ИІТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1.05 "Исследование колебаний физического маятника"

Группа: 2.1

Студент: Денисова А.А., Пименова Е.А.,

Шнейдерис Г.Г.

Преподаватель: Рудель А.Е.

К работе допущен: Работа выполнена: Отчет принят:

1 Цель работы

• Изучение характеристик затухающих колебаний физического маятника

2 Задачи, решаемые при выполнении работы

- Измерение периода затухающих колебаний.
- Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- Определение зависимости периода колебаний от момента инерции физического маятника.
- Определение преобладающего типа трения.
- Определение экспериментальной и теоретической длин маятника приведенных при его разных конфигурациях.

3 Метод экспериментального исследования

- измеряем время для полных 10 колебаний маятника для разных конфигураций
- измеряем время за которое затухающая колебания достигнут конкретной амплитуды

4 Рабочие формулы и исходные данные

1) Основное уравнение динамики вращательного движения для физического маятника

$$I\varepsilon = M_{\text{тяж}} + M_{\text{сопр}}$$

2) Угловое ускорение, как вторая производная угла по времени

$$\varepsilon = \frac{d^2\varphi}{dt^2}$$

3) Сила вязкого трения (сила сопротивления при малой скорости движения маятника)

$$F_{\text{comp}} = -rv$$

4) Скорость движения центра масс

$$v = l \cdot \frac{d\varphi}{dt}$$

5) Момент силы сопротивления

$$M_{\text{comp}} = F_{\text{comp}} \cdot l = -rl^2 \frac{d\varphi}{dt}$$

6) Момент силы тяжести для малого угла φ

$$M_{\text{\tiny TSJK}} = -mgl\varphi$$

7) Основное уравнение динамики с подставленными формулами

$$I\frac{d^2\varphi}{dt^2} = -mgl\varphi - rl^2\frac{d\varphi}{dt}$$

8) Циклическая частота собственных незатухающих колебаний маятника

$$\omega_0^2 = \frac{mgl}{I}$$

9) Коэффициент затухания

$$\beta = \frac{rl^2}{2I}$$

10) Период колебаний маятника

$$T = 2\pi \sqrt{\frac{I}{mgl}} = 2\pi \sqrt{\frac{l_{\rm np}}{g}}$$

11) Приведенная длина физического маятника через теорему Штейнера

$$l_{\rm np} = \frac{I}{ml} = \frac{I_0}{ml} + l$$

12) Основное уравнение динамики с новыми обозначениями

$$\frac{d^2\varphi}{dt^2} + 2\beta \frac{d\varphi}{dt} + \omega_0^2 \varphi = 0$$

13) Решение уравнения при $\beta < \omega_0$

$$\varphi = A_0 \cdot e^{-\beta t} \cdot \cos(\omega t + \alpha_0)$$

14) Логарифм уравнения

$$\ln \frac{A}{A_0} = -\beta t$$

15) Циклическая частота затухающих колебаний маятника

$$\omega = \sqrt{\omega_0^2 - \beta^2}$$

16) Логарифмический декремент затухания

$$\lambda = \ln \frac{A(t)}{A(t+T)} = \beta T$$

2

5 Измерительные приборы:

$N_{\overline{0}}$	Наименование	Тип прибора	Используемый диапазон	$\Delta_{\scriptscriptstyle M}$
1	Секундомер	цифровой	16 - 360 сек	0.01 c
1	Шкала	аналоговый	0 - 60°	1°

Таблица 1: Измерительные приборы

6 Схема установки:

В состав установки входят:

- 1. Шкала
- 2. Груз
- 3. Рукоятка сцепления
- 4. Передняя крестовина

7 Результаты прямых измерений и их обработки:

Таблица 2: Амплитуда отклонения и время

Амплитуда отклонения	25°	20°	15°	10°	5°
t_1 , c	00:49.81	01:49.29	03:01.15	04:21.17	06:02.72
t_2 , c	00:46.42	01:50.25	02:57.56	04:18.32	06:00.08
t_3 , c	00:47.55	01:48.92	02:57.46	04:19.01	06:02.05
$t_{\rm cp},{ m c}$	00:47.93	01:49.49	02:58.72	04:19.05	06:01.62

Таблица 3: Положение боковых грузов

Положение боковых грузов	t_1, \mathbf{c}	t_2 , c	t_3 , c	$t_{\mathbf{cp}}, \mathbf{c}$	T, \mathbf{c}
1 риска	16.59	16.17	16.02	16.26	1.626
2 риски	17.73	16.88	17.04	17.22	1.722
3 риски	17.86	17.89	17.95	17.90	1.790
4 риски	19.08	19.14	19.01	19.08	1.908
5 рисок	20.47	20.55	20.48	20.50	2.050
6 рисок	21.93	21.95	21.88	21.92	2.192

7.1 Обработка измерений

Пример вычисления значения $t_{\rm cp}$ для столбца Таблицы 2

$$t_{\rm cp}(25^{\circ}) = \frac{t_1 + t_2 + t_3}{3} = \frac{49.81 + 46.42 + 47.55}{3} = 47.93c$$

Пример вычисления периода для строки Таблицы 3:

$$T(1$$
 риска) = $\frac{t_{
m cp}}{N} = \frac{16.26}{10} \approx 1.626 {
m c}$

8 Расчёт результатов косвенных измерений

Таблица 4: Расчет моментов

1								
Риски	1	2	3	4	5	6		
$R_{\text{верх}}$	0.08							
$R_{\text{ниж}}$	0.20							
R_{60k}	0.080	0.100	0.130	0.150	0.180	0.200		
$I_{\rm rp}$	0.024	0.027	0.033	0.037	0.045	0.052		
I	0.032	0.035	0.041	0.045	0.053	0.060		
Іпри эксп	0.669	0.751	0.812	0.922	1.065	1.217		
$I_{\rm пр\ Teop}$	0.564	0.616	0.714	0.795	0.936	1.045		

$$I_{\rm rp1} = m_{\rm fp} \left(R_{\rm bepx}^2 + R_{\rm hum}^2 + 2 R_{\rm fok}^2 \right) = 0.408 \cdot (0.08^2 + 0.20^2 + 2 \cdot 0.08^2) \approx 0.024 \, {\rm kg \cdot m^2}$$

$$I_1 = I_{\rm rp1} + I_0 = 0.024 + 0.008 = 0.032\,\mathrm{kf}\cdot\mathrm{m}^2$$

$$T^2 = 4\pi^2 \frac{I}{mgl} \Rightarrow ml = rac{4\pi^2 \sum_{i=1}^6 I_i^2}{g \sum_{i=1}^6 I_i \cdot T_i^2} = 0,057\,\mathrm{kg}\cdot\mathrm{m}$$

$$l_{ ext{reop}} = rac{ml}{4m_{ ext{rp}}} = rac{0.057}{4 \cdot 0.408} = 0.035 \, ext{m}$$

$$l_{
m пр\ эксп\ 1} = rac{T_1^2 g}{4\pi^2} = 0{,}669\,{
m m}$$

$$l_{\text{пр теор 1}} = \frac{I_1}{ml} = 0.564 \,\text{M}$$

9 График

зависимость квадрата периода от момента инерции T^2(I)

зависимость амплитуды колебаний от времени

$$A(t) = A_0 e^{-\beta t}$$

10 Окончательные результаты:

Таблица 5: Результаты работы

Риски	1	2	3	4	5	6
Іпр эксп	0.669	0.751	0.812	0.922	1.065	1.217
$l_{\text{пр теор}}$	0.564	0.616	0.714	0.795	0.936	1.045

11 Выводы и анализ результатов работы

В ходе данной лабораторной работы экспериментальным путем были изучены физические характеристики физического маятника. После исследования графика зависимости A(t) (график 9) команда НЕЙРОТЕХ поняла, что он убывает экспоненциально, а это означает преобладание вязкого трения в эксперименте. Были определены величины $l_{\rm пр}$ эксп и $l_{\rm пр}$ теор, небольшие отличия которых нас тоже очень порадовали, ведь это означает незначительную погрешность эксперимента.