CS 471: Statistical Methods in Al Project Presentation

Techniques for Network Intrusion Detection

Team Members

Murtuza Bohra (20172104), Rashmi KethiReddy (20172044), Abhay Rawat (20172082), Nitin Ramrakhiyani (20172091)

Introduction - Problem

- Network Intrusions
- User Activities -> Features
- Track unusual activities. -> detect suspicious user activities
- Attacks fall into four main categories:
 - DOS: denial-of-service
 - R2L: unauthorized access from a remote machine
 - U2R: unauthorized access to local superuser
 - Probing: port scanning

Introduction - Data

- KDD99 10% dataset (~5 lakh records)
- Contains a total of 24 training attack types, divided into 5 categories
- Normal: 97,278 DoS: 391,458 probe: 4107 r2l: 1126 u2r: 52
- Includes 34 continuous and 7 categorical features

Paper 1 (Feature Reduction) - Introduction

- Feature Reduction using various similarity measures
- Similarity between different dimensions taken as distance
- Similarity measures considered are:
 - Correlation Coefficient
 - Least Square Regression Error
 - Maximal Information Compression Index

Paper 1 (Proposed Method) - Contributions

Objective -> Classification

Idea for Feature Reduction : Across the Classes feature variance 1

Paper 1 (Proposed Method) - Contributions (Cont.)

Challenges:

1) Variance for Categorical Features

2) Normalisation of features.

Feature Reduction on Bayesian (30 Features)

Classes of data

Feature Reduction on Bayesian (20 Features)

Feature Reduction on Bayesian (10 Features)

Paper 2 - Introduction

- Employed SVM and Neural Networks to classify intrusions
- Binary attack vs normal
- Data used 14292 points with 7312 as training
- RBF kernel for SVM (Accuracy: 99.5%)
- Neural network with nodes as 41-40-40-1 (Accuracy: 99.25%)

Paper 2 - Our Contributions

- Employed SVM and Neural Networks on full 10% data
- Tried both Binary and Multiclass (DoS, normal, ...)
- RBF kernel for SVM with 'ovo' for multiclass
- Neural network with nodes
 - 41-40-40-1 for binary
 - 41-40-40-5 for multiclass
- Also employed with reduced feature sets of Paper 1's techniques

Effect of Reduced Features(20) on SVM

Count of Support Vectors Vs Feature Dimension

Count of Support Vectors

SVM vs NeuralNet (Classwise performance)

Paper 3 (Clustering) - Introduction

- Algorithms till now Equal Distribution
- Real time scenario Unequal distribution
- Anomaly Detection Pure normal data (training) tiresome & not accurate
- Cluster based unsupervised anomaly detection Unlabelled, intrusions induced in data for training.
 - Normal data is more dense than the intrusion data
 - Normal instances vary qualitatively from intrusion

Paper 3 (Clustering) - Contribution

- Sampling KDD 10% Data satisfy assumption 1
- Metrics Euclidean distance (Normalize), Hamming (for categorical)
- Hyper parameters W(Width of cluster), N(N% of clusters as normal)
- Labelling Most populated clusters as normal
- Testing Closest clusters class
- Clustered with reduced features of paper-1

Fixing W and find N

Fixing N and finding W

More...

- Probability based idea for variance of categorical features.
 - Notion of mean & variance.
 - How Probability will help?
 - Why it is intuitively better than one-hot encoding and numeric representation?

Thank you!

Questions?