

MEDIUM-POWER

# MRTL

INTEGRATED CIRCUITS  
MC900 / MC800 SERIES

**MEDIUM-POWER**  
**MRTL**  
**INTEGRATED CIRCUITS**

**INDEX**

Medium-power MRTL logic circuits are specified over two different temperature ranges. Typical gate speed is 12 ns, with power dissipation averages of 19 mW (input high) and 5.0 mW (inputs low) per logic node.

**INDEX**

|                                               | Page No. |
|-----------------------------------------------|----------|
| General Information                           | 6-4      |
| Summary of Devices Available in Metal Cans    | 6-6      |
| Summary of Devices Available in Flat Packages | 6-8      |

**DEVICE SPECIFICATIONS**

**GATES**

|              |                         |      |
|--------------|-------------------------|------|
| MC903, MC803 | 3-Input Gates           | 6-12 |
| MC907, MC807 | 4-Input Gates           | 6-15 |
| MC929, MC829 | 5-Input Gates           | 6-17 |
| MC914, MC814 | Dual 2-Input Gates      | 6-19 |
| MC915, MC815 | Dual 3-Input Gates      | 6-21 |
| MC925, MC825 | Dual 4-Input Gates      | 6-23 |
| MC992, MC892 | Triple 3-Input Gates    | 6-25 |
| MC924, MC824 | Quad 2-Input Gates      | 6-27 |
| MC971, MC871 | Quad Exclusive OR Gates | 6-29 |

**BUFFERS**

|              |                                      |      |
|--------------|--------------------------------------|------|
| MC900, MC800 | Buffers                              | 6-31 |
| MC999, MC899 | Dual Buffers                         | 6-34 |
| MC988, MC888 | Dual 3-Input Buffers (Non-Inverting) | 6-36 |

**FLIP-FLOPS**

|              |                     |      |
|--------------|---------------------|------|
| MC902, MC802 | R-S Flip-Flops      | 6-38 |
| MC916, MC816 | J-K Flip-Flops      | 6-40 |
| MC926, MC826 | J-K Flip-Flops      | 6-44 |
| MC974, MC874 | J-K Flip-Flops      | 6-47 |
| MC990, MC890 | Dual J-K Flip-Flops | 6-50 |
| MC991, MC891 | Dual J-K Flip-Flops | 6-54 |

**HALF-SHIFT REGISTERS**

|              |                                             |      |
|--------------|---------------------------------------------|------|
| MC905, MC805 | Half-Shift Registers                        | 6-57 |
| MC906, MC806 | Half-Shift Registers without Inverter       | 6-60 |
| MC983, MC883 | Dual Half-Shift Registers                   | 6-62 |
| MC984, MC884 | Dual Half-Shift Registers without Inverters | 6-64 |

**ADDERS and SUBTRACTORS**

|              |                       |      |
|--------------|-----------------------|------|
| MC904, MC804 | Half Adders           | 6-66 |
| MC975, MC875 | Dual Half-Adders      | 6-68 |
| MC996, MC896 | Dual Full Adders      | 6-70 |
| MC997, MC897 | Dual Full Subtractors | 6-73 |

**COUNTER ADAPTERS**

|              |                  |      |
|--------------|------------------|------|
| MC901, MC801 | Counter Adapters | 6-76 |
|--------------|------------------|------|

**INVERTERS**

|              |                |      |
|--------------|----------------|------|
| MC927, MC827 | Quad Inverters | 6-78 |
| MC989, MC889 | Hex Inverters  | 6-80 |

**EXPANDERS**

|                |                        |      |
|----------------|------------------------|------|
| MC986, MC886   | Dual 4-Input Expanders | 6-82 |
| MC985, MC885   | Quad 2-Input Expanders | 6-84 |
| MC9919, MC9819 | Hex Expanders          | 6-86 |

## NUMERICAL INDEX

### (Functions and Characteristics)

$V_{CC} = 3.0 \text{ V} \pm 10\%$ ,  $T_A = 25^\circ\text{C}$

| Function                            | Type ①        |             | Case    | Output Loading Factor each output | Propagation Delay $t_{pd}$ ns typ | Total Power Dissipation mW typ/pkg | Page No. |
|-------------------------------------|---------------|-------------|---------|-----------------------------------|-----------------------------------|------------------------------------|----------|
|                                     | -55 to +125°C | 0 to +100°C |         |                                   |                                   |                                    |          |
| Buffer                              | MC900         | MC800       | 72, 96  | 25                                | 20                                | 16/45 ②                            | 6-31     |
| Counter Adapter                     | MC901         | MC801       | 96      | 5                                 | 22                                | 55                                 | 6-76     |
| R-S Flip-Flop                       | MC902         | MC803       | 96      | 4                                 | 14                                | 22                                 | 6-38     |
| 3-Input NDR Gate                    | MC903         | MC803       | 72, 96  | 5                                 | 12                                | 19/5.0 ②                           | 6-12     |
| Half Adder                          | MC904         | MC804       | 72, 96  | 5                                 | 14                                | 45                                 | 6-66     |
| Half-Shift Register                 | MC905         | MC805       | 72, 96  | 4                                 | 22                                | 53                                 | 6-57     |
| Half-Shift Register (w/o Inverter)  | MC906         | MC806       | 72, 96  | 4                                 | 22                                | 36                                 | 6-60     |
| 4-Input NDR Gate                    | MC907         | MC807       | 72, 96  | 5                                 | 12                                | 19/5.0 ②                           | 6-15     |
| Dual 2-Input NDR Gate               | MC914         | MC814       | 72, 96  | 5                                 | 12                                | 38/10 ②                            | 6-19     |
| Dual 3-Input NDR Gate               | MC915         | MC815       | 72, 96A | 5                                 | 12                                | 38/10 ②                            | 6-21     |
| J-K Flip-Flop                       | MC916         | MC816       | 72, 96  | 3                                 | 35                                | 62/54 ③                            | 6-40     |
| Quad 2-Input NOR Gate               | MC924         | MC824       | 83      | 5                                 | 12                                | 76/20 ②                            | 6-27     |
| Dual 4-Input NOR Gate               | MC925         | MC825       | 83      | 5                                 | 12                                | 38/10 ②                            | 6-23     |
| J-K Flip-Flop                       | MC926         | MC826       | 72, 96A | 5                                 | 35                                | 130/65 ③                           | 6-44     |
| Dquad Inverter                      | MC927         | MC827       | 72, 96A | 5                                 | 12                                | 76/20 ②                            | 6-78     |
| 5-Input NDR Gate                    | MC929         | MC829       | 72, 96  | 5                                 | 12                                | 19/5.0 ②                           | 6-17     |
| Dquad Exclusive OR Gate             | MC971         | MC871       | 83      | 5                                 | 12                                | 72                                 | 8-29     |
| J-K Flip-Flop                       | MC974         | MC874       | 96      | 5                                 | 35                                | 130/65 ③                           | 6-47     |
| Dual Half Adder                     | MC975         | MC875       | 83      | 5                                 | 20                                | 90                                 | 6-68     |
| Dual Half-Shift Register            | MC983         | MC883       | 83      | 4                                 | 22                                | 110                                | 6-62     |
| Dual Half-Shift Register w/Inverter | MC984         | MC884       | 83      | 4                                 | 22                                | 75                                 | 6-64     |
| Quad 2-Input Expander               | MC985         | MC885       | 83      | —                                 | 12                                | 17/- ②                             | 6-84     |
| Dual 4-Input Expander               | MC986         | MC886       | 83      | —                                 | 12                                | 17/- ②                             | 6-82     |
| Dual 3-Input Buffer, non inverting  | MC988         | MC888       | 83      | 25                                | 24                                | 128/42 ②                           | 6-36     |
| Hex Inverter                        | MC989         | MC889       | 83      | 5                                 | 12                                | 76/20 ②                            | 6-80     |
| Dual J-K Flip-Flop                  | MC990         | MC890       | 83      | 3                                 | 35                                | 124/108 ③                          | 6-50     |
| Dual J-K Flip-Flop                  | MC991         | MC891       | 83      | 5                                 | 40                                | 155/130 ③                          | 6-54     |
| Triple 3-Input NDR Gate             | MC992         | MC892       | 83      | 5                                 | 12                                | 57/15 ②                            | 6-25     |
| Dual Full Adder                     | MC996         | MC896       | 83      | 4                                 | 60                                | 70                                 | 6-70     |
| Dual Full Subtractor                | MC997         | MC897       | 83      | 4                                 | 60                                | 70                                 | 6-73     |
| Dual Buffer                         | MC999         | MC899       | 72, 96A | 25                                | 20                                | 32/90 ②                            | 6-34     |
| Hex Expander                        | MC9919        | MC9819      | 83      | —                                 | 12                                | 13/- ②                             | 6-86     |

① G Suffix denotes Metal Can, F suffix denotes Flat Package; i.e., MC900G = Metal Can, MC900F = Flat Package.

② Inputs High/Inputs Low

③ Only Clock Input High/Inputs Low

## GENERAL INFORMATION

## MRTL MC900/800 series



TO-99



TO-100



TO-91



TO-86

### MAXIMUM RATINGS ( $T_A = 25^\circ\text{C}$ )

| Characteristic                                   | Symbol    | Rating                       | Unit             |
|--------------------------------------------------|-----------|------------------------------|------------------|
| Input Voltage                                    | —         | $\pm 4$                      | Vdc              |
| Power Supply Voltage (Pulsed $\leq 1\text{ s}$ ) | —         | $\pm 12$                     | Vdc              |
| Operating Temperature Range                      | $T_A$     | -55 to $+125$<br>0 to $+100$ | $^\circ\text{C}$ |
| Storage Temperature Range                        | $T_{stg}$ | -65 to $+150$                | $^\circ\text{C}$ |

### TEST CONDITION TOLERANCES

$$V_{BOT} = \pm 10\text{ mV} \quad V_{cc} = \pm 10\text{ mV} \quad V_{in} = \pm 2\text{ mV} \quad V_{on} = \pm 2\text{ mV} \quad V_{off} = \pm 2\text{ mV}$$

### DEFINITIONS

|                      |                                                                                                                                                        |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| $I_{A3}, I_{A4},$    | Minimum available output current from a device with an output loading of 3, 4, or 5.                                                                   |
| $I_{AS}$             | Output voltage not to fall below the value of $V_{in}$ .                                                                                               |
| $I_{AS}$             | Minimum available output current from a buffer. Output voltage not to fall below the value of $V_{on}$ .                                               |
| $I_{CEX}$            | Collector current of a circuit when $V_{in}$ is applied to the output pin and $V_{off}$ is applied to the input pins.                                  |
| $I_{in}$             | Maximum input current drawn by one input of a gate with $V_{in}$ applied. All other gate inputs are returned to $V_{BOT}$ .                            |
| $2 I_{in}, 3 I_{in}$ | Maximum input current drawn by one input of a device with 2 or 3 bases internally tied together.                                                       |
| $V_{BOT}$            | A high-value voltage applied to an input of a device to insure saturation of the driven transistor.                                                    |
| $V_{cc}$             | Supply voltage.                                                                                                                                        |
| $V_{CE(\text{sat})}$ | Maximum saturation voltage with $V_{on}$ applied to the input.                                                                                         |
| $V_{in}$             | Minimum high-level voltage applied to the input of a device.                                                                                           |
| $V_{off}$            | The maximum voltage which may be applied to an input terminal without turning the transistor on.                                                       |
| $V_{on}$             | The minimum voltage which may be applied to an input terminal that will turn the transistor on.                                                        |
| $V_{out}$            | The maximum output voltage with $V_{on}$ applied to the input.                                                                                         |
| $V_x$                | Value of external resistor connected to $V_{cc}$ for test purposes.<br>$V_{xH}$ = highest node resistor value<br>$V_{xL}$ = lowest node resistor value |

### GENERAL RULES

- The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output.
- A gate output connected in parallel with another output reduces the drive capability by  $\frac{1}{2}$  load. (Paralleling gate circuits requires a  $V_{cc}$  connection to only one of the gates.)
- Any number of gates may be paralleled if the input loading is increased by  $\frac{1}{4}$  load, if only one gate is connected to  $V_{cc}$ .
- If the counter adapter is paralleled with another circuit, the output drive capability must be reduced by 2 loads. The reason for this drive reduction is the 1280-ohm resistance that connects the output terminals on the counter adapter.
- All unused inputs should be returned to ground.
- When paralleling gates with  $V_{cc}$  connected, a maximum of 4 outputs may be paralleled where the input loading factor is increased by 2.33.

### OUTLINE DIMENSIONS



Pin 4 connected to case.

**TO-99**



Pin 5 connected to case.

**TO-100**



Lead 1 identified by color dot or by shoulder on lead. All leads electrically isolated from package.

**TO-91**



Lead 1 identified by color dot or by elbow on lead. All leads electrically isolated from package.

**TO-86**

## LOADING DIAGRAMS

## MRTL MC900/800 series

### MRTL DEVICES AVAILABLE IN METAL CANS

The logic diagrams on these two pages describe the MC900/MC800 MRTL integrated circuits available in metal cans, and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time ( $t_{pd}$ ), typical package power dissipation ( $P_D$ ), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (when on the circuit input terminal) or load driving ability — fan-out — (when on the circuit output terminal).

The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. Loading data are valid over the temperature range of  $-55$  to  $+125^\circ\text{C}$  for the MC900 Series, and 0 to  $+100^\circ\text{C}$  for the MC800 Series, with  $V_{CC} = 3.0 \text{ V} \pm 10\%$ . For the TO-99 metal can,  $V_{CC}$  is applied to pin 8, with ground connected to pin 4. For the TO-100 metal can,  $V_{CC}$  is applied to pin 10, with ground connected to pin 5.

### GATES

**MC903G • MC803G  
3-Input Gate**



$$6 = \overline{1 + 2 + 3}$$

$t_{pd} = 12 \text{ ns}$

$P_D = 19 \text{ mW (Input High)}$   
 $5 \text{ mW (Inputs Low)}$

**MC907G • MC807G  
4-Input Gate**



$$6 = \overline{1 + 2 + 3 + 5}$$

$t_{pd} = 12 \text{ ns}$

$P_D = 19 \text{ mW (Input High)}$   
 $5 \text{ mW (Inputs Low)}$

**MC914G • MC814G  
Dual 2-Input Gate**



$$7 = \overline{1 + 2}$$

$t_{pd} = 12 \text{ ns}$

$P_D = 38 \text{ mW (Input High)}$   
 $10 \text{ mW (Inputs Low)}$

**MC915G • MC815G  
Dual 3-Input Gate**



$$4 = \overline{1 + 2 + 3}$$

$t_{pd} = 12 \text{ ns}$

$P_D = 38 \text{ mW (Input High)}$   
 $10 \text{ mW (Inputs Low)}$

**MC929G • MC829G  
5-Input Gate**



$$7 = \overline{1 + 2 + 3 + 5 + 6}$$

$t_{pd} = 12 \text{ ns}$

$P_D = 19 \text{ mW (Input High)}$   
 $5 \text{ mW (Inputs Low)}$

### INVERTERS

**MC927G • MC827G  
Quad Inverter**



$$9 = \overline{1}$$

$t_{pd} = 12 \text{ ns}$

$P_D = 76 \text{ mW (Input High)}$   
 $20 \text{ mW (Inputs Low)}$

### BUFFERS

**MC900G • MC800G  
Buffer**



$$7 = \overline{3}$$

$$5 = \overline{3}$$

$t_{pd} = 20 \text{ ns}$

$P_D = 16 \text{ mW (Input High)}$   
 $45 \text{ mW (Inputs Low)}$

**MC999G • MC899G  
Dual Buffer**



$$t_{pd} = 20 \text{ ns}$$

$P_D = 32 \text{ mW (Input High)}$   
 $90 \text{ mW (Inputs Low)}$

## MRTL DEVICES AVAILABLE IN METAL CANS (continued)

### FLIP-FLOPS

MC916G • MC816G  
J-K Flip-Flop



$t_{pd} = 30 \text{ ns}$   
 $P_D = 62 \text{ mW (Only Clock Input High)}$   
 $54 \text{ mW (Inputs Low)}$

MC926G • MC826G  
J-K Flip-Flop



$t_{pd} = 35 \text{ ns}$   
 $P_D = 130 \text{ mW (Only Clock Input High)}$   
 $65 \text{ mW (Inputs Low)}$

MC974G • MC874G  
J-K Flip-Flop



$t_{pd} = 35 \text{ ns}$   
 $P_D = 130 \text{ mW (Only Clock Input High)}$   
 $65 \text{ mW (Inputs Low)}$

#### J-K FLIP-FLOP TRUTH TABLES

DIRECT INPUT  
OPERATION (1)  
MC926 and  
MC826 only

| S <sub>D</sub> | C <sub>D</sub> | Q   | Q̄  |
|----------------|----------------|-----|-----|
| 0              | 0              | (2) | (2) |
| 1              | 0              | 1   | 0   |
| 0              | 1              | 0   | 1   |
| 1              | 1              | 0   | 1   |

CLOCKED INPUT  
OPERATION (2)  
all types

| t <sub>n</sub> (4) |   | t <sub>n+1</sub> |                    |
|--------------------|---|------------------|--------------------|
| S                  | C | Q                | Q̄                 |
| 1                  | 1 | Q <sub>n</sub>   | Q̄ <sub>n</sub>    |
| 1                  | 0 | 1                | 0                  |
| 0                  | 1 | 0                | 1                  |
| 0                  | 0 | Q̄ <sub>n</sub>  | Q <sub>n</sub> (5) |

1. Clock (T) to remain unchanged.
2. The output state will not change when the input state goes from  $S_D = \bar{C}_D$  to  $S_D = C_D = 0$ . The output state cannot be predetermined in the case where the input goes from  $S_D = C_D = 1$  to  $S_D = C_D = 0$ .
3. Direct inputs ( $C_D$  and  $\bar{C}_D$ ) must be low.
4. The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .
5.  $Q_n$  is the state of the Q output in the time period  $t_n$ .

MC902G • MC802G  
R-S Flip-Flop



$t_{pd} = 14 \text{ ns}$   
 $P_D = 22 \text{ mW}$

| R | S | Q <sub>n+1</sub> |
|---|---|------------------|
| 0 | 0 | Q <sub>n</sub>   |
| 0 | 1 | 1                |
| 1 | 0 | 0                |
| 1 | 1 | 0                |

### HALF-SHIFT REGISTERS

MC905G • MC805G  
Half-Shift Register



$t_{pd} = 22 \text{ ns}$   
 $P_D = 53 \text{ mW}$

$$\begin{aligned} 7 &= \bar{5} (1 + 2) \\ 5 &= \bar{7} (2 + 3) \\ 6 &= \bar{2} \end{aligned}$$

MC906G • MC806G  
Half-Shift Register  
(Without Inverter)



$t_{pd} = 22 \text{ ns}$   
 $P_D = 36 \text{ mW}$

$$\begin{aligned} 7 &= \bar{5} (1 + 2) \\ 5 &= \bar{7} (2 + 3) \end{aligned}$$

### HALF ADDERS

MC904G • MC804G  
Half Adder



$$7 = (1 + 2)(3 + 5)$$

$$6 = \bar{3} + \bar{5}$$

$$t_{pd} = 14$$

$$P_D = 45$$

$$\text{IF: } 3 = \bar{1}, \& 5 = \bar{2}$$

$$\text{THEN: } 6 = 1 + 2$$

$$7 = 1 + \bar{2} + \bar{1} + 2$$

### COUNTER ADAPTERS

MC901G • MC801G  
Counter Adapter



$t_{pd} = 22 \text{ ns}$   
 $P_D = 55 \text{ mW}$

$$7 = 1 + 2$$

$$5 = (\bar{1} + 2)\bar{3}$$

## LOADING DIAGRAMS

# MRTL MC900/800 series

### MRTL DEVICES AVAILABLE IN FLAT PACKAGES

The logic diagrams on these four pages describe the MC900/MC800 MRTL integrated circuits available in flat packages, and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time ( $t_{pd}$ ), typical package power dissipation ( $P_D$ ), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (when on the circuit input terminal) or load driving ability – fan-out – (when on the circuit output terminal).

The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. Loading data are valid over the temperature range of  $-55$  to  $+125^\circ\text{C}$  for the MC900 Series, and 0 to  $+100^\circ\text{C}$  for the MC800 Series, with  $V_{CC} = 3.0 \text{ V} \pm 10\%$ . For the TO-91 flat package,  $V_{CC}$  is applied to pin 10, with ground connected to pin 5. For the TO-86 flat package,  $V_{CC}$  is applied to pin 14, with ground connected to pin 7.

## GATES

|                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>MC903F • MC803F<br/>3-Input Gate</b>                                                                                                                                                                                                                      | <b>MC907F • MC807F<br/>4-Input Gate</b>                                                                                                                                                                                                                                   | <b>MC914F • MC814F<br/>Dual 2-Input Gate</b>                                                                                                                                                               |
| <p>(1) 2<br/>(1) 3<br/>(1) 4</p> $8 = \overline{2 + 3 + 4}$ <p><math>t_{pd} = 12 \text{ ns}</math><br/><math>P_D = 19 \text{ mW (Input High)}</math><br/><math>5 \text{ mW (Inputs Low)}</math></p>                                                          | <p>(1) 2<br/>(1) 3<br/>(1) 4<br/>(1) 7</p> $8 = \overline{2 + 3 + 4 + 7}$ <p><math>t_{pd} = 12 \text{ ns}</math><br/><math>P_D = 19 \text{ mW (Input High)}</math><br/><math>5 \text{ mW (Inputs Low)}</math></p>                                                         | <p>(1) 2<br/>(1) 3<br/>(1) 4<br/>(1) 7</p> $9 = \overline{2 + 3}$ <p><math>t_{pd} = 12 \text{ ns}</math><br/><math>P_D = 38 \text{ mW (Input High)}</math><br/><math>10 \text{ mW (Inputs Low)}</math></p> |
| <b>MC915F • MC815F<br/>Dual 3-Input Gate</b>                                                                                                                                                                                                                 | <b>MC924F • MC824F<br/>Quad 2-Input Gate</b>                                                                                                                                                                                                                              | <b>MC971F • MC871F<br/>Quad Exclusive "OR" Gate</b>                                                                                                                                                        |
| <p>(1) 1<br/>(1) 2<br/>(1) 3</p> <p>(1) 6<br/>(1) 7<br/>(1) 8</p> $4 = \overline{1 + 2 + 3}$ <p><math>t_{pd} = 12 \text{ ns}</math><br/><math>P_D = 38 \text{ mW (Input High)}</math><br/><math>10 \text{ mW (Inputs Low)}</math></p>                        | <p>(1) 1<br/>(1) 2<br/>(1) 4<br/>(1) 5<br/>(1) 9<br/>(1) 10<br/>(1) 12<br/>(1) 13</p> $3 = \overline{1 + 2}$ <p><math>t_{pd} = 12 \text{ ns}</math><br/><math>P_D = 76 \text{ mW (Input High)}</math><br/><math>20 \text{ mW (Inputs Low)}</math></p>                     | <p>(2) 1<br/>(2) 2<br/>(2) 4<br/>(2) 5</p> <p>(2) 9<br/>(2) 10<br/>(2) 12<br/>(2) 13</p>                                                                                                                   |
| <b>MC925F • MC825F<br/>Dual 4-Input Gate</b>                                                                                                                                                                                                                 | <b>MC992F • MC892F<br/>Triple 3-Input Gate</b>                                                                                                                                                                                                                            | <b>MC992F • MC892F<br/>Triple 3-Input Gate</b>                                                                                                                                                             |
| <p>(1) 2<br/>(1) 3<br/>(1) 5<br/>(1) 6<br/>(1) 8<br/>(1) 9<br/>(1) 10<br/>(1) 12</p> $1 = \overline{2 + 3 + 5 + 6}$ <p><math>t_{pd} = 12 \text{ ns}</math><br/><math>P_D = 38 \text{ mW (Input High)}</math><br/><math>10 \text{ mW (Inputs Low)}</math></p> | <p>(1) 3<br/>(1) 4<br/>(1) 5</p> <p>(1) 9<br/>(1) 10<br/>(1) 11</p> <p>(1) 13<br/>(1) 1<br/>(1) 2</p> $6 = \overline{3 + 4 + 5}$ <p><math>t_{pd} = 12 \text{ ns}</math><br/><math>P_D = 57 \text{ mW (Input High)}</math><br/><math>15 \text{ mW (Inputs Low)}</math></p> | <p>(2) 1<br/>(2) 2<br/>(2) 4<br/>(2) 5</p> <p>(2) 9<br/>(2) 10<br/>(2) 12<br/>(2) 13</p> $3 = \overline{1 + 2 + 1 + 2}$ <p><math>t_{pd} = 12 \text{ ns}</math><br/><math>P_D = 72 \text{ mW}</math></p>    |
| <b>MC929F • MC829F<br/>5-Input Gate</b>                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                            |
| <p>(1) 2<br/>(1) 3<br/>(1) 4<br/>(1) 7<br/>(1) 8</p> $9 = \overline{2 + 3 + 4 + 7 + 8}$ <p><math>t_{pd} = 12 \text{ ns}</math><br/><math>P_D = 19 \text{ mW (Input High)}</math><br/><math>5 \text{ mW (Inputs Low)}</math></p>                              |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                            |

## BUFFERS

| MC900F • MC800F Buffer                                                                                                                                                                                 | MC999F • MC899F Dual Buffer                                                                                                                                                                                                                                                                    | MC988F • MC888F Dual 3-Input Buffer (Non-Inverting)                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><math>9 = \bar{4}</math><br/> <math>7 = \bar{4}</math><br/> <math>t_{pd} = 15 \text{ ns}</math><br/> <math>P_D = 16 \text{ mW (Input High)}</math><br/> <math>45 \text{ mW (Inputs Low)}</math></p> | <p><math>1</math><br/> <math>(2) 2</math><br/> <math>(2) 7</math><br/> <math>8</math><br/> <math>3 = \bar{2}</math><br/> <math>4 = \bar{2}</math><br/> <math>t_{pd} = 15 \text{ ns}</math><br/> <math>P_D = 32 \text{ mW (Input High)}</math><br/> <math>90 \text{ mW (Inputs Low)}</math></p> | <p><math>(1) 4</math><br/> <math>(1) 6</math><br/> <math>(1) 8</math><br/> <math>(1) 10</math><br/> <math>t_{pd} = 24 \text{ ns}</math><br/> <math>P_D = 128 \text{ mW (Input High)}</math><br/> <math>42 \text{ mW (Inputs Low)}</math><br/> <math>3 = \bar{4 + 5 + 6}</math><br/> <math>2 = \bar{4 + 5 + 6}</math><br/> <math>1 = \bar{4 + 5 + 6}</math><br/> <p>Doutputs 1, 2, or 3 may not be used simultaneously.<br/> Doutputs 11, 12, or 13 may not be used simultaneously.</p> </p> |

## FLIP-FLOPS

| MC916F • MC816F J-K Flip-Flop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MC926F • MC826F J-K Flip-Flop                                                                                                                                                                                                                                                                             | MC990F • MC890F Dual J-K Flip-Flop                                                                                                                                                                                                                                                                                                                                                 |             |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|-----|-----------|-----|-----------|---|---|-------|-------------|---|---|---|---|---|---|---|---|---|---|-------------|---------|
| <p><math>(1) 2 - S</math><br/> <math>(2) 3 - T</math><br/> <math>(1) 4 - C</math><br/> <math>(1) 8 - C_D \bar{Q}</math><br/> <math>t_{pd} = 35 \text{ ns}</math><br/> <math>P_D = 62 \text{ mW (Only Clock Inputs High)}</math><br/> <math>54 \text{ mW (Inputs Low)}</math></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <p><math>(1) 1</math><br/> <math>(1) 2 - S</math><br/> <math>(2) 3 - T</math><br/> <math>(1) 4 - C</math><br/> <math>(1) 8 - C_D \bar{Q}</math><br/> <math>t_{pd} = 35 \text{ ns}</math><br/> <math>P_D = 130 \text{ mW (Only Clock Inputs High)}</math><br/> <math>65 \text{ mW (Inputs Low)}</math></p> | <p><math>(1) 6 - S</math><br/> <math>(2) 5 - T</math><br/> <math>(1) 4 - C</math><br/> <math>(1) 1</math><br/> <math>(1) 8 - S</math><br/> <math>(2) 9 - T</math><br/> <math>(1) 10 - C</math><br/> <math>(1) 13</math><br/> <math>t_{pd} = 35 \text{ ns}</math><br/> <math>P_D = 124 \text{ mW (Only Clock Inputs High)}</math><br/> <math>108 \text{ mW (Inputs Low)}</math></p> |             |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| <b>DIRECT INPUT OPERATION ①</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                    |             |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th><math>S_D</math></th> <th><math>C_D</math></th> <th><math>Q</math></th> <th><math>\bar{Q}</math></th> </tr> <tr> <td>0</td> <td>0</td> <td>②</td> <td>②</td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>0</td> <td>1</td> </tr> <tr> <td>1</td> <td>1</td> <td>0</td> <td>0</td> </tr> </table><br><b>J-K FLIP-FLOP TRUTH TABLES</b>                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                    | $S_D$       | $C_D$     | $Q$ | $\bar{Q}$ | 0   | 0         | ② | ② | 1     | 0           | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |             |         |
| $S_D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $C_D$                                                                                                                                                                                                                                                                                                     | $Q$                                                                                                                                                                                                                                                                                                                                                                                | $\bar{Q}$   |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                         | ②                                                                                                                                                                                                                                                                                                                                                                                  | ②           |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                  | 0           |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                  | 1           |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                  | 0           |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| <ol style="list-style-type: none"> <li>1. Clock (T) to remain unchanged.</li> <li>2. The output state will not change when the input state goes from <math>S_D = \bar{C}_D</math> to <math>S_D = C_D = 0</math>. The output state cannot be predetermined in the case where the input goes from <math>S_D = C_D = 1</math> to <math>S_D = C_D = 0</math>.</li> <li>3. Direct inputs (<math>C_D</math> and <math>S_D</math>) must be low.</li> <li>4. The time period prior to the negative transition of the clock pulse is denoted <math>t_n</math> and the time period subsequent to this transition is denoted <math>t_{n+1}</math>.</li> <li>5. <math>Q_n</math> is the state of the Q output in the time period <math>t_n</math>.</li> </ol> |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                    |             |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| <b>CLDKED INPUT OPERATION ③</b><br>all types <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th><math>t_n</math> ④</th> <th><math>t_{n+1}</math></th> </tr> <tr> <th><math>S</math></th> <th><math>C</math></th> <th><math>Q</math></th> <th><math>\bar{Q}</math></th> </tr> <tr> <td>1</td> <td>1</td> <td><math>Q_n</math></td> <td><math>\bar{Q}_n</math></td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>0</td> <td>1</td> </tr> <tr> <td>0</td> <td>0</td> <td><math>\bar{Q}_n</math></td> <td><math>Q_n</math> ⑤</td> </tr> </table>                                                                                                                               |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                    | $t_n$ ④     | $t_{n+1}$ | $S$ | $C$       | $Q$ | $\bar{Q}$ | 1 | 1 | $Q_n$ | $\bar{Q}_n$ | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | $\bar{Q}_n$ | $Q_n$ ⑤ |
| $t_n$ ④                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $t_{n+1}$                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                    |             |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| $S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C$                                                                                                                                                                                                                                                                                                       | $Q$                                                                                                                                                                                                                                                                                                                                                                                | $\bar{Q}$   |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                         | $Q_n$                                                                                                                                                                                                                                                                                                                                                                              | $\bar{Q}_n$ |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                  | 0           |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                  | 1           |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                         | $\bar{Q}_n$                                                                                                                                                                                                                                                                                                                                                                        | $Q_n$ ⑤     |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |
| $t_{pd} = 40 \text{ ns}$<br>$P_D = 155 \text{ mW (Only Clock Input High)}$<br>$130 \text{ mW (Inputs Low)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                    |             |           |     |           |     |           |   |   |       |             |   |   |   |   |   |   |   |   |   |   |             |         |

## HALF ADDERS

MC904F • MC804F  
Half Adder



$$9 = (2 + 3)(4 + 7)$$

$$8 = \overline{4} + \overline{7}$$

$t_{pd} = 14 \text{ ns}$   
 $P_D = 45 \text{ mW}$

$$\text{IF: } 4 = \overline{2}, \& 7 = \overline{3}$$

$$\text{THEN: } 8 = 2 + \overline{3} + \overline{2} \cdot 3$$

MC975F • MC875F  
Dual Half Adder



$t_{pd} = 20 \text{ ns}$   
 $P_D = 120 \text{ mW}$

$$2 = (3 + 4)(5 + 6)$$

$$1 = \overline{5} + \overline{6}$$

## FULL ADDER

MC996F • MC896F  
Dual Full Adder



$$C_0 = ABC_i + AB\bar{C}_i + A\bar{B}C_i + \bar{A}\bar{B}\bar{C}_i$$

$$S = ABC_i + A\bar{B}C_i + \bar{A}\bar{B}C_i + \bar{A}BC_i$$

$t_{pd} = 60 \text{ ns}$   
 $P_D = 84 \text{ mW}$

| TRUTH TABLE       |                    |       |   |       |
|-------------------|--------------------|-------|---|-------|
| Input Logic Level | Output Logic Level |       |   |       |
| A                 | B                  | $C_i$ | S | $C_0$ |
| 0                 | 0                  | 0     | 0 | 0     |
| 0                 | 0                  | 1     | 1 | 0     |
| 0                 | 1                  | 0     | 1 | 0     |
| 0                 | 1                  | 1     | 0 | 1     |
| 1                 | 0                  | 0     | 1 | 0     |
| 1                 | 0                  | 1     | 0 | 1     |
| 1                 | 1                  | 0     | 0 | 1     |
| 1                 | 1                  | 1     | 1 | 1     |

## FULL SUBTRACTOR

MC997F • MC897F  
Dual Full Subtractor



$$D = YXB_i + Y\bar{X}B_i + \bar{Y}XB_i + \bar{Y}\bar{X}B_i$$

$$B_o = \bar{Y}XB_i + Y\bar{X}B_i + \bar{Y}\bar{X}B_i + YXB_i$$

$t_{pd} = 60 \text{ ns}$   
 $P_D = 84 \text{ mW}$

| TRUTH TABLE       |                    |       |   |       |
|-------------------|--------------------|-------|---|-------|
| Input Logic Level | Output Logic Level |       |   |       |
| X                 | Y                  | $B_i$ | D | $B_o$ |
| 0                 | 0                  | 0     | 0 | 0     |
| 0                 | 0                  | 1     | 1 | 1     |
| 0                 | 1                  | 0     | 1 | 1     |
| 0                 | 1                  | 1     | 0 | 1     |
| 1                 | 0                  | 0     | 1 | 0     |
| 1                 | 0                  | 1     | 0 | 0     |
| 1                 | 1                  | 0     | 0 | 1     |
| 1                 | 1                  | 1     | 1 | 1     |

## MRTL DEVICES AVAILABLE IN FLAT PACKAGES (continued)

### HALF-SHIFT REGISTERS



$t_{pd} = 22 \text{ ns}$   
 $P_D = 53 \text{ mW}$

**MC906F • MC806F**  
Half-Shift Register  
(Without Inverter)



$t_{pd} = 22 \text{ ns}$   
 $P_D = 36 \text{ mW}$

**MC983F • MC883F**  
Dual Half-Shift Register



$t_{pd} = 22 \text{ ns}$   
 $P_D = 140 \text{ mW}$

**MC984F • MC884F**  
Dual Half-Shift Register  
(Without Inverter)



$3 = \bar{1} (4 + 5)$   
 $1 = \bar{3} (6 + 5)$   
 $2 = \bar{5}$

$t_{pd} = 22 \text{ ns}$   
 $P_D = 120 \text{ mW}$

### INVERTERS

**MC927F • MC827F**  
Quad Inverter



$t_{pd} = 12 \text{ ns}$   
 $P_D = 76 \text{ mW}$  (Input High)  
 $20 \text{ mW}$  (Inputs Low)

**MC989F • MC889F**  
Hex Inverter



$t_{pd} = 12 \text{ ns}$   
 $P_D = 76 \text{ mW}$  (Input High)  
 $20 \text{ mW}$  (Inputs Low)

### EXPANDERS

**MC985F • MC885F**  
Quad 2-Input Expander



$3 = \overline{1+2}$   
 $t_{pd} = 12 \text{ ns}$   
 $P_D = 17 \text{ mW}$  (input High)  
Negligible (Inputs Low)

**MC986F • MC886F**  
Dual 4-Input Expander



$1 = \overline{2+3+5+6}$   
 $t_{pd} = 12 \text{ ns}$   
 $P_D = 17 \text{ mW}$  (input High)  
Negligible (Inputs Low)

**MC9919F • MC9819F**  
Hex Expander



$6 = \overline{1}$   
 $t_{pd} = 12 \text{ ns}$   
 $P_D = 13 \text{ mW}$  (input High)  
Negligible (Inputs Low)

**MC903 • MC803**

Available in TO-99 Metal Can, Add "G" Suffix.

Available in TO-91 Flat Package, Add "F" Suffix.

Provides the positive logic NOR function. Individual gate elements may be paralleled or used with other logic elements for increasing the number of inputs (subject to loading rules)



| SCHEMATIC         | a | b | c | d | - | f | - | h  |
|-------------------|---|---|---|---|---|---|---|----|
| G PACKAGE (TO-99) | 1 | 2 | 3 | 4 | - | 6 | - | 8  |
| F PACKAGE (TO-91) | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 |

**SWITCHING TIME TEST CIRCUIT AND WAVEFORM**

## ELECTRICAL CHARACTERISTICS

|       | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC903 | -55°C             | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C            | 0.674                       | 0.674           | 1.50             | 0.320            | 3.00            |  |
|       | 0°C               | 0.909                       | 0.909           | 1.50             | 0.574            | 3.00            |  |
| MC803 | +25°C             | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C            | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic         | Symbol               | Pin Under Test | MC903 Test Limits |                  |                  |                  |                  |               | MC803 Test Limits |                  |                  |                  |               |                  | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |           |                  |                 |                      | Gnd              |                 |   |  |
|------------------------|----------------------|----------------|-------------------|------------------|------------------|------------------|------------------|---------------|-------------------|------------------|------------------|------------------|---------------|------------------|--------------------------------------------|-----------|------------------|-----------------|----------------------|------------------|-----------------|---|--|
|                        |                      |                | -55°C             |                  | +25°C            |                  | +125°C           |               | Unit              | 0°C              |                  | +25°C            |               | +100°C           |                                            | Unit      | V <sub>in</sub>  | V <sub>on</sub> | V <sub>BOT</sub>     | V <sub>off</sub> | V <sub>CC</sub> |   |  |
|                        |                      |                | Min               | Max              | Min              | Max              | Min              | Max           |                   | Min              | Max              | Min              | Max           | Min              | Max                                        |           | a                | b               | c                    | a, c             | -               |   |  |
| Input Current          | I <sub>in</sub>      | a<br>b<br>c    | -<br>-<br>-<br>↓  | 495<br>-<br>-    | -<br>-<br>-<br>↓ | 435<br>-<br>-    | -<br>-<br>-<br>↓ | 470<br>-<br>- | μAdc<br>↓         | -<br>-<br>-<br>↓ | 504<br>-<br>-    | -<br>-<br>-<br>↓ | 450<br>-<br>- | -<br>-<br>-<br>↓ | 450<br>-<br>-                              | μAdc<br>↓ | a<br>b<br>c      | -<br>-<br>-     | b, c<br>a, c<br>a, b | -<br>-<br>-      | h<br>d<br>↓     |   |  |
| Output Current         | I <sub>A5</sub>      | f              | 2.47              | -                | 2.54             | -                | 2.35             | -             | mAdc              | 2.52             | -                | 2.38             | -             | 2.25             | -                                          | mAdc      | -                | f               | -                    | a, b, c          | h               | d |  |
| Output Leakage Current | I <sub>CEX</sub>     | f              | -                 | 100              | -                | 218              | -                | 235           | μAdc              | -                | 100              | -                | 225           | -                | 225                                        | μAdc      | f                | -               | -                    | a, b, c          | -               | d |  |
| Output Voltage         | V <sub>out</sub>     | f<br>↓         | -<br>-<br>-<br>↓  | 710<br>-<br>-    | -<br>-<br>-<br>↓ | 300<br>-<br>-    | -<br>-<br>-<br>↓ | 320<br>-<br>- | mVdc<br>↓         | -<br>-<br>-<br>↓ | 574<br>-<br>-    | -<br>-<br>-<br>↓ | 400<br>-<br>- | -<br>-<br>-<br>↓ | 370<br>-<br>-                              | mVdc<br>↓ | -<br>-<br>-<br>c | a<br>b<br>c     | -<br>-<br>-          | -<br>-<br>-      | h<br>d<br>↓     |   |  |
| Saturation Voltage     | V <sub>CE(sat)</sub> | f<br>↓         | -<br>-<br>-<br>↓  | 200<br>-<br>-    | -<br>-<br>-<br>↓ | 210<br>-<br>-    | -<br>-<br>-<br>↓ | 280<br>-<br>- | mVdc<br>↓         | -<br>-<br>-<br>↓ | 290<br>-<br>-    | -<br>-<br>-<br>↓ | 260<br>-<br>- | -<br>-<br>-<br>↓ | 340<br>-<br>-                              | mVdc<br>↓ | -<br>-<br>-<br>c | a<br>b<br>c     | -<br>-<br>-          | h<br>d<br>↓      |                 |   |  |
| Switching Time         | t                    | b+f-<br>b-f+   | -<br>-<br>-<br>-  | -<br>-<br>-<br>- | 20<br>-<br>-     | -<br>-<br>-<br>- | 28<br>-<br>-     | ns<br>ns      | -<br>-<br>-<br>-  | -<br>-<br>-<br>- | -<br>-<br>-<br>- | -<br>-<br>-<br>- | 20<br>-<br>-  | -<br>-<br>-<br>- | ns<br>ns                                   | b<br>b    | f<br>f           | -<br>-          | -<br>-               | h<br>h           | d<br>d          |   |  |

Pins not listed are left open

Pins e and g omitted

## MC903, MC803 (continued)

### TYPICAL CURVES



TEST CIRCUIT FOR NOISE THRESHOLD MEASUREMENTS



**MC907 • MC807**

Available in TO-99 Metal Can, Add "G" Suffix.

Available in TO-91 Flat Package, Add "F" Suffix.

Provides positive logic NOR function. Individual gate elements may be paralleled or used with other logic elements for increasing the number of inputs (subject to loading rules).



| PIN CONNECTIONS   |   |   |   |   |   |   |   |    |
|-------------------|---|---|---|---|---|---|---|----|
| SCHEMATIC         | a | b | c | d | e | f | - | h  |
| G PACKAGE (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  |
| F PACKAGE (TO-91) | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 |

**SWITCHING TIME TEST CIRCUIT AND WAVEFORM**

## ELECTRICAL CHARACTERISTICS

|       | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC907 | -55°C             | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C            | 0.674                       | 0.674           | 1.50             | 0.320            | 3.00            |  |
| MC807 | 0°C               | 0.909                       | 0.909           | 1.50             | 0.574            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C            | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic         | Symbol               | Pin Under Test   | MC907 Test Limits |     |       |     |        |     | MC807 Test Limits |      |     |       |     |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                       |                  |                                          | Gnd              |                 |        |  |
|------------------------|----------------------|------------------|-------------------|-----|-------|-----|--------|-----|-------------------|------|-----|-------|-----|--------|--------------------------------------------|------|-----------------------|------------------|------------------------------------------|------------------|-----------------|--------|--|
|                        |                      |                  | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C  |     | +25°C |     | +100°C |                                            | Unit | V <sub>in</sub>       | V <sub>on</sub>  | V <sub>BOT</sub>                         | V <sub>off</sub> | V <sub>CC</sub> |        |  |
|                        |                      |                  | Min               | Max | Min   | Max | Min    | Max |                   | Min  | Max | Min   | Max | Min    | Max                                        |      | Min                   | Max              | Min                                      | Max              |                 |        |  |
| Input Current          | I <sub>in</sub>      | a<br>b<br>c<br>e | -                 | 495 | -     | 435 | -      | 470 | μAdc              | -    | 504 | -     | 450 | -      | 450                                        | μAdc | a<br>b<br>c<br>e      | -                | b, c, e<br>a, c, e<br>a, b, e<br>a, b, c | -                | h<br>d          |        |  |
| Output Current         | I <sub>A5</sub>      | f                | 2.47              | -   | 2.54  | -   | 2.35   | -   | mAdc              | 2.52 | -   | 2.38  | -   | 2.25   | -                                          | mAdc | -                     | f                | -                                        | a, b, c, e       | h               | d      |  |
| Output Leakage Current | I <sub>CEX</sub>     | f                | -                 | 100 | -     | 218 | -      | 235 | μAdc              | -    | 100 | -     | 225 | -      | 225                                        | μAdc | f                     | -                | -                                        | a, b, c, e       | -               | d      |  |
| Output Voltage         | V <sub>out</sub>     | f<br>↓           | -                 | 710 | -     | 300 | -      | 320 | mVdc              | -    | 574 | -     | 400 | -      | 370                                        | mVdc | -                     | a<br>b<br>c<br>e | -                                        | -                | h<br>d          |        |  |
| Saturation Voltage     | V <sub>CE(sat)</sub> | f<br>↓           | -                 | 200 | -     | 210 | -      | 280 | mVdc              | -    | 290 | -     | 260 | -      | 340                                        | mVdc | -                     | a<br>b<br>c<br>e | -                                        | h                | d<br>d          |        |  |
| Switching Time         | t                    | b+f-<br>b-f+     | -                 | -   | -     | 20  | -      | -   | ns                | -    | -   | -     | 20  | -      | -                                          | ns   | Pulse In<br>Pulse Out | b<br>b           | f<br>f                                   | -                | -               | h<br>d |  |

Pins not listed are left open.

## MC929 • MC829

Available in TO-99 Metal Can, Add "G" Suffix.

Available in TO-91 Flat Package, Add "F" Suffix.

Provides positive logic NOR function. Individual gates may be paralleled with other logic elements for increasing the number of inputs (subject to loading rules).



| PIN CONNECTIONS   |   |   |   |   |   |   |   |    |
|-------------------|---|---|---|---|---|---|---|----|
| SCHEMATIC         | a | b | c | d | e | f | g | h  |
| G PACKAGE (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  |
| F PACKAGE (TO-91) | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 |

### SWITCHING TIME TEST CIRCUIT AND WAVEFORM



## ELECTRICAL CHARACTERISTICS

| @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |      |
|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|------|
|                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |      |
| MC929             | -55°C                       | 1.014           | 1.014            | 1.50             | 0.710           | 3.00 |
|                   | +25°C                       | 0.844           | 0.815            | 1.50             | 0.565           | 3.00 |
|                   | +125°C                      | 0.674           | 0.674            | 1.50             | 0.320           | 3.00 |
| MC829             | 0°C                         | 0.909           | 0.909            | 1.50             | 0.574           | 3.00 |
|                   | +25°C                       | 0.844           | 0.844            | 1.50             | 0.554           | 3.00 |
|                   | +100°C                      | 0.710           | 0.710            | 1.50             | 0.370           | 3.00 |

| Characteristic         | Symbol               | Pin Under Test        | MC929 Test Limits |     |       |     |        |     | MC829 Test Limits |      |     |       |     |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                       |                       |                                                                    |                  | Gnd             |               |               |  |
|------------------------|----------------------|-----------------------|-------------------|-----|-------|-----|--------|-----|-------------------|------|-----|-------|-----|--------|--------------------------------------------|------|-----------------------|-----------------------|--------------------------------------------------------------------|------------------|-----------------|---------------|---------------|--|
|                        |                      |                       | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C  |     | +25°C |     | +100°C |                                            | Unit | V <sub>in</sub>       | V <sub>on</sub>       | V <sub>BOT</sub>                                                   | V <sub>off</sub> | V <sub>CC</sub> |               |               |  |
|                        |                      |                       | Min               | Max | Min   | Max | Min    | Max |                   | Min  | Max | Min   | Max | Min    | Max                                        |      | Min                   | Max                   | Min                                                                | Max              | Min             |               |               |  |
| Input Current          | I <sub>in</sub>      | a<br>b<br>c<br>e<br>f | -                 | 495 | -     | 435 | -      | 470 | μAdc              | -    | 504 | -     | 450 | -      | 450                                        | μAdc | a<br>b<br>c<br>e<br>f | -                     | b, c, e, f<br>a, c, e, f<br>a, b, e, f<br>a, b, c, f<br>a, b, c, e | -                | h               | d             |               |  |
| Output Current         | I <sub>A5</sub>      | g                     | 2.47              | -   | 2.54  | -   | 2.35   | -   | mAdc              | 2.52 | -   | 2.38  | -   | 2.25   | -                                          | mAdc | -                     | g                     | -                                                                  | a, b, c, e, f    | h               | d             |               |  |
| Output Leakage Current | I <sub>CEX</sub>     | g                     | -                 | 100 | -     | 218 | -      | 235 | μAdc              | -    | 100 | -     | 225 | -      | 225                                        | μAdc | g                     | -                     | -                                                                  | a, b, c, e, f    | -               | d             |               |  |
| Output Voltage         | V <sub>out</sub>     | g                     | -                 | 710 | -     | 300 | -      | 320 | mVdc              | -    | 574 | -     | 400 | -      | 370                                        | mVdc | -                     | a<br>b<br>c<br>e<br>f | -                                                                  | -                | -               | h             | d             |  |
| Saturation Voltage     | V <sub>CE(sat)</sub> | g                     | -                 | 200 | -     | 210 | -      | 280 | mVdc              | -    | 290 | -     | 260 | -      | 340                                        | mVdc | -                     | -                     | a<br>b<br>c<br>e<br>f                                              | -                | h               | d             |               |  |
| Switching Time         | t                    | a+g-<br>a-g+          | -                 | -   | -     | 20  | -      | -   | ns                | -    | -   | -     | 20  | -      | -                                          | ns   | Pulse In              | Pulse Out             |                                                                    |                  |                 | h             | b, c, d, e, f |  |
|                        |                      |                       | -                 | -   | -     | 28  | -      | -   | ns                | -    | -   | -     | 28  | -      | -                                          | ns   | a                     | g                     | -                                                                  | -                | h               | b, c, d, e, f |               |  |

Pins not listed are left open.

**MC914 • MC814**

Available in TO-99 Metal Can, Add "G" Suffix.

Available in TO-91 Flat Package, Add "F" Suffix.

Two 2-input positive logic NOR gates in a single package may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.



PIN CONNECTIONS

| SCHEMATIC         | a | b | c | d | e | f | g | h  |
|-------------------|---|---|---|---|---|---|---|----|
| G PACKAGE (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  |
| F PACKAGE (TO-91) | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 |

**SWITCHING TIME TEST CIRCUIT AND WAVEFORM**

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one gate only.  
Other gates are tested in the same manner.

| @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |      |
|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|------|
|                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |      |
| MC914             | -55°C                       | 1.014           | 1.014            | 1.50             | 0.710           | 3.00 |
|                   | +25°C                       | 0.844           | 0.815            | 1.50             | 0.565           | 3.00 |
|                   | +125°C                      | 0.674           | 0.674            | 1.50             | 0.320           | 3.00 |
| MC814             | 0°C                         | 0.909           | 0.909            | 1.50             | 0.574           | 3.00 |
|                   | +25°C                       | 0.844           | 0.844            | 1.50             | 0.554           | 3.00 |
|                   | +100°C                      | 0.710           | 0.710            | 1.50             | 0.370           | 3.00 |

| Characteristic         | Symbol               | Pin Under Test | MC914 Test Limits |            |        |            |        |            | MC814 Test Limits |        |            |        |            |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |              |                    |                     |                  | Gnd              |                 |        |
|------------------------|----------------------|----------------|-------------------|------------|--------|------------|--------|------------|-------------------|--------|------------|--------|------------|--------|--------------------------------------------|--------------|--------------------|---------------------|------------------|------------------|-----------------|--------|
|                        |                      |                | -55°C             |            | +25°C  |            | +125°C |            | Unit              | 0°C    |            | +25°C  |            | +100°C |                                            | Unit         | V <sub>in</sub>    | V <sub>on</sub>     | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |        |
|                        |                      |                | Min               | Max        | Min    | Max        | Min    | Max        |                   | Min    | Max        | Min    | Max        | Min    | Max                                        |              | Min                | Max                 | Min              | Max              |                 |        |
| Input Current          | I <sub>in</sub>      | a<br>b         | -<br>-            | 495<br>495 | -<br>- | 435<br>435 | -<br>- | 470<br>470 | μAdc<br>μAdc      | -<br>- | 504<br>504 | -<br>- | 450<br>450 | -<br>- | 450<br>450                                 | μAdc<br>μAdc | a<br>b             | -<br>-              | b<br>a           | -<br>-           | h<br>h          | d<br>d |
| Output Current         | I <sub>A5</sub>      | g              | 2.47              | -          | 2.54   | -          | 2.35   | -          | mAdc              | 2.52   | -          | 2.38   | -          | 2.25   | -                                          | mAdc         | -                  | g                   | -                | a, b             | h               | d      |
| Output Leakage Current | I <sub>CEx</sub>     | g              | -                 | 100        | -      | 218        | -      | 235        | μAdc              | -      | 100        | -      | 225        | -      | 225                                        | μAdc         | g                  | -                   | -                | a, b             | -               | d      |
| Output Voltage         | V <sub>out</sub>     | g<br>g         | -<br>-            | 710<br>710 | -<br>- | 300<br>300 | -<br>- | 320<br>320 | mVdc<br>mVdc      | -<br>- | 574<br>574 | -<br>- | 400<br>400 | -<br>- | 370<br>370                                 | mVdc<br>mVdc | -<br>-             | a<br>b              | -<br>-           | -<br>-           | h<br>h          | d<br>d |
| Saturation Voltage     | V <sub>CE(sat)</sub> | g<br>g         | -<br>-            | 200<br>200 | -<br>- | 210<br>210 | -<br>- | 280<br>280 | mVdc<br>mVdc      | -<br>- | 290<br>290 | -<br>- | 260<br>260 | -<br>- | 340<br>340                                 | mVdc<br>mVdc | -<br>-             | -<br>-              | a<br>b           | -<br>-           | h<br>h          | d<br>d |
| Switching Time         | t                    | a+g-<br>a-g+   | -<br>-            | -<br>-     | -<br>- | 20<br>28   | -<br>- | -<br>-     | ns<br>ns          | -<br>- | -<br>-     | -<br>- | 20<br>28   | -<br>- | -<br>-                                     | ns<br>ns     | Pulse In<br>a<br>a | Pulse Out<br>g<br>g | -<br>-           | -<br>-           | h<br>h          | d<br>d |

Ground inputs of gate not under test.

Other pins not listed are left open.

**MC915 • MC815**

Available in TO-100 Metal Can, Add "G" Suffix.

Available in TO-91 Flat Package, Add "F" Suffix.

Two 3-input positive logic NOR gates in a single package may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.



"F" PACKAGE AND "G" PACKAGE  
PIN-OUTS ARE THE SAME

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

**ELECTRICAL CHARACTERISTICS**

Test procedures are shown for one gate only.  
Other gates are tested in the same manner.

|       | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC915 | -55°C             | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C            | 0.674                       | 0.674           | 1.50             | 0.320            | 3.00            |  |
|       | 0°C               | 0.909                       | 0.909           | 1.50             | 0.574            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C            | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic         | Symbol               | Pin Under Test | MC915 Test Limits |     |       |     |        |     | MC815 Test Limits |      |     |       |     |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                      | Gnd              |                 |   |
|------------------------|----------------------|----------------|-------------------|-----|-------|-----|--------|-----|-------------------|------|-----|-------|-----|--------|--------------------------------------------|------|-----------------|-----------------|----------------------|------------------|-----------------|---|
|                        |                      |                | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C  |     | +25°C |     | +100°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub>     | V <sub>off</sub> | V <sub>CC</sub> |   |
|                        |                      |                | Min               | Max | Min   | Max | Min    | Max |                   | Min  | Max | Min   | Max | Min    | Max                                        |      | Min             | Max             | Min                  | Max              |                 |   |
| Input Current          | I <sub>in</sub>      | 1<br>2<br>3    | -                 | 495 | -     | 435 | -      | 470 | μAdc              | -    | 504 | -     | 450 | -      | 450                                        | μAdc | 1<br>2<br>3     | -               | 2, 3<br>1, 3<br>1, 2 | -                | 10              | 5 |
| Output Current         | I <sub>A5</sub>      | 4              | 2.47              | -   | 2.54  | -   | 2.35   | -   | mAdc              | 2.52 | -   | 2.38  | -   | 2.25   | -                                          | mAdc | -               | 4               | -                    | 1, 2, 3          | 10              | 5 |
| Output Leakage Current | I <sub>CEX</sub>     | 4              | -                 | 100 | -     | 218 | -      | 235 | μAdc              | -    | 100 | -     | 225 | -      | 225                                        | μAdc | 4               | -               | -                    | 1, 2, 3          | -               | 5 |
| Output Voltage         | V <sub>out</sub>     | 4<br>↓         | -                 | 710 | -     | 300 | -      | 320 | mVdc              | -    | 574 | -     | 400 | -      | 370                                        | mVdc | -               | 1<br>2<br>3     | -                    | -                | 10              | 5 |
| Saturation Voltage     | V <sub>CE(sat)</sub> | 4<br>↓         | -                 | 200 | -     | 210 | -      | 280 | mVdc              | -    | 290 | -     | 260 | -      | 340                                        | mVdc | -               | -               | 1<br>2<br>3          | -                | 10              | 5 |
| Switching Time         | t                    | 2+4-<br>2-4+   | -                 | -   | -     | 20  | -      | ns  | ns                | -    | -   | -     | 20  | -      | -                                          | ns   | 2<br>2          | 4<br>4          | -                    | -                | 10              | 5 |

Ground inputs of gate not under test. Other pins not listed are left open.

**MC925 • MC825**

Available in TO-86 Flat Package, Add "F" Suffix.

Two 4-input positive logic NOR gates in a single package may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

**ELECTRICAL CHARACTERISTICS**

Test procedures are shown for one gate only.  
Other gates are tested in the same manner.

|       | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC925 | -55°C             | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C            | 0.674                       | 0.674           | 1.50             | 0.320            | 3.00            |  |
| MC825 | 0°C               | 0.909                       | 0.909           | 1.50             | 0.574            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C            | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic         | Symbol               | Pin Under Test   | MC925 Test Limits |     |       |     |        |     | MC825 Test Limits |      |     |       |     |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                  |                  |                                  | Gnd              |                 |                                          |    |                    |  |
|------------------------|----------------------|------------------|-------------------|-----|-------|-----|--------|-----|-------------------|------|-----|-------|-----|--------|--------------------------------------------|------|------------------|------------------|----------------------------------|------------------|-----------------|------------------------------------------|----|--------------------|--|
|                        |                      |                  | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C  |     | +25°C |     | +100°C |                                            | Unit | V <sub>in</sub>  | V <sub>on</sub>  | V <sub>BOT</sub>                 | V <sub>off</sub> | V <sub>CC</sub> |                                          |    |                    |  |
|                        |                      |                  | Min               | Max | Min   | Max | Min    | Max |                   | Min  | Max | Min   | Max | Min    | Max                                        |      | Min              | Max              | Min                              | Max              |                 |                                          |    |                    |  |
| Input Current          | I <sub>in</sub>      | 2<br>3<br>5<br>6 | -                 | 495 | -     | 435 | -      | 470 | μAdc              | -    | 504 | -     | 450 | -      | 450                                        | μAdc | 2<br>3<br>5<br>6 | -                | 3,5,6<br>2,5,6<br>2,3,6<br>2,3,5 | -                | 14              | 7                                        |    |                    |  |
| Output Current         | I <sub>A5</sub>      | 1                | 2.47              | -   | 2.54  | -   | 2.35   | -   | mAdc              | 2.52 | -   | 2.38  | -   | 2.25   | -                                          | mAdc | -                | 1                | -                                | 2,3,5,6          | 14              | 7                                        |    |                    |  |
| Output Leakage Current | I <sub>CEX</sub>     | 1                | -                 | 100 | -     | 218 | -      | 235 | μAdc              | -    | 100 | -     | 225 | -      | 225                                        | μAdc | 1                | -                | -                                | 2,3,5,6          | -               | 7                                        |    |                    |  |
| Output Voltage         | V <sub>out</sub>     | 1                | -                 | 710 | -     | 300 | -      | 320 | mVdc              | -    | 574 | -     | 400 | -      | 370                                        | mVdc | -                | 2<br>3<br>5<br>6 | -                                | -                | 14              | 3,5,6,7<br>2,5,6,7<br>2,3,6,7<br>2,3,5,7 |    |                    |  |
| Saturation Voltage     | V <sub>CE(sat)</sub> | 1                | -                 | 200 | -     | 210 | -      | 280 | mVdc              | -    | 290 | -     | 260 | -      | 340                                        | mVdc | -                | -                | 2<br>3<br>5<br>6                 | -                | 14              | 3,5,6,7<br>2,5,6,7<br>2,3,6,7<br>2,3,5,7 |    |                    |  |
| Switching Time         | t                    | 3+1-<br>3-1+     | -                 | -   | -     | 20  | -      | -   | ns                | -    | -   | -     | 20  | -      | -                                          | ns   | 3<br>3           | 1<br>1           | Pulse In                         | Pulse Out        | -               | -                                        | 14 | 2,5,6,7<br>2,5,6,7 |  |

Ground inputs of gate not under test. Other pins not listed are left open.

**MC992 • MC892**

Available in TO-86 Flat Package, Add "F" Suffix.

Three 3-input positive logic NOR gates in a single package may be used independently, paralleled for increased number of inputs (subject to loading rules), or cross coupled to form bistable elements.

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

**ELECTRICAL CHARACTERISTICS**

Test procedures are shown for one gate only.  
Other gates are tested in the same manner.

| @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |      |
|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|------|
|                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |      |
| MC992             | -55°C                       | 1.014           | 1.014            | 1.50             | 0.710           | 3.00 |
|                   | +25°C                       | 0.844           | 0.815            | 1.50             | 0.565           | 3.00 |
|                   | +125°C                      | 0.674           | 0.674            | 1.50             | 0.320           | 3.00 |
| MC892             | 0°C                         | 0.909           | 0.909            | 1.50             | 0.574           | 3.00 |
|                   | +25°C                       | 0.844           | 0.844            | 1.50             | 0.554           | 3.00 |
|                   | +100°C                      | 0.710           | 0.710            | 1.50             | 0.370           | 3.00 |

| Characteristic         | Symbol               | Pin Under Test | MC992 Test Limits |               |             |               |             |               | MC892 Test Limits |             |               |             |               |             | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |           |                 |                 |                      | Gnd              |                               |          |                    |
|------------------------|----------------------|----------------|-------------------|---------------|-------------|---------------|-------------|---------------|-------------------|-------------|---------------|-------------|---------------|-------------|--------------------------------------------|-----------|-----------------|-----------------|----------------------|------------------|-------------------------------|----------|--------------------|
|                        |                      |                | -55°C             |               | +25°C       |               | +125°C      |               | Unit              | 0°C         |               | +25°C       |               | +100°C      |                                            | Unit      | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub>     | V <sub>off</sub> | V <sub>CC</sub>               |          |                    |
|                        |                      |                | Min               | Max           | Min         | Max           | Min         | Max           |                   | Min         | Max           | Min         | Max           | Min         | Max                                        |           | 3               | 4               | 5                    | 4, 5             | 14                            |          |                    |
| Input Current          | I <sub>in</sub>      | 3<br>4<br>5    | -<br>-<br>-       | 495<br>-<br>- | -<br>-<br>- | 435<br>-<br>- | -<br>-<br>- | 470<br>-<br>- | μAdc<br>↓         | -<br>-<br>- | 504<br>-<br>- | -<br>-<br>- | 450<br>-<br>- | -<br>-<br>- | 450<br>-<br>-                              | μAdc<br>↓ | 3<br>4<br>5     | -<br>-<br>-     | 4, 5<br>3, 5<br>3, 4 | -<br>-<br>-      | 14<br>↓                       | 7<br>↓   |                    |
| Output Current         | I <sub>A5</sub>      | 6              | 2.47              | -             | 2.54        | -             | 2.35        | -             | mAdc              | 2.52        | -             | 2.38        | -             | 2.25        | -                                          | mAdc      | -               | 8               | -                    | 3, 4, 5          | 14                            | 7        |                    |
| Output Leakage Current | I <sub>CEX</sub>     | 6              | -                 | 100           | -           | 218           | -           | 235           | μAdc              | -           | 100           | -           | 225           | -           | 225                                        | -         | μAdc            | 8               | -                    | -                | 3, 4, 5                       | -        | 7                  |
| Output Voltage         | V <sub>out</sub>     | 8<br>↓         | -<br>-<br>-       | 710<br>-<br>- | -<br>-<br>- | 300<br>-<br>- | -<br>-<br>- | 320<br>-<br>- | mVdc<br>↓         | -<br>-<br>- | 574<br>-<br>- | -<br>-<br>- | 400<br>-<br>- | -<br>-<br>- | 370<br>-<br>-                              | mVdc<br>↓ | -<br>-<br>-     | 3<br>4<br>5     | -<br>-<br>-          | 14<br>↓          | 4, 5, 7<br>3, 5, 7<br>3, 4, 7 |          |                    |
| Saturation Voltage     | V <sub>CE(sat)</sub> | 6<br>↓         | -<br>-<br>-       | 200<br>-<br>- | -<br>-<br>- | 210<br>-<br>- | -<br>-<br>- | 280<br>-<br>- | mVdc<br>↓         | -<br>-<br>- | 290<br>-<br>- | -<br>-<br>- | 260<br>-<br>- | -<br>-<br>- | 340<br>-<br>-                              | mVdc<br>↓ | -<br>-<br>-     | 3<br>4<br>5     | -<br>-<br>-          | 14<br>↓          | 4, 5, 7<br>3, 5, 7<br>3, 4, 7 |          |                    |
| Switching Time         | t                    | 4-6-<br>4-6+   | -                 | -             | -           | 20            | -           | -             | ns<br>ns          | -           | -             | -           | -             | 20          | -                                          | -         | ns<br>ns        | 4<br>4          | 6<br>6               | -                | -                             | 14<br>14 | 3, 5, 7<br>3, 5, 7 |
|                        |                      | Pulse In       | Pulse Out         |               |             |               |             |               |                   |             |               |             |               |             |                                            |           |                 |                 |                      |                  |                               |          |                    |

Ground inputs of gates not under test.

Other pins not listed are left open.

**MC924 • MC824**

Available in TO-86 Flat Package, Add "F" Suffix.

This gate element consists of four 2-input positive logic NOR gate circuits in a single package. The gate circuits may be used independently, or connected together to form flip-flops or non-inverting gates.

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one gate only.  
Other gates are tested in the same manner.

| TEST VOLTAGE VALUES<br>(Volts) |                   |  |                 |                 |                  |  |  |
|--------------------------------|-------------------|--|-----------------|-----------------|------------------|--|--|
|                                | @Test Temperature |  | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> |  |  |
| MC924                          | -55°C             |  | 1.014           | 1.014           | 1.50             |  |  |
|                                | +25°C             |  | 0.844           | 0.815           | 1.50             |  |  |
|                                | +125°C            |  | 0.674           | 0.674           | 1.50             |  |  |
| MC824                          | 0°C               |  | 0.909           | 0.909           | 1.50             |  |  |
|                                | +25°C             |  | 0.844           | 0.844           | 1.50             |  |  |
|                                | +100°C            |  | 0.710           | 0.710           | 1.50             |  |  |
|                                |                   |  | 0.554           | 0.574           | 3.00             |  |  |
|                                |                   |  | 0.320           | 0.370           | 3.00             |  |  |
|                                |                   |  | 0.554           | 0.574           | 3.00             |  |  |
|                                |                   |  | 0.370           | 0.400           | 3.00             |  |  |

| Characteristic         | Symbol               | Pin Under Test | MC924 Test Limits |            |        |            |        |            | MC824 Test Limits |        |            |        |            |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  | Gnd              |                 |            |
|------------------------|----------------------|----------------|-------------------|------------|--------|------------|--------|------------|-------------------|--------|------------|--------|------------|--------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|------------|
|                        |                      |                | -55°C             |            | +25°C  |            | +125°C |            | Unit              | 0°C    |            | +25°C  |            | +100°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |            |
|                        |                      |                | Min               | Max        | Min    | Max        | Min    | Max        |                   | Min    | Max        | Min    | Max        | Min    | Max                                        |      | 1               | 2               | -                | 2                | -               |            |
| Input Current          | I <sub>in</sub>      | 1<br>2         | -<br>-            | 495<br>495 | -<br>- | 435<br>435 | -<br>- | 470<br>470 | μAdc              | -<br>- | 504<br>504 | -<br>- | 450<br>450 | -<br>- | 450<br>450                                 | μAdc | 1<br>2          | -<br>-          | 1                | -                | 14<br>14        | 7<br>7     |
| Output Current         | I <sub>A5</sub>      | 3              | 2.47              | -          | 2.54   | -          | 2.35   | -          | mAdc              | 2.52   | -          | 2.38   | -          | 2.25   | -                                          | mAdc | 3               | -               | -                | 1,2              | 14              | 7          |
| Output Leakage Current | I <sub>CEx</sub>     | 3              | -                 | 100        | -      | 218        | -      | 235        | μAdc              | -      | 100        | -      | 225        | -      | 225                                        | μAdc | -               | 3               | -                | 1,2              | -               | 7          |
| Output Voltage         | V <sub>out</sub>     | 3<br>3         | -<br>-            | 710<br>710 | -<br>- | 300<br>300 | -<br>- | 320<br>320 | mVdc              | -<br>- | 574<br>574 | -<br>- | 400<br>400 | -<br>- | 370<br>370                                 | mVdc | -<br>-          | 1<br>2          | -                | -                | 14<br>14        | 2,7<br>1,7 |
| Saturation Voltage     | V <sub>CE(sat)</sub> | 3<br>3         | -<br>-            | 200<br>200 | -<br>- | 210<br>210 | -<br>- | 280<br>280 | mVdc              | -<br>- | 290<br>290 | -<br>- | 260<br>260 | -<br>- | 340<br>340                                 | mVdc | -<br>-          | -<br>-          | 1<br>2           | -                | 14<br>14        | 2,7<br>1,7 |
| Switching Time         | t                    | 1+3-<br>1-3+   | -<br>-            | -<br>-     | -<br>- | 20<br>28   | -<br>- | -<br>-     | ns                | -<br>- | -<br>-     | -<br>- | 20<br>28   | -<br>- | -<br>-                                     | ns   | 1<br>1          | 3<br>3          | -<br>-           | -                | 14<br>14        | 2,7<br>2,7 |
|                        |                      |                |                   |            |        |            |        |            | Pulse In          |        | Pulse Out  |        |            |        |                                            |      |                 |                 |                  |                  |                 |            |

Ground inputs of gates not under test. Other pins not listed are left open.

**MC971 • MC871**

Available in TO-86 flat package, add "F" suffix

Four gate arrays designed to provide the Exclusive OR function. The output is high only if one input is high and all other inputs are low.



POSITIVE LOGIC  
 $3 = 1 \cdot 2 + 1 \cdot 2$

$t_{pd} = 12 \text{ ns typ}$   
 $P_D = 72 \text{ mW typ}$

NUMBER IN PARENTHESIS INDICATES  
 MRTL LOADING FACTOR

**ELECTRICAL CHARACTERISTICS**

Test procedures are shown for only one gate.  
 The other gates are tested in the same manner.

| Temperature | TEST VOLTAGE VALUES |          |           |           |          | Gnd  |
|-------------|---------------------|----------|-----------|-----------|----------|------|
|             | $V_{in}$            | $V_{on}$ | $V_{BOI}$ | $V_{off}$ | $V_{cc}$ |      |
| MC971       | -55°C               | 1.014    | 1.014     | 1.50      | 0.710    | 3.00 |
|             | +25°C               | 0.844    | 0.815     | 1.50      | 0.565    | 3.00 |
|             | +125°C              | 0.674    | 0.674     | 1.50      | 0.320    | 3.00 |
| MC871       | 0°C                 | 0.909    | 0.909     | 1.50      | 0.574    | 3.00 |
|             | +25°C               | 0.844    | 0.844     | 1.50      | 0.554    | 3.00 |
|             | +100°C              | 0.710    | 0.710     | 1.50      | 0.370    | 3.00 |

| Characteristic | Symbol    | Pin Under Test               | MC971 Test Limits |      |       |      |        |      | MC871 Test Limits |      |       |      |        |      | Pulse In | Pulse Out       | Gnd              |                  |                     |                   |                   |
|----------------|-----------|------------------------------|-------------------|------|-------|------|--------|------|-------------------|------|-------|------|--------|------|----------|-----------------|------------------|------------------|---------------------|-------------------|-------------------|
|                |           |                              | -55°C             |      | +25°C |      | +125°C |      | 0°C               |      | +25°C |      | +100°C |      |          |                 |                  |                  |                     |                   |                   |
|                |           |                              | Min               | Max  | Min   | Max  | Min    | Max  | Min               | Max  | Min   | Max  | Min    | Max  |          |                 |                  |                  |                     |                   |                   |
| Input Current  | $I_{A1}$  | 1<br>2                       | -                 | 990  | -     | 870  | -      | 940  | $\mu\text{Adc}$   | -    | 1098  | -    | 900    | -    | 900      | $\mu\text{Adc}$ | 1<br>2           | -                | -                   | 2<br>14<br>7      |                   |
| Output Current | $I_{A5}$  | 3<br>3<br>2,47<br>2,47       | -                 | 2,54 | -     | 2,35 | -      | 2,35 | $\text{mAdc}$     | 2,52 | -     | 2,38 | -      | 2,25 | -        | 2,25            | $\text{mAdc}$    | -<br>2,3<br>2,3  | -                   | 1<br>1<br>14<br>7 | 1<br>1<br>14<br>7 |
| Output Voltage | $V_{out}$ | 3<br>3                       | -                 | 710  | -     | 300  | -      | 320  | $\text{mVdc}$     | -    | 574   | -    | 400    | -    | 370      | $\text{mVdc}$   | -<br>1,2<br>1,2  | -                | 1,2<br>1<br>14<br>7 | 14<br>14<br>7     |                   |
| Switching Time | t         | 1-3-<br>1-3-<br>2-3-<br>2-3- | -                 | -    | -     | -    | 40     | -    | -                 | ns   | -     | -    | -      | 40   | -        | -               | 1<br>2<br>2<br>2 | 3<br>2<br>1<br>1 | -                   | 14<br>7           |                   |

Ground inputs of gates not under test. Other pins not listed are left open.

## MC971, MC871 (continued)



### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



## MC900 • MC800

Available in TO-99 metal can, add "G" suffix.

Available in TO-91 flat package, add "F" suffix.

The buffer is designed to drive a greater number of load circuits than the basic RTL circuit. Because this circuit has a very low output impedance the rise times of output waveforms are maintained when driving capacitive loads. A resistor which is internally connected to the input allows for capacitive coupling to the input, the differentiation of input waveforms, and various multivibrator applications.



Outputs e and g may  
not be used simultaneously

| PIN CONNECTIONS   |    |   |   |   |   |   |      |
|-------------------|----|---|---|---|---|---|------|
| SCHEMATIC         | a  | - | c | d | e | - | g    |
| G PACKAGE (TO-99) | 1  | — | 3 | 4 | 5 | — | 7 8  |
| F PACKAGE (TO-91) | .2 | 3 | 4 | 5 | 7 | 8 | 9 10 |

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



Test each output independently. For each test, use only the load associated with the output under test. Output not under test should be left open.



## ELECTRICAL CHARACTERISTICS

|       |        | TEST VOLTAGE VALUES |                 |                 |                  |                  |                 |                             |        |  |  | Gnd |  |
|-------|--------|---------------------|-----------------|-----------------|------------------|------------------|-----------------|-----------------------------|--------|--|--|-----|--|
|       |        | @Test Temperature   | (Volts)         |                 |                  |                  |                 |                             | (Ohms) |  |  |     |  |
|       |        |                     | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> <sup>*</sup> |        |  |  |     |  |
| MC900 | -55°C  | 1.014               | 1.014           | 1.50            | 0.710            | 3.00             | 880             |                             |        |  |  |     |  |
|       |        | 0.844               | 0.815           | 1.50            | 0.565            | 3.00             | 680             |                             |        |  |  |     |  |
|       |        | 0.674               | 0.674           | 1.50            | 0.320            | 3.00             | 880             |                             |        |  |  |     |  |
|       | +25°C  | 0.909               | 0.909           | 1.50            | 0.574            | 3.00             | 680             |                             |        |  |  |     |  |
|       |        | 0.844               | 0.844           | 1.50            | 0.554            | 3.00             | 680             |                             |        |  |  |     |  |
|       |        | 0.710               | 0.710           | 1.50            | 0.370            | 3.00             | 880             |                             |        |  |  |     |  |
| MC800 | +125°C | 0.909               | 0.909           | 1.50            | 0.574            | 3.00             | 680             |                             |        |  |  |     |  |
|       |        | 0.844               | 0.844           | 1.50            | 0.554            | 3.00             | 680             |                             |        |  |  |     |  |
|       |        | 0.710               | 0.710           | 1.50            | 0.370            | 3.00             | 880             |                             |        |  |  |     |  |
|       | 0°C    | 0.909               | 0.909           | 1.50            | 0.574            | 3.00             | 680             |                             |        |  |  |     |  |
|       |        | 0.844               | 0.844           | 1.50            | 0.554            | 3.00             | 680             |                             |        |  |  |     |  |
|       |        | 0.710               | 0.710           | 1.50            | 0.370            | 3.00             | 880             |                             |        |  |  |     |  |

| Characteristic     | Symbol                             | Pin Under Test               | MC900 Test Limits |                  |                      |                  |                  |               | MC800 Test Limits |                  |                  |                      |                  |                  | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                    |                               |                 |                  |                  |                  |                             |        |
|--------------------|------------------------------------|------------------------------|-------------------|------------------|----------------------|------------------|------------------|---------------|-------------------|------------------|------------------|----------------------|------------------|------------------|--------------------------------------------|--------------------|-------------------------------|-----------------|------------------|------------------|------------------|-----------------------------|--------|
|                    |                                    |                              | -55°C             |                  | +25°C                |                  | +125°C           |               | Unit              | 0°C              |                  | +25°C                |                  | +100°C           |                                            | Unit               | V <sub>in</sub>               | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub>  | V <sub>R</sub> <sup>*</sup> |        |
|                    |                                    |                              | Min               | Max              | Min                  | Max              | Min              | Max           |                   | Min              | Max              | Min                  | Max              | Min              | Max                                        |                    |                               |                 |                  |                  |                  |                             |        |
| Input Current      | 2 I <sub>in</sub>                  | c                            | -                 | 990              | -                    | 870              | -                | 940           | μAdc              | -                | 1010             | -                    | 900              | -                | 900                                        | μAdc               | c                             | -               | -                | -                | h                | -                           | d      |
| Output Current     | I <sub>AB</sub><br>I <sub>A5</sub> | e<br>g                       | 12.4<br>2.47      | -                | 12.7<br>2.54         | -                | 11.8<br>2.35     | -             | mAdc<br>mAdc      | 12.6<br>2.52     | -                | 11.9<br>2.38         | -                | 11.25<br>2.25    | -                                          | mAdc<br>mAdc       | -                             | e<br>g          | -                | c<br>c           | h<br>h           | -                           | d<br>d |
| Output Voltage     | V <sub>out</sub>                   | e<br>g                       | -<br>-            | 710<br>710       | -                    | 300<br>300       | -                | 320<br>320    | mVdc<br>mVdc      | -<br>-           | 574<br>574       | -                    | 400<br>400       | -                | 370<br>370                                 | mVdc<br>mVdc       | -<br>-                        | c<br>c          | -                | -                | h<br>h           | e<br>-                      | d<br>d |
| Saturation Voltage | V <sub>CE(sat)</sub>               | e<br>g<br>g                  | -<br>-<br>-       | 200<br>↓<br>-    | -                    | 210<br>↓<br>-    | -                | 280<br>↓<br>- | mVdc<br>↓         | -<br>-           | 290<br>-         | -                    | 260<br>↓         | -                | 340<br>↓                                   | mVdc<br>↓          | -<br>-                        | c<br>c<br>-     | -                | -                | h<br>h<br>a,h    | e<br>-<br>-                 | d<br>↓ |
| Switching Time     | t                                  | c+e-<br>c-e+<br>c+g-<br>c-g+ | -<br>-<br>-<br>-  | -<br>-<br>-<br>- | 30<br>45<br>28<br>32 | -<br>-<br>-<br>- | -<br>-<br>-<br>- | ns<br>↓       |                   | -<br>-<br>-<br>- | -<br>-<br>-<br>- | 30<br>45<br>28<br>32 | -<br>-<br>-<br>- | -<br>-<br>-<br>- | ns<br>↓                                    | Pulse In<br>c<br>↓ | Pulse Out<br>e<br>e<br>g<br>g | -               | -                | h<br>-           | -<br>-<br>-<br>- | d<br>↓                      |        |

Pins not listed are left open.

\* Resistor Value to V<sub>CC</sub>

## MC900, MC800 (continued)

SWITCHING CHARACTERISTICS



OUTPUT VOLTAGE



FAN-OUT = 6



FAN-OUT = 15



FAN-OUT = 25



INPUT CURRENT



AVAILABLE OUTPUT CURRENT



**MC999 • MC899**

Available in TO-100 Metal Can, Add "G" Suffix.

Available in TO-91 Flat Package, Add "F" Suffix.

The dual buffer is designed to drive a greater number of load circuits than the basic RTL circuit. Because this circuit has a very low output impedance the rise times of output waveforms are maintained when driving capacitive loads. A resistor which is internally connected to the input allows for capacitive coupling to the input, the differentiation of input waveforms and various multivibrator applications.



"F" PACKAGE AND "G" PACKAGE  
PIN-OUTS ARE THE SAME



Outputs 3 and 4 may  
not be used simultaneously  
Outputs 9 and 6 may  
not be used simultaneously

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one buffer only.  
The other buffer is tested in the same manner.

|                   |                 | TEST VOLTAGE VALUES |                  |                  |                 |                             |     |
|-------------------|-----------------|---------------------|------------------|------------------|-----------------|-----------------------------|-----|
|                   |                 | (Volts)             |                  |                  |                 | (Ohms)                      |     |
| @Test Temperature | V <sub>in</sub> | V <sub>on</sub>     | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> <sup>*</sup> |     |
|                   | 1.014           | 1.014               | 1.50             | 0.710            | 3.00            | 680                         |     |
| MC999             | +55°C           | 0.844               | 0.815            | 1.50             | 0.565           | 3.00                        | 680 |
|                   | +25°C           | 0.674               | 0.674            | 1.50             | 0.320           | 3.00                        | 680 |
|                   | +125°C          | 0.909               | 0.909            | 1.50             | 0.574           | 3.00                        | 680 |
| MC899             | 0°C             | 0.844               | 0.844            | 1.50             | 0.554           | 3.00                        | 680 |
|                   | +25°C           | 0.710               | 0.710            | 1.50             | 0.370           | 3.00                        | 680 |
|                   | +100°C          |                     |                  |                  |                 |                             |     |

Ground inputs of buffer not under test.

Other pins not listed are left open.

\* Resistor value to V<sub>CC</sub>

## MC988 • MC888

Available in TO-86 Flat Package, Add "F" Suffix.



Two 3-input positive logic NOR gates, each followed by an inverting and a non-inverting high fan-out amplifier, are provided in a single package. For each section, the output from each stage is available. If more than one output is used, however, the full loading factors cannot be employed since each output provides the drive for the succeeding stage.



Outputs 1, 2, or 3 may not be used simultaneously.  
Outputs 11, 12, or 13 may not be used simultaneously.

### SWITCHING TIME TEST CIRCUIT AND WAVEFORM



Test each output independently. For each test, use only the load associated with the output under test (pin 2 test uses the same load as pin 3 test). Outputs not under test should be left open.

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one buffer only.  
The other buffer is tested in the same manner.

| Characteristic | Symbol        | Pin Under Test | TEST VOLTAGE VALUES |          |           |           |          |         |           |          |           |           |          |         | Gnd |           |            |
|----------------|---------------|----------------|---------------------|----------|-----------|-----------|----------|---------|-----------|----------|-----------|-----------|----------|---------|-----|-----------|------------|
|                |               |                | (Volts)             |          |           |           |          |         | (Ohms)    |          |           |           |          |         |     |           |            |
|                |               |                | $V_{in}$            | $V_{on}$ | $V_{BOT}$ | $V_{off}$ | $V_{cc}$ | $V_R^*$ | $V_{in}$  | $V_{on}$ | $V_{BOT}$ | $V_{off}$ | $V_{cc}$ | $V_R^*$ |     |           |            |
| MC988          | $I_{in}$      | 4              | -                   | 495      | -         | 435       | -        | 470     | $\mu$ Adc | -        | 504       | -         | 460      | -       | 450 | $\mu$ Adc |            |
|                |               | 5              | -                   | ↓        | -         | ↓         | -        | ↓       |           | -        | ↓         | -         | ↓        | -       | ↓   | 4         |            |
|                |               | 6              | -                   | ↓        | -         | ↓         | -        | ↓       |           | -        | ↓         | -         | ↓        | -       | ↓   | 5, 6      |            |
|                | $I_{AB}$      | 1              | 12.4                | -        | 12.7      | -         | 11.8     | -       | mAdc      | 12.6     | -         | 11.9      | -        | 11.25   | -   | mAdc      |            |
|                |               | 2              | 2.47                | -        | 2.54      | -         | 2.35     | -       |           | 2.52     | -         | 2.38      | -        | 2.25    | -   | ↓         | 2          |
|                |               | 3              | 1.48                | -        | 1.52      | -         | 1.41     | -       |           | 1.51     | -         | 1.43      | -        | 1.35    | -   | ↓         | 3, 4, 5, 6 |
| MC888          | $V_{out}$     | 1              | -                   | 710      | -         | 300       | -        | 320     | mVdc      | -        | 574       | -         | 400      | -       | 370 | mVdc      |            |
|                |               | 2              | -                   | ↓        | -         | ↓         | -        | ↓       |           | -        | ↓         | -         | ↓        | -       | ↓   | 3         |            |
|                |               | 3              | -                   | ↓        | -         | ↓         | -        | ↓       |           | -        | ↓         | -         | ↓        | -       | ↓   | 6         |            |
|                | $V_{CE(sat)}$ | 1              | -                   | 200      | -         | 210       | -        | 280     | mVdc      | -        | 290       | -         | 260      | -       | 340 | mVdc      |            |
|                |               | 2              | -                   | ↓        | -         | ↓         | -        | ↓       |           | -        | ↓         | -         | ↓        | -       | ↓   | 3         |            |
|                |               | 3              | -                   | ↓        | -         | ↓         | -        | ↓       |           | -        | ↓         | -         | ↓        | -       | ↓   | 4         |            |
| Switching Time | $t$           | 4+1+           | -                   | -        | -         | 65        | -        | -       | ns        | -        | -         | -         | 65       | -       | -   | ns        |            |
|                |               | 4-1-           | -                   | -        | -         | 58        | -        | -       |           | -        | -         | -         | 58       | -       | -   | 4         |            |
|                |               | 4+2+           | -                   | -        | -         | 42.5      | -        | -       |           | -        | -         | -         | 42.5     | -       | -   | 4         |            |
|                |               | 4-2-           | -                   | -        | -         | 42.5      | -        | -       |           | -        | -         | -         | 42.5     | -       | -   | 4         |            |
|                |               | 4+3-           | -                   | -        | -         | 20        | -        | -       |           | -        | -         | -         | 20       | -       | -   | 4         |            |
|                |               | 4-3+           | -                   | -        | -         | 28        | -        | -       |           | -        | -         | -         | 28       | -       | -   | 3         |            |

Ground inputs of buffer not under test.

Other pins not listed are left open.

\* Resistor Value to  $V_{CC}$ .

**MC902 • MC802**

Available in TO-99 Metal Can, Add "G" Suffix



This flip-flop is formed by internally cross-coupling two basic RTL NOR gates.



| R | S | $Q^{n+1}$ |
|---|---|-----------|
| 0 | 0 | $Q^n$     |
| 0 | 1 | 1         |
| 1 | 0 | 0         |
| 1 | 1 | 0         |

**SWITCHING TIME TEST CIRCUIT AND WAVEFORM**

## ELECTRICAL CHARACTERISTICS

| @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |      |
|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|------|
|                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |      |
| MC902             | -55°C                       | 1.014           | 1.014            | 1.50             | 0.710           | 3.00 |
|                   | +25°C                       | 0.844           | 0.815            | 1.50             | 0.565           | 3.00 |
|                   | +125°C                      | 0.674           | 0.674            | 1.50             | 0.320           | 3.00 |
| MC802             | 0°C                         | 0.909           | 0.809            | 1.50             | 0.574           | 3.00 |
|                   | +25°C                       | 0.844           | 0.844            | 1.50             | 0.554           | 3.00 |
|                   | +100°C                      | 0.710           | 0.710            | 1.50             | 0.370           | 3.00 |

| Characteristic     | Symbol                             | Pin Under Test   | MC902 Test Limits |                    |                  |                    |                  |                         | MC802 Test Limits        |                  |                         |                  |                         |                  | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                          |                    |                    |                    | Gnd              |                     |        |
|--------------------|------------------------------------|------------------|-------------------|--------------------|------------------|--------------------|------------------|-------------------------|--------------------------|------------------|-------------------------|------------------|-------------------------|------------------|--------------------------------------------|--------------------------|--------------------|--------------------|--------------------|------------------|---------------------|--------|
|                    |                                    |                  | -55°C             |                    | +25°C            |                    | +125°C           |                         | Unit                     | 0°C              |                         | +25°C            |                         | +100°C           |                                            | Unit                     | V <sub>in</sub>    | V <sub>on</sub>    | V <sub>BOT</sub>   | V <sub>off</sub> | V <sub>CC</sub>     |        |
|                    |                                    |                  | Min               | Max                | Min              | Max                | Min              | Max                     |                          | Min              | Max                     | Min              | Max                     | Min              | Max                                        |                          | 1                  | 3                  | 7                  | 8                | 4                   |        |
| Input Current      | I <sub>in</sub>                    | 1<br>3           | -<br>-            | 495<br>495         | -<br>-           | 435<br>435         | -<br>-           | 470<br>470              | μAdc<br>μAdc             | -<br>-           | 504<br>504              | -<br>-           | 450<br>450              | -<br>-           | 450<br>450                                 | μAdc<br>μAdc             | 1<br>3             | -<br>-             | 5<br>7             | -<br>-           | 8<br>8              | 4<br>4 |
| Output Current     | I <sub>A4</sub><br>I <sub>A4</sub> | 5<br>7           | 1.98<br>1.98      | -<br>-             | 2.19<br>2.19     | -<br>-             | 1.88<br>1.88     | -<br>-                  | mAdc<br>mAdc             | 2.02<br>2.02     | -<br>-                  | 2.05<br>2.05     | -<br>-                  | 1.80<br>1.80     | -<br>-                                     | mAdc<br>mAdc             | -<br>-             | 5<br>7             | 1<br>3             | 3<br>1           | 8<br>8              | 4<br>4 |
| Output Voltage     | V <sub>out</sub>                   | 5<br>5<br>7<br>7 | -<br>-<br>-<br>-  | 710<br>-<br>-<br>- | -<br>-<br>-<br>- | 300<br>-<br>-<br>- | -<br>-<br>-<br>- | 320<br>-<br>-<br>-<br>- | mVdc<br>-<br>-<br>-<br>- | -<br>-<br>-<br>- | 574<br>-<br>-<br>-<br>- | -<br>-<br>-<br>- | 400<br>-<br>-<br>-<br>- | -<br>-<br>-<br>- | 370<br>-<br>-<br>-<br>-                    | mVdc<br>-<br>-<br>-<br>- | -<br>-<br>1<br>5   | 3<br>7<br>1<br>-   | 1<br>3<br>-<br>-   | -<br>-<br>-<br>- | 8<br>-<br>-<br>-    | 4<br>4 |
| Saturation Voltage | V <sub>CE(sat)</sub>               | 5<br>5<br>7<br>7 | -<br>-<br>-<br>-  | 200<br>-<br>-<br>- | -<br>-<br>-<br>- | 210<br>-<br>-<br>- | -<br>-<br>-<br>- | 280<br>-<br>-<br>-<br>- | mVdc<br>-<br>-<br>-<br>- | -<br>-<br>-<br>- | 290<br>-<br>-<br>-<br>- | -<br>-<br>-<br>- | 260<br>-<br>-<br>-<br>- | -<br>-<br>-<br>- | 340<br>-<br>-<br>-<br>-                    | mVdc<br>-<br>-<br>-<br>- | -<br>-<br>1,3<br>- | -<br>-<br>1,3<br>3 | 1,3<br>1<br>-<br>- | 8<br>1<br>4<br>4 | 4,5 †<br>4<br>4,7 † |        |
| Switching Time     | t                                  | 1+7-<br>1-7+     | -<br>-            | -<br>-             | -<br>-           | 20<br>30           | -<br>-           | -<br>-                  | ns<br>ns                 | -<br>-           | -<br>-                  | -<br>-           | -<br>-                  | 20<br>30         | -<br>-                                     | ns<br>ns                 | Pulse In<br>1      | Pulse Out<br>7     | -<br>-             | -<br>-           | 8<br>8              | 4<br>4 |

Pins 2 and 6 omitted. Other pins not listed are left open. † Silicon Diode to Ground

**MC916 • MC816**

**Available in TO-99 Metal Can, Add "G" Suffix  
Available in TO-91 Flat Package, Add "F" Suffix**



## TYPICAL RESISTANCE

## VALUES

R<sub>1</sub> = 450ΩR<sub>2</sub> = 640ΩR<sub>3</sub> = 510ΩR<sub>4</sub> = 225Ω

## CLOCKED INPUT OPERATION①

| t <sub>n</sub> ② |   | t <sub>n+1</sub> ② |                  |
|------------------|---|--------------------|------------------|
| S                | C | Q <sub>n</sub> ③   | $\bar{Q}_n$      |
| 1                | 1 | Q <sub>n</sub> ③   | $\bar{Q}_n$      |
| 1                | 0 | 1                  | 0                |
| 0                | 1 | 0                  | 1                |
| 0                | 0 | $\bar{Q}_n$        | Q <sub>n</sub> ③ |

① Direct input (C<sub>D</sub>) must be low.② The time period prior to the negative transition of the clock pulse is denoted t<sub>n</sub> and the time period subsequent to this transition is denoted t<sub>n+1</sub>.③ Q<sub>n</sub> is the state of the Q output in the time period t<sub>n</sub>.

## PIN CONNECTIONS

| SCHEMATIC         | a | b | c | d | e | f | g | h  |
|-------------------|---|---|---|---|---|---|---|----|
| G PACKAGE (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  |
| F PACKAGE (TO-91) | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 |

## ELECTRICAL CHARACTERISTICS

|       | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC916 | -55°C             | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C            | 0.674                       | 0.674           | 1.50             | 0.320            | 3.00            |  |
| MC816 | 0°C               | 0.909                       | 0.909           | 1.50             | 0.574            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C            | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic     | Symbol                                                  | Pin Under Test         | MC916 Test Limits |     |                |     |                |     | MC816 Test Limits |                |     |                |     |                | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                        |                     | Gnd                 |                 |                          |
|--------------------|---------------------------------------------------------|------------------------|-------------------|-----|----------------|-----|----------------|-----|-------------------|----------------|-----|----------------|-----|----------------|--------------------------------------------|------|-----------------|------------------------|---------------------|---------------------|-----------------|--------------------------|
|                    |                                                         |                        | -55°C             |     | +25°C          |     | +125°C         |     | Unit              | 0°C            |     | +25°C          |     | +100°C         |                                            | Unit | V <sub>in</sub> | V <sub>on</sub>        | V <sub>BOT</sub>    | V <sub>off</sub>    | V <sub>CC</sub> |                          |
|                    |                                                         |                        | Min               | Max | Min            | Max | Min            | Max |                   | Min            | Max | Min            | Max | Min            | Max                                        |      | Min             | Max                    | Min                 | Max                 |                 |                          |
| Input Current      | I <sub>in</sub><br>2 I <sub>in</sub><br>I <sub>in</sub> | a<br>b<br>c<br>f       | -                 | 495 | -              | 435 | -              | 470 | μAdc              | -              | 504 | -              | 450 | -              | 450                                        | μAdc | a               | -                      | e                   | -                   | h               | d                        |
| Output Current     | I <sub>A3</sub>                                         | e<br>e<br>g            | 1.48<br>-<br>-    | -   | 1.52<br>-<br>- | -   | 1.41<br>-<br>- | -   | mAdc              | 1.51<br>-<br>- | -   | 1.43<br>-<br>- | -   | 1.35<br>-<br>- | -                                          | mAdc | -               | e, f<br>a, c<br>g      | a, f<br>a<br>c      | -<br>-<br>f         | h               | d<br>d, e †              |
| Output Voltage     | V <sub>out</sub>                                        | g<br>gt#<br>gt<br>gt\$ | -                 | 710 | -              | 300 | -              | 320 | mVdc              | -              | 574 | -              | 400 | -              | 370                                        | mVdc | -               | f<br>a, c<br>c<br>a, c | -<br>-<br>-<br>a, c | -<br>-<br>-<br>a, c | h               | d, e<br>d, f             |
| Saturation Voltage | V <sub>CE(sat)</sub>                                    | e<br>g<br>g            | -                 | 200 | -              | 210 | -              | 280 | mVdc              | -              | 290 | -              | 260 | -              | 340                                        | mVdc | -               | -<br>-<br>f            | -<br>-<br>-         | f                   | h               | d, e †<br>d, e<br>d, g † |
| Turn-On Voltage    | V <sub>on</sub>                                         | gt\$<br>gt<br>gt#*     | 1014<br>-<br>-    | -   | 815<br>-<br>-  | -   | 674<br>-<br>-  | -   | mVdc              | 909<br>-<br>-  | -   | 844<br>-<br>-  | -   | 710<br>-<br>-  | -                                          | mVdc | -               | a, c<br>a<br>-         | -<br>-<br>a, c      | -<br>-<br>-         | h               | d, f                     |

† Silicon Diode to Ground

\* MC916 pin g loaded by: 1.52 mAdc (+25°C), MC816 pin g loaded by: 1.42 mAdc (+25°C)  
 1.48 mAdc (-55°C) 1.51 mAdc (0°C)  
 1.41 mAdc (+125°C) 1.35 mAdc (+100°C)

‡ Pin b = Clock pulse to pin b (see Figure 1).

§ Pin e = LOW } Set by a momentary ground prior to the application  
 # Pin g = LOW } of the negative-going Clock Pulse.

Pins not listed are left open.

## MC916, MC816 (continued)

FIGURE 1 – CLOCK PULSE DEFINITION



**SEQUENCE OF EVENTS:**

- Voltage applied to Clock pin is raised to  $V_H$ .  $t_L$  is not critical; however, should be less than  $1.0 \mu\text{s}$ .
- Biases of all other inputs are applied.  $V_{CC}$  is applied without interruption throughout the testing.
- Apply momentary ground (when applicable).
- Clock pulse is allowed to fall to  $V_L$ .  $t_F$  must remain within 10 ns minimum and 100 ns maximum.
- Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

FIGURE 2 – TOGGLE MODE TEST CIRCUIT



| MC816 |         |         |
|-------|---------|---------|
| $T_A$ | $V_L$   | $V_H$   |
| 25°C  | 0.554 V | 0.894 V |
| 0°C   | 0.574 V | 0.959 V |
| 100°C | 0.370 V | 0.760 V |

All voltages  $\pm 10 \text{ mV}$

| MC916 |         |         |
|-------|---------|---------|
| $T_A$ | $V_L$   | $V_H$   |
| 25°C  | 0.565 V | 0.865 V |
| -55°C | 0.570 V | 1.064 V |
| 125°C | 0.320 V | 0.724 V |

## SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

FIGURE 3A – CLOCK-TO-OUTPUT PROPAGATION DELAY TIME



FIGURE 3B – SET-UP AND RELEASE TIME



FIGURE 3C – TEST CIRCUIT



## SWITCHING TIMES

| Test       | Figure No. | Maximum Over Full Temperature Range (ns) |      |
|------------|------------|------------------------------------------|------|
|            |            | Temperature Range (ns)                   | (ns) |
| $t_{P-O}$  | 3A, 3C     |                                          | 60   |
| $t_{P-Q}$  | 3A, 3C     |                                          | 60   |
| $t_{P-O+}$ | 3A, 3C     |                                          | 100  |
| $t_{P-Q+}$ | 3A, 3C     |                                          | 100  |
| $t_{S-T}$  | 3B, 3C     |                                          | 50   |
| $t_{S-T}$  | 3B, 3C     |                                          | 50   |
| $t_{R-C}$  | 3B, 3C     |                                          | 50   |
| $t_{C-P}$  | 4          |                                          | 50   |
| $t_{C-P+}$ | 4          |                                          | 90   |

- Change of state occurs on trailing edge of clock pulse.
- With a high level on  $C_D$ , and with the proper SET and CLEAR inputs for a low level at  $\bar{Q}$ ,  $\bar{Q}$  will be high except for a short period after the negative going edge of a clock pulse.  $\bar{Q}$  will go low for up to 100 ns, and then return to a high level within 100 ns after a negative clock transition.

FIGURE 4 – DIRECT CLEAR PROPAGATION DELAY TIME



TYPICAL CURVES



**MC926 • MC826**

Available in TO-100 Metal Can, Add "G" Suffix  
 Available in TO-91 Flat Package, Add "F" Suffix

J-K flip-flop with direct clear and direct set inputs in addition to the clocked inputs.



$t_{pd} = 35 \text{ ns typ}$   
 $P_d = 130 \text{ mW typ (Only Clock Input High)}$   
 $65 \text{ mW typ (Inputs Low)}$

## DIRECT INPUT OPERATION①

| S <sub>D</sub> | C <sub>D</sub> | Q | Q̄ |
|----------------|----------------|---|----|
| 0              | 0              | ② | ③  |
| 1              | 0              | 1 | 0  |
| 0              | 1              | 0 | 1  |
| 1              | 1              | 0 | 0  |

## CLOCKED INPUT OPERATION③

| t <sub>n</sub> ④ |   | t <sub>n+1</sub> ⑤ |                   |
|------------------|---|--------------------|-------------------|
| S                | C | Q                  | Q̄                |
| 1                | 1 | Q <sub>n</sub> ⑥   | Q̄ <sub>n</sub>   |
| 1                | 0 | 1                  | 0                 |
| 0                | 1 | 0                  | 1                 |
| 0                | 0 | Q <sub>n</sub>     | Q̄ <sub>n</sub> ⑥ |

- ① Clock (T) to remain unchanged.
- ② The output state will not change when the input state goes from  $S_D = \bar{C}_D$  to  $S_D = C_D = 0$ . The output state cannot be predetermined in the case where the input goes from  $S_D = C_D = 1$  to  $S_D = C_D = 0$ .
- ③ Direct inputs ( $C_D$  and  $S_D$ ) must be low.
- ④ The time period prior to the negative transistor of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .
- ⑤  $Q_n$  is the state of the Q output in the time period  $t_n$ .

"F" PACKAGE AND "G" PACKAGE  
 PIN-OUTS ARE THE SAME.



## ELECTRICAL CHARACTERISTICS

|       | @Test<br>Temperature | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |  |
|-------|----------------------|--------------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                      | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC926 | -55°C                | 1.014                          | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C                | 0.844                          | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C               | 0.674                          | 0.674           | 1.50             | 0.320            | 3.00            |  |
|       | 0°C                  | 0.909                          | 0.909           | 1.50             | 0.574            | 3.00            |  |
|       | +25°C                | 0.844                          | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C               | 0.710                          | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic     | Symbol               | Pin Under Test   | MC926 Test Limits |     |       |     |        |     | MC826 Test Limits |      |      |       |     |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  | Gnd              |                 |   |
|--------------------|----------------------|------------------|-------------------|-----|-------|-----|--------|-----|-------------------|------|------|-------|-----|--------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|---|
|                    |                      |                  | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C  |      | +25°C |     | +100°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |   |
|                    |                      |                  | Min               | Max | Min   | Max | Min    | Max |                   | Min  | Max  | Min   | Max | Min    | Max                                        |      | Min             | Max             | Min              | Max              |                 |   |
| Input Current      | I <sub>in</sub>      | 1                | -                 | 495 | -     | 435 | -      | 470 | μAdc              | -    | 504  | -     | 450 | -      | 450                                        | μAdc | 1               | -               | -                | -                | 10              | 5 |
|                    | I <sub>in</sub>      | 2                | -                 | 495 | -     | 435 | -      | 470 |                   | -    | 504  | -     | 450 | -      | 450                                        |      | 2               | -               | 8                | -                | -               |   |
|                    | 2 I <sub>in</sub>    | 3                | -                 | 990 | -     | 870 | -      | 940 |                   | -    | 1010 | -     | 900 | -      | 900                                        |      | 3               | -               | 2, 4             | -                | -               |   |
|                    | I <sub>in</sub>      | 4                | -                 | 495 | -     | 435 | -      | 470 |                   | -    | 504  | -     | 450 | -      | 450                                        |      | 4               | -               | 1                | -                | -               |   |
|                    | I <sub>in</sub>      | 8                | -                 | 495 | -     | 435 | -      | 470 |                   | -    | 504  | -     | 450 | -      | 450                                        |      | 8               | -               | -                | -                | -               |   |
|                    |                      |                  |                   |     |       |     |        |     |                   |      |      |       |     |        |                                            |      |                 |                 |                  |                  |                 |   |
| Output Current     | I <sub>A5</sub>      | 7                | 2.47              | -   | 2.54  | -   | 2.35   | -   | mAdc              | 2.52 | -    | 2.38  | -   | 2.25   | -                                          | mAdc | -               | 7, 8            | 1                | -                | 10              | 5 |
|                    |                      | 9                | 2.47              | -   | 2.54  | -   | 2.35   | -   | mAdc              | 2.52 | -    | 2.38  | -   | 2.25   | -                                          | mAdc | -               | 1, 9            | 8                | -                | 10              | 5 |
| Saturation Voltage | V <sub>CE(sat)</sub> | 7                | -                 | 200 | -     | 210 | -      | 280 | mVdc              | -    | 290  | -     | 260 | -      | 340                                        | mVdc | -               | 1               | -                | 8                | 10              | 5 |
|                    |                      | 7# <sup>1</sup>  | -                 |     | -     |     | -      |     |                   | -    |      | -     | -   | -      |                                            |      | 2               | -               | 4                | 2, 4             |                 |   |
|                    |                      | 7# <sup>2</sup>  | -                 |     | -     |     | -      |     |                   | -    |      | -     | -   | -      |                                            |      | 2, 4            | -               | -                | -                |                 |   |
|                    |                      | 7\$ <sup>1</sup> | -                 |     | -     |     | -      |     |                   | -    |      | -     | -   | -      |                                            |      | 8               | -               | 1                | 2                |                 |   |
|                    |                      | 9                | -                 |     | -     |     | -      |     |                   | -    |      | -     | -   | -      |                                            |      | 4               | -               | 2                | -                |                 |   |
|                    |                      | 9\$ <sup>1</sup> | -                 |     | -     |     | -      |     |                   | -    |      | -     | -   | -      |                                            |      | 2, 4            | -               | -                | 2, 4             |                 |   |
|                    |                      | 9# <sup>1</sup>  | -                 |     | -     |     | -      |     |                   | -    |      | -     | -   | -      |                                            |      | -               | -               | -                | -                |                 |   |
|                    |                      | 9\$ <sup>2</sup> | -                 |     | -     |     | -      |     |                   | -    |      | -     | -   | -      |                                            |      |                 |                 |                  |                  |                 |   |

§ Pin 1 = High } Set by momentary application of V<sub>BOT</sub> prior to the application of the negative going clock pulse.

# Pin 8 = High }

† Pin 3 = 

Pins not listed are left open.

## MC926, MC826 (continued)

**FIGURE 1—CLOCK PULSE DEFINITION**



**SEQUENCE OF EVENTS:**

- A. Voltage applied to Clock pin is raised to  $V_{H}$ .  $t_r$  is not critical, however should be less than 1.0  $\mu s$ .
  - B. Biases of all other inputs are applied.  $V_{CC}$  is applied without interruption throughout the testing.
  - C. Apply momentary ground (when applicable).
  - D. Clock pulse is allowed to fall to  $V_L$ .  $t_f$  must remain within 10 ns minimum and 200 ns maximum.
  - E. Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

**FIGURE 2 – TOGGLE MODE TEST CIRCUIT**



| MC826          |                |                |
|----------------|----------------|----------------|
| T <sub>A</sub> | V <sub>L</sub> | V <sub>H</sub> |
| 25°C           | 0.554 V        | 0.894 V        |
| 0°C            | 0.574 V        | 0.959 V        |
| 100°C          | 0.370 V        | 0.760 V        |

| MC926          |                |                |
|----------------|----------------|----------------|
| T <sub>A</sub> | V <sub>L</sub> | V <sub>H</sub> |
| 25 °C          | 0.565 V        | 0.865 V        |
| -55 °C         | 0.710 V        | 1.064 V        |
| 125 °C         | 0.320 V        | 0.724 V        |

All voltages  $\pm 10$  mV

## **SWITCHING TIME TEST CIRCUITS AND WAVEFORMS**

**FIGURE 3A – CLOCK-TO-OUTPUT PROPAGATION DELAY TIME**



**FIGURE 3B — SET-UP AND RELEASE TIME**



**FIGURE 3C — TEST CIRCUIT**



SWITCHING TIMES

| Test                                                                        | Figure No. | Minimum                          | Maximum |
|-----------------------------------------------------------------------------|------------|----------------------------------|---------|
|                                                                             |            | Over Full Temperature Range (ns) |         |
| t <sub>r-0-</sub>                                                           | 3A, 3C     | 25#                              | 90      |
| t <sub>r-0-</sub>                                                           | 3A, 3C     | 25#                              | 90      |
| t <sub>r-0-</sub>                                                           | 3A, 3C     | 25#                              | 90      |
| t <sub>r-0+</sub>                                                           | 3A, 3C     | 25#                              | 90      |
| t <sub>s-1+</sub>                                                           | 3B, 3C     | —                                | 50      |
| t <sub>s-T</sub>                                                            | 3B, 3C     | —                                | 30      |
| t <sub>C-T</sub>                                                            | 3B, 3C     | —                                | 50      |
| t <sub>C-T</sub>                                                            | 3B, 3C     | —                                | 30      |
| t <sub>T-S</sub>                                                            | 3B, 3C     | —                                | 0*      |
| t <sub>r-S</sub>                                                            | 3B, 3C     | —                                | +5*     |
| t <sub>r-C+</sub>                                                           | 3B, 3C     | —                                | 0*      |
| t <sub>r-C-</sub>                                                           | 3B, 3C     | —                                | +5*     |
| t <sub>C<sub>p</sub></sub> , or t <sub>S<sub>p</sub></sub> ,<br>to output — | 4          | —                                | 90      |
| t <sub>C<sub>p</sub></sub> , or t <sub>S<sub>p</sub></sub> ,<br>to output + | 4          | —                                | 70      |

# Lightly loaded \* Negative switching time means the inputs can momentarily change before the clock pulse transition.

**FIGURE 4—DIRECT CLEAR PROPAGATION DELAY TIME**



## MC974 • MC874

Available in TO-99 metal can, add "G" suffix.

J-K flip-flop with a direct clear input  
in addition to the clocked inputs.



CLOCKED INPUT OPERATION①

| $t_n$ ② | $t_{n+1}$ ② | S | C | Q       | $\bar{Q}$     |
|---------|-------------|---|---|---------|---------------|
| 1       | 1           | 1 | 1 | $Q_n$ ③ | $\bar{Q}_n$   |
| 1       | 0           | 0 | 1 | 1       | 0             |
| 0       | 1           | 1 | 0 | 0       | 1             |
| 0       | 0           | 0 | 0 | $Q_n$ ③ | $\bar{Q}_n$ ③ |

① Direct input ( $C_D$ ) must be low.

② The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .

③  $Q_n$  is the state of the Q output in the time period  $t_n$ .



TYPICAL RESISTANCE VALUES

|                    |                    |
|--------------------|--------------------|
| $R_1 = 600 \Omega$ | $R_5 = 700 \Omega$ |
| $R_2 = 300 \Omega$ | $R_6 = 900 \Omega$ |
| $R_3 = 550 \Omega$ | $R_7 = 2k \Omega$  |
| $R_4 = 640 \Omega$ | $R_8 = 3k \Omega$  |

## ELECTRICAL CHARACTERISTICS

|       | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC974 | -55°C             | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C            | 0.674                       | 0.874           | 1.50             | 0.320            | 3.00            |  |
| MC874 | 0°C               | 0.909                       | 0.909           | 1.50             | 0.574            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C            | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic     | Symbol               | Pin Under Test | MC974 Test Limits |     |       |     |        |     | MC874 Test Limits |      |      |       |     |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  | Gnd              |                 |   |
|--------------------|----------------------|----------------|-------------------|-----|-------|-----|--------|-----|-------------------|------|------|-------|-----|--------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|---|
|                    |                      |                | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C  |      | +25°C |     | +100°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |   |
|                    |                      |                | Min               | Max | Min   | Max | Min    | Max |                   | Min  | Max  | Min   | Max | Min    | Max                                        |      | Min             | Max             | Min              | Max              |                 |   |
| Input Current      | I <sub>in</sub>      | 1              | -                 | 495 | -     | 435 | -      | 470 | μAdc              | -    | 504  | -     | 450 | -      | 450                                        | μAdc | 1               | -               | 6                | -                | 8               | 4 |
|                    | 2 I <sub>in</sub> *  | 2              | -                 | 990 | -     | 870 | -      | 940 |                   | -    | 1008 | -     | 900 | -      | 900                                        |      | 2               | -               | 1,3              | -                |                 |   |
|                    | I <sub>in</sub>      | 3 Δ            | -                 | 495 | -     | 435 | -      | 470 |                   | -    | 504  | -     | 450 | -      | 450                                        |      | 3               | -               | -                | -                |                 |   |
|                    | I <sub>in</sub>      | 8              | -                 | 495 | -     | 435 | -      | 470 |                   | -    | 504  | -     | 450 | -      | 450                                        |      | 8               | -               | -                | -                |                 |   |
| Output Current     | I <sub>A5</sub>      | 5              | 2.47              | -   | 2.54  | -   | 2.35   | -   | mAdc              | 2.52 | -    | 2.38  | -   | 2.25   | -                                          | mAdc | -               | 5,6             | -                | -                | 8               | 4 |
|                    |                      | 7 Δ            | 2.47              | -   | 2.54  | -   | 2.35   | -   | mAdc              | 2.52 | -    | 2.38  | -   | 2.25   | -                                          | mAdc | -               | 7               | -                | -                | 8               | 4 |
| Saturation Voltage | V <sub>CE(sat)</sub> | 5‡\$           | -                 | 200 | -     | 210 | -      | 280 | mVdc              | -    | 290  | -     | 260 | -      | 340                                        | mVdc | -               | 1               | -                | 3                | 8               | 4 |
|                    |                      | 5‡\$           | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | 1,3             | -                | -                |                 |   |
|                    |                      | 5‡\$           | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | 6               | -                | -                |                 |   |
|                    |                      | 7Δ\$           | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | 1,3             | -                | -                |                 |   |
|                    |                      | 7‡\$           | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | 3               | -                | 1                |                 |   |
|                    |                      | 7Δ\$           | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | -               | 1,3              | -                |                 |   |
|                    |                      | 7Δ\$           | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | -               | -                | -                |                 |   |

Pins not listed are left open.

Δ Preset the flip-flop by the following procedure:

- (1) Momentarily apply V<sub>BOT</sub> to pin 6 to preclear flip-flop.
- (2) After V<sub>BOT</sub> is removed from pin 6, ground pins 1 and 3.
- (3) Apply a negative-going clock pulse to pin 2 (see note §) while pins 1 and 3 are still grounded. This changes the state of the flip-flop to the SET condition.
- (4) Remove the grounds from pins 1 and 3, and proceed with the test.

‡ Momentarily apply V<sub>BOT</sub> to pin 6 prior to the arrival of the negative-going clock pulse to effect a change of state.

§ Clock Pulse to pin 2:

## MC974, MC874 (continued)

FIGURE 1 — CLOCK PULSE DEFINITION



**SEQUENCE OF EVENTS:**

- A. Voltage applied to Clock pin is raised to  $V_H$ .  $t_r$  is not critical, however should be less than 1.0  $\mu s$ .
- B. Biases of all other inputs are applied.  $V_{CC}$  is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to  $V_L$ .  $t_f$  must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

FIGURE 2 — TDGGLE MODE TEST CIRCUIT



| MC874 |         |         |
|-------|---------|---------|
| $T_A$ | $V_L$   | $V_H$   |
| 25°C  | 0.554 V | 0.894 V |
| 0°C   | 0.574 V | 0.959 V |
| 100°C | 0.370 V | 0.760 V |

All voltages  $\pm 10 \text{ mV}$

| MC974 |         |         |
|-------|---------|---------|
| $T_A$ | $V_L$   | $V_H$   |
| 25°C  | 0.565 V | 0.865 V |
| -55°C | 0.710 V | 1.064 V |
| 125°C | 0.320 V | 0.724 V |

## SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

FIGURE 3A — CLDCK-TD-DPUT PROPAGATION DELAY TIME



FIGURE 3B — SET-UP AND RELEASE TIME



FIGURE 3C — TEST CIRCUIT



## SWITCHING TIMES

| Test         | Figure No. | Minimum                          |  | Maximum |  |
|--------------|------------|----------------------------------|--|---------|--|
|              |            | Over Full Temperature Range (ns) |  |         |  |
| $t_{f-Q-}$   | 3A, 3C     | 25#                              |  | 90      |  |
| $t_{f-Q-}$   | 3A, 3C     | 25#                              |  | 90      |  |
| $t_{f-Q+}$   | 3A, 3C     | 25#                              |  | 90      |  |
| $t_{f-Q+}$   | 3A, 3C     | 25#                              |  | 90      |  |
| $t_{f-T-}$   | 3B, 3C     | —                                |  | 50      |  |
| $t_{f-T-}$   | 3B, 3C     | —                                |  | 30      |  |
| $t_{f-T-}$   | 3B, 3C     | —                                |  | 50      |  |
| $t_{f-T-}$   | 3B, 3C     | —                                |  | 30      |  |
| $t_{f-T-}$   | 3B, 3C     | —                                |  | 0*      |  |
| $t_{f-S+}$   | 3B, 3C     | —                                |  | +5*     |  |
| $t_{f-S+}$   | 3B, 3C     | —                                |  | 0*      |  |
| $t_{f-C-}$   | 3B, 3C     | —                                |  | +5*     |  |
| $t_{f-C-}$   | 3B, 3C     | —                                |  | 0*      |  |
| $t_{C_D-Q-}$ | 4          | —                                |  | 90      |  |
| $t_{C_D-Q-}$ | 4          | —                                |  | 70      |  |

# Lightly loaded \* Negative switching times means the inputs can momentarily change before the clock pulse transition.

FIGURE 4 — DIRECT CLEAR PROPAGATION DELAY TIME



**MC990 • MC890**

Available in TO-86 flat package, add "F" suffix.

Two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.



## CLOCKED INPUT OPERATION①

| $t_n$ ② | $t_{n+1}$ ② | S | C | Q       | $\bar{Q}$     |
|---------|-------------|---|---|---------|---------------|
| 1       | 1           | 1 | 1 | $Q_n$ ③ | $\bar{Q}_n$   |
| 1       | 0           | 0 | 1 | 1       | 0             |
| 0       | 1           | 1 | 0 | 0       | 1             |
| 0       | 0           | 0 | 0 | $Q_n$ ③ | $\bar{Q}_n$ ③ |

- ① Direct input ( $C_D$ ) must be low
- ② The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .
- ③  $Q_n$  is the state of the Q output in the time period  $t_n$ .



## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one flip-flop only.  
The other flip-flop is tested in the same manner.

|       | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |  |
| MC990 | -55°C             | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C            | 0.674                       | 0.674           | 1.50             | 0.320            | 3.00            |  |
| MC890 | 0°C               | 0.909                       | 0.909           | 1.50             | 0.574            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C            | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic     | Symbol               | Pin Under Test | MC990 Test Limits |     |       |     |        |     | MC890 Test Limits |      |      |       |     |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  | Gnd              |                 |               |
|--------------------|----------------------|----------------|-------------------|-----|-------|-----|--------|-----|-------------------|------|------|-------|-----|--------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|---------------|
|                    |                      |                | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C  |      | +25°C |     | +100°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |               |
|                    |                      |                | Min               | Max | Min   | Max | Min    | Max |                   | Min  | Max  | Min   | Max | Min    | Max                                        |      | Min             | Max             | Min              | Max              |                 |               |
| Input Current      | I <sub>in</sub>      | 1              | -                 | 495 | -     | 435 | -      | 470 | μAdc              | -    | 504  | -     | 450 | -      | 450                                        | μAdc | 1               | -               | 3                | -                | 14              | 4, 5, 8, 7    |
|                    | I <sub>in</sub>      | 4              | -                 | 495 | -     | 435 | -      | 470 |                   | -    | 504  | -     | 450 | -      | 450                                        |      | 4               | -               | 2                | -                |                 | 1, 5, 6, 7    |
|                    | 2 I <sub>in</sub>    | 5              | -                 | 990 | -     | 870 | -      | 940 |                   | -    | 1010 | -     | 900 | -      | 900                                        |      | 5               | -               | 4, 6             | -                |                 | 1, 7          |
|                    | I <sub>in</sub>      | 6              | -                 | 495 | -     | 435 | -      | 470 |                   | -    | 504  | -     | 450 | -      | 450                                        |      | 6               | -               | 3                | -                |                 | 1, 4, 5, 7    |
| Output Current     | I <sub>A3</sub>      | 2#             | 1.48              | -   | 1.52  | -   | 1.41   | -   | mAdc              | 1.51 | -    | 1.43  | -   | 1.35   | -                                          | mAdc | -               | 2               | 4                | 1                | 14              | 5, 6, 7       |
|                    |                      | 3              | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | 3               | 1, 6             | -                |                 | 4, 5, 7       |
|                    |                      | 3              | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | 1, 3            | 6                | -                |                 | 4, 5, 7       |
| Output Voltage     | V <sub>out</sub>     | 2              | -                 | 710 | -     | 300 | -      | 320 | mVdc              | -    | 574  | -     | 400 | -      | 370                                        | mVdc | -               | 1               | -                | -                | 14              | 3, 4, 5, 6, 7 |
|                    |                      | 2Δ\$           | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | 4, 6            | -                | -                |                 | 1, 7          |
|                    |                      | 2\$§           | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | 4               | -                | 6                |                 | 1, 7          |
|                    |                      | 2§§            | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | -               | -                | 4, 6             |                 | 1, 7          |
|                    |                      | 2†             | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | -               | -                | -                |                 | 1, 6, 7       |
|                    |                      | 2*             | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | -               | -                | -                |                 | 1, 6, 7       |
|                    |                      | 3#§            | -                 | 710 | -     | -   | -      | -   |                   | 320  | -    | -     | 574 | -      | -                                          |      | -               | 4, 6            | -                | -                |                 | 1, 7          |
|                    |                      | 3Δ§            | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | 370 | -      | -                                          |      | -               | 6               | -                | 4                |                 | 1, 7          |
| Saturation Voltage | V <sub>CE(sat)</sub> | 2              | -                 | 200 | -     | 210 | -      | 280 | mVdc              | -    | 290  | -     | 260 | -      | 340                                        | mVdc | -               | -               | 1                | -                | 14              | 3, 4, 5, 6, 7 |
|                    |                      | 2Δ             | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | -               | -                | -                |                 | 1, 4, 5, 6, 7 |
|                    |                      | 3#             | -                 | -   | -     | -   | -      | -   |                   | -    | -    | -     | -   | -      | -                                          |      | -               | -               | -                | 1                |                 | 4, 5, 6, 7    |
| Turn On Voltage    | V <sub>on</sub>      | 2†             | -                 | -   | 0.815 | -   | -      | -   | Vdc               | -    | -    | 0.844 | -   | -      | -                                          | Vdc  | -               | -               | -                | -                | 14              | 1, 4, 7       |
|                    |                      | 2**            | -                 | -   | 0.815 | -   | -      | -   | Vdc               | -    | -    | 0.844 | -   | -      | -                                          | Vdc  | -               | -               | -                | -                | 14              | 1, 4, 7       |

Ground inputs of flip-flop not under test. Pins not listed are left open.

# Pin 3 = LOW } Set by a momentary ground prior to the application of

△ Pin 2 = LOW } the negative-going clock pulse.

§ Clock Pulse to Pin 5 (See Figure 1)

† Clock Pulse on Pin 5, data pulse on Pin 4 (See Figure 2)

‡ Clock Pulse on Pin 5, data pulse on Pin 6 (See Figure 2)

\* Clock Pulse on Pin 5, data pulse on Pin 4, momentary ground on Pin 2 (See Figure 3)

\*\* Clock Pulse on Pin 5, data pulse on Pin 6, momentary ground on Pin 3 (See Figure 3)

## MC990, MC890 (continued)

### CLOCK PULSE DEFINITIONS

FIGURE 1



FIGURE 2



FIGURE 3



## MC990, MC890 (continued)

### SWITCHING TIMES

| Test              | Figure No. | Maximum (ns) |                             |
|-------------------|------------|--------------|-----------------------------|
|                   |            | @ 25°C Only  | Over Full Temperature Range |
| $t_{f-Q^-}$       | 5          | 40           | 60                          |
| $t_{f-Q^+}$       | 5          | 80           | 100                         |
| $t_{f-\bar{Q}^-}$ | 5          | 40           | 60                          |
| $t_{f-\bar{Q}^+}$ | 5          | 80           | 100                         |
| $t_{C_D+Q^-}$     | 6          | —            | 50                          |
| $t_{C_D+Q^+}$     | 6          | —            | 90                          |

FIGURE 4 — TOGGLE MODE TEST CIRCUIT



### SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

FIGURE 5



FIGURE 6



**MC991 • MC891**

Available in TO-86 flat package, add "F" suffix.

Two J-K flip-flops in a single package.  
Each flip-flop has a direct clear input in addition to the clocked inputs.



CLOCKED INPUT OPERATION ①

| t <sub>n</sub> ② |   | t <sub>n+1</sub> ② |                  |
|------------------|---|--------------------|------------------|
| S                | C | Q <sub>n</sub> ③   | Q̄ <sub>n</sub>  |
| 1                | 1 | Q <sub>n</sub> ③   | Q̄ <sub>n</sub>  |
| 1                | 0 | 1                  | 0                |
| 0                | 1 | 0                  | 1                |
| 0                | 0 | Q̄ <sub>n</sub>    | Q <sub>n</sub> ③ |

1. Direct input (C<sub>b</sub>) must be low.
2. The time period prior to the negative transition of the clock pulse is denoted t<sub>n</sub> and the time period subsequent to this transition is denoted t<sub>n+1</sub>.
3. Q<sub>n</sub> is the state of the Q output in the time period t<sub>n</sub>.

NUMBER IN PARENTHESIS INDICATES MRTL LOADING FACTOR.



## TYPICAL RESISTANCE VALUES

R<sub>1</sub> = 300 Ω   R<sub>4</sub> = 640 Ω   R<sub>7</sub> = 2.0 k  
R<sub>2</sub> = 550 Ω   R<sub>5</sub> = 700 Ω   R<sub>8</sub> = 3.0 k  
R<sub>3</sub> = 600 Ω   R<sub>6</sub> = 900 Ω

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one flip-flop only.  
The other flip-flop is tested in the same manner.

|       | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |
|-------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|
|       |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |
| MC991 | -55°C             | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |
|       | +25°C             | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |
|       | +125°C            | 0.674                       | 0.674           | 1.50             | 0.320            | 3.00            |
|       | 0°C               | 0.909                       | 0.909           | 1.50             | 0.574            | 3.00            |
| MC891 | +25°C             | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |
|       | +100°C            | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |

| Characteristic     | Symbol               | Pin Under Test | MC991 Test Limits |     |       |     |        |     | MC891 Test Limits |     |      |       |      |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  | Grd              |                 |    |      |
|--------------------|----------------------|----------------|-------------------|-----|-------|-----|--------|-----|-------------------|-----|------|-------|------|--------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|----|------|
|                    |                      |                | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C |      | +25°C |      | +100°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |    |      |
|                    |                      |                | Min               | Max | Min   | Max | Min    | Max |                   | Min | Max  | Min   | Max  | Min    | Max                                        |      | Min             | Max             | Min              | Max              |                 |    |      |
| Input Current      | I <sub>in</sub>      | 4 §            | -                 | 495 | -     | 435 | -      | 470 | μAdc              | -   | 600  | -     | 600  | -      | 570                                        | μAdc | 4               | -               | -                | -                | 14              | 7  |      |
|                    | 2†I <sub>in</sub>    | 5              | -                 | 990 | -     | 870 | -      | 940 |                   | -   | 1200 | -     | 1200 | -      | 1140                                       |      | 5               | -               | 4, 6             | -                |                 |    |      |
|                    | I <sub>in</sub>      | 6              | -                 | 495 | -     | 435 | -      | 470 |                   | -   | 600  | -     | 600  | -      | 570                                        |      | 6               | -               | 1                | -                |                 |    |      |
|                    | I <sub>in</sub>      | 1              | -                 | 495 | -     | 435 | -      | 470 |                   | -   | 600  | -     | 600  | -      | 570                                        |      | 1               | -               | -                | -                |                 |    |      |
| Output Current     | I <sub>A5</sub>      | 2§             | 2.47              | -   | 2.54  | -   | 2.35   | -   | mAdc              | 3.0 | -    | 3.0   | -    | 2.85   | -                                          | mAdc | -               | 2               | -                | -                | -               | 14 | 7    |
|                    |                      | 3              | 2.47              | -   | 2.54  | -   | 2.35   | -   | mAdc              | 3.0 | -    | 3.0   | -    | 2.85   | -                                          | mAdc | -               | 1, 3            | -                | -                | -               | 14 | 7    |
| Output Voltage     | V <sub>out</sub>     | 2†(5)          | -                 | 710 | -     | 300 | -      | 320 | mVdc              | -   | 500  | -     | 400  | -      | 400                                        | mVdc | -               | 4               | -                | -                | -               | 14 | 1, 7 |
|                    |                      | 2‡(4)          | -                 | -   | -     | -   | -      | -   |                   | -   | -    | -     | -    | -      |                                            | -    | -               | 6               | -                | -                | -               |    |      |
|                    |                      | 2†(6)          | -                 | -   | -     | -   | -      | -   |                   | -   | -    | -     | -    | -      |                                            | -    | 4               | -               | -                | -                |                 |    |      |
|                    |                      | 2‡(7)          | -                 | -   | -     | -   | -      | -   |                   | -   | -    | -     | -    | -      |                                            | -    | -               | 6               | -                | -                | -               |    |      |
|                    |                      | 3†(4)          | -                 | -   | -     | -   | -      | -   |                   | -   | -    | -     | -    | -      |                                            | -    | -               | 4               | -                | -                | -               |    |      |
|                    |                      | 3‡(5)          | -                 | -   | -     | -   | -      | -   |                   | -   | -    | -     | -    | -      |                                            | -    | 6               | -               | -                | -                |                 |    |      |
|                    |                      | 3†(7)          | -                 | -   | -     | -   | -      | -   |                   | -   | -    | -     | -    | -      |                                            | -    | 6               | -               | -                | 4                |                 |    |      |
|                    |                      | 3‡(6)          | -                 | -   | -     | -   | -      | -   |                   | -   | -    | -     | -    | -      |                                            | -    | 6               | -               | -                | -                |                 |    |      |
| Saturation Voltage | V <sub>CE(sat)</sub> | 2§             | -                 | 200 | -     | 210 | -      | 280 | mVdc              | -   | 400  | -     | 300  | -      | 350                                        | mVdc | -               | 1               | -                | -                | -               | 14 | 7    |
|                    |                      | 2* #           | -                 | -   | -     | -   | -      | -   |                   | -   | -    | -     | -    | -      |                                            | -    | 4, 6            | -               | -                | -                |                 |    |      |
|                    |                      | 2*§            | -                 | -   | -     | -   | -      | -   |                   | -   | -    | -     | -    | -      |                                            | -    | 4               | -               | -                | -                |                 |    |      |
|                    |                      | 2*§            | -                 | -   | -     | -   | -      | -   |                   | -   | -    | -     | -    | -      |                                            | -    | -               | 6               | -                | -                | 4, 6            |    |      |
|                    |                      | 3* #           | -                 | -   | -     | -   | -      | -   |                   | -   | -    | -     | -    | -      |                                            | -    | 6               | -               | -                | 4                |                 |    |      |
|                    |                      | 3* #           | -                 | -   | -     | -   | -      | -   |                   | -   | -    | -     | -    | -      |                                            | -    | 4, 6            | -               | -                | 4, 6             |                 |    |      |
|                    |                      | 3*§            | -                 | -   | -     | -   | -      | -   |                   | -   | -    | -     | -    | -      |                                            | -    | 4, 6            | -               | -                | -                |                 |    |      |

Ground input pins of flip-flop not under test. Other pins not listed are left open.

§ Preset the flip-flop by the following procedure:

(1) Momentarily apply V<sub>BOT</sub> to pin 1 to preclear the flip-flop.(2) After V<sub>BOT</sub> is removed from pin 1, ground pins 4 and 6.

(3) Apply a negative-going clock pulse to pin 5 (see note \*) while pins 4 and 6 are still grounded. This changes the state of the flip-flop to the SET condition.

(4) Remove the grounds from pins 4 and 6 and proceed with the test.

\* Clock pulse to pin 5, see Figure 1.

# Pin 1 = HIGH, set by a momentary application of V<sub>BOT</sub> prior to the application of the negative-going clock.

† Clock pulse to pin 5, data pulse to pin 6.

‡ Clock pulse to pin 5, data pulse to pin 4.

④ = See Figure 4.

⑤ = See Figure 5.

⑥ = See Figure 6.

⑦ = See Figure 7.

## MC991, MC891 (continued)

**FIGURE 1 – CLOCK PULSE DEFINITION**



**SEQUENCE OF EVENTS**

- Voltage applied to Clock pin is raised to  $V_{H}$ .  $t_f$  is not critical but should be  $< 1.0 \mu s$ .
- Biases of all other inputs are applied.  $V_{CC}$  is applied without interruption throughout the testing.
- Apply momentary ground (when applicable).
- Clock pulse is allowed to fall to  $V_L$ .  $t_f$  must remain within 10 ns minimum and 200 ns maximum.
- Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

**FIGURE 2 – TOGGLE MODE TEST CIRCUIT**



| MC991  |                              |                              |
|--------|------------------------------|------------------------------|
| $T_A$  | $V_L$                        | $V_H$                        |
| +25°C  | +0.565 V $\pm 10 \text{ mV}$ | +0.844 V $\pm 10 \text{ mV}$ |
| -55°C  | +0.710 V $\pm 10 \text{ mV}$ | +1.014 V $\pm 10 \text{ mV}$ |
| +125°C | +0.320 V $\pm 10 \text{ mV}$ | +0.674 V $\pm 10 \text{ mV}$ |

| MC891  |                              |                              |
|--------|------------------------------|------------------------------|
| $T_A$  | $V_L$                        | $V_H$                        |
| +25°C  | +0.554 V $\pm 10 \text{ mV}$ | +1.430 V $\pm 10 \text{ mV}$ |
| 0°C    | +0.574 V $\pm 10 \text{ mV}$ | +1.310 V $\pm 10 \text{ mV}$ |
| +100°C | +0.370 V $\pm 10 \text{ mV}$ | +1.190 V $\pm 10 \text{ mV}$ |

## SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

**FIGURE 3 – SWITCHING TIMES TEST CIRCUIT**



**FIGURE 3A – CLOCK-TO-OUTPUT PROPAGATION DELAY TIME**



**FIGURE 3B – DIRECT CLEAR PROPAGATION DELAY TIME**



## TEST WAVEFORMS FOR $V_{out}$ TESTS

**FIGURE 4**



**FIGURE 5**



**FIGURE 6**



**FIGURE 7**



## MC905 • MC805

Available in TO-99 metal can, add "G" suffix.

Available in TO-91 flat package, add "F" suffix.

This half-shift register is a bistable storage element with a built-in inverter for the gating signal. Information coming in on pins a and c will be transferred to pins g and e when the gating signal, pin b, goes low. If all three inputs, a, b, and c, are low, the outputs, g and e, will both be low.



| SCHEMATIC         | a | b | c | d | e | f | g | h  |
|-------------------|---|---|---|---|---|---|---|----|
| G PACKAGE (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  |
| F PACKAGE (TO-91) | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 |

### SWITCHING TIME TEST CIRCUITS AND WAVEFORMS



MC905, MC805 (continued)

ELECTRICAL CHARACTERISTICS

|       | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC905 | -55°C             | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C            | 0.674                       | 0.674           | 1.50             | 0.320            | 3.00            |  |
|       | 0°C               | 0.909                       | 0.899           | 1.50             | 0.574            | 3.00            |  |
| MC805 | +25°C             | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C            | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic     | Symbol                                                                                      | Pin Under Test               | MC905 Test Limits                    |                         |                                      |                         |                                      |                       | MC805 Test Limits |                                      |                       |                                      |                       |                                      | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                       |                       |                                    |                  |                  | Gnd                                   |                                 |
|--------------------|---------------------------------------------------------------------------------------------|------------------------------|--------------------------------------|-------------------------|--------------------------------------|-------------------------|--------------------------------------|-----------------------|-------------------|--------------------------------------|-----------------------|--------------------------------------|-----------------------|--------------------------------------|--------------------------------------------|-----------------------|-----------------------|------------------------------------|------------------|------------------|---------------------------------------|---------------------------------|
|                    |                                                                                             |                              | -55°C                                |                         | +25°C                                |                         | +125°C                               |                       | Unit              | 0°C                                  |                       | +25°C                                |                       | +100°C                               |                                            | Unit                  | V <sub>in</sub>       | V <sub>on</sub>                    | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub>                       |                                 |
|                    |                                                                                             |                              | Min                                  | Max                     | Min                                  | Max                     | Min                                  | Max                   |                   | Min                                  | Max                   | Min                                  | Max                   | Min                                  | Max                                        |                       | Min                   | Max                                |                  |                  |                                       |                                 |
| Input Current      | I <sub>in</sub><br>3 I <sub>in</sub><br>I <sub>in</sub>                                     | a<br>b<br>c                  | -<br>-<br>-                          | 495<br>1480<br>495      | -<br>-<br>-                          | 435<br>1300<br>435      | -<br>-<br>-                          | 470<br>1410<br>470    | μAdc              | -<br>-<br>-                          | 504<br>1510<br>504    | -<br>-<br>-                          | 450<br>1350<br>450    | -<br>-<br>-                          | 450<br>1350<br>450                         | μAdc                  | a<br>b<br>c           | -<br>-<br>-                        | b<br>a, c<br>b   | -<br>-           | h                                     | d                               |
| Output Current     | I <sub>A4</sub><br>I <sub>A4</sub><br>I <sub>A5</sub><br>I <sub>A4</sub><br>I <sub>A4</sub> | e<br>e<br>f<br>g<br>g        | 1.98<br>1.98<br>2.47<br>1.98<br>1.98 | -<br>-<br>-<br>-<br>-   | 2.19<br>2.19<br>2.54<br>2.19<br>2.19 | -<br>-<br>-<br>-<br>-   | 1.88<br>1.88<br>2.35<br>1.88<br>1.88 | -<br>-<br>-<br>-<br>- | mAdc              | 2.02<br>2.02<br>2.52<br>2.02<br>2.02 | -<br>-<br>-<br>-<br>- | 2.05<br>2.05<br>2.38<br>2.05<br>2.05 | -<br>-<br>-<br>-<br>- | 1.80<br>1.80<br>2.25<br>1.80<br>1.80 | -<br>-<br>-<br>-<br>-                      | mAdc                  | -<br>-<br>-<br>-<br>- | b, e<br>c, e<br>f<br>b, g<br>a, g  | -<br>-<br>-<br>- | -<br>-           | h                                     | d, g †<br>d<br>d<br>d, e †<br>d |
| Output Voltage     | V <sub>out</sub>                                                                            | e<br>f<br>g                  | -<br>-<br>-                          | 710<br>-<br>-           | -<br>-<br>-                          | 300<br>-<br>-           | -<br>-<br>-                          | 320<br>-<br>-         | mVdc              | -<br>-<br>-                          | 574<br>-<br>-         | -<br>-<br>-                          | 400<br>-<br>-         | -<br>-<br>-                          | 370<br>-<br>-                              | mVdc                  | -<br>-<br>-           | g<br>b<br>a, b                     | b, c<br>-<br>-   | h                | d                                     |                                 |
| Saturation Voltage | V <sub>CE(sat)</sub>                                                                        | e<br>e<br>f<br>g<br>g        | -<br>-<br>-<br>-<br>-                | 200<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-                | 210<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-                | 280<br>-<br>-         | mVdc              | -<br>-<br>-                          | 290<br>-<br>-         | -<br>-<br>-                          | 260<br>-<br>-         | -<br>-<br>-                          | 340<br>-<br>-                              | mVdc                  | -<br>-<br>-           | a, b, c<br>b, c<br>a, b, c<br>a, b | -<br>-<br>-      | h                | d, e †<br>d, g<br>d<br>d, g †<br>d, e |                                 |
| Switching Time     | t                                                                                           | a+g+<br>a-g-<br>b-f-<br>b-f+ | -<br>-<br>-<br>-                     | -<br>-<br>-<br>-        | -<br>-<br>-<br>-                     | 40<br>40<br>28<br>24    | -<br>-<br>-<br>-                     | -<br>-<br>-<br>-      | ns                | -<br>-<br>-                          | -<br>-<br>-           | -<br>-<br>-                          | -<br>-<br>-           | -<br>-<br>-                          | ns                                         | Pulse In<br>Pulse Out | a<br>a<br>b<br>b      | g<br>g<br>f<br>f                   | -<br>-<br>-      | h                | d, e<br>d, e<br>d<br>d                |                                 |

† Silicon Diode to Ground

Pins not listed are left open.

### TYPICAL CURVES



## MC906 • MC806

Available in TO-99 Metal Can, Add "G" Suffix.

Available in TO-91 Flat Package, Add "F" Suffix.

This half-shift register is a bistable storage element. Information coming in on pins a and c will be transferred to pins g and e when the gating signal, pin b, goes low. If all three inputs, a, b, and c, are low, the outputs, g and e, will both be low.



| PIN CONNECTIONS   |   |   |   |   |   |   |   |    |  |
|-------------------|---|---|---|---|---|---|---|----|--|
| SCHEMATIC         | a | b | c | d | e | - | g | h  |  |
| G PACKAGE (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  |  |
| F PACKAGE (TO-91) | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 |  |

### SWITCHING TIME TEST CIRCUIT AND WAVEFORM



## ELECTRICAL CHARACTERISTICS

| Characteristic     | Symbol                                                  | Pin Under Test   | MC906 Test Limits   |                     |                  |                    |                  |                   | MC806 Test Limits |             |                    |             |                   |             | TEST VOLTAGE VALUES (Volts) |                       |                              |                                      |                  | Gnd                       |              |                                  |
|--------------------|---------------------------------------------------------|------------------|---------------------|---------------------|------------------|--------------------|------------------|-------------------|-------------------|-------------|--------------------|-------------|-------------------|-------------|-----------------------------|-----------------------|------------------------------|--------------------------------------|------------------|---------------------------|--------------|----------------------------------|
|                    |                                                         |                  | -55°C               |                     | +25°C            |                    | +125°C           |                   | Unit              | 0°C         |                    | +25°C       |                   | +100°C      |                             | V <sub>in</sub>       | V <sub>on</sub>              | V <sub>BOT</sub>                     | V <sub>off</sub> | V <sub>CC</sub>           |              |                                  |
|                    |                                                         |                  | Min                 | Max                 | Min              | Max                | Min              | Max               |                   | Min         | Max                | Min         | Max               | Min         | Max                         |                       |                              |                                      |                  |                           |              |                                  |
| Input Current      | I <sub>in</sub><br>2 I <sub>in</sub><br>I <sub>in</sub> | a<br>b<br>c      | -<br>-<br>-         | 495<br>990<br>495   | -<br>-<br>-      | 435<br>870<br>435  | -<br>-<br>-      | 470<br>940<br>470 | μAdc<br>↓         | -<br>-<br>- | 504<br>1010<br>504 | -<br>-<br>- | 450<br>900<br>450 | -<br>-<br>- | 450<br>900<br>450           | μAdc<br>↓             | a<br>b<br>c                  | -<br>-<br>-                          | b<br>a, c<br>b   | -<br>-<br>-               | h<br>↓       | d<br>↓                           |
| Output Current     | I <sub>A4</sub>                                         | e<br>e<br>g<br>g | 1.98<br>-<br>-<br>- | -<br>2.19<br>-<br>- | -<br>-           | 1.88<br>-<br>-     | -<br>-           | mAdc<br>↓         | 2.02<br>-<br>-    | -<br>-      | 2.05<br>-<br>-     | -<br>-      | 1.80<br>-<br>-    | -<br>-      | mAdc<br>↓                   | -<br>-<br>-<br>-      | b, e<br>c, e<br>b, g<br>a, g | -<br>-<br>-<br>-                     | -<br>-<br>-<br>- | -<br>-<br>-<br>-          | h<br>↓       | d, g †<br>d<br>d, e †<br>d       |
| Output Voltage     | V <sub>out</sub>                                        | e<br>g           | -<br>-              | 710<br>710          | -<br>-           | 300<br>300         | -<br>-           | mVdc<br>mVdc      | -<br>-            | 574<br>574  | -<br>-             | 400<br>400  | -<br>-            | 370<br>370  | -<br>-                      | mVdc<br>mVdc          | -<br>-                       | g<br>e                               | b, c<br>a, b     | -<br>-                    | h<br>h       | d<br>d                           |
| Saturation Voltage | V <sub>CE(sat)</sub>                                    | e<br>e<br>g<br>g | -<br>-<br>-<br>-    | 200<br>-<br>-<br>-  | -<br>-<br>-<br>- | 210<br>-<br>-<br>- | -<br>-<br>-<br>- | mVdc<br>↓         | -<br>-            | 290<br>-    | -<br>-             | 260<br>-    | -<br>-            | 340<br>-    | -<br>-                      | mVdc<br>↓             | -<br>-<br>-<br>-             | a, b, c<br>-<br>a, b, c<br>-<br>a, b | -<br>-<br>-<br>- | a, b, c<br>b, c<br>-<br>- | h<br>↓       | d, e †<br>d, g<br>d, g †<br>d, e |
| Switching Time     | t                                                       | a+g+<br>a-g-     | -<br>-              | -<br>-              | -<br>-           | 40<br>40           | -<br>-           | ns<br>ns          | -<br>-            | -<br>-      | -<br>-             | 40<br>40    | -<br>-            | ns<br>ns    | -<br>-                      | Pulse In<br>Pulse Out | g<br>g                       | -<br>-                               | -<br>-           | h<br>h                    | d, e<br>d, e |                                  |

† Silicon Diode to Ground

Pins not listed are left open.

## DUAL HALF-SHIFT REGISTERS

## MC983 • MC883

Available in TO-86 flat package, add "F" suffix.

Two half-shift registers in a single package, each having a built-in inverter for the gating signal. For example, information coming in on pins 4 and 6 will be transferred to pins 3 and 1 when the gating signal, pin 5, goes low. If all three inputs, 4, 5, and 6, are low, the outputs, 1 and 3, will both be low.



$$\begin{aligned} 1 &= \bar{3}(6+5) \\ 3 &= \bar{1}(5+4) \\ 2 &= 5 \end{aligned}$$

$t_{pd} = 22 \text{ ns typ}$   
 $P_d = 110 \text{ mW typ}$

NUMBER IN PARENTHESIS INDICATES  
 MRTL LOADING FACTOR.



TYPICAL RESISTANCE  
 VALUES  
 $R_1 = 450 \Omega$   
 $R_2 = 640 \Omega$   
 $R_3 = 800 \Omega$

## SWITCHING TIMES TEST CIRCUITS AND WAVEFORMS



## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one half-shift register only.  
The other half-shift register is tested in the same manner.

|       | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC983 | -55°C             | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C            | 0.674                       | 0.674           | 1.50             | 0.320            | 3.00            |  |
| MC883 | 0°C               | 0.909                       | 0.909           | 1.50             | 0.574            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C            | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic     | Symbol                                                                                      | Pin Under Test               | MC983 Test Limits                    |     |                                      |     |                                      |     | MC883 Test Limits |                                      |     |                                      |     |                                      | Grd |      |                               |
|--------------------|---------------------------------------------------------------------------------------------|------------------------------|--------------------------------------|-----|--------------------------------------|-----|--------------------------------------|-----|-------------------|--------------------------------------|-----|--------------------------------------|-----|--------------------------------------|-----|------|-------------------------------|
|                    |                                                                                             |                              | -55°C                                |     | +25°C                                |     | +125°C                               |     | Unit              | 0°C                                  |     | +25°C                                |     | +100°C                               |     |      |                               |
|                    |                                                                                             |                              | Min                                  | Max | Min                                  | Max | Min                                  | Max |                   | Min                                  | Max | Min                                  | Max | Min                                  | Max |      |                               |
| Input Current      | I <sub>in</sub><br>3I <sub>in</sub><br>I <sub>in</sub>                                      | 4<br>5<br>6                  | -                                    | 495 | -                                    | 435 | -                                    | 470 | μAdc              | -                                    | 504 | -                                    | 450 | -                                    | 450 | μAdc | 4<br>5<br>6                   |
| Output Current     | I <sub>A4</sub><br>I <sub>A4</sub><br>I <sub>A5</sub><br>I <sub>A4</sub><br>I <sub>A4</sub> | 1<br>1<br>2<br>3<br>3        | 1.98<br>1.98<br>2.47<br>1.98<br>1.98 | -   | 2.19<br>2.19<br>2.54<br>2.19<br>2.19 | -   | 1.88<br>1.88<br>2.35<br>1.88<br>1.88 | -   | mAdc              | 2.02<br>2.02<br>2.52<br>2.02<br>2.02 | -   | 2.05<br>2.05<br>2.38<br>2.05<br>2.05 | -   | 1.80<br>1.80<br>2.25<br>1.80<br>1.80 | -   | mAdc | -<br>-<br>-<br>-<br>-         |
| Output Voltage     | V <sub>out</sub>                                                                            | 1<br>2<br>3                  | -                                    | 710 | -                                    | 300 | -                                    | 320 | mVdc              | -                                    | 574 | -                                    | 400 | -                                    | 370 | mVdc | -<br>-<br>-<br>1<br>4, 5      |
| Saturation Voltage | V <sub>CE(sat)</sub>                                                                        | 1<br>1<br>2<br>3<br>3        | -                                    | 200 | -                                    | 210 | -                                    | 280 | mVdc              | -                                    | 290 | -                                    | 260 | -                                    | 340 | mVdc | -<br>-<br>-<br>-<br>-         |
| Switching Time     | t                                                                                           | 4+3+<br>4-3-<br>5+2+<br>5-2+ | -                                    | -   | -                                    | 40  | -                                    | -   | ns                | -                                    | -   | -                                    | 40  | -                                    | -   | ns   | Pulse In<br>4<br>4<br>5<br>5  |
|                    |                                                                                             |                              |                                      |     |                                      |     |                                      |     |                   |                                      |     |                                      |     |                                      |     |      | Pulse Out<br>3<br>3<br>2<br>2 |
|                    |                                                                                             |                              |                                      |     |                                      |     |                                      |     |                   |                                      |     |                                      |     |                                      |     |      | -<br>-<br>-<br>-              |
|                    |                                                                                             |                              |                                      |     |                                      |     |                                      |     |                   |                                      |     |                                      |     |                                      |     |      | 14<br>14<br>14<br>14          |
|                    |                                                                                             |                              |                                      |     |                                      |     |                                      |     |                   |                                      |     |                                      |     |                                      |     |      | 1, 7<br>1, 7<br>1, 7<br>1, 7  |

Ground input pins of half-shift register not under test. Other pins not listed are left open. \*Momentary ground.

## MC984 • MC884

Available in TO-86 flat package, add "F" suffix.

This bistable storage element consists of two half-shift registers in a single package. For example, information coming in on pins 4 and 6 will be transferred to pins 3 and 1 when the gating signal, pin 5, goes low. If all three inputs, 4, 5, and 6, are low, the outputs, 3 and 1, will both be low.



### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



## ELECTRICAL CHARACTERISTICS

Test procedures shown are for one half-shift register only.  
The other half-shift register is tested in the same manner.

|                      |        | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |
|----------------------|--------|--------------------------------|-----------------|------------------|------------------|-----------------|
| @Test<br>Temperature |        | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |
| MC984                | -55°C  | 1.014                          | 1.014           | 1.50             | 0.710            | 3.00            |
|                      | +25°C  | 0.844                          | 0.815           | 1.50             | 0.565            | 3.00            |
|                      | +125°C | 0.674                          | 0.674           | 1.50             | 0.320            | 3.00            |
| MC884                | 0°C    | 0.909                          | 0.909           | 1.50             | 0.574            | 3.00            |
|                      | +25°C  | 0.844                          | 0.844           | 1.50             | 0.554            | 3.00            |
|                      | +100°C | 0.710                          | 0.710           | 1.50             | 0.370            | 3.00            |

| Characteristic     | Symbol            | Pin Under Test | MC984 |     |       |     | Test Limits |     |       |      | MC884 |       |     |        | Test Limits |       |                 |                 | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                  |                 |       |       | Grd |
|--------------------|-------------------|----------------|-------|-----|-------|-----|-------------|-----|-------|------|-------|-------|-----|--------|-------------|-------|-----------------|-----------------|--------------------------------------------|------------------|-----------------|-------|-------|-----|
|                    |                   |                | -55°C |     | +25°C |     | +125°C      |     | Unit  | 0°C  |       | +25°C |     | +100°C |             | Unit  | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub>                           | V <sub>off</sub> | V <sub>CC</sub> |       |       |     |
|                    |                   |                | Min   | Max | Min   | Max | Min         | Max |       | Min  | Max   | Min   | Max | Min    | Max         |       | Min             | Max             | Min                                        | Max              | Min             | Max   |       |     |
| Input Current      | 1 <sub>in</sub>   | 4              | -     | 495 | -     | 435 | -           | 470 | μA/dc | -    | 504   | -     | 450 | -      | 450         | μA/dc | 4               | -               | 5                                          | -                | 14              | 7     | ↓     |     |
|                    | 2 <sub>1</sub> in | 5              | -     | 990 | -     | 870 | -           | 940 | ↓     | -    | 1008  | -     | 900 | -      | 900         | ↓     | 5               | -               | 4, 6                                       | 5                | 6               | 7     |       |     |
|                    | 1 <sub>in</sub>   | 6              | -     | 495 | -     | 435 | -           | 470 | ↓     | -    | 504   | -     | 450 | -      | 450         | ↓     | 6               | -               | -                                          | -                | -               | -     |       |     |
| Output Current     | 1 <sub>A4</sub>   | 1              | 1.98  | -   | 2.19  | -   | 1.88        | -   | mAdc  | 2.02 | -     | 2.05  | -   | 1.80   | -           | mAdc  | -               | 1, 5            | -                                          | -                | -               | 14    | 3*, 7 |     |
|                    |                   | 1              | ↓     | -   | -     | -   | ↓           | -   | ↓     | -    | ↓     | -     | ↓   | -      | ↓           | ↓     | -               | 1, 6            | -                                          | -                | -               | -     | 7     | ↓   |
|                    |                   | 3              | -     | -   | -     | -   | ↓           | -   | ↓     | -    | ↓     | -     | ↓   | -      | ↓           | ↓     | -               | 3, 5            | -                                          | -                | -               | -     | 1*, 7 |     |
|                    |                   | 3              | -     | -   | -     | -   | ↓           | -   | ↓     | -    | ↓     | -     | ↓   | -      | ↓           | ↓     | -               | 3, 4            | -                                          | -                | -               | -     | 7     |     |
| Output Voltage     | V <sub>out</sub>  | 1              | -     | 710 | -     | 300 | -           | 320 | mVdc  | -    | 574   | -     | 400 | -      | 370         | mVdc  | -               | 3               | 5, 6                                       | -                | 14              | 7     | ↓     |     |
|                    |                   | 3              | -     | 710 | -     | 300 | -           | 320 | mVdc  | -    | 574   | -     | 400 | -      | 370         | mVdc  | -               | 1               | 4, 5                                       | 14               | 7               | 7     |       |     |
| Saturation Voltage | V <sub>CE</sub>   | 1              | -     | 200 | -     | 210 | -           | 280 | mVdc  | -    | 290   | -     | 260 | -      | 340         | mVdc  | -               | -               | 4, 5, 6                                    | -                | 14              | 1*, 7 | ↓     |     |
|                    |                   | 1              | ↓     | -   | -     | ↓   | -           | ↓   | ↓     | -    | -     | ↓     | -   | ↓      | ↓           | ↓     | -               | -               | 5, 6                                       | 1                | 3, 7            | 3*, 7 |       |     |
|                    |                   | 3              | ↓     | -   | -     | ↓   | -           | ↓   | ↓     | -    | -     | ↓     | -   | ↓      | ↓           | ↓     | -               | -               | 4, 5, 6                                    | 4, 5             | 3*              | 1, 7  |       |     |
|                    |                   | 3              | ↓     | -   | -     | ↓   | -           | ↓   | ↓     | -    | -     | ↓     | -   | ↓      | ↓           | ↓     | -               | -               | 4, 5                                       | 4, 5             | 1               | 7     |       |     |
| Switching Time     | t                 | 4+3+           | -     | -   | -     | 40  | -           | -   | ns    | -    | -     | -     | 40  | -      | -           | ns    | Pulse In        | Pulse Out       | -                                          | -                | 14              | 1, 7  | ↓     |     |
|                    |                   | 4-3-           | -     | -   | -     | 40  | -           | -   | ns    | -    | -     | -     | 40  | -      | -           | ns    | 4               | 3               | -                                          | -                | 14              | 1, 7  |       |     |
|                    |                   |                |       |     |       |     |             |     |       |      |       |       |     |        |             |       | 4               | 3               | -                                          | -                | 14              | 1, 7  |       |     |

Ground input pins of half-shift register not under test. Other pins not listed are left open. \*Momentary ground.

## MC904 • MC804

Available in TO-99 metal can, add "G" suffix.  
Available in TO-91 flat package, add "F" suffix.

This half-adder device can be used to supply the SUM and CARRY operations on two input signals. If the inputs are applied to pins a and b, and their complements to pins c and e, the SUM of the inputs appears on pin g while the CARRY appears on pin f.



PIN CONNECTIONS

| SCHEMATIC         | a | b | c | d | e | f | g | h  |
|-------------------|---|---|---|---|---|---|---|----|
| G PACKAGE (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  |
| F PACKAGE (TO-91) | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 |

TYPICAL RESISTANCE VALUES  
 $R_1 = 450\Omega$   
 $R_2 = 640\Omega$   
 $R_3 = 800\Omega$



SWITCHING TIME TEST CIRCUITS AND WAVEFORMS



## ELECTRICAL CHARACTERISTICS

|       | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC904 | { -55°C           | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C            | 0.674                       | 0.674           | 1.50             | 0.320            | 3.00            |  |
| MC804 | { 0°C             | 0.909                       | 0.909           | 1.50             | 0.574            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C            | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic     | Symbol                                                | Pin Under Test               | MC904 Test Limits |     |       |     |        |     | MC804 Test Limits |      |     |       |     |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                              |                                          |                  | Gnd                            |                 |   |
|--------------------|-------------------------------------------------------|------------------------------|-------------------|-----|-------|-----|--------|-----|-------------------|------|-----|-------|-----|--------|--------------------------------------------|------|------------------------------|------------------------------------------|------------------|--------------------------------|-----------------|---|
|                    |                                                       |                              | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C  |     | +25°C |     | +100°C |                                            | Unit | V <sub>in</sub>              | V <sub>on</sub>                          | V <sub>BOT</sub> | V <sub>off</sub>               | V <sub>CC</sub> |   |
|                    |                                                       |                              | Min               | Max | Min   | Max | Min    | Max |                   | Min  | Max | Min   | Max | Min    | Max                                        |      | Min                          | Max                                      | Min              | Max                            |                 |   |
| Input Current      | I <sub>in</sub>                                       | a<br>b<br>c<br>e             | -                 | 495 | -     | 435 | -      | 470 | μAdc              | -    | 504 | -     | 450 | -      | 450                                        | μAdc | a<br>b<br>c<br>e             | -                                        | b<br>a<br>e<br>c | -                              | h               | d |
| Output Current     | I <sub>A4</sub><br>I <sub>A5</sub><br>I <sub>A5</sub> | f<br>g<br>g                  | 1.98              | -   | 2.19  | -   | 1.88   | -   | mAdc              | 2.02 | -   | 2.05  | -   | 1.80   | -                                          | mAdc | -                            | f<br>a, c, g<br>b, e, g                  | -                | c, e<br>-                      | h               | d |
| Output Voltage     | V <sub>out</sub>                                      | f<br>f<br>g                  | -                 | 710 | -     | 300 | -      | 320 | mVdc              | -    | 574 | -     | 400 | -      | 370                                        | mVdc | -                            | c<br>e<br>f<br>a, b                      | -                | -                              | h               | d |
| Saturation Voltage | V <sub>CE(sat)</sub>                                  | f<br>f<br>g<br>g             | -                 | 200 | -     | 210 | -      | 280 | mVdc              | -    | 290 | -     | 260 | -      | 340                                        | mVdc | -                            | -<br>-<br>-<br>-<br>a, b<br>c, e<br>a, b | -                | c<br>e<br>a, b<br>c, e<br>a, b | h               | d |
| Switching Time     | t                                                     | a+g+<br>a-g-<br>c-f-<br>c-f+ | -                 | -   | -     | 36  | -      | -   | ns                | -    | -   | -     | 36  | -      | -                                          | ns   | Pulse In<br>a<br>a<br>c<br>c | Pulse Out<br>g<br>g<br>f<br>f            | -                | -                              | h               | d |

Pins not listed are left open.

**MC975 • MC875**

Available in TO-86 flat package, add "F" suffix.

A dual half-adder device contained in a single package. Each can be used to supply the SUM and CARRY operations on two input signals. For example, if the inputs are applied to pins 3 and 4, and their complements to pins 5 and 6, the SUM of the inputs appears on pin 2 while the CARRY appears on pin 1.



$$2 = (3 + 4)(5 + 6)$$

$$1 = \overline{5} + \overline{6}$$

$t_{pd} = 20 \text{ ns typ}$

$P_d = 90 \text{ mW typ}$

NUMBER IN PARENTHESIS INDICATES MRTL LOADING FACTOR.



## SWITCHING TIMES TEST CIRCUITS AND WAVEFORMS



**ELECTRICAL CHARACTERISTICS**

Test procedures are shown for one half-adder only.  
The other half-adder is tested in the same manner.

|       | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC975 | -55°C             | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C            | 0.674                       | 0.674           | 1.50             | 0.320            | 3.00            |  |
| MC875 | 0°C               | 0.909                       | 0.909           | 1.50             | 0.574            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C            | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic     | Symbol                                                | Pin Under Test               | MC975 Test Limits    |             |                      |                      |                      |             | MC875 Test Limits |                      |             |                      |                      |                      | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |            |                  |                         |                        | Grd              |                              |  |
|--------------------|-------------------------------------------------------|------------------------------|----------------------|-------------|----------------------|----------------------|----------------------|-------------|-------------------|----------------------|-------------|----------------------|----------------------|----------------------|--------------------------------------------|------------|------------------|-------------------------|------------------------|------------------|------------------------------|--|
|                    |                                                       |                              | -55°C                |             | +25°C                |                      | +125°C               |             | Unit              | 0°C                  |             | +25°C                |                      | +100°C               |                                            | Unit       | V <sub>in</sub>  | V <sub>on</sub>         | V <sub>BOT</sub>       | V <sub>off</sub> | V <sub>CC</sub>              |  |
|                    |                                                       |                              | Min                  | Max         | Min                  | Max                  | Min                  | Max         |                   | Min                  | Max         | Min                  | Max                  | Min                  | Max                                        |            | Min              | Max                     | Min                    | Max              |                              |  |
| Input Current      | I <sub>in</sub>                                       | 3<br>4<br>5<br>6             | -<br>-               | 495<br>-    | -<br>-               | 435<br>-             | -<br>-               | 470<br>-    | μA/dc<br>↓        | -<br>-               | 504<br>-    | -<br>-               | 450<br>-             | -<br>-               | 450<br>-                                   | μA/dc<br>↓ | 3<br>4<br>5<br>6 | -<br>-                  | 4<br>3<br>6<br>5       | -<br>-           | 14<br>7<br>↓                 |  |
| Output Current     | I <sub>A4</sub><br>I <sub>A5</sub><br>I <sub>A5</sub> | 1<br>2<br>2                  | 1.98<br>2.47<br>2.47 | -<br>-<br>- | 2.19<br>2.54<br>2.54 | -<br>-<br>-          | 1.88<br>2.35<br>2.35 | -<br>-<br>- | mAdc<br>↓         | 2.02<br>2.52<br>2.52 | -<br>-<br>- | 2.05<br>2.38<br>2.38 | -<br>-<br>-          | 1.80<br>2.25<br>2.25 | -<br>-<br>-                                | mAdc<br>↓  | -<br>-<br>-      | 1<br>2, 3, 5<br>2, 4, 6 | -<br>-<br>-            | 5, 6<br>-<br>-   | 14<br>7<br>↓                 |  |
| Output Voltage     | V <sub>out</sub>                                      | 1<br>1<br>2                  | -<br>-               | 710<br>-    | -<br>-               | 300<br>-             | -<br>-               | 320<br>-    | mVdc<br>↓         | -<br>-               | 574<br>-    | -<br>-               | 400<br>-             | -<br>-               | 370<br>-                                   | mVdc<br>↓  | -<br>-           | 5<br>6<br>1             | -<br>-<br>3, 4         | -<br>-<br>-      | 14<br>7<br>↓                 |  |
| Saturation Voltage | V <sub>CE(sat)</sub>                                  | 1<br>1<br>2<br>2             | -<br>-               | 200<br>-    | -<br>-               | 210<br>-             | -<br>-               | 280<br>-    | mVdc<br>↓         | -<br>-               | 290<br>-    | -<br>-               | 260<br>-             | -<br>-               | 340<br>-                                   | mVdc<br>↓  | -<br>-           | 5<br>6<br>3, 4<br>5, 6  | -<br>-<br>5, 6<br>3, 4 | -<br>-<br>-<br>- | 14<br>7<br>↓                 |  |
| Switching Time     | t                                                     | 6+1-<br>6-1+<br>4+2+<br>4-2- | -<br>-               | -<br>-      | -<br>-               | 20<br>30<br>36<br>36 | -<br>-               | -<br>-      | ns<br>↓           | -<br>-               | -<br>-      | -<br>-               | 20<br>30<br>36<br>36 | -<br>-               | -<br>-                                     | ns<br>↓    | 6<br>6<br>4<br>4 | 1<br>1<br>2<br>2        | -<br>-<br>-<br>-       | -<br>-<br>-<br>- | 14<br>7<br>7<br>1, 7<br>1, 7 |  |

Ground input pins of half-adder not under test. Other pins not listed are left open.

**MC996 • MC896**

Available in TO-86 flat package, add "F" suffix.

Provides the SUM and CARRY functions while requiring only AUGEND (A) and ADDEND (B) inputs with CARRY IN.



TRUTH TABLE

| INPUT LOGIC LEVEL |   |                | OUTPUT LOGIC LEVEL |                |
|-------------------|---|----------------|--------------------|----------------|
| A                 | B | C <sub>i</sub> | S                  | C <sub>o</sub> |
| 0                 | 0 | 0              | 0                  | 0              |
| 0                 | 0 | 1              | 1                  | 0              |
| 0                 | 1 | 0              | 1                  | 0              |
| 0                 | 1 | 1              | 0                  | 1              |
| 1                 | 0 | 0              | 1                  | 0              |
| 1                 | 0 | 1              | 0                  | 1              |
| 1                 | 1 | 0              | 0                  | 1              |
| 1                 | 1 | 1              | 1                  | 1              |

## POSITIVE LOGIC

$$\begin{aligned} C_o &= ABC_i + AB\bar{C}_i + \bar{A}BC_i + \bar{A}\bar{B}C_i \\ S &= ABC_i + \bar{A}BC_i + \bar{A}\bar{B}C_i + \bar{A}\bar{B}\bar{C}_i \end{aligned}$$

 $t_{pd} = 60 \text{ ns typ}$  $P_d = 70 \text{ mW typ}$ 

NUMBER IN PARENTHESIS INDICATES MRTL LOADING FACTOR

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one adder.  
The other adder is tested in the same manner.

|       |        | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |
|-------|--------|--------------------------------|-----------------|------------------|------------------|-----------------|
|       |        | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |
| MC996 | -55°C  | 1.014                          | 1.014           | 1.50             | 0.710            | 3.00            |
|       | +25°C  | 0.844                          | 0.815           | 1.50             | 0.565            | 3.00            |
|       | +125°C | 0.674                          | 0.674           | 1.50             | 0.320            | 3.00            |
| MC896 | 0°C    | 0.909                          | 0.909           | 1.50             | 0.574            | 3.00            |
|       | +25°C  | 0.844                          | 0.844           | 1.50             | 0.554            | 3.00            |
|       | +100°C | 0.710                          | 0.710           | 1.50             | 0.370            | 3.00            |

| Characteristic | Symbol           | Pin Under Test                                                                               | MC996 Test Limits |      |       |      |        |      | MC896 Test Limits |      |      |       |      |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                                                                     |                                                                                         |                                                               | Gnd              |                 |                                                          |    |   |
|----------------|------------------|----------------------------------------------------------------------------------------------|-------------------|------|-------|------|--------|------|-------------------|------|------|-------|------|--------|--------------------------------------------|------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------|-----------------|----------------------------------------------------------|----|---|
|                |                  |                                                                                              | -55°C             |      | +25°C |      | +125°C |      | Unit              | 0°C  |      | +25°C |      | +100°C |                                            | Unit | V <sub>in</sub>                                                     | V <sub>on</sub>                                                                         | V <sub>BOT</sub>                                              | V <sub>off</sub> | V <sub>cc</sub> |                                                          |    |   |
|                |                  |                                                                                              | Min               | Max  | Min   | Max  | Min    | Max  |                   | Min  | Max  | Min   | Max  | Min    | Max                                        |      | Min                                                                 | Max                                                                                     | Min                                                           | Max              |                 |                                                          |    |   |
| Input Current  | 3I <sub>in</sub> | 2<br>3<br>5                                                                                  | -                 | 1485 | -     | 1305 | -      | 1410 | μAdc              | -    | 1512 | -     | 1350 | -      | 1350                                       | μAdc | 2<br>3<br>5                                                         | -                                                                                       | -                                                             | -                | 14              | 7                                                        |    |   |
| Output Current | I <sub>A4</sub>  | 1<br>↓<br>6<br>↓                                                                             | 1.98              | -    | 2.19  | -    | 1.88   | -    | mAdc              | 2.02 | -    | 2.05  | -    | 1.80   | -                                          | mAdc | -                                                                   | 1,2<br>-<br>1,3<br>-<br>1,5<br>-<br>1,2,3,5<br>2,3,6<br>2,5,6<br>3,5,6<br>2,3,5,6       | -                                                             | -                | -               | 3,5<br>2,5<br>2,3<br>-<br>-<br>5<br>3<br>2<br>-<br>2,3,5 | 14 | 7 |
| Output Voltage | V <sub>out</sub> | 1<br>↓<br>6<br>↓                                                                             | -                 | 710  | -     | 300  | -      | 320  | mVdc              | -    | 574  | -     | 400  | -      | 370                                        | mVdc | -                                                                   | -<br>2,3<br>-<br>3,5<br>-<br>2,5<br>-<br>2,3,5<br>2<br>-<br>3<br>-<br>5                 | -                                                             | -                | -               | 2,3,5<br>5<br>2<br>3<br>-<br>2,3,5<br>3,5<br>2,5<br>2,3  | 14 | 7 |
| Switching Time | t                | 5+1+<br>5-1-<br>5+6+<br>5-6-<br>3+1+<br>3-1-<br>3+6+<br>3-6-<br>2+1+<br>2-1+<br>2+6+<br>2-6- | -                 | -    | -     | 75   | -      | -    | ns                | -    | -    | -     | 75   | -      | -                                          | ns   | 5<br>75<br>85<br>65<br>75<br>75<br>85<br>65<br>70<br>80<br>70<br>80 | 2,3<br>2,3<br>2<br>6<br>2<br>6<br>3<br>2<br>2<br>6<br>1<br>2,5<br>5<br>1<br>1<br>6<br>6 | 1<br>1<br>2<br>6<br>1<br>1<br>1<br>2<br>6<br>1<br>1<br>6<br>6 | 14               | 7               |                                                          |    |   |

Ground input pins of adder not under test.  
Other pins not listed are left open.

## MC996, MC896 (continued)



SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



**MC997 • MC897**

Available in TO-86 flat package, add "F" suffix.

Provides the DIFFERENCE and BORROW functions while requiring only MINUEND (X) and SUBTRAHEND (Y) inputs with BORROW IN.



TRUTH TABLE

| INPUT LOGIC LEVEL |   |    | OUTPUT LOGIC LEVEL |    |
|-------------------|---|----|--------------------|----|
| X                 | Y | Bi | 0                  | Bo |
| 0                 | 0 | 0  | 0                  | 0  |
| 0                 | 0 | 1  | 1                  | 1  |
| 0                 | 1 | 0  | 1                  | 1  |
| 0                 | 1 | 1  | 0                  | 1  |
| 1                 | 0 | 0  | 1                  | 0  |
| 1                 | 0 | 1  | 0                  | 0  |
| 1                 | 1 | 0  | 0                  | 0  |
| 1                 | 1 | 1  | 1                  | 1  |

## POSITIVE LOGIC

$$0 = YXB_i + Y\bar{X}B_i + \bar{Y}XB_i + \bar{Y}\bar{X}B_i$$

$$Bo = \bar{Y}XB_i + Y\bar{X}B_i + \bar{Y}\bar{X}B_i + YXB_i$$

 $t_{pd} = 60 \text{ ns typ}$  $P_d = 70 \text{ mW typ}$ 

NUMBER IN PARENTHESIS INDICATES MRTL LOADING FACTOR

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one subtractor. The other subtractor is tested in the same manner.

|                      |        | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |
|----------------------|--------|--------------------------------|-----------------|------------------|------------------|-----------------|
| @Test<br>Temperature |        | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |
| MC997                | -55°C  | 1.014                          | 1.014           | 1.50             | 0.710            | 3.00            |
|                      | +25°C  | 0.844                          | 0.615           | 1.50             | 0.565            | 3.00            |
|                      | +125°C | 0.674                          | 0.674           | 1.50             | 0.320            | 3.00            |
| MC897                | 0°C    | 0.909                          | 0.909           | 1.50             | 0.574            | 3.00            |
|                      | +25°C  | 0.844                          | 0.844           | 1.50             | 0.554            | 3.00            |
|                      | +100°C | 0.710                          | 0.710           | 1.50             | 0.370            | 3.00            |

Ground input pins of subtractor not under test.  
Other pins not listed are left open.

## MC997, MC897 (continued)



SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



**MC901 • MC801**

Available in TO-99 metal can, add "G" suffix.

This device provides the true output at pin 7 and the complement output at pin 5 for an input applied to pin 1. A positive gating signal may be applied to pin 2 to inhibit both outputs. A positive signal applied to pin 3 will hold output pin 5 at near-ground potential. The output nodes are returned separately to the power supply so that the outputs might be paralleled with other circuits.

**SWITCHING TIME TEST CIRCUITS AND WAVEFORMS**

## ELECTRICAL CHARACTERISTICS

| @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |      |
|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|------|
|                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |      |
| MC901             | -55°C                       | 1.014           | 1.014            | 1.50             | 0.710           | 3.00 |
|                   | +25°C                       | 0.844           | 0.815            | 1.50             | 0.565           | 3.00 |
|                   | +125°C                      | 0.674           | 0.674            | 1.50             | 0.320           | 3.00 |
|                   | 0°C                         | 0.909           | 0.909            | 1.50             | 0.574           | 3.00 |
| MC801             | +25°C                       | 0.844           | 0.844            | 1.50             | 0.554           | 3.00 |
|                   | +100°C                      | 0.710           | 0.710            | 1.50             | 0.370           | 3.00 |

| Characteristic     | Symbol               | Pin Under Test | MC901 Test Limits |     |       |     |        |     | MC801 Test Limits |      |      |       |     |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |           |                 |                 |                  | Gnd              |                 |   |
|--------------------|----------------------|----------------|-------------------|-----|-------|-----|--------|-----|-------------------|------|------|-------|-----|--------|--------------------------------------------|-----------|-----------------|-----------------|------------------|------------------|-----------------|---|
|                    |                      |                | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C  |      | +25°C |     | +100°C |                                            | Unit      | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |   |
|                    |                      |                | Min               | Max | Min   | Max | Min    | Max |                   | Min  | Max  | Min   | Max | Min    | Max                                        |           | Min             | Max             | Min              | Max              |                 |   |
| Input Current      | 2 I <sub>in</sub>    | 1              | -                 | 990 | -     | 870 | -      | 940 | μAdc              | -    | 1010 | -     | 900 | -      | 900                                        | μAdc      | 1               | -               | 2                | -                | 6,8             | 4 |
|                    | 2 I <sub>in</sub>    | 2              | -                 | -   | -     | -   | -      | -   | ↓                 | -    | -    | -     | -   | -      | -                                          | ↓         | 2               | -               | 1                | -                | -               | ↓ |
|                    | 2 I <sub>in</sub>    | 2              | -                 | -   | -     | -   | -      | -   | ↓                 | -    | -    | -     | -   | -      | -                                          | ↓         | 2               | -               | -                | -                | -               | ↓ |
|                    | I <sub>in</sub>      | 3              | -                 | 495 | -     | 435 | -      | 470 | ↓                 | -    | 504  | -     | 450 | -      | 450                                        | ↓         | 3               | -               | 1                | -                | -               | ↓ |
| Output Current     | I <sub>A5</sub>      | 5              | 2.47              | -   | 2.54  | -   | 2.35   | -   | mAdc              | 2.52 | -    | 2.38  | -   | 2.25   | -                                          | mAdc      | -               | 5               | 1,3              | 6,8              | 4               | ↓ |
|                    |                      | 5              | -                 | -   | -     | -   | -      | -   | ↓                 | -    | -    | -     | -   | -      | -                                          | ↓         | -               | 2,5             | 1                | -                | -               | ↓ |
|                    |                      | 7              | -                 | -   | -     | -   | -      | -   | ↓                 | -    | -    | -     | -   | -      | -                                          | ↓         | -               | 1,7             | -                | -                | -               | ↓ |
|                    |                      | 7              | -                 | -   | -     | -   | -      | -   | ↓                 | -    | -    | -     | -   | -      | -                                          | ↓         | -               | 2,7             | -                | -                | -               | ↓ |
| Output Voltage     | V <sub>out</sub>     | 5              | -                 | 710 | -     | 300 | -      | 320 | mVdc              | -    | 574  | -     | 400 | -      | 370                                        | mVdc      | -               | 3               | 2                | -                | 6,8             | 4 |
| Saturation Voltage | V <sub>CE(sat)</sub> | 5              | -                 | 200 | -     | 210 | -      | 280 | mVdc              | -    | 290  | -     | 260 | -      | 340                                        | mVdc      | -               | 1               | -                | 2                | 6,8             | 4 |
|                    |                      | 5              | -                 | -   | -     | -   | -      | -   | ↓                 | -    | -    | -     | -   | -      | -                                          | ↓         | -               | 2,3             | -                | -                | -               | ↓ |
|                    |                      | 7              | -                 | -   | -     | -   | -      | -   | ↓                 | -    | -    | -     | -   | -      | -                                          | ↓         | -               | 1,2             | -                | -                | -               | ↓ |
| Switching Time     | t                    | 1+5-           | -                 | -   | -     | 42  | -      | -   | ns                | -    | -    | -     | -   | 42     | -                                          | Pulse In  | 1               | 5               | -                | -                | 6,8             | 4 |
|                    |                      | 1-5+           | -                 | -   | -     | 42  | -      | -   | ↓                 | -    | -    | -     | -   | 42     | -                                          | Pulse Out | -               | 5               | -                | -                | -               | ↓ |
|                    |                      | 1+7+           | -                 | -   | -     | 38  | -      | -   | ↓                 | -    | -    | -     | -   | 38     | -                                          | Pulse In  | -               | 7               | -                | -                | -               | ↓ |
|                    |                      | 1-7-           | -                 | -   | -     | 36  | -      | -   | ↓                 | -    | -    | -     | -   | 36     | -                                          | Pulse Out | -               | 7               | -                | -                | -               | ↓ |

Pins not listed are left open.

**MC927 • MC827**

Available in TO-100 Metal Can, Add "G" Suffix.

Available in TO-91 Flat Package, Add "F" Suffix.

Four individual circuits each perform the simple inversion function.

**SWITCHING TIME TEST CIRCUIT AND WAVEFORM**

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one inverter only.  
Other inverters are tested in the same manner.

|       | @ Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------|--------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                    | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC927 | -55°C              | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C              | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C             | 0.674                       | 0.674           | 1.50             | 0.320            | 3.00            |  |
| MC827 | 0°C                | 0.909                       | 0.909           | 1.50             | 0.574            | 3.00            |  |
|       | +25°C              | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C             | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic         | Symbol               | Pin Under Test | MC927 Test Limits |     |       |     |        |     | MC827 Test Limits |      |     |       |     |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  | Grd              |                 |    |   |
|------------------------|----------------------|----------------|-------------------|-----|-------|-----|--------|-----|-------------------|------|-----|-------|-----|--------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|----|---|
|                        |                      |                | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C  |     | +25°C |     | +100°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |    |   |
|                        |                      |                | Min               | Max | Min   | Max | Min    | Max |                   | Min  | Max | Min   | Max | Min    | Max                                        |      | Min             | Max             | Min              | Max              |                 |    |   |
| Input Current          | I <sub>in</sub>      | 1*             | -                 | 495 | -     | 435 | -      | 470 | μAdc              | -    | 504 | -     | 450 | -      | 450                                        | μAdc | 1               | -               | *                | -                | 10              | 5  |   |
| Output Current         | I <sub>A5</sub>      | 6              | 2.47              | -   | 2.54  | -   | 2.35   | -   | mAdc              | 2.52 | -   | 2.38  | -   | 2.25   | -                                          | mAdc | -               | 6               | -                | -                | 4               | 10 | 5 |
| Output Leakage Current | I <sub>CEX</sub>     | 6              | -                 | 100 | -     | 218 | -      | 235 | μAdc              | -    | 100 | -     | 225 | -      | 225                                        | μAdc | 6               | -               | -                | -                | 4               | -  | 5 |
| Output Voltage         | V <sub>out</sub>     | 6              | -                 | 710 | -     | 300 | -      | 320 | mVdc              | -    | 574 | -     | 400 | -      | 370                                        | mVdc | -               | 4               | 1, 2, 3          | -                | 10              | 5  |   |
| Saturation Voltage     | V <sub>CE(sat)</sub> | 6              | -                 | 200 | -     | 210 | -      | 280 | mVdc              | -    | 290 | -     | 260 | -      | 340                                        | mVdc | -               | -               | 1, 2, 3, 4       | -                | 10              | 5  |   |
| Switching Time         | t                    | 1+9-<br>1-9+   | -                 | -   | -     | 20  | -      | -   | ns                | -    | -   | -     | 20  | -      | -                                          | ns   | Pulse In        | Pulse Out       |                  |                  |                 |    |   |
|                        |                      |                | -                 | -   | -     | 28  | -      | -   | ns                | -    | -   | -     | 28  | -      | -                                          | ns   | 1               | 9               | -                | -                | 10              | 5  | 5 |

\* To simulate worse case conditions, the output of inverter under test is tied to the output of another inverter which has its input taken to V<sub>BOT</sub>.

Ground inputs of inverters not used in test.

Other pins not listed are left open.

**MC989 • MC889**

Available in TO-86 flat package, add "F" suffix.

Six individual circuits are contained in a package. Each provides the simple inversion function.

**SWITCHING TIME TEST CIRCUIT AND WAVEFORM**

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one inverter only.  
Other inverters are tested in the same manner.

|       | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|       |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC989 | -55°C             | 1.014                       | 1.014           | 1.50             | 0.710            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.815           | 1.50             | 0.565            | 3.00            |  |
|       | +125°C            | 0.674                       | 0.674           | 1.50             | 0.320            | 3.00            |  |
| MC889 | 0°C               | 0.909                       | 0.909           | 1.50             | 0.574            | 3.00            |  |
|       | +25°C             | 0.844                       | 0.844           | 1.50             | 0.554            | 3.00            |  |
|       | +100°C            | 0.710                       | 0.710           | 1.50             | 0.370            | 3.00            |  |

| Characteristic         | Symbol               | Pin Under Test. | MC989 Test Limits |     |       |     |        |     | MC889 Test Limits |      |     |       |     |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |          |                 |                 |                  | Gnd              |                 |   |
|------------------------|----------------------|-----------------|-------------------|-----|-------|-----|--------|-----|-------------------|------|-----|-------|-----|--------|--------------------------------------------|----------|-----------------|-----------------|------------------|------------------|-----------------|---|
|                        |                      |                 | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C  |     | +25°C |     | +100°C |                                            | Unit     | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |   |
|                        |                      |                 | Min               | Max | Min   | Max | Min    | Max |                   | Min  | Max | Min   | Max | Min    | Max                                        |          | Min             | Max             | Min              | Max              |                 |   |
| Input Current          | I <sub>in</sub>      | 1*              | -                 | 495 | -     | 435 | -      | 470 | µAdc              | -    | 504 | -     | 450 | -      | 450                                        | µAdc     | 1               | -               | -                | -                | 14              | 7 |
| Output Current         | I <sub>A5</sub>      | 6               | 2.47              | -   | 2.54  | -   | 2.35   | -   | mAdc              | 2.52 | -   | 2.38  | -   | 2.25   | -                                          | mAdc     | -               | 6               | -                | 1                | 14              | 7 |
| Output Leakage Current | I <sub>CEx</sub>     | 6               | -                 | 100 | -     | 218 | -      | 235 | µAdc              | -    | 100 | -     | 225 | -      | 225                                        | µAdc     | 6               | -               | -                | 1                | -               | 7 |
| Output Voltage         | V <sub>out</sub>     | 6               | -                 | 710 | -     | 300 | -      | 320 | mVdc              | -    | 574 | -     | 400 | -      | 370                                        | mVdc     | -               | 1               | -                | -                | 14              | 7 |
| Saturation Voltage     | V <sub>CE(sat)</sub> | 6               | -                 | 200 | -     | 210 | -      | 280 | mVdc              | -    | 290 | -     | 260 | -      | 340                                        | mVdc     | -               | -               | 1                | -                | 14              | 7 |
| Switching Time         | t                    | 1+6-<br>1-6+    | -                 | -   | -     | 20  | -      | -   | ns                | -    | -   | -     | 20  | -      | -                                          | ns       | 1               | 6               | -                | -                | 14              | 7 |
|                        |                      |                 |                   |     |       |     |        |     |                   |      |     |       |     |        |                                            | Pulse In | Pulse Out       |                 |                  |                  |                 |   |
|                        |                      |                 |                   |     |       |     |        |     |                   |      |     |       |     |        |                                            |          |                 |                 |                  |                  |                 |   |

Ground inputs of inverters not used in test.

Other pins not listed are left open.

\* To simulate worse case conditions, the output of inverter under test is tied to the output of another inverter which has its input taken to V<sub>BOT</sub>.

**MC986 • MC886**

Available in TO-86 flat package, add "F" suffix.

Two 4-input gate expanders housed in a single package may be used independently or combined. Each of these expanders increases the input capability of a standard MRTL gate by four.



When an expander is added to a gate, subtract 0.4 load unit from the output of the gate for each expander circuit added.



V<sub>CC</sub> connection to pin 14 not shown.

TYPICAL RESISTANCE  
VALUE  
R<sub>1</sub> = 450 Ω

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one expander only.  
The other expander is tested in the same manner.

|       | @Test Temperature | TEST VOLTAGE VALUES |                 |                  |                  |                 |                             |  |  |
|-------|-------------------|---------------------|-----------------|------------------|------------------|-----------------|-----------------------------|--|--|
|       |                   | (Volts)             |                 |                  | (Ohms)           |                 |                             |  |  |
|       |                   | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> <sup>*</sup> |  |  |
| MC986 | -55°C             | 1.014               | 1.014           | 1.50             | 0.710            | 3.00            | 680                         |  |  |
|       | +25°C             | 0.844               | 0.815           | 1.50             | 0.565            | 3.00            | 680                         |  |  |
|       | +125°C            | 0.674               | 0.674           | 1.50             | 0.320            | 3.00            | 680                         |  |  |
| MC886 | 0°C               | 0.909               | 0.909           | 1.50             | 0.574            | 3.00            | 680                         |  |  |
|       | +25°C             | 0.844               | 0.844           | 1.50             | 0.554            | 3.00            | 680                         |  |  |
|       | +100°C            | 0.710               | 0.710           | 1.50             | 0.370            | 3.00            | 680                         |  |  |

| Characteristic         | Symbol               | Pin Under Test   | MC986 Test Limits |     |       |     |        |     | MC886 Test Limits |     |     |       |     |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  | Gnd             |                             |                                                      |
|------------------------|----------------------|------------------|-------------------|-----|-------|-----|--------|-----|-------------------|-----|-----|-------|-----|--------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|-----------------------------|------------------------------------------------------|
|                        |                      |                  | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C |     | +25°C |     | +100°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> <sup>*</sup> |                                                      |
|                        |                      |                  | Min               | Max | Min   | Max | Min    | Max |                   | Min | Max | Min   | Max | Min    | Max                                        |      | 2               | 3               | 5                | 6                | 2               | 3                           |                                                      |
| Input Current          | I <sub>in</sub>      | 2<br>3<br>5<br>6 | -                 | 495 | -     | 435 | -      | 470 | μAdc              | -   | 504 | -     | 450 | -      | 450                                        | μAdc | 2               | -               | 3, 5, 6          | -                | 14              | 1                           | 7                                                    |
| Output Leakage Current | I <sub>CEx</sub>     | 1                | -                 | 100 | -     | 218 | -      | 235 | μAdc              | -   | 100 | -     | 225 | -      | 225                                        | μAdc | 1               | -               | -                | 2, 3, 5, 6       | 14              | -                           | 7                                                    |
| Output Voltage         | V <sub>out</sub>     | 1<br>-<br>-<br>- | -                 | 710 | -     | 300 | -      | 320 | mVdc              | -   | 574 | -     | 400 | -      | 370                                        | mVdc | -               | 2               | -                | -                | 14              | 1                           | 3, 5, 6, 7<br>2, 5, 6, 7<br>2, 3, 6, 7<br>2, 3, 5, 7 |
| Saturation Voltage     | V <sub>CE(sat)</sub> | 1<br>-<br>-<br>- | -                 | 200 | -     | 210 | -      | 280 | mVdc              | -   | 290 | -     | 260 | -      | 340                                        | mVdc | -               | -               | 2                | -                | 14              | 1                           | 3, 5, 6, 7<br>2, 5, 6, 7<br>2, 3, 6, 7<br>2, 3, 5, 7 |

Ground inputs of expander not under test.

Other pins not listed are left open.

\* Resistor Value to V<sub>CC</sub>.

**MC985 • MC885**

Available in TO-86 flat package, add "F" suffix.

Four 2-input expanders housed in a single package increase the input capability of MRTL gates.



When an expander is added to a gate, subtract 0.4 load unit from the output of the gate for each expander circuit added.



V<sub>CC</sub> connection to pin 14 not shown.

TYPICAL RESISTANCE  
VALUE  
R<sub>1</sub> = 450 Ω

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one expander only.  
Other expanders are tested in the same manner.

|       |  | Pin Under Test | TEST VOLTAGE VALUES |          |           |           |          |         |          |          |           |           |          |         | Gnd |  |
|-------|--|----------------|---------------------|----------|-----------|-----------|----------|---------|----------|----------|-----------|-----------|----------|---------|-----|--|
|       |  |                | (Volts)             |          |           |           |          |         | (Ohms)   |          |           |           |          |         |     |  |
|       |  |                | $V_{in}$            | $V_{on}$ | $V_{BOT}$ | $V_{off}$ | $V_{CC}$ | $V_R^*$ | $V_{in}$ | $V_{on}$ | $V_{BOT}$ | $V_{off}$ | $V_{CC}$ | $V_R^*$ |     |  |
| MC985 |  |                | -55°C               | 1.014    | 1.014     | 1.50      | 0.710    | 3.00    | 680      | 0.844    | 0.815     | 1.50      | 0.565    | 3.00    | 680 |  |
|       |  |                | +25°C               | 0.844    | 0.815     | 1.50      | 0.565    | 3.00    | 680      | 0.674    | 0.674     | 1.50      | 0.320    | 3.00    | 680 |  |
|       |  |                | +125°C              | 0.909    | 0.909     | 1.50      | 0.574    | 3.00    | 680      | 0.909    | 0.909     | 1.50      | 0.574    | 3.00    | 680 |  |
| MC885 |  |                | 0°C                 | 0.844    | 0.844     | 1.50      | 0.554    | 3.00    | 680      | 0.844    | 0.844     | 1.50      | 0.554    | 3.00    | 680 |  |
|       |  |                | +25°C               | 0.710    | 0.710     | 1.50      | 0.370    | 3.00    | 680      | 0.710    | 0.710     | 1.50      | 0.370    | 3.00    | 680 |  |
|       |  |                | +100°C              |          |           |           |          |         |          |          |           |           |          |         |     |  |

| Characteristic         | Symbol        | Pin Under Test | MC985 Test Limits |            |        |            |        |            | MC885 Test Limits |        |            |        |            |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |           |          |          |           |           |          |         |              |
|------------------------|---------------|----------------|-------------------|------------|--------|------------|--------|------------|-------------------|--------|------------|--------|------------|--------|--------------------------------------------|-----------|----------|----------|-----------|-----------|----------|---------|--------------|
|                        |               |                | -55°C             |            | +25°C  |            | +125°C |            | Unit              | 0°C    |            | +25°C  |            | +100°C |                                            | Unit      | $V_{in}$ | $V_{on}$ | $V_{BOT}$ | $V_{off}$ | $V_{CC}$ | $V_R^*$ |              |
|                        |               |                | Min               | Max        | Min    | Max        | Min    | Max        |                   | Min    | Max        | Min    | Max        | Min    | Max                                        |           | 1        | 2        | 1         | 2         | 14       | 3       |              |
| Input Current          | $I_{in}$      | 1<br>2         | -<br>-            | 495<br>495 | -<br>- | 435<br>435 | -<br>- | 470<br>470 | $\mu Adc$         | -<br>- | 504<br>504 | -<br>- | 450<br>450 | -<br>- | 450<br>450                                 | $\mu Adc$ | 1<br>2   | -<br>-   | 2<br>1    | -<br>-    | 14<br>14 | 3<br>3  | 7<br>7       |
| Output Leakage Current | $I_{CEX}$     | 3              | -                 | 100        | -      | 218        | -      | 235        | $\mu Adc$         | -      | 100        | -      | 225        | -      | 225                                        | $\mu Adc$ | 3        | -        | -         | 1, 2      | 14       | -       | 7            |
| Output Voltage         | $V_{out}$     | 3              | -<br>-            | 710<br>710 | -<br>- | 300<br>300 | -<br>- | 320<br>320 | mVdc              | -<br>- | 574<br>574 | -<br>- | 400<br>400 | -<br>- | 370<br>370                                 | mVdc      | -<br>-   | 1<br>2   | -<br>-    | -<br>-    | 14<br>14 | 3<br>3  | 2, 7<br>1, 7 |
| Saturation Voltage     | $V_{CE(sat)}$ | 3<br>3         | -<br>-            | 200<br>200 | -<br>- | 210<br>210 | -<br>- | 280<br>280 | mVdc              | -<br>- | 290<br>290 | -<br>- | 260<br>260 | -<br>- | 340<br>340                                 | mVdc      | -<br>-   | -<br>-   | 1<br>2    | -<br>-    | 14<br>14 | 3<br>3  | 2, 7<br>1, 7 |

Ground inputs of expanders not under test.

Other pins not listed are left open.

\* Resistor Value to  $V_{CC}$ .

**MC9919 • MC9819**

Available in TO-86 flat package, add "F" suffix.

Six individual expanders are contained in a single package providing increased input capability for MRTL gates.



$t_{pd} = 12 \text{ ns}$   
 $P_D = 13 \text{ mW typ (Input High)}$   
 Negligible (Inputs Low)

NUMBER IN PARENTHESIS INDICATES  
 MRTL LOADING FACTOR.

When an expander is added to a gate, subtract 0.4 load from the output of the gate for each expander circuit added. The input loading factor of the expanded gate is 1.3. Pin 14 of the expander must be connected to V<sub>CC</sub>.



## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one expander only.  
The other expanders are tested in the same manner.

|        |        | TEST VOLTAGE VALUES |                 |                  |                  |                 |                             |  |  |
|--------|--------|---------------------|-----------------|------------------|------------------|-----------------|-----------------------------|--|--|
|        |        | (Volts)             |                 |                  |                  | (Ohms)          |                             |  |  |
|        |        | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> <sup>*</sup> |  |  |
| MC9919 | −55°C  | 1.014               | 1.014           | 1.50             | 0.710            | 3.00            | 680                         |  |  |
|        | +25°C  | 0.844               | 0.815           | 1.50             | 0.565            | 3.00            | 680                         |  |  |
|        | +125°C | 0.674               | 0.674           | 1.50             | 0.320            | 3.00            | 680                         |  |  |
| MC9819 | 0°C    | 0.909               | 0.909           | 1.50             | 0.574            | 3.00            | 680                         |  |  |
|        | +25°C  | 0.844               | 0.844           | 1.50             | 0.554            | 3.00            | 680                         |  |  |
|        | +100°C | 0.710               | 0.710           | 1.50             | 0.370            | 3.00            | 680                         |  |  |

  

| Characteristic         | Symbol               | Pin Under Test | MC9919 Test Limits |     |       |     |        |     | MC9819 Test Limits |     |     |       |     |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  |                 |                             |   |
|------------------------|----------------------|----------------|--------------------|-----|-------|-----|--------|-----|--------------------|-----|-----|-------|-----|--------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|-----------------------------|---|
|                        |                      |                | −55°C              |     | +25°C |     | +125°C |     | Unit               | 0°C |     | +25°C |     | +100°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> <sup>*</sup> |   |
| Input Current          | I <sub>in</sub>      | 1              | −                  | 495 | −     | 435 | −      | 470 | μAdc               | −   | 504 | −     | 450 | −      | 450                                        | μAdc | 1               | −               | −                | −                | 14              | 6                           | 7 |
| Output Leakage Current | I <sub>CEX</sub>     | 6              | −                  | 100 | −     | 218 | −      | 235 | μAdc               | −   | 100 | −     | 225 | −      | 225                                        | μAdc | 6               | −               | −                | 1                | 14              | −                           | 7 |
| Output Voltage         | V <sub>out</sub>     | 6              | −                  | 710 | −     | 300 | −      | 320 | mVdc               | −   | 574 | −     | 400 | −      | 370                                        | mVdc | −               | 1               | −                | −                | 14              | 6                           | 7 |
| Saturation Voltage     | V <sub>CE(sat)</sub> | 6              | −                  | 200 | −     | 210 | −      | 280 | mVdc               | −   | 290 | −     | 260 | −      | 340                                        | mVdc | −               | −               | 1                | −                | 14              | 6                           | 7 |

Ground inputs of expanders not used in test. Other pins not listed are left open.

\* Resistor value to V<sub>CC</sub>.



**LOW-POWER**  
**mW MRTL**  
**INTEGRATED CIRCUITS**  
**MC908/MC808 SERIES**

**LOW POWER**  
**mW MRTL**  
**INTEGRATED CIRCUITS**

Low-power mW MRTL circuits are designed for use where minimal system power consumption is desired. Typical gate speed is 27 ns, with typical power dissipation of 6.5 mW (input high), and 0.5 mW (inputs low) per logic node.

**INDEX**

|                                               | Page No.               |
|-----------------------------------------------|------------------------|
| General Information                           | 6-92                   |
| Summary of Devices Available in Metal Cans    | 6-94                   |
| Summary of Devices Available in Flat Packages | 6-96                   |
| <br><b>DEVICE SPECIFICATIONS</b>              |                        |
| <b>GATES</b>                                  |                        |
| MC911, MC811                                  | 4-Input Gates          |
| MC928, MC828                                  | 5-Input Gates          |
| MC910, MC810                                  | Dual 2-Input Gates     |
| MC918, MC818                                  | Dual 3-Input Gates     |
| MC919, MC819                                  | Dual 4-Input Gates     |
| MC993, MC893                                  | Triple 3-Input Gates   |
| MC917, MC817                                  | Quad 2-Input Gates     |
| <br><b>BUFFERS</b>                            |                        |
| MC909, MC809                                  | Buffers                |
| MC981, MC881                                  | Dual Buffers           |
| MC998, MC898                                  | Dual Buffers           |
| <br><b>FLIP-FLOPS</b>                         |                        |
| MC913, MC813                                  | Type D Flip-Flops      |
| MC920, MC820                                  | J-K Flip-Flops         |
| MC922, MC822                                  | J-K Flip-Flops         |
| MC982, MC882                                  | J-K Flip-Flops         |
| MC978, MC878                                  | Dual Type D Flip-Flops |
| MC976, MC876                                  | Dual J-K Flip-Flops    |
| <br><b>ADDERS</b>                             |                        |
| MC908, MC808                                  | Half Adders            |
| MC912, MC812                                  | Half Adders            |
| <br><b>EXPANDERS</b>                          |                        |
| MC921, MC821                                  | Expanders              |
| MC9921, MC9821                                | Quad 2-Input Expanders |

**NUMERICAL INDEX**  
**(Functions and Characteristics)**

$V_{CC} = 3.0 \text{ V} \pm 10\%$  for MC908 Series,  $3.6 \text{ V} \pm 10\%$  for MC808 Series;  $T_A = 25^\circ\text{C}$

| Function                   | Type ①     |               | Case   | Output Loading Factor Each Output | Propagation Delay $t_{pd}$ ns typ | Total Power Dissipation ② mW typ/pkg |              | Page No. |
|----------------------------|------------|---------------|--------|-----------------------------------|-----------------------------------|--------------------------------------|--------------|----------|
|                            | 0 to +75°C | -55 to +125°C |        |                                   |                                   | MC808 Series                         | MC908 Series |          |
| Half Adder                 | MCB08      | MC908         | 72,96  | 4                                 | 60                                | 19/12.5                              | 14/8.5       | 6-141    |
| 2-Input Buffer             | MCB09      | MC909         | 72,96  | 30                                | 57                                | 7.0/23                               | 5.5/16       | 6-115    |
| Dual 2-Input NOR Gate      | MCB10      | MC910         | 72,96  | 4                                 | 27                                | 10/2.5                               | 8.0/1.0      | 6-104    |
| Dual 4-Input OR/NOR Gate   | MCB11      | MC911         | 72,96  | 4                                 | 60                                | 8.0/5.5                              | 6.0/3.5      | 6-100    |
| Half Adder                 | MCB12      | MC912         | 72,96  | 4                                 | 66                                | 15.5/10.5                            | 11.5/5.5     | 6-143    |
| Type D Flip-Flop           | MCB13      | MC913         | 72,96  | 3                                 | 75                                | 24/17.5 ③                            | 17.5/13 ③    | 6-122    |
| Quad 2-Input NOR Gate      | MCB17      | MC917         | 83     | 4                                 | 27                                | 20/5.0                               | 16/2.5       | 6-113    |
| Dual 3-Input NOR Gate      | MCB18      | MC918         | 72,96A | 4                                 | 27                                | 12/2.5                               | 9.5/1.0      | 6-107    |
| Dual 4-Input NOR Gate      | MCB19      | MC919         | 83     | 4                                 | 27                                | 13/2.5                               | 11/1.0       | 6-109    |
| J-K Flip-Flop              | MCB20      | MC920         | 72,96  | 2                                 | 50                                | 20.5/14.5 ④                          | 15.5/10 ④    | 6-126    |
| Dual 2-Input Gate Expander | MCB21      | MC921         | 72,96  | —                                 | 27                                | 3.0/ —                               | 3.0/ —       | 6-146    |
| J-K Flip-Flop              | MCB22      | MC922         | 72,96A | 4                                 | 70                                | 24/20 ④                              | 17.5/13 ④    | 6-129    |
| 5-Input NOR Gate           | MCB28      | MC928         | 72,96  | 4                                 | 27                                | 7.5/1.0                              | 6.5/0.5      | 6-102    |
| Dual J-K Flip-Flop         | MCB76      | MC976         | 83     | 2                                 | 50                                | 41/29 ④                              | 31/20 ④      | 6-138    |
| Dual Type D Flip-Flop      | MCB78      | MC978         | 83     | 3                                 | 60                                | 48/35 ③                              | 35/26 ③      | 6-135    |
| Dual Buffer                | MCB81      | MC981         | 96     | 30                                | 57                                | 14/46                                | 11/32        | 6-118    |
| J-K Flip-Flop              | MCB82      | MC982         | 96     | 2                                 | 80                                | 23/21 ④                              | 15/13 ④      | 6-132    |
| Triple 3-Input NOR Gate    | MCB93      | MC993         | 83     | 4                                 | 27                                | 18/3.5                               | 14/2.0       | 6-111    |
| Dual 2-Input Buffer        | MCB98      | MC998         | 83     | 30                                | 57                                | 14/46                                | 11/32        | 6-120    |
| Quad 2-Input Expander      | MCB921     | MC9921        | 83     | —                                 | 27                                | 20/ —                                | 20/ —        | 6-148    |

① G suffix denotes Metal Can, F suffix denotes Flat Package; i.e., MC818G = Metal Can, MC818F = Flat Package.

② Input High/Inputs Low unless otherwise noted.

③ Direct Set and Direct Clear Low, All Other Inputs High/All Inputs Low

④ Only Clock Input High/All Inputs Low

## GENERAL INFORMATION

## mW MRTL MC908/808 series



### MAXIMUM RATING

|                                                          | Rating           | Symbol                  | Value              | Unit |
|----------------------------------------------------------|------------------|-------------------------|--------------------|------|
| Input Voltage                                            |                  | -                       | +4.0               | Vdc  |
| Power Supply Voltage (Pulsed $\leq 1.0$ s)               |                  | -                       | +12                | Vdc  |
| Operating Temperature Range MC908 Series<br>MC808 Series | $T_A$            | -55 to +125<br>0 to +75 | $^{\circ}\text{C}$ |      |
| Storage Temperature Range                                | $T_{\text{stg}}$ | -65 to +150             | $^{\circ}\text{C}$ |      |

### TEST CONDITION TOLERANCES

$$V_{\text{BOT}} = \pm 10 \text{ mV} \quad V_{\text{CC}} = \pm 10 \text{ mV} \quad V_{\text{in}} = \pm 2 \text{ mV} \quad V_{\text{on}} = \pm 2 \text{ mV} \quad V_{\text{off}} = \pm 2 \text{ mV}$$

### DEFINITIONS

|                     |                                                                                                                                           |                      |                                                                                                                                                               |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $I_{A2}, I_{A3}$    | Minimum available output current from a device with an output loading of 2, 3, or 4.                                                      | $V_{CE(\text{sat})}$ | Maximum saturation voltage with $V_{\text{BOT}}$ applied into the input.                                                                                      |
| $I_{AB}$            | Minimum available output current from a buffer. Output voltage not to fall below the value of $V_{\text{on}}$ .                           | $V_{\text{in}}$      | Minimum high-level voltage applied to the input of a device.                                                                                                  |
| $I_{AM}$            | The maximum available current from the output of a Dual Gate.                                                                             | $V_{LL}$             | A supply voltage low enough to allow flow of leakage currents only.                                                                                           |
| $I_{CEX}$           | Collector current of a circuit when $V_{\text{in}}$ is applied to the output pin and $V_{\text{off}}$ is applied to the input pins.       | $V_{\text{off}}$     | The maximum voltage which may be applied to an input terminal without turning the transistor on.                                                              |
| $0.8 I_{\text{in}}$ | The current drawn from the $V_{\text{in}}$ supply by an inverter transistor for a fan-in of 1.                                            | $V_{\text{on}}$      | The minimum voltage which may be applied to an input terminal that will turn the transistor on.                                                               |
| $I_{\text{in}}$     | Maximum input current drawn by one input of a gate with $V_{\text{in}}$ applied. All other gate inputs are returned to $V_{\text{BOT}}$ . | $V_{\text{out}}$     | The maximum output voltage with $V_{\text{on}}$ applied to the input.                                                                                         |
| $1.8 I_{\text{in}}$ | Current drawn from the $V_{\text{in}}$ supply by the Toggle pin of the Flip-Flop.                                                         | $V_R$                | Value of external resistor connected to $V_{\text{CC}}$ for test purposes.<br>$V_{RH}$ = highest node resistor value<br>$V_{RL}$ = lowest node resistor value |
| $2 I_{\text{in}}$   | Maximum input current drawn by one input of a device with 2 bases internally tied together.                                               | Release Time         | The time that the J or K input data must be held after the negative-going clock input transition in order to propagate correct data.                          |
| $I_L$               | Isolation leakage current.                                                                                                                | Set-Up Time          | The time that the J or K input data must be present prior to the negative-going clock input transition in order to propagate correct data.                    |
| $V_{\text{BOT}}$    | A high-value voltage applied to an input of a device to insure saturation of the driven transistor.                                       |                      |                                                                                                                                                               |
| $V_{\text{CC}}$     | Supply voltage.                                                                                                                           |                      |                                                                                                                                                               |

### GENERAL RULES

- The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output.
- A gate output connected in parallel with another output reduces the drive capability by  $\frac{1}{2}$  load. (Paralleling gate circuits requires a  $V_{\text{CC}}$  connection to only one of the gates.)
- Any number of gates may be paralleled if the input loading is increased by  $\frac{1}{4}$  load.
- All unused inputs should be returned to ground.

## OUTLINE DIMENSIONS



Pin 4 connected to case.

TO-99



Pin 5 connected to case.

TO-100



Lead 1 identified by color dot or by shoulder on lead. All leads electrically isolated from package.

TO-91



Lead 1 identified by color dot or by elbow on lead. All leads electrically isolated from package.

TO-86

## LOADING DIAGRAMS

## mW MC908/808 series

### mW MRTL DEVICES AVAILABLE IN METAL CANS

The logic diagrams on these two pages describe the MC908/MC808 MRTL integrated circuits available in metal cans, and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time ( $t_{pd}$ ), typical package power dissipation ( $P_D$ ), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (when on the circuit input terminal) or load driving ability — fan-out — (when on the circuit output terminal).

The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. Loading data are valid over the temperature range of -55 to +125°C with  $V_{CC} = 3.0\text{ V} \pm 10\%$  for the MC908 Series, and 0 to +75°C with  $V_{CC} = 3.6\text{ V} \pm 10\%$  for the MC808 Series. For the TO-99 metal can,  $V_{CC}$  is applied to pin 8, with ground connected to pin 4. For the TO-100 metal can,  $V_{CC}$  is applied to pin 10, with ground connected to pin 5.

### GATES

**MC910G • MC810G**  
Dual 2-Input Gate



$$7 = \overline{1 + 2}$$

$t_{pd} = 27\text{ ns}$  typical

| Total Power Dissipation mW typ |        |        |
|--------------------------------|--------|--------|
|                                | MC910G | MC810G |
| Input High                     | 8.0    | 10     |
| Inputs Low                     | 1.0    | 2.5    |

**MC911G • MC811G**  
4-Input Gate



$$6 = \overline{1 + 2 + 3 + 5}$$

$$7 = 1 + 2 + 3 + 5$$

$t_{pd} = 60\text{ ns}$  typical

| Total Power Dissipation mW typ |        |        |
|--------------------------------|--------|--------|
|                                | MC911G | MC811G |
| Input High                     | 6.0    | 8.0    |
| Inputs Low                     | 3.5    | 5.5    |

**MC918G • MC818G**  
Dual 3-Input Gate



$$4 = \overline{1 + 2 + 3}$$

$t_{pd} = 27\text{ ns}$  typical

| Total Power Dissipation mW typ |        |        |
|--------------------------------|--------|--------|
|                                | MC918G | MC818G |
| Input High                     | 9.5    | 12     |
| Inputs Low                     | 1.0    | 2.5    |

**MC928G • MC828G**  
5-Input Gate



$$7 = \overline{1 + 2 + 3 + 5 + 6}$$

$t_{pd} = 27\text{ ns}$  typical

| Total Power Dissipation mW typ |        |        |
|--------------------------------|--------|--------|
|                                | MC928G | MC828G |
| Input High                     | 6.5    | 7.5    |
| Inputs Low                     | 0.5    | 1.0    |

### BUFFERS

**MC909G • MC809G**  
Buffer



$$6 = \overline{2 + 3}$$

$t_{pd} = 57\text{ ns}$  typical

| Total Power Dissipation mW typ |        |        |
|--------------------------------|--------|--------|
|                                | MC909G | MC809G |
| Input High                     | 5.5    | 7.0    |
| Inputs Low                     | 16     | 23     |

**MC981G • MC881G**  
Dual Buffer



$$7 = \overline{1 + 2}$$

$t_{pd} = 57\text{ ns}$  typical

| Total Power Dissipation mW typ |        |        |
|--------------------------------|--------|--------|
|                                | MC981G | MC881G |
| Input High                     | 11     | 14     |
| Inputs Low                     | 32     | 46     |

## FLIP-FLOPS

| MC913G • MC813G<br>Type D Flip-Flop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | MC920G • MC820G<br>J-K Flip Flop                                                                                              |           | MC922G • MC822G<br>J-K Flip-Flop                                                                                              |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------|----|------------|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--------|--------|--------------------------|------|------|------------|----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|--------|-----------|--------------------------|------|----|------------|----|----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------|-----------|---|---|-----------|---|---|-----|-----|--|---|---|---|---|--|---|---|---|---|--|---|---|---|---|--|-------|-----------|---|---|---|-----------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| <p>(1) 3<br/>(1) 2—S SD Q O 6 (3)<br/>(1.8) 1—T<br/>CD C O 5 (3)<br/>(1) 7</p> <p><math>t_{pd} = 75 \text{ ns typical}</math></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | <p>(1) 1—S SD Q O 7 (2)<br/>(2) 2—T<br/>(1) 3—C CD C O 5 (2)<br/>(1) 6</p> <p><math>t_{pd} = 50 \text{ ns typical}</math></p> |           | <p>(1) 1—S SD Q O 9 (4)<br/>(2) 2—T<br/>(1) 3—C CD C O 7 (4)<br/>(1) 8</p> <p><math>t_{pd} = 70 \text{ ns typical}</math></p> |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>Total Power Dissipation mW typ</b> <table border="1"> <thead> <tr> <th></th><th>MC913G</th><th>MC813G</th></tr> </thead> <tbody> <tr> <td>Direct Set and<br/>Direct Clear Inputs<br/>Low, All other<br/>Inputs High</td><td>17.5</td><td>24</td></tr> <tr> <td>Inputs Low</td><td>13</td><td>17.5</td></tr> </tbody> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                               | MC913G    | MC813G                                                                                                                        | Direct Set and<br>Direct Clear Inputs<br>Low, All other<br>Inputs High | 17.5 | 24 | Inputs Low | 13  | 17.5 | <b>Total Power Dissipation mW typ</b> <table border="1"> <thead> <tr> <th></th><th>MC920G</th><th>MC820G</th></tr> </thead> <tbody> <tr> <td>Only Clock<br/>Input High</td><td>15.5</td><td>20.5</td></tr> <tr> <td>Inputs Low</td><td>10</td><td>14.5</td></tr> </tbody> </table> |   |   | MC920G | MC820G | Only Clock<br>Input High | 15.5 | 20.5 | Inputs Low | 10 | 14.5 | <b>Total Power Dissipation mW typ</b> <table border="1"> <thead> <tr> <th></th><th>MC922G</th><th>MC822G</th></tr> </thead> <tbody> <tr> <td>Only Clock<br/>Input High</td><td>17.5</td><td>24</td></tr> <tr> <td>Inputs Low</td><td>13</td><td>20</td></tr> </tbody> </table> |           |   | MC922G | MC822G    | Only Clock<br>Input High | 17.5 | 24 | Inputs Low | 13 | 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MC913G    | MC813G                                                                                                                        |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Direct Set and<br>Direct Clear Inputs<br>Low, All other<br>Inputs High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.5      | 24                                                                                                                            |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Inputs Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13        | 17.5                                                                                                                          |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MC920G    | MC820G                                                                                                                        |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Only Clock<br>Input High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.5      | 20.5                                                                                                                          |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Inputs Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10        | 14.5                                                                                                                          |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MC922G    | MC822G                                                                                                                        |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Only Clock<br>Input High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.5      | 24                                                                                                                            |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Inputs Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13        | 20                                                                                                                            |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>DIRECT INPUT OPERATION ①</b><br><table border="1"> <thead> <tr> <th>SD</th><th>CD</th><th>Q</th><th><math>\bar{Q}</math></th></tr> </thead> <tbody> <tr> <td>0</td><td>0</td><td>(2)</td><td>(2)</td></tr> <tr> <td>1</td><td>0</td><td>1</td><td>0</td></tr> <tr> <td>0</td><td>1</td><td>0</td><td>1</td></tr> <tr> <td>1</td><td>1</td><td>0</td><td>0</td></tr> </tbody> </table><br><b>CLOCKED INPUT OPERATION ③</b><br><table border="1"> <thead> <tr> <th><math>t_n</math></th><th><math>t_{n+1}</math></th><th>S</th><th>Q</th><th><math>\bar{Q}</math></th></tr> </thead> <tbody> <tr> <td></td><td></td><td></td><td></td><td></td></tr> <tr> <td></td><td></td><td></td><td></td><td></td></tr> <tr> <td></td><td></td><td></td><td></td><td></td></tr> <tr> <td></td><td></td><td></td><td></td><td></td></tr> </tbody> </table> |           | SD                                                                                                                            | CD        | Q                                                                                                                             | $\bar{Q}$                                                              | 0    | 0  | (2)        | (2) | 1    | 0                                                                                                                                                                                                                                                                                  | 1 | 0 | 0      | 1      | 0                        | 1    | 1    | 1          | 0  | 0    | $t_n$                                                                                                                                                                                                                                                                          | $t_{n+1}$ | S | Q      | $\bar{Q}$ |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  | <b>DIRECT INPUT OPERATION ①</b><br><p>(1) 1—S SD Q O 7 (2)<br/>(1) 2—T<br/>(1) 3—C CD C O 5 (2)<br/>(1) 6</p> <p><math>t_{pd} = 80 \text{ ns typical}</math></p> |  | <b>DIRECT INPUT OPERATION ①</b><br>MC922 and<br>MC822 only<br><table border="1"> <thead> <tr> <th><math>t_n</math></th><th><math>t_{n+1}</math></th><th>S</th><th>Q</th><th><math>\bar{Q}</math></th></tr> </thead> <tbody> <tr> <td>0</td><td>0</td><td>(2)</td><td>(2)</td><td></td></tr> <tr> <td>1</td><td>0</td><td>1</td><td>0</td><td></td></tr> <tr> <td>0</td><td>1</td><td>0</td><td>1</td><td></td></tr> <tr> <td>1</td><td>1</td><td>0</td><td>0</td><td></td></tr> </tbody> </table><br><b>CLOCKED INPUT OPERATION ③</b><br>all types<br><table border="1"> <thead> <tr> <th><math>t_n</math></th><th><math>t_{n+1}</math></th><th>S</th><th>C</th><th>Q</th><th><math>\bar{Q}</math></th></tr> </thead> <tbody> <tr> <td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td></td><td></td><td></td><td></td><td></td><td></td></tr> </tbody> </table> |  | $t_n$ | $t_{n+1}$ | S | Q | $\bar{Q}$ | 0 | 0 | (2) | (2) |  | 1 | 0 | 1 | 0 |  | 0 | 1 | 0 | 1 |  | 1 | 1 | 0 | 0 |  | $t_n$ | $t_{n+1}$ | S | C | Q | $\bar{Q}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CD        | Q                                                                                                                             | $\bar{Q}$ |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0         | (2)                                                                                                                           | (2)       |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0         | 1                                                                                                                             | 0         |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1         | 0                                                                                                                             | 1         |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1         | 0                                                                                                                             | 0         |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $t_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $t_{n+1}$ | S                                                                                                                             | Q         | $\bar{Q}$                                                                                                                     |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                               |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                               |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                               |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                               |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $t_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $t_{n+1}$ | S                                                                                                                             | Q         | $\bar{Q}$                                                                                                                     |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0         | (2)                                                                                                                           | (2)       |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0         | 1                                                                                                                             | 0         |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1         | 0                                                                                                                             | 1         |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1         | 0                                                                                                                             | 0         |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $t_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $t_{n+1}$ | S                                                                                                                             | C         | Q                                                                                                                             | $\bar{Q}$                                                              |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                               |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                               |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                               |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                               |           |                                                                                                                               |                                                                        |      |    |            |     |      |                                                                                                                                                                                                                                                                                    |   |   |        |        |                          |      |      |            |    |      |                                                                                                                                                                                                                                                                                |           |   |        |           |                          |      |    |            |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                                                                                                                                                                  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |       |           |   |   |           |   |   |     |     |  |   |   |   |   |  |   |   |   |   |  |   |   |   |   |  |       |           |   |   |   |           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

1. Clock (T input) must be high.  
2. The output state will not change when the input state goes from  $S_D = C_D$  to  $S_D = C_D = 0$ . The output state cannot be predetermined in the case where the input goes from  $S_D = C_D = 1$  to  $S_D = C_D = 0$ .  
3. Direct inputs ( $C_D$  and  $S_D$ ) must be low.  
0 = low state  
1 = high state  
 $t_n$  = time period prior to negative transition of pulse  
 $t_{n+1}$  = time period subsequent to negative transition of clock pulse  
 $Q_n$  = state of Q output in time period  $t_n$

1. Clock (T) to remain unchanged.  
2. The output state will not change when the input state goes from  $S_D = C_D$  to  $S_D = C_D = 0$ . The output state cannot be predetermined in the case where the input goes from  $S_D = C_D = 1$  to  $S_D = C_D = 0$ .  
3. Direct inputs ( $C_D$  and  $S_D$ ) must be low.  
0 = low state  
1 = high state  
 $t_n$  = time period prior to negative transition of pulse  
 $t_{n+1}$  = time period subsequent to negative transition of clock pulse  
 $Q_n$  = state of Q output in time period  $t_n$

## HALF ADDERS

| MC908G • MC808G<br>Half Adder                                                                                                                                                                                                                                        |        | MC912G • MC812G<br>Half Adder              |        |        |            |      |      |            |     |      |                                                                                                                           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------|--------|--------|------------|------|------|------------|-----|------|---------------------------------------------------------------------------------------------------------------------------|--|
| (1) 1                                                                                                                                                                                                                                                                |        | (1) 1                                      |        |        |            |      |      |            |     |      |                                                                                                                           |  |
| (1) 2                                                                                                                                                                                                                                                                |        | (1) 2                                      |        |        |            |      |      |            |     |      |                                                                                                                           |  |
| (0.8) 3—C                                                                                                                                                                                                                                                            |        | (1) 3                                      |        |        |            |      |      |            |     |      |                                                                                                                           |  |
| (0.8) 5—C                                                                                                                                                                                                                                                            |        | (1) 5                                      |        |        |            |      |      |            |     |      |                                                                                                                           |  |
| $6 = (\overline{3} + \overline{5})$                                                                                                                                                                                                                                  |        | $7 = (1 + 2)(\overline{3} + \overline{5})$ |        |        |            |      |      |            |     |      |                                                                                                                           |  |
| $t_{pd} = 60 \text{ ns typical}$                                                                                                                                                                                                                                     |        | $7 = (1 + 2)(3 + 5)$                       |        |        |            |      |      |            |     |      |                                                                                                                           |  |
| $6 = 1 \cdot 2 + 3 \cdot 5$                                                                                                                                                                                                                                          |        | $6 = 1 \cdot 2 + 3 \cdot 5$                |        |        |            |      |      |            |     |      |                                                                                                                           |  |
| <b>Total Power Dissipation mW typ</b> <table border="1"> <thead> <tr> <th></th><th>MC908G</th><th>MC808G</th></tr> </thead> <tbody> <tr> <td>Input High</td><td>14</td><td>19</td></tr> <tr> <td>Inputs Low</td><td>8.5</td><td>12.5</td></tr> </tbody> </table>     |        |                                            | MC908G | MC808G | Input High | 14   | 19   | Inputs Low | 8.5 | 12.5 | <p>(1) 1—S<br/>(1) 2—D<br/>(1) 3—C<br/>(1) 5—C<br/>7 = (1 + 2)(3 + 5)<br/><math>t_{pd} = 66 \text{ ns typical}</math></p> |  |
|                                                                                                                                                                                                                                                                      | MC908G | MC808G                                     |        |        |            |      |      |            |     |      |                                                                                                                           |  |
| Input High                                                                                                                                                                                                                                                           | 14     | 19                                         |        |        |            |      |      |            |     |      |                                                                                                                           |  |
| Inputs Low                                                                                                                                                                                                                                                           | 8.5    | 12.5                                       |        |        |            |      |      |            |     |      |                                                                                                                           |  |
| <b>Total Power Dissipation mW typ</b> <table border="1"> <thead> <tr> <th></th><th>MC912G</th><th>MC812G</th></tr> </thead> <tbody> <tr> <td>Input High</td><td>11.5</td><td>15.5</td></tr> <tr> <td>Inputs Low</td><td>5.5</td><td>10.5</td></tr> </tbody> </table> |        |                                            | MC912G | MC812G | Input High | 11.5 | 15.5 | Inputs Low | 5.5 | 10.5 | <b>EXPANDER</b><br>MC921G • MC821G<br>Dual 2-Input Expander                                                               |  |
|                                                                                                                                                                                                                                                                      | MC912G | MC812G                                     |        |        |            |      |      |            |     |      |                                                                                                                           |  |
| Input High                                                                                                                                                                                                                                                           | 11.5   | 15.5                                       |        |        |            |      |      |            |     |      |                                                                                                                           |  |
| Inputs Low                                                                                                                                                                                                                                                           | 5.5    | 10.5                                       |        |        |            |      |      |            |     |      |                                                                                                                           |  |

## EXPANDER

| MC921G • MC821G<br>Dual 2-Input Expander                                                                                                                                                                                                                        |        |        |        |        |            |     |     |            |    |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|------------|-----|-----|------------|----|----|
| (1.3) 1                                                                                                                                                                                                                                                         |        |        |        |        |            |     |     |            |    |    |
| (1.3) 2                                                                                                                                                                                                                                                         |        |        |        |        |            |     |     |            |    |    |
| (1.3) 3                                                                                                                                                                                                                                                         |        |        |        |        |            |     |     |            |    |    |
| (1.3) 5                                                                                                                                                                                                                                                         |        |        |        |        |            |     |     |            |    |    |
| $t_{pd} = 27 \text{ ns typical}$                                                                                                                                                                                                                                |        |        |        |        |            |     |     |            |    |    |
| <b>Total Power Dissipation mW typ</b> <table border="1"> <thead> <tr> <th></th><th>MC921G</th><th>MC821G</th></tr> </thead> <tbody> <tr> <td>Input High</td><td>3.0</td><td>3.0</td></tr> <tr> <td>Inputs Low</td><td>--</td><td>--</td></tr> </tbody> </table> |        |        | MC921G | MC821G | Input High | 3.0 | 3.0 | Inputs Low | -- | -- |
|                                                                                                                                                                                                                                                                 | MC921G | MC821G |        |        |            |     |     |            |    |    |
| Input High                                                                                                                                                                                                                                                      | 3.0    | 3.0    |        |        |            |     |     |            |    |    |
| Inputs Low                                                                                                                                                                                                                                                      | --     | --     |        |        |            |     |     |            |    |    |

## LOADING DIAGRAMS

## mW MC908/808 series

### mW MRTL DEVICES AVAILABLE IN FLAT PACKAGES

The logic diagrams on these three pages describe the MC908/MC808 MRTL integrated circuits available in flat packages, and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time ( $t_{pd}$ ), typical package power dissipation ( $P_d$ ), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (when on the circuit input terminal) or load driving ability -- fan-out -- (when on the circuit output terminal).

The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. Loading data are valid over the temperature range of  $-55$  to  $+125^\circ\text{C}$  with  $V_{CC} = 3.0 \text{ V} \pm 10\%$  for the MC908 Series, and  $0$  to  $+75^\circ\text{C}$  with  $V_{CC} = 3.6 \text{ V} \pm 10\%$  for the MC808 Series. For the TO-91 flat package,  $V_{CC}$  is applied to pin 10, with ground connected to pin 5. For the TO-86 flat package,  $V_{CC}$  is applied to pin 14, with ground connected to pin 7.

## GATES

### MC910F • MC810F Dual 2-Input Gate



$$9 = 1 + 2$$

$t_{pd} = 27 \text{ ns typical}$

| Total Power Dissipation mW typ |               |
|--------------------------------|---------------|
|                                | MC910F MC810F |
| Input High                     | 8.0 10        |
| Inputs Low                     | 1.0 2.5       |

### MC911F • MC811F 4-Input Gate



$$7 = 1 + 2 + 4 + 6$$

$$9 = 1 + 2 + 4 + 6$$

$t_{pd} = 60 \text{ ns typical}$

### MC917F • MC817F Quad 2-Input Gate



$$3 = 1 + 2$$

$t_{pd} = 27 \text{ ns typical}$

### MC918F • MC818F Dual 3-Input Gate



$$9 = 1 + 2 + 3$$

$t_{pd} = 27 \text{ ns typical}$

| Total Power Dissipation mW typ |               |
|--------------------------------|---------------|
|                                | MC918F MC818F |
| Input High                     | 9.5 12        |
| Inputs Low                     | 1.0 2.5       |

### MC919F • MC819F Dual 4-Input Gate



$$1 = 2 + 3 + 5 + 6$$

$t_{pd} = 27 \text{ ns typical}$

### MC928F • MC828F 5-Input Gate



$$9 = 1 + 2 + 4 + 6 + 7$$

$t_{pd} = 27 \text{ ns typical}$

### MC993F • MC893F Triple 3-Input Gate



$$12 = 1 + 2 + 13$$

$t_{pd} = 27 \text{ ns typical}$

| Total Power Dissipation mW typ |               |
|--------------------------------|---------------|
|                                | MC993F MC893F |
| Input High                     | 14 18         |
| Inputs Low                     | 2.0 3.5       |

## BUFFERS

### MC909F • MC809F Buffer



$$7 = 2 + 4$$

$t_{pd} = 57 \text{ ns typical}$

### Total Power Dissipation mW typ

|            | MC909F MC809F |
|------------|---------------|
| Input High | 5.5 7.0       |
| Inputs Low | 16 23         |

### MC998F • MC898F Dual 2-Input Buffer



$$8 = 9 + 13$$

$t_{pd} = 57 \text{ ns typical}$

### Total Power Dissipation mW typ

|            | MC998F MC898F |
|------------|---------------|
| Input High | 11 14         |
| Inputs Low | 32 46         |

## mW MRTL DEVICES AVAILABLE IN FLAT PACKAGES (continued)

### FLIP-FLOPS

**MC913F • MC813F**  
Type D Flip-Flop



$t_{pd} = 75 \text{ ns typical}$

| Total Power Dissipation mW typ                                |               |
|---------------------------------------------------------------|---------------|
|                                                               | MC913F MC813F |
| Direct Set and Direct Clear Inputs Low, All other Inputs High | 17.5 24       |
| Inputs Low                                                    | 13 17.5       |

| DIRECT INPUT OPERATION ① |                |   |           |
|--------------------------|----------------|---|-----------|
| SD                       | C <sub>D</sub> | Q | $\bar{Q}$ |
| 0                        | 0              | ② | ②         |
| 1                        | 0              | 0 | 0         |
| 0                        | 1              | 0 | 1         |
| 1                        | 1              | 0 | 0         |

  

| CLOCKED INPUT OPERATION ③ |           |   |           |
|---------------------------|-----------|---|-----------|
| $t_n$                     | $t_{n+1}$ | S | $\bar{Q}$ |
| 1                         | 1         | 0 | 0         |
| 0                         | 0         | 0 | 1         |

1. Clock (T input) must be high.
2. The output state will not change when the input state goes from  $S_D = C_D$  to  $S_D = C_D = 0$ . The output state cannot be predetermined in the case where the input goes from  $S_D = C_D = 1$  to  $S_D = C_D = 0$ .
3. Direct inputs ( $C_D$  and  $S_D$ ) must be low.  
0 = low state,  
1 = high state  
 $t_n$  = time period prior to negative transition of pulse  
 $t_{n+1}$  = time period subsequent to negative transition of clock pulse

**MC978F • MC878F**  
Dual Type D Flip-Flop



$t_{pd} = 60 \text{ ns typical}$

**MC920F • MC820F**  
J-K Flip-Flop



$t_{pd} = 50 \text{ ns typical}$

| Total Power Dissipation mW typ |               |
|--------------------------------|---------------|
|                                | MC920F MC820F |
| Only Clock Input High          | 15.5 20.5     |
| Inputs Low                     | 10 14.5       |

**J-K FLIP-FLOP TRUTH TABLES**

| DIRECT INPUT OPERATION ① |       |   |           |
|--------------------------|-------|---|-----------|
| MC920 and MC820 only     |       |   |           |
| $S_D$                    | $C_D$ | Q | $\bar{Q}$ |
| 0                        | 0     | ② | ②         |
| 1                        | 0     | 1 | 0         |
| 0                        | 1     | 0 | 1         |
| 1                        | 1     | 0 | 0         |

  

| CLOCKED INPUT OPERATION ③ |           |             |             |
|---------------------------|-----------|-------------|-------------|
| all types                 |           |             |             |
| $t_n$                     | $t_{n+1}$ | S           | $\bar{Q}$   |
| 1                         | 1         | $Q_n$       | $\bar{Q}_n$ |
| 1                         | 0         | 0           | 1           |
| 0                         | 1         | 0           | 1           |
| 0                         | 0         | $\bar{Q}_n$ | $Q_n$       |

1. Clock (T) to remain unchanged.
2. The output state will not change when the input state goes from  $S_D = C_D$  to  $S_D = C_D = 0$ . The output state cannot be predetermined in the case where the input goes from  $S_D = C_D = 1$  to  $S_D = C_D = 0$ .
3. Direct inputs ( $C_D$  and  $S_D$ ) must be low.  
0 = low state,  
1 = high state  
 $t_n$  = time period prior to negative transition of pulse  
 $t_{n+1}$  = time period subsequent to negative transition of clock pulse  
 $Q_n$  = state of Q output in time period  $t_n$

**MC922F • MC822F**  
J-K Flip-Flop



$t_{pd} = 70 \text{ ns typical}$

**MC976F • MC876F**  
Dual J-K Flip-Flop



$t_{pd} = 50 \text{ ns typical}$

| Total Power Dissipation mW typ |               |
|--------------------------------|---------------|
|                                | MC976F MC876F |
| Only Clock Input High          | 31 41         |
| Inputs Low                     | 20 29         |

**EXPANDERS**

**MC921F • MC821F**  
Dual 2-Input Expander



$t_{pd} = 27 \text{ ns typical}$

| Total Power Dissipation mW typ |               |
|--------------------------------|---------------|
|                                | MC921F MC821F |
| Input High                     | 3.0 3.0       |
| Inputs Low                     | -- --         |

**MC9921F • MC9821F**  
Quad 2-Input Expander



$$3 = \overline{1 + 2}$$

$t_{pd} = 27 \text{ ns typical}$

| Total Power Dissipation mW typ |                 |
|--------------------------------|-----------------|
|                                | MC9921F MC9821F |
| Input High                     | 20 20           |
| Inputs Low                     | -- --           |

## HALF ADDERS

**MC908F • MC808F**  
Half Adder



$$9 = (1 + 2)(\bar{4} + \bar{6})$$

$$7 = (\bar{4} + \bar{6})$$

$t_{pd} = 60$  ns typical

| Total Power Dissipation mW typ |        |        |
|--------------------------------|--------|--------|
|                                | MC908F | MC808F |
| Input High                     | 14     | 19     |
| Inputs Low                     | 8.5    | 12.5   |

**MC912F • MC812F**  
Half Adder



$$7 = \bar{1} + \bar{2} + \bar{4} + \bar{6}$$

$$9 = (1 + 2)(4 + 6)$$

$t_{pd} = 66$  ns typical

| Total Power Dissipation mW typ |        |        |
|--------------------------------|--------|--------|
|                                | MC912F | MC812F |
| Input High                     | 11.5   | 16.5   |
| Inputs Low                     | 5.5    | 10.5   |



**MC911 • MC811**

Available in TO-99 Metal Can, Add G Suffix.  
 Available in TO-91 Flat Package, Add F Suffix.



Typical Resistance Values  
 $R_1 = 1.5\text{ k}$   
 $R_2 = 3.6\text{ k}$

Provides the positive logic NOR function and its complement through an inverter. Individual gate elements may be paralleled or used with other logic elements for increasing the number of inputs (subject to loading rules).



| PIN CONNECTIONS   |   |   |   |   |   |   |    |
|-------------------|---|---|---|---|---|---|----|
| Schematic         | a | b | c | d | e | f | g  |
| G Package (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7  |
| F Package (TO-91) | 1 | 2 | 4 | 5 | 6 | 7 | 9  |
|                   |   |   |   |   |   |   | 10 |

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

## ELECTRICAL CHARACTERISTICS

| Characteristic            | Symbol                           | Pin Under Test        | MC911 Test Limits |     |                   |     |                   |     | MC811 Test Limits |            |     |            |     |            | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                        |                       |                       |           |            |          |          |               |                                                                       |
|---------------------------|----------------------------------|-----------------------|-------------------|-----|-------------------|-----|-------------------|-----|-------------------|------------|-----|------------|-----|------------|--------------------------------------------|------------------------|-----------------------|-----------------------|-----------|------------|----------|----------|---------------|-----------------------------------------------------------------------|
|                           |                                  |                       | -55°C             |     | +25°C             |     | +125°C            |     | Unit              | 0°C        |     | +25°C      |     | +75°C      |                                            | Unit                   | $V_{in}$              | $V_{on}$              | $V_{BOT}$ | $V_{off}$  | $V_{cc}$ | $V_{ll}$ |               |                                                                       |
|                           |                                  |                       | Min               | Max | Min               | Max | Min               | Max |                   | Min        | Max | Min        | Max | Min        | Max                                        |                        | a                     | b, c, e               | a, c, e   | -          | h        | -        | d             |                                                                       |
| Input Current             | $I_{in}$                         | a<br>b<br>c<br>e      | -                 | 125 | -                 | 130 | -                 | 110 | $\mu$ Adc         | -          | 150 | -          | 140 | -          | 140                                        | $\mu$ Adc              | a                     | -                     | b, c, e   | -          | -        | h        | -             | d                                                                     |
| Output Current            | $I_{A3}$<br>$I_{A4}$<br>$I_{AM}$ | f<br>g<br>g           | 350<br>475<br>-   | -   | 364<br>494<br>730 | -   | 308<br>418<br>815 | -   | $\mu$ Adc         | 420<br>570 | -   | 430<br>570 | -   | 395<br>535 | -                                          | $\mu$ Adc<br>$\mu$ Adc | f<br>g<br>g           | -                     | -         | a, b, c, e | h        | -        | d             | a, b, c, d, e<br>a, b, c, d, e                                        |
| Output Voltage            | $V_{out}$                        | f<br>f<br>f<br>f<br>g | -                 | 620 | -                 | 300 | -                 | 230 | mVdc              | -          | 400 | -          | 350 | -          | 300                                        | mVdc                   | -                     | a<br>b<br>c<br>e<br>f | -         | -          | -        | h        | -             | b, c, d, e<br>a, c, d, e<br>a, b, d, e<br>a, b, c, d<br>a, b, c, d, e |
| Saturation Voltage        | $V_{CE(sat)}$                    | f<br>f<br>f<br>f<br>g | -                 | 220 | -                 | 220 | -                 | 220 | mVdc              | -          | 250 | -          | 250 | -          | 250                                        | mVdc                   | a<br>b<br>c<br>e<br>f | -                     | -         | -          | -        | h        | -             | b, c, d, e<br>a, c, d, e<br>a, b, d, e<br>a, b, c, d<br>a, b, c, d, e |
| Isolation Leakage Current | $I_L$                            | h                     | -                 | 100 | -                 | 100 | -                 | 100 | $\mu$ Adc         | -          | 100 | -          | 100 | -          | 100                                        | $\mu$ Adc              | -                     | -                     | -         | -          | -        | h        | a, b, c, d, e |                                                                       |
| Switching Time            | t                                | a+g+<br>a-g-          | -                 | -   | -                 | 90  | -                 | -   | ns                | -          | -   | -          | -   | 90         | -                                          | ns                     | Pulse In<br>ns        | Pulse Out<br>a        | g         | -          | -        | h        | -             | b, c, d, e<br>b, c, d, e                                              |

Pins not listed are left open.

## MC928 • MC828

Available in TO-99 Metal Can, Add G Suffix.  
Available in TO-91 Flat Package, Add F Suffix.



Provides the positive logic NOR function. Individual gate elements may be paralleled or used with other logic elements for increasing the number of inputs (subject to loading rules).



| PIN CONNECTIONS   |   |   |   |   |   |   |    |
|-------------------|---|---|---|---|---|---|----|
| Schematic         | a | b | c | d | e | f | g  |
| G Package (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7  |
| F Package (TO-91) | 1 | 2 | 4 | 5 | 6 | 7 | 9  |
|                   |   |   |   |   |   |   | 10 |

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



## ELECTRICAL CHARACTERISTICS

| Characteristic            | Symbol               | Pin Under Test        | MC928 Test Limits |     |       |     |        |     |      |     |     |       |     |       | MC828 Test Limits |      |                       |                       |                  |                  |                 |                                                               |                                                               |  |  |  | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |  |  |  |  |  |
|---------------------------|----------------------|-----------------------|-------------------|-----|-------|-----|--------|-----|------|-----|-----|-------|-----|-------|-------------------|------|-----------------------|-----------------------|------------------|------------------|-----------------|---------------------------------------------------------------|---------------------------------------------------------------|--|--|--|--------------------------------------------|--|--|--|--|--|
|                           |                      |                       | -55°C             |     | +25°C |     | +125°C |     | Unit | 0°C |     | +25°C |     | +75°C |                   | Unit | V <sub>in</sub>       | V <sub>on</sub>       | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> | Gnd                                                           |                                                               |  |  |  |                                            |  |  |  |  |  |
|                           |                      |                       | Min               | Max | Min   | Max | Min    | Max |      | Min | Max | Min   | Max | Min   | Max               |      |                       |                       |                  |                  |                 |                                                               |                                                               |  |  |  |                                            |  |  |  |  |  |
| Input Current             | I <sub>in</sub>      | a<br>b<br>c<br>e<br>f | -                 | 125 | -     | 130 | -      | 110 | μAdc | -   | 150 | -     | 140 | -     | 140               | μAdc | a<br>b<br>c<br>e<br>f | -                     | b, c, e, f       | -                | h               | d                                                             |                                                               |  |  |  |                                            |  |  |  |  |  |
| Output Current            | I <sub>A4</sub>      | g                     | 475               | -   | 494   | -   | 418    | -   | μAdc | 570 | -   | 570   | -   | 535   | -                 | μAdc | g                     | -                     | -                | a,b,c,e,f        | h               | d                                                             |                                                               |  |  |  |                                            |  |  |  |  |  |
| Output Voltage            | V <sub>out</sub>     | g<br>g<br>g<br>g<br>g | -                 | 820 | -     | 300 | -      | 230 | mVdc | -   | 400 | -     | 350 | -     | 300               | mVdc | -                     | a<br>b<br>c<br>e<br>f | -                | -                | -               | h                                                             | b,c,d,e,f<br>a,c,d,e,f<br>a,b,d,e,f<br>a,b,c,d,f<br>a,b,c,d,e |  |  |  |                                            |  |  |  |  |  |
| Saturation Voltage        | V <sub>CE(sat)</sub> | g<br>g<br>g<br>g<br>g | -                 | 220 | -     | 220 | -      | 220 | mVdc | -   | 250 | -     | 250 | -     | 250               | mVdc | a<br>b<br>c<br>e<br>f | -                     | -                | -                | h               | b,c,d,e,f<br>a,c,d,e,f<br>a,b,d,e,f<br>a,b,c,d,f<br>a,b,c,d,e |                                                               |  |  |  |                                            |  |  |  |  |  |
| Isolation Leakage Current | I <sub>L</sub>       | h                     | -                 | 100 | -     | 100 | -      | 100 | μAdc | -   | 100 | -     | 100 | -     | 100               | μAdc | -                     | -                     | -                | -                | h               | a,b,c,d,e,f                                                   |                                                               |  |  |  |                                            |  |  |  |  |  |
| Switching time            | t                    | a+g-<br>a-g+          | -                 | -   | -     | 50  | -      | -   | ns   | -   | -   | -     | 50  | -     | -                 | ns   | a<br>a                | Pulse In<br>Pulse Out | -                | -                | h               | h                                                             | b,c,d,e,f<br>b,c,d,e,f                                        |  |  |  |                                            |  |  |  |  |  |

Pins not listed are left open.

| @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |
|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|
|                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |
| MC928             | 0.970                       | 0.935           | 1.80             | 0.850            | 3.00            |
|                   | 0.805                       | 0.750           | 1.80             | 0.450            | 3.00            |
|                   | 0.590                       | 0.555           | 1.80             | 0.260            | 3.00            |
| MC828             | 0.880                       | 0.850           | 1.80             | 0.500            | 3.60            |
|                   | 0.830                       | 0.800           | 1.80             | 0.460            | 3.60            |
|                   | 0.740                       | 0.710           | 1.80             | 0.400            | 3.60            |

**MC910 • MC810**

Available in TO-99 Metal Can, Add G Suffix.  
 Available in TO-91 Flat Package, Add F Suffix.



Two 2-input positive logic NOR gates in a single package may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.



| PIN CONNECTIONS   |   |   |   |   |   |   |   |    |
|-------------------|---|---|---|---|---|---|---|----|
| Schematic         | a | b | c | d | e | f | g | h  |
| G Package (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  |
| F Package (TO-91) | 1 | 2 | 4 | 5 | 6 | 7 | 9 | 10 |

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

**ELECTRICAL CHARACTERISTICS**

Test procedures are shown for one gate only.

The other gates are tested in the same manner.

| Characteristic            | Symbol                             | Pin Under Test | MC910    |     |            |     |            |     | MC810 |          |     |          |     |          | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                    |                     |                  |                  |                 |              |
|---------------------------|------------------------------------|----------------|----------|-----|------------|-----|------------|-----|-------|----------|-----|----------|-----|----------|--------------------------------------------|------|--------------------|---------------------|------------------|------------------|-----------------|--------------|
|                           |                                    |                | -55°C    |     | +25°C      |     | +125°C     |     | Unit  | 0°C      |     | +25°C    |     | +75°C    |                                            | Unit | V <sub>in</sub>    | V <sub>on</sub>     | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | Gnd          |
|                           |                                    |                | Min      | Max | Min        | Max | Min        | Max |       | Min      | Max | Min      | Max | Min      | Max                                        |      |                    |                     |                  |                  |                 |              |
| Input Current             | I <sub>in</sub>                    | a<br>b         | -        | 125 | -          | 130 | -          | 110 | μAdc  | -        | 150 | -        | 140 | -        | 140                                        | μAdc | a<br>b             | -                   | b<br>a           | -                | h<br>h          | d<br>d       |
| Output Current            | I <sub>A4</sub><br>I <sub>AM</sub> | g<br>g         | 475<br>- | -   | 494<br>730 | -   | 418<br>815 | -   | μAdc  | 570<br>- | -   | 570<br>- | -   | 535<br>- | -                                          | μAdc | g<br>g             | -                   | c<br>c           | a, b<br>a, b     | h<br>h          | d<br>d       |
| Output Voltage            | V <sub>out</sub>                   | g<br>g         | -        | 620 | -          | 300 | -          | 230 | mVdc  | -        | 400 | -        | 350 | -        | 300                                        | mVdc | -                  | a<br>b              | -                | -                | h<br>h          | b, d<br>a, d |
| Saturation Voltage        | V <sub>C(E)</sub> (sat)            | g<br>g         | -        | 220 | -          | 220 | -          | 220 | mVdc  | -        | 250 | -        | 250 | -        | 250                                        | mVdc | a<br>b             | -                   | -                | -                | h<br>h          | b, d<br>a, d |
| Isolation Leakage Current | I <sub>L</sub>                     | h              | -        | 100 | -          | 100 | -          | 100 | μAdc  | -        | 100 | -        | 100 | -        | 100                                        | μAdc | -                  | -                   | -                | -                | h               | a, b, d      |
| Switching Time            | t                                  | a+g-<br>a-g+   | -        | -   | -          | 50  | -          | -   | ns    | -        | -   | -        | 50  | -        | -                                          | ns   | Pulse In<br>a<br>a | Pulse Out<br>g<br>g | -                | -                | h               | d            |

Ground input pins of gate not under test. Other pins not listed are left open.

**MC910, MC810 (continued)**

**SWITCHING CHARACTERISTICS**



**MC918 • MC818**

Available in TO-100 Metal Can, Add G Suffix.  
 Available in TO-91 Flat Package, Add F Suffix.



Two 3-input positive logic NOR gates in a single package may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.



| PIN CONNECTIONS    |   |   |   |   |   |   |   |   |   |    |
|--------------------|---|---|---|---|---|---|---|---|---|----|
| Schematic          | a | b | c | d | e | f | g | h | i | j  |
| G Package (TO-100) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| F Package (TO-91)  | 1 | 2 | 3 | 9 | 5 | 4 | 6 | 7 | 8 | 10 |

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

| @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |  |
|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|--|
|                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |  |
| MC918             | 0.970                       | 0.935           | 1.80             | 0.650            | 3.00            |  |
|                   | 0.805                       | 0.750           | 1.80             | 0.450            | 3.00            |  |
|                   | 0.590                       | 0.555           | 1.80             | 0.280            | 3.00            |  |
|                   | 0.880                       | 0.850           | 1.80             | 0.500            | 3.60            |  |
| MC818             | 0.830                       | 0.800           | 1.80             | 0.480            | 3.80            |  |
|                   | 0.740                       | 0.710           | 1.80             | 0.400            | 3.60            |  |

## ELECTRICAL CHARACTERISTICS

Test procedures shown are for one gate only.  
Other gates are tested in the same manner.

| Characteristic            | Symbol                             | Pin Under Test | MC918 Test Limits |               |                 |               |                 |               | MC818 Test Limits |               |               |               |               |               | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |           |                 |                 |                      |                    |                 |                                    |  |
|---------------------------|------------------------------------|----------------|-------------------|---------------|-----------------|---------------|-----------------|---------------|-------------------|---------------|---------------|---------------|---------------|---------------|--------------------------------------------|-----------|-----------------|-----------------|----------------------|--------------------|-----------------|------------------------------------|--|
|                           |                                    |                | -55°C             |               | +25°C           |               | +125°C          |               | Unit              | 0°C           |               | +25°C         |               | +75°C         |                                            | Unit      | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub>     | V <sub>off</sub>   | V <sub>CC</sub> | Gnd                                |  |
|                           |                                    |                | Min               | Max           | Min             | Max           | Min             | Max           |                   | Min           | Max           | Min           | Max           | Min           | Max                                        |           | a               | b               | c                    | a, c               | j               | e                                  |  |
| Input Current             | I <sub>in</sub>                    | a<br>b<br>c    | -<br>-<br>-       | 125<br>↓<br>- | -<br>-<br>↓     | 130<br>-<br>- | -<br>-<br>↓     | 110<br>-<br>- | μAdc<br>↓         | -<br>-<br>-   | 150<br>-<br>- | -<br>-<br>↓   | 140<br>-<br>- | -<br>-<br>↓   | 140<br>-<br>-                              | μAdc<br>↓ | a<br>b<br>c     | -<br>-<br>-     | b, c<br>a, c<br>a, b | -<br>-<br>-        | j<br>↓          | e<br>↓                             |  |
| Output Current            | I <sub>A4</sub><br>I <sub>AM</sub> | d<br>d         | 475<br>-<br>-     | -<br>730<br>- | 494<br>-<br>815 | -<br>-        | 418<br>-<br>830 | -<br>-        | μAdc<br>μAdc      | 570<br>-<br>- | -<br>-<br>-   | 570<br>-<br>- | -<br>-<br>-   | 535<br>-<br>- | -<br>-<br>-                                | μAdc<br>- | d<br>d          | -<br>-          | g<br>g               | a, b, c<br>a, b, c | j<br>j          | e<br>e                             |  |
| Output Voltage            | V <sub>out</sub>                   | d<br>d<br>d    | -<br>-<br>-       | 620<br>↓<br>- | -<br>-<br>↓     | 300<br>-<br>- | -<br>-<br>↓     | 230<br>-<br>- | mVdc<br>↓         | -<br>-<br>-   | 400<br>-<br>- | -<br>-<br>↓   | 350<br>-<br>- | -<br>-<br>↓   | 300<br>-<br>-                              | mVdc<br>↓ | -<br>-<br>-     | a<br>b<br>c     | -<br>-<br>-          | -<br>-<br>-        | -<br>-<br>↓     | j<br>b, c, e<br>a, c, e<br>a, b, e |  |
| Saturation Voltage        | V <sub>CE(sat)</sub>               | d<br>d<br>d    | -<br>-<br>-       | 220<br>↓<br>- | -<br>-<br>↓     | 220<br>-<br>- | -<br>-<br>↓     | 220<br>-<br>- | mVdc<br>↓         | -<br>-<br>-   | 250<br>-<br>- | -<br>-<br>↓   | 250<br>-<br>- | -<br>-<br>↓   | 250<br>-<br>-                              | mVdc<br>↓ | a<br>b<br>c     | -<br>-<br>-     | -<br>-<br>-          | -<br>-<br>-        | -<br>-<br>↓     | j<br>b, c, e<br>a, c, e<br>a, b, e |  |
| Isolation Leakage Current | I <sub>L</sub>                     | j              | -                 | 100           | -               | 100           | -               | 100           | μAdc              | -             | 100           | -             | 100           | -             | 100                                        | μAdc      | -               | -               | -                    | -                  | -               | j<br>a, b, c, e                    |  |
| Switching Time            | t                                  | b+d-<br>b-d+   | -<br>-            | -<br>-        | -<br>-          | 50<br>40      | -<br>-          | -<br>-        | ns                | -<br>-        | -<br>-        | -<br>-        | -<br>-        | 50<br>40      | -<br>-                                     | ns<br>ns  | b<br>b          | d<br>d          | -<br>-               | -<br>-             | j<br>a, b, c, e |                                    |  |

Ground input pins of gates not under test. Other pins not listed are left open.

**MC919 • MC819**

Available in TO-86 Flat Package, Add F Suffix.



Typical Resistance Values  
 $R_1 = 1.5 \text{ k}\Omega$   
 $R_2 = 3.6 \text{ k}\Omega$

Two 4-input positive logic NOR gates in a single package may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

**ELECTRICAL CHARACTERISTICS**

Test procedures shown are for one gate only.  
Other gates are tested in the same manner.

| @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |      |
|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|------|
|                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |      |
| MC919             | -55°C                       | 0.970           | 0.935            | 1.80             | 0.650           | 3.00 |
|                   | +25°C                       | 0.805           | 0.750            | 1.80             | 0.450           | 3.00 |
|                   | +125°C                      | 0.590           | 0.555            | 1.80             | 0.260           | 3.00 |
|                   | 0°C                         | 0.880           | 0.850            | 1.80             | 0.500           | 3.60 |
| MC819             | +25°C                       | 0.830           | 0.880            | 1.80             | 0.460           | 3.60 |
|                   | +75°C                       | 0.740           | 0.710            | 1.80             | 0.400           | 3.60 |

| Characteristic            | Symbol                             | Pin Under Test   | MC919 Test Limits |     |            |     |            |     | MC819 Test Limits |     |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                       |                  |                 |                  |                  |                 |     |                    |
|---------------------------|------------------------------------|------------------|-------------------|-----|------------|-----|------------|-----|-------------------|-----|-----|-------|-----|-------|--------------------------------------------|-----------------------|------------------|-----------------|------------------|------------------|-----------------|-----|--------------------|
|                           |                                    |                  | -55°C             |     | +25°C      |     | +125°C     |     | Unit              | 0°C |     | +25°C |     | +75°C |                                            | Unit                  | V <sub>in</sub>  | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | Gnd |                    |
|                           |                                    |                  | Min               | Max | Min        | Max | Min        | Max |                   | Min | Max | Min   | Max | Min   | Max                                        |                       | 2                | 3               | 5                | 6                | 7               |     |                    |
| Input Current             | I <sub>in</sub>                    | 2<br>3<br>5<br>6 | -                 | 125 | -          | 130 | -          | 110 | μAdc              | -   | 150 | -     | 140 | -     | 140                                        | μAdc                  | 2                | -               | 3, 5, 6          | -                | 14              | 7   |                    |
| Output Current            | I <sub>A4</sub><br>I <sub>AM</sub> | 1<br>1           | 475<br>-          | -   | 494<br>730 | -   | 418<br>815 | -   | μAdc<br>μAdc      | 570 | -   | 570   | -   | 535   | -                                          | μAdc                  | 1<br>1           | -               | 8                | 2, 3, 5, 6       | 14              | 7   |                    |
| Output Voltage            | V <sub>out</sub>                   | 1<br>1<br>1<br>1 | -                 | 620 | -          | 300 | -          | 230 | mVdc              | -   | 400 | -     | 350 | -     | 300                                        | mVdc                  | -                | 2               | 3                | -                | -               | 14  | 3, 5, 6, 7         |
| Saturation Voltage        | V <sub>CE(sat)</sub>               | 1<br>1<br>1<br>1 | -                 | 220 | -          | 220 | -          | 220 | mVdc              | -   | 250 | -     | 250 | -     | 250                                        | mVdc                  | 2<br>3<br>5<br>6 | -               | -                | -                | -               | 14  | 2, 5, 6, 7         |
| Isolation Leakage Current | I <sub>L</sub>                     | 14               | -                 | 100 | -          | 100 | -          | 100 | μAdc              | -   | 100 | -     | 100 | -     | 100                                        | μAdc                  | -                | -               | -                | -                | -               | 14  | 2, 3, 5, 6, 7      |
| Switching Time            | t                                  | 2+1-<br>2-1+     | -                 | -   | -          | 50  | -          | -   | ns<br>ns          | -   | -   | -     | -   | -     | -                                          | Pulse In<br>Pulse Out | 2<br>2           | 1<br>1          | -                | -                | -               | 14  | 5, 6, 7<br>5, 6, 7 |

Ground input pins of gates not under test. Other pins not listed are left open.

**MC993 • MC893**

Available in TO-86 Flat Package, Add F Suffix.



Three 3-input positive logic NOR gates in a single package may be used independently, paralleled for increased number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

| @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 |
|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|
|                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |
| MC993             | 0.970                       | 0.935           | 1.80             | 0.650            | 3.00            |
|                   | 0.805                       | 0.750           | 1.80             | 0.450            | 3.00            |
|                   | 0.590                       | 0.555           | 1.80             | 0.260            | 3.00            |
| MC893             | 0.880                       | 0.850           | 1.80             | 0.500            | 3.60            |
|                   | 0.830                       | 0.800           | 1.80             | 0.460            | 3.60            |
|                   | 0.740                       | 0.710           | 1.80             | 0.400            | 3.60            |
|                   |                             |                 |                  |                  |                 |

**ELECTRICAL CHARACTERISTICS**

Test procedures shown are for one gate only.  
Other gates are tested in the same manner.

| Characteristic            | Symbol                             | Pin Under Test | MC993 Test Limits |     |       |     |        |     | MC893 Test Limits |     |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  |                 |                                       |
|---------------------------|------------------------------------|----------------|-------------------|-----|-------|-----|--------|-----|-------------------|-----|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|---------------------------------------|
|                           |                                    |                | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C |     | +25°C |     | +75°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | Gnd                                   |
|                           |                                    |                | Min               | Max | Min   | Max | Min    | Max |                   | Min | Max | Min   | Max | Min   | Max                                        |      | 1               | 2               | 13               | -                | 14              | 7                                     |
| Input Current             | I <sub>in</sub>                    | 1<br>2<br>13   | -                 | 125 | -     | 130 | -      | 110 | μAdc              | -   | 150 | -     | 140 | -     | 140                                        | μAdc | 1               | 2               | 13               | -                | 14              | 7                                     |
| Output Current            | I <sub>A4</sub><br>I <sub>AM</sub> | 12             | 475               | -   | 494   | -   | 418    | -   | μAdc              | 570 | -   | 570   | -   | 535   | -                                          | μAdc | 12              | -               | 3, 9             | 1, 2, 13         | 14              | 7                                     |
| Output Voltage            | V <sub>out</sub>                   | 12<br>12<br>12 | -                 | 620 | -     | 300 | -      | 230 | mVdc              | -   | 400 | -     | 350 | -     | 300                                        | mVdc | -               | 13              | -                | -                | 14              | 1, 2, 7<br>2, 7, 13<br>1, 7, 13       |
| Saturation Voltage        | V <sub>CE(sat)</sub>               | 12<br>12<br>12 | -                 | 220 | -     | 220 | -      | 220 | mVdc              | -   | 250 | -     | 250 | -     | 250                                        | mVdc | 13<br>1<br>2    | -               | -                | -                | -               | 14<br>1, 2, 7<br>2, 7, 13<br>1, 7, 13 |
| Isolation Leakage Current | I <sub>L</sub>                     | 14             | -                 | 100 | -     | 100 | -      | 100 | μAdc              | -   | 100 | -     | 100 | -     | 100                                        | μAdc | -               | -               | -                | -                | -               | 14<br>1, 2, 7, 13                     |
| Switching Time            | t                                  | 1+12-<br>1-12+ | -                 | -   | -     | 50  | -      | -   | ns                | -   | -   | -     | 50  | -     | -                                          | ns   | 1               | 12              | -                | -                | 14              | 2, 7, 13<br>2, 7, 13                  |

Ground input pins of gates not under test. Other pins not listed are left open.

**MC917 • MC817**

Available in TO-86 Flat Package, Add F Suffix.



This gate element consists of four 2-input positive logic NOR gate circuits in a single package. Each may be used independently or connected together to form non-inverting gates or flip-flops.

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

**ELECTRICAL CHARACTERISTICS**

Test procedures shown are for one gate only.  
Other gates are tested in the same manner.

| Characteristic            | Symbol                             | Pin Under Test | MC917           |          |            |          |            |          | MC817          |          |            |          |            |          | TEST VOLTAGE VALUES (Volts) |                |                    |                     |                      |                  |                 |              |
|---------------------------|------------------------------------|----------------|-----------------|----------|------------|----------|------------|----------|----------------|----------|------------|----------|------------|----------|-----------------------------|----------------|--------------------|---------------------|----------------------|------------------|-----------------|--------------|
|                           |                                    |                | -55°C           |          | +25°C      |          | +125°C     |          | Unit           | 0°C      |            | +25°C    |            | +75°C    |                             | Unit           | V <sub>in</sub>    | V <sub>on</sub>     | V <sub>BOT</sub>     | V <sub>off</sub> | V <sub>CC</sub> |              |
|                           |                                    |                | Min             | Max      | Min        | Max      | Min        | Max      |                | Min      | Max        | Min      | Max        | Min      | Max                         |                | 1                  | 2                   | -                    | 2                | -               |              |
| Input Current             | I <sub>in</sub>                    | 1<br>2         | -<br>125        | -<br>125 | 125<br>-   | -<br>130 | 130<br>-   | -<br>110 | μA/dc<br>μA/dc | -<br>-   | 150<br>150 | -<br>-   | 140<br>140 | -<br>-   | 140<br>140                  | μA/dc<br>μA/dc | 1<br>2             | -<br>-              | 2<br>1               | -<br>-           | 14<br>14        | 7<br>7       |
| Output Current            | I <sub>A4</sub><br>I <sub>AM</sub> | 3<br>3         | 475<br>-<br>730 | -<br>-   | 494<br>815 | -<br>-   | 418<br>830 | -<br>-   | μA/dc<br>μA/dc | 570<br>- | -<br>-     | 570<br>- | -<br>-     | 535<br>- | -<br>-                      | μA/dc          | 3<br>3             | -<br>-              | 4, 9, 12<br>4, 9, 12 | 1, 2<br>1, 2     | 14<br>14        | 7<br>7       |
| Output Voltage            | V <sub>out</sub>                   | 3<br>3         | -<br>620        | -<br>620 | 620<br>-   | -<br>300 | 300<br>-   | -<br>230 | mVdc<br>mVdc   | -<br>-   | 400<br>400 | -<br>-   | 350<br>350 | -<br>-   | 300<br>300                  | mVdc<br>mVdc   | -<br>1<br>2        | 1<br>-              | -<br>-               | -<br>-           | 14<br>14        | 2, 7<br>1, 7 |
| Saturation Voltage        | V <sub>CE(sat)</sub>               | 3<br>3         | -<br>220        | -<br>220 | 220<br>-   | -<br>220 | 220<br>-   | -<br>220 | mVdc<br>mVdc   | -<br>-   | 250<br>250 | -<br>-   | 250<br>250 | -<br>-   | 250<br>250                  | mVdc<br>mVdc   | 1<br>2             | -<br>-              | -<br>-               | -<br>-           | 14<br>14        | 2, 7<br>1, 7 |
| Isolation Leakage Current | I <sub>L</sub>                     | 14             | -               | 100      | -          | 100      | -          | 100      | μA/dc          | -        | 100        | -        | 100        | -        | 100                         | μA/dc          | -                  | -                   | -                    | -                | 14              | 1, 2, 7      |
| Switching Time            | t                                  | 1+3-<br>1-3+   | -               | -        | -          | -        | 50         | -        | ns             | -        | -          | -        | 50         | -        | -                           | ns             | Pulse In<br>1<br>1 | Pulse Out<br>3<br>3 | -                    | -                | 14<br>14        | 2, 7<br>2, 7 |

Ground input pins of gates not under test. Other pins not listed are left open.

## MC909 • MC809

Available in TO-99 Metal Can, Add G Suffix.  
Available in TO-91 Flat Package, Add F Suffix.



Typical Resistance Values  
 $R_1 = 1.5\text{ k}$   
 $R_2 = 3.6\text{ k}$   
 $R_3 = 100$

This buffer is designed to drive a greater number of loads than the basic Resistor Transistor Logic circuit. Returning an input resistor to VCC allows for capacitive coupling in multivibrator and differentiator applications.



| PIN CONNECTIONS   |   |   |   |   |   |   |    |
|-------------------|---|---|---|---|---|---|----|
| Schematic         | a | b | c | d | e | f | g  |
| G Package (TO-99) | 1 | 2 | 3 | 4 | — | 6 | —  |
| F Package (TO-91) | 1 | 2 | 4 | 5 | 6 | 7 | 9  |
|                   |   |   |   |   |   |   | 10 |

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



| @Test Temperature | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 | (kΩ) |
|-------------------|--------------------------------|-----------------|------------------|------------------|-----------------|------|
|                   | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |      |
|                   | 0.970                          | 0.935           | 1.80             | 0.650            | 3.00            | 4.27 |
| MC909             | 0.805                          | 0.750           | 1.80             | 0.450            | 3.00            | 4.3  |
|                   | 0.590                          | 0.555           | 1.80             | 0.260            | 3.00            | 5.0  |
|                   | 0.880                          | 0.850           | 1.80             | 0.500            | 3.60            | 4.3  |
|                   | 0.830                          | 0.800           | 1.80             | 0.460            | 3.60            | 4.3  |
|                   | 0.740                          | 0.710           | 1.80             | 0.400            | 3.60            | 4.7  |
|                   |                                |                 |                  |                  |                 |      |
| MC809             |                                |                 |                  |                  |                 |      |
|                   |                                |                 |                  |                  |                 |      |
|                   |                                |                 |                  |                  |                 |      |
|                   |                                |                 |                  |                  |                 |      |
|                   |                                |                 |                  |                  |                 |      |
|                   |                                |                 |                  |                  |                 |      |

## ELECTRICAL CHARACTERISTICS

| Characteristic            | Symbol               | Pin Under Test | MC909 Test Limits |            |        |            |        |            | MC809 Test Limits |        |            |        |            |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |              |                       |                 |                  |                  |                 |                   |              |              |
|---------------------------|----------------------|----------------|-------------------|------------|--------|------------|--------|------------|-------------------|--------|------------|--------|------------|--------|--------------------------------------------|--------------|-----------------------|-----------------|------------------|------------------|-----------------|-------------------|--------------|--------------|
|                           |                      |                | -55°C             |            | +25°C  |            | +125°C |            | Unit              | 0°C    |            | +25°C  |            | +75°C  |                                            | Unit         | V <sub>in</sub>       | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>RH</sub> * | Gnd          |              |
|                           |                      |                | Min               | Max        | Min    | Max        | Min    | Max        |                   | Min    | Max        | Min    | Max        | Min    | Max                                        |              | Min                   | Max             | Min              | Max              | Min             |                   |              |              |
| Input Current             | 2I <sub>in</sub>     | b<br>c         | -<br>-            | 250<br>250 | -<br>- | 260<br>260 | -<br>- | 220<br>220 | μAdc<br>μAdc      | -<br>- | 300<br>300 | -<br>- | 280<br>280 | -<br>- | 280<br>280                                 | μAdc<br>μAdc | b<br>c                | -<br>-          | c<br>b           | -<br>-           | h<br>h          | -<br>-            | d<br>d       |              |
| Output Current            | I <sub>AB</sub>      | f              | 3.75              | -          | 4.0    | -          | 3.3    | -          | mAdc              | 4.5    | -          | 4.5    | -          | 4.5    | -                                          | mAdc         | f                     | -               | -                | b, c             | h               | -                 | d            |              |
| Output Voltage            | V <sub>out</sub>     | f<br>f         | -<br>-            | 620<br>620 | -<br>- | 300<br>300 | -<br>- | 230<br>230 | mVdc<br>mVdc      | -<br>- | 400<br>400 | -<br>- | 350<br>350 | -<br>- | 300<br>300                                 | mVdc<br>mVdc | -<br>-                | b<br>c          | -<br>-           | -<br>-           | h<br>h          | f<br>f            | c, d<br>b, d |              |
| Saturation Voltage        | V <sub>CE(sat)</sub> | f<br>f         | -<br>-            | 220<br>220 | -<br>- | 220<br>220 | -<br>- | 220<br>220 | mVdc<br>mVdc      | -<br>- | 250<br>250 | -<br>- | 250<br>250 | -<br>- | 250<br>250                                 | mVdc<br>mVdc | b<br>c                | -<br>-          | -<br>-           | -<br>-           | h<br>h          | f<br>f            | c, d<br>b, d |              |
| Isolation Leakage Current | I <sub>L</sub>       | h              | -                 | 100        | -      | 100        | -      | 100        | μAdc              | -      | 100        | -      | 100        | -      | 100                                        | μAdc         | -                     | -               | -                | -                | h               | -                 | b, c, d      |              |
| Switching Time            | t                    | c+f-<br>c-f+   | -                 | -          | -      | 90         | -      | -          | ns<br>ns          | -      | -          | -      | -          | 90     | -                                          | ns<br>ns     | Pulse In<br>Pulse Out |                 |                  |                  |                 |                   |              | b, d<br>b, d |

Pins not listed are left open. \*Resistor value to V<sub>CC</sub>

MC909, MC809 (continued)

PROPAGATION DELAY versus TEMPERATURE



**MC981 • MC881**

Available in TO-99 Metal Can, Add G Suffix.



These Buffers are designed to drive a greater number of loads than the basic Resistor Transistor Logic circuit.

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

## ELECTRICAL CHARACTERISTICS

Test procedures shown are for one buffer only.  
The other buffer is tested in the same manner.

| @Test Temperature | TEST VOLTAGE VALUES |                 |                  |                  |                 | (k $\Omega$ ) |      |
|-------------------|---------------------|-----------------|------------------|------------------|-----------------|---------------|------|
|                   | (Volts)             |                 |                  |                  |                 |               |      |
|                   | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |               |      |
| MC981             | -55°C               | 0.970           | 0.935            | 1.80             | 0.650           | 3.00          | 4.27 |
|                   | +25°C               | 0.805           | 0.750            | 1.80             | 0.450           | 3.00          | 4.3  |
|                   | +125°C              | 0.590           | 0.555            | 1.80             | 0.260           | 3.00          | 5.0  |
| MC881             | 0°C                 | 0.880           | 0.850            | 1.80             | 0.500           | 3.60          | 4.3  |
|                   | +25°C               | 0.830           | 0.800            | 1.80             | 0.460           | 3.60          | 4.3  |
|                   | +75°C               | 0.740           | 0.710            | 1.80             | 0.400           | 3.60          | 4.7  |

| Characteristic            | Symbol               | Pin Under Test | MC981 Test Limits |          |            |          |            |                        | MC881 Test Limits |            |        |            |          |            | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                       |                 |                 |                  |                  |                 |                   |            |
|---------------------------|----------------------|----------------|-------------------|----------|------------|----------|------------|------------------------|-------------------|------------|--------|------------|----------|------------|--------------------------------------------|-----------------------|-----------------|-----------------|------------------|------------------|-----------------|-------------------|------------|
|                           |                      |                | -55°C             |          | +25°C      |          | +125°C     |                        | Unit              | 0°C        |        | +25°C      |          | +75°C      |                                            | Unit                  | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>RH</sub> * | Gnd        |
|                           |                      |                | Min               | Max      | Min        | Max      | Min        | Max                    |                   | Min        | Max    | Min        | Max      | Min        | Max                                        |                       | 1               | 2               | -                | 8                | -               | 4                 |            |
| Input Current             | 2I <sub>in</sub>     | 1<br>2         | -<br>250          | -<br>250 | 260<br>260 | -<br>-   | 220<br>220 | $\mu$ Adc<br>$\mu$ Adc | -<br>-            | 300<br>300 | -<br>- | 280<br>280 | -<br>-   | 280<br>280 | $\mu$ Adc<br>$\mu$ Adc                     | 1<br>2                | -<br>-          | 2<br>1          | -<br>-           | 8<br>8           | -<br>-          | 4<br>4            |            |
| Output Current            | I <sub>AB</sub>      | 7              | 3.75              | -        | 4.0        | -        | 3.3        | -                      | mAdc              | 4.5        | -      | 4.5        | -        | 4.5        | -                                          | mAdc                  | 7               | -               | -                | 1,2              | 8               | -                 | 4          |
| Output Voltage            | V <sub>out</sub>     | 7<br>7         | -<br>620          | -<br>620 | 300<br>300 | -<br>-   | 230<br>230 | mVdc<br>mVdc           | -<br>-            | 400<br>400 | -<br>- | 350<br>350 | -<br>-   | 300<br>300 | mVdc<br>mVdc                               | -<br>-                | 1<br>2          | -<br>-          | -<br>-           | 8<br>8           | 7<br>7          | 2,4<br>1,4        |            |
| Saturation Voltage        | V <sub>CE(sat)</sub> | 7<br>7         | -<br>220          | -<br>220 | 220<br>220 | -<br>-   | 220<br>220 | mVdc<br>mVdc           | -<br>-            | 250<br>250 | -<br>- | 250<br>250 | -<br>-   | 250<br>250 | mVdc<br>mVdc                               | 1<br>2                | -<br>-          | -<br>-          | -<br>-           | 8<br>8           | 7<br>7          | 2,4<br>1,4        |            |
| Isolation Leakage Current | I <sub>L</sub>       | 8              | -                 | 100      | -          | 100      | -          | 100                    | $\mu$ Adc         | -          | 100    | -          | 100      | -          | 100                                        | $\mu$ Adc             | -               | -               | -                | -                | 8               | -                 | 1,2,3,4,5  |
| Switching Time            | t                    | 1+7-<br>1-7+   | -<br>-            | -<br>-   | -<br>-     | 90<br>70 | -<br>-     | -<br>-                 | ns<br>ns          | -<br>-     | -<br>- | -<br>-     | 90<br>70 | -<br>-     | -<br>-                                     | Pulse In<br>Pulse Out | 1<br>1          | 7<br>7          | -<br>-           | -<br>-           | 8<br>8          | -<br>-            | 2,4<br>2,4 |

Ground input pins of buffer not under test. Other pins not listed are left open. \*Resistor value to V<sub>CC</sub>.

**MC998 • MC898**

Available in TO-86 Flat Package, Add F Suffix.



Typical Resistance Values

R1 = 1.5 k  
 R2 = 3.6 k  
 R3 = 100

These Buffers are designed to drive a greater number of loads than the basic Resistor Transistor Logic Circuit. Returning an input resistor to V<sub>CC</sub> allows for capacitive coupling in multivibrator and differentiator applications.



$$6 = \overline{2 + 5} = \overline{2} \cdot \overline{5}$$

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

## ELECTRICAL CHARACTERISTICS

Test procedures shown are for one buffer only.  
The other buffer is tested in the same manner.

| Characteristic            | Symbol               | Pin Under Test | MC998 Test Limits |     |       |     |        |     | MC898 Test Limits |     |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  |                 |                 |                   |              |
|---------------------------|----------------------|----------------|-------------------|-----|-------|-----|--------|-----|-------------------|-----|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|-----------------|-------------------|--------------|
|                           |                      |                | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C |     | +25°C |     | +75°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>UL</sub> | V <sub>RH</sub> * | Gnd          |
|                           |                      |                | Min               | Max | Min   | Max | Min    | Max |                   | Min | Max | Min   | Max | Min   | Max                                        |      | Min             | Max             | Min              | Max              | Min             | Max             |                   |              |
| Input Current             | 2I <sub>in</sub>     | 2<br>5         | -                 | 250 | -     | 260 | -      | 220 | μAdc              | -   | 300 | -     | 280 | -     | 280                                        | μAdc | 2               | -               | 5                | -                | 14              | -               | -                 | 7            |
|                           |                      |                | -                 | 250 | -     | 260 | -      | 220 | μAdc              | -   | 300 | -     | 280 | -     | 280                                        | μAdc | 5               | -               | 2                | -                | 14              | -               | -                 | 7            |
| Output Current            | I <sub>AB</sub>      | 6              | 3.75              | -   | 4.0   | -   | 3.3    | -   | mAdc              | 4.5 | -   | 4.5   | -   | 4.5   | -                                          | mAdc | 8               | -               | -                | 2, 5             | 14              | -               | -                 | 7            |
| Output Voltage            | V <sub>out</sub>     | 6<br>6         | -                 | 620 | -     | 300 | -      | 230 | mVdc              | -   | 400 | -     | 350 | -     | 300                                        | mVdc | -               | 2               | -                | -                | 14              | -               | 8                 | 5, 7<br>2, 7 |
| Saturation Voltage        | V <sub>CE(sat)</sub> | 6<br>6         | -                 | 220 | -     | 220 | -      | 220 | mVdc              | -   | 250 | -     | 250 | -     | 250                                        | mVdc | -               | -               | 2                | -                | 14              | -               | 6                 | 5, 7<br>2, 7 |
| Isolation Leakage Current | I <sub>L</sub>       | 14             | -                 | 100 | -     | 100 | -      | 100 | μAdc              | -   | 100 | -     | 100 | -     | 100                                        | μAdc | -               | -               | -                | -                | -               | 14              | -                 | 2, 5, 7      |
| Switching Time            | t                    | 5+6-<br>5-6+   | -                 | -   | -     | 90  | -      | -   | ns                | -   | -   | -     | 90  | -     | -                                          | ns   | 5               | 6               | -                | -                | 14              | -               | -                 | 2, 7<br>2, 7 |

Ground input pins of buffer not under test. Other pins not listed are left open. \*Resistor value to V<sub>CC</sub>.

| @Test Temperature | TEST VOLTAGE VALUES |                 |                 |                  |                  |                 | (kΩ)            |      |
|-------------------|---------------------|-----------------|-----------------|------------------|------------------|-----------------|-----------------|------|
|                   | (Volts)             | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>UL</sub> |      |
| MC998 {           | -55°C               | 0.970           | 0.935           | 1.60             | 0.650            | 3.00            | 0.500           | 4.27 |
|                   | +25°C               | 0.605           | 0.750           | 1.60             | 0.450            | 3.00            | 0.400           | 4.3  |
|                   | +125°C              | 0.590           | 0.555           | 1.60             | 0.260            | 3.00            | 0.300           | 5.0  |
|                   | 0°C                 | 0.680           | 0.650           | 1.60             | 0.500            | 3.60            | 0.450           | 4.3  |
| MC898 {           | +25°C               | 0.830           | 0.600           | 1.60             | 0.460            | 3.60            | 0.400           | 4.3  |
|                   | +75°C               | 0.740           | 0.710           | 1.60             | 0.400            | 3.60            | 0.350           | 4.7  |

**MC913 • MC813**

Available in TO-99 Metal Can, Add G Suffix.  
Available in TO-91 Flat Package, Add F Suffix.

The MC913/MC813 RTL Type D Flip-Flop is a storage element that stores the state of pin b during negative transitions of pin a. The flip-flop is not affected by changes of pin b during either the low or high state of the clock. Using pins c and g as inputs produces a standard R-S flip-flop.



1. Clock (T input) must be high.
  2. The output state will not change when the input state goes from S<sub>D</sub> = C<sub>D</sub> = SD = CD = 0. The output state cannot be predetermined in the case where the input goes from S<sub>D</sub> = CD = 1 to S<sub>D</sub> = CD = 0.
  3. Direct inputs (S<sub>D</sub> and C<sub>D</sub>) must be low.
- 0 = low state  
1 = high state  
 $t_n$  = time period prior to negative transition of clock pulse  
 $t_{n+1}$  = time period subsequent to negative transition of clock pulse



## ELECTRICAL CHARACTERISTICS

| Characteristic            | Symbol                                                                          | Pin Under Test           | MC913 Test Limits     |                               |                       |                               |                       |                               | MC813 Test Limits                    |                       |                               |                       |                               |                       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                                      |                                        |                             |                                  |                       | Gnd                                                      |                                          |                                                     |
|---------------------------|---------------------------------------------------------------------------------|--------------------------|-----------------------|-------------------------------|-----------------------|-------------------------------|-----------------------|-------------------------------|--------------------------------------|-----------------------|-------------------------------|-----------------------|-------------------------------|-----------------------|--------------------------------------------|--------------------------------------|----------------------------------------|-----------------------------|----------------------------------|-----------------------|----------------------------------------------------------|------------------------------------------|-----------------------------------------------------|
|                           |                                                                                 |                          | -55°C                 |                               | +25°C                 |                               | +125°C                |                               | Unit                                 | 0°C                   |                               | +25°C                 |                               | +75°C                 |                                            | Unit                                 | V <sub>in</sub>                        | V <sub>on</sub>             | V <sub>BOT</sub>                 | V <sub>off</sub>      | V <sub>CC</sub>                                          | V <sub>LL</sub>                          |                                                     |
|                           |                                                                                 |                          | Min                   | Max                           | Min                   | Max                           | Min                   | Max                           |                                      | Min                   | Max                           | Min                   | Max                           | Min                   | Max                                        |                                      | a                                      | a                           | b                                | a                     | c                                                        | h                                        |                                                     |
| Input Current             | 1.8 I <sub>in</sub><br>1.8 I <sub>in</sub><br>I <sub>in</sub><br>b*<br>c*<br>g* | a<br>a<br>b*<br>c*<br>g* | -<br>-<br>-<br>-<br>- | 225<br>225<br>125<br>130<br>- | -<br>-<br>-<br>-<br>- | 234<br>234<br>130<br>110<br>- | -<br>-<br>-<br>-<br>- | 198<br>198<br>110<br>140<br>- | μAdc<br>μAdc<br>μAdc<br>μAdc<br>μAdc | -<br>-<br>-<br>-<br>- | 270<br>270<br>150<br>140<br>- | -<br>-<br>-<br>-<br>- | 252<br>252<br>140<br>140<br>- | -<br>-<br>-<br>-<br>- | 252<br>252<br>140<br>140<br>-              | μAdc<br>μAdc<br>μAdc<br>μAdc<br>μAdc | a<br>a<br>b<br>c<br>g                  | -<br>-<br>-<br>-<br>-       | b<br>-<br>b<br>a<br>-            | a<br>-<br>b<br>c<br>g | h<br>-<br>a<br>-<br>-                                    | -<br>-<br>-<br>-<br>-                    | b, c, d, g<br>c, d, g<br>c, d, g<br>d, g<br>b, c, d |
| Output Current            | I <sub>A3</sub>                                                                 | e*<br>e*<br>f<br>f*      | 350<br>-<br>-<br>-    | -<br>364<br>-<br>-            | -<br>-<br>-<br>-      | 308<br>-<br>-<br>-            | -<br>-<br>-<br>-      | -<br>-<br>-<br>-              | μAdc<br>μAdc<br>μAdc<br>μAdc         | 420<br>-<br>-<br>-    | -<br>-<br>-<br>-              | 430<br>-<br>-<br>-    | -<br>-<br>-<br>-              | 395<br>-<br>-<br>-    | -<br>-<br>-<br>-                           | μAdc<br>μAdc<br>μAdc<br>μAdc         | e<br>e<br>-<br>f                       | e<br>-<br>-<br>a, g         | a<br>-<br>-<br>b, g<br>a, c<br>c | a, c<br>-<br>a, g     | h<br>-<br>-                                              | -<br>-<br>-                              | d<br>b, d<br>b, d<br>b, d                           |
| Output Voltage            | V <sub>out</sub>                                                                | e<br>e<br>f<br>f         | -<br>-<br>-<br>-      | 620<br>-<br>-<br>-            | -<br>300<br>-<br>-    | -<br>230<br>-<br>-            | -<br>-<br>-<br>-      | mVdc<br>mVdc<br>mVdc<br>mVdc  | -<br>-<br>-<br>-                     | 400<br>-<br>-<br>-    | -<br>-<br>-<br>-              | 350<br>-<br>-<br>-    | -<br>-<br>-<br>-              | 300<br>-<br>-<br>-    | mVdc<br>mVdc<br>mVdc<br>mVdc               | -<br>-<br>-<br>-                     | c<br>-<br>-<br>f<br>g<br>e             | a, g<br>a<br>a, c<br>a<br>a | a<br>-<br>-<br>g<br>a<br>-       | h<br>-<br>-           | -<br>-<br>-                                              | b, d<br>b, c, d, g<br>b, d<br>b, c, d, g |                                                     |
| Saturation Voltage        | V <sub>CE</sub> (sat)                                                           | e<br>e<br>e*<br>f<br>f*  | -<br>-<br>-<br>-<br>- | 220<br>-<br>-<br>-<br>-       | -<br>220<br>-<br>-    | -<br>220<br>-<br>-            | -<br>-<br>-<br>-      | mVdc<br>mVdc<br>mVdc<br>mVdc  | -<br>-<br>-<br>-                     | 250<br>-<br>-<br>-    | -<br>-<br>-<br>-              | 250<br>-<br>-<br>-    | -<br>-<br>-<br>-              | 250<br>-<br>-<br>-    | mVdc<br>mVdc<br>mVdc<br>mVdc               | c<br>-<br>-<br>f<br>g<br>e           | a, g<br>a<br>a, g<br>a, c<br>a<br>a, b | a<br>-<br>-<br>b<br>a<br>-  | h<br>-<br>-                      | -<br>-<br>-           | b, d<br>b, c, d, g<br>c, d<br>b, d<br>b, c, d, g<br>d, g |                                          |                                                     |
| Isolation Leakage Current | I <sub>L</sub>                                                                  | h                        | -                     | 100                           | -                     | 100                           | -                     | 100                           | μAdc                                 | -                     | 100                           | -                     | 100                           | -                     | 100                                        | μAdc                                 | -                                      | -                           | -                                | -                     | h                                                        | a, b, c, d, g                            |                                                     |

Pins not listed are left open.

\*The voltage applied to pin a must change from V<sub>RL</sub> to V<sub>off</sub> prior to making measurements.

$$V_{RL} = \text{Resistance value to } V_{CC}; \quad V_{RL} = 2.8 \text{ k ohms @ } -55^{\circ}\text{C}, \quad V_{RL} = 2.7 \text{ k ohms @ } +25^{\circ}\text{C}, \quad V_{RL} = 3.0 \text{ k ohms @ } +125^{\circ}\text{C}$$

@ 0°C @ +75°C

## MC913, MC813 (continued)

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 1



### SET-UP AND RELEASE TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 2A



FIGURE 2B



### SWITCHING TIMES

| Test                | Fig.<br>No. | ns @ 25°C |     |
|---------------------|-------------|-----------|-----|
|                     |             | min       | max |
| t <sub>T-Q-</sub> * | 1           | -         | 80  |
| t <sub>T-Q+</sub> * | 1           | -         | 120 |
| t <sub>T-Q-</sub> * | 1           | --        | 80  |
| t <sub>T-Q+</sub> * | 1           | --        | 120 |
| t <sub>S-T-</sub>   | 2           | 60        | -   |
| t <sub>T-S-</sub>   | 2           | 30        | -   |
| t <sub>S-T-</sub>   | 2           | 60        | -   |
| t <sub>T-S+</sub>   | 2           | 30        | --  |

\* Tie pin b to pin e

**MC913, MC813 (continued)**



# MC920 • MC820

Available in TO-99 Metal Can, Add G Suffix.

Available in TO-91 Flat Package, Add F Suffix.

J-K Flip-Flop with a direct clear input in addition to the clocked inputs.



CLOCKED INPUT OPERATION

| $t_n$ | $t_{n+1}$ | s           | c     | q           | $\bar{q}$   |
|-------|-----------|-------------|-------|-------------|-------------|
| 1     | 1         | 1           | 0     | $\bar{q}_n$ | $q_n$       |
| 1     | 0         | 1           | 0     | $q_n$       | $\bar{q}_n$ |
| 0     | 1         | 0           | 1     | $\bar{q}_n$ | $q_n$       |
| 0     | 0         | $\bar{q}_n$ | $q_n$ | $\bar{q}_n$ | $q_n$       |

Direct Input (CD) must be low.

0 = low state

1 = high state

$t_n$  = time period prior to negative transition of clock pulse

$t_{n+1}$  = time period subsequent to negative transition of clock pulse.

$q_n$  = state of Q output in time period  $t_n$ .

PIN CONNECTIONS

| Schematic         | a | b | c | d | e | f | g | h  |
|-------------------|---|---|---|---|---|---|---|----|
| G Package (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  |
| F Package (TO-91) | 1 | 2 | 4 | 5 | 6 | 7 | 9 | 10 |



| @Test Temperature | TEST VOLTAGE VALUES |                 |                  |                  |                 |                 |
|-------------------|---------------------|-----------------|------------------|------------------|-----------------|-----------------|
|                   | (Volts)             |                 |                  |                  |                 | (Ohms)          |
|                   | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>LL</sub> |
| MC920             | 0.970               | 0.935           | 1.80             | 0.650            | 3.00            | 0.500           |
|                   | 0.805               | 0.750           | 1.80             | 0.450            | 3.00            | 0.400           |
|                   | 0.590               | 0.555           | 1.80             | 0.260            | 3.00            | 0.300           |
| MC820             | 0.880               | 0.850           | 1.80             | 0.500            | 3.60            | 0.450           |
|                   | 0.830               | 0.800           | 1.80             | 0.460            | 3.60            | 0.400           |
|                   | 0.740               | 0.710           | 1.80             | 0.400            | 3.60            | 0.350           |

## ELECTRICAL CHARACTERISTICS

| Characteristic            | Symbol                | Pin Under Test | MC920 Test Limits |     |       |     |        |     | MC820 Test Limits |     |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  | Gnd             |                 |      |
|---------------------------|-----------------------|----------------|-------------------|-----|-------|-----|--------|-----|-------------------|-----|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|-----------------|------|
|                           |                       |                | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C |     | +25°C |     | +75°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>LL</sub> |      |
|                           |                       |                | Min               | Max | Min   | Max | Min    | Max |                   | Min | Max | Min   | Max | Min   | Max                                        |      | a               | b               | c                | d                | e               | f               |      |
| Input Current             | I <sub>in</sub>       | a              | -                 | 125 | -     | 130 | -      | 110 | μAdc              | -   | 150 | -     | 140 | -     | 140                                        | μAdc | a               | -               | e                | -                | h               | -               | d    |
|                           | 2I <sub>in</sub>      | b              | -                 | 250 | -     | 260 | -      | 220 |                   | -   | 300 | -     | 280 | -     | 280                                        |      | b               | -               | a, c             | -                | -               | -               | -    |
|                           | I <sub>in</sub>       | c              | -                 | 125 | -     | 130 | -      | 110 |                   | -   | 150 | -     | 140 | -     | 140                                        |      | c               | -               | g                | -                | -               | -               | -    |
|                           | I <sub>in</sub>       | f              | -                 | 125 | -     | 130 | -      | 110 |                   | -   | 150 | -     | 140 | -     | 140                                        |      | f               | -               | e                | -                | -               | -               | -    |
| Output Current            | I <sub>A2</sub>       | e              | 238               | -   | 247   | -   | 209    | -   | μAdc              | 270 | -   | 290   | -   | 255   | -                                          | μAdc | -               | e               | a, f             | -                | h               | -               | d    |
|                           | e                     | e              | 238               | -   | 247   | -   | 209    | -   | μAdc              | 270 | -   | 290   | -   | 255   | -                                          | μAdc | -               | e, f            | a                | -                | -               | -               | -    |
|                           | g#                    | g#             | -                 | -   | -     | -   | -      | -   | μAdc              | 270 | -   | 290   | -   | 255   | -                                          | μAdc | -               | g               | -                | -                | h               | -               | d    |
| Output Voltage            | V <sub>out</sub>      | e#             | -                 | 620 | -     | 300 | -      | 230 | mVdc              | -   | 400 | -     | 350 | -     | 300                                        | mVdc | -               | g               | a, c             | -                | -               | -               | d, f |
|                           | e*#                   | e*#            | -                 | -   | -     | -   | -      | -   | mVdc              | -   | -   | -     | -   | -     | -                                          | mVdc | -               | a, c            | a                | -                | c               | -               | d, e |
|                           | e*\$                  | e*\$           | -                 | -   | -     | -   | -      | -   | mVdc              | -   | -   | -     | -   | -     | -                                          | mVdc | -               | -               | -                | a, c             | -               | -               | d, f |
|                           | e*\$                  | e*\$           | -                 | -   | -     | -   | -      | -   | mVdc              | -   | -   | -     | -   | -     | -                                          | mVdc | -               | -               | -                | -                | a, c            | -               | d    |
|                           | g                     | g              | -                 | -   | -     | -   | -      | -   | mVdc              | -   | -   | -     | -   | -     | -                                          | mVdc | -               | -               | -                | -                | a, c            | -               | d, f |
|                           | g\$                   | g\$            | -                 | -   | -     | -   | -      | -   | mVdc              | -   | -   | -     | -   | -     | -                                          | mVdc | -               | -               | -                | -                | a, c            | -               | d    |
|                           | g*#                   | g*#            | -                 | -   | -     | -   | -      | -   | mVdc              | -   | -   | -     | -   | -     | -                                          | mVdc | -               | -               | -                | -                | a, c            | -               | d    |
|                           | g*#                   | g*#            | -                 | -   | -     | -   | -      | -   | mVdc              | -   | -   | -     | -   | -     | -                                          | mVdc | -               | -               | -                | -                | a, c            | -               | d    |
| Saturation Voltage        | V <sub>C E(sat)</sub> | e#             | -                 | 220 | -     | 220 | -      | 220 | mVdc              | -   | 250 | -     | 250 | -     | 250                                        | mVdc | -               | -               | -                | f                | h               | -               | d    |
|                           | g                     | g              | -                 | -   | -     | -   | -      | -   | mVdc              | -   | -   | -     | -   | -     | -                                          | mVdc | -               | -               | -                | f                | -               | -               | d, e |
|                           | g*\$                  | g*\$           | -                 | -   | -     | -   | -      | -   | mVdc              | -   | -   | -     | -   | -     | -                                          | mVdc | -               | -               | -                | -                | -               | -               | d    |
| Isolation Leakage Current | I <sub>L</sub>        | h              | -                 | 100 | -     | 100 | -      | 100 | μAdc              | -   | 100 | -     | 100 | -     | 100                                        | μAdc | -               | -               | -                | -                | -               | h               | d    |

Pins not listed are left open.

\* Pin e = LOW } Set by a momentary ground prior to the application of the negative-going clock pulse.

§ Pin g = LOW }

\* = Clock Pulse to Pin b. (see Fig. 4)

## MC920, MC820 (continued)

### SWITCHING TIMES

| Test               | Fig. No. | Overall Temperature Range |     | Unit |
|--------------------|----------|---------------------------|-----|------|
|                    |          | min                       | max |      |
| T-Q-               | 2        | 20                        | 80  | ns   |
| T-Q+               | 2        | ..                        | 120 | ns   |
| C <sub>D</sub> +Q- | 3        | ..                        | 60  | ns   |
| C <sub>D</sub> +Q+ | 3        | ..                        | 120 | ns   |

NOTE: Waveform at the output test point should be  $\frac{1}{2}$  the frequency of the waveform at the input test point.

FIGURE 1 - TOGGLE MODE TEST CIRCUIT



### SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

FIGURE 2



FIGURE 3



FIGURE 4



#### SEQUENCE OF EVENTS:

- Voltage applied to Clock pin is raised to  $V_H$ .  $t_r$  is not critical but should be  $< 1.0 \mu s$ .
  - Biases of all other inputs are applied.  $V_{CC}$  is applied without interruption throughout the testing.
  - Any momentary ground, when applicable.
  - Clock pulse is allowed to fall to  $V_L$ .  $t_f$  remains within 10 ns minimum and 100 ns maximum.
  - Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.
- MC820
- | T <sub>A</sub> | V <sub>L</sub>  | V <sub>H</sub>  |
|----------------|-----------------|-----------------|
| +25°C          | +460 ± 2.0 mVdc | +850 ± 2.0 mVdc |
| 0°C            | +500 ± 2.0 mVdc | +900 ± 2.0 mVdc |
| +75°C          | +400 ± 2.0 mVdc | +760 ± 2.0 mVdc |

FIGURE 5



#### NOTE:

Measurements for output voltages should be taken at least 100 ns after pulses have occurred.

MC920

FIGURE 6



#### INPUT PULSE REQUIREMENTS:

- $V_{IL} = 0.200 \text{ V max}$
- $V_{IH} = 0.894 \text{ V min}, 1.500 \text{ V max}$
- $t \leq 10 \text{ ns}$
- $t \leq 10 \text{ ns}$
- $f = 1.0 \text{ MHz typ}$

#### SEQUENCE OF EVENTS:

- Apply all dc biases required.
- Any momentary ground to pin indicated. This sets the flip-flop. Momentary ground must occur before the pulses shown above every time, or the flip-flop will toggle to the wrong condition every alternate pulse.
- After momentary ground has been released, apply pulses marked above.
- Measure voltage of designated output after the pulse measurements for output voltages should be taken at least 100 ns after pulses have occurred.

**MC922 • MC822**

Available in TO-100 Metal Can, Add G Suffix  
 Available in TO-91 Flat Package, Add F Suffix

J-K flip-flop with direct clear and direct set inputs in addition to the clocked inputs.

| CLOCKED INPUT OPERATION |           |     |     |             |             |
|-------------------------|-----------|-----|-----|-------------|-------------|
| $t_n$                   | $t_{n+1}$ | $S$ | $C$ | $Q$         | $\bar{Q}$   |
| 1                       | 1         | 1   | 1   | $Q_n$       | $\bar{Q}_n$ |
| 1                       | 0         | 0   | 1   | 1           | 0           |
| 0                       | 1         | 0   | 0   | 0           | 1           |
| 0                       | 0         | 0   | 0   | $\bar{Q}_n$ | $Q_n$       |

  

| DIRECT INPUT OPERATION (1) |       |     |           |     |
|----------------------------|-------|-----|-----------|-----|
| $S_D$                      | $C_D$ | $Q$ | $\bar{Q}$ |     |
| 0                          | 0     | 0   | 0         | (1) |
| 1                          | 0     | 1   | 0         |     |
| 0                          | 1     | 0   | 1         |     |
| 1                          | 1     | 0   | 0         |     |

1. Clock (T) to remain unchanged.
2. The output state will not change when the input state goes from  $S_D = \bar{C}_D$  to  $S_D = C_D = 0$ . The output state cannot be predetermined in the case where the input goes from  $S_D = C_D = 1$  to  $S_D = \bar{C}_D = 0$ .
3. Direct inputs ( $C_D$  and  $S_D$ ) must be low.
4. The time period prior to the negative transition of the clock pulse is denoted  $t_n$ , and the time period subsequent to this transition is denoted  $t_{n+1}$ .
5.  $Q_n$  is the state of the Q output in the time period  $t_n$ .



| @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 | Grd  |
|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|------|
|                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |      |
| MC922             | -55°C                       | 0.970           | 0.935            | 1.80             | 0.650           | 3.00 |
|                   | +25°C                       | 0.805           | 0.750            | 1.80             | 0.450           | 3.00 |
|                   | +125°C                      | 0.590           | 0.555            | 1.80             | 0.260           | 3.00 |
|                   | 0°C                         | 0.880           | 0.850            | 1.80             | 0.500           | 3.60 |
| MC822             | +25°C                       | 0.880           | 0.800            | 1.80             | 0.460           | 3.60 |
|                   | +75°C                       | 0.740           | 0.710            | 1.80             | 0.400           | 3.60 |

## ELECTRICAL CHARACTERISTICS

| Characteristic     | Symbol               | Pin Under Test | MC922 Test Limits |     |       |      |        |     | MC822 Test Limits |     |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: | Grd  |      |      |
|--------------------|----------------------|----------------|-------------------|-----|-------|------|--------|-----|-------------------|-----|-----|-------|-----|-------|--------------------------------------------|------|------|------|
|                    |                      |                | -55°C             |     | +25°C |      | +125°C |     | Unit              | 0°C |     | +25°C |     | +75°C |                                            |      |      |      |
|                    |                      |                | Min               | Max | Min   | Max  | Min    | Max |                   | Min | Max | Min   | Max | Min   | Max                                        |      |      |      |
| Input Current      | I <sub>in</sub>      | 1              | -                 | 125 | -     | 130  | -      | 110 | μAdc              | -   | 150 | -     | 140 | -     | 140                                        | μAdc | 1    | -    |
|                    | I <sub>in</sub>      | 2              | -                 | 125 | -     | 130  | -      | 110 |                   | -   | 150 | -     | 140 | -     | 140                                        |      | 2    | -    |
|                    | 2 I <sub>in</sub>    | 3              | -                 | 250 | -     | 260  | -      | 220 |                   | -   | 300 | -     | 280 | -     | 280                                        |      | 3    | -    |
|                    | I <sub>in</sub>      | 4              | -                 | 125 | -     | 130  | -      | 110 |                   | -   | 150 | -     | 140 | -     | 140                                        |      | 4    | -    |
|                    | I <sub>in</sub>      | 8              | -                 | 125 | -     | 130* | -      | 110 |                   | -   | 150 | -     | 140 | -     | 140                                        |      | 8    | -    |
| Output Current     | I <sub>A4</sub>      | 7              | 475               | -   | 494   | -    | 418    | -   | μAdc              | 570 | -   | 570   | -   | 535   | -                                          | μAdc | -    | 7, 1 |
|                    |                      | 9              | 475               | -   | 494   | -    | 418    | -   | μAdc              | 570 | -   | 570   | -   | 535   | -                                          | μAdc | -    | 8, 9 |
| Saturation Voltage | V <sub>CE(sat)</sub> | 7              | -                 | 220 | -     | 222  | -      | 220 | mVdc              | -   | 250 | -     | 250 | -     | 250                                        | mVdc | -    | 1    |
|                    |                      | 7*             | #                 | -   | -     | -    | -      | -   |                   | -   | -   | -     | -   | -     |                                            | -    | 2    |      |
|                    |                      | 7*             | #                 | -   | -     | -    | -      | -   |                   | -   | -   | -     | -   | -     |                                            | -    | 4    |      |
|                    |                      | 7\$*           | -                 | -   | -     | -    | -      | -   |                   | -   | -   | -     | -   | -     |                                            | -    | 2, 4 |      |
|                    |                      | 9              | -                 | -   | -     | -    | -      | -   |                   | -   | -   | -     | -   | -     |                                            | -    | 8    |      |
|                    |                      | 9\$*           | -                 | -   | -     | -    | -      | -   |                   | -   | -   | -     | -   | -     |                                            | -    | 1    |      |
|                    |                      | 9*             | #                 | -   | -     | -    | -      | -   |                   | -   | -   | -     | -   | -     |                                            | -    | 2    |      |
|                    |                      | 9\$*           | *                 | -   | -     | -    | -      | -   |                   | -   | -   | -     | -   | -     |                                            | -    | 2, 4 |      |

\\$ Pin 1 = High

Set by momentary application of V<sub>BOT</sub> prior to the negative going clock pulse.

# Pin 8 = High

\* Pin 3 = Clock pulse to pin 3 (see Figure 1).

Pins not listed are left open.

## MC922, MC822 (continued)

**FIGURE 1 - CLOCK PULSE DEFINITION**



**SEQUENCE OF EVENTS:**

- Voltage applied to Clock pin is raised to  $V_H$ .  $t_r$  is not critical but should be  $< 1.0 \mu s$ .
- Biases of all other inputs are applied.  $V_{CC}$  is applied without interruption throughout the testing.
- Apply momentary ground, when applicable.
- Clock pulse is allowed to fall to  $V_L$ .  $t_f$  remains within 10 ns minimum and 100 ns maximum.
- Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC822

| $T_A$ | $V_L$           | $V_H$           |
|-------|-----------------|-----------------|
| +25°C | +460 ± 2.0 mVdc | +850 ± 2.0 mVdc |
| 0°C   | +500 ± 2.0 mVdc | +900 ± 2.0 mVdc |
| +75°C | +400 ± 2.0 mVdc | +760 ± 2.0 mVdc |

**FIGURE 2 - TOGGLE MODE TEST CIRCUIT**



$f = 4.0 \text{ MHz}$   
Duty Cycle = 25% to 75%  
 $t_r & t_f < 10 \text{ ns}$

**SWITCHING TIMES**

| Test         | Figure N. 3 | Maximum (ns) |
|--------------|-------------|--------------|
| $t_{T-O-}$   | 38          | 150          |
| $t_{T-O+}$   | 38          | 150          |
| $t_{T-Q+}$   | 38          | 100          |
| $t_{T-Q-}$   | 38          | 100          |
| $t_{S+T-}$   | 3C          | 50           |
| $t_{S-T-}$   | 3C          | 30           |
| $t_{C+T-}$   | 3C          | 50           |
| $t_{C-T-}$   | 3C          | 30           |
| $t_{T-S+}$   | 3C          | 0            |
| $t_{T-S-}$   | 3C          | +5           |
| $t_{T-C+}$   | 3C          | 0            |
| $t_{T-C-}$   | 3C          | +5           |
| $t_{C_D+Q-}$ | 4           | 140          |
| $t_{C_D+Q+}$ | 4           | 70           |
| $t_{S_D+Q+}$ | 4           | 140          |
| $t_{S_D+Q-}$ | 4           | 70           |

**SWITCHING TIMES TEST CIRCUITS AND WAVEFORMS**

**FIGURE 3A - SET-UP, RELEASE AND SWITCHING TIMES TEST CIRCUIT**



$C1 = 20 \text{ pF}$  Including Jig and Probe  
 $C2 = 8.0 \text{ pF}$  Including Jig and Probe  
 $R1 = 1.5 \text{ k ohms} \pm 1.0\%$   
 $D1 = 1N3063$  or EQUIVALENT

**FIGURE 3B - SWITCHING TIME WAVEFORMS**



NOTE: Whichever input pin (S or C) is tied to MC909 Buffer on Input pin B is at virtual ground when the input is tied to  $V_{BOT}$ .

**FIGURE 3C - SET-UP AND RELEASE TIME**



FOR DEFINITIONS OF SET-UP AND RELEASE TIMES, SEE GENERAL INFORMATION SECTION.

**FIGURE 4 - DIRECT SET AND DIRECT CLEAR PROPAGATION DELAY TIME**



$f = 1.0 \text{ MHz}$   
 $t_r & t_f < 10 \text{ ns}$

$C1 = 8.0 \text{ pF}$  Including Jig and Probe  
 $R1 = 1.5 \text{ k ohms} \pm 1.0\%$   
 $D1 = 1N3063$  or EQUIVALENT



**MC982 • MC882**

Available in TO-99 Metal Can, Add G Suffix.

J-K Flip-Flop with a direct clear input in addition to the clocked inputs.

CLOCKED INPUT  
OPERATION @

| $t_n @$ |   | $t_{n+1} @$ |             |
|---------|---|-------------|-------------|
| S       | C | Q           | $\bar{Q}$   |
| 1       | 1 | $Q_n @$     | $\bar{Q}_n$ |
| 1       | 0 | 1           | 0           |
| 0       | 1 | 0           | 1           |
| 0       | 0 | $\bar{Q}_n$ | $Q_n @$     |

1. Direct input ( $C_D$ ) must be low.
2. The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .
3.  $Q_n$  is the state of the Q output in the time period  $t_n$ .



## Typical Resistance Values

- R1 = 1.5 k
- R2 = 3.6 k
- R3 = 4.5 k
- R4 = 7.2 k

| @Test Temperature | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |
|-------------------|--------------------------------|-----------------|------------------|------------------|-----------------|
|                   | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |
| MC982 {           | 0.970                          | 0.935           | 1.80             | 0.650            | 3.00            |
| +25°C             | 0.805                          | 0.750           | 1.80             | 0.450            | 3.00            |
| +125°C            | 0.590                          | 0.555           | 1.80             | 0.260            | 3.00            |
| MC882 {           | 0.880                          | 0.850           | 1.80             | 0.500            | 3.60            |
| 0°C               | 0.830                          | 0.800           | 1.80             | 0.460            | 3.60            |
| +25°C             | 0.740                          | 0.710           | 1.80             | 0.400            | 3.60            |
| +75°C             |                                |                 |                  |                  |                 |

## ELECTRICAL CHARACTERISTICS

| Characteristic     | Symbol               | Pin Under Test    | MC982 Test Limits |     |       |     |        |     | MC882 Test Limits |     |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  |                 |            |
|--------------------|----------------------|-------------------|-------------------|-----|-------|-----|--------|-----|-------------------|-----|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|------------|
|                    |                      |                   | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C |     | +25°C |     | +75°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | Grd        |
|                    |                      |                   | Min               | Max | Min   | Max | Min    | Max |                   | Min | Max | Min   | Max | Min   | Max                                        |      | -               | 3               | -                | 8                | 4, 6            |            |
| Input Current      | I <sub>in</sub>      | 1#*               | -                 | 125 | -     | 130 | -      | 110 | μAdc              | -   | 150 | -     | 140 | -     | 140                                        | μAdc | -               | -               | 3                | -                | 8               | 4, 6       |
|                    |                      | 2                 | -                 | -   | ↓     | -   | ↓      | -   | ↓                 | -   | -   | ↓     | -   | -     | ↓                                          | ↓    | 2               | -               | 3                | -                | 8               | 1, 3, 4, 6 |
|                    |                      | 3*                | \$                | 6   | -     | 250 | -      | 260 | μAdc              | -   | 300 | -     | 280 | -     | 280                                        | μAdc | -               | -               | 1                | -                | 8               | 4, 6       |
|                    |                      | 2 I <sub>in</sub> | -                 | -   | 250   | -   | -      | 220 | μAdc              | -   | 300 | -     | 280 | -     | 280                                        | μAdc | -               | 6               | -                | 2, 3, 5          | -               | 4          |
| Output Current     | I <sub>A2</sub>      | 5#*               | 238               | -   | 247   | -   | 209    | -   | μAdc              | 270 | -   | 290   | -   | 255   | -                                          | μAdc | -               | -               | 3                | -                | 8               | 1, 4, 6    |
|                    |                      | 7#†               | 238               | -   | 247   | -   | 209    | -   | μAdc              | 270 | -   | 290   | -   | 255   | -                                          | μAdc | -               | -               | 1                | -                | 8               | 3, 4, 6    |
| Saturation Voltage | V <sub>CE(sat)</sub> | 5**Δ              | -                 | 220 | -     | 220 | -      | 220 | mVdc              | -   | 250 | -     | 250 | -     | 250                                        | mVdc | -               | -               | 1                | -                | 3               | 4, 6       |
|                    |                      | 5**Δ              | -                 | -   | -     | -   | -      | -   | ↓                 | -   | -   | -     | -   | -     | ↓                                          | -    | -               | -               | 6                | 1, 2             | -               | 4, 6       |
|                    |                      | 7                 | -                 | -   | -     | -   | -      | -   | ↓                 | -   | -   | -     | -   | -     | ↓                                          | -    | -               | 1, 3            | -                | -                | 3, 4, 5         |            |
|                    |                      | 7**◊              | -                 | -   | -     | -   | -      | -   | ↓                 | -   | -   | -     | -   | -     | ↓                                          | -    | -               | 3               | -                | 1                | 4               |            |
|                    |                      | 7**ΔΔ             | -                 | -   | ↓     | -   | -      | -   | ↓                 | -   | -   | -     | -   | -     | ↓                                          | -    | -               | -               | -                | 1, 3             | 4, 6            |            |
|                    |                      | 7**ΔΔ             | -                 | -   | -     | -   | -      | -   | ↓                 | -   | -   | -     | -   | -     | ↓                                          | -    | -               | -               | -                | -                | 4, 6            |            |

Pins not listed are left open.

△ Pin 5 = Momentary ground prior to negative transition of Clock Pulse c.  
 △△ Pin 7 = Momentary V<sub>BOT</sub> prior to negative transition of Clock Pulse c.

\* = Pin 2 Clock Pulse a

\*\* = Pin 2 Clock Pulse c

# = Pin 1 Clock Pulse b

§ = Pin 3 Clock Pulse b

† = Pin 5 Clock Pulse b

‡ = Pin 7 Clock Pulse b (See Figure 4.)

## MC982, MC882 (continued)

**FIGURE 1 - CLOCK PULSE DEFINITION**



**SEQUENCE OF EVENTS:**

- Voltage applied to Clock pin is raised to  $V_H$ .  $t_r$  is not critical but should be  $<1.0 \mu s$ .
- Biases of all other inputs are applied.  $V_{CC}$  is applied without interruption throughout the testing.
- Apply momentary ground, when applicable.
- Clock pulse is allowed to fall to  $V_L$ .  $t_f$  remains within 10 ns minimum and 100 ns maximum.
- Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

**FIGURE 2 - TOGGLE MODE TEST CIRCUIT**



| MC882 |                 |                   | MC982  |                 |                   |
|-------|-----------------|-------------------|--------|-----------------|-------------------|
| $T_A$ | $V_L$           | $V_H$             | $T_A$  | $V_L$           | $V_H$             |
| +25°C | +460 ± 2.0 mVdc | +0.850 ± 2.0 mVdc | +25°C  | +450 ± 2.0 mVdc | +0.800 ± 2.0 mVdc |
| 0°C   | +500 ± 2.0 mVdc | +0.900 ± 2.0 mVdc | -55°C  | +650 ± 2.0 mVdc | +0.985 ± 2.0 mVdc |
| +75°C | +400 ± 2.0 mVdc | +0.760 ± 2.0 mVdc | +125°C | +260 ± 2.0 mVdc | +0.605 ± 2.0 mVdc |

### SWITCHING TIME TEST CIRCUITS AND WAVE FORMS

**FIGURE 3A**



**SWITCHING TIMES**

| Test               | Fig. No. | ns @ +25°C |     |
|--------------------|----------|------------|-----|
|                    |          | min        | max |
| $t_T-Q-$           | 3A       | 40         | 140 |
| $t_T-Q+$           | 3A       | 70         | 195 |
| $t_T-\bar{Q}-$     | 3A       | 40         | 140 |
| $t_T-\bar{Q}+$     | 3A       | 70         | 195 |
| $t_{\bar{Q}}+Q+$   | 3A       | 30         | 100 |
| $t_{\bar{Q}}-Q-$   | 3A       | 5          | 40  |
| $t_{C_D}+Q-$       | 3B       | 55         | ..  |
| $t_{C_D}+\bar{Q}+$ | 3B       | 5          | ..  |

**FIGURE 3B**



**FIGURE 4 - CORRELATION OF CLOCK PULSE a, b, & c**



The negative transition of Clock Pulse a must precede the negative transition of Clock Pulse b.

**MC978 • MC878**

Available in TO-86 Flat Package, Add F Suffix.

The type "D" Flip-Flop is a storage element that stores the state of the S input during negative transitions of the T input. The flip-flop state is not affected by changes in the S input during either the low or the high state of the T input.  $S_D$  and  $C_D$  inputs may be used for asynchronous operation.

DIRECT INPUT OPERATION  $\oplus$ 

| $S_D$ | $C_D$ | Q | $\bar{Q}$ |
|-------|-------|---|-----------|
| 0     | 0     | 0 | 0         |
| 1     | 0     | 1 | 0         |
| 0     | 1     | 0 | 1         |
| 1     | 1     | 0 | 0         |

CLOCKED INPUT OPERATION  $\ominus$ 

| $t_n \ominus$ | $t_{n+1} \ominus$ |
|---------------|-------------------|
| S             | Q                 |
| 1             | 1                 |
| 0             | 0                 |

1. Clock (T input) must be high.
2. The output state will not change when the input state goes from  $S_D = \bar{C}_D$  to  $S_D = C_D = 0$ . The output state cannot be predetermined in the case when the input goes from  $S_D = C_D = 1$  to  $S_D = C_D = 0$ .
3. Direct inputs ( $S_D$  and  $C_D$ ) must be low.
4. The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .



Typical Resistance Values

R1 = 1.5 k  
R2 = 3.6 k  
R3 = 180  
R4 = 480

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one flip-flop only.  
The other flip-flop is tested in the same manner.

|       |        | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |                 | Grd |
|-------|--------|--------------------------------|-----------------|------------------|------------------|-----------------|-----------------|-----|
|       |        | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>LL</sub> |     |
| MC978 | -55°C  | 0.970                          | 0.935           | 1.80             | 0.650            | 3.00            | 0.500           |     |
|       |        | 0.805                          | 0.750           | 1.80             | 0.450            | 3.00            | 0.400           |     |
|       | +25°C  | 0.590                          | 0.555           | 1.80             | 0.280            | 3.00            | 0.300           |     |
|       | +125°C | 0.880                          | 0.850           | 1.80             | 0.500            | 3.60            | 0.450           |     |
| MC878 | 0°C    | 0.830                          | 0.800           | 1.80             | 0.460            | 3.60            | 0.400           |     |
|       | +25°C  | 0.740                          | 0.710           | 1.80             | 0.400            | 3.60            | 0.350           |     |
|       | +75°C  |                                |                 |                  |                  |                 |                 |     |

| Characteristic     | Symbol               | Pin Under Test | MC978 Test Limits |     |       |     |        |     | MC878 Test Limits |     |     |       |     |       | Grd |             |
|--------------------|----------------------|----------------|-------------------|-----|-------|-----|--------|-----|-------------------|-----|-----|-------|-----|-------|-----|-------------|
|                    |                      |                | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C |     | +25°C |     | +75°C |     |             |
|                    |                      |                | Min               | Max | Min   | Max | Min    | Max |                   | Min | Max | Min   | Max | Min   | Max |             |
| Input Current      | 1.8 I <sub>in</sub>  | 1              | -                 | 225 | -     | 234 | -      | 198 | μAdc              | -   | 270 | -     | 252 | -     | 252 | μAdc        |
|                    | 1.8 I <sub>in</sub>  | 1              | -                 | 225 | -     | 234 | -      | 198 |                   | -   | 270 | -     | 252 | -     | 252 |             |
|                    | I <sub>in</sub>      | 2#             | -                 | 125 | -     | 130 | -      | 110 |                   | -   | 150 | -     | 140 | -     | 140 |             |
|                    |                      | 5#             | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 5, 6, 7     |
|                    |                      | 6#             | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 2, 5, 7     |
| Output Current     | I <sub>A3</sub>      | 3              | 350               | -   | 364   | -   | 308    | -   | μAdc              | 420 | -   | 430   | -   | 395   | -   | μAdc        |
|                    |                      | 3#             | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 6, 7        |
|                    |                      | 4              | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 7           |
|                    |                      | 4#             | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   |             |
| Output Voltage     | V <sub>out</sub>     | 3              | -                 | 620 | -     | 300 | -      | 230 | mVdc              | -   | 400 | -     | 350 | -     | 300 | mVdc        |
|                    |                      | 3              | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 6, 7        |
|                    |                      | 4              | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 2, 5, 6, 7  |
|                    |                      | 4              | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 6, 7        |
| Saturation Voltage | V <sub>CE(sat)</sub> | 3              | -                 | 220 | -     | 220 | -      | 220 | mVdc              | -   | 450 | -     | 400 | -     | 350 | mVdc        |
|                    |                      | 3              | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 6, 7        |
|                    |                      | 3*             | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 2, 5, 6, 7  |
|                    |                      | 3g†            | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 6, 7        |
|                    |                      | 3#‡            | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 2, 7        |
|                    |                      | 4              | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 6, 7        |
|                    |                      | 4              | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 2, 6, 7     |
|                    |                      | 4†             | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 6, 7        |
|                    |                      | 4g*            | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 5, 7        |
|                    |                      | 4#**           | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 5, 7        |
| Current Leakage    | I <sub>L</sub>       | 14             | -                 | 100 | -     | 100 | -      | 100 | μAdc              | -   | 100 | -     | 100 | -     | 100 | μAdc        |
|                    |                      | 14             | -                 | -   | -     | -   | -      | -   |                   | -   | -   | -     | -   | -     | -   | 12, 5, 6, 7 |

# = Pin 1 Clock Pulse a

\*\* = Pin 6 Data Pulse a

§ = Pin 1 Clock Pulse b

† = Pin 5 Data Pulse a

\* = Pin 2 Data Pulse a

‡ = Pin 6 Data Pulse b

See Figure 4

Ground inputs of flip-flop not under test. Other pins not listed are left open.

## MC978, MC878 (continued)

**FIGURE 1 - CLOCK PULSE DEFINITION**



**FIGURE 2 - SWITCHING TIMES TEST AND WAVEFORMS**



**FIGURE 3A - SET UP AND RELEASE TIMES TEST CIRCUIT**



**FIGURE 3B - INPUT PULSE WIDTHS FDR SET UP AND RELEASE TIMES**



**FIGURE 4 - CORRELATION OF CLOCK PULSE a & b AND DATA PULSE a & b**



**MC976 • MC876**

Available in TO-86 Flat Package, Add F Suffix.

Two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.

CLOCKED INPUT OPERATION<sup>①</sup>

| $t_n @$ |   | $t_{n+1} @$ |             |
|---------|---|-------------|-------------|
| S       | C | Q           | $\bar{Q}$   |
| 1       | 1 | $Q_n @$     | $\bar{Q}_n$ |
| 1       | 0 | 1           | 0           |
| 0       | 1 | 0           | 1           |
| 0       | 0 | $\bar{Q}_n$ | $Q_n @$     |

1. Direct input ( $C_D$ ) must be low.
2. The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .
3.  $Q_n$  is the state of the Q output in the time period  $t_n$ .



## Typical Resistance Values

R1 = 1.5 k      R3 = 3.0 k  
 R2 = 3.6 k      R4 = 750

## ELECTRICAL CHARACTERISTICS

Test procedures shown are for one flip-flop only.

The other flip-flop is tested in the same manner.

|                      |        | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |                 |
|----------------------|--------|--------------------------------|-----------------|------------------|------------------|-----------------|-----------------|
| @Test<br>Temperature |        | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>LL</sub> |
| MC976                | -55°C  | 0.970                          | 0.935           | 1.80             | 0.650            | 3.00            | 0.500           |
|                      | +25°C  | 0.805                          | 0.750           | 1.80             | 0.450            | 3.00            | 0.400           |
|                      | +125°C | 0.590                          | 0.555           | 1.80             | 0.260            | 3.00            | 0.300           |
| MC876                | 0°C    | 0.880                          | 0.650           | 1.80             | 0.500            | 3.60            | 0.450           |
|                      | +25°C  | 0.830                          | 0.800           | 1.80             | 0.460            | 3.60            | 0.400           |
|                      | +75°C  | 0.740                          | 0.710           | 1.80             | 0.400            | 3.60            | 0.350           |

| Characteristic     | Symbol                 | Pin Under Test | MC976 |     |       |     | Test Limits |     |      |     | MC876 |       |     |       | Test Limits |      |                 |                 | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                  |                 |                 |      |               | Gnd |
|--------------------|------------------------|----------------|-------|-----|-------|-----|-------------|-----|------|-----|-------|-------|-----|-------|-------------|------|-----------------|-----------------|--------------------------------------------|------------------|-----------------|-----------------|------|---------------|-----|
|                    |                        |                | -SS°C |     | +25°C |     | +125°C      |     | Unit | 0°C |       | +25°C |     | +75°C |             | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub>                           | V <sub>off</sub> | V <sub>CC</sub> | V <sub>LL</sub> |      |               |     |
|                    |                        |                | Min   | Max | Min   | Max | Min         | Max |      | Min | Max   | Min   | Max | Min   | Max         |      | Min             | Max             | Min                                        | Max              | Min             | Max             |      |               |     |
| Input Current      | I <sub>in</sub><br>1   | 1              | -     | 125 | -     | 130 | -           | 110 | μAdc | -   | 150   | -     | 140 | -     | 140         | μAdc | 1               | -               | 3                                          | -                | 14              | -               | 7    |               |     |
|                    | I <sub>in</sub><br>4   | 4              | -     | 125 | -     | 130 | -           | 110 |      | -   | 150   | -     | 140 | -     | 140         |      | 4               | -               | 2                                          | -                |                 | -               |      |               |     |
|                    | 2 I <sub>in</sub><br>5 | 5              | -     | 250 | -     | 260 | -           | 220 |      | -   | 300   | -     | 280 | -     | 280         |      | 5               | -               | 4, 6                                       | -                |                 | -               |      |               |     |
|                    | I <sub>in</sub><br>6   | 6              | -     | 125 | -     | 130 | -           | 110 |      | -   | 150   | -     | 140 | -     | 140         |      | 6               | -               | 3                                          | -                |                 | -               |      |               |     |
| Output Current     | 1 A <sub>2</sub>       | 2*             | 270   | -   | 280   | -   | 240         | -   | μAdc | 320 | -     | 320   | -   | 300   | -           | μAdc | -               | 2               | 4                                          | 1                | 14              | -               | 7    |               |     |
|                    | 3                      | 3              |       |     |       |     |             |     |      |     |       |       |     |       |             |      | -               | 3               | 1, 6                                       | -                |                 |                 |      |               |     |
|                    | 3                      | 3              |       |     |       |     |             |     |      |     |       |       |     |       |             |      | -               | 1, 3            | 6                                          | -                |                 |                 |      |               |     |
| Output Voltage     | V <sub>out</sub><br>2  | 2              | -     | 620 | -     | 300 | -           | 230 | mVdc | -   | 400   | -     | 350 | -     | 300         | mVdc | -               | 1               | -                                          | -                | -               | 14              | -    | 3, 7          |     |
|                    | 2**<br>2**#            |                |       |     |       |     |             |     |      | -   |       |       |     |       |             |      | -               | 3               | -                                          | -                | -               |                 | -    | 7             |     |
|                    | 2**#<br>2**#           |                |       |     |       |     |             |     |      | -   |       |       |     |       |             |      | -               | 4, 6            | -                                          | -                | -               |                 | -    | 1, 7          |     |
|                    | 3*                     |                |       |     |       |     |             |     |      | -   |       |       |     |       |             |      | -               | 4               | -                                          | -                | -               |                 | -    |               |     |
|                    | 3**#<br>3**#           |                |       |     |       |     |             |     |      | -   |       |       |     |       |             |      | -               | -               | 4, 6                                       | -                | -               |                 |      |               |     |
|                    | 3**#<br>3**#           |                |       |     |       |     |             |     |      | -   |       |       |     |       |             |      | -               | 2               | -                                          | -                | -               |                 |      | 7             |     |
|                    |                        |                |       |     |       |     |             |     |      | -   |       |       |     |       |             |      | -               | 4, 6            | -                                          | -                | -               |                 |      | 1, 7          |     |
|                    |                        |                |       |     |       |     |             |     |      | -   |       |       |     |       |             |      | -               | 6               | -                                          | -                | -               |                 |      |               |     |
|                    |                        |                |       |     |       |     |             |     |      | -   |       |       |     |       |             |      | -               | 4               | -                                          | -                | -               |                 |      |               |     |
| Saturation Voltage | V <sub>CE(sat)</sub>   | 2              | -     | 220 | -     | 220 | -           | 220 | mVdc | -   | 250   | -     | 250 | -     | 250         | mVdc | -               | -               | 1                                          | -                | 14              | -               | 3, 7 |               |     |
|                    | 2**<br>3*              |                |       |     |       |     |             |     |      | -   |       |       |     |       |             |      | -               | -               | -                                          | -                |                 |                 |      | 7             |     |
|                    | 3*                     |                |       |     |       |     |             |     |      | -   |       |       |     |       |             |      | -               | -               | 1                                          | -                |                 |                 |      | 7             |     |
| Current Leakage    | I <sub>L</sub>         | 14             | -     | 100 | -     | 100 | -           | 100 | μAdc | -   | 100   | -     | 100 | -     | 100         | μAdc | -               | -               | -                                          | -                | -               | 14              |      | 1, 4, 5, 6, 7 |     |

# = Clock Pulse to Pin 5, see Figure 1.

Ground inputs of flip-flop not under test. Other pins not listed are left open.

\* = Pin 3 Low | Set by a momentary ground prior to the application of the negative-going clock pulse.

\*\* = Pin 2 Low Set by a momentary ground prior to the application of the negative-going clock pulse.

## MC976, MC876 (continued)

**FIGURE 1 - CLOCK PULSE DEFINITION**



**SEQUENCE OF EVENTS:**

- Voltage applied to Clock pin is raised to  $V_H$ .  $t_r$  is not critical but should be  $< 1.0 \mu\text{s}$
- Biases of all other inputs are applied.  $V_{CC}$  is applied without interruption throughout the testing.
- Apply momentary ground, when applicable.
- Clock pulse is allowed to fall to  $V_L$ .  $t_f$  remains within 10 ns minimum and 100 ns maximum.
- Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC876

| $T_A$ | $V_L$           | $V_H$             |
|-------|-----------------|-------------------|
| +25°C | +460 ± 2.0 mVdc | +0.850 ± 2.0 mVdc |
| 0°C   | +500 ± 2.0 mVdc | +0.900 ± 2.0 mVdc |
| +75°C | +400 ± 2.0 mVdc | +0.760 ± 2.0 mVdc |

**FIGURE 2 - TOGGLE MODE TEST CIRCUIT**



**SWITCHING TIMES TEST CIRCUITS AND WAVEFORMS**

**FIGURE 3A**



**FIGURE 3B**



# MC908 • MC808

Available in TO-99 Metal Can, Add G Suffix.  
Available in TO-91 Flat Package, Add F Suffix.



The MC908/MC808 is an RTL half-adder. The binary half-adder function can be performed by connecting pin a to pin c and pin b to pin e. The "SUM" is available on pin g while the "CARRY" is available on pin f. The device is also used as a data selector by connecting pin a to pin c and using pins b and e as data inputs. A full adder can be devised by utilizing two MC908/MC808s and one MC911/MC811.



| PIN CONNECTIONS   |   |   |   |   |   |   |    |
|-------------------|---|---|---|---|---|---|----|
| Schematic         | a | b | c | d | e | f | g  |
| G Package (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7  |
| F Package (TO-91) | 1 | 2 | 4 | 5 | 6 | 7 | 9  |
|                   |   |   |   |   |   |   | 8  |
|                   |   |   |   |   |   |   | 10 |

## SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



MC908, MC808 (continued)

|       | @Test Temperature | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |                 |  |
|-------|-------------------|--------------------------------|-----------------|------------------|------------------|-----------------|-----------------|--|
|       |                   | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>IL</sub> |  |
| MC908 | -55°C             | 0.970                          | 0.935           | 1.80             | 0.650            | 3.00            | 0.500           |  |
|       | +25°C             | 0.805                          | 0.750           | 1.80             | 0.450            | 3.00            | 0.400           |  |
|       | +125°C            | 0.590                          | 0.555           | 1.80             | 0.260            | 3.00            | 0.300           |  |
| MC808 | 0°C               | 0.880                          | 0.850           | 1.80             | 0.500            | 3.60            | 0.450           |  |
|       | +25°C             | 0.830                          | 0.800           | 1.80             | 0.460            | 3.60            | 0.400           |  |
|       | +75°C             | 0.740                          | 0.710           | 1.80             | 0.400            | 3.60            | 0.350           |  |

ELECTRICAL CHARACTERISTICS

| Characteristic            | Symbol               | Pin Under Test | MC908 Test Limits |     |       |     |        |     | MC808 Test Limits |     |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  |                 |                 |               |      |
|---------------------------|----------------------|----------------|-------------------|-----|-------|-----|--------|-----|-------------------|-----|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|-----------------|---------------|------|
|                           |                      |                | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C |     | +25°C |     | +75°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>IL</sub> | Gnd           |      |
|                           |                      |                | Min               | Max | Min   | Max | Min    | Max |                   | Min | Max | Min   | Max | Min   | Max                                        |      | a               | b               | c                | d                | e               | f               |               |      |
| Input Current             | I <sub>in</sub>      | a              | -                 | 125 | -     | 130 | -      | 110 | μAdc              | -   | 150 | -     | 140 | -     | 140                                        | μAdc | a               | -               | b                | -                | h               | -               | c, d, e       |      |
|                           | 0.8 I <sub>in</sub>  | b              | -                 | 125 | -     | 130 | -      | 110 |                   | -   | 150 | -     | 140 | -     | 140                                        |      | b               | -               | a                | -                | -               | -               | c, d, e       |      |
|                           |                      | c              | -                 | 100 | -     | 104 | -      | 88  |                   | -   | 120 | -     | 112 | -     | 112                                        |      | c               | -               | -                | -                | -               | -               | a, b, d, e    |      |
|                           |                      | e              | -                 | 100 | -     | 104 | -      | 88  |                   | -   | 120 | -     | 112 | -     | 112                                        |      | e               | -               | -                | -                | -               | ↓               | a, b, c, d    |      |
| Output Current            | I <sub>A3</sub>      | f              | 350               | -   | 364   | -   | 308    | -   | μAdc              | 420 | -   | 430   | -   | 395   | -                                          | μAdc | f               | c, e            | -                | -                | h               | -               | a, b, d       |      |
|                           | I <sub>A4</sub>      | g              | 475               | -   | 494   | -   | 418    | -   |                   | 570 | -   | 570   | -   | 535   | -                                          |      | g               | a               | -                | c, e             | ↓               | -               | b, d          |      |
|                           |                      | g              | 475               | -   | 494   | -   | 418    | -   |                   | 570 | -   | 570   | -   | 535   | -                                          |      | g               | b               | -                | c, e             | ↓               | -               | a, d          |      |
| Output Voltage            | V <sub>out</sub>     | g              | -                 | 620 | -     | 300 | -      | 230 | mVdc              | -   | 400 | -     | 350 | -     | 300                                        | mVdc | -               | f               | a, b, c, e       | -                | h               | -               | d             |      |
| Saturation Voltage        | V <sub>CE(sat)</sub> | f              | -                 | 220 | -     | 220 | -      | 220 | mVdc              | -   | 250 | -     | 250 | -     | 250                                        | mVdc | -               | -               | c                | e                | h               | -               | a, b, d       |      |
|                           |                      | f              | -                 | 220 | -     | 220 | -      | 220 |                   | -   | 250 | -     | 250 | -     | 250                                        |      | -               | -               | e                | c                | h               | -               | a, b, d       |      |
|                           |                      | g              | -                 | 220 | -     | 220 | -      | 220 |                   | -   | 250 | -     | 250 | -     | 250                                        |      | -               | -               | a, b             | a, b             | h               | -               | c, d, e       |      |
|                           |                      | g              | -                 | 220 | -     | 220 | -      | 220 |                   | -   | 250 | -     | 250 | -     | 250                                        |      | -               | -               | a, b, c, e       | a, b             | h               | ↓               | d             |      |
| Isolation Leakage Current | I <sub>L</sub>       | h              | -                 | 100 | -     | 100 | -      | 100 | μAdc              | -   | 100 | -     | 100 | -     | 100                                        | μAdc | -               | -               | -                | -                | -               | h               | a, b, c, d, e |      |
| Switching Time            | t                    | c-g+           | -                 | -   | -     | 80  | -      | -   | ns                | -   | -   | -     | -   | 80    | -                                          | -    | ns              | Pulse In        | Pulse Out        |                  |                 |                 |               |      |
|                           |                      | c-g-           | -                 | -   | -     | 100 | -      | -   | ns                | -   | -   | -     | -   | 100   | -                                          | -    | ns              | c               | g                | b, e             | -               | h               | h             | a, d |

Input pins not listed are left open.

**MC912 • MC812**

Available in TO-99 Metal Can, Add G Suffix.  
 Available in TO-91 Flat Package, Add F Suffix.



The MC912/MC812 is an RTL Half-Adder. By applying the complement of pins a and b to pins c and e, the "SUM" and "NOT SUM" functions of a binary half-adder are produced on pin g and f respectively.



$$f = \overline{a} \cdot \overline{b} + \overline{c} \cdot \overline{e}$$

$$g = (a + b)(c + e)$$

| PIN CONNECTIONS   |   |   |   |   |   |   |   |
|-------------------|---|---|---|---|---|---|---|
| Schematic         | a | b | c | d | e | f | g |
| G Package (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| F Package (TO-91) | 1 | 2 | 4 | 5 | 6 | 7 | 9 |
|                   |   |   |   |   |   |   | 8 |

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

| @Test Temperature | TEST VOLTAGE VALUES |                 |                  |                  |                 |                 |       |  |
|-------------------|---------------------|-----------------|------------------|------------------|-----------------|-----------------|-------|--|
|                   | (Volts)             |                 |                  |                  |                 |                 |       |  |
|                   | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>LL</sub> |       |  |
| MC912             | -55°C               | 0.970           | 0.935            | 1.80             | 0.650           | 3.00            | 0.500 |  |
|                   | +25°C               | 0.805           | 0.750            | 1.80             | 0.450           | 3.00            | 0.400 |  |
|                   | +125°C              | 0.590           | 0.555            | 1.80             | 0.260           | 3.00            | 0.300 |  |
| MC812             | 0°C                 | 0.880           | 0.850            | 1.80             | 0.500           | 3.60            | 0.450 |  |
|                   | +25°C               | 0.830           | 0.800            | 1.80             | 0.460           | 3.60            | 0.400 |  |
|                   | +75°C               | 0.740           | 0.710            | 1.80             | 0.400           | 3.60            | 0.350 |  |

## ELECTRICAL CHARACTERISTICS

| Characteristic            | Symbol                                                | Pin Under Test   | MC912 Test Limits |     |       |     |        |     | MC812 Test Limits |     |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                       |                            |                  |                  |                 |                 |                                          |                    |
|---------------------------|-------------------------------------------------------|------------------|-------------------|-----|-------|-----|--------|-----|-------------------|-----|-----|-------|-----|-------|--------------------------------------------|------|-----------------------|----------------------------|------------------|------------------|-----------------|-----------------|------------------------------------------|--------------------|
|                           |                                                       |                  | -55°C             |     | +25°C |     | +125°C |     | Unit              | 0°C |     | +25°C |     | +75°C |                                            | Unit | V <sub>in</sub>       | V <sub>on</sub>            | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>LL</sub> | Gnd                                      |                    |
|                           |                                                       |                  | Min               | Max | Min   | Max | Min    | Max |                   | Min | Max | Min   | Max | Min   | Max                                        |      | Min                   | Max                        | Min              | Max              | Min             | Max             |                                          |                    |
| Input Current             | I <sub>in</sub>                                       | a<br>b<br>c<br>e | -                 | 125 | -     | 130 | -      | 110 | μAdc              | -   | 150 | -     | 140 | -     | 140                                        | μAdc | a<br>b<br>c<br>e      | -                          | b                | -                | h               | -               | c, d, e<br>c, d, e<br>a, b, d<br>a, b, d |                    |
| Output Current            | I <sub>A3</sub><br>I <sub>A3</sub><br>I <sub>A4</sub> | g<br>g<br>f      | 350               | -   | 364   | -   | 308    | -   | μAdc              | 420 | -   | 430   | -   | 395   | -                                          | μAdc | g<br>g<br>f           | a, c<br>b, e<br>-          | -                | -                | h               | -               | b, d, e<br>a, c, d<br>a, b, c, d, e      |                    |
| Output Voltage            | V <sub>out</sub>                                      | f                | -                 | 620 | -     | 300 | -      | 230 | mVdc              | -   | 400 | -     | 350 | -     | 300                                        | mVdc | -                     | g                          | a, b, c, e       | -                | h               | -               | d                                        |                    |
| Saturation Voltage        | V <sub>CE(sat)</sub>                                  | f<br>g<br>g      | -                 | 220 | -     | 220 | -      | 220 | mVdc              | -   | 250 | -     | 250 | -     | 250                                        | mVdc | g<br>-                | a, b, c, e<br>c, e<br>a, b | -                | a, b<br>c, e     | h               | -               | d                                        |                    |
| Isolation Leakage Current | I <sub>L</sub>                                        | h                | -                 | 100 | -     | 100 | -      | 100 | μAdc              | -   | 100 | -     | 100 | -     | 100                                        | μAdc | -                     | -                          | -                | -                | -               | h               | a, b, c, d, e                            |                    |
| Switching Time            | t                                                     | a+f-<br>a-f+     | -                 | -   | -     | 100 | -      | 80  | ns                | -   | -   | -     | 100 | -     | 80                                         | ns   | Pulse In<br>Pulse Out | a<br>a                     | f<br>f           | e<br>e           | -               | h<br>h          | -                                        | b, c, d<br>b, c, d |

Input pins not listed are left open.

**MC912, MC812 (continued)**

**PROPAGATION DELAY versus TEMPERATURE**



**MC921 • MC821**

Available in TO-99 Metal Can, Add G Suffix.  
 Available in TO-91 Flat Package, Add F Suffix.

This gate expander is designed to increase the fan-in capability of the gates in the mW MRTL line.



NUMBER IN PARENTHESIS INDICATES mW MRTL  
LOADING FACTOR

$t_{pd} = 27 \text{ ns typ}$

$P_D = 3.0 \text{ mW typ (Input High)}$   
Negligible (Inputs Low)

NOTES ON USE OF THE MC921/MC821

1. The input loading factor of the expanded gate is 1.33.
2. Pin h of the expander must be connected to  $V_{CC}$ .
3. The output loading factor of the expanded gate is decreased 0.5 load for every added node.

| PIN CONNECTIONS   |   |   |   |   |   |   |   |    |
|-------------------|---|---|---|---|---|---|---|----|
| Schematic         | a | b | c | d | e | f | g | h  |
| G Package (TO-99) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  |
| F Package (TO-91) | 1 | 2 | 4 | 5 | 6 | 7 | 9 | 10 |



Typical Resistance Value  
 $R_1 = 1.5 \text{ k}$

| @Test Temperature | TEST VOLTAGE VALUES |                 |                  |                  |                 |                   |                   |     |  |
|-------------------|---------------------|-----------------|------------------|------------------|-----------------|-------------------|-------------------|-----|--|
|                   | (Volts)             |                 |                  |                  | (k ohms)        |                   |                   |     |  |
|                   | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>RH</sub> * | V <sub>RL</sub> * |     |  |
| MC921             | -55°C               | 0.970           | 0.935            | 1.80             | 0.650           | 3.00              | 4.27              | 2.8 |  |
|                   | +25°C               | 0.805           | 0.750            | 1.80             | 0.450           | 3.00              | 4.3               | 2.7 |  |
|                   | +125°C              | 0.590           | 0.555            | 1.80             | 0.260           | 3.00              | 5.0               | 3.0 |  |
| MC821             | 0°C                 | 0.880           | 0.850            | 1.80             | 0.500           | 3.60              | 4.3               | 2.7 |  |
|                   | +25°C               | 0.830           | 0.800            | 1.80             | 0.460           | 3.60              | 4.3               | 2.7 |  |
|                   | +75°C               | 0.740           | 0.710            | 1.80             | 0.400           | 3.60              | 4.7               | 2.8 |  |

## ELECTRICAL CHARACTERISTICS

Test procedures shown are for one expander only.

Other expanders are tested in the same manner.

| Characteristic            | Symbol               | Pin Under Test | MC921 Test Limits |            |        |            |        |            | MC821 Test Limits |        |            |        |            |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |              |                 |                 |                  |                  |                 |                   |                   |                    |
|---------------------------|----------------------|----------------|-------------------|------------|--------|------------|--------|------------|-------------------|--------|------------|--------|------------|--------|--------------------------------------------|--------------|-----------------|-----------------|------------------|------------------|-----------------|-------------------|-------------------|--------------------|
|                           |                      |                | -55°C             |            | +25°C  |            | +125°C |            | Unit              | 0°C    |            | +25°C  |            | +75°C  |                                            | Unit         | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>RH</sub> * | V <sub>RL</sub> * | Gnd                |
|                           |                      |                | Min               | Max        | Min    | Max        | Min    | Max        |                   | Min    | Max        | Min    | Max        | Min    | Max                                        |              |                 |                 |                  |                  |                 |                   |                   |                    |
| Input Current             | I <sub>in</sub>      | a<br>b         | -<br>-            | 125<br>125 | -<br>- | 130<br>130 | -<br>- | 110<br>110 | μAdc<br>μAdc      | -<br>- | 150<br>150 | -<br>- | 140<br>140 | -<br>- | 140<br>140                                 | μAdc<br>μAdc | a<br>b          | -<br>-          | b<br>a           | -<br>-           | h<br>h          | g<br>g            | -<br>-            | d<br>d             |
| Output Leakage Current    | I <sub>CEX</sub>     | g              | -                 | 5.0        | -      | 5.0        | -      | 40         | μAdc              | -      | 20         | -      | 20         | -      | 20                                         | μAdc         | g               | -               | -                | a, b             | h               | -                 | -                 | d                  |
| Output Voltage            | V <sub>CE(sat)</sub> | g<br>g         | -<br>-            | 620<br>620 | -<br>- | 300<br>300 | -<br>- | 230<br>230 | mVdc<br>mVdc      | -<br>- | 400<br>400 | -<br>- | 350<br>350 | -<br>- | 300<br>300                                 | mVdc<br>mVdc | -<br>-          | a<br>b          | -<br>-           | -<br>-           | h<br>h          | -<br>-            | g<br>g            | b, d<br>a, d       |
| Saturation Voltage        | V <sub>CE(sat)</sub> | g<br>g         | -<br>-            | 220<br>220 | -<br>- | 220<br>220 | -<br>- | 220<br>220 | mVdc<br>mVdc      | -<br>- | 250<br>250 | -<br>- | 250<br>250 | -<br>- | 250<br>250                                 | mVdc<br>mVdc | a<br>b          | -<br>-          | -<br>-           | -<br>-           | h<br>h          | -<br>-            | g<br>g            | b, d<br>a, d       |
| Isolation Leakage Current | I <sub>L</sub>       | g<br>h         | -<br>-            | 100<br>100 | -<br>- | 100<br>100 | -<br>- | 100<br>100 | μAdc<br>μAdc      | -<br>- | 100<br>100 | -<br>- | 100<br>100 | -<br>- | 100<br>100                                 | μAdc<br>μAdc | -<br>-          | -<br>-          | -<br>-           | -<br>-           | g<br>h          | -<br>-            | -<br>-            | a, b, d<br>a, b, d |

Ground input pins of expander not under test.

Other pins not listed are left open.

\*Resistor value to V<sub>CC</sub>.

**MC9921 • MC9821**

Available in TO-86 Flat Package, Add F Suffix.

This element consists of four 2-input expanders in a single package to increase the input capability of mW MRTL gates.



NUMBER IN PARENTHESIS INDICATES mW MRTL  
LOADING FACTOR

**NOTES ON THE USE OF THE MC9921/MC9821**

$t_{pd} = 27 \text{ ns typ}$

$P_D = 20 \text{ mW typ (Input High)}$   
Negligible (Inputs Low)

1. The input loading factor of the expanded gate is 1.33.
2. Pin 14 of the expander must be connected to  $V_{CC}$ .
3. The output loading factor of the expanded gate is decreased 0.5 load for every added node.



$V_{CC}$  connection to pin 14 not shown  
Typical Resistance Value  
 $R1 = 1.5 \text{ k}$

| @Test Temperature |                          | TEST VOLTAGE VALUES |                 |                  |                  |                 |                             | (k $\Omega$ ) |  |
|-------------------|--------------------------|---------------------|-----------------|------------------|------------------|-----------------|-----------------------------|---------------|--|
|                   |                          | (Volts)             |                 |                  |                  |                 |                             |               |  |
|                   |                          | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> <sup>*</sup> |               |  |
| MC9921            | -55°C<br>+25°C<br>+125°C | 0.970               | 0.935           | 1.80             | 0.650            | 3.00            | 3.6                         |               |  |
|                   |                          | 0.805               | 0.750           | 1.80             | 0.450            | 3.00            | 3.6                         |               |  |
|                   |                          | 0.590               | 0.555           | 1.80             | 0.260            | 3.00            | 4.0                         |               |  |
| MC9821            | 0°C<br>+25°C<br>+75°C    | 0.880               | 0.850           | 1.80             | 0.500            | 3.60            | 3.6                         |               |  |
|                   |                          | 0.830               | 0.800           | 1.80             | 0.460            | 3.60            | 3.6                         |               |  |
|                   |                          | 0.740               | 0.710           | 1.80             | 0.400            | 3.60            | 3.6                         |               |  |

## ELECTRICAL CHARACTERISTICS

Test procedures shown are for one expander only.

Other expanders are tested in the same manner.

| Characteristic         | Symbol               | Pin Under Test | MC9921 Test Limits |            |        |            |        |            | MC9821 Test Limits     |        |            |        |            |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                        |                 |                 |                  |                  | Gnd             |                             |        |            |
|------------------------|----------------------|----------------|--------------------|------------|--------|------------|--------|------------|------------------------|--------|------------|--------|------------|--------|--------------------------------------------|------------------------|-----------------|-----------------|------------------|------------------|-----------------|-----------------------------|--------|------------|
|                        |                      |                | -55°C              |            | +25°C  |            | +125°C |            | Unit                   | 0°C    |            | +25°C  |            | +75°C  |                                            | Unit                   | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> <sup>*</sup> |        |            |
|                        |                      |                | Min                | Max        | Min    | Max        | Min    | Max        |                        | Min    | Max        | Min    | Max        | Min    | Max                                        |                        | 1               | 2               | -                | 2                | -               | 14                          | 3      | 7          |
| Input Current          | I <sub>in</sub>      | 1<br>2         | -<br>-             | 125<br>125 | -<br>- | 130<br>130 | -<br>- | 110<br>110 | $\mu$ Adc<br>$\mu$ Adc | -<br>- | 150<br>150 | -<br>- | 140<br>140 | -<br>- | 140<br>140                                 | $\mu$ Adc<br>$\mu$ Adc | 1<br>2          | -<br>-          | 2<br>1           | -<br>-           | 14<br>14        | 3<br>3                      | 7<br>7 |            |
| Output Leakage Current | I <sub>CEX</sub>     | 3              | -                  | 25         | -      | 25         | -      | 30         | $\mu$ Adc              | -      | 40         | -      | 40         | -      | 50                                         | $\mu$ Adc              | 3               | -               | -                | -                | 1,2             | 14                          | -      | 7          |
| Output Voltage         | V <sub>out</sub>     | 3<br>3         | -<br>-             | 620<br>620 | -<br>- | 300<br>300 | -<br>- | 230<br>230 | mVdc<br>mVdc           | -<br>- | 400<br>400 | -<br>- | 350<br>350 | -<br>- | 300<br>300                                 | mVdc<br>mVdc           | -<br>-          | 1<br>2          | -                | -                | -               | 14<br>14                    | 3<br>3 | 2,7<br>1,7 |
| Saturation Voltage     | V <sub>CE(sat)</sub> | 3<br>3         | -<br>-             | 220<br>220 | -<br>- | 220<br>220 | -<br>- | 220<br>220 | mVdc<br>mVdc           | -<br>- | 250<br>250 | -<br>- | 250<br>250 | -<br>- | 250<br>250                                 | mVdc<br>mVdc           | 1<br>2          | -<br>-          | -                | -                | -               | 14<br>14                    | 3<br>3 | 2,7<br>1,7 |

Ground input pins of expanders not under test.

Other pins not listed are left open.

\*Resistor value to V<sub>CC</sub>.

## **ADDITIONS AND MODIFICATIONS**

## **ADDITIONS AND MODIFICATIONS**

## **ADDITIONS AND MODIFICATIONS**

## **ADDITIONS AND MODIFICATIONS**







**PLASTIC**  
**MRTL**  
**INTEGRATED CIRCUITS**  
**LOW-POWER**  
**AND**  
**MEDIUM-POWER**  
**MC700P/MC800P SERIES**



# MILLIWATT AND MEDIUM-POWER PLASTIC MRTL INTEGRATED CIRCUITS

This series of MRTL logic circuits is packaged in the molded plastic package to provide exceptional economy. This group contains devices from both the medium-power and low-power groups; the medium-power devices have loading factors normalized for ease of mixing the two power levels in a system.

## INDEX

|                                                     | <u>Page No.</u> |
|-----------------------------------------------------|-----------------|
| General Information                                 | 6-158           |
| Summary of Devices Available in mW MRTL (low power) | 6-159           |
| Summary of Devices Available in MRTL (medium power) | 6-162           |

### DEVICE SPECIFICATIONS

|                                         | POWER   |
|-----------------------------------------|---------|
| <b>GATES</b>                            |         |
| MC718P, MC818P                          | mW MRTL |
| MC719P, MC819P                          | mW MRTL |
| MC793P, MC893P                          | mW MRTL |
| MC717P, MC817P                          | mW MRTL |
| MC715P, MC815P                          | MRTL    |
| MC725P, MC825P                          | MRTL    |
| MC792P, MC892P                          | MRTL    |
| MC724P, MC824P                          | MRTL    |
| MC771P, MC871P                          | MRTL    |
| Dual 3-Input Gates                      | 6-166   |
| Dual 4-Input Gates                      | 6-168   |
| Triple 3-Input Gates                    | 6-170   |
| Quad 2-Input Gates                      | 6-172   |
| Dual 3-Input Gates                      | 6-174   |
| Dual 4-Input Gates                      | 6-176   |
| Triple 3-Input Gates                    | 6-178   |
| Quad 2-Input Gates                      | 6-180   |
| Quad Exclusive OR Gates                 | 6-182   |
| <b>BUFFERS</b>                          |         |
| MC798P, MC898P                          | mW MRTL |
| MC799P, MC899P                          | MRTL    |
| MC788P, MC888P                          | MRTL    |
| Dual 8 Buffers                          | 6-184   |
| Dual 8 Buffers, Inverting               | 6-186   |
| Dual 8 Buffers, Non-Inverting           | 6-188   |
| <b>FLIP-FLOPS</b>                       |         |
| MC776P, MC876P                          | mW MRTL |
| MC778P, MC878P                          | mW MRTL |
| MC722P, MC822P                          | mW MRTL |
| MC791P, MC891P                          | MRTL    |
| MC723P, MC816P                          | MRTL    |
| MC726P, MC826P                          | MRTL    |
| MC790P, MC890P                          | MRTL    |
| Dual J-K Flip-Flops                     | 6-190   |
| Dual Type D Flip-Flops                  | 6-193   |
| J-K Flip-Flops                          | 6-196   |
| Dual J-K Flip-Flops                     | 6-199   |
| J-K Flip-Flops                          | 6-202   |
| J-K Flip-Flops                          | 6-205   |
| Dual J-K Flip-Flops                     | 6-208   |
| <b>INVERTERS</b>                        |         |
| MC789P, MC889P                          | MRTL    |
| <b>EXPANDERS</b>                        |         |
| MC786P, MC886P                          | MRTL    |
| MC785P, MC885P                          | MRTL    |
| MC9721P, MC9821P                        | mW MRTL |
| MC9719P, MC9819P                        | MRTL    |
| Dual 4-Input Expanders                  | 6-213   |
| Quad 2-Input Expanders                  | 6-215   |
| Quad 2-Input Expanders                  | 6-217   |
| Hex Expanders                           | 6-219   |
| <b>MULTI-FUNCTION DEVICES</b>           |         |
| MC779P, MC879P                          | MRTL    |
| MC787P, MC887P                          | MRTL    |
| 1 J-K Flip-Flop, 1 Expander, 2 Buffers  | 6-221   |
| 1 J-K Flip-Flop, 1 Inverter, 2 Buffers  | 6-224   |
| <b>ADDERS and SUBTRACTORS</b>           |         |
| MC775P, MC875P                          | MRTL    |
| MC796P, MC896P                          | MRTL    |
| MC797P, MC897P                          | MRTL    |
| Dual Half-Adders                        | 6-227   |
| Dual Full Adders                        | 6-229   |
| Dual Full Subtractors                   | 6-232   |
| <b>SHIFT REGISTERS</b>                  |         |
| MC784P, MC884P                          | MRTL    |
| MC783P, MC883P                          | MRTL    |
| Dual Half-Shift Registers               | 6-235   |
| Dual Half-Shift Registers With Inverter | 6-237   |

**NUMERICAL INDEX**  
**(Functions and Characteristics)**

V<sub>CC</sub> = 3.6 V ± 10%, T<sub>A</sub> = 25°C, Case 93

| Function                               | Type         |            | Output Loading Factor each output |              | Propagation Delay t <sub>pd</sub> ns typ | Total Power Dissipation mW typ/pkg ① | Page No. |
|----------------------------------------|--------------|------------|-----------------------------------|--------------|------------------------------------------|--------------------------------------|----------|
|                                        | +15 to +55°C | 0 to +75°C | MC700 Series                      | MC800 Series |                                          |                                      |          |
| <b>MRTL</b>                            |              |            |                                   |              |                                          |                                      |          |
| Dual 3-Input NOR Gate                  | MC715P       | MC815P     | 16                                | 5            | 12                                       | 55/15                                | 6-174    |
| J-K Flip-Flop                          |              | MC816P     | —                                 | 3            | 35                                       | 91/79 ②                              | 6-202    |
| J-K Flip-Flop                          | MC723P       |            | 10                                | —            | 35                                       | 91/79 ②                              | 6-202    |
| Quad 2-Input NOR Gate                  | MC724P       | MC824P     | 16                                | 5            | 12                                       | 100/30                               | 6-180    |
| Dual 4-Input NOR Gate                  | MC725P       | MC825P     | 16                                | 5            | 12                                       | 60/15                                | 6-176    |
| J-K Flip-Flop                          | MC726P       | MC826P     | 16                                | 5            | 35                                       | 100/66 ②                             | 6-205    |
| Quad Exclusive OR Gate                 | MC771P       | MC871P     | 16                                | 5            | 12                                       | 87                                   | 6-182    |
| Dual Half Adder                        | MC775P       | MC875P     | 16                                | 5            | 20                                       | 120                                  | 6-227    |
| 1 J-K Flip-Flop, 1 Expander, 2 Buffers | MC779P       | MC879P     | —                                 | —            | —                                        | 166/169 ③                            | 6-221    |
| Dual Half-Shift Register               | MC783P       | MC883P     | 13                                | 4            | 22                                       | 140                                  | 6-237    |
| Dual Half-Shift Register w/Inverter    | MC784P       | MC884P     | 13                                | 4            | 22                                       | 100                                  | 6-235    |
| Dual 2-Input Expander                  | MC785P       | MC885P     | —                                 | —            | 12                                       | 20/—                                 | 6-215    |
| Dual 4-Input Expander                  | MC786P       | MC886P     | —                                 | —            | 12                                       | 20/—                                 | 6-213    |
| 1 J-K Flip-Flop, 1 Inverter, 2 Buffers | MC787P       | MC887P     | —                                 | —            | —                                        | 163/177 ③                            | 6-224    |
| Dual 3-Input Buffer, non inverting     | MC788P       | MC888P     | 80                                | 25           | 24                                       | 145/56                               | 6-188    |
| Hex Inverter                           | MC789P       | MC889P     | 16                                | 5            | 12                                       | 130/15                               | 6-211    |
| Dual J-K Flip-Flop                     | MC790P       | MC890P     | 10                                | 3            | 35                                       | 182/158 ②                            | 6-208    |
| Dual J-K Flip-Flop                     | MC791P       | MC891P     | 16                                | 5            | 40                                       | 190/160 ②                            | 6-199    |
| Triple 3-Input NOR Gate                | MC792P       | MC892P     | 16                                | 5            | 12                                       | 82/24                                | 6-178    |
| Dual Full Adder                        | MC796P       | MC896P     | 13                                | 4            | 60                                       | 84                                   | 6-229    |
| Dual Full Subtractor                   | MC797P       | MC897P     | 13                                | 4            | 60                                       | 84                                   | 6-232    |
| Dual Buffer                            | MC799P       | MC899P     | 80                                | 25           | 20                                       | 50/100                               | 6-186    |
| Hex Expander                           | MC9719P      | MC9819P    | —                                 | —            | 12                                       | 13/—                                 | 6-219    |
| <b>mW MRTL</b>                         |              |            | All Series                        |              |                                          |                                      |          |
| Quad 2-Input NOR Gate                  | MC717P       | MC817P     | 4                                 | —            | 27                                       | 20/5.0                               | 6-172    |
| Dual 3-Input NOR Gate                  | MC718P       | MC818P     | 4                                 | —            | 27                                       | 12/2.5                               | 6-166    |
| Dual 4-Input NOR Gate                  | MC719P       | MC819P     | 4                                 | —            | 27                                       | 13/2.5                               | 6-168    |
| J-K Flip-Flop                          | MC722P       | MC822P     | 4                                 | —            | 70                                       | 24/20 ②                              | 6-196    |
| Dual J-K Flip-Flop                     | MC776P       | MC876P     | 2                                 | —            | 50                                       | 41/29 ②                              | 6-190    |
| Dual Type D Flip-Flop                  | MC778P       | MC878P     | 3                                 | —            | 60                                       | 48/35 ④                              | 6-193    |
| Triple 3-Input NOR Gate                | MC793P       | MC893P     | 4                                 | —            | 27                                       | 18/3.5                               | 6-170    |
| Dual 2-Input Buffer                    | MC798P       | MC898P     | 30                                | —            | 57                                       | 14/46                                | 6-184    |
| Quad 2-Input Expander                  | MC9721P      | MC9821P    | —                                 | —            | 27                                       | 20/—                                 | 6-217    |

① Inputs High/Inputs Low unless otherwise noted.

② Only Clock Input High/Inputs Low

③ Only Clock Input High on flip-flop, other element inputs High/Inputs Low

④ Direct Set and Direct Clear Low, All Other Inputs High/All Inputs Low

## **GENERAL INFORMATION**

PI ASTIC MRTL MC700P/800P series



\*TRADEMARK OF MOTOROLA INC.



**MAXIMUM RATINGS**

| Rating                                                        | Symbol           | Value                  | Unit |
|---------------------------------------------------------------|------------------|------------------------|------|
| Input Voltage                                                 | —                | $\pm 4.0$              | Vdc  |
| Power Supply Voltage (Pulsed $\leq 1.0$ s)                    | —                | +12                    | Vdc  |
| Operating Temperature Range<br>MC700P Series<br>MC800P Series | T <sub>A</sub>   | +15 to +55<br>0 to +75 | °C   |
| Storage Temperature Range                                     | T <sub>stg</sub> | -55 to +125            | °C   |

## **TEST CONDITION TOLERANCES**

$$V_{ext} = \pm 10 \text{ mV}, V_{ce} = \pm 10 \text{ mV}, V_b = \pm 2 \text{ mV}, V_s = \pm 1\%, V_{re} = \pm 2 \text{ mV}, V_{re'} = \pm 2 \text{ mV}, V_U = \pm 2 \text{ mV}$$

## **DEFINITIONS**

- I<sub>A2</sub>, I<sub>A3</sub>** Minimum available output current from a device with an output loading factor of 2, 3, 4, 5, 10, 13, and 16 respectively. -Output voltage not to fall below the value of V<sub>in</sub>.

**I<sub>A8</sub>** Minimum available output current from a buffer. Output voltage not to fall below the value of V<sub>on</sub>.

**I<sub>AM</sub>** The maximum available current from the output of a Dual Gate.

**I<sub>CEx</sub>** Collector current of a circuit when V<sub>in</sub> is applied to the output pin and V<sub>off</sub> is applied to the input pins.

**I<sub>in</sub>** Maximum input current drawn by one input of a gate with V<sub>in</sub> applied. All other gate inputs are returned to V<sub>or</sub>.

**1.8 I<sub>in</sub>** Current drawn from the V<sub>in</sub> supply by the Toggle pin of the Flip-Flop.

**2 I<sub>in</sub>** Maximum input current drawn by one input of a device with 2 bases internally tied together.

**I<sub>L</sub>** Isolation leakage current.

- |               |                                                                                                                                                        |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V_{BE}$      | Output load current.                                                                                                                                   |
| $V_{BE}$      | A high value voltage applied to an input of a device to insure saturation of the driven transistor.                                                    |
| $V_{CC}$      | Supply voltage.                                                                                                                                        |
| $V_{CE(sat)}$ | Maximum saturation voltage with $V_{BE}$ applied to the input.                                                                                         |
| $V_{in}$      | Minimum high level voltage applied to the input of a device.                                                                                           |
| $V_{LL}$      | A supply voltage low enough to allow flow of leakage currents only.                                                                                    |
| $V_{off}$     | The maximum voltage which may be applied to an input terminal without turning the transistor on.                                                       |
| $V_{on}$      | The minimum voltage which may be applied to an input terminal that will turn the transistor on.                                                        |
| $V_{out}$     | The maximum output voltage with $V_{on}$ applied to the input.                                                                                         |
| $V_R$         | Value of external resistor connected to $V_{CC}$ for test purposes.<br>$V_{RH}$ = highest node resistor value<br>$V_{RL}$ = lowest node resistor value |

## **GENERAL RULES**

- EXPANDER RULES:
    1. The MC785P/885P, MC786P/886P and MC9719P/9819P MRTL expanders can be used to expand medium-power MRTL output nodes only. The MC9721P/9821P expander can be used to expand mW MRTL output nodes only.
    2. mW MRTL and MC800 MRTL Series: When using the MC885P, MC886P, MC9819P or MC9721/9821 subtract 0.5 from the output loading factor of the expanded gate for each expander node that is connected; also increase the input loading factor of the expanded gate by a factor of 1.33.
    3. MC700 MRTL Series: When using the MC785P, MC786P or MC9719P subtract 2.0 from the output loading factor of the medium-power MRTL expanded gate for each expander node that is connected; also increase the input loading factor of the medium-power expanded gate by a factor of 3.75.
  - The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output.
  - When mixing MRTL and mWMRTL in the same system, the loading factors must be normalized in accordance with the input current of the units being driven.
  - All unused inputs should be returned to ground.

## LOADING DIAGRAMS

# PLASTIC mW MRTL MC700P/800P series

## LOW POWER mW MRTL DEVICES

The logic diagrams shown describe the MC700P/MC800P Series of low-power resistor-transistor logic integrated circuits and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time ( $t_{pd}$ ), typical package power dissipation ( $P_D$ ), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (if on the circuit input terminal) or load driving ability — fan-out — (if on the circuit output terminal).

Using the indicated loading factors, these low-power mW

MRTL circuits are compatible with the medium-power MRTL circuits shown on page 6-162. The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. The loading data is valid over the temperature range of +15 to +55°C for the MC700P Series, and 0 to +75°C for the MC800P Series, with  $V_{CC} = 3.6 \text{ V} \pm 10\%$ .

All elements in the MC700P/MC800P Series operate with  $V_{CC}$  applied to pin 11 and ground connected to pin 4.

## GATES

**MC718P • MC818P**  
Dual 3-Input Gate



$$3 = \overline{2 + 12 + 13}$$

$t_{pd} = 27 \text{ ns}$

$P_D = 12 \text{ mW (Input High)}$   
 $2.5 \text{ mW (Inputs Low)}$

**MC719P • MC819P**  
Dual 4-Input Gate



$$12 = \overline{2 + 3 + 13 + 14}$$

$t_{pd} = 27 \text{ ns}$

$P_D = 13 \text{ mW (Input High)}$   
 $2.5 \text{ mW (Inputs Low)}$

**MC793P • MC893P**  
Triple 3-Input Gate



$$3 = \overline{1 + 2 + 14}$$

$t_{pd} = 27 \text{ ns}$

$P_D = 18 \text{ mW (Input High)}$   
 $3.5 \text{ mW (Inputs Low)}$

**MC717P • MC817P**  
Quad 2-Input Gate



$$3 = \overline{1 + 2}$$

$t_{pd} = 27 \text{ ns}$

$P_D = 20 \text{ mW (Input High)}$   
 $5.0 \text{ mW (Inputs Low)}$

## BUFFERS

**MC798P • MC898P**  
Dual 2-Input Buffer



$$3 = \overline{2 + 13}$$

$t_{pd} = 57 \text{ ns}$

$P_D = 14 \text{ mW (Input High)}$   
 $46 \text{ mW (Inputs Low)}$

## FLIP-FLOPS

MC722P • MC822P  
J-K Flip-Flop $f_{Tog} = 1 \text{ MHz}$  $P_D = 24 \text{ mW (Only Clock Input High)}$   
 $20 \text{ mW (Inputs Low)}$ 

DIRECT INPUT OPERATION ①

| S <sub>D</sub> | C <sub>D</sub> | Q | Q̄ |
|----------------|----------------|---|----|
| 0              | 0              | ② | ②  |
| 1              | 0              | 1 | 0  |
| 0              | 1              | 0 | 1  |
| 1              | 1              | 0 | 0  |

CLOCKED INPUT OPERATION ③

| $t_n$ ④ |   | $t_{n+1}$ ④ |             |
|---------|---|-------------|-------------|
| S       | C | Q           | Q̄          |
| 1       | 1 | $Q_n$       | $\bar{Q}_n$ |
| 1       | 0 | 1           | 0           |
| 0       | 1 | 0           | 1           |
| 0       | 0 | $\bar{Q}_n$ | $Q_n$       |

1. Clock (T) to remain unchanged.
2. The output state will not change when the input state goes from  $S_D = \bar{C}_D$  to  $S_D = C_D = 0$ . The output state cannot be predetermined in the case where the input goes from  $S_D = C_D = 1$  to  $S_D = C_D = 0$ .
3. Direct inputs ( $C_D$  and  $S_D$ ) must be low.
4. The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .
5.  $Q_n$  is the state of the Q output in the time period  $t_n$ .
6. Clock pulse fall time must be < 100 ns.

MC776P • MC876P  
Dual J-K Flip-Flop $f_{Tog} = 3 \text{ MHz}$  $P_D = 41 \text{ mW (Only Clock Input High)}$   
 $29 \text{ mW (Inputs Low)}$ 

CLOCKED INPUT OPERATION

| $t_n$ |    | $t_{n+1}$   |             |
|-------|----|-------------|-------------|
| S     | C  | Q           | Q̄          |
| 1     | 1  | $Q_n$       | $\bar{Q}_n$ |
| 1     | 0  | 1           | 0           |
| 0     | 1  | 0           | 1           |
| 0     | -0 | $\bar{Q}_n$ | $Q_n$       |

1. Direct input ( $C_D$ ) must be low.
2. The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .
3.  $Q_n$  is the state of the Q output in the time period  $t_n$ .
4. Clock pulse fall time must be < 100 ns.

MC778P • MC878P  
Dual Type D Flip-Flop $f_{Tog} = 1 \text{ MHz}$  $P_D = 48 \text{ mW (Direct Set (S_D) and Direct Clear (C_D) Low; all other Inputs High)}$   
 $3 \text{ mW (All Inputs Low)}$ 

DIRECT INPUT OPERATION ①

| S <sub>D</sub> | C <sub>D</sub> | Q | Q̄ |
|----------------|----------------|---|----|
| 0              | 0              | ② | ②  |
| 1              | 0              | 1 | 0  |
| 0              | 1              | 0 | 1  |
| 1              | 1              | 0 | 0  |

CLOCKED INPUT OPERATION ③

| $t_n$ ④ |   | $t_{n+1}$ ④ |  |
|---------|---|-------------|--|
| S       | Q | Q̄          |  |
| 1       | 1 | 0           |  |
| 0       | 0 | 1           |  |

1. Clock (T input) must be high.
2. The output state will not change when the input state goes from  $S_D = C_D$  to  $S_D = C_D = 0$ . The output state cannot be predetermined in the case where the input goes from  $S_D = C_D = 1$  to  $S_D = C_D = 0$ .
3. Direct inputs ( $C_D$  and  $S_D$ ) must be low.
4. The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .

## EXPANDERS

MC9721P • MC9821P Quad 2-Input Expander



$3 = \overline{1 + 2}$   
 $t_{pd} = 27 \text{ ns}$   
 $P_D = 20 \text{ mW (Input High)}$   
Negligible (Inputs Low)

## LOADING DIAGRAMS

# PLASTIC mW MRTL MC700P/800P series

## MEDIUM-POWER MRTL DEVICES

The logic diagrams shown describe the MC700P/MC800P Series of medium-power resistor-transistor logic integrated circuits and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time ( $t_{pd}$ ), typical package power dissipation ( $P_D$ ), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis or brackets indicates the input loading factor (if on the circuit input terminal) or load driving ability — fan-out — (if on the circuit output terminal). The bracketed number is the loading factor when working with other medium-power devices; e.g., [1] is the MRTL load factor defined as 1 times the MRTL basic gate input current (600  $\mu$ Adc @ +25°C). The number in parenthesis is the loading factor when working with mW

MRTL devices; e.g., (3) is the MRTL load factor defined as 3 times the mW MRTL basic gate input current (140  $\mu$ Adc @ +25°C).

Using the parenthetic loading factors, these medium-power MRTL circuits are compatible with the low-power mW MRTL circuits shown on page 6-159. The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. The loading data is valid over the temperature range of +15 to +75°C for the MC700P Series, and 0 to +75°C for the MC800P Series, with  $V_{CC} = 3.6$  V  $\pm 10\%$ .

All elements in the MC700P/800P Series operate with  $V_{CC}$  applied to pin 11 and ground connected to pin 4.

## GATES

|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>MC715P • MC815P</b><br>Dual 3-Input Gate                                                                                                                                                                                                                                                                                                                                                                                               | <b>MC724P • MC824P</b><br>Quad 2-Input Gate                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>MC771P • MC871P</b><br>Quad Exclusive "OR" Gate                                                                                                                                                                                                                                                                                                                                                                                                      |
| <p> <math>[1] (3) \quad 2</math><br/> <math>[1] (3) \quad 12</math><br/> <math>[1] (3) \quad 13</math><br/> <br/> <math>[1] (3) \quad 5</math><br/> <math>[1] (3) \quad 6</math><br/> <math>[1] (3) \quad 9</math><br/> <br/> <math>3 = \overline{2 + 12 + 13}</math><br/> <math>t_{pd} = 12</math> ns<br/> <math>P_D = 55</math> mW (Input High)<br/> <math>15</math> mW (Inputs Low)         </p>                                       | <p> <math>[1] (3) \quad 1</math><br/> <math>[1] (3) \quad 2</math><br/> <math>[1] (3) \quad 6</math><br/> <math>[1] (3) \quad 7</math><br/> <math>[1] (3) \quad 9</math><br/> <math>[1] (3) \quad 10</math><br/> <math>[1] (3) \quad 12</math><br/> <math>[1] (3) \quad 13</math><br/> <br/> <math>3 = \overline{1 + 2}</math><br/> <math>t_{pd} = 12</math> ns<br/> <math>P_D = 100</math> mW (Input High)<br/> <math>30</math> mW (Inputs Low)         </p>                                                    | <p> <math>[2] (5) \quad 1</math><br/> <math>[2] (5) \quad 2</math><br/> <br/> <math>[2] (5) \quad 6</math><br/> <math>[2] (5) \quad 7</math><br/> <br/> <math>[2] (5) \quad 9</math><br/> <math>[2] (5) \quad 10</math><br/> <br/> <math>[2] (5) \quad 12</math><br/> <math>[2] (5) \quad 13</math><br/> <br/> <math>3 = 1 \cdot \overline{2} + \overline{1} \cdot 2</math><br/> <math>t_{pd} = 12</math> ns<br/> <math>P_D = 87</math> mW         </p> |
| <b>MC725P • MC825P</b><br>Dual 4-Input Gate                                                                                                                                                                                                                                                                                                                                                                                               | <b>MC792P • MC892P</b><br>Triple 3-Input Gate                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <p> <math>[1] (3) \quad 2</math><br/> <math>[1] (3) \quad 3</math><br/> <math>[1] (3) \quad 13</math><br/> <br/> <math>[1] (3) \quad 5</math><br/> <math>[1] (3) \quad 6</math><br/> <math>[1] (3) \quad 7</math><br/> <math>[1] (3) \quad 9</math><br/> <br/> <math>12 = \overline{2 + 3 + 13 + 14}</math><br/> <math>t_{pd} = 12</math> ns<br/> <math>P_D = 60</math> mW (Input High)<br/> <math>15</math> mW (Inputs Low)         </p> | <p> <math>[1] (3) \quad 1</math><br/> <math>[1] (3) \quad 2</math><br/> <math>[1] (3) \quad 14</math><br/> <br/> <math>[1] (3) \quad 6</math><br/> <math>[1] (3) \quad 7</math><br/> <math>[1] (3) \quad 8</math><br/> <br/> <math>[1] (3) \quad 10</math><br/> <math>[1] (3) \quad 12</math><br/> <math>[1] (3) \quad 13</math><br/> <br/> <math>3 = \overline{1 + 2 + 14}</math><br/> <math>t_{pd} = 12</math> ns<br/> <math>P_D = 82</math> mW (Input High)<br/> <math>24</math> mW (Inputs Low)         </p> |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## BUFFERS



## HALF-SHIFT REGISTERS



## EXPANDERS



**FLIP-FLOPS**

| <p><b>DIRECT INPUT OPERATION ①</b></p> <table border="1"> <thead> <tr> <th>S<sub>D</sub></th> <th>C<sub>D</sub></th> <th>Q</th> <th><math>\bar{Q}</math></th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>②</td> <td>②</td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>0</td> <td>1</td> </tr> <tr> <td>1</td> <td>1</td> <td>0</td> <td>0</td> </tr> </tbody> </table><br><p><b>CLOCKED INPUT OPERATION ③ all types</b></p> <table border="1"> <thead> <tr> <th>t<sub>n</sub> ④</th> <th>t<sub>n+1</sub> ④</th> </tr> </thead> <tbody> <tr> <td>S</td> <td>C</td> <td>Q</td> <td><math>\bar{Q}</math></td> </tr> <tr> <td>1</td> <td>1</td> <td>Q<sub>n</sub> ⑤</td> <td><math>\bar{Q}_n</math></td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>0</td> <td>1</td> </tr> <tr> <td>0</td> <td>0</td> <td><math>\bar{Q}_n</math></td> <td>Q<sub>n</sub> ⑤</td> </tr> </tbody> </table> | S <sub>D</sub>     | C <sub>D</sub>   | Q                | $\bar{Q}$   | 0 | 0 | ②                          | ②         | 1          | 0          | 1 | 0 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1           | 0 | 1 | 1            | 1 | 0           | 0           | t <sub>n</sub> ④ | t <sub>n+1</sub> ④ | S                          | C         | Q          | $\bar{Q}$  | 1 | 1 | Q <sub>n</sub> ⑤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\bar{Q}_n$ | 1 | 0           | 1           | 0 | 0 | 1                          | 0         | 1           | 0           | 0 | $\bar{Q}_n$ | Q <sub>n</sub> ⑤ | <p><b>J-K FLIP-FLOP TRUTH TABLES</b></p> <ol style="list-style-type: none"> <li>1. Clock (T) to remain unchanged.</li> <li>2. The output state will not change when the input state goes from S<sub>D</sub> = C<sub>D</sub> to S<sub>D</sub> = C<sub>D</sub> = 0. The output state cannot be predetermined in the case where the input goes from S<sub>D</sub> = C<sub>D</sub> = 1 to S<sub>D</sub> = C<sub>D</sub> = 0.</li> <li>3. Direct inputs (C<sub>D</sub> and S<sub>D</sub>) must be low.</li> <li>4. The time period prior to the negative transition of the clock pulse is denoted t<sub>n</sub> and the time period subsequent to this transition is denoted t<sub>n+1</sub>.</li> <li>5. Q<sub>n</sub> is the state of the Q output in the time period t<sub>n</sub>.</li> <li>6. Clock pulse fall time must be &lt; 100 ns.</li> </ol> | <p><b>MC791P • MC891P Dual J-K Flip-Flop</b></p> <table border="1"> <tr> <td>[1] (3) 3—S</td> <td>Q</td> <td>13 (16) [5]</td> </tr> <tr> <td>[2] (5) 2—T</td> <td></td> <td></td> </tr> <tr> <td>[1] (3) 1—C C<sub>D</sub></td> <td><math>\bar{Q}</math></td> <td>14 (16) [5]</td> </tr> <tr> <td>[1] (3) 12—</td> <td></td> <td></td> </tr> <tr> <td>[1] (3) 5—S</td> <td>Q</td> <td>9 (16) [5]</td> </tr> <tr> <td>[2] (5) 6—T</td> <td></td> <td></td> </tr> <tr> <td>[1] (3) 7—C C<sub>D</sub></td> <td><math>\bar{Q}</math></td> <td>8 (16) [5]</td> </tr> <tr> <td>[1] (3) 10—</td> <td></td> <td></td> </tr> </table> <p>f<sub>Tog</sub> = 4 MHz<br/>P<sub>D</sub> = 190 mW (Only Clock Input High)<br/>160 mW (Inputs Low)</p> | [1] (3) 3—S | Q | 13 (16) [5] | [2] (5) 2—T                |           |            | [1] (3) 1—C C <sub>D</sub> | $\bar{Q}$ | 14 (16) [5] | [1] (3) 12— |  |  | [1] (3) 5—S | Q | 9 (16) [5] | [2] (5) 6—T |  |  | [1] (3) 7—C C <sub>D</sub> | $\bar{Q}$ | 8 (16) [5] | [1] (3) 10— |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|------------------|-------------|---|---|----------------------------|-----------|------------|------------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|---|--------------|---|-------------|-------------|------------------|--------------------|----------------------------|-----------|------------|------------|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|-------------|-------------|---|---|----------------------------|-----------|-------------|-------------|---|-------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|-------------|----------------------------|-----------|------------|----------------------------|-----------|-------------|-------------|--|--|-------------|---|------------|-------------|--|--|----------------------------|-----------|------------|-------------|--|--|
| S <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>D</sub>     | Q                | $\bar{Q}$        |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                  | ②                | ②                |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                  | 1                | 0                |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | 0                | 1                |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | 0                | 0                |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| t <sub>n</sub> ④                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t <sub>n+1</sub> ④ |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                  | Q                | $\bar{Q}$        |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | Q <sub>n</sub> ⑤ | $\bar{Q}_n$      |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                  | 1                | 0                |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | 0                | 1                |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                  | $\bar{Q}_n$      | Q <sub>n</sub> ⑤ |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 3—S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q                  | 13 (16) [5]      |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [2] (5) 2—T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 1—C C <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\bar{Q}$          | 14 (16) [5]      |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 12—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 5—S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q                  | 9 (16) [5]       |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [2] (5) 6—T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 7—C C <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\bar{Q}$          | 8 (16) [5]       |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 10—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| <p><b>MC723P • MC816P J-K Flip-Flop</b></p> <table border="1"> <tr> <td>[1] (3) 12—S</td> <td>Q</td> <td>10 (10) [3]</td> </tr> <tr> <td>[2] (5) 2—T</td> <td></td> <td></td> </tr> <tr> <td>[1] (3) 3—C C<sub>D</sub></td> <td><math>\bar{Q}</math></td> <td>5 (10) [3]</td> </tr> <tr> <td>[1] (3) 9—</td> <td></td> <td></td> </tr> </table> <p>f<sub>Tog</sub> = 4 MHz<br/>P<sub>D</sub> = 91 mW (Only Clock Input High)<br/>79 mW (Inputs Low)</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [1] (3) 12—S       | Q                | 10 (10) [3]      | [2] (5) 2—T |   |   | [1] (3) 3—C C <sub>D</sub> | $\bar{Q}$ | 5 (10) [3] | [1] (3) 9— |   |   | <p><b>MC726P • MC826P J-K Flip-Flop</b></p> <table border="1"> <tr> <td>[1] (3) 12—</td> <td></td> <td></td> </tr> <tr> <td>[1] (3) 13—S</td> <td>Q</td> <td>10 (16) [5]</td> </tr> <tr> <td>[2] (5) 2—T</td> <td></td> <td></td> </tr> <tr> <td>[1] (3) 3—C C<sub>D</sub></td> <td><math>\bar{Q}</math></td> <td>6 (16) [5]</td> </tr> <tr> <td>[1] (3) 9—</td> <td></td> <td></td> </tr> </table> <p>f<sub>Tog</sub> = 4 MHz<br/>P<sub>D</sub> = 100 mW (Only Clock Input High)<br/>86 mW (Inputs Low)</p> | [1] (3) 12— |   |   | [1] (3) 13—S | Q | 10 (16) [5] | [2] (5) 2—T |                  |                    | [1] (3) 3—C C <sub>D</sub> | $\bar{Q}$ | 6 (16) [5] | [1] (3) 9— |   |   | <p><b>MC790P • MC890P Dual J-K Flip-Flop</b></p> <table border="1"> <tr> <td>[1] (3) 3—S</td> <td>Q</td> <td>13 (10) [3]</td> </tr> <tr> <td>[2] (5) 2—T</td> <td></td> <td></td> </tr> <tr> <td>[1] (3) 1—C C<sub>D</sub></td> <td><math>\bar{Q}</math></td> <td>14 (10) [3]</td> </tr> <tr> <td>[1] (3) 12—</td> <td></td> <td></td> </tr> <tr> <td>[1] (3) 5—S</td> <td>Q</td> <td>9 (10) [3]</td> </tr> <tr> <td>[2] (5) 6—T</td> <td></td> <td></td> </tr> <tr> <td>[1] (3) 7—C C<sub>D</sub></td> <td><math>\bar{Q}</math></td> <td>8 (10) [3]</td> </tr> <tr> <td>[1] (3) 10—</td> <td></td> <td></td> </tr> </table> <p>f<sub>Tog</sub> = 4 MHz<br/>P<sub>D</sub> = 182 mW (Only Clock Input High)<br/>158 mW (Inputs Low)</p> | [1] (3) 3—S | Q | 13 (10) [3] | [2] (5) 2—T |   |   | [1] (3) 1—C C <sub>D</sub> | $\bar{Q}$ | 14 (10) [3] | [1] (3) 12— |   |             | [1] (3) 5—S      | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 (10) [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [2] (5) 6—T |   |             | [1] (3) 7—C C <sub>D</sub> | $\bar{Q}$ | 8 (10) [3] | [1] (3) 10—                |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 12—S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q                  | 10 (10) [3]      |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [2] (5) 2—T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 3—C C <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\bar{Q}$          | 5 (10) [3]       |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 9—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 12—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 13—S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q                  | 10 (16) [5]      |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [2] (5) 2—T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 3—C C <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\bar{Q}$          | 6 (16) [5]       |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 9—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 3—S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q                  | 13 (10) [3]      |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [2] (5) 2—T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 1—C C <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\bar{Q}$          | 14 (10) [3]      |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 12—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 5—S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q                  | 9 (10) [3]       |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [2] (5) 6—T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 7—C C <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\bar{Q}$          | 8 (10) [3]       |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |
| [1] (3) 10—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                  |                  |             |   |   |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |              |   |             |             |                  |                    |                            |           |            |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |             |   |   |                            |           |             |             |   |             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |   |             |                            |           |            |                            |           |             |             |  |  |             |   |            |             |  |  |                            |           |            |             |  |  |

**MULTIFUNCTION DEVICES**

| <p><b>MC779P • MC879P Multifunction (1 J-K FLIP-FLOP, 1 EXPANDER, 2 BUFFERS)</b></p> <p>Logic diagram for MC779P/MC879P:</p> <ul style="list-style-type: none"> <li>1 J-K FLIP-FLOP with S, T, and C inputs.</li> <li>1 EXPANDER (buffer) with inputs 1, 2, 14, and 13.</li> <li>2 BUFFERS with inputs 1, 2, 14, and 13.</li> </ul> <table border="1"> <thead> <tr> <th></th> <th>f<sub>Tog</sub> MHz</th> <th>t<sub>pd</sub> ns</th> <th>P<sub>D</sub> mW</th> </tr> <tr> <th></th> <th>(Input High)</th> <th>(Input Low)</th> <th></th> </tr> </thead> <tbody> <tr> <td>FLIP-FLOP</td> <td>4</td> <td>—</td> <td>91‡</td> </tr> <tr> <td>EACH BUFFER</td> <td>—</td> <td>15</td> <td>25</td> </tr> <tr> <td>EXPANDER</td> <td>—</td> <td>12</td> <td>Negligible</td> </tr> </tbody> </table> <p>‡Only Clock Input High</p> <p>*Input loading factor is 3 for mW MRTL, or 1 for MRTL, if pin 12 is tied to pin 8 or 9 on the same package.</p> |                      | f <sub>Tog</sub> MHz | t <sub>pd</sub> ns | P <sub>D</sub> mW |  | (Input High) | (Input Low) |  | FLIP-FLOP | 4 | — | 91‡ | EACH BUFFER | — | 15 | 25 | EXPANDER | — | 12 | Negligible | <p><b>MC787P • MC887P Multifunction (1 J-K FLIP-FLOP, 1 INVERTER, 2 BUFFERS)</b></p> <p>Logic diagram for MC787P/MC887P:</p> <ul style="list-style-type: none"> <li>1 J-K FLIP-FLOP with S, T, and C inputs.</li> <li>1 INVERTER.</li> <li>2 BUFFERS with inputs 1, 2, 14, and 13.</li> </ul> <table border="1"> <thead> <tr> <th></th> <th>f<sub>Tog</sub> MHz</th> <th>t<sub>pd</sub> ns</th> <th>P<sub>D</sub> mW</th> </tr> <tr> <th></th> <th>(Input High)</th> <th>(Input Low)</th> <th></th> </tr> </thead> <tbody> <tr> <td>FLIP-FLOP</td> <td>4</td> <td>—</td> <td>91‡</td> </tr> <tr> <td>EACH BUFFER</td> <td>—</td> <td>15</td> <td>25</td> </tr> <tr> <td>INVERTER</td> <td>—</td> <td>12</td> <td>45</td> </tr> </tbody> </table> <p>‡Only Clock Input High</p> |  | f <sub>Tog</sub> MHz | t <sub>pd</sub> ns | P <sub>D</sub> mW |  | (Input High) | (Input Low) |  | FLIP-FLOP | 4 | — | 91‡ | EACH BUFFER | — | 15 | 25 | INVERTER | — | 12 | 45 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|--------------------|-------------------|--|--------------|-------------|--|-----------|---|---|-----|-------------|---|----|----|----------|---|----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------|--------------------|-------------------|--|--------------|-------------|--|-----------|---|---|-----|-------------|---|----|----|----------|---|----|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f <sub>Tog</sub> MHz | t <sub>pd</sub> ns   | P <sub>D</sub> mW  |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                      |                    |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Input High)         | (Input Low)          |                    |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                      |                    |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |    |
| FLIP-FLOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                    | —                    | 91‡                |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                      |                    |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |    |
| EACH BUFFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                    | 15                   | 25                 |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                      |                    |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |    |
| EXPANDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | —                    | 12                   | Negligible         |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                      |                    |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f <sub>Tog</sub> MHz | t <sub>pd</sub> ns   | P <sub>D</sub> mW  |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                      |                    |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Input High)         | (Input Low)          |                    |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                      |                    |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |    |
| FLIP-FLOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                    | —                    | 91‡                |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                      |                    |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |    |
| EACH BUFFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                    | 15                   | 25                 |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                      |                    |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |    |
| INVERTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | —                    | 12                   | 45                 |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                      |                    |                   |  |              |             |  |           |   |   |     |             |   |    |    |          |   |    |    |

## MEDIUM-POWER MRTL DEVICES (continued)

### HALF ADDERS

**MC775P • MC875P**  
Dual Half Adder



$$13 = (14 + 1)(2 + 3)$$

$$12 = \overline{2 + 3}$$

$t_{pd} = 20\text{ ns}$

$P_D = 120\text{ mW typ}$

### INVERTER

**MC789P • MC889P**  
Hex Inverter



$t_{pd} = 12\text{ ns}$

$P_D = 130\text{ mW (Input High)}$

$15\text{ mW (Inputs Low)}$

$1 = \overline{14}$

### FULL ADDER

**MC796P • MC896P**  
Dual Full Adder



$$C_0 = ABC_1 + AB\bar{C}_1 + A\bar{B}C_1 + \bar{A}\bar{B}\bar{C}_1$$

$$S = ABC_1 + A\bar{B}C_1 + \bar{A}\bar{B}C_1 + \bar{A}\bar{B}\bar{C}_1$$

$t_{pd} = 60\text{ ns typical}$

$P_D = 84\text{ mW typical}$

TRUTH TABLE

| Input Logic Level |   | Output Logic Level |                |
|-------------------|---|--------------------|----------------|
| A                 | B | C <sub>i</sub>     | C <sub>o</sub> |
| 0                 | 0 | 0                  | 0              |
| 0                 | 0 | 1                  | 1              |
| 0                 | 1 | 0                  | 1              |
| 0                 | 1 | 1                  | 0              |
| 1                 | 0 | 0                  | 1              |
| 1                 | 0 | 1                  | 0              |
| 1                 | 1 | 0                  | 1              |
| 1                 | 1 | 1                  | 1              |

### FULL SUBTRACTOR

**MC797P • MC897P**  
Dual Full Subtractor



$$D = YXB_1 + Y\bar{X}\bar{B}_1 + \bar{Y}X\bar{B}_1 + \bar{Y}\bar{X}B_1$$

$$B_o = \bar{Y}X\bar{B}_1 + Y\bar{X}\bar{B}_1 + YX\bar{B}_1 + Y\bar{X}B_1$$

$t_{pd} = 60\text{ ns typical}$

$P_D = 84\text{ mW typical}$

TRUTH TABLE

| Input Logic Level |   | Output Logic Level |   |                |
|-------------------|---|--------------------|---|----------------|
| X                 | Y | B <sub>i</sub>     | D | B <sub>o</sub> |
| 0                 | 0 | 0                  | 0 | 0              |
| 0                 | 0 | 1                  | 1 | 1              |
| 0                 | 1 | 0                  | 1 | 1              |
| 0                 | 1 | 1                  | 0 | 1              |
| 1                 | 0 | 0                  | 1 | 0              |
| 1                 | 0 | 1                  | 0 | 0              |
| 1                 | 1 | 0                  | 0 | 0              |
| 1                 | 1 | 1                  | 1 | 1              |

DUAL 3-INPUT GATES

PLASTIC mW MRTL MC700P/800P series

## MC718P • MC818P



Two 3-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.



$$3 = \overline{2 + 12 + 13}$$

NUMBER IN PARENTHESIS  
INDICATES MC718P, MC818P LOADING FACTOR

$t_{pd} = 27 \text{ ns}$   
 $P_o = 12 \text{ mW (Input High)}$   
 $2.5 \text{ mW (Inputs Low)}$

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one gate only.  
The other gate is tested in the same manner.

| @ Test Temperature | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |      |
|--------------------|--------------------------------|-----------------|------------------|------------------|-----------------|------|
|                    | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |      |
| MC818P             | 0°C                            | 0.880           | 0.850            | 1.80             | 0.500           | 3.60 |
|                    | +25°C                          | 0.830           | 0.800            | 1.80             | 0.460           | 3.60 |
|                    | +75°C                          | 0.740           | 0.710            | 1.80             | 0.400           | 3.60 |
|                    | +15°C                          | 0.865           | 0.865            | 1.80             | 0.475           | 3.60 |
|                    | +25°C                          | 0.850           | 0.850            | 1.80             | 0.460           | 3.60 |
|                    | +55°C                          | 0.800           | 0.800            | 1.80             | 0.430           | 3.60 |

| Characteristic     | Symbol                             | Pin Under Test | MC818P Test Limits |               |             |               |             |               | MC718P Test Limits |             |               |             |               |             | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |               |                 |                          |                  | Gnd              |                 |                                   |     |
|--------------------|------------------------------------|----------------|--------------------|---------------|-------------|---------------|-------------|---------------|--------------------|-------------|---------------|-------------|---------------|-------------|--------------------------------------------|---------------|-----------------|--------------------------|------------------|------------------|-----------------|-----------------------------------|-----|
|                    |                                    |                | 0°C                |               | +25°C       |               | +75°C       |               | Unit               | +15°C       |               | +25°C       |               | +55°C       |                                            | Unit          | V <sub>in</sub> | V <sub>on</sub>          | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |                                   |     |
|                    |                                    |                | Min                | Max           | Min         | Max           | Min         | Max           |                    | Min         | Max           | Min         | Max           | Min         | Max                                        |               | 2               | 12, 13                   | -                | 11               | 4               |                                   |     |
| Input Current      | I <sub>in</sub>                    | 2<br>12<br>13  | -<br>-<br>-        | 150<br>↓<br>- | -<br>-<br>- | 140<br>↓<br>- | -<br>-<br>- | 140<br>↓<br>- | μAdc<br>↓          | -<br>-<br>- | 150<br>↓<br>- | -<br>-<br>- | 150<br>↓<br>- | -<br>-<br>- | μAdc<br>↓                                  | 2<br>12<br>13 | -<br>-<br>-     | 12, 13<br>2, 13<br>2, 12 | -<br>-<br>-      | 11<br>↓          | 4<br>↓          | Gnd                               |     |
| Output Current     | I <sub>A4</sub>                    | 3              | 570                | -             | 570         | -             | 535         | -             | μAdc               | 570         | -             | 570         | -             | 570         | -                                          | μAdc          | 3               | -                        | -                | 2, 12, 13        | 11              | 4                                 | Gnd |
| Output Voltage     | V <sub>out</sub>                   | 3<br>3<br>3    | -<br>-<br>-        | 400<br>↓<br>- | -<br>-<br>- | 350<br>↓<br>- | -<br>-<br>- | 300<br>↓<br>- | mVdc<br>↓          | -<br>-<br>- | 400<br>↓<br>- | -<br>-<br>- | 300<br>↓<br>- | -<br>-<br>- | 320<br>↓<br>-                              | mVdc<br>↓     | -<br>-<br>-     | 12<br>13<br>2            | -<br>-<br>-      | -<br>-<br>-      | 11<br>↓         | 2, 4, 13<br>2, 4, 13<br>4, 12, 13 | Gnd |
| Saturation Voltage | V <sub>CE(sat)</sub>               | 3<br>3<br>3    | -<br>-<br>-        | 250<br>↓<br>- | -<br>-<br>- | 250<br>↓<br>- | -<br>-<br>- | 250<br>↓<br>- | mVdc<br>↓          | -<br>-<br>- | 220<br>↓<br>- | -<br>-<br>- | 230<br>↓<br>- | -<br>-<br>- | 320<br>↓<br>-                              | mVdc<br>↓     | -<br>-<br>-     | 12<br>13<br>2            | -<br>-<br>-      | -<br>-<br>-      | 11<br>↓         | 2, 4, 13<br>2, 4, 12<br>4, 12, 13 | Gnd |
| Switching Time     | t <sub>on</sub> + t <sub>off</sub> | 3, 13          | -                  | -             | -           | 90            | -           | -             | ns                 | -           | -             | -           | 90            | -           | -                                          | ns            | Pulse In<br>13  | Pulse Out<br>3           | -                | -                | 11              | 2, 4, 12                          | Gnd |

Ground unused input pins. Other pins not listed are left open.

DUAL 4-INPUT GATES

PLASTIC mW MRTL MC700P/800P series

## MC719P • MC819P



Two 4-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.



$$12 = \overline{2 + 3 + 13 + 14}$$

NUMBER IN PARENTHESIS  
INDICATES MC719P, MC819P LOADING FACTOR

$$t_{pd} = 27 \text{ ns}$$

$$P_d = \frac{13 \text{ mW}}{2 \text{ SmW}} \text{ (Input High)}$$

$$P_d = \frac{2 \text{ SmW}}{13 \text{ mW}} \text{ (Inputs Low)}$$

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one gate only.  
The other gate is tested in the same manner.

|        |                    |                 |                 |                  |                  |                 |  |  |  |  |  | TEST VOLTAGE VALUES |  |  |  |  | Gnd |
|--------|--------------------|-----------------|-----------------|------------------|------------------|-----------------|--|--|--|--|--|---------------------|--|--|--|--|-----|
|        |                    |                 |                 |                  |                  |                 |  |  |  |  |  | (Volts)             |  |  |  |  |     |
| MC819P | @ Test Temperature | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |  |  |  |  |  |                     |  |  |  |  |     |
|        |                    | 0.880           | 0.850           | 1.80             | 0.500            | 3.60            |  |  |  |  |  |                     |  |  |  |  |     |
|        |                    | 0.830           | 0.800           | 1.80             | 0.460            | 3.60            |  |  |  |  |  |                     |  |  |  |  |     |
|        | MC719P             | 0.740           | 0.710           | 1.80             | 0.400            | 3.60            |  |  |  |  |  |                     |  |  |  |  |     |
|        |                    | 0.865           | 0.865           | 1.80             | 0.475            | 3.60            |  |  |  |  |  |                     |  |  |  |  |     |
|        |                    | 0.850           | 0.850           | 1.80             | 0.460            | 3.60            |  |  |  |  |  |                     |  |  |  |  |     |
|        |                    | 0.800           | 0.800           | 1.80             | 0.430            | 3.60            |  |  |  |  |  |                     |  |  |  |  |     |

  

| Characteristic     | Symbol                             | Pin Under Test       | MC819P Test Limits |     |       |     |       |     | MC719P Test Limits |       |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                    |                 |                    |                  |                 |                                                |
|--------------------|------------------------------------|----------------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|-----|-------|-----|-------|--------------------------------------------|------|--------------------|-----------------|--------------------|------------------|-----------------|------------------------------------------------|
|                    |                                    |                      | 0°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |     | +25°C |     | +55°C |                                            | Unit | V <sub>in</sub>    | V <sub>on</sub> | V <sub>BOT</sub>   | V <sub>off</sub> | V <sub>cc</sub> |                                                |
| Characteristic     | Symbol                             | Pin Under Test       | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max | Min   | Max | Min   | Max                                        |      | V <sub>in</sub>    | V <sub>on</sub> | V <sub>BOT</sub>   | V <sub>off</sub> | V <sub>cc</sub> |                                                |
| Input Current      | I <sub>in</sub>                    | 2<br>3<br>13<br>14   | -                  | 150 | -     | 140 | -     | 140 | μAdc               | -     | 150 | -     | 150 | -     | 150                                        | μAdc | 2<br>3<br>13<br>14 | -               | 3,13,14            | -                | 11              | 4                                              |
| Output Current     | I <sub>A4</sub>                    | 12                   | 570                | -   | 570   | -   | 535   | -   | μAdc               | 570   | -   | 570   | -   | 570   | -                                          | μAdc | -                  | 12              | -                  | 2,3,13,<br>14    | 11              | 4                                              |
| Output Voltage     | V <sub>out</sub>                   | 12<br>12<br>12<br>12 | -                  | 400 | -     | 350 | -     | 300 | mVdc               | -     | 400 | -     | 300 | -     | 320                                        | mVdc | -<br>-<br>13<br>14 | -               | -                  | -                | 11              | 2,3,4,14<br>2,3,4,13<br>3,4,13,14<br>2,4,13,14 |
| Saturation Voltage | V <sub>CE(sat)</sub>               | 12<br>12<br>12<br>12 | -                  | 250 | -     | 250 | -     | 250 | mVdc               | -     | 220 | -     | 230 | -     | 320                                        | mVdc | -<br>-<br>-<br>3   | -               | 13<br>14<br>2<br>3 | -                | 11              | 2,3,4,14<br>2,3,4,13<br>3,4,13,14<br>2,4,13,14 |
| Switching Time     | t <sub>on</sub> + t <sub>off</sub> | 2, 12                | -                  | -   | -     | 90  | -     | -   | ns                 | -     | -   | -     | 90  | -     | -                                          | ns   | Pulse In<br>2      | Pulse Out<br>12 | -                  | -                | 11              | 3,4,13,14                                      |

Ground inputs of gate not under test. Other pins not listed are left open.

TRIPLE 3-INPUT GATES

PLASTIC mW MRTL MC700P/800P series

**MC793P • MC893P**



Three 3-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.



$$3 = 1 + 2 + 14$$

NUMBER IN PARENTHESIS  
 INDICATES MC793P, MC893P LOADING FACTDR

$t_{pd} = 27 \text{ ns}$   
 $P_d = 18 \text{ mW (Input High)}$   
 $3.5 \text{ mW (Inputs Low)}$

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**



## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one gate only.  
The other gates are tested in the same manner.

| @ Test Temperature | TEST VOLTAGE VALUES |                 |                  |                  |                 |      |
|--------------------|---------------------|-----------------|------------------|------------------|-----------------|------|
|                    | (Volts)             |                 |                  |                  |                 |      |
|                    | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>eff</sub> | V <sub>cc</sub> |      |
| MC893P             | 0°C                 | 0.880           | 0.850            | 1.80             | 0.500           | 3.60 |
|                    | +25°C               | 0.830           | 0.800            | 1.80             | 0.460           | 3.60 |
|                    | +75°C               | 0.740           | 0.710            | 1.80             | 0.400           | 3.60 |
|                    | +15°C               | 0.865           | 0.865            | 1.80             | 0.475           | 3.60 |
| MC793P             | +25°C               | 0.850           | 0.850            | 1.80             | 0.460           | 3.60 |
|                    | +55°C               | 0.800           | 0.800            | 1.80             | 0.430           | 3.60 |

| Characteristic     | Symbol                             | Pin Under Test | MC893P Test Limits |     |       |     |       |     | MC793P Test Limits |       |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |       |                 |                 |                  | Gnd              |                 |                                 |
|--------------------|------------------------------------|----------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|-----|-------|-----|-------|--------------------------------------------|-------|-----------------|-----------------|------------------|------------------|-----------------|---------------------------------|
|                    |                                    |                | 0°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |     | +25°C |     | +55°C |                                            | Unit  | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>eff</sub> | V <sub>cc</sub> |                                 |
|                    |                                    |                | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max | Min   | Max | Min   | Max                                        |       | 1               | -               | 2, 14            | -                | 11              | 4                               |
| Input Current      | I <sub>in</sub>                    | 1<br>2<br>14   | -                  | 150 | -     | 140 | -     | 140 | μA/dc              | -     | 150 | -     | 150 | -     | 150                                        | μA/dc | 1<br>2<br>14    | -               | 1, 14            | -                | 11              | 4                               |
| Output Current     | I <sub>A4</sub>                    | 3              | 570                | -   | 570   | -   | 535   | -   | μA/dc              | 570   | -   | 570   | -   | 570   | -                                          | μA/dc | -               | 3               | -                | 1, 2, 14         | 11              | 4                               |
| Output Voltage     | V <sub>out</sub>                   | 3<br>3<br>3    | -                  | 400 | -     | 350 | -     | 300 | mVdc               | -     | 400 | -     | 300 | -     | 320                                        | mVdc  | -               | 14              | -                | -                | 11              | 1, 2, 4<br>2, 4, 14<br>1, 4, 14 |
| Saturation Voltage | V <sub>CE(sat)</sub>               | 3<br>3<br>3    | -                  | 250 | -     | 250 | -     | 250 | mVdc               | -     | 220 | -     | 230 | -     | 320                                        | mVdc  | -               | -               | 14               | -                | 11              | 1, 2, 4<br>2, 4, 14<br>1, 4, 14 |
| Switching Time     | t <sub>on</sub> + t <sub>off</sub> | 1, 3           | -                  | -   | -     | 90  | -     | -   | ns                 | -     | -   | -     | 90  | -     | -                                          | ns    | Pulse In        | Pulse Out       | -                | -                | 11              | 2, 4, 14                        |
|                    |                                    |                |                    |     |       |     |       |     |                    |       |     |       |     |       |                                            |       | 1               | 3               | -                | -                |                 |                                 |

Ground input pins of gates not under test. Other pins not listed are left open.

QUAD 2-INPUT GATES

PLASTIC mW MRTL MC700P/800P series

## MC717P • MC817P



Four 2-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.



NUMBER IN PARENTHESIS  
INDICATES MC717P, MC817P LOADING FACTOR

$t_{pd} = 27 \text{ ns}$   
 $P_d = 20 \text{ mW (Input High)}$   
 $5.0 \text{ mW (Inputs Low)}$

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



**ELECTRICAL CHARACTERISTICS**

Test procedures are shown for one gate only.  
The other gates are tested in the same manner.

| @ Test Temperature | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |      |
|--------------------|--------------------------------|-----------------|------------------|------------------|-----------------|------|
|                    | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |      |
| MC817P             | 0°C                            | 0.880           | 0.850            | 1.80             | 0.500           | 3.60 |
|                    | +25°C                          | 0.830           | 0.800            | 1.80             | 0.460           | 3.60 |
|                    | +75°C                          | 0.740           | 0.710            | 1.80             | 0.400           | 3.60 |
|                    | +15°C                          | 0.865           | 0.865            | 1.80             | 0.475           | 3.60 |
|                    | +25°C                          | 0.850           | 0.850            | 1.80             | 0.460           | 3.60 |
|                    | +55°C                          | 0.800           | 0.800            | 1.80             | 0.430           | 3.60 |

| Characteristic     | Symbol                             | Pin Under Test | MC817P Test Limits |          |          |          |          |          | MC717P Test Limits |          |          |          |          |          | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |              |                 |                 |                  | Gnd              |                 |              |
|--------------------|------------------------------------|----------------|--------------------|----------|----------|----------|----------|----------|--------------------|----------|----------|----------|----------|----------|--------------------------------------------|--------------|-----------------|-----------------|------------------|------------------|-----------------|--------------|
|                    |                                    |                | 0°C                |          | +25°C    |          | +75°C    |          | Unit               | +15°C    |          | +25°C    |          | +55°C    |                                            | Unit         | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |              |
|                    |                                    |                | Min                | Max      | Min      | Max      | Min      | Max      |                    | Min      | Max      | Min      | Max      | Min      | Max                                        |              | -               | -               | -                | -                |                 |              |
| Input Current      | I <sub>in</sub>                    | 1<br>2         | -<br>150           | -<br>150 | -<br>140 | -<br>140 | -<br>140 | -<br>140 | μAdc<br>μAdc       | -<br>150 | -<br>150 | -<br>150 | -<br>150 | -<br>150 | -<br>150                                   | μAdc<br>μAdc | 1<br>2          | -<br>-          | 2<br>1           | -<br>-           | 11<br>11        | 4<br>4       |
| Output Current     | I <sub>A4</sub>                    | 3              | 570                | -        | 570      | -        | 535      | -        | μAdc               | 570      | -        | 570      | -        | 570      | -                                          | μAdc         | -               | 3               | -                | 1, 2             | 11              | 4            |
| Output Voltage     | V <sub>out</sub>                   | 3<br>3         | -<br>400           | -<br>400 | -<br>350 | -<br>350 | -<br>300 | -<br>300 | mVdc<br>mVdc       | -<br>400 | -<br>400 | -<br>300 | -<br>300 | -<br>320 | -<br>320                                   | mVdc<br>mVdc | -<br>-          | 1<br>2          | -<br>-           | -<br>-           | 11<br>11        | 2, 4<br>1, 4 |
| Saturation Voltage | V <sub>CE(sat)</sub>               | 3<br>3         | -<br>250           | -<br>250 | -<br>250 | -<br>250 | -<br>250 | -<br>250 | mVdc<br>mVdc       | -<br>220 | -<br>220 | -<br>230 | -<br>230 | -<br>320 | -<br>320                                   | mVdc<br>mVdc | -<br>-          | -<br>-          | 1<br>2           | -<br>-           | 11<br>11        | 2, 4<br>1, 4 |
| Switching Time     | t <sub>on</sub> + t <sub>off</sub> | 1, 3           | -                  | -        | -        | 90       | -        | -        | ns                 | -        | -        | -        | 90       | -        | -                                          | ns           | Pulse In<br>1   | Pulse Out<br>3  | -                | -                | 11              | 2, 4         |

Ground input pins of gates not under test. Other pins not listed are left open.

DUAL 3-INPUT GATES

PLASTIC MRTL MC700P/800P series

## MC715P • MC815P



Two 3-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.



$$3 = \overline{2 + 12 + 13}$$

NUMBER IN PARENTHESIS  
INDICATES MC715P LOADING FACTOR

NUMBER IN BRACKETS  
INDICATES MC815P LOADING FACTOR

$$\begin{aligned} t_{pd} &= 12 \text{ ns} \\ P_D &= 65 \text{ mW (Input High)} \\ &\quad 15 \text{ mW (Inputs Low)} \end{aligned}$$

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



| TEST VOLTAGE VALUES |                 |                 |                  |                  |                 |
|---------------------|-----------------|-----------------|------------------|------------------|-----------------|
| (Volts)             |                 |                 |                  |                  |                 |
| @ Test Temperature  | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |
|                     | 0.960           | 0.930           | 1.80             | 0.570            | 3.60            |
|                     | 0.910           | 0.880           | 1.80             | 0.500            | 3.60            |
|                     | 0.820           | 0.790           | 1.80             | 0.450            | 3.60            |
|                     | 0.865           | 0.865           | 1.80             | 0.475            | 3.60            |
|                     | 0.850           | 0.850           | 1.80             | 0.460            | 3.60            |
|                     | 0.800           | 0.800           | 1.80             | 0.430            | 3.60            |

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one gate only.  
The other gate is tested in the same manner.

| Characteristic     | Symbol                             | Pin Under Test | MC815P Test Limits |          |        |          |        |          | MC715P Test Limits |        |          |        |          |        | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |           |                |                |                          |           | Gnd     |          |                                   |
|--------------------|------------------------------------|----------------|--------------------|----------|--------|----------|--------|----------|--------------------|--------|----------|--------|----------|--------|--------------------------------------------|-----------|----------------|----------------|--------------------------|-----------|---------|----------|-----------------------------------|
|                    |                                    |                | 0°C                |          | +25°C  |          | +75°C  |          | +15°C              |        | +25°C    |        | +55°C    |        | Unit                                       | Min       | Max            | Min            | Max                      | Min       | Max     |          |                                   |
|                    |                                    |                | Min                | Max      | Min    | Max      | Min    | Max      | Min                | Max    | Min      | Max    | Min      | Max    |                                            |           |                |                |                          |           |         |          |                                   |
| Input Current      | I <sub>in</sub>                    | 2<br>12<br>13  | -<br>-             | 600<br>↓ | -<br>- | 600<br>↓ | -<br>- | 570<br>↓ | μAdc<br>↓          | -<br>- | 500<br>↓ | -<br>- | 500<br>↓ | -<br>- | 470<br>↓                                   | μAdc<br>↓ | 2<br>12<br>13  | -<br>-         | 12, 13<br>2, 13<br>2, 12 | -<br>-    | 11<br>↓ | 4<br>↓   |                                   |
| Output Current     | I <sub>A5</sub> *                  | 3              | 3.00               | -        | 3.00   | -        | 2.85   | -        | mAdc               | 2.65   | -        | 2.65   | -        | 2.50   | -                                          | mAdc      | -              | 3              | -                        | 2, 12, 13 | 11      | 4        |                                   |
| Output Voltage     | V <sub>out</sub>                   | 3<br>3<br>3    | -<br>-             | 500<br>↓ | -<br>- | 400<br>↓ | -<br>- | 400<br>↓ | mVdc<br>↓          | -<br>- | 400<br>↓ | -<br>- | 300<br>↓ | -<br>- | 320<br>↓                                   | mVdc<br>↓ | -<br>-         | 12<br>13<br>2  | -<br>-                   | -<br>-    | -<br>-  | 11<br>↓  | 2, 4, 13<br>2, 4, 12<br>4, 12, 13 |
| Saturation Voltage | V <sub>CE(sat)</sub>               | 3<br>3<br>3    | -<br>-             | 400<br>↓ | -<br>- | 300<br>↓ | -<br>- | 350<br>↓ | mVdc<br>↓          | -<br>- | 300<br>↓ | -<br>- | 290<br>↓ | -<br>- | 320<br>↓                                   | mVdc<br>↓ | -<br>-         | -<br>-         | 12<br>13<br>2            | -<br>-    | -<br>-  | 11<br>↓  | 2, 4, 13<br>2, 4, 12<br>4, 12, 13 |
| Switching Time     | t <sub>on</sub> + t <sub>off</sub> | 3, 13          | -                  | -        | -      | 48       | -      | -        | ns                 | -      | -        | -      | 48       | -      | -                                          | ns        | Pulse In<br>13 | Pulse Out<br>3 | -                        | -         | 11      | 2, 4, 12 |                                   |

Ground input pins of gate not under test. Other pins not listed are left open. \*Symbol is I<sub>A16</sub> for MC715P.

DUAL 4-INPUT GATES

PLASTIC MRTL MC700P/800P series

**MC725P • MC825P**



Two 4-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.



$12 = \overline{2 + 3 + 13 + 14}$   
 NUMBER IN PARENTHESIS  
 INDICATES MC725P LOADING FACTOR  
 NUMBER IN BRACKETS  
 INDICATES MC825P LOADING FACTOR

$t_{pd} = 12 \text{ ns}$   
 $P_d = 60 \text{ mW (Input High)}$   
 $15 \text{ mW (Inputs Low)}$

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**



|                                   |                                    |                 |                    |                  |                  |                 |       |     |                    | TEST VOLTAGE VALUES                           |     |       |     |       | Gnd |      |           |
|-----------------------------------|------------------------------------|-----------------|--------------------|------------------|------------------|-----------------|-------|-----|--------------------|-----------------------------------------------|-----|-------|-----|-------|-----|------|-----------|
|                                   |                                    |                 |                    |                  |                  |                 |       |     |                    | (Volts)                                       |     |       |     |       |     |      |           |
| MC825P                            | MC725P                             | V <sub>in</sub> | V <sub>on</sub>    | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |       |     |                    |                                               |     |       |     |       |     |      |           |
|                                   |                                    | 0.960           | 0.930              | 1.80             | 0.570            | 3.60            |       |     |                    |                                               |     |       |     |       |     |      |           |
|                                   |                                    | 0.910           | 0.880              | 1.80             | 0.500            | 3.60            |       |     |                    |                                               |     |       |     |       |     |      |           |
|                                   |                                    | 0.820           | 0.790              | 1.80             | 0.450            | 3.60            |       |     |                    |                                               |     |       |     |       |     |      |           |
|                                   |                                    | 0.865           | 0.865              | 1.80             | 0.475            | 3.60            |       |     |                    |                                               |     |       |     |       |     |      |           |
|                                   |                                    | 0.850           | 0.850              | 1.80             | 0.460            | 3.60            |       |     |                    |                                               |     |       |     |       |     |      |           |
|                                   |                                    | 0.800           | 0.800              | 1.80             | 0.430            | 3.60            |       |     |                    |                                               |     |       |     |       |     |      |           |
|                                   |                                    |                 |                    |                  |                  |                 |       |     |                    |                                               |     |       |     |       |     |      |           |
| <b>ELECTRICAL CHARACTERISTICS</b> |                                    |                 |                    |                  |                  |                 |       |     |                    | TEST VOLTAGE<br>APPLIED TO PINS LISTED BELOW: |     |       |     |       |     |      |           |
| Characteristic                    | Symbol                             | Pin Under Test  | MC825P Test Limits |                  |                  |                 |       |     | MC725P Test Limits |                                               |     |       |     |       |     |      |           |
|                                   |                                    |                 | 0°C                |                  | +25°C            |                 | +75°C |     | Unit               | +15°C                                         |     | +25°C |     | +55°C |     | Unit |           |
| Input Current                     | I <sub>in</sub>                    | 2               | -                  | 600              | -                | 600             | -     | 570 |                    | μAdc                                          | -   | 500   | -   | 500   | -   | 470  |           |
|                                   |                                    | 3               | -                  | -                | -                | -               | -     | -   |                    | μAdc                                          | -   | -     | -   | -     | -   | μAdc |           |
|                                   |                                    | 13              | -                  | -                | -                | -               | -     | -   |                    | μAdc                                          | -   | -     | -   | -     | -   | μAdc |           |
|                                   |                                    | 14              | -                  | -                | -                | -               | -     | -   |                    | μAdc                                          | -   | -     | -   | -     | -   | μAdc |           |
| Output Current                    | I <sub>A5</sub> *                  | 12              | 3.00               | -                | 3.00             | -               | 2.85  | -   | mAdc               | 2.65                                          | -   | 2.65  | -   | 2.50  | -   | mAdc |           |
|                                   |                                    | 12              | -                  | 500              | -                | 400             | -     | 400 | mVdc               | -                                             | 400 | -     | 300 | -     | 320 |      |           |
| Output Voltage                    | V <sub>out</sub>                   | 12              | -                  | -                | -                | -               | -     | -   | mVdc               | -                                             | -   | -     | -   | -     | 13  | -    |           |
|                                   |                                    | 12              | -                  | -                | -                | -               | -     | -   | mVdc               | -                                             | -   | -     | -   | -     | 14  | -    |           |
|                                   |                                    | 12              | -                  | -                | -                | -               | -     | -   | mVdc               | -                                             | -   | -     | -   | -     | 2   | -    |           |
|                                   |                                    | 12              | -                  | -                | -                | -               | -     | -   | mVdc               | -                                             | -   | -     | -   | -     | 3   | -    |           |
| Saturation Voltage                | V <sub>CE(sat)</sub>               | 12              | -                  | 400              | -                | 300             | -     | 350 | mVdc               | -                                             | 300 | -     | 290 | -     | 320 |      |           |
|                                   |                                    | 12              | -                  | -                | -                | -               | -     | -   | mVdc               | -                                             | -   | -     | -   | -     | 13  | -    |           |
|                                   |                                    | 12              | -                  | -                | -                | -               | -     | -   | mVdc               | -                                             | -   | -     | -   | -     | 14  | -    |           |
|                                   |                                    | 12              | -                  | -                | -                | -               | -     | -   | mVdc               | -                                             | -   | -     | -   | -     | 2   | -    |           |
| Switching Time                    | t <sub>on</sub> + t <sub>off</sub> | 2, 12           | -                  | -                | -                | 48              | -     | -   | ns                 | -                                             | -   | -     | 48  | -     | -   | ns   | Pulse In  |
|                                   |                                    | 2, 12           | -                  | -                | -                | 48              | -     | -   | ns                 | -                                             | -   | -     | 48  | -     | -   | ns   | Pulse Out |
|                                   |                                    |                 |                    |                  |                  |                 |       |     |                    |                                               |     |       |     |       |     |      |           |

Ground input pins of gate not under test. Other pins not listed are left open. \*Symbol is I<sub>A16</sub> for MC725P.

**MC792P • MC892P**

Three 3-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.



$$3 = \overline{1 + 2 + 14}$$

NUMBER IN PARENTHESIS INDICATES MC792P LOADING FACTOR.

NUMBER IN BRACKETS INDICATES MC892P LOADING FACTOR.

$$t_{pd} = 12 \text{ ns}$$
 $P_o = 82 \text{ mW (Input High)}$ 
 $24 \text{ mW (Inputs Low)}$

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

| @ Test Temperature |       | TEST VOLTAGE VALUES                        |                 |                  |                  |                 |        |  |
|--------------------|-------|--------------------------------------------|-----------------|------------------|------------------|-----------------|--------|--|
|                    |       | (Volts)                                    |                 |                  |                  |                 |        |  |
|                    |       | V <sub>in</sub>                            | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |        |  |
| MC892P             | 0°C   | 0.960                                      | 0.930           | 1.80             | 0.570            | 3.60            |        |  |
|                    | +25°C | 0.910                                      | 0.880           | 1.80             | 0.500            | 3.60            |        |  |
|                    | +75°C | 0.820                                      | 0.790           | 1.80             | 0.450            | 3.60            |        |  |
|                    | +15°C | 0.865                                      | 0.865           | 1.80             | 0.475            | 3.60            |        |  |
|                    | +25°C | 0.850                                      | 0.850           | 1.80             | 0.460            | 3.60            |        |  |
|                    | +55°C | 0.800                                      | 0.800           | 1.80             | 0.430            | 3.60            |        |  |
| MC792P             |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                 |                  |                  |                 | Gnd    |  |
|                    |       | V <sub>in</sub>                            | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |        |  |
|                    |       | 1                                          | -               | 2,14             | -                | 11              |        |  |
|                    |       | 2                                          | -               | 1,14             | -                | ↓               |        |  |
|                    |       | 14                                         | -               | 1,2              | -                | ↓               |        |  |
|                    |       | -                                          | 3               | -                | 1,2,14           | 11              |        |  |
| Switching Time     |       | Pulse In                                   | Pulse Out       |                  |                  |                 |        |  |
|                    |       | 1                                          | 3               | -                | -                | 11              | 2,4,14 |  |

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one gate only.  
The other gates are tested in the same manner.

| Characteristic     | Symbol                             | Pin Under Test | MC892P Test Limits |     |       |     |       |     | MC792P Test Limits |       |     |       |     |       |     |       |
|--------------------|------------------------------------|----------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|-----|-------|-----|-------|-----|-------|
|                    |                                    |                | 0°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |     | +25°C |     | +55°C |     |       |
|                    |                                    |                | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max | Min   | Max | Min   | Max |       |
| Input Current      | I <sub>in</sub>                    | 1<br>2<br>14   | -                  | 600 | -     | 600 | -     | 570 | μA/dc              | -     | 500 | -     | 500 | -     | 470 | μA/dc |
| Output Current     | I <sub>A5</sub> *                  | 3              | 3.00               | -   | 3.00  | -   | 2.85  | -   | mAdc               | 2.65  | -   | 2.65  | -   | 2.50  | -   | mAdc  |
| Output Voltage     | V <sub>out</sub>                   | 3<br>3<br>3    | -                  | 500 | -     | 400 | -     | 400 | mVdc               | -     | 400 | -     | 300 | -     | 320 | mVdc  |
| Saturation Voltage | V <sub>CE(sat)</sub>               | 3<br>3<br>3    | -                  | 400 | -     | 300 | -     | 350 | mVdc               | -     | 300 | -     | 290 | -     | 320 | mVdc  |
| Switching Time     | t <sub>on</sub> + t <sub>off</sub> | 1,3            | -                  | -   | -     | 48  | -     | -   | ns                 | -     | -   | -     | 48  | -     | -   | ns    |

Ground input pins of gates not under test. Other pins not listed are left open. \*I<sub>A16</sub> is symbol for MC792P.

**MC724P • MC824P**

Four 2-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.



NUMBER IN PARENTHESIS INDICATES MC724P LOADING FACTOR  
 NUMBER IN BRACKETS INDICATES MC824P LOADING FACTOR

$$t_{pd} = 12 \text{ ns}$$
 $P_d = 100 \text{ mW (Input High)}$ 
 $30 \text{ mW (Inputs Low)}$

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

| TEST VOLTAGE VALUES<br>(Volts) |                  |                 |                  |                  |                 |
|--------------------------------|------------------|-----------------|------------------|------------------|-----------------|
| @ Test Temperature             | .V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |
|                                | 0.960            | 0.930           | 1.80             | 0.570            | 3.60            |
| MC824P                         | 0.910            | 0.880           | 1.80             | 0.500            | 3.60            |
|                                | 0.820            | 0.790           | 1.80             | 0.450            | 3.60            |
| MC724P                         | 0.865            | 0.865           | 1.80             | 0.475            | 3.60            |
|                                | 0.850            | 0.850           | 1.80             | 0.460            | 3.60            |
|                                | 0.800            | 0.800           | 1.80             | 0.430            | 3.60            |
|                                | +25°C            | +75°C           | +15°C            | +25°C            | +55°C           |

**ELECTRICAL CHARACTERISTICS**

Test procedures are shown for one gate only.  
The other gates are tested in the same manner.

| Characteristic     | Symbol                             | Pin Under Test | MC824P Test Limits |          |          |          |          |          | MC724P Test Limits |          |          |          |          |          | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                 |                 |                  |                  |                 |              |   |
|--------------------|------------------------------------|----------------|--------------------|----------|----------|----------|----------|----------|--------------------|----------|----------|----------|----------|----------|--------------------------------------------|-----------------|-----------------|------------------|------------------|-----------------|--------------|---|
|                    |                                    |                | 0°C                |          | +25°C    |          | +75°C    |          | +15°C              |          | +25°C    |          | +55°C    |          | Unit                                       | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | Gnd          |   |
|                    |                                    |                | Min                | Max      | Min      | Max      | Min      | Max      | Min                | Max      | Min      | Max      | Min      | Max      |                                            |                 |                 |                  |                  |                 |              |   |
| Input Current      | I <sub>in</sub>                    | 1<br>2         | -<br>600           | -<br>600 | -<br>600 | -<br>570 | -<br>570 | -<br>570 | μA/dc<br>μA/dc     | -<br>500 | -<br>500 | -<br>500 | -<br>470 | -<br>470 | μA/dc<br>μA/dc                             | 1<br>2          | -<br>-          | 2<br>1           | -<br>-           | 11<br>11        | 4<br>4       |   |
| Output Current     | I <sub>A5</sub> *                  | 3              | 3.0                | -        | 3.0      | -        | 2.85     | -        | mAdc               | 2.65     | -        | 2.65     | -        | 2.50     | -                                          | mAdc            | -               | 3                | -                | 1, 2            | 11           | 4 |
| Output Voltage     | V <sub>out</sub>                   | 3<br>3         | -<br>500           | -<br>500 | -<br>400 | -<br>400 | -<br>400 | -<br>400 | mVdc<br>mVdc       | -<br>400 | -<br>300 | -<br>300 | -<br>320 | -<br>320 | mVdc<br>mVdc                               | -<br>-          | 1<br>2          | -<br>-           | -<br>-           | 11<br>11        | 2, 4<br>1, 4 |   |
| Saturation Voltage | V <sub>CE(sat)</sub>               | 3<br>3         | -<br>400           | -<br>400 | -<br>300 | -<br>300 | -<br>350 | -<br>350 | mVdc<br>mVdc       | -<br>300 | -<br>290 | -<br>290 | -<br>320 | -<br>320 | mVdc<br>mVdc                               | -<br>-          | -<br>2          | -<br>-           | 1<br>2           | 11<br>11        | 2, 4<br>1, 4 |   |
| Switching Time     | t <sub>on</sub> + t <sub>off</sub> | 1, 3           | -                  | -        | -        | 48       | -        | -        | ns                 | -        | -        | -        | 48       | -        | ns                                         | Pulse In<br>1   | Pulse Out<br>3  | -                | -                | 11              | 2, 4         |   |

Ground input pins of gates not under test. Other pins not listed are left open. \*I<sub>A16</sub> is symbol for MC724P.

**MC771P • MC871P**

Four gate arrays designed to provide the Exclusive OR function. The output is high only if one input is high and all other inputs are low.



NUMBER IN PARENTHESIS INDICATES  
LOADING FACTOR FOR MC771P

NUMBER IN BRACKETS INDICATES  
LOADING FACTOR FOR MC871P

**ELECTRICAL CHARACTERISTICS**

Test procedures are shown for one gate only.  
The other gates are tested in the same manner.

| Characteristic | Symbol            | Pin Under Test | MC871P Test Limits |     |       |     |       |     | MC771P Test Limits |       |      |       |      |       | TEST VOLTAGE VALUES |      |                 |                 |                  |                  | Gnd             |   |
|----------------|-------------------|----------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|------|-------|------|-------|---------------------|------|-----------------|-----------------|------------------|------------------|-----------------|---|
|                |                   |                | 0°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |      | +25°C |      | +55°C |                     | Unit | (Volts)         |                 |                  |                  |                 |   |
|                |                   |                | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max  | Min   | Max  | Min   | Max                 |      | V <sub>in</sub> | V <sub>on</sub> | V <sub>bot</sub> | V <sub>eff</sub> | V <sub>cc</sub> |   |
| Input Current  | 2I <sub>in</sub>  | 1              | -                  | 1.2 | -     | 1.2 | -     | 1.1 | mAdc               | -     | 1.00 | -     | 1.00 | -     | 0.94                | mAdc | 1               | -               | -                | 2                | 11              | 4 |
|                |                   | 2              | -                  | 1.2 | -     | 1.2 | -     | 1.1 | mAdc               | -     | 1.00 | -     | 1.00 | -     | 0.94                | mAdc | 2               | -               | -                | 1                | 11              | 4 |
| Output Current | I <sub>A5</sub> * | 3              | 3.00               | -   | 3.00  | -   | 2.85  | -   | mAdc               | 2.65  | -    | 2.65  | -    | 2.50  | -                   | mAdc | -               | 1,3             | -                | 2                | 11              | 4 |
|                |                   | 3              | 3.00               | -   | 3.00  | -   | 3.00  | -   | mAdc               | 2.65  | -    | 2.65  | -    | 2.50  | -                   | mAdc | -               | 2,3             | -                | 1                | 11              | 4 |
| Output Voltage | V <sub>out</sub>  | 3              | -                  | 500 | -     | 400 | -     | 400 | mVdc               | -     | 400  | -     | 300  | -     | 320                 | mVdc | -               | -               | -                | 1,2              | 11              | 4 |
|                |                   | 3              | -                  | 500 | -     | 400 | -     | 400 | mVdc               | -     | 400  | -     | 300  | -     | 320                 | mVdc | -               | 1,2             | -                | -                | 11              | 4 |
| Switching Time | t                 | 1+3+           | -                  | -   | -     | 40  | -     | -   | ns                 | -     | -    | -     | 40   | -     | -                   | ns   | 1               | 2               | 3                | -                | 11              | 4 |
|                |                   | 1-3+           | -                  | -   | -     | 40  | -     | -   | ns                 | -     | -    | -     | 40   | -     | -                   | ns   | 1               | 2               | -                | -                | 11              | 4 |
|                |                   | 2+3+           | -                  | -   | -     | 40  | -     | -   | ns                 | -     | -    | -     | 40   | -     | -                   | ns   | 2               | -               | 1                | -                | 11              | 4 |
|                |                   | 2-3-           | -                  | -   | -     | 40  | -     | -   | ns                 | -     | -    | -     | 40   | -     | -                   | ns   | 2               | -               | 1                | -                | 11              | 4 |

Ground inputs of gates not under test. Other pins not listed are left open.

\* Symbol is I<sub>A16</sub> for MC771P.

## MC771P, MC871P (continued)



### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



DUAL 2-INPUT BUFFERS

PLASTIC mW MRTL MC700P/800P series

## MC798P • MC898P



Dual 2-input buffers designed to drive a greater number of loads than the basic Resistor Transistor Logic circuit. Returning an input resistor to  $V_{CC}$  allows for capacitive coupling in multivibrator and differentiator applications.



$$t_{pd} = 57 \text{ ns} \\ P_d = 14 \text{ mW (Input High)} \\ 46 \text{ (Inputs Low)}$$

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



| TEST VOLTAGE VALUES |                 |                 |                  |                  |                 |                  |
|---------------------|-----------------|-----------------|------------------|------------------|-----------------|------------------|
|                     |                 | (Volts)         |                  |                  | (k Ohms)        |                  |
| @ Test Temperature  | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> * |
|                     | 0.880           | 0.850           | 1.80             | 0.500            | 3.60            | 4.6              |
|                     | 0.830           | 0.800           | 1.80             | 0.460            | 3.60            | 4.8              |
|                     | 0.740           | 0.710           | 1.80             | 0.400            | 3.60            | 5.0              |
|                     | 0.865           | 0.865           | 1.80             | 0.475            | 3.60            | 4.6              |
|                     | 0.850           | 0.850           | 1.80             | 0.460            | 3.60            | 4.8              |
|                     | 0.800           | 0.800           | 1.80             | 0.430            | 3.60            | 5.0              |

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one buffer only.  
The other buffer is tested in the same manner.

| Characteristic     | Symbol                             | Pin Under Test | MC898P Test Limits |     |       |     |       |     | MC798P Test Limits |       |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  | Gnd             |                  |       |
|--------------------|------------------------------------|----------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|------------------|-------|
|                    |                                    |                | 0°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |     | +25°C |     | +55°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> * |       |
|                    |                                    |                | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max | Min   | Max | Min   | Max                                        |      | Unit            |                 |                  |                  |                 |                  |       |
| Input Current      | 2 I <sub>in</sub>                  | 2              | -                  | 300 | -     | 280 | -     | 280 | μAdc               | -     | 300 | -     | 300 | -     | 300                                        | μAdc | 2               | -               | 13               | -                | 11              | -                | 4     |
| Output Current     | I <sub>AB</sub>                    | 3              | 4.5                | -   | 4.5   | -   | 4.5   | -   | mAdc               | 5.0   | -   | 5.0   | -   | 5.0   | -                                          | mAdc | -               | 3               | -                | 2, 13            | 11              | -                | 4     |
| Output Voltage     | V <sub>out</sub>                   | 3              | -                  | 400 | -     | 350 | -     | 300 | mVdc               | -     | 400 | -     | 300 | -     | 320                                        | mVdc | -               | 13              | -                | -                | 11              | 3                | 2, 4  |
|                    |                                    | 3              | -                  | 400 | -     | 350 | -     | 300 | mVdc               | -     | 400 | -     | 300 | -     | 320                                        | mVdc | -               | 2               | -                | -                | 11              | 3                | 4, 13 |
| Saturation Voltage | V <sub>CE(sat)</sub>               | 3              | -                  | 250 | -     | 250 | -     | 250 | mVdc               | -     | 220 | -     | 230 | -     | 320                                        | mVdc | -               | -               | 13               | -                | 11              | 3                | 2, 4  |
|                    |                                    | 3              | -                  | 250 | -     | 250 | -     | 250 | mVdc               | -     | 220 | -     | 230 | -     | 320                                        | mVdc | -               | 2               | -                | -                | 11              | 3                | 4, 13 |
| Switching Time     | t <sub>on</sub> + t <sub>off</sub> | 2, 3           | -                  | -   | -     | 160 | -     | -   | ns                 | -     | -   | -     | 160 | -     | -                                          | ns   | Pulse In        | Pulse Out       | -                | -                | 11              | -                | 4, 13 |

Ground input pins of buffer not under test. Other pins not listed are left open. \*Resistor value to V<sub>CC</sub>.

## MC799P • MC899P



The dual buffer is designed to drive a greater number of load circuits than the basic RTL circuit. Because this circuit has a very low output impedance the rise times of output waveforms are maintained when driving capacitive loads. A resistor which is internally connected to the input allows for capacitive coupling to the input, the differentiation of input waveforms and various multivibrator applications.



NUMBER IN PARENTHESIS INDICATES MC799P LOADING FACTOR.  
 NUMBER IN BRACKETS INDICATES MC899P LOADING FACTOR

$t_{pd} = 20\text{ ns}$   
 $P_d = 50\text{ mW}$  (Input High)  
 $100\text{ mW}$  (Inputs Low)

## SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one buffer only.  
The other buffer is tested in the same manner.

| @ Test Temperature | TEST VOLTAGE VALUES |                 |                  |                  |                 |                  |     |
|--------------------|---------------------|-----------------|------------------|------------------|-----------------|------------------|-----|
|                    | (Volts)             |                 |                  |                  |                 | (Ohms)           |     |
|                    | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> | V <sub>R</sub> * |     |
| MC899P {           | 0°C                 | 0.960           | 0.930            | 1.80             | 0.570           | 3.60             | 640 |
|                    | +25°C               | 0.910           | 0.800            | 1.80             | 0.500           | 3.60             | 640 |
|                    | +75°C               | 0.820           | 0.790            | 1.80             | 0.450           | 3.60             | 750 |
| MC799P {           | +15°C               | 0.865           | 0.865            | 1.80             | 0.475           | 3.60             | 640 |
|                    | +25°C               | 0.850           | 0.850            | 1.80             | 0.460           | 3.60             | 640 |
|                    | +55°C               | 0.800           | 0.800            | 1.80             | 0.430           | 3.60             | 640 |

| Characteristic     | Symbol               | Pin Under Test | MC899P Test Limits |     |       |     |       |     | MC799P Test Limits |       |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  | Gnd             |                  |   |
|--------------------|----------------------|----------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|------------------|---|
|                    |                      |                | 0°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |     | +25°C |     | +55°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> | V <sub>R</sub> * |   |
|                    |                      |                | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max | Min   | Max | Min   | Max                                        |      | Min             | Max             | Min              | Max              | Min             |                  |   |
| Input Current      | 2I <sub>in</sub>     | 13             | -                  | 1.2 | -     | 1.2 | -     | 1.1 | mAdc               | -     | 1.0 | -     | 1.0 | -     | 0.94                                       | mAdc | 13              | -               | -                | -                | 11              | -                | 4 |
| Output Current     | I <sub>A5</sub> **   | 2              | 3.0                | -   | 3.0   | -   | 2.85  | -   | mAdc               | 2.65  | -   | 2.65  | -   | 2.50  | -                                          | mAdc | -               | 2               | -                | 13               | 11              | -                | 4 |
|                    | I <sub>AB</sub>      | 3              | 15.0               | -   | 15.0  | -   | 14.25 | -   | mAdc               | 13.75 | -   | 13.75 | -   | 12.50 | -                                          | mAdc | -               | 3               | -                | 13               | 11              | -                | 4 |
| Output Voltage     | V <sub>out</sub>     | 2              | -                  | 500 | -     | 400 | -     | 400 | mVdc               | -     | 400 | -     | 300 | -     | 320                                        | mVdc | -               | 13              | -                | -                | 11              | -                | 4 |
|                    |                      | 3              | -                  | 500 | -     | 400 | -     | 400 | mVdc               | -     | 400 | -     | 300 | -     | 320                                        | mVdc | -               | 13              | -                | -                | 11              | 3                | 4 |
| Saturation Voltage | V <sub>CE(sat)</sub> | 2              | -                  | 400 | -     | 300 | -     | 350 | mVdc               | -     | 300 | -     | 290 | -     | 320                                        | mVdc | -               | -               | -                | 13               | -               | 11, 12           | 4 |
|                    |                      | 2              | -                  | ↓   | -     | ↓   | -     | ↓   | ↓                  | -     | ↓   | -     | ↓   | -     | ↓                                          | ↓    | -               | -               | -                | 13               | -               | 11               | 3 |
|                    |                      | 3              | -                  | ↓   | -     | ↓   | -     | ↓   | ↓                  | -     | ↓   | -     | ↓   | -     | ↓                                          | ↓    | -               | -               | -                | 13               | -               | 11               | 3 |
| Switching Time     | t                    | 13+3-          | -                  | -   | -     | 30  | -     | -   | ns                 | -     | -   | -     | 30  | -     | -                                          | ns   | Pulse In        | Pulse Out       |                  |                  | 11              | -                | 4 |
|                    |                      | 13-3+          | -                  | -   | -     | 45  | -     | -   |                    | -     | -   | -     | 45  | -     | -                                          |      | 13              | 3               | -                | -                |                 | -                |   |
|                    |                      | 13+2-          | -                  | -   | -     | 28  | -     | -   |                    | -     | -   | -     | 28  | -     | -                                          |      | 13              | 2               | -                | -                |                 | -                |   |
|                    |                      | 13-2+          | -                  | -   | -     | 32  | -     | -   |                    | -     | -   | -     | 32  | -     | -                                          |      | 13              | 2               | -                | -                |                 | -                |   |

Ground all unused input pins. Other pins not listed are left open. \* Resistor Value to V<sub>CC</sub> \*\* Symbol is I<sub>A16</sub> for MC799P.

DUAL 3-INPUT BUFFERS  
NON-INVERTING

PLASTIC mW MRTL MC700P/800P series

## MC788P • MC888P



Two 3-input positive logic NOR gates, each followed by an inverting and non-inverting high fan-out amplifier, are provided in a single package. For each section, the output from each stage is available. If more than one output is used, the full loading factors cannot be employed since each output provides the drive for the succeeding stage.



$$14 = \overline{1 + 2 + 3} \quad 13 = \overline{1 + 2 + 3} \quad 12 = \overline{1 + 2 + 3}$$

NUMBER IN PARENTHESIS INDICATES MC788P LOADING FACTOR.  
NUMBER IN BRACKETS INDICATES MC888P LOADING FACTOR.

$t_{pd} = 24\text{ ns}$   
 $P_d = 145\text{ mW (Input Low)}$   
 $56\text{ mW (Inputs Low)}$

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



Test each output independently. For each test, use only the load associated with the output under test (pin 13 test uses the same load as pin 14 test). Outputs not under test should be left open.



## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one buffer only.  
The other buffer is tested in the same manner.

| Temperature | TEST VOLTAGE VALUES |                 |                  |                  |                 |                  |     |  |
|-------------|---------------------|-----------------|------------------|------------------|-----------------|------------------|-----|--|
|             | (Volts)             |                 |                  | (Ohms)           |                 |                  |     |  |
|             | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> * |     |  |
| MC888P      | 0°C                 | 0.960           | 0.930            | 1.80             | 0.570           | 3.60             | 640 |  |
|             | +25°C               | 0.910           | 0.880            | 1.80             | 0.500           | 3.60             | 640 |  |
|             | +75°C               | 0.820           | 0.790            | 1.80             | 0.450           | 3.60             | 750 |  |
|             | +15°C               | 0.865           | 0.865            | 1.80             | 0.475           | 3.60             | 640 |  |
|             | +25°C               | 0.850           | 0.850            | 1.80             | 0.460           | 3.60             | 640 |  |
|             | +55°C               | 0.800           | 0.800            | 1.80             | 0.430           | 3.60             | 640 |  |

| Characteristic     | Symbol                                                      | Pin Under Test                                              | MC888P Test Limits              |                                 |                                      |                            |                            |                            | MC788P Test Limits |                                      |                            |                            |                            |                       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                                        |                                 |                                  |                                                                          |                                                                                                          | Gnd                                                                                |                  |     |
|--------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|---------------------------------|--------------------------------------|----------------------------|----------------------------|----------------------------|--------------------|--------------------------------------|----------------------------|----------------------------|----------------------------|-----------------------|--------------------------------------------|----------------------------------------|---------------------------------|----------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------|-----|
|                    |                                                             |                                                             | 0°C                             |                                 | +25°C                                |                            | +75°C                      |                            | Unit               | +15°C                                |                            | +25°C                      |                            | +55°C                 |                                            | Unit                                   | V <sub>in</sub>                 | V <sub>on</sub>                  | V <sub>BOT</sub>                                                         | V <sub>off</sub>                                                                                         | V <sub>CC</sub>                                                                    | V <sub>R</sub> * |     |
|                    |                                                             |                                                             | Min                             | Max                             | Min                                  | Max                        | Min                        | Max                        |                    | Min                                  | Max                        | Min                        | Max                        | Min                   | Max                                        |                                        | 1                               | 2                                | 3                                                                        | 4                                                                                                        | 5                                                                                  |                  |     |
| Input Current      | I <sub>in</sub>                                             | 1<br>2<br>3                                                 | -<br>-<br>-                     | 600<br>-<br>↓                   | -<br>-<br>↓                          | 600<br>-<br>-              | -<br>-<br>↓                | 570<br>-<br>-              | μAdc<br>↓          | -<br>-<br>-                          | 500<br>-<br>-              | -<br>-<br>↓                | 500<br>-<br>-              | -<br>-<br>↓           | 470<br>-<br>-                              | μAdc<br>↓                              | 1<br>2<br>3                     | -<br>-<br>-                      | 2,3<br>1,3<br>1,2                                                        | -<br>-<br>-                                                                                              | 11<br>↓<br>-                                                                       | -<br>-<br>4<br>↓ | Gnd |
| Output Current     | I <sub>AB</sub> †<br>I <sub>A5</sub> #<br>I <sub>A3</sub> ‡ | 12<br>13<br>14                                              | 15.0<br>3.0<br>1.8              | -<br>-<br>-                     | 15.0<br>3.0<br>1.8                   | -<br>-<br>-                | 14.25<br>2.85<br>1.71      | -<br>-<br>-                | mAdc<br>↓          | 13.50<br>2.65                        | -<br>-                     | 13.75<br>2.65              | -<br>-                     | 12.50<br>2.50         | -<br>-                                     | mAdc<br>mAdc                           | -<br>-<br>-                     | 12<br>13<br>14                   | -<br>-<br>1,2,3                                                          | 14<br>14<br>-                                                                                            | 11<br>↓<br>-                                                                       | -<br>-<br>4<br>↓ | Gnd |
| Output Voltage     | V <sub>out</sub>                                            | 12<br>13<br>14<br>14<br>14                                  | -<br>-<br>-<br>-<br>-           | 500<br>-<br>-<br>-<br>↓         | -<br>-<br>-<br>-<br>-                | 400<br>-<br>-<br>-<br>↓    | -<br>-<br>-<br>-<br>-      | 400<br>mVdc<br>↓           | -<br>-<br>-        | 400<br>-<br>-                        | -<br>-<br>-                | 300<br>-<br>-              | -<br>-<br>-                | 320<br>mVdc<br>↓      | -<br>-<br>-                                | 14<br>14<br>1<br>2<br>3                | -<br>-<br>-<br>-<br>-           | -<br>-<br>-<br>-<br>-            | 11<br>-<br>-<br>12<br>-<br>1,2,3,4<br>1,2,3,4<br>2,3,4<br>1,3,4<br>1,2,4 | 12<br>-<br>-<br>12<br>-<br>1,2,3,4<br>1,2,3,4<br>-<br>-<br>1,2,3,4<br>1,2,3,4<br>2,3,4<br>1,3,4<br>1,2,4 | Gnd                                                                                |                  |     |
| Saturation Voltage | V <sub>CE(sat)</sub>                                        | 12<br>13<br>14<br>14<br>14                                  | -<br>-<br>-<br>-<br>-           | 400<br>-<br>-<br>-<br>↓         | -<br>-<br>-<br>-<br>-                | 300<br>-<br>-<br>-<br>↓    | -<br>-<br>-<br>-<br>-      | 350<br>mVdc<br>↓           | -<br>-<br>-        | 300<br>-<br>-                        | -<br>-<br>-                | 290<br>-<br>-              | -<br>-<br>-                | 320<br>mVdc<br>↓      | -<br>-<br>-                                | -<br>-<br>-<br>-<br>-                  | -<br>-<br>-<br>2<br>3           | 14<br>14<br>1<br>2<br>3          | -<br>-<br>-<br>-<br>-                                                    | 11<br>-<br>-<br>12<br>-<br>1,2,3,4<br>1,2,3,4<br>-<br>-<br>2,3,4<br>1,3,4<br>1,2,4                       | 12<br>-<br>-<br>12<br>-<br>1,2,3,4<br>1,2,3,4<br>-<br>-<br>2,3,4<br>1,3,4<br>1,2,4 | Gnd              |     |
| Switching Time     | t                                                           | 1-12+<br>1-12-<br>1-13+<br>1-13-<br>1-14+<br>1-14-<br>1-144 | -<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>- | 65<br>58<br>42.5<br>42.5<br>20<br>28 | -<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-        | 65<br>58<br>42.5<br>42.5<br>20<br>28 | -<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>- | Pulse In<br>Pulse Out | 1<br>1<br>1<br>1<br>1<br>1<br>1            | 12<br>12<br>13<br>13<br>14<br>14<br>14 | -<br>-<br>-<br>-<br>-<br>-<br>- | 11<br>-<br>-<br>-<br>-<br>-<br>- | 2,3,4<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                 | Gnd                                                                                                      |                                                                                    |                  |     |

Ground input pins of buffer not under test. Other pins not listed are left open. \*Resistor value to V<sub>CC</sub>.

†I<sub>A80</sub> is symbol for MC788P. #I<sub>A16</sub> is symbol for MC888P. ‡I<sub>A5</sub> is symbol for MC788P.

## DUAL J-K FLIP-FLOPS

PLASTIC mW MRTL MC700P/800P series

**MC776P • MC876P**

Two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.



$f_{osc} = 3 \text{ MHz min}$   
 $P_d = 41 \text{ mW (Only Clock Input High)}$   
 $29 \text{ mW (All Inputs Low)}$

NUMBER IN PARENTHESIS  
 INDICATES MC776P, MC876P LOADING FACTOR

CLOCKED INPUT  
OPERATION

| $t_n$ |   | $t_{n+1}$   |             |
|-------|---|-------------|-------------|
| S     | C | Q           | $\bar{Q}$   |
| 1     | 1 | $Q_n(3)$    | $\bar{Q}_n$ |
| 1     | 0 | 1           | 0           |
| 0     | 1 | 0           | 1           |
| 0     | 0 | $\bar{Q}_n$ | $Q_n(3)$    |

① Direct input ( $C_d$ ) must be low.

② The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .

③  $Q_n$  is the state of the Q output in the time period  $t_n$ .



MC776P, MC876P (continued)

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one flip-flop only.  
The other flip-flop is tested in the same manner.

| MC876P | @ Test Temperature | TEST VALUES     |                 |                  |                  |                 |                | μA |  |
|--------|--------------------|-----------------|-----------------|------------------|------------------|-----------------|----------------|----|--|
|        |                    | (Volts)         |                 |                  |                  |                 |                |    |  |
|        |                    | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> | I <sub>o</sub> |    |  |
|        | 0°C                | 0.880           | 0.850           | 1.80             | 0.500            | 3.60            | 270            |    |  |
|        | +25°C              | 0.830           | 0.800           | 1.80             | 0.460            | 3.60            | 290            |    |  |
|        | +75°C              | 0.740           | 0.710           | 1.80             | 0.400            | 3.60            | 255            |    |  |
| MC776P | +15°C              | 0.865           | 0.865           | 1.80             | 0.475            | 3.60            | 270            |    |  |
|        | +25°C              | 0.850           | 0.850           | 1.80             | 0.460            | 3.60            | 270            |    |  |
|        | +55°C              | 0.800           | 0.800           | 1.80             | 0.430            | 3.60            | 270            |    |  |

| Characteristic     | Symbol               | Pin Under Test | MC876P Test Limits |     |       |     |       |     | MC776P Test Limits |       |     |       |     |       | TEST VALUES |      |                               |                 |                  |                  |                 |                |         |       |
|--------------------|----------------------|----------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|-----|-------|-----|-------|-------------|------|-------------------------------|-----------------|------------------|------------------|-----------------|----------------|---------|-------|
|                    |                      |                | 0°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |     | +25°C |     | +55°C |             | Unit | APPLIED TO PINS LISTED BELOW: |                 |                  |                  |                 |                |         |       |
|                    |                      |                | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max | Min   | Max | Min   | Max         |      | V <sub>in</sub>               | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> | I <sub>o</sub> | Gnd     |       |
| Input Current      | I <sub>in</sub>      | 1              | -                  | 150 | -     | 140 | -     | 140 | μAdc               | -     | 150 | -     | 150 | -     | 150         | μAdc | 1                             | -               | 13               | -                | 11              | -              | 4       |       |
|                    | 2 I <sub>in</sub>    | 2              | -                  | 300 | -     | 280 | -     | 280 | μAdc               | -     | 300 | -     | 300 | -     | 300         | μAdc | 2                             | -               | 1, 3             | -                | -               | -              | -       |       |
|                    | I <sub>in</sub>      | 3              | -                  | 150 | -     | 140 | -     | 140 | μAdc               | -     | 150 | -     | 150 | -     | 150         | μAdc | 3                             | -               | 14               | -                | -               | -              | -       |       |
|                    | I <sub>in</sub>      | 12             | -                  | 150 | -     | 140 | -     | 140 | μAdc               | -     | 150 | -     | 150 | -     | 150         | μAdc | 12                            | -               | 14               | -                | -               | -              | -       |       |
| Output Current     | I <sub>A2</sub>      | 13             | 320                | -   | 320   | -   | 300   | -   | μAdc               | 320   | -   | 320   | -   | 320   | -           | μAdc | -                             | 13              | 1                | 12               | 11              | -              | 4, 14 § |       |
|                    |                      | 14             | -                  | -   | -     | -   | -     | -   | μAdc               | -     | -   | -     | -   | -     | -           | μAdc | -                             | 14              | 3, 12            | -                | -               | -              | -       |       |
|                    |                      | 14             | -                  | -   | -     | -   | -     | -   | μAdc               | -     | -   | -     | -   | -     | -           | μAdc | -                             | 12, 14          | 3                | -                | -               | -              | -       |       |
| Output Voltage     | V <sub>out</sub>     | 13             | -                  | 400 | -     | 350 | -     | 300 | mVdc               | -     | 400 | -     | 300 | -     | 320         | mVdc | -                             | 12              | -                | -                | -               | -              | 4, 14   |       |
|                    |                      | 13             | -                  | -   | -     | -   | -     | -   | mVdc               | -     | -   | -     | -   | -     | -           | mVdc | -                             | 14              | -                | -                | -               | -              | 4, 13 § |       |
|                    |                      | 13*†           | -                  | -   | -     | -   | -     | -   | mVdc               | -     | -   | -     | -   | -     | -           | mVdc | -                             | 1, 3            | -                | -                | -               | -              | 14      | 4, 12 |
|                    |                      | 13*#           | -                  | -   | -     | -   | -     | -   | mVdc               | -     | -   | -     | -   | -     | -           | mVdc | -                             | 1               | -                | 3                | -               | -              | -       |       |
|                    |                      | 13*#           | -                  | -   | -     | -   | -     | -   | mVdc               | -     | -   | -     | -   | -     | -           | mVdc | -                             | -               | -                | 1, 3             | -               | -              | -       |       |
|                    |                      | 14             | -                  | -   | -     | -   | -     | -   | mVdc               | -     | -   | -     | -   | -     | -           | mVdc | -                             | 13              | -                | -                | -               | -              | 14 §    |       |
| Saturation Voltage | V <sub>CE(sat)</sub> | 13             | -                  | 250 | -     | 250 | -     | 250 | mVdc               | -     | 220 | -     | 230 | -     | 320         | mVdc | -                             | -               | 12               | -                | 11              | -              | 4, 14   |       |
|                    |                      | 13             | -                  | -   | -     | -   | -     | -   | mVdc               | -     | -   | -     | -   | -     | -           | mVdc | -                             | -               | -                | -                | -               | -              | 4, 13 § |       |
|                    |                      | 14             | -                  | -   | -     | -   | -     | -   | mVdc               | -     | -   | -     | -   | -     | -           | mVdc | -                             | -               | -                | -                | 12              | -              | 4, 14 § |       |
| Turn On Voltage    | V <sub>on</sub>      | 13*#           | 850                | -   | 800   | -   | 710   | -   | mVdc               | 865   | -   | 850   | -   | 800   | -           | mVdc | -                             | 1, 3            | -                | -                | 11              | 13             | 4, 12   |       |
|                    |                      | 13*†           | -                  | -   | -     | -   | -     | -   | mVdc               | -     | -   | -     | -   | -     | -           | mVdc | -                             | 3               | -                | 1                | -               | 1, 3           | -       |       |
|                    |                      | 13*†           | -                  | -   | -     | -   | -     | -   | mVdc               | -     | -   | -     | -   | -     | -           | mVdc | -                             | -               | -                | 1                | 1, 3            | -              | -       |       |

\* Clock Pulse to pin 2

† Pin 13 = LOW } Set by a momentary ground prior to the application of the negative-going clock.

§ ground thru diode (cathode to ground).

Ground inputs of flip-flop not under test.  
Other pins not listed are left open.

## MC776P, MC876P (continued)

### TOGGLE MODE TEST CIRCUIT



1. Set up the circuit with the Input Pulse as given.
2. The circuit should toggle with an output ( $TP_{out}$ ) sense frequency of 1.5 MHz as the duty cycle is varied between 35% and 65%.

### CLOCK PULSE

#### CLOCK PULSE DEFINITION



#### SEQUENCE OF EVENTS:

- A. Voltage applied to Clock pin is raised to  $V_{H}$ .  $t_r$  is not critical, but should be  $< 1.0 \mu\text{s}$ .
- B. Biases of all other inputs are applied.  $V_{CC}$  is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to  $V_L$ .  $t_f$  must remain within 10 ns minimum and 200 ns maximum.
- E. Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

| MC776P |         |         |
|--------|---------|---------|
| $T_A$  | $V_L$   | $V_H$   |
| 15°C   | 0.475 V | 0.915 V |
| 25°C   | 0.460 V | 0.900 V |
| 55°C   | 0.430 V | 0.850 V |

| MC876P |        |         |
|--------|--------|---------|
| $T_A$  | $V_L$  | $V_H$   |
| 0°C    | 0.50 V | 0.900 V |
| 25°C   | 0.46 V | 0.850 V |
| 75°C   | 0.40 V | 0.760 V |

All values are  $\pm 2.0\text{mV}$

## MC778P • MC878P

The type "D" Flip-Flop is a storage element that stores the state of the S input during negative transitions of the T input. The flip-flop state is not affected by changes in the S input during either the low or the high state of the T input. S<sub>d</sub> and C<sub>d</sub> inputs may be used for asynchronous operation.



DIRECT INPUT OPERATION①

| S <sub>d</sub> | C <sub>d</sub> | Q   | $\bar{Q}$ |
|----------------|----------------|-----|-----------|
| D              | 0              | (3) | (3)       |
| 1              | 0              | 1   | 0         |
| D              | 1              | 0   | 1         |
| 1              | 1              | 0   | 0         |

NUMBER IN PARENTHESIS  
INDICATES MC778P, MC878P LOADING FACTOR

P<sub>d</sub> = 48 mW (Direct Set, S<sub>d</sub>,  
and Direct Clear, C<sub>d</sub>, Low;  
all other inputs high)  
35 mW (All Inputs Low)

f<sub>rog</sub> = 1 MHz

① Clock (T input) must be high.

② The output state will not change when the input state goes from S<sub>d</sub> = C<sub>d</sub> to S<sub>d</sub> = C<sub>d</sub> = 0. The output state cannot be predetermined in the case where input goes from S<sub>d</sub> = C<sub>d</sub> = 1 to S<sub>d</sub> = C<sub>d</sub> = 0.③ Direct inputs (S<sub>d</sub> and C<sub>d</sub>) must be low.④ The time period prior to the negative transition of the clock pulse is denoted t<sub>n</sub> and the time period subsequent to this transition is denoted t<sub>n+1</sub>.

CLOCKED INPUT OPERATION④

| t <sub>n</sub> ④ | t <sub>n+1</sub> ④ |
|------------------|--------------------|
| S                | Q                  |
| 1                | 1                  |
| 0                | 0                  |



## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one flip-flop only.

The other flip-flop is tested in the same manner.

| Characteristic     | Symbol               | Pin Under Test | MC878P Test Limits |     |       |     |       |     | MC778P Test Limits |       |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  |                 |                 |                  |             |
|--------------------|----------------------|----------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|-----------------|------------------|-------------|
|                    |                      |                | 0°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |     | +25°C |     | +55°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> | V <sub>ll</sub> | V <sub>R</sub> * | Gnd         |
|                    |                      |                | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max | Min   | Max | Min   | Max                                        |      |                 |                 |                  |                  |                 |                 |                  |             |
| Input Current      | I <sub>in</sub>      | 2              | -                  | 150 | -     | 140 | -     | 140 | μAdc               | -     | 150 | -     | 150 | -     | 150                                        | μAdc | 2               | -               | 3                | 12               | 11              | -               | 12               | 4, 13       |
|                    | I <sub>in</sub>      | 3              | -                  | 150 | -     | 140 | -     | 140 | μAdc               | -     | 150 | -     | 150 | -     | 150                                        | μAdc | 3               | -               | -                | 12               | -               | -               | 12               | 2, 4, 13    |
|                    | 1.8 I <sub>in</sub>  | 12             | -                  | 270 | -     | 250 | -     | 250 | μAdc               | -     | 270 | -     | 270 | -     | 270                                        | μAdc | 12              | -               | -                | -                | -               | -               | -                | 2, 3, 4, 13 |
|                    | 1.8 I <sub>in</sub>  | 12             | -                  | 270 | -     | 250 | -     | 250 | μAdc               | -     | 270 | -     | 270 | -     | 270                                        | μAdc | 12              | -               | 3                | -                | -               | -               | -                | 2, 4, 13    |
|                    | I <sub>in</sub>      | 13             | -                  | 150 | -     | 140 | -     | 140 | μAdc               | -     | 150 | -     | 150 | -     | 150                                        | μAdc | 13              | -               | -                | 12               | 12              | -               | 12               | 2, 3, 4     |
| Output Current     | I <sub>A3</sub>      | 1              | 420                | -   | 430   | -   | 395   | -   | μAdc               | 420   | -   | 420   | -   | 420   | -                                          | μAdc | 1               | 12              | 3, 13            | 2                | 11              | -               | -                | 4           |
|                    | I <sub>A3</sub>      | 1              | -                  | -   | -     | -   | -     | -   | μAdc               | -     | -   | -     | -   | -     | -                                          | μAdc | 1               | -               | 13               | 2, 12            | -               | -               | 12               | 3, 4        |
|                    | I <sub>A3</sub>      | 14             | -                  | -   | -     | -   | -     | -   | μAdc               | -     | -   | -     | -   | -     | -                                          | μAdc | 14              | 12              | 2                | 13               | -               | -               | -                | 3, 4        |
|                    | I <sub>A3</sub>      | 14             | -                  | -   | -     | -   | -     | -   | μAdc               | -     | -   | -     | -   | -     | -                                          | μAdc | 14              | 3               | 2                | 12, 13           | -               | -               | 12               | 4           |
| Output Voltage     | V <sub>out</sub>     | 1              | -                  | 400 | -     | 350 | -     | 300 | mVdc               | -     | 400 | -     | 300 | -     | 320                                        | mVdc | -               | 2               | 12, 13           | -                | 11              | -               | -                | 3, 4        |
|                    | V <sub>out</sub>     | 1              | -                  | -   | -     | -   | -     | -   | mVdc               | -     | -   | -     | -   | -     | -                                          | mVdc | -               | 14              | 12               | -                | -               | -               | -                | 2, 3, 4, 13 |
|                    | V <sub>out</sub>     | 14             | -                  | -   | -     | -   | -     | -   | mVdc               | -     | -   | -     | -   | -     | -                                          | mVdc | -               | 13              | 2, 12            | -                | -               | -               | -                | 3, 4        |
|                    | V <sub>out</sub>     | 14             | -                  | -   | -     | -   | -     | -   | mVdc               | -     | -   | -     | -   | -     | -                                          | mVdc | -               | 1               | 12               | -                | -               | -               | -                | 2, 3, 4, 13 |
| Saturation Voltage | V <sub>CE(sat)</sub> | 1              | -                  | 250 | -     | 250 | -     | 250 | mVdc               | -     | 220 | -     | 230 | -     | 320                                        | mVdc | -               | 3               | 13               | 12               | 11              | -               | 12               | 2, 4        |
| Leakage Current    | I <sub>L</sub>       | 11             | -                  | 100 | -     | 100 | -     | 100 | μAdc               | -     | -   | -     | -   | -     | -                                          | μAdc | -               | -               | -                | -                | 11              | -               | 2, 3, 4, 12, 13  |             |

\* Apply to V<sub>CC</sub> thru resistor prior to applying V<sub>off</sub>

Ground inputs of flip-flop not under test. Other pins not listed are left open.

## MC778P, MC878P (continued)

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 1



FIGURE 2A — SET-UP AND RELEASE TIMES TEST CIRCUIT



FIGURE 2B — SET-UP TIME WAVEFORMS



FIGURE 2C — RELEASE TIME WAVEFORMS



**MC722P • MC822P**

J-K flip-flop with direct clear and direct set inputs in addition to the clocked inputs.



NUMBER IN PARENTHESIS  
INDICATES MC722P, MC822P LOADING FACTOR

$f_{\text{req}} = 1.0 \text{ MHz}$   
 $P_b = 24 \text{ mW} (\text{Only Clock Input High})$   
 $20 \text{ mW} (\text{Inputs Low})$

## DIRECT INPUT OPERATION ①

| S <sub>d</sub> | C <sub>d</sub> | Q | $\bar{Q}$ |
|----------------|----------------|---|-----------|
| 0              | 0              | ② | ②         |
| 1              | 0              | 1 | 0         |
| 0              | 1              | 0 | 1         |
| 1              | 1              | 0 | 0         |

## CLOCKED INPUT OPERATION ③

| $t_n$ |   | $t_{n+1}$   |             |
|-------|---|-------------|-------------|
| S     | C | Q           | $\bar{Q}$   |
| 1     | 1 | $Q_n$       | $\bar{Q}_n$ |
| 1     | 0 | 1           | 0           |
| 0     | 1 | 0           | 1           |
| 0     | 0 | $\bar{Q}_n$ | $Q_n$       |

1. Clock (T) to remain unchanged.
2. The output state will not change when the input state goes from  $S_d = C_d$  to  $S_d = C_d = 0$ . The output state cannot be predetermined in the case where the input goes from  $S_d = C_d = 1$  to  $S_d = C_d = 0$ .
3. Direct inputs ( $S_d$  and  $C_d$ ) must be low.  
 $0 = \text{low state}$   
 $1 = \text{high state}$   
 $t_n = \text{time period prior to negative transition of clock pulse}$   
 $t_{n+1} = \text{time period subsequent to negative transition of clock pulse}$   
 $Q_n = \text{state of } Q \text{ output in time period } t_n$



TYPICAL RESISTANCE VALUES  
 $R_1 = 1.5 \text{ k}\Omega$     $R_3 = 3.6 \text{ k}\Omega$   
 $R_2 = 2.0 \text{ k}\Omega$     $R_4 = 750 \Omega$

## ELECTRICAL CHARACTERISTICS

|             |       | TEST VOLTAGE VALUES |                 |                  |                  |                 |
|-------------|-------|---------------------|-----------------|------------------|------------------|-----------------|
| @ Test      |       | (Volts)             |                 |                  |                  |                 |
| Temperature |       | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |
| MC822P      | 0°C   | 0.880               | 0.850           | 1.80             | 0.500            | 3.60            |
|             | +25°C | 0.830               | 0.800           | 1.80             | 0.460            | 3.60            |
|             | +75°C | 0.740               | 0.710           | 1.80             | 0.400            | 3.60            |
| MC722P      | +15°C | 0.865               | 0.865           | 1.80             | 0.475            | 3.60            |
|             | +25°C | 0.850               | 0.850           | 1.80             | 0.460            | 3.60            |
|             | +55°C | 0.800               | 0.800           | 1.80             | 0.430            | 3.60            |

| Characteristic     | Symbol                              | Pin Under Test                                           | MC822P Test Limits |     |       |     |       |     | MC722P Test Limits |       |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  | Gnd              |                 |    |
|--------------------|-------------------------------------|----------------------------------------------------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|----|
|                    |                                     |                                                          | D°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |     | +25°C |     | +55°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |    |
|                    |                                     |                                                          | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max | Min   | Max | Min   | Max                                        |      | Unit            | Min             | Max              | Min              | Max             |    |
|                    |                                     |                                                          | -                  | 300 | -     | 280 | -     | 280 |                    | -     | 300 | -     | 300 | -     | 300                                        |      | μAdc            | 2               | -                | 3, 13            | -               | 11 |
| Input Current      | 2I <sub>in</sub><br>I <sub>in</sub> | 2<br>3<br>9<br>12<br>13                                  | -                  | 300 | -     | 280 | -     | 280 | μAdc               | -     | 300 | -     | 300 | -     | 300                                        | μAdc | 3               | -               | 12               | -                | 4               | ↓  |
| Output Current     | I <sub>A4</sub>                     | 6<br>10                                                  | 570                | -   | 570   | -   | 535   | -   | mAdc               | 570   | -   | 570   | -   | 570   | -                                          | μAdc | 6               | 9               | 12               | -                | 11              | 4  |
| Saturation Voltage | V <sub>CE(sat)</sub>                | 6<br>6*#<br>6**#<br>6*##<br>10<br>10*##<br>10*#<br>10*## | -                  | 250 | -     | 250 | -     | 250 | mVdc               | -     | 220 | -     | 230 | -     | 320                                        | mVdc | -               | 12              | -                | 9                | 11              | 4  |

Pins not listed are left open.

\* = Clock Pulse to pin 2, see Figure 1.

# = Pin 9 HIGH } Set by a momentary application of VBOT prior to the  
## = Pin 12 HIGH } application of the negative-going clock pulse.

FIGURE 1—CLOCK PULSE DEFINITION



**SEQUENCE OF EVENTS**

- Voltage applied to Clock pin is raised to  $V_H$ .  $t_r$  is not critical but should be  $< 1.0 \mu s$ .
- Biases of all other inputs are applied.  $V_{CC}$  is applied without interruption throughout the testing.
- Apply momentary ground (when applicable).
- Clock pulse is allowed to fall to  $V_L$ .  $t_f$  must remain within 10 ns minimum and 200 ns maximum.
- Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

| MC822P |                        |                        |
|--------|------------------------|------------------------|
| $T_A$  | $V_L$                  | $V_H$                  |
| + 25°C | + 0.460 V $\pm$ 2.0 mV | + 0.850 V $\pm$ 2.0 mV |
| 0°C    | + 0.500 V $\pm$ 2.0 mV | + 0.900 V $\pm$ 2.0 mV |
| + 75°C | + 0.400 V $\pm$ 2.0 mV | + 0.760 V $\pm$ 2.0 mV |

| MC722P |                        |                        |
|--------|------------------------|------------------------|
| $T_A$  | $V_L$                  | $V_H$                  |
| + 25°C | + 0.460 V $\pm$ 2.0 mV | + 0.900 V $\pm$ 2.0 mV |
| + 15°C | + 0.475 V $\pm$ 2.0 mV | + 0.915 V $\pm$ 2.0 mV |
| + 55°C | + 0.430 V $\pm$ 2.0 mV | + 0.850 V $\pm$ 2.0 mV |

FIGURE 2—TOGGLE MODE TEST CIRCUIT



THE SENSE FREQUENCY AT  $TP_{out}$  (0.5 MHz) SHOULD BE  $\frac{1}{2}$  THE FREQUENCY AT  $V_{CP}$  WHEN THE DUTY CYCLE IS VARIED BETWEEN 25% AND 75%.

**MC791P • MC891P**

Two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.



f<sub>rog</sub> = 4 MHz  
t<sub>pd</sub> = 40 ns typ

P<sub>D</sub> = 190 mW typ (Only Clock Input High)  
160 mW typ (Inputs Low)

CLOCKED INPUT OPERATION ①

| t <sub>n</sub> ② | t <sub>n+1</sub> ③ |                  |                  |
|------------------|--------------------|------------------|------------------|
| S                | C                  | Q                | Q-bar            |
| 1                | 1                  | Q <sub>n</sub> ④ | Q <sub>n</sub>   |
| 1                | 0                  | 1                | 0                |
| 0                | 1                  | 0                | 1                |
| 0                | D                  | Q <sub>n</sub>   | Q <sub>n</sub> ④ |

1. Direct input (C<sub>d</sub>) must be low.
2. The time period prior to the negative transition of the clock pulse is denoted t<sub>n</sub> and the time period subsequent to this transition is denoted t<sub>n+1</sub>.
3. Q<sub>n</sub> is the state of the Q output in the time period t<sub>n</sub>.

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR FOR MC791P  
NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MC891P



TYPICAL RESISTANCE VALUES  
R<sub>1</sub> = 300 Ω   R<sub>4</sub> = 600 Ω   R<sub>7</sub> = 900 Ω  
R<sub>2</sub> = 500 Ω   R<sub>5</sub> = 640 Ω   R<sub>8</sub> = 2.0 k  
R<sub>3</sub> = 550 Ω   R<sub>6</sub> = 700 Ω   R<sub>9</sub> = 3.0 k

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one flip-flop only.  
The other flip-flop is tested in the same manner.

| @ Test<br>Temperature | TEST VOLTAGE VALUES |                 |                  |                  |                 |      |  |
|-----------------------|---------------------|-----------------|------------------|------------------|-----------------|------|--|
|                       | (Volts)             |                 |                  |                  |                 |      |  |
|                       | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |      |  |
| MC891P                | 0°C                 | 0.960           | 0.930            | 1.80             | 0.570           | 3.60 |  |
|                       | +25°C               | 0.910           | 0.880            | 1.80             | 0.500           | 3.60 |  |
|                       | +75°C               | 0.820           | 0.790            | 1.80             | 0.450           | 3.60 |  |
| MC791P                | +15°C               | 0.865           | 0.865            | 1.80             | 0.475           | 3.60 |  |
|                       | +25°C               | 0.850           | 0.850            | 1.80             | 0.460           | 3.60 |  |
|                       | +55°C               | 0.800           | 0.800            | 1.80             | 0.430           | 3.60 |  |

| Characteristic     | Symbol               | Pin Under Test | MC891P Test Limits |      |       |      |       |      | MC791P Test Limits |       |      |       |      |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  | Gnd             |    |       |
|--------------------|----------------------|----------------|--------------------|------|-------|------|-------|------|--------------------|-------|------|-------|------|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|----|-------|
|                    |                      |                | 0°C                |      | +25°C |      | +75°C |      | Unit               | +15°C |      | +25°C |      | +55°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |    |       |
|                    |                      |                | Min                | Max  | Min   | Max  | Min   | Max  |                    | Min   | Max  | Min   | Max  | Min   | Max                                        |      | Min             | Max             | Min              | Max              | Min             |    |       |
| Input Current      | I <sub>in</sub>      | 1†             | -                  | 600  | -     | 600  | -     | 570  | μAdc               | -     | 500  | -     | 500  | -     | 470                                        | μAdc | 1               | -               | -                | -                | -               | 11 | 4     |
|                    | 2I <sub>in</sub>     | 2              | -                  | 1200 | -     | 1200 | -     | 1140 |                    | -     | 1000 | -     | 1000 | -     | 940                                        |      | 2               | -               | 1,3              | -                | -               | 11 | 4     |
|                    | I <sub>in</sub>      | 3              | -                  | 600  | -     | 600  | -     | 570  |                    | -     | 500  | -     | 500  | -     | 470                                        |      | 3               | -               | 12               | -                | -               | 11 | 4     |
|                    | I <sub>in</sub>      | 12             | -                  | 600  | -     | 600  | -     | 570  |                    | -     | 500  | -     | 500  | -     | 470                                        |      | 12              | -               | -                | -                | -               | 11 | 4     |
| Output Current     | I <sub>A5</sub> ‡    | 13†            | 3.0                | -    | 3.0   | -    | 2.85  | -    | mAdc               | 2.65  | -    | 2.65  | -    | 2.50  | -                                          | mAdc | -               | 13              | -                | -                | -               | 11 | -     |
|                    |                      | 14             | 3.0                | -    | 3.0   | -    | 2.85  | -    | mAdc               | 2.65  | -    | 2.65  | -    | 2.50  | -                                          | mAdc | -               | 12, 14          | -                | -                | -               | 11 | 4     |
| Output Voltage     | V <sub>out</sub>     | 13§(5)         | -                  | 500  | -     | 400  | -     | 400  | mVdc               | -     | 400  | -     | 300  | -     | 320                                        | mVdc | -               | 1               | -                | -                | 3               | 11 | 4, 12 |
|                    |                      | 13§§(4)        | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 1               | -                | -                | 3               | 11 | 4, 12 |
|                    |                      | 13§(6)         | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | -               | -                | -                | 1               | 11 | 4, 12 |
|                    |                      | 13§§(7)        | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | -               | -                | -                | 1               | 11 | 4, 12 |
|                    |                      | 14§(4)         | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 3               | -                | -                | 1               | 11 | 4, 12 |
|                    |                      | 14§§(5)        | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 3               | -                | -                | 1               | 11 | 4, 12 |
|                    |                      | 14§(7)         | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 3               | -                | -                | 1               | 11 | 4, 12 |
|                    |                      | 14§§(6)        | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 3               | -                | -                | 1               | 11 | 4, 12 |
| Saturation Voltage | V <sub>CE(sat)</sub> | 13†            | -                  | 400  | -     | 300  | -     | 350  | mVdc               | -     | 300  | -     | 290  | -     | 320                                        | mVdc | -               | 12              | -                | -                | -               | 11 | 4     |
|                    |                      | 13*#           | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 1,3             | -                | -                | 3               | 11 | 4     |
|                    |                      | 13†*           | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 1               | -                | -                | 3               | 11 | 4     |
|                    |                      | 13†*           | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | -               | -                | 1,3              | 11              | 4  |       |
|                    |                      | 14*#           | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 3               | -                | -                | 1               | 11 | 4     |
|                    |                      | 14*#           | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | -               | -                | 1,3              | 11              | 4  |       |
|                    |                      | 14†*           | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | -               | -                | -                | 1,3             | 11 | 4     |

Ground inputs of flip-flop not under test. Other pins not listed are left open.

† Preset the flip-flop by the following procedure:

- (1) Momentarily apply V<sub>BOT</sub> to pin 12 to preclear flip-flop.
- (2) After V<sub>BOT</sub> is removed from pin 12, ground pins 1 and 3.
- (3) Apply a negative-going clock pulse to pin 2 (see note\*) while pins 1 and 3 are still grounded. This changes the state of the flip-flop to the SET condition.
- (4) Remove grounds from pins 1 and 3, and proceed with the test.

\* Symbol is I<sub>A16</sub> for MC791P.

\* Clock pulse to pin 2, see Figure 1.

# Pin 12 = HIGH — Set by momentary application of V<sub>BOT</sub> prior to the application of the negative-going clock pulse.

§ = Clock pulse to pin 2, data pulse to pin 3.

§§ = Clock pulse to pin 2, data pulse to pin 1.

(4) = See Figure 4.

(5) = See Figure 5.

(6) = See Figure 6.

(7) = See Figure 7.

## MC791P, MC891P (continued)

FIGURE 1—CLOCK PULSE DEFINITION



FIGURE 2—TOGGLE MODE TEST CIRCUIT



FIGURE 3—TEST CIRCUIT



FIGURE 4—TEST WAVEFORMS



FIGURE 5—TEST WAVEFORMS



FIGURE 6—TEST WAVEFORMS



FIGURE 7—TEST WAVEFORMS



**MC723P • MC816P**

J-K flip-flop with a direct clear input in addition to the clocked inputs.



CLOCKED INPUT OPERATION ①

| t <sub>n</sub> ② |   | t <sub>n</sub> + t② |                    |
|------------------|---|---------------------|--------------------|
| S                | C | Q                   | Q-bar              |
| 1                | 1 | Q <sub>n</sub> ③    | Q-bar <sub>n</sub> |
| 1                | 0 | 1                   | 0                  |
| 0                | 1 | 0                   | 1                  |
| 0                | 0 | Q-bar <sub>n</sub>  | Q <sub>n</sub> ③   |

1. Direct input (C<sub>D</sub>) must be low.
2. The time period prior to the negative transition of the clock pulse is denoted t<sub>n</sub> and the time period subsequent to this transition is denoted t<sub>n</sub> + t.
3. Q<sub>n</sub> is the state of the Q output in the time period t<sub>n</sub>.
4. Clock pulse fall time must be < 100 ns.

f<sub>log</sub> = 4 MHz

P<sub>d</sub> = 91 mW (Only Clock Input High)  
79 mW (Inputs Low)

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR FOR MC723P  
NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MC816P



## TYPICAL RESISTANCE VALUES

R<sub>1</sub> = 450 Ω  
R<sub>2</sub> = 640 Ω  
R<sub>3</sub> = 510 Ω  
R<sub>4</sub> = 225 Ω

## ELECTRICAL CHARACTERISTICS

| @ Test<br>Temperature | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |
|-----------------------|--------------------------------|-----------------|------------------|------------------|-----------------|
|                       | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |
|                       | 0°C                            | +25°C           | +75°C            | +15°C            | +25°C           |
| MC816P                | 0.960                          | 0.930           | 1.80             | 0.570            | 3.60            |
|                       | 0.910                          | 0.880           | 1.80             | 0.500            | 3.60            |
|                       | 0.820                          | 0.790           | 1.80             | 0.450            | 3.60            |
| MC723P                | 0.865                          | 0.865           | 1.80             | 0.475            | 3.60            |
|                       | 0.850                          | 0.850           | 1.80             | 0.460            | 3.60            |
|                       | 0.800                          | 0.800           | 1.80             | 0.430            | 3.60            |
|                       |                                |                 |                  |                  |                 |
|                       |                                |                 |                  |                  |                 |

| Characteristic     | Symbol                              | Pin Under Test             | MC816P Test Limits |      |       |      |       |      | MC723P Test Limits |       |      |       |      |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  | Gnd              |                 |                         |              |
|--------------------|-------------------------------------|----------------------------|--------------------|------|-------|------|-------|------|--------------------|-------|------|-------|------|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|-------------------------|--------------|
|                    |                                     |                            | 0°C                |      | +25°C |      | +75°C |      | Unit               | +15°C |      | +25°C |      | +55°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |                         |              |
|                    |                                     |                            | Min                | Max  | Min   | Max  | Min   | Max  |                    | Min   | Max  | Min   | Max  | Min   | Max                                        |      | Min             | Max             | Min              | Max              |                 |                         |              |
| Input Current      | 2I <sub>in</sub><br>I <sub>in</sub> | 2<br>3<br>9<br>12          | -                  | 1200 | -     | 1200 | -     | 1140 | μAdc               | -     | 1000 | -     | 1000 | -     | 940                                        | μAdc | 2               | -               | 3, 12            | -                | 11              | 4                       |              |
|                    |                                     |                            | -                  | 600  | -     | 600  | -     | 570  |                    | -     | -    | -     | -    | -     | -                                          |      | 3               | -               | 10               | -                | 5               | ↓                       |              |
|                    |                                     |                            | -                  | ↓    | -     | ↓    | -     | ↓    |                    | -     | -    | -     | -    | -     | -                                          |      | 9               | -               | 5                | -                | 5               | ↓                       |              |
|                    |                                     |                            | -                  |      | -     | ↓    | -     |      |                    | -     | -    | -     | -    | -     | -                                          |      | 12              | -               | 5                | -                | 5               | ↓                       |              |
| Output Current     | I <sub>A3</sub> †                   | 5<br>5<br>10               | 1.80               | -    | 1.80  | -    | 1.71  | -    | mAdc               | 1.65  | -    | 1.65  | -    | 1.56  | -                                          | mAdc | -               | 5               | 9, 12            | 12               | -               | 11                      | 4            |
|                    |                                     |                            | ↓                  | -    | ↓     | -    | ↓     | -    |                    | ↓     | -    | ↓     | -    | ↓     | -                                          |      | -               | 5, 9            | 10               | 3                | 9               | ↓                       |              |
|                    |                                     |                            | -                  |      | -     | ↓    | -     |      |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 9               | 12               | 3                | -               | 4, 5 §                  |              |
| Output Voltage     | V <sub>out</sub>                    | 10<br>10*#<br>10*<br>10*## | -                  | 500  | -     | 400  | -     | 400  | mVdc               | -     | 400  | -     | 300  | -     | 320                                        | mVdc | -               | 9               | 3, 12            | 3                | -               | 11                      | 4, 5<br>4, 9 |
|                    |                                     |                            | -                  | ↓    | -     | ↓    | -     | ↓    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 3               | 12               | 3                | -               | 12                      | 3, 12        |
|                    |                                     |                            | -                  |      | -     | ↓    | -     |      |                    | -     | -    | -     | -    | -     | -                                          |      | -               | -               | -                | -                | -               | ↓                       |              |
| Saturation Voltage | V <sub>CE(sat)</sub>                | 5<br>10<br>10              | -                  | 400  | -     | 300  | -     | 350  | mVdc               | -     | 300  | -     | 290  | -     | 320                                        | mVdc | -               | -               | -                | 9                | 11              | 4, 5<br>4, 5<br>4, 10 § |              |
|                    |                                     |                            | -                  | ↓    | -     | ↓    | -     | ↓    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | -               | 9                | -                | -               | ↓                       |              |
| Turn-On Voltage    | V <sub>on</sub>                     | 10*##△<br>10*△<br>10*#△    | 930                | -    | 880   | -    | 790   | -    | mVdc               | 865   | -    | 850   | -    | 800   | -                                          | mVdc | -               | 3, 12           | 12               | -                | 3               | 11                      | 4, 9         |
|                    |                                     |                            | ↓                  | -    | ↓     | -    | ↓     | -    |                    | ↓     | -    | ↓     | -    | ↓     | -                                          |      | -               | 3, 12           | -                | -                | 3, 12           | ↓                       |              |

Pins not listed are left open.

# = Pin 10 LOW      } Set by a momentary ground prior to the application  
 ## = Pin 5 LOW      } of the negative-going Clock pulse.

† = I<sub>A10</sub> is symbol for MC723P

§ = Silicon diode to ground.

\* = Clock Pulse to pin 2, See Figure 1.

△ = MC816P pin 10 loaded by: 1.56 mAdc (0°C and +75°C)

1.65 mAdc (+25°C)

MC723P pin 10 loaded by: 1.56 mAdc (+15°C and +55°C)

1.65 mAdc (+25°C)

FIGURE 1—CLOCK PULSE DEFINITION



| MC816P |                        |                        |
|--------|------------------------|------------------------|
| $T_A$  | $V_L$                  | $V_H$                  |
| + 25°C | + 0.500 V $\pm$ 2.0 mV | + 0.930 V $\pm$ 2.0 mV |
| 0°C    | + 0.570 V $\pm$ 2.0 mV | + 0.980 V $\pm$ 2.0 mV |
| + 75°C | + 0.450 V $\pm$ 2.0 mV | + 0.840 V $\pm$ 2.0 mV |

#### SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to  $V_H$ .  $t_r$  is not critical but should be  $< 1.0 \mu s$ .
- B. Biases of all other inputs are applied.  $V_{CC}$  is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to  $V_L$ .  $t_f$  must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC723P

| $T_A$  | $V_L$                  | $V_H$                  |
|--------|------------------------|------------------------|
| + 25°C | + 0.460 V $\pm$ 2.0 mV | + 0.900 V $\pm$ 2.0 mV |
| + 15°C | + 0.475 V $\pm$ 2.0 mV | + 0.915 V $\pm$ 2.0 mV |
| + 55°C | + 0.430 V $\pm$ 2.0 mV | + 0.850 V $\pm$ 2.0 mV |

FIGURE 2—TOGGLE MODE TEST CIRCUIT



**MC726P • MC826P**

J-K flip-flop with direct clear and direct set inputs in addition to the clocked inputs.



$f_{\text{req}} = 4 \text{ MHz}$

$P_d = 100 \text{ mW}$  (Only Clock Input High)  
86 mW (Inputs Low)

CLOCKED INPUT OPERATION ①

| $t_n$ ② |   | $t_{n+1}$ ③ |             |
|---------|---|-------------|-------------|
| S       | C | Q           | $\bar{Q}$   |
| 1       | 1 | $Q_n$ ④     | $\bar{Q}_n$ |
| 1       | 0 | 1           | 0           |
| 0       | 1 | 0           | 1           |
| 0       | 0 | $\bar{Q}_n$ | $Q_n$ ④     |

DIRECT INPUT OPERATION ④

| $S_p$ | $C_p$ | Q | $\bar{Q}$ |
|-------|-------|---|-----------|
| 0     | 0     | ⑤ | ⑤         |
| 1     | 0     | 1 | 0         |
| 0     | 1     | 0 | 1         |
| 1     | 1     | 0 | 0         |

1. Direct inputs ( $C_p$  and  $S_p$ ) must be low.
2. The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .
3.  $Q_n$  is the state of the Q output in the time period  $t_n$ .
4. Clock (T) to remain unchanged.
5. The output state will not change when the input state goes from  $S_p = C_p$  to  $S_p = C_p = 0$ . The output state cannot be predetermined in the case where the input goes from  $S_p = C_p = 1$  to  $S_p = C_p = 0$ .
6. Clock pulse fall time must be < 100 ns.

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR FOR MC726P  
NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MC826P



TYPICAL RESISTANCE VALUES  
 $R_1 = 600 \Omega$        $R_5 = 550 \Omega$   
 $R_2 = 2 \text{ k}\Omega$        $R_6 = 900 \Omega$   
 $R_3 = 640 \Omega$        $R_7 = 700 \Omega$   
 $R_4 = 300 \Omega$        $R_8 = 3 \text{ k}\Omega$

## ELECTRICAL CHARACTERISTICS

| Characteristic     | Symbol                              | Pin Under Test                                         | MC826P Test Limits |      |       |      |       |      | MC726P Test Limits |       |      |       |      |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                 |                 |                  |                  | Gnd             |    |   |
|--------------------|-------------------------------------|--------------------------------------------------------|--------------------|------|-------|------|-------|------|--------------------|-------|------|-------|------|-------|--------------------------------------------|-----------------|-----------------|------------------|------------------|-----------------|----|---|
|                    |                                     |                                                        | 0°C                |      | +25°C |      | +75°C |      | Unit               | +15°C |      | +25°C |      | +55°C |                                            | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |    |   |
|                    |                                     |                                                        | Min                | Max  | Min   | Max  | Min   | Max  |                    | Min   | Max  | Min   | Max  | Min   | Max                                        |                 |                 |                  |                  |                 |    |   |
|                    |                                     |                                                        | -                  | 1200 | -     | 1200 | -     | 1140 | μAdc               | -     | 1000 | -     | 1000 | -     | 940                                        | μAdc            |                 |                  |                  |                 |    |   |
| Input Current      | 2I <sub>in</sub><br>I <sub>in</sub> | 2<br>3<br>9<br>12<br>13                                | -                  | 1200 | -     | 1200 | -     | 1140 | μAdc               | -     | 1000 | -     | 1000 | -     | 940                                        | μAdc            | 2               | -                | 3, 13            | -               | 11 | 4 |
|                    |                                     |                                                        | -                  | 600  | -     | 600  | -     | 570  | ↓                  | -     | 500  | -     | 500  | -     | 470                                        | ↓               | 3               | -                | 12               | -               | -  | ↓ |
|                    |                                     |                                                        | -                  | -    | -     | -    | -     | -    | ↓                  | -     | -    | -     | -    | -     | -                                          | 9               | -               | -                | -                | -               | ↓  |   |
| Output Current     | I <sub>A5</sub> §                   | 6<br>10                                                | 3.0<br>3.0         | -    | 3.0   | -    | 2.85  | -    | mAdc               | 2.65  | -    | 2.65  | -    | 2.5   | -                                          | mAdc            | -               | 6, 12            | 9                | -               | 11 | 4 |
|                    |                                     |                                                        | -                  | -    | -     | -    | 2.85  | -    | mAdc               | 2.65  | -    | 2.65  | -    | 2.5   | -                                          | mAdc            | -               | 10, 9            | 12               | -               | 11 | 4 |
| Saturation Voltage | V <sub>CE(sat)</sub>                | 6<br>6*#<br>6*#<br>6*#<br>10<br>10*##<br>10*#<br>10*## | -                  | 400  | -     | 300  | -     | 350  | mVdc               | -     | 300  | -     | 290  | -     | 320                                        | mVdc            | -               | 12               | -                | 9               | 11 | 4 |
|                    |                                     |                                                        | -                  | -    | -     | -    | -     | -    | ↓                  | -     | -    | -     | -    | -     | -                                          | 13              | -               | -                | 3                | -               | ↓  |   |
|                    |                                     |                                                        | -                  | -    | -     | -    | -     | -    | ↓                  | -     | -    | -     | -    | -     | -                                          | 3, 13           | -               | -                | 12               | -               | ↓  |   |
|                    |                                     |                                                        | -                  | -    | -     | -    | -     | -    | ↓                  | -     | -    | -     | -    | -     | -                                          | 9               | -               | -                | 3                | -               | ↓  |   |
|                    |                                     |                                                        | -                  | -    | -     | -    | -     | -    | ↓                  | -     | -    | -     | -    | -     | -                                          | 3, 13           | -               | -                | 13               | -               | ↓  |   |
|                    |                                     |                                                        | -                  | -    | -     | -    | -     | -    | ↓                  | -     | -    | -     | -    | -     | -                                          | -               | -               | -                | 3, 13            | -               | ↓  |   |

Pins not listed are left open.

# Pin 9 HIGH } Set by momentary application of V<sub>BOT</sub> prior to the  
## Pin 12 HIGH }

\* Clock Pulse to pin 2, see Figure 1.

§ I<sub>A16</sub> is symbol for MC726P.

## MC726P, MC826P (continued)

FIGURE 1 — CLOCK PULSE DEFINITION



MC826P

| $T_A$  | $V_L$                  | $V_H$                  |
|--------|------------------------|------------------------|
| + 25°C | + 0.500 V $\pm$ 2.0 mV | + 0.930 V $\pm$ 2.0 mV |
| 0°C    | + 0.570 V $\pm$ 2.0 mV | + 0.980 V $\pm$ 2.0 mV |
| + 75°C | + 0.450 V $\pm$ 2.0 mV | + 0.840 V $\pm$ 2.0 mV |

### SEQUENCE OF EVENTS

- Voltage applied to Clock pin is raised to  $V_H$ .  $t_r$  is not critical but should be  $< 1.0 \mu\text{s}$ .
- Biases of all other inputs are applied.  $V_{CC}$  is applied without interruption throughout the testing.
- Apply momentary ground (when applicable).
- Clock pulse is allowed to fall to  $V_L$ .  $t_f$  must remain within 10 ns minimum and 100 ns maximum.
- Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC726P

| $T_A$  | $V_L$                  | $V_H$                  |
|--------|------------------------|------------------------|
| + 25°C | + 0.460 V $\pm$ 2.0 mV | + 0.900 V $\pm$ 2.0 mV |
| + 15°C | + 0.475 V $\pm$ 2.0 mV | + 0.915 V $\pm$ 2.0 mV |
| + 55°C | + 0.430 V $\pm$ 2.0 mV | + 0.850 V $\pm$ 2.0 mV |

FIGURE 2 — TOGGLE MODE TEST CIRCUIT



$f = 4.0 \text{ MHz MIN}$   
 DUTY CYCLE = 25% MIN., 75% MAX.  
 $t_r$  &  $t_f < 10 \text{ ns}$

OUTPUT FREQUENCY SHALL BE  $1/2$  OF  $TP_{in}$  FREQUENCY.

**MC790P • MC890P**

Two J-K flip-flops in a single package.  
Each flip-flop has a direct clear input in addition to the clocked inputs.



$f_{\text{rog}} = 4 \text{ MHz}$   
 $P_d = 182 \text{ mW}$  (Only Clock Input High)  
158 (Inputs Low)

CLOCKED INPUT OPERATION ①

|   |   | $t_n$ ②     |             |
|---|---|-------------|-------------|
| S | C | Q           | $\bar{Q}$   |
| 1 | 1 | $Q_n$ ③     | $\bar{Q}_n$ |
| 1 | 0 | 1           | 0           |
| 0 | 1 | 0           | 1           |
| 0 | 0 | $\bar{Q}_n$ | $Q_n$ ③     |

1. Direct input ( $C_D$ ) must be low.
2. The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .
3.  $Q_n$  is the state of the Q output in the time period  $t_n$ .
4. Clock pulse fall time must be  $< 100 \text{ ns}$ .

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR FOR MC790P  
NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MC890P



| Temperature | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |      |
|-------------|--------------------------------|-----------------|------------------|------------------|-----------------|------|
|             | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |      |
|             | 0°C                            | 0.960           | 0.930            | 1.80             | 0.570           | 3.60 |
| +25°C       | 0.910                          | 0.880           | 1.80             | 0.500            | 3.60            |      |
| +75°C       | 0.820                          | 0.790           | 1.80             | 0.450            | 3.60            |      |
| +15°C       | 0.865                          | 0.865           | 1.80             | 0.475            | 3.60            |      |
| +25°C       | 0.850                          | 0.850           | 1.80             | 0.460            | 3.60            |      |
| +55°C       | 0.800                          | 0.800           | 1.80             | 0.430            | 3.60            |      |

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one flip-flop only.  
The other flip-flop is tested in the same manner.

| Characteristic     | Symbol                                                                    | Pin Under Test                                       | MC890P Test Limits |     |       |     |       |     | MC790P Test Limits |       |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  | Gnd             |                                                   |
|--------------------|---------------------------------------------------------------------------|------------------------------------------------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|---------------------------------------------------|
|                    |                                                                           |                                                      | 0°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |     | +25°C |     | +55°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |                                                   |
|                    |                                                                           |                                                      | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max | Min   | Max | Min   | Max                                        |      | 1               | -               | 13               | -                | 11              |                                                   |
| Input Current      | I <sub>in</sub><br>2I <sub>in</sub><br>I <sub>in</sub><br>I <sub>in</sub> | 1<br>2<br>3<br>12                                    | -                  | 600 | -     | 600 | -     | 570 | μAdc               | -     | 500 | -     | 500 | -     | 470                                        | μAdc | 1               | -               | 13               | -                | 11              | 2, 3, 4, 12<br>4, 12<br>1, 2, 4, 12<br>1, 2, 3, 4 |
| Output Current     | I <sub>A3</sub> §<br>14<br>14                                             | 13<br>14<br>14                                       | 1.80               | -   | 1.80  | -   | 1.71  | -   | mAdc               | 1.65  | -   | 1.65  | -   | 1.56  | -                                          | mAdc | -               | 13              | 1                | 12               | 11              | 2, 3, 4<br>1, 2, 4<br>1, 2, 4                     |
| Output Voltage     | V <sub>out</sub>                                                          | 13<br>13*#<br>13*##<br>13*##<br>14*#<br>14*#<br>14*# | -                  | 500 | -     | 400 | -     | 400 | mVdc               | -     | 400 | -     | 300 | -     | 320                                        | mVdc | -               | 12              | -                | -                | 11              | 1, 2, 3, 4, 14<br>4, 12                           |
| Saturation Voltage | V <sub>CE(sat)</sub>                                                      | 13<br>13#<br>14#                                     | -                  | 400 | -     | 300 | -     | 350 | mVdc               | -     | 300 | -     | 290 | -     | 320                                        | mVdc | -               | -               | 12               | -                | 11              | 1, 2, 3, 4, 14<br>1, 2, 3, 4, 12<br>1, 2, 3, 4    |

Ground unused input pins. Other pins not listed are left open.

# Pin 13 = LOW      Set by a momentary ground prior to the  
## Pin 14 = LOW      application of the negative-going Clock Pulse.

\* Clock pulse to pin 2, see Figure 1,

§ I<sub>A10</sub> is symbol for MC790P.

FIGURE 1 — CLOCK PULSE DEFINITION



**SEQUENCE OF EVENTS**

- Voltage applied to Clock pin is raised to  $V_H$ .  $t_r$  is not critical but should be  $< 1.0 \mu s$ .
- Biases of all other inputs are applied.  $V_{CC}$  is applied without interruption throughout the testing.
- Apply momentary ground (when applicable).
- Clock pulse is allowed to fall to  $V_L$ .  $t_f$  must remain within 10 ns minimum and 100 ns maximum.
- Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

| MC890P |                       |                       |
|--------|-----------------------|-----------------------|
| $T_A$  | $V_L$                 | $V_H$                 |
| + 25°C | +0.500 V $\pm$ 2.0 mV | +0.930 V $\pm$ 2.0 mV |
| 0°C    | +0.570 V $\pm$ 2.0 mV | +0.980 V $\pm$ 2.0 mV |
| + 75°C | +0.450 V $\pm$ 2.0 mV | +0.840 V $\pm$ 2.0 mV |

| MC790P |                       |                       |
|--------|-----------------------|-----------------------|
| $T_A$  | $V_L$                 | $V_H$                 |
| + 25°C | +0.460 V $\pm$ 2.0 mV | +0.900 V $\pm$ 2.0 mV |
| + 15°C | +0.475 V $\pm$ 2.0 mV | +0.915 V $\pm$ 2.0 mV |
| + 55°C | +0.430 V $\pm$ 2.0 mV | +0.850 V $\pm$ 2.0 mV |

FIGURE 2 — TOGGLE MODE TEST CIRCUIT



**MC789P • MC889P**

Six individual circuits are contained in a single package. Each provides the simple inversion function.



NUMBER IN PARENTHESIS INDICATES MC789P LOADING FACTOR.  
 NUMBER IN BRACKETS INDICATES MC889P LOADING FACTOR.

$t_{pd} = 12 \text{ ns}$   
 $P_d = 130 \text{ mW (Input High)}$   
 $\quad\quad\quad 15 \text{ mW (Inputs Low)}$

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

| @ Test Temperature | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |      |
|--------------------|--------------------------------|-----------------|------------------|------------------|-----------------|------|
|                    | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |      |
| MC889P             | 0°C                            | 0.960           | 0.930            | 1.80             | 0.570           | 3.60 |
|                    | +25°C                          | 0.910           | 0.880            | 1.80             | 0.500           | 3.60 |
|                    | +75°C                          | 0.820           | 0.790            | 1.80             | 0.450           | 3.60 |
|                    | +15°C                          | 0.865           | 0.865            | 1.80             | 0.475           | 3.60 |
|                    | +25°C                          | 0.850           | 0.850            | 1.80             | 0.460           | 3.60 |
|                    | +55°C                          | 0.800           | 0.800            | 1.80             | 0.430           | 3.60 |

**ELECTRICAL CHARACTERISTICS**

Test procedures are shown for one inverter only.  
The other inverters are tested in the same manner.

| Characteristic     | Symbol                             | Pin Under Test | MC889P Test Limits |     |       |     |       |     | MC789P Test Limits |       |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  | Gnd              |                 |   |
|--------------------|------------------------------------|----------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|---|
|                    |                                    |                | 0°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |     | +25°C |     | +55°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |   |
|                    |                                    |                | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max | Min   | Max | Min   | Max                                        |      | Min             | Max             | Min              | Max              |                 |   |
| Input Current      | I <sub>in</sub>                    | 14*            | -                  | 600 | -     | 600 | -     | 570 | μAdc               | -     | 500 | -     | 500 | -     | 470                                        | μAdc | 14              | -               | *                | -                | 11              | 4 |
| Output Current     | I <sub>A5</sub>                    | 1              | 3.0                | -   | 3.0   | -   | 2.85  | -   | mAdc               | 2.65  | -   | 2.65  | -   | 2.5   | -                                          | mAdc | 1               | -               | -                | 14               | 11              | 4 |
| Output Voltage     | V <sub>out</sub>                   | 1              | -                  | 500 | -     | 400 | -     | 400 | mVdc               | -     | 400 | -     | 300 | -     | 320                                        | mVdc | -               | 14              | -                | -                | 11              | 4 |
| Saturation Voltage | V <sub>CE(sat)</sub>               | 1              | -                  | 400 | -     | 300 | -     | 350 | mVdc               | -     | 300 | -     | 290 | -     | 320                                        | mVdc | -               | -               | 14               | -                | 11              | 4 |
| Switching Time     | t <sub>on</sub> + t <sub>off</sub> | 1, 14          | -                  | -   | -     | 48  | -     | -   | ns                 | -     | -   | -     | 48  | -     | -                                          | ns   | Pulse In        | Pulse Out       | -                | -                | 11              | 4 |
|                    |                                    |                |                    |     |       |     |       |     |                    |       |     |       |     |       |                                            |      | 14              | 1               | -                | -                |                 |   |

Ground inputs of inverters not under test. Other pins not listed are left open

\* To simulate worse case conditions, the output of inverter under test is tied to the output of another inverter which has its input taken to V<sub>BOT</sub>.

DUAL 4-INPUT EXPANDERS

PLASTIC MRTL MC700P/800P series

## MC786P • MC886P

Two 4-input gate expanders housed in a single package. Each may be used independently or combined. Each expander increases the input capability of a standard MRTL gate by four.



$$12 = \overline{2 + 3 + 13 + 14}$$

$t_{pd} = 12$  ns  
 $P_o = 20$  mW (Input High)  
Negligible (Inputs Low)

NUMBER IN PARENTHESIS INDICATES MC786P LOADING FACTOR.  
NUMBER IN BRACKETS INDICATES MC886P LOADING FACTOR.  
SEE SHEET 6-158 FOR EXPANDER RULES

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



V<sub>cc</sub> CONNECTION TO PIN 11 NOT SHOWN

TYPICAL RESISTANCE  
VALUES  
 $R_1 = 450 \Omega$

**ELECTRICAL CHARACTERISTICS**

Test procedures are shown for one expander only.  
The other expander is tested in the same manner.

| @ Test Temperature | TEST VOLTAGE VALUES |                 |                  |                  |                 |                  |
|--------------------|---------------------|-----------------|------------------|------------------|-----------------|------------------|
|                    | (Volts)             |                 |                  |                  | (Ohms)          |                  |
|                    | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> | V <sub>R</sub> * |
| MC886P             | 0.960               | 0.930           | 1.80             | 0.570            | 3.60            | 640              |
|                    | 0.910               | 0.880           | 1.80             | 0.500            | 3.60            | 640              |
|                    | 0.820               | 0.790           | 1.80             | 0.450            | 3.60            | 750              |
|                    | 0.865               | 0.865           | 1.80             | 0.475            | 3.60            | 640              |
|                    | 0.850               | 0.850           | 1.80             | 0.460            | 3.60            | 640              |
|                    | 0.800               | 0.800           | 1.80             | 0.430            | 3.60            | 640              |

| Characteristic         | Symbol               | Pin Under Test       | MC886P Test Limits |     |       |     |       |     | MC786P Test Limits |       |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |       |                    |                    |                                        |                  | Gnd                  |                          |                                                |
|------------------------|----------------------|----------------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|-----|-------|-----|-------|--------------------------------------------|-------|--------------------|--------------------|----------------------------------------|------------------|----------------------|--------------------------|------------------------------------------------|
|                        |                      |                      | 0°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |     | +25°C |     | +55°C |                                            | Unit  | V <sub>in</sub>    | V <sub>on</sub>    | V <sub>BOT</sub>                       | V <sub>off</sub> | V <sub>cc</sub>      | V <sub>R</sub> *         |                                                |
|                        |                      |                      | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max | Min   | Max | Min   | Max                                        |       | Min                | Max                | Min                                    | Max              | Min                  |                          |                                                |
| Input Current          | I <sub>in</sub>      | 2<br>3<br>13<br>14   | -                  | 600 | -     | 600 | -     | 570 | μA/dc              | -     | 500 | -     | 500 | -     | 470                                        | μA/dc | 2<br>3<br>13<br>14 | -                  | 3,13,14<br>2,13,14<br>2,3,14<br>2,3,13 | -                | 11<br>12<br>13<br>14 | 12<br>13<br>14           | 4<br>4                                         |
| Output Leakage Current | I <sub>CEX</sub>     | 12                   | -                  | 200 | -     | 200 | -     | 250 | μA/dc              | -     | 225 | -     | 225 | -     | 250                                        | μA/dc | 12                 | -                  | -                                      | 2, 3,<br>13, 14  | 11                   | -                        | 4                                              |
| Output Voltage         | V <sub>out</sub>     | 12<br>12<br>12<br>12 | -                  | 500 | -     | 400 | -     | 400 | mVdc               | -     | 400 | -     | 300 | -     | 320                                        | mVdc  | -                  | 13<br>14<br>2<br>3 | -                                      | -                | 11<br>12<br>13<br>14 | 12<br>13<br>14<br>13, 14 | 2,3,4,14<br>2,3,4,13<br>3,4,13,14<br>2,4,13,14 |
| Saturation Voltage     | V <sub>CE(sat)</sub> | 12<br>12<br>12<br>12 | -                  | 400 | -     | 300 | -     | 350 | mVdc               | -     | 300 | -     | 290 | -     | 320                                        | mVdc  | -                  | -                  | 13<br>14<br>2<br>3                     | -                | 11<br>12<br>13<br>14 | 12<br>13<br>14<br>13, 14 | 2,3,4,14<br>2,3,4,13<br>3,4,13,14<br>2,4,13,14 |

Ground unused input pins. Other pins not listed are left open.

QUAD 2-INPUT EXPANDERS

PLASTIC MRTL MC700P/800P series

## MC785P • MC885P

Four 2-input expanders housed in a single package  
increase the input capability of MRTL gates.



$$3 = \overline{1+2}$$

$t_{pd} = 12 \text{ ns}$   
 $P_o = 20 \text{ mW (Input High)}$   
Negligible (Inputs Low)

NUMBER IN PARENTHESIS INDICATES MC785P LOADING FACTOR.  
NUMBER IN BRACKETS INDICATES MC885P LOADING FACTOR.  
SEE SHEET 6-158 FOR EXPANDER RULES

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



V<sub>cc</sub> CONNECTION TO PIN 11 IS NOT SHOWN

TYPICAL RESISTANCE  
VALUES  
 $R_1 = 450 \Omega$

| @ Test Temperature | TEST VOLTAGE VALUES |                 |                  |                  |                 |                  |     |
|--------------------|---------------------|-----------------|------------------|------------------|-----------------|------------------|-----|
|                    | (Volts)             |                 |                  |                  |                 | (Dhms)           |     |
|                    | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> * |     |
| MC885P {           | 0°C                 | 0.960           | 0.930            | 1.80             | 0.570           | 3.60             | 640 |
|                    | +25°C               | 0.910           | 0.880            | 1.80             | 0.500           | 3.60             | 640 |
|                    | +75°C               | 0.820           | 0.790            | 1.80             | 0.450           | 3.60             | 750 |
| MC785P {           | +15°C               | 0.865           | 0.865            | 1.80             | 0.475           | 3.60             | 640 |
|                    | +25°C               | 0.850           | 0.850            | 1.80             | 0.460           | 3.60             | 640 |
|                    | +55°C               | 0.800           | 0.800            | 1.80             | 0.430           | 3.60             | 640 |

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one expander only.  
The other expanders are tested in the same manner.

| Characteristic         | Symbol               | Pin Under Test | MC885P Test Limits |     |       |     |       |     | MC785P Test Limits |       |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  | Gnd             |                  |              |
|------------------------|----------------------|----------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|------------------|--------------|
|                        |                      |                | 0°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |     | +25°C |     | +55°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> * |              |
|                        |                      |                | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max | Min   | Max | Min   | Max                                        |      | 1               | -               | 2                | -                | 11              | 3                | 4            |
|                        |                      |                | -                  | 600 | -     | 600 | -     | 570 | μAdc               | -     | 500 | -     | 500 | -     | 470                                        | μAdc | 1               | -               | 2                | -                | 11              | 3                | 4            |
| Input Current          | I <sub>in</sub>      | 1<br>2         | -                  | 600 | -     | 600 | -     | 570 | μAdc               | -     | 500 | -     | 500 | -     | 470                                        | μAdc | 2               | -               | 1                | -                | 11              | 3                | 4            |
| Output Leakage Current | I <sub>CEx</sub>     | 3              | -                  | 200 | -     | 200 | -     | 250 | μAdc               | -     | 225 | -     | 225 | -     | 250                                        | μAdc | 3               | -               | -                | 1, 2             | 11              | -                | 4            |
| Output Voltage         | V <sub>out</sub>     | 3<br>3         | -                  | 500 | -     | 400 | -     | 400 | mVdc               | -     | 400 | -     | 300 | -     | 320                                        | mVdc | -               | 1               | -                | -                | 11              | 3                | 2, 4<br>1, 4 |
| Saturation Voltage     | V <sub>CE(sat)</sub> | 3<br>3         | -                  | 400 | -     | 300 | -     | 350 | mVdc               | -     | 300 | -     | 290 | -     | 320                                        | mVdc | -               | -               | 1                | -                | 11              | 3                | 2, 4<br>1, 4 |

Ground unused input pins. Other pins not listed are left open. \* Resistor value to V<sub>CC</sub>.

**MC9721P • MC9821P**

Four 2-input expanders housed in a single package increase the input capability of mW MRTL gates.



NUMBER IN PARENTHESIS INDICATES MC9721P,  
MC9821P LOADING FACTOR

**NOTES ON THE USE OF THE MC9721/MC9821**

1. The input loading factor of the expanded gate is 1.33.
2. Pin 11 of the expander must be connected to  $V_{CC}$ .
3. The output loading factor of the expanded gate is decreased 0.5 load for every added node.

$t_{pd} = 27 \text{ ns}$

$P_D = 20 \text{ mW typ}$  (Input High)  
Negligible (Inputs Low)

**SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**

$V_{CC}$  connection to pin 11 is not shown  
Typical Resistance Values  
 $R1 = 1.5 \text{ k}$

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one expander only.  
The other expanders are tested in the same manner.

| Characteristic         | Symbol               | Pin Under Test | MC9821P Test Limits |     |       |     |       |     |              |       | MC9721P Test Limits |       |     |       |     |              |                 |                 | TEST VOLTAGE<br>APPLIED TO PINS LISTED BELOW: |                  |                 |                 |            |     | Gnd |
|------------------------|----------------------|----------------|---------------------|-----|-------|-----|-------|-----|--------------|-------|---------------------|-------|-----|-------|-----|--------------|-----------------|-----------------|-----------------------------------------------|------------------|-----------------|-----------------|------------|-----|-----|
|                        |                      |                | D°C                 |     | +25°C |     | +75°C |     | Unit         | +15°C |                     | +25°C |     | +55°C |     | Unit         | V <sub>in</sub> | V <sub>on</sub> | V <sub>bot</sub>                              | V <sub>off</sub> | V <sub>cc</sub> | V <sub>r*</sub> |            |     |     |
|                        |                      |                | Min                 | Max | Min   | Max | Min   | Max |              | Min   | Max                 | Min   | Max | Min   | Max |              | 1               | -               | 2                                             | -                | 11              | 3               | 4          |     |     |
|                        |                      |                | 1                   | -   | 150   | -   | 140   | -   |              | 150   | -                   | 150   | -   | 150   | -   |              | 2               | -               | 1                                             | -                | 11              | 3               | 4          |     |     |
| Input Current          | I <sub>in</sub>      | 1<br>2         | -                   | 150 | -     | 140 | -     | 140 | μA/dc        | -     | 150                 | -     | 150 | -     | 150 | μA/dc        | 1<br>2          | -               | 2                                             | -                | 11              | 3               | 4          | Gnd |     |
| Output Leakage Current | I <sub>CEX</sub>     | 3              | -                   | 25  | -     | 25  | -     | 30  | μA/dc        | -     | 40                  | -     | 40  | -     | 50  | μA/dc        | 3               | -               | -                                             | -                | 1,2             | 11              | -          | 4   |     |
| Output Voltage         | V <sub>out</sub>     | 3<br>3         | -                   | 400 | -     | 350 | -     | 300 | mVdc<br>mVdc | -     | 400                 | -     | 300 | -     | 320 | mVdc<br>mVdc | -<br>-          | 1<br>2          | -                                             | -                | 11              | 3               | 2,4<br>1,4 | Gnd |     |
| Saturation Voltage     | V <sub>CE(sat)</sub> | 3<br>3         | -                   | 250 | -     | 250 | -     | 250 | mVdc<br>mVdc | -     | 220                 | -     | 230 | -     | 320 | mVdc<br>mVdc | -<br>-          | -               | 1<br>2                                        | -                | 11              | 3               | 2,4<br>1,4 | Gnd |     |

Ground unused input pins. Other pins not listed are left open.

\* Resistor value to V<sub>CC</sub>.

**MC9719P • MC9819P**

Six individual expanders are contained in a single package to increase the input capability of MRTL gates.



$t_{pd} = 12 \text{ ns}$

$P_D = 13 \text{ mW typ (Input High)}$   
Negligible (Inputs Low)

NUMBER IN PARENTHESIS INDICATES  
MC9719P LOADING FACTOR

NUMBER IN BRACKETS INDICATES  
MC9819P LOADING FACTOR

When an expander is added to a gate, subtract 0.4 load from  
the output of the gate for each expander circuit added.  
SEE SHEET 6-158 FOR EXPANDER RULES



$V_{CC}$  connection to pin 11 is not shown  
Typical Resistance Value  
 $R_1 = 450 \Omega$

|         | @ Test Temperature | TEST VOLTAGE VALUES |                 |                  |                  |                 |                  |
|---------|--------------------|---------------------|-----------------|------------------|------------------|-----------------|------------------|
|         |                    | (Volts)             |                 |                  |                  | (Ohms)          |                  |
|         |                    | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> * |
| MC9819P | 0°C                | 0.960               | 0.930           | 1.80             | 0.570            | 3.60            | 640              |
|         | +25°C              | 0.910               | 0.880           | 1.80             | 0.500            | 3.60            | 640              |
|         | +75°C              | 0.820               | 0.790           | 1.80             | 0.450            | 3.60            | 750              |
|         | +15°C              | 0.865               | 0.865           | 1.80             | 0.475            | 3.60            | 640              |
|         | +25°C              | 0.850               | 0.850           | 1.80             | 0.460            | 3.60            | 640              |
|         | +55°C              | 0.800               | 0.800           | 1.80             | 0.430            | 3.60            | 640              |

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one expander only.  
The other expanders are tested in the same manner.

| Characteristic         | Symbol               | Pin Under Test | MC9819P Test Limits |     |       |     |       |     | MC9719P Test Limits |       |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  | Gnd             |                  |   |
|------------------------|----------------------|----------------|---------------------|-----|-------|-----|-------|-----|---------------------|-------|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|------------------|---|
|                        |                      |                | 0°C                 |     | +25°C |     | +75°C |     | Unit                | +15°C |     | +25°C |     | +55°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> * |   |
|                        |                      |                | Min                 | Max | Min   | Max | Min   | Max |                     | Min   | Max | Min   | Max | Min   | Max                                        |      | Min             | Max             | Min              | Max              | Min             |                  |   |
| Input Current          | I <sub>in</sub>      | 14             | -                   | 600 | -     | 600 | -     | 570 | μAdc                | -     | 500 | -     | 500 | -     | 470                                        | μAdc | 14              | -               | -                | -                | 11              | 1                | 4 |
| Output Leakage Current | I <sub>CEX</sub>     | 1              | -                   | 100 | -     | 218 | -     | 235 | μAdc                | -     | 100 | -     | 225 | -     | 225                                        | μAdc | 1               | -               | -                | 14               | 11              | -                | 4 |
| Output Voltage         | V <sub>out</sub>     | 1              | -                   | 500 | -     | 400 | -     | 400 | mVdc                | -     | 400 | -     | 300 | -     | 320                                        | mVdc | -               | 14              | -                | -                | 11              | 1                | 4 |
| Saturation Voltage     | V <sub>CE(sat)</sub> | 1              | -                   | 400 | -     | 300 | -     | 350 | mVdc                | -     | 300 | -     | 290 | -     | 320                                        | mVdc | -               | -               | 14               | -                | 11              | 1                | 4 |

Ground inputs of expanders not under test. Other pins not listed are left open.

\* Resistor value to V<sub>CC</sub>.

## MULTIFUNCTION DEVICES

## PLASTIC MRTL MC700P/800P series

(1 I-K Elip-Elop, 1 Expander, 2 Buffers)

MC779P • MC879P

A medium-power monolithic device consisting of one J-K flip-flop, one expander, and two buffer circuits in a single package. This J-K flip-flop can be operated in the toggling mode. Simultaneous logic ONE pulses applied to the SET and CLEAR terminals cause the output state to reverse. A direct clear input allows asynchronous entry for preclearing counters, inserting parallel data into registers, and other similar applications. The MRTL expander is designed to increase the fan-in capability of gates with expander inputs, and the buffers are high fan-out gates with single inputs.



2-1

12 - 3

## CLOCKED INPUT OPERATION ①

| $t_n(2)$ | $t_{n+1}(2)$ |             |              |
|----------|--------------|-------------|--------------|
| S        | C            | Q           | $\bar{Q}$    |
| 1        | 1            | $Q_n(3)$    | $\bar{Q}_n$  |
| 1        | 0            | 1           | 0            |
| 0        | 1            | 0           | 1            |
| 0        | 0            | $\bar{Q}_n$ | $Q_{n+1}(3)$ |

|             | $f_T$<br>MHz | $t_{pd}$ | $P_D$ (mW)    |              |
|-------------|--------------|----------|---------------|--------------|
|             |              |          | (Inputs High) | (Inputs Low) |
| FLIP-FLOP   | 4            | —        | 91 $\pm$      | 79           |
| EACH BUFFER | —            | 15       | 25            | 45           |
| EXPANDER    | —            | 12       | 2.5           | Negligible   |

1. Direct input ( $C_0$ ) must be low.
  2. The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .
  3.  $Q_n$  is the state of the Q output in the time period  $t_n$ .

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR FOR MC779P  
NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MC879P



## ELECTRICAL CHARACTERISTICS

| @ Test<br>Temperature | TEST VOLTAGE VALUES |                 |                 |                  |                  |                 |
|-----------------------|---------------------|-----------------|-----------------|------------------|------------------|-----------------|
|                       | (Volts)             |                 |                 | (Ohms)           |                  |                 |
| MC879P                | 0°C                 | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |
|                       | +25°C               | 0.960           | 0.930           | 1.80             | 0.570            | 3.60            |
|                       | +75°C               | 0.910           | 0.880           | 1.80             | 0.500            | 3.60            |
|                       | +15°C               | 0.820           | 0.790           | 1.80             | 0.450            | 3.60            |
|                       | +25°C               | 0.865           | 0.865           | 1.80             | 0.475            | 3.60            |
|                       | +55°C               | 0.850           | 0.850           | 1.80             | 0.460            | 3.60            |
| MC779P                | +25°C               | 0.800           | 0.800           | 1.80             | 0.430            | 3.60            |
|                       | +55°C               | 0.800           | 0.800           | 1.80             | 0.430            | 3.60            |

| Characteristic     | Symbol               | Pin Under Test | MC879P Test Limits |      |       |      |       |      | MC779P Test Limits |       |      |       |      |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  | Gnd             |                  |    |                 |                     |                 |
|--------------------|----------------------|----------------|--------------------|------|-------|------|-------|------|--------------------|-------|------|-------|------|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|------------------|----|-----------------|---------------------|-----------------|
|                    |                      |                | 0°C                |      | +25°C |      | +75°C |      | Unit               | +15°C |      | +25°C |      | +55°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> * |    |                 |                     |                 |
|                    |                      |                | Min                | Max  | Min   | Max  | Min   | Max  |                    | Min   | Max  | Min   | Max  | Min   | Max                                        |      | 1               | 3               | 5                | 7                | 10              | 11               |    |                 |                     |                 |
| Input Current      | 2I <sub>in</sub>     | 1              | -                  | 1200 | -     | 1200 | -     | 1140 | μAdc               | -     | 1000 | -     | 1000 | -     | 940                                        | μAdc | 1               | -               | -                | -                | -               | 11               | 2  | 3,4,5,6,7,10,14 |                     |                 |
|                    | I <sub>in</sub>      | 3              | -                  | 600  | -     | 600  | -     | 570  |                    | -     | 500  | -     | 500  | -     | 470                                        |      | 3               | -               | -                | -                | -               | -                | 12 | 1,4,5,6,7,10,14 |                     |                 |
|                    | I <sub>in</sub>      | 5              | -                  | 600  | -     | 600  | -     | 570  |                    | -     | 500  | -     | 500  | -     | 470                                        |      | 5               | -               | 8                | -                | -               | -                | -  | 1,3,4,14        |                     |                 |
|                    | 2I <sub>in</sub>     | 6              | -                  | 1200 | -     | 1200 | -     | 1140 |                    | -     | 1000 | -     | 1000 | -     | 940                                        |      | 6               | -               | 5,7              | -                | -               | -                | -  |                 |                     |                 |
|                    | I <sub>in</sub>      | 7              | -                  | 600  | -     | 600  | -     | 570  |                    | -     | 500  | -     | 500  | -     | 470                                        |      | 7               | -               | 9                | -                | -               | -                | -  |                 |                     |                 |
|                    | I <sub>in</sub>      | 10             | -                  | 600  | -     | 600  | -     | 570  |                    | -     | 500  | -     | 500  | -     | 470                                        |      | 10              | -               | 8                | -                | -               | -                | -  |                 |                     |                 |
|                    | 2I <sub>in</sub>     | 14             | -                  | 1200 | -     | 1200 | -     | 1140 |                    | -     | 1000 | -     | 1000 | -     | 940                                        |      | 14              | -               | -                | -                | -               | -                | 13 | 1,3,4,5,6,7,10  |                     |                 |
|                    | I <sub>AB†</sub>     | 2              | 15.0               | -    | 15.0  | -    | 14.25 | -    | mAdc               | 13.50 | -    | 13.75 | -    | 12.50 | -                                          | mAdc | -               | 2               | -                | -                | 1               | 11               | -  | 3,4,5,6,7,10,14 |                     |                 |
|                    | I <sub>A3‡</sub>     | 8              | 1.8                | -    | 1.8   | -    | 1.71  | -    |                    | 1.65  | -    | 1.65  | -    | 1.56  | -                                          |      | -               | 8               | 5,10             | 5                | 10              | 1                | 11 | -               | 1,3,4,14            |                 |
|                    | I <sub>A3‡</sub>     | 8              | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 9               | 7                | 10               | 10              | 1                | 11 | -               |                     |                 |
| Output Current     | I <sub>A3‡</sub>     | 9#             | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 12              | 1,4,5,6,7,10,14  | 1,3,4,14         |                 |                  |    |                 |                     |                 |
|                    | I <sub>A5#</sub>     | 12             | 3.0                | -    | 3.0   | -    | 2.85  | -    |                    | 2.65  | -    | 2.65  | -    | 2.50  | -                                          |      | -               | 12              | 12               | 3                | 10              | 10               | 1  | 11              | -                   | 1,4,5,6,7,10,14 |
|                    | I <sub>A5#</sub>     | 13             | 15.0               | -    | 15.0  | -    | 14.25 | -    |                    | 13.50 | -    | 13.75 | -    | 12.50 | -                                          |      | -               | 13              | -                | 14               | -               | 14               | 14 | 1               | 11                  | 1,3,4,5,6,7,10  |
|                    | V <sub>out</sub>     | 2              | -                  | 500  | -     | 400  | -     | 400  | mVdc               | -     | 400  | -     | 300  | -     | 320                                        | mVdc | -               | 1               | -                | -                | -               | 11               | 2  | 3,4,5,6,7,10,14 |                     |                 |
|                    | V <sub>out</sub>     | 8A#            | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 5,7             | -                | -                | -               | -                | -  | 1,3,4,10,14     |                     |                 |
|                    | V <sub>out</sub>     | 8A**           | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 5               | -                | 7                | -               | -                | -  |                 |                     |                 |
|                    | V <sub>out</sub>     | 8Δ**           | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 10              | -                | -                | -               | -                | -  |                 | 1,3,4,8,14          |                 |
|                    | V <sub>out</sub>     | 9              | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 5,7             | -                | -                | -               | -                | -  |                 | 1,3,4,10,14         |                 |
|                    | V <sub>out</sub>     | 9Δ**           | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 3               | -                | -                | -               | -                | -  |                 |                     |                 |
|                    | V <sub>out</sub>     | 9Δ#            | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 14              | -                | -                | -               | -                | -  |                 | 12, 1,4,5,6,7,10,14 |                 |
| Saturation Voltage | V <sub>CE(sat)</sub> | 2              | -                  | 400  | -     | 300  | -     | 350  | mVdc               | -     | 300  | -     | 290  | -     | 320                                        | mVdc | -               | 1               | -                | 10               | 10              | 11               | 2  | 3,4,5,6,7,10,14 |                     |                 |
|                    | V <sub>CE(sat)</sub> | 8##            | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 10              | -                | -                | -               | -                | -  |                 | 1,3,4,14            |                 |
|                    | V <sub>CE(sat)</sub> | 9              | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 10              | -                | -                | -               | -                | -  |                 | 1,3,4,8,14          |                 |
|                    | V <sub>CE(sat)</sub> | 9**            | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 3               | -                | -                | -               | -                | -  |                 | 1,3,4,14            |                 |
|                    | V <sub>CE(sat)</sub> | 12             | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 14              | -                | -                | -               | -                | -  |                 | 12, 1,4,5,6,7,10,14 |                 |
|                    | V <sub>CE(sat)</sub> | 13             | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -               | 14              | -                | -                | -               | -                | -  |                 | 1,3,4,5,6,7,10      |                 |
| Switching Time     | t                    | 1+2-           | -                  | -    | -     | 30   | -     | -    | ns                 | -     | -    | -     | 30   | -     | -                                          | ns   | -               | 1               | 2                | -                | -               | 11               | -  | 3,4,14          |                     |                 |
|                    | t                    | 1-2+           | -                  | -    | -     | 45   | -     | -    |                    | -     | -    | -     | 45   | -     | -                                          |      | -               | 1               | 2                | -                | -               | -                | -  |                 | 3,4,14              |                 |
|                    | t                    | 14+13-         | -                  | -    | -     | 30   | -     | -    |                    | -     | -    | -     | 30   | -     | -                                          |      | -               | 14              | 13               | -                | -               | -                | -  |                 | 1,3,4               |                 |
|                    | t                    | 14-13+         | -                  | -    | -     | 45   | -     | -    |                    | -     | -    | -     | 45   | -     | -                                          |      | -               | 14              | 13               | -                | -               | -                | -  |                 | 1,3,4               |                 |

Pins not listed are left open.

Δ = Clock Pulse to pin 6, see Figure 1.

\* = Resistor value to V<sub>CC</sub>.† = I<sub>A80</sub> is symbol for MC779P‡ = I<sub>A10</sub> is symbol for MC779P# = I<sub>A16</sub> is symbol for MC779P

## Pin 8 = LOW } Set by a momentary ground prior to the application

\*\* Pin 9 = LOW } of the negative-going clock pulse.

## MC779P, MC879P (continued)

FIGURE 1—CLOCK PULSE DEFINITION



FIGURE 2—TOGGLE MODE TEST CIRCUIT



FIGURE 3—SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



MULTIFUNCTION DEVICES

PLASTIC MRTL MC700P/800P series

(1 J-K Flip-Flop, 1 Inverter, 2 Buffers)

# MC787P • MC887P

A medium-power monolithic device consisting of one J-K flip-flop, one inverter, and two buffer circuits in a single package. This J-K flip-flop can be operated in the toggling mode. Simultaneous logic ONE pulses applied to the SET and CLEAR terminals cause the output state to reverse. A direct clear input allows asynchronous entry for pre-clearing counters, inserting parallel data into registers, and other similar applications. The inverter is a basic MRTL gate and the buffers are high fan-out gates with single inputs.



### CLOCKED INPUT OPERATION ①

| $t_n$ ②     | $t_{n+1}$ ③ |
|-------------|-------------|
| S           | C           |
| 1           | 1           |
| 1           | 0           |
| 0           | 1           |
| 0           | 0           |
|             |             |
| $Q_n$ ④     | $\bar{Q}_n$ |
| $Q_n$ ④     | $\bar{Q}_n$ |
| 1           | 0           |
| 0           | 1           |
| $\bar{Q}_n$ | $Q_n$ ④     |

| FLIP-FLOP   | $f_{req}$<br>MHz | $t_{pd}$<br>ns | $P_d$ (mW)   |              |
|-------------|------------------|----------------|--------------|--------------|
|             |                  |                | (Input High) | (Inputs Low) |
| —           | 4                | —              | 91‡          | 79           |
| EACH BUFFER | —                | 15             | 25           | 45           |
| INVERTER    | —                | 12             | 22           | 8            |

‡Only Clock Input High

1. Direct input ( $C_o$ ) must be low.
2. The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .
3.  $Q_n$  is the state of the  $Q$  output in the time period  $t_n$ .

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR FOR MC787P  
NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MC887P



## ELECTRICAL CHARACTERISTICS

|                    |       | TEST VOLTAGE VALUES |                 |                  |                  |                 |                 |
|--------------------|-------|---------------------|-----------------|------------------|------------------|-----------------|-----------------|
| @ Test Temperature |       | (Volts)             |                 |                  |                  | (Ohms)          |                 |
|                    |       | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R*</sub> |
| MC887P             | 0°C   | 0.900               | 0.930           | 1.80             | 0.570            | 3.60            | 640             |
|                    | +25°C | 0.910               | 0.880           | 1.80             | 0.500            | 3.60            | 640             |
|                    | +75°C | 0.820               | 0.790           | 1.80             | 0.450            | 3.60            | 750             |
| MC787P             | +15°C | 0.865               | 0.865           | 1.80             | 0.475            | 3.60            | 640             |
|                    | +25°C | 0.850               | 0.850           | 1.80             | 0.480            | 3.60            | 640             |
|                    | +55°C | 0.800               | 0.800           | 1.80             | 0.430            | 3.80            | 640             |

| Characteristic     | Symbol               | Pin Under Test   | MC887P Test Limits |      |       |      |       |      | MC787P Test Limits |       |      |       |      |                 | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                  |                  |                 |                  |                  | Gnd             |                  |                   |                   |
|--------------------|----------------------|------------------|--------------------|------|-------|------|-------|------|--------------------|-------|------|-------|------|-----------------|--------------------------------------------|------------------|------------------|-----------------|------------------|------------------|-----------------|------------------|-------------------|-------------------|
|                    |                      |                  | 0°C                |      | +25°C |      | +75°C |      | Unit               | +15°C |      | +25°C |      | +55°C           |                                            | Unit             | V <sub>in</sub>  | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> * |                   |                   |
|                    |                      | Min              | Max                | Min  | Max   | Min  | Max   | Min  | Max                | Min   | Max  | Min   | Max  | V <sub>in</sub> | V <sub>on</sub>                            | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> | V <sub>R</sub> * |                  |                 |                  |                   |                   |
|                    |                      | 2I <sub>in</sub> | 1                  | -    | 1200  | -    | 1200  | -    | 1140               | μAdc  | -    | 1000  | -    | 1000            | -                                          | 940              | μAdc             | 1               | -                | -                | -               | 11               | 2                 | 3,4,5,6,7,10,14   |
| Input Current      | I <sub>in</sub>      | 3                | -                  | 600  | -     | 600  | -     | 570  |                    | -     | 500  | -     | 500  | -               | 470                                        |                  | 3                | -               | -                | -                | 5               | 8                | 1,4,5,6,7,10,14   |                   |
|                    | I <sub>in</sub>      | 5                | -                  | 600  | -     | 600  | -     | 570  |                    | -     | 500  | -     | 500  | -               | 470                                        |                  | 5                | -               | -                | -                | 6               | 5,7              | 1,3,4,14          |                   |
|                    | 2I <sub>in</sub>     | 6                | -                  | 1200 | -     | 1200 | -     | 1140 |                    | -     | 1000 | -     | 1000 | -               | 940                                        |                  | 7                | -               | 9                | -                | 10              | 8                | 1,3,4,5,6,7,10,14 |                   |
|                    | I <sub>in</sub>      | 7                | -                  | 600  | -     | 600  | -     | 570  |                    | -     | 500  | -     | 500  | -               | 470                                        |                  | 7                | -               | -                | -                | 10              | 8                | 1,3,4,5,6,7,10,14 |                   |
|                    | I <sub>in</sub>      | 10               | -                  | 600  | -     | 600  | -     | 570  |                    | -     | 500  | -     | 500  | -               | 470                                        |                  | 10               | -               | -                | -                | 13              | 14               | 1,3,4,5,6,7,10,14 |                   |
|                    | 2I <sub>in</sub>     | 14               | -                  | 1200 | -     | 1200 | -     | 1140 |                    | -     | 1000 | -     | 1000 | -               | 940                                        |                  | 14               | -               | -                | -                | 13              | 14               | 1,3,4,5,6,7,10,14 |                   |
| Output Current     | I <sub>AB†</sub>     | 2                | 15.0               | -    | 15.0  | -    | 14.25 | -    | mAdc               | 13.50 | -    | 13.75 | -    | 12.50           | -                                          | mAdc             | -                | 2               | -                | 1                | 11              | -                | 3,4,5,6,7,10,14   |                   |
|                    | I <sub>A3‡</sub>     | 8                | 1.8                | -    | 1.8   | -    | 1.71  | -    |                    | 1.65  | -    | 1.65  | -    | 1.56            | -                                          |                  | -                | 8               | 5,10             | 5                | -               | -                | -                 | 1,3,4,14          |
|                    | I <sub>A3‡</sub>     | 8                | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | 9               | 7                | 10               | -               | -                | -                 | 1,3,4,5,6,7,10,14 |
|                    | I <sub>A3‡</sub>     | 9 # #            | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | 12              | -                | 3                | -               | -                | -                 | 1,3,4,5,6,7,10,14 |
|                    | I <sub>A5#</sub>     | 12               | 3.0                | -    | 3.0   | -    | 2.85  | -    |                    | 2.65  | -    | 2.65  | -    | 2.50            | -                                          |                  | -                | 13              | -                | 14               | 1               | 11               | -                 | 3,4,5,6,7,10,14   |
|                    | I <sub>AB†</sub>     | 13               | 15.0               | -    | 15.0  | -    | 14.25 | -    |                    | 13.50 | -    | 13.75 | -    | 12.50           | -                                          |                  | -                | 13              | -                | -                | -               | -                | -                 | 1,3,4,5,6,7,10,14 |
| Output Voltage     | V <sub>out</sub>     | 2                | -                  | 500  | -     | 400  | -     | 400  | mVdc               | -     | 400  | -     | 300  | -               | 320                                        | mVdc             | -                | 1               | -                | -                | 11              | 2                | 3,4,5,6,7,10,14   |                   |
|                    | 8Δ##                 | -                | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | 5,7             | -                | -                | -               | -                | -                 | 1,3,4,10,14       |
|                    | 8Δ**                 | -                | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | 5               | -                | 7                | -               | -                | -                 | 1,3,4,8,14        |
|                    | 8Δ**                 | -                | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | 10              | -                | -                | -               | -                | -                 | 1,3,4,10,14       |
|                    | 9                    | -                | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | 5,7             | -                | 5                | -               | -                | -                 | 1,3,4,8,14        |
|                    | 9Δ**                 | -                | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | 7               | -                | 5                | -               | -                | -                 | 1,3,4,10,14       |
|                    | 9Δ##                 | -                | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | 3               | -                | 5,7              | -               | -                | -                 | 1,3,4,5,6,7,10,14 |
|                    | 9Δ##                 | 12               | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | 14              | -                | -                | -               | -                | -                 | 1,3,4,5,6,7,10,14 |
|                    | 13                   | -                | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | 14              | -                | -                | -               | -                | -                 | 1,3,4,5,6,7,10,14 |
| Saturation Voltage | V <sub>CE(sat)</sub> | 2                | -                  | 400  | -     | 300  | -     | 350  | mVdc               | -     | 300  | -     | 290  | -               | 320                                        | mVdc             | -                | -               | 1                | -                | 11              | 2                | 3,4,5,6,7,10,14   |                   |
|                    | 8#§                  | -                | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | -               | 10               | -                | 10              | -                | -                 | 1,3,4,14          |
|                    | 9                    | -                | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | -               | 10               | -                | -               | -                | -                 | 1,3,4,8,14        |
|                    | 9**                  | -                | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | -               | -                | -                | -               | -                | 1,3,4,14          |                   |
|                    | 12                   | -                | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | -               | 3                | -                | 5,7             | -                | -                 | 1,4,5,6,7,10,14   |
|                    | 13                   | -                | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -               | -                                          |                  | -                | -               | 14               | -                | -               | -                | -                 | 1,3,4,5,6,7,10,14 |
| Switching Time     | t                    | 1+2-             | -                  | -    | -     | 30   | -     | -    | ns                 | -     | -    | -     | 30   | -               | -                                          | ns               | Pulse In         | 1               | 2                | -                | -               | 11               | -                 | 3,4,14            |
|                    | 1-2+                 | -                | -                  | -    | 45    | -    | -     | -    |                    | -     | -    | -     | 45   | -               | -                                          | -                | Pulse Out        | 1               | 2                | -                | -               | -                | -                 | 3,4,14            |
|                    | 14+13-               | -                | -                  | -    | 30    | -    | -     | -    |                    | -     | -    | -     | 30   | -               | -                                          | -                |                  | 14              | 13               | -                | -               | -                | -                 | 1,3,4             |
|                    | 14-13+               | -                | -                  | -    | 45    | -    | -     | -    |                    | -     | -    | -     | 45   | -               | -                                          | -                |                  | 14              | 13               | -                | -               | -                | -                 | 1,3,4             |

Pins not listed are left open.

$f = I_{A80}$  is symbol for MC787P

$\Delta$  = Clock Pulse to pin 6, see Figure 1.

$\ddagger$  = I<sub>A10</sub> is symbol for MC787P

\* Resistor value to V<sub>CC</sub>.

# = I<sub>A16</sub> is symbol for MC787P

## Pin 8 = LOW } Set by a momentary ground prior to the application of the negative-going clock pulse.  
\*\* Pin 9 = LOW }

## MC787P, MC887P (continued)

FIGURE 1—CLOCK PULSE DEFINITION



FIGURE 2—TOGGLE MODE TEST CIRCUIT



FIGURE 3—SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



**MC775P • MC875P**

Two half-adder devices in a single package. Each device can be used to supply the SUM and CARRY operations on two input signals. E.g., if the inputs are applied to pins 1 and 14, and their complements to pins 2 and 3, the SUM of the inputs appears on pin 13 while the CARRY appears on pin 12.



$$\text{IF: } 2 = \overline{1}, \& 3 = \overline{14} \\ \text{THEN: } 12 = 1 \cdot 14, \& 13 = 1 \cdot \overline{14} + \overline{1} \cdot 14$$

$t_{pd} = 20 \text{ ns typ}$   
 $P_b = 120 \text{ mW typ}$

NUMBER IN PARENTHESIS INDICATES MC775P LOADING FACTOR.  
 NUMBER IN BRACKETS INDICATES MC875P LOADING FACTOR.

## SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one half-adder only.  
The other half-adder is tested in the same manner.

| @ Test Temperature | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |      |
|--------------------|--------------------------------|-----------------|------------------|------------------|-----------------|------|
|                    | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |      |
| MC875P             | 0°C                            | 0.960           | 0.930            | 1.80             | 0.570           | 3.60 |
|                    | +25°C                          | 0.910           | 0.880            | 1.80             | 0.500           | 3.60 |
|                    | +75°C                          | 0.820           | 0.790            | 1.80             | 0.450           | 3.60 |
|                    | +15°C                          | 0.865           | 0.865            | 1.80             | 0.475           | 3.60 |
|                    | +25°C                          | 0.850           | 0.850            | 1.80             | 0.460           | 3.60 |
|                    | +55°C                          | 0.800           | 0.800            | 1.80             | 0.430           | 3.60 |

| Characteristic     | Symbol                                                      | Pin Under Test                   | MC875P Test Limits |     |       |     |       |     | MC775P Test Limits |       |     |       |     |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  |                  | Gnd             |       |
|--------------------|-------------------------------------------------------------|----------------------------------|--------------------|-----|-------|-----|-------|-----|--------------------|-------|-----|-------|-----|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|-------|
|                    |                                                             |                                  | 0°C                |     | +25°C |     | +75°C |     | Unit               | +15°C |     | +25°C |     | +55°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |       |
|                    |                                                             |                                  | Min                | Max | Min   | Max | Min   | Max |                    | Min   | Max | Min   | Max | Min   | Max                                        |      | 1               | 2               | 3                | 14               | Gnd             |       |
| Input Current      | I <sub>in</sub>                                             | 1<br>2<br>3<br>14                | -                  | 600 | -     | 600 | -     | 570 | μAdc               | -     | 500 | -     | 500 | -     | 470                                        | μAdc | 1               | -               | 14               | -                | 11              | 4     |
| Output Current     | I <sub>A4</sub> *<br>I <sub>A5</sub> †<br>I <sub>A5</sub> † | 12<br>13<br>13                   | 2.4                | -   | 2.4   | -   | 2.28  | -   | mAdc               | -     | -   | -     | -   | -     | -                                          | -    | 12              | -               | 2, 3             | 11               | 4               |       |
| Output Voltage     | V <sub>out</sub>                                            | 12<br>12<br>13                   | -                  | 500 | -     | 400 | -     | 400 | mVdc               | -     | 400 | -     | 300 | -     | 320                                        | mVdc | -               | 2               | -                | -                | 11              | 4     |
| Saturation Voltage | V <sub>CE(sat)</sub>                                        | 12<br>12<br>13<br>13             | -                  | 400 | -     | 300 | -     | 350 | mVdc               | -     | 300 | -     | 290 | -     | 320                                        | mVdc | -               | -               | 2                | -                | 11              | 4     |
| Switching Time     | t                                                           | 2+12-<br>2-12+<br>1+13+<br>1-13- | -                  | -   | -     | 20  | -     | -   | ns                 | -     | -   | -     | 20  | -     | -                                          | ns   | 2               | 12              | -                | -                | 11              | 4     |
|                    |                                                             |                                  |                    |     |       |     |       |     |                    |       |     |       | 30  | -     | -                                          |      | 2               | 12              | -                | -                |                 | 4     |
|                    |                                                             |                                  |                    |     |       |     |       |     |                    |       |     |       | 36  | -     | -                                          |      | 1               | 13              | -                | -                |                 | 4, 12 |
|                    |                                                             |                                  |                    |     |       |     |       |     |                    |       |     |       | 36  | -     | -                                          |      | 1               | 13              | -                | -                |                 | 4, 12 |

Ground inputs of half-adder not under test. Other pins not listed are left open. \* I<sub>AB</sub> is symbol for MC775

† I<sub>A16</sub> is symbol for MC775

**MC796P • MC896P**

Provides the SUM and CARRY functions while requiring only the AUGEND (A) and ADDEND (B) inputs with CARRY IN.



| TRUTH TABLE       |   |                |                    |    |  |
|-------------------|---|----------------|--------------------|----|--|
| INPUT LOGIC LEVEL |   |                | OUTPUT LOGIC LEVEL |    |  |
| A                 | B | C <sub>i</sub> | S                  | Co |  |
| 0                 | 0 | 0              | 0                  | 0  |  |
| 0                 | 0 | 1              | 1                  | 0  |  |
| 0                 | 1 | 0              | 1                  | 0  |  |
| 0                 | 1 | 1              | 0                  | 1  |  |
| 1                 | 0 | 0              | 1                  | 0  |  |
| 1                 | 0 | 1              | 0                  | 1  |  |
| 1                 | 1 | 0              | 0                  | 1  |  |
| 1                 | 1 | 1              | 1                  | 1  |  |

POSITIVE LOGIC  
 $C_o = ABC_i + AB\bar{C}_i + \bar{A}BC_i + \bar{A}\bar{B}C_i$   
 $S = ABC_i + AB\bar{C}_i + \bar{A}BC_i + \bar{A}\bar{B}C_i$

$t_{pd} = 60 \text{ ns typ}$   
 $P_d = 84 \text{ mW typ}$

NUMBER IN PARENTHESIS INDICATES MC796P LOADING FACTOR.  
NUMBER IN BRACKETS INDICATES MC896P LOADING FACTOR.

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one full adder only.  
The other full adder is tested in the same manner.

|        | @Test Temperature | TEST VOLTAGE VALUES (Volts) |                 |                  |                  |                 | Gnd |
|--------|-------------------|-----------------------------|-----------------|------------------|------------------|-----------------|-----|
|        |                   | V <sub>in</sub>             | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |     |
| MC896P | 0°C               | 0.960                       | 0.930           | 1.80             | 0.570            | 3.80            |     |
|        | +25°C             | 0.910                       | 0.800           | 1.80             | 0.500            | 3.80            |     |
|        | +75°C             | 0.820                       | 0.790           | 1.80             | 0.450            | 3.80            |     |
|        | +15°C             | 0.865                       | 0.885           | 1.80             | 0.475            | 3.60            |     |
|        | +25°C             | 0.850                       | 0.850           | 1.80             | 0.460            | 3.60            |     |
|        | +55°C             | 0.800                       | 0.800           | 1.80             | 0.430            | 3.60            |     |
| MC796P | 0°C               | -                           | -               | -                | -                | -               |     |
|        | +25°C             | -                           | -               | -                | -                | -               |     |
|        | +75°C             | -                           | -               | -                | -                | -               |     |
|        | +15°C             | -                           | -               | -                | -                | -               |     |
|        | +25°C             | -                           | -               | -                | -                | -               |     |
|        | +55°C             | -                           | -               | -                | -                | -               |     |

| Characteristic | Symbol            | Pin Under Test                                                                                             | MC896P Test Limits |      |       |      |       |      | MC796P Test Limits |       |      |       |      |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                                                                     |                                                                           |                                                                      |                  |                 |         |
|----------------|-------------------|------------------------------------------------------------------------------------------------------------|--------------------|------|-------|------|-------|------|--------------------|-------|------|-------|------|-------|--------------------------------------------|------|---------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|-----------------|---------|
|                |                   |                                                                                                            | 0°C                |      | +25°C |      | +75°C |      | Unit               | +15°C |      | +25°C |      | +55°C |                                            | Unit | V <sub>in</sub>                                                     | V <sub>on</sub>                                                           | V <sub>BOT</sub>                                                     | V <sub>off</sub> | V <sub>CC</sub> |         |
|                |                   |                                                                                                            | Min                | Max  | Min   | Max  | Min   | Max  |                    | Min   | Max  | Min   | Max  | Min   | Max                                        |      | 2                                                                   | 13                                                                        | 14                                                                   | 11               | 4               |         |
| Input Current  | I <sub>A13</sub>  | 2<br>13<br>14                                                                                              | -                  | 1800 | -     | 1800 | -     | 1710 | μAdc               | -     | 1500 | -     | 1500 | -     | 1410                                       | μAdc | 2<br>13<br>14                                                       | -                                                                         | -                                                                    | -                | -               | 11<br>4 |
| Output Current | I <sub>A4</sub> * | 3<br>12                                                                                                    | 2,40               | -    | 2,40  | -    | 2,28  | -    | mAdc               | 2,15  | -    | 2,15  | -    | 2,03  | -                                          | mAdc | -                                                                   | 3,13,14<br>2,3,13<br>2,3,14<br>(2,3,<br>(13,14)                           | -                                                                    | 2<br>14<br>13    | 11<br>4         |         |
| Output Voltage | V <sub>out</sub>  | 3<br>12                                                                                                    | -                  | 500  | -     | 400  | -     | 400  | mVdc               | -     | 400  | -     | 300  | -     | 320                                        | mVdc | -                                                                   | -<br>13<br>14<br>2<br>13,14<br>2,14<br>2,14                               | 2,13,14<br>2,14<br>2,13<br>13,14<br>2,13,14<br>2<br>13<br>13         | 11<br>4          |                 |         |
| Switching Time | t                 | 2+12+<br>2-12-<br>2+3+<br>2-3-<br>14+12+<br>14-12-<br>14+3+<br>14-3-<br>13+12-<br>13-12+<br>13+3+<br>13-3- | -                  | -    | -     | 75   | -     | -    | ns                 | -     | -    | -     | 75   | -     | -                                          | ns   | 2<br>13<br>14<br>14<br>13<br>13<br>13<br>13<br>14<br>13<br>13<br>13 | 13,14<br>-<br>12<br>13<br>3<br>14<br>13<br>13<br>13<br>14<br>13<br>3<br>3 | 12<br>12<br>3<br>14<br>3<br>14<br>12<br>12<br>2,13<br>2,13<br>3<br>2 | 11<br>4          |                 |         |

\* Symbol is I<sub>A13</sub> for MC796P.

Ground inputs of full adder not under test.  
Other pins not listed are left open.

## MC796P, MC896P (continued)



### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



**MC797P • MC897P**

Provides the DIFFERENCE and BORROW functions while requiring only MINUEND (X) and SUBTRAHEND (Y) inputs with BORROW IN.



| TRUTH TABLE       |   |    |                    |    |
|-------------------|---|----|--------------------|----|
| INPUT LOGIC LEVEL |   |    | OUTPUT LOGIC LEVEL |    |
| X                 | Y | Bi | D                  | Bo |
| 0                 | 0 | 0  | 0                  | 0  |
| 0                 | 0 | 1  | 1                  | 1  |
| 0                 | 1 | 0  | 1                  | 1  |
| 0                 | 1 | 1  | 0                  | 1  |
| 1                 | 0 | 0  | 1                  | 0  |
| 1                 | 0 | 1  | D                  | 0  |
| 1                 | 1 | 0  | 0                  | 0  |
| 1                 | 1 | 1  | 1                  | 1  |

POSITIVE LOGIC  
 $0 = YXB_i + \bar{Y}\bar{X}B_i + \bar{Y}X\bar{B}_i + \bar{Y}\bar{X}\bar{B}_i$   
 $Bo = \bar{Y}\bar{X}B_i + \bar{Y}X\bar{B}_i + Y\bar{X}B_i + YX\bar{B}_i$

$t_{pd} = 60 \text{ ns typ}$   
 $P_d = 84 \text{ mW typ}$

NUMBER IN PARENTHESIS INDICATES MC797P LOADING FACTOR.  
 NUMBER IN BRACKETS INDICATES MC897P LOADING FACTOR.

## ELECTRICAL CHARACTERISTICS

Test procedures are given for only one subtractor.  
The other subtractor is tested in the same manner.

|        |       | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |
|--------|-------|--------------------------------|-----------------|------------------|------------------|-----------------|
|        |       | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |
| MC897P | 0°C   | 0.960                          | 0.930           | 1.80             | 0.570            | 3.60            |
|        | +25°C | 0.910                          | 0.800           | 1.80             | 0.500            | 3.60            |
|        | +75°C | 0.820                          | 0.790           | 1.80             | 0.450            | 3.60            |
| MC797P | +15°C | 0.865                          | 0.865           | 1.80             | 0.475            | 3.60            |
|        | +25°C | 0.850                          | 0.850           | 1.80             | 0.460            | 3.60            |
|        | +55°C | 0.800                          | 0.800           | 1.80             | 0.430            | 3.60            |

| Characteristic | Symbol            | Pin Under Test | MC897P Test Limits |      |       |      |       |      | MC797P Test Limits |       |      |       |      |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                        |                       |                  | Gnd              |                 |   |
|----------------|-------------------|----------------|--------------------|------|-------|------|-------|------|--------------------|-------|------|-------|------|-------|--------------------------------------------|------|------------------------|-----------------------|------------------|------------------|-----------------|---|
|                |                   |                | 0°C                |      | +25°C |      | +75°C |      | Unit               | +15°C |      | +25°C |      | +55°C |                                            | Unit | V <sub>in</sub>        | V <sub>on</sub>       | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |   |
|                |                   |                | Min                | Max  | Min   | Max  | Min   | Max  |                    | Min   | Max  | Min   | Max  | Min   | Max                                        |      | Min                    | Max                   | Min              | Max              |                 |   |
| Input Current  | I <sub>in</sub>   | 3              | -                  | 1800 | -     | 1800 | -     | 1710 | μAdc               | -     | 1500 | -     | 1500 | -     | 1410                                       | μAdc | 2                      | -                     | -                | -                | 11              | 4 |
|                |                   | 2              | -                  | ↓    | -     | ↓    | -     | ↓    |                    | -     | ↓    | -     | ↓    | -     | ↓                                          |      | 13                     | -                     | -                | -                | ↓               | ↓ |
|                |                   | 3              | -                  | ↓    | -     | ↓    | -     | ↓    |                    | -     | ↓    | -     | ↓    | -     | ↓                                          |      | 14                     | -                     | -                | -                | ↓               | ↓ |
| Output Current | I <sub>A4</sub> * | 3              | 2.40               | -    | 2.40  | -    | 2.28  | -    | mAdc               | 2.15  | -    | 2.15  | -    | 2.03  | -                                          | mAdc | -                      | { 2,3,{ }<br>(13,14)} | -                | -                | 11              | 4 |
|                |                   | ↓              | ↓                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | 3,13                   | -                     | 2,14             | -                | 2,14            | ↓ |
|                |                   | 12             | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | 3,14                   | -                     | 2,13             | -                | 2,13            | ↓ |
|                |                   | ↓              | ↓                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | 12,13                  | -                     | 2,14             | -                | 2,14            | ↓ |
|                |                   | ↓              | ↓                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | 12,14                  | -                     | 2,13             | -                | 2,13            | ↓ |
|                |                   | ↓              | ↓                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | 2,12                   | -                     | 13,14            | -                | 13,14           | ↓ |
|                |                   | ↓              | ↓                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | { 2,12,{ }<br>(13,14)} | -                     | -                | -                | -               | ↓ |
| Output Voltage | V <sub>out</sub>  | 3              | -                  | 500  | -     | 400  | -     | 400  | mVdc               | -     | 400  | -     | 300  | -     | 320                                        | mVdc | -                      | 2,13                  | -                | 14               | 11              | 4 |
|                |                   | ↓              | ↓                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | 2,14                   | -                     | 13               | -                | 13              | ↓ |
|                |                   | 12             | -                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -                      | -                     | 2,13,14          | -                | 2,13,14         | ↓ |
|                |                   | ↓              | ↓                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | -                      | -                     | 2,13,14          | -                | 2,13,14         | ↓ |
|                |                   | ↓              | ↓                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | 13,14                  | -                     | 2                | -                | 2               | ↓ |
|                |                   | ↓              | ↓                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | 2,14                   | -                     | 13               | -                | 13              | ↓ |
|                |                   | ↓              | ↓                  | -    | -     | -    | -     | -    |                    | -     | -    | -     | -    | -     | -                                          |      | 2,13                   | -                     | 14               | -                | 14              | ↓ |
| Switching Time | t                 | 2+12+          | -                  | -    | -     | 60   | -     | -    | ns                 | -     | -    | -     | 60   | -     | -                                          | ns   | 2                      | 13,14                 | 12               | -                | 11              | 4 |
|                |                   | 2-12-          | -                  | -    | -     | 60   | -     | -    |                    | -     | -    | -     | 60   | -     | -                                          |      | 12                     | -                     | 12               | -                | 12              | ↓ |
|                |                   | 2+3+           | -                  | -    | -     | 65   | -     | -    |                    | -     | -    | -     | 65   | -     | -                                          |      | 3                      | -                     | 3                | -                | 3               | ↓ |
|                |                   | 2-3-           | -                  | -    | -     | 60   | -     | -    |                    | -     | -    | -     | 60   | -     | -                                          |      | 3                      | -                     | 3                | -                | 3               | ↓ |
|                |                   | 14+12+         | -                  | -    | -     | ↓    | -     | -    |                    | -     | -    | -     | ↓    | -     | -                                          |      | 14                     | -                     | 12               | 2,13             | 2,13            | ↓ |
|                |                   | 14-12-         | -                  | -    | -     | 65   | -     | -    |                    | -     | -    | -     | 65   | -     | -                                          |      | 12                     | -                     | 12               | 2,13             | 2,13            | ↓ |
|                |                   | 14+3-          | -                  | -    | -     | 65   | -     | -    |                    | -     | -    | -     | 65   | -     | -                                          |      | 13                     | 3                     | 3                | 2                | 2               | ↓ |
|                |                   | 14-3+          | -                  | -    | -     | 60   | -     | -    |                    | -     | -    | -     | 60   | -     | -                                          |      | 3                      | -                     | 12               | 12               | 12              | ↓ |
|                |                   | 13+12-         | -                  | -    | -     | ↓    | -     | -    |                    | -     | -    | -     | ↓    | -     | -                                          |      | 13                     | -                     | 12               | 2,14             | 2,14            | ↓ |
|                |                   | 13-12+         | -                  | -    | -     | 60   | -     | -    |                    | -     | -    | -     | 60   | -     | -                                          |      | 2,14                   | 3                     | 3                | -                | 3               | ↓ |
|                |                   | 13+3+          | -                  | -    | -     | ↓    | -     | -    |                    | -     | -    | -     | ↓    | -     | -                                          |      | 2,14                   | 3                     | 3                | -                | 3               | ↓ |
|                |                   | 13-3-          | -                  | -    | -     | ↓    | -     | -    |                    | -     | -    | -     | ↓    | -     | -                                          |      | 2,14                   | 3                     | 3                | -                | 3               | ↓ |

\* Symbol for MC797P is I<sub>A13</sub>.

Ground input pins of subtractor not under test.  
Other pins not listed are left open.

## MC797P, MC897P (continued)



### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



## DUAL HALF-SHIFT REGISTER

## PLASTIC MRTL MC700P/800P series

**MC784P • MC884P**



Two half-shift registers in a single package. Each is a bistable storage element. Eg., information coming in on pins 1 and 3 will be transferred to pins 14 and 12 when the gating signal, pin 2, goes low. If all three inputs, 1, 2, and 3, are low, the outputs, 14 and 12, will both be low.

NUMBER IN PARENTHESIS  
INDICATES MC784P LOADING FACTOR

NUMBER IN BRACKETS  
INDICATES MC884B LOADING FACTOR

$t_{RD} \equiv 22$  ns typ

P<sub>D</sub> ≈ 120 mW typ

## **SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS**



| @ Test Temperature | TEST VOLTAGE VALUES<br>(Volts) |                 |                  |                  |                 |      |
|--------------------|--------------------------------|-----------------|------------------|------------------|-----------------|------|
|                    | V <sub>in</sub>                | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>CC</sub> |      |
| MC884P {           | 0°C                            | 0.960           | 0.930            | 1.80             | 0.570           | 3.60 |
|                    | +25°C                          | 0.910           | 0.880            | 1.80             | 0.500           | 3.60 |
|                    | +75°C                          | 0.820           | 0.790            | 1.80             | 0.450           | 3.60 |
|                    | +15°C                          | 0.865           | 0.865            | 1.80             | 0.475           | 3.60 |
|                    | +25°C                          | 0.850           | 0.850            | 1.80             | 0.460           | 3.60 |
|                    | +55°C                          | 0.800           | 0.800            | 1.80             | 0.430           | 3.60 |

## ELECTRICAL CHARACTERISTICS

Test procedures are shown for one half-shift register only.  
The other half-shift register is tested in the same manner.

| Characteristic     | Symbol                                                 | Pin Under Test       | MC884P Test Limits |                    |                    |                     |                  |                    | MC784P Test Limits  |                    |                     |                   |                     |             | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |                                                |                                  |                   |                                | Gnd              |                 |                            |
|--------------------|--------------------------------------------------------|----------------------|--------------------|--------------------|--------------------|---------------------|------------------|--------------------|---------------------|--------------------|---------------------|-------------------|---------------------|-------------|--------------------------------------------|------------------------------------------------|----------------------------------|-------------------|--------------------------------|------------------|-----------------|----------------------------|
|                    |                                                        |                      | 0°C                |                    | +25°C              |                     | +75°C            |                    | Unit                | +15°C              |                     | +25°C             |                     | +55°C       |                                            | Unit                                           | V <sub>in</sub>                  | V <sub>on</sub>   | V <sub>BOT</sub>               | V <sub>off</sub> | V <sub>CC</sub> |                            |
|                    |                                                        |                      | Min                | Max                | Min                | Max                 | Min              | Max                |                     | Min                | Max                 | Min               | Max                 | Min         | Max                                        |                                                | Min                              | Max               | Min                            | Max              |                 |                            |
| Input Current      | I <sub>in</sub><br>2I <sub>in</sub><br>I <sub>in</sub> | 1<br>2<br>3          | -<br>-<br>-        | 600<br>1200<br>600 | -<br>-<br>-        | 600<br>1200<br>600  | -<br>-<br>-      | 570<br>1140<br>570 | μAdc                | -<br>-<br>-        | 500<br>1000<br>500  | -<br>-<br>-       | 500<br>1000<br>500  | -<br>-<br>- | 470<br>940<br>470                          | μAdc                                           | 1<br>2<br>3                      | -<br>-<br>-       | 2<br>1, 3<br>2                 | -<br>-<br>-      | 11<br>↓         | 4<br>↓                     |
| Output Current     | I <sub>A4</sub> *                                      | 12<br>12<br>14<br>14 | 2.4<br>-<br>-<br>↓ | -<br>2.4<br>-<br>- | -<br>-<br>-<br>↓   | 2.28<br>-<br>-<br>- | -<br>-<br>-<br>- | mAdc               | 2.15<br>-<br>-<br>- | -<br>-<br>-<br>-   | 2.15<br>-<br>-<br>- | -<br>-<br>-<br>-  | 2.03<br>-<br>-<br>- | -<br>-<br>- | mAdc                                       | -<br>-<br>-<br>-                               | 2, 12<br>3, 12<br>2, 14<br>1, 14 | -<br>-<br>-<br>-  | -<br>-<br>-<br>-               | -<br>-<br>-<br>- | 11<br>↓         | 4, 14†<br>4<br>4, 12†<br>4 |
| Output Voltage     | V <sub>out</sub>                                       | 12<br>14             | -<br>-             | 500<br>500         | -<br>-             | 400<br>400          | -<br>-           | 400<br>400         | mVdc<br>mVdc        | -<br>-<br>-        | 400<br>400<br>300   | -<br>-<br>-       | 300<br>300<br>320   | -<br>-<br>- | 320<br>320<br>mVdc                         | -<br>-<br>-                                    | 14<br>12                         | 2, 3<br>1, 2      | -<br>-                         | 11<br>11         | 4<br>4          |                            |
| Saturation Voltage | V <sub>CE(sat)</sub>                                   | 12<br>12<br>14<br>14 | -<br>-<br>-<br>-   | 400<br>-<br>-<br>- | -<br>300<br>-<br>- | -<br>350<br>-<br>-  | -<br>-<br>-<br>- | mVdc               | -<br>-<br>-<br>-    | 300<br>-<br>-<br>- | -<br>290<br>-<br>-  | -<br>-<br>-<br>-  | 320<br>-<br>-       | mVdc        | -<br>-<br>-<br>-                           | -<br>-<br>1, 2, 3<br>-<br>1, 2, 3<br>-<br>1, 2 | -<br>-<br>-<br>-                 | 11<br>-<br>-<br>- | 4, 12†<br>4, 14<br>4, 14†<br>4 |                  |                 |                            |
| Switching Time     | t                                                      | 1+14+<br>1-14-       | -<br>-             | -<br>-             | -<br>40            | -<br>-              | -<br>40          | ns                 | -<br>-<br>-         | -<br>-<br>-        | -<br>-<br>-         | -<br>40<br>-<br>- | -<br>-<br>-         | -<br>-<br>- | ns                                         | Pulse In<br>1<br>1                             | Pulse Out<br>14<br>14            | -<br>-            | -<br>-                         | 11<br>11         | 4, 12<br>4, 12  |                            |

Ground input pins of half-register not under test. Other pins not listed are left open.

† Silicon diode to ground.

\* Symbol is I<sub>A13</sub> for the MC784P.

## DUAL HALF-SHIFT REGISTERS

## PLASTIC MRTL MC700P/800P series

### MC783P • MC883P

Dual half-shift registers, each with built-in inverter, in a single package. Information coming in on pins 1 and 2 will be transferred to pins 14 and 12 when the gating signal, pin 2, goes low. If all three inputs, 1, 2, and 3, are low, the outputs, 12 and 14, will both be low.



$$14 = \overline{12}(1+2)$$

$$12 = \overline{14}(3+2)$$

$t_{pd} = 22$  ns typ

$P_d = 140$  mW typ

NUMBER IN PARENTHESIS INDICATES  
LOADING FACTOR FOR MC783P

NUMBER IN BRACKETS INDICATES  
LOADING FACTOR FOR MC883P



#### TYPICAL RESISTANCE VALUES

R1 = 450  $\Omega$

R2 = 640  $\Omega$

R3 = 800  $\Omega$

### SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS



**ELECTRICAL CHARACTERISTICS**

Test procedures are shown for one half-shift register only.  
The other half-shift register is tested in the same manner.

| Temperature | TEST VOLTAGE VALUES |                 |                  |                  |                 |
|-------------|---------------------|-----------------|------------------|------------------|-----------------|
|             | (Volts)             |                 |                  |                  |                 |
|             | V <sub>in</sub>     | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |
| MC883P      | 0.960               | 0.930           | 1.80             | 0.570            | 3.60            |
|             | 0.910               | 0.880           | 1.80             | 0.500            | 3.60            |
|             | 0.820               | 0.790           | 1.80             | 0.450            | 3.60            |
| MC783P      | 0.865               | 0.865           | 1.80             | 0.475            | 3.60            |
|             | 0.850               | 0.850           | 1.80             | 0.460            | 3.60            |
|             | 0.800               | 0.800           | 1.80             | 0.430            | 3.60            |
|             | 0.800               | 0.800           | 1.80             | 0.430            | 3.60            |
|             |                     |                 |                  |                  |                 |

| Characteristic     | Symbol               | Pin Under Test | MC883P Test Limits |      |       |      |       |      | MC783P Test Limits |       |      |       |      |       | TEST VOLTAGE APPLIED TO PINS LISTED BELOW: |      |                 |                 |                  | Gnd              |                 |        |       |
|--------------------|----------------------|----------------|--------------------|------|-------|------|-------|------|--------------------|-------|------|-------|------|-------|--------------------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|--------|-------|
|                    |                      |                | 0°C                |      | +25°C |      | +75°C |      | Unit               | +15°C |      | +25°C |      | +55°C |                                            | Unit | V <sub>in</sub> | V <sub>on</sub> | V <sub>BOT</sub> | V <sub>off</sub> | V <sub>cc</sub> |        |       |
|                    |                      |                | Min                | Max  | Min   | Max  | Min   | Max  |                    | Min   | Max  | Min   | Max  | Min   | Max                                        |      | Min             | Max             | Min              | Max              |                 |        |       |
| Input Current      | I <sub>in</sub>      | 1              | -                  | 600  | -     | 600  | -     | 570  | μAdc               | -     | 500  | -     | 500  | -     | 470                                        | μAdc | 1               | -               | 2                | -                | 11              | 4      |       |
|                    | 3I <sub>in</sub>     | 2              | -                  | 1800 | -     | 1800 | -     | 1710 |                    | -     | 1500 | -     | 1500 | -     | 1410                                       |      | 2               | -               | 1, 3             | -                | ↓               | ↓      |       |
|                    | I <sub>in</sub>      | 3              | -                  | 600  | -     | 600  | -     | 570  |                    | -     | 500  | -     | 500  | -     | 470                                        |      | 3               | -               | 2                | -                | ↓               | ↓      |       |
| Output Current     | I <sub>A4*</sub>     | 12             | 2.4                | -    | 2.4   | -    | 2.28  | -    | mAdc               | 2.15  | -    | 2.15  | -    | 2.03  | -                                          | mAdc | -               | 2, 12           | -                | -                | 11              | 4, 14† |       |
|                    | I <sub>A4*</sub>     | 12             | 2.4                | -    | 2.4   | -    | 2.28  | -    |                    | 2.15  | -    | 2.15  | -    | 2.03  | -                                          |      | -               | 3, 12           | -                | -                | 4               | 4      |       |
|                    | I <sub>A5**</sub>    | 13             | 3.0                | -    | 3.0   | -    | 2.85  | -    |                    | 2.65  | -    | 2.65  | -    | 2.5   | -                                          |      | -               | 13              | -                | 2                | 4               | 4      |       |
|                    | I <sub>A4*</sub>     | 14             | 2.4                | -    | 2.4   | -    | 2.28  | -    |                    | 2.15  | -    | 2.15  | -    | 2.03  | -                                          |      | -               | 2, 14           | -                | -                | 4, 12†          | 4      |       |
|                    | I <sub>A4*</sub>     | 14             | 2.4                | -    | 2.4   | -    | 2.28  | -    |                    | 2.15  | -    | 2.15  | -    | 2.03  | -                                          |      | -               | 1, 14           | -                | -                | ↓               | ↓      |       |
| Output Voltage     | V <sub>out</sub>     | 12             | -                  | 500  | -     | 400  | -     | 400  | mVdc               | -     | 400  | -     | 300  | -     | 320                                        | mVdc | -               | 14              | 2, 3             | -                | 11              | 4      |       |
|                    |                      | 13             | -                  | ↓    | -     | ↓    | -     | ↓    |                    | -     | ↓    | -     | ↓    | -     | ↓                                          |      | -               | 2               | -                | 12               | ↓               | ↓      |       |
|                    |                      | 14             | -                  | ↓    | -     | ↓    | -     | ↓    |                    | -     | ↓    | -     | ↓    | -     | ↓                                          |      | -               | 1, 2            | -                | -                | ↓               | ↓      |       |
| Saturation Voltage | V <sub>CE(sat)</sub> | 12             | -                  | 400  | -     | 300  | -     | 350  | mVdc               | -     | 300  | -     | 290  | -     | 320                                        | mVdc | -               | -               | 1, 2, 3          | -                | 11              | 4, 12† |       |
|                    |                      | 12             | -                  | ↓    | -     | ↓    | -     | ↓    |                    | -     | ↓    | -     | ↓    | -     | ↓                                          |      | -               | -               | 2, 3             | -                | 4, 14           | 4      |       |
|                    |                      | 13             | -                  | ↓    | -     | ↓    | -     | ↓    |                    | -     | ↓    | -     | ↓    | -     | ↓                                          |      | -               | -               | 2                | -                | 4, 14†          | 4      |       |
|                    |                      | 14             | -                  | ↓    | -     | ↓    | -     | ↓    |                    | -     | ↓    | -     | ↓    | -     | ↓                                          |      | -               | 1, 2, 3         | -                | 1, 2             | ↓               | 4, 12  |       |
|                    |                      | 14             | -                  | ↓    | -     | ↓    | -     | ↓    |                    | -     | ↓    | -     | ↓    | -     | ↓                                          |      | -               | -               | 1, 2             | -                | ↓               | ↓      |       |
| Switching Time     | t                    | 2+13-          | -                  | -    | -     | 40   | -     | -    | ns                 | -     | -    | -     | 40   | -     | -                                          | ns   | Pulse In        | 2               | 13               | -                | -               | 11     | 4     |
|                    |                      | 2-13+          | -                  | -    | -     | 40   | -     | -    |                    | -     | -    | -     | 40   | -     | -                                          |      | Pulse Out       | 2               | 13               | -                | -               | 4      | 4     |
|                    |                      | 1+14+          | -                  | -    | -     | 28   | -     | -    |                    | -     | -    | -     | 28   | -     | -                                          |      |                 | 1               | 14               | -                | -               | 4, 12  | 4, 12 |
|                    |                      | 1-14-          | -                  | -    | -     | 24   | -     | -    |                    | -     | -    | -     | 24   | -     | -                                          |      |                 | 1               | 14               | -                | -               | ↓      | ↓     |

Ground input pins of half-shift register not under test. Other pins not listed are left open. \* Symbol is I<sub>A13</sub> for MC783P. \*\* Symbol is I<sub>A16</sub> for MC783P. † Silicon diode to ground.

## **ADDITIONS AND MODIFICATIONS**

## **ADDITIONS AND MODIFICATIONS**

## **ADDITIONS AND MODIFICATIONS**



## **ADDITIONS AND MODIFICATIONS**

**COMMERCIAL**  
**MRTL**  
**INTEGRATED CIRCUITS**  
**LOW-POWER**  
**AND**  
**MEDIUM-POWER**  
**MC700 SERIES**

# MILLIWATT AND MEDIUM-POWER COMMERCIAL MRTL INTEGRATED CIRCUITS

## INDEX

In this series of MRTL logic circuits, medium and low-power devices are combined and specified for compatible application in commercial usages. Medium-power devices have loading factors normalized for compatibility with low-power for ease of mixing the two power levels in a system.

### INDEX

|                                                          | Page No. |
|----------------------------------------------------------|----------|
| General Information                                      | 6-246    |
| Summary of Devices Available in Metal Cans (G Suffix)    | 6-248    |
| Summary of Devices Available in Flat Packages (F Suffix) | 6-251    |

| DEVICE                       | POWER   | PACKAGE | DEVICE                      | POWER                                     | PACKAGE |      |
|------------------------------|---------|---------|-----------------------------|-------------------------------------------|---------|------|
| <b>GATES</b>                 |         |         |                             |                                           |         |      |
| MC703 3-Input Gates          | MRTL    | F, G    | MC701 Counter Adapter       | MRTL                                      | G       |      |
| MC707 4-Input Gates          | MRTL    | F, G    | MC704 Half Adders           | MRTL                                      | F, G    |      |
| MC711 4-Input Gates          | mW MRTL | F, G    | MC708 Half Adders           | mW MRTL                                   | F, G    |      |
| MC728 5-Input Gates          | mW MRTL | F, G    | MC712 Half Adders           | mW MRTL                                   | F, G    |      |
| MC729 5-Input Gates          | MRTL    | F, G    | MC775 Dual Half Adder       | MRTL                                      | F       |      |
| MC710 Dual 2-Input Gates     | mW MRTL | F, G    | <b>COUNTER ADAPTERS</b>     |                                           |         |      |
| MC714 Dual 2-Input Gates     | MRTL    | F, G    | MC705                       | Half-Shift Registers with Inverter        | MRTL    | F, G |
| MC715 Dual 3-Input Gates     | MRTL    | F, G    | MC706                       | Half-Shift Registers without Inverter     | MRTL    | F, G |
| MC718 Dual 3-Input Gates     | mW MRTL | F, G    | MC783                       | Dual Half-Shift Register with Inverter    | MRTL    | F    |
| MC719 Dual 4-Input Gate      | mW MRTL | F       | MC784                       | Dual Half-Shift Register without Inverter | MRTL    | F    |
| MC725 Dual 4-Input Gate      | MRTL    | F       | <b>HALF-SHIFT REGISTERS</b> |                                           |         |      |
| MC792 Triple 3-Input Gate    | MRTL    | F       | MC705                       | Half-Shift Registers with Inverter        | MRTL    | F, G |
| MC793 Triple 3-Input Gate    | mW MRTL | F       | MC706                       | Half-Shift Registers without Inverter     | MRTL    | F, G |
| MC717 Quad 2-Input Gate      | mW MRTL | F       | MC783                       | Dual Half-Shift Register with Inverter    | MRTL    | F    |
| MC724 Quad 2-Input Gate      | MRTL    | F       | MC784                       | Dual Half-Shift Register without Inverter | MRTL    | F    |
| <b>BUFFERS</b>               |         |         |                             |                                           |         |      |
| MC700 Buffers                | MRTL    | F, G    | <b>FLIP-FLOPS</b>           |                                           |         |      |
| MC709 Buffers                | mW MRTL | F, G    | MC702                       | R-S Flip-Flop                             | MRTL    | G    |
| MC781 Dual Buffer            | mW MRTL | G       | MC720                       | J-K Flip-Flops                            | mW MRTL | F, G |
| MC799 Dual Buffers           | MRTL    | F, G    | MC722                       | J-K Flip-Flops                            | mW MRTL | F, G |
| MC798 Dual 2-Input Buffer    | mW MRTL | F       | MC723                       | J-K Flip-Flops                            | MRTL    | F, G |
| MC788 Dual 3-Input Buffer    | MRTL    | F       | MC726                       | J-K Flip-Flops                            | MRTL    | F, G |
| <b>INVERTERS</b>             |         |         | MC774                       | J-K Flip-Flop                             | MRTL    | G    |
| MC727 Quad Inverters         | MRTL    | F, G    | MC782                       | J-K Flip-Flop                             | mW MRTL | G    |
| MC789 Hex Inverter           | MRTL    | F       | MC776                       | Dual J-K Flip-Flop                        | mW MRTL | F    |
| <b>EXPANDERS</b>             |         |         | MC776                       | Dual J-K Flip-Flop                        | MRTL    | F    |
| MC721 Dual 2-Input Expanders | mW MRTL | F, G    | MC790                       | Dual J-K Flip-Flop                        | MRTL    | F    |
| MC786 Dual 4-Input Expander  | MRTL    | F       | MC791                       | Dual J-K Flip-Flop                        | MRTL    | F    |
| MC785 Quad 2-Input Expander  | MRTL    | F       | MC713                       | Type D Flip-Flops                         | mW MRTL | F, G |
|                              |         |         | MC778                       | Dual Type D Flip-Flop                     | mW MRTL | F    |

**NUMERICAL INDEX**  
**(Functions and Characteristics)**

V<sub>CC</sub> = 3.6 V ±10%, T<sub>A</sub> = 25°C

| Function                            | Type ①<br>+15 to +55°C | Case   | Output Loading<br>Factor<br>Each Output | Propagation<br>Delay<br>t <sub>pd</sub><br>ns typ | Total Power<br>Dissipation<br>mW typ/pkg |
|-------------------------------------|------------------------|--------|-----------------------------------------|---------------------------------------------------|------------------------------------------|
| <b>MRTL</b>                         |                        |        |                                         |                                                   |                                          |
| Buffer                              | MC700                  | 72,96  | 80                                      | 20                                                | 25/50 ②                                  |
| Counter Adapter                     | MC701                  | 96     | 16                                      | 22                                                | 80                                       |
| R-S Flip-Flop                       | MC702                  | 96     | 13                                      | 14                                                | 32                                       |
| 3-Input NOR Gate                    | MC703                  | 72,96  | 16                                      | 12                                                | 28/7.5 ②                                 |
| Half Adder                          | MC704                  | 72,96  | 16                                      | 14                                                | 65                                       |
| Half-Shift Register                 | MC705                  | 72,96  | 13                                      | 22                                                | 75                                       |
| Half-Shift Register (w/o Inverter)  | MC706                  | 72,96  | 13                                      | 22                                                | 52                                       |
| 4-Input NOR Gate                    | MC707                  | 72,96  | 16                                      | 12                                                | 30/7.5 ②                                 |
| Dual 2-Input NDR Gate               | MC714                  | 72,96  | 16                                      | 12                                                | 50/15 ②                                  |
| Dual 3-Input NOR Gate               | MC715                  | 72,96A | 16                                      | 12                                                | 55/15 ②                                  |
| J-K Flip-Flop                       | MC723                  | 72,96  | 10                                      | 35                                                | 91/79 ④                                  |
| Quad 2-Input NOR Gate               | MC724                  | 83     | 16                                      | 12                                                | 100/30 ②                                 |
| Dual 4-Input NOR Gate               | MC725                  | 83     | 16                                      | 12                                                | 60/15 ②                                  |
| J-K Flip-Flop                       | MC726                  | 72,96A | 16                                      | 35                                                | 100/86 ④                                 |
| Quad Inverter                       | MC727                  | 72,96A | 16                                      | 12                                                | 87/30 ②                                  |
| 5-Input NDR Gate                    | MC729                  | 72,96  | 16                                      | 12                                                | 33/7.5 ②                                 |
| Quad Exclusive OR Gate              | MC771                  | 83     | 16                                      | 12                                                | 87                                       |
| J-K Flip-Flop                       | MC774                  | 96     | 16                                      | 35                                                | 100/86 ④                                 |
| Dual Half Adder                     | MC775                  | 83     | 16                                      | 20                                                | 120                                      |
| Quadruple Half Shift Register       | MC783                  | 83     | 13                                      | 22                                                | 140                                      |
| Dual Half Shift Register w/Inverter | MC784                  | 83     | 13                                      | 22                                                | 100                                      |
| Quad 2-Input Expander               | MC785                  | 83     | —                                       | 12                                                | 20/ — ②                                  |
| Dual 4-Input Expander               | MC786                  | 83     | —                                       | 12                                                | 20/ — ②                                  |
| Dual 3-Input Buffer, non-inverting  | MC788                  | 83     | 80                                      | 24                                                | 145/56 ②                                 |
| Hex Inverter                        | MC789                  | 83     | 16                                      | 12                                                | 130/15 ②                                 |
| Dual J-K Flip-Flop                  | MC790                  | 83     | 10                                      | 35                                                | 182/158 ④                                |
| Dual J-K Flip-Flop                  | MC791                  | 83     | 16                                      | 40                                                | 190/160 ④                                |
| Triple 3-Input NOR Gate             | MC792                  | 83     | 16                                      | 12                                                | 82/24 ②                                  |
| Dual Full Adder                     | MC796                  | 83     | 13                                      | 60                                                | 84                                       |
| Dual Full Subtractor                | MC797                  | 83     | 13                                      | 60                                                | 84                                       |
| Dual Buffer                         | MC799                  | 72,96A | 80                                      | 20                                                | 50/100 ②                                 |
| Hex Expander                        | MC9719                 | 83     | —                                       | 12                                                | 13/ — ②                                  |

**mW MRTL**

|                            |        |        |    |    |             |
|----------------------------|--------|--------|----|----|-------------|
| Half Adder                 | MC708  | 72,96  | 4  | 60 | 19/12.5 ②   |
| 2-Input Buffer             | MC709  | 72,96  | 30 | 57 | 7.0/23 ②    |
| Dual 2-Input NOR Gate      | MC710  | 72,96  | 4  | 27 | 10/2.5 ②    |
| Dual 4-Input OR/NOR Gate   | MC711  | 72,96  | 4  | 60 | 8.0/5.5 ②   |
| Half Adder                 | MC712  | 72,96  | 4  | 66 | 15.5/10.5 ② |
| Type O Flip-Flop           | MC713  | 72,96  | 3  | 75 | 24/17.5 ③   |
| Quad 2-Input NOR Gate      | MC717  | 83     | 4  | 27 | 20/5.0 ②    |
| Quadruple 3-Input NOR Gate | MC718  | 72,96A | 4  | 27 | 12/2.5 ②    |
| Dual 4-Input NOR Gate      | MC719  | 83     | 4  | 27 | 13/2.5 ②    |
| J-K Flip-Flop              | MC720  | 72,96  | 2  | 50 | 20.5/14.5 ④ |
| Dual 2-Input Gate Expander | MC721  | 72,96  | —  | 27 | 3.0/ — ②    |
| J-K Flip-Flop              | MC722  | 72,96A | 4  | 70 | 24/20 ④     |
| 5-Input NOR Gate           | MC728  | 72,96  | 4  | 27 | 7.5/1.0 ②   |
| Dual J-K Flip-Flop         | MC776  | 83     | 2  | 50 | 41/29 ④     |
| Dual Type D Flip-Flop      | MC778  | 83     | 3  | 60 | 48/35 ③     |
| Dual Buffer                | MC781  | 96     | 30 | 57 | 14/46 ②     |
| J-K Flip-Flop              | MC782  | 96     | 2  | 80 | 23/21 ④     |
| Triple 3-Input NOR Gate    | MC793  | 83     | 4  | 27 | 18/3.5 ②    |
| Dual 2-Input Buffer        | MC798  | 83     | 30 | 57 | 14/46 ②     |
| Quad 2-Input Expander      | MC9721 | 83     | —  | 27 | 20/ — ②     |

① G suffix denotes Metal Can, F suffix denotes Flat Package; i.e., MC718G = Metal Can, MC718F = Flat Package.

② Inputs High/Inputs Low.

③ Direct Set and Direct Clear Low, All Other Inputs High/All Inputs Low

④ Only Clock Input High/Inputs Low

## GENERAL INFORMATION

## COMMERCIAL MRTL MC700 series



TO-99



TO-100



TO-91



TO-86

### OUTLINE DIMENSIONS



Pin 4 connected to case.



Pin 5 connected to case.



Lead 1 identified by color dot or by shoulder on lead. All leads electrically isolated from package.



Lead 1 identified by color dot or by elbow on lead. All leads electrically isolated from package.

### TEST CONDITION TOLERANCES

$V_{BOT} = \pm 10 \text{ mV}$

$V_{CC} = \pm 10 \text{ mV}$

$V_{in} = \pm 2 \text{ mV}$

$V_R = \pm 1\%$

$V_{on} = \pm 2 \text{ mV}$

$V_{off} = \pm 2 \text{ mV}$

### GENERAL RULES

- Testing tables shown in the MC900/800 MRTL and the MC908/808 mW MRTL sections of this volume may be utilized for testing MC700F and G commercial series devices. Pin number configurations are the same. MC700 series forcing functions and test limits are shown on page 6-247.
- The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output.
- For ease of mixing MRTL and mW MRTL in the same system, the loading factors are normalized in accordance with the input currents being driven.
- Any number of gates may be paralleled; the input loading is increased by 1/4 load if only one gate is connected to  $V_{CC}$ .
- When paralleling gates with  $V_{CC}$  connected, a maximum of 4 outputs may be paralleled, increasing the input loading factor by 2.33.
- If the counter adapter is paralleled with another circuit, the output drive capability must be reduced by two loads. The reason for this drive reduction is the 1280-ohm resistance that connects the output terminals on the counter adapter.
- All unused input pins should be returned to ground.
- EXPANDER RULES:
  1. The MC785F, MC786F and MC9719F MRTL expanders can be used to expand medium-power MRTL output nodes only.
  2. When using the MC785F, MC786F or MC9719F subtract 0.5 from the output loading factor of the medium-power MRTL expanded gate for each expander node that is connected; also increase the input loading factor of the medium-power expanded gate by a factor of 1.33.

## GENERAL INFORMATION (continued)

### MAXIMUM RATINGS ( $T_A = 25^\circ\text{C}$ )

| Rating                                         | Symbol    | Value       | Unit             |
|------------------------------------------------|-----------|-------------|------------------|
| Logic Input Voltage                            |           | $\pm 4.0$   | Vdc              |
| Power Supply Voltage (Pulsed $\pm 1$ second)   |           | +12         | Vdc              |
| Operating Temperature Range<br>MC700G/F Series | $T_A$     | +15 to +55  | $^\circ\text{C}$ |
| Storage Temperature Range                      | $T_{stg}$ | -55 to +125 | $^\circ\text{C}$ |

### ELECTRICAL CHARACTERISTICS

| Characteristic | Milliwatt MRTL |       |       | MRTL  |       |       | Unit                |
|----------------|----------------|-------|-------|-------|-------|-------|---------------------|
|                | +15°C          | +25°C | +55°C | +15°C | +25°C | +55°C |                     |
| $I_{A3}$       | 0.420          | 0.420 | 0.420 | —     | —     | —     | mAdc min            |
| $I_{A4}$       | 0.570          | 0.570 | 0.570 | —     | —     | —     | mAdc min            |
| $I_{A10}$      | —              | —     | —     | 1.65  | 1.65  | 1.65  | mAdc min            |
| $I_{A13}$      | —              | —     | —     | 2.15  | 2.15  | 2.03  | mAdc min            |
| $I_{A16}$      | —              | —     | —     | 2.65  | 2.65  | 2.5   | mAdc min            |
| $I_{AB}$       | 5.0            | 5.0   | 5.0   | 13.5  | 13.75 | 12.5  | mAdc min            |
| $I_{CEX}$      | 50             | 50    | 100   | 225   | 225   | 280   | $\mu\text{Adc}$ max |
| $I_{in}$       | 0.150          | 0.150 | 0.150 | 0.500 | 0.500 | 0.470 | mAdc max            |
| $2 I_{in}$     | 0.300          | 0.300 | 0.300 | 1.0   | 1.0   | 0.94  | mAdc max            |
| $V_{out}$      | 0.400          | 0.300 | 0.320 | 0.400 | 0.300 | 0.320 | Vdc max             |
| $V_{CE}$       | 0.220          | 0.230 | 0.320 | 0.300 | 0.290 | 0.320 | Vdc max             |

### TEST CONDITIONS

|           |       |       |       |       |       |       |      |
|-----------|-------|-------|-------|-------|-------|-------|------|
| $V_{BOT}$ | 1.8   | 1.8   | 1.8   | 1.8   | 1.8   | 1.8   | Vdc  |
| $V_{CC}$  | 3.6   | 3.6   | 3.6   | 3.6   | 3.6   | 3.6   | Vdc  |
| $V_{in}$  | 0.865 | 0.850 | 0.800 | 0.865 | 0.850 | 0.800 | Vdc  |
| $V_{off}$ | 0.475 | 0.460 | 0.430 | 0.475 | 0.460 | 0.430 | Vdc  |
| $V_{on}$  | 0.865 | 0.850 | 0.800 | 0.865 | 0.850 | 0.800 | Vdc  |
| $V_R^*$   | 4600  | 4800  | 5000  | 640   | 640   | 640   | Ohms |

\*Resistor value to  $V_{CC}$

### DEFINITIONS

$I_{A2}, I_{A3}$ , Minimum available output current from a device with  $I_{A4}, I_{A5}$ , an output loading factor of 2, 3, 4, 5, 10, 13, and 16  $I_{A10}, I_{A13}$ , respectively. Output voltage not to fall below the value  $I_{A16}$  of  $V_{on}$ .

$I_{AB}$  Minimum available output current from a buffer. Output voltage not to fall below the value of  $V_{on}$ .

$I_{AM}$  The maximum available current from the output of a Dual Gate.

$I_{CEX}$  Collector current of a circuit when  $V_{in}$  is applied to the output pin and  $V_{off}$  is applied to the input pins.

$I_{in}$  Maximum input current drawn by one input of a gate with  $V_{in}$  applied. All other gate inputs are returned to  $V_{BOT}$ .

1.8  $I_{in}$  Current drawn from the  $V_{in}$  supply by the Toggle pin of the Flip-Flop.

2  $I_{in}$  Maximum input current drawn by one input of a device with 2 bases internally tied together.

$I_L$  Isolation leakage current.

$I_O$  Output load current.

$V_{BOT}$  A high value voltage applied to an input of a device to insure saturation of the driven transistor.

$V_{CC}$  Supply voltage.

$V_{CE(sat)}$  Maximum saturation voltage with  $V_{BOT}$  applied to the input.

$V_{in}$  Minimum high level voltage applied to the input of a device.

$V_{LL}$  A supply voltage low enough to allow flow of leakage currents only.

$V_{off}$  The maximum voltage which may be applied to an input terminal without turning the transistor on.

$V_{on}$  The minimum voltage which may be applied to an input terminal that will turn the transistor on.

$V_{out}$  The maximum output voltage with  $V_{on}$  applied to the input.

$V_R$  Value of external resistor connected to  $V_{CC}$  for test purposes.

$V_{RH}$  = highest node resistor value

$V_{RL}$  = lowest node resistor value

## LOADING DIAGRAMS

## COMMERCIAL MRTL MC700 series

### COMMERCIAL MRTL DEVICES AVAILABLE IN METAL CANS

The logic diagrams on these pages describe the MC700 Series Commercial MRTL integrated circuits available in metal cans, and permit quick selection of those circuits required for the implementation of a commercial system design. Pertinent information such as logic equations, truth tables, typical propagation delay time ( $t_{pd}$ ), typical package power dissipation ( $P_D$ ), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (when on the circuit input terminal) or load driving ability — fan-out — (when on the circuit output terminal). Medium-power devices have loading factors normal-

ized for compatibility with the low-power devices for ease of mixing the two power levels in a system.

The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the unit. Loading data are valid over the temperature range of +15 to +55°C, with  $V_{CC} = 3.6 \text{ V } \pm 10\%$ . For the TO-99 metal can,  $V_{CC}$  is applied to pin 8, with ground connected to pin 4. For the TO-100 metal can,  $V_{CC}$  is applied to pin 10, with ground connected to pin 5.

### GATES

**MC703G 3-Input Gate  
(medium-power)**



$$6 = \overline{1 + 2 + 3}$$

$t_{pd} = 12 \text{ ns}$

$P_D = 28 \text{ mW (Input High)}$   
 $7.5 \text{ mW (Inputs Low)}$

**MC711G 4-Input Gate  
(milliwatt)**



$$7 = \overline{1 + 2 + 3 + 5}$$

$$6 = \overline{1 + 2 + 3 + 5}$$

$t_{pd} = 60 \text{ ns}$

$P_D = 8.0 \text{ mW (Input High)}$   
 $5.5 \text{ mW (Inputs Low)}$

**MC707G 4-Input Gate  
(medium-power)**



$$6 = \overline{1 + 2 + 3 + 5}$$

$t_{pd} = 12 \text{ ns}$

$P_D = 30 \text{ mW (Input High)}$   
 $7.5 \text{ mW (Inputs Low)}$

**MC728G 5-Input Gate  
(milliwatt)**



$$7 = \overline{1 + 2 + 3 + 5 + 6}$$

$t_{pd} = 27 \text{ ns}$

$P_D = 7.5 \text{ mW (Input High)}$   
 $1.0 \text{ mW (Inputs Low)}$

**MC729G 5-Input Gate  
(medium-power)**



$$7 = \overline{1 + 2 + 3 + 5 + 6}$$

$t_{pd} = 12 \text{ ns}$

$P_D = 33 \text{ mW (Input High)}$   
 $7.5 \text{ mW (Inputs Low)}$

**MC710G Dual 2-Input Gate  
(milliwatt)**



$$7 = \overline{1 + 2}$$

$t_{pd} = 27 \text{ ns}$

$P_D = 10 \text{ mW (Input High)}$   
 $2.5 \text{ mW (Inputs Low)}$

**MC714G Dual 2-Input Gate  
(medium-power)**



$$7 = \overline{1 + 2}$$

$t_{pd} = 12 \text{ ns}$

$P_D = 50 \text{ mW (Input High)}$   
 $15 \text{ mW (Inputs Low)}$

**MC718G Dual 3-Input Gate  
(milliwatt)**



$$4 = \overline{1 + 2 + 3}$$

$t_{pd} = 27 \text{ ns}$

$P_D = 12 \text{ mW (Input High)}$   
 $2.5 \text{ mW (Inputs Low)}$

**MC715G Dual 3-Input Gate  
(medium-power)**



$$4 = \overline{1 + 2 + 3}$$

$t_{pd} = 12 \text{ ns}$

$P_D = 55 \text{ mW (Input High)}$   
 $15 \text{ mW (Inputs Low)}$

COMMERCIAL MRTL DEVICES AVAILABLE IN METAL CANS (continued)

**BUFFERS**



**INVERTER**



**EXPANDER**



**COUNTER ADAPTER**



**HALF ADDERS**



COMMERCIAL MRTL DEVICES AVAILABLE IN METAL CANS (continued)

**FLIP-FLOPS**

| <p><b>MC702G R-S Flip-Flop</b><br/>(medium-power)</p> <p><math>t_{pd} = 14 \text{ ns}</math><br/><math>P_D = 32 \text{ mW}</math></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <p><b>MC713G Type D Flip-Flop</b><br/>(milliwatt)</p> <p><math>t_{pd} = 75 \text{ ns}</math><br/><math>P_D = 24 \text{ mW}</math> (Direct Set and Direct Clear<br/>Inputs Low, All other Inputs High)<br/>17.5 mW (All Inputs Low)</p>    | <p><b>MC722G J-K Flip-Flop</b><br/>(milliwatt)</p> <p><math>t_{pd} = 50 \text{ ns}</math><br/><math>P_D = 20.5 \text{ mW}</math> (Only Clock Input High)<br/>14.5 mW (Inputs Low)</p>                                                                      |           |                                        |                                        |             |       |             |           |       |     |           |         |     |     |     |           |           |   |   |   |   |   |   |   |       |             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |             |       |   |   |                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------|----------------------------------------|-------------|-------|-------------|-----------|-------|-----|-----------|---------|-----|-----|-----|-----------|-----------|---|---|---|---|---|---|---|-------|-------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-------------|-------|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><b>J-K FLIP-FLOP TRUTH TABLES</b></p> <table border="1"> <thead> <tr> <th colspan="4">DIRECT INPUT OPERATION ①<br/>MC722 and<br/>MC726 only</th> <th colspan="4">CLOCKED INPUT OPERATION ③<br/>all types</th> </tr> <tr> <th><math>S_D</math></th> <th><math>C_D</math></th> <th><math>D</math></th> <th><math>\bar{D}</math></th> <th><math>t_n</math> ④</th> <th><math>S</math></th> <th><math>C</math></th> <th><math>D</math></th> <th><math>\bar{D}</math></th> <th><math>t_{n+1}</math></th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>②</td> <td>②</td> <td>0</td> <td>1</td> <td>0</td> <td><math>D_n</math></td> <td><math>\bar{D}_n</math></td> <td>0</td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> </tr> <tr> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td><math>\bar{D}_n</math></td> <td><math>D_n</math></td> <td>③</td> <td>0</td> </tr> </tbody> </table> <p>1. Clock (T) to remain unchanged.<br/>2. The output state will not change when the input state goes from <math>S_D = \bar{C}_D</math> to <math>S_D = C_D = 0</math>. The output state cannot be predetermined in the case where the input goes from <math>S_D = C_D = 1</math> to <math>S_D = \bar{C}_D = 0</math>.<br/>3. Direct inputs (<math>C_D</math> and <math>S_D</math>) must be low.<br/>4. The time period prior to the negative transition of the clock pulse is denoted <math>t_n</math> and the time period subsequent to this transition is denoted <math>t_{n+1}</math>.<br/>5. <math>D_n</math> is the state of the Q output in the time period <math>t_n</math>.</p> | DIRECT INPUT OPERATION ①<br>MC722 and<br>MC726 only                                                                                                                                                                                       |                                                                                                                                                                                                                                                            |           |                                        | CLOCKED INPUT OPERATION ③<br>all types |             |       |             | $S_D$     | $C_D$ | $D$ | $\bar{D}$ | $t_n$ ④ | $S$ | $C$ | $D$ | $\bar{D}$ | $t_{n+1}$ | 0 | 0 | ② | ② | 0 | 1 | 0 | $D_n$ | $\bar{D}_n$ | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | $\bar{D}_n$ | $D_n$ | ③ | 0 | <p><b>MC720G J-K Flip-Flop</b><br/>(milliwatt)</p> <p><math>t_{pd} = 70 \text{ ns}</math><br/><math>P_D = 24 \text{ mW}</math> (Only Clock Input High)<br/>20 mW (Inputs Low)</p> | <p><b>MC723G J-K Flip-Flop</b><br/>(medium-power)</p> <p><math>f_{Tog} = 4.0 \text{ MHz}</math><br/><math>t_{pd} = 30 \text{ ns}</math><br/><math>P_D = 91 \text{ mW}</math> (Only Clock Input High)<br/>79 mW (Inputs Low)</p> |
| DIRECT INPUT OPERATION ①<br>MC722 and<br>MC726 only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                            |           | CLOCKED INPUT OPERATION ③<br>all types |                                        |             |       |             |           |       |     |           |         |     |     |     |           |           |   |   |   |   |   |   |   |       |             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |             |       |   |   |                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| $S_D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_D$                                                                                                                                                                                                                                     | $D$                                                                                                                                                                                                                                                        | $\bar{D}$ | $t_n$ ④                                | $S$                                    | $C$         | $D$   | $\bar{D}$   | $t_{n+1}$ |       |     |           |         |     |     |     |           |           |   |   |   |   |   |   |   |       |             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |             |       |   |   |                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                         | ②                                                                                                                                                                                                                                                          | ②         | 0                                      | 1                                      | 0           | $D_n$ | $\bar{D}_n$ | 0         |       |     |           |         |     |     |     |           |           |   |   |   |   |   |   |   |       |             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |             |       |   |   |                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                          | 0         | 1                                      | 0                                      | 1           | 0     | 0           | 1         |       |     |           |         |     |     |     |           |           |   |   |   |   |   |   |   |       |             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |             |       |   |   |                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                          | 1         | 0                                      | 1                                      | 0           | 1     | 0           | 1         |       |     |           |         |     |     |     |           |           |   |   |   |   |   |   |   |       |             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |             |       |   |   |                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                          | 0         | 0                                      | 0                                      | $\bar{D}_n$ | $D_n$ | ③           | 0         |       |     |           |         |     |     |     |           |           |   |   |   |   |   |   |   |       |             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |             |       |   |   |                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| <p><b>MC726G J-K Flip-Flop</b><br/>(medium-power)</p> <p><math>f_{Tog} = 4.0 \text{ MHz}</math><br/><math>P_D = 100 \text{ mW}</math> (Only Clock Input High)<br/>86 mW (Inputs Low)</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <p><b>MC774G J-K Flip-Flop</b><br/>(medium-power)</p> <p><math>t_{pd} = 35 \text{ ns}</math><br/><math>P_D = 100 \text{ mW}</math> (Only Clock Input High)<br/>86 mW (Inputs Low)</p>                                                     | <p><b>MC782G J-K Flip-Flop</b><br/>(milliwatt)</p> <p><math>t_{pd} = 80 \text{ ns}</math><br/><math>P_D = 23 \text{ mW}</math> (Only Clock Input High)<br/>21 mW (Inputs Low)</p>                                                                          |           |                                        |                                        |             |       |             |           |       |     |           |         |     |     |     |           |           |   |   |   |   |   |   |   |       |             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |             |       |   |   |                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| <p><b>HALF-SHIFT REGISTERS</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <p><b>MC705G Half-Shift Register</b><br/>(medium-power)</p> <p><math>t_{pd} = 22 \text{ ns}</math><br/><math>P_D = 75 \text{ mW}</math></p> <p><math>7 = \bar{5}(1+2)</math><br/><math>5 = \bar{7}(2+3)</math><br/><math>6 = 2</math></p> | <p><b>MC706G Half-Shift Register</b><br/>(without inverter—medium-power)</p> <p><math>t_{pd} = 22 \text{ ns}</math><br/><math>P_D = 52 \text{ mW}</math></p> <p><math>7 = \bar{5}(1+2)</math><br/><math>5 = \bar{7}(2+3)</math><br/><math>6 = 2</math></p> |           |                                        |                                        |             |       |             |           |       |     |           |         |     |     |     |           |           |   |   |   |   |   |   |   |       |             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |             |       |   |   |                                                                                                                                                                                   |                                                                                                                                                                                                                                 |

## LOADING DIAGRAMS

## COMMERCIAL MRTL MC700 series

### COMMERCIAL MRTL DEVICES AVAILABLE IN FLAT PACKAGES

The logic diagrams shown on these pages describe the MC700 Series Commercial MRTL integrated circuits available in flat packages, and permit quick selection of those circuits required for implementation of a commercial system design. Pertinent information such as logic equations, truth tables, typical propagation delay time ( $t_{pd}$ ), typical power dissipation ( $P_D$ ), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (when on the circuit input terminal) or load driving ability — fan-out — (when on the circuit output terminal). Medium-power devices have loading factors normalized

for compatibility with the low-power devices for ease of mixing the two power levels in a system.

The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the unit. Loading data are valid over the temperature range of +15 to +55°C, with  $V_{CC} = 3.6 \text{ V} \pm 10\%$ . For the TO-91 flat package,  $V_{CC}$  is applied to pin 10, with ground connected to pin 5. For the TO-86 flat package,  $V_{CC}$  is applied to pin 14, with ground connected to pin 7.

## GATES

|                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>MC703F 3-Input Gate</b><br>(medium-power)                                                                                                                                                                                 | <b>MC707F 4-Input Gate</b><br>(medium-power)                                                                                                                                                                                  | <b>MC711F 4-Input Gate</b><br>(milliwatt)                                                                                                                                                                                                       |
| <br>$8 = \overline{2 + 3 + 4}$<br>$t_{pd} = 12 \text{ ns}$<br>$P_D = 28 \text{ mW (Input High)}$<br>$7.5 \text{ mW (Inputs Low)}$           | <br>$8 = \overline{2 + 3 + 4 + 7}$<br>$t_{pd} = 12 \text{ ns}$<br>$P_D = 30 \text{ mW (Input High)}$<br>$7.5 \text{ mW (Inputs Low)}$        | <br>$7 = \overline{1 + 2 + 4 + 6}$<br>$9 = 1 + 2 + 4 + 6$<br>$t_{pd} = 60 \text{ ns}$<br>$P_D = 8.0 \text{ mW (Input High)}$<br>$5.5 \text{ mW (Inputs Low)}$ |
| <b>MC729F 5-Input Gate</b><br>(medium-power)                                                                                                                                                                                 | <b>MC728F 5-Input Gate</b><br>(milliwatt)                                                                                                                                                                                     | <b>MC714F Dual 2-Input Gate</b><br>(medium-power)                                                                                                                                                                                               |
| <br>$9 = \overline{2 + 3 + 4 + 7 + 8}$<br>$t_{pd} = 12 \text{ ns}$<br>$P_D = 33 \text{ mW (Input High)}$<br>$7.5 \text{ mW (Inputs Low)}$ | <br>$9 = \overline{1 + 2 + 4 + 6 + 7}$<br>$t_{pd} = 27 \text{ ns}$<br>$P_D = 7.5 \text{ mW (Input High)}$<br>$1.0 \text{ mW (Inputs Low)}$ | <br>$9 = \overline{2 + 3}$<br>$t_{pd} = 12 \text{ ns}$<br>$P_D = 50 \text{ mW (Input High)}$<br>$15 \text{ mW (Inputs Low)}$                                |
| <b>MC710F Dual 2-Input Gate</b><br>(milliwatt)                                                                                                                                                                               | <b>MC715F Dual 3-Input Gate</b><br>(medium-power)                                                                                                                                                                             | <b>MC718F Dual 3-Input Gate</b><br>(milliwatt)                                                                                                                                                                                                  |
| <br>$9 = \overline{1 + 2}$<br>$t_{pd} = 27 \text{ ns}$<br>$P_D = 10 \text{ mW (Input High)}$<br>$2.5 \text{ mW (Inputs Low)}$             | <br>$4 = \overline{1 + 2 + 3}$<br>$t_{pd} = 12 \text{ ns}$<br>$P_D = 55 \text{ mW (Input High)}$<br>$15 \text{ mW (Inputs Low)}$           | <br>$9 = \overline{1 + 2 + 3}$<br>$t_{pd} = 27 \text{ ns}$<br>$P_D = 12 \text{ mW (Input High)}$<br>$2.5 \text{ mW (Inputs Low)}$                           |

(continued)

COMMERCIAL MRTL DEVICES AVAILABLE IN FLAT PACKAGES (continued)

GATES (continued)

|                                                                                                                           |                                                                                                                            |                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| <b>MC725F Dual 4-Input Gate</b><br>(medium-power)                                                                         | <b>MC719F Dual 4-Input Gate</b><br>(milliwatt)                                                                             | <b>MC792F Triple 3-Input Gate</b><br>(medium-power)                                                                   |
| <br>$1 = 2 + 3 + 5 + 6$<br>$t_{pd} = 12 \text{ ns}$<br>$P_D = 60 \text{ mW (Input High)}$<br>$15 \text{ mW (Inputs Low)}$ | <br>$1 = 2 + 3 + 5 + 6$<br>$t_{pd} = 27 \text{ ns}$<br>$P_D = 13 \text{ mW (Input High)}$<br>$2.5 \text{ mW (Inputs Low)}$ | <br>$6 = 3 + 4 + 5$<br>$t_{pd} = 12 \text{ ns}$<br>$P_D = 82 \text{ mW (Input High)}$<br>$24 \text{ mW (Inputs Low)}$ |
| <b>MC793F Triple 3-Input Gate</b><br>(milliwatt)                                                                          | <b>MC724F Quad 2-Input Gate</b><br>(medium-power)                                                                          | <b>MC717F Quad 2-Input Gate</b><br>(milliwatt)                                                                        |
| <br>$12 = 1 + 2 + 13$<br>$t_{pd} = 27 \text{ ns}$<br>$P_D = 18 \text{ mW (Inputs High)}$<br>$3.5 \text{ mW (Inputs Low)}$ | <br>$3 = 1 + 2$<br>$t_{pd} = 12 \text{ ns}$<br>$P_D = 100 \text{ mW (Input High)}$<br>$30 \text{ mW (Inputs Low)}$         | <br>$3 = 1 + 2$<br>$t_{pd} = 27 \text{ ns}$<br>$P_D = 20 \text{ mW (Input High)}$<br>$5.0 \text{ mW (Inputs Low)}$    |

**MC771F Quad Exclusive "OR" Gate**  
 (medium-power)



INVERTERS

|                                                                                                                     |                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <b>MC727F Quad Inverter</b><br>(medium-power)                                                                       | <b>MC789F Hex Inverter</b><br>(medium-power)                                                                         |
| <br>$9 = \bar{1}$<br>$t_{pd} = 12 \text{ ns}$<br>$P_D = 87 \text{ mW (Input High)}$<br>$30 \text{ mW (Inputs Low)}$ | <br>$6 = \bar{1}$<br>$t_{pd} = 12 \text{ ns}$<br>$P_D = 130 \text{ mW (Input High)}$<br>$15 \text{ mW (Inputs Low)}$ |

## BUFFERS



## EXPANDERS



**FLIP-FLOPS**
**MC720F J-K Flip-Flop  
(milliwatt)**


$t_{pd} = 50$  ns  
 $P_D = 20.5$  mW (Only Clock Input High)  
 $14.5$  mW (Inputs Low)

**MC722F J-K Flip-Flop  
(milliwatt)**


$t_{pd} = 70$  ns  
 $P_D = 24$  mW (Only Clock Input High)  
 $20$  mW (Inputs Low)

**MC726F J-K Flip-Flop  
(medium-power)**


$f_{Tog} = 4.0$  MHz  
 $t_{pd} = 35$  ns  
 $P_D = 100$  mW (Only Clock Input High)  
 $86$  mW (Inputs Low)

**J-K FLIP-FLOP TRUTH TABLES**

 DIRECT INPUT OPERATION ①  
 MC722 and MC726 only

| S <sub>D</sub> | C <sub>D</sub> | Q | Q̄ |
|----------------|----------------|---|----|
| 0              | 0              | ② | ②  |
| 1              | 0              | 1 | 0  |
| 0              | 1              | 0 | 1  |
| 1              | 1              | 0 | 0  |

 CLOCKED INPUT OPERATION ③  
 all types

| $t_n$ ④ | $t_{n+1}$ ④ |
|---------|-------------|
| S       | C           |
| 1       | 1           |
| 1       | 0           |
| 0       | 1           |
| 0       | 0           |

| $t_n$ ④ | $Q_n$ ⑤ | $\bar{Q}_n$ ⑤ |
|---------|---------|---------------|
| 1       | 1       | 0             |
| 1       | 0       | 1             |
| 0       | 1       | 0             |
| 0       | 0       | 1             |

1. Clock (T) to remain unchanged.
2. The output state will not change when the input state goes from S<sub>D</sub> = C<sub>D</sub> to S<sub>D</sub> = C<sub>D</sub> = 0. The output state cannot be predetermined in the case where the input goes from S<sub>D</sub> = C<sub>D</sub> = 1 to S<sub>D</sub> = C<sub>D</sub> = 0.
3. Direct inputs (C<sub>D</sub> and S<sub>D</sub>) must be low.
4. The time period prior to the negative transition of the clock pulse is denoted  $t_n$  and the time period subsequent to this transition is denoted  $t_{n+1}$ .
5.  $Q_n$  is the state of the Q output in the time period  $t_n$ .

**MC723F J-K Flip-Flop  
(medium-power)**


$f_{Tog} = 4.0$  MHz  
 $t_{pd} = 35$  ns  
 $P_D = 91$  mW (Only Clock Input High)  
 $79$  mW (Inputs Low)

**MC776F Dual J-K Flip-Flop  
(milliwatt)**


$t_{pd} = 50$  ns  
 $f_{Tog} = 3.0$  MHz min  
 $P_D = 41$  mW (Only Clock Input High)  
 $29$  mW (Inputs Low)

**MC790F Dual J-K Flip-Flop  
(medium-power)**


$t_{pd} = 35$  ns  
 $f_{Tog} = 4.0$  MHz  
 $P_D = 182$  mW (Only Clock Input High)  
 $158$  mW (Inputs Low)

**MC791F Dual J-K Flip-Flop  
(medium-power)**


$t_{pd} = 40$  ns  
 $P_D = 190$  mW (Only Clock Input High)  
 $160$  mW (Inputs Low)

**MC713F Type D Flip-Flop  
(milliwatt)**


$t_{pd} = 75$  ns  
 $P_D = 24$  mW (Direct Set and Direct Clear Inputs Low, All other Inputs High)  
 $17.5$  mW (All Inputs Low)

| DIRECT INPUT OPERATION ① |                | CLOCKED INPUT OPERATION ③ |    |
|--------------------------|----------------|---------------------------|----|
| S <sub>D</sub>           | C <sub>D</sub> | Q                         | Q̄ |
| 0                        | 0              | ②                         | ②  |
| 1                        | 0              | 1                         | 0  |
| 0                        | 1              | 0                         | 1  |
| 1                        | 1              | 0                         | 0  |

1. Clock (T input) must be high.
2. The output state will not change when the input state goes from S<sub>D</sub> = C<sub>D</sub> to S<sub>D</sub> = C<sub>D</sub> = 0. The output state cannot be predetermined in the case where the input goes from S<sub>D</sub> = C<sub>D</sub> = 1 to S<sub>D</sub> = C<sub>D</sub> = 0.
3. Direct inputs (C<sub>D</sub> and S<sub>D</sub>) must be low.
- 0 = low state  
 1 = high state  
 $t_n$  = time period prior to negative transition of pulse  
 $t_{n+1}$  = time period subsequent to negative transition of clock pulse

**MC778F Dual Type D Flip-Flop  
(milliwatt)**


$t_{pd} = 60$  ns  
 $f_{Tog} = 1.0$  MHz  
 $P_D = 48$  mW (Direct Set and Direct Clear Inputs Low, All other Inputs High)  
 $35$  mW (All Inputs Low)

COMMERCIAL MRTL DEVICES AVAILABLE IN FLAT PACKAGES (continued)

### HALF ADDERS



### FULL ADDER



### FULL SUBTRACTOR



**HALF-SHIFT REGISTERS****MC706F Half-Shift Register  
(without inverter—medium-power)**

$t_{pd} = 22 \text{ ns}$   
 $P_D = 52 \text{ mW}$

**MC784F Dual Half-Shift Register  
(without inverter—medium-power)**

$$9 = \overline{\overline{7}}(2+3)$$

$$7 = \overline{\overline{9}}(3+4)$$

**MC705F Half-Shift Register  
(with inverter—medium-power)**

$t_{pd} = 22 \text{ ns}$   
 $P_D = 75 \text{ mW}$

**MC783F Dual Half-Shift Register  
(with inverter—medium-power)**

$$3 = \overline{\overline{1}}(4+5)$$

$$1 = \overline{\overline{3}}(6+5)$$

$t_{pd} = 22 \text{ ns}$

$P_D = 100 \text{ mW}$

$t_{pd} = 22 \text{ ns}$

$P_D = 140 \text{ mW}$