Equivalence of definitions of closure of topological subspace

Sibo WANG

1 Motivation

Closure in topology is an essential concept and it has various definitions. In this note, equivalence of those definitions will be proved.

2 Equivalence of definitions of closure of topological subspace

Lemma 2.1. Given a topology space (X, \mathcal{T}) . Infinite intersection of closed set in X is a closed set.

Proof: (De Morgan's laws)

Definition 2.2. Given a topology space (X, \mathcal{T}) , for $A \subseteq X$, a point $x \in X$ is called a *limit point of* A if for each $B \in \{B : x \in B \in \mathcal{T}\}, B \cap A \neq \emptyset$.

Lemma 2.3. Given a topology space (X, \mathcal{T}) and $A \subseteq X$. If A' is the set that only contains all limit points of A, then $A \cup A'$ is closed.

Proof: To be continued

Notation 2.4. \overline{A} : closure of A in a topology space (X, \mathcal{T}) .

Theorem 2.5. The following definitions are equivalent:

- 1. Let A' denote the set of all limit points of A, then $\overline{A} = A \bigcup A'$.
- 2. $\overline{A} = \bigcap \{A \subseteq B : B \text{ is closed in } X\}$

3. \overline{A} is the smallest closed set containing A.

Proof:

 $1\Rightarrow 2$: On the one hand, given A, for every $B\in\{A\subseteq B: B \text{ is closed in }X\}$, $\overline{A}\subseteq\overline{B}$. Because B is closed, $\overline{A}\subseteq B$ by lemma 2.6. Thus $\overline{A}\subseteq\bigcap\{A\subseteq B: B \text{ is closed in }X\}$.

On the other hand, A' is a closed set containing A by lemma 2.3, so $\bigcap \{A \subseteq B : B \text{ is closed in } X\} \subseteq \overline{A} \text{ by 2.}$

Therefore, $\overline{A} = \bigcap \{ A \subseteq B : B \text{ is closed in } X \}.$

 $2 \Rightarrow 1$: On the one hand, A' is a closed set containing A by lemma 2.3, so $\bigcap \{A \subseteq B : B \text{ is closed in } X\} \subseteq \overline{A} \text{ by 2.}$

On the other hand, proof by contradiction. We assume $\bigcap \{A \subseteq B : B \text{ is closed in } X\} \subset \overline{A}$, then by lemma 2.1 there exists a closed set $B \in \{A \subseteq B : B \text{ is closed in } X\}$ such that $A \subseteq B \subset \overline{A}$. Let C denote $\overline{A} \setminus B$, so for each $c \in C$, they are called a limit point of A. However, there exists an open set $X \setminus B$ such that $c \in X \setminus B$ for each $c \in C$ and $(X \setminus B) \cap A = \emptyset$, which violates definition 2.2. Thus the assumption is wrong and $\bigcap \{A \subseteq B : B \text{ is closed in } X\} \supseteq \overline{A}$.

Therefore, $\overline{A} = \bigcap \{ A \subseteq B : B \text{ is closed in } X \}.$

- $2 \Rightarrow 3$: lemma 2.1
- $3 \Rightarrow 2$: lemma 2.1

Lemma 2.6. Given 1, if $A \subseteq B$ in a topology space (X, \mathcal{T}) , then $\overline{A} \subseteq \overline{B}$.

Proof: (using lemma 2.3, proof by contradiction)