Département Statistique 2^{ème} année

Série d'exercices Nº1

Exercice 1

Soit X une variable aléatoire qui suit la loi de Cauchy standard de fonction de densité

$$f(x) = \frac{1}{\pi(1+x^2)}$$

Donner un moyen simple de simuler cette loi par la méthode d'inversion.

Exercice 2

Donner l'algorithme d'inversion pour générer X à partir de la variable aléatoire $\max(X_1, \ldots, X_n)$, avec X_1, \ldots, X_n des variables aléatoires i.i.d. de fonsction de répartition F (on suppose que F^{-1} est connue).

Exercice 3

Soit X une variable aléatoire continue admettant pour fonction de densité :

$$f(x) = \begin{cases} \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}} & \text{si } x \ge 0, \\ 0 & \text{sinon.} \end{cases}$$

avec α et β des paramètres strictement positifs. Donner la fonction de répartition de la variable aléatoire X et proposer une méthode de simulation de cette variable.

Exercice 4

Soit X une loi géométrique de paramètre p:

$$P(X = k) = p(1-p)^{k-1}$$
, pour $k \in \mathbb{N}^*$.

- 1. Rappeler la méthode classique de simulation de X à l'aide de tirages à pile ou face.
- 2. Proposer une autre méthode de simulation de cette loi utilisant la fonction de répartition.
- 3. Soit $\lambda > 0$ et T une variable aléatoire suivant une loi exponentielle $\mathcal{E}(\lambda)$. Soit $X = \lfloor T \rfloor$ la partie entière par excès de T. Quelles valeurs peut prendre X? Avec quelles probabilités? En déduire un nouveau moyen de générer une loi géométrique $\mathcal{G}(p)$.
- 4. Que donne la méthode d'inversion?