CHAPTER - 19

Differential Equations

EE24BTECH11039 - Ranjith

1 MCO's with One Correct Answer

- 1) The differential equation whose solution is $Ax^2 + By^2 = 1$ where A and B are arbitrary constants is of
 - a) second order and second degree
- c) first order and first degree
- b) first order and second degree
- d) second order and first degree

[2006]

1

2) The differential equations of all the circles passing through the origin and having their centres on x-axis is

a)
$$y^2 = x^2 + 2xy \frac{dy}{dx}$$

b) $y^2 = x^2 - 2xy \frac{dy}{dx}$

c)
$$x^2 = y^2 + xy \frac{dy}{dx}$$

d) $x^2 = y^2 + 3xy \frac{dy}{dx}$

b)
$$y^2 = x^2 - 2xy \frac{dy}{dx}$$

$$d) x^2 = y^2 + 3xy\frac{dy}{dx}$$

[2007]

3) The solution of the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$ satisfying the condition y(1) = 1

a)
$$y = \ln x + x$$

c)
$$y = xe^{(x-1)}$$

$$b) y = x \ln x + x^2$$

d)
$$y = x \ln x + x$$

[2008]

4) The differential equation which represents the family of curves $y = c_1 e^{c_2} x$, where c_1 and c_2 are arbitrary constants, is

a)
$$\frac{d^2y}{dx^2} = y\frac{dy}{dx}$$

b) $y\frac{d^2y}{dx^2} = \frac{dy}{dx}$

c)
$$y \frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$$

d) $\frac{dy}{dx} = y^2$

b)
$$y \frac{d^2y}{dx^2} = \frac{dy}{dx}$$

d)
$$\frac{dy}{dx} = y^2$$

[2009]

5) Solutions of the differential equation $\cos x dy = y(\sin x - y) dx$, $0 < x < \frac{\pi}{2}$ is

a)
$$y \sec x = \tan x + c$$

c)
$$\tan x = (\sec x + c)y$$

b)
$$y \tan x = \sec x + c$$

d)
$$\sec x = (\tan x + c)y$$
 [2010]

6) If $\frac{d^2y}{dx^2} = y + 3$ and y(0) = 2, then $y(\ln 2)$ is equal to:

[2011]

	[2011] retain mouse species satisfies the differential = 850,then the time at which the population
a) 2 ln 18b) 2 ln 9	c) $\frac{1}{2} \ln 18$
of production P with respect to addition	[2012] 00 times. It is estimated that the rate of change on al number of workers x is given by $\frac{dP}{dx}$ = ore workers, then the new level of production
a) 2500	c) 3500
b) 3000	d) 4500
[JEE M 2013] 10) Let the population of rabbits surviving at time t be governed by the differential equation $\frac{dp_{(t)}}{dt} = \frac{1}{2}p(t) - 200.\text{IfP}(0) = 100,\text{then p}(t)$ equals:	
a) $600 - 500e^{\frac{t}{2}}$ b) $400 - 300e^{\frac{-t}{2}}$	c) $400 - 300e^{\frac{t}{2}}$ d) $300 - 200e^{\frac{-t}{2}}$
11) Let $y(x)$ be the solution of the $2x \log x$, $(x \ge 1)$. Then $y(e)$ is equal to:	[JEE M 2014] differential equation $(x \log x) \frac{dy}{dx} + y =$
a) 2 b) 2 <i>e</i>	c) <i>e</i> d) 0
12) If the curve $y = f(x)$ passes through equation, $y(1 + xy) dx = xdy$, then $f(\frac{-1}{2})$	[JEE M 2015] the point (1,1) and satisfies the differential) is equals to

c) -2 d) 7.

c) e^{-kT} d) $T^2 - \frac{1}{k}$

7) Let be the purchase value of an equipment and V(t) be the value after it has been used for t years. The value V(t) depreciates at a rate given by differential equation $\frac{dV_{(t)}}{dt} = -k(T-t)$, where k is a constant and T is the total life in years of the

equipment. Then the scrap value V(T) of the equipment is

a) 5

b) 13

a) $l - \frac{kT^2}{2}$ b) $l - \frac{k(T-t)^2}{2}$

a)
$$\frac{2}{5}$$
 b) $\frac{4}{5}$

c)
$$\frac{2}{5}$$
 d) $\frac{4}{5}$

[JEE M 2016]

13) If $(24 \sin x) \frac{dy}{dx} + (y+1) \cos x = 0$ and y(0) = 1 then $y(\frac{\pi}{2})$ is equal to

a)
$$\frac{4}{3}$$
 b) $\frac{1}{3}$

c)
$$\frac{2}{3}$$
 d) $\frac{1}{3}$

14) Let y = y(x) be the solution of the differential equation $\sin x \frac{dy}{dx} + y \cos x = 4x, x \in$ (0,2). If $y\left(\frac{\pi}{2}\right) = 0$, then $y\left(\frac{\pi}{6}\right)$ is equal to

a)
$$\frac{-8}{9\sqrt{3}}\pi^2$$

b) $\frac{-8}{9}\pi^2$

c)
$$\frac{-4}{9}\pi^2$$

d) $\frac{4}{9\sqrt{3}}\pi^2$

[JEE M 2018]

15) If y = y(x) is the differential equation $\sin x \frac{dy}{dx} + 2y = x^2$ satisfying y(a) = 1, then $y(\frac{1}{2})$ is equal to

a)
$$\frac{7}{64}$$
 b) $\frac{1}{4}$

c)
$$\frac{49}{16}$$

d) $\frac{13}{16}$

[JEE M 2019-9April(M)] 16) The solution of the differential equation $x\frac{dy}{dx} + 2y = x^2 (x \neq 0)$ withy (1) = 1, is:

a)
$$y = \frac{4}{5}x^3 + \frac{1}{5x^2}$$

b) $y = \frac{x^3}{5} + \frac{1}{5x^2}$

c)
$$y = \frac{x^2}{4} + \frac{3}{4x^2}$$

d) $y = \frac{3}{4}x^2 + \frac{1}{4x^2}$

d)
$$y = \frac{3}{4}x^2 + \frac{1}{4x^2}$$

[JEE M 2019-9April(M)]