1 Introduction

Pace:

- 1. Chapter 1 (Overview)
- 2. §2.1-§2.4 (Group action, A_n)
- 3. $\S 2.5-\S 2.7$ (O'Nan-Scott, maximal subgroups of S_n and A_n , cover)
- 4. $\S 3.1 \S 3.3 \; (PSL_n(q))$
- 5. §3.4 (forms: bilinear, sesquilinear, quadratic)
- 6. $\S 3.5 (\mathrm{PSp}_{2m}(q))$
- 7. $\S 3.6 \; (\mathrm{PSU}_n(q))$
- 8. §3.7 (P $\Omega_m(q)$, odd q)
- 9. §3.8 (P $\Omega_{2n}(q)$, even q)
- 10. §3.10 (maximal subgroups of classical groups)

References:

Main: The finite simple groups - Wilson (GTM 251)

Perm.: Permutation Groups - J.D. Dixon, B. Mortimer (GTM 163)

Finite permutation groups - Wielandt

Class.: The Subgroup Structure of the Finite Classical Groups - Kleidman & Liebeck

The Maximal Subgroups of the Low-Dimensional Finite Classical Groups - J.N. Bray, et al.

[Notes] Classical Groups without Orthogonal (2021fall) - C.H. Li, P.C. Hua

More: (notes and papers to be referred)

1.1 History

Galois(1830s): A_n , PSL₂(p), realized the importance

Jordan-Hölder: $1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_{n-1} \triangleleft G_n = G$, where G_i/G_{i-1} is simple

Camille Jordan (1870): $PSL_n(q)$

Sylow theorem (1872): the first tools for classifying finite simple groups

Mathieu(1860s): M_{11} , M_{12} , M_{22} , M_{23} , M_{24}

L.E. Dickson(1901): classical groups, inspired by Lie algebras

Chevalley (1955): a uniform construction of $PSL_{n+1}(q)$, $P\Omega_{2n+1}(q)$, $PSp_{2n}(q)$, $P\Omega_{2n}^{+}(q)$

"twisting": ${}^{3}D_{4}(q)$, ${}^{2}E_{6}(q)$

Feit-Thompson(1963): odd order is soluble, hence nonab. FSG has an involution

1960s: proof of CSFG began

1970s: 20 sporadic simple groups dicovered

1980s: CSFG was "almost" complete

3 generations of proof of CSFG:

- 1. 1982 Gorenstein, abandon after vol 1, too long, bugs in quasithin case
- 2. 1992 Lyons, Solomon, vol 1-6 done, bug fixed, vol 7? also too long
- 3. Aschbacher, et al., find some geometric characters to simplify the proof, fusion system?

1.2 CFSG

Every finite simple group is isomorphic to one of the followings:

- i. a cyclic group C_p of prime order p;
- ii. an alternating group A_n for $n \geq 5$;
- iii. a classical group:
 - linear: $PSL_n(q)$, $n \ge 2$, except $PSL_2(2)$ and $PSL_2(3)$;
 - unitary: $PSU_n(q)$, $n \ge 3$, except $PSU_3(2)$;
 - symplectic: $PSp_{2n}(q)$, $n \ge 2$, except $PSp_4(2)$;
 - orthogonal: $P\Omega_{2n+1}(q)$, $n \geq 3$, q odd; $P\Omega_{2n}^+(q)$, $P\Omega_{2n}^-(q)$, $n \geq 4$;

where q is a power p^a of a prime p;

iv. an exceptional group of Lie type:

$$G_2(q), q \ge 3$$
; $F_4(q)$; $E_6(q)$; ${}^2E_6(q)$; ${}^3D_4(q)$; $E_7(q)$; $E_8(q)$

with q a prime power, or

$$^{2}B_{2}(2^{2n+1}), \ ^{2}G_{2}(3^{2n+1}, \ ^{2}F_{4}(2^{2n+1}), \ n \ge 1;$$

or the Tits group ${}^{2}F_{4}(2)'$;

- v. one of 26 sporadic simple groups:
 - the five Mathieu groups M_{11} , M_{12} , M_{22} , M_{23} , M_{24} ;
 - the seven Leech lattice groups Co₁, Co₂, Co₃, McL, HS, Suz, J₂;
 - the three Fischer groups Fi_{22} , Fi_{23} , Fi'_{24} ;
 - the five Monstrous groups M, B, Th, HN, He;
 - the six pariahs J_1 , J_3 , J_4 , O'N, Ly, Ru.

Conversely, every group in this list is simple, and the only repetitions in this list are:

$$PSL_2(4) \cong PSL_2(5) \cong A_5;$$

 $PSL_2(7) \cong PSL_3(2);$
 $PSL_2(9) \cong A_6;$
 $PSL_4(2) \cong A_8;$
 $PSU_4(2) \cong PSp_4(3).$

introduction, construction, orders, simplicity, action(reveal subgroup structure)

1.3 After CFSG

1.3.1 Permutation group theory

Classify

- multiply-transitive groups
- 2-transitive groups
- primitive permutation groups (O'Nan-Scott Thm): reduce to AS case

1.3.2 Maximal subgroups of simple groups

 A_n : O'Nan-Scott, Liebeck-Praeger-Saxl (The symmetric difference set of AS subgroups and maximal subgroups of A_n is listed out, while listing their intersection is impossible.)

Classical: began with Aschbacher,1984, see Kleidman-Liebeck and Low-dimension.

Exceptional: Done recently by David Craven, see arXiv

Sporadic: Done. See a survey by Wilson and recent work on arXiv for the Monster.