Fall	Marks:	20
	THURS.	

CSE(Math-2213)-CT-1

Time: 25 Min

- 1. Form a partial differential equation by eliminating arbitrary function ϕ from 10 $\phi(x+y+z, x^2+y^2-z^2) = 0$. What is the order of this PDE?
- 2. Find the integral surface of $(2xy-1)p+(z-2x^2)q=2(x-yz)$ which passes through the line x = 1, y = 0.

Class Test -Nov.'26, 2018

II/CSE(A), Math-22013 1. (a) Separate the real and imaginary of $f(z) = \sqrt{z}$.

02

- 03
- (b) Find the roots of $z^4 + a^4 = 0$ (c) Find an equation for a circle of radius 3 with centre at (-3,4) in complex plane.
- 03

2. (a) Evaluate $\lim_{z \to \pi i} \frac{d}{dz} \left\{ (z - \pi i)^2 \frac{e^z}{(z^2 + \pi^2)^2} \right\}$

04

- (b) Find the branch point of $w = f(z) = \sqrt{z^2 + 1}$
- (c) If $v = x^2 y^2 + 2y$, then find a function u such that f(z) = u + iv is analytic 05

Department of Math II/CSE(A), Class Test -III, 26th January'19

Math-2213

Time:25 mins

- I.(a) Define complex integration $\int_C f(z)dz$ and apply Green's theorem on $\int_C f(z)dz$ and then find its result after using Cuchy-Riemann equation
 - 05 (2:3) 05

- (b) Evaluate $\int_C \frac{e^{2z}}{(z-4)^3} dz$, where C is the circle (i) |Z|=2 (ii) |Z|=5
- 2. (a) Evaluate $\int_C \frac{zdz}{(9-z^2)((z+i))}$ where C is the circle |Z|=2
 - (b) Evaluate $\int_C \frac{e^z}{(z^2+1)} dz$ where C is the circle |Z|=2

05

1 HIL (110) B3.4V

State and prove Rodrigue's Formula.

- 12
- 2. Show that $\int_0^1 x J_n(\alpha x) J_n(\beta x) dx = 0$ where α and β are the roots of $J_n(x) = 0$.

08