Pismeni ispit

14. srpnja 2016.

Ime i Prezime:

Matični broj:

Napomena: Svaki zadatak potrebno je započeti rješavati na posebnoj stranici, a sve listove numerirati i posložiti. Potpisani list sa zadacima potrebno je obavezno vratiti. Zadaci koji neće biti riješeni uredno i pregledno neće se uzeti u obzir kod ocjenjivanja.

1. zadatak (10 bodova)

- a) (8 bodova) Potrebno je nacrtati statičku karakteristiku $u_i = f(u_u)$ za sklop s operacijskim pojačalima prikazan na Slici 1. Pretpostavite da su sva operacijska pojačala, pasivni elementi i diode idealni. Zadano je: $U_a = 2 \text{ V}$, $U_b = 1 \text{ V}$, $R = 100 \text{ k}\Omega$.
- b) (2 boda) U mjerilu konstruirajte valni oblik izlaznog napona $u_i(t)$ ako se na ulaz sklopa doveđe napon $u_u(t) = 4\sin(2\pi t)$

Slika 1: Sklop s operacijskim pojačalima.

2. zadatak (10 bodova)

Napišite M-funkciju koja će koristeći Eulerovu metodu numeričke integracije za rješavanje diferencijalnih jednadžbi izračunati odziv izlaznog signala y(t) sustava drugog reda zadanog sljedećom prijenosnom funkcijom:

$$G(s) = \frac{Y(s)}{U(s)} = K_p \frac{\omega_n^2 (1 + T_d s)}{s^2 + 2\xi \omega_n s + \omega_n^2}$$

Ulazni signal jednak je jediničnoj skokovitoj funkciji, tj. u(t) = S(t).

Funkcija treba vratiti vektor vremena i pripadni vektor izlaznog signala y(t). Ulazni argumenti u funkciju su maksimalno vrijeme i korak integracije. Sve ostale potrebne varijable, konstante i početne uvjete (svi početni uvjeti jednaki su nuli) definirajte unutar M-funkcije. Dakle, prototip M-funkcije mora biti sljedeći:

3. zadatak (10 bodova)

Zadan je rotacijski sustav s tarnim prijenosom prema Slici 2.

Slika 2: Rotacijski sustav s tarnim prijenosom.

- a) (5 bodova) Odredite općenitu prijenosnu funkciju $G(s) = \frac{\Omega_2(s)}{\Omega_n(s)}$, uzevši u obzir prigušenje u ležajevima D_1 i prigušenje u materijalu osovine D_2 , tj. $D_1 \neq 0$ i $D_2 \neq 0$.
- b) (2 boda) Odredite frekvenciju i period vlastitih oscilacija, za parametre $c_{f1} = c_{f2} = 110 \text{ Nm/rad}$, $J_1 = J_2 = 30 \text{ kgm}^2$, $J_3 = 55 \text{ kgm}^2$, $r_1 = r_2 = 0.6 \text{ m}$, $r_3 = 0.8 \text{ m}$, $D_1 = D_2 = 0$.
- c) (3 boda) Nacrtajte bond graf sustava, uzevši u obzir prigušenje u ležajevima D₁ i prigušenje u materijalu osovine D₂.

4. zadatak (10 bodova)

Potrebno je izvesti nelinearni matematički model procesa miješanja tekućina prikazanog na Slici 3.

U spremniku se miješaju dvije tekućine različitih temperatura. Temperature ulaznih tekućina su ϑ_1 i ϑ_2 . Jedna tekućina ulijeva se u spremnik kroz cijev s linearnim regulacijskim ventilom (tlak P_u predstavlja nadtlak prema atmosferskom tlaku, K_v konstantu ventila i x_v otvorenost ventila), a druga kroz cijev sa crpkom (brzina vrtnje crpke je ω_c , a konstanta crpke K_c). Iz spremnika izlazi tekućina temperature ϑ_i s volumnim protokom Q_i . Pretpostavite da je temperatura tekućine u spremniku i izlaznoj cijevi ista, tj. ϑ_i te da se gustoća tekućine zanemarivo mijenja ovisno o temperaturi, tj. gustoća ulaznih tekućina i izlazne tekućine je ista i iznosi ρ . Također, pretpostavite da je toplinski kapacitet svih tekućina isti i jednak c_i .

Spremnik je oblika lijevka, tj. obrnutog stošca, visine H_u i polumjera baze R_u . Toplinski kapacitet stijenke spremnika nije zanemariv zbog čega je potrebno uzeti u obzir promjenu temperature stijenke spremnika ϑ_s u modelu. Temperatura zraka uz površinu tekućine u spremniku i uz stijenku rezervoara jednaka je ϑ_z . Zadana je masa stijenke spremnika m_s i toplinski kapacitet stijenke spremnika c_s .

Koeficijent prijelaza topline između tekućine i stijenke jednak je α_{vs} , koeficijent prijelaza topline između stijenke i zraka jednak je α_{sz} i koeficijent prijelaza topline između tekućine i zraka jednak je α_{vz} .

Brzina tekućine u spremniku je zanemariva prema brzini tekućine u izlaznoj cijevi, gubici u cijevima su zanemarivi i sva strujanja su laminarna.

Napomena: Površina plašta stošca jednaka je $P = r\pi s$, gdje je r polumjer baze stošca, a s duljina izvodnice.

Slika 3: Toplinski proces