CELL DECOMPOSITION OF RANK 2 QUIVER GRASSMANNIANS

DYLAN RUPEL AND THORSTEN WEIST

ABSTRACT. We prove that all quiver Grassmannians for preprojective and preinjective respesentations of a generalized Kronecker quiver admit a cell decomposition. We also provide a natural combinatorial labeling for these cells using compatible pairs in a maximal Dyck path.

1. Introduction

-something about cluster algebras -something about categorification and quiver Grassmannians -something about compatible pairs and combinatorial construction of cluster variables -statement of our results - acknowledgements?

2. Torus Action on Quiver Grassmannians

Definition 0.1. universal cover \tilde{Q}

Lemma 0.1. how to lift exceptional representations of Q to \tilde{Q}

Lemma 0.2. $d: \tilde{Q}_0 \to \mathbb{Z}$ defines a torus action on $Gr_{\mathbf{e}}^Q(X)$ if $d(q, w\rho) - d(q, w) = c_\rho$ for all $w \in W_{\tilde{Q}_0}$

Lemma 0.3. There exists $d: \tilde{Q}_0 \to \mathbb{Z}$ such that $d(q, w) \neq d(q', w')$ for all q, q', w, w' with dim $X_{q,w} \neq 0$ and dim $X_{q',w'} \neq 0$.

Theorem 1. $Gr_{\mathbf{e}}^{Q}(X)^{T} \cong \bigsqcup_{\tilde{\mathbf{e}}oftune\mathbf{e}} Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{X})$

Corollary 1.1. affine bundles over $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{X})$ if $Gr_{\mathbf{e}}^{Q}(X)$ is smooth

$$\{U \in Gr_{\mathbf{e}}^{Q}(X) : \lim_{t \to 0} t \cdot U \in Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{X})\}$$

Question 1.1. What are the ranks of these bundles? Poincaré polynomials?

3. Representation Theory of K(n)

Denote by K(n) the *n-Kronecker quiver* $1 \stackrel{n}{\longleftarrow} 2$ with vertices $K(n)_0 = \{1, 2\}$ and *n* arrows from vertex 2 to vertex 1.

Define Chebyshev polynomials u_k for $k \in \mathbb{Z}$ by the recursion $u_0 = 0$, $u_1 = 1$, $u_{k+1} = nu_k - u_{k-1}$.

Theorem 2. For each $m \ge 1$, there exist unique (up to isomorphism) indecomposable rigid representations P_m and I_m of K(n) with dimension vectors (u_m, u_{m-1}) and (u_{m-1}, u_m) respectively. Moreover, any rigid representation of K(n) is isomorphic to one of the form $P_m^{a_1}P_{m+1}^{a_2}$ or $I_m^{a_1}I_{m+1}^{a_2}$ for some $m \ge 1$ and some $a_1, a_2 \ge 0$.

The representations P_m are called the *preprojective* representations of K(n) and the representations I_m are called *preinjective*.

Lemma 2.1. For any $m \ge 1$, we have dim $\operatorname{Hom}(P_m, P_m) = 1$, dim $\operatorname{Hom}(P_m, P_{m+1}) = n$, and dim $\operatorname{Hom}(P_{m+1}, P_m) = 0$. Moreover, for $1 \le k < n$ and linearly independent functions $f_1, \ldots, f_k \in \operatorname{Hom}(P_m, P_{m+1})$, the map $[f_1 \cdots f_k] : P_m^k \to P_{m+1}$ is injective.

Write $P_{m+1}^{\{f_1,\dots,f_k\}}$ for the cokernel of the map $[f_1\,\cdots\,f_k]:P_m^k\to P_{m+1}$, i.e. we have a short exact sequence

$$(1) 0 \longrightarrow P_m^k \stackrel{[f_1 \dots f_k]}{\longrightarrow} P_{m+1} \longrightarrow P_{m+1}^{\{f_1,\dots,f_k\}} \longrightarrow 0.$$

Lemma 2.2. For $m \geq 1$ and linearly independent functions $f_1, \ldots, f_k \in \text{Hom}(P_m, P_{m+1})$, the following

- (1) $\operatorname{Hom}(P_m, P_{m+1}^{\{f_1, \dots, f_k\}})$ is naturally isomorphic to $\operatorname{Hom}(P_m, P_{m+1})/\mathbb{k}f_1 \oplus \dots \oplus \mathbb{k}f_k;$ (2) $\operatorname{Ext}(P_{m+1}^{\{f_1, \dots, f_k\}}, P_m)$ is naturally isomorphic to $\mathbb{k}f_1 \oplus \dots \oplus \mathbb{k}f_k;$ (3) $\operatorname{Hom}(P_{m+1}^{\{f_1, \dots, f_k\}}, P_m) = 0.$

Proof. Applying the functor $Hom(P_m, -)$ to the sequence (1) gives the exact sequence

$$0 \longrightarrow \operatorname{Hom}(P_m, P_m^k) \stackrel{[f_1 \, \cdots \, f_k] \circ}{\longrightarrow} \operatorname{Hom}(P_m, P_{m+1}) \longrightarrow \operatorname{Hom}(P_m, P_{m+1}^{\{f_1, \dots, f_k\}}) \longrightarrow 0,$$

establishing (1).

To see (2), we apply the functor $\operatorname{Hom}(-, P_m)$ to the sequence (1) to get an isomorphism $\operatorname{Hom}(P_m^k, P_m) \cong$ $\operatorname{Ext}(P_{m+1}^{\{f_1,\dots,f_k\}},P_m)$. To get the isomorphism with $\mathbb{k}f_1\oplus\dots\oplus\mathbb{k}f_k$, we work by induction on k. Indeed, $\operatorname{Hom}(P_m^k, P_m)$ is spanned by the coordinate projections $\pi_i: P_m^k \to P_m$ for $1 \le i \le k$ and each of these gives rise to a commutative diagram

The bottom row of this diagram is the extension in $\operatorname{Ext}(P_{m+1}^{\{f_1,\ldots,f_k\}},P_m)$ naturally identified with the generator f_i of $\mathbb{k}f_1 \oplus \cdots \oplus \mathbb{k}f_k$.

Part (3) follows immediately from the observation that
$$\langle P_{m+1}^{\{f_1,\dots,f_k\}}, P_m \rangle = -k$$
.

4. Quiver Grassmannians of
$$\widetilde{K(n)}$$

Let \tilde{P}_m be a fixed lift of P_m to the universal cover K(n).

Lemma 2.3. There exist lifts $\tilde{P}_{m-1,i}$ for $1 \leq i \leq n$ of P_{m-1} to K(n) so that:

- (1) $\operatorname{Hom}_Q(P_{m-1}, P_m) \cong \bigoplus_{i=1}^n \operatorname{Hom}_{\tilde{Q}}(\tilde{P}_{m-1,i}, \tilde{P}_m);$
- (2) For any proper subset $\{i_1,\ldots,i_k\}\subset\{1,\ldots,n\}$, there exists a short exact sequence

$$0 \longrightarrow \tilde{P}_{m-1,i_1} \oplus \cdots \oplus \tilde{P}_{m-1,i_k} \longrightarrow \tilde{P}_m \longrightarrow \tilde{P}_m^{i_1,\dots,i_k} \longrightarrow 0;$$

- (3) The lifts $\tilde{P}_{m-1,i}$ are pairwise orthogonal.
- (4) All nontrivial proper subrepresentations of $\tilde{P}_m^{(k)}$ are preprojective.

We will always choose the subset $\{1,\ldots,k\}$ when using Lemma 2.3.2 and thus we denote the cokernal simply by $\tilde{P}_m^{(k)}$.

Lemma 2.4. If each $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{P}_{m-1,i})$ has a cell decomposition, then $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\bigoplus \tilde{P}_{m-1,i_j})$ has a cell decomposition.

Lemma 2.5. (1)
$$\tilde{P}_m^{(n-1)} \cong \tilde{P}_{m-1}^{(1)}$$

(2) The subrepresentation
$$\bigoplus_{i=1}^{k-1} \tilde{P}_{m-1,i} \oplus \bigoplus_{i=1}^{k} \tilde{P}_{m-2,i} \subset \bigoplus i = 1^k \tilde{P}_{m-1,i}$$
 is in $(\tilde{P}_m^{(k)})^{\perp}$ and $\operatorname{Ext}(\bigoplus i = 1^k \tilde{P}_{m-1,i}, \tilde{P}_m^{(k)}) \cong \operatorname{Ext}(\tilde{P}_{m-1}^{(k)}, \tilde{P}_m^{(k)})$

where $\tilde{P}_{m-1}^{(k)}$ above denotes the cokernel of the inclusion.

Corollary 2.1. observe when fibers are empty

Proposition 2.1. Consider $\psi: Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{P}_m) \to \bigsqcup_{\tilde{\mathbf{f}}+\tilde{\mathbf{g}}=\tilde{\mathbf{e}}} Gr_{\tilde{\mathbf{f}}}^{\tilde{Q}}(\bigoplus_{i=1}^k \tilde{P}_{m-1,i}) \times Gr_{\tilde{\mathbf{g}}}^{\tilde{Q}}(\tilde{P}_m^{(k)})$. Then the following

- (1) For $V \subsetneq \tilde{P}_m^{(k)}$ and $U \subset \bigoplus_{i=1}^k \tilde{P}_{m-1,i}$, we have $\psi^{-1}(U,V) = \mathbb{A}^{\langle V, \bigoplus_{i=1}^k \tilde{P}_{m-1,i}/U \rangle}$. (2) If $V = \tilde{P}_m^{(k)}$ and the fiber is not empty, then $\psi^{-1}(U,V)$ is constant.

Proof. (1) V is preprojective but $\bigoplus_{i=1}^k \tilde{P}_{m-1,i}/U$ is not unless U=0

$$0 \longrightarrow [V, P/U] \longrightarrow [V, U]^1 \longrightarrow [V, P]^1 \longrightarrow [V, P/U]^1 \longrightarrow 0$$

and the middle map is surjective.

Theorem 3. Every quiver Grassmannian of a preprojective or preinjective representation of K(n) and $\widetilde{K(n)}$ has a cell decomposition.

Question 3.1. cells of $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{P}_m)$ are in one-to-one correspondence with certain tuples of subgraphs for $smaller \; \tilde{P}^{i_1,...,i_k}_{\boldsymbol{\ell}}$

5. Compatible Pairs Label Cells in $Gr_{\mathbf{e}}^Q(P_m)$