

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII BIOMEDYCZNEJ

Sprawozdanie z projektu z Inżynierii Programowania

Aplikacja webowa do komunikacji z lekarzem

Autorzy: D. Barański, K. Bielecka, M. Cebrat, P. Wró-

bel

Prowadząca projekt: Dr inż. Joanna Czajkowska

Spis treści

1.	Wste	ęp													 		-
	1.1		ojektu														-
	1.2		rma pro														-
		1.2.1	Angula														-
		1.2.2	Fireba														6
		1.2.3	JSON														6
	1.3	Harmo	nogran														6
	1.4		ąd rynk	_													6
		1.4.1	Dokto	rmed											 		4
		1.4.2	Edokto	or24											 		4
		1.4.3	Grupa	Luxi	ned										 		4
		1.4.4	Kardio	ologor	iline]
		1.4.5	Medico	over											 		,
2	Creat	0.700															,
2.		$em \dots$,
	2.1		ektura s														
	2.2	Funkcj	e wewn	ıętrzn	e										 		8
	2.3	Przypa	adki tes	towe		•		 •							 		(
9	II/ni	oglei															1 '

Spis rysunków

1.1	Doktormed
1.2	Edoktor24
1.3	Grupa Luxmed
1.4	Kardiologonline
1.5	Medicover
2.1	Podział modułu w Angular
2.2	Podział modułu w Angular
	Architektura systemu.
2.4	Podział modułu w Angular.
2.5	Komponenty modułu autoryzacji
2.6	Komponenty modułu czatu
2.7	Komponenty modułu kliniki

Spis tabel

1.1 Harmonogram prac	3
----------------------	---

1.1 Cel projektu

Celem niniejszej pracy było utworzenie aplikacji webowej, wspomagającej kontakt pomiędzy lekarzem, a pacjentem. Docelowo, aplikacja powinna umożliwiać wymianę danych na bieżąco. Pacjent powinien mieć możliwość rozpoczęcia rozmowy z wszystkimi lekarzami dostępnymi on–line. Założono, iż aplikacja stanowi narzędzie, wspomagające pracę istniejącej już przychodni lekarskiej.

Osiągnięcie celu wymagało realizacji następujących etapów:

- przydziału zadań poszczególnym osobom w grupie,
- wyboru narzędzi,
- opracowania architektury bazy danych,
- stworzenia interfejsu użytkownika,
- implementacji poszczególnych funkcjonalności.

1.2 Platforma projektowa

1.2.1 Angular

Otwarty framework i platforma do tworzenia SPA, napisany w języku TypeScript i wspierany oraz rozwijany przez Google.

Elementy Angular:

- architektura MVW aplikacje mogą być oparte o różne wzorce architektoniczne, z którymi Angular sobie poradzi;
- wstrzykiwanie zależności wprowadzone przez nas funkcjonalności w kodzie stają się bardziej zautomatyzowane;
- moduły moduł jest podstawowym nośnikiem danych tak jak klasa, jednak nie możemy tworzyć instacji modułu, opiera się on na nieco innej funkcjonalności;
- dwukierunkowe wiązanie danych mechanizm dwukierunkowego wiązania danych zapewnia dynamiczną synchronizację danych między warstwą widoku, a warstwą modelu danych;

• nawigacja - możliwość przekierowywania, ingerowania w wyświetlanie widoku strony dla odpowiedniego adresu;

• filtrowanie danych - Angular oferuje wbudowane mechanizmy filtrowania, które poniekąd wyręczają deweloperów od pisania własnych funkcji filtrujących dane.

1.2.2 Firebase

Jest to BaaS odpowiedzialny za naszą architekturę backendową, za marketing, monitoring wydajności, zarządzanie uploadowanymi plikami, testowanie, modyfikowanie aplikacji i przechowywanie w bezpieczny sposób.

1.2.3 JSON

Jest prostym formatem wymiany danych. Jego definicja opiera się o podzbiór języka programowania JavaScript, Standard ECMA-262 3rd Edition - December 1999. JSON jest formatem tekstowym, całkowicie niezależnym od języków programowania, ale używa konwencji, które są znane programistom korzystającym z języków z rodziny C.

JSON powstał w oparciu o dwie struktury:

- Zbiór par nazwa/wartość. W różnych językach jast to implementowane jako obiekt, rekord, struktura, słownik, tabela hash, lista z kluczem, albo tabela asocjacyjna.
- Uporządkowana lista wartości. W większości języków implementuje się to za pomocą tabeli, wektora, listy, lub sekwencji.

Wspomniane struktury danych są uniwersalne. Prawie wszystkie nowoczesne języki programowania posługują się nim w tej lub innej formie. Ma to sens, by format danych, który jest przenośny pomiędzy różnymi językami programowania opierał swoją budowę na wspomnianych strukturach.

1.3 Harmonogram prac

Harmonogram prac został przedstawiony w tabeli (Tab. 1.1).

1.4 Przegląd rynku

1.4.1 Doktormed

Jest to platforma umożliwiająca zadawanie pytań do grona lekarzy w sposób anonimowy, koszt porady to 50 złotych i otrzymujemy odpowiedz od specjalisty z dziedziny zadanego przez nas pytania (Rys. 1.1).

Tab. 1.1: Harmonogram prac.

Termin	Wykonane prace							
26.02.2019	Ustalenie tematu projektowego							
	Zdefiniowanie problemu							
12.03.2019	Wybór kierownika projektu							
	Wybór platformy projektowej							
	analiza rynku							
	opracowanie architektury							
	systemu							
26.03.2019	zdefiniowanie							
	funkcjonalności							
	schematy użycia							
	projekt GUI							
	zamockowanie bazy danych							
	Utworzenie ekranu logowania							
09.04.2019	i logiki							
09.04.2019	Utworzenie bazy danych							
	leków							
	wczytanie listy leków							
07.05.2019	implementacja czatu							
07.05.2019	wczytanie listy lekarzy/pacjentów							
21.05.2019	Implementacja dodawania leków							
21.05.2019	Walidacja logowania							
	Dokumentacja							
04.06.2019	Testowanie							
	Dodanie historii chorób							

Rys. 1.1: Doktormed.

1.4.2 Edoktor24

Rys. 1.2: Edoktor24.

Jest to platforma umożliwiająca zadnie pytań przez wybranie specjalisty zadanie pytania do którego jest możliwe dołączenie wyników badań a następnie po wniesieniu opłaty otrzymujemy odpowiedz w ciągu 24 godzin. Możliwe są także konsultacje telefoniczne lub wideo konsultacje z wybranym specjalistą (Rys. 1.2).

1.4.3 Grupa Luxmed

Godziny, w których można skorzystać z indywidualnej porady lekarza/polożnej/pielegniarki, widoczne są w zakładce CZAT. Aby rozpocząć rozmowę, wystarczy w godzinach pracy specjalisty medycznego wcisnąć przycisk ROZPOCZNIJ CZAT.

GRUPA

Portal Pacjenta

Portal Pacjenta

Portal Pacjenta

Start

Zopislinasza CZM Opoliulaczy Pocowa Wzgry Obumordow

Start

Opopwiedz na pyźsmia

Rys. 1.3: Grupa Luxmed.

Jest to platforma umożliwiająca czat z pilegniarkami lub lekarzami wybranych specjalizacji w wyznaczonym czasie kiedy są dostępni (Rys. 1.3).

1.4.4 Kardiologonline

Rozmowa z lekarzem specjalistą poprzez komunikator Messenger poprzez Facebook, Prywatna 20 minutowa konsultacja lekarska dotycząca Twojego zagadnienia. Bezpośrednio z lekarzem i z zachowaniem prywatności.

- Proszę uzupełnić pole tekstowe: Link do konta użytkownika na Facebook (Messenger), na które będzie wykonane połączenie od lekarza.
- 2. Opcjonalnie można wpisać opis zagadnienia oraz załączyć pliki.
- 3. Proszę kliknąć w przycisk "ZAPISZ DOSTOSOWYWANIE". Dopiero wtedy można dodać usługę do koszyka zakupów.
- Klient dokonuje płatności przelewem bankowym na podane konto bankowe, za pomocą systemu płatności internetowych.
 - Po zaksięgowaniu wpłaty środków pieniężnych usługa zostanie wykonana w przeciągu 24 godzin licząc od daty zaksięgowania.
 - Lekarz skontaktuje się z Państwem na adres e-mail podany podczas finalizacji zamówienia, by ustalić konkretną godzinę wykonania konsultacji.
 - O ustalonej porze zostanie przeprowadzona rozmowa tekstowa poprzez komunikator Messenger na Facebook. Czas trwania czatu: 20 minut.

Rys. 1.4: Kardiologonline.

Jest to platforma umożliwiająca umówienie się na konsultacje z wybranym specjalistą które odbędą się za pomocą menengera lub faceboka (Rys. 1.4).

1.4.5 Medicover

Jest to czat dostępny za pomocą przeglądarki internetowej w którym pacjent może otrzymać odpowiedz na proste zadane pytanie do lekarza (Rys. 1.5).

1. Wstęp _______6

Czaty z lekarzami

 $Czaty z \ lekarzami \ to \ szybki \ i \ prosty \ sposób \ na \ uzyskanie \ porady \ medycznej. \ Wystarczy \ dostęp \ do \ komputera \ lub telefonu \ z \ internetem, aby po \ zalogowaniu \ do \ Medicover \ Online \ skontaktować \ się \ z \ lekarzem \ Medicover.$

W trakcie czatów Pacjenci mogą otrzymać porady medyczne w przypadku:

- przeziębienia, gorączki, kaszlu
- bólów brzucha, wymiotów, gorączki
- infekcji układu moczowego
- wysypki
- profilaktyki zdrowia
- innych problemów zdrowotnych

Rys. 1.5: Medicover.

2.1 Architektura systemu

Rys. 2.1: Podział modułu w Angular.

Framework Angular wymaga pomaga utrzymać architekturę zgodną z praktykami dobrego programowania. Aplikacja dzieli się na moduły. Moduł jest odzwierciedleniem wzorca MVC (Rys. 2.1).

Rys. 2.2: Podział modułu w Angular.

Przykładowa implementacja modułu autoryzacji została przedstawiona na rysunku (Rys. 2.2).

Rys. 2.3: Architektura systemu.

Aplikacja została podzielona na 4 główne moduły, według funkcjonalności. Jest to główna architektura systemu (Rys. 2.3).

Rys. 2.4: Podział modułu w Angular.

Aplikacja pobiera dane z bazy danych kliniki. Są to informacje o danych osobowych użytkownika, historia stosowanych leków oraz przebytych chorób. Baza ta została napisana w formacie json i jest kompilowana za pośrednictwem biblioteki *json-server*, która jest na licencji *Open-source*. Można ją znaleźć w serwisie *Github* pod adresem https://github.com/typicode/json-server. Api do bazy danych zostało opublikowane za pomocą *Microsoft Azure*.

Do logowania oraz obsługi czatu użyto bazy danych *Firebase Cloud.* Dzięki niech możliwe jest pisanie i odbieranie wiadomości w czasie rzeczywistym. Płatność jest zgodnie z użyciem.

Dokładny przepływ danych w aplikacji został przedstawiony na rysunku (Rys. 2.4).

2.2 Funkcje wewnętrzne

Zachowanie i podział na funkcje wewnętrzne aplikacji, najlepiej opisuje podział na komponenty wewnątrz modułów. W tej sekcji zostały opisane obowiązki poszczególnych komponentów.

Rys. 2.5: Komponenty modułu autoryzacji.

Komponenty modułu autoryzacji Moduł autoryzacji zawiera 4 komponenty (Rys. 2.5):

- error-login-modal wyświetlanie błędu podczas próby logowania z błędnym loginem lub hasłem,
- login-form formularz logowania,
- signup-form formularz rejestracji,

Rys. 2.6: Komponenty modułu czatu.

Komponenty modułu czatu Moduł czatu zawiera 6 komponentów (Rys. 2.6):

• *chatroom* - główne okienko czatu, zawierające wszystkie pozostałe komponenty czatu;

- chat-form formularz nowej wiadomości;
- feed wyświetlenie wiadomości czatu;
- message wyświetlenie pojedynczej wiadomości;
- user-list wyświetlenie listy użytkowników;
- user-item wyświetlenie pojedynczego użytkownika.

2.3 Przypadki testowe

Przetestowano aplikację przez opisywanie zachowania programu w formie historyjek użytkownika (ang. user stories). Zachowanie programu opisane jest w schemacie *Given*, *When*, *Then*. Skutkuje to otrzymaniem jednoznacznie sprawdzalnych przypadków testowych. Wykonane testy akceptacyjne złożone są z trzech sekcji.

- Given jest równoznaczna z warunkami początkowymi,
- When jest to akcja do wykonania,
- Then prezentuje oczekiwany rezultat.

Test 1

Given: widok logowania. Wprowadzenie loginu i błędnego hasła,

when: użytkownik naciska przycisk "Zaloguj",

then: powinien wyświetlić się komunikat "Błąd logowania".

Test 2

Given: widok logowania. Wprowadzenie poprawnego loginu i hasła,

when: użytkownik naciska przycisk "Zaloguj", then: powinien wyświetlić się główny widok czatu.

Test 3

Given: widok czatu. Wprowadzenie treści wiadomości,

when: użytkownik naciska przycisk "Wyślij",

then: wiadomość powinna wyświetlić się w polu konwersacji.

Test 4

Given: obszar listy użytkowników,

when: użytkownik naciska element listy,

then: element powinien zostać podświetlony na niebiesko.

Test 5

Given: obszar listy użytkowników,

when: użytkownik naciska element listy, zawierającego imię i nazwisko,

then: w nagłówku konwersacji powinno wyświetlić się imię i nazwisko wybranej z listy osoby.

Test 6

Given: obszar listy leków,

when: użytkownik naciska element listy,

then: powinien zostać wyświetlony komunikat ze szczegółowymi informacjami.

Test 7

Given: komunikat ze komunikat ze szczegółowymi informacjami o leku,

when: użytkownik naciska przycisk "OK", then: komunikat przestaje być widoczny.

Test 8

Given: obszar historii chorób,

when: użytkownik naciska element listy,

then: element powinien zostać powiększony o dodatkowe informacje.

3. Wnioski

Cel pracy został osiągnięty—została utworzona aplikacja, umożliwiająca bezpośredni kontakt pomiędzy pacjentem a lekarzem, bez konieczności wcześniejszego planowania wizyty. Dzięki wykorzystaniu najnowszych technologii, utworzono usługę świadczenia opieki zdrowotnej na odległość. Do najważniejszych zalet powstałej aplikacji zalicza się:

- zmniejszenie kosztów opieki medycznej,
- dostęp do lekarzy bez długiego czasu oczekiwania na wizytę,
- kontakt z personelem medycznym w czasie urlopu,
- szybkie konsultacje lekarskie możliwość poruszenia pilnych tematów, wymagających weryfikacji osoby doświadczonej,
- możliwość podglądu przepisanych leków,
- zredukowana liczba koniecznych dojazdów do placówki,
- szybki i łatwy dostęp do historii chorób zarówno ze strony lekarza, jak i od strony użytkownika.

W przyszłości, aplikacja może zostać rozbudowana o kolejne moduły, zwiększające funkcjonalność. Można stworzyć przydział danego lekarza do specjalizacji, możliwość wysyłania załączników lub przeprowadzania rozmów wideo.