Стохастические дифференциальные уравнения

Кирилл Захаров

2020

Содержание

1	Предварительные сведения]
2	Уравнение Ито 2.1 Винеровский процесс]
	2.1 Винеровский процесс 2.2 Процесс Ито 2.3 Лемма Ито	
3	Простые стохастические модели 3.1 Логарифмическое блуждание	

1 Предварительные сведения

Пусть (Ω, \mathcal{F}, P) - вероятностное пространство. $\xi = (\xi_1, ..., \xi_n)$ - случайная последовательность. Пусть $\theta_k \xi = (\xi_{k+1}, \xi_{k+2}, ...)$.

Definition 1.1. ξ называется стационарной в узком смысле, если $\forall k \geq 1$ распределения $\theta_k \xi$ и ξ совпадают $P((\xi_1, \xi_2, ...) \in B) = P((\xi_{k+1}, \xi_{k+2}, ...) \in B), B \in \mathcal{B}(\mathbb{R}^{\infty}).$

Definition 1.2. Пусть T - множество значений параметра t. Случайным процессом назовем параметризованный набор случайных величин $\{\xi_t\}_{t\in T}$, принимающих значения в \mathbb{R}^n .

2 Уравнение Ито

2.1 Винеровский процесс

Рассмотрим дискретную модель блуждания.

$$x = x_0 + \mu_0 n + \sigma_0 \sqrt{n} \cdot \varepsilon \tag{1}$$

Накопленное стохастическое изменение пропорционально нормальному распределению с параметрами 0 и 1, т.е. $\varepsilon_1 + ... + \varepsilon_n = \sqrt{n} \cdot \varepsilon$, где $\varepsilon \sim N(0,1)$. Пусть Δt - длительность

одного шага, тогда количество шагов в момент $t-t_0$ равно $n=\frac{t-t_0}{\Delta t}$. Пусть $\sigma^2=\sigma_0^2/\Delta t$ и $\mu=\frac{\mu_0}{\Delta t}$. Получим следующее уравнение.

$$x(t) = x(t_0) + \mu(t - t_0) + \sigma\sqrt{t - t_0} \cdot \varepsilon \tag{2}$$

Ширина процесса x(t) увеличивается со временем пропорционально корню $\sqrt{t-t_0}$, а максимум сдвигается со скоростью μ . Рассмотрим изменение $dx=x(t)-x(t_0)$ за бесконечно малый интервал $dt=t-t_0$. Тогда получим

$$dx = \mu dt + \sigma \sqrt{dt} \cdot \varepsilon \tag{3}$$

Обозначим $\sqrt{dt}\cdot \varepsilon$ за δW . Данный процесс называется непрерывным винеровским процессом.

$$dx = \mu dt + \sigma \delta W \tag{4}$$

2.2 Процесс Ито

Общие процессы Ито представляют собой "деформацию" простого винеровского блуждания при помощи функций a(x,t) и b(x,t).

$$dx = a(x,t)dt + b(x,t)\delta W \tag{5}$$

где a(x,t)-коэффициент сноса, b(x,t) - коэффициент волатильности, δW - бесконечно малый винеровский шум. Также $b^2(x,t)$ называют диффузией. Для моделирования процесса Ито воспользуемся формулой в конечно-разностном представлении.

$$x_{k+1} = x_k + a(x_k, t_k)\Delta t + b(x_k, t_k)\sqrt{\Delta t} \cdot \varepsilon_k$$
(6)

В произвольный фиксированный момент времени x(t) - это случайная величина, свойства которой определяются при помощи ε и значения t.

2.3 Лемма Ито

$$dF = \left(\frac{\partial F}{\partial t} + a(x,t)\frac{\partial F}{\partial x} + \frac{b^2(x,t)}{2}\frac{\partial^2 F}{\partial x^2}\right)dt + b(x,t)\frac{\partial F}{\partial x}\delta W \tag{7}$$

Слагаемое перед dt обозначим за f(t), а перед δW за s(t) Необходимо подобрать F(x,t) так, чтобы функции f(t), s(t) были зависимы только от t. В результате получим следующие выражения.

$$\frac{\partial F}{\partial x} = \frac{s(t)}{b(x,t)} \tag{8}$$

$$\frac{\partial F}{\partial t} + s(t) \left(\frac{a(x,t)}{b(x,t)} - \frac{1}{2} \frac{\partial b(x,t)}{\partial x} \right) = f(t) \tag{9}$$

Возьмём частные производные уравнения (8) по t и (9) по x. Вычитая их, получим условие совместности

$$\frac{1}{s(t)}\frac{\partial}{\partial t} \left\{ \frac{s(t)}{b(x,t)} \right\} = \frac{1}{2} \frac{\partial^2 b(x,t)}{\partial x^2} - \frac{\partial}{\partial x} \left\{ \frac{a(x,t)}{b(x,t)} \right\}$$
(10)

Если при данных a(x,t) и b(x,t) можно подобрать такую функцию s(t), при которой уравнение (10) обратится в тождество, то получим решение стохастического уравнения (5) в следующей неявной форме

$$F(x,t) = F(x_0, t_0) + \int_{t_0}^{t} f(\tau)d\tau + \left(\int_{t_0}^{t} s^2(\tau)d\tau\right)^{1/2} \cdot \varepsilon$$
 (11)

3 Простые стохастические модели

3.1 Логарифмическое блуждание

Данный процесс также называется геометрическим броуновским блужданием и определяется уравнением (7).

$$dx = \mu x dt + \sigma x \delta W \tag{12}$$

где $\mu, \sigma = const.$ Если стохастический член равен 0 $\sigma = 0$, то получаем уравнение экспоненциального пространство при $\mu > 0$ и снижения при $\mu < 0$. Здесь $a(x,t) = \mu x$ и $b(x,t) = \sigma x$. Подставим их в условие совместности.

$$\frac{1}{s(t)} \frac{\partial}{\partial t} \left\{ \frac{s(t)}{\sigma x} \right\} = 0 - \frac{\partial \frac{\mu}{\sigma}}{\partial x} = 0$$
$$\Rightarrow \dot{s}(t) = 0 \Rightarrow s = const$$

Так как s(t) равна любой константе, удобно ее взять равной σ , для более простого нахождения F(x,t). Воспользуемся уравнением (8), проинтегрировав его. $\int \frac{\partial F}{\partial x} dx = \int \frac{\sigma}{\sigma x} dx \Rightarrow F(x,t) = \ln(x)$. Теперь, зная F(x,t) легко найти f(t) по формуле (9). $f(t) = 0 + \sigma \left(\frac{\mu}{\sigma} - \frac{1}{2}\sigma\right) \Rightarrow f(t) = \mu - \sigma^2/2$. Далее воспользуемся уравнением (11) при $t_0 = 0$.

$$F(x,t) = \ln(x_0) + \int_{t_0}^t (\mu - \sigma^2/2) d\tau + \left(\int_{t_0}^t \sigma^2 d\tau\right)^{1/2} \cdot \varepsilon =$$

$$= \ln(x_0) + (\mu - \sigma^2/2)t + \sqrt{\sigma^2}\sqrt{t} \cdot \varepsilon$$

$$\Rightarrow \ln(x) = \ln(x_0) + (\mu - \sigma^2/2)t + \sigma\sqrt{t} \cdot \varepsilon$$

$$\Rightarrow x(t) = x_0 \cdot e^{(\mu - \sigma^2/2)t + \sigma\sqrt{t} \cdot \varepsilon}$$

3.2 Процесс Орнштейна-Уленбека

Данный процесс задается следующим уравнением.

$$dx = -\beta(x - \alpha)dt + \sigma\delta W \tag{13}$$

где $\sigma = const, \beta > 0$ - характеризуется величину силы притяжения к равновесному состоянию α Здесь $a(x,t) = -\beta(x-\alpha)$ и $b(x,t) = \sigma$. Подставим их в условие совместности.

$$\frac{1}{s(t)} \frac{\partial}{\partial t} \left\{ \frac{s(t)}{\sigma} \right\} = 0 - \frac{\partial \frac{-\beta(x-\alpha)}{\sigma}}{\partial x}$$

$$\Rightarrow \frac{1}{s(t)\sigma} \dot{s}(t) = \frac{\beta}{\sigma} \Rightarrow \dot{s}(t) = \beta s(t)$$

$$\Rightarrow \ln s(t) = \beta t \Rightarrow s(t) = Ce^{\beta t}$$
(14)

Пусть $C = \sigma \Rightarrow \frac{\partial F}{\partial x} = \frac{s(t)}{b(x,t)} = e^{\beta t} \Rightarrow \int \frac{\partial F}{\partial x} dx = \int e^{\beta t} dx \Rightarrow F(x,t) = x \cdot e^{\beta t} + C_1$. Теперь, зная F(x,t) найдем f(t) по формуле (9). $f(t) = \beta x e^{\beta t} + \sigma e^{\beta t} \left(\frac{-\beta(x-\alpha)}{\sigma} - \frac{1}{2} \cdot 0 \right) \Rightarrow f(t) = \alpha \beta e^{\beta t}$. Далее воспользуемся уравнением (11) при $t_0 = 0$.

$$F(x,t) = x_{0}e^{\beta t_{0}} + \int_{t_{0}}^{t} (\alpha \beta e^{\beta \tau})d\tau + \left(\int_{t_{0}}^{t} \sigma^{2}e^{2\beta \tau}d\tau\right)^{1/2} \cdot \varepsilon =$$

$$= x_{0}e^{\beta t_{0}} + \alpha \beta e^{\beta t} - \alpha + \sqrt{\frac{\sigma^{2}}{2\beta}}e^{2\beta t} - \frac{\sigma^{2}}{2\beta} \cdot \varepsilon$$

$$xe^{\beta t} = x_{0} + \alpha \beta e^{\beta t} - \alpha + \sqrt{\frac{\sigma^{2}}{2\beta}}e^{2\beta t} - \frac{\sigma^{2}}{2\beta} \cdot \varepsilon$$

$$x(t) = x_{0}e^{-\beta t} + \alpha - \alpha e^{-\beta t} + \frac{\sigma}{\sqrt{2\beta}}e^{-\beta t} \cdot \sqrt{e^{2\beta t} - 1} \cdot \varepsilon =$$

$$\alpha + (x_{0} - \alpha)e^{-\beta t} + \frac{\sigma}{\sqrt{2\beta}}\sqrt{1 - e^{-2\beta t}} \cdot \varepsilon$$

$$(15)$$

Если $\beta>0$, то среднее значение при $t\to\infty$ стремится к α . Решение x(t) находится в интервале шириной $2\frac{\sigma}{\sqrt{2\beta}}$