Homework 2

Michael Nameika

Section 1.5 Problems

31. Discuss the equation $\dot{x} = x^2 - t$.

Discussion: The equation $\dot{x}=x^2-t$ is a Riccati type equation. Similar to the example in the text, we have that $f(x,t)=x^2-t\in C^1(\mathbb{R}^2,\mathbb{R})$ and so a unique solution exists locally near (x_0,t_0) . Notice that the equation has nullclines whenever $x(t)=\pm\sqrt{t}$. Note that

$$\begin{split} f(x,t) &> 0 \quad \text{ when } \ x(t) > \sqrt{t} \\ f(x,t) &< 0 \quad \text{ when } \ -\sqrt{t} < x(t) < \sqrt{t} \\ f(x,t) &> 0 \quad \text{ when } \ x(t) < -\sqrt{t} \end{split}$$

Thus, x(t) can move from region I to region II, or move from region III to region II, but once in region II, will remain in region II, as can be seen in the following figure:

Figure 1: Region splitting:)

Note that as $t \to \infty$, we have that if x(t) is in region I, x(t) will either diverge to $+\infty$ or enter into region II. If X(t) is in region II, then x(t) will diverge to $-\infty$, but cannot diverge in finite time since x(t) is bounded below by $-\sqrt{t}$. Finally, if x(t) is in region III, then x(t) will eventually cross over into region II and diverge to $-\infty$.

Section 2.1 Problems

2. Let X be a Banach space. Show that the norm, vector addition, and multiplication by scalars are continuous. That is, if $f_n \to f$, $g_n \to g$, and $\alpha_n \to \alpha$, then $||f_n|| \to ||f||$, $f_n + g_n \to f + g$, and $\alpha_n f_n \to \alpha f$.

Proof: To begin, fix $\varepsilon > 0$. We will begin by showing $||f_n|| \to ||f||$. By definition of convergence in a normed space, we have for some natural number N_1 , whenever $n > N_1$,

$$||f_n - f|| < \varepsilon$$

but by the reverse triangle inequality (see previous submission), we have

$$|||f_n|| - ||f||| \le ||f_n - f||$$

hence

$$|||f_n|| - ||f||| < \varepsilon$$

so that $||f_n|| \to ||f||$. Now, for some other natural number N_2 , whenever $n > N_2$, we have

$$||f_n - f|| < \frac{\varepsilon}{2} \quad ||g_n - g|| < \frac{\varepsilon}{2}$$

$$||(f_n + g_n) - (f - g)|| = ||(f_n - f) + (g_n - g)||$$

$$\leq ||f_n - f|| + ||g_n - g||$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Hence, $f_n + g_n \to f + g$. Now consider

$$\|\alpha_n f_n - \alpha f\| = \|\alpha_n f_n - \alpha_n f + \alpha_n f - \alpha f\|$$

$$\leq \|\alpha_n f_n - \alpha_n f\| + \|\alpha_n f - \alpha f\|$$

$$= |\alpha_n| \|f_n - f\| + |\alpha_n - \alpha| \|f\|$$
(Homogeneity of the norm)

and since $\alpha_n \to \alpha$, $\{\alpha_n\}$ is a bounded sequence. That is, there exists some M > 0 such that

$$|\alpha_n| \leq M$$

for all n. Now, for some $N_3 \in \mathbb{N}$, we have that, whenever $n > N_3^{\dagger}$,

$$||f_n - f|| < \frac{\varepsilon}{2M} \quad |\alpha_n - \alpha| < \frac{\varepsilon}{2||f||}$$

so that, from our work above, we have

$$|\alpha_n| ||f_n - f|| + |\alpha_n - \alpha| ||f|| < M \frac{\varepsilon}{2M} + ||f|| \frac{\varepsilon}{2||f||}$$
$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
$$= \varepsilon.$$

Hence, $\alpha_n f \to \alpha f$.

Section 2.2 Problems

6. Are the following functions Lipschitz continuous near 0? If yes, find a Lipschitz constant for some interval containing 0.

(i)
$$f(x) = \frac{1}{1-x^2}$$
.

For any closed interval [a, b] (a > -1, b < 1) containing 0, since $f(x) \in C^1[a, b]$, using Taylor's theorem, we have

$$|f(x) - f(x_0)| = |f'(\xi)||x - x_0|$$

[†]If ||f|| = 0, we simply use $||f_n - f|| < \frac{\varepsilon}{2M}$ since $||f|| ||\alpha_n - \alpha|| = 0$.

for $x, x_0 \in [a, b]$ and $\xi \in [x, x_0]$. Then since

$$f'(\xi) = \frac{2\xi}{(1 - \xi^2)^2}$$

and since f' is monotonically increasing on, we have

$$|f'(\xi)| \le \frac{2b}{(1-b^2)^2}$$

so that

$$|f(x) - f(x_0)| \le \frac{2b}{(1 - b^2)^2} (b - a).$$

Alternatively, on any compact interval $[a, b] \subset (-1, 1)$, since $f \in C^1[a, b]$, f is Lipschitz over [a, b].

(ii) $f(x) = |x|^{1/2}$.

I claim f is not Lipschitz near zero. To see this, take [a,b] an interval that contains zero. If f is Lipschitz, then there exists some constant K > 0 such that

$$|f(x) - f(y)| \le K|x - y|$$

In particular, take y = 0. Then we have

$$\frac{\sqrt{|x|} \le K|x|}{\frac{1}{\sqrt{|x|}} \le K}$$

but as $x \to 0$, $\frac{1}{\sqrt{|x|}} \to \infty$, so K is unbounded. Hence f is not Lipschitz near zero.

(iii) $f(x) = x^2 \sin(\frac{1}{x})$.

(Can we assume that f(0) = 0 so the discontinuity is removed?) I claim f(x) is globally Lipschitz. By the mean value theorem, for $x, x_0 \in \mathbb{R}$, we have that there exists some $\xi \in (x, x_0)$ such that

$$|f(x) - f(x_0)| = |f'(\xi)||x - x_0|$$

and

$$f'(x) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$$

and so

$$|f'(x)| = \left| 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) \right|$$

$$\leq 2 \left| x \sin\left(\frac{1}{x}\right) \right| + \left| \cos\left(\frac{1}{x}\right) \right|$$

$$\leq 2 \left| x \sin\left(\frac{1}{x}\right) \right| + 1$$

$$\leq 2 + 1$$

$$= 3$$

Hence, $|f'(x)| \leq 3$ for all $x \in \mathbb{R}$. Then

$$|f(x) - f(x_0)| \le 3|x - x_0|$$

so that f is globally Lipschitz with Lipschitz constant 3.

Note: Since $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0$ by the squeeze theorem, and

$$\lim_{x \to \pm \infty} x \sin\left(\frac{1}{x}\right) = \lim_{x \to \pm \infty} \frac{\sin\left(\frac{1}{x}\right)}{\frac{1}{x}}$$

$$= 1$$

8. Apply the Picard iteration to the first-order equation

$$\dot{x} = 2t - 2\sqrt{\max(0, x)}, \ x(0) = 0.$$

Does it converge?

Soln. Applying the Picard iteration to the above equation, we have $x_0(t) = 0$ and

$$x_1(t) = 0 + \int_0^t (2s - 2\sqrt{\max(0, 0)}) ds$$
$$= \int_0^t 2s ds$$
$$= t^2$$

and

$$x_2(t) = \int_0^t (2s - 2\sqrt{\max(0, s^2)}) ds$$
$$= \int_0^t (2s - 2s) ds$$
$$= \int_0^t 0 ds$$
$$= 0.$$

We now fall into a cycle. It is clear from here that our n^{th} Picard iteration will have the following form:

$$x_n(t) = \begin{cases} 0 & n \equiv 0 \mod 2 \\ t^2 & n \equiv 1 \mod 2 \end{cases}$$

So that it does not converge.

Section 2.4 Problems

12. Show (2.38). (Hint: Introduce $\tilde{\psi}(t) = \psi(t) + \frac{\gamma}{\beta}$.)

Proof: Suppose

$$\psi(t) \le \alpha + \int_0^t (\beta \psi + \gamma) ds.$$

Let $\tilde{\psi}(t) = \psi(t) + \frac{\gamma}{\beta}$. Then the above inequality becomes

$$\tilde{\psi}(t) - \frac{\gamma}{\beta} \le \alpha + \int_0^t \beta \tilde{\psi}(s) ds$$
$$\tilde{\psi}(t) \le \alpha + \frac{\gamma}{\beta} + \int_0^t \beta \tilde{\psi}(s) ds$$

Since $\alpha + \frac{\gamma}{\beta}$ is just a constant, call it $\tilde{\alpha}$. Then the above inequality becomes

$$\tilde{\psi}(t) \leq \tilde{\alpha} + \int_0^t \beta \tilde{\psi}(s) ds.$$

Then by (2.36), we have

$$\tilde{\psi}(t) < \tilde{\alpha}e^{\beta t}$$

which, using $\tilde{\alpha} = \alpha + \frac{\gamma}{\beta}$ and $\tilde{\psi} = \psi + \frac{\gamma}{\beta}$, we have

$$\psi(t) \le \left(\alpha + \frac{\gamma}{\beta}\right) e^{\beta t} - \frac{\gamma}{\beta}$$
$$= \alpha e^{\beta t} + \frac{\gamma}{\beta} (e^{\beta t} - 1)$$

so that

$$\psi(t) \le \alpha e^{\beta t} + \frac{\gamma}{\beta} (e^{\beta t} - 1)$$

which is what we wanted to show.

Section 2.6 Problems

18. Show that Theorem 2.17 is false (in general) if the estimate is replaced by

$$|f(t,x)| \le M(T) + L(T)|x|^{\alpha}$$

with $\alpha > 1$.

Proof: Consider the IVP

$$\dot{x} = 1 + x^2, \quad x(0) = 0$$

Clearly, the solution to this equation is $x(t) = \tan(t)$, and since $t_0 = 0$, we have that the maximum interval where the IVP is satisfied is $t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ since $\tan(t)$ cannot be continuously extended beyond this interval. But notice

$$|f(t,x)| \le 2 + |x|^2$$

so that theorem 2.17 is false in general if $\alpha > 1$.

Extra

Show that the supremum norm in Eq. (2.3) is indeed a norm.

Proof: Let $x(t) \in C(I)$. Then for a fixed $t \in I$, we have

$$0 \le |x(t)|$$

hence,

$$0 \le \sup_{t \in I} |x(t)|$$

and notice that $\sup_{t\in I} |x(t)| = 0$ only if $x(t) \equiv 0$, for if there exists some value of $s \in I$ where $x(s) \neq 0$, then |x(s)| > 0, so that $\sup_{t\in I} |x(t)| > 0$. Thus, nonnegativity holds. Let α be an arbitrary scalar. Then

$$||x|| = \sup_{t \in I} |\alpha x(t)|$$
$$= \sup_{t \in I} |\alpha| |x(t)|$$

and since $\sup(aX) = a \sup(X)$ for a > 0, we have

$$\begin{split} \sup_{t \in I} |\alpha||x(t)| &= |\alpha| \sup_{t \in I} |x(t)| \\ &= |\alpha||x|| \\ \Longrightarrow \|\alpha x\| &= |\alpha||x|| \end{split}$$

so homogeneity holds. To show the triangle inequality holds, let $x, y \in C(I)$ and notice, for a fixed $t \in I$,

$$\begin{split} |x(t)+y(t)| &\leq |x(t)|+|y(t)| \\ &\leq \sup_{t \in I} |x(t)| + \sup_{t \in I} |y(t)|. \end{split}$$

Then $\sup_{t\in I}|x(t)|+\sup_{t\in I}|y(t)|=\|x\|+\|y\|$ is an upper bound for |x(t)+y(t)| for all t, hence

$$\begin{split} \sup_{t \in I} |x(t) + y(t)| &\leq \sup_{t \in I} |x(t)| + \sup_{t \in I} |y(t)| \\ \Longrightarrow & \|x + y\| \leq \|x\| + \|y\| \end{split}$$

so the triangle inequality holds. Thus, the supremum norm is indeed a norm.