# Core-Maths-C4 - 2008-January

### Question 1



Figure 1

The curve shown in Figure 1 has equation  $y = e^x \sqrt{(\sin x)}$ ,  $0 \le x \le \pi$ . The finite region R bounded by the curve and the x-axis is shown shaded in Figure 1.

(a) Complete the table below with the values of y corresponding to  $x = \frac{\pi}{4}$  and  $\frac{\pi}{2}$ , giving your answers to 5 decimal places.

| x | 0 | $\frac{\pi}{4}$ | $\frac{\pi}{2}$ | $\frac{3\pi}{4}$ | π |
|---|---|-----------------|-----------------|------------------|---|
| у | 0 |                 |                 | 8.87207          | 0 |

(2)

(b) Use the trapezium rule, with all the values in the completed table, to obtain an estimate for the area of the region R. Give your answer to 4 decimal places.

(4)

(a) Use the binomial theorem to expand

$$(8-3x)^{\frac{1}{3}}$$
,  $|x|<\frac{8}{3}$ ,

in ascending powers of x, up to and including the term in  $x^3$ , giving each term as a simplified fraction.

(5)

(b) Use your expansion, with a suitable value of x, to obtain an approximation to  $\sqrt[3]{(7.7)}$ . Give your answer to 7 decimal places.

(2)

#### Question 3



Figure 2

The curve shown in Figure 2 has equation  $y = \frac{1}{(2x+1)}$ . The finite region bounded by the

curve, the x-axis and the lines x = a and x = b is shown shaded in Figure 2. This region is rotated through 360° about the x-axis to generate a solid of revolution.

Find the volume of the solid generated. Express your answer as a single simplified fraction, in terms of a and b.

(5)

#### Question 4

(i) Find  $\int \ln(\frac{x}{2}) dx$ .

(4)

(ii) Find the exact value of  $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx$ .

(5)

A curve is described by the equation

$$x^3 - 4y^2 = 12xy$$

(a) Find the coordinates of the two points on the curve where x = -8.

(3)

(b) Find the gradient of the curve at each of these points.

(6)

#### Question 6

The points A and B have position vectors  $2\mathbf{i} + 6\mathbf{j} - \mathbf{k}$  and  $3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$  respectively.

The line  $l_1$  passes through the points A and B.

(a) Find the vector  $\overrightarrow{AB}$ .

(2)

(b) Find a vector equation for the line l<sub>1</sub>.

(2)

A second line  $l_2$  passes through the origin and is parallel to the vector  $\mathbf{i} + \mathbf{k}$ . The line  $l_1$  meets the line  $l_2$  at the point C.

(c) Find the acute angle between l<sub>1</sub> and l<sub>2</sub>.

(3)

(d) Find the position vector of the point C.

(4)



Figure 3

The curve C has parametric equations

$$x = \ln(t+2), \quad y = \frac{1}{(t+1)}, \quad t > -1.$$

The finite region R between the curve C and the x-axis, bounded by the lines with equations  $x = \ln 2$  and  $x = \ln 4$ , is shown shaded in Figure 3.

(a) Show that the area of R is given by the integral

$$\int_{0}^{2} \frac{1}{(t+1)(t+2)} \, \mathrm{d}t. \tag{4}$$

(b) Hence find an exact value for this area.

(6)

(c) Find a cartesian equation of the curve C, in the form y = f(x).

(4)

(d) State the domain of values for x for this curve.

(1)

Liquid is pouring into a large vertical circular cylinder at a constant rate of 1600 cm<sup>3</sup> s<sup>-1</sup> and is leaking out of a hole in the base, at a rate proportional to the square root of the height of the liquid already in the cylinder. The area of the circular cross section of the cylinder is 4000 cm<sup>2</sup>.

(a) Show that at time t seconds, the height h cm of liquid in the cylinder satisfies the differential equation

$$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - k\sqrt{h}, \text{ where } k \text{ is a positive constant.}$$
(3)

When h = 25, water is leaking out of the hole at 400 cm<sup>3</sup> s<sup>-1</sup>.

(b) Show that k = 0.02 (1)

(c) Separate the variables of the differential equation

$$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - 0.02\sqrt{h},$$

to show that the time taken to fill the cylinder from empty to a height of 100 cm is given by

$$\int_{0}^{100} \frac{50}{20 - \sqrt{h}} \, \mathrm{d}h. \tag{2}$$

Using the substitution  $h = (20 - x)^2$ , or otherwise,

(d) find the exact value of 
$$\int_0^{100} \frac{50}{20 - \sqrt{h}} dh.$$
 (6)

(e) Hence find the time taken to fill the cylinder from empty to a height of 100 cm, giving your answer in minutes and seconds to the nearest second.

(1)