

Embodied Intelligence – L04 Actuators

by Márk Domonkos

Introduction

Looking back ...

- Actuators are elements (usually some kinds of motors) of embedded systems, which purpose is to interact with the environment based on the Computational unit's commands.
- Human actuators:
 - Muscles

Some clarification

- We enlisted amplification to the computational unit, however it is frequently built in inside the actuators
- The definition here is also not always applicable to all possible cases
- Between the control unit and the environment in the impact chain.

From unmodulated energy to some kind of actuation

- Control signal
- Power amplification
 - Unmodulated energy
 - Modulated high power energy
- Energy conversion
 - Motors etc.
- Environment usually has a feedback on the actuation device

Electrical amplifiers oversimplified

- Converts the unmodulated energy from the energy source to a modulated energy based on the controlling signal
- In electrical devices this is usually achieved with transistors
- Only this slide could be discussed in 2-3 or more courses alone

Energy sources and their principle of use

Power machines are different to actuators !!!

• "Not all fingers are little finger … but all little fingers are fingers… "

• What is the difference?

Main differences

- Power machines
 - Continuous operation
 - No need for complex control
 - Usually no need for sensig the environment
 - → Not for precise operation but more to drive a machine that is processing something

- Actuators
 - Intermittent operation
 - Complex conrol
 - Sensing of the environment is inevitable
 - → Precise operation for intelligently interact into a process or environment

What we usually demand from actuators

- Four-quarter operation (drive and braking in both directions)
- High overload capacity
- High resolution to achieve accurate positioning
- Favorable static properties (preferably linear transmission, low friction, etc.)
- Fast operation, good damping (low time constant, no overshoot adjustment)
- Wide speed and rpm range
- High power and torque delivery, self-locking

Two type of description of an actuator

Transient response

(loosly saying: When the operation starts (device is plugged in or an another control signal is given) and the real actuation is in effect because the system has so-called energy storing elements.)

- Static behavior (steady state)
 - The changes (transient response) are small (within a tolerance) or wanish.

This shape is determined by the properties of the controling regulator

Positioning mechanical parts - Electromagnet

- Usually consist of an electric coil and a magnet with the mover
- The current in the coil induces magnetic field which will force the permanent magnet to move
- Small but fast movements
- Non-linear (problem for controling)
- Usual (max) range: 10-25 mm

DC motor

- First principle is a Hungarian invention
- Ányos Jedlik
 - Born in Szímő (currently Slovakia)
- "Villamdelejes forgony"

DC motor (cont.)

DC motor (cont.)

- Linear function between the supply current and the torque given
- Easy control
- Good dynamical properties
- Can have high rpm range

BLDC - Brushless DC motor

BLDC (cont.)

- The rotor is usually made from a permanent magnet
- Stator has the coils
- The alternated energization of the coils are made not mechanically but with some kind of control

BLDC (cont.)

- Hall sensors are used for the sensing of the position
- Additional control is needed for the functioning (BLDC driver electronics)

Remember this sensing method from the previous lecture?

Pros and Cons of BLDC (compared to DC motor)

Pros:

- Less maintenance
- More lifecicle time
- Beter heat reduction opportunities (because the stator has the coils)
- Can be further more overloaded
- No sparking

Cons:

- Extra sensors and control needed
- More expensive
- Non-uniform torque

Stepper motor

Stepper motor (cont.)

- Highly used due to its simplicity
- For low power applications
- Usually permanent magnet in the rotor and coils on the stator
- No need for sensing the position (just for the operation)

Stepper motor – Pros and Cons

Pros:

- Low cost
- High torque and low speeds
- Robustness
- Low maintenance needs
- High reliability
- Usually no need for gearing

Cons:

- Miss stepping (to avoid → over design)
- Resonances in low speed
- Low efficiency
- Low power density

Linear motor

Linear motor (cont.)

- Relatively new kind of motor
- Linear movement (no need for conversion with gears)
- Can be looked as a flattened asyncronous motor
- Moving magnetic field in the coils
- If the mover's speed is less than the magnetic field's movement then electric voltage will be induced → ... → force for moving the mover part

Some applications from the real life - BLDC

- Wheels in electric vehicles (e.g.: Mars rovers)
- Computer hard drives and DVD/CD players
- Industrial robots, CNC machine tools, and simple belt driven systems

Some applications from real life – Stepper motors

- Printers
- 3D printers
- Robots

Some applications from real life – linear motor

• CNCs

Fluid actuation – Pneumatics and hidraulics

- Hidraulics and Pneumatics
- Robust
- High power density compared to electric actuation
- Lower efficiency comparedt to electric actuation
- Power supply is often hard to provide
- Expensive parts/devices

Application of fluid actuation

Some interesting novel actuation methods

Piezzo motors

- Piezzo effect electric voltage on a specific crystal will change it's width
- For highly precise positioning, vibration generation, tension control

Memory alloy

- NiTiNol
- Can repeat the "preprogrammed" shape on heating
- Applications:
 - Form recovery
 - Constrained recovery
 - Work production
 - Superelasticity

MEMS

- Micro-electromechanical systems
- Various applications:
 - Healthcare, spacetech, biotechnologies

Servo motors

Why are we making such deal about Servos

- Insanely huge range of applications
 - Robotics
 - Automatization
- Relatively easy to understand
- Used in our robots as well

What is a servo motor?

- A device, either with
 - revolut or translational movement
- that has a goal of a precise
 - torque,
 - force,
 - position,
 - velocity,
- output,
- by using some kind of *closed-loop* control.

2024. 12. 28.

How they work?

- We will need (for the simplest):
 - Motor
 - Gears
 - Potentiometer (or sensor for positioning)
 - Control electronics
 - Pulse demodulator
 - Comparator electronics
 - Motor driver (H bridge)

Putting together – Motor + Gears = drive chain

- We have a motor that usually has higher rpm but lower load capacity (torque) than needed
- We put gears that will reduce the rpm and in the same time increase the load capacity in the same ratio
 - Eg.: ratio of 1:200 will decrease the rpm by 200 folt and increase the load capacity by 200 fold

Putting together – drive chain + sensing

- We attach to the output shaft a potentiometer for the purpose of sensing the exact position
- Usually as a voltage divider circuit

Putting together – adding the control

- For usage we need to "command" the servo
- We set a desired value
- Control unit based on the desired value and the position signal sends the motor a signal
- Done ©

Zooming in the control – Interpret the desired signal

- The desired value's signal is usually sent in a PWM (Pulse Width Modulation) signal
- We interpret this signal and convert to a (usually) analog signal

PWM - Pulse Width Modulation

- A method of controlling the average power delivered by an electrical signal
- Parameters:
 - Frequency
 - Duty cycle
- Usually used with higher inertia systems:
 - Light sources (~100Hz)
 - Motors (>kHz)

Zooming in the control - Comparator

- We need to determine how much we are off compared to the desired outcome
- Comparator simly compares the desired values's signal and the sensor's signal, and gives a signal based on the comparison (like an if statement)

Zooming in the control – Motor driver

- After we have our intervening signal we need to couple the small power signal to a high power one
- Motor drivers used
 - Usually H bridge
 - With FET transistors as switches (higher efficiency)

Complete overview

 Does this whole system resembles You to something?

For a more visual presentation of the topic

Pros and Cons of Servos

Pros:

- High efficiency
- Closed loop control
- Precise
- Applications for changing load

Cons:

- Some servos are expensive
- Failures due to overloading
- Hard to fix them

Some things to consider during the desing

- Wide range of possible good solutions
 - We can usually achieve the same goal with different actuator setups
- 3 main things to consider:
 - Force (or torque)
 - Range of motion
 - Available time for the positioning

(extra) We didn't talked about ...

- Exact control opportunities for each actuator (system theory, modeling of systems) – out of scope
- How to convert the high rpm into the operation range or change the revolut movement to linear (gearboxes, transmissions)

(extra) How to change the motors output

 Numoerous methods and principles were invented

(extra) Revolut to revolut

- Gear drive
 - Widely used
 - "Simple"
 - Good efficiency
- Epicyclic gearing
 - high power density
 - Low efficiency loss
 - Much complicated

(extra) Revolut to revolut (cont.)

- In industrial robots there is not much space for the motors and gears in the joints.
- Motor + Gears + bearing MUST be small volume
- Wave drive → huge reduction ratio in one step typically 30:1 – 320:1
- (this means we can have smaller motors)

(extra) Revolut to linear

- Spindle nut drive
 - Widely used
 - With or without bearing inside
 - The spindle is attached to the motor
 - The nut moves linearly on the spindle

