Problem 1. Section 1.3 #116

 $Convert\ each\ angle\ in\ degrees\ to\ radians.$

$$-\frac{5\pi}{4}$$

Problem 2. Section 1.3 #120

Convert each angle in radians to degrees $\boxed{-90^{\circ}}$

Problem 3. Section 1.3 #124

Evaluate the following functional values $\boxed{-1}$

Problem 4. Section 1.3 #134

Consider triangle ABC, a right triangle with a right angle at C ...

b.
$$\left[\sin\theta = 3/5\right]$$
, $\left[\cos\theta = 4/5\right]$, $\left[\tan\theta = 3/4\right]$, $\left[\cot\theta = 4/3\right]$, $\left[\csc\theta = 5/3\right]$, $\left[\sec\theta = 5/4\right]$

Problem 5. Section 1.3 #136

For the following exercises, P is a point on the unit circle \dots

a.
$$\frac{8}{17}$$

b.
$$\left[\sin\theta = \frac{8}{17}\right]$$
, $\left[\cos\theta = \frac{-15}{17}\right]$, $\left[\tan\theta = \frac{-8}{15}\right]$, $\left[\cot\theta \frac{15}{-8}\right]$, $\left[\csc\theta = \frac{17}{8}\right]$, $\left[\sec\theta = \frac{-17}{15}\right]$

Problem 6. Section 1.3 #140

Simplify each expression by writing it in terms of sins and cosines \dots

Problem 7. Section 1.3 #152

Verify that each equation is an identity $\tan^2 \beta = \frac{\sin^2 \beta}{\cos^2 \beta}$ and $\sin^2 \beta + \cos^2 \beta = (\frac{y}{r})^2 + (\frac{x}{r})^2 = 1$

$$\sin^2 \beta + \tan^2 \beta + \cos^2 \beta = 1 + \tan^2 \beta$$

$$= 1 + \frac{\sin^2 \beta}{\cos^2 \beta}$$

$$= \frac{\cos^2 \beta + \sin^2 \beta}{\cos^2 \beta}$$

$$= \frac{1}{\cos^2 \beta}$$

$$= \sec^2 \beta$$

Problem 8. Section 1.3 #162

Solve the trigonometric equations ... $\theta = \frac{-\pi}{2} + 2n\pi, n \in \mathbb{Z}$

$$\theta = \frac{-\pi}{2} + 2n\pi, \, n \in \mathbb{Z}$$