Data structure

BST

cur Insert - 1

Insert - 2

Insert - 3

Insert - 4

search - 2

search - 3

노드를 지울 때 3가지 상황

- 1. 지울 노드가 리프 노드
- 2. 자식 노드가 하나일 때
- 3. 자식 노드가 둘일 때

1. 지울 노드가 리프 노드

2. 자식 노드가 하나일 때

3. 자식 노드가 둘일 때

대체 노드

왼쪽 서브 트리에서 가장 큰 노드

Remove()함수에서 루트 노드를 업데이트하는 이유

__remove_recusion(node 5, 5)

Remove()함수에서 루트 노드를 업데이트하는 이유

__remove_recusion(node 5, 5)

Remove()함수에서 루트 노드를 업데이트하는 이유

루트를 업데이트 해줘야 함.

3 새로운 루트