Thus, generally the control calculations required by H(s) can be implemented U_{Sing} . $U(t) = Z^{-1} \{d(s)E(s)\} + \sum_{K=1}^{\infty} C_K \times_K (t)$ where $\times_K (t) = L_K \times_K (t) + e(t) \neq M$ different set order DEs

For $\times_K (t)$ Can be implemented using:

L_K are poles of H(s), and C_K are the residues: $C_K = \left\{ (s-l_K) \left[\frac{a'(s)}{b(s)} \right] \right\}_{s=l_K}$

What about 2 '{d(s) E(s)}? Recall d(s) is a polynomial with degree deg {a(s)} - deg {b(s)}

If deg [d(s)] > 1 (deg [a(s)] > deg [b(s)])

i.e. $d(s) = d_0 + d_1 s + d_2 s^2 + \cdots$

Carnot be implemented with assumed measurements.

Thus, these add'l terms can only be implemented if deg {d(s)} = Ø (i.e. d(s) is just a constant)

Or equivalently deg {a(s)} = deg {b(s)}

numerator of H(s)

To Denom H(s)

Relative Degree

The relative degree of a transfer function G(s)

is: P(G) = Degree of Denom poly - Degree of rum poly

=#poles of G - # zeros of G

From the above, the constraint for real-time implementation of compensator HISI is:

 $P(H) \geq \emptyset$

i.e. H(s) must have No more Zeros than it has poles.

=> Will be a significant constraint on our designs!

1.)
$$H(s) = G(s+1)^2 = Gs^2 + 12s + G$$

2.)
$$H(s) = \frac{6(s+1)^2}{(s+3)} = 6s-6 + \frac{24}{5+3}$$

=>
$$\{U(t) = 6\dot{e}(t) - 6e(t) + 24x_i(t)\}$$
 Not implemedally $\dot{x}_i(t) = -3x_i(t) + e(t)$

3.)
$$H(s) = \frac{6(s+1)^2}{(5+3)(5+5)} = 6 + \frac{12}{5+3} - \frac{48}{5+5}$$

=>
$$(u(t) = Ge(t) + /2x_1(t) - 48X_2(t))$$

 $\dot{X}_1(t) = -3x_1(t) + e(t)$
 $\dot{X}_2(t) = -5X_2(t) + e(t)$

Implementable!

Design Study I:

Suppose
$$G(s) = \frac{3}{5(s+2)}$$
, and we want a stable CL system with $W_8 = 6$, $8 = 45^{\circ}$.

With H(s) = K, these constraints are not adhievable. Since $\#G(6j) < -135^{\circ}$.

Using above example, we know specs are met if:
$$L(s) = \frac{6^2\sqrt{2}}{5(5+6)} \quad (\alpha = 6 \text{ in Prev.})$$
=> Choose
$$(6^2\sqrt{2}) \quad (s+2)$$

=> Choose

$$H(s) = \frac{6^2\sqrt{2}}{3} \frac{(s+2)}{(s+6)}$$

So L(s)=G(s)H(s) has desired properties

Note: Design here uses Stable Pde-Zero cancellation.

Design Study, II

Suppose instead want $w_{8}=6$, $8=60^{\circ}$. Specs can't be met so easily as above.

Need: $\angle L(j\omega_{Des})=-1200=3_{Des}-1800$ (8des=600 here, and $\omega_{Des}=6$ here)

But $\angle L(j\omega_{Des})=\angle S(j\omega_{Des})+\angle H(j\omega_{Des})$

Hence: 8 Des-1800 = *G(jwbes) + *H(jwbes)

Or: $\angle H(j\omega_{\text{Des}}) = \delta_{\text{Des}} - 180^{\circ} - \angle G(j\omega_{\text{Des}})$

= Oreq "phase Deficit"

Open to required phase (typically positive) that compensator must provide at whee to meet specs.

Now suppose we could ideally implement only a LHP zero in HCs)

(Note we can't do this generally, but it is a convenient hypothetical starting point to illustrate the Thought Process).

$$\Phi_{reg} = 41.56^{\circ}, H(s) = K(s-zc) K, zc>0$$

Choose K, Ze so that

and
$$|L(j\omega_{bes})| = 1$$

Decoupled!

$$\angle (j\omega_{\text{Des}}^{-2}z_{\text{C}}) = \tan^{-1}(\frac{\omega_{\text{Des}}}{-z_{\text{C}}}) = \tan^{-1}(\frac{\omega_{\text{Des}}}{|z_{\text{C}}|}) \text{ Since } 2< \emptyset$$

$$\Rightarrow \frac{\omega_{\text{Des}}}{|z_{\text{C}}|} = \tan \phi_{\text{req}} \text{ or } 2_{\text{C}} = -\left[\frac{\omega_{\text{Des}}}{\tan \phi_{\text{req}}}\right]$$

Here
$$2c = -\left[\frac{6}{\tan 41.56}\right] = -6.77$$

So now H(s)=K(S+6.77). Find K

Let
$$L_o(s) = L(s)]_{K=1} => L(s) = KL_o(s)$$

Then choose
$$K = \frac{1}{|L_o(j\omega_{des})|}$$

Since then

i.e. Where is mag xover freq. for Lijul, as desired

Here:
$$L_o(s) = \frac{3(s+6.77)}{5(s+2)}$$

Above is not generally implementable P(H)< Ø

=> H(s) must contain at least 1 (LHP) pole to balance the zero (make p(H) > Ø)

=> LHP poles contribute negative phase, hence work
against our objectives

One strategy (not necessarily the best, but easy to do):
put pole of H(s) so that its impact on phase of L(jw)
is negligible at least near desired crossover when

i.e. $H(s) = K \frac{(s-zc)}{(s-Pe)}$

with IPc ≥ 10w Des

(Recall Pc will change phase starting for $\omega \gtrsim \frac{1Pel}{10}$; want this above woes).

So choose: $\chi(j\omega_{\text{Des}}-2c) = \Phi_{\text{reg}} + 5.7^{\circ}$

Then choose K as before.

For our example we need

$$\Rightarrow L_0(s) = \frac{3(s+5.54)}{5(s+2)(s+60)}$$

$$\Rightarrow$$
 K = 93.37

Note big increase in K! Generally associated with bigger u(t). Must check for saturation!

Ideal (pure zero) result obtained As Pc->-00 (pole very for into LHP), but is associated with very large control inputs. Can do some simple Zc.Pc optimization to moderate control magnitude

Simple optimization of required location for 72

We have seen a simple strategy for choosing required pole in H(1) is to make $p_c < -10 \, \text{Wzes}$

=> Ensures P_c subtracts no more than 5.7° from $\angle H(j\omega_{bes})$, $CASY to adjust location of <math>Z_c$ to "make up" this phase loss to maintain $\angle H(j\omega_{bes}) = \mathcal{O}_{req}$.

However, such a strategy often results in undesireably (urge u(t).

Try to balance the competing requirements by Finding Minimum possible ratio Pe/ze which still provides $2H(j\omega_{Des}) = \Phi_{req}$.