Mortality and its Measurement: Introduction and Rates

Demography Camp

Summer 2013

1 Introduction

Mortality: level of death or dying in a population

Table 1:	
U.S. females	# deaths
1985	989,000
1940	626.000

Why incorrect to claim higher mortality in 1985:

- more females in 1985
- \bullet more people exposed to the chance of dying

2 Demographic Rate

A better measure would relate the number of deaths to the size of the population. This is done through concept of a **demographic rate**.

 $Demographic \ Rate = \frac{\text{Number of occurrences of an event to the population}}{\text{Number of person years lived by the population}}$ at risk during the same time interval.

2.1 Occurrence-Exposure Rate

- Begins with the definition of some demographic event (E) e.g., a birth, death, a move from A to B, etc.
- **Numerator** = the number of occurrences of event (E) in some time period (often a calendar year)

• **Denominator** = the number of person-years lived in the same time interval by the population exposed to the risk of experiencing the event.

Can you think of any examples?

2.2 2 key concepts

- 1. At-risk population: population exposed to the chance of experiencing the event in question.
 - Ex. Only pregnant women are at risk of dying from maternal mortality
- 2. Person year: elapsed duration when one person survives for one year; or its equivalent.
 - Ex. Two individuals, each of whom survives for 6 months, together contribute one person year.

2.3 How to estimate person years when population growth is not constant?

- Total person years lived = Area under the curve
- Average population (\bar{P}) · length of the interval
- \bar{P} is often approximated by mid-period (or mid-year if t_2 $t_1=1$) population

Figure 1: Mid-Year Population Estimate

2.4 Crude Death Rate

$$Crude\ Death\ Rate\ in\ year\ t = \frac{\text{deaths in year t}}{\text{size of mid-year population}}$$

• CDR usually expressed per 1000 of population

• Lower U.S. female mortality in 1985 than in 1940

Advantages of CDR:

- Simple to calculate
- Variation in rates across cities useful to undertakers

Disadvantages:

• Influenced by changes in age composition (more later)

There is a better measure- Age Specific Rates

3 Age Specific Death Rates: $_nM_x$

 $_{n}M_{x}$ = age-specific death rate in year t between exact ages x and x+n

- Exact age = precise # of whole and fractional years elapsed since birth
 - x: exact age at beginning of interval
 - n: width of the interval (in years)
 - * Usually omitted if n=1

Example: $_5M_{60}$ is the death rate between exact ages 60 and 65, or the death rate in the age group 60-64 if the concept of age last birthday is meant.

Age-specific death rates apply the CDR concept to the specific age intervals:

The number of deaths in a given year to
$${}_{n}M_{x} = \frac{\text{persons between exact ages x and x+n}}{\text{The number of person years lived by the population}} = \frac{{}_{n}D_{x}}{{}_{n}P_{x}}$$
 between exact x and x+n in the same year

A complete set of rates covering all age groups is an age-specific **moratliy** schedule

Table 4: Example 1985 U.S. Women Death Rate (pre 1000 population)

Age	Death rate
Under 1 year	9.3
1-4	0.4
5-9	0.2
10-14	0.2
15-19	0.5
20-24	0.5
25-29	0.6
30-34	0.8
35-39	1.1
40-44	1.7
45-49	2.9
50-54	4.6
55-59	7.2
60-64	11.2
65-69	16.7
70-74	26
75-79	40.9
80-84	69.6
85 years and over	143.4

Note the typical age pattern:

- Sharp decline prior to age 5
- Minimum \sim age 10
- \bullet More rapid increase age > 45
- Last age group is "open" age interval

3.1 Age Patterns of Mortality Decline

When mortality declines from high to low levels:

• Death rates fall at all ages

- Largest absolute decline in infancy
- Largest relative decline 1-4, 5-9, 10-14

Table 5: Example Model West, Female. $1000 \cdot_n M_x$				
Age	e 30	e 75	Absolute Decline	%Decline
<1	307.3	15.51	-292	95
1-4	50.4	0.61	-50	98.8
5-9	10.3	0.26	-10	97.5
10-14	8	0.21	-8	97.4
15-19	10.5	0.36	-10	96.6
20-24	13.2	0.51	-13	96.2
:				
70-74	106.4	37.8	-69	64.5
10-14	100.4		-09	04.5
80-84	228.4	110.2	-118	51.8
90 - 94	508.7	294.4	-214	42.1

For the future, the largest absolute declines in death rates in low-mortality populations are likely to occur at the older ages. Why?

3.2 Digression on Infant Mortality

Infant Mortality Rate = Deaths under age 1 in a given year per 1000 live births in the same year $\neq {}_1M_0$

Infant Mortality Rate = Neonatal Mortality Rate = Postneonatal Mortality Rate (under 1 year) (Under 28 days) (28 days - 1 year)

	Infant Mortality	Neonatal Mortality	Postneonatal Mortality
All races	10.6	7	3.7
White	9.3	6.1	3.2
All other	15.8	10.3	5.5
Black	18.2	12.1	6.1

- Infant Mortality steadily improving
- US still lags far behind other MDCs

Table 7: Infant Mortality Rate in Select Countries

Rank (1985)	Rank (2005)	Country	IMR (1985)	IMR (2005)
1		Finland	6	3.1
2		Japan	6.2	2.8
3		Sweden	7	3.1
19	34	U.S.	10.6	6.6
		Afghanistan	205	172
		Sierra Leone	200	165
		Gambia	193	76