1 Time Complexity

Master's theorem for $T(n) = aT(\frac{n}{h}) + f(n)$ where $a \ge 1$ Let $c_{crit} = log_h(a)$ and if $f(n) = \theta(n^c)$

- 1. If $c < c_{crit}$ then $T(n) = \theta(n^{c_{crit}})$
- 2. If $c = c_{crit}$ then $T(n) = \theta(n^c log(n))$
- 3. If $c > c_{crit}$ then $T(n) = \theta(f(n))$
- 4. If $f(n) = \theta(n^{c_{crit}} \log^k(n))$, then T(n) = $\theta(n^{c_{crit}} \log^{k+1}(n))$

2 Sorting

2.1 Bubblesort

Time complexity: $\Omega(n) \theta(n^2) O(n^2)$

Invariant: At the end of iteration j, the biggest j items are correctly sorted in the final j positions of the array.

2.2 SelectionSort

Time complexity: $\Omega(n^2) \theta(n^2) O(n^2)$

Invariant: At the end of iteration j: the smallest j items are correctly sorted in the first j positions of the array.

2.3 InsertionSort

Time complexity: $\Omega(n) \theta(n^2) O(n^2)$ Invariant: At the end of iteration j: the first j items of the array are sorted in order.

```
for (x = 1 \text{ to arr.len}):
i = x - 1
store = arr[x]
while(j >= 0 \&\& arr[j] > store):
   arr[j + 1] = arr[j]
arr[j+1] = store
```

2.4 OuickSort

Time complexity: $\Omega(nlog(n))$ $\theta(nlog(n))$ $O(n^2)$ O(nlog(n)) (for paranoid QuickSort)

Invariant: For every i < low: B[i] < pivot and for every j > high: B[j] > pivot. Duplicates: Use three-way partition to store duplicates.

2.5 MergeSort

Time complexity: $\Omega(nlog(n)) \theta(nlog(n)) O(nlog(n))$ Invariant: At the end of each loop, the subarrays are sorted.

QuickSelect 2.6

Time complexity: $\Omega(n) \theta(n) O(n^2)$ Invariant: For every i < low: B[i] < pivot and for every j > high: B[j] > pivot.

TopoSort

Time complexity: O(V + E)

Trees

3.1 Binary Search Tree (BST)

Only has 2 children per node. Left child is smaller than parent. Right child is larger than parent. Operations: O(log(n)) / O(n) (balanced)

3.2 AVL Tree

Maximum height between two children tree is 1. Operations: O(log(n))

Left Rotation:

Right Rotation:

Insertion Max Rotations: 2

Deletion Max Rotations: log(n)Invariant: |height(u) - height(v)| < 2 if v andu are sibling nodes. |height(u) - height(v)| > 0 if u is the parent node of v.

3.3 Order Statistics (Rank finding)

AVL Tree augmented with a weight property in each node.

Updating weights on rotate: O(1)

```
rank = weight(node.right) + 1
while(node != null && node.parent != null):
   if (node.parent.left == node):
     rank += weight(node.parent.right) + 1
     node = node.parent
FindRanks(currentRank, node, targetRank):
   check = currentRank + weight(node.left) + 1
   if (check == targetRank):
     return node
   elif (check < targetRank):
     return FindRanks(currentRank, node.right,
           targetRank)
  else:
     return FindRanks(currentRank, node.left,
           targetRank)
```

3.4 Interval Trees

Store the maximum value of entire subtree under a node as a parameter. Update max during rotations by taking Math.max of all children under the two nodes being swapped.

Time complexity: O(log(n))

```
interval-search(x)
    c = root:
    while (c = null and x is not in c.interval) do
        if (c. left == null) then
            c = c.right;
        else if (x > c. left.max) then
            c = c.right;
        else c = c. left;
            return c. interval:
```

1D Range Finding

All leaves hold the value, each internal node v stores the MAX of any leaf in the left sub-tree.

Operations:

findSplit Finds the node to start searching.

Traverse the left subtree

traverseLeft after findSplit.

traverseRight Traverse the right subtree

after findSplit.

Complexity:

Query	O(k + log(n))
Build	O(nlog(n))
Space	O(n)

(a, b) trees

An (a, b) tree has a bound of $2 \le a \le \frac{b+1}{2}$.

Rules:

Node Type	#Keys		#Children	
	Min	Max	Min	Max
Root	1	b - 1	2	b
Internal	a - 1	b - 1	a	b
Leaf	a - 1	b - 1	0	0

Hashing

Heaps

Graphs

Dynamic Programming