Philips Components

technical handbook

Book 4

Integrated circuits

Part IC07

Advanced CMOS Logic (ACL)

1989

PHILIPS

ADVANCED CMOS LOGIC ACL

				pag	Įе
Preface				í	:::
Product status					iv
Contents					۷
Section 1 — Introduction	•			ţ.	
Introduction	• • • • • •			1-	.3
Numeric index	• • • • •			1-	8
Functional index	• • • • • •			1-1	0
Ordering information				1-1	4
Section 2 — Quality and Reliability			,		
Quality and Reliability				2-	.3
					_
Section 3 — Family Characteristics					
Family Specifications				3.	3
Data Sheet Specification Guide			*******		2
Definitions and Symbols	• • • • • •	• • • • • •			0
Definitions and Symbols	• • • • • •	• • • • • •	• • • • • • • •	3-	ŏ
Section 4 — ACL Pinouts					
ACL Pinouts				4-	3
Section 5 — ACL Data Sheets					
Data Sheets				5-	3
					-
Section 6 — Application Notes Index				6	1
	• • • • • •			0-	1
Section 7 — Packaging Information					
Package outlines				-	2
				· · · · · · · /	3

Signetics reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Signetics assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Signetics makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Signetics' Products are not designed for use in life support appliances, devices, or systems where malfunction of a Signetics Product can reasonably be expected to result in a personal injury. Signetics' customers using or selling Signetics' Products for use in such applications do so at their own risk and agree to fully indemnify Signetics for any damages resulting in such improper use or sale.

> Signetics registers eligible circuits under the Semiconductor Chip Protection Act.

@ Copyright 1988 Signetics Corporation

Preface

Signetics would like to thank you for your interest in our ACL product family. Utilizing a $1\mu m$ CMOS process, Signetics' ACL has joined the lowest power-delay product family in the market today. This, coupled with its standard setting, low-noise, system reliable pinout, makes it an obvious favorite among system designers.

In addition to ACL, Signetics Standard Products Division offers the industry's broadest line of commercially available logic products. These products span a wide speed/power spectrum from 100K/10K ECL, to FAST to 74HC/HCT and other industry standard families such as: the CMOS 4000B series, 74, 74LS, 74S, 8T, and 8200 Logic. Information regarding these products lines is also available from your nearest Signetics Sales Office, sales representative, or authorized distributor.

Standard Products Division

Product Status

DEFINITIONS					
Data Sheet identification	Product Status	Definition			
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifi- cations for product development. Specifications may change in any manner without notice.			
Pre@minary Specification	Preproduction Product	This data sheet contains a preliminary data and supplementary data will be published at a later date. Signetica reserves the right to make changes at any time without notice in order to improve design and supply the best possible products.			
Product Specification	Full Production	This data sheet contains Final Specifications. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.			

iv

Contents

Product Status		h
Section 1 - Introductio		
Introduction	n	1.9
Numeric Index	***************************************	4.5
Functional Index	***************************************	1_1/
Ordering Informa	ition	1-14
Section 2 - Quality And	d Reliability	
Quality and Relie	bility	2-3
Section 3 - Family Cha	racteristics	
Family Specifica	tion	3-3
Data Sheet Spec	ification Guide	3-6
Definitions and S	lymbols	3-8
Section 4 - ACL Pinou		•
Section 5 - ACL Data S	Pheets	
74AC/ACT11000	Quad 2-Input NAND Gate	5-3
74AC/ACT11002	Quad 2-Input NOR Gate	57
74AC/ACT11004	Hex Inverter	5-11
74AC/ACT11008	Quad 2-Input AND Gate	5-15
74AC/ACT11010	Triple 3-input NAND Gate	5_10
74AC/ACT11011	Triple 3-Input AND Gate	5-29
74AC/ACT11013	Dual 4-Input NAND Schmitt-Trigger	S 27
74AC/ACT11014	Hex Inverter Schmitt-Trigger	5-2/
74AC/ACT11020	Dual 4-Input NAND Gate	5.35
74AC/ACT11021	Dual 4-Input AND Gate	5.30
74AC/ACT11027	Triple 3-Input NOR Gate	E 49
74AC/ACT11030	8-Input NAND Gate	5 47
74AC/ACT11032	Quad 2-Input OR Gate	5 -4 /
74AC/ACT11034	Hex Non-Inverter	
74AC/ACT11074	Dual D-Type Flip-Flop w/Set and Reset; Positive-Edge Trigger	5-50
74AC/ACT 11086	Quad 2-Input Exclusive-OR Gate	5-39
74AC/ACT11000	Dual J-K Filp-Flop w/Set and Reset; Positive-Edge Trigger	5-66
74AC/ACT11112	Dual J-K Flip-Flop w/Set and Reset; Positive-Edge Trigger	5-70
74AC/ACT11132	Quad 2-Input NAND Schmitt-Trigger	5-//
74AC/ACT11138	3-to-8 Line Decoder/Demultiplexer; Active-Low	5-84
74AC/ACT11139	Dual 2-to-4 Line Decoder/Demultiplexer; Active-Low	5-88
74AC/AC [11151	8-Input Multiplexer	1
74AC/ACT11153	Dual 4-Input Multiplexer	5 94
74AC/ACT11157	Quad 2-Input Multiplexer	j
74AC/ACT11158	Quad 2-Input Multiplexer, INV	
74AC/ACT11150	Synchronous Presettable Synchronous BCD Decade Counter; Asynchronous Reset	5-100
74AC/ACT11161	Synchronous Presentable Synchronous 4-Bit Binary Counter; Asynchronous Reset	5-105
74AC/ACT11162	Synchronous Presettable Synchronous BCD Decade Counter; Synchronous Reset	†
74AC/ACT11163	Synchronous Presettable Synchronous 4-Bit Binary Counter; Synchronous Reset	5-115
74AC/ACT11168	Synchronous Up/Down BCD Decade Counter Synchronous Up/Down BCD Decade Counter	†
74AC/ACT11169	Synchronous Presettable 4-Bit Up/Down Binary Decade Counter	<u>†</u>
t =	Synchronous Presentative 4-bit Op/Down Binary Decade Counter	†

Contents

	Hex D-Type Flip-Flop w/Reset; Positive-Edge Trigger	
74AC/ACT11175	Quad D-Type Flip-Flop w/Reset; Positive-Edge Trigger	5-124
74AC/ACT11181	4-Bit Arithmetic Logic Unit	†
74AC/ACT11190	Asynchronous Presettable Synchronous Decade Up/Down Counter w/Single Clock	5-131
74AC/ACT11191	Asynchronous Presettable Synchronous 4-Bit Binary Up/Down Counter w/Single Clock	5-142
74AC/ACT11192	Asynchronous Presettable Synchronous BCD Decade Up/Down Counter w/Dual Clock,	t
74AC/ACT11193	Asynchronous Presettable Synchronous 4-Bit Binary Up/Down Counter w/Dual Clock	1
74AC/ACT11194	4-Bit Bidirectional Universal Shift Register	
74AC/ACT11238	3-to-8 Line Decoder/Demultiplexer; Active-High	
74AC/ACT11239	Dual 2-to-4 Line Decoder/Demultiplexer; Active-High	t
74AC/ACT11240	Octal Buffer/Line Driver, fNV (3-State)	
74AC/ACT11241	Octal Buffer/Line Driver (3-State)	
74AC/ACT11244	Octal Buffer/Line Driver (3-State)	
74AC/ACT11245	Octal Transceiver w/Direction Pin (3-State)	
74AC/ACT11251	8-Input Multiplexer (3-State)	
74AC/ACT11253	Dual 4-Input Multiplexer (3-State)	5.190
74AC/ACT11257	Quad 2-Input Multiplexer (3-State)	5.105
74AC/ACT11258	Quad 2-Input Multiplexer, INV (3-State)	5.201
74AC/ACT11269	Synchronous Presettable 8-Bit Binary Up/Down Counter	
74AC/ACT11280	9-Bit Odd/Even Parity Generator/Checker	5 007
74AC/ACT11286	9-Bit Odd/Even Parity Generator/Checker w/Bus Drive I/O Port	5-20/
74AC/ACT11299	8-Input Universal Shift/Storage Register w/Asynchronous Reset and Common I/O Pins	
74AC/ACT11299	8-Input Universal Shift/Storage Register w/Synchronous Reset and Common I/O Pins	
74AC/ACT11323		
	Dual 4-Input Multiplexer, INV	
74AC/ACT11353	Dual 4-Input Multiplexer, INV (3-State)	
74AC/ACT11373	Octal D-Type Transparent Latch (3-State)	5-224
74AC/ACT11374	Octal D-Type Flip-Flop; Positive-Edge Trigger (3-State)	5-231
74AC/ACT11378	Hex D-Type Flip-Flop w/Enable; Positive-Edge Trigger	
74AC/ACT11379	Quad D-Type Flip-Flop w/Data Enable	1
74AC/ACT11520	8-Bit Identity Comparator w/Input Pull-Up	
74AC/ACT11521	8-Bit Identity Comparator	5-242
74AC/ACT11533	Octal D-Type Transparent Latch, INV (3-State)	5-247
74AC/ACT11534	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State)	5-254
74AC/ACT11534 74AC/ACT11568	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State)	5-254 1
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11579	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State)	5-254 1
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11579 74AC/ACT11620	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State)	5-254 1
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11579 74AC/ACT11620 74AC/ACT11623	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11579 74AC/ACT11620 74AC/ACT11623 74AC/ACT11640	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State)	5-254 1 1
74AC/ACT11534 74AC/ACT11568 74AC/ACT11579 74AC/ACT11620 74AC/ACT11623 74AC/ACT11640 74AC/ACT11640	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11579 74AC/ACT11620 74AC/ACT11640 74AC/ACT11643 74AC/ACT11643	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Dual Enable (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver (3-State); True/INV Octal Transceiver/Register w/Direction Pin (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11579 74AC/ACT11620 74AC/ACT11623 74AC/ACT11640 74AC/ACT11644 74AC/ACT11646	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver (3-State); True/INV Octal Transceiver/Register w/Direction Pin, INV (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11620 74AC/ACT11623 74AC/ACT11640 74AC/ACT11646 74AC/ACT11648 74AC/ACT11648 74AC/ACT11648	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Dual Enable (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver (3-State); True/INV Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11579 74AC/ACT11620 74AC/ACT11623 74AC/ACT11640 74AC/ACT11644 74AC/ACT11646	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11620 74AC/ACT11623 74AC/ACT11640 74AC/ACT11646 74AC/ACT11648 74AC/ACT11648 74AC/ACT11648	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11579 74AC/ACT11620 74AC/ACT11640 74AC/ACT11643 74AC/ACT11646 74AC/ACT11645 74AC/ACT11655 74AC/ACT11655	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11620 74AC/ACT11623 74AC/ACT11640 74AC/ACT11643 74AC/ACT11648 74AC/ACT11648 74AC/ACT11651 74AC/ACT11655	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver w/B it Parity Checker/Generator Quad 2-Input Exclusive-NOR Gate	5-254 5-260
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11620 74AC/ACT11620 74AC/ACT11640 74AC/ACT11644 74AC/ACT11646 74AC/ACT11646 74AC/ACT11652 74AC/ACT11652 74AC/ACT11657 74AC/ACT11857	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11579 74AC/ACT11620 74AC/ACT11620 74AC/ACT11640 74AC/ACT11644 74AC/ACT11648 74AC/ACT11651 74AC/ACT11657 74AC/ACT11657 74AC/ACT11810 74AC/ACT11818	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver w/B-Bit Parity Checker/Generator Quad 2-Input Exclusive-NOR Gatte 8-Bit Diagnostic/Pipe-Line Register	5-254 5-264
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11620 74AC/ACT11620 74AC/ACT11623 74AC/ACT11640 74AC/ACT11646 74AC/ACT11646 74AC/ACT11651 74AC/ACT11652 74AC/ACT11810 74AC/ACT11818 74AC/ACT11818	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver w/B-Bit Parity Checker/Generator Quad 2-Input Exclusive-NOR Gate 8-Bit Diagnostic/Pipe-Line Register	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11620 74AC/ACT11640 74AC/ACT11643 74AC/ACT11646 74AC/ACT11645 74AC/ACT11651 74AC/ACT11657 74AC/ACT11819 74AC/ACT11819 74AC/ACT11819	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11569 74AC/ACT11620 74AC/ACT11620 74AC/ACT11640 74AC/ACT11646 74AC/ACT11645 74AC/ACT11652 74AC/ACT11657 74AC/ACT11810 74AC/ACT11819 74AC/ACT11812 74AC/ACT11821	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable 8CD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver w/B-Bit Parity Checker/Generator Quad 2-Input Exclusive-NOR Gaite 8-Bit Diagnostic/Pipe-Line Register 8-Bit Diagnostic/Pipe-Line Register w/Parity Even Output 10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State) 10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State), INV	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11579 74AC/ACT11620 74AC/ACT11623 74AC/ACT11640 74AC/ACT11646 74AC/ACT11645 74AC/ACT11657 74AC/ACT11810 74AC/ACT11819 74AC/ACT11822 74AC/ACT11822	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver w/B-Bit Parity Checker/Generator Ouad 2-Input Exclusive-NOR Gate 8-Bit Diagnostic/Pipe-Line Register 8-Bit Diagnostic/Pipe-Line Register w/Parity Even Output 10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State) 10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State) 9-Wide D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger, INV (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11620 74AC/ACT11620 74AC/ACT11623 74AC/ACT11640 74AC/ACT11646 74AC/ACT11648 74AC/ACT11651 74AC/ACT11657 74AC/ACT11857 74AC/ACT11819 74AC/ACT11819 74AC/ACT11821 74AC/ACT11822 74AC/ACT11824 74AC/ACT11824 74AC/ACT11824	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable 8CD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver w/B-Bit Parity Checker/Generator Quad 2-Input Exclusive-NOR Gaite 8-Bit Diagnostic/Pipe-Line Register 8-Bit Diagnostic/Pipe-Line Register w/Parity Even Output 10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State) 10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State), INV	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11620 74AC/ACT11620 74AC/ACT11623 74AC/ACT11640 74AC/ACT11646 74AC/ACT11648 74AC/ACT11651 74AC/ACT11657 74AC/ACT11857 74AC/ACT11819 74AC/ACT11819 74AC/ACT11821 74AC/ACT11822 74AC/ACT11824 74AC/ACT11824 74AC/ACT11824	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Dual Enable (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver w/B-Bit Parity Checker/Generator Quad 2-Input Exclusive-NOR Gate 8-Bit Diagnostic/Pipe-Line Register 8-Bit Diagnostic/Pipe-Line Register w/Parity Even Output 10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State) 10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State) 9-Wide D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger, INV (3-State) Octal D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger, INV (3-State) Octal D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger, INV (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11569 74AC/ACT11620 74AC/ACT11620 74AC/ACT11640 74AC/ACT11646 74AC/ACT11645 74AC/ACT11657 74AC/ACT11657 74AC/ACT11810 74AC/ACT11819 74AC/ACT11821 74AC/ACT11822 74AC/ACT11824 74AC/ACT11824 74AC/ACT11826 74AC/ACT11826 74AC/ACT11826 74AC/ACT11826 74AC/ACT11826 74AC/ACT11826 74AC/ACT11826 74AC/ACT11826	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable BCD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Dual Enable (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Davide Caller Ca	5-254
74AC/ACT11534 74AC/ACT11569 74AC/ACT11579 74AC/ACT11620 74AC/ACT11623 74AC/ACT11640 74AC/ACT11640 74AC/ACT11646 74AC/ACT11645 74AC/ACT11657 74AC/ACT11657 74AC/ACT11819 74AC/ACT11819 74AC/ACT11822 74AC/ACT11823 74AC/ACT11824 74AC/ACT11825 74AC/ACT11825 74AC/ACT11827 74AC/ACT11827 74AC/ACT11827 74AC/ACT11828	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable 8CD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Dual Enable (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver w/B-Bit Parity Checker/Generator Quad 2-Input Exclusive-NOR Galle 8-Bit Diagnostic/Pipe-Line Register 8-Bit Diagnostic/Pipe-Line Register w/Parity Even Output 10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State) 10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State) 9-Wide D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger, INV (3-State) Octal D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger, INV (3-State) Octal D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger, INV (3-State) Octal D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger, INV (3-State) O-Wide Buffer/Line Driver, INV (3-State)	5-254
74AC/ACT11534 74AC/ACT11568 74AC/ACT11569 74AC/ACT11579 74AC/ACT11620 74AC/ACT11623 74AC/ACT11640 74AC/ACT11644 74AC/ACT11646 74AC/ACT11652 74AC/ACT11657 74AC/ACT11819 74AC/ACT11819 74AC/ACT11821 74AC/ACT11823 74AC/ACT11824 74AC/ACT11824 74AC/ACT11825 74AC/ACT11826 74AC/ACT11827 74AC/ACT11828	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State) Synch. Presettable 8CD Decade Up/Down Counter w/Synch. and Asynch. Reset Synch. Presettable 4-Bit Binary Up/Down Counter w/Synch. and Asynch. Reset 8-Bit Binary Up/Down Counter w/Common I/O Pins; Synch. and Asynch. Reset (3-State) Octal Transceiver w/Dual Enable, INV (3-State) Octal Transceiver w/Dual Enable (3-State) Octal Transceiver w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin (3-State) Octal Transceiver/Register w/Direction Pin, INV (3-State) Octal Transceiver/Register w/Dual Enable, INV (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver/Register w/Dual Enable (3-State) Octal Transceiver w/B-Bit Parity Checker/Generator Quad 2-Input Exclusive-NOR Galle 8-Bit Diagnostic/Pipe-Line Register 8-Bit Diagnostic/Pipe-Line Register w/Parity Even Output 10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State) 10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State) 9-Wide D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger, INV (3-State) Octal D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger, INV (3-State) Octal D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger, INV (3-State) Octal D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger, INV (3-State) O-Wide Buffer/Line Driver, INV (3-State)	5-254

vi.

for more information on these devices contact your local sales organization; see addresses on back cover.

Contents

	74464467			
	/4AG/ACT11	1841	10-Wide D-Type Transparent Latch (3-State)	†
	74AC/ACT11		10-Wide D-Type Transparent Latch, INV (3-State)	†
	74AC/ACT11	1843	9-Wide D-Type Transparent Latch w/Set and Reset (3-State)	t
	74AC/ACT11	1844	9-Wide D-Type Transparent Latch w/Set and Reset, INV (3-State)	t
	74AC/ACT11	1845	Octal D-Type Transparent Latch w/Set and Reset (3-State)	t
	74AC/ACT11	846	Octal D-Type Transparent Latch w/Set and Reset, INV (3-State)	†
	74AC/ACT11	1853	8-Bit Transceiver w/9-Bit Parity Checker/Generator and Error Flag Latch	1
	74AC/ACT1	1854	8-Bit INV Transceiver with 9-Bit Parity Checker/Generator and Error Flag Latch	t
	74AC/ACT11		10-Wide Transceiver (3-State)	
	74AC/ACT11	1862	10-Wide Transceiver (3-State), INV	4
	74AC/ACT11	1863	9-Wide Transceiver: 3-State	4
	74AC/ACT11	1864	9-Wide Transceiver, INV (3-State)	4
	74AC/ACT11	1873	Dual D-Type 4-Bit Transparent Latch w/Reset (3-State)	1
	74AC/ACT11	1874	Dual D-Type 4-Bit Flip-Flop Latch w/Reset (3-State)	
	74AC/ACT11	1881	4-Bit Arithmetic Logic Unit w/Status Check Register	
	74AC/ACT11	1882	32-Bit Look-Ahead Carry Generator	4
	74AC/ACT1	1898	10-Bit Serial-In Parallel-Out Shift Register	5-26
Sec	tion 6 - Applic	ation	Notes	
	AN600	Hand	Hing Procedures	6-2
	AN606	Simu	Itaneous Switching Evaluation of Advanced CMOS Logic	6-5
	AN203	Test	Fixtures for High-Speed Logic	6-9
_				
Sec	tion 7 - Packar			
	Packaging k	nform	etion	7.9

[†] For more information on these devices contact your local sales organization; see addresses on back cover.

Section 1 Introduction

INDEX	
ntroduction	1-3
Numeric Index	1-8
Functional Index1	-10
	-14

INTRODUCTION

There is little doubt that CMOS is closing in on bipolar technology as the mainstay of integrated commodity logic. Advancing technology is rapidly eliminating the old trade-offs between speed and power dissipation (see Figure 1), and problems peculiar to CMOS such as latch-up and ESD sensitivity have already been solved. However, until now, CMOS logic ICs have been unable to match the high speed and the high current output of TTL technologies which is essential for operation in the bus or transmission line environment of the fastest logic systems.

The introduction of the Advanced CMOS Logic (ACL) family of ICs removes this hurdie. Signetics fabricates ACL in a 1micron twin-well CMOS process with recessed local oxidation and a titanium disilicide layer on the gate, source and drain areas to reduce the contact and interconnect resistance. This, together with oxidation of the gate sidewalls for reduced capacitance, leads to increased drive and speed that equals that of the fastest bipolar TTL logic. With an average propagation delay of 5ns (150MHz operation) and 24mA sink/source capability. ACL supplements the HE4000B and HCMOC IC ranges to allow designers to implement the outstanding CMOS benefits of wide and symmetrical noise margins, high reliability, and reduced power dissipation across the whole speed spectrum of logic circuitry.

The inevitable fast edges associated with the exceptionally high speed of ACL required one final hurdle to be removed: the problem, which also exists for fast-switching bipolar logic, can reduce system noise margins, cause loss of stored data and reduce system speed. We have solved it for ACL by discarding the traditional corner supply pinning arrangement and simultaneously adopting a flowthrough architecture wherein the supply pins are at the center of each side of the package (where the internal inductance is minimum), all the input pins are on one side, all the output pins are on the other, and control pins are at the corners. Although this solution means that ACL is not pincompatible with the comparable TTL and HCMOS functions, as an engineeringdriven company, we felt that the considerations of improving system reliability, simplifying pcb design and reducing board area should take precedence.

All types within our ACL family have outputs that are both CMOS and TTL-compatible and are available for operating temperature ranges of -40°C to +85°C (commercial/industrial: 74AC/ACT prefix) or -55°C to +125°C (military: 54AC/ACT prefix). They come in two versions:

- Fully buffered 54/74AC types with CMOS-compatible input switching levels (typically V_C/2) and a supply voltage range of 3V to 5.5V for all-CMOS systems
- Fully buffered 54/74ACT types with TTL-compatible input switching levels (typically 1.5V) and a supply voltage range of 5V±10% for interfacing with TTL systems

Since the low power dissipation of our ACL ICs makes them ideal for circuitry on densely packed boards in small enclosures, we didn't overlook the need to make them compatible with surface mounting technology which is being increasingly used for automated assembly of electronic equipment to achieve significant reduction of its size and weight. Production quantities of all our ACL ICs are available in DIP packages and in SO (small outline) packages. The dimensions of the latter were originally developed by us and now form the basis of JEDEC standard publication 95 (also published in IEC standard document 191-2, family A76).

ACL ICs are completely latch-up free and have complete protection against electrostatic discharge (ESD) at their inputs.

ACL IN A NUTSHELL

ACL has all the well-known attributes of our HCMOS family combined with faster operation and increased drive capability. Here are 14 reasons why Signetics is head and shoulders above the rest:

- A comprehensive type range from simple gates to shift registers and counters
- All types available in 74AC versions

- (CMOS input levels) and 74ACT versions (TTL input levels)
- All types available in SO (small outline) packages as well as in DIP, so you can use surface-mount techniques to increase pcb packing density. The 14 and 16-pin SO packages are the narrower 150mil (3.8mm) versions and are available on 16mm tape on 13 inch diameters reels (2500 ICs). The 16, 20, 24 and 28-pin SO packages are 300mil (7.6mm) wide and are available on 24mm tape with 1000 ICs on a 13 inch reel. The body width of all the DIP packages (14 to 28 pins) is 300mil (7.6mm).
- Completely latch-up free and fully ESD protected up to ±2kV (human body model) at all inputs and outputs.
- Low power dissipation. Typical quiescent current per package is only a few nanoamps for gates, flip-flops and MSI. Typical counter operating current with a 5V supply is 250µA at 1MHz and increases linearly with frequency.
- 24mA sink/source current. For incident wave switching 74AC/ACT types can provide ±75mA (for driving a 50\(\Omega\) load).
- ACL input current is only 1µA in the High or Low state. This is essentially zero compared with the input current of TTL technologies. The fan-out to other CMOS ICs is therefore only limited by load capacitance considerations and not by DC loads.
- More than three times the noise immunity of TTL. Input switching levels are between 30% and 70% of $V_{\rm CC}$ for 74AC types and between 0.8V and 2V for 74ACT types. The output swing for all ACL ICs is from 0.1V to $V_{\rm CC}$ -0.1V with a load of 50µA (fifty ACL inputs), and from 0.5V to $V_{\rm CC}$ -0.8V with a load of ± 24 mA.
- The input switching threshold level is subject to a variation of only ±60mV over the entire temperature range, much less than the ±300mV

specified for advanced TTL families.

- Wide supply voltage range. AC versions are specified with a supply from 3V to 5.5V (the internal logic state is maintained down to 2V). Battery back-up is no problem and automotive applications are possible. TTI-compatible ACT versions are specified with a supply of 5V ± 10%.
- With a 5V supply, average propagation delay for a gate is 5ns for either High-to-Low-or Low-to-High transitions into a capacitive load of 50pF.
 On-chip propagation delay for gates is only 0.5ns. Typical operating frequency is up to 150MHz at 25°C and t_{MAX} is simply specified with a 50% duty factor.
- Outputs have edge control circuits to reduce the effective dv/dt, thereby further reducing switching noise. The output buffers are standardized to allow symmetrical output current sourcing and sinking for equal output rise and fall times. This results in simplified design combined with optimum speed and AC performance.
- Center supply pins and flowthrough architecture to minimize ground and supply rail glitches during simultane-

- ous switching of outputs, and to simplify board layout.
- All ACL critical inputs have a new patented dynamic hysteresis to make them less susceptible to slow input edges. (A critical input is considered an input which controls more than one output.)
- Extensive customer support is available.
- Signetics ACL ICs are alternatesource by TI.

A CLOSER LOOK AT ACL

Supply Voltage

ACL circuits with the type number prefix 74AC operate from a supply voltage range of 3V to 5.5V which meets the new industry JEDEC standard No. 8 which specifies 3.3V ±0.3V for regulated power supply systems. The internal logic of 74AC circuits will, however, maintain its state with a supply voltage as low as 2V. This facilitates the use of a lithium battery as a back-up supply. ACL circuits with the type number prefix 74ACT operate from a supply voltage of 5V ±10% which is consistent with the supply voltage for the TTL logic circuits with which they are intended to interface.

Power Dissipation

One of the most important requirements for any logic system is low power dissipation because it minimizes system cost, allows higher packing density, and results in improved reliability because of lower operating temperature.

The typical quiescent power dissipation of an ACL gate (2.5nW) is more than six orders of magnitude less than that of bipolar TTL functions. This is because, unlike TTL circuits, CMOS circuits dissipate only negligible power due to leakage currents when they are not switching. The maximum quiescent current per ACL package for SSI (40µA) is less than 1% of that of an equivalent TTL package with 50% of the gates in the High state. The typical dynamic power dissipation of ACL gates is also very low. With 50pF lead and a 5V supply, it is 0.18mW at 100kHz rising to only 18mW at 10MHz, two-thirds of which is dissipated in the load capacitance. This is considerably lower than that of the fastest TTL circuits, particularly at lower frequencies where their high quiescent current predominates over their dynamic current.

The power cross-over frequency where ACL and TTL dissipate the same power is about 10MHz for a gate, and more than 20MHz for a flip-flop. However, in a practical logic system, only a few of the logic elements operate at the maximum clock frequency, so the average operating frequency is much lower, giving ACL ICs an even greater advantage overadvanced TTL. In a more complex system comprising a divider chain of six flipflops, the power cross-over frequency no longer exists. At 30MHz, ACL still dissipates only one sixth of the equivalent advanced TTL dissipation. If the divider chain is lengthened, or the system complexity increased, the power saving increases even more.

Propagation Delay

The on-chip propagation for a single ACL gate is only 0.5ns. For an entire ACL package with a 50pF load, it is 5ns average for High-to-Low or Low-to-High transitions. Moreover, propagation delay is specified over the entire operating temperature range and at two system supply voltages $(3.3V \pm 0.3V)$ and $5V \pm 0.5V$. For user convenience, we also specify the minimum propagation delay. The specified limits are comparable to those for the most advanced TTL logic. The AC characteristics of ACL are improved by standardized output buffers which allow equal rise and fall times. The typical switching frequency limit for ACL is 150MHz at 25°C

and is specified with a 50% duty factor so you don't have to tweak the pulse widths as you do with TTL. Due to the high drive current capability of the low impedance ACL outputs, propagation delay variation as a function of load capacitance is much less than that of most other logic ICs.

Noise Immunity

The input switching levels for 74AC ICs are always between 30% and 70% of V_C. Output swing is from 0.1V to V_C. Output swing is from 0.1V to V_C. O.TV with a load of 50µA (50 CMOS inputs). For 74AC circuits driving 50 CMOS inputs, the low- and high-level noise immunity with a 4.5V supply is, therefor, 28% of V_C. It is even greater for a higher supply voltage, 74ACT ICs match the Low-level noise immunity of TTL at higher operating temperatures (up to 85°C) and exceed it at 70°C. The Highevel noise immunity is three times that of TTL. ACL ICs are, therefore, ideally suited for use in electrically noisy environments such as those encountered in industry, telephony and automotive applications.

Drive Capability

Although the ACL family has the low input current which is a characteristic of CMOS circuits, it is capable of providing output current of up to 24mA without sacrifice of noise immunity or switching speed. Moreover, unlike the fastest TTL circuits, all ACL ICs have standardized output

buffers which allow symmetrical output current sinking and sourcing to obtain equal rise and fall times. This simplifies design and results in optimum speed and AC performance.

The drive current specified for ACL is valid over the entire operating temperature range and, since the input current for ACL circuits is only 1µA in the High or Low state, the fan-out when driving other CMOS circuits is only limited by load capacitance considerations and not by the available drive power. However, in the fastest logic systems, ACL will probably be working in a transmission line environment where its low output resistance (200 max.) is of particular significance for reducing a system's susceptibility to crosstalk and induced noise, and for guaranteeing incident wave switching to optimize system speed. For example, to guarantee incident wave switching over the commercial temperature range, the sink/source capability of ACL is 75mA at Vo=1.65V which allows terminated lines with a characteristic impedance down to 50Ω to be driven at the maximum supply voltage.

ESD Protection

The ACL input network shown in Figure 2(a) incorporates reverse-biased diodes between the positive rail, input pins and ground in order to clamp the input voltage to provide ESD protection and limit the amplitude of any ringing. These diodes have typical forward voltage drops of 0.9V and reverse breakdown voltages of 18V. ACL inputs can withstand ESD of greater than ±2kV from the 'human body model' (1.5k ohm, 100pF, 13ns pulse rise time) shown in Figure 2(b). This meets MIL-STD-883B, Method 3015.

Large inherent diodes formed by the drain surfaces of ACL output transistors provide protection and allow discharges up to 2kV to be sustained without damage to outputs.

ACL is Latch-up Free

Latch-up can be reduced by the use of extensive guard rings, but at the expense of increased chip area. In our ACL family, we've completely eliminated latch-up by growing the high-resistivity popitaxial layer on a very low-resistivity popitaxial layer on a very low-resistivity popitary ransistors from being forward biased. This, plus proprietary layout rules and process parameters that even further reduce the

gain of the parasitic bipolar transistors, means that our ACL ICs are completely latch-up free.

We've subjected our ACL ICs to latch-up tests with ratings far exceeding those specified by JEDEC. In no case did latch-up occur. For example, input/outputs can withstand currents as high as 100mA DC or 450mA pulsed. V_{CC} breakdown for ACL ICs doesn't occur until a supply current of 6.8mA; this requires a supply voltage of more than 21V. After breakdown, the supply voltage always snaps back to a level far greater than the maximum operating supply voltage. So, latch-up will not occur in the event of severe supply over voltage.

74ACT - FOR INTERFACING

Since the entire type range of ACL ICs is also available in 74ACT versions, it is easy to drive ACL from ALSTTL, ASTTL or FAST-TTL outputs without using power consuming pull-up resistors at the bipolar logic outputs to maintain adequate noise margins.

All the advantages previously described for 74AC ICs naturally also apply to the 74ACT versions. The only differences are that the propagation delay is slightly longer and the nominal supply voltage

and the input structure of the 74ACT types have been modified to match TTL characteristics. The modified input structure not only adapts to TTL input switching levels, but also reduces power consumption when a minimum TTL High output level of 2.4V is applied to a 74ACT input.

For TTL compatibility, the supply voltages for 74ACT ICs is 5V ±10%. Unlike 74AC ICs which have an input switching threshold of 50% of V_{CC} , the input switching threshold of 74ACT types is 1.5V and the inputs switch between the same levels as TTL (V_{ILmax}=0.8V, V_{I-lmin}=2V). The temperature sensitivity of the input switching threshold, however, is only ±60mV over the entire temperature range, so the noise margins also remain very stable over the temperature range. With a 4.5V supply and an output current of 50µA (50) ACL inputs), a 74ACT output swings between 0.1V and V_{CC}-0.1V. With the maximum output current of 24mA, it swings between 0.5V and V_{CC}-0.8V. So, for a 74ACT IC with a 4.5V supply driving fifty ACL inputs, the noise margins are 53% of $\rm V_{CC}$ (High) and 15.5% of $\rm V_{CC}$ (Low). For a similar LSTTL IC, they would be only 15% of $V_{\rm CC}$ (High and 8% of $V_{\rm CC}$ (Low). Even when a 74ACT IC is deliver ing 24mA, the noise margins are 42% of V_{CC} (High) and 6.6% of V_{CC} (Low).

ADVANCED TECHNOLOGY MAKES IT POSSIBLE

The 10-mask ACL construction is a result of our continuing development program to enhance the proven polycrystalline silicon (polysilicon) gate CMOS process. It incorporates several technological innovations for increasing packing density, speed, and reliability.

The twin-well p'/n' structure and doublelayer metal interconnects allow a high packing density which will also facilitate development of future MSI/LSI circuitry.

Three main features contribute to the exceptionally high speed of ACL. Firstly, the effective length of the transistor gate is only 1µm, resulting in an on-chip propagation delay of only 0.5ns. Secondly, there is a self-aligning titanium disilicide (salicide) layer on the source gate and drain to reduce series resistance and to reduce contact resistance between the 2-layer metal interconnects and the junctions. Thirdly, oxidation of the sidewalls of the gate minimizes the gate/source and gate/drain capacitances.

Reliability is assured by using copperdoped aluminum on tungsten interconnects to achieve high resistance to electromigration. A very thin titanium layer below the tungsten promotes adhesion to

SAFE DRIVING-INTERFACE REQUIREMENTS

Safe driving-interface req	equirements TO					
	HC/AC 5V supply	HCT/ACT 5V supply	HE4000B 5V supply	HE4000B 6-15 V supply	TTL* 5V supply	ECL 10K
HC/AC 5V supply	direct	direct	direct	4104	direct	10124
HCT/ACT 5V supply	direct	direct	direct	4104	direct	10124
HE4000B 5V supply	direct	direct	direct	4104	direct	10124
HE4000B 6-15V supply	4049 or 4050	4049 or 4050	4049 or 4050	direct	4049 or 4050	transistor
TTL* 5V supply	pull-up resistor	direct	pull-up resistor	4104	direct	10124
ECL 10K	10125	10125	10125	transistor	10124	direct

NOTES:

direct = without interface components

4104 = Low-to-High level shifters from the HE4000B family

10124 = TTL to ECL translator from the ECL 10K and 100K families

10125 = ECL to TTL translator from the ECL 10K and 100K families

4049/4050 = High-to-Low level shifters from the HE4000B family

the underlying oxide. Furthermore, a pepitaxial layer on a low-resistivity p+ substrate results in a high degree of latch-up immunity.

NEW PINOUTS FOR ACL ADD RELIABILITY AND SIMPLIFY DESIGN

The fast rise and fall times associated with high speed logic can lead to noise problems when one or more outputs of an IC switch from one logic state to another. As shown in Figure 3 this discharges the load capacitances through the internal supply pin inductance, thereby causing a transient that lifts up the on-chip ground and reduces the effective supply voltage to the chip. The problems are particularly severe in CMOS logic in which the outputs can switch almost from one supply rail to the other. Referred to as simultaneous switching noise, the transient appears on any unswitched output(s) of the switching IC and has a peak amplitude directly proportional to the number of outputs simultaneously switched and to the internal inductance associated with the IC supply connections. This lifting up of the GND and consequent reduction of V_{CC} levels degrades system reliability by reducing noise margins, reducing speed, causing loss of stored data and causing false switching.

it is a common misconception that supply decoupling capacitors located adjacent to each IC will eliminate simultaneous output switching transients. The output capacitance discharge noise is related to the absolute inductance of the supply connection between the chip in the IC and the external supply groundplane. Since multilayer boards provide excellent supply and groundplanes, improvement can only be achieved by manufacturers taking measures to reduce the supply lead inductances within the IC. Supply line decoupling should be similar to that used for TTL systems operating at comparable speed.

In the early days of integrated logic, IC manufacturers were forced to position the supply pins at diagonally opposite corners of the package because of layout restrictions imposed by single-sided print-boards which were in universal use at that time. However, in today's world of double-sided and multilaver print-boards and much faster logic, placing the supply pins at diagonally opposite corners of the package where the long bonding wire's and lead frame segments have the maximum inductance can no longer be considered to be good engineering practice because it's the worst possible positioning from the point of view of simultaneous switching noise. So, for our ACL ICs, we've decided that optimum reliability is far more important than pin compatibility with TTL, and we've relocated the GND and V_{CC} pins; 16-pin ICs with 3 or 4 outputs have two GND pins and two V_{CC} pins; 20, 24 and 28-pin ICs with 3 or more

outputs have four GND pins and two $\mathbf{V}_{\mathbf{CC}}$ pins.

Tests performed on our octal ACL ICs with the new pinning reveal that, when seven outputs are simultaneously switched from High to Low, the amplitude of simultaneous switching noise stays well below the Low input switching level and is only about 35% of that for an IC with comer GND and V_{CC} pins.

We've also rationalized the positioning of the I/O and control pinning of ACL ICs as shown in Figure 4. All the inputs surround the V_{CC} pin(s) on the side of the package with the highest pin numbers, and all the outputs surround the GND pin(s) on the other side of the package. The control pins are strategically placed at the corners of the package. This ACL flowthrough architecture, which is used for all ACL ICs in both DIP and SO packages, reduces the total inductance of outputs (bonding wire plus lead frame and output pin) between the chip and the pcb tracks. It also facilitates positioning of decoupling components, simplifies pcb design and fault-finding, and decreases the area of pcb required.

1-7

Numeric Index

TYPE NO.	NO. OF PINS	DESCRIPTION	CLASSIFI- CATION	PAGI
74AC/ACT11000	16	Quad 2-Input NAND Gate	SSI	5-
74AC/ACT11002	16	Quad 2-input NOR Gate	SSI	5-
74AC/ACT11004	20	Hex Inverter	SSI	5-1
74AC/ACT11008	16	Quad 2-Input AND Gate	SSI	5-1
74AC/ACT11010	16	Triple 3-input NAND Gate	SSI	5-1
74AC/ACT11011	16	Triple 3-Input AND Gate	SSI	5-2
74AC/ACT11013	14	Dual 4-Input NAND Schmitt-Trigger	SSI	5-2
74AC/ACT11014	20	Hex Inverter Schmitt-Trigger	SSI	5-3
74AC/ACT11020	14	Dual 4-Input NAND Gate	SSI	5-3
74AC/ACT11021	14	Dual 4-Input AND Gate	SSI	5-3
74AC/ACT11027	16	Triple 3-Input NOR Gate	SSI	5-4
74AC/ACT11030	14	8-Input NAND Gate	SSI	5-4
74AC/ACT11032	16	Quad 2-input OR Gate	881	5-5
'4AC/ACT11034	20	Hex Non-Inverter	SSI	5-69
74AC/ACT11074	14	Dual D-Type Flip-Flop w/Set and Reset; Positive-Edge Trigger	981	5-6
74AC/ACT11086	16	Quad 2-Innut Exclusive-OR Gate	COL	5-ei
74AC/ACT11109	16	Dual J-K Filip-Flop w/Set and Reset; Positive-Edge Trigger	122	5-7
74AC/ACT11112	.16	Dual J-K Flip-Flop w/Set and Reset; Negative-Edge Trigger	MSI	5-7
74AC/ACT11132	16	Quad 2-input NAND Schmitt-Trigger	122	5-8
74AC/ACT11138	16	3-to-8 Line Decoder/Demultiplexer; Active-Low	Mei	5-8
74AC/ACT11139	16	Duai 2-to-4 Line Decoder/Demultiplexer; Active-Low	MOI	
74AC/ACT11151	16	8-Input Multiplexer	MOI	5-9
74AC/ACT11153	16	Dual 4-Input Multiplexer	MOI	2-6
74AC/ACT11157	20	Qued 2-input Multiplexer	MQ1	
74AC/ACT11158	20	Quad 2-input Multiplexer, INV	MS	
74AC/ACT11160	20	Synchronous Presettable Synchronous BCD Decade Counter; Asynchronous Reset	MSI	5-10
74AC/ACT11161	20	Synchronous Presettable Synchronous 4-Bit Binary Counter; Asynchronous Reset	MSI	5-10
74AC/ACT11162	20	Synchronous Presettable Synchronous BCD Decade Counter; Synchronous Reset	MSI	
74AC/ACT11163	20	Synchronous Presettable Synchronous 4-Bit Binery Counter; Synchronous Reset	MS	5-11
74AC/ACT11168	20	Synchronous Up/Down BCD Decade Counter		
74AC/ACT11169	20	Synchronous Presettable 4-Bit Up/Down Binary Decade Counter	MSI	
74AC/ACT11174	20	Hex D-Type Filip-Flop w/Reset; Positive-Edge Trigger	MSI	
74AC/ACT11175	20	Quad D-Type Flip-Flop w/Reset; Positive-Edge Trigger	MSI	
74AC/ACT11181	28	4-Bit Arithmetic Logic Unit	MSI	5-12
74AC/ACT11190	20	Asynchronous Presettable Synchronous Decade Up/Down Counter w/Single Clock	MSI	•
74AC/ACT11191	20	Asynchronous Presettable Synchronous 4-Bit Binary Up/Down Counter w/Single Clock	MSI	5-13
74AC/ACT11192	20	Asymptomous Presentable Synchronous 4-Bit Binary Up/Down Courter W/Single Clock	MS	5-14
74AC/ACT11193	20	Asynchronous Presettable Synchronous BCD Decade Up/Down Counter w/Dual Clock	MSI	•
74AC/ACT11194	20	Asynchronous Presettable Synchronous 4-Bit Binary Up/Down Counter w/Dual Clock	MSI	•
74AC/ACT11194 74AC/ACT11238	16	4-Bit Bidirectional Universal Shift Register	MSI	5-153
74AC/ACT11239	16	3-to-8 Line Decoder/Demultiplexer; Active-High	MSI	5-16
74AC/ACT11239	24	Dual 2-to-4 Line Decoder/Demultiplexer; Active-High	MSI	-
74AC/ACT11240	24	Octal Buffer/Line Driver, INV (3-State)	MSI	5-16
74AC/ACT11241	24	Octal Buffer/Line Driver (3-State)	MS	5-17
	24	Gctal Buffer/Line Driver (3-State)	MSI	5-17
74AC/ACT11245		Octal Transceiver w/Direction Pin (3-State)	MSI	5-17
4AC/ACT11251	16	8-Input Multiplexer (3-State)	MSI	5-18
'4AC/ACT11253	16	Dual 4-Input Multiplexer (3-State)	MS	5-18
74AC/ACT11257	20	Quad 2-Input Multiplexer (3-State)	MSI	5-19
4AC/ACT11258	20	Quad 2-Input Multiplexer, INV (3-State)	MSI	5-20
4AC/ACT11269	28	Synchronous Presettable 8-Bit Binary Up/Down Counter	MSI	
4AC/ACT11280	14	9-Bit Odd/Even Parity Generator/Checker	MCI	5-20
4AC/ACT11286	14	9-Bit Odd/Even Parity Generator/Checker w/Bus Drive I/O Port	MSI	5-21
4AC/ACT11299	24	8-Input Universal Shift/Storage Register w/Asynchronous Reset and Common I/O Pins	MSI	1
74AC/ACT11323	24	8-Input Universal Shift/Storage Register w/Synchronous Reset and Common I/O Pins	MSI	1
74AC/ACT11352	16	Dual 4-Input Multiplexer, INV	MOI	i

TYPE NO.	NO. OF PINS	DESCRIPTION	CLASSIFI- CATION	PAGE
74AC/ACT11353	16	Dual 4-Input Multiplexer, INV (3-State)	MSI	5-218
74AC/ACT11373	24	Octol D.Tune Transparent Latch (3-State)		5-224
74AC/ACT11374	24	Octal D-Type Flin-Floo Positive-Edge Trigger: 3-State	MSI	5-231
74AC/ACT11378	20	Hey D-Type Flin-Flon w/Enable: Positive-Edge Trigger	MSI	†
74AC/ACT11379	20	Ouad D. Type Flip-Flop w/Data Enable	,MSI	t
74AC/ACT11520	20	8. Bit Monthly Comparator w/Input Pull-Up	MS	5-237
74AC/ACT11521	20	8-Rit Identity Comparator	MSI	5-242
74AC/ACT11533	24	Octol D. Tune Transparent Latch INV (3-State)	MSI	5-247
74AC/ACT11534	24	Octal D. Time Flin-Flor: Positive-Frine Trigger, INV (3-State)	MS	5-254
74AC/ACT11568	24	Sunch Presettable RCD Decade Up/Down Counter w/Synch, and Asynch, Reset	MS	1
74AC/ACT11569	24	Synch Presettable 4-Rit Rinary Llo/Down Counter w/Synch. and Asynch. Reset	MSI	1
74AC/ACT11579	24	8. Bit Binary Lln/Down Counter w/Common I/O Pins; Synch, and Asynch, Reset (3-Sti	ate) MSI	1
74AC/ACT11579	24	Octol Transceiver w/Dusi Enable: 3-State, INV	MS	1
74AC/ACT11620	24	Outsi Transpoiser w/Dust Enable (3-State)	MSI	1
	24	Octal Transceiver w/Direction Pin. INV (3-State)	MSI	5-280
74AC/ACT11640	24	Octol Transcelver (3-State): True/INV	MSI	1
74AC/ACT11643	28	Octal Transceiver/Register w/Direction Pin (3-State)	MSI	1
74AC/ACT11646	28	Octal Transceiver/Register w/Direction Pin, INV (3-State)	MSI	1
74AC/ACT11648		Octal Transceiver/Register w/Dual Enable, INV (3-State)	MSI	-
74AC/ACT11651	26	Octal Transcriver/Register w/Dual Enable (3-State)	MSI	•
74AC/ACT11652	28	Octal Transceiver w/8-Bit Parity Checker/Generator	MSI	4
74AC/ACT11657	28	Quad 2-input Exclusive-NOR Gate	SSI	5-26
74AC/ACT11810	16	8-Bit Diagnostic/Pipe-Line Register	MSI	
74AC/ACT11818	28	8-Bit Diagnostic/Pipe-Line Hegister	MS	
74AC/ACT11819	28	8-Bit Diagnostic/Pipe-Line Register w/Parity Even Output	1481	
74AC/ACT11821	28	10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State)	MOI	
74AC/ACT11822	28	10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State): , INV	IOM	
74AC/ACT11823	28	9-Wide D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger (3-State)	MOI	
74AC/ACT11824	28	9-Wide D-Type Flip-Flip w/Reset and Enable; Positive-Edge Trigger, INV (3-State)	WO	
74AC/ACT11825	28	Octal D-Type Filp-Flop w/Reset and Enable; Positive-Edge Trigger (3-State)	MOI	
74AC/ACT11826	28	Octal D-Type Flip-Flop w/Reset and Enable; Positive-Edge Trigger, INV (3-State)	MQ	
74AC/ACT11827	28	10-Wide Buffer/Line Driver (3-State)	MOI	
74AC/ACT11828	28	10-Wide Buffer/Line Driver, INV (3-State)		
74AC/ACT11833	28	8-Bit Transceiver w/9-Bit Parity Checker/Generator and Error Flip-Flop	MSI	
74AC/ACT11834	28	8-Bit, INV Transceiver w/9-Bit Parity Checker/Generator and Error Flip-Flop	MSI	
74AC/ACT11843	28	10-Wide D-Type Transparent Latch (3-State)	MSI	
74AC/ACT11842	28	10-Wide D-Type Transparent Latch, INV (3-State)	MSI	
74AC/ACT11843	28	9-Wide D-Type Transparent Latch w/Set and Reset (3-State)	MSI	
74AC/ACT11844	28	9-Wide D-Type Transparent Latch w/Set and Reset, INV (3-State)	MSI	
74AC/ACT11845	28	Octal D-Type Transparent Latch w/Set and Reset (3-State)	MSI	
74AC/ACT11846	28	Octal D-Type Transparent Latch w/Set and Reset, INV (3-State)	MSI	
74AC/ACT11853	28	8-Bit Transceiver w/9-Bit Parity Checker/Generator and Error Flag Latch	MSI	
74AC/ACT11854	28	8-Bit INV Transceiver with 9-Bit Parity Checker/Generator and Error Fleg Latch		
74AC/ACT11861	28	10-Wide Transceiver (3-State)		
74AC/ACT11862	28	10-Wide Transceiver (3-State): , INV		
74AC/ACT11863	28	9-Wide Transceiver: 3-State	MSI	
74AC/ACT11864	28	9-Wide Transceiver, INV (3-State)	MSI	
74AC/ACT11873	28	Dual D-Type 4-Bit Transparent Latch w/Reset (3-State)	MSI	
74AC/ACT11874	28	Dual D-Type 4-Bit Filip-Flop Latch w/Reset (3-State)	MSI	
74AC/ACT11881	28	4-Bit Arithmetic Logic Unit w/Status Check Register	MSI	
74AC/ACT11882	28	32-Rit Look-Ahead Carry Generator	MS	
74AC/ACT11898	20	10-Bit Serial-In Parallel-Out Shift Register	MOL	5-2

April 1988

[†] For more information on these devices contact your local sales organization; see addresses on back cover.
1988

Functional Index

ACL 74AC/ACT11XXX FAMILY

Type numbers have a suffix which signifies the type of peckage: N = Plastic DIP; D = Plastic Surface Mount Device

TYPE NO.	NO. OF PINS	DESCRIPTION CLASSIFI-	PAGI
NAND/NOR Gates		CATION	
74AC/ACT11000	16	Quad 2-input NAMD Coto	
74AC/ACT11002	16	Quad 2-Input NAND Gate	5-3
74AC/ACT11010	16		5-7
74AC/ACT11013	14		5-19
74AC/ACT11020	14		5-27
74AC/ACT11027	16		5-35
74AC/ACT11030	14		5-43
74AC/ACT11132	16		5-47
	••	Quad 2-input NAND Schmitt Trigger	5-84
AND/OF Gates			
74AC/ACT11008	16	Quad 2-Input AND Gate	7
74AC/ACT11011	16	Quad 2-input AND Gate	5-15
74AC/ACT11021	14	Triple 3-input AND Gate SSI	5-23
74AC/ACT11032	16		5-39
74AC/ACT11086	16		5/51
74AC/ACT11810	16	Quad 2-input Exclusive-OR Gate	5-66
		Quad 2-Input Exclusive-NOR GateSS	5-284
nveriers/Buillers/L	ine Drive	**	
74AC/ACT11004	20	Hex Inverter	
'4AC/ACT11014	20	Hex Inverter Schmitt Trioner	5-11
'4AC/ACT11034	20	Hex Non-Inverter Schmitt Trigger	5-31
'4AC/ACT11240	24	Hex Non-Inverter	5-55
'4AC/ACT11241	24	Octal Buffer/Line Driver, INV (3-State)	5-167
4AC/ACT11244			5-171
4AC/ACT11827			5-175
4AC/ACT11828		10-Wide Buffer/Line Driver (3-State)	†

[†] For more information on these devices contact your local sales organization; see addresses on back cover.

April 1988

1-10

ACL 74AC/ACT11XXX FAMILY

Type numbers have a suffix which signifies the type of package: N = Plastic DIP; D = Plastic Surface Mount Device

TYPE NO.	NO. OF PINS	DESCRIPTION CATION	PAGE
Flip-Flops/Latcher	•		
74AC/ACT11074	14	Duai D-Type Flip-Flop with Set and Reset; Positive-Edge TriggerSSI	5-59
74AC/ACT11109	16	Duel LK Flin-Flop with Set and Reset: Positive-Edge Trigger	5-70
74AC/ACT11112	16	Trial I-K Fire-Floo with Set and Reset: Negative-Edge TriggerMSI	5-77
74AC/ACT11174	20	Hay D-Type Flin-Flon with Reset: Positive-Edge TriggerMSI	T
74AC/ACT11175	20	Ouad D-Type Flin-Flon with Reset: Positive-Edge Trigger	5-124
74AC/ACT11373	24	Octal D-Type Transparent Latch (3-State)	5-224
74AC/ACT11374	24	Octal D-Type Flip-Flop: Positive-Edge Trigger (3-State)	5-231
74AC/ACT11374	20	Hey D. Tyne Flin-Flon with Enable: Positive-Edge Trigger	T
74AC/ACT11379	20	Guert D-Type Flip-Flop with Data Enable	T
74AC/ACT11578	24	Octal D-Type Transparent Latch, INV (3-State)	5-247
74AC/ACT11535	24	Octal D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State)	5-254
74AC/ACT11834 74AC/ACT11821	28	10-Wide D-Type Flip-Flop; Positive-Edge Trigger (3-State)	1 1
	28	10-Wide D-Type Flip-Flop; Positive-Edge Trigger, INV (3-State)MS	1
74AC/ACT11822	28	9-Wide D-Type Flip-Flop with Reset and Enable; Positive-Edge Trigger (3-State)MS	. 1
74AC/ACT11823	28	9-Wide D-Type Flip-Flop with Reset and Enable; Positive-Edge Trigger, INV (3-State)MS	1
74AC/ACT11824	28 28	Octal D-Type Filip-Flop with Reset and Enable; Positive-Edge Trigger (3-State)MS	1
74AC/ACT11825		Octal D-Type Flip-Flop with Reset and Enable; Positive-Edge Trigger, INV (3-State)	1
74AC/ACT11826	28	10-Wide D-Type Transparent Latch (3-State)	i 1
74AC/ACT11841	28	10-Wide D-Type Transparent Latch, INV (3-State)	
74AC/ACT11842	28	9-Wide D-Type Transparent Latch with Set and Reset (3-State)	i
74AC/ACT11843	28	9-Wide D-Type Transparent Latch with Set and Reset, INV (3-State)	
74AC/ACT11844	28	Octal D-Type Transparent Latch with Set and Reset (3-State)) 1
74AC/ACT11845	28	Octal D-Type Transparent Latch with Set and Reset, INV (3-State)	
74AC/ACT11846	28	Dual D-Type 4-Bit Transparent Latch with Reset (3-State)	
74AC/ACT11873	28	Dual D-Type 4-Bit Transparent Latch with Placet (3-State)	
74AC/ACT11874	28	Dual D-Type 4-Bit Flip-Flop Latch with Reset (3-State)	"
Registers			
74AC/ACT11194	20	4-Bit Bidirectional Universal Shift Register	H 5-15
74AC/ACT11299	24	8-Input I Iniversal Shift/Storage Register with Asynchronous Reset and Common I/O PinsMS	Si .
74AC/ACT11323	24	A-Janut Liniversal Shift/Storage Register with Synchronous Reset and Common I/O Pins MS	SI .
74AC/ACT11818	28	8. Bit Disconstic/Pine-Line Recister	šl
74AC/ACT11819	28	8-Bit Diagnostic/Pine-Line Register with Parity Even Output	SI .
74AC/ACT11898	20	10-Bit Serial-in Parallel-Out Shift Register	SI 5-26
Arithmetic Circu		10 Dit World IV Didney out wind to grant	
74AC/ACT11181	28	4-Bit Arithmetic Logic UnitMS	SI
74AC/ACT11280	14	Q.Rit Odd/Even Parity Generator/Checker	5-20
74AC/ACT11286	14	9-Bit Orld/Even Parity Generator/Checker with Bus Drive I/O Port	SI 5-21
74AC/ACT11200	20	8-Bit Identity Comparator with Input Pull-Up	5-23
74AC/ACT11520	20	8-Bit Identity Comparator	SI 5-24
	28	4-Bit Arithmetic Logic Unit with Status Check Register	SI
74AC/ACT11881 74AC/ACT11882	28	32-Bit Look-Ahead Carry Generator	SI

1-11

[†] For more information on these devices contact your local sales organization; see addresses on back cover.

ACL 74AC/ACT11XXX FAMILY

Type numbers have a suffix which signifies the type of package:

N = Plastic DIP; D = Plastic Surface Mount Device

TYPE NO.	NO. OF PINS	DESCRIPTION CLASSIFI- CATION	PAGE
Counters			
74AC/ACT11160	20	Synchronous Presettable Synchronous BCD Decade Counter; Asynchronous ResetMSi	
74AC/ACT11161	20	Synchronous Presettable Synchronous 4-Bit Binary Counter; Asynchronous ResetMSI	5-105
74AC/ACT11162	20	Synchronous Presettable Synchronous BCD Decade Counter, Synchronous ResetMSI	+
74AC/ACT11163	20	Synchronous Presettable Synchronous 4-Bit Binary Counter; Synchronous Reset	5-115
74AC/ACT11168	20	Synchronous Up/Down BCD Decade Counter	t
74AC/ACT11169	20	Synchronous Presettable 4-Bit Up/Down Binary Decade Counter	†
74AC/ACT11190 .	20	Asynchronous Presettable Synchronous Decade Up/Down Counter with Single Clock	_ †
74AC/ACT11191	20	Asynchronous Presettable Synchronous 4-Bit Binary Up/Down Counter with Single ClockMSI	,5-131
74AC/ACT11192	20	Asynchronous Presettable Synchronous BCD Decade Up/Down Counter with Dual ClockMSI	5-142
74AC/ACT11193	20	Asynchronous Presettable Synchronous 4-Bit Binary Up/Down Counter with Dual ClockMSI	†
74AC/ACT11269	28	Synchronous Presettable 8-Bit Binary Up/Down Counter with Dual ClockMSI	†
74AC/ACT11568	24	Sync. Presettable BCD Decade Up/Down Counter with Synch. and Asynch. ResetMSI	†
74AC/ACT11569	24	Synch. Presettable 4-Bit Binary Up/Down Counter with Synch. and Asynch. Reset	1. 1
74AC/ACT11579	24	Discount Counter with Common I/O Pins; Synch. and Asynch. Reset (3-State) MSI	†
Multiplexers		and the second s	
74AC/ACT11151	16	8-Input Multiplexer	
74AC/ACT11153	16	Dual 4-Input Multiplexer MSI	5-94
74AC/ACT11157	20	Quad 2-Input Multiplexer MSI	†
74AC/ACT11158	20	Quad 2-Input Multiplexer, INV	ť
74AC/ACT11251	16	8-Input Multiplexer (3-State) MSI	5-100
74AC/ACT11253	16	Dual 4-Input Multiplexer (3-State) MSI	5-183
74AC/ACT11257	20	Chief 2-Input Multiplease (3-State)	. 5-189
74AC/ACT11258	20	Quad 2-Input Multiplexer (3-State) MSI Quad 2-Input Multiplexer (3-State) MSI	5-195
74AC/ACT11352	16	Quad 2-Input Multiplexer, INV (3-State)	5-201
74AC/ACT11353	16	Dual 4-Input Multiplexer, INV MSI Dual 4-Input Multiplexer, INV (3-State) MSI	† 5-218
Decoder/Demultip	lexers		
74AC/ACT11138	16	Rate-9 Line Decoder/Demolishers Astronton	
74AC/ACT11139	16	3-to=8 Line Decoder/Demultiplexer; Active-Low	5-88
74AC/ACT11238	16	Dual 2-to-4 Line Decoder/Demultiplexer; Active-Low MSI	†
74AC/ACT11239		3-to-8 Line Decoder/Demultiplexer; Active-High	5-161
		Dual 2-to-4 Line Decoder/Demuttiplexer; Active-High MSI	, †
MAC/ACT11245			
	24	Octal Transceiver with Direction Pin (3-State)	5-109
74AC/ACT11620	24	Octal Transceiver with Dual Enable, INV (3-State)	+
4AC/ACT11623	67	Octair Hansceiver with Dual Engine (3-State)	÷
4AC/ACT11640	67	UGBI TRITISCEIVER WITH Direction Pin. INV (3-State)	5-260
4AC/ACT11643	44	Octal Fransceiver (3-State): Frue/INV	†
'4AC/ACT11646	20	Octal Hanscerver/Hedister with Direction Pin (3.State)	· · · ‡
4AC/ACT11648	20	Octal Transceiver/Hedister with Direction Pin IAW (3.Stets)	÷
'4AC/ACT11651	40	Ocial Transceiver/Hedister with Dual Enable, INV (3, State)	÷
4AC/ACT11652	20	Octal Hansceiver/Hedister with Dual Enable (3-State)	+
4AC/ACT11657	20	Octal Transceiver with 8-Bit Panty Checker/Generator	Ť
'4AC/ACT11833	20	o-bit Iransceiver with 9-Bit Parity Checker/Generator and Error File-File	÷
4AC/ACT11834	40	0-bit INV Transceiver with 9-bit Parity Checker/Generator and Error Elia Elan 401	+
4AC/ACT11853	20	0-Dit 1780SCBWBF With 9-Bit Parity Charker/Generator and Error Class Lates	ì
4AC/ACT11854	20	5-bit INV Transceiver with 9-bit Parity Checker/Generator and Error Floo 1 stob	+
4AC/ACT11861	20	10-Wide Hansceiver (3-State)	+
	28	10-Wide Transceiver, INV (3-State)	
4AC/ACT11862		Mei	+
4AC/ACT11862 4AC/ACT11863 4AC/ACT11864	20	9-Wide Transceiver (3-State) MSI 9-Wide Transceiver, INV (3-State) MSI	†

[†] For more information on these devices contact your local sales organization; see addresses on back cover. 1-12

April 1988

ACL 74AC/ACT11XXX FAMILY

Type numbers have a suffix which signifies the type of package: N = Plastic DIP; D = Plastic Surface Mount Device

TYPE NO.	NO. OF PINS	DESCRIPTION CLASSIFI- CATION	PAGE
Schmitt-Triggers			
74AC/ACT11013	14	Dual 4-Input NAND Schmitt-Trigger	5-27
74AC/ACT11014	20	Hex Inverter Schmitt TriggerSSI	5-31
74AC/ACT11132	16	Quad 2-Input NAND Schmitt TriggerSSI	5-84

[†] For more information on these devices contact your local sales organization; see addresses on back cover.

April 1988

1-13

Ordering Information

TYPE NUMBER DESIGNATIONS

April 1988

Section 2 Quality And Reliability

Quality And Reliability

SIGNETICS LOGIC PRODUCTS

Signetics has put together a winning process for manufacturing Logic Products. Our standard is zero defects, and current customer quality statistics demonstrate our commitment to this goal.

The products produced in the Standard Products Division must meet rigid criteria as defined by our design rules and evaluated with a thorough product characterization and quality process. The capabilities of our manufacturing process are measured and the results evaluated and reported through our corporate-wide QA05 data base system. The SURE (Systematic And Uniform Reliability Evaluetion) Program monitors the performance of our product in a variety of accelerated environmental stress conditions. All of these programs and systems are intended to prevent problems and to inform our customers and employees of our progress in achieving zero detects.

RELIABILITY BEGINS WITH THE DESIGN

Quality and reliability must begin with deelgn. No amount of extra testing or inspection will produce reliable ICs from a deelgn that is inherently unreliable. Signetics follows very strict design and layout practices with its circuits. To eliminate the possibility of metal migration, current density in any path cannot exceed 2 × 10⁵ A/cm². Layout rules are followed to minimize the possibility of shorts, circuit anomalies, and SCR type latch-up effects. Numerous ground-to-substrate connections are required to ensure that the entire chip is at the same ground potential, thereby precluding internal noise problems.

PRODUCT CHARACTERIZATION

Before a new design is released, the characterization phase is completed to ensure that the distribution of parameters resulting from lot-to-lot variations is well within specified limits. Such extensive characterization data also provides a basis for identifying unique application-related problems which are not part of normal data sheet guarantees. Characterization takes place from -55°C to +125°C and at ±10% supply voltage.

QUALIFICATION

Formal qualification procedures are required for all new or changed products, processes, and facilities. These procedures ensure the high level of product reliability our customers expect. New facilities are qualified by corporate groups as well as by the qualify organizations of specific units that will operate in the facility. After qualification, products manufactured by the new facility are subjected to highly accelerated environmental stresses to ensure that they can meet rigorous failure rate requirements. New or changed processes are similarly qualified.

QA05 - QUALITY DATA BASE REPORTING SYSTEM

The QA05 data reporting system collects the results of product assurance testing on all finished lots and feeds this data back to concerned organizations where appropriate action can be taken. The QA05 reports EPQ (Estimated Process Quality) results for electrical, visual/mechanical, hermeticity, and documentation audits. Data from this system is available on request.

THE SURE PROGRAM

The SURE (Systematic And Uniform Reliability Evaluation) Program audits/monitors products from all Signetics' divisions under a variety of accelerated environmental stress conditions. This program, first introduced in 1964, has evolved to suit changing product complexities and performance requirements.

The SURE Program has two major functions: Long-term accelerated stress performance audit and a short-term accelerated stress monitor. In the case of Logic products, semples are selected that represent all generic product groups in all wafer fabrication and assembly locations.

THE LONG-TERM AUDIT

One hundred devices from each generic family are subjected to each of the following stresses every eight weeks:

- High Temperature Operating Life:
 T_J = 150°C, 1000 hours, static biased or dynamic operation, as appropriate (worst case bias configuration is chosen)
- High Temperature Storage: T_J = 150°C, 1000 hours
- Temperature Humidity Blased Life: 85°C, 85% relative humidity, 1000 hours, szátic biesed
- Temperature Cycling (Air-to-Air): -85°C to +150°C, 1000 cycles

THE SHORT-TERM MONITOR

Every other week a 50-piece sample from each generic family is run to 166 hours of pressure pot (15petg, 121°C, 100% saturated steam) and 300 cycles of thermal shock (-65°C to +150°C)

In addition, each Signetics assembly plant performs SURE product monitor stresses weekly on each generic family and molded package by pin count and frame type. Fiftypiece samples are run on each stress, pressure pot to 96 hours, thermal shock to 300 cycles.

SURE REPORTS

The data from these test matrices provides a basic understanding of product capability, an indication of major failure mechanisms, and an estimated failure rate resulting from each stress. This data is published quarterly and is available to customers upon request.

Many customers use this information in fieu of running their own qualification tests, thereby eliminating time-consuming and coetly additional setting.

Quality And Reliability

RELIABILITY ENGINEERING

In addition to the product performance monitors encompassed in the corporate SURE Program, Signetics' Corporate and Division Reliability Engineering departments sustain a broad range of evaluation and qualification activities.

The engineering process includes:

- Evaluation and qualification of new or changed materials, assembly/water-tab processes and equipment, product designs, facilities and subcontractors.
- Device or generic group failure rate studies.
- Advanced environmental stress development.
- Failure mechanism characterization and corrective action/prevention reporting.

The environmental streets utilized in the engineering programs are similar to those utilized for the SURE monitor; however, more highly-accelerated conditions and extended durations typify the engineering projects. Additional stress systems such as biased pressure pot, power-temperature cycling, and cycle-biased temperature-humidity, are also included in the evaluation programs.

FAILURE ANALYSIS

The SURE Program and the Reliability Engineering Program both include failure analysis activities and are complemented by corporate, divisional, and plant failure analysis departments. These engineering units provide a service to our customers who desire detailed failure analysis support, and, who in turn provide Signetics with the technical understanding of the failure modes and mechanisms actually experienced in service. This information is essential in our ongoing effort to accelerate and improve our understanding of product failure mechanisms and their prevention.

ZERO DEFECTS PROGRAM

In recent years, United States indicatry has increasingly demanded improved product quality. We at Signetics believe that the customer has every right to expect quality products from a supplier. The benefits derived from quality products can best be summed up in the words, lower cost of ownership.

Those of you who invest in costly test equipment and engineering to assure that incoming products meet your specifications have a special understanding of the cost of ownership. And your cost does not end there; you are also burdened with inflated inventories, lengthened leed times, and more rework.

SIGNETICS UNDERSTANDS CUSTOMERS' NEEDS

Signetics has long had an organization of quality professionals inside all operating units, coordinated by a corporate quality department. This broad decentralized organization provides leadership, feedback, and direction for achieving a high level of quality. Special programs are targeted on specific quality issues.

In 1980 we' recognized that in order to achieve outgoing levels on the order of 100PPM (parts per million); down from an industry practice of 10,000PPM, we needed to supplement our traditional quality programs with one that encompassed all activities and all levels of the company. Such unprecedented low defect levels could only be achieved by contributions from all employees; from the R and D laboratory to the shipping doct. In

short, we needed a program that would effect a total cultural change within Signetics in our attitude toward quality.

QUALITY PAYS OFF FOR OUR CUSTOMERS

Signetics' dedicated programs in product quality improvement, supplemented by close working relationships with many of our customers, have improved outgoing product quality more than twenty-fold since 1980. Signetics' high quality levels have allowed us a "ship-to-stock" program where many major customers no longer need to perform incoming inspection. Incoming product moves directly from the receiving dock to the production line, greatly accelerating throughput and reducing, invertories. Other customers have pared significantly the amount of sampling done on our products. Others are beginning to adopt these cost-saving practices.

We closely monitor the electrical, visual, and mechanical quality of all our products and review each return to find, and correct the cause. Since 1981, over 90% of our customers have reported a significant improvement in overall quality (see Figure 1).

At Signetics, quality means more than working circuits. It means on-time delivery of the right product at the agreed upon price (see Figure 2).

ONGOING QUALITY PROGRAM

The Quality Improvement. Program at Signetics is based on "Do it Right the First Time". The intent of this innovative program is to change the perception of Signetics' employees that somehow quality is solely a manufacturing issue where some level of defects is inevitable. This attitude has been replaced by one of acceptance of the fact that all errors and defects are preventable, a point of view shared equalty by all technical and administrative functions.

This program extends into every area of the company and more than 40 quality improvement teams throughout the organization drive its ongoing refinement and progress.

Key components of the program are the Quality Cotlege, the "Make Certain" Program, Corrective Action Teams, and the Error Cause Removal System.

The core concepts of doing it right the first time are embodied in the four absolutes of quality:

- The definition of quality is conformance to requirements.
- The system to achieve quality improvement is prevention.
- The performance standard is zero defects.
- The measurement system is the cost of quality.

QUALITY COLLEGE

Almost continuously in session, Quality College is a prerequisite for all employees. The intensive curriculum is built around the four absolutes of quality; colleges are conducted at company facilities throughout the world.

"MAKING CERTAIN" -ADMINISTRATIVE QUALITY IMPROVEMENT

Signetics' experience has shown that the largest source of errors affecting product and service quality is found in paperwork and in other administrative functions. The "Make Certain" Program focuses the attention of management and administrative personnel on error prevention, beginning with each employee's own actions.

This program promotes defect prevention in three ways: by educating employees as to the impact and cost of administrative errors, by changing attitudes from accepting occasional errors to one of accepting a personal work standard of zero defects, and by providing a formal mechanism for the prevention of errors.

CORRECTIVE ACTION TEAMS

Employees with the perspective, knowledge, and necessary skills to solve a problem are formed into ad hoc groups called Corrective Action Teams. These teams, a major force within the company for quality improvement, resolve administrative, technical and manufacturing problems.

ECR SYSTEM (ERROR CAUSE REMOVAL)

The ECR System permits employees to report to management any impediments to doing the job right the first time. Once such an impediment is reported, management is obliged to respond promptly with a corrective program. Doing it right the first time in all company activities produces lower cost of ownership through defect prevention.

VENDOR CERTIFICATION PROGRAM

Our vendors are taking ownership of their own product quality by establishing improved process control and inspection systems. They subscribe to the zero defects philosophy. Progress has been excellent.

Through intensive work with vendors, we have improved our lot acceptance rate on incoming materials as shown in Figure 3. Simultaneously, waivers of incoming material have been eliminated.

MATERIAL WAIVERS

1986 - 0

1965 --0

1984 -Ω n

1983 -

1982 -2 1981 - 134

Higher incoming quality material ensures higher outgoing quality products.

QUALITY AND RELIABILITY ORGANIZATION

Quality and reliability professionals at the divisional level are involved with all aspects of the product, from design through every step in the manufacturing process, and provide product assurance testing of outgoing product. A separate: corporate-level group provides direction and common facilities.

Quality and Reliability Functions

- Manufacturing quality control
- Product assurance testing
- Laboratory facilities failure analysis, chemical, metallurgy, thin film, oxides
- Environmental stress testing
- Quality and reliability engineering
- Customer liaison

COMMUNICATING WITH EACH OTHER

For information on Signatics' quality programs or for any question concerning product quality, the field salesperson in your area will provide you with the quickest access to answers. Or, write on your letter-head directly to the corporate director of quality at the corporate address shown at the back of this manual.

We are dedicated to preventing defects. When product problems do occur, we want to

know about them so we can eliminate their causes. Here are some ways we can help each other:

- Provide us with one informed contact within your organization. This will establish continuity and build confidence lavala
- · Periodic face-to-face exchanges of data and quality improvement ideas between your engineers and ours can help prevent problems before they occur.
- Test correlation data is very useful. Line-pull information and field failure reports also help us improve product performance.
- Provide us with as much specific data on the problem as soon as possible to speed analysis and enable us to take corrective action.
- An advance sample of the devices in question can start us on the problem resolution before physical return of shipment.

This team work with you will allow us to achieve our mutual goal of improved product quality.

MANUFACTURING: DOING IT RIGHT THE FIRST TIME

In dealing with the standard manufacturing flows, it was recognized that significant improvement would be achieved by "doing every job right the first time", a key concept of the Quality Improvement Program. During the development of the program many profound changes were made. Figure 4, Logic Products Generic Process Flow, shows the result. Some of the other changes and additions were to tighten the outgoing QA lot acceptance criteria to the tightest in the industry, with zero defect lot acceptance sampling across all three temperatures.

The achievements resulting from the improved process flow have helped Signetics to be recognized as the leading Quality supplier of Logic products. These achievements have also led to our participation in several Ship-to-Stock programs, which our customers use to eliminate incoming inspection. Such programs reduce the user cost of ownership by saving both time and money.

Quality And Reliability

Quality And Reliability

QUALITY AND RELIABILITY

As time goes on, the drive for ZERO DE-FECTS will grow in intensity. As we approach this goal, new measurement tools are required. Statistical Process Control (SPC) will be the approach Signetics uses to further our drive towards ZERO DEFECTS. These efforts will provide both Signetics and their customers with the ability to achieve the mutual goal of improved product quality.

SPC

Application of statistics activities goes back to the early 1970s. Corporate-wide emphasis, however, did not come about until mid-1984. Emphasis was then shifted from a sporadic and uncoordinated effort to a coordinated and disciplined approach. This shift in emphasis came about for two primary reasons:

- Customera' realization of importance and relevance of SPC to quality and reliability issues; and
- A natural evolution of our quality process made introduction of SPC and other related programs an inevitable event.

Objective

The objective of the SPC Program is to introduce a systematic and scientific approach to business and manufacturing activities. This approach utilizes sound statistical theory. Managers are expected to be able to turn data into information, and make decisions solely based on data.

Organization

The Vice President of Quality and Reliability with the Corporate SPC Steering Committee set directions for the company. Each operating area has a dedicated SPC Coordinator. Some areas have dedicated statisticians.

In each operating area, CiTs are responsible for quality process implementation. SPC coordinators are responsible to these teams to provide the focus needed for training and implementation.

Training

A two-day course on Crosby's 14-Step improvement program, and a one-day course on basic problem solving techniques are prerequisites to the formal SPC I (Introduction to SPC) training. The intent of SPC I is to bridge the subtle differences between Crosby's and Deming's approach to quality, emphasizing increased application of statistical methodology.

Signetics' philosophy is to do just-in-time training rather than just-in-case training. Senior management, middle management, supervisors, and operators are required to take the training courses offered in SPC. As the application of SPC evolves, training will be provided by previously trained coordinators/supervisors who will be instructed to identify and remove sources of excessive variation within their departments/areas, and to develop and maintain a permanent control system.

Conclusion

The most critical and challenging aspect of implementing SPC is establishment of a discipline within the operating areas where decision making is fundamentally based on verifiable data, and actions are clearly documentad. The other is realization of the fact that statistical tools merely point out the problems and are not solutions by themselves.

In order to implement SPC effectively, three steps must be continually used:

- Document and understand the process, using process flow charts and component diagrams.
- Establish data collection systems and use SPC tools to identify process problems and opportunities for improvement.
- Act on the process, establish guidelines to monitor and maintain process control.

Because of the nature of the SPC process, steps 1, 2, and 3 are repeated again and again. By doing this, the department/area begins to modify its day-to-day activities, making job functions and procedures more efficient and effective.

The real measure of any quality improvement program is the result that the customer sees. The meaning of Quality is more than just working circuits. It means commitment to On-Time Delivery to the Right Product, at the Right Quantity, of the Right Product, at the Agreed Upon Price.

Section 3 Family Characteristics

INDEX

Family Specifications	3-3
Data Sheet Specification Guide	3-6
Definitions and Symbols	3-8

Family Specifications

GENERAL

These family specifications cover the common electrical ratings and characteristics of the entire 74AC/ACT11XXX family, unless otherwise specified in the individual device data sheet.

INTRODUCTION

The 74AC/ACT11XXX 1µm CMOS Logic family combines the low power advantages of CMOS with the high speed and drive capability of FAST.

The basic family of devices designated as 74AC11XXX will operate at CMOS input logic levels for high noise immunity, negligible quiescent supply and input current. It is operated from a power supply of 3 to 5.5V.

A subset of the family designated as 74ACT11XXX with the same features and functions as the "AC-types" will operate at standard TTL power supply voltage (5V±10%) and logic input levels (0.8 to 2.0V).

HANDLING MOS DEVICES

Inputs and outputs are protected against electrostatic effects in a wide variety of device-handling situations.

However, to be totally safe, it is desirable to take handling precautions into account .(also see AN600 "Handling Precautions" in Section 5).

SOLUTE MAXIMUM RATINGS

BYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to+7.0		
	DC input diode current ²	V ₁ < 0	-20		
 		V _I > V _{CC}	20	mA.	
	DC input voltage		-0.5 to V _{CC} +0.5	v	
	DC output diode current ²	V ₀ <0	-50		
ok Vo		V _o > V _{cc}	50	mA.	
v _o	DC output voltage		-0.5 to V _{CC} +0.5	٧	
lo	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA	
i _{CC}	DC V _{CC} current	n = number of outputs (but not less than 100mA)	±(n × 25)		
GND	DC ground current	n = number of outputs (but not less than 100mA)	±(n × 25)	mA	
TSTG	Storage temperature		-65 to 150	•c	
P	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW	
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW	

NOTES

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Family Specifications

DO EL ECTRICAL CUARACTERISTICS

					74AC11000				74ACT11000					
SYMBOL	PARAMETER	TEST CONDITIONS		v _{cc}	T _A = +25°C		T_=	T _A = -40°C to +85°C		T _A = +25°C		T _A = -40°C to +85°C		
			v		Min	Mex	Min	Max	Min	Max	Min	Max		
					2.10		2.10				-			
v _{IH}	High-level input voltage			4.5	3.15	-	3.15		2.0		2.0		v	
	input voitage				3.85		3.85		2.0		2.0			
				3.0		0.90		0.90						
V _{IL}	Low-level			4.5		1.35		1.35		8.0		0.8	٧	
	, mpac toxage			5.5		1.65		1.65		0.8		0.8		
		T		3.0	2.9		2.9						V	
	High-level output voltage	V _I = V _{IIL} or V _{IH}	I _{OH} = -50μA	4.5	4.4		4.4		4.4		4.4			
				5.5	5.4		5.4		5.4		5.4			
V _{OH}			I _{OH} = -4mA	3.0	2.58		2.48							
			I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8			
				5.5	4.94		4.8		4.94		4.8			
			$I_{OH} = -75\text{mA}^1$	5.5			3.85				3.85			
	Low-level output voltage	V _I = V _{IL} or V _{IH}	I _{OH} = 50μA	3.0		0.1	L	0.1						
				4.5	<u> </u>	0.1		0.1		0.1		0.1		
				5.5		0.1		0.1		0.1		0.1		
VOL			I _{OH} = 12mA	3.0	L	0.36		0.44					v	
			I _{OH} = 24mA	4.5		0.36		0.44		0.36		0.44		
				5.5		0.36		0.44		0.36		0.44		
			I _{OH} = 75mA ¹	5.5	L_			1.65			<u> </u>	1.65		
ł _i	Input leakage current	V _I = V _{CC}	or GND	5.5		±0.1	·	±1.0		±0.1		±1.0	μА	
loz	3-State output off-state current	V, = V _{II} or	V _{IH} , or GND	5.5		±0.5		±5.0		±0.5		±5.0	μА	
lcc	Quiescent supply current, for SSI	V ₁ = V _{CC}	$ \begin{array}{c} V_{l} = V_{CC} \text{ or GND,} \\ I_{O} = 0 \\ \end{array} $ $ \begin{array}{c} V_{l} = V_{CC} \text{ or GND,} \\ I_{O} = 0 \\ \end{array} $			4.0		40		4.0		40	μА	
	Quiescent supply current, for MSI	V _I = V _{CC} (8.0		80		8.0		80	,,,,	
Δlcc	Supply current, TTL inputs High ²	One input at 3.4V, other inputs at V _{CC} or GND		5.5						0.9		1.0	mA	

NOTES:

Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}:

Family Specifications

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AC11000					
	PARAMETER	Min	Nom	Max	Min	Nom	Max	UNIT
V _{CC}	DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5.5	٧
V _I	Input voltage	0		V _{CC}	0		V _{cc}	٧
v _o	Output voltage	0		V _{CC}	0		Vcc	V
Δt/Δν	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40	 	+85	°C

April 1988

3-5

NOTE:

1. No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Data Sheet Specification Guide

INTRODUCTION

The 74ACL data sheets have been designed for ease-of-use. A minimum of cross-referencing for more information is needed.

TYPICAL PROPAGATION DELAY AND FREQUENCY

The typical propagation delays listed at the top of the data sheets are the average of $t_{\rm PLH}$ and $t_{\rm PHI}$ for a typical data path through the device with a 50pF load.

For clocked devices, the maximum frequency of operation is also given. The typical operating frequency is the maximum device operating frequency with a 50% duty factor and no constraints on $t_{\rm pl}$ and $t_{\rm el}$.

LOGIC SYMBOLS

Two logic symbols are given for each device - the conventional one (Logic Symbol) which explicitly shows the internal logic (except for complex logic) and the IEEE/IEC Logic Symbol.

The IEEE/IEC has been developing a very powerful symbolic language that can show the relationship of each input of a digital logic current to each output without explicitly showing the internal logic.

ABSOLUTE MAXIMUM RATINGS

The Absolute Maximum Ratings table lists the maximum limits to which the device can be subjected without damage. This does not imply that the device will function at these extreme conditions, only that, when these conditions are removed and the device operated within the Recommended Operating Conditions, it will still be functional and its useful life will not have been shortened.

RECOMMENDED OPERATING CONDITIONS

The "Recommended Operating Conditions" table lists the operating ambient temperature and the conditions under which the limits in the "DC Characteristics" and "AC Characteristics" table will be met. The table should not be seen as a set of limits guaranteed by the manufac-

turer, but as the conditions used to test the devices and guarantee that they will then meet the limits in the DC and AC Characteristics tables.

TEST CIRCUITS

Good high-frequency wiring practices should be used in test circuits. Capacitor leads should be as short as possible to minimize ripples on the output waveform transitions and undershoot. Generous ground metal (preferably a ground plate) should be used for the same reasons. A V_{CC} decoupling capacitor should be provided at the test socket, also with short leads. Input signals should have rise and fall times of 3ns, a signal swing of 0V to V for 74AC and 0V to 3V for 74ACT; a 5MHz square wave is recommended for most propagation delay tests. The repetition rate must be increased for testing f_{MAX}. Two pulse generators are usually required for testing such parameters as setup time, hold time and removal time. f is also tested with 3ns input rise and fall filmes, with a 50% duty factor, but for typical f as high as 150MHz, there are no constraints on rise and fall times.

April 1988 3-6

Data Sheet Specification Guide

DC CHARACTERISTICS

The "DC Characteristics" table reflects the DC limits used during testing. The values published are guaranteed.

The threshold values of V_{III} and V_{II} are applied to the inputs, the output voltages will be those published in the "DC Characteristics" table. There is a tendency, by some, to use the published V_{III} and V_{II} thresholds to test a device for functionality in a "function-table exerciser" mode. This frequently causes problems because of the noise present at the test head of automated test equipment with cables up to 1 meter. Parametric tests, such as those used for the output levels under the V_{III} and V_{III} conditions are done fairly slowly, in the order of milliseconds, so that there is no noise at the inputs when the outputs are measured. But in func-

tionality testing, the outputs are measured much faster, so there can be noise on the inputs, before the device has assumed its final and correct output state. Thus, never use V_{IM} and V_{II} to test the functionality of any ACL device type; instead, use input voltages of V_{CC} (for the High state) and 0V (for the Low state). In no way does this imply that the devices are noise-sensitive in the final system.

In the data sheets, it may appear strange that the typical V_{\parallel} is higher than the maximum V_{\parallel} . However, this is because V_{\parallel} way, is the maximum V_{\parallel} (guaranteed) for all devices that will be recognized as a logic Low. However, typically a higher V_{\parallel} will also be recognized as a logic Low. Conversely, the typical V_{\parallel} is lower than its minimum guaranteed level.

The quiescent supply current I_C is the leakage current of all the reversed-biased diodes and the OFF-state MOS transistors.

AC CHARACTERISTICS

The "AC Characteristics" table lists the guaranteed limits when a device is tested under the conditions given in the AC Test Circuits and Waveform section.

April 1988 3-7

Definitions of Symbols

DEFINITIONS OF SYMBOLS AND TERMS USED IN ACL DATA SHEETS

Current

Positive current is defined as conventional current flow into a device.

Negative current is defined as conventional current flow out of a device.

- I cc Quiescent power supply current; the current flowing into the V_{CC} supply terminal.
- ΔI_{cc} Additional quiescent supply current per input pin at a specified input voltage and V_{CC}.
- I GND Quiescent power supply current; the current flowing into the GND terminal.
- Input leakage current; the current flowing into a device at a specified input voltage and V_{CC}:
- I_{IK} input diode current; the current flowing into a device at a specified input voltage.
- Output source or sink current; the current flowing into a device at a specified output voltage.
- Output diode current; the current flowing into a device at a specified output voltage.
- OFF-state output current; the leakage current flowing into the output of a 3-State device in the OFF-state, when the output is connected to V_{CC} or GND.

Voltages

All voltages are referenced to GND (ground), which is typically 0V.

GND Supply voltage; for a device with a single negative power supply, the most negative power supply, used as the reference level for other voltages; typically ground.

- V_{CC} Supply voltage; the most positive potential on the device.
- V_{EE} Supply voltage; one of two (GND and V_{EE}) negative power supplies.
- V_H Hysteresis voltage; difference between the trigger levels when applying a positive and a negative-going input signal.
- V_{IH} High-level input voltage; the range of input voltages that represents a logic High-level in the system.
- V_{IL} Low-level input voltage; the range of input voltages that represents a logic Low-level in the system.
- V_{OH} High-level output voltage; the range of voltages at an output terminal with a specified output loading and supply voltage.

 Device inputs are conditioned to establish a High-level at the output.
- Vol.

 Low-level output voltage; the range of voltages at an output terminal with a specified output loading and supply voltage.

 Device inputs are conditioned to establish a Low-level at the output.
- V_{T+} Trigger threshold voltage; positive-going signal.
- V_T- Trigger threshold voltage; negative-going signal.

Capacitances

C₁ Input capacitance; the capacitance measured at a terminal connected to an input of a device.

- C_{I/O} Input/Output capacitance; the capacitance measured at a terminal connected to an I/O-pin (e.g. a transceiver).
- C_L Output load capacitance; the capacitance connected to an output terminal including jig and probe capacitance.
- Power dissipation capacitance; the capacitance used to determine the dynamic power dissipation per logic function when no extra load is provided to the device.

AC Switching Parameters

- full Input frequency; for combinatorial logic devices the maximum number of inputs and outputs switching in accordance with the device function table. For sequential logic devices the clock frequency using alternate High and Low for data input or using the toggle mode, whichever is applicable.
- f Output frequency; each output.
- f_{MAX}
 Maximum clock frequency; clock input waveforms should have a 50% duty factor and be such as to cause the outputs to be switching from 10% V_{CC} to 90% V_{CC} in accordance with device function table.
- t_H Hold time; the interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure their continued recognition. A negative hold time indicates that the correct logic level may be released prior to the timing pulse and still be recognized.

Definitions of Symbols

t_R, t_F Clock input rise and fall times; 10% and 90% values.

the time between the specified reference points, normally the 50% points for 74AC devices on the input and output waveforms and the 1.5V points for the 74ACT devices, with the output changing from the defined High-level to the defined Low-level.

t_{PLH} Propagation delay; the time between the specified reference points, normally the 50% points for 74AC devices on the input and output waveforms and the 1.5V point for the 74ACT devices, with the output changing from the defined Low-level to the defined High-level.

tpHZ

3-State output disable time; the time between the specified reference points, normally the 50% points for the 74AC devices and the 1.5V points for the 74ACT devices on the output enable input voltage waveform and a point representing 20% of the output swing on the output voltage waveform of a 3-State device, with the output changing from a High-level (Voh) to a high-impedance OFF-state (Z).

t_{PL2}
3-State output disable time; the time between the specified reference points, normally the 50% points for the 74AC devices and

the 1.5V points for the 74ACT devices on the output enable input voltage waveform and a point representing 20% of the output swing on the output voltage waveform of a 3-State device, with the output changing from a Low-level (V_{Q1}) to a high-impedance OFF-state (Z).

3-State output enable time; the time between the specified reference points, normally the 50% points for the 74AC devices and 1.5V points for the 74ACT devices on the output enable input voltage waveform and the 50% point on the output voltage waveform of a 3-State device, with the output changing from a high-impedance OFF-state (Z) to a Highlevel (V_{Ch}).

PZL 3-State output enable time; the time between the specified reference points, normally the 50% points for the 74AC devices and the 1.5V points for the 74ACT devices on the output enable input voltage waveform and the 50% point on the output voltage waveform of a 3-State device with the output changing from a high-impedance OFF-state (2) to a Low-level (V_{OL}).

tree Removal time; the time between the end of and overriding asynchronous input, typically a clear or reset input, and the earliest permissible beginning of a syn-

chronous control input, typically a clock input, normally measured at the 50% points for 74AC devices and the 1.5V points for the 74ACT devices on both input voltage waveforms.

Setup time; the interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which interval data to be recognized must be maintained at the input to ensure their recognition. A negative setup time indicates that the correct logic level may be initiated sometime after the active transition of the timing pulse and still be recognized.

t_{THL}
Output transition time; the time between two specified reference points on a waveform, normally 90% and 10% points, that is changing from High-to-Low.

t_{TLH}
Output transition time; the time between two specified reference points on a waveform, normally 10% and 90% points, that is changing from Low-to-High.

t_W Pulse width; the time between the 50% amplitude points on the leading and trailing edges of a pulse for 74AC devices and at the 1.5V points for 74ACT devices. .

Section 4 ACL Pinouts

• . 7

April 1988

4-4

April 1986

4-8

Section 5 ACL Data Sheets

. ,		
	1	
	,	

74AC/ACT11000 Quad 2-Input NAND Gate Product Specification

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11000 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11000 provides four separate 2-input NAND gate functions.

GENERAL INFORMATION

		CONDITIONS	TYP		
SYMBOL	PARAMETER	T _A = 26°C; GND = 0V	AC	6.5 23 3.5 500	UNIT
t _{PLH} / t _{PHL}	Propagation delay A, B, to 7	C _L = 50pF; V _{CC} = 5V	4.7	6.5	ns
C _{PD}	Power dissipation capacitance per gate 1	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	33	23	рF
C _m	Input capacitance	V _I = OV or V _{CC}	3.5	3.5	ρF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔVΔν	Maximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Note

1. C_{PD} is used to determine the dynamic power dissipation (P_{D} in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_O)$ where:

 \mathbf{f}_{i} = input frequency in MHz, \mathbf{C}_{i} = output load capacitance in pF,

 $t_{\rm O}^{\prime}$ = sulput frequency in MHz, $V_{\rm CC}^{\prime}$ = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11000N 74ACT11000N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11000D 74ACT11000D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Quad 2-Input NAND Gate

74AC/ACT11000

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 15, 11, 9	1A-4A	Data inputs
16, 14, 10, 8	1B-48	Data inputs
2, 3, 6, 7	17-47	Data outputs
4, 5	GND	Ground (DV)
12, 13	V _{CC}	Positive supply voltage

FUNCTION TABLE

INP	UTS	OUTPUT
nA	nB	nΨ
L	L	Н
L	н	н
Н	L	н
н	н	L

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AC11000			74ACT11000		
		Min	Nom	Malx	Min	Nom	Max	UNIT
V _{CC}	DC supply voltage ¹	3.0	5.0	8.5	4.5	5.0	5.5	٧
V _I	Input voltage	0	·	Vcc	0		Vcc	V
v _o	Output voltage	0		Voc	0		Vœ	٧
ΔΫΔΥ	input transition rise or fall rate	0		10	0		10	ne/V
TA	Operating free-air temperature	-40		+85	-40		+85	°C

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to+7.0	V	
	DC input diode current ²	V ₁ < 0	-20	mA	
HK OF		V ₁ > V _{CC}	20		
V _I	DC input voltage		-0.5 to V _{CC} +0.5	٧	
	DC output diode current ²	V ₀ <0	-50		
ok v	55 Super Good Caller	V ₀ > V _{CC}	50	- mA	
	DC output voltage		-0.5 to V _{CC} +0.5	v	
lo	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA	
l _{CC}	DC V _{CC} current		±100		
GND	DC ground current	,	±100	mA	
TSTG	Storage temperature		-65 to 150	•c	
P	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW	
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW	

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent demage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "ecommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

]					74AC	11000			74AC1	11000)	
SYMBOL	PARAMETER	TEST C	ONDITIONS	v _{cc}	TA-	+25°C	T_=	-40°C	T _A =	*52°C	T	-40°C 85°C	UNIT
					Min	Max	Min	Max	Min	Mex	Min	Max	
				3.0	2.10		2.10		_				
Var	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
					3.85		3,85		2.0		2.0		
						0.90		0.90					
V _{IL}	Low-level input voltage	1		4.5		1.35		1.35		0.8		0.8	٧
				5.5		1.65		1.65		0.8		0.8	7
				3.0	2.9		2.9						
VOH output voltage			I _{OH} = -60µA	4.5	4.4		4.4		4.4		4.4		
	V, =		5.5	5.4		5.4		5.4		5.4			
	output voltage	V _L	I _{OH} = -4mA	3.0	2.58		2.48						٧
		V _{p4}	,OH	4.5	3.94		3.5		3.94		3.8		
				5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					
		1	I _{OL} = SOM	4.5		0.1		0.1		0.1		0.1	
	l I am tamat	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	<u></u>	5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voitage	V _j = V _k or	I _{CL} = 12mA	3.0		0.36		0.44					٧
:		V	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
				5.5		0.36		0.44		0.36		0.44	
		I _{OL} = 75mA ¹	5.5				1.65				1.65		
l,	Input leakage current	V1 - V00		5.5		±0.1		±1.0		±0.1		±1.0	μА
lcc	Quiescent supply ourrent	V1 = Vcc (or GND,	5.5		4.0		40		4.0		40	μА
△Icc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the seat should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V GND = 0V; $t_R = t_F = 3$ ne; $C_L = 50$ pF

				7	74AC1100	0		
SYMBOL	PARAMETER	WAVEFORM	,	T _A = +25"	· ·		10°C to	UNIT
			Min	Тур	Mex	Min	Mex	
^t PLH ^t PHL	Propagation delay nA, nB to n∀	. 1	1.5 1.5	7.2 5.8	9.8 8.6	1.5 1.5	11.1 9.6	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; to = to = 3ns; C, = 50pF

		WAVEFORM	Ţ	74AC11000				
SYMBOL	PARAMETER		T _A = +25°C			T _A = -40°C to +86°C		UNIT
			Min	Тур	Mex	Min	Mex	
t _{PLH} t _{PHL}	Propagation delay nA, nB to nV	1	1.5 1.5	5.0 4.4	6.5 6.1	1.5 1.5	7.4 6.8	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; to = 1c = 3ne; C, = 50pF

	SYMBOL PARAMETER		74ACT11000					
SYMBOL		WAVEFORM	T _A = +25°C			T _A = -40°C to +85°C		UNIT
		Min	Тур	Mex	Min	Max		
t _{PLH}	Propagation delay nA, nB to nY	1	1.5 1.5	7.2 5.8	10.9	1.5 1.5	12.3 8.8	ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11002 Quad 2-Input NOR Gate

Product Specification

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50 Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: \$\$i

DESCRIPTION

The 74AC/ACT11002 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11002 provides four separate 2-input NOR gate functions.

GENERAL INFORMATION

		CONDITIONS	TYP		
SYMBOL	PARAMETER	T _A = 25°C; QND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay A, B, to Y	C _L = 50pF; V _{CC} = 5V	4.3	5.7	ns
CPD	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	32	29	ρF
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΨΔν	Maximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	na/V

Note

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = G_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_0)$ where:

 $\mathbf{f_1}$ = input frequency in MHz, $\mathbf{C_L}$ = output load capacitance in pF,

 f_{O} = output frequency in MHz, V_{CC} = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

	ALION	
PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11002N 74ACT11002N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11002D 74ACT11002D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN DESCRIPTION

FUNCTION TABLE

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 15, 11, 9	1A-4A	Data inputs
16, 14, 10, 8	1B-4B	Data inputs
2, 3, 6, 7	17 - 47	Data outputs
4, 5	GND	Ground (0V)
12, 13	Voc	Positive supply voltage

INP	UTS	OUTPUT
nA	nB	n y
L	L	Н
L	н	L
н	L	L
н	н	L

RECOMMENDED OPERATING CONDITIONS

SYMBOL	200000000	74AC11002				UNIT		
	PARAMETER	Min	Nom	Mex	Min	Nom	Max	OMIT
v _{cc}	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧
V,	Input voltage	0		V _{CC}	0		V _{CC}	٧
V _o	Output voltage	0		V _{oc}	0		Vcc	٧
AVAV	input transition rise or tall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	•c

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ < 0	-20	mA
ilk or V	DC input diode durient	V _I > V _{CC}	20	1 1100
\overline{v}_i	DC input voltage		-0.5 to V _{CC} +0.5	v
	60	V ₀ <0	-50	mA
lok	DC output diode current ²	Vo>Vcc	50	1 1110
ok vo	DC output voltage		-0.5 to V _{CC} +0.5	٧
1 _o	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
lcc or	DC V _{CC} current		±100	mA
GND	DC ground current		±100	,,,,,
TSTG	Storage temperature		-65 to 150	°C
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
P _{TOT}	Power dissipation per peckage Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

HOTES:

^{1.} No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.</p>

Stresses beyond those listed may asses permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

	1					74AC	11002			74AC1	11002		
SYMBOL	PARAMETER	TEST C	ONDITIONS	Vcc	T _A =	.25°C	TA =	-40°C 85°C	T _A =	.25°C	T	-40°C 85°C	UNIT
				٧	Min	Max	Min	Max	Min	Max	Min	Max	
				3.0	2.10		2.10						
V _M	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
				5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V _R	Low-level input voltage	[4.5		1.35		1.35		0.8		0.8	٧
				5.5		1.65		1.65		0.8		0.8	
			1	3.0	2.9		2.9						
	ļ	J	1 _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
	Attack toward	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		5.5	5.4		5.4		5.4		5.4		
VOH	High-level output voltage	V ₁ = V _{IL} or	I _{OH} = -4mA	3.0	2.58		2.48						٧
		V _{BH}	I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
		} -		5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					
		1	I _{OL} = 50µA	4.5		0.1	L	0.1		0.1		0.1	
	L and taken	\ \v_j -		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voltage	V ₁ - V _{al} or	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _{IH}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
				5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5,5				1.65				1.65	
1,	Input leakage current	V _I = V _{CC}		5.5		±0.1		±1.0		±0.1		±1.0	μА
loc	Quiescent supply current	V ₁ = V _{CC} (or GND,	5.5		4.0		40		4.0		40	μΑ
ΔI _{CC}	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						9.0		1.0	mA

^{10.} Not more than one output should be tested at a time, and the duration of the sect should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V \pm 0.3V GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = 3ns; $C_{\rm L}$ = 50pF

			T							
SYMBOL	PARAMETER	R WAVEFORM		PARAMETER WAVEFORM T _A = +25°C		T _A = -40°C to			UNIT	
		1	Min	Тур	Max	Min	Max			
tPLH tPHL	Propagation delay nA, nB to nY	1	1.5 1.5	7.0 6.0	8.6 7.5	1.5 1.5	9.9 8.4	ns		

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V;tp = tp = 3ns; C1 = 50pF

			1	7	74AC1100	2		
SYMBOL	PARAMETER	WAVEFORM	1	T _A = +25°	C		10°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
[†] PLH [‡] PHL	Propagation delay nA, nB to n♥	1	1.5 1.5	4.5 4.0	6.1 5.7	1.5 1.5	6.9 6.4	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V GND = 0V; $t_R = t_F = 3 ns$; $C_L = 50 pF$

SYMBOL PARAMETER								
	WAVEFORM	T _A = +25°C			10°C to 5°C	UNIT		
		1	Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay nA, nB to nY	1	1.5 1.5	6.1 5.3	9.4 7.8	1.5 1.5	10.6 8.7	ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{IN} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{IN} = GND to 3.0V

74AC/ACT11004 Hex Inverter

Product Specification

FEATURES

- . Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- + 50 Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise.
- I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11004 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11004 provides six separate inverters.

GENERAL INFORMATION

SYMBOL PARAMETER		CONDITIONS	TYP		
	T _A = 25°C; GND = 0V	AC	ACT	UNIT	
t _{PLH} /	Propagation delay A, B, to	C _L = 50pF; V _{CC} = 5V	4.0	5.9	ns
C _{PD}	Power dissipation capacitarios per gate 1	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	19	26	рF
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF
LATCH	Latch-up current -	Par Jedac JC40.2 Standard 17	500	500	mA
ΔVΔν	Meximum input rise or fell rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ne/V

Mate

1. C_{PO} is used to determine the dynamic power dissipation (P_{D} in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{1} + \sum (C_{L} \times V_{CC}^{2} \times f_{D}) \text{ where:}$

 f_1 = input frequency in MHz, C_L = output load capacitance in pF,

fo = output frequency in MHz, Voc = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{aum of outputs}$

ORDERING INFORMATION

FACKAGES	TEMPERATURE RANGE	ORDER CODE
20-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11004N 74ACT11004N
20-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11004D 74ACT11004D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Hex Inverter

74AC/ACT11004

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
20, 19, 18, 13, 12, 11	1A - 6A	Data inputs
1, 2, 3, 8, 9, 10	17-67	Deta outputs
4, 5, 6, 7	GND	Ground (0V)
15, 16	V _{CC}	Positive supply voltage

INPUT	OUTPUT
nA	nΫ
L	н
н	L

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74AC11004				74ACT11004			
PANAMETER	PARAMETER	Min	Non	Mex	Min	Nom	Mex	UNIT	
V _{CC}	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧	
V _I	Input voltage	0		V _{cc}	0		Voc	٧	
V _O	Output voltage	0		V _{CC}	.0		Voc	٧	
ΔΨΔΨ	Input transition rise or fall rate	0		10	9		10	ne/V	
TA	Operating free-air temperature	-40		+85	-40		+85	*C	

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Voc	DC supply voltage		-0.5 to+7.0	V
	DC input diade current ²	V, <0	-20	mA
or V _I	DO Aportunos carriera	V _I > V _{CC}	20	niv.
Yı	DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diade current ²	V ₀ < 0	-60	mA
or or ox	CO SUPER GOLD CHININ	V _o > V _{cc}	50	
v _o	DC output voltage		-0.5 to V _{CC} +0.5	٧
lo	DC output source or sink ourrent per output pin	V _O = 0 to V _{CC}	±50	mA
loc	DC V _{CC} current		±150	
GND	DC ground current		±150	mA
TSTG	Storage temperature		-65 to 150	•c
8	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
P _{TOT}	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

No electrical or switching characteristics are specified at V_{CC} < 5V: Operation between 2V and 3V is not recommended, but within that range, a device output with maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other
conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods
may affect device reliability.
 The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

		T				74AC	11004			[
BYMBOL	PARAMETER	TENT CO	жоптонк	v _{cc}	TAR	-25°C	TA	40°C	Tám	-85°C	T_	40°C	UNIT
		v	Min	Mex	Min	Max	Min	Max	Min	Max			
				3.0	2.10		2.10						
V _{BH}	High-level input voltage	1		4.5	3.15		3.15		2.0		2.0		٧
177	What tollage			5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V _{IL}	Low-level	}				1.35		1.35		0.8		8.0	٧
~	III TO THE TOTAL T			5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
			1 _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
		V ₁ -		5.5	5.4		5.4		5.4		5.4		
VOH	High-level output voltage	V ₁ -	I _{OH} = -4mA	3.0	2.58		2.48						
•••		Vet	I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
		- "	}	5.5	4.94		4.8		4.94		4.8		
	}		IOH = -75mA	5.5			3.85				3.85		
				3.0		0.1		0.1					
	}		I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
		V,-		5.5		0.1		0.1	L	0.1		0.1	
VOL	Low-level	V _I = V _R	I _{OL} = 12mA	3.0		0.36		0.44					V
		V _{B4}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
		1	1	5.5		0.36		0.44	L	0.36		0.44	
		IcL = 75mA	5.5				1.65				1.65		
١,	input leakage current	V1= Vcc	or GND	5.5		±0.1		±1.0		±0.1		±1.0	μА
loc	Quiescent supply current	V1=Vcc	or GND,	5.5		4.0		40		4.0		40	μΑ
Alcc	Supply current, TTL inputs High ²	One input at V _{CC} or	at 3.4V, other inputs	5.5						0.9		1.0	mA

HOTES:

^{1.} Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.
2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 6V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V GND = 0V; $t_{\rm H}$ = $t_{\rm c}$ = 3ns; $C_{\rm t}$ = 50pF

					74AC1100	4		
SYMBOL	PANAMETER	WAVEFORM		T _A = +25*	С		10°C to 5°C	UNIT
	* *	•	Min	Тур	Max	Min	Max	
t _{PHL}	Propagation delay nA, nB to n♥	1	1.5 1.5	6.1 5.2	9.0 7.4	1.5 1.5	10.0 8.2	ns ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V GND = 0V; $t_{\rm p}$ = $t_{\rm p}$ = 3ns; $C_{\rm t}$ = 50pF

	. 3			1	74AC1100	4	•	
SAMBOL	PARAMETER.	WAVEFORM		T _A = +264	C		10°C'to	UNIT
	: ,		Min	Тур	Mex	Min	Max	
^t PLH PHL	Propagation delay nA, nB to nY	1	1.5 1.5	4.2 3.8	6.3 5.5	1.5 1.5	7.1 6.0	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0Y ±9.5V GND = 0V; tg = tc = 3ne; C1 = 50pF

	N	1:		7	4ACT110	04		
SYMBOL	PARAMETER	WAVEFORM		T _A = +257	C		IO°C to	UNIT
			Min	Тур	Mex	Min	Max	
PLH	Propagation delay nA, nB to nV.	1 1	1.5 1.5	5.3 6.4	9.0	1.5 1.5	9.7 9.6	ns

AC WAVEFORMS AC : $V_{M} = 50\% \ V_{CC}$, $V_{IN} = GND to V_{CC}$. ACT : $V_{M} = 1.5V$, $V_{IN} = GND to 3.0V$

74AC/ACT11008 Quad 2-Input AND Gate

Product Specification

FEATURES

- . Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50 Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11008 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11008 provides four separate 2-input AND gate functions.

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL	
SYMBOL.	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay A, B, to Y	C _L = 50pF; V _{CC} = 5V	4.2	5.5	ns
C _{PO}	Power dissipation capacitance per gate ¹	V _{GC} = 5.0V; f = 1MHz; C _L = 50pF	29	29	ρF
CIN	Input capacitance	V ₁ = 0V or V _{CC}	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΨΔΨ	Meximum input rise or fell rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Note

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{1} + \sum (C_{L} \times V_{CC}^{2} \times f_{0}) \text{ where:}$

f, input frequency in MHz, C_L = output load capacitance in pF,

to = output frequency in MHz, V_{CC} = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11008N 74ACT11008N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11008D 74ACT11008D

PIN CONFIGURATION

LOGIC SYMBOL

Quad 2-Input AND Gate

74AC/ACT11008

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 15, 11, 9	1A-4A	Data inputs
16, 14, 10, 8	18-4B	Data inputs
2, 3, 6, 7	1Y-4Y	Data outputs
4, 5	GND	Ground (OV)
12, 13	V _{cc}	Positive supply voltage

FUNCTION TABLE

INP	UTB	OUTPUT
nA	nß	nY
L	L	L
L	н	L
н	L	L
н	н	н

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74AC11008			74ACT11908			
		Min	Nom	Max	Min	Nom	Mex	UNIT
Voc	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧
V,	Input voltage	0		Vcc	0		V _{CC}	V
V _O	Output voltage	0		Voc	0		Voc	V
ΔύΔν	Input transition rise or fail rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	*C

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{oc}	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ <0	-20	
ilk or V,		V ₁ > V _{CC}	20	- mA
V _I	DC input voltage		-0.5 to V _{OC} +0.5	V
ok or v _o	DC output diode current ²	V ₀ <0	-50	†
		V _o > V _{cc}	50	mA
v _o	DC output voltage		-0.5 to V _{CC} +0.5	V
lo	DC output source or sink current per output pin	Vo=0 to Voc	±50	mA
lcc	DC V _{CC} current		±100	
IGND	DC ground current		±100	mA .
TSTG	Storage temperature		:65 to 150	•c
P _{TOT}	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by SmW/K	500	mW
101	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range; a device output will maintain a previously established looks state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

						74AC	11004		74ACT11008				
BYMBOL	PARAMETER	TEST CO	ONDITIONS	v _{cc}	T _A =	25°C	T_=	40°C 15°C	T _A = +25°C		T _A = -	40°C 85°C	UNIT
			}	٧	Min	Max	Min	Mex	Min	Max	Min	Max	
		+		3.0	2.10		2.10						
V	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
975	Input votaige			5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
VaL	Low-level		į	4.5		1.35		1.35		0.8		0.8	٧
E input roungs			ľ	5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
			I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
V _{OH}		V _I - V _B		5.5	5.4		5.4		5.4		5.4		
	High-level output voltage		I _{OH} = -4mA	3.0	2.58		2.48						٧
			I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
			í	5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					
	İ		I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
		V ₁ = V _{II}		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voltage	VII.	I _{OL} = 12mA	3.0		0.36		0.44					٧
-		V _{BH}	1 - 24mA	4.5		0.36		0.44		0.36		0.44	
			IOL = 24mA	5.5		0.36		0.44		0.36		0.44	
		L	I _{OL} = 75mA ¹	5.5				1.65				1.65	
1,	input leakage current	VI = VCC or GND		5.5		±0.1		±1.0		±0.1		±1.0	μА
lcc	Quiescent supply current	V ₁ = V _{CC} or GND, i _Q = 0		5.5		4.0		40		4.0		40	μА
∆I _{CC}	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

NUT I EST:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V GND = 0V; $t_p = t_r = 3$ ns; $C_t = 50$ pF

				74AC11008					
SYMBOL	PARAMETER	WAVEFORM		T _A = +25°C		T _A = -40°C to +85°C		UNIT	
			Min	Тур	Max	Min	Max		
PLH PHL	Propagation delay nA, nB to nY	1	1.5 1.5	6.3 5.6	9.0 7.8	1.5 1.5	10.2 8.6	ns	

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = 3ns; $C_{\rm L}$ = 50pF

			T					
SYMBOL	PARAMETER	WAVEFORM		T _A = +25°C		T _A = -40°C to +85°C		UNIT
		Min	Тур	Max	Min	Max		
^t PLH	Propagation delay	1	1.5	4.3	6.2	1.5	6.9	
PHL	nA, nB to nY		1.5	4.0	5.9	1.5	6.5	ne ne

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_R = t_F = 3$ ne; $C_L = 50$ pF

				74ACT11008					
SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C		T _A = -40°C to +85°C		UNIT		
		Min	Тур	Mex	Min	Mex			
t _{PHL}	Propagation delay nA, nB to nY	1	1.5 1.5	5.8 5.2	8.0 7.7	1.5 1.5	9.0 8.2	ns	

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{IN} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{IN} = GND to 3.0V

74AC/ACT11010 Triple 3-Input NAND Gate

Product Specification

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11010 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11010 provides three separate 3-input NAND gate functions.

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL	UNIT
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
PLH PHE	Propagation delay A, B, C to ♥	C _L = 50pF; V _{CC} = 5V	4.5	5.8	ns
C _{PO}	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C ₁ = 50pF	23	27	pΕ
CM	Input capăcitance	V _I = 0V or V _{CC}	3.5	3.5	ρF
LATCH	Lattifi-top current	Per Jedec JC40.2 Standard 17	500	500	πА
ΔΨΔΨ	Maximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Note:

- 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):
 - $P_D = G_{PD} \times V_{CC}^2 \times f_1 + \sum (G_L \times V_{CC}^2 \times f_0)$ where:
 - f_{\parallel} , a input frequency in MHz, C_{\parallel} a output load capacitance in pF,
 - to = output frequency in MHz, V_{CC} = supply voltage in V,
 - T. C. wVa-2 x fat = sum of outputs

ORDERING INFORMATION

PACKAGES .	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DÍ ^{IS} (300mil-wide)	-40°C to +85°C	74AC11010N 74ACT11010N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11010D 74ACT11010D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 14, 1988

5-19

ECN Number

Triple 3-Input NAND Gate

74AC/ACT11010

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 14, 9	1A-3A	Deta inputs
16, 11, 8	1B - 3B	Date inputs
15, 10, 7	1C-3C	Date inputs
2, 3, 6	17-37	Date outputs
4, 5	GND	Ground (DV)
12, 13	V _{CC}	Positive supply voltage

	INPUTS		OUTPUT		
nA	nA nB		A nB nC		η¥
L	L	L	Н		
L.	L	н	H		
L	H	L	H		
L	н	н	н		
H	L	L	H		
H	L	н	H		
H	н	L	H		
н	н	н	Ĺ		

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AC11010			74ACT11010			
		Min	Nem	Mex	Min	Nom	Mex	UNIT	
Vcc	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	V	
V _I	Input voltage	0		Vcc	0		V _{oc}	, V	
V _O	Output voltage	0		V _∞	0	-	Voc	V	
AVAV	Input transition rise or fall rate	0		10	0		10	ne/V	
TA	Operating free-air temperature	-40		+65	-40		485	°C	

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Voc	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ < 0	-20	
ink or V _t		V ₁ > V _{CC}	20	mA
v _t	DC input voltage		-0.5 to V _{CC} +0.5	٧
'ok er	DC sutput slode current ²	V ₀ <0	-50	-
		V ₀ > V _∞	50	mA
	DC output voltage	-0.5 to V _{CC} +0.5	v	
lo	DC output source or sink current per output pin	V _O = 0 to V _{OC}	±50	mA
l _{CC}	DC V _{CC} current		±100	
GND	DC ground current		±100	- mA
T _{STG.}	Storage temperature		-65 to 150	•c
P _{TOT}	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
' 101	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES

No electrical or switching characteristics are specified at V_{CC} < 5V. Operation between 2V and 5V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress retings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

	TRICAL CHARAC	1.				74AC	11010			74ACT	11010		
BYMBOL	PARAMETER	TEST CO	NOTIONS	v _{cc}	TA	25°C	T, =-	40°C	TA =1425°C		T _A = -40°C to +85°C		UNIT
				v	Min	Max	Min	Max	Min	Max	Min	Max	
		1		3.0	2.10		2.10						
V _{IH}	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
· HH	subut somida		٠.	5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V _{IL}	Low-level input voltage	1				1.35		1.35		0.8		0.8	٧
1.	Sipot votage	}		5.5		1.65		1.65		0.8		0.8	
			1.	3.0	2.9		2.9						
		1	1 _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
	}	V ₁ =		5.5	5.4		5,4		5.4		5.4		v
V _{OH}	High-level	v _{BH} I _{OH} = -24mA	I _{OH} = -4mA	3.0	2.58		2.48						
OH	outor rollinge			4.5	3.94		3.8		3.94		3.8		
			1	5.5	4.94		4.8		4.94		4.8		ļ
			I _{OH} = -75mA	5.5			3.85				3.85		
			·	3.0		0.1		0.1					1
			I _{CL} = 50µA	4.5		0.1		0.1		0.1		0.1	
		V _I = V _{IL} or		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level	VR.	I _{OL} = 12mA	3.0		0.36		0.44					V
0.		V _M	IOL = 24mA	4.5		0.36		0.44	1	0.36	-	0.44	
				5.5		0.36		0.44	_	0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
l ₁	Input leakage current	V1 = Vcc		5.5		±0.1		±1.0		±0.1		±1.0	μΑ
lcc	Quiescent supply current	V1 = Vcc	or GND,	5.5		4.0		40		4.0		40	μА
∆l _{CC}	Supply current, TTL inputs High ²	One input at V _{CC} or	at 3.4V, other inputs	5.5						0.9		1.0	mA

MOTES:

PPU I ES;

1. Not more than one output should be tested at a time, and the duration of the test should not amound 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rether than 8V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = $5n_0$; $C_{\rm L}$ = 50_0 F

-					74AC1101	0		
SYMBOL	PARAMETER	WAVEFORM	1	T _A = +25°	C		IOTC to STC	UNIT
	· * * * * * * * * * * * * * * * * * * *		Min	Тур	Mex	Min	Max	
t _{PLH}	Propagation delay nA, nB, nC to nY	1	1.5 1.5	5.9 5.8	8.5 9.0	1.5	9.3	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V GND = 0V; $t_{\rm R}$ = $t_{\rm p}$ = 3ns; $C_{\rm L}$ = 50pF

	•			1	74AC1101	0		
SYMBOL	PARAMETER	WAVEFORM	T _A = +26°C				ISTC to STC	UNIT
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation dalay nA, nB, nC to nY	1	1.5	4.4	6.2 6.4	1.5 1.5	6.7 7.0	ne

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_R = t_F = 3$ ne; $C_L = 80$ pF

	* .			7	4ACT110	10		
SYMBOL	PARAMETER	WAVEFORM	,	T _A = +257	c		IO°C to	UNIT
			Min	Typ	Max	Min	Max	
PLH PHL	Propagation delay nA, nB, nC to nY	10.00	1.5 1.5	5.8 5.7	8.2 7.4	1.5 1.5	8.9 8.2	` ne

AC WAVEFORMS AC: $V_{M} = 50\% V_{CC}$, $V_{N} = GND to V_{CC}$. ACT: $V_{M} = 1.5V$, $V_{N} = GND to 3.0V$

74AC/ACT11011 Triple 3-Input AND Gate

Product Specification

FEATURES

- . Output capability: ±24 mA
- . CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- · I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11011 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11011 provides three separate 3-input AND gate functions.

GENERAL INFORMATION

		CONDITIONS	TYP		
SYMBOL	PARAMETER	T _A = 25°C; GMD = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay A, B, C to Y	C _L = 50pF; V _{CC} = 5V	4.3	6.0	ns
C _{PO}	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	28	26	př
CW	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
Δ۷Δ٧	Meximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

1. C_{pp} is used to determine the dynamic power dissipation (Pp in $\mu W)$:

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (C_L \times V_{CC}^2 \times f_0)$ where:

f, = input frequency in MHz, C; = curput load capacitance in pF,

 $f_{\mathbf{C}}^{*} = \text{output frequency in MHz, } \widetilde{\mathbf{V}}_{\mathbf{CC}}^{*} = \text{supply voltage in V,}$

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

OPPERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11011N 74ACT11011N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11011D 74ACT11011D

PIN CONFIGURATION

LOGIC SYMBOL

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 14, 9	1A - 3A	Data inputs
16, 11, 8	18 - 3B	Data inputs
15, 10, 7	1C - 3C	Deta inputs
2, 3, 6	1Y-3Y	Date culputs
4, 5	GND	Ground (0V)
12, 13	V _{CC}	Positive supply voltage

FUNCTION TABLE

	INPUTE		OUTPUT
nA	nB	nC	nY
L	L	L	L
L	L	н	i i
L	н	L	L
L	н	н	Ĺ
H	L	L	Ĺ
н	L	н	l i
H	н	L	Ĺ
H	н	н	H

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER			1847				
		Min	Nom	Mex	Min	Nom	Max	UNIT
V _{CC}	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	V
V,	Input voltage	0		Voc	0		Voc	V
V _O	Output voltage	0		Vcc	0		Vcc	V
AVAV	input transition rise or fall rate	0		10	0		10	ne/V
TA	Operating free-air temperature	-40		+85	-40		+85	*C

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _∞	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ < 0	-20	-
I _{IK} or V _I		V _I > V _{CC}	50	mA.
V _I	DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diade current ²	V _Q < 0	-50	
rok Pok		V _o > V _∞	50	mA.
v _o	O DC output voltage		-0.5 to V _{CC} +0.5	V
10	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
cc	DC V _{CC} current		±100	
GND	DC ground current .		±100	mA.
TSTG	Storage temperature		-85 to 150	*c
D	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	·mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES:

NOTE:

1. No electrical or awaching characteristics are specified at V_{CC} < 3V. Operation between 2V and 5V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

OC ELECTRICAL CHARACTERISTICS

	TRICAL CHARAC	T				74AC	11011	- 1		74ACT	11011		
SYMBOL	PARAMETER	TEST CO	HDITIONS	v _{cc}	T _A =4	25°C	T	40°C	TA = +25°C		T _A = -40°C 16 +85°C		UNIT
					Min	Max	Min	Mex	Min	Max	Min	Max	
		1		3.0	2.10		2.10						
V _{IH}	High-level			4.5	3.15		3.15		2.0		2.0		٧
1111	input voltage			5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V	Low-level	1				1.35		1.35		0.8		0.8	٧
. N.	input voltage					1.65		1.65		0.8		0.8	
		1			2.9		2.9						
		1	1 _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
		V _l =	I _{OH} = -4mA	5.5	5.4		5.4		5.4		5.4		
V _{OH}	High-level output voltage	V _i = V _E or		3.0	2.58		2.48						V
-ОН	continut resimile	V _{BH}		4.5	3.94		3.8		3.94		3.8		
		} '#1	1 _{OH} = -24mA	5.5	4.94		4.8		4.94		4.8		
	1		I _{OH} = -75mA ^T	5.5			3.85				3.85		
				3.0		0.1		0.1					
	}		I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
		V ₁ = V _R		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voltage	V _B .	I _{OL} = 12mA	3.0		0.36		0.44					V
OL	output vottage	V _{at}		4.5		0.36		0.44		0.36		0.44	
		***	IOL = 24mA	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.85				1.65	
1,	Input leskage current	V _I = V _{CC}	or GND	5.5		±0.1		±1.0		±0.1		±1.0	μА
lcc	Quiescent supply current	V1 = VCC	or GND,	5.5		4.0		40		4.0		40	μА
ΔI _{CC}	Supply current, TTL inputs High ²	One input at V _{CC} or	at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL vallage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V $\pm 0.3V$ GND = 0V; $t_R = t_F = 3 ns$; $C_L = 50 pF$

					74AC1101	1		
SYMBOL	PARAMETER	WAVEFORM	,	T _A = +257	C		10°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
[†] PLH [†] PHL	Propagation delay nA, nB, nC to nY	1	1.5 1.5	6.0 6.0	8.3 8.2	1.5 1.5	9.1 9.0	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V GND = 0V; $t_{\rm B}$ = $t_{\rm F}$ = 3ns; $C_{\rm L}$ = 50pF

SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C				io°C to	UNIT
			Min	Тур	Max	Min	Mex	
t _{PHL}	Propagation delay nA, nB, nC to nY	1	1.5 1.5	4.0 4.5	5.9 6.4	1.5 1.5	6.5 6.9	na

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V GND = 0V; $t_R = t_F = 3 ns; C_L = 50 pF$

SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C				10°C to	UNIT
			Min	Тур	Max	Min	Max	
PLH PHL	Propagation delay nA, nB, nC to nY	1 :	1.5 1.5	6.5 5.5	8.6	1.5 1.5	9.6 8.7	ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{IN} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{IN} = GND to 3.0V

74AC/ACT11013 Dual 4-Input NAND SchmittTrigger

Preliminary Specification

FEATURES

- . Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise.
- 1_{CC} category: SSi

DESCRIPTION

The 74AC/ACT11013 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11013 provides two separate 4-input: NAND gate functions which are capable of transforming slowly changing input signals into sharply defined, inter-free output signals. In addition, they have greater noise margin than conventional NAND gates.

GENERAL INFORMATION

		COMDITIONS	TYP		
SYMBOL	PARAMETER	TA = 25°C; GND = 0V	AC	ACT	UNIT
PLH	Propagation delay A, B, C, D to ♥	C _L = 50pF; V _{CC} = 5V	5.2		ns
CPD	Power dissipation capacitance per gate	V _{CC} = 5.0V; f = 1MHz; C _L = 90pF	29		ρF
CIN	Input capacitance	V = OV or V _{CC}	3.5		pF
LATCH	Leich-up ourrent	Per Jedec JC40.2 Standard 17	500		· mA
Δ۷Αν	Maximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	100		ns/V

Note

1. Con is used to determine the dynamic power dissipation (P_G in μW):

 2 P_ = C_ = $_{2}$ V_ = $_{2}$ x f. + Σ (C, $_{2}$ V_ = $_{2}$ x f...) where:

- f, in input frequency in MHz, C, is autput load capacitance in pF.
- te = output frequency in MHz, V_{CC} = supply voltage in V,

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
14-pier plastic DIP (300mil-wide)	-40°C to +85°C - 3 / /	74AC11013N 74ACT11013N
14-pin piastic SO (150mil-wide)	-40°C to +85°C	74AC11013D 74ACT11013D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 14, 1988

5-27

ECN Number

Dual 4-Input NAND Schmitt-Trigger

74AC/ACT11013

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
2, 10	1A - 2A	Data inputs
1, 9	1B - 2B	Data inputs
13, 7	1G-2C	Deta inputs
12, 6	1D - 2D	Date inputs
3, 5	17-27	Date outputs
4	GND	Ground (0V)
11	V _{CC}	Positive supply voltage

FUNCTION TABLE

	INP	UTS	T	OUTPUT
nA	nB	nC	mD	nΨ
Н	Н	Н	Н	L
L	X	х	x	н
X	L	X	x	н
X	X	L	x	, H
X	X	, X	L.	,н

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AÇ11018			UNIT		
		Min	Nom	Max	Min	Nom	Mex	URIT
Voc	DC suitply voltage	3.0	5.0	5.5	4.5	5.0	5.5	,V
V _I	input voltage	0		Vcc	0		V _{oc}	V
v _o	Output vallage	0		V _{oc}	0	*	V _{CC}	V
AVAV	Input transition rise or fell rate	0		100	0		100	na/V
TA	Operating free-air temperature	-40		+86	-40		+85	°C

NOTE:

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
v _{cc}	DC supply voltage	· ·	-0.5 to+7.0	V
	DC input diade ourrent ²	V ₁ < 0	-20	1
IN OF V		V _I > V _{CC}	20	mA
ν _ι 	DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diode current ²	-50	1	
v _o		V _G > V _{CC}	50	- mA
v _o	DC output voltage		-0.5 to V _{CC} +0.5	v
10	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±80	mA
I _{CC}	DC V _{CC} current	· ·	±100	
GND	DC ground current		±100	mA
TSTG	Storage temperature		-65 to 150	*C
P _{TOT}	Power dissipation per peckage Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
101	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	Wm

HOTES:

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent demage to the device. These are stress raings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-resed conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

						74AC				74AC1				
SYMBOL	PARAMETER	TEST CO	ONDITIONS	V _{CC}	T _A =	25°C	TA = 1	40°C	T _A = ·	25°C	T.=	-40°C	UNIT	
				٧	Min	Max	Min	Max	Min	Mex	Min	Max		
		1		3.0		2.2		2.2						
V _{T+}	Positive-going threshold			4.5		3.2		3.2	:	2.0		2.0	٧	
	#Weeldid			5.5		3.9		3.9		2.0		2.0		
				3.0	0.5		0.5							
V _T .	Negative going threshold			4.5	0.9		0.9			0.8		9.8	v	
	PITERIOL			5.5	1.1		1.1		,	0.8		0.8		
				3.0	0.3	1.2	0.3	1.2						
ΔV _T	Hysteresis	1		4.5	0.4	1.4	0.4	1.4	0.4	1.2	0.4	1.2	٧	
•	(V _{T+} - V _{T-})		N	5.5	0.5	1.6	0.5	1.6	0.4	1.2	0.4	1.2		
		1		3.0	2.10		2.10							
V _{BH}	High-level input voltage	1		4.5	3.15		3.15		2.0		2.0		V	
41	input voitage	1		5.5	3.85		3.85		2.0		2.0			
	1			3.0		0.90		0.90						
٧.,	V _{IL} Low-level input voltage			4.5		1.35		1.36		0.8		0.8	ν	
ir input von	Input voilige	1		5.5		1.65		1.65		0.8		0.8		
			1	3.0	2.9		2.9							
		}	I _{OH} ≈ -50µA	4.5	4.4		4,4		4.4		4.4			
		V, -		5.5	5.4		5.4		5.4		5.4			
V _{OH}	High-level	V _I -	I _{OH} = -4mA	3.0	2.58		2.48			_			•	
OH	output voltage	V _{a4}		4.5	3.94		3.8		3.94		3.8			
		***	I _{OH} = -24mA	5.5	4.94		4.8	,	4.94		4.8			
	}	1	I _{OH} = -75mA ¹	5.5			3.85				3.85			
				3.0		0.1		0.1						
			IOL = SONA	4.5		0.1		0.1		0.1		0.1		
		V _j = V _{ii} or		5.5		0.1		0.1		0.1		0.1		
VOL	Low-level	V _k	I _{OL} = 12mA	3.0		0.36		0.44					v	
OL.	output voltage	V _M		4.5		0.36		0.44		0.36		0.44		
	}	1	I _{OL} = 24mA	5.5		0.36		0.44		0.36		0.44		
			I _{OL} = 75mA ¹	5.5				1.65				1.65		
1,	Input leakage current	V1 = V00		5.5		±0.1		±1.0		±0.1		±1.0	μА	
loc	Quiescent supply current	V1 = Vcc 0	or GND,	5.5		4.0		40		4.0		40	μА	
Alcc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA	

NOTES:
1. Not more than one output should be sessed at a time, and the duration of the test should not exceed 10ms.
2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}-

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tg = tc = 3ns; C1 = 50pF

	PARAMÉTER	WAVEFORM						
SYMBOL			T _A = +25°C				IO°C to	UNIT
			Min	Тур	Max	Min	Max	
^t PLH t _{PHL}	Propagation dalay .nA, nB, nC, nD to nV	. 1	1.5 1.5	7.3 7.2	8.7 8.7	1.5 1.5	10.0	ns ,

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = tr = 3ns; C, = 50pF

	PARAMETER	WAVEFORM	T	7	74AC1101	3	er erste	į vi
SYMBOL			T _A = +25°C				0°C to	UNIT
,			Min	Тур	Mex	Min	Max	
[†] PLH †PHL	Propagation delay nA, nB, nC, nD to nY	1	1.5 1.5	5.1 5.2	6.4 7.0	1.5 1.5	7.3 8.1	ns.

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = tc = 3ns; C, = 50pF

	SYMBOL PARAMETER	WAYEFORM						
SYMBOL			TA = +25°C				40°C to 16°C	UNIT
			Min	Тур	Max	Min	"Mex	
t _{PLH}	Propagation delay nA, nB, nC, nD to nV	1	1.5 1.5			1.5 1.5		ns

AC WAVEFORMS AC: V_{M} + 50% V_{CC} , V_{N} = 9ND to V_{CC} . ACT: V_{M} = 1.5V, V_{N} = 9ND to 3.0V

74AC/ACT11014

Hex Inverter Schmitt-Trigger
Preliminary Specification

FEATURES

- . Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11014 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11014 provides six separate inverters which are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise margin than conventional inverters.

GENERAL INFORMATION

		CONDITIONS	TYP		
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay A, B, to Y	C _L = 50pF; V _{CC} = 5V	6.9		ns
CPD	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	27		pF
CIN	Input capacitance	V ₁ = 0V or V _{CC}	3.5		pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500		mA
Δ۷Δν	Maximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	100		ns/V

Note:

C_{pp} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (G_L \times V_{CC}^2 \times f_0)$$
 where:

f, = input frequency in MHz, C, = output load capacitance in pF,

 f_{O} = output frequency in MHz, V_{OC} = supply voltage in V,

 $\Sigma(C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

ORDERING INFORMATION

210111000	TOTAL PROPERTY OF THE PARTY OF	ORDER CODE
PACKAGES 1	TEMPERATURE RANGE	ORDER CODE
20-pin plestic DIP	1000	74AC11014N
(300mif-wide)	-40°C to +85°C	74ACT11014N
20-pin plastic SO		74AC11014D
	-40°C to +85°C	
(300mil-wide)	1	74ACT11014D

PIN CONFIGURATION

LOGIC SYMBOL

Hex Inverter Schmitt-Trigger

74AC/ACT11014

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
20, 19, 18, 13, 12, 11	1A - 6A	Data inputs
1, 2, 3, 8, 9, 10	17-67	Data outputs
4, 5, 6, 7	GND	Ground (0V)
15, 16	V _{cc}	Positive supply voltage

INPUT	OUTPUT
nA	nΫ
L	Н
н	L

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RAMETER 74AC11014			74ACT11014				
514500	PANAMETER	Min	Nom	Max	Min	Nom	Mex	UNIT	
Voc	DC supply voltage 1	3.0	5.0	5.5	4.5	5.0	5.5	V	
V _I	Input voltage	0		V _{cc}	0		V _{cc}	V	
v _o	Output voltage	0		V _{CC}	0		V _{CC}	٧	
ΔύΔν	Input transition rise or fall rate	0		100	G		100	ns/V	
TA	Operating free-air temperature	-40		+85	-40		+85	*C -	

NOTE

ABSOLUTE MAXIMUM FIATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ < 0	-20	mA
lik or V	Co tipe (coop carrier)	V ₁ > V _{CC}	20	
V ₁	DC input voltage		-0.5 to V _{CC} =0.5	٧
	DC output diade current ²	V ₀ < 0	-50	
or V _O	DO GOPUL GOOD CONTAIN	V _o > V _{cc}	50	mA.
v _o	DC autput valtage		-0.5 to V _{CC} +0.5	٧
اه	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
20	DC V _{CC} current		±150	
GND	DC ground current		±150	Am -
TSTG	Storage temperature		-85 to 150	•c
D	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	wW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES

No electrical or switching characteristics are specified at V_{CC} < \$V\$. Operation between 2V and \$V\$ is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under irrecommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

20	21	EM	PENN/				. ~	ED	OT	~~
	ᄄ	EU		CAL	un	An,		En	211	~

		1				74AC				74ACT			
SYMBOL	PARAMETER	TEST CO	HDITIONS	Voc	TA=	25°C	T. =	40°C	TA	25°C	T, =	-40°C	UNIT
				٧	Min	Mex	Min	Max	Min	Max	Min	Max	
				3.0		2.2		2.2					
V _{T+}	Positive-going threshold	1		4.5		3.2		3.2		2.0		2.0	٧
	- Trestroid	1		5.5		3.9		3.9		2.0		2.0	
				3.0	0.5		0.5						
V _T .	Negative-going threshold			4.5	0.9		0.9			0.8		0.8	٧
	5.1.051-0.05			5.5	1.1		1.1			0.8		0.8	
				3.0	0.3	1.2	0.3	1.2					
ΔV _T	Hysteresis (V _{T+} - V _{T-})		4.		0.4	1.4	0.4	1.4	0.4	1.2	0.4	1.2	٧
	\'T+ 'T-'	<u> </u>		5.5	0.5	1.6	0.5	1.6	0.4	1.2	0.4	1.2	
				3.0	2.10		2.10						
V _{BH}	High-level input voltage	1		4.5	3.15		3.15		2.0		2.0		٧
				5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
VE Low-level input voltage	1		4.5		1.35		1.35		0.8		0.8	V	
		1		5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
		1	I _{OH} ≈ -50µA	4.5	4.4		4.4		4.4	Ĺ.,	4.4		1
		\ \frac{\frac{1}{3}}{3} = \frac{1}{3}		5.5	5.4		5.4		5.4		5.4		-
VOH	High-level output voltage	V _I =	I _{OH} = -4mA	3.0	2.58		2.48						
		V _{B4}	I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
		-	į.	5.5	4.94		4.8		4.94		4.8		
	l		1 _{QH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					
	1		IOL = 50MA	4.5		0.1		0.1		0.1		0.1	
		V _I =		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voltage	VIL.	I _{QL} = 12mA	3.0		0.36		0.44					v
-		V _{BH}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
1	[-	1	5.5		0.36		0.44		0.36		0,44	
			I _{OL} = 75mA [†]	5.5				1.65				1.65	
i _i	Input leakage current	V _I = V _{CC} o		5.5		±0.1		±1.0		±0.1		±1.0	μΑ
^l cc	Quiescent supply current	V ₁ = V _{CC} o	V ₁ = V _{CC} or GND, 1 _O = 0			4.0		40		4.0		40	μА
ΔI _{CC}	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

TWO IEES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage invelor rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V gND = 0V; $t_R = t_F = 3$ ns; $C_L = 50$ pF

		74AC11014						
SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C		T _A = -40°C to +85°C		UNIT	
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay nA, nB to n♥	1	1.5 1.5	6.6 6.5	9.3 8.4	1.5 1.5	10.1	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tg = tp = 3ns; Ci = 50pF

	·			7	74AC11014 18°C			
SYMBOL	PARAMETER	WAVEFORM	,	T _A = +25°C	2			UNIT
]	Min	Тур	Mex	Min	Mex	
t _{PHL}	Propagation delay nA, nB to nV	1	1.5 1.5	4.6 4.9	6.9 6.6	1.5 1.5	7.4 7.3	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = tc = 3na; C, = 50pF

				74ACT11014					
SYMBOL	PARAMETER	WAVEFORM T _A = +25°C		T _A = -40°C to +85°C		UNIT			
			Min	Тур	Max	Min	Max		
^t PLH ^t PHL	Propagation delay nA, nB to n♥	1	1.5 1.5			1.5 1.5		ns	

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11020 Dual 4-Input NAND Gate

Product Specification

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50 Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11020 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11020 provides two separate 4-input NAND gate functions.

GENERAL INFORMATION

	PARAMETER	CONDITIONS	TYP		
SYMBOL		T _A = 26°C; GNO = 6V	AC	ACT	UNIT
tpLH/.	Propagation delay A, B, C, D to ♥	C _L = 50pF; V _{CC} = 5V	4.4	5.9	ЛS
CPD	Power dissipation capacitance per gate 1	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	19	27	рF
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
AVAV	Maximum input rise or fell rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Mate

1. C_{BD} is used to determine the dynamic power dissipation (P_{D} in μW):

$$P_D = G_{PD} \times V_{CC}^2 \times t_1 + \Sigma (G_L \times V_{CC}^2 \times t_0)$$
 where:

 f_1 is input frequency in MHz, C_1 is output load capacitance in pF, -

to = output frequency in MHz, V_{CC} = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
14-pin plastic DIP (\$00mil-wide)	-40°C to +86°C	74AC11020N 74ACT11020N
14-pin plastic 90 (150mil-wide)	-40°C to +85°C	74AC11020D %HACT11020D

PIN CONFIGURATION

LOGIC SYMBOL

PIN DESCRIPTION

PIN NUMBER	SAMBOF	NAME AND FUNCTION
2, 10	1A - 2A	Data inputs
1, 9	1B - 2B	Data inputs
13, 7	1C - 2C	Data inputs
12, 6	1D - 2D	Date inputs
3, 5	17-27	Date outputs
4	GND	Ground (0V)
11	Vcc	Positive supply voltage

FUNCTION TABLE

	INP	UTS		OUTPUT
nA	nB nC nD			nΥ
H	Н	Н	Н	L
L	x	х	x	н
X	Ł	х	X	н
X	х	L	x	н
X	x	x	L	н

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74AC11020				UNIT		
		Min .	Nom	Max	Min	Nom	Mex	- Orail
V _{oc}	DC supply voltage [†]	3.0	5.0	5.5	4.5	5.0	5.5	٧
V,	Input voltage	0		Voc	0		Voc	٧
V _O	Output voltage	0		Voc	0	•	Voc	٧
ΔΨΔν	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40	1 1	+85	-40		+95	*C

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT	
Voc	DC supply voltage		-0.5 to+7.0	V	
,	DC input diode current ²	V, <0	-20	mA	
I _{IK} or V _I	DO lipot diode domain	V ₁ > V _∞	20		
v,	DC input voltage		-0.5 to V _{CC} +0.5	v	
	DC output diade current ²	V _O <0	-50	mA	
ok Vo	DO collect capes to item	V _o > V _{cc}	50		
v _o	DC autput voltage		-0.5 to V _{CC} +0.5	٧	
lo	DC output source or sink current per output pin	V _O = 0 to V _{OC}	±50	mA	
l _{CC}	DC V _{CC} current		±100	mA	
GND	DC ground current		±100	- mA	
TSTG	Storage temperature		-65 to 150	°C	
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW	
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW	

NOTES:

No electrical or switching characteristics are specified at V_{CC} < 5V. Operation between 2V and 5V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cituse permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating canditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if she input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

]	TEST CONDITIONS			74AC11020				74ACT11020			
SY MB OL	PARAMETER	TEST C			T _A =	TA = +25°C		T, = -40°C 6 +86°C		T _A = +25°C		T _A = -40°C 10 +85°C	
		1.		٧	Min	Mex	Min	Mex	Min	Max	Min	Max	
	High-level		3.0		2.10		2.10						
V _{IH}	input voltage	1		4.5	3.15		3.15		2.0		2.0		٧
				5.5	3.85		3.85		2.0		2.0		
	Low-level			3.0		0.90		0.90					
VIL	input voltage			4.5		1.35		1.35		0.8		0.8	٧
				5.5		1.65		1.65		0.8		0.8	
V _{OH} High-level output voltag				3.0	2.9		2.9						
		1	1 _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		v
	High-level output voltage	V ₂ V ₂ or V ₃₄		5.5	5.4		5.4		5.4		5.4		
			I _{OH} = -4mA	3.0	2.58		2.48						
			1 _{OH} = -24mA	4.5	3.94		3.6		3.94		3.8		
				5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA	5.5			3.85				3,85		
				3.0		0.1		0.1					
			I _{OL} = SOMA	4.5		0.1		0.1		0.1		0.1	
	Low-level	V _i = V _{ii}		5.5		0.1		0.1		0.1		0.1	
VOL	output voltage	or	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _{PH}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
		1		5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
l _l	Input leakage current	V _I = V _{CC} or GND		5.5		±0.1		±1.0		±0.1		±1.0	μА
loc	Quiescent supply current	V _i = V _{CC} or GND,		5.5		4.0		40		4.0		40	μА
ΔÍCC	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

1. Not more than one output should be sested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tp = tc = 3ns; Ci = 50pF

	PARAMETER	WAVEFORM						
SYMBOL			T _A = +25°C			T _A = -40°C to +85°C		UNIT
j			Min	Тур	Mex	Min	Max	
t _{PLH}	Propagation delay nA, nB, nC, nD to nV	1	1.5 1.5	6.4 6.4	8.6 9.2	1.5 1.5	9,4 10.1	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = te = 3ne; Ct = 50pF

		WAVEFORM						
SYMBOL PARAMETE	PARAMETER		T _A = +25°C			T _A = -40°C to +85°C		UNIT
			Min	Тур	Mex	Min	Max	
tPLH tPHL	Propagation delay nA, nB, nC, nO to nV	1	1.5 1.5	4.3 4.4	6.3 6.7	1.5 1.5	6.7 7.3	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = tp = 3ns; Ct = 50pF

SYMBOL	PARAMETER	WAVEFORM						
			T _A = +25°C			TA = -	10°C to 6°C	UNIT
		ļ	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation delay nA, nB, nC, nD to nY	1	1.5 1.5	5.6 6.1	8.5 6.4	1.5 1.5	9.1 9.2	ns

AC WAVEFORMS AC : V_M = 50% V_{CC}, V_M = GND to V_{CC}. ACT : V_M = 1.5V, V_M = GND to 3.0V

74AC/ACT11021 Dual 4-Input AND Gate

Product Specification

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed awitching noise
- I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11021 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11021 provides two separate 4-input AND gate functions.

GENERAL INFORMATION

		CONDITIONS	TYP		
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
tpeH	Propagation delay A, B, C, D to Y	C _L = 50pF; V _{CC} = 5V	5.1	6.1	ns
CPO	Power dissipation capacitance per gate ¹	V _{OC} = 5.0V; f = 1MHz; C _L = 50pF	38	37	pF
CM	input capacitance	V _I = OV or V _{CC}	3.5	5.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΨΔΨ	Meximum input rise or fell rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ne/V

Note

1. C_{PO} is used to determine the dynamic power dissipation (P_{D} in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (C_L \times V_{CC}^2 \times f_0)$ where:

f, = input frequency in MHz, C, = output load capacitance in pF,

 $f_{\rm O} =$ output frequency in MHz, $V_{\rm OC} =$ supply voltage in $V_{\rm c}$

 $\Sigma (C_1 \times V_{CC}^2 \times I_C) = \text{sum of outputs}$

ORDERING INFORMATION

OTHER MINE WILL OF THE	W111011	
PACKAGES	TEMPERATURE RANGE	ORDER CODE
14-pin plastic DIP (900mil-wide)	-40°C to +85°C	74AC11021N 74ACT11021N
14-pin plastic 90 (150mil-wide)	-40°C to +85°C	74AC11021D 74ACT11021D

PIN CONFIGURATION

LOGIC SYMBOL

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND I	FUNCTION	. 3
2, 10	1A-2A	Data inputs		
1, 9	1B - 2B	Data inputs		
13, 7	1C-2C	Date inputs		
12, 6	1D-2D	Date inputs	1.1% - 5	
3, 5	1Y-2Y	Date outputs	,	
4	GND	Ground (0V)		
11 .	V _{CC}	Positive supply voltage		

FUNCTION TABLE

	MP	UTS	OUTPUT	
nA	n#	nC	nΥ	
Н	Н	Н	Н	н
L	x	×	X	L
X	L	X	X	Ĺ
X	ΪX	L	X	<u> </u>
X	×	×	Į.	L

RECOMMENDED OPERATING CONDITIONS

AVW-01	PARAMETER	74AC11021			74ACT11021			UNIT
SYMBOL	PARAMETER	Miles .	Nom	Mex	Min	Nom	Max 5.5 V _{CC}	ORIT
V _{CC}	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧.
V,	Input voltage	0		V _{CC}	0	1	V _{CC}	٧
v _o	Output vollage	0		V _{cc}	0			· V
Δ۷Δ٧	Input transition rise or fall rate	0	٠.	10	0		10	ns/V
TA	Operating free air temperature	-40		+85	-40	1	+85	•c

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	٧
	DC input diode current ²	V ₁ <0	-20	mA
V _I	DO report discole content	V ₁ > V _{CC}	20	
$\overline{\mathbf{v}_i}$	DC input voltage		-0.5 to V _{CC} +0.5	٧
	DO commit allege commit	V ₀ <0	-50	mA
l <mark>O</mark> K	DC output diode ourrent ²	Vo > Vcc	50	ma
v _o	DC output voltage		-0.5 to V _{CC} +0.5	٧
10	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
1 _{CC}	DC V _{CC} current	,	±100	Am
IGND	DC ground current		±100] ""·
TSTG	Storage temperature		-65 to 150	•c
0	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C::derate linearly by 6mW/K	400	wW

HOTES

No electrical or switching characteristics are specified at V_{CC} < 5V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

-						THAC	11021			74AC1	11021		
SYMBOL	PARAMETER	TEST C	ONDITIONS	¥ _{cc}	TA=	•25°C	T _A = -40°C		T _A = +28°C		T_ = -40°C		UNIT
					Min	Mex	Min	Max	Min	Max	Min	Max	
	Libeta terral				2.10		2.10						
V _{BH}	High-level input voltage				3.15		3.15		2.0		2.0		٧
					3.85		3.86		2.0		2.0		
		T				0.90		0.90					£ 7
V _{aL}	Low-level input voltage			4.5		1.35		1.35		0.8		0.8	ν
				5.5		1.65		1.65		0.8		0.8	
			1.	3.0	2.9		2.9						
		18.5	IOH = -SOMA	4.5	4.4		4.4		4.4		4.4		• • •
V _{OH} High-level output voit		V ₁ =		5.5	5.4		5.4		5.4		5.4		
	High-level output voitage	V _E L or	I _{OH} = -4mA	3.0	2.58		2.46						V
		V _M	1 _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
			OH a semile	5.5	4.94		4.8		4.94		4.8		ĺ
			I _{OH} = -75mA	5.5			3.85				3.85		
	- 1		1	3.0		0.1		0.1					
		1 . ;	IOL = SOUA	4.5		0.1		0.1		.0.1		0.1	
	,	v,-	1	5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voitage	V _{IL}	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _{B1}		4.5	•	0.30		0.44		0.56		0.44	
		-	I _{OL} = 24mA	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ³	5.5				1.85				1.65	
1,	Input leakage current	V _I = V _{CC} or GND		5.5		±0.1		±1.0		±0.1	2.	±1.0	μА
loc	Quiescent supply current	V _I = V _{CC} or GND, I _O = 0		5.5		4.0		40		4.0		40	μΑ
Alcc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL upitage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tg = tp = 3ni; Ct = 50pF

	Propagation delay		74AC11021					
SYMBOL	PARAMETER	WAVEFORM		T _A = 425។	С		10°C to 5°C	UNIT
	•		Min	Тур	Mex	Min	Mex	
t _{PLH}	Propagation dalay nA, nB, nC, nD to nY	1	1.5 1.5	8.2 6.4	11.4 8.7	1.5 1.5	13.0 9.3	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tn = te = 3ne; C, = 50pF

		· ·		74AC11021				
SYMBOL	PARAMETER	WAVEFORM		T _A = +25%	C		IO°C to	UNIT
1			Min	Тур	Mex	Min	Mex	
[†] PLH [‡] PHL	Propagation delay nA, nB, nC, nD to nY	1	1.5 1.5	5.6 4.6	7.8 6.5	1.5 1.5	8.8 6.9	ne

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = tp = 3ns; C1 = 50pF

	J.			: 7	MCT110	H		
SYMBOL	PARAMETER	WAVEFORM	,	r _A = 425°C		T _A = -40°C to +95°C		UNIT
			Min	Тур	Mex	Min	Mex	
^t PLH ^t PHL	Propagation delay nA, nB, nC, nD to nY	. 1	1.5 1.5	6.7 5.4	8.6 8.3	1.5 1.5	9.8 8.9	ns.

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11027 Triple 3-Input NOR Gate

Product Specification

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11027 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11027 provides three separate 3-input NOR gate functions.

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL	
SYMBOL.	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay A, B, C to Y	C _L = 50pF; V _{CC} = 5V	4.4	5.5	ns
CPO	Power dissipation capacitance per gate 1	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	24	27	pF
CN	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔυΔν	Meximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Mote

1. C_{PD} is used to determine the dynamic power dissipation (P_{D} in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (C_L \times V_{CC}^2 \times f_0)$ where:

f = input frequency in MHz, C = output load capacitance in pF,

 $f_{\rm C}$ = output frequency in MHz, $V_{\rm CC}$ = supply voltage in V,

 $\Sigma (C_i \times V_{C_i}^2 \times f_{C_i}) = \text{sum of outputs}$

ORDERING INFORMATION

JUDEUMA INLOUR	MINION	
PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11027N 74ACT11027N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11027D 74ACT11027D

PIN CONFIGURATION

LOGIC SYMBOL

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 14, 9	1A - 3A	Data inputs
16, 11, 8	1B - 3B	Data inputs
15, 10, 7	1C-3C	Data inputs
2, 3, 6	17-37	Date outputs
4, 5	GND	Ground (0V)
12, 13	V _{CC}	Positive supply voltage

	INPUTS		OUTPUT
nA	nB	nC	nΨ
L	L	L	н
X	X	н	L
X	н	x	L
н	x	x	, L

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74AC11027			74ACT11027			UNIT
OIMPUL	PANAMEICH	Min	Nom	Max	Min	Nom	Max	Smil
Vcc	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	V
V _I	input voltage	0		V _{CC}	0		Vcc	٧
v _o	Output voltage	0		V _{CC}	0		V _{oc}	٧
ΔΨΔν	Input transition rise or fall rate	0		10	0		10	ne/V
TA	Operating free-air temperature	-40		+85	-40		+85	*0

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Voc	DC supply voltage		-0.5 to+7.0	V
	DC Input diade current ²	V ₁ < 0	-20	mA
or V		V ₁ > V _{CC}	20	
Ÿ,	DC input voltage		-0.5 to V _{CC} +0.5	٧
	DC output diode current ²	V _O < 0	-50	mA
ok		V _o > V _{cc}	50	1 100
ok Vo	DC output voltage		-0.5 to V _{CC} +0.5	٧
lo	DC output source or sink current per output pin	Vo = 0 to Voc	±50	mA
1 _{CC}	DC V _{CC} current		±100	mA
IGND	DC ground current		±100	ma
TSTG	Storage temperature		-65 to 150	°C
0	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
P _{TOT}	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES:

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent demage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device ratiohility.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

	TRICAL CHARAC	1			74AC11027				74ACT11027				i	
BYMBOL.	PARAMETER	TEST CONDITIONS		v _{cc}	TA = +28°C		T, = -40°C		T _A = +28°C		T_ = -40°C to +85°C		UNIT	
		}		V		Mex	Min	Mex	Min	Max	Min	Mex	1	
V _{IH}				3.0	2.10		2.10							
	High-level			4.5	3.15		3.15		2.0		2.0		٧	
**	input voltage			5.5	3.85		3.85		2.0		2.0			
				3.0		0.90		0.90						
44	Low-level input voltage	1		4.5	1.35			1.35		0.8			٧	
-				5.5		1.65		1.65		0.8		0.8		
	High-level output voltage		T	3.0	2.9		2.9						v	
		V ₁ = V _E	I _{OH} = -80µA	4.5	4,4		4.4		4.4		4.4			
				5.5	5.4		5.4		5.4		5.4			
			I _{OH} = -4mA	3.0	2.58		2.48							
			I _{OH} = -24mA	4.5	3.94	<u> </u>	3.8		3.94		3.8			
			i	5.5	4.94		4.8		4.94		4.8			
			I _{OH} = -75mA [†]	5.5			3.85				3.85			
				3.0		0.1		0.1						
			I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1		
	y.	V ₁ ~	<u> </u>	5.5		0.1		0.1		0.1		0.1		
VOL	Low-level output voltage	or	I _{OL} = 12mA	3.0		0.36		0.44					٧	
-		VIII	I _{OL} = 34mA	4.5		0.36		0.44		0.36		0.44	}	
		-	1	5.5		0.36		0.44		0.36		0.44		
			I _{OL} = 75mA [†]	5.5				1.65			-	1.65		
4	Input leakage current	V1 = VCC		5.5		±0.1		±1.0		±0.1		±1.0	μА	
loc	Quiescent supply current	V _I = V _{OC} or GND, I _Q = 0		5.5		4.0		40		4.0		40	μΑ	
Alcc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA	

HOTES:

This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{QC}.

This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{QC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V $\pm 0.3V$ GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = 3ns; $C_{\rm L}$ = 50pF

			74AC11027					
SYMBOL	PARAMETER	WAVEFORM	1	T _A = +25°	C		IO°C to	UNIT
		1	Min	Тур	Max	Min	Mex	
^t PLH ^t PHL	Propagation delay nA, nB, nC to nY	1	1.5 1.5	6.3 7.6	9.8 10.9	1.5 1.5	10.9 12.0	ńs

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm B} = t_{\rm E} = 3 \text{ns}$; $C_{\rm i} = 50 \text{pF}$

			T	7	74AC1102	7		
SYMBOL	PARAMETER	WAVEFORM		T _A = +25°	C	T _A = -4	lo°C to 5°C	UNIT
			Min	Тур	Mex	Min	Max	1
¹ PLH 1 _{PHL}	Propagation delay nA, nB, nC to nY	1	1.5 1.5	4.3 4.5	6.8 7.5	1.5 1.5	7.7 8.1	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tR = 1; = 3ne; C1 = 50pF

				7	4ACT110	27		
SYMBOL	PARAMETER	WAVEFORM		T _A = +25%	0		10°C to 5°C	TINU
			Min	Тур	Mex	Min	Max	
PLH PHL	Propagation delay nA, nB, nC to nV	1	1.5 1.5	5.0 6.0	9.2 8.6	1.5 1.5	10.1 9.4	ns

5-46

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11030 8-Input NAND Gate

Product Specification

FEATURES

- . Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω Incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11030 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11030 provides one 8-input NAND gate function.

GENERAL INFORMATION

		CONDITIONS	TYP		
SYMBOL	PARAMETER	T _A = 26°C; GND = 0V	AC	ACT	UNIT
TPLH TPHE	Propagation delay A through H to V	C _L = 80pF; V _{CC} = 5V	4.8	5.7	ns
CPD	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	42	41	ρF
CW	Input capacitance	VI = OV or VCC	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΨΔΨ	Meximum input rise or fell rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Marie

1. C_{DD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times i_1 + \sum (C_L \times V_{CC}^2 \times i_0) \text{ where:}$

f, = input frequency in MHz, C, = output load capacitance in pF,

 $t_{\rm O}$ = output frequency in MHz, $V_{\rm OC}$ = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = sum of outputs$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
14-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11030N 74ACT11030N
14-pin plastic 80 (150mil-wide)	-40°C to +85°C	74AC11030D 74ACT11030D

PIN CONFIGURATION

LOGIC SYMBOL

8-Input NAND Gate

74AC/ACT11030

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION	
3, 2, 1, 14 13, 12, 9, 8	A, B, C, D, E, F, G, H	Data inputs	
5	. 7	Date output	
4, 5, 6, 7	GND	Ground (0V)	
15, 16	Vcc	Positive supply voltage	

FUNCTION TABLE

INPUTS	OUTPUT
A through H	A
All inputs H	L .
One or more inputs L	н

RECOMMENDED OPERATING CONDITIONS

BYMBOL	PARAMETER	74AC11030			74ACT1103	1		
O I MOOL	PARAMETER	Min	Nom	Mex	Min	Nom	Max	UNIT
v _{cc}	DG supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧
V,	Input voltage	.0	1	V _{CC}	0		V _{cc}	V.
v _o	Output voltage	0		Vcc	0		Vcc	·V
ΔVΔν	Input transition rise or fall rate	0		10	0		. 10	ne/V
TA	Operating free-air temperature	-40		+85	-40		+85	*C

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Vcc	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ < 0	-20	mA
luk or Vi		V _I > V _{CC}	20	1 111
V _I	DC input voltage		-0.5 to V _{CC} +0.5	V
	DC output diode current ²	V ₀ < 0	-50	
lok Vo		V _o > V _{cc}	50	mA
v _o	DC output voltage		-0.5 to V _{CC} +0.5	٧
10	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	. mA
l _{CC}	DC V _{CC} current		±100	mA
GND	DC ground current		±100	I ma
TSTG	Storage temperature		-65 to 150	•c
P	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
P _{TOT}	Power dissipation per package Plastic surface recount (SO)	Above 70°C:denite linearly by 6mW/K	400	mW

^{1.} No electrical or awitching characteristics are specified at V_{CC} < SV. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Streams beyond those listed may cause permanent demage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating canditions" is not implied. Exposure to absolute-maximum-reted conditions for extended periods may affect device reliability.

^{2.} The input and output voltage railings may be exceeded if the input and output current railings are observed.

	TRICAL CHARAC	1				74AC	11030			74AC1	11030		
BYMBOL	PARAMETER	TEST O	TEST CONDITIONS		TA = 1	25°C	TA =	40°C	T _A =	25°C	TA = -	40°C	UNIT
				٧	Min	Mex	Min	Max	Min	Max	Min	Max	
				3.0	2.10		2.10				·		
V _{IH}	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
	Hipot voilage			5.5	3,95		3.85		2,0		2.0		
				3.0		0.90		0.90					
V _K	Low-level input voltage			4.5		1.25		1.35		0.8		0.8	٧
~	input votage			5.5		1.65		1.65		0.8		0.8	
		1	1	3.0	2.9		2.9						
	-	}	1 _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
		V ₁ =		5.5	5.4		5.4		5.4		5.4		
VOH	High-level output voltage	VE	I _{OH} = -4mA	3.0	2.58		2.48						V
911		V		4.5	3.94		3.8		3,94		3.8		
		1	1 _{OH} = -24mA	5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85			,	3.85		
				3.0		0.1		0.1					
			IOL = 50µA	4.5		0.1		0.1		0.1		0.1	
		\ \v,-		5.5		0.1		0.1	1	0.1		0.1	
VOL	Low-level output voltage	V, -	I _{OL} = 12mA	3.0		0.36		0.44					٧
-		V _{B1}		4.5		0.36		0.44		0,36		0.44	
			OL = 24mA	5.5		0.36		0.44		0,36		0.44	
		<u> </u>	I _{OL} = 75mA ¹	5.5				1.65				1.65	
l,	Input leakage current	V1 = VCC		5.5		±0.1		±1.0		±0.1		±1.0	μА
loc	Quiescent supply current	V1 = Vcc	or GND,	5.5		4.0		40		4.0		40	μА
Δl _{CC}	Supply current, TTL inputs High ²	One input	t at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

1. Not more than one output should be tested at a time, and the dynation of the sect should not enceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL veltage levels rather than OV or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tg = tc = 3ns; C, = 50pF

	t _s	·	T	7	74AC1103	0		
SYMBOL	PARAMETER	WAVEFORM		r _A = +257	3		IO°C to 5°C	UNIT
			Min	Тур	Mex	Vin	Max	
t _{PLH}	Propagation delay A, B, C, D, E, F, G, H to 7	1	1.5 1.5	6.9 6.4	9.1 . 8.8	1.5 1.5	9.9 9.8	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm R}$ = $t_{\rm p}$ = 3ns; $C_{\rm i}$ = 50pF

				7	'4AC1103	0		
SYMBOL	PARAMETER	WAVEFORM	1	T _A = +25°C	•		10°C 10 5°C	UNIT
	-		Min	Тур	Mex	Min	Max	
^t PLH ^t PHL	Propagation delay A, B, C, D, E, F, G, H to ₹	1	1.5 1.5	4.8 4.8	6.7 6.7	1.5 1.5	7.2 7.4	ns .

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_R = t_F = 3$ ns; $C_L = 50$ pF

				7	4ACT110)G		
SYMBOL	PARAMETER	WAVEFORM	,	T _A = +257	C		IO°C to 5°C	UNIT
			Min	Тур	Max	Min	Mex	
^t PLH ^t PHL	Propagation delay A, B, C, D, E, F, G, H to ♥	1	1.5 1.5	5.4 5.9	8.1 7.6	1.5 1.5	8.5 8.7	ns

AC WAVEFORMS AC : $V_{\rm M}$ = 50% $V_{\rm CC}$, $V_{\rm N}$ = 9ND to $V_{\rm CC}$. ACT : $V_{\rm M}$ = 1.5V, $V_{\rm NN}$ = 9ND to 3.0V

74AC/ACT11032 Quad 2-Input OR Gate

Product Specification

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11032 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11032 provides four separate 2-input OR gate functions.

GENERAL INFORMATION

		CONDITIONS	TYP			
SYMBOL	PARAMETER	TA = 25°C; GND = 0V	AC	ACT	UNIT	
t _{PLH} /	Propagation delay A, B, to Y	C _L = 50pF; V _{CC} = 5V	4.1	4.8	ns	
C _{PD}	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	24	25	ρF	
CIN	input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF	
LATCH	Latch-up ourrent	Per Jedec JC40.2 Standard 17	500	500	mA	
ΔΨΔν	Maximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V	

Note

1. C_{DD} is used to determine the dynamic power dissipation (P_{D} in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (C_1 \times V_{CC}^2 \times f_0)$$
 where:

f, = input frequency in MHz, C, = output foed depactence in pF,

 t_{O}^{\prime} = output frequency in MHz, V_{OC}^{\prime} = supply voltage in V,

 $\Sigma(C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

OPPERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11032N 74ACT11032N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11032D 74ACT11032D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Quad 2-input OR Gate

74AC/ACT11032

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 15, 11, 9	1A-4A	Data inputs
16, 14, 10, 8	18-4B	Data inputs
2, 3, 6, 7	1Y-4Y	Date outputs
4, 5	GND	Ground (0V)
12, 13	Voc	Positive supply voltage

FUNCTION TABLE

INP	פדט	OUTPUT
nA	nB	nY
L	L	L
L	н	н
н	L	н
н	н	н

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AC11032	AC11032			74ACT11032		
	PARAMETER	Min	Nom	Mex	Min	Nom	Mex	UNIT	
Voc	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧	
V _I	Input voltage	0		Vcc	0		Voc	٧	
v _o	Output voltage	0		Vœ	0		Voc	V	
AVAV	Input transition rise or fall rate	0		10	0		10	ns/V	
TA	Operating free-air temperature	-40		+85	-40		+85	•c	

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT	
Voc	DC supply voltage		-0.5 to+7.0	V	
	DC input diade current ²	V ₁ < 0	-20	mA	
ik V		V _I > V _{CC}	20	1 ///	
V _I	DC input voltage		-0.5 to V _{CC} +0.5	V	
	DC output diade current ²	V _O <0	-50		
0K V0	So soper door contain	V _o > V _{cc}	50	- mA	
v _o	DC autput voltage		-0.5 to V _{CC} +0.5	٧	
lo	DC output source or sink current per output pin	Vo = 0 to Vcc	±50	- Am	
loc or	DC V _{CC} current		±100		
GND	DC ground current		±100	mA	
TSTQ	Storage temperature		-65 to 150	°C	
P _{TOT}	Power dissipation per package Plastic DIF	Above 70°C:derate linearly by 8mW/K	500	mW	
י זסד	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW	

NOTES:

NOTE:

1. No electrical or switching characteristics are specified at V_{QC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Quad 2-Input OR Gate

DC	ELECTRIC	CAL CHA	RACTERISTICS

<u> </u>	TRICAL CHARAC	T				74AC	11032			74ACT	11032		
BYMBOL	PARAMETER	TEST CO	MOITIONS	v _{cc}	T _A = (25℃	TA=-	40°C	T _A =	25°C	T. = -	40°C	UNIT
				٧		Max	Min	Mex	Min	Max			
				3.0	2.10		2.10						
V _{IH}	High-level input voltage	1		4.5	3.15		3.15		2.0		2.0		٧
	inpot to tage	1		5.5	3.85		3.85		2.0		2.0		
			3.0		0.90		0.90						
V _{IL}	Low-level input voltage	1		4.5		1.35		1.35		0,8		0.8	v
_				5.5		1.65	L.	1.65		0.8		0.8	
V _{OH} High-level output voltage			3.0	2.9		2.9							
			I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
	I Hab Invel	V		5.5	5.4	_	5.4	-	5.4		5.4		v
		V _I = V _E or	I _{OH} = -4mA	3.0	2.58	-	2.48		-		3.8	-	•
		V _{BH} I _{OH}	1 _{OH} = -24mA	4.5	3.94	-	3.8		3.94		4.8		
				5.5	4.94	<u> </u>	4.8	-	4.94		3.85		
			1 _{OH} = -75mA ¹	5.5	-	1	3.85	1-			3.95	-	
				3.0		0.1	-	0.1		0.1		0.1	}
		V -	I _{OL} = 50µA	4.5	-	0.1	-	0.1	-	0.1	-	0.1	
	Low-level	V _i -		5.5	-	0.1	-	0.1	-	0.1	-	0.1	v
VOL	output voitage	or	loL = 12mA	3.0	-	0.36	-	0.44	-	0.36	-	0.44	•
		V _M	OL = 24mA	4.5	-	0.36	-	0.44	-	0.36	-	0.44	
				5.5	-	0,36	-	0.44	-	0.30	 	1.65	1
			I _{OL} = 75mA ¹	5.5		┼	-	1.65	+			+	
I _I	Input leakage current	V, = V _{CC}		5.5		±0.1		±1.0	_	±0.1		±1.0	μА
lcc	Quiescent supply current	V1 = Vcc	or GND,	5.5		4.0		40		4.0		40	μА
Alcc	Supply current, TTL inputs High ²	One input at V _{CC} or	at 3.4V, other inputs	5.5		T				0.9		1.0	mA

PROTEES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tg = tg = 3ns; C, = 50pF

				74AC11002					
SYMBOL PARAMETER	WAVEFORM	T _A = +25°C				40°C to 5°C	UNIT		
		Min	Тур	Max	Min	Max			
^t PLH ^t PHL	Propagation delay nA, nB to nY	1	1.5 1.5	6.3 5.4	8.7 7.4	1.5 1.5	9.7 8.0	ns	

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm B} = t_{\rm E} = 3$ ns; C, = 50pF

SYMBOL PARAMETER			T	7	74AC1103	2		
	PARAMETER	WAVEFORM	T _A = +25°C T _A = -40°C to +45°C					UNIT
			Min	Тур	Mex	Min	Mex	
PLH PHL	Propagation delay nA, nB to nY	1	1.5 1.5	4.3 3.8	6.2 5.5	1.5 1.5	6.7 5.9	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = 3ns; $C_{\rm L}$ = 50pF

	,			7	4ACT110	32		
SYMBOL PARAMETER	PARAMÉTER	WAVEFORM	T _A = +25°C				10°C to 5°C	UNIT
		Min	Тур	Max	Min	Max		
t _{PHL}	Propagation delay nA, nB to nY	1	1.5 1.5	5.3 4.3	8.1 7.4	1.5 1.5	9.0 8.0	ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{IN} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{IN} = GND to 3.0V

74AC/ACT11034 Hex Non-Inverter

Product Specification

FEATURES

- . Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11034 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11034 provides six separate non-inverters.

GENERAL INFORMATION

		CONDITIONS	TYP		
SYMBOL	PARAMETER	TA = 25°C; GMD = 0V	AC	ACT	UNIT
tpLH [/]	Propagation delay A, B, to Y	C _L = 50pF; V _{CC} = 5V	4.0	5.7	ns
CPD	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C ₁ = 50pF	27	29	ρF
CM	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΨΔΨ	Maximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	na/V

Meda

- 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):
 - $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{1} + \sum (C_{L} \times V_{CC}^{2} \times f_{0}) \text{ where:}$
 - f = input frequency in MHz, C = output load capacitance in pF.
 - $f_{\rm D}$ = output frequency in MHz, $V_{\rm CC}$ = supply voltage in V,
 - $\Sigma (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
20-pin plestic DIP (300mil-wide)	-40°C to +85°C	74AC11034N 74ACT11034N
20-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11034D 74ACT11034D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Hex Non-Inverter

74AC/ACT11034

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
20, 19, 18, 13, 12, 11	1A -6A	Data inputs
1, 2, 3, 8, 9, 10	1Y-8Y	Date outputs
4, 5, 6, 7	GND	Ground (0V)
15, 16	V _{CC}	Positive supply voltage

FUNCTION TABLE

INPUT	OUTPUT
nA	nY
L	L
• н	н

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AC11034	}		74ACT11034		
		Min	Nom	Mex	Min	Nom	Max	UNIT
Voc	DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5.5	V
V _I	Input voltage	0		V _{cc}	0		V _{cc}	V
V _O	Output voltage	0		v _{oc}	0	 	Voc	V
ΔΨΔν	Input transition rise or fall rate	0		10	0 .	·	10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	°C

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT		
V _{CC}	DC supply voltage		-0.5 to+7.0	V		
	DC input diode current ²	ut diode current ² V ₁ < 0				
lik or V		V _I > V _{CC}	20	- mA		
v,	DC input voltage		-0.5 to V _{CC} +0.5	V		
	DC output diede current ²	V ₀ <0	-50	1		
ok Vo		V _o > V _{cc}	50	mA		
	DC output voltage		-0.5 to V _{CC} +0.5	v		
lo	DC output source or sink current per output pin	V ₀ =0 to V _{CC}	±50	mA		
l _{GC}	DC V _{CC} current		±150			
GND	DC ground current		±150	mA		
T _{STG}	Storage temperature		-45 to 150	*C		
ρ	Power clasipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW		
Ртот	Power dissipation per package Plastic surface thount (SO)	Above 70°C:derate linearly by 6mW/K	400	ώM		

NOTE:

1. No electrical or ewitching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output voltage ratings may be assessed if the input and output current ratings are observed.

DC ELECTRICAL CHARACTER

	TRICAL CHARAC	T				74AC	1034			74ACT		1	Į
SYM B OL	PARAMETER	TERT OF	TEST CONDITIONS		TARA	TA = 496°C		T, = -40°C		25°C	T _A = -40°C 50 +46°C		UNIT
			., .	٧	Min	Mex	Min	Mex	Min	Max	Min	Max	
		1	í.	3.0	2.10		2.10			٠	- ,		
V _M	High-level input voltage		· .	4.5	3,15		3.15		2.0		2.0		٧
W1	athur sounds			5.5	3.85	t	3.85	- 52	2.0		2.0		
				3.0		0.90		0.90					
V _{aL}	Low-level input voltage					1,35		1.35		0.8		0.8	٧
	Mibrit sounds			5.5	7.7	1.65		1.65		0.8		0.8	,
		1	100	3.0	2.9		2.9						
			1 _{OH} = -80HA	4.5	4.4		4.4		4.4		4.4		
		V _I =		5.5	5.4		5.4		5.4		5.4	1	
	High-level output voltage	Ve.	I _{OH} = -4mA	3.0	2.54		2.48						٧
OH	NH OH.	. V ₈₄	3	4.5	3,94		3.3		3.94		3,8		
			1 _{OH} = -24mA	5.5	4.94		4.8		4.94		4.8		
		IOH = -75mA	9.5	19.75		3.85				3.85			
				3.0		0.1		0.1					
•			I _{OL} = 50µA	4.5		0.1	-	0.1		0.1		0.1	
		V ₁ =		5.5		0.1.		0.1		0.1		0.1	
VOL	Low-level	VL	I _{OL} = 12mA	3.0		0.36		0.44					٧
0.	Odpor volinge	V _{B1}		4.5	14.5	0.36	- LC	0:44		0.36		0.44	
		, "	I _{OL} = 24mA	5.5	١	0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
1,	input leakage current	V1= Vcc	or GND	3.5		±0.1		±1.0		±0.1		±1.0	μΑ
lcc	Quiescent supply current	V ₁ = V _{CC} or GND,		5.5		4.0		40		4.0		40	μА
Alcc	Supply current, TTL inputs High ²	One input at V _{CC} or	at 3.4V, other inputs	5.5		Π				0.9		1.0	mA

NOTES:

1. Not more shan one output should be tested at a time, and the duration of the test shiplid

2. This is the increase in supply current for each input that is at one of the specified TTL vo

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V: $t_{\rm R}$ = $t_{\rm F}$ = 3ne; $C_{\rm L}$ = 50pF

		\$		7	74AC1108	4		
SYMBOL	PARAMETER	WAVEFORM	1	A = +25%	3		IO°C to 5°C	UNIT
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	45 S F	Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay nA, e8 to nY	1	1.5 1.5	5.7 5:5	9.1 8.3	1.5 1.5	10.1	, ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = tp = 3ne; Ct = 50pF

		tie"		74AC1103			, ,		
SYMBOL	PARAMETER	WAYEFORM		T _A = +25°C			IO°C to 5°C	UNIT	
			Min	Typ	Mex	Min	Mex		
PLH	Propagation delay nA, nB to nY	. 1	1.5 1.5	4.0	6.3 6.2	1.5 1.5	6.9	ne	

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GNO = 0V; tp = tp = 3ne; Ct = 50pF

				74ACT11634				
SYMBOL	PARAMETER	WAVEFORM	1	r _A = +26℃	3		10°C to	UNIT
			Min	Typ	Mex	Min	Max	
^E PLH EPHE	Propagation delay nA, nB to nY	1	1.5 1.5	6.1 5.2	8.9 8.0	1.5 1.5	9.9 8.9	ns

AC WAVEFORMS AC : V_{M} = 50% V_{OC} , V_{N} = QAID to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = QAID to 3.0V

74AC/ACT11074 Dual D-Type Flip-Flop w/Set

and Reset; Positive-Edge

Trigger

Product Specification

FEATURES

- . Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- · I_{cc} category: SSI

DESCRIPTION

The 74AC/ACT11074 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11074 provides two Dtype flip-flops with independent Data, Clock, Set and Reset inputs, and complementary Q and Q outputs.

Set (\$\overline{S}\$) and Reset (\$\overline{R}\$_i) are asynchronous active-Low inputs and operate independently of the Clock input. Information on the Data (\$\overline{D}\$) input is transferred to the Q output on the Low-to-High transition of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. The \$\overline{D}\$ inputs must be stable one set-up time prior to the Low-to-High clock transition for predictable operation.

GENERAL INFORMATION

		CONDITIONS	TYP	UNIT	
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
EPLH/	Propagation dalay CP _n to O _n or O _n	C _L = 50pF; V _{CC} = 5V	5.2	5.9	กล
C _{PD}	Power dissipation capacitance per gate ¹	V _{CC} ≈ 5.0V; f = 1MHz; C ₁ = 50pF	30	30	pF
C _{IN}	Input capacitance	V _I = OV or V _{CC}	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΨΔν	Meximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V
f _{MAX}	Meximum clock frequency	C _L = 50pF; V _{CC} = 5.0V	150	125	MHz

Motor

1. Con is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_C)$ where:

f = input frequency in MHz, C = output load capacitance in pF,

for a output frequency in MHz, Voc a supply voltage in V,

 $\Sigma(C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
14-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11074N 74ACT11074N
14-pin plestic SO (150mil-wide)	-40°C to +85°C	74AC11074D 74ACT11074D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
13, 9	D ₀ - D ₁	Data inputs
2, 6	Q0 - Q1	Date outputs
3, 5	a ₀ - a ₁	Data outputs (complements of O _n outputs)
1, 7	\$0 - \$1	Set inputs (active Low)
12, 10	Ro-R	Reset inputs (active Low)
14, 8	CPo-CP	Clock inputs
4	GND	Ground (0V)
11	V _{CC}	Positive supply voltage

FUNCTION TARLE

OPERATING MODE		INPUTS			OUTPUTS			
OPERATING MODE	8	R	СР	D	Q	ā		
Asynchronous set	L	н	×	X	Н	L		
Asynchronous reset	H	L	X	х	L	Н		
Undetermined ¹	L	L	X	X	Н	Н		
Load "1" (set)	Н	н	Ť	h	Н	L		
Load "0" (reset)	Н	Н	1	1	L	H		
No change - hold	н	Н	L	X	Q,	۵,		

- H = High voltage level steady state
- h=High voltage level one set-up time prior to the Low-to-High clock transition $L\simeq Low \ voltage$ level steady state
- I = Low voltage level one set-up time prior to the Low-to-High clock transition <math>X = Don't care
- T = Low-to-High clock transition

NOTE:

This configuration is nonstable; that is, it will not persist when either Set or Reset returns to its inactive (High) level.

LOGIC DIAGRAM

Dual D-Type Flip-Flop w/Set and Reset; Positive-Edge Trigger

74AC/ACT11074

RECOMMENDED OPERATING CONDITIONS

	PARAMETER		74AC11074	1		UNIT		
SYMBOL	PAHAMETER	Min	Nom	Mex	Min	Nom	Max	ON
Vcc	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧
V _i	Input voltage	0		V _{CC}	0		V _{cc}	٧
V _O	Output voltage	0		V _{CC}	0		V _{CC}	٧
Δ۷Δ٧	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	°C

NOTE:

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to+7.0	٧	
	2	V1 < 0	-20	mA	
1 _{IK}	DC input diode current	V ₁ > V _{CC}	20	"""	
i _{IK} of V _i	DC input voltage		-0.5 to V _{CC} +0.5	v	
lok	502	V _O <0	-50	mA	
	DC output diode current ²	v _o > v _{cc}	50		
ok Vo	DC output voltage		-0.5 to V _{CC} +0.5	v	
10	DC output source or sink ourrent per output pin	Vo = 0 to Voc	±50	mA	
l _{CC}	DC V _{CC} current		±100	mA	
GND	DC ground current		±100	me	
T _{STG}	Storage temperature		-65 to 150	•c	
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 6mW/K	500	mW	
P _{TOT}	Power dissipation per package Plestic surface mount (90)	Above 70°C:dense linearly by 6mW/K	400	mW	

NOTES:

^{1.} No electrical or switching characteristics are specified at V_{CC} < SV. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "accommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 The input and output voltage ratings may be exceeded if the input and output outrant ratings are observed.

Dual D-Type Flip-Flop w/Set and Reset; Positive-Edge Trigger

74AC/ACT11074

DC FLECTRICAL CHARACTERISTICS

						74AC	11074			74AC1	11074		
SYMBOL	PARAMETER	TEST C	TEST CONDITIONS V _C		T _A = +25°C		T, =-40°C		T _A = +25°C		T _A = ~40°C 10 +85°C		UNIT
		1			Min	Max	Min	Mex	Min	Max	Min	Max	
		1	3		2.10		2.10						
V _{IH}	High-level input voltage	1		4.5	3.15		3.15		2.0		2.0		٧
		1		5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V _N	Low-level input voltage			4.5		1.35		1.35		0.8		0.8	٧
				5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
	VOH High-level output voltage		I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
1		V ₃ = V _R or V _{R4}		5.5	5.4		5.4		5.4		5.4		V
VOH			I _{OH} = -4mA	3.0	2.58		2.48						
			I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
				5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					
		1	IOL = 50µA	4.5		0.1		0.1		0.1		0.1	
	Low-level	V _i = V _R or		5.5		0.1		0.1		0.1		0.1	
VOL	output voltage	OF.	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _{BH}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
			t	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA [†]	5.5				1.65				1.65	
i _l	Input leakage current	V1 = V00 0		5.5		±0.1		±1.0		±0.1		±1.0	μА
lcc	Quiescent supply current	V1 = Vcc 0	r GND,	5.5		4.0		40		4.0		40	μА
ΔIcc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

Dual D-Type Filp-Flop w/Set and Reset; Positive-Edge Trigger

74AC/ACT11074

AC ELECTRICAL CHARACTERISTICS AT 3.3V 10:3V GND = 0V; 1 = 16 = 3ns; C1 = 50pF

	A v	T			74AC1107	4		
SYMBOL	PARAMETER	WAVEFORM		F _A = +957	<u> </u>	T _A = -4	PC to	UNIT
		. 1	Miles	Typ	Mex	Min	Max	
1 _{MAX}	Maximum clock frequency	-1	100	126		100		MHįz
² PLH ¹ PHL	Propagation delay CP _n to Q _n , Q _n	1	1.5	7.7 7.8	10.5 9.7	1.5 1.5	11.3 10.6	ns
^t PLH ^t PHL	Propagation delay	2	1.5 1.5	5.8 6.5	9.3 11.4	1.5 1.5	10.0 12.2	ue
t _s	Setup time, High or Low D _n to CP _n	.1	5.0	ī		5.0		ns
t _H	Hold time, High or Low CP _n to D _n	1	0			0		ns
tw .	Clock pulse width High or Low	1	5.0			5.0		ns
^z w	S _n or R _n pulse width, Low	2	4.0			4.0		jné.
^t REC	Recovery time S, or F, to CP,	3	1.0			1.0		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tg = tg = 3ne; Ct = 50pF

SYMBOL	PARAMETER	WAVEFORM	TA MASSIC			TA = -	IO°C to	UNIT
			Min	Typ	Mex	Min	Max	
MAX	Meximum clock frequency	1 .	125	150		125		MHz
^t PLH ^t PHL	Propagation delay CP _n to Q _n , Q _n	1	1.5 1.5	5.4 5.0	7.5 6.9	1.5 1.5	8.2 7.5	ns.
PLH PHL	Propagation delay \overline{S}_n , \overline{R}_n to Ω_n , $\overline{\Omega}_n$	2	1.5 1.5	4,2 4,7	6.6 8.2	1.5 1.5	7.1 9.0	ns
^t s	Setup time, High or Low D _n to CP _p	1	3.5			3.5		ne
^t H	Hold time, High or Low CP _n to D _n	1 .	. 0			0		ne
^t w	Clock pulse width High or Low	1	4.0			4.0		ns
^t w	S, or R, pulse width, Low	2	4.0			4.0		ne
¹ REC	Recovery time S or R to CP	. 3	1.0			1.0		ns

AC ELECTRICAL CHARACTERISTICS AT S.OV ±0.39 (MISSEOV; 12 = 1; = 3ms; C, = 30pF

	,		T	7	4ACT110	74			
SYMBOL	PARAMETER	WAVEFORM *	· · ·	Y _A = +25°	C .	T _A = -4	10°C to 5°C	UNIT	
			Min	Тур	Max	Min	Max		
1 _{MAX}	Maximum clock-frequency		100	125		100		MHz	
t _{PLH} t _{PHL}	Propagation delay CP, to Cp, , Cp	1	1.5 1.5	6.0 5.7	8.5 8.0	1.5 1.5	9.4 8.8	ns .	
t _{PLH}	Propegation delay	2	1.5 1.5	5.7 6.6	8.9 11.3	1.5 1.5	9.6 12.5	ns	
t _s	Setup time, High or Low	, 1	4.5			4.5		ns.	
t _H	Hold time, High or Low CP _n to D _n	4	0			0		ns.	
tw .	Clock pulse width High or Low	1	5.0			8,0		ne	
t _w	S _n or R _n pulse width, Low	2	5.0			5.0		ne ne	
t _{REC}	Recovery time S, or R, to CP,	`8	2.0			2.0		ns	

AC WAVEFORMS AC : V_{M} = 50% V_{CC} : V_{N} = GND to V_{CC} . ACT : \tilde{V}_{M} = 1.5 $V_{L}V_{N}$ = GND to \$10 V_{CC}

Dual D-Type Flip-Flop:w/Set and Reset; Positive-Edge Trigger

74AC/ACT11074

AC WAVEFORMS AC : V_{M} = 60% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V (Continued)

74AC/ACT11086 Quad 2-Input Exclusive-OR Gate

Preliminary Specification

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voitage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11086 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11086 provides four separate 2-input exclusive-OR gate functions.

GENERAL INFORMATION

		CONDITIONS	TYP	IMIT	
SYMBOL	PARAMETER	T _A = 26°C; GND = 0V	AC	ACT	UNIT
t _{PLH} / t _{PHL}	Propagation delay A, B, to Y	C _L = 50pF; V _{CC} = 5V	5.0	6.5	ns
C _{PO}	Power dissipation capacitance per gate 1	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	27	26	pF
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΙ/Δν	Meximum input rise or tall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ne/V

Mode

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_0)$ where:

 $\mathbf{f}_{\mathbf{L}} = \mathbf{hput} \; \mathbf{frequency} \; \mathbf{in} \; \mathbf{MHz}, \; \mathbf{C}_{\mathbf{L}} = \mathbf{output} \; \mathbf{load} \; \mathbf{capacitance} \; \mathbf{in} \; \mathbf{pF},$

 $t_{\rm C}$ = output frequency in MHz, $V_{\rm CC}$ = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times I_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
18-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11086N 74ACT11086N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11086D 74ACT11086D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 15, 11, 9	1A - 4A	Data inputs
16, 14, 10, 8	1B-4B	Data inputs
2, 3, 6, 7	1Y-4Y	Data outputs
4, 5	GND	Ground (0V)
12, 13	Vcc	Positive supply voltage

FUNCTION TABLE

INP	UTS	OUTPUT
nA	nÐ	nY
L	L	L
L	н	н
н	L	н
Н	н	L

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	,	74AC11806			UNIT		
	PARAMETER	Min	Nom	Max	Min	Nom	Max	UMIS
Vcc	DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5.5	V
V ₁	Input voltage	0		V _{oc}	0		V _{CC}	V
v _o	Output voltage	0		Vcc	0		Voc	V
ΔΨΔν	Input transition rise or fail rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	*C

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage	·	-0.5 to+7.0	V
	DC input diode current ²	V ₁ < 0	-20	mA
ik or	Do liput doos correit	V ₁ > V _∞	20	1110
Ÿ,	DC input voltage		-0.5 to V _{CC} +0.5	V
	DC output diode current ²	V _O <0	-50	mA
1 _{OK}	Do dupat doce current	V _O > V _{CC}	50	1
ok er v _o	DC output voltage		-0.5 to V _{CC} +0.5	٧
10	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
I _{CC}	DC V _{CC} current		±100	mA
GND	DC ground current		±100	
TSTG	Storage temperature		-65 to 150	•c
ρ	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 6mW/K	500	mW
P _{TOT}	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES:

^{1.} No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress railings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

				1		74AC	11006		74ACT11006				
SYMBOL	PARAMETER	TEST C	DNDITIONS	v _{cc}	T _A =	•25℃	TA =	40°C 85°C	T _A =	•25°C	T_=	-40°C 85°C	UNIT
					Min	Mex	Min	Max	Min	Max	Min	Max	
					2.10		2.10						
V _{BH}	High-level input voltage	}		4.5	3.15		3.15		2.0		2.0		٧
•		1		5.5	3.85		3.85		2.0		2.0		
						0.90		0.90					-
VIL	Low-level input voltage			4.5		1.35		1.35		0.8		0.8	٧
•				5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
			1 _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
VOH Output voltage	V, -		5.5	5.4		5.4		5.4		5.4			
	output voltage	V ₁ =	I _{OH} = -4mA	3.0	2.58		2.46						V
٠,		V _H		4.5	3.94		3.8		3,94		3.8		
			1 _{OH} = -24mA	5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					
			I _{CL} = 50µA	4.5		0.1		0.1		0.1		0.1	
		V _I -		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voltage	Or L	1 _{OL} = 12mA	3.0		0.36		0.44					٧
		V _{BH}		4.5		0.36		0.44		0.36		0.44	
			I _{OL} = 24mA	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA	5.5				1.85				1.65	
ŧ,	Input leakage current	V, = V _{CC} 6		5.5		±0.1		±1.0		±0.1		±1.0	μΑ
loc	Quiescent supply ourrent	V1 = V00 0	V ₁ = V _{OC} or GND, i _O = 0			4.0		40		4.0		40	μА
Alcc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

Not more than one output should be tested at a time, and the duration of the sect should not exceed 10ms.
 This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; $t_{\rm p}$ = $t_{\rm p}$ + 3ns; $C_{\rm L}$ = 50pF

SYMBOL				7	/4AC1100	6		
	PARAMETER	WAVEPORM		T _A = +28*(2		IO°C to E°C	UNIT
			Min	Тур	Max	Min	Mex	
^t PLH ^t PHL	Propagation dalay nA, nB to nY	1	1.5 1.5	7.0 6.0	9.0 7.5	1.5 1.5	10.1 8.1	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tg = tg = 3mc; C, = 50pF

				1	74AC1100	6		
SYMBOL	PARAMETER	WAVEFORM	,	T _A = +257		TA = -	ICC to	UNIT
			Min	Тур	Mex	Milm	Max	
t _{PLH} t _{PHL}	Propagation delay nA, nB to nY	1	1.5 1.5	5.0 4.9	6.7 6.2	1.5 1.5	7.4 6.8	ns ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = tc = 3ns; C1 = 50pF

				7	4ACT1106	18		
SYMBOL	PARAMETER	WAVEFORM		T _A = +257			IOC IO	UNIT
		}	Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay nA, nB to nY	1	1.5 1.5	6.6	8.7 8.1	1.5 1.5	9.4 8.7	ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{M} = GND to 3.0V

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V and ground configuration to minimize high-speed switching noise
- I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11109 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11109 provides two J- \overline{K} flip-flops with independent Data, Clock, Set and Reset inputs, and complementary Q and \overline{Q} outputs.

Set (\overline{S}_n) and Reset (\overline{R}_n) are asynchronous active-Low inputs and operate independently of the Clock input.

Information at the J and \overline{K} inputs is transferred to the Q output on the Low-to-High transition of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. The J and \overline{K} inputs must be stable one set-

PIN CONFIGURATION

GENERAL INFORMATION

		CONDITIONS	TYP			
SYMBOL.	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT	
t _{PLH} /	Propagation delay CP _n to O _n or O _n	C _L = 50pF; V _{CC} = 5V	5.3	5.8	ns	
C _{PD}	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	32	31	рF	
C	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF	
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA	
ΔύΔν	Maximum input rise or fail rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V	
† _{MAX}	Meximum clock frequency	C _L = 50pF; V _{CC} = 5.0V	125	125	MHz	

Moto

- C_{DD} is used to determine the dynamic power dissipation (P_D in μW):
 - $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_D)$ where:
 - f = input frequency in MHz, C = output load capacitance in pF,
 - for a output frequency in MHz, Voc a supply voltage in V.
 - $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDEDING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11109N 74ACT11109N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11109D 74ACT11109D

up time prior to the Low-to-High clock transition for predictable operation. The J

and K inputs may be tied together to allow operation as a D flip-flop.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74AC/ACT11109

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
14, 10	Jo - J1	Data inputs
15, 9	Ro-Ki	Data inputs
2, 6	Q - Q,	Data outputs
3, 5	Q, - Q,	Data outputs (complements of Q _n outputs)
1, 7	S ₀ - S ₁	Set inputs (active Low)
13, 11	Ħ ₀ - Ħ ₁	Reset inputs (active Low)
16, 8	CPO-CP	Clock inputs
4	GND	Ground (0V)
12	Vcc	Positive supply voltage

FUNCTION TABLE

		OUTPUTS					
OPERATING MODE	8	A	CP	J	R	Q	, a
Asynchronous set	L	Н	X	X	X	Н	L
Asynchronous reset (clear)	H	L	X	X	X	L	H
Undetermined ¹	L	L	X	X	X	Н	H
Load "0" (reset)	H	Н	1	1	1	L	Н
Load "1" (set)	H	Н	1	h	h	H	L
Toggle	H	Н	1	h	1	q	9
No change - hold	Н	Н	L	X	×	Q,	ō,

H = High voltage level steady state

h = High voltage level one set-up time prior to the Low-to-High clock transition L = Low voltage level steady state

I = Low voltage level one set-up time prior to the Low-to-High clock transition

X - Don't care

q = Lower case letters indicate the state of the referenced output prior to the Low-to-High clock transition

? = Low-to-High clock transition

NOTE:

This configuration is nonstable; that is, it will not persist when either Set or Reset returns to its inactive (High) level.

December 14, 1988

5-71

74AC/ACT11109

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AC11100			74ACT11100			
		Min	Nom	Max	Min	Nom	Mex	UNIT	
V _{CC}	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧	
V,	Input voltage	0		V _{cc}	0		V _{CC}	٧	
V _o	Output voltage	0		Vcc	0		V _{CC}	٧	
ΔέΔν	input transition rise or fall rate	0		10	0 .		10	ns/V	
TA	Operating free-air temperature	-40		+85	-40		+85	•C	

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
		V ₁ < 0	-20	mA
I _{IK}	DC input diade current ²	V _I > V _{QC}	20	1 ""
lik or V	DC input voltage		-0.5 to V _{CC} +0.5	V ;
	,	V _O < 0	-50	mA
lok	DC output diode current ²	Vo > Voc	50	
lok er Vo	DC output voltage		-0.5 to V _{CC} +0.5	V
ło	DC output source or sink current per output pin	.V _O = 0 to V _{CC}	±50	Am
l _{CC}	DC V _{CC} ourrent		±100	mA
1GND	DC ground current		±100	
TSTG	Storage temperature		-65 to 150	•c
Р	Power dissipation per package Plastic DIP	Above 70°C;derate linearly by 8mW/K	500	mW
P _{TOT}	Power dissipation per package	Above 70°C:densite linearly by 6mW/K	400	mW

NOTES:

^{1.} No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.</p>

Stresses beyond those listed may cause permanent damage to the device. These are stress relings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating canditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are abserved.

74AC/ACT11109

DC FLECTRICAL CHARACTERISTICS

						74AC	11109		74ACT11109				
BYMBOL	PARAMETER	TEST C	TEST CONDITIONS		TAR	TA = +25°C		T _A = -40°C		•25°Ç	T_ = -40°C		UNIT
					Min	Max	Min	Max	Min	Mex	Min	Mex	
			·	3.0	2.10		2.10						
V _{BH}	High-level input voltage			4.5	3.15	3.15		2.0		2.0	2.0	v	
		_L			3.85		3.85		2.0		2.0		
		T				0.90		0.90					
V _H	Low-level input voltage					1.35		1.35		0.8		0.8	٧
				5.5		1.65		1.65		0.8		0.8	
					2.9		2.9						
		I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4			
	Liter lavel	V,-		5.5	5.4		5.4		5.4		5.4		
VOH	High-level output voltage	or V _{BH}	I _{OH} = -4mA	3.0	2.58		2.48					V	
			I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
				5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					
			1 _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
	Low-level	V ₁ = V _{EL}		5.5		0.1		0.1		0.1		0.1	
VOL	output voltage	or L	I _{OL} = 12mA	3.0		0.36		0.44					V
		V _{BH}	I _{CL} = 24mA	4.5		0.36		0.44		0.36		0.44	
			1	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
I _I	Input leakage current	V _I =V _{CC}		5.5		±0.1		±1.0		±0.1		±1.0	μА
lcc	Quiescent supply current	V _I = V _{OC} or GND,		5.5		4.0		40		4.0		40	μΑ
Alcc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

^{1.} Not more than one output should be tessed at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

74AC/ACT11109

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tp = tp = 3ns; C, = 50pF

			T					
SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C			TA ==4	orC to	UNIT
			Min	Тур	Max	Min	Mex	
ÎMAX	Maximum clock frequency	1.	70	100		70		MHz
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	8.0 7.5	11.4 10.5	1.5 1.5	12.7 11.8	ns
^t PLH t _{PHL}	Propagation delay S _n , R _n to O _n , O _n	2	1.5 1.5	6.5 8.0	9.0 12.6	1.5 1.5	9.9 13.7	ns
^t s	Setup time, High or Low J _n or K _n to CP _n	1	5.5			5.5		ns
t _H	Hold time, High or Low CP _n to J _n or R _n	1	0			0		ns
t _W	Clock pulse width High or Low	1	7.2			7.2		ns
^t w	S _n or R _n pulse width, Low	2	5.0			5.0		ns
t _{REC}	Recovery time S _n or R _n to CP _n	3	2.5			2.5		กร

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = 3ne; $C_{\rm L}$ = 50pF

	PARAMETER							
SYMBOL		WAVEFORM	T _A = +25°C			T _A = -40°C to +85°C		UNIT
			Min	Тур	Mex	Min	Mex	
MAX	Maximum clock frequency	1	100	125		100		MHz
t _{PLH}	Propagation delay CP, to Q, , Q,	1	1.5 1.5	5.5 5.0	7.9 7.3	1.5 1.5	8.8 8.1	ns
PHL	Propagation delay	2	1.5 1.5	4.5 5.0	6.5 8.6	1.5 1.5	7.1 9.6	ns
¹s	Setup time, High or Low J, or K, to CP	1	4.5			4.5		ns
t _H	Hold time, High or Low CP _n to J _n or K _n	1	0			0		ns
t _W	Clock pulse width High or Low	1	5.0			5.0		ns
t _W	S _n or R _n pulse width, Low	2	4.0			4.0		ns
[‡] REC	Recovery time S, or R, to CP,	3	2.0			2.0		ns

74AC/ACT11109

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = tc = 3nt; C, = 50pF

SYMBOL			1					
	PARAMETER	WAVEFORM		T _A = +25°	C	T _A = -6	UNIT	
		1	Min	Тур	Max	Min	Max	
f _{MAX}	Maximum clock frequency	1	100	125		100		MHz
¹ PLH ¹ PHL	Propagation delay CP, to Q, , Q,	1	1.5 1.5	6.0 5.5	8.3 7.6	1.5 1.5	9.1 8.3	ns
[†] PLH [†] PHL	Propagation delay S _n , R _n to O _n , O _n	2	1.5 1.5	5.5 6.0	8.6 10.8	1.5 1.5	9.2 11.8	ns.
^t s	Setup time, High or Low J, or R, to CP,	1	5.5			5.5		ns
^t H	Hold time, High or Low CP _n to J _n or R _n	1	0			0		ns
t _W	Clock pulse width High or Low	1	5.0			5.0		ភន
^t w	S _n or R _n pulse width, Low	2	5.5			5.5		ns
^t REC	Recovery time S _n or R _n to CP _{tt}	3	2.0			2.0		ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{IN} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{IN} = GND to 3.0V (Continued)

CP, NPUT

Waveform 3. Waveforms Showing Recovery Time

74AC/ACT11112

Dual J-K Flip-Flop with Set and Reset; Negative Edge-

Triggered

Preliminary Specification

FEATURES

- Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V and ground configuration to fffinimize high-speed switching noise
- 1_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11112 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11112 provides two J-K flip-flops with independent Data, Clock, Set and Reset inputs, and complementary nQ and nQ outputs.

Set $(n\overline{S}_{\rm D})$ and Reset $(n\overline{R}_{\rm D})$ are asynchronous active-Low inputs and operate independently of the Clock inputs.

Information at the J and K inputs is transferred to the outputs on the High-to-Low transition of the clock pulse. The J and K inputs must be stable one set-up time prior to the High-to-Low clock transition for predictable operation.

GENERAL INFORMATION

		CONDITIONS	TYP	LINIT	
SYMBOL	PARAMETER	T _A = 25°C; QND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay	C _L = 50pF; V _{CC} = 5V	4.5	6.7	ns.
C _{PD}	Power dissipation capacitance per flip-flop ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	37	39	ρF
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	ρF
LATCH	Leich-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔVΔν	Maximum input rice or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V
f _{MAX}	Meximum clock frequency	C _L = 50pF; V _{CC} = 5.0V	180	150	MHz

Mode

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_1 \times V_{CC}^2 \times f_2) \text{ where:}$

f = input frequency in MHz, C = culput load capacitance in pF,

 $f_{\mathbf{O}}$ = output frequency in MHz, $V_{\mathbf{CC}}$ = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11112N 74ACT11112N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11112D 74ACT11112D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
16, 8	1J - 2J	Data inputs
15, 9	1K - 2K	Data inputs
2, 6	1Q - 2Q	Data outputs
3, 5	10 - 20	Data outputs (complements of Q _n outputs)
1, 7	18 _D - 28 _D	Set inputs (active Low)
13, 11	1RD - 2RD	Reset inputs (active Low)
14, 10	1CP - 2CP	Clock inputs
4	GND	Ground (0V)
12	V _{CC}	Positive supply voltage

FUNCTION TABLE

OPERATING MODE		INPUTS					
OPERATING MODE	₹ _D	Ro	CP	J	K	Q	ā
Asynchronous set	L	Н	X	X	X	Н	L
Asynchronous reset (clear)	Н	L	X	X	X	L	Н
Undetermined 1	L	L	X	X.	X	Н	н
Toggle	Н	Н	1	h	h	q	q
Load "0" (reset)	Н	Н	1	1 .	h	L	Н
Load "1" (set)	Н	Н	1	h	1	H	L
No change - hold	Н	Н	1	1	1	q	ā
No change hold	Н	Н	н	X	×	Q	ā

H = High voltage level steady state

h = High voltage level one set-up time prior to the High-to-Low clock transition

L = Low voltage level steady state

I = Low voltage level one set-up time prior to the High-to-Low clock transition

X = Don't care

q = Lower case letters indicate the state of the referenced output prior to the High-to-Low clock transition

1 = High-to-Low clock transition

1. This configuration is nonatable; that is, it will not persist when either Set or Reset returns to its inactive (High) level.

LOGIC DIAGRAM

74AC/ACT11112

RECOMMENDED OPERATING CONDITIONS

SYMBOL		74AC11112				UNIT		
	PARAMETER	Min	Nom	Mex	Min	Nom	Max	OMIT
v _{cc}	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧
V _i	Input voltage	0		Vcc	0		V _{CC}	٧
V _O	Output voltage	0		V _{CC}	0		V _{cc}	٧
ΔVΔν	Input transition rise or fall rate	0		10	0		10	ns/V
T _A	Operating free-air temperature	-40		+85	-40		+85	•€

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	٧
		V ₁ < 0	-20	mA
1 _{IK}	DC input diode current ²	V ₁ > V _{CC}	20	THE .
ilk or V	DC input voltage		-0.5 to V _{CC} +0.5	V
		V ₀ < 0	-50	mA
łok	DC output diode current ²	V _o > V _{cc}	50	
lok Vo	DC output voltage		-0.5 to V _{CC} +0.5	٧
10	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
loc or	DC V _{CC} current .		±100	mA.
of I _{GND}	DC ground current	10	±100] ""
T _{STG}	Storage temperature		-65 to 150	*C
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
P _{TOT}	Power dissipation per package	Above 70°C:derate linearly by 6mW/K	400	mW

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

FIG.

Stresses beyond those listed may cause permanent damage to the device. These are stress railings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions "is not implied. Exposure to ebsolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74AC/ACT11112

DC ELECTRICAL CHARACTERISTICS

	′					74AC	11112			74AC1	711112	2	
BYMBOL	PARAMETER	TEST C	TEST CONDITIONS		TAR	T _A = +25°C		T _A = -40°C to +85°C		TA = +25°C		T _A = -40°C to +85°C	
				٧	Min	Max	Min	Mex	Min	Max	Min	Max	
V _{IH} High-level input voltage					2.10		2.10					\vdash	
	Input voltage			4.5	3.15		3.15		2.0		2.0		v
				5.5	3.85		3.85		2.0		2.0		1
						0.90		0.90					
V _{IL}	Vil. input voltage		4.5		1,35		1.35		0.8		0.8	l v	
				5.5		1.65	1	1.65		0.8		0.8	
				3.0	2.9		2.9						
	High-level output voltage	ļ	I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
		V _I = V _R or V _{IH}		5.5	5.4		5.4		5.4		5.4		v .
VOH			I _{OH} = -4mA	3.0	2.58		2.48						
			V _{IH} I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
				5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85		1		3.85		
				3.0		0.1		0.1					
		1	1 _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
	Low-level	V _j = V _{jk} or		5.5		0.1		0.1		0.1		0.1	
VOL	output voltage	or	I _{OL} = 12mA	3.0		0.36		0.44					. V
		V _M	1 - 24mA	4.5		0.36		0.44		0,36		0.44	
		1	OL = 24mA	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA	5.5				1.65				1.65	
1	input leakage current	V _I = V _{CC} or GND		5.5		±0.1		±1.0		±0.1		±1.0	μΑ
l _{oc}	Quiescent supply current	V _i = V _{CC} or GND,		5.5		4.0		40		4.0		40	μΑ
^{∆l} cc	Supply current, TTL inputs High ²	One input at V _{CC} or	at 3.4V, other inputs	5.5						0.9		1.0	mA

^{1.} Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

74AC/ACT11112

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tp = tp = 3ns; Ct = 90pF

			T	7	4AC1111	2		
SYMBOL	PARAMETER	WAVEFORM		T _A = +25°		T _A = -40°C to +85°C		UNIT
			Min	Тур	Max	Min	Max	
f _{MAX}	Maximum clock frequency	. 1	80	110		80		MHz
¹ PLH ¹ PHL	Propagation delay nCP to nQ , nQ	1	1.5 1.5	6.2 6.6	8.2 8.5	1.5 1.5	9.0 9.3	ns
^t PLH ^t PHL	Propagation delay	2	1.5 1.5	5.7 7.7	7.7 10.0	1.5 1.5	8.3 ⁻ 10.9	ns
ts.	Setup time, High or Low nJ or nK to nCP	1	6.0			6.0		ns .
t _H	Hold time, High or Low nCP to nJ or nK	1	0			0	,	ns
t _w	Clock pulse width High or Low	1	6.3			6.3		ns
t _w	nSp or nRp pulse width, Low	2	4.5			4.5		ns
^t REC	Recovery time nSp or nRp to nCP	3	1.5			1.5		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V gND = 0V; $t_{\rm p}$ = $t_{\rm p}$ = 3ms; $C_{\rm L}$ = 50pF

			1	1	74AC1111	2		
SYMBOL	PARAMETER	WAVEFORM		T _A = +257	C	T _A = -40°C to +85°C		UNIT
			Min	Typ	Mex	Min	Mex	
f _{MAX}	Maximum clock frequency	1	125	180		125		MHz
^t PLH ^t PHL	Propagation delay nCP to nQ , nQ	1	1.5 1.5	4.2 4.7	5.8 6.2	1.5 1.5	6.4 6.9	ns
t _{PLH}	Propagation delay nSp, nRp to nQ , nQ	2	1.5 1.5	3.9 5.4	5.5 7.1	1.5 1.5	5.9 7.8	ns
t _s	Setup time, High or Low nJ or nK to nCP	1	4.0			4.0		ns
¹ H	Hold time, High or Low nCP to nJ or nK	1	0.5			0.5		ns
t _W	Clock pulse width High or Low	1	4.0			4.0		ns
t _W	nS _D or nR _D pulse width, Low	2	4.0			4.0		ns
^t REC	Recovery time nSp or nRp to nCP	3	1.0			1.0		ns

74AC/ACT11112

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = 3ns; $C_{\rm L}$ = 50pF

				7	4ACT111	12		
SYMBOL	PARAMETER	WAVEFORM		Y _A = +25°	C	T _A = -4	l0°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
f _{MAX}	Maximum clock frequency	1	125	150		125		MHz
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	6.6 6.8	8.2 8.4	1.5 1.5	9.0 9.3	กร
^t PLH ^t PHL	Propagation delay nSp, nRp to nQ, nQ	2	1.5 1.5	5.9 7.4	7.6 9.1	1.5 1.5	8.1 9.9	ns
t _s	Setup time, High or Low nJ or nK to nCP	1	4.0			4.0		ns
^t H	Hold time, High or Low nCP to nJ or nK	1	1.0			1.0		ns
^L W	Clock pulse width High or Low	1	4.0			4.0		ns
^t w	nS _D or nR _D pulse width, Low	2	4.5			4.5		ns
^t REC	Recovery time nSp or nRp to nCP	3	2.0			2.0		ns

AC WAVEFORMS AC : $V_M = 50\% \ V_{CC}$, $V_{IN} = GND$ to V_{CC} . ACT : $V_M = 1.5V$, $V_{IN} = GND$ to 3.0V (Continued)

74AC/ACT11132 Quad 2-Input NAND SchmittTrigger Preliminary Specification

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50 Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- · I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11132 high-performance CMOS devices combine very high speed and high output drive comperable to the most advanced TTL families.

The 74AC/ACT11132 provides four separate 2-input NAND gate functions which are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise mergin than conventional NAND gates.

GENERAL INFORMATION

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		
	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay A, B, to V	C _L = 50pF; V _{CC} = 5V	5.2		ns
CPD	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	27		pF
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5		ρF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500		mA
ΔVΔν	Meximum input rise or full rate	C _L = 50pF; V _{CC} = 5.5V	100		ns/V

Note

1. C_{PO} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (C_L \times V_{CC}^2 \times f_D)$ where:

 $\mathbf{f_1} = \mathbf{input}$ frequency in MHz, $\mathbf{C_L} = \mathbf{output}$ load aspecitance in pF,

fo = output frequency in MHz, V_{CC} = supply voltage in V,

 $\Sigma (C_L \times V_{CC}^2 \times f_C) = sum of outputs$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11132N 74ACT11132N
16-pin plastic 3O (150mil-wide)	-40°C to +85°C	74AC11132D 74ACT11132D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 15, 11, 9	1A-4A	Deta inputs
16, 14, 10, 8	18-48	Data inputs
2, 3, 6, 7	17-47	Data outputs
4, 5	GND	Ground (0V)
12, 13	V _{oc}	Positive supply voltage

FUNCTION TABLE

INP	UTS	OUTPUT
nA	nB	nΫ
L	L	Н
L	н	н
н	L	н
н	н	L

RECOMMENDED OPERATING CONDITIONS

			74AC11132		74ACT11132			UNIT
SYMBOL	PARAMETER	Min	Nom	Max	Min	Nom	Mex	
Vcc	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧
V.	Input voltage	0		Voc	0		V _{CC}	٧
V _O	Output voltage	0		V _{cc}	0		V _{CC}	٧
ΔVΔν	input transition rise or fall rate	.0		100	0		100	ns/V
Ţ.	Operating free-air temperature	-40		+85	-40		+85	•c

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Vcc	DC supply voltage		-0.5 to+7.0	٧
, CC		V, < 0	-20	mA
I _{IK}	DC input diode current ²	V ₁ >V _{CC}	50	
l _{ik} or V _j	DC input voltage		-0.5 to V _{OC} +0.6	V
		V _O < 0	-50	mA
lok	DC output diode current ²	V _o > V _{cc}	50	
or V _O	DC output voltage		-0.5 to V _{CC} +0.5	V
lo	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
1cc	DC V _{CC} current		±100	- mA
or I _{GND}	DC ground current		±100	
TSTG	Storage temperature		-65 to 150	•c
	Power dissipation per package Plastic DIP	Above 70°C:denste linearly by 8mW/K	500	mW
P _{TOT}	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES:

NOTE:

1. No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods. may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Quad 2-Input NAND Schmitt-Trigger

74AC/ACT11132

DC ELECTRICAL CHARACTERISTICS

					-	74A	C1113			74AC	T1113		
SYMBOL	PARAMETER	TEST	CONDITIONS	Vcc	T _A =	+25~		-40°C	T _A =	+25°C	6	-40°C	UNI
				V	Min	Max	Min	Mex	Min	Max	Min	Max	1
	Positive-going			3.0		2.2		2.2					
V _{T+}	threshold			4.5		3.2		3.2		2.0		2.0	1 .
				5.5		3,9		3.9		2.0	$\overline{}$	2.0	1
V	Negative-going				0.5		0.5						
V _T .	threshold			4.5	0.9		0.9			0,8		0.8	v
					1.1		1.1			0.8		0.8	1
.11	Hysteresis			3.0	0.3	1.2	0.3	1.2					
∆V _T	(V _{T+} - V _{T-})	1		4.5	0.4	1.4	0.4	1.4	0.4	1.2	0.4	1.2	v
				5.5	0.5	1.6	0.5	1.6	0.4	1.2	0.4	1.2	'
	High-level				2.10		2.10						
V _{SH}	input voltage	1		4.5	3.15		3.15		2.0		2.0		1 v
				5.5	3.85		3.65		2.0		2.0		-
	Low-level					0.90		0.90					
V _{IL}	input voltage	1		4.5		1.35		1.35		0.8		0.8	v
				5.5		1.65		1.65		0.8		0.8	<u> </u>
			1.	3.0	2.9		2.9						
- 1	High-level	V ₁ = V ₀	ICH = -80HA	4.5	4.4		4.4		4.4		4.4		
., 1				5.5	5.4		5.4		5.4		5.4		-
VOH	output voltage		I _{OH} = -ImA	3.0	2.58		2.48						
1		V _{BH}	I _{OH} = -24mA	4.5	3.94	L	3.8		3.94		3.8		
1			L	5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA	5.5			3.85				3.85		
- 1				3.0		0.1		0.1					
1		V	I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
.	Low-level	V.		5.5		0.1		0.1		0.1		0.1	
VOL	output voltage	V _j = V _R or V _{SH}	I _{OL} = 12mA	3.0		0.36		0.44					ν
Ì		V _{BH}	I _{OL} = 24mA	4.5		0.36		0.44	\bot I	0.36		0.44	
ł				5.5	_	0.36		0.44		0.36		0.44	
	Input leakage	+	I _{OL} = 75mA ¹	5.5				1.65				1.65	
	current	V ₁ = V _{CC} or		5.5		±0.1		±1.0	:	£0.1		±1.0	μΑ
,cc	Quiescent supply current	V1 = Vcc or	GND,	5.5		4.0		40		4.0		40	μΑ
Alcc	Supply current, TTL inputs High ²		t 3.4V, other inputs	5.5				1	1	0.9	\dashv	1.0	mA

NOTES:

1. Not more than one output should be sessed at a time, and the duration of the test should not accosed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 6V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tR = tF = 3ns; CL = 50pF

			ľ	7	4AC1113	2		
SYMBOL	PARAMETER	WAVEFORM	,	Γ _A = +25°	3		10°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
¹ PLH	Propagation delay	1	1.5	6.9 7.6	9.0 9.5	1.5 1.5	9.7 10.4	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V GND = 0V; $t_R = t_F = 3 ns$; $C_L = 50 pF$

				7	4AC111\$	2		
SYMBOL	PARAMETER	WAVEFORM	,	Γ _A = +25°	0		10°C to 5°C	UNIT
		1	Min	Тур	Max	Min	Mex	
[†] PLH	Propagation delay	1	1.5	4.9 5.4	6.6 7.0	1.5 1.5	7.1 7.6	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_g = t_g = 3 ns$; $C_L = 50 pF$

			1	7	ACT111	12		
SYMBOL	PARAMETER	WAVEFORM		T _A = +25°C			10°C 10 5°C	UNIT
			Min	Тур	Mex	Min	Mex	
t _{PLH}	Propagation delay	1 .	1.5 1.5			1.5 1.5		ns

AC WAVEFORMS AC : V_M = 50% V_{CC}, V_N = GND to V_{CC}. ACT : V_M = 1.5V, V_N = GND to 3.0V

74AC/ACT11138 3-to-8 Line Decoder/ Demultiplexer; Active-Low Preliminary Specification

FEATURES

- · Demultiplexing capability
- Multiple input enable for easy expansion
- Ideal for memory chip select decoding
- Inverting outputs
- · Output capability: ±24 mA
- CMOS (AC) and \$TL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise.
- · 1_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11138 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11138 decoders accept three binary weighted inputs (A_0,A_1,A_2) and when enabled, provide eight mutually exclusive, active-Low outputs $(\overline{Y}_0 - \overline{Y}_2)$. The devices feature three enable inputs; two active-Low (E_1,E_2) and one active-High (E_2) . Every output will be High unless E_1 and E_2 are Low and E_3 is High. This multiple enable function allows easy par-

PIN CONFIGURATION

GENERAL INFORMATION

SYMBOL	PARAMETER	CONDITIONS	TYP		
	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay	C _L = 50pF; V _{CC} = 5V	6.0	6.1	ns
CPD	Power dissipation sepacitance 1	V _{CC} = 5.0V; f = 1MHz; C _f = 50pF	56	61	pF
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	ρF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΨΔν	Meximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Note

1. Cpp is used to determine the dynamic power dissipation (Pp in µW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_0)$ where:

 $t_{\rm i}$ = input frequency in MHz, $C_{\rm L}$ = output load capacitance in pF,

 f_O = output frequency in MHz, V_{CC} = supply voltage in V_c

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = sum of outputs$

ORDERING INFORMATION

PROBRING INFORM	MATION	
PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11138N 74ACT11138N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11138D 74ACT11138D

allel expansion of the devices to a 1-of-32 (5 lines to 32 lines) decoder with just four '11138's and one inverter.

The devices can be used as eight output demultiplexers by using one of the active-Low enable inputs as the data input and the remaining enable inputs as strokes.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
15, 14, 13	A ₀ to A ₂	Address inputs
10, 9	E, E2	Enable inputs (active Low)
11	E ₃	Enable input (active High)
16, 8, 7, 6, 5, 3, 2, 1	₹ 0 to ₹7	Outputs
4	GND	Ground (OV)
12	Voc	Positive supply voltage

FUNCTION TABLE

		INP	JT8				OUTPUTS							
Ē.	E,	E,	A ₀	A,	A ₂	V _o	₹,	V ₂	Y3	∇_{4}	V ₅	₹,	₹,	
H	X	X	X	X	X	Н	Н	Н	H.	Н	Н	Н	Н	
×	н	X	х	- x	×	н	н	Н	н	- H	н	Н.	н	
x	×		х	×	x	, н	н	н	н	н	н	н	Н	
L	1	н	L	L	L	1	н	н	-14	н	н	н	Н	
L		н	н	L	L	н	L	H	н	H	н	н	H	
L	l i	н	L	н	L	Н	н	- L	н	н	н	н	н	
L		н	н	н	L	н	н	н	L	н	н	н	Н	
Ĺ		н	L	L	н	'н	н	н	н	L	н	н	Н	
L		н	н	L	н	н	н	н	н	н	L	н	н	
L		н	L	н	- н	н	н	- н	н	н	н	L	н	
L		н	н	н	н	н	н	н	н	.н.	н	н	L	

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74AC11138			74ACT11138			440.00
		Min	Nom	Max	Min	Nom	Mex	UNIT
Vcc	DC supply voltage ¹	3.0	5.0	5,5	4.5	5.0	5.5	V
V _I	Input voltage	0		V _{CC}	0		V _{CC}	V
v _o	Output voltage	0		V _{CC}	0		v _{cc}	V
Δ\$/Δν	Input transition rise or fall natu	0		10	0		10	ns/V
TA	Operating free-air temperature	-40	-	+#5	-40		+85	°C

NOTE

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT	
v _{cc}	DC supply voltage		-0.5 to+7.0	V	
	DC input diode current ²	V ₁ <0	-20		
lik or V _i		V ₁ > V _∞	20	mA.	
V _I	DG input voltage		-0.5 to V _{CC} +0.5	v	
,	DC output diode current ² V _O < 0		-50	1	
,0k		V _o > V _∞	50	mA	
v _o	DC output voltage		-0.5 to V _{CC} +0.5	v	
10	DC output source or sink current per output pin	V ₀ = 0 to V _∞	±50	mA	
l _{CC}	DC V _{CC} current		±200		
GND	DC ground current		±200	mA	
TSTG	Storage temperature		-65 to 150	*C	
P _{TOT}	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW	
101	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW	

NOTES:

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

V	TRICAL CHARAC					74AC	11138			74ACT	11138			
YMBOL	PARAMETER	TEST CO	TEST CONDITIONS V		V _{CC} T _{A * +25°C}		T _A = -40°C to +85°C		TA = +25°C		T _A = -40°C to +85°C		UNIT	
				ν.	Min	Mex	Min	Mex	Min	Max	Min	Mex		
		1		3.0	2.10		2.10							
V _{IH}	High-level input voltage		Ì	4.5	3.15		3.15		2.0		2.0		٧	
· IH	input voitage	, ,		5.5	3.85		3.85		2.0		2.0			
	1			3.0		0.90		0.90						
V _{sL}	Low-level input voltage			4.5		1.35		1.35		0.8		0.8	٧	
· NL	Input vollage			5.5		1.65		1.65		0.8		0.8		
		 		3.0	2.9		2.9							
		Į.	I _{OH} = -50μΑ	4.5	4.4		4.4		4.4		4.4			
		V ₁ =		5.5	5.4		5.4		5.4		5.4		v	
	High-level output voitage	or V _{BH}	I _{OH} = -4mA	3.0	2.58		2.48							
On	Compan volumes		I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8			
			1	5.5	4.94		4.8		4.94		4.8			
			I _{OH} = -75mA [†]	5.5			3.85				3.85			
				3.0		0.1		0.1					1	
			I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1		
		V _i = V _g		5.5		0.1		0.1		0.1	ļ	0.1		
VOL	Low-level output voltage	V _E	I _{OL} = 12mA	3.0		0.36		0.44		\perp	 	ļ.,.,	V	
O.		V _{BH}	I _{OL} = 24mA	4.5		0.36		0.44		0.36	1	0.44		
			· _	5,5		0.36		0.44		0.36	-	0.44		
			I _{OL} = 75mA ¹	5.5			<u> </u>	1.65	ļ	1	-	1.65	-	
1,	Input leakage current	V _I = V _{CC} or GND		5.5		±0.1		±1.0		±0.1		±1.0	μА	
lcc	Quiescent supply current	V ₁ = V _{CC}	or GND,	5.5		8.0		₩0		8.0		80	μА	
ΔI _{CC}	Supply current, TTL inputs High ²	One inpu	t at 3.4V, other inputs	5.5						0.9		1.0	mA	

NOTES:

NULLED:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 6V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V GND = 0V; $t_R = t_F = 3$ ns; $C_L = 50$ pF

SYMBOL				74AC11138				
	PARAMETER	WAVEFORM	RM T _A = +25°C		C	T _A = -40°C to +85°C		UNIT
			Min	Тур	Max	Min	Max	
PLH PHL	Propagation delay	1	1.5	8,3 8,9	10.2	1.5 1.5	11.4	ns
PLH PHL	Propagation delay E ₃ to V ₀	2	1.5	7.2 7.3	9.2	1.5	10.2	กร
PLH PHL	Propagation delay	2	1.5	8.2 8.3	10.4	1.5 1.5	11.5 11.6	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = tp = 3ne; Ct = 50pF

				74AC11138				
SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C			T _A = -40°C to +85°C		UNIT
		1	Min	Тур	Mex	Min	Mex	
^t PLH ^t PHL	Propagation delay	1	1.5	5.7 6.2	7.3 7.9	1.5 1.5	8.1 8.8	ns
PLH PHL	Propagation delay	2	1.5	5.1 5.2	6.9	1.5	7.5 7.7	ns
PLH PHL	Propagation delay	2	1.5	5.8 5.6	7.6 7.5	1.5	8.3 8.3	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_R = t_F = s_{RB}$; $C_L = 50pF$

				74ACT11138					
SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C			T _A = -40°C to +85°C		UNIT	
			Min	Тур	Mex	Min	Mex		
PLH PHL	Propagation delay	1	1.5 1.5	5.7 6.4	8.1 8.0	1.5 1.5	8.8 9.1	ns	
PLH PHL	Propagation delay	2	1.5	5.3 5.8	7.5 7.5	1.5	8.1 8.4	ns	
PLH PHL	Propagation delay	2	1.5 1.5	6.2 5.8	8.1 8.0	1.5	8.8	ns	

AC WAVEFORMS AC : $V_{\rm M}$ = 50% $V_{\rm CC}$, $V_{\rm IN}$ = GND to $V_{\rm CC}$. ACT : $V_{\rm M}$ = 1.5V, $V_{\rm IN}$ = GND to 3.0V

Expension to 1-of-32 Decoding

74AC/ACT11151 8-Input Multiplexer

Preliminary Specification

FEATURES

- . Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_C and ground configuration to minimize high-speed switching noise
- · I_{CC} category: MSi

DESCRIPTION

The 74AC/ACT11151 high-performence CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11151 provides an 8-to-1 multiplexer with three select lines and a common enable. The state of the Select (S_n) inputs determines the particular input line from which the data comes. The Enable (E) input is active-Low. When E is High, the Y output is forced Low and the Y is forced High regardless of all other input conditions

The device is the logic implementation of a single pole, 8 position switch where the position of the switch is determined by the logic levels supplied to the Select inputs.

GENERAL INFORMATION

-		CONDITIONS	TYP	LINUT	
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay	C _L = 50pF; V _{CC} = 5V	4.8	6.6	ns
C _{PD}	Power dissipation capacitance 1	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	52	56	pF
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	ρF
ΔΨΔν	Maximum input rise or fall rate; Data inputs	C _L = 50pF; V _{cc} = 5.5V at -55°C	10	10	ns/V

Note

- 1. C_{ph} is used to determine the dynamic power dissipation (P_{n} in μW):
 - $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_1 \times V_{CC}^2 \times f_0)$ where:
 - f, = input frequency in MHz, C, = output load capacitance in pF,
 - $f_{\rm C}$ = output frequency in MHz, $V_{\rm CC}$ = supply voltage in V,
 - $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11151N 74ACT11151N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11151D 74ACT11151D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

8-Input Multiplexer

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
6, 7, 8	S	Select inputs
2	E	Output enable input
1, 16, 15, 14 13, 11, 10, 9	10-17	Data inputs
3, 5	Υ, ₹	Data outputs
4	GND	Ground (0V)
12	Vcc	Positive supply voltage

FUNCTION TABLE

	INP	UTS		OUTI	STU
S ₂	S,	So	E	Y	Ÿ
Х	Х	Х	Н	L	Н
L	L	L	L	l _o	T _o
L	L	н	L	I ₁	T,
L	н	L	L	l ₂	12
L	н	н	L	l ₃	Ī ₃
н	L	L	L	14	T ₄
н	L	н	L	I ₅	T ₅
н	н	L	L	16	Ī ₈
н	н	н	L	l ₇	T ₇

8-Input Multiplexer

74AC/ACT11151

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74AC11181			7	UNIT		
31800	PARAMETER	Min	Nom	Max	Min	Nom	Max	UNI
V _{CC}	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	V
V _I	Input voltage	0		V _{CC}	0		V _{CC}	٧
v _o	Output voltage	0		V _{CC}	0		V _{CC}	٧
Δέζον	Input transition rise or fall rate	Ö	7.	10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40	-	+85	•c

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Vcc	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ < 0	-20	
l _{iK} or V _i	DO Input Globe Current	V ₁ > V _{CC}	50	mA
v _i	DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diode current ²	V ₀ <0	-50	mA
lok er vo	DO doppi Gode Colleni	V _o > V _{cc}	50	I IIIA
v _o	DC output voltage		-0.5 to V _{CC} +0.5	٧
l _o	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
l _{CC}	DC V _{CC} current	·	±100	
IGND	DC ground current		±100	mA
T _{STG}	Storage temperature		-65 to 150	•c
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES:

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

	ł	1			74AC11151				74ACT11151				J
SYMBOL	PARAMETER	TEST C	ONDITIONS	Voc	T _A =	.25°C	TA=	-40°C	T _A = +25°C		T_ = -40°C		UNIT
				V	Min	Max	Min	Max	Min	Mex	Min	Max	
				3.0	2.10		2.10						
V _{IH}	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
				5.5	3.85		3.85		2.0	•	2.0		
				3.0		0.90		0.90					
V _{IL}	Low-level input voltage			4.5		1.35		1.35		0.8		0.8	V
_				5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
		1 2	I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
VOH Output voltage	V _i =		5.5	5.4		5.4		5.4		5.4			
	High-level output voltage	V _E	I _{OH} = -4mA	3.0	2.58		2.48						٧
		V _{BH}		4.5	3.94		3.8		3.94		3.8		
			I _{OH} = -24mA	5.5	4.94		4.6		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					
			1 _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
		V _I = V _{IL} or		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voltage	VR.	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _{BH}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
		1 "	OF _ TAILE	5.5		0.36		0.44		0.36		0.44	
	I _{OL} = 75mA ¹	5.5				1.65				1.65			
I _I	Input leakage current		V _i = V _{CC} or GND			±0.1		±1.0		±0.1		±1.0	μА
lcc	Quiescent supply current	V1 = V00 0	V _I = V _{CC} or GND, I _O = 0			8.0		80		8.0		80	μΑ
Alcc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V GND = 0V; $t_R = t_F = 3$ ns; $C_L = 50$ pF

					/4AC1115	1		
SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C			T _A = -40°C to +85°C		UNIT
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay	2	1.5 1.5	7.2 7.3	8.5 8.9	1.5 1.5	9.4 9.6	ns
^t PLH ^t PHL	Propagation delay	2	1.5 1.5	7.0 7.0	8.3 8.4	1.5 1.5	9.1 9.1	ns
^t PLH ^t PHL	Propagation delay S to Y	2	1.5 1.5	10.1 10.0	11.7 12.1	1.5 1.5	12.8 13.1	ns
PLH PHL	Propagation delay S to Y	2	1.5 1.5	9.8 9.9	11.6 11.7	1.5 1.5	12.6 12.7	ns
t _{PLH}	Propagation delay E to Y	1	1.5 1.5	4.5 4.6	5.7 6.0	1.5 1.5	6.2 6.5	ns
PLH PHL	Propagation delay	1	1.5 1.5	5.2 5.0	6.4 6.3	1.5 1.5	6.8 6.8	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; t_{R} = t_{F} = 3ns; C_{L} = 50pF

			T		74AC111	51		
SYMBOL	PARAMÉTER	WAVEFORM	T _A = +25°C			· T _A = -40°C to +85°C		UNIT
			Min	Тур	Max	Min	Mex	
^t PLH ^t PHL	Propagation delay In to Y	2	1.5 1.5	4.7 4.8	6.0 6.1	1.5 1.5	6.6 6.6	ns
t _{rusu}	Propagation delay	2	1.5 1.5	4.5 4.7	5.7 5.9	1.5 1.5	6.2 6.5	ns
^t PLH ^t PHL	Propagation delay S to Y	2	1.5 1.5	6.4 6.5	7.8 8.0	1,5 1.5	8.5 8.8	ns
t _{PLH} t _{PHL}	Propagation delay S to Y	2	1.5 1.5	6.3 6.3	7.6 7.7	1.5 1.5	8.3 8.5	ns.
^t PLH ^t PHL	Propagation delay E to Y	1	1.5 1.5	3.1 3.3	4.3 4.6	1.5 1.5	4.6 5.0	ns
^t PLH ^t PHL	Propagation delay E to V	1	1,5 1,5	3.7 3.5	4.9 4.6	1,5 1,5	5.3 5.0	na

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_R = t_F = 3$ ns; $C_L = 50$ pF

				7	4ACT111	51		
SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C			T _A = -40°C to +85°C		UNIT
			Min	Тур	Mex	Min	Mex	
t _{PLH} t _{PHL}	Propagation delay	2	1.5 1.5	6.3 6.9	7.7 8.4	1.5 1.5	8.3 9.0	ns
^t PLH ^t PHL	Propagation delay	2	1.5 1.5	6.2 5.7	7.7 7.0	1.5 1.5	8.2 7.7	ns
t _{PLH} t _{PHL}	Propagation delay S to Y	2	1.5 1.5	9.0 8.3	10.5 10.1	1.5 1.5	11.5 11.0	ns
t _{PLH} t _{PHL}	Propagation delay S to Y	2	1.5 1.5	7.8 8.4	9.4 10.0	1.5 1.5	10.3 11.0	ns
PLH PHL	Propagation delay E to Y	1	1.5 1.5	4.9 4.4	6.3 5.7	1.5 1.5	6.6 6.2	ns
PLH PHL	Propagation delay	1	1.5 1.5	5.0 5.3	6.2 6.7	1.5 1.5	6.7 7.1	ns

December 14, 1988

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11158 Quad 2-Input Multiplexer; INV

Preliminary Specification

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V and ground configuration to ffinimize high-speed switching noise
- I_{CC} category: MSi

DESCRIPTION

The 74AC/ACT11158 high-performance CMOS devices combine very high speed and high output drive comperable to the most advanced TTL families.

The 74AC/ACT11158 provides four 2-to-1 multiplexers with a common selector and a common enable. The state of the Select (S) input determines the particular register from which the data comes. The Enable (E) input is active-Low. When E is High, all of the inverting outputs (Y) are forced High regardless of all other input conditions.

The device is the logic implementation of a 4-pole, 2 position switch where the position of the switch is determined by the logic levels supplied to the Select input.

GENERAL INFORMATION

	PARAMETER	CONDITIONS	TYP			
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT	
EPLH	Propagation delay	C _L = 50pF; V _{CC} = 5V	3.9		ns	
C _{PD}	Power dissipation capacitance per gate 1	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	33		ρF	
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5		pF	
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500		mA	
ΔVΔν	Maximum input rise or fall rate; Deta inputs	C _L = 50pF; V _{ec} = 5.5V at -55°C	10		ns/V	

Mate

1. C_{PD} is used to determine the dynamic power dissipation (P_{D} in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_1 \times V_{CC}^2 \times f_2) \text{ where:}$$

- f, = input frequency in MHz, C, = output load capacitance in pF,
- f_{Ω} = output frequency in MHz, V_{CC} = supply voltage in V,
- $\Sigma (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
20-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11158N 74ACT11158N
20-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11158D 74ACT11158D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 14, 1968

LOGIC DIAGRAM

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	8	Common select input
20, 18, 14, 12	ni _o - ni _o	Data inputs
19, 17, 13, 11	ni, -ni,	Data inputs
2, 3, 8, 9	17-47	Data outputs
10	E	Output enable input
4, 5, 6, 7	GND	Ground (0V)
15, 16	V _{oc}	Positive supply voltage

FUNCTION TABLE

ENABLE	SELECT	INPUTS		OUTPUT
E	8	nlo	ni ₁	7
H	X	Х	X	Н
L	L	Ĺ	х	н
L	L	н	х	L
L	н	х	Ł	н
L	н	×	н	L

RECOMMENDED OPERATING CONDITIONS

			74AC11158			74ACT11158			UNIT
SYMBOL	PARAM	PARAMETER Min Nom		Mex	K Min Nom Max				
V _{CC}	DC supply voltage ¹		3.0	5.0	5.5	4.5	5.0	5.5	٧
V _I	Input voltage		0		V _{CC}	0		V _{cc}	>
v _o	Output voltage		0		V _{CC}	0		Vcc	٧
	Input transition rise or fall rate Data Select and Enable	Data	0		10	0			ns/V
ΔυΔν		Select and Enable 0 5	5	0			115/ V		
TA	Operating free-air temperature		-40		+85	-40		+85	°C

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

BYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to+7.0	٧	
	DG :2	V ₁ < 0	-20	mA	
l _{IK}	DC input diode current ²	V ₁ > V _∞	20		
IK or V	DC input voltage		-0.5 to V _{CC} +0.5	v	
	DC output diode current ²	V _O < 0	-50	mA	
lok or	DC Sulput Globe current	V ₀ > V _{cc}	50		
ok or V _O	DC output voltage		-0.5 to V _{CC} +0.5	٧	
I _O	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA	
I _{CC}	DC V _{CC} current		±100	mA	
I _{GND}	DC ground current		±100	1 ""^	
T _{STG}	Storage temperature		-65 to 150	•c	
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW	
P _{TOT}	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	· mW	

NOTES:

^{1.} No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only end functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Quad 2-Input Multiplexer; INV

74AC/ACT11158

DC ELECTRICAL CHARACTERISTICS

				1	1	74AC	11158			74AC1	1115	1	
SYMBOL	PARAMETER	TEST C	ONDITIONS	V _{CC}	T _A =	+25°C	T _A =	-40°C 85°C	T _A =	+25°C	T_ =	-40°C 85°C	UNIT
		j	j j		Min	Max	Min	Max	Min	Max	Min	Max	
				3.0	2.10		2.10						
V _{IH}	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
				5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V _{IL}	Low-level input voltage			4.5		1.35		1.35		0.8		0.8	٧
		1		5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
		·	I _{OH} = -50μA	4.5	4.4		4.4		4.4		4.4		
	Allah Jawal	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		5.5	5.4		5.4		5.4		5.4		
V _{ОН}	VOH High-level output voltage	V _I = V _{RL}	I _{OH} = -4mA	3.0	2.58		2.48						V
		V _H	I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
		1		5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA	5.5			3.85				3.85		
				3.0		0.1		0.1					
		.	I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
	Low-level	V _I =		5.5		0.1		0.1		0.1		0.1	
VOL	output voitage	or IL	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _{IH}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
		1		5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
1,	Input leakage current	V, = V _{OC}		5.5		±0.1		±1.0		±0.1		±1.0	μΑ
loc	Quiescent supply current	V ₁ = V _{CC} (or GND,	5.5		8.0		80		8.0		80	μΑ
ΔÍCC	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

^{1.} Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.
2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tp = tp = 3ns; C1 = 50pF

				-	74AC1115			
SYMBOL	PARAMETER	WAVEFORM		T _A = +257	С	T _A = -	UNIT	
			Min	Тур	Mex	Min	Mex	
^t PLH ^t PHL	Propagation delay	2	1.5 1.5	5.3 5.4	7.3 7.7	1.5 1.5	7.9 8.4	ns
PLH	Propagation delay	1	1.5 1.5	5.3 5.8	7.2 7.8	1.5 1.5	7.9 8.7	ns
[‡] PLH [‡] PHL	Propagation delay S to nY	2	1.5 1.5	6.0 6.2	8.1 8.5	1.5 1.5	8.9 9.4	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tR = tF = 3ns; CL = 50pF

			T					
SYMBOL PARAMETER	WAVEFORM		T _A = +257	C	T _A = -	UNIT		
			Min	Тур	Max	Min	Max	
[‡] PLH [‡] PHL	Propagation delay	2	1.5 1.5	3.8 4.0	5.4 5.6	1.5 1.5	5.7 6.4	ne
PLH PHL	Propagation delay	. 1	1.5 1.5	3.9 4.3	5.4 5.8	1.5 1.5	5.9 6.4	ns
^t PLH ^t PHL	Propagation delay S to nY	2	1.5 1.5	4.3 4.5	6.1 6.1	1.5 1.5	6.7 6.9	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = 3ns; $C_{\rm L}$ = 50pF

				7	4ACT111	58		
SYMBOL	PARAMETER	WAVEFORM	T _A = +26°C			TA = -	UNIT	
			Min	Тур	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation delay	2	1.5 1.5			1.5 1.5		ns ns
^t PLH t _{PHL}	Propagation delay	1	1.5 1.5			1.5 1.5		na.
PLH PHL	Propagation delay S to nV	2	1.5 1.5			1.5 1.5		ns

AC WAVEFORMS AC : $V_{\rm M}$ = 50% $V_{\rm CC}$, $V_{\rm N}$ = GND to $V_{\rm CC}$, ACT : $V_{\rm M}$ = 1.5V, $V_{\rm N}$ = GND to 3.0V

74AC/ACT11160 Synchronous Presettable Synchronous BCD Decade Counter; Asynchronous Reset Preliminary Specification

FEATURES

- · Synchronous counting and loading
- Two count enable inputs for n-bit cascading
- Positive edge-triggered clock
- Asynchronous reset
- · Output capability: ±24mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11160 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11160 4-bit synchronous presettable decade counters feature an internal carry look-ahead and can be used for high-speed counting. Synchronous operation is provided by having all flipflops clocked simultaneously on the positive-going edge of the clock.

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL	
SYMBOL	PARAMETER	T _A = 25°C; QND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay CP _n to Q _n (PE = High)	C _L = 50pF; V _{CC} = 5V	6.4		ns
CPD	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	49		ρF
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5		ρF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
Δ۷Δν	Maximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V
f _{MAX}	Meximum clock frequency	C _L = 50pF; V _{CC} = 5.0V	175		MHz

Note

C_{pp} is used to determine the dynamic power dissipation (P_p in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_D)$ where:

f, = input frequency in MHz, C, = output load capacitance in pF,

fo = output frequency in MHz, V_{CC} = supply voltage in V,

 $\Sigma (C_L \times V_{CC}^2 \times f_C) \approx \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
20-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11160N 74ACT11160N
20-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11160D 74ACT11160D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 14, 1988

74AC/ACT11160

The outputs of the counters may be preset to High or Low levels. A Low level at the Parallel Enable (\overline{PE}) input disables the counting action and causes the data at the D_0 - D_3 inputs to be loaded into the counter on the rising edge of the clock. Preset takes place regardless of the levels at Count Enable (CEP, CET) inputs.

A Low level at the Master Reset (\overline{MR}) input sets all four outputs of the flip-flops (Q_0-Q_g) to Low levels, regardless of the levels at CP, PE, CET, and CEP inputs (thus providing an asynchronous clear function).

The carry look-ahead simplifies serial cascading of the counters. Both Count Enable inputs (CEP and CET) must be High to count. The CET input is fed forward to enable the Terminal Count (TC) output. The TC output thus enabled will produce a High output pulse of a duration approximately equal to the High level output of Ω_0 . This pulse can be used to enable the next cascaded stage.

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
20	MA	Asynchronous master reset (active Low)
19	CP	Clock input (Low-to-High, edge-triggered)
18, 17, 14, 13	Do - Da	Data inputs
12	CEP	Count enable input
10	PE	Parallel enable input (active Low)
11	CET	Count enable carry input
18, 17, 14, 13	Q - Q3	Counter outputs
1	TC	Terminal count output
4, 5, 6, 7	GND	Ground (0V)
15, 16	V _{CC}	Positive supply voltage

FUNCTION TABLE

4050 15W0 1100F	T	INPUTS							
OPERATING MODE	MR	CP	CEP	CET	PE	Da	۵,	TC	
Reset (clear)	L	X	X	X	X	Х	L	L	
Parallel load ¹	Н	1	X	Х	1	1	L	L	
Parellel load	H	1	X	Х	ı	h	н		
Count ¹	Н	Ť	h	h	h	X	count		
Hold (do nothing) ¹	Н	X	1	Х	h	X	٩		
	H	X	X		h	X	9_	L	

H = High voltage level

HOTE:

L = Low voltage level

h - High voltage level one setup time prior to the Low-to High clock transition

I - Low voltage level one setup time prior to the Low-to High clock transition

X = Don't care

q = State of the referenced output prior to the Low-to High clock transition

^{1 =} Low-to-High clock transition

^{1.} The TC output is High when CET is High and the counter is at Terminal Count (HILLH).

74AC/ACT11160

LOGIC DIAGRAM

74AC/ACT11160

RECOMMENDED OPERATING CONDITIONS

SYMBOL	DADAMPSED		74AC11160)		UNIT		
a impor	PARAMETER	Min	Nom	Max	Min	Nom	Mex	UNII
Vcc	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧
V _i	input voltage	0		Vcc	0		Voc	٧
V _O	Output voltage	0		Voc	0		Vcc	٧
Δ۷Δν	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	•c

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Vcc	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ < 0	-20	mA
l _{IK} or V _I	DO input dibbe current	V _I > V _{CC}	20	1
$\tilde{\mathbf{v}}_{\mathbf{i}}$	DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diade current ²	V _O < 0	-50	mA
lok er Vo	DO dagut blode durinis	V ₀ > V _∞	50	
v _o	DC output voltage		-0.5 to V _{CC} +0.5	V
lo	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
1 _{CC}	DC V _{CC} current		±125	mA
GND	DC ground current		±125	T IIIA
Тата	Storage temperature		-85 to 150	*C
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES:

No electrical or switching characteristics are specified at V_{CC} < SV. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage many be exceeded if the input and output current ratings are observed

74AC/ACT11160

DC FLECTRICAL CHARACTERISTICS

						74AC	11160						
BYMBOL	PARAMETER	TEST CO	ONDITIONS	v _{cc}	TAR	25°C	T _A = -40°C to +85°C		T _A = +25°C		T_ = -40°C		UNIT
					Min	Max	Min	Max	Min	Max	Min	Max	
			3	3.0	2.10		2.10						
V _{BH}	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
an .	Input volume			5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V _{fL}	Low-level input voltage			4.5		1.35		1.35		0.8		0.8	٧
-	in participate			5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
			I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		5.5	5.4		5.4		5.4		5.4		
V _{OH} High-level output voltage	High-level output voltage	V _I =	I _{OH} = -4mA	3.0	2.58		2.48						٧
		V _{BH}	I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
			1	5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ^T	5.5			3.85	<u></u>			3.85		
				3.0		0.1		0.1					
		1	I _{CL} = 50µA	4.5		0.1		0.1		0.1		0.1	
	1 1 1	V, -		5.5		0.1		0.1		0.1	_	0.1	
VOL	Low-level output voltage	V _R or	I _{OL} = 12mA	3.0		0.36		0.44					V
		V _{BH}	i _{OL} = 24mA	4.5		0.36		0.44		0.36	_	0.44	
			1	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5	_		_	1.65	<u> </u>	_	<u> </u>	1.65	
ı,	input leukage current	VI=Vcc		5.5		±0.1		±1.0		±0.1		±1 3	μА
loc	Quiescent supply current	V1 = Vcc	or GND,	5.5		4.0		40		4.0		40	μА
ΔICC	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

^{1.} Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.
2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

74AC/ACT11160

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V GND = 0V; $t_{_{\rm F}}$ = $t_{_{\rm F}}$ = 3ns; $C_{_{\rm L}}$ = 50pF

SYMBOL	PARAMETER	WAVEFORM		T _A = +25°	С	T _A = -4	10°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	1
MAX	Maximum clock frequency	1	110	130		90		MHz
^t PLH ^t PHL	Propagation delay CP to Q _n (PE = "H")	1	1.5 1.5	8.4 9.0	11.4 12.1	1.5 1.5	12.5 13.6	ns
^t PLH t _{PHL}	Propagation delay CP to Q _n (PE = "L")	1	1.5 1.5	8.2 8.5	10.9 11.4	1.5 1.5	12.1 12.7	ns
^t PLH ^t PHL	Propagation delay CP to TC	1	1.5 1.5	10.6 11.2	13.7 14.1	1.5 1.5	15.2 16.1	ns
^t PLH ^t PHL	Propagation delay CET to TC	3	1.5 1.5	5.9 6.1	7.9 8.2	1.5 1.5	8.6 8.9	ns
^t PHL	Propagation delay	2	1.5	9.2	12.1	1.5	13.4	ns
^t PHL	Propagation delay MR to TC	2	1.5	11.7	14.4	1.5	16.3	ns
t _s	Setup time, High or Low D _n to CP	4	4.0			4.5		ns
^t H	Hold time, High or Low D _n to CP	4	0.0			0.5		ns
s	Setup time, High or Low PE to CP	4	5.5			6.0		ne
Ч	Hold time, High or Low PE to CP	4	0.0			0.0		ns
8	Setup time, High or Low CEP or CET to CP	5	5.0			5.5		ns
н	Hold time, High or Low CEP or CET to CP	5	0.0			0.0		ns
w	Clock pulse width (load) High or Low	1	4.6			5.6		ns
w	Clock pulse width (count) High or Low	1	4.6			5.6		ns
w	MR pulse width, Low	2	4.6			5.6		ns
REC	Recovery time MR to CP	2	5.5			6.0		ns

74AC/ACT11160

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V GND = 0V; $t_{_{\parallel}}$ = $t_{_{\parallel}}$ = 3ne; $C_{_{\parallel}}$ = 50pF

	PARAMETER	WAVEFORM	T					
SYMBOL				T _A = +25%	3	T _A = -	10°C to 5°C	UNIT
			Min	Тур	Max	Min	Mex	
MAX	Maximum clock frequency	1	150	175		130		MHz
^t PLH ^t PHL	Propagation delay GP to Q _n (PE = "H")	1	1.5 1.5	6.1 6.6	8.3 8.9	1.5 1.5	9.0 9.9	ns
PLH PHL	Propagation delay CP to Q _n (PE = "L")	1	1.5 1.5	6.0 6.4	8.0 8.4	1,5 1,5	8.8 9.3	ns
PLH PHL	Propagation delay CP to TC	1	1.5 1.5	7.4 8.4	9.4 10.4	1.5 1.5	10.3 11.9	ns
PLH PHL	Propagation delay CET to TC	3	1.5 1.5	4.3 4.9	5.8 6.4	1.5 1.5	6.3 7.2	ns
PHL	Propagation delay MR to O _n	2	1.5	6.8	8.8	1.5	10.0	Ne
¹ PHL	Propagation delay MR to TC	2	1.5	8.7	10.8	1.5	12.0	ns
t _s	Setup time, High or Low On to CP	4	3.0			3.5		ns
^t H	Hold time, High or Low D _n to CP	4	1.0			1.0		ns
^t s	Setup time, High or Low PE to CP	4	4.0			4.0	·	ns
t _H	Hold time, High or Low PE to CP	4	0.5			0.5		ns
^t s	Setup time, High or Low CEP or CET to CP	5	3.5			4.0		ns
^t H	Hold time, High or Low CEP or CET to CP	5	0.5			0.5		ns
t _w	Clock pulse width (load) High or Low	1	3.3			3.9		ns
t _w	Clock pulse width (count) High or Low	1	3.3			3.9		ns
^t w	MR pulse width, Low	2	3.3			3.7		ns
t _{REC}	Recovery time MR to CP	2	4.0			4.5		ns

74AC/ACT11160

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{_{I}}$ = $t_{_{I}}$ = 3ne; $C_{_{L}}$ = 50pF

SYMBOL	PARAMETER	WAVEFORM						
				T _A = +25°	C	T _A = -	10°C to 5°C	UNIT
	·		Min	Тур	Max	Min	Max	
MAX	Maximum clock frequency	1						MHz
^t PLH ^t PHL	Propagation delay CP to Q _n (PE = "H")	1	1.5 1.5			1.5 1.5		ns
^t PLH ^t PHL	Propagation delay CP to Q _n (PE = "L")	1	1.5 1.5			1.5 1.5		ns.
^t PLH ^t PHL	Propagation delay CP to TC	1	1.5			1.5 1.5		ns
^t PLH ^t PHL	Propagation delay CET to TC	3	1.5 1.5			1.5 1.5		ns
^t PHL	Propagation delay	2	1.5			1.5		ns
t _{PHL}	Propagation delay MR to TC	2	1.5			1.5		ne
t _s	Setup time, High or Low D _n to CP	4						ns
¹ н	Hold time, High or Low D _n to CP	4						ns
s	Setup time, High or Low PE to CP	4						ns
ч	Hold time, High or Low PE to CP	4						ns
8	Setup time, High or Low CEP or CET to CP	5						ns
н	Hold time, High or Low CEP or CET to CP	5						ns
w .	Clock pulse width (load) High or Low	1						ns
w	Clock pulse width (count) High or Low	1						ns
w	MR pulse width, Low	2						ns
REC	Recovery time MR to CP	2				-		ns

74AC/ACT11160

AC WAVEFORMS AC : V_{LM} = 50% V_{CC} , V_{IN} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{IN} = GND to 3.0V

74AC/ACT11160

AC WAVEFORMS AC : $V_{\rm M}$ = 50% $V_{\rm CC}$, $V_{\rm IN}$ = GND to $V_{\rm CC}$. ACT : $V_{\rm M}$ = 1.5V, $V_{\rm IN}$ = GND to 3.0V (Continued)

74AC/ACT11162 Synchronous Presettable BCD Decade Counter; Synchronous

Reset

Preliminary Specification

FEATURES

- · Synchronous counting and loading
- Two count enable inputs for n-bit cascading
- · Positive edge-triggered clock
- · Synchronous reset
- · Output capability: ±24mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_x and ground configuration to minimize high-speed switching noise
- · L. category: MSi

DESCRIPTION

The 74AC/ACT11182 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11162 4-bit synchronous presettable decade counters feature an internal carry look-ahead and can be used for high-speed counting. Synchronous operation is provided by having all flipflops clocked simultaneously on the positive-going edge of the clock.

GENERAL INFORMATION

		CONDITIONS	TYP			
SYMBOL.	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT	
t _{PLH} /	Propagation delay CP _n to Q _n (PE = High)	C _L = 50pF; V _{CC} = 5V	6.4		ns	
C _{PD}	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	66		ρF	
CIN	Input capacitance	V _i = 0V or V _{CC}	3.5		рF	
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA	
Δt/Δv	Maximum input rise or tall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V	
fMAX	Meximum clock frequency	C _L = 50pF; V _{CC} = 5.0V	175		MHz	

Note

- 1. C_{pD} is used to determine the dynamic power dissipation (P_{D} in μW):
 - $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_0)$ where:
 - f = input frequency in MHz, C = cutput load capacitance in pF,
 - to = output frequency in MHz, V_{CC} = supply voltage in V,
 - $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
20-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11162N 74ACT11162N
20-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11162D 74ACT11162D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74AC/ACT11162

The outputs of the counters may be present to High or Low levels. A Low level at the Parallel Enable (PE) input disables the counting action and causes the data at the D_0 - D_3 inputs to be loaded into the counter on the rising edge of the clock. Preset takes place regardless of the levels at Count Enable (CEP, CET) inputs.

A Low level at the Reset (\overline{SR}) input sets all four outputs of the flip-flops $(Q_n - Q_n)$ to

Low levels after the next positive-going transition on the clock (CP) input. This action occurs regardless of the levels at PE, CET, and CEP inputs. This synchronous reset feature enables the designer to modify the maximum count with only one external NAND date.

The carry look-ahead simplifies serial cascading of the counters. Both Count Enable inputs (CEP and CET) must be

High to count. The CET input is fed forward to enable the Terminal Count (TG) output. The TG output thus enabled will produce a High output pulse of a duration approximately equal to the High level output of \mathbf{G}_0 . This pulse can be used to enable the next cascaded stage.

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
20	SF	Synchronous reset (active Low)
19	GP	Clack input (Low-to-High edge-triggered)
18, 17, 14, 13	D ₀ - D ₃	Deta inputs
12	CEP	Count enable input
10	PE	Parallel enable Input (active Low)
11	CET	Count enable carry input
18, 17, 14, 13	00-03	Counter outputs
1	TC	Terminal count output
4, 5, 6, 7	GND	Ground (0V)
15, 16	V _∞	Positive supply voltage

FUNCTION TABLE

OPERATING MODE	MPUTS						OUTPUTE		
	SH	CP	CEP	CET	PE	D _m	Q _p	TC	
Reset (clear)	1	1	X	Х	X	X	L	L	
Perallel load ¹	h	1	X	X	1	1	L	L	
	· h	†	X	X	-	h	Н		
Count ¹	h	1	h	h	h	X	count		
Hold (do nothing) ¹	h	X	1	X	h	X	9,		
	h	X	X	1	h	X	a.	L	

H - High voltage level

HOTE:

L = Low voltage level

h = High voltage level one setup time prior to the Low-to High clock transition

I ... Low voltage level one setup time prior to the Low-to High clock transition

X = Don't car

q = State of the referenced output prior to the Low-to High glock transition

^{↑ =} Low-to-High clock transition

^{1.} The TC output is High when CET is High and the counter is at Terminal Count (HLLH).

74AC/ACT11162

LOGIC DIAGRAM

74AC/ACT11162

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AC11162					
		Min	Nom	Max	Min	Nom	Max	UNIT
V _{CC}	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧
V _I	Input voltage	0		Voc	0	<u> </u>	V _{CC}	V
v _o	Output voltage	0		Voc	0		V _{CC}	V
Δέδ	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	40		+85	-40		+85	°C

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ < 0	-20	1
ilk or V		V ₁ > V _{CC}	20	- mA
ν _ι	DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diade current ²	V _O < 0	-50	
o, 490 -		V _o > V _∞	50	mA
v _o	DC output voltage		-0.5 to V _{CC} +0.5	V
lo	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
l _{CC}	DC V _{CC} current		±125	
GND	DC ground current		±125	mA
TSTG	Storage temperature		-65 to 150	•c
P _{TOT}	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

^{1.} No electrical or switching characteristics are specified at V_{CC} <3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods. may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74AC/ACT11162

DO ELECTRICAL CHARACTERISTICS

		T			74AC11162				1		UNIT		
SYMBOL	PARAMETER	TEST CO	TEST CONDITIONS		T _A = +25°C		T, =-40°C		TA = +25°C			T _A = -40°C 60 +85°C	
				٧	Min	Max	Min	Max	Min	Mex	Min	Mox	
			3		2.10		2.10						
V _{BH}	High-level input voltage		ſ	4.5	3.15		3.15		2.0		2.0		٧
- "	mpor voimge			5.5	3.85		3.85		2.0		2.0		
				3,0		0.90		0.90					
V _{IL}	Low-level	1		4.5		1.35		1.35	0.8		0.8	٧	
~				5.5		1.65		1.65		0.8		0.8	
	High-level output voltage			3.0	2.9		2.9						
				I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4	
		V _I = V _{IL} or V _{IH}		5.5	5.4		5.4		5.4		5.4		v
VOH			I _{OH} = -4mA	3.0	2.58		2.48						
0			I _{OH} = -24mA	4.5	3.94	<u></u>	3.8		3.94		3.8		
			!	5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA	5.5		_	3.85				3.85		
				3.0		0.1		0.1		_	L		
		1	1 _{OL} = 50µA	4.5		0.1		0.1		0.1	<u> </u>	0.1	
		V _I = V _R or		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voltage	or or	I _{OL} = 12mA	3.0		0.36		0.44					V
-		V	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44]
				5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
l,	input leakage current	V _I = V _{CC}		5.5		±0.1		±1.0		±0.1		±1.0	μА
lcc	Quiescent supply current	V ₁ = V _{CC}	V _I = V _{CC} or GND, I _O = 0			4.0		40		4.0		40	μА
Alcc	Supply current, TTL inputs High ²	One input at V _{CC} or	at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 6V or VCC.

Synchronous Presettable BCD Decade Counter; Synchronous Reset

74AC/ACT11162

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V gND = 0V; $t_R = t_F = 3$ ns; $C_L = 50$ pF

	PARAMETER		L					
SYMBOL		WAVEFORM	T _A = +25°C			TA = -	10°C to 5°C	UNIT
			Min	Тур	Max	Min	Mex	
f _{MAX}	Maximum clock frequency	1	110	130		90		MHz
t _{PLH}	Propagation delay CP to Q _n (PE = "H")	1	1.5 1.5	8.4 9.0	11.4 12.1	1.5 1.5	12.5 13.6	ns
^t PLH ^t PHL	Propagation delay CP to Q _n (PE = "L")	1	1.5 1.5	8.2 8.5	10.9	1.5 1.5	12.1 12.7	na
^t PLH ^t PHL	Propagation delay CP to TC	1	1.5 1.5	10.6 11.2	13.7 14.1	1.5 1.5	15.2 16.1	ns
^E PLH ^E PHL	Propagation dalay CET to TC	2	1.5 1.5	5.9 6.1	7.9 8.2	1.5	8.6	ns
ts	Setup time, High or Low D _n to CP	3	4.0			4.5		ns
Ч	Hold time, High or Law D _n to CP	3	0.0			0.5		ns
8	Setup time, High or Low PE or SR to CP	3	5.5			6.0		ns
н	Hold time, High or Low PE or SR to CP	3	0.0			0.0		ns .
8	Setup time, High or Low CEP or CET to CP	4.	5.0			5.5		ns
н	Hold sime, High or Low CEP or CET to CP	4	0.0			0.0		ns
w	Clock pulse width (load) High or Low	1	4.6			5.6		ns
w	Clock pulse width (count) High or Low	1	4.6			5.6		ne

Synchronous Presettable BCD Decade Counter; Synchronous Reset

74AC/ACT11162

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_R = t_F = 3ms$; $C_L = 50pF$

			T	7	4AC1116	2	1	
SYMBOL	PARAMÉTER	WAVEFORM		T _A = +25°C	3	T _A = -4	10°C to	UNIT
			Min	Тур	Max	Min	Max	
MAX	Maximum clock frequency	1	150	175		130		MHz
t _{PLH}	Propagation delay CP to Q _n (PE = "H")	1	1.5 1.5	6.1 6.5	8.3 8.9	1.5 1.5	9.0 9.9	ns
^t PLH ^t PHL	Propagation delay CP to O _n (PE = "L")	1	1.5 1.5	6.0 6.4	8.0 8.4	1.5 1.5	9.8 9.3	ns
PLH PHL	Propagation delay CP to TC	1	1.5 1.5	7.4 8.4	9.4 10.4	1.5 1.5	10.3 11.9	ns
^t PLH ^t PHL	Propagation delay CET to TC	2	1.5 1.5	4.3 4.9	5.8 6.4	1.5 1.5	6.3 7.2	ns
ts.	Setup time, High or Low D _n to CP	3	3.0			3.5		ns
t _H	Hold time, High or Low D _n to CP	3	1,0			1.0		ns .
t _s	Setup time, High or Low PE or SR to CP	3	4.0			4.0		ns
t _H	Hold time, High or Low PE or SR to CP	3	0.5			0.5		ns.
t _s	Setup time, High or Low CEP or CET to CP	4	3.5			4.0		ns
t _H	Hold time, High or Low CEP or CET to CP	4	0.5			0.5		ns
tw	Clock pulse width (load) High or Low	1	3.3			3.9		ns
tw	Clock pulse width (count) High or Low	1	3.3			3.9		ns

Synchronous Presettable BCD Decade Counter; Synchronous Reset

74AC/ACT11162

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V GND = 0V; $t_R = t_F = 3$ ns; $C_L = 50$ pF

	PARAMETER							
SYMBOL		WAVEFORM		T _A = +25°	C	TA =-	10°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
f _{MAX}	Maximum clock frequency	1						MHz
^t PLH ^t PHL	Propagation delay CP to Q _n (PE = "H")	1	1.5 1.5			1.5 1.5		ns
^t PLH ^t PHL	Propegation delay CP to Q _n (PE = "L")	1	1.5 1.5			1.5		ns
t _{PLH}	Propagation delay GP to TC	1	1.5 1.5			1.5		ns
^t PLH ^t PHL	Propagation delay CET to TC	2	1.5 1.5			1.5		ns
t _s	Setup time, High or Low D _n to CP	3						ns
t _H	Hold time, High or Low D _n to CP	3						ns
s	Setup time, High or Low PE or SR to CP	3						ns
Н	Hold time, High or Low PE or SR to CP	3						ns
s	Setup time, High or Low CEP or CET to CP	4						ns
Н	Hold time, High or Low CEP or CET to CP	4						ns ns
w	Clock pulse width (load) High or Low	1						ns.
w	Clock pulse width (count) High or Low	1						ns

Synchronous Presettable BCD Decade Counter; Synchronous Reset

74AC/ACT11162

74AC/ACT11175 Quad D-Type Flip-Flop w/Reset; Positive-Edge Trigger Preliminary Specification

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- · I_{CC} category; MSI

DESCRIPTION

The 74AC/ACT11175 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11175 provides four D-type flip-flops with independent Data inputs , shared Clock and Master Reset inputs, and complementary Q and \overline{Q} outputs.

Master Pleast (MR) is an asynchronous active-Low input and operates independently of the Clock input. Information on the Data (D) input is transferred to the Q output on the Low-to-High transition of the clock pulse. Clock triggering is threshold voltage dependent. The D inputs must be stable one set-up time prior to the Low-to-High clock transition for predictable operation.

GENERAL INFORMATION

SYMBOL	PARAMETER	CONDITIONS	TYP	240APT	
OTREUL,	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
¹ PLH [/] ¹ PHL	Propagation dalay CP to Q _n or Q _n	C _L = 50pF; V _{CC} = 5V	6.3	7.3	ns
CPD	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	47	42	ρF
CW	Input capacitance	V ₁ = 0V or V _{CC}	3.5	3.5	ρF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
Δ۷Δν	Meximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ne/V
f _{MAX}	Maximum clock frequency	C _L = 50pF; V _{CC} = 5.0V	135	120	MHz

Note:

1. C_{pm} is used to determine the dynamic power dissipation (P_m in μW);

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_C)$ where:

 $\mathbf{f}_{1}=\mathbf{input}$ frequency in MHz, $\mathbf{C}_{L}=\mathbf{output}$ load capacitance in pF,

 $f_{\mathbf{C}} = \text{output frequency in MHz, } V_{\mathbf{CC}} = \text{supply voltage in V,}$

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
20-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11175N 74ACT11175N
20-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11175D 74ACT11175D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
18, 17, 14, 13	D ₀ - D ₃	Data inputs
20, 2, 8, 10	00-03	Data outputs
1, 3, 9, 11	Q, -Q3	Data outputs (complements of Q _n outputs)
19	MA	Mester reset input (active Low)
12	CP	Clock input
4, 5, 6, 7	GND	Ground (0V)
15, 16	Vcc	Positive supply voltage

FUNCTION TABLE

OPERATING MODE		INPUTS	OUTPUTS			
OPERATING MODE	MR	CP	D _n	Q _n	۵	
Asynchronous reset	L	X	Х	L	Н	
Loed "1" (set)	Н	Ť	h	Н	L	
Load "0" (reset)	Н	1	1	L	Н	

H = High voltage level steady state $h \approx$ High voltage level one set-up time prior to the Low-to-High clock transition

It is a low voltage level statedy state 1 = Low voltage level one set-up time prior to the Low-to-High clock transition

X = Don't care

T = Low-to-High clock transition

LOGIC DIAGRAM

74AC/ACT11175

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AC11175			74ACT11175			
		Min	Nom	Mex	Min	Nom	Max	UNIT	
V _{CC}	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	V	
V _t	Input voltage	0		V _{CC}	0		V _{cc}	٧	
v _o	Output voltage	0		V _{CC}	0		V _{CC}	V	
ΔΨΔν	Input transition rise or fall rate	o		10	0		10	ns/V	
TA	Operating free-air temperature	-40		+85	-40		+85	•c	

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7,0	V
	DC input diode current ²	V ₁ < 0	-20	
lik or V _i		V _I > V _{CC}	20	- mA
V _I	DC input voltage	·	-0.5 to V _{CC} +0.5	v
_	DC output dia is aument ²	V _O < 0	-50	
v _o	DO COPE. CO. S CONSTR	V _o > V _{cc}	50	mA
v _o	DC output voltage		-0.5 to V _{CC} +0.5	V
lo	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
I _{CC}	DC V _{CC} current		±100	
GND	DC ground ourrent		±100	mA
T _{STG}	Storage temperature		-65 to 150	°C
P	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES:

No electrical or switching characterissics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74AC/ACT11175

DC ELECTRICAL CHARACTERISTICS

		1				74AC	11175		74ACT11178				i
SYMBOL	PARAMETER	TEST C	TEST CONDITIONS V _{CC}		T _A = +28°C		T _A = -40°C to +65°C		T _A = +25°C		T _A = -40°C to +85°C		UNIT
]			Min	Mex	Min	Max	Min	Max	Min	Max	
***************************************				3.0	2.10		2.10						
V _{IH}	High-level input voltage	1		4.5	3.15		3.15		2.0		2.0		V
	, input volume			5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V _{IL}	Low-level input voltage	1		4.5		1.35		1.35		0.8		0.8	٧
-			_	5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
High-level output voltage	1	I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4			
	V, -		5.5	5.4		5.4		5.4		5.4			
	High-level output voltage	V _i = V _{iL} or V _{BH}	1 _{OH} = -4mA	3.0	2.58		2.48						V
			i _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
			1	5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					
			i _{QL} = 50μΑ	4.5		0.1		0.1		0.1		0.1	
	}	V _j =		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level	V _j = V _{IL} or	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _{IH}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
		-	1	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
I _I	Input leakage current	V1 = V00	or GND	5.5		20.1		±1.0		±0.1		±1.0	μA
loc	Quiescent supply current	V ₁ = V _{CC}	V _i = V _{CC} or GND, I _O = 0			4.0		40		4.0		40	μА
ΔI _{CC}	Supply current, TTL inputs High ²	One input at V _{CC} or	at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:
1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.
2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 6V or V_{CC}.

74AC/ACT11175

AC ELECTRICAL CHARACTERISTICS AT 3.3V \pm 0.3V GND = 0V; $t_R = t_F = 3$ ns; C₁ = 50pF

	PARAMETER		T					
SYMBOL		WAVEFORM		T _A = +25°	B	T _A = -4	10°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
[†] MAX	Maximum clock frequency	1	100	115		100		MHz
^t PLH ^t PHL	Propagation delay CP to Q _n , Q _n	1	1.5 1.5	7.8 10.8	10.0 13.7	1.5 1.5	10.9 14.6	ne
^t PLH ^t PHL	Propagation delay MR to O _n , O _n	2	1.5 1.5	7.9 11.4	9.8 13.7	1.5 1.5	10.6 14.6	ns
t _s	Setup time, High or Low D _n to CP	1	8.0			8.0		ne
^t H	Hold time, High or Low CP to D _n	1	0.0			0.0		ns
t _w	Clock pulse width High or Low	1	5.0			5.0		ns
^t w	MR pulse width, Low	2	5.0			5.0		ns
^t REC	Recovery time MR to CP	3	1.0			1.0		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = tc = 3ns; Ct = 50pF

SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C			T _A = -	10°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
f _{MAX}	Maximum clock frequency	1	110	135		110		MHz
^t PLH t _{PHL}	Propagation delay CP to Q _n , Q _n	1	1.5 1.5	5.4 7.2	7.2 9.8	1.5 1.5	7.8 10.7	ns
^t PLH ^t PHL	Propagation delay	2	1.5 1.5	5.4 8.1	7.0 9.8	1.5 1.5	7.5 10.7	ns
t _s	Setup time, High or Low D _n to CP	1	5.5			5.5		ns
t _H	Hold time, High or Low CP to D _n	1	0.5			0.5		ns
t _w	Clock pulse width High or Low	1	4.5			4.5		ns
^t w	MR pulse width, Low	2	4.5			4.5		ns
REC	Recovery time MR to CP	3	1.0			1.0		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; to = to = 3ne; C, = 50pF

			Ţ — —					
SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C			T _A = -4	orc to orc	UNIT
			Min	Тур	Mex	Min	Mex	
MAX	Maximum clock frequency	1	100	120		100		MHz
^t PLH ^t PHL	Propagation delay CP to Q _n , Q _n	1	1.5 1.5	6.1 8.4	7.8 10.6	1.5 1.5	8.3 11.6	ns
^t PLH ^t PHL	Propagation delay	2	1.5 1.5	6.9 9.5	8.4 11.6	1.5 1.5	8.9 12.5	ne
t _s	Setup time, High or Low D _n to CP	1	5.5			5.5		ns
^t H	Hold time, High or Low CP to D _n	1	1.0			1.0		ns
t _w	Clock pulse width High or Low	1	5.0			5.0		ns
t _w	MR pulse width, Low	2	5.0			5.0		ns
t _{REC}	Recovery time MR to CP	3	1,5			1.5		ne.

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11175

AC WAVEFORMS AC : $V_M = 50\% \ V_{CC}$, $V_{IN} = GND$ to V_{CC} . ACT : $V_M = 1.5V$, $V_{IN} = GND$ to 3.0V (Continued)

CP a MPUT

Waveform 3. Waveforms Showing Recovery Time

74AC/ACT11190

Asynchronous Presettable Synchronous Decade Up/Down Counter w/Single Clock

Preliminary Specification

FEATURES

- · High-speed- MHz typical f...
- · Synchronous, reversible counting
- · Positive edge-triggered clock
- BCD/decade
- Asynchronous Parallel Load capability
- · Output capability: ±24mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{cc} and ground configuration to minimize high-epeed switching noise
- . I category: MSI

DESCRIPTION

The 74AC/ACT11190 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11190 is an asynchronously presettable up/down BCD decade counter. It contains four master/slave flipflops with internal gating and steering logic to provide asynchronous preset and synchronous count-up and count-down operation.

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL	
SAMBOT	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay CP to Q _n (PE = High)	C _L = 50pF; V _{CC} = 5V			ns.
C _{PD}	Power dissipation capacitance per gete ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF			ρF
CIN	Input capacitance	V _I = OV or V _{CC}			pF
LATCH	Latch-up current	Per Jedec JG40.2 Standard 17	500	500	mA
ΔΨΔΨ	Meximum input rise or felf rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ne/V
fMAX	Meximum clock trequency	C _L = 50pF; V _{CC} = 5.0V			MHz

M-4-

1. C_{PD} is used to determine the dynamic power dissipation (P_{D} in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{1} + \sum (C_{L} \times V_{CC}^{2} \times f_{D}) \text{ where:}$

 $f_1 = \text{input frequency in MHz, } C_1 = \text{output load capacitance in pF,}$

fo = output frequency in MHz, Voc = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
20-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11190N 74ACT11190N
20-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11190D 74ACT11190D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Asynchronous Parallel Load capability permits the counter to be preset to any desired number. Information present on the parallel Data inputs (D_a-D_a) is loaded into the counter and appears on the outputs when the Parallel Load (PL) input is Low. As indicated in the Mode Select Table, this operation overrides the counting function.

Counting is inhibited by a High level on the Count Enable (CE) input.

Overflow/underflow Indications are provided by two types of outputs, the Terminal Count (TC) and Ripple Clock (RC). The TC output is normally Low and goes High when: 1) the count reaches zero in the count-down mode or 2) reaches "9" in the Count-up mode. The TC output will remain High until a state change occurs, either by counting or presetting, or until U/D is changed. TC output should not be used as a clock signal because it is subject to decoding spikes. The TC signal is

used internally to enable the RC output. When TC is High and CE is Low, the RC follows the Clock Pulse. The RC output essentially duplicates the Low clock pulse width, although delayed in time by two gate delays. The 24AC/ACT11190 simplifies the design of multistage counters, as indicated in Figures 1a and 1b.

In Figure 1s, each RC output is used as the Clock input for the next higher stage. When the Clock input source has limited drive capability this configuration is particularly advantageous, since the clock source drives only the first stage. It is only necessary to inhibit the first stage to prevent counting in all stages, since a High signal on CE inhibits the RC output pulse as indicated in the Mode Select Table. The timing skew between state changes in the first and last stages is represented by the cumulative delay of the clock as it ripples through the preceding stages. This is a disadvantage of the configuration in some applications.

Figure 1b shows a method of causing state changes to occur simultaneously in all stages. The RC outputs propagate the carry/borrow signals in ripple fashion and all Clock inputs are driven in parallel. The Low state duration of the clock in this configuration must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes High. Since the RC output of any package goes High shortly after its CP input goes High, there is no such restriction on the High state duration of the clock.

In Figure 1c, the configuration show-avoids ripple delays and their associated restrictions. Combining the TC signals from all the preceding stages forms the CE input signal for a given stage. An enable signal must be included in each carry gate in order to inhibit counting. The TC output of a given stage is not affected by its own CE, therefore, the simple inhibit scheme of Figure 1a and 1b does not apply.

74AC/ACT11190

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
20	Ū/D	Up/down count control input
12	CE	Count enable input (active-Low)
18, 17, 14, 13	D ₀ - D ₃	Data inputs
19	CP	Clock pulse input (active rising edge)
11	ग	Asynchronous load input (active-Low)
2, 3, 8, 9	Q0 - Q3	Counter outputs
1	AC	Ripple clock output (active-Low)
10	TC	Terminal count output
4, 5, 6, 7	GND	Ground (0V)
15, 16	V _{CC}	Positive supply voltage

MODE SELECT -- FUNCTION TABLE

00004544044005		OUTPUTS				
OPERATING MODE	PE	Ū/D	CE	CP	D _m	Q _n
9	L	Х	Х	Х	L	L
Parailei load	L	х	х	X	н	H
Count up	Н	L	1	Ť	X	count up
Count down	Н	Н	1	1	X	count down
Hold (do nothing)	Н	X	Н	X	х	no change

TC AND RC FUNCTION TABLE

,	INPUTS		TER	MINAL C	OUTPUTS			
U/D	CE	CP	Q ₀	0,	Q ₂	Q _s	TC	RC
Н	Н	×	Н	X	X	н	L	Н
L	н	×	н	×	×	н	н	н
L	L	T	н	×	×	н	н	υr
L	н	X	L	L	L	L	L	н
н	н	X	L	L	L	L	н	н
Н	L	v	L	L	L	L	н	7

H = High voltage level

h = High voltage level
h = High voltage level one setup time prior to the Low-to High clock transition

= Low voltage level one setup time prior to the Low-to High clock transition

X = Don't care

1 = Low-to-High clock transition

T= Low pulse

LOGIC DIAGRAM

STATE DIAGRAM

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AC11190			74ACT1119	0	140117
STREOL	PARAMETER	Min	Nom	Max	Min	Nom	Mex	UNIT
V _{cc}	DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5.5	٧
V _I	Input voltage	0		V _{CC}	0		V _{cc}	٧
v _o	Output voltage	0		V _{CC}	0		V _{CC}	V
ΔΨΔν	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	•c

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
	DC input diods current ²	V ₁ < 0	-20	mA.
i _{IK} or V _i	DO INPUT GIOGO CUITORIT	V₁ > V∞	20	mA.
v _i	DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diode current ²	V _O <0	-50	mA
or Vo	DO doubt didde (chienit	V ₀ > V _{CC}	50	IIIA
v _o	DC output voltage		-0.5 to V _{CC} +0.5	٧
lo	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
I _{CC}	DC V _{CC} current		±150	
IGND	DC ground current		±150	mA
TSTG	Storage temperature		-65 to 150	°C
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES:

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

^{1.} Stresses beyond those listed may cause permanent demage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74AC/ACT11190

DC ELECTRICAL CHARACTERISTICS

			* .	1		74AC	11190			74AC1	11190		
SYMBOL	PARAMETER	TEST C	ONDITIONS	Voc	TAR	•25℃	TA =	-40°C 85°C	T _A =	•25℃	T _A =	-40°C 85°C	UNIT
				V	Min	Mex	Min	Mex	Min	Mex	Min	Max	
				3.0	2.10		2.10						
V _{IH}	High-level input voltage	İ		4.5	3.15		3.15		2.0		2.0		٧
•••		1		5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V _{IL}	Law-level input voltage			4.5		1.35		1.35		0.8		0.8	٧
			•	5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
			1 _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
		V ₁ = V _{IL}	*.	5.5	5.4		5.4		5.4		5.4		
V _{OH}	High-level output voltage	V _{IL}	I _{OH} = -4mA	3.0	2.58		2.48						٧
		V _{BH}	1 - 24må	4.5	3.94		3.8		3.94		3.8		
į		-	I _{OH} = -24mA	5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					
			I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
	1 1	V _I = V _{IL} or	1	5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voltage	OF	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _{BH}	1 ~ 24mA	4.5		0.36		0.44		0.36		0.44	
		-	I _{OL} = 24mA	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA [†]	5.5				1.65				1.65	
l _t	Input leakage current	V1 = V00		5.5		±0.1		±1.0		±0.1		±1.0	μΑ
l _{cc}	Quiescent supply current	V1 = V00 0	x GND,	5.5		4.0		40		4.0		40	μА
Δlcc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

Not more than one output should be tested at a time, and the duration of the set should not exceed 10ms.
 This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 6V or V_{CC}.

74AC/ACT11190

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V GND = 0V; $t_{_{\rm F}}$ = $t_{_{\rm F}}$ = 3ns; $C_{_{\rm L}}$ = 50pF

BYMBOL	PARAME	TER	WAVEFORM		T _A = +25°		TA =-	IO°C to 5°C	UNIT
			·	Min	Тур	Mex	Min	Max	
MAX	Maximum clock	CP to Q	1						MHz
	frequency	CP to RC							MHz
PLH PHL	Propagation delay CP to O _n)		1	1.5 1.5			1.5 1.5		ns
PLH PHL	Propagation delay CP to TC		1	1.5 1.5			1.5 1.5		ns.
PLH PHL	Propagation delay CP to RC		2	1.5 1.5			1.5 1.5		ns
PLH PHL	Propagation delay		2	1.5 1.5			1.5 1.5		ns
PLH PHL	Propagation delay U/D to RC		2				· ·		ne
PLH PHL	Propagation delay U/D to TC		4						ns
PHL PLH PHL	Propagation delay		3	1					ns.
PHL PHL	Propagation delay		3, 4	1					ns
PLH	Propagation delay		3, 4	1					ns
PHL PLH	Propagation delay		5	<u> </u>					ns
PHL PLH	Propagation delay		5	1					ns
PHL PLH	Propagation delay:		5 .	1		<u> </u>			ns
PHL S(H) S(L)	Setup time, High of D _n to PL		6						ns
h(H) h(L)	Hold time, High or D to PL	Low	6						ns
s ^(L)	Setup time, High or	r Low	6	1					ns
h(L)	Hold time, High or CE to CP	Low	6	1					ns
s(H) s(L)	Setup time, High of U/D to CP	Low	6						ns
(H) h(L)	Hold time, High or U/D to CP	Low	8	1					ns
"(L)	PL pulse width,		5	1				7	ns
w(H) w(L)	CP pulse width, High or Low		1						ns
REC	Recover time,		5						ns

74AC/ACT11190

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V GND = 0V; $t_{\rm s}$ = $t_{\rm s}$ = 3ns; $C_{\rm s}$ = 50pF

				L	1	74AC1119	_		
SYMBOL	PARAMI	ETER	WAVEFORM		Γ _A = +25°	С	T _A = -48	10°C to 5°C	UNIT
				Min	Тур	Max	Min	Mex	
MAX	Maximum clock	CP to Q	1						MHz
	frequency	CP to RC							MHz
PLH PHL	Propagation delay CP to Q _n)		1	1.5 1.5			1.5 1.5		. UB
PLH PHL	Propagation delay GP to TC		1	1.5 1.5			1.5 1.5		ns.
PLH PHL	Propagation delay CP to RC		2	1.5 1.5			1.5 1.5		ns.
PLH	Propagation delay CE to RC		2	1.5 1.5			1.5 1.5		ns
PLH PHL	Propagation delay U/D to RC		2						ns
PLH PHL	Propagation delay 0/0 to TC		4						ns
PLH PHL	Propagation delay		3						ns
PLH PHL	Propagation delay D _n to TC		3, 4						ns
PLH PHL	Propagation delay		3, 4						ns
PLH PHL	Propagation delay		5						ns
PLH PHL	Propagation delay PL to TC		5						ns
PLH PHL	Propagation delay		5						ns
s(H) s(L)	Setup time, High o	r Low	6						ns
_h (H)	Hold time, High or D _n to PE	Low	6						ns
_S (L)	Setup time, High o	Low	6						ns
_h (L)	Hold time, High or CE to CP	Low	6						ns
s(H) s(L)	Setup time, High o	r Low	6						ns
(H) (L)	Hold time, High or U/D to CP	Low	6						ns
_w (L)	PL pulse width, Low		5						ns
(H) (L)	CP pulse width, High or Low		1						ns
REC	Recover time, PL to CP		5						ns

74AC/ACT11190

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; $t_{\rm c}$ = $t_{\rm p}$ = 3ne; $C_{\rm c}$ = 50pF

					7	4ACT1111			
YMBOL	PARAME	TER	WAVEFORM		T _A = +25°C	•	T _A = -48	IO°C to	UNIT
				Min	Тур	Max	Min	Max	
MAX	Maximum clock	CP to Q _n	1						MHz
	frequency	CP to RC							MHz
PLH PHIL	Propagation delay CP to Q _n)		1	1.5 1.5			1.5 1.5		ns
PLH PHL	Propagation delay CP to TC	,	1	1.5 1.5			1.5 1.5		ns
PLH PHL	Propagation delay CP to RC		2	1.5 1.5			1.5 1.5		ns
PLH PHL	Propagation delay CE to RC		2	1.5 1.5			1.5 1.5		ns
PLH PHL	Propagation delay U/D to RC		2						ns
PLH PHL	Propagation delay U/D to TC		4						na
PLH PHL	Propagation delay		3						ns
PLH PHL	Propagation delay D _n to TC		3, 4						ns
PLH PHL	Propagation delay D _n to RC		3, 4						ns
PLH PHL	Propagation delay		5						ne
PLH PHL	Propagation delay PL to TC		5						ns
PLH PHL	Propagation delay	•	5						ns
s(H) s(L)	Setup time, High or D _n to PE		6				•		ns
h(H) h(L)	Hold time, High or I		6		,				ns
s ^(L)	Setup time, High or CE to CP	Low	6						ns
_h (L)	Hold time, High or I	LOW	6						ns
s(H) s(L)	Setup time, High or U/D to CP		6		-				ns
_h (H) _h (L)	Hold time, High or I U/D to CP	LOW	-6						ns
_w (L)	PL pulse width, Low		5						ns
"(H) "(L)	CP pulse width, High or Low		1						ns
REC	Recover time, PL to CP		5						ns

74AC/ACT11190

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = QND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = QND to 3.0V

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{IN} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{IN} = GND to 3.0V (Continued)

74AC/ACT11191

Asynchronous Presettable Synchronous 4-Bit Binary Up/ Down Counter w/Single Clock

Preliminary Specification

FEATURES

- High-speed—___MHz typical f___
- · Synchronous, reversible counting
- · Positive edge-triggered clock
- · 4-bit binary
- Asynchronous Parallel Load capability
- . Output capability: ±24mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50 Ω incident wave switching
- Center-pin V_∞ and ground configuration to minimize high-speed switching noise
- · I category: MSI

DESCRIPTION

The 74AC/ACT11191 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11191 is an asynchronously presettable up/down 4-bit binary counter. It contains four master/slave flipflops with internal gating and steering logic to provide asynchronous preset and synchronous count-up and count-down operation.

GENERAL INFORMATION

SYMBOL	PARAMETER	CONDITIONS	TYP		
-	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	דואט
t _{PLH} /	Propagation delay CP to Q _n (PE = High)	C _L = 50pF; V _{CC} = 5V			ns
C _{PO}	Power dissipation capacitance per gete ¹	V _{CC} = 5.0V; f = 1MHz; C ₁ = 50pF			ρF
CIN	Input capacitance	V _I = OV or V _{CC}			ρF
LATCH	Letch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔυΔν	Maximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V
†MAX	Maximum clock frequency	C _L = 50pF; V _{CC} = 5.0V			MHz

Note

1. C_{PD} is used to determine the dynamic power dissipation (P_{D} in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (C_L \times V_{CC}^2 \times f_C)$$
 where:

$$f_{\parallel}$$
 = input frequency in MHz, C_{\parallel} = output load capacitance in pF,

$$f_O$$
 = output frequency in MHz, V_{CC} = supply voltage in V.

$$\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
20-pin plestic DIP (300mil-wide)	-40°C to +85°C	74AC11191N 74ACT11191N
20-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11191D 74ACT11191D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 14, 1988

Asynchronous Parallel Load capability permits the counter to be preset to any desired number. Information present on the parallel Data inputs (D_a - D_a) is loaded into the counter and appears on the outputs when the Parallel Load (PL) input is Low. As indicated in the Mode Select Table, this operation overrides the counting function.

Counting is inhibited by a High level on the Count Enable (CE) input.

Overflow/underflow indications are provided by two types of outputs, the Terminal Count (TC) and Ripple Clock (RC). The TC output is normally Low and goes High when: 1) the count reaches zero in the count-down mode or 2) reaches "15" in the Count-up mode. The TC output will remain High until a state change occurs, either by counting or presetting, or until U/D is changed. TC output should not be used as a clock signal because it is subject to decoding spikes. The TC signal is

used internally to enable the RC output. When TC is High and CE is Low, the RC follows the Clock Pulse. The RC output essentially duplicates the Low clock pulse width, although delayed in time by two gate delays. The 74AC/ACT11191 simplifies the design of multistage counters, as indicated in Figures 1a and 1b.

In Figure 1a, each RC output is used as the Clock input for the next higher stage. When the Clock input source has limited drive capability this configuration is particularly advantageous, since the clock source drives only the first stage. It is only necessary to inhibit the first stage to prevent counting in all stages, since a High signal on CE inhibits the RC output pulse as indicated in the Mode Select Table. The timing skew between state changes in the first and last stages is represented by the cumulative delay of the clock as it ripples through the preceding stages. This is a disadvantage of the configuration in some applications.

Figure 1b shows a method of causing state changes to occur simultaneously in all stages. The RC outputs propagate the carry/borrow signals in ripple fashion and all Clock inputs are driven in parallel. The Low state duration of the clock in this configuration must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes High. Since the RC output of any package goes High shortly after its CP input goes High, state duration of the clock.

In Figure 1c, the configuration shown avoids ripple delays and their associated restrictions. Combining the TC signals from all the preceding stages forms the CE input signal for a given stage. An enable signal must be included in each carry gate in order to inhibit counting. The TC output of a given stage is not affected by its own CE, therefore, the simple inhibit scheme of Figure 1a and 1b does not apply.

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
20	U/D	Up/down count control input
12	CE	Count enable input (active-Low)
18, 17, 14, 13	D ₀ - D ₃	Date inputs
19	CP	Clock pulse input (active rising edge)
11	PI	Asynchronous load input (active-Low)
2, 3, 8, 9	Q ₀ - Q ₃	Counter outputs
1	RC	Ripple clock output (active-Low)
10	TC	Terminal count output
4, 5, 6, 7	GND	Ground (DV)
15, 16	·· v _{cc}	Positive supply voltage

MODE SELECT - FUNCTION TABLE

CONTRATIN	OPERATING MODE			MPUTS -					
Crann and	I HODE	PC	U/D	CE	CP	D _n	0_		
Parallel load	, ,		×	, х	X	L	L		
Paraset load	ls	L	X	х	х	н	1 H		
Count up	,	Н	L	1	Ť	X	count up		
Count down		H	Н	1	1	X	count down		
Hold (do nothing)		H	X	Н	Х	X	no change		

TC AND RC FUNCTION TABLE

	INPUTS		TEF	TERMINAL COUNT STATE			OUT	PUTS
U/D	CE	CP	Q ₀	0,	0,	Q ₂	TC	RC
Н	Н	X	н	. H	Н	Н	L	Н
L	н	×	'H	н	н	н	н	н
L.	L	Tr.	н	н	н	н	н	٦r
L	н	×	L	L	L	L	L	н
н	н	x	L	L	L	L	н	н
Н	L	v	L	L	L	L	н	זר

H = High voltage level

L = Low voltage leve

h = High voltage level one setup time prior to the Low-to High clock transition

I = Low voltage level one setup time prior to the Low-to High clock transition

K = Don't care

^{1 =} Low-to-High clock transition

^{↓ =} High-to-Low Trickle Clock transition

T- Low pulse

LOGIC DIAGRAM

STATE DIAGRAM

74AC/ACT11191

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74AC11191				4 50 1100		
	TARAME I EN	Min	Nom	Max	Min	Nom	Max	UNIT
V _{CC}	DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5.5	V
V _l	Input voltage	0		V _{CC}	0		V _{cc}	V
v _o	Output voltage	0		V _{CC}	0		V _{CC}	V
ΔΫΔν	Input transition rise or full rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40	 	+85	°C

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V, < 0	-20	
l _{iK} or V _i		V _I > V _{CC}	20	mA .
V _t	V _t DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diode current ²	V ₀ < 0	-50	
OK Br	OK or DC output voltage	V _o > V _{cc}	50	mA
v _o			-0.5 to V _{CC} +0.5	v
lo	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
l _{CC}	DC V _{CC} current		±150	
GND	DC ground current		±150	- mA
TSTG	Storage temperature		-65 to 150	*C
P _{TOT}	Power dissipation per peckage Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
TOT	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

^{1.} No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74AC/ACT11191

ACEI ECTRICAL CHARACTERISTICS

		T				74AC			L	74ACT			
BYMBOL	PARAMETER	TEST CO	ONDITIONS	v _{cc}	T _A = +25°C		T _A = -40°C 10 +85°C		T _A = +25°C		T _A = -40°C		UNIT
					Min	Mex	Min	Max	Min	Max	Min	Max	
				3.0	2.10		2.10						
VIH	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
	Triput votage			5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					v
V _{IL}	Low-level			4.5		1.35		1.35		0.8		0.8	
-	Hipot voilage			5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
			I _{OH} = -50μA	4.5	4.4		4.4		4.4		4.4		
		V _t =		5.5	5,4		5.4		5.4		5.4		
V _{OH}	High-level output voltage	or V _{IH}	I _{OH} = -4mA	3.0	2.58		2.48						٧
•			I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
			1	5.5	4.94		4.8		4.94		4.8		1
	1		I _{OH} = -75mA	5.5			3.85				3.85		
				3.0		0.1		0.1]
		1	I _{OL} ≈ 50μA	4.5		0.1	$oxed{L}$	0.1		0.1		0.1	
		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voltage	V _{EL}	I _{OL} = 12mA	3.0		0.36		0.44					V
-		V _{B4}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
-		-	1	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5		<u>L</u>		1.65				1.65	<u> </u>
l _l	Input leakage current	V ₁ = V _{CC} or GND		5.5		±0.1		±1.0		±0.1		±1.0	μА
lcc	Quiescent supply current	V1 = Vcc	V ₁ = V _{CC} or GND, I ₀ = 0			4.0		40		4.0		40	μА
Alcc	Supply current, TTL inputs High ²	One input at V _{CC} or	at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

^{1.} Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

74AC/ACT11191

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V gnD = 0V; $t_{_{I}}$ = $t_{_{I}}$ = 3ns; $C_{_{L}}$ = 50pF

				74AC11191						
SYMBOL	PARAME	TER	WAVEFORM		T _A = +257		T _A = -4	10°C to	UNIT	
				Min	Тур	Max	Min	Max		
MAX	Maximum clock frequency	CP to RC	1						MHz	
PLH	Propagation delay			1.5		 	1.5		MHZ	
PHI.	CP to Q)		1	1.5			1.5 1.5		ns	
PLH PHL	Propagation delay CP to TC		1	1.5			1.5 1.5		ns	
PLH PHL	Propagation delay CP to RC		2	1.5			1.5		ns	
PLH PHL	Propagation delay		5	1.5			1.5 1.5		ns	
PLH PHL	Propagation delay U/D to RC		2	1			1.5		ns	
PLH PHL	Propagation delay U/D to TC		4						ns	
7.H 74L	Propagation delay D _n to Q _n		3						ne	
71L 7LH 7HL	Propagation delay		3, 4						ne	
7LH 7HL	Propagation delay		3, 4						- 115	
71L 7LH 74L	Propagation delay		5						ns	
LH HL	Propagation delay		5						ns	
LH HL	Propagation delay- PL to RC		5						ns	
(H) (L)	Setup time, High or D _n to PC		6					$\neg +$	ns	
(H) (L)	Hold time, High or L D _n to PC		6						ne	
(L)	Setup time, High or CE to CP	1	6						ns	
(L)	Hold time, High or L CE to CP		6						ns	
(H) (L)	Setup time, High or I U/D to CP	1	6						ns	
(H) (L)	Hold time, High or Li U/D to CP	W/	6						ns	
(L)	PC pulse width, Low		5						ns	
	CP pulse width, High or Low		1						ns	
EC	Recover time, PL to CP		5				-+		ns	

74AC/ACT11191

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{_{1}}$ = $t_{_{1}}$ = 3ns; $C_{_{L}}$ = 50pF

					000 4-				
YMBOL	PARAME	TER	WAVEFORM		Γ _A = +25°	C	T _A = -4	P°C 10	UNIT
				Min	Тур	Max	Min	Max	
	Maximum clock	CP to Q	1						MHz
MAX	tredneuch	CP to RC	'						MHz
PLH PHL	Propagation delay CP to Q _n)		1	1.5 1.5			1.5 1.5		ns
PHL PLH PHL	Propagation delay		1	1.5 1.5			1.5 1.5		ns
PLH PHL	Propagation delay CP to RC		2	1.5 1.5			1.5 1.5		ns
PLH PHL	Propagation delay		2	1.5 1.5			1.5 1.5		ns
PLH PHL	Propagation delay U/D to RC		2						ne
PLH PHL	Propagation delay U/D to TC		4						ne
PLH PHL	Propagation delay		3						ns
PLH PHL	Propagation delay D _n to TC	_	3, 4						ns
PLH PHL	Propagation delay		3, 4						ns
t PLH PHL	Propagation delay		5						n#
^t PLH ^t PHL	Propagation dalay PL to TC		5					<u> </u>	ns
[†] PLH [†] PHL	Propagation delay PL to RC		5				<u> </u>	ļ	ns
t _s (H) t _s (L)	Setup time, High of D _n to PC		6						ns
t _h (H) t _h (L)	Hold time, High or D _n to PC		6			_		<u> </u>	ne
t _S (L)	Setup time, High of CE to CP		6				-		ns
t _h (L)	Hold time, High or CE to CP		6						ns
t _S (H) t _S (L)	Setup time, High of U/D to CP		6						ns
t _h (H) t _h (L)	Hold time, High of U/D to CP	Low	6				1		ns
t _w (L)	PL pulse width, Low		5						ns
t_(H) t_(L)	GP pulse width, High or Low		1						ns
^t REC	Recover time, PL to CP		5						ns

74AC/ACT11191

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{_{\rm F}}$ = $t_{_{\rm F}}$ = 3ns; $C_{_{\rm L}}$ = 50pF

				74ACT11191					
SYMBOL	PARAME	TER	WAVEFORM		T _A = +25°	C	T _A = -	IO°C to 5°C	UNIT
				Min	Тур	Max	Min	Max	
[†] MAX	Meximum clock frequency	CP to AC	1						MHz
^t PLH	Propagation delay	1		+					MHz
PHL	CP to Q)		1	1.5 1.5			1.5 1.5		ns
PLH PHL	Propagation delay GP to TC		1	1.5 1.5			1.5 1.5		ns
PLH PHL	Propagation delay CP to RC		3	1.5			1.5		ns
PLH PHL	Propagation delay		2	1.5			1.5		ns.
PLH	Propagation delay		2	1.5			1.5		ns
PLH	Propagation delay U/D to TC		. 4	 					
PHL PLH	Propagation delay								ns
PHL	D _n to Q _n		3						na
PLH PHL	Propagation delay D _n to TC		3, 4						ne
PLH PHL	Propagation delay D _n to RC		3, 4						ns.
PLH PHL	Propagation delay		5						ns
PLH PHL	Propagation delay PL to TC		5						ns
PLH PHL	Propagation delay: PL to RC		5						ns
s(H) s(L)	Setup time, High or D _n to PL	1	6						ns
,(H) ,(L)	Hold time, High or La	.	6						ns
_s (L)	Setup time, High or I	1	6						ns
,(L)	Hold time, High or La	SW	. 6					-+	ns
(L)	Setup time, High or I U/D to CP		6						ns
(H) (L)	Hold time, High or Lo U/D to CP	w	6						ns
,(L)	PL pulse width, Low		5						ns
	CP pulse width, High or Low		1		+		-+	-	ns ns
	Recover time, PL to CP		5		+	-+			ns ns

AC WAVEFORMS AC : V_M = 50% V_{CC}, V_N = GND to V_{CC}. ACT : V_M = 1.5V, V_N = GND to 3.0V

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{IN} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{IN} = GND to 3.0V (Continued)

74AC/ACT11194 4-Bit Bidirectional Universal Shift Register

Preliminary Specification

FEATURES

- . Shift left and shift right capability
- Synchronous Parallel and Serial data transfers
- Easily expanded for both Serial and Parallel operation
- Asynchronous reset
- · Output capability: ±24mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- . 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11194 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11194 4-bit Bidirectional Universal Shift Register is fully synchronous, making the device especially useful for implementing very high speed CPUs, or for memory buffer registers.

GENERAL INFORMATION

. ,	,	CONDITIONS	TYP		
SYMBOL	PARAMETER	T _A = 25°C; GND = 9V	AC	ACT	UNIT
TPLH	Propagation delay CP to Q _n (MR = High)	C _L = 50pF; V _{CC} = 5V	4.8	5.8	ns
C _{PD}	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	66	69	pF
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
AVAV	Maximum input rise or fell rate	C _L = 50pF; V _{CC} = 5.5V	10	10	лв∕∨
f _{MAX}	Meximum clock frequency	C _L = 50pF; V _{CC} = 5.0V	150	130	MHz

Moto

1. C_{DD} is used to determine the dynamic power dissipation (P_{D} in μ W):

 $P_{O} = C_{PO} \times V_{CC}^{2} \times f_{i} + \sum (C_{i} \times V_{CC}^{2} \times f_{O})$ where:

 f_1 = input frequency in MHz, C_L = output load capacitance in pF,

 f_{O} = output frequency in MHz, V_{OC} = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE 74AC11194N 74ACT11194N		
20-pin plastic DIP (300mil-wide)	-40°C to +85°C			
20-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11194D 74ACT11194D		

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

5-153

The 74AC/ACT11194 design has special logic features which increase the range of application. The synchronous operation of the device is determined by two Mode Select inputs, S_0 and S_1 . As shown in the Function Table, data can be entered and shifted from left to right (shift right, $Q_0 \rightarrow Q_1$, etc.), or right to left (shift left, $Q_3 \rightarrow Q_2$, etc.), or parallel data can be entered, loading all 4 bits of the register simultaneously. When both S_0 and S_0 are Low, existing data is retained in a hold (do nothing) mode. The first and last stages provide D-type Serial Data input (D_{SR}).

 $D_{\underline{SL}}$) to allow multistage shift right or shift left data transfers without interfering with parallel load operation.

Mode select and Data inputs on the 74AC/ACT11194 are edge-triggered, responding only to the Low-to-High transition of the Clock (CP). Therefore, therenly timing restriction is that the Mode Control and selected Data inputs must be stable one setup time prior to the positive transition of the clock pulse. Signals on the Select, Parallel Data ($D_0 - D_0$) and Serial Data ($D_{\rm SR}, D_{\rm SL}$) inputs can change when

the clock is in either state, provided only the recommended setup and hold times, with respect to the clock rising edge are observed.

The four Parallel Data inputs $(D_0 - D_3)$ are D-type inputs. Data appearing on $D_0 - D_3$ inputs when S_0 and S_1 are High is transferred to the $Q_0 - Q_3$ outputs respectively, following the next Low-to-High transition of the clock. When Low, the asynchronous Master Reset (MH) overrides all other input conditions and forces the Q outputs Low.

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION					
12	MR	Asynchronous master reset (active Low)					
11	CP	Clock input (Low-to-High, edge-triggered)					
18, 17, 14, 13	D ₀ - D ₃	Date inputs					
1	D _{SR}	Serial data input (shift right)					
10	D _{SL}	Serial data input (shift left)					
20, 19	S ₀ , S,	Mode control inputs					
2, 3, 8, 9	Q ₀ - Q ₃	Parallel outputs outputs					
1	TC	Terminal count output					
4, 5, 6, 7	GND	Ground (0V)					
15, 16	V _{cc}	Positive supply voltage					

FUNCTION TABLE

OPERATING MODE	INPUTS						OUTPUTS				
	CP	MR	8,	8,	D _{SR}	Dei	D_	Q ₀	Q.	Q.	Q.
Reset (clear)	X	L	X	х	Х	X	X	L	L	L	L
Hold (do nothing)	X	Н	1	1	Х	X	X	q ₀	q,	q _o	Q ₃
Shift Left	1	Н	h	1	X	1	Х	q,	q ₂	q,	L
	1	н	h	1	x	h	/ x	q,	q,	9,	н
Shift Right	Ť	Н	1	h	1	х	X	L	q ₀	q,	q ₂
	Ť	Н	1	h	h	X	x	н	90	9,	9,
Parallel Load	Ť	Н	h	h	x	х	dn	do	d,	d.	d.

H = High voltage level

L = Low voltage level

h = High voltage level one setup time prior to the Low-to High clock transition

I = Low voltage level one setup time prior to the Low-to High clock transition

X = Don't can

 $d_n(q_n)$ = State of the referenced input (or output) one setup time prior to the Low-to-High clock transition

^{1 =} Low-to-High clock transition

LOGIC DIAGRAM

4-Bit Bidirectional Universal Shift Register

74AC/ACT11194

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74AC11194			74ACT11194			1
		Min	Nom	Max	Min	Nom	Max	UNIT
V _{CC}	DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5.5	V
V _I	Input voltage	0		Vcc	0		v _{cc}	V
V _O	Output voltage	0		V _{CC}	0		V _{CC}	V
Δ۷Δν	input transition rise or fall rate	0		10	0		10	ns/V
T _A	Operating free-air temperature	-40		+85	-40		+85	*C

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PAHAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ < 0	-20	
ilk or V		V ₁ > V _∞	20	mA.
ν _ι	DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diode current ²	V _O <0	-50	
ok V _O		V _o > V _{oc}	50	mA
v _o	DC output voltage		-0.5 to V _{CC} +0.5	v
l _o	DC output source or sink ourrent per output pin	V ₀ = 0 to V _{CC}	±50	mA
l _{CC}	DC V _{CC} current		±100	
GND	DC ground current		±100	mA
TSTG	Storage temperature		-65 to 150	°C
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
P _{TOT}	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

No electrical or switching characteristics are specified at V_{CC} < SV. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

						74AC	11194			ĺ			
SYMBOL	PARAMETER	TEST C	ONDITIONS	v _{cc}	TAR	•25℃	TA=	-40°C 85°C	T _A =	•25℃	T, =	-40°C 85°C	UNIT
				v	Min	Mex	Min	Max	Min	Max	Min	Max	
				3.0	2.10		2.10						
V _{IIH}	High-level Input voltage		7		3.15		3.15		2.0		2.0		٧
	The total			5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V _{IL}	Low-level input voltage			4.5		1.35		1.35		0.8		0.8	٧
-				5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
			I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
		V ₁ =		5.5	5.4		5.4		5.4		5.4		
V _{OH}	VOH Output voltage o	V _{IL}	I _{OH} = -4mA	3.0	2.58		2.48						V
•		V _{IH} I _{OH} = -24mA	1	4.5	3.94		3.8		3.94		3.8		
			OH	OH - Sautes	5.5	4.94		4.8		4.94		4.8	
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					
			I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
		V,-		5.5		0.1		0.1		0.1		0.1	}
VOL	Low-level output voltage	V _i - V _{il} or	I _{OL} = 12mA	3.0		0.36		0.44					٧
-		V _{B4}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
		**	1	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
1,	Input leakage current	V _I = V _{CC}	or GND	5.5		±0.1		±1.0		±0.1		±1.0	μА
lcc	Quiescent supply current	V ₁ = V _{CC}	V _i = V _{OC} or GND, I _O = 0			4.0		40		4.0		40	μА
ΔI _{CC}	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V GND = 0V; $t_{_{\rm f}}$ = $t_{_{\rm f}}$ = 3ns; $C_{_{\rm L}}$ = 50pF

				7	4AC1119	4		
SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C			T _A = -	10°C to 5°C	UNIT
			Min	Тур	Mex	Min	Max	
f _{MAX}	Maximum clock frequency	1	100	125		100		MHz
^t PLH ^t PHL	Propagation delay CP to O _n	1	1.5 1.5	5.4 7.1	8.9 9.5	1.5 1.5	9.5 10.2	ns
^t PHL	Propagation delay	2	1.5	7.6	10.2	1.5	10.9	ns
^t s	Setup time, High or Low D _n , D _{SR} , D _{SL} to CP	3	4.0			4.0		ns
^t H	Hold time, High or Low CP to D _n , D _{SR} , D _{St}	. 3	0.0			0.0		ns
^t s	Setup time, High or Low S _n to CP	3	5.5			5.5		ns
t _H	Hold time, High or Low CP to S _n	3	1.0			1.0		ns:
^t w	Clock pulse width (load) High or Low	1	5.0			5.0		ns
t _w	Clock pulse width (count) High or Low	1	5.0			5.0		ns
^t w	MR pulse width, Low	2	4.0			4.0		ns
^t REC	Recovery time MR to CP	2	0.5			0.5		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V GND = 0V; $t_{_{\rm F}}$ = $t_{_{\rm F}}$ = 3ns; C $_{_{\rm L}}$ = 50pF

				•	74AC1119	4		
SYMBOL	PARAMETER	WAVEFORM	TA = +25°C			T _A = -4	10°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
f _{MAX}	Maximum clock frequency	1	125	150		125		MHz
^t PLH ^t PHL	Propagation delay CP to Q _n	1	1.5 1.5	4.5 5.0	6.6 7.1	1.5 1.5	7.1 7.7	ns
t _{PHL}	Propagation delay	2	1.5	5.4	7.5	1.5	8.1	ns
t _s	Setup time, High or Low D _n , D _{SR} , D _{SL} to CP	3′	0.5			0.5		ns
t _H	Hold time, High or Low CP to D _n , D _{SR} , D _{SL}	3	1.0			1.0		กร
t _s	Setup time, High or Low S _n to CP	3	4.0		10.10	4.0		ns
t _H	Hold time, High or Low CP to S _n	3	1.0			1.0		ns
t _w	Clock pulse width (load) High or Low	1	4.0			4.0		ns
t _w	Clock pulse width (count) High or Low	1	4.0			4.0		ns
^t w	MR pulse width, Low	2	4.0			4.0		ns
^t REC	Recovery time MR to CP	2	1.0			1.0		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{_{I}}$ = $t_{_{I}}$ = 3ns; $C_{_{L}}$ = 50pF

				7	4ACT111	М		
SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C			T _A = -	10°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
f _{MAX}	Maximum clock frequency	1	100	130	:	100		MHz
^t PLH ^t PHL	Propagation delay CP to On	1	1.5 1.5	5.5 6.1	6.8 7.6	1.5 1.5	7.3 8.3	ns
^t PHL	Propagation delay	2	1.5	7.5	9.1	1.5	9.8	กร
^t s	Setup time, High or Low D _n , D _{SR} , D _{SL} to CP	3	4.5			4.5		ns
t _H	Hold time, High or Low CP to D _n , D _{SR} , D _{SL}	3	1.0			1.0		ns
^t s	Setup time, High or Low S _n to CP	3	6.0			6.0		ns
^t H	Hold time, High or Low CP to S _n	3	2.0			2.0		ns
t _w	Clock pulse width (load) High or Low	1	5.0			5.0		ns
t _w	Clock pulse width (count) High or Low	1	5.0			5.0		ns
^t w	MR pulse width, Low	2	4.5			4.5		ns
t _{REC}	Recovery time MR to CP	2	1.0			1.0		ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{IN} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{IN} = GND to 3.0V (Continued)

74AC/ACT11238 3-to-8 Line Decoder/ Demultiplexer

Preliminary Specification

FEATURES

- Multiple input enable for easy expansion
- Ideal for memory chip select decoding
- · Non-inverting outputs
- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50 Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11238 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11238 decoders accept three binary weighted inputs (A_0 , A_1 , A_2) and when enabled, provide eight mutually exclusive, active-High outputs ($Y_0 - Y_2$). The devices feature three enable inputs; two active-Low (E_1 , E_2) and one active-High (E_3). Every output will be Low unless E_1 and E_2 are Low and E_3 is High. This multiple enable function allows easy parallel expansion of the devices to a 1-of-32

GENERAL INFORMATION

		CONDITIONS	TYP	HAUT	
SYMBOL.	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay A _n to Y _n	C _L = 50pF; V _{CC} = 5V	5.9	5.6	ns
C _{PD}	Power dissipation capacitance ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	55	57	pF
C _{IN}	Input capacitance	V _i = 0V or V _{CC}	3.5	3.5	ρF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
Δέζον	Maximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Note

1. Cpp is used to determine the dynamic power dissipation (Pp in µW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (C_L \times V_{CC}^2 \times f_0)$$
 where:

f, = input frequency in MHz, C, = output load capacitance in pF,

 $f_{\rm C}$ = output frequency in MHz, $V_{\rm CC}$ = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11238N 74ACT11238N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11238D 74ACT11238D

(5 lines to 32 lines) decoder with just four '11238's and one inverter.

The devices can be used as eight output demultiplexers by using one of the active-Low enable inputs as the data input and the remaining enable inputs as strobes.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 14, 1988

5-161

ECN Number

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
15, 14, 13	A ₀ to A ₂	Address inputs
10, 9	E, E2	Enable inputs (active Low)
11	E ₃	Enable input (active High)
16, 8, 7, 6, 5, 3, 2, 1	Y ₀ to Y ₇	Outputs
4	GND	Ground (0V)
. 12	V _{CC}	Positive supply voltage

FUNCTION TABLE

		INP	UTS						OUT	PUTS			
E,	E ₂	Ea	Ao	A ₁	A ₂	Yo	Y ₁	Y ₂	Y ₃	Y ₄	Y ₅	Ye	Y ₇
Н	X	X	X	X	х	L	L	Ĺ	L	L	L	L	Ļ
×	н	×	×	×	×	L	L	L	L	L	L	L	L
×	×	L	×	x	x	L	L	L	L	L	L	L	L
L	L	н	L	L	L	н	L	L	L	L	L	L	L
L	L	н	н	L	L	L	н	L	Ł	L	L	L	L
L	L	н	L	н	L	L	L	н	L	L	L	L	L
L	L	н	н	н	L	L	L	L	н	L	L	L	L
L	L	н	L	L	н	L	L	L	L	н	L	L	L
L	L	н	н	L	н	L	L	L	Ł	L	н	L	L
L	L	н	L	н	н	L	L	L	L	L	L	н	L
L	L	н	н	н	н	L	L	L	L	L	L	L	н

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

044501	PARAMETER			UNIT				
SYMBOL		Min	Nom	Mox	Min	Nom	Mex	UNIT
V _{CC}	DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5.5	٧
V _I	Input voltage	0		V _{CC}	0		V _{cc}	٧
v _o	Output voltage	0		V _{CC}	0		Vcc	٧
ΔΨΔν	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	•c

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

YMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ < 0	-20	mA
l _{IK} or V _I	DC input diode current	V _I > V _{CC}	20	1 "
Ÿ,	DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diode current ²	V ₀ <0	-50	mA
l _{OK}	DC output diode current	V _o > V _{cc}	50	1110
lok er Vo	DC output voltage		-0.5 to V _{CC} +0.5	v
l _o	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
I _{CC}	DC V _{CC} current		±200	mA
I _{GND}	DC ground current		±200	
TSTG	Storage temperature		-65 to 150	°C
ь	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
P _{TOT}	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES

^{1.} No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.</p>

Stresses beyond those listed may cause permanent demage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

		ARAMETER TEST CONDITIONS				74AC	11238			74AC1	11236		
SYMBOL	PARAMETER			V _{CC}	T _A = +25°C		T _A = -40°C to +85°C		T _A = +25°C		T _A = -40°C to +85°C		UNIT
				٧	Min	Mex	Min	Max	Min	Max	Min	Max	
				3.0	2.10		2.10						-
V _{IH}	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
				5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V _{IL}	Low-level input voltage			4.5		1.35		1.35		0.8		0.8	٧
				5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
VOH output voltage			I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
	High-level output voltage	V _I = V _{IL} or V _{BH}		5.5	5.4		5.4		5.4		5.4		v
			I _{OH} = -4mA	3.0	2.58		2.48						
			I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
				5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA [†]	5.5			3.85				3.85		
				3.0		0.1		0.1					
			I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
	Low-level	V,-		5.5		0.1		0.1		0.1		0.1	
VOL	output voltage	V _{IL}	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _{IH}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
				5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
1,	Input leakage current	V _I = V _{CC} or GND		5.5		±0.1		±1.0		±0.1		±1.0	μA
lcc	Quiescent supply current	V _I = V _{CC} or GND,		5.5		8.0		80		8.0		80	μΑ
ΔI _{CC}	Supply current, TTL inputs High ²	One input	One input at 3.4V, other inputs at V _{CC} or GND							0.9		1.0	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V \pm 0.3V GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = 3ns; $C_{\rm L}$ = 50pF

SYMBOL		WAVEFORM	1					
	PARAMETER			T _A = +25~	3	T _A = -	UNIT	
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	8.5 9.6	10.6 11.9	1.5 1.5	11.7 13.3	ns
t _{PLH} t _{PHL}	Propagation delay E ₃ to Y _n	2	1.5 1.5	8.2 9.6	10.3 11.7	1.5 1.5	11.4 13.0	ns
^t PLH ^t PHL	Propagation delay	2	1.5 1.5	9.1 10.7	11.2 12.9	1.5 1.5	12.5 14.5	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm p} = t_{\rm p} = 3$ ns; $C_{\rm i} = 50$ pF

SYMBOL		WAVEFORM						
	PARAMETER			T _A = +257	C		10°C to 5°C	UNIT
			Min	Тур	Mex	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	5.4 6.3	7.0 8.2	1.5 1.5	8.2 9.7	na
^t PLH ^t PHL	Propagation delay E ₃ to Y ₆	2	1.5 1.5	5.2 6.5	6.7 8.2	1.5 1.5	7.9 9.6	ns
t PLH tPHL	Propagation delay	2	1.5 1.5	5.6 7.2	7.1 8.9	1.5 1.5	8.5 9.6	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = 3ne; $C_{\rm L}$ = 50pF

SYMBOL		,						
	PARAMETER	WAVEFORM		T _A = +257	C	T _A = -	UNIT	
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	5.1 6.1	7.1 7.8	1.5 1.5	7.8 8.6	ns
^t PLH ^t PHL	Propagation delay	2	1.5 1.5	5.5 6.0	7.1 8.1	1.5 1.5	7.8 9.1	ns
^t PLH ^t PHL	Propagation delay	2	1.5 1.5	5.4 7.1	7.6 8.8	1.5 1.5	8.3 9.7	ne

AC WAVEFORMS AC : $V_{M} = 50\% \ V_{CC}$, $V_{N} = GND$ to V_{CC} . ACT : $V_{M} = 1.5 V$, $V_{N} = GND$ to 3.0 V

APPLICATION

74AC/ACT11240 Octal Buffer/Line Driver;

3-State; INV

Product Specification

FEATURES

- · Octal bus interface
- 3-State buffers
- . Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50 Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11240 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11240 device is an octal buffer that is ideal for driving bus lines or buffer memory address registers. The device features two Output Enables (OE), each controlling four of the 3-State outputs.

GENERAL INFORMATION

		CONDITIONS	TYP	UNIT		
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT	
t _{PLH} /	Propagation delay	C _L = 50pF; V _{CC} = 5V	5.0	6.3	ns	
C	Power dissipation	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled	39	47	ρF	
C _{PO}	capacitance per buffer	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Disabled	12 13			
CIN	Input capacitance	V _I = OV or V _{CC}	4.0	4.0	pF	
COUT	Output capacitance	V _I = 0V or V _{CC}	10	10	pF	
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA	
ΔΙ/Δ٧	Maximum input rise or fall rate; Data inputs	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V	

Note

1. C_{PD} is used to determine the dynamic power dissipation (P_{D} in μW):

 $P_D = G_{PD} \times V_{CC}^2 \times f_1 + \Sigma (G_L \times V_{CC}^2 \times f_0)$ where:

f = input frequency in MHz, C = output load capacitance in pF,

 f_D = output frequency in MHz, V_{CC} = supply voltage in V,

 $\Sigma (C_L \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
24-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11240N 74ACT11240N
24-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11240D 74ACT11240D

PIN CONFIGURATION

N and D Packages
1V 10E
17, 2 23 1A ₀ 17, 3 22 1A ₁ 17, 4 22 1A ₂ 17, 4 22 1A ₂ 21, 1A ₂ 22, 1A ₃ 23, 1A ₄ 21, 1A ₂ 23, 1A ₃ 24, 18, 1A ₃ 27, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74AC/ACT11240

Octal Buffer/Line Driver; 3-State; INV

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
23, 22, 21, 20	110 - 113	Data inputs
17, 16, 15, 14	210 - 213	Data inputs
1, 2, 3, 4	170-173	Data outputs
9, 10, 11, 12	270-273	Data outputs
24, 13	10E, 20E	Output enables
5, 6, 7, 8	GND	Ground (0V)
18, 19	· V _{CC}	Positive supply voltage

FUNCTION TABLE

	INP	UTS		OUTPUT					
10E	1A, 20E 2A,		2A _n	1 V n	2Ÿ _n				
L	L	L	L	Н	Н				
L	н	L	Н	L	L				
н	X	н	X	Z	Z				

RECOMMENDED OPERATING CONDITIONS

	PARAMETER DC supply voltage ¹			74AC11240)	Γ.	UNIT			
SYMBOL			Min	Nom	Mex	Min	Nom	Mex	UNII	
Vcc			3.0	5.0	5.5	4.5	5.0	5.5	٧	
v _i	Input voltage		0		v _{oc}	0		V _{cc}	٧	
v _o	Output voltage		0		V _{oc}	0		V _{CC}	٧	
	Input transition rise	Data	0		10	0		10	ns/V	
ΔVΔν	or fall rate	Output enable	0		5	0		10	11874	
T _A	Operating free-air temperature		-40		+85	-40		+85	*C	

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	٧
	DC input diode current ²	V, < 0	-20	mA
IK or	DC input diode current	V _i > V _{CC}	20	""
Ÿį	DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diode current ²	V ₀ < 0	-50	mA
l _{OK}	DC output aloos durrent	V _o > V _{cc}	50	
v _o	DC output voltage		-0.5 to V _{CC} +0.5	٧
I _o	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
I _{CC}	DC V _{CC} current		±200	mA.
I _{GND}	DC ground current		±200	mA
T _{STG}	Storage temperature		-65 to 150	°C
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

HOTES

^{1.} No electrical or switching characteristics are specified at V_{CC} < \$V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Octal Buffer/Line Driver; 3-State; INV

74AC/ACT11240

DC ELECTRICAL CHARACTERISTICS

					1	74AC	11240			74ACT11240				
SYMBOL	PARAMETER	PARAMETER TEST CO		v _{cc}	T _A =	+25°C	TA	-40°C 85°C	T _A =	+25°C		-40°C 85°C	UNIT	
				v	Min	Max	Min	Max	Min	Max	Min	Max		
				3.0	2.10		2.10							
V _{BH}	High-level input voltage			4.5	3.15		3.15		2.0		2.0	-	٧	
				5.5	3.85		3.85		2.0		2.0			
				3.0		0.90		0.90					V	
V _{IL}	Low-level			4.5		1.35		1.35		0.8		0.8		
				5.5		1.65		1.65		0.8		0.8		
				3.0	2.9		2.9							
			1 _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4			
VOH High-level output voltage	titub lavat	V _j = V _{IL} or V _{IH}		5.5	5.4		5.4		5.4		5.4			
			I _{OH} = -4mA	3.0	2.58		2.48						٧	
			I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8			
				5.5	4.94		4.8		4.94		4.8			
			I _{OH} = -75mA ¹	5.5			3.85				3.85			
		V _I = V _{IL}	I _{OL} = 50µA	3.0		0.1		0.1						
				4.5		0.1		0.1		0.1		0.1		
	Low-level			5.5		0.1		0.1		0.1		0.1		
V _{OL}	output voltage	or or	I _{OL} = 12mA	3.0		0.36		0.44					٧	
	•	V _{IH}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44		
			J	5.5		0.36		0.44		0.36		0.44		
			I _{OL} = 75mA ¹	5.5				1.65				1.65		
I _I	Input leakage current	V _I = V _{CC} or GND		5.5		±0.1		±1.0		±0.1		±1.0	μА	
loz	3-State output off-state current	V _i = V _{ii} or V _{iii} . V _O = V _{CC} or GND		5.5		±0.5		±5.0		±0.5		±5.0	μА	
l _{oc}	Quiescent supply current	V _I = V _{CC} or GND,		5.5		8.0		80		8.0		80	μА	
ΔI _{CC}	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA	

NOTES:

1. Not more than one output should be tested at a time, and the duration of the seat should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tp = tp = 3ns; C1 = 50pF

SYMBOL	PARAMETER	WAVEFORM		T _A = +25°C	C	T _A = -4	UNIT	
			Min	Тур	Max	Min	Max	
t _{PLH}	Propagation delay	1	1.5 1.5	7.6 6.3	10.5 8.6	1.5 1.5	11.7 9.5	ns.
PZH PZL	Output enable time to High and Low Level	2	1.5 1.5	8.2 7.6	11.6 10.8	1.5 1.5	12.7 12.0	ns
PHZ PLZ	Output disable time from High and Low Level	2	1.5 1.5	5.5 6.7	7.5 9.4	1.5 1.5	7.8 9.8	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tR = tF = 3ns; CL = 50pF

SYMBOL PARA	PARAMETER	WAVEFORM	T _A = +25°C			T _A = -	UNIT	
			Min	Тур	Mex	Min	Max	
t _{PLH}	Propagation delay	1	1.5 1.5	5.4 4.6	7.5 6.6	1.5 1.5	8.4 7.2	ns
^t PZH ^t PZL	Output enable time to High and Low Level	2	1.5 1.5	5.7 5.3	8.2 7.7	1.5 1.5	9.2 8.7	ns
^t PHZ ^t PLZ	Output disable time from High and Low Level	2	1.5 1.5	4.7 5.2	6.3 7.3	1.5 1.5	6.6 7.7	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; t_R = t_F = 3na; C_L = 50pF

			T					
SYMBOL	PARAMETER	WAVEFORM		T _A = +257	0	T _A = -4	UNIT	
	,		Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay-	1	1.5 1.5	6.5 6.0	9.9 8.0	1.5 1.5	10.6 8.7	ns
^t PZH ^t PZL	Output enable time to High and Low Level	2	1.5 1.5	7.5 7.3	11.7 11.5	1.5 1.5	12.5 12.3	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low Level	2	1.5 1.5	7.3 7.9	9.4 10.3	1.5 1.5	10.0 10.8	ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11241 Octal Buffer/Line Driver; 3-State Product Specification

FEATURES

- Octal bus interface
- 3-State buffers
- . Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11241 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11241 device is an octal buffer that is ideal for driving bus lines or buffer memory address registers. The device features two Output Enables (10E and 20E), each controlling four of the 3-State outputs:

GENERAL INFORMATION

		CONDITIONS	TYP	UNIT	
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	Metri
^t PLH [/] ^t PHL	Propagation delay	C _L = 50pF; V _{CC} = 5V	4.7	6.5	ns
,	Power dissipation	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled	26	27	ρF
C _{PD}	capacitance per buffer	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Disabled	10	9	P 1
CIN	Input capacitance	V _I = 0V or V _{CC}	4.0	4.0	ρF
COUT	Output capacitance	V _I = 0V or V _{CC}	10	10	рF
J _{LATCH}	Leich-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔυΔν	Maximum input rise or fell rate; Data inputs	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Mate

C_{pn} is used to determine the dynamic power dissipation (P_m in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_0)$ where:

 $\mathbf{f}_{\mathbf{L}} = \mathbf{input}$ frequency in MHz, $\mathbf{C}_{\mathbf{L}} = \mathbf{output}$ load capacitance in pF,

 $f_{\mathbf{O}}$ = output frequency in MHz, $V_{\mathbf{CC}}$ = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
24-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11241N 74ACT11241N
24-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11241D 74ACT11241D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 14, 1988

5-171

ECN Number

Octal Buffer/Line Driver; 3-State

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION	
23, 22, 21, 20	1A ₀ - 1A ₃	Data inputs	
17, 16, 15, 14	2A ₀ - 2A ₃	Data inputs	
1, 2, 3, 4	1Y0 - 1Y3	Data outputs	
9, 10, 11, 12	2Y0 - 2Y3	Data outputs	
24, 13	10E, 20E	Output enables	
5, 6, 7, 8	GND	Ground (0V)	
18, 19	V _{oc}	Positive supply voltage	

FUNCTION TABLE

	INP	OUTPUT			
10E	1A _n	20E	1Y _n	2Y _n	
L	L	Н	L	L	L
L	н	Н	н	н	Н
Н	X	L	X	Z	Z

RECOMMENDED OPERATING CONDITIONS

				74AC11241		'	UNIT		
SYMBOL	PARAM	IETER	Min	Nom	Max	Min	Nom	Mex	CMII
V _{CC}	DC supply voltage		3.0	5.0	5.5	4.5	5.0	5.5	٧
	input voltage		0		V _{oc}	0		V _{CC}	٧
V _O	Output voltage		0		V _{CC}	0		Vcc	٧
	Input transition rise	Data	0		10	0		10	ns/V
	or fall rate	Output enable	0		5	0		10	
T _A	Operating free-air te	mperature	-40		+85	-40		+85	°C

MOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{oc}	DC supply voltage		-0.5 to+7.0	٧
	2	V ₁ <0	-20	mA
ijK	DC input diode current ²	V ₁ > V _∞	20	
ik or V _i	DC input voltage		-0.5 to V _{CC} +0.5	٧
	2	V _O <0	-50	mA
· lok	DC output diode cumenti ²	V ₀ > V _{CC}	50	""
lok Vo	DC output voltage		-0.5 to V _{CC} +0.5	V
l _o	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
l _{CC}	DC V _{CC} current		±200	mA
or I _{GND}	DC ground current		±200	ma
T _{STG}	Storage temperature		-65 to 150	°C
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:denste linearly by 6mW/K	400	mW

NOTES:

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Streeses beyond those listed may cause permanent damage to the device. These are stress ratings only end functional operation of the device at these or any other
conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods
may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

						74AC	11241			74ACT	11241			
SYMBOL	PARAMETER	TEST CONDITIONS		v _{cc}	T _A = +25°C		T_=-40°C		T _A = +25°C		T_ = -40°C		UNIT	
				٧	Min	Mex	Min	Max	Min	Max	Min	Max		
				3.0	2.10		2.10							
V _{IH}	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧	
***	inpot vollage			5.5	3.85		3.85		2.0		2.0			
						0.90		0.90						
V _{IL}	Low-level input voltage					1.35		1.35		0.8		0.8	٧	
~				5.5		1.65		1.65		0.8		0.8		
				3.0	2.9		2.9							
			= I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4			
		V _I = V _{IL} or		5.5	5.4		5.4		5.4		5.4			
V _{OH} High-level output voltage	OF.	I _{OH} = -4mA	3.0	2.58		2.48						V		
		V _{B4}	24mA	4.5	3.94		3.8		3.94		3.8			
	i		1 _{OH} = -24mA	5.5	4.94		4.8		4.94		4.8			
			I _{OH} = -75mA [†]	5.5			3.85				3.85			
				3.0		0.1		0.1						
		1 _{OL} = 50µ	1 _{OL} = 50μA	4.5		0.1		0.1		0.1		0.1		
		V ,-		5.5		0.1		0.1		0.1		0.1		
V _{OL}	Low-level output voltage	V _i - V _{ii} L or	I _{OL} = 12mA	3.0		0.36		0.44					V	
•		V _{BH}		4.5		0.36		0.44		0.36		0.44]	
		•	I _{OL} = 24mA	5.5		0.36		0.44		0.36		0.44		
			I _{OL} = 75mA ¹	5.5				1.65				1.65		
i _l	Input leakage current	V _I =V _{CC}	or GND	5.5		±0.1		±1.0		±0.1		±1.0	μΑ	
loz	3-State output off-state current	V, = V, 0	or GND	5.5		±0.5		±5.0		±0.5		±5.0	μА	
lcc	Quiescent supply current	V ₁ = V _{CC}	or GND,	5.5		8.0		80		8.0		80	μΑ	
Alcc	Supply current, TTL inputs High ²	One input	at 3.4V, other inputs	5.5						0.9		1.0	m/	

NOTES:

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not asseed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tg = tg = 3ns; C1 = 50pF

SYMBOL PA	PARAMETER	WAVEFORM	T _A = +25°C				l0°C to 5°C	TINU
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	7.0 6.2	10.0	1.5	11.4	ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	7.8 7.7	11.4	1.5	12.9	ns
^t PHZ ^t PLZ	Output disable time from High and Low level	2	1.5 1.5	5.8 7.1	7.6 9.3	1.5	7.9	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = te = 3ns; C1 = 50pF

SYMBOL PARAMETER								
	PARAMETER	WAVEFORM	T _A = +25°C			T _A = -	UNIT	
			Min	Тур	Max	Min	Mex	
t _{PLH}	Propagation delay	1	1.5 1.5	4.9 4.5	7.1 6.3	1.5 1.5	8.0 6.8	ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	5.4 5.3	8.0 7.6	1.5 1.5	9.0	ns
^t PHZ ^t PLZ	Output disable time from High and Low level	2	1.5 1.5	4.9 5.6	6.6 7.5	1.5 1.5	6.9	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V GND = 0V; $t_{\rm p}$ = $t_{\rm p}$ = 3ns; C₁ = 50pF

	PARAMETER	WAVEFORM						
SYMBOL			T _A = +25°C			T _A = -40°C to +85°C		UNIT
			Min	Тур	Mex	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1.5	6.6	9.0 8.5	1.5 1.5	10.0	ns
PZH PZL	Output enable time to High and Low level	2	1.5 1.5	7.5 7.4	11.3	1.5	12.3	ns
PHZ PLZ	Output disable time from High and Low level	2	1.5 1.5	7.6 8.2	10.6 11.2	1.5 1.5	11.0	ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{IN} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{IN} = GND to 3.0V

74AC/ACT11244 Octal Buffer/Line Driver; 3-State

Product Specification

FEATURES

- · Octal bus interface
- · 3-State buffers
- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω Incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11244 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11244 device is an octal buffer that is ideal for driving bus lines or buffer memory address registers. The device features two Output Enables (10E, 20E), each controlling four of the 3-State outputs.

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL	UNIT
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V.	AC	ACT	UNIT
t _{PLH} /	Propagation delay A _n to Y _n	C _L = 50pF; V _{CC} = 5V	4.7	5.7	ns
	Power dissipation	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled	27	27	ρF
C _{PD}	capacitance per buffer	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Disabled	9	9	pr
C _{IN}	Input capacitance	V _I = OV or V _{CC}	4.0	4.0	pF
COUT	Output capacitance	V _I = 0V or V _{CC}	10	10	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΨΔν	Meximum input rise or fall rate; Data inputs	C _L = 50pF; V _{CC} = 5.5V	10	10	ns∧

Mole

- 1. C_{pD} is used to determine the dynamic power dissipation (P_{D} in μW):
 - $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (C_L \times V_{CC}^2 \times f_0)$ where:
 - f_1 = input frequency in MHz, C_L = output load capacitance in pF,
 - f_O = output frequency in MHz, V_{CC} = supply voltage in V, $\Sigma (G_L \times V_{CC}^2 \times f_O)$ = sum of outputs

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
24-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11244N 74ACT11244N
24-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11244D 74ACT11244D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 14, 1988

5-175

ECN Number

Octal Buffer/Line Driver; 3-State

74AC/ACT11244

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
23, 22, 21, 20	1A ₀ - 1A ₃	Data inputs
17, 16, 15, 14	2A ₀ - 2A ₃	Data inputs
1, 2, 3, 4	1Y0 - 1Y3	Data outputs
9, 10, 11, 12	2Y0 - 2Y3	Data outputs
24, 13	10E, 20E	Output enables
5, 6, 7, 8	GND	Ground (0V)
18, 19	V _{CC}	Positive supply voltage

FUNCTION TABLE

	INP	OUTPUT			
10E	11 _n	20E	21 _n	1Y _n	2Yn
٦	L	L	L	L	L
L	н	L	н	Н	Н
н	X	н	X	Z	Z

RECOMMENDED OPERATING CONDITIONS

SYMBOL	BARAL	PARAMETER		74AC11244					
	PARAM	IE I EN	Min	Nom	Max	Min	Nom	Max	UNIT
Vcc	DC supply voltage		3.0	5.0	5.5	4.5	5.0	5.5	V
V _I	Input voltage		0,		V _{oc}	0		V _{CC}	٧
V _O	Output voltage		0		V _{CC}	0		V _{cc}	٧
ΔΨΔν	Input transition rise	Data	0		10	0		10	
	or fall rate	Output enable	0		5	0		10	ns/V
TA	Operating free-air ter	mperature	-40		+85	-40		+85	°C

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Vcc	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ < 0	-20	
IK Or V		V _I > V _{CC}	20	- mA
۷,	DC input voltage		-0.5 to V _{CC} +0.5	٧
	DC output diode current ²	V _O < 0	-50	
or V _O		V _o > V _{cc}	50	mA
v _o	DC output voltage		-0.5 to V _{CC} +0.5	v
10	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
cc or	DC V _{CC} current		±200	
GND	DC ground current		±200	mA
TSTG	Storage temperature		-65 to 150	°C
P _{TOT}	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
' тот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTE:

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74AC/ACT11244

Octal Buffer/Line Driver; 3-State

						74AC	11244			74ACT	11244		
SYMBOL	PARAMETER	TEST C	TEST CONDITIONS V _C		T _A = +25°C		T, =	40°C	T _A =	25℃	T_ = -	-40°C 85°C	UNIT
					Min	Max	Min	Max	Min	Max	Min	Max	
				3.0	2.10		2.10						
V _{BH}	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
#T	mpor voicinge				3.85		3.85		2.0	v	2.0		
				3.0		0.90		0.90					
V _K	Low-level			4.5		1.35		1.35		0.8		0.8	٧
-	Whot voide			5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
			I _{OH} = -50μA	4.5	4.4		4.4		4.4		4.4		
		ν, -		5.5	5.4		5.4		5.4		5.4		
V _{OH}	High-level output voltage	V, - V _{IL} or	I _{OH} = -4mA	3.0	2.58		2.48						٧
		V _{IH}	1 _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
				5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
			I _{OL} = 50µА	3.0		0.1		0.1					
				4.5		0.1		0.1		0.1		0.1	
		V) =		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voltage	V ₁ = V _{II} , or	I _{OL} = 12mA	3.0		0.36		0.44					V
		VIH	I _{OL} = 24mA	4.5	,	0.36		0.44		0.36		0.44	
		•	1	5.5		0.36]	0.44		0.36		0.44	Í
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
I _I	input leakage current	V _I = V _{CC}		5.5		±0.1		±1.0		±0.1		±1.0	μΑ
loz	3-State output off-state current	V _j = V _{ij} or V _{ijj} , V _O = V _{CC} or GND		5.5		±0.5		±5.0		±0.5		±5.0	μА
lcc	Quiescent supply current	V ₁ = V _{CC}	or GND,	5.5		8.0		80		8.0		80	μΑ
Δl _{CC}	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

NOT IES:

1. Not more than one output should be tessed at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 6V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V GND = 0V; $t_R = t_F = 3$ ns; $C_t = 50$ pF

SYMBOL P								
	PARAMETER	WAVEFORM	T _A = +25°C			T _A = -4	UNIT	
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	7.1 6.3	9.3 8.6	1.5	10.2	ns
^t pZH ^t pZL	Output enable time to High and Low level	2	1.5 1.5	8.0 7.9	10.7 10.6	1.5	11.8	ns
^t PHZ ^t PLZ	Output disable time from High and Low level	2	1.5 1.5	5.9 7.2	7.9 9.4	1.5	8.3	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $_{\rm B}$ = $t_{\rm E}$ = 3ns; $C_{\rm t}$ = 50pF

		WAVEFORM						
SYMBOL PA	PARAMETER		T _A = +25°C			T _A = -40°C to +85°C		UNIT
			Min	Тур	Max	Min	Max	
^t PLH t _{PHL}	Propagation delay	1	1.5	4.9 4.5	6.7 6.4	1.5 1.5	7.3 6.9	ns
PZH PZL	Output enable time to High and Low level	2	1.5 1.5	5.4 5.4	7.7 7.6	1.5 1.5	8.5 8.5	ns
PHZ PLZ	Output disable time from High and Low level	2	1.5 1.5	5.2 5.8	7.0 7.8	1.5 1.5	7.3 8.2	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; p = te f = 3ns; C, = 50pF

		WAVEFORM						
SYMBOL	PARAMETER		T _A = +25°C			T _A = -40°C to +85°C		UNIT
	L		Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay A _n to Y _n	1	1.5 1.5	6.0 5.4	8.9 8.6	1.5 1.5	9.9	ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	6.6 6.7	11.3 10.5	1.5 1.5	12.5	ns
^t PHZ ^t PLZ	Output disable time from High and Low level	2	1.5 1.5	7.4 7.8	9.8 10.6	1.5 1.5	10.4	ns

AC WAVEFORMS AC : $V_{M} = 50\% \ V_{CC}$, $V_{IN} = GND$ to V_{CC} . ACT : $V_{M} = 1.5V$, $V_{IN} = GND$ to 3.0V

74AC/ACT11245 Octal Transceiver with Direction Pin; 3-State Product Specification

FEATURES

- · Octal bidirectional bus interface
- 3-State buffers
- Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- + 50 Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT1124S high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11245 device is an octal transceiver featuring noninverting 3-State bus compatible outputs in both send and receive directions. The control function implementation minimizes external timing requirements. The device features an Output Enable (OE) input for easy cascading and a Direction (DIR) input for direction control.

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL	
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
¹ PLH [/] ¹ PHL	Propagation delay A _n to B _n , or B _n to A _n	C _L = 50pF; V _{CC} = 5V	4.5	5.8	ns
	Power dissipation	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled	64 66		pF
C _{PO}	capacitance per buffer ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Disabled	16	19	pr-
C _{IN}	Input capacitance	V _I = 0V or V _{CC}	4.0	4.0	pF
C ^{IO}	I/O capacitance	V _I = 0V or V _{CC}	12	12	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΙ/ΔΨ	Maximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Note:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_0) \text{ where:}$

f, = input frequency in MHz, C, = output load capacitance in pF,

to = output frequency in MHz, V_{CC} = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
24-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11245N 74ACT11245N
24-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11245D 74ACT11245D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 14, 1988

5-179

ECN Number

Octal Transceiver with Direction Pin; 3-State

74AC/ACT11245

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
24	DIR	Direction control input
1, 2, 3, 4, 9, 10, 11, 12	A ₀ - A ₇	Date inputs/outputs (A side)
23, 22, 21, 20, 17, 16, 15, 14	B ₀ - B ₇	Data inputs/outputs (B side)
13	OE	Output enable
5, 6, 7, 8	GND	Ground (0V)
18, 19	V _{cc}	Positive supply voltage

FUNCTION TABLE

INF	STU	RIPUTS/C	UTPUTS
QE	DIR	An	Bn
L	L	A = B	inputs
L	н	inputs	B = A
н	x	Z	Z

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	1	74AC11245			400.00		
		Min	Nom	Mex	Min	Nom	Mex	UNIT
Vcc	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	V
V _I	Input voltage	0		V _{CC}	0		V _{CC}	V
v _o	Output voltage	0		Voc	0		v _{cc}	٧
ΔΨΔν	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	°C

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ <0	-20	
IK or V		V _I > V _{CC}	20	mA.
V _I	DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diode current ²	V ₀ <0	-50	
lok v _o		V _o > V _∞	50	mA
v _o	DC output voltage		-0.5 to V _{CC} +0.5	٧
l _o	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
I _{CC}	DC V _{CC} current		±200	
GND	DC ground current		±200	mA
TSTG	Storage temperature		-65 to 150	°C
P _{TOT}	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
' тот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	πW

^{1.} No electrical or switching characteristics are specified at V_{CC} < SV. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

	TRICAL CHARACTI					74AC	11245			74ACT	11245		
BYMBOL	PARAMETER	TEST CO	ONDITIONS	v _{cc}	T _A =	25°C	T_=	-40°C 85°C	TA	25°C	T, =	-40°C 85°C	UNIT
				V	Min Mex	Min	Mex	Min	Max	Min	Max		
				3.0	2.10		2.10						
V _{IH}	High-level			4.5	3.15		3.15		2.0		2.0		V
. 114	input voltage			5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V _{IL}	Low-level input voltage			4.5		1.35		1.35		0.8		8.0	٧
-	Input voilings			5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
			I _{OH} = -50μA	4.5	4.4		4.4		4.4		4.4		
		٧, -		5.5	5.4		5.4		5.4		5.4		v
VOH	High-level output voltage	V _I = V _{IL} Or I _{OH} =	I _{OH} = -4mA	3.0	2.58		2.48						
	1 1	I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		4	
			1	5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1	_	_			
			1 _{OL} = 50µA	4.5		0.1		0.1		0.1	L_	0.1	
	1	V _j -		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voltage	v _{a.}	I _{OL} = 12mA	3.0		0.36		0.44					٧
••		V	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
			1	5.5		0.36		0.44		0.36		0.44	
			I _{OL} ~ 75mA ¹	5.5				1.65				1.65	
í,	Input leakage current	V _I = V _{CC}		5.5		±0.1		±1.0		±0.1		±1.0	μ/
loz	3-State output off-state current	V, - V, 0	or GND	5.5		±0.5		±5.0		±0.5		±5.0	μA
1 _{CC}	Quiescent supply current	V ₁ = V _{CC}	or GND,	5.5		8.0		80		8.0		80	μ
Δlcc	Supply current, TTL inputs High ²		t at 3.4V, other inputs	5.5						0.9		1.0	m/

NOTES:

^{1.} Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 6V or V_{CC}.

Octal Transceiver with Direction Pin; 3-State

74AC/ACT11245

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V gND = 0V; $t_R = t_F = 3$ ns; $C_L = 50$ pF

SYMBOL PARAMETER	WAVEFORM	T _A = +25°C		T _A = -40°C to +86°C		UNIT		
		Min	Тур	Max	Min	Max		
^t PLH ^t PHL	Propagation delay A _n to B _n , B _n to A _n	1	1.5 1.5	6.5 5.7	11.2 8.5	1.5 1.5	12.5	ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	8.6 8.2	14.2 11.5	1.5	15.9 12.7	ns
^t PHZ ^t PLZ	Output disable time from High and Low level	2	1.5 1.5	7.7 8.5	10.5 12.0	1.5	11.3	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = tc = 3ns; Ct = 50pF

SYMBOL PARAMETER	WAVEFORM		T _A = +264	0		10°C to 5°C	UNIT	
		Min	Тур	Mex	Min	Max		
^t PLH ^t PHL	Propagation delay A _n to B _n , B _n to A _n	1	1.5 1.5	4.8 4.1	8.5 6.3	1.5	9.5	ns
PZH PZL	Output enable time to High and Low level	2	1.5 1.5	6.2 5.9	10.2	1.5	11.4	ns
PHZ PLZ	Output disable time from High and Low level	2	1.5 1.5	6.4 7.0	6.8 9.6	1.5 1.5	9.5	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = 3ne; $C_{\rm L}$ = 50pF

SYMBOL PARAMETER	WAVEFORM	T _A = +25°C				10°C to 5°C	UNIT	
		Min	Тур	Mex	Min	Max		
[†] PLH [†] PHL	Propagation delay A _n to B _n , B _n to A _n	1	1.5 1.5	6.2 -5.4	9.2 8.6	1.5 1.5	10.0	na
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	8.1 8.2	12.0	1.5	13.2	na
t _{PHZ}	Output disable time from High and Low level	2	1.5 1.5	9.3 9.8	11.8	1.5	12.9	ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} , ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11251 8-Input Multiplexer (3-State)

Preliminary Specification

FEATURES

- Output capability: ±24 mA
- · CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configu-ration to minimize high-speed switching noise
- I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11251 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11251 provides an 8-to-1 multiplexer with three select lines and a common output enable. The state of the Select (S_n) inputs determines the particular input line from which the data comes. The Output Enable (OE) input is active-Low. When OE is High, both the Youtput and the Y output are in the High-impedance "OFF" state regardless of all other input conditions.

The device is the logic implementation of a single pole, 8 position switch where the position of the switch is determined by the logic levels supplied to the Select inputs.

GENERAL INFORMATION

		CONDITIONS	TYP	UNIT	
SYMBOL	PARAMETER	TA = 25°C; GND = 0V	AC	ACT	UNIT
EPLH!	Propagation delay	C _L = 50pF; V _{CC} = 5V	4.8	6.6	ns
	Power dissipation	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled	55	60	pF
C _{PD}	capacitance 1	V _{CC} = 5.0V; f = 1MHz; C ₁ = 50pF; Disabled	13	16)
C _{IN}	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF
COUT	Output capacitance	V _I = 0V or V _{CC} ; Disabled	8.0	8.0	pF
ΔΙ/Δ۷	Meximum input rise or fall rate; Data inputs	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{DD} \times V_{CC}^2 \times f_1 + \Sigma (C_1 \times V_{CC}^2 \times f_2)$$
 where:

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_2)$ where: $f_1 = \text{Input frequency in MHz, } C_L = \text{output foed capacitance in pF,}$

 $\Sigma (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11251N 74ACT11251N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11251D 74ACT11251D

PIN CONFIGURATION

LOGIC SYMBOL

5-183

LOGIC SYMBOL (IEEE/IEC)

ECN Number

LOGIC DIAGRAM

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
6, 7, 8	S	Select inputs
2	ŌĒ	Output enable input
1, 16, 15, 14 13, 11, 10, 9	10-17	Data inputs
3, 5	Υ, ₹	Data outputs
4	GND	Ground (0V)
12	Vcc	Positive supply voltage

FUNCTION TABLE

	INP	UTS		OUT	PUTS
82	8,	S ₀	OE	Y	7
X	X	X	Н	Z	Z
L	L	L	L	10	i _o
Ļ	L	Н	L	I,	I,
L	н	L	L	l ₂	I,
L	Н	н	L	l ₃	13
Н	L	L	L	I ₄	T,
R	L	н	L	l _s	Ĭ,
Н	н	L	L	16	ī,
H	н	н	L	17	1,

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER			74ACT1118	1	UNIT		
		Min	Nom	Max	Min	Nom	Max	
V _{CC}	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	V
V ₁	Input voltage	0		V _{CC}	0		V _{CC}	V
V _O	Output voltage	0		V _{oc}	0		V _{CC}	V
ΔVΔν	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	°C

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
	2	V ₁ < 0	-20	mA
ı ^{IK}	DC input diode current ²	V _I > V _{CC}	20] ""
lik or v _i	DC input voitage		-0.5 to V _{CC} +0.5	V
	DC output diade current ²	V _O < 0	-50	mA
OK	DC author grade content	V _o > V _{cc}	50	
lok or V _O	DC output voitage		-0.5 to V _{QC} +0.5	v
10	DC output source or sink ourrent per output pin	Vo = 0 to Voc	±50	mA
l _{CC}	DC V _{CC} current		±100	mA
GND	DC ground current		±100] ""
T _{STG}	Storage temperature		-65 to 150	*0
	Power dissipation per package Plastic DIP	Above 70°C:densie linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derete linearly by 6mW/K	400	mW

NOTES:

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between ZV and SV is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute -maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

		}		1		74AC	11251			74AC1	T11251	1	}
SYMBOL	PARAMETER.	TEST C	TEST CONDITIONS		TA =	T _A = +25°C		T _A = -40°C to +85°C		T _A = +25°C		T _A = -40°C 10 +85°C	
				V	Min	Max	Min	Max	Min	Max	Min	Max	1
	High-level			3.0	2.10		2.10						
VIH	input voltage		•	4.5	3.15		3.15		2.0		2.0		v
				5.5	3.85		3.85		2.0		2.0		1
	Law-level			3.0		0.90		0.90					
V _{IL}	input voltage			4.5		1.35		1.35		0.8		0.8	v
						1.65		1.65		0.8		0.8	
				3.0	2.9		2.9			- 1			
			I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		ı
VOH High-level output voltage	V ₁ =		5.5	5.4		5.4		5.4		5.4			
		V _i = V _{iL} or	I _{OH} = -4mA	3.0	2.58		2.48						V
		Van		4.5	3.94		3.8		3.94		3.8		
		{ · "	ОН	5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					
ì		1	I _{OL} = 50µA	4.5		0.1		0.1	1	0.1		0.1	
Į	Low-level	V _I =	177	5.5		0.1		0.1		0.1		0.1	
VOL	output voltage	V _I =	I _{OL} = 12mA	3.0		0.36		0.44					V
l		V _H	1 -01-4	4.5		0.36		0.44		0.36		0.44	
		["	I _{OL} = 24mA.	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
1,	input leakage current	V1 = VCC	or GND	5.5		±0.1		±1.0		±0.1		±1.0	μΑ
loz	3-State output off-state current	V V-	V _I = V _{II} or V _{III} , V _O = V _{CC} or GND			±0.5		±5.0		±0.5		±5.0	μА
lcc	Quiescent supply current	V ₁ = V _{CC} (or GND,	5.5		8.0		80		8.0		80	μА
Δlcc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

^{1.} Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.
2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or Voc.

AC ELECTRICAL CHARACTERISTICS AT 3,3V ±0.3V GND = 0V; tp = tp = 3ns; Ct = 50pF

				7	4AC1125	1		
SYMBOL	PARAMETER	WAVEFORM		Y _A = +257	•	T _A = -0	IO°C to	UNIT
			Min	Тур	Mex	Min	Mex	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	7.0 6.9	8.6 8.3	1.5 1.5	9.3 8.9	ns
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	6.1 6.6	7.5 6.0	1.5 1.5	8.1 8.8	ns
^t PLH ^t PHL	Propagation delay S _n to Y	1	1.5 1.5	10.0 9.6	11.6 11.1	1.5 1.5	12.6 12.1	ns
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	8.9 9.6	10.4 11.1	1.5 1.5	11.3 12.1	ns
t _{PZH} t _{PZL}	Propagation delay OE to Y	2	1.5 1.5	4.6 5.5	5.9 6.8	1.5 1.5	6.3 7.2	ns
t _{PZH} t _{PZL}	Propagation delay OE to Y	2	1.5 1.5	4.1 5.0	5.4 6.3	1.5 1.5	5.6 6.8	ns
^t PHZ · ^t PLZ	Propagation delay OE to Y	2	1.5 1.5	4.3 5.0	5.5 6.2	1.5 1.5	5.7 6.4	ns
^t PHZ t _{PLZ}	Propagation delay OE to V	2	1.5 1.5	4.0	5.1 5.6	1.5 1.5	5.4 5.8	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm H}$ = $t_{\rm F}$ = 3ns; $C_{\rm L}$ = 50pF

			T	1	74AC1125	1		
SYMBOL PARAMETER	PARAMETER	WAVEFORM	T _A = +25°C			T _A = 4	ie°C to	UNIT
			Min	Тур	Mex	Min	Mex	
PLH PHL	Propagation delay	1	1.5 1.5	4.8 4.7	6.1 6.0	1.5 1.5	6.7 6.5	ns
PLH PHL	Propagation delay	1	1.5 1.5	4.1 4.5	5.4 5.9	1.5 1.5	5.8 6.4	ns
^t PLH ^t PHL	Propagation delay S _n to Y	1	1.5 1.5	6.6 6.5	7.9 7.8	1.5 1.5	8.6 8.5	ns
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	5.9 6.3	7.2 7.7	1.5 1.5	7.8 8.4	ns
PZH PZL	Propagation delay OE to Y	2	1.5 1.5	3.2 3.6	4.5 5.1	1.5 1.5	4.7 5.4	ns
P2H P21.	Propagation delay OE to Y	2	1.5 1.5	2.9 3.5	4.2	1.5 1.5	4.4 5.1	ns
^t PHZ ^t PLZ	Propagation delay OE to Y	2	1.5 1.5	4.0 4.4	5.3 5.6	1.5 1.5	5.4 5.9	ns
PHZ PLZ	Propagation delay OE to Y	2	1.5 1.5	3.6 3.7	4.8 4.9	1.5 1.5	5.0 5.1	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = tp = 3ms; C, = 50pF

			T	7	4ACT112	51	T	
	PARAMETER	WAVEFORM	T _A = +25°C			T _A = -	IO°C to 5°C	UNIT
			Min	Тур	Mex	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	6.4 6.7	7.8 8.1	1.5 1.5	8.5 8.7	ns
PLH PHL	Propagation delay	1	1.5 1.5	6.0 5.9	7.A 7.3	1.5 1.5	7.9 7.9	ns
PLH PHL	Propagation delay S _n to Y	1	1.5	9.3 8.2	10.9 9.8	1.5 1.5	11.8	ns
PLH PHL	Propagation delay S _n to Y	t	1.5 1.5	7.8 8.8	9.5 10.4	1.5 1.5	10.2 11.4	ns
PZH PZL	Propagation delay OE to Y	2	1.5 1.5	5.3 4.8	6.7 6.2	1.5 1.5	7.0 6.6	ns
PZH PZL	Propagation delay OE to Y	2	1.5 1.5	5.2 4.7	6.5 6.0	1.5 1.5	7.0 6.4	ns
PHZ PLZ	Propagation delay OE to Y	2	1.5 1.5	6.0 5.2	7,3 6,4	1,5 1,5	7.7 6.7	ns
PHZ PLZ	Propagation delay OE to Y	2	1.5 1.5	5.9 4.9	7.2 6.2	1.5	7.6 6.4	ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11253 Dual 4-Input Multiplexer; 3-State

Product Specification

FEATURES

- 3-State outputs for bus interface and multiplex expansion
- Separate 3-State Output Enable Inputs
- Common Select Inputs
- . Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11253 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11253 device provides two identical 4-input multiplexers with 3-State outputs which select two bits from four sources selected by common select inputs (S₀, S₁). When the individual output enable (10E, 20E) inputs of the 4-input multiplexers are High, the outputs are forced to a high impedance state.

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL		
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT	
tpLH/	Propagation delay	C _L = 50pF; V _{CC} = 5V	4.7	6.5	ns	
	Power dissipation capacitance per	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled	35	41	ρF	
C _{PD}	multiplexer ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Disabled	OV; f = 1MHz; F; Disabled 11 1	15	þr	
CN	Input capacitance	V _I = OV or V _{CC}	3.5	3.5	ρF	
COUT	Output capacitance	V _I = 0V or V _{CC} ; Disabled	8	8	ρF	
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA	
ΔυΔΑ	Meximum input rise or fell rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V	

Moto

- 1. C_{PD} is used to determine the dynamic power dissipation (P_{D} in μW):
 - $P_D = G_{PD} \times V_{CC}^2 \times f_1 + \Sigma (G_1 \times V_{CC}^2 \times f_2)$ where:
 - f, = input frequency in MHz, C, = output load capacitance in pF,
 - $f_{\mathbf{C}}$ = output frequency in MHz, $V_{\mathbf{CC}}$ = supply voltage in V,
 - $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11253N 74ACT11253N
16-pin plastic 90 (150mil-wide)	-40°C to +85°C	74AC11253D 74ACT11253D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 13, 1988

5-189

ECN Number

The 74AC/ACT11253 devices are the logic implementation of a 2-pole, 4-position switch; the position of the switch being determined by the logic levels supplied to the two select inputs.

The '11253 is the non-inverting version of the '11353.

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 2	S ₀ , S ₁	Common select inputs
16, 15, 14, 13	110 - 113	Port A data inputs
11, 10, 9, 8	210 - 213	Port B data inputs
6	1ŌĒ	Port A output enable input
7	20E	Port B output enable input
3, 5	1Y, 2Y	3-State data outputs
4	GND	Ground (0V)
12	Voc	Positive supply voltage

FUNCTION TABLE

			INPUTE	1			OUTPUT
ŌĒ _n	80	8,	l _{on}	I' _{in}	I _{2n}	l _{3n}	Yn
Н	X	Х	X	X	X.	X	2
L	L	L	L	X	X	x	L
L	L	L	н	X	X	×	н
L	Н	L	×	L	X	X	L
L	Н	L	х	H -	" X "	x	н
L	L	н	х	x	L	' X	L
L	L	н	X	×	Н	x	н
L	н	н	×	X	∵ x	L	L
L	Н	н	х	×	X	н	н

- H = High voltage level steady state
- L = Low voltage level steedy state
- X = Don't care
- Z = High-impedance "OFF" state

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

				3	UNIT			
SYMBOL	PARAMETER	Min	Nom	Max	Min	Nom	Max	0.00
v _{cc}	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧
V _i	Input voltage	0		V _{CC}	0		V _{CC}	٧
V _O	Output voltage	0		V _{CC}	0		V _{CC}	٧
Δ۷Δν	Input transition rise or fall rate	0		10	0		10	ns/V
T _A	Operating free-air temperature	-40		+85	-40		+85	•C

NOTE:

ARSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
I _{IK} or V _I	DC input diode current ²	V ₁ < 0	-20	mA
		V _I > V _{CC}	20	
	DC input voltage		-0.5 to V _{CC} +0.5	V
lok or Vo	DC output diode current ²	V ₀ < 0	-50	mA
		V _o > V _{oc}	50	
	DC output voltage		-0.5 to V _{CC} +0.5	v
I _o	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
CC Or IGND	DC V _{CC} current		±100	mA
	DC ground current		±100	
TSTG	Storage temperature		-65 to 150	•c
Ртот	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES:

^{1.} No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.</p>

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

						74AC	11253			74AC1	11253)	
SYMBOL	PARAMETER	TEST C	ONDITIONS	V _{CC}	T _A = +25°C		T _A = -40°C to +85°C		T _A = +25°C		T _A = -40°C		UNIT
				V	Min	Max	Min	Max	Min	Mex	Min	Max	
			· · · · · · · · · · · · · · · · · · ·	3.0	2.10		2.10				-		
V _{IH}	High-level input voltage			4.5	3.15		3.15		2.0		2.0		V
				5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90		1			
V _{IL}	Low-level					1.35		1.35		0.8		0.8	v
-		1		5.5		1.65		1.65		0.8		8.0	
				3.0	2.9		2.9						
			I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
	Add at Assert	V ₁ -		5.5	5.4		5.4		5.4	,	5.4		
V _{OH} High-level output voltage	V _j = V _{il} or	I _{OH} = -4mA	3.0	2.56		2.48						٧	
		V _{BH}	I _{OH} = -24mA	4.5	3.94		3.8		3,94		3.8		
			[5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					
			I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
	Low-level	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		5.5		0.1		0.1		0.1		0.1	
VOL	output voltage	V _I = V _{IL} or	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _{IH}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
				5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
I _I	Input leakage current	V1 = Vcc		5.5		±0.1		±1.0		±0.1		±1.0	μА
loz	3-State output off-state current	V, = V, 00 Vo = Vcc	or GND	5.5		±0.5		±5.0		±0.5		±5.0	μА
lcc	Quiescent supply current	V ₁ = V _{CC} (y GND,	5.5		8.0		80		8.0		80	μΑ
ΔI _{CC}	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

^{1.} Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tR = tF = 3ns; CL = 50pF

				7	74AC1125	3		
SYMBOL	PARAMETER	WAVEFORM		T _A = +25°	C		10°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	6.8 7.0	8.3 8.8	1.5 1.5	9.3 9.6	ns
^t PLH ^t PHL	Propagation delay nS to nY	1	1.5 1.5	7.1 7.5	9.7 10.1	1.5 1.5	11.0 11.4	ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	4.8 5.8	6.2 7.4	1.5 1.5	6.8 8.2	ns
^t PHZ ^t PLZ	Output disable time from High and Low level	2	1.5 1.5	5.0 5.2	6.3 6.5	1.5 1.5	6.7 6.9	ns.

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm R}$ = $t_{\rm E}$ = 3ns; $C_{\rm i}$ = 50pF

SYMBOL	PARAMETER	WAVEFORM		T _A = +257	С		10°C to 5°C	UNIT
		İ	Min	Тур	Mex	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	4.5 4.8	5.9 6.3	1.5 1.5	6.6	ns
^t PLH ^t PHL	Propagation delay nS to nY	1	1.5 1.5	4.9 5.2	7.0 7.3	1.5 1.5	7.9 8.2	ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	3.4 4.0	4.6 5.3	1.5 1.5	5.1 5.8	ns
^t PHZ ^t PLZ	Output disable time from High and Low level	2	1.5 1.5	4.7 4.6	6.0 5.9	1.5 1.5	6.3 6.2	ns.

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = 3ns; $C_{\rm L}$ = 50pF

SYMBOL								
	PARAMETER	WAVEFORM		Γ _A = +25°	C		10°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	5.7 7.2	7.4 10.5	1.5 1.5	8.3 11.7	ns
^t PLH ^t PHL	Propagation delay nS to nY	1	1.5 1.5	6.8 9.1	9.8 12.6	1.5 1.5	11.0 14.3	ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	5.0 4.8	7.6 7.3	1.5 1.5	8.5 8.1	ns
^t PHZ ^t PLZ	Output disable time from High and Low level	2	1.5 1.5	6.4 5.9	8.6 7.4	1.5 1.5	9.2 7.8	ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11257 **Quad 2-Input Multiplexer** (3-State)

Preliminary Specification

FEATURES

- Output capability: ±24 mA
- · CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- · I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11257 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11257 provides four 2-to-1 multiplexers with 3-State outputs which have a common selector and a common output enable. The state of the Select (S) input determines the particular register from which the data comes. The Output Enable (OE) input is active-Low. When E is High, all of the outputs (Y) are forced to a High-impedance state regardless of all other input conditions.

The device is the logic implementation of a 4-pole, 2 position switch where the position of the switch is determined by the logic levels supplied to the Select input.

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL	
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay ni _g , nl ₁ to nY	C _L = 50pF; V _{CC} = 5V	4.3	5.7	ns
	Power dissipation	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled	37	41	ρF
C _{PD}	cepacitance per multiplexer ¹	V _{OC} = 5.0V; f = 1MHz; C _L = 50pF; Disabled	11	14	, pr
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	ρF
COUT	Output capacitance	V _I = 0V or V _{CC} ; Disabled	8.0	8.0	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΙ/Δν	Meximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

1. C_{PD} is used to determine the dynamic power dissipation (P $_{D}$ in $\mu W):$

$$P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (C_L \times V_{CC}^2 \times f_0)$$
 where:

f, = input frequency in MHz, C, = output load capacitance in pF,

$$f_{\rm C}$$
 = output frequency in MHz, $V_{\rm CC}$ = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
20-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11257N 74ACT11257N
20-pin plastic 90 (300mil-wide)	-40°C to +85°C	74AC11257D 74ACT11257D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 13, 1988

LOGIC DIAGRAM

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	S	Common select input
20, 18, 14, 12	nio-nio	Data inputs
19, 17, 13, 11	ni, - ni,	Data inputs
2, 3, 8, 9	1Y-4Y	Data outputs
10	OE	Output enable input
4, 5, 6, 7	GND	Ground (0V)
15, 16	V _{cc}	Positive supply voltage

FUNCTION TABLE

ENABLE	SELECT INPUT		TA UTS	OUTPUT
QE	8	nlo	nt	٧
Н	Х	X	X	2
L	н	X	L	L
L	н	х	н	н
L	L	Ł	х	L.
L	L	Н	X.	н

H = High voltage level
L = Low voltage level
X = Don't care

Z = High-impedance (OFF) state

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AC11257			UNIT		
	PANAME EN	Min	Nom	Max	Min	Nom	Max	UNIT
Vcc	DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5.5	V
V _I	Input voltage	0		V _{CC}	0		V _∞	V
v _o	Output voltage	0		V _{CC}	0		Vcc	٧
ΔύΔν	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	÷C

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ < 0	-20	mA
i or	DO IIPAI GIOGO GUITANA	V ₁ > V _∞	20	mA
v _i	DC input voltage		-0.5 to V _{CC} +0.5	٧
	DC output diade current ²	V _O <0	-50	mA
lok Vo	DO SUPER GIOCE CANTAIR	V _o > V _{cc}	50	m.A
v _o	DC output voltage		-0.5 to V _{CC} +0.5	٧
l _o	DC output source or sink ourrent per output pin	V _O = 0 to V _{CC}	±50	mA
l _{CC}	DC V _{CC} current		±100	
GND	DC ground current		±100	mA
TSTG	Storage temperature		65 to 150	*C
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES:

^{1.} No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.</p>

Stresses beyond those listed may cause permanent demage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions its not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output ourrent ratings are observed.

DC ELECTRICAL CHARACTERISTICS

						74AC	11257			74401	11257		
SYMBOL	PARAMETER	TEST CO	NOTIONS	V _{CC}	TA	25°C	T_ = -40°C		TA = +25°C		TA = -	-40°C 85°C	UNIT
					Min	Max	Min	Mex	Min	Max	Min	Max	
				3.0	2.10		2.10						
V _{IH}	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
	anpot totage			5.5	3.85		3.85		2.0		2.0		
						0.90		0.90					٧
V _K	Low-level input voltage					1.35		1.35		0.8		0.8	
_				5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
			I _{OH} = -50μΑ	4.5	4.4		4.4		4.4		4.4		
	High-level \	V _j = V _{kL} or		5.5	5.4		5.4		5.4	<u></u>	5.4		
V _{OH} output voltage		or L	I _{OH} = -4mA	3.0	2.58		2.48						V
		V _{BH}	I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
				5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85			Ŀ	3.85		
				3.0		0.1		0.1					
			1 _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
	1 11	V,=		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voltage	V _i = V _a or	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _{BH}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
			1	5.5		0.36		0.44		0.36		0.44	•
			l _{OL} = 75mA ¹	5.5				1.65				1.65	
l _i	Input leakage current	V ₁ = V _{CC} o	r GND	5.5		±0.1		±1.0		±0.1		±1.0	μА
loz	3-State output off-state ourrent	V = V or Vo = Vcc	V _H , or GND	5.5		±0.5		±5.0		±0.5		±5.0	μΑ
loc	Quiescent supply current	V1 = V00 0	V ₁ = V _{CC} or GND,			8.0		80		8.0		80	μА
Δlcc	Supply current, TTL inputs High?		at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:
1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.
2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V GND = 0V; $t_R = t_F = 3$ ns; $C_L = 50$ pF

				1	4AC1125	7			
SYMBOL	PARAMETER	WAVEFORM		T _A = +257	C		10°C to 5°C	UNIT	
			Min	Тур	Mex	Min	Max		
^t PLH ^t PHL	Propagation delay nl ₀ , nl ₄ to nY	1	1.5 1.5	5.8 6.6	8.0 9.1	1.5 1.5	8.8 10.0	ns	
[†] PLH [†] PHL	Propagation delay S to nY	1	1.5 1.5	6.7 7.5	9.2 10.1	1.5 1.5	10.0 11.4	ns	
^t PZH ^t PZL	Output enable time to High and Low Level	2	1.5 1.5	5.9 7.5	8.2 10.7	1.5 1.5	8.6 12.0	ns	
t _{PHZ}	Output disable time from High and Low Level	2	1.5 1.5	6.1 6.8	8.0 8.9	1.5 1.5	8.5 9.6	ns	

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = te = 3ns; C, = 50pF

	PARAMETER				74AC1125	7			
SYMBOL		WAVEFORM		T _A = +267	С	TA = -	UNIT		
			Min	Тур	Mex	Min	Max		
^t PLH ^t PHL	Propagation delay	1	1.5	3.9 4.6	5.7 6.5	1.5 1.5	6.1 7.1	na	
¹ PLH ¹ PHL	Propagation delay S to nY	1	1.5 1.5	4.5 5.2	6.4 7.4	1.5 1.5	7.0 8.1	ns	
^t PZH ^t PZL	Output enable time to High and Low Level	2	1.5	4.1 5.2	5.8 7.5	1.5 1.5	6.2 8.2	ns	
t _{PLZ}	Output disable time from High and Low Level	2	1.5 1.5	5.1 5.5	6.7 7.1	1.5 1.5	7.1 7.6	ne	

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V GND = 0V; t_{R} = t_{F} = 3ns; C_{L} = 50pF

	PARAMETER		1					
SYMBOL		WAVEFORM		T _A = +25°	C	T _A = -	UNIT	
			Min	Тур	Max	Min	Max	
¹ PLH ¹ PHL	Propagation delay	1	1.5 1.5	5.2 6.2	7.0 8.9	1.5 1.5	7.5 9.7	ns
^t PLH ^t PHL	Propagation delay S to nY	1	1.5 1.5	6.1 6.9	8.5 9.0	1.5 1.5	9.2 10.0	ns
^t PZH ^t PZL	Output enable time to High and Low Level	2	1.5 1.5	5.2 6.4	7.5 9.1	1.5 1.5	8.0 10.0	ns
^t PHZ ^t PLZ	Output disable time from High and Low Level	2	1.5 1.5	6.5 6.8	8.2 8.4	1.5 1.5	8.9 9.2	ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11258 Quad 2-Input Multiplexer (3-State), Inverting

Preliminary Specification

FEATURES

- Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: MSi

DESCRIPTION

The 74AC/ACT11258 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11258 provides four 2-to-1 multiplexers with 3-State inverting outputs which have a common selector and a common output enable. The state of the Select (S) input determines the particular register from which the data comes. The Output Enable (OE) input is active-Low. When E is High, all of the outputs (Y) are forced to a High-impedance state regardless of all other input conditions.

The device is the logic implementation of a 4-pole, 2 position switch where the position of the switch is determined by the logic levels supplied to the Select input.

GENERAL INFORMATION

		CONDITIONS	TYP			
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT	
t _{PLH} /	Propagation delay	C _L = 50pF; V _{CC} = 5V	4.1	5.4	ns	
	C _{PO} Power dissipation capacitance per multiplexer.	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled	33	35	ρF	
°PO		13	16	Pr		
CW	Input capacitance	V _I = OV or V _{CC}	3.5	3.5	pF	
Cour	Output capacitance	V _I = 0V or V _{CC} ; Disabled	9	9	pF	
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA	
ΔΙΔν	Maximum input rise or fall rate	C _L = 80pF; V _{CC} = 5.5V	10	10	ns/V	

Note

- 1. C_{PD} is used to determine the dynamic power dissipation (P_D in µW):
 - $P_D = G_{PO} \times V_{CC}^2 \times f_1 + \Sigma (G_L \times V_{CC}^2 \times f_0)$ where:
 - f = input frequency in MHz, C = output load capacitance in pF
 - $f_O =$ output frequency in MHz, $\overline{V}_{CC} =$ supply voltage in V,
 - $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
20-pin plastic DIP (300mil-wide)		74AC11258N - 74ACT11258N
20-pin plastic 90 (300mil-wide)	-40°C to +85°C	74AC11258D 74ACT11258D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IREE/IEC)

5-201

LOGIC DIAGRAM

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	S	Common select input
20, 18, 14, 12	nlo-nlo	Data inputs
19, 17, 13, 11	ni,-ni,	Data inputs
2, 3, 8, 9	17-47	Data outputs
10	ŌĒ.	Output enable input
4, 5, 6, 7	GND	Ground (0V)
15, 16	Vcc	Positive supply voltage

FUNCTION TABLE

ENABLE	SELECT INPUT		TA UTS	OUTPUT							
ŌĒ	8	nl _c	nig	7							
Н	X	X	X	Z							
L	н	×	L	н							
L	н	х	н	i.							
L	L	L	×	н							
L	L	н	x	L							

H = High voltage level

L = Low voltage level

X = Don't case

7 - High-impedance (OFF) state

RECOMMENDED OPERATING CONDITIONS

SYMBOL		74AC11258				UNIT		
	PARAMETER	Min	Nom	Max	Min	Nom	Max	ONIT
V _{CC}	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	٧
V _I	Input voltage	0		V _{CC}	0		V _{CC}	٧
ν _o	Output voltage	0		V _{cc}	0		V _{CC}	٧
Δ۷Δν	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40	 	+85	•€

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Vcc	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V, < 0	-20	mA
l _{IK}	DC input diode current	V _I > V _{CC}	20	
or V _I	DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diode current ²	. V _O < 0	-50	mA
(OK	DC author globe griment	V _O > V _{CC}	50	1
lok Vo	DC output voltage		-0.5 to V _{CC} +0.5	v
10	DC output source or sink current per output pin	Vo = 0 to Vcc	±50	mA
¹ CC	DC V _{CC} current		±100	mA.
GND	DC ground current		±100	
TSTG	Storage temperature		-65 to 150	-c
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
P _{TOT}	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES:

^{1.} No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

^{1.} Stresses beyond those lissed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC FLECTRICAL CHARACTERISTICS

						74AC	11256			74AC1	11250		
BYMBOL	PARAMETER	TEST O	TEST CONDITIONS		T _A =	-25°C	T _A = -40°C to +85°C		T _A = +25°C		T _A = -40°C		UNIT
				V	Min	Mex	Min	Max	Min	Max	Min	Max	
				3.0	2.10		2.10						-
V _{IH}	High-level input voltage	1		4.5	3.15		3.15		2.0	2.0			٧.
				5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90			,	,	
VIL	Low-level input voltage			4.5		1.35		1.35		0.8		8.0	٧
	a separation and o			5.5		1.65		1.65		8.0		0.8	
				3.0	2.9		2.9						
V _{OH} High-level output voltage		1 _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4			
	Mah laual	V,	L	5.5	5.4		5.4		5.4		5.4		
	output voltage	or V _H	I _{OH} = -4mA	3.0	2.58		2.48						٧
			1 _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
				5.5	4.94		4.6		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
			I _{OL} = SONA	3.0		0.1		0.1					
		1		4.5	L	0.1		0.1		0.1		0.1	
	Low-level	٧, - ٧ _{ال}		5.5		0.1		0.1		0.1		0.1	
VOL	output voltage	or	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _{BH}	1 _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
			1	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
11	Input leakage current	V1 = Vcc 0		5.5		±0.1		±1.0		±0.1		±1.0	μΑ
oz	3-State output off-state current	V _i = V _{ii} or V _{ii} , V _O = V _{CC} or GND		5.5		±0.5		±5.0		±0.5		±5.0	μА
loc	Quiescent supply current	V1 = V00 0	V ₁ = V _{CC} or GND, I _O = 0			8.0		80		8.0		80	μА
Alcc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mJ

TRO IESS:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL veltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V \pm 0.3V gND = 0V; t_R = t_F = 3ns; C_L = 50pF

	PARAMETER	WAVEFORM		7	4AC1125			
SYMBOL				r _A = +257	3	TA = -	i0°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	5.4 6.2	6.8 7.7	1.5 1.5	7.3 8.4	ne
[†] PLH [†] PHL	Propagation delay S to nY	1	1.5 1.5	6.1 6.9	7.6 8.5	1.5 1.5	8.1 9.3	ns
t _{PZH}	Output enable time to High and Low Level	2	1.5 1.5	5.3 6.9	6.7 8.6	1.5 1.5	7.2 9.3	ns
¹ PHZ ¹ PLZ	Output disable time from High and Low Level	2	1.5 1.5	5.6 6.1	7.0 7.8	1.5 1.5	7.4 8.5	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tR = tp = 3m; CL = 50pF

		WAVEFORM						
SYMBOL	PARAMETER			T _A = +257	C		10°C to	UNIT
			Min	Тур	Mex	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1,5 1.5	3.7 4.4	5.0 6.0	1.5 1,5	5.3 6.7	ne
^t PLH ^t PHL	Propagation delay S to nV	1	1.5 1.5	4.2 4.9	5.5 6.5	1.5 1.5	5.8 7.3	ns
t _{PZH} t _{PZL}	Output enable time to High and Low Level	2	1.5 1.5	3.7 4.8	5.0 6.4	1.5 1.5	5.2 7.0	ns
PHZ PLZ	Output disable time from High and Low Level	2	1.5 1.5	4.6 4.9	6.0 6.5	1.5 1.5	6.3 7.1	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tg = tg = 3ne; Ci = 50pF

SYMBOL	PARAMETER							
		WAVEFORM		T _A = +26^	0		IO°C to 5°C	UNIT
			Min	Тур	Max	Min	Mex	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	5.4 5.3	7.0 7.0	1.5 1.5	7.4 7.8	ns.
^t PLH ^t PHL	Propagation delay S to nY	1	1.5 1.5	5.7 6.6	7.2 8.3	1.5 1.5	7.7 9.0	ns
^t PZH ^I PZL	Output enable time to High and Low Level	2	1.5 1.5	5.0 6.0	6.4 7.7	1.5 1.5	6.8 8.3	ns
t _{PHZ}	Output disable time from High and Low Level	2	1.5 1.5	5.9 6.2	7.3 7.8	1.5 1.5	7.7 8.5	ns.

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11280 9-Bit Odd/Even Parity Generator/Checker

Preliminary Specification

FEATURES

- Word length easily expanded by cascading
- · Output capability: ±24mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- f_{cc} category: MSI

DESCRIPTION

The 74AC/ACT11280 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11280 9-bit parity generator or checker is commonly used to detect errors in high-speed data transmission or data retrieval systems. Both Even and Odd parity outputs are available for generating or checking even or odd parity on up to 9 bits.

The Even parity output (Σ_E) is High when an even number of Data inputs $(I_0 - I_g)$ is High. The Odd parity output (Σ_Q) is High when an odd number of Data inputs are High.

CENERAL INCORMATION

		CONDITIONS	TYP		
SYMBOL.	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
EPLH	Propagation delay I_n to Σ_n	C _L = 50pF; V _{QQ} = 5V	6.9	7.7	na
C _{PD}	Power dissipation capacitance 1	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	55	85	ρF
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF
LATCH	Latch-up ourrent	Per Jedec JC40.2 Standard 17	500	500	mA
ΔύΔν	Meximum input rise or fell rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Note

C_{pp} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (C_L \times V_{CC}^2 \times f_0)$ where:

f, = input frequency in MHz, C, = output load capacitance in pF,

for a output frequency in MHz, V_{CC} = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
14-pin plestic DIP (300mil-wide)	-40°C to +85°C	74AC11280N 74ACT11280N
14-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11280D 74ACT11280D

Expansion to larger word sizes is accomplished by tying the Even outputs of up to nine parallel devices to the data inputs of the final stage.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 13, 1988

5-207

ECN Number

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
2, 1, 14, 13, 12, 10, 9, 8, 7	1 ₀ -1 ₈	Data inputs
5	ΣΕ	Even perity output
3	Σο	Odd parity output
4	GND	Ground (0V)
11	V _{oc}	Positive supply voltage

FUNCTION TABLE

INPUTS	OUTPUTS				
Number of High Data Inputs (I _O - I _B)	Σε	Σο			
Even - 0, 2, 4, 6, 8	Н	L			
Odd - 1, 3, 5, 7, 9	L	Н			

H = High voltage level
L = Low voltage level

RECOMMENDED OPERATING CONDITIONS

			74AC11200		74ACT11280			UNIT	
SYMBOL	PARAMETER.	Min	None	Mex	Min	Nom	Mex	Ottil	
Vcc	DC supply voltage ²	3.0	5.0	\$.5	4.5	5.0	5.5	٧	
٧,	Input voltage	0		V _{CC}	0		V _{CC}	٧	
V _O	Output voltage	0		Voc	0		V _{cc}	٧	
ΔΥΔΥ	Input transition rise or felf rate	0		10	0		10	ns/V	
TA	Operating free-air temperature	-40		+85	-40		+85	•c	

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Vcc	DC supply voltage		-0.5 to+7.0	V
	DC input diade current ²	V, < 0	-20	-
*	DC input older current	V ₁ > V _{CC}	20	1 ""
or V	DC input voltage		-0.5 to V _{CC} +0.5	v
	DC output diode current ²	V ₀ <0	-50	
l <mark>o</mark> k	DC output alone current	V _o > V _{cc}	50	mA
ok or v _o	DC output voltage		-0.5 to V _{CC} +0.5	٧
10	DC output source or sink ourrent per output pin	V _O = 0 to V _{OC}	±50	mA
l _{GC}	DC V _{CC} current		±100	
IGND	DC ground ourrent		±100] ""
TSTG	Storage temperature		-65 to 150	*0
	Power dissipation per package Plastic DIP	Above 70°C:densite linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

^{1.} No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

^{1.} Stresses beyond those listed may cause permanent demage to the device. These are stress radings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input end output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

						74AC	11280			74AC1	11280)	
SYMBOL	PARAMETER	TEST C	CONDITIONS	v _{cc}	T _A =	+25°C	TA	-40°C 85°C	T _A =	+25°C	T_ =	-40°C 85°C	דואט
				٧	Min	Mex	Min	Max	Min	Max	Min	Mex	
	High-level			3.0	2.10		2.10						
V _M	input voltage			4.5	3.15		3.15		2.0		2.0		٧
					3.85		3.85		2.0		2.0		
	Low-level			3.0		0.90		0.90					
VIL	input voltage			4.5		1.35		1.35		0.8		0.8	٧
1				5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
			I _{OH} = -50μA	4.5	4.4		4.4		4.4		4.4		
	High-level	V _I = V _{IL} or V _{IH}		5.5	5.4		5.4		5.4		5.4		
VOH	output voltage			3.0	2.56		2.48						٧
- 1			1 _{OH} = -24mA	4.5	3.94		3.8		3.94		3.6		
			L	5.5	4.94		4.8		4.94		4.8		
			1 _{OH} = -75mA1	5.5			3.85				3.85		
Ì				3.0		0.1		0.1					
-			I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
	Low-level	V _I =		5.5		0.1		0.1		0.1		0.1	
VOL	output voltage	or	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _H	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
			OL - SMILE	5.5		0.36		0.44		0.36		0.44	
		-	I _{OL} = 75mA ¹	5.5				1.65				1.65	
I _k	Input leekage current	V1 - Vcc		5.5		±0.1		±1.0		±0.1		±1.0	μА
l _{oc}	Quiescent supply current	V1 = V00 6	or GND,	5.5		4.0		40		4.0		40	μА
ΔI _{OC}	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; t_ = t_ = 3ms; C1 = 50pF

		T		74AC11200				
SYMBOL PARAMETE	PARAMETER	WAVEFORM		T _A = +254	C	T _A = -40°C to +85°C		UNIT
		1	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation delay i_ to Σ _c	1	1.5 1.5	10.2 11.5	11.8 13.0	1.5 1.5	12.9 14.0	ns
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	11.0 11.4	12.5 12.8	, 1.5 1.5	13.7 14.0	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; t_R = t_F = 3ns; C_L = 50pF

		T	1	74AC11286				
SYMBOL	PARAMETER	WAVEFORM		T _A = +257	C		IO°C to 5°C	UNIT
j		į.	Min	Тур	Mex	Min	Mex	UNIT
^t PLH ^t PHL	Propagation delay I _n to Σ _E	1	1.5 1.5	6.1 7.2	8.3 9.5	1.5 1.5	9.1 10.4	ns
ton Li	Propagation delay	1	1.5 1.5	6.6 7.5	8.9 9.7	1.5 1.5	9.7 10.6	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tR = tF = Sne; CL = 50pF

			74ACT11280					
SYMBOL	PARAMETER	WAVEFORM		r _A = +25*	C		10°C 10 5°C	UNIT
			Min	Тур	Mex	Min	Mex	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	7.5 8.0	11.2 10.6	1.5 1.5	12.3 11.8	ns
[£] PLH [‡] PHI	Propagation delay	1	1.5 1.5	7.4 8.0	10.8 10.4	1.5 1.5	11.9 11.6	ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11286 9-Bit Odd/Even Parity Generator/Checker with Bus Drive I/O Port Preliminary Specification

FEATURES

- Generates either odd or even parity for nine data lines
- Word length easily expanded by casceding
- Direct bus connection for parity generation or for checking by using the parity I/O port
- Gittch-free bus during power up/ down
- · Output capability: ±24mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- · Icc category: MSi

DESCRIPTION

The 74AC/ACT11286 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11286 9-bit parity generator or checker is commonly used to detect errors in high-speed data transmission or data retrieval systems. It features a local output for parity checking and a bus-driv-

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL	
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay	C _L = 50pF; V _{CC} = 5V	6.9	8.6	ns
	Power dissipation oppositance ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled	53	56	pF
°PO	CPD capacitance	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Disabled	46	50	PF
CIN	Input capacitance	V _I = OV or V _{CC}	3.5	3.5	pF
COUT	Output capacitance	V _I = 0V or V _{CC} ; Disabled	8.5	8.0	pF
LATCH	Laich-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔVΔν	Maximum input rise or fell rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Note

1. C_{PD} is used to determine the dynamic power dissipation (P $_{D}$ in $\mu\text{W});$

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (C_L \times V_{CC}^2 \times f_2)$ where:

f = input frequency in MHz, C = output load capacitance in pF,

 $f_{\mathbf{C}} = \text{output frequency in MHz, } \mathbf{V}_{\mathbf{CC}} = \text{supply voltage in V,}$

 $\Sigma (C_1 \times V_{CC}^2 \times i_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
14-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11286N 74ACT11286N
14-pin plestic SO (150mil-wide)	-40°C to +85°C	74AC11286D 74ACT11286D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

9-Bit Odd/Even Parity Generator/Checker with Bus Drive I/O Port

74AC/ACT11286

ing parity I/O port for parity generation/ checking.

The XMIT control input is implemented specifically for cascading for expanding word length. When XMIT is held Low the parity tree is disabled and the Parity Error output remains at a High logic level regardless of the other inputs (I_0 - I_8). When XMIT is High the parity tree is enabled. Parity Error indicates a parity error when either an even number of inputs are High and Parity I/O is forced to Low, or when an odd number of inputs are High and Parity VO is forced High.

The I/O control circuitry is designed so that the I/O port will remain in the high-impedance state during power-up or powerdown to prevent bus glitches.

DIN DESCRIPTION

IN DESCRIPTION						
PIN NUMBER	SYMBOL	HAME AND FUNCTION				
2, 1, 14, 13, 12, 10, 9, 8, 7	10-18	Deta inputs				
3	PARITY I/O	Parity VO				
6	XMIT	Transmit input (active Low)				
5	PARITY ERROR	Parity error output				
4	GND	Ground (0V)				
11	V _{CC}	Positive supply voltage				

FUNCTION TABLE

Number of High Data inputs (I ₀ - I ₂)	XXIII	PARITY	PARITY ERROR
0, 2, 4, 6, 8	1	н	н
1, 3, 5, 7, 9	ł	L	н
	h	h	н
0, 2, 4, 6, 8	h	1	Н
	h	h	L
1, 3, 5, 7, 9	h	1	н

I = Low voltage level input

h = High voltage level input H = High voltage level output

L = Low voltage level output

9-Bit Odd/Even Parity Generator/Checker with Bus Drive I/O Port

74AC/ACT11286

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AC11206			74ACT11296			
		Min	Nom	Mex	Min	Nom	Max	UNIT	
V _{CC}	DC supply voltage	3.0	8.0	5.5	4.5	5.0	5.5	V	
V _I	Input voluge	0		V _{oc}	0		V _{cc}	V	
v _o	Output voltage	0		V _∞ c	0			V	
Δ۷Δν	Input transition rise or full rate	0		10	0	 	V _∞	ns/V	
TA	Operating free-air temperature	-40	1	+85	-40	 	+85	°C	

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Vcc	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	out diade current ² V ₁ < 0		
l _{lik} or V _I		V _I > V _{CC}	20	mA
V _I	DC input voltage		-0.5 to V _{CC} +0.5	V
1.	DC output diode current ²	V ₀ <0	-50	1
'OK er	OK OF DC output voltage	V _o > V _{cc}	50	mA .
v _o	DC output voltage		-0.5 to V _{CC} +0.5	V
lo	DC output source or sink current per output pin	V ₀ = 0 to V ₀₀	±50	mA
icc	DC V _{CC} ourrent		±125	
GND	DC ground current		±126	mA
TSTG	Storage temperature		-65 to 150	•c
P _{TOT}	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
TOT	Power dissipation per package Plastic surface mount (90)	Above 70°C:sterate linearly by \$mW/K	400	mW

NOTE:

1. No electrical or awitching characteristics are specified at V_{OC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress rotings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 The input and output voltage ratings may be exceeded if the input and output outrant ratings are observed.

9-Bit Odd/Even Parity Generator/Checker with Bus Drive I/O Port

74AC/ACT11286

DC FLECTE	ICAL	CHARA	CTER	STICS

	TRICAL CHARACTE					74AC	11286		_	74ACT	11288		
SYMBOL	PARAMETER	TEST CO	ONDITIONS	V _{ete}	T _A = 4	25℃	T _A = -40°C to +65°C		T _A = +25°C		T = -40°C to +85°C		UNIT
				v	Min	Max	Min	Max	Min	Max	Min	Mex	
				3.0	2.10		2.10						
V _{RH}	411 1 42 -122-14-1-14-1-1			4.5	3.15		3.15		2.0		2.0		٧
- 84	High-level input voltage	Maran after compa		5.5	3.85		3.65		2.0		2.0		
						0.90		0.90					
V _M	Low-level					1.35		1.35		0.8		0.8	٧
Input voitage				5.5	- 11	1.65		1,85		0.8		0.8	
			1	3.0	2.9		2.9						
			1 _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
V _{OH} High-level output voltage	V,=	1	5.5	5.4		5.4		5.4		5.4			
	or V _{IL}	I _{OH} = -4mA	3.0	2.58		2.46	_					٧	
	V	I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8			
				5,5	4.94		4.8	_	4.94		4.8		-
			I _{OH} = -75mA ¹	5.5			3.65			ļ	3.85		
				3.0		0.1		0.1	 	<u> </u>		-	-
			I _{OL} = 50µA	4.5		0.1		0.1	 	0.1		0.1	}
		V _j -		5.5	_	0.1	_	0.1	_	0.1	-	0.1	١
VOL	Low-level output voltage	V _I = V _E or	I _{QL} = 12mA	3.0		0.36		0.44	_	-	↓	-	٧
		V _M	I _{OL} = 24mA	4.5	<u> </u>	0.36		0.44		0.36	-	0.44	}
		•	1	5.5		0.36	_	0.44		0.36	-	0.44	4
			I _{OL} = 75mA ¹	5.5		-		1.65				1.65	
l _s	Input leakage current	V _I = V _{CC}		5.5		±0.1		±1.0		±0.1	<u> </u>	±1.0	μΑ
loz	3-State output off-state current	V, - V, 0	or GND	5.5		±0.5		±5.0		±0.5		±5.0	μА
loc	Quiescent supply current	V ₁ = V _{CC}	or GND,	5.5		8.0		80		8.0		80	μА
Δlcc	Supply current, TTL inputs High ²	One inpu	t at 3.4V, other input	5.5	-					0.9		1.0	m/

THU I ESC;

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 6V or V_{CC}.

9-Bit Odd/Even Parity Generator/Checker with Bus Drive I/O Port

74AC/ACT11286

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tp = tc = Snc; C, = 50pF

SYMBOL PARAMETER	PARAMETER	WAVEFORM		T _A = +25°			IO°C to	UNIT
		1	Min	Тур	Mex	Min	Max	
¹ PLH ¹ PHL	Propagation delay In to PARITY I/O	1	1.5	9.3 10.6	13.2 14.5	1.5	15.2 17.2	ns
PLH PHL	Propagation delay	1	1.5	10.1	14.4 15.1	1.5 1.5	16.3	ns.
^t PLH ^t PHL	Propagation delay PARITY I/O to PARITY ERROR	t	1.5	6.4 7.3	8.7 9.5	1.5	9.6	ns
^t PZH ^t PHZ	Propagation delay XMIT to PARITY I/O	2	1.5	5.0	6.8	1.5	7.5 6.5	ns
PZL PLZ	Propagation delay XMIT to PARITY VO	2	1.5	9.1 5.4	11.9	1.5 1.5	13.1	na

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; ta = tc = 3nc; C, = 50oF

SYMBOL PARAMETER	WAVEFORM	TA = +26°C			TA = -	IO°C to	UNIT	
			Min	Тур	Mex	Min	Mex	
^t PLH ^t PHL	Propagation delay In to PARITY I/O	1	1.5	6.0	9.8	1.5	10.0	ns
[†] PLH [†] PHL	Propagation duals	1	1.5	6.6	9.4	1.5	10.6	. ns
t _{PLH}	Propagation delay PARITY I/O to PARITY ERROR	1	1.5	4.4	6.1 8.7	1.5 1.5	6.8	ne
PZH PHZ	Propagation delay XMIT to PARITY I/O	2	1.5	3.4	5.0 5.7	1.5	5.4	ns
PZL PLZ	Propagation delay. XMIT to PARITY I/O	2	1.5	5.7 4.6	7.9 5.9	1.5 1.5	9.0	ne

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = tp = 3ne; C1 = 50pF

SYMBOL PARAMETER	PARAMETER	WAVEFORM		T _A = +25°C			T _A = -40°C to		
		1	Min	Тур	Mex	Min	Mex		
^E PLH ^E PHL	Propagation delay	1	1.5	7.8 8.8	10.6 11.6	1.5 1.5	12.1	ns ns	
^t PLH ^t PHL	Propagation delay	1	1.5	8.3 8.8	11.1	1.5	12.7	ns	
^t PLH ^t PHL	Propagation delay PARITY I/O to PARITY ERROR	1	1.5	6.0	7.8 8.3	1.5	8.5 9.2	ns	
PZH PHZ	Propagation dalay XMIT to PARITY I/O	2	1.5	5.3 6.7	7.4	1.5	8.0 8.5	ns	
¹ PZL ¹ PLZ	Propagation delay XMIT to PARITY VO	2	1.5	7.9 6.8	10.5 8.0	1.5	11.6 8.7	ns	

74AC/ACT11353 Dual 4-Input Multiplexer; 3-State; INV

Product Specification

FEATURES

- · 3-State outputs for bus interface and multiplex expansion
- Separate 3-State Output Enable inputs
- · Common Select inputs
- Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- · I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11353 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11353 device provides two identical 4-input multiplexers with 3-State outputs which select two bits from four sources selected by common select inputs (S₀, S₁). When the individual output enable (1OE, 2OE) inputs of the 4input multiplexers are High, the outputs are forced to a high impedance state.

GENERAL INFORMATION

SYMBOL	PARAMETER	CONDITIONS	TYP		
- IMEGE	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
¹ PLH [/] ¹ PHL	Propagation delay	C _L = 50pF; V _{CC} = 5V	4.6	5.8	ns
C	Power dissipation capacitance per	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled	31	39	pF
970	C _{PO} capacitance per multiplexer ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Disabled	12	19	
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	ρF
Cour	Output capacitance	V _j = 0V or V _{CC} ; Disabled	8	8	ρF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΨΔν	Meximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

- 1. C_{PD} is used to determine the dynamic power dissipation (P_{D} in μW);
 - $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (C_L \times V_{CC}^2 \times f_0)$ where:
 - $\mathbf{f}_{\parallel}=$ input frequency in MHz, $\mathbf{C}_{\parallel}=$ output load capacitance in pF,
 - $t_{\rm O}^{\prime}$ = output frequency in MHz, $V_{\rm CC}^{\prime}$ = supply voltage in V,
 - $\Sigma (C_1 \times V_{C_2}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11353N 74ACT11353N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11353D 74ACT11353D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 13, 1988

5-218

ECN Number

Dual 4-Input Multiplexer; 3-State; INV

The 74AC/ACT11353 devices are the logic implementation of a 2-pole, 4-position switch; the position of the switch being determined by the logic levels supplied to the two select inputs.

The '11253 is the non-inverting version of the '11353.

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 2	S ₀ , S ₁	Common select inputs
16, 15, 14, 13	110-113	Port A date inputs
11, 10, 9, 8	210 - 213	Port 8 data inputs
6	10E	Port A output enable input
7	20E	Port B output enable input
3, 5	1₹, 2₹	3-State data outputs
4	GND	Ground (0V)
12	V _{CC}	Positive supply voltage

FUNCTION TABLE

Oito			INPUTS	1			OUTPUT
nŌĒ	80	3,	nlo	ni,	ni ₂	nl ₃	ηY
Н	X	X	X	X	X	X	Z
L	L	L	L	×	х	x	н
L	L	L	н	X	×	x	L
L	н	L	×	L	×	x	н
L	н	L	x	н	×	x	L
L	L	н	X	×	L	x	н
L	L	н	X	×	н	x	L
L	н	н	X	×	×	L	н
L	н	н	×	x	X	н	L

- H = High voltage level steady state
- L = Low voltage level steady state
- X = Don't care Z = High-impedance "OFF" state

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	1	74AC11353			3		
		Min	Nom	Max	Min	Nom	Mex	UNIT
Vcc	DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5	V
٧ı	Input voltage	0		Vcc	0		V _{CC}	v
v _o	Output voltage	0		Vcc	0		V _{CC}	V
ΔΨΔν	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	*C

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{cc}	DC supply voltage		-0.5 to+7.0	V
,	DC input diode current ²	V ₁ < 0	-20	
i or V		V ₁ > V _{CC}	20	mA.
v _I	DC input voltage		-0.5 to V _{CC} +0.5	V
1.	DC output diode current ²	V _O < 0	-50	
or Vo		V ₀ > V _{0C}	50	mA.
v _o	DC output voltage		-0.5 to V _{CC} +0.5	V
lo	DC output source or sink current per output pin	V _O = 0 to V _{OC}	±50	mA
^l cc	DC V _{CC} current		±100	
GND	DC ground current		±100	mA
TSTG	Storage temperature		-65 to 150	
	Power dissipation per package Plastic DIP	Above 70°C:cierate linearly by 8mW/K	500	°C mW
P _{TOT}	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTE:

1. No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

NOTES:

1. Stresses beyond those listed may cause permanent demage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DO ELECTRICAL CHAR CTERISTICS

					_	74AC	11353			74AC1	11351		_
BYMBOL	PARAMETER	TEST C	ONDITIONS	v _{cc}	TA=	.25°C	TA =	-40°C 85°C	TA = +25°C		T, =	-40°C 85°C	UNIT
				٧	Min	Max	Min	Mex	Min	Max	Min	Max	
					2.10		2.10						
V _{#H}	High-level input voltage	}		4.5	3.15		3.15		2.0		2.0		٧
				5.5	3.85		3.85		2.0		2.0		
						0.90		0.90					
Val	Low-level input voltage					1.35		1.35		0.8		0.8	٧
	mpor voicigo			5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
			1 _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
V _{OH} High-level output voltage	y-		5.5	5.4		5.4		5.4		5.4			
		V ₁ =	I _{OH} = -4mA	3.0	2.58		2.48						v
		V ₈₄	I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
		1		5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1					_
			1 _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
	Low-level	V,-		5.5		0.1		0.1		0.1		0.1	
VOL	output voltage	V ₁ = V _R	I _{OL} = 12mA	3.0	L	0.36		0.44					٧
		V _{IH}	1 _{OL} = 24mA	4.5		0.36		0.44		0.96		0.44	
				5.5		0.36		0.44		0.36		0.44	٧
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
1,	Input leakage current		V _I = V _{CC} or GND			±0.1		±1.0		±0.1		±1.0	μA
oz	3-State output off-state current	V, = V, o	V _i = V _{ii} or V _{iii} ; V _O = V _{CC} or GND			±0.5		±5.0		±0.5		±5.0	μА
lcc	Quiescent supply current	V1 = Vcc	V _I = V _{CC} or GND,			8.0		80		8.0		80	μΑ
Alcc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

^{1.} Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.
2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; $t_R = t_F = 3 ns$; $C_L = 50 pF$

			T		74AC1135	3		
SYMBOL	PARAMETER	WAVEFORM		T _A = +25°	C		10°C to 5°C	UNIT
]	Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	6.5 6.6	8.6 8.7	1.5 1.5	9.6 9.7	, ns
^t PLH ^t PHL	Propagation delay S _n to n ♥	1	1.5 1.5	7.0 7.2	9.6 9.8	1.5 1.5	10.7 10.9	ns
^t PZH ^t PZL	Output enable time to High and Low Level	2	1.5 1.5	4.4 5.4	6.0 7.2	1.5 1.5	6.6 7.9	ns
^Î PHZ ^Î PLZ	Output disable time from High and Low Level	2	1.5 1.5	4.8 4.9	6.2 6.3	1.5 1.5	6.5 6.6	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; t_R = t_F = 3ns; C_L = 50pF

SYMBOL			T	1	74AC1135	3		
	PARAMETER	WAVEFORM		ا ا _A = +25	С		10°C to 5°C	UNIT
			Min	Тур	Max	Min	Mex	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5	4.5 4.6	5.9 6.1	1.5 1.5	6.6 6.8	ns
^t PLH ^t PHL	Propagation delay S _n to nY	1	1.5	4.0 4.2	6.6 6.9	1.5 1.5	7.4 7.6	ns
^t PZH ^t PZL	Output enable time to High and Low Level	2	1.5 1.5	2.9 3.4	4.4 5.1	1.5 1.5	4.8 5.6	na
^t PHZ ^t PLZ	Output disable time from High and Low Level	2	1.5 1.5	4.4 4.1	5.8 5.5	1.5 1.5	6.1 5.8	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_R = t_F = 3$ ns; $C_L = 5$ 0pF

SYMBOL				7	AACT113	53		
	PARAMETER	WAVEFORM		T _A = +25°	C		R.C 10.C to	UNIT
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay ni _n to n♥	1	1.5 1.5	6.3 5.3	9.8 7.2	1.5 1.5	11.0 8.0	ris.
t _{PLH}	Propagation delay S _n to n V	1	1.5 1.5	6.6 5.9	11.1 8.3	1.5 1.5	12.7 9.4	ns
^t PZH ^t PZL	Output enable time to High and Low Level	2	1.5 1.5	4.3 4.2	6.8 6.7	1.5 1.5	7.4 7.4	ns
^t PHZ ^t PLZ	Output disable time from High and Low Level	2	1.5 1.5	6.1 5.4	7,8 6.9	1.5 1.5	8.2 7.3	ns.

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

74AC/ACT11373 Octal D-Type Transparent Latch; 3-State

Product Specification

FEATURES

- · 8-bit transparent latch
- · 3-State output buffers
- · Common 3-State Output Enable
- Independent register and 3-State buffer operation
- Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11373 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families,

The 74AC/ACT11373 device is an octal transparent latch coupled to eight 3-State output buffers. The two sections of the device are controlled independently by Latch Enable (LE) and Output Enable (OE) control gates.

The data on the D inputs are transferred to the latch outputs when the Latch Enable (LE) input is High. The latch remains

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL	4.00.00
SYMBOL.	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
tPLH	Propagation delay D _n to Q _n	C _L = 50pF; V _{CC} = 5V	5.8	7.0	ns
	Power dissipation	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled	47	65	DF
CPD	capacitance per latch	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Disabled	36	54 4.0	PF
CN	Input capacitance	V _I = 0V or V _{OC}	4.0	4.0	pF
COUT	Output capacitance	V _I = 0V or V _{CC}	10	10	pF
ILATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
AVAV	Maximum input rise or tall rate; Data inputs	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Made

1. C_{PD} is used to determine the dynamic power dissipation (P_{D} in μW):

 $P_{D} = G_{PD} \times V_{CC}^{2} \times f_{1} + \sum (G_{L} \times V_{CC}^{2} \times f_{D}) \text{ where:}$

f = input frequency in MHz, C = output load capacitance in pF,

fo = output frequency in MHz, Voc = supply voltage in V.

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = sum of cutputs$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
24-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11373N 74ACT11373N
24-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11373D 74ACT11373D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74AC/ACT11373

Octal D-Type Transparent Latch; 3-State

transparent to the data inputs while LE is High, and stores the data that is present one setup time before the High-to-Low enable transition.

MOS memories, or MOS microprocessors. The active-Low Output Enable (OE) controls all eight 3-State buffers independent of the latch operation.

OE is High, the outputs are in the Highimpedance "OFF" state, which means they will neither drive nor load the bus.

The 3-State output buffers are designed to drive heavily loaded 3-State buses.

When OE is Low, the latched or transperent data appears at the outputs. When

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
24	ŎĒ.	Output enable
23, 22, 21, 20, 17, 16, 15, 14	D ₀ - D ₇	Deta inputs
1, 2, 3, 4, 9, 10, 11, 12	Q ₀ - Q ₇	Data outputs
13	LE	Latch enable
5, 6, 7, 8	GND	Ground (0V)
18, 19	Vcc	Positive supply voltage

SUNCTION TABLE

		INPUTS		INTERNAL REGISTER	OUTPUTS
OPERATING MODES	OE	LE	D	MIERNAL NEGISIEN	Q _n
Enable and read register	L L	H	H	H H	H
Latch and read register	l.	1	h	L H	H
Hold	1	L	X	NC	NC
Disable outputs	H	X	X	×	Z

H = High voltage level steady state

LOGIC DIAGRAM

h = High voltage level one set-up time prior to the High-to-Low E transition:

NC - No change

Z = High-impedance "OFF" state

I = High-to-Low transition

RECOMMENDED OPERATING CONDITIONS

SYMBOL	DADAN			74AC11373			74ACT1137	3		
SIMBOL	PARAN	IE I EK	Min	Nom	Max	Min	Nom	Max	UNIT	
v _{cc}	DC supply voltage ¹		3.0	5.0	5.5	4.5	5.0	5.5	٧	
V,	input voitage		0		Vcc	0		Vcc	٧	
v _o	Output voltage		0		Vcc	0		V _{cc}	٧	
ΔΨΔΨ	Input transition rise	Data, E	0		10	0		10		
TATA	or fall rate	Output enable	0		5	0		10	ns/V	
TA	Operating free-air temperature		-40		+85	-40		+85	°C	

ABSOLUTE MAXIMUM RATINGS¹

BYMBOL PARAMETER		TEST CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to+7.0	V	
IK or V ₁	DC input diode current ²	V ₁ < 0	-20	mA	
	Do lipo, acce caren	V _I > V _{CC}	20		
	DC input voltage		-0.5 to V _{CC} +0.5	v	
lok er v _o	DC output diode current ²	V ₀ <0	-50	mA	
	Do appli grade collent	V _o > V _{cc}	50		
	DC autput voltage		-0.5 to V _{CC} +0.5	٧	
10	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA	
ICC or IGND	DC V _{CC} current		±200	mA	
	DC ground current		±200		
TSTG	Storage temperature		-65 to 150	*C	
Ртот	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW	
	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW	

^{1.} No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.</p>

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC FI FCTRICAL CHARACTERISTICS

SYMBOL	PARAMETER					74AC11373				74ACT11373			
		TEST CONDITIONS		V _{oc}	TA = +25°C TA = -4		-40°C	10°C TA = +25°C		T _A = -40°C to +65°C		UNIT	
					Min	Mex	Min	Mex	Min	Max	Min	Mex	
V _{IH}	High-level input voltage			3.0	2.10		2.10						٧
				4.5	3.15		3.15		2.0		2.0		
				5.5	3.85		3.85		2,0		2.0		
٧Ł	Low-level input voltage			3.0		0.90		0.90					
				4.5		1.35		1.35		0.8		0.8	٧
				5.5		1.65		1.65		0.8		0.8	
V _{ОН}	High-level output voltage	V _I = V _{IL} or V _{IH}	I _{OH} = -80µA	3.0	2.9		2.9						٧
				4.5	4.4		4.4		4.4		4.4		
				5.5	5.4		5.4		5.4		5.4		
			I _{OH} = -4mA	3.0	2.58		2.48						
			I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
				5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA ⁷	5.5			3.85	L			3.85		
V _{OL}	Low-level output voltage	V _I = V _{EL} or V _{S1}	I _{OL} = 50µA	3.0		0.1		0.1		<u></u>			V
				4.5		0.1		0.1		0.1		0.1	
				5.5		0.1		0.1		0.1		0.1	
			I _{OL} = 12mA	3.0		0.36		0.44					
			IoL = 24mA	4.5		0.36		0.44		0.36		0.44	
				5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
1,	Input leakage current	V _I = V _{CC} or GND		5.5		±0.1		±1.0		±0.1		±1.0	μА
loz	3-State output off-state current	V _j = V _k or V _{kj} . V _O = V _{CC} or GND		5.5		±0.5		±5.0		±0.5		±5.0	μА
loc	Quiescent supply current	V _i = V _{CC} or GND, I _Q = 0		5.5		8.0		80		8.0		80	μA
ΔI _{CC}	Supply current, TTL inputs High ²	One input at 3.4V, other inputs at V _{CC} or GND		5.5						0.9		1.0	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V \pm 0.3V GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = 3ns; $C_{\rm I}$ = 50pF

				-	74AC1137	3		UNIT
SYMBOL	PARAMETER	WAVEFORM		T _A = +257	C	T _A = -4	10°C to 5°C	
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay D _n to Q _n	1	1.5 1.5	9.0 8.0	13.1 10.6	1.5 1.5	14.8 11.7	ns
^t PLH ^t PHL	Propagation delay LE to Q _n	4	1.5 1.5	10.0 9.5	14.5 12.8	1.5 1.5	16.3 14.2	ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	9.0 8.5	13.1 11.6	1.5 1.5	14.7 13.1	ns
^t PHZ ^t PLZ	Output disable time from High and Low level	2	1.5 1.5	9.5 7.5	12.0 10.2	1.5 1.5	12.7 10.8	ns
t _w	LE Pulse Width High or Low	4	5.5			5.5		ns
^t s	Setup time D _n to LE↓	3	4.0			4.0	·	ns
^t H	Hold time	3	2.0			2.0		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{R} = t_{F} = 3$ ne; $C_{L} = 50$ pF

		T .			74AC1187	3		UNIT
SYMBOL	PARAMETER	WAVEFORM	•	T _A = +257	c	T _A = -	IO°C to	
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay D _n to Q _n	1	1.5 1.5	6.0 5.5	8.9 7.6	1.5 1.5	10.3 8.4	ns
tPLH tPHL	Propagation delay LE to Q	4	1.5 1.5	6.5 6.5	10.0 9.1	1.5 1.5	11.3 10.2	ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	6.5 6.0	9.5 8.6	1.5 1.5	10.8 9.7	ns
¹ PHZ ¹ PLZ	Output disable time from High and Low level	2	1,5 1,5	8.5 6.0	10.6 8.2	1.5 1.5	11.1 8.7	ns
t _W	LE Puise Width High or Low	4	4.0			4.0		ns
t _s	Setup time D _n to LE4	3	3.5			3.5		ns
t _H	Hold time	3	2.0			2.0		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V gND = 0V; t_{R} = t_{F} = 3ns; C_{L} = 50pF

			T .	7	4ACT113	73		UNIT
SYMBOL	PARAMETER	WAVEFORM		T _A = +26%	C	T _A = -	le°C to 5°C	
			Min	Тур	Max	Min	Max	
^t PLH ^t PHL	Propagation delay D _n to Q _n	1	1.5 1.5	7.5 6.5	10.3 9.3	1.5 1.5	11.8 10.0	ns
PLH PHL	Propagation delay LE to Q _n	4	1.5 1.5	8.5 8.5	11.3 10.9	1.5 1.5	13.0 12.2	ns
PZH PZL	Output enable time to High and Low level	2	1.5	7.0 7.5	10.7 10.9	1.5 1.5	12.5 12.0	ns
PHZ PLZ	Output disable time from High and Low level	2	1.5 1.5	10.0 7.5	12.1 9.5	1.5 1.5	12.5 10.1	ns
lw	LE Pulse Width High or Low	4	5.0			5.0		ns
8	Setup time D _n to LEJ	3	3.5			3.5		ns
Н	Hold time D _a to LE↓	3	3.5			3.5		ns.

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

AC WAVEFORMS AC : $V_{M} = 50\%$ V_{CC} , $V_{N} = GND$ to V_{CC} . ACT : $V_{M} = 1.5V$, $V_{N} = GND$ to 3.0V (Continued)

74AC/ACT11374 Octal D-Type Flip-Flop; Positive-Edge Trigger; 3–State Product Specification

FEATURES

- · 3-State output buffers
- Common 3-State Output Enable
- independent register and 3-State buffer operation
- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50 Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- · I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11374 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11374 device is an 8-bit, edge-triggered register coupled to eight 3-State output buffers. The two sections of the device are controlled independently by Clock (CP) and Output Enable (OE) control gates. The register is fully edge-triggered. Once the set-up requirements are met, when the Clock Pulse (CP) rises the state of each D input is transferred to the corresponding flip-flop's Q output.

PIN CONFIGURATION

N and I) Packages	
Q 1 2 9 2 3 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	26 23 23 29 19 19 19 17 16	De D1 D2 D3 Voc Voc D4 D5
0, 12	13	GP .

GENERAL INFORMATION

Summer	BARAMETER	CONDITIONS	TYP	ICAL	1807
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay CP to Q _n	C _L = 50pF; V _{CC} = 5V V _{CC} = 5.0V; f = 1MHz;	6.0	8.5	กร
	Power dissipation capacitance per flip-flop ¹	75	107	pF	
C _{PO}		V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Disabled	66	96	
CW	Input capacitance	V _I = OV or V _{CC}	4.0	4.0	p₽
COUT	Output capacitance	V _I = OV or V _{CC}	10	10	₽F
LATCH	Latch-up current	Per Jedec JC40.2 Stendard 17	500	500	mA
ΔΨΔν	Maximum input rise or felf rate; Data inputs	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V
f _{MAX}	Meximum clock frequency	C _L = 50pF; V _{CC} = 5.5V	110	70	MHz

Mate

C_{BD} is used to determine the dynamic power dissipation (P_D in µW):

$$P_D = C_{PD} \times V_{CC}^2 \times I_1 + \sum (C_1 \times V_{CC}^2 \times I_2) \text{ where:}$$

$$t_1$$
 = input frequency in MHz, C_L = output load capacitance in pF,

$$f_{\rm O}$$
 = output frequency in MHz, $V_{\rm CC}$ = supply voltage in V,

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
24-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11374N 74ACT11374N
24-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11374D 74ACT11374D

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

 $[\]Sigma (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

The 3-State output buffers are designed to drive heavily loaded 3-State buses. MOS memories, or MOS microprocessors. The active-Low Output Enable (OE) controls all eight 3-State buffers independent of the latch operation.

When OE is Low, the stored data appears at the outputs. When OE is High, the outputs are in the High-impedance "OFF" state, which means they will neither drive nor load the bus.

PIN DESCRIPTION

PIN NUMBER	SYMBOL.	NAME AND FUNCTION
- 24	ŎĒ.	Output enable
23, 22, 21, 20, 17, 16, 15, 14	D ₀ - D ₇	Date inputs
1, 2, 3, 4, 9, 10, 11, 12	a0 - a7	Date outputs
13	CP	Clock input
5, 6, 7, 8	GND	Ground (OV)
18, 19	V _{CC}	Positive supply voltage

FUNCTION TABLE

ADT 1 THE 110 TO		INPUTS		INTERNAL REGISTER	OUTPUTS
OPERATING MODES	OE	CP	D _n	MIERNAL NEGISTER	Q _n
Load and madenates	L	1		L	L
Load and read register	L	1	h	н	Н
Disable outputs	Н	X	X	x	Z

- H = High voltage level steady state
- h=High voltage level one set-up time prior to the Low-to-High clock transition $L=Low\ voltage\ level steady state$
- I = Low voltage level one set-up time prior to the Low-to-High clock transition
- X = Don't care
- Z = High-impedence "OFF" state
- 1 = Low-to-High transition

LOGIC DIAGRAM

Octal D-Type Flip-Flop; Positive-Edge Trigger; 3-State

74AC/ACT11374

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER DG supply voltage [†]			74AC11374	J				
SIMBOL			Min	Nom	Max	Min	Nom	Mex	UNIT
v _{cc}			DC supply voltage	3.0	5.0	5.5	4.5	5.0	5.5
V _I	Input voltage		0		V _{CC}	0		V _{cc}	V
v _o	Output voltage	Output voltage			V _{CC}	0		V _{cc}	٧
ΔυΔν	Input transition rise	Date	0		10	0		10	ns/V
AVAV	or fall rate Outp	Output enable	0		5	0		10	TIB/V
T _A	Operating free-air ter	mperature	-40		+85	-40		+85	°C

HOTE

ARROLLITE MAYIMIM DATINGS

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to+7.0	V	
	DC input diode current ²	V ₁ < 0	-20	mA	
ilk or V,	DO Input Globe Current	V _I > V _{CC}	20	m/A	
Ÿ,	DC input voltage		-0.5 to+7.0 -20	٧	
	DC output diade current ²	V ₀ < 0	-50	mA	
ok Vo	DO SUPUL GIODE CUITERIA	V ₀ > V ₀₀	-0.5 to V _{CC} +0.5	1	
V _o	DC output voltage			٧	
lo	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA	
loc or	DC V _{CC} current		±200	mA	
GND	DC ground current		±200	mA	
TSTG	Storage temperature		-65 to 150	*C	
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW	
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW	

NOTES:

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established togic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Octal D-Type Flip-Flop; Positive-Edge Trigger; 3-State

74AC/ACT11374

TO SI SCIBICAL CHARACTERISTICS

						74AC	11374						
SYMBOL	PARAMETER	TEST O	ONDITIONS	v _{cc}	T _A = +25℃		T_ = -40°C		TA = +25°C		T _A = -40°C 10 +85°C		UNIT
				٧	Min	Max	Min	Mex	Min	Max	Min	Mex	
~ ~~~~~				3.0	2.10		2.10						
V	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
					3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V _{EL}	Low-level input voltage			4.5		1.35		1.35		0.8		0.8	٧
				5.5		1.65		1.65		0.8		8.0	
				3.0	2.9		2.9						
			I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
V _{OH} High-level output voltage	Atlah taunt	V;=		5.5	5.4		5.4		5.4		5.4		
		V _I V _{IL} or	I _{OH} = -4mA	3.0	2.58		2.48						V
		V _{BH}	I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
				5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA [†]	5.5			3.85				3.85		
			I _{OL} = 50µA	3.0		0.1		0.1					
				4.5		0.1		0.1		0.1		0.1	
	Law-level	V,-		5.5		0.1		0.1		0.1		0.1	
VOL	output voltage	V _i = V _{ik} or	I _{OL} = 12mA	3.0		0.36		0.44					٧
		V _H	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
				5.5		0.36		0.44		0.36		0.44	
			1 _{OL} = 75mA ¹	5.5				1.65				1.65	
I _t	Input leakage current	VI = VCC		5.5		±0.1		±1.0		±0.1		±1.0	μΑ
loz	3-State output off-state current	V, = V, o	or GND	5.5		±0.5		±5.0		±0.5		±5.0	μA
loc	Quiescent supply current	V ₁ = V _{CC} (or GND,	5.5		8.0		80		8.0		80	μА
Alcc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

NOt more than one output should be tested at a time, and the duration of the test should not exceed 10ms.
 This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

Octal D-Type Flip-Flop; Positive-Edge Trigger; 3–State

74AC/ACT11374

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V GND = 0y; $t_{R} = t_{E} = 3ns$; $C_{L} \approx 50pF$

			1					
SYMBOL	PARAMETER	WAVEFORM		T _A = +25°	2	T _A = -	IO°C to	UNIT
			Min	Тур	Max	Min	Max	
(MAX	Maximum clock frequency	1	75	90		75		MHz
[†] PLH [†] PHL	Propagation delay CP to On	1	1.5 1.5	9.5 9.0	12.5 12.6	1.5 1.5	14.2 14.0	ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	8.0 8.0	10.9 11.1	1.5 1.5	12.3 12.3	ns
^t PHZ ^t PLZ	Output disable time from High and Low level .	2	1.5 1.5	10.0	12.1 10.7	1.5 1.5	12.5 11.6	ns
^t w	Clack pulse width High or Low	3	6.5			6.5		ns.
^t s	Setup time D _n to CP	3	2.5			2.5		ns
ч	Hold time D _n to CP	3	4.5			4.5		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 9V; tg = tg = 3ne; C1 = 50pF

	PARAMETER	WAVEFORM						
SYMBOL			T _A = +25°C			T _A = -8	IO°C to	UNIT
			Min	Тур	Max	Min	Max	
f _{MAX}	Maximum clock frequency	1	95	110		95		MHz
^t PLH ^t PHL	Propagation delay GP to Q _n	1	· 1.5	6.5 5.5	9.0 9.1	1.5 1.5	10.2 10.1	ns
¹ PZH ¹ PZL	Output enable time to High and Low level	2	1.5 1.5	5.5 5.5	8.0 8.4	1.5 1.5	9.1 9.4	ns.
t PHZ tPLZ	Output disable time from High and Low level	2	1.5 1.5	9.0 6.0	11.0	1.5 1.5	11.2 9.2	ns
tw .	Clock pulse width High or Law,	. a	5.0			5.0		ns
^t s	Setup time D _n to CP	3	2.5			2.5		ns
t _H	Hold time D _n to CP	3	3.5			3.5		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; to = to = 3ns; C, = 50pf

	PARAMETER		T	7	4ACT1137	74		
SYMBOL		WAVEFORM	T _A = +25°C				10°C to 5°C	UNIT
			Min	Тур	Mex	Min	Max	
f _{MAX}	Maximum clock frequency	1	55	70		55		MHz
[‡] PLH [‡] PHL	Propagation delay CP to O _n	4	1.5 1.5	8.5 8.5	10.7 11.3	1.5	12.4 13.0	ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	7.5 7.5	11.0 11.0	1.5 1.5	12.3 12.3	ns
^t PHZ ^t PLZ	Output disable time from High and Low level	2	1.5 1.5	11.0 8.0	12.7 10.0	1.5 1.5	13.2 10.8	ns
tw	Clock pulse width High or Low	3	9.0			9.0		ns
ts	Setup time D _n to CP	8	3.0			8.0		- TIS
t _H	Hold time D _n to CP	3	5.5			5.5		ns

AC WAVEFORMS AC : $V_{\rm M}$ = 50% $V_{\rm CC}$, $V_{\rm N}$ = GND to $V_{\rm CC}$, ACT : $V_{\rm M}$ = 1.5V, $V_{\rm N}$ = GND to 3.0V

74AC/ACT11520 8-Bit Identity Comparator with Input Pull-Up

Preliminary Specification

FEATURES

- · Compares two 8-bit words
- Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voitage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed awitching noise
- I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11520 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11520 identity comparators perform comparisons on two 8-bit binary or BCD words and provides a Low output when the two words match bit for his:

The 74AC/ACT11520 identity comparators also feature 20-k ohm pull-up termination resistors on the Q inputs for analog or switch data and a provision for P=Q totempole outputs.

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL	UNIT
SAMBOF	PARAMETER	T _A = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay Proof Qr to P = Q	C _L = 50pF; V _{CC} = 5V	5.0		ns
CPD	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	79		рF
CIN	Input capacitance	VI = OV or Voc	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔVΔν	Meximum input rise or fell rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Note

C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_{D} = C_{PD} \times V_{CC}^{2} \times f_{1} + \sum (C_{L} \times V_{CC}^{2} \times f_{D}) \text{ where:}$$

 f_1 = input frequency in MHz, C_L = output load capacitance in pF,

 $t_{\rm C}$ = autput frequency in MHz, $V_{\rm CC}$ = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11520N 74ACT11520N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AG11520D 74ACT11520D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

5-237

ECN Number

December 13, 1988

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
4, 2, 19, 17 14, 12, 10, 8	P ₀ to P ₇	Data inputs
3, 1, 18, 16 13, 11, 9, 7	Q ₀ to Q ₇	Date inputs
11	Ē	Enable input (active Low)
20	P=Q	Output
4	GND	Ground (0V)
12	V _{CC}	Positive supply voltage

FUNCTION TABLE

INP	UTS	OUTPUT
DATA P, Q	ENABLE	P=Q
P=Q	L	L
P>Q	L	н
P <q< td=""><td>L</td><td>н</td></q<>	L	н
×	н	н

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

		74AC11520				UNIT			
SYMBOL	PARAMETER	Min	Nom	Mex	Min	Nom	Mex	UNII	
Vcc	DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5.5	٧	
V _i	Input voltage	0		V _{CC}	0		V _{cc}	٧	
V _O	Output voltage	0		V _{CC}	0		V _{CC}	٧	
Δέζ	Input transition rise or fall rate	0		10	0		10	na/V	
T _A	Operating free-air temperature	-40		+85	-40		+85	°C	

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Voc	DC supply voltage		-0.5 to+7.0	V
	20	V ₁ < 0	-20	mA
ink or V	DC input diode current ²	V ₁ > V _∞	20	
Ÿı	DC input voltage		:0.5 to V _{CC} +0.5	٧
	200	V ₀ <0	-50	mA
l _{OK}	DC output clode current ²	V ₀ > V _∞	50	mA.
V _O	DC output voltage		-0.5 to V _{CC} +0.5	٧
10	DC output source or sink current per output pin	V _O = 0 to V _{OC}	±50	mA
i _{CC}	DC V _{CC} current		±200	
I GND	DC ground current		±200	- mA
TSTG	Storage temperature		-65 to 150	•c
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
P _{TOT}	Power dissipation per package Plastic surface mount (SO)	Above 70°C:tlerate linearly by 6mW/K	400	mW

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

^{1.} Stresses beyond those listed may cause permanent demage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

8-Bit Identity Comparator with Input Pull-up

74AC/ACT11520

DC ELECTRICAL CHARACTERISTICS

			TEST CONDITIONS			74AC	11520			74AC1	11520)	
SYMBOL	PARAMETER	TEST C			T _A =	+25°C	T _A = -40°C 16 +85°C		TA = +25°C		T_ = -40°C		UNIT
					Min	Mex	Min	Mex	Min	Max	Min	Mex	
	High-level			3.0	2.10		2.10						
V _M	input voltage	- (4.5	3.15		3.15		2.0		2.0		٧
							3.85		2.0		2.0		
Low-level				3.0		0.90		0.90					
V _{IL}	input voltage			4.5		1.35		1.35		0.8		0.8	٧
				5.5		1.65		1.65		0.8		0.8	
VOH Curbut voltage				3.0	2.9		2.9						
		I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4			
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		5.5	5.4		5.4		5.4		5.4] v
		V _I = V _E or V _{SH}	I _{OH} = -4mA	3.0	2.58		2.48						
			I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8		
				5.5	4.94		4.8		4.94		4.8		j
			I _{OH} = -75mA ^T	5.5			3.85				3.85		
	-			3.0		0.1		0.1					
Ì		1	I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
ļ	Low-level	V _I =		5.5		0.1		0.1		0.1		0.1	
VOL	output voltage	or	I _{OL} = 12mA	3.0		0.36		0.44					٧
1		V _{BH}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
ļ				5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ^T	5.5				1.65				1.65	
4	input leakage current	V _I = V _{CC} or GND		5.5		±0.1		±1.0		±0.1		±1.0	μА
lcc	Quiescent supply current	V1 = V00 0	V _I = V _{CC} or GND, I _O = 0			8.0		80		8.0		80	μА
ΔI _{CC}	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

NOTES:

1. Not more than one output should be sessed at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = OV; tm = tp = Sns; CL = SOPF

SYMBOL	PARAMETER		T					
		WAVEFORM	TA = 428°C			T _A = -40°C to +85°C		UNIT
		1 1	Min	Тур	Mex	Min	Mex	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5			1.5 1.5		ns
[†] PLH [†] PHI	Propagation delay	1	1.5 1.5			1.5 1.5		nŝ

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GHD = 0V; IR = IF = 3m; CL = 50pF

	PARAMETER	WAVEFORM		74AC11520					
SYMBOL				T _A = +28°C			0°C 10	UNIT	
		1	Min	Тур	Mex	Min	Mex		
^t PLH ^t PHL	Propagation dalay	1	1.5 1.5			1.5 1.5		ns .	
[†] PLH [†] PHI	Propagation delay E to P=Q	. 1	1.5 1.5			1.5		Ns	

AC ELECTRICAL CHARACTERISTICS AT \$.0V ±0.5V GND = 0V; tg = tg = 3ms; CL = 50pF

SYMBOL	PARAMETER		T					
		WAVEFORM	TA = +86°C			T _A = -4	UNIT	
		()	Min	Тур	Mex	Min	Max	
^t PLH ^t PHL	Propagation delay	1	1.5 1.5			1.5 1.5		N8
¹ PLH	Propagation delay	1	1.5 1.5			1.5 1.5		ns

AC WAVEFORMS AC : V_M = 50% V_{CC}, V_N = GND to V_{CC}. ACT : V_M = 1.5V, V_M = GND to 3.0V

74AC/ACT11521 8-Bit Identity Comparator

Preliminary Specification

FEATURES

- Compares two 8-bit words
- Output capability: ±24 mA
- · inputs are TTL-voitage competible
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- · I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11521 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11521 identity comparators perform comparisons on two 8-bit binary or BCD words and provides a Low output when the two words match bit for bit.

The 74AC/ACT11521 identity comparators also feature a provision for $\overline{P}=\overline{Q}$ totem-pole outputs.

GENERAL INFORMATION

SYMBOL	PARAMETER	CONDITIONS	TYP	*****	
- THEOL	PANAMEIEN	T _A = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay P _n or Q _n to P = Q	C _L = 50pF; V _{CC} = 5V	5.0		ns
CPD	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	79		pF
CW	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	ρF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
Δ1/Δν	Maximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Note

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW);

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_2) \text{ where:}$

 $\mathbf{f}_{\mathbf{L}} = \mathbf{input}$ frequency in MHz, $\mathbf{C}_{\mathbf{L}} = \mathbf{output}$ load capacitance in pF,

 $f_{\rm C}$ = output frequency in MHz, $V_{\rm CC}$ = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11521N 74ACT11521N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11521D 74ACT11521D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 13, 1988

5-242

ECN Number

8-Bit Identity Comparator

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
4, 2, 19, 17 14, 12, 10, 8	P ₀ to P ₇	Date inputs
3, 1, 18, 16 13, 11, 9, 7	00007	Deta inputs
11	E	Enable input (active Low)
20	P=Q	Output
4	GND	Ground (0V)
12	Vcc	Positive supply voltage

FUNCTION TABLE

INP	INPUTS			
DATA P, Q				
P=Q	L	L		
P>Q	L	н		
P <q< td=""><td>" L</td><td>н</td></q<>	" L	н		
x	н	н		

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74AC11821 74ACT11821			1	UNIT		
	PANAMETER	Min Nom Max	Min	Nom	Nom Max			
v _{cc}	DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5.5	V
V _I	Input voltage	0		V _{CC}	0		Vcc	V
V _O	Output voltage	0		V _{oc}	. 0		V _{CC}	V
ΔυΔν	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	•¢

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²		-20	mA
lik or V _I		V ₁ > V _{CC}	20	
V _I	DC input voltage		-9.5 to V _{CC} +0.5	V
	DC output diade current ²	V ₀ <0	-50	
lok Or	OK OF DC output voltage	V ₀ > V _∞	50	mA
v _o	DC output voltage		-0.5 to V _{CC} +0.5	٧
10	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
CC	DC V _{CC} current		±200	mA
GND	DC ground current		±200	1 1112
TSTG	Storage temperature		-65 to 150	*0
P _{TOT}	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by SmW/K	500	mW
יוטו י	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 8mW/K	400	mW

^{1.} No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.</p>

Stresses beyond those listed may asses permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

	TRICAL CHARAC					74AC	11521		74ACT11521				
SYMBOL	PARAMETER	TEST OF	NDITIONS	V _{CC}	TA = +25°C TA = -40°C to +46°C		TA = +35°C		T _A = -40°C to +85°C		UNIT		
	. ,			V	Min	Max	Min	Max	Min	Max	Min	Max	
		1	. 5	3.0	2.10		2.10						
V _{IH}	High-level input voltage		*	4.5	3.15		3.15		2.0		2.0		٧
m	Riput vollage	Tag.		5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					.
V _M	Low-level input voltage	1		4.5		1.35		1.35		0.8		0.8	٧
-						1.65		1.65		0.8		0.8	
				3.0	2.9		2.9		L	·			
		}	I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
		\ \V		5.5	5.4		5.4		5.4		5.4		
VOH	V _{OH} High-level or V _H I _{OH} = -4mA V _I I _{OH} = -4mA V _I I _{OH} = -24mA	I _{OH} = -4mA	3.0	2.58		2.48						٧	
		4.5	3.94		3.6		3.94		3.8				
			5.5	4.94		4.8		4.94		4.8		4	
		OH = -	I _{OH} = -75mA	5.5		<u></u>	3.85				3.85	-	
				3.0		0.1	_	0.1	<u> </u>		<u> </u>	-	
			I _{OL} = 50µA	4.5		0.1		0.1		0.1	<u> </u>	0.1	
		V ₁ - V _R		5.5		0.1	_	0.1	<u> </u>	0.1	-	0.1	١
VOL	Low-level output voltage	or or	I _{OL} = 12mA	3.0		0.36	-	0.44			1	ļ	V
		Vet	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	ļ
			1	5.5	-	0.36	-	0.44	_	0.36	-	0.44	
			1 _{OL} = 75mA ¹	5.5	_	 	<u> </u>	1.65	 	-	↓	1.65	
i ₁	input leakage current	VI = Vcc		5.5		±0.1		±1.0		±0.1		±1.0	μΑ
loc	Quiescent supply current	V1=Vcc	or GND,	5.8		8.0		80		8.0		80	μΑ
ΔI _{CC}	Supply current, TTL inputs High?		at 3.4V, other inputs	5.5					1	0.9		1.0	m/

^{1.} Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 6V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; ta = te = 3ne; C, = 50of

		43.	74AC11821						
SYMBOL	PARAMETER	WAVEFORM		T _A = +25°	C ·	TA = -	10°C to 5°C	C UNIT	
<u> </u>	` ·		Min	Typ	Mex	Min	Max		
PLH PHL	Propagation delay		1.5			1.5		ns	
PLH PHIL	Propagation delay	1	1.5			1.5		ns	

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; $t_{\rm H} = t_{\rm p} = 3 {\rm me}$; $C_{\rm L} = 50 {\rm pF}$

					74AC1152	1		
SYMBOL	PARAMETER	WAVEFORM		T _A = +257	C		ione to	UNIT
			Min	Тур	Max	Min	Max	1
^t PLH ^t PHL	Propagation delay	1 .	1.5 1.5			1.5 1.5		na
PLH	Propagation delay	1	1.5			1.5 1.5		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tR = tp = Sne; CL = 50pF

1	,			7	MACTITE	21		
SYMBOL	PARAMETER	WAVEFORM		T _A = +257	C	TA = -	10°C to 5°C	UNIT
			Min	Typ	Mex	Min	Max	1 .
¹ PLH ¹ PHL	Propagation delay	1	1.5			1.5 1.5		ne
PLH PHL	Propagation delay E to P=Q	1	1.5			1.5		ns

AC WAVEFORMS AC : $V_M = 50\% \ V_{CC}$, $V_M = GND to V_{CC}$. ACT : $V_M = 1.5V$, $V_M = GND to 3.0V$

74AC/ACT11533 Octal D-Type Transparent Latch (3-State), Inverting Product Specification

FEATURES

- · 8-bit transparent latch
- 3-State output buffers
- Common 3-State Output Enable
- Independent register and 3-State buffer operation
- Output capability: ±24 mA
- . CMOS (AC) and TTL (ACT) voltage level inpute
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-apeed switching noise
- · I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11533 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11533 device is an octal transparent latch coupled to eight 3-State inverting output buffers. The two sections of the device are controlled independently by Latch Enable (LE) and Output Enable (OE) control gates.

The data on the D inputs are transferred to the latch outputs when the Latch Enable (LE) input is High. The latch remains

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL	UNIT
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC ACT		CHIL
t _{PLH} /	Propagation delay D _n to Q _n	C _L = 50pF; V _{CC} = 5V	5.3	6.8	ns
	Power dissipation	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled	55	69	pF
C ^{bD}	capacitance per latch	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Disabled	44	58	
C _{IN}	Input capacitance	V ₁ = 0V or V _{CC}	4.0	4.0	pF
COUT	Output capacitance	V _I = 0V or V _{CC}	10	10	pF
LATCH	Laich-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔυΔν	Meximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

- 1. C_{PD} is used to determine the dynamic power dissipation (P $_{D}$ in $\mu W):$
 - $P_D = C_{PO} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_0)$ where:
 - $\mathbf{f}_{\mathbf{j}} = \mathbf{input}$ frequency in MHz, $\mathbf{C}_{\mathbf{j}} = \mathbf{output}$ load capacitance in pF,
 - fo = output frequency in MHz, V_{CC} = supply voltage in V,
 - $\Sigma (C_1 \times V_{CC}^2 \times I_C) = \text{sum of outputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
24-pin plestic DIP (300mil-wide)	-40°C to +85°C	74AC11533N 74ACT11533N
24-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11533D 74ACT11533D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 13, 1988

5-247

ECN Number

transparent to the data inputs while LE is High, and stores the data that is present one setup time before the High-to-Low enable transition.

The 3-State inverting output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The active-Low Output Enable (OE) controls all eight 3-State buffers independent of the latch opera-

When OE is Low, the latched or transpar-

ent data appears at the outputs. When OE is High, the outputs are in the Highimpedance "OFF" state, which means they will neither drive nor load the bus.

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
24	Œ	Output enable
23, 22, 21, 20, 17, 16, 15, 14	D ₀ - D ₇	Date inputs
1, 2, 3, 4, 9, 10, 11, 12	ಠ್ಠ - ಠ್ಯ	Detit outputs
13	LE	Latch enable .
5, 6, 7, 8	GND	Ground (OV)
18, 19	Vœ	Positive supply voltage

FUNCTION TABLE

OPERATING MODES				MPUTS		***************************************	OUTPUTS
	QE	LE	Dn	INTERNAL REGISTER	٥,		
Enable and read register	L L	H	H	L H	H		
Latch and read register	L	1	h	L H	H		
Hold	L	L	X	NC	NC		
Disable outputs	Н	X	X	×	Z		

H = High voltage level steady state
h = High voltage level one aer-up time prior to the High-to-Low E transition
L = Low voltage level steady state
i = Low voltage level one set-up time prior to the High-to-Low E transition

X = Don't care

NC = No change Z = High-impedance "OFF" state

i = High-to-Low transition

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

			1	74AC11893			74ACT11899			
SYMBOL	PARAN	ETER	Min	Nom	Mane	Min	Nom	Mex	UNIT	
V _{CC}	DC supply voltage		3.0	5.0	5.5	4.5	5.0	5.5	٧	
V,	Input voltage	and the second s	0		Voc	0		V _{CC}	٧	
v _o	Output voltage		0		V _{CC}	0		Vċc	٧	
	Input transition rise	Data, E	.0		10	. 0		10	ns/V	
ΔΫΔ٧	or fall rate	Output enable	0		10	0		10		
TA	Operating free-air te	mperature	-40		+85	-40		+85	°C	

SYMBOL	E MAXIMUM RATINGS PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	٧
	V ₁ <0		-20	mA
HK	DC input diade current ²	V ₁ > V _{CC}	20	
of V	DC input voltage		-0.5 to V _{CC} +0.5	٧
		V _O < 0	-50	mA
lok	DC output diade current ²	V _O > V _{CC}	50	
ok V _O	DC autput valtage	·	-0.5 to V _{CC} +0.5	V
lo	DC output source or sink current per output pin	V ₀ = 0 to V _{CC}	±50	mA
i _{CC}	DC V _{CC} current		±200	mA.
or I _{GND}	DC ground current		±200] ""
TSTG	Storage temperature		-65 to 150	•c
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
P _{TOT}	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

Stresses beyond those listed may cause permanent durings to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Octal D-Type Transparent Latch (3-State), Inverting

74AC/ACT11533

DC ELECTRICAL CHARACTERISTICS

		1		1		74AC	11533			74AC1	1153	3	
SYMBOL	SYMBOL PARAMETER		TEST CONDITIONS		T _A = +25°C		T, =-40°C		T _A = +25°C		T _A = -40°C to +85°C		UNIT
					Min	Mex	Min	Max	Min	Mex	Min	Max	
	High-level			3.0	2.10		2.10						
V _{IH}	input voltage			4.5	3.15		3.15		2.0		2.0		V
				5.5	3.85		3.85		2.0		2.0		
	Low-level					0.90		0.90					
V _{IL}	input voltage					1.35		1.35		0.8		0.8	v
				5.5		1.65		1.65		0.8		0.8	
				3.0	2.9		2.9						
			I _{OH} = -50µA	4.5	4.4		4.4		4.4	3	4.4		
VOH High-level output voltage	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		5.5	5.4		5.4		5.4		5.4			
	V ₁ =	I _{OH} = -4mA	3.0	2.56		2.48						ν	
	V _{BH}	I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8			
			5.5	4.94		4.8		4.94		4.8			
			I _{OH} = -75mA ^T	5.5			3.85				3.85		
				3.0		0.1		0.1					
ļ	l.	}	IOL = 50HA	4.5		0.1		0.1		0.1		0.1	
1	Low-level	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		5.5		0.1		0.1		0.1		0.1	1
VOL	output voltage	V _I = V _{IL} or	I _{OL} = 12mA	3.0		0.36		0.44					٧
	3	V _{B1}	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
1			1	5.5		0.36		0.44		0.38		0.44	
			I _{OL} = 75mA [†]	5.5				1.85				1.65	
l _i	Input leakage current	V1=V00		5.5		±0.1		±1.0		±0.1		±1.0	μA
oz	3-State output off-state current	V _i = V _{ii} or V _{iii} . V _O = V _{CC} or GND		5.5		±0.5		±5.0		±0.5		±5.0	μΑ
lcc	Quiescent supply current	V = Vcc	V _I = V _{CC} or GND, I _C = 0			8.0		80		8.0		80	μА
Alcc	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9	\neg	1.0	mA

Not more than one output should be sessed at a time, and the duration of the test should not exceed 10ms.
 This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 6V or V_{QQ}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V/±0.3V GND = DV/IR = 1p = 3ms/C(1= 90pF)

			T	7	4AC1153			
SYMBOL	PARAMETER	WAVEFORM	TA = +26°C			TATE	O°C to	UNIT
			Min	Тур	Mex	Min	Max	
^t PLH ^t PHL	Propagation delay D _n to Q _n	1	1.5 1.5	8.5 7.5	12.6 10.1	1.5. 1.5	14.3 11.3	ns
PLH ,	Propagation delay	4	1.5	10.0 9.5	14.5 12.8	1.5	.16.5 14.3	ns *
t _{PZH}	Output enable time to High and Low level	2	1.5 1.5	9.0 8.5	13.1 11.6	1.5 1.5	14.7	ns
PHZ:	Output disable time from High and Low level	(5	1.5 1.5	9.5 7.5	12.0 10.2	1.5	12.8	ns
^t w	LE Pulse Width High or Low	4	\$.5			5.5		ns
t _s	Setup time D _n to LE‡	3	4.0			4.0		, ns
^t H	Hold time	3	2.0			2.0	23.	ns.

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; ta = 12 = 3ne; Ci = 50pF

SYMBOL PARAMETE	PARAMETER	WAVEFORM	T _A = +28°C			TAR	10°C to 5°C	UNIT
	,		Min	Typ	Mex	Min	, Mex	
PLH PHL	Propagation delay	1	1.5 1.5	5.5 5.0	8.4 7.1	1.5 1.5	9.8	70 ptg. ?
PLH	Prepagation delay LE to On	4	1.5 1.5	6.5 6.5	10.0 9.1	1.5 1.5	11.3 10.3	ns
[†] PZH [†] PZL	Output enable time - to High and Low level	2	1.5 1.5	6.5 6.0	9.5 8.6	1.5	9.7	ne
^t PHZ ^t PLZ	Output disable time from High and Low level	2	1.5 1.5	8.5 6.0	10.7 8,2	1.5 1.5	11.4 8.9	ns
tw .	LE Puise Width High or Low	1. A	4.Q		. , .	4.0	~ ;	ne
t _s	Setup time D ₁ to LE↓	.8 . :	8.5			3.5		ns:
^t H	Hold time	3	2.0		4.	2.0		ns

Octal D-Type Transparent Latch (3-State), inverting

74AC/ACT11533

AC ELECTRICAL CHARACTERISTICS AT 5.0V \pm 0.5V GND = 0V; $t_{\rm R}$ = $t_{\rm F}$ = 3ns; $C_{\rm L}$ = 50pF

			T					
SYMBOL	PARAMETER	WAVEFORM		T _A = +25°(9	T _A = -	10°C to	UNIT
			Min	Тур	Mex	Min	Max	
^t PLH ^t PHL	Propagation delay D _n to Q _n	1	1.5 1.5	7.0 6.5	10.1 8.4	1.5 1.5	11.3 9.5	' ne
t _{PLH} t _{PHL}	Propagation delay LE to Q	4	1.5 1.5	8.5 8.5	11.3 10.7	1.5 1.5	13.0 12.2	ne
^t PZH t _{PZL}	Output enable time to High and Low level	2	1.5 1.5	7.5 7.5	10.7 10.9	1.5 1.5	12.5 12.0	ns
t _{PHZ}	Output disable time from High and Low level	2	1.5 1.5	10.5 7.5	12.1 9.5	1.5 1.5	12.8 10.3	ns.
t _W	LE Pulse Width High or Low	4	5.0			5.0		ns
t _s	Setup time D _n to LE1	3	3.5			3.5		ns
^t н	Hold time O _n to LE1	3	3.5			3.5		ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 8.0V

AC WAVEFORMS AC: $V_M = 50\% V_{CC}$, $V_N = GND$ to V_{CC} . ACT: $V_M = 1.5V$, $V_M = GND$ to 3.0V (Continued)

74AC/ACT11534 Octal D-Type Flip-Flop; Positive-Edge Trigger (3-State), Inverting Product Specification

FEATURES

- · 3-State output buffers
- · Common 3-State Output Enable
- Independent register and 3-State buffer operation
- Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- · I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11534 high-periormence CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11534 device is an 8-bit, edge-triggered register coupled to eight 3-State, inverting output buffers. The two sections of the device are controlled independently by Clock (CP) and Output Enable (OE) control gates. The register is fully edge-triggered. Once the set-up requirements are met, when the Clock Pulse (CP) rises the state of each D input is transferred to the corresponding flip-floo's Q output.

PIN CONFIGURATION

N and I) Packages
\$\begin{align*} \begin{align*} \begi	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]	

GENERAL INFORMATION

SYMBOL		CONDITIONS	TYP	ICAL	UNIT
a time.	PARAMETER	T _A = 25°C; GND = 0V	AC	AC ACT	
t _{PLH} /	Propagation delay CP to O ₀	C _L = 50pF; V _{CC} = 5V	7.0	8.5	ns.
C.	Power dissipation capacitance per	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled	- 75	92	-5
PO	C _{PO} capacitance per flip-flop	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Disabled	65	82	pF
CM	Input capacitance	V _I = 0V or V _{CC}	4	4	pF
COUT	Output capecitance	V _I = 0V or V _{CC}	10	10	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΨΔΨ	Maximum input rise or fall rate; Data inputs	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V
f _{MAX}	Meximum clock frequency	C _L = 50pF; V _{CC} = 5.5V	100	70	MHz

Note:

1. C_{PD} is used to determine the dynamic power dissipation (P_{D} in μW);

 $P_D = C_{PD} \times V_{CC}^2 \times I_1 + \sum (C_1 \times V_{CC}^2 \times I_2)$ where:

 $\mathbf{f}_{L} = \text{input frequency in MHz, } \mathbf{C}_{L} = \text{output load capacitance in pF,}$

 $f_{\rm C}$ = output frequency in MHz, $V_{\rm CC}$ = supply voltage in V,

 $\Sigma(C_1 \times V_{CC}^2 \times f_C) = sum of outputs$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
24-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11534N 74ACT11534N
24-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11534D 74ACT11534D

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The active-Low Output Enable (OE) controls all eight 3-State inverting buffers independent of the latch operation.

When OE is Low, the stored data appears at the outputs. When OE is High, the outputs are in the High-Impedance "OFF" state, which means they will neither drive nor load the bus.

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
24	QE	Output enable
23, 22, 21, 20, 17, 16, 15, 14	D ₀ - D ₇	Date inputs
1, 2, 3, 4, 9, 10, 11, 12	₫₀-₫₁	Data outputs
13	CP	Clock input
5, 6, 7, 8	GND	Ground (OV)
18, 19	V _∞ c	Positive supply voltage

ELINCTION TABLE

CONTRACTOR MADE		INPUTS		INTERNAL REGISTER	OUTPUTS
OPERATING MODES	O€	CP	D _n	MIRNAL REUGIEN	ā,
Load and read register	L	1	1	L	Н
	L .	Ť	it	н	L
Disable outputs	H	Х	X	×	Z

- $H=High\ voltage$ level steady state $h=High\ voltage$ level one set-up time prior to the Lew-to-High clock transition
- L = Low voltage level steady state
- I = Low voltage level one set-up time prior to the Low-to-High clock transition
- X = Don't care
 Z = High-impedance "OFF" state
- 1 Low-to-High transition

LOGIC DIAGRAM

Octal D-Type Flip-Flop; Positive-Edge Trigger (3–State), Inverting

74AC/ACT11534

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAM	ETER		74AC11534	,		74ACT1153	4				
	ranas	IE I EN	Min	Nom	Max.	Min	Nom	Max	UNIT			
V _{CC}	DC supply voltage Input voltage		DC supply voltage ¹		DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5,5	٧
V _I			0		V _{oc}	0		V _{CC}	V			
Vo	Output voltage 0	Output voltage			V _{oc}	0		V _{CC}	٧			
ΔΙ/Δν	Input transition rise	Data	0		10	0		10				
	or fall rate	Output enable	0		5	0		10	ns/V			
TA	Operating free-air temperature		-40		+85	-40		+85	•0			

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to+7.0	V
	DG input diode current ²	V ₁ < 0	-20	
V _I		V ₁ > V _∞	20	mA
V _I	DC input voltage		-0.5 to V _{CC} +0.5	V
	DC autput clode current ²	V ₀ < 0	-50	mA
OK OF		V _o > V _∞	50	
v _o	DC autput voltage		-0.5 to V _{CC} +0.5	Ÿ
l _o	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
loc or	DC V _{CC} current		±200	
GND	DC ground current		±200	mA
TSTG	Storage temperature		-65 to 150	°C
P	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	Wm

NOTES

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Octal D-Type Flip-Flop; Positive-Edge Trigger (3-State), Inverting

74AC/ACT11534

DC ELECTRICAL CHARACTERISTICS

						74AC	11534			74AC1									
BYMBOL	PARAMETER	TEST C	ONDITIONS	Voc	T _A =	25°C	T _A =	40°C 16°C	T _A =	25°C	T, =	-40°C 95°C	UNIT						
				٧	Min	Mex	Min	Mex	Min	Max	Min	Max							
				3.0	2.10		2.10												
ViH	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧						
F1	Infort solution			5.5	3.85		3.85		2.0		2.0								
				3.0		0.90		0.90											
V _{aL}	Low-level			4.5		1.35		1.35		0.8		0.8	٧						
_				5.5		1.65		1.65		0.8		0.8							
				3.0	2.9		2.9												
			1 _{OH} = -50µA	4.5	4.4	<u></u>	4.4		4.4		4.4								
V _{OH} High-loutpu	Allah basal	V,-	V-	5.5	5.4		5,4		5.4		5.4								
	output voitage	V _i - V _E or	1 _{OH} = -4mA	3.0	2.56		2.48						V						
		V _{BH}	I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8								
				5.5	4.94		4.8		4.94		4.8								
			I _{OH} = -75mA ¹	5.5			3.86				3.85	-							
	}	V ₁ = V _R	3.0	1	0.1		0.1	-	-										
	·		OL = 50MA	4.5		0.1		0.1		0.1	-	0.1 0.1							
	Low-level		V, -	V, -	V.	V.	V, -	V, -	V, -	1 10-1	3.0		0.1	├	0.1		0.1		0.1
VOL	output voltage		I _{OL} = 12mA	4.5	-	0.36		0.44		0.36	-	0.44	•						
		V _{BH}	I _{OL} = 24mA	5.5	-	0.36		0.44		0.36		0.44							
			I _{OL} = 75mA ¹	5.5		0.50	-	1.65		0.50	-	1.65							
	Input leakage	W - W		5.5	-	±0.1	-	±1.0	-	±0.1	-	±1.0	μА						
1	current	V _I = V _{CC} or GND		5.5		30.1		11.0	L	20.1		1							
loz	3-State output off-state current	V _i = V _{ii} or V _{ii} . V _O = V _{CC} or GND		5.5		±0.5		±5.0		±0.5		±5.0	μА						
loc	Quiescent supply current	V1 = Vcc	or GND,	5.5		8.0		80		8.0		80	μА						
ΔI _{CC}	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	m/						

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 6V or V_{CC}-

Octal D-Type Flip-Flop; Positive-Edge Trigger (3–State), Inverting

74AC/ACT11534

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V gND = 0V; $t_R = t_F = 3$ ns; $C_L = 5$ 0pF

			T	7	74AC1153	4		
SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C			T _A = -40°C to +85°C		UNIT
			Min	Тур	Mex	Min	Max	
1 _{MAX}	Maximum clock frequency	1	50	75		50		MHz
^t PLH ^t PHL	Propagation delay CP to On	1	1.5 1.5	11.0 11.0	15.3 15.7	1.5 1.5	17.6	ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	9.0	12.8 12.6	1.5 1.5	14.6 14.3	ns .
t _{PHZ} t _{PLZ}	Output disable time from High and Low level	2	1.5 1.5	10.0 8.0	12.6 13.0	1.5 1.5	13.3 13.8	ns
^L w	Clock pulse width High or Low	3	10.0			10.0		ns
^t s	Setup time D _n to CP	3	3.5			3.5		ns
^t H	Hold time D _n to CP	3	3.5			5.5		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_R = t_p = 3$ ns; $C_L = 50$ pF

	PARAMETER			, ,	74AC1153			
SYMBOL		WAVEFORM	T _A = +25°C			T _A = -40°C to +86°C		UNIT
			Min	Тур	Mex	Min	Mex	
f _{MAX}	Meximum clock frequency	1	75	100		75		MHz
t _{PLH}	Propagation delay CP to G	1	1.5 1.5	7.0 7.0	10.3 10.7	1.5 1.5	11.7 -12.1	ns
^Î PZH ^Î PZL	Output enable time to High and Low level	2	1.5	6.0	9.2 9.2	1.5 1.5	10.4 10.4	ns
[†] PHZ [†] PLZ	Output disable time from High and Low level	2	1.5	9.0 6.0	11.1	1.5 1.5	11.6	ns
t _w	Clock pulse width High or Low	3	6.5			6.5		ns
^t s	Setup time D _n to CP	3	3.5			3,5		ns
t _H	Hold time D _n to CP	3	4.5			4.5		ns.

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V QND = 0V; ta = te = 3ns; C1 = 50pF

				* 7	4ACT118	14		
SYMBOL	PARAMETER	WAVEFORM	T _A = +28°C			T _A = -4	IO°C to	UNIT
			Min	Тур	Max	Min	Mex	
f _{MAX}	Meximum clock frequency	1	55	70		55		MHz
^t PLH ^t PHL	Propagation delay CP to G	4	1.5 1.5	8.5 8.5	12.7 13.3	1.5 1.5	14.5 15.0	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1,5 1.5	7.5 7.5	12.0 12.2	1.5 1.5	13.3 13.5	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low level	2	1.5 1.5	11.0 8.0	12.9 11.2	1.5	13.5 12.0	ns
t _w	Clack pulse width High or Low	3	9.0			9.0		ns
t _s .	Setup time D _n to GP	3	3.0			3.0		ns
¹ _H .	Hold time D _n to CP	3	5.5			5.5		ns

AC WAVEFORMS AC: V_{M} = 50% V_{CC} , V_{N} = 0ND to V_{CC} . ACT: V_{M} = 1.5V, V_{N} = 0ND to 3.0V

Signetics

74AC/ACT11640 Octal Transceiver w/Direction Pin; 3-State; INV

Product Specification

FEATURES

- Octal bidirectional bus interface
- 3-State buffers
- Inverting version of '245
- . Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11640 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11840 device is an octal transceiver featuring inverting 3-State bus compatible outputs in both send and receive directions. The control function implementation minimizes external timing requirements. The device features an Output Enable (OE) input for easy cascading and a Direction (DIR) input for direction control.

GENERAL INFORMATION

		CONDITIONS	TYP	ICAL		
SYMBOL	PARAMETER	T _A = 25°C; GND = 0V	AC ACT		UNIT	
PLH/	Propagation delay A_n to B_n , or B_n to A_n	C _L = 50pF; V _{CC} = 5V		6.0	ne	
	Power dissipation	V _{OC} = 5.0V; f = 1MHz; C _L = 50pF; Enabled		47	ρF	
CPO	capacitance per buffer ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF; Disabled	`	12	þr	
CW	Input capacitance	V _I = OV or V _{CC}	4.0	4.0	pF	
C ^{IO}	I/O capacitance	V _I = OV or V _{CC}	12	12	ρF	
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA	
Δ8/Δ٧	Meximum input rise or full rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V	

Mote

1. C_{PD} is used to determine the dynamic power dissipation (P $_{D}$ in $\mu\text{W});$

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \Sigma (C_L \times V_{CC}^2 \times f_0)$ where:

 $\mathbf{f}_{\parallel} = \mathbf{input}$ frequency in MHz, $\mathbf{C}_{\parallel} = \mathbf{output}$ load capacitance in pF, $^{\prime}$

 $f_{\rm O}$ = output frequency in MHz, $V_{\rm CC}$ = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times I_0) = \text{sum of autputs}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
24-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11640N 74ACT11640N
24-pin plastic SO , (300mil-wide)	-40°C to +85°C	74AC11640D 74ACT11640D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 13, 1966

5-260

ECN Number

Octal Transceiver w/Direction Pin: 3-State: INV

74AC/ACT11640

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
24	DIR	Direction control input
1, 2, 3, 4, 9, 10, 11, 12	A ₀ - A ₇	Date inputs/outputs (A side)
23, 22, 21, 20, 17, 16, 15, 14	80-87	Data inputs/outputs (B side)
13	QE	Output enable
5, 6, 7, 8	GND	Ground (0V)
18, 19	Vcc	Positive supply voltage

FUNCTION TABLE

MP	UTS	INPUTS/C	UTPUTS
ŌĒ	DIR	An	B _n
L.	L	A-B	inputs
L	н	inputs	B-X
н	х	Z	Z

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AC11646			UNIT		
0.000	P Promise Contract	Min	Nom	Max	Min	Nom	Mex	-
V _{CC}	DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5.5	٧
V _I	Input voltage	0		Voc	0		V _{oc}	٧
v _o	Output voltage	0		Voc	0		V _∞	٧
ΔΨΔν	Input transition rise or fall rate	0		10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	•c

NOTE:

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Voc	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	V ₁ <0	-20	
or V,	OO input discar curient	V ₁ > V _∞	-0.5 to+7.0	mA
Ÿ,	DC input voltage		-0.5 to V _{CC} +0.5	٧
	'DC output diode current ²	V ₀ <0	-60	†
lok	Do dahat alaas saulan	V ₀ > V _∞	50	mA
ν ^o ev fox	DC autput voltage		-0.5 to V _{CC} +0.5	٧
lo	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50•	mA
oc CC	DC V _{CC} current		±200	
GND	DC ground current		±200	mA
TSTG	Storage temperature		-65 to 150	*C
	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
P _{TOT}	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device culput will maintain a previously established logic state.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Octal Transceiver w/Direction Pin; 3-State; INV

74AC/ACT11640

DC FLECTRICAL CHARACTERISTICS

SYMBOL .		TEST CONDITIONS		1		74AC11840				74ACT11640				
	PARAMETER			v _{cc}	TA	T _A = +25°C T _A		-40°C 85°C	T _A = +25°C		T _A = -40°C to +85°C		UNIT	
		1	v		Min	Mex	Min	Max	Min	Max	Min	Max		
	High-level input voltage			3.0	2.10		2.10						v	
V _{IH}				4.5	3.15		3.15		2.0		2.0			
				5.5	3.85		3.85		2.0		2.0			
				3.0		0.90		0.90						
V _{IL}	Low-level input voltage	1		4.5		1.35		1.35		0.8		0.8	v	
- -				5.5		1.65		1.65		0.8		0.8		
				3.0	2.9		2.9							
				1 _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
		V _j =		5.5	5.4		5.4		5.4		5.4		V	
VOH	High-level output voltage	V _I = V _{BL} or V _H	I _{OH} = -4mA	3.0	2.58		2.48							
¥			1 _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8			
				5.5	4.94		4.8		4.94		4.8			
			I _{OH} = -75mA ¹	5.5			3.85				3.85			
			1 ₀₄ = 50µA	3.0		0.1		0.1						
				4.5		0.1		0.1		0.1		0.1		
		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		5.5		0.1		0.1		0.1		0.1		
VOL	Low-level output voltage	V _I = V _{IL} or	I _{OL} = 12mA	3.0		0.36		0.44					ν	
			V _M	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	
		1	L	5.5		0.36		0.44		0.36		0.44		
			I _{OL} = 75mA ¹	5.5				1.65				1.65		
I _L	Input leakage current	V1 = Vcc	or GND	5.5		±0.1		±1.0		±0.1		±1.0	μА	
loz	3-State output off-state current	V, = V, or Vo = Vcc	V _I = V _{II} or V _{III} , V _O = V _{CC} or GND			±0.5		±5.0		±0.5		±5.0	μА	
loc	Quiescent supply current	V _I = V _{CC} or GND, I _O = 0		5.5		8.0		80		8.0		80	μА	
∆l _{CC}	Supply current, TTL inputs High ²	One input	One input at 3.4V, other inputs at V _{CC} or GND							0.9		1.0	mA	

Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.
 This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 6V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V \pm 0.3V GND = 0V; $t_R = t_F = 3ns$; $C_L = 50pF$

SYMBOL			T	1	74AC1164	•		
	PARAMETER	WAVEFORM	WAVEFORM $T_A = +25^{\circ}C$ $T_A = -40^{\circ}A$			UNIT		
	•		Min	Тур	Max	Min	Mex	
^t PLH ^t PHL	Propagation delay A, to B, B, to A,	1	1.5 1.5			1.5 1.5		ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5			1.5 1.5		ns
t _{PHZ}	Output disable time from High and Low level	2	1.5 1.5			1.5 1.5		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = te = 3ne; C, = 50pF

SYMBOL	T							
	PARAMETER	WAVEFORM		T _A = +25°C T _A = -40°C to +85°C		UNIT		
			Min	Тур	Max	Min	Mex	
^t PLH t _{PHL}	Propagation delay A, to B, B, to A,	1	1.5 1.5			1.5 1.5		ns
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5			1.5 1.5		ns
^t PHZ ^t PLZ	Output disable time from High and Low level	2	1.5 1.5			1.5 1.5		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; to = to = Sne; C, = 50pF

SYMBOL	PARAMETER	WAVEFORM	PARAMETER WAVEFORM TA = +25°C		T _A = +25°C T _A = -40°C to +85°C			UNIT
			Min	Тур	Mex	Min	Max	
¹ PLH ¹ PHL	Propagation delay A _n to B _n , B _n to A _n	1	1.5 1.5	6.3 5.7	9.6 8.6	1.5 1.5	10.5 9.5	n#
^t PZH ^t PZL	Output enable time to High and Low level	2	1.5 1.5	8.8 8.4	12.2 12.3	1.5 1.5	13.4 13.6	ns
¹ PHZ ¹ PLZ	Output disable time from High and Low level	2	1.5 1.5	9.1 9.6	12.9 13.1	1.5 1.5	13.9 14.2	ns

AC WAVEFORMS AC : $V_{\rm M}$ = 50% $V_{\rm CC}$, $V_{\rm N}$ = GND to $V_{\rm CC}$. ACT : $V_{\rm M}$ = 1.5V, $V_{\rm N}$ = GND to 3.0V

74AC/ACT11810 Quad 2-Input Exclusive-NOR Gate

Preliminary Specification

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- · I_{CC} category: SSI

DESCRIPTION

The 74AC/ACT11810 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11810 provides four separate 2-input exclusive-NOR gate functions.

GENERAL INFORMATION

		CONDITIONS	TYP		
SYMBOL	PARAMETER	TA = 25°C; GND = 0V	AC	ACT	UNIT
t _{PLH} /	Propagation delay A, B, to ♥	C _L = 50pF; V _{CC} = 5V	4.5	5.6	ns
C _{PO}	Power dissipation capacitance per gate ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	24	26	ρF
CM	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΨΔν	Maximum input rise or fall rate	C _L = 50pF; V _{CC} = 5.5V	10	10	ns/V

Note

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_1 \times V_{CC}^2 \times f_0)$ where:

- f, = input frequency in MHz, C, = output load capacitance in pF,
- (= output frequency in MHz, V_{CC} = supply voltage in V,
- $\Sigma (C_1 \times V_{CC}^2 \times f_C) = sum of outputs$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
16-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11810N 74ACT11810N
16-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11810D 74ACT11810D

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

5-264

ECN Number

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 15, 11, 9	1A-4A	Data inputs
16, 14, 10, 8	1B-4B	Date inputs
2, 3, 6, 7	17-47	Data outputs
4, 5	GND	Ground (0V)
12, 13	Vcc	Positive supply voltage

FUNCTION TABLE

MP	UTS	OUTPUT
nA	nB	nŸ
L	Ĺ	Н
L	н	L
н	Ĺ	L
н	н	н

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74AC11810)		74ACT1181	IACT11810	
O TRIBUL	PARAMETER	Min	Nom	Mex	Min	Nom	Max	UNIT
V _{CC}	DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5.5	V
V _i	Input voltage	0	,	V _{oc}	0		Vcc	٧
V _O	Output voltage	0		Voc	0		Vcc	٧
ΔΨΔν	Input transition rise or fall rate	0	·	10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40		+85	*C

NOTE:

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Vcc	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²		-20	mA
lik or V _I	DG alput Globe current	V₁ > V∞	20	
V _I	DC input voltage		-0.5 to V _{CC} +0.5	V
	DC output diade current ²	V ₀ <0 -	-50	mA
OK Or V _O	OK OF	V ₀ > V _{CC}	50	I IIIA
v _o	DC output voltage		-0.5 to V _{CC} +0.5	v
10	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
l _{CC}	DC V _{CC} current		±100	mA
GND	DC ground current		±100	
TSTG	Storage temperature		-85 to 150	•c
В	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

NOTES

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

^{1.} Stresses beyond those listed may cause permanent demage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Quad 2-Input Exclusive-NOR Gate

74AC/ACT11810

DC ELECTRICAL CHARACTERISTICS

						74AC	11810		74ACT11810				
SYMBOL	PARAMETER	TEST C	DNDITIONS	v _{cc}	T _A =	•25°C	TA=	-40°C	TA	+25°C	TA =	-40℃ 85℃	UNIT
			. 1		Min	Mex	Min	Mex	Min	Max	Min	Max	1
					2.10		2.10						
V	High-level input voltage			4.5	3.15		3.15		2.0		2.0		٧
				5.5	3.85		3.85		2.0		2.0		
				3.0		0.90		0.90					
V _K	Low-level input voltage			4.5		1.35		1,35		0.8		0.8	٧
_						1.65		1.65		0.8		0.8	
			1	3.0	2.9		2.9						
			I _{OH} = -50µA	4.5	4.4		4.4		4.4		4.4		
	V)	V, -		5.5	5.4		5.4		5.4		5.4		
VOH	High-level	ligh-level V _I = V _{IL} I _{OH}	I _{OH} = -4mA	3.0	2.58		2.48						V
•		V	A. I	4.5	3.94		3.8		3.94		3.8		
		-	1 _{OH} = -24mA	5.5	4.94		4.8		4.94		4.8		
			I _{OH} = -75mA	5.5			3.85				3.85		1
				3.0		0.1		0.1					
		1	1 _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1	
		V ₁ =		5.5		0.1		0.1		0.1		0.1	
VOL	Low-level output voltage	V _I = V _{IL} or	1 _{OL} = 12mA	3.0		0.36		0.44					٧
		Van		4.5		0.36		0.44		0.36		0.44	
			I _{OL} = 24mA	5.5		0.36		0.44		0.36		0.44	
			I _{OL} = 75mA ¹	5.5				1.65				1.65	
1,	Input leakage current	V1= V00	or GND	5.5		±0.1		±1.0		±0.1		±1.0	μА
loc	Quiescent supply current	V1 = V00 0	r GND,	5,5		4.0		40		4.0		40	μА
ΔI _{CC}	Supply current, TTL inputs High ²		at 3.4V, other inputs	5.5						0.9		1.0	mA

Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.
 This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; tp = tp = 3ms; C1 = 50pF

		74		/4AC1181	0			
SYMBOL	PARAMETER	WAVEFORM		T _A = +25°C	3		10°C to 5°C	UNIT
			Min	Тур	Mex	Min	Max	· · ·
^t PLH ^t PHL	Propagation delay nA, nB to nV	1	1.5 1.5	5.9 5.3	7.9 6.7	1.5	8.6 7.4	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tR = tF = 3ns; C1 = 50pF

			74AC11810						
SYMBOL	PARAMETER	WAVEFORM.	17	r _A = +25℃	C		IO°C to S°C	UNIT	
			Min	Тур	Mex	Min	Max		
PLH	Propagation delay nA, nB to n♥	1	1.5 1.5	4.5 4.4	6.2 5.7	1.5 1.5	6.7 6.2	ns	

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; tp = te = 3me; Ci = 50pF

			74ACT11810					;
SYMBOL	PARAMETER	WAVEFORM		T _A = +35°C	;		10°C to	UNIT
			Min.	Тур	Max	Min	Mex	
t _{PLH}	Propagation delay nA, nB to nY	1	1,5 1.5	5.6 5.6	7.2 7.1	1.5 1.5	7.8 7.7	ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{IN} = GND to V_{CC} : ACT : V_{M} = 1.5V, V_{IN} = GND to 3.0V

74AC/ACT11898 10-Bit Serial-In Parallel-Out Shift Register

Preliminary Specification

FEATURES

- · Gated serial data inputs
- · Fully buffered clock and data inputs
- · Fully synchronous data transfers
- · Typical shift frequency of 100MHz
- Asynchronous master reset
- Output capability: ±24mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- · I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11898 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11896 10-bit Serial-in Parallel-Out Shift Register is an edge-triggered shift register with serial data entry and an output from each of the 10 stages. Data is entered serially through one of two inputs (A · B); either input can be used as an active-High enable for data entry through the other input. Otherwise

GENERAL INFORMATION

, ,		CONDITIONS	TYP	IMP	
SAMBOL	PARAMETER	T _A = 25°C; QND = 9V	AC	ACT	UNIT
t _{PLH} /	Propagation delay CP to Q _a (MR = High)	C _L = 50pF; V _{CC} = 5V	7.0	7.6	ns
C _{PO}	Power dissipation capacitance per gete ¹	V _{CC} = 5.0V; f = 1MHz; C _L = 50pF	121	117	ρF
CW	Input capasitiince	V ₁ = OV or V _{CC}	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA
ΔΨΔν	Meximum input rise or fell rate	C _L = 50pF; V _{CC} = 5.5V	1.0	10	ns/V
f _{MAX}	Maximum clock trequency	C _L = 50pF; V _{CC} = 5.0V	100	90	MHz

Moto

1. C_{mn} is used to determine the dynamic power dissipation (P_{n} in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times t_1 + \sum (C_1 \times V_{CC}^2 \times t_2) \text{ where:}$$

: f, = input frequency in MHz, C, = output load capacitance in pF,

fo = output frequency in MHz, Voc = supply voltage in V,

 $\Sigma (C_1 \times V_{CC}^2 \times f_0) = sum of outputs$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
20-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11898N 74ACT11898N
20-pin plastic SO (300mil-wide)	-40°C to +85°C	74AC11898D 74ACT11898D

PIN CONFIGURATION

December 13, 1968

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

5-288

both inputs must be connected to the input data or an unused input must be tied

Data shifts one place to the right on each Low-to-High transition of the Clock (CP) input and enters the logical AND of the two inputs $(A \circ B)$ that existed one setup time before the rising clock edge into Q_n.

A Low level on the Master-Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all outputs Low.

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
18	MR	Asynchronous master reset (active Low)
13	CP	Clock input (Low-to-High, edge-triggered)
17, 14	A, B	Date inputs
19, 20, 1, 2, 3, 8, 9, 10, 11, 12	Q ₀ - Q ₉	Parallel outputs outputs
4, 5, 6, 7	GND	Ground (0V)
15, 16	Voc	Positive supply voltage

FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUTS			
OPERATING MODE	MR	CP	A	•	Q	Q,	_	٥,
Reset (clear)	L	X	X	X	Ļ	L	_	L
	Н	1	1	1	L	90	_	9
Shift	н	Ť	1	h	L	40	_	4
Sinit	н	1	h		L	a _o	_	q,
	Н	† .	h	h	Н	q _n	_	9

H = High voltage level

L = Low voltage level

I = Ligh voltage level one setup time prior to the Low-to High clock transition

I = Low voltage level one setup time prior to the Low-to High clock transition

X = Don't care

 $q_{\rm p}$ = State of the referenced input (or quiput) one setup time prior to the Low-to-High clock transition

? = Low-to-High clock transition

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74AC11898						
	TAID DE LEIT	Min	Nom .	Max	Min	Nom	Max	דואט
Vcc	DC supply voltage ¹	3.0	5.0	5.5	4.5	5.0	5.5	V
V _I	Input voltage .	0		Vcc	0		V _{cc}	· v
v _o	Output voltage	0		Vcc	0	†	V _{cc}	V
Δ۷Δν	Input transition rise or fell rate	0	.,	10	0		10	ns/V
TA	Operating free-air temperature	-40		+85	-40	1	+85	°C

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Vcc	DC supply voltage		-0.5 to+7.0	V
	DC input diode current ²	. V ₁ <0	-20	
ik or V		V _i > V _{CC}	20	mA.
V,	DC input voltage		-0.5 to V _{CC} +0.5	٧
	DC output diade current ²	V ₀ <0	-50	
ok or vo		V _o > V _{cc}	50	- mA
V _O DC output voltage	DC output voltage		-0.5 to V _{CC} +0.5	v
10	DC output source or sink current per output pin	V _O = 0 to V _{CC}	· · * ±80	mA
lcc er	DC V _{CC} current		±100	
GND	DC ground current		±100	mA
TSTG	Storage temperature		-65 to 150	°C
P _{TOT}	Power dissipation per package Plastic DIP	Above 70°C:derate linearly by 8mW/K	500	mW
101	Power dissipation per package Plastic surface mount (SO)	Above 70°C:derate linearly by 6mW/K	400	mW

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

NOTES:

1. Stresses beyond shose listed may cause parmanent damage to the device. These are stress ratings only and functional operation of the device at these or any other.

1. Stresses beyond shose listed may cause parmanent damage to the device. These are stress ratings only and functional operation of the device at these or any other. conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

μА

mΑ

40

1.0

10-Bit Serial-In Parallel-Out Shift Register

										74AC	11896				
SYMBOL	PARAMETER	PARAMETER TEST CONDITIONS		V _{CC}	T _A = +25°C		T, = -40°C		TA = +25°C		T _A = -40°C to +85°C		UNIT		
		-		v	Min	Max	Min	Max	Min	Max	Min	Max			
				3.0	2.10		2.10								
V _{IH}	High-level input voltage	1		4.5	3.15		3.15		2.0		2.0		٧		
""	mpac voilings			5.5	3.85		3.85		2.0		2.0				
				3.0		0.90		0.90							
V _{IL}	Low-level input voltage	Ì		4.5		1.35		1.35		0.8		0.8	V		
E Impar von				5.5		1.65		1.65		0.8		0.8			
	High-level					3.0	2.9		2.9						
		ligh-level V _I = V _I = -80µA V _I = V _I = -4mA V _I = 1 _{OH} = -4mA V _I = 1 _{OH} = -24mA	1 _{OH} = -80µA	4.5	4.4		4.4		4.4		4.4				
				5.5	5.4		5.4		5.4		5.4				
V _{OH}			I _{OH} = -4mA	3.0	2.58		2.48						٧		
•			A4 1	4.5	3.94		3.6		3.94		3.8				
			OH	5.5	4.94		4.8		4.94		4.8				
			1 _{OH} = -75mA ¹	5.5			3.85				3.85				
				3.0		0.1		0.1							
			I _{OL} = 50µA	4.5		0.1		0.1		0.1		0.1			
		V ₁ = V ₄		5.5		0.1		0.1		0.1		0.1			
VOL	Low-level output voltage	or	I _{OL} = 12mA	3.0		0.36		0.44					V		
OL		V _H		4.5		0.36		0.44		0.36		0.44]		
		VIH IOL = 24mA	Or	5.5		0.36		0.44		0.36		0.44			
			I _{OL} = 75mA ⁷	5.5				1.65				1.65	· ·		
1,	Input leakage current	V _I =V _{CC}		5.5		±0.1		±1.0		±0.1		±1.0	μA		
					+	+		+	+	+	+	-			

5.5

5.5

4.0

40

4.0

0.9

NOTES:

l_{CC}

Alcc

Quiescent supply

Supply current, TTL inputs High²

current

at V_{CC} or GND

One input at 3.4V, other inputs

^{1.} Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{CC}.

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V GND = 0V; t, = t, = 3ns; C, = 50pF

SYMBOL	PARAMETER	WAVEFORM		T _A = +26"	С	T _A = -48	10°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
1 _{MAX}	Maximum clock frequency	1	60	70		60		MHz
t _{PLH}	Propagation delay CP to Q _n	1	1.5 1.5	8.9 8.8	10.8 10.7	1.5 1.5	11.8 11.6	ns
^t PHL	Propagation delay	2	1.5	9.6	11.5	1.5	12.6	ns
^t s	Setup time, High or Low A, B to CP	3	13.5			13.5		ns
ч	Hold time, High or Low A, B to CP	3	0.0			0.0		ns
^L w	Clock pulse width (shift) High or Low	1	8.0			8.0		ns
^L w	MR pulse width, Low	2	3.0			3.0		ns
REC	Recovery time MR to CP	2	1.5			1.5		ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V GND = 0V; $t_{_{\rm I}}$ = $t_{_{\rm I}}$ = 3ns; $C_{_{\rm L}}$ = 50pF

SYMBOL	PARAMETER	WAVEFORM		T _A = +257	C	T _A = -	10°C to 5°C	UNIT
			Min	Тур	Max	Min	Mex	
f _{MAX}	Maximum clock frequency	1	90	100		90		MHz
^t PLH ^t PHL	Propagation delay CP to Q _n	1	1.5 1.5	6.8	8.0 8.4	1.5 1.5	8.8 9.2	ns
t _{PHL}	Propagation delay MR to Q	2	1.5	7.2	8.9	1.5	9.6	ns
t _s	Setup time, High or Low A, B to CP	3	8.5			9.5		ns
t _H	Hold time, High or Low A, B to CP	3 .	0.0			0.0		ns
¹w	Clock pulse width (shift) High or Low	1	5.5			5.5		ns
t _w	MR pulse width, Low	2	2.5			2.5		na
REC	Recovery time MR to CP	2	1.5			1.5		ns ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V GND = 0V; t, = t, = 3ns; C, = 50pF

SYMBOL	PARAMETER	WAVEFORM	T _A = +25°C			T _A = 4	10°C to 5°C	דואט
			Min	Тур	Mex	Min	Max	
MAX	Maximum clock frequency	1	80	90		80		MHz
¹ PLH ¹ PHL	Propagation delay CP to Q _n	1	1.5 1.5	7.5 7.7	9.0 9.1	1.5 1.5	9.8 10.0	ns
1 _{PHL}	Propagation delay	2	1.5	9.5	11.0	1.5	11.9	ns
t _g	Setup time, High or Low A, B to CP	3	9.5			9.5		ns
t _H	Hold time, High or Low A, B to CP	3	0.0			0.0		ns.
t _w	Clock pulse width (shift) High or Low	1	6.0			6.0		ns
t _W	MR pulse width, Low	2	4.0			4.0		ns
^t REC	Recovery time MR to CP	2	1.5			1.5		ns

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{N} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{N} = GND to 3.0V

10-Bit Serial-in Parallel-Out Shift Register

74AC/ACT11898

AC WAVEFORMS AC : V_{M} = 50% V_{CC} , V_{IN} = GND to V_{CC} . ACT : V_{M} = 1.5V, V_{IN} = GND to 3.0V (Continued)

Section 6 Application Notes

INDEX

AN600	Handling Precautions6-3
AN601	Simultaneous Switching Evaluation of Advanced CMOS Logic 6-5
AN203	Test Fixtures for High-Speed Logic6-9

AN600 Handling Precautions

Application Note

ELECTROSTATIC CHARGES

Electrostatic charges can be stored in many things; for example, man-made fiber clothing, moving machinery, objects with air blowing across them, plastic storage bins, sheets of paper stored in plastic envelopes, paper from electrostatic copying machines, and people. The charges are caused by friction between two surfaces, at least one of which is non-conductive. The magnitude and polarity of the charges depends on the different affinities for electrons of the two materials rubbing together, the friction force and the humidity of the surrounding air.

Electrostatic discharge is the transfer of an electrostatic charge between bodies at different potentials and occurs with direct contact or when induced by an electrostatic field. All of our CMOS ICs are internally protected against electrostatic discharge, but they can be damaged if the following precautions are not taken.

WORK STATION

Figure 1 shows a working area suitable for safety handling electrostatic sensitive devices. It has a work bench, the surface of which is conductive or covered by an antistatic sheet. Typical resistivity for the

bench surface is $1k\Omega$ to $0.5M\Omega$ per cm². The floor should also be covered with antistatic material. The following precautions should be observed:

- Persons at a work-bench should be grounded via a wrist strap and a resistor.
- All electrical equipment should be connected to the mains via a ground-leakage switch and the equipment cases should be grounded.
- Relative humidity should be maintained between 50% and 65%.
- An ionizer should be used to neutralize objects with immobile static charges.

RECEIPT AND STORAGE

CMOS ICs are packed for dispatch in antistatic/conductive boxes, rails or blister tape. The fact that the ICs are sensitive to electrostatic discharge is shown by warning labels on both primary and secondary packing.

The ICs should be kept in their original packing while in storage. If a bulk container is partially unpacked, the tasks should be performed at a proteoted work station. Any CMOS ICs that are temporarily stored should be packed in conductive or antistatic packing or carriers.

ASSEMBLY

CMOS ICs must be removed from their protective packing with grounded compo-

nent-pincers or short-circuit clips. Short-circuit clips must remain in place during mounting, soldering and cleansing/drying processes. Do not remove more ICs from the storage packing than are needed at any one time. Production/assembly documents should state that the product contains electrostatic sensitive devices and that special precautions need to be taken.

During assembly, ensure that the CMOS ICs are the last of the components to be mounted and that this is done at a protected work station.

All tools used during assembly, including soldering tools and solder baths, must be grounded. All hand-tools should be of conductive or antistatic material and, where possible, not insulated.

Measuring and testing of completed circuit boards must be done at a protected work station. Place the soldered side of the circuit board on conductive or antistatic foam and remove the short-circuit clips. Remove the circuit board from the foam, holding the board only at the edges. Make sure the circuit board does not touch the conductive surface of the work bench. After testing, replace the circuit board on the conductive foam to await packing.

Handle assembled circuit boards containing CMOS ICs in the same way as unmounted CMOS ICs. They should also carry warning labels and be packed in conductive or antistatic packing.

AN601 Simultaneous Switching Evaluation of Advanced CMOS Logic

Application Note

INTRODUCTION

The purpose of this paper is to define what Simultaneous Switching Evaluation (SSE) is, why it is tested, and how it is tested for the Advanced CMOS Logic (ACL) family of integrated circuits.

WHY SHOULD SSE BE PERFORMED

The purpose of SSE is to evaluate what effect switching more than one output simultaneously has on the performance of the circuit. SSE becomes important in any high-performance line of circuits because the propagation delays and output edge rates are very feet.

Fast edge rates can team up with perasitic inductances to produce unwanted side effects such as output disturbances and/or performance degradations. Output disturbances can manifest themselves in the form of glitches or bumps from solid low levels near or above the low threshold of a subsequent device, or from solid highs down near or below the high threshold of a subsequent

device. Degradations take the form of slowed propagation delays, abnormally slow or distorted output edges, or lost data in devices containing memory. Any and all of these unwanted side effects will cause a system to perform unpredictably and unreliably. Output disturbances especially can be the cause of a multitude of system performance abnormalities.

Since ACL is considered to be a high-performance family of circuits, SSE is necessary in order to insure that the circuits will perform as specified under any switching condition. To guarantee that ACL will perform satisfactorily under multiple output switching conditions, comprehensive SSE is performed prior to product release. Tests are done to evaluate the magnitude of output disturbances, the integrity of stored data, and the propagation delays and output transition times under conditions of multiple outputs switching.

Each of these evaluations will now be explained and a very general procedure for measuring each will be given. For a specific step-by-step procedure for measuring each, including fixturing and equipment requirements, refer to Appendix 1.

CUITPUT DISTURBANCE TESTS

The purpose of these tests is to determine the magnitude of disturbances on the High and Low level of the outputs when multiple outputs are switching. The terms V_{OHY} and V_{OLP} are used to describe the level of these disturbances. V_{OHY} refers to the minimum 'valley' High level output voltage and V_{OLP} refers to the maximum 'peak' Low level output voltage. Figure 1 shows a typical example of what the output disturbances look like and also defines the points where V_{OLP} and V_{OHY} are measured.

For circuits with a single output or a single complementary output, the circuit is set up so that the pin under test is switching and the disturbance levels are then measured at the points on the waveform as shown in Figure 1. For all other circuits, the circuit is set up so that the pin under test is not switching while the other outputs are switching and the disturbance levels are then measured as shown in Figure 1.

Simultaneous Switching Evaluation of Advanced CMOS Logic

AN601

Output High Disturbance

For circuits with a single output or a single complimentary output, set the input conditions so the output(s) under test is switching. For all other circuits, set the input conditions so the output under test is High with as many other outputs as possible switching.

Examine the waveform and record the level of V_{OHV} with respect to V_{CC} as defined by Figure 1.

Output Low Disturbance

For circuits with a single output or a single complimentary output, set the input conditions so the output under test is switching. For all other circuits, set the input conditions so the output under test is Low with as many other outputs as possible switching.

Examine the waveform and record the level of Vour with respect to Ground as defined by Figure 1.

STORED DATA INTEGRITY

The purpose of this test is to determine what effect, if any, switching multiple outputs simul-

taneously has on integrity of data storage for circuits with internal storage elements. This test is necessary to insure that the contents of internal storage elements are never corrupted by voltage transients which appear not only on outputs, but also on internal chip supply lines. To perform this test:

- Store a logic 1 in an internal storage element.
- Switch all remaining outputs or, if possible, all outputs.
- Discontinue switching and set input conditions so that the contents of the internal storage elements can be observed.
- Verify that the internal storage element has not changed state.
- Store a logic 0 in an internal storage element and repeat the previous three steps.

SIMULTANEOUS SWITCHING INFLUENCE ON AC PARAMETERS

The purpose of these tests is to determine what effect switching multiple outputs simultaneously has on the propagation delays and

output transition times of a circuit. This test is necessary to insure that the propagation delays and output transition times are not significantly degraded by switching multiple outputs simultaneously. To perform these tests:

- Set the input conditions so that the output under test will be switching in the manner required for measurement of the desired propagation delay or output transit on time.
- Switch as many other outputs as possible.
- Measure the propagation delay or output transition time on the output under test using any accurate method.

SUMMARY

The user of ACL circuits should be aware of any potential disturbances or performance degradations that can occur under conditions of multiple output switching and should understand the terms used to describe and measure these. This paper is an attempt to standardize a procedure to which all ACL circuits should be subjected. This method, when followed, will give a user a clear indication of actual device performance.

Simultaneous Switching Evaluation of Advanced CMOS Logic

AN601

APPENDIX 1

A Step-by-Step Procedure for Evaluating SSE in the Laboratory

1.0 PURPOSE AND SCOPE OF DOCUMENT

1.1 introduction

This document gives the steps and procedures needed for completing SSE for ACL devices. Testing is done to determine the effects that switching more than one output simultaneously has on output disturbances, stored data integrity, propagation delays, and output transition times.

2.0 EQUIPMENT REQUIREMENTS

2.1 Hardware

Bench Controller
Programmable Oscilloscope
Programmable Pulse Generator
Temperature Controller
Power Supply Programmer
Test Fixture

Plotter
Printer
Dice System (An optional data generator/analyzer)

HP9836C or equivalent TEK7854 or equivalent HP8161A or EH2000 TP412 or equivalent ICS4871 or equivalent Acceptable high frequency PC board fixture HP7475A or equivalent HP8180A, HP8182A, and HP15414A

3.0 TEST PROCEDURES FOR TESTS REQUIRING PLOTS

3.1 General

- 3.1.1 When applicable, plots should be taken on at least one part and data values should be taken on three parts. The one part used for plots should have typical characteristics for the sample as a whole.
- 3.1.2 The test fixture will be the same one used for standard AC testing. This is a high-frequency PC board fixture featuring adequate grounding and V_{CC} decoupling as well as 50Ω micro strip line for all signal paths and close proximity loading. The test fixture should have V_{CC} decoupling of at least 100 μF, 0.1 μF, 0.01 μF, and 100 μF. For a complete discussion of fixturing requirements including grounding, bypassing, and general high-frequency testing requirements refer to the Application Note entitled "Testing and Specifying ACL Logic."

3.1.3 Pulse Generator Setup

The input signal should be terminated with 50Ω and then branched out equally to all inputs needing the input signal. ("Simultaneous" is defined as the input pin's Simultaneous Logic of the device seeing a given signal at the same moment in time.) Line lengths from the termination to the device pin should be kept as short as possible. The dice system can be used if more flexibility of input programming is necessary. If the dice system is used, interchannel delay between the various channels must be nulled out at the pins of the device. If a gang-type configuration is used to tie the input signal to more than one input, input edge rates should be as close as possible to the 3.0ns times.

- 3.1.4 All outputs should be loaded with the standard 50pF, 500Ω AC load.
- 3.1.5 The output to be evaluated should be the one farthest away from the V_{CC} pins. If there are two equidistant outputs, record data on both outputs and plot only the worst-case output. Also, if more than one mode/path exists, all should be checked, but only the worst case tested.
- 3.2 Output High Disturbance

 Measure the V_{OHV} level on an output held
 High during simultaneous switching.
- 3.2.1 V_{CC} = -5.5V, Temp. = 55°C and V_{CC} = 5.0V, Temp. = 25°C
- 3.2.2 Number of devices = 3. Plots should be taken on one part.
- 3.2.3 Input conditions should be set so that the output under test is High.
- 3.2.4 Switch the remaining outputs simultaneously from Low to High and record
- 3.2.5 Plot waveforms of a switching input, the High output, and a switching output.

Simultaneous Switching Evaluation of Advanced CMOS Logic

AN601

3.2.6 Repeat steps 3.2.4 through 3.2.5 for the following other transitions:

High to Low	
3-State to Low	(If possible)
Low to 3-State	(If possible)
High to 3-State	(If possible)
3-State to High	(If possible)

3.3 Output Low Disturbance Testing

Measure the VOLP level on an output held Low during simultaneous switching.

3.3.1
$$V_{CC}$$
 = 5.5V, Temp. = -55°C and V_{CC} = 5.0V, Temp. = 25°C

- 3.3.2 Number of devices = 3. Plots should be taken on one part.
- 3.3.3 Input conditions should be set so that the output under test is Low.
- 3.3.4 Switch the remaining outputs simultaneously from High to Low and record Vol.P.
- 3.3.5 Plot waveforms of a switching input, the Low output, and a switching output.
- 3.3.6 Repeat steps 3.3.4 through 3.3.6 for the following other transitons

3.4 Stored Data Integrity

For devices with internal storage elements, perform tests to insure that internal storage

elements aren't corrupted by simultaneous switching of outputs.

3.4.1
$$V_{CC} = 5.5V$$
, Temp. = -55°C and $V_{CC} = 5.0V$, Temp. = 25°C

- 3.4.2 Number of devices = 3.
- 3.4.3 Store data (both High and Low) in an internal storage element. This can be the same element of the output tested in 3.2 and 3.3.
- 3.4.4 Switch the remaining outputs simultaneously as was done in 3.2 and 3.3 (including 3-States if possible). Check to see that data is not corrupted with any of the switching.
- 3.4.5 When possible, the dice system should be utilized to functionally check out various combinations of switching with respect to the above procedures.

3.5 Input Waveform Phase Effects

Check phase effects and measure the delay offset that causes the largest magnitude of output disturbances (when possible).

- 3.5.2 Temp. = 25°C and -55°C
- 3.5.3 Number of devices = 3. Plots should be taken on one part.
- 3.5.4 Testing is completed by switching half of the outputs 180° out-of-phase from the other half of the outputs.
- 3.5.5 Adjust the delay on half of the outputs (with respect to the other half) until the

- worst-case output disturbance is obtained.
- Record the edge offset and disturbance magnitudes for three parts.
- 3.5.7 Plot waveforms (one part) of a switching input from one half and another from the other half with outputs from both halves.
- 3.5.8 Repeat steps 3.5.5 through 3.5.7 for inphase effects as well.

4.0 TEST PROCEDURES FOR tpd VS SIMULTANEOUS SWITCHING

4.1 General

Measure propagation delays and output transition times under conditions of multiple outputs switching.

- 4.1.1 Number of devices = 3
- 4.1.2 V_{CC} = 5.0V, Temp. = 25°C
- 4.1.3 Number of outputs tested = 1
- 4.1.4 Number of outputs switching = 1 to N (when possible)
- 4.1.5 The test output should be tested for all possible propagation delays (tp_H, tpHL, tpZL, tpLH, and tpHZ) and also transition times (tith and tthi) for all conditions of outputs simultaneously switching (1 to n).
- 4.1.6 All tests should be made with other outputs switching in-phase and then out-of-phase,

Application Note

INTRODUCTION

The Signetics Standard Products Division (SPD) operates a Characterization Laboratory in Orem, Utah. This Lab maintains the capability of testing the 11 logic product families the Division supports. These include: AuTTL-74XXX, Schottky-74SXXX, Low-Power Schottky-74LSXXX, FAST-74FXXX, ALS-74ALSXXX, High-Speed CMOS-74HCXXX, High-Speed CMOS-74HCXXX, Advanced CMOS/TTL (ACL)-74ACT11XXX, Advanced CMOS/TTL (ACL)-74ACT11XXX, and both 10K and 100K ECL.

Due to the great diversity of product families and the different testing requirements and complexity of the product types of each family, Signetics SPD Characterization has designed and built a bench test AC fixture that is specifically designed to address to only the High-speed logic families. It has the advantages of being very versatile, has high bandwidth capability (\geq 750MHz), is 50 Ω system compatible, and is manually programmable for the input static voltages. This provides the ability to have one fixture that addresses many product types across families. The extent of this versatility is explained in the following Application Note. The families that this fixture is intended to support are: FAST, ALS, ACL, 10K ECL, and 100K ECL (Note: This fixture is compatible with any 500Ω pull-down load.)

THEORY OF OPERATION

There are several key points in testing the faster edge-rate logic families. They are:

- Very good by-passing and decoupling (they are different).
- Large ground and V_{CC} planes
- Low-impedance signal lines (i.e., 50Ω)
- Signal lines that are uniform in impedance over frequency
- Signal lines must have high bandwidth (> 500MHz)
- Low-inductance paths for the DUT leads, including V_{CC} and GND
- Output AC load close to the DUT

- e Measurement point close to the DUT
- Avoidance of ground loops (especially on inputs at DC levels)

Also of concern to the test engineer and the manager are:

- Versatility and/or ease of use (there are: tradeoffs)
- Cost
- The number of fixtures needed to support products

Each of these concerns have merit and must be understood by the user of these logic families if valid and correlatable results are to be found.

V_{CC} and GND

The secret in V_{CC} and GND use in floturing is to do the things that reduce the noise that can: 1) get to your part, and 2) come from your part. This is done by reducing the noise of the V_{CC} as it arrives to the fixture, by judicious application of frequency dependent by-passing at the DUT V_{CC} pin to GND and reducing inductance from the V_{CC} and GND pins of the DUT to the point where good contact of the by-passing and V_{CC} and GND planes occur. All of these are techniques used in good RF and microwave board design. By reducing parasitic inductances and

cleaning up any sources of noise, good signal integrity is better maintained.

These points are evident in the fixture Signetics has designed. Part of the noise reduction of the power supply as it arrives is done by by-passing the power supply at its terminals. The power is then brought to the fixture via banana cables, (as short as possible), to jacks on the chassis of the fixture. An 18 gauge wire, attached to the jack, is wrapped through a 34 inch ferrite core 8 - 12 times for decoupling of any spikes. (Details of the cores used are included in the parts list.) This acts as a Low-pass filter. The wire is then soldered to the bottom of the PC board onto the large V_{CC} plane that riarrows to the V_{CC} bus running between the pins of the DUT. See Figures 1 and 2 for detail.

Triangle-shaped, the V_{CC} plane provides a Low inductive path for the V_{CC} to the DUT pin. See Figure 2 for the board layouts. The V_{CC} bus from this plane travels down between the DUT pins to that connection. This is so connection to the V_{CC} bus is easy and very short. The DUT may have V_{CC} located on any pin with this configuration. The pin is connected to the V_{CC} bus by soldering small copper braid or similar Low-inductance wire capable of carrying the current for the device, see Figure 3.

On the opposite side of the top layer of the board is a triangle-shaped ground plane. Ground planes are also located on the bottom layer of the board in the same places as the $V_{\rm CC}$ and ground planes of the top layer. Since this fixture is laid out for 50Ω stripline, layers 2 and 3 are almost total ground plane, with holes in them for feed-throughs and components. Also found between the signal lines, on the top and bottom layers, are ground plane "fingers" that are connected to all 4 layers by plated-through holes. This provides good separation of the signal lines resulting in lower cross-talk.

The bottom layer ground plane consists of two triangle-shaped planes connected by a bus strip that runs between the DUT pins. This was done for 3 reasons: First, this allows connection of any ground pin of the DUT to the ground, regardless of location; like the Vcc connection on the top layer. Second, it allows the connection of the by-pass capacitors from the V_{CC} pin to the ground with the shortest possible lead: length, Characterization uses typically 2 or 3 ceramic chip capacitors and 1 or 2 dipped tantalum capacitors (35V) to by-pass the V_{CC} pin. It is important to keep the dipped tantaium capacitor's leads as short as possible to reduce series inductance. The recommended values of capacitors are: 100pf, .01µf, .1µf, and 10µf, We have found at times, the need to adjust these values depending upon the product type and its performance. Some noise sensitive circuits need mere by-passing in the lower and extreme higher values of capacitance. And third, the connection of the two planes eliminates possible ground loops and the feedthroughs create a ground mesh and give an excellent ground plane for the circuit. Figure 3 illustrates the by-pass connections.

BY-PASS AND DECOUPLING

It is important to understand the difference between decoupling, as with the ferrite core, and by-passing, as with capacitors. Decoupling occurs as High-frequency signals are removed by saturation of the ferrite core. This prevents "noise" that may be on the $V_{\rm CC}$ plane. The action of the by-passing capacitors is to: 1) "pass" any non-DC signals that occur on the $V_{\rm CC}$ (due to the part's operation) to ground, and 2) be able to provide the "instantaneous" current demands of the part as it switches.

The various values of capacitors are intended to provide a Low-impedance path at all operating frequencies. Since real-world capacitors have resonance points at a given frequency, depending upon their value and type of capacitor (and actually turn inductive above the resonance point), using different values that have different resonance points allows; an across-frequency Low-impedance path for You noise.

An important point in the use of by-pass capacitors is the minimization of lead length. Lead length represents inductance: inductance in series with the capacitance. If it is too much, it can cause resonance and oscillation problems with the part and/or power supplies and nullify the benefit of the capacitors. It also plays a major part in inhibiting the effect of the "instantaneous" current response needed by the part from the by-pass capacitors. It actually can cause the ground of the device to track the change in current to the degree of the lead inductance. The lower the inductance, the lower the "ground bounce" effect. Hence, short or no lead lengths on capacitors are needed to help prevent the effects of ground bounce.

SIGNAL LINES

A signal line is defined as a line that carries the input stimulus, either DC or AC, or output response, to or from the device. Since these signals are measured and determine the data which characterizes the part, it is critical that they are of the highest integrity and represent, as far as physically possible, the action of the part; not the meances of the fixture. To achieve this, the line must not be able to change the signal over the measureable frequencies of the device, nor affect the delay of the part.

The fixture as designed, has 50Ω signal fines determined by a stripline layout method. The 50Ω value was selected for several reasons: 1) the 50Ω value matches impedance with the pulse generators that are used as input stimulus. 2) The output loads specified for this fixture are either a 500Ω pull-down or a 50Ω pull-down (ECL), in parallel with a capacitive load. This allows the 50Ω signal line to be terminated into this load for either a 10:1 or a 1:1 match. 3) A Low-impedance line will have better characteristics with regards to cross-talk and resisting external noise.

There are two types of signal lines on this fixture: input and output; both of which are 90Ω transmission lines. The input line is on the top side of the board and is always terminated in 50Ω . It is connected to the DUT via a .3" jumper, Jumper #1 for input. When this jumper is installed, the DUT pin is available only as an input. To allow this line to be used as an output, a .1" jumper, Jumper #1 for output, is used instead of the .3" jumper. This connects the DUT pin to the AC load when the DUP pin is an output. See Figure 5.

The output signal line can be dedicated two different ways. The first method, used for ECL, is to leave shorted the 50 Ω trace and have it run directly into the SMB connector into the 50 Ω sampling system. The second method is to cut the trace at the DUT pin and solder the 450 Ω chip resistor, R1, across the cut. This, combined with the 50 Ω scope, then appears to the part as either a 500 Ω probe for the input signal or the 500 Ω output AC load for the output signal.

The signal lines are equal length and therefore do not introduce any extraneous delay from pin to pin. We also characterized the impedance of the lines over frequency to ensure minimal distortion over the frequency range and any effective change in propagation delay caused by the relationship of inductance and group delay, see Ap Note 202. Figure 4 illustrates the frequency response of the signal lines in impedance.

This is considered to be high bandwith and encompasses the frequency range exhibited by ALS, ACL, ELC, and FAST logic families.

LOADING

The explanation of the two types of AC loads that may be used will be covered in two parts. First the ALS, ACL, and FAST implementation will be discussed, then the ECL implementation.

ALS. ACL, and FAST Implementation

The FAST, ALS, and ACL product families AC load is specified as a 50pF capacitor and a 500Ω resistor in parallel. This load has the advantage of being adaptable to both a High-impedance (A.T.E.) or a Low-impedance (bench) measurement environment. The Signetics fixture uses a Low-impedance environment primarily for two reasons. The first reason is that experience of the last 5 years has told us that High-impedance probes represent a reliability concern and can introduce

hard to detect errors into the waveform. The second reason being that most suppliers of these technologies provide data based upon the Low-impedance approach and most large users of these products do so as well. This also allows the flicture to be used for ECL testing since that product uses a totally 50Ω environment. Figure 5 illustrates how this test fixture implements the $50\text{pF}/500\Omega$ load schematically.

The fixture was laid out to present the load as close as possible to the device, and yet allow for flexibility in deciding if a certain pin is an output or an input. This distance is critical due to its inductive effect upon ground bounce phenomens. It is acknowledged here that a fixture dedicated to a single device type without jumpers, and therefore placing the

load virtually on the pin of the device, would show the ground bounce phenomena for simultaneous switching to be less than that of this fixture. However, this fixture can be so dedicated by not using the pads as provided, but rather by using the ground bus, like the by-pass capacitors used. The flexibility of this fixture substantially reduces the cost of fixturing for these families. Studies on simultaneous switching with this fixture have shown dramatically favorable results to previous fixtures. Those studies continue. For work other than that of simultaneous switching, there will be no appreciable difference with a dedicated fixture.

As illustrated in Figure 5, the load is shared with the 50Ω input of the measurement system; a 50Ω sampling oscilloscope. The 450Ω resistor: R1, is soldered to the socket pin of the device and is in series with the 50Ω input of the scope. Figure 6 illustrates this on the board layout of one input/output pin. This allows virtually a probe tip on the device pin. The load capacitor: C1, is a 33pF ceramic chip capacitor. This is added to the measured value of 17pF of board capacitance, achieving the 50pF value specified for the load. The distance from the pin to the capacitor is .5 inches and is adequate for the testing of these product families.

For testing 3-State parameters, the 500Ω resistor: R2, is connected to it's pull-up supply. V_1 via a .3" jumper: Jumper #2. The V_1 supply is bused to each pin and may or may not be connected with that jumper. See Figures 5 and 8.

ECL Implementation

When testing ECL product, the 450 Ω resistor: R1, is not used, Rather, this point is left shorted together in the construction process. Also for ECL, the load chip capacitor: C1, the tri-state pull-up resistor: R2, the 50Ω terminator: R3, and the "output only" jumper: Jumper #1, are not used. The input signal travels down the input path, is jumpered using the "input only" (Jumper #1), goes to the device, travels out the output path (left shorted, no R1), and proceeds to the scope. When the signal is an output, the "input only" jumper: Jumper #1, is removed and a 50Ω terminator is connected to the SMB connector as the load or the 50Ω input of the scope. See Figure 7.

INPUT STIMULUS AND MEASUREMENT

When the input is not used for a signal input, the line may be switched to one of three voltage sources: V_e 1 through V_e 3, by the use of a DIP switch on each pin. It may also be left open and then the 50Ω pull-down resistor: R1, pulls the line to ground and can be used as a hard low level. See Figure 5. These voltage levels are brought in from external supplies through banana connectors like V_{CC}. This scheme eliminates excessive cabling to each input to provide the static input levels and thereby reduces parasitic inductances and cross-talk. Each of the 3 busses and the V, bus all have places for by-pass capacitors in the event of noise on the static levels. Figure 8 illustrates the DIP switch and SMB connectors and how they control the input stimulus and output measurement.

As stated previously, the measurements are made with 50Ω sampling systems. The connections to these systems are made via SMB connectors. This was chosen since it is compatible with SMC; it is push-on, it is small for easy configuration, and it is capable of high bandwidth operation. Figure 8 illustrates where the connections are made, where the pulse generators connect to the input and an SMB connector. Since the 450Ω resistor: R1, is soldered directly to the pin of the device, the actual probe tip is at that point. See Figure 6. This has the advantage of eliminating any distance from the device to the probe tip, thus guaranteeing accurate results.

VERSATILITY AND COST

At some point, there is a choice between the most technically attractive options and the cost of options. This fixture has been primarily designed to optimize the cost effectiveness of test fixturing yet yielding a technically sound tool. To do this, a compromise has been made between the ease of use and the versatifity.

In the construction of the fixture, a choice is made as to where the V_{CC} and GND pins are to be located. This then dedicates this particular fixture to part types with this V_{CC} and GND configurations. This is also done with a

dedicated fixture. However, on a dedicated fixture, the pins are individually constructed to be either an input or an output, and in so doing, the fodure is usable for 1-to-4 devices. The Signetics fixture, once dedicated to a particular V_{CC} and GND configuration, is built up to have both input and output components on all signal pins. The selection of which pin is an output or an input is made by inserting the appropriate jumper. See Figures 5 and 6. The same applies in doing tri-state testing. The tradeoff here is that it would probably take less time to setup the dedicated fixture than the Signatics fixture. To help compensate for that tradeoff, we have the three Vs supplies that may be switched into any pin to provide input static levels and eliminate the need to bus input High or Low levels by external cabling. For the user that means the only connections being made to the fixture

- the V_{CC} (banana jack)
- the (GND) (banana jack): this is the common ground of all input supplies.
- the V_S 1, V_S 2, and V_S 3 supplies (banana jack): these may be any voltage and are switchable. Signetics connectors programmable supplies to these connectors.
- the V_t supply (banana jack): this is the tri-state pull-up voltage and is permanently connected to the bus to each pin. It is selectable by Jumper #2, see Figures 5 and 6. For FAST and ALS products this is 7V. For ACL products this is V_{CC} × 2 and it is not used for EC), applications.
- Input Stimulus (inside SMB connector: this is found on every input/output pin. More than one pin may be used in this manner. CAUTION: When using this connector as an input stimulus, make sure V_s 1 + 3 are disconnected. This will short the nower supplies to the generator if they are not disconnected.
- Output Measurement or Scope Connection (outside SMB connector: this is also found on every input/output pin. More than one pin may be used in this

manner. <u>Hemember</u>, if this pin is not connected to a scope and is an output, a 50Ω resistor must be connected here to ground to complete the 50Ω resistive load. Signetics has constructed 50Ω load by soldering a high-quality (High-frequency) 50Ω resistor inside a female SMB cable connector. See Figure 9.

CAUTION: V_{S.} 1.2 and 3 are all on the same DIP switch. Since they connect to the same bus per pin. ONLY ONE SUPPLY MAY BE CONNECTED AT ONE TIME, Otherwise, this will result in a short between power supplies connected.

With these 6 connections, the fixture is capable of testing the product lines as mentioned.

The cost of this fixture ranges from 550 per fixture, dedicated to a 20-pin device in quantities of 1 – 10, to as low as 385 per fixture of the same type in quantities over 100. This is not substantially higher than the cost of a dedicated fixture; which is estimated at 200 – 500. The factor to consider would be the quantity of fixtures for the number of products to be tested. To have a dedicated fixture for every 2 – 3 product types versus a "universal" test fixture for 20 – 30 product types is worth considering from a cost standpoint.

included in Appendix 1 is the parts list for this fixture and the supplies used by Signetics. This in no way constitutes Signetics endorsements of these suppliers and the customer may select their own supplier if they so desire. This fixture is offerd to the public to duplicate and use within their own environments. Signetics will not provide any materials but will allow the manufacturers of the board and materials to build and/or supply for any requesting party. Pricing and availability are left to the vendors and Signetics has no control over those issues. The intent is to provide something for users of High-speed logic that has been proven and tested in a true High-speed use, and provide a characterization of these products prior to their introduction to the market place.

APPENDIX I -- Component and Vendor List

1. Printed circuit mother board

SO and SOL DIP

#SD8512.28 #SD8512.31

Requirement:

1 per part configuration

Supplier:

Prototype and Production Circuits

8040 South 1444 West West Jordan, UT 84084

(801) 566-5431

2. SO and SOL sockets

PART # # PINS 14 001-014 16 001-016 16L 001-116 20 001-120

24 001-124 001-128 28

SOIC through-hole socket

Requirement:

1 per board

Supplier:

Surface Mount Devices, Inc.

PO Box 16818 Stamford, CT 06903 (203) 322-8290

3. L\$G-1AG14-1 Socket Terminal Pins

For DIP boards - number of pins equal to the part pin count times by (7) seven.

 $24 \times 7 = 168$

For SO and SOL boards - number of pins equal to the part pins count times by (5) five. $24 \times 5 = 120$

4. Shorting Blocks (Jumpers)

0.3 inch 8136-475G1 0.1 inch 8136-651P2 Supplier: Auget Requirement: 1 per pin

Requirement: 1 per pin

5. Chip Resistors

50Ω 1% CRCW 1210 450Ω 1% CRCW 1206 500Ω 1% CRCW 1206 Requirement: 1 per pin Requirement: 1 per pin Requirement: 1 per pin

Supplier:

Dale Electronics, Inc. 2300 Riverside Bivd. Norfolk, Nebraska 68701 (402) 371-0080

6. Chip Capacitors

Ceramic Part #

33pF 500R15N330JP Requirement: 1 per bin 15pF 500R15N150JP4 Requirement: 1 per board 0.015µF 500S41W103KP4 Requirement: 1 per board 0.1 µF 500S41W104KP4 Requirement: 1 per board Supplier: Johanson Dielectrics

7. Dipped Tantalum

Ceramic Part # 10µF 106K025NLF 47µF 476K020WLG Supplier: Mallory

Requirement: 1 per board Requirement: 1 per board

6-17

8. Ferrite Core

T80-1 Supplier: Requirement: 1 per board

Amidon Associates

12033 Otsego Street North Hollywood, CA 91607

(818) 760-4429

9. Mounting Screw

4-40 × 1/4 Phillips pan head machine screw Requirement: 16 per board.

Supplier: Bonnevill

Bonneville Industry Supply Co. 45 South 1500 West

Orem, UT (801) 225-7770

10. Banana Plug Jack

H.H. Smith Type Order # Requirement

 White
 1509-101
 28F1178
 6/board-color your choice

 Red
 1509-102
 35F870
 6/board-color your choice

 Black
 1509-103
 35F889
 6/board-color your choice

 Green
 1509-104
 28F1179
 6/board-color your choice

 Blue
 1509-105
 28F1180
 6/board-color your choice

 Yellow
 1509-107
 28F1182
 6/board-color your choice

Supplier: Newark Electronics

11. Switch

76PSB04 4-bit side actuated piano DIP Requirement: 1 per pin

Supplier: Grayhill Co.

12. Connectors - Snap-on SMB

51-051-0000-220 Straight jack receptacle Supplier: Sealectro

Requirement: 2 per pin

Requirement: 1 per test fixture

13. Mounting frame Signetics number CB-1:0

Supplier: Electronic Chassis Corp.

468 North 1200 West Lindon, UT 84062

Lindon, UT 84082 (801) 785-9113

14. Hook-up wire

No. 18/20 gauge Teflon coated - about 24 inches per test fixture.

The following components may be needed in use of the test fixtures but are not part of the test fixtures.

61-001-0000-89

 50Ω terminator plug

As required or hand-built with 50Ω resistor and 51-007-0000

As required

As required

51-007-0000 Straight cable clamp type 51-083-0000-222 "T" adaptor メーノ 51-085-0000 "T" adaptor メート 51-072-0000 Adaptor メート 51-073-0000 Adaptor P-P 51-001-0020 Shorting plus

"T" adaptor J-J-J As required
"T" adaptor J-P-J As required
Adaptor J-J As required
Adaptor P-P As required
Shorting plug As required

Supplier:

61-002-0000-89

Sealectro Corp (415) 965-1212

50Ω terminator jack

APPENDIX II - Construction Hints

A suggested order of assembly is as follows:

- I. Cut traces for 450 $\!\Omega$ resistor. (Not needed for ECL)
- 2. Install SMB Connectors. Elevate base from board 0.05".
- 3. Install DIP Switches. Note: Numbers on switches may not correlate to V_S supply numbers.
- 4. Install Augat socket pin.
- 5. Install load/termination resistors and capacitors.
- 6. Strap V_{CC} and GND pins to appropriate bus strips.
- 7. Install bypass capacitors.
- 8. Clean flux off of board and components.
- 9. Check for lead to frame shorts on PLCC board. (Not discussed in App Note.)
- 10. Install banana jacks on frame.
- 11. Attach board to frame with 1/4 Phillips pan head machine screws.
- 12. Wrap wire 8-12 times around ferrits core. Leave enough wire to connect to frame and board. See Figure 1.
- 13. Connect Vcc, GND, and voltage supplies from banana jacks to board.
- 14. Remove all remaining flux. Keep "flux-off" from banana jacks.

Hints on construction:

- A 0.05" shim that fits under the SMB connector base helps elevate it during construction.
- Mount the SMB connector with flat side out rather that point side out. See Figure 8.
- · Solder Augat socket pins in with a part inserted to hold the pins steady.
- "Plano DIP" switches have the numbers reversed from the Board notation. Taping a new number on the board designations will help match the switches.
- Hint for solder chip components: apply a small amount of solder on one side of the pads on the board.
- Keep DIP switches and SMB connectors spaced as far away from each other as the holes will permit, i.e., push the SMBs in and the DIP switches out.

Section 7 Packaging Information

14-PIN PLASTIC SO

16-PIN PLASTIC SO

16-PIN PLASTIC SOL

20-PIN PLASTIC SOL

24-PIN PLASTIC SOL

28-PIN PLASTIC SOL

14-PIN PLASTIC DIP

16-PIN PLASTIC DIP

20-PIN PLASTIC DIP

24-PIN PLASTIC DIP

28-PIN PLASTIC SKINNY DIP

The Philips Components technical handbook system... a comprehensive data library

The Philips Components handbook is made up of four sets of Books, each comprising several parts:-

Book 1 (light blue)

Semiconductor devices

Book 2 (orange)

Electronic tubes

Book 3 (green)

Components, materials and assemblies

Book 4 (dark blue)

Integrated circuits

Most of the devices for which full data is given in these books are those around which we would recommend equipment to be designed. Where appropriate, other types no longer recommended for new equipment designs but generally available for equipment production, are listed separately. Data sheets for these types may be obtained on request.

The current Philips Components Quick Reference Guide should always be consulted for details of our preferred range.

The data contained in these books is as accurate and up to date as possible at the time of going to press. It must be understood, however, that no guarantee can be given on the availability of the various devices, or that their specifications may not be changed before the next edition is published.

Each part is reviewed regularly, revised and re-issued where necessary.

Requests for copies of the Quick Reference Guide and individual data sheets (please quete the type number) should be sent to:-

Technical Publications Department, Philips Components Limited, New Road, Mitcham, Surrey CR4 4XY. Telex 22194.

Prices and availability information for our products can be obtained from Mullard House, or from one of our Distributors listed on the back cover.

The Philips Components Da

For the equipment designer, technical information on electronic components is vital. Philips Components market the widest range of components in the U.K., supported by a comprehensive information service – the Philips Components Data Base. Brief details are given here. For further information and an order form, please write to:-

The Technical
Publications Department,
Philips Components Limited,
New Road, Mitcham,
Surrey, CR4 4XY.

Regular Publications

Philips Components News

A must for designers, this bimonthly, newspaper-style publication briefly describes new components and offers further information on subjects of interest.

Consumer Electronics

A review, in newspaper style. It contains articles and features of interest to those in the consumer electronics industry, with emphasis on television technology and allied subjects.

Technical Publications, Brochures, Leaflets and Catalogues

We publish hundreds of publications on components and their applications. Make sure your name is on the mailing list for Philips Components News, which describes and offers new publications.

All our publications can be ordered directly via Prestel. The Philips Components Data Base begins on page 556201.

a Base

Electronic Components and Applications

A quarterly technical journal covering, in depth, developments in electronics based on the work of our laboratories. Please ask for a sample copy and subscription form.

Quick Reference Guide

All products marketed by Philips Components are listed alphanumerically and described briefly in our Quick Reference Guide.

Technical Data Service

This service provides detailed, up-to-date information on the characteristics and performance of our components. Subscribers to any or all of the four handbook sections receive all relevant handbooks. loose-leaf binders, monthly mailings of new data sheets, and new handbook parts as they are published. For those not wishing to subscribe to the Data Service, handbook parts can be purchased individually, Individual data sheets are available free-of-charge, and can be obtained by quoting the type number.

Philips Components Data Base: Prestel 556201

PHILIPS

Philips Components technical handbook

Book 4 Integrated circuits

Part 13

Part 14

Part 17

Part 19

Book 4 consists of the following parts:

Part 1 Radio, audio and associated systems: bipolar, MOS Part 2 Television, video and associated systems: bipolar, MOS Part 3 ICs for telecom: Subscriber sets, Cordless telephones Part 4 CMOS logic 4000 series Part 5 High-speed CMOS logic HC/HCT family Part 5 Supplement High-speed CMOS Designer's **Guide and Applications Handbook** Part 6 Linear products Part 6 Supplement Linear products Part 7 Memories: MOS, TTL, ECL Part IC07 Advanced CMOS Logic (ACL) Part 8 TTL digital ICs Part 8a FAST TTL digital ICs Part 9a Microprocessors and peripherals Part 12 1²C-bus compatible ICs

ASIC Programmable Logic Devices (PLD)

Radio pagers, Mobile telephones, ISDN

Microcontrollers and peripherals

Data communication products

ICs for telecom: