1 WHAT IS CLAIMED IS:

2	1. A quadrature oscillator comprising:
3	two symmetrical oscillators (11) (12), each being connected by two
4	transistors (M1, M2) (M3, M4) self-coupled in a positive feedback structure to
5	produce negative resistance;
6	two LC circuits (13) (14), being connected to the respective oscillator
7	(11) (12) to produce positive resistance offsetting the negative resistance through
8	the above oscillator (11) (12);
9	two coupling circuits (15) (16) being series connected to the respective
10	oscillators (11) (12) and LC circuits (13) (14) to produce quadrature phase
11	outputs; wherein the two coupling circuits (15) (16) are each formed by two
12	transistors (M5, M6), (M7, M8); whereby
13	gate terminals of the transistor pairs (M5, M6), (M7, M8) are
14	respectively connected to the drain terminals of the transistor pairs (M1, M2)
15	(M3, M4) in the oscillators (11) (12),
16	the transistor pairs (M5, M6), (M7, M8) are respectively connected to
17	constant current sources (17) (18); and
18	drain terminals of the transistor pairs (M5, M6) (M7, M8) in the coupling
19	circuits (15) (16) are respectively connected in series to the source terminals of
20	the transistor pairs (M1, M2) (M3, M4) in the oscillators (11) (12).
21	2. The quadrature oscillator as claimed in claim 1, wherein the two
22	transistor pairs (M5, M6) (M7, M8) in the coupling circuit (15) (16) are series
23	connected to the transistor pairs (M1, M2) (M3, M4) in the oscillators (11) (12) to
24	share the same current sources, and the gate terminals of the transistors (M5, M6)

- 1 (M7, M8) in the coupling circuits (15) (16) are cross-coupled to outputs of LC
- 2 circuits (13) (14) at junctions (V0, V180, V270, V90) to produce output signals
- 3 with 90 degrees phase shift.
- 4 3. The quadrature oscillator as claimed in claim 1, wherein the oscillators
- 5 (11) (12) are series connected by the constant current sources (17) (18), which are
- 6 formed by n-channel MOSFET.
- 7 4. The quadrature oscillator as claimed in claim 1, wherein the oscillators
- 8 (11) (12) are series connected by the constant current sources (17) (18) which are
- 9 formed by p-channel MOSFET.
- 5. The quadrature oscillator as claimed in claim 1, wherein the LC
- circuits (13) (14) are each formed by a pair of symmetrical inductors and
- 12 varactors.
- 6. The quadrature oscillator as claimed in claim 2, wherein the LC
- circuits (13) (14) are each formed by a pair of symmetrical inductors and
- 15 varactors.
- 7. The quadrature oscillator as claimed in claim 3 wherein the LC
- circuits (13) (14) are each formed by a pair of symmetrical inductors and
- 18 varactors.
- 19 8. The quadrature oscillator as claimed in claim 4, wherein the LC
- 20 circuits (13) (14) are each formed by a pair of symmetrical inductors and
- 21 varactors.