MIPS Reference Data

	OPCODE
	/ FUNCT
log)	(Hex)

CORE INSTRUCTI	ON SE	Т			OPCODE
NAME ADDRESS	NIIC	FOR-			/ FUNCT
NAME, MNEMO		MAT		(1)	(Hex) 0 / 20 _{hex}
Add	add	R	R[rd] = R[rs] + R[rt]	. ,	11011
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex}
And	and	R	R[rd] = R[rs] & R[rt]		$0/24_{hex}$
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}
Jump Register	jr	R	PC=R[rs]		$0/08_{hex}$
Load Byte Unsigned	lbu	I	$R[rt]=\{24'b0,M[R[rs] + SignExtImm](7:0)\}$	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	$25_{ m hex}$
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23_{hex}
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	d_{hex}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}
Set Less Than Unsig	.sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	$0/2b_{hex}$
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	$28_{ m hex}$
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; $R[rt] = (atomic) ? 1 : 0$	(2,7)	38_{hex}
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		$0/23_{hex}$
	(2) Sig (3) Ze (4) Br	gnExtl roExt anchA	se overflow exception fmm = { 16{immediate[15]}, imm fmm = { 16{1b'0}, immediate } addr = { 14{immediate[15]}, immediate } dr = { PC+4[31:28], address, 2't	ediate,	

- (6) Operands considered unsigned numbers (vs. 2's comp.)
- (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

BASIC INSTRUCTION FORMATS

\mathbf{R}	opc	ode	rs	rt	rd		shamt	funct
	31	26 25	21 2	20 1	6 15	11 10	6 5	0
I	opc	ode	rs	rt		ir	nmediate	
	31	26 25	21 2	20 1	6 15			0
J	opc	ode			addres	SS		
	31	26 25						0

© 2014 by Elsevier, Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 5th ed.

ARITHMETIC CORE INS	OPCODE (2) OPCODE					
/ FMT /F						
I	FOR-					
NAME, MNEMONIC	MAT					
Branch On FP True bolt	FI	if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/	-			
Branch On FP False bolf	FI	if(!FPcond)PC=PC+4+BranchAddr(4) 11/8/0/	-			
Divide div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] 0//-1a	ì			
Divide Unsigned divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6) 0///1b)			
FP Add Single add.s	FR	F[fd] = F[fs] + F[ft] 11/10//0)			
FP Add	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} + 11/11//0$	`			
Double add.d	FK	{F[ft],F[ft+1]}	,			
FP Compare Single c.x.s*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0 11/10//y	,			
FP Compare	FR	$FPcond = ({F[fs], F[fs+1]}) op$ 11/11//	į,			
Double		{F[ft],F[ft+1]})?1:0				
		==, <, or <=) (y is 32, 3c, or 3e)				
Ü	FR	F[fd] = F[fs] / F[ft] 11/10//3	5			
FP Divide	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} / $ 11/11//3	3			
Double	ED	{F[ft],F[ft+1]}	,			
FP Multiply Single mul.s	FR	F[fd] = F[fs] * F[ft] 11/10//2	-			
FP Multiply mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$ $11/11//2$	2			
Double	ED	$\{F[ft], F[ft+1]\}\$				
FP Subtract Single sub.s	FR	1[10] 1[10]				
FP Subtract sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {11/11//1}$	1			
Double		$ \{F[ft],F[ft+1]\} $ $F[rt]=M[R[rs]+SignExt[mm] $				
Load FP Single lwc1	I	[1.1][1.1[1.0]B	-			
Load FP	I	F[rt]=M[R[rs]+SignExtImm]; (2) 35///-	-			
Double Move From Hi mfhi	R	F[rt+1]=M[R[rs]+SignExtImm+4] R[rd] = Hi 0 ///10	1			
Move From Lo mflo	R	R[rd] = Lo $0//-12$				
Move From Control mfc0	R	R[rd] = CR[rs] $0/-1/-1/2$				
	R	K[id] OK[id]				
Multiply mult		(III,EO) Idio Idio				
Multiply Unsigned multu	R	(11,20) 1(10) 1(11)				
Shift Right Arith. sra	R	re[re] re[re] briance				
Store FP Single swc1	I	[]	-			
Store FP	I	M[R[rs]+SignExtImm] = F[rt]; (2) $3d///-$	-			
Double		M[R[rs]+SignExtImm+4] = F[rt+1]				

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	2	fmt	ft		fs	fd	funct
	31	26 25	21	20	16 15	11 1	0 65	0
FI	opcode	e	fmt	ft			immediate	
	31	26 25	21	20	16 15			0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME NUMBER	NILIMBED	USE	PRESERVEDACROSS	
	USE	A CALL?		
\$zero	0	The Constant Value 0	N.A.	
\$at	1	Assembler Temporary	No	
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No	
\$a0-\$a3	4-7	Arguments	No	
\$t0-\$t7	8-15	Temporaries	No	
\$s0-\$s7	16-23	Saved Temporaries	Yes	
\$t8-\$t9	24-25	Temporaries	No	
\$k0-\$k1	26-27	Reserved for OS Kernel	No	
\$gp	28	Global Pointer	Yes	
\$sp	29	Stack Pointer	Yes	
\$fp	30	Frame Pointer	Yes	
\$ra	31	Return Address	Yes	