Modeling tissues: numerical simulations and continuum mechanics

Part II - Numerical Simulations

Guillaume Gay, CENTURI multi-engineering platform, Marseille

A rough taxonomy of tissue models

A rough taxonomy of tissue models

This courses relies a lot on Carlos Tamulonis' PhD Thesis (2013)

Population dynamics

- ightharpoonup Only concerned with N(t)
- Focus on **signaling** and growth / death rates
- ▶ Main use is **mathematical oncology**: predict cancer growth in response to treatment

Empirical studies Evolution experiments Mathematical models Stochastic models (Moran, Wright-Fisher, branching process, Kolmogorov equations, etc) Deterministic models (ODE, PDE, evolutionary dynamics, etc) Combinatorial optimization/mathematical programming Optimal control theory Mutagenesis/saturation analyses Rational drug scheduling/combinations design Choice of drug(s) Scheduling of drug(s)

Fitness landscapes

Random field/sequence-structure/phenotype-fitness

Figure 1: (Zhao, Hemann, and Lauffenburger 2016)

Agent based modelling

- Cells are **agents**: they act
- Follow each cell behavior
- ▶ Broad range of problems:
 - cancer
 - morphogenesis

Lattice based models

Lattice based models

Figure 2: Discrete space in 2 and 3D

Game of life

(James Conway)

- Not really cells, but Cellular Automata
- ► Classical 'emergent behavior' system

Figure 3: Game of life

Game of life

(James Conway)

- Not really cells, but Cellular Automata
- ► Classical 'emergent behavior' system

Figure 3: Game of life

Follow this link for a fun example of cellular automata

The Graner Glazier Hogeweg model

- The world is a fixed grid
- ightharpoonup Each cell α occupies a set of pixels
- Pixels at the interface can swap cells

Figure 4: step n

The behavior is governed by the definition of a ${\bf Hamiltonian}\ H$ governing the energy of the cells

Changes follow a simple local algorithm:

1. Choose randomly a site $\left(i,j\right)$

Figure 5: step n

The behavior is governed by the definition of a ${\bf Hamiltonian}\ H$ governing the energy of the cells

- 1. Choose randomly a site (i, j)
- 2. Compute the change ΔH if (i,j) swaps cell

Figure 5: step n

The behavior is governed by the definition of a ${\bf Hamiltonian}\ H$ governing the energy of the cells

- 1. Choose randomly a site (i, j)
- 2. Compute the change ΔH if (i,j) swaps cell
- 3. If $\Delta H < 0$: swap cell

Figure 5: step n

The behavior is governed by the definition of a ${\bf Hamiltonian}\ H$ governing the energy of the cells

- 1. Choose randomly a site (i, j)
- 2. Compute the change ΔH if (i,j) swaps cell
- 3. If $\Delta H < 0$: swap cell
- 4. If $\Delta H \geq 0$: swap cell with probability $\exp(-\Delta H/kT)$ (T is not a "real" temperature)

Figure 5: step n

The behavior is governed by the definition of a ${\bf Hamiltonian}\ H$ governing the energy of the cells

- 1. Choose randomly a site (i, j)
- 2. Compute the change ΔH if (i,j) swaps cell
- 3. If $\Delta H < 0$: swap cell
- 4. If $\Delta H \geq 0$: swap cell with probability $\exp(-\Delta H/kT)$ (T is not a "real" temperature)

Figure 5: step n

The behavior is governed by the definition of a ${\bf Hamiltonian}\ H$ governing the energy of the cells

- 1. Choose randomly a site (i, j)
- 2. Compute the change ΔH if (i,j) swaps cell
- 3. If $\Delta H < 0$: swap cell
- 4. If $\Delta H \geq 0$: swap cell with probability $\exp(-\Delta H/kT)$ (T is not a "real" temperature)

Figure 5: step n

Figure 6: step n+1

Cellular Potts Model Hamiltonian

Now the whole game is now to define the Hamiltonian to better reflect our problem!

Cellular Potts Model Hamiltonian

Now the whole game is now to define the Hamiltonian to better reflect our problem!

The simplest model: volume conservation and adhesion:

$$\begin{split} H = & H_V + H_i \\ H_V = & \frac{\lambda}{2} \sum_{\alpha} (V_{\alpha} - V_0)^2 \\ H_i = & \sum_{ij,i'j'} J(\tau(ij), \tau(i'j')) \end{split}$$

 $\tau(ij)$ type of cell at ij $J(\tau(ij),\tau(i'j')): \mbox{ bond energy}$

Cell sorting

A classical problem:

2 cell types (1,2) — 0 is the medium

$$J(1,1) = 0$$

 $J(1,1) = 1$
 $J(2,2) = 8$
 $J(2,1) = 16$
 $J(1,0) = J(2,0) = 32$

Cell sorting

A classical problem:

2 cell types (1,2) — 0 is the medium

$$J(1,1) = 0$$

 $J(1,1) = 1$
 $J(2,2) = 8$
 $J(2,1) = 16$
 $J(1,0) = J(2,0) = 32$

Cells prefer their own kind, 1 more than 2

What happens?

Existing Software

- **▶** Chaste
- ► CompuCell3D

Cells as spheres

Cells as polygons

Topology changes in 2D & 3D

Active vertex model

Rosettes

Towards rheological models

Existing implementations

Zhao, Boyang, Michael T. Hemann, and Douglas A. Lauffenburger. 2016. "Modeling Tumor Clonal Evolution for Drug Combinations Design." *Trends Cancer* 2 (3): 144–58. https://doi.org/10.1016/j.trecan.2016.02.001.