R Data Wrangling

Spencer Lourens

January 19 2017

Outline of Lecture

- ▶ Data Wrangling
- ► The dplyr package
 - Selecting, filtering observations
 - Calculating new variables
 - Summarizing the data
- ► The tidyr package
 - Converting wide to long
 - Converting long to wide

▶ Data wrangling: The practical task of transforming the layout, substance, and display of your data - Garrett Grolemund, RStudio

- Data wrangling: The practical task of transforming the layout, substance, and display of your data - Garrett Grolemund, RStudio
- ▶ Data wrangling can be broken into three basic domains: data manipulation, data tidying (for analysis/visualization), and data visualization

- Data wrangling: The practical task of transforming the layout, substance, and display of your data - Garrett Grolemund, RStudio
- ▶ Data wrangling can be broken into three basic domains: data manipulation, data tidying (for analysis/visualization), and data visualization
 - ▶ Data manipulation Change the variables, their values, or the sample units used for analysis (aggregation?)

- Data wrangling: The practical task of transforming the layout, substance, and display of your data - Garrett Grolemund, RStudio
- Data wrangling can be broken into three basic domains: data manipulation, data tidying (for analysis/visualization), and data visualization
 - ▶ Data manipulation Change the variables, their values, or the sample units used for analysis (aggregation?)
 - ▶ Data tidying Change the LAYOUT of the data wide, long, etc., most of the time for software use

- Data wrangling: The practical task of transforming the layout, substance, and display of your data - Garrett Grolemund, RStudio
- Data wrangling can be broken into three basic domains: data manipulation, data tidying (for analysis/visualization), and data visualization
 - ▶ Data manipulation Change the variables, their values, or the sample units used for analysis (aggregation?)
 - ▶ Data tidying Change the LAYOUT of the data wide, long, etc., most of the time for software use
 - ▶ Data visualization Make use of our visual way of thinking by representing data in a visual format

► The dplyr package creates another structure, called a tbl (table, or as Hadley says, tibble)

- ► The dplyr package creates another structure, called a tbl (table, or as Hadley says, tibble)
- A tbl is a dataframe

- ► The dplyr package creates another structure, called a tbl (table, or as Hadley says, tibble)
- A tbl is a dataframe
 - that works seemlessly with dplyr functions

- ► The dplyr package creates another structure, called a tbl (table, or as Hadley says, tibble)
- A tbl is a dataframe
 - that works seemlessly with dplyr functions
 - that optimizes display when printed without printing too much and taking up unnecessary cache memory (slows down your R session)

- ► The dplyr package creates another structure, called a tbl (table, or as Hadley says, tibble)
- A tbl is a dataframe
 - that works seemlessly with dplyr functions
 - that optimizes display when printed without printing too much and taking up unnecessary cache memory (slows down your R session)
- ► The pipe (%>%) operator

- ► The dplyr package creates another structure, called a tbl (table, or as Hadley says, tibble)
- A tbl is a dataframe
 - that works seemlessly with dplyr functions
 - that optimizes display when printed without printing too much and taking up unnecessary cache memory (slows down your R session)
- ► The pipe (%>%) operator
 - allows more concise, perhaps narrative-looking production of code

Piping example

Consider the two approaches below

```
x <- c(1,3,4,1,4,10,19,2.5,1)
x %>% mean(na.rm = T)

## [1] 5.055556

mean(x)
```

```
## [1] 5.055556
```

Same result!

▶ Piping really shines when you have many nested calls as in toy example below

- ► Piping really shines when you have many nested calls as in toy example below
- ► The following are equivalent:
 - reportResult(groupResult(calculateResult(df))
 - df %>% calculateResult() %>% groupResult() %>% reportResult()

- ► Piping really shines when you have many nested calls as in toy example below
- ▶ The following are equivalent:
 - reportResult(groupResult(calculateResult(df))
 - df %>% calculateResult() %>% groupResult() %>% reportResult()
- Notice that the second line with piping is more natural to read from left to right, similar to how we read English

- ► Piping really shines when you have many nested calls as in toy example below
- ► The following are equivalent:
 - reportResult(groupResult(calculateResult(df))
 - df %>% calculateResult() %>% groupResult() %>% reportResult()
- ► Notice that the second line with piping is more natural to read from left to right, similar to how we read English
- Very helpful in more complicated settings

Example datasets

▶ It may be helpful to go back over these notes in your own R session - we'll test a lot of dplyr functionality on different datasets

Example datasets

- It may be helpful to go back over these notes in your own R session - we'll test a lot of dplyr functionality on different datasets
- ► Functions from the dplyr package to demonstrate: select, filter, mutate, group_by, summarise . . .

Example datasets

- It may be helpful to go back over these notes in your own R session - we'll test a lot of dplyr functionality on different datasets
- Functions from the dplyr package to demonstrate: select, filter, mutate, group_by, summarise . . .
- ▶ We will illustrate use of these functions on the flights data set from package nycflights13, previewed on the following slide, and the storms data set from package EDAWR (and other EDAWR datasets), on the subsequent slide.

Dataset flights

▶ The actual dimension of flights is 336776 by 19

year	month	day	dep_time	sched_dep_time	dep_delay	arr_tin
2013	1	1	517	515	2	83
2013	1	1	533	529	4	8!
2013	1	1	542	540	2	92
2013	1	1	544	545	-1	100
2013	1	1	554	600	-6	8
2013	1	1	554	558	-4	74
2013	1	1	555	600	-5	9:
2013	1	1	557	600	-3	70
2013	1	1	557	600	-3	83
2013	1	1	558	600	-2	7!

Dataset storms

▶ The actual dimension of storms is 6 by 4

storm	wind	pressure	date
Alberto	110	1007	2000-08-03
Alex	45	1009	1998-07-27
Allison	65	1005	1995-06-03
Ana	40	1013	1997-06-30
Arlene	50	1010	1999-06-11
Arthur	45	1010	1996-06-17

select: Select/rename variables by name

- select: Select/rename variables by name
- select(.data, ..., .dots)

- select: Select/rename variables by name
- select(.data, ..., .dots)
 - ▶ .data: a tbl

- ▶ select: Select/rename variables by name
- select(.data, ..., .dots)
 - ▶ .data: a tbl
 - ...: comma separated list of unquoted expressions

- select: Select/rename variables by name
- select(.data, ..., .dots)
 - ▶ .data: a tbl
 - ▶ ...: comma separated list of unquoted expressions
 - .dots: Use select_() to do standard evaluation (using strings)

flights %>% select(year, month)

flights %>% select(year, month)

year	month
2013	1
2013	1
2013	1

We often have a fixed vector of string variables we would like to keep in the analysis

- ► We often have a fixed vector of string variables we would like to keep in the analysis
- Use select_() with .dots argument!

- We often have a fixed vector of string variables we would like to keep in the analysis
- Use select_() with .dots argument!

year	month	dep_time	dep_delay	arr_time	arr_delay	flight
2013	1	517	2	830	11	1545
2013	1	533	4	850	20	1714
2013	1	542	2	923	33	1141
2013	1	544	-1	1004	-18	725
2013	1	554	-6	812	-25	461

 Sometimes we might only want to remove a variable or variables

```
flights %>% select(-year)
flights %>% select_(.dots = c("-year", "-origin", "-day"))
flights %>% select(-sched_dep_time:-arr_time)
```

Special functions for dplyr::select

 Several variables in your dataset may have a similar naming convention, i.e. variablet1, variablet2, etc. that we want to extract

Special functions for dplyr::select

- Several variables in your dataset may have a similar naming convention, i.e. variablet1, variablet2, etc. that we want to extract
- ► Use ends_with, starts_with, contains, matches, num_range, one_of....

Special functions for dplyr::select

- Several variables in your dataset may have a similar naming convention, i.e. variablet1, variablet2, etc. that we want to extract
- ► Use ends_with, starts_with, contains, matches, num_range, one_of....

Select variables ending with time and the year/month
flights %>% select(year, month, ends_with("time"))

year	month	dep_time	sched_dep_time	arr_time
2013	1	517	515	830
2013	1	533	529	850
2013	1	542	540	923
2013	1	544	545	1004
2013	1	554	600	812

Special functions for dplyr::select

Select variables starting with arr and the year/month
flights %>% select(year, month, starts_with("arr"))

year	month	arr_time	arr_delay
2013	1	830	11
2013	1	850	20
2013	1	923	33
2013	1	1004	-18
2013	1	812	-25
2013	1	740	12
2013	1	913	19
2013	1	709	-14

 Sometimes we need to include only observations which satisfy some criterion for analysis

- ► Sometimes we need to include only observations which satisfy some criterion for analysis
 - ► Include only cases

- Sometimes we need to include only observations which satisfy some criterion for analysis
 - ► Include only cases
 - Include only those above certain exposure level

- ► Sometimes we need to include only observations which satisfy some criterion for analysis
 - ► Include only cases
 - Include only those above certain exposure level
 - Include only those with positive survival times

- Sometimes we need to include only observations which satisfy some criterion for analysis
 - ► Include only cases
 - ▶ Include only those above certain exposure level
 - Include only those with positive survival times
- ▶ The filter function comes to the rescue!

▶ filter: Return rows with matching conditions

- ▶ filter: Return rows with matching conditions
- ▶ filter(.data, ...)

- filter: Return rows with matching conditions
- ▶ filter(.data, . . .)
 - ▶ .data: a tbl

- ▶ filter: Return rows with matching conditions
- ▶ filter(.data, ...)
 - ▶ .data: a tbl
 - ...: logical predicates. Multiple conditions are commbined with &

- filter: Return rows with matching conditions
- filter(.data, ...)
 - ▶ .data: a tbl
 - \blacktriangleright . . . : logical predicates. Multiple conditions are commbined with &

```
storms %>% filter(pressure == 1010)
```

storm	wind	pressure	date
Arlene	50	1010	1999-06-11
Arthur	45	1010	1996-06-17

```
storms %>% filter(storm == 'Alberto' | pressure > 1009)
```

storm	wind	pressure	date
Alberto	110	1007	2000-08-03
Ana	40	1013	1997-06-30
Arlene	50	1010	1999-06-11
Arthur	45	1010	1996-06-17

► Can use all comparisons, logical expressions in filter(), filter_(). The filter_() function takes string arguments rather than explicit expressions

- Can use all comparisons, logical expressions in filter(), filter_().
 The filter_() function takes string arguments rather than explicit expressions
- ► Logical expressions: &, |, !, any, all, ...

- Can use all comparisons, logical expressions in filter(), filter_().
 The filter_() function takes string arguments rather than explicit expressions
- ► Logical expressions: &, |, !, any, all, . . .
- ► Comparisons: <, >, ==, <=, >=, !=, %in%, is.na, !is.na, ...

- Can use all comparisons, logical expressions in filter(), filter_().
 The filter_() function takes string arguments rather than explicit expressions
- ▶ Logical expressions: &, |, !, any, all, ...
- ► Comparisons: <, >, ==, <=, >=, !=, %in%, is.na, !is.na, . . .

flights %>% filter(!is.na(air_time))

year	month	day	dep_time	sched_dep_time
2013	1	1	517	515
2013	1	1	533	529
2013	1	1	542	540
2013	1	1	544	545

The dplyr::mutate function

mutate: Add new variables

The dplyr::mutate function

- mutate: Add new variables
- mutate(.data, ...)
 - ▶ .data: a tbl
 - ▶ ... name-value pairs of expressions, i.e. mean = mean(var)

The dplyr::mutate function

mutate: Add new variables

mutate(.data, ...)

▶ .data: a tbl

...: name-value pairs of expressions, i.e. mean = mean(var)

storm	wind	pressure	date
Alberto	110	1007	2000-08-03
Alex	45	1009	1998-07-27
Allison	65	1005	1995-06-03
Ana	40	1013	1997-06-30
Arlene	50	1010	1999-06-11
Arthur	45	1010	1996-06-17

▶ summarise: Summarise multiple values to a single value.

- summarise: Summarise multiple values to a single value.
- summarise(.data, ...)

- summarise: Summarise multiple values to a single value.
- summarise(.data, ...)
 - ▶ .data: a tbl

- summarise: Summarise multiple values to a single value.
- ▶ summarise(.data, ...)
 - ▶ .data: a tbl
 - ...: name-value pairs of summary functions. For example, mean(), sd(), etc.

- summarise: Summarise multiple values to a single value.
- summarise(.data, ...)
 - ▶ .data: a tbl
 - ...: name-value pairs of summary functions. For example, mean(), sd(), etc.

mean_wind	mean_pressure
59.16667	1009

► The dplyr package provides other helpful functions for use with the summarise function

- ► The dplyr package provides other helpful functions for use with the summarise function
 - ▶ first(): first value in a vector

- ► The dplyr package provides other helpful functions for use with the summarise function
 - ▶ first(): first value in a vector
 - ▶ last(): last value in a vector

- ► The dplyr package provides other helpful functions for use with the summarise function
 - ▶ first(): first value in a vector
 - ▶ last(): last value in a vector
 - nth(): nth value in a vector

- ► The dplyr package provides other helpful functions for use with the summarise function
 - ▶ first(): first value in a vector
 - ▶ last(): last value in a vector
 - nth(): nth value in a vector
 - n(): number of values in a vector

- ► The dplyr package provides other helpful functions for use with the summarise function
 - first(): first value in a vector
 - ▶ last(): last value in a vector
 - nth(): nth value in a vector
 - n(): number of values in a vector
 - n_distinct(): number of distinct values in a vector

- ► The dplyr package provides other helpful functions for use with the summarise function
 - first(): first value in a vector
 - last(): last value in a vector
 - nth(): nth value in a vector
 - n(): number of values in a vector
 - n_distinct(): number of distinct values in a vector
- ▶ All the usual R functions that take a vector can be used, too!

 Summarizing a data overall is helpful, but often times it is most helpful to provide summaries separately for different categories or values in our data

- Summarizing a data overall is helpful, but often times it is most helpful to provide summaries separately for different categories or values in our data
- ▶ group_by(.data, ..., add = FALSE)

- Summarizing a data overall is helpful, but often times it is most helpful to provide summaries separately for different categories or values in our data
- group_by(.data, ..., add = FALSE)
 - ▶ .data: a tbl

- Summarizing a data overall is helpful, but often times it is most helpful to provide summaries separately for different categories or values in our data
- group_by(.data, ..., add = FALSE)
 - ▶ .data: a tbl
 - ...: variables to group by

- Summarizing a data overall is helpful, but often times it is most helpful to provide summaries separately for different categories or values in our data
- group_by(.data, ..., add = FALSE)
 - ▶ .data: a tbl
 - ...: variables to group by
 - ▶ add: If add = FALSE, groups are overridden for tbl .data. Otherwise, groups are added to .data.

```
flights %>% group_by(dest) %>% filter(!is.na(air_time))
%>% summarise(totalTime = sum(air_time), totalFlights = n()
```

```
flights %>% group_by(dest) %>% filter(!is.na(air_time))
%>% summarise(totalTime = sum(air_time), totalFlights = n()
```

dest	totalTime	totalFlights	
ABQ	63289	254	
ACK	11106	264	
ALB	13287	418	
ANC	3305	8	
ATL	1901410	16837	
AUS	512887	2411	
AVL	23461	261	
BDL	10492	412	
BGR	19374	358	
BHM	33027	269	
BNA	695901	6084	
BOS	585152	15022	
BQN	173056	888	∌⊳∢≣⊳∢∶

▶ Using summarize with group_by makes it really easy to:

- ▶ Using summarize with group_by makes it really easy to:
 - retain baseline values via the first() function

- Using summarize with group_by makes it really easy to:
 - retain baseline values via the first() function
 - calculate the number of observations per individual

- Using summarize with group_by makes it really easy to:
 - retain baseline values via the first() function
 - calculate the number of observations per individual
 - calculate the number of distinct observations in an individual for assessing change

- Using summarize with group_by makes it really easy to:
 - retain baseline values via the first() function
 - calculate the number of observations per individual
 - calculate the number of distinct observations in an individual for assessing change
 - ▶ Recreate other procedures in R that give statistical summaries by groups (describeBy from the psych package comes to mind...)
- You can always ungroup a tbl by running:

```
## grped_df is grouped
flights %>% ungroup()
```

```
## # A tibble: 336,776 × 19
## year month day dep_time sched_dep_time dep_delay a
## <int> <int> <int> <dbl>
```

1 2013 1 1 517 515 2 ## 2 2013 1 1 533 529

▶ The tidyr package is a package created by Hadley Wickham

- ▶ The tidyr package is a package created by Hadley Wickham
 - ▶ Defines "tidy" data

- ► The tidyr package is a package created by Hadley Wickham
 - ► Defines "tidy" data
 - Provides rules of thumbs or guidances for creating "tidy" data

- ► The tidyr package is a package created by Hadley Wickham
 - ▶ Defines "tidy" data
 - Provides rules of thumbs or guidances for creating "tidy" data
 - Read a version of his paper on tidy data by typing ??tidyr in the R console and navigating to the tidyr vignette

- ▶ The tidyr package is a package created by Hadley Wickham
 - Defines "tidy" data
 - Provides rules of thumbs or guidances for creating "tidy" data
 - ► Read a version of his paper on tidy data by typing ??tidyr in the R console and navigating to the tidyr vignette
- ▶ Tidy data is defined in terms of:

- ▶ The tidyr package is a package created by Hadley Wickham
 - ► Defines "tidy" data
 - Provides rules of thumbs or guidances for creating "tidy" data
 - Read a version of his paper on tidy data by typing ??tidyr in the R console and navigating to the tidyr vignette
- ▶ Tidy data is defined in terms of:
 - variables hold values and represent constructs, such as height, weight, count, gender....

- ► The tidyr package is a package created by Hadley Wickham
 - Defines "tidy" data
 - Provides rules of thumbs or guidances for creating "tidy" data
 - ► Read a version of his paper on tidy data by typing ??tidyr in the R console and navigating to the tidyr vignette
- Tidy data is defined in terms of:
 - variables hold values and represent constructs, such as height, weight, count, gender....
 - observations one entity representing a unit in our dataset, composed of realizations of one or more variables

► Essentially, tidy data satisfies the following requirements

- ► Essentially, tidy data satisfies the following requirements
 - 1. each variable forms a column

- ► Essentially, tidy data satisfies the following requirements
 - 1. each variable forms a column
 - 2. each observation forms a row

- Essentially, tidy data satisfies the following requirements
 - 1. each variable forms a column
 - 2. each observation forms a row
 - 3. each type of observational unit forms a table

- Essentially, tidy data satisfies the following requirements
 - 1. each variable forms a column
 - 2. each observation forms a row
 - 3. each type of observational unit forms a table
- What does "type" of observation refer to?

- Essentially, tidy data satisfies the following requirements
 - 1. each variable forms a column
 - 2. each observation forms a row
 - 3. each type of observational unit forms a table
- What does "type" of observation refer to?
- Consider an eCommerce customer database. The following tables might exist:

- Essentially, tidy data satisfies the following requirements
 - 1. each variable forms a column
 - 2. each observation forms a row
 - 3. each type of observational unit forms a table
- ▶ What does "type" of observation refer to?
- Consider an eCommerce customer database. The following tables might exist:
 - usernames and passwords

- Essentially, tidy data satisfies the following requirements
 - 1. each variable forms a column
 - 2. each observation forms a row
 - 3. each type of observational unit forms a table
- What does "type" of observation refer to?
- Consider an eCommerce customer database. The following tables might exist:
 - usernames and passwords
 - purchase records (dates, amounts, products purchased)

- Essentially, tidy data satisfies the following requirements
 - 1. each variable forms a column
 - 2. each observation forms a row
 - 3. each type of observational unit forms a table
- ▶ What does "type" of observation refer to?
- Consider an eCommerce customer database. The following tables might exist:
 - usernames and passwords
 - purchase records (dates, amounts, products purchased)
 - browse records (searches, interests of users)

- Essentially, tidy data satisfies the following requirements
 - 1. each variable forms a column
 - 2. each observation forms a row
 - 3. each type of observational unit forms a table
- What does "type" of observation refer to?
- Consider an eCommerce customer database. The following tables might exist:
 - usernames and passwords
 - purchase records (dates, amounts, products purchased)
 - browse records (searches, interests of users)
 - demographic information (further information for targeted ads)

- Essentially, tidy data satisfies the following requirements
 - 1. each variable forms a column
 - 2. each observation forms a row
 - 3. each type of observational unit forms a table
- What does "type" of observation refer to?
- Consider an eCommerce customer database. The following tables might exist:
 - usernames and passwords
 - purchase records (dates, amounts, products purchased)
 - browse records (searches, interests of users)
 - demographic information (further information for targeted ads)
- ▶ Tidy data dictates these data be held in separate tables

▶ Why do the extra work of keeping these data separate when I want to analyze them at the same time?

- ▶ Why do the extra work of keeping these data separate when I want to analyze them at the same time?
 - ▶ Data changes over time

- ▶ Why do the extra work of keeping these data separate when I want to analyze them at the same time?
 - ▶ Data changes over time
 - When you merge/join, your analysis dataset becomes much larger which takes more memory

- ▶ Why do the extra work of keeping these data separate when I want to analyze them at the same time?
 - Data changes over time
 - When you merge/join, your analysis dataset becomes much larger which takes more memory
 - Some information is repeated across many lines, creating more opportunity for error

gather: Gather takes multiple columns and collapses into key-value pairs, duplicating all other columns as needed

- gather: Gather takes multiple columns and collapses into key-value pairs, duplicating all other columns as needed
- gather(data, key, value, ...)

- gather: Gather takes multiple columns and collapses into key-value pairs, duplicating all other columns as needed
- ▶ gather(data, key, value, ...)
 - data: a data frame (or tbl)

- gather: Gather takes multiple columns and collapses into key-value pairs, duplicating all other columns as needed
- gather(data, key, value, ...)
 - data: a data frame (or tbl)
 - key, value: Names of key and value columns to create in output

- gather: Gather takes multiple columns and collapses into key-value pairs, duplicating all other columns as needed
- gather(data, key, value, . . .)
 - data: a data frame (or tbl)
 - ▶ key, value: Names of key and value columns to create in output
- Consider dataset cases from the EDAWR package:

country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

▶ Use the gather function to create a tidy data set

- ▶ Use the gather function to create a tidy data set
 - Variables are country, year, and count

- ▶ Use the gather function to create a tidy data set
 - Variables are country, year, and count
 - ► Each row represents an observation for each country/year pair

- Use the gather function to create a tidy data set
 - Variables are country, year, and count
 - ► Each row represents an observation for each country/year pair

cases %>% gather(year, count, 2:4)

country	year	count
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000

▶ Perhaps we have a reason to go the opposite direction

- ▶ Perhaps we have a reason to go the opposite direction
 - Have one row per observation, but would like to change our unit of observation

- Perhaps we have a reason to go the opposite direction
 - Have one row per observation, but would like to change our unit of observation
- spread: Spread a key-value pair across multiple columns

- ▶ Perhaps we have a reason to go the opposite direction
 - Have one row per observation, but would like to change our unit of observation
- spread: Spread a key-value pair across multiple columns
- spread(data, key, value, . . .)

- Perhaps we have a reason to go the opposite direction
 - Have one row per observation, but would like to change our unit of observation
- spread: Spread a key-value pair across multiple columns
- spread(data, key, value, . . .)
 - data: a data frame (or tbl)

- Perhaps we have a reason to go the opposite direction
 - Have one row per observation, but would like to change our unit of observation
- spread: Spread a key-value pair across multiple columns
- spread(data, key, value, . . .)
 - data: a data frame (or tbl)
 - key: the bare (unquoted) name of the column whose values will be used as column headings

- ▶ Perhaps we have a reason to go the opposite direction
 - Have one row per observation, but would like to change our unit of observation
- spread: Spread a key-value pair across multiple columns
- spread(data, key, value, . . .)
 - data: a data frame (or tbl)
 - key: the bare (unquoted) name of the column whose values will be used as column headings
 - value: the bare (unquoted) name of the column whose values will populate the cells

 Use the spread() function to spread out the year information into separate columns (wide format)

- Use the spread() function to spread out the year information into separate columns (wide format)
- Consider the caseslong dataset we just created below:

- Use the spread() function to spread out the year information into separate columns (wide format)
- Consider the caseslong dataset we just created below:

country	year	count
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000

caseslong %>% spread(year, count)

	country	2011	2012	2013
1	DE	5800	6000	6200
2	FR	7000	6900	7000
3	US	15000	14000	13000
NA	NA	NA	NA	NA
NA.1	NA	NA	NA	NA

▶ Discussion of Data wrangling and it's components

- ▶ Discussion of Data wrangling and it's components
 - Visualization to come in subsequent lecture using package ggplot2

- Discussion of Data wrangling and it's components
 - ► Visualization to come in subsequent lecture using package ggplot2
- Data manipulation using package dplyr

- Discussion of Data wrangling and it's components
 - Visualization to come in subsequent lecture using package ggplot2
- Data manipulation using package dplyr
 - Select variables to trim data set (select())

- Discussion of Data wrangling and it's components
 - Visualization to come in subsequent lecture using package ggplot2
- Data manipulation using package dplyr
 - Select variables to trim data set (select())
 - Filter observations to trim data set (filter())

- Discussion of Data wrangling and it's components
 - Visualization to come in subsequent lecture using package ggplot2
- Data manipulation using package dplyr
 - Select variables to trim data set (select())
 - Filter observations to trim data set (filter())
 - Mutate dataset by calculating new variables (mutate())

- Discussion of Data wrangling and it's components
 - Visualization to come in subsequent lecture using package ggplot2
- Data manipulation using package dplyr
 - Select variables to trim data set (select())
 - Filter observations to trim data set (filter())
 - Mutate dataset by calculating new variables (mutate())
 - Summarizing data set with group_by()

- Discussion of Data wrangling and it's components
 - Visualization to come in subsequent lecture using package ggplot2
- Data manipulation using package dplyr
 - Select variables to trim data set (select())
 - Filter observations to trim data set (filter())
 - Mutate dataset by calculating new variables (mutate())
 - Summarizing data set with group_by()
- Data tidying using package tidyr

- Discussion of Data wrangling and it's components
 - Visualization to come in subsequent lecture using package ggplot2
- Data manipulation using package dplyr
 - Select variables to trim data set (select())
 - Filter observations to trim data set (filter())
 - Mutate dataset by calculating new variables (mutate())
 - Summarizing data set with group_by()
- Data tidying using package tidyr
 - Convert to long format (gather())

- Discussion of Data wrangling and it's components
 - Visualization to come in subsequent lecture using package ggplot2
- Data manipulation using package dplyr
 - Select variables to trim data set (select())
 - Filter observations to trim data set (filter())
 - Mutate dataset by calculating new variables (mutate())
 - Summarizing data set with group_by()
- Data tidying using package tidyr
 - Convert to long format (gather())
 - Convert to wide format (spread())