

REC'D 0 1 NOV 1999 WIPO PCT

Kongeriget Danmark

Patent application No.:

PA 1999 00055

Date of filing:

18 January 1999

Applicant:

Løvens Kemiske Fabrik

Leo Pharmaceutical Products

Industriparken 55 DK-2750 Ballerup

This is to certify the correctness of the following information:

The attached photocopy is a true copy of the following document:

The specification, claims and tables as filed with the application on the filing date indicated above.

Patent- og Varemærkestyrelsen Erhvervsministeriet

TAASTRUP 27 October 1999

Karin Schlichting Head Clerk

Vor ref.: 16544 A

Ansøger: Løvens Kemiske Fabrik

Leo Pharmaceutical Products

Industriparken 55 2750 Ballerup

FLYDENDE FORBLANDINGER SPRØJTET PÅ PELLETERET FÆRDIGFO-DER, FORTRINSVIS TIL HUSDYR

FLYDENDE FORBLANDINGER SPRØJTET PÅ PELLETERET FÆRDIGFO-DER, FORTRINSVIS TIL HUSDYR

Produkt og metode til tilvejebringelse af et foder til husdyr. Vitaminblandingen, der finder anvendelse som angivet i vedlagte beskrivelse, kan være identisk med den i dansk patentansøgning nr. 1255/95 angivne. Foderet kan tillige også påsprøjtes en mineralblanding, sådan som denne også er angivet i dansk patentansøgning nr. 1255/95. Denne påsprøjtning kan finde sted både før og efter, at vitaminblandingen er påsprøjtet. Dansk patentansøgning nr. 1255/95 er ved henvisning inkorporeret i nærværende ansøgning.

Påsprøjtning foregår, efter at foderet er fremstillet og på selve fabrikken, efter at foderet er passende kølet.

15

10

5

PATENTKRAV

- 1. Produkt ifølge vedlagte beskrivelse og bilag.
- 20 2. Metode ifølge vedlagte beskrivelse og bilag.
 - 3. Anvendelse af produkt og metode til foder til husdyr.

Det nyudviklede koncept, flydende forblandinger

- Øger sikkerheden for dyrenes vitaminforsyning selv ved reduceret dosering.
- 2) Er arbejdsbesparende og forbedrer arbejdsmiljøet på foderfabrikkerne.
- 3) Reducerer eller fjerner behovet for investering i mikrodoseringsanlæg.
- Giver samme eller bedre produktionsresultat i husdyrbruget.
- 5) Giver miljøfordele til landbruget gennem reduceret fosforudledning.

Et stigende antal tilsætningsprodukter til foderstoffer markedsføres i flydende form: enzymer, aromastoffer, biologiske tilsætningsstoffer, aminosyrer mm. Dette aktualiserer behovet for instalation af teknisk udstyr på foderfabrikkerne til påsprøjtning af disse produkter på foderpillerne efter køling. Økonomien i at gennemføre disse investeringer kan sammenkædes med værdien af de flydende produkter, der skal påsprøjtes foderet - jo højere produktværdi, desto bedre forrentning. - specielt hvis investering i teknologi til dosering af flydende stoffer kan spare andre investeringer.

Det interne arbejdsmiljø på foderfabrikker belastes af støvafgivelse ved håndtering af de traditionelle tørre vitamin/ mikromineralforblandinger. Miljømyndighedernes fokus på sundhedsskadelige stoffers påvirkning af medarbejderne medfører omkostningskrævende påbud om lukkede systemer, udsugning og anvendelse af personlige værnemidler. Tilsætningsprodukter i flydende form reducerer eller fjerner disse problemer.

Landbrugets udledning af næringssalte med husdyrgødning indtager en central placering i miljødebatten og i miljøhandlingsplaner. Anvendelse af Fytaseenzym som biologisk hjælpemiddel til frigørelse af naturligt fosfor i industrielt fremstillet foder har ikke vundet indpas i dansk foderstofindustri, fordi enzymaktiviteten ødelægges af varmebehandlingen. Tilsætning af Fytase-enzym gør det muligt at reducere doseringen af mineralsk fosfor samt enkelte mikromineraler til industrielt fremstillet foder. Dette forhold har særlig stor betydning, fordi landbruget herved kan begrænse udledningen af fosfor til miljøet uden at forringe produktionsøkonomien i husdyrbruget.

Efter flere års udviklingsarbejde markedsfører Løven Agro nu flydende forblandinger til påsprøjtning på industrielt fremstillet foder. De flydende forblandinger består af komplette vitaminblandinger tilsat Fytase-enzym og af mikromineralblandinger. Påsprøjtning af flydende forblandinger på foderpillerne overflødiggør større investeringer i mikrodoseringsanlæg til traditionelle forblandinger.

Løven Agro's udviklingsresultater viser, at når vitaminerne påsprøjtes det industrielt fremstillede foder, opnås der en langt højere genfinding af de tilsatte vitaminer end ved tilsvarende dosering via en tør vitaminforblanding. Herved er der skabt grundlag for at reducere vitamindoseringen, når vitaminerne sprøjtes på de færdige foderpiller.

Nuværende vitamintilsætning:

Den nuværende vitamindosering til husdyrfoder via forblandinger har baggrund i mange års forskning og forsøg udført af firmaer og forskningsinstitutioner. Resultaterne er opsummeret i form af de kendte normer til forskellige husdyrarter på forskellige alderstrin.

Forblandinger i tør form gennemgår samtlige procestrin i foderfremstillingen, blanding, konditionering, expandering, pelletering og køling sammen med de øvrige foderråvarer. Efterfølgende kontrol af vitaminindhold i færdigvaren gennemføres på det totale vitaminindhold, der medtager såvel tilsatte som naturlige vitaminer. Vores viden om foderblandingers indhold af naturlige vitaminer, og disses proces/lagerstabilitet og biologiske værdi er meget begrænset. Grundet denne begrænsede viden er vores kendskab til de tilsatte vitaminers, specielt B-vitaminerne, proces-og lagerstabilitet også begrænset.

På grund af den manglende viden om de naturlige vitaminer ser man ved fastsættelse af anbefalede vitamintilsætninger til fjerkræ og svin helt bort fra disse i Danmark. På den anden side medfører deres tilstedeværelse, at vi ikke har noget reelt kendskab til, hvor stor en procentdel af de enkelte tilsatte vitaminer der "overlever" fremstillingsprocessen og når frem til dyrene. Fra litteraturen ved vi, at adskellige af de tilsatte vitaminer i forskellig grad ødelægges af flere af faktorerne; fugtighed, temperatur, friktion, tryk og tid. Løven Agro har i udviklingsarbejdet lagt stor vægt på at få kendskab til foderblandingernes indhold af naturlige vitaminer og deres processtabilitet. Ved at fratrække dette naturlige vitaminindhold fra kontrolfoders (tør vitaminforblanding tilsat) totale vitaminindhold vitamin for vitamin, har vi fået en værdifuld indsigt i de tilsatte vitaminers processtabilitet. Denne viden er værdifuld ved fastsættelse af doseringen af den flydende vitaminforblanding på de afkølede foderpiller.

Hidtil gennemførte afprøvninger:

Løven Agro har på nuværende tidspunkt gennemført 6 forsøg med tilsætning af flydende vitaminforblandinger:

4 forsøg med slagtekyllinger blev gennemført på Fyens Andels- og Foderstofforretnings forsøgsanlæg med FAF som foderstofleverandør og Prof. J. Fris Jensen som forsøgsleder (Friis Jensen/FAF). Den anvendte foderblanding var FAF's standardfoder til slagtekyllinger, med og uden tilsat tør vitaminforblanding. Forsøgsholdene, der fik foder uden tilsatte vitaminer, fik tilført vitaminforblandingen gennem drikkevandet. I forhold til kontrolholdet blev vitamindoseringen via drikkevandet til forsøgsholdene planlagt til index 100, 75 og 50 for de 2 første forsøg og til index 100, 60 og 33 for de efterfølgende 2 forsøg. Grundet indkøringsproblemer med pumpeudstyret blev doseringen i første forsøg ca. index 110, 100 og 75.

Det første forsøg med slagtesvin, som var meget omfattende, blev gennemført med Landsudvalget for Svin, Danske Slagterier (efterfølgende LuS,DS) som forsøgsansvarlig på Forsøgsstationen Jylland og KFK-Ålborg som foderleverandør. Den anvendte foderblanding var standard Bacona Ideal, og flydende vitaminforblanding blev på fabrikken påsprøjtet forsøgsblandingerne med index 100, 85, 70, 55 og 40 i forhold til tør vitamindosering til kontrolfoderet.

Det andet forsøg med slagtesvin blev gennemført af Sydjydsk Svinerådgivning med KoF&G som foderleverandør (Sydjydsk/KoF&G). Den anvendte foderblanding var standardblandingen GrovGoé. Da KoF&G ikke på forsøgstidspunktet rådede over et sprayanlæg til flydende vitaminer, blev den flydende vitaminforblanding påsprøjtet forsøgsfoderet på Bioteknologisk Institut's forsøgsanlæg med index 70 i forhold til kontrolfoderet.

I alle 6 forsøg har vi haft foderblandinger til rådighed uden tilsætning af vitaminforblanding samt kontrolfoder med tilsat tør vitaminforblanding før varmebehandling. Alle blandinger er, med enkelte undtagelser af analysetekniske grunde, analyseret for alle vitaminer, som var tilsat vitaminforblandingen.

Naturlige vitaminer, indhold og processtabilitet.

Ved vitaminisering af foderblandinger tages der ikke hensyn til indholdet af naturligt forekommende vitaminer. Dette er begrundet med en stor variation i vitaminindholdet både indenfor og mellem de enkelte foderråvarer, samt manglende kendskab til de naturlige vitaminers biologiske værdi.

Det er imidlertid nødvendigt at have kendskab til foderblandingers naturlige indhold af vitaminer og disses stabilitet gennem foderfremstillingsprocesserne, hvis man vil lave undersøgelser over tilsatte vitaminers processtabilitet.

Tabel 1 viser indholdet af naturlige vitaminer i melvare, samt genfinding i procent efter expandering og pelletering i 3 foderblandinger. Indholdet af vitamin E og B-vitaminer i de 3 melblandinger er stort - for flere af vitaminerne også større end den mængde, man normalt tilsætter via forblandingen. Fund af K₃-vitamin er overraskende, da K₃-vitamin er et syntetisk vitamin. Ligeledes er det overraskende, at genfindingen for flere af vitaminerne er stigende over expandering til piller. Dette kan muligvis skyldes, at der foregår nogle fysisk/kemiske reaktioner under expandering og pelletering, som frigør vitaminer fra kemiske bindinger i foderstofferne. Endelig kan man ikke se bort fra, at analyseusikkerhed og vitaminlignende stoffer kan påvirke resultaterne.

Uanset disse usikkerheder viser tabel 1, at foderblandinger har et betydeligt indhold af naturlige vitaminer, og at disse vitaminer er særdeles processtabile. Vores undersøgelser giver ikke svar på de naturlige vitaminer s biologiske værdi. Eventuel kemisk frigørelse af vitaminer eller vitaminlignende stoffer under foderfremstillingsprocessen vil også ske i foderblandinger med tør vitaminforblanding tilsat - følgelig skal det fundne naturlige vitaminindhold efter hvert procestrin trækkes fra de totale vitaminindhold fundet i foderblandinger med tilsat tør vitaminforblanding, for at få kendskab til de tilsatte tørre vitaminers processtabilitet.

Vitaminstabilitet i forblandinger.

I forbindelse med LuS,DS-forsøget blev lagerstabiliteten af såvel den tørre forblanding som den flydende forblanding undersøgt. I tabel 2 angiver index 100 den garanterede vitaminkoncentration i en forblanding, der tilfører vitaminnormen til fuldfoder, når den doseres med 0,2%. Index 70 tilfører 70% af normen, når forblandingen doseres med 0,2%.

Vitamingenfindingen viser for begge forblandingstyper stor lagerstabilitet.

Vitaminer tilsat via tør forblanding, processtabilitet.

Tabel 3 viser genfindingsresultater for tilsatte vitaminer i tørre forblandinger og kontrolfoderblandingerne, som har været anvendt i de 4 produktionsforsøg med slagtekyllinger. Der er analyseret 3 partier forblandinger, ét parti melvare og 4 partier foderpiller. Genfinding i melvare og foderpiller er beregnet som totalt vitaminindhold minus naturligt vitaminindhold.

Tabel 4 viser på tilsvarende måde genfindingsresultater for tilsatte vitaminer i tørre forblandinger, melvare, expandat og foderpiller anvendt i de 2 forsøg med slagtesvin. Der er analyseret 2 forblanding pr. forsøg og 2 foderproduktioner pr. forsøg.

Tilsætningen af vitaminråvarer til forblandingerne styres af Løven Agro til mellem 99 og 102 procent af recepten. Af tabel 3 ses, at genfindingen af vitamin K_3 og B_{12} i fjerkræforblandingen var noget under det forventede. I forblandingerne til begge svineforsøgene, tabel 4, var der også lave genfindinger for vitamin B_{12} samt lav genfinding for B_1 i LuS,DS-forsøget og B_6 i Sydjydsk/KoF&G-forsøget.

Vitaminanalyser er behæftet med en betydelig prøveudtagnings- og analyseusikkerhed, specielt i færdigfoder, hvor vitaminkoncentrationen er meget lav.

Ser man tabel 3 og 4 under et er der, til trods for datavariation indenfor og mellem forsøgene, samt nogen niveauforskel mellem slagtekyllinge- og slagtesvineforsøgene, for vitamin A, E, K_3 , B_1 , B_6 og Niacin samme tendens i genfindingsprocenterne fra forblanding til piller. For vitamin B_2 er der ligeledes

samme tendens, men genfindingsprocenterne i foderblandingen til LuS,DSforsøget ligger for melvare, expandat og piller på et væsentligt lavere niveau end i de 2 andre forsøg. Analyseresultaterne for vitamin B₁₂, Pantotensyre og Biotin er vanskelige at tolke.

Årsagen til, at genfindingsprocenterne i foderpiller til slagtekyllinger ligger på et højere niveau end i foderpiller til slagtesvin kan være, at expandertemperaturen lå ca. 15 grader lavere ved produktion af kyllingefoderet end ved produktion af svinefoderet, henholdsvis ca. 85 og 100 grader.

Tendensen er imidlertid den samme i kyllinge- og slagtesvineforsøgene - tabet af vitaminer fra tør forblanding til pelleteret foder er meget betydeligt. Det største vitamintab ser ud til at ske under expandering, men for en række af vitaminerne ser det også ud til, at der er en tendens til yderligere tab ved den efterfølgende pelletering.

Ud fra tabel 3 og 4 konkluderes, at en væsentlig del af de vitaminer, der tilsættes via tørre vitaminforblandinger, aldrig når frem til dyrene.

Flydende vitaminforblanding, påsprøjtet efter pelletering.

I efterfølgende omtale af resultater fra påsprøjtning af flydende vitaminforblanding på kølede foderpiller er slagtekyllingeforsøgene udeladt, da den flydende vitaminforblanding i disse forsøg blev tilført via drikkevandet.

Fra indledende undersøgelser havde Løven Agro en stærk formodning om de viste vitamintab ved foderfremstilling og det blev derfor besluttet at undersøge, om flydende vitaminforblanding kunne påsprøjtes foderpiller efter køling med et bedre genfindingsresultat - og dermed en bedre overenstemmelse mellem tilsat vitamin og vitamin tilført dyrene. Ligeledes blev det besluttet at gennemføre produktionsforsøgene med faldende dosering af flydende vitaminforblanding sammenlignet med tør vitaminforblanding med henblik på at fastlægge en eventuel minimumdosering, hvor dyrene reagerede via deres foderudnyttelse eller tilvækst.

Til forsøget, gennemført af LuS,DS på Forsøgsstationen Jylland, blev der af KFK leveret 5 forsøgsblandinger, hvor den højeste dosering af flydende forblanding svarede til doseringen af tør vitaminforblanding til kontrolfoderet (index 100 svarende til norm). Vitamindoseringen til de 4 øvrige forsøgsblandinger blev reduceret til følgende index: 85, 70, 55 og 40. Den eneste forskel på kontrol og forsøgsfoder var forblandingstypen og tilsætningsmåden.

Til Sydjydsk/KoF&G-forsøget blev der af KoF&G leveret ét kontrolfoder og én forsøgsblanding. Også her var foderblandingerne identiske på nær forblandingstypen og tilsætningsmåden. Flydende vitaminforblanding blev her påsprøjtet med index 70 i forhold til kontrolfoder.

Alle forblandinger blev doseret med 2 kg. pr. tons foder (0,2 %)

Tabel 5 viser mængden af påsprøjtede vitaminer i form af flydende vitaminforblanding til slagtesvinefoder efter køling af pillerne, samt genfinding i procent af de påsprøjtede vitaminer umiddelbart efter produktion. Genfindingsprocenten udtrykker totalindhold af vitaminer fratrukket naturligt indhold.

Tabel 5 indeholder som tabel 3 og 4 en række enkeltresultater, som ser ud til at være fejlbehæftede. Yderligere er der i tabel 5 for vitamin B₁, LuS,DS-forsøget, en systematisk stigning i genfindingsprocenten, som ikke kan forklares med analyseusikkerhed. Analysen for vitamin B₁ i foderpiller mislykkedes for laboratoriet for foderblandingerne i Sydjydsk/KoF&G-forsøget. Pantotensyre er i den flydende forblanding erstattet med Pantenol, og der findes for nuværende ingen analysemetode der er fintfølende nok til at genfinde Pantenol i færdigfoder.

Der er ingen systematisk forskel i genfindingsprocenterne for påsprøjtet vitamin, uanset den påsprøjtede mængde.

Af tabel 6 fremgår, at genfindingsprocenterne for vitaminer, sprøjtet på overfladen af afkølede foderpiller, er meget højere end for tørvitaminer, der har gennemgået foderfremstillingsprocessen. Man må imidlertid også konstatere, at genfindingsprocenterne ligger under de påsprøjtede mængder, med stor variation fra vitamin til vitamin. Undersøgelsen klarlægger ikke, om der er tale om et egentligt vitamintab på grund af kemiske reaktioner ved vitaminernes kontakt med pillernes overflade, eller om der er tale om et analyseproblem.

Vitaminerne K_3 , B_{12} og Biotin havde meget lave genfindelsesprocenter efter tør tilsætning. Ved flydende påsprøjtning har K_3 og Biotin stadig lave genfindingsprocenter, men genfindingen er dog 20 til 25 procentpoint højere. For vitamin B_{12} er genfindingen 30 til 40 procentpoient højere. For vitamin B_1 tyder resultatet fra LuS,DS-forsøget, index 100 og 85, på en genfinding omkring 80 procent, hvilket er 35 til 40 procentpoint højere end ved tørvitaminer. Påsprøjtning af vitamin B_2 , B_6 , og Niacin viser genfindingsprocenter, der er 30 til 40 procentpoint højere end ved anvendelse af tørvitaminer. Vitaminerne A og E har altid påkaldt sig den største interesse ved analytisk efterkontrol af foderblandingers vitaminindhold - gennemsnitsresultaterne af nærværende afprøvning viser ca. 20 procentpoint bedre genfinding for vitamin A ved påsprøjtning og ca. 15 procentpoint for vitamin E.

De forbedrede genfindelsesprocenter for vitaminerne efter påsprøjtning har selvfølgelig betydning for dyrenes vitaminforsyning, og de er heller ikke uden betydning i relation til offentlig foderstofkontrol. Den væsentligste erkendelse er imidlertid, at vitamindoseringen ved flydende påsprøjtning kan reduceres uden at reducere dyrenes forsyning med tilsatte vitaminer.

Lagerstabilit t.

Genfindingsprocenterne for vitaminer, tilsat via tør vitaminforblanding eller påsprøjtet afkølede piller, umiddelbart efter produktion kan ikke stå alene - lagerholdbarheden af vitaminerne er af stor betydning for såvel foderstofindustrien som husdyrproducenten.

For at følge op på dette blev der udtaget prøver af en række af de afprøvede foderpartier efter 2, 4 og 6 ugers lagring i fodersilo. Den forholdsvis korte lagertid anses for at være dækkende for hovedparten af foderblandinger anvendt i moderne husdyrproduktion.

Tabel 7 viser genfindingsprocenter for vitaminer ved produktion og efter 6 ugers lagring. For foderpillerne, der kun indeholder naturlige vitaminer, er genfinding i piller sat i relation til indhold i melvaren. For de øvrige blandinger er genfindingen udtrykt i forhold til garanteret tilsat. Genfinding efter 2 og 4 ugers lagring er udeladt af pladshensyn og fordi de ikke forrykker den generelle tendens.

Generelt kan det konstateres, at alle naturligt forekommende vitaminer, synes at have en stor lagerstabilitet.

Vitamin A viser et svagt lagertab efter påsprøjtning, men tabet er væsentligt mindre end ventet. For vitaminerne E, B2 og B6 er der intet systematisk lagertab, ligesom Pantotensyre tilsat via tør forblanding og i naturlig form ser ud til at være meget stabilt. Pantenol tilsat via flydende forblanding formodes også at være et stabilt vitamin. Den genfundne Vitamin K3 efter flydende tilsætning reduceres hurtigt under lagring og nærmer sig 0 ved 4 ugers lagring. Indholdet af vitamin K₃ i de 2 kontrolblandinger var omkring 0 op til 4 ugers lagring, men ved analyse efter 6 uger fandtes de viste mængder. For vitamin B, er der stor lagerstabilitet for naturligt vitamin. Det høje genfundne niveau efter påsprøjtning falder i løbet af lagerperioden ned til samme niveau som fundet ved tør vitamintilsætning. For vitamin B₁₂ ses stor forskel mellem forsøgene, både hvad angår niveau og tendens. Dog vil restmængden af vitamin efter 6 ugers lagring være væsentligt højere efter flydende påsprøjtning end efter tør tilsætning. Resultatet for Niacin viser en tendens til større tab ved flydende påsprøjtning end ved tør iblanding medens resultatet for Biotin næppe lader sig tolke på grund af den store datavariation. En forsigtig tolkning kunne være, at der er 20 til 30 procent tilbage efter 6 uger uanset tilsætningsmåde.

Det generelle resultat af lagringsforsøget er, at at lagerstabiliteten er den samme, uanset tilsætningsmåde. Undtagelserne er vitamin K_3 , B_1 og måske B_{12} efter flydende påsprøjtning, som viser noget henfald. Indholdet af disse vitaminer ved lagringsforsøgets start var dog væsentligt højere efter flydende påsprøjtning end ved tør tilsætning. Såfremt der skal være rimelige mængder af vitamin K_3 og B_1 i foderet efter flydende påsprøjtning, skal det opfodres inden for 2 til 4 uger efter produktion.

Produktionsforsøg.

Ovenfor omtalte foderblandinger indgik i 6 produktionsforsøg.

I betragtning af forventet vitamintab ved industriel produktion af pelleterede foderblandinger med brug af tørre forblandinger var formålet med forsøgene at undersøge, om forsøgsdyrenes produktivitet kunne opretholdes ved reduceret vitamintilførsel via drikkevand eller påsprøjtet foderblandingerne efter køling. Formålet med den graduerede tildeling af vitaminer via flydende forblanding i Friis Jensen/FAF-forsøgene samt LuS,DS-forsøget var at fastlægge en eventuel minimumdosering til henholdsvis slagtekyllinger og slagtesvin, hvor vitamindoseringen blev begrænsende for produktiviteten.

Tabel 8 viser et sammendrag af de 4 produktionsforsøg med slagtekyllinger, gennemført ved Friis Jensen/FAF. I de 2 forsøg gennemført i 1996 var der ingen signifikant forskel i foderoptagelse og vægt ved 28 dage mellem kontrolhold og forsøgshold. I begge forsøgene , gennemført i 1997, havde kontrolholdene en signifikant større foderindtagelse og slutvægt end forsøgsholdene, med undtagelse af ét forsøgshold, index 100, hvor slutvægten ikke var signifikant forskellig fra kontrolholdet. Forsøgsholdene i 1997-forsøgene havde en lavere vandoptagelse pr. kg. foder end kontrolholdet samt forsøgsholdene i 1996-forsøgene, sandsynligvis på grund af dårlig vandkvalitet. Dette kan have påvirket forsøgsholdenes foderoptagelse og tilvækst i negativ retning.

Efter indkøring af doseringssystemet viste forsøgene, at det er muligt at regulere tildelingen af vitaminforblandingen i drikkevandet til en ønsket koncentration.

Mikrobiologiske analyser af drikkevandet viste ligeledes, at den hygiejniske kvalitet af vandet ikke var tilfredsstillende i forsøgene. Større vandgennemstrømning under produktionsforhold ventes at reducere dette problem, men udnyttelse af denne doseringsform vil sikkert også forudsætte hyppig desinfiktion af vandstrengen.

Tabel 9 viser resultatet af forsøget med slagtesvin, gennemført af LuS,DS. Faldende indhold af tilsat flydende forblanding havde ingen statistisk sikker effekt på grisene, og produktionsværdien var den samme for alle blandinger. Det er således muligt at reducere mængden af tilsatte vitaminer, når der bruges flydende forblanding påsprøjtet foderpiller.

Tabel 10 viser resultatet af Sydjydsk/KoF&G-forsøget med slagtesvin. Afprøvningens konklusion er, at de 2 afprøvede foderblandinger til slagtesvin ikke afviger statistisk sikkert fra hinanden med hensyn til kg. foder pr. dag, foderudnyttelse, gram daglig tilvækst, kødprocent og produktionsværdi for hele perioden.

Resultaterne af Friis Jensen/FAF-slagtekyllingeforsøgene og LuS,DS-slagtesvineforsøget viser, at forsøgsholdens produktionsresultater ikke var påvirket af en reduktion af den flydende vitamindosering ned til 40 til 50 procent af den tørre vitamindoseringen til kontrolholdet. I lyset af dette er det ikke overraskende, at der ikke var noget udslag i Sydjydsk/KoF&G slagtesvineforsøget, hvor den flydende vitamindosering blev nedsat til 70 procent, sammenlignet med kontrolholdet, der fik 100% tør vitaminforblanding.

Konklussion:

De gennemførte forsøg viser et overraskende stort procestab af samtlige vitaminer, tilsat foderet via tør vitaminforblanding. Den manglende vitamingenfinding starter allerede efter opblanding i melvaren. En række af vitaminerne taber yderligere aktivitet under expanderingen, ligesom der er en tendens til fortsat tab under den efterfølgende pelletering. I foderpiller ligger den gennemsnitlige genfinding for tilsat vitamin E og pantotensyre højest med ca. 70 procent, medens de øvrige vitaminer ligger med genfindingsprocenter fra godt 50 ned til ca. 25. Vitamin K₃ er speciel ved stort set at forsvinde.

De gennemsnitlige genfindelsesprocenter for vitaminer påsprøjtet foderpiller efter køling ligger fra 15 til 60 procentenheder højere end for vitaminer tilsat i form af tør vitaminforblanding (tabel 6).

Da samtidig lagerstabiliteten for vitaminerne ved op til 4 ugers lagring af foderblandingerne generelt er den samme, uanset påføringsmåde, tilføres dyrene betydelig højere vitaminmængder, ved samme vitamindosering til foderet, når vitaminerne påsprøjtes som flydende forblanding.

Litteraturundersøgelser har vist os, at ingen har søgt at skabe et sammenhængende billede af foderblandingers naturlige indhold af samtlige de vitaminer, som vi tilsætter via forblandinger, og disse naturlige vitaminers evne til at modstå foderfremstillingsprocessen. I Løven Agro's forsøg var der foderblandinger uden tilsat vitaminforblanding til rådighed, og det blev besluttet at gennemføre analyser af naturligt vitaminindhold på de forskellige procestrin som udgangspunkt for at undersøge processtabiliteten af vitaminer, tilsat foderet i form af tør vitaminforblanding. Det er i forsøgsplanerne forudsat, at den analytiske genfindelse af de naturlige vitaminer på de forskellige procestrin er uafhængig af tilsætningen af tør vitaminforblanding.

Ved egenkontrol, officiel kontrol samt kontrol i forbindelse med f.eks. reklamationer baserer man normalt sine konklusioner på totalanalyser af foderblandingers indhold af vitaminer, altså summen af naturligt forekommende og tilsatte vitaminer.

Ved fastsættelse af normer for vitaminisering af husdyrfoder ser man til fjerkræ og svin bort fra indholdet af naturligt forekommende vitaminer, grundet utilstrækkeligt kendskab til vitaminniveauet og den biologiske tilgængelighed af de naturlige vitaminer. Følgelig deklareres også kun indholdet af tilsatte vitaminer.

Indholdet af naturlige B-vitaminer viser sig at være overordentligt processtabile, endda med en tendens til stigende indhold under foderfremstillingsprocessen. Indholdsniveauet taget i betragtning er det ikke underligt, at en foderblanding sjældent eller aldrig falder ved efterkontrol for indhold af B-vitaminer. Det samme gør sig i væsentlig udstrækning gældende for vitamin E. Vitamin A og specielt K₃ har ikke denne naturlige opbakning, og da begge vitaminer i syntetisk form er noget, eller meget, procesfølsomme er det indlysende, at efterkontrol her vil afsløre mange dumpere.

Et problem i forbindelse med gennemførelse af undersøgelser af den her rapportrede type er usikkerheden forbundet med prøveudtagning og analyse. En række af analyserne i forbindelse med slagtekyllingeforsøgene er gennemført på Løven Agro's eget laboratorium, medens alle analyser i forbindelse med slagtesvineforsøgene er udført på autoriserede danske og udenlandske laboratorier. Det er bemærket, at resultatniveauet ligger højere på Løven Agro's specialiserede vitaminlaboratorie, især for tørre forblandinger.

Genfindelsprocenter i piller for vitaminer, tilsat via tør vitaminforblanding viser, at der er en meget dårlig sammenhæng mellem det deklarerede vitaminindhold (tilsat) i foderblandinger og den mængde, som når frem til dyrene. Overenstemmelsen er væsentlig bedre, når vitaminerne påsprøjtes foderpillerne. På denne baggrund var det nærliggende at undersøge, om dyrene i produktionsforsøg reagerede på reduceret vitamintilsætning via flydende forblanding påsprøjtet de kølede foderpiller.

Resultaterne af produktionsforsøgene viste, at slagtesvin ikke reagerede på en reduktion af vitamintildelingen via flydende påsprøjtning på 60 procent af den normerede tørvitamintilsætning. I slagtekyllingeforsøgene var der en svagt aftagende tilvækst efter en reduktion på 40 procent, men her gør der sig det specielle forhold gældende, at mikrobiologisk vækst i vandrørene havde forringet vandkvaliteten væsentligt.

De gennemførte forsøg viser, at en betydelig højere procentdel af de tilsatte vitaminer når frem til dyrene, når vitaminforblandingen påsprøjtes færdigfoderet eller doseres gennem drikkevandet. Dyrenes vitaminbehov kan altså dækkes med en lavere tilsætning af vitaminer efter pelletering på grund af det eliminerede procestab.

Nye produkter:

Efter det gennemførte udviklingsarbejde har Løven Agro besluttet at markedsfører flydende vitaminforblandinger tilsat Fytase-enzym samt mikromineralforblandinger til påsprøjtning på industrielt fremstillede foderpiller. På baggrund af de foreliggende resultater anbefaler Løven Agro at anvende flydende vitamin/fytaseblanding og mikromineralblanding til alle typer af svinefoder og fjerkræfoder. Til kvægfoder anbefales en vitaminblanding og en mikromineralblanding. Produktionskemisk er vi i stand til at afbalancere koncentrationen af tilsætningsstoffer efter dyrenes behov og kundernes ønske i én flydende blanding.

Løven Agro's koncept indebærer konsekvent tilsætning af Fytase-enzym til expanderet/pelleteret fjerkræfoder og svinefoder. Påsprøjtes enzymet på afkølede foderpiller sammen med vitaminforblandingen bevares den fulde enzymaktivitet, som medfører frigørelse af 60 til 70 procent af den organisk bundne fosfor i vegetabilske foderråvarer. Herudover frigøres mindre mængder af aminosyrer, kulhydrater og mikromineraler. Som konsekvens af enzymanvendelsen og reduceret dosering af mineralsk fosfat forventes det, at fosforkoncentrationen i gødningen, samt udledningen til miljøet, kan reduceres med 20 til 25 procent.

Mikromineralerne i en flydende mikromineralforblanding er 100 procent opløste hvilket medfører, at tilgængeligheden og optageligheden for dyrene er større end ved anvendelse af de traditionelle salte. Som konsekvens kan mikromineraldoseringen til industrielt fremstillet foder reduceres med mindre udledning til miljøet til følge.

De nye produkter leveres i emballager, der kan håndteres med truck, og produkterne føres fra emballagen til sprayudstyret i fabrikken gennem lukkede rørsystemer. Dette medfører betydelige håndteringsmæssige og arbejdsmiljømæssige fordele for foderstofindustrien.

Med markedsføring af flydende vitamin- og mikromineralforblandinger bliver det endnu mere aktuelt for foderstofindustrien at investere i teknisk udstyr til påsprøjtning af flydende tilsætningsprodukter.

Tabel 1: Analyseret indhold af naturlige vitaminer i fuldfoderblandinger (melvarer), samt genfinding (processtabilitet) efter expandering og pelletering.

		llingefoder /FAF, én lev.	Lus	Slagtesvinefode DS - KFK, gens.		Slagtesvinefoder Sydjydsk/KoF&G, gens 2 lev.			
	Melvare	Piller % genfinding	Melvare	Expandat % genfinding	Piller % genfinding	Melvare	Expandat % genfinding	Piller % genfinding	
Vitamin A, i.u./g	0,0	-	0,5	180	280	0,5	100	100	
Vitamin D ₃ , i.u./g		-	-	-	-		-	-	
Vitamin E, mg/kg	23,0	135	13,5	89	119	19,0	105	105	
Vitamin K ₃ mg/kg	0,2	65	0	•	-	0,25	120	120	
Vitamin B ₁ mg/kg	3,0	97	4,6	91	91		-	-	
Vitamin B₂ mg/kg	2,6	104	1,1	100	127	1,6	94	100	
Vitamin B₀mg/kg	4,1	98	2,9	107	103	2,5	144	156	
Vitamin B ₁₂ mg/kg	0,015	87	0,012	67	83	0,005	160	200	
Niacin, mg/kg	48,4	100	66,5	98	98	60,7	98	106	
Pantotensyre, mg/kg	12,0	100	11,0	87	92	9,8	99	92	
Biotin, mg/kg	0,24	100	0,2	95	105	0,29	103	83	
Folinsyre, mg/kg	2,1	90	-	-	-	-	-	-	

Tabel 2. Vitaminforblandinger. Genfinding af vitaminer i forhold til garanti ved produktion og efter 8 ugers lagring. LuS,DS-f rsøg.

-	til kontrolfod	forblanding er, gens. af 2 ktioner	Flydende vitaminforblanding til forsøgsfoder, gens. af 2 produktioner				
Garanti	Inde	x 100	Inde	Index 70			
	Ved produktion	8 ugers lagring	Ved produktion	8 ugers lagring	Ved produktion		
Vitamin A, i.u./g	80	80	81	80	84		
Vitamin E, mg/kg	94	93	98	95	102		
Vitamin K ₃ , mg/kg	105	70	63	57	81		
Vitamin B ₁ , mg/kg	60	67	70	84	70		
Vitamin B₂, mg/kg	94	90	97	95	99		
Vitamin B _e , mg/kg	77	81	95	81	88		
Vitamin B ₁₂ , mg/kg	50	51	88	81	97		
Pantotensyre, mg/kg	77	81	100	98	99		
Niacin, mg/kg	88	88	93	98	95		
Biotin, mg/kg	97	97	91	89	68		

Tabel 3. Slagtekyllingef rsøg. Genfinding af vitamin r, tilsat via tør vitaminforblanding, i forblanding, melvar og piller.

	Sla	gtekyllingefoder	, Fris Jensen/FA	F.
	Tilsat, garanti	% genf. forbl. 3 partier	% genf. mel 1 parti	% genf. piller 4 partier
Vitamin A, i.u./g	12,0	95	61	62
Vitamin D ₃ , i.u./g	2,5	- .	-	-
Vitamin E, mg/kg	40,0	103	71	82
Vitamin K ₃ , mg/kg	2,0	63	14	31
Vitamin B ₁ , mg/kg	2,5	88	16	51
Vitamin B ₂ , mg/kg	6,0	94	57	65
Vitamin B ₆ , mg/kg	4,0	111	105	.69
Vitamin B ₁₂ , mg/kg	0,021	68	124	63
Niacin, mg/kg	55,0	98	81	74
Pantotensyre, mg/kg	10,0	103	180	111
Biotin, mg/kg	0,2	99	125	70
Folinsyre, mg/kg	1,5	116	133	100

Tabel 4. Slagtesvineforsøg. Genfinding af vitaminer, tilsat via tør vitaminforblanding, i f rblanding, melvar , ekspandat og piller.

		Stagtesv	inefoder, LuS,	DS - KFK			Slagtesvinefoder, Sydjydsk/KoF&G				
•	Gens af 2 produktioner pr. produkt.						Gens af 2 produktioner pr. produkt.				
	Garanti	% genf. forbl.	% genf. melvare	% genf. ekspandat	% genf. piller	Garanti	% genf, forbl.	% genf. melvare	% genf. ekspandat	% genf. piller	
Vitamin A, i.u./g	4,2	80	85	53	60	4,4	80	96	61	56	
Vitamin E, i.u./g	58,0	94	60	66	66	55,0	91	82	50	70	
Vitamin K ₃ , mg/kg	2,1	105	85	10	0	2,0	83	45	3	8	
Vitamin B ₁ , mg/kg	2,1	59	63	44	39	-	-	-	-	-	
Vitamin B₂, mg/kg	2,1	94	27	24	12	4,0	92	84	95	74	
Vitamin B _{6,} mg/kg	3,2	77	71	29	47	3,2	57	73	32	19	
Vitamin B ₁₂ , mg/kg	0,02	50	o	10	0	0,02	34	45	60	35	
Niacin, mg/kg	21,0	88	44	53	46	21,0	93	66	71	49	
Pantotensyre, mg/kg	10,5	77	29	65	37	10,5	85	131	85	77	
Biotin, mg/kg	0,05	97	19	39	0	0,05	91	0	0	40	

. Tabel 5. Tilsat flydende vitaminforblanding til slagtesvinefoder efter køling af pillern og genfindingsprocent for tilsatte vitaminer. Index 100 svarer til norm.

(Genfinding = totalt vitaminindhold i piller ÷ naturligt indhold).

				LuS,DS -KFK				Sydjydsk/KoF&G	
	Påsprøjtet Garanti indeks 100	Genfinding % indeks 100	Genfinding % indeks 85	Genfinding % indeks 70	Genfinding % Indeks 55	Genfinding % indeks 40	Gens. genfinding	Påsprøjtet Garanti Indeks 70	Genfinding % indeks 70
Vitamin A, i.u./g	4,2	79	73	79	70	66	73	3,07	. 80
Vitamin E, mg/kg	58,0	79	81	80	76	98	83	42,0	87
Vitamin K₃ mg/kg	2,1	48	34	38	0,0	36	31	1,55	32
Vitamin B₁ mg/kg	2,1	84	81	111	154	272	140	-	-
Vitamin B₂ mg/kg	2,1	67	63	66	66	99	72	1,55	226
Vitamin B₅mg/kg	3,2	82	69	80	38	54	64	2,31	78
Vitamin B ₁₂ mg/kg	0,02	76	68	69	62	120	79	0,015	47
Niacin, mg/kg	21,0	84	88	98	99	114	97	15,3	83
Pantotensyre, mg/kg	10,5	_	-	-	-	-	-	7,64	-
Biotin, mg/kg	0,05	50	50	13	33	120,0	53	0,038	132

Tabel 6. Slagtesvinefoder. G nfindingsprocent r for vitaminer i forblandinger g piller ved produktion. Gens af resultater ved KFK og KoF&G.

	Tør forblanding	Foderpiller m. tør forblanding	Flydende forblanding	Foderpiller m. flydende forblanding
Vitamin A	79	58	83	77
Vitamin E	92	68	103	85
Vitamin K ₃	94	4	82	32
Vitamin B,	60	39	70	82**
Vitamin B₂	93	74/12*	101	226/72*
Vitamin B ₆	67	33	91	71
Vitamin B ₁₂	42	18	82	63
Niacin	91	48	97	90
Pantotensyre	81	57	98	-
Biotin	94	40/-19*	95	132/53*

^{*)} i KoF&G, hhv.KFK-forsøg

^{**)} index 85, LuS,DS-forsøg

Tabel 7: Lagerstabilitet af vitamin r i foderpiller. Procent genfinding fter pelletering g 6 ug rs lagring i forhold til indhold i melvare (naturlige vitaminer) eller deklareret tilsat (tør og flydend forblanding). Index 100 = norm. Gennemsnit af 4 produktioner (LuS,DS-KFK og Sydjydsk/KoF&G).

-	Foder	rpiller	Foderpille	r, tilsat tør	Fode	rpiller, tilsat f	lydende forblan	dende forblanding	
	Naturlige	vitaminer	forblanding. Index 100		Index 100		Inde	Index 70	
	Produktion	6 uger	Produktion	6uger	Produktion	6 uger	Produktion	6 uger	
Vitamin A, i.u./g	280/100	280/100	58	59	79	65	79	74	
Vitamin E, mg/kg	112	101	68	65	79	96	84	76	
Vitamin K ₃ , mg/kg	120*	44*	4	0/23	48	4	35	6	
Vitamin B ₁ , mg/kg	91	108	51*	36*	84	25	110	25**	
Vitamin B ₂ , mg/kg	114	117	43	38	67	95	66/226	54/187	
Vitamin B ₆ , mg/kg	130	88	33	51	82	88	79	70	
Vitamin B ₁₂ , mg/kg	142	98	17	30	76	50	58	48	
Niacin, mg/kg	102	103	48	55	84	67	90	75	
Pantotensyre, mg/kg	92	88	57	68	-	-	-	-	
Biotin, mg/kg	94	101	20	25	50	75	13/131	o	

^{*} Gens af 2 produktioner

^{** 4} ugers lagring

Tabel 8. Sammendrag af 4 produktionsforsøg med slagtekyllinger. Kontrolfoder tilsat tør vitaminforblanding. Forsøgshold tildelt vitaminforblanding kontinuerligt gennem drikkevand. Indeks 100 = norm. Indeks i forhold til kontrolfoder. (Forsøg gennemført ved FAF 1996 og 1997, Prof. Fris Jensen).

	Kontrol indeks 100 4 hold	Forsøg Indeks 110 1 hold	Forsøg Indeks 100 4 hold	Forsøg Indeks 75 2 hold	Forsøg Indeks 60 2 hold	Forsøg Indeks 50 1 hold	Forsøg Indeks 33 2 hold
Foderoptagelse, g	1584	1580	1560	1558	1541	1515	1500
Forsøgshold i % af kontrol	-	99,7	98,5	98,4	97,3	95,6	94,7
Vægt ved 28 dage	1201	1209	1207	1199	1196	1153	1176
Forsøgshold i % af kontrol	-	100,6	100	99,8	99,6	96,0	97,9
Foderforbrug / tilvækst	1,32	1,31	1,29	1,30	1,30	1,30	1,28

Produktionsforsøg med slagt svinefoder tilsat tør vitaminforblanding (Ind ks 100 = norm) eller påsprøjtet Tabel 9: aftagende mængder af flydende vitaminforblanding (Indeks 100 til 40). Forsøg t er gennemført af LuS,DS, F rsøgsstation Jylland. Foder leveret af KFK.

	Kontrolhold Tør vit. forbl, Indeks 100	Forsøgshold 1 Flydende vit. forbl Indeks 100	Forsøgshold 2 Flydende vit. forbl Indeks 85	Forsøgshold 3 Flydende vit. forbi Indeks 70	Forsøgshold 4 Flydende vit. forbl Indeks 55	Forsøgshold 5 Flydende vit. forbl Indeks 40
Forsøgsgruppe	1	2	3	4	5	6
Antal hold	24	24	24	24	24	24
Antal grise levende	70	71	71	70	72	72
31 - 69 kg						12
Daglig foderoptagelse, FEs	2,29	2,30	2,32	2,25	2,20	2,31
Daglig tilvækst, g	951	971	983	973	972	979
FEs pr. kg tilvækst	2,40	2,37	2,36	2,32	2,27	2,36
69 - 99 kg				<u> </u>		2,00
Daglig foderoptagelse, FEs	3,10	3,06	3,12	3,12	3,01	3,18
Daglig tilvækst, g	997	987	991	1008	985	1039
FEs pr. kg tilvækst	3,13	3,12	3,16	3,10	3,07	3,07
31 - 99 kg						0,0,
Daglig foderoptagelse, FEs	2,63	2,62	2,66	2,62	2,54	2,68
Daglig tilvækst, g	968	980	987	988	980	1006
FEs pr. kg tilvækst	2,71	2,68	2,70	2,65	2,59	2,67
Kødprocent	58,6	58,5	59,0	58,7	59,4	58,7
Produktionsværdi:						00,7
DB/stiplads/år 1), kr. 2)	830	846	864	872	899	880
Indeks 2)	100	102	104	105	108	106

Tabel 10. Produktionsforsøg med slagtesvinefoder tilsat tør vitaminforblanding (indeks 100 = norm) ller påsprøjtet flydende vitaminforblanding (index 70). Forsøg gennemført af Sydjydsk Svinerådgivning. F der: Gr v G fra KOF&G.

		er, tør vit. forblar Indeks 100	nding	Forsøgsfoder, flydende vit. forblanding Indeks 70			
	Mellemvejning	Sidste vækstperiode	Total	Mellemvejnin g	Sidste vækstperiode	Total	
Antal grise ved indsættelse	66	66	66	66	66	66	
Gens. vægt ved indsættelse	29,7	63,6	29,7	28,9	62,7	28,9	
Gens. slagtevægt, kg	63,6 lev.	111,0 lev.	84,7	62,7 lev.	111,6 lev.	85,2	
Pct. døde og kasserede	1,7	0	1,7	1,7	0	1,7	
Kg foder pr. gris pr. dag	1,68	2,84	2,31	1,66	2,81	2,30	
Kg foder pr. kg tilvækst	2,09	3,11	2,68	2,07	3,06	2,68	
Daglig tilvækst, kg	813	915	864	798	921	857	
Kødprocent			59,9			60,4	
Foderværdi, kr. pr. kg			1,38			1,39	

I forbindelse med gennemførelse af handlingsplanen for udryddelse af Salmonella i slagtekyllingeproduktionen iværksattes programmet "God produktionspraksis for fremstilling af fjerkræfoder". Dette program foreskriver blandt andet, at foderblandingerne under fremstillingen skal opvarmes til mindst 81 °C for derigennem at eliminere Salmonella bakterier fra

Undersøgelser har påvist, at denne temperatur mindsker mængden af vitaminer, navnlig når der bruges en lidt højere temperatur end den krævede mindstetemperatur.

For at løse denne konflikt kunne det være en udvej at skifte fra tilsætning af en vitaminforblanding i pulverform til foderet til tilførsel af et flydende produkt via vandingssystemet. I denne forbindelse kunne det desuden være værdifuldt at få afklaret, om det er muligt at reducere mængden af tilsatte vitaminer, idet den praktiserede sikkerhedsmargin for mængderne af vitaminer ved tilsætning til foderet muligvis ikke er nødvendig ved dosering via vandingssystemet.

Det var formålet med forsøgene at undersøge muligheden for tildeling af vitaminblandingen via vandingssystemet og for en reduktion af vitamindoseringen, idet der som udgangspunkt valgtes den i praksis brugte tildelte mængde vitaminblanding i pulverform i fuldfoderet.

Materiale og metoder

Der er gennemført 4 forsøg: 96-3B (96 04 09 - 96 05 07), 96-4B (96 05 28 - 96 06 25), 97 -2B (97 03 04 - 97 04 01) og 97 - 3 B (97 04 14 - 97 05 12). I hvert forsøg var der 4 behandlinger, og i alle forsøg var der et kontrolhold med 100 % dækning af vitaminbehovet via foderet, og et hold med 100 % dækning af behovet via vandet. I de to første forsøg reduceredes tildelingen via vandet til 75 % og 50 %, og i de to sidste forsøg til 60 % og 33 %. Til rådighed for forsøgene var der et hus med 24 rum. Hvert rum havde to fodersiloer og en streng med nippelvandere. Der blev strøet med ca. 5 cm hvedehalm. Ved indsætning af kyllingerne var temperaturen i huset 32 °C, og den sænkedes gradvist til ca. 20 °C. Huset opvarmedes med centralvarme, og klimaet styredes automatisk med termostatstyret ventilation.

Der indsattes ikke kønsorterede kyllinger (Ross 308), og for hver af de to forsøg var rugeæggene indsamlet i samme rugeægsbesætning. De daggamle kyllinger vejedes kassevis og kontroltaltes ind i rummene. Kasserne med kyllinger fordeltes tilfældigt til rummene. Kyllingeme vejedes rumvis ved 14 og 28 dage, og samtidig blev foderoptagelsen gjort op. Strøelsens kvalitet vurderedes dels med en skala fra 0 - 5 og dels ved en vurdering af areal med dårlig strøelses-kvalitet med en skala fra 1 til 10.Døde kyllinger registreredes og vejedes. Foderblandingen fremstilledes under sædvanlige produktionsbetingelser med konditionering, ekspandering og pilletering i 3.5 mm piller, hvorved temperaturen blev mindst 81 °C. Der udtoges foderprøver dels af sækkene med foder i huset og dels i forbindelse med produktionen af foderblandingerne til kemisk analyse, samt til analyse af vitaminer.

Der blev i forsøgsplanen anvendt betegnelserne V1, V2, V3 og V4 for følgende dækningsgrader af de sædvanligt anvendte doseringer af vitaminer: 100% dækning med vitaminer som pulver, og dækning med vitaminblanding i flydende form med henholdsvis 100 %, 75% og

/f

50% af den sering i de to første forsøg. Samt dækn ed vitaminblanding i flydende form med hennoldsvis 100 %, 60 % og 33 % i de to sidste forsøg, dog blev mængderne af vitaminerne B₆ Niacin, Biotin og Cholinchorid forøget op til NRC 1994 normen. For i højere grad at sikre en nødvendig gennemstrømning af vand i systemet med flydende vitaminer, blev vitaminblandingens koncentration mindsket med 20 % fra forsøg 96-4B.

Prøverne til analyse for indhold af vitaminer i det flydende præparat er tappet fra den del af rørledningen, der førte til et rum med den pågældende behandling, hvor niplerne var skruet på. I forsøg 96-4B blev der udtaget prøver af foderblandingen til analyse for vitaminer, før denne blev ført til konditionering og desuden af de færdigproducerede piller, mens der i de øvrigeforsøg kun blev udtaget prøver af de færdigproducerede piller. Vitaminanalyserne af prøverne i forsøg 96-3B blev gennemført ca. en måned efter prøveudtagning, og i de næste forsøg blev prøverne af de flydende vitaminer kølet ned ved at sætte prøverne i is, der var i termokasser og gennemføre analyserne indenfor ca. 3 dage.

Tabel 1. Foderblandingens sammensætning, g/ 100kg.

Hvede	342,2
Majsfodermel	100
Rapsfrø, dobbeltlav	150
Soyaskrå, afskallet, to asted	290
Soyaolie	- 30
Animalsk fedt	10
Kød benmel	50
Roemelasse	10
Kridt	4
Salt	1
Dicalciumfosfat	8
DL Methionin,	0,3
Enzym, β-glucanase	0,5
Forblanding	4

Tabel 2. Forblandingernes sammensætning,

Behandling	VI	V2, V3, V4
A-vitamin	3000 i.e./g	
D ₃ -vitamin	625 i.e./g	
E-vitamin(alfa-tokoferol)	10000 mg/kg	
K ₃ - vitamin	500 mg/kg	
B ₁ vitamin	625 mg/kg	
B ₂ -vitamin	1500 mg/kg	
B ₆ -vitamin	1000 mg/kg	
D-pantotensyre	2500 mg/kg	
Niacin	13750 mg/kg	
Folinsyre	375 mg/kg	
Biotin	50 mg/kg	
B ₁₂ -vitamin	5,3 mg/kg	
Cholinchlorid (60 %) i foderet	0,08 %	

Mikromineraler er tilført som de nævnte forbindelse	r	

Jem(II)sulfat	15500 mg/kg	15500 mg/kg
Zinkoxid	20000 mg/kg	20000 mg/kg
Mangan(II)oxid	25000 mg/kg	25000 mg/kg
Kobber(II)sulfat	6200 mg/kg	6250 mg/kg
Kaliumjodid	250 mg//kg	250 mg/kg
Natriumselenit	75 mg/kg	75 mg/kg
Avilamycin	2500 mg/kg	2500 mg/kg
Lasalocid natrium	30000 mg/kg	30000 mg/kg
Buthylhydroxytoluen	30000 mg/kg	30000 mg/kg

I tabel 1 er anført fuldføderets sammensætning, der var lig med sammensætningen for voksefoderblandingen i det tidsrum, da forsøgene blev gennemført. Desuden er der i tabel 2 vist sammensætningen af såvel vitaminblandingen som blandingen af mikromineraler. Som antibiotika blev brugt avilamycin, og som coccidiostat lasalocid natrium, mens buthylhydroxytoluen blev tilsat som antioxydant.

Ved analyse af foderprøverne er anvendt de godkendte EU-metoder, og indholdet af omsættelig energi er beregnet med den godkendte EU-metode. Vitaminer er analyseret med anerkendte metoder, og de mikrobiologiske undersøgelser er sket med standardmetoder. Forsøgene er gennemført som randomiserede blokforsøg med 6 gentagelser per behandling, og data for produktionsparametre er analyseret med GLM modellen i SAS systemet.

Resultater af de kemiske analyser af foderprøver og vandprøver

Resultaterne af den kemiske analyse af foderprøver udtaget dels to gange under produktionen af foderblandingerne og dels i forsøgshuset ved forsøg 96-3B fremgår af tabel 3. Foderblandingerne har næsten samme indhold af omsættelig energi og protein i forhold til energiindholdet. Desuden er såvel niveauet af calcium og totalfosfor det samme i foderet.

Tabel 3. Foderblandingernes kemiske sammensætning, g/kg tørstof. Forsøg 96-3B

Prøveudtagningssted	Produk- tion.	Produk- tion	Produk- tion	Produk- tion	Forsøgs- gård	Forsøgs gård
Foderblanding	V I	V 2-4	V 1	V 2-4	V 1	V 2-4
Protein	261	253	250	247	251	251
Fedt (HCl)	145	136	132	150	133	140
Stivelse	307	306	325	323	316	320
Sukker	63	61	62	62	62	62
Træstof	39	36	41	36	41	36
Aske	68	66	67	67	67	65
Calcium	12,3	12,5	12,8	12,7	13,5	12,9
Fosfor (Total)	7,8	8,0	7,8	8,0	9,1	8,4
Chlorid	3,3	3,2	2,8	2,7	2,6	2,6
OE / 100 kg foder, MJ	1321	1310	1304	1353	1309	1338
Protein / 10 MJ OE, g	174	175	170	163	173	169
Smuld					3,2	4,5
Slitage					1,0	1,4

Analyserne i tabel 4 af vitaminerne: A, E og K₃ i forblandingen viser, at der for de to første er fundet næsten samme mængde som tilsigtet, mens der for vitamin K₃ kun er genfundet 44 % af denne. Fundprocenten for den totale mængde (fodermidler + tilsat med forblanding) vitamin A i foderblanding V1 er kun 47 %, og vitamin K₃ kunne ikke findes, mens de øvrige vitaminer blev fundet omkring 100 % eller væsentligt derover. Tallene for vitamin A og K₃

bekræfter, av ved fremstilling af foderet sker et ikke deligt tab af vitamin. I foderblandingen uden tilsat vitaminforblanding til holdene V3 og V4 fandtes der væsentlige mængder af vitaminer, og ved sammenligning med indholdet af vitaminer i fuldfoderblandingen med tilsat vitaminforblanding, udgør bidraget af vitaminer fra fodermidlerne en stor del af fund i piller fra blanding V1. Ved beregning af vitaminblandingers indhold af vitaminer til dækning af kyllingernes behov og ved beregning af vitaminforblandingens andel af fulfoderet medregnes disse mængder normalt ikke.

Tabel 4. Vitaminindhold i for- og foderblandinger, mg/ kg, dog A og D3 i.e./ g,

Forsog 96-3B

Vitamin	Forblanding	Forblanding	V 1	V 1	V 2 - 4
•	Analyse mængde	Fund, %	Tilsat	Fund i Piller, mængde= %	Fund i Piller mængde
A	2870	96	12	5,6 = 47	2, 5
D ₃			2, 5		
E	9550	96	40	58,5 = 146	33
K ₃	218	44	2	0	0
B _i			2, 5	2,5 = 100	2, 0
B ₂			6	5,6 = 93	2, 2
B ₆			4	7,1 = 179	4, 2
B ₁₂			0, 021	0,02 = 92	0,021
Niacin			55	86,4 = 157	52, 1
Pantotensyre			10	13,4 = 134	14, 1
Biotin			0, 2	0,34 = 168	0, 23
Folinsyre			1,5	1,80 = 120	0, 32

Tabel 5. Vitaminanalyser i flydende prøver, mg/ kg, dog A og D3 i. e./g, Forsøg 96-3B

Hold		V2	V2	V3	V3	V4	V4
	Dato	Tilsat	Fund%	Tilsat	Fund%	Tilsat	Fund%
Α	16 04	6,0	17	4,5	8	3,0	21
	23 04		52		42		9
D ₃	16 04	1,26		0,95		0,63	
Е	16 04	22,30	91	16,72	143	11,15	129
	23 04		111		97		170
Bı	16 04	1,25	118	0,94	167	0,63	139
	23 04		108		95		110

Γ	B ₂ 16 04	3,06	47	2,30	126	1,53	94
r	23 04		79		72	_	104

Analyserene af vitaminer i de flydende prøver fra forsøg 96-3B i tabel 5 viser, at der for vitamin A er fundet væsentligt mindre end den tilsatte mængde, mens der for de andre analyserede vitaminer er fundet omkring samme mængde som tilsat.

Tabel 6. Vandforbrug, I og forbrug af flydende vitaminer, ml, per behandling. Forsøg 96-3B

01306 > 0 02				,
Behandling	V 1	V 2	V 3	V 4
Vandforbrug	2931	2916	3027	2930
Vitaminblanding, beregnet		5564	4169	2782
Vitaminblanding, forbrugt		5880	5407	3383
Beregnet/ forbrugt, %		106	130	122
Beregnet, %		100	75	50
Forbrugt, %		100	92	. 58

I det første forsøg - 96-3B (tabel 6) - opnåedes det at tildele de 4 behandlinger næsten samme mængde vand, men doseringen af vitaminblanding for behandling V3 og V4 var betydeligt over den beregnede mængde, hvorved der ikke opnåedes den tilsigtede reduktion i vitamintildelingen i behandling V3 og V4.

Tabel 7. Foderblandingernes kemiske sammensætning, g/kg tørstof. Forsøg 96-4B

Prøveudtagning	Produktion	Produktion	Forsøgsgård	Forsøgsgård
Behandling	V 1	V 2 - 4	VI	V 2 - 4
Protein	261	253	256	258
Fedt (HCl)	145	136	137	140
Stivelse	307	306	320	328
Sukker	63	61	62	62
Træstof	39	36	41	35
Aske	68	66	64	66
Calcium	12,3	12,5	12,8	12,9
Fosfor (Total)	7,8	8,0	8,1	8,5
Chlorid	3,3	3,2	2,9	2,8
OE/ 100 kg foder, MJ	1321	1310	1331	1355
Protein/ 10 MJ OE, g	174	175	173	171
Smuld			1,5	0,9

Slitage 0,7 0,7

Analyserne af foderprøverne fra såvel produktion som udtaget på forsøgsgården i forsøg 96-4B (tabel 7) viser sammen indhold af omsættelig energi, protein i forhold til energiindholdet og mineralerne calcium og fosfor i de to foderblandinger.

Tabel 8. Vitaminindhold i for- og foderblanding, mg/ kg, dog A og D, i. e. / g, Forsøg 96-4B

/f

Vitamin	Forbl.	Forbl.	V 1	V 1	V 1	V 2-4	V 2-4
	Analyse	Fund,%	Tilsat	Fund i Mel, %	Fund i Piller,%	Fund i Mel	Fund i Piller
Α	2958	98	12	61	47	0	0
D ₃			2,5				
E	9820	98	40	128	154	23	31
K ₃	239	48	2	24	27	0,20	0,13
В	401	64	2,5	136	164	3,0	2,9
B ₂	1400	93	6	100	115	2,6	2,7
B ₆	1155	116	4	208	158	4,1	4,0
B ₁₂	3,11	59	0,0212	193	118	0,015	0,013
Niacin	11170	81	55	169	164	48,4	48,5
Pantotensyre	3005	120	10	300	220	12	12
Biotin	49,8	100	0,2	245	180	0,24	0,25
Folinsyre	407	109	1,5	273	187	2,1	1,9

I forsøg 96-4B (tabel 8) viser analyserne af vitaminer i den anvendte forblanding, at der bortset fra vitaminerne: K_3 , B_1 og B_{12} blev fundet næsten samme mængde som deklareret. En sammenligning af analyseværdierne for melprøver og pilleprøver fra foderblanding V2 - V4, der ikke var tilsat vitaminforblanding, viser kun små forskelle, hvilket tyder på, at vitaminerne i selve fodermidlerne ikke påvirkes ret meget af den anvendte foderstofteknologi med bl. a. opvarmning til mindst 81 °C. De fundne mængder udgjorde også i dette forsøg en væsentlig del af de totale mængder vitaminer fundet i mel og piller fra fuldfoderblanding V1, der var tilsat vitaminforblanding. Derimod ser det for fuldfoderblanding V1ud til, at den totale mængde (fodermidler og tilsat) A-vitamin reduceres i melblandingen og endnu mere i pillerne. Tabet af K_3 ser ud til at ske allerede tidligt i blandeprocessen De tilsvarende værdier for de øvrige vitaminer ligger betydeligt over de tilsatte mængder både for melprøverne og for pilleprøverne.

I det samme forsøg udtoges prøver af vand med vitaminer med en uges mellemrum op til forsøgets afslutning, idet der på dette tidspunkt var en nogenlunde betydelig vandgennemstrømning til at der kunne udtages repræsentative prøver. Ved tildeling af vitaminerne i flydende form (tabel 9) ser det ud til, at mængden af A-vitamin genfindes med større procentdel end ved tildelingen i pulverform, mens mængden af B₂ i modsætning til pulverformen genfindes med væsentlig layere procentdel, hvilket i nogen grad også gælder for biotin og

folinsyre.

Der synes ikke at væn tendens til aftagende eller tiltagende gendingsprocenter efter de to tidspunkter for udtagning af vandprøverne til analyse for vitaminer.

Tabel 9. Vitaminanalyser i flydende prover. mg/kg, dog A og D, i.e. Forsøg 96-4B

1 abel 9. Vitaminanalyser i flydende prøver, mg/ kg, dog A og D ₃ i.e. Forsøg 96-4B							
		V 2	V 2	V 3	V 3	V 4	V 4
	Dato	Tilsat	Fund, %	Tilsat	Fund, %	Tilsat	Fund, %
A	11 06	5,0	49	3,75	58	2,50	45
	25 06		52		71		78
D ₃		1,05		0,79		0,53	
E	11 06	18,58	101	13,93	- 113	9,29	90
	25 06		107		121		128
B ₁	11 06	1,04	87	0,78	100	0,52	71
	25 06		85		104		109
B ₂	11 06	2,55	50	1,91	52	1,28	38
	25 06		16		22		53
B ₆	11 06	1,67		1,25		0,83	
	25 06		94		101		95
B ₁₂	11 06	0,009		0,007		0,004	
	25 06		79		75		90
Niacin	11 06	22,92		17,19		11,46	
	25 06		85		100		86
Pantotensyr	e	4,17		3,13		2,08	
Biotin	11 06	0,083		0,063	·	0,042	
	25 06		48		58		46
Folinsyre	11 06	0,63		0,47		0,31	
	25 06		54		87		77

Tabel 10. Vandforbrug, l og forbrug af flydende vitaminer, ml per behandling. Forsøg 96- 4B

Behandling	V I	V 2	V 3	V 4
Vandforbrug	2887	2869	2889	2891
Vitaminblanding, beregnet		6131	4598	30.65
Vitaminblanding, forbrugt		5860	4990	2910

Beregnet orugt	96	109	95
Beregnet, %	100	75	50 .
Forbrugt, %	100	85	50

Forbruget af vand (tabel 10) til de 4 behandlinger var praktisk taget det samme i forsøg 96-4B, som det ses i tabel 10. Desuden var der overensstemmelse mellem den beregnede mængde vitaminblanding og de i forsøget brugte mængder af vitaminblanding. Derved blev der i V3 tildelt lidt mere end tilsigtet og i V4 den tilsigtede mængde i forhold til mængden i V2.

Tabel 11. Vitaminindhold i for- og foderblandinger, mg/ kg dog A og D₃ i. e. /g. Forsøg 97-2B

101305 71-20	Forbland. Analy- seret mængde	Forbland. Fundet,	Foder V1 Tilsat mængde	Foder V 1 Fundet i piller, mængde = %	FoderV2-4 Fundet i piller mængde
Α	2800	93	12	10,2 = 85	0,4
D ₃	801	128	2,5		
E	10600	106	40	74 = 185	34,5
Κ,	350	70	2	1 = 50	0,06
B,	625	100	2,5	4,07 = 163	2,7
B ₂	1420	95	6	5,78 = 96	2,06
B ₆	1080	108	4	6,40 = 160	4,16
B ₁₂	3,79	72	0,0212	0,018 = 85	0,005
Niacin	14700	107	55	94,7 = 172	51,5
Pantothensyre	2380	95	10	20,4 = 204	9,1
Biotin	49,51	99	0,2	0,367 =184	0,208
Folinsyre	447,1	119	1,5	3,40 = 227	1,45

For alle vitaminer blev der ved forsøg 97-2B som vist i (tabel 11) fundet de deklarerede mængder af vitaminerne i forblandingen med undtagelse af vitamin K_3 og vitamin B_{12} , hvor der blev fundet ca. 3/4 af disse mængder. Analyserne af vitaminer i foderpiller viste en betydelig højere indhold af vitaminer både absolut og i forhold til den tilsatte mængde end i de to foregående forsøg, og vitamin K_3 viste også et større indhold end tidligere. Resultaterne af analyser af piller fra foderblandingen anvendt til behandling V2 - V4 bekræfter, at der i fodermidlerne er væsentlige mængder af vitaminer i forhold til mængderne fundet i fuldfoderblandingen V1, der var tilsat vitaminforblanding.

Tabel 12. Foderblandingernes kemiske sammensætning, g/ kg torstof. Forsøg 97-2B og 97-3B

Behandling	V 1	V 2 - V 4
Tørstofprocent	88,81	88,80
Råprotein	247	248
Råfedt (HCl)	144	146
Stivelse	334	331
Sukker	43	43
Træstof	37	38
Aske	58	61
Calcium	11,5	11,4
Fosfor	8,0	7,8
Chlorid	2,3	2,0
Smuld	0,4	0,2
Slitage	2,7	2,0
OE/kg tørstof, MJ	14,89	14,94
OE/ 100 kg foder, MJ	1322	1327
Råprotein/ 10 MJ OE, g	166	166

Tabel 13. Vitaminanalyse i flydende prøver, mg/ kg, dog A og D₃ i. e. per kg. Forsøg 97-2B.

Vitamii	ner Dato	V2 Tilsat med vand	V2 Fund i vand %	V3 Tilsat med vand	V3 Fund i vand %	V4 Tilsat med vand	V4 Fund i vand %
Α	17.03 01.04	5,00	70 78	3,00	75 72	1,67	79 91
D ₃		1,05		0,63		0,36	
E	17.03	18,58	89	11,15	97	6,19	108
	01.04		106		122		184
Κ,	17.03	0,83	41	0,50	48	0,28	61
	01.04		84		70		25
Bı	17.03		72	0,63	85	0,35	95
-	01.04		84		98		179
B ₂	01.04		63		97	ļ	72
B ₆	17.03	1,67	104	1,00	136	1,11	125
_	i		93	Ì	84		86
01.04		0,0108	74	0,0065	92	0,0054	92
B ₁₂	17.03		55		77		74
'-		22,92	87	13,75	77	15,28	90
01.04	Niacin		74	1	87	<u> </u>	79

17.03		4,17		2,50	T	1,39	
01.04		0,083	79	0,050	86	0,042	122
Pantothensyre	2	,	73	'	76		94
Biotin	17.03	0,63	42	0,38	61	0,21	130
	01.04	-	22		72		86
Folinsyre	17.03						
				1			İ
01.04							

De kemiske analyser af foderprøverne fra forsøg 97-2B og 97-3B, som er vist i (tabel 12), viser sammenfaldende værdier for de to foderblandinger. Indholdet af omsættelig energi og mængden af protein per 10 MJ OE svarer til det niveau, der er almindeligt i voksefoder til slagtekyllinger.

I (tabel 13) er vist resultaterne af vitaminanalyser fra forsøg 97-2B, hvor der blev udtaget prøver ved forsøgets afslutning og 14 dage tidligere. Ved alle 3 mængder af vitaminblanding er der i vandprøverne for A vitamin genfundet fra 70 % eller mere af den tilsatte mængde. Bortset fra vitamin K_3 er der fundet tæt på de beregnede tildelte mængder.

Tabel 14. Vandforbrug, l og forbrug af flydende vitamin, g per behandling. Forsøg 97-2B

Behandling	V 1	V 2	V 3	V 4
Vandforbrug, l Vitaminblanding, beregnet Vitaminblanding, forbrugt Beregnet/ Forbrugt Beregnet % Forbrugt, %	2740	2608 10849 10541 97 100 100	2602 6505 6600 101 60 63	2562 3510 4034 115 33 30

Vandforbruget i forsøg 97-2B (tabel 14) var næsten det samme ved de 4 behandlinger, og reduktionen i tildelingen af vitaminblanding var på samme niveau som planlagt.

Tabel 15. Vitaminindhold i for- og foderblandinger, mg/kg dog A og D, i.e. / g, Forsøg 97 3B

Vitaminer	Forbland. Analyse	Forbland. Fund, %	V 1 Tilsat	V 1 Fund i Piller Mængde = %			V 2-4 Fund i Piller Mængde
Α	2800	93	12	10,2	=	85	0
D ₃	801	128	2,5				
E	10600	106	40	70,9	=	177	36,3
K ₃	350	70	2	1,2	=	60	0,03
B ₁	625	100	2,5	4,35	=	174	2,34
B ₂	1420	95	6	6,52	=	109	2,29
B ₆	1080	108	4	8,66	=	217	5,27
B ₁₂	3,79	72	0,0212	0,019	=	90	0.004

Niacin	14700	107	55	97,4 =	177	53,1
Pantothensyre	2380	95	10	22,7 =	227	10,6
Biotin	49,51	99	0,2	0,409 =	205	0,230
Folinsyre	447,1	119	1,5	3,19 =	213	1,51

Analyserne af vitaminforblandingens indhold af vitaminer viser god overensstemmelse mellem det deklarerede indhold og det konstaterede indhold, bortset fra K_3 og B_{12} , hvor fundprocenten var henholdsvis 70 og 72. I piller fra foderblandingen til behandling V1 var fundprocenten i forhold til den tilsatte mængde for vitamin K_3 og vitamin B_{12} mindre end 100, og desuden var genfindelsen af A vitamin på 85 %, mens øvrige vitaminer havde fundprocenter over 100, og de fleste havde fundprocenter på omkring 200. Analysen af foderprøven fra blandingen til holdene V2 - V4, der ikke var tilsat vitaminforblanding viste ikke indhold af A vitamin og ubetydelige mængder af Vitamin K_3 og vitamin B_{12} , mens der for de andre vitaminer blev fundet væsentlige mængder i forhold til fuldfoderblanding V1, hvor den analyserede mængde vitamin omfattede både tilsat vitamin og vitamin fra fodermidlerne.

Tabel 16. Vitaminanalyser i flydende prøver, mg/ kg, dog A og D₃ i. e. per kg. Forsøg 97-3B

Forsug 97-3D					,		~·····
Vitaminer	Dato	V2 Tilsat med vand	V2 Fund i vand %	V3 Tilsat med vand	V3 Fund i vand %	V4 Tilsat med vand	V4 Fund i vand %
A	28.04	5,00	74	3,00	103	1,67	68
	12.05		65		65		46
D ₃		1,05		0,63		0,36	
E	28.04	18,58	108	11,15	170	6,19	155
İ	12.05		95		101		111
Κ,	28.04	0,83	32	0,50	32	0,28	11
•	12.05		36		20		18
В,	28.04	1,04	84	0,63	83	0,35	153
	12.05		86		101		130
B ₂	28.04	2,55	38	1,53	62	0,85	54
	12:05		54		49		47
B ₆	28.04	1,67	93	1,00	80	1,11	87
	12.05		43		71		65
B ₁₂	28.04	0,0108	74	0,0065	92	0,0054	74
	12.05		55		46		37
Niacin	28.04	22,92	93	13,75	95	15,28	85
	12.05		107		107		67
Pantothensyre	•	4,17		2,50		1,39	
Biotin	28.04	0,083	66	0,050	86	0,042	70
	12.05		70		82		74
Folinsyre	28.04	0,63	66	0,38	75	0,21	43
	12.05		46		53		62

Ved forsøg 97-3B (tabel 16) er der i de udtagne prøver ved forsøgets afslutning og 14 dage før

denne ikke fundet væsentlige forskelle i fundprocenterne for vitaminerne ved de 3 niveauer for tildeling af vitaminblandingen. Navnlig for vitamin K_3 men også for vitaminerne B_{12} og B_2 synes det vanskeligt at genfinde de mængder, der er tilført gennem den flydende vitaminblanding.

Tabel 17. Vandforbrug, I og forbrug af flydende vitamin, g per behandling. Forsøg 97-3B

Behandling	V 1	V 2	V 3	V 4
Vandforbrug, l Vitaminblanding, beregnet Vitaminblanding, forbrugt Beregnet / Forbrugt Beregnet, % Forbrugt, %	2735	2581 10737 10945 102 100 100	2593 6483 6707 103 60 61	2507 3435 3644 106 32 33

I forsøg 97-3B (tabel 17) var vandforbruget lidt mindre i de tre hold, der fik vitaminer via drikkevandet, og mindst i hold V4, som fik 33 % af den mængde, som hold V1 fir med foderet og V2 fik med drikkevandet. I forhold til hold V2 fik hold V3 og V4 den mængde vitaminblanding som var planlagt.

Mikrobiologiske undersøgelser

Tabel 18. Mikrobiologisk kvalitet af udtagne prøver fra 1996 04 11. Forsøg 96-3 B,

Behandling	VIh:V1	V2	V3	V4
Clostridium/ml	<1,0:<1,0	<1,0	<1,0	<1,0
Kimtal,tusind/ml	540:44	8100	7700	2000
Koliforme bakterier/100 ml	<1,0:<1,0	2,0	54	92
Koliforme termotolerante/100 ml	<1,0:<1,0	<1,0	<1,0	<1,0
Kings agar, kim, tusind/ml	120:690	700	1,8	16
Fluorescerende kim, tusind/ml	880:2,0	<1,0	8,0	11
Totalkim, blodagar/ml	12:6,4 10 ³	19 10 ⁶	11 106	3,1 10 ³
Bacillus/ml	<1,0:<1,0	<1,0	<1,0	<1,0
Bacillus cereus/ml	<10:<10	<10	<10	<10 000

Tabel 19. Mikrobiologisk kvalitet af udtagne prøver fra 1996 04 24, Forsøg 96-3 B

Behandling	V 1	V2H:V2	V 3	V 4
Clostridium/ml	<1,0	<1,0:<1,0	<1,0	<1,0

Kimtal, tusind/ml	65	4800:4100	3700	6600
Koliforme bakterier/100ml	<1,0	>160:>160	>160	>160
Koliforme, termotolerante/100ml	<1,0	<1,0:<1,0	3,0	<1,0
Kings agar, kim, tusind/ml	130	130:11000	7000	6100
Flourescerende kim, tusind/ml	50	700:270	900	<1,0
Totalkim, blodagar, tusind/ml	3,3	6300:2200	300	2400
Bacillus/ml	<100	<10:<100	<10	<100
Bacillus cereus/ml	<100	<10:<100	<10	<100

To dage efter starten og 2 uger senere for forsøg 96-3B blev der udtaget prøver til mikrobiologisk analyse, og resultaterne er vist i tabellerne 18 og 19. I prøverne af drikkevandet, hvortil der var sat vitaminblanding, fandtes omkring 8 10⁶ kim fra hold V2 og hold V3, mens hold V4 lå på 2 10⁶, og det samme resultat fandtes ved totalkim (blodagar). Desuden konstateredes koliforme bakterier i prøverne fra hold V3 og V4. For kimtal og totalkim (blodagar) fandtes de samme resultater ved de prøver, der blev udtaget 13 dage senere, og der var desuden en betydelig forøgelse af koliforme bakterier.

Prøverne af drikkevand fra hold V1, som ikke blev tilsat flydende vitaminblanding havde ved starten af forsøget et lavt indhold af kim og totalkim (blodagar) og der fandtes ikke koliforme bakterier. Ved prøverne fra den anden prøveudtagning var der ikke ændring i den mikrobiologiske tilstand af vandet. Der ser således ud til at være sket en betydelig opformering af koliforme bakterier i løbet af forsøgstiden for vandet tilsat vitaminer i flydende form. Ved afslutningen af forsøg 96-4B blev prøverne udtaget af drikkevand fra de 4 behandlinger, og resultaterne er vist i tabel 20. Prøverne fra hold V1 uden tilsætning af flydende vitaminblanding viste lave værdier for de målte faktorer, men for de tre andre behandlinger var antal koliforme bakterier per 100 ml alle over 160. Desuden var værdierne for kimtal og totalkim væsentligt højere i hold V2 - V4 end i hold V1.

Tabel 20. Mikrobiologisk kvalitet af udtagne prøver fra 1996 06 26, Forsøg 96-4B

Behandling	V 1	V 2	V 3	V 4
Clostridium / ml	<1,0	<1,0	<1,0	<1,0
Kimtal, tusind / ml	17	320	220	110
Koliforme bakterier / 100 ml	1,0	>160	>160	>160
Koliforme,termotolerante/100ml	1,0	<1,0	92	8,0
Kings agar, tusind/ ml	26	110	540	530
Flourescerende kim, tusind/ml	0,20	0,50	1,7	0,60
Totalkim, blodagar, tusind/ml	52	150	78	67

Bacillus/ml	<100	<100	1,0	100
Bacillus cereus/ml	<100	<100	<100	<100

De udtagne prøver af drikkevand fra de to sidste forsøg - 97-2B og 97-3B - viste sig uegnede til undersøgelse af den mikrobiologiske kvalitet.

I det sidste forsøg blev der undersøgt virkningen af en desinfektion af drikkevandssystemet, men den havde ved en subjektiv vurdering af vandvaliteten ved den efterfølgende desinfektion ikke en forbedrende virkning på vandkvaliteten. Der kunne iagttages en forbedring af vandkvaliteten i løbet af forsøgstiden, hvilket antagelig skyldes den stigende vandgennemstømning og nedsættelsen af rumtemperaturen i huset. Mængden af desinfektionsmiddel var sat i relation til vitaminblandingen, og koncentrationen faldt derfor fra 0,042 til 0,014 % fra hold V2 til hold V4, og der sås da også en faldende vandkvalitet fra hold V2 til V4.

Resultater af forsøgene med slagtekyllinger

De fire forsøg med slagtekyllinger er alle opdelt i to perioder af 14 dage, hvorved det er muligt at beregne tilvækst for hver af de to perioder, samt resultaterne ved afslutning af forsøgene.

I det første forsøg 96-3B var der ikke forskel på vægten af de daggamle kyllinger i de fire behandlinger. Dødeligheden var lav, og der var ikke væsentlig forskel mellem de fire behandlinger.

De første 14 dage var der signifikant større foderoptagelse i hold V1 end i de tre andre hold, og kyllingerne i hold V1 opnåede også en signifikant højere tilvækst end de tre andre hold, men fik da også et højere foderforbrug per g tilvækst. I den følgende periode var der kun signifikant forskel på foderforbruget, der var højest i hold V1, og denne forskel viste sig i resultaterne ved afslutning af forsøget.

Hverken med hensyn til foderoptagelse eller tilvækst var der forskel mellem de tre hold, som havde fået vitamintilsætning via drikkevandet.

Der var ikke forskel på strøelsens kvalitet mellem de fire hold ved afslutningen af forsøget, hverken med hensyn til kvalitet eller areal med dårlig strøelse.

Tabel 21. Kyllingernes foderoptagelse, tilvækst, foderforbrug, dødelighed og strøelsens kvalitet. Forsøg 96-3B.

Behandling	V1	V2	V3	V4	P<
Kyllinger indsat, antal Døde, %	752 1,9	753 3,7	750 1,3	750 3,9	
Daggamle kyllinger vægt, g	40	41	40	40	NS
0 - 14 dage Foderoptagelse, g Vægtforøgelse, g	444 ^a 363 ^a	404 ^b 354 ^b	407 ^b 355 ^b	412 ^b 359 ^b	0,001 0,04

Foderforbrug, g/g tilvækst	1,226	1,142	1,15	1,15°	0,0004
15 - 28 dage					
Foderoptagelse, g	1190	1176	1185	1185	NS
Vægtforøgelse, g	791	814	839	826	NS
Foderforbrug, g/ g tilvækst	1,50 ^b	1,44°	1,41°	1,43°	0,0009
28 dage					
Foderoptagelse, g	1634	1580	1592	1597	NS
Vægt, g	1194	1209	1234	1225	NS
Foderforbrug, g/ g	1,37 ^b	1,31°	1,29°	1,30°	0,0002
Strøelseskvalitet,	1				
Areal/ Kvalitet			5,1/1,8	4,8/1,7	
	4,7/1,0				
·		5,3/1,8			

Bortset fra foderoptagelsen i perioden fra 15 til 28 dage var der ikke signifikant forskel på de målte produktionsparametre i forsøg 96-4B, hvis resultater er i tabel 22.

Slutvægten ved 28 dage var noget større ved hold V2 og hold V3 end ved hold V4, der opnåede samme vægt som kontrolholdet. En reduktion af vitamintildelingen til 75 % har således ikke forringet kyllingernes tilvækst.

Der var ikke forskel på strøelsens kvalitet mellem de fire behandlinger, og den var løs og tør.

Tabel 22. Kyllingernes foderoptagelse, tilvækst, foderforbrug og dødelighed samt strøelsens kvalitet. Forsøg 96-4B

Behandling	VI	V 2	V 3	V 4	P<
Kyllinger indsat, antal	740	741	741	739	
Døde, %	3,0	2,8	3,0	2,8	
Daggamle kyllinger,vægt g	38	38	39	39	NS
0 - 14 dage					
Foderoptagelse, g Vægtforøgelse, g Foderforbrug, g/ g tilvækst	369 322 1,15	380 334 1,14	368 324 1,14	378 332 1,14	NS NS NS
15 - 28 dage Foderoptagelse, g Vægtforøgelse, g Foderforbrug, g/ g tilvækst	1138 ^b 786 1,45	1176° 808 1,46	1151 ^b 809 1,42	1137 ^b 782 1,45	0,04 NS NS
28 dage					

Foderoptagelse, g	1507	1556	1519	1515	NS
Vægt, g	1146	1180	1172	1153	NS
Foderforbrug, g/ g	1,32	1,32	1,30	1,31	NS
Strøelseskvalitet	67/24	6,4/2,0	6,8/3,0	7.0/2,7	
Areal/ Kvalitet	6,7/2,4	0,4/2,0	0,8/3,0	7,0/2,7	

Ved begge de to sidste forsøg - 97-2B og 97-3B - var foderoptagelsen signifikant mindre i holdene med vitamintildeling via drikkevandet end ved holdet med vitamintildeling via foderet, og det betød en mindre tilvækst i disse hold, således at slutvægten blev signifikant størst i kontrolholdet. Der var ikke signifikant forskel på foderforbruget. I begge forsøg var foderoptagelse og tilvækst signifikant mindre i hold V4 end i de to andre hold med vitamintildeling via drikkevandet.

Behandlingen påvirkede ikke strøelseskvaliteten, og den var løs og tør ved afslutningen af forsøget.

Sammenligning af vandoptagelsen i forhold til foderoptagelsen viser, at der ikke skete en ændring i kyllingernes vandoptagelse ved tildeling af vitaminer via drikkevandet. I begge forsøg var dødeligheden meget lav, og der var ikke forskel på de fire holds dødelighed.

Tabel 23. Kyllingernes foderoptagelse, tilvækst, foderforbrug og dødelighed samt strøelsens tilstand, og optagelse af vand og vitaminblanding per kylling. Forsøg 97 2B.

Behandling	VI	V2	V3	V4	P<
Kyllinger indsat, antal Kyllinger døde, %	750 1,6	750 1,6	750 1,5	750 1,9	
Daggamle kyllinger vægt, g	40,5	40,0	40,2	40,7	NS
0 - 14 dage Foderoptagelse, g Tilvækst, g Foderforbrug g/ g tilvækst Strøelseskvalitet, Areal/ Kvalitet Vandoptagelse, g Vand: Foder Vitaminblanding, ml Relativt	408 ² 346 ³ 1, 18 0,8/1,0 1014 2,5 0	393 ^b 335 ^b 1, 17 0,3/1,0 979 2,5 397 100	393 ^b 338 ^b 1,16 0,5/1,0 954 2,4 246 62	394 ^b 338 ^b 1,17 0,8/1,0 945 2,4 149 37	0,026 0,041 NS
15 - 28 dage Foderoptagelse, g Tilvækst, g Foderforbrug, g/ g tilvækst	1218° 866° 1,41	1184 ^b 843 ^{ab} 1,40	1176 ^{bc} 841 ^{ab} 1,40	1152° 821 ^b 1,40	0,003 0,014 NS

Strøelseskvalitet, Areal/Kvalitet Vandoptagelse, g Vand: Foder Vitaminblanding, ml Relativt	7,2/2,0 2682 2,5 0	8,0/2,0 2534 2,2 1025 100	7,7/2,0 2555 2,2 639 62	7,8/2,0 2513 2,2 397 37	
28 dage Foderoptagelse, g Vægt, g Foderforbrug, g/ g Vandoptagelse, g Vand : Foder Vitaminblanding, ml Relativt	1622 ^a 1253 ^a 1,29 3690 2,3 0	1574 ^b 1218 ^b 1,29 3507 2,2 1420 100	1566 ^b 1219 ^b 1,29 3506 2,2 884 62	1542 ^b 1200 ^b 1,29 3450 2,2 544 38	0,002 0,009 NS
Total foderforbrug, kg/kg	1,30	1,30	1,29	1,29	

Tabel 24. Kyllingernes foderoptagelse, tilvækst, foderforbrug og dødelighed samt strøelsens tilstand, og kyllingernes vandoptagelse og forbrug af vitaminblanding. Forsog 97-3B.

Behandling	Vl	V2	V3	V4	P<
Kyllinger indsat, antal	750	750	750	750	
Døde, pct.	1,7	2,8	1,9	2,5	
Daggammel kylling, g	40	40	40	40	NS
0 - 1-4 dage					
Foderoptagelse, g	404°	383 ^{bc}	388ab	378 [∞]	0,02
Tilvækst, g	344	334	335	327	NS
Foderforbrug, g/g tilvækst	1,18	1,15	1,16	1,16	NS
Vandoptagelse, g	1004	993	923	895	
Vand : Foder	2,5	2,6	2,6	2,4	
Vitaminblanding, ml	0	387	231	111	
Relativt		100	60	29	ľ
14 - 28 dage				i	
Foderoptagelse, g	1174°	1139 ^b	1133 ^b	1087°	0,0001
Tilvækst, g	827ª	822°	797 ^{ab}	769 ^b	0,02
Foderforbrug, g/ tilvækst	1,42	1,39	1,42	1,42	NS
Vandoptagelse, g	2737	2502	2652	2735	
Vand : Foder	2,3	2,2	2,3	2,5	
Vitaminblanding, ml	0	1018	598	369	
Relativt		100	59	36	
28 dage					
Foderoptagelse, g	1574ª	1517 ^b	1517 ^b	1459°	0,0001

1-7

Vægt, g	1211ª	1195°	1172 ^b	1152 ^b	0,0008
Foderforbrug, g/g	1,30	1,27	1,30	1,27	NS
Vandoptagelse, g	3741	3529	3575	3629	
Vand - Foder	2,4	2,3	2,4	2,5	
Vitaminblanding, ml	0	1405	829	480	
Relativt		100	59	34	1
Strøelse, A/K	8,2/2,7	8,2/2,3	8,0/2,0	8,0/2,3	
Foderforbrug total, kg/ kg	1,31	1,28	1,30	1,27	NS

Diskussion og konklusion

Af de fire forsøg med slagtekyllinger var der i de tre ikke signifikant forskel på slutvægten ved 28 dage mellem kontrolholdet med tilførsel af vitaminblandingen via foderet og holdet med samme mængde vitaminblanding tilført via drikkevandet. I det sidste forsøg vejede kontrolholdets kyllinger mest. Det ser således ud til, at ændringen i den tekniske tilførselsform for vitaminer fra tilstandsformen som mel i form af en vitaminforblanding i fuldfoderet til en flydende form via drikkevandet også dækker slagtekyllingers behov for vitaminer. Efter vitaminanalyserne er tilførsel af vitaminer via drikkevandet muligvis en sikrere tilførselsform end den sædvanlige tilsætning via foderblandingen, idet analyserne af vitaminer i den pilleterede foderblanding viser tab af vitaminerne A og K₃ i forhold til den tilsatte mængde vitamin med vitaminforblandingen i højere grad end det er fundet for tilførsel via drikkevandet..

Den yderligere afprøvning af tilsætning af vitaminblandingen via drikkevandet gennem en reduktion af tilførselen viser, at der i de tre sidste forsøg, hvor tilførselen svarede til planlagte reduktion ned til henholdsvis 50 % og 33 %, var der en signifikant nedgang i kyllingernes slutvægt, mens der i det ene forsøg ikke var en aftagende vægt med faldende tildeling af vitaminblanding, hvilket antagelig kan tilskrives nedgangen i foderoptagelsen for holdene med tildeling af vitaminer via drikkevandet.

I de fire forsøg var der ikke signifikant forskel på foderforbruget, hverken ved ændring fra vitaminblanding i foderet til vitaminblanding via drikkevandet eller ved aftagende tildeling af vitaminblanding.

Efter indkøring af doseringssystemet og reduktion af vitaminkoncentrationen i det flydende produkt viser forsøgene, at det med det anvendte doseringssystem til at regulere tildelingen af vitaminblandingen i drikkevandet til en ønsket koncentration er muligt at dosere en planlagt vitaminmængde.

Analyserne af vitaminer i drikkevandsprøverne viser for de fleste et højere indhold end forventet efter den givne tildeling af vitaminblandingen. De fleste analyser af vitamin A viser dog et mindre indhold end planlagt; men gennemgående med en højere genfindelse end fundet i foderprøverne. I betragtning af, at der kun i forsøg 96-3B er væsentlige mængder af Avitamin i foderet uden tilsætning af vitaminblanding, er det vigtigt, at der ved tilsætning af Avitamin via drikkevandet, er sikkerhed for, at behovet for vitaminet er dækket. Ved de to sidste forsøg var tilførselen af A-vitamin beregnet til 1,67 i. e. per ml vand, og fundprocenten varierede i disse forsøg mellem 46 og 91, eller mellem 0,77 og 1,52 i. e. per ml. Da forholdet mellem optagne mængder vand og foder for denne behandling er mellem 2,2 og 2,5 betyder

det, at tilførselen af A-vitamin har været nede på 1,69 i. e. i forhold til foderet eller tæt på den anbefalede mængde på 1,5 i. e. per g foder. Der er således for dette vitamin et væsentligt mindre forbrug, end der er fundet i kontrolholdet, hvor der i de to sidste forsøg er tilført ca. 10 i. e. per g foder.

Desuden ser det ud til, at vitamin B₂ går tabt ved tildeling via vandingssystemet end når det tilsættes foderet. I gennemsnit er der fundet 2,3 mg B₂ per kg foder i foderblandingen uden vitamintilsætning, og der er i de to sidste forsøg med en reduceret tilsætning af vitaminblandingen til 33 % tilført 0,85 mg per l vand. Fundprocenten for den tilsatte mængde varierede i de to forsøg mellem 47 og 65, eller mellem 0,40 og 55 mg per l drikkevand. Med et vand foder forhold på 2,2 har tilførselen i forhold til foderet været ca. 0,9 mg B₂ vitamin eller totalt 3,2 mg per kg foder. Der kan således være tilført mindre af vitaminet end behovet på 3,6 mg per kg foder, hvorved tabet af vitaminet ved tilsætning via drikkevandet kan få væsentlig betydning. En reduktion til 33 % vil med nuværende metode være for stor til, at kyllingernes behov vil blive dækket.

Vitamin K₃ findes ofte kun i små mængder i de fodermidler der bruges til fremstilling af foderblandinger til slagtekyllinger, og analyseresultaterne viser, at der i forblandingen ikke genfindes den angivne mængde af vitaminet. Der sker tilsyneladende ikke et tab af vitaminet ved fremstillingen af foderpillerne. Ved at give K₃ via vandingssystemet opnås der tilsyneladende en større overførselsrate bedømt ud fra fundprocenterne i vandprøverne.

Endelig viser vitaminanalyserne, at der tilføres utilstrækkelige mængder B₁₂ fra de anvendte fodermidler til at dække kyllingernes behov.

For de fleste vitaminer viser analyserne af fuldfoderblandinger uden tilsætning af en vitaminforblanding, at der i forhold til de analyserede mængder vitaminer i fuldfoder med tilsat vitaminforblanding er betydningsfulde vitaminmængder i fuldfoderblandinger med den i forsøgene sammensætning.

De mikrobiologiske undersøgelser viste navnlig i det første forsøg en betydelig uønsket vækst af bakterier i vandingssystemet. Det kom særlig til udtryk i første del af forsøget, da vandgennemstømningen var lav og rumtemperaturen var 32 til 33 °C.

Selv om koncentrationen af vitaminblandingen blev reduceret for at øge vandgennemstrømningen fra og med det følgende forsøg lykkedes det ikke at opnå en tilfredsstillende kvalitet af drikkevandet. Der blev dog iagttaget en forbedring af vandkvaliteten i den sidste del af forsøgstiden, og det tyder på, at vandgennemstrømningen har afgørende betydning for kvaliteten af vandet.

Forsøgene har vist, at det er muligt at tildele en vitaminblanding via drikkevandssystemet, og at mindske vitamintilførselen til omkring halvdelen af den mængde, der sædvanligvis tilsættes til foderet, uden at der sker en væsentlig reduktion i kyllingernes vægt og uden en forøgelse af foderforbruget.

For nogle vitaminer synes der at kunne opnås en mere stabil tilførsel via vandingssystemet end ved den almindelige tilførsel via foderet, der af hensyn til bekæmpelse af Salmonella opvarmes til mindst 81 °C, hvilket kan reducere vitaminindholdet.

Samarbejdsparter

Forsøgene blev gennemført i et forsøgsanlæg stillet til rådighed af Fyens Andels-Foderstofforretning, og den daglige pasning forestodes af Jørn Munck. Foderstofanalyserne udførtes på FAF's driftslaboratorium ved Marianne Molkte, og foderblandingernes sammensætning og produktion blev varetaget af Claus Løvengreen.

Løven Agro ved Chr. Skov Larsen leverede vitaminblandinger og doseringsudstyr, som blev tilset og indkørt af Karl Jensen Løven Agro. Prøver til analyser af vitaminer og til undersøgelse af den mikrobiologiske kvalitet udtoges af Karl Jensen og Løven Agro udførte vitaminanalyserne.

Mikrobiologiske undersøgelser blev udført hos Bioteknologisk Institut ved Marianne Virsøe. Forsøgene er gennemført efter tilladelse af Plantedirektoratet.

Kontrolfoderet til de 4 gennemførte produktionsforsøg med slagtekyllinger blev tilsat traditionel tør vitaminforblanding til melvaren, hvorfor vitaminanalyserne på såvel melvare som piller udtrykker summen af tilsatte og naturligt forekommende vitaminer. Forsøgsfoderblandingerne blev ikke tilsat vitaminforblanding, da vitaminerne til forsøgsholdene blev tilsat gennem drikkevandet. Vitaminanalyserne på forsøgsfoderet udtrykker således foderblandingernes indhold af naturligt forekommende vitaminer. Da eneste forskel mellem kontrolfoder og forsøgsfoder er tilsætning af vitaminforblanding kan man ved at trække forsøgsfoderets indhold af naturlige vitaminer fra kontrolfoderets totale vitaminindhold få et udtryk for kontrolfoderets indhold af tilsatte vitaminer efter de enkelte procestrin. Faldende genfinding af tilsat vitamin under foderfremstillingsprocessen udtrykker således procestab af vitaminer, tilsat via tør vitaminforblanding.

Slagtekyllingefoder: Genfundet tilsat vitamin i foderpiller i procent af tilsat via tør forblanding til melblanding.

	Melbl. tilsat garanti	1996, 3B Genf. % af tilsat	1996, 4B Genf. % af tilsat	1997, 2B Genf. % af tilsat	1997, 3B Genf. % af tilsat	Gens. genf. % af tilsat
Vitamin A, i.u./g	12	26	47	82	85	60
Vitamin E, mg/kg	40	64	77	99	87	81
Vitamin K ₃ mg/kg	2	0	21	47	59	32
Vitamin B ₁ mg/kg	2,5	20	48	55	80	51
Vitamin B₂ mg/kg	6	57	70	62	71	65
Vitamin B ₆ mg/kg	4	73	- 58	56	85	68
Vitamin B ₁₂ mg/kg	0,021	0	57	61	71	*63/47
Niacin, mg/kg	55	62	76	79	81	74
Pantotensyre, mg/kg	10	О	100	113	121	*111/84
Biotin, mg/kg	0,2	55	55	80	90	70
Folinsyre, mg/kg	1,5	99	60	130	112	100

³ forsøg/4 forsøg

/