Embedded Virtual Analog Modelling with Recurrent Neural Networks

Jatin Chowdhury

Center for Computer Research in Music and Acoustics (CCRMA)

Virtual Analog Modelling

Creating a digital emulation of a classic analog audio effects.

- Provide access to effects that are old or rare.
- Lower cost.
- Convenience.
- Improved understanding.

Klon Centaur

Guitar pedal made by Bill Finnegan (MIT) from 1994-2000

Klon Centaur Circuit Schematic

Traditional Circuit Modelling

Nodal Analysis¹

¹Smith, Physical Audio Signal Processing; Maby, Solid State Electronics.

Nodal Analysis

Laplace domain transfer function

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{\frac{C_{14}\left(\frac{1}{R_{22}} + \frac{1}{R_{21} + R_{v2b}}\right)s + \frac{1}{R_{22}}\left(\frac{1}{R_{21} + R_{v2b}} + \frac{1}{R_{23} + R_{v2a}}\right)}{\frac{C_{14}\left(\frac{1}{R_{23} + R_{v2a}} + \frac{1}{R_{24}}\right)s + \frac{-1}{R_{24}}\left(\frac{1}{R_{21} + R_{v2b}} + \frac{1}{R_{23} + R_{v2a}}\right)}}$$
(1)

Bilinear transform (or other conformal map)

$$s \leftarrow \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \tag{2}$$

7

Nodal Analysis

Wave Digital Filters (WDFs)2

²Fettweis, "Wave digital filters: Theory and practice"; Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters".

Wave Digital Filters (WDFs)

- Use wave variables instead of voltage/current.
- Port resistance free parameter.

• Discretize each circuit element separately.

WDF tree for the Klon Centaur Feed-Forward Network 1 Circuit. S and P nodes refer to series and parallel adaptors respectively.

Wave Digital Filters (WDFs)

Neural Network Circuit Modelling

Recurrent Neural Network³

³Wright, Damskagg, and Valimaki, "Real-Time Black-Box Modelling with Recurrent Neural Networks".

Recurrent layer: Gated Recurrent Unit

$$z[n] = \sigma(W_z x[n] + U_z h[n-1] + b_z)$$
 (3)

$$r[n] = \sigma(W_r x[n] + U_r h[n-1] + b_r)$$
 (4)

$$c[n] = \tanh(W_c x[n] + r[n] \circ U_c h[n-1] + b_c)$$
 (5)

$$h[n] = z[n] \circ h[n-1] + (1-z[n]) \circ c[n]$$
 (6)

Loss Function: Error-to-Signal Ratio

$$\mathcal{E}_{ESR} = \frac{\sum_{n=0}^{N-1} |y[n] - \hat{y}[n]|^2}{\sum_{n=0}^{N-1} |y[n]|^2} \tag{7}$$

Training: 500 epochs, ~ 8 hours

Training results (time domain)

Training results (frequency domain)

Real-Time Implementation

Implementation

Non-ML Implementation

Use a combination nodal analysis, WDFs

 Control parameters for Treble, Gain, Level

ML Implementation

 RNN model for Gain Stage, nodal analysis elsewhere

 Fade between models for variable Gain control

 Custom GRU and Fully Connected implementations in C++

Implementation

Desktop Audio Plugin (JUCE/C++)

Implementation

Teensy 4.0, Teensy Audio Shield, Teensy Audio Library

Results: Performance

Compute time per second of audio.

Block Size	NonML Speed	ML Speed
8	0.0723437	0.0528792
16	0.0703079	0.0510437
32	0.0652856	0.0511147
64	0.0662835	0.0502434
128	0.0666593	0.0495194
256	0.0696844	0.0480298
512	0.0669037	0.0477946
1024	0.060816	0.0488841
2048	0.0695175	0.0488309
4096	0.0623839	0.0472191

Results: Summary

- Subjectively, non-ML and ML models sound very similar.
- ML model has slightly damped high frequency response, (not a big deal on guitar input; more noticeable on other audio).
- ML model is more efficient!

Live Performance!