QUY NHON UNIVERSITY DEPARTMENT OF MATHEMATICS AND STATISTICS

Principal Component Analysis

Nguyen Quoc Duong

Master's Student, Department of Mathematics and Statistics, Quy Nhon University

April 1, 2023

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

Dimensionality Reduction

- High-dimensional data
 - hard to analyze and visualize
 - Often, overcomplete and many dimensionas are redundant
- Compact data representation is always preferred just like compression.
- PCA (Principal Component Analysis) is a representative method.

Example: Housing Data

- 5 dimensions
 - Size
 - Number of rooms
 - Number of bathrooms
 - Schools around
 - **5** Crime rate
- 2 dimensions
 - Size feature
 - Location feature

PCA Algorithm

- **S1.** Centering. Centering the data by subtracting mean
- **S2.** Standardization. Divide the data points by the standard deviation for every dimension (original feature) d = 1, ..., D
- **S3.** Eigenvalue/vector. Compute the *M*-largest eigenvalues and the eigenvectors of the data covariance matrix (*M* is the dimension that needs to be reduced)
- **S4.** Projection. Project all data points onto the space defined by the eigenvectors (i.e., principal subspace).

Mathematics for Machine Learning

S5. Undo standardization and centering.

PCA Illustration

(a) Original dataset.

(b) Step 1: Centering by subtracting the mean from each data point.

(c) Step 2: Dividing by the standard deviation to make the data unit free. Data has variance 1 along each axis.

(d) Step 3: Compute eigenvalues and eigenvectors (arrows) of the data covariance matrix (ellipse).

(e) Step 4: Project data onto the principal subspace.

(f) Undo the standardization and move projected data back into the original data space from (a).

Data Matrix and Data Covariance Matrix

- N: number of samples, D: number of measurements (or original features)
- iid dataset $\mathcal{X} = \{x_1, \dots, x_N\}$ whose mean is 0 (well-centered), where each $x_i \in \mathbb{R}^D$, and its corresponding data matrix

$$m{X} = (m{x}_1 \ \cdots \ m{x}_N) = egin{pmatrix} X_{1,1} & X_{1,2} & \cdots & X_{1,N} \ X_{2,1} & X_{2,2} & \cdots & X_{2,N} \ & dots \ X_{D,1} & X_{D,2} & \cdots & X_{D,N} \end{pmatrix} \in \mathbb{R}^{D \times N}$$

(data) covariance matrix

$$\boldsymbol{S} = \frac{1}{N} \boldsymbol{X} \boldsymbol{X}^\mathsf{T} = \frac{1}{N} \sum_{n=1}^N \boldsymbol{x}_n \boldsymbol{x}_n^\mathsf{T} \in \mathbb{R}^{D \times D}$$

Covariance Matrix and Data Covariance Matrix

• Covaiance matrix for a random vector $\mathbf{Y} = (Y_1, \dots, Y_D)^T$, L6(4)

$$\Sigma_{\mathbf{Y}} = \begin{pmatrix} \operatorname{cov}(Y_1, Y_1) & \operatorname{cov}(Y_1, Y_2) & \cdots & \operatorname{cov}(Y_1, Y_D) \\ \vdots & & \vdots & & \vdots \\ \operatorname{cov}(Y_D, Y_1) & \operatorname{cov}(Y_n, Y_2) & \cdots & \operatorname{cov}(Y_D, Y_D) \end{pmatrix}$$

- Data convariance matrix $\boldsymbol{S} \in \mathbb{R}^{D \times D}$
 - Each Y_i has N samples $(x_{i,1} \cdots x_{i,N})$

$$S_{ij} = \text{cov}(Y_i, Y_j) = \frac{1}{N} \sum_{k=1}^{N} x_{i,k} \cdot x_{j,k}$$

$$= \text{average covariance (over samples) btwn feastures}$$

Code: Low Dimensional Representation

Low-dimensional compressed representation, also called code:

$$\mathbf{z}_n = \mathbf{B}^\mathsf{T} \mathbf{x}_n \in \mathbb{R}^M,$$

where the projection matrix is $m{B} := (m{b}_1, \dots, m{b}_M) \in \mathbb{R}^{D \times M},$

- Assume that the columns of \boldsymbol{B} are orthonormal, i.e., $\boldsymbol{b}_i^{\mathsf{T}} \boldsymbol{b}_j = 0$ if $i \neq j$, and $\boldsymbol{b}_i^{\mathsf{T}} \boldsymbol{b}_i = 1$ if i = j.
- Seek an M-dimensional subspace $U \subset \mathbb{R}^D$, $\dim(U) = M < D$ onto which we project data
- $\tilde{\mathbf{x}}_n \in \mathbb{R}^D$: projected data, \mathbf{z}_n : their coordinates w.r.t. the basis vectors of \mathbf{B} .

¹In L3(8), the coordinate in the projected space becomes $\lambda = (B^T B)^{-1} B^T x$, which is simply $B^T x$ for orthonormal bases B.

PCA: Encoder and Decoder Viewpoint

- Find a suitable matrix B such that $z = B^T x$ and $\tilde{x} = Bz$
- **B**^T: encoder, **B**: decoder
- Example. MNIST dataset
 - handwritten digits, N=60,000 data samples, $D=28\times 28=784$ pixels

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

Idea

- Information content in the data
 - space filling
 - information in the data by looking at how much data is spread out
- PCA
 - a dimensinoality reduction algorithm that maximizes the variance in the low-dimensional data representation.

source: Youtube channel by Luis Serrano

Matrix Again: B, z_n , and x_n

 $m{o}$ $m{B} = m{b}_1 \ m{b}_2 \ \dots \ m{b}_M \)$, where $m{b}_i \in \mathbb{R}^D$ and $m{B} \in \mathbb{R}^{D imes M}$

$$\bullet \; \; \boldsymbol{B}^\mathsf{T} = \begin{pmatrix} \boldsymbol{b}_1^\mathsf{T} \\ \vdots \\ \boldsymbol{b}_M^\mathsf{T} \end{pmatrix} \in \mathbb{R}^{M \times D}, \; \boldsymbol{b}_i^\mathsf{T} \in \mathbb{R}^{1 \times D}, \; \boldsymbol{x}_i \in \mathbb{R}^{D \times 1}$$

• z_{in} : new coordinate (for x_n) in the projected space by the basis b_i

What We Will Do Is ...

- Goal: Find the orthonormal bases $\mathbf{B} = (\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_M)$ that maximizes the variance.
- Result: For the M-largest eigenvalues $\lambda_1, \ldots, \lambda_M$ of the data covariance matrix \boldsymbol{S} , their corresponding M eigenvectors become $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_M$
- Question. Why data covariance matrix? Why eigenvectors ordered by their eigenvalues?
- Strategy: Induction
 - Step 1. We seek a single vector \mathbf{b}_1 that maximizes the variance of the projected data, assuming that we project the data onto an 1D line. We show that \mathbf{b}_1 is the eigenvector of the largest eigenvalue.
 - Step k. Suppose that we found $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_{k-1}$ for the variance maximization. Then, we seek \boldsymbol{b}_k that maximizes the variance of the projected data onto k-D plain with the constraint that \boldsymbol{b}_k is orthogonal to $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_{k-1}$. We prove that \boldsymbol{b}_k is the eigenvector of the k-th largest eigenvalue.

Step 1: Finding b_1 (1)

• Variance (over N sample data) of the first coordinate z_1 of $z \in \mathbb{R}^M$, so that

$$V_1 := \mathsf{var}[z_1] = rac{1}{N} \sum_{n=1}^N z_{1n}^2, \quad z_{1n} = m{b}_1^\mathsf{T} m{x}_n$$

where z_{1n} (z_{in}) is the first (i-th) coordinate of the low-dimensional representation z_n of x_n

$$V_1 = \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{b}_1^\mathsf{T} \boldsymbol{x}_n)^2 = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{b}_1^\mathsf{T} \boldsymbol{x}_n \boldsymbol{x}_n^\mathsf{T} \boldsymbol{b}_1 = \boldsymbol{b}_1^\mathsf{T} \Big(\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_n \boldsymbol{x}_n^\mathsf{T} \Big) \boldsymbol{b}_1 = \boldsymbol{b}_1^\mathsf{T} \boldsymbol{S} \boldsymbol{b}_1$$

• Find b_1 that maximizes V_1 .

$$\mathsf{max}_{m{b}_1} \ m{b}_1^\mathsf{T} m{S} m{b}_1, \quad \mathsf{subject to} \quad \left\| m{b}_1
ight\|^2 = 1$$

Step 1: Finding b_1 (2)

Optimization problem

$$\max_{m{b}_1} m{b}_1^\mathsf{T} m{S} m{b}_1, \quad \mathsf{subject to} \quad \left\| m{b}_1
ight\|^2 = 1$$

Using the Lagrange multiplier method, we get:

$$m{S}m{b}_1 = \lambda_1 m{b}_1, \quad m{b}_1^\mathsf{T} m{b}_1 = 1 \implies \lambda_1$$
: eigenvalue, $m{b}_1$: eigenvector of $m{S}$

- Then, $V_1 = \boldsymbol{b}_1^\mathsf{T} \boldsymbol{S} \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1^\mathsf{T} \boldsymbol{b}_1 = \lambda_1$ (the variance V_1 is the eigenvalue of S)
- To maximize the variance, we take the largest eigenvalue, and the corresponding eigenvector is called the (first) principal component.

Step k: Finding b_k (1)

 Finding k-th principal component: Solving the following optimization problem

$$\max_{\boldsymbol{b}} \boldsymbol{b}^\mathsf{T} \boldsymbol{S} \boldsymbol{b}$$
, subject to $\boldsymbol{b}^\mathsf{T} \boldsymbol{b} = 1$ and $\boldsymbol{b}^\mathsf{T} \boldsymbol{b}_i, \ i = 1, \dots, k-1$

- Claim. The solution of the above is the eigenvector of S corresponding to its k-th largest eigenvalue.
- Proof. By induction hypothesis, $\boldsymbol{b}_1, \dots, \boldsymbol{b}_k$ are the orthonormal eigenvectors of \boldsymbol{S} . Denote the i-th largest eigenvalue of \boldsymbol{S} by λ_i , where note that $\boldsymbol{S}\boldsymbol{b}_i = \lambda_i \boldsymbol{b}_i$.

The lagrangian of the objective function is:

$$\mathcal{L}(oldsymbol{b}) = oldsymbol{b}^\mathsf{T} oldsymbol{S} oldsymbol{b} - \lambda (oldsymbol{b}^\mathsf{T} oldsymbol{b} - 1) + \sum_{i=1}^k \eta_i oldsymbol{b}^\mathsf{T} oldsymbol{b}_i$$

Step k: Finding b_k (2)

• Letting the solution be denoted by b_{k+1} , the first-order necessary condition for optimality is:

$$\nabla \mathcal{L}(\boldsymbol{b}_{k+1}) = 2\boldsymbol{S}\boldsymbol{b}_{k+1} - 2\lambda \boldsymbol{b}_{k+1} + \sum_{i=1}^{k} \eta_i \boldsymbol{b}_i = 0$$

• Now, for any $j \in \{1, \ldots, k\}$,

$$0 = \boldsymbol{b}_{j}^{\mathsf{T}} \nabla \mathcal{L}(\boldsymbol{b}_{k+1}) = 2\boldsymbol{b}_{j}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{b}_{k+1} - 2\lambda \boldsymbol{b}_{j}^{\mathsf{T}} \boldsymbol{b}_{k+1} + \sum_{i=1}^{\kappa} \eta_{i} \boldsymbol{b}_{j}^{\mathsf{T}} \boldsymbol{b}_{i} = 2(\boldsymbol{S} \boldsymbol{b}_{j})^{\mathsf{T}} \boldsymbol{b}_{k+1} + \eta_{j}$$
$$= 2(\lambda \boldsymbol{b}_{j})^{\mathsf{T}} \boldsymbol{b}_{k+1} + \eta_{j} = 2\lambda \boldsymbol{b}_{j}^{\mathsf{T}} \boldsymbol{b}_{k+1} + \eta_{j} = \eta_{j}$$

- From $\eta_j = 0$ and (*), $\mathbf{S}\mathbf{b}_{k+1} = \lambda \mathbf{b}_{k+1}$. $\Longrightarrow \lambda$ is an eigenvalue and its corresponding eigenvector is \mathbf{b}_{k+1} .
- Note that the objective function is λ , because $\mathbf{b}^{\mathsf{T}}\mathbf{S}\mathbf{b} = \lambda \mathbf{b}^{\mathsf{T}}\mathbf{b}$.

Step k: Finding b_k (3)

- Question. How can we choose the largest λ with the constraint that $\boldsymbol{b}_{k+1} \perp (\boldsymbol{b}_1, \dots \boldsymbol{b}_k)$?
- Clearly, if \boldsymbol{b}_{k+1} is equal to any of these eigenvectors (up to sign), the constraint will be violated, so, to maximize λ , \boldsymbol{b}_{k+1} should be a unit eigenvector of \boldsymbol{S} corresponding to (k+1)-th largest eigenvalue.
- By spectral theorem, we can choose this vector in such a way that it is orthogonal to b_1, \ldots, b_k .

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

Storyline

- ullet An ordered orthonormal bais (ONB) $B=(oldsymbol{b}_1,\ldots,oldsymbol{b}_D)$
- ullet $oldsymbol{B}=ig(oldsymbol{b}_1 \;\;oldsymbol{b}_2 \;\; \dots \; oldsymbol{b}_Mig) \;,$ where $oldsymbol{b}_i\in\mathbb{R}^D$ and $oldsymbol{B}\in\mathbb{R}^{D imes M}$
- Encoding: $\mathbf{z}_n = \phi(\mathbf{x}_n)$ for some mapping $\phi(\cdot)$
- Decoding: $\tilde{\mathbf{x}}_n := \mathbf{B}\mathbf{z}_n = \sum_{m=1}^M z_{mn}\mathbf{b}_m$
- Goal: find the best linear projection of $\mathcal{X} = \{x_1, \dots, x_N\}$ onto a lower-dimensional subspace U (also, called principal subspace) of \mathbb{R}^D with dim(U) = M.
- Formally, minimize the following reconstruction error

$$J_M := \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \tilde{\mathbf{x}}_n\|^2,$$

where the variables are $(z_n : n = 1, ..., N)$ and $(b_1, ..., b_M)$

Two-step Approach

Step 1. We optimize the coordinate z_n in the space U for a given ONB $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_M)$

Step 2. Then, we find the optimal ONB, knowing the optimal z_n in Step 1.

Step 1: Optimal coordinate z_n for a given ONB

Intuition: Orthogonal projection

Result:
$$\tilde{\mathbf{x}}_n = \mathbf{B}(\mathbf{B}^\mathsf{T}\mathbf{B})^{-1}\mathbf{B}^\mathsf{T}\mathbf{x}_n = \mathbf{B}\mathbf{B}^\mathsf{T}\mathbf{x}_n = \mathbf{B}\mathbf{z}_n, \mathbf{z}_n = \mathbf{B}^\mathsf{T}\mathbf{x}_n$$

• Proof. Assume an ONB $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_M)$. Noting that J_M is a function of $\tilde{\mathbf{x}}_n$ and $\tilde{\mathbf{x}}_n$ is a function of \mathbf{z}_n ,

$$\frac{\partial J_{M}}{\partial z_{in}} = \frac{\partial J_{M}}{\partial \tilde{\mathbf{x}}_{n}} \frac{\partial \tilde{\mathbf{x}}_{n}}{\partial z_{in}}, \quad \frac{\partial J_{M}}{\partial \tilde{\mathbf{x}}_{n}} = -\frac{2}{N} (\mathbf{x}_{n} - \tilde{\mathbf{x}}_{n})^{\mathsf{T}}, \quad \frac{\partial \tilde{\mathbf{x}}_{n}}{\partial z_{in}} = \frac{\partial}{\partial z_{in}} \left(\sum_{m=1}^{M} z_{mn} \mathbf{b}_{m} \right) = \mathbf{b}_{i}$$

$$\frac{\partial J_M}{\partial z_{in}} = -\frac{2}{N} (\boldsymbol{x}_n - \tilde{\boldsymbol{x}}_n)^{\mathsf{T}} \boldsymbol{b}_i = -\frac{2}{N} \left(\boldsymbol{x}_n - \sum_{m=1}^{M} z_{mn} \boldsymbol{b}_m \right)^{\mathsf{T}} \boldsymbol{b}_i \stackrel{\mathsf{ONB}}{=} -\frac{2}{N} (\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{b}_i - z_{in} \boldsymbol{b}_i^{\mathsf{T}} \boldsymbol{b}_i)$$

$$=-\frac{2}{N}(\boldsymbol{x}_n^{\mathsf{T}}\boldsymbol{b}_i-z_{in})$$

• $z_{in} = \mathbf{x}_n^\mathsf{T} \mathbf{b}_i = \mathbf{b}_i^\mathsf{T} \mathbf{x}_n$ for $i = 1, \dots, M$ and $n = 1, \dots, N$ (ortho. proj. onto 1)

Step 2: Finding Optimal Basis $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_M)$ (1)

• The difference: $\mathbf{x}_n - \tilde{\mathbf{x}}_n = \left(\sum_{j=M+1}^D \mathbf{b}_j \mathbf{b}_j^\mathsf{T}\right) \mathbf{x}_n = \sum_{j=M+1}^D (\mathbf{x}_n^\mathsf{T} \mathbf{b}_j) \mathbf{b}_j$

$$\tilde{\boldsymbol{x}}_n = \sum_{m=1}^M z_{mn} \boldsymbol{b}_m \stackrel{\mathsf{Step } 1}{=} \sum_{m=1}^M (\boldsymbol{x}_n^\mathsf{T} \boldsymbol{b}_m) \boldsymbol{b}_m = \sum_{m=1}^M \boldsymbol{b}_m (\boldsymbol{b}_m^\mathsf{T} \boldsymbol{x}_n) = \left(\sum_{m=1}^M \boldsymbol{b}_m \boldsymbol{b}_m^\mathsf{T}\right) \boldsymbol{x}_m$$

$$oldsymbol{x}_n = \sum_{d=1}^D z_{dn} oldsymbol{b}_d = \left(\sum_{m=1}^M oldsymbol{b}_m oldsymbol{b}_m^\mathsf{T}
ight) oldsymbol{x}_n + \left(\sum_{j=M+1}^D oldsymbol{b}_j oldsymbol{b}_j^\mathsf{T}
ight) oldsymbol{x}_n$$

 The projection of the data point onto the orthogonal complement of the principal subspace

Step 2: Finding Optimal Basis $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_M)$ (2)

$$J_{M} = rac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_{n} - \tilde{\mathbf{x}}_{n}\|^{2} = rac{1}{N} \sum_{n=1}^{N} \left\| \sum_{j=M+1}^{D} (\mathbf{b}_{j}^{\mathsf{T}} \mathbf{x}_{n}) \mathbf{b}_{j} \right\|^{2} = rac{1}{N} \sum_{n=1}^{N} \sum_{j=M+1}^{D} (\mathbf{b}_{j}^{\mathsf{T}} \mathbf{x}_{n}) \mathbf{b}_{j}$$
 $= rac{1}{N} \sum_{n=1}^{N} \sum_{j=M+1}^{D} \mathbf{b}_{j}^{\mathsf{T}} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{b}_{j} = \sum_{j=M+1}^{D} \mathbf{b}_{j}^{\mathsf{T}} \left(rac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathsf{T}} \right) \mathbf{b}_{j} = \sum_{j=M+1}^{D} \mathbf{b}_{j}^{\mathsf{T}} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{b}_{j}$

- minimizing the squared reconstruction error = minimizing the variance when projected onto the orthogonal complement of the principal subspace = maximizing the variance of the projection in the principal subspace
- $J_M = \sum_{i=M+1}^D \lambda_i$ (because of the projection). To minimize this error, we need to choose the smallest D-M eigenvalues, which means that we need to choose the M largest eigenvalues and take their

corresponding eigenvectors for projection Mathematics for Machine Learning

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

Eigenvector Computation

Approach 1: EVD

L4(4)

- Perform an eigendecomposition and compute the eigenvalues and eigenvectors of the symmetric matrix S directly.
- Approach 2: SVD

L4(5)

- SVD of the data matrix \mathbf{X} : $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ $([D \times N] = [D \times D] \cdot [D \times N] \cdot [N \times N])$
- U and V^T : orthogonal matrices, Σ : only nonzero entries are the singular values $\sigma_{ii} \geq 0$.

$$\boldsymbol{S} = \frac{1}{N} \boldsymbol{X} \boldsymbol{X}^{\mathsf{T}} = \frac{1}{N} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathsf{T}} \boldsymbol{V} \boldsymbol{\Sigma}^{\mathsf{T}} \boldsymbol{U}^{\mathsf{T}} \stackrel{(\boldsymbol{V}^{\mathsf{T}} = \boldsymbol{V}^{-1})}{=} \frac{1}{N} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\mathsf{T}} \boldsymbol{U}^{\mathsf{T}}$$

- The columns of U are the eigenvectors of XX^T (thus S)
- The eigenvalues λ_d of **S** are related to the singular values of **X**:

$$\lambda_d = \frac{\sigma_d^2}{N}$$

PCA as Low-Rank Matrix Approximations

- In SVD, U corresponds to the projection matrix B, so that we maximize the variance of the projected data or minimize the average squared reconstruction error.
- Consider the best rank-M approximation

$$\tilde{\boldsymbol{X}}_{M} := \arg\min_{\operatorname{rk}(\boldsymbol{A})=M} \|\boldsymbol{X} - \boldsymbol{A}\|_{2}$$

 From Eckart-Young Theorem, by truncating the SVD at the top-M singular value, we obtain the reconstructed data matrix \hat{X}_M as: L4(5), L4(6)

$$\tilde{\boldsymbol{X}}_{M} = \overbrace{\boldsymbol{U}_{M}}^{D \times M} \overbrace{\boldsymbol{\Sigma}_{M}}^{M \times M} \overbrace{\boldsymbol{V}_{M}}^{M \times N} \iff \tilde{\boldsymbol{X}}_{M} = \sum_{i=1}^{M} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\mathsf{T}},$$

where σ_i is the *i*-th singular value.

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

PCA as Low-Rank Matrix Approximations

- In some practical cases, $\mathbf{S} = \frac{1}{N}\mathbf{X}\mathbf{X}^{\mathsf{T}} \in \mathbb{R}^{D \times D}$, where D is pretty high.
 - Example. 100×100 pixel image: D = 10,000.
- What if *N* << *D*?
 - With no duplicate data, rk(S) = N, and D N + 1 eigenvalues are 0! \implies no need to maintain $D \times D$ data covariance matrix.
- In PCA, $\boldsymbol{S}\boldsymbol{b}_m = \lambda_m \boldsymbol{b}_m, \ m=1,\ldots,M.$

$$\mathbf{S}\mathbf{b}_{m} = \frac{1}{N}\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{b}_{m} = \lambda_{m}\mathbf{b}_{m} \implies \frac{1}{N}\underbrace{\mathbf{X}^{\mathsf{T}}\mathbf{X}}_{N\times N}\underbrace{\mathbf{X}^{\mathsf{T}}\mathbf{b}_{m}}_{:=\mathbf{c}_{m}} = \lambda_{m}\mathbf{X}^{\mathsf{T}}\mathbf{b}_{m} \Longleftrightarrow \frac{1}{N}\mathbf{X}^{\mathsf{T}}$$

- λ_m is an eigenvalue of $\frac{1}{N} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X}$ with its associated eigenvector $\boldsymbol{c}_m = \boldsymbol{X}^{\mathsf{T}} \boldsymbol{b}_m$
- $\frac{1}{N}X^{T}X \in \mathbb{R}^{N \times N}$, so much easier to compute the eigenstuff
- To recover the eigenvector of S, by left-multiplying X, we get $\frac{1}{N}XX^{T}Xc_{m} = \lambda_{m}Xc_{m}$

PCA Algorithm

- **S1.** Centering. Centering the data by subtracting mean
- **S2.** Standardization. Divide the data points by the standard deviation for every dimension (original feature) d = 1, ..., D
- **S3.** Eigenvalue/vector. Compute the *M*-largest eigenvalues and the eigenvectors of the data covariance matrix (*M* is the dimension that needs to be reduced)
- **S4.** Projection. Project all data points onto the space defined by the eigenvectors (i.e., principal subspace).
- **S5.** Undo standardization and centering.

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

Generative Modeling with Latent Variables

Please go back to L8(4) for the background on generative models via latent variable models (LVMs).

Probabilistic PCA: Linear Latent Models

- A linear relationship between z and x: For Guassian observation noise $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$ and affine mapping defined by $\boldsymbol{B} \in \mathbb{R}^{D \times M}$ and $\boldsymbol{\mu} \in \mathbb{R}^D$,

$$oldsymbol{x} = oldsymbol{B}oldsymbol{z} + oldsymbol{\mu} + oldsymbol{\epsilon} \in \mathbb{R}^D$$

Conditional distribution for the links between latent and observed variables

$$p(\mathbf{x}|\mathbf{z}, \mathbf{B}, \boldsymbol{\mu}, \sigma^2) = \mathcal{N}(\mathbf{x}|\mathbf{B}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

- Data point generation: ancestral sampling
 - First, sample z_n from p(z)
 - Then, use z_n to generate a sample $x_n \sim p(x|z_n, B, \mu, \sigma^2)$

Probabilistic Model and Likelihood

Probabilistic model: joint distribution

$$p(\mathbf{x}, \mathbf{z}|\mathbf{B}, \boldsymbol{\mu}, \sigma^2) = p(\mathbf{x}|\mathbf{z}, \mathbf{B}, \boldsymbol{\mu}, \sigma^2)p(\mathbf{z})$$

Likelihood

$$p(\mathbf{x}|\mathbf{B}, \boldsymbol{\mu}, \sigma^2) = \int p(\mathbf{x}|\mathbf{z}, \mathbf{B}, \boldsymbol{\mu}, \sigma^2) p(\mathbf{z}) d\mathbf{z} = \int \mathcal{N}(\mathbf{x}|\mathbf{B}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I}) \mathcal{N}(\mathbf{z}) d\mathbf{z}$$

= $\mathcal{N}(\boldsymbol{\mu}, \mathbf{B}\mathbf{B}^\mathsf{T} + \sigma^2 \mathbf{I})$

Using the property of marginal and conditional Gaussians

L6(5)

Posterior Distribution

• The joint Gaussian distribution $p(x, z|B, \mu, \sigma^2)$ leads us to the posterior distribution

$$p(z|x) = \mathcal{N}(z|m, C)$$
, where $m = B^{\mathsf{T}}(BB^{\mathsf{T}} + \sigma^2 I)^{-1}(x - \mu)$, $C = I - B^{\mathsf{T}}(BB^{\mathsf{T}} + \sigma^2 I)^{-1}B$

Learning Probabilistic PCA: MLE

• For data samples $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$, we are able to compute the likelihood as:

$$\log p(\mathbf{X}|\mathbf{B}, \boldsymbol{\mu}, \sigma^2) = \sum_{n=1}^{N} \log p(\mathbf{x}_n|\mathbf{B}, \boldsymbol{\mu}, \sigma^2)$$

$$oldsymbol{\mu}_{\mathsf{ML}} = rac{1}{N} \sum_{n=1}^{N} oldsymbol{x}_n, \; oldsymbol{B}_{\mathsf{ML}} = oldsymbol{U} (oldsymbol{\Lambda} - \sigma^2 oldsymbol{I})^{1/2} oldsymbol{R}, \; oldsymbol{\sigma}_{\mathsf{ML}} = rac{1}{D-M} \sum_{j=M+1}^{D} \lambda_j,$$

- \boldsymbol{U} is a $D \times M$ matrix whose columns are eigenvectors of \boldsymbol{S}
- Λ is a $M \times M$ diagonal matrix whose elements are eigenvalues of ${\boldsymbol S}$
- **R** is an arbitrary orthogonal matrix (i.e., rotation)

PCA as Linear Auto-Encoder

- Non-linear auto-encoder: we replace the linear mapping of PCA with a non-linear mapping. An example is a deep auto-encoder with deep neutral networks.
- (Fully) Bayesian PCA: place a prior on the model parameters and integrate them out, rather than having a point estimate.
- Factor analysis: allow each observation dimension d to have a different variance σ_d^2

THANKS FOR YOUR ATTENTION

Discussions

