House Prices Analysis and Prediction

May 1, 2022

```
[1]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     from statsmodels.api import OLS
     from sklearn.preprocessing import StandardScaler
     from sklearn.model_selection import train_test_split
     from sklearn.linear_model import LinearRegression
     from sklearn.ensemble import RandomForestRegressor
     from sklearn.tree import DecisionTreeRegressor
     from sklearn.metrics import mean_squared_error
     import torch
     import torch.nn as nn
     import torch.nn.functional as F
     import torch.optim as optim
     from torch.utils.data import DataLoader, Dataset
     from torchvision import transforms
     %matplotlib inline
[2]: import warnings
     warnings.filterwarnings("ignore")
[3]: BASE_COLOR = sns.color_palette()[0]
     TEST_SIZE = 0.2
```

1 Load train and test Datasets

RANDOM_STATE = 42 BATCH_SIZE = 32

LR = 0.01

```
[4]: train_df = pd.read_csv("./data/train.csv")
test_df = pd.read_csv("./data/test.csv")
```

```
[5]: train_df.head()
[5]:
         Ιd
             MSSubClass MSZoning
                                     LotFrontage
                                                    LotArea Street Alley LotShape
     0
          1
                       60
                                 RL
                                              65.0
                                                        8450
                                                                Pave
                                                                        NaN
                                                                                   Reg
          2
     1
                       20
                                 RL
                                              80.0
                                                        9600
                                                                Pave
                                                                        NaN
                                                                                   Reg
     2
          3
                       60
                                 RL
                                              68.0
                                                       11250
                                                                Pave
                                                                        NaN
                                                                                   IR1
     3
          4
                       70
                                 RL
                                              60.0
                                                        9550
                                                                Pave
                                                                        NaN
                                                                                   IR1
     4
          5
                       60
                                 R.L.
                                              84.0
                                                       14260
                                                                Pave
                                                                        NaN
                                                                                   IR1
        LandContour Utilities
                                  ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold
     0
                         AllPub
                                             0
                                                  NaN
                                                                                   0
                                                                                           2
                 Lvl
                                                         NaN
                                                                       NaN
                                                                                  0
                                                                                           5
     1
                 Lvl
                         AllPub
                                            0
                                                  NaN
                                                         NaN
                                                                       NaN
     2
                                                                                           9
                 Lvl
                         AllPub
                                            0
                                                  NaN
                                                         NaN
                                                                       NaN
                                                                                   0
     3
                 Lvl
                         AllPub
                                             0
                                                  NaN
                                                         NaN
                                                                       NaN
                                                                                   0
                                                                                           2
                                  ...
     4
                 Lvl
                         AllPub
                                                  NaN
                                                         NaN
                                                                       NaN
                                                                                   0
                                                                                          12
                                  ...
        YrSold
                 SaleType
                            SaleCondition
                                             SalePrice
     0
          2008
                        WD
                                    Normal
                                                 208500
     1
          2007
                        WD
                                    Normal
                                                 181500
     2
          2008
                        WD
                                    Normal
                                                 223500
     3
          2006
                        WD
                                   Abnorml
                                                 140000
     4
          2008
                        WD
                                     Normal
                                                 250000
```

[5 rows x 81 columns]

2 Wrangle train Dataset

2.1 Dropping NaN values

droping NaN value with as follows: - if column has NaN values more than 200 entry will drop that column - if column has NaN values less than 200: - if column is numeric will fillna with the mean - if column is categorical will dropit

```
[6]: nan_cols = train_df.isna().sum()
nan_cols = nan_cols[nan_cols > 0]
nan_cols
```

```
[6]: LotFrontage
                        259
     Alley
                       1369
     MasVnrType
                          8
     MasVnrArea
                          8
     BsmtQual
                         37
     BsmtCond
                         37
     BsmtExposure
                         38
     BsmtFinType1
                         37
     BsmtFinType2
                         38
     Electrical
                          1
```

```
GarageYrBlt
                        81
     GarageFinish
                        81
     GarageQual
                        81
     GarageCond
                        81
     PoolQC
                      1453
     Fence
                      1179
     MiscFeature
                      1406
     dtype: int64
[7]: nan_cols_to_drop = nan_cols[nan_cols > 200]
     train_df = train_df.drop(nan_cols_to_drop.index.values, axis='columns')
     train_df.head()
[7]:
            MSSubClass MSZoning LotArea Street LotShape LandContour Utilities \
         1
                    60
                              RL
                                     8450
                                             Pave
                                                       Reg
                                                                    Lvl
                                                                           AllPub
     0
         2
     1
                     20
                              RL
                                     9600
                                             Pave
                                                       Reg
                                                                    Lvl
                                                                           AllPub
     2
         3
                     60
                              RL
                                    11250
                                             Pave
                                                       IR1
                                                                    Lvl
                                                                           AllPub
     3
                     70
                                     9550
                                                       IR1
                                                                    Lvl
         4
                              RL
                                             Pave
                                                                           AllPub
     4
                     60
                              RL
                                    14260
                                             Pave
                                                       IR1
                                                                    Lvl
                                                                           AllPub
       LotConfig LandSlope
                             ... EnclosedPorch 3SsnPorch ScreenPorch PoolArea
          Inside
                        Gtl
                                            0
                                                      0
                                                                   0
     0
             FR2
                                                      0
                                                                   0
     1
                        Gtl ...
                                            0
                                                                            0
     2
                                                      0
                                                                   0
                                                                            0
          Inside
                        Gtl ...
                                            0
                                                                   0
     3
          Corner
                                          272
                                                      0
                                                                            0
                        Gtl ...
     4
             FR2
                        Gtl ...
                                            0
                                                      0
                                                                   0
                                                                            0
                                 SaleType SaleCondition SalePrice
       MiscVal
                MoSold YrSold
     0
             0
                      2
                           2008
                                       WD
                                                   Normal
                                                              208500
             0
                      5
                           2007
                                                   Normal
     1
                                       WD
                                                              181500
     2
             0
                      9
                                                   Normal
                           2008
                                       WD
                                                              223500
     3
             0
                      2
                           2006
                                       WD
                                                  Abnorml
                                                              140000
             0
                           2008
                                                   Normal
                                                             250000
                     12
                                       WD
     [5 rows x 75 columns]
[8]: nan cols = train df.isna().sum()
     nan_cols = nan_cols[nan_cols > 0]
     # nan_cols
     non_numeric_nan_cols = train_df[nan_cols.index.values].select_dtypes('object').
      ⇔columns
     non_numeric_nan_cols
[8]: Index(['MasVnrType', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1',
```

690

81

FireplaceQu

GarageType

'BsmtFinType2', 'Electrical', 'GarageType', 'GarageFinish',

'GarageQual', 'GarageCond'], dtype='object')

```
[9]: train_df = train_df.drop(non_numeric_nan_cols, axis="columns")
train_df.head()
```

[9]:	Ιd	MSSubClass	t MSZoning	${ t LotArea}$	Street	LotShape	LandContour	Utilities	\
	0	1	60	RL	8450	Pave	Reg	Lvl	AllPub	
	1	2	20	RL	9600	Pave	Reg	Lvl	AllPub	
	2	3	60	RL	11250	Pave	IR1	Lvl	AllPub	
	3	4	70	RL	9550	Pave	IR1	Lvl	AllPub	
	1	5	60	RΙ	1/1260	Parro	TR1	T 777	AllDub	

	LotConfig	LandSlope	•••	${\tt EnclosedPorch}$	3SsnPorch	${\tt ScreenPorch}$	PoolArea	\
0	Inside	Gtl	•••	0	0	0	0	
1	FR2	Gtl	•••	0	0	0	0	
2	Inside	Gtl	•••	0	0	0	0	
3	Corner	Gtl	•••	272	0	0	0	
4	FR2	Gt.1		0	0	0	0	

	${ t MiscVal}$	MoSold	YrSold	SaleType	SaleCondition	SalePrice
0	0	2	2008	WD	Normal	208500
1	0	5	2007	WD	Normal	181500
2	0	9	2008	WD	Normal	223500
3	0	2	2006	WD	Abnorml	140000
4	0	12	2008	WD	Normal	250000

[5 rows x 64 columns]

2.2 Checking any duplicates

[10]: train_df[train_df.duplicated()]

[10]: Empty DataFrame

Columns: [Id, MSSubClass, MSZoning, LotArea, Street, LotShape, LandContour, Utilities, LotConfig, LandSlope, Neighborhood, Condition1, Condition2, BldgType, HouseStyle, OverallQual, OverallCond, YearBuilt, YearRemodAdd, RoofStyle, RoofMatl, Exterior1st, Exterior2nd, MasVnrArea, ExterQual, ExterCond, Foundation, BsmtFinSF1, BsmtFinSF2, BsmtUnfSF, TotalBsmtSF, Heating, HeatingQC, CentralAir, 1stFlrSF, 2ndFlrSF, LowQualFinSF, GrLivArea, BsmtFullBath, BsmtHalfBath, FullBath, HalfBath, BedroomAbvGr, KitchenAbvGr, KitchenQual, TotRmsAbvGrd, Functional, Fireplaces, GarageYrBlt, GarageCars, GarageArea, PavedDrive, WoodDeckSF, OpenPorchSF, EnclosedPorch, 3SsnPorch, ScreenPorch, PoolArea, MiscVal, MoSold, YrSold, SaleType, SaleCondition, SalePrice] Index: []

[0 rows x 64 columns]

No Duplicated row in the dataset

```
[11]: nan cols = train df.isna().sum()
      nan_cols = nan_cols[nan_cols > 0]
      nan_cols
[11]: MasVnrArea
                      8
      GarageYrBlt
                     81
      dtype: int64
[12]: train_df['MasVnrArea'].fillna(train_df['MasVnrArea'].mean(), inplace=True)
      train_df['GarageYrBlt'].fillna(train_df['GarageYrBlt'].mean(), inplace=True)
      nan_cols = train_df.isna().sum()
      nan_cols = nan_cols[nan_cols > 0]
      assert len(nan_cols) == 0
     2.3 Inspecting Categorical Columns
[13]: numeric cols = train df.select dtypes('number').columns
      categorical cols = train df.select dtypes('object').columns
[14]: numeric_cols
[14]: Index(['Id', 'MSSubClass', 'LotArea', 'OverallQual', 'OverallCond',
             'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2',
             'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF',
             'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath',
             'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces',
             'GarageYrBlt', 'GarageCars', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF',
             'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal',
             'MoSold', 'YrSold', 'SalePrice'],
            dtype='object')
[15]: categorical_cols
[15]: Index(['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities',
             'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2',
             'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st',
             'Exterior2nd', 'ExterQual', 'ExterCond', 'Foundation', 'Heating',
             'HeatingQC', 'CentralAir', 'KitchenQual', 'Functional', 'PavedDrive',
             'SaleType', 'SaleCondition'],
            dtype='object')
```

2.3.1 MSZoning Analysis

MSZoning has a hig bias twards the Residential Low Density and Residential Medium Density zoning types.

2.3.2 HouseStyle Analysis

```
[17]: train_df['HouseStyle'].value_counts(normalize=True).sort_values(ascending=False)
[17]: 1Story
                0.497260
      2Story
                0.304795
      1.5Fin
                0.105479
      SLvl
                0.044521
      SFoyer
                0.025342
      1.5Unf
                0.009589
      2.5Unf
                0.007534
                0.005479
      2.5Fin
     Name: HouseStyle, dtype: float64
```

HouseStyle has major proportions twards One Story, Two Story and One and one-half story: 2nd level unfinished

2.3.3 Functional Analysis

```
[18]: train_df['Functional'].value_counts(normalize=True).sort_values(ascending=False)
[18]: Typ
              0.931507
      Min2
              0.023288
     Min1
              0.021233
     Mod
              0.010274
     Maj1
              0.009589
     Maj2
              0.003425
      Sev
              0.000685
      Name: Functional, dtype: float64
```

Functional column has large proportion twards Typical Functionality

2.3.4 SaleCondition Analysis

SaleCondition has large proportion in being Normal

2.3.5 Heating Analysis

Heating columns has large proportion twards Gas forced warm air furnace

2.4 Cleaning Categorical Columns

```
[21]: ## MSZoning Column
    train_df['zone_low_density'] = train_df['MSZoning'] == "RL"

## HouseStyle Column
    train_df['one_story_style'] = train_df['HouseStyle'] == '1Story'
    train_df['two_story_style'] = train_df['HouseStyle'] == '2Story'
    train_df['one_half_story_style'] = train_df['HouseStyle'] == '1.5Fin'

## Functional Column
    train_df['typical_functionality'] = train_df['Functional'] == 'Typ'

## Sale Condition
    train_df['sale_normal_condition'] = train_df['SaleCondition'] == 'Normal'

## Heating Column
    train_df['gas_heating'] = train_df['Heating'] == 'GasA'
```

```
[21]:
         zone_low_density one_story_style two_story_style typical_functionality \
      0
                         1
                                           0
                                                             1
                                                                                     1
                                                             0
      1
                         1
                                           1
                                                                                     1
      2
                         1
                                           0
                                                             1
                                                                                     1
      3
                         1
                                           0
                                                             1
                                                                                     1
      4
                         1
                                           0
                                                             1
                                                                                      1
         one_half_story_style gas_heating sale_normal_condition
      0
                             0
                                           1
                                                                   1
      1
      2
                             0
                                           1
                                                                   1
                                                                   0
      3
                             0
                                           1
      4
                             0
                                           1
                                                                   1
```

2.5 Inspecting Numerical Columns

```
[22]: numeric_cols
```

2.5.1 MSSubClass Analysis

- 20 1-STORY 1946 & NEWER ALL STYLES
- 30 1-STORY 1945 & OLDER
- 40 1-STORY W/FINISHED ATTIC ALL AGES
- 45 1-1/2 STORY UNFINISHED ALL AGES

- 50 1-1/2 STORY FINISHED ALL AGES
- 60 2-STORY 1946 & NEWER
- 70 2-STORY 1945 & OLDER
- 75 2-1/2 STORY ALL AGES
- 80 SPLIT OR MULTI-LEVEL
- 85 SPLIT FOYER
- 90 DUPLEX ALL STYLES AND AGES
- 120 1-STORY PUD (Planned Unit Development) 1946 & NEWER
- 150 1-1/2 STORY PUD ALL AGES
- 160 2-STORY PUD 1946 & NEWER
- 180 PUD MULTILEVEL INCL SPLIT LEV/FOYER
- 190 2 FAMILY CONVERSION ALL STYLES AND AGES

this column must be conveted to be categorical column

```
[23]: train_df['MSSubClass'] = train_df['MSSubClass'].astype('object')

train_df['MSSubClass'].value_counts(normalize=True).plot(kind='bar')
plt.title("Count of each House Class")
plt.xlabel('Class')
plt.ylabel('Count');
```


2.5.2 YearBuilt Analysis

```
[24]: (train_df['YearBuilt'].value_counts()
    [train_df['YearBuilt'].value_counts() > 20]
).plot(kind='bar')
```

[24]: <AxesSubplot:>

2.5.3 YearRemodAdd Analysis

```
[25]: train_df['time_taken_to_remodel'] = train_df['YearRemodAdd'] -_u

train_df['YearBuilt']

train_df['time_taken_to_remodel'].describe()
```

```
[25]: count
               1460.000000
      mean
                  13.597945
                  24.476465
      std
                   0.000000
      min
      25%
                   0.000000
      50%
                   0.000000
      75%
                  20.000000
                 123.000000
      max
```

Name: time_taken_to_remodel, dtype: float64

```
[26]: train_df['time_taken_to_sell'] = train_df['YrSold'] - train_df['YearBuilt']
      train_df['time_taken_to_sell'].describe()
[26]: count
               1460.000000
      mean
                 36.547945
      std
                 30.250152
     min
                  0.000000
      25%
                  8.000000
      50%
                 35.000000
      75%
                 54.000000
                136.000000
     max
      Name: time_taken_to_sell, dtype: float64
[27]: train df['time taken to sell_after remodel'] = train_df['YrSold'] -__
       ⇔train_df['YearRemodAdd']
      train_df['time_taken_to_sell_after_remodel'].describe()
[27]: count
               1460.000000
                 22.950000
     mean
      std
                 20.640653
     min
                 -1.000000
      25%
                  4.000000
      50%
                 14.000000
      75%
                 41.000000
                 60.000000
      max
      Name: time_taken_to_sell_after_remodel, dtype: float64
```

on average it took 36 Years to sell a house and 22 Year to sell a house that has been ReModeled

2.5.4 LotArea Analysis

```
[28]: train_df['LotArea'].plot(kind='hist', bins=50)
    plt.title("Dist. of Lot Area")
    plt.xlabel("Lot Area")
    plt.ylabel('Count')
    plt.xlim([0, 50_000]);

    print(train_df['LotArea'].describe())
```

```
1460.000000
count
          10516.828082
mean
std
           9981.264932
           1300.000000
min
25%
           7553.500000
50%
           9478.500000
75%
          11601.500000
         215245.000000
max
```

Name: LotArea, dtype: float64

most of the houses has a Lot Area around 5,000 to 15,000 square feet

2.5.5 TotalBsmtSF

Name: TotalBsmtSF, dtype: float64

```
[29]: print(train_df['TotalBsmtSF'].describe())
      train_df['TotalBsmtSF'].plot(kind='hist', bins=50)
      plt.title("Dist. of Total Basment Area")
      plt.xlabel("Basment Area")
      plt.ylabel('Count');
      plt.xlim([0, 3000]);
     count
              1460.000000
              1057.429452
     mean
               438.705324
     std
     min
                  0.000000
     25%
               795.750000
     50%
               991.500000
     75%
              1298.250000
              6110.000000
     max
```


most of the houses has a Basment Area from 500 to 1500

2.5.6 Bedroom and Bathroom Analysis

```
[30]: train_df['BedroomAbvGr'].value_counts()
[30]: 3
           804
      2
           358
      4
           213
            50
      1
      5
            21
      6
             7
      0
             6
      8
      Name: BedroomAbvGr, dtype: int64
[31]: train_df['FullBath'].value_counts()
[31]: 2
           768
      1
           650
      3
            33
      0
             9
      Name: FullBath, dtype: int64
```

most of the house have a 3, 2 or 4 bedrooms above the grade and 2 or 1 bathroom above the grade

2.5.7 OverallQual and OverallCond Analysis

```
[32]: train_df['OverallQual'].value_counts().plot(kind='bar');
    plt.title("Quality of the House")
    plt.xlabel("Quality Rating")
    plt.ylabel("Count");
```



```
[33]: train_df['OverallCond'].value_counts().plot(kind='bar')
    plt.title("Condition of the House")
    plt.xlabel("Condition Rating")
    plt.ylabel("Count");
```


most of the houses have a rating condition and quality around 5 or 6

2.5.8 SalePrice Analysis

```
[34]: print(train_df['SalePrice'].describe())

train_df['SalePrice'].plot(kind='hist', bins=30)
plt.title("Price of House")
plt.xlabel("Price")
plt.ylabel("Count");
count 1460.000000
```

mean 180921.195890 std 79442.502883 min 34900.000000 25% 129975.000000 50% 163000.000000 75% 214000.000000 max 755000.000000

Name: SalePrice, dtype: float64

most houses has price ranging between 1,000,000 to 2,500,000 us dollars

```
[35]: plt.figure(figsize=(8, 5))
    sns.boxplot(data=train_df, x='SalePrice')
    plt.title("House Price Dist");
```

House Price Dist

2.5.9 Corrletation Matrix in the Dataset

```
[36]: corr = train_df.corr()

fig, ax = plt.subplots(nrows=1, figsize=(15, 14))
    sns.heatmap(corr, ax=ax)
    ax.set_title("Correlation Matrix");
```


2.5.10 SalePrice vs OverallCond

```
[37]: plt.figure(figsize=(8, 5))
sns.boxplot(data=train_df, x='OverallCond', y='SalePrice', color=BASE_COLOR);
plt.title("Sale Price by House Overall Condition");
```


2.5.11 SalePrice vs TotalBsmtSF

```
[38]: plt.figure(figsize=(8, 5))
sns.regplot(data=train_df, x='TotalBsmtSF', y='SalePrice', color=BASE_COLOR);
plt.title("Sale Price by House Basment Area");
```


TotalBsmtSF

the relation shows existance of outlier point at 6000 so, it would be better it we remove it

[39]: train_df.drop(train_df[train_df['TotalBsmtSF'] > 5000].index, inplace=True) train_df[train_df['TotalBsmtSF'] > 5000]

[39]: Empty DataFrame

Columns: [Id, MSSubClass, MSZoning, LotArea, Street, LotShape, LandContour, Utilities, LotConfig, LandSlope, Neighborhood, Condition1, Condition2, BldgType, HouseStyle, OverallQual, OverallCond, YearBuilt, YearRemodAdd, RoofStyle, RoofMatl, Exterior1st, Exterior2nd, MasVnrArea, ExterQual, ExterCond, Foundation, BsmtFinSF1, BsmtFinSF2, BsmtUnfSF, TotalBsmtSF, Heating, HeatingQC, CentralAir, 1stFlrSF, 2ndFlrSF, LowQualFinSF, GrLivArea, BsmtFullBath, BsmtHalfBath, FullBath, HalfBath, BedroomAbvGr, KitchenAbvGr, KitchenQual, TotRmsAbvGrd, Functional, Fireplaces, GarageYrBlt, GarageCars, GarageArea, PavedDrive, WoodDeckSF, OpenPorchSF, EnclosedPorch, 3SsnPorch, ScreenPorch, PoolArea, MiscVal, MoSold, YrSold, SaleType, SaleCondition, SalePrice, zone_low_density, one_story_style, two_story_style, one_half_story_style, typical_functionality, sale_normal_condition, gas_heating, time_taken_to_remodel, time_taken_to_sell_after_remodel] Index: []

[0 rows x 74 columns]

2.5.12 SalePrice vs GrLivArea

```
[41]: plt.figure(figsize=(8, 5))
sns.regplot(data=train_df, x='GrLivArea', y='SalePrice',

→line_kws=dict(color='r'));
plt.title("Sale Price by House Basment Area");
```


there is outliers in the GrLivArea greater than 4000 so removing it

[42]: train_df.drop(train_df[train_df['GrLivArea'] > 4000].index, inplace=True) train_df[train_df['GrLivArea'] > 4000]

[42]: Empty DataFrame

Columns: [Id, MSSubClass, MSZoning, LotArea, Street, LotShape, LandContour, Utilities, LotConfig, LandSlope, Neighborhood, Condition1, Condition2, BldgType, HouseStyle, OverallQual, OverallCond, YearBuilt, YearRemodAdd, RoofStyle, RoofMatl, Exterior1st, Exterior2nd, MasVnrArea, ExterQual, ExterCond, Foundation, BsmtFinSF1, BsmtFinSF2, BsmtUnfSF, TotalBsmtSF, Heating, HeatingQC, CentralAir, 1stFlrSF, 2ndFlrSF, LowQualFinSF, GrLivArea, BsmtFullBath, BsmtHalfBath, FullBath, HalfBath, BedroomAbvGr, KitchenAbvGr, KitchenQual, TotRmsAbvGrd, Functional, Fireplaces, GarageYrBlt, GarageCars, GarageArea, PavedDrive, WoodDeckSF, OpenPorchSF, EnclosedPorch, 3SsnPorch, ScreenPorch, PoolArea, MiscVal, MoSold, YrSold, SaleType, SaleCondition, SalePrice, zone_low_density, one_story_style, two_story_style, one_half_story_style, typical_functionality, sale_normal_condition, gas_heating, time_taken_to_remodel, time_taken_to_sell_after_remodel] Index: []

[0 rows x 74 columns]

```
[43]: plt.figure(figsize=(8, 5))
sns.regplot(data=train_df, x='GrLivArea', y='SalePrice',

→line_kws=dict(color='r'));
plt.title("Sale Price by House Ground Area");
```


2.5.13 GarageArea vs SalePrice

```
[44]: plt.figure(figsize=(8, 5))
sns.regplot(data=train_df, x='GarageArea', y='SalePrice',

→line_kws=dict(color='r'));
plt.title("Sale Price by Garage Area");
```


positive correlation indicating an increase in price as the garage area increases.

2.5.14 GarageCars vs SalePrice

```
[45]: plt.figure(figsize=(8, 5))
    sns.boxplot(data=train_df, x='GarageCars', y='SalePrice', color=BASE_COLOR);
    plt.title("Sale Price by Number of Cars in Garage");
```


positive correlation indicating an increase in price as number of cars garage can fit increases

```
[46]: ## GarageCars vs GarageArea
## False correlation or colinearity in the dataset
## Does make sense

plt.figure(figsize=(8, 5))
sns.boxplot(data=train_df, x='GarageCars', y='GarageArea', color=BASE_COLOR);
```


2.5.15 SalePrice vs FullBath

```
[47]: plt.figure(figsize=(8, 5))
sns.boxplot(data=train_df, x='FullBath', y='SalePrice', color=BASE_COLOR);
plt.title("Sale Price by Number of Bathrooms");
```


[]:

3 Statmodels OLS Model Analysis

```
[48]: ols_df = train_df.select_dtypes('number')
      ols_df.head()
[48]:
         Id LotArea OverallQual
                                     OverallCond YearBuilt YearRemodAdd MasVnrArea
          1
                 8450
                                                5
                                                         2003
                                                                        2003
                                                                                    196.0
      1
          2
                 9600
                                  6
                                                8
                                                         1976
                                                                        1976
                                                                                      0.0
      2
          3
                11250
                                  7
                                                5
                                                         2001
                                                                        2002
                                                                                    162.0
      3
                 9550
                                  7
                                                5
          4
                                                         1915
                                                                        1970
                                                                                      0.0
                                                5
      4
          5
                14260
                                                         2000
                                                                        2000
                                                                                    350.0
         BsmtFinSF1
                      BsmtFinSF2
                                   {\tt BsmtUnfSF}
                                                  zone_low_density
                                                                      one_story_style
                 706
      0
                                0
                                          150
                                                                                     0
                 978
      1
                                0
                                          284
                                                                   1
                                                                                     1
      2
                 486
                                0
                                          434
                                                                   1
                                                                                     0
      3
                                0
                                                                   1
                 216
                                          540
                                                                                     0
                 655
                                0
                                          490
         two_story_style one_half_story_style
                                                   typical_functionality
      0
```

```
2
                         1
                                                0
                                                                         1
      3
                                                0
                         1
                                                                         1
      4
         sale_normal_condition gas_heating time_taken_to_remodel
      0
      1
                               1
                                             1
                                                                      0
      2
                               1
                                             1
                                                                      1
      3
                               0
                                             1
                                                                     55
      4
                                                                      0
         time_taken_to_sell time_taken_to_sell_after_remodel
      0
                            5
                                                                 5
      1
                           31
                                                                31
      2
                            7
                                                                 6
      3
                                                                36
                           91
      4
                                                                 8
      [5 rows x 46 columns]
[49]: ols_df = ols_df.drop(['YrSold', 'YearBuilt', 'YearRemodAdd', 'Id'],
       ⇔axis='columns')
      ols df
[49]:
            LotArea OverallQual
                                    OverallCond MasVnrArea BsmtFinSF1 BsmtFinSF2
                8450
                                               5
                                                        196.0
                                                                       706
                9600
                                               8
                                                                       978
      1
                                 6
                                                          0.0
                                                                                      0
      2
               11250
                                 7
                                               5
                                                        162.0
                                                                       486
                                                                                      0
                9550
                                 7
                                               5
                                                                       216
      3
                                                          0.0
                                                                                      0
      4
                                               5
                                                        350.0
                                                                       655
               14260
                                 8
                                                                                      0
      1455
               7917
                                 6
                                               5
                                                          0.0
                                                                        0
                                                                                      0
      1456
               13175
                                 6
                                               6
                                                        119.0
                                                                       790
                                                                                    163
      1457
                                 7
                                               9
                                                          0.0
                9042
                                                                       275
                                                                                      0
      1458
                9717
                                 5
                                               6
                                                          0.0
                                                                        49
                                                                                   1029
      1459
                9937
                                 5
                                               6
                                                          0.0
                                                                       830
                                                                                    290
            BsmtUnfSF
                        TotalBsmtSF
                                       1stFlrSF
                                                 2ndFlrSF ...
                                                               zone_low_density
      0
                   150
                                 856
                                            856
                                                       854
                   284
                                1262
                                           1262
                                                                                1
      1
                                                         0
      2
                   434
                                 920
                                            920
                                                       866 ...
                                                                                1
      3
                   540
                                 756
                                            961
                                                       756
                                                                                1
      4
                   490
                                1145
                                           1145
                                                      1053 ...
                                                                                1
                                 953
      1455
                   953
                                            953
                                                       694
                                                                                1
      1456
                   589
                                1542
                                           2073
                                                         0
                                                                                1
```

```
1457
             877
                                                 1152 ...
                           1152
                                      1188
                                                                             1
1458
               0
                           1078
                                      1078
                                                     0
                                                                             1
1459
                                      1256
                                                                             1
             136
                           1256
                                                     0
      one_story_style two_story_style
                                             one_half_story_style \
0
                      0
                                                                   0
1
                      1
                                          0
                                                                  0
2
                      0
                                          1
                                                                  0
3
                      0
                                          1
                                                                   0
4
                      0
                                          1
1455
                      0
                                          1
                                                                   0
1456
                                          0
                                                                  0
                      1
1457
                      0
                                          1
                                                                   0
1458
                      1
                                          0
                                                                   0
1459
                      1
                                          0
                                                                   0
      typical_functionality
                               sale_normal_condition gas_heating \
0
1
                             1
                                                       1
                                                                      1
2
                             1
                                                       1
                                                                      1
3
                             1
                                                       0
                                                                      1
4
                             1
                                                       1
                                                                      1
1455
                             1
                                                       1
                                                                      1
                             0
                                                       1
1456
                                                                      1
1457
                             1
                                                       1
                                                                      1
1458
                             1
                                                       1
                                                                      1
1459
                             1
                                                                      1
      time_taken_to_remodel
                                time_taken_to_sell
0
                             0
                                                    5
                             0
1
                                                   31
                                                    7
2
                             1
3
                            55
                                                   91
4
                             0
                                                    8
1455
                             1
                                                    8
                                                   32
1456
                            10
1457
                            65
                                                   69
1458
                            46
                                                   60
1459
                             0
                                                   43
      time_taken_to_sell_after_remodel
0
                                         5
1
                                         31
2
                                          6
```

	3		36	5			
	4		8	3			
	•••		•••				
	1455		7	•			
	1456		22)			
	1457		4				
			-	-			
	1458		14	=			
	1459		43	3			
	[1456 rows	x 42 colum	nns]				
[50]:	ols_df['int	ercept'] =	= 1				
[51]:	<pre>ols_model = result = ol result.summ</pre>	s_model.fi	df['SalePrice'], c it()	ols_df.	drop('SalePri	ice', axis=	columns'))
[51]:	<class 'sta<="" th=""><th>tsmodels.i</th><th>olib.summary.Summ</th><th>nary'></th><th></th><th></th><th></th></class>	tsmodels.i	olib.summary.Summ	nary'>			
OLS Regression Results					:======		
	Dep. Variab	de:	SalePrice	R-so	uared:		0.870
	Model:		OLS	-	R-squared:		0.866
				5	-		
	Method:		Least Squares		atistic:	`	248.8
	Date:		Sun, 01 May 2022		(F-statistic	c):	0.00
	Time:		01:35:18	Log-	Likelihood:		-16959.
	No. Observa	tions:	1456	AIC:			3.400e+04
	Df Residual	s:	1417	BIC:			3.420e+04
	Df Model:		38				
	Covariance	Type:	nonrobust				
	==========	=======			========	=======	========
				coef	std err	t	P> t
	[0.025	0.975]					
	LotArea		C	.5892	0.082	7.168	0.000
	0.428	0.750					
	OverallQual		1.	4e+04	980.392	14.279	0.000
	1.21e+04	1.59e+04					
	OverallCond		1010	.6610	864.986	5.562	0.000
			4010	,.0010	004.300	0.002	0.000
	3113.871	6507.451		7105	4 05 4	F 000	0.000
	MasVnrArea		28	3.7187	4.871	5.896	0.000
	19.163	38.274					
	BsmtFinSF1		20	.2892	2.144	9.464	0.000
	16.084	24.495					
	D . E . GEO		•		0.050	0 000	

 ${\tt BsmtFinSF2}$

0.3289

3.650

0.090

0.928

-6.830 7.488				
BsmtUnfSF	-0.2817	1.969	-0.143	0.886
-4.145 3.582				
TotalBsmtSF	20.3364	2.826	7.196	0.000
14.793 25.880				
1stFlrSF	23.5409	5.308	4.435	0.000
13.129 33.953				
2ndFlrSF	28.9580	5.521	5.245	0.000
18.128 39.788				
LowQualFinSF	-18.3571	12.279	-1.495	0.135
-42.445 5.730				
GrLivArea	34.1418	4.674	7.305	0.000
24.974 43.310				
BsmtFullBath	1188.0415	2142.964	0.554	0.579
-3015.682 5391.765				
BsmtHalfBath	-6472.7349	3345.912	-1.935	0.053
-1.3e+04 90.739				
FullBath	-1839.3572	2303.181	-0.799	0.425
-6357.367 2678.653				
HalfBath	-1745.3871	2214.303	-0.788	0.431
-6089.052 2598.278				
BedroomAbvGr	-1.179e+04	1379.653	-8.545	0.000
-1.45e+04 -9082.100				
KitchenAbvGr	-2.403e+04	3983.327	-6.034	0.000
-3.18e+04 -1.62e+04				
TotRmsAbvGrd	5593.5981	1013.354	5.520	0.000
3605.763 7581.433				
Fireplaces	1842.6362	1457.101	1.265	0.206
-1015.671 4700.943				
GarageYrBlt	106.9927	56.099	1.907	0.057
-3.053 217.038				
GarageCars	3023.0111	2356.422	1.283	0.200
-1599.439 7645.461				
GarageArea	18.5384	8.052	2.302	0.021
2.743 34.334				
WoodDeckSF	15.2935	6.518	2.346	0.019
2.508 28.079				
OpenPorchSF	27.3756	12.513	2.188	0.029
2.829 51.922				
EnclosedPorch	11.2541	13.682	0.823	0.411
-15.585 38.093				
3SsnPorch	10.4082	25.354	0.411	0.681
-39.328 60.144				
ScreenPorch	38.0293	13.973	2.722	0.007
10.620 65.439				
PoolArea	-3.5168	21.287	-0.165	0.869
-45.275 38.241				
				

MiscVal	-1.041	1.505	-0.692	0.489
-3.993 1.911				
MoSold	-16.994	15 276.902	-0.061	0.951
-560.176 526.188				
zone_low_density	6488.663	39 2135.912	3.038	0.002
2298.775 1.07e+04				
one_story_style	6570.570	00 3002.646	2.188	0.029
680.461 1.25e+04				
two_story_style	-2732.237	78 4015.387	-0.680	0.496
-1.06e+04 5144.504				
one_half_story_style	659.987	72 3689.555	0.179	0.858
-6577.590 7897.564				
${\tt typical_functionality}$	1.371e+0	3210.058	4.272	0.000
7415.270 2e+04				
sale_normal_condition	-7827.389	2033.137	-3.850	0.000
-1.18e+04 -3839.107				
gas_heating	-4403.730	3 5333.956	-0.826	0.409
-1.49e+04 6059.570				
time_taken_to_remodel	-18.426	38 29.553	-0.624	0.533
-76.399 39.546				
time_taken_to_sell	-226.451	38.136	-5.938	0.000
-301.261 -151.642				
time_taken_to_sell_after_remode	1 -208.024	37.895	-5.490	0.000
-282.361 -133.689				
intercept	-2.603e+0	05 1.13e+05	-2.308	0.021
-4.81e+05 -3.91e+04				
		======== ırbin-Watson:	=======	2.035
Prob(Omnibus):		arque-Bera (JB)	:	4012.154
Skew:		cob(JB):		0.00
Kurtosis:		ond. No.		1.01e+16

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 3e-21. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

4 Sklearn Models Analysis

```
[52]: features_cols = [
    "time_taken_to_sell",
    "OverallQual",
    "OverallCond",
```

```
"MasVnrArea",
          "TotalBsmtSF",
          "GrLivArea",
          "BedroomAbvGr",
          "TotRmsAbvGrd",
          "GarageArea",
          "ScreenPorch",
          "zone_low_density",
          "typical_functionality",
          "sale_normal_condition",
      ]
[53]: features_df = train_df[features_cols]
      features_df.head()
         time_taken_to_sell OverallQual OverallCond MasVnrArea TotalBsmtSF
[53]:
                                        7
                                                     5
                                                             196.0
                                                                             856
                          5
      0
      1
                         31
                                        6
                                                     8
                                                                0.0
                                                                            1262
                                                     5
      2
                          7
                                        7
                                                             162.0
                                                                             920
                                        7
                                                     5
      3
                         91
                                                                0.0
                                                                             756
                                                     5
                                                             350.0
      4
                          8
                                        8
                                                                            1145
         GrLivArea BedroomAbvGr TotRmsAbvGrd GarageArea ScreenPorch \
      0
              1710
                                              8
                                                        548
                               3
      1
              1262
                               3
                                              6
                                                        460
                                                                        0
      2
              1786
                               3
                                              6
                                                        608
                                                                        0
                               3
                                              7
      3
              1717
                                                        642
                                                                        0
      4
              2198
                                              9
                                                        836
                                                                        0
         zone_low_density typical_functionality
                                                  sale_normal_condition
      0
                                                1
                        1
                                                                        1
                                                1
                                                                        1
      1
      2
                        1
                                                1
                                                                        1
      3
                        1
                                                1
                                                                        0
                                                1
                                                                        1
[54]: X = features_df.values
      y = train_df['SalePrice']
[55]: sc = StandardScaler()
      X = sc.fit_transform(X)
      X
[55]: array([[-1.04612544, 0.66564559, -0.51746143, ..., 0.51903606,
               0.27156272, 0.46516048],
             [-0.18625648, -0.06470858, 2.17654515, ..., 0.51903606,
```

4.1 Linear Model

```
[57]: lm = LinearRegression()
lm.fit(x_train, y_train)
lm_preds = lm.predict(x_test)

print("R2 Score for Linear Model : ", lm.score(x_test, y_test))
print("RMSE for Linear Model : ", np.sqrt(mean_squared_error(y_test, lm_preds)))
```

R2 Score for Linear Model : 0.8464733772982462 RMSE for Linear Model : 28386.122329701033

4.2 RandomForest Model

```
[58]: rf_model = RandomForestRegressor()
    rf_model.fit(x_train, y_train)
    rf_preds = rf_model.predict(x_test)

print("R2 Score for Random Forest Model : ", rf_model.score(x_test, y_test))
    print("RMSE for Random Forest Model : ", np.sqrt(mean_squared_error(y_test, u_srf_preds)))
```

R2 Score for Random Forest Model : 0.8718567738601649 RMSE for Random Forest Model : 25933.554655943077

4.3 DecisionTreeRegressor Model

```
[59]: dt_model = DecisionTreeRegressor()
    dt_model.fit(x_train, y_train)
    dt_preds = dt_model.predict(x_test)
```

```
print("R2 Score for Decision Tree Model : ", rf_model.score(x_test, y_test))
print("RMSE for Decision Tree Model : ", np.sqrt(mean_squared_error(y_test,u_dt_preds)))
```

```
R2 Score for Decision Tree Model: 0.8718567738601649 RMSE for Decision Tree Model: 39583.2371666652
```

Random Forest Model is the best till this moment with RMSE = 25126.752 and R2 = 0.8797 and I will use to predict the test dataframe

4.4 Generating Prediction on Test DataFrame

4.4.1 Cleaning Test Dataset like in Train Dataset

```
[60]: ## MSZoning Column
     test_df['zone_low_density'] = test_df['MSZoning'] == "RL"
     ## HouseStyle Column
     test_df['one_story_style'] = test_df['HouseStyle'] == '1Story'
     test_df['two_story_style'] = test_df['HouseStyle'] == '2Story'
     test_df['one_half_story_style'] = test_df['HouseStyle'] == '1.5Fin'
      ## Functional Column
     test_df['typical_functionality'] = test_df['Functional'] == 'Typ'
     ## Sale Condition
     test df['sale normal condition'] = test df['SaleCondition'] == 'Normal'
     ## Heating Column
     test_df['gas_heating'] = test_df['Heating'] == 'GasA'
     ## conver to numeric values
     cols = ['zone_low_density', 'one_story_style', 'two_story_style',

      'one_half_story_style', 'gas_heating', 'sale_normal_condition']
     test_df[cols] = test_df[cols].astype('int')
      # test_df[
            ['zone_low_density', 'one_story_style', 'two_story_style',
      → 'typical_functionality',
            'one_half_story_style', 'gas_heating', 'sale_normal_condition']
      # ].head()
```

```
[61]: test_df['time_taken_to_sell'] = test_df['YrSold'] - test_df['YearBuilt']
[62]: test_features_df = test_df[features_cols]
    test_features_df.head()
```

```
[62]:
         time_taken_to_sell OverallQual OverallCond MasVnrArea TotalBsmtSF \
                                                                 0.0
                                                                            882.0
      0
      1
                          52
                                        6
                                                      6
                                                              108.0
                                                                           1329.0
      2
                          13
                                        5
                                                      5
                                                                0.0
                                                                            928.0
                                        6
                                                      6
      3
                          12
                                                               20.0
                                                                            926.0
      4
                          18
                                        8
                                                      5
                                                                0.0
                                                                           1280.0
         GrLivArea BedroomAbvGr
                                   TotRmsAbvGrd
                                                 GarageArea ScreenPorch
      0
               896
                                               5
                                                       730.0
                                                                       120
                                2
              1329
                                3
                                               6
                                                       312.0
                                                                         0
      1
      2
              1629
                                3
                                               6
                                                       482.0
                                                                         0
      3
              1604
                                3
                                               7
                                                       470.0
                                                                         0
                                2
      4
              1280
                                               5
                                                       506.0
                                                                       144
         zone_low_density typical_functionality
                                                    sale_normal_condition
      0
      1
                         1
                                                 1
                                                                         1
      2
                         1
                                                 1
                                                                         1
      3
                         1
                                                 1
                                                                         1
      4
                                                 1
                         1
                                                                         1
[63]: test features df.isna().sum()
[63]: time_taken_to_sell
                                 0
                                 0
      OverallQual
      OverallCond
                                 0
      MasVnrArea
                                15
      TotalBsmtSF
                                 1
                                 0
      GrLivArea
      BedroomAbvGr
                                 0
      TotRmsAbvGrd
                                 0
      GarageArea
                                 1
      ScreenPorch
                                 0
      zone_low_density
                                 0
      typical_functionality
                                 0
      sale_normal_condition
                                 0
      dtype: int64
[64]: test_features_df['MasVnrArea'].fillna(test_features_df['MasVnrArea'].mean(),__
       →inplace=True)
      test_features_df['TotalBsmtSF'].fillna(test_features_df['TotalBsmtSF'].mean(),__
       →inplace=True)
      test_features_df['GarageArea'].fillna(test_features_df['GarageArea'].mean(),__
       →inplace=True)
      assert len(test_features_df.isna().sum()[test_features_df.isna().sum() != 0])_u
```

```
[65]: X_test = test_features_df.values
      X_test = sc.fit_transform(X_test)
      X_{test}
[65]: array([[ 0.41378443, -0.75110125, 0.40076604, ..., -1.79693781,
               0.27416383, 0.46021084],
             [0.51239787, -0.05487716, 0.40076604, ..., 0.55650229,
               0.27416383, 0.46021084],
             [-0.76957685, -0.75110125, -0.49741776, ..., 0.55650229,
               0.27416383, 0.46021084],
            ...,
             [0.31517099, -0.75110125, 1.29894985, ..., 0.55650229,
               0.27416383, -2.17291708],
             [-0.73670571, -0.75110125, -0.49741776, ..., 0.55650229,
               0.27416383, 0.46021084],
             [-0.76957685, 0.64134693, -0.49741776, ..., 0.55650229,
               0.27416383, 0.46021084]])
     4.4.2 Evaluating Best Machine Learning Model.
[66]: test_preds = rf_model.predict(X_test)
      test preds
[66]: array([129459. , 154134.5 , 172650.33, ..., 151392.5 , 113305. ,
             233236.3 1)
[67]: test_df['SalePrice'] = test_preds
      test_df[['Id', 'SalePrice']].head()
[67]:
           Id SalePrice
      0 1461 129459.00
     1 1462 154134.50
      2 1463 172650.33
      3 1464 190920.00
      4 1465 210673.91
[68]: ## exporting the predictions to csv
      test_df[['Id', 'SalePrice']].to_csv('predictions_1.csv', index=False)
     4.5 PyTorch Neural Network Model
[69]: class HouseDataset(Dataset):
          def __init__(self, x_data, y_data, transform=None):
              n n n
              Args:
                  x_data (np.ndarray) : x_train data array
```

```
y_data (np.ndarray) : y_train data array
                  transform (callable, optional): Optional transform to be applied
                      on a sample.
             self.x_data = x_data
              self.y_data = y_data
              self.transform = transform
         def __len__(self):
              return self.x data.shape[0]
         def __getitem__(self, idx):
              if torch.is_tensor(idx):
                  idx = idx.tolist()
              if not isinstance(self.y_data, np.ndarray):
                  self.y_data = np.array(self.y_data)
             x_sample = self.x_data[idx]
             y_sample = self.y_data[idx]
              if self.transform is not None:
                  x_sample = self.transform(x_sample)
             return x_sample, y_sample
      train_ds = HouseDataset(x_train, y_train)
      train_dl = DataLoader(train_ds, batch_size=BATCH_SIZE, shuffle=True)
      sample = next(iter(train_dl))
      sample[0], sample[1]
[69]: (tensor([[ 1.4673e+00, 6.6565e-01, 1.2785e+00, -5.7750e-01, -7.8313e-01,
                2.7081e-01, 1.6591e-01, -3.1416e-01, 3.5123e-01, -2.7061e-01,
                -1.9266e+00, 2.7156e-01, 4.6516e-01],
               [-1.0131e+00, 2.8567e+00, -5.1746e-01, 3.4103e+00, 3.8405e+00,
                2.2682e+00, -1.0603e+00, 9.2712e-01, 1.5687e+00, -2.7061e-01,
                 5.1904e-01, 2.7156e-01, 4.6516e-01],
               [ 5.0825e-01, -7.9506e-01, -5.1746e-01, -5.7750e-01, -2.5501e+00,
               -7.7017e-01, 1.6591e-01, -9.3479e-01, -2.2253e+00, -2.7061e-01,
                5.1904e-01, -3.6824e+00, 4.6516e-01],
               [7.8319e-02, -7.9506e-01, 3.8054e-01, -1.4761e-01, -1.1810e-01,
               -1.0158e+00, 1.6591e-01, -9.3479e-01, 2.0312e+00, -2.7061e-01,
                5.1904e-01, 2.7156e-01, 4.6516e-01],
               [ 1.4673e+00, -7.9506e-01, 1.2785e+00, -5.7750e-01, -3.0256e-01,
```

```
-3.8358e-01, 1.6591e-01, -3.1416e-01, 5.8662e-02, -2.7061e-01,
-1.9266e+00, 2.7156e-01, 4.6516e-01],
[2.7675e-01, -7.9506e-01, -5.1746e-01, -5.7750e-01, 2.1684e-01,
 3.8156e-01, 1.6591e-01, 9.2712e-01, -5.7839e-01, -2.7061e-01,
 5.1904e-01, -3.6824e+00, 4.6516e-01],
[ 1.8973e+00, -6.4709e-02, 3.8054e-01, -5.7750e-01, -7.4915e-01,
-4.5308e-02, 1.6591e-01, 1.5478e+00, -2.2253e+00, -2.7061e-01,
-1.9266e+00, 2.7156e-01, 4.6516e-01],
[ 1.0043e+00, -7.9506e-01, 1.2785e+00, -5.7750e-01, -6.2536e-01,
-7.8225e-01, 1.6591e-01, -9.3479e-01, -2.9054e-01, 4.5852e+00,
-1.9266e+00, 2.7156e-01, 4.6516e-01],
[-7.1541e-01, 1.3960e+00, -5.1746e-01, -5.7750e-01, 6.9498e-01,
-3.4129e-01, -1.0603e+00, -9.3479e-01, -4.5154e-02, -2.7061e-01,
 5.1904e-01, 2.7156e-01, 4.6516e-01],
[-1.2115e+00, 1.3960e+00, -5.1746e-01, 1.1194e+00, 1.2896e+00,
 1.3178e+00, 1.6591e-01, 9.2712e-01, 1.4979e+00, -2.7061e-01,
 5.1904e-01, 2.7156e-01, -2.1498e+00],
[ 5.7440e-01, -7.9506e-01, -5.1746e-01, -5.7750e-01, 8.0663e-01,
-2.4867e-01, 1.6591e-01, -3.1416e-01, -5.5480e-01, -2.7061e-01,
 5.1904e-01, 2.7156e-01, 4.6516e-01],
[-1.8626e-01, -6.4709e-02, 1.2785e+00, 4.0672e-01, 2.2412e-01,
-7.9232e-01, 1.6591e-01, -3.1416e-01, 1.5304e-01, -2.7061e-01,
 5.1904e-01, 2.7156e-01, 4.6516e-01],
[-1.0461e+00, 6.6565e-01, -5.1746e-01, 1.0742e+00, -1.2781e-01,
 1.0863e+00, 1.6591e-01, 9.2712e-01, 1.8849e+00, -2.7061e-01,
 5.1904e-01, 2.7156e-01, 4.6516e-01],
[-1.1453e+00, 1.3960e+00, -5.1746e-01, -5.7750e-01, -8.3409e-01,
-1.8625e-01, 1.6591e-01, -3.1416e-01, -3.2357e-01, -2.7061e-01,
 5.1904e-01, 2.7156e-01, 4.6516e-01],
[-1.1453e+00, 1.3960e+00, -5.1746e-01, -5.7750e-01, 1.0081e+00,
-8.1551e-02, 1.6591e-01, 3.0648e-01, 6.5324e-01, -2.7061e-01,
 5.1904e-01, 2.7156e-01, 4.6516e-01],
[-1.1453e+00, -6.4709e-02, -5.1746e-01, 8.7054e-01, 7.5566e-01,
-2.9096e-01, -1.0603e+00, -3.1416e-01, -5.4591e-02, -2.7061e-01,
 5.1904e-01, 2.7156e-01, 4.6516e-01],
[-1.1784e+00, -6.4709e-02, -5.1746e-01, -1.5893e-01, -3.8023e-01,
 8.5876e-01, 1.3921e+00, 1.5478e+00, 9.2694e-01, -2.7061e-01,
 5.1904e-01, 2.7156e-01, 4.6516e-01],
[ 2.1061e-01, -6.4709e-02, 3.8054e-01, -5.7750e-01, 2.0713e-01,
-7.4601e-01, 1.6591e-01, -9.3479e-01, -4.1323e-01, -2.7061e-01,
 5.1904e-01, 2.7156e-01, 4.6516e-01],
[-1.5318e-01, -6.4709e-02, 3.8054e-01, 2.1440e-01, -8.7536e-01,
-1.6209e-01, 1.6591e-01, -3.1416e-01, -1.4897e-01, -2.7061e-01,
 5.1904e-01, 2.7156e-01, 4.6516e-01],
[ 1.7319e+00, -7.9506e-01, 1.2785e+00, -5.7750e-01, -5.6954e-01,
-1.8223e-01, 1.6591e-01, 3.0648e-01, 4.9280e-01, -2.7061e-01,
 5.1904e-01, 2.7156e-01, 4.6516e-01],
```

```
-1.9266e+00, 2.7156e-01, 4.6516e-01],
               [-1.2115e+00, 6.6565e-01, 3.8054e-01, -5.7750e-01, -4.2877e-01,
                5.1243e-01, 1.6591e-01, 3.0648e-01, 5.0224e-01, -2.7061e-01,
               -1.9266e+00, 2.7156e-01, -2.1498e+00],
               [-1.2115e+00, -6.4709e-02, -5.1746e-01, -1.9286e-01, 5.1295e-01,
               -4.9231e-01, -1.0603e+00, -9.3479e-01, 4.7393e-01, -2.7061e-01,
               -1.9266e+00, 2.7156e-01, -2.1498e+00],
               [5.0825e-01, -7.9506e-01, -5.1746e-01, -5.7750e-01, -1.6180e+00,
               -2.9498e-01, 1.6591e-01, -3.1416e-01, 4.7393e-01, -2.7061e-01,
                5.1904e-01, -3.6824e+00, 4.6516e-01],
               [-1.2115e+00, 1.3960e+00, -5.1746e-01, -1.7024e-01, 6.0518e-01,
               -3.8761e-01, 1.6591e-01, -3.1416e-01, 3.7955e-01, -2.7061e-01,
               -1.9266e+00, 2.7156e-01, -2.1498e+00],
               [ 6.0747e-01, -7.9506e-01, -1.4155e+00, -5.7750e-01, -5.8168e-01,
               -2.4062e-01, 1.6591e-01, 3.0648e-01, -1.0172e+00, -2.7061e-01,
               -1.9266e+00, 2.7156e-01, 4.6516e-01],
               [1.3681e+00, -7.9506e-01, 1.2785e+00, -5.7750e-01, -8.1468e-01,
               -1.2715e+00, -1.0603e+00, -9.3479e-01, -1.3759e+00, -2.7061e-01,
               -1.9266e+00, 2.7156e-01, 4.6516e-01],
               [-1.0792e+00, 6.6565e-01, -5.1746e-01, 1.9226e+00, -4.4333e-01,
               -7.2588e-01, 1.6591e-01, -3.1416e-01, -1.5841e-01, -2.7061e-01,
                5.1904e-01, 2.7156e-01, 4.6516e-01],
               [-1.1784e+00, 6.6565e-01, -5.1746e-01, 8.9868e-03, 9.1585e-01,
               -1.5806e-01, 1.6591e-01, -3.1416e-01, 3.9787e-02, -2.7061e-01,
               -1.9266e+00, 2.7156e-01, -2.1498e+00],
               [2.4368e-01, -6.4709e-02, 3.8054e-01, -5.7750e-01, 1.1319e+00,
                7.6815e-01, -1.0603e+00, -3.1416e-01, 5.0224e-01, -2.7061e-01,
                5.1904e-01, -3.6824e+00, 4.6516e-01],
               [-1.2011e-01, -6.4709e-02, 3.8054e-01, 8.6489e-01, -2.3443e-02,
               -7.6816e-01, 1.6591e-01, -3.1416e-01, -5.6423e-01, -2.7061e-01,
                5.1904e-01, 2.7156e-01, -2.1498e+00],
               [-7.8155e-01, -6.4709e-02, -5.1746e-01, 1.6424e-02, -2.9770e-01,
                4.3189e-01, 1.6591e-01, 3.0648e-01, -2.6836e-03, -2.7061e-01,
                5.1904e-01, 2.7156e-01, 4.6516e-01]], dtype=torch.float64),
      tensor([178000, 466500, 93000, 148500, 130000, 143900, 128000, 119900, 180000,
              325624, 165000, 148000, 284000, 178000, 201000, 194700, 214000, 140000,
              159500, 112000, 140000, 227875, 185000, 130000, 229456, 93000, 105000,
              187500, 182000, 190000, 125000, 201000]))
[70]: class NNet(nn.Module):
         def __init__(self, input_size: int, hidden_sizes: list, output_size: int=1)__
       →-> None:
             super().__init__()
             self.fc1 = nn.Linear(input_size, hidden_sizes[0])
```

[-1.0131e+00, -6.4709e-02, -5.1746e-01, 3.8409e-01, -4.9187e-01, -1.3259e+00, -2.2865e+00, -1.5554e+00, -2.4335e-01, -2.7061e-01,

```
self.fc2 = nn.Linear(hidden_sizes[0], hidden_sizes[1])
self.fc3 = nn.Linear(hidden_sizes[1], hidden_sizes[2])
self.fc4 = nn.Linear(hidden_sizes[2], output_size)

def forward(self, x):
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    x = F.relu(self.fc3(x))
    out = self.fc4(x)

    return out

class RMSELoss(nn.Module):
    def __init__(self):
        super().__init__()
        self.mse = nn.MSELoss()

def forward(self, y_pred, y_true):
        return torch.sqrt(self.mse(y_pred, y_true))
```

```
[71]: def train(train_dl, model, optimizer, criterion, epochs=100) -> list:
          losses = []
          print("{:<8}|{:>15}".format("Epoch", "Loss"))
          print("="*24)
          epoch_loss = 0
          for epoch in range(epochs):
              epoch_losses = []
              for x_batch, y_batch in train_dl:
                  y_preds = model(x_batch.float())
                  loss = criterion(y_preds, y_batch.float())
                  optimizer.zero_grad()
                  loss.backward()
                  optimizer.step()
                  epoch_loss += loss.item()
                  epoch_losses.append(loss.item())
              losses.append(np.mean(epoch_losses))
              if epoch % 10 == 0:
                  print("{:<8}|{:>15}".format(epoch, round(np.mean(epoch_losses), 3)))
```

return losses

190

75758.835

```
[72]: ## initializing mode
      n_feaures = x_train.shape[1]
      hidden_sizes = [32, 16, 8]
      output_size = 1
      model = NNet(n_feaures, hidden_sizes, output_size)
      print(model)
      ## training Model
      optimizer = optim.Adam(model.parameters(), lr=LR)
      criterion = RMSELoss()
      losses = train(train_dl, model, optimizer, criterion, epochs=200)
     NNet(
       (fc1): Linear(in_features=13, out_features=32, bias=True)
       (fc2): Linear(in_features=32, out_features=16, bias=True)
       (fc3): Linear(in_features=16, out_features=8, bias=True)
       (fc4): Linear(in_features=8, out_features=1, bias=True)
     )
     Epoch
             Loss
     0
                   196045.524
     10
                    79553.088
     20
                    76881.525
     30
                    75187.745
     40
                    75267.642
     50
                     76417.62
     60
                    75412.843
     70
                    75768.498
                    76077.083
     80
     90
                    75788.585
                    75680.965
     100
     110
                    75396.359
     120
              I
                    76147.532
                    74582.772
     130
             1
     140
             76748.031
     150
                     76243.72
                    76572.471
     160
     170
                    75917.212
     180
                    76640.626
```

```
[73]: %matplotlib inline

fig, ax = plt.subplots(nrows=1, figsize=(10, 6))

ax.plot(losses, 'r-', lw=2)
ax.set_title("Torch Model Loss")
ax.set_xlabel("Epoch")
ax.set_ylabel("Loss");
ax.set_ylim([70000, 90000])
```

[73]: (70000.0, 90000.0)

[]: