mod p 上の 1 の n 乗根 出典: https://twitter.com/kirika_comp/status/1203603433455927297

1 の n 乗根 a を求めたい。 $a^n=1 \bmod p$ かつ $a^{p-1}=1 \bmod p$ だから $p-1=0 \bmod n$ が必要。このとき原始根 g を用いて n 乗根が $g^{(p-1)/n}$ と書ける。よって $p-1=0 \bmod n$ が 1 の n 乗根が存在するための必要十分条件。b をランダムに取ってくる。b が原始根 g を用いて $b=g^k$ と書けるとする。 $(k\frac{p-1}{n}x=0 \bmod p-1 \Leftrightarrow x=n \bmod p-1)$ は $k \bmod n$ が n と互いに素であることと同値。このような k は $1,2,\ldots,p-1$ のうち $\frac{p-1}{n}\phi(n)$ 個ある。したがって $\frac{\phi(n)}{n}$ の確率で $b^{(p-1)/n}$ が 1 の n 乗根になる。

体係数 1 変数多項式環 K[X] ユークリッド整域だから拡張ユーグリッドの互除法により互いに素な f,g に対して $f^{-1} \bmod g$ が求められる。従って Garner のアルゴリズムが適用できる。

1 形式的冪級数

出典:http://sugarknri.hatenablog.com/entry/2019/10/08/001359 R を可換環とする。n-1 次で打ち切った形式的冪級数 $P=R[[X]]/\langle X^n \rangle$ の成す環の演算を考える。

1.1 等比級数による逆元の計算

等比級数の和の公式より

$$1/f = (f_0)^{-1} \sum_{i=0}^{n} (1 - f)^i$$

である。 $g:=(1-f), h(k):=1+g+g^2+\ldots+g^{2^k-1}$ と置くと、 $h(k)=h(k-1)(1+g^{2^{k-1}})$ という漸化式 が成り立ち $O(n\log^2(n))$ で計算できる。

1.2 Newton 法による逆元の計算

1.3 Newton 法による平方根の計算

 $g^2=f$ なる g を求めたい。 $F(X)=X^2-f$ に対して F(X)=0 の解をニュートン法で求めると

$$g_{n+1} = \frac{g_n}{2} + \frac{f}{2g_n}$$

となる。このとき

$$g_{n+1}^2 - f = \left(\frac{g_n}{2} + \frac{f}{2g_n}\right)^2 - f \tag{1}$$

$$=\frac{1}{4g_n^2}(g_n^2 - f)^2\tag{2}$$

(3)

だから二次収束する。計算量は $O(\sum_{k=1,2,4,8} n k \log k) = O(n \log n)$ となる。

1.4 Newton 法による対数の計算

 $\exp(g) = f$ なる g を求めたい。 $[x^0]f = 1$ とする。

$$\exp(g) = f \tag{4}$$

$$\Rightarrow g'f = f' \tag{5}$$

$$\Rightarrow g = \int \frac{f'}{f} dX' \tag{6}$$

(7)

ただし $[x^0]g=0$ である。よって g は $O(n\log n)$ で求まる。

1.5 Newton 法による指数の計算

 $f=\exp(g)$ を求めたい。 $[X^0]g=0$ とする。 $F(X)=\log(X)-f$ として F(X)=0 $\mod X^{n+1}$ の解をニュートン法で求めると

$$g_{n+1} = g_n(1 - F(g_n))$$

となる。 $\log(1+X)=X-rac{X^2}{2}+O(X^3)$ を用いて、

$$F(g_{n+1}) = \log(g_{n+1}) - f \tag{8}$$

$$= \log(g_n) + \log(1 - F(g_n)) - f \tag{9}$$

$$= \log(g_n) - F(g_n) + \frac{g_n^2}{2} - f + O(g_n^3)$$
(10)

$$= \frac{g_n^2}{2} + O(g_n^3) \tag{11}$$

(12)

よって二次収束する。

1.6 初等関数による合成関数

 $1,2,\dots,n$ が逆元を持つとする。このとき積分が計算できる。よって \log , \arctan に対する合成関数は $\log(f)=\int rac{f'}{f}$, $\arctan(f)=\int rac{f'}{1+f^2}$ によって計算できる。 \sin , \cos , \sinh , \cosh の合成関数は \exp の線形結合に変形することで計算できる。 \sin , \cos については虚数単位 $\sqrt{-1}$ が必要になるので $R=\mathbb{F}_p(\sqrt{-1})$ で計算する。ただし平方剰余の相互法則の第一補充法則より $p\in 4\mathbb{Z}+1$ のとき $\sqrt{-1}\in\mathbb{F}_p$ であることに注意する。

1.7 一般的な合成関数: Brent-Kung algorithm

参考: http://fredrikj.net/math/rev.pdf

ホーナー法により

$$f(g) = \sum_{k=0} f_k(g)^k \tag{13}$$

$$= f_0 + g(f_1 + g(f_2 + \ldots)) \tag{14}$$

(15)

とできて $O(n^2 \log n)$ で計算できる。

平方分割により高速化できる。 $m=[\sqrt{n}]$ として $h_k:=\sum_{i=0}^{m-1}f_{mk+i}g^i$ とすると $f=\sum_{i=0}^mh_ig^{mi}$ とできる。 g^i の列挙は $O(n^{3/2}\log n)$ で行える。愚直にやっても h_k の列挙は $O(n^2)$ で行える。よって全体で $O(n^2)$ で計算できる。