATOM         | 5093         | CA      |            | E            | 85       | 75.330              | 41.413 |        |            |   |
| ATOM         | 5094         | CB      |            | E            | 85<br>85 | 75.330<br>76.601    |        | 27.256 | 1.00 26.47 | E |
| ATOM         | 5095         | CG      |            | E            |          |                     | 40.590 | 27.515 | 1.00 26.91 | E |
| ATOM<br>ATOM | 5096         |         |            | E            | 85<br>85 | 76.485              | 39.202 | 28.161 | 1.00 29.65 | E |
| ATOM         | 5097         |         |            | -            | 85<br>85 | 77.872              | 38.735 | 28.587 | 1.00 31.29 | E |
| ATOM<br>ATOM | 5097         |         |            | E            | 85<br>05 | 75.564              | 39.247 | 29.365 | 1.00 32.27 | E |
| ATOM<br>ATOM |              | C       |            | E            | 85<br>85 | 75.698              | 42.661 | 26.459 | 1.00 26.89 | E |
|              | 5099<br>5100 | O<br>NT |            | E            | 85       | 75.762              | 43.757 | 27.004 | 1.00 28.24 | E |
| ATOM<br>ATOM | 5100         | N       |            | E            | 86       | 75.941              | 42.484 | 25.162 | 1.00 27.39 | E |
| ATOM         | 5101         | CA      | GLU        | E            | 86       | 76.293              | 43.603 | 24.295 | 1.00 28.02 | E |
|              |              |         |            |              |          |                     |        |        |            |   |

| ATOM         | 5102         | CB      | GLU E   | 86       | 76.492           | 43.126           | 22.852           | 1.00 26.60               | E            |
|--------------|--------------|---------|---------|----------|------------------|------------------|------------------|--------------------------|--------------|
| MOTA         | 5103         | CG      | GLU E   | 86       | 77.524           | 42.026           | 22.672           | 1.00 30.65               | E            |
| MOTA         | 5104         | CD      | GLU E   | 86       | 78.942           | 42.457           | 23.024           | 1.00 31.17               | E            |
| MOTA         | 5105         | OE1     | GLU E   | 86       | 79.860           | 41.612           | 22.919           | 1.00 31.68               | E            |
| ATOM         | 5106         | OE2     | GLU E   | 86       | 79.139           | 43.631           | 23.402           | 1.00 31.77               | E            |
| ATOM         | 5107         | C       | GLU E   | 86       | 75.165           | 44.630           | 24.327           | 1.00 27.95               | E            |
| MOTA         | 5108         | 0       | GLU E   | 86       | 75.407           | 45.834           | 24.257           | 1.00 24.30               | E            |
| ATOM         | 5109         | Ŋ       | LEU E   | 87       | 73.935           | 44.130           | 24.442           | 1.00 28.96               | E            |
| ATOM         | 5110         | CA      | LEU E   | 87       | 72.736           | 44.962           | 24.468           | 1.00 32.20               | E            |
| ATOM         | 5111         | CB      | LEU E   | 87       | 71.496           | 44.062           | 24.423           | 1.00 32.64               | E            |
| ATOM         | 5112         | CG      | LEU E   | 87       | 70.506           | 44.100           | 23.248           | 1.00 35.59               | E            |
| ATOM         | 5113         | CD1     | LEU E   | 87       | 71.101           | 44.734           | 21.997           | 1.00 35.24               | E            |
| MOTA         | 5114         | CD2     | LEU E   | 87       | 70.071           | 42.675           | 22.965           | 1.00 34.35               | E            |
| ATOM         | 5115         | C       | LEU E   | 87       | 72.669           | 45.893           | 25.686           | 1.00 33.33               | E            |
| ATOM         | 5116         | 0       | LEU E   | 87       | 71.967           | 46.902           | 25.663           | 1.00 32.52               | E            |
| ATOM         | 5117         | N       | ARG E   | 88       | 73.401           | 45.560           | 26.745           | 1.00 35.06               | E            |
| ATOM         | 5118         | CA      | ARG E   | 88       | 73.399           | 46.389           | 27.948           | 1.00 37.29               | E            |
| ATOM         | 5119         | CB      | ARG E   | 88       | 73.348           | 45.524           | 29.215           | 1.00 39.69               | E            |
| ATOM         | 5120         | ÇG      | ARG E   | 88       | 72.471           | 44.275           | 29.158           | 1.00 43.37               | E            |
| ATOM         | 5121         | CD      | ARG E   | 88       | 72.441           | 43.592           | 30.529           | 1.00 45.38               | E            |
| ATOM         | 5122         | NE      | ARG E   | 88       | 71.846           | 42.257           | 30.499           | 1.00 48.76               | E            |
| MOTA         | 5123         | CZ      | ARG E   | 88       | 70.625           | 41.985           | 30.047           | 1.00 50.95               | E            |
| ATOM         | 5124         | NH1     | ARG E   | 88       | 69.854           | 42.958           | 29.579           | 1.00 52.23               | E            |
| ATOM         | 5125         | NH2     | ARG E   | 88       | 70.171           | 40.738           | 30.064           | 1.00 51.26               | E            |
| ATOM         | 5126         | C       | ARG E   | 88       | 74.670           | 47.225           | 28.010           | 1.00 37.36               | E            |
| ATOM         | 5127         | 0       | ARG E   | 88       | 74.842           | 48.044           | 28.913           | 1.00 37.55               | E            |
| ATOM         | 5128         | N       | THR E   | 89       | 75.564           | 47.019           | 27.049           | 1.00 36.40               | $\mathbf{E}$ |
| MOTA         | 5129         | CA      | THR E   | 89       | 76.834           | 47.731           | 27.055           | 1.00 34.93               | E            |
| MOTA         | 5130         | CB      | THR E   | 89       | 77.951           | 46.807           | 27.590           | 1.00 36.26               | E            |
| MOTA         | 5131         | OG1     | THR E   | 89       | 77.973           | 45.590           | 26.825           | 1.00 34.21               | E            |
| ATOM         | 5132         | CG2     | THR E   | 89       | 77.708           | 46.478           | 29.056           | 1.00 33.95               | E            |
| MOTA         | 5133         | C       | THR E   | 89       | 77.294           | 48.304           | 25.718           | 1.00 33.37               | E            |
| MOTA         | 5134         | 0       | THR E   | 89       | 76.958           | 49.431           | 25.356           | 1.00 33.30               | E            |
| MOTA         | 5135         | N       | THR E   | 90       | 78.080           | 47.510           | 25.000           | 1.00 32.11               | E            |
| MOTA         | 5136         | CA      | THR E   | 90       | 78.639           | 47.895           | 23.712           | 1.00 30.45               | E            |
| ATOM         | 5137         | CB      | THR E   | 90       | 79.313           | 46.681           | 23.041           | 1.00 31.20               | E            |
| MOTA         | 5138         | OG1     | THR E   | 90       | 80.238           | 46.086           | 23.958           | 1.00 32.67               | E            |
| ATOM         | 5139         | CG2     | THR E   | 90       | 80.076           | 47.109           | 21.811           | 1.00 32.64               | E            |
| MOTA         | 5140         | C       | THR E   | 90       | 77.639           | 48.504           | 22.738           | 1.00 28.40               | E            |
| MOTA         | 5141         | 0       | THR E   | 90       | 77.903           | 49.538           | 22.133           | 1.00 27.20               | E            |
| MOTA         | 5142         | N       | LEU E   | 91       | 76.489           | 47.864           | 22.582           | 1.00 29.83               | E            |
| MOTA         | 5143         | CA      | LEU E   | 91       | 75.482           | 48.361           | 21.655           | 1.00 29.52               | E            |
| MOTA         | 5144         | CB      | LEU E   | 91       | 74.474           | 47.252           | 21.354           | 1.00 27.50               | E            |
| MOTA         | 5145         | CG      | LEU E   | 91       | 75.091           | 46.101           | 20.550           | 1.00 26.15               | E            |
| ATOM         | 5146         | CD1     | LEU E   | 91       | 74.102           | 44.959           | 20.457           | 1.00 24.51               | E            |
| MOTA         | 5147         | CD2     |         | 91       | 75.487           | 46.593           | 19.157           | 1.00 23.04               | E            |
| ATOM         | 5148         | C       | LEU E   | 91       | 74.770           | 49.629           | 22.129           | 1.00 30.74               | E            |
| MOTA         | 5149         | 0       | LEU E   | 91       | 73.994           | 50.228           | 21.382           | 1.00 31.46               | E            |
| ATOM         | 5150         | N       | GLN E   | 92       | 75.035           | 50.043           | 23.366           | 1.00 29.33               | E            |
| ATOM         | 5151         | CA      | GLN E   | 92       | 74.427           | 51.259           | 23.884           | 1.00 30.04               | E            |
| ATOM         | 5152         | CB      | GLN E   | 92       | 73.869           | 51.044           | 25.294           | 1.00 31.55               | E            |
| ATOM         | 5153         | CG      | GLN E   | 92       | 72.500           | 50.381           | 25.327           | 1.00 36.90               | E            |
| ATOM         | 5154         | CD      | GLN E   | 92       | 71.865           | 50.426           | 26.706           | 1.00 41.59               | E            |
| ATOM         | 5155         | OE1     |         | 92       | 70.760           | 49.920           | 26.911           | 1.00 43.76               | E<br>E       |
| ATOM         | 5156         | NE2     |         | 92       | 72.563           | 51.037<br>52.409 | 27.662           | 1.00 43.75<br>1.00 28.45 | E            |
| ATOM         | 5157         | C       | GLN E   | 92       | 75.430           |                  | 23.898           |                          | E            |
| ATOM         | 5158         | 0       | GLN E   | 92       | 75.059           | 53.558           | 24.125<br>23.650 |                          | E            |
| ATOM         | 5159         | N       | ARG E   | 93       | 76.699           | 52.098           |                  | 1.00 26.37<br>1.00 26.74 | E            |
| ATOM         | 5160         | CA      | ARG E   | 93       | 77.737           | 53.127<br>52.513 | 23.633<br>23.340 | 1.00 28.74               | E            |
| ATOM         | 5161         | CB      | ARG E   | 93       | 79.112           | 53.525           | 23.340           | 1.00 24.84               | E            |
| ATOM         | 5162         | CG      | ARG E   | 93       | 80.260           | 52.801           | 22.894           | 1.00 20.15               | E            |
| ATOM         | 51.63        | CD      | ARG E   | 93       | 81.569           | 53.685           | 22.729           | 1.00 20.08               | E            |
| ATOM         | 5164         | NE      | ARG E   | 93       | 82.718           | 54.330           | 23.729           | 1.00 15.27               | E            |
| MOTA         | 5165         | CZ      | ARG E   | 93       | 83.316<br>82.875 | 54.197           | 24.973           | 1.00 16.93               | E            |
| ATOM         | 5166<br>5167 | NH1     |         | 93       | 82.875           | 55.101           | 24.973           | 1.00 17.82               | E            |
| ATOM         | 5167<br>5169 | NH2     |         | 93<br>93 | 77.428           | 54.173           | 23.492           | 1.00 18.26               | E            |
| ATOM         | 5168<br>5169 | C<br>O  | ARG E   | 93       | 77.428           | 53.847           | 21.407           | 1.00 28.20               | E            |
| ATOM<br>ATOM | 5170         | И       | ARG E   | 93       | 77.202           | 55.431           | 22.995           | 1.00 23.30               | E            |
| ATOM         | 5171         | CA      | ARG E   | 94       | 77.411           | 56.529           | 22.084           | 1.00 20.24               | E            |
| ATOM         | 5172         | CB      | ARG E   | 94       | 75.661           | 56.855           | 22.053           | 1.00 32.88               | E            |
| ATOM         | 5172         | CG      | ARG E   | 94       | 74.912           | 55.941           | 21.086           | 1.00 32.00               | E            |
| ATOM         | 5174         | CD      | ARG E   | 94       | 73.402           | 56.055           | 21.163           | 1.00 40.38               | E            |
| MOTA         | 5175         | NE      | ARG E   | 94       | 72.758           | 55.304           | 20.080           | 1.00 44.16               | E            |
| TTT OLI      | J 4. 1 J     | T-4 171 | -41×C E | ノエ       | 12.130           | , _ ,            |                  | _,,,,,,                  | _            |

| ATOM         | 5176         | CZ       | ARG        | E   | 94       | 72.871           | 53.991           | 19.894           | 1.00 43.57               | E      |
|--------------|--------------|----------|------------|-----|----------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 5177         | NH1      | ARG        | E   | 94       | 73.602           | 53.259           | 20.720           | 1.00 45.04               | E      |
| MOTA         | 5178         | NH2      | ARG        | E   | 94       | 72.262           | 53.408           | 18.869           | 1.00 45.75               | E      |
| MOTA         | 5179         | C        | ARG        | E   | 94       | 77.992           | 57.734           | 22.497           | 1.00 29.26               | E      |
| ATOM         | 5180         | 0        | ARG        | E   | 94       | 77.773           | 58.331           | 23.546           | 1.00 30.32               | E      |
| MOTA         | 5181         | N        | VAL        | E   | 95       | 78.974           | 58.063           | 21.667           | 1.00 26.76               | E      |
| ATOM         | 5182         | CA       | VAL        | E   | 95       | 79.859           | 59.188           | 21.936           | 1.00 25.75               | E      |
| ATOM         | 5183         | CB       | VAL        | E   | 95       | 81.340           | 58.763           | 21.855           | 1.00 22.33               | E      |
| MOTA         | 5184         | CG1      | VAL        | E   | 95       | 82.244           | 59.914           | 22.287           | 1.00 19.80               | E      |
| ATOM         | 5185         | CG2      | VAL        | E   | 95       | 81.565           | 57.534           | 22.717           | 1.00 19.11               | E      |
| ATOM         | 5186         | C        | VAL        | E   | 95       | 79.600           | 60.266           | 20.902           | 1.00 26.51               | E      |
| MOTA         | 5187         | 0        | VAL        | E   | 95       | 79.787           | 60.042           | 19.703           | 1.00 27.04               | E      |
| ATOM         | 5188         | N        |            |     | 96       | 79.160           | 61.430           | 21.366           | 1.00 27.28               | E      |
| ATOM         | 5189         | CA       | GLU        |     | 96       | 78.870           | 62.536           | 20.466           | 1.00 28.16               | E      |
| ATOM         | 5190         | CB       | GLU        |     | 96       | 78.260           | 63.716           | 21.227           | 1.00 30.40               | E      |
| ATOM         | 5191         | CG       | GLU        |     | 96       | 76.965           | 63.396           | 21.952           | 1.00 34.36               | E      |
| ATOM         | 5192         | CD       | GLU        |     | 96       | 76.348           | 64.625           | 22.609           | 1.00 36.84               | E      |
| ATOM         | 5193         | OE1      | GLU        |     | 96       | 75.295           | 64.478           | 23.272           | 1.00 38.81               | E      |
| MOTA         | 5194         | OE2      | GLU        |     | 96<br>26 | 76.914           | 65.734           | 22.460           | 1.00 35.73               | E      |
| MOTA         | 5195         | C        | GLU        |     | 96<br>06 | 80.148           | 62.987           | 19.793           | 1.00 25.65               | E      |
| ATOM         | 5196         | 0        | GLU        |     | 96<br>07 | 81.176           | 63.171           | 20.440           | 1.00 24.93               | E      |
| ATOM         | 5197<br>5198 | N<br>CD  | PRO<br>PRO |     | 97<br>97 | 80.101<br>78.977 | 63.168<br>62.979 | 18.473<br>17.539 | 1.00 25.41<br>1.00 24.36 | E<br>E |
| ATOM<br>ATOM | 5199         | CA       | PRO        |     | 97<br>97 | 81.304           | 63.603           | 17.770           | 1.00 24.81               | E      |
| ATOM         | 5200         | CB       | PRO        |     | 97<br>97 | 80.927           | 63.416           | 16.306           | 1.00 24.81               | E      |
| ATOM         | 5200         | CG       | PRO        |     | 97<br>97 | 79.456           | 63.717           | 16.309           | 1.00 24.85               | E      |
| ATOM         | 5201         | C        | PRO        |     | 97       | 81.643           | 65.048           | 18.089           | 1.00 23.30               | E      |
| ATOM         | 5202         | 0        | PRO        |     | 97       | 80.761           | 65.844           | 18.419           | 1.00 23.85               | E      |
| ATOM         | 5204         | N        | THR        |     | 98       | 82.927           | 65.377           | 18.025           | 1.00 22.82               | E      |
| MOTA         | 5205         | CA       | THR        |     | 98       | 83.340           | 66.748           | 18.244           | 1.00 24.12               | E      |
| ATOM         | 5206         | CB       | THR        |     | 98       | 84.679           | 66.852           | 19.019           | 1.00 26.31               | E      |
| ATOM         | 5207         | OG1      | THR        |     | 98       | 85.744           | 66.355           | 18.205           | 1.00 34.47               | E      |
| ATOM         | 5208         | CG2      | THR        |     | 98       | 84.623           | 66.049           |                  | 1.00 23.83               | E      |
| MOTA         | 5209         | C        | THR        | E   | 98       | 83.519           | 67.254           | 16.817           | 1.00 22.12               | E      |
| ATOM         | 5210         | 0        | THR        | E   | 98       | 84.162           | 66.601           | 15.993           | 1.00 21.35               | E      |
| ATOM         | 5211         | N        | VAL        | E   | 99       | 82.923           | 68.400           | 16.516           | 1.00 21.99               | E      |
| MOTA         | 5212         | CA       | VAL        | E   | 99       | 83.001           | 68.957           | 15.177           | 1.00 20.67               | E      |
| ATOM         | 5213         | CB       | VAL        | E   | 99       | 81.585           | 69.217           | 14.619           | 1.00 19.57               | E      |
| ATOM         | 5214         | CG1      | VAL        | E   | 99       | 81.667           | 69.645           | 13.154           | 1.00 14.62               | E      |
| MOTA         | 5215         | CG2      | VAL        | E   | 99       | 80.732           | 67.944           | 14.766           | 1.00 15.20               | E      |
| ATOM         | 5216         | C        | VAL        | E   | 99       | 83.814           | 70.240           | 15.158           | 1.00 22.05               | E      |
| MOTA         | 5217         | 0        | VAL        | E   | 99       | 83.524           | 71.194           | 15.884           | 1.00 22.27               | E      |
| ATOM         | 5218         | N        | THR        |     | 100      | 84.827           | 70.250           | 14.304           | 1.00 21.34               | E      |
| ATOM         | 5219         | CA       | THR        |     | 100      | 85.728           | 71.376           | 14.176           | 1.00 23.10               | E      |
| ATOM         | 5220         | CB       | THR        |     | 100      | 87.104           | 71.024           | 14.786           | 1.00 24.55               | E      |
| MOTA         | 5221         | OG1      | THR        |     | 100      | 86.941           | 70.728           | 16.180           | 1.00 30.47               | E      |
| ATOM         | 5222         | CG2      | THR        |     | 100      | 88.079           | 72.183           | 14.634           | 1.00 27.79               | E      |
| ATOM         | 5223         | C        | THR        |     | 100      | 85.934           | 71.777           | 12.722           | 1.00 23.36               | E      |
| ATOM         | 5224         | 0        | THR        |     | 100      | 86.024           | 70.926           | 11.842           | 1.00 21.77               | E<br>E |
| ATOM         | 5225<br>5226 | N<br>C7  | ILE        |     | 101      | 86.009<br>86.236 | 73.082<br>73.584 | 12.473<br>11.124 | 1.00 24.40<br>1.00 25.31 | E      |
| ATOM<br>ATOM | 5226<br>5227 | CA<br>CB | ILE        |     | 101      | 85.092           | 74.518           | 10.645           | 1.00 23.31               | E      |
| ATOM         | 5228         | CG2      | ILE        |     | 101      | 85.398           | 75.044           | 9.245            | 1.00 24.21               | E      |
| ATOM         | 5229         | CG1      | ILE        |     | 101      | 83.760           | 73.768           | 10.636           | 1.00 24.86               | E      |
| ATOM         | 5230         | CD1      | ILE        |     | 101      | 82.584           | 74.635           | 10.197           | 1.00 25.22               | E      |
| ATOM         | 5231         | C        | ILE        |     | 101      | 87.538           | 74.372           | 11.116           | 1.00 26.66               | E      |
| ATOM         | 5232         | 0        | ILE        |     |          | 87.859           | 75.065           | 12.074           | 1.00 26.18               | E      |
| ATOM         | 5233         | N        | SER        |     | 102      | 88.287           | 74.262           | 10.029           | 1.00 31.17               | E      |
| ATOM         | 5234         | CA       | SER        | E   | 102      | 89.547           | 74.977           | 9.902            | 1.00 35.36               | E      |
| MOTA         | 5235         | CB       | SER        | E   | 102      | 90.619           | 74.306           | 10.755           | 1.00 34.20               | E      |
| ATOM         | 5236         | OG       | SER        | E   | 102      | 90.777           | 72.953           | 10.374           | 1.00 40.09               | E      |
| MOTA         | 5237         | C        | SER        | E   | 102      | 89.976           | 74.979           | 8.448            | 1.00 36.82               | E      |
| MOTA         | 5238         | 0        | SER        | E   | 102      | 89.913           | 73.953           | 7.777            | 1.00 36.68               | E      |
| MOTA         | 5239         | N        | PRO        | E   | 103      | 90.404           | 76.139           | 7.932            | 1.00 39.96               | E      |
| MOTA         | 5240         | CD       | PRO        |     | 103      | 90.458           | 77.473           | 8.553            | 1.00 40.07               | E      |
| ATOM         | 5241         | CA       | PRO        |     | 103      | 90.831           | 76.190           | 6.532            | 1.00 42.01               | E      |
| ATOM         | 5242         | CB       | PRO        |     | 103      | 90.856           | 77.682           | 6.237            | 1.00 41.76               | E      |
| ATOM         | 5243         | CG       | PRO        |     | 103      | 91.282           | 78.258           | 7.556            | 1.00 42.86               | E      |
| ATOM         | 5244         | C        | PRO        |     | 103      | 92.196           | 75.534           | 6.390            | 1.00 44.62               | E      |
| ATOM         | 5245         | 0        | PRO        |     | 103      | 92.943           | 75.430           | 7.365            | 1.00 44.53               | E      |
| ATOM         | 5246         | N        | SER        |     | 104      | 92.514           | 75.086           | 5.181            | 1.00 47.92               | E<br>E |
| MOTA         | 5247<br>5240 | CA       | SER        |     | 104      | 93.789           | 74.426           | 4.920            | 1.00 50.83               | E      |
| ATOM         | 5248<br>5240 | CB       | SER        |     | 104      | 93.712           | 73.637           | 3.612            | 1.00 52.33               | E      |
| ATOM         | 5249         | QG       | SER        | II. | エハギ      | 94.904           | 72.901           | 3.396            | 1.00 55.60               | Ľ      |

| ATOM         | 5250 | С   | SER   | E 104      | 94.941 | 75.422 | 4.845  | 1.00 52.18               | E            |
|--------------|------|-----|-------|------------|--------|--------|--------|--------------------------|--------------|
| ATOM         | 5251 | 0   | SER   |            | 96.080 | 75.093 | 5.186  | -                        | E            |
| ATOM         | 5252 | N   | ASN   |            | 90.669 | 78.112 |        | · -                      | E            |
| ATOM         | 5253 | CA  | ASN   |            | 90.651 | 77.795 |        | 1.00 47.57               | E            |
| ATOM         | 5254 | CB  | ASN   | · ·        | 89.863 | 78.854 | 0.496  |                          | E            |
| ATOM         | 5255 | CG  | ASN   |            | 90.504 | 80.219 | 0.417  |                          |              |
| ATOM         | 5256 | ODI |       | E 113      | 90.693 | 80.765 | -0.670 |                          | E            |
| ATOM         | 5257 | ND2 |       | E 113      | 90.845 | 80.781 |        | 1.00 55.11               | E            |
| ATOM         | 5258 | C   | ASN   | E 113      | 90.045 |        | 1.572  | 1.00 55.09               | E            |
| MOTA         | 5259 | Ö   | ASN   | E 113      |        | 76.424 | -0.001 | 1.00 44.87               | E            |
| ATOM         | 5260 | N   | LEU   | E 114      | 89.374 | 75.852 | -0.860 | 1.00 44.99               | E            |
| ATOM         | 5261 | CA  | LEU   |            | 90.282 | 75.904 | 1.197  | 1.00 41.65               | E            |
| ATOM         | 5261 |     |       |            | 89.765 | 74.592 | 1.568  | 1.00 38.53               | E            |
| ATOM         |      | CB  | LEU   | E 114      | 90.823 | 73.521 | 1.287  | 1.00 38.84               | E            |
| ATOM         | 5263 | CG  |       | E 114      | 90.383 | 72.060 | 1.441  | 1.00 40.32               | E            |
|              | 5264 | CD1 |       | E 114      | 89.314 | 71.726 | 0.400  | 1.00 39.94               | E            |
| ATOM         | 5265 | CD2 |       | E 114      | 91.586 | 71.145 | 1.266  | 1.00 40.52               | ${f E}$      |
| ATOM         | 5266 | C   |       | E 114      | 89.349 | 74.523 | 3.036  | 1.00 34.78               | $\mathbf{E}$ |
| ATOM         | 5267 | 0   | LEU   |            | 90.173 | 74.684 | 3.929  | 1.00 33.51               | E            |
| ATOM         | 5268 | N   | LEU   |            | 88.063 | 74.293 | 3.278  | 1.00 32.05               | E            |
| ATOM         | 5269 | CA  | LEU   |            | 87.550 | 74.181 | 4.641  | 1.00 29.68               | E            |
| ATOM         | 5270 | CB  |       | E 115      | 86.158 | 74.809 | 4.754  | 1.00 29.84               | E            |
| ATOM         | 5271 | CG  |       | E 115      | 86.046 | 76.257 | 5.241  | 1.00 31.52               | E            |
| ATOM         | 5272 | CD1 | LEU   | E 115      | 87.101 | 77.140 | 4.574  | 1.00 32.51               | E            |
| ATOM         | 5273 | CD2 | LEU   | E 115      | 84.636 | 76.762 | 4.948  | 1.00 30.75               | E            |
| ATOM         | 5274 | C   | LEU   | E 115      | 87.472 | 72.712 | 5.034  | 1.00 27.57               | E            |
| MOTA         | 5275 | 0   | LEU   | E 115      | 86.871 | 71.900 | 4.331  | 1.00 25.33               | E            |
| ATOM         | 5276 | N   | VAL   | E 116      | 88.089 | 72.381 | 6.161  | 1.00 26.32               | E            |
| MOTA         | 5277 | CA  | VAL   | E 116      | 88.099 | 71.014 | 6.651  | 1.00 24.42               | E            |
| ATOM         | 5278 | CB  | VAL   | E 116      | 89.513 | 70.572 | 7.075  | 1.00 24.51               | E            |
| ATOM         | 5279 | CG1 | VAL   | E 116      | 89.467 | 69.160 | 7.641  | 1.00 22.66               | E            |
| MOTA         | 5280 | CG2 | VAL   | E 116      | 90.458 | 70.643 | 5.879  | 1.00 26.70               | E            |
| ATOM         | 5281 | C   | VAL   | E 116      | 87.195 | 70.842 | 7.846  | 1.00 22.77               | E            |
| MOTA         | 5282 | 0   | VAL   | E 116      | 87.376 | 71.496 | 8.868  | 1.00 23.04               | E            |
| MOTA         | 5283 | N   | CYS   | E 117      | 86.208 | 69.968 | 7.717  | 1.00 22.34               | E            |
| ATOM         | 5284 | CA  | CYS   | E 117      | 85.326 | 69.711 | 8.840  | 1.00 21.65               | E            |
| ATOM         | 5285 | C   | CYS   | E 117      | 85.769 | 68.391 | 9.466  | 1.00 19.44               | E            |
| ATOM         | 5286 | 0   | CYS   | E 117      | 85.607 | 67.319 | 8.877  | 1.00 18.95               | E            |
| ATOM         | 5287 | CB  | CYS   | E 117      | 83.863 | 69.626 | 8.401  | 1.00 22.57               | E            |
| ATOM         | 5288 | SG  | CYS   | E 117      | 82.771 | 69.420 | 9.844  | 1.00 25.79               | E            |
| ATOM         | 5289 | N   | SER   | E 118      | 86.355 | 68.488 | 10.654 | 1.00 19.92               | E            |
| ATOM         | 5290 | CA  | SER   | E 118      | 86.837 | 67.330 | 11.387 | 1.00 17.98               | E            |
| ATOM         | 5291 | CB  | SER   | E 118      | 88.115 | 67.671 | 12.146 | 1.00 18.33               | E            |
| ATOM         | 5292 | OG  |       | E 118      | 89.121 | 68.117 | 11.260 | 1.00 24.58               | E            |
| MOTA         | 5293 | C   |       | E 118      | 85.798 | 66.860 | 12.377 | 1.00 17.01               | E            |
| ATOM         | 5294 | O   |       | E 118      | 85.507 | 67.543 | 13.354 | 1.00 16.69               | E            |
| ATOM         | 5295 | N   |       | 0<br>E 119 | 85.240 | 65.688 | 12.112 | 1.00 16.58               | E            |
| ATOM         | 5296 | CA  |       | E 119      | 84.242 | 65.095 | 12.985 | 1.00 16.03               | E            |
| ATOM         | 5297 | СВ  |       | E 119      | 83.040 | 64.582 | 12.160 | 1.00 15.47               | E            |
| ATOM         | 5298 | CG1 |       | <br>E 119  | 81.918 | 64.147 | 13.077 | 1.00 13.47               | E            |
| ATOM         | 5299 | CG2 | VAL   |            | 82.559 | 65.686 | 11.216 | 1.00 10.95               | e<br>E       |
| ATOM         | 5300 | C   |       | E 119      | 85.018 | 63.960 | 13.638 |                          |              |
| ATOM         | 5301 | 0   |       | E 119      | 85.238 | 62.906 |        | 1.00 17.51<br>1.00 19.30 | E            |
| ATOM         | 5302 | N   |       | E 120      | 85.442 | 64.203 | 13.042 |                          | E            |
| ATOM         | 5303 | CA  | THR I |            | 86.265 |        | 14.871 | 1.00 18.44               | E            |
| ATOM         | 5304 | CB  | THR 1 |            | 87.562 | 63.266 | 15.616 | 1.00 18.41               | E            |
| ATOM         | 5305 | OG1 | THR I |            | 87.242 | 63.962 | 16.042 | 1.00 18.11               | E            |
| ATOM         | 5306 | CG2 | THR 1 |            |        | 65.078 | 16.887 | 1.00 17.18               | E            |
| ATOM         |      |     |       |            | 88.304 | 64.481 | 14.835 | 1.00 16.77               | E            |
| ATOM<br>ATOM | 5307 | C   | THR I |            | 85.655 | 62.656 | 16.875 | 1.00 20.11               | E            |
|              | 5308 | 0   |       | E 120      | 84.665 | 63.148 | 17.417 | 1.00 21.96               | . <b>E</b>   |
| ATOM         | 5309 | N   |       | E 121      | 86.272 | 61.566 | 17.319 | 1.00 19.96               | E            |
| ATOM         | 5310 | CA  |       | E 121      | 85.882 | 60.864 | 18.529 | 1.00 21.06               | E            |
| ATOM         | 5311 | CB  |       | E 121      | 86.313 | 61.686 | 19.745 | 1.00 25.93               | E            |
| ATOM         | 5312 | CG  |       | E 121      | 87.814 | 61.765 | 19.882 | 1.00 30.02               | E            |
| ATOM         | 5313 | OD1 |       | E 121      | 88.291 | 62.524 | 20.756 | 1.00 34.97               | ${f E}$      |
| ATOM         | 5314 | OD2 |       | 3 121      | 88.513 | 61.063 | 19.114 | 1.00 31.15               | E            |
| ATOM         | 5315 | C   |       | 3 121      | 84.431 | 60.463 | 18.709 | 1.00 20.39               | E            |
| ATOM         | 5316 | 0   |       | E 121      | 83.857 | 60.698 | 19.766 | 1.00 22.05               | E            |
| ATOM         | 5317 | N   |       | E 122      | 83.827 | 59.841 | 17.708 | 1.00 19.69               | E            |
| ATOM         | 5318 | CA  |       | E 122      | 82.443 | 59.429 | 17.873 | 1.00 18.28               | E            |
| ATOM         | 5319 | CB  |       | E 122      | 81.538 | 60.108 | 16.843 | 1.00 16.99               | E            |
| ATOM         | 5320 | CG  |       | 3 122      | 81.905 | 59.821 | 15.417 | 1.00 16.67               | E            |
| ATOM         | 5321 | CD1 |       | E 122      | 82.770 | 60.661 | 14.725 | 1.00 16.72               | E            |
| ATOM         | 5322 |     |       | E 122      | 81.370 | 58.717 | 14.756 | 1.00 17.17               | E            |
| ATOM         | 5323 | CE1 | PHE E | E 122      | 83.096 | 60.410 | 13.384 | 1.00 17.00               | E            |
|              |      |     |       |            |        |        |        |                          |              |

| ATOM | 5324 | CE2 | PHE        | E            | 122  | 81.686 | 58.456   | 13.419 | 1.00 | 16.82 | ${f E}$ |
|------|------|-----|------------|--------------|------|--------|----------|--------|------|-------|---------|
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5325 | CZ  | PHE        | E            | 122  | 82.549 | 59.305   | 12.733 | 1.00 | 15.81 | E       |
| MOTA | 5326 | C   | PHE        | $\mathbf{E}$ | 122  | 82.287 | 57.925   | 17.774 | 1.00 | 18.35 | ${f E}$ |
| ATOM | 5327 | 0   | PHE        | E            | 122  | 83.168 | 57.231   | 17.272 | 1.00 | 15.90 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5328 | N   | TYR        | E            | 123  | 81.157 | 57.436   | 18.276 | 1.00 | 19.49 | ${f E}$ |
| ATOM | 5329 | CA  | TYR        | E            | 123  | 80.818 | 56.021   | 18.243 | 1.00 | 20.92 | E       |
|      |      |     |            |              |      |        |          |        | -    |       |         |
| ATOM | 5330 | CB  | TYR        | E            | 123  | 81.523 | 55.261   | 19.374 | 1.00 | 21.02 | E       |
| MOTA | 5331 | CG  | TYR        | E            | 123  | 81.387 | 53.762   | 19.247 | 1.00 | 20.05 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5332 | CD1 | TYR        | E            | 123  | 80.242 | 53.103   | 19.688 | 1.00 | 21.66 | E       |
| MOTA | 5333 | CE1 | TYR        | $\mathbf{E}$ | 123  | 80.095 | 51.726   | 19.516 | 1.00 | 21.85 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5334 | CD2 | TYR        | E            | 123  | 82.383 | 53.009   | 18.633 | 1.00 | 20.08 | E       |
| ATOM | 5335 | CE2 | TYR        | $\mathbf{E}$ | 123  | 82.250 | 51.643   | 18.455 | 1.00 | 19.20 | E       |
| ATOM | 5336 | CZ  | TYR        | E            | 123  | 81.105 | 51.002   | 18.896 | 1.00 | 22.24 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5337 | OH  | TYR        | E            | 123  | 80.970 | 49.640   | 18.712 | 1.00 | 25.26 | E       |
| ATOM | 5338 | C   | TYR        | E            | 123  | 79.311 | 55.957   | 18.440 | 1.00 | 21.42 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| MOTA | 5339 | 0   | TYR        | E            | 123  | 78.778 | 56.647   | 19.305 | 1.00 | 23.90 | E       |
| ATOM | 5340 | N   | PRO        | E            | 124  | 78.609 | 55.100   | 17.676 | 1.00 | 20.39 | E       |
|      |      |     | -          |              |      |        |          |        |      |       |         |
| ATOM | 5341 | CD  | PRO        | E            | 124  | 77.155 | 54.937   | 17.844 | 1.00 | 21.24 | E       |
| MOTA | 5342 | CA  | PRO        | $\mathbf{E}$ | 124  | 79.113 | 54.177   | 16.655 | 1.00 | 21.61 | E       |
| ATOM | 5343 | CB  | PRO        | E            | 1.24 | 77.956 | 53.188   | 16.500 | 1.00 | 19.35 | ${f E}$ |
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5344 | CG  | PRO        | $\mathbf{E}$ | 124  | 76.776 | 54.056   | 16.670 | 1.00 | 19.34 | E       |
| MOTA | 5345 | C   | PRO        | E            | 124  | 79.549 | 54.802   | 15.325 | 1.00 | 20.84 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5346 | 0   | PRO        | E            | 124  | 79.602 | 56.024   | 15.184 | 1.00 | 22.13 | ${f E}$ |
| ATOM | 5347 | N   | ALA        | $\mathbf{E}$ | 125  | 79.862 | 53.940   | 14.361 | 1.00 | 22.61 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| MOTA | 5348 | CA  | ALA        | H            | 125  | 80.329 | 54.341   | 13.027 | 1.00 | 25.48 | E       |
| ATOM | 5349 | CB  | ALA        | $\mathbf{E}$ | 125  | 80.860 | 53.121   | 12.288 | 1.00 | 26.06 | ${f E}$ |
|      |      |     |            |              |      | 79.311 | 55.058   | 12.137 | 1.00 | 27.38 | E       |
| ATOM | 5350 | C   | ALA        |              | 125  |        |          |        |      |       |         |
| MOTA | 5351 | 0   | ALA        | $\mathbf{E}$ | 125  | 79.681 | 55.906   | 11.332 | 1.00 | 29.08 | E       |
| ATOM | 5352 | N   | GLN        | E            | 126  | 78.039 | 54.706   | 12.268 | 1.00 | 29.18 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5353 | CA  | GLN        | E            | 126  | 76.990 | 55.312   | 11.455 | 1.00 | 29.94 | E       |
| ATOM | 5354 | CB  | GLN        | E            | 126  | 75.625 | 54.737   | 11.848 | 1.00 | 33.48 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| MOTA | 5355 | CG  | GLN        | E            | 126  | 75.536 | 53.200   | 11.840 | 1.00 | 39.27 | E       |
| ATOM | 5356 | CD  | GLN        | E            | 126  | 76.067 | 52.537   | 13.117 | 1.00 | 41.92 | E       |
|      |      |     |            |              |      |        |          |        |      |       | E       |
| ATOM | 5357 | OE1 | GLN        | E            | 126  | 77.271 | 52.523   | 13.379 | 1.00 | 44.02 |         |
| ATOM | 5358 | NE2 | GLN        | $\mathbf{E}$ | 126  | 75.159 | 51.981   | 13.913 | 1.00 | 43.83 | E       |
| ATOM | 5359 | C   | GLN        | E            | 126  | 76.977 | 56.829   | 11.621 | 1.00 | 28.88 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5360 | 0   | ${	t GLN}$ | E            | 126  | 76.739 | 57.331   | 12.719 | 1.00 | 28.83 | E       |
| ATOM | 5361 | N   | ILE        | E            | 127  | 77.221 | 57.558   | 10.532 | 1.00 | 27.90 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5362 | CA  | ILE        | E            | 127  | 77.245 | 59.018   | 10.591 | 1.00 | 25.67 | E       |
| ATOM | 5363 | CB  | ILE        | $\mathbf{E}$ | 127  | 78.611 | 59.514   | 11.150 | 1.00 | 25.23 | E       |
|      |      |     |            |              |      |        |          | 10.084 | 1.00 | 21.16 | E       |
| MOTA | 5364 | CG2 | ILE        | E            | 127  | 79.693 | 59.398   |        |      |       |         |
| ATOM | 5365 | CG1 | ILE        | E            | 127  | 78.504 | 60.965   | 11.610 | 1.00 | 22.40 | E       |
| ATOM | 5366 | CD1 | ILE        | E            | 127  | 79.610 | 61.376   | 12.546 | 1.00 | 25.35 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| MOTA | 5367 | C   | ILE        | E            | 127  | 76.985 | 59.673   | 9.230  | 1.00 | 26.38 | E       |
| ATOM | 5368 | 0   | ILE        | E            | 127  | 77.196 | 59.065   | 8.182  | 1.00 | 26.20 | E       |
|      |      |     |            |              |      |        |          |        | •    |       |         |
| ATOM | 5369 | N   | LYS        | E            | 128  | 76.521 | 60.916   | 9.252  | 1.00 | 25.64 | E       |
| MOTA | 5370 | CA  | LYS        | $\mathbf{E}$ | 128  | 76.248 | 61.635   | 8.016  | 1.00 | 29.02 | E       |
|      |      |     | LYS        |              | 1.28 | 74.754 | 61.566   | 7.671  | 1.00 | 29.97 | E       |
| ATOM | 5371 | CB  | ,          | E            |      |        |          |        |      |       |         |
| ATOM | 5372 | CG  | LYS        | E            | 128  | 74.408 | 62.178   | 6.317  | 1.00 | 35.17 | ${f E}$ |
| MOTA | 5373 | CD  | LYS        | E            | 128  | 75.175 | 61.487   | 5.183  | 1.00 | 39.63 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5374 | CE  | LYS        | H            | 128  | 74,936 | 62.163   | 3.836  | 1.00 | 41.20 | E       |
| ATOM | 5375 | NZ  | LYS        | E            | 128  | 75,685 | 61.492   | 2.731  | 1.00 | 44.74 | E       |
|      |      |     | T 370      |              |      | 76.683 | 63.090   |        | 7 00 | 28.40 | E       |
| MOTA | 5376 | C   |            | E            | 128  |        |          | 8.154  |      | -     |         |
| ATOM | 5377 | 0   | LYS        | $\mathbf{E}$ | 128  | 76.203 | 63.812   | 9.028  | 7.00 | 27.15 | E       |
| ATOM | 5378 | N   | VAL        | E            | 129  | 77.600 | 63.506   | 7.287  | 1.00 | 28.99 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5379 | CA  | VAL        | E            | 129  | 78.119 | 64.866   | 7.304  |      | 29.32 | E       |
| ATOM | 5380 | CB  | VAL        | $\mathbf{E}$ | 129  | 79.651 | 64.860   | 7.502  | 1.00 | 30.69 | E       |
|      |      |     |            |              | 129  | 80.171 | 66.282   | 7.654  |      | 27.54 | E       |
| ATOM | 5381 | CG1 | VAL        |              |      |        |          |        |      |       |         |
| ATOM | 5382 | CG2 | VAL        | E            | 129  | 80.014 | 64.012   | 8.721  | 1.00 | 30.82 | E       |
| ATOM | 5383 | С   | VAL        | H.           | 129  | 77.788 | 65.574   | 5.992  | 1 00 | 30.45 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5384 | 0   | VAL        | E            | 129  | 78.042 | 65.039   | 4.915  |      | 30.36 | E       |
| ATOM | 5385 | N   | ARG        | E            | 130  | 77.221 | 66.775   | 6.090  | 1.00 | 31.17 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| ATOM | 5386 | CA  | ARG        | E            | 130  | 76.851 | 67.562   | 4.914  |      | 32.17 | E       |
| ATOM | 5387 | CB  | ARG        | $\mathbf{E}$ | 130  | 75.330 | 67.626   | 4.764  | 1.00 | 34.73 | E       |
|      |      |     |            |              |      |        |          |        |      | 40.85 | E       |
| ATOM | 5388 | CG  | ARG        |              |      | 74.632 | 66.335   | 4.400  |      |       |         |
| ATOM | 5389 | CD  | ARG        | E            | 130  | 73.121 | 66.527   | 4.511  | 1.00 | 46.16 | E       |
| ATOM | 5390 | NE  | ARG        | E            |      | 72.365 | 65.456   | 3.864  | 7 00 | 51.33 | E       |
|      |      |     |            |              |      |        |          |        |      |       |         |
| MOTA | 5391 | CZ  | ARG        | E            | 130  | 71.046 | 65.308   | 3.959  | 1.00 | 53.45 | E       |
| ATOM | 5392 | NHI | ARG        | $\mathbf{E}$ | 130  | 70.327 | 66.162   | 4.680  | 1.00 | 54.21 | E       |
|      |      |     |            |              |      |        |          |        |      | 53.97 |         |
| ATOM | 5393 | NH2 | ARG        | E            | 130  | 70.444 | 64.307   | 3.329  |      |       | E       |
| ATOM | 5394 | C   | ARG        | E            | 130  | 77.359 | 68.994   | 5.017  | 1.00 | 30.88 | E       |
|      |      |     | ARG        | E            |      | 77.321 | 69.590   | 6.093  | 1.00 |       | E       |
| MOTA | 5395 | 0   |            |              |      |        |          |        |      |       |         |
| MOTA | 5396 | N   | TRP        | E            | 131  | 77.831 | 69.542   | 3.900  |      | 29.14 | E       |
| ATOM | 5397 | CA. | TRP        | E            | 131  | 78.291 | 70.928   | 3.865  | 1.00 | 29.57 | E       |
|      | ·    |     |            | -            |      |        | <u>-</u> |        |      | -     | _       |

| ATOM | 5398 | B CB TRP E 131  | 70 F2  | . =              |        |                |              |
|------|------|-----------------|--------|------------------|--------|----------------|--------------|
| ATOM |      |                 | 79.53  |                  |        | 5 1.00 27.97   | E            |
|      |      |                 | 80.80  | 9 70.979         | 3.760  | 1.00 29.37     | E            |
| ATOM |      |                 | 81.342 | 2 71.949         | 4.671  | L 1.00 29.95   | E            |
| ATOM |      | L CE2 TRP E 131 | 82.55  | l 71.427         | 5.174  | <del>-</del> - | E            |
| ATOM | 5402 | CE3 TRP E 131   | 80.913 |                  |        |                |              |
| ATOM | 5403 | CD1 TRP E 131   | 81.689 | <del>-</del>     |        |                | E            |
| ATOM | 5404 |                 | 82.738 |                  | • • •  | _,,,,          | E            |
| ATOM |      |                 |        |                  |        |                | E            |
| ATOM |      |                 | 83.340 | ·                | 6.095  | 1.00 28.79     | E            |
|      |      |                 | 81.697 |                  | 6.027  | 1.00 31.30     | E            |
| ATOM | Ī    |                 | 82.900 | 73.350           | 6.509  | 1.00 31.69     | E            |
| ATOM | 5408 | C TRP E 131     | 77.185 | 71.817           | 3.301  |                | E            |
| ATOM | 5409 | O TRP E 131     | 76.449 | 71.413           | 2.392  |                |              |
| ATOM | 5410 | N PHE E 132     | 77.081 |                  | 3.842  |                | E            |
| ATOM | 5411 |                 | 76.078 | · - ·            |        |                | E            |
| ATOM | 5412 |                 |        |                  | 3.405  |                | E            |
| ATOM | 5413 |                 | 74.963 |                  | 4.443  | 1.00 32.09     | E            |
| ATOM |      |                 | 74.041 | · - <del>-</del> | 4.461  | 1.00 33.03     | E            |
|      | 5414 |                 | 72.913 | 72.896           | 3.650  | 1.00 35.25     | E            |
| ATOM | 5415 | CD2 PHE E 132   | 74.306 | 71.822           | 5.273  |                | E            |
| MOTA | 5416 | CE1 PHE E 132   | 72.055 | 71.794           | 3.646  |                | E            |
| ATOM | 5417 | CE2 PHE E 132   | 73.460 |                  | 5.279  |                |              |
| ATOM | 5418 | CZ PHE E 132    | 72.330 |                  |        |                | E            |
| ATOM | 5419 | C PHE E 132     | 76.668 | <del>-</del>     | 4.461  | 1.00 35.97     | E            |
| ATOM | 5420 |                 |        |                  | 3.182  | 1.00 32.06     | E            |
| ATOM | 5421 |                 | 77.537 |                  | 3.929  | 1.00 29.15     | E            |
|      |      | N ARG E 133     | 76.186 | 76.026           | 2.138  | 1.00 34.68     | E            |
| ATOM | 5422 | CA ARG E 133    | 76.613 | 77.375           | 1.809  | 1.00 37.78     | E            |
| ATOM | 5423 | CB ARG E 133    | 77.281 | 77.420           | 0.434  | 1.00 40.14     | E            |
| ATOM | 5424 | CG ARG E 133    | 77.755 | 78.810           | 0.005  |                | E            |
| MOTA | 5425 | CD ARG E 133    | 78.474 |                  | -1.341 |                |              |
| ATOM | 5426 | NE ARG E 133    | 79.096 |                  |        |                | E            |
| ATOM | 5427 | CZ ARG E 133    |        |                  | -1.738 |                | E            |
| ATOM | 5428 |                 | 78.441 |                  | -2.226 |                | E            |
|      |      |                 | 77.124 |                  | -2.387 | 1.00 51.33     | E            |
| ATOM | 5429 | NH2 ARG E 133   | 79.111 |                  | -2.562 | 1.00 52.46     | E            |
| ATOM | 5430 | C ARG E 133     | 75.343 | 78.204           | 1.792  | 1.00 38.70     | E            |
| ATOM | 5431 | O ARG E 133     | 74.569 | 78.154           | 0.835  | 1.00 38.81     | E            |
| ATOM | 5432 | N ASN E 134     | 75.119 | 78.940           | 2.872  |                | E            |
| ATOM | 5433 | CA ASN E 134    | 73.941 |                  | 2.984  |                |              |
| ATOM | 5434 | CB ASN E 134    | 74.040 |                  |        | 1.00 42.21     | E            |
| ATOM | 5435 | CG ASN E 134    |        | 80.952           | 1.988  | · · ·          | E            |
| ATOM | 5436 |                 | 75.383 |                  |        | 1.00 39.50     | E            |
|      |      | OD1 ASN E 134   | 75.796 | 82.151           | 3.104  | 1.00 35.36     | E            |
| ATOM | 5437 | ND2 ASN E 134   | 76.071 | 81.733           | 0.917  | 1.00 39.94     | E            |
| ATOM | 5438 | C ASN E 134     | 72.652 | 79.000           | 2.734  | 1.00 43.61     | E            |
| MOTA | 5439 | O ASN E 134     | 71.899 | 79.306           | 1.809  | 1.00 45.62     | E            |
| ATOM | 5440 | N ASP E 135     | 72.403 | 77.983           | 3.550  | 1.00 45.40     |              |
| ATOM | 5441 | CA ASP E 135    | 71.189 | 77.178           |        |                | E            |
| ATOM | 5442 | C ASP E 135     |        |                  | 3.413  | 1.00 47.16     | E            |
| ATOM | 5443 |                 | 71.147 | 76.279           | 2.173  | 1.00 48.15     | $\mathbf{E}$ |
|      |      |                 | 70.205 | 75.504           | 1.996  | 1.00 49.25     | E            |
| ATOM | 5444 | N GLN E 136     | 72.158 | 76.387           | 1.316  | 1.00 48.16     | E            |
| ATOM | 5445 | CA GLN E 136    | 72.226 | 75.561           | 0.113  | 1.00 47.50     | E            |
| ATOM | 5446 | C GLN E 136     | 73.254 | 74.445           | 0.313  | 1.00 47.38     | Ē            |
| MOTA | 5447 | O GLN E 136     | 74.418 | 74.711           | 0.627  | 1.00 46.25     | E            |
| MOTA | 5448 | N GLU E 137     | 72.829 | 73.197           | 0.139  |                |              |
| ATOM | 5449 | CA GLU E 137    | 73.749 |                  |        | 1.00 47.09     | E            |
| ATOM | 5450 | CB GLU E 137    |        | 72.079           | 0.308  | 1.00 47.41     | E            |
| ATOM | 5451 |                 | 72.992 | 70.752           | 0.406  | 1.00 47.53     | ${f E}$      |
|      |      |                 | 73.921 | 69.570           | 0.653  | 1.00 49.67     | E            |
| ATOM | 5452 | CD GLU E 137    | 73.210 | 68.334           | 1.166  | 1.00 51.28     | E            |
| ATOM | 5453 | OE1 GLU E 137   | 73.911 | 67.336           | 1.432  | 1.00 52.31     | E            |
| ATOM | 5454 | OE2 GLU E 137   | 71.965 | 68.352           | 1.306  | 1.00 51.54     | E            |
| MOTA | 5455 | C GLU E 137     | 74.755 | 72.016           | -0.833 | 1.00 47.37     |              |
| ATOM | 5456 | O GLU E 137     | 74.397 | 72.163           |        |                | E            |
| ATOM |      | N GLU E 138     |        | <u></u>          | -2.000 | 1.00 47.51     | E            |
| ATOM | 5458 | CA GLU E 138    | 76.018 |                  | -0.477 | 1.00 47.53     | E            |
|      |      |                 | 77.104 |                  | -1.444 | 1.00 48.48     | E            |
| ATOM | 5459 | CB GLU E 138    | 78.266 | 72.617           | -1.011 | 1.00 49.89     | E            |
| ATOM | 5460 | CG GLU E 138    | 77.949 | 74.096           | -0.973 | 1.00 54.83     | E            |
| ATOM | 5461 | CD GLU E 138    | 77.911 | 74.720           | -2.354 | 1.00 57.91     | E            |
| ATOM | 5462 | OE1 GLU E 138   | 78.953 |                  | -3.044 | 1.00 59.04     | E            |
| ATOM | 5463 | OE2 GLU E 138   | 76.846 |                  | -2.748 |                |              |
| ATOM |      | C GLU E 138     | 77.593 |                  |        | 1.00 58.96     | E            |
| ATOM |      | O GLU E 138     |        |                  | -1.532 | 1.00 48.42     | E            |
| ATOM |      |                 | 77.898 |                  | -0.513 | 1.00 48.62     | E            |
|      |      | N THR E 139     | 77.665 | 69.754           | -2.748 | 1.00 47.87     | E            |
| ATOM |      | CA THR E 139    | 78.135 | 68.387           | -2.959 | 1.00 48.16     | E            |
| MOTA |      | CB THR E 139    | 77.027 | 67.498           | -3.556 | 1.00 49.05     | E            |
| ATOM | 5469 | OG1 THR E 139   | 76.464 |                  | -4.710 | 1.00 51.25     | E            |
| MOTA | 5470 | CG2 THR E 139   | 75.938 |                  | -2.525 | 1.00 48.03     |              |
| ATOM |      | C THR E 139     | 79.339 |                  |        |                | E            |
|      |      |                 |        |                  | -3.895 | 1.00 46.96     | E            |

| WC   | 03/03 | ひろの4                   | •                 |         |              |       |        |                    |         |              |
|------|-------|------------------------|-------------------|---------|--------------|-------|--------|--------------------|---------|--------------|
| ATOM | 5472  | . 0                    | THR E 139         | 80.2    | 45 6         | 7.574 | -3.779 | 7 00               | 46.46   | E            |
| ATOM | 5473  | N                      | ALA E 140         |         |              | 9.346 |        |                    | 46.59   |              |
| ATOM | 5474  | CA                     |                   |         |              | 9.488 |        |                    |         | E            |
| ATOM | 5475  |                        |                   |         | _            |       |        |                    | 45.07   | E            |
| ATOM | 5476  |                        | ALA E 140         |         |              | 0.244 |        | · · · <del>-</del> | 44.64   | E            |
|      |       |                        |                   |         |              | 0.276 |        | 1.00               | 43.57   | E            |
| ATOM | 5477  |                        | ALA E 140         | <b></b> | 24 7         | 1.293 | -4.386 | 1.00               | 43.33   | E            |
| ATOM | 5478  | N                      | GLY E 141         | 82.7    | <b>56</b> 6: | 9.805 | -5.091 | 1.00               | 41.31   | E            |
| ATOM | 5479  | CA                     | GLY E 141         | 83.8    | 33 7         | 0.485 | -4.398 | 1.00               | 38.27   | E            |
| ATOM | 5480  | C                      | GLY E 141         | 84.0    | 53 6         | 9.854 |        |                    | 36.91   | E            |
| ATOM | 5481  | 0                      | GLY E 141         |         |              | 0.264 |        |                    |         |              |
| ATOM | 5482  | N                      | VAL E 142         | . – • - | _            | 8.849 |        | _                  | 37.78   | E            |
| ATOM | 5483  | CA                     |                   |         |              |       |        |                    | 33.36   | E            |
| ATOM |       |                        |                   |         |              | 8.164 |        |                    | 32.16   | E            |
|      | 5484  |                        |                   |         |              | 7.844 | -0.847 | 1.00               | 31.40   | E            |
| ATOM | 5485  | CG                     |                   |         | 40 66        | 5.995 | 0.407  | 1.00               | 28.96   | E            |
| MOTA | 5486  | CG                     | 2 VAL E 142       | 81.2    | 45 69        | 9.134 | -0.516 | 1.00               | 33.20   | E            |
| ATOM | 5487  | C                      | VAL E 142         | 84.1    | 40 66        | 5.859 | -1.576 |                    | 31.49   | E            |
| MOTA | 5488  | 0                      | VAL E 142         | 83.8    | 52 66        | 5.032 | -2.450 |                    | 31.67   | E            |
| ATOM | 5489  | N                      | VAL E 143         | 85.1    |              | 5.684 | -0.696 |                    |         |              |
| ATOM | 5490  | CA                     |                   | 85.9    |              |       |        |                    | 30.51   | E            |
| ATOM | 5491  | CB                     |                   |         |              | 5.473 | -0.675 |                    | 30.35   | E            |
| ATOM |       |                        | · – – <del></del> | 87.36   |              | 5.731 | -1.161 | 1.00               | 30.33   | E            |
|      | 5492  | CG                     |                   | 88.09   |              | 1.408 | -1.348 | 1.00               | 32.44   | E            |
| ATOM | 5493  | CG:                    | <del>-</del>      | 87.34   | £7 66        | 5.503 | -2.460 | 1.00               | 33.96   | E            |
| ATOM | 5494  | C                      | VAL E 143         | 85.96   | 66 64        | .973  | 0.767  | 1.00               | 29.68   | E            |
| ATOM | 5495  | 0                      | VAL E 143         | 86.24   | 2 65         | .733  | 1.695  |                    | 29.63   | E            |
| ATOM | 5496  | N                      | SER E 144         | 85.69   |              | .689  | 0.946  |                    | 28.32   |              |
| ATOM | 5497  | CA                     | SER E 144         | 85.70   |              | .090  | 2.268  |                    |         | E            |
| ATOM | 5498  | CB                     | SER E 144         | 84.29   |              |       |        |                    | 25.38   | E            |
| ATOM | 5499  | OG                     |                   |         |              | .613  | 2.622  |                    | 26.70   | E            |
|      |       |                        |                   | 84.30   |              | 845   | 3.807  | 1.00               | 28.37   | E            |
| ATOM | 5500  | C                      | SER E 144         | 86.66   |              | 916   | 2.361  | 1.00               | 24.56   | 王            |
| ATOM | 5501  | 0                      | SER E 144         | 86.82   | 4 61         | 148   | 1.412  | 1.00               | 23.42   | E            |
| MOTA | 5502  | N                      | THR E 145         | 87.32   | 0 61         | .790  | 3.506  | 1.00               | 24.40   | E            |
| ATOM | 5503  | CA                     | THR E 145         | 88.21   | .8 60        | .666  | 3.726  |                    | 24.38   | E            |
| ATOM | 5504  | CB                     | THR E 145         | 89.10   | 3 60         | .849  | 4.983  |                    | 24.55   | E            |
| ATOM | 5505  | OG                     |                   | 88.27   |              | .815  | 6.155  |                    |         |              |
| ATOM | 5506  | CG2                    | • • • • • •       |         |              |       |        |                    | 21.59   | E            |
| ATOM | 5507  | C                      |                   | 89.85   |              | .162  | 4.935  |                    | 24.64   | E            |
|      |       |                        | THR E 145         | 87.25   |              | .539  | 4.055  | 1.00               | 23.78   | E            |
| ATOM | 5508  | 0                      | THR E 145         | 86.06   |              | .766  | 4.242  | 1.00               | 23.97   | E            |
| ATOM | 5509  | N                      | PRO E 146         | 87.74   | 5 58         | .300  | 4.099  | 1.00               | 25.25   | ${f E}$      |
| ATOM | 5510  | CD                     | PRO E 146         | 88.99   | 3 57         | .713  | 3.585  |                    | 25.42   | E            |
| ATOM | 5511  | CA                     | PRO E 146         | 86.77   |              | .264  | 4.447  |                    | 25.00   | E            |
| ATOM | 5512  | CB                     | PRO E 146         | 87.43   |              | .983  | 3.951  |                    | 26.60   |              |
| ATOM | 5513  | CG                     | PRO E 146         | 88.90   |              |       |        |                    |         | E            |
| ATOM | 5514  | C                      | PRO E 146         |         |              | .293  | 4.094  |                    | 27.24   | E            |
| ATOM |       |                        |                   | 86.59   | _            | .284  | 5.976  |                    | 23.26   | E            |
|      | 5515  | 0                      | PRO E 146         | 87.28   |              | .030  | 6.672  | 1.00               | 21.73   | E            |
| ATOM | 5516  | N                      | LEU E 147         | 85.66   | 9 56         | .492  | 6.495  | 1.00               | 23.85   | E            |
| ATOM | 5517  | CA                     | LEU E 147         | 85.47   | 6 56         | .419  | 7.936  | 1.00               | 23.63   | E            |
| ATOM | 5518  | CB                     | LEU E 147         | 84.35   | 5 55         | .428  | 8.260  |                    | 25.11   | E            |
| ATOM | 5519  | CG                     | LEU E 147         | 83.97   |              | .241  | 9.731  |                    | 28.28   | E            |
| ATOM | 5520  | CD1                    | LEU E 147         | 83.39   |              | .530  | 10.270 |                    |         |              |
| ATOM | 5521  |                        | LEU E 147         | 82.96   |              |       |        | 1.00               |         | E            |
| ATOM | 5522  | C                      |                   |         |              | .116  | 9.867  | 1.00               |         | E            |
|      |       |                        | LEU E 147         | 86.81   |              | .915  | 8.503  | 1.00               |         | ${f E}$      |
| ATOM | 5523  | 0                      | LEU E 147         | 87.36   |              | .944  | 8.003  | 1.00               | 23.04   | E            |
| ATOM | 5524  | N                      | ILE E 148         | 87.33   | 7 56         | .574  | 9.530  | 1.00               | 21.06   | E            |
| MOTA | 5525  | $\mathbf{C}\mathbf{A}$ | ILE E 148         | 88.61   | 4 56.        | .156  | 10.102 | 1.00               | 19.40   | E            |
| ATOM | 5526  | CB                     | ILE E 148         | 89.588  | <b>3</b> 57. | .355  | 10.200 | 1.00 :             |         | E            |
| ATOM | 5527  | CG2                    | ILE E 148         | 90.90   |              | .922  | 10.835 | 1.00               |         |              |
| ATOM | 5528  | CG1                    |                   | 89.854  |              | 918   | 8.803  |                    |         | E            |
| ATOM | 5529  | CD1                    | ILE E 148         |         |              |       |        | 1.00               |         | E            |
| ATOM | 5530  |                        |                   | 90.594  | _            | .225  | 8.821  | 1.00               |         | $\mathbf{E}$ |
|      |       | C                      | ILE E 148         | 88.449  |              | 534   | 11.489 | 1.00               | 17.19 . | E            |
| ATOM | 5531  | 0                      | ILE E 148         | 87.820  | 56.          | .118  | 12.360 | 1.00               | 15.81   | E            |
| ATOM | 5532  | N                      | ARG E 149         | 89.019  | 54.          | 344   | 11.677 | 1.00               | 15.23   | E            |
| ATOM | 5533  | CA                     | ARG E 149         | 88.948  | 3 53.        | 638   | 12.956 | 1.00               | 16.42   | E            |
| ATOM | 5534  | CB                     | ARG E 149         | 88.906  | 52.          | 128   | 12.724 | 1.00 2             |         | E            |
| ATOM | 5535  | CG                     | ARG E 149         | 88.903  | _            | 289   | 14.000 | 1.00 2             |         |              |
| ATOM | 5536  | CD                     | ARG E 149         | 88.963  | _            |       |        |                    |         | E            |
| ATOM | 5537  | NE                     |                   |         |              | 802   | 13.649 | 1.00 2             |         | E            |
|      |       |                        | ARG E 149         | 87.825  |              | 382   | 12.830 | 1.00 2             |         | E            |
| ATOM | 5538  | CZ                     | ARG E 149         | 86.623  |              | 084   | 13.313 | 1.00 2             | 22.89   | E            |
| ATOM | 5539  | NH1                    | ARG E 149         | 85.650  | 48.          | 718   | 12.490 | 1.00 2             | 24.25   | E            |
| ATOM | 5540  | NH2                    | ARG E 149         | 86.398  | 49.          | 139   | 14.619 | 1.00 2             |         | E            |
| MOTA | 5541  | C                      | ARG E 149         | 90.174  |              | 983   | 13.786 | 1.00               |         | E            |
| ATOM | 5542  | 0                      | ARG E 149         | 91.305  |              |       | 13.363 |                    |         |              |
| ATOM | 5543  | N                      | ASN E 150         |         |              |       |        | 1.00 1             |         | E            |
| ATOM | 5544  | CA                     |                   | 89.953  |              | 558   | 14.963 | 1.00 1             |         | E            |
|      |       |                        |                   | 91.061  |              |       | 15.825 | 1.00 1             |         | E            |
| ATOM | 5545  | CB                     | ASN E 150         | 90.662  | 56.          | 125   | 16.740 | 1.00 1             | .3.37   | E            |
|      |       |                        |                   |         |              |       |        |                    |         |              |

| 3 more |      | aa  | 3 C) T | T-1          | 150  | 00 070         | F7 303 | 15.955 | 1 00 | 15.55 | E            |
|--------|------|-----|--------|--------------|------|----------------|--------|--------|------|-------|--------------|
| ATOM   | 5546 | CG  | NZA    |              |      | 90.278         | 57.383 |        | •    |       |              |
| ATOM   | 5547 | OD1 | ASN    | E            | 150  | 90.922         | 57.739 | 14.955 | 1.00 | 14.20 | E            |
| MOTA   | 5548 | ND2 | ASN    | E            | 150  | 89.233         | 58.068 | 16.414 | 1.00 | 15.61 | E            |
| MOTA   | 5549 | С   | ASN    | E            | 150  | 91.576         | 53.786 | 16.670 | 1.00 | 16.79 | ${f E}$      |
| ATOM   | 5550 | 0   |        |              | 150  | 92.694         | 53.838 | 17.180 | 1.00 | 18.80 | E            |
|        |      |     |        |              |      |                |        |        | 1.00 | 16.63 | E            |
| ATOM   | 5551 | N   |        | E            | 151  | 90.764         | 52.745 | 16.813 |      |       |              |
| MOTA   | 5552 | CA  | GLY    | E            | 151  | 91.164         | 51.587 | 17.593 | 1.00 | 18.68 | E            |
| ATOM   | 5553 | С   | GLY    | E            | 151  | 90.879         | 51.684 | 19.080 | 1.00 | 20.19 | E            |
| ATOM   | 5554 | 0   | GLY    | E            | 151  | 91.087         | 50.725 | 19.818 | 1.00 | 21.39 | E            |
|        |      |     | -      | E            | 152  | 90.409         | 52.836 | 19.539 | 1.00 | 19.57 | E            |
| MOTA   | 5555 | N   |        |              |      |                |        |        |      |       |              |
| MOTA   | 5556 | CA  | ASP    | E            | 152  | 90.108         | 52.986 | 20.954 | 1.00 | 19.09 | E            |
| ATOM   | 5557 | CB  | ASP    | E            | 152  | 90.865         | 54.177 | 21.531 | 1.00 | 18.53 | E            |
| MOTA   | 5558 | CG  | ASP    | E            | 152  | 90.498         | 55.481 | 20.856 | 1.00 | 21.27 | E            |
| ATOM   | 5559 | OD1 | ASP    | E            | 152  | 89.736         | 55.453 | 19.864 | 1.00 | 20.11 | E            |
|        |      |     |        |              |      |                | 56.531 | 21.321 | 1.00 | 22.57 | E            |
| ATOM   | 5560 | OD2 |        | E            | 152  | 90.984         | _      |        |      |       |              |
| MOTA   | 5561 | C   | ASP    | E            | 152  | 88.605         | 53.156 | 21.182 | 1.00 | 19.23 | E            |
| ATOM   | 5562 | 0   | ASP    | E            | 152  | 88.177         | 53.840 | 22.113 | 1.00 | 17.78 | E            |
| ATOM   | 5563 | N   | TRP    | E            | 153  | 87.816         | 52.522 | 20.318 | 1.00 | 18.88 | E            |
| ATOM   | 5564 | CA  |        | E            | 153  | 86.356         | 52.566 | 20.391 | 1.00 | 18.61 | E            |
|        |      |     |        |              |      | 85.862         | 52.162 | 21.788 | 1.00 | 17.06 | E            |
| MOTA   | 5565 | CB  |        | E            | 153  |                |        |        |      |       |              |
| ATOM   | 5566 | CG  | TRP    | $\mathbf{E}$ | 153  | 86.084         | 50.690 | 22.085 | 1.00 | 17.90 | E            |
| ATOM   | 5567 | CD2 | TRP    | E            | 153  | 85.165         | 49.612 | 21.830 | 1.00 | 18.84 | $\mathbf{E}$ |
| ATOM   | 5568 | CE2 | TRP    | E            | 153  | 85.804         | 48.414 | 22.222 | 1.00 | 16.88 | E            |
| ATOM   | 5569 | CE3 |        | E            | 153  | 83.862         | 49.544 | 21.308 | 1.00 | 18.29 | E            |
|        |      |     |        | -            |      |                | 50.114 | 22.604 | 1.00 | 16.70 | E            |
| MOTA   | 5570 | CD1 |        | E            | 153  | 87.209         |        |        |      |       |              |
| ATOM   | 5571 | NEI | TRP    | E            | 153  | 87.049         | 48.747 | 22.688 |      | 17.49 | E            |
| MOTA   | 5572 | CZ2 | TRP    | $\mathbf{E}$ | 153  | 85.189         | 47.164 | 22.109 | 1.00 | 16.54 | E            |
| ATOM   | 5573 | CZ3 | TRP    | E            | 153  | 83.250         | 48.303 | 21.196 | 1.00 | 17.19 | E            |
|        |      | CH2 |        | E            | 153  | 83.917         | 47.129 | 21.597 | 1.00 | 17.24 | E            |
| MOTA   | 5574 |     |        |              |      |                |        |        |      | 18.97 | E            |
| ATOM   | 5575 | C   |        | E            | 153  | 85.732         | 53.887 | 19.975 | 1.00 |       |              |
| ATOM   | 5576 | 0   | TRP    | E            | 153  | 84.696         | 54.300 | 20.508 | 1.00 |       | E            |
| MOTA   | 5577 | N   | THR    | $\mathbf{E}$ | 154  | 86.378         | 54.546 | 19.016 | 1.00 | 19.20 | E            |
| ATOM   | 5578 | CA  | THR    | E            | 154  | 85.876         | 55.794 | 18,444 | 1.00 | 19.92 | E            |
|        | 5579 | CB  | THR    |              | 154  | 86.442         |        | 19.129 | 1.00 | 21.42 | E            |
| ATOM   |      |     |        |              |      |                |        | 18.958 |      | 19.26 | E            |
| MOTA   | 5580 | OG1 | THR    |              | 154  | 87.865         |        |        |      |       |              |
| MOTA   | 5581 | CG2 | THR    | E            | 154  | 86.085         | 57.096 | 20.599 | 1.00 |       | E            |
| ATOM   | 5582 | C   | THR    | E            | 154  | 86.314         | 55.835 | 16.992 | 1.00 | 18.66 | E            |
| MOTA   | 5583 | O   | THR    | E            | 154  | 87.270         | 55.156 | 16.603 | 1.00 | 19.45 | E            |
| ATOM   | 5584 | N   | PHE    | E            | 155  | 85.609         |        | 16.193 | 1.00 | 18.54 | 臣            |
|        |      |     |        |              |      |                |        |        |      | 19.04 | E            |
| ATOM   | 5585 | CA  | PHE    | E            | 155  | 85.940         |        | 14.779 |      |       |              |
| MOTA   | 5586 | CB  | PHE    | E            | 155  | 84.821         | 56.252 | 13.882 |      | 20.71 | E            |
| ATOM   | 5587 | CG  | PHE    | E            | 155  | 84.524         | 54.794 | 14.060 | 1.00 | 23.03 | E            |
| ATOM   | 5588 | CD1 | PHE    | E            | 155  | 83.492         | 54.375 | 14.898 | 1.00 | 23.94 | E            |
| ATOM   | 5589 | CD2 |        | E            |      | 85.255         |        | 13.365 | 1.00 | 23.32 | E            |
|        |      |     |        |              |      |                |        | 15.037 |      | 23.82 | E            |
| ATOM   | 5590 | CE1 |        |              | 1.55 | 83.189         |        |        |      |       |              |
| ATOM   | 5591 | CE2 | PHE    | E            | 155  | 84.962         | 52.476 | 13.497 |      | 24.46 | E            |
| MOTA   | 5592 | CZ  | PHE    | E            | 155  | 83.930         | 52.068 | 14.333 | 1.00 | 24.51 | E            |
| ATOM   | 5593 | C   | PHE    | E            | 155  | 86.109         | 58.265 | 14.459 | 1.00 | 19.30 | E            |
| ATOM   | 5594 | Ō   | PHE    | E            |      | 85.791         | 59.134 | 15.275 | 1.00 | 19.12 | E            |
|        |      |     |        |              |      | 86.613         |        | 13.265 |      | 17.46 | E            |
| ATOM   | 5595 | N   | GLN    |              |      |                |        |        |      |       | E            |
| MOTA   | 5596 | CA  | GLN    | E            | 156  | 86.748         |        | 12.824 |      | 17.87 |              |
| ATOM   | 5597 | CB  | GLN    | E            | 156  | 88.081         | 60.546 | 13.264 | 1.00 | 19.74 | 臣            |
| ATOM   | 5598 | CG  | GLN    | E            | 156  | 89.330         | 59.948 | 12.640 | 1.00 | 19.80 | E            |
| ATOM   | 5599 | CD  | GLN    | E            | 156  | 90.551         | 60.785 | 12.950 | 1.00 | 21.46 | $\mathbf{E}$ |
| ATOM   | 5600 | OE1 |        |              |      | 90.660         |        | 12.503 |      | 21.30 | E            |
|        |      |     |        |              |      |                |        | 13.734 |      | 21.38 | E            |
| MOTA   | 5601 | NE2 |        | E            |      | 91.469         |        |        |      |       |              |
| MOTA   | 5602 | C   | GLN    | E            | 156  | 86.629         | 59.989 | 11.316 | 1.00 |       | E            |
| ATOM   | 5603 | 0   | GLN    | E            | 156  | 86.85 <i>6</i> | 58.999 | 10.616 | 1.00 | 17.25 | E            |
| MOTA   | 5604 | N   | ILE    | E            | 157  | 86.252         | 61.159 | 10.823 | 1.00 | 17.46 | E            |
| MOTA   | 5605 | CA  |        |              | 157  | 86.128         |        | 9.397  | 1.00 | 18.92 | E            |
|        |      |     |        |              |      |                |        | 8.898  | 1.00 |       | E            |
| MOTA   | 5606 | CB  |        |              | 157  | 84.746         |        |        |      |       |              |
| ATOM   | 5607 | CG2 | ILE    | E            | 157  | 83.659         |        | 9.545  | 1.00 |       | E            |
| MOTA   | 5608 | CG1 | . ILE  | E            | 157  | 84.704         | 60.994 | 7.369  | 1.00 | 21.06 | E            |
| ATOM   | 5609 | CDI |        |              |      | 83.541         | 60.218 | 6.756  | 1.00 | 22.57 | E            |
| MOTA   | 5610 | C   | ILE    |              |      | 86.349         |        | 9.083  |      | 20.28 | E            |
|        |      |     |        |              |      |                |        | 9.808  |      | 20.70 | E            |
| MOTA   | 5611 | 0   | ILE    |              |      | 85.887         |        |        |      |       |              |
| ATOM   | 5612 | N   | LEU    | E            | 158  | 87.094         |        | 8.019  |      | 21.79 | E            |
| MOTA   | 5613 | CA  | LEU    | E            | 158  | 87.363         | 64.470 | 7.601  |      | 23.40 | E            |
| MOTA   | 5614 | CB  | LEU    | E            | 158  | 88.869         | 64.706 | 7.466  | 1.00 | 25.42 | $\mathbf{E}$ |
| ATOM   | 5615 | CG  | LEU    |              |      | 89.621         |        | 8.731  | 1.00 | 29.38 | E            |
|        |      |     |        |              |      | 89.384         |        | 9.864  |      | 27.98 | E            |
| MOTA   | 5616 | CD1 | _      |              |      |                |        |        |      |       | E            |
| ATOM   | 5617 |     | E LEU  |              |      | 91.118         |        | 8.412  |      | 30.79 |              |
| MOTA   | 5618 | C   | LEU    | E            | 158  | 86.664         | 64.738 | 6.271  |      | 23.62 | E            |
| ATOM   | 5619 | 0   | LEU    | F            | 158  | 86.938         | 64.081 | 5.264  | 1.00 | 22.86 | E            |
|        | ·    |     |        |              |      |                | _      |        |      |       |              |

| WO           | 03/03(       | ) <b>/</b> 04 |       |            |                  |                  |                  |                          |        |
|--------------|--------------|---------------|-------|------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 5620         | N             | VAL E |            | 85.747           | 65.702           | 6.290            | 1.00 22.98               | E      |
| ATOM         | 5621         | CA.           | VAL E |            | 84.990           | 66.087           | 5.112<br>5.417   | 1.00 21.37<br>1.00 20.53 | E<br>E |
| MOTA         | 5622         | CB            |       | 159        | 83.476<br>82.684 | 66.104<br>66.407 | 5.417<br>4.149   | 1.00 20.53               | E      |
| ATOM<br>ATOM | 5623<br>5624 | CG1<br>CG2    | VAL E |            | 83.058           | 64.756           | 6.002            | 1.00 15.86               | E      |
| ATOM         | 5625         | C             |       | 159        | 85.468           | 67.469           | 4.710            | 1.00 22.21               | E      |
| MOTA         | 5626         | 0             |       | 159        | 85.253           | 68.444           | 5.423            | 1.00 22.87               | E      |
| ATOM         | 5627         | N             | MET E | 160        | 86.116           | 67.539           | 3.555            | 1.00 25.37               | E      |
| ATOM         | 5628         | CA            | MET E | 160        | 86.681           | 68.779           | 3.049            | 1.00 27.07               | E      |
| MOTA         | 5629         | CB            | MET E | 160        | 88.088           | 68.494           | 2.533            | 1.00 29.57<br>1.00 35.17 | E<br>E |
| ATOM         | 5630         | CG            |       | 160<br>160 | 88.996<br>90.519 | 67.954<br>67.185 | 3.633<br>3.065   | 1.00 35.17               | E      |
| ATOM<br>ATOM | 5631<br>5632 | SD<br>CE      | MET E | 160        | 90.011           | 65.462           | 2.985            | 1.00 40.10               | E      |
| ATOM         | 5633         | C             | •     | 160        | 85.848           |                  | 1.979            | 1.00 28.93               | E      |
| ATOM         | 5634         | 0             | MET E | 160        | 85.191           | 68.817           | 1.162            | 1.00 28.47               | E      |
| MOTA         | 5635         | N             | TEA E | 161        | 85.875           | 70.793           | 1.997            | 1.00 29.41               | E      |
| ATOM         | 5636         | CA            | LEU E | 161        | 85.123           | 71.574           | 1.031            | 1.00 31.54<br>1.00 30.26 | E<br>E |
| ATOM         | 5637         | CB            |       | 161<br>161 | 83.931<br>83.183 | 72.258<br>73.297 | 1.708<br>0.860   | 1.00 30.26<br>1.00 30.70 | E      |
| ATOM<br>ATOM | 5638<br>5639 | CG<br>CD1     |       | 161        | 82.515           | 72.618           | -0.332           | 1.00 29.72               | E      |
| ATOM         | 5640         | CD2           |       | 161        | 82.145           | 74.020           | 1.728            | 1.00 31.55               | E      |
| ATOM         | 5641         | C             | LEU E | 161        | 85.990           | 72.625           | 0.363            | 1.00 32.10               | E      |
| MOTA         | 5642         | 0             |       | 161        | 86.575           | 73.473           | 1.029            | 1.00 32.90               | E      |
| MOTA         | 5643         | N             | GLU E |            | 86.063           | 72.549           | -0.960           | 1.00 35.11<br>1.00 38.40 | e<br>E |
| MOTA         | 5644         | CA            | GLU E | 162<br>162 | 86.820<br>87.191 | 73.491<br>72.838 | -1.771<br>-3.105 | 1.00 38.40               | E      |
| MOTA<br>MOTA | 5645<br>5646 | CB<br>CG      | GLU E | 162        | 87.783           | 73.776           | -4.148           | 1.00 48.21               | E      |
| ATOM         | 5647         | CD            |       | 162        | 89.099           | 74.381           | -3.711           | 1.00 52.47               | E      |
| MOTA         | 5648         | OE1           | GLU E | 162        | 90.006           | 73.611           | -3.327           | 1.00 54.02               | E      |
| ATOM         | 5649         | OE2           | GLU E | 162        | 89.228           | 75.627           | -3.759           | 1.00 56.21               | E      |
| ATOM         | 5650         | C             |       |            | 85.892           | 74.673           | -2.008           | 1.00 39.06<br>1.00 39.27 | e<br>E |
| MOTA         | 5651         | O             |       | 162<br>163 | 84.750<br>86.369 | 74.490<br>75.884 | -2.422<br>-1.747 | 1.00 39.27               | E      |
| ATOM<br>ATOM | 5652<br>5653 | N<br>CA       |       |            | 85.520           | 77.049           | -1.938           | 1.00 43.18               | E      |
| ATOM         | 5654         | CB            | MET E |            | 84.546           | 77.171           | -0.761           | 1.00 45.15               | E      |
| ATOM         | 5655         | CG            | MET E | 163        | 85.155           | 76.900           | 0.612            | 1.00 47.55               | E      |
| MOTA         | 5656         | SD            | MET E |            | 86.318           | 78.152           | 1.185            | 1.00 52.18               | E      |
| MOTA         | 5657         | CE            | MET E |            | 85.186           | 79.345<br>78.371 | 1.941<br>-2.151  | 1.00 50.37<br>1.00 43.77 | E<br>E |
| ATOM<br>ATOM | 5658<br>5659 | C<br>O        | MET E |            | 86.245<br>87.458 | 78.477           | -1.953           | 1.00 41.87               | E      |
| MOTA         | 5660         | И             | THR E |            | 85.474           | 79.371           | -2.571           | 1.00 45.83               | E      |
| ATOM         | 5661         | CA            | THR E |            | 85.981           | 80.714           | -2.827           | 1.00 49.20               | E      |
| MOTA         | 5662         | CB            | THR E | 164        | 85.585           | 81.177           | -4.241           | 1.00 50.11               | E      |
| MOTA         | 5663         | OG1           |       |            | 86.036           | 80.208           | -5.199           | 1.00 49.28<br>1.00 50.19 | E<br>E |
| ATOM         | 5664<br>5665 | CG2<br>C      | THR E |            | 86.204<br>85.371 | 82.535<br>81.652 | -4.559<br>-1.785 | 1.00 50.19               | E      |
| ATOM<br>ATOM | 5665<br>5666 | 0             | THR E |            | 84.169           | 81.916           | -1.802           | 1.00 50.64               | E      |
| ATOM         | 5667         | N             | PRO E |            | 86.198           | 82.170           | -0.864           | 1.00 53.75               | E      |
| MOTA         | 5668         | CD            | PRO E | 165        | 87.667           | 82.057           | -0.818           | 1.00 54.65               | E      |
| ATOM         | 5669         | CA            | PRO E | •          | 85.719           | 83.072           | 0.185            | 1.00 56.16               | E<br>E |
| ATOM         | 5670         | CB            | PRO E |            | 86.965<br>88.057 | 83.299<br>83.262 | 1.036<br>0.019   | 1.00 55.47<br>1.00 55.93 | E      |
| ATOM<br>ATOM | 5671<br>5672 | CG<br>C       | PRO E |            | 85.098           | 84.381           | -0.291           | 1.00 58.83               | E      |
| ATOM         | 5673         | 0             | PRO E |            | 85.673           | 85.100           | -1.112           | 1.00 58.35               | E      |
| ATOM         | 5674         | N             | GLN E | 166        | 83.912           | 84.666           | 0.239            | 1.00 61.77               | 臣      |
| ATOM         | 5675         | CA            | GLN E |            | 83.173           | 85.885           | -0.065           | 1.00 63.96               | E      |
| MOTA         | 5676         | CB            | GLN E |            | 82.103           | 85.616<br>85.236 | -1.123<br>-2.481 | 1.00 64.28<br>1.00 66.42 | E<br>E |
| ATOM<br>ATOM | 5677<br>5678 | CG<br>CD      | GLN E |            | 82.662<br>81.643 | 85.392           | -3.596           | 1.00 67.38               | E      |
| MOTA         | 5679         | OE1           |       |            | 81.937           | 85.124           | -4.761           | 1.00 68.28               | E      |
| ATOM         | 5680         | NE2           | _     |            | 80.437           | 85.832           | -3.244           | 1.00 66.50               | E      |
| MOTA         | 5681         | C             | GLN E | 166        | 82.521           | 86.396           | 1.223            | 1.00 65.40               | E      |
| MOTA         | 5682         | 0             | GLN E |            | 81.974           | 85.614           | 2.007            | 1.00 65.65               | E<br>E |
| ATOM         | 5683         | N             | ARG E |            | 82.589<br>82.017 | 87.707<br>88.302 | 1.444<br>2.647   | 1.00 65.80<br>1.00 65.27 | E      |
| MOTA<br>MOTA | 5684<br>5685 | CA<br>CB      | ARG E |            | 82.353           | 89.795           | 2.706            | 1.00 63.27               | E      |
| ATOM         | 5686         | CG            | ARG E |            | 82.221           | 90.423           | 4.095            | 1.00 70.91               | E      |
| ATOM         | 5687         | CD            | ARG E |            | 83.216           | 89.813           | 5.085            | 1.00 73.36               | E      |
| MOTA         | 5688         | NE            | ARG E |            | 83.244           | 90.532           | 6.359            | 1.00 75.19               | E      |
| ATOM         | 5689         | CZ            | ARG E | -          | 84.012           | 90.199           | 7.394            | 1.00 75.48<br>1.00 75.50 | E<br>E |
| MOTA<br>MOTA | 5690<br>5691 | NH:           |       |            | 84.824<br>83.968 | 89.151<br>90.916 | 7.318<br>8.509   | 1.00 75.83               | E      |
| ATOM<br>ATOM | 5691<br>5692 |               | ARG E |            | 80.504           | 88.100           | 2.684            | 1.00 63.81               | E      |
| ATOM         | 5693         | 0             | ARG E |            | 79.816           | 88.254           | 1.672            | 1.00 62.94               | E      |
| <del>-</del> |              |               |       |            |                  |                  |                  |                          |        |

| ,, – | •    |     |                                       |   |            |        |          |        |        |      |       |   |
|------|------|-----|---------------------------------------|---|------------|--------|----------|--------|--------|------|-------|---|
| ATOM | 5694 | N   | $G\Gamma \lambda$                     | Ħ | 168        | 79.991 | ۶        | 37.751 | 3.860  | 1.00 | 61.88 | E |
|      |      | CA  | GLY                                   |   | 168        | 78.567 |          | 37.519 | 4.004  |      | 58.78 | E |
| ATOM | 5695 |     |                                       |   |            |        |          |        | 3.959  |      | 57.24 | E |
| ATOM | 5696 | C   | GLY                                   |   | 168        | 78.243 |          | 36.036 |        |      |       |   |
| MOTA | 5697 | 0   | $\mathbf{G}\mathbf{\Gamma}\mathbf{X}$ |   | <b>168</b> | 77.262 |          | 35.594 | 4.558  |      | 57.26 | E |
| ATOM | 5698 | N   | ASP                                   | E | 169        | 79.066 | 8        | 35.263 | 3.249  |      | 54.67 | E |
| MOTA | 5699 | CA  | ASP                                   | E | 169        | 78.849 | 8        | 33.823 | 3.140  | 1.00 | 52.07 | E |
| MOTA | 5700 | CB  | ASP                                   | E | 169        | 79.799 | 1        | 83.186 | 2.116  | 1.00 | 52.03 | E |
| ATOM | 5701 | CG  | ASP                                   | E | 169        | 79.329 | 8        | 33.359 | 0.683  | 1.00 | 52.57 | E |
| ATOM | 5702 | OD1 | ASP                                   | E | 169        | 78.105 | 8        | 83.453 | 0.457  | 1.00 | 51.86 | E |
| MOTA | 5703 | OD2 |                                       |   | 169        | 80.188 |          | 83.376 | -0.223 | 1.00 | 52.34 | E |
| ATOM | 5704 | C   |                                       |   | 169        | 79.027 |          | 33.096 | 4.463  |      | 49.54 | E |
|      |      |     |                                       |   |            | 79.993 |          | 33.322 | 5.196  |      | 49.84 | E |
| MOTA | 5705 | 0   |                                       |   | 169        |        |          |        |        |      |       | E |
| MOTA | 5706 | N   | VAL                                   |   | 170        | 78.082 |          | 32.214 | 4.758  |      | 46.54 |   |
| ATOM | 5707 | CA  |                                       |   | 170        | 78.136 |          | 81.418 | 5.970  |      | 43.15 | E |
| MOTA | 5708 | CB  | $VAI_1$                               | E | 170        | 76.903 |          | 81.669 | 6.871  |      | 42.70 | E |
| MOTA | 5709 | CG1 | VAL                                   | E | 170        | 76.997 | 1        | 80.819 | 8.138  | 1.00 | 41.36 | E |
| ATOM | 5710 | CG2 | VAL                                   | E | 170        | 76.814 |          | 83.146 | 7.227  | 1.00 | 41.14 | E |
| ATOM | 5711 | C   | VAL                                   | E | 170        | 78.172 | •        | 79.948 | 5.555  | 1.00 | 41.66 | E |
| MOTA | 5712 | 0   | VAL                                   | E | 170        | 77.216 | •        | 79.432 | 4.972  | 1.00 | 40.25 | E |
| ATOM | 5713 | N   | TYR                                   | E | 171        | 79.289 | •        | 79.287 | 5.833  | 1.00 | 39.16 | E |
| ATOM | 5714 | CA  | TYR                                   |   | 171        | 79.438 | •        | 77.877 | 5.502  | 1.00 | 38.16 | E |
| ATOM | 5715 | CB  |                                       | E | 171        | 80.836 |          | 77.617 | 4.953  |      | 38.66 | E |
|      |      | CG  | TYR                                   |   | 171        | 81.035 |          | 78.237 | 3.598  | 1.00 |       | E |
| ATOM | 5716 |     |                                       |   |            |        |          |        |        |      | 38.79 | E |
| MOTA | 5717 | CD1 | TYR                                   |   | 171        | 80.740 |          | 77.522 | 2.440  |      |       |   |
| ATOM | 5718 | CE1 |                                       |   |            | 80.852 |          | 78.105 | 1.186  |      | 40.42 | E |
| MOTA | 5719 | CD2 | TYR                                   | E | 171        | 81.451 |          | 79.561 | 3.471  |      | 38.62 | E |
| ATOM | 5720 | CE2 | TYR                                   | E | 171        | 81.565 |          | 80.160 | 2.219  |      | 40.32 | E |
| ATOM | 5721 | CZ  | TYR                                   | E | 171        | 81.262 |          | 79.424 | 1.079  | 1.00 | 41.26 | E |
| ATOM | 5722 | OH  | TYR                                   | E | 171        | 81.350 |          | 80.004 | -0.166 | 1.00 | 42.98 | E |
| ATOM | 5723 | C   | TYR                                   | E | 171        | 79.206 | •        | 77.076 | 6.764  | 1.00 | 37.15 | E |
| ATOM | 5724 | 0   | TYR                                   | E | 171        | 79.755 | . ,      | 77.398 | 7.813  | 1.00 | 37.94 | E |
| MOTA | 5725 | N   | THR                                   |   | 172        | 78.384 |          | 76.037 | 6.672  | 1.00 | 35.12 | E |
|      |      | CA  | THR                                   |   | 172        | 78.091 |          | 75.229 | 7.842  |      | 34.42 | E |
| ATOM | 5726 |     |                                       |   |            | 76.654 |          | 75.496 | 8.367  |      | 35.21 | E |
| ATOM | 5727 | CB  | THR                                   |   | 172        |        |          |        |        |      |       | E |
| MOTA | 5728 | OG1 |                                       |   | 172        | 76.184 |          | 74.351 | 9.094  |      | 35.96 |   |
| MOTA | 5729 | CG2 |                                       |   | 172        | 75.706 |          | 75.790 | 7.226  |      | 38.35 | E |
| ATOM | 5730 | C   | THR                                   | E | 172        | 78.263 |          | 73.734 | 7.638  |      | 32.90 | E |
| MOTA | 5731 | 0   | THR                                   | E | 172        | 77.875 | ;        | 73.188 | 6.604  | 1.00 | 31.57 | E |
| ATOM | 5732 | N   | CYS                                   | E | 173        | 78.858 | }        | 73.090 | 8.643  | 1.00 | 30.59 | E |
| ATOM | 5733 | CA  | CYS                                   | E | 173        | 79.078 | }        | 71.646 | 8.640  | 1.00 | 29.35 | E |
| MOTA | 5734 | C   | CYS                                   | E | 173        | 77.923 | 3        | 71.058 | 9.454  | 1.00 | 29.72 | E |
| ATOM | 5735 | 0   | CYS                                   | E | 173        | 77.771 |          | 71.337 | 10.645 | 1.00 | 28.89 | E |
| ATOM | 5736 | CB  | CYS                                   | E | 173        | 80.424 |          | 71.299 | 9.287  | 1.00 | 27.53 | E |
| ATOM | 5737 | SG  | CYS                                   | E | 173        | 80.875 |          | 69.541 | 9.133  | 1.00 |       | E |
|      |      |     |                                       | E | 174        | 77.109 |          | 70.251 | 8.788  | 1.00 |       | E |
| ATOM | 5738 | N   | HIS                                   |   |            |        |          | 69.642 | 9.381  |      | 28.54 | E |
| ATOM | 5739 | CA  | HIS                                   | E | 174        | 75.925 |          |        |        | 1.00 |       | E |
| MOTA | 5740 | CB  | HIS                                   |   | 174        | 74.770 |          | 69.881 | 8.399  |      |       |   |
| ATOM | 5741 | CG  | HIS                                   |   |            | 73.457 |          | 69.311 | 8.823  |      | 30.98 | E |
| ATOM | 5742 | CD2 | HIS                                   | E | 174        | 72.367 |          | 69.899 | 9.369  | 1.00 |       | E |
| MOTA | 5743 | ND1 | HIS                                   | E | 174        | 73.124 | <u>F</u> | 67.988 | 8.630  |      | 31.68 | E |
| ATOM | 5744 | CE1 | HIS                                   | E | 174        | 71.883 | 3        | 67.785 | 9.034  | 1.00 | 33.26 | E |
| ATOM | 5745 | NE2 | HIS                                   | E | 174        | 71.401 | _        | 68.929 | 9.487  | 1.00 | 34.66 | E |
| ATOM | 5746 | С   | HIS                                   | E | 174        | 76.173 | 3        | 68.151 | 9.650  | 1.00 | 27.83 | E |
| ATOM | 5747 | 0   | HIS                                   | E | 174        | 76.438 | 3        | 67.375 | 8.728  | 1.00 | 27.35 | E |
| ATOM | 5748 | N   | VAL                                   | E | 175        | 76.085 | 5        | 67.753 | 10.917 | 1.00 | 26.27 | E |
| ATOM | 5749 | CA  | VAL                                   |   |            | 76.349 |          | 66.365 | 11.284 | 1.00 | 26.34 | E |
| ATOM | 5750 | CB  |                                       |   | 175        | 77.584 |          | 66.281 | 12.215 |      | 23.90 | E |
|      |      |     |                                       |   |            | 77.807 |          | 64.850 | 12.663 |      | 19.67 | E |
| ATOM | 5751 | CG1 |                                       |   |            | 78.818 |          |        | 11.491 | 1.00 |       | E |
| ATOM | 5752 | CG2 |                                       |   |            |        |          | 66.813 |        |      |       | E |
| MOTA | 5753 | C   | LAV                                   |   |            | 75.199 |          | 65.603 | 11.938 |      | 27.67 |   |
| ATOM | 5754 | 0   | VAL                                   | E | 175        | 74.587 |          | 66.064 | 12.904 |      | 26.77 | E |
| ATOM | 5755 | N   | GLU                                   | E | 176        | 74.917 | 7        | 64.423 | 11.399 |      | 29.83 | E |
| MOTA | 5756 | CA  | GLU                                   | E | 176        | 73.864 | 1        | 63.564 | 11.929 |      | 32.99 | E |
| ATOM | 5757 | CB  | GLU                                   | E | 176        | 72.842 | 2        | 63.231 | 10.839 | 1.00 | 34.86 | E |
| ATOM | 5758 | CG  | GLU                                   | E | 176        | 72.076 | ŝ        | 64.441 | 10.319 | 1.00 | 40.13 | E |
| MOTA | 5759 | CD  |                                       |   | 176        | 71.204 |          | 64.107 | 9.124  | 1.00 | 44.38 | E |
| ATOM | 5760 | OE1 |                                       |   | 176        | 70.292 |          | 63.265 | 9.269  |      | 46.31 | E |
|      |      | OE2 |                                       |   | 176        | 71.433 |          | 64.682 | 8.037  |      | 47.49 | E |
| MOTA | 5761 |     |                                       |   |            | 74.526 |          | 62.289 | 12.445 |      | 32.24 | E |
| MOTA | 5762 | C   |                                       |   | 176        |        |          |        |        |      | 32.24 | E |
| ATOM | 5763 | 0   |                                       |   | 176        | 75.296 |          | 61.646 | 11.734 |      |       | E |
| ATOM | 5764 | N   | HIS                                   |   | 177        | 74.220 |          | 61.934 | 13.686 |      | 31.66 | E |
| MOTA | 5765 | CA  |                                       |   | 177        | 74.803 |          | 60.761 | 14.311 |      | 30.50 |   |
| ATOM | 5766 | CB  | HIS                                   |   |            | 76.147 |          | 61.161 | 14.927 |      | 29.59 | E |
| ATOM | 5767 | CG  | HIS                                   | E | 177        | 76.871 | l        | 60.034 | 15.582 | 1.00 | 28.23 | E |
|      |      |     |                                       |   |            |        |          | 4      | 04     |      |       |   |

| WO           | 03/030       | 704        |                  |                |                  |                  |                  |                          |        |
|--------------|--------------|------------|------------------|----------------|------------------|------------------|------------------|--------------------------|--------|
| ATOM         | 5768         | CD2        | HIS              | E 177          | 77.752           | 59.134           | 15.086           | 1.00 28.22               | E      |
| MOTA         | 5769         | NDl        | HIS              | E 177          | 76.679           | 59.698           | 16.903           | 1.00 27.71               | E      |
| MOTA         | 5770         |            | HIS              |                | 77.410           | 58.636           | 17.194           | 1.00 29.83               | E      |
| MOTA         | 5771         |            |                  | E 177          | 78.070           | 58.274           | 16.108           | 1.00 29.78               | E      |
| MOTA         | 5772         | C          | · -              | E 177          | 73.854           | 60.195           | 15.373           | 1.00 30.09               | E      |
| ATOM         | 5773         | 0          | HIS              |                | 73.189           | 60.942           | 16.083           | 1.00 29.91               | E      |
| ATOM         | 5774         | N          |                  | E 178          | 73.781           | 58.862           | 15.496           | 1.00 31.45               | E      |
| MOTA         | 5775         | CD         | PRO              |                | 74.485           | 57.842<br>58.226 | 14.697<br>16.481 | 1.00 31.00<br>1.00 31.44 | E<br>E |
| ATOM<br>ATOM | 5776<br>5777 | CA<br>CB   |                  | E 178<br>E 178 | 72.898<br>73.370 | 56.779           | 16.467           | 1.00 31.44               | E      |
| ATOM         | 5778         | CG         |                  | E 178          | 73.704           | 56.578           | 15.028           | 1.00 31.16               | E      |
| ATOM         | 5779         | C          |                  | E 178          | 72.896           | 58.826           | 17.893           | 1.00 31.78               | E      |
| ATOM         | 5780         | 0          |                  | E 178          | 71.903           | 58.727           | 18.611           | 1.00 32.84               | E      |
| ATOM         | 5781         | N          |                  | E 179          | 73.996           | 59.448           | 18.292           | 1.00 30.31               | E      |
| ATOM         | 5782         | CA         | SER              | E 179          | 74.087           | 60.039           | 19.624           | 1.00 30.84               | E      |
| MOTA         | 5783         | CB         | SER              | E 179          | 75.552           | 60.155           | 20.038           | 1.00 29.11               | E      |
| ATOM         | 5784         | OG         | SER              | E 179          | 76.240           | 61.049           | 19.176           | 1.00 24.79               | E      |
| ATOM         | 5785         | C          | SER              | E 179          | 73.452           | 61.424           | 19.717           | 1.00 32.75               | E      |
| MOTA         | 5786         | 0          |                  | E 179          | 73.330           | 61.982           | 20.804           | 1.00 32.78               | E      |
| ATOM         | 5787         | N          | LEU              |                | 73.046           | 61.981           | 18.583           | 1.00 35.18               | E      |
| ATOM         | 5788         | CA         |                  | E 180          | 72.477           | 63.317           | 18.578           | 1.00 37.31               | E      |
| MOTA         | 5789         | CB         |                  | E 180          | 73.098<br>74.610 | 64.132<br>64.337 | 17.448<br>17.528 | 1.00 35.77<br>1.00 36.46 | E<br>E |
| ATOM<br>ATOM | 5790<br>5791 | CG         | LEU              | E 180<br>E 180 | 75.097           | 65.018           | 16.259           | 1.00 35.40               | E      |
| MOTA         | 5791<br>5792 |            |                  | E 180          | 74.948           | 65.167           | 18.752           | 1.00 34.58               | E      |
| ATOM         | 5793         | C          |                  | E 180          | 70.967           | 63.405           | 18.463           | 1.00 40.35               | E      |
| ATOM         | 5794         | 0          |                  | E 180          | 70.386           | 63.003           | 17.456           | 1.00 40.67               | E      |
| ATOM         | 5795         | N          |                  | E 181          | 70.338           | 63.943           | 19.503           | 1.00 42.97               | E      |
| ATOM         | 5796         | CA         | GLN              | E 181          | 68.895           | 64.141           | 19.504           | 1.00 45.09               | E      |
| ATOM         | 5797         | CB         | GLN              | E 181          | 68.466           | 64.877           | 20.776           | 1.00 46.73               | E      |
| ATOM         | 5798         | CG         | GLN              | E 181          | 69.471           | 65.931           | 21.235           | 1.00 49.84               | E      |
| MOTA         | 5799         | CD         | $\mathtt{G} L N$ | E 181          | 68.898           | 66.904           | 22.256           | 1.00 52.17               | E      |
| ATOM         | 5800         | OE1        |                  | E 181          | 68.074           | 67.760           | 21.920           | 1.00 52.91               | E      |
| ATOM         | 5801         | NE2        |                  | E 181          | 69.329           | 66.774           | 23.510           | 1.00 51.73               | E      |
| MOTA         | 5802         | C          | •                | E 181          | 68.607<br>67.660 | 65.002<br>64.752 | 18.277<br>17.530 | 1.00 45.26<br>1.00 46.25 | e<br>e |
| ATOM<br>ATOM | 5803<br>5804 | N<br>O     |                  | E 181<br>E 182 | 69.448           | 66.013           | 18.078           | 1.00 44.33               | E      |
| ATOM         | 5805         | CA         |                  | E 182          | 69.335           | 66.923           | 16.943           | 1.00 42.52               | E      |
| ATOM         | 5806         | CB         |                  | E 182          | 68.819           | 68.291           | 17.401           | 1.00 43.41               | E      |
| ATOM         | 5807         | OG         |                  | E 182          | 69.658           | 68.853           | 18.396           | 1.00 43.07               | E      |
| MOTA         | 5808         | C          | SER              | E 182          | 70.725           | 67.068           | 16.337           | 1.00 41.70               | E      |
| ATOM         | 5809         | 0          | SER              | E 182          | 71.726           | 66.955           | 17.040           | 1.00 39.94               | E      |
| ATOM         | 5810         | N          | PRO              | E 183          | 70.805           | 67.330           | 15.023           | 1.00 41.57               | E      |
| MOTA         | 5811         | CD         |                  | E 183          | 69.680           | 67.554           | 14.098           | 1.00 41.72               | E      |
| MOTA         | 5812         | CA         |                  | E 183          | 72.087           | 67.485           | 14.326           | 1.00 40.68               | E      |
| ATOM         | 5813         | CB         | PRO              |                | 71.669           | 67.638           | 12.865           | 1.00 40.95               | E      |
| MOTA         | 5814         | CG         | PRO              |                | 70.344<br>72.988 | 68.309<br>68.628 | 12.965<br>14.790 | 1.00 42.76<br>1.00 38.81 | E<br>E |
| ATOM<br>ATOM | 5815<br>5816 | С<br>О     |                  | E 183<br>E 183 | 72.520           | 69.709           | 15.142           | 1.00 38.61               | E      |
| ATOM         | 5817         | И          | ILE              |                | 74.291           | 68.370           | 14.785           | 1.00 37.31               | E      |
| ATOM         | 5818         | CA         |                  | E 184          | 75.270           | 69.368           | 15.177           | 1.00 34.30               | E      |
| ATOM         | 5819         | CB         |                  | E 184          | 76.570           | 68.728           | 15.699           | 1.00 33.43               | E      |
| MOTA         | 5820         | CG2        | ILE              | E 184          | 77.671           | 69.779           | 15.766           | 1.00 32.87               | E      |
| ATOM         | 5821         | CG1        | ILE              | E 184          | 76.337           | 68.112           | 17.076           | 1.00 33.53               | E      |
| ATOM         | 5822         | CD1        | ILE              | E 184          | 77.530           | 67.339           | 17.604           | 1.00 33.29               | E      |
| MOTA         | 5823         | C          |                  | E 184          | 75.625           | 70.216           | 13.974           | 1.00 33.68               | E      |
| ATOM         | 5824         | 0          |                  | E 184          | 75.851           | 69.704           | 12.882           | 1.00 33.87               | E      |
| ATOM         | 5825         | N          |                  | E 185          | 75.676           | 71.521           | 14.181           | 1.00 34.19               | E      |
| ATOM         | 5826         | CA         |                  | E 185          | 76.018           | 72.431           | 13.111           | 1.00 33.39<br>1.00 33.77 | E<br>E |
| ATOM         | 5827         | CB         |                  | E 185          | 74.792<br>74.211 | 73.230<br>73.918 | 12.637<br>13.751 | 1.00 33.77               | E      |
| ATOM<br>ATOM | 5828<br>5829 | OG1<br>CG2 |                  |                | 73.758           | 72.297           | 12.016           | 1.00 33.35               | E      |
| ATOM         | 5830         | C          | THR              |                | 77.081           | 73.396           | 13.590           | 1.00 33.01               | E      |
| ATOM         | 5831         | 0          |                  | E 185          | 76.990           | 73.966           | 14.679           | 1,00 33.25               | E      |
| ATOM         | 5832         | N          |                  |                | 78.106           | 73.552           | 12.770           | 1.00 32.85               | E      |
| ATOM         | 5833         | CA         |                  | E 186          | 79.197           | 74.453           | 13.067           | 1.00 32.84               | E      |
| ATOM         | 5834         | CB         | VAL              | E 186          | 80.503           | 73.684           | 13.300           | 1.00 31.58               | E      |
| MOTA         | 5835         | CG1        |                  | E 186          | 81.629           | 74.651           | 13.611           | 1.00 30.07               | E      |
| ATOM         | 5836         | CG2        |                  | E 186          | 80.316           | 72.697           | 14.441           | 1.00 30.84               | E      |
| MOTA         | 5837         | C          |                  | E 186          | 79.329           | 75.317           | 11.836           | 1.00 34.14               | E      |
| MOTA         | 5838         | 0          | VAL              | E 186          | 79.403           | 74.812           | 10.719           | 1.00 33.50               | E<br>E |
| MOTA         | 5839         | N          |                  | E 187          | 79.329           | 76.626           | 12.029           | 1.00 38.05<br>1.00 40.60 | E      |
| ATOM<br>ATOM | 5840<br>5941 | CA         |                  | E 187          | 79.453<br>78.358 | 77.522<br>78.592 | 10.898<br>10.934 | 1.00 43.36               | E      |
| MOTA         | 5841         | CB         | GLU              | то,            | ,0.358           |                  |                  | T.00 -50.00              | ننډ    |
|              |              |            |                  |                |                  | 4 6              | <b>7</b> 0       |                          |        |

| T) TITONS | E049 | aa  | CITIT          | הנ           | 107    | 70 40 | م          | 70 521 | 12.121 | 1 00 | 47.46 | 177     |
|-----------|------|-----|----------------|--------------|--------|-------|------------|--------|--------|------|-------|---------|
| ATOM      | 5842 | CG  |                | E            | 187    | 78.42 |            | 79.531 |        |      |       | E       |
| ATOM      | 5843 | CD  |                | E            | 187    | 77.65 |            | 80.822 | 11.886 | 1.00 | 51.49 | E       |
| ATOM      | 5844 | OE1 | GLU            | E            | 187    | 76.45 | 2          | 80.752 | 11.551 | 1.00 | 52.89 | E       |
| MOTA      | 5845 | OE2 | ${	t GLU}$     | E            | 187    | 78.26 | 2          | 81.908 | 12.039 | 1.00 | 53.48 | E       |
| ATOM      | 5846 | C   | GLU            | E            | 187    | 80.81 | 9          | 78.182 | 10.877 | 1.00 | 40.49 | E       |
| ATOM      | 5847 | 0   | GLU            | E            | 187    | 81.49 | 6          | 78.285 | 11.901 | 1.00 | 40.26 | E       |
| ATOM      | 5848 | N   | TRP            | Ε            | 188    | 81.22 |            | 78.610 | 9.688  | 1.00 | 41.52 | E       |
|           |      |     | TRP            | E            | 188    | 82.49 |            | 79.284 | 9.488  | 1.00 | 43.59 | E       |
| ATOM      | 5849 | CA  |                |              |        |       |            |        |        |      |       |         |
| ATOM      | 5850 | CB  | TRP            | E            | 188    | 83.49 |            | 78.337 | 8.834  | 1.00 | 41.24 | E       |
| MOTA      | 5851 | CG  | TRP            | $\mathbf{E}$ | 188    | 84.85 | 2          | 78.942 | 8.675  | 1.00 | 41.34 | E       |
| ATOM      | 5852 | CD2 | TRP            | E            | 188    | 85.32 | 7          | 79.672 | 7.543  | 1.00 | 40.23 | E       |
| ATOM      | 5853 | CE2 | TRP            | E            | 188    | 86.64 | 2          | 80.090 | 7.838  | 1.00 | 41.87 | ${f E}$ |
| MOTA      | 5854 | CE3 | TRP            | E            | 188    | 84.76 | 8          | 80.015 | 6.305  | 1.00 | 40.90 | E       |
| ATOM      | 5855 | CD1 | TRP            | E            | 188    | 85.86 |            | 78.945 | 9.588  |      | 41.88 | E       |
|           |      |     |                |              |        |       |            |        |        |      |       |         |
| ATOM      | 5856 | NE1 | TRP            | E            | 188    | 86.94 |            | 79.632 | 9.093  |      | 41.99 | E       |
| MOTA      | 5857 | CZ2 | TRP            | E            | 188    | 87.41 | 1.         | 80.835 | 6.938  | 1.00 | 42.93 | E       |
| MOTA      | 5858 | CZ3 | TRP            | E            | 188    | 85.53 | 1          | 80.757 | 5.408  | 1.00 | 42.58 | E       |
| ATOM      | 5859 | CH2 | TRP            | E            | 188    | 86.83 | 9          | 81.159 | 5.731  | 1.00 | 43.65 | E       |
| MOTA      | 5860 | C   | TRP            | E            | 188    | 82.19 | 8          | 80.467 | 8.566  | 1.00 | 46.04 | E       |
| ATOM      | 5861 | 0   | TRP            | E            | 188    | 81.33 |            | 80.374 | 7.688  | 1.00 | 45.30 | E       |
|           |      |     |                |              |        |       |            |        | 8.765  | 1.00 | 50.26 | E       |
| ATOM      | 5862 | N   | ARG            | E            | 189    | 82.89 |            | 81.579 |        |      |       |         |
| MOTA      | 5863 | CA  |                | E            | 189    | 82.67 |            | 82.761 | 7.936  | 1.00 | 54.31 | E       |
| ATOM      | 5864 | CB  | ARG            | E            | 189    | 81.98 | 0          | 83.855 | 8.755  | 1.00 | 56.19 | E       |
| ATOM      | 5865 | CG  | ARG            | E            | 189    | 82.82 | 0          | 84.460 | 9.880  | 1.00 | 59.58 | E       |
| ATOM      | 5866 | CD  | ARG            | E            | 189    | 83.03 | 0          | 83.499 | 11.045 | 1.00 | 63.51 | E       |
| ATOM      | 5867 | NE  | ARG            |              | 189    | 83.58 | O          | 84.180 | 12.218 | 100  | 66.73 | E       |
|           |      |     |                |              |        | 84.77 |            | 84.771 | 12.255 | 1.00 | 68.44 | E       |
| ATOM      | 5868 | CZ  | ARG            |              | 189    |       |            |        |        |      |       |         |
| MOTA      | 5869 | NH1 | ARG            |              | 189    | 85.55 |            | 84.766 | 11.183 | 1.00 |       | E       |
| MOTA      | 5870 | NH2 | ARG            | E            | 189    | 85.17 | 8          | 85.378 | 13.363 | 1.00 | 70.13 | E       |
| ATOM      | 5871 | C   | ARG            | E            | 189    | 83.95 | 0          | 83.322 | 7.313  | 1.00 | 55.74 | E       |
| ATOM      | 5872 | 0   | ARG            | E            | 189    | 85.04 | 3          | 83.182 | 7.866  | 1.00 | 56.16 | E       |
| ATOM      | 5873 | N   | ALA            | F.           | 190    | 83.79 | 6          | 83.962 | 6.156  | 1.00 | 58.53 | E       |
| ATOM      | 5874 | CA  | ALA            |              | 190    | 84.92 |            | 84.557 | 5.435  | 1.00 |       | E       |
|           |      |     |                |              |        |       |            |        |        |      |       | E       |
| ATOM      | 5875 | CB  | ALA            |              | 190    | 84.55 |            | 84.734 | 3.964  |      | 59.97 |         |
| MOTA      | 5876 | C   | ALA            | E            | 190    | 85.33 |            | 85.905 | 6.036  |      | 61.01 | E       |
| ATOM      | 5877 | 0   | ALA            | $\mathbf{E}$ | 190    | 84.65 | 4          | 86.378 | 6.971  | 1.00 | 62.25 | E       |
| ATOM      | 5878 | OXT | ALA            | $\mathbf{E}$ | 190    | 86.33 | 8          | 86.479 | 5.558  | 1.00 | 61.85 | 臣       |
| MOTA      | 5879 | С   | $\mathtt{LEU}$ | $\mathbf{F}$ | 1      | 78.71 | .8         | 38.094 | 33.366 | 1.00 | 32.03 | F       |
| ATOM      | 5880 | 0   | LEU            | F            | 1      | 79.81 | .8         | 38.571 | 33.658 | 1.00 | 30.77 | Ŧ       |
| ATOM      | 5881 | N   | LEU            |              | _<br>1 | 76.21 |            | 38.100 | 33.307 |      |       | F       |
|           |      |     |                |              |        |       |            | 38.678 | 33.953 |      | 32.59 | F       |
| MOTA      | 5882 | CA  | LEU            |              | 1.     | 77.43 |            |        |        |      |       | F       |
| ATOM      | 5883 | N   | GLN            |              | 2      | 78.57 |            | 37.069 | 32.531 |      | 30.39 |         |
| ATOM      | 5884 | CA  | GLN            | F            | 2      | 79.74 | 4          | 36.436 | 31.936 |      | 28.84 | F       |
| MOTA      | 5885 | C   | GLN            | $\mathbf{F}$ | 2      | 79.60 | 9          | 36.081 | 30.462 | 1.00 | 27.93 | F       |
| ATOM      | 5886 | 0   | GLN            | F            | 2      | 78.74 | 1          | 35.308 | 30.067 | 1.00 | 27.68 | F       |
| ATOM      | 5887 | N   | PRO            | F            | 3      | 80.46 | 3          | 36.663 | 29.619 | 1.00 | 28.02 | F       |
| MOTA      | 5888 | CD  |                | F            | 3      | 81.46 |            | 37.720 | 29.856 | 1.00 | 28.68 | F       |
|           |      | CA  |                | F            | 3      | 80.37 |            | 36.332 | 28.198 | 1.00 |       | F       |
| ATOM      | 5889 |     |                |              |        |       |            |        |        |      |       | F       |
| MOTA      | 5890 | CB  | PRO            |              | 3      | 81.36 |            | 37.298 | 27.552 | 1.00 |       |         |
| MOTA      | 5891 | CG  | PRO            |              | 3      | 82.35 |            | 37.575 | 28.660 | 1.00 |       | F       |
| MOTA      | 5892 | C   | PRO            | F            | 3      | 80.77 | 4          | 34.872 | 28.030 | 1.00 | 27.24 | F       |
| MOTA      | 5893 | 0   | PRO            | F            | 3      | 81.69 | 8          | 34.406 | 28.698 | 1.00 | 27.18 | F       |
| ATOM      | 5894 | N   | PHE            | F            | 4      | 80.08 | 32         | 34.144 | 27.159 | 1.00 | 25.22 | F       |
| ATOM      | 5895 | CA  | PHE            | F            | 4      | 80.40 | 9          | 32.738 | 26.943 | 1.00 | 24.75 | F       |
| ATOM      | 5896 | CB  | PHE            | F            | 4      | 79.13 | _          | 31.905 | 26.849 |      | 25.85 | F       |
|           |      |     | PHE            | F            |        | 79.27 |            | 30.539 | 27.446 |      | 31.58 | F       |
| ATOM      | 5897 | CG  |                |              | 4      |       |            |        |        |      |       |         |
| ATOM      | 5898 | CD1 | PHE            | £,           | 4      | 79.43 |            | 30.384 | 28.823 |      | 33.24 | F<br>-  |
| MOTA      | 5899 | CD2 | PHE            | F            | 4      | 79.24 | 1          | 29.404 | 26.639 | 1.00 | 32.15 | F       |
| ATOM      | 5900 | CE1 | PHE            | F            | 4      | 79.56 | 1          | 29.116 | 29.386 | 1.00 | 33,28 | F       |
| ATOM      | 5901 | CE2 | PHE            | F            | 4      | 79.36 | 54         | 28.136 | 27.187 | 1.00 | 33.29 | F       |
| MOTA      | 5902 | CZ  | PHE            | F            | 4      | 79.52 | 24         | 27.989 | 28.565 | 1.00 | 34.18 | F       |
| ATOM      | 5903 | C   | PHE            | F            | 4      | 81.22 |            | 32.588 | 25.664 | 1 00 | 22.43 | F       |
|           |      |     |                |              |        |       |            |        | 24.586 |      | 24.59 | -<br>F  |
| MOTA      | 5904 | 0   | PHE            | ਜ<br>ਯ       | 4      | 80.75 |            | 32.919 |        |      |       |         |
| ATOM      | 5905 | N   | PRO            | F            | 5      | 82.46 |            | 32.065 | 25.771 |      | 22.79 | F       |
| MOTA      | 5906 | CD  | PRO            | F            |        | 83.19 | <b>31</b>  | 31.820 | 27.029 |      | 21.18 | F       |
| MOTA      | 5907 | CA  | PRO            | F            | 5      | 83.34 | 19         | 31.882 | 24.618 | 1.00 | 21.18 | F       |
| ATOM      | 5908 | СВ  | PRO            | F            | 5      | 84.71 | <b>L</b> 5 | 32.140 | 25.218 | 1.00 | 20.19 | F       |
| ATOM      | 5909 | CG  | PRO            |              |        | 84.58 | 37         | 31.450 | 26.544 | 1.00 | 20.99 | F       |
| ATOM      | 5910 | C   | PRO            |              |        | 83.29 |            | 30.524 | 23.949 | 1.00 | 20.28 | F       |
|           |      |     | PRO            |              |        | 82.79 |            | 29.559 | 24.521 |      | 19.48 | F       |
| ATOM      | 5911 | 0   |                |              |        |       |            |        |        |      | 21.24 |         |
| ATOM      | 5912 | N   | GLN            |              |        | 83.81 |            | 30.456 | 22.730 |      |       | F       |
| MOTA      | 5913 | CA  |                |              | _      | 83.84 |            | 29.200 | 21.983 |      | 19.98 | F       |
| MOTA      | 5914 | CB  | GLN            |              |        | 83.66 | 55         | 29.450 | 20.484 |      | 18.71 | F       |
| ATOM      | 5915 | CG  | GLN            | F            | 6      | 82.31 | L2         | 30.010 | 20.048 | 1.00 | 18.35 | F       |
|           |      |     |                |              |        |       |            |        |        |      |       |         |

| ATOM | 5916         | CD       | GLN            | F                    | 6   | 82.255          | 30.247 | 18.537    | 1.00 22.29 | F            |
|------|--------------|----------|----------------|----------------------|-----|-----------------|--------|-----------|------------|--------------|
| ATOM | 5917         | OE1      | GLN            | F                    | 6   | 82,612          | 29.368 | 17.740    | 1.00 21.53 | F            |
|      |              |          |                |                      |     |                 |        |           |            |              |
| ATOM | 5918         | NE2      | GLN            | F                    | 6   | 81.802          | 31.429 | 18.138    | 1.00 20.02 | F            |
| ATOM | 5919         | C        | GLN            | F                    | 6   | 85.213          | 28.548 | 22.213    | 1.00 20.47 | F            |
| ATOM | 5920         | 0        | GLN            | F                    | 6   | 86.243          | 29.204 | 22.099    | 1.00 18.48 | F            |
|      |              |          |                |                      |     |                 |        |           | 1.00 21.16 | F            |
| ATOM | 5921         | N        | PRO            | F                    | 7   | 85.229          | 27.256 | 22.575    |            |              |
| MOTA | 5922         | CD       | PRO            | $\mathbf{F}$         | 7   | 84.071          | 26.494 | 23.084    | 1.00 20.59 | F            |
| ATOM | 5923         | CA       | PRO            | F                    | 7   | 86.471          | 26.520 | 22.813    | 1.00 21.61 | F            |
|      |              |          |                |                      |     |                 |        |           | 1.00 23.40 | F            |
| ATOM | 5924         | CB       | PRO            | F                    | 7   | 86.037          | 25.444 | 23.797    |            |              |
| MOTA | 5925         | CG       | PRO            | F                    | 7   | 84.649          | 25.123 | 23.311    | 1.00 19.67 | F            |
| ATOM | 5926         | C        | PRO            | F                    | 7   | 86.996          | 25.897 | 21.521    | 1.00 23.00 | F            |
|      |              |          |                | F                    | 7   | 86.219          | 25.601 | 20.610    | 1.00 23.19 | F            |
| ATOM | 5927         | 0        | PRO            |                      |     |                 |        |           |            |              |
| MOTA | 5928         | N        | GLU            | F                    | 8   | 88.312          | 25.714 | 21.438    | 1.00 21.78 | F            |
| ATOM | 5929         | CA       | GLU            | F                    | 8   | 88.904          | 25.068 | 20.279    | 1.00 23.12 | F            |
| ATOM | 5930         | СВ       | GLU            | F                    | 8   | 90.297          | 25.632 | 19.968    | 1.00 24.50 | F            |
|      |              |          |                |                      |     |                 |        |           |            | F            |
| MOTA | 5931         | CG       | GLU            | F                    | 8   | 91.086          | 24.834 | 18.915    | 1.00 26.16 |              |
| ATOM | 5932         | CD       | $\mathtt{GLU}$ | F                    | 8   | 90.360          | 24.697 | 17.576    | 1.00 31.57 | $\mathbf{F}$ |
| ATOM | 5933         | OE1      | GLU            | F                    | 8   | 89.250          | 24.114 | 17.540    | 1.00 33.65 | F            |
|      |              | OE2      | GLU            |                      | 8   | 90.903          | 25.171 | 16.555    | 1.00 30.66 | F            |
| MOTA | 5934         |          |                |                      |     |                 |        |           |            |              |
| ATOM | 5935         | C        | GLU            | F                    | 8   | 89.005          | 23.608 | 20.680    | 1.00 22.95 | F            |
| ATOM | 5936         | 0        | GLU            | F                    | 8   | 89.289          | 23.292 | 21.833    | 1.00 23.25 | F            |
| ATOM | 5937         | N        | LEU            | F                    | 9   | 88.756          | 22.712 | 19.741    | 1.00 24.74 | $\mathbf{F}$ |
|      |              |          |                |                      |     |                 |        |           | 1.00 27.30 | F            |
| ATOM | 5938         | CA       | LEU            | F                    | 9   | 88.815          | 21.292 | 20.047    |            |              |
| MOTA | 5939         | CB       | LEU            | F                    | 9   | 87.729          | 20.549 | 19.272    | 1.00 25.73 | $\mathbf{F}$ |
| ATOM | 5940         | CG       | LEU            | F                    | 9   | 86.302          | 21.051 | 19.494    | 1.00 29.20 | F            |
|      |              |          |                |                      | _   | 85.338          | 20.235 | 18.645    | 1.00 28.18 | F            |
| ATOM | 5941         |          | LEU            |                      | 9   |                 |        | · · · · - |            |              |
| ATOM | 5942         | CD2      | LEU            | F                    | 9   | 85.938          | 20.943 | 20.967    | 1.00 29.61 | F            |
| ATOM | 5943         | C        | LEU            | F                    | 9   | 90.178          | 20.707 | 19.712    | 1.00 28.17 | F            |
| ATOM | 5944         | 0        | LEU            | F                    | 9   | 90.715          | 20.940 | 18.631    | 1.00 26.94 | F            |
|      |              |          |                |                      |     |                 |        |           |            |              |
| ATOM | 5945         | N        | PRO            | F                    | 10  | 90.765          | 19.947 | 20.647    | 1.00 30.38 | F            |
| ATOM | 5946         | CD       | PRO            | F                    | 10  | 90.365          | 19.707 | 22.044    | 1.00 30.47 | F            |
| ATOM | 594 <b>7</b> | CA       | PRO            | F                    | 10  | 92.076          | 19.355 | 20.370    | 1.00 34.24 | F            |
|      |              |          |                |                      |     |                 |        |           |            | F            |
| ATOM | 5948         | CB       | PRO            | F'                   | 10  | 92.556          | 18.915 | 21.752    | 1.00 32.97 |              |
| ATOM | 5949         | CG       | PRO            | F                    | 10  | 91.282          | 18.561 | 22.448    | 1.00 31.98 | F            |
| MOTA | 5950         | C        | PRO            | F                    | 10  | 91.985          | 18.188 | 19.393    | 1.00 35.94 | F            |
|      |              |          |                |                      |     |                 | 17.461 | 19.376    | 1.00 38.70 | F            |
| ATOM | 5951         | 0        | PRO            | F                    | 10  | 90.993          |        |           |            |              |
| MOTA | 5952         | N        | TYR            | $\mathbf{F}^{\iota}$ | 11  | 93.016          | 18.031 | 18.570    | 1.00 37.40 | F            |
| MOTA | 5953         | CA       | TYR            | F                    | 11  | 93.075          | 16.936 | 17.609    | 1.00 38.84 | F            |
| ATOM | 5954         | CB       | TYR            |                      | 11  | 92,126          | 17.176 | 16.434    | 1.00 38.73 | F            |
|      |              |          |                |                      |     |                 |        |           |            |              |
| ATOM | 5955         | CG       | TYR            | F                    | 11  | 92.017          | 15.969 | 15.539    | 1.00 39.56 | F            |
| MOTA | 5956         | CD1      | TYR            | F                    | 11  | 91.294          | 14.848 | 15.942    | 1.00 39.88 | ${f F}$      |
| ATOM | 5957         | CE1      | TYR            | ਜਾ                   | 11  | 91,254          | 13.697 | 15.164    | 1.00 39.49 | F            |
|      |              |          |                |                      |     |                 |        |           |            | F            |
| ATOM | 5958         | CD2      | TYR            | F                    | 11  | 92.698          | 15.913 | 14.327    |            |              |
| MOTA | 5959         | CE2      | TYR            | F                    | 11  | 92.668          | 14.765 | 13.537    | 1.00 40.44 | F            |
| ATOM | 5960         | CZ       | TYR            | F                    | 11  | 91.945          | 13.659 | 13.964    | 1.00 40.29 | F            |
|      | 5961         | OH       | TYR            | F                    | 11  | 91.921          | 12.514 | 13.200    | 1.00 40.03 | F            |
| ATOM |              |          |                |                      |     |                 |        |           |            |              |
| MOTA | 5962         | C        | TYR            | F                    | 11  | 94.498          | 16.781 | 17.077    | 1.00 40.23 | F            |
| ATOM | 5963         | 0        | TYR            | F                    | 11  | 95.102          | 15.708 | 17.300    | 1.00 41.88 | F            |
| ATOM | 5964         | OXT      | TYR            | ਜ                    | 11  | 94.988          | 17.742 | 16.443    | 1.00 40.58 | F            |
|      |              |          |                |                      |     |                 |        | 17.272    | 1.00 17.47 | Н            |
| MOTA | 5965         | 0        | HOH            |                      | 1.  | 37.560          | 11.197 |           |            |              |
| ATOM | 5966         | 0        | HOH            | H                    | 2   | 81.295          | 26.543 | 20.573    | 1.00 15.95 | H            |
| ATOM | 5967         | 0        | HOH            | H                    | 3   | 43.884          | 23.627 | 16.726    | 1.00 14.83 | H            |
| ATOM | 5968         | 0        | нон            | H                    | 4   | 89.230          | 61.015 | 16.512    | 1.00 19.10 | н            |
|      |              |          |                |                      |     |                 |        |           |            | H            |
| ATOM | 5969         | 0        | HOH            |                      | 5   | 92.090          | 40.877 | 18.768    | 1.00 15.59 |              |
| ATOM | 5970         | 0        | HOH            | H                    | 6   | 57.686          | 14.054 | 4.407     | 1.00 20.02 | H            |
| ATOM | 5971         | 0        | HOH            | H                    | 7   | 87.607          | 31.423 | 22.217    | 1.00 11.29 | H            |
|      | 5972         | 0        | HOH            |                      | 8   | 31.815          | 41.479 | 5.673     | 1.00 23.91 | Н            |
| ATOM |              |          |                |                      |     |                 |        |           |            |              |
| ATOM | 5973         | O        | HOH            | H                    | 9   | 46.112          | 3.594  | 18.714    | 1.00 20.15 | H            |
| ATOM | 5974         | 0        | HOH            | H                    | 10  | 86.724          | 67.786 | 15.551    | 1.00 22.39 | , H          |
| MOTA | 5975         | 0        | HOH            | Ħ                    | 11  | 42.599          | 14.833 | 17.213    | 1.00 16.12 | H            |
|      |              |          |                |                      |     |                 |        |           | 1.00 15.03 | H            |
| ATOM | 5976         | 0        | HOH            |                      | 12  | 93.679          | 37.081 | 11.737    |            |              |
| ATOM | 5977         | 0        | HOH            | H                    | 13  | 50.288          | 0.581  | 25.262    | 1.00 13.69 | H            |
| MOTA | 5978         | 0        | HOH            | H                    | 1.4 | 96.256          | 37.853 | 25.291    | 1.00 12.90 | H            |
|      |              | Ö        | нон            |                      | 15  | 90.711          | 30,936 | 37.307    | 1.00 31.88 | H            |
| ATOM | 5979         |          |                |                      |     |                 |        |           |            |              |
| MOTA | 5980         | 0        | HOH            | H                    | 16  | 80.045          | 39.846 | 25.144    | 1.00 33.11 | H            |
| MOTA | 5981         | 0        | HOH            | H                    | 17  | 80.708          | 45.662 | 11.514    | 1.00 41.56 | H            |
|      | 5982         | 0        | нон            |                      | 18  | 42.215          | 0.119  | 11.193    | 1.00 15.83 | H            |
| ATOM |              | _        |                |                      |     |                 |        |           |            |              |
| ATOM | 5983         | 0        | HOH            |                      | 19  | 95.828          | 50.485 | 5.930     | 1.00 27.67 | H            |
| MOTA | 5984         | 0        | HOH            | H                    | 20  | 48.809          | 37.278 | 14.928    | 1.00 36.10 | H            |
| ATOM | 5985         | 0        | HOH            | H                    | 21  | 47,553          | -0.403 | 11.823    | 1.00 14.62 | H            |
|      |              |          |                |                      | 22  | 94.554          | 76.132 | 19.122    | 1.00 83.80 | н            |
| ATOM | 5986         | 0        | HOH            |                      |     |                 |        |           |            |              |
| MOTA | 5987         | 0        | HOH            | H                    | 23  | 83.295          | 48.460 | 17.328    | 1.00 17.64 | H            |
| ATOM | 5988         | 0        | HOH            | H                    | 24  | 88.976          | 42.102 | 7.818     | 1.00 26.11 | H            |
|      |              | 0        | HOH            |                      | 25  | 99.041          | 56.322 | 24.823    | 1.00 24.86 | H            |
| MOTA | 5989         | <u> </u> |                | ~ -                  |     | <b>ンン・</b> 0 マル | ~~.~~  |           |            | •            |

| ATOM | 5990 | 0       | нон н | 26 | 47.640  | 0.006   | 20.312 | 1.00 18.95 | н |
|------|------|---------|-------|----|---------|---------|--------|------------|---|
|      |      |         |       |    |         |         |        |            |   |
| ATOM | 5991 | 0       | HOH H | 27 | 46.987  | 29.359  | 11.916 | 1.00 21.84 | Ħ |
| MOTA | 5992 | 0       | HOH H | 28 | 88.283  | 37.229  | 11.279 | 1.00 21.34 | H |
|      |      | _       |       |    |         | -9.043  |        | 1 00 22 47 |   |
| ATOM | 5993 | 0       | HOH H | 29 | 49.878  | -9.043  | 36.424 | 1.00 32.47 | H |
| ATOM | 5994 | 0       | нон н | 30 | 82.777  | 39.366  | 24.935 | 1.00 24.79 | H |
| ATOM | 5995 | 0       | нон н | 31 | 72.919  | 25.704  | 15.123 | 1.00 18.09 | Н |
|      | 3773 | U       |       |    |         |         |        |            |   |
| ATOM | 5996 | 0       | HOH H | 32 | 86.830  | 25.153  | 13.558 | 1.00 24.14 | H |
|      |      | 0       | UOU U | 33 | 42 152  |         | 13.774 | 1,00 19,96 | H |
| ATOM | 5997 | 0       | HOH H | 23 | 43.152  | 5.651   | 13.//4 | T'00 T3'30 |   |
| ATOM | 5998 | 0       | нон н | 34 | 100.654 | 27.732  | 5.367  | 1.00 34.73 | H |
|      |      | ^       | MOH H | 35 | 40 EEO  | 32.122  | 26.894 | 1.00 20.17 | H |
| MOTA | 5999 | 0       | HOH H |    | 48.550  |         |        |            |   |
| ATOM | 6000 | 0       | HOH H | 36 | 78.728  | 36.578  | 6.822  | 1.00 32.92 | H |
| ATOM | 6001 | 0       | нон н | 37 | 89.361  | 11.980  | 24.953 | 1.00 51.75 | н |
|      |      |         |       |    |         |         |        |            |   |
| MOTA | 6002 | 0       | HOH H | 38 | 90.411  | 24.657  | 31.926 | 1.00 28.29 | H |
| MOTA | 6003 | 0       | нон н | 39 | 80.690  | 24.233  | 8.462  | 1.00 22.43 | H |
|      |      |         |       |    |         |         |        |            |   |
| ATOM | 6004 | 0       | HOH H | 40 | 83.769  | 65.973  | -5.489 | 1.00 21.06 | H |
| MOTA | 6005 | 0       | HOH H | 41 | 87.710  | 34.692  | 7.008  | 1.00 22.47 | H |
|      |      |         |       |    |         |         |        |            |   |
| ATOM | 6006 | 0       | HOH H | 42 | 38.997  | 4.521   | 15.299 | 1.00 25.36 | H |
| MOTA | 6007 | 0       | HOH H | 43 | 94.223  | 46.644  | 24.674 | 1.00 32.67 | H |
|      |      |         |       |    |         |         |        | 1.00 29.03 | H |
| MOTA | 6008 | 0       | нон н | 44 | 35.150  | 15.757  | 26.294 | 1.00 29.03 |   |
| ATOM | 6009 | 0       | HOH H | 45 | 85.059  | 24.652  | 18.280 | 1.00 25.63 | H |
| ATOM | 6010 | 0       | нон н | 46 | 67.739  | 6.320   | 18.991 | 1.00 43.67 | н |
|      |      |         |       |    |         |         |        |            |   |
| MOTA | 6011 | 0       | HOH H | 47 | 92.376  | 63.977  | 12.866 | 1.00 32.46 | H |
| ATOM | 6012 | 0       | нон н | 48 | 91.526  | 49.479  | 22.504 | 1.00 29.70 | H |
|      |      |         |       |    |         |         |        |            |   |
| ATOM | 6013 | 0       | HOH H | 49 | 56.333  | -2.088  | 24.733 | 1.00 28.53 | H |
| ATOM | 6014 | 0       | нон н | 50 | 100.482 | 53.937  | 3.942  | 1.00 52.26 | H |
|      |      | _       |       |    |         |         |        |            |   |
| ATOM | 6015 | 0       | HOH H | 51 | 48.244  | 18.753  | 22.918 | 1.00 44.88 | H |
| ATOM | 6016 | 0       | HOH H | 52 | 32.577  | -0.558  | 6.769  | 1.00 33.70 | H |
|      |      |         |       |    |         |         |        |            |   |
| MOTA | 6017 | 0       | HOH H | 53 | 47.162  | 26.527  | 12.972 | 1.00 29.72 | H |
| MOTA | 6018 | 0       | HOH H | 54 | 98.621  | 66.834  | 5.100  | 1.00 52.20 | H |
|      |      |         |       |    |         | 52.134  | 17.293 | 1.00 21.13 | H |
| ATOM | 6019 | 0       | HOH H | 55 | 88.106  |         |        |            |   |
| ATOM | 6020 | Q       | HOH H | 56 | 59.655  | 31.307  | 17.069 | 1.00 25.89 | H |
| ATOM | 6021 | 0       | нон н | 57 | 73.562  | 24.323  | 12.997 | 1.00 23.51 | H |
|      |      |         |       |    |         |         |        |            |   |
| MOTA | 6022 | 0       | HOH H | 58 | 43.748  | 32.725  | 20.165 | 1.00 52.72 | H |
| ATOM | 6023 | 0       | нон н | 59 | 26.392  | -7.072  | 11.400 | 1.00 26.20 | H |
|      |      |         |       |    |         |         |        |            |   |
| MOTA | 6024 | 0       | HOH H | 60 | 83.955  | 73.751  | 16.805 | 1.00 18.19 | H |
| ATOM | 6025 | 0       | HOH H | 61 | 46.229  | -19.766 | 10.675 | 1.00 28.79 | H |
|      |      |         |       |    |         | 20 720  | 16.630 | 1.00 28.35 | H |
| ATOM | 6026 | 0       | HOH H | 62 | 52.436  | 38.720  |        |            |   |
| MOTA | 6027 | 0       | HOH H | 63 | 60.555  | 9.392   | 19.914 | 1.00 28.43 | H |
|      |      | ^       | нон н | 64 | 62.105  | 2.197   | 11.948 | 1.00 33.33 | Н |
| ATOM | 6028 | 0       |       |    |         |         |        |            |   |
| ATOM | 6029 | 0       | HOH H | 65 | 40.514  | -12.059 | 13.631 | 1.00 21.32 | H |
| ATOM | 6030 | 0       | нон н | 66 | 65.876  | 23.972  | 14.155 | 1.00 21.11 | Н |
|      |      | _       |       |    |         |         |        |            |   |
| ATOM | 6031 | 0       | HOH H | 67 | 84.702  | 18.013  | 5.666  | 1.00 19.12 | H |
| ATOM | 6032 | 0       | HOH H | 68 | 64.715  | 11.655  | 15.936 | 1.00 28.72 | H |
|      |      | _       |       |    |         |         |        |            |   |
| MOTA | 6033 | 0       | HOH H | 69 | 85.418  | 74.949  | 14.820 | 1.00 27.90 | H |
| MOTA | 6034 | 0       | HOH H | 70 | 77.974  | 25.419  | 23.038 | 1.00 42.15 | H |
|      |      | ^       | нон н | 71 | 65.805  | 8.484   | 20.741 | 1.00 44.01 | H |
| ATOM | 6035 | 0       | non n |    |         |         |        |            |   |
| MOTA | 6036 | 0       | HOH H | 72 | 51.276  | 26.045  | 10.800 | 1.00 28.36 | H |
| ATOM | 6037 | 0       | нон н | 73 | 65.226  | 22.195  | 25.831 | 1.00 36.11 | H |
|      |      |         |       |    |         |         |        |            |   |
| ATOM | 6038 | 0       | HOH H | 74 | 101.567 | 46.068  | 1.107  | 1.00 53.81 | H |
| ATOM | 6039 | 0       | HOH H | 75 | 32.615  | 31.234  | 1.517  | 1.00 21.03 | H |
|      |      |         |       |    |         | -0.001  | 13.802 | 1.00 23.44 | Н |
| ATOM | 6040 | 0       | нон н | 76 | 42.100  |         |        |            |   |
| ATOM | 6041 | 0       | HOH H | 77 | 35.124  | 40.614  | 14.668 | 1.00 27.61 | H |
| ATOM | 6042 | 0       | нон н | 78 | 92.548  | 46.813  | 7.595  | 1.00 31.64 | H |
|      |      |         |       |    |         |         |        |            |   |
| ATOM | 6043 | 0       | HOH H | 79 | 34.670  | 13.941  | 14.778 | 1.00 22.87 | H |
| ATOM | 6044 | 0       | нон н | 80 | 98.527  | 27.671  | 28.270 | 1.00 42.07 | H |
|      |      |         |       |    |         |         |        | 1 00 27 52 | Н |
| ATOM | 6045 | 0       | HOH H | 81 | 30.588  | 36.032  | 16.540 | 1.00 37.52 |   |
| ATOM | 6046 | 0       | HOH H | 82 | 89.345  | 42.957  | 13.940 | 1.00 22.73 | H |
|      | 6047 | $\circ$ | нон н | 83 | 92.891  | 18.085  | 10.698 | 1.00 32.35 | Н |
| ATOM |      | 0       |       |    |         |         |        |            |   |
| ATOM | 6048 | 0       | HOH H | 84 | 90.050  | 48.556  | 16.519 | 1.00 27.30 | H |
| ATOM | 6049 | 0       | нон н | 85 | 110.812 | 49.549  | 15.813 | 1.00 27.68 | H |
|      |      |         |       |    |         |         |        |            |   |
| MOTA | 6050 | 0       | HOH H | 86 | 75.872  | 21.668  | 2.499  | 1.00 39.37 | H |
| ATOM | 6051 | 0       | нон н | 87 | 52.567  | 14.010  | 7.270  | 1.00 34.20 | H |
|      |      |         |       |    |         |         |        |            |   |
| MOTA | 6052 | 0       | HOH H | 88 | 69.016  | 32.569  | 12.651 | 1.00 36.96 | H |
| ATOM | 6053 | 0       | нон н | 89 | 96.637  | 25.945  | 31.742 | 1.00 37.26 | H |
|      |      |         |       |    |         |         |        |            | H |
| MOTA | 6054 | 0       | HOH H | 90 |         | -12.998 | 8.560  | 1.00 22.82 |   |
| MOTA | 6055 | 0       | HOH H | 91 | 113.021 | 48.469  | 17.945 | 1.00 47.59 | H |
|      |      | _       |       | 92 | 34.266  |         | 23.930 | 1.00 31.02 | H |
| ATOM | 6056 | 0       | HOH H |    |         |         |        |            |   |
| MOTA | 6057 | 0       | HOH H | 93 | 51.464  | 31.946  | 19.300 | 1.00 15.75 | H |
| MOTA | 6058 | 0       | нон н | 94 | 80.054  | 50.912  | 15.041 | 1.00 25.94 | H |
|      |      |         |       |    |         |         |        |            |   |
| ATOM | 6059 | 0       | HOH H | 95 | 40.413  | -13.432 | 16.393 | 1.00 39.73 | H |
| ATOM | 6060 | 0       | нон н | 96 | 57.701  | 4.191   | 7.708  | 1.00 25.27 | H |
|      |      | _       |       |    |         |         |        |            |   |
| MOTA | 6061 | 0       | HOH H | 97 | 80.838  | 52.853  | 26.436 | 1.00 27.67 | H |
| ATOM | 6062 | 0       | нон н | 98 | 58.205  | 13.023  | 20.294 | 1.00 27.57 | H |
|      |      |         |       |    |         |         | 15.601 | 1.00 27.32 | H |
| ATOM | 6063 | 0       | HOH H | 99 | 41.832  | 30.437  | TO.00T | 1.00 A1.34 | n |

| ATOM | 6064 | 0 | HOH H 100 | 72.807  | 29.880  | 11.618 | 1.00 28.05 | H |
|------|------|---|-----------|---------|---------|--------|------------|---|
| ATOM | 6065 | 0 | HOH H 101 | 48.499  | 5.079   | 4.053  |            |   |
|      |      | _ |           |         |         |        |            | H |
| MOTA | 6066 | 0 | HOH H 102 | 100.679 | 66.408  | 9.019  | 1.00 36.21 | H |
| ATOM | 6067 | 0 | HOH H 103 | 45.023  | 41.442  | 11.747 | 1.00 42.72 | Ħ |
|      |      |   |           |         |         |        |            |   |
| ATOM | 6068 | 0 | HOH H 104 | 83.296  | 63.483  | -2.738 | 1.00 27.46 | H |
| ATOM | 6069 | 0 | HOH H 105 | 85.067  | 29.522  | 34.732 | 1.00 35.62 | H |
| ATOM | 6070 | 0 | HOH H 106 | 72.272  | 53.390  | 15.314 | 1.00 38.75 | H |
|      |      |   |           |         |         |        |            |   |
| ATOM | 6071 | 0 | HOH H 107 | 80.600  | 27.688  | 5.225  | 1.00 26.04 | H |
| ATOM | 6072 | 0 | HOH H 108 | 71.251  | 18.567  | 16.503 | 1.00 29.08 | H |
| ATOM | 6073 | 0 | нон н 109 | 88.274  | 65.356  | 19.510 | 1.00 26.70 | H |
|      |      | _ |           |         |         |        |            |   |
| MOTA | 6074 | 0 | HOH H 110 | 43.031  | 4.836   | 7.813  | 1.00 38.59 | H |
| ATOM | 6075 | 0 | HOH H 111 | 101.304 | 35.384  | 4.755  | 1.00 43.53 | H |
| MOTA | 6076 | 0 | HOH H 112 | 44.554  | 10.725  | 19.619 | 1.00 21.38 | H |
|      |      |   |           |         |         |        |            |   |
| ATOM | 6077 | 0 | HOH H 113 | 115.506 | 34.478  | 5.615  | 1.00 46.62 | H |
| ATOM | 6078 | 0 | HOH H 114 | 36.124  | -25.634 | 9.802  | 1.00 42.69 | H |
|      |      |   |           |         |         |        |            |   |
| MOTA | 6079 | 0 | нон н 115 | 34.494  | -33.304 | 20.170 | 1.00 61.12 | H |
| MOTA | 6080 | 0 | HOH H 116 | 38.663  | 26.161  | -2.715 | 1.00 31.39 | H |
| ATOM | 6081 | 0 | HOH H 117 | 105.197 | 41.384  | 18.739 | 1.00 38.53 | H |
|      |      |   |           |         |         |        |            |   |
| MOTA | 6082 | 0 | HOH H 118 | 38.437  | -12.372 | 18.422 | 1.00 32.47 | H |
| ATOM | 6083 | 0 | HOH H 119 | 45.430  | 15.732  | 9.556  | 1.00 32.39 | H |
| ATOM | 6084 | 0 | нон н 120 | 70.475  | 9.817   | -1.029 | 1.00 53.38 | H |
|      |      | - |           |         |         |        |            |   |
| MOTA | 6085 | 0 | HOH H 121 | 87.895  | 64.540  | 22.445 | 1.00 47.01 | H |
| ATOM | 6086 | 0 | HOH H 122 | 39.337  | 36.650  | 16.644 | 1.00 25.21 | H |
| MOTA | 6087 | 0 | HOH H 123 | 104.091 | 50.783  | 20.204 | 1.00 31.31 | H |
|      |      |   |           |         |         |        |            |   |
| MOTA | 6088 | 0 | HOH H 124 | 72.528  | 13.825  | 20.909 | 1.00 62.81 | H |
| ATOM | 6089 | 0 | HOH H 125 | 55.353  | -5.411  | 5.747  | 1.00 25.46 | H |
| MOTA | 6090 | 0 | HOH H 126 | 97.848  | 63.704  | 25.177 | 1.00 27.84 | H |
|      |      |   |           |         |         |        |            |   |
| ATOM | 6091 | 0 | HOH H 127 | 89.799  | 75.117  | 14.074 | 1.00 49.56 | H |
| ATOM | 6092 | 0 | HOH H 128 | 96.226  | 35.565  | 0.211  | 1.00 40.25 | H |
| ATOM | 6093 | 0 | HOH H 129 | 25.125  | -15.445 | 19.161 | 1.00 37,04 | н |
|      |      |   |           |         |         |        |            |   |
| MOTA | 6094 | 0 | HOH H 130 | 90.627  | 52.974  | 9.649  | 1.00 22.70 | H |
| ATOM | 6095 | 0 | HOH H 131 | 114.398 | 29.773  | 11.425 | 1.00 42.36 | H |
| MOTA | 6096 | 0 | нон н 132 | 69.810  | 89.608  | -0.164 | 1.00 53.48 | H |
|      |      |   |           |         |         |        |            |   |
| ATOM | 6097 | 0 | HOH H 133 | 99.069  | 30.421  | 4.728  | 1.00 31.21 | H |
| MOTA | 6098 | 0 | HOH H 134 | 37.335  | 49.129  | 5.746  | 1.00 43.90 | H |
| MOTA | 6099 | 0 | HOH H 135 | 77.753  | 73.821  | 17.600 | 1.00 50.43 | H |
| ATOM | 6100 |   | HOH H 136 | 44.853  | 33.208  | 11.090 | 1.00 21.26 | н |
|      |      | 0 |           |         |         |        |            |   |
| MOTA | 6101 | 0 | HOH H 137 | 88.697  | 80.608  | -4.574 | 1.00 49.42 | H |
| ATOM | 6102 | 0 | HOH H 138 | 62.018  | -6.136  | 9.010  | 1.00 30.19 | H |
| ATOM | 6103 | ^ | HOH H 139 | 35.964  | -5.810  | 5.494  | 1.00 45.47 | H |
|      |      | 0 |           |         |         |        |            |   |
| MOTA | 6104 | 0 | HOH H 140 | 73.968  | 65.480  | 8.013  | 1.00 43.93 | H |
| MOTA | 6105 | 0 | HOH H 141 | 78.361  | 66.868  | 24.455 | 1.00 57.76 | H |
|      | 6106 | 0 | HOH H 142 | 53.527  | 3.199   | 22.332 | 1.00 32.95 | Ħ |
| ATOM |      |   |           |         |         |        |            |   |
| MOTA | 6107 | 0 | HOH H 143 | 56.018  | -6.530  | 25.205 | 1.00 42.75 | H |
| ATOM | 6108 | 0 | HOH H 144 | 82.930  | 52.617  | 28.345 | 1.00 32.35 | H |
| ATOM | 6109 | 0 | HOH H 145 |         | -21.313 | 24.210 | 1.00 48.87 | Н |
|      |      |   |           |         |         |        |            |   |
| MOTA | 6110 | 0 | HOH H 146 | 86.079  | 41.197  | 35.698 | 1.00 36.97 | H |
| ATOM | 6111 | 0 | HOH H 147 | 35.017  | 8.399   | 11.516 | 1.00 32.21 | H |
| ATOM | 6112 | 0 | нон н 148 | 25.864  | -19.905 | 17.166 | 1.00 41.53 | Ħ |
|      |      |   |           |         |         |        |            |   |
| MOTA | 6113 | 0 | HOH H 149 | 55.504  | 20.659  | 6.959  | 1.00 36.63 | H |
| ATOM | 6114 | 0 | HOH H 150 | 106.046 | 47.260  | 19.571 | 1.00 30.60 | H |
| ATOM | 6115 | 0 | HOH H 151 | 108.769 | 26.147  | 5.447  | 1.00 48.82 | H |
|      |      |   |           |         |         |        |            |   |
| MOTA | 6116 | 0 | HOH H 152 | 38.689  | 17.576  | 4.331  | 1.00 39.07 | H |
| ATOM | 6117 | 0 | HOH H 153 | 97.787  | 62.580  | 8.740  | 1.00 29.61 | H |
| ATOM | 6118 | 0 | HOH H 154 | 59.501  | -12.817 | 20.769 | 1.00 50.36 | H |
| ATOM | 6119 |   | HOH H 155 | 47.887  | 40.072  | -4.641 | 1.00 51.05 | Н |
|      |      | 0 |           |         |         |        |            |   |
| MOTA | 6120 | 0 | HOH H 156 | 60.057  | 16.564  | 27.477 | 1.00 40.66 | H |
| ATOM | 6121 | 0 | HOH H 157 | 67.048  | 27.841  | 20.873 | 1.00 39,66 | H |
| ATOM | 6122 | 0 | нон н 158 | 37.028  | 32.932  | 18.669 | 1.00 37.23 | Н |
|      |      | _ |           |         |         |        |            |   |
| MOTA | 6123 | 0 | HOH H 159 | 121.780 | 18.693  | -3.076 | 1.00 46.64 | H |
| ATOM | 6124 | 0 | HOH H 160 | 39.196  | 18.091  | 27.271 | 1.00 29.99 | H |
| ATOM | 6125 | O | HOH H 161 | 113.285 | 44.237  | 19.561 | 1.00 39.04 | H |
|      |      |   |           |         |         |        |            |   |
| ATOM | 6126 | 0 | HOH H 162 | 43.379  | 27.754  | 19.370 | 1.00 27.58 | H |
| MOTA | 6127 | 0 | HOH H 163 | 91.636  | 66.903  | 11.885 | 1.00 54.73 | H |
| ATOM | 6128 | 0 | HOH H 164 | 113.381 | 46.844  | 20.020 | 1.00 54.22 | H |
|      |      |   |           |         |         |        |            |   |
| MOTA | 6129 | 0 | нон н 165 | 79.238  | 62.082  | 24.112 | 1.00 36.07 | H |
| ATOM | 6130 | 0 | HOH H 166 | 27.985  | 32.355  | 18.424 | 1.00 36.25 | H |
| ATOM | 6131 | 0 | нон н 167 | 34.709  | -10.661 | 20.615 | 1.00 9.89  | H |
|      |      |   |           |         |         |        |            | H |
| MOTA | 6132 | 0 | нон н 168 | 93.577  | 37.339  | 20.182 | 1.00 14.03 |   |
| ATOM | 6133 | 0 | HOH H 169 | 97.912  | 51.662  | 7.309  | 1.00 24.22 | H |
| ATOM | 6134 | 0 | нон н 170 | 69.616  | 4.375   | 18.521 | 1.00 38.01 | н |
| ATOM | 6135 |   | HOH H 171 | 80.870  | 25.194  | 6.002  | 1.00 21.84 | H |
|      |      | 0 |           |         |         |        |            |   |
| ATOM | 6136 | O | HOH H 172 | 50.564  | 12.887  | 5.906  | 1.00 32.25 | H |
| ATOM | 6137 | 0 | нон н 173 | 88.207  | 37.288  | 13.919 | 1.00 19.68 | H |
|      |      |   |           |         |         |        |            |   |

| ATOM                      | 6138 | 0                | HOH H 174 | 93.800  | 47.651  | 27.174 | 1.00 41.65 | н |
|---------------------------|------|------------------|-----------|---------|---------|--------|------------|---|
|                           |      |                  |           |         |         |        |            |   |
| ATOM                      | 6139 | 0                | HOH H 175 | 52.842  | 0.304   | 25.210 | 1.00 28.07 | H |
| ATOM                      | 6140 | 0                | HOH H 176 | 66.457  | 4.742   | 14.051 | 1.00 28.64 | H |
| ATOM                      | 6141 | 0                | HOH H 177 | 36.948  | 12.416  | 15.109 | 1.00 28.66 | Н |
|                           |      | - <del>-</del> - |           |         |         |        |            |   |
| ATOM                      | 6142 | 0                | HOH H 178 | 103.292 | 41.793  | 7.607  | 1.00 28.51 | H |
| ATOM                      | 6143 | 0                | HOH H 179 | 86.476  | 36.035  | 9.339  | 1.00 27.43 | H |
|                           |      |                  |           |         |         |        |            |   |
| MOTA                      | 6144 | 0                | HOH H 180 | 82.262  | 41.159  | 26.845 | 1.00 24.13 | H |
| ATOM                      | 6145 | 0                | HOH H 181 | 32.348  | 15.030  | 26.400 | 1.00 30.06 | H |
| ATOM                      | 6146 | 0                | HOH H 182 | 69.916  | 30.709  | 14.482 | 1.00 42.81 | Ħ |
|                           |      |                  |           |         |         |        |            |   |
| MOTA                      | 6147 | 0                | HOH H 183 | 48.060  | 10.142  | 26.751 | 1.00 49.12 | H |
| ATOM                      | 6148 | 0                | HOH H 184 | 45.863  | -9.131  | 37.252 | 1.00 43.70 | H |
|                           |      |                  |           |         |         |        |            |   |
| MOTA                      | 6149 | 0                | HOH H 185 | 32.095  | -3.806  | 34.251 | 1.00 41.46 | H |
| MOTA                      | 6150 | 0                | HOH H 186 | 108.258 | 31.975  | 8.914  | 1.00 33.62 | H |
| ATOM                      | 6151 | O                | HOH H 187 | 99.465  | 64.293  | 8.210  | 1.00 54.43 | H |
|                           |      |                  |           |         |         |        |            |   |
| MOTA                      | 6152 | 0                | HOH H 188 | 74.677  | 30.785  | 27.841 | 1.00 28.20 | H |
| MOTA                      | 6153 | 0                | HOH H 189 | 44.953  | 0.968   | 35.892 | 1.00 32.25 | H |
| ATOM                      | 6154 | 0                | HOH H 190 | 88.523  | 27.792  | 36.268 | 1.00 30.83 | H |
|                           |      |                  |           |         |         |        |            |   |
| ATOM                      | 6155 | 0                | HOH H 191 | 37.736  | 8.611   | 11.729 | 1.00 38.92 | H |
| MOTA                      | 6156 | 0                | HOH H 192 | 35.988  | 45.178  | 12.964 | 1.00 33.85 | H |
|                           |      |                  |           |         |         |        |            |   |
| ATOM                      | 6157 | 0                | HOH H 193 | 77.222  | 68.027  | 1.401  | 1.00 27.02 | H |
| ATOM                      | 6158 | 0                | HOH H 194 | 63.326  | -8.764  | 15.926 | 1.00 38.46 | H |
| ATOM                      | 6159 | 0                | HOH H 195 | 109.635 | 61.489  | 27.644 | 1.00 52.79 | H |
|                           |      |                  |           |         |         |        |            |   |
| ATOM                      | 6160 | 0                | HOH H 196 | 101.299 | 67.528  | 11.319 | 1.00 38.92 | H |
| ATOM                      | 6161 | 0                | HOH H 197 | 77.295  | 56.116  | 25.768 | 1.00 36.83 | H |
| ATOM                      | 6162 | 0                | HOH H 198 | 81.538  | 22.288  | 0.320  | 1.00 47.08 | H |
|                           |      | _                |           |         |         |        |            |   |
| MOTA                      | 6163 | 0                | HOH H 199 | 55.989  | 3.900   | 0.756  | 1.00 46.35 | H |
| ATOM                      | 6164 | 0                | HOH H 200 | 66.200  | 40.514  | 17.513 | 1.00 43.54 | H |
|                           |      | -                |           |         |         |        |            | н |
| ATOM                      | 6165 | 0                | HOH H 201 | 40.497  | -1.046  | 9.238  | 1.00 27.84 |   |
| ATOM                      | 6166 | 0                | HOH H 202 | 57.171  | 27.504  | 8.258  | 1.00 52.74 | H |
| ATOM                      | 6167 | 0                | нон н 203 | 44.592  | -6.430  | 37.531 | 1.00 37.55 | H |
|                           |      |                  |           |         |         |        |            |   |
| ATOM                      | 6168 | 0                | HOH H 204 | 26.892  | -1.642  | 9.494  | 1.00 55.58 | H |
| MOTA                      | 6169 | 0                | HOH H 205 | 83.350  | 58.389  | 2.759  | 1.00 46.24 | H |
| ATOM                      | 6170 | 0                | HOH H 206 | 112.353 | 45.284  | 9.770  | 1.00 30.99 | H |
|                           |      |                  |           |         |         |        |            |   |
| ATOM                      | 6171 | O                | HOH H 207 | 86.315  | 23.927  | 16.100 | 1.00 41.36 | H |
| MOTA                      | 6172 | 0                | HOH H 208 | 67.053  | 45.396  | 12.396 | 1.00 31.02 | H |
|                           |      |                  |           |         |         |        |            | H |
| ATOM                      | 6173 | 0                | HOH H 209 | 111.609 |         |        |            |   |
| ATOM                      | 6174 | 0                | HOH H 210 | 91.254  | 47.553  | 32.752 | 1.00 41.71 | Ħ |
| MOTA                      | 6175 | 0                | HOH H 211 | 88.489  | 39.944  | 11.117 | 1.00 34.00 | H |
|                           |      |                  |           |         |         |        |            |   |
| ATOM                      | 6176 | 0                | HOH H 212 | 104.972 | 69.233  | 16.415 | 1.00 37.26 | H |
| ATOM                      | 6177 | 0                | HOH H 213 | 23.462  | 39.893  | 6.692  | 1.00 56.45 | H |
| MOTA                      | 6178 | 0                | HOH H 214 | 84.114  | 54.447  | -1.718 | 1.00 42.58 | H |
|                           |      | _                |           |         |         |        |            |   |
| ATOM                      | 6179 | 0                | HOH H 215 | 105.045 | 66.068  | 22.775 | 1.00 24.48 | H |
| ATOM                      | 6180 | 0                | HOH H 216 | 85.378  | 52.388  | 17.025 | 1.00 37.91 | H |
| MOTA                      | 6181 | 0                | HOH H 217 | 91.411  | 30 837  | 4.259  | 1.00 23.59 | H |
|                           |      |                  |           |         |         |        |            |   |
| ATOM                      | 6182 | 0                | HOH H 218 | 99.019  | 37.803  | 25.178 | 1.00 37.20 | H |
| ATOM                      | 6183 | 0                | HOH H 219 | 88.866  | 41.183  | 35.781 | 1.00 42.88 | H |
|                           |      |                  |           |         | 25.931  |        | 1.00 45.53 | Н |
| MOTA                      | 6184 | 0                | HOH H 220 | 66.946  |         | 12.530 |            |   |
| ATOM                      | 6185 | 0                | HOH H 221 | 83.809  | 61.544  | -0.645 | 1.00 32.51 | H |
| ATOM                      | 6186 | 0                | нон н 222 | 91.766  | 28.386  | 3.286  | 1.00 29.97 | Н |
|                           |      |                  |           |         |         |        |            |   |
| ATOM                      | 6187 | 0                | HOH H 223 | 83.302  | 45.674  | 11.423 | 1.00 40.65 | H |
| ATOM                      | 6188 | 0                | HOH H 224 | 59.198  | 3.628   | 18.904 | 1.00 22.61 | H |
| ATOM                      | 6189 | 0                | нон н 225 | 34.553  | -11.852 | 5.930  | 1.00 29.77 | Ħ |
|                           |      |                  |           |         |         |        |            |   |
| ATOM                      | 6190 | 0                | HOH H 226 | 88.953  | 22.712  | 24.560 | 1.00 23.54 | H |
| ATOM                      | 6191 | 0                | HOH H 227 | 108.379 | 54.102  | 21.160 | 1.00 30.79 | H |
| ATOM                      | 6192 | Ö                | нон н 228 | 44.957  | 16.820  | 6.827  | 1.00 37.14 | Н |
|                           |      | _                |           |         |         |        |            |   |
| ATOM                      | 6193 | 0                | HOH H 229 | 105.872 | 50.217  | 22.393 | 1.00 33.77 | H |
| ATOM                      | 6194 | 0                | HOH H 230 | 40.390  | 52.287  | -1.729 | 1.00 62.00 | H |
|                           |      |                  |           |         |         |        |            | н |
| ATOM                      | 6195 | 0                | HOH H 231 | 103.837 | 27.586  | 24.806 | 1.00 50.76 |   |
| ATOM                      | 6196 | 0                | HOH H 232 | 50.931  | 9.397   | 25.207 | 1.00 40.65 | H |
| ATOM                      | 6197 | 0                | нон н 233 | 64.739  | 2.382   | 27.973 | 1.00 46.98 | H |
|                           |      |                  |           |         |         |        |            |   |
| ATOM                      | 6198 | 0                | нон н 234 | 38.363  | 0.460   | 8.402  | 1.00 28.58 | H |
| ATOM                      | 6199 | 0                | нон н 235 | 73.577  | 50.129  | 18.561 | 1.00 36.68 | H |
| MOTA                      | 6200 | 0                | нон н 236 | 100.912 | 58.519  | 6.876  | 1.00 36.99 | H |
|                           |      |                  | ·         |         |         |        |            |   |
| ATOM                      | 6201 | 0                | нон н 237 | 100.664 | 26.841  | 26.380 | 1.00 36.27 | H |
| ATOM                      | 6202 | 0                | нон н 238 | 82.528  | 48.080  | 12.484 | 1.00 44.97 | H |
|                           |      | _                |           | 70.870  | 44.782  | 13.746 | 1.00 26.53 | H |
| ATOM                      | 6203 | 0                | нон н 239 |         |         |        |            |   |
| ATOM                      | 6204 | 0                | HOH H 240 | 71.914  | -9.049  | 17.302 | 1.00 59.29 | H |
| ATOM                      | 6205 | 0                | HOH H 241 | 28.024  | 9.146   | 32.377 | 1.00 43.91 | H |
|                           |      |                  |           |         |         |        | 1.00 50.20 | H |
| MOTA                      | 6206 | 0                | HOH H 242 | 55.531  | -2.470  | 4.880  |            |   |
| ATOM                      | 6207 | 0                | HOH H 243 | 63.362  | 16.623  | 21.334 | 1.00 30.95 | H |
| ATOM                      | 6208 | 0                | HOH H 244 | 71.813  | 27.548  | 12.914 | 1.00 54.77 | H |
|                           |      |                  |           |         |         |        |            | H |
| MOTA                      | 6209 | 0                | HOH H 245 | 22.793  | -3.930  | 12.731 | 1.00 39.10 |   |
| ATOM                      | 6210 | 0                | HOH H 246 | 73.087  | 44.091  | 34.124 | 1.00 47.86 | H |
| ATOM                      | 6211 | 0                | нон н 247 | 48.717  | 31.774  | 19.850 | 1.00 33.46 | H |
| <del>-</del> <del>-</del> |      | -                |           | • — •   |         |        |            |   |

| TA FITTO NA | C212 | ^             | TIOU II 240 | 100 051 | 61.218  | 7.741  | 1.00 35.49 | 7.7 |
|-------------|------|---------------|-------------|---------|---------|--------|------------|-----|
| ATOM        | 6212 | 0             | HOH H 248   | 100.851 |         |        |            | H   |
| ATOM        | 6213 | 0             | HOH H 249   | 116.291 | 47.311  | 12.227 | 1.00 49.67 | H   |
| MOTA        | 6214 | 0             | HOH H 250   | 99.469  | 40.748  | 22.418 | 1.00 25.82 | H   |
| MOTA        | 6215 | 0             | HOH H 251   | 52.271  | 4.031   | 24.614 | 1.00 44.68 | H   |
| ATOM        | 6216 | 0             | HOH H 252   | 106.629 | 40.298  | 32.271 | 1.00 59.44 | H   |
| ATOM        | 6217 | 0             | нон н 253   | 45.587  | -9.303  | 3.049  | 1.00 26.81 | Н   |
| ATOM        | 6218 | 0             | HOH H 254   | 52.547  | -9.432  | 27.670 | 1.00 45.08 | Н   |
|             |      |               |             |         |         |        |            |     |
| MOTA        | 6219 | 0             | HOH H 255   | 75.854  | 21.157  | 27.640 | 1.00 42.33 | H   |
| MOTA        | 6220 | 0             | нон н 256   | 82.119  | 63.444  | 23.430 | 1.00 37.84 | H   |
| MOTA        | 6221 | 0             | HOH H 257   | 104.091 | 38.660  | 18.936 | 1.00 30.29 | H   |
| ATOM        | 6222 | 0             | HOH H 258   | 79.477  | 56.121  | 8.190  | 1.00 39.16 | H   |
| ATOM        | 6223 | 0             | нон н 259   | 101.351 | 32.257  | 5.631  | 1.00 29.94 | н   |
| MOTA        | 6224 | o             | HOH H 260   | 93.989  | 23.313  | 31.488 | 1.00 35.30 | Н   |
|             |      |               |             |         |         |        |            |     |
| MOTA        | 6225 | 0             | HOH H 261   | 28.754  | -1.723  | 6.977  | 1.00 36.90 | H   |
| ATOM        | 6226 | 0             | HOH H 262   | 93.007  | 48.370  | 9.901  | 1.00 49.06 | H   |
| MOTA        | 6227 | 0             | HOH H 263   | 82.990  | 88.137  | 9.529  | 1.00 39.70 | H   |
| MOTA        | 6228 | 0             | HOH H 264   | 118.031 | 51.582  | 0.542  | 1.00 36.21 | H   |
| ATOM        | 6229 | 0             | HOH H 265   | 21.682  | 15.046  | 11.602 | 1.00 62.29 | H   |
| MOTA        | 6230 | 0             | нон н 266   | 34.210  | 24.576  | 5.314  | 1.00 18.89 | H   |
|             |      |               | HOH H 267   | 85.829  | 40.095  | 14.911 | 1.00 25.26 | H   |
| ATOM        | 6231 | 0             |             |         |         |        |            |     |
| MOTA        | 6232 | 0             | HOH H 268   | 102.070 | 38.308  | 21.059 | 1.00 41.79 | H   |
| MOTA        | 6233 | 0             | нон н 269   | 41.071  | -2.346  | 7.039  | 1.00 38.87 | H   |
| MOTA        | 6234 | 0             | HOH H 270   | 68.717  | 3.686   | 16.083 | 1.00 37.79 | H   |
| ATOM        | 6235 | 0             | HOH H 271   | 27.094  | -12.649 | 12.753 | 1.00 29.26 | H   |
| ATOM        | 6236 | 0             | HOH H 272   | 36.426  | 24.744  | 4.145  | 1.00 45.88 | H   |
| ATOM        |      | o             | HOH H 273   | 88.670  | 31.858  | 5.525  | 1.00 39.43 | H   |
|             | 6237 |               |             |         |         |        |            |     |
| ATOM        | 6238 | 0             | HOH H 274   | 90.819  | 38.524  | 36.028 | 1.00 30.15 | H   |
| ATOM        | 6239 | 0             | HOH H 275   | 90.790  | 49.861  | 10.317 | 1.00 39.97 | H   |
| ATOM        | 6240 | 0             | HOH H 276   | 77.026  | 11.969  | 13.970 | 1.00 44.87 | Ħ   |
| ATOM        | 6241 | 0             | HOH H 277   | 36.555  | 12.078  | 12.344 | 1.00 40.47 | H   |
| ATOM        | 6242 | 0             | нон н 278   | 52.331  | 7.302   | 24.972 | 1.00 49.30 | н   |
| MOTA        | 6243 | Ō             | HOH H 279   | 92.612  | 33.229  | 3.564  | 1.00 40.55 | H   |
|             |      |               |             | 83.546  | 64.142  | 25.612 | 1.00 50.28 | H   |
| MOTA        | 6244 | 0             | HOH H 280   |         |         |        |            |     |
| ATOM        | 6245 | 0             | HOH H 281   | 28.206  | -1.891  | 36.868 | 1.00 44.06 | H   |
| MOTA        | 6246 | 0             | HOH H 282   | 93.185  | 20.914  | 30.917 | 1.00 44.51 | H   |
| ATOM        | 6247 | 0             | HOH H 283   | 98.176  | 41.763  | 24.500 | 1.00 44.20 | H   |
| ATOM        | 6248 | 0             | HOH H 284   | 29.174  | -0.123  | 4.304  | 1.00 46.75 | H   |
| MOTA        | 6249 | 0             | HOH H 285   | 79.206  | 77.643  | 14.919 | 1.00 30.21 | H   |
| ATOM        | 6250 | 0             | нон н 286   | 90.531  | 26.085  | 37.436 | 1.00 36.96 | H   |
| ATOM        | 6251 | o             | HOH H 287   | 55.726  | 0.396   | 21.054 | 1.00 49.55 | H   |
|             |      |               |             |         |         |        | 1.00 42.91 | H   |
| MOTA        | 6252 | 0             | HOH H 288   | 111.246 | 30.915  | 19.699 |            |     |
| ATOM        | 6253 | 0             | HOH H 289   | 77.000  | 58.921  | 5.300  | 1.00 47.04 | H   |
| MOTA        | 6254 | $\mathbf{O}'$ | HOH H 290   | 34.339  | -9.458  | 5.288  | 1.00 25.50 | H   |
| MOTA        | 6255 | 0             | HOH H 291   | 109.784 | 29.168  | 15.534 | 1.00 45.96 | Ħ   |
| ATOM        | 6256 | 0             | HOH H 292   | 93.674  | 48.853  | 29.650 | 1.00 48.76 | H   |
| ATOM        | 6257 | 0             | нон н 293   | 92.299  | 47.066  | 3.801  | 1.00 37.41 | Н   |
| ATOM        | 6258 | 0             | HOH H 294   | 110.965 | 23.141  | 11.799 | 1.00 42.97 | H   |
|             |      |               |             |         |         | 33.919 | 1.00 33.83 | H   |
| ATOM        | 6259 | 0             | нон н 295   | 90.562  | 45.235  |        |            |     |
| MOTA        | 6260 | 0             | нон н 296   |         | -10.500 | 25.018 | 1.00 49.78 | H   |
| MOTA        | 6261 | 0             | НОН Н 297   | 54.676  | 36.195  | 11.362 | 1.00 54.22 | H   |
| ATOM        | 6262 | 0             | HOH H 298   | 107.263 | 59.234  | 5.282  | 1.00 56.05 | H   |
| ATOM        | 6263 | 0             | HOH H 299   | 70.560  | 48.918  | 1.476  | 1.00 49.72 | H   |
| ATOM        | 6264 | 0             | нон н 300   | 84.037  | 38.916  | 5.971  | 1.00 39.33 | H   |
| ATOM        | 6265 | 0             | HOH H 301   | 86.468  | 41.381  | 11.971 | 1.00 45.69 | Н   |
|             |      |               |             | 24.400  | 11.569  | 23.610 | 1.00 36.73 | H   |
| ATOM        | 6266 | 0             | HOH H 302   |         |         |        |            |     |
| ATOM        | 6267 | 0             | нон н 303   | 73.087  | 79.808  | 7.028  | 1.00 46.20 | H   |
| ATOM        | 6268 | 0             | HOH H 304   | 72.681  | 43.116  | 14.941 | 1.00 51.84 | H   |
| ATOM        | 6269 | 0             | HOH H 305   | 84.844  | 42.198  | 15.611 | 1.00 26.23 | H   |
| ATOM        | 6270 | 0             | нон н 306   | 54.135  | 19.007  | 24.978 | 1.00 27.41 | H   |
| ATOM        | 6271 | 0             | нон н 307   | 67.044  | 10.459  | 18.465 | 1.00 44.92 | H   |
| ATOM        | 6272 | ō             | нон н 308   | 82.262  | 49.436  | 14.864 | 1.00 39.04 | H   |
|             |      |               | HOH H 309   | 114.093 | 50.994  | 16.895 | 1.00 43.32 | Н   |
| ATOM        | 6273 | 0             |             |         |         |        |            |     |
| MOTA        | 6274 | 0             | нон н 310   | 64.428  | 3.092   | 30.590 | 1.00 43.29 | H   |
| ATOM        | 6275 | 0             | HOH H 311   | 81.152  | 70.187  | 18.656 | 1.00 34.21 | H   |
| ATOM        | 6276 | 0             | HOH H 312   | 74.596  | 81.584  | -2.515 | 1.00 55.00 | H   |
| MOTA        | 6277 | 0             | нон н 313   | 61.161  | 25.774  | 22.464 | 1.00 32.98 | H   |
| ATOM        | 6278 | 0             | нон н 314   | 53.149  | -7.019  | 4.754  | 1.00 26.01 | H   |
| ATOM        | 6279 | 0             | нон н 315   | 44.571  | 8.317   | 33.567 | 1.00 40.32 | Н   |
| ATOM        | 6280 | 0             | нон и 316   | 82.293  | 49.769  | 10.587 | 1.00 35.22 | H   |
|             |      |               |             | 48.467  | 8.859   | 24.614 | 1.00 33.22 | H   |
| ATOM        | 6281 | 0             | HOH H 317   |         |         |        |            |     |
| ATOM        | 6282 | 0             | HOH H 318   | 56.588  | -8.027  | 4.728  | 1.00 44.65 | H   |
| MOTA        | 6283 | 0             | нон н 319   | 31.280  |         | 26.551 | 1.00 42.45 | H   |
| ATOM        | 6284 | 0             | нон н 320   | 82.483  | 40.137  | 7.719  | 1.00 39.22 | H   |
| MOTA        | 6285 | 0             | нон н 321   | 82.063  | 19.937  | 23.440 | 1.00 35.69 | H   |
|             | _    |               |             |         |         |        |            |     |

6286 Q HOH H 322 106.025 63.366 22.616 1.00 31.93  $\mathbf{H}$ MOTA HOH H 323 46.181 9.890 8.669 1.00 38.11 H MOTA 6287 0 ATOM 6288 0 HOH H 324 71.708 75.568 6.998 1.00 41.82 H 108.280 34.405 3.851 1.00 30.72 H ATOM 6289 0 HOH H 325 14.635 H MOTA 6290 0 HOH H 326 32.275 40.921 1.00 40.72 HOH H 327 37.556 15.785 5.690 1.00 42.29 H MOTA 6291 33.598 85.569 H MOTA 6292 HOH H 328 37.182 1.00 31.78 1.00 48.90 H 33.070 -11.287 23.137 ATOM 6293 HOH H 329 16.513 1.00 45.53 6294 87.593 19.683 H MOTA HOH H 330 53.631 6295 HOH H 331 116.176 17.853 1.00 39.81 H MOTA 26.940 -11.377 14.930 1.00 39.40 H ATOM 6296 HOH H 332 6297 60.033 28.679 22.456 1.00 32.84 H MOTA HOH H 333 15.182 2.562 1.00 48.72 H MOTA 6298 HOH H 334 52.472 H ATOM 6299 HOH H 335 84.377 54.588 4.646 1.00 40.99 115.759 67.454 19.970 1.00 46.15 Η ATOM 6300 HOH H 336 H MOTA 6301 HOH H 337 88.969 52.684 25.112 1.00 42.31 36.351 12.852 9.875 1.00 37.11 H MOTA 6302 HOH H 338 H 97.702 31.578 2.653 1.00 49.82 ATOM 6303 HOH H 339 -6.543 26.981 1.00 35.52 H 53.964 MOTA 6304 HOH H 340 24.475 -17.438 17.094 1.00 38.04 H HOH H 341 ATOM 6305 H MOTA 6306 HOH H 342 58.530 0.915 19.036 1.00 43.08 37.203 39.025 H 77.156 1.00 48.54 MOTA 6307 0 HOH H 343 49.978 -1.361 0.435 1.00 39.48 Η MOTA 6308 HOH H 344 53.900 37.104 13.703 1.00 47.74 H MOTA 6309 HOH H 345 0 H ATOM 6310 HOH H 346 77.886 49.625 13.575 1.00 57.13 0 0.570 1.00 50.38 H 8.721 HOH H 347 57.053 ATOM 6311 0 63.745 10.854 1.00 41.14 6312 96.803 MOTA 0 HOH H 348 89.009 70.808 11.906 1.00 45.67 H ATOM 6313 0 HOH H 349 8.221 1.00 42.47 H MOTA 6314 HOH H 350 66.363 22.353 25.044 8.541 1.00 41.16 H 52.578 6315 HOH H 351 MOTA 73.640 -3.536 1.00 50.48 H 81.789 ATOM 6316 HOH H 352 1.00 48.24 13.891 H 6317 HOH H 353 67.632 -11.181 MOTA H ~5.652 22.367 1.00 14.47 6318 HOH H 354 41.357 ATOM -5.096 30.876 1.00 23.96 G EDO G 501 37.685 6319 C1 ATOM G EDO G 501 38.224 -4.213 31.883 1.00 23.38 ATOM 6320 01 G -6.046 30.406 1.00 25.29 EDO G 501 38.742 ATOM 6321 C2 G 39.062 -6.931 31.464 1.00 26.30 6322 02 EDO G 501 ATOM G EDO G 502 89.146 26.377 27.000 1.00 41.69 MOTA 6323 Cl G EDO G 502 88.631 26.508 28.343 1.00 51.10 ATOM 6324 01 G 88.436 25.261 26.303 1.00 43.14 6325 C2 EDO G 502 ATOM 24.052 26.967 1.00 41.73 G EDO G 502 88.726 MOTA 6326 02 EDO G 503 85.093 31.920 30.633 1.00 21.00 ATOM 6327 C1 31.203 1.00 18.65 EDO G 503 85.283 30.597 ATOM 6328 Ol 32.561 31.186 1.00 19.69 6329 C2 **EDO G 503** 83.846 ATOM EDO G 503 84.148 33.101 32.454 1.00 20.94 ATOM 6330 02 G 3.907 25.885 1.00 38.01 6331 C1 EDO G 504 34.956 ATOM 2.838 25.869 1.00 36.69 G 33.976 6332 O1 EDO G 504 ATOM 3.344 25.982 1.00 39.84 G 6333 C2 EDO G 504 36.360 MOTA 2.396 24.935 1.00 33.51 36.573 6334 O2 EDO G 504 MOTA END

## Example 4

Binding of altered gluten peptides (peptide analogs) to MHC molecules is assayedwith purified HLA molecules. Binding of labeled peptide to purified HLA DQ2 molecules can be measured as described by Johansen et al. (1996) Int Immmunol (8), 177-82. Briefly, purified DQ2 molecules (50 - 1000 nM) are incubated with the 125-I radiolabeled indicator peptide (MB 65kDa 243-255Y, sequence KPLLIIAEDVEGEY; 20 000 cpm, 1-5 nM) at pH 4.9. After incubation for 24 hours, the peptide bound to DQ2 and the non-bound peptide are separated on Sephadex G25 superfine spun columns. The radioactivity in the bound and non-bound fractions was counted in a gamma-counter, and the fraction of peptide bound to DQ2 (cpm in the bound fraction/total cpm recovered) is calculated. The binding capacities of the peptide binding inhibitors are assayed by testing their ability to inhibit the binding of the labeled indicator peptide. The concentration required to give 50%

inhibition (IC $_{50}$ ) is calculated. Since the level of IC $_{50}$  may vary between separate titration experiments, the IC $_{50}$  values are compared to the IC $_{50}$  of a reference peptide by determining the relative binding capacity (RBC), which is the ratio: IC $_{50}$  of reference peptide / IC $_{50}$  of test compound. HLA-DQ2 molecules can be isolated by antibody affinity chromatography from lysates of HLA-DQ2 homozygous Epstein Barr virus transformed B-lymphoblastoid cell lines (detergent solubilized) or from water soluble, recombinant molecules produced similarly as described in Example 3 above. The recombinant molecules can be made with or without covalently linked peptide and with a biotin recognition sequence at the C-terminal end of the  $\beta$ -subunit that facilitates adsorption of HLA-DQ2 to several streptavidin coated supports, thereby enabling alternative ways for measurement of IC $_{50}$ . A peptide analog with an IC $_{50}$  value of less than 100  $\mu$ M is suitable for further screenings.

Alternatively, binding of altered gluten peptides to HLA-DQ2 can also be assayed using the soluble DQ2 heterodimer produced as described in Example 3 above. The presence of the biotin recognition sequence at the C-terminal end of the  $\beta$ -subunit facilitates adsorption of HLA-DQ2 to several streptavidin coated supports, thereby enabling measurement of IC50 or K<sub>i</sub>.

[93] Candidate peptide analogs are further tested for their ability to inhibit proliferation of T cells specific for gluten peptides. This is done by using HLA-DQ2 restricted T cell clones (TCC) and glutaraldehyde fixed antigen presenting cells (e.g. Epstein Barr virus transformed B-lymphoid transformed cells) expressing HLA-DQ2. The antigen presenting cells are pelleted and resuspended in RPMI containing 0.05% glutaraldehyde for 90 sec, whereafter glycin to a final concentration of 0.2 M is added for 60 sec. The cells are then washed, counted, and resuspended in PBS or PBS buffered with citrate phosphate to a final pH of 4.9. The fixed APC are incubated overnight with various concentrations of peptides. The inhibitory peptides are usually added 30 min prior to the stimulatory peptide. The antigen presenting cells are then washed twice and resuspended in culture medium of RPMI-1640 supplemented with 15% v/v heat inactivated pooled human serum and the T cells are added. The experiments are performed in triplicates of 3-5 X 10<sup>4</sup> TCC with 5 X 10<sup>4</sup> fixed APC and various titrations of inhibitory and stimulatory peptides. Following an incubation period of 48 hours, each culture is pulsed with [3H]-thymidine for an additional 12-18 hours. Cultures are then harvested on fiberglass filters and counted as above. Mean CPM and standard error of the mean are calculated from data determined in triplicate cultures. Peptide analogs that inhibit proliferation to approximately 25% at a concentration of 50 µM or greater are suitable for further screening.

[94] All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

[95] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

## WHAT IS CLAIMED IS:

1. An HLA-binding peptide inhibitor; wherein said inhibitor is an analog of an immunogenic gluten oligopeptide of at least about 8 residues in length, wherein the immunogenic gluten oligopeptide is altered by the replacement of one or more amino acids; and wherein said analog binds tightly to HLA molecules; is proteolytically stable; and does not activate disease-specific T cells.

- 2. The HLA-binding peptide inhibitor of Claim 1, wherein said analog comprises one or more naturally occurring amino acids, non-naturally occurring amino acids, modified amino acids, or amino acid mimetics.
- 3. The HLA-binding peptide inhibitor of Claim 2, wherein said analog is further derivatized to reduce the affinity of the analog for disease-specific T cell receptors.
- 4. The HLA-binding peptide inhibitor of Claim 1, wherein said immunogenic gluten oligopeptides comprises at least one PXP motif.
- 5. The HLA-binding peptide inhibitor of Claim 1, wherein said immunogenic gluten oligopeptides comprises a sequence selected from the group consisting of: PQPELPY; PFPQPELPYP, PQPELPYPQPQLP, PQQSFPEQQPP, VQGQGIIQPEQPAQ, FPEQPQQPYPQQP, FPQQPEQPYPQQP, FSQPEQEFPQPQ; PFPQPQLPY, PQPQLPYPQ, PFPQPELPY; PYPQPELPY and PYPQPQLPY.
- [96] 6. The HLA-binding peptide inhibitor of Claim 1, wherein said inhibitor comprises the sequence PXPQPELPY, where X is Tyr, Trp, Arg, Lys, p-iodo-Phe, 3-iodo-Tyr, p-amino-Phe, 3-amino-Tyr, hydroxylysine, ornithine, Asp or Glu.
  - 7. The HLA-binding peptide inhibitor of Claim 6, wherein said inhibitor is further derivatized to reduce the affinity of the analog for disease-specific T cell receptors.
  - 8. The HLA-binding peptide inhibitor of Claim 6, wherein said inhibitor is further modified to increase binding potency to an MHC molecule.
  - 9. The HLA-binding peptide inhibitor of Claim 1, wherein said inhibitor comprises the sequence PFPQX<sub>1</sub>ELX<sub>2</sub>Y, where  $X_1$  and  $X_2$  are independently selected from 4-hydroxy-Pro, 4-amino-Pro, or 3-hydroxy-Pro, and proline, with the proviso that at least one of  $X_1$  and  $X_2$  is a residue other than proline

10. The HLA-binding peptide inhibitor of Claim 9, wherein said inhibitor is further derivatized to reduce the affinity of the analog for disease-specific T cell receptors.

- 11. The HLA-binding peptide inhibitor of Claim 9, wherein said inhibitor is further modified to increase binding potency to an MHC molecule.
- 12. A method of treating Celiac Sprue and/or dermatitis herpetiformis, the method comprising:

administering to a patient an effective dose of an HLA-binding peptide inhibitor; wherein said HLA-binding peptide inhibitor attenuates gluten toxicity in said patient.

- 13. The method of Claim 12, wherein said HLA-binding peptide inhibitor is administered with a glutenase.
- 14. The method according to Claim 12, wherein said HLA-binding peptide inhibitor is administered orally.
- 15. The method according to Claim 12, wherein said HLA-binding peptide inhibitor is contained in a formulation that comprises an enteric coating.
- 16. A formulation for use in treatment of Celiac Sprue and/or dermatitis herpetiformis, comprising:

an effective dose of an HLA-binding peptide inhibitor and a pharmaceutically acceptable excipient.

- 17. The formulation according to Claim 16, further comprising an enteric coating.
- 18. Use of an HLA-binding peptide inhibitor in the treatment of HLA-DQ2 positive individuals who are either pre-disposed to type I diabetes or have developed symptoms of type I diabetes.
- 19. A computer for producing a three-dimensional representation of a molecule wherein said molecule comprises an HLA-DQ2 molecule bound to an immunogenic gluten oligopeptide, wherein said computer comprises:
- a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises the three-dimensional coordinates of a subset of the atoms in an HLA-DQ2 molecule bound to an immunogenic

gluten oligopeptide;

a working memory for storing instructions for processing said machine-readable data;

- a central-processing unit coupled to said working memory and to said machinereadable data storage medium for processing said machine readable data into said threedimensional representation; and
- a display coupled to said central-processing unit for displaying said three-dimensional representation.
- 20. A computer-assisted method for identifying potential modulators of Celiac Sprue and/or dermatitis herpetiformis, using a programmed computer comprising a processor, a data storage system, an input device, and an output device, comprising the steps of:
- (a) inputting into the programmed computer through said input device data comprising the three-dimensional coordinates of a subset of the atoms in an HLA-DQ2 molecule bound to an immunogenic gluten oligopeptide, thereby generating a criteria data set;
- (b) comparing, using said processor, said criteria data set to a computer database of chemical structures stored in said computer data storage system;
- (c) selecting from said database, using computer methods, chemical structures having a portion that is structurally similar to said criteria data set;
- (d) outputting to said output device the selected chemical structures having a portion similar to said criteria data set.