- || News Web Easy からの出題です。ア~エの中から適切なものを1つ選び、記号で答えなさい。
- (1) 菓子袋の外側を紙にする技術ができた。その結果、袋に使うプラスチックを約何 %少なくできるか。

ア約10%イ約20%ウ約30%エ約40%

(2) エリザベス女王工学賞は、世界の人の役に立つ新しい技術をつくった人に授けられる。この賞を受賞した佐川眞人氏は、何をつくったか。

ア ムジネオ磁石 イ ネジオム磁石 ウ ネムオジ磁石 エ ネオジム磁石

(3) 山口県にあるときわ公園の植物館でとても大きく、臭い花が咲いた。花の名称は何か。

ア ショクダイオオコンニャク **イ** ショクダイダイコンニャク **ウ** ロウソクコンニャク **エ** トクダイコンニャク

- (4) 警視庁は、災害時に役立つ情報をインターネットの「X」で紹介している。はさみがないときに、菓子袋を開ける方法として何を紹介しているか。
 - ア カッターで開ける方法
 - イ 力が強い人を連れてくる方法
 - ウ 10円玉2枚をスライドさせる方法
 - エ 菓子袋を歯でかみきる方法
- (5) 警備会社・セコムは、警備にドローンを導入している。そのドローンができないとされていることは何か。
 - ア 夜間や雨風があるときに飛ぶこと
 - イ AI が人や車を見つけ、あやしいときは追いかけること
 - ウ 半径10 km 以上を警備すること
 - エ 警備員の代わりとして仕事の一部を担うこと

2 エタノールの性質を調べるため、【実験1】と【実験2】を行った。

【実験!】

○実験内容

少量のエタノールを入れたポリエチレン袋の口を閉じ、熱湯をかけた。

〇実験結果

熱湯を注ぐと、袋はふくらんだ。

【実験2】

○実験内容

<図 | >の装置を組み立て、エタノールと水の混合物を蒸留した。ガラス管から出てくる気体を冷やして液体にし、5本の試験管に集め、集め始めた順にA、B、C、D、Eとした。次に、それぞれの試験管の液体の温度を25℃にして、質量と体積を測った後、密度を求めた。集めた液体の一部を脱脂綿に含ませ、火をつけたときのようすを調べた。結果は、<表 | >にまとめた。

<図1>蒸留装置

○<表 |>実験結果

	Α	В	С	D	E
質量(g)	1.2	2.7	3.3	2.4	2.4
体積 (cm³)	1.5	3.2	3.6	2.4	2.4
密度(g/cm³)	0.80	0.84	0.92	1.00	1.00
火をつけたときのようす	燃えた	燃えた	燃えた	燃えなかった	燃えなかった

[※]表中の密度 (g/cm³) は、表中の質量 (g) と体積 (cm³) の値をもとに計算し、小数第2位まで求めたものである。

(1) 【実験1】について、答えなさい。

① 以下は、熱湯を注ぐ前後の袋の内のエタノールのようすを示した文章である。**あ**~**か**について、当てはまるものをそれぞれ**ア**~**ウ**の中から1つ選び、記号で答えなさい。

「熱湯を注いでいくと、エタノールのようすを粒子モデルで表したとき、

		熱湯を注ぐ前⇒熱湯を注いだ後
あ	粒子そのものの数	ア 増加する イ 減少する ウ 変化しない
۱ ١	粒子そのものの大きさ	ア 大きくなる イ 小さくなる ウ 変化しない
う	粒子の運動	ア 激しくなる イ おだやかになる ウ 変化しない

となる。

よって、エタノールの状態変化に伴う量の変化は、

		熱湯を注ぐ前⇒熱湯を注いだ後
え	質量	ア 大きくなる イ 小さくなる ウ 変化しない
お	体積	ア 大きくなる イ 小さくなる ウ 変化しない
か	密度	ア 大きくなる イ 小さくなる ウ 変化しない

といえる。」

- ② 以下(**あ**)および(**い**)に入る言葉を**ア**~**ウ**の中から1つずつ選び、記号で答えなさい。「熱湯を注いだとき、袋の中のエタノールの状態は(**あ**)から(**い**)に変化した。」 ア 液体 **イ** 気体 **ウ** 固体
- ③ 熱湯を注ぐと袋はふくらむが、ふくらんだ袋に冷水を注ぐと袋のようすはどのようになるか。ア~ウの中から1つ選び、記号で答えなさい。

ア さらにふくらむ イ しぼむ ウ 変化しない

④ 物質を「純粋な物質」と「混合物」に分類するとき、エタノールと同じ分類になるものすべてに○をしているものを、**<表2** >のア~クの中から1つ選び、記号で答えなさい。

<表2>

	水	海水	食塩水	炭酸水	ジュース	ヘリウム	ドライアイス
ア						0	0
1				0		0	0
ウ	0			0		0	0
エ	0	0	0	0			
オ	0	0	0				0
カ	0					0	0
+	0				0	0	0
2	0	0	0	0	0	0	0

- (2) 【実験2】について、答えなさい。<表1>を参考にしてよい。
- ① 蒸留の実験において、注意することを以下にまとめた。**注意①~③**は何のためにするのか、**(あ)~(う)**に当てはまる言葉を書きなさい。

注意① 混合物が入った枝つきフラスコに沸騰石を入れる。

→(あ)を防ぐため。

注意② ガラス管の先は、試験管にたまった液体に入らないようにする。

→(い)を防ぐため。

注意③ 温度計の球部(液体が入っている部分)は、枝つきフラスコの枝の高さに設置する。

→(う)の温度を測るため。

注意4 加熱すると高温になるので、やけどに気をつける。

注意(5) 保護眼鏡をつける。

- ② エタノールと水の混合物を加熱すると、先に出てくるのは、A·Bの中から1つ選び、記号で答えなさい。 A エタノール B 水
- ③ ②のようになるのはなぜか、説明しなさい。
- ④ 授業で蒸留した結果をグラフで表した。横軸を「加熱した時間(分)」とするとき、縦軸は何になるか、単位をつけて答えなさい。解答欄の()の中には、単位を入れることとします。

⑤ エタノールは消毒液として用いられるが、燃えやすいため、エタノールの質量パーセント濃度が60 %以上になると危険物として扱われる。**<グラフI>**は、25 ℃におけるエタノールと水の混合物に含まれるエタノールの質量パーセント濃度とその混合物の密度との関係を表したものである。**<表I>**の**試験管A~E**のうち、エタノールの質量パーセント濃度が60 %以上になるものをすべて選びなさい。

<グラフΙ>

25 ℃におけるエタノールと水の混合物に含まれるエタノールの質量パーセント濃度と混合物の密度との関係

(3) 実験を終え、蒸留が利用されている場面を調べた。その結果、蒸留を利用すると**<図2>**のように石油をいくつかの物質に分離できることがわかった。石油ガス、灯油、重油の違いを述べた文として適切なものを、**ア**~**エ**の中から1つ選び、記号で答えなさい。**<図2>**中の□の温度は、沸騰する温度を指します。

<図2>石油をいくつかの物質に分離する装置の模式図

- ア 灯油の沸点は石油ガスの沸点より高く、重油の沸点より低い。
- **イ** 灯油の沸点は石油ガスの沸点より低く、重油の沸点より高い。
- ウ 灯油の沸点は石油ガスの沸点より高く、重油の沸点よりも高い。
- **エ** 灯油の沸点は石油ガスの沸点より低く、重油の沸点よりも低い。
- 3 ひろこさんは、砂糖水をつくりました。
- (1) 砂糖を水に入れて砂糖水をつくった。このとき、溶媒は何か、ア~ウの中から1つ選び、記号で答えなさい。 ア 砂糖 イ 水 ウ 砂糖水
- (2) 砂糖が水に溶けていくようすを粒子のモデルで表したい。砂糖を●(色がついた丸)、数は5個とし、①砂糖が溶ける前のようす、②砂糖が完全に溶けたときのようす、をそれぞれ解答欄のビーカーに書き入れなさい。砂糖が動く向きを書き入れる必要はありません。

(3) 砂糖が水に溶ける前から溶けた後では、水溶液の質量はどのようになるか、ア~ウの中から1つ選び、記号で答えなさい。

ア 増加する イ 減少する ウ 変化しない

(4) ひろこさんは、砂糖水と牛乳について、次のように説明している。なぜこのようにいえるのか、水溶液の見た目に着目して、簡単に説明しなさい。

「上白糖 (白色の砂糖) を用いた砂糖水も、コーヒーシュガー (茶色の砂糖) を用いた砂糖水も、「水溶液」といえる。しかし、牛乳は「水溶液」とはいえない。」

- (5) 砂糖80 g を水に溶かして、400 g の砂糖水をつくった。
- ① この砂糖水の質量パーセント濃度をを求める<u>●計算式と②答えを書きなさい。計算式は、「どの式で計算したか」が伝われば構いません。</u>●計算式と②答えには、単位をつけ、②答えは、小数にする必要はありません。
- ② この砂糖水の質量パーセント濃度を10 %にするために加える水の質量を求める●計算式と②答えを書きなさい。計算式は、「どの式で計算したか」が伝われば構いません。●計算式と②答えには、単位をつけ、②答えは、小数にする必要はありません。
- 4 硝酸カリウム水溶液と食塩水から、それぞれ硝酸カリウムと食塩を取り出す実験を行った。

○実験手順

- 1.硝酸カリウムと食塩をそれぞれ3 g ずつ試験管に入れ、5 g の水(20 ℃)に加えて溶かした。
- 2.約50 ℃の湯を用意して、試験管を湯につけ、硝酸カリウムと食塩を溶かした。②
- 3.手順-2の水溶液を別の試験管に約2 mL とって水で冷やした。 溶けきらないものは、上澄みの部分を約2 mL とって冷水で冷やした。
- 4.手順-3で溶質が現れたら、ろ過③して固体を分け、得られた固体のようすを観察した。
- 5.手順-3で溶質が現れなかったら、試験管の中の水溶液をスライドガラスの上に I 滴垂らし、水を蒸発させてようすを 観察した。

○<グラフ2>実験結果

<グラフ2>水の温度 ($oldsymbol{\mathbb{C}}$)と $oldsymbol{\mathsf{IOO}}$ $oldsymbol{\mathsf{g}}$ の水に溶ける硝酸カリウムと食塩の質量 $oldsymbol{\mathsf{(g)}}$ の関係

- (1) <u>手順-I</u>_①で、①硝酸カリウム、②食塩が入った試験管の中に溶け残りは生じたか、**<グラフ2>**を参考にして、**A·B**の中からそれぞれ I つ選び、記号で答えなさい。二度同じ記号を使っても構いません。
 - ア 溶け残りが生じた イ 溶け残りが生じなかった

- (2) <u>手順-2</u>②で、①硝酸カリウム、②食塩が入った試験管の中に溶け残りは生じたか、**<グラフ2>**を参考にして、**A・B**の中からそれぞれ Iつ選び、記号で答えなさい。二度同じ記号を使っても構いません。
 - ア 溶け残りが生じた イ 溶け残りが生じなかった
- (3) ろ過③について、答えなさい。
- ① **<図3>-A** の実験器具の名称は何か、書きなさい。授業で使ったものは、ガラス製だった。

<図3>ろ過装置

- ② <図3>では、ろ過のしかたが間違っている。間違いはどのようなところか、「~ところ」という書き方で説明しなさい。
- (4) 食塩の結晶の形として、最も適切なものをア~エの中から1つ選び、記号で答えなさい。

- (5) 水に溶かした物質を再び結晶として取り出すことを何というか、答えなさい。
- (6) <表3>を参考に、ホウ酸とショ糖の溶解度について答えなさい。

<表3>ホウ酸とショ糖の溶解度(100 gの水に溶かすことができる最大の質量)

物質の溶解度	0 ℃	20 ℃	40 °C	60 ℃	80 ℃
ホウ酸 (g)	2.8	4.9	8.9	14.9	23.5
ショ糖 (g)	179.2	203.9	238.1	287.3	362.1

- ① 同じ温度のとき、溶ける量が少ないのはホウ酸とショ糖のどちらか、A·Bの中から1つ選び、記号で答えなさい。 A ホウ酸 B ショ糖
- ② 40 ℃の水100 g にホウ酸4.9 g を入れた。ホウ酸はあと何 g 溶かすことができるか求め、答えのみ書きなさい。 答えには単位をつけ、小数第1位まで書きなさい。
- ③ 80 ℃の水200 g にホウ酸90 g を入れたとき、溶け残るホウ酸の量を求める<u>●計算式</u>と<u>❷答えを書きなさい。計算式は、「どの式で計算したか」が伝われば構いません。●計算式と②答えには、単位をつけ、②答えは、小数第1位まで書きなさい。</u>

- ④ 次の文章中の(あ)に当てはまる言葉を書きなさい。「60 ℃の水100 g にショ糖287.3 g を入れると、ショ糖水溶液は(あ)しているといえる。」
- 5 力に関する問題です。
- (1) 地球上のあらゆる物体には、常に地球の中心に向かう力がはたらいている。
- ① この力の名称を答えなさい。地球と地球上の物体の間ではたらく力である。
- ② ①の力を発見した科学者の名前を答えなさい。
- ③ 物体どうしが離れている場合、①の力ははたらくか、A·Bの中から1つ選び、記号で答えなさい。

A はたらく B はたらかない

- (2) 自転車のブレーキをかけると、ゴムが車輪を押さえつけて回転をさまたげる。このようにふれ合った物体がこすれるとき、物体にはたらく動きをさまたげる力が存在する。
- ① この力の名称を答えなさい。
- ② 学校生活の中で①の力がはたらく場面を考え、1つ書きなさい。学校生活には登下校中も含んで構いません。

◎見直しも終わった人へ

※解答欄は設けていません。加点もありません。

時間がある人は解いてみてね。

答えが気になる人は自分で調べるか、吉川まで聞きに来てください。

科学者クイズ〜私は科学者です。誰でしょう?〜

(1)

- ①生涯で1300もの発明品をのこした発明家
- 2発電所や電灯会社をつくった
- 3電気の普及に貢献

(2)

- ①赤血球を発見
- ②世界で初めて、顕微鏡で微生物を見た
- 3微生物学の父

(3)

- ①海軍の船に乗って地質や動植物の研究を行った
- ②生物は進化する「進化論」の研究を行った
- ③書物「種の起源」を発表

(4)

- (1)イタリアの名画「モナ・リザ」を描いた画家でもある
- 2科学者でもあり、建築家でもある
- ③解剖学、工学、天文学、地理学、音楽など、あらゆる分野に精通

(5)

- ①細菌学者であり、医師
- ②アメリカで免疫学の研究を行い注目された
- ③黄熱病の研究中、自身も感染して死去
- (6)知っている科学者を挙げられるだけ挙げよう

参考資料

神奈川県立川崎図書館、こんなところに科学者、

https://www.klnet.pref.kanagawa.jp/kagakusya.pdf,2023年11月2日

◎見直しも終わった人へ

※解答欄は設けていません。加点もありません。

時間がある人は解いてみてね。

答えが気になる人は自分で調べるか、吉川まで聞きに来てください。

(問)

健康のために食事の塩分量を気にする人が増えている。「減塩」の商品もよく見かけるようになった。 文部科学省によると、1回あたりの給食における塩分摂取量は、中学生の場合3.0g未満とされている。 普段私たちが使う調味料には、どれだけの塩分が含まれているのだろうか。

調味料100 g 中の塩分量

〇濃口しょう油 14.5 g

01-2 5.8 g

Oマヨネーズ 2.3 g

〇甘みそ 6.1 g

では、具なしのみそ汁 1杯の塩分量を計算してみよう。

具なしみそ汁 1杯を150 gとして、塩分濃度計で、このみそ汁の塩分の質量パーセント濃度を測ると、0.8 %だった。 塩分の質量を求めよう。

一般的に、塩分は料理の全体量の $0.8\%\sim0.9\%$ が適量とされている。料理に含まれる塩分量を計算できると、塩分の摂りすぎの防止に役立つ。

ちなみに、、、

下は、中瀬中学校の11月の献立表の一部である。一番右の欄には、「食塩相当量」と書かれていて、3.0 gを基準に設定されている。 みんなの健康を考えて作ってくださっているね。 こんなに品数が多くておいしいのに、 塩分量を抑えられるってすごい!

1 水	麦ごはん	70	ホキのバーベキューソース 肉じゃが (副菜) 沢煮椀
2 木	開花丼	70	生揚げのみそ汁 二色芋ようかん
6月	ジャンバラヤ	7)	チーズオムレツ パスタスープ
7火	しらすご飯	70	つくね焼きのおろしソース 建長寺のけんちん汁 もやしのごまあえ 柿
8水	まごはん	70	いかと大豆の甘辛揚げ キャベツと小松菜の辛子醤油和え 豚汁 リンゴ
9木	味噌ラーメン	70	えび入り揚げ餃子 くきわかめの金平

エネル	
たんは	
食塩相	門当量
732	kcal
30.7	9
22.0	9
3.0	9
795	kcat
28.4	9
19.2	9
2.8	9
734	kcal
33.9	9
25.3	9
2.8	9
738	kcal
34.8	9
20.9	9
3.0	9
776	kcal
32.2	9
22.1	9
2.5	9
716	kcal
29.7	9
26.3	9
3.9	9