Maskinlæring

Even Marius Nordhagen

Universitet i Oslo evenmn@fys.uio.no

March 9, 2020

Oversikt

- Motivasjon
- ▶ Teorien bak
- ▶ Implementasjon
- Dere skal implementere et nevralt nettverk

Motivasjon

Regresjon

Regresjon er en enkel form for maskinlæring

Bildeanalyse

Kjenne igjen hva som er på et bilde og hvor objektene befinner seg

Generative modeller

Andre eksempler

- Stemmegjenkjenning
- ▶ Taktikkspill
- Autonom teknologi

Nevrale nettverk

Hva er et nevralt nettverk?

▶ Inspirert av biologi og hjerneforskning

Hva er et nevralt nettverk?

- ▶ Inspirert av biologi og hjerneforskning
- $\blacktriangleright \ \ \text{Fleksible funksjoner} \rightarrow \text{mange parametere}$

Hva er et nevralt nettverk?

- ▶ Inspirert av biologi og hjerneforskning
- $\blacktriangleright \ \ \text{Fleksible funksjoner} \rightarrow \text{mange parametere}$
- ▶ Feedforward nettverk kan representere enhver funksjon

Aktiveringsfunksjon

En aktiveringsfunksjon brukes for å *aktivere* inputen til hvert lag. Rectified Linear Unit (ReLU) er en vanlig funksjon:

Feilestimat

En mye brukt kostfunksjon er minste kvadraters metode:

$$\mathcal{C} = \frac{1}{2} \left(y - \tilde{y} \right)^2$$

Nevralt nettverk for snake

Treningsdata for nettverket

Nettverket trenger informasjon for å avgjøre hvilken vei slangen skal bevege seg. Det vi velger å sende inn er:

Treningsdata for nettverket

Nettverket trenger informasjon for å avgjøre hvilken vei slangen skal bevege seg. Det vi velger å sende inn er:

- ▶ I hvilken retning er maten?
- ▶ Hva befinner seg foran slangen?
- Hvilken vei valgte slangen gå i den situasjonen?
- En evaluering av valget

Treningsdata for nettverket

Evaluering

Vi implementerer noen veldig enkle regler for å evaluere en avgjørelse:

- ▶ Dårlig (-1)
- ▶ Middels (0)
- ▶ Bra (+1)

Det som kjennetegner en dårlig avgjørelse er at slangen kræsjer. Det som kjennetegner en god avgjørelse, er at den nærmer seg maten. Alt annet er middels.

Nevralt nettverk i Pytorch

Installasjon

Ved hjelp av Anaconda:

conda install pytorch torchvision -c pytorch

Oversikt over installasjonsmethoder: https://pytorch.org/

Nevralt nettverk i Pytorch

Bestemme arkitektur

I Pytorch kan man lage en liste med moduler som spesifiserer arkitekturen til det nevrale nettverket.

Start med å importere torch:

```
import torch
import torch.nn as nn
```

Definer skjult lag med 25 noder og 5 noder til venstre:

```
modul1 = nn.Linear(5, 25)
```

Definer aktiveringsfunksjon (ReLU):

```
modul2 = nn.ReLU()
```


Nevralt nettverk i Pytorch

Bestemme arkitektur


```
modules = []
modules.append(nn.Linear(3, 5))
modules.append(nn.ReLU())
modules.append(nn.Linear(5, 5))
modules.append(nn.ReLU())
modules.append(nn.Linear(5, 2))
model = nn.Sequential(*modules)
```


