Probability Function or Probability Mass Function (pmf)

Probability Function or Probability Mass Function (pmf) of a random variable X is a function is a function p(x) which gives the probabilities corresponding to different possible discrete set of values say $x_1, x_2, ..., x_n$ of variable x.

$$p(x_i) = p(x = x_i)$$
 = Probability that on variable x assumes value x_i

The function p(x) satisfies the condition

$$(i)p(x_i) \ge 0$$

$$(ii)\sum p(x_i)=1$$

Cumulative Distribution Function (Distribution Function)

If *X* is a random variable then $P(X \le x)$ is called the cumulative distribution function (cdf) or distribution function and is denoted by F(x).

So,
$$F(x) = P(X \le x)$$

Expectation of a Discrete Random Variable

If x is a discrete random variable which assumes the discrete set of values $x_1, x_2, ..., x_n$ with the respective probabilities $p_1, p_2, ..., p_n$ then the expression or expected value of x is denoted by E(X) and defined as

$$E(X) = p_1 x_1 + p_2 x_2 + \dots + p_n x_n = \sum_{i=1}^n p_i x_i$$

Similarly, the expected value of X^2 is defined as $E(X^2) = \sum_{i=1}^{n} p_i x_i^2$

Properties of Expectation

1. If *X* is a random variable and *a* be constant then

i.
$$E(a) = a$$

ii.
$$E(aX) = aE(X)$$

iii.
$$E(X - \mu) = 0$$

- 2. If x and y are two random variables then $E(X \pm Y) = E(X) \pm E(Y)$
- 3. E(XY) = E(X)E(Y) if X and Y are two independent random variables.
- 4. If y = ax + b where a and b are constants then E(Y) = E(aX + b) = aE(X) + b

A pair of coin is tossed, what is the expected value of getting head?

Let
$$X =$$
 number of heads $X = 0, 1, 2$

Probability Distribution is given by

X	0	1	2
P(X)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

$$E(X) = (\frac{1}{4} \times 0) + (\frac{1}{2} \times 1) + (\frac{1}{4} \times 2) = 1$$