

Politechnika Wrocławska

Dr. Radosław Michalski
Department of Computational Intelligence, Faculty of Computer Science
and Management, Wrocław University of Science and Technology
Version 1.0, spring 2017

Source and licensing

The most current version of this lecture is here: https://github.com/rmhere/lecture-comp-arch-org

This material is licensed by Creative Commons Attribution NonCommercial ShareAlike license 4.0 (CC BY-NC-SA 4.0).

Overview of this lecture

Floating point representation

Caching

Integers

How to work with integer numbers in computer systems?

- exemplary integer: 1283093714 (31 bits)
- ▶ integers precise representation
- maximum length as defined by architecture
- \triangleright 2ⁿ, where *n* represents the number of bits
- signed/unsigned
- overflow

Real numbers - introduction

How to work with real numbers in computer systems?

- exemplary real number: 3.82379102
- no possibility of holding some real numbers precisely
- registers have fixed length (32 bits in case of MIPS)
- precision or approximation
- ▶ how to use these 32 bits effectively?
- ▶ fixed point vs. floating point

Real numbers - fixed point

integerpart . fraction

3.82379102

00000011 (8 bits) . 10011101001000000101011110 (28 bits)

Real numbers - floating point

 $3.82379102 = 382379102 * 10^{-8}$

Real numbers - IEEE 754 standard

IEEE 754 / binary32

- ▶ sign bit (1 bit)
- exponent (8 bits)
- ▶ significand/mantissa (24 bits, 1 bit implicit)
- ▶ base: 2

Real numbers - binary32

 $significand * 2^{exponent}$

3.82379102

 $\begin{array}{c} 0 \; (\mathsf{sign}) \\ 10000000 \; (\mathsf{exponent} \; \text{-} \; 1) \\ 11101001011100011111110 \; (\mathsf{mantissa} \; \text{-} \; 1.9114999771118164) \end{array}$

Real numbers - IEEE 754 standard

IEEE 754 / binary64

- ▶ sign bit (1 bit)
- exponent (11 bits)
- ▶ significand/mantissa (53 bits, 1 bit implicit)
- ▶ base: 2

Real numbers - MIPS

- ▶ MIPS has 32 single precision (32-bit) floating point registers.
- ▶ \$f0 \$f31
- ▶ \$f0 is not special
- special instructions that work on single precision
- ▶ these cannot use general purpose registers, only floating point

Double precision in MIPS

- ▶ using the same sets of registers pairwise, e.g., \$f0 and \$f1
- ▶ addressing the first register from a pair, e.g., \$f0, \$f2
- ▶ instructions for integer, single and double precision arithmetic
 - add integers
 - ▶ add.s single precision
 - add.d double precision

Sources & recommended materials

- ► S. Hollasch, IEEE Standard 754 Floating Point Numbers (website)
- ► Wikipedia, IEEE floating point (website)
- ► H. Schmidt, IEEE-754 Floating Point Converter (website)
- ▶ J. King, IEEE Floating Point Standard (The Implicit 1) (video)

Introduction

- ▶ from computer's perspective (RISC):
 - registers
 - memory
- memory is continuous
- ▶ the CPU does not know with what type of memory it interacts
- this is why we can introduce different strategies regarding memory

Memory hierarchy

Schema

Computer Memory Hierarchy

Memory access times

Processor registers:

- ▶ 32 * 32 bits (registers) + 32 * 32 bits (floating point registers)
- the fastest, matched in speed to the CPU
- ▶ 0.25 ns

Cache:

- megabytes
- ▶ 1ns

RAM:

- gigabytes
- ▶ 20ns

External memory

Memory hierarchy

Lstopo output

LenovoTM ThinkStation[®] D20, Intel[®] XeonTM E5640, 6 GB RAM

Screenshot from the application Istopo (package Portable Hardware Locality)

Accessing cache

- ► cache hit
- cache miss
- spatiality
- **▶** temporality

Sources & recommended materials

- Imagination Technologies Limited, MIPS Software Training caches, Hertfordshire, UK (training materials)
- ▶ J. Kwiatkowski, "Computer Architecture and Organization", Wrocław University of Science and Technology (course materials)