

Presentation by Francesca Craievich

THE PROBLEM

We're talking about automated parcel lockers (like Amazon Lockers) that serve last-mile delivery - the final leg from courier to customer

To build a network of these lockers, we need to decide:

- 1. Where to place them
- 2. How large they should be

OBJECTIVE: minimize costs

SOLUTION

Challenge: Real-world parcel delivery is stochastic Random daily arrivals Unpredictable pickup times

PWL Pre-compute stochastic behavior Create piecewise linear approximations Capture all randomness in advance

Result: Tractable MILP

Transform into deterministic optimization Linear constraints and objectives

ASSUMPTIONS

ASSUMPTIONS

- City divided into grid cells (200×200m)
- Location & capacity fixed BEFORE operations
- Each (location, size) pair has unique cost
- Each point = cluster of customers (e.g., 500 families)
- Every demand point must have SP within radius r
- Daily arrivals ~ Poisson(λ)
- Parcels → nearest open SP (no choice)
- Pickup time ~ Geometric(p)
- When full: Rejection (home delivery) OR Postponement (wait for space)

UNCERTAINTY

- Parcel arrivals at each Service Point: RANDOM

- Customer pickups between cycles: RANDOM

 \rightarrow SP can be seen as a queue with

limited capacity:

parcels will arrive (supply), be collected (pickup), but if the queue is full, we need to handle overflow.

HANDLE **OVERFLOW**

REJECTION $R(C,\lambda,p)$

- Use a Discrete-Time Markov Chain (**DTMC**)
- State = number of parcels in the locker at time t
- At each cycle:
 - Parcels arrive ~ Poisson(λ)
 - Some are picked up by customers ~ **Geometric**(p)
 - If capacity exceeded → **rejection**

PWL APPROXIMATION WITH NON-UNIFORM BREAKPOINTS

Key properties: Convex & monotonically increasing

PARAMETERS

PARAMETERS

Geographic Parameters

- F = Set of candidate SP locations
- D = Set of demand points
- t_{df} = Distance/time matrix between each (d,f) pair
- r = Maximum service radius

Capacity Parameters

- C_1 , C_2 , ..., $C_{\bar{s}}$ = Available sizes (30, 60, 90 compartments)
- $\Lambda_{\rm ks}$ = Discretization points for PWL approximation

PARAMETERS

Demand Parameters

- μ_d = Average daily demand at point d ~ Poisson(μ_d)
- p = Daily pickup probability ~ Geometric(p)

Economic Parameters

- h_{fs} = Total setup cost for size s at location f
- α = Cost per rejection

DECISION VARIABLES

 $y_{fs} \in \{0,1\}$ = Open SP of size s at location f?

- Binary decision for each (location, capacity) pair

 $x_{df} \ge 0$ = Daily flow from demand point d to SP at f

- Continuous variable (parcels/day)

 $z_{fks} \ge 0$ = PWL interpolation weights

PWL APPROXIMATION WITH NON-UNIFORM BREAKPOINTS

$$\lambda = 22$$

- Between 19 and 23
- Sets $z_{19} = 0.25$ and $z_{23} = 0.75$ (all other z = 0)
- Estimates rejections:0.25×R(19) + 0.75×R(23)

POSTPONEMENT $D(C,\lambda,\eta)$

- Postponed delivery → parcels accumulate in queue
- Modeled as **M/G/k** queueing system:
 - M: Markovian arrivals with rate λ
 - **G**: General pickup time distribution η
 - k: Number of compartments C
- η captures the full pickup behavior (not just daily probability p)

If arrival rate > service rate \rightarrow queue explodes!

OBJECTIVE FUNCTION & CONSTRAINTS

THE OBJECTIVE FUNCTION - REJECTION

$$\min \sum_{s=1}^{\bar{s}} \sum_{f \in F} \left[h_{fs} y_{fs} + \alpha \sum_{k=1}^{\bar{k}} z_{fks} R(C_s, \Lambda_{ks}, \eta) \right]$$

CONSTRAINTS

$$\sum_{s=1}^{\bar{s}} y_{fs} \le 1 \qquad \forall f \in F \tag{1}$$

$$\sum_{f \in F: t_{df} < r} x_{df} = \mu_d \qquad \forall d \in D$$
 (2)

$$\sum_{f' \in F: t_{df'} > t_{df}} x_{df'} \le \mu_d \left(1 - \sum_{s=1}^{\bar{s}} y_{fs} \right) \quad \forall d \in D, f \in F: t_{df} < r$$
(3)

$$\sum_{k=1,s=1}^{\bar{k},\bar{s}} z_{fks} \Lambda_{ks} = \sum_{d \in D: t_{df} < r} x_{df} \qquad \forall f \in F$$

$$\tag{4}$$

$$\sum_{k=1}^{\bar{k}} z_{fks} = y_{fs} \qquad \forall f \in F, s = 1, \dots, \bar{s}$$

$$(5)$$

CONSTRAINT
$$\sum_{k=1}^{\bar{k}} z_{fks} = y_{fs} \quad \forall f \in F, s = 1, ..., \bar{s}$$

$$g_1(z) = \sum z_k imes \Lambda_k - \lambda_{ ext{target}} = 0$$
 $g_2(z) = \sum z_k imes \Lambda_k - \lambda_{ ext{target}} = 0$
 $g_2(z) = \sum z_k - 1 = 0$
 $z_k \geq 0 \quad orall k$

Carathéodory's theorem—If $x \in \operatorname{Cone}(S) \subset \mathbb{R}^d$, then x is the nonnegative sum of at most d points of S.

If $x \in \operatorname{Conv}(S) \subset \mathbb{R}^d$, then x is the convex sum of at most d+1 points of S.

Lemma—If $q_1,\ldots,q_N\in\mathbb{R}^d$ then $\forall x\in \mathrm{Cone}(\{q_1,\ldots,q_N\})$, there exist $w_1,\ldots,w_N\geq 0$ such that $x=\sum w_nq_n$, and at most d of them are nonzero.

CONSTRAINT $\sum z_{fks} = y_{fs}$ $\forall f \in F, s = 1, ..., \bar{s}$

$$\sum_{k=1}^{\bar{k}} z_{fks} = y_{fs}$$

$$\forall f \in F, s = 1, \dots, \bar{s}$$

KKT CONDITIONS

Stazionarietà

$$abla f(z) - \mu \cdot
abla \Big(\sum_k z_k - 1 \Big) -
u \cdot
abla \Big(\sum_k z_k \Lambda_k - \lambda_f \Big) - u = 0$$

The frontier is the convex hull of discrete points (Λ_k, R_k) Convex combination of two points lies on the frontier The optimum can only combine adjacent points

, per ogni k:

$$R_k - \mu -
u \Lambda_k - u_k = 0$$

 $z_k>0$, $u_k=0$

Convexity of $R(\Lambda)$

$$R=\mu+
u\Lambda$$

Monotonicity of $R(\Lambda)$

Ammissibilità primal

$$z_k \geq 0, \quad \sum_k z_k = 1, \quad \sum_k z_k \Lambda_k = \lambda_f$$

Ammissibilità dual

$$u_k \geq 0 \quad orall k$$

Complementary slackness

$$z_k \cdot u_k = 0 \quad \forall k$$

 Λ increases, R also increases.

The frontier is ordered with no crossings or oscillations. Intermediate value λ_f lies within a segment $[\Lambda_i, \Lambda_{i+1}]$ \rightarrow identification two consecutive points that bound λ_f .

THE OBJECTIVE FUNCTION - POSTPONEMENT

$$\min \sum_{s=1}^{\bar{s}} \sum_{f \in F} \left[h_{fs} y_{fs} + \alpha \sum_{k=1}^{\bar{k}} z_{fks} D(C_s, \Lambda_{ks}, \eta) \right]$$

CONSTRAINTS

$$\sum_{d \in D: t_{df} < r} x_{df} \leq \frac{1 - \epsilon}{E(\eta)} \sum_{s=1}^{\bar{s}} y_{fs} C_s \qquad \forall f \in F.$$

Service rate

- On average, a locker is freed once every $E(\eta)$ periods.
- So the effective service rate per locker = $1/E(\eta)$

Slack factor 1-E

- To guarantee stability (it can grow unbounded), we require utilization < 1.
- Multiplying by $1-\epsilon$ forces the system to run slightly below full capacity.

CONSTRAINTS

$$x_{df} \ge 0 \qquad \forall f \in F, d \in D : t_{df} < r \tag{1}$$

$$y_{fs} \in \{0, 1\} \qquad \forall f \in F, s = 1, \dots, \bar{s}$$
 (2)

(3)

$$z_{fsk} \ge 0$$
 $\forall f \in F, s = 1, \dots, \bar{s}, k = 1, \dots, \bar{k}$

ALTERNATIVE MODELS

DETERMINISTIC MODEL

- No randomness considered

- Add safety margin β (arbitrary)
- $R(\text{overflow}) = \max(0, \text{demand capacity})$
- New variable: q_f = deterministic rejections

Why it Fails:

- Underestimates rejections by 70-80%
- Pushes utilization to 95% (dangerous zone)

SCENARIO-BASED MODEL

- Generate 50-100 demand scenarios (\mathcal{K})
- μ_{dk} demand at point d in scenario k (vs. single μ_{d} in PWL)
- π_k the probability of scenario k

Problems:

- Computational explosion
- 50× more variables
- Still not accurate enough
- Can't solve large instances

COMPARISON PWL WITH THE ALTERNATIVE MODELS

• PWL = baseline

• Bars = how much MORE

the other models cost

REAL-WORLD TEST: AUSTRIAN CITIES

GEOGRAPHICAL REPRESENTATION OF THE SOLUTION FOR LINZ

green: 30 lockers

blue: 60 lockers

red: 100 lockers

purple: 150 lockers

SCALABILITY & COMPLEXITY

COMPUTATIONAL RESULTS ON REAL URBAN NETWORKS

	Linz	Graz	Vienna
Demand Points	2,385	4,485	13,600
SPs	542	1,111	3,310
Time(minutes)	9	7	30
Total cost(M€)	5.5	4.9	5.6
Population	207,000	291,000	1,900,000

CONCLUSIONS

- \checkmark Challenge: Real systems are stochastic \rightarrow intractable
- \checkmark Solution: Pre-compute stochasticity \rightarrow optimize deterministically
- √ Result:
- Maintains accuracy of stochastic models
- Achieves efficiency of deterministic optimization

Outperforms alternatives: when rejection costs are high Case study (Austrian cities): confirms practical effectiveness

