Sistemas para Testes de CubeSat em Câmara de Termo-Vácuo

Grupo 4 - PC2

O1 ESTRUTURAS

Suporte para o CubeSat

Suporte para o simulador solar

Sistema de alimentação

- 2 graus de liberdade
- 3 motores comerciais
- Componentes de Aço Inoxidável
 304

ESCOLHA DE MATERIAL

Aço Inoxidável 304

Suporta a variação de temperatura do sistema (77,15 K à 473,15 K)

Não magnético

Resistência mecânica elevada - 200 GPa

Fácil acabamento - polimento

Encontrado no mercado como barras, tubos e chapas

MOTORES

Dimensionados a partir do torque requerido

MOTORES

Dimensionados a partir do torque requerido

Giro do CubeSat

Torque requerido - 0,00915 Nm

Quantidade - 1

Torque de retenção do modelo - 0,08 Nm

Giro do Suporte

Torque requerido -1,371 Nm

Quantidade - 2

Torque de retenção do modelo - 1,89 Nm

Fixação do motor do CubeSat no suporte

Fonte: Autoria própria, 2021.

Fixação entre o motor e o CubeSat

Fixação do suporte

Simulação estrutural do suporte

- ANSYS 2021 R1 Academic
- Dois apoios de 2º gênero
- Carga de 120 N no centro da peça
- Tensão máxima 72,189 MPa
- Fator de Segurança mínimo 2,9

Simulação estrutural do suporte

SUPORTE SIMULADOR SOLAR

SUPORTE SIMULADOR SOLAR

Dimensionamento da tubulação para obter a seguinte vazão

Nitrogênio gasoso:

0,0015627 kg/s

Nitrogênio líquido:

0,0015638 kg/s

Utilizados em duas linhas de alimentação distintas

Nitrogênio gasoso para a fase de aquecimento do teste

Nitrogênio líquido para a fase de resfriamento do teste

Transdutor de pressão

Termopar

Interior da câmara de vácuo.

Turbomolecular

Mecânica

Transdutor de pressão

Termopar

Interior da câmara de vácuo.

Condições de operação

- 77,15 K para a linha de nitrogênio líquido
- 473,15 K para a linha de nitrogênio gasoso
- 10 Bar de pressão na linha

Válvula criogênicas Globo VAP 74 AL

Tubulação

Diâmetro - ¾ de polegadas Roscas NPT Filtro para Nitrogênio - New Filter Medidor de vazão do tipo turbina

203

Armazenamento

Tanque de 1000 L para o nitrogênio gasoso; Dewar de 250 L para o nitrogênio líquido

Válvulas

Válvula criogênicas Globo VAP 74 AL Válvula de Retenção Stop Check

Bomba

NB-45 (Aero Specialties) - 35 a 310 Bar

O2 ENERGIA

Simulador Solar

Trocadores de Calor

Parte Elétrica

SIMULADOR SOLAR

Premissas

- Potência de 275W;
- Temperatura de cor: mín. 5777K;
- Distribuição espectral da lâmpada (ABNT NBR ISO 11879/1991).

TROCADORES DE CALOR

Requisitos - Condensador

Vazão: 5kg/h;

Temperatura de entrada: 293,15K;

Temperatura de saída: 78,15K;

Armazenamento do tanque: 14L

Pressão: entre 2 a 10 bar.

Liquefadora de nitrogênio líquido NL84-H (15-20LPD). Fonte: https://www.allumcorp.com/br/produtos/nl 84-liquefator-de-nitrogenio-nl84-f-40-50-lpdnl84-h-15-20-lpd/

Requisitos - Aquecedor

Vazão: 5kg/h;

Temperatura de entrada: 293,15K;

Temperatura de saída: 423,15K;

Pressão: até 150 bar

Figura: Aquecedor de passagem de nitrogênio (Anluz). Fonte: https://www.anluz.com.br/projetos

23

PARTE ELÉTRICA

Premissas

Autonomia do sistema de até 30 minutos em caso de falha no sistema;

Potência aparente total de 15kVA;

Margem de segurança de 20%.

PARTE ELÉTRICA

Diagrama Elétrico

03 ELETRÔNICA

Mudanças
Leitura dos dados de temperatura
Leitura dos dados de pressão
Controle dos motores

MUDANÇAS

LEITURA DO DADOS DE TEMPERATURA

LEITURA DO DADOS DE TEMPERATURA

LEITURA DO DADOS DE TEMPERATURA

LEITURA DO DADOS DE PRESSÃO

Categoria	Parâmetro	Descrição
Comando RPV	a	1 (Canal 1 PRG1)
		2 (Canal 2 PRG2)
		3 (Canal 3 CPG)
Resposta	b	0 = Valor medido OK
		1 = Valor medido < Alcance de Medição
		2 = Valor medido > Alcance de Medição
		3 = Valor medido « Alcance de medição = (Err Lo
		4 = Valor medido » Alcance de medição = (Err Hi)
		5 = Sensor desligado (S off)
		6 = Alta tensão (Hv on)
		7 = Erro no sensor (Err S)
		9 = Sem sensor (no Sen)
		10 = Sem threshold para ligar ou desligar (Notrig)
		12 = Erro no Piranni (Err Pi)
Valor	$x.xxxxE \pm xx$	Valor de pressão no canal selecionado

Fonte: PGC201 Passive Gauge Controller Instruction Manual, 2017

LEITURA DO DADOS DE PRESSÃO

O4SOFTWARE

Diagrama de caso de uso Arquitetura geral Decisões arquiteturais

ARQUITETURA GERAL

Diagrama da arquitetura geral com as tecnologias a serem utilizadas. Fonte: Autoria Própria, 2021

DECISÕES ARQUITETURAIS

- Cliente-Servidor
- Back-End
 - MVC para cada estrutura
 - ESLint
 - JEST
 - InfluxDB e influx-client
- Front-End
 - Baseada em componentes
 - ESLint
 - Cypress

MODELAGEM BANCO DE DADOS

Foco nos sensores e recebimento de dados em tempo real

Data Explorer ↑ Local ▼ 🔀 Save As **Graph** ▼ Customize 1.018k 1.016k 1.014k 1.012k 1.01k 1.008k 1.006k 1.004k 1.002k 2021-04-16 00:29:00 GMT-3 2021-04-16 00:30:00 GMT-3 2021-04-16 00:31:00 GMT-3 2021-04-16 00:32:00 GMT-3 2021-04-16 00:33 _start _field _time host _stop _value _measurement 2021-04-16 00:28:03 ... 2021-04-16 00:33:03 ... 2021-04-16 00:31:10 G... 1000 data pressure Interface gráfica sobre o painel 04-16 00:28:03 ... 2021-04-16 00:33:03 ... 2021-04-16 00:31:40 G... 999 data pressure zuz1-04-16 00:28:03 ... 2021-04-16 00:33:03 ... 2021-04-16 00:32:00 ... 1000 data pressure

1001 data

pressure

INFLUXDB

2021-04-16 00:28:03 ...

2021-04-16 00:33:03 ...

2021-04-16 00:32:40 ...

DÚVIDAS?

Sistemas para Testes de CubeSat em Câmara de Termo-Vácuo

Grupo 4