Notes on Optimal Transport

Shuailong Zhu

Contents

L	Some Preliminaries for Optimal Transport
	1.1 About Push-Forward
	1.2 Weak-* Topology and Narrow Topology
2	Existence and Optimal Condition in (KP)
	2.1 Existence and Optimal Condition
	2.2 Some Convex Analysis Tools
	2.3 General Kantorovich Duality
	2.4 From Convex Geometry to (KP)=(DP)
3	Existence and Characterization of Transport Maps in (MP)
	3.1 Brenier's Theorem
	3.2 Stability and Regularity of Optimal Transport Plans/Maps
4	Wasserstein Space and Geodesic

1 Some Preliminaries for Optimal Transport

1.1 About Push-Forward

Proposition 1.1.1. Let $T: X \to Y$, $\mu \in \mathcal{P}(X)$, and $v \in \mathcal{P}(X)$. Then

$$v = T\mu$$

if and only if for anly $\varphi: Y \to \mathbb{R}$ Borel and bounded, we have that

$$\int_Y \varphi(y) dv(y) = \int_X \varphi(T(x) d\mu(x)$$

Proof. For any Borel set $A \subset Y$, it holds

$$\int_Y \mathbbm{1}_A dv = \mu(T^{-1}(A)) = \int_Y \mathbbm{1}_{T^{-1}(A)} d\mu = \int_Y \mathbbm{1}_A \circ T d\mu$$

Thus, for any simple function $\varphi: Y \to \mathbb{R}$,

$$\int_{Y} \varphi dv = \int_{Y} \varphi \circ T d\mu$$

Consider a fixed bounded Borel function, we can have a sequence of simple functions $(\varphi_k)_{k\in\mathbb{N}}$ such that $|\varphi_k - \varphi| \to 0$ uniformly. Then,

$$\int_{Y} \varphi dv = \lim_{k \to \infty} \int_{X} \varphi_k dv = \lim_{k \to \infty} \int_{X} \varphi_k \circ T d\mu = \int_{X} \varphi \circ T d\mu$$

where the last equality comes from dominated convergence theorem because $\varphi \circ T$ can still bound $\varphi_k \circ T$, but how to show it is measurable and absolutely integrable? Absolutely integrable can be deduced from the boundedness and finite measure μ ; measurable should be related to borel measurability of φ , which is very similar to Example ??.

Proposition 1.1.2 (Change of Variable, Theorem 6.1.7 [1]). Assume that T is a diffeomorphism between open sets X and Y of \mathbb{R}^d , and assume probability measures μ, v are absolutely continuous with respect to Lebesgue measure. Then,

$$\int_{Y}\varphi(y)\sigma(y)dy=\int_{X}\varphi(T(x))\sigma(T(x))det(DT(x))dx$$

1.2 Weak-* Topology and Narrow Topology

Proposition 1.2.1 (Riesz Representation Theorem for $C_c(X)$).

$$\mathcal{M}(X) := \{ \text{finite signed measures on } X \}$$
 (1.2.1)

$$= C_c(X)^* := \{continuous \ compactly \ supported \ functions\}^*$$
 (1.2.2)

$$= C_0(X)^* := \{continuous functions vanishing at \infty\}^*$$
(1.2.3)

Precisely, $(\mathcal{M}(X), \|\cdot\|_{TV})$ is the dual space of $(C_0(X), \|\cdot\|_{L^{\infty}})$ or $(C_c(X), \|\cdot\|_{L^{\infty}})$. Notice $C_c(X)$ not closed, $C_0(X)$ closed.

Weak-* convergence. By Banach-Alaoglu's Theorem, if $(\mu_k)_{k\in\mathbb{N}}$ is a sequence of probability measures, then \exists a subsequence that weakly-* converges to a measure $\mu \in M(X)$.

Narrow Topology. We say $\mu_k \stackrel{*}{\rightharpoonup} \mu$ if

$$\int \varphi d\mu_k \to \int \varphi d\mu, \text{ for all } \varphi \in C_b(X)$$
(1.2.4)

This is equivalent to: if

$$\liminf_{k \to \infty} \int \varphi d\mu_k \ge \int \varphi d\mu \tag{1.2.5}$$

for all φ that is lower semi-continuous and lower bounded.

2 Existence and Optimal Condition in (KP)

2.1 Existence and Optimal Condition

Proposition 2.1.1 (Existence of Optimal Plan/Coupling γ in (KP) problem). Let $c: X \times Y \to [0, infty]$ be lower semicontinuous, $\mu, v \in \mathcal{P}(X)$. Then there exists a coulping $\gamma \in \Gamma(\mu, v)$ which is a minimizer for (KP).

The strategy we use is: (1) Compactness in a certain topology, i.e. narrow topology of $\Gamma(\mu, v)$ deduced from tightness; (2) lower semi-continuity. We might use similar strategy for the space of transport map (T_k) for (MP).

Remark. However, this strategy doesn't work for (MP). Using Proposition 3.8 and 3.9 in my notes of functional analysis, we can check the "admitting of a weakly convergent sequence" in L^2 and the weak limit of the operator.

Figure 1: Same strategy doesn't work for (MP) [2]

Theorem 2.1.2 (Optimal Condition). Let $\bar{\gamma}$ be optimal, and $c: X \times Y \to \mathbb{R}$ is continuous. Then $supp(\bar{\gamma})$ is c-cyclically monotone. Note: assume $\mu = \sum \frac{1}{2i} \delta_{q_i} \in \mathcal{P}(\mathbb{R})$, where q_i is a rational number. Then $supp(\mu) = \mathbb{R}$.

2.2 Some Convex Analysis Tools

A function $\varphi : \mathbb{R}^d \to \bar{\mathbb{R}}$ is convex if

$$\varphi(x) = \sup_{y \in \mathbb{R}^d} \{ x \cdot y + \lambda_y \}$$
 (2.2.1)

Definition 2.2.1 (c-convex). Using the idea of the supremum of affine functions for convex, given X and Y metric spaces, $c: X \times Y \to \mathbb{R}$, we define that $\varphi: X \to \overline{\mathbb{R}}$ is c-convex if

$$\varphi(x) = \sup_{y \in \mathbb{R}^d} \{ -c(x, y) + \lambda_y \}$$
 (2.2.2)

Theorem 2.2.1. [Rockafellar, from convex analysis] A set $S \subset \mathbb{R}^d \times \mathbb{R}^d$ is (c-)cyclically monotone iff there exists a (c-)convex function $\varphi : \mathbb{R}^d \to \overline{\mathbb{R}}$ such that $S \subset \partial \varphi$. Rockafellar theorem provides a more clear description of c-cyclically monotone.

2.3 General Kantorovich Duality

Definition 2.3.1 (c-Legendre transform). Given a c-convex function $\varphi: X \to \overline{\mathbb{R}}$, we define its c-Legendre transform $\varphi^c: Y \to \overline{\mathbb{R}}$ as

$$\varphi^{c}(y) = \sup_{x \in X} \left\{ -c(x, y) - \varphi(x) \right\}$$
 (2.3.1)

Properties.

$$\varphi(x) + \varphi^{c}(y) + c(x, y) \ge 0 \text{ for all } x \in X, y \in Y$$
 (a)

$$\varphi(x) + \varphi^{c}(y) + c(x, y) = 0 \text{ iff } y \in \partial_{c}\varphi(x)$$
 (b)

Theorem 2.3.1 (Kantorovich duality). Let $c(\cdot, \cdot)$ be continuous and bounded from below, and assume that $\inf_{\gamma \in \Gamma(\mu, v)} \int_{X \times Y} c d\gamma < +\infty$, then

$$\min_{\gamma \in \Gamma(\mu, v) c d \gamma} \int_{X \times Y} c d \gamma = \max_{\varphi(x) + \psi(y) + c(x, y) \ge 0} \int_{X} -i d \mu + \int_{Y} -\psi d v$$

Proof. (1) (KP) \geq (DP).

Figure 2: $(KP) \leq (DP)$

Remark. The existence of minimizer of LHS only requires $c(\cdot,\cdot)$ to be lower-continuous in Proposition 2.1.1. We can obtain some corollaries that are a bit tricky due to the proof's specialty, i.e. it only requires that $supp(\gamma)$ to be c-cyclically monotone.

Corollary 2.3.2 (It might be inaccurate. We might need to put this corollary under the setting of c continuous.). Given a γ with $supp(\gamma)$ is c-cyclically monotone, then $\exists \varphi$ c-convex such that

$$(KP) \le \int cd\gamma = \int -\varphi d\mu + \int -\varphi^c dv \le (DP)$$

Well, (KP) > (DP) is general. Thus, we can obtain (KP) = (DP) and γ is the optimal.

Interestingly, Theorem 2.1.2 is for continuous cost, while Theorem 2.2.1 is for "any" cost.

Corollary 2.3.3. if $c(\cdot, \cdot)$ is continuous, the following are equivalent:

- γ is optimal;
- $supp(\gamma)$ is c-cyclically monotone;
- there exists a convex map φ such that $supp(\gamma) \subset \partial_c \varphi$

Corollary 2.3.4 (Theorem 2.3.2, [3]). If $c(\cdot, \cdot)$ is lower semi-continuous, then we still have (KP)=(DP), which can be shown by approximation.

We can find an excellent example that is c-cyclically monotone but not optimal, which is complementary to Corollary 2.3.3. However, this exmaple seems a bit controversial to Corollary 2.3.2.

Figure 3: A beautiful counter example.

2.4 From Convex Geometry to (KP)=(DP)

$$\inf_{\gamma \in \Gamma(X,Y)} c(x,y) d\gamma = \inf_{\gamma \geq 0} \left\{ \int c d\gamma + \sup_{\varphi} \{ \int_{X \times Y} \varphi(x) d\gamma - \int_{X} \varphi(x) d\mu \} + \sup_{\varphi} \{ \int_{X \times Y} \psi(y) d\gamma - \int_{Y} \psi(y) dv \} \right\}$$

$$= \inf_{\gamma \geq 0} \sup_{\varphi, \psi} \left\{ \int c d\gamma + \int_{X \times Y} \varphi(x) d\gamma - \int_{X} \varphi(x) d\mu + \int_{X \times Y} \psi(y) d\gamma - \int_{Y} \psi(y) dv \right\}$$

$$(\text{Simon Minimax Theorem})$$

$$= \sup_{\varphi, \psi} \left\{ - \int_{X} \varphi(x) d\mu - \int_{Y} \psi(y) dv + \inf_{\gamma \geq 0} \int_{\times Y} [c + \varphi(x) + \psi(y)] d\gamma \right\}$$

$$= \sup_{\varphi(x) + \psi(y) + c(x, y) \geq 0} \left\{ - \int_{X} \varphi(x) d\mu - \int_{Y} \psi(y) dv \right\}$$

3 Existence and Characterization of Transport Maps in (MP)

3.1 Brenier's Theorem

Theorem 3.1.1 (Brenier's Theorem). Let
$$X=Y=\mathbb{R}^d$$
, $c(x,y)=\frac{|x-y|^2}{2}$. Suppose that
$$\int_X |x|^2 dx + \int_Y |y|^2 dy < +\infty$$

and $\mu \ll dx$. Then there exists a unique optimal plan γ . In addition, $\gamma = (Id \times T)_{\#}\mu$ and $T = \nabla \varphi$ for some convex function φ .

Theorem 3.1.2 (General Brenier's Theorem). Let $X = Y = \mathbb{R}^d$, $\mu \ll dx$, and supp(v) compact. Let c be continuous and bounded from below, and assume that $\inf_{\gamma} \int_{X \times Y} < \infty$. Also, suppose that:

- for every $y \in supp(v)$, the map $x \to c(x,y)$ is differentiable;
- for every $x \in \mathbb{R}^d$, the map $y \to \nabla_x c(x, y)$ is injective.
- for every $y \in supp(v)$ and R > 0, $|\nabla_x c(x, y)| \le C_R$ for every $x \in \mathbb{B}_R$

Then there exists a unique optimal plan γ with $\gamma = (Id \times T)_{\#}\mu$ and T satisfying

$$\nabla_x c(x,y)|_{y=T(x)} + \nabla \varphi(x) = \nabla_x c(x,T(x)) + \nabla \varphi(x) = 0$$

for some c-convex function φ .

3.2 Stability and Regularity of Optimal Transport Plans/Maps

Before going to any details, it seems that we refer to "the same γ " in the topology of $\Gamma(\mu, v)$, we are talking about almost everywhere equal.

Theorem 3.2.1 (Stability). Let $\{\mu_k\}, \{v_k\} \subset \mathcal{P}(X)$ with $supp(\mu_k), supp(v_k) \subset K$ compact,

$$\mu_k \rightharpoonup \mu, v_k \rightharpoonup v$$

Let $c: X \times X \to [0, \infty]$ Then,

- Any weak limit point of π_k optimal in $\Gamma(\mu_k, v_k)$ is optimal.
- if $X = \mathbb{R}^d$, $c(x,y) = \frac{\|x y\|^2}{2}$, $\mu \ll \mathcal{L}^d$ then

$$\pi_h \to (Id, \nabla \varphi)_{\#} \mu$$

If
$$\mu_h \ll \mathcal{L}^d$$
, then

$$(Id, \nabla \varphi_h)_{\#}\mu_h \to (Id, \nabla \varphi)_{\#}\mu$$

The above is just a simple consequence of the first point and Brenier's theorem. More interestingly, if $\mu \equiv \mu_h$

$$\nabla \varphi_k \to \nabla \varphi \ in \ L^p(\mu)$$

Example 3.2.1 (Regularity). Even if the $supp(\mu_h)$ and $supp(v_h)$ is connected, there exists h_0 , such that T_h for $h \ge h_0$ might not be continuous.

Figure 4: A example for regularity.

4 Wasserstein Space and Geodesic

We will leave the tasks of organizing this part of note to future.

References

- [1] Donald L Cohn. Measure theory. Vol. 5. Springer, 2013.
- [2] David Mandel. Notes on Modes of Convergence in Probability Theory. URL: https://www.math.fsu.edu/~dmandel/Primers/Convergence.pdf.
- [3] Alessio Figalli and Federico Glaudo. An invitation to optimal transport, Wasserstein distances, and gradient flows. 2021.