<u>First_Thermo.ThermoSysPro</u>.Experiments

contains the components with failures

Package Content

Name	Description
<u>Expression</u>	varying expression
Fipe3	Lumped straight pipe (circular duct) with failures
<u>SwitchValve</u>	Switch valve with failures
<u>SwitchValve7</u>	Switch valve with failures
SwitchValve8	Switch valve with failures
Pump2	StaticCentrifugalPump with failures
PumpN15	CentrifugalPump with failures

First Thermo.ThermoSysPro.Experiments.Expression

varying expression

Information

Adapted from the Modelica.Blocks.Sources librarys

Version 1.0

Parameters

Туре	Name	Default	Description
Real	ехр	1	equation of the output (time-varying)

Connectors

Туре	Name	Description
<u>OutputReal</u>	у	output

```
block Expression "varying expression"
  Real exp=1 "equation of the output (time-varying)";
  ThermoSysPro.InstrumentationAndControl.Connectors.OutputReal y "output";
equation
  y.signal = exp;
end Expression;
```


First Thermo.ThermoSysPro.Experiments.Pipe3

Lumped straight pipe (circular duct) with failures

Information

The pipe can present a leak, a partial clogging, or both.

Parameters

Туре	Name	Default	Description	
<u>Length</u>	L	10.	Pipe length [m]	
<u>Diameter</u>	D	0.2	Pipe internal hydraulic diameter [m]	
Real	lambda	0.03	Friction pressure loss coefficient (active if lambda_fixed=true)	
Real	rugosrel	0.0001	Pipe roughness (active if lambda_fixed=false)	
<u>Position</u>	z1	0	Inlet altitude [m]	
<u>Position</u>	z2	0	Outlet altitude [m]	
Boolean	lambda_fixed	true	true: lambda given by parameter - false: lambde computed using Idel'Cik correlation	
Boolean	inertia	false	true: momentum balance equation with inertia - false: without inertia	
Boolean	continuous_flow_reversal	false	true: continuous flow reversal - false: discontinuous flow reversal	
Integer	fluid	1	1: water/steam - 2: C3H3F5	
Density	p_rho	0	If > 0, fixed fluid density [kg/m3]	
Integer	mode	0	IF97 region. 1:liquid - 2:steam - 4:saturation line - 0:automatic	

Connectors

Туре	Name	Description
<u>FluidInletI</u>	fluidInletI	
<u>FluidOutletI</u>	fluidOutletI	

```
model Pipe3 "Lumped straight pipe (circular duct) with failures"
  parameter Modelica.SIunits.Length L=10. "Pipe length";
  parameter Modelica. SIunits. Diameter D=0.2 "Pipe internal hydraulic diameter";
  parameter Real lambda=0.03
                                 "Friction pressure loss coefficient (active if lambda_fixed=true)";
  parameter Real rugosrel=0.0001
                                     "Pipe roughness (active if lambda fixed=false)";
  parameter Modelica. SIunits. Position z1=0 "Inlet altitude";
  parameter Modelica. SIunits. Position z2=0 "Outlet altitude";
  parameter Boolean lambda_fixed=true
                                          "true: lambda given by parameter - false: lambde computed using Idel'Cik correlation";
  parameter Boolean inertia=false
                                   "true: momentum balance equation with inertia - false: without inertia";
                                                       "true: continuous flow reversal - false: discontinuous flow reversal";
  parameter Boolean continuous flow reversal=false
  parameter Integer fluid=1 "1: water/steam - 2: C3H3F5";
  parameter Modelica.SIunits.Density p_rho=0 "If > 0, fixed fluid density";
  parameter Integer mode=0
                               "IF97 region. 1:liquid - 2:steam - 4:saturation line - 0:automatic";
```

```
WaterSteam.PressureLosses.ThreeWayValve
                                             splitter2 1
                                                             "control of the leaking (1 = no leak)";
WaterSteam.BoundaryConditions.SinkP
                                                 sink1 "sink for the leak";
WaterSteam.PressureLosses.SingularPressureLoss
  singularPressureLoss;
WaterSteam.PressureLosses.SingularPressureLoss
  singularPressureLoss1;
WaterSteam.PressureLosses.LumpedStraightPipe
                                                           lumpedStraightPipe(
 L=L.
 D=D.
  lambda=lambda,
 rugosrel=rugosrel,
  z1=z1.
  z2=z2,
  lambda_fixed=lambda_fixed,
  inertia=inertia,
  continuous flow reversal=continuous flow reversal,
  fluid=fluid,
 p rho=p rho,
 mode=mode) "standard pipe";
InstrumentationAndControl.Blocks.NonLineaire.Selecteur
                                                                     selecteur;
InstrumentationAndControl.Blocks.Sources.Constante
                                                                 constante(k=1);
InstrumentationAndControl.Blocks.Sources.Constante
                                                                 constantel(k=0.4);
Modelica_StateGraph2.Step OK(
 nOut=2,
 nIn=3.
 initialStep=true) "normal pipe";
Modelica_StateGraph2.Step clogged(nIn=1, nOut=2) "partially clogged pipe";
Transitions detailed.newTransitions.MultiTransition fail clogged(immediate=false,
Transitions_detailed.newTransitions.MultiTransition repair_cloq20K(
  immediate=false.
 kind=1,
 delayTime=0.5);
WaterSteam.Connectors.FluidInletI
                       fluidInletI;
WaterSteam.Connectors.FluidOutletI
                        fluidOutletI;
WaterSteam.PressureLosses.ControlValve controlValve
                                                         "control of the clogging (0 = completely clogged)";
Modelica_StateGraph2.Step leak(nIn=1, nOut=2) "leaking pipe";
Transitions_detailed.newTransitions.MultiTransition fail_leak(immediate=false,
    kind=2);
Transitions_detailed.newTransitions.MultiTransition repair_clog2OK1(
  immediate=false,
 kind=1.
 delayTime=0.5);
Modelica_StateGraph2.Step both(nOut=1, nIn=2)
                                                   "partially clogged and leaking pipe";
Transitions detailed.newTransitions.MultiTransition fail cloq2both(immediate=false,
```

```
kind=2);
 Transitions_detailed.newTransitions.MultiTransition fail_leak2both(immediate=false,
 Transitions_detailed.newTransitions.MultiTransition repair_both2OK(
    immediate=false,
   kind=1.
   delayTime=0.5);
equation
  // control of the leak
 selecteur.uCond.signal = OK.active or clogged.active;
 // control of the clogging
 controlValve.Ouv.signal = if OK.active or leak.active then 1 else 0.6;
 connect(singularPressureLoss1.C2,sink1. C);
 connect(lumpedStraightPipe.C2,singularPressureLoss. C1);
 connect(constantel.y,selecteur. u2);
 connect(constante.y, selecteur. u1);
 connect(clogged.inPort[1], fail_clogged.outPort);
 connect(fail clogged.inPort, OK.outPort[1]);
 connect(repair_clog2OK.inPort, clogged.outPort[1]);
 connect(repair_clog2OK.outPort, OK.inPort[1]);
 connect(singularPressureLoss.C2, fluidOutletI);
 connect(controlValve.C1, fluidInletI);
 connect(fail_leak.inPort, OK.outPort[2]);
 connect(leak.inPort[1], fail_leak.outPort);
 connect(repair_clog20K1.outPort, OK.inPort[3]);
 connect(fail_clog2both.inPort, clogged.outPort[2]);
 connect(fail_leak2both.inPort, leak.outPort[1]);
 connect(repair_clog2OK1.inPort, leak.outPort[2]);
 connect(fail_clog2both.outPort, both.inPort[1]);
 connect(fail_leak2both.outPort, both.inPort[2]);
 connect(repair_both20K.inPort, both.outPort[1]);
 connect(repair_both2OK.outPort, OK.inPort[2]);
 connect(controlValve.C2, splitter2_1.C1);
 connect(splitter2_1.Ouv, selecteur.y);
 connect(splitter2_1.C2, lumpedStraightPipe.C1);
 connect(splitter2 1.C3, singularPressureLoss1.C1);
end Pipe3;
```


First Thermo.ThermoSysPro.Experiments.SwitchValve

Switch valve with failures

Information

This valve can present failures only linked to its open or closed states.

Parameters

Туре	Name	Default	Description
<u>PressureLossCoefficient</u>	k	1000	Pressure loss coefficient [m-4]
<u>MassFlowRate</u>	Qmin	1.e-6	Mass flow when the valve is closed [kg/s]
Boolean	continuous_flow_reversal	false	true: continuous flow reversal - false: discontinuous flow reversal
Integer	fluid	1	1: water/steam - 2: C3H3F5
Density	p_rho	0	If > 0, fixed fluid density [kg/m3]
Integer	mode	0	IF97 region. 1:liquid - 2:steam - 4:saturation line - 0:automatic

Connectors

Type	Name	Description
<u>FluidInletI</u>	fluidInletI	
<u>FluidOutletI</u>	fluidOutletI	
InputLogical	requestOpening	requested opening of the valve : true> open

```
model SwitchValve "Switch valve with failures"
  parameter ThermoSysPro.Units.PressureLossCoefficient k=1000
                                                                "Pressure loss coefficient";
  parameter Modelica.SIunits.MassFlowRate Qmin=1.e-6
                                                         "Mass flow when the valve is closed";
  parameter Boolean continuous_flow_reversal=false
                                                       "true: continuous flow reversal - false: discontinuous flow reversal";
  parameter Integer fluid=1 "1: water/steam - 2: C3H3F5";
  parameter Modelica.SIunits.Density p_rho=0 "If > 0, fixed fluid density";
  parameter Integer mode=0
                               "IF97 region. 1:liquid - 2:steam - 4:saturation line - 0:automatic";
  WaterSteam.Connectors.FluidInletI fluidInletI;
  WaterSteam.Connectors.FluidOutletI fluidOutletI;
  WaterSteam.PressureLosses.SwitchValve switchValve "standard switch valve";
  Modelica StateGraph2.Step Open(
   nOut=2,
   nIn=3.
    initialStep=true) "open valve";
  Transitions detailed.newTransitions.MultiTransition Inadv_Opening(immediate=false,
      kind=2) "inadvertent opening of the valve";
  Modelica_StateGraph2.Step StuckClosed(nIn=2, nOut=1) "stuck closed valve";
  Modelica_StateGraph2.Step StuckOpen(nIn=2, nOut=1) "stuck open valve";
  Modelica StateGraph2.Step Closed(nIn=1, nOut=2) "closed valve";
  Transitions_detailed.newTransitions.TransitionOnRequest Req_Closing
                                                                          "requested closing of the valve";
  Transitions detailed.newTransitions.TransitionOnRequest Req Opening
                                                                          "requested opening of the valve";
```

```
Transitions_detailed.newTransitions.MultiTransition Inadv_Closing(immediate=false,
      kind=2) "inadvertent closing of the valve";
 Transitions detailed.newTransitions.MultiTransition RepFromClosed(immediate=false,
      kind=3) "reparation from stuck closed state to open state";
 Transitions_detailed.newTransitions.MultiTransition RepFromOpen(immediate=false,
      kind=3) "reparation from stuck open state to open state";
 InstrumentationAndControl.Connectors.InputLogical requestOpening
                                                                       "requested opening of the valve : true --> open";
equation
  switchValve.Ouv.signal = Open.active or StuckOpen.active;
 Req Opening.request = requestOpening.signal;
 Req_Closing.request = not requestOpening.signal;
 connect(switchValve.C1, fluidInletI);
 connect(Open.outPort[1], Reg Closing.inPort);
 connect(Req_Closing.goodPath, Closed.inPort[1]);
 connect(Reg Closing.failingPath, StuckOpen.inPort[1]);
 connect(Closed.outPort[2], Reg Opening.inPort);
 connect(Req_Opening.goodPath, Open.inPort[3]);
 connect(Req_Opening.failingPath, StuckClosed.inPort[1]);
 connect(Inadv_Closing.inPort, Open.outPort[2]);
 connect(Inadv Closing.outPort, StuckClosed.inPort[2]);
 connect(StuckClosed.outPort[1], RepFromClosed.inPort);
 connect(RepFromClosed.outPort, Open.inPort[2]);
 connect(Inadv_Opening.inPort, Closed.outPort[1]);
 connect(Inadv_Opening.outPort, StuckOpen.inPort[2]);
 connect(StuckOpen.outPort[1], RepFromOpen.inPort);
 connect(RepFromOpen.outPort, Open.inPort[1]);
 connect(switchValve.C2, fluidOutletI);
end SwitchValve;
```


First Thermo.ThermoSysPro.Experiments.SwitchValve7

Switch valve with failures

Information

This valve can present failures linked to its open or closed states, and can present a leak on its left (blue) side.

Parameters

Туре	Name	Default	Description
<u>PressureLossCoefficient</u>	k	1000	Pressure loss coefficient [m-4]
<u>MassFlowRate</u>	Qmin	1.e-6	Mass flow when the valve is closed [kg/s]
Boolean	continuous_flow_reversal	false	true: continuous flow reversal - false: discontinuous flow reversal
Integer	fluid	1	1: water/steam - 2: C3H3F5
Density	p_rho	0	If > 0, fixed fluid density [kg/m3]
Integer	mode	0	IF97 region. 1:liquid - 2:steam - 4:saturation line - 0:automatic

Connectors

Туре	Name	Description
<u>FluidInletl</u>	fluidInletI	
<u>FluidOutletI</u>	fluidOutletI	
InputLogical	requestOpening	requested opening of the valve : true> open

```
model SwitchValve7 "Switch valve with failures"
  parameter ThermoSysPro.Units.PressureLossCoefficient k=1000
                                                                  "Pressure loss coefficient";
  parameter Modelica.SIunits.MassFlowRate Qmin=1.e-6
                                                         "Mass flow when the valve is closed";
  parameter Boolean continuous_flow_reversal=false
                                                       "true: continuous flow reversal - false: discontinuous flow reversal";
  parameter Integer fluid=1 "1: water/steam - 2: C3H3F5";
  parameter Modelica.SIunits.Density p_rho=0 "If > 0, fixed fluid density";
  parameter Integer mode=0
                               "IF97 region. 1:liquid - 2:steam - 4:saturation line - 0:automatic";
  WaterSteam.Connectors.FluidInletI fluidInletI;
  WaterSteam.Connectors.FluidOutletI fluidOutletI;
  WaterSteam.PressureLosses.SwitchValve switchValve "standard switch valve";
  Modelica StateGraph2.Step Open(
   nOut=2,
    nIn=3.
    initialStep=true) "open valve";
  Transitions detailed.newTransitions.MultiTransition Inadv_Opening(immediate=false,
      kind=2) "inadvertent opening of the valve";
  Modelica_StateGraph2.Step StuckClosed(nIn=2, nOut=1) "stuck closed valve";
  Modelica_StateGraph2.Step StuckOpen(nIn=2, nOut=1) "stuck open valve";
  Modelica_StateGraph2.Step Closed(nIn=1, nOut=2) "closed valve";
  Transitions_detailed.newTransitions.TransitionOnRequest Req_Closing
                                                                           "requested closing of the valve";
  Transitions detailed.newTransitions.TransitionOnRequest Req Opening
                                                                           "requested opening of the valve";
```

```
Transitions detailed.newTransitions.MultiTransition Inadv Closing(immediate=false,
    kind=2) "inadvertent closing of the valve";
Transitions_detailed.newTransitions.MultiTransition RepFromClosed(immediate=false,
    kind=3) "reparation from stuck closed state to open state";
Transitions_detailed.newTransitions.MultiTransition RepFromOpen(immediate=false,
    kind=3) "reparation from stuck open state to open state";
InstrumentationAndControl.Connectors.InputLogical requestOpening
                                                                      "requested opening of the valve : true --> open";
WaterSteam.PressureLosses.ThreeWayValve
                                            splitter2 1
                                                             "control of the leaking (1 = no leak)";
InstrumentationAndControl.Blocks.NonLineaire.Selecteur
                                                                     selecteur;
InstrumentationAndControl.Blocks.Sources.Constante
                                                                constante(k=0.9);
InstrumentationAndControl.Blocks.Sources.Constante
                                                                constantel(k=0.8);
WaterSteam.BoundaryConditions.SinkP
                                                sink1 "sink for the leak";
WaterSteam.PressureLosses.SingularPressureLoss
  singularPressureLoss1;
Modelica StateGraph2.Step Leak(nIn=1, nOut=1) "leaking closed valve";
Transitions detailed.newTransitions.MultiTransition leaking(immediate=false,
    kind=2) "inadvertent opening of the valve";
Transitions detailed.newTransitions.MultiTransition RepFromLeak(immediate=false,
    kind=3) "reparation from leaking state to OK state";
Modelica_StateGraph2.Step OK(
 nOut=1,
 nIn=1,
  initialStep=true) "open valve";
switchValve.Ouv.signal = Open.active or StuckOpen.active;
Req_Opening.request = requestOpening.signal;
Req_Closing.request = not requestOpening.signal;
selecteur.uCond.signal = not Leak.active;
connect(Open.outPort[1], Reg Closing.inPort);
connect(Req_Closing.goodPath, Closed.inPort[1]);
connect(Req_Closing.failingPath, StuckOpen.inPort[1]);
connect(Closed.outPort[2], Req_Opening.inPort);
connect(Req_Opening.goodPath, Open.inPort[3]);
connect(Req_Opening.failingPath, StuckClosed.inPort[1]);
connect(Inadv Closing.inPort, Open.outPort[2]);
connect(Inadv_Closing.outPort, StuckClosed.inPort[2]);
connect(StuckClosed.outPort[1], RepFromClosed.inPort);
connect(RepFromClosed.outPort, Open.inPort[2]);
connect(Inadv_Opening.inPort, Closed.outPort[1]);
connect(Inadv Opening.outPort, StuckOpen.inPort[2]);
connect(StuckOpen.outPort[1], RepFromOpen.inPort);
connect(RepFromOpen.outPort, Open.inPort[1]);
connect(switchValve.C2, fluidOutletI);
connect(constantel.y,selecteur. u2);
connect(constante.y, selecteur. u1);
connect(singularPressureLoss1.C2,sink1. C);
```

```
connect(leaking.outPort, Leak.inPort[1]);
connect(Leak.outPort[1], RepFromLeak.inPort);
connect(leaking.inPort, OK.outPort[1]);
connect(RepFromLeak.outPort, OK.inPort[1]);
connect(selecteur.y, splitter2_1.Ouv);
connect(splitter2_1.C1, fluidInletI);
connect(splitter2_1.C3, singularPressureLoss1.C1);
connect(splitter2_1.C2, switchValve.C1);
end SwitchValve7;
```


First Thermo.ThermoSysPro.Experiments.SwitchValve8

Switch valve with failures

file://C:\Users\A16330\Documents\MES DOCUMENTS\Bossoreille\20140905_Dossier_Bis\Final ... 22/09/2014

Information

This valve can present failures linked to its open or closed states, a leak on the blue side, a leak on the red side, an an internal leak (can not be completely closed).

Parameters

Туре	Name	Default	Description
PressureLossCoefficient	k	1000	Pressure loss coefficient [m-4]
<u>MassFlowRate</u>	Qmin	1.e-6	Mass flow when the valve is closed [kg/s]
Boolean	continuous_flow_reversal	false	true: continuous flow reversal - false: discontinuous flow reversal
Integer	fluid	1	1: water/steam - 2: C3H3F5
<u>Density</u>	p_rho	0	If > 0, fixed fluid density [kg/m3]
Integer	mode	0	IF97 region. 1:liquid - 2:steam - 4:saturation line - 0:automatic

Connectors

Туре	Name	Description
<u>FluidInletl</u>	fluidInletI	
<u>FluidOutletI</u>	fluidOutletI	
InputLogical	requestOpening	requested opening of the valve : true -> open

```
model SwitchValve8 "Switch valve with failures"
  parameter ThermoSysPro.Units.PressureLossCoefficient k=1000
                                                                  "Pressure loss coefficient";
  parameter Modelica.SIunits.MassFlowRate Qmin=1.e-6 "Mass flow when the valve is closed";
  parameter Boolean continuous_flow_reversal=false
                                                       "true: continuous flow reversal - false: discontinuous flow reversal";
  parameter Integer fluid=1 "1: water/steam - 2: C3H3F5";
  parameter Modelica.Slunits.Density p_rho=0 "If > 0, fixed fluid density";
  parameter Integer mode=0
                               "IF97 region. 1:liquid - 2:steam - 4:saturation line - 0:automatic";
  WaterSteam.Connectors.FluidInletI fluidInletI;
  WaterSteam.Connectors.FluidOutletI fluidOutletI;
  WaterSteam.PressureLosses.SwitchValve switchValve "standard switch valve";
  Modelica_StateGraph2.Step Open(
    nOut=2,
    nIn=3,
    initialStep=true) "open valve";
  Transitions_detailed.newTransitions.MultiTransition Inadv_Opening(immediate=false,
      kind=2) "inadvertent opening of the valve";
  Modelica_StateGraph2.Step StuckClosed(nIn=2, nOut=1) "stuck closed valve";
```

```
Modelica_StateGraph2.Step StuckOpen(nIn=2, nOut=1) "stuck open valve";
Modelica_StateGraph2.Step Closed(nIn=1, nOut=2) "closed valve";
Transitions detailed.newTransitions.TransitionOnRequest Req Closing
                                                                         "requested closing of the valve";
Transitions_detailed.newTransitions.TransitionOnRequest Req_Opening
                                                                         "requested opening of the valve";
Transitions detailed.newTransitions.MultiTransition Inadv_Closing(immediate=false,
    kind=2) "inadvertent closing of the valve";
Transitions detailed.newTransitions.MultiTransition RepFromClosed(immediate=false,
    kind=3) "reparation from stuck closed state to open state";
Transitions detailed.newTransitions.MultiTransition RepFromOpen(immediate=false,
    kind=3) "reparation from stuck open state to open state";
InstrumentationAndControl.Connectors.InputLogical requestOpening
                                                                      "requested opening of the valve : true -> open";
WaterSteam.PressureLosses.ThreeWayValve
                                            splitter2 1
                                                             "control of the leaking (1 = no leak)";
InstrumentationAndControl.Blocks.NonLineaire.Selecteur
                                                                     selecteur;
InstrumentationAndControl.Blocks.Sources.Constante
                                                                constante(k=1);
InstrumentationAndControl.Blocks.Sources.Constante
                                                                constantel(k=0.8);
WaterSteam.BoundaryConditions.SinkP
                                                sink1 "sink for the leak";
WaterSteam.PressureLosses.SingularPressureLoss
  singularPressureLoss1;
Modelica StateGraph2.Step Leak_pre(nIn=1, nOut=1) "leak before valve";
Transitions_detailed.newTransitions.MultiTransition pre_leaking(immediate=
      false, kind=2) "apparition of a leak before the valve";
Transitions_detailed.newTransitions.MultiTransition RepFromPreLeak(immediate=
     false, kind=3) "reparation from pre-leaking state to normal state";
Modelica StateGraph2.Step OK preLeak(
 nOut=1.
 nIn=1,
 initialStep=true) "no pre-leak";
WaterSteam.Volumes.VolumeA volumeA;
WaterSteam.Volumes.VolumeC volumeC;
WaterSteam.PressureLosses.ControlValve controlValve;
InstrumentationAndControl.Blocks.NonLineaire.Selecteur
                                                                     selecteur1;
InstrumentationAndControl.Blocks.Sources.Constante
                                                                 constante2(k=0);
InstrumentationAndControl.Blocks.Sources.Constante
                                                                 constante3(k=0.2);
Modelica_StateGraph2.Step Leak_intern(nIn=1, nOut=1)
                                                          "leak inside the valve when closed";
Transitions detailed.newTransitions.MultiTransition leaking1(
                                                             immediate=false,
    kind=2) "inadvertent opening of the valve";
Transitions detailed.newTransitions.MultiTransition RepFromInternLeak(immediate=
     false, kind=3) "reparation from intern-leaking state to normal state";
Modelica_StateGraph2.Step OK_internLeak(
 nOut=1,
 nIn=1,
  initialStep=true) "no intern-leak";
Modelica_StateGraph2.Step Leak_post(nIn=1, nOut=1) "leak after the valve";
Transitions detailed.newTransitions.MultiTransition post_leak(immediate=
      false, kind=2) "apparition of a leak after the valve";
Transitions_detailed.newTransitions.MultiTransition RepFromPostLeak(immediate=
```

```
false, kind=3) "reparation from post-leaking state to normal state";
 Modelica StateGraph2.Step OK postLeak(
   nOut=1.
   nIn=1,
   initialStep=true) "no post-leak";
 WaterSteam.PressureLosses.ThreeWayValve
                                              splitter2 2
                                                              "control of the leaking (1 = no leak)";
 WaterSteam.BoundaryConditions.SinkP
                                                  sink2 "sink for the leak";
 WaterSteam.PressureLosses.SingularPressureLoss
   singularPressureLoss2;
 InstrumentationAndControl.Blocks.NonLineaire.Selecteur
                                                                       selecteur2;
 InstrumentationAndControl.Blocks.Sources.Constante
                                                                  constante4(
                                                                             k=1);
 InstrumentationAndControl.Blocks.Sources.Constante
                                                                  constante5(k=0.8);
equation
 switchValve.Ouv.signal = Open.active or StuckOpen.active;
 Req Opening.request = requestOpening.signal;
 Req_Closing.request = not requestOpening.signal;
 // leaks part
 selecteur.uCond.signal = not Leak_pre.active;
 selecteur1.uCond.signal = not Leak_intern.active;
 selecteur2.uCond.signal = not Leak_post.active;
 connect(Open.outPort[1], Req_Closing.inPort);
 connect(Req_Closing.goodPath, Closed.inPort[1]);
 connect(Req_Closing.failingPath, StuckOpen.inPort[1]);
 connect(Closed.outPort[2], Req_Opening.inPort);
 connect(Req_Opening.goodPath, Open.inPort[3]);
 connect(Req_Opening.failingPath, StuckClosed.inPort[1]);
 connect(Inadv_Closing.inPort, Open.outPort[2]);
 connect(Inadv_Closing.outPort, StuckClosed.inPort[2]);
 connect(StuckClosed.outPort[1], RepFromClosed.inPort);
 connect(RepFromClosed.outPort, Open.inPort[2]);
 connect(Inadv_Opening.inPort, Closed.outPort[1]);
 connect(Inadv_Opening.outPort, StuckOpen.inPort[2]);
 connect(StuckOpen.outPort[1], RepFromOpen.inPort);
 connect(RepFromOpen.outPort, Open.inPort[1]);
 connect(constantel.y,selecteur. u2);
 connect(constante.y, selecteur. u1);
 connect(singularPressureLoss1.C2,sink1. C);
 connect(pre_leaking.outPort, Leak_pre.inPort[1]);
 connect(Leak pre.outPort[1], RepFromPreLeak.inPort);
 connect(pre_leaking.inPort, OK_preLeak.outPort[1]);
 connect(RepFromPreLeak.outPort, OK_preLeak.inPort[1]);
 connect(selecteur.y, splitter2_1.0uv);
 connect(splitter2_1.C1, fluidInletI);
 connect(splitter2_1.C3, singularPressureLoss1.C1);
 connect(splitter2_1.C2, volumeA.Ce1);
```

```
connect(volumeA.Cs1, switchValve.C1);
 connect(switchValve.C2, volumeC.Ce2);
 connect(controlValve.C1, volumeA.Cs2);
 connect(volumeC.Ce3, controlValve.C2);
 connect(constante3.y, selecteur1.u2);
 connect(constante2.y, selecteur1.u1);
 connect(selecteur1.y, controlValve.Ouv);
 connect(Leak intern.outPort[1], RepFromInternLeak.inPort);
 connect(RepFromInternLeak.outPort, OK_internLeak.inPort[1]);
 connect(OK_internLeak.outPort[1], leaking1.inPort);
 connect(leaking1.outPort, Leak_intern.inPort[1]);
 connect(Leak_post.outPort[1], RepFromPostLeak.inPort);
 connect(RepFromPostLeak.outPort, OK_postLeak.inPort[1]);
 connect(OK_postLeak.outPort[1], post_leak.inPort);
 connect(post leak.outPort, Leak post.inPort[1]);
 connect(volumeC.Cs, splitter2_2.C1);
 connect(splitter2_2.C2, fluidOutletI);
 connect(singularPressureLoss2.C2,sink2. C);
 connect(splitter2_2.C3, singularPressureLoss2.C1);
 connect(constante5.y, selecteur2.u2);
 connect(constante4.y, selecteur2.u1);
 connect(selecteur2.y, splitter2_2.Ouv);
end SwitchValve8;
```


First Thermo.ThermoSysPro.Experiments.Pump2

StaticCentrifugalPump with failures

Information

This pump can lose all power, lose 10% of its power, have a leak on the blue side, have a leak on the red side.

Parameters

Туре	Name	Default	Description
AngularVelocity_rpm	VRot	1400	Fixed rotational speed (active if fixed_rot_or_power=1 and rpm_or_mpower connector not connected) [rev/min]
Power	MPower	0.1e6	Fixed mechanical power (active if fixed_rot_or_power=2 and rpm_or_mpower connector not connected) [W]
AngularVelocity_rpm	VRotn	1400	Nominal rotational speed [rev/min]
Real	rm	0.85	Product of the pump mechanical and electrical efficiencies
Integer	fixed_rot_or_power	1	1: fixed rotational speed - 2: fixed mechanical power
Boolean	adiabatic_compression	false	true: compression at constant enthalpy - false: compression with varying enthalpy
Boolean	continuous_flow_reversal	false	true: continuous flow reversal - false: discontinuous flow reversal
Integer	fluid	1	1: water/steam - 2: C3H3F5
<u>Density</u>	p_rho	0	If > 0, fixed fluid density [kg/m3]
Integer	mode	0	IF97 region. 1:liquid - 2:steam - 4:saturation line - 0:automatic
Real	a1	-88.67	x^2 coef. of the pump characteristics $hn = f(vol_flow)$ (s2/m5)
Real	a2	0	x coef. of the pump characteristics hn = f(vol_flow) (s/m2)
Real	a3	43.15	Constant coef. of the pump characteristics hn = f(vol_flow) (m)
Real	b1	-3.7751	x^2 coef. of the pump efficiency characteristics rh = f(vol_flow) (s2/m6)
Real	b2	3.61	x coef. of the pump efficiency characteristics rh = f(vol_flow) (s/m3)
Real	b3	- 0.0075464	Constant coef. of the pump efficiency characteristics rh = f(vol_flow) (s.u.)

Connectors

Туре	Name	Description
<u>FluidInletl</u>	fluidInletI	
<u>FluidOutletI</u>	fluidOutletI	
<u>InputReal</u>	rpm_or_mpower	

```
model Pump 2 "StaticCentrifugalPump with failures"
  parameter ThermoSysPro.Units.AngularVelocity_rpm VRot=1400
                                                                  "Fixed rotational speed (active if fixed rot_or_power=1 and rpm_or_mpc
  parameter Modelica.SIunits.Power MPower=0.1e6
                                                    "Fixed mechanical power (active if fixed rot or power=2 and rpm or mpower connector
  parameter ThermoSysPro.Units.AngularVelocity rpm VRotn=1400
                                                                   "Nominal rotational speed";
  parameter Real rm=0.85
                             "Product of the pump mechanical and electrical efficiencies";
  parameter Integer fixed rot or power=1
                                             "1: fixed rotational speed - 2: fixed mechanical power";
  parameter Boolean adiabatic_compression=false
                                                     "true: compression at constant enthalpy - false: compression with varying enthalpy"
  parameter Boolean continuous flow reversal=false
                                                        "true: continuous flow reversal - false: discontinuous flow reversal";
  parameter Integer fluid=1 "1: water/steam - 2: C3H3F5";
  parameter Modelica. SIunits. Density p rho=0 "If > 0, fixed fluid density";
  parameter Integer mode=0
                               "IF97 region. 1:liquid - 2:steam - 4:saturation line - 0:automatic";
  parameter Real a1=-88.67
                               "x^2 coef. of the pump characteristics hn = f(vol_flow) (s2/m5)";
                          "x coef. of the pump characteristics hn = f(vol flow) (s/m2)";
  parameter Real a2=0
  parameter Real a3=43.15
                              "Constant coef. of the pump characteristics hn = f(vol_flow) (m)";
  parameter Real b1=-3.7751
                                "x^2 coef. of the pump efficiency characteristics rh = f(vol_flow) (s2/m6)";
  parameter Real b2=3.61
                             "x coef. of the pump efficiency characteristics rh = f(vol_flow) (s/m3)";
  parameter Real b3=-0.0075464
                                    "Constant coef. of the pump efficiency characteristics rh = f(vol flow) (s.u.)";
  WaterSteam.Connectors.FluidInletI fluidInletI;
  WaterSteam.Connectors.FluidOutletI fluidOutletI;
  WaterSteam.Machines.StaticCentrifugalPump pump(
    VRot=VRot,
    MPower=MPower,
    VRotn=VRotn,
    rm=rm,
    fixed_rot_or_power=fixed_rot_or_power,
    adiabatic_compression=adiabatic_compression,
    continuous_flow_reversal=continuous_flow_reversal,
    fluid=fluid,
    p rho=p rho.
    mode=mode,
    a1=a1,
    a2=a2
    a3=a3,
    b1=b1,
    b2=b2.
    b3=b3) "standard static centrifugal pump";
  WaterSteam.PressureLosses.ThreeWayValve
                                              splitter2_1
                                                               "control of the leaking (1 = no leak)";
  InstrumentationAndControl.Blocks.NonLineaire.Selecteur
                                                                       selecteur;
  InstrumentationAndControl.Blocks.Sources.Constante
                                                                   constante(k=1);
  InstrumentationAndControl.Blocks.Sources.Constante
                                                                   constantel(k=0.8);
  WaterSteam.BoundaryConditions.SinkP
                                                  sink1 "sink for the leak";
  WaterSteam.PressureLosses.SingularPressureLoss
```

```
singularPressureLoss1;
Modelica StateGraph2.Step Leak_pre(nIn=1, nOut=1) "leak before valve";
Transitions_detailed.newTransitions.MultiTransition pre_leaking(immediate=
      false, kind=2) "apparition of a leak before the valve";
Transitions_detailed.newTransitions.MultiTransition RepFromPreLeak(immediate=
     false, kind=3) "reparation from pre-leaking state to normal state";
Modelica StateGraph2.Step OK preLeak(
 nOut=1.
 nIn=1.
 initialStep=true) "no pre-leak";
Modelica StateGraph2.Step Leak post(nIn=1, nOut=1) "leak after the valve";
Transitions detailed.newTransitions.MultiTransition post_leak(immediate=
      false, kind=2) "apparition of a leak after the valve";
Transitions detailed.newTransitions.MultiTransition RepFromPostLeak(immediate=
     false, kind=3) "reparation from post-leaking state to normal state";
Modelica StateGraph2.Step OK postLeak(
 nOut=1.
 nIn=1,
  initialStep=true) "no post-leak";
WaterSteam.PressureLosses.ThreeWayValve
                                            splitter2_2
                                                             "control of the leaking (1 = no leak)";
WaterSteam.BoundaryConditions.SinkP
                                                sink2 "sink for the leak";
WaterSteam.PressureLosses.SingularPressureLoss
  singularPressureLoss2;
InstrumentationAndControl.Blocks.NonLineaire.Selecteur
                                                                     selecteur2;
InstrumentationAndControl.Blocks.Sources.Constante
                                                                 constante4(
                                                                           k=1);
InstrumentationAndControl.Blocks.Sources.Constante
                                                                constante5(k=0.8);
InstrumentationAndControl.Connectors.InputReal rpm_or_mpower;
InstrumentationAndControl.Blocks.Math.Add add(k2=-1);
InstrumentationAndControl.Blocks.Math.Gain gain(Gain=0.1);
InstrumentationAndControl.Blocks.NonLineaire.Selecteur selecteur1;
Modelica_StateGraph2.Step Loss(nIn=1, nOut=2) "loss";
Transitions_detailed.newTransitions.MultiTransition loss_pump(immediate=false,
    kind=2) "apparition of a loss";
Transitions_detailed.newTransitions.MultiTransition RepFromLoss(immediate=false,
    kind=3) "reparation from loss state to normal state";
Modelica_StateGraph2.Step OK_flow(
 nIn=2,
  initialStep=true,
 nOut=2) "no loss";
Modelica_StateGraph2.Step Down(nIn=2, nOut=1) "down";
Transitions detailed.newTransitions.MultiTransition down pump1(
                                                               immediate=false,
    kind=2) "failing of the pump";
Transitions detailed.newTransitions.MultiTransition RepFromDown(immediate=false,
    kind=3) "reparation from down state to normal state";
InstrumentationAndControl.Blocks.NonLineaire.Selecteur selecteur3;
```

```
InstrumentationAndControl.Blocks.Sources.Constante
                                                                   constante2(k=0);
 Transitions detailed.newTransitions.MultiTransition loss2down pump(immediate=false,
      kind=2) "apparition of a loss";
equation
  // failures part
 selecteur.uCond.signal = not Leak pre.active;
 selecteur2.uCond.signal = not Leak post.active;
 selecteur1.uCond.signal = not Loss.active;
 selecteur3.uCond.signal = not Down.active;
 // part of the classic model for the pump
 if (cardinality(rpm_or_mpower) == 0) then
   if (fixed rot or power == 1) then
      rpm_or_mpower.signal = VRot;
    elseif (fixed rot or power == 2) then
      rpm or mpower.signal = MPower;
      assert(false, "StaticCentrifugalPump: incorrect option");
    end if;
 end if;
 connect(constantel.y,selecteur. u2);
  connect(constante.y, selecteur. u1);
 connect(singularPressureLoss1.C2,sink1. C);
 connect(pre_leaking.outPort, Leak_pre.inPort[1]);
 connect(Leak_pre.outPort[1], RepFromPreLeak.inPort);
 connect(pre_leaking.inPort, OK_preLeak.outPort[1]);
 connect(RepFromPreLeak.outPort, OK_preLeak.inPort[1]);
 connect(selecteur.y, splitter2 1.0uv);
 connect(splitter2_1.C1, fluidInletI);
 connect(splitter2_1.C3, singularPressureLoss1.C1);
 connect(Leak_post.outPort[1], RepFromPostLeak.inPort);
 connect(RepFromPostLeak.outPort, OK_postLeak.inPort[1]);
 connect(OK_postLeak.outPort[1], post_leak.inPort);
 connect(post leak.outPort, Leak post.inPort[1]);
 connect(splitter2_2.C2, fluidOutletI);
 connect(singularPressureLoss2.C2,sink2. C);
 connect(splitter2_2.C3, singularPressureLoss2.C1);
 connect(constante5.y, selecteur2.u2);
 connect(constante4.y, selecteur2.u1);
 connect(selecteur2.y, splitter2_2.0uv);
 connect(splitter2_1.C2, pump.C1);
 connect(pump.C2, splitter2_2.C1);
 connect(gain.y, add.u2);
 connect(add.y, selecteur1.u2);
 connect(selecteur1.y, pump.rpm_or_mpower);
```

```
connect(loss_pump.outPort, Loss.inPort[1]);
 connect(Loss.outPort[1], RepFromLoss.inPort);
 connect(RepFromLoss.outPort, OK_flow.inPort[1]);
 connect(loss_pump.inPort, OK_flow.outPort[1]);
 connect(Down.inPort[2], down_pump1.outPort);
 connect(down_pump1.inPort, OK_flow.outPort[2]);
 connect(Down.outPort[1], RepFromDown.inPort);
 connect(RepFromDown.outPort, OK_flow.inPort[2]);
 connect(selecteur3.u1, rpm_or_mpower);
 connect(selecteur3.y, gain.u);
 connect(add.ul, gain.u);
 connect(selecteur1.ul, gain.u);
 connect(selecteur3.u2, constante2.y);
 connect(loss2down_pump.inPort, Loss.outPort[2]);
 connect(loss2down_pump.outPort, Down.inPort[1]);
end Pump2;
```


First Thermo.ThermoSysPro.Experiments.PumpN15

CentrifugalPump with failures

file://C:\Users\A16330\Documents\MES DOCUMENTS\Bossoreille\20140905_Dossier_Bis\Final ... 22/09/2014

Information

This pump can lose all power, lose 10% of its power, have a leak on the blue side, have a leak on the red side.

Parameters

Туре	Name	Default	Description	
AngularVelocity_rpm	N	1400	Pump angular velocity in rpm (active if input M is not connected) [rev/min]	
AngularVelocity_rpm	N_nom	1400	Nominal angular velocity in rpm [rev/min]	
<u>MomentOfInertia</u>	J	10	Rotating masses moment of inertia (active if dynamic_mech_equation=true) [kg.m2]	
<u>Volume</u>	V	1	Pump volume (active if dynamic_energy_balance=true) [m3]	
Boolean	dynamic_mech_equation	false	true: dynamic mechanical equation - false: static mechanical equation (active if input M is connected)	
Boolean	dynamic_energy_balance	false	true: dynamic energy balance equation - false: static energy balance equation	
Boolean	continuous_flow_reversal	false	true: continuous flow reversal - false: discontinuous flow reversal	
Integer	fluid	1	1: water/steam - 2: C3H3F5	
<u>Density</u>	p_rho	0	If > 0, fixed fluid density [kg/m3]	
Integer	mode	0	IF97 region. 1:liquid - 2:steam - 4:saturation line - 0:automatic	
Integer	mode_car	2	1:nominal values and coef. c given by parameters - 2:nominal values and coef. c computed from semi-parabolic characteristics	
Integer	mode_car_hn	2	1:complete pump head characteristics - 2:semi-parabolic pump head characteristics	
Integer	mode_car_Cr	2	1:complete torque characteristics - 2:analytic formula	
<u>VolumeFlowRate</u>	Qv_nom_p	0.4781	Nominal volumetric flow (active if mode_car=1) [m3/s]	
<u>Height</u>	hn_nom_p	22.879	Nominal pump head (active if mode_car=1) [m]	
<u>Height</u>	rh_nom_p	0.863	Nominal pump efficiency (active if mode_car=1) [m]	
Real	F_t[:]	{0.634,0.643,0.646,0.640,0.6	Head characteristics (active if mode_car_hn=1)	
Real	G_t[:]	{-0.684,-0.547,-0.414,-0.292	Torque characteristics (active if mode_car_Cr=1)	
Real	c_p	1.288	Dimensionless coef. of the semi-parabolic pump head characteristics (active if mode_car=1 and mode_car_hn=2)	
Real	hn_coef[2]	{-88.67,43.15}	Coef. of the semi-parabolic pump head characteristics (active if mode_car=2)	
Real	rh_coef[2]	{-3.7751,3.61}	Coef. of the parabolic pump efficiency characteristics (active if mode_car=2)	

Connectors

Туре	Name	Description
<u>FluidInletI</u>	fluidInletI	
<u>FluidOutletI</u>	fluidOutletI	
MechanichalTorque	М	
MechanichalTorque	M1	

```
model PumpN15 "CentrifugalPump with failures"
   parameter ThermoSysPro.Units.AngularVelocity rpm N=1400
                                                                                                         "Pump angular velocity in rpm (active if input M is not connected)";
                                                                                                                "Nominal angular velocity in rpm";
   parameter ThermoSysPro.Units.AngularVelocity_rpm N_nom=1400
   parameter Modelica.SIunits.MomentOfInertia J=10
                                                                                            "Rotating masses moment of inertia (active if dynamic mech equation=true)";
   parameter Modelica.SIunits.Volume V=1
                                                                          "Pump volume (active if dynamic_energy_balance=true)";
   parameter Boolean dynamic mech equation=false
                                                                                        "true: dynamic mechanical equation - false: static mechanical equation (active if i
   parameter Boolean dynamic_energy_balance=false
                                                                                          "true: dynamic energy balance equation - false: static energy balance equation";
   parameter Boolean continuous flow reversal=false
                                                                                             "true: continuous flow reversal - false: discontinuous flow reversal";
   parameter Integer fluid=1 "1: water/steam - 2: C3H3F5";
   parameter Modelica.SIunits.Density p_rho=0 "If > 0, fixed fluid density";
                                                    "IF97 region. 1:liquid - 2:steam - 4:saturation line - 0:automatic";
   parameter Integer mode=0
   parameter Integer mode_car=2
                                                           "1: nominal values and coef. c given by parameters - 2: nominal values and coef. c computed from semi-
   parameter Integer mode_car_hn=2
                                                                "1:complete pump head characteristics - 2:semi-parabolic pump head characteristics";
   parameter Integer mode_car_Cr=2
                                                                "1:complete torque characteristics - 2:analytic formula";
   parameter Modelica.SIunits.VolumeFlowRate Qv_nom_p=0.4781
                                                                                                            "Nominal volumetric flow (active if mode_car=1)";
   parameter Modelica.SIunits.Height hn_nom_p=22.879
                                                                                               "Nominal pump head (active if mode_car=1)";
   parameter Modelica.SIunits.Height rh_nom_p=0.863
                                                                                             "Nominal pump efficiency (active if mode_car=1)";
   parameter Real F_t[:]={ 0.634, 0.643, 0.646, 0.640, 0.629, 0.613, 0.595, 0.575, 0.552, 0.533, 0.516, 0.505,
                                            0.504, 0.510, 0.512, 0.522, 0.539, 0.559, 0.580, 0.601, 0.630, 0.662, 0.692, 0.722,
                                            0.753, 0.782, 0.808, 0.832, 0.857, 0.879, 0.904, 0.930, 0.959, 0.996, 1.027, 1.060,
                                            1.090, 1.124, 1.165, 1.204, 1.238, 1.258, 1.271, 1.282, 1.288, 1.281, 1.260, 1.225,
                                            1.172, 1.107, 1.031, 0.942, 0.842, 0.733, 0.617, 0.500, 0.368, 0.240, 0.125, 0.011,
                                           -0.102,-0.168,-0.255,-0.342,-0.423,-0.494,-0.556,-0.620,-0.655,-0.670,-0.670,-0.660,
                                          -0.655, -0.640, -0.600, -0.570, -0.520, -0.470, -0.430, -0.360, -0.275, -0.160, -0.040, 0.130,
                                            0.295, 0.430, 0.550, 0.620, 0.634}
                                                                                                            "Head characteristics (active if mode car hn=1)";
   parameter Real G_t[:]=\{-0.684, -0.547, -0.414, -0.292, -0.187, -0.105, -0.053, -0.012, 0.042, 0.097, 0.156, 0.227, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -0.187, -
                                            0.300, 0.371, 0.444, 0.522, 0.596, 0.672, 0.738, 0.763, 0.797, 0.837, 0.865, 0.883,
                                            0.886, 0.877, 0.859, 0.838, 0.804, 0.758, 0.703, 0.645, 0.583, 0.520, 0.454, 0.408,
                                            0.370, 0.343, 0.331, 0.329, 0.338, 0.354, 0.372, 0.405, 0.450, 0.486, 0.520, 0.552,
                                            0.579, 0.603, 0.616, 0.617, 0.606, 0.582, 0.546, 0.500, 0.432, 0.360, 0.288, 0.214,
```

```
0.123,\ 0.037, -0.053, -0.161, -0.248, -0.314, -0.372, -0.580, -0.740, -0.880, -1.000, -1.120,
                         -1.250, -1.370, -1.490, -1.590, -1.660, -1.690, -1.770, -1.650, -1.590, -1.520, -1.420, -1.320,
                         -1.230, -1.100, -0.980, -0.820, -0.684
                                                                   "Torque characteristics (active if mode_car_Cr=1)";
  parameter Real c_p=1.288
                                "Dimensionless coef. of the semi-parabolic pump head characteristics (active if mode car=1 and mode car
  constant Real b=2
                        "Dimensionless coef. of the parabolic pump efficiency characteristics";
  parameter Real hn_coef[2]={-88.67, 43.15}
                                                 "Coef. of the semi-parabolic pump head characteristics (active if mode_car=2)";
  parameter Real rh_coef[2]={-3.7751, 3.61}
                                                 "Coef. of the parabolic pump efficiency characteristics (active if mode car=2)";
protected
  constant Modelica.Slunits.Acceleration g=Modelica.Constants.g_n
                                                                       "Gravity constant";
  constant Real pi=Modelica.Constants.pi "pi";
  parameter Modelica.SIunits.AngularVelocity w_a min=1.e-4
                                                                "Small angular velocity";
  parameter Modelica. SIunits. VolumeFlowRate Ov a min=1.e-4
                                                                "Small volume flow rate";
  parameter Real rh min=0.05 "Minimum efficiency";
  parameter Modelica.SIunits.MassFlowRate Qeps=1.e-3
                                                          "Small mass flow for continuous flow reversal";
  parameter Boolean dyn mech equation=((cardinality(M) <> 0) and dynamic mech equation);
public
  WaterSteam.PressureLosses.ThreeWayValve
                                               splitter2 1
                                                               "control of the leaking (1 = no leak)";
  InstrumentationAndControl.Blocks.NonLineaire.Selecteur
                                                                       selecteur;
  InstrumentationAndControl.Blocks.Sources.Constante
                                                                   constante(k=1);
  InstrumentationAndControl.Blocks.Sources.Constante
                                                                   constantel(k=0.8);
  WaterSteam.BoundaryConditions.SinkP
                                                   sink1 "sink for the leak";
  WaterSteam.PressureLosses.SingularPressureLoss
    singularPressureLoss1;
  Modelica_StateGraph2.Step Leak_pre(nIn=1, nOut=1) "leak before valve";
  Transitions_detailed.newTransitions.MultiTransition pre_leaking(immediate=
        false, kind=2) "apparition of a leak before the valve";
  Transitions_detailed.newTransitions.MultiTransition RepFromPreLeak(immediate=
       false, kind=3) "reparation from pre-leaking state to normal state";
  Modelica_StateGraph2.Step OK_preLeak(
    nOut=1.
    nIn=1,
    initialStep=true) "no pre-leak";
  Modelica StateGraph2.Step Leak post(nIn=1, nOut=1) "leak after the valve";
  Transitions detailed.newTransitions.MultiTransition post leak(immediate=
        false, kind=2) "apparition of a leak after the valve";
  Transitions_detailed.newTransitions.MultiTransition RepFromPostLeak(immediate=
       false, kind=3) "reparation from post-leaking state to normal state";
  Modelica_StateGraph2.Step OK_postLeak(
    nOut=1,
    nIn=1,
    initialStep=true) "no post-leak";
  WaterSteam.PressureLosses.ThreeWayValve
                                               splitter2_2
                                                               "control of the leaking (1 = no leak)";
  WaterSteam.BoundaryConditions.SinkP
                                                   sink2 "sink for the leak";
```

```
WaterSteam.PressureLosses.SingularPressureLoss
  singularPressureLoss2;
InstrumentationAndControl.Blocks.NonLineaire.Selecteur
                                                                     selecteur2;
InstrumentationAndControl.Blocks.Sources.Constante
                                                                 constante4(
                                                                           k=1);
InstrumentationAndControl.Blocks.Sources.Constante
                                                                 constante5(k=0.8);
InstrumentationAndControl.Blocks.Math.Add add(k2=-1);
InstrumentationAndControl.Blocks.Math.Gain gain(Gain=0.1);
InstrumentationAndControl.Blocks.NonLineaire.Selecteur selecteur1;
Modelica StateGraph2.Step Loss(nIn=1, nOut=2) "loss";
Transitions_detailed.newTransitions.MultiTransition loss_pump(immediate=false,
    kind=2) "apparition of a loss";
Transitions detailed.newTransitions.MultiTransition RepFromLoss(immediate=false,
    kind=3) "reparation from loss state to normal state";
Modelica StateGraph2.Step OK flow(
  nIn=2,
 initialStep=true,
 nOut=2) "no loss";
Modelica_StateGraph2.Step Down(nIn=2, nOut=1) "down";
Transitions detailed.newTransitions.MultiTransition down pump1(
                                                               immediate=false,
    kind=2) "failing of the pump";
Transitions_detailed.newTransitions.MultiTransition RepFromDown(immediate=false,
    kind=3) "reparation from down state to normal state";
InstrumentationAndControl.Blocks.NonLineaire.Selecteur selecteur3;
Expression
                                                                 constante2(exp=0.01*
     M.Ctr);
Transitions detailed.newTransitions.MultiTransition loss2down pump(immediate=false,
    kind=2) "apparition of a loss";
WaterSteam.Machines.CentrifugalPump centrifugalPump(
 N=N.
 N_nom=N_nom,
 J=J,
  dynamic_mech_equation=dynamic_mech_equation,
  dynamic energy balance=dynamic energy balance,
  continuous_flow_reversal=continuous_flow_reversal,
  fluid=fluid,
  p_rho=p_rho,
 mode=mode,
 mode car=mode car,
 mode car hn=mode car hn,
 mode_car_Cr=mode_car_Cr,
  Qv_nom_p=Qv_nom_p,
 hn nom p=hn nom p,
 rh_nom_p=rh_nom_p,
  F_t=F_t
```

```
G t=G t,
    c_p=c_p
    hn_coef=hn_coef,
    rh coef=rh coef);
  InstrumentationAndControl.Blocks.Math.Add add1(
                                                k2=-1);
  InstrumentationAndControl.Blocks.Math.Gain gain1(
                                                   Gain=0.1);
  InstrumentationAndControl.Blocks.NonLineaire.Selecteur selecteur4;
  InstrumentationAndControl.Blocks.NonLineaire.Selecteur selecteur5;
public
  WaterSteam.Connectors.FluidInletI fluidInletI;
  WaterSteam.Connectors.FluidOutletI fluidOutletI;
  ElectroMechanics.Connectors.MechanichalTorque M;
  ElectroMechanics.Connectors.MechanichalTorque M1;
  Expression expression(exp=M.Ctr);
  Expression expression1(exp=M.w);
  Expression
                                                                   constante3(exp=0.01*
        M.w);
equation
  //failures part
  selecteur.uCond.signal = not Leak_pre.active;
  selecteur2.uCond.signal = not Leak_post.active;
  selecteur1.uCond.signal = not Loss.active;
  selecteur3.uCond.signal = not Down.active;
  selecteur4.uCond.signal = not Loss.active;
  selecteur5.uCond.signal = not Down.active;
  // interfacing
  M1.Ctr = selecteur1.y.signal;
  M1.w = selecteur4.y.signal;
  // part of the original model for the pump
  if (cardinality(M) == 0) then
   M.w = pi/30*N;
  end if;
  connect(constantel.y,selecteur. u2);
  connect(constante.y, selecteur. u1);
  connect(singularPressureLoss1.C2,sink1. C);
  connect(pre leaking.outPort, Leak pre.inPort[1]);
  connect(Leak_pre.outPort[1], RepFromPreLeak.inPort);
  connect(pre_leaking.inPort, OK_preLeak.outPort[1]);
  connect(RepFromPreLeak.outPort, OK_preLeak.inPort[1]);
  connect(selecteur.y, splitter2_1.0uv);
  connect(splitter2_1.C3, singularPressureLoss1.C1);
```

```
connect(Leak post.outPort[1], RepFromPostLeak.inPort);
  connect(RepFromPostLeak.outPort, OK_postLeak.inPort[1]);
 connect(OK_postLeak.outPort[1], post_leak.inPort);
 connect(post_leak.outPort, Leak_post.inPort[1]);
 connect(singularPressureLoss2.C2,sink2. C);
 connect(splitter2_2.C3, singularPressureLoss2.C1);
 connect(constante5.y, selecteur2.u2);
 connect(constante4.v, selecteur2.u1);
 connect(selecteur2.y, splitter2 2.0uv);
 connect(gain.y, add.u2);
 connect(add.y, selecteur1.u2);
 connect(loss_pump.outPort, Loss.inPort[1]);
 connect(Loss.outPort[1], RepFromLoss.inPort);
 connect(RepFromLoss.outPort, OK_flow.inPort[1]);
 connect(loss pump.inPort, OK flow.outPort[1]);
 connect(Down.inPort[2], down pump1.outPort);
 connect(down_pump1.inPort, OK_flow.outPort[2]);
 connect(Down.outPort[1], RepFromDown.inPort);
 connect(RepFromDown.outPort, OK_flow.inPort[2]);
 connect(add.ul, gain.u);
 connect(selecteur1.ul, gain.u);
 connect(loss2down_pump.inPort, Loss.outPort[2]);
 connect(loss2down_pump.outPort, Down.inPort[1]);
 connect(splitter2 1.C2, centrifugalPump.C1);
 connect(centrifugalPump.C2, splitter2_2.C1);
 connect(selecteur3.y, gain.u);
 connect(constante2.y, selecteur3.u2);
 connect(gain1.y, add1.u2);
 connect(add1.y, selecteur4.u2);
 connect(add1.ul, gain1.u);
 connect(selecteur4.u1, gain1.u);
 connect(selecteur5.y, gain1.u);
 connect(fluidInletI, splitter2_1.C1);
 connect(splitter2_2.C2, fluidOutletI);
 connect(M1, centrifugalPump.M);
 connect(expression.y, selecteur3.u1);
 connect(expression1.y, selecteur5.u1);
 connect(constante3.y, selecteur5.u2);
end PumpN15;
```

Automatically generated Fri Sep 05 13:53:37 2014.