Université de Montréal ECN 6238 Économétrie des séries chronologiques Examen final

Aucune documentation permise Calculatrice permise

Durée : 3 heures

10 points 1. Soit le processus

$$X_t = \sum_{j=1}^{m} [A_j \cos(\nu_j t) + B_j \sin(\nu_j t)], \ t \in \mathbb{Z},$$

où ν_1, \ldots, ν_m sont des constantes distinctes dans l'intervalle $[0, 2\pi)$ et $A_j, B_j, j = 1, \ldots, m$, sont des v.a.'s dans L_2 , telles que

$$\begin{split} E(A_j) &= E(B_j) = 0 \;,\; E(A_j^2) = E(B_j^2) = \sigma_j^2 \;,\; j = 1, \; \dots, \; n \;, \\ E(A_j A_k) &= E(B_j B_k) = 0, \; \text{pour} \; j \neq k \;, \\ E(A_i B_k) &= 0, \; \forall j, \; k \;. \end{split}$$

- (a) Démontrez que ce processus est stationnaire d'ordre 2.
- (b) Pour le cas où m=1, démontrez que ce processus est déterministe.

25 points 2. Considérez le processus suivant, où $\{u_t : t \in \mathbb{Z}\}$ est un bruit blanc i.i.d. N(0,1):

$$X_t = 0.5 X_{t-1} + u_t - 0.25 u_{t-1}$$

Répondez aux questions suivantes :

- (a) Ce processus est-il stationnaire? Pourquoi?
- (b) Ce processus est-il inversible? Pourquoi?
- (c) Quels sont les coefficients de u_t , u_{t-1} , u_{t-2} , u_{t-3} et u_{t-4} dans la représentation moyenne mobile de X_t .
- (d) Donnez la densité spectrale de X_t .
- (e) Si $X_t = 1$, $X_{t-1} = 0.5$, $X_{t-2} = -1$ et $u_{t-1} = 0$, calculez les meilleures prévisions (au sens de l'erreur quadratique moyenne) de X_{t+1} , X_{t+2} et X_{t+3} .

15 points

3. Considérez le modèle décrit par les hypothèses suivantes :

(1)
$$Y_t = \sum_{j=1}^p \varphi_j Y_{t-j} + u_t, \quad t = p+1, \dots, T;$$

- (2) $\{u_t : t = 1, \ldots, T\} \sim IID(0, \sigma^2);$
- (3) le polynôme $\varphi(z) = 1 \varphi_1 z \varphi_1 z^2 \dots \varphi_p z^p$ a toutes ses racines sur le cercle unité sauf possiblement une qui peut être égale à 1.

Décrivez une procédure qui permet de tester l'hypothèse que le polynôme $\varphi(z)$ a une racine sur le cercle unité.

40 points

- 4. Soit $\{(X_t, Y_t) : t \in \mathbb{Z}\}$ un processus stationnaire au sens large strictement non déterministe.
 - (a) Que veut-on dire par l'expression "stationnaire au sens large"?
 - (b) Qu'implique le théorème de Wold multivarié pour ce processus ?
 - (c) Que veut dire l'expression "strictement non déterministe"?
 - (d) Expliquez les expressions suivantes :
 - i. X cause Y;
 - ii. Y cause X instantanément;
 - iii. il y a rétroaction entre X et Y.
 - (e) Si on dit que (X_t, Y_t) suit un processus ARMA, qu'est-ce que cela signifie?
 - (f) En supposant que (X_t, Y_t) possède une représentation autorégressive, donnez une caractérisation de la relation $X \rightarrow Y$:
 - i. à partir de la représentation autorégressive du processus (X_t, Y_t) ;
 - ii. à partir de la représentation moyenne mobile du processus (X_t, Y_t) ;
 - iii. à partir des représentations univariées des processus X_t et Y_t .
 - (g) Décrivez une méthode permettant de tester l'hypothèse que les processus X et Y sont indépendants entre eux.
 - (h) Décrivez une méthode permettant de tester l'hypothèse que X cause Y au sens de Granger.

10 points

- 5. Décrivez l'approche de Tiao et Box (JASA, 1981) pour l'identification et l'estimation de modèles ARMA multivariés. En particulier, soyez certain(e) de préciser :
 - (a) la classe de modèles utilisés;
 - (b) la méthode employée pour identifier l'ordre d'un processus MA;
 - (c) la méthode employée pour identifier l'ordre d'un processus AR;
 - (d) l'approche employée pour l'estimation et la validation du modèle.