2017/1/10 20迭代.html

迭代

2256次阅读

如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们成为迭代(Iteration)。

在Python中,迭代是通过for ... in来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,比如Java代码:

```
for (i=0; i<list.length; i++) {
    n = list[i];
}</pre>
```

可以看出,Python的for循环抽象程度要高于Java的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。

list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

```
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
... print key
...
a
c
b
```

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d. itervalues(),如果要同时迭代key和value,可以用for k, v in d. iteritems()。

由于字符串也是可迭代对象,因此,也可以作用于for循环:

```
>>> for ch in 'ABC':
... print ch
...
A
B
C
```

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

```
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
```

最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办? Python内置的enumerate 函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

2017/1/10 20迭代.html

```
>>> for i, value in enumerate(['A', 'B', 'C']):
... print i, value
...
0 A
1 B
2 C
```

上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

```
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print x, y
...
1 1
2 4
3 9
```

小结

任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。

```
列表生成式 2223次阅读
```

```
列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用range(1, 11):
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:
>>> []
>>> for x in range(1, 11):
      L. append (x * x)
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:
\rangle \rangle \rangle [x * x \text{ for } x \text{ in range}(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
>>> [x * x \text{ for } x \text{ in range}(1, 11) \text{ if } x \% 2 == 0] [4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ'] ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
三层和三层以上的循环就很少用到了。
运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:
>>> import os # 导入os模块,模块的概念后面讲到
>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Wo
for循环其实可以同时使用两个甚至多个变量,比如dict的iteritems()可以同时迭代key和value:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.iteritems():
... print k, '=', v
y = B
z = C
因此,列表生成式也可以使用两个变量来生成list:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' } >>> [k + '=' + v for k, v in d.iteritems()] ['y=B', 'x=A', 'z=C']
最后把一个list中所有的字符串变成小写:
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
小结
运用列表生成式,可以快速生成list,可以通过一个list推导出另一个list,而代码却十分简洁。
思考:如果list中既包含字符串,又包含整数,由于非字符串类型没有lower()方法,所以列表生成式会报错:
>>> L = ['Hello', 'World', 18, 'Apple', None]
>>> [s.lower() for s in L]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'int' object has no attribute 'lower'
使用内建的isinstance函数可以判断一个变量是不是字符串:
>>> x = 'abc'
>>> y = 123
>>> isinstance(x, str)
```

请修改列表生成式,通过添加if语句保证列表生成式能正确地执行。

>>> isinstance(y, str)

False

2017/1/11

生成器

2195次阅读

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

```
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x104feab40>
```

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过generator的next()方法:

```
>>> g. next()
>>> g. next()
1
>>> g. next()
>>> g. next()
>>> g. next()
>>> g. next()
25
\Rightarrow \Rightarrow g. next()
36
>>> g. next()
49
\Rightarrow \Rightarrow g. next()
64
>>> g. next()
81
\Rightarrow \Rightarrow g. next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
```

我们讲过,generator保存的是算法,每次调用next(),就计算出下一个元素的值,直到计算到 最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next()方法实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

```
>>> g = (x * x for x in range(10))
>>> for n in g:
...     print n
...
0
1
4
9
16
25
36
49
64
81
```

所以,我们创建了一个generator后,基本上永远不会调用next()方法,而是通过for循环来迭代它。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

```
def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print b
        a, b = b, a + b
        n = n + 1</pre>
```

上面的函数可以输出斐波那契数列的前N个数:

```
>>> fib(6)
1
2
3
5
```

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素 开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print b改为yield b就可以了:

```
def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1</pre>
```

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

```
>>> fib(6)
<generator object fib at 0x104feaaa0>
```

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator,依次返回数字1,3,5:

```
>>> def odd():
     print 'step 1'
        yield 1
. . .
        print 'step 2'
        yield 3
        print 'step 3'
        yield 5
>>> o = odd()
>>> o. next()
step 1
>>> o. next()
step 2
>>> o. next()
step 3
>>> o. next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
```

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next()就报错。

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来调用它,而是直接使用for循环来迭代:

```
>>> for n in fib(6):
... print n
...
1
1
2
3
5
```

小结

generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以 通过函数实现复杂逻辑的generator。

要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

函数式编程

1978次阅读

函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计。函数就是面向过程的程序设计的基本单元。

而函数式编程(请注意多了一个"式"字)——Functional Programming,虽然也可以归结到面向过程的程序设计,但其思想更接近数学计算。

我们首先要搞明白计算机(Computer)和计算(Compute)的概念。

在计算机的层次上,CPU执行的是加减乘除的指令代码,以及各种条件判断和跳转指令,所以,汇编语言是最贴近计算机的语言。

而计算则指数学意义上的计算,越是抽象的计算,离计算机硬件越远。

对应到编程语言,就是越低级的语言,越贴近计算机,抽象程度低,执行效率高,比如C语言,越高级的语言,越贴近计算,抽象程度高,执行效率低,比如Lisp语言。

函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。

函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!

Python对函数式编程提供部分支持。由于Python允许使用变量,因此,Python不是纯函数式编程语言。

2017/1/11

高阶函数

2921次阅读

传入函数

要理解"函数本身也可以作为参数传入",可以从Python内建的map/reduce函数入手。

如果你读过Google的那篇大名鼎鼎的论文"<u>MapReduce: Simplified Data Processing on Large Clusters</u>",你就能大概明白map/reduce的概念。

我们先看map。map()函数接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回。

举例说明,比如我们有一个函数 $f(x)=x^2$,要把这个函数作用在一个list[1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用<math>map()实现如下:

现在, 我们用Python代码实现:

```
>>> def f(x):
... return x * x
...
>>> map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
[1, 4, 9, 16, 25, 36, 49, 64, 81]
```

请注意我们定义的函数f。当我们写f时,指的是函数对象本身,当我们写f(1)时,指的是调用f函数,并传入参数1,期待返回结果1。

因此, map()传入的第一个参数是f, 即函数对象本身。

像map()函数这种能够接收函数作为参数的函数,称之为高阶函数(Higher-order function)。

你可能会想,不需要map()函数,写一个循环,也可以计算出结果:

```
L = []
for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]:
    L. append(f(n))
print L
```

的确可以,但是,从上面的循环代码,能一眼看明白"把f(x)作用在list的每一个元素并把结fle:///C:/Users/Pingfan/Documents/GitHub/learnpython/PythonCrawler1/%E5%BB%96%E9%9B%AA%E5%B3%B0python%E6%95%99%E7%A8%8BHTM... 1/4

果生成一个新的list"吗?

所以,map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的 $f(x)=x^2$,还可以计算任意复杂的函数。

再看reduce的用法。reduce把一个函数作用在一个序列[x1, x2, x3...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:

```
reduce (f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
```

比方说对一个序列求和,就可以用reduce实现:

```
>>> def add(x, y):
... return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25
```

当然求和运算可以直接用Python内建函数sum(), 没必要动用reduce。

但是如果要把序列[1, 3, 5, 7, 9]变换成整数13579, reduce就可以派上用场:

```
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579
```

这个例子本身没多大用处,但是,如果考虑到字符串str也是一个序列,对上面的例子稍加改动,配合map(),我们就可以写出把str转换为int的函数:

```
>>> def fn(x, y):
...    return x * 10 + y
...
>>> def char2num(s):
...    return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]
...
>>> reduce(fn, map(char2num, '13579'))
13579
```

整理成一个str2int的函数就是:

```
def str2int(s):
    def fn(x, y):
        return x * 10 + y
    def char2num(s):
        return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]
    return reduce(fn, map(char2num, s))
```

还可以用1ambda函数进一步简化成:

```
def char2num(s):
    return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]

def str2int(s):
    return reduce(lambda x, y: x*10+y, map(char2num, s))
```

也就是说,假设Python没有提供int()函数,你完全可以自己写一个把字符串转化为整数的函数,而且只需要几行代码!

lambda函数的用法在下一节介绍。

排序算法

排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。通常规定,对于两个元素x和y,如果认为x < y,则返回-1,如果认为x = y,则返回0,如果认为x > y,则返回1,这样,排序算法就不用关心具体的比较过程,而是根据比较结果直接排序。

Python内置的sorted()函数就可以对list进行排序:

```
>>> sorted([36, 5, 12, 9, 21])
[5, 9, 12, 21, 36]
```

此外,sorted()函数也是一个高阶函数,它还可以接收一个比较函数来实现自定义的排序。比如,如果要倒序排序,我们就可以自定义一个reversed cmp函数:

```
def reversed_cmp(x, y):
    if x > y:
        return -1
    if x < y:
        return 1
    return 0</pre>
```

传入自定义的比较函数reversed cmp, 就可以实现倒序排序:

```
>>> sorted([36, 5, 12, 9, 21], reversed_cmp)
[36, 21, 12, 9, 5]
```

我们再看一个字符串排序的例子:

```
>>> sorted(['about', 'bob', 'Zoo', 'Credit'])
['Credit', 'Zoo', 'about', 'bob']
```

默认情况下,对字符串排序,是按照ASCII的大小比较的,由于'Z' 〈'a',结果,大写字母Z会排在小写字母a的前面。

现在,我们提出排序应该忽略大小写,按照字母序排序。要实现这个算法,不必对现有代码大加改动,只要我们能定义出忽略大小写的比较算法就可以:

```
def cmp_ignore_case(s1, s2):
    u1 = s1.upper()
    u2 = s2.upper()
    if u1 < u2:
        return -1
    if u1 > u2:
        return 1
    return 0
```

忽略大小写来比较两个字符串,实际上就是先把字符串都变成大写(或者都变成小写),再比较。

这样,我们给sorted传入上述比较函数,即可实现忽略大小写的排序:

```
>>> sorted(['about', 'bob', 'Zoo', 'Credit'], cmp_ignore_case)
['about', 'bob', 'Credit', 'Zoo']
```

从上述例子可以看出, 高阶函数的抽象能力是非常强大的, 而且, 核心代码可以保持得非常简洁。

函数作为返回值

高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。

我们来实现一个可变参数的求和。通常情况下,求和的函数是这样定义的:

```
def calc_sum(*args):
    ax = 0
    for n in args:
        ax = ax + n
    return ax
```

但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数!

```
def lazy_sum(*args):
    def sum():
        ax = 0
        for n in args:
            ax = ax + n
        return ax
    return sum
```

当我们调用lazy sum()时,返回的并不是求和结果,而是求和函数:

```
>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f
<function sum at 0x10452f668>
```

调用函数f时,才真正计算求和的结果:

```
>>> f()
25
```

在这个例子中,我们在函数lazy_sum中又定义了函数sum,并且,内部函数sum可以引用外部函数lazy_sum的参数和局部变量,当lazy_sum返回函数sum时,相关参数和变量都保存在返回的函数中,这种称为"闭包(Closure)"的程序结构拥有极大的威力。

请再注意一点,当我们调用lazy_sum()时,每次调用都会返回一个新的函数,即使传入相同的参数:

```
>>> f1 = lazy_sum(1, 3, 5, 7, 9)
>>> f2 = lazy_sum(1, 3, 5, 7, 9)
>>> f1==f2
False
```

f1()和f2()的调用结果互不影响。

小结

把函数作为参数传入,或者把函数作为返回值返回,这样的函数称为高阶函数,函数式编程就 是指这种高度抽象的编程范式。

假设Python没有提供map()函数,请自行编写一个my map()函数实现与map()相同的功能。

Python提供的sum()函数可以接受一个list并求和,请编写一个prod()函数,可以接受一个list并利用reduce()求积。

25匿名函数.html

匿名函数

2017/1/11

1754次阅读

当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便。

在Python中,对匿名函数提供了有限支持。还是以map()函数为例,计算 $f(x)=x^2$ 时,除了定义一个f(x)的函数外,还可以直接传入匿名函数:

```
>>> map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9])
[1, 4, 9, 16, 25, 36, 49, 64, 81]
```

通过对比可以看出,匿名函数1ambda x: x * x实际上就是:

```
def f(x):
return x * x
```

关键字lambda表示匿名函数,冒号前面的x表示函数参数。

匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。

用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:

```
>>> f = lambda x: x * x
>>> f
<function <lambda> at 0x10453d7d0>
>>> f(5)
25
```

同样,也可以把匿名函数作为返回值返回,比如:

```
def build(x, y):
return lambda: x * x + y * y
```

小结

Python对匿名函数的支持有限,只有一些简单的情况下可以使用匿名函数。

2017/1/11 26装饰器.html

装饰器

2215次阅读

由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。

```
>>> def now():
... print '2013-12-25'
...
>>> f = now
>>> f()
2013-12-25
```

函数对象有一个 name 属性,可以拿到函数的名字:

```
>>> now. __name__
'now'
>>> f. __name__
'now'
```

现在,假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为"装饰器"(Decorator)。

本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的 decorator,可以定义如下:

```
def log(func):
    def wrapper(*args, **kw):
        print 'call %s():' % func.__name__
        return func(*args, **kw)
    return wrapper
```

观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我 们要借助Python的@语法,把decorator置于函数的定义处:

```
@log
def now():
    print '2013-12-25'
```

调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:

```
>>> now()
call now():
2013-12-25
```

把@log放到now()函数的定义处,相当于执行了语句:

```
now = log(now)
```

由于log()是一个decorator,返回一个函数,所以,原来的now()函数仍然存在,只是现在同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。

wrapper()函数的参数定义是(*args, **kw),因此, wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。

如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更

2017/1/11 26装饰器.html

```
复杂。比如,要自定义log的文本:
```

```
def log(text):
    def decorator(func):
        def wrapper(*args, **kw):
            print '%s %s():' % (text, func.__name__)
            return func(*args, **kw)
        return wrapper
    return decorator
```

这个3层嵌套的decorator用法如下:

```
@log('execute')
def now():
    print '2013-12-25'
```

执行结果如下:

```
>>> now()
execute now():
2013-12-25
```

和两层嵌套的decorator相比,3层嵌套的效果是这样的:

```
>>> now = log('execute')(now)
```

我们来剖析上面的语句,首先执行log('execute'),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。

以上两种decorator的定义都没有问题,但还差最后一步。因为我们讲了函数也是对象,它有__name__等属性,但你去看经过decorator装饰之后的函数,它们的__name__已经从原来的'now'变成了'wrapper':

```
>>> now.__name__
'wrapper'
```

因为返回的那个wrapper()函数名字就是'wrapper', 所以,需要把原始函数的__name__等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。

不需要编写wrapper. __name__ = func. __name__这样的代码,Python内置的functools. wraps就是干这个事的,所以,一个完整的decorator的写法如下:

```
import functools
```

```
def log(func):
    @functools.wraps(func)
    def wrapper(*args, **kw):
        print 'call %s():' % func.__name__
        return func(*args, **kw)
    return wrapper
```

或者针对带参数的decorator:

```
import functools

def log(text):
    def decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kw):
            print '%s %s():' % (text, func.__name__)
            return func(*args, **kw)
```

2017/1/11 26装饰器.html

return wrapper return decorator

import functools是导入functools模块。模块的概念稍候讲解。现在,只需记住在定义wrapper()的前面加上@functools.wraps(func)即可。

小结

在面向对象(00P)的设计模式中,decorator被称为装饰模式。00P的装饰模式需要通过继承和组合来实现,而Python除了能支持00P的decorator外,直接从语法层次支持decorator。Python的decorator可以用函数实现,也可以用类实现。

decorator可以增强函数的功能,定义起来虽然有点复杂,但使用起来非常灵活和方便。

请编写一个decorator,能在函数调用的前后打印出'begin call'和'end call'的日志。

再思考一下能否写出一个@log的decorator, 使它既支持:

@log
def f():
 pass

又支持:

@log('execute')
def f():
 pass

2017/1/11 27偏函数.html

偏函数

1520次阅读

Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。要注意,这里的偏函数和数学意义上的偏函数不一样。

在介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度。而偏函数也可以做到这一点。举例如下:

int()函数可以把字符串转换为整数, 当仅传入字符串时, int()函数默认按十进制转换:

```
>>> int('12345')
12345
```

但int()函数还提供额外的base参数,默认值为10。如果传入base参数,就可以做N进制的转换:

```
>>> int('12345', base=8) 5349 >>> int('12345', 16) 74565
```

假设要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦,于是,我们想到,可以定义一个int2()的函数,默认把base=2传进去:

```
def int2(x, base=2):
    return int(x, base)
```

这样,我们转换二进制就非常方便了:

```
>>> int2('1000000')
64
>>> int2('1010101')
85
```

functools. partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2:

```
>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2('1000000')
64
>>> int2('1010101')
85
```

所以,简单总结functools.partial的作用就是,把一个函数的某些参数(不管有没有默认值)给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。

注意到上面的新的int2函数,仅仅是把base参数重新设定默认值为2,但也可以在函数调用时传入其他值:

```
>>> int2('1000000', base=10) 1000000
```

最后,创建偏函数时,要从右到左固定参数,就是说,对于函数f(a1, a2, a3),可以固定a3,也可以固定a3和a2,也可以固定a3,a2和a1,但不要跳着固定,比如只固定a1和a3,把a2漏下了。如果这样做,调用新的函数会更复杂,可以自己试试。

27偏函数.html

2017/1/11

小结

当函数的参数个数太多,需要简化时,使用functools.partial可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单。

2017/1/11 28模块.html

模块

1615次阅读

在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护。

为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式。在Python中,一个.py文件就称之为一个模块(Module)。

使用模块有什么好处?

最大的好处是大大提高了代码的可维护性。其次,编写代码不必从零开始。当一个模块编写完毕,就可以被其他地方引用。我们在编写程序的时候,也经常引用其他模块,包括Python内置的模块和来自第三方的模块。

使用模块还可以避免函数名和变量名冲突。相同名字的函数和变量完全可以分别存在不同的模块中,因此,我们自己在编写模块时,不必考虑名字会与其他模块冲突。但是也要注意,尽量不要与内置函数名字冲突。点<u>这里</u>查看Python的所有内置函数。

你也许还想到,如果不同的人编写的模块名相同怎么办?为了避免模块名冲突,Python又引入了按目录来组织模块的方法,称为包(Package)。

举个例子,一个abc. py的文件就是一个名字叫abc的模块,一个xyz. py的文件就是一个名字叫xyz的模块。

现在,假设我们的abc和xyz这两个模块名字与其他模块冲突了,于是我们可以通过包来组织模块,避免冲突。方法是选择一个顶层包名,比如mycompany,按照如下目录存放:

引入了包以后,只要顶层的包名不与别人冲突,那所有模块都不会与别人冲突。现在,abc.py模块的名字就变成了mycompany.abc,类似的,xyz.py的模块名变成了mycompany.xyz。

请注意,每一个包目录下面都会有一个__init__.py的文件,这个文件是必须存在的,否则, Python就把这个目录当成普通目录,而不是一个包。__init__.py可以是空文件,也可以有 2017/1/11 28模块.html

Python代码,因为_init_.py本身就是一个模块,而它的模块名就是mycompany。

类似的,可以有多级目录,组成多级层次的包结构。比如如下的目录结构:

文件www.py的模块名就是mycompany.web.www,两个文件utils.py的模块名分别是mycompany.utils和mycompany.web.utils。

mycompany. web也是一个模块,请指出该模块对应的. py文件。

使用模块

2307次阅读

Python本身就内置了很多非常有用的模块,只要安装完毕,这些模块就可以立刻使用。

我们以内建的sys模块为例,编写一个hello的模块:

```
#!/usr/bin/env python
# -*- coding: utf-8 -*-
 a test module'
 author = 'Michael Liao'
import sys
def test():
    args = sys. argv
    if len(args) == 1:
        print 'Hello, world!'
    elif len(args) == 2:
        print 'Hello, %s!' % args[1]
    else:
        print 'Too many arguments!'
          ==' main ':
if name
    test()
```

第1行和第2行是标准注释,第1行注释可以让这个hello.py文件直接在Unix/Linux/Mac上运行,第2行注释表示.py文件本身使用标准UTF-8编码;

第4行是一个字符串,表示模块的文档注释,任何模块代码的第一个字符串都被视为模块的文档注释;

第6行使用 author 变量把作者写进去,这样当你公开源代码后别人就可以瞻仰你的大名;

以上就是Python模块的标准文件模板,当然也可以全部删掉不写,但是,按标准办事肯定没错。

后面开始就是真正的代码部分。

你可能注意到了,使用svs模块的第一步,就是导入该模块:

```
import sys
```

导入sys模块后,我们就有了变量sys指向该模块,利用sys这个变量,就可以访问sys模块的所有功能。

sys模块有一个argv变量,用list存储了命令行的所有参数。argv至少有一个元素,因为第一个参数永远是该.py文件的名称,例如:

运行python hello.py获得的sys.argv就是['hello.py'];

运行python hello.py Michael获得的sys.argv就是['hello.py', 'Michael]。

最后,注意到这两行代码:

```
if __name__ == ' __main__':
    test()
```

当我们在命令行运行hello模块文件时,Python解释器把一个特殊变量__name__置为__main__,而如果在其他地方导入该hello模块时,if判断将失败,因此,这种if测试可以让一个模块通过命令行运行时执行一些额外的代码,最常见的就是运行测试。

我们可以用命令行运行hello.py看看效果:

\$ python hello.py
Hello, world!
\$ python hello.py Michael
Hello, Michael!

如果启动Pvthon交互环境, 再导入hello模块:

```
$ python
Python 2.7.5 (default, Aug 25 2013, 00:04:04)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import hello
>>>
```

导入时,没有打印Hello,word!,因为没有执行test()函数。

调用hello.test()时,才能打印出Hello, word!:

```
>>> hello.test()
Hello, world!
```

别名

导入模块时,还可以使用别名,这样,可以在运行时根据当前环境选择最合适的模块。比如Python标准库一般会提供StringIO和cStringIO两个库,这两个库的接口和功能是一样的,但是cStringIO是C写的,速度更快,所以,你会经常看到这样的写法:

```
try
```

```
import cStringIO as StringIO
except ImportError: # 导入失败会捕获到ImportError
import StringIO
```

这样就可以优先导入cStringIO。如果有些平台不提供cStringIO,还可以降级使用StringIO。导入cStringIO时,用import ... as ...指定了别名StringIO,因此,后续代码引用StringIO即可正常工作。

还有类似simplejson这样的库,在Python 2.6之前是独立的第三方库,从2.6开始内置,所以,会有这样的写法:

```
try:
```

```
import json # python >= 2.6
except ImportError:
  import simplejson as json # python <= 2.5</pre>
```

由于Python是动态语言,函数签名一致接口就一样,因此,无论导入哪个模块后续代码都能正常工作。

作用域

在一个模块中,我们可能会定义很多函数和变量,但有的函数和变量我们希望给别人使用,有的函数和变量我们希望仅仅在模块内部使用。在Python中,是通过前缀来实现的。

正常的函数和变量名是公开的(public),可以被直接引用,比如: abc, x123, PI等:

类似_xxx_这样的变量是特殊变量,可以被直接引用,但是有特殊用途,比如上面的 _author_, _name_就是特殊变量, hello模块定义的文档注释也可以用特殊变量_doc_访问, 我们自己的变量一般不要用这种变量名;

类似_xxx和_xxx这样的函数或变量就是非公开的(private),不应该被直接引用,比如_abc,__abc等;

之所以我们说,private函数和变量"不应该"被直接引用,而不是"不能"被直接引用,是 因为Python并没有一种方法可以完全限制访问private函数或变量,但是,从编程习惯上不应 该引用private函数或变量。

private函数或变量不应该被别人引用,那它们有什么用呢?请看例子:

```
def _private_1(name):
    return 'Hello, %s' % name

def _private_2(name):
    return 'Hi, %s' % name

def greeting(name):
    if len(name) > 3:
        return _private_1(name)
    else:
        return _private_2(name)
```

我们在模块里公开greeting()函数,而把内部逻辑用private函数隐藏起来了,这样,调用greeting()函数不用关心内部的private函数细节,这也是一种非常有用的代码封装和抽象的方法,即:

外部不需要引用的函数全部定义成private,只有外部需要引用的函数才定义为public。