1. Lepton Flavor Violation

Table 1: HFAG Winter 2012 upper limit for the lepton flavor violating τ decay modes. L means lepton number violation as well as the lepton flavor violation.

$\begin{array}{ c c c c c }\hline \Gamma_{156} = e^- \gamma & l\gamma & < 12. & \cdot & 10^{-8} & \text{Belle} \\ & < 3.3 & \cdot & 10^{-8} & \text{Babar} \\ \hline \Gamma_{157} = \mu^- \gamma & < 4.5 & \cdot & 10^{-8} & \text{Belle} \\ & < 4.4 & \cdot & 10^{-8} & \text{Babar} \\ \hline \hline \Gamma_{158} = e^- \pi^0 & lP^0 & < 2.2 & \cdot & 10^{-8} & \text{Belle} \\ & < 13. & \cdot & 10^{-8} & \text{Babar} \\ \hline \Gamma_{159} = \mu^- \pi^0 & < 2.7 & \cdot & 10^{-8} & \text{Belle} \\ & < 11. & \cdot & 10^{-8} & \text{Babar} \\ \hline \Gamma_{162} = e^- \eta & < 4.4 & \cdot & 10^{-8} & \text{Belle} \\ & < 16. & \cdot & 10^{-8} & \text{Babar} \\ \hline \Gamma_{163} = \mu^- \eta & < 2.3 & \cdot & 10^{-8} & \text{Belle} \\ & < 15. & \cdot & 10^{-8} & \text{Babar} \\ \hline \Gamma_{172} = e^- \eta' (958) & < 3.6 & \cdot & 10^{-8} & \text{Belle} \\ & < 24. & \cdot & 10^{-8} & \text{Babar} \\ \hline \Gamma_{173} = \mu^- \eta' (958) & < 3.8 & \cdot & 10^{-8} & \text{Belle} \\ & < 14. & \cdot & 10^{-8} & \text{Babar} \\ \hline \Gamma_{160} = e^- K_S^0 & < 2.6 & \cdot & 10^{-8} & \text{Belle} \\ & < 3.3 & \cdot & 10^{-8} & \text{Babar} \\ \hline \Gamma_{161} = \mu^- K_S^0 & < 2.3 & \cdot & 10^{-8} & \text{Belle} \\ \hline \Gamma_{175} = \mu^- f_0 (958) & lS^0 & < 3.2 & \cdot & 10^{-8} & \text{Belle} \\ \hline \Gamma_{175} = \mu^- f_0 (958) & < 3.4 & \cdot & 10^{-8} & \text{Belle} \\ \hline \Gamma_{164} = e^- \rho^0 & lV^0 & < 1.8 & \cdot & 10^{-8} & \text{Belle} \\ \hline \hline \Gamma_{164} = e^- \rho^0 & lV^0 & < 1.8 & \cdot & 10^{-8} & \text{Belle} \\ \hline \hline \end{array}$	[1] [2] [1] [2] [3] [4] [3] [4] [3] [4] [3] [4] [5] [6] [5]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[1] [2] [3] [4] [3] [4] [3] [4] [3] [4] [5] [6] [5]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[2] [3] [4] [3] [4] [3] [4] [3] [4] [5] [6] [5]
$ \Gamma_{158} = e^-\pi^0 \qquad lP^0 \qquad < 2.2 \qquad \cdot 10^{-8} \qquad \text{Belle} \\ < 13. \qquad \cdot 10^{-8} \qquad \text{Babar} \\ \Gamma_{159} = \mu^-\pi^0 \qquad < 2.7 \qquad \cdot 10^{-8} \qquad \text{Belle} \\ < 11. \qquad \cdot 10^{-8} \qquad \text{Babar} \\ \Gamma_{162} = e^-\eta \qquad < 4.4 \qquad \cdot 10^{-8} \qquad \text{Belle} \\ < 16. \qquad \cdot 10^{-8} \qquad \text{Babar} \\ \Gamma_{163} = \mu^-\eta \qquad < 2.3 \qquad \cdot 10^{-8} \qquad \text{Belle} \\ < 15. \qquad \cdot 10^{-8} \qquad \text{Babar} \\ \Gamma_{172} = e^-\eta'(958) \qquad < 3.6 \qquad \cdot 10^{-8} \qquad \text{Belle} \\ < 24. \qquad \cdot 10^{-8} \qquad \text{Babar} \\ \Gamma_{173} = \mu^-\eta'(958) \qquad < 3.8 \qquad \cdot 10^{-8} \qquad \text{Belle} \\ < 14. \qquad \cdot 10^{-8} \qquad \text{Babar} \\ \Gamma_{160} = e^-K_S^0 \qquad < 2.6 \qquad \cdot 10^{-8} \qquad \text{Belle} \\ < 3.3 \qquad \cdot 10^{-8} \qquad \text{Babar} \\ \Gamma_{161} = \mu^-K_S^0 \qquad < 2.3 \qquad \cdot 10^{-8} \qquad \text{Belle} \\ < 4.0 \qquad \cdot 10^{-8} \qquad \text{Babar} \\ \Gamma_{174} = e^-f_0(958) \qquad lS^0 \qquad < 3.2 \qquad \cdot 10^{-8} \qquad \text{Belle} \\ \end{cases}$	[3] [4] [3] [4] [3] [4] [3] [4] [5] [6] [5]
$\Gamma_{159} = \mu^{-}\pi^{0} \qquad < 13. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{162} = e^{-}\eta \qquad < 2.7 \cdot 10^{-8} \qquad \text{Balbar}$ $\Gamma_{162} = e^{-}\eta \qquad < 4.4 \cdot 10^{-8} \qquad \text{Belle}$ $< 16. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{163} = \mu^{-}\eta \qquad < 2.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 15. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{172} = e^{-}\eta'(958) \qquad < 3.6 \cdot 10^{-8} \qquad \text{Belle}$ $< 24. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{173} = \mu^{-}\eta'(958) \qquad < 3.8 \cdot 10^{-8} \qquad \text{Belle}$ $< 24. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{160} = e^{-}K_{S}^{0} \qquad < 2.6 \cdot 10^{-8} \qquad \text{Belle}$ $< 3.3 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{161} = \mu^{-}K_{S}^{0} \qquad < 2.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 4.0 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{174} = e^{-}f_{0}(958) \qquad lS^{0} \qquad < 3.2 \cdot 10^{-8} \qquad \text{Belle}$	[4] [3] [4] [3] [4] [3] [4] [3] [4] [5] [6] [5]
$\Gamma_{159} = \mu^{-}\pi^{0} \qquad < 2.7 \cdot 10^{-8} \qquad \text{Belle}$ $< 11. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{162} = e^{-}\eta \qquad < 4.4 \cdot 10^{-8} \qquad \text{Belle}$ $< 16. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{163} = \mu^{-}\eta \qquad < 2.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 15. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{172} = e^{-}\eta'(958) \qquad < 3.6 \cdot 10^{-8} \qquad \text{Belle}$ $< 24. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{173} = \mu^{-}\eta'(958) \qquad < 3.8 \cdot 10^{-8} \qquad \text{Belle}$ $< 14. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{160} = e^{-}K_{S}^{0} \qquad < 2.6 \cdot 10^{-8} \qquad \text{Belle}$ $< 3.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 3.3 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{161} = \mu^{-}K_{S}^{0} \qquad < 2.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 4.0 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{174} = e^{-}f_{0}(958) \qquad lS^{0} \qquad < 3.2 \cdot 10^{-8} \qquad \text{Belle}$	[3] [4] [3] [4] [3] [4] [3] [4] [5] [6] [5]
$\Gamma_{162} = e^- \eta \qquad < 11. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{162} = e^- \eta \qquad < 4.4 \cdot 10^{-8} \qquad \text{Belle}$ $< 16. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{163} = \mu^- \eta \qquad < 2.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 15. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{172} = e^- \eta'(958) \qquad < 3.6 \cdot 10^{-8} \qquad \text{Belle}$ $< 24. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{173} = \mu^- \eta'(958) \qquad < 3.8 \cdot 10^{-8} \qquad \text{Belle}$ $< 14. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{160} = e^- K_S^0 \qquad < 2.6 \cdot 10^{-8} \qquad \text{Belle}$ $< 3.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 3.3 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{161} = \mu^- K_S^0 \qquad < 2.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 4.0 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{174} = e^- f_0(958) \qquad lS^0 \qquad < 3.2 \cdot 10^{-8} \qquad \text{Belle}$	[4] [3] [4] [3] [4] [3] [4] [5] [6] [5]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[3] [4] [3] [4] [3] [4] [5] [6] [5]
$\Gamma_{163} = \mu^{-}\eta \qquad < 16. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{163} = \mu^{-}\eta \qquad < 2.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 15. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{172} = e^{-}\eta'(958) \qquad < 3.6 \cdot 10^{-8} \qquad \text{Belle}$ $< 24. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{173} = \mu^{-}\eta'(958) \qquad < 3.8 \cdot 10^{-8} \qquad \text{Belle}$ $< 14. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{160} = e^{-}K_{S}^{0} \qquad < 2.6 \cdot 10^{-8} \qquad \text{Belle}$ $< 3.3 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{161} = \mu^{-}K_{S}^{0} \qquad < 2.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 4.0 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{174} = e^{-}f_{0}(958) \qquad lS^{0} \qquad < 3.2 \cdot 10^{-8} \qquad \text{Belle}$	[4] [3] [4] [3] [4] [5] [5] [6] [5]
$\Gamma_{163} = \mu^{-}\eta \qquad < 2.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 15. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{172} = e^{-}\eta'(958) \qquad < 3.6 \cdot 10^{-8} \qquad \text{Belle}$ $< 24. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{173} = \mu^{-}\eta'(958) \qquad < 3.8 \cdot 10^{-8} \qquad \text{Belle}$ $< 14. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{160} = e^{-}K_{S}^{0} \qquad < 2.6 \cdot 10^{-8} \qquad \text{Belle}$ $< 3.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 3.3 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{161} = \mu^{-}K_{S}^{0} \qquad < 2.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 4.0 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{174} = e^{-}f_{0}(958) \qquad lS^{0} \qquad < 3.2 \cdot 10^{-8} \qquad \text{Belle}$	[3] [4] [3] [4] [3] [4] [5] [6] [5]
$\Gamma_{172} = e^{-}\eta'(958)$ $< 15. \cdot 10^{-8} $ Babar $< 3.6 \cdot 10^{-8} $ Belle $< 24. \cdot 10^{-8} $ Babar $\Gamma_{173} = \mu^{-}\eta'(958)$ $< 3.8 \cdot 10^{-8} $ Belle $< 14. \cdot 10^{-8} $ Babar $\Gamma_{160} = e^{-}K_{S}^{0}$ $< 2.6 \cdot 10^{-8} $ Belle $< 3.3 \cdot 10^{-8} $ Belle $< 3.3 \cdot 10^{-8} $ Babar $\Gamma_{161} = \mu^{-}K_{S}^{0}$ $< 2.3 \cdot 10^{-8} $ Belle $< 4.0 \cdot 10^{-8} $ Babar $\Gamma_{174} = e^{-}f_{0}(958)$ lS^{0} $< 3.2 \cdot 10^{-8} $ Belle	[4] [3] [4] [3] [4] [5] [6] [5]
$\Gamma_{172} = e^{-}\eta'(958) \qquad < 3.6 \cdot 10^{-8} \qquad \text{Belle}$ $< 24. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{173} = \mu^{-}\eta'(958) \qquad < 3.8 \cdot 10^{-8} \qquad \text{Belle}$ $< 14. \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{160} = e^{-}K_{S}^{0} \qquad < 2.6 \cdot 10^{-8} \qquad \text{Belle}$ $< 3.3 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{161} = \mu^{-}K_{S}^{0} \qquad < 2.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 4.0 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{174} = e^{-}f_{0}(958) \qquad lS^{0} \qquad < 3.2 \cdot 10^{-8} \qquad \text{Belle}$	[3] [4] [3] [4] [5] [6] [5]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[4] [3] [4] [5] [6] [5]
$\Gamma_{173} = \mu^{-} \eta'(958) $ $< 3.8 \cdot 10^{-8} $ Belle $< 14. \cdot 10^{-8} $ Babar $\Gamma_{160} = e^{-} K_{S}^{0} $ $< 2.6 \cdot 10^{-8} $ Belle $< 3.3 \cdot 10^{-8} $ Babar $\Gamma_{161} = \mu^{-} K_{S}^{0} $ $< 2.3 \cdot 10^{-8} $ Belle $< 4.0 \cdot 10^{-8} $ Belle $< 4.0 \cdot 10^{-8} $ Babar $\Gamma_{174} = e^{-} f_{0}(958) $ lS^{0} $< 3.2 \cdot 10^{-8} $ Belle	[3] [4] [5] [6] [5]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[4] [5] [6] [5]
$\Gamma_{160} = e^{-}K_{S}^{0} \qquad < 2.6 \cdot 10^{-8} \qquad \text{Belle}$ $< 3.3 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{161} = \mu^{-}K_{S}^{0} \qquad < 2.3 \cdot 10^{-8} \qquad \text{Belle}$ $< 4.0 \cdot 10^{-8} \qquad \text{Babar}$ $\Gamma_{174} = e^{-}f_{0}(958) \qquad lS^{0} \qquad < 3.2 \cdot 10^{-8} \qquad \text{Belle}$	[5] [6] [5]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[6] [5]
$\Gamma_{161} = \mu^{-} K_{S}^{0}$ $< 2.3 \cdot 10^{-8}$ Belle $< 4.0 \cdot 10^{-8}$ Babar $\Gamma_{174} = e^{-} f_{0}(958)$ lS^{0} $< 3.2 \cdot 10^{-8}$ Belle	[5]
$<4.0 \cdot 10^{-8}$ Babar $\Gamma_{174} = e^{-} f_0(958)$ lS^0 $<3.2 \cdot 10^{-8}$ Belle	
$\Gamma_{174} = e^- f_0(958)$ $lS^0 < 3.2 \cdot 10^{-8}$ Belle	
114 50()	[6]
$\Gamma_{175} = \mu^{-} f_0(958)$ < 3.4 · 10 ⁻⁸ Belle	[7]
$\Gamma_{101} - e^{-0.0}$ $V^{0} < 1.8 \cdot 10^{-8}$ Belle	[7]
$1_{164} - c \rho$ $tv < 1.0$ Defice	[8]
$< 4.6 \cdot 10^{-8}$ Babar	[9]
$\Gamma_{165} = \mu^- \rho^0$ < 1.2 · 10 ⁻⁸ Belle	[8]
$< 2.6 \cdot 10^{-8}$ Babar	[9]
$\Gamma_{168} = e^- K^* (892)^0$ < 3.2 · 10 ⁻⁸ Belle	[8]
$< 5.9 \cdot 10^{-8}$ Babar	[9]
$\Gamma_{169} = \mu^- K^* (892)^0$ < 7.2 · 10 ⁻⁸ Belle	[8]
$< 17. \cdot 10^{-8}$ Babar	[9]
$\Gamma_{170} = e^- \bar{K}^* (892)^0$ < 3.4 · 10 ⁻⁸ Belle	[8]
$< 4.6 \cdot 10^{-8}$ Babar	[9]
$\Gamma_{171} = \mu^- \bar{K}^* (892)^0$ < 7.0 · 10 ⁻⁸ Belle	[8]
$< 7.3 \cdot 10^{-8}$ Babar	[9]
$\Gamma_{176} = e^- \phi$ < 3.1 · 10 ⁻⁸ Belle	[8]
$< 3.1 \cdot 10^{-8}$ Babar	[9]
1	[ع]

$\Gamma_{177} = \mu^- \phi$		< 8.4		10^{-8}	Belle	[8]
		< 19.	•	10^{-8}	Babar	[9]
$\Gamma_{166} = e^- \omega$		< 4.8	•	10^{-8}	Belle	[8]
		< 11.	•	10^{-8}	Babar	[10]
$\Gamma_{167} = \mu^- \omega$		< 4.7	•	10^{-8}	Belle	[8]
		< 10.	•	10^{-8}	Babar	[10]
$\Gamma_{178} = e^- e^+ e^-$	lll	< 2.7	•	10^{-8}	Belle	[11]
		< 2.9	•	10^{-8}	Babar	[12]
$\Gamma_{181} = \mu^- e^+ e^-$		< 1.8	•	10^{-8}	Belle	[11]
		< 2.2	•	10^{-8}	Babar	[12]
$\Gamma_{179} = e^- \mu + \mu -$		< 2.7	•	10^{-8}	Belle	[11]
		< 3.2	•	10^{-8}	Babar	[12]
$\Gamma_{183} = \mu^- \mu + \mu -$		< 2.1	•	10^{-8}	Belle	[11]
		< 3.3	•	10^{-8}	Babar	[12]
$\Gamma_{182} = e^- \mu + e^-$		< 1.5	•	10^{-8}	Belle	[11]
		< 1.8	•	10^{-8}	Babar	[12]
$\Gamma_{180} = \mu^- e^+ \mu -$		< 1.7	•	10^{-8}	Belle	[11]
		< 2.6	•	10^{-8}	Babar	[12]
$\Gamma_{184} = e^- \pi^+ \pi^-$	lhh	< 2.3	•	10^{-8}	Belle	[13]
		< 12.	•	10^{-8}	Babar	[14]
$\Gamma_{186} = \mu^- \pi^+ \pi^-$		< 2.1	•	10^{-8}	Belle	[13]
		< 29.	•	10^{-8}	Babar	[14]
$\Gamma_{188} = e^- \pi^+ K^-$		< 3.7	•	10^{-8}	Belle	[13]
		< 32.	•	10^{-8}	Babar	[14]
$\Gamma_{194} = \mu^- \pi^+ K^-$		< 8.6	•	10^{-8}	Belle	[13]
		< 26.	•	10^{-8}	Babar	[14]
$\Gamma_{189} = e^- K^+ \pi^-$		< 3.1	•	10^{-8}	Belle	[13]
		< 17.	•	10^{-8}	Babar	[14]
$\Gamma_{195} = \mu^- K^+ \pi^-$		< 4.5	•	10^{-8}	Belle	[13]
		< 32.	•	10^{-8}	Babar	[14]
$\Gamma_{192} = e^- K^+ K^-$		< 3.4	•	10^{-8}	Belle	[13]
		< 14.		10^{-8}	Babar	[14]
$\Gamma_{198} = \mu^- K^+ K^-$		< 4.4		10^{-8}	Belle	[13]
		< 25.	•	10^{-8}	Babar	[14]
$\Gamma_{191} = e^- K_S^0 K_S^0$		< 7.1	•	10^{-8}	Belle	[5]
$\Gamma_{197} = \mu^- K_S^0 K_S^0$		< 8.0	•	10^{-8}	Belle	[5]
$\Gamma_{185} = e^+ \pi^- \pi^-$	(L)	< 2.0	•	10^{-8}	Belle	[13]
	(L)	< 27.		10^{-8}	Babar	[14]
$\Gamma_{187} = \mu^+ \pi^- \pi^-$	(L)	< 3.9		10^{-8}	Belle	[13]
	(L)	< 7.0	•	10^{-8}	Babar	[14]
$\Gamma_{190} = e^+ \pi^- K^-$	(L)	< 3.2	•	10^{-8}	Belle	[13]
	(L)	< 18.	•		Babar	[14]
$\Gamma_{196} = \mu^+ \pi^- K^-$	(L)	< 4.8	•	10^{-8}	Belle	[13]
		9				

	(L)	< 22.		10^{-8}	Babar [14]
$\Gamma_{193} = e^+ K^- K^-$	(L)	< 3.3		10^{-8}	Belle [13]
	(L)	< 15.		10^{-8}	Babar [14]
$\Gamma_{199} = \mu^+ K^- K^-$	(L)	< 4.7		10^{-8}	Belle [13]
	(L)	< 48.		10^{-8}	Babar [14]
$\Gamma_{211} = \pi^- \Lambda$	Λh	< 3.0		10^{-8}	Belle [15]
		< 5.8		10^{-8}	Babar [16]
$\Gamma_{212} = \pi^- \bar{\Lambda}$		< 2.8		10^{-8}	Belle [15]
		< 5.9		10^{-8}	Babar [16]
$\Gamma_{xx} = K^- \Lambda$		< 4.2		10^{-8}	Belle [15]
		< 15.		10^{-8}	Babar [16]
$\Gamma_{xx} = K^- \bar{\Lambda}$		< 3.1		10^{-8}	Belle [15]
		< 7.2	•	10^{-8}	Babar [16]

References

- [1] K. Hayasaka, et al., Phys.Lett. B666 (2008) 16–22.
- [2] B. Aubert, et al., Phys.Rev.Lett. 104 (2010) 021802.
- [3] K. Inami, Updated Search for Lepton-Flavor-Violating τ^- Decays into $\ell^-\pi^0$, $\ell^-\eta$ and $\ell^-\eta'$, 2011. A talk presented at the 11th International Workshop on Tau-Lepton Physics (TAU2010), Manchester, 13-17 Sep 2010, http://belle.kek.jp/belle/talks/tau/13.Sep/tau2010_inami-5.pdf.
- [4] B. Aubert, et al., Phys.Rev.Lett. 98 (2007) 061803.
- [5] Y. Miyazaki, Phys.Lett. B692 (2010) 4-9.
- [6] B. Aubert, et al., Phys.Rev. D79 (2009) 012004.
- [7] Y. Miyazaki, et al., Phys. Lett. B672 (2009) 317–322.
- [8] Y. Miyazaki, Phys.Lett. B699 (2011) 251–257.
- [9] B. Aubert, et al., Phys.Rev.Lett. 103 (2009) 021801.
- [10] B. Aubert, et al., Phys.Rev.Lett. 100 (2008) 071802.
- [11] K. Hayasaka, K. Inami, Y. Miyazaki, et al., Phys. Lett. B687 (2010) 139–143.
- [12] J. Lees, et al., Phys.Rev. D81 (2010) 111101.
- [13] Y. Miyazaki, Search for Lepton-Flavor-Violating and Lepton-Number-Violating $\tau^- \to lhh'$ Decays Mode, 2011. A talk presented at International Workshop on e^+e^- collisions from phi to psi (PHIPSI11), Novosibirsk, 19-22 Sep 2011, http://phipsi11.inp.nsk.su/talks/phipsi11_hayasaka.pdf.
- [14] B. Aubert, et al., Phys.Rev.Lett. 95 (2005) 191801.
- [15] K. Hayasaka, Recent LFV results on tau lepton from Belle , 2011. A talk presented at International Workshop on e^+e^- collisions from phi to psi (PHIPSI11), Novosibirsk, 19-22 Sep 2011. http://phipsi11.inp.nsk.su/talks/phipsi11_hayasaka.pdf.
- [16] G. Lafferty, Nucl. Phys. Proc. Suppl. 169 (2007) 186–191.