

临床意义 - 诊断 ROC 曲线[云]

网址: https://www.xiantao.love

更新时间: 2023.03.09

目录

基本概念	3
应用场景	3
分析流程	4
结果解读	5
数据格式数据格式	6
参数说明	7
特殊参数	7
分子	7
临床变量	8
主要参数	9
数据处理	9
统计	9
线	0
点1	
	2
标题	2
图注1	3
风格 1	3
图片 1	4
结果说明 1	5
主要结果	5
补充结果	6
方法学	7
如何引用 1	8
告口问题 1	0

基本概念

诊断 ROC 曲线: 受试者工作特征曲线(Receiver Operating Characteristic Curve, ROC 曲线)和 ROC 曲线下的面积(Area Under ROC Curve, AUC)常用于诊断试验的评估,评估预测准确率情况。例如一组数据的结局为 group1 和 group2,变量为 a、b 和 c,也就是评估 a、b 和 c 在预测 group1 和 group2 上的结局,哪个的准确性更高。ROC 曲线图是反映敏感性与特异性之间关系的曲线。AUC 取值范围一般在 0.5 和 1 之间,使用 AUC 值作为评价标准是因为很多时候 ROC 曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应 AUC 更大的分类器效果更好。

▶ 图形构成

应用场景

多应用在医学领域、判断某种因素对于某种疾病的诊断是否有诊断价值。

分析流程

云端数据 — ROC 相关分析 —ROC 曲线可视化

- 云端数据: 不同平台的云端数据集的分子可能会有不同!
 - 通过**特殊参数[<u>分子</u>]**选择云端数据中需要进行分析以及可视化的预测变量/分子
 - 通过<mark>特殊参数[临床变量&二分类结局分组]</mark>选择预测结局,用于分析云端数据中所选择预测变量在改预测结局中的情况
- ➤ ROC 相关分析:
 - 统计描述: 在不同的结局下, 统计各预测变量/分子的生存情况
 - AUC 结果: 不同的结局下,计算各预测变量/分子ROC 曲线下面积(AUC)
 - ROC 信息: 计算各预测变量/分子的最佳阈值(cut-off 值)、敏感度、 特异度等
 - **.**
- ▶ 将分析过程中得到的敏感度、特异度数据进行转换,得到可视化需要的数据, 并进行可视化
 - 敏感度 = 真阳性率(TPR)
 - 特异度 = 1 假阳性率(FPR) / 特异性

结果解读

诊断 ROC 曲线

- ▶ 横坐标 X 轴为 1 特异性,也称为假阳性率, X 轴越接近零准确率越高; 纵坐标 Y 轴称为敏感度,也称为真阳性率,Y 轴越大代表准确率越好。
- ➤ AUC (Area Under Curve, AUC), ROC 曲线下的面积,常用于诊断试验的评估, AUC 取值范围一般在 0.5 和 1 之间, AUC 越接近于 1,说明该变量在预测结局上诊断效果越好。

数据格式

提供预清洗好的云端数据,<mark>不同平台的云端数据集的分子可能会有不同</mark>

参数说明

(说明:标注了颜色的为常用参数。)

特殊参数

分子

▶ 分子: 可以输入需要进行诊断 ROC 相关分析的变量/分子/基因,可以输入 关键词进行搜索,如下:

临床变量

- ▶ 临床变量:可以选择清洗好的临床变量
- ➤ 二分类结局分组:通过选择清洗好的临床变量以及对应进行分组,用于分析 云端数据中所选择预测变量在改预测结局中的情况

主要参数

数据处理

缺失值处理: 默认是不处理变量缺失值,可以选择去除任一变量缺失的样本

统计

方向:可以设定二分类结局对应比较的方向(影响参考和实验组的设定),默认自动(表示根据数据特点来),还可以自己选择正向或者反向,如下:左侧为正向,右侧为反向

线

▶ 颜色:可以修改每条曲线的颜色

▶ 样式:可以修改每条曲线的样式(线条类型),默认是实线,也可以选择虚线

▶ 粗细: 可以修改每条曲线的线条粗细, 默认是 0.75pt

➤ 不透明度:可以修改每条曲线的不透明度,默认是 1,0 是完全透明,1 是完全透明

点

▶ 展示: 可以选择是否展示曲线上的点,默认不展示,还可以选择展示,如下:

▶ 填充色: 可以修改点的填充色

▶ 描边色:可以修改点的描边色

样式:点的样式,可以选择圆形、三角形等形状选择

▶ 大小:点的大小,默认 0.3

▶ 不透明度:点的不透明度,默认是1,0是完全透明,1是完全不透明

曲线下面积

曲线下面积	V
展示	
不透明度 0.1	

▶ 是否展示:是否展示出每个变量曲线下的面积

▶ 不透明度: 如果展示曲线下面积,可以设定面积的不透明度

▶ 大标题: 大标题内容

▶ ×轴标题: ×轴标题内容

▶ y轴标题: y轴标题内容

补充: 在要换行的中间插入\n。如果需要上标,可以用两个英文输入法下的大括号括住,比如 {{2}};如果需要下标,可以用两个英文输入法下的中括号括住,比如 [[2]]

图注

图注		~
是否展示		
图注标题	图注标题内容	
图注位置	默认	~

▶ 是否展示:图注内容是否展示

▶ 图注标题:可以填入图注标题

▶ 图注位置:默认是右下,还可以选右

▶ 边框:是否在图中添加边框

网格:是否在图中添加网格线

▶ 文字大小:图中的文字部分的大小(包括标签文字和刻度数),默认是7pt

图片

▶ 宽度:图片横向长度,单位为 cm

▶ 高度:图片纵向长度,单位为 cm

> 字体:可以选择图中文本内容字体

结果说明

主要结果

主要结果格式为图片格式,提供 PDF、TIFF 、PPT 格式下载。

补充结果

1. 统计描述表: 上传数据的一些基本情况

统计描述										
各个组常见「纫	充计描述指	标】								
结局	变量	数目	最小值	最大值	中位数(Median)	四分位距(IQR)	下四分位	上四分位	均值(Mean)	标准差(SD)
T1	ERBB2	19	4.772	11.013	6.5099	0.69379	6.1748	6.8686	6.964	1.5472
T2&T3&T4	ERBB2	47	2.8556	12.878	6.6882	2.0376	5.7704	7.808	7.0713	2.2452
4										>

2.AUC 结果表

预测变量	预测结局	曲线下面积(AUC)	置信区间(CI)
ERBB2	T2&T3&T4 vs T1	0.505	0.361 - 0.649

3.ROC 信息表

预测变量	cut-off值	灵敏度	特异度	准确率	真阳个数	真阴个数	假阳个数	假阴个性	阳性预测值	阴性预测值	约
ERBB2	6.808	0.48936	0.73684	0.56061	23	14	5	24	0.82143	0.36842	0.
											-

4. 当特殊参数[分子]选择的预测变量大于 1 个时, 会提供预测变量间的 AUC 检验表: 对变量 AUC 进行检验

变量1	变量2	统计量	p值	检验方法	趋势方向
ERBB2	FAM241B	-0.10236	0.9185	DeLong's test	不一致

方法学

统计分析和可视化均在 R 4.2.1 版本中进行

涉及的 R 包: pROC[1.18.0] 用于 ROC 分析和 ROC 检验

分析过程:

(1) 使用 pROC 包进行对云端数据进行 ROC 分析

(2) 分析结果用 ggplot2 进行可视化

如何引用

生信工具分析和可视化用的是 R 语言,<mark>可以直接写自己用 R 来进行分析和可视化即可</mark>,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。

常见问题

1. AUC 会出现 < 0.5 的情况吗?

答:一般情况下, pROC 分析结果中 AUC 面积是在 0.5-1 之间。

2. 1 个组的时候为什么没有给出统计学检验的 p 值?

答:

ROC一般是看 AUC 的大小的,只有当存在有多个曲线的时候才会进行检验比较。如果只有1条曲线,是没办法进行统计检验的,除非是跟 0.05 的对角线比,这种比较其实是没有意义的,这种只要 AUC 的下限没有跨过 0.5,那么这个曲线肯定是有意义的,所以单个曲线是没有统计学比较的意义。

3. 这里能做联合指标的 ROC 分析吗?

答:

如果上传的数据是 logistic 模型的 predict 值,这个值就可以用来代表联合指标。在 logistic 回归模块或者是诊断列线图模块分析后均会有提供预测值.xlsx 文件下载,从这个里面就可以获取到联合指标的 predict 值,用这个值做 ROC 就是联合指标 ROC 分析。

4. 数据的结局是以哪个作为阴性(参考)?哪个作为阳性(实验)?

答:

默认上传数据的第一列(二分类)以第一个出现的分类组参考,后出现的分类作为实验。这个方向会影响最终的真阳、真阴、假阳、假阴个数。如果需要反过来,可以在<统计>-<方向>参数中进行修改。

