TD 0 : Études de fonctions

Exercice 1

Dans chacun des cas suivant, on admet que la fonction f est définie et dérivable sur le domaine \mathcal{D}_f . Calculer la dérivée de f dans chaque cas.

a)
$$f(x) = \cos(3x^2)$$
, $\mathcal{D}_f = \mathbb{R}$

d)
$$f(x) = \ln(2 + \sin x)$$
, $\mathcal{D}_f = \mathbb{R}$

b)
$$f(x) = (1 + \ln(x))^4$$
, $\mathcal{D}_f =]0; +\infty[$

e)
$$f(x) = \ln(|1 + x|), \quad \mathcal{D}_f = \mathbb{R} \setminus \{-1\}$$

c)
$$f(x) = \sqrt{1+x^2}$$
, $\mathcal{D}_f = \mathbb{R}$

f)
$$f(x) = \frac{e^{-x}}{x^3 - x^2}$$
, $\mathcal{D}_f = \mathbb{R} \setminus \{0, 1\}$

Exercice 2

Soit f la fonction dérivable, définie sur l'intervalle]0; $+\infty[$ par $f(x)=\mathrm{e}^x+\frac{1}{x}.$

1) Étude d'une fonction auxiliaire

- a) Soit la fonction g dérivable, définie sur $[0 ; +\infty[$ par $g(x)=x^2e^x-1.$ Étudier le sens de variation de la fonction g.
- b) Démontrer qu'il existe un unique réel a appartenant à $[0 ; +\infty[$ tel que g(a)=0.
- c) Déterminer le signe de g(x) sur $[0; +\infty[$.

2) Étude de la fonction f

- a) Déterminer les limites de la fonction f en 0 et en $+\infty$.
- b) On note f' la fonction dérivée de f sur l'intervalle]0; $+\infty[$. Démontrer que pour tout réel strictement positif x, $f'(x) = \frac{g(x)}{x^2}$.
- c) En déduire le sens de variation de la fonction f et dresser son tableau de variation sur l'intervalle $[0; +\infty[$.
- d) Démontrer que la fonction f admet pour minimum le nombre réel $m = \frac{1}{a^2} + \frac{1}{a}$.

Exercice 3

Pour chacune des fonctions suivantes :

- \triangleright déterminer son ensemble de définition \mathcal{D}_f
- ▷ déterminer, si elles existent, ses limites aux bornes de son ensemble de définition en précisant les asymptotes éventuelles,
- ⊳ étudier ses variations en précisant les extremums,
- \triangleright étudier le signe de f,
- \triangleright tracer l'allure de la courbe représentative de f dans un repère.

a)
$$f(x) = e^{-1/x^2}$$

c)
$$h(x) = \ln(5 - \sqrt{x^2 - 144})$$

e)
$$r(x) = \frac{\ln(1-x)}{\ln(x)}$$

b)
$$g(x) = \frac{e^x + e^{-x}}{2}$$

d)
$$k(x) = \frac{1}{x^3 + x^2 - 2x}$$

f)
$$t(x) = \sin\left(\frac{\pi}{1 + (\ln(x))^2}\right)$$

* * Exercice 4

On se place dans le plan muni d'un repère orthonormé (O, I, J) et du cercle trigonométrique de centre O et de rayon OI. Soit t un réel appartenant à l'intervalle $[-\pi; \pi]$. On note M le point image de $\frac{\pi}{3}$ sur le cercle trigonométrique, et N le point image de t. On considère enfin le point t milieu du segment t

On cherche la position de N sur le cercle trigonométrique telle que la distance IK soit minimale.

- 1) Quelles sont les coordonnées de M, N et K?
- 2) Justifier que, pour tout réel t appartenant à l'intervalle $[-\pi;\pi]$, on a

$$4IK^2 = 4 - 3\cos t + \sqrt{3}\sin t$$

- 3) On pose $f(t) = 4 3\cos t + \sqrt{3}\sin t$ Montrer que $f'(t) = 2\sqrt{3}\sin\left(t + \frac{\pi}{6}\right)$
 - a) Résoudre dans $[-\pi, \pi]$ l'inéquation $\sin\left(t + \frac{\pi}{6}\right) \ge 0$
 - b) En déduire le tableau de variation de la fonction f
 - c) Conclure.

Soit f une fonction dérivable de [0,1] dans [0,1] telle que pour tout $x \in [0,1]$, |f'(x)| < 1 Montrer que l'équation f(x) = x admet une unique solution dans [0,1].

- 1) Montrer que pour tout réel x > 0, $\ln(x) < x$.
- 2) En déduire que pour tout réel x > 0, $\ln(x) < 2\sqrt{x}$
- 3) En déduire la limite de $\frac{\ln x}{x}$ lorsque $x \to +\infty$.

Soient $\lambda, \mu > 0$ deux réels tels que $\lambda + \mu = 1$.

- 1) Montrer que pour tout $x, y \in]0; +\infty[$, $\lambda x + \mu y \ge x^{\lambda} y^{\mu}$ avec égalité si et seulement si x = y.
- 2) Soient $(a_1, a_2, \dots, a_p) \in (\mathbb{R}^{+*})^p$ et $(b_1, b_2, \dots, b_p) \in (\mathbb{R}^{+*})^p$ des réels strictement positifs. Montrer que

$$\sum_{k=1}^{p} a_k^{\lambda} b_k^{\mu} \le \left(\sum_{k=1}^{p} a_k\right)^{\lambda} \left(\sum_{k=1}^{p} b_k\right)^{\mu}$$