1.2 Цикли

- 1) Скласти функцію обчислення за даним дійсним х та натуральним п $y=\sin{(\sin{(x)}...)}$ (n pasib).
- 2) Скласти функції для обчислення значень многочленів і виконати їх при заданих значеннях аргументів:

a)
$$y=x^n+x^{n-1}+...+x^2+x+1$$
 $n=3, x=2;$

6)
$$y=x^{2^n}+x^{2^{n-1}}+...+x^4+x^2+1$$
 $n=4, x=1;$

B)
$$y=x^{3^n}+x^{3^{n-1}}+...+x^9+x^3+1$$
 $n=3,x=1;$

$$\Gamma$$
) $y=x^{2^n}*y^n+x^{2^{n-1}}*y^{n-1}+...+x^2*y+1$, n =4,x =1,y =2;

$$(x) y = x^{1^2} + x^{2^2} + ... + x^{n^2}, \qquad n = 5, x = -1.$$

3) Вивести на екран такий рядок:

$$n! = 1*2*3*4*5*...*n,$$

де n – введене з клавіатури натуральне число.

- 4) **Дано натуральне число** $_{\rm fl.}$ Написати програми обчислення значень виразів при заданому значенні $_{\chi}$:
- a) $1+(x-1)+(x-1)^2+...+(x-1)^n$;

6)
$$1 + \frac{1}{x^2 + 1} + \frac{1}{(x^2 + 1)^2} + \dots + \frac{1}{(x^2 + 1)^n}$$
;

B)
$$x+(2x)^2+...+((n-1)x)^{n-1}+(nx)^n$$
;

- Γ) 1+sin x+sin² x+...+sinⁿ x.
- 5) Дано натуральне число n. Скласти програму обчислення факторіала y=n!, використовуючи
- а) цикл по діапазону із зростанням;
- б) цикл по діапазону зі спаданням.

6) Скласти функцію обчислення подвійного факторіала натурального числа n y = n!!.

Вказівка. За означенням

$$n!! = \begin{pmatrix} 1 \cdot 3 \cdot 5 \cdot ... \cdot n, & \text{як що } n - \text{непарне,} \\ 2 \cdot 4 \cdot 6 \cdot ... \cdot n, & \text{як що } n - & \text{парне.} \end{pmatrix}$$

7) Скласти функції обчислення факторіалів:

- a) y=(2n)!!;
- 6) y=(2n+1)!!; B) y=n!n!!(n+1)!!.
- 8) Скласти програму обчислення

a)
$$\sqrt{2+\sqrt{2+...+\sqrt{2}}}$$
 (*n* коренів),

$$\sqrt{3+\sqrt{6+...+\sqrt{3(n-1)}+\sqrt{3n}}}$$

9) Скласти програми обчислення значень многочленів

a)
$$y=nx^{n-1}+(n-1)x^{n-2}+...+2x+1$$
, $(x<1,n\geq 0)$;

o)
$$y = \sum_{k=0}^{n} k x^{k} (1-x)^{n-k},$$
 $(0 < x < 1, n \ge 0);$

в)
$$y=1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots+\frac{x^n}{n!}$$
, (дійсне $x<1,n\geq 0$).

- 10) Для довільного цілого числа $m \ge 1$ знайти найбільше ціле k, при якому $4^k \leq m$.
- 11) Для заданого натурального числа $_{\eta}$ одержати найменше число вигляду 2^r , яке перевищує n.
- 12) Знайдіть машинний нуль для вашого компілятора, тобто таке дійсне число a > 0, що 1 + a = 1 буде істиною.

Bказівка: в циклі ділить значення $_{\emptyset}$ на 2 доки не виконується вказана вище рівність.

- 13) Ввести послідовність наступним чином: користувачу виводиться напис "a[**]=", де замість ** стоїть номер числа, що вводиться. Тобто там виводяться написи "a[0]=", і після знаку рівності користувач вводить число, "a[1]=", і після знаку рівності користувач вводить число і так далі доки користувач не введе число 0. Після цього потрібно вивести суму введених чисел (масив чисел заводити необов'язково).
- 14) Введіть послідовність цілих ненульових чисел (тобто введення закінчується коли ми вводимо 0) та виведіть середнє арифметичне введених чисел та середнє геометричне.
- 15) Введіть послідовність цілих ненульових чисел (тобто введення закінчується коли ми вводимо 0). Визначити кількість змін знаку в цій послідовності. Наприклад, у послідовності 1, –34, 8,14, –5, 0 знак змінюється три рази.
- 16) Введіть послідовність натуральних ненульових чисел (тобто введення закінчується коли ми вводимо 0). Визначити порядковий номер найменшого з них.
- 17) Введіть послідовність дійсних ненульових чисел (тобто введення закінчується коли ми вводимо 0). Визначити величину найбільшого серед від'ємних членів цієї послідовності. Якщо від'ємних чисел немає вивести найменший серед додатних членів.
- 18) Банк пропонує річну ставку по депозиту А та 15% по вкладу додаються до основної суми депозиту кожен рік. Ви кладете в цей банк D гривень. Скільки років потрібно чекати, щоб сума вкладу зросла до очікуваної суми Р?
- 19) Скласти програми для обчислення елементів послідовностей. Операцію піднесення до степені та функцію обчислення факторіалу не використовувати.

a)
$$x_k = \frac{x^k}{k} \ (k \ge 1);$$
 $\exists x_k = \frac{x^{2k}}{(2k)!} \ (k \ge 0);$

6)
$$x_k = \frac{(-1)^k x^k}{k} \ (k \ge 1);$$
 e) $x_k = \frac{x^{2k+1}}{(2k+1)!} \ (k \ge 0);$

B)
$$x_k = \frac{x^k}{k!} (k \ge 0);$$
 $x_k = \frac{(-1)^k x^{2k}}{(2k)!} (k \ge 0);$

r)
$$x_k = \frac{(-1)^k x^k}{k!} (k \ge 0);$$
 3) $x_k = \frac{(-1)^k x^{2k+1}}{(2k+1)!} (k \ge 0);$

20) Задане натуральне число n. Скласти програми обчислення добутків

a)
$$p = \left(1 + \frac{1}{1^2}\right)\left(1 + \frac{1}{2^2}\right) \dots \left(1 + \frac{1}{n^2}\right), 2;$$

6)
$$p = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(1 + \frac{1}{n^2}\right), 2.$$

- 21) Скласти програму друку таблиці значень функції $y = \sin x$ на відрізку [0,1] з кроком h = 0.1.
- 22) Скласти програму визначення кількості тризначних натуральних чисел, сума цифр яких дорівнює $n \ (n>1)$. Операцію ділення не використовувати.
- 23) Дано n цілих чисел. Скласти програму, що визначає, скільки з них більші за своїх "сусідів", тобто попереднього та наступного чисел.
- 24) Задані натуральне число n, дійсні числа $y_1, \dots y_n$. Скласти програму визначення

a)
$$\max ((z_1), ..., (z_n))$$
, $\exists z_i = \begin{pmatrix} y_i, & \text{при } (y_i) \leq 2, \\ 0.5, & \text{у інших випадках} \end{pmatrix};$

б) min
$$((z_1),...,(z_n))$$
, де $z_i = \begin{pmatrix} y_i, & \text{при } (y_i) \geq 1, \\ 2, & y \text{ інших випадках} \end{pmatrix}$;

в)
$$z_1 + z_2 + \ldots + z_n$$
, де $z_i = \begin{pmatrix} y_i, & \text{при } 0 < y_i < 10, \\ 1, & y інших випадках \end{pmatrix}$

- 25) Дано натуральне число п. Викинути із запису числа п цифри 0 і 5, залишивши порядок інших цифр. Наприклад, з числа 59015509 повинно вийти 919.
- 26) Знайти період десяткового дробу для відношення n/m для заданих натуральних чисел n та m.

- 27*) Скоротити дріб n/m для заданих цілого числа n та натурального числа m.
- 28*) Ввести натуральні числа а і b та натуральне число п. Чи можна представити число п у вигляді n= k*a + m*b, де k та m натуральні числа? Якщо можна то знайдіть такі числа k та m, що мають найменшу суму модулів.
- 29) Представити дане натуральне число як суму двох квадратів натуральних чисел. Якщо це неможливо представити як суму трьох квадратів. Якщо і це неможливо, представити у вигляді суми чотирьох квадратів натуральних чисел.
- 30) Знайти всі цілі корені кубічного рівняння . Вказівка: цілі корені повинні бути дільниками (від'ємними або додатними дільниками вільного члену d).
- 31) Напишіть функцію, яка розраховує для даного натурального числа n значення функції Ойлера (кількість чисел від 1 до n, взаємно простих з n).
- 32*) Ввести натуральне число $_{d>1}$ та натуральне число m. Знайдіть мінімальну кількість натуральних чисел вигляду $_{\chi^d}$ (d-ступенів натуральних чисел) сума яких дорівнює m.

1.2.1 Рекурентні співвідношення

- 1) Числами Фібоначчі називається числова послідовність (F_n) , задана рекурентним співвідношенням другого порядку $F_0 = 0$, $F_1 = 1$, $F_k = F_{k-1} + F_k$, $k = 2,3,\ldots$. Скласти функцію для обчислення F_n за номером члену.
- 1) Маємо дійсне число a. Скласти програми обчислення:
 - а) серед чисел $1,1+\frac{1}{2},1+\frac{1}{2}+\frac{1}{3},...$ першого, більшого за ;
 - б) такого найменшого , що $1 + \frac{1}{2} + ... + \frac{1}{n} > a$.

- 2) Введіть натуральне число п. Далі утворить рекурентну послідовність a_i за наступним правилом: $a_0 = n$. Якщо a_k парне, то , якщо непарне, то $a_{k+1} = 4a_k + 1$. Доведіть що для n<1000 ця послідовність буду містити член рівний одиниці. Знайдіть серед цих п число, якому потрібно максимальна кількість кроків для досягнення одиниці.
- з) Скласти програми для обчислення добутків:

a)
$$P_n = \prod_{i=1}^n \left(2 + \frac{1}{i!}\right);$$
 6) $P_n = \prod_{i=1}^n \left(\frac{i+1}{i+2}\right);$

B)
$$P_n = \frac{\prod_{i=1}^n 1}{(i+1)!}$$
; $P_n = \frac{\prod_{i=1}^n 1}{i^i+1}$.

- 4) $\underline{B\kappa a s i в \kappa a}$. Добуток P_n обчислити за допомогою рекурентного співвідношення $P_0=1$, $P_k=P_{k-1}*a_k$, k=1,2,...,n, k=1,2,...,n, де a_k k- тий множник.
- 5) Скласти програми обчислення:
 - а) номера найбільшого числа Фібоначчі, яке не перевищує задане число a;
 - б) номера найменшого числа Фібоначчі, яке більше заданого числа а;
 - в) суми всіх чисел Фібоначчі, які не перевищують 1000.
- 6) Вводиться послідовність натуральних чисел (починаючи з першого члена) доки не введемо 0. Обчислити суму тих членів послідовності, порядкові номери яких числа Фібоначчі.
- 7) Скласти програми для обчислення найменшого додатного члена числових послідовностей, які задаються рекурентними співвідношеннями, та його номера

8) a)
$$x_n = x_{n-1} + x_{n-2} + 100$$
, $x_1 = x_2 = -99$, $n = 3,4$,...;
6) $x_n = x_{n-1} + x_{n-2} + x_{n-3} + 200$, $x_1 = x_2 = x_3 - 99$, $n = 4,5$,...;

B)
$$x_n = x_{n-1} + x_{n-3} + 100$$
, $x_1 = x_2 = x_3 = -99$, $n = 4,5,...$

9) Скласти програми для обчислення ланцюгових дробів

a)
$$b_n = b + \frac{1}{b + \frac{1}{b + \dots + \frac{1}{b}}};$$
 (5) $\lambda_n = 2 + \frac{1}{6 + \frac{1}{10 + \dots + \frac{1}{4n + 2}}};$

$$x_{2n} = 1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \dots + \frac{1}{2}}}}};$$
B)

Вказівка. Використати рекурентні співвідношення

a)
$$b_0 = b$$
, $b_k = b + \frac{1}{b_{k-1}}$, $k = 1, 2, ..., n$;

B)
$$b_0 = 4n + 2$$
, $b_k = 4(n-k) + 2 + \frac{1}{b_{k-1}}$, $k = 1, 2, ..., n$.

Скласти програми обчислення довільного елемента послідовностей,
 заданих рекурентними співвідношеннями

11) a)
$$v_0=1, v_1=0.3, v_i=(i+2)v_{i-2}, i=2,3,...$$

6)
$$v_0 = v_1 = v_2 = 1$$
, $v_i = (i+4)(v_{i-1}-1) + (i+5)v_{i-3}$, $i=3,4,...$

B)
$$v_0 = v_1 = 0$$
, $v_2 = \frac{3}{2}$, $v_i = \frac{i-2}{(i-3)^2 + 1} v_{i-1} - v_{i-2} v_{i-3} + 1$, $i = 2,3,...$

12) Скласти програму обчислення довільного елемента послідовності v_n , визначеної системою співвідношень

$$\begin{aligned} \mathbf{v}_0 = & \mathbf{v}_1 = 1 \,, \quad \mathbf{v}_i = \frac{u_{i-1} - v_{i-1}}{\left(u_{i-2} + v_{i-1}\right) + 2} \,, \quad i = 2, 3 \,, \ldots; \end{aligned}$$

 Де $u_0 = u_1 = 0 \,, \quad \mathbf{u}_i = \frac{u_{i-1} - u_{i-2} \, v_{i-1} - v_{i-2}}{1 + u_{i-1}^2 + v_{i-1}^2} \,, \quad i = 2, 3 \,, \ldots; \end{aligned}$

13) Скласти програми для обчислення сум:

а)
$$S_n = \sum_{k=1}^n 2^k a_k$$
, де $a_1 = 0$, $a_2 = 1$, $a_k = a_{k-1} + k * a_{k-2}$, $k = 3, 4, ...$;

б)
$$S_n = \frac{\sum_{k=1}^n 3^k}{a_k}$$
, де $a_1 = a_2 = 1$, $a_k = \frac{a_{k-1}}{k} + a_{k-2}$, $k = 3, 4, \dots$;

B)
$$S_n = \frac{\sum_{k=1}^n k!}{a_k}$$
, де $a_1 = a_2 = 1$, $a_k = a_{k-1} + \frac{a_{k-1}}{2^k}$, $k = 3, 4, \dots$;

$$S_n = \sum_{k=1}^n k! a_k$$
, де $a_1 = 0, a_2 = 1$, $a_k = a_{k-1} + \frac{a_{k-2}}{(k-1)!}$, $k = 3,4,...$;

$$S_n = \frac{\sum_{k=1}^n a_k}{2^k}$$
, де $a_1 = a_2 = a_3 = 1$, $a_k = a_{k-1} + a_{k-3}$, $k = 4,5,...$;

д)
$$S_n = \sum_{k=1}^n \frac{2^k}{k!} a_k$$
, де $a_0 = 1$, $a_k = k a_{k-1} + \frac{1}{k}$, $k = 1, 2,$

14) Скласти програми для обчислення сум:

a)
$$S_n = \frac{\sum_{k=1}^n 2^k}{a_k + b_k}$$
,

де
$$\begin{pmatrix} a_1 = 0, a_2 = 1, \\ a_k = \frac{a_{k-1}}{k} + a_{k-2}b_k, \end{pmatrix}$$
 $\begin{pmatrix} b_1 = 0, b_2 = 1, \\ b_k = b_{k-1} + a_{k-1}, \end{pmatrix}$ $h = \mathbb{R}, \mathbf{1}, \mathbb{R}, \mathbf{1}$

$$S_{n} = \frac{\sum_{k=1}^{n} a_{k} b_{k}}{(k+1)!},$$

де
$$\begin{pmatrix} a_1 = u, \\ a_k = 2b_{k-1} + a_{k-1}, \end{pmatrix}$$
 $\begin{pmatrix} b_1 = v, \\ b_k = 2a_{k-1}^2 + b_{k-1}, \end{pmatrix}$ $k = 2,3,...;$

u, v — задані дійсні числа;

B)
$$S_n = \frac{\sum_{k=1}^{n} 2^k}{(1 + a_k + b_k) k!^k}$$

де
$$\begin{pmatrix} a_1 = 1, \\ a_k = 3b_{k-1} + 2a_{k-1}, \end{pmatrix}$$
 $\begin{pmatrix} b_1 = 1, \\ b_k = 2a_{k-1} + b_{k-1}, \end{pmatrix}$ $k = 2,3,...;$

$$\Gamma) S_{n} = \sum_{k=1}^{n} \left(\frac{a_{k}}{b_{k}}\right)^{k},$$

$$\Pi = \begin{pmatrix} a_{0} = 1, a_{1} = 2, \\ a_{k} = b_{k-2} + \frac{b_{k}}{2}, \end{pmatrix} \qquad \begin{pmatrix} a_{0} = 5, b_{1} = 5, \\ b_{k} = b_{k-2}^{2} - a_{k-1}, \end{pmatrix} \qquad k = 2,3,...;$$

$$\Gamma = \sum_{k=1}^{n} a_{k}$$

$$S_{n} = \frac{\sum_{k=1}^{n} a_{k}}{1 + b_{k}},$$

де
$$\begin{pmatrix} a_0 = 1, \\ a_k = b_{k-1} a_{k-1}, \end{pmatrix}$$
 $\begin{pmatrix} b_0 = 1, \\ b_k = b_{k-1} + a_{k-1}, \end{pmatrix}$ $k = 1, 2, \dots$

15) Скласти програми для обчислення добутків

$$P_n = \prod_{k=1}^n a_k b_k,$$

де
$$\begin{pmatrix} b_1 = 1, \\ b_k = 2b_{k-1} + 5a_{k-1}^2, \end{pmatrix}$$
 $k = 2,3,...$

- 16) Реалізувати функцію яка з'ясовує, чи входить задана цифра до запису заданого натурального числа.
- 17) Реалізувати функцію "обернення" (запису в оберненому порядку цифр) заданого натурального числа.

Вказівка. Для побудови числа використати рекурентне співвідношення $y_0=0$, $y_i=y_{i-1}*10+a_i$, де a_i - наступна цифра числа n при розгляді цифр справа наліво.

- 18) Скласти програму, яка визначає потрібний спосіб розміну будь-якої суми грошей до 99 коп. за допомогою монет вартістю 1, 2, 5, 10, 25, 50 коп.
 - б) Розв'яжить цю задачу для будь-якого натурального числа m (1<m<10000) копійок так щоб кількість монет при цьому була найменша.

19) Скласти програми наближеного обчислення суми всіх доданків, абсолютна величина яких не менше $\varepsilon > 0$:

a)
$$y=\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-...;$$

6)
$$y = \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots;$$

B)
$$y=s hx=x+\frac{x^3}{3!}+\frac{x^5}{5!}+...;$$

$$y = chx = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots;$$

$$y = e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots;$$

e)
$$y = \ln(1+x) = x - \frac{x^2}{2!} + \frac{x^3}{3!} - \dots, (|x| < 1);$$

$$y = \frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots, (x < 1);$$

3)
$$y = \ln \frac{1+x}{1-x} = 2 * \left(\frac{x}{1} + \frac{x^3}{3} + \frac{x^5}{5} + \dots \right), \quad ((x) < 1);$$

i)
$$y = \frac{1}{(1+x)^2} = 1 - 2 * x + 3 * x^2 - ..., ((x) < 1);$$

K)
$$y = \frac{1}{(1+x)^3} = 1 - \frac{2*3}{2}x + \frac{3*4}{2}x^2 - \frac{4*5}{2}x^3 + \dots$$
, $((x)<1)$;

л)
$$y = \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots, ((x)<1);$$

M)
$$y = \sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{2*4}x^2 + \frac{1*3}{2*4*6}x^3 - \dots, ((x)<1);$$

H)
$$y = \frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{1*3}{2*4}x^2 - \frac{1*3*5}{2*4*6}x^3 - \dots$$
, ((x)<1);

o)
$$y = \arcsin x = x + \frac{1}{2} \frac{x^3}{3!} + \frac{1*3}{2*4} \frac{x^5}{5!} + \dots,$$
 ((x)1).

<u>Вказівка</u>. Суму *у* обчислювати за допомогою рекурентного співвідношення $S_0 = 0$, $S_k = S_{k-1} + a_k$, k = 1, 2, ..., де $a_k - k$ -тий доданок, для обчислення якого також складається рекурентне

співвідношення. В якості умови повторення циклу розглядається умова $(a_k) \!\! \geq \! \varepsilon \,.$

20) Маємо дійсні числа $x, \varepsilon \ (x \neq 0, \varepsilon > 0)$. Обчислити з точністю ε нескінченну суму і вказати кількість врахованих доданків.

B)
$$\frac{\sum_{k=0}^{\infty} x^{2k}}{2^k k!}$$
; Γ) $\frac{\sum_{k=0}^{\infty} (-1)^k x^{2k+1}}{k! (2k+1)!}$.

Рекурсія

- 21) Маємо ціле $_{n>2}$. Скласти програму для обчислення всіх простих чисел з діапазону $_{[1,n]}$.
- 22) Скласти програму друку всіх простих дільників заданого натурального числа.
- 23) Скласти програму, яка визначає чи є задане натуральне число п досконалим, тобто рівним сумі всіх своїх (додатних) дільників, крім самого цього числа (наприклад, число 6 - досконале: 6=1+2+3).

Вказівка. Шукаємо суму S всіх дільників заданого числа n. Якщо S=n, то число, яке перевіряємо, є досконалим. Перша ідея полягає в знаходженні дільників числа n в діапазоні $[1, n \ div \ 2]$. У відповідності з другою ідеєю пошук ведеться тільки між 1 та \sqrt{n} і якщо дільник знайдений, то до суми S додаються як дільник, так і частка.

- 24) Дано натуральне число k . Скласти програму одержання κ -тої цифри послідовності
 - а) 110100100010000 ..., в якій виписані підряд степені 10;
 - б) 123456789101112 ..., в якій виписані підряд всі натуральні числа;
 - в) 149162536 ..., в якій виписані підряд квадрати всіх натуральних чисел;
 - г) 01123581321 ..., в якій виписані підряд всі числа Фібоначчі.

- 25) Скласти програму знаходження кореня рівняння t g x = x на відрізку [0,001;1,5] із заданою точністю $_{\xi}$, використовуючи метод ділення відрізку навпіл.
- 26) Знайти корінь рівняння $x^3+4x^2+x-6=0$, який міститься на відрізку [0,2], з заданою точністю

<u>Вказівка.</u> Одним з методів розв'язування рівняння є метод хорд, який полягає в обчисленні елементів послідовності

$$u_0 = a$$
,

$$u_n = u_{n-1} - \frac{y(u_n - 1)}{y(b) - y(u_{n-1})} (b - u_{n-1})$$

до виконання умови $(u_n\!-\!u_{n-1})\!<\!\varepsilon$. В умовах нашої задачі $a\!=\!0$, $b\!=\!2$, $y(x)\!=\!x^3\!+\!4\,x^2\!+\!x\!-\!6$.