Devoir à la maison n° 2

À rendre le 7 octobre

Soit d un entier, $d \ge 2$. Soit $\omega = (\omega_n)_{n \ge 1}$ une suite de complexes, périodique de période d, c'est-à-dire telle que

$$\forall n \in \mathbb{N}^* \quad \omega_{n+d} = \omega_n.$$

Dans ce problème, on s'intéresse à la nature (convergente ou divergente) de la série $\sum u_n(\lambda)$ de terme général

$$\forall n \geqslant 1 \quad u_n(\lambda) = \frac{\omega_n + \lambda}{n}$$

où λ est un complexe. On note plus simplement $u_n = u_n(0)$ pour tout $n \ge 1$.

- 1) Supposons, dans cette question uniquement, qu'il existe un complexe λ tel que $\sum u_n(\lambda)$ converge. Montrer que, pour toute valeur $\mu \neq \lambda$, la série $\sum u_n(\mu)$ diverge.
- 2) Dans cette question, on choisit $\lambda = 0$. Pour tout entier naturel n non nul, on note S_n la somme partielle associée à la série $\sum u_n$, c'est-à-dire $S_n = \sum_{k=0}^{n} \frac{\omega_k}{k}$.
 - a) Pour tout entier naturel m, exprimer $\frac{1}{md+1}\sum_{k=1}^{d}\omega_{md+k}$ en fonction de $\Omega=\sum_{k=1}^{d}\omega_{k}$.
 - b) Déterminer un réel α tel que

$$S_{(m+1)d} - S_{md} = \frac{1}{md+1} \sum_{k=1}^{d} \omega_{md+k} + \frac{\alpha}{m^2} + \underset{m \to \infty}{\text{o}} \left(\frac{1}{m^2}\right)$$

- c) En déduire une condition nécessaire et suffisante sur Ω pour que la série $\sum (S_{(m+1)d} S_{md})$ converge.
- d) Montrer très soigneusement que la condition obtenue à la question précédente est une condition nécessaire et suffisante pour que la série $\sum u_n$ converge.
- 3) Montrer qu'il existe une unique valeur $\lambda \in \mathbb{C}$ telle que la série $\sum u_n(\lambda)$ converge.
- 4) Une généralisation : Dans cette question, on se donne une suite croissante $(a_n)_{n\geqslant 1}$ de réels, telle que $a_1>0$ et $\lim_{n\to\infty}a_n=+\infty$. On suppose que $\Omega=0$. On pose, pour tout $n\geqslant 1$,

$$u_n = \frac{\omega_n}{a_n}$$
 et $T_n = \sum_{k=1}^n \omega_k$.

Par souci de commodité, on note également $T_0=0$.

- a) Montrer que la suite $(T_n)_{n\geqslant 1}$ est bornée.
- **b)** Montrer que pour tout entier naturel n non nul,

$$\sum_{k=1}^{n} u_k = \sum_{k=1}^{n} T_k \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right) + \frac{T_n}{a_{n+1}}.$$

- c) Montrer que la série $\sum T_k \left(\frac{1}{a_k} \frac{1}{a_{k+1}} \right)$ converge.
- d) Montrer que la série $\sum u_k$ converge.

— FIN —