AM 1 - Ficha 5 Resolução Limites e Continuidade de funções

Felipe Pinto - 61387

21/04 - 2021.1

Conteúdo

Ι	Ques	stões	2
	Q4 - b) (i	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2
Qu	estão 7 Q7 - a) Q7 - b) Q7 - c)	$f_{(x)} = \sin(x^2)/x, x \in \mathbb{R} \setminus \{0\} \dots \dots$	2 3 3
II	Ext	ras	3
Ext	tra 1	$\lim_{x\to 0} x/\tan(x)$	3
Ext	tra 2	$\lim_{x\to 0}\sin(x)/\sqrt{x^2}$	3
Ext	tra 3	$\lim_{x\to 0} \sin^2(x) / \sqrt{x^4}$	4

Parte I

Questões

Questão 4

$$H_{(x)} = \left\{egin{array}{ll} 0 & & x < 0 \ 1 & & x \geq 0 \end{array}
ight.$$

Q4 - a

$$\iff \lim_{x \to 0^{-}} H_{(x)} = 0 \neq \lim_{x \to 0^{+}} H_{(x)} = 1$$

Q4 - b) Incompleta

(i)
$$H_{(x-1)}$$

(ii)
$$(H_{(x)} - H_{(x-1)}) x$$

$$y \in \mathbb{R} : \lim_{x \to y^{-}} H_{(x-1)} \neq \qquad \qquad y \in \mathbb{R} : \lim_{x \to y^{+}} (H_{(x)} - H_{(x-1)}) x$$

$$\neq \lim_{x \to y^{+}} H_{(x-1)} \iff y - 1 = 0 \iff \qquad \neq \lim_{x \to y^{-}} (H_{(x)} - H_{(x-1)}) x \implies$$

$$\iff y = 1 \qquad \qquad \Rightarrow y - 1 = 0 \implies y = 1$$

$$y \in \mathbb{R} : \lim_{x \to y^{+}} (H_{(x)} - H_{(x-1)}) x \neq$$

$$-1 = 0 \iff \int \lim_{x \to y^{-}} (H_{(x)} - H_{(x-1)}) x \implies$$

$$\implies y - 1 = 0 \implies y = 1$$

Questão 7

Q7 - a)
$$f_{(x)} = \sin(x^2)/x$$
, $x \in \mathbb{R} \setminus \{0\}$

$$\lim_{x \to 0^{-}} f_{(x)} = 0 = \lim_{x \to 0^{+}} f_{(x)} = 0 \quad \therefore \bar{f}_{(x)} = \begin{cases} \sin(x^{2})/x & x \neq 0 \\ 0 & x = 0 \end{cases}$$

Q7 - b)
$$g_{(x)} = e^{-1/(1-x^2)}, \quad x \in (-1,1)$$

$$\lim_{x \to -1^+} g_{(x)} = e^{\lim_{x \to -1^+} \left(\frac{-1}{1-x^2}\right)} = e^{-\infty} = 0;$$

$$\lim_{x \to 1^{-}} g_{(x)} = e^{\lim_{x \to 1^{-}} \left(\frac{-1}{1 - x^{2}}\right)} = e^{-\infty} = 0$$

$$\therefore \bar{g}_{(x)} = \begin{cases} e^{-1/(1-x^2)} & x \in (-1,1) \\ 0 & x = \{-1,1\} \end{cases}$$

Q7 - c)
$$h_{(x)} = e^{\tan(x)}, \quad x \in (-\pi/2, \pi/2)$$

$$\lim_{x \to (-\pi/2)^+} h_{(x)} = e^{\lim_{x \to (-\pi/2)^+} (\tan(x))} = e^{-\infty} = 0;$$

$$\lim_{x \to (\pi/2)^{-}} h_{(x)} = e^{\lim_{x \to (\pi/2)^{-}} (\tan(x))} = e^{\infty} = \infty$$

 $\therefore \nexists \bar{h}_{(x)}$ pois função não é prolongavel por continuidade em $\pi/2$

Parte II

Extras

Extra 1 $\lim_{x\to 0} x/\tan(x)$

$$= \lim_{x \to 0} \frac{x}{\sin(x)} \lim_{x \to 0} \cos(x) = 1$$

Extra 2 $\lim_{x\to 0} \sin(x)/\sqrt{x^2}$

$$= \lim_{x \to 0} = \sin(x)/|x|; \lim_{x \to 0^+} \sin(x)/x = 1 \neq \lim_{x \to 0^+} \sin(x)/(-x) = -1$$

$$\therefore \nexists \lim_{x \to 0} \sin(x) / \sqrt{x^2}$$

Extra 3 $\lim_{x\to 0} \sin^2(x)/\sqrt{x^4}$

$$= \lim_{x \to 0} \left(\frac{\sin(x)}{x} \right)^2 = 1$$