MUCH FAZRIN SEPRANJANI FATAH - G1401211022

(a) Tulis rumus eksplisit barisan berikut dan tentukan kekonvergenannya:

$$\cos \pi$$
, $\frac{\cos 2\pi}{4}$, $\frac{\cos 3\pi}{9}$, $\frac{\cos 4\pi}{16}$,

- (b) Diketahui $\{a_n\}$ konvergen ke A dan $\{b_n\}$ konvergen ke B. Buktikan (dengan definisi limit) $\{a_n + b_n\}$ konvergen ke A + B.
- (c) Tentukan kemonotonan, keterbatasan, dan limit (jika ada) barisan berikut:

$$a_n = \sin \frac{n\pi}{4}$$
.

(a) Tulis rumus eksplisit barisan berikut dan tentukan kekonvergenannya:

Jawab:

$$\begin{array}{c} \cos\pi, \ \frac{\cos 2\pi}{4}, \frac{\cos 3\pi}{9}, \ \frac{\cos 4\pi}{16}, \ldots \\ \text{rumus eksplisit}: a_n = \frac{\cos n\pi}{n^2} \\ \text{kekonvergenan:} \ -1 \leq \cos n\pi \leq 1 \\ -\frac{1}{n^2} \leq \frac{\cos n\pi}{n^2} \leq \frac{1}{n^2} \end{array}$$

karena $\lim_{n\to\infty}-\frac{1}{n^2}$ dan $\lim_{n\to\infty}\frac{1}{n^2}$ sama dengan 0 berdasar teorema apit, maka $\lim_{n\to\infty}\frac{\cos n\pi}{n^2}$ juga sama dengan 0 sehingga kekonvergenannya menuju 0.

b) Diketahui $\{a_n\}$ konvergen ke A dan $\{b_n\}$ konvergen ke B. Buktikan (dengan definisi limit) $\{a_n+b_n\}$ konvergen ke A+B.

Jawab:

• Karena $\{a_n\}$ konvergen ke A maka $\lim_{n\to\infty}a_n$ = A, dengan kata lain: untuk setiap ε >0 selalu dapat ditemukan N1 > 0 sedemikian sehingga untuk n > N1 berlaku:

$$\left|a_n - A\right| < \frac{1}{2}\varepsilon$$

• Karena $\{b_n\}$ konvergen ke B maka $\lim_{n\to\infty}b_n$ = B, dengan kata lain: untuk setiap ϵ >0 selalu dapat ditemukan N2 > 0 sedemikian sehingga untuk n > N2 berlaku:

$$\left| b_n - B \right| < \frac{1}{2} \varepsilon$$

• Pilih N = $max{N1, N2}$. Diperoleh:

$$\begin{vmatrix} a_n + b_n - (A + B) \end{vmatrix} = \begin{vmatrix} (a_n - A) + (b_n - B) \end{vmatrix}$$

$$\leq \begin{vmatrix} a_n - A \end{vmatrix} + \begin{vmatrix} b_n - B \end{vmatrix} \text{ (ketaksamaan segitiga)}$$

$$< \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$$

• Terbukti bahwa $\lim_{n\to\infty} (a_n + b_n) = A+B$

(c) Tentukan kemonotonan, keterbatasan, dan limit (jika ada) barisan berikut:

$$a_n = \sin \frac{n\pi}{4}$$

Jawab:

kemonotonan: $a'_n = \frac{\pi}{4} cos \frac{n\pi}{4} \Rightarrow \bullet n=1 \rightarrow a'_1 = \frac{1}{8} \sqrt{2}\pi$

• n=2
$$\rightarrow a'_2 = 0$$

• n=3
$$\rightarrow$$
 a'_3 =- $\frac{1}{8}\sqrt{2}\pi$

• n=4
$$\rightarrow a'_{4} = 0$$

 $\{a_n\}$ bukan barisan monoton

 $\text{keterbatasan}: \quad a_n = \sin \frac{-n\pi}{4}$

karena bentuk trigonometri sin maka $-1 \le sin \frac{n\pi}{4} \le 1$,sehingga $\{a_n\}$ terbatas di bawah oleh -1 dan terbatas di atas oleh 1.

Limit: Tidak ada (divergen)

(a) Tulis rumus eksplisit barisan berikut dan tentukan kekonvergenannya:

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, -\frac{1}{6}, \dots$$

(b) Dengan definisi limit, buktikan barisan {a_n} berikut konvergen:

$$a_n = \frac{3 - 8 \cdot 2^n}{5 + 4 \cdot 2^n}.$$

(c) Tentukan kemonotonan, keterbatasan, dan limit (jika ada) barisan berikut:

$$a_n = \frac{\ln n}{n}$$
.

(a) Tulis rumus eksplisit barisan berikut dan tentukan kekonvergenannya:

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, -\frac{1}{6}, \dots$$

Jawab:

Rumus eksplisit : $a_n = \frac{(-1)^{n+1}}{n}$

 $\begin{aligned} \text{Kekonvergenan}: \ & \lim_{n \to \infty} \left| \left. \frac{\left(-1\right)^{n+1}}{n} \right| \ = & \lim_{n \to \infty} \left| \left(-1\right)^{n+1} \cdot \frac{1}{n} \right| = \left. \lim_{n \to \infty} \left| \left(-1\right)^{n+1} \right| \left| \frac{1}{n} \right| \\ & = & \lim_{n \to \infty} 1 \cdot \left| \frac{1}{n} \right| = \lim_{n \to \infty} \left| \frac{1}{n} \right| \ = 0 \ \text{(konvergen menuju 0)} \end{aligned}$

(b) Dengan definisi limit, buktikan barisan $\{a_n\}$ berikut konvergen:

$$a_n = \frac{3 - 8 \cdot 2^n}{5 + 4 \cdot 2^n}$$

Jawab:

• $\lim_{n\to\infty} \frac{3-8\cdot 2^n}{5+4\cdot 2^n} = \lim_{n\to\infty} \frac{\frac{3}{2^n}-8}{\frac{5}{2^n}+4} = \frac{0-8}{0+4} = -2$ (konvergen menuju -2)

maka diketahui L=-2 ,sehingga :

$$\left| a_n - L \right| = \left| \frac{3 - 8 \cdot 2^n}{5 + 4 \cdot 2^n} - (-2) \right|$$

= $\left| \frac{13}{5 + 4 \cdot 2^n} \right|$

 untuk sembarang ε >0, akan ada N dimana n>N dan N>0 sedemikian dan dimisalkan untuk suatu ε dengan nilai cukup kecil sebagai

$$\varepsilon = \frac{13}{5 + 4 \cdot 2^N}$$

maka untuk n>N>0 diperoleh

$$|a_n - L| = \left| \frac{13}{5 + 4 \cdot 2^n} \right| < \frac{13}{5 + 4 \cdot 2^N}$$

= $\left| \frac{13}{5 + 4 \cdot 2^n} \right| < \varepsilon$

• Terbukti bahwa $\{a_n\}$ konvergen.

(c) Tentukan kemonotonan, keterbatasan, dan limit (jika ada) barisan berikut:

$$a_n = \frac{\ln n}{n}$$

Jawab:

Kemonotonan:
$$a'_n = \frac{1 - \ln n}{n^2} \Rightarrow$$
 • $n=1 \rightarrow a'_1 = 1$
• $n=2 \rightarrow a'_2 = 0,0767$
• $n=3 \rightarrow a'_3 = -0.0109$
• $n=4 \rightarrow a'_4 = -0.0241$
• $n=5 \rightarrow a'_5 = -0.0243$
• $n=6 \rightarrow a'_6 = -0.0219$

 $\{a_n\}$ bukan barisan monoton

keterbatasan :
$$a_n = \frac{\ln n}{n} \Rightarrow \bullet \text{ n=1} \rightarrow a_1 = 0$$

 $\bullet \text{ n=2} \rightarrow a_2 = 0.346574$
 $\bullet \text{ n=3} \rightarrow a_3 = 0.366204$
 $\bullet \text{ n=4} \rightarrow a_4 = 0.346574$
 $\bullet \text{ n=5} \rightarrow a_5 = 0.321888$

diperoleh $\{a_n\}$ terbatas di bawah oleh 0 dan terbatas di atas a_3

 $\mbox{Limit:} \ \, \lim_{n \rightarrow \infty} \frac{\ln n}{n} \, =^{LH} \lim_{n \rightarrow \infty} \frac{1}{n} \, = \frac{1}{\infty} = \, 0. \label{eq:limit}$

(a) Tulis rumus eksplisit barisan berikut dan tentukan kekonvergenannya:

(b) Dengan definisi limit, buktikan barisan $\{a_n\}$ berikut konvergen:

$$a_n = \frac{n+3}{3n-2}.$$

(c) Tentukan kemonotonan, keterbatasan, dan limit (jika ada) barisan berikut:

$$a_n = \frac{n!}{10^n}.$$

(a) Tulis rumus eksplisit barisan berikut dan tentukan kekonvergenannya:

Jawab:

Rumus eksplisit : $a_n = 1 - \frac{1}{10^n}$

Kekonvergenan : $\lim_{n\to\infty} 1 - \frac{1}{10^n} = 1 - 0 = 1$ (konvergen menuju 1)

(b) Dengan definisi limit, buktikan barisan $\{a_n\}$ berikut konvergen:

$$a_n = \frac{n+3}{3n-2}$$

Jawab:

- $\lim_{n \to \infty} \frac{n+3}{3n-2} = \lim_{n \to \infty} \frac{1+\frac{3}{n}}{3-\frac{2}{n}} = \frac{1+0}{3-0} = \frac{1}{3}$ (konvergen menuju $\frac{1}{3}$)
- maka diketahui $L=\frac{1}{3}$, sehingga :

$$\left| a_n - L \right| = \left| \frac{n+3}{3n-2} - \frac{1}{3} \right|$$

= $\left| \frac{11}{9n-6} \right|$

• untuk sembarang ϵ >0, akan ada N dimana n>N dan N>0 sedemikian dan dimisalkan untuk suatu ϵ dengan nilai cukup kecil sebagai

$$\varepsilon = \frac{11}{9N-6}$$

• maka untuk n>N>0 diperoleh

$$\begin{vmatrix} a_n - L \end{vmatrix} = \begin{vmatrix} \frac{11}{9n-6} \end{vmatrix} < \frac{11}{9N-6}$$
$$= \begin{vmatrix} \frac{11}{9n-6} \end{vmatrix} < \varepsilon$$

• Terbukti bahwa $\{a_n\}$ konvergen.

(c) Tentukan kemonotonan, keterbatasan, dan limit (jika ada) barisan berikut:

$$a_n = \frac{n!}{10^n}$$

Jawab:

Kemonotonan:
$$\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)!}{10^{n+1}}}{\frac{n!}{10^n}} = \frac{(n+1)!}{10^{n+1}} \cdot \frac{10^n}{n!} = \frac{(n+1) \cdot n!}{10^n \cdot 10} \cdot \frac{10^n}{n!} = \frac{(n+1)}{10}$$

- untuk $1 \le n \le 9$, diperoleh $\frac{a_{n+1}}{a_n} \le 1$, maka barisan monoton tak naik
- untuk n>9, diperoleh $\frac{a_{n+1}}{a_n}$ >1, maka barisan monoton naik.

Keterbatasan : $a_n = \frac{n!}{10^n}$

- karena $\{a_n\}$ naik maka tidak terbatas di atas (tidak memiliki batas atas)
- karena $\{a_n\}$ tak naik di 1 \leq n \leq 9 maka terbatas di bawah pada n=9, yaitu

$$a_9 = \frac{9!}{10^9}$$
 dan juga pada n=10, yaitu $a_{10} = \frac{10!}{10^{10}} = \frac{9!}{10^9} = a_9$.

Limit: $a_n = \frac{n!}{10^n} \rightarrow \lim_{n \to \infty} \frac{n!}{10^n} = +\infty$ (divergen)