Université Sultan Moulay Slimane Faculté Polydisciplinaire Khouribga

A. U. 2020-2021 Filière: SMA/SMI Module: Analyse 1 Responsable: N. Mrhardy

$\frac{\mathrm{TD}}{\mathrm{Les}} \, \frac{\mathrm{n}^{\circ} 2}{\mathrm{num\acute{e}riques}}$

Exercice 1. En utilisant la définition, montrer que

(1)
$$\left(\frac{1}{2^n}\right)_{n\geq 0}$$
 converge vers 0 (2) $(\ln(n^2+1))_{n\geq 0}$ tend vers $+\infty$

Exercice 2. Soit un réel $\alpha \in]0,1[$ et une suite $(u_n)_n$ convergeant vers une limite $l \in \mathbb{R}$.

- (1) Montrer que si $(\varepsilon_n)_n$ est une suite convergeant vers 0 alors $\lim_{n\to+\infty}\sum_{k=0}^n \alpha^k \varepsilon_{n-k} = 0$
- (2) En déduire que $\lim_{n\to+\infty}\sum_{k=0}^n \alpha^k u_{n-k} = \frac{l}{1-\alpha}$

Exercice 3. Soit $u_0 > 0$ et (u_n) la suite définie par : $u_{n+1} = \sqrt{\sum_{k=0}^n u_k}$

- (1) Trouver une relation de récurrence simple entre u_{n+1} et u_n .
- (2) Montrer que la suite (u_n) est croissante.
- (3) Montrer que la suite (u_n) diverge vers $+\infty$.

Exercice 4. On se propose d'étudier la suite définie par:

$$u_0 = 2$$
 et $u_{n+1} = 0.8u_n + 2$, $n \ge 1$

On considère la suite de terme général $v_n = u_n + c$

- (1) Trouver $c \in \mathbb{R}$ tel que la suite de terme général v_n soit géométrique.
- (2) Exprimer u_n en fonction de n et calculer sa limite.
- (3) Calculer $T_n = v_0 + v_1 + \dots + v_n$ et $S_n = u_0 + u_1 + \dots + u_n$ en fonction de n.
- (4) Calculer les limites des suites $(T_n)_{n\geq 0}$ et $(S_n)_{n\geq 0}$.

Exercice 5. Etudier les suites suivantes:

1.
$$u_n = \frac{2n + (-1)^n}{5n + (-1)^{n+1}}$$
 2. $u_n = \frac{n!}{n^n}$ 3. $u_n = \frac{E((n + \frac{1}{2})^2)}{E((n - \frac{1}{2})^2)}$
4. $u_n = \sqrt[n]{2 + (-1)^n}$ 5. $u_n = \sin(\frac{2n\pi}{3})$ 6. $u_n = n\cos n + n^2$
7. $u_n = (-1)^n(\sqrt{n+1} - \sqrt{n})$ 8. $u_n = \frac{E(nx)}{x}$, 9. $u_n = \frac{1}{n^2} \sum_{k=1}^n E(kx)$

Exercice 6. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle, on considère la suite $(s_n)_{n\in\mathbb{N}^*}$ définie par:

$$s_n = \frac{1}{n} \sum_{k=0}^{n-1} u_k = \frac{u_0 + u_1 + \dots + u_{n-1}}{n}$$

 $(s_n)_{n\in\mathbb{N}^*}$ est appelée suite des sommes de césaro associée à $(u_n)_{n\in\mathbb{N}}$.

- (1) Montrer que si $\lim u_n = l \in \mathbb{R}$, la suite $(s_n)_{n \in \mathbb{N}^*}$ converge et a pour limite l. Réciproque ?
- (2) Application: Soit (u_n) une suite de réels on suppose que $(u_{n+1} u_n) \longrightarrow \lambda$. Montrer que $(\frac{u_n}{n}) \longrightarrow \lambda$.

Exercice 7. On se propose de démontrer que le nombre e est un nombre irrationnel. Pour cela, on suppose que e est un nombre rationnel, c'est-à-dire qu'il existe des entiers p et q premiers entre eux tels que $e = \frac{p}{q}$.

On considère les deux suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ définies pour $n\geq 1$, par

$$u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}$$
 et $v_n = u_n + \frac{1}{n!}$.

- (1) Montrer que (u_n) et (v_n) sont strictement monotones.
- (2) En déduire que les suites (u_n) et (v_n) convergent vers la même limite.
- (3) On admet que la limite commune de (u_n) et (v_n) est le nombre réel e. Montrer que

$$q!u_q$$

(4) En déduire que e n'est pas rationnel.

Exercice 8. On définie par récurrence $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ en posant: $u_0=3,\ v_0=4,$ et si $n\geq 0$:

$$u_{n+1} = \frac{v_n + u_n}{2}, \ v_{n+1} = \frac{u_{n+1} + v_n}{2}$$

- (1) On pose $w_n = v_n u_n$, $\forall n \geq 0$. Montrer que $(w_n)_{n\geq 0}$ est une suite géométrique positive et calculer sa limite.
- (2) Démontrer que ces deux suites sont adjacentes. Que peut-on en déduire?
- (3) On considère à présent la suite $(t_n)_n$ définie, pour tout $n \in \mathbb{N}$, par: $t_n = \frac{u_n + 2v_n}{3}$. Montrer que la suite $(t_n)_n$ est constante. En déduire la limite des suites $(u_n)_n$ et $(v_n)_n$.

Exercice 9.

- (1) Soit (x_n) une suite réelle telle que les suites extraites (x_{2n}) et (x_{2n+1}) tendent vers la même limite $l \in \mathbb{R}$. Montrer qu'il en est de même pour la suite (x_n) .
- (2) Soit (x_n) une suite réelle telle que les suites extraites (x_{2n}) et (x_{2n+1}) et (x_{3n}) soient convergentes. Montrer que la suite (x_n) est convergente.

Exercice 10. Soit (u_n) une suite pour laquelle il existe un nombre $\lambda \in [0, 1[$, et un nombre réel positive k tels que, pour tout entier n

$$|u_{n+1} - u_n| \le k\lambda^n.$$

Montrer que la suite (u_n) converge.

Exercice 11. Soit $(u_n)_n$ la suite définie par $u_0 = 2$ et $u_{n+1} = \frac{1}{2}(u_n + \frac{2}{u_n})$ pour tout entier n.

- (1) Montrer que pour tout n on a : $u_n > 0$ et $u_n^2 > 2$.
- (2) Montrer que $(u_n)_n$ converge et calculer sa limite.
- (3) L'ensemble \mathbb{Q} est-il complet? (on peut remarquer que la suite $(u_n)_n$ est à valeur dans \mathbb{Q})