Wydział Elektrotechniki i Informatyki Politechniki Lubelskiej	Laboratorium Podstaw Elektrotechniki i Elektroniki						
Skład osobowy grupy laboratoryjnej:	Rok akademicki:	Kierunek studiów: IIS / IIN	Stanowisko:				
	Semestr: zimowy	Grupa:					
Temat ćwiczenia: Obwody sprzężone magnetyc	Data wykonania:	Podpis:					

Zadanie 6.1. Badanie pojedynczych cewek indukcyjnych

Rys. 1. Schemat układu pomiarowego do wyznaczenia parametrów cewek (Atr. – autotransformator jednofazowy, Odł. – odłącznik stanowiskowy, A – amperomierz prądu zmiennego, R_1 , R_2 – rezystancje własne cewek, L_1 , L_2 – indukcyjności własne cewek)

Tabela 1. Tabela pomiarowo-obliczeniowa do badania cewek indukcyjnych

Nim		War	tości zmierz	zone	Wartości obliczone						
Nr. cewki	lp.	$oldsymbol{U}$	I	P	$\cos \varphi$	Z	$X_{ m L}$	R	L		
cewki	_	V	A	W		Ω	Ω	Ω	mH		
	1										
1	2										
	3										
			•				Śr.				
	1										
2	2										
	3										
	•	•	•	•			Śr.				

Miejsce na notatki:

Celem zadania jest obliczenie parametrów cewek – rezystancji uzwojenia R oraz indukcyjności własnej L, na podstawie wartości zmierzonych. W tabeli należy dokonać uśrednienia tych parametrów.

Zadanie 6.2. Badanie szeregowego układu połączenia cewek magnetycznie sprzężonych

Rys. 2. Schemat układu pomiarowego do wyznaczenia parametrów cewek połączonych szeregowo (Atr. – autotransformator jednofazowy, Odł. – odłącznik stanowiskowy, A – amperomierz prądu zmiennego, V_1 , V_2 – woltomierze napięcia zmiennego, R_1 , R_2 – rezystancje własne cewek, L_1 , L_2 – indukcyjności własne cewek bezrdzeniowych): a) połączonych zgodnie, b) połączonych przeciwnie

Tabela 2. Badanie szeregowego połączenia cewek sprzężonych magnetycznie

Połączenie cewek			W	artości :	zmierzo	Wartości obliczone						
	lp.	l	$\boldsymbol{\mathit{U}}$	U_1	U_2	I	P	Z	$\cos \varphi$	X	M	k
	_	cm	V	V	V	A	W	Ω		Ω	mH	
	1											
	2											
	3											
ne	4											
[W]	5											
Przeciwne	6											
Pr	7											
	8											
	9											
	10											
	1											
	2											
	3											
4)	4											
ф	5											
Zgodne	6											
Ζ	7]									
	8]									
	9]									
	10		1									

Indukcyjność wzajemną M wyznacza się ze wzoru:

$$M = \frac{Z_z^2 - Z_p^2}{8 \cdot \omega^2 \cdot \left(L_1 + L_2\right)},$$

gdzie Z_z i Z_p – moduły impedancji obwodu dla połączeń zgodnego i przeciwnego.

- Wykres fazorowy prądów i napięć dla jednej wartości odległości *l* przy obydwu sprzężeniach;
- Charakterystyki M(l), k(l), X(l);
- Po jednym przykładzie obliczeń dla Z, $\cos \varphi$, X, M, k.

Zadanie 6.3. Badanie równoległego układu połączenia cewek magnetycznie sprzężonych

Rys. 3. Schemat układu pomiarowego do wyznaczenia parametrów cewek połączonych równoległe (Atr. – autotransformator jednofazowy, Odł. – odłącznik stanowiskowy, A, A_1 , A_2 – amperomierze prądu zmiennego, R_1 , R_2 – rezystancje własne cewek, L_1 , L_2 – indukcyjności własne cewek bezrdzeniowych): a) połączonych zgodnie, b) połączonych przeciwnie

Tabela 3. Tabela badań równoległego połączenia cewek sprzężonych magnetycznie

Połączenie cewek			W	artości	Wa	Wartości obliczone				
	lp.	l	\boldsymbol{U}	I_1	I_2	I	P	Z	R	X
		cm	V	A	A	A	W	Ω	Ω	Ω
	1									
	2									
	3									
ne	4									
Przeciwne	5									
ec.	6									
$\mathbf{P}_{\mathbf{r}}$	7									
	8									
	9									
	10									
	1									
	2									
	3									
ø	4									
Zgodne	5									
ZgC	6									
	7									
	8									
	9									
	10									
		M =					k =			

Należy wyznaczyć wartości *M* i *k* dla jednej odległości *l* pomiędzy cewkami. Wyniki obliczeń należy zapisać w tabeli. Do wykonania obliczeń *Z*, *R*, *X* można wykorzystać następujące zależności:

$$Z = \frac{U}{I}, \qquad P = U \cdot I \cdot \cos \varphi, \qquad R = Z \cdot \cos \varphi, \qquad X = Z \cdot \sin \varphi.$$

- Charakterystyki Z(l), R(l), X(l);
- Po jednym przykładzie obliczeń dla Z, X, R.

Zadanie 6.4. Badanie układu transformatora powietrznego w stanie jałowym

Rys. 4. Schemat układu pomiarowego do transformatora powietrznego w stanie jałowym (Atr. – autotransformator jednofazowy, Odł. – odłącznik stanowiskowy, A, – amperomierz prądu zmiennego, V_2 – woltomierz napięcia zmiennego, V_3 – rezystancje własne cewek, V_3 – indukcyjności własne cewek)

Tabela 4. Tabela badań transformatora powietrznego w stanie jałowym

				$U_1 =$		$U_1 =$						
	1	Wartości zmierzone		Wartości obliczone				tości	Wartości obliczone			
l.p.	l *						zmiei	rzone				
		U_2	I_1	g_{u}	M	k	U_2	I_1	g_{u}	M	k	
	cm	V	A		mH		V	A		mH		
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												

Indukcyjność wzajemną M wyznacza się na podstawie wzoru:

$$U_2 = X_M \cdot I_1$$
, gdzie $X_M = \omega \cdot M$.

Współczynnik sprzężenia magnetycznego:

$$k = \frac{M}{\sqrt{L_1 \cdot L_2}}.$$

Przekładnia napięciowa transformatora w stanie jałowym:

$$\mathcal{G}_{\mathrm{u}} = \frac{U_{1}}{U_{2}},$$

gdzie U_2 – napięcie indukowane zgodnie z prawem indukcji elektromagnetycznej.

- Charakterystyki $U_2(l)$, $I_1(l)$, M(l) oraz $\vartheta_u(l)$ dla jednej wartości U_1 ;
- Po jednym przykładzie obliczeń dla θ_u , M i k.

Zadanie 6.5. Badanie układu transformatora powietrznego pod obciążeniem

Rys. 5. Schemat układu pomiarowego do badania obciążenia transformatora (Atr. – autotransformator jednofazowy, Odł. – odłącznik stanowiskowy, V_2 – woltomierz napięcia zmiennego, A_1 , A_2 – amperomierze prądu zmiennego, R_0 – rezystor regulowany, R_1 , R_2 – rezystancje własne cewek, L_1 , L_2 – indukcyjności własne cewek)

Tabela 5. Tabela badań transformatora powietrznego w stanie obciążenia

		War	tości zmie	rzone		Wartości obliczone						
lp.	U_1	U_2	I_1	I_2	P	g_{u}	R_0	Z_{we}	$R_{ m we}$	$X_{ m we}$		
	V	V	A	A	W		Ω	Ω	Ω	Ω		
1												
2												
3												
4												
5												
6												
7												
8												

Do wykonania obliczeń można wykorzystać następujące zależności:

$$Z_{\rm we} = \frac{U_1}{I_1}, \qquad P = U_1 \cdot I_1 \cdot \cos \varphi, \qquad R_{\rm we} = Z_{\rm we} \cdot \cos \varphi, \qquad X_{\rm we} = Z_{\rm we} \cdot \sin \varphi.$$

Rezystancję rezystora regulowanego R_0 należy obliczyć z prawa Ohma dla obwodu wtórnego.

Przekładnia napięciowa transformatora w stanie obciążenia:

$$\theta_{\rm u} = \frac{U_1}{U_2},$$

gdzie U_2 – napięcie na odbiorniku.

- Charakterystyki $Z_{we}(R_0)$, $I_1(R_0)$, $U_2(R_0)$;
- Po jednym przykładzie obliczeń dla θ_u , R_0 , Z_{we} , R_{we} , X_{we} ;
- Wykres fazorowy prądów i napięć dla jednej wartości rezystancji R_0 .