<u>Página Principal</u> / Mis cursos / <u>GRADUADO-A EN INGENIERÍA INFORMÁTICA Y MATEMÁTICAS (2011) (297)</u> / <u>TOPOLOGÍA I (2122)-297 11 26 2122</u> / <u>Tema 1. Espacios topológicos</u> / <u>Cuestionario autoevaluación tema 1</u>

Comenzado el	domingo, 7 de noviembre de 2021, 16:48
Estado	Finalizado
Finalizado en	domingo, 7 de noviembre de 2021, 17:29
Tiempo empleado	40 minutos 52 segundos
Calificación	8,00 de 10,00 (80 %)

Correcta

Se puntúa 2,00 sobre 2,00 Sea (X,T) un espacio topológico y $A\subset X$ un subconjunto no vacío. El enunciado: "si A es abierto y cerrado, entonces ∂A es el conjunto vacío" es

Seleccione una:

- Verdadero
- Falso

La afirmación es verdadera porque $\partial A=\overline{A}\setminus \mathrm{int}(A)=A\setminus A=\emptyset$ La respuesta correcta es 'Verdadero'

Correcta

Se puntúa 2,00 sobre 2,00

Sea T la familia de subconjuntos de $\mathbb R$ definida por:

$$T=\{(a,+\infty)\cup\{0\}:a\in\mathbb{R}\}\cup\{\emptyset,\mathbb{R}\}.$$

Marcar la(s) respuesta(s) correcta(s).

- igcup a. (\mathbb{R},T) es un espacio topológico T_2
- igcup b. (\mathbb{R},T) es un espacio topológico T_1
- lacksquare c. (\mathbb{R},T) es un espacio topológico que no es T_1
- igcup d. (\mathbb{R},T) no es un espacio topológico

Respuesta correcta

 (\mathbb{R},T) es un espacio topológico. No es T_1 porque ninguno de sus puntos es un conjunto cerrado. Por tanto, tampoco puede ser T_2

La respuesta correcta es:

 (\mathbb{R},T) es un espacio topológico que no es T_1

Correcta

Se puntúa 2,00 sobre 2,00

Consideramos en $\mathbb R$ la topología generada por la base $\mathcal B=\{[a,b):a< b\}$. Marcar las familias que son base de entornos de $x\in\mathbb R$.

- \square a. $\{(x-r,x+r): r>0\}$
- lacksquare b. $\{[x,x+rac{1}{n}):n\in\mathbb{N}\}$
- \square C. $\{(x-rac{1}{n},x+rac{1}{n}):n\in\mathbb{N}\}$
- lacksquare d. $\{[x,x+r]:r>0\}$

Respuesta correcta

Las respuestas correctas son:

$$\{[x, x+r]: r>0\}$$

,

$$\{[x,x+\frac{1}{n}):n\in\mathbb{N}\}$$

Correcta

Se puntúa 2,00 sobre 2,00

Sea T_{CF} la topología de los complementos finitos. El enunciado: "el espacio topológico (\mathbb{R},T_{CF}) verifica el primer axioma de numerabilidad" es

Seleccione una:

- Verdadero
- Falso

Si un punto $x\in\mathbb{R}$ admite una base de entornos numerable $\mathcal{B}_x=\{U_i:i\in\mathbb{N}\}$, cada conjunto U_i es de la forma $\mathbb{R}\setminus F_i$, donde F_i es finito. Tomando $y\neq x$ tal que $x\notin\bigcup_{i\in\mathbb{N}}F_i$, se tiene que $\mathbb{R}\setminus\{y\}$ es un entorno de x que no contiene a ningún conjunto U_i

La respuesta correcta es 'Falso'

Incorrecta

Se puntúa 0,00 sobre 2,00

En $\mathbb R$ se considera la familia de conjuntos

$$\mathcal{B} = \{[a, b] : a \leqslant b\}.$$

Elegir las respuestas correctas.

- igcup a. $\mathcal B$ es base de la topología discreta de $\mathbb R$
- igcup b. ${\mathcal B}$ no es base de ninguna topología en ${\mathbb R}$
- igcup c. ${\mathcal B}$ es base de una topología en ${\mathbb R}$ distinta de la usual, la discreta y la trivial
- igcup d. ${\mathcal B}$ es base de la topología trivial de ${\mathbb R}$
- lacktriangle e. ${\cal B}$ es base de la topología usual de ${\Bbb R}$

×

Respuesta incorrecta.

La familia \mathcal{B} es una base de \mathbb{R} . Además, para todo $x \in \mathbb{R}$, se tiene que $\{x\} = [x-1,x] \cap [x,x+1]$, por lo que los conjuntos formados por un único punto son abiertos.

La respuesta correcta es:

 ${\mathcal B}$ es base de la topología discreta de ${\mathbb R}$

→ Problemas Tema 1

Ir a...

Prueba tema 1 ►