

Tema 2.2: Conceptos básicos de la Ingeniería de Requisitos

Ingeniería de Requisitos

Raquel Martínez España

Grado en Ingeniería Informática

Índice

- 1. Concepto de requisito
- 2. Tipos de requisitos

Objetivos

- Definir las diferencias entre requisitos del cliente y del desarrollador.
- Conocer el enfoque orientado a objetos en la IR.

Índice

- 1. Concepto de requisito
- 2. Tipos de requisitos
 - 1. Requisitos funcionales y no funcionales. Dominio.
 - 2. Requisitos de usuario y sistema. Software.
 - 3. Requisitos de cliente y requisitos de desarrollador.

- Dos niveles en los requisitos:
 - ¿Del cliente o del sistema, del usuario o del software?
 - Puente a medio camino: del cliente para el desarrollador
 - Primer nivel: requisitos del cliente (o del usuario)
 - Deseos y necesidades del cliente, expresados en lenguaje comprensible por él
 - Audiencia primaria: cliente
 - Audiencia secundaria: desarrollador
 - Segundo nivel: requisitos del desarrollador (o del sistema, del software, detallados...)
 - Forma estructurada y específica, carácter mucho más técnico
 - Audiencia primaria: desarrollador
 - Audiencia secundaria: cliente

Ingeniería de Requisitos

- La finalidad última es la misma.
- La distinción entre los dos niveles no es muy clara:
 - Forma: no estructurada / estructurada
 - Audiencia: cliente / desarrollador
 - Contenido: mayor o menor nivel de detalle
 - Texto / Texto + Diagramas
 - Requisitos en bruto / Requisitos depurados

- Distintas nomenclaturas y clasificaciones, misma idea de fondo:
 - Clásica/IEEE:
 - Una única fase: Análisis de Requisitos
 - Único documento Especificación de Requisitos (ERS) con los requisitos C y D
 - USDP (Unified Software Development Process):
 - Dos fases: Requisitos + Análisis
 - Dos documentos: Requisitos del Usuario (RU) + Requisitos del Sistema (RS)

- Enfoque OO
 - Requisitos C
 - Expresión:
 - Lenguaje natural
 - Casos de uso
 - (Diagramas de estado y flujo de datos)
 - Incluye interfaces de usuario.
 - Requisitos D
 - Consistentes con, y son un refinamiento de, los requisitos
 - (D)etallados
 - Expresión:
 - Diagramas de secuencia por caso de uso
 - Clases

Requisitos C

1. Identificar al "cliente"

2. Entrevistar representantes del cliente

Revisión con el cliente

3. Escribir requisitos C en formato de documento estándar / Casos de Uso

4. Inspeccionar los requisitos C

Con la aprobación del cliente....

5. Construir los requisitos D

Requisitos D

Obtener requisitos C

- 1. Seleccionar la organización de requisitos D
 - 2. Crear diagramas de secuencia a partir de los casos de uso

3 a. Obtener requisitos D a partir de C y del cliente

3 b. Describir planes de prueba

3 c. Inspeccionar

Aplicar retroalimentación del cliente

4. Validar con el cliente

Cuando el cliente aprueba la unidad

5. Liberar

Ingeniería de Requisitos

Requisitos D (Enfoque OO)

Obtener requisitos C

- 1. Clases de dominio y objetos a partir de casos de uso
 - 2. Agregar clases de dominio esenciales adicionales. Inspeccionar.
 - 3 Para cada clase:
 - atributos y funcionalidad
 - objetos requeridos
 - reacción objetos/caso
 - planes de pruebas
 - inspeccionar resultados
 - 4. Inspeccionar contra Requisitos C
 - 5. Verificar con el cliente

Al terminar:

6. Liberar

Ingeniería de Requisitos

- Organización de Requisitos D
 - Por clase: Orientado a Objetos.
 - Por caso de uso ("por escenario"): USDP.
 - Por característica: servicio deseado percibido en el exterior, pares estímulo respuesta
 - Por modo: distintos perfiles
 - Por estado: requisitos para cada estado y eventos que afectan en cada estado.
 - Por jerarquía de función: descomposición en funciones, subfunciones, etc.

- Tipo de Requisitos D
 - Requisitos funcionales
 - Requisitos no funcionales
 - Rendimiento
 - Confiabilidad y disponibilidad
 - Manejo de errores
 - Interfaz
 - Restricciones
 - Requisitos inversos: qué no debe hacer el sw (eliminar malentendidos)

- Tipo de Requisitos C
 - En realidad son los mismo que para los D
 - Distinción en segundo plano
 - Objetivo principal: obtener información del cliente

 Correspondencia con el estándar IEEE-830 (requisitos específicos con organización 00)

 Correspondencia con el estándar IEEE-830 (requisitos específicos con organización 00)

3. Requisitos específicos

3.1. Requisitos de interfaz externa <

Requisitos de interfaz

3.1.1. Interfaces de usuario

3.1.2. Interfaces de hardware

Requisitos funcionales

3.1.3. Interfaces de software

3.1.4. Interfaces de comunicación

Requisitos inversos

3.2. Clases/Objetos

3.3. Requisitos de rendimiento

3.4. Restricciones de diseño

3.5. Atributos del sistema de sw

3.6. Otros requisitos <

Otros requisitos no funcionales

- Evaluación de Análisis Orientado a Objetos (AOO) en IR:
 - Ventajas de OO:
 - Se acomoda bien para el diseño y la implementación >
 continúa una forma de pensamiento y notación
 - No pone énfasis en la función como lo hace AE
 - Evita la fragmentación que produce el AE
 - Desventajas de OO:
 - Complejo para rescatar características dinámicas de los objetos
 - No es claro que siempre se quiera modelar objetos, servicios y relaciones
 - Tendencia a pasar rápidamente al diseño
 - No es la bala de plata pensada por muchos

Puntos clave

- Requisitos Cliente (C) →
 - Principalmente para el cliente
 - Especificación clara: lenguaje natural, casos de uso, interfaces
- Requisitos Desarrollador (D) →
 - Orientados al Diseñador/Desarollador
 - También para el cliente
 - Detallan requisitos C
 - Diferentes organizaciones según uso.

