Model Predictive Control

Chapter 11: Explicit MPC

Prof. Manfred Morari

Spring 2023

Coauthors: Prof. Francesco Borrelli, UC Berkeley

Prof. Colin Jones, EPFL

Outline

Outline

Introduction

Requires at each time step on-line solution of an optimization problem

Introduction

OFFLINE

ONLINE

- Optimization problem is parameterized by state
- Pre-compute control law as function of state x
- Control law is piecewise affine for linear system/constraints

Result: Online computation dramatically reduced and real-time

Tool: Parametric programming

Example (1/2)

Consider the following problem:

$$J^*(x) = \min_{z} \quad J(z, x) = \frac{1}{2}z^2 + 2xz + 2x^2$$

subj. to $z \le 1 + x$,

 $x \in \mathbb{R}$ is a parameter.

The goals:

- 1. find $z^*(x) = \operatorname{argmin}_z J(z, x)$,
- 2. find all x for which the problem has a solution
- 3. compute the value function $J^*(x)$

Define Lagrangian: $\mathcal{L}(z, x, \lambda) = f(z, x) + \lambda(z - x - 1)$ KKT conditions:

$$z + 2x + \lambda = 0,$$

$$z - x - 1 \leq 0,$$

$$\lambda(z - x - 1) = 0,$$

$$\lambda \geq 0.$$

Example (2/2)

Consider the two strictly complementary cases:

1.
$$z - x - 1 = 0 \\ \lambda \ge 0 \implies \begin{cases} z^*(x) = x + 1, \\ x \le -\frac{1}{3} \\ J^*(x) = \frac{9}{2}x^2 + 3x + \frac{1}{2} \end{cases}$$

2.
$$z-x-1<0 \\ \lambda=0 \Rightarrow \begin{cases} z^*(x)=-2x, \\ x>-\frac{1}{3} \\ J^*(x)=0 \end{cases}$$

•
$$\Rightarrow z^*(x) = \begin{cases} x+1, & \text{if } x \le -\frac{1}{3} \\ -2x, & \text{if } x \ge -\frac{1}{3} \end{cases}$$

$$J^*(x) = \begin{cases} \frac{9}{2}x^2 + 3x + \frac{1}{2}, & \text{if } x \le -\frac{1}{3} \\ 0, & \text{if } x \ge -\frac{1}{3} \end{cases}$$

This problem has a solution for all x.

Outline

mpQP - Problem formulation

$$J^*(x) = \min_{z} \frac{1}{2}z'Hz$$
,
subj. to $Gz \le w + Sx$

where H > 0, $z \in \mathbb{R}^s$, $x \in \mathbb{R}^n$ and $G \in \mathbb{R}^{m \times s}$.

Given a closed and bounded polyhedral set $\mathcal{K} \subset \mathbb{R}^n$ of parameters denote by $\mathcal{K}^* \subseteq \mathcal{K}$ the region of parameters $x \in \mathcal{K}$ such that the problem is feasible

$$\mathcal{K}^* := \{ x \in K : \exists z, \ Gz \le w + Sx \}$$

Goals:

- 1. find $z^*(x) = \operatorname{argmin}_z J(z, x)$,
- 2. find all x for which the problem has a solution
- 3. compute the value function $J^*(x)$

Active Set and Critical Region

Let $I := \{1, ..., m\}$ be the set of constraint indices.

Definition: Active Set

We define the active set at x, A(x), and its complement, NA(x), as

$$A(x) := \{ i \in I : G_i z^*(x) - S_i x = w_i \}$$

$$NA(x) := \{ i \in I : G_i z^*(x) - S_i x < w_i \}.$$

 G_i , S_i and w_i are the *i*-th row of G, S and w, respectively.

Definition: Critical Region

 CR_A is the set of parameters x for which the same set $A \subseteq I$ of constraints is active at the optimum. For a given $\bar{x} \in \mathcal{K}^*$ let $(A, NA) := (A(\bar{x}), NA(\bar{x}))$. Then,

$$CR_A := \{x \in \mathcal{K}^* : A(x) = A\}.$$

mpQP - Global properties of the solution

The following theorem summarizes the properties of the mpQP solution.

Theorem: Solution of mpQP

- i) The feasible set \mathcal{K}^* is a **polyhedron**.
- ii) The optimizer function $z^*(x): \mathcal{K}^* \to \mathbb{R}^m$ is:
 - continuous
 - polyhedral piecewise affine over \mathcal{K}^* . It is affine in each critical region \mathcal{CR}_i , every \mathcal{CR}_i is a polyhedron and $\bigcup \mathcal{CR}_i = \mathcal{K}^*$.
- iii) The value function $J^*(x): \mathcal{K}^* \to \mathbb{R}$ is:
 - continuous
 - convex
 - polyhedral piecewise quadratic over \mathcal{K}^* , it is quadratic in each \mathcal{CR}_i

mpQP - Example (1/4)

Consider the example

$$\min_{z(x)} \qquad \qquad \frac{1}{2} \left(z_1^2 + z_2^2 \right)$$
 subj. to
$$z_1 \leq 1 + x_1 + x_2$$

$$-z_1 \leq 1 - x_1 - x_2$$

$$z_2 \leq 1 + x_1 - x_2$$

$$-z_2 \leq 1 - x_1 + x_2$$

$$z_1 - z_2 \leq x_1 + 3x_2$$

$$-z_1 + z_2 \leq -2x_1 - x_2$$

$$-1 \leq x_1 \leq 1, \quad -1 \leq x_2 \leq 1$$

mpQP - Example (2/4)

The explicit solution is defined over $i=1,\ldots,7$ regions $\mathcal{P}_i=\{x\in\mathbb{R}^2\mid A_ix\leq b_i\}$ in the parameter space x_1-x_2 .

Critical regions

Piecewise quadratic objective function $J^*(x)$

mpQP - Example (3/4)

Primal solution is given as piecewise affine function $z(x) = F_i + g_i x$ if $x \in \mathcal{P}_i$.

$$z^*(x) = \begin{cases} \begin{pmatrix} 0.5 & 1.5 \\ -0.5 & -1.5 \end{pmatrix} x & \text{if } x \in \mathcal{P}_1 \\ \begin{pmatrix} 2 & 2 \\ 1 & -1 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \text{if } x \in \mathcal{P}_2 \\ \vdots \\ \vdots \end{cases}$$

mpQP - Example (4/4)

Primal solution is given as piecewise affine function $z(x) = F_i + g_i x$ if $x \in \mathcal{P}_i$.

Piecewise affine function $z_1^*(x)$

Piecewise affine function $z_2^*(x)$

Outline

mpLP - Problem formulation

$$J^*(x) = \min_{z} \qquad c'z$$
subj. to $Gz < w + Sx$

where $z \in \mathbb{R}^s$, $x \in \mathbb{R}^n$ and $G \in \mathbb{R}^{m \times s}$.

Given a closed and bounded polyhedral set $\mathcal{K} \subset \mathbb{R}^n$ of parameters, denote by $\mathcal{K}^* \subseteq \mathcal{K}$ the region of parameters $x \in \mathcal{K}$ such that the problem is feasible

$$\mathcal{K}^* := \{ x \in K : \exists z, \ Gz \le w + Sx \}$$

Goals:

- 1. find $z^*(x) = \operatorname{argmin}_z J(z, x)$,
- 2. find all x for which the problem has a solution
- 3. compute the value function $J^*(x)$

mpLP - Global properties of the solution

The following theorem summarizes the properties of the mpLP solution.

Theorem: Solution of mpLP

- i) The feasible set \mathcal{K}^* is a **polyhedron**.
- ii) If the optimal solution z^* is unique $\forall x \in \mathcal{K}^*$, the optimizer function $z^*(x) : \mathcal{K}^* \to \mathbb{R}^m$ is:
 - continuous
 - polyhedral piecewise affine over \mathcal{K}^* . It is affine in each critical region \mathcal{CR}_i , every \mathcal{CR}_i is a polyhedron and $\bigcup \mathcal{CR}_i = \mathcal{K}^*$.

Otherwise, it is always possible to choose such a continuous and PPWA optimizer function $z^*(x)$.

- iii) The value function $J^*(x): \mathcal{K}^* \to \mathbb{R}$ is:
 - continuous
 - convex
 - polyhedral piecewise affine over \mathcal{K}^* , it is affine in each \mathcal{CR}_i .

mpLP - Example (1/4)

Consider the example

$$\min_{z(x)} \qquad -3z_1 - 8z_2$$
 subj. to
$$z_1 + z_2 \le 13 + x_1$$

$$5z_1 - 4z_2 \le 20$$

$$-8z_1 + 22z_2 \le 121 + x_2$$

$$-4z_1 - z_2 \le -8$$

$$-z_1 \le 0$$

$$-z_2 \le 0$$

$$-11 \le x_1 \le 20$$

$$-20 \le x_2 \le 20$$

mpLP - Example (2/4)

The explicit solution is defined over i = 1, ..., 3 regions $\mathcal{P}_i = \{x \in \mathbb{R}^2 \mid A_i x \leq b_i\}$ in the parameter space $x_1 - x_2$.

Critical regions \mathcal{P}_i

Piecewise affine objective function $J^*(x)$

mpLP - Example (3/4)

Primal solution is given as piecewise affine function $z^*(x) = F_i x + g_i$ if $x \in \mathcal{P}_i$.

$$z^{*}(x) = \begin{cases} \begin{pmatrix} 0.733 & -0.033 \\ 0.267 & 0.033 \end{pmatrix} x + \begin{pmatrix} 5.5 \\ 7.5 \end{pmatrix} & \text{if } x \in \mathcal{P}_{1} \\ \begin{pmatrix} 0 & 0.051 \\ 0 & 0.064 \end{pmatrix} x + \begin{pmatrix} 11.846 \\ 9.808 \end{pmatrix} & \text{if } x \in \mathcal{P}_{2} \\ \begin{pmatrix} -0.333 & 0 \\ 1.333 & 0 \end{pmatrix} x + \begin{pmatrix} -1.667 \\ 14.667 \end{pmatrix} & \text{if } x \in \mathcal{P}_{3} \end{cases}$$

mpLP - Example (4/4)

Primal solution is given as piecewise affine function $z^*(x) = F_i x + g_i$ if $x \in \mathcal{P}_i$.

Piecewise affine function $z_1^*(x)$

Piecewise affine function $z_2^*(x)$

Outline

Problem Formulation - Quadratic Cost

Quadratic cost function

$$J_0(x(0), U_0) = x_N' P x_N + \sum_{k=0}^{N-1} x_k' Q x_k + u_k' R u_k$$
 (1)

with $P \succ 0$, $Q \succ 0$, $R \succ 0$.

Constrained Finite Time Optimal Control problem (CFTOC).

$$J_{0}^{*}(x(0)) = \min_{U_{0}} \quad J_{0}(x(0), U_{0})$$
subj. to $x_{k+1} = Ax_{k} + Bu_{k}, k = 0, ..., N-1$

$$x_{k} \in \mathcal{X}, u_{k} \in \mathcal{U}, k = 0, ..., N-1$$

$$x_{N} \in \mathcal{X}_{f}$$

$$x_{0} = x(0)$$
(2)

N is the time horizon and \mathcal{X} , \mathcal{U} , \mathcal{X}_f are polyhedral regions.

Construction of the QP with substitution

• **Step 1**: Rewrite the cost as

$$J_0(x(0), U_0) = U'_0 H U_0 + 2x(0)' F U_0 + x(0)' Yx(0)$$

= $[U'_0 x(0)'] \begin{bmatrix} F & F' \\ F & Y \end{bmatrix} [U_0' x(0)']'$

Note: $\begin{bmatrix} H & F' \\ F & Y \end{bmatrix} \succeq 0$ since $J_0(x(0), U_0) \geq 0$ by assumption.

• **Step 2**: Rewrite the constraints compactly as (details provided on the next slide)

$$G_0 U_0 \leq w_0 + E_0 x(0)$$

• **Step 3**: Rewrite the optimal control problem as

$$J_0^*(x(0)) = \min_{U_0} \quad [U_0' \ x(0)'] \begin{bmatrix} H \ F' \\ Y \end{bmatrix} [U_0' \ x(0)']'$$
subj. to $G_0 U_0 \le w_0 + E_0 x(0)$

Solution

$$J_0^*(x(0)) = \min_{U_0} \quad [U_0' \ x(0)'] \begin{bmatrix} H \ F' \\ Y \end{bmatrix} [U_0' \ x(0)']'$$
subj. to
$$G_0 U_0 \le w_0 + E_0 x(0)$$

For a given x(0) U_0^* can be found via a QP solver.

Construction of QP constraints with substitution

If \mathcal{X} , \mathcal{U} and \mathcal{X}_f are given by:

$$\mathcal{X} = \{x \mid A_x x \leq b_x\} \qquad \mathcal{U} = \{u \mid A_u u \leq b_u\} \qquad \mathcal{X}_f = \{x \mid A_f x \leq b_f\}$$

Then G_0 , E_0 and w_0 are defined as follows

$$G_{0} = \begin{bmatrix} A_{u} & 0 & \dots & 0 \\ 0 & A_{u} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_{u} \\ 0 & 0 & \dots & A_{u} \\ 0 & A_{x}B & 0 & \dots & 0 \\ A_{x}AB & A_{x}B & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A_{f}A^{N-1}B & A_{f}A^{N-2}B & \dots & A_{f}B \end{bmatrix}, E_{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ -A_{x} \\ -A_{x}A \\ -A_{x}A \\ -A_{x}A^{2} \\ \vdots \\ -A_{f}A^{N} \end{bmatrix}, w_{0} = \begin{bmatrix} b_{u} \\ b_{u} \\ \vdots \\ b_{u} \\ b_{x} \\ b_{x} \\ \vdots \\ b_{f} \end{bmatrix}$$

2-Norm State Feedback Solution

Start from QP with substitution.

• Step 1: Define $z := U_0 + H^{-1}F'x(0)$ and transform the problem into

$$\hat{J}^*(x(0)) = \min_{z \text{ subj. to }} z'Hz$$

where
$$S_0 := E_0 + G_0 H^{-1} F'$$
, and $\hat{J}^*(x(0)) = J_0^*(x(0)) - x(0)'(Y - FH^{-1} F')x(0)$.

The CFTOC problem is now a multiparametric quadratic program (mp-QP).

- **Step 2**: Solve the mp-QP to get explicit solution $z^*(x(0))$
- **Step 3**: Obtain $U_0^*(x(0))$ from $z^*(x(0))$

2-Norm State Feedback Solution

Main Results

- 1. The **Open loop optimal control function** can be obtained by solving the mp-QP problem and calculating $U_0^*(x(0))$, $\forall x(0) \in \mathcal{X}_0$ as $U_0^* = z^*(x(0)) H^{-1}F'x(0)$.
- 2. The first component of the multiparametric solution has the form

$$u^*(0) = f_0(x(0)), \forall x(0) \in \mathcal{X}_0,$$

 $f_0: \mathbb{R}^n \to \mathbb{R}^m$, is continuous and piecewise affine on polyhedra

$$f_0(x) = F_0^i x + g_0^i$$
 if $x \in CR_0^i$, $i = 1, ..., N_0^r$

- 3. The polyhedral sets $CR_0^i = \{x \in \mathbb{R}^n | H_0^i x \leq K_0^i \}, i = 1, ..., N_0^r \text{ are a partition of the feasible polyhedron } \mathcal{X}_0$.
- 4. The value function $J_0^*(x(0))$ is convex and piecewise quadratic on polyhedra.

Example

Consider the double integrator

$$\begin{cases} x(t+1) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \end{cases}$$

subject to constraints

$$-1 \le u(k) \le 1, \ k = 0, \dots, 5$$

$$\begin{bmatrix} -10\\ -10 \end{bmatrix} \le x(k) \le \begin{bmatrix} 10\\ 10 \end{bmatrix}, \ k = 0, \dots, 5$$

Compute the **state feedback** optimal controller $u^*(0)(x(0))$ solving the

CFTOC problem with N=6, $Q=\left[\begin{smallmatrix}1&0\\0&1\end{smallmatrix}\right]$, R=0.1, P the solution of the ARE, $\mathcal{X}_f=\mathbb{R}^2$.

Example

Partition of state space for the piecewise affine control law $u^*(0)$ ($N_0^r = 13$)

Problem Formulation - Piecewise Linear Cost

Piecewise linear cost function

$$J_0(x(0), U_0) := \|Px_N\|_p + \sum_{k=0}^{N-1} \|Qx_k\|_p + \|Ru_k\|_p$$
 (3)

with p = 1 or $p = \infty$, P, Q, R full column rank matrices

Constrained Finite Time Optimal Control Problem (CFTOC)

$$J_{0}^{*}(x(0)) = \min_{U_{0}} \quad J_{0}(x(0), U_{0})$$
subj. to $x_{k+1} = Ax_{k} + Bu_{k}, k = 0, ..., N-1$

$$x_{k} \in \mathcal{X}, u_{k} \in \mathcal{U}, k = 0, ..., N-1$$

$$x_{N} \in \mathcal{X}_{f}$$

$$x_{0} = x(0)$$
(4)

N is the time horizon and \mathcal{X} , \mathcal{U} , \mathcal{X}_f are polyhedral regions.

Construction of the LP with substitution

Recall that the ∞ -norm problem can be equivalently formulated as

$$\min_{z_0} \quad \varepsilon_0^{\mathsf{x}} + \ldots + \varepsilon_N^{\mathsf{x}} + \varepsilon_0^{\mathsf{u}} + \ldots + \varepsilon_{N-1}^{\mathsf{u}}$$
subj. to
$$-\mathbf{1}_n \varepsilon_k^{\mathsf{x}} \leq \pm Q \left[A^k x_0 + \sum_{j=0}^{k-1} A^j B u_{k-1-j} \right],$$

$$-\mathbf{1}_r \varepsilon_N^{\mathsf{x}} \leq \pm P \left[A^N x_0 + \sum_{j=0}^{N-1} A^j B u_{N-1-j} \right],$$

$$-\mathbf{1}_m \varepsilon_k^{\mathsf{u}} \leq \pm R u_k,$$

$$A^k x_0 + \sum_{j=0}^{k-1} A^j B u_{k-1-j} \in \mathcal{X}, \ u_k \in \mathcal{U},$$

$$A^N x_0 + \sum_{j=0}^{N-1} A^j B u_{N-1-j} \in \mathcal{X}_f,$$

$$x_0 = x(0), \ k = 0, \ldots, N-1$$

Construction of the LP with substitution

The problem yields the following standard LP

$$\begin{array}{ll} \min\limits_{z_0} & c_0'z_0 \\ \text{subj. to} & \bar{G}_0z_0 \leq \bar{w}_0 + \bar{S}_0x(0) \end{array}$$

where
$$z_0 := \{\varepsilon_0^{\mathsf{x}}, \dots, \varepsilon_N^{\mathsf{x}}, \varepsilon_0^{\mathsf{u}}, \dots, \varepsilon_{N-1}^{\mathsf{u}}, u_0', \dots, u_{N-1}'\} \in \mathbb{R}^{\mathsf{s}},$$

 $\mathsf{s} := (m+1)N+N+1$ and

$$\bar{G}_0 = \left[egin{array}{cc} G_{\varepsilon} & 0 \\ 0 & G_0 \end{array}
ight], \ \bar{S}_0 = \left[egin{array}{cc} S_{\varepsilon} \\ S_0 \end{array}
ight], \ \bar{w}_0 = \left[egin{array}{cc} w_{\varepsilon} \\ w_0 \end{array}
ight]$$

For a given x(0) U_0^* can be obtained via an LP solver (the 1-norm case is similar).

1- $/\infty$ -Norm State Feedback Solution

Main Results

- 1. The **Open loop optimal control function** can be obtained by solving the mp-LP problem and calculating $z_0^*(x(0))$
- 2. The component $u_0^* = [0 \dots 0 \ l_m \ 0 \dots 0] z_0^*(x(0))$ of the multiparametric solution has the form

$$u^*(0) = f_0(x(0)), \forall x(0) \in \mathcal{X}_0,$$

 $f_0:\mathbb{R}^n \to \mathbb{R}^m$, is continuous and piecewise affine on polyhedra

$$f_0(x) = F_0^i x + g_0^i$$
 if $x \in CR_0^i$, $i = 1, ..., N_0^r$

- 3. The polyhedral sets $CR_0^i = \{x \in \mathbb{R}^n | H_0^i x \leq K_0^i \}, i = 1, ..., N_0^r \text{ are a partition of the feasible polyhedron } \mathcal{X}_0$.
- 4. In case of multiple optimizers a continuous piecewise affine control law exists.
- 5. The value function $J_0^*(x(0))$ is continuous, convex and piecewise affine on polyhedra.

Explicit MPC

OFFLINE

ONLINE

- Optimization problem is parameterized by state
- Pre-compute control law as function of state x
- Control law is piecewise affine for linear system/constraints

Result: Online computation dramatically reduced and **real-time**Tool: **Parametric programming**

Outline

Online evaluation: Point location

Calculation of piecewise affine function:

- 1. Point location
- 2. Evaluation of affine function

Sequential search

Sequential search for each iif $A_ix + b_i \le 0$ then x is in region i

- Very simple
- Linear in number of regions

Logarithmic search (1/6)

Offline construction of search tree

- Find hyperplane that separates regions into two equal sized sets
- Repeat for left and right sets

Logarithmic search (2/6)

Logarithmic search (3/6)

Logarithmic search (4/6)

Logarithmic search (5/6)

Logarithmic search (6/6)

Point Location - Summary

- Sequential search
 - Very simple
 - Works for all problems
- Search tree
 - Potentially logarithmic
 - Significant offline processing (reasonable for < 1'000 regions)
- Many other options for special cases

Outline

Ball and Plate

- Linearized model: four states for each axis: plate angle, ball position, plate angular speed, ball speed.
- Constraints on inputs and states
 - Plate angle
 - Ball position
 - Acceleration
- MPC objective: path tracking

Ball and Plate - System

Ball and Plate - MPC Problem

- 4 states + 1 tracking variable = 5 parameters
- Move-blocking reduces complexity
 - Horizon of 10
 - Inputs 2 − 10 must be equal

min
$$\sum_{i=0}^{9} 100 \|y_i - y_t\|_2^2 + 0.1 \|u_i\|_2^2$$
s.t.
$$x_0 = x$$

$$x_{i+1} = Ax_i + Bu_i$$

$$y_i = Cx_i$$

$$u_{\min} \le u_i \le u_{\max}$$

$$y_{\min} \le y_i \le y_{\max}$$

$$x_{\min} \le x_i \le x_{\max}$$

$$u_{i+1} = u_i, i = \{1, \dots, 9\}$$

Multi-Parametric Toolbox

control.ee.ethz.ch/~mpt

% Linear discrete-time prediction model model=LTISystem('A', A, 'B', B, 'C', C);

P % Input constraints

model.u.min = -10; model.u.max = 10; % Output constraints model.y.min = -30; model.y.max = 30;

% State constraints model.x.min = [-30; -15; -15*pi/180; -1]; model.x.max = [30; 15; 15*pi/180; 1];

% Penalties in the cost function model.y.penalty = QuadFunction(100); model.u.penalty = QuadFunction(0.1);

 $\label{eq:continuity} % \ \mbox{Adjustment via input blocking} \\ \mbox{model.u.with('block'); model.u.from = 1; model.u.to = 9;} \\$

% Time varying reference signal model.y.with('reference'); model.y.reference = 'free';

% Online MPC object online_ctrl = MPCController(model, 9)

```
min \sum_{i=0}^{9} 100 \|y_i - y_t\|_2^2 + 0.1 \|u_i\|_2^2
s.t. x_0 = x
x_{i+1} = Ax_i + Bu_i
y_i = Cx_i
u_{\min} \le u_i \le u_{\max}
y_{\min} \le y_i \le y_{\max}
x_{\min} \le x_i \le x_{\max}
u_{i+1} = u_i, \quad i = \{1, \dots, 9\}
```

% Linear discrete-time prediction model model=LTISystem('A', A, 'B', B, 'C', C);

P % Input constraints

model.u.min = -10; model.u.max = 10; % Output constraints model.y.min = -30; model.y.max = 30;

% State constraints model.x.min = [-30; -15; -15*pi/180; -1]; model.x.max = [30; 15; 15*pi/180; 1];

% Penalties in the cost function model.y.penalty = QuadFunction(100); model.u.penalty = QuadFunction(0.1);

 $\label{eq:continuity} \begin{tabular}{ll} \% & Adjustment \ via input blocking \\ model.u.with('block'); \ model.u.from = 1; \ model.u.to = 9; \\ \end{tabular}$

% Time varying reference signal model.y.with('reference'); model.y.reference = 'free';

% Online MPC object online_ctrl = MPCController(model, 9)

```
min \sum_{i=0}^{9} 100 \|y_i - y_t\|_2^2 + 0.1 \|u_i\|_2^2
s.t. x_0 = x
x_{i+1} = Ax_i + Bu_i
y_i = Cx_i
u_{\min} \le u_i \le u_{\max}
y_{\min} \le y_i \le y_{\max}
x_{\min} \le x_i \le x_{\max}
u_{i+1} = u_i, \quad i = \{1, \dots, 9\}
```

% Linear discrete-time prediction model min $\sum 100||y_i - y_t||_2^2 + 0.1||u_i||_2^2$ model=LTISystem('A', A, 'B', B, 'C', C); % Input constraints model.u.min = -10; model.u.max = 10; s.t. $x_0 = x$ $x_{i+1} = Ax_i + Bu_i$ % Output constraints model.v.min = -30: model.v.max = 30: $v_i = Cx_i$ % State constraints $u_{\min} \le u_i \le u_{\max}$ model.x.min = [-30; -15; -15*pi/180; -1];model.x.max = [30: 15: 15*pi/180: 1]: $\sim v_{\min} < v_i < v_{\max}$ % Penalties in the cost function $\bullet X_{\min} < X_i < X_{\max}$ model.v.penalty = QuadFunction(100): model.u.penalty = QuadFunction(0.1); $u_{i+1} = u_i, \quad i = \{1, \dots, 9\}$ % Adjustment via input blocking model.u.with('block'); model.u.from = 1; model.u.to = 9; % Time varying reference signal model.y.with('reference'); model.y.reference = 'free'; % Online MPC object

online ctrl = MPCController(model, 9)

% Linear discrete-time prediction model model=LTISystem('A', A, 'B', B, 'C', C);

P % Input constraints

model.u.min = -10; model.u.max = 10; % Output constraints model.v.min = -30; model.v.max = 30;

% State constraints model.x.min = [-30; -15; -15*pi/180; -1]; model.x.max = [30; 15; 15*pi/180; 1];

% Penalties in the cost function model.y.penalty = QuadFunction(100); model.u.penalty = QuadFunction(0.1);

% Adjustment via input blocking model.u.with('block'); model.u.from = 1; model.u.to = 9; •

% Time varying reference signal model.y.with('reference'); model.y.reference = 'free';

% Online MPC object online_ctrl = MPCController(model, 9)

```
\min \sum_{i=0}^{9} 100 \|y_i - y_t\|_2^2 + 0.1 \|u_i\|_2^2
s.t. x_0 = x
x_{i+1} = Ax_i + Bu_i
y_i = Cx_i
u_{\min} \le u_i \le u_{\max}
y_{\min} \le y_i \le y_{\max}
x_{\min} \le x_i \le x_{\max}
u_{i+1} = u_i, \quad i = \{1, \dots, 9\}
```

> % Output constraints model.y.min = -30; model.y.max = 30;

 $\begin{tabular}{ll} \% & State constraints \\ & model.x.min = [-30; -15; -15*pi/180; -1]; \\ & model.x.max = [30; 15; 15*pi/180; 1]; \\ \end{tabular}$

% Penalties in the cost function model.y.penalty = QuadFunction(100); model.u.penalty = QuadFunction(0.1);

% Adjustment via input blocking model.u.with('block'); model.u.from = 1; model.u.to = 9;

% Time varying reference signal model.y.with('reference'); model.y.reference = 'free';

% Online MPC object online_ctrl = MPCController(model, 9)

```
min \sum_{i=0}^{9} 100 \|y_i - y_t\|_2^2 + 0.1 \|u_i\|_2^2
s.t. x_0 = x
x_{i+1} = Ax_i + Bu_i
y_i = Cx_i
u_{\min} \le u_i \le u_{\max}
y_{\min} \le y_i \le y_{\max}
x_{\min} \le x_i \le x_{\max}
u_{i+1} = u_i, \quad i = \{1, \dots, 9\}
```

Explicit Solution

% Plot control law (primal solution) explicit_ctrl.optimizer.fplot('primal') % plot the objective function explicit_ctrl.optimizer.fplot('obj')

% Plot controller partition explicit_ctrl.optimizer.plot

Exporting Explicit Solutions

Search tree and export to flat c-file

Export to flat c-file, sequential search

Ball and Plate - Explicit Controller

- 4 states + 1 tracking variable = 5 parameters
- Move-blocking reduces complexity
 - Horizon of 10
 - Inputs 2-10 must be equal

$$J^*(x, y_t) = \min \sum_{i=0}^{9} 100 \|y_i - y_t\|_2^2 + 0.1 \|u_i\|_2^2$$
s.t. $x_0 = x$

$$x_{i+1} = Ax_i + Bu_i$$

$$y_i = Cx_i$$

$$u_{\min} \le u_i \le u_{\max}$$

$$y_{\min} \le y_i \le y_{\max}$$

$$u_{i+1} = u_i, \quad i = \{1, \dots, 9\}$$

Explicit solution (per dimension)

Regions: 529

Storage: 48'000 numbers

(192 kB)

Computation: 89'000 FLOPS

(~1ms)

Ball and Plate - Pentagram

Real-time MPC Software Toolbox

Outline

Summary

- Linear MPC + Quadratic or linear-norm cost ⇒ Controller is PWA function
- We can pre-compute this function offline efficiently
- Online evaluation of a PWA function is very fast (ns μ s)
- We can only do this for very small systems! (3-6 states)