Discriminant analysis

Discriminant analysis

- ANOVA and MANOVA: predict a (counted/measured) response from group membership.
- Discriminant analysis: predict group membership based on counted/measured variables.
- Covers same ground as logistic regression (and its variations), but emphasis on classifying observed data into correct groups.
- Does so by searching for linear combination of original variables that best separates data into groups (canonical variables).
- Assumption here that groups are known (for data we have). If trying to "best separate" data into unknown groups, see *cluster analysis*.
- Examples: revisit seed yield and weight data, peanut data, professions/activities data; remote-sensing data.

Packages

```
library(MASS)
library(tidyverse)
library(ggrepel)
library(ggbiplot)
library(MVTests) # for Box M test
library(conflicted)
conflict_prefer("arrange", "dplyr")
conflict_prefer("summarize", "dplyr")
conflict_prefer("select", "dplyr")
conflict_prefer("filter", "dplyr")
conflict_prefer("mutate", "dplyr")
```

- ggrepel allows labelling points on a plot so they don't overwrite each other.
- ggbiplot uses plyr rather than dplyr, which has functions by similar names.

About select

- Both dplyr (in tidyverse) and MASS have a function called select, and they do different things.
- How do you know which select is going to get called?
- With library, the one loaded last is visible, and others are not.
- Thus we can access the select in dplyr but not the one in MASS. If we wanted that one, we'd have to say MASS::select.
- You can load MASS before tidyverse. If you do it the other way around, the tidyverse select, which you want to use, would be the invisible one.
- Alternative: load conflicted package. Any time you load two packages containing functions with same name, you get error and have to choose between them.

Example 1: seed yields and weights

Recall data from MANOVA: needed a multivariate analysis to find difference in seed yield and weight based on whether they were high or low fertilizer.

Basic discriminant analysis

```
hilo.1 <- lda(fertilizer ~ yield + weight, data = hilo)
```

- Uses 1da from package MASS.
- "Predicting" group membership from measured variables.

Output

```
hilo.1
## Call:
## lda(fertilizer ~ yield + weight, data = hilo)
##
## Prior probabilities of groups:
## high low
## 0.5 0.5
##
## Group means:
## yield weight
## high 35.0 13.25
## low 32.5 12.00
##
## Coefficients of linear discriminants:
##
                 I.D1
## yield -0.7666761
## weight -1.2513563
```

Things to take from output

- Group means: high-fertilizer plants have (slightly) higher mean yield and weight than low-fertilizer plants.
- "Coefficients of linear discriminants": LD1, LD2, ... are scores constructed from observed variables that best separate the groups.
- For any plant, get LD1 score by taking -0.76 times yield plus -1.25 times weight, add up, standardize.
- the LD1 coefficients are like slopes:
 - if yield higher, LD1 score for a plant lower
 - if weight higher, LD1 score for a plant lower
- High-fertilizer plants have higher yield and weight, thus low (negative)
 LD1 score. Low-fertilizer plants have low yield and weight, thus high (positive)
 LD1 score.
- One LD1 score for each observation. Plot with actual groups.

How many linear discriminants?

- Smaller of these:
 - Number of variables
 - Number of groups *minus 1*
- Seed yield and weight: 2 variables, 2 groups, $\min(2, 2-1) = 1$.

Getting LD scores

Feed output from LDA into predict:

```
p <- predict(hilo.1)
hilo.2 <- cbind(hilo, p)
hilo.2</pre>
```

fertilizer	yield	weight	class	posterior.high	posterior.low	LD1
low	34	10	low	0.0000211	0.9999789	3.0931414
low	29	14	low	0.0012453	0.9987547	1.9210963
low	35	11	low	0.0231502	0.9768498	1.0751090
low	32	13	low	0.0457904	0.9542096	0.8724245
high	33	14	high	0.9817958	0.0182042	-1.1456079
high	38	12	high	0.9998195	0.0001805	-2.4762756
high	34	13	high	0.9089278	0.0910722	-0.6609276
high	35	14	high	0.9999109	0.0000891	-2.6789600

LD1 scores in order

Most positive LD1 score is most obviously low fertilizer, most negative is most obviously high:

hilo.2 %>% select(fertilizer, yield, weight, LD1) %>%
 arrange(desc(LD1))

	fertilizer	yield	weight	LD1
1	low	34	10	3.0931414
2	low	29	14	1.9210963
3	low	35	11	1.0751090
4	low	32	13	0.8724245
7	high	34	13	-0.6609276
5	high	33	14	-1.1456079
6	high	38	12	-2.4762756
8	high	35	14	-2.6789600

High fertilizer have yield and weight high, negative LD1 scores.

Plotting LD1 scores

With one LD score, plot against (true) groups, eg. boxplot:

$$ggplot(hilo.2, aes(x = fertilizer, y = LD1)) + geom_boxplot()$$

What else is in hilo.2?

- class: predicted fertilizer level (based on values of yield and weight).
- posterior: predicted probability of being low or high fertilizer given yield and weight.
- LD1: scores for (each) linear discriminant (here is only LD1) on each observation.

Predictions and predicted groups

...based on yield and weight:

hilo.2 %>% select(yield, weight, fertilizer, class)

yield	weight	fertilizer	class
34	10	low	low
29	14	low	low
35	11	low	low
32	13	low	low
33	14	high	high
38	12	high	high
34	13	high	high
35	14	high	high

Count up correct and incorrect classification

```
with(hilo.2, table(obs = fertilizer, pred = class))
## pred
```

```
## pred
## obs high low
## high 4 0
## low 0 4
```

- Each predicted fertilizer level is exactly same as observed one (perfect prediction).
- Table shows no errors: all values on top-left to bottom-right diagonal.

Posterior probabilities

show how clear-cut the classification decisions were:

```
hilo.2 %>%
  mutate(across(starts_with("posterior"), \(p) round(p, 4))) %>%
  select(-LD1)
```

fertilizer	yield	weight	class	posterior.high	posterior.low
low	34	10	low	0.0000	1.0000
low	29	14	low	0.0012	0.9988
low	35	11	low	0.0232	0.9768
low	32	13	low	0.0458	0.9542
high	33	14	high	0.9818	0.0182
high	38	12	high	0.9998	0.0002
high	34	13	high	0.9089	0.0911
high	35	14	high	0.9999	0.0001

Only obs. 7 has any doubt: yield low for a high-fertilizer, but high weight makes up for it.

Example 2: the peanuts

```
my_url <- "http://ritsokiguess.site/datafiles/peanuts.txt"
peanuts <- read_delim(my_url, " ")
peanuts</pre>
```

obs	location	variety	у	smk	w
1	1	5	195.3	153.1	51.4
2	1	5	194.3	167.7	53.7
3	2	5	189.7	139.5	55.5
4	2	5	180.4	121.1	44.4
5	1	6	203.0	156.8	49.8
6	1	6	195.9	166.0	45.8
7	2	6	202.7	166.1	60.4
8	2	6	197.6	161.8	54.1
9	1	8	193.5	164.5	57.8
10	1	8	187.0	165.1	58.6
11	2	8	201.5	166.8	65.0
12	2	8	200.0	173.8	67.2

 Recall: location and variety both significant in MANOVA. Make combo of them (over):

Location-variety combos

```
peanuts %>%
    unite(combo, c(variety, location)) -> peanuts.combo
peanuts.combo
```

obs	combo	у	smk	W
1	5_1	195.3	153.1	51.4
2	5_1	194.3	167.7	53.7
3	5_2	189.7	139.5	55.5
4	5_2	180.4	121.1	44.4
5	6_1	203.0	156.8	49.8
6	6_1	195.9	166.0	45.8
7	6_2	202.7	166.1	60.4
8	6_2	197.6	161.8	54.1
9	8_1	193.5	164.5	57.8
10	8_1	187.0	165.1	58.6
11	8_2	201.5	166.8	65.0
12	8_2	200.0	173.8	67.2

Discriminant analysis

```
peanuts.1 <- lda(combo ~ v + smk + w, data = peanuts.combo)
peanuts.1
## Call:
## lda(combo ~ v + smk + w, data = peanuts.combo)
##
## Prior probabilities of groups:
        5_1 5_2 6_1 6_2 8_1 8_2
## 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
##
## Group means:
                smk
## 5 1 194.80 160.40 52.55
## 5_2 185.05 130.30 49.95
## 6_1 199.45 161.40 47.80
## 6 2 200.15 163.95 57.25
## 8_1 190.25 164.80 58.20
## 8_2 200.75 170.30 66.10
## Coefficients of linear discriminants:
             LD1
                        LD2
    0.4027356 0.02967881 0.18839237
## smk 0.1727459 -0.06794271 -0.09386294
      -0.5792456 -0.16300221 0.07341123
## Proportion of trace:
     I.D1 I.D2 I.D3
## 0.8424 0.1317 0.0258
```

Comments

- Now 3 LDs (3 variables, 6 groups, min(3, 6-1) = 3).
- Relationship of LDs to original variables. Look for coeffs far from zero:

peanuts.1\$scaling

```
## LD1 LD2 LD3
## y 0.4027356 0.02967881 0.18839237
## smk 0.1727459 -0.06794271 -0.09386294
## w -0.5792456 -0.16300221 0.07341123
```

- high LD1 mainly high y or low w.
- high LD2 mainly low w.
- Proportion of trace values show relative importance of LDs: LD1 much more important than LD2; LD3 worthless.

The predictions and misclassification

```
p <- predict(peanuts.1)
peanuts.2 <- cbind(peanuts.combo, p)
with(peanuts.2, table(obs = combo, pred = class))</pre>
```

```
## pred

## obs 5_1 5_2 6_1 6_2 8_1 8_2

## 5_1 2 0 0 0 0 0 0

## 5_2 0 2 0 0 0 0

## 6_1 0 0 2 0 0 0

## 6_2 1 0 0 1 0 0

## 8_1 0 0 0 0 2 0

## 8_2 0 0 0 0 0 2
```

Actually classified very well. Only one 6_2 classified as a 5_1, rest all correct.

Posterior probabilities

peanuts.2 %>%
 mutate(across(starts_with("posterior"), \((p) round(p, 2)))) %>%
 select(combo, class, starts_with("posterior"))

		poste-	poste-	poste-	poste-	poste-	poste-
combo	class	rior.5_1	rior.5_2	rior.6_1	rior.6_2	rior.8 _ 1	rior.8_2
5_1	5_1	0.69	0	0	0.31	0.00	0.00
5_1	5_1	0.73	0	0	0.27	0.00	0.00
5_2	5_2	0.00	1	0	0.00	0.00	0.00
5_2	5_2	0.00	1	0	0.00	0.00	0.00
6_1	6_1	0.00	0	1	0.00	0.00	0.00
6_1	6_1	0.00	0	1	0.00	0.00	0.00
6_2	6_2	0.13	0	0	0.87	0.00	0.00
6_2	5_1	0.53	0	0	0.47	0.00	0.00
8_1	8_1	0.02	0	0	0.02	0.75	0.21
8_1	8_1	0.00	0	0	0.00	0.99	0.01
8_2	8_2	0.00	0	0	0.00	0.03	0.97
8_2	8_2	0.00	0	0	0.00	0.06	0.94

Some doubt about which combo each plant belongs in, but not too much. The one misclassified plant was a close call.

22 / 64

Discriminant scores, again

- How are discriminant scores related to original variables?
- Construct data frame with original data and discriminant scores side by side:

peanuts.1\$scaling

```
## LD1 LD2 LD3
## y 0.4027356 0.02967881 0.18839237
## smk 0.1727459 -0.06794271 -0.09386294
## w -0.5792456 -0.16300221 0.07341123
```

- LD1 positive if y large and/or w small.
- LD2 positive if w small.

Discriminant scores for data

peanuts.2 %>% select(y, w, starts_with("x"))

У	W	x.LD1	x.LD2	x.LD3
195.3	51.4	1.417353	1.0123339	0.2646792
194.3	53.7	2.204444	-0.3842136	-1.1252663
189.7	55.5	-5.562217	1.1018444	0.7872039
180.4	44.4	-6.056558	3.8853019	-0.0526316
203.0	49.8	6.084370	1.2502763	1.2505496
195.9	45.8	7.131193	1.0664926	-1.2442202
202.7	60.4	1.430084	-1.1183180	1.0992655
197.6	54.1	2.282572	0.0493876	0.0795844
193.5	57.8	-1.045438	-0.8588490	-0.6746327
187.0	58.6	-4.022969	-1.2229287	-1.8967719
201.5	65.0	-1.596806	-1.9513027	1.1451823
200.0	67.2	-2.266028	-2.8300247	0.3670579

- Obs. 5 and 6 have most positive LD1: large y, small w.
- Obs. 4 has most positive LD2: small w.

Plot LD1 vs. LD2, labelling by combo

"Bi-plot" from ggbiplot

Installing ggbiplot

- ggbiplot not on CRAN, so usual install.packages will not work.
- Install package devtools first (once):

```
install.packages("devtools")
```

Then install ggbiplot (once):

```
library(devtools)
install_github("vqv/ggbiplot")
```

Cross-validation

- So far, have predicted group membership from same data used to form the groups — dishonest!
- Better: *cross-validation*: form groups from all observations *except one*, then predict group membership for that left-out observation.
- No longer cheating!
- Illustrate with peanuts data again.

Misclassifications

• Fitting and prediction all in one go:

```
## obs 5_1 5_2 6_1 6_2 8_1 8_2
## 5_1 0 0 0 0 2 0 0
## 5_2 0 1 0 0 0 1 0
## 6_1 0 0 2 0 0 0
## 6_2 1 0 0 1 0 0
## 8_1 0 1 0 0 0 1
## 8_2 0 0 0 0 0 2
```

Some more misclassification this time.

Repeat of LD plot

Posterior probabilities

```
peanuts.3 %>%
  mutate(across(starts_with("posterior"), \((p) round(p, 3))) %>%
  select(combo, class, starts_with("posterior"))
```

		poste-	poste-	poste-	poste-	poste-	poste-
comb	o class	rior.5_1	rior.5_2	rior.6_1	rior.6_2	rior.8_1	rior.8_2
5_1	6_2	0.162	0.00	0.000	0.838	0.000	0.000
5_1	6_2	0.200	0.00	0.000	0.799	0.000	0.000
5_2	8_1	0.000	0.18	0.000	0.000	0.820	0.000
5_2	5_2	0.000	1.00	0.000	0.000	0.000	0.000
6_1	6_1	0.194	0.00	0.669	0.137	0.000	0.000
6_1	6_1	0.000	0.00	1.000	0.000	0.000	0.000
6_2	6_2	0.325	0.00	0.000	0.667	0.001	0.008
6_2	5_1	0.821	0.00	0.000	0.179	0.000	0.000
8_1	8_2	0.000	0.00	0.000	0.000	0.000	1.000
8_1	5_2	0.000	1.00	0.000	0.000	0.000	0.000
8_2	8_2	0.001	0.00	0.000	0.004	0.083	0.913
8_2	8_2	0.000	0.00	0.000	0.000	0.167	0.833

Why more misclassification?

- When predicting group membership for one observation, only uses the *other one* in that group.
- So if two in a pair are far apart, or if two groups overlap, great potential for misclassification.
- Groups 5_1 and 6_2 overlap.
- 5_2 closest to 8_1s looks more like an 8_1 than a 5_2 (other one far away).
- 8_1s relatively far apart and close to other things, so one appears to be a 5_2 and the other an 8_2.

Example 3: professions and leisure activities

- 15 individuals from three different professions (politicians, administrators and belly dancers) each participate in four different leisure activities: reading, dancing, TV watching and skiing. After each activity they rate it on a 0–10 scale.
- How can we best use the scores on the activities to predict a person's profession?
- Or, what combination(s) of scores best separate data into profession groups?

The data

```
my_url <- "http://ritsokiguess.site/datafiles/profile.txt"
active <- read_delim(my_url, " ")
active</pre>
```

job	reading	dance	tv	ski
bellydancer	7	10	6	5
bellydancer	8	9	5	7
bellydancer	5	10	5	8
bellydancer	6	10	6	8
bellydancer	7	8	7	9
politician	4	4	4	4
politician	6	4	5	3
politician	5	5	5	6
politician	6	6	6	7
politician	4	5	6	5
admin	3	1	1	2
admin	5	3	1	5
admin	4	2	2	5
admin	7	1	2	4
admin	6	3	3	3
	Discriminant an	nalysis		

Discriminant analysis

0.8917 0.1083

```
active.1 <- lda(job ~ reading + dance + tv + ski, data = active)
active.1
## Call:
## lda(job ~ reading + dance + tv + ski, data = active)
##
## Prior probabilities of groups:
        admin bellydancer politician
    0.3333333 0.3333333 0.3333333
## Group means:
              reading dance tv ski
            5.0 2.0 1.8 3.8
## admin
## bellvdancer 6.6 9.4 5.8 7.4
## politician 5.0 4.8 5.2 5.0
##
## Coefficients of linear discriminants:
                  I.D1
## reading -0.01297465 -0.4748081
## dance -0.95212396 -0.4614976
## t.v -0.47417264 1.2446327
## ski 0.04153684 -0.2033122
## Proportion of trace:
     I.D1
            LD2
```

Comments

- Two discriminants, first fair bit more important than second.
- LD1 depends (negatively) most on dance, a bit on tv.
- LD2 depends mostly (negatively) on tv.

Misclassification

```
p <- predict(active.1)
active.2 <- cbind(active, p)
with(active.2, table(obs = job, pred = class))</pre>
```

```
## pred

## obs admin bellydancer politician

## admin 5 0 0

## bellydancer 0 5 0

## politician 0 5
```

Everyone correctly classified.

Plotting LDs

```
g <- ggplot(active.2, aes(x = x.LD1, y = x.LD2, colour = job, label
  geom_point() + geom_text_repel() + guides(colour = "none")
g</pre>
```


Biplot

Comments on plot

- Groups well separated: bellydancers top left, administrators top right, politicians lower middle.
- Bellydancers most negative on LD1: like dancing most.
- Administrators most positive on LD1: like dancing least.
- Politicians most negative on LD2: like TV-watching most.

Plotting individual persons

Make label be identifier of person. Now need legend:

Posterior probabilities

active.2 %>% mutate(across(starts_with("posterior"), \(p) round(p, 3))) %>%
 select(job, class, starts_with("posterior"))

job	class	posterior.admin	posterior.bellydancer	posterior.politician
bellydancer	bellydancer	0.000	1.000	0.000
bellydancer	bellydancer	0.000	1.000	0.000
bellydancer	bellydancer	0.000	1.000	0.000
bellydancer	bellydancer	0.000	1.000	0.000
bellydancer	bellydancer	0.000	0.997	0.003
politician	politician	0.003	0.000	0.997
politician	politician	0.000	0.000	1.000
politician	politician	0.000	0.000	1.000
politician	politician	0.000	0.002	0.998
politician	politician	0.000	0.000	1.000
admin	admin	1.000	0.000	0.000
admin	admin	1.000	0.000	0.000
admin	admin	1.000	0.000	0.000
admin	admin	1.000	0.000	0.000
admin	admin	0.982	0.000	0.018

Not much doubt.

Cross-validating the jobs-activities data

Recall: no need for predict:

```
p <- lda(job ~ reading + dance + tv + ski, data = active, CV =
active.3 <- cbind(active, class = p$class, posterior = p$poste
with(active.3, table(obs = job, pred = class))</pre>
```

```
## pred
## obs admin bellydancer politician
## admin 5 0 0
## bellydancer 0 4 1
## politician 0 0 5
```

This time one of the bellydancers was classified as a politician.

and look at the posterior probabilities

```
active.3 %>%
  mutate(across(starts_with("posterior"), \((p) round(p, 3))) %>%
  select(job, class, starts_with("post"))
```

job	class	posterior.admin	posterior.bellydancer	posterior.politician
bellydancer	bellydancer	0.000	1.000	0.000
bellydancer	bellydancer	0.000	1.000	0.000
bellydancer	bellydancer	0.000	1.000	0.000
bellydancer	bellydancer	0.000	1.000	0.000
bellydancer	politician	0.000	0.001	0.999
politician	politician	0.006	0.000	0.994
politician	politician	0.001	0.000	0.999
politician	politician	0.000	0.000	1.000
politician	politician	0.000	0.009	0.991
politician	politician	0.000	0.000	1.000
admin	admin	1.000	0.000	0.000
admin	admin	1.000	0.000	0.000
admin	admin	1.000	0.000	0.000
admin	admin	1.000	0.000	0.000
admin	admin	0.819	0.000	0.181

Comments

- Bellydancer was "definitely" a politician!
- One of the administrators might have been a politician too.

Why did things get misclassified?

- Go back to plot of discriminant scores:
- one bellydancer much closer to the politicians,
- one administrator a bit closer to the politicians.

Example 4: remote-sensing data

- View 38 crops from air, measure 4 variables x1-x4.
- Go back and record what each crop was.
- Can we use the 4 variables to distinguish crops?

The data (some)

```
my_url <- "http://ritsokiguess.site/datafiles/remote-sensing.txt"
crops <- read_table(my_url)
crops</pre>
```

crop	×1	x2	×3	x4	cr
Corn	16	27	31	33	r
Corn	15	23	30	30	r
Corn	16	27	27	26	r
Corn	18	20	25	23	r
Corn	15	15	31	32	r
Corn	15	32	32	15	r
Corn	12	15	16	73	r
Soybeans	20	23	23	25	У
Soybeans	24	24	25	32	У
Soybeans	21	25	23	24	У
Soybeans	27	45	24	12	У
Soybeans	12	13	15	42	У
Soybeans	22	32	31	43	у
Cotton	31	32	33	34	t
Cotton	າດ Discrimin	ን/ nant ana	၁ <mark>၄</mark> lysis	28	+

Discriminant analysis

```
crops.1 \leftarrow lda(crop \sim x1 + x2 + x3 + x4, data = crops)
crops.1
## Call:
## lda(crop \sim x1 + x2 + x3 + x4, data = crops)
##
## Prior probabilities of groups:
                            Cotton Soybeans Sugarbeets
      Clover
                   Corn
## 0.3055556 0.1944444 0.1666667 0.1666667 0.1666667
##
## Group means:
##
                    x1
                            x2
                                     x3
## Clover 46.36364 32.63636 34.18182 36.63636
           15.28571 22.71429 27.42857 33.14286
## Corn
## Cotton 34.50000 32.66667 35.00000 39.16667
## Sovbeans 21.00000 27.00000 23.50000 29.66667
## Sugarbeets 31.00000 32.16667 20.00000 40.50000
##
## Coefficients of linear discriminants:
                LD1
                             LD2
                                         LD3
                                                      I.D4
## x1 -6.147360e-02 0.009215431 -0.02987075 -0.014680566
## x2 -2.548964e-02 0.042838972 0.04631489 0.054842132
## x3 1.642126e-02 -0.079471595 0.01971222 0.008938745
## x4 5.143616e-05 -0.013917423 0.05381787 -0.025717667
## Proportion of trace:
     I.D1
             LD2
                   LD3
                           LD4
## 0.7364 0.1985 0.0576 0.0075
```

Assessing

- 4 LDs (four variables, six groups).
- 1st one important, maybe 2nd as well.
- LD1 mostly x1 (minus)
- LD2 x3 (minus), x2 (plus)

Predictions

Thus:

```
p <- predict(crops.1)
crops.2 <- cbind(crops, p)
with(crops.2, table(obs = crop, pred = class))</pre>
```

##		pred				
##	obs	Clover	${\tt Corn}$	${\tt Cotton}$	Soybeans	Sugarbeets
##	Clover	6	0	3	0	2
##	Corn	0	6	0	1	0
##	Cotton	3	0	1	2	0
##	Soybeans	0	1	1	3	1
##	Sugarbeets	1	1	0	2	2

Not very good, eg. only 6 of 11 Clover classified correctly.

Plotting the LDs

```
ggplot(crops.2, aes(x = x.LD1, y = x.LD2, colour = crop)) +
  geom_point()
```


Biplot

ggbiplot(crops.1, groups = crops\$crop)

Comments

- Corn high on LD1 (right).
- Clover all over the place, but mostly low on LD1 (left).
- Sugarbeets tend to be high on LD2.
- Cotton tends to be low on LD2.
- Very mixed up.

Try removing Clover

• the dplyr way:

```
crops %>% filter(crop != "Clover") -> crops2
crops2.1 <- lda(crop ~ x1 + x2 + x3 + x4, data = crops2)</pre>
```

- LDs for crops2 will be different from before.
- Concentrate on plot and posterior probs.

```
p <- predict(crops2.1)
crops2.2 <- cbind(crops2, p)</pre>
```

lda1 output

0.8044 0.1832 0.0124

```
crops2.1
## Call:
## 1da(crop ~ x1 + x2 + x3 + x4, data = crops2)
##
## Prior probabilities of groups:
        Corn
                 Cotton
                          Soybeans Sugarbeets
        0.28
                 0.24
                              0.24
                                         0.24
## Group means:
                    x1
                            x2
                                     x3
## Corn
            15.28571 22.71429 27.42857 33.14286
## Cotton 34.50000 32.66667 35.00000 39.16667
## Soybeans 21.00000 27.00000 23.50000 29.66667
## Sugarbeets 31.00000 32.16667 20.00000 40.50000
##
## Coefficients of linear discriminants:
                          LD2
             LD1
                                        LD3
## x1 0.14077479 0.007780184 -0.0312610362
## x2 0.03006972 0.007318386 0.0085401510
## x3 -0.06363974 -0.099520895 -0.0005309869
## x4 -0.00677414 -0.035612707 0.0577718649
##
## Proportion of trace:
     LD1
            LD2
                   LD3
```

Plot

A bit more clustered:

```
ggplot(crops2.2, aes(x = x.LD1, y = x.LD2, colour = crop)) + geom_point()
```


Biplot

ggbiplot(crops2.1, groups = crops2\$crop)

Quality of classification

```
with(crops2.2, table(obs = crop, pred = class))
```

```
## obs Corn Cotton Soybeans Sugarbeets
## Corn 6 0 1 0
## Cotton 0 4 2 0
## Soybeans 2 0 3 1
## Sugarbeets 0 0 3 3
```

Better.

Posterior probs (some)

24

Sugar-

Sov-

crops2.2 %>% mutate(across(starts_with("posterior"), \(p) round(p, 3))) %>% filter(crop != class) %>%

s	<pre>select(crop, class, starts_with("posterior"))</pre>							
	crop	class	poste- rior.Corn	poste- rior.Cotton	posterior.Soy- beans	posterior.Sugar- beets		
4	Corn	Soy- beans	0.443	0.034	0.494	0.029		
11	Soy-	Sugar-	0.010	0.107	0.299	0.584		

4	Corn	beans	0.443	0.034	0.494	0.029
11	Soy- beans	Sugar- beets	0.010	0.107	0.299	0.584
12	Soy- beans	Corn	0.684	0.009	0.296	0.011
13	Sove	Corn	0.467	0.100	0.287	0.047

0.216

60 / 64

11	beans	beets	0.010	0.107	0.299	0.304
12	Soy- beans	Corn	0.684	0.009	0.296	0.011
13	Soy- beans	Corn	0.467	0.199	0.287	0.047
15	Cotton	Soy- beans	0.056	0.241	0.379	0.324
17	Cotton	Sov-	0.066	0.138	0 489	0.306

	beans	beets				
12	Soy- beans	Corn	0.684	0.009	0.296	0.011
13	Soy- beans	Corn	0.467	0.199	0.287	0.047
15	Cotton	Soy- beans	0.056	0.241	0.379	0.324
17	Cotton	Soy- beans	0.066	0.138	0.489	0.306
20	Sugar- beets	Soy- beans	0.381	0.146	0.395	0.078

12	Soy- beans	Corn	0.684	0.009	0.296	0.011
13	Soy- beans	Corn	0.467	0.199	0.287	0.047
15	Cotton	Soy- beans	0.056	0.241	0.379	0.324
17	Cotton	Soy- beans	0.066	0.138	0.489	0.306
20	Sugar- beets	Soy- beans	0.381	0.146	0.395	0.078

	Dealis					
13	Soy- beans	Corn	0.467	0.199	0.287	0.047
15	Cotton	Soy- beans	0.056	0.241	0.379	0.324
17	Cotton	Soy- beans	0.066	0.138	0.489	0.306
20	Sugar- beets	Soy- beans	0.381	0.146	0.395	0.078
21	Sugar- beets	Soy- beans	0.106	0.144	0.518	0.232

Discriminant analysis

0.207

0.489

0.088

Comments

- These were the misclassified ones, but the posterior probability of being correct was not usually too low.
- The correctly-classified ones are not very clear-cut either.

MANOVA

Began discriminant analysis as a followup to MANOVA. Do our variables significantly separate the crops (excluding Clover)?

```
response <- with(crops2, cbind(x1, x2, x3, x4))
crops2.manova <- manova(response ~ crop, data = crops2)
summary(crops2.manova)</pre>
```

```
## Df Pillai approx F num Df den Df Pr(>F)

## crop   3 0.9113   2.1815   12   60 0.02416 *

## Residuals 21

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Box's M test

We should also run Box's M test to check for equal variance of each variable across crops:

```
summary(BoxM(response, crops2$crop))
```

```
## Box's M Test
##
## Chi-Squared Value = 69.42634 , df = 30 and p-value: 5.79e-05
```

- The P-value for the M test is smaller even than our guideline of 0.001. So we should not take the MANOVA seriously.
- Apparently at least one of the crops differs (in means) from the others. So it is worth doing this analysis.
- We did this the wrong way around, though!

The right way around

- First, do a MANOVA to see whether any of the groups differ significantly on any of the variables.
- Check that the MANOVA is believable by using Box's M test.
- If the MANOVA is significant, do a discriminant analysis in the hopes of understanding how the groups are different.
- For remote-sensing data (without Clover):
 - LD1 a fair bit more important than LD2 (definitely ignore LD3).
 - LD1 depends mostly on x1, on which Cotton was high and Corn was low.
- Discriminant analysis in MANOVA plays the same kind of role that Tukey does in ANOVA.