M3M6: Applied Complex Analysis

Dr. Sheehan Olver s.olver@imperial.ac.uk

1 Lecture 6: Trapezium rule, Fourier series and Laurent series

This lecture we cover

- 1. Periodic and complex Trapezium rule
- 2. Convergence via Laurent series
- 3. Numerical differentiation via numerical computation of Cauchy integrals

1.1 Periodic Trapezium rule

Quadrature rules are pairs of nodes x_0, \ldots, x_{N-1} and weights w_0, \ldots, w_{N-1} to approximate integrals

$$\int_{a}^{b} f(x)dx \approx \sum_{j=0}^{N-1} w_{j} f(x_{j})$$

In this lecture we construct quadrature rules on complex contours γ to approximate contour integrals.

The trapezium rule gives an easy approximation to integrals. On $[0, 2\pi)$ for periodic $f(\theta)$, we have a simplified form:

Definition (Periodic trapezium rule) The periodic trapezium rule is the approximation

$$\int_0^{2\pi} f(\theta) d\theta \approx Q_N f := \frac{2\pi}{N} \sum_{i=0}^{N-1} f(\theta_k)$$

for
$$\theta_j = \frac{2\pi j}{N}$$
.

The periodic trapezium rule is amazingly accurate for smooth, periodic functions, as we demonstrate by comparison with another numerical integration scheme:

```
using Plots, ApproxFun f = \theta \rightarrow 1/(2 + \cos(\theta)) periodic_rule(N) = 2\pi/N*(0:(N-1)), 2\pi/N*ones(N) errs = [((x, w) = periodic_rule(N); abs(sum(w.*f.(x)) - sum(Fun(f, 0 .. 2\pi)))) for N = 1:45]; plot(errs.+eps(); yscale=:log10, title="exponential convergence of N-point trapezium rule", legend=false, xlabel="n")
```

exponential convergence of N- point trapezium rule

The accuracy in integration is remarkable as the trapezoidal interpolant does not accurately approximate f: we can see clear differences between the functions here:

```
N=20
(x, w) = periodic_rule(N)
plot(Fun(f, 0 .. 2\pi); label = "integrand")
plot!(x, f.(x); label = "trapezium approximation")
```


1.2 Trapezium rule and Fourier coefficients

Write

$$f(\theta) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ik\theta}$$

and assume that the Fourier coefficients are absolutely summable (true if f is smooth enough):

$$\sum_{k=-\infty}^{\infty} |\hat{f}_k| < \infty.$$

Note that geometric series tells us that

$$\frac{1}{2\pi}Q_N e^{ik\theta} = \frac{1}{N} \sum_{j=0}^{N-1} (e^{2\pi i k/N})^j$$

$$= \begin{cases} 1 & \text{if } k = mN \text{ for some integer } m \\ 0 & \text{otherwise} \end{cases}$$

It follows that we can express the Trapezium rule exactly in terms of a sum of Fourier coefficients:

$$\frac{1}{2\pi}Q_N f = \sum_{k=-\infty}^{\infty} \hat{f}_k \frac{1}{2\pi} Q_N e^{ik\theta} = \sum_{k=-\infty}^{\infty} \hat{f}_k \begin{cases} 1 & \text{if } k = mN \text{ for some integer } m \\ 0 & \text{otherwise} \end{cases}$$
$$= \dots + f_{-2N} + f_{-N} + f_0 + f_N + f_{2N} + \dots$$

In other words, the error in the Trapezium rule is bounded by

$$\left| \int_{0}^{2\pi} f(\theta) d\theta - Q_N f \right| \le 2\pi \sum_{m=1}^{\infty} \left[|f_{mN}| + |f_{-mN}| \right]$$

if we can show fast decay in the coefficients we can prove the observation that trapezium rule converges fast.

1.3 Decay in Fourier/Laurent coefficients

Now we consider g(z) such that $g(e^{i\theta}) = f(\theta)$, that is, g has the Laurent series

$$g(z) = \sum_{k=-\infty}^{\infty} g_k z^k$$

where $g_k = \hat{f}_k$. Interestingly, analytic properties of g can be used to show decaying properties in Fourier coefficients of f:

Theorem (Decay in Fourier/Laurent coefficients) Suppose g(z) is analytic in a closed annulus $A_{r,R}$ around 0: $A_r(z_0) = \{z : r \leq |z| \leq R\}$ Then for all $k |g_k| \leq M \min\left\{\frac{1}{R^k}, \frac{1}{r^k}\right\}$ where $M = \sup_{z \in A} |g(z)|$.

Proof This is a simple application of the ML lemma:

$$|g_k| = \frac{1}{2\pi} \left| \oint_{C_1} \frac{g(\zeta)}{\zeta^{k+1}} d\zeta \right| = \frac{1}{2\pi} \left| \oint_{C_r} \frac{f(\zeta)}{\zeta^{k+1}} d\zeta \right| \le \sup_{\zeta \in C_r} |f(\zeta)| R^{-k} \le M R^{-k}$$

which similar applies deforming to C_r .

We thus can show fast convergence of Trapezium rule again using geometric series:

$$\sum_{m=1}^{\infty} \left[|f_{mN}| + |f_{-mN}| \right] \le M \sum_{m=1}^{\infty} \left[R^{-mN} + r^{mN} \right] \le M \left[\frac{R^{-N}}{1 - R^{-N}} + \frac{r^N}{1 - r^N} \right].$$

Demonstration The Laurent coefficients of $g(\theta) = \frac{1}{2-\cos\theta}$ satisfies for $k \geq 0$

$$|g_k| \le \frac{2}{4 - R - R^{-1}} R^{-k}$$

for all $R \leq 2 + \sqrt{3}$. The following shows this bound is quite accurate:

```
g =Fun(\theta -> 1/(2-cos(\theta)), Laurent(-\pi .. \pi))
g_+ = g.coefficients[1:2:end]
scatter(abs.(g_+); yscale=:log10, label="|g_k|", legend=:bottomleft)
R = 1.1
scatter!(2/(4-R-inv(R))*R.^(-(0:length(g_+))), label = "R = $R")
```

```
scatter!(2/(4-R-inv(R))*R.^(-(0:length(g_+))), label = "R = $R")

R = 2+sqrt(3)-0.1

scatter!(2/(4-R-inv(R))*R.^(-(0:length(g_+))), label = "R = $R")
```


This fast decay in coefficients explains the fast convergence of the trapezium rule.

1.4 Complex Trapezium rule

We can use the map that defines a contour to construct an approximation to integrals over closed contour γ :

Definition (Complex trapezium rule) The *complex trapezium rule* on a contour γ (mapped from $[0, 2\pi)$) is the approximation

$$\oint_{\gamma} f(z)dz \approx \sum_{j=0}^{N-1} w_j f(z_j)$$

for

$$z_j = \gamma(\theta_j)$$
 and $w_j = \frac{2\pi}{n} \gamma'(\theta_j)$

Example (Circle trapezium rule) On a circle $C_r = \{re^{i\theta} : 0 \le \theta < 2\pi\}$, we have

$$\oint_{C_r} f(z)dz \approx \sum_{j=0}^{N-1} w_j f(z_j)$$

for $z_j = re^{i\theta_j}$ and $w_j = \frac{2\pi i r}{n}e^{i\theta_j}$.

Here we plot the quadrature points:

```
function circle_rule(n, r) \theta = \operatorname{periodic\_rule(n)[1]} \\ r*\exp.(\operatorname{im}*\theta), \ 2\pi*\operatorname{im}*r/n*\exp.(\operatorname{im}*\theta) \\ \text{end} \\ \zeta, \ w = \operatorname{circle\_rule(20, 1.0)} \\ \text{scatter}(\zeta; \ \operatorname{title="quadrature points", legend=} false, \ \operatorname{ratio=1.0})
```

quadrature points

The Circle trapezium rule is surprisingly accurate for analytic functions, following from these explanation above:

```
\zeta, w = circle_rule(20, 1.0)

f = z -> cos(z)

z = 0.1+0.2im

sum(f.(\zeta)./(\zeta .- z).*w)/(2\pi*im) - f(z)

-9.814371537686384e-14 - 1.3111040031432708e-14im
```

1.5 Application: Numerical differentiation

Calculating high-order derivatives using limits is numerically unstable. Here is a demonstration using finite-difference: making h small does not increase the accuracy after a certain point:

```
using SpecialFunctions
f = z -> gamma(z)
fp = z -> gamma(z)polygamma(0,z) # exact derivative
x = 1.2
fp_fd = [(h=2.0^(-n); (f(x+h)-f(x))/h) for n = 1:50]
plot(abs.(fp_fd .- fp(x)); yscale=:log10, legend=false, title = "error of finite-difference with h=2^(-n)", xlabel="n")
```

error of finite- difference with h=2^(- n)

But the previous formula tells us that we can reduce a derivative to a contour integral. The example above shows that it's still numerically unstable, but we can deform the integration contour, to make it stable!

```
 \begin{aligned} \text{trap\_fp} &= \left[ ((\zeta, \text{ w}) = \text{circle\_rule}(\text{n}, 0.5); \\ &\quad \zeta \text{ .+= x; } \# \text{ circle around } x \\ &\quad \text{sum}(\text{f.}(\zeta)./(\zeta \text{ .- x}).^2 \text{ .*w})/(2\pi * \text{im})) \text{ for n=1:50} \right] \end{aligned}   \begin{aligned} \text{plot(abs.(trap\_fp .- fp.(x)); yscale=:log10,} \\ &\quad \text{title="Error of trapezium rule applied to Cauchy integral formula", xlabel="n", legend=false)} \end{aligned}
```

Error of trapezium rule applied to Cauchy integral formula

We can take things further and use this to calculate the higher order derivatives, with some care taken for choosing the radius:

```
k=100

r = 1.0k

g = Fun(\zeta \rightarrow \exp(\zeta)/(\zeta - 0.1)^(k+1), Circle(0.1,r))

factorial(1.0k)/(2\pi*im) * sum(g) - exp(0.1)

-7.993605777301127e-15 + 3.675487826103639e-16im
```

Bornemann 2011 investigates this further and optimizes the radius.

The exponential convergence of the complex trapezium rule is a consequence of $f(\gamma(t))$ being 2π -periodic:

```
\theta = \operatorname{periodic\_rule}(100)[1]
\operatorname{plot}(\theta, \operatorname{real}(f.(0.6\exp.(\operatorname{im}*\theta) .+ x)./(0.5\exp.(\operatorname{im}*\theta))))
```


Example (Ellipse trapezium rule) On an ellipse $\{a\cos\theta + bi\sin\theta : 0 \le \theta < 2\pi\}$ we have

$$\oint_{\gamma} f(z)dz \approx \sum_{j=0}^{N-1} w_j f(z_j)$$

for $z_j = a\cos\theta_j + b\mathrm{i}\sin\theta_j$ and $w_j = \frac{2\pi}{n}(-a\sin\theta_j + \mathrm{i}b\cos\theta_j)$.

We can use the ellipse trapezium rule in place of the circle trapezium rule and still achieve accurate results. This gives us flexibility in avoiding singularities. Consider

$$f(z) = 1/(25z^2 + 1)$$

which has poles at $\pm i/5$. Using an ellipse allows us to design a contour that avoids these singularities:

```
scatter([1/5im,-1/5im]; label="singularities") \theta = \text{range}(0; \text{stop}=2\pi, \text{length}=2000) a = 2; b= 0.1 plot!(a * cos.(\theta) + im*b * sin.(\theta); label="ellipse")
```


Thus we can still use Cauchy's integral formula:

```
 \begin{array}{l} x = 0.1 \\ f = z \rightarrow 1/(25z^2 + 1) \\ function \ ellipse \ rule(n, a, b) \\ \theta = periodic \ rule(n)[1] \\ a*cos.(\theta) + b*im*sin.(\theta), 2\pi/n*(-a*sin.(\theta) + im*b*cos.(\theta)) \\ end \\ f\_ellipse = [((z, w) = ellipse \ rule(n, a, b); \ sum(f.(z)./(z.-x).*w)/(2\pi*im)) \ for \\ n=1:1000] \\ plot(abs.(f\_ellipse .- f(x)); \ yscale=:log10, \ title="convergence of n-point ellipse approximation", legend=false, xlabel="n") \\ \end{array}
```


1.6 Taylor series versus Cauchy integral formula

The Taylor series gives a polynomial approximation to f. The Cauchy's integral formula discretisation gives a rational approximation, which is more adaptiple and does not require knowning the derivatives of f:

```
using ComplexPhasePortrait
f = z -> sqrt(z)
function sqrt_n(n,z,z_0)
    ret = sqrt(z_0)
    c = 0.5/ret*(z-z_0)
    for k=1:n
        ret += c
        c *= -(2k-1)/(2*(k+1)*z_0)*(z-z_0)
    end
    ret
end
z_0 = 0.3
n = 40
phaseplot(-2..2, -2..2, z -> sqrt_n.(n,z,z_0))
```


Here we see that the approximation is vallid on the expected ellipse:

```
(\zeta, w) = \text{ellipse\_rule}(20, 4.0, 1.0);
\zeta := \zeta :+ 4.5;
f_{-c} = z -> \text{sum}(f_{-c}(\zeta) ./(\zeta .-z) .*w)/(2\pi*im)
phaseplot(-2..10, -2 ... 2, f_c)

(\zeta, w) = \text{ellipse\_rule}(100, 4.0, 1.0);
\zeta := \zeta :+ 4.5;
f_{-c} = z -> \text{sum}(f_{-c}(\zeta) ./(\zeta .-z) .*w)/(2\pi*im)
f_{-c}(5.3) - \text{sqrt}(5.3)
```

-1.3987033753437572e-11 + 2.459960261444439e-16im