例 在钢线碳含量对于电阻的效应的研究中,得到如下表所示一批数据:

含碳量x%	0.1	0.3	0.40	0.55	0.70	0.80	0.95
电阻 $y(\Omega)$	15	18	19	21	22.6	23.8	26

(1)假设随机误差 ε 服从 $N(0,\sigma^2)$ 分布,试求 y 关于 x 的经验回归方程; (2)设 $\alpha=0.05$,试问 y 关于 x 的线性回归方程效果是否显著? (3) 在 x=0.6 时,求出 y 的预测值及置信度为 95%的预测区间. 三、**解**: (1)由数据表得

序号	X_i	\mathcal{Y}_i	x_i^2	y_i^2	$x_i y_i$
1	0.1	15	0.01	225	1.5
2	0.3	18	0.09	324	5.4
3	0.4	19	0.16	361	7.6
4	055	21	0.3025	441	11.55
5	0.70	22.6	0.49	510.76	15.82
6	0.80	23.8	0.64	566.44	19.04
7	0.95	26	0.9025	676	24.7
Σ	3.8	145.4	2.595	3104.2	85.61

$$S_{xx} = \sum_{i=1}^{7} (x_i - \overline{x})^2 = \sum_{i=1}^{7} x_i^2 - 7(\overline{x})^2 = 2.595 - 7 \times 0.543^2 = 0.5321$$

$$S_{xy} = \sum_{i=1}^{7} x_i y_i - 7\overline{x} \times \overline{y} = 85.61 - 7 \times 0.543 \times 20.77 = 6.6786$$

$$\hat{b} = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^{7} x_i y_i - 7\overline{x} \times \overline{y}}{\sum_{i=1}^{7} x_i^2 - 7(\overline{x})^2} = \frac{85.61 - 7 \times 0.543 \times 20.77}{2.595 - 7 \times 0.543^2} = 12.55.$$

 $\hat{a} = \overline{y} - \hat{b}\overline{x} = 20.77 - 12.55 \times 0.543 = 13.96$. 故所求线性回归方程为 $\hat{y} = 13.96 + 12.55x$.

(2)假设
$$H_0: b=0; H_1: b \neq 0$$
. 当 H_0 成立时, $T=\frac{\hat{b}\sqrt{S_{xx}}}{\sqrt{Q_E/n-2}}=\frac{S_{xy}/\sqrt{S_{xx}}}{\sqrt{Q_E/n-2}}\sim t(5)$,

因
$$S_{yy} = \sum_{i=1}^{7} (y_i - \overline{y})^2 = \sum_{i=1}^{7} y_i^2 - 7(\overline{y})^2 = 3104.04 - 7 \times 20.77^2 = 83.8743$$
,故

$$Q_E = S_{yy} - \hat{b}S_{xy} = 83.8743 - 12.5514 \times 6.6786 = 0.0473,$$

$$\hat{\sigma}^2 = \frac{Q_E}{n-2} = \frac{0.0473}{5} = 0.0095,$$

从而
$$T = \frac{S_{xy} / \sqrt{S_{xx}}}{\sqrt{Q_E / n - 2}} = \frac{S_{xy} / \sqrt{S_{xx}}}{\sqrt{\hat{\sigma}^2}} = \frac{6.6786}{\sqrt{0.0095 \times 0.5321}} = 92.76 > t_{0.025}(5) = 2.5706,$$

所以y关于x的线性回归方程效果非常显著.

(3)当x = 0.6时,y的预测值为 $\hat{y} = 13.96 + 12.55 \times 0.6 = 21.4886$,

$$\exists T = \frac{y - \hat{y}}{\sqrt{Q_E / n - 2} \sqrt{\left(1 + \frac{1}{n} + \frac{(x - \overline{x})^2}{S_{xx}}\right)}} = \frac{y - \hat{y}}{\sqrt{\hat{\sigma}^2 \left(1 + \frac{1}{7} + \frac{(x - \overline{x})^2}{S_{xx}}\right)}} \sim t(5)$$

当给定置信度 $1-\alpha=0.95$ 时,令 $P\{|T|\leq t_{0.025}(5)\}=1-\alpha=0.95$

$$\exists t_{\frac{\alpha}{2}}(n-2)\sqrt{\hat{\sigma}^2(1+\frac{1}{n}+\frac{(x-\overline{x})^2}{S_{xx}})} = t_{0.025}(5)\sqrt{0.0095(1+\frac{1}{7}+\frac{(0.6-0.543)^2}{0.5321})} = 0.2686 ,$$

从而 x = 0.6 时, 置信度为 95%的 y 的预测区间为:

$$\left[\hat{y} - t_{0.025}(5) \sqrt{\hat{\sigma}^2 (1 + \frac{1}{7} + \frac{(x - \overline{x})^2}{S_{xx}})} , \hat{y} + t_{0.025}(5) \sqrt{\hat{\sigma}^2 (1 + \frac{1}{7} + \frac{(x - \overline{x})^2}{S_{xx}})} \right]$$

$$= [21.218, 21.756].$$