

Department of Electrical and Computer Engineering Utah State University

ECE 5930/6930: VLSI Testing and Verification Created By: Shayan (Sean) Taheri

Homework 03
Solution Outline

Answer 1.We level order the signals and proceed as follows:

Step no.	Action	Signals ABCdefgYhkZ	D front.	Impl. stack $g = 0$
1	Fault Activation	0 0 \overline{D}		
	Immediate impl. Immediate impl.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k	g = 0 g = 0
	Immediate impl.		k	g = 0
	Immediate impl. Immediate impl.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	φ φ	g = 0 g = 0

The fault is redundant because the D-frontier disappeared and there is no backtracks. Signals are shown in the following figure:

Answer 2.

The figure below shows the SCOAP testability measures used for guiding PODEM.

The steps of the PODEM algorithms are recorded in the following table:

Step No.	Objec- tive	Action	Imp. stack	Implied signal value $A \ B \ C \ d \ e \ f \ g \ h \ k \ Y$		X path
1	g = 0	Backtrace	B = 1	1	φ	ok
2	g = 0	Backtrace	C = 1 B = 1	11 00 0	1 φ	none
3	g = 0	Backtrack	C = 0 B = 1	1 0 111111	0 φ	none
4	g = 0	Backtrack	B = 0	0 01 11 1	φ	none
5	g = 0	Backtrack	Empty			

Explanation: an X-path is a path from the fault site to a PO, such that the signals on it are either faulty states or undetermined. An "OK" for X-path in the table means that one or more such paths exist. Having no X-path is a reason for backtracks because its existence is a necessary condition for the detection of the fault. When a series of backtracks leads to an empty stack, it indicates that the objective g = 0 is impossible. As a result, **the fault h** (stuck-at-1) cannot be activated and, hence, it is redundant. Meanwhile, there is three backtracks.

Answer 3.

Step	Action	Impl. stack	Forward implications	D-frontier	
1	Fault act.	h = 0	$h=0, h1=\overline{D}, i2=0$	i1	
2	D-prop.	g1=1, h=0	$g1=1, h=0, h1=\overline{D}$ $i1=\overline{D}, i2=0$	PO	
3	Justify	e1 = 1, g1 = 1 $h = 0$	$e1 = 1, g1 = 1, h = 0 h1 = \overline{D}, i1 = \overline{D}, i2 = 0$	РО	
4	Justify	a = 1, b = 1 e1 = 1, g1 = 1 h = 0	a=1, b=1, e1=1, g1=1 e2=1, g1=1, g2=1 $h=0, h1=\overline{D}, i1=\overline{D}$ i2=0	РО	
Test j	Test found: $(a, b, c, d, h, k) = (1, 1, X, X, 0, X); i1 = \overline{D}$				

The following figure shows the circuit and the signal values specified by D-algorithm.

Answer 4.The following table gives the steps of PODEM algorithm:

Step	Objec-	Action	Imp.	Implied signal values	D	X
No.	tive		stack	ABCDEFghklmpqsruwZ	front.	path
1	$g = 0(\overline{D})$	Backtrace	C = 0	C=0, h=0	ϕ	ok
2	$g = 0(\overline{D})$	Backtrace	D = 0 $C = 0$	$C = 0, D = 0, g = 0(\overline{D})$ h = 0, k = 0, m = 0, u = 0	φ	none
3	$g = 0(\overline{D})$	Backtrack	D = 1 $C = 0$	C = 0, D = 1, g = 1, h = 0 k = 1, m = 1, p = 0, q = 1, r = 0	ϕ	none
4	$g = 0(\overline{D})$	Backtrack	C = 1	C = 1, g = 1, h = 1, m = 1 p = 0, q = 1, r = 0	φ	none
5	$g = 0(\overline{D})$	Backtrack	Empty			

Algorithm termination: $g=0(\overline{D})$ with X-path impossible; fault g s-a-1 is redundant. 3 backtracks.