Bayesian Networks

- Syntax
- Semantics
- Parametrized Distributions
- Inference in Bayesian Networks
 - Exact Inference
 - enumeration
 - variable elimination
 - Approximate Inference
 - stochastic simulation
 - Markov Chain Monte Carlo (MCMC)

Inference Tasks

- Simple queries
 - compute the posterior marginal distribution for a variable
- Conjunctive queries
 - compute the posterior for a conjunction of variables

$$\mathbf{P}(X_i, X_j | \mathbf{E} = \mathbf{e}) = \mathbf{P}(X_i | \mathbf{E} = \mathbf{e}) \cdot \mathbf{P}(X_j | X_i \mathbf{E} = \mathbf{e})$$

- Optimal decisions
 - decision networks include utility information
 - probabilistic inference required for P(outcome|action,evidence)
- Value of Information
 - which evidence to seek next?
- Sensitivity Analysis
 - which probability values are most critical?
- Explanation
 - why do I need a new starter motor?

Inference by Enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

$$\begin{split} &\mathbf{P}(B|j,m) \\ &= \mathbf{P}(B,j,m)/P(j,m) \\ &= \alpha \mathbf{P}(B,j,m) \\ &= \alpha \ \Sigma_e \ \Sigma_a \ \mathbf{P}(B,e,a,j,m) \end{split} \qquad \text{Worst case: } O(n \ d^n) \text{ time} \end{split}$$

Rewrite full joint entries using product of CPT entries:

$$\mathbf{P}(B|j,m)$$
= $\alpha \sum_{e} \sum_{a} \mathbf{P}(B)P(e)\mathbf{P}(a|B,e)P(j|a)P(m|a)$
= $\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e)P(j|a)P(m|a)$

Recursive depth-first enumeration: O(n) space, $O(d^n)$ time where n is the number of variables and d is the number of values per variable

Enumeration Algorithm

```
function ENUMERATION-ASK(X, e, bn) returns a distribution over X
   inputs: X, the query variable
              e, observed values for variables E
              \mathit{bn}, a Bayesian network with variables \{X\} \, \cup \, \mathbf{E} \, \cup \, \mathbf{Y}
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
        extend e with value x_i for X
        \mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL(VARS[bn], e)}
   return Normalize(Q(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if Empty?(vars) then return 1.0
   Y \leftarrow \text{First}(vars)
   if Y has value y in e
        then return P(y \mid Pa(Y)) \times \text{Enumerate-All(Rest(vars), e)}
        else return \Sigma_y P(y \mid Pa(Y)) \times \text{Enumerate-All(Rest(vars), } \mathbf{e}_y)
             where e_y is e extended with Y = y
```

Evaluation Tree

Enumeration is inefficient: repeated computation e.g., computes P(j|a)P(m|a) for each value of e

Variable Elimination

- Key idea:
 - Do not multiply left-to-right but right-to-left.
 - Thus, terms that appear inside sums are evaluated first
 - intermediate results are stored as so-called factors
 - factors can be re-used several times in the same computation
 - is a form of dynamic programming
- Example: P(B|j,m)

$$= \alpha \underbrace{\mathbf{P}(B)}_{B} \underbrace{\sum_{e} \underbrace{P(e)}_{E} \underbrace{\sum_{a} \underbrace{\mathbf{P}(a|B,e)}_{A} \underbrace{P(j|a)}_{J} \underbrace{P(m|a)}_{M}}_{D}$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e) \underbrace{\sum_{a} \mathbf{P}(a|B,e) P(j|a) f_{M}(a)}_{M}}_{D}$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e) \underbrace{\sum_{a} \mathbf{P}(a|B,e) f_{J}(a) f_{M}(a)}_{D}}_{D}$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e) \underbrace{\sum_{a} f_{A}(a,b,e) f_{J}(a) f_{M}(a)}_{D}}_{D}$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e) f_{\bar{A}JM}(b,e)}_{D} \text{ (sum out } A)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e) f_{\bar{A}JM}(b,e)}_{D} \text{ (sum out } E)$$

$$= \alpha f_{B}(b) \times f_{\bar{E}\bar{A}JM}(b)$$

Factors

- A factor is a vector / matrix containing all probabilities for all dependent variables
- Examples:

•
$$\mathbf{f}_{M}(A) = \begin{vmatrix} P(m \mid a) \\ P(m \mid \neg a) \end{vmatrix}$$

• The factor $f_A(A,B,E)$ is a 2 x 2 x 2 matrix

Basic Operations

- Summing Out a variable from a product of factors
 - move any constant factors outside the summation
 - add up submatrices in pointwise product of remaining factors

$$\sum_{x} \mathbf{f}_{i} \times ... \times \mathbf{f}_{k} = \mathbf{f}_{i} \times ... \times \mathbf{f}_{i} \times \sum_{x} \mathbf{f}_{i+1} \times ... \times \mathbf{f}_{k}$$
$$= \mathbf{f}_{i} \times ... \times \mathbf{f}_{i} \times \mathbf{f}_{\bar{x}}$$

assuming \mathbf{f}_{i} , ..., \mathbf{f}_{i} do not depend on X

- Pointwise Product of factors f₁ and f₂
 - for example: $\mathbf{f}_{\bullet}(A, B) \times \mathbf{f}_{\bullet}(B, C) = \mathbf{f}(A, B, C)$
 - in general: $\mathbf{f}_{1}(X_{1},...,X_{j},Y_{1},...,Y_{k})\times\mathbf{f}_{2}(Y_{1},...,Y_{k},Z_{1},...,Z_{l})=$ = $\mathbf{f}(X_{1},...,X_{j},Y_{1},...,Y_{k},Z_{1},...,Z_{l})$

• has 2^{j+k+l} entries (if all variables are binary)

Example: Pointwise Product

p	q	r	f ₁ (p, q)	f ₂ (q, r)	pointwise product
Т	Т	Т	0.1	0.2	0.1 x 0.2
Т	Т	F	0.1	0.4	0.1 x 0.4
Т	F	Т	0.3	0.6	0.3 x 0.6
Т	F	F	0.3	0.8	0.3 x 0.8
F	Т	Т	0.5	0.2	0.5 x 0.2
F	Т	F	0.5	0.4	0.5 x 0.4
F	F	Т	0.7	0.6	0.7 x 0.6
F	F	F	0.7	0.8	0.7 x 0.8

Variable Elimination Algorithm

```
function ELIMINATION-ASK(X, e, bn) returns a distribution over X inputs: X, the query variable e, evidence specified as an event bn, a belief network specifying joint distribution P(X_1, \ldots, X_n) factors \leftarrow []; vars \leftarrow \text{Reverse}(\text{Vars}[bn]) for each var in vars do factors \leftarrow [Make-Factor(var, e)|factors] if var is a hidden variable then factors \leftarrow \text{Sum-Out}(var, factors) return Normalize(Pointwise-Product(factors))
```

Irrelevant Variables

Consider the query P(JohnCalls|Burglary = true)

$$P(J|b) = \alpha P(b) \sum\limits_{e} P(e) \sum\limits_{a} P(a|b,e) P(J|a) \sum\limits_{m} P(m|a)$$

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless $Y \in Ancestors(\{X\} \cup \mathbf{E})$

Here, X = JohnCalls, $\mathbf{E} = \{Burglary\}$, and $Ancestors(\{X\} \cup \mathbf{E}) = \{Alarm, Earthquake\}$ so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)

Markov Blanket

Markov Blanket:

parents + children + children's parents

Each node is conditionally independent of all other nodes given its markov blanket

$$\mathbf{P}(X \mid U_{1}, ..., U_{m}, Y_{1}, ..., Y_{n}, Z_{1}, ..., Z_{n}) =$$

$$= \mathbf{P}(X \mid all \ variables)$$

Moral Graph

- The moral graph is an undirected graph that is obtained as follows:
 - connect all parents of all nodes
 - make all directed links undirected
- Note:
 - the moral graph connects each node to all nodes of its Markov blanket
 - it is already connected to parents and children
 - now it is also connected to the parents of its children

Moral Graph and Irrelevant Variables

- m-separation:
 - A is m-separated from B by C iff it is separated by C in the moral graph
- Example:
 - J is m-separated from E by A

Theorem 2: *Y* is irrelevant if it is m-separated from *X* by *E*

Example:

For P(JohnCalls|Alarm=true), both Burglary and Earthquake are irrelevant

Complexity of Exact Inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O(d^k n)$

Multiply connected networks:

- can reduce 3SAT to exact inference \Rightarrow NP-hard

Example:

Two paths from Cloudy to Wet Grass

→ we need approximate inference techniques

Inference by Stochastic Simulation

Basic idea:

- 1) Draw N samples from a sampling distribution S
- 2) Compute an approximate posterior probability \hat{P}
- 3) Show this converges to the true probability P

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior

Sampling from an Empty Network

- Generating samples from a network that has no evidence associated with it (empty network)
- Basic idea
 - sample a value for each variable in topological order
 - using the specified conditional probabilities

```
function PRIOR-SAMPLE(bn) returns an event sampled from bn inputs: bn, a belief network specifying joint distribution \mathbf{P}(X_1,\ldots,X_n) \mathbf{x}\leftarrow an event with n elements for i=1 to n do x_i\leftarrow a random sample from \mathbf{P}(X_i\mid parents(X_i)) given the values of Parents(X_i) in \mathbf{x} return \mathbf{x}
```


Convergence of Sampling from an Empty Network

Probability that PRIORSAMPLE generates a particular event

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i|parents(X_i)) = P(x_1 \dots x_n)$$

i.e., the true prior probability

E.g.,
$$S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t)$$

Let $N_{PS}(x_1 \dots x_n)$ be the number of samples generated for event x_1, \dots, x_n

Then we have

$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n) / N$$
$$= S_{PS}(x_1, \dots, x_n)$$
$$= P(x_1, \dots, x_n)$$

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: $\hat{P}(x_1, \dots, x_n) \approx P(x_1 \dots x_n)$

Rejection Sampling

 $\hat{\mathbf{P}}(X|\mathbf{e})$ estimated from samples agreeing with \mathbf{e}

```
function Rejection-Sampling (X, e, bn, N) returns an estimate of P(X|e) local variables: N, a vector of counts over X, initially zero for j = 1 to N do x \leftarrow PRIOR-SAMPLE(bn) if x is consistent with e then N[x] \leftarrow N[x]+1 where x is the value of X in x return NORMALIZE(N[X])
```

```
E.g., estimate \mathbf{P}(Rain|Sprinkler=true) using 100 samples 27 samples have Sprinkler=true Of these, 8 have Rain=true and 19 have Rain=false.
```

```
\hat{\mathbf{P}}(Rain|Sprinkler = true) = \text{Normalize}(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle
```

Similar to a basic real-world empirical estimation procedure

Analysis of Rejection Sampling

- Rejection sampling generates random samples from an empty network
 - and discards all samples that are inconsistent with the evidence

```
\hat{\mathbf{P}}(X|\mathbf{e}) = \alpha \mathbf{N}_{PS}(X,\mathbf{e}) (algorithm defn.)

= \mathbf{N}_{PS}(X,\mathbf{e})/N_{PS}(\mathbf{e}) (normalized by N_{PS}(\mathbf{e}))

\approx \mathbf{P}(X,\mathbf{e})/P(\mathbf{e}) (property of PRIORSAMPLE)

= \mathbf{P}(X|\mathbf{e}) (defn. of conditional probability)
```

Hence rejection sampling returns consistent posterior estimates

- Problem
 - many unnecessary samples will be generated if the probability of observing the evidence e is small
 - P(e) will decrease exponentially with increasing numbers of evidence variables!

Likelihood Weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

```
function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)
   local variables: W, a vector of weighted counts over X, initially zero
   for j = 1 to N do
        \mathbf{x}, w \leftarrow \text{Weighted-Sample}(bn)
         \mathbf{W}[x] \leftarrow \mathbf{W}[x] + w where x is the value of X in \mathbf{x}
   return Normalize(\mathbf{W}[X])
function WEIGHTED-SAMPLE(bn, e) returns an event and a weight
   \mathbf{x} \leftarrow an event with n elements; w \leftarrow 1
   for i = 1 to n do
         if X_i has a value x_i in e
              then w \leftarrow w \times P(X_i = x_i \mid parents(X_i))
              else x_i \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i))
   return x, w
```


w = 1.0

w = 1.0

w = 1.0

 $w = 1.0 \times 0.1$

 $w = 1.0 \times 0.1$

35 **Bayesian Networks** © J. Fürnkranz

Analysis

Sampling probability for WEIGHTEDSAMPLE is

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$$

Note: pays attention to evidence in ancestors only

⇒ somewhere "in between" prior and posterior distribution

Weight for a given sample z, e is

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | parents(E_i))$$

Weighted sampling probability is

$$S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e})$$

$$= \prod_{i=1}^{l} P(z_i|parents(Z_i)) \quad \prod_{i=1}^{m} P(e_i|parents(E_i))$$

$$= P(\mathbf{z}, \mathbf{e}) \text{ (by standard global semantics of network)}$$

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight

Markov Chain Monte Carlo (MCMC) Sampling

"State" of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask(X, e, bn, N) returns an estimate of P(X|e) local variables: N[X], a vector of counts over X, initially zero Z, the nonevidence variables in bn x, the current state of the network, initially copied from e initialize x with random values for the variables in Y for j=1 to N do for each Z_i in Z do sample the value of Z_i in x from P(Z_i|mb(Z_i)) Gibbs Sampling given the values of MB(Z_i) in x N[x] \leftarrow N[x] + 1 where x is the value of X in x return NORMALIZE(N[X])
```

Can also choose a variable to sample at random each time

The Markov Chain

With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see

Estimate P(Rain|Sprinkler = true, WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat. Count number of times Rain is true and false in the samples.

E.g., visit 100 states 31 have Rain = true, 69 have Rain = false

 $\hat{\mathbf{P}}(Rain|Sprinkler = true, WetGrass = true) = \text{NORMALIZE}(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle$

Theorem: chain approaches stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

Markov Blanket Sampling

Markov blanket of Cloudy is Sprinkler and Rain Markov blanket of Rain is Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:

$$P(x_i'|mb(X_i)) = P(x_i'|parents(X_i)) \prod_{Z_j \in Children(X_i)} P(z_j|parents(Z_j))$$

Main computational problems:

- 1) Difficult to tell if convergence has been achieved
- 2) Can be wasteful if Markov blanket is large: $P(X_i|mb(X_i))$ won't change much (law of large numbers)