データベース 第二回

情報工学科 木村昌臣

データモデリング(1/3)

■実世界の情報の存在の仕方(関連性など) をデータベース内で再現すること

実世界の情報 (会社の人事情報、 大学の学生情報など)

DBの基となる実世界

概念設計

現実のデータを 整理

概念モデル:実世界を表現する抽象 的なスキーマ

論理設計

どのようにスキーマ を記述するか

論理モデル: DBMSで管理可能

なスキーマ

データモデリング(3/3)

- データモデルとは、情報をデータベースに 保持する方法。(データの持ち方)
 - リレーショナルデータモデル
 - ネットワークデータモデル
 - ハイアラキカル(階層)データモデル
 - オブジェクト指向データモデル

- ●業界標準
 - ●基本
 - ●重要
 - ●完成度 高い!

リレーション(1/4)

- ・ドメイン
 - 集合のこと
 - 人名の集合 (D1={x| xは人名})
 - 金額の集合 (D₂={x| xは金額})
 - 整数(INTEGER)の集合 (D3={x| x=0,±1, ±2,•••})

など

- ■ドメインの直積
 - ■ドメインを単純に並べたもの
 - D= D₁ × D₂ ={(x,y)| xは人名, yは金額}

リレーション(2/4)

- ■ドメインの直積の例
 - D1={"木村","坂本","桂"}
 - D2={"20万円", "30万円"}
 - $D_1 \times D_2$
 - = {("木村", "20万円"),("木村", "30万円"), ("坂本", "20万円"),("坂本", "30万円"), ("桂", "20万円"),("桂", "30万円")}

要素の一つ一つを タップル(tuple)と呼ぶ

リレーション(3/4)

それぞれのドメインに属したものを並べたものの集合 のことをリレーションという

- リレーションの定義
 - D₁, D₂, D₃, …, D_n をドメインとする。 D₁, D₂, D₃, …, D_n上のリレーション = 直積 D₁ × D₂ × D₃ × … × D_nの部分集合

R={("木村","20万円"),("坂本","30万円"),("桂","30万円")}

並べている個数(=ドメインの数)=次数 次数1=単項、次数2=2項、次数3=3項 •••

リレーション(4/4)

リレーションは次数が決まっているから表にすると便利

	木村	20万円	
	坂本	30万円	
	桂	30万円	
D1の要素)2の要素

属性名とリレーション名(1/2)

表の各列やリレーションそのものに、何を表しているか 名前をつけてやるとわかりやすい。

リレーション名(=テーブル名)

社員給与

属性名 (=カラム名) 社員名 俸給月額 木村 20万円 坂本 30万円 桂 30万円

、属性名 (=カラム名) A₂

 D_2

属性名とリレーション名(2/2)

- ドメイン関数
 - 属性名とドメインを結びつけるもの
 - Dom: Ai \rightarrow Di (i=1,2,3,···,n)
 - Di = Dom(Ai)
 - D1={x|xは人名} = Dom(社員名)
- 属性名を使ったリレーションの表し方
 - $R(A_1,A_2,\dots,A_n) \subseteq Dom(A_1) \times Dom(A_2) \times \dots \times Dom(A_n)$
- タップルの表し方
 - $t=(a_1,a_2,\cdots,a_n) \Leftrightarrow a_i=t[A_i]$

リレーションスキーマ(1/2)

社員が辞めたり、新入社員がはいったりすると、タップルは増減(変化)する。

■しかし、リレーション名や属性名は不変。

リレーションスキーマ(2/2)

ここは変わらないから、ここを設計する!

<u> </u>		
社員名	俸給月額	
木村	20万円	
坂本	30万円	
桂	30万円	

実際に利用するときには、データを入れておく

リレーションスキーマ(2/2)

社員給与(社員名,俸給月額)

社員給与

社員名	俸給月額
木村	20万円
坂本	30万円
桂	30万円

第一正規形(1/2)

- まずはリレーションのあるべき姿から
 - タップルの属性値(レコードのフィールド値)に 繰り返しがあってはいけない。
 - 繰り返すなら、いっそ新しいタップル(レコード) をつくれ!

社員番号	社員名	趣味
L001	木村	ドライブ、カラオケ
L002	坂本	テニス、音楽、山登り

フィールド内で繰り返すのではなく、 レコードとして繰り返す!

社員番号	社員名	趣味
L001	木村	ドライブ
L001	木村	カラオケ
L002	坂本	テニス
L002	坂本	音楽
L002	坂本	山登り

正規化

主キー(1/4)

これまでのリレーションは、ただタップルを並べていただけ。

「あるデータを探し出したい!」

リレーションのタップルを特定するための仕組みとして主キーがある。

主キー(2/4)

主キーがひとつの属性値で構成されている場合

社員マスタ(社員番号,社員名,所属部門)

社員番号	社員名	所属部門
L001	桂 小五郎	SE部
L002	坂本 龍馬	経理部
L003	桂 小五郎	経理部
L004	近藤 勇	営業部

社員番号だけで タップルが特定できる!

主キー (3/4)

主キーが複数の属性値で構成されている場合

営業成績(製品名,担当者,売上)

製品名だけでは _____タップルは特定できない

製品名	担当者	売上
携帯電話	木村	20万円
パソコン	木村	100万円
コンポ	木村	50万円
携帯電話	坂本	10万円
パソコン	坂本	150万円
掃除機	坂本	10万円

製品名と担当者を合わせて初めて タップルが特定できる!

主キー (4/4)

- タップルを特定するため、主キーは以下の条件 を備える必要がある。
 - タップルの唯一識別能力を備えていること
 - 主キーを構成する属性の値は空値(null value)では ないこと
 - 下の例では、桂さんを一意に特定できない。(空値は「値がない」ので識別能力なし)

社員番号を主キーとする

社員番号	社員名	所属部門
L001	桂 小五郎	SE部
L002	坂本 龍馬	経理部
_	桂 小五郎	経理部
L004	近藤 勇	営業部

外部キー (1/2)

さっきのリレーション(表)

社員番号	社員名	所属部門
L001	桂 小五郎	SE部
L002	坂本 龍馬	経理部
L003	桂 小五郎	経理部
L004	近藤 勇	営業部

で、各社員の所属部門が「存在しないもの」だったら困る。

外部キー (2/2)

社員マスタ

社員番号	社員名	所属部門
L001	桂 小五郎	SE部
L002	坂本 龍馬	経理部
L003	桂 小五郎	経理部
L004	近藤 勇	営業部

社員マスタの所属部門の属性値が 部門マスタの部門名に 含まれていないとエラー

⇒社員マスタの所属部門は

部門マスタの外部キー

部門マスタ

部門名	所属長
SE部	L008
経理部	L019
営業部	L) 01

トリガー

リレーションが更新されることを引き金(トリガー)として他のリレーションにも更新を施す仕組み

例)新入社員が一人増えたので、社員情報リレーションにレコードがひとつ追加されたら、部門リレーションに保持していた部門メンバー数に1を加える。

権限

- ユーザーに応じて、検索(SELECT)、更新 (INSERT、UPDATE)、削除(DELETE)など の権限を付加したり剥奪したりすることが できる。
- 例)社員リレーション(T_SHAIN)への挿入権限を ユーザーU001に付加/剥奪する。
 - GRANT INSERT ON T_SHAIN TO U001; (付加)
 - REVOKE INSERT ON T_SHAIN TO U001; (剥奪)

データベーススキーマ

- データベースの構造・枠組みを定義する体系
 - データベーススキーマ名(枠組みの名前)
 - ドメイン定義(必要があればドメインに名前をつける
 - リレーションスキーマ定義
 - ビュー定義(SELECT文の結果をリレーションに見 立てたもの)
 - ■表明定義
 - ▶トリガー定義
 - 権限定義
- つまり、今日やったことをワンセットにしたもの