

COST L3

AM AND HM

Revision

AM and Median of Frequency Distribution and Grouped Data

Arithmetic Mean

• Class Mark – Mid point of class

Median

- Cumulative Frequency
- Median class (class for which *c.f.* is just $> \frac{N}{2}$) N = $\sum f$

Mode for the grouped data

Modal Class- The class interval with maximum frequency

Mode =
$$l_1 + \left\{ (l_2 - l_1) \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right) \right\}$$

Where,

 l_1 = lower class boundary of the modal class

 l_2 = upper class boundary of the modal class

 f_0 = frequency of the class preceding modal class

 f_1 = frequency of the modal class

 f_2 = frequency of the class succeeding modal class

Mode for grouped data

Viewing time (mins)	No of students f
9.3-9.7	2
9.8-10.2	5
10.3-10.7	12 _{f0} •
10.8-11.2	17 f1
11.3-11.7	14 f2
11.8-12.2	6
12.3-12.7	3
12.8-13.2	1

Mode =
$$l_1 + \left\{ (l_2 - l_1) \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right) \right\}$$

Modal Class- The class interval with maximum frequency

- Frequencycy preceeding modal class

Highest frequency

Frequencycy succeeding modal class

Modal Class
$$l_1$$
= 10.8 l_2 =11.2

Viewing time (mins)	No of students
300-399	14
400-499	46
500-599	58
600-699	76
700-799	68
800-899	62
900-999	48
1000-1099	22
1100-1199	6

• Find MODE

Geometric Mean

• G.M. of N observations X_1, X_2, \dots, X_n is denoted by G and defined as-

$$G.M = G = \sqrt[N]{X_1.X_2.X_3.....X_n}$$
$$= (X_1.X_2.X_3.....X_n)^{\frac{1}{N}}$$

• Consider a data with N observations X_1, X_2, \ldots, X_n occurring with the frequencies f_1, f_2, \ldots, f_n , then GM is denoted by G and is defined as-

$$G.M = G = \sqrt[N]{(X_1)^{f_1}.(X_2)^{f_2}....(X_n)^{f_n}}$$
Where N= $\sum f$

Define G.M. How to calculate it? Find the G.M. of -

Solution:

$$G.M = G = \sqrt[N]{X_1.X_2.X_3.....X_n}$$

$$= (X_1.X_2.X_3.....X_n)^{\frac{1}{N}}$$

$$= (250 \times 12 \times 4.5 \times 119.5 \times 42 \times 35.4 \times 75 \times 30)^{\frac{1}{8}}$$

Find GM of following-

Marks	0-10	10-20	20-30	30-40	40-50
No of	5	7	15	25	8
students					

Solution:

$$G.M = G = \sqrt[N]{(X_1)^{f_1}.(X_2)^{f_2}....(X_n)^{f_n}}$$

Where
$$N = \sum f$$

$$G.M = G = \sqrt[N]{(X_1)^{f_1}.(X_2)^{f_2}....(X_n)^{f_n}}$$

Solution

Where $N = \sum f$

V	la	r	k
ıv	u		\ ~

0-10

10-20

20-30

30-40

40-50

Harmonic Mean

H.M. of N observations X_1 , X_2 X_n is denoted by H and defined as-

$$H = \frac{N}{\frac{1}{X_1} + \frac{1}{X_2} + \cdots + \frac{1}{X_n}}$$

Consider a data with N observations X_1 , X_2 X_n occurring with the frequencies f_1 , f_2 ... f_n , then HM is denoted by H and is defined as-

$$H = \frac{N}{\frac{f_1}{X_1} + \frac{f_2}{X_2} + \cdots \frac{f_n}{X_n}} \qquad \text{Where N= } \sum f$$

1. Cities A, B and C are equidistant from each other. A motorist travels from A to B at 30 mph, from B to C at 40 mph and from C to A at 50 mph. Determine his average speed.

Solution:

$$H = \frac{N}{\frac{1}{X_1} + \frac{1}{X_2} + \cdots + \frac{1}{X_n}}$$

2. An aeroplane travels distances of 2500, 1200 and 500 miles at speeds 500, 400 and 250 mph respectively. Find HM of the speed.

$$H = \frac{\sum f}{\frac{f_1}{X_1} + \frac{f_2}{X_2} + \cdots + \frac{f_n}{X_n}}$$
$$= \frac{2500 + 1200 + 500}{\frac{2500}{500} + \frac{1200}{400} + \frac{500}{250}}$$

Empirical Relation between Mean, Median and mode

If a frequency distribution graph is having a **symmetrical frequency curve**, the mean, median, and mode will be equal.

Mean= Median= Mode

Empirical Relation between Mean, Median and mode

If a frequency distribution graph is having an asymmetrical frequency curve, then

$$Mode = 3 Median - 2 Mean$$

Or

$$Mean - Mode = 3 (Mean - Median)$$