

UNIVERSIDADE FEDERAL ALFENAS (UNIFAL)

Bacharelado em Ciência da Computação

Disciplina	Método de entrega	Data de entrega
DCE692 - Pesquisa operacional	Moodle da disciplina	20/10/2021 às $20h00$
Professor		
Iago Augusto de Carvalho (iago.carvalho@unifa	l-mg.edu.br)	

Prova 02

Cada aluno deverá submeter um único arquivo .pdf com a resolução da prova. A prova pode ser realizada de duas maneiras:

- Com papel e caneta, sendo posteriormente escaneada e enviada
- Digitada em algum editor de texto, e.g., Word ou LaTeX

A prova deverá ser entregue no Moodle da disciplina até a data limite.

• Atrasos não serão tolerados

Exercício 1 (20 %)

Observe o modelo de Programação Linear abaixo representado na forma gráfica

Considere que a função objetivo do modelo seja max $x_1 + 3x_2$.

- a) Apresente o problema de programação linear dual associado a este modelo
- b) Qual é o valor da solução ótima?

Exercício 2 (15%)

Aplicativos de mapas que computam rotas entre duas diferentes localidades resolvem um problema de otimização. Neste problema, deve-se encontrar a rota entre um ponto A e um ponto B que otimize alguma preferência do usuário, como o tempo de viagem, o consumo de combustível, a distância ou o número de pedágios. Este tipo de aplicativo, normalmente, também fornece a opção para que o usuário compute a rota de um ponto A para um ponto B, mas com uma parada adicional em um ponto C.

Como você implementaria esta funcionalidade (computar o caminho mínimo entre duas localidades com uma parada adicional em uma terceira)? Qual (ou quais) problemas de otimização deve (ou deverão) ser resolvidos? Qual (ou quais) algoritmos pode(m) ser utilizados?

Exercício 3 (15%)

Diga se as afirmativas abaixo são verdadeiras ou falso e justifique sua resposta

- a) O algoritmo de Dijkstra é tradicionalmente utilizado para encontrar o menor caminho entre dois pontos em um grafo. Entretanto, ele pode ser facilmente modificado para encontrar o maior caminho entre estes mesmos dois pontos
- b) O algoritmo de Dijkstra pode ser utilizado mesmo que o grafo possua arestas ou arcos com peso negativo.
- c) Não é possível computar a árvore geradora mínima de um grafo desconexo

Exercício 4 (25%)

Compute e desenhe a árvore geradora mínima do grafo abaixo. Diga qual algoritmo você está utilizando e mostre a resolução do problema passo-a-passo. Além disso, diga qual é o peso desta árvore geradora mínima

Exercício 5 (25%)

Observe o grafo do Exercício 4. Compute o caminho mínimo entre o vértice \boldsymbol{a} e o vértice \boldsymbol{e} utilizando o algoritmo de dijkstra. Além disso, diga qual é o custo deste caminho.

Gabarito

Exercício 1

a) O modelo (primal) é

Desta forma, o dual é

b) A partir do dual, temos que o ponto ótimo é $z_1 = 1$ e $z_3 = 2$. Desta forma, o valor da solução ótima é 44. A solução ótima também poderia partir do priaml, onde teríamos que $x_1 = 8$ e $x_2 = 12$, obtendo o valor de 44 para a solução ótima.

Exercício 2

Basta resolver dois problemas de caminho mínimo. O primeiro seria do ponto A para o ponto C. Já o segundo, seria do ponto C para o ponto B. Para isto, poderiamos usar qualquer algoritmo de caminho mínimo em grafos, como o algoritmo de Dijkstra.

Exercício 3

- a) FALSO. Ao utilizar o algoritmo de Dijkstra para o problema do caminho máximo, este ficaria preso infinitamente em qualquer ciclo existente no grafo e nunca encontraria uma solução. Outra resposta possível para esta questão seria arguemntar que o problema do caminho máximo em grafos é um problema NP-Completo e, portanto, não pode ser resolvido por um algoritmo de tempo polinomial (a não ser que P = NP).
- b) Esta questão pode ser tanto verdadeira como falsa, dependendo da argumentação. Contanto que não existam ciclos de peso negativo, o algoritmo de Dijkstra pode ser utilizado.
- c) VERDADEIRO. Uma árvore geradora mínima é um subgrafo conexo que contém todos os vértices do grafo original. Como o grafo original é desconexo, não é possível termos uma árvore geradora. Neste caso, nós teriamos uma floresta geradora.

Exercício 4

Solução utilizando o algoritmo de Kruskal. As arestas, em ordem de peso, são

- (c,k) = 23 Inserida! Estrutura atual é (c,k)
- (a,g) = 25 Inserida! Estrutura atual é ((c,k),(a,g))
- (f,g) = 26 Inserida! Estrutura atual é ((c,k),(a,f,g))
- (f,i) = 29 Inserida! Estrutura atual é ((c,k),(a,f,i,g))
- (f,j) = 30 Inserida! Estrutura atual é ((c,k),(a,f,i,j,g))
- (b,j) = 34 Inserida! Estrutura atual é ((c,k),(a,b,f,i,j,g))

- \bullet (b, f) = 38 Não inserida, pois $b \in f$ já pertencem a mesma subestrutura da árvore geradora mínima
- (b,c) = 39 Inserida! Estrutura atual é (a,b,c,f,i,j,k,g)
- \bullet (a,i) = 43 Não inserida, pois a e i já pertencem a estrutura da árvore geradora mínima
- (e,m) = 49 Inserida! Estrutura atual é ((a,b,c,f,g,i,j,k),(e,m))
- (d,l) = 55 Inserida! Estrutura atual é ((a,b,c,f,g,i,j,k),(d,l),(e,m))
- (d,j) = 56 Inserida! Estrutura atual é ((a,b,c,d,f,g,i,j,k,l,(e,m))
- (a, l) = 56 Não inserida, pois $a \in l$ já pertencem a estrutura da árvore geradora mínima
- \bullet (d,k) = 58 Inserida! Estrutura atual é d e k já pertencem a estrutura da árvore geradora mínima
- (e,k) = 59 Inserida! Estrututura atual é (a,b,c,d,e,f,g,i,j,k,m)
- (k, m) = 66 Não inserida, pois k e m já pertencem a estrutura da árvore geradora mínima
- (d, m) = 68 Não inserida, pois $d \in m$ já pertencem a estrutura da árvore geradora mínima
- (d,g) = 71 Não inserida, pois $d \in g$ já pertencem a estrutura da árvore geradora mínima
- \bullet (c,h) = 79 Inserida! Agora nossa árvore geradora mínima está completa!
- (...)

Alternativamente, poderiamos ter outra árvore geradora mínima de mesmo valor trocando a aresta (d, j) pela aresta (a, l). O custo total destas estruturas é o mesmo: 23+25+26+29+30+34+39+49+55+56+59+79=504

Exercício 5

O caminho mínimo tem custo 204. Ele passa pelos vértices $\langle a, i, c, k, e \rangle$.