

Amendments to the Specification

Please replace the paragraph beginning at page 1, line 33 with the following amended paragraph:

The advent of green fluorescent protein (GFP) as a reporter molecule provided several advantages in screening and identifying cells expressing the heterologous gene. Co-expression of GFP enables real-time analysis and sorting of transfectants by fluorescence without the requirement of additional substrates or cofactors and without destroying the cell sample. The use of GFP as a reporter molecule to monitor gene transfer has been described in various publications. Chalfie *et al.* in U.S. Patent No. 5,491,084 describe a method of selecting cells expressing a protein of interest that involves co-transfected cells with one DNA molecule containing a sequence encoding a protein of interest, and a second DNA molecule which encodes GFP, then selecting cells which express GFP. Gubin *et al.*, in Biochem. Biophys. Res. Commun. 236: 347-350 (1997) describe transfection of CHO cells with a plasmid encoding GFP and neo to study the stable expression of GFP in the absence of selective growth conditions. Mosser *et al.*, Biotechnology 22: 150-[[154]]161 (1997) describe the use of a plasmid containing a dicistronic expression cassette encoding GFP and a target gene, in a method of screening and selection of cells expressing inducible products. The target gene was linked to a controllable promoter. The plasmid incorporates a viral internal ribosome entry site (IRES) to make it possible to express a dicistronic mRNA encoding both the GFP and a protein of interest. This plasmid described by Mösser does not contain any selectable gene; the selectable gene is provided in a separate plasmid which is transfected sequentially or co-transfected with the GFP/target gene-encoding plasmid. This expression system lacks spatial and transcriptional linkage between the gene of interest, the drug selectable marker and GFP. Levenson *et al.*, Human Gene Therapy 9:1233-1236 (1998) describe retroviral vectors containing a single promoter followed by a multiple cloning site, a viral internal ribosome entry site (IRES) sequence and a selectable marker gene. The selectable markers used were those that conferred resistance to G418, puromycin, hygromycin B, histidinol D, and phelomycin, and also included GFP.

Please replace the paragraph beginning at page 12, line 1 with the following amended paragraph:

For references directed to co-transfection of a gene together with a genetic marker that allows for selection and subsequent amplification, see, e.g., Kaufman in Genetic Engineering, ed. J. Setlow (Plenum Press, New York), Vol. 9 (1987); Kaufman and Sharp, J. Mol. Biol., 159:601 (1982); Ringold *et al.*, J. Mol. Appl. Genet., 1:165-175 (1981); Kaufman *et al.*, Mol. Cell Biol., 5:1750-1759 (1985); Kaetzel and Nilson, J. Biol. Chem., 263:~~6244-6251~~6344-6351 (1988); Hung *et al.*, Proc. Natl. Acad. Sci. USA, 83:261-264 (1986); Kaufman *et al.*, EMBO J., 6:~~87-93~~187-193 (1987); Johnston and Kucey, Science,

242:1551-1554 (1988); Urlaub *et al.*, Cell, 33:405-412 (1983). For a review of the amplifiable selectable genes listed in Table 1, see Kaufman, Methods in Enzymology, 185: 537-566 (1990).