Bases evolutivas da Saúde Pública

Pensando intervenções

Intervenções na presença de evolução:

Como otimizar o uso de métodos atuais de intervenção?

Prever as consequências de métodos atuais de intervenção?

- Análises de cenários
- Análises de risco
- Análises de custo-benefício

Modelos mecanicistas

Condições iniciais + trajetórias

Regras de transição

ABC da modelagem

- Assume
- Borrow
- Criticize

Mecanismos:

• Evolutivos (genéticos, seleção, deriva)

• Ecológicos (interação com o ambiente e com outros organismos, contexto espacial)

 Fisiológicos (adaptações fenotípicas do hospedeiro e parasita)

B

Modelos matemáticos

• Modelos de genética de populações

Modelos epidemiológicos

Modelos de base individual

Evolução da Resistência a antibióticos

Source: Collected from published data

The Southeast Journal of Tropical Medicine and Public Health, Mekong Malaria, Volume 30, Supplement 4, p 68, 1999

Source: K.Klugmann. South African Institute of Medical Research

Desenvolvimento de novas drogas

Processo Evolutivo

Questões:

Quais as conseqüências que podemos esperar do uso de antibióticos? Que fatores propiciam o espalhamento de patógenos resistentes? Que estratégias podemos utilizar para otimizar a eficácia e o tempo De vida dos antibióticos?

Estratégias de intervenção:

• Higiene hospitalar

• Uso de vacinas

• Controle ou redução no uso de antibióticos

• Ciclagem de antibióticos

Critério de política ótima:

• Maximize o tempo até espalhamento da resistência.

• Maximizar o número de curas

• Maximizar o número de infecções prevenidas

O que acontecerá?

$$\begin{tabular}{ll} Fitness & Frequência \\ Modelo: 1 locus, 2 alelos & R & 1-s & p_t \\ S & 1-a & q_t \\ \end{tabular}$$

s = custo da resistência

a = proporção da comunidade recebendo tratamento

$$p_{t+1} = \frac{(1-s)p_t}{(1-s)p_t + (1-a)q_t}$$

$$q_{t+1} = \frac{(1-a)q_t}{(1-s)p_t + (1-a)q_t}$$

O que podemos fazer?

Consumo proporcional à eficácia:

$$p_{t+1} = \frac{(1-s) p_t}{(1-s) p_t + (1-aq_t) q_t}$$

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 200 400 600 800 1000

Consumo nulo:

$$a = 0$$

Coexistência

Extinção do fenótipo resistente

Modelos epidemiológicos

Qual a melhor estratégia de uso de um antibiótico?

$$\frac{dx}{dt} = \lambda - mx - bYx + r_w y_w + r_r y_r + fh(1-s)y_w$$

$$\frac{dy_w}{dt} = (bx - c - r_w - fh)y_w$$

$$\frac{dy_r}{dt} = (bx - c - r_r)y_r + fhsy_r$$
Bonhoeffer et al, 1997

Dinâmica:

Recomendação:

- Se c=0: otimização independe da taxa de tratamento
- Se c >0: Tratar intensivamente o maior número de pessoas

Qual a melhor estratégia de uso de vários antibióticos?

Cenários

• Tipo de tratamento: ciclagem, 50:50, combinação

• Situação: epidêmica, resistência rara, sem duplo resistente

Evolução compensatória - redução do custo da resistência

Bactéria	Antibiótico	Resistência no mutante
S. Typhimurium	Streptomicina Ácido Nalidixico Rifampicina Ácido Fusídico	Mantida Mantida
S. Aureus	Ácido Fusídico	- Mantida/ Perdida
E. coli	StreptomicinaRifampicina	_ Mantida _ Mantida

Isoniazida-

M. tuberculosis

Por quê não reversão?

Sr suscetível (reversão)
Rc resistente compensado
R resistente não compensado

+ Gargalo periódico

= dominância do fenótipo resistente compensado, mesmo na ausência de antibióticos

Modelo de mutação:

Intra-Hospedeiro:

Modelo de Mutação-Seleção

$$\begin{bmatrix} V1 \\ V2 \\ V3 \\ V4 \end{bmatrix} (t+1) = \begin{bmatrix} 1-d2 & d1 & 0 & 0 \\ d2 & b & b1 & 0 \\ 0 & d2 & b & d1 \\ 0 & 0 & d2 & 1-d1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1+s & 1+s & 1+s & 1+s \\ 1+2s & 1+2s & 1+2s & 1+2s \\ 1+3s & 1+3s & 1+3s & 1+3s \end{bmatrix} \times \begin{bmatrix} V1 \\ V2 \\ V3 \\ V4 \end{bmatrix} (t)$$

b=1-d1-d2 d1 mutação > d2 mutação redutora de fitness

Modelo de Transmissão entre hospedeiros

Efeito do gargalo: redução do fitness

Transmissão horizontal

O que os modelos dizem:

- Se o custo da resistência for baixo, mesmo pouco uso de antibióticos deve promover uma alta prevalência de resistentes.
- Aumento da complexidade do modelo tende a favorecer coexistência
- Quanto mais eficaz a droga, menor a chance de surgimento de resistência
- Terapia combinada tende a ser melhor.
- Se a prevalência de infecções for alta, podemos esperar uma taxa de perda muito baixa, mesmo se o uso do antibiótico for banido.

Prevenir é melhor do que remediar