```
In [ ]: from google.colab import files
    files.upload()
```

Choose Files | No file chosen

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

```
Saving ss.csv to ss.csv
Saving test.csv to test.csv
Saving train.csv to train.csv
```

Imports

```
In [5]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        %matplotlib inline
        plt.style.use('seaborn-whitegrid')
        import seaborn as sns
        from sklearn.model_selection import train_test_split, StratifiedKFold
        from sklearn.metrics import accuracy_score, f1_score
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.linear_model import LogisticRegression
        from lightgbm import LGBMClassifier
        from IPython.core.interactiveshell import InteractiveShell
        InteractiveShell.ast_node_interactivity = "all"
        pd.set_option('display.max_colwidth', -1)
        import warnings
        warnings.simplefilter('ignore')
        import plotly.offline as pyo
        import plotly.figure_factory as ff
        from plotly import tools
        import plotly.graph_objs as go
```

```
In [ ]: train = pd.read_csv('train.csv')
train.head()
```

Out[6]:

	Custmer_Id	Gender	Age	DL	City_Code	Insured	Vehicle_Age	Vehicle_Damage	Annual_Premium	Sales_Channel	Customer_Associat
0	1	Male	44	1	28	0	> 2 Years	Yes	40454	26	_
1	2	Male	76	1	3	0	1-2 Year	No	33536	26	
2	3	Male	47	1	28	0	> 2 Years	Yes	38294	26	
3	4	Male	21	1	11	1	< 1 Year	No	28619	152	
4	5	Female	29	1	41	1	< 1 Year	No	27496	152	
4											

Hypothesis Generation

- 1. Does insurance respone is gender bisased?
- 2. Does old/middle age people subscribed more or young people subscribed more? Middle aged people (30-50)
- 3. Having a DL led to get vehicle insurance? 4.Does Vehicle age had any relation on getting vehicle insurance? 1-2 years and >2
- 4. Does people with vehicle damage, subscribed to vehicle insurance? Yes
- 5. People who are paying high annual preimium also took vehicle insurance or not? **Yes people paying high premium took the Vehicle insurance**
- 6. What were the top few sales channel where people were most likely to take insurance?
- 7. Did an old customer also took the insurance? New Customers as well as Vintage customers subscribed toinsurance

```
In [ ]: ID_COL, TARGET_COL = 'id', 'Response'
```

```
In []: print(f'\nTrain contains {train.shape[0]} samples and {train.shape[1]} variables')
#print(f'\nTest contains {test.shape[0]} samples and {test.shape[1]} variables')

features = [c for c in train.columns if c not in [ID_COL, TARGET_COL]]
    print(f'\nThe dataset contains {len(features)} features')
```

Train contains 381109 samples and 12 variables

The dataset contains 11 features

3. Target Distribution

This is a binary classification problem. Lets have a look at the number of positive and negative examples that we have, or in our problem statement terms: 'Number of People who did subscribe for a term deposit and the number of people who did not'

Variable Types

```
In [ ]: train.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 381109 entries, 0 to 381108
Data columns (total 12 columns):

```
#
   Column
                         Non-Null Count
                                         Dtype
                         -----
0
   Custmer_Id
                         381109 non-null int64
1
   Gender
                         381109 non-null object
2
   Age
                         381109 non-null int64
3
   DL
                         381109 non-null int64
4
   City_Code
                         381109 non-null int64
5
   Insured
                         381109 non-null int64
6
   Vehicle_Age
                         381109 non-null object
7
   Vehicle Damage
                         381109 non-null object
8
   Annual_Premium
                         381109 non-null int64
    Sales_Channel
                         381109 non-null int64
   Customer_Association 381109 non-null int64
10
11 Response
                         381109 non-null int64
```

dtypes: int64(9), object(3)
memory usage: 34.9+ MB

Null Values

```
In [ ]: |null_values_per_variable = 100 * (train.isnull().sum()/train.shape[0]).round(3)#.reset_index()
         null_values_per_variable.sort_values(ascending=False)
Out[10]: Response
                                  0.0
         Customer_Association
                                  0.0
         Sales Channel
                                  0.0
         Annual_Premium
                                  0.0
         Vehicle_Damage
                                  0.0
         Vehicle_Age
                                  0.0
         Insured
                                  0.0
         City_Code
                                  0.0
         DL
                                  0.0
         Age
                                  0.0
         Gender
                                  0.0
         Custmer_Id
                                  0.0
         dtype: float64
 In [ ]: |train.nunique()
Out[11]: Custmer_Id
                                  381109
         Gender
                                  2
         Age
                                  66
         \mathsf{DL}
                                  2
         City_Code
                                  53
         Insured
                                   2
                                  3
         Vehicle_Age
                                  2
         Vehicle_Damage
                                  48838
         Annual_Premium
         Sales Channel
                                  155
                                  290
         Customer_Association
                                  2
         Response
         dtype: int64
```

Features

Categorical Features

Univariate Analysis

Pie Charts can be useful in seeing the proportion of samples, that fall into each category of a categorical variable. For each of the categorical variables we will make a pie chart.

```
In [ ]: fig, axes = plt.subplots(2, 2, figsize=(20, 8))
    axes = [ax for axes_row in axes for ax in axes_row]

for i, c in enumerate(train[cat_cols]):
    _ = train[c].value_counts()[::-1].plot(kind = 'pie', ax=axes[i], title=c, autopct='%.0f', fontsize=12)
    _ = axes[i].set_ylabel('')
    _ = plt.tight_layout()
```


Bivariate Analysis Relationships with Target

```
In []:
    fig, axes = plt.subplots(2, 2, figsize=(20, 10))
    axes = [ax for axes_row in axes for ax in axes_row]

for i, c in enumerate(train[cat_cols]):
    fltr = train[TARGET_COL] == 0
    vc_a = train[fltr][c].value_counts(normalize=True).reset_index().rename({'index' : c, c: 'count'}, axis=1)

    vc_b = train[~fltr][c].value_counts(normalize=True).reset_index().rename({'index' : c, c: 'count'}, axis=1)

    vc_a[TARGET_COL] == 0
    vc_b[TARGET_COL] == 1

    df = pd.concat([vc_a, vc_b]).reset_index(drop = True)
    _ = sns.barplot(y = c, x = 'count', data =df , hue=TARGET_COL, ax=axes[i])
    _ = plt.tight_layout()
```


Observations

- 1. Among male customers, majority took vehicle insurance and among females, majority did not took insurance
- 2. Customers with Vehicle age of 1-2 years and more than 2 years tend to take insurances
- 3. Customers with damaged vehicles took more vehicle insurances and opposite case for customers without vehicle damage.

Numerical Features

1. Univariate Analysis - Boxplots

Boxplot can be used to see the spread of the numerical variables, and identify outliers

https://en.wikipedia.org/wiki/Box_plot (https://en.wikipedia.org/wiki/Box_plot)

2. Univariate Analysis - Density Plots

A kernel density estimate (KDE) plot is a method for visualizing the distribution of observations in a dataset, analogous to a histogram. KDE represents the data using a continuous probability density curve in one or more dimensions.

https://seaborn.pydata.org/generated/seaborn.kdeplot.html (https://seaborn.pydata.org/generated/seaborn.kdeplot.html)

```
In [ ]: | sns.set(font_scale=1.3)
          fig, axes = plt.subplots(4, 2, figsize=(18, 14))
          axes = [ax for axes_row in axes for ax in axes_row]
          for i, c in enumerate(num_cols):
             plot = sns.kdeplot(data=train, x=c, ax=axes[i], fill=True)
          plt.tight_layout()
                  1e-6
                                                                                       0.06
              2.5
              2.0
                                                                                    Density
20.02
            Density
1.0
              0.5
              0.0
                                                                                       0.00
                                   100000
                                                200000
                                                              300000
                                                                           400000
                                                                                                20
                                                                                                                                                        90
                                                                                                        30
                                                                                                                                60
                                                                                                                                        70
                                             Custmer_Id
                                                                                                                          Age
                                                                                      0.125
              100
                                                                                      0.100
               80
           Density
                                                                                    Density
0.050
               60
               40
                                                                                      0.025
               20
                0
                                                                                      0.000
                    0.0
                                                                             1.0
                                                                                                          10
                                0.2
                                                                 0.8
                                                 DL
                                                                                                                       City_Code
                                                                                         3
              Density
8 8 8
                                                                                       Density
∾
                1
                0
                                                                                         0
                                                                                                                           300000
                                                                                                                                                500000
                         0.0
                                  0.2
                                                     0.6
                                                                        1.0
                                                                                                      100000
                                                                                                                 200000
                                                                                                                                      400000
                                                               0.8
                                                                                                                    Annual_Premium
             0.04
                                                                                      0.003
             0.03
           Density
0.00
                                                                                   Density
200.0
                                                                                      0.001
             0.01
             0.00
                                                                                      0.000
                               25
                                               75
                                                      100
                                                                      150
                                                                                                                         150
                                                                                                                                 200
```

 $Customer_Association$

Observations

1. Database mostly had target customers with young age and middle age

Sales_Channel

2. Database had customers mostly who have DL

Bivariate Analysis KDE plots - Relationships with Target Variable.

```
In [ ]: |sns.set(font_scale=1.3)
          fig, axes = plt.subplots(4, 2, figsize=(18, 14))
          axes = [ax for axes_row in axes for ax in axes_row]
          for i, c in enumerate(num_cols):
            plot = sns.kdeplot(data=train, x=c, hue=TARGET_COL, multiple='fill', ax=axes[i])
          plt.tight_layout()
             1.0
                                                                                   1.0
                                                                    Response
                                                                                                                                          Response
             0.8
                                                                                   0.8
                                                                     0
                                                                                                                                           0
                                                                     1
          Density
o 0.0
                                                                                 Density
o 0.0
             0.2
                                                                                   0.2
             0.0
                                                                                   0.0
                         50000 100000 150000 200000 250000 300000 350000 400000
                                                                                                         40
                                                                                                                                   70
                                                                                                                                           80
                                          Custmer_ld
                                                                                                                   Age
             1.0
                                                                                   1.0
                                                                                                                                          Response
                                                                    Response
             0.8
                                                                                   8.0
                                                                     0
                                                                                                                                           0
                                                                     ____1
                                                                                                                                           1
                                                                                 Density
o o o
          Density
o o 4
             0.2
                                                                                   0.2
             0.0
                                                                                   0.0
               0.0
                           0.2
                                                                           1.0
                                                                                                   10
                                       0.4
                                                   0.6
                                                               0.8
                                                                                                                                   40
                                                                                                                                             50
                                                                                                                 City_Code
                                              DL
             1.0
                                                                                   1.0
                                                                                                                                          Response
                                                                    Response
             8.0
                                                                                   8.0
                                                                     0
                                                                     ___1
                                                                                 Density
o 0.0
          Density
9.0
             0.2
                                                                                   0.2
             0.0
                                                                                   0.0
                                                  0.6
                                                                      1.0
                                                                                      0
                                                                                               100000
                                                                                                                                            500000
                                           Insured
                                                                                                              Annual Premium
             1.0
                                                                                   1.0
                                                                    Response
                                                                                                                                          Response
             0.8
                                                                     0
                                                                                   0.8
                                                                                                                                           0
           Density
o 0.0
                                                                                 Density
9.0
             0.2
                                                                                   0.2
             0.0
                                                                                   0.0
                   0
                           25
                                   50
                                                   100
                                                           125
                                                                   150
                                                                           175
                                                                                                 50
                                                                                                                   150
                                                                                                                            200
                                                                                                                                     250
                                           75
                                                                                                                                              300
```

Customer_Association

Observations

1. Customers in the range 30-50 responded more for Vehicle Insurance

Sales_Channel

- 2. Customers with DL reponded more than customers without DL
- 3. Customers who were were not insured previously tend to take Vehicle Insurance
- 4. Mostly Veteran Customers and new customers took the vehicle insurance

Median Effect

We are choosing median since median is not affected by outliers

```
In [ ]: sns.set(font_scale=1.3)
          fig, axes = plt.subplots(4, 2, figsize=(18, 14))
          axes = [ax for axes_row in axes for ax in axes_row]
          for i, c in enumerate(num_cols):
            plot = train.groupby(TARGET_COL)[c].median().plot(kind = 'barh', title=f'Median_{c}', ax=axes[i])
          plt.tight_layout()
                                     Median_Custmer_Id
                                                                                                              Median_Age
           Response
                                                                                 Response
                    25000
                                         100000 125000 150000 175000 200000
                                                                                                                            30
                                                                                                                                          40
                            50000
                                         Median_DL
                                                                                                            Median_City_Code
           Response
                                                                                 Response
                         0.2
                                                0.6
                                                            8.0
                                                                                                                             20
                                                                                                                                        25
             0.0
                                                                        1.0
                                                                                                         Median Annual Premium
                                       Median_Insured
                                                                                 Response
           Response
             0.0
                         0.2
                                                0.6
                                                            0.8
                                                                        1.0
                                                                                            5000
                                                                                                             15000
                                                                                                                      20000
                                                                                                                                       30000
                                    Median_Sales_Channel
                                                                                                       Median\_Customer\_Association
           Response
              0
                     20
                                     60
                                            80
                                                    100
                                                           120
                                                                   140
                                                                                            20
                                                                                                   40
                                                                                                                  80
                                                                                                                         100
                                                                                                                                 120
                                                                                                                                        140
                                                                                                                                                160
```

Obsevations

- 1. Customers of 40+ age tend to take vehicle insurances more
- 2. Median annual premium paid was around 30,000

City generating maximum annual premiums

```
In [ ]: sns.set(rc={'figure.figsize':(12.7, 8.27)})

top_20_channels = train['City_Code'].value_counts()[:10].reset_index()
top_20_channels.columns = ['City_Code', 'Annual_Premium']

_ = sns.barplot(data = top_20_channels, y = 'Annual_Premium', x = 'City_Code')
_ = plt.title("Top 10 cities with maximum number of annual premiums")
```


#Sales Channel generating maximum annual premiums

```
In [ ]: sns.set(rc={'figure.figsize':(12.7, 8.27)})
     top_20_channels = train['Sales_Channel'].value_counts()[:10].reset_index()
     top_20_channels.columns = ['Sales_Channel', 'Annual_Premium']
     _ = sns.barplot(data = top_20_channels, y = 'Annual_Premium', x = 'Sales_Channel')
     _ = plt.title("Top 10 Sales Channel with maximum number of annual premiums")
```



```
In [ ]: train.nunique()
                                   381109
Out[24]: Custmer_Id
          Gender
                                   2
                                   66
          Age
                                   2
          DL
          City_Code
                                   53
          Insured
                                   2
          Vehicle_Age
                                   3
                                   2
          Vehicle_Damage
          Annual_Premium
                                   48838
          Sales_Channel
                                   155
          {\tt Customer\_Association}
                                   290
                                   2
          Response
          dtype: int64
```


Observations

- 1. Customers with DL paid Higher Annual premiums than customers without DL
- 2. Customers with Vehicle age 1-2 years paid higher premiums

Correlations

```
In [ ]: plt.figure(figsize=(14, 8))
    _ = sns.heatmap(train[num_cols].corr(), annot=True)
```

Out[27]: <Figure size 1008x576 with 0 Axes>

Factors affecting Annual Premium

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8b9173d320>

Observations

1. As the customers age increases, they tend to go for higher subscriptions

Model

```
In [10]: train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
```

```
In [31]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         %matplotlib inline
         plt.style.use('seaborn-whitegrid')
         from sklearn.preprocessing import LabelEncoder
         import seaborn as sns
         from sklearn.model_selection import train_test_split, StratifiedKFold
         from sklearn.metrics import accuracy_score, f1_score
         from sklearn import metrics
         from sklearn.metrics import roc_curve
         from sklearn.metrics import roc_auc_score
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.linear_model import LogisticRegression
         from lightgbm import LGBMClassifier
         #from catboost import CatBoostClassifier
         from xgboost import XGBClassifier
         from IPython.core.interactiveshell import InteractiveShell
         InteractiveShell.ast_node_interactivity = "all"
         pd.set_option('display.max_colwidth', -1)
         import warnings
         warnings.simplefilter('ignore')
```

Data

```
In [11]: train.head()
Out[11]:
               Custmer_Id Gender Age DL City_Code Insured Vehicle_Age Vehicle_Damage Annual_Premium Sales_Channel Customer_Associate
            0
                        1
                              Male
                                                                    > 2 Years
                                                                                          Yes
                                                                                                         40454
                                                                                                                           26
                        2
                                                      3
                                                              0
                                                                                                         33536
                                                                                                                           26
                                                                                                                                               18
            1
                              Male
                                     76
                                          1
                                                                     1-2 Year
                                                                                          No
            2
                        3
                              Male
                                     47
                                                     28
                                                              0
                                                                    > 2 Years
                                                                                          Yes
                                                                                                         38294
                                                                                                                           26
            3
                        4
                                                     11
                                                              1
                                                                                                         28619
                                                                                                                                               2(
                              Male
                                     21
                                          1
                                                                     < 1 Year
                                                                                          No
                                                                                                                          152
                           Female
                                     29
                                                     41
                                                              1
                                                                      < 1 Year
                                                                                           No
                                                                                                         27496
                                                                                                                          152
```

```
In [12]: train.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 310176 entries, 0 to 310175
Data columns (total 12 columns):
    Column
                          Non-Null Count
                                           Dtype
                          -----
0
    Custmer_Id
                          310176 non-null int64
 1
                          310176 non-null object
    Gender
 2
                          310176 non-null int64
    Age
 3
    DL
                          310176 non-null int64
 4
                          310176 non-null int64
    City_Code
 5
    Insured
                          310176 non-null int64
 6
    Vehicle_Age
                          310176 non-null object
     Vehicle_Damage
                          310176 non-null
 8 Annual_Premium
                          310176 non-null int64
                         310176 non-null int64
 9
    Sales_Channel
10 Customer_Association 310175 non-null float64
                         310175 non-null float64
11 Response
dtypes: float64(2), int64(7), object(3)
memory usage: 28.4+ MB
```

Target and Features

```
In [13]: ID_COL, TARGET_COL = 'Custmer_Id', 'Response'
    features = [c for c in train.columns if c not in [ID_COL, TARGET_COL]]

In [14]: cat_cols = ['Gender',
    'Vehicle_Damage',
    'Vehicle_Age']
    num_cols = [c for c in features if c not in cat_cols]
```

Label Encoding

```
In [15]: le=LabelEncoder()
          train['Gender']=le.fit_transform(train['Gender'])
          train['Vehicle_Damage']=le.fit_transform(train['Vehicle_Damage'])
          train['Vehicle_Age']=train['Vehicle_Age'].map({'< 1 Year':0,'1-2 Year':1,'> 2 Years':2})
In [16]: train.head()
Out[16]:
              Custmer_Id Gender Age DL City_Code Insured Vehicle_Age Vehicle_Damage Annual_Premium Sales_Channel Customer_Associate
                                                28
                                                                     2
           0
                                  44
                                                         0
                                                                                                40454
                                                                                                                 26
           1
                      2
                              1
                                  76
                                       1
                                                 3
                                                         0
                                                                     1
                                                                                    0
                                                                                                33536
                                                                                                                 26
                                                                                                                                   18
           2
                      3
                                                28
                                                         0
                                                                     2
                                                                                                38294
                              1
                                  47
                                       1
                                                                                    1
                                                                                                                 26
                                                                                                                                   2(
                              1
                                  21
                                       1
                                                11
                                                         1
                                                                     0
                                                                                    0
                                                                                                28619
                                                                                                                152
                      5
                              0
                                  29
                                       1
                                                41
                                                         1
                                                                     0
                                                                                    0
                                                                                                27496
                                                                                                                152
```

Split the train set into train and validation sets.

We will use 80-20 split with 80% of the rows belonging to training data. Stratified Sampling is necessary, since the dataset is highly imbalanced. Stratified sampling ensures that the minority class is distributed proportionally among the two classes.

```
In [19]: | features = [c for c in train.columns if c not in [ID_COL, TARGET_COL]]
In [21]: train.isnull().sum()
Out[21]: Custmer_Id
                                   0
                                   0
         Gender
         Age
                                   0
         DL
                                   0
         City_Code
         Insured
         Vehicle_Age
         Vehicle Damage
                                   0
         Annual_Premium
                                  0
         Sales_Channel
                                  0
          Customer_Association
                                  1
                                   1
         Response
          dtype: int64
         Since only 1 record had null, thus deleting it.
In [22]: |train = train.dropna()
In [23]: trn, val = train_test_split(train, test_size=0.2, random_state = 1, stratify = train[TARGET_COL])
          ###### Input to our model will be the features
         X_trn, X_val = trn[features], val[features]
         ###### Output of our model will be the TARGET_COL
         y_trn, y_val = trn[TARGET_COL], val[TARGET_COL]
         ##### Features for the test data that we will be predicting
         X_test = test[features]
In [25]: | train.shape, trn.shape, val.shape
Out[25]: ((310175, 12), (248140, 12), (62035, 12))
```

SMOTE Over Sampling

```
In [26]: from imblearn.over_sampling import SMOTE
smote=SMOTE()

In [27]: #trn
X_trn_smote, y_trn_smote= smote.fit_sample(X_trn,y_trn)
#val
X_val_smote, y_val_smote= smote.fit_sample(X_val,y_val)
```

```
In [28]: from collections import Counter
    print('#trn\nBefore SMOTE:' , Counter(y_trn))
    print('After SMOTE:' , Counter(y_val))
    print('\n#val\nBefore SMOTE:' , Counter(y_val))
    print('After SMOTE:' , Counter(y_val_smote))

#trn
    Before SMOTE: Counter({0.0: 217640, 1.0: 30500})
    After SMOTE: Counter({1.0: 217640, 0.0: 217640})

#val
    Before SMOTE: Counter({0.0: 54410, 1.0: 7625})
    After SMOTE: Counter({0.0: 54410, 1.0: 54410})
```

Decision Tree

```
In [29]: clf1 = DecisionTreeClassifier(random_state = 1)
    _ = clf1.fit(X_trn_smote, y_trn_smote)

#prediction
preds_val = clf1.predict(X_val_smote)
preds_val_proba = clf1.predict_proba(X_val_smote)
```

```
In [32]: # roc curve for models
fpr1, tpr1, thresh1 = roc_curve(y_val_smote, preds_val_proba[:,1], pos_label=1)

# roc curve for tpr = fpr
random_probs = [0 for i in range(len(y_val_smote))]
p_fpr, p_tpr, _ = roc_curve(y_val_smote, random_probs, pos_label=1)

# auc scores
auc_score1 = roc_auc_score(y_val_smote, preds_val_proba[:,1])
print(auc_score1)
```

0.8840448025418856

Plot and Results

```
In [33]: print('F1 Score\n',f1_score(y_val_smote, preds_val))
    print(metrics.classification_report(y_val_smote, preds_val))

plt.style.use('seaborn')

# plot roc curves
plt.plot(fpr1, tpr1, linestyle='--',color='orange', label='Decision_tree')
plt.plot(p_fpr, p_tpr, linestyle='--', color='blue')

# title
plt.title('ROC curve')
# x label
plt.xlabel('False Positive Rate')
# y label
plt.ylabel('True Positive rate')

plt.legend(loc='best')
plt.savefig('ROC',dpi=300)
plt.show();
```

F1 Score 0.8833071303061131 precision recall f1-score support 0.88 0.89 0.88 54410 0.0 1.0 0.89 0.88 0.88 54410 0.88 accuracy 108820 0.88 0.88 0.88 108820 macro avg weighted avg 0.88 0.88 0.88 108820

Decision Tree- Hyperparameter tuning with Randomized Search CV

```
In [36]: from sklearn.model_selection import RandomizedSearchCV

#Params to tune
param={
    'max_depth': [4, 6, 8, 10, 12],
    'criterion': ['gini', 'entropy'],
    'min_samples_split': [2, 10, 20, 30, 40],
    'max_features': [0.2, 0.4, 0.6, 0.8, 1],
    'max_leaf_nodes': [8, 16, 32, 64, 128],
    'class_weight': [{0: 1, 1: 1}, {0: 1, 1: 2}, {0: 1, 1: 3}, {0: 1, 1: 4}, {0: 1, 1: 5}]
}
```

```
In [38]: #Param results
         search=clf2.fit(train[features],train[TARGET_COL ])
         search.best_params_
Out[38]: {'class_weight': {0: 1, 1: 3},
           'criterion': 'gini',
           'max_depth': 8,
           'max_features': 0.4,
           'max_leaf_nodes': 128,
           'min_samples_split': 20}
In [39]: #Saving result
         optimal_params={'class_weight': {0: 1, 1: 3},
           'criterion': 'gini',
          'max_depth': 8,
          'max_features': 0.4,
          'max_leaf_nodes': 128,
          'min_samples_split': 20}
In [40]: #Validation Score
         clf2=DecisionTreeClassifier(random_state=1, **optimal_params)
         _=clf2.fit(X_trn_smote,y_trn_smote)
In [41]: #prediction
         preds_val = clf2.predict(X_val_smote)
         preds_val_proba = clf2.predict_proba(X_val_smote)
In [44]: # roc curve for models
         fpr2, tpr2, thresh2 = roc_curve(y_val_smote, preds_val_proba[:,1], pos_label=1)
         # roc curve for tpr = fpr
         random_probs = [0 for i in range(len(y_val_smote))]
         #p_fpr, p_tpr, _ = roc_curve(y_val_smote, random_probs, pos_label=1)
         auc_score2 = roc_auc_score(y_val_smote, preds_val_proba[:,1])
         print(auc_score2)
```

Plot and Results

0.9286139721550937

```
In [43]: print('F1 Score\n',f1_score(y_val_smote, preds_val))
    print(metrics.classification_report(y_val_smote, preds_val))

plt.style.use('seaborn')

# plot roc curves
plt.plot(fpr2, tpr2, linestyle='--',color='green', label='Decision_tree_hyperparameter_tuned')
plt.plot(p_fpr, p_tpr, linestyle='--', color='blue')

# title
plt.title('ROC curve')
# x Label
plt.xlabel('False Positive Rate')
# y Label
plt.ylabel('True Positive rate')

plt.legend(loc='best')
plt.savefig('ROC',dpi=300)
plt.show();
```

F1 Score 0.8473594872852452

0.0173331072	precision	recall	f1-score	support
0.0	0.97	0.66	0.79	54410
1.0	0.75	0.98	0.85	54410
accuracy			0.82	108820
macro avg	0.86	0.82	0.82	108820
weighted avg	0.86	0.82	0.82	108820

Random Forest Classifier

```
In [47]: # roc curve for models
fpr3, tpr3, thresh3 = roc_curve(y_val_smote, preds_val_proba[:,1], pos_label=1)

# roc curve for tpr = fpr
random_probs = [0 for i in range(len(y_val_smote))]
p_fpr, p_tpr, _ = roc_curve(y_val_smote, random_probs, pos_label=1)

# auc scores
auc_score3 = roc_auc_score(y_val_smote, preds_val_proba[:,1])
print(auc_score3)

0.9693651195911862
```

PLot and Results

```
In [48]: |print('F1 Score\n',f1_score(y_val_smote, preds_val))
         print(metrics.classification_report(y_val_smote, preds_val))
         plt.style.use('seaborn')
         # plot roc curves
         plt.plot(fpr3, tpr3, linestyle='--',color='red', label='Random Forest')
         plt.plot(p_fpr, p_tpr, linestyle='--', color='blue')
         # title
         plt.title('ROC curve')
         # x label
         plt.xlabel('False Positive Rate')
         # y label
         plt.ylabel('True Positive rate')
         plt.legend(loc='best')
         plt.savefig('ROC',dpi=300)
         plt.show();
         F1 Score
          0.8922862035646292
                       precision
                                     recall f1-score
                                                        support
                                       0.94
                                                 0.90
                                                          54410
                  0.0
                            0.87
                            0.93
                                       0.86
                                                 0.89
                                                          54410
                  1.0
             accuracy
                                                 0.90
                                                         108820
                            0.90
                                                 0.90
            macro avg
                                       0.90
                                                         108820
```

108820

0.90

0.90

Baseline ML models Summary

0.90

weighted avg

```
In [49]: plt.style.use('seaborn')

# plot roc curves
plt.plot(fpr1, tpr1, linestyle='--',color='orange', label='Decision_tree')
plt.plot(fpr2, tpr2, linestyle='--',color='green', label='Decision_tree_hyperparameter_tuned')
plt.plot(fpr3, tpr3, linestyle='--',color='red', label='Random Forest')
plt.plot(p_fpr, p_tpr, linestyle='--', color='blue')

# title
plt.title('ROC curve')
# x label
plt.xlabel('False Positive Rate')
# y label
plt.ylabel('True Positive rate')

plt.legend(loc='best')
plt.savefig('ROC',dpi=300)
plt.show();
```


Validation Strategy.

Problems with simple train_test_split validation

- We are not using complete 100 % of the dataset for training. More data implies more performance, if the data quality is good.
- We are not using complete 100 % of the dataset for validation. Our validation now is biased towards the validation set we have got through train_test_split. What if the test set is different from the validation set?

```
In [50]: target=train[TARGET_COL]
```

```
In [69]: def run_clf_kfold(clf, train, features):
          N_SPLITS = 5
          oofs = np.zeros(len(train))
                                         #train prediction
          #preds = np.zeros((len(test)))
                                          #test prediction
          folds = StratifiedKFold(n_splits = N_SPLITS)
          for fold_, (trn_idx, val_idx) in enumerate(folds.split(train, train[TARGET_COL])):
            print(f'\n-----')
            ######### Get train, validation and test sets along with targets ###############
            ### Training Set
            X_trn, y_trn = train[features].iloc[trn_idx], target.iloc[trn_idx]
            ### Validation Set
            X_val, y_val = train[features].iloc[val_idx], target.iloc[val_idx]
            smote=SMOTE()
            #trn
            X_trn_smote, y_trn_smote= smote.fit_sample(X_trn,y_trn)
            X_val_smote, y_val_smote= smote.fit_sample(X_val,y_val)
            ######### Fitting and Predicting ##############
            _ = clf.fit(X_trn_smote, y_trn_smote)
            ### Instead of directly predicting the classes we will obtain the probability of positive class.
            preds_val = clf.predict_proba(X_val_smote)[:, 1] #oofs prediction
            fold_score = f1_score(y_val_smote, preds_val.round()) #fold score
            print(f'\nF1 score for validation set is {fold_score}')
            oofs = preds_val
            print(oofs.shape)
          oofs_score = f1_score(y_val_smote, oofs.round())
                                                         #combined OOFS score
          rocauc_score= roc_auc_score(y_val_smote, oofs.round())
          print(f'\n\nF1 score for oofs is {oofs_score}')
          print(metrics.classification_report(y_val_smote, oofs.round()))
          # roc curve for model
          fpr, tpr, thresh = roc_curve(y_val_smote, oofs, pos_label=1)
          # roc curve for tpr = fpr
          random_probs = [0 for i in range(len(y_val_smote))]
          p_fpr, p_tpr, _ = roc_curve(y_val_smote, random_probs, pos_label=1)
          # auc scores
          auc_score = roc_auc_score(y_val_smote, oofs.round())
          print(f'\nRoc_auc score for oofs is {auc_score}\n')
          plt.style.use('seaborn')
          # plot roc curves
          plt.plot(fpr, tpr, linestyle='--',color='black', label='Light GBM with Validation')
          plt.plot(p_fpr, p_tpr, linestyle='--', color='blue')
          # title
          plt.title('ROC curve')
          # x Label
          plt.xlabel('False Positive Rate')
          # y label
          plt.ylabel('True Positive rate')
          plt.legend(loc='best')
          plt.savefig('ROC',dpi=300)
          plt.show();
          return oofs
```

```
In [62]: #DT_Validation score With tuning
    clf = DecisionTreeClassifier(**dt_params)
    dt_oofs = run_clf_kfold(clf, train, features)
```

```
----- Fold 1 -----
```

F1 score for validation set is 0.8482206546722676 (108820,)

----- Fold 2 -----

F1 score for validation set is 0.8525780103375662 (108820,)

----- Fold 3 -----

F1 score for validation set is 0.8498081418075354 (108820,)

----- Fold 4 -----

F1 score for validation set is 0.8543408073926025 (108820,)

----- Fold 5 -----

F1 score for validation set is 0.8516597510373445 (108820,)

F1 score for oofs is 0.8516597510373445

		precision	recall	f1-score	support
0	0.0	0.97	0.68	0.80	54410
1	.0	0.75	0.98	0.85	54410
accura	су			0.83	108820
macro a	ıvg	0.86	0.83	0.83	108820
weighted a	ıvg	0.86	0.83	0.83	108820

Roc_auc score for oofs is 0.8291674324572689

Random Forest Validation

```
In [67]: #RMF_Validation score With tuning
  clf = RandomForestClassifier(**dt_params)
  rmf_oofs = run_clf_kfold(clf, train, features)
```

```
----- Fold 1 -----
```

F1 score for validation set is 0.8496355207354346 (108820,)

----- Fold 2 -----

F1 score for validation set is 0.8487119807487474 (108820,)

----- Fold 3 -----

F1 score for validation set is 0.8465769161165446 (108820,)

----- Fold 4 -----

F1 score for validation set is 0.8499502047139538 (108820,)

----- Fold 5 -----

F1 score for validation set is 0.8506057804016407 (108820,)

F1 score for oofs is 0.8506057804016407

	precision	recall	f1-score	support
0.0	0.98	0.66	0.79	54410
1.0	0.75	0.99	0.85	54410
accuracy			0.83	108820
macro avg	0.86	0.83	0.82	108820
weighted avg	0.86	0.83	0.82	108820

Roc_auc score for oofs is 0.8262911229553391

Gradient Boosting

LightGBM

```
In [70]: clf = LGBMClassifier()
lgb_oofs= run_clf_kfold(clf, train, features)
```

----- Fold 1 -----

F1 score for validation set is 0.9149297964339503 (108820,)

----- Fold 2 -----

F1 score for validation set is 0.9136500934937909 (108820,)

----- Fold 3 -----

F1 score for validation set is 0.9150548470870964 (108820,)

----- Fold 4 -----

F1 score for validation set is 0.9156654522905202 (108820,)

----- Fold 5 -----

F1 score for validation set is 0.9134050359642584 (108820,)

F1 score for oofs is 0.9134050359642584

	precision	recall	f1-score	support
0.0	0.88	0.97	0.92	54410
1.0	0.97	0.87	0.91	54410
			0.00	100000
accuracy			0.92	108820
macro avg	0.92	0.92	0.92	108820
weighted avg	0.92	0.92	0.92	108820

Roc_auc score for oofs is 0.917800036757949

Type *Markdown* and LaTeX: α^2

```
In [74]: pip install catboost
         Collecting catboost
           Downloading https://files.pythonhosted.org/packages/20/37/bc4e0ddc30c07a96482abf1de7ed1ca54e59bba2026a33bca6
         d2ef286e5b/catboost-0.24.4-cp36-none-manylinux1_x86_64.whl (https://files.pythonhosted.org/packages/20/37/bc4e
         0ddc30c07a96482abf1de7ed1ca54e59bba2026a33bca6d2ef286e5b/catboost-0.24.4-cp36-none-manylinux1_x86_64.whl) (65.
                                               | 65.8MB 47kB/s
         Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from catboost) (1.15.0)
         Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from catboost) (1.4.1)
         Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.6/dist-packages (from catboost) (1.1.
         5)
         Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from catboost) (3.2.2)
         Requirement already satisfied: plotly in /usr/local/lib/python3.6/dist-packages (from catboost) (4.4.1)
         Requirement already satisfied: graphviz in /usr/local/lib/python3.6/dist-packages (from catboost) (0.10.1)
         Requirement already satisfied: numpy>=1.16.0 in /usr/local/lib/python3.6/dist-packages (from catboost) (1.19.
         4)
         Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.24.0->ca
         tboost) (2018.9)
         Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.6/dist-packages (from pandas>=
         0.24.0->catboost) (2.8.1)
         Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->catboo
         st) (0.10.0)
         Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packa
         ges (from matplotlib->catboost) (2.4.7)
         Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->c
         atboost) (1.3.1)
         Requirement already satisfied: retrying>=1.3.3 in /usr/local/lib/python3.6/dist-packages (from plotly->catboos
         t) (1.3.3)
         Installing collected packages: catboost
         Successfully installed catboost-0.24.4
```

XGBoost

In [75]: from catboost import CatBoostClassifier
from xgboost import XGBClassifier

```
F1 score for validation set is 0.9173192742106174 (108820,)

------ Fold 2 -------
F1 score for validation set is 0.9208252238224991 (108820,)

----- Fold 3 ------
F1 score for validation set is 0.9204990527421397 (108820,)

----- Fold 4 ------
F1 score for validation set is 0.9210153632785413 (108820,)

----- Fold 5 --------
```

F1 score for validation set is 0.9180807659879635 (108820,)

F1 score for oofs is 0.9180807659879635								
	pred	ision	recall	f1-score	support			
0.	.0	0.88	0.97	0.93	54410			
1.	.0	0.97	0.87	0.92	54410			
accurac	су			0.92	108820			
macro av	vg	0.93	0.92	0.92	108820			
weighted av	vg	0.93	0.92	0.92	108820			

Roc_auc score for oofs is 0.9223212644734424

In []: