Computation of Kronecker's Canonical Form in a Computer Algebra System

Giacomo Trapani

Università di Pisa

7/10/2022

- Definizione
- Proprietà
- Stabilità della trasformazione

- Definizione
- Proprietà
- Stabilità della trasformazione

- Definizione
- Proprietà
- Stabilità della trasformazione

Definizione

Una matrice J diagonale a blocchi viene detta matrice di Jordan se e solo se ogni blocco lungo la diagonale è quadrato ed è del tipo

$$\begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & \lambda \end{bmatrix}.$$

Forma canonica di Jordan Proprietà

Proprietà:

- I valori sulla diagonale sono gli *autovalori* di *J*, il numero di volte in cui occorre è la sua *molteplicità algebrica*.
- A meno di permutazioni di blocchi, due matrici *simili* hanno la stessa forma di Jordan.

Forma canonica di Jordan Proprietà

Proprietà:

- I valori sulla diagonale sono gli *autovalori* di *J*, il numero di volte in cui occorre è la sua *molteplicità algebrica*.
- A meno di permutazioni di blocchi, due matrici *simili* hanno la stessa forma di Jordan.

Forma canonica di Jordan Proprietà

Proprietà:

- I valori sulla diagonale sono gli *autovalori* di *J*, il numero di volte in cui occorre è la sua *molteplicità algebrica*.
- A meno di permutazioni di blocchi, due matrici simili hanno la stessa forma di Jordan.

Stabilità della trasformazione

Data una matrice quadrata A, la matrice di trasformazione P in

$$A = P^{-1}JP$$

è malcondizionata se A ha un autovalore difettivo o quasi difettivo.

Calcolo simbolico

- Il calcolo simbolico (o computer algebra) utilizzando sia variabili sia valori numerici - permette il calcolo esatto di espressioni matematiche.
- Il sistema per il calcolo simbolico scelto è SageMath.

Calcolo simbolico

- Il calcolo simbolico (o computer algebra) utilizzando sia variabili sia valori numerici permette il calcolo esatto di espressioni matematiche.
- Il sistema per il calcolo simbolico scelto è SageMath.

Esempio: calcolo del determinante

Calcoliamo il determinante della matrice A, con

$$A = \begin{bmatrix} \sqrt{3} & 1 \\ 3 & \sqrt{3} \end{bmatrix}.$$

Confrontiamo i risultati ottenuti definendola inizialmente sull'anello CDF (*Complex Double Field*) e, in seguito, sull'anello simbolico SR (*Symbolic Ring*).

Esempio: calcolo del determinante

```
sage: A = matrix(SR, [[sqrt(3), 1], [3, sqrt(3)]])
sage: A.det().is_zero()
True
sage: A.change_ring(CDF).det().is_zero()
False
```

- Useremo l'anello simbolico SR per il calcolo esatto.
- SageMath mette a disposizione due metodi che, per il nostro caso d'uso, sono particolarmente utili:
 - is_zero per verificare che una espressione sia esattamente uguale a zero;
 - jordan_form per calcolare esattamente la forma canonica di Jordan di una matrice.

- Useremo l'anello simbolico SR per il calcolo esatto.
- SageMath mette a disposizione due metodi che, per il nostro caso d'uso, sono particolarmente utili:
 - is_zero per verificare che una espressione sia esattamente uguale a zero;
 - jordan_form per calcolare esattamente la forma canonica di Jordan di una matrice.

- Useremo l'anello simbolico SR per il calcolo esatto.
- SageMath mette a disposizione due metodi che, per il nostro caso d'uso, sono particolarmente utili:
 - is_zero per verificare che una espressione sia esattamente uguale a zero;
 - jordan_form per calcolare esattamente la forma canonica di Jordan di una matrice.

- Useremo l'anello simbolico SR per il calcolo esatto.
- SageMath mette a disposizione due metodi che, per il nostro caso d'uso, sono particolarmente utili:
 - is_zero per verificare che una espressione sia esattamente uguale a zero;
 - jordan_form per calcolare esattamente la forma canonica di Jordan di una matrice.

Consideriamo le equazioni differenziali del tipo

$$\dot{x}(t) + Ax(t) = f(t), \qquad A \in \mathbb{C}^{m \times n}.$$

- Le soluzioni sono caratterizzate dalla forma canonica di Jordan della matrice A.
- Generalizziamo. Introduciamo una matrice $B \in \mathbb{C}^{m \times n}$. Dunque, consideriamo le equazioni del tipo

$$B\dot{x}(t) + Ax(t) = f(t).$$

Consideriamo le equazioni differenziali del tipo

$$\dot{x}(t) + Ax(t) = f(t), \qquad A \in \mathbb{C}^{m \times n}.$$

- Le soluzioni sono caratterizzate dalla forma canonica di Jordan della matrice A.
- Generalizziamo. Introduciamo una matrice $B \in \mathbb{C}^{m \times n}$. Dunque, consideriamo le equazioni del tipo

$$B\dot{x}(t) + Ax(t) = f(t)$$

Consideriamo le equazioni differenziali del tipo

$$\dot{x}(t) + Ax(t) = f(t), \qquad A \in \mathbb{C}^{m \times n}.$$

- Le soluzioni sono caratterizzate dalla forma canonica di Jordan della matrice A.
- Generalizziamo. Introduciamo una matrice $B \in \mathbb{C}^{m \times n}$. Dunque, consideriamo le equazioni del tipo

$$B\dot{x}(t) + Ax(t) = f(t).$$

- 1 B non è singolare.
 - Le soluzioni sono caratterizzate dalla forma di Jordan della matrice — B⁻¹A.
- 2 B è singolare.
 - Essendo B una matrice singolare, alcune equazioni nel sistema lineare potrebbero essere algebriche o, in altre parole, non contenere derivate
 - Le soluzioni sono caratterizzate dalla *forma canonica di Kronecker* della coppia di matrici (*A*, *B*) (detta anche *linear pencil* o, per brevità, *pencil*).

- B non è singolare.
 - Le soluzioni sono caratterizzate dalla forma di Jordan della matrice — B⁻¹A.
- 2 B è singolare.
 - Essendo B una matrice singolare, alcune equazioni nel sistema lineare potrebbero essere algebriche o, in altre parole, non contenere derivate.
 - Le soluzioni sono caratterizzate dalla *forma canonica di Kronecker* della coppia di matrici (*A*, *B*) (detta anche *linear pencil* o, per brevità, *pencil*).

- 1 B non è singolare.
 - Le soluzioni sono caratterizzate dalla forma di Jordan della matrice – B⁻¹A.
- 2 B è singolare.
 - Essendo B una matrice singolare, alcune equazioni nel sistema lineare potrebbero essere algebriche o, in altre parole, non contenere derivate
 - Le soluzioni sono caratterizzate dalla *forma canonica di Kronecker* della coppia di matrici (*A*, *B*) (detta anche *linear pencil* o, per brevità, *pencil*).

- 1 B non è singolare.
 - Le soluzioni sono caratterizzate dalla forma di Jordan della matrice $-B^{-1}A$.
- 2 B è singolare.
 - Essendo B una matrice singolare, alcune equazioni nel sistema lineare potrebbero essere algebriche o, in altre parole, non contenere derivate.
 - Le soluzioni sono caratterizzate dalla *forma canonica di Kronecker* della coppia di matrici (A, B) (detta anche *linear pencil* o, per brevità, *pencil*).

- 1 B non è singolare.
 - Le soluzioni sono caratterizzate dalla forma di Jordan della matrice $-B^{-1}A$.
- 2 B è singolare.
 - Essendo B una matrice singolare, alcune equazioni nel sistema lineare potrebbero essere algebriche o, in altre parole, non contenere derivate.
 - Le soluzioni sono caratterizzate dalla forma canonica di Kronecker della coppia di matrici (A, B) (detta anche linear pencil o, per brevità, pencil).

Teorema (Forma canonica di Kronecker)

Un pencil arbitrario di matrici (A, B) è strettamente equivalente alla matrice diagonale a blocchi

$$\begin{bmatrix} O^{(h,g)} & & & & & \\ & L & & & & \\ & & L^T & & & \\ & & & N & & \\ & & & G + \lambda I \end{bmatrix}$$

 h, g sono il numero massimo di soluzioni costanti e indipendenti delle equazioni

$$(A + \lambda B)\mathbf{x} = 0,$$
 $(A^T + \lambda B^T)\mathbf{y} = 0.$

■ I blocchi sono del tipo:

$$L = \begin{bmatrix} L_{\epsilon_{h+1}} & & & & \\ & L_{\epsilon_{h+2}} & & & \\ & & \ddots & \\ & & & L_{\epsilon_p} \end{bmatrix}, \qquad L_i^{(i,i+1)} = \begin{bmatrix} \lambda & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & \lambda & 1 & & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & & \lambda & 1 & 1 \end{bmatrix}$$

 h, g sono il numero massimo di soluzioni costanti e indipendenti delle equazioni

$$(A + \lambda B)\mathbf{x} = 0,$$
 $(A^T + \lambda B^T)\mathbf{y} = 0.$

■ I blocchi sono del tipo:

$$L = \begin{bmatrix} L_{\epsilon_{h+1}} & & & \\ & L_{\epsilon_{h+2}} & & \\ & & \ddots & \\ & & & L_{\epsilon_p} \end{bmatrix}, \quad L_i^{(i,i+1)} = \begin{bmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & & \vdots & \vdots \\ \vdots & \vdots & \ddots & \end{bmatrix}$$

$$L^{T} = \begin{bmatrix} L_{\eta_{h+1}}^{T} & & & \\ & L_{\eta_{h+2}}^{T} & & \\ & & \ddots & \\ & & & L_{\eta_{d}^{T}} \end{bmatrix}, \qquad N = \begin{bmatrix} N^{(u_{1})} & & & \\ & N^{(u_{2})} & & \\ & & \ddots & \\ & & & N^{(u_{s})} \end{bmatrix}$$

■ I blocchi N^u sono del tipo

$$N^{(u)} = I^{(u)} + \lambda H^{(u)}.$$

■ *G* è una matrice di Jordan.

$$L^{T} = \begin{bmatrix} L_{\eta_{h+1}}^{T} & & & \\ & L_{\eta_{h+2}}^{T} & & \\ & & \ddots & \\ & & & L_{\eta_{d}^{T}} \end{bmatrix}, \qquad N = \begin{bmatrix} N^{(u_{1})} & & & \\ & N^{(u_{2})} & & \\ & & \ddots & \\ & & & N^{(u_{s})} \end{bmatrix}$$

■ I blocchi N^u sono del tipo

$$N^{(u)} = I^{(u)} + \lambda H^{(u)}.$$

■ *G* è una matrice di Jordan.

$$L^{T} = \begin{bmatrix} L_{\eta_{h+1}}^{T} & & & \\ & L_{\eta_{h+2}}^{T} & & \\ & & \ddots & \\ & & & L_{\eta_{q}^{T}} \end{bmatrix}, \qquad N = \begin{bmatrix} N^{(u_{1})} & & & \\ & N^{(u_{2})} & & \\ & & \ddots & \\ & & & N^{(u_{s})} \end{bmatrix}$$

■ I blocchi N^u sono del tipo

$$N^{(u)} = I^{(u)} + \lambda H^{(u)}.$$

■ *G* è una matrice di Jordan.

Pencil di matrici

Distinguiamo due tipi di pencil di matrici:

Definizione (Pencil lineare regolare)

Un pencil di matrici (A, B) viene definito regolare se e solo se A e B sono matrici quadrate della stessa dimensione e il determinante $det(A + \lambda B)$ non è identicamente zero.

Definizione (Pencil lineare singolare)

Un pencil di matrici non regolare viene definito singolare.

Pencil lineari regolari

Teorema (Forma canonica di Kronecker - pencil regolari)

Ogni pencil regolare può essere ridotto a una matrice del tipo

Sia $\Gamma(\lambda) = A + \lambda B$ pencil regolare, A, B definite in uno spazio vettoriale su un campo F.

- **1** Cerchiamo un valore $c \in F$ tale che la matrice $A_1 = A + cB$ non è singolare.
- 2 Riscriviamo $\Gamma(\lambda)$ in funzione di A_1 , moltiplichiamo a sinistra per A_1^{-1} ottenendo

$$A_1^{-1}\Gamma(\lambda) = I + (\lambda - c)A_1^{-1}B.$$

Sia $\Gamma(\lambda) = A + \lambda B$ pencil regolare, A, B definite in uno spazio vettoriale su un campo F.

- **1** Cerchiamo un valore $c \in F$ tale che la matrice $A_1 = A + cB$ non è singolare.
- 2 Riscriviamo $\Gamma(\lambda)$ in funzione di A_1 , moltiplichiamo a sinistra per A_1^{-1} ottenendo

$$A_1^{-1}\Gamma(\lambda) = I + (\lambda - c)A_1^{-1}B.$$

Sia $\Gamma(\lambda) = A + \lambda B$ pencil regolare, A, B definite in uno spazio vettoriale su un campo F.

- **1** Cerchiamo un valore $c \in F$ tale che la matrice $A_1 = A + cB$ non è singolare.
- 2 Riscriviamo $\Gamma(\lambda)$ in funzione di A_1 , moltiplichiamo a sinistra per A_1^{-1} ottenendo

$$A_1^{-1}\Gamma(\lambda) = I + (\lambda - c)A_1^{-1}B.$$

Sia $\Gamma(\lambda) = A + \lambda B$ pencil regolare, A, B definite in uno spazio vettoriale su un campo F.

- **1** Cerchiamo un valore $c \in F$ tale che la matrice $A_1 = A + cB$ non è singolare.
- 2 Riscriviamo $\Gamma(\lambda)$ in funzione di A_1 , moltiplichiamo a sinistra per A_1^{-1} ottenendo

$$A_1^{-1}\Gamma(\lambda) = I + (\lambda - c)A_1^{-1}B.$$

Sia J_0 un blocco quadrato nilpotente di dimensione j, J_1 un blocco quadrato nonsingolare di dimensione k, allora J è del tipo

$$\begin{bmatrix} J_1 & \\ & J_0 \end{bmatrix}.$$

A questo punto, possiamo scrivere

$$P_{\pi} = \begin{bmatrix} I^{(k)} \\ I^{(j)} \end{bmatrix}, \qquad P_{\pi}^{T} J P_{\pi} = J' = \begin{bmatrix} J_{0} \\ & J_{1} \end{bmatrix}$$

4 Riscriviamo il membro destro dell'equazione in funzione della forma canonica di Jordan appena calcolata

$$A_1^{-1}\Gamma(\lambda) = I + (\lambda - c)P_1P_{\pi}^{-T}J'P_{\pi}^{-1}P_1^{-1}.$$

Sia J_0 un blocco quadrato nilpotente di dimensione j, J_1 un blocco quadrato nonsingolare di dimensione k, allora J è del tipo

$$\begin{bmatrix} J_1 & \\ & J_0 \end{bmatrix}.$$

A questo punto, possiamo scrivere

$$P_{\pi} = \begin{bmatrix} I^{(k)} \\ I^{(j)} \end{bmatrix}, \qquad P_{\pi}^{T} J P_{\pi} = J' = \begin{bmatrix} J_{0} \\ & J_{1} \end{bmatrix}$$

4 Riscriviamo il membro destro dell'equazione in funzione della forma canonica di Jordan appena calcolata

$$A_1^{-1}\Gamma(\lambda) = I + (\lambda - c)P_1P_{\pi}^{-T}J'P_{\pi}^{-1}P_1^{-1}.$$

Signification Reservation Res

$$P_1^{-1}A_1^{-1}\Gamma(\lambda)P_1 = I + (\lambda - c)P_{\pi}^{-T}J'P_{\pi}^{-1}.$$

6 Seguiamo gli stessi passaggi per le matrici P_{π}^{-T} , P_{π}^{-1} . Otteniamo

$$P_{\pi}^{T}P_{1}^{-1}A_{1}^{-1}\Gamma(\lambda)P_{1}P_{\pi} = I + (\lambda - c)J'.$$

Signification Reservation Res

$$P_1^{-1}A_1^{-1}\Gamma(\lambda)P_1 = I + (\lambda - c)P_{\pi}^{-T}J'P_{\pi}^{-1}.$$

6 Seguiamo gli stessi passaggi per le matrici P_{π}^{-T} , P_{π}^{-1} . Otteniamo

$$P_{\pi}^{T}P_{1}^{-1}A_{1}^{-1}\Gamma(\lambda)P_{1}P_{\pi}=I+(\lambda-c)J'.$$

