

Introduction to the Project idea

Introduction to the Project idea

Retrieval of Discharge data from Gauging stations (e.g., from Germany)

Sorting and Analyzing the data in hand and plotting the Hydrograph

To extrapolate return periods beyond the length of the observation period using Gumbel distributed-extrapolation as the prediction model

Extrapolating for flood events such as 50-, 100-, 200-, 500-, and 1000-year floods

Designing a GUI for the prediction model to display the results

Problem Statements

Problem Statements

Implementation of the prediction model (Gumbel distribution)

Reusability of Classes, Functions
Integration of main, and standalone script with GUI

Concise Structure and simplicity of the code

Goal of the Program to be developed

Goal of the Program to be developed

Timeline for developing the Program

Timeline for developing the Program

Week-1 Jan

- Retrieval and analysis of Data
- Basic Program
 structure

Week-3&4 Jan

- Writing scripts for plotting function, GUI, UML Diagrams
- Implementation of Global parameters

Week-2 Feb

- Final Integration of Auxiliary Components
- Compliance of PEP-8 Style
- Optional components –
 "Wiki/ web Docs",
 "Python Package"

Week-2 Jan

- Sorting and Analyzin the data
- Understanding and implementing Gumbel Distribution

Week-1 Feb

- Creation of Custom
 Python Class and Objects
- Structured README Documentation
- Reformatting the Standalone script
- Final version of Presentation

Resource Allocation

Resource Allocation

Aswath

- Structure of GUI
- Structure and PEP-8 Styling
- Customs Class
- README Wiki/ web Docs

Akash

- Functions (Plot, Data Handling)
- Gumbel Distribution
- GUI implementation

Thank you!