Interações e diagramas de Feynman e troca de partículas

Aula # 3.

Professor: Farinaldo Queiroz

Estagiário de docência: Yoxara S Villamizar

Focus on:

Martin, Brian R., and Graham Shaw. Particle physics. John Wiley Sons, 2017. - Chapter 1, (Section 1.3 and 1.4)

Vou colocar o estado de entrada no lado esquerdo e o estado de saída no lado direito.

A é à partícula em movimento dum ponto ao outro no espaço,

B corresponde à partícula movendo-se no espaço-tempo

C corresponde à partícula em repouso.

Diagramas de Feynman para QED

- O quadro momentum é conservado em cada vértice
- A carga elétrica é conservada, $Q_e=-1$. Os números quânticos são conservados nos vertices

Partícula no estado inicial $u_{(p)}$ Partícula no estado final $\overline{u_{(p)}}$ Anti-partícula no estado inicial $\overline{v_{(p)}}$ Anti-partícula no estado final $v_{(p)}$ Propagador/partícula virtual: fóton.

O que indica a seta no diagrama?

Interação partícula relativista com o campo eletromagnético

$$\mathcal{L}_{\mathsf{int}} = -eQ_e \bar{\psi} \gamma^{\mu} \psi A_{\mu},$$

com carga Q_e

Na linguagem dos diagramas de Feynman

Vértice, só para saber, verão mas em frente

Em uma teoria de campo, o potencial é criado através da emissão de um bóson vetorial, neste caso o fóton:

Exemplo:

Consideremos

$$\begin{pmatrix} \xi \\ p \end{pmatrix} = \begin{pmatrix} \xi' + k_0 \\ p' + k \end{pmatrix} = \begin{cases} \xi' + k_0 \\ p' + k \end{pmatrix}^2 + \begin{cases} \xi' + k_0 \\ \xi' - p' \end{cases} = \begin{cases} \xi' + k_0 \\ \xi' + k_0 \end{cases}^2 - \begin{cases} \xi' + k_0 \\ \xi' - k_0 \end{cases}^2 = \begin{cases} \xi' + k_0 \\ \xi' - k_0 \end{cases}^2 + \begin{cases} \xi' + k_0 \\ \xi' - k_0 \end{cases}^$$

$$m_{e}^{2} = E^{12} + \kappa_{o}^{2} - p^{12} - \kappa^{2} + 2(E'\kappa_{o} - p'\kappa)$$

$$= m_{o}^{2} + m_{f}^{2} + 2(E'\kappa_{o} - p'\kappa)$$

$$= p'\kappa = p'\kappa \cos\theta - T \quad E' \leq p' \int \text{Constito}$$

$$\text{Portanto} \quad \text{or foton pode ser Virtual:}$$

$$m_{F} = 2(p'\kappa - E'\kappa_{o}) \leq 0$$

Então:

O que podemos concluir disto?

- A interação ocorre nos vértices.
- Em cada vértice a energia-momentum e números quânticos são conservados.
- As linhas que conectam 2 vértices são partículas virtuais, e como for discutido não pode se propagar no espaço e no tempo.
- As linhas das partículas se podem propagar no espaço e no tempo, ou seja as linhas de propagação no espaço energia-momentum.

Temos outros tipos de linhas :

Férmion

Bóson vetorial

Bóson escalar

gluon

^{*}Os Diagramas de foram introduzidos por Feynman na década de 1940 e agora são um dos pilares da física de partículas elementares.

BASIC ELECTROMAGNETIC PROCESSES

processos virtuais

Figure: Diagramas de Feynman para os oito processos básicos pelos quais elétrons e pósitrons interagem com fótons. Em todos esses diagramas, o tempo corre da esquerda para a direita, enquanto uma linha sólida com sua seta apontando para a direita (esquerda) indica um elétron (pósitron).

PROCESSOS REAIS

Para fazer um processo real, dois ou mais processos virtuais devem ser combinados de tal forma que a conservação de energia só seja violada por um curto período de tempo τ compatível com o princípio de incerteza de energia-tempo $\tau \Delta E \approx \hbar$

Figure: (a) Processo pelo qual um elétron emite um fóton que é subsequentemente absorvido por um segundo elétron. (b) O outro elétron emite o fóton trocado. Estes processos contribuem para o processo de espalhamento físico elástico $e^- + e^- \rightarrow e^- + e^-$

Em particular, os estados inicial e final, que em princípio podem ser estudados no passado distante ($t \to -\infty$) e no futuro ($t \to +\infty$), respectivamente devem ter a mesma energia.

PRODUÇÃO E ANIQUILAÇÃO DO PAR ELÉTRON-PÓSITRON - REAÇÕES $e^+ + e^- \rightarrow p\gamma$, com $p \ge 2$

Figure: Na ordem mais baixa, (a) e (b) são processos para p=2: $e^++e^- \rightarrow \gamma + \gamma$ (as dois ordenações de tempo possíveis foram mostradas) e (c) para p=3: $e^++e^- \rightarrow \gamma + \gamma + \gamma$ (uma das seis ordenações de tempo possíveis é mostrada, deixando as outras cinco implícitas).

$$R \equiv \frac{\text{Rate}(e^+e^- \rightarrow 3\gamma)}{\text{Rate}(e^+e^- \rightarrow 2\gamma)} = O(\alpha)$$

Maneiras de ordenar o tempo = p!

A probabilidade associada de ordem é $lpha^p$

EXERCÍCIO 2:

Quais dos seguintes processos são reais:

$$\frac{e}{e} = \frac{e}{e} = \frac{e}{e}$$

$$\frac{e}{e} = \frac{e}{e}$$

$$\frac{e}{e} = \frac{e}{e}$$

$$\frac{e}{e} = \frac{e}{e}$$

$$\frac{e}{e} = \frac{e}{e}$$

OUTROS PROCESSOS

Figure: Contribuições de (a) troca de Z_0 para a reação de espalhamento fraco elástico, (b) contribuição de troca de glúon para a interação forte e (c) the decay of a neutron via an intermediate charged W boson.

Constante de acoplamento de Fermi: G_F $G_F/(\hbar c)^3 = 1.166 \times 10^{-5} {\rm GeV}^{-2}$

DECAIMENTO β

No decaimento beta, o número de prótons no núcleo é aumentado de uma unidade, enquanto que o de nêutrons diminui de uma unidade.

A proposta do neutrino foi apresentada por W. Pauli por meio de uma carta em 1930, onde se referirá a sua nova partícula como, o nêutron:

"... I have hit upon a desperate remedy to save the ... energy theorem. Namely the possibility that there could exist in the nuclei electrically neutral particles that I wish to call neutrons, which have spin 1/2... The mass of the neutron must be ... not larger than 0.01 proton mass. ... in β decay a neutron is emitted together with the electron, in such a way that the sum of the energies of neutron and electron is constant"

Em 1934, Pauli explica o espectro de elétrons contínuo do decaimento β como proposta para o neutrino. Nesse mesmo ano Fermi pegou a ideia de Pauli e desenvolveu uma teoria de campo para o decaimento β

$$\mathcal{L}_{\mathsf{weak}} = \frac{G_F}{\sqrt{2}} (\overline{\Psi}_p \gamma_\mu \Psi_n) (\overline{\Psi}_e \gamma^\mu \Psi_v)$$

O elétron emitido no decaimento β corresponde à transmutação de um nêutron em um próton, dentro do núcleo.

PARTICLE EXCHANGE

Espalhamento elástico

Com
$$E_A = (p^2c^2 + M_A^2c^4)^{1/2}$$
 e $E_X = (p^2c^2 + M_X^2c^4)^{1/2}$

Figure: Contribuição reação $A + B \rightarrow A + B$ do intercambio da partícula X

Calculo da violação da energia

A representa o nitrogênio

$$E_f = E_X + E_A$$
$$E_i = M_A c^2$$

$$\Delta E = E_f - E_i = E_X + E_A - M_A c^2 \begin{cases} 2pc, & p \to \infty \\ M_X, & p \to 0 \end{cases}$$

$$\Delta E \ge M_X c^2 \quad \forall p$$

Pelo princípio da incerteza, tal violação de energia é permitida, $\Delta t \approx \hbar / \Delta E$, então:

Alcance: $R \approx c\Delta t \equiv \hbar/M_X c$,

Alcance pequeno — Forca fraca

$$M_W = 80.4 \text{GeV/c}^2$$
 $R_W \equiv \frac{\hbar}{M_W c} \approx 2 \times 10^{-3} \text{fm} (1 \text{fm} = 10^{-15} \text{m})$

O POTENTIAL DE YUKAWA

No limite em que MA se torna grande, podemos considerar B como sendo espalhado por um potencial estático do qual A é a fonte. Então, considerando X como um bóson de spin 0, caso em que obedecerá à equação de Klein-Gordon,

$$-\hbar^2 \frac{\partial^2 \phi(\mathbf{r}, t)}{\partial t^2} = -\hbar^2 c^2 \nabla^2 \phi(\mathbf{r}, t) + M_X^2 c^4 \phi(\mathbf{r}, t)$$

Podemos assumir um potencial estático: $\phi(\mathbf{r},t)=\phi(\mathbf{r})$ e a solução esfericamente simétrica para a equação de Klein-Gordon seria,

$$\nabla^2\phi({\bf r})=\frac{M_X^2c^2}{\hbar^2}\phi({\bf r})$$
 com $M_X=0$ \to $V(r)=-e\phi(r)=-\frac{e^2}{4\pi\varepsilon_0}\frac{1}{r}$ (Análogo com o eletromagnetismo)

Onde $r = |\mathbf{r}|$.

EXERCÍCIO 3: No caso
$$M_X^2 \neq 0$$
, mostre: $V(r) = -\frac{g^2}{4\pi} \frac{e^{-r/R}}{r}$

Solução

Tomando o termo radial da equação de Klein-Gordon equation,

$$\nabla^2 \phi - \frac{m^2 c^2}{\hbar^2} \phi = 0$$

com $\phi = \phi(r) = V$ e escrevendo o Laplaciano em coordenadas esfericas,

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dV}{dr}\right) = \frac{m^2c^2}{\hbar^2}V$$

Diferenciando o termo da esquerda,

$$\frac{d^2V}{dr^2} + \frac{2}{r}\frac{dV}{dr} - \frac{m^2c^2}{\hbar^2}V = 0. \text{ Introducendo } U = rV,$$

Podemos ter:
$$\frac{d^2U}{dr^2} = \frac{d}{dr} \left(V + r \frac{dV}{dr} \right) = 2 \frac{dV}{dr} + r \frac{d^2V}{dr^2}$$
, reescrevendo

$$\frac{1}{r}\frac{d^{2}U}{dr^{2}} - \frac{m^{2}c^{2}}{\hbar^{2}}\frac{U}{r} = \frac{d^{2}U}{dr^{2}} - \frac{m^{2}c^{2}}{\hbar^{2}}U = 0$$

Solução:
$$U = U_0 \exp\left(\pm \frac{mc}{\hbar}r\right) \longrightarrow V = -\frac{k}{r}e^{-\frac{r}{R}}$$

PROCESSOS SIMPLES NA QED

Processo	Observação
$\gamma + e^- \rightarrow \gamma + e^-$	Efeito Compton
$\mu^- + e^- \rightarrow \mu^- + e^-$	Em QED
$e^- + e^+ \rightarrow e^- + e^+$	Difusão Bhabha
e^-+ Núcleo(Z) $\rightarrow e^-+$ Núcleo(Z) $+\gamma$	Bremsstrahlung
$e^- + e^+ \rightarrow \gamma + \gamma$	Aniquilação de pares
$e^- + e^- \rightarrow e^- + e^-$	Difusão Möller
$\gamma + \gamma \rightarrow e^- + e^+$	Criação de pares
γ + Núcleo(Z) \rightarrow Núcleo(Z) $+e^- + e^+$	Criação de pares