π Quarium

Aquário autônomo controlado por bot de Telegram utilizando Raspberry Pi

Anderson Sales Rodrigues Pinto
Universidade de Brasília
Faculdade Gama
Brasília, Brasil
aandersonsales@gmail.com

Gabriel de Matos Souza
Universidade de Brasília
Faculdade Gama
Brasília, Brasil
gabriel.matos.s@hotmail.com

Resumo—Este trabalho consiste em construir um aquário automatizado, que será responsável, através de vários sensores e atuadores, controlar o ambiente do aquário para que o peixe fique bem acomodado e bem alimentado. O aquário será interfaceado por um bot do Telegram, onde pode-se obter informações relevantes a respeito do aquário, como PH, temperatura, dentre outros.

Index Terms— π Quarium, Smart, Raspberry pi, microcontrolador

I. JUSTIFICATIVA

Embora possa parecer uma tarefa simples e trivial, a observação regular do seu aquário fornece importantes pistas visuais, indicando alterações na qualidade da água e alerta-o de que algo pode estar fora de equilíbrio. Os parâmetros da água fundamentais que influenciam a qualidade da água são o pH, a amônia, o nitrito e o nitrato. No entanto, muitas condições associadas com a má qualidade da água desenvolvem-se gradualmente. Os primeiros sinais podem passar despercebidos, levando a condições mais graves ou mais persistentes.

É preciso que o aquário atenda algumas necessidades como temperatura adequada, iluminação adaptada, pH balanceado, etc. Outro fator corriqueiro é o esquecimento na hora certa de alimentar o(s) peixe(s) e isso pode acarretar no falecimento do animal.

Sabendo destes empecilhos para a criação de peixes foise pensado um aquário automatizado, onde será possível cuidar dos peixes de forma mais independente do dono, com cronogramas estabelecidos pelo usuário através de um bot no Telegram.

II. OBJETIVOS

Os objetivos deste projeto estão separados de forma que atendam os seguintes tópicos:

A. Integração de um Bot do Telegram para controle e obtenção de dados do aquário

O π Quarium será desenvolvido para poder verificar algumas configurações remotas de um aquário comum como temperatura e iluminação, e executar certos tipos de rotinas da alimentação. No entanto terá também um modo manual que permitirá tais ações presencialmente.

B. Temperatura

A temperatura da água é algo essencial quando se trata de certas espécies de animais, portanto será mensurada através de um sensor e caso haja uma temperatura indesejada, há de se corrigir através de um resistor de aquecimento.

C. Iluminação

O controle da iluminação de LED servirá tanto para conservar energia, quanto para tratar de certas espécies de animais e plantas.

D. Alimentação

Seria possível alimentar o(s) peixe(s) com certa quantidade de comida, de acordo com uma programação diária(rotina), onde o usuário poderá ativa-las através de um Bot do aplicativo.

E. Monitoramento visual a partir de uma câmera

O sistema terá uma câmera para acompanhamento visual do usuário.

III. REQUISITOS

Para que este projeto seja desenvolvido precisa-se de:

- Uma Raspberry Pi3 que será a unidade central de processamento dos dados enviados pelo microcontrolador e responsável pela integração do bot do Telegram e o usuário;
- Um servo motor responsável pela dispensa do alimento;
- Um sensor de temperatura DS18B20 para aferir a temperatura da água;
- Uma fita tipo LED que será utilizado para a iluminação;
- Um sensor de pH que fornecerá os dados de pH;
- Um conversor AD PCF8591, que converterá os dados recebidos pelo sensor de PH em dados digitais.
- Duas bombas de sucção para efetuar a limpeza do aquário.
- Bot de Telegram, que se responsabilizará pela interface entre o proprietário do peixe e o aquário, fornecendo as informações requisitadas pelo proprietário.
- Um aquário que comporte tanto a quantidade de peixes do usuário quanto os equipamentos necessários para deixá-lo autônomo.

Todo o circuito eletrônico deve ficar protegido da umidade do aquário, para isso será construído um case para essa necessidade.

Além disso, o aquário é designado para peixes de água doce e de pequeno porte. Não recomenda-se utilizar o sistema em um aquário pequeno com muitos peixes, pois pode alterar os valores de leitura dos sensores e/ou comprometer o funcionamento dos atuadores.

IV. BENEFÍCIOS

Com este projeto espera-se que o proprietário do(s) peixe(s) terá uma maior autonomia em seu cotidiano, economizando tempo ao cuidar dos peixes e ainda assim poder acompanhar o crescimento deles.

A interface usuário-máquina sendo feita pelo Telegram deixa o projeto mais versátil, pois boa parte das pessoas possuem um celular e/ou um notebook com acesso a internet, assim fazendo com que a interface seja acessível para qualquer pessoa que utilizar o projeto.

V. DESENVOLVIMENTO

O projeto funciona com a utilização de uma RaspberryPi 3b (figura 1), onde é criado um Bot para monitoramento do animal e para interface com o cliente. Para se conectar com o Bot o usuário deve adicionar o Bot no telegram, que possui o nome de "Peixoso_bot". Ao se conectar com o Bot, o usuário deverá mandar o comando /start para o ínicio da operação. O Bot oferece uma lista de comandos para o usuário escolher, são elas: /ph, que mede o potencial de hidrogênio do aquário a partir de um sensor (figura 2), /temperatura, que mede a a temperatura com o sensor DS18B20 (figura 3),/trocaragua, onde as bombas de sucção (figura 4) irão desempenhar o papel de tirar a água velha e colocar uma água nova previamente disposta pelo usuário, /foto, que manda uma foto assim que solicitada e por fim a função /colocarcomida, onde o servo motor (figura 5) será ativado durante um período determinado para servir a comida para o animal.

A fim de evitar ter que usar um microcontrolador para esta atividade, para converter os valores de saída analógicos que são entregues pelo sensor de PH, será utilizado um conversor ad PCF8591 (figura 6).

Figura 1. Raspberry Pi 3B

Figura 2. Sensor de pH

Figura 3. Sensor de temperatura

Figura 4. Bomba de sucção

Figura 5. Servo motor

Figura 6. Conversor AD

A princípio o projeto será devidamente instalado em um aquário que é bastante similar ao da figura 7.

Figura 7. Formato do aquário a ser utilizado

VI. REFERÊNCIAS

- [1] SMART Aquarium. , 2018. Disponível em: http://https://www.instructables.com/id/Smart Aquarium/>. Acesso em: 30 aug. 2019.
- [2] DEMANDA por aquarismo cresce no brasil. , 2016. Disponível em: http://https://www.grupoaguasclaras.com.br/demanda-por-aquarismo-cresce-no-brasil>. Acesso em: 30 aug. 2019.
- [3] 10 PROBLEMAS em aquários e suas soluções!. , 2018. Disponível em: http://https://www.estimacao.com.br/10-problemas-aquarios-suas-solucoes/. Acesso em: 30 aug. 2019.
- [4] Introduction to Bluetooth Low Energy, Disponível em: https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt. Acesso em: 29 set. 2019