Capítulo 4. CAPACIDADE E DIELÉTRICOS

- 4.1 Condensador
- 4.2 Definição de Capacidade
- 4.3 Cálculo de Capacidades
- 4.4 Associação de Condensadores
 - Ligação em Paralelo
 - Ligação em Série
- 4.5 Energia de um Condensador Carregado
- 4.6 Condensadores com Dielétricos

4.1 Condensador

- Dispositivo que armazena cargas elétricas (energia).
- Usado em circuitos elétricos:
 - para sintonizar a frequência dos recetores de rádio;
 - como filtros, nas fontes de potência;
 - Como armazenadores de energia nas unidades de flash eletrónico...
- Constituído, essencialmente, por dois condutores separados por um isolador.
- A capacidade depende da forma geométrica do condensador e da natureza do material que separa os condutores carregados, o dielétrico.

Um condensador, de placas paralelas, é constituído por:

Duas placas (iguais) de material **condutor**, separadas de uma distância d (sendo d << A (área das placas)

No espaço d entre as placas existe um dielétrico (por ex. o ar)

O <u>material condutor</u> é neutro: $Q_{placa\ 1} = Q_{placa\ 2} = 0$

Placas são de material condutor - Um material condutor é caracterizado por possuir cargas "livres" (eletrões)

Assim, se o material condutor estiver numa região de campo elétrico, cada carga "livre" vai sentir uma força ($\vec{F} = q \; \vec{E}$), e vai mover-se

Relembrando: Se \vec{E} uniforme e se \vec{E} // deslocamento

$$\Delta V^{A-B} = -\int_A^B \vec{E} \cdot d\vec{r} = -E d$$

Assim, se se ligar uma bateria/fonte de tensão/fonte de potencial/pilha às placas do condensador, cada carga "livre" vai sentir uma força: $\vec{F}=q\;\vec{E}$, e vai mover-se

$$\vec{F} = q \vec{E}$$

- A placa 1 vai perder eletrões: ficando assim com Q > 0 (= Q₁)
- A placa 2 vai ganhar esses eletrões:
 ficando assim com Q< 0 (=-Q₁)

PS1: Q = Ne

A transferência de carga entre as 2 placas (causada pela d.d.p. da bateria/ fonte/campo elétrico) cessa quando o sistema atingir o equilíbrio, ou seja quando:

Diz-se que o condensador está carregado

PS2: Conservação de carga

O que acontecerá se....

- A descarga pode ser observada, muitas vezes como uma centelha (faísca).
- Tocando acidentalmente nas placas opostas dum condensador carregado, os dedos funcionam como condutores causando um choque eléctrico.

4.2 Definição de Capacidade

A razão entre o módulo da carga nas placas e a d.d.p entre as placas define-se por Capacidade do condensador

valor absoluto da diferença de potencial entre as placas do condensador (V)

PS: Usa-se V_C , em vez de ΔV para simplificação e significa o módulo da diferença de potencial (geralmente designado simplesmente por ddp) entre as placas.

Símbolo do condensador

Capacidade do condensador

$$C = \frac{Q}{V_C}$$

Coulomb/volt = 1 farad (F)

Capacidade é sempre uma grandeza positiva

Q/V é constante para um dado condensador

Condensadores típicos $1\mu F - 1pF$

4.3 Cálculo de Capacidades- condensador de placas paralelas

Consideremos o condensador:

- Duas placas planas, paralelas, da mesma área A, separadas da distância d
- Uma placa com carga +Q, outra –Q
- $\sigma = Q/A$

Placas muito juntas (em comparação com o comprimento e a largura das placas: d<<<A) ⇒ podemos desprezar os efeitos das bordas. Assim:

O que já sabemos 1:

$$\overrightarrow{E} \qquad \overrightarrow{E} \qquad$$

$$\left| \vec{\underline{E}} \right| = \frac{\sigma}{2\varepsilon_0}$$

O que já sabemos 2:

$$\left| \vec{\underline{E}} \right| = \frac{\sigma}{2\varepsilon_0}$$

$$\sigma = Q/A$$

Então, se for um condensador, como a carga nas duas placas é igual em modulo, então :

$$\left| \vec{\underline{E}} \right| = \frac{\sigma}{2\varepsilon_0} = \left| \vec{\underline{E}} \right| = \frac{\sigma}{2\varepsilon_0}$$

O campo elétrico é uniforme entre as placas e nulo em todos os outros pontos do espaço

Assim, já sabemos:

$$|\vec{E}| = \frac{\sigma}{\varepsilon_0} = \frac{Q}{A\varepsilon_0}$$

•
$$C = \frac{Q}{V_c}$$

•
$$|V_C| = E d$$

$$C = \frac{Q}{E d} = \frac{Q A \varepsilon_0}{Q d} = \frac{\varepsilon_0 A}{d}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \, (SI)$$

$$(\Delta V^{Placa1-placa2} = V_C = -\int_{+}^{-} \overrightarrow{E} \cdot d\overrightarrow{r} = \int_{-}^{+} \overrightarrow{E} \cdot d\overrightarrow{r} = E d)$$

$$(\cos 0^\circ) \qquad (\cos 180^\circ)$$

A capacidade dum condensador de placas planas e paralelas é proporcional à área das placas e inversamente proporcional à separação entre as placas.

Para um condensador esférico o procedimento é o mesmo

- Duas cascas esféricas concêntricas de raios a e b:
- i) $EA = q/\epsilon_o$

(Lei Gauss onde sup. Gauss é uma esfera de raio r concêntrica com o sistema)

ii)
$$\Delta V^{Placa1-placa2} = V_C = \int_{-}^{+} \vec{E} \cdot d\vec{r} = E \ d$$
)

$$C = 4\pi\varepsilon_0 \frac{a \, b}{(b-a)}$$

$$C = \frac{Q}{V_C}$$
 e $C = \frac{\varepsilon_0 A}{d}$

A quantidade de carga que um condensador pode armazenar, para uma dada d.d.p. V, aumenta quando C aumenta \Rightarrow

- C aumenta com o aumento da área A
- C aumenta com a diminuição da distancia entre as placas

Linhas "reais" do campo eléctrico

- Campo uniforme na região central.
- Campo não uniforme nas bordas das placas.

4.4 Combinações/associação de Condensadores

• Condensador equivalente e capacidade equivalente

 C_{eq} : é a capacidade de um só condensador que para um mesmo valor de tensão da fonte de tensão acumula a mesma carga (ou seja, a mesma energia (chamado de condensador equivalente)

• Cálculo da capacidade equivalente: Condensadores ligados em série e condensadores

ligados em paralelo

Paralelo:

Placa 1

Do circuito vê-se que:

- i) o terminal (+) da fonte está ligado à placa 1 do C_1 e à placa 1 do C_2 ;
- ii) o terminal (-) da fonte está ligado à placa 2 do C_1 e à placa 2 do C_2 ;

$$V_{C1} = V_{C2} = V_{fonte} = V$$

Sabemos que:

i) a fonte vai transferir ("retirar") eletrões da placa 1 para a placa 2;

ii)
$$V_C = \frac{Q}{C}$$

$$V_{C1} = \frac{Q_1}{C_1} = V; \quad V_{C2} = \frac{Q_2}{C_2} = V$$

Do circuito: $V_{C1} = V_{C2} = V_{fonte} = V$

Sabemos: $V_c = \frac{Q}{C}$

$$V_{C1} = \frac{Q_1}{C_1} = V; \quad V_{C2} = \frac{Q_2}{C_2} = V$$

$$Q_{total} = Q_1 + Q_2$$

$$Q_{total} = C_1 V + C_2 V$$

$$Q_{total} = (C_1 + C_2) V$$

$$C_{eq} = C_1 + C_2 + \dots + C_n$$

Série:

Do circuito vê-se que:

- i) o terminal (+) da fonte está ligado à placa 1 do C_1 ;
- ii) o terminal (-) da fonte está ligado à placa 2 do C₂

Sabemos que

i) a fonte vai transferir ("retirar") eletrões da placa 1 de C₁ para a placa 2 de C₂;

$$Q_{placa1C1} = Q_{placa2C2}$$

$$Q_{C1} = Q_{C2}$$

$$V_{C1} + V_{C2} = V_{fonte} = V$$

$$\bigcirc$$

Do circuito:
$$Q_{C1} = Q_{C2} = Q$$

$$V_{C1} + V_{C2} = V_{fonte} = V$$

Sabemos:
$$V_{Ci} = \frac{Q_i}{C_i}$$

$$\frac{Q_1}{C_1} + \frac{Q_2}{C_2} = V$$

$$\frac{Q}{C_1} + \frac{Q}{C_2} = V$$

$$Q(\frac{1}{C_1} + \frac{1}{C_2}) = V$$
 \Rightarrow $1/C_{eq} = 1/C_1 + 1/C_2$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

Exemplo:

Determinar a capacidade equivalente, entre os pontos ${\bf a}$ e ${\bf b}$, do circuito representado. (todos os valores da capacidade estão em unidades de μF)

4.5 Energia num Condensador Carregado

Um condensador armazena energia.

Cargas de sinais opostos (naturalmente) atraem-se, logo.....

Vamos analisar no processo de carga e o que se passa do ponto de vista das cargas transferidas

Seja q a carga no condensador, num certo instante (t_1) , durante o processo de carga.

Assim:

i) nesse instante a d.d.p. aos terminais do condensador é:

$$V_{C,t1} = \frac{q}{C}$$

ii) a energia potencial elétrica do elemento de carga seguinte, no processo de carga, vai variar de:

$$dV = \frac{dE_{pot,dq}}{dq}$$

$$dE_{pot,dq} = dqV_{C,t1}$$

PS: cargas iguais repelem-se, logo torna-se mais difícil a transferência; velocidade carga diminui; Ecin da carga diminui; Epot da carga aumenta

$$dE_{pot,dq} = dqV_{C,t1}$$
 e $V_{C,t1} = q/C$

Então, no processo de carga (desde Q=0 a Q_{final}= Q) a variação da E_{pot} é:

$$E_{pot} = \int_{0}^{Q} dE_{pot,dq} = \int_{0}^{Q} dq V_{C,t1} = \int_{0}^{Q} dq \frac{q}{C} = \frac{1}{C} \int_{0}^{Q} q dq = \frac{1}{C} \frac{Q^{2}}{2}$$

$$E_{pot} = \frac{1}{2} \frac{Q^2}{C}$$

$$E_{pot} = \frac{1}{2} \frac{Q^2}{C}$$

$$V_{Ci} = \frac{Q_i}{C_i} \qquad \qquad C_i = \frac{Q_i}{V_{Ci}}$$

$$E_{pot} = \frac{1}{2} \frac{Q^2}{C}$$

$$V_{Ci} = \frac{Q_i}{C_i} \longleftrightarrow C_i = \frac{Q_i}{V_{Ci}}$$

$$E_{pot} = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} QV$$

$$E_{pot} = \frac{1}{2} \frac{Q^2}{C}$$

$$V_{Ci} = \frac{Q_i}{C_i}$$
 $Q_i = V_{Ci} C_i$

$$E_{pot} = \frac{1}{2} \frac{Q^2}{C}$$

$$V_{Ci} = \frac{Q_i}{C_i} \Leftrightarrow Q_i = V_{Ci}C_i$$

$$E_{pot} = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} CV^2$$

$$E_{pot} = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} QV = \frac{1}{2} CV^2$$

Aplica-se a qualquer *Condensador*, independentemente da geometria.

• A energia num condensador pode ser considerada como a energia no $ilde{E}$ criado entre as placas do condensador, no processo de carga

$$\left(\overrightarrow{E} \propto Q \right)$$

4.5 Condensadores com Dielétricos

• Dielétrico é um material não condutor.

 Quando se insere um material dielétrico entre as placas de um condensador, a capacidade aumenta.

• Se o dielétrico encher completamente o espaço entre as placas, a capacidade aumenta por um factor adimensional, denominado constante dielétrica (k).

$$C = k C_{ar}$$

Condensador com ar entre as placas

$$C = \frac{Q}{V}$$
 , $C = \frac{\varepsilon_o A}{d}$

$$\varepsilon_0 = 8.85 \times 10^{-12} \text{ (SI)}$$

Condensador (com qualquer tipo de dielétrico entre as placas)

$$C = \frac{Q}{V}$$
 , $C = \frac{\varepsilon A}{d}$,

$$k = \frac{\mathcal{E}}{\mathcal{E}_0}$$
constante dielétrica

$$\varepsilon_0 = 8.85 \times 10^{-12} \text{ (SI)}$$

$$C = \frac{k\varepsilon_0 A}{d}$$

$$C = k C_{ar}$$

• O dielétrico aumenta a capacidade dum condensador: $C=rac{karepsilon_0 A}{d}=k\ C_{
m ar}$

$$C = \frac{k\varepsilon_0 A}{d} = k C_{\text{ar}}$$

<u>Material</u>	Const. Diel. (κ)	
Vácuo	1.000	
Ar (seco)	1.00059	
Poliestireno	2.56	
Teflon	2.1	
Papel	3.7	
Agua	80	
Óleo de Silicone	2.5	

Condensador com dielétrico entre placas Condensador com ar entre placas

D.d.p aos terminais de um condensador:

$$\Delta V = V_2 - V_1 = V_C$$

$$V_C = \frac{Q}{C}$$

Capacidade de um condensador:

$$C = \frac{\varepsilon A}{d}$$

$$\varepsilon = k \varepsilon_0$$

Condensadores em série

1- possuem a mesma carga: Q1=Q2=...=Qn

2- Capacidade equivalente:

$$\frac{1}{C_{eq}} = \sum_{i=1}^{n} \frac{1}{C_i}$$

Condensadores em paralelo

1- possuem a mesma d.d.p aos seus terminais

$$V_{C1} = V_{C2} = \dots = V_{Cn}$$

2- Capacidade equivalente:

$$C_{eq} = \sum_{i=1}^{n} C_i$$

Efeito de introduzir um material com constante dielétrica k≠1 entre as placas de um condensador mantendo a fonte/bateria ligada:

$$C_o = rac{arepsilon_0}{d}$$
 $V_{Co} = rac{q_o}{c_o} = \mathsf{V}_{\mathsf{bateria}}$ $q_o = C_o \; \mathsf{V}_{\mathsf{bateria}}$

$$C_o = \frac{\varepsilon_0 A}{d}$$

$$V_{Co}=rac{q_{_0}}{c_{_o}}$$
=V $_{
m bateria}$

$$q_o = C_o V_{\text{bateria}}$$

fonte/bateria ligada ao Condensador

$$C_1 = \frac{K \,\varepsilon_0 \,A}{d} = K \,C_0 > C_0$$

$$V_{C1} = V_{\text{bateria}} = \frac{q_1}{C_1} = \frac{q_1}{kC_0}$$

$$q_1 = K(C_o V_{\text{bateria}}) = Kq_o$$

Efeito de introduzir um material com constante dielétrica k≠1 entre as placas de um condensador mantendo a fonte/bateria ligada:

$$C_o = \frac{\varepsilon_0 A}{d}$$

$$C_1 = \frac{K \,\varepsilon_0 \,A}{d} = K \,C_0 > C_0$$

$$V_{Co} = rac{q_{_0}}{c_{_o}}$$
 = $V_{
m bateria}$

$$V_{C1} = V_{\text{bateria}} = \frac{q_1}{C_1} = \frac{q_1}{kC_0}$$

$$q_o = C_o V_{\text{bateria}}$$

$$q_1 > q_o$$

$$q_1 = K (C_o V_{\text{bateria}}) = K q_o$$

A presença do dielétrico permite acumular mais carga

Efeito de introduzir um material com constante dielétrica k≠1 entre as placas de um condensador após carregado e retirada a bateria:

$$C_o = \frac{\varepsilon_0 A}{d}$$
$$V_{Co} = \frac{q}{C_o}$$

$$C_o = \frac{\varepsilon_0 A}{d}$$

$$V_{Co} = \frac{q}{C_o}$$

fonte/bateria retirada (não ligada ao condensador)

Logo a carga é a mesma

$$C_1 = \frac{K \,\varepsilon_0 \,A}{d} = K \,C_0 > C_0$$

$$V_{C1} = \frac{q}{C_1} = \frac{q}{kC_0} < V_{CO}$$

Efeito de introduzir um material com constante dielétrica k≠1 entre as placas de um condensador após carregado e retirada a bateria:

A presença do dielétrico reduz a d.p.p.entre as placas do condensador

Para uma dada distribuição de cargas a presença do dielétrico diminui o valor do campo elétrico.

EX- A figura mostra um condensador de placas paralelas com A=5.56 cm² e 5.56 mm de separação entre placas.

A metade da esquerda do espaço entre placas é preenchido com um material de Cte dielétrica

K1 =7, enquanto na metade direita K2=12.

Qual a capacidade deste condensador?

i) 2 tipos diferentes de dielétricos: 2 C2

ii) A placa superior é comum aos 2 condensadores, metade de A para cada, toda ela está ao mesmo potencial iii) O mesmo se passa com a placa de baixo

C1 em paralelo com C2

$$C_{eq} = C_1 + C_2$$

$$C_2 = \frac{K2 \, \varepsilon_0 \, A/2}{d}$$

Ex2 - A figura mostra um condensador de placas paralelas com A=7.89 cm2 e 4.62 mm de separação entre placas.

A metade superior do espaço entre placas é preenchido com um material de Cte dielétrica K1 =11, enquanto a metade inferior com K2=12.

Qual a capacidade deste condensador?

iii) A segunda da placa do condensador 1 é a primeira placado condensador 2- traço a vermelho-, ou seja estas duas placas estão os mesmo potencial

iv) redesenhando....

$$C_1 = \frac{K1 \,\varepsilon_0 \,A}{d/2} \qquad \qquad C_2 = \frac{K2 \,\varepsilon_0 \,A}{d/2}$$

$$C_2 = \frac{K2 \, \varepsilon_0 \, A}{d/2}$$

C1 em série com C2:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \, (SI)$$

Condensadores: "resumo"

Condensadores são dispositivos que armazenam cargas eléctricas. A capacidade de um condensador depende da sua forma geométrica e da natureza do material (o dieléctrico) que separa os condutores carregados.

A capacidade de um condensador é a razão entre a carga do condensador e a diferença de potencial entre as duas placas condutoras $\mathcal{C}=$

A capacidade de um condensador de placas planas e paralelas é proporcional à área das placas e inversamente proporcional à separação entre as placas.
$$\varepsilon = k \varepsilon_0 (k \text{ ar} = 1)$$

Associação de Condensadores em paralelo:

$$C_{eq} = C_1 + C_2$$

Associação de Condensadores em série:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

Condensadores – "resumo"

A energia armazenada num condensador

$$\longrightarrow E_{pot} = \frac{q^2}{2C} \qquad E_{pot} = \frac{1}{2}CV^2$$

$$E_{pot} = \frac{1}{2}CV^2$$

CONDENSADOR COM DIELÉCTRICO

A capacidade de um condensador com dieléctrico \longrightarrow $C = \kappa C_0$

A capacidade de um condensador de placas paralelas com dieléctrico
$$\longrightarrow$$
 $C=\kappa\varepsilon_0\frac{A}{d}$