Exercices: Barbara Tumpach Relecture: François Lescure

Espaces $L^p(\mu)$

Définition. Étant donné un espace mesuré (Ω, Σ, μ) , on note pour $1 \le p < +\infty$,

On définit les espaces $L^p(\mu)$ comme les espaces vectoriels quotients de $\mathscr{L}^p(\mu)$ par la relation d'équivalence $f \sim g \Leftrightarrow f = g - \mu$ presque partout.

1 Inégalités de Young et de Hölder

Exercice 1

1. Soit $a, b \ge 0$ et soit $p, q \in (1, +\infty)$ tel que $\frac{1}{p} + \frac{1}{q} = 1$ (on dit que p et q sont conjugués au sens de Young). Montrer l'inégalité de Young :

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q.$$

On pourra considérer la fonction $\theta: \mathbb{R}^+ \to \mathbb{R}$ définie par $\theta(a) = \frac{1}{p}a^p + \frac{1}{q}b^q - ab$.

2. Soit de nouveau $p,q\in(1,+\infty)$ tel que $\frac{1}{p}+\frac{1}{q}=1$ et $f\in L^p(\mu),\ g\in L^q(\mu)$. En utilisant la question précédente, montrer que pour tout $\lambda>0$

$$\int_{\Omega} |fg| d\mu \leq \frac{\lambda^p}{p} \int_{\Omega} |f|^p d\mu + \frac{\lambda^{-q}}{q} \int_{\Omega} |g|^q d\mu.$$

Optimiser cette inégalité par rapport à λ et montrer l'inégalité de Hölder :

$$||fg||_1 \le ||f||_p ||g||_q$$
.

Cette inégalité est-elle vraie pour p = 1 et $q = +\infty$?

- 3. Soient p et p' dans $[1, +\infty[$ (pas nécessairement conjugués). Montrer que si f appartient à $L^p(\mu) \cap L^{p'}(\mu)$, alors f appartient à $L^r(\mu)$ pour tout r compris entre p et p'.
- 4. Montrer que si μ est une mesure finie alors

$$L^{\infty}(\mu)\subset\bigcap_{p\geq 1}L^p(\mu),$$

et, pour tout f,

$$\lim_{p\to+\infty} ||f||_p = ||f||_{\infty}.$$

5. Montrer que si $f \in L^p(\mu)$ et $g \in L^q(\mu)$ avec $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, alors $f \cdot g \in L^r(\mu)$ et

$$||fg||_r \le ||f||_p ||g||_q$$
.

Correction ▼ [005954]

Théorème de complétude de Riesz 2

Exercice 2

Théorème 1.(Théorème de Riesz) Pour tout $1 \le p \le +\infty$, l'espace $L^p(\mu)$ est complet.

Théorème 2. Soit p tel que $1 \le p \le +\infty$ et soit $\{f_n\}_{n \in \mathbb{N}}$ une suite de Cauchy dans $L^p(\mu)$ convergeant vers une fonction $f \in L^p(\mu)$. Alors il existe une sous-suite de $\{f_n\}_{n \in \mathbb{N}}$ qui converge ponctuellement presque-partout

Le but de cet exercice est de démontrer les théorèmes 1 et 2.

- 1. Cas de $L^{\infty}(\mu)$.
 - (a) Soit $\{f_n\}_{n\in\mathbb{N}}$ une suite de Cauchy de $L^{\infty}(\mu)$. Pour $k,m,n\geq 1$, considérons les ensembles

$$A_k := \{x \in \Omega, |f_k(x)| > ||f_k||_{\infty}\}; \quad B_{m,n} := \{x \in \Omega, |f_m(x) - f_n(x)| > ||f_m - f_n||_{\infty}\}.$$

Montrer que $E := \bigcup_k A_k \bigcup_{n,m} B_{m,n}$ est de mesure nulle.

- (b) Montrer que sur le complémentaire de E, la suite $\{f_n\}_{n\in\mathbb{N}}$ converge uniformément vers une fonction f.
- (c) En déduire que $L^{\infty}(\mu)$ est complet.
- 2. Cas de $L^p(\mu)$.
 - (a) Soit $1 \le p < +\infty$ et $\{f_n\}_{n \in \mathbb{N}}$ une suite de Cauchy dans $L^p(\mu)$. Montrer qu'il existe une sous-suite $\{f_{n_k}\}_{k\in\mathbb{N}}$ de $\{f_n\}_{n\in\mathbb{N}}$ telle que $\|f_{n_{k+1}} - f_{n_k}\|_p \le 2^{-k}$.
 - (b) Posons

$$g_k = \sum_{i=1}^k |f_{n_{i+1}} - f_{n_i}|$$
 et $g = \sum_{i=1}^{+\infty} |f_{n_{i+1}} - f_{n_i}|$,

où g est à valeurs dans $\mathbb{R} \cup \{+\infty\}$. Montrer que pour tout $k \ge 1$, on a $||g_k||_p < 1$, puis que $||g||_p \le 1$.

(c) En déduire que la série

$$f_{n_1} + \sum_{i=1}^{\infty} (f_{n_{i+1}} - f_{n_i})$$

est absolument convergente pour presque tout $x \in \Omega$. Notons f(x) sa somme lorsque celle-ci est finie et posons f(x) = 0 sinon. Vérifier que f est la limite ponctuelle des $\{f_{n_k}\}_{k \in \mathbb{N}}$ pour presque

(d) Montrer que $f - f_m \in L^p(\mu)$, $f \in L^p(\mu)$ et que $||f - f_m||_p \to 0$ quand $m \to +\infty$. Conclure.

Différentiabilité des normes $\|\cdot\|_p$

Exercice 3

3

Correction ▼

Soient f et g deux fonctions de $L^p(\mu)$ avec $1 . Montrer que la fonction <math>N : \mathbb{R} \to \mathbb{R}$ définie par

$$N(t) = \int_{\Omega} |f(x) + t \cdot g(x)|^p d\mu$$

est différentiable et que sa dérivée en t = 0 est donnée par

$$\frac{dN}{dt}\Big|_{t=0} = p \int_{\Omega} |f(x)|^{p-2} f(x)g(x) d\mu,$$

où par convention $|f(x)|^{p-2}f(x) = 0$ lorsque f = 0.

Correction ▼ [005956]

[005955]

1. Soit $a,b \ge 0$ et soit $p,q \in (1,+\infty)$ tel que $\frac{1}{p} + \frac{1}{q} = 1$. La fonction $\theta : \mathbb{R}^+ \to \mathbb{R}$ définit par $\theta(a) = \frac{1}{p}a^p + \frac{1}{q}b^q - ab$ est dérivable et :

$$\theta'(a) = a^{p-1} - b.$$

Cette dérivée s'annule lorsque $a = b^{\frac{1}{p-1}}$, est négative pour $a < b^{\frac{1}{p-1}}$ et positive pour $a > b^{\frac{1}{p-1}}$. On a

$$\theta(b^{\frac{1}{p-1}}) = \frac{1}{p}b^{\frac{p}{p-1}} + \frac{1}{q}b^q - b^{1+\frac{1}{p-1}} = 0.$$

Ainsi $\theta(a) \ge 0$, i.e.

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q.$$

2. Soit $f \in L^p(\mu)$ et $g \in L^q(\mu)$. D'après la question précédente, pour tout $\lambda > 0$ et pour μ -presque tout x:

$$|fg|(x) = |\lambda f(x) \cdot \frac{g(x)}{\lambda}| \le \frac{\lambda^p}{p} |f(x)|^p + \frac{\lambda^{-q}}{q} |g(x)|^q.$$

Ainsi

$$\int_{\Omega} |fg| d\mu \leq \frac{\lambda^p}{p} \int_{\Omega} |f|^p d\mu + \frac{\lambda^{-q}}{q} \int_{\Omega} |g|^q d\mu.$$

Posons

$$\Phi(\lambda) = \frac{\lambda^p}{p} \int_{\Omega} |f|^p d\mu + \frac{\lambda^{-q}}{q} \int_{\Omega} |g|^q d\mu.$$

La fonction Φ est dérivable et :

$$\Phi'(\lambda) = \lambda^{p-1} ||f||_p^p - \lambda^{-q-1} ||g||_q^q$$

Cette dérivée s'annule pour $\lambda_1 := \left(\frac{\|g\|_q^q}{\|f\|_p^p}\right)^{\frac{1}{p+q}}$, est négative pour $\lambda \le \lambda_1$ et positive pour $\lambda \ge \lambda_1$. Ainsi le minimum de Φ vaut :

$$\begin{split} \Phi(\lambda_1) &= \frac{1}{p} \left(\frac{\|g\|_q^q}{\|f\|_p^p} \right)^{\frac{p}{p+q}} \|f\|_p^p + \frac{1}{q} \left(\frac{\|g\|_q^q}{\|f\|_p^p} \right)^{-\frac{q}{p+q}} \|g\|_q^q \\ &= \frac{1}{p} \|g\|_q^{\frac{qp}{p+q}} \|f\|_p^{\frac{qp}{p+q}} + \frac{1}{q} \|g\|_q^{\frac{qp}{p+q}} \|f\|_p^{\frac{qp}{p+q}} = \|f\|_p \|g\|_q. \end{split}$$

On en déduit l'inégalité de Hölder:

$$||fg||_1 \le ||f||_p ||g||_q$$
.

Si $f \in L^1(\mu)$ et $g \in L^\infty(\mu)$, alors $|g(x)| \le ||g||_\infty$ pour presque tout $x \in \Omega$ et

$$\int_{\Omega} |fg| \, d\mu \le ||g||_{\infty} \int_{\Omega} |f| \, d\mu,$$

i.e. $||fg||_1 \le ||g||_{\infty} ||f||_1$.

3. Soient $p, p' \in [1, +\infty)$. On suppose p < p'. Soit p < r < p'. On a

$$|f|^r = |f|^r \mathbf{1}_{|f|>1} + |f|^r \mathbf{1}_{|f|<1} \le |f|^{p'} \mathbf{1}_{|f|>1} + |f|^p \mathbf{1}_{|f|<1}.$$

On en déduit que

$$\int_{\Omega} |f|^r d\mu \leq \int_{\Omega} |f|^{p'} d\mu + \int_{\Omega} |f|^p d\mu < +\infty,$$

donc f appartient à $L^r(\mu)$.

4. Supposons que μ soit une mesure finie et soit $f \in L^{\infty}(\mu)$. Alors

$$|f(x)| \le ||f||_{\infty}$$

pour presque tout $x \in \Omega$. Ainsi pour tout p

$$\int_{\Omega} |f|^{p} d\mu \leq \|f\|_{\infty}^{p} \int_{\Omega} 1 d\mu = \|f\|_{\infty}^{p} \mu(\Omega) < +\infty,$$

ce qui implique que $f \in L^p(\mu)$. En particulier, f appartient à l'intersection $\bigcap_{p \ge 1} L^p(\mu)$. De plus, pour tout p, on a :

$$||f||_p \leq ||f||_{\infty} \mu(\Omega)^{\frac{1}{p}},$$

ce qui implique que

$$\lim_{p \to +\infty} ||f||_p \le ||f||_{\infty}.$$

D'autre part, pour tout $0 < \varepsilon < \|f\|_{\infty}$, on a

$$\int_{\Omega} |f|^p \, d\mu \ \geq \ \int_{|f| > (\|f\|_{\infty} - \varepsilon)} |f|^p \, d\mu \ \geq \ (\|f\|_{\infty} - \varepsilon)^p \, \mu \bigg(|f| > (\|f\|_{\infty} - \varepsilon) \bigg).$$

Ainsi pour tout p, il vient

$$||f||_p \ge (||f||_\infty - \varepsilon) \mu \bigg(|f| > (||f||_\infty - \varepsilon) \bigg)^{\frac{1}{p}}.$$

Puisque $\lim_{p\to +\infty} \mu\left(|f|>(\|f\|_{\infty}-\mathcal{E})\right)^{\frac{1}{p}}=1$, il en découle que

$$\lim_{p \to +\infty} \|f\|_p \ge \|f\|_{\infty} - \varepsilon.$$

Comme ε peut être choisi arbitrairement petit, on a

$$\lim_{p \to +\infty} ||f||_p \ge ||f||_{\infty},$$

donc finalement $\lim_{p\to+\infty} ||f||_p = ||f||_{\infty}$.

5. Posons $f_1 := f^r$ et $g_1 := g^r$. On a $f_1 \in L^{\frac{p}{r}}(\mu)$ et $g_1 \in L^{\frac{q}{r}}(\mu)$. Notons que l'identité $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ entraîne que $\frac{p}{r}, \frac{q}{r} > 1$ et que les nombres $\frac{p}{r}$ et $\frac{q}{r}$ sont conjugués au sens de Young. Par l'inégalité de Hölder on a donc

$$\int_{\Omega} (fg)^r d\mu = \int_{\Omega} f_1 g_1 d\mu \leq \left(\int_{\Omega} f_1^{\frac{p}{r}} d\mu \right)^{\frac{r}{p}} \left(\int_{\Omega} g_1^{\frac{q}{r}} d\mu \right)^{\frac{r}{q}} = \left(\int_{\Omega} f^p d\mu \right)^{\frac{r}{p}} \left(\int_{\Omega} g^q d\mu \right)^{\frac{r}{q}}.$$

D'où, finalement,

$$||fg||_r \le ||f||_p ||g||_q$$
.

Correction de l'exercice 2

- 1. Cas de $L^{\infty}(\mu)$.
 - (a) Soit $\{f_n\}_{n\in\mathbb{N}}$ une suite de Cauchy de $L^{\infty}(\mu)$. Pour $k,m,n\geq 1$, soient les ensembles

$$A_k := \{x \in \Omega, |f_k(x)| > ||f_k||_{\infty}\}; \quad B_{m,n} := \{x \in \Omega, |f_m(x) - f_n(x)| > ||f_m - f_n||_{\infty}\},$$

et $E := \bigcup_k A_k \bigcup_{n,m} B_{m,n}$. Par définition de la norme infinie, les ensembles A_k et $B_{n,m}$ sont de mesure nulle. Par σ -sous-additivité de μ , on a

$$\mu(E) \le \sum_{k} \mu(A_k) + \sum_{n,m} \mu(B_{n,m}) = 0.$$

(b) Sur $\Omega \setminus E$, on a :

$$\sup_{x\in\Omega\setminus E}|f_n-f_m|\leq ||f_n-f_m||_{\infty},$$

i.e. $\{f_n\}_{n\in\mathbb{N}}$ est une suite de Cauchy uniforme sur $\Omega\setminus E$. En particulier, pour tout $x\in\Omega\setminus E$, la suite $\{f_n(x)\}_{n\in\mathbb{N}}$ est une suite de Cauchy réelle, donc est convergeante car \mathbb{R} est complet. Notons f la limite ponctuelle de f_n sur $\Omega\setminus E$. Montrons que la suite $\{f_n\}_{n\in\mathbb{N}}$ converge uniformément vers f sur le complémentaire de E. On a

$$|f_n(x) - f(x)| = \lim_{m \to +\infty} |f_n(x) - f_m(x)| \le \lim_{m \to +\infty} ||f_n - f_m||_{\infty}.$$

Comme $\{f_n\}_{n\in\mathbb{N}}$ est de Cauchy dans $L^{\infty}(\mu)$, pour tout $\varepsilon > 0$, il existe un rang N_{ε} tel que pour $n, m > N_{\varepsilon}$, $||f_n - f_m||_{\infty} < \varepsilon$. Alors pour $n > N_{\varepsilon}$,

$$\sup_{x\in\Omega\setminus E}|f_n(x)-f(x)|\leq\varepsilon.$$

Il est découle que $\{f_n\}_{n\in\mathbb{N}}$ converge uniformément vers f sur $\Omega\setminus E$.

(c) Étendons la fonction f à Ω en posant f = 0 sur E. Il reste à montrer que la fonction f appartient à $L^{\infty}(\mu)$. Pour $n > N_{\varepsilon}$, et $x \in \Omega \setminus E$, on a

$$|f(x)| < |f_n(x)| + \varepsilon \le ||f_n(x)||_{\infty} + \varepsilon$$

On en déduit que $||f||_{\infty} \le ||f_n(x)||_{\infty} + \varepsilon < +\infty$. Ainsi $L^{\infty}(\mu)$ est complet.

- 2. Cas de $L^p(\mu)$.
 - (a) Soit $1 \le p < +\infty$ et $\{f_n\}_{n \in \mathbb{N}}$ une suite de Cauchy dans $L^p(\mu)$. Il existe n_1 tel que pour $n, m \ge n_1$, $\|f_n f_m\|_p < 2^{-1}$. On prend ensuite $n_2 > n_1$ tel que pour $n, m \ge n_2$, $\|f_n f_m\|_p < 2^{-2}$, et ainsi de suite, pour tout k, il existe un $n_k > n_{k-1}$ tel que $n, m \ge n_k \Rightarrow \|f_n f_m\|_p < 2^{-k}$.
 - (b) Posons

$$g_k = \sum_{i=1}^k |f_{n_{i+1}} - f_{n_i}|$$
 et $g = \sum_{i=1}^{+\infty} |f_{n_{i+1}} - f_{n_i}|$,

où g est à valeurs dans $\mathbb{R} \cup \{+\infty\}$. Pour tout $k \ge 1$, on a

$$\|g_k\|_p = \|\sum_{i=1}^k |f_{n_{i+1}} - f_{n_i}|\|_p.$$

D'après l'inégalité de Minkowski,

$$||g_k||_p \le \sum_{i=1}^k ||f_{n_{i+1}} - f_{n_i}||_p = \sum_{i=1}^k 2^{-i} < 1.$$

D'après le lemme de Fatou, on en déduit que $||g||_p \le 1$.

(c) Comme $\int_{\Omega} |g|^p d\mu < +\infty$, nécessairement $|g| < +\infty$ μ -pp, i.e. pour presque tout $x \in \Omega$ la série

$$f_{n_1} + \sum_{i=1}^{\infty} (f_{n_{i+1}} - f_{n_i})$$

est absolument convergente. Notons f(x) sa somme lorsque celle-ci est finie et posons f(x) = 0 sinon. On a :

$$f_{n_1} + \sum_{i=1}^{k-1} (f_{n_{i+1}} - f_{n_i}) = f_{n_k}$$

et $f(x) = \lim_{k \to +\infty} f_{n_k}$ $\mu - pp$.

(d) Soit $\varepsilon > 0$. Comme $\{f_n\}_{n \in \mathbb{N}}$ est de Cauchy dans $L^p(\mu)$, il existe $N_{\varepsilon} > 0$ tel que pour $n, m > N_{\varepsilon}$, $||f_n - f_m||_p < \varepsilon$. Pour $m > N_{\varepsilon}$ on a par le lemme de Fatou :

$$\int_{\Omega} |f - f_m|^p d\mu = \int_{\Omega} |\lim_{k \to +\infty} f_{n_k} - f_m|^p d\mu \le \lim \inf_{k \to +\infty} \int_{\Omega} |f_{n_k} - f_m|^p d\mu \le \varepsilon^p.$$

Ainsi $f - f_m \in L^p(\mu)$ et $||f - f_m||_p \to 0$ quand $m \to +\infty$. De plus, d'après l'inégalité de Minkowski, on a

$$||f||_p = ||(f - f_m) + f_m||_p \le ||(f - f_m)||_p + ||f_m||_p < +\infty,$$

c'est-à-dire $f \in L^p(\mu)$. En conclusion $L^p(\mu)$ est complet.

Correction de l'exercice 3 A

Soient f et g deux fonctions de $L^p(\mu)$ avec $1 . La fonction <math>\varphi(t) = |f(x) + \tan(x)|^p$ est de classe \mathscr{C}^1 sur \mathbb{R} et sa dérivée vaut

$$\varphi'(t) = \lim_{h \to 0} \frac{|f(x) + \tan(x) + hg(x)|^p - |f(x) + \tan(x)|^p}{h} = p|f(x) + \tan(x)|^{p-2}(f(x) + \tan(x))g(x),$$

lorsque f(x) et g(x) ont un sens, c'est-à-dire pour presque tout x. De plus, d'après le théorème des accroissements finis, on a

$$\frac{|f(x) + \tan(x)|^p - |f(x)|^p}{t} = \varphi'(t_0) = p|f(x) + t_0g(x)|^{p-2}(f(x) + t_0g(x))g(x),$$

pour un certain t_0 compris entre 0 et t. Ainsi pour $|t| \le 1$,

$$\left| \frac{|f(x) + \tan(x)|^p - |f(x)|^p}{t} \right| = p|f(x) + t_0 g(x)|^{p-1} |g(x)|
\leq p (|f(x)| + |g(x)|)^p
\leq 2^{p-1} p (|f(x)|^p + |g(x)|^p),$$

où la première inégalité découle de l'inégalité triangulaire et de la majoration $|g(x)| \leq (|f(x)| + |g(x)|)$, et où la deuxième inégalité provient de la convexité de la fonction $x \mapsto x^p$ pour p > 1 impliquant en particulier : $\left(\frac{u+v}{2}\right)^p \leq \frac{u^p}{2} + \frac{v^p}{2}$. Il en découle que $t \mapsto \frac{|f(x) + \tan(x)|^p - |f(x)|^p}{t}$ est uniformément bornée par une fonction intégrable. Le théorème de convergence dominée permet alors de dériver sous le signe somme et

$$\frac{dN}{dt}_{t=0} = p \int_{\Omega} |f(x)|^{p-2} f(x) g(x) d\mu.$$