(51) International Patent Classification?:

(22) International Filing Date:

(26) Publication Language:

7 June 2001 (07.06.2001)

9 June 2000 (09.06.2000) CH

English

- 405/06, 409/06, 413/06, 417/06, 213/50, A01N 43/40
- (21) International Application Number: PCT/EP01/06430
- (25) Filing Language: English
- (25) Filing Language: Englis
- (30) Priority Data:
- (71) Applicant (for all designated States except US): SYN-GENTA PARTICIPATIONS AG | CH/CH|; Schwarzwaldullec 215, CII-4058 Basel (CII).
- (72) Inventors; and

1151/00

(75) Inventors/Applicants (for 18 only): EDMI,TNDS. Andrew (Fish-CH; Claristrase S. CH-4088 Basel (CH). DE MESMAEKER, Alain (BU/CH); Ueligasse 31, CH-4447 Kaenerkinden (CH). LÖTHY, Christoph (CHCI); Mit Ielwegt, CII-4442 Münchensein (CH). SCHAETZER, Jürgen [DF/DE]; Holbeinstrasse 1, 79618 Rheinfelden (DI).

- C07D 401/06. (74) Agent: BASTIAN, Werner; Syngenta Participations AG, to 1N 43/40 Intellectual Property, P.O. Box, CH-4002 Basel (CH).
 - (81) Designated States (nationally, AE, AG, AI, AM, AT, AU, AB, BA, BB, BG, BB, RY, BC, AC, CH, CN, CO, CC, CC, CC, CC, CDI, DN, DM, DZ, LC, LE, LS, TI, GB, GD, GB, GH, GM, IRI, UD, JL, LI, SI, SI, PE, BE, KE, RF, RE, AC, LC, LK, LR, LS, LT, LU, LV, MA, AMD, MG, MK, MN, AMY, MN, MS, NO, NZ, PL, PT, RO, RIL SD, ST, SS, SI, SI, LT, TM, TR, TT, TZ, UA, UG, US, UZ, VX, YU, ZA, YW.
 - (84) Designated States (regional): ARIPO putent (GIL GM, KE, I.S. MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DJ, DX, IS, FF, IR, GB, GR, IE, TF, UJ, MC, NL, FF, SE, TR, OAPI patent (BF, BJ, CR, CG, CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SUBSTITUTED PYRIDINE HERBICIDES

WO 01/94339 A1 Ⅲ

 $\begin{array}{c|c} R_4 & O & O \\ \hline & Q & (I) \\ \hline & R_3 & N & R_1 - X_1 \\ \hline & (O)p & R_2 \end{array}$

(57) Abstract: Compounds of the formula (I) in which the substituents are as defined in claim 1 are suitable for use as herbicides.

SUBSTITUTED PYRIDINE HERBICIDES

The present invention relates to novel herbicidally active pyridine ketones, to processes for their preparation, to compositions which comprise these compounds, and to their use for controlling weeds, in particular in crops of useful plants, or for inhibiting plant growth.

Pyridine ketones having herbicidal action are described, for example, in WO 00/15815 and WO/0039094.

We have now found novel pyridine ketones having herbicidal and growth-inhibiting properties.

The present invention thus provides compounds of the formula I

$$R_3$$
 N R_1-X_1 R_2 (1)

in which

p is 0 or 1;

 R_1 is a C_1 - C_e alkylene, C_3 - C_e alkenylene or C_3 - C_e alkynylene chain which may be mono- or polysubstituted by halogen or R_s , where the unsaturated bonds of the chain are not attached directly to the substituent X_s :

 X_1 Is oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R₆)-O-, -O-NR₅₁-, thio, sulfinyl, sulfonyl, -SO₂NR_{7*}, -NR₅₂SO_{2*} or -NR_{6*}:

R₂ Is a C₁-C₈alkyl, C₃-C₈alkenyl or C₃-C₈alkynyl group which is mono- or polysubstituted by halogen, hydroxyl, amino, formyl, nitro, cyano, mercapto, carbamoyl, C₁-C₉alkoxy.

- C1-C6alkoxycarbonyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C2-C6haloalkynyl,
- C₃-C₆cycloalkyl, by halogen-substituted C₃-C₆cycloalkyl, or by C₃-C₆alkenyloxy,
- $$\begin{split} &C_3 \cdot C_6 \text{alkynyloxy}, \ C_1 \cdot C_6 \text{alkoxy}, \ C_3 \cdot C_6 \text{haloalkenyloxy}, \ cyano \cdot C_1 \cdot C_6 \text{alkoxy}, \ C_1 \cdot C_6 \text{alkoxy},$$

WO 01/94339 PCT/EP01/06430

C1-C6alkoxycarbonyl, C1-C6alkylcarbonyl, C1-C6alkylthio, C1-C6alkylsulfinyl,

C₁-C₆alkylsulfonyl, C₁-C₆haloalkylthio, C₁-C₆haloalkylsulfonyl, C₁-C₆haloalkylsulfonyl, oxiranyl, which for its part may be substituted by C₁-C₆alkyl, or by (3-coxetanyl)oxy, which for its part may be substituted by C₁-C₆alkyl, or by benzylthio, benzylsulfinyl, benzylsulfonyl, C₁-C₆alkylamino, di(C₁-C₆alkyl)amino, R₆S(O)₂O, R₁₀N(R₁₁)SO₂, thiocyanato, phenyl, bhenoxy, obenwithio, obenwlsulfinyl or phenylsulfonyl:

where the phenyl- or benzyl-containing groups for their part may be substituted by one or more C_1 - C_e alkyl, C_1 - C_e haloalkyl, C_1 - C_e haloalkyl, C_1 - C_e haloalkoxy, halogen, cyano, hydroxyl or nitro groups, or

 R_2 is phenyl which may be mono- or polysubstituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, halogen, cyano, hydroxyl or nitro; or R_2 is C_3 - C_6 cycloalkyl, C_1 - C_6 alkoxy- or C_1 - C_6 alkyl-substituted C_3 - C_6 cycloalkyl, 3-oxetanyl; or C_1 - C_6 alkyl-substituted 3-oxetanyl;

or, if Q is Q₂ or Q₃, or is Q₁ in which R₁₄ and R₂₂ are a C₂-C₃alkylene chain, R₂ is additionally also a five- to ten-membered monocyclic or fused bicyclic ring system which may be arcmatic, saturated or partially saturated and may contain 1 to 4 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, where the ring system is attached directly or via a C1-Caalkylene, C2-Caalkenyl-C1-Caalkylene, C2-Caalkylene, C2-Caalkylene, -N(R₁₀)-C₁-C₄alkylene, -SO-C₁-C₄alkylene or -SO₂-C₁-C₄alkylene group to the substituent X₁ and where each ring system may not contain more than two oxygen atoms and not more than two sulfur atoms and the ring system for its part may be mono-, di- or trisubstituted by C1-Caalkvi, C1-Cahaloaikvi, C2-Caalkenvi, C2-Cahaloaikenvi, C2-Cahaloaikvnvi, C3-Cahaloaikvnvi, C3-Cah C1-Calkoxy, hydroxyl, C1-Cahaloalkoxy, C2-Calkenyloxy, C2-Calkynyloxy, mercapto. C1-Cealkylthio, C1-C2haloalkylthio, C3-Cealkenylthio, C3-Cehaloalkenylthio, C3-Cealkynylthio, C_2 - C_5 alkoxyalkylthio, C_3 - C_5 acetylalkylthio, C_3 - C_6 alkoxycarbonylalkylthio, C_2 - C_4 cyanoalkylthio, C₁-C₆alkylsulfinyl, C₁-C₆haloalkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, di(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro, phenyl and benzylthio, where phenyl and benzylthio for their part may be substituted on the phenyl ring by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or nitro, and where the substituents on the nitrogen in the

heterocyclic ring are different from halogen; or

- R2 is hydrogen or unsubstituted C1-C8alkyl if
- a) R₁ is substituted by the group R₅, or
- b) Q is the group Q2, or

PCT/EP01/06430 WO 01/94339 - 3 -

c) Q is the group Q₃ in which X₁ is -O(CO)-, -(CO)O-, -N(R₆)-O-, -O-NR₅₁-, -SO₂NR₇-, -NR₅₂SO₂- or -NR₈-; or

- d) Q is the group Q₄ in which X₁ is -N(R₆)-O₇ -O-NR₅₁-, -SO₅NR₇-, -NR₅₂SO₇- or -NR₆-, or e) Q is the group Q₁ in which R₁₄ and R₂₂ in Q₁ are a C₂-C₃alkylene chain and X₁ is -O(CO)or -(CO)O-,
- Ra is C1-C3haloalkyl;

R_d is hydrogen, halogen, C₁-C₂alkyl, C₁-C₂haloalkyl, C₁-C₂alkoxy, C₁-C₂alkoxy-C₁-C₂alkyl or C1-C2alkoxy-C1-C2alkoxy:

Rs is hydroxyl, C1-Csalkoxy, C2-Cscycloalkyloxy, C1-Csalkoxy-C1-Csalkoxy,

C1-Cealkoxy-C1-Cealkoxy-C1-Cealkoxy or C1-C2alkylsulfonyloxy;

C1-Calkvi, C1-Calkov-C1-Calkov-C1-Calkov-C1-Calkvi, C1-Calkvi, C1-C1-C6alkoxy-C1-C6alkyl substituted by C1-C6alkoxy, benzyl or phenyl, where phenyl and benzyl for their part may be mono- or polysubstituted by C1-Calkyl, C1-Cahaloalkyl. C1-Calkoxy, C1-Cahaloalkoxy, halogen, cyano, hydroxyl or nitro; where Ra and Ra are not simultaneously hydrogen and hydrogen, C₁-C₆alkoxycarbonyl or C₁-C₆alkylcarbonyl, respectively:

Q is Q₁

in which

A₁ is C(R₁₄R₁₅), NR₁₆ or oxygen:

A₂ is C(R₁₇R₁₈), C(O), -C=N-O-R₁₉, oxygen, thio, sulfinyl, sulfonyl, -NR₂₀ or ethylene; with the provisos that A₁ is different from oxygen if A₂ is oxygen, C(O), thio, sulfinyl, -C=N-O-R₁₉, NR₂₀ or C(R₁₇R₁₈), where R₁₇ and R₁₈ independently of one another are C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl; and A₁ is different from NR₁₆ if A₂ is thio, sulfinyl or $C(R_{17}R_{18})$, where R_{17} and R_{18} independently of one another are C_1 - C_4 alkoxy, C1-C4alkylthio, C1-C4alkylsulfinyl, C1-C4alkylsulfonyl; R14 and R22 independently of one another are hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₃-C₄alkenyl, C₃-C₄alkynyl, C₁-C₄alkylthio,

- C1-C4alkylsulfinyl, C1-C4alkylsulfonyl, C1-C2alkylsulfonyloxy, C1-C4alkoxy,
- C₁-C₄alkoxycarbonyl or C₁-C₄alkylcarbonyl;
- $R_{19} \ and \ R_{21} \ independently of one another are hydrogen, \ C_{1}-C_{4}alkyl, \ C_{1}-C_{4}haloalkyl, \ C_{3}-C_{4}alkenyl or \ C_{3}-C_{4}alkynyl;$
- $R_{17} \text{ is hydrogen, } C_1-C_4\text{alkyl, } C_1-C_4\text{haloalkyl, } C_1-C_4\text{alkoxy, } C_1-C_4\text{alkythio, } C_1-C_4\text{alkylsulfinyl or } C_1-C_4\text{alkylsulfonyl; }$
- $$\begin{split} &R_{18} \text{ is hydrogen, } C_1\text{-}C_4\text{alkyl, } C_1\text{-}C_4\text{haloalkyl, } C_2\text{-}C_4\text{alkenyl, } C_3\text{-}C_4\text{alkynyl, } C_1\text{-}C_4\text{alkoxy, } \\ &C_1\text{-}C_2\text{alkylthio, } C_1\text{-}C_4\text{alkylsulfinyl, } C_1\text{-}C_4\text{alkylsulfonyl or } C_1\text{-}C_4\text{aliakylcarbonyl, } C_1\text{-}C_2\text{alkyl; } \\ &R_{20} \text{ is } C_1\text{-}C_4\text{alkyl, } C_2\text{-}C_5\text{cycloalkyl, } C_3\text{-}C_4\text{alkynyl, } C_1\text{-}C_4\text{alkylcarbonyl, } C_1\text{-}C_4\text{alkylcarbonyl, } C_1\text{-}C_4\text{alkylcarbonyl, } C_1\text{-}C_4\text{alkylcarbonyl, } C_1\text{-}C_4\text{alkylcarbonyl, } C_1\text{-}C_4\text{alkylcarbonyl, } C_1\text{-}C_6\text{alkyl, } C_1\text{-}C_6\text{alkyl, } C_1\text{-}C_6\text{alkyl, } C_1\text{-}C_6\text{alkyl, } C_1\text{-}C_6\text{alkoxy, } C_1\text{-}C_6\text{-}C_6\text{alkoxy, } C_1\text{-}C_6$$
- R_{19} and R_{18} independently of one another are hydrogen, C_1 - C_4 alkyl, C_3 - C_5 cycloalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkenyl, benzyl or phenyl, where phenyl and benzyl for their part may be mono- or polysubstituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxyl or nitro;
- or R₁₄ and R₂₂ together form a C₂-C₃alkylene chain;
- or R₁₄ and R₁₅ together and/or R₁₇ and R₁₈ together and/or R₂₁ and R₂₂ together form a C₂-C₄alkylene chain which may be interrupted by oxygen and/or carbonyl and/or sulfur, with the proviso that the oxygen and sulfur atoms are separated by at least one methylene group; or R₁₄ and R₁₈ together form a C₂-C₄alkylene chain; or
- R₂₂ and R₁₈ together form a C₂-C₄alkylene chain;
- or R₁₈ together with R₂₂ or R₁₄ forms a direct bond;
- or R₁₆ and R₁₈ together form a C₂-C₄alkylene chain;
- R₁₃ is hydroxyl, O'M*, where M* is an alkali metal cation or ammonium cation, halogen, C₁-C₁₂alkylsulfonyloxy, amino, C₁-C₄₂alkylthio, C₁-C₁₂alkylsulfinyl, C₁-C₁₂alkylsulfonyl,
- C_1 - C_{12} haloalkyithio, C_1 - C_{12} haloalkylsulfinyl, C_1 - C_{12} haloalkylsulfonyl, C_1 - C_8 alkoxy-
- thio, C_3 - C_{12} alkenylsulfinyl, C_3 - C_{12} alkenylsulfonyl, C_3 - C_{12} alkynylthio, C_3 - C_{12} alkynylsulfinyl,
- C₃-C₁₂alkynylsulfonyl, C₁-C₄alkoxycarbonyl-C₁-C₄alkylthio, C₁-C₄alkoxycarbonyl-C₁-C₂alkylsulfinyl, C₁-C₄alkoxycarbonyl-C₁-C₄alkylsulfonyl, (C₁-C₄alkoxy)₂P(O)O, C₁-C₄alkylsulfonyl, (C₁-C₄alkoxy)₂P(O)O, C₁-C₄alkylsulfonyl
- suirinyi, C_1 - C_4 aikoxy)P(O)O, C_1 - C_4 aikyisuironyi, $(C_1$ - C_4 aikoxy)P(O)O, C_1 -C
- R₂₈R₃₀NC(O)NH-, C₁-C₁₈alkylcarbonyloxy, C₂-C₁₈alkenylcarbonyloxy, C₂-C₁₈alkynyl-carbonyloxy, C₂-C₆cycloalkylcarbonyloxy, C₁-G₁₂alkoxycarbonyloxy, C₁-G₁₂alkylthio-

carbonyloxy, C_7 - C_{12} alkylthiocarbamoyl, where the alkyl, alkenyl and alkynyl groups may be substituted by halogen, C_7 - C_8 alkylsulfinio, C_7 - C_8 alkylsulfiniyl, C_7 - C_8 alkylsulfiniyl, C_7 - C_8 alkylsulfiniyl, C_7 - C_8 alkylsulfiniyl, C_7 - C_8 -

or R_{18} is phenoxy, phenylthio, phenylsulfinyl, phenylsulfonyl, phenylsulfonylamino, phenylsulfonyloxy or benzoyloxy, where the phenyl groups for their part may be substituted by one or more halogen, nitro, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy or C_1 - C_4 alkoxy groups;

or R₁₅ is a group Het₁-thio, Het₂-sulfinyl, Het₃-sulfonyl, Het₄-(CO)O or Het₅-N(R₂₅); in which Het₁, Het₂, Het₃, Het₄ and Het₅ independently of one another are a five- to ten-membered monocyclic or fused bicyclic ring system which may be aromatic or partially saturated and may contain 1 to 4 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and where each ring system may not contain more than 2 oxygen atoms and not more than 2 sulfur atoms, and where the ring system itself can be substituted by C₁-C₆alkyl, C₁-C₆alkoyl, C₁-C₆alkoyl, C₁-C₆alkoyl, C₁-C₆alkoyl, C₁-C₆alkoyl, C₁-C₆alkoyl, C₁-C₆alkoyl, C₁-C₆alkoyl, c₁-C₆alkoyl, c₁-C₆alkoyl) aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro or phenyl, and where the substituents on the nitrogen in the heterocyclic ring are different from halogen;

 $R_{23},\,R_{24},\,R_{25},\,R_{26},\,R_{27},\,R_{28},\,R_{29},\,R_{30}$ and R_{33} independently of one another are hydrogen or $C_1\text{-}C_8\text{elikyl};$

or R_{23} and R_{24} together or R_{25} and R_{26} together or R_{27} and R_{28} together or R_{29} and R_{30} together are pyrolidino, piperidino, morpholino, thiomorpholino, which may be mono- or polysubstituted by methyl groups;

or Q is Q₂

in which

 R_{34} is hydrogen, C_1 – C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl or benzyl, where the phenyl group may be mono- or polysubstituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, C_1 - C_6 haloalk

WO 01/94339 PCT/EP01/06430 - 6 -

P₃₅ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₃-C₆cycloalkyl, C₃-C₄alkenyl, C₃-C₄alkynyl or benzyl, where the phenyl group may be mono- or polysubstituted by C1-C6alkyl, C1-C6halo-

alkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, halogen, cyano, hydroxyl or nitro; R₃₆ is hydroxyl, O⁻M⁺, where M⁺ is an alkali metal cation or ammonium cation, halogen. C₁-C₁₂alkylsulfonyloxy, amino, C₁-C₄alkylthio, C₁-C₁₂alkylsulfinyl, C₁-C₁₂alkylsulfonyl C1-C12 haloalkylthio, C1-C12 haloalkylsulfinyl, C1-C12 haloalkylsulfonyl, C1-C22 haloalkylsulfon C1-Cealkythio, C1-Cealkoxy-C1-Cealkylsulfinyl, C1-Cealkoxy-C1-Cealkylsulfonyl, C2-C1-alkenylthio, C₃-C₁₂alkenylsulfinyl, C₃-C₁₂alkenylsulfonyl, C₃-C₁₂alkynylsulfinyl, C3-C12alkynylsulfonyl, C1-C4alkoxycarbonyl-C1-C4alkylthio, C1-C4alkoxycarbonyl-C1-C4alkylsulfinyl, C1-C4alkoxycarbonyl-C1-C4alkylsulfonyl, (C1-C4alkoxy)2P(O)O, C1-C4alkyl-(C1-C4alkoxy)P(O)O, H(C1-C4alkoxy)P(O)O, R37R38N, R38R40NNH, R41R42NC(O)O-, R₄₃R₄₄NC(O)NH-, C₁-C₁₈alkylcarbonyloxy, C₂-C₁₈alkenylcarbonyloxy, C₂-C₁₈alkynylcarbonyloxy, C3-C9cycloaikylcarbonyloxy, C1-C12alkoxycarbonyloxy, C1-C12alkylthiocarbonyloxy or C₁-C₁₂alkylthiocarbamoyl, where the alkyl, alkenyl and alkynyl groups may be substituted by halogen, C1-Cealkoxy, C1-Cealkylthio, C1-Cealkylsulfinyl, C1-Cealkylsulfonyl or cvano; or

R₃₈ is phenoxy, phenylthio, phenylsulfinyl, phenylsulfonyl, phenylsulfonylamino. phenylsulfonyloxy or benzoyloxy, where the phenyl groups for their part may be mono- or polysubstituted by halogen, nitro, cyano, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxv.

or R₃₈ is a group Het₇-thio, Het₈-sulfinyl, Het₉-sulfonyl, Het₁₀-(CO)O or Het₁₁-N(R₄₇); in which Hetz, Heta, Heta, Heta and Heta independently of one another are a five- to ten-membered monocyclic or fused bicyclic ring system which may be aromatic or partially saturated and may contain 1 to 4 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and where each ring system may not contain more than 2 oxygen atoms and not more than 2 sulfur atoms, and where the ring system for its part may be substituted by C1-Cealkyl, C1-Cehaloaikyl, C1-Cealkoxy, C1-Cehaloalkoxy, C1-Cealkylthio, C1-Cealkylsulfinyl, C₁-C₆alkylsulfonyl, di(C₁-C∠alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, hatogen, cyano, nitro or phenyl, and where the substituents on the nitrogen in the heterocyclic ring are different from halogen;

R₃₇, R₃₈, R₃₉, R₄₀, R₄₁, R₄₂, R₄₃, R₄₄ and R₄₇ independently of one another are hydrogen or C1-Cealkyl; or

 R_{37} and R_{38} together or R_{38} and R_{40} together or R_{41} and R_{42} together or R_{43} and R_{44} together are pyrolidino, piperidino, morpholino, thiomorpholino, which may be mono- or polysubstituted by methyl groups;

or Q is Q3

in which

$$\begin{split} R_{4\theta} & \text{is $C_1-C_4\text{alkyl}, $C_1-C_4\text{haloalkyl}, $C_3-C_6\text{cycloalkyl}$ or halogen-substituted $C_3-C_6\text{cycloalkyl}$; } \\ R_{50} & \text{is $C_1-C_5\text{alkylene}$ which may be substituted by halogen, hydroxyl, $C_1-C_6\text{alkoxy}$, } \\ C_2-C_6\text{alkenyl}, $C_2-C_6\text{alkynyl}, $C_3-C_6\text{cycloalkyl}, $C_1-C_6\text{alkoxy-}C_1-C_6\text{alkoxy}$, $C_1-C_6\text{alkoxy}$, $C_1-C_6\text{alkoxy}$, or by $C_1-C_6\text{alkoxy-}C_1-C_6\text{alkoxy}$, $C_3-C_6\text{cycloalkyl}$, $C_3-C_6\text{alkoxy-}C_1-C_6\text{alkoxy-}C_3$$

or R_{50} is phenyl, where the phenyl-containing group for its part may be substituted by one or more C_1 - C_9 alkyl, C_1 - C_9 haloalkyl, C_1 - C_9 alkoxy, C_1 - C_9 haloalkoxy, halogen, cyano, hydroxyl or nitro.

or R_{50} is C_3 - C_6 cycloalkyl, C_1 - C_0 alkoxy- or C_1 - C_0 alkyl-substituted C_3 - C_0 cycloalkyl, 3-oxetanyl or C_1 - C_0 alkyl-substituted 3-oxetanyl; and

n is 0, 1 or 2; and agronomically acceptable salts/N-oxides/isomers/enantiomers of these compounds.

The alkyl groups occurring in the definitions of the substituents can be straight-chain or branched and are, for example, methyl, elthyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl and their branched isomers. Alkoxy, alkenyl and alkynyl radicals are derived from the alkyl radicals mentioned. The alkenyl and alkynyl groups can be mono- or polyunsaturated. Halogen is generally fluorine, chlorine, bromine or iodine, preferably fluorine and chlorine. This also applies, correspondingly, to halogen in combination with other meanings, such as haloalkyl or haloghenyl.

Haloalkyl groups preferably have a chain length of from 1 to 6 carbon atoms. Haloalkyl is, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1,1-difluoroethyl, 2,2,3,3-tetrafluoroethyl and 2,2,2-trichloroethyl; preferably trichloromethyl, difluoromethyl, difluoromethyl,

Suitable haloalkenyl groups are alkenyl groups which are mono- or polysubstituted by halogen, halogen being fluorine, chlorine, bromine and iodine and in particular fluorine and chlorine, for example 2,2-difluoro-1-methyldnyl, 3-fluoropropenyl, 3-chloropropenyl, 2-3,3-trifluoropropenyl, 2,3,3-trifluoropropenyl, 2,3,3-tr

Suitable haloalkynyl groups are, for example, alkynyl groups which are mono- or polysubstituted by halogen, halogen being bromine, iodine and in particular fluorine and chlorine, for example 3-fluoropropynyl, 3-chloropropynyl, 3-bromopropynyl, 3,3,3-trifluoropropynyl and 4,4,4-trifluorobut-2-yn-1-yl. Among the alkynyl groups which are mono- or polysubstituted by halogen, preference is given to those having a chain length of from 3 to 5 carbon atoms.

In the context of the present invention, the alkali metal cation M^* (for example in the definition of R_{13}) is preferably the sodium cation or the potassium cation.

Alkoxy groups preferably have a chain length of from 1 to 6 carbon atoms. Alkoxy is, for example, methoxy, ethoxy, propoxy, i-propoxy, n-butoxy, isobutoxy, sec-butoxy and lert-butoxy and also the isomeric pentyloxy and hexyloxy radicals; preferably methoxy and ethoxy. Alkylcarbonyl is preferably acetyl or propionyl. Alkoxycarbonyl is, for example, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isobutoxycarbonyl, n-butoxycarbonyl or lert-butoxycarbonyl; preferably methoxycarbonyl or ethoxycarbonyl. Haloalkoxy groups preferably have a chain length of from 1 to 8 carbon

atoms. Haloalkoxy is, for example, fluoromethoxy, diffuoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy and 2,2,2-trifluoroethoxy, preferably diffuoromethoxy. 2-chloroethoxy and fifuoromethoxy. Alkylthio groups preferably have a chain length of from 1 to 8 carbon atoms. Alkylthio is, for example, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio, preferably methylthio and ethylthio. Alkylsulfinyl is, for example, methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, n-butylsulfinyl, isobutylsulfinyl, sec-butylsulfinyl, tert-butylsulfinyl, preferably methylsulfinyl, n-butylsulfinyl, isobutylsulfinyl, sec-butylsulfinyl, tert-butylsulfinyl, preferably methylsulfinyl, and ethylsulfinyl, sec-butylsulfinyl, tert-butylsulfinyl, preferably methylsulfinyl, and ethylsulfinyl.

Alkylsulfonyl is, for example, methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl or tert-butylsulfonyl; preferably methylsulfonyl or ethylsulfonyl. Alkoxyalkoxy groups preferably have a chain length of from 1 to 8 carbon atoms. Examples of alkoxyalkoxy groups are: methoxymethoxy, methoxyethoxy, methoxypropoxy, ethoxymethoxy, ethoxyethoxy, propoxymethoxy or butoxybutoxy. Alkylamino is, for example, methylamino, ethylamino, n-propylamino, isopropylamino or the isomeric butylamines. Dialkylamino is, for example, dimethylamino, methylethylamino. diethylamino, n-propylmethylamino, dibutylamino and diisopropylamino. Preference is given to alkylamino groups having a chain length of from 1 to 4 carbon atoms. Alkoxyalkyl groups preferably have a chain length of 1 to 6 carbon atoms. Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, n-propoxymethyl, n-propoxyethyl, isopropoxymethyl or isopropoxyethyl. Alkylthioalkyl groups preferably have from 1 to 8 carbon atoms. Alkylthioalkyl is, for example, methylthiomethyl, methylthioethyl, ethylthiomethyl, ethylthioethyl, n-propylthiomethyl, n-propylthioethyl, isopropylthiomethyl, isopropylthioethyl, butylthiomethyl, butylthioethyl or butylthiobutyl. The cycloalkyl groups preferably have from 3 to 8 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl. Phenyl, also as part of a substituent such as phenoxy, benzyl, benzyloxy, benzoyl, phenylthio, phenylalkyl, phenoxyalkyl, may be substituted. In this case, the substituents can be in ortho, meta and/or para position. The preferred substituent positions are the ortho and para positions to the ring attachment point.

The compounds of the formula I may occur in different tautomeric forms, for example, if R₁₃ is hydroxyl, in the preferred formulae I' and I''''

The invention also embraces the salts which can be formed by compounds of the formula I, preferably with amines, alkali metal and alkaline earth metal bases or quarternary ammonium bases. Suitable salt formers are described, for example, in WO 98/41089.

The invention also embraces the salts which can be formed by the compounds of the formula! With amines, alkali metal and alkaline earth metal bases or quarternary ammonium bases. Among the alkali metal and alkaline earth metal hydroxides, the hydroxides of lithium, sodium, potassium, magnesium or calcium, in particular those of sodium or potassium, may be emphasized as salt formers.

Examples of amines suitable for ammonium salt formation are both ammonia and primary, secondary and tertiary C_1 - C_{10} alkylamines, C_1 - C_4 hydroxyalkylamines and C_2 - C_4 alkoxyalkylamines, for example methylamine, ethylamine, n-propylamine, isopropylamine, the four isomeric butylamines, n-amylamine, isoamylamine, hexylamine, heptylamine, octylamine,

WO 01/94339

nonvlamine, decvlamine, pentadecvlamine, hexadecvlamine, heptadecvlamine, octadecylamine, methylethylamine, methylisopropylamine, methylnexylamine, methylnonylamine, methylpentadecylamine, methyloctadecylamine, ethylbutylamine, ethylheptylamine, ethyloctylamine, hexylheptylamine, hexyloctylamine, dimethylamine, diethylamine, di-npropylamine, diisopropylamine, di-n-butylamine, di-n-amylamine, diisoamylamine, dihexylamine, diheptylamine, dioctylamine, ethanolamine, n-propanolamine, isopropanolamine, N.N-diethanolamine, N-ethylpropanolamine, N-butylethanolamine, allylamine, n-butenyl-2-amine, n-pentenyl-2-amine, 2,3-dimethylbutenyl-2-amine, dibutenyl-2-amine, n-hexenyl-2-amine, propylenediamine, trimethylamine, triethylamine, tri-n-propylamine. triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, tri-n-amylamine, methoxyethylamine and ethoxyethylamine; heterocyclic amines, for example pyridine, quinoline, isoquinoline, morpholine, piperidine, pyrrolidine, indoline, quinuclidine and azepine; primary arylamines, for example anilines, methoxyanilines, ethoxyanilines, o.m.p-toluidines, phenylenediamines, benzidines, naphthylamines and o.m.p-chloroanilines; but in particular triethylamine, isopropylamine and diisopropylamine.

- 11 -

PCT/EP01/06430

Preferred quarternary ammonium bases which are suitable for salt formation correspond, for example, to the formula [N(R_aR_bR_cR_d)]OH, in which R_a, R_b, R_c and R_d independently of one another are C1-C2alkyl. Other suitable tetraalkylammonium bases with other anions can be obtained, for example, by anion exchange reactions.

Compounds of formula 1, wherein p is 0, are preferred.

Preferred compounds of the formula I are those in which R₁ is -CH₂-, -CH₂CH₂-, -CF₂, -CH=CHCH₂-, -CH(CH₃)- or -C=CCH₂-, but particularly preferably -CH₂- where in each case the free valences on the left are attached to the pyridine ring.

Preference is furthermore given to those compounds of the formula I, in which X₁ is oxygen, sulfonyl or a group -NR₆₀SO₂₁, in particular oxygen.

Of particular interest are compounds of the formula 1, in which R₂ is -CH₂OCH₃. -CH₂OCH₂CH₃, -CH₂CH₃OCH₃, -CH₂CH₃SO₂CH₃ or -CH₂CH₂OCH₃CH₂OCH₃, preferably -CH₂CH₂OCH₃, those compounds standing out in which X₁ is oxygen and R₁ is -CH₂-.

Among this group, preference is given to those compounds in which Q is Q_1 and R_{13} is hydroxyl.

Emphasis is furthermore given to the compounds of the formula I in which R₂

In a further preferred group of compounds of the formula I, R₃ is CF₃, CF₂CF₃, CF₂CI, CF₂H or CCl₃, particularly preferably CF₃, where R₄ is preferably hydrogen or methyl, particularly preferably hydrogen.

R₈, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, R₅₁ and R₅₂ independently of one another are in particular hydrogen, C₁-C₄alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy, where in a preferred group of compounds of the formula I additionally Q is Q₂ and R₁ is methylene.

Very particularly preferably, Q is Q_1 and R_{13} is hydroxyl or halogen, in particular hydroxyl. Among this group, emphasis is given to those compounds in which

- a) A_1 is $C(R_{14}R_{15})$ or NR_{16} and A_2 is $C(R_{17}R_{18})$, C(O) or oxygen, or
- b) A_1 is $C(R_{14}R_{16})$ and A_2 is $C(R_{17}R_{18})$ and R_{14} and R_{22} together form a C_2 - C_3 alkylene chain, preferably an ethylene chain, where R_{15} , R_{17} , R_{18} and R_{21} are particularly preferably hydrogen; or
- c) A_2 is C(0) or $C(R_{17}R_{18})$, A_1 is $C(R_{14}R_{18})$ and R_{14} , R_{15} , R_{17} and R_{16} independently of one another are hydrogen, methyl, ethyl, methoxycarbonyl or ethoxycarbonyl; or
- d) R_{14} and R_{15} or R_{21} and R_{22} together form a C_2 alkylene chain (cyclopropyl ring), A_2 is CH_2 and R_{21} and R_{22} or R_{14} and R_{15} independently of one another are hydrogen, C_1 - C_4 alkyl, methoxycarbonyl or ethoxycarbonyl; or
- e) A_2 is $C(R_{17}R_{18})$ and A_1 is $C(R_{14}R_{15})$ and R_{18} and R_{14} together form a C_2 - C_3 alkylene chain.

In a further outstanding group of compounds of the formula I, Q is Q_3 , R_{43} is cyclopropyl and R_{80} S $(O)_n$ is methylthio, ethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl or ethylsulfonyl.

The compounds of the formula I can be prepared by processes known per se, for example those described in WO 97/46530 or WO 00/15615 or WO/0039094, for example in the case of compounds of the formula I.

$$\begin{array}{c|c} R_4 & Q & \\ R_3 & N & R_1 \\ X_1 & R_2 \end{array} \hspace{0.5cm} (I)$$

in which $R_1,\,R_2,\,R_3,\,R_4$ and X_1 are as defined under formula I and Q is a group

by, for example, either

a) reacting a compound of the formula la

in which R_1 , R_2 , R_3 , R_4 and X_1 are as defined under formula I and Y_1 is a leaving group, for example halogen or cyano, in an inert organic solvent in the presence of a base with a compound of the formula II

WO 01/94339

in which R_{2a} , R_{21} , A_2 and A_1 are as defined under formula I, to give the compounds of the formulae IIIa and IIIb

and then isomerizing these for example in the presence of a base and a catalytic amount of dimethylaminopyridine (DMAP) or a source of cyanide, for example acetone cyanohydrin; or b) reacting a compound of the formula lb

$$\begin{array}{c} R_4 \\ R_3 \\ N \\ R_1 \\ X_1 \\ R_2 \end{array} \hspace{0.5cm} \text{(lb)},$$

in which $R_1,\,R_2,\,R_3,\,R_4$ and X_1 are as defined under formula I, with a compound of the formula II

in which R_{22} , R_{21} , A_1 and A_2 are as defined under formula I, in an inert organic solvent in the presence of a base and a coupling agent to give the compounds of the formula IIIa or IIIib

and then isomerizing these, for example as described under route a).

Compounds of the formula I, in which Q is a group

are prepared similarly to a known process (for example WO 97/46530), wherein either

a) a compound of the formula la

$$R_3$$
 N R_1 X_1 R_2 (la),

in which R_1 , R_2 , R_3 , R_4 and X_1 are as defined under formula I and Y_1 is a leaving group, for example halogen or cyano, is reacted with a compound of the formula IIa

in which R_{34} and R_{35} are as defined, in an inert organic solvent in the presence of a base to give the compound of the formula IIIc

in which R_1 , R_2 , R_3 , R_4 , R_{34} , R_{35} and X_1 are as defined under formula I, and this compound is then isomerized, for example in the presence of a base and a catalytic amount of a source of cyanide; or

b) a compound of the formula lb

in which $R_1,\,R_2,\,R_3,\,R_4$ and X_1 are as defined under formula I, is reacted with a compound of the formula IIa

in which R_{34} and R_{35} are as defined above, in an Inert organic solvent in the presence of a base and a coupling agent to give the compound of the formula IIIc

and this compound is then isomerized as described under route a).

The compounds of the formula I, in which Q is a group

in which n is 0 and R_{80} and R_{40} are as defined above, are prepared similarly to known processes (for example those described in WO 00/15615, WO/0039094 or WO 97/43270), wherein either

a) a compound of the formula IV

in which X_1 , R_1 , R_2 , R_3 , R_4 and R_{49} are as defined above, is converted in the presence of a base, carbon disulfide and an alkylating agent of the formula V

in which R_{50} is as defined under formula I, and Y_2 is a leaving group, for example halogen or suffonate, into the compound of the formula VI

in which R_1 , R_2 , R_3 , R_4 , R_{50} , X_1 and R_{60} are as defined above, and this compound is then cyclized with hydroxylamine hydrochloride, if appropriate in a solvent, in the presence of a base, for example sodium acetate, to give the isomeric compounds of the formulae ic and id

$$\begin{array}{c} \text{(O)} \text{n.s.}^{R_{50}} \\ \text{N.s.}^{R_{50}} \\ \text{R.s.} \\ \text{N.s.}^{R_{1}} \\ \text{N.s.}^{R_{2}} \\ \text{N.s.}^{R_{1}} \\ \text{N.s.}^{R_{1}} \\ \text{N.s.}^{R_{2}} \\ \text{N.$$

and these compounds are then oxidized with an oxidizing agent, for example with peracids, for example meta-chloroperbenzoic acid (m-CPBA) or peracetic acid, to give the corresponding sulfoxides (n = 1) and sulfones (n = 2) of the formulae le and If, respectively. isomers of the formulae le and Id (in which n = 0) or le and If (in which n = 1 or 2) can be separated and purified by column chromatography, using a suitable mobile phase.

The intermediates of the formulae Ia, Ib, IV and VI are novel and were developed specifically for the preparation of the compounds of the formula I. Accordingly, they also form part of the subject-matter of the present invention. Together, the novel intermediates of the formulae Ia, Ib, IV and VI correspond to formula XX

$$R_4$$
 Q
 R_3
 N
 R_1
 R_2
 R_3
 R_3

in which

Q is hydroxyl, halogen, cyano or C₁-C₈alkoxy, or is a group of the formula

R₁, R₃, R₄, R₄₉, R₅₀, X₁ and p are as defined under formula I and R₂ is a C₁-C₆alkyl, C₃-C₆alkynly group which is mono- or polysubstituted by halogen, hydroxyl, amino, formyl, nitro, cyano, mercapto, carbamoyl, C₁-C₆alkoxy, C₁-C₆alkoxycarbonyl, C₂-C₆alkenyl, C₂-C₆alkenyl, C₂-C₆alkynlyl, C₂-C₆alkynlyl, C₃-C₆cycloalkyl, by halogensubstituted G₃-C₆cycloalkyl, or by C₃-C₆alkoxy, C₇-C₆alkoxy, C₇-C₆alkylsulfonyl-C₇-C₆alkoxy, C₇-C₆alkylsulfonyl-C₇-C₆alkoxy, C₇-C₆alkylsulfinyl, C₇-C₆

 R_2 is phenyl which may be mono- or polysubstituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxyl or nitro; or R_2 is C_3 - C_6 cycloalkyl, C_1 - C_6 alkoxy- or C_1 - C_6 alkyl-substituted C_3 - C_6 cycloalkyl, 3-oxetanyl or C_1 - C_6 alkyl-substituted 3-oxetanyl;

or

nitro groups, or

if X_1 is -N(R_S)-O-, -O-NR_{S1}, SO₂NR₇- or -NR_{S2}SO₂- and R_S, R₇, R_{S1} and R_{S2} are as defined under formula I.

R₂ may additionally be hydrogen, unsubstituted C₁-C_ealkyl, or

a five- to ten-membered monocyclic or fused bicyclic ring system which may be aromatic, saturated or partially saturated and may contain 1 to 4 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, where the ring system is attacthed directly or via a \$C_1-C_4alkylene, C_2-C_4alkylene, C_2-C_4alkylene, -N(R_{12})-C_1-C_4alkylene, -SC-C_1-C_4alkylene or -SO_2-C_1-C_4alkylene group to the substituent X_1, and where each ring system may not contain more than 2 oxygen atoms and not more than two sulfur atoms, and where the ring system for its part may be mono-, di- or trisubstituted by \$C_1-C_6alkyl, C_1-C_6haloalkyl, C_2-C_6alkonyl, C_2-C_6haloalkynyl, C_1-C_6alkynyl, C_1-C_6haloalkynyl, C_1-C_6alkynyl, C_1-C_6haloalkynyl, C_1-C_6alkynyl, C_1-C_6haloalkynyl, C_1-C_6haloalkynyl, C_1-C_6haloalkynyl, C_1-C_6haloalkynyl, C_1-C_6haloalkynylhio, C_3-C_6alkynylhio, C_3-C_6alkynyl

 C_{2} - C_{6} alkynytthio, C_{2} - C_{5} alkoxyalkytthio, C_{3} - C_{5} acetylalkytthio, C_{3} - C_{6} alkoxycarbonylalkytthio, C_{5} - C_{6} alkoxycarbonylalkytthio, C_{7} - C_{6} alkylsulfinyl, C_{7} - C_{6} alkylsulfinyl, C_{7} - C_{6} alkylsulfinyl, C_{7} - C_{6} alkylsulfinyl, aminosulfonyl, C_{7} - C_{6} alkylsulfinyl, aminosulfonyl, C_{7} - C_{6} alkylsulfinyl, aminosulfonyl, and C_{7} - C_{6} alkylsulfinyl, amino, halogen, cyano, nitro, phenyl and benzylthio, where phenyl and benzylthio for their part may be substituted on the phenyl ring by C_{7} - C_{6} alkyl, C_{7} - C_{6} haloalkyl, C_{7} - C_{6} haloalkyl, halogen, cyano or nitro, and where the substituents on the nitrogen in the heterocyclic ring are different from halogen.

The preparation of the compounds of the formula I is illustrated in more detail in reaction schemes 1 and 2 below.

Reaction scheme 1

Route b):

Reaction scheme 1 is preferably used to prepare the compounds of the formula I having the group Q_1 , in which R_{10} is hydroxyl, and the compounds of the formula I having the group Q_2 , in which R_{00} is hydroxyl.

Reaction scheme 2

Compounds of the formula I, in which p is 1, i.e. the corresponding N-oxides of the formula I, can be prepared by reacting a compound of the formula I, in which p is 0, with a suitable oxidizing agent, for example the H₂O₂/urea adduct in the presence of an acid anhydride, e.g. trifluoroacetic anhydride. Such oxidations are known from the literature, for example from J. Med. Chem., 32 (12), 2561-73, 1989 or WO 00/15615.

According to reaction scheme 1, route a), the carboxylic acid derivatives of the formula la in which Y₁ is a leaving group such as halogen, for example iodine, bromine, and in particular chlorine, N-oxyphthalimide or N,O-dimethylhydroxylamino or part of an activated ester, for example \(\subseteq -N = \frac{C}{C} - N + C \) (formed from dicyclohexylcarbodiimide (DCC) and the

corresponding carboxylic acid) or ${^{\rm C_2H_3N=C-NH(CH_3)_3}N^{\rm (CH_3)_2}}_{{\rm O}^-}$ (formed from N-ethyl N'-(3-

dimethylaminopropyl)carbodilmide (EDC) and the corresponding carboxyllc acid) are used as starting materials for preparing the compounds of the formula I in which O denotes the groups O_1 and O_2 and O_3 and O_3 are hydroxyl. The starting materials are reacted in an inert organic solvent such as a halogenated hydrocarbon, for example dichloromethane, a nitrile, for example acetonitrile, or an aromatic hydrocarbon, for example toluene, and in the presence of a base such as an alkylamine, for example triethylamine, an aromatic amine, for example pyridine or 4-dimethylaminopyridine (DMAP) with the dione derivatives of the formula II or pyrazoles of the formula IIIa, to give the isomeric enol ethers of the formula IIIa, III b or IIIc. This esterification can be carried out at temperatures of from 0°C to 110°C.

The isomerization of the ester derivatives of the formulae IIIa, IIIb and IIIc to derivatives of the formula I (in which $\rm R_{13}$ and $\rm R_{36}$ are hydroxyl) can be carried out, for example, similarly to EP-A-0 353 187, EP-A-0 316 491 or WO 97/46530 in the presence of a base such as an alkylamine, for example triethylamine, a carbonate, for example potassium carbonate, and a catalytic amount of DMAP or a source of cyanide, such as acetone cyanohydrin or potassium cyanide. In particular if a cyanide compound of the formula la ($\rm Y_1 = cyano)$ is used, or in the presence of a catalytic amount of acetone cyanohydrin or potassium cyanide, the two reaction steps can be carried out *in situ* without isolating the intermediates III.

According to reaction scheme 1, route b), the desired derivatives of the formula I (in which R₁₃ and R₃₆ are hydroxyl) can be obtained, for example, similarly to E. Haslem, *Tetrahedron*, 2409-2433, 36, 1980, by esterifying the carboxylic acids of the formula Ib with the dione derivatives of the formula II or pyrazoles of the formula IIa in an inert solvent such as a halogenated hydrocarbon, for example dichloromethane, a nitrile, for example acetonitrile, or an aromatic hydrocarbon, for example toluene, in the presence of a base such as an alkylamine, for example triethylamine, and a coupling agent such as 2-chloro-1-methyl-pyridinium iodide. Depending on the solvent used, this esterification is carried out at temperatures of from 0°C to 110°C, giving initially, as described under route a), the isomeric ester of the formula IIIa, IIIb or IIIc, which can be isomerized as described under route a), to example in the presence of a base and a catalytic amount of DMAP, or a source of cyanide, for example acetone cyanohydrin, to give the desired derivative of the formula I (R₁₃ and R₃₆ = hydroxyl). The activated carboxylic acid derivatives of the formula Ia in reaction scheme 1 (route a), in which Y₁ is a leaving group such as halogen, for example bromine, lodine or, in particular, chlorine, can be prepared by known standard processes, for example

those described in C. Ferri "Reaktionen der organischen Synthese" [Reactions of organic sythesis], Georg Thieme Verlag, Stuttgart, 1978, page 460 ff. Such reactions are generally known and described in the literature in different variations with respect to the leaving group Y₁.

The preparation of the compounds of the formula I, in which Q denotes the group Q_3 , can be carried out according to reaction scheme 2 by reacting the β -diketone derivative of the formula IV for example similarly to Synthesis 1991, 301; ibid. 1988, 793; or Tetrahedron 32, 3055, 1976, with carbon disulfide in the presence of a base such as a carbonate, for example potassium carbonate, a metal hydride, for example sodium hydride, or potassium fluoride on aluminum, and an alkylating agent of the formula V, in which Y_2 is a leaving group such as halogen, for example iodine, bromine and, in particular, chlorine, $CH_9SO_2O_7$ or

amide, for example N,N-dimethylformamide (DMF), a sulfoxide, for example dimethyl sulfoxide (DMSO), or a nitrile, for example acetonitrile. The ketene thioacetal of the formula VI that is formed is cyclized with the aid of hydroxylamine hydrochloride in the presence of a base such as sodium acetate in a solvent such as an alcohol, for example ethanol, or an ether, for example tetrahydrofuran, to give the isomeric compounds of the formulae ic and id (in which n is 0). This cyclization reaction is carried out at temperatures of from 0°C to 100°C. If appropriate, the compounds of the formulae ic and id in which n is 0 can be oxidized similarly to known standard processes as described, for example, in H. O. House, "Modern Synthetic Reactions", W. A. Benjamin, Inc., Menio Park, California, 1972, pages 334-335 and 353-354, to give the corresponding sulfones and sulfoxides of the formulae le and if (n = 1 or 2).

The compounds of the formula IV in reaction scheme 2 can be obtained by standard processes for example from the corresponding compounds of the formula la

- 26 -

in which R_1 , R_2 , R_3 , R_4 , and X_1 are as defined above and Y_1 is a leaving group, for example halogen, for example by Claisen condensation, or from the compounds of the formula la by reaction with a ketocarboxylic acid salt of the formula VII

PCT/EP01/06430

in which R_{49} is as defined under formula I and M^{\dagger} is an alkali metal ion (cf., for example, WO 96/26192).

Compounds of the formula I, in which R₁ is, in particular C₁-C₂alkyl, can, for example, also be prepared by heating an N-oxide of the formula IX under known reaction conditions in the presence of an acid anhydride (see, for example, Konno, K.; Hashimoto, K.; Shirahama, H.; Matsumoto, T.: Heterocycles 1986, 24, 2169, or WO 00/15615) and hydrolyzing the resulting products (Ig) in a protic solvent, for example water or a water/methanol mixture, if appropriate in the presence of a base (for example lithium hydroxide or sodium hydroxide). and then converting the resulting alcohol X in the presence of a base, for example sodium hydride or potassium hydroxide, if appropriate in the presence of a phase-transfer catalyst or a crown ether, and an alkylating agent R2-Y3, in which R2 is as defined under formula I and Y₃ is a leaving group, for example halogen or methyl sulfonate, in an aprotic solvent, for example, tetrahydrofuran or dimethylformamide, into the corresponding derivatives of the formula Ih (in which X₁ is exygen). Compounds of the formula I, in which R₂ is C₁-C₆alkoxymethyl or 2-tetrahydropyranyl or 2-tetrahydrofuryl, can be prepared, for example, by treating an alcohol of the formula X with a vinyl ether of the formula VE₁, in which R₀₃, R₀₄, and Ros are C1-Cealkyl or Ros together with Ros forms a C2-C3alkylene chain, in the presence of an acidic catalyst, for example para-toluenesulphonic acid, in an inert solvent, for example methylene chloride. Such reactions are generally known in the literature (see, for example, Synthesis, p. 169, 1973). The two reaction sequences are demonstrated using the example below:

Reaction scheme 3

Compounds of the formula I, in which R_i is, in particular, C_1 – C_2 alkyl or C_1 – C_2 haloalkyl, can, for example, also be prepared by oxidzing a compound of the formula XI, in which R_{16} is in particular chlorine, C_1 – C_4 alkoxycarbonyloxy or benzoylcarbonyloxy (prepared similarly to WO 00/15615 or WO/0039094), under known halogenation conditions using, for example, N-bromosuccinimide or N-chlorosuccinimide in the presence of light and a free-radical initiator such as benzoyl peroxide to give the 1-bromo or 1-chloro, 1,1-dibromo or 1,1-dichloro compound and then refunctionalizing these compounds into the corresponding derivatives of the formula I, for example by reaction with a nucleophile R_2 - Z_1 in which Z is, for example, -SH, -OH, -C(O)OH, -O-N(R₅₁)H, -N(R₆)-OH, -SO₂N(R₆₂)H or -N(R₅)H and R_{51} , R_{52} .

 R_6 , R_6 and R_5 , are as defined under formula I, in the presence of a base, for example sodium hydride, potassium hydroxide or potassium carbonate, followed by aqueous work-up. These reaction sequences, too, are demonstrated by the example below.

Reaction scheme 4

$$R_{2} = H, C_{1} - C_{2} \text{alkyl}$$

$$R_{2} = H, C_{1} - C_{2} \text{alkyl}$$

$$R_{2} = H, C_{1} - C_{2} \text{alkyl}$$

$$R_{2} = H, C_{1} - C_{3} \text{alkyl}$$

$$R_{2} = H, C_{1} - C_{4} \text{alkyl}$$

$$R_{3} = H, C_{1} - C_{4} \text{alkyl}$$

$$R_{4} = H, C_{1} - C_{4} \text{alkyl}$$

$$R_{3} = H, C_{1} - C_{4} \text{alkyl}$$

$$R_{4} = H, C_{1} - C_{4} \text{alkyl}$$

$$R_{3} = H, C_{1} - C_{4} \text{alkyl}$$

$$R_{4} = H, C_{1} - C_{4} \text{alkyl}$$

$$R_{5} = H, C_{1} - C_{4} \text{a$$

Compounds of the formula I, in which Q denotes Q_1 or Q_2 and in which P_{13} or P_{35} are different from hydroxyl or halogen, can be prepared by conversion processes generally known from the literature, for example acylations or carbamoylations with appropriate acid chlorides from compounds of the formula I, in which P_{13} or P_{36} is hydroxyl, in the presence of a suitable base, or they can be prepared by nucleophilic substitution reactions on chlorides of the formula I, in which P_{13} and P_{33} are chlorine, the chlorides likewise being obtainable according to known processes by reaction with a chlorinating agent, such as phosgene, thionyl chloride or oxally chloride. The starting materials used are, for example, appropriately substituted amines, or hydroxylamines directly, or alkylsulfonamides, mercaptans,

thiophenols, phenols, heterocyclic amines or heterocyclic thiols in the presence of a base, for example 5-ethyl-2-methylpyridine, diisopropylethylamine, triethylamine, sodium bicarbonate, sodium acetate or potassium carbonate.

Compounds of the formula I, in which R₁₀ and R₂₀ contain thio groups, can be oxidized similarly to known standard processes using, for example, peracids, for example meta-chloroperbenzoic acid (m-CPBA) or peracetic acid, to give the corresponding sulfones and sulfoxides of the formula I. The degree of oxidation at the sulfur atom (SO- or SO₂-) can be controlled by the amount of oxidizing agent.

The resulting derivatives of the formula I, in which R_{13} and R_{36} are different from hydroxyl, can likewise occur in different isomeric forms which, if appropriate, can be isolated in pure form. Accordingly, the invention also embraces all of these stereoisomeric forms. Examples of these isomeric forms are the formulae I^* , I^{**} and I^{***} below in which Q denotes the group Q_1 .

The compounds of the formulae II and IIa are known and can be prepared similarly as described, for example, in WO 92/07837, UP 10265441, DE-A-3818958, EP-A-0 338 992, DE-A-3902818, EP-A-0 278 742, WO 98/29412, JP 02059566, US-A-5,089,046, GB-A-2205316. WO 00/27821 or EP-A-0 384 736.

The required intermediates of the formula Ib (or Ik, II or Im) are synthesized similarly to known processes as described, for example, in WO 00/15615, WO/00/39994 or WO 97/46530, or they can be prepared for example, according to generally known conversion methods such as the Stille (see, for example Angew. Chem. 1986, 98(6), 504-19), Heck (see, for example, Angew. Chem. 1994, 106 (23/24), 2473-508), Sonogashira (see, for example, "Comprehensive Organometallic Synthesis", Pergamon Verlag, Oxford, Vol 3, 1991, page 521 ff.) or Wittig (for example C. Ferri "Reaktlonen der organischen Synthesis", Georg Thieme Verlag, Stuttgart, 1978, p. 354 ff.) reactions, starting from halogen derivatives of the formula XIV (preparation as described in WO 00/15615 or WO/0039094) or XVII (preparation similar to EP 522392) (reaction scheme 5):

Reaction scheme 5

$$R_{cc} = C_r \cdot C_o alkyl, hydrogen \\ R_{cc} =$$

Intermediates of the formula lb, in which R_1 , R_2 , R_3 , R_4 and X_1 are as defined under formula I, can also be prepared by the method according to reaction scheme 6:

Reaction scheme 6

Using generally known oxidation methods such as dihydroxylation, Wacker oxidation, epoxidation, hydroboration with subsequent oxidation, starting with vinyl or allyl compounds of the formula XVIII (preparation as described in WO 00/15615 or WO/0039094), intermediates of the formulae It, In, Iq and Ir are obtained which can be converted by conversion processes known to the person skilled in the art (for example alcohol activation, for example using an alkylating agent R_2 - Y_3 or R_3 - Y_3 , in which R_2 and R_3 are as defined under formula I and Y_3 is a leaving group, for example halogen), in the presence of a base, or using nucleophile reactions, for example with a nucleophile Z- R_2 , in which Z and R_3 are as defined above, into compounds of the formula I.

Intermediates of the formulal b_1 in which R_1 is $C_1 \cdot C_2$ alkyl and R_2 , R_3 , R_4 and X_1 are as defined under formula I, can also be prepared by reacting a compound of the formula XIVa, in which R_3 and R_4 are as defined above under formula I and Y_4 is halogen, with a nucleophile $R_2 \cdot Z_1$, in which Z is -SH, -OH, -C(O)OH, -O-N(R_3)H, -N(R_3)-OH -SO₂N(R_{32})H or -N(R_3)H and R_2 , R_{32} , R_6 , R_9 , R_{31} are as defined above under formula I, in the presence of a base such as sodium hydride or an alkaline earth metal oxide or carbonate in an inert solvent such as dimethylformamilde or THF at temperatures between -5 and $160^{\circ}C$, or, to prepare the corresponding sulfinyl or sulfonyl derivatives of the formula I_{11} , by reacting with an oxidizing agent such as I_{12} -Chorochemical caid or sodium periodate, or sodium perborate, with, depending on the degree of oxidation, temperature control known to the person skilled in the art (for example $-30^{\circ}C$ - $+50^{\circ}C$ for I_{12} and $-20^{\circ}C$ - $+100^{\circ}C$ for I_{12} respectively), in an inert solvent such as dichloromethane, to give compound of the formula I_{13} . In reaction scheme I_{13} below, this is illustrated in more detail for the case I_{13} CH, I_{13} CONN(I_{14})- I_{13} in I_{13} CNN(I_{13})- I_{13} in I_{13} CNN(I_{13})- I_{13} in I_{13} CNN(I_{13})- $I_{$

Reaction scheme 7

Intermediates of the formula I, in which Q denotes a group OR_{02} ($R_{02} = C_1 - C_3 elkyI$), can be converted by hydrolysis using, for example, a base, for example LiOH, in a protic solvent, for example H_2O or $H_2O/methanol$ mixtures, into products of the formula Ib.

For preparing all further compounds of the formula I functionalized according to the definitions of R₁, R₂, R₃, R₄ and X₁, there are a large number of suitable known standard methods, for example alkylation, halogenation, acylation, amidation, oximation, oxidation and reduction, the choice of the preparation methods which are suitable depending on the properties (reactivity) of the substituents in the intermediates.

The reactions to give compounds of the formula I are advantageously carried out in aprotic inert organic solvents. Such solvents are hydrocarbons such as benzene, toluene, xylene or cyclohexane, chlorinated hydrocarbons such as dichloromethane, trichloromethane, tetrachloromethane or chlorobenzene, ethers such as diethyl ether, ethylene glycol dimethyl

ether, diethylene glycol dimethyl ether, tetrahydrofuran or dioxane, nitriles such as acetonitrile or propionitrile, amides such as NJN-dimethylformamide, diethylformamide or N-methylpyrrolidinone. The reaction temperatures are advantageously between -20°C and +120°C. In general, the reactions are slightly exothermic and, as a rule, they can be carried out at room temperature. To shorten the reaction time, or else to start the reaction, the mixture may be heated briefly to the boiling point of the reaction mixture. The reaction times can also be shortened by adding a few drops of base as reaction catalyst. Suitable bases are, in particular, tertiary amines such as trimethylamine, triethylamine, quinuclidine, 1,4-diazabicyclo[2,2,2]octane, 1,5-diazabicyclo[4,3,0]non-5-ene or 1,5-diazabicyclo[5,4,0]undeo-7-ene. However, inorganic bases such as hydrides, e.g. sodium hydride or calcium hydride, hydroxides, e.g. sodium hydroxide, carbonates such as sodium carbonate and potassium carbonate, or hydrogen carbonates such as potassium hydrogen carbonates auch as bases. The bases can be used as such or else with catalytic amounts of a phase-transfer catalyst, for example a crown ether, in particular 18-crown-6, or a tetraalkylammonium salt.

The compounds of the formula I can be isolated in the customary manner by concentrating and/or by eveporating the solvent and purified by recrystallization or trituration of the solid residue in solvents in which they are not readily soluble, such as ethers, arcmatic hydrocarbons or chlorinated hydrocarbons.

All application methods which are conventionally used in agriculture, for example preemergence application, post-emergence application and seed treatment, as well as various methods and techniques, for example the controlled release of active ingredients, are suitable for the use according to the invention of the compounds of the formula I or of compositions comprising them. To this end, the active ingredient in solution is applied to mineral carriers for granules or to polymerized granules (urea/formaldehyde) and dried. If appropriate, an additional coating can be applied (coated granules), which allows the active ingredient to be released in a controlled manner over a specific period of time.

The compounds of the formula I can be employed as herbicides as such, i.e. as obtained from synthesis. However, they are preferably processed in the customary manner together with the auxiliaries conventionally used in the art of formulation, for example to give emulsifiable concentrates, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granules or microcapsules. Such formulations are described, for example, in WO 97/34485 on pages 9 to 13. The application methods such as

spraying, atomizing, dusting, wetting, scattering or pouring, as well as the type of composition, are chosen to suit the intended aims and the prevailing circumstances

The formulations, i.e. the compositions, preparations or products which comprise the active ingredient of the formula I and, as a rule, one or more solid or liquid formulation auxiliaries, are prepared in the known manner, for example by intimately mixing and/or grinding the active ingredients together with the formulation auxiliaries, for example solvents or solid carriers. Furthermore, surface-active compounds (surfactants) may additionally be used when preparing the formulations. Examples of solvents and solid carriers are indicated for example in WO 97/34485 on page 6.

Suitable surface-active compounds are, depending on the nature of the active ingredient of the formula I to be formulated, nonionic, cationic and/or anionic surfactants and surfactant mixtures which have good emulsifying, dispersing and wetting properties. Examples of suitable anionic, nonionic and cationic surfactants are enumerated, for example, in WO 97/34/485 on pages 7 and 8. The surfactants conventionally used in the art of formulation which are described, inter alia, in "McCutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981, Stache, H., "Tensid-Taschenbuch" ["Surfactants Guide"], Carl Hanser Verlag, Munich/Vienna, 1981 and M. and J. Ash, "Encyclopedia of Surfactants", Vol I-III, Chemical Publishing Co., New York, 1980-81 are furthermore also suitable for preparing the herbicidal compositions according to the invention.

As a rule, the herbicidal formulations comprise 0.1 to 99% by weight, in particular 0.1 to 95% by weight, of herbicide, 1 to 99.9% by weight, in particular 5 to 99.8% by weight, of a solld or liquid formulation auxiliary and 0 to 25% by weight, in particular 0.1 to 25% by weight, of a surfactant. While concentrated compositions are more preferred as commercially available goods, the end consumer uses, as a rule, dilute compositions. The compositions can also comprise further additives such as stabilizers, for example epoxidized or non-epoxidized vegetable oils (epoxidized coconut oil, rapeseed oil or soya oil), antiforams, e.g. silicone oil, preservatives, viscosity regulators, binders, tackifiers and fertilizers or other active ingredients.

As a rule, the active ingredients of the formula I are applied to the plant or its environment at rates of 0.001 to 4 kg/ha, in particular 0.005 to 2 kg/ha. The dosage required for the desired

PCT/EP01/06430

- 36 -

action can be determined by experiments. It depends on the type of the action, the developmental stage of the crop plant and of the weed, and on the application (location, tirning, method) and can, owing to these parameters, vary within wide limits.

The compounds of the formula I are distinguished by herbicidal and growth-inhibitory properties which allow them to be employed in crops of useful plants, in particular in cereals, cotton, soya, sugar beet, sugar cane, plantation crops, rapeseed, maize and rice and for the non-selective control of weeds. Crops are also to be understood as including those which have been rendered tolerant to herbicides or classes of herbicides by means of conventional plant-breeding or genetic-engineering methods. The weeds to be controlled may be both mono- and dicotyledonous weeds such as Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis, Lolium, Solanum, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus, Alopecurus, Sorghum halepense, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Verorica.

The examples which follow illustrate the invention in greater detail without limiting it.

Preparation examples:

Example H1: Preparation of ethyl 2-bromomethyl-6-trifluoromethylnicotinate:

434.4 g (1.886 mol) of ethyl 2-methyl-6-trifluoromethylnicotinate (preparation similar to Heterocycles 129, 46, 1997) and 398.5 g (2.239 mol) of N-bromosuccinimide in 3 500 ml of carbon tetrachloride in the presence of 30.6 g (0.1866 mol) of α , α -azalsobutyronitrile are heated at 75°C, with irradiation from a 150 Watt lamp. After 3 hours, the reaction is terminated, the mixture is cooled to 15°C and precipitated succinimide is removed by filtration. After evaporation of the solvent, the residue is distilled under reduced pressure. This gives ethyl 2-bromomethyl-6-trifluoromethylnicotinate as an oily product (260.2 g, 44.7% of theory, b.p. 74°C/0.04 mmHpl).

Example H2; 2-(2-Methoxyethoxymethyl)-6-trifluoromethylnicotinic acid:

At room temperature, 177.2 g of ethyl 2-bromomethyl-6-triffuoromethylnicotinate are dissolved in 3 000 ml of toluene and reacted with 398 ml (1.704 mol) of a 21% ethanolic solution of sodium ethoxide. After 8 hours at room temperature, 1500 ml of ethanol and 100 ml of 30% aqueous sodium hydroxide solution are added with vigorous stirring, and the

reaction mixture is stirred at this temperature for another 4 hours. The reaction mixture is poured into water and extracted with ethyl acetate, and the aqueous phase is acidified to pH 1. Following extraction with ethyl acetate, drying over sodium sulfate, evaporation under reduced pressure and trituration with hexane, pure 2-(2-methoxyethoxymethyl)-6-trifluoromethyliotibic acid is obtained in the form of white crystals of melting point 62-63°C.

Example H3: 4-Hydroxy-3-[2-(2-methoxyethoxymethyl)-6-trifluoromethylpyridine-3-carbonyll-bicyclo[3.2,1]cct-3-en-2-one:

24.9 g (0.1 mol) of 2-(2-methoxyethoxymethyl)-6-trifluoromethylnicottnic acid are dissolved in 200 ml of methylene chloride and 20 ml of oxalyl chloride, and 0.1 ml of dimethylformamide is then added dropwise. After the strong evolution of gas has ceased, triethylamine (27.9 ml, 0.2 mol), dimethylaminopyridine (1.22 g, 0.01 mol) and 15.2 g (0.11 mol) of bicyclo[3.2.1]octane-2,4-dione are added at a temperature of from 0 to 5°C. After 3 hours at 22°C, the reaction mixture is extracted with 2 N hydrochloric acid. The methylenechloride phase is separated off, washed with water and then extracted with 10% aqueous sodium bicarbonate solution, dried over sodium sulfate and concentrated. This gives 36.9 g (100% of theory) of 4-oxobicyclo[3.2.1]oct.2-en-2-yl 2-(2-methoxyethoxymethyl)-6-trifluoromethyl-nicotininate as an oil, which can be used further without purification.

36.9 g (0.1 mol) of 4-oxobioyolo(3.2.1)cct-2-en-2-yl 2-(2-methoxyethoxymethyl)-6-trifluoromethylnicotinate and 27.9 ml (0.2 mol) of triethylamine are dissolved in 400 ml of acetonitrile.
At a temperature of 22°C, 0.92 ml (0.01 mol) of acetone cyanohydrin is added. After
18 hours at 22°C, the reaction mixture is poured into a water/2 N hydrochloric acid mixture
and extracted with ethyl acetate. The ethyl acetate phase is washed with water and then with
concentrated sodium chloride solution, dried over sodium sulfate and concentrated, and the
residue is triturated with hexane. Filtration gives 27.9 g (75.6% of theory) of 4-hydroxyl-3[2-(2-methoxyethoxymethyl)-6-trifluoromethylpyridine-3-carbonyl]bicyclo[3.2.1]oct-3-en-2-one
in the form of white crystals (m.p. 55-56°C).

Example H4: 3-(2-Hydroxy-4-oxobicyclo[3.2.1]oct-2-en-3-carbonyl)-6-trifluoromethylpyridin-2-vl methyl acetate:

5.0 g (1 mmol) of 4-hydroxy-3-(2-methyl-1-oxy-6-trifluoromethylpyridin-3-carbonyl)-bioyolc[3.2.1]oct-3-en-2-one (preparation as described in WO 00/15615) are dissolved in 100 ml of toluene and, in the presence of 6.9 ml (0.073 mol) of acetic anhydride, heated at reflux temperature for 10 hours. The mixture is then partitioned between water and ethyl acetate and the organic phase is dried over sodium sulfate and concentrated under reduced pressure. The residue that remains is chromatographed on silica gel. The viscous oll obtained by eluting with a mixture of toluene, ethyl alcohol, dioxane, triethylamine and water (100:40:20:20:5 parts by volume) is dissolved in ethyl acetate and washed successively with 10% hydrochloric acid and water. The organic solution is dried over Na₈SO₄ and concentrated, giving 2.14 g (38%) of pure 3-(2-hydroxy-4-oxobioyolo[3.2.1]oct-2-ene-3-carbonyl)-6-trifluoromethylpyridin-2-ylmethyl acetate in the form of an oll. 1 H-NMR (250 MHz, CDCl₃): 17.06 (s), 1H; 7.67 (s), 2H; 5.27 (d, J = 12.5 Hz), 1H; 5.20 (d, J = 12.5 Hz), 1H; 3.18, (f, J = 5.0 Hz), 1H; 2.92, (f, J = 5.0 Hz), 1H; 2.29-1.98 (m), 4H; 2.00, (s), 3H; 1.81-1.73 ppm (m), 2H.

Example H5: 4-Hydroxy-3-(2-oxiranylmethoxymethyl-6-trifluoromethylpyridine-3-carbonyl)-bicvolo(3.2.11oct-3-en-2-one:

5 g (0.013 mol) of 3-(2-hydroxy-4-oxobioydo[3.2.1]oct-2-ene-3-carbonyl)-6-trifluoromethyl-pyridin-2-ylmethyl acetate are dissolved in 60 ml of methanol/water (3:1 mixture), and 1.4 g (0.046 mol) of lithium hydroxide hydrate are added a little at a time at a temperature of 22°C. After 3 hours at 22°C, the reaction mixture is poured into ethyl acetate and 10% hydroxhlorio acid, and the organic phase is washed three times with water, dried with sodium sulfate and concentrated. This gives 4.1g of 4-hydroxy-3-(2-hydroxymethyl-6-trifluoromethylpyridine-3-carbonyl)bicyclo[3.2.1]oct-3-en-2-one as an oil which can be reacted further without purification.

1.5 g of 4-hydroxy-3-(2-hydroxymethyl-6-trifluoromethylpyridine-3-carbonyl)-bicyclo[3.2.1]oct-3-en-2-one are dissolved in 15 ml of dimethylformamide and, at room temperature, treated with 0.4 g of sodium hydride (80% suspension in oil, 0.013 mol), a little at a time. After 15 minutes at a temperature of 22°C, 3ml (0.036 mol) of epibromohydrin are added dropwise,

and the reaction mixture is stirred at this temperature for another 18 hours. Ethyl acetate is then added, and the mixture is acidified to pH 3 using 10% hydrochloric acid and extracted with ethyl acetate. The organic phase is dried over sodium sulfate and the crude product is purified chromatographically (mobile phase: toluene/ethyl alcohol/dioxane/triethylamine/water 100:40:20:20:5 parts by volume). This gives the title compound (triethylamine sait) in the form of a yellowish resin, which is released similarly to example H4. Trituration with hexane gives 600 mg of pure 4-hydroxy-3-(2-oxirany)methoxy-methyl-8-trifluoromethylpyridin-3-carbonyl)bicyclo[3.2.1]oct-3-en-2-one of melting point 54:56°C.

Example H6: (5-Hydroxy-1,3-dimethyl-1H-pyrazol-4-yl)-[2-(2-methoxyethoxymethyl)-6-trifluoromethylpyridin-3-yl]methanone:

1.0 g (0.004 mol) of 2-(2-methoxyethoxymethyl)-6-trifluoromethylnicotinic acid is dissolved in 10 ml of oxalyl chloride. Three drops of dimethylformamide are added, and the mixture is stirred at room temperature for 1 hour. The mixture is then concentrated using a rotary evaporator, and the residue (2-(2-methoxyethoxymethyl)-6-trifluoromethylnicotinoyl chloride) is taken up in 10 ml of methylene chloride. At a temperature of 0°C, 0.84 ml (0.006 mol) of triethylamine and 0.45 g (0.004 mol) of 2,5-dimethyl-2,4-dihydropyrazol-3-one are added. After 2 hours at a temperature of 22°C, the solvent is removed using a vacuum rotary evaporator, and the residue that remains is dissolved in 10 ml of acetonitrile and, to rearrange the intermediate (2.5-dimethyl-2H-pyrazol-3-vl 2-(2-methoxyethoxymethyl)-6trifluoromethylnicotinate), admixed with 0.1 ml of acetone cyanohydrin and 1.13 ml (0.008 mol) of triethylamine. The reaction solution is stirred at room temperature for four hours and then concentrated. The syrup that remains is chromatographed on silica gel. The viscous oil obtained by eluting with a mixture of toluene, ethyl alcohol, dioxane, triethylamine and water (100:40:20:20:5 parts by volume) is dissolved in ethyl acetate and washed successively with 10% hydrochloric acid and water. The organic solution is dried over Na₂SO₄ and concentrated, giving 0.93 g of (5-hydroxy-1,3-dimethyl-1H-pyrazol-4-yl)-[2-(2methoxyethoxymethyl)-6-trifluoromethylpyridin-3-yl]methanone in the form of a viscous oil. ¹H NMR (300 MHz, CDCl₂, δ in ppm); 7.81, (d. J = 6 Hz), 1H; 7.74, (d. J = 6 Hz), 1H; 4.84. (s), 2H; 2H; 3.71, (s), 3H; 3.59, (t, J = 6 Hz) 2H; 3.38, (dd, J 4.0, 3.0 Hz), 1H; 3.26, (s), 3H; 1.82 ppm, (s), 1H.

Preferred compounds of the formula I and their intermediates are listed in the tables below.

In the table below, the left-hand valency of the radical R_1 is attached to the pyridine ring. If

no free valency is indicated in the substituent R_2 , as, for example, in the case of O, the point of attachment is at the "CH" carbon atom.

In the table below, the compounds of the formula I are represented as:

A-Q

where the formula A

$$\begin{array}{c|c} & O \\ & & \\ & & \\ R_3 & N & R_1 \\ & & \\$$

denotes the following radicals:

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A1	CH₂	CH₃	н	CF ₃	0	0
A2	CH ₂	CH₂CH₃	н	CF ₃	0	0
A3	CH ₂	(CH ₃)₂CH	н	CF ₃	0	0
A4	CH ₂	PhCH₂	Н	CF ₃	0	0
A5	CH ₂	CH₃	Н	CF₃	s	0
A6	CH ₂	CH₃	Н	CF ₃	so	0
A7	CH ₂	CH₃	Н	CF ₃	SO ₂	0
8A	CH ₂	CH ₃ OCH ₂	н	CF ₃	0	0
A9	CH ₂	CH ₃ CH ₂ OCH ₂	Н	CF ₃	0	0
A10	CH ₂	CH₃OCH₂CH₂	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	Χ1	р
A11	CH ₂	CH₃CH₂OCH₂CH₂	Н	CF ₃	0	0
A12	CH ₂	CH ₃ OC(CH ₃) ₂ CH ₂	Н	CF ₃	0	0
A13	CH ₂	CH ₃ OCH(CH ₃)CH ₂	Н	CF ₃	0	0
A14	CH ₂	CH2OCH2CH(CH3)	Н	CF_3	0	0
A15	CH ₂	CH ₃ OCH ₂ C(CH ₃) ₂	Н	CF ₃	0	0
A16	CH₂	CH₃OCH(CH₃)	Н	CF ₃	0	0
A17	CH ₂	CH ₃ OC(CH ₃) ₂	Н	CF ₃	0	0
A18	CH ₂	HC≡CCH ₂	Н	CF ₃	0	0
A19	CH ₂	H₂C=CHCH₂	Н	CF ₃	0	0
A20	CH ₂	CH ₃ C≡CCH ₂	Н	CF ₃	0	0
A21	CH ₂	. Сн	Н	CF ₃	0	0
A22	CH ₂	Сн	Н	CF ₃	0	0
A23	CH ₂	Con	Н	CF ₃	0	0
A24	CH₂	√cH	Н	CF ₃	0	0
A25	CH ₂	СН	Н	CF ₃	0	0
A26	CH₂	СН	Н	CF ₃	0	0
A27	CH ₂	Сн	Н	CF ₃	0	0
A28	GH ₂	СН	н	CF ₃	0	0
A29	CH ₂	Q, CH	Н	CF₃	0	0
A30	CH ₂	СН	н	CF ₃	0	0
A31	CH₂	ОСН	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A32	CH ₂		H	CF ₃	0	0
A33	CH ₂	OCH3	н	CF ₃	0	0
A34	CH₂	ОН	Н	CF₃	0	0
A35	CH₂	OCH _q	н	CF₃	0	0
A36	CH ₂	OH OH	Н	CF ₃	0	0
A37	CH₂		н	CF ₃	0	0
A38	CH ₂	CH ₃ CH ₃	Н	CF ₃	0	0
A39	CH₂	CH ₃	Н	CF ₃	0	0
A40	CH ₂	CH _s	н	CF ₃	0	0
A41	CH₂	CN	Н	CF ₃	0	0
A42	CH ₂		Н	CF ₃	0	0
A43	CH ₂		Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	Р
A44	CH ₂	OCH _s	Н	CF ₃	0	0
A45	CH ₂	OH OH	Н	CF ₃	0	0
A46	CH ₂	OCH ³	Н	CF ₃	0	0
A47	CH ₂	OH -	Н	CF ₃	0	0
A48	CH₂	OCH ₃	н	CF ₃	0	0
A49	CH₂	OH	Н	CF ₃	0	0
A50	CH₂		н	CF ₃	0	0
A51	CH₂		Н	CF ₃	0	0
A52	CH ₂	F OCH ₈	н	CF ₃	0	0
A53	CH₂	N OCH3	Н	CF₃	0	0
A54	CH₂	CH=CH OCH ₃	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R_3	X ₁	р
A55	CH ₂	OCH ₃	Н	CF ₃	0	0
A56	CH ₂	○—CH₂	Н	CF ₃	0	0
A57	CH₂	СН ₂	Н	CF ₃	0	0
A58	CH ₂	CH ₂	Н	CF ₃	0	0
A59	CH ₂	√CH₂	Н	CF ₃	0	0
A60	CH₂	CH ₂	Н	CF ₃	0	0
A61	CH₂	CH₂	н	CF ₃	0	0
A62	CH ₂	CH ₂	н	CF₃	0	0
A63	CH₂	OCH ₂	н	CF ₃	0	0
A64	CH ₂	○ CH₂	н	CF ₃	0	0
A65	CH ₂	OCH ₂	Н	CF ₃	0	0
A66	CH ₂	CH ₂	Н	CF ₃	0	0
A67	CH₂	€ CH ₂	н	CF ₃	О	0
A68	CH ₂	CH ₂	Н	CF ₃	0	0
A69	CH₂	OH CH2	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	Х1	р
A70	CH ₂	OCH ₃	Н	CF ₃	0	0
A71	CH₂	CH ₂	Н	CF ₃	0	0
A72	CH ₂	CH ₂	Н	CF ₃	0	0
A73	CH₂	CH3 CH3	Н	CF ₃	0	0
A74	CH₂	CH ₃ OCH ₂ CH ₂	н	CF ₃	0	0
A75	CH ₂	N OCH3CH2	н	CF₃	0	0
A76	CH₂	CH ₂	Н	CF₃	0	0
A77	CH₂	CH ₂	Н	CF₃	0	0
A78	CH ₂	N CH₂	Н	CF₃	0	0
A79	CH ₂	OCH ₃	Н	CF₃	0	0
A80	CH ₂	OH CH ₂	Н	CF ₃	0	0
A81	CH ₂	OCH ₃	Н	CF ₃	0	0

adical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A82	CH ₂	OH CH ₂	Н	CF ₃	0	0
A83	CH₂	OCH ₃	Н	CF ₃	0	0
A84	CH₂	OH CH₂	Н	CF ₃	0	0
A85	CH ₂	CH ₂	Н	CF ₃	0	0
A86	CH ₂	CH ₂	Н	CF ₃	0	0
487	CH₂	F OCH ₂	Н	CF ₃	0	0
A88	CH ₂	OCH ₃	Н	CF ₃	0	0
A89	CH ₂	OCH ₂ CH ₂	Н	CF ₃	0	0
A90	CH ₂	OCH ₃	Н	CF ₃	0	0
A91	CH₂CH₂	CH₃	Н	CF ₃	0	0
A92	CH₂CH₂	CH₃CH₂	н	CF ₃	0	0
A93	CH ₂ CH ₂	(CH ₃) ₂ CH	Н	CF ₃	0	0
A94	CH ₂ CH ₂	PhCH₂	Н	CF_3	0	0
A95	CH ₂ CH ₂	CH ₃	Н	CF ₃	S	0
A96	CH₂CH₂	CH ₃	Н	CF ₃	so	0
A97	CH ₂ CH ₂	CH ₃	Н	CF ₃	SO ₂	0
A98	CH ₂ CH ₂	(CH ₃) ₂ CHCH ₂	Н	CF ₃	0	

Radical	R ₁	R ₂	R ₄	R ₃	Χı	р
A99	CH ₂ CH ₂	CH₃OCH₂	Н	CF ₃	0	0
A100	CH ₂ CH ₂	CH₃CH₂OCH₂	Н	CF ₃	0	0
A101	CH ₂ CH ₂	CH ₃ OCH ₂ CH ₂	н	CF ₃	0	0
A102	CH ₂ CH ₂	CH3CH2OCH2CH2	Н	CF ₃	0	0
A103	CH₂CH₂	CH ₃ OC(CH ₃) ₂ CH ₂	H	CF ₃	0	0
A104	CH₂CH₂	CH ₃ OCH(CH ₃)CH ₂	Н	CF ₃	0	0
A105	CH ₂ CH ₂	CH ₃ OCH ₂ CH(CH ₈)	Н	CF ₃	0	0
A106	CH₂CH₂	CH ₃ OCH ₂ C(CH ₃) ₂	Н	CF ₃	0	0
A107	CH₂CH₂	CH₃OCH(CH₃)	Н	CF ₃	0	0
A108	CH₂CH₂	CH ₃ OC(CH ₃) ₂	н	CF ₃	0	0
A109	CH₂CH₂	HC≔CCH ₂	н	CF ₃	0	0
A110	CH₂CH₂	H ₂ C=CHCH ₂	Н	CF ₃	0	0
A111	CH₂CH₂	CH ₃ C≡CCH ₂	Н	CF ₃	0	0
A112	CH ₂ CH ₂	Сн	Н	CF ₃	0	0
A113	CH ₂ CH ₂	Осн	Н	CF ₃	0	0
A114	CH₂CH₂	CcH	Н	CF ₃	0	0
A115	CH ₂ CH ₂	√CH	Н	CF ₃	0	0
A116	CH ₂ CH ₂	СН	Н	CF ₃	0	0
A117	CH₂CH₂	СН	Н	CF ₃	0	0
A118	CH ₂ CH ₂	Сн	Н	CF ₃	0	0
A119	CH₂CH₂	O-CH	Н	CF ₃	0	0
A120	CH ₂ CH ₂	O CH	Н	CF ₃	0	0
A121	CH ₂ CH ₂	ОСН	Н	CF ₃	0	0

Radical	R;	R ₂	R₄	R ₃	Х ₁	р
A122	CH₂CH₂	O CH	Н	CF ₃	0	0
A123	CH ₂ CH ₂		Н	CF ₃	0	0
A124	CH ₂ CH ₂	CCH ₉	Н	CF ₃	0	0
A125	CH₂CH₂	C)	Н	CF ₃	0	0
A126	CH₂CH₂	OCH3	Н	CF ₃	0	0
A127	CH₂CH₂	OH OH	н	CF₃	0	0
A128	CH₂CH₂		Н	CF₃	0	0
A129	CH ₂ CH ₂	CH ₃ CH ₃	Н	CF ₃	0	0
A130	CH₂CH₂	CH ₃	Н	CF ₃	0	0
A131	CH₂CH₂	N N N	Н	CF ₃	0	0
A132	CH ₂ CH ₂		Н	CF ₃	0	0
A133	CH₂CH₂		Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A134	CH₂CH₂		Н	CF ₃	0	0
A135	CH₂CH₂	OCH _a	Н	CF ₃	0	0
A136	CH₂CH₂	OH N	Н	CF ₃	0	0
A137	CH₂CH₂	OCH _g	н	CF ₃	0	0
A138	CH₂CH₂	N OH	н	CF ₃	0	0
A139	CH₂CH₂	OCH _s	Н	CF ₃	0	0
A140	CH₂CH₂	OH	Н	CF ₃	0	0
A141	CH₂CH₂		Н	CF ₃	0	0
A142	CH₂CH₂		Н	CF ₃	0	0
A143	CH₂CH₂	F OCH3	Н	CF ₃	0	0
A144	CH₂CH₂	N OCH ³	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R_3	Х1	р
A145	CH₂CH₂	CH=CH OCH ₃	Н	CF ₃	0	0
A146	CH₂CH₂	OCH ₃	Н	CF ₃	0	0
A147	CH ₂ CH ₂	[>−−CH₂	Н	CF ₃	0	0
A148	CH ₂ CH ₂	°>—сн ₂	Н	CF ₃	0	0
A149	CH₂CH₂	CH₂	н	CF ₃	0	0
A150	CH₂CH₂	CH ₂	н	CF ₃	0	0
A151	CH₂CH₂	CH ₂	н	CF ₃	0	0
A152	CH ₂ CH ₂	CH ₂	н	CF ₃	0	0
A153	CH₂CH₂	CH ₂	н	CF ₃	0	0
A154	CH ₂ CH ₂	CH ₂	Н	CF ₃	0	0
A155	CH ₂ CH ₂	CH ₂	н	CF ₃	0	0
A156	CH₂CH₂	OCH ₂	Н	CF ₃	0	0
A157	CH₂CH₂	O CH ₂	Н	CF ₃	0	0
A158	CH₂CH₂	CH ₂	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A159	CH₂CH₂	OCH ₂	Н	CF ₃	0	0
A160	CH ₂ CH ₂	CH ₂	Н	CF ₃	0	0
A161	CH₂CH₂	OCH ₃	н	CF ₃	0	0
A162	CH₂CH₂	OH CH ₂	Н	CF ₃	0	0
A163	CH₂CH₂	CH ₂	н	CF₃	0	0
A164	CH ₂ CH ₂	CH ₃ OCH ₂ CH ₂	н	CF ₃	0	0
A165	CH₂CH₂	CH ₃ OCH ₂ CH ₂	н	CF₃	0	0
A166	CH₂CH₂	N OCH ₂ CH ₂	Н	CF₃	0	0
A167	CH ₂ CH ₂	CH₂ N	н	CF ₃	0	0
A168	CH₂CH₂	CH ₂	Н	CF3	0	0
A169	CH ₂ CH ₂	CH ₂	Н	CF ₃	0	0
A170	CH₂CH₂	OCH ₃	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R_3	Χ,	р
A171	CH ₂ CH ₂	OH CH ₂	Н	CF ₃	0	0
A172	CH ₂ CH ₂	OCH ₃	н	CF ₃	0	0
A173	CH₂CH₂	OH CH ₂	Н	CF ₃	0	0
A174	CH₂CH₂	OCH ³	н	CF ₃	0	0
A175	CH₂CH₂	OH CH ₂	Н	CF ₃	0	0
A176	CH₂CH₂	CH ₂	н	CF ₃	0	0
A177	CH₂CH₂	CH ₂	Н	CF ₃	0	0
A178	CH₂CH₂	F OCH ₂	н	CF ₃	0	0
A179	CH₂CH₂	OCH ₂ CH ₂	Н	CF ₃	0	0
A180	CH ₂ CH ₂	OCH ₂ CH ₂	Н	CF ₃	0	0
A181	CH ₂ CH ₂	CH ₂	Н	CF ₃	0	0
A182	CH(OCH ₃)CH ₂	CH ₃	Н	CF ₃	О	0
A183	CH(OCH ₃)CH ₂	CH₃CH₂	Н	CF ₃	0	0
A184	CH(OCH ₃)CH ₂	(CH ₃) ₂ CH	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A185	CH(OCH ₃)CH₂	PhCH ₂	Н	CF ₃	0	0
A186	CH(OCH ₃)CH ₂	CH₃	Н	CF3	S	0
A187	CH(OCH ₃)CH ₂	CH ₃	Н	CF ₃	so	0
A188	CH(OCH ₃)CH ₂	CH₃	Н	CF3	SO_2	0
A189	CH(OCH ₃)CH ₂	CH ₃ CH ₂ CH ₂	Н	CF ₃	0	0
A190	CH(OCH ₃)CH ₂	CH₃OCH₂	Н	CF ₃	0	0
A191	CH(OCH ₃)CH ₂	CH3CH2OCH2	Н	CF ₃	0	0
A192	CH(OCH ₃)CH ₂	CH₃OCH₂CH₂	Н	CF ₃	0	0
A193	CH(OCH ₃)CH₂	CH3CH2OCH2CH2	Н	CF ₃	0	0
A194	CH(OCH3)CH2	CH ₃ OC(CH ₃) ₂ CH ₂	Н	CF ₃	0	0
A195	CH(OCH ₃)CH ₂	CH ₃ OCH(CH ₃)CH ₂	н	CF ₃	0	0
A196	CH(OCH ₃)CH ₂	CH ₃ OCH ₂ CH(CH ₃)	Н	CF ₃	0	0
A197	CH(OCH3)CH2	CH ₃ OCH ₂ C(CH ₃) ₂	Н	CF ₃	0	0
A198	CH(OCH ₃)CH ₂	CH ₃ OCH(CH ₃)	н	CF ₃	0	0
A199	CH(OCH ₃)CH ₂	CH₃OC(CH₃)₂	Н	CF ₃	0	0
A200	CH(OCH ₃)CH ₂	HC≡CCH ₂	Н	CF ₃	0	0
A201	CH(OCH ₃)CH ₂	H ₂ C=CHCH ₂	Н	CF ₃	0	0
A202	CH(OCH ₃)CH ₂	CH₃C≡CCH₂	Н	CF3	0	0
A203	CH(OCH₃)CH₂	Сн	н	CF ₃	0	0
A204	CH(OCH₃)CH₂	Сн	н	CF ₃	0	0
A205	CH(OCH₃)CH₂	CCH	Н	CF ₃	0	0
A206	CH(OCH ₃)CH ₂	o√CH	Н	CF₃	0	0
A207	CH(OCH ₃)CH ₂	Сн	Н	CF₃	0	0
A208	CH(OCH₃)CH₂	СН	Н	CF ₃	0	0
A209	CH(OCH₃)CH₂	Сн	Н	CF ₃	0	0
A210	CH(OCH ₃)CH ₂	Ç _o ,cH	н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	p
A211	CH(OCH₃)CH₂	O_CH	Н	CF ₃	0	0
A212	CH(OCH ₃)CH ₂	CH	Н	CF ₃	0	0
A213	CH(OCH ₃)CH ₂	O CH	н	CF ₃	0	0
A214	CH(OCH₃)CH₂		н	CF₃	0	0
A215	CH(OCH₃)CH₂	OCH ₃	Н	CF ₃	0	0
A216	CH(OCH₃)CH₂	○ OH	н	CF ₃	0	0
A217	CH(OCH₃)CH₂	OCH ₃	н	CF ₃	0	0
A218	CH(OCH₃)CH₂	OH.	Н	CF₃	0	0
A219	CH(OCH₃)CH₂		Н	CF ₃	0	0
A220	CH(OCH₃)CH₂	CH ₃	Н	CF ₃	0	.0
A221	CH(OCH₃)CH₂	CH ₃	Н	CF₃	0	0
A222	CH(OCH3)CH2	N N CH ₃	Н	CF ₃	0	0

					-	
Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A223	CH(OCH₃)CH₂	C _N	Н	CF ₃	0	0
A224	CH(OCH ₃)CH ₂		Н	CF ₃	0	0
A225	CH(OCH₃)CH₂		Н	CF ₃	0	0
A226	CH(OCH₃)CH₂	OCH ₃	Н	CF ₃	0	0
A227	CH(OCH₃)CH₂	OH N	н	CF ₃	0	0
A228	CH(OCH₃)CH₂	OCH,	н	CF ₃	0	0
A229	CH(OCH₃)CH₂	N H H H H H H H H H H H H H H H H H H H	Н	CF ₃	0	0
A230	CH(OCH₃)CH₂	OCH _a	н	CF ₃	0	0
A231	CH(OCH ₃)CH ₂	5 .	н	CF ₃	0	0
A232	CH(OCH₃)CH₂	Q.	н	CF ₃	0	0
A233	CH(OCH₃)CH₂		Н	CF ₃	0	0
A234	CH(OCH ₃)CH ₂	F OCH3	н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A235	CH(OCH ₃)CH₂	N OCH3	Н	CF ₃	0	0
A236	CH(OCH ₃)CH ₂	CH=CH	Н	CF₃	0	0
A237	CH(OCH₃)CH₂	CH ₂	Н	CF ₃	0	0
A238	CH(OCH₃)CH₂	CH²	Н	CF ₃	0	0
A239	CH(OCH₃)CH₂	°>—сн₂	Н	CF ₃	0	0
A240	CH(OCH ₃)CH ₂	CH ₂	н	CF ₃	0	0
A241	CH(OCH₃)CH₂	OJ CH ₂	Н	CF ₃	0	0
A242	CH(OCH ₃)CH ₂	CH₂	н	CF ₃	0	0
A243	CH(OCH₃)CH₂	CH ₂	н	CF ₃	0	0
A244	CH(OCH₃)CH₂	CH ₂	Н	CF ₃	0	0
A245	CH(OCH₃)CH₂	CH ₂	Н	CF ₃	0	0
A246	CH(OCH₃)CH₂	OH ₂	Н	CF ₃	0	0
A247	CH(OCH3)CH2	OCH,	н	CF ₃	0	0
A248	CH(OCH₃)CH₂	O CH ₂	Н	CF ₃		0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A249	CH(OCH₃)CH₂	CH₂	H	CF ₃	0	0
A250	CH(OCH₃)CH₂	CH,	Н	CF ₃	0	0
A251	CH(OCH₃)CH₂	CH ₂	н	CF ₃	0	0
A252	CH(OCH₃)CH₂	CH ₂	н	CF ₃	0	0
A253	CH(OCH₃)CH₂	CH ₂	Н	CF₃	0	0
A254	CH(OCH₃)CH₂	CH₂ CH₂	н	CF₃	0	0
A255	CH(OCH₃)CH₂	CH ₃ OCH ₂ CH ₂	Н	CF ₃	0	0
A256	CH(OCH₃)CH₂	CH ₃ OCH ₂ CH ₂	Н	CF ₃	0	0
A257	CH(OCH₃)CH₂	N OCH ₂ CH ₂	Н	CF₃	0	0
A258	CH(OCH₃)CH₂	CH ₂	H	CF ₃	0	0
A259	CH(OCH₃)CH₂	CH ₂	Н	CF ₃	0	0
A260	CH(OCH₃)CH₂	N CH ₂	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R_3	X ₁	р
A261	CH(OCH₃)CH₂	OCH ₃	Н	CF ₃	0	0
A262	CH(OCH₃)CH₂	OH CH ₂	Н	CF ₃	0	0
A263	CH(OCH₃)CH₂	OCH ₃	Н	CF₃	0	0
A264	CH(OCH ₃)CH ₂	OH CH ₂	Н	CF ₃	0	0
A265	CH(OCH₃)CH₂	OCH,	н	CF₃	0	0
A266	CH(OCH₃)CH₂	OH CH ₂	н	CF ₃	0	0
A267	CH(OCH₃)CH₂	CH ₂	н	CF ₃	0	0
A268	CH(OCH₃)CH₂	CH ₂	н	CF₃	0	0
A269	CH(OCH₃)CH₂	CH ₂	н	CF ₃	0	0
A270	CH(OCH₃)CH₂	OCH ₂ CH ₂	н	CF ₃	0	0
A271	CH(OCH₃)CH₂	OCH ₂ CH ₂	Н	CF ₃	0	0
A272	CH(OCH₃)CH₂	OCH ₃	Н	CF ₃	0	0

Radical	R ₁	R ₂	R_4	R ₃	X ₁	р
A273	CH₂CH(OCH₃)CH₂	CH₃	Н	CF ₃	0	0
A274	CH₂CH(OCH₃)CH₂	CH₃CH₂	Н	CF ₃	0	0
A275	CH ₂ CH(OCH ₃)CH ₂	(CH ₃)₂CH	H	CF ₃	0	0
A276	CH ₂ CH(OCH ₃)CH ₂	PhCH₂	Н	CF ₃	0	0
A277	CH ₂ CH(OCH ₃)CH ₂	CH₅	Н	CF ₃	s	0
A278	CH₂CH(OCH₃)CH₂	CH ₃	Н	CF ₃	so	0
A279	CH₂CH(OCH₃)CH₂	CH₃	Н	CF ₃	SO ₂	0
A280	CH ₂ CH(OCH ₃)CH ₂	CH₃CH₂CH₂	Н	CF ₃	0	0
A281	CH ₂ CH(OCH ₃)CH ₂	CH₃OCH₂	Н	CF ₃	0	0
A282	CH ₂ CH(OCH ₃)CH ₂	CH₃CH₂OCH₂	Н	CF ₃	0	0
A283	CH₂CH(OCH₃)CH₂	CH₃OCH₂CH₂	Н	CF ₃	0	0
A284	CH₂CH(OCH₃)CH₂	CH3CH2OCH2CH2	н	CF ₃	0	0
A285	CH ₂ CH(OCH ₃)CH ₂	CH ₃ OC(CH ₃) ₂ CH ₂	Н	CF ₃	0	0
A286	CH ₂ CH(OCH ₃)CH ₂	CH₃OCH(CH₃)CH₂	Н	CF ₃	0	0
A287	CH ₂ CH(OCH ₃)CH ₂	CH₃OCH₂CH(CH₃)	Н	CF ₃	0	0
A288	CH ₂ CH(OCH ₃)CH ₂	CH ₉ OCH ₂ C(CH ₃) ₂	н	CF ₃	0	0
A289	CH ₂ CH(OCH ₃)CH ₂	CH ₃ OCH(CH ₃)	Н	CF ₃	0	0
A290	CH ₂ CH(OCH ₃)CH ₂	CH ₃ OC(CH ₃) ₂	Н	CF ₃	0	0
A291	CH ₂ CH(OCH ₃)CH ₂	HC≅CCH ₂	н	CF ₃	0	0
A292	CH₂CH(OCH₃)CH₂	H ₂ C=CHCH ₂	н	CF ₃	0	0
A293	CH ₂ CH(OCH ₃)CH ₂	CH₃C≡CCH₂	н	CF ₃	0	0
A294	CH ₂ CH(OCH ₃)CH ₂	Сн	Н	CF ₃	0	0
A295	CH₂CH(OCH₃)CH₂	0>сн	Н	CF ₃	0	0
A296	CH ₂ CH(OCH ₃)CH ₂	Ch	Н	CF₃	0	0
A297	CH ₂ CH(OCH ₃)CH ₂	С	Н	CF ₃	0	0
A298	CH ₂ CH(OCH ₃)CH ₂	СН	Н	CF ₃	0	0
A299	CH ₂ CH(OCH ₃)CH ₂	CH	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X,	р
A300	CH ₂ CH(OCH ₃)CH ₂	Сн	Н	CF ₃	0	0
A301	CH₂CH(OCH₃)CH₂	O CH	H	CF ₃	0	0
A302	CH₂CH(OCH₃)CH₂	ОСН	н	CF ₃	0	0
A303	CH ₂ CH(OCH ₃)CH ₂	CH	Н	CF ₃	0	0
A304	CH ₂ CH(OCH ₃)CH ₂	O_CH	Н	CF ₃	0	0
A305	CH ₂ CH(OCH ₃)CH ₂		Н	CF ₃	0	0
A306	CH ₂ CH(OCH ₃)CH ₂	CCH ₃	Н	CF ₃	0	0
A307	CH₂CH(OCH₃)CH₂	CT _{OH}	н	CF ₃	0	0
A308	CH ₂ CH(OCH ₃)CH ₂	OCH ₃	Н	CF ₃	0	р
A309	CH₂CH(OCH₃)CH₂	OH	н	CF₃	0	
A310	CH₂CH(OCH₃)CH₂		Н	CF ₃	0	0
A311	CH ₂ CH(OCH ₃)CH ₂	CH3 CH3	Н	CF ₃	0	0
A312	CH ₂ CH(OCH ₃)CH ₂	CH ₃	н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R_3	X ₁	р
A313	CH₂CH(OCH₃)CH₂	NN CH3	Н	CF ₃	Ö	0
A314	CH ₂ CH(OCH ₃)CH ₂	CN	Н	CF ₃	0	0
A315	CH ₂ CH(OCH ₃)CH ₂		Н	CF ₃	О	0
A316	CH ₂ CH(OCH ₃)CH ₂		Н	CF₃	0	0
A317	CH ₂ CH(OCH ₃)CH ₂	OCH ₃	Н	CF ₃	0	0
A318	CH₂CH(OCH₃)CH₂	OH N	Н	CF ₃	0	0
A319	CH₂CH(OCH₃)CH₂	OCH ₃	Н	CF ₃	0	0
A320	CH₂CH(OCH₃)CH₂	N OH	Н	CF ₃	0	0
A321	CH ₂ CH(OCH ₃)CH ₂	OCH ₃	н	CF ₃	0	0
A322	CH ₂ CH(OCH ₃)CH ₂	8	н	CF ₃	0	0
A323	CH ₂ CH(OCH ₃)CH ₂		н	CF ₃	0	0
A324	CH ₂ CH(OCH ₃)CH ₂		н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	Х1	р
A325	CH₂CH(OCH₃)CH₂	F OCH ₃	Н	CF ₃	0	0
A326	CH ₂ CH(OCH ₃)CH ₂	OCH ₃	н	CF₃	0	0
A327	CH₂CH(OCH₃)CH₂	OCH3	н	CF ₃	0	0
A328	CH₂CH(OCH₃)CH₂	OCH ₂	Н	CF ₃	0	0
A329	CH ₂ CH(OCH ₃)CH ₂	\triangleright — cH_z	н	CF ₃	0	0
A330	CH ₂ CH(OCH ₃)CH ₂		Н	CF ₃	0	0
A331	CH ₂ CH(OCH ₃)CH ₂	CH₂	Н	CF ₃	0	0
A332	CH ₂ CH(OCH ₃)CH ₂	O_CH2	Н	CF ₃	0	0
A333	CH ₂ CH(OCH ₃)CH ₂	CH₂	Н	CF ₃	0	0
A334	CH ₂ CH(OCH ₃)CH ₂	CH ₂	н	CF₃	0	0
A335	CH ₂ CH(OCH ₃)CH ₂	CH ₂	Н	CF ₃	0	0
A336	CH₂CH(OCH₃)CH₂	O CH ₂	Н	CF ₃	0	0
A337	CH ₂ CH(OCH ₃)CH ₂	CH₂	Н	CF ₃	0	0
A338	CH ₂ CH(OCH ₃)CH ₂	OCH ²	Н	CF ₃	0	0

WO 01/94339

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A339	CH ₂ CH(OCH ₃)CH ₂	O CH2	Н	CF ₃	0	0
A340	CH₂CH(OCH₃)CH₂	\bigcirc^{CH_2}	Н	CF ₃	0	Ó
A341	CH₂CH(OCH₃)CH₂	CH ₂ OCH ₃	Н	CF ₃	0	0
A342	CH ₂ CH(OCH ₃)CH ₂	OH CH2	н	CF ₃	0	0
A343	CH ₂ CH(OCH ₃)CH ₂	CH ₂	Н	CF ₃	0	0
A344	CH₂CH(OCH₃)CH₂	CH ₂	н	CF ₃	0	0
A345	CH₂CH(OCH₃)CH₂	CH ₂	Н	CF ₃	0	0
A346	CH₂CH(OCH₃)CH₂	CH ₃ OCH ₂ CH ₂	H	CF ₃	0	0
A347	CH₂CH(OCH₃)CH₂	CH ₃ OCH ₂ CH ₂	H	CF ₃	0	0
A348	CH ₂ CH(OCH ₃)CH ₂	OCH ₂ CH ₂	н	CF ₃	0	0
A349	CH ₂ CH(OCH ₃)CH ₂	CH ₂	Н	CF ₃	0	0
A350	CH₂CH(OCH₃)CH₂	CH ₂	н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A351	CH ₂ CH(OCH ₃)CH ₂	CH ₂	Н	CF₃	0	0
A352	CH₂CH(OCH₃)CH₂	OCH ₃ CH ₂	н	CF ₃	0	0
A353	CH₂CH(OCH₃)CH₂	OH CH ₂	Н	CF ₃	0	0
A354	CH ₂ CH(OCH ₃)CH ₂	OCH ²	Н	CF ₃	0	0
A355	CH ₂ CH(OCH ₃)CH ₂	OH CH ₂	Н	CF₃	0	0
A356	CH ₂ CH(OCH ₃)CH ₂	OCH ₃	н	CF ₃	0	0
A357	CH ₂ CH(OCH ₃)CH ₂	OH CH ₂	Н	CF ₃	0	0
A358	CH ₂ CH(OCH ₃)CH ₂	CH ₂	н	CF ₃	0	0
A359	CH₂CH(OCH₃)CH₂	CH ₂	Н	CF ₃	0	0
A360	CH ₂ CH(OCH ₃)CH ₂	FOCH ₃	Н	CF ₃	0	0
A361	CH ₂ CH(OCH ₃)CH ₂	OCH ₂ CH ₂	Ή	CF ₃	0	0
A362	CH ₂ CH(OCH ₃)CH ₂	OCH ₂ CH ₂	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A363	CH₂CH(OCH₃)CH₂	OCH ₃	Н	CF ₃	0	0
A364	CH=CHCH ₂	CH₃	Н	CF ₃	0	0
A365	CH=CHCH ₂	CH₃CH₂	Н	CF ₃	0	0
A366	CH=CHCH ₂	(CH₃)₂CH	Н	CF ₃	0	0
A367	CH=CHCH₂	PhCH₂	Н	CF ₃	0	0
A368	CH=CHCH₂	CH ₃	Н	CF ₃	s	0
A369	CH=CHCH₂	CH ₃	Н	CF ₃	so	0
A370	CH=CHCH₂	CH₃	н	CF ₃	SO ₂	0
A371	CH=CHCH₂	CH ₃ CH ₂ CH ₂	Н	CF ₃	0	0
A372	CH=CHCH₂	CH₃OCH₂	Н	CF ₃	0	0
A373	CH=CHCH₂	CH ₃ CH ₂ OCH ₂	н	CF ₃	0	0
A374	CH=CHCH₂	CH₃OCH₂CH₂	Н	CF₃	0	0
A375	CH=CHCH ₂	CH3CH2OCH2CH2	Н	CF ₃	0	0
A376	CH=CHCH ₂	CH ₃ OC(CH ₃) ₂ CH ₂	Н	CF ₃	О	0
A377	CH=CHCH ₂	CH3OCH(CH3)CH2	Н	CF ₃	0	0
A378	CH=CHCH₂	CH ₃ OCH ₂ CH(CH ₃)	н	CF ₃	0	0
A379	CH=CHCH ₂	CH ₃ OCH ₂ C(CH ₃) ₂	Н	CF ₃	0	0
A380	CH=CHCH₂	CH₃OCH(CH₃)	Н	CF ₃	0	0
A381	CH=CHCH₂	CH ₃ OC(CH ₃) ₂	Н	CF ₃	0	0
A382	CH=CHCH ₂	HC≡CCH ₂	Н	CF ₃	0	0
A383	CH=CHCH ₂	H ₂ C=CHCH ₂	Н	CF ₃	0	0
A384	CH=CHCH ₂	CH3C≡CCH2	Н	CF ₃	0	0
A385	CH≂CHCH₂	Сн	Н	CF ₃	0	0
A386	CH=CHCH₂	Сн	Н	CF ₃	0	0
A387	CH=CHCH ₂	Ссн	Н	CF ₃	0	0
A388	CH=CHCH ₂	O. CH	Н	CF ₃	0	0
A389	CH=CHCH ₂	Сн	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A390	CH=CHCH₂	Ç0H	Н	CF ₃	0	0
A391	CH=CHCH₂	Сн	Н	CF ₃	0	0
A392	CH=CHCH₂	C _{CH}	Н	CF₃	0	0
A393	CH=CHCH ₂	O OH	Н	CF₃	0	0
A394	CH=CHCH₂	Ç _{OH}	Н	CF ₃	0	0
A395	CH=CHCH₂	O CH	Н	CF ₃	0	0
A396	CH=CHCH ₂	Ö	Н	CF ₃	0	0
A397	CH=CHCH₂	OCH _a	н	CF ₃	0	0
A398	CH=CHCH ₂	OH.	н	CF ₃	0	0
A399	CH=CHCH ₂		Н	CF ₃	0	0
A400	CH=CHCH ₂	осн,	н	CF ₃	0	0
A401	CH=CHCH₂	OH	Н	CF ₃	0	0
		$\langle s \rangle$				
A402	CH=CHCH₂	CH3 CH3	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R_3	X ₁	р
A403	CH=CHCH₂	CH ₃	Н	CF ₃	0	0
A404	CH=CHCH₂	N N CH _s	Н	CF ₃	0	0
A405	CH=CHCH ₂		н	CF ₃	0	0
A406	CH=CHCH₂		Н	CF₃	0	0
A407	CH=CHCH₂		н	CF ₃	0	0
A408	CH=CHCH₂	OCH,	Н	CF ₃	0	0
A409	CH=CHCH₂	OH OH	н	CF ₃	0	0
A410	CH=CHCH₂	осн	н	CF₃	0	0
A411	CH=CHCH ₂	N OH	н	CF₃	0	0
A412	CH=CHCH ₂	OCH,	н	CF ₃	0	0
A413	CH=CHCH ₂	OH N	н	CF ₃	0	0
A414	CH=CHCH ₂	√N	н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	Χ,	р
A415	CH=CHCH ₂		Н	CF ₃	Ō	0
A416	CH=CHCH₂	F OCH3	Н	CF ₃	0	0
A417	CH=CHCH ₂	OCH ₃	н	CF ₃	0	0
A418	CH=CHCH₂	CH=CH	н	CF ₃	0	0
A419	CH=CHCH ₂	CH ₂	н	CF ₃	0	0
A420	CH=CHCH ₂	CH₂	н	CF ₃	0	0
A421	CH=CHCH₂	. О СН2	Н	CF ₃	0	0
A422	CH=CHCH₂	CH ₂	н	CF ₃	0	0
A423	CH=CHCH₂	€ CH ₂	н	CF ₃	0	0
A424	CH=CHCH ₂	CH₂	Н	CF ₃	0	0
A425	CH=CHCH₂	CH ₂	Н	CF ₃	0	0
A426	CH=CHCH ₂	CH²	Н	CF ₃	O	0
A427	CH=CHCH2	CH ₂	Н	CF ₃	0	0
A428	CH=CHCH ₂	CH ₂	Н	CF₃	0	0

Radical	R ₁	R ₂	R ₄	R_3	X ₁	р
A429	CH=CHCH₂	°CH₂	Н	CF ₃	0	0
A430	CH=CHCH ₂	CO CH ₂	Н	CF ₃	0	0
A431	CH=CHCH₂	CH ₂	н	CF ₃	0	0
A432	CH=CHCH₂	CH ₂ OCH ₃	Н	CF ₃	0	0
A433	CH=CHCH₂	CH ₂	Н	CF ₃	0	0
A434	CH=CHCH ₂	OCH _a	Н	CF ₃	0	0
A435	CH=CHCH₂	CH ₂	Н	CF ₃	0	0
A436	CH=CHCH ₂	⟨S CH₂	Н	CF ₃	0	0
A437	CH=CHCH ₂	CH ₃ OCH ₂ CH ₂	Н	CF ₃	0	0
A438	CH=CHCH₂	CH ₃ OCH ₂ CH ₂	н	CF₃	0	0
A439	CH=CHCH ₂	N OCH ₂ CH ₂	Н	CF ₃	0	0
A440	CH=CHCH ₂	CH ₂	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A441	CH=CHCH₂	CH ₂	Н	CF ₃	0	0
A442	CH=CHCH₂	CH ₂	Н	CF ₃	0	0
A443	CH=CHCH₂	OCH ₃	н	CF ₃	0	0
A444	CH=CHCH₂	OH CH ₂	н	CF ₃	0	0
A445	CH=CHCH₂	N CH²	Н	CF ₃	0	0
A446	CH=CHCH₂	OH CH ₂	Н	CF ₃	0	0
A447	CH=CHCH₂	OCH ₃	Н	CF₃	0	0
A448	CH=CHCH₂	OH CH ₂	н	CF ₈	0	0
A449	CH=CHCH₂	CH ₂	Н	CF ₃	0	0
A450	CH=CHCH₂	CH ₂	Н	CF ₃	0	0
A451	CH=CHCH ₂	CH ₂	Н	CF ₃	0	0
A452	CH=CHCH₂	OCH ₂ CH ₂	Н	CF ₃	0	0

Radical	R ₁	R ₂	R_4	R ₃	Х,	р
A453	CH⊨CHCH₂	OCH ₂ CH ₂	Н	CF ₃	0	0
A454	CH=CHCH ₂	OCH3	Н	CF ₃	0	0
A455	C=CCH ₂	CH ₃	н	CF ₃	0	0
A456	C≡CCH ₂	CH ₃ CH ₂	н	CF ₃	0	0
A457	C=CCH ₂	(CH₃)₂CH	Н	CF ₃	0	0
A458	C≡CCH ₂	PhCH₂	Н	CF ₃	0	0
A459	C≘CCH₂	CH ₃	Н	CF ₃	s	0
A460	C=CCH ₂	CH₃	Н	CF ₃	so	0
A461	C≡CCH ₂	CH ₃	Н	CF ₃	SO2	0
A462	C=CCH ₂	CH₃CH₂CH₂	Н	CF ₃	0	0
A463	C≡CCH ₂	CH₃OCH₂	н	CF ₃	0	0
A464	C≡CCH ₂	CH ₃ CH ₂ OCH ₂	Н	CF ₃	0	0
A465	C=CCH ₂	CH ₃ OCH ₂ CH ₂	Н	CF₃	О	0
A466	C≡CCH ₂	CH3CH2OCH2CH2	Н	CF ₃	0	0
A467	C≡CCH ₂	CH ₃ OC(CH ₃) ₂ CH ₂	Н	CF ₃	0	0
A468	C≡CCH ₂	CH₃OCH(CH₃)CH₂	Н	CF ₃	0	0
A469	C=CCH ₂	CH₃OCH₂CH(CH₃)	Н	CF ₃	0	0
A470	C=CCH ₂	CH ₃ OCH ₂ C(CH ₃) ₂	Н	CF ₃	0	0
A471	C≡CCH ₂	CH ₃ OCH(CH ₃)	Н	CF ₃	0	0
A472	C≡CCH₂	CH ₃ OC(CH ₃) ₂	Н	CF ₃	0	0
A473	C≡CCH ₂	HC≡CCH ₂	Н	CF ₃	0	0
A474	C≡CCH ₂	H ₂ C=CHCH ₂	Н	CF ₃	0	0
A475	C≡CCH ₂	CH ₃ C≡CCH ₂	Н	CF ₃	0	0
A476	C=CCH ₂	Сн	Н	CF ₃	0	0
A477	$C \equiv CCH_2$	Осн	Н	CF ₃	0	0
A478	C≡CCH ₂	CCH	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A479	C≡CCH ₂	√CH	Н	CF ₃	0	0
A480	C≡CCH ₂	Сн	Н	CF ₃	0	0
A481	C=CCH ₂	СН	Н	CF ₃	0	0
A482	C=CCH ₂	Сф	Н	CF ₃	0	0
A483	C=CCH ₂	ОСН	н	CF ₃	0	0
A484	C≡CCH ₂	CH	н	CF ₃	0	0
A485	C≡CCH ₂	ОСН	Н	CF ₃	0	0
A486	C≡CCH ₂	O CH	H	CF ₃	0	0
A487	C=CCH ₂		н	CF ₃	0	0
A488	C≡CCH₂	CCH _a	Н	CF ₃	0	0
A489	C≖CCH₂	Он	Н	CF ₃	0	0
A490	C=CCH ₂	OCH _a	Н	CF ₃	0	0
A491	C≡CCH ₂	OH.	н	CF ₃	0	0
A492	C≡CCH ₂		Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A493	C≡CCH ₂	CH ₃ CH ₃	Н	CF₃	0	0
A494	C=CCH ₂	CH ₃	Н	CF ₃	0	0
A495	C=CCH ₂	NN CH3	Н	CF ₃	0	0
A496	C≡CCH ₂	\bigcirc_{N}	Н	CF ₃	0	0
A497	C⊨CCH ₂		Н	CF ₃	0	0
A498	C≡CCH ₂		Н	CF ₃	0	0
A499	C=CCH ₂	OCH ₃	н	CF ₃	0	0
A500	C=CCH₂	OH N	Н	CF ₃	0	0
A501	C≡CCH ₂	OCH,	н	CF ₃	0	0
A502	C≡CCH₂	N OH	Н	CF ₃	0	0
A503	C≡CCH ₂	OCH ₃	Н	CF ₃	0	0
A504	C≔CCH₂	OH	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A505	C=CGH ₂	C.N	Н	CF ₃	0	0
A506	C≡CCH ₂		Н	CF ₃	Ο,	0
A507	C≡CCH ₂	F OCH ₃	Н	CF ₃	0	0
A508	C≡CCH ₂	N OCH ₃	Н	CF ₃	0	0
4509	C=CCH ₂	CH=CH	Н	CF ₃	0	0
A510	C≡CCH ₂	CH ₂	Н	CF ₃	0	0
\511	C≡CCH ₂	Сн₂	Н	CF ₃	0	0
\512	C≡CCH ₂	0 сн₂	• н	CF ₃	0	0
A513	C=CCH₂	CH₂	н	CF ₃	0	0
A514	C=CCH ₂	CH ₂	н	CF ₃	0	0
A515	C≡CCH ₂	CH ₂	Н	CFs	0	0
\516	C=CCH ₂	CH ₂	Н	CF ₃	0	0
A517	C≡CCH ₂	CH ₂	Н	CF ₃	0	0
A518	C=CCH ₂	CH ₂	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	Χı	р
A519	C=CCH₂	o	Н	CF ₃	0	0
A520	C=CCH ₂	OCH ₂	н	CF ₃	0	0
A521	C=CCH ₂	O CH ₂	Н	CF ₃	0	0
A522	C≡CCH ₂	CH ₂	н	CF ₃	0	0
A523	C≡CCH₂	OCH ₂	н	CF ₃	0	0
A524	C≡CCH₂	CH ₂	н	CF ₃	0	0
A525	C=CCH ₂	OCH ₃	Н	CF ₃	0	0
A526	C=CCH ₂	CH ₂	н	CF ₃	0	0
A527	C≡CCH₂	CH ₂	н	CF ₃	0	0
A528	C≡CCH₂	CH3 CH2CH3	Н	CF ₃	0	0
A529	C=CCH ₂	CH ₃ OCH ₂ CH ₂	Н	CF ₃	0	0
A530	C=CCH ₂	CH ₉ OCH ₂ CH ₂	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R_3	Χ,	р
A531	C≡CCH ₂	CH ₂	Н	CF ₃	0	0
A532	C≡CCH ₂	CH ₂	Н	CF ₃	0	0
A533	C≅CCH₂	CH ₂	Н	CF ₃	0	0
A534	C≡CCH ₂	CH ₃	Н	CF ₃	0	0
A535	C≡CCH ₂	OH CH ₂	Н	CF ₃	0	0
A536	C≡CCH ₂	OCH ³	н	CF ₃	0	0
A537	C≡CCH ₂	OH CH₂	н	CF ₃	0	0
A538	C≡CCH ₂	OCH ₃	Н	CF ₃	0	0
A539	C≡CCH ₂	OH CH ₂	Н	CF ₃	0	0
A540	C≡CCH ₂	CH ₂	Н	CF ₃	0	0
A541	C≡CCH ₂	CH ₂	Н	CF ₃	0	0
A542	C=CCH ₂	CH ₂	н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A543	C≡CCH ₂	OCH ₂ CH ₂	Н	CF ₃	0	0
A544	C≡CCH₂	OCH ₂ CH ₂	Н	CF ₃	0	0
A545	C≡CCH ₂	OCH ₂	н	CF ₃	0	0
A546	CH ₂	CH₃	Н	CF ₂ CI	0	0
A547	CH ₂	CH ₃ CH ₂	Н	CF ₂ CI	О	0
A548	CH ₂	(CH ₃) ₂ CH	Н	CF ₂ CI	0	0
A549	CH₂	PhCH₂	Н	CF ₂ CI	0	0
A550	CH ₂	CH ₃	Н	CF ₂ Cl	s	0
A551	CH ₂	CH ₃	Н	CF ₂ CI	so	0
A552	CH ₂	CH₃	н	CF ₂ Cl	SO ₂	0
A553	CH ₂	CH₃CH₂CH₂	Н	CF ₂ CI	0	0
A554	CH ₂	CH ₃ OCH ₂	Н	CF ₂ CI	0	0
A555	CH ₂	CH₃CH₂OCH₂	Н	CF ₂ CI	0	0
A556	CH ₂	CH₃OCH₂CH₂	н	CF ₂ Ci	0	0
A557	CH₂	CH3CH2OCH2CH2	Н	CF ₂ Cl	0	0
A558	CH ₂	CH ₃ OC(CH ₃) ₂ CH ₂	Н	CF ₂ CI	0	0
A559	CH₂	CH₃OCH(CH₃)CH₂	Н	CF ₂ Cl	0	0
A560	CH ₂	CH ₃ OCH ₂ CH(CH ₃)	Н	CF ₂ CI	0	0
A561	CH ₂	CH ₃ OCH ₂ C(CH ₃) ₂	Н	CF ₂ CI	0	0
A562	CH ₂	CH ₃ OCH(CH ₃)	Н	CF ₂ CI	0	0
A563	CH ₂	CH ₃ OC(CH ₃) ₂	Н	CF ₂ Cl	0	0
A564	CH₂	HC≡CCH₂	Н	CF ₂ Cl	0	0
A565	CH ₂	H ₂ C=CHCH ₂	н	CF ₂ CI	0	0
A566	CH ₂	CH₃C≅CCH₂	Н	CF ₂ CI	0	0
A567	CH ₂	С	н	CF ₂ Cl	0	0
A568	CH ₂	Осн	Н	CF ₂ Cl	0	0

Radical	R ₁	R ₂	R_4	R ₃	X ₁	р
A569	CH ₂	Сен	Н	CF ₂ CI	0	0
A570	CH ₂	√ CH	Н	CF₂CI	0	0
A571	CH ₂	СН	Н	CF ₂ CI	0	0
A572	CH ₂	СН	н	CF ₂ CI	0	0
A573	CH₂	Сн	Н	CF₂CI	0	0
A574	CH₂	O CH	н	CF ₂ Cl	0	0
A575	CH₂	ОСН	Н	CF₂CI	0	0
A576	CH₂	ОСН	н	CF₂CI	0	0
A577	CH₂	O CH	Н	CF ₂ CI	0	0
A578	CH ₂	O	Н	CF ₂ CI	0	0
A579	CH ₂	CCH _a	Н	CF ₂ CI	0	0
A580	CH ₂	C)	Н	CF ₂ Cl	0	0
A581	CH ₂	OCH _a	Н	CF ₂ CI	0	0
A582	CH ₂	ان ا	Н	CF ₂ CI	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A583	CH ₂		Н	CF ₂ CI	0	0
A584	CH₂	CH ₃	Н	CF₂CI	0	0
A585	CH₂	CH ₃	Н	CF₂CI	0	0
A586	CH₂	N N CH _a	Н	CF ₂ CI	0	0
A587	CH₂	CN	Н	CF ₂ C!	0	0
A588	CH ₂		Н	CF₂CI	0	0
A589	CH ₂		Н	CF₂CI	0	0
A590	CH₂	OCH ₃	н	CF₂CI	0	0
A591	CH ₂	OH N	Н	CF₂CI	0	0
A592	CH₂	OCH ₃	Н	CF ₂ CI	0	0
A593	CH ₂	N OH	Н	CF₂CI	0	0
A594	CH ₂	OCH _s	Н	CF ₂ CI	0	0

Radical	R ₁	R ₂	R ₄	R ₃	Χ1	р
A595	CH₂	OH N	Н	CF ₂ CI	0	0
A596	CH ₂		Н	CF ₂ CI	0	0
A597	CH ₂		Н	CF ₂ CI	0	0
A598	CH ₂	F OCH ₃	Н	CF₂CI	0	0
A599	CH ₂	N OCH ₃	Н	CF₂CI	0	0
A600	CH₂	CH=CH	н	CF₂CI	0	0
A601	CH ₂	CH ₂	Н	CF ₂ Cl	0	0
A602	CH ₂	CH₂	Н	CF ₂ CI	0	0
A603	CH ₂	о Сн ₂	Н	CF ₂ Ct	0	0
A604	CH ₂	CH ₂	н	CF ₂ CI	0	0
A605	CH_2	O√CH ₂	Н	CF ₂ CI	0	0
A606	CH ₂	CH ₂	Н	CF ₂ Cl	0	0
A607	CH ₂	CH ₂	Н	CF₂CI	0	0
A608	CH ₂	CHz	Н	CF₂CI	0	0

Radical	R ₁	R ₂	R ₄	R ₃	Х1	р
A609	CH ₂	O CH ₂	Н	CF ₂ CI	0	0
A610	CH ₂	CH ₂	Н	CF ₂ CI	0	0
A611	CH ₂	°CH ₂	Н	CF ₂ CI	0	0
A612	CH ₂	CO CH ₂	Н	CF ₂ CI	0	0
A613	CH ₂	CH ₂	н	CF ₂ CI	0	0
A614	CH₂	OCH ₃	н	CF ₂ CI	0	0
A615	CH₂	CH ₂	Н	CF₂CI	0	0
A616	CH ₂	CH ₂	Н	CF₂CI	0	0
A617	CH₂	CH ₂	н	CF₂CI	0	0
A618	CH ₂	€S CH₂	Н	CF₂CI	0	0
A619	CH₂	CH ₃ OCH ₂ CH ₂	Н	CF₂CI	0	0
A620	CH₂	CH ₃ N OGH ₂ CH ₂	Н	CF ₂ CI	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A621	CH ₂	CH3 OCH ² CH ²	Н	CF ₂ Cl	0	0
A622	CH ₂	CH ₂	Н	CF₂CI	0	0
A623	CH₂	CH ₂	Н	CF ₂ Cl	0	0
A624	CH₂	$\bigcap_{N \subset \mathcal{H}_2}^{\operatorname{GH}_2}$	Н	CF₂CI	0	0
A625	CH₂	OCH ₃	Н	CF₂CI	0	0
A626	CH₂	OH CH ₂	Н	CF ₂ CI	0	0
A627	CH₂	OCH ₃	н	CF ₂ Cl	0	0
A628	CH₂	OH CH ₂	н	CF ₂ CI	0	0
A629	CH ₂	OCH ₃	Н	CF₂CI	0	0
A630	CH ₂	OH CH ₂	Н	CF ₂ CI	0	0
A631	CH₂	CH ₂	Н	CF ₂ CI	0	0
A632	CH ₂	CH ₂	Н	CF₂CI	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A633	CH₂	F OCH ₃	Н	CF ₂ CI	0	0
A634	CH₂	OCH ₂ CH ₂	Н	CF ₂ CI	0	0
A635	CH₂	OCH ₂ CH ₂	Н	CF ₂ Cl	0	0
A636	CH ₂	CCH ₂	Н	CF ₂ CI	0	0
A637	CH₂	CH₃	Н	CHF ₂	0	0
A638	CH ₂	CH₂CH₃	н	CHF ₂	0	0
A639	CH ₂	(CH₃)₂CH	Н	CHF ₂	0	0
A640	CH ₂	PhCH ₂	Н	CHF ₂	0	0
A641	CH ₂	CH ₃	Н	CHF ₂	s	0
A642	CH ₂	CH ₃	Н	CHF ₂	0	0
A643	CH ₂	CH ₃	Н	CHF ₂	0	0
A644	CH ₂	CH₃OCH₂	Н	CHF ₂	0	0
A645	CH ₂	CH₃CH₂OCH₂	н	CHF ₂	0	0
A646	CH ₂	CH ₃ OCH ₂ CH ₂	Н	CHF ₂	0	0
A647	CH ₂	CH3CH2OCH2CH2	Н	CHF ₂	0	0
A648	CH₂	CH ₃ OC(CH ₃) ₂ CH ₂	Н	CHF ₂	0	0
A649	CH₂	CH₃OCH(CH₃)CH₂	Н	CHF ₂	0	0
A650	CH ₂	CH ₃ OCH ₂ CH(CH ₃)	Н	CHF ₂	0	0
A651	CH ₂	CH ₃ OCH ₂ C(CH ₃) ₂	Н	CHF ₂	0	0
A652	CH ₂	CH₃OCH(CH₃)	Н	CHF ₂	0	0
A653	CH ₂	CH ₃ OC(CH ₃) ₂	Н	CHF ₂	0	0
A654	CH ₂	HC≡CCH ₂	Н	CHF ₂	O	0
A655	CH ₂	H ₂ C=CHCH ₂	Н	CHF ₂	0	0
A656	CH ₂	CH₃C≔CCH₂	Н	CHF2	0	0
A657	CH ₂	Сн	Н	CHF ₂	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A658	CH ₂	Осн	Н	CHF ₂	0	0
A659	CH₂	CcH	Н	CHF ₂	0	0
A660	CH ₂	√ CH	Н	CHF ₂	0	0
A661	CH ₂	СН	Н	CHF ₂	0	0
A662	CH₂	Срн	Н	CHF ₂	0	0
A663	CH ₂	CH	н	CHF ₂	0	0
A664	CH₂	O _{CH}	Н	CHF ₂	0	0
A665	CH₂	Сн	н	CHF ₂	0	0
A666	CH ₂	СН	н	CHF ₂	0	0
A667	CH ₂	O _{CH}	н	CHF ₂	0	0
A668	CH ₂		н	CHF ₂	0	0
A669	CH ₂	OCH ₃	н	CHF ₂	0	0
A670	CH ₂	ОН	Н	CHF ₂	0	0
A671	CH ₂		Н	CHF ₂	0	0
		OCH ₃				

Radical	R,	R ₂	R ₄	R ₃	X ₁	р
A672	CH ₂	OH.	Н	CHF₂	0	0
A673	CH₂		Н	CHF ₂	0	0
A674	CH₂	CH ₃ CH ₄	Н	CHF ₂	0	0
A675	CH₂	CH ₃	Н	CHF ₂	0	0
A676	CH ₂	N N CH ₃	Н	CHF ₂	0	0
A677	CH ₂		Н	CHF ₂	0	0
A678	CH ₂		Н	CHF ₂	0	0
A679	CH ₂		Н	CHF ₂	0	0
A680	CH₂	OCH ₃	н	CHF ₂	0	0
A681	CH₂	OH N	Н	CHF ₂	0	0
A682	CH₂	OCH ₃	Н	CHF ₂	s	0
A683	CH₂	N OH	Н	CHF ₂	SO	0

Radical	R ₁	R ₂	R ₄	R_3	X ₁	р
A684	CH ₂	OCH ₃	Н	CHF ₂	SO ₂	0
A685	CH₂	OH N	Н	CHF ₂	0	0
A686	CH ₂		н	CHF₂	0	0
A687	CH ₂		н	CHF₂	0	0
A688	CH₂	F OCH ₃	Н	CHF₂	0	0
A689	CH₂	N OCH3	н	CHF₂	0	0
A690	CH₂	CH=CH ₂	н	CHF₂	0	0
A691	CH₂	CH ₂	н	CHF ₂	0	0
A692	CH ₂	□ GH₂	н	CHF ₂	0	0
A693	CH ₂	°>ch²	н	CHF2	0	0
A694	CH₂	CH₂	Н	CHF ₂	0	0
A695	CH ₂	O√CH ₂	Н	CHF2	0	0
A696	CH ₂	CH₂	Н	CHF ₂	0	0
A697	CH ₂	O—CH _E	Н	CHE ⁵	O	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A698	CH₂	CH ₂	Н	CHF ₂	0	0
A699	CH ₂	CH ₂	Н	CHF ₂	0	0
A700	CH₂	CH ₂	Н	CHF₂	0	0
A701	CH ₂	OCH ₂	н	CHF₂	0	0
A702	CH₂	O CH ₂	Н	CHF ₂	0	0
A703	CH ₂	CH ₂	н	CHF ₂	0	0
A704	CH ₂	OCH ₂	н	CHF ₂	0	0
A705	CH₂	CH ₂	Н	CHF ₂	0	0
A706	CH₂	CH ₂	Н	CHF ₂	0	0
A707	CH₂	CH ₂	Н	CHF₂	0	0
A708	CH₂	CH ₂	Н	CHF ₂	0	0
A709	CH₂	CH ₃ OCH ₂ CH ₂	н	CHF ₂	0	0

Radical	R ₁	R ₂	R ₄	R ₃	Х1	р
A710	CH ₂	CH ₃ OCH ₂ CH ₂	Н	CHF ₂	0	0
A711	CH ₂	N OCH ₂ CH ₂	Н	CHF ₂	0	0
A712	CH ₂	CH ₂	Н	CHF ₂	0	0
A713	CH ₂	CH ₂	Н	CHF ₂	0	0
A714	CH ₂	CH ₂	н	CHF ₂	0	0
A715	CH ₂	OCH ₃ CH ₂	Н	CHF ₂	0	0
A716	CH ₂	OH CH ₂	Н	CHF ₂	0	0
A717	CH ₂	OCH3 CH5	н	CHF ₂		0
A718	CH ₂	OH CH ₂	н	CHF ₂	0	0
A719	CH ₂	CH ₂	Н	CHF₂	0	0
A720	CH₂	OH CH ₂	Н	CHF ₂	0	0
A721	CH ₂	CH ₂	н	CHF ₂	0	0

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A722	CH ₂	CH ₂	Н	CHF ₂	0	0
A723	CH ₂	CH ₂	Н	CHF ₂	0	0
A724	CH ₂	OCH ₂ CH ₂	Н	CHF₂	0	0
A725	CH ₂	OCH ₂ CH ₂	Н	CHF ₂	0	0
A726	CH ₂	OCH ₃	Н	CHF ₂	0	0
A727	CH ₂	CH₃	н	CF₃	0	1
A728	CH ₂	CH₂CH₃	н	CF ₃	0	1
A729	CH₂	(CH₃)₂CH	н	CF₃	0	1
A730	CH ₂	PhCH₂	н	CF ₃	0	1
A731	CH₂	CH ₃	H	CF ₃	s	1
A732	CH ₂	CH ₃	Н	CF ₃	so	1
A733	CH₂	CH ₃	Н	CF ₃	SO ₂	1
A734	CH ₂	CH₃OCH₂	н	CF ₃	0	1
A735	CH₂	CH₃CH₂OCH₂	н	CF ₃	0	1
A736	CH ₂	CH₃OCH₂CH₂	H	CF ₃	0	1
A737	CH₂	CH3CH2OCH2CH2	н	CF ₃	0	1
A738	CH ₂	CH ₃ OC(CH ₃) ₂ CH ₂	Н	CF ₃	0	1
A739	CH ₂	CH ₃ OCH(CH ₃)CH ₂	Н	CF₃	0	1
A740	CH ₂	CH3OCH2CH(CH3)	Н	CF ₃	0	1
A741	CH ₂	CH3OCH2C(CH3)2	н	CF ₃	0	1
A742	CH ₂	CH ₃ OCH(CH ₃)	н	CF ₃	0	1
A743	CH ₂	CH ₃ OC(CH ₃) ₂	Н	CF ₃	0	1
A744	CH ₂	HC≡CCH ₂	Н	CF ₃	0	1
A745	CH ₂	H ₂ C=CHCH ₂	н	CF ₃	0	1
A746	CH₂	CH ₃ C≡CCH ₂	Н	CF ₃	0	1

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	р
A747	CH ₂	Сн	Н	CF ₃	0	1
A748	CH ₂	ССН	Н	CF ₃	0	1
A749	CH₂	CCH	Н	CF ₃	0	1
A750	CH ₂	√CH	Н	CF ₃	0	1
A751	CH ₂	Сн	Н	CF ₃	0	1
A752	CH ₂	СН	н	CF ₃	0	1
A753	CH ₂	Сн	н	CF₃	0	1
A754	CH ₂	CH CH	Н	CF ₃	0	1
A755	CH ₂	CH CH	н	CF ₃	0	1
A756	CH ₂	ОСН	н	CF ₃	0	1
A757	CH ₂	ОСН	Н	CF ₃	0	1
A758	CH ₂		н	CF ₃	0	1
A759	CH ₂	CCH ₃	Н	CF ₃	0	1
A760	CH ₂	CT _{OH}	Н	CF ₃	0	1
A761	CH ₂		н	CF ₃	0	1
		OCH3				

Radical	R ₁	R ₂	\mathbf{R}_4	R ₃	Χ,	р
A762	CH₂	OH.	H	CF ₃	0	1
A763	CH ₂	S	Н	CF ₃	0	1
A764	CH₂	CH ₃ CH ₃	н	CF ₃	0	1
A765	CH ₂	CH ₃	Н	CF ₃	0	1
A766	CH₂	N N CH3	Н	CF ₃	0	1
A767	CH₂		н	CF ₃	0	1
A768	CH _z		Н	CF₃	0	1
A769	CH ₂		н	CF ₃	0	1
A770	CH ₂	OCH ₃	н	CF ₃	0	1
A771	CH ₂	OH OH	Н	CF ₃	0	1
A772	CH₂	OCH ₃	Н	CF₃	0	1
A773	CH₂	OH OH	Н	CF ₃	0	1

Radical	R ₁	R ₂	R ₄	R_3	X ₁	р
A774	CH ₂	OCH,	Н	CF ₃	0	1
A775	CH ₂	OH N	Н	CF ₃	0	1
A776	CH₂		Н	CF ₃	0	1
A777	CH₂		н	CF ₃	0	1
A778	CH ₂	F OCH3	Н	CF ₃	0	1
A779	CH₂	N OCH ₃	н	CF ₃	0	1
A780	CH₂	CH=CH ₂	Н	CF ₃	0	1
A781	CH₂	CH ₂	н	CF₃	0	1
A782	CH ₂	□ GH₂	Н	CF ₃	0	1
A783	CH ₅	CH ₂	Н	CF ₃	0	1
A784	CH ₂	CH₂	н	CF ₃	0	1
A785	CH ₂	O CH2	Н	CF ₃	0	1
A786	CH ₂	CH₂	Н	CF3	0	1
A787	CH₂	CH ₂	Н	CF ₃	0	1

Radical	R ₁	R ₂	R ₄	R ₃	Х1	р
A788	CH ₂	CH,	Н	CF ₃	0	1
A789	CH ₂	CH ₂	Н	CF ₃	0	1
A790	CH ₂	CH ₂	Н	CF ₃	0	1
A791	CH₂	CH ₂	Н	CF₃	0	1
A792	CH₂	CO CH ₂	н	CF ₃	0	1
A793	CH ₂	CH₂	Н	CF ₃	0	1
A794	CH₂	CH ₂	Н	CF ₃	0	1
A795	CH₂	CH ₂	Н	CF ₃	0	1
A796	CH₂	CH ₂	н	CF ₈	0	1
A797	CH₂	OH CH₂	н	CF ₃	0	1
A798	CH ₂	CH ₂	Н	CF ₃	0	1
A799	CH ₂	CH ₃ CH ₂ CH ₂	н	CF ₃	0	1

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	Р
A800	CH ₂	CH ₃ N OCH ₂ CH ₂ CH ₃	Н	CF ₃	Ó	1
A801	CH _z	N OCH ₂ CH ₂	Н	CF ₃	0	1
A802	CH₂	CH ₂	Н	CF ₃	0	1
A803	CH ₂	CH ₂	Н	CF ₃	0	1
A804	CH₂	N CH ₂	Н	CF ₃	0	1
A805	CH ₂	CCH _g CH _z	н	CF ₃	0	1
A806	CH ₂	CH ₂	н	CF ₃	0	1
A807	CH ₂	N CFI₂	н	CF₃	0	1
A808	CH₂	OH CH ₂	н	CF ₃	0	1
A809	CH₂	OCH ₃	н	CF ₃	0	1
A810	CH ₂	OH CH ₂	н	CF ₃	0	1
A811	CH ₂	CH ₂	н	CF ₃	0	1

Radical	R ₁	R ₂	R ₄	R ₃	X ₁	p
A812	CH ₂	CH ₂	Н	CF ₃	0	1
A813	CH ₂	F CH ₂	н	CF ₃	0	1
A814	CH₂	OCH ³	н	CF ₃	0	1
A815	CH ₂	OCH ₃	н	CF ₃	0	1
A816	CH ₂	OCH3	Н	CF ₃	0	1
A817	CH ₂	CH₃SCH₂CH₂	H	CF ₃	0	0
A818	CH ₂	CH3SOCH2CH2	Н	CF ₃	0	0
A819	CH ₂	CH ₃ SO ₂ CH ₂ CH ₂	Н	CF ₃	0	0
A820	CH ₂	CH3OCH2CH2	н	CF ₂ Cl	0	1
A821	CH ₂	CH₃OCH₂CH₂	H	CF₂H	0	1
A822	CH₂	CH₃OCH₂CH₂	F	CF ₃	0	0
A823	CH ₂	CH3OCH2CH2	CH ₃	CF ₃	0	0
A824	CH ₂	CH₃OCH₂CH₂	CH₃	CF ₃	0	1
A825	CH ₂	CH₃OCH₂CH₂	Н	CF ₃	S	0
A826	CH ₂	CH₃OCH₂CH₂	Н	CF ₃	so	0
A827	CH ₂	CH₃OCH₂CH₂	CH₃	CF ₃	SO ₂	0
A828	CH ₂	CH3SO2CH2CH2	CH ₃	CF ₃	0	0
A829	CH ₂	CH3S S	Н	CF ₃	s	0
A830	CH ₂	CH ₃ O N N OCH ₃	Н	CF ₃	s	0

Radical	R ₁	R ₂	R ₄	R ₃	Χı	р
A831	CH₂	CH ₃ N	CH ₃	CF ₃	S	0
A832	CH ₂		CH₃	CF ₃	S	0
A833	CH ₂	CH₃C(O)	н	CF ₃	0	0
A834	CH ₂	CF₃CH₂	Н	CF ₃	0	0
A835	CH ₂	CH3OCH2CH2OCH2CH2	Н	CF ₃	0	0
A836	CH₂	HC≡CCH2CH2	н	CF ₃	0	0
A837	CH ₂	Сон	Н	CF₃	0	0
A838	CH ₂	CH₃CH₂C(OCH₃)HOCH₂CH₂	Н	CF ₃	0	0
A839	CH ₂	(CH₃)₃CC(O)	Н	CF ₃	0	0
A840	CH ₂	CH2=CHCH2OCH2CH2	Н	CF ₃	0	0
A841	CH ₂	CH3CH2CH2OCH2CH2	Н	CF ₃	0	0
A842	CH₂		н	CF ₃	0	0
A843	CH ₂	n-Heptyl-C(O)	н	CF ₃	0	0
A844	CH ₂	Phenyl-C(O)	н	CF ₃	0	0
A845	CH ₂	CF3CH2OCH2CH2	Н	CF₃	0	0
A846	CH ₂	CH3OCH2CH2CH2	Н	CF ₃	0	0
A847	CH ₂	HOCH ₂ CH ₂ CH ₂	Н	CF ₃	0	0
A848	CH₂	CII ₂	Н	CF ₃	0	0
A849	CH ₂	N≡CCH ₂ CH ₂	н	CF ₃	0	0
A850	CH ₂	CICH ₂ CH ₂	Н	CF ₃	0	0
A851	CH ₂	СН	Н	CF ₃	0	0
A852	CH ₂	С СН₂	н	CF ₃	0	0
A853	CH ₂	CH ₃ OCH ₂ C(Br)HCH ₂	Н	CF ₃	0	0

Radical	R ₁	R ₂	R ₄	R ₃	Х1	р
A854	CH ₂	Çs—cH,	Н	CF ₃	0	0
A855	CH₂	CO_CH ₂	Н	CF₃	0	0
A856	CH ₂	HOCH₂CH₂	Н	CF ₃	0	0
A857	CH ₂	O_O_O_CH ₂	Н	CF ₃	0	0
A858	CH ₂	CH ₃ (OCH ₂ CH ₂) ₃	Н	CF ₃	0	0
A859	CH ₂	CH3CH2OC(CH3)HOCH2CH2	Н	CF ₃	0	0
A860	CH ₂	n-Heptyl-C(O)OCH2CH2	Н	CF ₃	0	0
A861	CH₂	CH3C(O)OCH2CH2	н	CF ₃	0	0
A862	CH ₂	CH3SO2OCH2CH2	Н	CF ₃	0	0
A863	CH₂	OOCH2	Н	CF ₃	0	0
A864	CH ₂	CH₃	Н	CF ₃	-NCH ₃ SO ₂ -	0
A865	CH ₈	HOCH ₂ C(OH)HCH ₂	н	CF ₃	0	0
A866	CH ₂	Phenyl-C(O)OCH₂CH₂	Н	CF₃	. 0	0
A867	CH ₂	t-Butyl-C(O)OCH ₂ CH ₂	Н	CF ₃	0	0
A868	CH ₂	CH₃OC(O)CH₂	Н	CF ₃	0	0

In the table below, in the case of rings, the ring attachment points for the substituents A_1 and A_2 are at the carbon atom which is marked "C", for example

$$\begin{picture}(20,0) \put(0,0){\line(0,0){10}} \put(0,0$$

In the formula A-Q, Q denotes Q₁

$$R_{21}$$
 R_{22}
 A_{1}
 A_{1}
 (Q_{1})

and Q₁ denotes the following radicals B:

Radical	A ₁	A ₂	n	R ₂₁	R ₂₂	R ₁₃
B1	CH ₂	CH₂	0	н	н	ОН
B2	CH ₂	CH ₂	0	CH ₃	н	ОН
В3	CH ₂	CH₂	0	СН₃	CH₃	ОН
B4	(CH ₃)CH	CH ₂	0	CH₃	CH ₃	ОН
B5	(CH ₃) ₂ C	CH ₂	0	CH_3	CH₃	ОН
B6	CH	CH	0	CH₃	-	OH
B7	CH ₂	CH ₂	0	CH ₃	CH ₂ =CHCH ₂	OH
B8	CH ₂	CH ₂	0	CH ₃	HC≡CCH ₂	ОН
B9	CH ₂	CH₂	0	CH ₃	CH₃S	ОН
B10	CH ₂	CH ₂	0	CH ₃	CH₃SO	ОН
B11	CH ₂	CH ₂	0	CH ₃	CH₃SO₂	ОН
B12	CH ₂	CH ₂	0	CH ₃	CH₃O	ОН
B13	CH ₂	CH ₂	0	CH ₃	CH₃OC(O)	OH
B14	CH ₂	CH ₂	0	CH₃	CH₃CH₂OC(O)	ОН
B15	CH ₂	(CH ₃) ₂ C	0	Н	н	OH
B16	, L	CH ₂	0	Н	Н	ОН
B17) ▷°	CH ₂	0	Н	н	ОН
B18	Dc	CH₂	0	CH₃	н	ОН
B19	Dc	CH ₂	0	CH₃	CH₃	ОН
B20	Çc	CH_2	0	Н	н	ОН
B21	¢.	CH ₂	0	CH ₃	н	ОН
B22	Çc	CH ₂	0	CH ₃	CH ₃	ОН
B23	(CH ₃) ₂ C	O	0	CH ₃	CH₃	ОН
B24	CH ₂	0	0	CH ₃	CH₂	OH

Radical	Α ₁	A ₂	n	R ₂₁	R ₂₂	R ₁₃
B25	CH ₃ N	0	0	CH ₃	CH ₃	ОН
B26	> −N	0	0	CH3	CH₃	ОН
B27	CH ₃ N	CH ₂	0	CH ₃	CH₃	ОН
B28	CH ₃ N	(CH ₃)CH	0	Н	Н	ОН
B29	CH ₃ N	(CH ₃)CH	0	CH ₃	H	ОН
B30	NH	(CH ₃)C	0	Н	-	ОН
B31	ΝН	CH	0	CH ₃	-	OH
B32	CH ₃ N	(CH₃)C	0	н	-	ОН
B33	CH₃N	CH	0	CH₃	-	OH
B34	0	(CH ₃)₂C	0	н	-	ОН
B35	0	(CH ₃) ₂ C	0	CH ₃	CH₃	ОН
B36	0	(CH₃)₂C	0	CH₃	н	ОН
B37	0	(CH₃)C	0	Н	-	ОН
B38	0	CH	0	CH ₃	-	ОН
B39	(CH ₃) ₂ C	C=O	0	CH ₃	CH ₃	ОН
B40	(CH ₃) ₂ C	(OH)CH	0	CH₃	CH₃	ОН
B41	 Cc	C≔O	0	CH ₃	CH₃	ОН
B42	 Cc	C=O	0	CH ₂	CH ₂	ОН
B43	(CH₃)₂C	S-C	0	CH₃	CH ₃	ОН
B44	(CH ₃) ₂ C	CH³O C	0	CH ₃	CH₃	ОН
B45	(CH ₃) ₂ C	Ç	0	CH₃	CH ₃	OH
B46	(CH ₃) ₂ C	C.S.	0	CH₃	CH₃	ОН
B47	(CH ₃)₂C	HON=C	0	CH ₃	CH ₃	ОН
B48	$(CH_3)_2C$	CH ₃ ON≔C	0	CH ₉	CH₃	ОН
B49	$(CH_3)_2C$	BnON≔C	0	CH ₃	CH ₃	ОН
B50	CH	0	1	H	CH ₂	ОН
B51	CH	C=O	1	н	CH ₂	OH

Ī	Radical	A ₁	A ₂	n	R ₂₁	R ₂₂	R ₁₃
-	B52	CH	CH ₂	1	Н	CH₂	OH
	B53	CH	CH ₃ N	1	Н	CH ₂	OH
	B54	CH	CH ₂ CH ₂	1	Н	CH ₂	OH
	B55	CH	C=O	2	н	CH₂	OH
	B56	CH	CH ₂	2	Н	CH ₂	ОН
	B57	СН	CH ₂	1	Н	CH ₂	CI
	B58	CH	CH ₂	1	Н	CH₂	NH ₂
	B59	CH	CH ₂	1	Н	CH ₂	CH ₃ SO ₂ NH
	B60	CH	CH ₂	1	Н	CH ₂	CH3OCH2CH2S
	B61	CH	CH ₂	1	Н	CH ₂	CH3OCH2CH2SO
	B62	CH	CH ₂	1	Н	CH₂	CH3OCH2CH2SO2
	B63	CH	CH₂	1	Н	CH ₂	(CH ₃) ₂ NC(O)NH
	B64	CH	CH ₂	1	н	CH₂	PhC(0)0
	B65	СН	CH2	1	Н	CH ₂	CH₃OC(O)O
	B66	CH	CH ₂	1	Н	CH₂	CH₃(CH₂) ₇ S
	B67	СН	CH ₂	1	Н	CH ₂	CH ₃ (CH ₂) ₇ SO
	B68	CH	CH ₂	1	Н	CH ₂	CH ₃ (CH ₂) ₇ SO ₂
	B69	CH	CH ₂	1	Н	CH ₂	(CH₃)₂NSO₂NH
	B70	CH	CH ₂	1	Н	CH ₂	PhS
	B71	CH	CH ₂	1	Н	CH ₂	PhSO
	B72	CH	CH ₂	1	Н	CH ₂	PhSO₂
	B73	СН	CH₂	1	Н	CH₂	
							н з
	B74	CH	CH₂	1	Н	CH₂	CH₃S → S S
	B75	(CH ₃) ₂ C	C=O	0	CH ₃	CH ₃	CI
	B76	(CH ₃) ₂ C	C=O	0	CH₃	CH₃	NH ₂
	B77	$(CH_3)_2C$	C=O	0	CH ₃	CH ₃	CH₃SO₂NH
	B78	(CH ₃) ₂ C	C=O	0	CH ₃	CH₃	CH₃OCH₂CH₂S
	B79	(CH ₃) ₂ C	C=O	0	CH₃	CH ₃	CH₃OCH₂CH₂SO
	B80	(CH ₃) ₂ C	C=O	0	CH ₃	CH ₃	CH3OCH2CH2SO2
	B81	(CH ₃) ₂ C	C=O	0	CH ₃	CH ₃	(CH ₃)₂NC(O)NH

Radical	Αı	A ₂	n	R ₂₁	R ₂₂	R ₁₃
B82	(CH ₃) ₂ C	C=O	0	CH₃	CH ₃	PhC(O)O
B83	(CH ₃) ₂ C	C=O	0	CH ₃	CH ₃	CH ₃ OC(O)O
B84	(CH ₃) ₂ C	C⊨O	0	CH ₃	CH ₃	CH ₃ (CH ₂) ₇ S
B85	$(CH_3)_2C$	C⊨O	0	CH ₃	CH ₃	CH ₃ (CH ₂) ₇ SO
B86	(CH ₃) ₂ C	C⊨O	0	CH₃	CH₃	CH ₃ (CH ₂) ₇ SO ₂
B87	(CH ₃) ₂ C	C=O	0	CH ₃	CH ₃	(CH ₃) ₂ NSO ₂ NH
B88	(CH ₃) ₂ C	C≒O	0	CH₃	CH₃	PhS
B89	(CH ₃) ₂ C	C=O	0	СН₃	CH₃	PhSO
B90	(CH ₃) ₂ C	C⊨O	0	CH₃	CH₃	PhSO ₂
B91	(CH ₃)₂C	C=O	0	CH ₃	CH ₃	
						N s
B92	(CH₃)₂C	C=O	0	CH₃	CH₃	CH ₃ S-
B93	(CH₃)₂C	CH ₂	0	Н	н	CI
B94	(CH ₃)₂C	CH₂	0	Н	н	NH ₂
B96	(CH₃)₂C	CH₂	0	н	н	CH ₈ OCH ₂ CH ₂ S
B97	(CH ₃) ₂ C	CH₂	0	Н	• н	CH₃OCH₂CH₂SO
B98	(CH ₃)₂C	CH ₂	0	Н	н	CH₃OCH₂CH₂SO₂
B99	(CH₃)₂C	CH ₂	0	Н	н	(CH ₃)₂NC(O)NH
B100	(CH ₃) ₂ C	CH ₂	0	Н	н	PhC(O)O
B101	(CH ₃) ₂ C	CH ₂	0	Н	н	CH ₃ OC(O)O
B102	(CH ₃) ₂ C	CH₂	0	Н	н	CH ₃ (CH ₂) ₇ S
B103	(CH ₃)₂C	CH ₂	0	Н	н	CH ₃ (CH ₂) ₇ SO
B104	(CH ₃) ₂ C	CH ₂	0	Н	н	CH3(CH2)7SO2
B105	(CH ₃)₂C	CH ₂	0	Н	Н	(CH ₃) ₂ NSO ₂ NH
B106	(CH ₃) ₂ C	CH ₂	0	Н	Н	PhS
B107	(CH ₃) ₂ C	CH ₂	0	Н	H	PhSO
B108	(CH ₃) ₂ C	CH ₂	0	Н	Н	PhSO ₂
B109	(CH₃)₂C	CH ₂	0	Н	Н	N S

Radical	A ₁	A ₂	n	R ₂₁	R ₂₂	R ₁₃
B110	(CH ₃) ₂ C	CH₂	0	Н	н	CH ₃ S
B111	CH ₂	(CH₃)CH	0	н	H	ОН
B112	CH ₂	CH ₂	1	Н	CH ₂	t-Butyl-C(O)O
B113	CH ₂	CH ₂	1	Н	CH ₂	t-Heptyl-C(O)O

or Q in the formula A-Q denotes Q2

and Q2 denotes the following radicals C:

Radical	R ₃₄	R ₃₅	R ₃₆
C1	CH₃	Н	ОН
C2	CH ₃	CH ₃	ОН
C3	Н	HC≔CCH ₂	ОН
C4	Н	CH ₃ SO ₂	OH
C5	н	CH ₃	OH
C6	Н	PhCH ₂	OH
C7	CF ₃	CH₃	OH
C8	Сн	CH ₃	ОН
C9	CH3OCH2CH2OCH2	CH ₃	OH
C10	н	CH ₃	CI
C11	Н	CH ₃	NH ₂
C12	н	CH₃	CH₃SO₂NH
C13	Н	CH₃	CH₃OCH₂CH₂S
C14	Н	CH ₃	CH₃OCH₂CH₂SO
C15	Н	CH ₃	CH ₃ OCH ₂ CH ₂ SO ₂

Radical	R ₃₄	R_{35}	R ₃₆
C16	Н	CH ₃	(CH ₃)₂NC(O)NH
C17	H	CH ₃	PhC(O)O
C18	Н	CH ₃	CH₃OC(O)O
C19	Н	CH₃	CH ₃ (CH ₂) ₇ S
C20	Н	CH ₃	CH ₃ (CH ₂) ₇ SO
C21	Н	CH₃	CH ₃ (CH ₂) ₇ SO ₂
C22	Н	CH ₃	(CH ₃) ₂ NSO ₂ NH
C23	H	CH₃	PhS
C24	Н	CH₃	PhSO
C25	н	CH₃	PhSO ₂
C26	н	CH₃	H S
C27	Н	CH₃	CH ₃ S—S
C28	Н	CH ₃	CH₃SO₂O
C29	н	CH ₃	p-TolyISO₂O

or Q in the formula A-Q denotes Q₃

and Q_3 denotes the following radicals D (the point of attachment of R_{40} to the heterocycle is the "CH" group);

Radical	R ₄₉	R ₅₀	n
D1	Сн	CH₃	0

Radical	R ₄₉	R ₅₀	n
D2	Сн	CH ₃	1
D3	Сн	CH ₃	2
D4	Сн	CF ₃	0
D5	Сн	CF ₃	1
D6	Сн	CF ₃	2
D7	Сн	Ph	0
D8	Сн	Ph	1
D9	Сн	Ph	2
D10	Сн	PhCH ₂	0
D11	Cн	$PhCH_z$	1
D12	Сн	PhCH ₂	2

Table 1: Intermediates for preparing the compounds of the formula I, represented as formula

A-Q

in which Q denotes hydroxyl:

-	<u>OH</u>	<u>OH</u>	ОН	ОН	<u>OH</u>	ОН	ОН	ОН	ОН	ОН	<u>0H</u>	ОН
	-	-	-	-	-	-	-	8A	A9	A10	A11	A12
	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24
	A25	A26	A27	A28	A29	A30	A31	A32	A33	A34	A35	A36
	A37	A38	A39	A40	A41	A42	A43	A44	A45	A46	A47	A48
	A49	A50	A51	A52	A53	A54	A55	A56	A57	A58	A59	A60
	A61	A62	A63	A64	A65	A66	A67	A68	A69	A70	A71	A72
	A73	A74	A75	A76	A77	A78	A79	A80	A81	A82	A83	A84

ОН	<u>OH</u>	ОН	ОН	ОН	ОН	<u>OH</u>	OH	<u>0H</u>	<u>OH</u>	<u>OH</u>	<u>0H</u>
A85	A86	A87	A88	A89	A90	-	-	-	-	-	-
-	-	A99	A100	A101	A102	A103	A104	A105	A106	A107	A108
A109	A110	A111	A112	A113	A114	A115	A116	A117	A118	A119	A120
A121	A122	A123	A124	A125	A126	A127	A128	A129	A130	A131	A132
A133	A134	A135	A136	A137	A138	A139	A140	A141	A142	A143	A144
A145	A146	A147	A148	A149	A150	A151	A152	A153	A154	A155	A156
A157	A158	A159	A160	A161	A162	A163	A164	A165	A166	A167	A168
A169	A170	A171	A172	A173	A174	A175	A176	A177	A178	A179	A180
A181	A182	A183	A184	A185	A186	A187	A188	A189	A190	A191	A192
A193	A194	A195	A196	A197	A198	A199	A200	A201	A202	A203	A204
A205	A206	A207	A208	A209	A210	A211	A212	A213	A214	A215	A216
A217	A218	A219	A220	A221	A222	A223	A224	A225	A226	A227	A228
A229	A230	A231	A232	A233	A234	A235	A236	A237	A238	A239	A240
A241	A242	A243	A244	A245	A246	A247	A248	A249	A250	A251	A252
A253	A254	A255	A256	A257	A258	A259	A260	A261	A262	A263	A264
A265	A266	A267	A268	A269	A270	A271	A272	A273	A274	A275	A276
A277	A278	A279	A280	A281	A282	A283	A284	A285	A286	A287	A288
A289	A290	A291	A292	A293	A294	A295	A296	A297	A298	A299	A300
A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312
A313	A314	A315	A316	A317	A318	A319	A320	A321	A322	A323	A324
A325	A326	A327	A328	A329	A330	A331	A332	A333	A334	A335	A336
A337	A338	A339	A340	A341	A342	A343	A344	A345	A346	A347	A348
A349	A350	A351	A352	A353	A354	A355	A356	A357	A358	A359	A360
A361	A362	A363	A364	A365	A366	A367	A368	A369	A370	A371	A372
A373	A374	A375	A376	A377	A378	A379	A380	A381	A382	A383	A384
A385	A386	A387	A388	A389	A390	A391	A392	A393	A394	A395	A396
A397	A398	A399	A400	A401	A402	A403	A404	A405	A406	A407	A408
A409	A410	A411	A412	A413	A414	A415	A416	A417	A418	A419	A420
A421	A422	A423	A424	A425	A426	A427	A428	A429	A430	A431	A432
A433	A434	A435	A436	A437	A438	A439	A440	A441	A442	A443	A444
A445	A446	A447	A448	A449	A450	A451	A452	A453	A454	A455	A456
A457	A458	A459	A460	A461	A462	A463	A464	A465	A466	A467	A468
A469	A470	A471	A472	A473	A474	A475	A476	A477	A478	A479	A480

OH	<u>OH</u>	ОН	<u>OH</u>	ОН	<u>OH</u>	<u>OH</u>	OH	ОН	OH	ОН	<u>OH</u>
A481	A482	A483	A484	A485	A486	A487	A488	A489	A490	A491	A492
A493	A494	A495	A496	A497	A498	A499	A500	A501	A502	A503	A504
A505	A506	A507	A508	A509	A510	A511	A512	A513	A514	A515	A516
A517	A518	A519	A520	A521	A522	A523	A524	A525	A526	A527	A528
A529	A530	A531	A532	A533	A534	A535	A536	A537	A538	A539	A540
A541	A542	A543	A544	A545	-	-	-	-	-	-	-
-	A554	A555	A556	A557	A558	A559	A560	A561	A562	A563	A564
A565	A566	A567	A568	A569	A570	A571	A572	A573	A574	A575	A576
A577	A578	A579	A580	A581	A582	A583	A584	A585	A586	A587	A588
A589	A590	A591	A592	A593	A594	A595	A596	A597	A598	A599	A600
A601	A602	A603	A604	A605	A606	A607	A608	A609	A610	A611	A612
A613	A614	A615	A616	A617	A618	A619	A620	A621	A622	A623	A624
A625	A626	A627	A628	A629	A630	A631	A632	A633	A634	A635	A636
-	-	-	-	-	-	-	A644	A645	A646	A647	A648
A649	A650	A651	A652	A653	A654	A655	A656	A657	A658	A659	A660
A661	A662	A663	A664	A665	A666	A667	A668	A669	A670	A671	A672
A685	A686	A687	A688	A689	A690	A691	A692	A693	A694	A695	A696
A697	A698	A699	A700	A701	A702	A703	A704	A705	A706	A707	A708
A709	A710	A711	A712	A713	A714	A715	A716	A717	A718	A719	A720
A721	A722	A723	A724	A725	A726	-	-	-	-	-	~
A733	A734	A735	A736	A737	A738	A739	A740	A741	A742	A743	A744
A745	A746	A747	A748	A749	A750	A751	A752	A753	A754	A755	A756
A757	A758	A759	A760	A761	A762	A763	A764	A765	A766	A767	A768
A 7 69	A770	A771	A772	A773	A774	A775	A776	A777	A778	A779	A780
A781	A782	A783	A784	A785	A786	A787	A788	A789	A790	A791	A792
A793	A794	A795	A796	A797	A798	A799	A800	A801	A802	A803	A804
A805	A806	A807	808A	A809	A810	A811	A812	A813	A814	A815	A816
A817	A818	A819	A820	A821	A822	A823	A824	A825	A826	A827	A828
A829	A830	A831	A832	-	-	-	-	-	-	-	-

Table 2: Compounds of the formula I, represented as compounds of the formula

- 107 -

A-Q

in which Q denotes Q₁ and Q₂ denotes the radical B52:

B52	B52	B52	B52	<u>B52</u>	B52	<u>B52</u>	B52	B52	B52	B52	B52
A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12
A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24
A25	A26	A27	A28	A29	A30	A31	A32	A33	A34	A35	A36
A37	A38	A39	A40	A41	A42	A43	A44	A45	A46	A47	A48
A49	A50	A51	A52	A53	A54	A55	A56	A57	A58	A59	A60
A61	A62	A63	A64	A65	A66	A67	A68	A69	A70	A71	A72
A73	A74	A75	A76	A77	A78	A79	A80	A81	A82	A83	A84
A85	A86	A87	A88	A89	A90	A91	A92	A93	A94	A95	A96
A97	A98	A99	A100	A101	A102	A103	A104	A105	A106	A107	A108
A109	A110	A111	A112	A113	A114	A115	A116	A117	A118	A119	A120
A121	A122	A123	A124	A125	A126	A127	A128	A129	A130	A131	A132
A133	A134	A135	A136	A137	A138	A139	A140	A141	A142	A143	Å144
A145	A146	A147	A148	A149	A150	A151	A152	A153	A154	A155	A156
A157	A158	A159	A160	A161	A162	A163	A164	A165	A166	A167	A168
A169	A170	A171	A172	A173	A174	A175	A176	A177	A178	A179	A180
A181	A182	A183	A184	A185	A186	A187	A188	A189	A190	A191	A192
A193	A194	A195	A196	A197	A198	A199	A200	A201	A202	A203	A204
A205	A206	A207	A208	A209	A210	A211	A212	A213	A214	A215	A216
A217	A218	A219	A220	A221	A222	A223	A224	A225	A226	A227	A228
A229	A230	A231	A232	A233	A234	A235	A236	A237	A238	A239	A240
A241	A242	A243	A244	A245	A246	A247	A248	A249	A250	A251	A252
A253	A254	A255	A256	A257	A258	A259	A260	A261	A262	A263	A264
A265	A266	A267	A268	A269	A270	A271	A272	A273	A274	A275	A276
A277	A278	A279	A280	A281	A282	A283	A284	A285	A286	A287	A288
A289	A290	A291	A292	A293	A294	A295	A296	A297	A298	A299	A300
A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312
A313	A314	A315	A316	A317	A318	A319	A320	A321	A322	A323	A324

- 108 -

B52	B52	B52	<u>B52</u>	B52	B52	B52	B52	<u>B52</u>	B52	B52	<u>B52</u>
A325	A326	A327	A328	A329	A330	A331	A332	A333	A334	A335	A336
A337	A338	A339	A340	A341	A342	A343	A344	A345	A346	A347	A348
A349	A350	A351	A352	A353	A354	A355	A356	A357	A358	A359	A360
A361	A362	A363	A364	A365	A366	A367	A368	A369	A370	A371	A372
A373	A374	A375	A376	A377	A378	A379	A380	A381	A382	A383	A384
A385	A386	A387	A388	A389	A390	A391	A392	A393	A394	A395	A396
A397	A398	A399	A400	A401	A402	A403	A404	A405	A406	A407	A408
A409	A410	A411	A412	A413	A414	A415	A416	A417	A418	A419	A420
A421	A422	A423	A424	A425	A426	A427	A428	A429	A430	A431	A432
A433	A434	A435	A436	A437	A438	A439	A440	A441	A442	A443	A444
A445	A446	A447	A448	A449	A450	A451	A452	A453	A454	A455	A456
A457	A458	A459	A460	A461	A462	A463	A464	A465	A466	A467	A468
A469	A470	A471	A472	A473	A474	A475	A476	A477	A478	A479	A480
A481	A482	A483	A484	A485	A486	A487	A488	A489	A490	A491	A492
A493	A494	A495	A496	A497	A498	A499	A500	A501	A502	A503	A504
A505	A506	A507	A508	A509	A510	A511	A512	A513	A514	A515	A516
A517	A518	A519	A520	A521	A522	A523	A524	A525	A526	A527	A528
A529	A530	A531	A532	A533	A534	A535	A536	A537	A538	A539	A540
A541	A542	A543	A544	A545	A546	A547	A548	A549	A550	A551	A552
A553	A554	A555	A556	A557	A558	A559	A560	A561	A562	A563	A564
A565	A566	A567	A568	A569	A570	A571	A572	A573	A574	A575	A576
A577	A578	A579	A580	A581	A582	A583	A584	A585	A586	A587	A588
A589	A590	A591	A592	A593	A594	A595	A596	A597	A598	A599	A600
A601	A602	A603	A604	A605	A606	A607	A608	A609	A610	A611	A612
A613	A614	A615	A616	A617	A618	A619	A620	A621	A622	A623	A624
A625	A626	A627	A628	A629	A630	A631	A632	A633	A634	A635	A636
A637	A638	A639	A640	A641	A642	A643	A644	A645	A646	A647	A648
A649	A650	A651	A652	A653	A654	A655	A656	A657	A658	A659	A660
A661	A662	A663	A664	A665	A666	A667	A668	A669	A670	A671	A672
A673	A674	A675	A676	A677	A678	A679	A680	A681	A682	A683	A684
A685	A686	A687	A688	A689	A690	A691	A692	A693	A694	A695	A696
A697	A698	A699	A700	A701	A702	A703	A704	A705	A706	A707	A708
A709	A710	A711	A712	A713	A714	A715	A716	A717	A718	A719	A720

B52	B52	<u>B52</u>	B52	<u>B52</u>	B52						
A721	A722	A723	A724	A725	A726	A727	A728	A729	A730	A731	A732
A733	A734	A735	A736	A737	A738	A739	A740	A741	A742	A743	A744
A745	A746	A747	A748	A749	A750	A751	A752	A753	A754	A755	A756
A757	A758	A759	A760	A761	A762	A763	A764	A765	A766	A767	A768
A769	A770	A771	A772	A773	A774	A775	A776	A777	A778	A779	A780
A781	A782	A783	A784	A785	A786	A787	A788	A789	A790	A791	A792
A793	A794	A795	A796	A797	A798	A799	A800	A801	A802	A803	A804
A805	A806	A807	808A	A809	A810	A811	A812	A813	A814	A815	A816
A817	A818	A819	A820	A821	A822	A823	A824	A825	A826	A827	A828
A829	A830	A831	A832	-	-	-	-	-	-	-	-

Table 3: Compounds of the formula I, represented as compounds of the formula

A-Q

in which Q denotes Q_1 and Q_1 denotes the radical B39:

B39	B39	B39	B39	B39	B39	B39	B39	B39	B39	B39	B39
A1	A2	АЗ	A 4	A5	A6	A7	8A	A9	A10	A11	A12
A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24
A25	A26	A27	A28	A29	A30	A31	A32	A33	A34	A35	A36
A37	A38	A39	A40	A41	A42	A43	A44	A45	A46	A47	A48
A49	A50	A51	A52	A53	A54	A55	A56	A57	A58	A59	A60
A61	A62	A63	A64	A65	A66	A67	A68	A69	A70	A71	A72
A73	A74	A75	A76	A77	A78	A79	A80	A81	A82	A83	A84
A85	A86	A87	A88	A89	A90	A91	A92	A93	A94	A95	A96
A97	A98	A99	A100	A101	A102	A103	A104	A105	A106	A107	A108
A109	A110	A111	A112	A113	A114	A115	A116	A117	A118	A119	A120
A121	A122	A123	A124	A125	A126	A127	A128	A129	A130	A131	A132
A133	A134	A135	A136	A137	A138	A139	A140	A141	A142	A143	A144
A145	A146	A147	A148	A149	A150	A151	A152	A153	A154	A155	A156

B39	<u>B39</u>	B39									
A157	A158	A159	A160	A161	A162	A163	A164	A165	A166	A167	A168
A169	A170	A171	A172	A173	A174	A175	A176	A177	A178	A179	A180
A181	A182	A183	A184	A185	A186	A187	A188	A189	A190	A191	A192
A193	A194	A195	A196	A197	A198	A199	A200	A201	A202	A203	A204
A205	A206	A207	A208	A209	A210	A211	A212	A213	A214	A215	A216
A217	A218	A219	A220	A221	A222	A223	A224	A225	A226	A227	A228
A229	A230	A231	A232	A233	A234	A235	A236	A237	A238	A239	A240
A241	A242	A243	A244	A245	A246	A247	A248	A249	A250	A251	A252
A253	A254	A255	A256	A257	A258	A259	A260	A261	A262	A263	A264
A265	A266	A267	A268	A269	A270	A271	A272	A273	A274	A275	A276
A277	A278	A279	A280	A281	A282	A283	A284	A285	A286	A287	A288
A289	A290	A291	A292	A293	A294	A295	A296	A297	A298	A299	A300
A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312
A313	A314	A315	A316	A317	A318	A319	A320	A321	A322	A323	A324
A325	A326	A327	A328	A329	A330	A331	A332	A333	A334	A335	A336
A337	A338	A339	A340	A341	A342	A343	A344	A345	A346	A347	A348
A349	A350	A351	A352	A353	A354	A355	A356	A357	A358	A359	A360
A361	A362	A363	A364	A365	A366	A367	A368	A369	A370	A371	A372
A373	A374	A375	A376	A377	A378	A379	A380	A381	A382	A383	A384
A385	A386	A387	A388	A389	A390	A391	A392	A393	A394	A395	A396
A397	A398	A399	A400	A401	A402	A403	A404	A405	A406	A407	A408
A409	A410	A411	A412	A413	A414	A415	A416	A417	A418	A419	A420
A421	A422	A423	A424	A425	A426	A427	A428	A429	A430	A431	A432
A433	A434	A435	A436	A437	A438	A439	A440	A441	A442	A443	A444
A445	A446	A447	A448	A449	A450	A451	A452	A453	A454	A455	A456
A457	A458	A459	A460	A461	A462	A463	A464	A465	A466	A467	A468
A469	A470	A471	A472	A473	A474	A475	A476	A477	A478	A479	A480
A481	A482	A483	A484	A485	A486	A487	A488	A489	A490	A491	A492
A493	A494	A495	A496	A497	A498	A499	A500	A501	A502	A503	A504
A505	A506	A507	A508	A509	A510	A511	A512	A513	A514	A515	A516
A517	A518	A519	A520	A521	A522	A523	A524	A525	A526	A527	A528
A529	A530	A531	A532	A533	A534	A535	A536	A537	A538	A539	A540
A541	A542	A543	A544	A545	A546	A547	A548	A549	A550	A551	A552

PCT/EP01/06430

- 111 -

B39	B39	B39	B39	B39	B39	B39	B39	B39	B39	B39	B39
A553	A554	A555	A556	A557	A558	A559	A560	A561	A562	A563	A564
A565	A566	A567	A568	A569	A570	A571	A572	A573	A574	A575	A576
A577	A578	A579	A580	A581	A582	A583	A584	A585	A586	A587	A588
A589	A590	A591	A592	A593	A594	A595	A596	A597	A598	A599	A600
A601	A602	A603	A604	A605	A606	A607	A608	A609	A610	A611	A612
A613	A614	A615	A616	A617	A618	A619	A620	A621	A622	A623	A624
A625	A626	A627	A628	A629	A630	A631	A632	A633	A634	A635	A636
A637	A638	A639	A640	A641	A642	A643	A644	A645	A646	A647	A648
A649	A650	A651	A652	A653	A654	A655	A656	A657	A658	A659	A660
A661	A662	A663	A664	A665	A666	A667	A668	A669	A670	A671	A672
A673	A674	A675	A676	A677	A678	A679	A680	A681	A682	A683	A684
A685	A686	A687	A688	A689	A690	A691	A692	A693	A694	A695	A696
A697	A698	A699	A700	A701	A702	A703	A704	A705	A706	A707	A708
A709	A710	A711	A712	A713	A714	A715	A716	A717	A718	A719	A720
A721	A722	A723	A724	A725	A726	A727	A728	A729	A730	A731	A732
A733	A734	A735	A736	A737	A738	A739	A740	A741	A742	A743	A744
A745	A746	A747	A748	A749	A750	A751	A752	A753	A754	A755	A756
A757	A758	A759	A760	A761	A762	A763	A764	A765	A766	A767	A768
A769	A770	A771	A772	A773	A774	A775	A776	A777	A778	A779	A780
A 7 81	A782	A783	A784	A785	A786	A787	A788	A789	A790	A791	A792
A793	A794	A795	A796	A797	A798	A799	A800	A801	A802	A803	A804
A805	A806	A807	A808	A809	A810	A811	A812	A813	A814	A815	A816
A817	A818	A819	A820	A821	A822	A823	A824	A825	A826	A827	A828
A829	A830	A831	A832	-	-	-	-	-	-	-	•

Table 4: Compounds of the formula I, represented as compounds of the formula

A-Q

in which Q denotes Q1 and Q1 denotes the radical B3:

| B3 | B3 | B3 | <u>B3</u> |
|----|----|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|

WO 01/94339 PCT/EP01/06430

- 112 -

<u>B3</u>	B3	<u>B3</u>	B3	<u>B3</u>	B3						
-	~	-	-	-	-	-	A8	A9	A10	A11	A12
A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24
A25	A26	A27	A28	A29	A30	A31	A32	A33	A34	A35	A36
A37	A38	A39	A40	A41	A42	A43	A44	A45	A46	A47	A48
A49	A50	A51	A52	A53	A54	A55	A56	A57	A58	A59	A60
A61	A62	A63	A64	A65	A66	A67	A68	A69	A70	A71	A72
A73	A74	A75	A76	A77	A78	A79	A80	A81	A82	A83	A84
A85	A86	A87	A88	A89	A90	-	-	-	-	-	-
-	-	A99	A100	A101	A102	A103	A104	A105	A106	A107	A108
A109	A110	A111	A112	A113	A114	A115	A116	A117	A118	A119	A120
A121	A122	A123	A124	A125	A126	A127	A128	A129	A130	A131	A132
A133	A134	A135	A136	A137	A138	A139	A140	A141	A142	A143	A144
A145	A146	A147	A148	A149	A150	A151	A152	A153	A154	A155	A156
A157	A158	A159	A160	A161	A162	A163	A164	A165	A166	A167	A168
A169	A170	A171	A172	A173	A174	A175	A176	A177	A178	A179	A180
A181	A182	A183	A184	A185	A186	A187	A188	A189	A190	A191	A192
A193	A194	A195	A196	A197	A198	A199	A200	A201	A202	A203	A204
A205	A206	A207	A208	A209	A210	A211	A212	A213	A214	A215	A216
A217	A218	A219	A220	A221	A222	A223	A224	A225	A226	A227	A228
A229	A230	A231	A232	A233	A234	A235	A236	A237	A238	A239	A240
A241	A242	A243	A244	A245	A246	A247	A248	A249	A250	A251	A252
A253	A254	A255	A256	A257	A258	A259	A260	A261	A262	A263	A264
A265	A266	A267	A268	A269	A270	A271	A272	A273	A274	A275	A276
A277	A278	A279	A280	A281	A282	A283	A284	A285	A286	A287	A288
A289	A290	A291	A292	A293	A294	A295	A296	A297	A298	A299	A300
A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312
A313	A314	A315	A316	A317	A318	A319	A320	A321	A322	A323	A324
A325	A326	A327	A328	A329	A330	A331	A332	A333	A334	A335	A336
A337	A338	A339	A340	A341	A342	A343	A344	A345	A346	A347	A348
A349	A350	A351	A352	A353	A354	A355	A356	A357	A358	A359	A360
A361	A362	A363	A364	A365	A366	A367	A368	A369	A370	A371	A372
A373	A374	A375	A376	A377	A378	A379	A380	A381	A382	A383	A384

- 113 -

<u>B3</u>	<u>B3</u>	<u>B3</u>	<u>B3</u>	<u>B3</u>	<u>B3</u>	B3	<u>B3</u>	<u>B3</u>	<u>B3</u>	<u>B3</u>	<u>B3</u>
A385	A386	A387	A388	A389	A390	A391	A392	A393	A394	A395	A396
A397	A398	A399	A400	A401	A402	A403	A404	A405	A406	A407	A408
A409	A410	A411	A412	A413	A414	A415	A416	A417	A418	A419	A420
A421	A422	A423	A424	A425	A426	A427	A428	A429	A430	A431	A432
A433	A434	A435	A436	A437	A438	A439	A440	A441	A442	A443	A444
A445	A446	A447	A448	A449	A450	A451	A452	A453	A454	A455	A456
A457	A458	A459	A460	A461	A462	A463	A464	A465	A466	A467	A468
A469	A470	A471	A472	A473	A474	A475	A476	A477	A478	A479	A480
A481	A482	A483	A484	A485	A486	A487	A488	A489	A490	A491	A492
A493	A494	A495	A496	A497	A498	A499	A500	A501	A502	A503	A504
A505	A506	A507	A508	A509	A510	A511	A512	A513	A514	A515	A516
A517	A518	A519	A520	A521	A522	A523	A524	A525	A526	A527	A528
A529	A530	A531	A532	A533	A534	A535	A536	A537	A538	A539	A540
A541	A542	A543	A544	A545	-	-	-	-	-	-	-
-	A554	A555	A556	A557	A558	A559	A560	A561	A562	A563	A564
A565	A566	A567	A568	A569	A57.0	A571	A572	A573	A574	A575	A576
A577	A578	A579	A580	A581	A582	A583	A584	A585	A586	A587	A588
A589	A590	A591	A592	A593	A594	A595	A596	A597	A598	A599	A600
A601	A602	A603	A604	A605	A606	A607	A608	A609	A610	A611	A612
A613	A614	A615	A616	A617	A618	A619	A620	A621	A622	A623	A624
A625	A626	A627	A628	A629	A630	A631	A632	A633	A634	A635	A636
-	-	-	-	-	-	-		A645	A646	A647	A648
A649	A650	A651	A652	A653	A654	A655	A656	A657	A658	A659	A660
A661	A662	A663					A668	A669	A670	A671	A672
A685	A686				A690		A692		A694		
A697	A698	A699					A704				
A709	A710	A711	A712	A713	A714	A715	A716	A717	A718	A719	A720
A721	A722	A723		A725		-	-	-	-	-	-
A733	A734						A740			A743	A744
A745	A746						A752			A755	A756
A757	A758	A759					A764			A767	A768
A769	A770	A771					A776			A779	
A781	A782	A783	A784	A785	A786	A787	A788	A789	A790	A791	A792

- 114 -

| <u>B3</u> |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| A793 | A794 | A795 | A796 | A797 | A798 | A799 | A800 | A801 | A802 | A803 | A804 |
| A805 | A806 | A807 | 808A | A809 | A810 | A811 | A812 | A813 | A814 | A815 | A816 |
| A817 | A818 | A819 | A820 | A821 | A822 | A823 | A824 | A825 | A826 | A827 | A828 |
| A829 | A830 | A831 | A832 | - | - | ~ | - | - | - | - | - |

Table 5: Compounds of the formula I, represented as compounds of the formula

A-Q

in which Q denotes Q2 and Q2 denotes the radical C5:

| <u>C5</u> |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| | | | | | | | | | | | |
| A1 | A2 | АЗ | A4 | A5 | A6 | A7 | 8A | A9 | A10 | A11 | A12 |
| A13 | A14 | A15 | A16 | A17 | A18 | A19 | A20 | A21 | A22 | A23 | A24 |
| A25 | A26 | A27 | A28 | A29 | A30 | A31 | A32 | A33 | A34 | A35 | A36 |
| A37 | A38 | A39 | A40 | A41 | A42 | A43 | A44 | A45 | A46 | A47 | A48 |
| A49 | A50 | A51 | A52 | A53 | A54 | A55 | A56 | A57 | A58 | A59 | A60 |
| A61 | A62 | A63 | A64 | A65 | A66 | A67 | A68 | A69 | A70 | A71 | A72 |
| A73 | A74 | A75 | A76 | A77 | A78 | A79 | A80 | A81 | A82 | A83 | A84 |
| A85 | A86 | A87 | A88 | A89 | A90 | A91 | A92 | A93 | A94 | A95 | A96 |
| A97 | A98 | A99 | A100 | A101 | A102 | A103 | A104 | A105 | A106 | A107 | A108 |
| A109 | A110 | A111 | A112 | A113 | A114 | A115 | A116 | A117 | A118 | A119 | A120 |
| A121 | A122 | A123 | A124 | A125 | A126 | A127 | A128 | A129 | A130 | A131 | A132 |
| A133 | A134 | A135 | A136 | A137 | A138 | A139 | A140 | A141 | A142 | A143 | A144 |
| A145 | A146 | A147 | A148 | A149 | A150 | A151 | A152 | A153 | A154 | A155 | A156 |
| A157 | A158 | A159 | A160 | A161 | A162 | A163 | A164 | A165 | A166 | A167 | A168 |
| A169 | A170 | A171 | A172 | A173 | A174 | A175 | A176 | A177 | A178 | A179 | A180 |
| A181 | A182 | A183 | A184 | A185 | A186 | A187 | A188 | A189 | A190 | A191 | A192 |
| A193 | A194 | A195 | A196 | A197 | A198 | A199 | A200 | A201 | A202 | A203 | A204 |
| A205 | A206 | A207 | A208 | A209 | A210 | A211 | A212 | A213 | A214 | A215 | A216 |
| A217 | A218 | A219 | A220 | A221 | A222 | A223 | A224 | A225 | A226 | A227 | A228 |

- 115 -

| <u>C5</u> |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| A229 | A230 | A231 | A232 | A233 | A234 | A235 | A236 | A237 | A238 | A239 | A240 |
| A241 | A242 | A243 | A244 | A245 | A246 | A247 | A248 | A249 | A250 | A251 | A252 |
| A253 | A254 | A255 | A256 | A257 | A258 | A259 | A260 | A261 | A262 | A263 | A264 |
| A265 | A266 | A267 | A268 | A269 | A270 | A271 | A272 | A273 | A274 | A275 | A276 |
| A277 | A278 | A279 | A280 | A281 | A282 | A283 | A284 | A285 | A286 | A287 | A288 |
| A289 | A290 | A291 | A292 | A293 | A294 | A295 | A296 | A297 | A298 | A299 | A300 |
| A301 | A302 | A303 | A304 | A305 | A306 | A307 | A308 | A309 | A310 | A311 | A312 |
| A313 | A314 | A315 | A316 | A317 | A318 | A319 | A320 | A321 | A322 | A323 | A324 |
| A325 | A326 | A327 | A328 | A329 | A330 | A331 | A332 | A333 | A334 | A335 | A336 |
| A337 | A338 | A339 | A340 | A341 | A342 | A343 | A344 | A345 | A346 | A347 | A348 |
| A349 | A350 | A351 | A352 | A353 | A354 | A355 | A356 | A357 | A358 | A359 | A360 |
| A361 | A362 | A363 | A364 | A365 | A366 | A367 | A368 | A369 | A370 | A371 | A372 |
| A373 | A374 | A375 | A376 | A377 | A378 | A379 | A380 | A381 | A382 | A383 | A384 |
| A385 | A386 | A387 | A388 | A389 | A390 | A391 | A392 | A393 | A394 | A395 | A396 |
| A397 | A398 | A399 | A400 | A401 | A402 | A403 | A404 | A405 | A406 | A407 | A408 |
| A409 | A410 | A411 | A412 | A413 | A414 | A415 | A416 | A417 | A418 | A419 | A420 |
| A421 | A422 | A423 | A424 | A425 | A426 | A427 | A428 | A429 | A430 | A431 | A432 |
| A433 | A434 | A435 | A436 | A437 | A438 | A439 | A440 | A441 | A442 | A443 | A444 |
| A445 | A446 | A447 | A448 | A449 | A450 | A451 | A452 | A453 | A454 | A455 | A456 |
| A457 | A458 | A459 | A460 | A461 | A462 | A463 | A464 | A465 | A466 | A467 | A468 |
| A469 | A470 | A471 | A472 | A473 | A474 | A475 | A476 | A477 | A478 | A479 | A480 |
| A481 | A482 | A483 | A484 | A485 | A486 | A487 | A488 | A489 | A490 | A491 | A492 |
| A493 | A494 | A495 | A496 | A497 | A498 | A499 | A500 | A501 | A502 | A503 | A504 |
| A505 | A506 | A507 | A508 | A509 | A510 | A511 | A512 | A513 | A514 | A515 | A516 |
| A517 | A518 | A519 | A520 | A521 | A522 | A523 | A524 | A525 | A526 | A527 | A528 |
| A529 | A530 | A531 | A532 | A533 | A534 | A535 | A536 | A537 | A538 | A539 | A540 |
| A541 | A542 | A543 | A544 | A545 | A546 | A547 | A548 | A549 | A550 | A551 | A552 |
| A553 | A554 | A555 | A556 | A557 | A558 | A559 | A560 | A561 | A562 | A563 | A564 |
| A565 | A566 | A567 | A568 | A569 | A570 | A571 | A572 | A573 | A574 | A575 | A576 |
| A577 | A578 | A579 | A580 | A581 | A582 | A583 | A584 | A585 | A586 | A587 | A588 |
| A589 | A590 | A591 | A592 | A593 | A594 | A595 | A596 | A597 | A598 | A599 | A600 |
| A601 | A602 | A603 | A604 | A605 | A606 | A607 | A608 | A609 | A610 | A611 | A612 |
| A613 | A614 | A615 | A616 | A617 | A618 | A619 | A620 | A621 | A622 | A623 | A624 |

- 116 -

| <u>C5</u> |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| A625 | A626 | A627 | A628 | A629 | A630 | A631 | A632 | A633 | A634 | A635 | A636 |
| A637 | A638 | A639 | A640 | A641 | A642 | A643 | A644 | A645 | A646 | A647 | A648 |
| A649 | A650 | A651 | A652 | A653 | A654 | A655 | A656 | A657 | A658 | A659 | A660 |
| A661 | A662 | A663 | A664 | A665 | A666 | A667 | A668 | A669 | A670 | A671 | A672 |
| A673 | A674 | A675 | A676 | A677 | A678 | A679 | A680 | A681 | A682 | A683 | A684 |
| A685 | A686 | A687 | A688 | A689 | A690 | A691 | A692 | A693 | A694 | A695 | A696 |
| A697 | A698 | A699 | A700 | A701 | A702 | A703 | A704 | A705 | A706 | A707 | A708 |
| A709 | A710 | A711 | A712 | A713 | A714 | A715 | A716 | A717 | A718 | A719 | A720 |
| A721 | A722 | A723 | A724 | A725 | A726 | A727 | A728 | A729 | A730 | A731 | A732 |
| A733 | A734 | A735 | A736 | A737 | A738 | A739 | A740 | A741 | A742 | A743 | A744 |
| A745 | A746 | A747 | A748 | A749 | A750 | A751 | A752 | A753 | A754 | A755 | A756 |
| A757 | A758 | A759 | A760 | A761 | A762 | A763 | A764 | A765 | A766 | A767 | A768 |
| A769 | A770 | A771 | A772 | A773 | A774 | A775 | A776 | A777 | A778 | A779 | A780 |
| A781 | A782 | A783 | A784 | A785 | A786 | A787 | A788 | A789 | A790 | A791 | A792 |
| A793 | A794 | A795 | A796 | A797 | A798 | A799 | 008A | A801 | A802 | A803 | A804 |
| A805 | A806 | A807 | A808 | A809 | A810 | A811 | A812 | A813 | A814 | A815 | A816 |
| A817 | A818 | A819 | A820 | A821 | A822 | A823 | A824 | A825 | A826 | A827 | A828 |
| A829 | A830 | A831 | A832 | - | - | - | - | - | - | - | - |

Table 6: Compounds of the formula I, represented as compounds of the formula

A-Q

in which Q denotes Q₂ and Q₂ denotes the radical C2:

<u>C2</u>	<u>C2</u>	<u>C2</u>	<u>C2</u>	<u>C2</u>	<u>C2</u>						
A1	A2	A3	Λ.1	Λ.5.	A6	Δ7	ΔΩ	ΔΟ	Δ10	Δ11	A19
		A15									A24
A25	A26	A27	A28	A29	A30	A31	A32	A33	A34	A35	A36
A37	A38	A39	A40	A41	A42	A43	A44	A45	A46	A47	A48
A49	A50	A51	A52	A53	A54	A 55	A56	A57	A58	A59	A60

PCT/EP01/06430

- 117 -

<u>C2</u>	C2	<u>C2</u>	C2	<u>C2</u>	<u>C2</u>						
A61	A62	A63	A64	A65	A66	A67	A68	A69	A70	A71	A72
A73	A74	A75	A76	A77	A78	A79	A80	A81	A82	A83	A84
A85	A86	A87	A88	A89	A90	A91	A92	A93	A94	A95	A96
A97	A98	A99	A100	A101	A102	A103	A104	A105	A106	A107	A108
A109	A110	A111	A112	A113	A114	A115	A116	A117	A118	A119	A120
A121	A122	A123	A124	A125	A126	A127	A128	A129	A130	A131	A132
A133	A134	A135	A136	A137	A138	A139	A140	A141	A142	A143	A144
A145	A146	A147	A148	A149	A150	A151	A152	A153	A154	A155	A156
A157	A158	A159	A160	A161	A162	A163	A164	A165	A166	A167	A168
A169	A170	A171	A172	A173	A174	A175	A176	A177	A178	A179	A180
A181	A182	A183	A184	A185	A186	A187	A188	A189	A190	A191	A192
A193	A194	A195	A196	A197	A198	A199	A200	A201	A202	A203	A204
A205	A206	A207	A208	A209	A210	A211	A212	A213	A214	A215	A216
A217	A218	A219	A220	A221	A222	A223	A224	A225	A226	A227	A228
A229	A230	A231	A232	A233	A234	A235	A236	A237	A238	A239	A240
A241	A242	A243	A244	A245	A246	A247	A248	A249	A250	A251	A252
A253	A254	A255	A256	A257	A258	A259	A260	A261	A262	A263	A264
A265	A266	A267	A268	A269	A270	A271	A272	A273	A274	A275	A276
A277	A278	A279	A280	A281	A282	A283	A284	A285	A286	A287	A288
A289	A290	A291	A292	A293	A294	A295	A296	A297	A298	A299	A300
A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312
A313	A314	A315	A316	A317	A318	A319	A320	A321	A322	A323	A324
A325	A326	A327	A328	A329	A330	A331	A332	A333	A334	A335	A336
A337	A338	A339	A340	A341	A342	A343	A344	A345	A346	A347	A348
A349	A350	A351	A352	A353	A354	A355	A356	A357	A358	A359	A360
A361	A362	A363	A364	A365	A366	A367	A368	A369	A370	A371	A372
A373	A374	A375	A376	A377	A378	A379	A380	A381	A382	A383	A384
A385	A386	A387	A388	A389	A390	A391	A392	A393	A394	A395	A396
A397	A398	A399	A400	A401	A402	A403	A404	A405	A406	A407	A408
A409	A410	A411	A412	A413	A414	A415	A416	A417	A418	A419	A420
A421	A422	A423	A424	A425	A426	A427	A428	A429	A430	A431	A432
A433	A434	A435	A436	A437	A438	A439	A440	A441	A442	A443	A444
A445	A446	A447	A448	A449	A450	A451	A452	A453	A454	A455	A456

- 118 -

| <u>C2</u> |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| A457 | A458 | A459 | A460 | A461 | A462 | A463 | A464 | A465 | A466 | A467 | A468 |
| A469 | A470 | A471 | A472 | A473 | A474 | A475 | A476 | A477 | A478 | A479 | A480 |
| A481 | A482 | A483 | A484 | A485 | A486 | A487 | A488 | A489 | A490 | A491 | A492 |
| A493 | A494 | A495 | A496 | A497 | A498 | A499 | A500 | A501 | A502 | A503 | A504 |
| A505 | A506 | A507 | A508 | A509 | A510 | A511 | A512 | A513 | A514 | A515 | A516 |
| A517 | A518 | A519 | A520 | A521 | A522 | A523 | A524 | A525 | A526 | A527 | A528 |
| A529 | A530 | A531 | A532 | A533 | A534 | A535 | A536 | A537 | A538 | A539 | A540 |
| A541 | A542 | A543 | A544 | A545 | A546 | A547 | A548 | A549 | A550 | A551 | A552 |
| A553 | A554 | A555 | A556 | A557 | A558 | A559 | A560 | A561 | A562 | A563 | A564 |
| A565 | A566 | A567 | A568 | A569 | A570 | A571 | A572 | A573 | A574 | A575 | A576 |
| A577 | A578 | A579 | A580 | A581 | A582 | A583 | A584 | A585 | A586 | A587 | A588 |
| A589 | A590 | A591 | A592 | A593 | A594 | A595 | A596 | A597 | A598 | A599 | A600 |
| A601 | A602 | A603 | A604 | A605 | A606 | A607 | A608 | A609 | A610 | A611 | A612 |
| A613 | A614 | A615 | A616 | A617 | A618 | A619 | A620 | A621 | A622 | A623 | A624 |
| A625 | A626 | A627 | A628 | A629 | A630 | A631 | A632 | A633 | A634 | A635 | A636 |
| A637 | A638 | A639 | A640 | A641 | A642 | A643 | A644 | A645 | A646 | A647 | A648 |
| A649 | A650 | A651 | A652 | A653 | A654 | A655 | A656 | A657 | A658 | A659 | A660 |
| A661 | A662 | A663 | A664 | A665 | A666 | A667 | A668 | A669 | A670 | A671 | A672 |
| A673 | A674 | A675 | A676 | A677 | A678 | A679 | A680 | A681 | A682 | A683 | A684 |
| A685 | A686 | A687 | A688 | A689 | A690 | A691 | A692 | A693 | A694 | A695 | A696 |
| A697 | A698 | A699 | A700 | A701 | A702 | A703 | A704 | A705 | A706 | A707 | A708 |
| A709 | A710 | A711 | A712 | A713 | A714 | A715 | A716 | A717 | A718 | A719 | A720 |
| A721 | A722 | A723 | A724 | A725 | A726 | A727 | A728 | A729 | A730 | A731 | A732 |
| A733 | A734 | A735 | A736 | A737 | A738 | A739 | A740 | A741 | A742 | A743 | A744 |
| A745 | A746 | A747 | A748 | A749 | A750 | A751 | A752 | A753 | A754 | A755 | A756 |
| A757 | A758 | A759 | A760 | A761 | A762 | A763 | A764 | A765 | A766 | A767 | A768 |
| A769 | A770 | A771 | A772 | A773 | A774 | A775 | A776 | A777 | A778 | A779 | A780 |
| A781 | A782 | A783 | A784 | A785 | A786 | A787 | A788 | A789 | A790 | A791 | A792 |
| A793 | A794 | A795 | A796 | A797 | A798 | A799 | A800 | A801 | A802 | A803 | A804 |
| A805 | A806 | A807 | A808 | A809 | A810 | A811 | A812 | A813 | A814 | A815 | A816 |
| A817 | A818 | A819 | A820 | A821 | A822 | A823 | A824 | A825 | A826 | A827 | A828 |
| A829 | A830 | A831 | A832 | - | - | - | - | - | - | - | - |

- 119 -

A-Q

Table 7: Compounds of the formula I, represented as compounds of the formula

in which Q denotes Q_2 and Q_2 denotes the radicals D1, D2 or D3:

D1/D2/	D1/D2/	D1/D2/	D1/D2/	D1/D2/	D1/D2/	D1/D2/	D1/D2/	D1/D2/	D1/D2/	D1/D2/	D1/D2/
D3	<u>D3</u>										
-	-	-		-	-	-	A8	A9	A10	A11	A12
A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24
A25	A26	A27	A28	A29	A30	A31	A32	A33	A34	A35	A36
A37	A38	A39	A40	A41	A42	A43	A44	A45	A46	A47	A48
A49	A50	A51	A52	A53	A54	A55	A56	A57	A58	A59	A60
A61	A62	A63	A64	A65	A66	A67	A68	A69	A70	A71	A72
A73	A74	A75	A76	A77	A78	A79	A80	A81	A82	A83	A84
A85	A86	A87	A88	A89	A90	-	•	-	-	-	-
-	-	A99	A100	A101	A102	A103	A104	A105	A106	A107	A108
Λ109	A110	A111	A112	A113	A114	A115	A116	A117	A118	A119	A120
A121	A122	A123	A124	A125	A126	A127	A128	A129	A130	A131	A132
A133	A134	A135	A136	A137	A138	A139	A140	A141	A142	A143	A144
A145	A146	A147	A148	A149	A150	A151	A152	A153	A154	A155	A156
A157	A158	A159	A160	A161	A162	A163	A164	A165	A166	A167	A168
A169	A170	A171	A172	A173	A174	A175	A176	A177	A178	A179	A180
A181	A182	A183	A184	A185	A186	A187	A188	A189	A190	A191	A192
A193	A194	A195	A196	A197	A198	A199	A200	A201	A202	A203	A204
A205	A206	A207	A208	A209	A210	A211	A212	A213	-A214	A215	A216
A217	A218	A219	A220	A221	A222	A223	A224	A225	A226	A227	A228
A229	A230	A231	A232	A233	A234	A235	A236	A237	A238	A239	A240
A241	A242	A243	A244	A245	A246	A247	A248	A249	A250	A251	A252
A253	A254	A255	A256	A257	A258	A259	A260	A261	A262	A263	A264
A265	A266	A267	A268	A269	A270	A271	A272	A273	A274	A275	A276
A277	A278	A279	A280	A281	A282	A283	A284	A285	A286	A287	A288

| D1/D2/ |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| D3 |
A289	A290	A291	A292	A293	A294	A295	A296	A297	A298	A299	A300
A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312
A313	A314	A315	A316	A317	A318	A319	A320	A321	A322	A323	A324
A325	A326	A327	A328	A329	A330	A331	A332	A333	A334	A335	A336
A337	A338	A339	A340	A341	A342	A343	A344	A345	A346	A347	A348
A349	A350	A351	A352	A353	A354	A355	A356	A357	A358	A359	A360
A361	A362	A363	A364	A365	A366	A367	A368	A369	A370	A371	A372
A373	A374	A375	A376	A377	A378	A379	A380	A381	A382	A383	A384
A385	A386	A387	A388	A389	A390	A391	A392	A393	A394	A395	A396
A397	A398	A399	A400	A401	A402	A403	A404	A405	A406	A407	A408
A409	A410	A411	A412	A413	A414	A415	A416	A417	A418	A419	A420
A421	A422	A423	A424	A425	A426	A427	A428	A429	A430	A431	A432
A433	A434	A435	A436	A437	A438	A439	A440	A441	A442	A443	A444
A445	A446	A447	A448	A449	A450	A451	A452	A453	A454	A455	A456
A457	A458	A459	A460	A461	A462	A463	A464	A465	A466	A467	A468
A469	A470	A471	A472	A473	A474	A475	A476	A477	A478	A479	A480
A481	A482	A483	A484	A485	A486	A487	A488	A489	A490	A491	A492
A493	A494	A495	A496	A497	A498	A499	A500	A501	A502	A503	A504
A505	A506	A507	A508	A509	A510	A511	A512	A513	A514	A515	A516
A517	A518	A519	A520	A521	A522	A523	A524	A525	A526	A527	A528
A529	A530	A531	A532	A533	A534	A535	A536	A537	A538	A539	A540
A541	A542	A543	A544	A545	-	-	-	-		-	-
-	A554	A555	A556	A557	A558	A559	A560	A561	A562	A563	A564
A565	A566	A567	A568	A569	A570	A571	A572	A573	A574	A575	A576
A577	A578	A579	A580	A581	A582	A583	A584	A585	A586	A587	A588
A589	A590	A591	A592	A593	A594	A595	A596	A597	A598	A599	A600
A601	A602	A603	A604	A605	A606	A607	A608	A609	A610	A611	A612
A613	A614	A615	AG16	A617	A618	A619	A620	A621	A622	A623	A624
A625	A626	A627	A628	A629	A630	A631	A632	A633	A634	A635	A636
-	-	-	-	-	-	-	A644	A645	A646	A647	A648
A649	A650	A651	A652	A653	A654	A655	A656	A657	A658	A659	A660

D1/D2/	<u>D1/D2/</u>	<u>D1/D2/</u>	D1/D2/								
<u>D3</u>	<u>D3</u>	<u>D3</u>	<u>D3</u>	<u>D3</u>	<u>D3</u>	<u>D3</u>	<u>D3</u>	<u>D3</u>	<u>D3</u>	<u>D3</u>	<u>D3</u>
A661	A662	A663	A664	A665	A666	A667	A668	A669	A670	A671	A672
A685	A686	A687	A688	A689	A690	A691	A692	A693	A694	A695	A696
A697	A698	A699	A700	A701	A702	A703	A704	A705	A706	A707	A708
A709	A710	A711	A712	A713	A714	A715	A716	A717	A718	A719	A720
A721	A722	A723	A724	A725	A726	-	-	-	-	-	-
A733	A734	A735	A736	A737	A738	A739	A740	A741	A742	A743	A744
A745	A746	A747	A748	A749	A750	A751	A752	A753	A754	A755	A756
A757	A758	A759	A760	A761	A762	A763	A764	A765	A766	A767	A768
A769	A770	A771	A772	A773	A774	A775	A776	A777	A778	A779	A780
A781	A782	A783	A784	A785	A786	A787	A788	A789	A790	A791	A792
A793	A794	A795	A796	A797	A798	A799	A800	A801	A802	A803	A804
A805	A806	A807	A808	A809	A810	A811	A812	A813	A814	A815	A816
A817	A818	A819	A820	A821	A822	A823	A824	A825	A826	A827	A828
A829	A830	A831	A832	-	-	-	-		-	-	

Table 8: Compounds of the formula lp:

in which R_{1r} R_{2r} R_{6r} R_{4r} X_1 and p have the same meaning as given for the radical A, and n is 0, 1 or 2:

- 122 -

A	A	A	A	<u>A</u>	A	A	Α	A	A	A	<u>A</u>
-	-	-	-		-	-	8A	A9	A10	A11	A12
A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24
A25	A26	A27	A28	A29	A30	A31	A32	A33	A34	A35	A36
A37	A38	A39	A40	A41	A42	A43	A44	A45	A46	A47	A48
A49	A50	A51	A52	A53	A54	A55	A56	A57	A58	A59	A60
A61	A62	A63	A64	A65	A66	A67	A68	A69	A70	A71	A72
A73	A74	A75	A76	A77	A78	A79	A80	A81	A82	A83	A84
A85	A86	A87	A88	A89	A90	-	-	-	-	-	-
-	-	A99	A100	A101	A102	A103	A104	A105	A106	A107	A108
A109	A110	A111	A112	A113	A114	A115	A116	A117	A118	A119	A120
A121	A122	A123	A124	A125	A126	A127	A128	A129	A130	A131	A132
A133	A134	A135	A136	A137	A138	A139	A140	A141	A142	A143	A144
A145	A146	A147	A148	A149	A150	A151	A152	A153	A154	A155	A156
A157	A158	A159	A160	A161	A162	A163	A164	A165	A166	A167	A168
A169	A170	A171	A172	A173	A174	A175	A176	A177	A178	A179	A180
A181	A182	A183	A184	A185	A186	A187	A188	A189	A190	A191	A192
A193	A194	A195	A196	A197	A198	A199	A200	A201	A202	A203	A204
A205	A206	A207	A208	A209	A210	A211	A212	A213	A214	A215	A216
A217	A218	A219	A220	A221	A222	A223	A224	A225	A226	A227	A228
A229	A230	A231	A232	A233	A234	A235	A236	A237	A238	A239	A240
A241	A242	A243	A244	A245	A246	A247	A248	A249	A250	A251	A252
A253	A254	A255	A256	A257	A258	A259	A260	A261	A262	A263	A264
A265	A266	A267	A268	A269	A270	A271	A272	A273	A274	A275	A276
A277	A278	A279	A280	A281	A282	A283	A284	A285	A286	A287	A288
A289	A290	A291	A292	A293	A294	A295	A296	A297	A298	A299	A300
A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312
A313	A314	A315	A316	A317	A318	A319	A320	A321	A322	A323	A324
A325	A326	A327	A328	A329	A330	A331	A332	A333	A334	A335	A336
A337	A338	A339	A340	A341	A342	A343	A344	A345	A346	A347	A348
A349	A350	A351	A352	A353	A354	A355	A356	A357	A358	A359	A360
A361	A362	A363	A364	A365	A366	A367	A368	A369	A370	A371	A372
A373	A374	A375	A376	A377	A378	A379	A380	A381	A382	A383	A384

- 123 -

A	A	A	Α	Α	<u>A</u>	A	A	A	<u>A</u>	A	A
A385	A386	A387	A388	A389	A390	A391	A392	A393	A394	A395	A396
A397	A398	A399	A400	A401	A402	A403	A404	A405	A406	A407	A408
A409	A410	A411	A412	A413	A414	A415	A416	A417	A418	A419	A420
A421	A422	A423	A424	A425	A426	A427	A428	A429	A430	A431	A432
A433	A434	A435	A436	A437	A438	A439	A440	A441	A442	A443	A444
A445	A446	A447	A448	A449	A450	A451	A452	A453	A454	A455	A456
A457	A458	A459	A460	A461	A462	A463	A464	A465	A466	A467	A468
A469	A470	A471	A472	A473	A474	A475	A476	A477	A478	A479	A480
A481	A482	A483	A484	A485	A486	A487	A488	A489	A490	A491	A492
A493	A494	A495	A496	A497	A498	A499	A500	A501	A502	A503	A504
A505	A506	A507	A508	A509	A510	A511	A512	A513	A514	A515	A516
A517	A518	A519	A520	A521	A522	A523	A524	A525	A526	A527	A528
A529	A530	A531	A532	A533	A534	A535	A536	A537	A538	A539	A540
A541	A542	A543	A544	A545	-	-	-	-	-	-	-
-	A554	A555	A556	A557	A558	A559	A560	A561	A562	A563	A564
A565	A566	A567	A568	A569	A570	A571	A572	A573	A574	A575	A576
A577	A578	A579	A580	A581	A582	A583	A584	A585	A586	A587	A588
A589	A590	A591	A592	A593	A594	A595	A596	A597	A598	A599	A600
A601	A602	A603	A604	A605	A606	A607	A608	A609	A610	A611	A612
A613	A614	A615	A616	A617	A618	A619	A620	A621	A622	A623	A624
A625	A626	A627	A628	A629	A630	A631	A632	A633	A634	A635	A636
-	-	-	-	-	-	-	A644	A645	A646	A647	A648
A649	A650	A651	A652	A653	A654	A655	A656	A657	A658	A659	A660
A661	A662	A663	A664	A665	A666	A667	A668	A669	A670	A671	A672
A685	A686	A687	A688	A689	A690	A691	A692	A693	A694	A695	A696
A697	A698	A699	A700	A701	A702	A703	A704	A705	A706	A707	A708
A709	A710	A711	A712	A713	A714	A715	A716	A717	A718	A719	A720
A721	A722	A723	A724	A725	A726	-	-	-	-	-	-
A733	A734	A735	A736	A737	A738	A739	A740	A741	A742	A743	A744
A745	A746	A747	A748	A749	A750	A751	A752	A753	A754	A755	A756
A757	A758	A759	A760	A761	A762	A763	A764	A765	A766	A767	A768
A769	A770	A771	A772	A773	A774	A 775	A776	A777	A778	A779	A780
A781	A782	A783	A784	A785	A786	A787	A788	A789	A790	A791	A792

A	A	<u>A</u>	<u>A</u>	A	A	A	<u>A</u>	A	<u>A</u>	A	<u>A</u>
A793	A794	A795	A796	A797	A798	A799	A800	A801	A802	A803	A804
A805	A806	A807	A808	A809	A810	A811	A812	A813	A814	A815	A816
A817	A818	A819	A820	A821	A822	A823	A824	A825	A826	A827	A828
A829	A830	A831	A832	-	-	-	-	-	-	-	-

Table 9: Compounds of the formula I, represented as compounds of the formula

A-Q

in which A denotes A10:

A10	A10	<u>A10</u>	<u>A10</u>	<u>A10</u>	<u>A10</u>	A10	<u>A10</u>	<u>A10</u>	<u>A10</u>	<u>A10</u>	<u>A10</u>
B 1	B2	-	B4	B5	B6	B7	B8	B9	B10	B11	B12
B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24
B25	B26	B27	B28	B29	B30	B31	B32	B33	B34	B35	B36
B37	B38	-	B40	B41	B42	B43	B44	B45	B46	B47	B48
B49	B50	B51	-	B53	B54	B55	B56	B57	B58	B59	B60
B61	B62	B63	B64	B65	B66	B67	B68	B69	B70	B71	B72
B73	B74	B75	B76	B77	B78	B79	B80	B81	B82	B83	B84
B85	B86	B87	B88	B89	B90	B91	B92	B93	B94		B96
B97	B98	B99	B100	B101	B102	B103	B104	B105	B106	B107	B108
B109	B110	-	-	-	-	-	- '	-	-	-	-

Table 10: Compounds of the formula I, represented as compounds of the formula

A-Q

in which A denotes A10:

- 125 -

<u>A10</u>	A10	<u>A10</u>	<u>A10</u>								
										~	010
C1	-	C3	C4	-	C6	G7	C8	C9	C10	CH	C12
C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24
C25	C26	C27	-	-	-	-	~	-	-	-	-

Table 11: Compounds of the formula I, represented as compounds of the formula

A-Q

in which A denotes A10:

A10	<u>A10</u>	<u>A10</u>	<u>A10</u>	A10	<u>A10</u>						
-	-	-	D4	D5	D6	D7	D8	D9	D10	D11	D12

Table 12: Compounds of the formula I, represented as compounds of the formula

A-Q

in which A denotes A556:

A556	<u>A556</u>	<u>A556</u>	A556								
B1	B2	-	B4	B5	B6	B7	B8	В9	B10	B11	B12
B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24
B25	B26	B27	B28	B29	B30	B31	B32	B33	B34	B35	B36
B37	B38	-	B40	B41	B42	B43	B44	B45	B46	B47	B48
B49	B50	B51	-	B53	B54	B55	B56	B57	B58	B59	B60
B61	B62	B63	B64	B65	B66	B67	B68	B69	B70	B71	B72
B73	B74	B75	B76	B77	B78	B79	B80	B81	B82	B83	B84
B85	B86	B87	B88	B89	B90	B91	B92	B93	B94		B96
B97	B98	B99	B100	B101	B102	B103	B104	B105	B106	B107	B108

WO 01/94339 PCT/EP01/06430

- 126 -

<u>A556</u>	<u>A556</u>	A556	<u>A556</u>	<u>A556</u>	<u>A556</u>	<u>A556</u>		<u>A556</u>		<u>A556</u>	<u>A556</u>
B109	B110	-	-	-	-	-	-	-	-	-	-

Table 13: Compounds of the formula I, represented as compounds of the formula

A-Q

in which A denotes A556:

A556	<u>A556</u>	A556	<u>A556</u>	<u>A556</u>	<u>A556</u>	<u>A556</u> .	<u>A556</u>	<u>A556</u>	<u>A556</u>	<u>A556</u>	<u>A556</u>
C1	_	C3	C4	_	C6	C7	C8	C9	C10	C11	C12
		C15									
C25	C26	C27	-	-	-	-	-	-	-	-	-

Table 14: Compounds of the formula I, represented as compounds of the formula

A-Q

in which A denotes A556:

<u>A556</u>	<u>A556</u>	<u>A556</u>	<u>A556</u>	<u>A556</u>	A556	<u>A556</u>	<u>A556</u>	<u>A556</u>	<u>A556</u>	<u>A556</u>	A556
-	-	-	D4	D5	D6	D7	D8	D9	D10	D11	D12

Table 15: Compounds of the formula I, represented as compounds of the formula

A-O

in which A denotes A646:

A646	A646	<u>A646</u>	<u>A646</u>	A646	A646	A646	A646	A646	<u>A646</u>	A646	A646
B1	B2	-	B4	B5	B6	B7	B8	B9	B10	B11	B12
B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24
B25	B26	B27	B28	B29	B30	B31	B32	B33	B34	B35	B36
B37	B38	-	B40	B41	B42	B43	B44	B45	B46	B47	B48
B49	B50	B51	-	B53	B54	B55	B56	B57	B58	B59	B60
B61	B62	B63	B64	B65	B66	B67	B68	B69	B70	B71	B72
B73	B74	B75	B76	B77	B78	B79	B80	B81	B82	B83	B84
B85	B86	B87	B88	B89	B90	B91	B92	B93	B94		B96
B97	B98	B99	B100	B101	B102	B103	B104	B105	B106	B107	B108
B109	B110	-	-	-	-	-	-	-	-	_	-

Table 16: Compounds of the formula I, represented as compounds of the formula

A-Q

in which A denotes A646:

A646	<u>A646</u>	<u>A646</u>	A646	A646	A646	<u>A646</u>	A646	A646	A646	A646	<u>A646</u>
C1	_	СЗ	C4		C6	C7	C8	C9	C10	C11	C12
C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24
C25	C26	C27	-	-	-	-	-	-	-	-	-

Table 17: Compounds of the formula I, represented as compounds of the formula

A-Q

in which A denotes A646:

A646	A646	A646	<u>A646</u>	<u>A646</u>	A646	<u>A646</u>	<u>A646</u>	<u>A646</u>	<u>A646</u>	<u>A646</u>	A646
-	-	-	D4	D 5	D6	D7	D8	D9	D10	D11	D12

<u>Table 18: Physical data for the compounds of the formula I given in the tables above: (the melting points are given in °C.)</u>

Compound	m.p. (range)	Phys. state
A1-C2	138-140	crystalline
A2-C2	138-140	crystalline
A833-B52 (K ⁺)	145-150	crystalline
A833-B52 (H4)	-	oil
A830-B52	-	amorphous/liquid
A829-B52	-	oil
A829-B1	-	oil
A10-B52 (H3)	54-56	crystalline
A10-B1	71-73	crystalline
A10-B3	-	viscous
A10-B14	-	viscous
A10-B39	99-100	crystalline
A736-B52	100-102	crystalline
A10-C2 (H6)	-	viscous
A57-B52 (H5)	54-56	crystalline
A18-B52	71-74	crystalline
A8-B52	95-98	crystalline
A19-B52	53-55	crystalline
A1-C5	32-34	crystalline
A2-C5	32-33	crystalline
A10-C5	-	resin
A11-C5	38-39	crystalline
A11-B52	-	resin
A834-B52	-	crystalline
A835-B52	-	viscous
A854-B52	-	viscous
A90-B52	-	viscous

Compound	m n (range)	Phys. state
A33-B52	113-115	crystalline
A556-B52	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	crystalline
A646-B52		viscous
A868-B52	106-107	crystalline
A855-B52		viscous
A817-B52	_	viscous
A819-B52	_	crystalline
A856-B52	_	solid
A857-B52	_	viscous
A63-B52	_	resin
A20-B52	_	solid
A858-B52	_	resin
A836-B52	_	crystalline
A859-B52	_	viscous
A818-B52	-	viscous
A837-B52	-	viscous
A28-B52	-	viscous
A28-B52 (Et ₈ NH ⁺)	-	crystalline
A838-B52		viscous
A839-B52	-	viscous
A860-B52	-	viscous
A860-B113	-	viscous
A861-B52	90-93	crystalline
A840-B52	-	oil
A841-B52	41-43	crystalline
A842-B52	-	viscous
A843-B52	-	viscous
A866-B100	96-98	crystalline
A844-B52	-	viscous
A866-B112	-	viscous
A867-B112	-	viscous
A856-B112	79-81	crystalline
A20-C5	-	viscous
A10-C28	-	resin
A11-C28		resin

Compound	m.p. (range)	Phys. state
A10-B52 (Et₃NH ⁺)	-	viscous
A862-B52	-	viscous
A24-B52	102-105	crystalline
A845-B52	40-44	crystalline
A837-B52	-	viscous
(Et₃NH*)		
A67-B52	68-69	crystalline
A863-B52	80-80	crystalline
A10-B17	40-42	crystalline
A846-B52	-	crystalline
A847-B52	•	viscous
A848-B52	-	crystalline
A56-B52	-	vitreous
A26-B52	-	vitreous
A849-B52	-	viscous
A10-B4	-	viscous
A865-B52	•	viscous
A850-B52	63-64	crystalline
A10-C29	-	resin
A10-B111	76-78	crystalline
A3-C5	-	resin
A834-C5	-	resin
A851-B52	-	vitreous
A852-B52	-	viscous
A10-B25	-	amorphous/liquid
A853-B52	-	viscous
A27-B52	-	oil
A864-C5	149-150	crystalline
A864-B52	110-112	crystalline
A834-B39	-	oil
A-852-OH	-	oil
A-851-OH	102-103	crystalline
A-835-OH	-	oil
A-24-OH	-	solid
A-858-OH	-	oil

Compound	m.p. (range)	Phys. state
A-859-OH	-	oil
A-864-OH	-	solid
A-851-OH	73-74	crystalline
A-848-OH	81-82	crystalline
A-27-OH	-	oil
A-855-OH	102-104	crystalline
A-90-OH	111-114	crystalline
A-124-OH	117-119	crystalline
A-834-OH	-	crystalline
A-852-OH	-	oil
A-851-OH	102-103	crystalline
A-835-OH A10-OH	- 62-63	oil crystalline
A830-OH	157-158	crystalline
A831-OH	188-189	crystalline
A829-OH	131-134	crystalline
A832-OH	110-112	crystalline

Table 19: Physical data for the compounds of the formula I given in the tables above; (the melting points given in °C.):

In the following formulas, end-standing valences denote methyl groups (in all cases except alkyne or alkene groups) or hydrogen (in the case of alkyne or alkene groups), for example

can be also drawn as
$$H_3C$$
 CH_3 and CH_3 CH_3 and CH_3 CH_3 CH_3 CH_3 CH_3

Comp.	Corresponding Formula	m.p. (range)
No.		Phys. state
1.001	P N N N N N N N N N N N N N N N N N N N	138-140 crystalline
1.002	011 0	145-150 crystalline
1.003		oil

Comp.	Corresponding Formula	m.p. (range
No.		Phys. state
1.004	F F F N S N O	fio
1.005	F F F N S N S N S N S N S N S N S N S N	oil
1.006	OH NN NN NN	oil
1.007		54-56 crystalline
1.008	OH ON THE	crystalline
1.009		viscous, 1F NMR; 1.82 (s); 3.26
	F N	(s);3.37-3.39
		(m);3.57-
		3.60(m);
		3.71(s); 4.84
		(s); 7.74 (d)
		7.82 (d)

Сотр.	Corresponding Formula	m.p. (range)
No.		Phys. state
1.010	٠٠٠٠ ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠ - ١٠٠٠	viscous
1.011		viscous
1.012		99-100 crystalline
1.013	۵۳ میر میران کیاری	100-102 crystalline
1.014	OH PART OH PART OH	viscous
1.015	FFF OH	54-56 crystalline
1.016		71-74 crystalline
1.017	OH CON PE	95-98 crystalline

Comp.	Corresponding Formula	m.p. (range)
No.		Phys. state
1.018		53-55 crystalline
1,019	F F OH	32-34 crystalline
1.020	N OH	32-33 crystatline
1.021	O OH F N	resin
1.022	P (N -	38-39 crystalline
1.023	OH OLO	resin
1.024	F F F F F F F F F F F F F F F F F F F	crystalline

Comp.	Corresponding Formula	m.p. (range) Phys. state
1.025	OHO OO NEE	viscous
1.026	F F F F S S S S S S S S S S S S S S S S	viscous
1.027	F + F F F F F F F F F F F F F F F F F F	viscous
1.028	F F F	113-115 crystalline
1.029	OH O NE	crystalline
1.030		viscous

Comp.	Corresponding Formula	m.p. (range)
No.		Phys. state
1.031	OH OF THE PERSON	106-107 crystalline
1.032	F F F F ON	viscous
1.033	OH O N	viscous
1.034	0:\$- 0H 0	crystailine
1.035	OH O OH	crystalline
1.036	FFF OCINO OO OH	viscous

Comp.	Corresponding Formula	m.p. (range)
No.		Phys. state
1.037	F+F CN OH	resin
1.038	OH O ON F	solid
1.039	OH O O O O O O O O O O O O O O O O O O	resin
1.040	OH O O	crystalline
1.041	OHO CONFE	viscous

Comp.	Corresponding Formula	m.p. (range)
No.		Phys. state
1.042	OH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	viscous
1.043	FFF N OH	viscous
1.044	FFF FON OH	viscous
1.045	FTF OH	crystalline
1.046	OHO CO	viscous
1.047	OH O	viscous

Comp.	Corresponding Formula	m.p. (range) Phys. state
1.048	j	viscous
1.049		viscous
1.050	OH O CO	90-93
1.051	OH O CO	oil
1.052	OH O CN	41-43
1.053	FTF ON OOH	viscous

Comp.	Corresponding Formula	m.p. (range)
No.		Phys. state
1.054	OHO CO	viscous
1.055		96-98
1.056	F + F - F - F - F - F - F - F - F - F -	viscous
1.057	FFF CON ON OR CO	viscous
1.058	+	viscous
1.059	OH OH	79-81

Comp.	Corresponding Formula	m.p. (range)
No.		Phys. state
1.060	P P P	viscous
1.061	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	viscous
1.062	- N	resin
1.063	OHO CO	crystalline
1.064	OH O CN	viscous
1.065	F F F F F F F F F F F F F F F F F F F	102-105 crystalline

Comp.	Corresponding Formula	m.p. (range)
No.		Phys. state
1.066	OHO ON F	40-44 crystalline
1.067	F ^F ₊ F OH	viscous
1.068	FFF N OH OH	68-69 crystalline
1.069	FTF ON OOH	78-80 crystalline
1.070		40-42
1.071		crystalline

Comp.	Corresponding Formula	m.p. (range)
No.		Phys. state
1.072	° CN F F F F F F F F F F F F F F F F F F	viscous
1.073		46-47 crystalline
1.074		vitreous
1.075		vitreous
1.076	0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	75-76
1.077		viscous

Comp. No.	Corresponding Formula	m.p. (range) Phys. state
110.	0"	
1,078		viscous
1.079	OH O OH	viscous
1.080		63-64 crystalline
1.081	٠ ٠ ٠ ٠ ٠ ٠	resin
1.082	OH BUT THE	76-78 crystalline
1.083	O OH N OH N OH N OH N OH	resin

Corresponding Formula	m.p. (range)
	Phys. state
F F O OH	resin
F F F F OH	vitreous
FTF N OH	viscous
F N H OH	ŀio
OH S. C. S. F.	viscous
FFF N	oil

Comp.	Corresponding Formula	m.p. (range)
No.		Phys. state
1.090	0: S – 0: N F F F	149-150 crystalline
1.091	OH NO OH NO OH NO OH	110-112 crystalline
1.092	N F F	crystalline

Biological examples

in a greenhouse.

Example B1: Herbicidal action before emergence of the plants (pre-emergence action) Monocotyledonous and dicotyledonous test plants are sown in standard soll in pots. Immediately after sowing, the test substances are sprayed on at an optimum dosage (500 I of water/ha) as an aqueous suspension (prepared from a wettable powder (example F3, b) according to WO 97/34485) or emulsion (prepared from an emulsion concentrate (example F1, c) according to WO 97/34485). The test plants are then grown under optimum conditions

After a test period of 4 weeks, the test is evaluated using a 9-level scale of ratings (1 = complete damage, 9 = no effect). Ratings of 1 to 4 (in particular 1 to 3) mean good to very good herbicidal action.

Table B1: Pre-emergence action: ("NT" means "not tested"):

Compound	g/ha	Panicum	Digitaria	Echino.	Abutilon	Amaranthus	Chenop.
A10-B1	250	2	2	2	1	1	1
A10-B52, (H3)	250	1	1	1	1	1	1
A830-B52	250	4	9	3	5	4	4
A1-C2	250	6	3	3	4	3	1
A833-B52 (K+)	250	1	2	2	1	2	1
A833-B52, (H4)	250	1	1	1	1	1	1
A10-B1	250	2	2	2	1	1	1
A10-B3	250	1	1	1	1	1	1
A10-B14	250	3	6	3	1	1	1
A10-B39	250	1	1	1	1	1	1
A736-B52	250	1	4	2	1	1	1
A10-C2 (H6)	250	3	3	3	1	2	1
A57-B52 (H5)	250	1	1	1	1	1	1
A18-B52	250	1	1	1	2	2	NT
A8-B52	250	1	1	1	1	1	NT
A19-B52	250	1	1	1	1	2	NT
A1-C5	250	2	2	1	2	2	1
A2-C5	250	1	2	2	1	1	1
A10-C5	250	2	3	1	1	1	1
A11-C5	250	1	2	1	1	1	1
A11-B52	250	1	1	1	1	2	1
A834-B52	250	1	1	1	1	2	1
A835-B52	250	1	2	1	2	1	2
A556-B52	250	1	1	1	1	2	1
A646-B52	250	1	1	1	1	2	1
A819-B52	250	7	9	7	1	2	1
A63-B52	250	2	3	1	5	3	NT
A20-B52	250	1	1	1	3	3	NT
A836-B52	250	1	2	1	5	2	3
A837-B52	250	1	2	2	1	2	NT
A28-B52	250	1	2	2	2	3	NT
 A28-B52 (Et3NH+)	250	1	2	2	3	11	NT

- 149 -

Compound	g/ha	Panicum	Digitaria	Echino.	Abutilon	Amaranthus	Chenop.
A838-B52	250	1	3	2	1	1	1
A839-B52	250	1	3	2	1	1	1
A840-B52	250	1	2	2	2	2	1
A841-B52	250	1	2	1	1	1	1
A842-B52	250	1	6	2	2	2	1
A843-B52	250	1	2	2	1	1	1
A844-B52	250	1	2	2	1	1	1
A20-C5	250	1	2	2	1	1	1
A10-C28	250	1	3	2	1	1	1
A11-C28	250	2	2	1	2	1	1
A10-B52 (Et3NH+)	250	1	1	2	1	1	1
A24-B52	250	1	1	1	1	1	1
A845-B52	250	1	1	1	1	1	1
A837-B52 (Et3NH+)	250	1	1	2	1	1	1
A67-B52	250	1	2	2	3	2	1
A10-B17	250	1	1	1	4	2	1
A846-B52	250	1	1	1	2	1	1
A847-B52	250	1	3	2	4	1	4
A848-B52	250	1	1	1	7	1	1
A56-B52	250	1	2	1	3	1	1
A26-B52	250	1	1	1	1	1	1
A849-B52	250	1	2	2	2	1	1
A10-B4	250	2	3	1	3	1	1
A850-B52	250	1	2	1	1	2	1
A10-C29	250	2	2	1	1	1	NT
A10-B111	250	1	1	1	1	1	NT
A3-C5	250	1	2	2	1	1	NT
A834-C5	250	1	3	1	1	2	NT
A851-B52	250	1	1	1 .	1	1	1
A852-B52	250	1	1	1	4	1	2
A10-B25	250	1	1	2	1	1	1
A853-B52	250	1	1	2	1	1	2
A27-B52	250	1	2	3	4	1	3

- 150 -

The same results are obtained when the compounds of the formula I are formulated according to the other examples of WO 97/34485.

Example B2: Post-emergence herbicidal action

Monocotyledonous and dicotyledonous test plants are grown in standard soil in pots. At the 2- to 3-leaf stage of the test plants, the test substances are sprayed at optimum dosage (500 I of water/ha) as an aqueous suspension (prepared from a wettable powder (example F3, b) according to WO 97/34485) or emulsion (prepared from an emulsion concentrate (example F1, c) according to WO 97/34485). The test plants are then grown further under optimum conditions in a greenhouse.

After a test period of 2 to 3 weeks, the test is evaluated using a 9-level scale of rating (1 = complete damage, 9 = no effect). Ratings of 1 to 4 (in particular 1 to 3) mean good to very good herbicidal action.

Table B2: Post-emergence action:

Compound	g/ha l	anicum	Digitaria	Echino.	Abutilon	Xanth.	lpopur.	Amaranth	Chenop.
A10-B1	250	2	2	2	2	2	2	2	1
A10-B52, (H3)	250	1	1	2	1	2	2	2	1
A830-B52	250	4	9	3	5	4	5	4	4
A829-B52	250	2	6	4	3	6	4	2	2
A829-B1	250	7	9	7	7	4	6	2	2
A1-C2	250	7	8	4	3	4	3	2	4
A833-B52 (K+)	250	3	3	4	3	2	. 3	3	3
A833-B52, (H4)	250	3	3	4	3	1	2	2	3
A10-B3	250	1	1	3	1	1	2	1	1
A10-B14	250	2	2	3	2	2	2	2	1
A10-B39	250	1	3	3	1	2	2	1	1
A736-B52	250	1	1	2	1	2	2	1	1
A10-C2 (H6)	250	2	4	3	2	1	3	1	1
A57-B52 (H5)	250	1	1	2	1	2	2	1	1
A18-B52	250	1	1	2	1	2	2	1	1
A8-B52	250	1	1	1	1	2	1	1	1
A19-B52	250	1	. 1	2	11	2	1	11	1

Compound	_g/ha F	anicum	Digitaria	Echino.	Abutilon	Xanth.	fpopur.	Amaranth	Chenop.
A1-C5	250	4	2	2	2	4	2	2	1
A2-C5	250	1	2	2	2	2	2	1	1
A10-C5	250	2	2	2	2	2	2	1	1
A11-C5	250	1	2	2	2	2	2	2	1
A11-B52	250	1	1	2	2	2	2	1	1
A834-B52	250	1	1	2	2	2	2	1	1
A835-B52	250	1	1	2	2	3	2	2	1
A854-B52	250	1	2	2	2	2	2	1	1
A90-B52	250	2	2	3	2	3	4	3	1
A33-B52	250	2	2	2	2	3	2	2	1
A556-B52	250	1	2	2	1	2	2	2	1
A646-B52	250	1	2	2	2	2	2	2	1
A855-B52	250	2	2	2	2	2	2	2	1
A817-B52	250	1	2	2	2	2	2	2	1
A819-B52	250	2	3	2	2	2	2	2	1
A856-B52	250	2	2	2	2	2	1	2	1
A857-B52	250	2	2	2	2	2	2	2	1
A63-B52	250	1	2	2	2	2	2	2	2
A20-B52	250	1	2	2	2	2	2	2	1
A858-B52	250	2	2	2	2	2	2	1	2
A836-B52	250	2	2	2	2	3	3	2	1
A859-B52	250	1	2	2	2	2	2	2	1
A818-B52	250	2	2	3	2	2	2	2	1
A837-B52	250	1	2	2	2	2	2	1	1
A28-B52	250	1	2	2	2	3	4	1	1
A28-B52									
(Et3NH+)	250	1	2	2	2	3	2	2	1
A838-B52	250	2	2	3	1	2	2	2	1
A839-B52	250	2	2	2	2	2	2	2	1
A860-B52	250	2	1	2	2	2	2	2	1
A861-B52	250	2	3	5	3	2	2	2	1
A840-B52	250	2	3	4	3	3	3	2	1
A841-B52	250	2	4	4	3	3	3	1	1
A842-B52	250	3	3	5	3	3	3	2	1
A843-B52	250	2	3	3	3	3	6	3	1

Compound	g/ha	Panicum	Digitaria	Echino.	Abutilon	Xanth.	Ipopur.	Amaranth	Chenop.
A844-B52	250	2	3	4	3	3	3	3	1
A856-B112	250	3	3	5	2	3	3	3	1
A20-C5	250	2	3	4	3	3	3	2	1
A10-C28	250	4	4	4	3	3	3	2	1
A11-C28	250	3	4	4	3	3	3	2	1
A10-B52									
(Et3NH+)	250	2	2	2	2	2	2	2	1
A862-B52	250	2	2	3	3	2	5	2	1
A24-B52	250	2	2	2	2	2	2	2	1
A845-B52	250	2	2	2	2	2	2	2	1
A837-B52									
(Et3NH÷)	250	2	2	2	2	2	2	2	1
A67-B52	250	2	2	2	2	2	3	2	1
A863-B52	250	2	2	3	2	2	3	2	1
A10-B17	250	2	1	2	2	2	. 2	2	1
A846-B52	250	1	2	2	2	2	1	2	2
A847-B52	250	1	2	1	2	2	4	3	1
A848-B52	250	2	2	2	2	2	2	1	1
A56-B52	250	1	2	2	2	2	2	1	1
A26-B52	250	2	2	2	2	2	2	2	1
A849-B52	250	2	2	3	2	2	2	2	2
A10-B4	250	1	1	2	1	2	1	2	1
A850-B52	250	2	2	2	2	2	2	2	1
A10-C29	250	2	3	3	2	2	1	2	1
A10-B111	250	2	2	3	3	3	3	2	1
A3-C5	250	3	4	3	3	3	3	3	1
A851-B52	250	3	3	4	3	3	3	2	1
A852-B52	250	3	4	4	3	3	3	3	1
A10-B25	250	3	4	4	3	3	3	2	1
A27-B52	250	1	2	2	3	2	4	2	5
A864-C5	250	1	2	2	2	2	2	1	1
A864-B52	250	2	2	2	2	2	2	2	1

The same results are obtained when the compounds of the formula I are formulated according to the other examples of WO 97/34485.

WHAT IS CLAIMED IS:

1. A compound of the formula I

in which

p is 0 or 1;

 R_1 is a C_1 - C_5 alkylene, C_5 - C_5 alkenylene or C_5 - C_5 alkynylene chain which may be mono- or polysubstituted by halogen or R_5 , where the unsaturated bonds of the chain are not attached directly to the substituent X_1 :

 X_1 is oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R₆)-O-, -O-NR₅₁-, thio, sulfinyl, sulfonyl, -SO₂NR₂₇, -NR₆₅SO₂₇ or -NR₆₇:

 R_2 is a C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group which is mono- or polysubstituted by halogen, hydroxyl, amino, formyl, nitro, cyano, mercapto, carbamoyl, C_1 - C_6 alkoxy,

 $C_1\text{-}C_5 \\ alkoxycarbonyl, \ C_2\text{-}C_5 \\ alkenyl, \ C_2\text{-}C_6 \\ haloalkenyl, \ C_2\text{-}C_6 \\ alkynyl, \ C_2\text{-}C_5 \\ haloalkynyl, \ C_3\text{-}C_6 \\ haloalkynyl, \ C_3\text{$

 $\text{C}_3\text{-C}_5\text{cycloalkyl},$ by halogen-substituted $\text{C}_3\text{-C}_6\text{cycloalkyl},$ or by $\text{C}_3\text{-C}_6\text{alkenyloxy},$

 $C_{\text{3}}\text{-}C_{\text{6}}\text{alkynyloxy},\ C_{\text{1}}\text{-}C_{\text{6}}\text{haloalkoxy},\ C_{\text{3}}\text{-}C_{\text{6}}\text{haloalkenyloxy},\ cyano\text{-}C_{\text{1}}\text{-}C_{\text{6}}\text{alkoxy},$

 $C_1 - C_6 \\ alkoxy - C_1 - C$

 $C_1 - C_6 \\ alkylsulfinyl - C_1 - C_6 \\ alkoxy, \ C_1 - C_6 \\ alkoxy, \ C_1 - C_6 \\ alkoxy, \ C_1 - C_6 \\ alkoxy \\ carbonyl-$

C1-Cealkoxy, C1-Cealkoxycarbonyl, C1-Cealkylcarbonyl, C1-Cealkylthio, C1-Cealkylsulfinyl,

C₁-C₆alkoxy, C₁-C₆alkoxycarbonyi, C₁-C₆alkyltanio, C₁-C₆alkylsulfinyi, C₁-C₆alkylsulfonyi, C₁-C₆haloalkylthio, C₁-C₆haloalkylthio, C₁-C₆haloalkylthio, C₁-C₆haloalkylsulfonyi, C₁-C₆haloalkylthio, C₁-C₆alkyl, or by (3-oxetanyi)oxy, which for its part may be substituted by C₁-C₆alkyl, or by (3-oxetanyi)oxy, which for its part

may be substituted by C_1 - C_8 alkyl, or by benzylthio, benzylsulfinyl, benzylsulfonyl, C_1 - C_8 alkylamino, di(C_1 - C_8 alkyl)amino, D_8 - D_8 0 D_8 0, D_8

 C_1 - C_6 aikyiamino, C_1 - C_6 aikyi)amino, C_2 - C_5 aikyi)amino, C_2 - C_6 aikyi)amino, C_2 - C_6 aikyi)amino, C_1 - C_6 aikyi)amino, C_2 - C_6 aikyi)amino, C_1 -

where the phenyl- or benzyl-containing groups for their part may be substituted by one or more C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxyl or nitro groups, or

WO 01/94339 PCT/EP01/06430

 R_2 is phenyl which may be mono- or polysubstituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxyl or nitro; or

$$\label{eq:R2} \begin{split} R_2 &\text{ is C_3-$C_6cycloalkyl, C_1-$C_6alkcyl- or C_1-$C_6alkyl-substituted C_3-$C_6cycloalkyl, 3-oxetanyl or C_1-$C_6alkyl-substituted 3-oxetanyl; \end{split}$$

or, if Q is Q₂ or Q₃, or is Q₁ in which R₁₄ and R₂₂ are a C₂-C₃alkylene chain, R₂ is additionally also a five- to ten-membered monocyclic or fused bicyclic ring system which may be aromatic, saturated or partially saturated and may contain 1 to 4 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, where the ring system is attached directly or via a C1-C4alkylene, C2-C4alkylene, C2-C4alkylene, C2-C4alkylene, C4-C4alkylene, C4--N(R₁₀)-C₁-C₄alkylene, -SO-C₁-C₄alkylene or -SO₂-C₄-C₄alkylene group to the substituent X₁ and where each ring system may not contain more than two oxygen atoms and not more than two sulfur atoms and the ring system for its part may be mono-, di- or trisubstituted by C1-C6alkyl, C1-C6haloalkyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C2-C6haloalkynyl, C1-Calkoxy, hydroxyl, C1-Cahaloalkoxy, C2-Calkenyloxy, C2-Calkynyloxy, mercapto. C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C2-C5alkoxyalkylthio, C3-C5acetylalkylthio, C3-C6alkoxycarbonylalkylthio, C2-C4cyanoalkylthio, C1-Cnaikylsulfinyl, C1-Cnhaloalkylsulfinyl, C1-Cnaikylsulfonyl, C1-Cnhaloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, di(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₂alkyl)amino. halogen, cyano, nitro, phenyl and benzylthio, where phenyl and benzylthio for their part may be substituted on the phenyl ring by C₁-C₂alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy,

C₁-C₃haloalkoxy, halogen, cyano or nitro, and where the substituents on the nitrogen in the heterocyclic ring are different from halogen; or

 H_2 is hydrogen or unsubstituted C_1 - C_8 alkyl if

- a) R₁ is substituted by the group R₅, or
- b) Q is the group Q2, or
- c) Q is the group Q_3 in which X_1 is -O(CO)-, -(CO)O-, -N(R₈)-O-, -O-NR₅₁-, -SO₂NR₇-, -NR₅₀SO₂- or -NR₆-; or
- d) Q is the group Q_1 in which X_1 is -N(R_0)-O-, -O-NR₆₁-, -SO₂NR₇-, -NR₆₂SO₂- or -NR₆-, or e) Q is the group Q_1 in which R_{14} and R_{22} in Q_1 are a C_2 -C₃alkylene chain and X_1 is -O(CO)-or -(CO)O-.
- R₃ is C₁-C₃haloalkyl;

 $R_4 \text{ is hydrogen, halogen, C_1-C_3alkyl, C_1-C_3haloalkyl, C_1-$C_3alkoxy, C_1-$C_3alkoxy-C_1-$C_3alkyl or C_1-$C_3alkoxy-C_1-$C_3alkoxy; C_2-$C_3alkoxy, C_3-$C_3alkoxy, C_3-$C_3alkoxy$

WO 01/94339 PCT/EP01/06430 - 155 -

R₅ is hydroxyl, C₁-C₆alkoxy, C₃-C₆cycloalkyloxy, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁-C₆alkoxy-C1-C8alkoxy-C1-C8alkoxy or C1-C2alkylsulfonyloxy;

R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, R₅₁ and R₅₂ independently of one another are hydrogen, C₁-C₅alkyl, C₁-C₆hafoalkyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkoxy-C₁-C₆alkyl C1-C6alkoxy-C1-C6alkyl substituted by C1-C6alkoxy, benzyl or phenyl, where phenyl and benzyl for their part may be mono- or polysubstituted by C₁-C₆alkyl, C₁-C₆haloalkyl. C₁-C₅alkoxy, C₁-C₅haloalkoxy, halogen, cyano, hydroxyl or nitro; where R₅ and R₀ are not simultaneously hydrogen and hydrogen, C1-Cealkoxycarbonyl or C1-Cealky/carbonyl, respectively;

Q is Q₁

in which

A₁ is C(R₁₄R₁₅), NR₁₅ or oxygen;

A₂ is C(R₁₇R₁₈), C(O), -C=N-O-R₁₀, oxygen, thio, sulfinyl, sulfonyl, -NR₂₀ or ethylene; with the provisos that A₁ is different from oxygen if A₂ is oxygen, C(O), thio, sulfinyl, -C=N-O-R₁₀. NR₂₀ or C(R₁₇R₁₈), where R₁₇ and R₁₈ independently of one another are C₁-C₂alkoxy. C1-Calkylthio, C1-Calkylsulfinyl, C1-Calkylsulfonyl; and A1 is different from NR16 if A2 is thio. sulfinyl or C(R₁₇R₁₈), where R₁₇ and R₁₈ independently of one another are C₁-C₄alkoxy. C1-C4alkylthio, C1-C4alkylsulfinyl, C1-C4alkylsulfonyl; R14 and R22 independently of one another are hydrogen, C1-C4alkyl, C1-C4haloalkyl, C3-C4alkenyl, C3-C4alkynyl, C1-C4alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, C₁-C₄alkylsulfonyloxy, C₁-C₄alkoxy,

C1-C4alkoxycarbonyl or C1-C4alkylcarbonyl:

R₁₅ and R₂₁ independently of one another are hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₃-C₄alkenyl or C₃-C₄alkynyl;

R₁₇ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₄-C₄alkylsulfinyl or C1-C4alkvIsuifonvI:

R₁₈ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₃-C₄alkenyl, C₂-C₄alkynyl, C₁-C₄aikoxy. C1-C4alkylthio, C1-C4alkylsulfinyl, C1-C4alkylsulfonyl or C1-C4dialkoxyalkyl-C1-C4alkyl; R_{20} is C_1 -C₄alkyl, C_3 -C₆cycloalkyl, C_3 -C₄alkenyl, C_3 -C₄alkynyl, C_1 -C₄alkylcarbonyl, C_1 -C₄alkyl)aminocarbonyl or benzyl, where the phenyl group may be monoor polysubstituted by C_1 -C₆alkyl, C_1 -C₆haloalkyl, C_1 -C₆alkoxy, C_1 -C₆haloalkoxy, halogen, cyano, hydroxyl or nitro;

 R_{10} and R_{10} independently of one another are hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl, benzyl or pinenyl, where phenyl and benzyl for their part may be mono- or polysubstituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxyl or nitro;

- or R₁₄ and R₂₂ together form a C₂-C₃alkylene chain;
- or R_{14} and R_{15} together and/or R_{17} and R_{18} together and/or R_{21} and R_{22} together form a .
- $C_{2^*}C_4$ alkylene chain which may be interrupted by oxygen and/or carbonyl and/or sulfur, with the proviso that the oxygen and sulfur atoms are separated by at least one methylene group;
- or $\ensuremath{\mathsf{R}}_{14}$ and $\ensuremath{\mathsf{R}}_{18}$ together form a $\ensuremath{\mathsf{C}}_2\text{-}\ensuremath{\mathsf{C}}_4$ alkylene chain; or
- R₂₂ and R₁₈ together form a C₂-C₄alkylene chain;
- or R₁₈ together with R₂₂ or R₁₄ forms a direct bond;
- or R₁₆ and R₁₈ together form a C₂-C₄alkylene chain;
- R₁₃ is hydroxyl, O'M⁺, where M⁺ is an alkali metal cation or ammonium cation, halogen,
- C1-C12alkylsulfonyloxy, amino, C1-C4alkylthio, C1-C12alkylsulfinyl, C1-C12alkylsulfonyl,
- C1-C12haloalkylthio, C1-C12haloalkylsulfinyl, C1-C12haloalkylsulfonyl,
- C_1 - C_6 alkoxy- C_1 - C_1
- C₃-C₁₂alkenylthio, C₃-C₁₂alkenylsulfinyl, C₃-C₁₂alkenylsulfonyl, C₃-C₁₂alkynylthio,
- C₃-C₁₂alkynylsulfinyl, C₃-C₁₂alkynylsulfonyl, C₁-C₄alkoxycarbonyl-C₁-C₄alkylthio.
- C₁-C₄alkoxycarbonyl-C₁-C₄alkylsulfinyl, C₁-C₄alkoxycarbonyl-C₁-C₄alkylsulfonyl,
- $(C_1-C_4alkoxy)_2P(O)O$, $C_1-C_4alkyi-(C_1-C_4alkoxy)P(O)O$, $H(C_1-C_4alkoxy)P(O)O$.
- R₂₃R₂₄NR₂₅R₂₈N, NH, R₂₇R₂₈NC(O)O-, R₂₉R₃₀NC(O)NH-, C₁-C₁₈alkylcarbonyloxy,
- C2-C18alkenylcarbonyloxy, C2-C18alkynylcarbonyloxy, C3-C6cycloalkylcarbonyloxy.
- C₁-C₁₂alkoxycarbonyloxy, C₁-C₁₂alkylthiocarbonyloxy, C₁-C₁₂alkylthiocarbamoyl, where the
- alkyl, alkenyl and alkynyl groups may be substituted by halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio,
- C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl or cyano;
- or R₁₃ is phenoxy, phenylthio, phenylsulfinyl, phenylsulfonyl, phenylsulfonylamino, phenylsulfonyloxy or benzoyloxy, where the phenyl groups for their part may be substituted by one or more halogen, nitro, cyano, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy or C₁-C₄haloalkoxy groups:
- or R₁₃ is a group Het₁-thio, Het₂-sulfinyl, Het₃-sulfonyl, Het₄-(CO)O or Het₅-N(R₃₃); in which

Het₁, Het₂, Het₃, Het₄ and Het₆ independently of one another are a five- to ten-membered monocyclic or fused bicyclic ring system which may be aromatic or partially saturated and may contain 1 to 4 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and where each ring system may not contain more than 2 oxygen atoms and not more than 2 sulfur atoms, and where the ring system itself can be substituted by C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkylstithio, C₁-C₆alkylsulfinyl, C₁-C₆alkyl) aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro or phenyl, and where the substituents on the nitrogen in the heterocyclic ring are different from halogen;

 $R_{23},\,R_{24},\,R_{25},\,R_{26},\,R_{27},\,R_{2e},\,R_{29},\,R_{30}$ and R_{33} independently of one another are hydrogen or C_1 - C_6 alkyl;

or R_{23} and R_{24} together or R_{25} and R_{26} together or R_{27} and R_{26} together or R_{22} and R_{30} together are pyrolidino, piperidino, morpholino, thiomorpholino, which may be mono- or polysubstituted by methyl groups;

or Q is Q2

in which

 $R_{\underline{\omega}} \text{ is hydrogen, } C_1\text{-}C_4\text{alkyl}, C_1\text{-}C_4\text{haloalkyl}, C_3\text{-}C_6\text{cycloalkyl}, C_2\text{-}C_4\text{alkenyl}, C_2\text{-}C_4\text{alkynyl or benzyl}, where the phenyl group may be mono- or polysubstituted by <math>C_1\text{-}C_6\text{alkyl}, C_1\text{-}C_6\text{haloalkyl}, C_1\text{-}C_6\text{haloalkyl}, C_1\text{-}C_6\text{haloalkyl}, C_1\text{-}C_6\text{haloalkyl}, C_1\text{-}C_6\text{haloalkoxy}, C_1\text{-}C_6\text{haloakoxy}, C_1\text{-}C_6\text{haloalkoxy}, C_1\text{-}C_6\text{haloalkoxy}, C_1\text{-}C_6\text{haloalkoxy}, C_1\text{-}C_6\text{haloalkoxy}, C_1\text{-}C_6\text{haloalko$

 R_{35} is hydrogen, C_1 - C_4 alkyl, C_1 - C_4 aloalkyl, C_3 - C_6 cycloalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl or benzyl, where the phenyl group may be mono- or polysubstituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxyl or nitro;

 $R_{36} \ is \ hydroxyl, O\ M^*, \ where \ M^* \ is \ an \ alkali \ metal \ cation \ or \ ammonium \ cation, \ halogen, \\ C_1\text{--}C_{12} alkylsulfronyloxy, \ amino, \ C_1\text{--}C_4 alkylthio, \ C_1\text{--}C_{12} alkylsulfronyl, \ C_1\text{--}C_{12} alkylsulfronyl, \ C_1\text{--}C_{12} alkylsulfronyl, \ C_1\text{--}C_2 alkylsulfronyl, \ C_1\text{--}C_2 alkylsulfronyl, \ C_2\text{--}C_2 alkylsulfronyl, \ C_3\text{--}C_1\text{--} alkylsulfronyl, \ C_3\text{--}C_1\text{--} alkylsulfronyl, \ C_3\text{--}C_1\text{--} alkynylsulfronyl, \ C_3\text{--}C_1\text{--} alkynylsulfronyl, \ C_3\text{--}C_1\text{--} alkynylsulfronyl, \ C_3\text{--}C_1\text{--} alkynylsulfronyl, \ C_3\text{--}C_2 alkylsulfronyl, \ C_3\text{--}C_3\text{--} alkynylsulfronyl, \ C_3\text{--}C_4\text{--} alkylsulfronyl, \ C_3\text{--}C_4\text{-$

$$\begin{split} &\langle C_1 - C_4 alkoxy \rangle_2 P(O)O, \ C_1 - C_4 alky I - (C_1 - C_4 alkoxy) P(O)O, \ H(C_1 - C_4 alkoxy) P(O)O, \ R_{37} R_{38} N, \\ &R_{38} R_{46} NNH, \ R_{41} R_{42} NC(O)O_1, \ R_{43} R_{44} NC(O)NH_1, \ C_1 - C_{10} alky loar bonyloxy, \end{split}$$

C2-C18alkenylcarbonyloxy, C2-C18alkynylcarbonyloxy, C3-C5cycloalkylcarbonyloxy,

 C_1 - C_1 -zalkoxycarbonyloxy, C_1 - C_1 zalkylthiocarbonyloxy or C_1 - C_1 zalkylthiocarbamoyl, where the alkyl, alkernyl and alkynyl groups may be substituted by halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkylylthio, C_1 - C_6 alkylsulfonyl or cyano; or

R₃₆ is phenoxy, phenylthio, phenylsulfinyl, phenylsulfonyl, phenylsulfonylamino, phenylsulfonyloxy or benzoyloxy, where the phenyl groups for their part may be mono- or polysubstituted by halogen, nitro, cyano, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy.

or R₃₆ is a group Het₇-thio, Het₈-sulfinyl, Het₉-sulfonyl, Het₁₀-(CO)O or Het₁₁-N(R₃₇); in which Het₈, Het₈, Het₉, Het₁₀ and Het₁₁ independently of one another are a five- to ten-membered monocyclic or fused bicyclic ring system which may be aromatic or partially saturated and may contain 1 to 4 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and where each ring system may not contain more than 2 oxygen atoms and not more than 2 sulfur atoms, and where the ring system for its part may be substituted by C₁-C₈alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxyl, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, di(C₁-C₄alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro or phenyl, and where the substituents on the nitrogen in the heterocyclic ring are different from halogen:

 R_{37} , R_{39} , R_{39} , R_{40} , R_{41} , R_{42} , R_{43} , R_{44} and R_{47} independently of one another are hydrogen or C_{4} - C_{8} alkvl; or

 R_{37} and R_{38} together or R_{38} and R_{46} together or R_{41} and R_{42} together or R_{43} and R_{44} together are pyrolidino, piperidino, morpholino, thiomorpholino, which may be mono- or polysubstituted by methyl groups;

or Q is Qa

$$R_{so}$$
-S(O)_n, R_{49} (Q₃);

in which

R₄₉ is C₁-C₄alkyl, C₁-C₄haloalkyl, C₃-C₆cycloalkyl or halogen-substituted C₃-C₆cycloalkyl;

 R_{so} is C_1 - C_3 alkylene which may be substituted by halogen, hydroxyl, C_1 - C_8 alkoxy,

C2-C6alkenyl, C2-C6alkynyl, C3-C6cycloalkyl, C1-C6alkoxy-C1-C6alkoxy,

 $C_1\text{-}C_6\text{alk}\text{coxy-}C_1\text{-}C_6\text{alk}\text{coxy-}C_7\text{-}C_6\text{alk}\text{coxy}, (3\text{-}\text{oxetanyl})\text{oxy, or by }C_1\text{-}C_6\text{alk}\text{yl-substituted} (3\text{-}\text{oxetanyl})\text{oxy, or by benzylthio, benzylsulfinyl, benzylsulfinyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, where the phenyl- and benzyl-containing groups for their part may be substituted by one or more <math>C_1\text{-}C_6\text{alk}\text{yl}, C_1\text{-}C_6\text{haloalkyl}, C_1\text{-}C_6\text{alkoxy},$

C1-C5haloalkoxy, halogen, cvano, hydroxyl or nitro groups:

or R_{50} is phenyl, where the phenyl-containing group for its part may be substituted by one or more C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxyl or nitro,

or R_{50} is C_3 - C_6 cycloalkyl, C_1 - C_6 alkoxy- or C_1 - C_6 alkyl-substituted C_3 - C_6 cycloalkyl, 3-oxetanyl or C_1 - C_6 alkyl-substituted 3-oxetanyl; and

n is 0, 1 or 2; and agronomically acceptable salts/N-oxides/isomers/enantiomers of this compound.

2. A process for preparing compounds of the formula I as claimed in claim 1, which comprises, to prepare compounds of the formula I, in which R₁, R₂, R₃, R₄ and X₁ are as defined under formula I and Q is a group Q₁, either a) reacting a compound of the formula Ia.

in which R_1 , R_2 , R_3 , R_4 and X_1 are as defined under formula I and Y_1 is a leaving group, in an inert organic solvent in the presence of a base with a compound of the formula II

in which R_{24} , R_{21} , A_2 and A_1 are as defined under formula I, to give the compounds of the formulae IIIa and IIIb

and then isomerizing these in the presence of a base and a catalytic amount of dimethylaminopyridine (DMAP) or a source of cyanide, for example acetone cyanohydrin; or b) reacting a compound of the formula lb

$$\begin{array}{c} R_4 \\ R_3 \end{array} \begin{array}{c} OH \\ R_1 \\ X_1 \\ R_2 \end{array} \hspace{0.5cm} \text{(lb),}$$

in which $R_1,\,R_2,\,R_3,\,R_4$ and X_1 are as defined under formula 1, with a compound of the formula II

in which R_{22} , R_{21} , A_1 and A_2 are as defined under formula I, in an inert organic solvent in the presence of a base and a coupling agent to give the compound of the formula IIIa or IIIb,

and then isomerizing these as described under route a); or, to prepare the compounds of the formula I, in which Q is a group Q_2 , either a) reacting a compound of the formula Ia

$$R_3$$
 N R_1 X_1 R_2 (la).

in which R_1 , R_2 , R_3 , R_4 and X_1 are as defined under formula I and Y_1 is a leaving group, with a compound of the formula IIa

in which R_{34} and R_{35} are as defined under formula I_s in an inert organic solvent in the presence of a base to give the compound of the formula IIIc

$$\begin{array}{c|c} R_{34} \\ R_{3} \\ \end{array}$$

in which R_1 , R_2 , R_3 , R_4 , R_{34} , R_{35} and X_1 are as defined under formula I, and then isomerizing this compound in the presence of a base and a catalytic amount of a source of cyanide; or

b) reacting a compound of the formula lb

in which $R_1,\,R_2,\,R_3,\,R_4$ and X_1 are as defined under formula I, with a compound of the formula IIa

in which R_{34} and R_{35} are as defined above, in an inert organic solvent in the presence of a base and a coupling agent to give the compound of the formula IIIc

and then isomerizing this compound as described under route a); or, to prepare compounds of the formula I, in which Q is a group

$$R_{50}$$
-S Q_{30}

in which n is 0 and R_{50} and R_{40} are as defined above, either a) converting a compound of the formula IV

in which X_1 , R_1 , R_2 , R_3 , R_4 and R_{49} are as defined above, in the presence of a base, carbon disulfide and an alkylating agent of the formula V

in which R_{00} is as defined under formula I, and Y_2 is a leaving group, into the compound of the formula VI

$$R_{49}$$
 R_{3}
 R_{1}
 R_{50}
 R_{50}
 R_{1}
 R_{2}
 R_{2}
 R_{3}
 R_{49}
 R_{50}
 R_{50}
 R_{50}
 R_{50}
 R_{50}
 R_{50}
 R_{50}

in which R_1 , R_2 , R_3 , R_4 , R_{50} , X_1 and R_{60} are as defined under formula I, and then cyclizing this compound with hydroxylamine hydroxhloride in the presence of a base to give the isomeric compounds of the formulae ic and Id

and then oxidizing these compounds with an oxidizing agent, for example with peracids, to give the corresponding sulfoxides (n=1) and sulfones (n=2) of the formulae le and If, respectively.

- 3. A herbicidal and plant-growth-inhibiting composition, which contains a herbicidally effective amount of a compound of the formula I on an inert carrier.
- 4. A method for controlling undesirable plant growth, wherein a herbicidally effective amount of an active compound of the formula I or a composition which contains this active compound is applied to the plants or their habitat.
- 5. A method for inhibiting plant growth, wherein a herbicidally effective amount of an active compound of the formula I or a composition which contains this active compound is applied to the plants or their habitat.
- 6. A compound of the formula XX

$$\begin{array}{c} R_4 \\ R_3 \end{array} \begin{array}{c} Q \\ R_1 - X_1 \\ R_2 \end{array} (XX),$$

in which

Q is hydroxyl, halogen, cyano or C1-C6alkoxy, or is a group of the formula

$$\begin{array}{c} O \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ - \\ \\ - \\$$

R₁, R₂, R₄₉, R₅₀, X₁ and p are as defined under formula I and R₂ is a C₁-C₈alkyl. C₃-C₆alkenyl or C₃-C₆alkynyl group which is mono- or polysubstituted by halogen, hydroxyl, amino, formyl, nitro, cyano, mercapto, carbamoyl, C1-Cnalkoxy, C1-Cnalkoxycarbonyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C2-C6haloalkynyl, C1-C6cycloalkyl, by halogensubstituted C₃-C₆cycloalkyl, or by C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆haloalkoxy, C3-C6haloalkenyloxy, cyano-C1-C6alkoxy, C1-C6alkoxy-C1-C6alkoxy, C1-C6alkoxy-C1-C6alkoxy-C1-C6alkoxy, C1-C6alkylthio-C1-C6alkoxy, C1-C6alkylsulfinyl-C1-C6alkoxy, C1-Cealky/sulfonyl-C1-Cealkoxy, C1-Cealkoxycarbonyl-C1-Cealkoxy, C1-Cealkoxycarbonyl, C1-Cealkylcarbonyl, C1-Cealkylthio, C1-Cealkylsulfinyl, C1-Cealkylsulfonyl, C1-Cehalpalkylthio. C₁-C₆haloalky/sulfinyl, C₁-C₆-haloalky/sulfonyl, oxiranyl, which for its part may be substituted by C1-C8alkyl, or by (3-oxetanyl)oxy, which for its part may be substituted by C1-C8alkyl, or by benzylthio, benzylsulfinyl, benzylsulfonyl, C1-C6alkylamino, di(C1-C6alkyl)amino, RoS(O)2O. R₁₀N(R₁₁)SO₂-, thiocyanato, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl; where the phenyl- or benzyl-containing groups for their part may be substituted by one or more C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, halogen, cyano, hydroxyl or nitro aroups, or

 R_2 is phenyl which may be mono- or polysubstituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, halogen, cyano, hydroxyl or nitro; or R_2 is C_2 - C_6 cycloalkyl, C_1 - C_6 alkoxy- or C_1 - C_6 alkyl-substituted C_2 - C_6 cycloalkyl, 3-oxetanyl or C_1 - C_6 alkyl-substituted 3-oxetanyl; or

if X_1 is -N(R₆)-O-, -O-NR₅₁, SO₂NR₇- or -NR₅₆SO₂- and R₆, R₇, R₅₁ and R₅₂ are as defined under formula I,

R₂ may additionally be hydrogen, unsubstituted C₁-C₆alkyl, or

a five- to ten-membered monocyclic or fused bicyclic ring system which may be aromatic, saturated or partially saturated and may contain 1 to 4 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, where the ring system is attached directly or via a

Inter " nat Application No.

	/06430			
A. CLASSII	ECATION OF SUBJECT MATTER			
IPC 7	FICATION OF SUBJECT MATTER C070401/06 C07D405/06 C07D409, C07D213/50 A01N43/40	/06 C07D413	/06 CO7D	417/06
According to	International Patent Classification (IPC) or to both national classific	ation and IPC		
B. FIELOS	SEARCHED cumentation searched (description system followed by classification	on combates		
IPC 7	CO7D AOIN	vii vyriibuisi		
Documental	ion searched other than minimum documentation to the extent that s	such documents are incli	ided in the fields s	earched
	ala balan consulted during the international search (name of data ba BS Data	se and, where practical	search terms user	3)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with Indication, whore appropriate, of the re	levant passages		Relavant to claim No.
X,P	WO CO 39094 A (NOYARTIS AG., SWITZ.;NOYARTIS-ERFINDUMEN VERWALTUNGSESELLSCHAFT M.) 6 July 2000 (2000-07-06) cited in the application claim 1			1-6
X	WO 00 15615 A (NOVARTIS AG., SWITZ.;NOVARTIS-ERFINDUMGEN VERWALTUNGSESELLSCHAFT M.) 23 March 2000 (2000-03-23) cited in the application claim 1			1-6
A	US 5 260 262 A (LEE, LEN FANG ET 9 November 1993 (1993-11-09) claim 1	AL)		1-6
Funti	er documents are listed in the continuation of bax C.	X Petent family	members are listed	in annex.
° Special ca	tegaries of cited documents: int defining the general state of the last which is not	"T" later document pub or priority date and	lished after the link	ernational filing date
cons.d	ared to be of particular relevance iccurrent but published on or after the International	invention "X" document of partice	dar relevance: the	eory underlying the daimed invention
"L" docume which citation "O" decume other of	al which may thosy doubte on priority claimis) or is cited to cetablish the publication date of another or other special reason (a.K. specified) and referring to an oral disclosure, use, exhibition or users.	involve an inventive "Y" cocument of particle cannot be conside document is comb	alar relevance; the ored to involve an in sined with one or m	ocument is taken alone
later th	int published pilor to the international filing date but ion the priority date dalimed	*&" cocument member	of the same patent	family
Į.	actual completion of the international search		the tritemational se	arch report
	3 July 2001	31/07/2	001	
Name and r	nailing address of the ISA Europeam "Jasha (Office, P.B. 5816 Potentiaan 2 NL – 2280 HV Rigkrylk Tel. (531–70) 340–240 TX. 31 651 epo nl, Fax: (+31–70) 340–3016	Authorized officer See I man	n, I	

INTERNATIONAL SEARCH REPORT

Inte mail Application No PC TSTEP 01/06430

	Patent document cited in search report		Publication date		Patent family member(s)	Publication date	
WO 003	9094	A	06-07-2000	AU	2101500 A	31-07-2000	
WO 001	5615	A	23-03-2000	AU BR EP	5862999 A 9913745 A 1114030 A	03~04-2000 05~06-2001 11-07-2001	
US 526	00262	A	09-11-1993	AT AU CA DE DE EP ES JP US WO US	184596 T 3221293 A 2122262 A 69230003 D 69230003 T 0621863 A 2137249 T 7502993 T 5298479 A 9311112 A 5380699 A	15-10-1999 28-06-1993 10-06-1993 21-10-1999 30-03-2000 02-11-1994 16-12-1999 30-03-1995 29-03-1994 10-06-1993 10-01-1995	