A Bazinga!

No oitavo episodio da segunda temporada do seriado The Big Bang Theory, *The Lizard-Spock Expansion*, Sheldon e Raj discutem qual dos dois é o melhor: o filme *Saturn 3* ou a série *Deep Space 9*. A sugestão de Raj para a resolução do impasse é uma disputa de Pedra-Papel-Tesoura. Contudo, Sheldon argumenta que, se as partes envolvidas se conhecem, entre 75% e 80% das disputas de Pedra-Papel-Tesoura terminam empatadas, e então sugere o Pedra-Papel-Tesoura-Lagarto-Spock.

As regras do jogo proposto são:

- 1. a tesoura corta o papel;
- 2. o papel embrulha a pedra;
- 3. a pedra esmaga o lagarto;
- 4. o lagarto envenena Spock;
- 5. Spock destrói a tesoura;
- 6. a tesoura decapita o lagarto;
- 7. o lagarto come o papel;
- 8. o papel contesta Spock;
- 9. Spock vaporiza a pedra;
- 10. a pedra quebra a tesoura.

Embora a situação não se resolva no episódio (ambos escolhem Spock, resultando em um empate), não é dificil deduzir o que aconteceria se a disputa continuasse. Caso Sheldon vencesse, ele se deleitaria com a vitória, exclamando "Bazinga!"; caso Raj vencesse, ele concluiria que "Raj trapaceou!"; caso o resultado fosse empate, ele exigiria nova partida: "De novo!". Conhecidas as personagens do jogo escolhido por ambos, faça um programa que imprima a provável reação de Sheldon.

Entrada

A entrada consiste em uma série de casos de teste. A primeira linha contém um inteiro positivo T ($T \leq 100$), que representa o número de casos de teste. Cada caso de teste é representado por uma linha da entrada, contendo as escolhas de Sheldon e Raj, respectivamente, separadas por um espaço em branco. As escolha possíveis são as personagens do jogo: pedra, papel, tesoura, lagarto e Spock.

Saída

Para cada caso de teste deverá ser impressa a mensagem "Caso #t: R", onde t é o número do caso de teste (cuja contagem se inicia no número um) e R é uma das três reações possíveis de Sheldon: "Bazinga!", "Raj trapaceou!", ou "De novo!".

Exemplos de entradas	Exemplos	de saídas
3	Caso #1:	Bazinga!
papel pedra	Caso #2:	Raj trapaceou!
lagarto tesoura	Caso #3:	De novo!
Spock Spock		

B Pokémon!

Na primeira geração, as criaturas do jogo *Pokémon* tinham quatro atributos básicos: vitalidade (HP), ataque (AT), defesa (DF) e velocidade (SP), que aumentavam de valor a medida que o pokémon evoluia (ganhava níveis de experiência) através de batalhas e itens especiais.

O valor de cada um destes atributos, para um determinado nível (o qual varia entre 1 e 99), pode ser computado através das expressões: ¹

$$HP = \frac{(IV + B_{HP} + \sqrt{EV/8 + 50}) \times L}{50} + 10$$

e

$$S = \frac{(IV + B_S + \sqrt{EV}/8) \times L}{50} + 5$$

onde B_S é o valor base do atributo (vitalidade, ataque, defesa e velocidade), EV é o valor dos esforços do pokémon (que depende de quantas e quais batalhas ele participou), IV é o valor individual do pokémon no referido atributo (equivalente ao "gene" do pokémon) e L é o nível.

Os atributos EV e IV faz com que dois pokémons de mesmo tipo evoluam de forma diferente. Como o atributo deve ter um valor inteiro, a parte decimal deve ser descarada ao final do cálculo da fração.

Dado um determinado pokémon, os valores base de seus atributos e seu nível, determine seus respectivos atributos.

Entrada

A entrada consiste em uma série de casos de teste. A quantidade de casos de teste T ($T \le 1.000$) é indicada na primeira linha da entrada.

Cada caso de teste consiste em cinco linhas. A primeira linha contém o nome do pokémon P e o seu nível L ($1 \le L \le 99$), separados por um espaço em branco. O nome do pokémon contém apenas caracteres alfanuméricos.

As quatro linhas seguintes contém três inteiros cada uma: B_S ($1 \le B_S \le 255$), IV ($1 \le IV \le 15$) e EV ($1 \le EV \le 262.140$), separados por um espaço em branco, para cada um dos quatro atributos: HP, AT, DF e SP.

Saída

¹Informações obtidas no site http://bulbapedia.bulbagarden.net/wiki/Stats

Para cada caso de teste, a saída deve ser composta de cinco mensagens, uma por linha:

1. Caso #t: P nivel L

2. HP: *HP*_C

3. AT: AT_C

4. DF: DF_C

5. SP: *SP*_C

onde P é o nome do pokémon, L o nível e S_C o atributo calculado para o nível L, conforme as expressões apresentadas, e t é o número do caso de teste, cuja contagem tem início no número um.

Exemplos de entradas	Exemplos	de saídas
4	Caso #1:	Pikachu nivel 81
Pikachu 81	HP: 189	
35 7 22850	AT: 137	
55 8 23140	DF: 101	
30 13 17280	SP: 190	
90 5 24795	Caso #2:	Bulbasaur nivel 50
Bulbasaur 50	HP: 131	
45 9 20000	AT: 91	
49 12 40000	DF: 87	
49 3 60000	SP: 70	
45 8 10000	Caso #3:	Charmander nivel 30
Charmander 30	HP: 80	
39 5 35000	AT: 62	
52 14 60000	DF: 49	
43 7 38000	SP: 86	
65 15 200000	Caso #4:	Squirtle nivel 90
Squirtle 90	HP: 292	
44 10 180000	AT: 200	
48 2 220000	DF: 235	
65 11 175000	SP: 195	
43 8 192000		

C Validador de CPF

O Cadastro de Pessoas Físicas (CPF) é um banco de dados da Secretaria de Receita Federal do Brasil que contém as informações cadastrais dos contribuintes. A cada contribuinte é associado um número único, de 11 dígitos, que permite a identificação de todos os contribuintes registrados nesta base. No cotidiano, a sigla CPF se refere, em geral, a este número.

Este número é grafado separando os 9 primeiros dígitos em grupos de três em três, utilizando o ponto (".") como separador, e os últimos dois dígitos são destacados dos demais por um traço ("-"). Estes últimos dois dígitos são denominados dígitos verificadores, e são deduzidos a partir dos 9 primeiros. O primeiro dígito verificador pode ser obtido da seguinte forma:

- 1. O primeiro dígito é associado ao peso 10, o segundo ao peso 9, e assim sucessivamente até o nono dígito, que terá peso 2;
- 2. Multiplica-se cada dígito por seu peso associado;
- 3. Soma-se todos os resultados destas multiplicações;
- 4. Toma-se o resto do resultado da soma por 11;
- 5. Se este resto for menor do que 2, o primeiro dígito verificador será igual a zero; caso contrário, será igual a 11 menos o resto.

Para obter o segundo dígito o processo é semelhante: a única diferença é que o peso do primeiro dígito é 11, e são considerado agora os 10 dígitos já definidos, de modo que o décimo dígito terá peso 2.

Também serão considerados inválidos CPFs que tenham todos os dígitos idênticos, a despeito do fato de que tais números seriam considerados válidos pela rotina descrita anteriormente.

Dado um CPF, determine se ele é válido ou não.

Entrada

A entrada consiste em inúmeros casos de teste. Cada caso de teste é representado por uma única linha, que contém um CPF com a grafia convencional.

Saída

Para cada caso de teste deverá ser impressa a mensagem "Caso #d: CPF valido" ou a mensagem "Caso #d: CPF invalido", de acordo com o CPF informado, seguida de uma quebra de linha. O número inteiro d corresponde ao número do caso de teste, cuja contagem se inicia em um.

Exemplos de entradas	Exemplos de saídas
376.852.364-00	Caso #1: CPF valido
111.111.111-11	Caso #2: CPF invalido
682.366.204-15	Caso #3: CPF invalido
764.852.016-88	Caso #4: CPF valido
123.456.789-10	Caso #5: CPF invalido

D Palíndromos

Denomina-se palíndromo uma palavra, frase, número ou qualquer sequência de símbolos que possa ser lida tanto da esquerda para a direita quanto da direita para a esquerda. Em geral, não são levados em consideração espaços, pontuações e acentuações.

Como exemplos de palíndromos, temos a palavra "reviver", o número 12321 e também a frase "Socorram-me, subi no ônibus em Marrocos".

Dada uma palavra P, determine se ela é ou não um palíndromo.

Entrada

A entrada consiste em uma série de casos de teste. A primeira linha da entrada contém o número de casos de teste T ($T \le 10.000$). Cada caso de teste é representado por uma única linha, contendo uma palavra P, formada apenas por caracteres alfabéticos.

Saída

Para cada caso de teste, deverá ser impressa a mensagem "Caso #d: P e um palindromo" ou "Caso #d: P nao e um palindromo", de acordo com P, seguida de uma quebra de linha, onde d é o número do caso de teste. A contagem dos casos de teste tem início em 1 (um).

Exemplos de entradas	Exemplos de saídas
5	Caso #1: Mussum nao e um palindromo
Mussum	Caso #2: saia nao e um palindromo
saia	Caso #3: saias e um palindromo
saias	Caso #4: sopapo nao e um palindromo
sopapo	Caso #5: reviver e um palindromo
reviver	is = 2

Este problema foi elaborado para ensino e docência. Quaisquer coincidências com problemas já existentes favor entrar em contato (edsonalves@unb.br) para que as devidas providências sejam tomadas.

Contato: edsonalves@unb.br

E Embaralhamento

Um deck de um baralho é composto de 52 cartas, divididas em quatro naipes: ouros (\diamondsuit) , copas (\heartsuit) , espadas (\clubsuit) e paus (\clubsuit) . Cada naipe tem cartas numeradas de 2 a 10, e quatro cartas especiais: o às (A), o valete (J), a dama (Q) e o rei (K).

Considere um deck inicialmente ordenado: primeiro todos os ouros (2 a 10, valete, dama, rei, ás), depois copas, espadas e paus, sendo que no topo do deck está o 2 de ouros. Um jogador embaralha o deck utilizando montes, da seguinte maneira: ele determina uma quantidade n de montes a serem construídos, e, em seguida, distribui uma carta para cada monte, do primeiro ao último, retirando uma a uma do topo do deck. Finalizados os montes, ele reagrupa os montes da seguinte forma: coloca o primeiro monte, em seguida o segundo sobre o primeiro, o terceiro sobre o monte formado pelo primeiro e segundo, e assim sucessivamente, até ter as 52 cartas num só monte.

Dado o número de montes M a serem formados, determine a carta que ficará no topo, depois de descartadas N cartas do topo do deck embaralhado.

Entrada

A entrada consiste em uma série de casos de teste. Cada caso de teste é representado por uma única linha com os valores inteiros M ($2 \le M \le 52$) e N ($0 \le N \le 51$), separados por um espaço em branco.

Saída

Para cada caso de teste deve ser impresso o nome da carta que estará no topo do monte após os descartes, seguido de uma quebra de linha. O nome deve estar na forma númerica, quando for o caso, ou por extenso, capitalizado, seguido da preposição "de" e do naipe, por extenso e em letras minúsculas.

Exemplos de entradas	Exemplos de saídas
2 0	As de paus
2 1	Dama de paus
4 9	4 de copas
5 8	Valete de ouros

Contato: edsonalves@unb.br

F Yathzee!

Em cada rodada do jogo Yathzee, um jogador lança 5 dados de 6 faces uma, duas ou três vezes. A pontuação obtida na rodada depende dos resultados do último lançamento realizado, de acordo com as possíveis combinações listadas abaixo:

Sequência de n: Ao menos um dado com o número n. Vale o produto de n pelo número de dados onde n apareceu;

Trinca: No mínimo três dados com números iguais. A pontuação obtida é a soma dos números exibidos em todos os dados;

Quadra: No mínimo quatro dados com números iguais. A pontuação obtida é a soma dos números exibidos em todos os dados;

Yathzee: Todos os cinco dados com números iguais. Vale 50 pontos;

Full House: Uma Trinca e um Par (dois dados com mesmo número). Vale 25 pontos;

Sequência Curta: Quatro números em ordem crescente (1-2-3-4, 2-3-4-5 ou 3-4-5-6). Vale 30 pontos;

Sequência Longa: Cinco números em ordem crescente (1-2-3-4-5 ou 2-3-4-5-6). Vale 40 pontos;

Chance: Qualquer combinação. Vale a soma dos números exibidos em todos os dados.

Dado o número de lançamentos realizados pelo jogador e os resultados dos lançamentos dos 5 dados, determine a combinação que resultará na maior pontuação para o jogador.

Entrada

A entrada consiste em T ($T \le 10.000$) casos de testes, onde o valor de T é dado na primeira linha da entrada. Cada caso de teste tem a seguinte formatação: uma linha com quantidade N ($1 \le N \le 3$) de lançamentos realizados e os resultados dos N lançamentos, um por linha, sendo que cada resultado consiste em 5 números inteiros, separados por espaços, com valores entre 1 e 6.

Saída

Para cada caso de teste deverá ser impressa a seguinte saída: a mensagem "Rodada #d: P pontos", onde d é o número do caso de teste (cuja contagem tem início no número um) e P é a maior pontuação possível para o jogador naquela rodada. Em seguida, devem ser impressas, uma por linha, as combinações que geram P pontos na rodada em questão, precedidas por dois hífens e um espaço, sem acentos, na ordem em que foram descritas no problema.

Exemplos de entradas	Exemplos de saídas
4	Rodada #1: 50 pontos
1	Yathzee
1 1 1 1 1	Rodada #2: 9 pontos
1	Trinca
1 1 1 1 5	Quadra
2	Chance
1 1 1 1 5	Rodada #3: 40 pontos
5 1 2 3 4	Sequencia Longa
3	Rodada #4: 28 pontos
1 1 1 2 4	Trinca
1 4 2 5 5	Chance
6 6 6 5 5	