Math 164: Problem Set 5

Owen Jones

2/9/2024

8.1 Let $\mathbf{Q} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and let $\mathbf{b} = \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$. $f(x_1, x_2) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} + \mathbf{x}^{\top} \mathbf{b} + 3$ $\nabla f(x_1, x_2) = \mathbf{Q}\mathbf{x} + \mathbf{b}$ Thus, $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \frac{\nabla f^{(k)}^{\top} \nabla f^{(k)}}{\nabla f^{(k)} \nabla \nabla f^{(k)}} \nabla f^{(k)}$. $x^{(1)} = \begin{bmatrix} 0, 0 \end{bmatrix}^{\top} - \frac{\mathbf{b}^{\top} \mathbf{b}}{\mathbf{b}^{\top} \mathbf{Q} \mathbf{b}} \mathbf{b} = \frac{5}{6} \mathbf{b} = \begin{bmatrix} -\frac{5}{6}, -\frac{5}{12} \end{bmatrix}^{\top}$ $\nabla f(x^{(1)}) = \begin{bmatrix} \frac{1}{6}, -\frac{1}{3} \end{bmatrix}^{\top}, \frac{\nabla f^{(k)} \nabla f^{(k)}}{\nabla f^{(k)} \mathbf{Q} \nabla f^{(k)}} = \frac{\frac{5}{36}}{\frac{1}{4}} = \frac{5}{9}.$ $\begin{bmatrix} -\frac{45}{54}, -\frac{45}{108} \end{bmatrix}^{\top} - \begin{bmatrix} \frac{5}{54}, -\frac{20}{108} \end{bmatrix}^{\top} = \begin{bmatrix} -\frac{25}{27}, -\frac{25}{108} \end{bmatrix}^{\top}$ Thus, $x^{(2)} = \begin{bmatrix} -\frac{25}{27}, -\frac{25}{108} \end{bmatrix}^{\top}$.
We want to find an \mathbf{x} that satisfies the FONC i.e $\nabla f = \mathbf{0}$. \mathbf{Q} is non-

singular, so we choose $\mathbf{x} = -\mathbf{Q}^{-1}\mathbf{b} = \begin{bmatrix} -1, -\frac{1}{4} \end{bmatrix}^{\top}$.

- **8.4** (a) $\lim_{k\to\infty} 2^{-2^{k^2}} = 0$ because $\lim_{k\to\infty} -2^{k^2} = -\infty$.
 - (b) $\lim_{k\to\infty} \frac{\mathbf{x}^{(k+1)} x^*}{(\mathbf{x}^{(k)} x^*)^p} = \lim_{k\to\infty} \frac{2^{-2^{(k+1)^2}}}{2^{-p^{2k^2}}} = \lim_{k\to\infty} 2^{-2^{(k+1)^2} + p2^{k^2}}$ $= \lim_{k\to\infty} 2^{-2^{k^2 + 2k + 1} + p2^{k^2}} = \lim_{k\to\infty} 2^{-2^{k^2} (2^{2k+1} p)} = 0 \text{ for any value of } p \text{ because } \lim_{k\to\infty} -2^{k^2} (2^{2k+1} p) = -\infty \text{ for any value}$ of p. Thus, $\mathbf{x}^{(k)}$ has order of convergence ∞ .
- **8.7** (a) By FONC, want $f'(x) = 0 \Rightarrow x^* = \frac{b}{a}$ minimizes f since a > 0.
 - (b) $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} \alpha(a\mathbf{x}^{(k)} b) = (1 \alpha a)\mathbf{x}^{(k)} + \alpha b$.
 - (c) Assuming $\mathbf{x}^{(k)}$ converges, $x^* = (1 \alpha a)x^* + \alpha b$ $\Rightarrow \alpha a x^* = \alpha b$ since $\alpha \neq 0, x^* = \frac{b}{a}$
 - (d) $\lim_{k\to\infty} \frac{|\mathbf{x}^{(k+1)} x^*|}{|\mathbf{x}^{(k)} x^*|^p} = \lim_{k\to\infty} \frac{|(1-\alpha a)\mathbf{x}^{(k)} + \alpha b \frac{b}{a}|}{|\mathbf{x}^{(k)} \frac{b}{a}|^p}$ $= \lim_{k\to\infty} \frac{|(1-\alpha a)\mathbf{x}^{(k)} (1-\alpha a)\frac{b}{a}|}{|\mathbf{x}^{(k)} \frac{b}{a}|^p} = \lim_{k\to\infty} |1-\alpha a||\mathbf{x}^{(k)} \frac{b}{a}|^{1-p}.$ Because the limit only converges to a finite nonzero number for p=1and diverges to infinity for p > 1, the sequence converges linearly.
 - (e) The sequence converges iff $|1 \alpha a| < 1$, so $0 < \alpha < \frac{2}{a}$.

8.8 We rewrite the function f(x) using its quadratic form i.e $f(x) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} \mathbf{x}^{\top}\mathbf{b} + \mathbf{c}$ where $\mathbf{Q} = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -5, -6 \end{bmatrix}^{\top}$, and $\mathbf{c} = 7$.

Since $\mathbf{x}^{(k)}$ is a fixed step size algorithm, the sequence converges iff 0 <

 $\det(\lambda \mathbf{I}_2 - \mathbf{Q}) = \lambda^2 - 12\lambda + 20$ with roots located at $\lambda = 2, 10$, so the sequence converges for $0 < \alpha < \frac{1}{5}$.

8.13 Using the formula from lemma 8.1, we have $V(\mathbf{x}^{(k+1)}) = (1 - \gamma_k)V(\mathbf{x}^{(k+1)})$ where $V(\mathbf{x}) = f(\mathbf{x})$ and $\gamma_k = 4\alpha \cdot 2^{-k}(1 - \alpha 2^{-k})$.

Since $0 < \gamma_k < 1$ for all k, we have $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)})$ so long $x^{(k)} \neq 1$ for $k \geq 0$, so the sequence satisfies the descent property.

 $\sum_{k=0}^{\infty} \gamma_k = \sum_{k=0}^{\infty} 4\alpha 2^{-k} - \sum_{k=0}^{\infty} 4\alpha^2 2^{-2k} = 8\alpha - \frac{16}{3}\alpha^2 < \infty, \text{ so the sequence is}$

8.15 (a) $f(x) = (\mathbf{a}x - \mathbf{b})^{\top}(\mathbf{a}x - \mathbf{b}) = \mathbf{a}^{\top}\mathbf{a}x^{2} - 2\mathbf{a}^{\top}\mathbf{b}x + \mathbf{b}^{\top}\mathbf{b} = \|\mathbf{a}\|^{2}x^{2} - 2\mathbf{a}^{\top}\mathbf{b}x + \|\mathbf{b}\|^{2}$

By the FONC, the only minimizer candidate is when $f'(x) = 0 \Rightarrow x^* = \frac{\mathbf{a}^{\mathsf{T}} \mathbf{b}}{\|\mathbf{a}\|^2}$. Since $f''(x) = 2\|\mathbf{a}\|^2 > 0$, x^* is the minimizer for f.

- (b) Since the sequence is a fixed step size gradient algorithm, $0 < \alpha <$ $\frac{2}{\lambda_{\max}\mathbf{Q}}$ with $\mathbf{Q} = 2\|a\|^2$. Thus, $0 < \alpha < \frac{1}{\|\mathbf{a}\|^2}$.
- 8.16 (a) $f(x) = |\mathbf{A}\mathbf{x} \mathbf{b}||^2 = (\mathbf{A}\mathbf{x} \mathbf{b})^{\top}(\mathbf{A}\mathbf{x} \mathbf{b})$ = $(\mathbf{x}^{\top}\mathbf{A}^{\top} \mathbf{b}^{\top})(\mathbf{A}\mathbf{x} \mathbf{b})$ $= \mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{b} - \mathbf{b}^{\top} \mathbf{A} \mathbf{x} + \|\mathbf{b}\|^{2}$ $= \mathbf{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \mathbf{x} - 2 \mathbf{b}^{\top} \mathbf{A} \mathbf{x} + \|\mathbf{b}\|^{2}$ $= \mathbf{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \mathbf{x} - 2(\mathbf{A}^{\top} \mathbf{b})^{\top} \mathbf{x} + \|\mathbf{b}\|^{2}$ $\Rightarrow \nabla f(\mathbf{x}) = 2(\mathbf{A}^{\top} \mathbf{A}) \mathbf{x} - 2(\mathbf{A}^{\top} \mathbf{b}), \mathbf{F}(x) = 2(\mathbf{A}^{\top} \mathbf{A})$

(b) $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - 2\alpha \mathbf{A}^{\top} (\mathbf{A} \mathbf{x}^{(k)} - \mathbf{b})$

(c)
$$2(\mathbf{A}^{\top}\mathbf{A}) = \begin{bmatrix} 2 & 0 \\ 0 & 8 \end{bmatrix} \Rightarrow 0 < \alpha < \frac{2}{\lambda_{\max}(2(\mathbf{A}^{\top}\mathbf{A}))} = \frac{1}{4}$$

8.18 The steepest descent algorithm is $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \frac{\mathbf{g}^{(k)^{\top}} \mathbf{g}^{(k)}}{\mathbf{g}^{(k)^{\top}} \mathbf{Q} \mathbf{g}^{(k)}} \mathbf{g}^{(k)}$ where

If $\mathbf{x}^{(1)} = \mathbf{Q}^{-1}\mathbf{b}$ then $\mathbf{Q}^{-1}\mathbf{b} = \mathbf{x}^{(0)} - \alpha_0\mathbf{g}^{(0)} \Rightarrow \mathbf{b} = \mathbf{Q}\mathbf{x}^{(0)} - \alpha_0\mathbf{Q}\mathbf{g}^{(0)}$

 $\Rightarrow \alpha_0 \mathbf{Q} \mathbf{g}^{(0)} = \mathbf{Q} \mathbf{x}^{(0)} - \mathbf{b}.$

Since $\mathbf{x}^{(0)} \neq \mathbf{Q}^{-1}\mathbf{b} \Rightarrow \mathbf{g}^{(0)} = \mathbf{Q}\mathbf{x}^{(0)} - \mathbf{b} \neq \mathbf{0}$. Thus, $\mathbf{Q}\mathbf{g}^{(0)} = \frac{1}{\alpha_0}\mathbf{g}^{(0)}$, so $\mathbf{g}^{(0)}$ is an eigenvector of \mathbf{Q} .

If $\mathbf{g}^{(0)}$ is an eigenvector of \mathbf{Q} , then there exists $\lambda \in \mathbb{R}$ s.t $\mathbf{Q}\mathbf{g}^{(0)} = \lambda \mathbf{g}^{(0)}$.

It follows $\mathbf{Q}x^{(1)} = \mathbf{Q}(\mathbf{x}^{(0)} - \alpha_0 \mathbf{g}^{(0)}) = \mathbf{Q}\mathbf{x}^{(0)} - \alpha_0 \lambda \mathbf{g}^{(0)}$ $= \mathbf{Q}\mathbf{x}^{(0)} - \frac{\mathbf{g}^{(k)^{\top}}\mathbf{g}^{(k)}}{\lambda \mathbf{g}^{(k)^{\top}}\mathbf{g}^{(k)}} \lambda \mathbf{g}^{(k)} = \mathbf{Q}\mathbf{x}^{(0)} - \mathbf{g}^{(0)}$

$$= \mathbf{Q} \mathbf{x}^{(0)} - \frac{\mathbf{g}^{(k)^{\top}} \mathbf{g}^{(k)}}{\lambda \mathbf{g}^{(k)^{\top}} \mathbf{g}^{(k)}} \lambda \mathbf{g}^{(k)} = \mathbf{Q} \mathbf{x}^{(0)} - \mathbf{g}^{(0)}$$

Since $\mathbf{g}^{(0)} = \mathbf{Q}\mathbf{x}^{(0)} - \mathbf{b} \Rightarrow \mathbf{Q}x^{(1)} = \mathbf{b} \Rightarrow x^{(1)} = \mathbf{Q}^{-1}\mathbf{b}$, the sequence converges in one step.

- **8.21** (a) $f(x) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{Q}\mathbf{x} \mathbf{x}^{\top}\mathbf{b} + c$ where $\mathbf{Q} = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}, c = 1.$ $0 < \alpha < \frac{2}{\lambda_{\max}\mathbf{Q}} = \frac{1}{5}$, so the largest step size possible is $\frac{1}{5}$.
 - (b) $f(x) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{Q}\mathbf{x} \mathbf{x}^{\top}\mathbf{b} + c$ where $\mathbf{Q} = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -16 \\ -23 \end{bmatrix}$, $c = \pi^2$. $0 < \alpha < \frac{2}{\lambda_{\max}\mathbf{Q}} = \frac{1}{5}$, so the largest step size possible is $\frac{1}{5}$.
- 8.22 $\gamma_k = \beta \frac{\mathbf{g}^{(k)^{\top}} \mathbf{g}^{(k)}}{\mathbf{g}^{(k)^{\top}} \mathbf{Q}^{-1} \mathbf{g}^{(k)}} \left(2 \frac{\mathbf{g}^{(k)^{\top}} \mathbf{g}^{(k)}}{\mathbf{g}^{(k)^{\top}} \mathbf{Q} \mathbf{g}^{(k)}} \beta \frac{\mathbf{g}^{(k)^{\top}} \mathbf{g}^{(k)}}{\mathbf{g}^{(k)^{\top}} \mathbf{Q} \mathbf{g}^{(k)}} \right)$ $= \beta (2 \beta) \frac{(\mathbf{g}^{(k)^{\top}} \mathbf{g}^{(k)})^2}{(\mathbf{g}^{(k)^{\top}} \mathbf{Q}^{-1} \mathbf{g}^{(k)})(\mathbf{g}^{(k)^{\top}} \mathbf{Q} \mathbf{g}^{(k)})}$ $0 < \frac{\lambda_{\min} \mathbf{Q}}{\lambda_{\max} \mathbf{Q}} \leq \frac{(\mathbf{g}^{(k)^{\top}} \mathbf{g}^{(k)})^2}{(\mathbf{g}^{(k)^{\top}} \mathbf{Q}^{-1} \mathbf{g}^{(k)})(\mathbf{g}^{(k)^{\top}} \mathbf{Q} \mathbf{g}^{(k)})} \text{ because } \mathbf{Q} > 0.$ If $0 < \beta < 2$, then $\beta (2 \beta) > 0$, so $\gamma_k \geq \beta (2 \beta) \frac{\lambda_{\min} \mathbf{Q}}{\lambda_{\max} \mathbf{Q}} > 0$. Because

 $\sum_{k=0}^{\infty} \gamma_k \ge \sum_{k=0}^{\infty} \beta(2-\beta) \frac{\lambda_{\min} \mathbf{Q}}{\lambda_{\max} \mathbf{Q}} = \infty, \text{ the sequence converges globally to } \mathbf{x}^*.$

If $\beta \leq 0$ or $2 \leq \beta$, then $\beta(2-\beta) \leq 0$. It follows $\gamma_k \leq \beta(2-\beta) \frac{\lambda_{\min} \mathbf{Q}}{\lambda_{\max} \mathbf{Q}} \leq 0$.

Thus, $\sum_{k=0}^{\infty} \gamma_k$ does not diverge to ∞ . Hence, if $\sum_{k=0}^{\infty} \gamma_k = \infty \Rightarrow 0 < \beta < 2$.