Documento de Análisis de Requisitos y Plan de Trabajo

Proyecto: Sistema de Monitoreo de Calidad del Aire en Invernaderos

Cliente: GreenHouseTech

Responsable del Proyecto: Equipo de Innovación Ambiental

Elaborado por: David Alejandro Aparicio Romero

Fecha: 26 de octubre de 2025

ÍNDICE

1. Información General del Proyecto

- 2. Introducción
- 3. Objetivo General y Específicos
- 4. Alcance del Proyecto
- 5. Descripción General del Sistema
- 6. Requerimientos del Sistema
 - 6.1 Requerimientos Funcionales
 - 6.2 Requerimientos No Funcionales
- 7. Restricciones y Dependencias
- 8. Perfiles de Usuario
- 9. Tecnologías Propuestas
- 10. Plan de Trabajo
 - 10.1 Metodología Ágil Adoptada
 - 10.2 Estructura de Desglose del Trabajo (WBS)
 - 10.3 Cronograma General
- 11. Conclusiones
- 12. Referencias

1. Información General del Proyecto

Nombre: Sistema de Monitoreo de Calidad del Aire en Invernaderos

Cliente: GreenHouseTech

Responsable: Equipo de Innovación Ambiental

Duración estimada: 78 horas académicas

Plataforma objetivo: Web (con soporte local e IoT)
Lenguajes: Python (backend), JavaScript (frontend)

Base de datos: MySQL

2. Introducción

El presente documento describe el análisis de requisitos y la planificación inicial para el desarrollo del **Sistema de Monitoreo de Calidad del Aire en Invernaderos**, cuyo propósito es optimizar las condiciones de cultivo mediante el control automatizado de variables ambientales.

El sistema forma parte de una iniciativa educativa y tecnológica que busca integrar conceptos de **IoT**, **análisis de datos y desarrollo web** dentro del contexto agrícola, mejorando la productividad y sostenibilidad del sector.

3. Objetivo General y Específicos

Objetivo General

Desarrollar un sistema que permita monitorear y controlar en tiempo real la calidad del aire en invernaderos, optimizando las condiciones ambientales para los cultivos.

Objetivos Específicos

- Registrar los valores de CO₂, temperatura y humedad en tiempo real mediante sensores IoT.
- Visualizar los datos a través de una plataforma web intuitiva.
- Implementar un sistema de alertas y control automático ante variaciones extremas.
- Garantizar la compatibilidad del sistema con invernaderos de hasta 500 m².

4. Alcance del Proyecto

El sistema cubrirá las siguientes funciones:

• Conexión de sensores IoT (CO₂, humedad, temperatura).

- Comunicación con una base de datos centralizada.
- Visualización en tiempo real de las condiciones ambientales.
- Ajuste automático de ventilación y humedad.
- Generación de reportes históricos.

No se incluyen en el alcance:

- Integraciones con sistemas agrícolas externos no especificados.
- Soporte para más de 500 m² o más de 10 sensores simultáneos.

5. Descripción General del Sistema

El sistema estará compuesto por:

- Módulo IoT: encargado de capturar y enviar datos desde los sensores.
- Servidor Web: procesará y almacenará la información.
- Interfaz de Usuario: mostrará datos, gráficos y alertas de forma visual e intuitiva.
- Módulo de Control: automatizará respuestas ante condiciones críticas (ventilación, humidificación).

6. Requerimientos del Sistema

6.1 Requerimientos Funcionales

Código Descripción

- RF01 Monitorear en tiempo real los valores de CO₂, temperatura y humedad.
- RF02 Registrar las mediciones en una base de datos.
- RF03 Mostrar datos históricos mediante gráficos interactivos.
- RF04 Emitir alertas visuales y sonoras cuando los valores excedan los límites establecidos.
- RF05 Ajustar automáticamente los sistemas de ventilación y humidificación.

Código Descripción

RF06 Permitir la gestión de usuarios con roles diferenciados (Administrador y Operador).

6.2 Requerimientos No Funcionales

Código Descripción

RNF01 La plataforma debe ser intuitiva y fácil de usar.

RNF02 El sistema debe presentar baja latencia (<3 segundos por actualización).

RNF03 La información deberá almacenarse de forma segura y respaldada.

RNF04 El sistema debe ser escalable hasta 20 sensores.

RNF05 La disponibilidad mínima debe ser del 99%.

7. Restricciones y Dependencias

- Compatibilidad con invernaderos de hasta **500 m²**.
- Dependencia de un sistema de ventilación automatizado existente.
- Acceso a conexión Wi-Fi estable.
- Alimentación eléctrica continua.

8. Perfiles de Usuario

Perfil	Descripción	Funciones principales
Administrador	Usuario encargado de configurar sensores, límites y usuarios.	Crear y editar configuraciones, visualizar reportes globales.
Operador	Usuario encargado del monitoreo diario.	Supervisar variables, responder alertas, generar reportes.

9. Tecnologías Propuestas

Componente	Tecnología	Justificación
Sensores	MQ-135, DHT11, MH- Z19B	Lectura de CO ₂ , humedad y temperatura.
Microcontrolado	r ESP32	Conectividad Wi-Fi y soporte IoT.
Backend	Python (Flask o Django)	Facilidad de conexión con hardware IoT.
Frontend	React o Vue.js	Interfaz dinámica y moderna.
Base de Datos	MySQL	Almacenamiento relacional y confiable.
Comunicación	MQTT o HTTP	Protocolo ligero de mensajería IoT.

10. Plan de Trabajo

10.1 Metodología Ágil Adoptada

Se empleará **Scrum**, priorizando entregas incrementales y revisiones periódicas. Cada *sprint* cubrirá una fase del desarrollo: diseño, modelado, base de datos, UI y pruebas.

10.2 Estructura de Desglose del Trabajo (WBS)

Fase	Actividades Principales	Entregables		
Fase 1	Análisis y definición de requisitos	Documento de análisis		
Fase 2 Diseño UML y modelado de clases Diagramas UML				
Fase 3	Diseño arquitectónico	Documento ADR + Diagramas		
Fase 4	Modelado de base de datos	Modelo relacional + Diccionario		
Fase 5	Prototipado de interfaz	Sitemap + Prototipos		
Fase 6	Validación final	Informe y revisión por pares		

10.3 Cronograma General (78 horas totales)

Fase	Duración estimada	Entregable principal
F1: Análisis	8 horas	Documento de requisitos
F2: Modelado UML	10 horas	Diagrama de clases
F3: Arquitectura	12 horas	Diagrama de componentes y despliegue
F4: Base de datos	10 horas	Modelo relacional
F5: Prototipado UI	10 horas	Prototipos en Figma
F6: Validación	8 horas	Informe de pruebas
F7: Documentación final	5 horas	Portafolio completo
Total:	≈ 63–78 horas	_

11. Conclusiones

El presente análisis establece las bases conceptuales y técnicas para el desarrollo del sistema de monitoreo de calidad del aire en invernaderos.

La definición de requerimientos, metodologías y tecnologías permitirá ejecutar el proyecto con una visión clara, estructurada y adaptable a futuras mejoras.

El uso de **IoT** y **plataformas web** aplicadas al agro representa una oportunidad tangible de innovación sostenible, alineada con los objetivos de la **Cuarta Revolución Industrial (4RI)** y las necesidades reales del agricultor moderno.

Sección: Cronograma del proyecto

Sistema de Monitoreo de Calidad del Aire en Invernaderos

Sección: Diagramas de Casos de Uso – Sistema de Monitoreo de Calidad del Aire en Invernaderos

1. Diagrama General del Sistema

Descripción:

El **Diagrama de Casos de Uso General** presenta una visión global del sistema de monitoreo de calidad del aire en invernaderos.

En él se identifican los principales actores —**Administrador** y **Operador**— junto con las funciones esenciales del sistema, tales como el monitoreo en tiempo real, la generación de reportes y el ajuste automático de condiciones.

Este diagrama sirve como punto de partida para comprender el alcance funcional del sistema y las interacciones básicas entre usuarios y procesos.

Casos de Uso Principales:

- Monitorear la calidad del aire.
- Configurar sensores IoT.
- Visualizar reportes históricos.
- Ajustar condiciones internas.
- Consultar alertas.

Actores: Administrador, Operador.

2. Diagrama de Casos de Uso del Administrador

Descripción:

El **Administrador** tiene el rol de configuración y control del sistema.

Este diagrama detalla las actividades relacionadas con la gestión técnica del sistema, como la calibración de sensores, la administración de usuarios y la

definición de los parámetros ambientales óptimos.

Representa la parte estratégica del sistema, donde se determinan las reglas que luego aplican los operadores en campo.

Casos de Uso Principales:

- Configurar red de sensores.
- Ajustar umbrales de CO₂, temperatura y humedad.
- · Gestionar usuarios del sistema.
- Integrar sistemas de ventilación automatizados.
- Supervisar funcionamiento general.

Actor: Administrador.

Administrador

Configurar red de sensores

Ajustar umbrales de CO₂ temperatura y humedad

Gestionar usuarios del sistema

Integrar sistemas de ventilacion automatizados

Supervisar funcionamiento general

Diagrama de Casos de Uso del Administrador

3. Diagrama de Casos de Uso del Operador

Descripción:

El Operador es el responsable de supervisar las condiciones del invernadero día a

día.

Este diagrama representa los casos de uso orientados al monitoreo, la toma de decisiones y la recepción de alertas.

El objetivo es que el operador pueda actuar rápidamente ante cualquier desviación en los niveles de CO₂, temperatura o humedad, garantizando el bienestar de los cultivos.

Casos de Uso Principales:

- Visualizar datos en tiempo real.
- Consultar reportes históricos.
- Recibir notificaciones y alertas.
- Generar informes manuales.

Actor: Operador.

4. Diagrama de Casos de Uso de Integración IoT (Opcional)

Descripción:

Este diagrama muestra cómo el sistema se comunica con los **dispositivos físicos IoT**, tales como sensores ambientales y actuadores (ventiladores, humidificadores,

extractores).

Refleja la interacción entre los componentes automatizados y el software principal, evidenciando el flujo de datos entre las lecturas del entorno y las acciones de control.

Casos de Uso Principales:

- Enviar lecturas de calidad del aire.
- Activar ventilación automática.
- Regular humedad.
- Registrar eventos en la base de datos.

Actores: Sensor IoT, Sistema de Control.

