Lab3_SupportVectorMachine_Report

1. What's the difference between the different SVM kernels?

An SVM maps inputs into a (possibly higher-dimensional) feature space and finds a hyperplane that best separates classes (maximizes margin). The **kernel** function defines how input points are compared (i.e., the inner product in some feature space). Different kernels correspond to different feature mappings and therefore different shapes of decision boundary.

Linear Kernel

Decision Boundary Shape: Straight line / hyperplane

Hyperparameters: C

Good For: Linearly separable or high-dimensional sparse data (e.g. text)

Output score (decision_function): Signed distance to the hyperplane

Polynomial Kernel

Decision Boundary Shape: Polynomial curve (2nd, 3rd... degree)

Hyperparameters: degree, coef0, gamma, C

Good For: Data with feature interactions or curved relationships

Output score (decision_function): Distance to polynomial decision surface

RBF Kernel

Decision Boundary Shape: Highly flexible, smooth nonlinear boundary

Hyperparameters: gamma, C

Good For: General-purpose nonlinear problems where the structure is unknown

Output score (decision_function): Distance to nonlinear boundary in infinite-dimensional space

2. When would you use each one, and how do their outputs differ?

Linear kernel (kernel='linear')

- When the classes are separable or approximately separable by a linear boundary.
- Also ideal when you have very high dimensional features, even if data is noisy.
- Very fast for large datasets (use LinearSVC if you have a lot of samples).

Polynomial kernel (kernel='poly', degree=d)

- When you suspect polynomial relationships or interactions among features (e.g., quadratic or cubic effects).
- Small- to medium-sized problems (higher degree increases complexity).
- Degree 2 or 3 is common (higher → risk of overfitting).

Radial Basis Function (RBF) kernel (kernel='rbf') — most commonly used

- Good default when you don't know the right kernel it's a general-purpose nonlinear kernel.
- It can model very complex nonlinear structure.
- Usually gives the best performance after proper tuning (C and gamma).
- Good for most small/medium tabular datasets.

As per the output, Higer ROC-AUC (better separation) between the classes in the decision_function output.

The RBF model produces decision scores almost positives get higher scores than negatives, it is the highest among the three.

Polynomial kernel has the lowest ROC-AUC, some negatives are assigned high scores and some positives low scores (lower ranking ability).

Liner is in the middle, it separates reasonably well, but not as cleanly as RBF.

Linear SVM classification report

Linear SVM classification report Consufion Matrix: [[8299, 242], [16, 121]] Classification Report precision recall f1-score support 0 1.00 0.97 0.98 8541 1 0.33 0.88 0.48 137 accuracy 0.97 8678 macro avg 0.67 0.93 0.73 8678 8678 weighted avg 0.99 0.97 0.98

Roc AUC Score: 0.9515356156692024

Poly SVM classification report

Poly SVM classification report Consufion Matrix: [[8485, 56], [28, 109]] Classification Report precision recall f1-score support 0 1.00 0.99 1.00 8541 0.66 0.80 0.72 137 0.99 8678 accuracy 0.83 0.89 macro avg 0.86 8678 weighted avg 0.99 0.99 0.99 8678

Roc AUC Score: 0.9211933507503949

RBF SVM classification report

RBF SVM classification report Consufion Matrix: [[8450, 91], [31, 106]] Classification Report precision recall f1-score 0.99 0.99 8541 0 1.00 1 0.54 0.77 0.63 137 0.99 8678 accuracy 0.88 macro avg 0.77 0.81 8678 0.99 weighted avg 0.99 8678 0.99

Roc AUC Score: 0.972283113568985