

⇔ Product Sigma Algebras

1 Why

We want to generalize the construction of cover area as generated as a product of two cover lengths, and more generally for arbitrary measure spaces. TODO

2 Definition

Consider two measurable spaces. The *product base set* is the cartesian product of the first base set with the second base set. A first distinguished set is a distinguished set of the first measurable space, and likewise for a second distinguished set.

A rectangle with measurable sides is a set in product base set which is a product of a first distinguished set with a second distinguished set. The product sigma algebra is the sigma algebra generated by the rectangles with measurable sides.

The *product measurable space* is the measurable space whose base set is the product base set and whose sigma algebra is the product sigma algebra.

2.1 Notation

Let (X, \mathcal{A}) and (Y, \mathcal{B}) be measurable spaces. The product base set is $X \times Y$. A set $R \in X \times Y$ is a rectangle with measurable sides if $R = A \times B$ for $A \in \mathcal{A}$ and $B \in \mathcal{B}$. We denote the product sigma algebra of \mathcal{A} and \mathcal{B} by $\mathcal{A} \times \mathcal{B}$. $(X \times Y, \mathcal{A} \times \mathcal{B})$ is the product measurable space.

