Laboratornaya rabota №3

Mariya V. Kolomiets¹ 25 February, 2021 Moscow, Russia

¹RUDN University, Moscow, Russian Federation

Цели и задачи работы —

Цель лабораторной работы

Рассмотреть некоторые простейшие модели боевых действий – модели Ланчестера. В противоборстве могут принимать участие, как регулярные войска, так и партизанские отряды. В общем случае главной характеристикой соперников являются численности сторон. Если в какой-то момент времени одна из численностей обращается в нуль, то данная сторона считается проигравшей (при условии, что численность другой стороны в данный момент положительна).

Задание к лабораторной работе

- 1. Изучить три случае модели Ланчестера
- 2. Построить графики изменения численности войск
- 3. Определить победившую сторону

Процесс выполнения лабораторной работы

Рассмотри три случая ведения боевых действий:

- 1. Боевые действия между регулярными войсками
- 2. Боевые действия с участием регулярных войск и партизанских отрядов
- 3. Боевые действия между партизанскими отрядами

В первом случае модель боевых действий между регулярными войсками описывается следующим образом

$$\begin{cases} \frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t) \\ \frac{dy}{dt} = -c(t)x(t) - h(t)y(t) + Q(t) \end{cases}$$

Во втором случае в борьбу добавляются партизанские отряды. В результате модель принимает вид:

$$\begin{cases} \frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t) \\ \frac{dy}{dt} = -c(t)x(t)y(t) - h(t)y(t) + Q(t) \end{cases}$$

Модель ведение боевых действий между партизанскими отрядами с учетом предположений, сделанных в предыдущем случаем, имеет вид:

$$\begin{cases} \frac{dx}{dt} = -a(t)x(t) - b(t)x(t)y(t) + P(t) \\ \frac{dy}{dt} = -h(t)y(t) - c(t)x(t)y(t) + Q(t) \end{cases}$$

Вариант 43: Между страной X и страной Yидет война. Численность состава войск исчисляется от начала войны, и являются временными функциями x(t) и y(t) В начальный момент времени страна X имеет армию численностью 227000 человек, а в распоряжении страны Yармия численностью в 139000 человек. Для упрощения модели считаем, что коэффициенты a, b, c, h постоянны. Также считаем P(t), Q(t) непрерывные функции. Постройте графики изменения численности войск армии X и армии Yдля следующих случаев:

Случай 1. Модель боевых действий между регулярными войсками

$$\begin{cases} \frac{dx}{dt} = -0.34x(t) - 0.87y(t) + sin(t) + 2\\ \frac{dy}{dt} = -0.51x(t) - 0.2y(t) + 2|cos(t)| \end{cases}$$

Рис. 1: График численности для случая 1

Случай 2. Модель боевых действий между регулярными войсками

$$\begin{cases} \frac{dx}{dt} = -0.24x(t) - 0.75y(t) + sin(8t) + 1 \\ \frac{dy}{dt} = -0.28x(t)y(t) - 0.18y(t) + 2|cos(t)| \end{cases}$$

Рис. 2: График численности для случая 2

Выводы по проделанной работе

Вывод

На основе проделанной лабораторной работы познакомилась с моделью «Войны и сражения». Проверила, как работает модель в различных ситуациях, построила графики y(t) и x(t) в рассматриваемых случаях.

Спасибо за внимание!