#### الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي

دورة: 2017

الشعبة: علوم تجريبية

وزارة التربية الوطنية

المدة: 03 سا و30 د

اختبار في مادة: العلوم الفيزيائية

# على المترشح أن يختار أحد الموضوعين الآتيين:

# الموضوع الأوّل

يحتوي الموضوع الأول على 04 صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

الجزء الأول: (13 نقطة)

التمرين الأول: ( 06 نقاط )

اليورانيوم عنصر كيميائي نشط إشعاعيا تم اكتشافه من طرف العالم الألماني (Martin Heinrich Klaproth) سنة 1789 رمز نواته  $\frac{238}{92}U$  قُدر نصف العمر له بـ  $t_{1/2} = 4,47 \times 10^9 ans$  منا العمر نواته العمر نصف العمر المبارك العمر العمر العمر المبارك العمر العم يخضع لسلسلة من التحولات التلقائية، نلخصها في المعادلة:

$$^{238}_{92}U \rightarrow ^{206}_{82}Pb + x\alpha + y\beta^{-}$$
 (\*)

من الدول التي تملك احتياطات كبيرة منه والأكثر استغلالا له، كازاخستان، كندا، روسيا، تكون هذه المادة قابلة للإنتاج  $^{235}_{92}U$  مناعيا إذا تجاوزت نِسبتها الكتلية 0.01% في الصخور، له نظير مُشِع آخر قليل التواجد في الطبيعة هو

اً خُذت عينة صخرية من منجم قديم لاستخراج اليورانيوم كتلتها 47kg تم قياس النشاط فيها فُوجد  $-\mathbf{I}$ 

- 1) عرّف النشاط الإشعاعي التلقائي.
- 2) حدّد أنماط التفكك الموضحة في المعادلة (\*) السابقة وطبيعة الجسيمات الصادرة.
  - yو x باستعمال قانونی الإنحفاظ، عین قیمة کل من x
    - لعينة الصخرية.  $^{238}_{92}U$  احسب عدد أنوية
- 5) احسب نسبة اليورانيوم  $U_{92}^{238}$  في العينة الصخرية، هل المنجم قابل للاستغلال صناعيا؟ علل.

النظير  $^{235}_{92}U$  يمكن استخلاصه عن طريق الطرد المركزي ويستخدم كوقود ذري في محركات الغواصات النووية -IIلإنتاج طاقة هائلة ناتجة عن تفاعل انشطاري يمكن نمذجته بالمعادلة التالية:

$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{140}_{54}Xe + {}^{94}_{38}Sr + 2{}^{1}_{0}n$$

- 1) احسب الطاقة المحررة من نواة اليورانيوم 235.
- m(g) عند كالغواصة استطاعة دفع محولة قدرها  $P=25{ imes}10^6~watt$  عند كالغواصة استطاعة دفع محولة قدرها وأولاد كالغواصة الغواصة استطاعة دفع محولة قدرها وأولاد كالغواصة الغواصة الغو من اليورانيوم المخصب  $U^{235}$  خلال U يوما من الإبحار.

أ) ماهي الطاقة المحررة من انشطار الكتلة m السابقة التي تستهلكها الغواصة خلال هذه المدة، علما أن مردود هذا التحويل  $\rho=85\%$ ?

 $\boldsymbol{\mu}$  احسب مقدار الكتلة m.

$$N_A=6.02\times 10^{23}~mol^{-1}$$
 ،  $M(^{235}U)=235.04~g/mol$  ،  $M(^{238}U)=238.05~g/mol$  .   
  $E_{\ell/A}(^{140}Xe)=8.290~Mev/nuc$  ،  $E_{\ell/A}(^{235}U)=7.590~Mev/nuc$  .   
  $1Mev=1.6\times 10^{-13}J$  ،  $1an=365~jours$  ،  $1an=365~jours$ 

# التمرين الثاني: ( 07 نقاط )

نحقّق الدارة الكهربائية الموضحة بالشكل-1 والتي تتألف من مولد ذي توتر ثابت E=6V، ناقل أومي مقاومته R، مكثفة غير مشحونة سعتها C، بادلة K ووشيعة ذاتيتها L مقاومتها مهملة.

باستعمال تجهيز التجريب المدعم بالحاسوب تمكنا من الحصول على المنحنى البياني i=f(t) الممثل لتغيرات شدة التيار المار في الدارة بدلالة الزمن أثناء عملية شحن المكثفة، الشكل-2.



- 1) أعد رسم دارة الشحن موضحا عليها الجهة الاصطلاحية للتيار الكهربائي وبيّن بسهم التوتر الكهربائي بين طرفي كل عنصر كهربائي.
  - باستعمال قانون جمع التوترات اكتب المعادلة التفاضلية للشحنة q بدلالة الزمن.
  - . p و d . جد عبارة كل من A و d .  $q(t) = A(1-e^{-bt})$  . جد عبارة كل من A
    - . i(t) جد عبارة شدة التيار
    - . R باستعمال البيان: أ) احسب مقاومة الناقل الأومي

$$C=2\mu F$$
 بيّن أنَّ سعة المكثفة ب

(2). بعد إتمام عملية الشحن، وفي اللحظة t=0 نغيّر البادلة إلى الوضع (6).

$$\frac{d^2u_C}{dt^2} + \frac{1}{L.C}u_C = 0$$
 : بيّن أنّ المعادلة التفاضلية للتوتر بين طرفي المكثفة تعطى بالعبارة: (أ

ب) من المنحنيات الآتية، أيها يوافق حل هذه المعادلة مع التعليل.



- $\cdot$  L بالاعتماد على المنحنى المختار احسب ذاتية الوشيعة L
- د) احسب قيمة الطاقة المخزنة في المكثفة من أجل البادلة في الوضع (2) عند اللحظتين:

دور الاهتزاز . 
$$t = \frac{T}{4}s$$
 ،  $t = 0s$ 

هـ) فسر التغير الحادث في هذه الطاقة.

### الجزء الثاني: (07 نقاط)

التمرين التجريبي: (07 نقاط)

تهدف هذه الدراسة إلى كيفية تحسين مردود تفاعل، من أجل ذلك:

مع  $0,02\ mol$  من الماء في درجة حرارة مناسبة  $CH_3COOC_3H_7$  (A) من الماء في درجة حرارة مناسبة -I وبإضافة قطرات من حمض الكبريت المركز .

يُنمذج هذا التحول بمعادلة كيميائية من الشكل:

$$CH_3COOC_3H_7(l) + H_2O(l) = CH_3COOH(l) + C_3H_7OH(l)$$
.....(1)
(A)

- 1) ما الفائدة من إضافة قطرات من حمض الكبريت المركز؟
  - . (A) حدّد الوظيفة الكيميائية للمركب (2
    - 3) بماذا يسمى هذا التفاعل؟
    - (C) حدّد الوظيفة الكيميائية للمركب (4)
      - 5) أنجز جدولا لتقدم التفاعل.
- التدريج محلولا من هيدروكسيد –II بعد مدة زمنية كافية يصل فيها التفاعل السابق إلى حالة التوازن، نضيف له بالتدريج محلولا من هيدروكسيد الصوديوم  $C_B=0.4\ mol\ /\ L$  تركيزه المولي  $(Na^+(aq),OH^-(aq))$  بوجود كاشف ملون مناسب فينول فينول في التفاعل السابق.

#### اختبار في مادة: العلوم الفيزيائية / الشعبة: علوم تجريبية / بكالوريا 2017

نلاحظ أن لون المزيج يتغير عند إضافة حجم من محلول هيدروكسيد الصوديوم قدره  $V_B=20\ mL$  نوقف عندها عملية المعايرة اللونية.

- 1) ارسم التجهيز التجريبي لعملية المعايرة اللونية موضحا عليه البيانات الكافية.
  - 2) اكتب معادلة تفاعل المعايرة الحادث.
  - 3) احسب كمية مادة الحمض المتشكل عند توازن التفاعل (1).
  - 4) احسب مردود التفاعل السابق(1) واستنتج صنف الكحول الناتج.
- 5) أعط التركيب المولي للمزيج السابق عند التوازن ثم احسب ثابت التوازن K له.
  - (C) ، (A) سَمّ المركبين ((A)

III - بعد عملية المعايرة نسخن المزيج من جديد مدة كافية فنلاحظ زوال اللون الذي ظهر عند التكافؤ السابق (يصبح المزيج شفافا).

- 1) فسر ما حدث في المزيج.
- 2) هل تتوقع زيادة أو نقصان في مردود التفاعل السابق؟ علّل، ماذا تستنتج؟

انتهى الموضوع الأول

### الموضوع الثانى

يحتوي الموضوع الثاني على 04 صفحات ( من الصفحة 5 من 8 إلى الصفحة 8 من 8)

الجزء الأول: (13 نقطة)

التمرين الأول: (06 نقاط)

نحقق الدارة الكهربائية الممثلة في (الشكل -1-) باستعمال العناصر الكهربائية التالية:

- E مولد للتوتر الكهربائي مثالي قوته المحركة الكهربائية -
- $R_1 = R_2 = R$  ناقلان أوميان مقاومتيهما  $R_2$  ،  $R_1$  حيث -
  - مكثفة فارغة سعتها C.
  - وشيعة صافية ذاتيتها L
    - بادلة *K*



- أ) ما هي الظاهرة الكهربائية التي تحدث في الدارة؟
- ب) مثل الجهة الاصطلاحية للتيار المار في الدارة وبيّن بسهم التوتر الكهربائي بين طرفي كل عنصر كهربائي.



- ج) جد المعادلة التفاضلية التي يحققها التوتر  $U_c(t)$  . الكهربائي بين طرفي المكثفة
- د) بيّن أن  $U_c(t) = E(1 e^{-\frac{t}{RC}})$  هو حل للمعادلة التفاضلية.
- 2) نضع الآن البادلة في الوضع (2) في لحظة نعتبرها مبدأ للأزمنة.
  - $i\left(t
    ight)$  جد المعادلة التفاضلية التي تحققها شدة التيار
- $i(t)=Ae^{-rac{R}{L}t}+B$ : حل المعادلة التفاضلية السابقة هو من الشكل  $Ae^{-rac{R}{L}t}+B$  حيث  $Ae^{-rac{R}{L}t}$  عبارة كل منهما.
- (3) بواسطة برمجية خاصة تمكنا من الحصول على البيانين (a) و (a) الممثلين في (الشكل -2). أحدهما يوافق البادلة في الوضع (a) والآخر يوافق البادلة في الوضع (a).



- أ) أرفق كل منحنى بالوضع المناسب للبادلة مع التعليل.
- $\cdot L, C, R, E$ : باستعمال البيانين جد قيم المقادير التالية

### التمرين الثاني: (07 نقاط)

ندخل في اللحظة t=0 كتلة قدرها m=2g من المغنزيوم في بيشر يحتوي على 50mL من محلول حمض ندخل في اللحظة t=0 كتلة قدرها t=0 كتلة قدرها t=0 كلور الهيدروجين t=0 الكيميائي الكيميائي t=0 الكيميائي t=0 الكيميائي t=0 الكيميائي الكيميائي t=0 الكيميائي t=0 الكيميائي الكيميائي t=0 الكيميائي الكيميائي t=0 الكيميائي الكيميائي t=0 الكيميائي الكيميائي الكيميائي t=0 الكيميائي الكيميائي الكيميائي t=0 الكيميائي الكيمائي الكيميائي الكي

- المشاركتين في (Ox/Red) اكتب المعادلتين الإلكترونيتين للأكسدة والإرجاع ثم استنتج الثنائيتين الإلكترونيتين للأكسدة والإرجاع ثم استنتج الثنائيتين الإلكترونيتين للأكسدة والإرجاع ثم استنتج الثنائيتين الإلكترونيتين الإلكترونيتين المشاركتين في هذا التحول الكيميائي.
  - pH إن قياس الـ pH للمحلول الناتج في لحظات مختلفة أعطى النتائج المدونة في الجدول التالي:

| ر ي . رو ي                         | •    | _    |      | ي    | ·    |      | 1    | O # C |
|------------------------------------|------|------|------|------|------|------|------|-------|
| t (min)                            | 0    | 2    | 4    | 6    | 8    | 10   | 12   | 14    |
| pН                                 | 2,00 | 2,12 | 2,27 | 2,44 | 2,66 | 2,95 | 3,41 | 4,36  |
| $[H_3O^+] \times 10^{-3} mol / L$  |      |      |      |      |      |      |      |       |
| $[Mg^{2+}] \times 10^{-3} mol / L$ |      |      |      |      |      |      |      |       |

- أ) أنجِز جدول التقدم للتفاعل المنمذج للتحول الكيميائي الحادث.
  - ب) بيّن أن المغنزبوم موجود بالزبادة في المحلول.

 $Mg^{2+}$  بيّن أن التركيز المولي للشوارد  $Mg^{2+}$  يعطى في كل لحظة بالعلاقة التالية:

. ثم أكمل الجدول أعلاه. 
$$\left[Mg^{2+}\right](t) = \frac{1}{2} \left(10^{-2} - \left[H_3O^+\right](t)\right)$$

$$\llbracket H_3O^+
right
ceil = g\left(t
ight)$$
 ارسم في نفس المعلم البيان (1) الموافق لـ  $\llbracket Mg^{2+}
ceil = f\left(t
ight)$  الموافق لـ (1) الموافق الم

- t=2min في اللحظة  $Mg^{2+}$  باستعمال البيان (1) احسب السرعة الحجمية لتشكل شوارد المغنزيوم  $H_3O^+$  عند نفس اللحظة.
  - و) تأكد من قيمة السرعة الحجمية لاختفاء شوارد الهيدرونيوم  $H_3O^+$  باستعمال المنحنى (2).
    - $t_{1/2}$  عرّف زمن نصف التفاعل -3
  - ب) احسب التركيز المولي لكل من شوارد الهيدرونيوم وشوارد المغنزيوم في اللحظة  $t=t_{1/2}$  ثم استتج قيمة  $t=t_{1/2}$  بيانيا.

 $M\left(Mg\right) \, = \, 24 \, g \, / \, mol$  تعطى: الكتلة المولية الذرية للمغنزيوم

الجزء الثاني: (07 نقاط)

التمرين التجريبي: (07 نقاط)

خلال حصة الأعمال المخبرية كلّف الأستاذ ثلاث مجموعات من التلاميذ بدراسة حركة سقوط كرية في الهواء كتلتها m وحجمها V انطلاقا من السكون في اللحظة t=0 حيث طلب منهم تمثيل القوى المؤثرة على الكرية في لحظة t>0 عرضت كل مجموعة عملها فكانت النتائج كالتالي:

| 3                      | 2                                 | 1                      | المجموعة       |  |
|------------------------|-----------------------------------|------------------------|----------------|--|
|                        | $\oint_{\Phi} \overrightarrow{f}$ | $\overrightarrow{\Pi}$ |                |  |
| $\overrightarrow{\Pi}$ | $\overrightarrow{p}$              | $\overrightarrow{p}$   | التمثيل المنجز |  |

حيث  $\overline{\Pi}$  دافعة أرخميدس و  $\overline{f}$  قوة الاحتكاك مع الهواء.

- 1) بعد المناقشة تم رفض تمثيل إحدى المجموعات الثلاث.
  - أ) حدّد التمثيل المرفوض مع التعليل.
- ب) اكتب المعادلة التفاضلية للسرعة لكلا الحالتين المتبقيتين.
- جارة  $a_0$  تسارع الكرية في اللحظة t=0 لكل من الحالتين المتبقيتين.

### اختبار في مادة: العلوم الفيزيائية / الشعبة: علوم تجريبية / بكالوريا 2017

2) لتحديد التمثيل المناسب أُجريت تجربة لقياس قيم السرعة في لحظات مختلفة، النتائج المتحصل عليها سمحت برسم المنحنى الموضح في ( الشكل-3).

مستعينا بالمنحنى حدد قيمة التسارع الابتدائي  $a_0$  في اللحظة t=0 ثم استنج التمثيل الصحيح مع التعليل.

- $v_{lim}$  عيّن قيمة السرعة الحدية (3
- $V_{lim}$  جد عبارة السرعة الحدية

بدلالة : g ، k ، m و V حجم الكرية ، ثم احسب قيمة الثابت k .

5) احسب شدة محصلة القوى المطبقة على الكرية في اللحظة t=1,5s بطريقتين مختلفتين.



m=2.6g المعطيات : عبارة قوة الاحتكاك من الشكل  $g=9.80~m.s^{-2}$  ، f=kv كتلة الكرية  $V=3.6\times 10^{-4}m^3$  حجم الكرية ،  $\rho_{air}=1.3kg.m^{-3}$  الكتلة الحجمية للهواء