- 1. Show that a locally convex vector space contains a bounded open set if and only if the topology is equivalent to one given by a norm. (Here we use the definition of bounded from lecture: $E \subset \mathcal{X}$ is bounded iff each of the seminorms defining the topology on \mathcal{X} is bounded on E.)
- 2. Show that a vector subspace of a normed vector space is closed in the norm topology if and only if it is weakly closed.
- **3.** Suppose \mathcal{X} is a normed space, and that $f_j \in \mathcal{X}^*$ converges weak* to f. Show that $||f||_{\mathcal{X}^*} \leq \liminf_{j \to \infty} ||f_j||_{\mathcal{X}^*}$, and give an example in which the inequality is strict.
- 4. Folland page 165, Problem 38.
- 5. Folland page 170, Problem 48.