- (b) What is our prediction with K = 1? Why?
- (c) What is our prediction with K = 3? Why?
- (d) If the Bayes decision boundary in this problem is highly non-linear, then would we expect the best value for K to be large or small? Why?

Applied

- 8. This exercise relates to the College data set, which can be found in the file College.csv. It contains a number of variables for 777 different universities and colleges in the US. The variables are
 - Private : Public/private indicator
 - Apps: Number of applications received
 - Accept : Number of applicants accepted
 - Enroll: Number of new students enrolled
 - Top10perc : New students from top 10% of high school class
 - Top25perc : New students from top $25\,\%$ of high school class
 - F. Undergrad : Number of full-time undergraduates
 - P. Undergrad : Number of part-time undergraduates
 - Outstate : Out-of-state tuition
 - Room.Board: Room and board costs
 - Books: Estimated book costs
 - Personal : Estimated personal spending
 - PhD: Percent of faculty with Ph.D.'s
 - Terminal : Percent of faculty with terminal degree
 - S.F.Ratio : Student/faculty ratio
 - perc.alumni : Percent of alumni who donate
 - Expend: Instructional expenditure per student
 - Grad.Rate : Graduation rate

Before reading the data into R, it can be viewed in Excel or a text editor.

- (a) Use the read.csv() function to read the data into R. Call the loaded data college. Make sure that you have the directory set to the correct location for the data.
- (b) Look at the data using the fix() function. You should notice that the first column is just the name of each university. We don't really want R to treat this as data. However, it may be handy to have these names for later. Try the following commands: