第十四讲 Steiner test and TSP

MST-近加与 - Steiner 和 MST-松弛 - TSP

光希 Steiner 极于问题:

- · 给定 G=(V, E) W: E→R^t 完全图 (满识度量要求)
 - · 永一个牙的建理子图 牙=(5, E) S=5, 且 至, W(C)最小

G'小是一棵树, 论作Steiner树 S'\S中的点为 Steiner点

NP-hard

和美丽超。欧氏平面上的Stemer 村间起,用最短的 花枝将平面上纸锭的 点姓名来。 近ms有益: 用MSTX对ms

分析液形は、 $\frac{1}{1} = \frac{2(n-1)}{1}$ $\frac{1}{1} = \frac{2(n-1)}{1}$ $\frac{1}{1} = \frac{2(n-1)}{1}$ $\frac{1}{1} = \frac{2(n-1)}{1}$

下面证明该军生的政例以光是2

证明: 孝总最优解 下* 将下的边里和通得到 图 27*, 其为欧拉图 从与中的一点出发沿着 区为挖四路的方向, 加 过福与Emer点和已 治河底, 得到一路5上 的好及P,那么 $\int_{MST} \langle P \rangle \langle P \rangle \langle T \rangle = 2 \int_{T} \langle T \rangle$ 研究进展

96

夏面:

NO PTAS, if P + NP

正面:

一一大小小。Zelikovsky

1

1,59

1999

1.55

2000

:

.

1N4+E

Byrka et cl.

欧氏平面上的 Steiner 村向超

MST: 13-approximation

Gilbert-Pollak 精想

13 ≈ 1.127

一般同号201866

Arora (1998 JACM) (1+8) -doing TSP

问题(G=(V,E)完全图 C:E一户RT 末日上费用最小的公介 在分摄图(TSP环陷)

也就是确定了黑的一个侧势开 快得((\sumi), \sumi)) 最小,TI(N+1)=TI(1) 若 C 性意 K=2 Poly(n) 割 不存在 K-近州 罪信

序起哈舒通圈问题 (F)=(V,云)是否含H-圈?NPC G = (V, E) 完全图, $C(e) = \begin{cases} 1, e \in E, \\ n \neq k, e \notin E, \end{cases}$ $CopT = n \qquad \Longleftrightarrow C_A \leq n + 1$ $C_A \geq n + 1$

假设CISTEARST,即Cur

MST松驰军国

- 1. 光末Gi的MST, 缎T*
- 2. 将下*扩展的欧科通图,得Ge
- 3 沿着牙的欧拉回路不重复地构造一个H-圆H。

知:
$$C(H_c) \leq C(G_e)$$

= 2 $C(T^*)$
 $\leq 2 C(H_c^*)$

1913 2n+1 行期前 一样: 50.为中心 的星图 Ge: Vo V, Vo V3 Vo ·· Vzn-1 Vo V2 V0 V4 ---Vzn Vo Hc: Vo VIV3 其也之數則为2 $V_{2n-1}V_{2}$ $V_{2n-1}V_{2}$ $V_{2n-1}V_{2}$ $V_{2n-1}V_{2}$ $V_{2n-1}V_{2}$ $V_{2n-1}V_{2}$ $V_{2n-1}V_{2}$ $V_{2n-1}V_{$

设进

2. 求T*中奇波后的最小权完 美匹配M*, Ge=T*UM*

 $C(H_c) \leq C(T^*) + C(M^*)$ $S^*M H^* = \frac{3}{2}C(H^*)$ $H^* = \frac{3}{2}C(H^*)$

m十丁島 M+1 个J真点 其的具品用的距离的网络边 下的最级的表确定

易知: $C(H_c^*) = 2n+1$ T^* 为 $V_1 V_2 \cdots V_{2n+1}$, $C(T_c^*) = 2n$ M^* M^*

被 $C(H_c) = \frac{3n}{2n+1} \rightarrow \frac{3}{2}$

Review

上述架区兼自 Christofides (1976)

最新地震: 2020 (88夏)

fite: For some E>10, we give a 3½-E approximation
algorithm for metric TSP

by Karlin, Klein, Gharan

问题:在搜量\叔定全图 (F=(V,E)中求得一条 最短紧接的

MST松菜艺

- II) 来牙的MST, 得下*
- (2) 求丁*奇俊点(路两点外)的最小松完美匹配以
- (3) T*UM* 级 short-cut 得酬 P

分析最优龄的*收缩成只含于专该品的路

0 // 0 // 0 // 0

其意践 己 C (M1) + C (M2)

均是主搏两陆后的

=> C(M*) ≤ -> C(p*) => 3-2-2m

对对求这样的匹配M*呢?

(1) 枚泽阳前的点对(51,15) 机构

O(n2) 个匹配中选最好的.

(2) 引入两个虚拟顶点 A和B,连接到 陌有下的奇陵点,权 重为0(小牙还有的(包))

未最小权气美匹犯即将

TSP Path

国定际采H-路的-竹瓣点S

增业 MST粘地型性的第二岁

在下*中定义"误"点

- ·V\{s}中的奇陵点,
- ·5, 者其粉禺波点
- 2. 在误点中球阵~竹真点的的最小根实的发现和

)主: 若S影說, 且未被匹配, 删 下*UM*无奈俊点, 删生与S 关联的性-边

分析最优解Ps

So 0 大*上第一个奇俊就 撮话一个奇俊点

O S 不見海点(S耷後)

② S影误点(S柱****均锅设点)

S
$$M_{1:} (S_{1}), \dots$$

$$M_{2} (J_{1}), \dots$$

$$C(M_{1}) + C(M_{2}) \leq C(P_{S}^{*})$$

$$V_{1} \qquad V_{1}$$

$$C(M_{1}^{*}) \qquad C(M_{2}^{*})$$

TSP Path

国定两油点的最短H-烙(s-t的

T*中的关点包括

- ① V\{s, t3的奇陵点
- ② {S, t)中的偶发点

2. 在海点中求最小权笔复匹配 M* 无省一个例子:

 $C(P_{st}) = SN + 6$

不再是多人

分杯 5/3 - Ims 恩始: C(T*)+C(Pst) 23C(析) => $C(M^*) \leq \frac{2}{3} C(p_{st}^*)$ 将丁*-5片*并在一起得到Q 丁*中的奇波点在口中仍是奇波点。 将路地游戏 s 1 2 n-2 t

三个个个个个个 第2m-19 第2m个 $C(E_1) > C(M^*)$ Q\E, 是被抱图 经shoH-WT市成为识金 强制的H-圈,对迦姆-TIRE MI, Mz

有:
$$((T^*) + C(P_{st}^*)$$

$$> ((E_1) + C(M_1))$$

$$+ C(M_2)$$

$$> 3 C(M^*)$$

$$\Rightarrow C(P_{st}) \leq (CT^*) + C(M^*)$$

$$\leq \frac{5}{3} \cdot C(P_{st}^*)$$