If Φ is recurrent, then we will use π to denote the unique invariant measure. That is $\pi = \mu_{\alpha}^{0}$. This leads us to the following criterion for positivity.

Theorem 16 (Kac's Theorem) If Φ is ψ -irreducible and admits an atom $\alpha \in \mathcal{B}^+(\mathcal{X})$ (an accessible atom), then Φ is positive recurrent if and only if $\mathbb{E}_{\alpha}(\tau_{\alpha}) < \infty$. If π is the invariant probability measure for Φ , then

$$\pi(\boldsymbol{\alpha}) = \mathbb{E}_{\boldsymbol{\alpha}}^{-1}(\tau_{\boldsymbol{\alpha}}).$$

Proof:

1.6.3 The existence of an invariant measure—recurrent chains

Proposition 20 Let Φ be a strongly aperiodic Markov chain and let $\check{\Phi}$ denote the split chain. Then

(i) if the measure $\check{\pi}$ is invariant for $\check{\Phi}$ then the measure π on $\mathcal{B}(\mathcal{X})$ defined by

$$\pi(A) = \check{\pi}(A_0 \cup A_1), \quad A \in \mathcal{B}(\mathcal{X}),$$

is invariant for Φ and $\check{\pi} = \pi^*$.

(ii) If μ is any subinvariant measure for Φ then μ^* is subinvariant for $\check{\Phi}$, and if μ is invariant then so is μ^* .

Proof:

So now we have that a strongly aperiodic Markov chain admits an invariant measure if the split chain does. This leads us to

Proposition 21 If Φ is recurrent and strongly aperiodic, then Φ admits a unique (up to constant multiples) subinvariant measure that is invariant.

Proof:

Now we use the fact that the resolvent chain is strongly aperiodic to lift this result to the whole chain, even when the chain is not strongly aperiodic.

Lemma 10 For any $\epsilon \in (0,1)$, a measure π is invariant with respect to the resolvent K_{ϵ} if and only if it is invariant with respect to P (the one step transition probability kernel for the original chain).

Proof:

Using this lemma we can then prove

Proposition 22 If Φ is recurrent then Φ has a unique (up to constant multiples) subinvariant measure that is invariant.

Proof:

And if Φ is aperiodic, we can show that it admits an invariant measure by using its skeletons.

Theorem 17 Suppose that Φ is ψ -irreducible and aperiodic. Then, for each m, a measure π is invariant for the m-skeleton if and only if it is invariant for the Φ .

Hence, under aperiodicity, the chain Φ is positive if and only if each of the m-skeletons is positive.

Proof: