Правила проведения экзамена

- 1. По ТВ семинарист выставляет каждому студенту 0, 1, 2 или 3 балла (2 балла за КР, 1 балл за работу в семестре). На экзамене студент получает задачи по ТВ к количестве 2-(балл за семестр по ТВ). Если студент получил 3 балла за ТВ, то у него появляется бонусный балл, который прибавляется к итоговой оценке.
- 2. По ТМ студент должен отчитаться по задачам из обязательного списка (см.ниже) в устной форме (формат коллоквиума: вытягивается по одной задаче из каждого списка 6 шт., устно рассказывается преподавателю). Коллоквиум считается сданным, если решено >=4 задач.
- 3. Сдать коллоквиум можно досрочно на зачетной неделе или в январе (доступные даты 16, 17, 18, 19, 20 для ПМИ и ПМФ, 23, 24, 25 для ПМФ). Для досрочной сдачи только одна попытка. В этом случае при сдаче 5 задач будут зачтены 6, при сдаче 4 будут зачтены 5. Если досрочная попытка провалена или не использована, коллоквиум сдается в начале экзамена в качестве входного контроля (решение <4 задач (заранее объявленых задач) означает "неуд"на экзамене).
 - Важно: задачи коллоквиума это либо контр-примеры к теоремам, либо упражнения на определения. Поэтому вариант с январем мне казался наиболее удобным, параллельно с разбором теории разобраться в упражнениях и контр-примерах, и просто вечером придти отчитаться, что разобрались.
- 4. В случае удачной сдачи коллоквиума(>=4 задач) на экзамене выдается билет, состоящий из двух вопросов по программе курса (см. ниже), ответ на который оценивается по 10-балльной шкале.
- 5. Оценка выставляется по формуле: (ответ на экзамене)-(число нерешнных задач по Теории вероятностей (ТВ) и теории меры (ТМ))+бонус за семестр.

Программа курса

- 1. Вероятностное пространство как математическая модель случайного эксперимента. Статистическая устойчивость.
- 2. Дискретное вероятностное пространство. Классическая вероятность. Построение простейших вероятностных пространств. Элементы комбинаторики. Вероятность суммы событий.
- 3. Геометрические вероятности. Задача "о встрече".
- 4. Условная вероятность. Формулы полной вероятности, умножения и Байеса.
- 5. Независимость событий, виды и взаимосвязь.
- 6. Случайные величины. Независимость случайных величин. Распределение. Примеры. Математическое ожидание, дисперсия, ковариация, корреляция. Свойства.
- 7. Схема испытаний Бернулли. Математическая модель, предельные теоремы: Пуассона и Муавра-Лапласа (б/д).

- 8. Системы множеств (полукольца, кольца, алгебры, сигма-алгебры). Примеры. Минимальное кольцо, содержащее полукольцо. Понятие наименьшего кольца, алгебры, сигма-алгебры, содержащей систему множеств.
- 9. Меры на полукольцах. Классическая мера Лебега на полукольце промежутков и ее сигмааддитивность.
- 10. Продолжение меры с полукольца на минимальное кольцо. Наследование сигма-аддитивности при продолжении меры. Внешние меры Лебега и Жордана. Мера Лебега. Свойства. Сигма-алгебра измеримых множеств. Сигма-аддитивность меры Лебега на сигма-алгебре измеримых множеств.
- 11. Полнота и непрерывность мер. Теоремы о связи непрерывности и сигма-аддитивности.
- 12. Мера Бореля. Меры Лебега-Стилтьеса на прямой и их сигма-аддитивность.
- 13. Сигма-конечные меры.
- 14. Неизмеримые множества.
- 15. Измеримые функции. Их свойства. Измеримые функции и предельный переход.
- 16. Множество Кантора и кривая Кантора. Теорема о существовании композиции измеримой от непрерывной, не являющейся измеримой функцией.
- 17. Сходимость по мере и почти всюду. Их свойства (критерий Коши сходимости по мере, арифметические, связь сходимостей, Теорема Рисса).
- 18. Теорема Егорова.
- 19. Интеграл Лебега для конечно-простых функций и его свойства. Определение интеграла Лебега в общем случае. Основные свойства интеграла Лебега.
- 20. Теоремы о предельном переходе под знаком интеграла Лебега (теорема Б.Леви, лемма Фату, теорема Лебега).
- 21. Абсолютная непрерывность интеграла Лебега. Критерий интегрируемости по Лебегу на множестве конечной меры. Неравенство Чебышева.

Список литературы.

- 1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М., Наука, 1981, 1989.
- 2. Натансон И.П. Теория функций вещественной переменной. М., Наука, 1979.
- 3. Дьяченко М.И., Ульянов П.Л. Мера и интеграл. М., Факториал, 1998, 2002.
- 4. Ширяев А.Н. Вероятность. М., Наука, 1989, 2-е изд.
- 5. Феллер В. Введение в теорию вероятностей и ее приложения. Т. 1, 2. М., Мир, 1967.

Задачи коллоквиума Системы множеств

Верхним пределом последовательности множеств A_1, A_2, \ldots называется множество всех элементов, которые принадлежат бесконечному набору множеств A_n , а нижним пределом – множество всех элементов, которые принадлежат всем множествам A_n , начиная с некторого номера (своего для кадого элемента). Верних предел обоначают $\overline{\lim}_n A_n$, нижний предел обозначают $\underline{\lim}_n A_n$. Если $\overline{\lim}_n A_n = \underline{\lim}_n A_n$, то это множество называют пределом последовательности A_1, A_2, \ldots и обозначают $\underline{\lim}_n A_n$

Последовательность множеств A_1, A_2, \ldots называется возрастающей, если $A_n \subset A_{n+1}$ для всех n, и убывающей если $A_{n+1} \subset A_n$ для всех n.

1. Доказать, что

$$\overline{\lim}_n A_n = \bigcap_n \left(\bigcup_{k \geqslant n} A_k \right) \qquad \underline{\lim}_n A_n = \bigcup_n \left(\bigcap_{k \geqslant n} A_k \right)$$

2. Доказать, что если последовательсть множеств $\{A_n\}$ монотонна, то

$$\overline{\lim}_n A_n = \underline{\lim}_n A_n.$$

При этом $\lim_n A_n = \bigcup_n A_n$, если A_n возрастают, и $\lim_n A_n = \bigcap_n A_n$, если A_n убывают.

3. Привести пример последовательности $A_1,\ A_2,\ldots,$ что $\overline{\lim}_n A_n \neq \underline{\lim}_n A_n$ Доказать, что

$$\overline{\overline{\lim}_n A_n} = \underline{\lim}_n \overline{A}_n.$$

4. Пусть $f:A\to B$ — отображение множеств, $\mathfrak A$ — система подможеств множества $A,\,\mathfrak B$ —система подмножеств множества B. Положим

$$f(\mathfrak{A}) = \{ f(X) \subset B : X \in \mathfrak{A} \}$$

$$f^{-1}(\mathfrak{B}) = \{ f^{-1}(Y) \subset A : Y \in \mathfrak{B} \}.$$

- (a) Показать, что $f(\mathfrak{A})$, вообще говоря, не обязано быть кольцом, если \mathfrak{A} кольцо.
- (b) Доказать, что если $\mathfrak B$ кольцо (σ -алгебра), то $f^{-1}(\mathfrak B)$ кольцо (σ -алгебра).
- 5. Являются ли следующие системы полукольцом, кольцом, алгеброй:
 - (a) Полуинтервалы: $S = \{ [\alpha; \beta) | \alpha, \beta \in R \};$
 - (b) Все конечные подмножества натуральных чисел;
 - (с) Все измеримые по Жордану подмножества отрезка [0, 1];
 - (d) Все открытые множества на прямой.
- 6. Доказать, что набор множеств, замкнутый относительно операций
 - $a) \cap u \cup ; b) \cap u \setminus moжer не быть кольцом.$
- 7. Пусть \mathfrak{B}_1 и \mathfrak{B}_2 две σ -алгебры подмножеств пространства Ω . Являются ли σ -алгебрами классы множеств: 1) $\mathfrak{B}_1 \cap \mathfrak{B}_2$; 2) $\mathfrak{B}_1 \cup \mathfrak{B}_2$; 3) $\mathfrak{B}_1 \setminus \mathfrak{B}_2$; 4) $\mathfrak{B}_1 \triangle \mathfrak{B}_2$.
- 8. Доказать, что всякая конечная σ -алгебра подмножеств пространства Ω порождается некоторым конечным разбиением Ω . Доказать, что мощность всякой конечной сигма-алгебры является степенью двойки.

- 9. Есть поток сигма-алгебр $F_1 \subset F_2 \subset \dots$ Является ли σ -алгеброй объединение всех этих систем?
- 10. Существует, ли такая счетная система подмножеств R, что $\sigma(R)$ борелевская сигма-алгебра.

Mepa

- 1. Построить пример полукольца S и такой функции $\varphi:S\to [0;+\infty)$, что для любых $A,B\in S$ с $A\cap B=\emptyset$ и $C=A\sqcup B\in S$ выполнено равенство $\varphi(C)=\varphi(A)+\varphi(B)$, но φ не мера на S.
- 2. Пусть m мера на полукольце S. Докажите, что
 - (a) если множества A и B принадлежат S и $B \subseteq A$, то $m(B) \leqslant m(A)$.
 - (b) $m(\emptyset) = 0$.
 - (c) если множества A, B и $A \cup B$ принадлежат S, то $m(A \cup B) = m(A) + m(B) m(A \cap B)$. Вывести аналог формулы включения-исключения.
 - (d) если множества A, B и $A \triangle B$ принадлежат S и $m(A \triangle B) = 0$. Доказать, что m(A) = m(B).
- 3. (а) Пусть S полукольцо с мерой m, а $S_1 = \{A \in S: m(A) = 0\}$. Доказать, что S_1 полукольцо.
 - (b) Пусть R кольцо с мерой m, а $R_1=\{A\in S:\ m(A)=0\}$. Доказать, что R_1 кольцо.
 - (c) Пусть A алгебра с мерой m, а $A_1 = \{A \in S: m(A) = 0\}$. Верно ли, что A_1 алгебра.
- 4. Пусть $m-\sigma$ -аддитивная мера на полукольце S , множества A,A_1,\ldots,A_i,\ldots принадлежат S, причем $A_1\supseteq A_2\supseteq\ldots$ и

$$A = \bigcap_{i=1}^{\infty} A_i.$$

Доказать, что

$$m(A) = \lim_{i \to \infty} m(A_i).$$

Это свойство меры называется непрерывностью.

5. Пусть m — мера на кольце R и для любых таких множеств $A, A_1, \ldots, A_i, \ldots$ из R, что $A_1 \supseteq A_2 \supseteq \ldots$ и

$$A = \bigcap_{i=1}^{\infty} A_i$$

выполнено развенство

$$m(A) = \lim_{i \to \infty} m(A_i).$$

Доказать, что $m-\sigma$ -аддитивная мера.

Показать, что это утверждение может не быть справедливым для меры на полукольце.

6. Построить пример меры на полукольце, которая не является σ -аддитивной.

7. Пусть $m-\sigma$ -аддитивная мера на полукольце S , множества A,A_1,\ldots,A_i,\ldots принадлежат S, причем $A_1\subseteq A_2\subseteq\ldots$ и

$$A = \bigcup_{i=1}^{\infty} A_i.$$

Доказать, что

$$m(A) = \lim_{i \to \infty} m(A_i).$$

8. Пусть m — мера на кольце R и для любых таких множеств A,A_1,\ldots,A_i,\ldots из R, что $A_1\subseteq A_2\subseteq\ldots$ и

$$A = \bigcup_{i=1}^{\infty} A_i$$

выполнено развенство

$$m(A) = \lim_{i \to \infty} m(A_i).$$

Доказать, что $m-\sigma$ -аддитивная мера.

Показать, что это утверждение может не быть справедливым для меры на полукольце.

9. Показать, что в случае σ -конечной меры понятия непрерывности и σ -аддитивности не равносильны.

Внешняя мера. Мера Лебега.

Обозначения. Пусть S — полукольцо с единицей X, а m — конечная σ -аддитивная мера на S. Пусть ν — продолжение меры m на минимальное кольцо R(S). Для произвольного $A\subseteq X$ определим верхнюю меру Жордана, порожденную мерой m, формулой

$$\mu_J^* = \inf_{A \subseteq \bigcup_{i=1}^n A_i} \sum_{i=1}^n m(A_i),$$

и верхную меру Лебега, порожденную мерой т, формулой

$$\mu^* = \inf_{A \subseteq \bigcup_{i=1}^{\infty} A_i} \sum_{i=1}^{\infty} m(A_i).$$

Скажем, что множество $A \subseteq X$ измеримо по Лебегу (по Жордану), если для любого $\varepsilon > 0$ найдется токе множество A_{ε} , что $\mu^*(A \triangle A_{\varepsilon}) < \varepsilon$ (соответсвенно $\mu_J^*(A \triangle A_{\varepsilon}) < \varepsilon$). Обозначим \mathfrak{M} - множество измеримых по Лебегу множеств на X. \mathfrak{M}_J - множество измеримых по Жордану множеств на X.

Для множества $A \in \mathfrak{M}$ его *мерой Лебега* называется $\mu(A) = \mu^*(A)$. Для меры Жордана аналогично.

В случае, когда S — полукольцо промежутков из замкнутого параллелепипеда $[a,b] \subset \mathbb{R}^n$, а мера m — классическая (объем), мы будем и соотвествующие меры и верхние меры называть κ лассическими.

1. Доказать, что если вопреки определению верхней меры, мера m не σ -аддитивна, то найдется множество $A \in S$, для которого $\mu^*(A) < m(A)$.

- 2. Пусть $A\subseteq X$ и $B\subseteq X$. Доказать, что $\mu^*\left(A\cup B\right)\leqslant \mu^*\left(A\right)+\mu^*\left(B\right)$.
- 3. Пусть $A \subseteq X$ и $B \subseteq X$. Докажите, что

$$\mu^*(A \cup B) + \mu^*(A \cap B) \le \mu^*(A) + \mu^*(B).$$

4. Докажите, что если множество $E\subseteq\mathbb{R}$ измеримо, то для любого $A\subseteq\mathbb{R}$ выполнено

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E)$$

- 5. Доказать, что в случае классической меры Жордана система \mathfrak{M}_J не является σ -алгеброй. Привести пример меры m, когда она является σ -алгеброй.
- 6. Пусть множество $E \subseteq \mathbb{R}$ имеет положительную меру Лебега. Докажите, что множество $E-E=\{x-y: x,y\in E\}$ содержит интервал с центром в 0.
- 7. Построить такие неизмеримые относительно классической меры Лебега на [0;1] множества A_1 и A_2 , что $A_1 \cup A_2$ измеримо.
- 8. Пусть $A \in \mathfrak{M}, \ \mu(A) = 0$ и $B \subset A$. Доказать, что $B \in \mathfrak{M}$ и $\mu(B) = 0$. (Т.е. докажите полноту меры Лебега).
- 9. Пусть μ классическая мера Лебега на [0,1]. Построить такую последовательность $\{A_i\}$ множеств из \mathfrak{M} , что

$$\mu(\liminf_{n\to\infty} A_n) < \underline{\lim}_{i\to\infty} \mu(A_i).$$

Измеримые функции

Обозначения.

$$\mathbb{I}_A(x) = \begin{cases} 1, & \text{если } x \in A; \\ 0, & \text{если } x \notin A; \end{cases}$$

- 1. Доказать (не опирасясь на критерий измеримости), что если функции f(x) и g(x) измеримы, то и множество $\{x: f(x) < g(x)\}$ измеримо. Получить отсюда, что f(x) + g(x) измеримая функция.
- 2. Пусть (X, M, μ) измеримое пространство, $A \subseteq X$ и $f(x) = \mathbb{I}_A(x)$. Доказать, что f(x) измерима на X тогда и только тогда, когда $A \in M$.
- 3. Пусть μ классическая мера Лебега на [0;1]. Построить такую неизмеримую функцию $f: [0;1] \to \mathbb{R}$, что для любого $c \in \mathbb{R}$ множество $f^{-1}(\{c\})$ измеримо.
- 4. Пусть (X, M, μ) измеримое пространство, $\{a_n\}_{n=1}^{\infty}$ некоторое всюду плотное множество в \mathbb{R} , а функция $f: X \to \mathbb{R}$ такова, что для каждого n множество

$$f^{-1}((a_n, +\infty)) \in M.$$

Доказать, что f(x) измерима на X.

5. Построить функцию f(x) на [0;1], измеримую на [0;1] относительно классической меры Лебега, но разрывную в каждой точке.

- 6. Пусть (X, M, μ) полное измеримое пространство (т.е. мера μ полна), а f(x) измеримая функция на A. Пусть g(x) функция, эквивалентная f(x). Доказать. что g(x) измеримая фукнция.
- 7. Пусть $[a;b] \subset \mathbb{R}$ и функция f(x) монотонна на [a;b]. Доказать, что f(x) измерима относительно классической меры Лебега на [a;b].
- 8. Построить такую функцию $f(x) \in C[0;1]$, что для некоторого измеримого $A \subset [0;1]$ меры нуль множество f(A) измеримо и $\mu(f(A)) > 0$, где μ классическая мера Лебега.
- 9. Построить такую строго возратсающую функцию $f(x) \in C([0;1])$, что для некоторого измеримого множества $A \subset [0;1]$ меры нуль множество f(A) измеримо и $\mu(f(A)) > 0$, где μ классическая мера Лебега.
- 10. Построить функцию $f(x) \in C([0;1])$ и измеримое множество $A \subset \mathbb{R}$, для которых множество $f^{-1}(A)$ неизмеримо относительно классической меры Лебега.
- 11. Построить такую $g(x) \in C([0;1])$, что для некоторого измеримого $A \subset [0;1]$ с $\mu(A) = 0$ множество g(A) неизмеримо относительно классической меры Лебега.
- 12. Построить множество $A \subset [0;1]$, которое измеримо относительно классической меры Лебега, но не является борелевским.

Сходимость

- 1. Определим функцию f(x) на отрезке [0;1] следующим образом. Если $x=\overline{0,n_1n_2n_3\dots}$ десятичная запись числа x, то $f(x)=\max_i n_i$. Доказать, что f(x) измерима и почти всюду постоянна.
- 2. Показать, что вообще говоря из сходимости п.в. не следует сходимость по мере в случае, когда мера σ -конечна.
- 3. Пусть последовательность неотрицательных функций $\{f_n(x)\}_{n=1}^{\infty}$ сходится по мере к f(x) на A. Доказать, что $f(x) \ge 0$ п.в. на A.
- 4. Пусть $\mathbb{Q}_{[0;1]} = \{r_n\}_{n=1}^{\infty}$. Доказать, что последовательность

$$f_n(x) = \begin{cases} 0, & \text{если } x = r_n \\ \frac{1}{\sqrt{n}(x-r_n)}, & \text{если } x \in [0;1] \setminus \{r_n\} \end{cases}$$

где $n \in \mathbb{N}$, сходится по классической мере Лебега на [0;1].

- 5. Пусть $\mathbb{Q}_{[0;1]} = \left\{ r_n = \frac{p_n}{q_n} \right\}_{n=1}^{\infty}$, где p_n и q_n взаимно простые натуральные числа, $n \in \mathbb{N}$. Доказать, что последовательность $\{f_n(x)\}_{n=1}^{\infty}$, где $f_n(x) = e^{-(p_n q_n x)^2}$, сходится по классической мере Лебега на [0,1], но не сходится ни в одной точке.
- 6. Показать, что утрвеждение теоремы Егорова не выполняется для классической меры Лебега на \mathbb{R} .

Интеграл Лебега

- 1. Поймите, что функция $f(x) = \mathbb{I}(x \in \mathbb{Q})$ интегрируема на \mathbb{R} , найдите величину интеграла.
- 2. Пусть $f(x) = \frac{1}{x}$ и μ классическая мера Лебега на (0;1). Доказать, что

$$\int_0^1 f(x)d\mu = \infty,$$

используя только определение интеграла Лебега.

- 3. Верно ли, что функция $f(x) = \frac{\sin x}{x}$ интегрируема по Лебегу на прямой?
- 4. Пусть f(x) интегрируема по Лебегу на множестве A (т.е. $\int_A |f(x)| d\mu < \infty$, будем писать $f \in L_1(A)$). Доказать, что $\mu\left(\{x \in A: \ f(x) = \pm \infty\}\right) = 0$.
- 5. Построить такую последовательность $\{f_n(x)\}_{n=1}^{\infty}$ неотрицательных функций из $L_1([0;1])$, таких что $f_n(x)\to 0$ при $n\to\infty$ для кадого $x\in[0;1]$, но

$$\int_0^1 f_n(x)d\mu \to 0, \to \infty.$$