NASA TECH BRIEF

NASA Tech Briefs are issued to summarize specific innovations derived from the U.S. space program, to encourage their commercial application. Copies are available to the public at 15 cents each from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

Current-Limiting Voltage Regulator

A voltage regulator has been designed to operate within preset current limits. The regulator acts as a circuit breaker to prevent overload failure and automatically resets when the overload is removed.

Normal voltage control is accomplished by the voltage sampling circuit consisting of Q_4 and associated components, R_4 , R_6 , C_2 , R_7 , R_5 , and zener diode D_1 . An increase in the output voltage (E_0) causes an increase in the current through Q_2 with subsequent starving of the base of Q_1 . This results in an output voltage drop (E_0) to the level set by R_4 .

Transistor Q_3 is the current-limiting control device. Current sampling resistor R_{12} controls the current available through D_4 to the base of Q_3 . Zener diode D_4 is forward biased as a conventional diode except

under very light load conditions. Q_3 exercises some control as an output voltage regulating element under normal operating conditions to supplement the action of Q_4 . Current limiting level is adjusted by the choice of R_9 . The combination of R_9 and R_3 sets the operating level at the emitter of Q_3 below current-limiting levels. Above the current-limiting level, the combination of R_9 , R_{10} , and R_3 sets the voltage at the emitter of Q_3 so that, as Q_1 is shut off, excess power is dissipated in the parallel circuits of R_1 , R_2 , Q_2 , and R_{10} , CR_3 and R_3 .

The combination of R_8 and D_3 and the elements CR_2 , R_{11} , and D_4 serve to provide temperature compensation. The remaining components are typical of series-type regulator circuits and do not deserve special mention.

(continued overleaf)

Notes:

- The important feature of this circuit is the power dissipated in the series transistor Q₁, which is approximately constant from normal load to shortcircuit condition. In the conventional currentlimiting approach, the power dissipation of Q₁ increases from normal load to short-circuit condition.
- 2. Details may be obtained from:

Technology Utilization Officer Manned Spacecraft Center Houston, Texas 77058 Reference: B68-10305

Patent status:

This invention is owned by NASA, and a patent application has been filed. Royalty-free, nonexclusive licenses for its commercial use will be granted by NASA. Inquiries concerning license rights should be made to NASA, Code GP, Washington, D.C. 20546.

Source: E. F. Cleveland (MSC-11824)