(Cryptographie Symétrique : DES)

Exercice 1:

On considère maintenant des chaînes de 8 bits avec deux fonctions f_1 et f_2 définies pour toute chaîne m de 4 bits par les formules suivantes :

$$f_1(m) = m \oplus 1011$$
 et $f_2(m) = \bar{m} \oplus 0101$,

où \overline{m} vérifie la relation $m + \overline{m} = 1111$.

- 1) Calculer l'image de la chaîne 11010011 par ce diagramme.
- 2) Peut-on trouvé une chaîne de 8 bits invariante cette fois-ci.

Exercice 2:

IDEA est un algorithme de chiffrement par blocs. Il utilise des clefs de 128 bits et chiffre des blocs de 64 bits. Il utilise le schéma de Feistel modifié suivant :

- 1) Comparer la taille des blocs et des clefs entre l'algorithme IDEA et DES?
- 2) Exprimez L1 et R1 en fonction de L0 et R0 (Chiffrement).
- 3) Exprimez L0 et R0 en fonction de R1 et de L1(Déchiffrement).

Exercice 3:

Soit M un message divisé en blocs $\{x_1,x_2,x_3,...x_p\}$ chacun de taille n bits et soit K une clé de même taille que les blocs (n bits). Soit $\{c_1,c_2,c_3,...c_p\}$ les cryptogrammes des blocs obtenus en appliquant la clé K aux blocs.

Le chiffrement des blocs se fait selon le schéma suivant:

$$C_0=IV$$
 (valeur initiale); pour j de 1 à p, $C_j=E_K(C_{j-1} \oplus x_j)$

- 1) La fonction E_K est inversible et son inverse est D_K . Montrer que l'opération de déchiffrement est $x_j = C_{j-1} \bigoplus D_K (C_j)$
- 2) Peut-on chiffrer un bloc quelconque x_i sans chiffrer les blocs qui le précèdent ? Expliquer?
- 3) Peut-on déchiffrer un bloc quelconque c_i sans déchiffrer les blocs qui le précèdent ? Expliquer ?
- 4) Peut-on déchiffrer un bloc c_i en l'absence des autres blocs chiffrés ? Expliquer ?

5) Prenons le cas où $E_K(x)=D_K(x)=K \oplus x$. Supposons qu'un attaquant a pu récupérer deux blocs consécutifs (x_{j-1},x_j) ainsi que leurs cryptogrammes correspondants (c_{j-1},c_j) . Montrer que cet attaquant peut en déduire la clé de chiffrement K.

Exercice 3

On considère le cryptosystème défini par la Figure 1. Les boites \mathcal{S}_1 et \mathcal{S}_2 sont données par :

X	[0, 0]	[1, 0]	[0, 1]	[1,1]
$S_1(X)$	[1, 1]	[1, 0]	[0, 0]	[0,1]
$S_2(X)$	[1, 0]	[0, 1]	[1, 1]	[0, 0]

Les clefs de ronde se déduisent de la clé de chiffrement $K = [k_1, k_2, k_3, k_4]$ par :

$$K_1 = [k_1 \oplus k_2, k_2, k_3 \oplus k_4, k_3], \quad K_2 = [k_1 \oplus k_2 \oplus k_3, k_2 \oplus k_3, k_3 \oplus k_4, k_4]$$

La permutation P est définie par :

$$P(1) = 3$$
, $P(4) = 2$, $P(2) = 1$, $P(3) = 4$

Chiffrer le message M=[0,1,1,0] avec K=[1,1,1,1]. Déchiffrer le message C=[0,1,0,1] chiffré avec la même clé.

Figure 1: Cryptosystème