Динамическое программирование. Примеры задач.

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 21.05.2024

Содержание лекции

- Задача о рюкзаке
- ▶ Задача о бродячем торговце

Задача о рюкзаке

Даны n предметов, каждый из них имеет положительный вес w_i и положительную ценность v_i ; Дан рюкзак вместимостью (емкостью) W; Необходимо заполнить рюкзак предметами так, чтобы максимизировать их суммарную ценность и чтобы их суммарный вес не превысил W.

Задача о рюкзаке

Даны n предметов, каждый из них имеет положительный вес w_i и положительную ценность v_i ; Дан рюкзак вместимостью (емкостью) W; Необходимо заполнить рюкзак предметами так, чтобы максимизировать их суммарную ценность и чтобы их суммарный вес не превысил W.

У этой задачи есть множество вариаций:

- Классической является дискретная задача о рюкзаке (0-1) рюкзак) каждый предмет можно либо не класть, либо положить в единственном экземпляре.
- Более простым вариантом является непрерывная или дробная задача о рюкзак – предметы разрешено дробить на меньшие части и помещать в рюкзак.
- ▶ Ограниченный рюкзак каждый предмет разрешено брать целое число раз, но не более, чем C раз $(C \in \mathbb{N})$.
- ▶ Неограниченный рюкзак разрешено класть в рюкзак произвольное целое число экземпляров любого предмета.

$$\sum_{i=1}^{n} v_i x_i \to \max_{\Omega}$$

$$\Omega \begin{cases} \sum_{i=1}^{n} w_i x_i \le W \\ x_i \in \{0, 1\}, \ i \in \overline{1:n}, \end{cases}$$

(а) Дискретный рюкзак

$$\sum_{i=1}^{n} v_i x_i \to \max_{\Omega}$$

$$\Omega \begin{cases} \sum_{i=1}^{n} w_i x_i \le W \\ x_i \in \{0, 1, \dots, C\}, \ i \in \overline{1:n}, \end{cases}$$

(с) Ограниченный рюкзак

$$\sum_{i=1}^{n} v_i x_i \to \max_{\Omega}$$

$$\Omega \begin{cases} \sum_{i=1}^{n} w_i x_i \le W \\ 0 \le x_i \le 1, \ i \in \overline{1:n}, \end{cases}$$

(b) Дробный рюкзак

$$\sum_{i=1}^{n} v_i x_i \to \max_{\Omega}$$

$$\Omega \begin{cases} \sum_{i=1}^{n} w_i x_i \le W \\ x_i \in \mathbb{N}_0, \ i \in \overline{1:n}, \end{cases}$$

(d) Неограниченный рюкзак

Замечание: задача дробного рюкзака формулировкой похожа на классический дискретный рюкзак, однако решается заметно проще (дробный рюкзак решается за время $O(n\log n)$ из-за необходимости сортировать, в то время как дробный рюкзак — NP-трудная задача, хотя динамический алгоритм и работает за O(nW)).

Замечание: задача дробного рюкзака формулировкой похожа на классический дискретный рюкзак, однако решается заметно проще (дробный рюкзак решается за время $O(n\log n)$ из-за необходимости сортировать, в то время как дробный рюкзак – NP-трудная задача, хотя динамический алгоритм и работает за O(nW)).

В случае дробного рюкзака нетрудно придумать жадный алгоритм, позволяющий получить оптимальное решение. Жадный подход в случае дискретного рюкзака не сработает: рассмотрим рюкзак вместимостью W=50 и три предмета с весами и ценностями (10,60),(20,100),(30,120).

- в случае дробного жадная стратегия (отсортировать веса в порядке убывания значения ценности одного кг предмета и заполнять самыми ценными килограммами, пока не будет достигнут предельный вес) даст верный результат $60+100+\frac{30}{20}\cdot 120=240$;
- в случае дискретного рюкзака жадная стратегия приведет к ответу 60+100=160 берем самые ценный по соотношению ценность/вес первый предмет, потом второй. На третий предмет места нет. Оптимальней же будет взять второй и третий предмет с суммарной ценностью 220.

Описание структуры оптимального решения

Утверждение: В дискретной задаче о рюкзаке имеется оптимальное решение $I\subseteq\overline{1:n}, n\geq 1$ с суммарной ценностью $V=\sum_{i\in I}w_i$. Тогда I равно

- 1. либо о.р. задачи с вместимостью W, но в которой доступны только первые n-1 предметы,
- 2. либо о.р. задачи с вместимостью $W-w_n$, в которой доступны только первые n-1 предметы, объединенному с n-м предметом.

Описание структуры оптимального решения

Утверждение: В дискретной задаче о рюкзаке имеется оптимальное решение $I\subseteq\overline{1:n}, n\geq 1$ с суммарной ценностью $V=\sum_{i\in I}w_i.$ Тогда I равно

- 1. либо о.р. задачи с вместимостью W, но в которой доступны только первые n-1 предметы,
- 2. либо о.р. задачи с вместимостью $W-w_n$, в которой доступны только первые n-1 предметы, объединенному с n-м предметом.

Док-во: Возможны два случая:

- если $n \notin I$, то I будет о.р. задачи, в которой доступны только первые n-1 предметы. Это решение допустимо (т.к. $n \notin I$) и, если оно не оптимально ($\exists \ I'$ с суммарной стоимостью V' > V), то I' будет допустимым решением исходной задачи, причем V' > V (?!).
- если $n \in S$, то $w_n \leq W \Rightarrow$ в рюкзаке емкостью W уже зарезервирован вес w_n под n-й предмет. Осталась емкость $W-w_n$. Мн-во предметов $I \setminus \{n\}$ допустимое решением подзадачи с емкостью $W-w_n$ с суммарной ценностью $V-v_n$. Пусть существует о.р. $I' \subseteq \overline{1:(n-1)}$ подзадачи с суммарной стоимостью $V' > V v_n$ и суммарным весом $\leq W-w_n \Rightarrow$ решение $I' \cup \{n\}$ будет иметь суммарный вес $\leq W$ и ценность $V'+v_n > (V-v_n)+v_n = V$ (?!).

Рекурсивное определение оптимального решения

Введем следующие обозначения: пусть $S_{i,B}$ — o.p. дискретной задачи о рюкзаке, в которой доступны только первые $i\in\overline{0}:n$ предметов, а емкость равна B, где $B\in\overline{0}:W$, а суммарную ценность о.р. будем хранить в клетке c[i,B] специальной матрицы c размера $(n+1)\times(W+1)$.

Рекурсивное определение оптимального решения

Введем следующие обозначения: пусть $S_{i,B}$ — o.p. дискретной задачи о рюкзаке, в которой доступны только первые $i\in\overline{0}:n$ предметов, а емкость равна B, где $B\in\overline{0}:W$, а суммарную ценность о.р. будем хранить в клетке c[i,B] специальной матрицы c размера $(n+1)\times(W+1)$.

Заметим, что

- lacktriangledown если $B < w_i$, то $i \notin S_{i,B}$ и мы находимся в первом случае: $S_{i,B} = S_{i-1,B}$ и c[i,B] = c[i-1,B].
- если $B \geq w_i$, то ситуация немного сложнее; Мы не можем наперед знать $i \in S_{i,B}$ или $i \notin S_{i,B}$, поэтому для определения оптимального решения необходимо выбрать максимум из c[i-1,B] (первый случай) и $c[i-1,B-w_i]+v_i$ (второй случай).

Считаем, что если необходимо уместить в рюкзаке предметы из пустого множества, то о.р. равно нулю (нулевая ценность). Следовательно, рекурсивное соотношение выглядит следующим образом:

$$c[i,B] = \begin{cases} c[i-1,B], \text{ если } B < w_k, \\ \max \left(c[i-1,B], c[i-1,B-w_i] + v_i \right) \right), \text{ если } B \geq w_k, \\ c[0,B] = 0, B \in [0,W] \end{cases}$$

Вычисления значения методом восходящего анализа

Алгоритм на основе рекурсивного определения о.р.:

- 1. инициализируем двумерный массив (или список списков) $c[(n+1)\times (W+1)]$ нулями (индексация идет с нуля);
- 2. далее пробегаемся по строкам (от 0 до n) и для каждого элемента B строки i применяем рекурсивное соотношение;
- 3. после заполнения всей таблицы выводим значение c[n,W] в качестве ответа (это как раз будет оптимальное заполнения рюкзаке емкостью W с выбором всех доступных изначально предметов).

Вычисления значения методом восходящего анализа

Алгоритм на основе рекурсивного определения о.р.:

- 1. инициализируем двумерный массив (или список списков) $c[(n+1)\times (W+1)]$ нулями (индексация идет с нуля);
- 2. далее пробегаемся по строкам (от 0 до n) и для каждого элемента B строки i применяем рекурсивное соотношение;
- 3. после заполнения всей таблицы выводим значение c[n,W] в качестве ответа (это как раз будет оптимальное заполнения рюкзаке емкостью W с выбором всех доступных изначально предметов).

Данный алгоритм имеет временную сложность O(nW), т.к. итераций в цикле ровно $(n+1)\times (W+1)$, на каждой из них значение не вычисляется, а за константное время O(1) берется из таблицы.

Составление оптимального решения

Алгоритм восстановления о.р. по таблице c похож на вытаскивание предметов под одному (в порядке убывания весов) из рюкзака:

- 1. необходимо инициализировать пустой список I, в который будем складывать номера предметов из рюкзака и на каждом шаге хранить остаточную емкость R, изначально равную W;
- 2. итерироваться по всем предметам в порядке убывания веса и если для i-го предмета справедливо
 - ightharpoonup его вес меньше остаточной емкости: $w_i \leq R$ и
 - оптимальное решение задачи $S_{i-1,R}$ не превышает $S_{i-1,R-w_i}+v_i$ (то есть при построении таблице в момент заполнения c[i,R] выбрали второй случай с i-м предметом),

то значит i-й предмет входит в о.р. и добавляем его в список I, а остаточную емкость уменьшаем на w_i . Если одно из двух утверждений для i-го предмета не выполняется, то переходим к i-1.

3. продолжаем пока не просмотрим все предметы. Оптимальное решение будет храниться в списке I.

Составление оптимального решения

Алгоритм восстановления о.р. по таблице c похож на вытаскивание предметов под одному (в порядке убывания весов) из рюкзака:

- 1. необходимо инициализировать пустой список I, в который будем складывать номера предметов из рюкзака и на каждом шаге хранить остаточную емкость R, изначально равную W;
- 2. итерироваться по всем предметам в порядке убывания веса и если для i-го предмета справедливо
 - lacktriangle его вес меньше остаточной емкости: $w_i \leq R$ и
 - оптимальное решение задачи $S_{i-1,R}$ не превышает $S_{i-1,R-w_i}+v_i$ (то есть при построении таблице в момент заполнения c[i,R] выбрали второй случай с i-м предметом),

то значит i-й предмет входит в о.р. и добавляем его в список I, а остаточную емкость уменьшаем на w_i . Если одно из двух утверждений для i-го предмета не выполняется, то переходим к i-1.

3. продолжаем пока не просмотрим все предметы. Оптимальное решение будет храниться в списке I.

Оптимальное решение составляется за время O(n) (по O(1) на каждую итерацию), что не влияет на асимптотику алгоритма вычисления оптимального значения O(nW).

Емкость W=8 и предметы $\big\{(1,60),(4,120),(3,150),(6,320)\big\}.$

	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	60	60	60	60	60	60	60	60
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
ī	0	60	60	60	60	60	60	60	60
3	0	60	60	150	210	210	210	210	210
4	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
_									
	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	60	60	60	60	60	60	60	60
3	0	60	60	150	210	210	210	210	210
4	0	60	60	150	210	210	210	270	330
6	0	0	0	0	0	0	0	0	0
_									
	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
ĭ	0	60	60	60	60	60	60	60	60
3	0	60	60	150	210	210	210	210	210
4	0	60	60	150	210	210	210	270	330
6	0	60	60	150	210	210	320	380	380

В стране есть N городов, любые два соединены дорогой. Поездка по каждой дороге стоит определенную сумму. Необходимо объехать все N городов ровно по одному разу и потратить минимальное количество средств. С точки зрения теории графов задача о коммивояжере состоит в поиске во взвешенном полном неорграфе гамильтонова цикла наименьшего веса.

В стране есть N городов, любые два соединены дорогой. Поездка по каждой дороге стоит определенную сумму. Необходимо объехать все N городов ровно по одному разу и потратить минимальное количество средств. С точки зрения теории графов задача о коммивояжере состоит в поиске во взвешенном полном неорграфе гамильтонова цикла наименьшего веса.

Оптимальное решение может быть рассмотрено как путь, начинающийся в произвольной вершине v_0 (должны обойти все вершины, поэтому не важно какую считать первой) и в ней же заканчивающийся.

В стране есть N городов, любые два соединены дорогой. Поездка по каждой дороге стоит определенную сумму. Необходимо объехать все N городов ровно по одному разу и потратить минимальное количество средств. С точки зрения теории графов задача о коммивояжере состоит в поиске во взвешенном полном неорграфе гамильтонова цикла наименьшего веса.

Оптимальное решение может быть рассмотрено как путь, начинающийся в произвольной вершине v_0 (должны обойти все вершины, поэтому не важно какую считать первой) и в ней же заканчивающийся.

Обозначим за D(S,v) решение подзадачи поиска кратчайшего пути, начинающегося в v_0 , проходящего через все вершины из множества S и заканчивающийся в v.

В стране есть N городов, любые два соединены дорогой. Поездка по каждой дороге стоит определенную сумму. Необходимо объехать все N городов ровно по одному разу и потратить минимальное количество средств. С точки зрения теории графов задача о коммивояжере состоит в поиске во взвешенном полном неорграфе гамильтонова цикла наименьшего веса.

Оптимальное решение может быть рассмотрено как путь, начинающийся в произвольной вершине v_0 (должны обойти все вершины, поэтому не важно какую считать первой) и в ней же заканчивающийся.

Обозначим за D(S,v) решение подзадачи поиска кратчайшего пути, начинающегося в v_0 , проходящего через все вершины из множества S и заканчивающийся в v.

Тогда кратчайший путь будет состоять из двух частей:

- 1. последнее ребро из некоторой вершины $w \in S$ в конечную вершину v;
- 2. кратчайший (если он не кратчайший, то легко дойти до противоречия с определением D(S,v)) путь из v_0 в w, проходящего через все вершины в $S\setminus\{v\}$.

Структура оптимального решения: наперед знать какая вершина будет предпоследней в оптимальном пути из v_0 в v не получится, поэтому надо будет посмотреть все ребра w,v при $w\in S\setminus \{v\}$ и для каждой из них решить соответствующую подзадачу поиска кратчайшего пути. Таким образом, мы показали наличие оптимальной подструктуры!

Структура оптимального решения: наперед знать какая вершина будет предпоследней в оптимальном пути из v_0 в v не получится, поэтому надо будет посмотреть все ребра w,v при $w\in S\setminus \{v\}$ и для каждой из них решить соответствующую подзадачу поиска кратчайшего пути. Таким образом, мы показали наличие оптимальной подструктуры!

Рекурсивное определение оптимального решения: пусть стоимости проезда по дорогам (веса в графе) заданы весовой функцией $c:E \to R$. На основе предыдущего анализа рекурсивное соотношение будет выглядеть следующим образом:

$$D(S,v) = \begin{cases} c(v_0,v), & S = \{v\} \\ +\infty, & v \notin S \\ \min_{w \in S \setminus \{v\}} (D(S \setminus \{v\},w) + c(w,v)), & \text{иначе} \end{cases}$$

Вычисление решения методом восходящего анализа:

- 1. Задаем произвольную стартовую вершину v_0 ; инициализируем матрицу D размера $2^n \times n$ значениями $+\infty$; для восстановления оптимального обхода введем матрицу P размера $2^n \times n$, где в P[S][v] хранить последние ребра в оптимальных путях до v с обходом всем вершин в S;
- 2. Для всех вершин $v \in V$ записываем в $D[\{v\}][v]$ значение $c(v_0,v)$;
- 4. После всех вычислений (заполнены матрицы D и P) составим оптимальный обход: необходимо начать с ребра (u,v), находящегося в $P[V][v_0]$ и далее в цикле обнаруживаем предшествующую вершину j в цикле и находим ребро из оптимального обхода, ведущее в нее, и переходим к рассмотрению вершины на другом конце (на забывая выкидывать уже просмотренные вершины). Для получения стоимость поездки необходимо просто складывать веса всех ребер при обходе.

Пример задачи о бродячем торговце

Рис.: Пример задачи о коммивояжере. Стартовая вершина 0.

Пример задачи о бродячем торговце

	0	1	2	3
()	$+\infty$	$+\infty$	$+\infty$	$+\infty$
0	$+\infty$	$+\infty$	$+\infty$	$+\infty$
1	$+\infty$	4	$+\infty$	$+\infty$
2	$+\infty$	$+\infty$	1	$+\infty$
3	$+\infty$	$+\infty$	$+\infty$	3
01	8	$+\infty$	$+\infty$	$+\infty$
02	2	$+\infty$	$+\infty$	$+\infty$
03	6	$+\infty$	$+\infty$	$+\infty$
12	$+\infty$	3	6	$+\infty$
13	$+\infty$	4	$+\infty$	5
23	$+\infty$	$+\infty$	8	6
012	7	6	9	$+\infty$
013	8	10	$+\infty$	11
023	9	$+\infty$	7	5
123	$+\infty$	7	6	4
0123	7	6	9	7

 ${\sf Puc.:}\ {\sf Maтpuцa}\ {\cal D}.$

	0	1	2	3
	Ø	Ø	Ø	Ø
0	Ø	Ø	Ø	Ø
1	Ø	(0,1)	Ø	Ø
2	Ø	Ø	(0,2)	Ø
3	Ø	Ø	Ø	(0,3)
01	(1,0)	Ø	Ø	Ø
02	(2,0)	Ø	Ø	Ø
03	(3,0)	Ø	Ø	Ø
12	Ø	(2,1)	(1,2)	Ø
13	Ø	(3,1)	Ø	(1,3)
23	Ø	Ø	(3,2)	(2,3)
012	(1,0)	(0,1)	(0,2)	Ø
013	(3,0)	(0,1)	Ø	(0,3)
023	(3,0)	Ø	(0,2)	(0,3)
123	Ø	(3,1)	(1,2)	(1,3)
0123	(3,0)	(3,1)	(0,2)	(1,3)

 $\mathsf{Puc.}$: Матрица P.

