Cryptanalysis

Block Ciphers 2

John Manferdelli JohnManferdelli@hotmail.com

© 2004-2012, John L. Manferdelli.

This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only

Differential Cryptanalysis of DES

How input differentials affect output

Expansion Matrix

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Р	1	2	3	4
1	16	7	20	21
2	29	12	28	17
3	1	15	23	26
4	5	18	31	10
5	2	8	24	14
6	32	27	3	9
7	19	13	30	6
8	22	11	4	25

Out	1	2	3	4
1	4,4	2,3	5,4	6,1
2	8,1	3,4	7,4	5,1
3	1,1	4,3	6,3	7,2
4	4 2,1		8,3	3,2
5	1,2	2,4	6,4	4,2
6	8,4	7,3	1,3	3,1
7	5,3	4,1	8,2	2,2
8	6,2	3,3	1,4	7,1

After P

 On average 1 bit difference affects 3 S boxes in next round after expansion.

How input differentials affect output

Expansion Matrix

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Р	1	2	3	4
1	16	7	20	21
2	29	12	28	17
3	1	15	23	26
4	5	18	31	10
5	2	8	24	14
6	32	27	3	9
7	19	13	30	6
8	22	11	4	25

P-1	1	2	3	4
1	9	17	23	31
2	13	28	2	18
3	24	16	30	6
4	26	20	10	1
5	8	14	25	3
6	4	29	11	19
7	32	12	22	7
8	5	27	15	21

Out	1	2	3	4
1	4	2	5	6
2	8	3	7	5
3	1	4	6	7
4	2	5	8	3
5	1	2	6	4
6	8	7	1	3
7	5	4	8	2
8	6	3	1	7

After P

Affected by box

- Input differential: 0x20000000 00000000
- A'= 0, a'=0; b'= 0x20000000, B' is affected (at most) as mask=0x00808202=P(f0000000) since only the first S box is non-zero
- $d' = C_R'$ is known
- D'= $C_L' \oplus B'$ is known in 28 bits (all but the mask positions: 0x00808202)
- S/N= pk/($\lambda \gamma$), is the ratio of discarded pairs to all pairs, is the number of keys suggested by a pair. Remember only about .8 of xor output patterns are possible.
- Bits that leave all S-boxes but S₁ are valid.
- Weighted probabilities (next slide)
- For each S box, try all 2⁶ keys and bump counts for each key which matches the differential, d'→D'.

For Sbox 1:

- $-0x04 \rightarrow 0x3$, p= 6/64 (0x00000202)
- $-0x04 \rightarrow 0x5$, p= 10/64 (0x00800002)
- $-0x04 \rightarrow 0x6$, p= 10/64 (0x00800200)
- $-0x04 \rightarrow 0x7$, p= 6/64 (0x00800202)
- $-0x04 \rightarrow 0x9$, p= 4/64 (0x00008002)
- $-0x04 \rightarrow 0xa$, p= 6/64 (0x00008200)
- $-0x04 \rightarrow 0xb$, p= 4/64 (0x00008202)
- $-0x04 \rightarrow 0xc$, p= 2/64 (0x00808000)
- $-0x04 \rightarrow 0xd$, p= 8/64 (0x00808002)
- $-0x04 \rightarrow 0xe$, p= 6/64 (0x00808200)
- $-0x04 \rightarrow 0xf$, p= 2/64 (0x00808202)

DC of DES, 5 rounds

- $(P_1, P_2) \rightarrow (C_1, C_2)$ gives information about K_5 in S_2 .
- $C_L \oplus L_4 = E$
- $L_2 \oplus L_4 = 0$
- $L_2 \oplus L_0 = A$
- So, $L_0 \oplus L_4 = E \oplus A$
- $02000000 \rightarrow 40004010$, p=14/64
- 000006c0 → 02000000, p=12/64
- Need 3-5 right pairs
- Pr[wrong pair]= 2⁻⁶⁴
- Expected # of wrong pairs is m2⁻⁶⁴

- Requires 25,000 cipher texts. Finds 30 bits in K₈.
- Uses 5 round differential 405c 0000 0400 0000 → 405c 0000 0400 0000 for five rounds, p= 1/10485.76.
- f'= d'⊕E'= b'⊕A'=L', H'= l'⊕g'= l'⊕e'⊕F'
- $S/N = 2^{30}/(4^5 \cdot 10485.76) = 100$
- 4008 0000= P(0a00 0000), 0400 0000=P(0010 0000)
- $S/N=2^{30}/(4^5\cdot 10485.76)=100$ for 30 bits --- too many counters.
- Reduce to 24 bit search with enhanced probability.
 - $e' \rightarrow E' = P(0W 00 00 00) = X0 0Y Z0 00 = f' = X0 5V Z0 00.$
 - W ε{1,2,3,8,9,a,b}, Xε{0,4}, Yε{0,8}, Zε{0,4}. V=Y⊕4.
 - Z=0, 0400 0000 \rightarrow 4008 0000, p=1/4, all others Z=4, p=20/64
 - $p_{e' \rightarrow E'} = 1/4 + .8(20/64) = 1/2$
 - Pr(24 bit, differential)= $[(16\cdot10\cdot16)/64^3]\cdot[(16\cdot10\cdot32)/64^3]=1/5243$

- For enhanced probability, 24 bits, find keys in S₂, S₆, S₇, S₈.
- $e'=0400\ 0000 \rightarrow E'=P(0w\ 00\ 00\ 00)=x0\ 0y\ z0\ 00=f'=x0\ 5v\ z0\ 00.$
- $S/N = 2^{24}/(4^4 \cdot .8 \cdot 5243) = 15.6$
- Alternatively use 18 bit count (S_6 , S_7 , S_8), requiring 150,000 pairs with S/N= 1.2 followed by 12 bits.
- These keys allow us to calculate 20 bits of H, H*.
- Can use this to complete K_8 (48 bits).
- Final 8 bits from exhaustive search.

- 18 bits of key, 150,000 pairs from S₂, S₆, S₇, S₈
 - 1. Set up 2¹⁸ counter
 - 2. Preprocess $S_{l}, S_{l}' \rightarrow S_{O}'$.
 - 3. For each cipher text pair
 - a. Calculate $S_{EH}'=S_{Ih}'$, $S_{Oh'}'$ for S_2 , S_5 , S_6 , S_7 , S_8
 - b. For each of S_2 , S_5 , S_6 , S_7 , S_8 , check is $S_{ih}' \rightarrow S_{Oh}'$ is not satisfied for any S-box. If so, discard.
 - c. For S_6 , S_7 , S_8 , get all S_{lh} which are possible for $S_{ih} \rightarrow S_{lh}$. Calculate $S_{Kh} = S_{lh} \oplus S_{Eh}$
 - 4. Get entry of maximal count

Full Differential Attack on DES

- Use 0 \rightarrow 0 and concatenated 2R characteristic with $p = \frac{1}{234}$ to get 13th round with p=2^{-47.2}.
- Want 1960 0000 0000 0000
- Candidate in round 16 has 20 ciphertexts with 0, use 2²⁴
- 2⁻²⁰ of these
- Additional filter: 3 xors can only produce 15 outputs
- Survival rate: .0745, get 1.19 for 2^{35.2} structures
- Rate of values not discarded in round 16 is 2⁻³²/(4/5)⁸
- This gives 1.19x.84 =1 key

Summary of DES DC Attacks

# Rounds	# Pairs needed	# Pairs used	# bits found	# chrtstcs	р	S/N	I	g
4	2 ³	2 ³	24	1	1	16		
6	27	27	30	3	1/16	2 ¹⁶		
8	2 ¹⁵	213	30	5	1/104656	15.6		
8	2 ¹⁷	2 ¹³	30	5	1/104656	1.2		
8	2 ²⁰	219	30	5	1/55000	1.5		
9	2 ²⁵	224	30	6	10 ⁻⁶	1.0		
9	2 ²⁶	28	48	7	10-24	2 ²³		

For simple attacks

Linear Cryptanalysis of DES

One round linear constraint

- $S_5(x_1 \oplus k_1, x_2 \oplus k_2, x_3 \oplus k_3, x_4 \oplus k_4, x_5 \oplus k_5, x_6 \oplus k_6)[1,2,3,4] \oplus x_2 = k_2 \oplus 1, p=52/64$
- Output of F from S_5 is permuted (by P) into positions 8,14,25,3 of round output, O.
- Input to S_5 for F comes from bits 16,17,18,19,20,21 of round input, I (after expansion).
- Key bits for S_5 are from bits 25,26,27,28,29,30 of the round key, K.
- After renaming input, output and key bits in this way, the constraint becomes $O[3,8,14,25] \oplus I[17] = K[26] \oplus 1$.

				/\	[1,2,3,4,3,6]						—— ц:
P-1	1	2	3	4		P-1	1	2	3	4	
1	9	17	23	31		5	8	14	25	3	
					1						i

L	Ρ -	1	2	5	4
	1	9	17	23	31
	2	13	28	2	18
	3	24	16	30	6
	4	26	20	10	1

P ⁻¹	1	2	3	4
5	8	14	25	3
6	4	29	11	19
7	32	12	22	7
8	5	27	15	21

Matsui's Per Round Constraints

	SBox	Sbox Equation	W	ht(w)	Prob	Round Equation
Α	5	X[2]⊕Y[1,2,3,4]= K[2]⊕1	40 ₈	40	12/64	X[17]⊕Y[3,8,14,25]=K[26]
В	1	X[2,3,5,6]⊕Y[2]=K[2,3,5,6]⊕1	27 ₈	20	22/64	X[1,2,4,5]⊕Y[17]=K[2,3,5,6]
С	1	X[4]⊕Y[2]= K[4]⊕1	48	4	30/64	X[3]⊕Y[17]=K[4]
D	5	$X[2] \oplus Y[1,2,3] = K[2]$	10 ₈	20	42/64	X[17]⊕Y[8,14,25]=K[26]
Е	5	X[1, 5]⊕Y[1,2,3]= K[1,5]⊕1	22 ₈	32	16/64	X[16,20]⊕Y[8,14,25]=K[25,29]

Ht(w) is (unnormalized) Hadamard weight. Note that a-d=ht(w) and $a+d=2^n$ so $a=(2^n+ht(w))/2$ where a=# places linear appx agrees and d=# places linear appx disagrees.

Matsui: Linear Cryptanalysis Method for DES Cipher. Eurocrypt, 98. By the way, Matsui's bit numbering scheme differs from ours.

S-Box constraints

• S-1, Y[4]:

```
w: 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
ht: 000 000 004 004 -04 004 000 008 -08 000 004 -04 004 -12 000 000
w: 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031
ht: -04 -04 -08 -08 -08 000 -12 -04 -04 004 000 -08 008 -08 -04 -04
w: 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047
ht: 000 000 -04 -04 -04 004 -08 000 -08 000 -04 020 -12 004 008 008
w: 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063
ht: 004 004 008 008 -16 -08 -12 -04 020 -04 000 -08 000 -16 -04 028
```

• S5, Y[1 2 3 4]:

S-Box constraints to round constraints

S-Box output bit use

```
      S[1]:
      9
      17
      23
      31

      S[2]:
      13
      28
      2
      18

      S[3]:
      24
      16
      30
      6

      S[4]:
      26
      20
      10
      1

      S[5]:
      8
      14
      25
      3

      S[6]:
      4
      29
      11
      19

      S[7]:
      32
      12
      22
      7

      S[8]:
      5
      27
      15
      21
```

- Input at round 1 to activate S₅ constraint is
 - $P_{R}[17].$
- Output at round 1 for constraint is
 - $O[3,8,14,25] = P_{L}[3,8,14,25] \oplus R_{2}[3,8,14,25]$ which holds with probability 52/64.
- Key bits are K₁[26] and K₃[26].
- First round thus yields
 - $P_L[3,8,14,25] \oplus R_2[3,8,14,25] \oplus P_R[17] = K_1[26] \oplus 1$
- Similarly using the same S₅ relation, round 3 is
 - $C_L[3,8,14,25] \oplus R_2[3,8,14,25] \oplus C_R[17] = K_3[26] \oplus 1$, which holds with probability 52/64.
- Adding we get
 - $P_L[3,8,14,25] \oplus C_L[3,8,14,25] \oplus P_R[17] \oplus C_R[17] = K_1[26] \oplus K_3[26].$
- This holds with probability
- $p = (52/64)^2 + (12/64)^2 = .6953$

Evaluating experimental outcome

- Suppose an affine constraint $P[j_1, ..., j_m] \oplus C[l_1, ..., l_{m'}] = K[k_1, ..., k_{m''}]$ holds with probability p. Put $\mathbf{x} = (x_1, ..., x_n)$ where $x_i = P_i[j_1, ..., j_m] \oplus C_i[l_1, ..., l_{m'}]$ for the observed sequence (P_i, C_i) of corresponding plain and cipher text. \mathbf{x} is sampled from one of two populations: one with $K[k_1, ..., k_{m''}] = 0$ and one with $K[k_1, ..., k_{m''}] = 1$. We assume that the choice of population 1 or population 2 is made at random prior to observation of (P_i, C_i) .
- If **x** is sampled from the first population (q=0), $Pr(x_i|q=0)=p$ while if **x** is sampled from the second population (q=1), $Pr(x_i|q=1)=q=1-p$.
- Denoting $p_0 = Pr(q=0|\mathbf{x})$ and $p_1 = Pr(q=1|\mathbf{x})$, from Bayes Theorem, we obtain $p_0 = Pr(q=0|\mathbf{x}) = Pr(\mathbf{x}|q=0) \cdot Pr(q=0)/Pr(\mathbf{x})$ while $p_1 = Pr(q=1|\mathbf{x}) = Pr(\mathbf{x}|q=1) \cdot Pr(q=1)/Pr(\mathbf{x})$.
- Pr(q=0)=Pr(q=1)=1/2. Suppose we observe a 0's in \mathbf{x} and b 1's (a+b=n), then $Pr(\mathbf{x}|q=0)={}_{n}C_{a}$ p^aq^b and similarly, $Pr(\mathbf{x}|q=1)={}_{n}C_{a}$ q^ap^b, while $Pr(\mathbf{x})={}_{n}C_{a}$ (1/2)^a (1/2)^b= 2⁻ⁿ_nC_a.
- So $p_0 = 2^{n-1}p^aq^b$ and $p_1 = 2^{n-1}q^ap^b$.
- Thus, $p_0/p_1 = (p/q)^a (q/p)^b$.

- $P_R[17] \oplus P_L[3,8,14,25] \oplus C_L[3,8,14,25] \oplus C_R[17] = K_1[26] \oplus K_3[26]$
- Recall p= .6953 so q= .3047.
- If we observe a 0's in x and b 1's, the previous result gives:

$$Pr(q=0|x)/Pr(q=1|x) = (p/q)^a(q/p)^b$$
.

- Equivalently, if a>b, $Pr(q=0|\mathbf{x})/Pr(q=1|\mathbf{x}) = (p/q)^{a-b} \cong (7/3)^{a-b}$.
- So, if, for example, a-b=5, $p_0 \cong .99$.

- 1. $P_L[17] \oplus R_1[17] = K_1[2,3,5,6] \oplus P_R[1,2,4,5] \oplus 1$ (Eq B)
- 2. $P_R[3,8,14,25] \oplus R_2[3,8,14,25] = K_2[26] \oplus R_1[17] \oplus 1 \dots (Eq A)$
- 3. $R_2[3,8,14,25] \oplus C_R[3,8,14,25] = K_4[26] \oplus C_R[17] \oplus 1$ (Eq A)
- 4. $C_L[17] \oplus R_3[17] = K_5[2,3,5,6] \oplus C_R[1,2,4,5] \oplus 1$ (Eq B)
- Adding yields:

$$P_{L}[17] \bigoplus P_{R}[1,2,3,4,5,8,14,25] \bigoplus C_{L}[17] \bigoplus C_{R}[1,2,3,4,5,8,14,25] = K_{1}[2,3,5,6] \bigoplus K_{2}[26] \bigoplus K_{4}[26] \bigoplus K_{5}[2,3,5,6]$$

This holds with probability:

$$p = p_B^2 p_A^2 + p_B^2 q_A^2 + p_A^2 q_B^2 + 4(q_A p_B q_B p_A) + q_B^2 q_A^2 \cong .519 = .5 + 1.22 \times 2^{-6}$$
, where $q_i = 1 - p_i$. $p/q = 1.07927$..

• Suppose we decide, based on an excess (e), of LHS values. Odds of right answer is $r=(p/q)^e$. For example, if e=64, $r\cong131.92$.


```
1. P_{L}[8,14,25] \oplus R_{1}[8,14,25] = K_{1}[25,29] \oplus P_{R}[16,20] \oplus 1 ......(Eq E)

2. R_{1}[8,14,25] \oplus R_{3}[8,14,25] = K_{3}[26] \oplus R_{2}[17] ......(Eq D)

3. R_{3}[3,8,14,25] \oplus R_{5}[3,8,14,25] = K_{5}[26] \oplus R_{4}[17] ......(Eq A)

4. R_{2}[17] \oplus R_{4}[17] = K_{4}[4] \oplus R_{3}[3] \oplus 1 ......(Eq C)

5. R_{5}[3,8,14,25] \oplus R_{7}[3,8,14,25] = K_{7}[26] \oplus R_{6}[17] ......(Eq A)

6. C_{1}[17] \oplus R_{6}[17] = K_{8}[2,3,5,6] \oplus C_{R}[1,2,4,5] \oplus 1 ......(Eq B)
```

- $P_{L}[8,14,25] \oplus P_{R}[16,20] \oplus C_{R}[1,2,3,4,5,8,14,25] \oplus C_{L}[17] = K_{1}[25,29] \oplus K_{3}[26] \oplus K_{4}[4] \oplus K_{5}[26] \oplus K_{7}[26] \oplus K_{8}[2,4,5,6] \oplus 1.$
- This holds with probability: $p \cong 0.500596 = .50 + 1.22 \times 2^{-11}$.

15 Round Linear Approximation

```
Pattern: E-DCA-ACD-DCA-A. Note L_i=R_{i-1}, L_i \oplus R_{i+1}=L_i \oplus L_{i+2}.
          P_1[8,14,25] \oplus R_2[8,14,25] \oplus P_R[16,20] = K_1[23,25]
1
3
          L_3[8,14,25] \oplus R_4[8,14,25] \oplus R_3[17] = K_3[26]
          L_4[17] \bigoplus R_5[17] \bigoplus R_4[3] = K_4[4]
4
5
          L_5[3,8,14,25] \oplus R_6[3,8,14,25] \oplus R_5[17] = K_5[26]
          L_7[3,8,14,25] \oplus R_8[3,8,14,25] \oplus R_7[17] = K_7[26]
          L_8[17] 	 \oplus R_9[17] 	 \oplus R_8[3] = K_8[4]
8
9
          L_9[8,14,25] \oplus R_{10}[8,14,25] \oplus R_9[17] = K_9[26]
          L_{11}[8,14,25] \oplus R_{12}[8,14,25] \oplus R_{11}[17] = K_{11}[26]
11
12
          L_{12}[17] \oplus R_{13}[17] \oplus R_{12}[3]
                                                             = K_{12}[4]
13
          L_{13}[3,8,14,25] \oplus R_{14}[3,8,14,25] \oplus R_{13}[17] = K_{13}[26]
```

 $L_{15}[3,8,14,25] \oplus C_1[3,8,14,25] \oplus C_R[17] = K_{15}[26]$

15

15 Round Linear Approximation

Adding and canceling:

• $P_L[8,14,25] \oplus P_R[16,20] \oplus C_L[3,8,14,25] \oplus C_R[17] = K_1[23,25] \oplus K_3[26] \oplus K_4[4] \oplus K_5[26] \oplus K_7[26] \oplus K_8[4] \oplus K_9[26] \oplus K_{11}[26] \oplus K_{12}[4] \oplus K_{13}[26] \oplus K_{15}[26]$

which holds (Piling-up Lemma) with the indicated probability.

Full Linear Attack on DES

- Linear cryptanalysis can be accomplished with ~2⁴³ known plaintexts, using a more sophisticated estimation 14 round approximation
 - For each 48 bit last round sub-key, decrypt cipher-text backwards across last round for all sample cipher-texts
 - Increment count for all sub-keys whose linear expression holds true to the penultimate round
 - This is done for the first and last round yielding 13 key bits each (total: 26)
- Here they are:

```
\begin{split} \mathsf{P}_{\mathsf{R}}[8,14,25] \oplus \mathsf{C}_{\mathsf{L}}[3,8,14,25] \oplus \mathsf{C}_{\mathsf{R}}[17] &= \mathsf{K}_{1}[26] \oplus \mathsf{K}_{3}[4] \oplus \mathsf{K}_{4}[26] \oplus \mathsf{K}_{6}[26] \oplus \mathsf{K}_{7}[4] \oplus \\ &\quad \mathsf{K}_{8}[26] \oplus \mathsf{K}_{10}[26] \oplus \mathsf{K}_{11}[4] \oplus \mathsf{K}_{12}[26] \oplus \mathsf{K}_{14}[26] \\ \text{with probability } \cancel{2} - 1.19 \times 2^{-21} \\ \mathsf{C}_{\mathsf{R}}[8,14,25] \oplus \mathsf{P}_{\mathsf{L}}[3,8,14,25] \oplus \mathsf{P}_{\mathsf{R}}[17] &= \mathsf{K}_{13}[26] \oplus \mathsf{K}_{12}[24] \oplus \mathsf{K}_{11}[26] \oplus \mathsf{K}_{9}[26] \oplus \\ &\quad \mathsf{K}_{8}[24] \oplus \mathsf{K}_{7}[26] \oplus \mathsf{K}_{5}[26] \oplus \mathsf{K}_{4}[4] \oplus \mathsf{K}_{3}[26] \oplus \mathsf{K}_{1}[26] \\ \text{with probability } \cancel{2} - 1.19 \times 2^{-21} \end{split}
```

FEAL (A fortunate mistake)

FEAL-4

- Four round Feistel cipher with a 64-bit block and 64-bit key
- Plaintext: P, Cipher-text: C
- Round function: F
- 32-bit sub-keys: K₀, K₁, ..., K₇
- Most important failed cipher: showed the power of differential cryptanalysis and linear cryptanalysis

Original FEAL-4

FEAL-4 Round Function

- $G_0(a,b) = (a+b \pmod{256}) <<< 2$
- G₁(a,b) = (a+b+1 (mod 256))<<< 2 where "<<<" is left cyclic shift (rotation)
- $F(x_0, x_1, x_2, x_3) = (y_0, y_1, y_2, y_3)$ where

1.
$$y_1 = G_1(x_0 \oplus x_1, x_2 \oplus x_3)$$

2.
$$y_0 = G_0(x_0, y_1)$$

3.
$$y_2 = G_0(y_1, x_2 \oplus x_3)$$

4.
$$y_3 = G_1(y_2, x_3)$$

FEAL-4 Key Schedule

- $F_K(a_0||a_1||a_2||a_3, b_0||b_1||b_2||b_3) = c_0||c_1||c_2||c_3|$ by
 - $d_1 = a_0 \oplus a_1$
 - $d_2 = a_2 \oplus a_3$
 - $c_1 = G_1(d_1, a_2 \oplus b_0)$
 - $c_2 = G_0(d_2, c_1 \oplus b_1)$
 - $c_0 = G_0(a_0, c_1 \oplus b_2)$
 - $c_3 = G_1(a_3, c_2 \oplus b_3)$
- $k_{-2} = 0$
- k₋₁= k_L
- $k_0 = k_R$
- $k_i = f_K(k_{i-2}, k_{i-1} \oplus k_{i-3})$

Refactored FEAL-4

$$K_3 = k_3 + k_6 + k_7$$

 $K_2 = k_2 + k_6$

Encryption Equations

•
$$L_0 = P_L + k_4$$
, $R_0 = P_L + P_R + k_4 + k_5$

•
$$L_4 = C_L + k_6$$
, $R_4 = C_L + C_R + k_6 + k_7$

•
$$L_1 = R_0$$

•
$$L_2 = R_1 = L_0 + F(k_0 + R_0)$$

•
$$L_3 = R_2 = R_0 + F(k_1 + L_0 + F(k_0 + R_0))$$

•
$$L_4 = L_3 + F(k_3 + R_4) = R_0 + F(k_1 + L_0 + F(k_0 + R_0)) + F(k_3 + R_4)$$

•
$$R_1 = L_0 + F(k_0 + R_0)$$

•
$$R_2 = L_1 + F(k_1 + R_1) = R_0 + F(k_1 + L_0 + F(k_0 + R_0))$$

•
$$R_3 = L_2 + F(k_2 + R_2) = L_0 + F(k_0 + R_0) + F(k_2 + R_0 + F(k_1 + L_0 + F(k_0 + R_0)))$$

•
$$R_3 = R_4$$

Refactored FEAL-4 Equations

- $K_0 = k_0 + k_4 + k_5$, $K_1 = k_1 + k_4$, $K_2 = k_2 + k_6$, $K_3 = k_3 + k_6 + k_7$
- $K_4 = k_4 + k_5 + k_6$, $K_5 = k_4 + k_6 + k_7$
- $L_1 = P_L + P_R$, $R_1 = P_L + f(P_L + P_R + K_0)$
- $L_2 = R_1 + K_5$, $R_2 = L_1 + K_4 + f(R_1 + K_1)$
- $L_3 = R_2$, $R_3 = L_2 + f(R_2 + K_2)$
- $C_L = L_3 + f(R_3 + K_3), C_R = C_L + R_3$
- Substituting,
 - $C_L = P_L + P_R + k_4 + k_5 + k_6 + f(P_L + k_4 + k_1 + f(P_L + P_R + k_4 + k_5 + k_0))$
 - $C_R = C_L + (P_L + k_4) + k_6 + k_7 + f(P_L + P_R + k_4 + k_5 + k_0) + f(P_1 + P_R + k_4 + k_5 + k_0 + k_1 + f(P_1 + P_R + k_4 + k_5 + k_0))$

FEAL-4 Basic Differential Attack

- If $A_0 \oplus A_1 = 0$ then $F(A_0) = F(A_1)$, p=1.
- If $A_0 \oplus A_1 = 0x80800000$ then $F(A_0) \oplus F(A_1) =$ 0x02000000, p=1
- Choose (P_0, P_1) :
- $P_0 \oplus P_1 = 0 \times 8080000080800000$
- $P' = P_0 \oplus P_1$, $C' = C_0 \oplus C_1$
- L'=0x02000000⊕Z', Y'=0x80800000 ⊕ X'
- For C= (L,R) we have $Y = L \oplus R$
- Solve for sub-key K_3 : $Z' = 0x02000000 \oplus L'$
- Compute $Y_0 = L_0 \oplus R_0$, $Y_1 = L_1 \oplus R_1$
- Guess K_3 and compute guessed Z_0 , Z_1
 - Note: $Z_i = F(Y_i \oplus K_3)$
- Compare true Z' to guessed Z'

FEAL-4 Improved Differential Attack

- Using 4 chosen plaintext pairs
 - Work is of order 2³²
 - Expect one K₃ to survive
- Can reduce work to about 2¹⁷
 - For 32-bit word A= (a_0, a_1, a_2, a_3) , define M(A) = $(z, a_0 \oplus a_1, a_2 \oplus a_3, z)$, where z is all-zero byte
 - For all possible A=(z, a_0 , a_1 , z), compute Q_0 = F(M(Y₀) \oplus A) and Q_1 = F(M(Y₁) \oplus A)
 - Can be used to find 16 bits of K₃
- When A = M(K₃), we have $\langle Q_0 \bigoplus Q_1 \rangle_{8...23} = \langle Z' \rangle_{8...23}$ where $\langle X \rangle_{i...j}$ is bits i thru j of X. Can recover K₃ with about 2¹⁷ work
- Once K₃ is known, can successively recover K₂, K₁, K₀ and finally K₄, K₅
- Second characteristic: 0xa200 8000 0x2280 8000

FEAL-4 Differential Attack

Primary for K₃

```
// Characteristic is 0x8080000080800000
P_0 = \text{random } 64\text{-bit value}
P_1 = P_0 \oplus 0x8080000080800000
// Given corresponding ciphertexts
// C_0 = (L_0, R_0) and C_1 = (L_1, R_1)
Y_0 = L_0 \oplus R_0
Y_1 = L_1 \oplus R_1
L' = L_0 \oplus L_1
Z'=L'\oplus 0x02000000
for (a_0, a_1) = (0x00, 0x00) to (0xff, 0xff)
    Q_0 = F(M(Y_0) \oplus (0x00, a_0, a_1, 0x00))
    Q_1 = F(M(Y_1) \oplus (0x00, a_0, a_1, 0x00))
    if \langle Q_0 \oplus Q_1 \rangle_{8...23} == \langle Z' \rangle_{8...23} then
         Save (a_0, a_1)
    end if
next (a_0, a_1)
```

Secondary for K₃

```
//\ P_0, P_1, C_0, C_1, Y_0, Y_1, Z' as in primary //\ Given list of saved (a_0, a_1) from primary for each primary survivor (a_0, a_1) for (c_0, c_1) = (0 \times 00, 0 \times 00) to (0 \times ff, 0 \times ff) D = (c_0, a_0 \oplus c_0, a_1 \oplus c_1, c_1) \tilde{Z}_0 = F(Y_0 \oplus D) \tilde{Z}_1 = F(Y_1 \oplus D) if \tilde{Z}_0 \oplus \tilde{Z}_1 == Z' then Save D // candidate subkey K_3 end if next (c_0, c_1) next (a_0, a_1)
```

Slide adapted from Mark Stamp

FEAL-4 Linear Attack

- Now we'll use linear cryptanalysis to break Feal-4.
- Notation: let Y=F(X). We use X[i,j] to denote X[i]⊕X[j]
- Using the definition of F, we will see (next slide) that the following linear constraints hold with probability 1.
 - 1. Y[13] = X[7, 15, 23, 31] + 1 (or F(X)[13] = X[7,15,23,31] + 1)
 - 2. Y[5, 15] = X[7] (or F(X)[5,15] = X[7])
 - 3. Y[15, 21] = X[23, 31] (or F(X)[15,21] = X[23,31])
 - 4. Y[23, 29] = X[31] + 1 (or <math>F(X)[23,29] = X[31] + 1)

FEAL-4 Constraint Derivation

- $(a \oplus b)[7] = (a+b(mod\ 256))[7]$, so
- $G_0(a,b)[5] = (a \oplus b)[7]$, similarly, $G_1(a,b)[5] = (a \oplus b \oplus 1)[7]$
- $y_1 = G_1(x_0 \oplus x_1, x_2 \oplus x_3) \rightarrow Y[13] = y_1[5] = x_0[7] \oplus x_1[7] \oplus x_2[7] \oplus x_3[7] \oplus 1 = X[7,15,23,31] \oplus 1$
- $y_0 = G_0(x_0, y_1) \rightarrow Y[5] = y_0[5] = y_1[7] \oplus x_0[7] = Y[15] \oplus X[7]$
- $y_2=G_0(y_1, x_2 \oplus x_3) \rightarrow$ $Y[21]=y_2[5]=y_1[7] \oplus x_2[7] \oplus x_3[7] = Y[15] \oplus X[23,31]$
- $y_3 = G_1(y_2, x_3) \rightarrow Y[29] = y_3[5] = y_2[7] \oplus x_3[7] \oplus 1 = Y[23] \oplus X[31] \oplus 1$

Y=F(X)

- $Y=(y_0, y_1, y_2, y_3)$
- $X=(x_0, x_1, x_2, x_3)$

FEAL-4 Linear Attack Equations

- Adapting the F constraint equations for each round, we get:
 - $Y_0 = F(R_0 \oplus k_0), R_1 = L_0 \oplus Y_0, L_1 = R_0$
 - $Y_1 = F(R_1 \oplus k_1), R_2 = L_1 \oplus Y_1, L_2 = R_1$
 - $Y_2 = F(R_2 \oplus k_2)$, $R_3 = L_2 \oplus Y_2$, $L_3 = R_2$
 - $Y_3 = F(R_3 \oplus k_3)$
- Looking at the *original* FEAL-4 diagram (using "+" instead of "⊕"), we get
 - $L_4 = R_2 + Y_3$ and $R_2 = R_0 + Y_1$, "adding" these gives
 - $L_4 + R_0 = Y_1 + Y_3$, or
 - $L_4 + R_0 = F(R_1 + k_1) + F(R_4 + k_3)$
- Since $R_1 = L_0 + F(R_0 + k_0)$, we have finally
 - $L_4 + R_0 = F(R_4 + k_3) + F(L_0 + F(R_0 + k_0) + k_1)$
- Note that $L_0 = P_L + k_4$, $R_0 = P_L + P_R + k_4 + k_5$, $L_4 = C_L + k_6$ and $R_4 = C_L + C_R + k_6 + k_7$, so we get
 - $C_L + P_L + P_R + k_4 + k_5 + k_6 = F(P_L + k_4 + F(P_L + P_R + k_4 + k_5 + k_0) + k_1) + F(C_L + C_R + k_6 + k_7 + k_3)$

FEAL-4 Linear Attack using refactored FEAL-4

- Now we can explain why we refactored FEAL-4.
- If we knew L_0 , R_0 , L_4 , R_4 , we could mount a standard linear attack on FEAL-4. Because of the "whitening" keys, k_4 , k_5 , k_6 , k_7 , L_0 , R_0 , L_4 , R_4 are unknown.
- However, if we use the round key $K_0 = k_0 + k_4 + k_{5}$, for the first-round key and $K_3 = k_3 + k_6 + k_7$ for the last round key, we can express the inputs to F in the first and last rounds in terms of P_L , P_R , C_L , C_R , K_0 , and K_3 . This allows us to find K_0 , and K_1 .
- We can then use K₀ and K₃ to find K₂ and K₃
- Knowing K_0 , K_3 , K_2 , and K_3 allows us to compute the intermediate keys K_4 , K_5 for refactored FEAL4 and then we can compute the original k_0 , k_1 , k_2 , k_3 , k_4 , k_5 , k_6 , k_7 .

FEAL-4 Linear Attack

- Let $K_4 = k_4 + k_5 + k_6$, $K_3 = k_3 + k_6 + k_7$, $K_1 = k_1 + k_4$, $K_0 = k_0 + k_6 + k_7$
- Then $(C_L + P_L + P_R) + K_4 = F(K_1 + P_L + F(K_0 + P_L + P_R)) + F(C_L + C_R + K_3)$
- From F-constraint 4,
 - $F(C_L + C_R + K_3)[23,29] = (C_L + C_R + K_3)[31] + 1$
 - $F(P_L+F(R_0+K_0)+K_1)[23,29] = (P_L+F(P_L+P_R+K_0)+K_1))[31]+1$
- Rearranging, we get "Equation A:"

$$K_3[31]+K_1[31]+K_4[23,29] = (C_L+P_L+P_R)[23,29]+P_L[31] + (C_L+C_R)[31]+F(P_L+P_R+K_0)[31]$$

The attack consists of guessing K₀ and computing

$$h_A(P,C) = (C_L + P_L + P_R)[23,29] + P_L[31] + (C_L + C_R)[31] + F(P_L + P_R + K_0)[31]$$

for a number of corresponding (P_L, P_R) , (C_L, C_R) .

• If the guessed K_0 is right, $h_A(P,C)$ will have the same value for each corresponding pair of plain-text and cipher-text.

Computing the Final Equations - A

Remember, Equation A gave us

$$h_A(P,C) = (C_L + P_L + P_R)[23,29] + P_L[31] + (C_L + C_R)[31] + F(P_L + P_R + K_0)[31]$$

- It was derived from
 - $(L_4 + R_0)[23,29] = Y_1[23,29] + Y_3[23,29].$
 - $Y_1[23, 29] = F(R_1+k_1)[31]+1$, and $R_1[31] = L_0[31]+F(R_0+K_0)[31]$, giving
 - $Y_1[23, 29] = (L_0[31] + F(R_0 + K_0) + k_1)[31] + 1$
 - $Y_3[23,29] = (R_4 + K_3)[31] + 1$
- Combining, we got
 - $-h_A(P,C) = f(K_i) = (L_4 + R_0)[23,29] + (R_4 + L_0 + F(R_0 + K_0))[31]$

Computing the Final Equations - B

- Analogously,
 - $(L_4 + R_0)[13] = Y_1[13] + Y_3[13]$
 - $Y_1[13] = F(R_1+K_2)[13]+1 = (R_1+K_2)[7, 15, 23, 31]+1$
 - $R_1[7, 15, 23, 31] = (L_0[7, 15, 23, 31] + F(R_0+K_0))[7, 15, 23, 31]$, so
 - $Y_1[13] = (L_0[7, 15, 23, 31] + F(R_0+K_0))[7, 15, 23, 31] + K_2[7, 15, 23, 31]+1$
 - $Y_3[13] = F(R_4+K_3)[13]+1 = (R_4+K_3)[7, 15, 23, 31]+1$
 - $(L_4+R_0)[13] = (L_0[7, 15, 23, 31] + F(R_0+K_0))[7, 15, 23, 31] + K_2[7, 15, 23, 31] + (R_4+K_3)[7, 15, 23, 31]$
- This yields
- $h_B(P,C) = (C_L + P_L + P_R)[13] + (P_L + (C_L + C_R) + F(P_L + P_R + K_0))[7, 15, 23, 31]$

Computing the Final Equations - C

Similarly

- $(L_4+R_0)[5, 15] = Y_1[5, 15] + Y_3[5, 15]$
- $Y_1[5, 15] = F(R_1+K_2)[5, 15] +1 = (R_1+K_2)[7]$
- $-R_1[7] = (L_0[7] + F(R_0 + K_0))[7]$, so
- $Y_1[5, 15] = (L_0[7] + F(R_0 + K_0))[7] + K_2[7]$
- $Y_3[5, 15] = F(R_4 + K_3)[5, 15] = (R_4 + K_3)[7]$
- $(L_4+R_0)[5, 15] = (L_0[7]+F(R_0+K_0))[7]+K_2[7]+(R_4+K_3)[7]$

This gives

•
$$h_C(P,C) = (C_L + P_L + P_R)[5, 15] + (P_L + (C_L + C_R) + F(P_L + P_R + K_0))[7]$$

Computing the Final Equations - D

- From Y[15, 21] = X[23, 31] - $(L_4+R_0)[15, 21] = Y_1[15, 21] + Y_3[15, 21]$ - $Y_1[15, 21] = F(R_1+K_2)[15, 21]+1 = (R_1+K_2)[23, 31]$ - $R_1[23, 31] = (L_0+F(R_0+K_0))[23, 31]$, so - $Y_1[15, 21] = (L_0+F(R_0+K_0))[23, 31] + K_2[23, 31]$ - $Y_3[15, 21] = F(R_4+K_3)[15, 21] = (R_4+K_3)[23, 31]$ - This gives - $(L_4+R_0)[15, 21] = (L_0+F(R_0+K_0))[23, 31] + K_2[23, 31] + (R_4+K_3)[23, 31]$
- This gives
 - $h_D(P,C) = (C_L + P_L + P_R)[15, 21] + (P_L + (C_L + C_R) + F(P_L + P_R + K_0))[23, 31]$

Computing the Final Equations - E

- We will use one more constraint. Adding all four round constraints, we get
 - $(L_4+R_0)[5,13,21] = Y_1[5,13,21]+Y_3[5,13,21] = F(R_1+K_1)[5,13,21] + F(R_4+K_3)[5,13,21]$
 - $F(R_4+K_3)$ [5,13,21] = (R_4+K_3) [15]+1 and since $R_1 = L_0+F(L_0+Y_0+K_0)$,
 - $F(R_1+K_1) [5,13,21] = F(L_0+F(L_0+Y_0+K_0)+K_1) = (L_0+F(L_0+Y_0+K_0)+K_1)[15]+1$
- This gives
 - $h_F(P,C) = (C_1 + P_1 + P_R)[5,13,21] + P_1[15] + (C_1 + C_R)[15] + F(P_1 + P_R + K_0)[15]$
- Putting $P_L + P_R + K_0 = (x_0, x_1, x_2, x_3)$, we note that $F(P_L + P_R + K_0)[15]$ is only dependent on $(x_0 \oplus x_1, x_2 \oplus x_3)$
- Similar relations hold looking at FEAL-4 as a decryption algorithm. These constraints are summarized in the next two slides.

FEAL-4 Summary of invariants

Name	First Round Equation	Key bits affecting outcome
Α	$h_A(P,C)=(C_L+P_L+P_R)[23,29]+P_L[31]+ (C_L+C_R)[31]+F(P_L+P_R+K_0)[31]$	
В	$h_B(P,C) = (C_L + P_L + P_R)[13] + (P_L + (C_L + C_R) + F(P_L + P_R + K_0))[7, 15, 23, 31]$	
С	$h_{C}(P,C) = (C_{L} + P_{L} + P_{R})[5, 15] + (P_{L} + (C_{L} + C_{R}) + F(P_{L} + P_{R} + K_{0}))[7]$	
D	$h_D(P,C) = (C_L + P_L + P_R)[15, 21] + (P_L + (C_L + C_R) + F(P_L + P_R + K_0))[23, 31]$	
E	$h_E(P,C)=(C_L+P_L+P_R)[5,13,21]+P_L[15]+$ $(C_L+C_R)[15]+F(P_L+P_R+K_0)[15]$	9,,15; 17,,23

FEAL-4 Summary of invariants

Name	Fourth Round Equation	Key bits affecting outcome
Α	$h_A'(P,C)=(P_L+C_L+C_R)[23,29]+(C_L+(P_L+P_R))[31]+F(C_L+C_R+K_3)[31]$	
В	$h_{B}'(P,C) = (P_{L}+C_{L}+C_{R})[13]+(C_{L}+(P_{L}+P_{R}))$ [7, 15, 23, 31]+F(C _L +C _R +K ₃))[7, 15, 23, 31]	
С	$h_{C}'(P,C) = (P_{L} + C_{L} + C_{R})[5, 15] + (C_{L} + (P_{L} + P_{R})[7] + F(C_{L} + C_{R} + K_{3}))[7]$	
D	$h_{D}'(P,C) = (P_{L} + C_{L} + C_{R})[15, 21] + (C_{L} + (P_{L} + P_{R})) + F(C_{L} + C_{R} + K_{3}))[23, 31]$	
E	$h_{E}'(P,C)=(P_{L}+C_{L}+C_{R})[5,13,21]+$ $(C_{L}+(P_{L}+P_{R}))[15]+F(C_{L}+C_{R}+K_{3})[15]$	9,,15; 17,,23

Strategy for FEAL-4 Linear Attack

- We use $h_E(P,C)$ to estimate the xor of the first two and last two bytes of K_0 and R_0 to estimate the xor of the two halves of K_0 (see slide 47) then we use h_{A_1} ..., h_D to find K_0 .
- Next, we use $h_E'(P,C)$ to estimate the xor of the first two and last two bytes of K_3 and R_4 then we use $h_{A'_1}$..., $h_{D'}$ to find K_3 .
- Next compute candidate K₁'s; for successful candidates, compute
 - $k_4 + k_5 + k_6 = F(P_L + F(P_L + P_R + K_0) + K_1) + F(C_L + C_R + K_3) + (P_L + P_R + C_L)$
- Analogously, for round 3, compute candidate K₂'s; for successful, candidates compute
 - $k_4 + k_6 + k_7 = F(C_L + F(C_L + C_R + K_3) + K_2) + F(P_L + P_R + K_0) + (C_L + C_R + P_L)$
- The "vanilla" attack of guessing K_0 , also works but our modified attack is much faster --- on the order of 2^{16} , which is peanuts.

FEAL-4 Linear Attack in gory detail

- Remember $k_4 + k_5 + k_6 = F(P_L + F(P_L + P_R + K_0) + K_1) + F(C_L + C_R + K_3) + (P_L + P_R + C_L)$
 - If $X = P_L + F(P_L + P_R + K_0)$, $Y = F(C_L + C_R + K_3)$ and $Z = P_L + P_R + C_L$. Note that X, Y and Z are known once we know K_0 and K_3 .
 - $k_4+k_5+k_6=Z+Y+F(X+K_1)$.
 - Guess $K_1[0,1]$, $K_1[2,3]$ and compute X[0,1], X[2,3], we can test the guess by checking that $(Z+Y+F(X+K_1))[8,9,...15]$ remains constant over a set of plain/cipher pairs. This requires 2^{16} time.
 - Next, guess K₁[0], K₁[3] and again confirm the guess by checking that (Z+Y+F(X+K₁)) is constant.
 - Now that we know K_1 , can compute $k_4+k_5+k_6=Z+Y+F(X+K_1)$.
- By looking at the corresponding FEAL-4 decryption, we get K_2 in exactly the same way as well as the other invariants r intermediate key, $k_4+k_6+k_7$.
- Finally, we check the complete set of guesses to confirm all the sub-keys are right.
- The entire automated attack runs in about 1 second on my MAC using 128 pairs of corresponding plain and cipher text.

Automated attack

./new_feal4.exe -preparecorrespondingtext 1234567890abcdef
23234545ababcdcd 2048 feal.in1 feal.in2

Key schedule

```
k ()
       : 90abcdef
k1
       : 32b729f8
k2.
       : ada42552
k3
       : d26ad875
k4
       : ed3f65e8
k5
       : 5f452e24
k6 : 14ee3941
k7 : dbcb9075
k0+k4+k5: 22d18623
k1+k4 : df884c10
k2+k6 : b94a1c13
k3+k6+k7 : 1d4f7141
k4+k5+k6: a694728d
k4+k6+k7: 221accdc
```

Automated attack

```
./new feal4.exe -linearattack feal.in1 feal.in2
256 pairs examined
Plain: a1b24026 54a3e397, Cipher: c259fa58 99a44084
Plain: 44392b89 3e28d016, Cipher: b01696d4 59d70a09
Final check
 Round 1 trial key: 22d18623
 Round 2 trial key: df884c10
 Round 3 trial key: b94a1c13
 Round 4 trial key: 1d4f7141
 k4k5k6 trial key: a694728d
 k4k6k7 trial key: 221accdc
  succeeded
```

Boomerang Attack

- E_0 : $\alpha \rightarrow \beta$ with probability, p.
- $E_1: \delta \rightarrow \gamma$ with probability, q.
- For each pair (P_1, P_2) with $E_0: \alpha \rightarrow \beta$, obtain (C_1, C_2) and compute $C_3 = C_1 \oplus \gamma$ and $C_4 = C_2 \oplus \gamma$. Request the decryption of (C_3, C_4) as (P_3, P_4) .
- Probability that $P_3 \oplus P_4 = \alpha$, is p^2q^2 .
- For random permutation, the probability that $P_3 \oplus P_4 = \alpha$, is 2^{-n} .
 - Can also be mounted for all possible β 's and γ 's as long as $\beta^1 \gamma$, with $p^2 = [\sum_{\beta,\alpha \to \beta} \Pr^2(\alpha \to \beta)]^{1/2}$, $q^2 = [\sum_{\gamma,\gamma \to \delta} \Pr^2(\gamma \to \delta)]^{1/2}$

End

DES Data

S Boxes as Polynomials over GF(2)

```
1,1:
  56+4+35+2+26+25+246+245+236+2356+16+15+156+14+146+145+13+135+134+1346+1345+
  13456+125+1256+1245+123+12356+1234+12346
1,2:
  134+13456+12+126+1256+124+1246+1245+12456+123+1236+1235+12356+1234+12346
1,3:
  C+6+56+46+45+3+35+356+346+3456+2+26+24+246+245+236+16+15+145+13+1356+134+13
  456+12+126+125+12456+123+1236+1235+12356+1234+12346
1,4:
  C+6+5+456+3+34+346+345+2+23+234+1+15+14+146+135+134+1346+1345+1256+124+1246
  +1245+123+12356+1234+12346
2.1: C+4+456+3+36+35+26+245+2456+235+2356+1+16+156+1456+13+136+135+1356+12+
    125+1256+1246+1236+12356
2.2: C+5+4+35+34+346+345+2+256+246+2456+236+1+156+145+13+135+134+
    1346+1345+12+126+125+124+1246+12456+123+1235+12356+1234
2,3: C+6+5+4+456+36+3456+2+24+246+23+1+1245+12456+1235+12356
2,4: C+6+5+45+3+26+24+245+23+236+1+156+145+1456+1356+126+1256+1245+12456+
    123+1236
```

Legend: C+6+56+46 means $1 \oplus x_6 \oplus x_5 x_6 \oplus x_4 x_6$

S boxes as polynomials

```
3.1: 6+4+45+35+2+1+16+15+146+145+13+135+12+126+125+1256+123+1236+1235+12346
3.2: C+6+5+4+46+456+36+35+356+34+346+345+3456+2+25+256+24+245+23+236+
     234+2346+1+16+14+146+145+1456+135+1356+1346+13456+126+125+
     1256+124+1246+12456+1234+12346
3.3: 6+46+45+456+3+35+26+25+256+24+246+23+236+235+2356+234+1+1456+
     13456+12+126+125+1256+124+123+1236+1235+12356+1234
3.4: C+5+46+45+456+3+35+34+3456+2+24+245+2456+235+2356+234+16+14+146+
     145+1456+13+1356+134+13456+12+124+1245+12456+123+1234
4.1: C+56+4+46+45+3+3456+26+25+256+245+2456+23+236+2346+1+16+156+
     146+1456+13+136+135+13456+12+125+124+1245+123+1236+12356+1234
4.2: C+6+5+56+46+45+3+345+3456+2+26+256+2456+236+234+2346+16+15+
     156+14+146+145+1456+136+135+1345+13456+12+125+124+1245+1236+1235+
     12356+1234
4,3: C+56+46+45+456+3+36+35+2+26+256+2456+23+2356+234+2346+1+15+156+
     146+135+1356+1346+13456+1256+124+1245+12356+1234
4.4: 6+5+56+4+46+456+36+35+26+25+256+245+2456+23+235+2356+2346+1+
     156+14+146+1356+134+1346+1345+13456+125+1256+124+1245+1235+12356+1234
```

S boxes as polynomials

- 5,1: 56+45+3+36+35+356+346+345+3456+26+25+256+24+246+2456+235+16+14+ 145+13+136+1346+1345+13456+12+126+125+1256+124+1245+123+1236+1235+ 12356+1234
- 5,2: C+5+56+4+46+45+36+35+34+346+345+3456+2+25+256+246+245+235+2356+234+2346+1+16+156+14+145+13+136+135+134+1346+1345+13456+126+125+124+12456+123+12356+1234+12346
- 5,3: 6+5+4+3+36+356+346+3456+24+236+2346+1+156+145+1456+1345+126+1246+ 123+1236+1234+12346
- 5,4: 6+5+56+46+45+36+34+346+345+3456+2+24+246+245+236+2356+15+156+146+ 13+136+1356+1345+1256+124+1246+1245+12456+1236+1234
- 6,1: 5+456+3+34+346+345+3456+24+2456+23+234+2346+1+16+145+1456+135+134+ 1346+1345+13456+126+1246+12456+1236
- 6,2: 6+4+456+35+256+245+23+235+16+15+1456+13+136+135+1356+12+1245+ 12456+123+12356
- 6,3: C+6+5+4+3+35+345+2+24+2456+1+145+1456+13+136+1356+1345+1245+123+ 1236+1235+12356+12346
- 6,4: C+5+56+46+45+456+36+356+34+346+345+3456+2+23+2346+16+15+156+146+1456+ 13+136+135+1356+1246+12456+1236+12356+12346

S boxes as polynomials

7,2: 5+56+4+45+456+3+36+346+3456+2+245+2456+2346+16+15+156+13+135+1356+
1346+13456+124+1245+123+1236+1235+12356+12346

7,3: C+5+4+3456+2+26+24+2456+23+1+16+14+13+1345+12+1246+12456+1236+1234

7,4: 6+5+3+345+3456+24+23+236+234+2346+16+15+156+14+1456+136+135+1345+
13456+12+124+1245+123+1236+1235+1234+12346

8,1: C+5+56+4+46+45+3+356+346+3456+2+256+245+236+16+15+1456+13+135+1356+
1346+1256+124+1246+1245+123+1235+12356+12346

8,2: 5+45+3+35+2+26+256+246+2456+236+2346+1+15+156+14+146+145+1456+135+
125+12456+1235+12356

8,3: C+6+5+4+35+2+25+24+245+23+156+14+146+13+135+1356+134+1346+125+124+
1245+123+1234+12346

8,4: C+6+5+46+456+3+34+346+26+25+256+24+246+245+234+2346+1+16+156+145+

1456+136+135+134+1346+1246+12456+1236+12356+1234+12346

7,1: 6+5+45+3+34+345+2+246+2456+23+1+146+1456+1346+13456+1256+1246+1236

Amplified Boomerang Attack

- Given plaintext pair (P₁, P₂)(P₃,P₄))
- For random permutations, the probability that $P_1 \oplus P_2 = P_3 \oplus P_4 = a$,
- E_0 : a \rightarrow b with probability, p.
- When both pairs satisfy $E_0(P_1) \oplus E_0(P_2)$ = $E_0(P_3) \oplus E_0(P_4) = b$, $E_0(P_1) \oplus E_0(P_3) =$ $(E_0(P_1) \oplus b) \oplus (E_0(P_3) \oplus b) = E_0(P_2)$ $\oplus E_0(P_4)$.
- If $E_0(P_1) \oplus E_0(P_3) = E_0(P_2) \oplus E_0(P_4) = g$, each has a probability, q, to be a right pair wrt $g \rightarrow d$. $C_1 \oplus C_3 = C_2 \oplus C_4 = d$
- Pr(quartet becomes right quartet with difference a)= (Np)²/2 quartets
- Expected number of right quartets is $_{Np}C_22^{-n}q^2$

Truncated Differentials

- A truncated differential predicts that the differences are restricted to some set. For example, in the description of the 2R-attack on 7-round DES for a right pair with respect to the 5-round characteristic, there are some cipher text bits with a zero difference for sure. This can be described as a 7-round truncated differential of DES with probability p=1/9511 that predicts the difference of 12 output bits.
- Truncated differentials can be used in the differential 1R- and 2R-attacks, to discard wrong pairs. Another application of truncated differentials is to define a distinguisher for the cipher (resulting in a key recovery attack at the end). For example, there is a 12-round truncated differential (in rounds 5–16) of Skipjack with probability 1 that predicts 16 bits of difference.

Rectangle Attack

- Given N pairs with difference a, pN pairs satisfy a→b.
- pN pairs satisfy $a \rightarrow b$.
- \sim (Np)²/2 quartets that satisfy differentials.
- Given Np pairs (P_1, P_2) , (P_3, P_4) , expected number of right quartets is $_{Np}C_2$ 2⁻ⁿ $q^2=N^2$ 2⁻ⁿ⁺¹ $(pq)^2$
- $E' = E_f \cdot E_1 \cdot E_0 \cdot E_b, Z_i = E_0(P_i)$
- Instead of just looking for g→d, look for any g'→d.

Rectangle Distinguisher

- $P_1 \oplus P_2 = P_3 \oplus P_4 = a$, $C_1 \oplus C_3 = C_2 \oplus C_4 = b$
- $Pr[(P_1, P_2), (P_3, P_4) \text{ is a right quartet}] = 2^{-n} \sum_{a,b} ([Pr(a \rightarrow a) Pr(b \rightarrow b)) \sum_g ([Pr(g \rightarrow d) Pr(g \oplus a \oplus b \rightarrow d))$
- $E' = E_f \cdot E_1 \cdot E_0 \cdot E_b$, $Z_i = E_0(P_i)$
- Steps
 - 1. Data collection
 - 2. Initialize
 - 3. Insert
 - 4. Generate Quartet
 - 5. Find and analyze quartets
 - 6. Count sub-keys

Bilinear Attack

- Let $L_r[0, 1, 2, ..., n-1]$, $R_r[0, 1, 2, ..., n-1]$ are the input to round r and $L_r[0, 1, 2, ..., n-1]$, $O_r[0, 1, 2, ..., n-1]$ are the input (without key) and output to the round functions.
- If $\alpha \subseteq \{0, 1, 2, ..., n-1\}$, define $L_r[\alpha] = \bigoplus_{s \in \alpha} L_r[s]$.
- Consider the bilinear $L_{r+1}[\beta] \cdot R_{r+1}[\alpha] \oplus R_r[\beta] \cdot L_r[\alpha] = L_r[\beta] \cdot O_r[\alpha]$.

Slide Attack

- Let F be a per-round function.
- If $C = E_{\kappa}(P) = F_{\kappa}^{m}(P)$, $P,C \in GF(2)^{n}$ and P' = F(P)
- C' = E(P') = F(C). To find slide pairs, let $a_F(P,C) = K$ which is easy to calculate. Store $2^n/2$ (and possibly less as in DES) pairs (P,C) if $a_F(P,C) = a_F(P',C')$, $P' = F_K(P)$ and C' = F(C). By birthday collision, this will happen.
- Effective against rounds which implement weak permutations.

Original FEAL-4

Refactored FEAL-4

$$K_0 = k_0 + k_5 + k_6$$

 $K_1 = k_1 + k_4$

$$K_3 = k_3 + k_6 + k_7$$

 $K_2 = k_2 + k_6$