

SILABO

Silabo adapto en el marco de la emergencia sanitaria por el COVID-19

ALGORITMO Y ESTRUCTURA DE DATOS I

Asignatura no presencial

ÁREA CURRICULAR: CIENCIAS DE LA COMPUTACIÓN

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico : 2022–II

1.3 Código de la asignatura : 09005303050

1.4 Ciclo: III1.5 Créditos: 051.6 Horas semanales totales: 11

1.6.1 Horas lectivas (Teoría, Práctica, Laboratorio): 7 (T=3, P=1, L=3)

1.6.2 Horas no lectivas : 4

1.7 Condición de la asignatura : Obligatoria

1.8 Requisitos : 09111402050 Introducción a la Programación

II. SUMILLA

Es de naturaleza teórico-práctico, dirigido a que el alumno desarrolle programas para computadora haciendo uso de las características básicas de la programación orientada a objetos y almacenando datos en arreglos. Los principales temas a tratar son: Clases y objetos, atributos y métodos, encapsulamiento, herencia, polimorfismo, sobrecarga de métodos, algoritmos con vectores.

Unidades: I: Introducción a la Teoría Orientada a Objetos, II: Algoritmos para la manipulación de datos en Vectores. III: Introducción a la Teoría Orientada a Objetos – Métodos y Atributos de Instancia y de Clase. IV: Propiedades de la Teoría Orientada a Objetos: Herencia, Polimorfismo y Encapsulamiento. Vectores de Objetos.

III. COMPETENCIAS Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

3.1 Competencias

- Aplica conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.
- Analiza un problema e identifica y define los requerimientos apropiados para su solución.
- Diseña, implementa y evalúa un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.
- Usa técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.

3.2 Componentes

Capacidades

- Determina el esquema de solución de un problema, seleccionando los componentes de la Teoría Orientada a Objetos.
- Aplica la lógica de programación desarrollada.

Contenidos actitudinales -

Respeto a la

persona.

- Respeto de las normas establecidas por la universidad.
- Llega puntual al aula y tiene una constante asistencia a clases que demuestra un mayor interés en el curso.
- Compromiso para desarrollar los ejercicios propuestos.

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I: Introducción a la Teoría Orientada a Objetos.

CAPACIDAD:

- Describe, explica y aplica los conceptos de la Teoría Orientada a Objetos.
- Implementa métodos de acuerdo a sus necesidades.

		CONTENIDOS	ACTIVIDAD DE		RAS
SEMANA	CONTENIDOS CONCEPTUALES	PROCEDIMENTALES	APRENDIZAJE	L	T. I.
1	Primera sesión Concepto de la Teoría Orientada a Objetos (TOO). Definición de Clase y Objeto. Características de las Clases. Diagrama de Clase. Segunda sesión Componentes de una clase, atributos y métodos. Correlación con el lenguaje de programación. Laboratorio Desarrollo de soluciones creando clases, declarando atributos e identificando métodos.	conceptos de la TOO mediante ejemplos abstraídos del entorno Explicación de la correlación	Lectivas (L): - Desarrollo del tema – 3 h - Desarrollo de ejercicios - 1 h - Ejercicios guiados – 3h Trabajo Independiente (T.I) - Desarrollo de ejercicios – 4h	7	4
2	Primera sesión Métodos: Definición y clasificación. Llamada de métodos. Métodos definidos por usuario. Métodos que no retornan valor y no reciben parámetros. Segunda sesión Métodos que no retornan valor y reciben parámetros. Laboratorio Desarrollo de soluciones usando métodos que no retornan valor pero que reciben y no reciben parámetros.	 Explicación del concepto de métodos. Desarrollo de ejemplos de métodos que no retornan valor y no reciben parámetros, y métodos que no retornan valor y reciben parámetros. Ejercicios de refuerzo. 	Lectivas (L): - Desarrollo del tema – 3 h - Desarrollo de ejercicios - 1 h - Ejercicios guiados – 3h Trabajo Independiente (T.I) - Desarrollo de ejercicios – 4h	7	4

3	Primera sesión Métodos que retornan valor y no reciben parámetros. Segunda sesión Métodos que retornan valor y reciben parámetros. Laboratorio Desarrollo de soluciones usando métodos que retornan valor pero que reciben y no reciben parámetros.	 Desarrollo de ejemplos de métodos que retornan valor y no reciben parámetros, y métodos que retornan valor y reciben parámetros. Ejercicios de refuerzo. 	- Fiercicios guiados – 3h	7	4	
---	---	---	---------------------------	---	---	--

UNIDAD II. Algoritmos para la manipulación de datos en Vectores

CAPACIDAD:

- Aplica el algoritmo de búsqueda de datos en un arreglo unidimensional, en combinación con la TOO.
- Aplica el algoritmo de modificación de datos en un arreglo unidimensional, en combinación con la TOO.
- Aplica el algoritmo de ordenamiento de datos en un arreglo unidimensional, en combinación con la TOO.
- Aplica el algoritmo de eliminación de datos en un arreglo unidimensional, en combinación con la TOO.

4	Primera sesión Algoritmo de búsqueda y modificación de datos en un vector. Segunda sesión Algoritmo de eliminación de datos en vector. Laboratorio Desarrollo de soluciones con operaciones sobre los elementos de un vector: búsqueda, modificación y eliminación. Evaluación de Laboratorio N° 01.	 Explicación de los algoritmos de búsqueda, modificación y eliminación de datos en vectores. Desarrollo de ejemplos de los algoritmos de búsqueda, modificación y eliminación. Ejercicios de refuerzo. 	Lectivas (L): - Desarrollo del tema – 3h - Desarrollo de ejercicios - 1 h - Ejercicios guiados – 3h Trabajo Independiente (T.I) - Desarrollo de ejercicios – 4h	7	4
5	Primera sesión Algoritmo de ordenamiento de datos en un vector, método de Transposición. Ordenamiento ascendente y descendente. Segunda sesión Práctica Calificada 1 Desarrollo de soluciones con métodos, vectores y algoritmos. Laboratorio Desarrollo de soluciones de ordenamiento de datos en un vector.	 Explicación del algoritmo de ordenamiento de datos en vectores. Desarrollo de ejemplos del algoritmo de ordenamiento. Ejercicios de refuerzo. Evaluación: práctica calificada 1. 	Lectivas (L): - Desarrollo del tema – 3 h - Desarrollo de ejercicios - 1 h - Ejercicios guiados – 3h Trabajo Independiente (T.I) - Desarrollo de ejercicios – 4h	7	4

UNIDAD III. Introducción a la Teoría Orientada a Objetos - Métodos y Atributos de Instancia y de Clase

CAPACIDAD:

- Determina, cuando lo requiere, la creación de métodos y atributos de instancia.
- Determina, cuando lo requiere, la creación de métodos y atributos de clase.

Primera sesión Desarrollo de soluciones con métodos, vectores Segunda sesión Método Constructor. Método main. Llamada al n	especiales: el metodo - Desarrollo de ejercicios -	7	4
---	--	---	---

	Laboratorio Diseño y programación de soluciones utilizando el método constructor y método main.	- Desarrollo de ejemplos con los métodos especiales. Trabajo Independiente (T.I) - Desarrollo de ejercicios – 4h		
7	Primera sesión Atributos de clase y atributos de instancia. Forma de acceder a ambos tipos de atributos. Segunda sesión Métodos de clase y métodos de instancia. Forma de invocar a ambos tipos de métodos. Laboratorio Desarrollo de soluciones implementando clases que contengan miembros de clase y miembros de instancia.	 Explicación de los atributos de clase y atributos de instancia. Explicación de los métodos de clase y métodos de instancia. Desarrollo de ejemplos con atributos y métodos de clase y de instancia. Lectivas (L): Desarrollo de ejercicios - 1 h Ejercicios guiados - 3h Trabajo Independiente (T.I) Desarrollo de ejercicios - 4h 	7	4
8	Examen parcial			

UNIDAD IV. Propiedades de la Teoría Orientada a Objetos: Herencia, Polimorfismo y Encapsulamiento. Vectores de Objetos

CAPACIDAD:

- Entiende y aplica la propiedad de Herencia, teniendo en cuenta que también es una forma de reutilización de código.
- Entiende y aplica la propiedad de Polimorfismo, entendiendo también los conceptos de métodos abstractos.
- Entiende y aplica la propiedad de Encapsulamiento.
- Usa el almacenamiento de objetos en vectores, para almacenar datos de diferente tipo de datos.

Primera sesión Encapsulamiento. Modificadores de acceso: público y privado. Métodos de acceso: set y get. Trabajar con 2 clases. 9 Segunda sesión Ejercicios con encapsulamiento Laboratorio Desarrollo de soluciones implementando clases que contengan modificadores de acceso.	 Explicación del concepto de encapsulamiento y modificadores de acceso. Desarrollo de ejemplos con encapsulamiento y modificadores de acceso. Ejercicios de refuerzo. 	Lectivas (L): - Desarrollo del tema – 3 h - Desarrollo de ejercicios - 1 h - Ejercicios guiados – 3h Trabajo Independiente (T.I) - Desarrollo de ejercicios – 4h	7	4
--	--	---	---	---

10	Primera sesión Herencia, concepto, representación en diagrama UML, correlación con el lenguaje de programación. Segunda sesión Ejercicios combinados con Herencia Laboratorio Desarrollo de soluciones aplicando herencia entre dos o más clases.	 Explicación del concepto de herencia y su representación de clases. Desarrollo de ejemplos con clases padre e hija. Ejercicios de refuerzo. 	Lectivas (L): - Desarrollo del tema – 3 h - Desarrollo de ejercicios - 1 h - Ejercicios guiados – 3h Trabajo Independiente (T.I)	7	4

			- Desarrollo de ejercicios – 4h		
11	Primera sesión Polimorfismo, concepto, representación en diagrama UML, correlación con el lenguaje de programación. Clase abstracta, método abstracto, clase interfaz. Segunda sesión Ejercicios combinados con Polimorfismo. Laboratorio Evaluación de Laboratorio N°02.	 Explicación del concepto de polimorfismo y su representación de clases. Desarrollo de ejemplos con interfaces. Ejercicios de refuerzo. 	Lectivas (L): - Desarrollo del tema – 3 h - Desarrollo de ejercicios - 1 h - Ejercicios guiados – 3h Trabajo Independiente (T.I) - Desarrollo de ejercicios – 4h	7	4
12	Primera sesión Sobrecarga de métodos Segunda sesión Ejercicios combinados con sobrecarga de métodos. Laboratorio Desarrollo de soluciones aplicando polimorfismo y sobrecarga de métodos.	 Explicación de la sobrecarga de métodos. Desarrollo de ejemplos con sobrecarga de métodos. Ejercicios de refuerzo. 	Lectivas (L): - Desarrollo del tema – 3 h - Desarrollo de ejercicios - 1 h - Ejercicios guiados – 3h Trabajo Independiente (T.I) - Desarrollo de ejercicios – 4h	7	4
13	Primera sesión Ejercicios combinados de todos los temas tratados. Segunda sesión Práctica Calificada 2 Laboratorio Desarrollo de soluciones de ejercicios combinados.	Ejercicios de refuerzo. Evaluación: práctica calificada 2.	Lectivas (L): - Desarrollo del tema – 3 h - Desarrollo de ejercicios - 1 h - Ejercicios guiados – 3h Trabajo Independiente (T.I) - Desarrollo de ejercicios – 4h	7	4

	Otras operaciones sobre un Vector de objetos: Modificación, eliminación y ordenamiento. Laboratorio Desarrollo de soluciones con operaciones de búsqueda, modificación, eliminación y ordenamiento de objetos almacenados en un Vector.	modificación, eliminación y ordenamiento. Desarrollo de ejemplos con vectores de objetos. Ejercicios de refuerzo.	Trabajo Independiente (T.I) - Desarrollo de ejercicios – 4h	
15	Primera sesión Ejercicios de vectores de objetos y algoritmos para la gestión de datos. Segunda sesión Ejercicios combinados con vectores de objetos. Laboratorio Evaluación de Laboratorio N°03.	- Ejercicios de refuerzo.	Lectivas (L): - Desarrollo del tema – 3 h - Desarrollo de ejercicios - 1 h - Ejercicios guiados – 3h Trabajo Independiente (T.I) - Desarrollo de ejercicios – 4h	7 4
16	Examen Final.			
17	Entrega de promedios finales y acta del curso.			

14	Primera sesión Almacenamiento de objetos en un Vector. Visualización del contenido de un Vector de objetos. Búsqueda de elementos. Segunda sesión	Explicación de Vectores de objeto, modo de ingreso de datos. Uso de los algoritmos de búsqueda,	Lectivas (L): Desarrollo del tema – 3 h Desarrollo de ejercicios - 1 h Ejercicios guiados – 3h		4
----	---	---	--	--	---

V. ESTRATEGIAS METODOLÓGICAS

- **Método Expositivo Interactivo.** Comprende la exposición del docente y la interacción con el estudiante, empleando las herramientas disponibles en el aula virtual de la asignatura
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones, empleando las herramientas disponibles en el aula virtual de la asignatura
- Método de Demostración Ejecución. Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto, empleando las herramientas disponibles en el aula virtual de la asignatura

VI. RECURSOS DIDÁCTICOS - Equipos: Computadora.

- Materiales: Material elaborado por los docentes, prácticas dirigidas de laboratorio y textos (ver fuentes de consultas).
- Lenguaje de Programación: Java (Ing. Computación y Sistemas) y C# (Ing. Industrial) Software: NetBeans IDE 8.2 (Ing. Computación y Sistemas) y Visual Studio (Ing.
 Industrial) Clases en línea.
- Tutoría en línea.
- Foros

VII. EVALUACIÓN DEL APRENDIZAJE

PF = (PE+EP+EF) / 3

Donde:

PE = Promedio de evaluaciones

EP = Examen parcial

EF = Examen final

PE = 0.6*PPC + 0.4*PL PL = (Lb1+Lb2+Lb3) / 3

PPC = (P1+P2) / 2

Donde: Donde:

P1, P2 = Práctica calificada PL = Promedio de laboratorio PPC = Promedio de practica calificada Lb1, Lb2, Lb3 = Evaluación de

laboratorio

VIII. FUENTES DE INFORMACIÓN

8.1 Bibliográficas

- □ Ceballos Sierra, Francisco Javier (2013). Enciclopedia de Microsoft Visual C#. 4ª edición. Ed. RA-MA. México D.F.
- □ Dorman, Scott (2013). C# 5.0 y Visual C# 2012. Ed. Anaya Multimedia. Madrid.
- Hugon, Jérome (2014). C# 5.0: Desarrolle aplicaciones Windows con Visual Studio 2013. Ediciones ENI. Barcelona.
- □ Flores Cueto, Juan José (2014). Método de las 6'D: modelamiento-algoritmo-programación. Ed. Macro. Lima.
- □ Deitel, Paul; Deitel, Harvey (2012). Cómo programar en java. 9na edición. Ed. Pearson.

México D.F.

□ Schildt, Herbert (2012). Java 7. Ed. Anaya Multimedia. Madrid.

IX. APORTE DEL CURSO AL LOGRO DE LOS RESULTADOS DEL ESTUDIANTE

El aporte del curso al logro de los Resultados del Estudiante (*Student Outcomes*) en la formación del graduado en Ingeniería de Computación y Sistemas e Ingeniería Industrial, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

K = clave R = relacionado Recuadro vacío = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	R
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	K
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	R
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	R
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	R
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	K
(I)	Habilidad de gestionar proyectos y demostrar el conocimiento y la comprensión de los principios de gestión en ingeniería y la toma de decisiones económicas, y su respectiva aplicación.	

