14. Convex functions and problems

- affine sets
- convex sets
- examples

Previous lecture

Euclidean ball and ellipsoid

Euclidean ball centred at x^* with radius r:

$$\mathcal{B}(x^*, r) = \{x | ||x - x^*||_2 \le r\}$$

Ellipsoid: Let $P \succ 0$. The set:

$$\{x | (x - x^*)P(x - x^*) \le 1\}$$

Norm balls

Norm: A function $\|\cdot\|$ is a norm if it satisfies:

- $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0
- $\|\alpha x\| = |\alpha| \|x\|$ for any $\alpha \in \mathbb{R}$
- $||x + y|| \le ||x|| + ||y||$

Any norm ball with centre x^* and radius r:

$$B(x^*, r) = \{x \mid ||x - x^*|| \le r\}$$

Convex cones

A set $S \subseteq \mathbf{R}^n$ is a **cone** if $x \in S \iff \alpha x \in S \ \forall \alpha \geq 0$

A set S is a **convex cone** if

A convex cone contains conic combinations of its elements

$$x, y \in \mathcal{S} \iff \theta_1 x + \theta_2 y \in \mathcal{S}, \ \forall \theta_1, \theta_2 \ge 0$$

Examples of convex cone

Operations that preserve convexity

Linear combinations

Intersections

Convex Polytopes

 ${\cal S}$ is a **convex polytope** if it is the intersection of halfspaces

Separating hyperplane theorem