

TALLER DE TRANSFORMADA DE LAPLACE - CIRCUITOS ELÉCTRICOS II (27134)

Este taller tiene como propósito afianzar los conceptos relacionados al análisis de respuesta en frecuencia a partir de problemas complejos.

I) Se desea que, en el circuito de la Figura, la respuesta natural haya apenas desaparecido $^{\rm I}$ justo antes de cada conmutación de la fuente en el siguiente circuito. ¿Qué valor propondría usted para el condensador C de manera que esto se cumpla?

¹haya desaparecido después de haber transcurrido cinco constantes de tiempo.

2) Considere el circuito de la figura. Si la fuente de alimentación Vs(t) viene dada por:

$$v_s(t) = 20[5u(t)-1]$$
 [V]

Determine y grafique **Vc(t)** para todo t.

3) Considere el circuito de la figura. Las fuentes independientes están definidas de la siguiente manera:

$$i_s(t) = 10 \cdot u(t) + 2 \cdot u(-t) [A]$$

$$v_s(t) = 8 \cdot u(-t) [V]$$

Si el interruptor de cierra en el instante t=0 [s], determine la expresión y grafique $i_x(t)$ para todo instante de tiempo.

4) En una caseta de **cerveza águila** ubicada cerca del mar en la costa Atlántica, el vale Juan dueño de la caseta, consiguió en Olímpica una batería de **I2 [V]** para suministro del lugar. Un domingo caluroso, Juan estaba aburrido ya que no había partido del "Junior tu papá" y como entretenimiento realizó el siguiente experimento: Conectó inicialmente terminal positiva de la batería al extremo de un **capacitor** de **314.2 [pF]** en **serie** con un **inductor** de **869.1 [μH]** por medio de un **conductor ideal (Circuito LC serie con fuente)**. No obstante, un fuerte oleaje irrumpe en la caseta derramando **agua salada** sobre el **conductor** que interconecta la combinación serie **inductor/capacitor** con la batería, de manera tal que se cambian las propiedades del **conductor** y se forme ahora un **circuito RLC serie con fuente**. Justo después de que el agua salada irrumpiera en la caseta, una embarcación cercana detectó en su radar una **oscilación resultante** de **290.5 [kHz]** proveniente del circuito **RLC serie.** Respecto a lo anterior ¿Cuál es el valor de la resistencia del conductor cuando entra en contacto con el agua salada?

5) Considere el Circuito de la **Figura**. La fuente de tensión está definida por medio de $v_s(t) = 20 \cdot u(t) - 5 \cdot u(-t)$ [V]. Halle la expresión correspondiente de la tensión $v_{ab}(t)$ y grafique $v_{ab}(t)$ para todo t.

6) El conmutador del circuito mostrado en la Figura ha estado en la posición \boldsymbol{a} durante un largo período de tiempo. En $\boldsymbol{t}=\boldsymbol{0}$, el conmutador se mueve instantáneamente a la posición \boldsymbol{b} . Determine v(t) para $\boldsymbol{t}>\boldsymbol{0}$.

- 7) En el circuito de la **Figura**, el interruptor S lleva conectado en B un **tiempo infinito**. En t=0 se conmuta a A, y en t=10 [ms] vuelve a B, y permanece en esta última posición definitivamente. Determínense, si es posible:
- a) Las expresiones de $i_L(t)$ y $v_C(t)$ para t > 0.
- **b)** La expresión y gráfica de $v_{AB}(t)$ para todo tiempo.

8) Considere el circuito de la **Figura 2**. Este circuito se diseñó para que después de accionar el interruptor aportara una tensión $v_R(t)$ en la resistencia **R** dada por la relación:

$$v_R(t) = [6 - 1500 \cdot t] \cdot e^{-250 \cdot t}$$
 [V]

Si el condensador utilizado entrega una corriente de **75 mA** en $t = 0^+$, determine los valores correspondientes de **R**, **L** y **C** necesarios para tal propósito.

CONSTRUIMOS FUTURO

9) Considere por favor el circuito de la **figura**. Fue construido hace **mucho tiempo** con elementos "ideales" de segunda mano (fueron utilizados previamente en otros circuitos) por lo que el condensador de **50** [μ F] cuenta aún con una carga de **25** [μ J] para el momento en que son **accionados simultáneamente** los **cinco interruptores** de manera que $v_{c2}(0^-) < 0$. Bajo estas condiciones, determine una expresión para $v_R(t)$ e $i_R(t)$ válida **para t>0**.

- 10) Considere el circuito de **Figura**. El interruptor S_1 ha permanecido abierto durante mucho tiempo y se cierra en t=0. El conmutador S_2 , que ha permanecido todo el tiempo en la posición (1), pasa a la posición (2) en un tiempo $t_X = 45\pi$ [μ s] después del accionamiento de S_1 . Calcular:
- **a.** La expresión en el tiempo de $i_L(t)$ para t > 0
- **b.** La grafica de $i_L(t)$ para t>0 en un rango adecuado de valores de tal forma que se puedan apreciar sus características.

11) Considere el circuito a continuación. El interruptor ha permanecido en la posición (1) por un largo tiempo y en t=0 [s], pasa a la posición (2) tal como se indica en la Figura 3. Bajo estas condiciones, calcule la expresión en el dominio del tiempo de $v_a(t)$ para t>0 [s].

12) Encuentre el valor de R para que Vsal(s) sea igual a la siguiente expresión:

$$V_{Sal}(s) = -\frac{s + 0.1}{1.2s^3 + 9.49s^2 + 3.478s + 0.066}$$

13) Determinar y graficar la expresión de $i_1(t)$ para t>0 [s].

