#### Electromagnetc Theory: PHYS330

Jordan Hanson

March 28, 2022

Whittier College Department of Physics and Astronomy

## Summary

#### Week 4 Summary

- 1. Atoms, polarizations, and dipole moments
- 2.  $\vec{P}$ , dipole per unit volume, and bound charges
- 3.  $\vec{D}$ , the electric displacement
- 4. Linear dielectrics

From the multipole expansion, the monopole and dipole terms are (asynchronous video content):

$$V(r,\theta)_{n=0} = \frac{1}{4\pi\epsilon_0} \frac{\int_{all} \rho(\vec{r'}) d\tau'}{r} \tag{1}$$

$$V(r,\theta)_{n=0} = \frac{1}{4\pi\epsilon_0} \frac{\int_{all} \rho(\vec{r'})d\tau'}{r}$$
(1)  
$$V(r,\theta)_{n=1} = \frac{1}{4\pi\epsilon_0} \frac{\hat{r} \cdot \int_{all} \vec{r'} \rho(\vec{r'})d\tau'}{r^2}$$
(2)

$$\vec{p} = \int_{all} \vec{r'} \rho(\vec{r'}) d\tau' \tag{3}$$

Valid for any charge distribution, useful for getting far-field E-fields:

$$\vec{p} = \int_{all} \vec{r'} \rho(\vec{r'}) d\tau'$$
 (4)

- Discrete charge distribution example: asynch. video content
- 2. Continuous: "similar" to calculating the moment of inertia of a mass distribution (only it's linear vector, not  $r'^2$ ).

For a dipole, with no other charges  $(\vec{p} = q\vec{d})$ :

$$V_{n=1}(r,\theta) = \frac{\hat{r} \cdot \vec{p}}{4\pi\epsilon_0 r^2}$$
 (5)

- 1. Using Eq. 5, calculate the electric field of a dipole in spherical coordinates.
- 2. Are there any regions for which the E-field is zero?
- 3. What happens when you set  $\partial E/\partial \theta = 0$ ?
- 4. Recall that the energy density of a field is  $u_E = \frac{1}{2}\epsilon_0 \vec{E} \cdot \vec{E}$ . For a given radius R, is the energy density higher at  $\theta = 0$  or  $\theta = \pi/2$ ?

Breakout rooms.

Atoms, polarizations, and dipole

moments

Suppose an external field  $\vec{E}$  induces a dipole moment  $\vec{p}$  in an atomic charge distribution:

$$\vec{p} = \alpha \vec{E}$$
 (6)

This statement is empirical, but it's true for "ordinary" field strengths: field isn't strong enough to ionize the atom.

What is the electric field a distance d from the center of a uniformly charged sphere of radius a? [Hint: use Gauss' law, and assume  $\rho$  is constant in spherical coordinates].



**Figure 1:** A simple atom-like charge distribution in (left) no external field, and (right) a uniform external field.

Result:

$$E = \frac{1}{4\pi\epsilon_0} \frac{qd}{a^3} \tag{7}$$

But then assume that p = qd, so

$$\alpha = 4\pi\epsilon_0 a^3 \tag{8}$$

| Н          | Не    | Li   | Be   | С    | Ne    | Na   | Ar   | K    | Cs   |
|------------|-------|------|------|------|-------|------|------|------|------|
| H<br>0.667 | 0.205 | 24.3 | 5.60 | 1.67 | 0.396 | 24.1 | 1.64 | 43.4 | 59.4 |

Figure 2: Do you understand the units of this table? The numbers are quoted as  $\alpha/4\pi\epsilon_0$ , in units of  $10^{-30}$  m<sup>3</sup>. What would they be in namometers cubed?

The trouble is that we cannot easily measure the volume of an atom (realm of quantum mechanics).

Molecules can also have a *permanent* dipole moment: polar molecules.



Figure 3: How would you calculate the dipole moment here?

Show that the torque on such a molecule in an external field is  $\vec{\tau} = \vec{p} \times \vec{E}$  (Professor example).

If you have (approximately) aligned polar molecules with an external field  $\vec{E} = E_0 \hat{x}$ , and then *reverse* the direction of the field, in what direction is the torque? Assume the dipole moments are in the xy-plane.

- A: −2
- B: ŷ
- C: 2
- · D: The torque is zero

In summary, there are two reasons there could be dipole moments within a material:

- 1. The atoms are stretched and you get an  $\alpha = 4\pi\epsilon_0 a^3$
- 2. The atoms or molecules are *rotated* and you get a dipole moment  $\vec{p}$  per atom/molecule.

Macroscopically, it is easier to demonstrate the polar molecule effect: https://youtu.be/riMrg\_k0\_\_w

 $ec{P}$ , dipole per unit volume, and

bound charges

We need to understand the field of a polarized material. Suppose we introduce the dipole moment per unit volume,  $\vec{P}$ .



**Figure 4:** The definition of the dipole moment per unit volume, and geometry.

This implies that

$$\vec{p} = \vec{P}d\tau' \tag{9}$$

$$V(r) = \frac{1}{4\pi\epsilon_0} \frac{\vec{p} \cdot \hat{\boldsymbol{x}}}{r^2} \tag{10}$$

$$V(r) = \frac{1}{4\pi\epsilon_0} \int_{\mathcal{V}} \frac{\vec{P}(\vec{r'}) \cdot \hat{\boldsymbol{x}} \, d\tau'}{\boldsymbol{z}^2}$$
 (11)

$$V(r) = \frac{1}{4\pi\epsilon_0} \int_{\mathcal{V}} \vec{P}(\vec{r'}) \cdot \nabla \left(\frac{1}{2}\right) d\tau'$$
 (12)

$$\nabla \cdot (f\vec{A}) = f(\nabla \cdot \vec{A}) + \vec{A} \cdot \nabla (f)$$
(13)

$$V(r) = \frac{1}{4\pi\epsilon_0} \left\{ \int_{\mathcal{V}} \nabla' \cdot \left( \frac{\vec{P}}{\imath} \right) d\tau' - \int_{\mathcal{V}} \frac{1}{\imath} \left( \nabla' \cdot \vec{P} \right) d\tau' \right\}$$
(14)

$$V(r) = \frac{1}{4\pi\epsilon_0} \left\{ \int_{\mathcal{V}} \nabla' \cdot \left( \frac{\vec{P}}{n} \right) d\tau' - \int_{\mathcal{V}} \frac{1}{n} \left( \nabla' \cdot \vec{P} \right) d\tau' \right\}$$
(15)

$$V(r) = \frac{1}{4\pi\epsilon_0} \left\{ \oint_{\mathcal{S}} \left( \frac{\vec{P}}{\imath} \right) \cdot d\vec{a}' - \int_{\mathcal{V}} \frac{1}{\imath} \left( \nabla' \cdot \vec{P} \right) d\tau' \right\}$$
(16)

$$d\vec{a}' = da'\hat{n} \tag{17}$$

$$\sigma_b = \vec{P} \cdot \hat{n} \tag{18}$$

$$\rho_b = -\nabla \cdot \vec{P} \tag{19}$$

$$V(r) = \frac{1}{4\pi\epsilon_0} \left\{ \oint_{\mathcal{S}} \frac{\sigma_b}{\imath} da' - \int_{\mathcal{V}} \frac{\rho_b}{\imath} d\tau' \right\}$$
 (20)

The appearance of bound charge.

Suppose we have a sphere with uniform polarization in the z-direction (and it is constant). The  $\rho_b$  is zero because

- · A: There is no bound charge inside a sphere.
- B: The divergence of a constant is zero.
- · C: By symmetry.
- D: Otherwise the integral over  $\rho_b$  would diverge.



**Figure 5:** The uniformly polarized sphere.  $\sigma_b = \vec{P} \cdot \hat{n} = P \cos \theta$ .

Think for a moment: in your own words, why do the field lines point in *opposite* directions just inside and just outside the surface of the sphere?



**Figure 6:** The uniformly polarized sphere.  $\sigma_b = \vec{P} \cdot \hat{n} = P \cos \theta$ .



**Figure 7:** The uniformly polarized sphere.  $\sigma_b = \vec{P} \cdot \hat{n} = P \cos \theta$ .



**Figure 8:** Whenever you think of bound charge density versus surface charge density, think of this picture.

**Conceptual question:** Given Eq. 20, what is the potential due a disk of surface bound charge  $\sigma_b$  at a point slightly above the surface? [Hint: if it helps, think of  $\sigma_b = \vec{P_0} \cdot \hat{z}$ , where  $P_0$  is a constant.]

# $\vec{D}$ , the electric displacement

Conclusion

#### Week 4 Summary

- 1. Atoms, polarizations, and dipole moments
- 2.  $\vec{P}$ , dipole per unit volume, and bound charges
- 3.  $\vec{D}$ , the electric displacement
- 4. Linear dielectrics