Evaluation of Energy Expenditure from BXD Datasets

Dave Bridges

January 19, 2022

Contents

Analysis	2
Comparason of Datasets	2
Estimating Effect Sizes	4
Adjusting for Lean Mass	5
Adaptive Thermogenesis	10
Integration with Lifespan	18
Session Information	20

The goal is to identify genetic determinants of energy expenditure and of adaptive thermogenesis from BXD mice. To start we searched gene network for energy expenditure data, ignoring those involved in exercise physiology.

- BXD_17621 Oxygen intake over 24h on NCD at 16 w age. Also included light/dark. Not adjusted for lean mass. Has mean +/- SE in mL/kg/h. From Prinen 2014 (https://doi.org/10.1016/j.cmet.2014.04.002)
- BXD_17618 Oxygen intake over 24h at 16 w age on HFD?, males. Not adjusted for lean mass. Has mean +/- SE in mL/kg/h. From Williams (2016). Body weight in BXD_17559, lean mass in BXD_17573
- BXD_17622 Oxygen intake over 24h at 16 w age on HFD?, males. Not adjusted for lean mass. Has mean +/- SE in mL/kg/h. From Williams (2016). Body weight in BXD_17560, lean mass in BXD_17574

williams.hfd.ee <- read_csv("BXD_17622.csv" , skip=9)%% #may be mislabelled on genenetwork

```
mutate(Diet="HFD", Age=16, Dataset="Williams")
williams.hfd.bw <- read_csv("BXD_17560.csv", skip=9)%>%
  mutate(Diet="HFD", Age=16, Dataset="Williams")
williams.hfd.lm <- read_csv("BXD_17574.csv", skip=9)%>%
  mutate(Diet="HFD", Age=16, Dataset="Williams")
williams.hfd <- full_join(williams.hfd.ee,williams.hfd.bw, suffix=c('_ee','_bw'), by=c("Name","Dataset"
  full join(williams.hfd.lm) %>%
  mutate(Value_lm = Value,
         SE_{lm} = SE)
data <- bind_rows(#ncd.pirinen,</pre>
                  williams.ncd,
                  williams.hfd) %>% # in mL/kg/h
  mutate(V02_g_min = Value_ee/1000) %>% #in mL/q/h
  mutate(V02_min = V02_g_min*Value_bw/60) %>% # in mL/min #this seems reasonable
  mutate(MR_KJ_d = V02_min * 60 * 24 / 1000 * 4.84 * 4.184,
         MR_KJ_d_SE = SE_ee/1000*Value_bw/60* 60 * 24 / 1000 * 4.84 * 4.184) %>% # 60min/h x 24h/day /
  mutate(MR_W = MR_KJ_d * 0.0115740741,
         MR_W_SE = MR_KJ_d_SE* 0.0115740741) %>% # in Watts
  mutate(Diet = relevel(factor(Diet), ref="NCD"))
```

These data can be found in /Users/davebrid/Documents/GitHub/PrecisionNutrition/Mouse Genetics/Energy Expenditure. This script was most recently updated on Wed Apr 13 12:21:45 2022.

Analysis

Comparason of Datasets


```
#lm(Value~Name+Diet,data=data) %>% summary
mr.order <-
  data %>%
  filter(Diet == "NCD") %>%
  arrange(desc(MR_W)) %>%
  mutate(Name = factor(Name))
data %>%
  filter(!is.na(MR_W)) %>% # complete cases only
  mutate(Name = factor(Name, levels = mr.order$Name, ordered = TRUE)) %>%
  ggplot(aes(y=MR_W,
         x=Name,
         ymin=MR_W-MR_W_SE,
         ymax=MR_W+MR_W_SE,
         fill=Diet)) +
  geom_bar(stat='identity',position='dodge', width=0.75) +
  geom_errorbar(position=position_dodge(width=0.75), width=0.5) +
  labs(y="Energy Expenditure (W)",x="") +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
```


Estimating Effect Sizes

Table 1: Summary statistics for thermogenesis from BXD mice

Diet	Max	Min	Mean	SE	N	SD	Rel.SD
			$0.526 \\ 0.659$				7.96 7.96

```
N = mean(N,na.rm=T)) %>%
mutate(SD = SE*sqrt(mean(N,na.rm=T))) %>%
mutate(Rel.SD = SD/Mean*100) %>%
kable(caption="Summary statistics for lean mass from BXD mice")
```

Table 2: Summary statistics for lean mass from BXD mice

Diet	Max	Min	Mean	SE	N	SD	Rel.SD
			25.4 26.0				5.19 4.97

Adjusting for Lean Mass

lm.model.1 <- lm(MR_W~Value_lm,data=data %>% filter(Diet=="NCD")) #model built on only NCD
lm.model.2 <- lm(MR_W~Value_lm+Diet,data=data) #model built on NCD and AT
library(broom)
aov(lm.model.1) %>% tidy %>% kable(caption="Model 1 summary for adjusting for lean mass")

Table 3: Model 1 summary for adjusting for lean mass

term	df	sumsq	meansq	statistic	p.value
Value_lm	1	0.013	0.013	5.17	0.028
Residuals	45	0.115	0.003	NA	NA

summary(lm.model.1) %>% tidy %>% kable(caption="Model 1 coefficients for adjusting for lean mass")

Table 4: Model 1 coefficients for adjusting for lean mass

term	estimate	std.error	statistic	p.value
(Intercept)	0.333	0.085	3.92	0.000
$Value_lm$	0.008	0.003	2.27	0.028

aov(lm.model.2) %>% tidy %>% kable(caption="Model 2 summary for adjusting for lean mass")

Table 5: Model 2 summary for adjusting for lean mass

term	df	sumsq	meansq	statistic	p.value
Value_lm	1	0.081	0.081	21.5	0
Diet	1	0.347	0.347	92.0	0
Residuals	87	0.328	0.004	NA	NA

summary(lm.model.2) %>% tidy %>% kable(caption="Model 2 coefficients for adjusting for lean mass")

Table 6: Model 2 coefficients for adjusting for lean mass

term	estimate	std.error	statistic	p.value
(Intercept)	0.287	0.075	3.83	0.000
$Value_lm$	0.009	0.003	3.22	0.002
DietHFD	0.126	0.013	9.59	0.000


```
mr.adj.order <-
  data %>%
  filter(Diet == "NCD") %>%
  arrange(desc(MR_adj)) %>%
  mutate(Name = factor(Name))
data %>%
  filter(!is.na(MR_W)) %>% # complete cases only
  mutate(Name = factor(Name, levels = mr.adj.order$Name, ordered = TRUE)) %>%
  ggplot(aes(y=MR_adj,
         x=Name,
         ymin=MR_adj-MR_W_SE,
         ymax=MR_adj+MR_W_SE,
         fill=Diet)) +
  geom_bar(stat='identity',position='dodge', width=0.75) +
  geom_errorbar(position=position_dodge(width=0.75), width=0.5) +
  labs(y="Lean Mass Adjusted Energy Expenditure (W)",x="") +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
```


based on this modelling after adjusting for lean mass, HFD increases thermogenesis by (coef(lm.model.2)["(Intercept)"]-c

Adaptive Thermogenesis

Defined as lean mass adjusted VO2 from HFD - NCD

```
data.wide <-
  data %>%
  select(Value_lm,SE,Value_bw, MR_W, MR_W_SE, MR_adj,Name,Diet) %>%
  pivot_wider(names_from=Diet,id_cols=Name,values_from=c(Value_lm,Value_bw, MR_W,MR_W_SE,MR_adj,SE)) %>
  mutate(AT = MR_W_HFD - MR_W_NCD,
         AT_SE = sqrt((MR_W_SE_NCD/MR_W_NCD)^2+(MR_W_SE_HFD/MR_W_HFD)^2)*AT,
         Wt_SE = sqrt((SE_NCD/Value_bw_NCD)^2+(SE_HFD/Value_bw_NCD)^2)*Value_bw_NCD,
         Wt.Gain = Value_bw_HFD-Value_bw_NCD)
data.wide %>%
  filter(!is.na(AT)) %>% # complete cases only
  ggplot(aes(y=AT,
         x=reorder(Name,-AT),
         ymin=AT-AT_SE,
         ymax=AT+AT_SE)) +
  geom_bar(stat='identity',position='dodge') +
    geom_errorbar() +
  labs(y="HFD-Induced Adaptive Thermogenesis (W)",
       x="") +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
```


Thermogenesis on NCD as a Predictor of Weight Gain

Table 7: Summary of relationship between energy expenditure and diet-induced weight gain

r.squared	adj.r.squared	sigma	statistic	p.value	$\mathrm{d}\mathrm{f}$	logLik	AIC	BIC	deviance	${\rm df.residual}$	nobs
0.042	0.02	5.06	1.9	0.172	1	-139	284	289	1128	44	46

lm(Wt.Gain~MR_adj_NCD, data=data.wide) %>% glance %>% kable(caption="Summary of relationship between le

Table 8: Summary of relationship between lean mass adjusted energy expenditure and diet-induced weight gain

r.squared	adj.r.squared	sigma	statistic	p.value	df	logLik	AIC	BIC	deviance	df.residual	nobs
0.023	0.001	5.11	1	0.315	1	-139	285	290	1151	44	46

```
gemma.phenotype.export <- 'Strain Level Energy Expenditure Data.csv'
data %>%
  filter(Diet=="NCD") %>%
  select(Name, MR_W, MR_adj) %>%
  write_csv(gemma.phenotype.export)
```

The data on lean mass adjusted thermogenesis was exported to Strain Level Energy Expenditure Data.csv

Heritability of NCD Thermogenesis

Since we don't have individual mouse data we will make fake data based on the mean and se of MR

```
new.sim.data <- data.frame(Name=NA, Diet=NA,EE=NA)

for (row in 1:dim(data)[1]) {
   strain.data <- data[row,]
   if(!(is.na(strain.data$MR_W))){
    sim.data <- with(strain.data,</pre>
```

```
rnorm(mean=MR_W,
                          sd=MR_W_SE * sqrt(N),
                          n=N_ee
                     ))
  sim.lean.data <- with(strain.data,</pre>
                    rnorm(mean=Value_lm,
                          sd=SE_lm * sqrt(N),
                          n=N ee
                     ))
  sim.dataset <- data.frame(Name=strain.data$Name,</pre>
                              Diet=strain.data$Diet,
                              EE=sim.data.
                              Lean=sim.lean.data)
  new.sim.data <- bind_rows(new.sim.data,sim.dataset)</pre>
  }
else{
    sim.dataset <- data.frame(Name=strain.data$Name,</pre>
                              Diet=strain.data$Diet,
                              EE=NA,
                              Lean=NA)
    new.sim.data <- bind_rows(new.sim.data,sim.dataset)</pre>
}
  }
aov(EE ~ Name, data=new.sim.data %>% filter(Diet=='NCD')) %>%
  tidy %>%
  mutate(Total.Var=sum(meansq),
         Pct.Var = meansq/Total.Var*100) %>%
  kable(caption="Overall heritability of energy expenditure on NCD mice")
```

Table 9: Overall heritability of energy expenditure on NCD mice

term	df	sumsq	meansq	statistic	p.value	Total.Var	Pct.Var
Name	46	0.665	0.014	7.76	0	0.016	88.6
Residuals	159	0.296	0.002	NA	NA	0.016	11.4

Table 10: Overall heritability of energy expenditure on NCD including lean mass $\,$

term	df	sumsq	meansq	statistic	p.value	Total.Var	Pct.Var
Lean	1	0.057	0.057	30.61	0	0.072	79.13
Name	46	0.609	0.013	7.07	0	0.072	18.28
Residuals	158	0.296	0.002	NA	NA	0.072	2.58

Table 11: Overall heritability of energy expenditure on NCD adjusting for lean mass

aov(EE ~ Lean + Name, data=new.sim.data %>% filter(Diet=='NCD')) %>%

term	df	sumsq	meansq	statistic	p.value	Total.Var	Pct.Var
Lean	1	0.057	0.057	30.61	0	0.015	379.2
Name	46	0.609	0.013	7.07	0	0.015	87.6
Residuals	158	0.296	0.002	NA	NA	0.015	12.4

Table 12: Overall heritability of energy expenditure including diet and lean mass

term	df	sumsq	meansq	statistic	p.value	Total.Var	Pct.Var
Lean	1	0.258	0.258	108.88	0	1.84	13.978
Name	47	1.276	0.027	11.48	0	1.84	1.474
Diet	1	1.543	1.543	652.60	0	1.84	83.780
Name:Diet	41	0.484	0.012	4.99	0	1.84	0.641
Residuals	302	0.714	0.002	NA	NA	1.84	0.128

Table 13: Overall heritability of energy expenditure adjusted for diet and lean mass

term	df	sumsq	meansq	statistic	p.value	Total.Var	Pct.Var
Lean	1	0.258	0.258	108.88	0	0.041	623.28
Name	47	1.276	0.027	11.48	0	0.041	65.71
Diet	1	1.543	1.543	652.60	0	0.041	3735.83
Name:Diet	41	0.484	0.012	4.99	0	0.041	28.57
Residuals	302	0.714	0.002	NA	NA	0.041	5.72

```
ee.var.data <- bind_rows(lean.adj.ee.lean %>% mutate(Diet="NCD"),hfd.adj.ee.adj %>% mutate(Diet="HFD"))
ggplot(ee.var.data %>% filter(term %in% c('Name','Name:Diet','Residuals')),
        aes(x=reorder(Diet,-Pct.Var),
            y=Pct.Var,
            fill=term)) +
  geom_bar(position="stack",stat='identity') +
  scale_fill_manual(labels = c("Strain", "Strain x Diet", "Other"), values = c("red", "pink", "blue"),
                     name="Factor") +
  labs(y="Percent of Variance",
      x="") +
  theme_classic() +
  theme(legend.position="top")+
  theme(text=element_text(size=18))
                   Factor Strain Strain x Diet
                                                                   Other
    100
Percent of Variance
     75
     50
     25
       0
```

HĖD

NĊD

```
mutate(Group=paste(Diet,Corr,sep="-"))
library(RColorBrewer)
ee.var.all.data %>%
         filter(term %in% c('Lean','Name','Name:Diet','Diet','Residuals')) %>%
         filter(!(term=='Lean'&Corr=='Lean Mass')) %>%
         filter(!(term=='Lean'&Corr=="Lean Mass,Diet")) %>%
         filter(!(term=='Diet'&Corr=="Lean Mass,Diet")) %>%
ggplot(aes(x=ordered(Group, levels=c("NCD-None","NCD-Lean Mass", "HFD-Lean Mass", "HFD-Lean Mass, Diet")
            y=Pct.Var,
            fill=term)) +
  geom_bar(position="stack",stat='identity') +
  scale_fill_manual(name="Factor",
                    labels = c("Diet", "Lean Mass", "Strain", "Strain x Diet", "Residuals"),
                    values=brewer.pal(5, "Set1")) +
  labs(y="Variance Contribution (%)",
       x="Diet and Adjustments") +
  theme_classic() +
  theme(text=element_text(size=18),
        axis.text=element_text(size=8))
```


Adaptive Thermogenesis vs Weight Gain

```
data.wide %>%
  ggplot(aes(y=Wt.Gain,
```

```
x=AT)) +
labs(y="Weight Gained on HFD (g)",
    x="Adaptive Thermogenesis (W)") +
geom_point() +
geom_smooth(method="lm") + theme_classic() +
theme(text=element_text(size=18))
```


lm(Wt.Gain~AT, data=data.wide) %>% glance %>% kable(caption="Summary of relationship between energy exp

Table 14: Summary of relationship between energy expenditure and diet-induced weight gain

r.squared	adj.r.squared	sigma	statistic	p.value	df	logLik	AIC	BIC	deviance	df.residual	nobs
0.017	-0.007	5.22	0.691	0.411	1	-131	268	273	1117	41	43

Integration with Lifespan

To ask whether BMR is related to experimental livespan we used the data from Roy et al 2021. This determined lifespan of **female** mice in days

```
Age.N = N)
combined.age.mr.data <-</pre>
  full_join(aging.data, data.wide)
combined.age.mr.data %>%
  ggplot(aes(y=Age,
             x=MR_adj_NCD)) +
  geom_point() +
  geom_errorbar(aes(ymin=Age-Age.SE,
                    ymax=Age+Age.SE),
                alpha=0.25) +
  geom_errorbarh(aes(xmin=MR_adj_NCD-MR_W_SE_NCD,
                    xmax=MR_adj_NCD+MR_W_SE_NCD),
                alpha=0.25) +
  geom_smooth(method="lm") +
  theme_classic() +
  theme(text=element_text(size=18))
```



```
combined.age.mr.data %>%
  mutate_at(vars(Age,MR_adj_NCD), .funs=as.numeric) %>%
  summarize_at(vars(Age,MR_adj_NCD), .funs=function(x) shapiro.test(x)$p.value) %>%
  kable(caption="Shapiro-Wilk tests for normality")
```

Table 15: Shapiro-Wilk tests for normality

Age	MR_adj_	_NCD
0.98		0.043

```
with(combined.age.mr.data, cor.test(Age, MR_adj_NCD)) %>%
   tidy %>%
   kable(caption="Relationship between age (of female BXD mice) and adjusted metabolic rate")
```

Table 16: Relationship between age (of female BXD mice) and adjusted metabolic rate

estimate	statistic	p.value	parameter conf.low		conf.high	method	alternative
-0.058	-0.356	0.724	37 -0.367		0.262	Pearson's product-moment correlation	two.sided

Session Information

```
sessionInfo()
```

```
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS 10.16
##
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                   base
##
## other attached packages:
## [1] RColorBrewer_1.1-2 broom_0.7.11
                                             ggrepel_0.9.1
                                                                ggplot2_3.3.5
## [5] readr_2.1.1
                          dplyr_1.0.7
                                             tidyr_1.1.4
                                                                knitr_1.37
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.1.1 xfun_0.29
                                          purrr_0.3.4
                                                           splines_4.0.2
                                                           generics_0.1.1
   [5] lattice_0.20-45 colorspace_2.0-2 vctrs_0.3.8
  [9] htmltools_0.5.2 yaml_2.2.1
                                          mgcv_1.8-38
                                                           utf8_1.2.2
                         pillar_1.6.4
                                                           withr_2.4.3
## [13] rlang_0.4.12
                                          glue_1.6.0
## [17] DBI_1.1.2
                         bit64_4.0.5
                                          lifecycle_1.0.1
                                                           stringr_1.4.0
## [21] munsell_0.5.0
                         gtable_0.3.0
                                          evaluate_0.14
                                                           labeling_0.4.2
## [25] tzdb 0.2.0
                         fastmap 1.1.0
                                          parallel 4.0.2
                                                           fansi 1.0.0
## [29] highr_0.9
                         Rcpp_1.0.7
                                          backports_1.4.1
                                                           scales_1.1.1
## [33] vroom 1.5.7
                         magick_2.7.3
                                          farver_2.1.0
                                                           bit_4.0.4
                                                           grid_4.0.2
## [37] hms_1.1.1
                         digest_0.6.29
                                          stringi_1.7.6
## [41] cli_3.1.0
                         tools_4.0.2
                                          magrittr_2.0.1
                                                           tibble_3.1.6
```

```
## [45] crayon_1.4.2 pkgconfig_2.0.3 ellipsis_0.3.2 Matrix_1.4-0
## [49] assertthat_0.2.1 rmarkdown_2.11 rstudioapi_0.13 R6_2.5.1
## [53] nlme_3.1-153 compiler_4.0.2
```