## **Backdrop 4**

Proof by my own



$$\frac{\partial C}{\partial a_{n}^{l,1}} = \frac{\int_{a_{m}}^{l} \frac{dC}{dx}}{\int_{a_{m}}^{l} \frac{dC}{dx_{m}^{l}}} = \frac{2(\hat{x}_{n} - \hat{y}_{n})^{2}}{\int_{a_{m}}^{l} \frac{dC}{dx_{m}^{l}}} = \frac{\int_{a_{m}}^{l} \frac{dC}{dx_{m}^{l}}}{\int_{a_{m}}^{l} \frac{dC}{dx_{m}^{l}}}{\int_{a_{m}}^{l} \frac{dC}{dx_{m}^{l}}} = \frac{\int_{a_{m}}^{l} \frac{dC}{dx_{m}^{l}}}{\int_{a$$

## THESE EQUATIONS DESCRIBE SPADIENT DESCENT

We need to update the weights and biases once we have the aid the but this correction is computed by looking at a single datapoint (xi, yi). To get the tre correction we must average it are all datapoints.

When 
$$\in$$
 When  $\rho$  is  $\frac{\partial C_0}{\partial \omega_{mn}}$  described the described that  $\frac{\partial C_0}{\partial \omega_{mn}}$   $\frac{\partial C_0}{\partial \omega_{mn}}$   $\frac{\partial C_0}{\partial \omega_{mn}}$   $\frac{\partial C_0}{\partial \omega_{mn}}$   $\frac{\partial C_0}{\partial \omega_{mn}}$