

Multivariate Analysis Final Group Project

BIA 652-A (Spring 2017)

Yelp Dataset Analysis

Guided by Prof. Dr. David Belanger

Team Members
Pradeep Basavaraju
Malhar Inamdar
Samuel Mathew

Table of Contents

ΑŁ	stract		. 2
1.	Intro	oduction	. 2
2.	Und	erstanding the Dataset	. 3
	2.1.	Data Preparation	. 5
	2.2.	Data Quality Check and Cleaning	. 6
	2.3.	Missing Values:	. 6
	2.4.	Outliers:	. 6
	2.5.	Transformation:	. 7
3.	Clas	ssification	. 8
	3.1	Logistic Regression	. 8
	3.2	Random Forest	. 8
4	Dim	ension Reduction	. 9
	4.1	Principal Component Analysis	. 9
5	Res	ults and Examples	10
	5.1	Logistic Regression	10
	5.2	Principal Component Analysis and Logistic regression	10
	5.3	Random Forest Classifier	11
6	Con	clusion	12
Αp	pendi	x:	13
	Appen	dix 1: Data quality check and cleaning	13
	Appen	dix 2: Logistic Regression	14
	Appen	dix 3: Principal Component Analysis	16
	Appen	dix 4: Random Forest	18
Re	eferen	ces	19

Abstract

Yelp provides academic students access to their data to use it in an innovative way and break ground in research. In this paper, we target on the business reviews and star rating for restaurants only. In this project, we are trying to identify the key attributes or features that the consumer is looking for their best dining experience. We are using three different algorithms such as logistic regression, random forest and principal component analysis to create our models. After analyzed the performance of each models, the best model for predicting the ratings from reviews and star rating is the random forest algorithm, which exhibited an accuracy of 82%, which is better than the other algorithms that we used in this project.

1. Introduction

Yelp is one of the largest online searching and reviewing systems for kinds of businesses, including restaurants, shopping, home services etc. Yelp has over 150 million monthly unique visitors and more than 121 million reviews (*based on 2014 data*). Yelp has become one of the key decision making tool for consumers to choose or select better restaurants or a service.

We followed a simple life cycle for the data-mining project (refer figure 1).

Figure 1: Data Mining Life Cycle

Yelp is one of the best examples of a crowd-sourced review and rating system for the local businesses. The yelp dataset that we have selected is from the "Round 9 Yelp Dataset Challenge".

2. Understanding the Dataset

Yelp dataset contains over 4.1M reviews and 947 K tips by 1M users for 144K businesses 1.1M business attributes, e.g., hours, parking availability, ambience, Aggregated check-ins over time for each of the 125K businesses, 200,000 pictures from the included businesses and many more attributes. The dataset includes businesses in four different countries: Edinburgh, U.K.; Karlsruhe, Germany; Montreal and Waterloo, Canada; Pittsburgh, Charlotte, Urbana-Champaign, Phoenix, Las Vegas, Madison, U.S., making it a very versatile dataset. For the purpose of this project, we decided to filter only restaurants that are in United States and we eliminated the rest of the data. By doing so, we were able to reduce the size of the dataset dramatically lower and we were able to easily read the dataset in the tools that we were using to create our models.

Yelp_Business_Dataset attributes:

business_id	Encrypted business id
city	City
state	State
postal_code	Postal code or Zip code
latitude	latitude
longitude	longitude
stars	star rating, rounded to half-stars
review_count	number of reviews
is_open	{closed, open}
BusinessAcceptsCreditCards	{True, False}
RestaurantsReservations	{True, False}
OutdoorSeating	{True, False}
GoodForKids	{True, False}
NoiseLevel	{quiet, loud, average, very_loud}
RestaurantsTableService	{True, False}
RestaurantsPriceRange2	{Inexpensive, Moderate, Pricey, Ultra High- End}
RestaurantsDelivery	{True, False}
BusinessParking	{None, Garage, Street, Validated, Lot, Valet}
Alcohol	{none, full_bar, beer_and_wine}
Ambience	{Normal, Romantic, Intimate, Classy, Hipster, Touristy, Trendy, Upscale, Casual}

The dataset was provided in a JSON format and the dataset look like the following.

```
"business id": "encrypted business id",
    "name": "business name",
    "neighborhood": "hood name",
    "address": "full address",
    "city":"city",
    "state": "state -- if applicable --",
    "postal code": "postal code",
    "latitude": latitude,
    "longitude":longitude,
    "stars":star rating, rounded to half-stars,
    "review count":number of reviews,
    "is open":0/1 (closed/open),
    "attributes": ["an array of strings: each array element is an
attribute"],
    "categories": ["an array of strings of business categories"],
    "hours":["an array of strings of business hours"],
    "type": "business"
}
```

The json file provided by Yelp was nested and hierarchical structure with varied length, which weren' [t read to the data frames in R. For e.g. if you take a look at categories field, you will notice that the category will have another nested value like {"Fast Food", "Restaurants", "Burgers"}. We then tried to using a python code to convert the JSON into a CSV file but yet again nested structure and varied length led our conversion failure.

```
"business_id": "PK6aSizckHFWk8i0oxt5DA",
"full_address": "400 Waterfront Dr E\nHomestead\nHomestead, PA 15120",
"hours": {},
"open": true,
"categories": [
  "Burgers",
  "Fast Food",
  "Restaurants"
"city": "Homestead",
"review_count": 5,
"name": "McDonald's",
"neighborhoods": [
 "Homestead"
],
"longitude": -79.910032,
"state": "PA",
"stars": 2,
```

2.1. Data Preparation

Yelp dataset has one of the most complex nested data structure. It was very difficult to even open these dataset files in either SAS or R Studio easily. We created R script to convert the JSON data into sas7bdat file. Using R studio, we were able to prune the dataset before creating the SAS file. To prune yelp dataset, which contains over 90 categories, we performed the following steps.

 We removed features that are not relevant to predicting the success of a business unit. We removed {name, neighborhood, address, hours, type}

• We removed all business records that are not in United States ("US") and are not in a "Restaurant" business category.

• The attributes field consist of 100s of array of strings and each array element is an attribute. We used several different approaches to identify the relevant attribute that are significant to the decision making process. We then extracted these significant attributes into separate datasets and we converted the value from string to numerical (For e.g. {"True", "False"} changed to {1, 2}).

```
yelp_Bus_attributes_Kids <-
yelp_Bus_attributes %>%
filter(str_detect(attributes, "GoodForKids")) %>%
unnest(attributes) %>%
select(business_id,attributes)

yelp_Bus_attributes_Kids <-
rename(yelp_Bus_attributes_Kids,c("attributes"="GoodForKids"))
distinct(yelp_Bus_attributes_Kids, GoodForKids)

a<-yelp_Bus_attributes_Kids$GoodForKids %in% "GoodForKids: True"
yelp_Bus_attributes_Kids[a,2] <- 2
b<-yelp_Bus_attributes_Kids$GoodForKids %in% "GoodForKids: False"
yelp_Bus_attributes_Kids$GoodForKids %in% "GoodForKids: False"
yelp_Bus_attributes_Kids[b,2] <- 1
```

 After successfully extracting individual attributes and transforming the data from a string to numeric value, our next step was to merge the individual attribute data file to the main dataset in R.

Note: Due to the large size of the dataset and the volume of data, we had to remove large volume of data in order to easily read/import into the tools that we were using for applying different algorithms.

2.2. Data Quality Check and Cleaning

Data quality check and cleaning is an integral part of data mining or data analysis. Data quality check and cleaning phase is mainly to detect and remove or replace erroneous and inconsistent data from the data.

2.3. Missing Values:

Missing values are a major problem to data analysis. We have noticed that many of the attributes had missing values and we used mode imputation, a widely accepted method for categorical variables to fill in the missing data values.

2.4. Outliers:

We can verify how many observations data file has and see the names of the variables it contains using PROC CONTENTS. Use PROC FREQ to learn more about categorical variables and to check the distribution of discrete variable. Use PROC UNIVARIATE and CAPABILITY to learn more about continuous variables and its distribution.

From **Appendix 1** we have 30158 observations and 20 variables.

While analyzing each continuous variables, we noticed that the "review count" was right skewed in the distribution histogram. About 95% of the business had a review count which is less than or equal to 500 and nearly 200 business had review count greater than 500.

Basic Statistical Measures									
Loc	ation	Variability							
Mean	69.36060	Std Deviation	167.33755						
Median	23.00000	Variance	28002						
Mode	3.00000	Range	6411						
		Interquartile Range	59.00000						

In other words, only very few business had review count beyond 4-digit. We had to eliminate the business records that has review count greater than 500 to reduce the skewness.

We have noticed that the P-P Plot for review count was not normally distributed. This clearly explains that we should normalize the numerical variable (review count) in order to standardize the scale of effect the variable will have on the result.

We performed a log transformation to normalize the review count variable.

2.5. Transformation:

After removing the review count, which are greater than 500, and applying log transformation techniques, we can notice that the probability distribution is normal and the skewness of data has been reduced.

Basic Statistical Measures									
Loc	ation	Variability							
Mean	1.372105	Std Deviation	0.56367						
Median	1.342423	Variance	0.31773						
Mode	0.477121	Range	2.22185						
		Interquartile Range	0.89625						

3. Classification

3.1 Logistic Regression

In logistic regression we use a hypothesis class to try to predict the probability that a given example belongs to the "1" class versus the probability that it belongs to the "0" class. Specifically, we will try to learn a function of the form:

$$P(y = 1|x) = h_{\theta}(x) = \frac{1}{1 + \exp(-\theta^{\top} x)} \equiv \sigma(\theta^{\top} x)$$

The function $\sigma(\theta^T x)$ is often called the "sigmoid" or "logistic" function – it is an S-shaped function that "squashes" the value of $\theta^T x$ into the range [0,1] so that we may interpret $h_{\theta}(x)$ as a probability. Our goal is to search for a value of θ so that the probability $h_{\theta}(x)$ is large when x belongs to the "1" class and small when x belongs to the "0" class.

3.2 Random Forest

Random forest (or random forests) is an ensemble classifier that consists of many decision trees and outputs the class that is the mode of the class's output by individual trees. Random Forest algorithm:

Random Forest Algorithm is one of the most accurate classification algorithms available. It produces a highly accurate classifier for many datasets and can run efficiently on large datasets. It can handle thousands of input variables without variable deletion. One of the most important features of Random forests is that it gives estimates of what variables are important for classification.

4 Dimension Reduction

4.1 Principal Component Analysis

Principal components analysis is a procedure for identifying a smaller number of uncorrelated variables, called "principal components", from a large set of data. The goal of principal components analysis is to explain the maximum amount of variance with the fewest number of principal components.

Principal components analysis are commonly used as the first step in a series of analyses. You can use principal components analysis to reduce the number of variables and avoid multicollinearity, in other words, when you have too many predictors relative to the number of observations.

5 Results and Examples

5.1 Logistic Regression

The area measures discrimination i.e. the ability of test and to correctly classify the star ratings in our case 0.74 (74%) is reasonably a good or fair. The "C" value is equivalent to the well-known measure ROC. The "C" value 0.7 from **Appendix 2** corresponds to the model is good at discriminating the responses.

We can observe that a 77% accuracy in the training data of 100 random samples

5.2 Principal Component Analysis and Logistic regression

In PCA we included all the categorical variables in form of dummy variables. We decided to take all the variables whose eigenvalue is more than or approximately equal to 1 from the correlation matrix. We can notice from the **Appendix 3** output that the principal components together combine 80% cumulative.

For logistic regression with PCA, 80% accuracy is observed on training data of 100 random samples.

From: star	Into: star	Predicted Probability: star=0	Predicted Probability: star=1					
	1	0.0602502113	0.9397497887					
)	1	0.0584731722	0.9415268278					
1	1	0.4420499241	0.5579500759					
1	1	0.0710085665	0.9289914335					
1	1	0.1760895565	0.8239104435					
1	1	0.0704262901	0.9295737099					
)	1	0.3093472191	0.6906527809					
1	1	0.4676910778	0.5323089222					
1	1	0.3413262273	0.6586737727					
1	1	0.2767916856	0.7232083144					
1	1	0.302565224	0.697434776					
1	1	0.4343845245	0.5656154755					
)	1	0.0096605242	0.9903394758					
1	1	0.0611071632	0.9388928368					
1	1	0.1818413509	0.8181586491					
1	1	0.3592324374	0.6407675626					
1	1	0.0804228908	0.9195771092					
1	1	0.1130376047	0.8869623953	Classificat	tion: Logistic r	egress	ion wit	h PC
)	1	0.4111857106	0.5888142894		The FREQ Pro	ocedure		
)	1	0.1771617455	0.8228382545					
1	1	0.1199949166	0.8800050834	Frequency	Table of	l_star b	y F_star	
1	1	0.2167781467	0.7832218533	Percent Row Pct		F_sta	ar(From:	star)
1	1	0.0597705399	0.9402294601	Col Pct	I star(Into: star)	1	0	Tota
1	1	0.024024848	0.975975152		1	79	20	99
1	1	0.1524870762	0.8475129238			79.00	20.00	99.00
1	1	0.3245061339	0.6754938661			79.80	20.20	
)	1	0.321912068	0.678087932		_	100.00	95.24	
1	1	0.1525776844	0.8474223156		0	0.00	1.00	1.0
1	0	0.5536329954	0.4463670046			0.00	100.00	1.00
)	1	0.1923528519	0.8076471481			0.00	4.76	
1	1	0.1271251992	0.8728748008		Total	79	21	100
)	1	0.3935022844	0.6064977156			79.00	21.00	100.00

5.3 Random Forest Classifier

The main reason why we decided to implement Random Forest classifier is that it gives us the variables in order of their importance. For example, **Appendix 4** table shows us that if anyone wants to open a new restaurant then 'Parking', 'Ambience', 'Restaurant Reservations' are the attributes which needs to be given more importance over 'Restaurant Delivery', 'Price Range' or 'Good for kids'

Use PROC HPFOREST in SAS for Random Forest classification. We specified our target as star variable (i.e. the overall stars). In our dataset there are mostly categorical variables, hence we specify the level as nominal. We input all the categorical variables sequentially. The model has 100 % - 18.9 % = 81.1% accuracy. An 82% accuracy for 100 random samples tested manually

This classifier performed pretty well. The accuracy achieved was 83 % without PCA with all the selected categorical variables.

6 Conclusion

We have created different classification models. Based on the observation, we can interpret the accuracy of our model is as follows:

- Logistic Regression 77% accuracy.
- Logistic Regression with PCA 80 % accuracy
- Random Forest 82% accuracy

We can conclude that the model helps us to identify the attributes that helps to contribute to the success of the business (in the order of its importance such as parking, review count, credit card, ambiance etc.) and to eliminate the attributes, which are least significant.

Appendix:

Appendix 1: Data quality check and cleaning

	The SAS System						Variable	Туре	
			inc one oyatem	10	Alcohol	Num			
			The CONTENTS Procedu	11	Ambience	Num			
	Data Set Na	amo	YELP.YELPDATA BUSINESS	Observations	30158	13	BusinessAcceptsCreditCards	Num	
			DATA	Variables	20	14	GoodForkids	Num	
	Member Ty	/pe				15	NoiseLevel	Num	
	Engine		V9	Indexes	0	16	OutdoorSeating	Num	
	Created		04/28/2017 17:43:43	Observation Length	200	12	Parking	Num	
	Last Modifi			Deleted Observations	0	18	PriceRange	Num	
	Protection			Compressed	NO	17	RestaurantsDelivery	Num	
	Data Set Ty	уре		Sorted	NO	19	RestaurantsReservations	Num	
	Label					20	RestaurantsTableService	Num	
	Data Repre	esentation	WINDOWS_64			1	business_id	Char	
	Encoding		wlatin1 Western (Windows)			2	city	Char	
						9	is_open	Num	
			Engine/Host Dependent Infor	mation		5	latitude	Num	
ata Set Page Size	e 65	536				6	longitude	Num	
umber of Data Se					4	postal_code	Char	Ī	
rst Data Page					8	review_count	Num		
ax Obs per Page					7	stars	Num		
bs in First Data P	age 31	2				3	state	Char	1

Parking	Frequency	Percent	Cumulative Frequency	Cumulative Percent
None	13036	43.23	13036	43.23
Garage	1726	5.72	14762	48.95
Street	3173	10.52	17935	59.47
Validated	37	0.12	17972	59.59
Lot	12018	39.85	29990	99.44
Valet	168	0.56	30158	100.00

Appendix 2: Logistic Regression

Classification: Logistic regression									
The LOGISTIC Procedure									
	Mode	el Inf	ormation						
Data Set		١	WORK.YELP	DATA_E	BUSINESS1				
Response Varia	ble	5	star						
Number of Resp	onse Leve	ls 2	2						
Model		t	oinary logit						
Optimization Te	chnique	F	Fisher's scoring						
					1				
Num	ber of Obs	erva	ations Read	29621					
Num	ber of Obs	erva	ations Used	29621					
	Rest	ons	e Profile						
	Ordered Value		Tota	-					
1 0		0	5608						
	2	1	2401	3					
F	Probability	mo	deled is star	=0.					

		Summary	of S	tepwise S	election		
	Effect			Number In	Score	Wald	
Step	Entered	Removed	DF		Chi-Square		Pr > ChiSq
1	Parking		5	1	1840.9374		<.0001
2	logreview		1	2	510.2990		<.0001
3	NoiseLevel		3	3	342.8573		<.0001
4	Alcohol		2	4	216.4231		<.0001
5	BusinessAcceptsCredi		1	5	149.2635		<.0001
6	RestaurantsReservati		1	6	111.9927		<.0001
7	Ambience		8	7	108.7987		<.0001
8	RestaurantsTableServ		1	8	60.2708		<.0001
9	OutdoorSeating		1	9	62.2360		<.0001
10	is_open		1	10	27.2844		<.0001
11	RestaurantsDelivery		1	11	23.3045		<.0001
12	GoodForkids		1	12	9.2266		0.0024
13	PriceRange		3	13	8.3359		0.0396

Analysis of Maximum Likelihood Estimates									
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq			
Intercept		1	-1.5243	0.1517	100.9621	<.0001			
logreview		1	-0.6851	0.0473	210.1851	<.0001			
is_open	1	1	0.2026	0.0384	27.8934	<.0001			
Alcohol	2	1	-0.5964	0.0681	76.6088	<.0001			
Alcohol	3	1	-0.0481	0.0520	0.8545	0.3553			
Ambience	1	1	-0.7717	0.3318	5.4103	0.0200			
Ambience	2	1	-2.2364	0.7137	9.8187	0.0017			
Ambience	3	1	-2.1962	0.5077	18.7140	<.0001			
Ambience	4	1	-1.1462	0.2911	15.5035	<.0001			
Ambience	5	1	0.6889	0.2533	7.3967	0.0065			
Ambience	6	1	-0.9703	0.2025	22.9518	<.0001			
Ambience	7	1	-0.6110	0.5259	1.3499	0.2453			
Ambience	8	1	-0.2604	0.0496	27.5609	<.0001			
Parking	1	1	-0.1015	0.0889	1.3022	0.2538			
Parking	2	1	-1.0946	0.0834	172.2815	<.0001			
Parking	3	1	-1.2594	0.7471	2.8416	0.0919			
Parking	4	1	-0.4609	0.0453	103.6463	<.0001			
Parking	5	1	-1.2926	0.5202	6.1734	0.0130			
BusinessAcceptsCredi	2	1	1.4763	0.1306	127.7088	<.0001			
GoodForkids	2	1	-0.1671	0.0524	10.1563	0.0014			
NoiseLevel	2	1	0.8668	0.0746	134.9621	<.0001			
NoiseLevel	3	1	0.2687	0.0463	33.6221	<.0001			
NoiseLevel	4	1	1.3321	0.0981	184.3171	<.0001			
OutdoorSeating	2	1	-0.2888	0.0374	59.6347	<.0001			
RestaurantsDelivery	2	1	-0.2125	0.0428	24.6316	<.0001			
PriceRange	2	1	0.0526	0.0367	2.0596	0.1512			
PriceRange	3	1	-0.2460	0.1229	4.0064	0.0453			
PriceRange	4	1	0.1605	0.2070	0.6011	0.4382			
RestaurantsReservati	2	1	-0.3470	0.0509	46.3890	<.0001			
Restaurants Table Serv	2	1	-0.3319	0.0380	76.1686	<.0001			

Association of Predicted Probabilities and Observed Responses							
Percent Concordant	74.6	Somers' D	0.492				
Percent Discordant	25.4	Gamma	0.493				
Percent Tied	0.1	Tau-a	0.151				
Pairs	134664904	С	0.746				

Appendix 3: Principal Component Analysis

Aı	Analysis of Maximum Likelihood Estimates											
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq							
Intercept	1	-0.7532	0.0629	143.4721	<.0001							
logreview	1	-0.7249	0.0460	248.2553	<.0001							
Prin1	1	-0.2027	0.00928	477.1302	<.0001							
Prin2	1	0.1292	0.0129	100.1552	<.0001							
Prin5	1	-0.1709	0.0136	157.5136	<.0001							
Prin6	1	0.2334	0.0138	286.9716	<.0001							
Prin7	1	0.0374	0.0125	8.9336	0.0028							
Prin8	1	-0.1517	0.0140	117.4174	<.0001							
Prin9	1	-0.0721	0.0153	22.1266	<.0001							
Prin10	1	-0.1063	0.0168	39.9473	<.0001							
Prin11	1	0.2474	0.0191	166.9767	<.0001							
Prin12	1	-0.1041	0.0180	33.4737	<.0001							
Prin14	1	-0.0804	0.0161	24.8293	<.0001							
Prin16	1	0.0437	0.0160	7.4830	0.0062							

Association of Predicted Probabilities and Observed Responses						
Percent Concordant	74.2	Somers' D	0.485			
Percent Discordant	25.7	Gamma	0.485			
Percent Tied	0.1	Tau-a	0.149			
Pairs	134664904	С	0.743			

Appendix 4: Random Forest

Model Information						
Parameter	Value					
Minimum Category Size	30	(Default)				
Leaf Size	6					
Maximum Depth	50					
Maximum Trees	500					
Minimum Category Size	5	(Default)				
Variables to Try	4					
Alpha	0.05					
Exhaustive	5000	(Default)				
Leaf Fraction	0.001	(Default)				
Inbag Fraction	0.6					
Node Size	100000	(Default)				
Prune Fraction	0	(Default)				
Prune Threshold	0.1	(Default)				
Rows of Sequence to Skip	5	(Default)				
Split Criterion		Gini				
Missing Value Handling		Valid value				

Loss Reduction Variable Importance							
Variable	Number of Rules	Gini	OOB Gini	Margin	OOB Margin		
Parking	413	0.012127	0.007855	0.024253	0.015864		
logreview	508	0.006725	0.003585	0.013450	0.008021		
Ambience	260	0.005731	0.003582	0.011463	0.007375		
RestaurantsReservations	212	0.002998	0.001853	0.005996	0.003948		
BusinessAcceptsCreditCards	153	0.001696	0.001049	0.003391	0.002149		
NoiseLevel	473	0.002126	0.001044	0.004252	0.002543		
OutdoorSeating	277	0.001801	0.000984	0.003602	0.002167		
Restaurants Table Service	252	0.001364	0.000712	0.002728	0.001633		
Alcohol	224	0.001063	0.000556	0.002126	0.001301		
is_open	159	0.000792	0.000364	0.001585	0.000908		
RestaurantsDelivery	232	0.000556	0.000160	0.001113	0.000538		
GoodForkids	172	0.000366	0.000068	0.000733	0.000311		
PriceRange	220	0.000465	0.000035	0.000931	0.000328		

References

- Dzieciolowski, A. (n.d.). *Demystifying Random Forests*. Retrieved from https://www.sas.com/content/dam/SAS/en_ca/User%20Group%20Presentations/Toronto -Data-Mining-Forum/dzieciolowski-randomforests.pdf
- Education, U. -I. (n.d.). SAS Annotated Output. Retrieved from http://stats.idre.ucla.edu/sas/output/
- Know, S. T. (n.d.). Retrieved from Overview: LOGISTIC Procedure: https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#st atug_logistic_sect001.htm
- Know, S. T. (n.d.). *Syntax: PRINCOMP Procedure*. Retrieved from https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#princomp_toc.htm
- Know, S. T. (n.d.). *The SURVEYSELECT Procedure*. Retrieved from https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#surveyselect_toc.htm
- Praveenkumar Kondikoppa, S.-J. P. (n.d.). Modeling Business Trends based on Yelp Review Data. 1.
- Stanford, U. o. (n.d.). *Supervised Learning and Optimization*. Retrieved from Logistic Regression: http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/
- Wicklin, R. (n.d.). *Techniques for scoring a regression model in SAS*. Retrieved from http://blogs.sas.com/content/iml/2014/02/19/scoring-a-regression-model-in-sas.html
- Yelp. (n.d.). About Us. Retrieved from Yelp: https://www.yelp.com/about