Algoritmos y Estructuras de Datos II

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Trabajo Práctico II

Grupo: 12

Integrante	LU	Correo electrónico
Pondal, Iván	078/14	ivan.pondal@gmail.com
Paz, Maximiliano León	251/14	m4xileon@gmail.com
Mena, Manuel	313/14	manuelmena1993@gmail.com
Demartino, Francisco	348/14	demartino.francisco@gmail.com

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

Índice

1.	Mó	dulo DCNet	3			
	1.1.	Interfaz	3			
		1.1.1. Operaciones básicas de DCNet	3			
	1.2.	Representación	4			
		1.2.1. Representación de dcnet	4			
		1.2.2. Invariante de Representación	4			
		1.2.3. Función de Abstracción	7			
2.	Mó	dulo Red	9			
	2.1.	Interfaz	9			
	2.2.	Representación	10			
		2.2.1. Estructura	10			
		2.2.2. Invariante de Representación	10			
		2.2.3. Función de Abstracción	13			
3.	Mó	Módulo Cola de mínima prioridad (α)				
	3.1.	Especificación	14			
	3.2.	Interfaz	15			
		3.2.1. Operaciones básicas de Cola de mínima prioridad	15			
	3.3.	Representación	15			
		3.3.1. Representación de colaMinPrior	15			
		3.3.2. Invariante de Representación	15			
		3.3.3. Función de Abstracción	16			
	3.4.	Algoritmos	16			
4.	Mó	$ ext{dulo } ext{dicc}_{avl}(lpha)$	17			
	4.1.	Interfaz	17			
		4.1.1. Operaciones básicas de $\mathrm{dicc}_{avl}(\alpha)$	17			
		4.1.2. Operaciones auxiliares del TAD	17			
	4.2.	Representación	18			
		4.2.1. Representación de $\mathrm{dicc}_{avl}(\alpha)$	18			
5.	Mó	$\mathbf{dulo} \mathbf{Trie}(\alpha)$	19			
	5.1	Interfaz	10			

1. Módulo DCNet

1.1. Interfaz

```
se explica con: DCNET.
géneros: dcnet.
```

```
1.1.1. Operaciones básicas de DCNet
    INICIARDCNET(in r: red) \rightarrow res : dcnet
    \mathbf{Pre} \equiv \{\mathrm{true}\}
    \mathbf{Post} \equiv \{res =_{obs} \text{iniciarDCNet}(red)\}
    Complejidad: O(n*(n+L)) donde n es es la cantidad de computadoras y L es la longitud de nombre de
    computadora mas larga
    Descripción: crea una DCNet nueva tomando una red
    CREARPAQUETE(in/out \ dcn: dcnet, in \ p: paquete)
    \mathbf{Pre} \equiv \{
           dcn =_{\text{obs}} dcn_0 \wedge
          \neg( (\exists p': paquete)( paqueteEnTransito(dcn, p') \land id(p) = id(p') \land origen(p) \in computadoras(red(dcn)) \land<sub>L</sub>
                   \operatorname{destino}(p) \in \operatorname{computadoras}(\operatorname{red}(dcn)) \wedge_{\operatorname{L}} \operatorname{hayCamino}(\operatorname{red}(dcn), \operatorname{origen}(p), \operatorname{destino}(p))))
    \mathbf{Post} \equiv \{dcn =_{obs} \operatorname{crearPaquete}(dcn_0)\}\
    Complejidad: O(L + log(k)) donde L es la longitud de nombre de computadora mas larga y k es la longitud de
    la cola de paquetes mas larga
    Descripción: crea un nuevo paquete
    AVANZARSEGUNDO(in/out \ dcn: dcnet)
    \mathbf{Pre} \equiv \{dcn =_{\mathrm{obs}} dcn_0\}
    \mathbf{Post} \equiv \{dcn =_{obs} avanzar Segundo(dcn_0)\}\
    Complejidad: O(n*(L+log(k))) donde n es es la cantidad de computadoras, L es la longitud de nombre de
    computadora mas larga y k es la longitud de la cola de paquetes mas larga
    Descripción: envia los paquetes con mayor prioridad a la siguiente compu
    Red(\mathbf{in}\ dcn: \mathtt{dcnet}) \rightarrow res: \mathtt{red}
    \mathbf{Pre} \equiv \{ \text{true} \}
    \mathbf{Post} \equiv \{ \operatorname{alias}(res =_{\operatorname{obs}} \operatorname{red}(dcn)) \}
    Complejidad: O(1)
    Descripción: devuelve la red de una DCNet
    Aliasing: res es una referencia no modificable
    CAMINORECORRIDO(in dcn: dcnet, in p: paquete) \rightarrow res: secu(compu)
    \mathbf{Pre} \equiv \{ \text{paqueteEnTransito?}(dcn, p) \}
    Post \equiv \{alias(res =_{obs} caminoRecorrido(dcn, p))\}
    Complejidad: O(n * log(k)) donde n es es la cantidad de computadoras y k es la longitud de la cola de paquetes
    mas larga
    Descripción: devuelve el camino recorrido por un paquete
    Aliasing: res es una referencia no modificable
    CANTIDADENVIADOS(in dcn: dcnet, in c: compu) \rightarrow res: nat
    \mathbf{Pre} \equiv \{c \in \operatorname{computadoras}(\operatorname{red}(dcn))\}\
    \mathbf{Post} \equiv \{res =_{obs} \operatorname{cantidadEnviados}(dcn, c)\}\
```

Complejidad: O(L) donde L es la longitud de nombre de computadora mas larga

Descripción: devuelve la cantidad de paquetes enviados por una compu

```
ENESPERA(in dcn: dcnet, in c: compu) \rightarrow res: conj(paquete)
\mathbf{Pre} \equiv \{c \in \operatorname{computadoras}(\operatorname{red}(dcn))\}\
\mathbf{Post} \equiv \{ \operatorname{alias}(res =_{\operatorname{obs}} \operatorname{enEspera}(dcn, c)) \}
Complejidad: O(L) donde L es la longitud de nombre de computadora mas larga
Descripción: devuelve el conjunto de paquetes encolados en una compu
Aliasing: res es una referencia no modificable
PAQUETEENTRANSITO(in dcn: dcnet, in p: paquete) \rightarrow res: bool
\mathbf{Pre} \equiv \{ \mathbf{true} \}
\mathbf{Post} \equiv \{ res =_{obs} \text{ paqueteEnTransito}(dcn, p) \}
Complejidad: O(n * log(k)) donde n es es la cantidad de computadoras y k es la longitud de la cola de paquetes
mas larga
Descripción: indica si el paquete está en transito
LaQueMasEnvio(in dcn: dcnet) \rightarrow res: compu
\mathbf{Pre} \equiv \{ \mathbf{true} \}
\mathbf{Post} \equiv \{ \mathrm{alias}(res =_{\mathrm{obs}} \mathrm{laQueMasEnvio}(dcn)) \}
Complejidad: O(1)
Descripción: devuelve la compu que mas paquetes envió
Aliasing: res es una referencia no modificable
```

1.2. Representación

1.2.1. Representación de denet

```
dcnet se representa con estr
```

1.2.2. Invariante de Representación

(I) Las compus de los elementos de vectorCompusDCNet son punteros a todas las compus de la topología

- (II) Las claves de diccCompusDCNet son todos los hostnames de la topología
- (III) Los significados de diccCompusDCNet son punteros que apuntan a las compuDCNet cuyo hostname equivale a su clave en vectorCompusDCNet
- (IV) laQueMásEnvió es un puntero a la compuDCNet en vectorCompusDCNet que más paquetes enviados tiene. Si no hay compus es NULL
- (V) Todos los paquetes en conj Paquetes de cada compu
DCNet tienen id único y tanto su origen como destino existen en la topología
- (VI) El paquete en conjPaquetes tiene que tener en su recorrido a la compuDCNet en la que se encuentra y esta no puede ser igual al destino del recorrido
- (VII) Las claves de diccPaquetesDCNet son los id de los paquetes en conjPaquetes
- (VIII) Los significados de diccPaquetesDCNet contienen un itConj que apunta al paquete con el id equivalente a su clave y en recorrido, un camino mínimo válido para el origen del paquete y la compu en la que se encuentra
 - (IX) La cola PaquetesDCNet es vacía si y sólo si conj Paquetes lo es, si no lo es, su próximo es un puntero a un paquete DCNet de dicc PaquetesDCNet que contiene un it Conj cuyo siguiente es uno de los paquetes de conj Paquetes con mayor prioridad
 - (X) La cantidad de enviados de una compuDCNet es igual o mayor a la cantidad de apariciones de esa compu en los caminos recorridos de paquetes en la red

 $Rep : estr \longrightarrow bool$

```
Rep(e) \equiv true \iff
               (\#(\text{computadoras}(e.\text{topologia})) = \log(e.\text{vectorCompusDCNet}) = \#(\text{claves}(e.\text{diccCompusDCNet}))) \land_{\text{L}}
               (\forall c: \text{compu})(c \in \text{computadoras}(e.\text{topologia}) \Rightarrow
                 (\exists cd: compuDCNet) (está?(cd, e.vectorCompusDCNet) \land cd.pc = puntero(c)) \land
                 (\exists s: \text{string})(\text{def?}(s, e.\text{diccCompusDCNet}) \land s = c.\text{ip})
               ) \wedge_{\scriptscriptstyle L}
               (\forall cd: compuDCNet)(está?(cd, e.vectorCompusDCNet) \Rightarrow_L
                (\exists s: string) (def?(s, e.diccCompusDCNet) \land
                s = cd.pc \rightarrow ip \land_L obtener(s, e.diccCompusDCNet) = puntero(cd))
               ) \wedge_{\scriptscriptstyle L}
               (\exists cd: compuDCNet)(está?(cd, e.vectorCompusDCNet) \land_L
               *(cd.pc) = \text{compuQueM}ásEnvi\acute{o}(e.\text{vectorCompusDCNet}) \land e.\text{laQueM}ásEnvi\acute{o} = \text{puntero}(cd)) \land_{\text{L}}
               (\forall cd_1: compuDCNet)(está?(cd_1, e.vectorCompusDCNet) \Rightarrow
                (\forall p_1: paquete)(p_1 \in cd_1.conjPaquetes \Rightarrow
                 (\forall cd_2: compuDCNet)((está?(cd_2, e.vectorCompusDCNet) \land cd_1 \neq cd_2) \Rightarrow
                  (\forall p_2: paquete)(p_2 \in cd_2.conjPaquetes \Rightarrow p_1.id \neq p_2.id)
               ) \wedge_{\scriptscriptstyle L}
               (\forall cd: compuDCNet)(está?(cd, e.vectorCompusDCNet) \Rightarrow
                 (\#(cd.\text{conjPaquetes}) = \#(\text{claves}(cd.\text{diccPaquetesDCNet}))) \land_{L}
                 (\forall p: paquete)(p \in cd.conjPaquetes \Rightarrow
                   ((p.\text{origen} \in \text{computadoras}(e.\text{topologia}) \land p.\text{destino} \in \text{computadoras}(e.\text{topologia}) \land
                   p.\text{destino} \neq *(cd.\text{pc})) \land_{\text{\tiny L}}
                   (\exists sc: secu(compu))(sc \in caminosMinimos(e.topologia, p.origen, p.destino) \land está(*(cd.pc), sc))) \land
                   (\exists n: \text{nat}) ((\text{def}?(n, cd.\text{diccPaquetesDCNet}) \land p.\text{id} = n) \land_{\text{L}}
                    (Siguiente(obtener(n, e.diccPaquetesDCNet).it) = p \land
                   ((p.\text{origen} = *(cd.\text{pc}) \land \text{obtener}(n, e.\text{diccPaquetesDCNet}).\text{recorrido} = *(cd.\text{pc}) \bullet <>) \lor
                   (p.\text{origen} \neq *(cd.\text{pc}) \land
                   obtener(n, e.diccPaquetesDCNet).recorrido \in caminosMinimos(e.topologia, p.origen, *(cd.pc))))
                 ) \wedge_{\scriptscriptstyle L}
                 (\emptyset?(cd.\text{conjPaquetes}) \Leftrightarrow \text{vac\'a}?(cd.\text{colaPaquetesDCNet})) \land
                 (\neg \text{vac\'ia}?(cd.\text{colaPaquetesDCNet}) \Rightarrow_{\text{L}}
                  (\exists n: nat)(def?(n, cd.diccPaquetesDCNet) \land_L
                   Siguiente(obtener(n, cd.diccPaquetesDCNet).it) = paqueteMásPrioridad(cd.conjPaquetes) \land
                   proximo(cd.colaPaquetesDCNet) = puntero(obtener(n, cd.diccPaquetesDCNet))
                  ))
                 ) \
                 (cd.enviados \ge enviadosCompu(*(cd.pc), e.vectorCompusDCNet))
compuQueMásEnvió: secu(compuDCNet) scd \longrightarrow compu
                                                                                                                                      \{\neg vacía?(scd)\}
\maxEnviado : secu(compuDCNet) scd \longrightarrow nat
                                                                                                                                      \{\neg vacía?(scd)\}
enviaronK : secu(compuDCNet) \times nat \longrightarrow conj(compu)
paqueteMásPrioridad : conj(paquete) cp \longrightarrow paquete
                                                                                                                                            \{\neg\emptyset?(cp)\}
paquetesConPrioridadK : conj(cp) \times nat \longrightarrow conj(paquete)
altaPrioridad : conj(paquetes) cp \longrightarrow nat
                                                                                                                                            \{\neg\emptyset?(cp)\}
enviadosCompu : compu \times secu(compuDCNet) \longrightarrow nat
```

```
aparicionesCompu: compu \times conj(nat) cn \times \text{dicc}(\text{nat} \times \text{paqueteDCNet}) dp \longrightarrow \text{nat}
                                                                                                                              \{\text{claves}(dp) \subseteq cn\}
compuQueMásEnvió(scd) \equiv dameUno(enviaronK(scd, maxEnviado(scd)))
\max \text{Enviado}(scd) \equiv \text{if } \text{vac}(\text{a}(\sin(scd))) \text{ then } \text{prim}(scd). \text{enviados } \text{else } \max(\text{prim}(scd), \max \text{Enviado}(\sin(scd))) \text{ fi}
enviaronK(scd, k) \equiv if \text{ vacía}?(scd) then
                             else
                                 if prim(scd).enviados = k then
                                     Ag(*(prim(scd).pc), enviaronK(fin(scd), k))
                                     enviaronK(fin(scd), k)
                                 fi
                             fi
paqueteMásPrioridad(dcn, cp) \equiv dameUno(paquetesConPrioridadK(cp, altaPrioridad(cp)))
altaPrioridad(cp) \equiv \mathbf{if} \ \emptyset?(\sin \operatorname{Uno}(cp)) then
                                dameUno(cp).prioridad
                            else
                                \min(\text{dameUno}(cp).\text{prioridad}, \text{altaPrioridad}(\sin \text{Uno}(cp)))
paquetesConPrioridadK(cp, k) \equiv \mathbf{if} \ \emptyset?(cp) \mathbf{then}
                                             else
                                                 if dameUno(cp).prioridad = k then
                                                      Ag(dameUno(cp), paquetesConPrioridadK(sinUno(cp), k))
                                                      paquetesConPrioridadK(\sin Uno(cp), k)
enviadosCompu(c, scd) \equiv if vacía?(scd) then
                                        0
                                    else
                                        if prim(scd) = c then
                                            enviadosCompu(c, fin(scd))
                                        else
                                            {\it apariciones Compu}(c,\,{\it claves}({\it prim}(scd).{\it diccPaquetes DCNet}),
                                            \operatorname{prim}(scd).\operatorname{diccPaquetesDCNet}) + \operatorname{enviadosCompu}(c, \operatorname{fin}(scd))
                                        fi
aparicionesCompu(c, cn, dpd) \equiv \mathbf{if} \ \emptyset?(cn) \mathbf{then}
                                                0
                                            else
                                                if \operatorname{est\'a?}(c, \operatorname{significado}(\operatorname{dameUno}(cn), dpd).\operatorname{recorrido}) then
                                                    1 + \text{aparicionesCompu}(c, \sin \text{Uno}(cn), dpd)
                                                else
                                                     aparicionesCompu(c, sinUno(cn), dpd)
                                            fi
```

1.2.3. Función de Abstracción

```
Abs : estr e \longrightarrow dcnet | red(dcn) = e.topología \land (\forall cdn: compuDCNet)(está?(cdn, e.vectorCompusDCNet) \Rightarrow_{L} enEspera(dcn, *(cdn.pc)) = cdn.conjPaquetes \land cantidadEnviados(dcn, *(cdn.pc)) = cdn.enviados \land (\forall p: paquete)(p \in cdn.conjPaquetes \Rightarrow_{L} caminoRecorrido(dcn, p) = obtener(p.id, cdn.diccPaquetesDCNet).recorrido
```

)

2. Módulo Red

2.1. Interfaz

```
se explica con: RED.
géneros: red.
INICIARRED() \rightarrow res : red
\mathbf{Pre} \equiv \{ \text{true} \}
\mathbf{Post} \equiv \{res =_{obs} \text{ iniciarRed}\}\
Complejidad: O(1)
Descripción: Crea una red nueva
AGREGARCOMPUTADORA(in/out \ r : red, in \ c : compu)
\mathbf{Pre} \equiv \{(r =_{\mathrm{obs}} r_0) \land ((\forall c': \mathrm{compu}) \ (c' \in \mathrm{computadoras}(r) \Rightarrow \mathrm{ip}(c) \neq \mathrm{ip}(c'))) \ \}
\mathbf{Post} \equiv \{r =_{obs} \operatorname{agregarComputadora}(r_0, c)) \}
Complejidad: O(L+n)
Descripción: Agrega una computadora a la red
Aliasing: La compu se agrega por copia
CONECTAR(\mathbf{in}/\mathbf{out}\ r: red, \mathbf{in}\ c: compu, \mathbf{in}\ c': compu, \mathbf{in}\ i: compu, \mathbf{in}\ i': compu)
\mathbf{Pre} \equiv \{(r =_{\mathrm{obs}} r_0) \land (c \in \mathrm{computadoras}(r)) \land (c' \in \mathrm{computadoras}(r)) \land (\mathrm{ip}(c) \neq \mathrm{ip}(c'))\}
\land (\neg \text{conectadas}?(r, c, c')) \land (\neg \text{usaInterfaz}?(r, c, i) \land \neg \text{usaInterfaz}?(r, c', i')) \}
\mathbf{Post} \equiv \{r =_{obs} \operatorname{conectar}(r_0, c, i, c', i'))\}\
Complejidad: O(L)?
Descripción: Conecta dos computadoras
COMPUTADORAS(in r : red) \rightarrow res : conj(compu)
\mathbf{Pre} \equiv \{ \text{true} \}
\mathbf{Post} \equiv \{ \mathrm{alias}(res =_{\mathrm{obs}} \mathrm{computadoras}(r)) \}
Complejidad: O(1)
Descripción: Devuelve las computadoras de la red Devuelve una referancia no modificable
CONECTADAS?(in r: red, in c: compu, in c': compu) \rightarrow res: bool
\mathbf{Pre} \equiv \{(c \in \operatorname{computadoras}(r)) \land (c' \in \operatorname{computadoras}(r))\}
\mathbf{Post} \equiv \{res =_{obs} \text{conectadas}?(r, c, c')\}\
Complejidad: O(1)
Descripción: Indica si dos computadoras de la red estan conectadas
INTERFAZUSADA(in r: red, in c: compu, in c': compu) \rightarrow res: interfaz
\mathbf{Pre} \equiv \{ \text{conectadas}?(r, c, c') \}
\mathbf{Post} \equiv \{ res =_{obs} interfazUsada(r, c, c') \}
Complejidad: O(L+n)
Descripción: Devuelve la interfaz con la cual se conecta c con c'
VECINOS(\mathbf{in}\ r : \mathtt{red},\ \mathbf{in}\ c : \mathtt{compu}) \to res : \mathtt{conj}(\mathtt{compu})
\mathbf{Pre} \equiv \{c \in \operatorname{computadoras}(r)\}\
\mathbf{Post} \equiv \{res =_{obs} \text{vecinos}(r, c)\}
Complejidad: O(n)
Descripción: Devuelve el conjunto de computadoras conectadas con c
Aliasing: Devuelve una copia de las computadoras conectadas a c
```

```
USAINTERFAZ?(in r: red, in c: compu, in i: interfaz) \rightarrow res: bool
\mathbf{Pre} \equiv \{c \in \operatorname{computadoras}(r)\}\
\mathbf{Post} \equiv \{res =_{obs} usaInterfaz?(r, c, i)\}\
Complejidad: O(L+n)
Descripción: Indica si la interfaz i es usada por la computadora c
CAMINOSMINIMOS(in r: red, in c: compu, in c': compu) \rightarrow res: conj(lista(compu))
\mathbf{Pre} \equiv \{(c \in \operatorname{computadoras}(r)) \land (c' \in \operatorname{computadoras}(r))\}
\mathbf{Post} \equiv \{ \operatorname{alias}(res =_{\operatorname{obs}} \operatorname{caminosMinimos}(r, c, i)) \}
Complejidad: O(L)
Descripción: Devuelve el conjunto de caminos minimos de c a c'
Aliasing: Devuelve una refencia no modificable
HAYCAMINO?(in r: red, in c: compu, in c': compu) \rightarrow res: bool
\mathbf{Pre} \equiv \{(c \in \operatorname{computadoras}(r)) \land (c' \in \operatorname{computadoras}(r))\}
\mathbf{Post} \equiv \{res =_{obs} \text{hayCamino?}(r, c, i)\}\
Complejidad: O(L)
Descripción: Indica si existe algún camino entre c y c'
COPIAR(in r: red) \rightarrow res: red
\mathbf{Pre} \equiv \{ \text{true} \}
\mathbf{Post} \equiv \{res =_{\mathrm{obs}} r\}
Complejidad: O(?)
Descripción: Devuelve una copia la red
\bullet = \bullet (\mathbf{in} \ r : \mathtt{red}, \ \mathbf{in} \ r' : \mathtt{red}) \to res : \mathtt{bool}
\mathbf{Pre} \equiv \{ \mathrm{true} \}
\mathbf{Post} \equiv \{ res =_{\mathrm{obs}} (r =_{\mathrm{obs}} r') \}
Complejidad: O(?)
Descripción: Indica si r es igual a r'
```

2.2. Representación

2.2.1. Estructura

```
red se representa con estr  \begin{aligned} & \text{donde estr es tupla}(compus: \texttt{conj}(\texttt{compu}) \;, \\ & dns: \texttt{dicc}_{Trie}(\texttt{nodoRed}) \;) \end{aligned} \\ & \text{donde nodoRed es tupla}(pc: \texttt{puntero}(\texttt{compu}) \;, \\ & & caminos: \texttt{dicc}_{Trie}(\texttt{conj}(\texttt{lista}(\texttt{compu}))) \;, \\ & & conexiones: \texttt{dicc}_{Lineal}(\texttt{nat}, \; \texttt{puntero}(\texttt{nodoRed})) \;) \end{aligned} \\ & \text{donde compu es tupla}(ip: \texttt{string}, \; interfaces: \texttt{conj}(\texttt{nat})) \end{aligned}
```

2.2.2. Invariante de Representación

(I) Todas los elementos de *compus* deben tener IPs distintas.

- (II) Para cada compu, el trie dns define para la clave <IP de esa compu> un nodoRed cuyo pc es puntero a esa compu.
- (III) nodoRed.conexiones contiene como claves todas las interfaces usadas de la compuc (que tienen que estar en pc.interfaces)
- (IV) Ningun nodo se conecta con si mismo.
- (V) Ningun nodo se conecta a otro a traves de dos interfaces distintas.
- (VI) Para cada nodoRed en dns, caminos tiene como claves todas las IPs de las compus de la red (estr.compus), y los significados corresponden a todos los caminos mínimos desde la compu pc hacia la compu cuya IP es clave.

```
\operatorname{Rep}:\operatorname{estr}\longrightarrow\operatorname{bool}
Rep(e) \equiv true \iff (
                    ((\forall c1, c2: \text{compu}) \ (c1 \neq c2 \land c1 \in e.\text{compus} \land c2 \in e.\text{compus}) \Rightarrow c1.\text{ip} \neq c2.\text{ip}) \land c1
                   ((\forall c: \text{compu})(c \in e.\text{compus} \Rightarrow
                      (\text{def?}(c.\text{ip}, e.\text{dns}) \land_{\text{L}} \text{obtener}(c.\text{ip}, e.\text{dns}).\text{pc} = \text{puntero}(c))
                   )) \wedge
                   ((\forall i: \text{string}, n: \text{nodoRed}) ((\text{def}?(i, e.\text{dns})) \land_{\text{L}} n = \text{obtener}(i, e.\text{dns})) \Rightarrow
                      (\exists c: \text{compu}) \ (c \in e.\text{compus} \land (n.\text{pc} = \text{puntero}(c)))
                   )) \
                   ((\forall i: \text{string}, n: \text{nodoRed}) ((\text{def}?(i, e.\text{dns}) \land_{\text{L}} n = \text{obtener}(i, e.\text{dns})) \Rightarrow
                      ((\forall t: \text{nat}) (\text{def}?(t, n.\text{conexiones}) \Rightarrow (t \in n.\text{pc} \rightarrow \text{interfaces})))
                   )) \wedge
                   ((\forall i: \text{string}, n: \text{nodoRed}) ((\text{def}?(i, e.\text{dns})) \land_{L} n = \text{obtener}(i, e.\text{dns})) \Rightarrow
                      ((\forall t: \text{nat}) (\text{def}?(t, n.\text{conexiones}) \Rightarrow_{\text{L}} (\text{obtener}(t, n.\text{conexiones}) \neq \text{puntero}(n))))
                   )) ^
                    ((\forall i: \text{string}, n: \text{nodoRed}) ((\text{def}?(i, e.\text{dns})) \land_{\text{L}} n = \text{obtener}(i, e.\text{dns})) \Rightarrow
                      ((\forall t1, t2: \text{nat}) ((t1 \neq t2 \land \text{def}?(t1, n.\text{conexiones}) \land \text{def}?(t2, n.\text{conexiones})) \Rightarrow_{\text{L}}
                         (obtener(t1, n.conexiones) \neq obtener(t2, n.conexiones))
                      ))
                   )) \wedge
                    ((\forall i1, i2: \text{string}, n1, n2: \text{nodoRed}))
                      (def?(i1, e.dns) \wedge_{L} n1 = obtener(i1, e.dns)) \wedge
                      (\text{def?}(i2,\,e.\text{dns}) \, \wedge_{\scriptscriptstyle{\mathbf{L}}} \, n2 = \text{obtener}(i2,\,e.\text{dns}))
                    ) \ \Rightarrow \ (\operatorname{def?}(i2, \, n1.\operatorname{caminos}) \, \wedge_{\scriptscriptstyle{L}} \, \operatorname{obtener}(i2, \, n1.\operatorname{caminos}) = \operatorname{darCaminosMinimos}(n1, \, n2))
                   ))
                   )
vecinas
                                      : nodoRed
                                                                                                                                                    → conj(nodoRed)
auxVecinas
                                      : nodoRed \times dicc(nat \times puntero(nodoRed))
                                                                                                                                                    \longrightarrow conj(nodoRed)
secusDeLongK
                                      : \operatorname{conj}(\operatorname{secu}(\alpha)) \times \operatorname{nat}
                                                                                                                                                    \longrightarrow \operatorname{conj}(\operatorname{secu}(\alpha))
longMenorSec
                                      : conj(secu(\alpha)) secus
                                                                                                                                                                             \{\neg\emptyset?(secus)\}
                                                                                                                                                    \longrightarrow nat
darRutas
                                      : nodoRed nA \times \text{nodoRed } nB \times \text{conj(pc)} \times \text{secu(nodoRed)}
                                                                                                                                                   \longrightarrow conj(secu(nodoRed))
darRutasVecinas
                                      : conj(pc) vec \times nodoRed n \times conj(pc) \times secu(nodoRed)
                                                                                                                                                   \longrightarrow conj(secu(nodoRed))
darCaminosMinimos : nodoRed n1 \times nodoRed n1
                                                                                                                                                   \longrightarrow conj(secu(compu))
vecinas(n)
                                                                            \equiv \text{auxVecinas}(n, n.\text{conexiones})
auxVecinas(n, cs)
                                                                            \equiv if \emptyset?(cs) then
                                                                                      Ø
                                                                                 else
                                                                                       Ag(obtener(dameUno(claves(cs)), cs), auxVecinas(n, sinUno(cs)))
                                                                                 fi
```

```
secusDeLongK(secus, k)
                                              \equiv if \emptyset?(secus) then
                                                     Ø
                                                 else
                                                     if long(dameUno(secus)) = k then
                                                        dameUno(secus) \cup secusDeLongK(sinUno(secus), k)
                                                        secusDeLongK(sinUno(secus), k)
                                                 fi
                                              \equiv if \emptyset?(sinUno(secus)) then
longMenorSec(secus)
                                                     long(dameUno(secus))
                                                 else
                                                     \min(\log(\text{dameUno}(secus)),
                                                     longMenorSec(sinUno(secus)))
                                                 fi
darRutas(nA, nB, rec, ruta)
                                              \equiv if nB \in \text{vecinas}(nA) then
                                                     Ag(ruta \circ nB, \emptyset)
                                                     if \emptyset?(vecinas(nA) - rec) then
                                                        Ø
                                                     else
                                                        darRutas(dameUno(vecinas(nA) - rec),
                                                        nB, Ag(nA, rec),
                                                        ruta \circ dameUno(vecinas(nA) - rec)) \cup
                                                        darRutasVecinas(sinUno(vecinas(nA) - rec),
                                                        nB, Ag(nA, rec),
                                                        ruta \circ dameUno(vecinas(nA) - rec)
                                                 fi
                                              \equiv if \emptyset?(vecinas) then
darRutasVecinas(vecinas, n, rec, ruta)
                                                 else
                                                     darRutas(dameUno(vecinas), n, rec, ruta) \cup
                                                     darRutasVecinas(sinUno(vecinas), n, rec, ruta)
                                                 fi
                                                 secusDeLongK(darRutas(nA, nB, \emptyset, <>),
darCaminosMinimos(nA, nB)
                                                 longMenorSec(darRutas(nA, nB, \emptyset, <>)))
```

2.2.3. Función de Abstracción

```
Abs : estr e \longrightarrow \text{red} {Rep(e)} 

Abs(e) =_{\text{obs}} \text{r: red} \mid e.\text{compus} =_{\text{obs}} \text{computadoras}(r) \land ((\forall c1, c2: \text{compu}, i1, i2: \text{string}, n1, n2: \text{nodoRed}) (c1 \neq c2 \Rightarrow ((c1 \in e.\text{compus} \land i1 = c1.\text{ip} \land n1 = \text{obtener}(i1, e.\text{dns})) \land (c2 \in e.\text{compus} \land i2 = c2.\text{ip} \land n2 = \text{obtener}(i2, e.\text{dns})))) \Rightarrow (\text{conectadas}?(r, c1, c2) \Leftrightarrow (\text{def}?(i2, n1.\text{conexiones}) \land_{\text{L}} \text{obtener}(i2, n1.\text{conexiones}) \land_{\text{L}} \land (c2) \Rightarrow (c2) \Rightarrow (c3) \Rightarrow (c3)
```

Módulo Cola de mínima prioridad(α) 3.

El módulo cola de mínima prioridad consiste en una cola de prioridad de elementos del tipo α cuya prioridad está determinada por un nat de forma tal que el elemento que se ingrese con el menor nat será el de mayor prioridad.

Especificación 3.1.

TAD COLA DE MÍNIMA PRIORIDAD (α)

igualdad observacional

$$(\forall c, c' : \operatorname{colaMinPrior}(\alpha)) \left(c =_{\operatorname{obs}} c' \Longleftrightarrow \begin{pmatrix} \operatorname{vac\'ia?}(c) =_{\operatorname{obs}} \operatorname{vac\'ia?}(c') \wedge_{\operatorname{L}} \\ (\neg \operatorname{vac\'ia?}(c) \Rightarrow_{\operatorname{L}} (\operatorname{pr\'oximo}(c) =_{\operatorname{obs}} \operatorname{pr\'oximo}(c') \wedge \\ \operatorname{desencolar}(c) \\ \operatorname{desencolar}(c')) \end{pmatrix} \right)$$

parámetros formales

géneros

operaciones \bullet < : $\alpha \times \alpha \longrightarrow \text{bool}$

Relación de orden total estricto¹

 $colaMinPrior(\alpha)$ géneros

exporta $colaMinPrior(\alpha)$, generadores, observadores

usa

observadores básicos

vacía? : $colaMinPrior(\alpha)$ \rightarrow bool : $colaMinPrior(\alpha) c$

 $\{\neg \operatorname{vacía}?(c)\}$

desencolar : $colaMinPrior(\alpha) c$ \longrightarrow colaMinPrior(α)

 $\{\neg \text{ vacía}?(c)\}$

generadores

vacía \longrightarrow colaMinPrior(α) : $\alpha \times \text{colaMinPrior}(\alpha) \longrightarrow \text{colaMinPrior}(\alpha)$ encolar

otras operaciones

: $colaMinPrior(\alpha)$ tamaño \rightarrow nat

 $\forall c: \text{colaMinPrior}(\alpha), \forall e: \alpha$ axiomas

vacía?(vacía) ≡ true vacía?(encolar(e, c)) \equiv false

próximo(encolar(e, c)) \equiv if vacía?(c) \vee_{L} proximo(c) > e then e else próximo(c) fi

desencolar(encolar(e, c)) \equiv if vacía?(c) \vee_{\perp} proximo(c) > e then c else encolar(e, desencolar(c)) fi

Fin TAD

Antirreflexividad: $\neg a < a$ para todo $a : \alpha$

Antisimetría: $(a < b \Rightarrow \neg b < a)$ para todo $a, b : \alpha, a \neq b$ **Transitividad:** $((a < b \land b < c) \Rightarrow a < c)$ para todo $a, b, c : \alpha$

Totalidad: $(a < b \lor b < a)$ para todo $a, b : \alpha$

¹Una relación es un orden total estricto cuando se cumple:

3.2. Interfaz

```
parámetros formales géneros \alpha se explica con: Cola de Mínima prioridad(nat). géneros: colaMinPrior(\alpha).
```

3.2.1. Operaciones básicas de Cola de mínima prioridad

```
VACÍA() \rightarrow res : colaMinPrior(\alpha)
\mathbf{Pre} \equiv \{ \text{true} \}
\mathbf{Post} \equiv \{res =_{obs} vacía\}
Complejidad: O(1)
Descripción: Crea una cola de prioridad vacía
VACÍA?(\mathbf{in}\ c: colaMinPrior(\alpha)) \rightarrow res: bool
\mathbf{Pre} \equiv \{ \mathrm{true} \}
\mathbf{Post} \equiv \{ res =_{obs} vacía?(c) \}
Complejidad: O(1)
Descripción: Devuelve true si y sólo si la cola está vacía
DESENCOLAR(in/out c: colaMinPrior(\alpha)) \rightarrow res: \alpha
\mathbf{Pre} \equiv \{\neg \text{vac\'a?}(c) \land c =_{\text{obs}} c_0\}
\mathbf{Post} \equiv \{res =_{obs} \operatorname{proximo}(c_0) \land c =_{obs} \operatorname{desencolar}(c_0)\}\
Complejidad: O(\log(\tan \tilde{a} \tilde{n} o(c)))
Descripción: Quita el elemento más prioritario
Aliasing: Se devuelve el elemento por copia
ENCOLAR(in/out c: colaMinPrior(\alpha), in p: nat, in a: \alpha)
\mathbf{Pre} \equiv \{c =_{\mathrm{obs}} c_0\}
\mathbf{Post} \equiv \{c =_{\mathrm{obs}} \mathrm{encolar}(p, c_0)\}\
Complejidad: O(\log(\tan \tilde{a} \tilde{n} o(c)))
Descripción: Agrega al elemento \alpha con prioridad p a la cola
Aliasing: Se agrega el elemento por copia
```

3.3. Representación

3.3.1. Representación de colaMinPrior

```
colaMinPrior(\alpha) se representa con estr donde estr es dicc_{avl}(nat, nodoEncolados) donde nodoEncolados es tupla(encolados: cola(\alpha), prioridad: nat)
```

3.3.2. Invariante de Representación

- (I) Todos los significados del diccionario tienen como clave el valor de prioridad
- (II) Todos los significados del diccionario no pueden tener una cola vacía

```
Rep : estr \longrightarrow bool
```

3.3.3. Función de Abstracción

```
Abs : estr e \longrightarrow \text{colaMinPrior} 

\{\text{Rep}(e)\}
\text{Abs}(e) =_{\text{obs}} \text{ cmp: colaMinPrior} \mid (\text{vac\'a?}(cmp) \Leftrightarrow (\#\text{claves}(e) = 0)) \land \\ \neg \text{vac\'a?}(cmp) \Rightarrow_{\text{L}} \\ ((\text{pr\'oximo}(cmp) = \text{pr\'oximo}(\text{m\'inimo}(e).\text{encolados})) \land \\ (\text{desencolar}(cmp) = \text{desencolar}(\text{m\'inimo}(e).\text{encolados})))
```

3.4. Algoritmos

```
iVacía\ () \rightarrow res: colaMinPrior(\alpha) res\ \leftarrow\ Vacio\ () \mathbf{Complejidad}: O(1)
```

```
iVac\'a?\ (\textbf{in}\ c\colon \texttt{colaMinPrior}(\alpha)) \to res:\ bool res\ \leftarrow\ (\#Claves\ (c)\ =\ 0) O(1) \textbf{Complejidad}: O(1)
```

```
iEncolar (in/out c: colaMinPrior(\alpha), in p: nat, in a: \alpha)
if Definido?(p) then
                                                                                                O(\log(\tan \tilde{a} \tilde{n} o(c)))
      Encolar (Significado (c, p). encolados, a)
                                                                                     O(\log(\tan \tilde{a} \tilde{n} o(c)) + \cos(\alpha))
else
     nodoEncolados nuevoNodoEncolados
                                                                                                               O(1)
     nuevoNodoEncolados. encolados \leftarrow Vacia()
                                                                                                               O(1)
     nuevoNodoEncolados.prioridad \leftarrow p
                                                                                                               O(1)
      Encolar(nuevoNodoEncolados.encolados, a)
                                                                                                        O(copy(a))
      Definir(c, p, nuevoNodoEncolados)
                                                                      O(\log(\tan \tilde{a} \tilde{n} o(c)) + \cos(nodo Encolados))
end if
Complejidad : O(log(tamano(c)) + O(copy(\alpha))
```

4. Módulo dicc_{avl}(α)

4.1. Interfaz

```
se explica con: DICCIONARIO(NAT, \alpha).
géneros: dicc_{avl}(\alpha).
       Operaciones básicas de dicc_{avl}(\alpha)
CREARDICC() \rightarrow res : dicc_{avl}(\alpha)
\mathbf{Pre} \equiv \{ \text{true} \}
\mathbf{Post} \equiv \{res =_{obs} vacio\}
Complejidad: O(1)
Descripción: Crea un diccionario vacío
DEFINIDO?(in c: nat, in d: dicc<sub>avl</sub>(\alpha))) \rightarrow res: bool
\mathbf{Pre} \equiv \{ \text{true} \}
\mathbf{Post} \equiv \{res =_{obs} \operatorname{def}?(c, d)\}\
Complejidad: O(log(\#claves(d)))
Descripción: Devuelve true si y sólo si la clave fue previamente definida en el diccionario
DEFINIR(in c: nat, in s: \alpha, in/out d: dicc<sub>avl</sub>(\alpha))
\mathbf{Pre} \equiv \{d =_{\mathrm{obs}} d_0\}
\mathbf{Post} \equiv \{d =_{\text{obs}} \operatorname{definir}(c, s, d_0)\}\
Complejidad: O(log(\#claves(d)) + copy(s))
Descripción: Define la clave c con el significado s en d
OBTENER(in c: string, in/out d: dicc<sub>avl</sub>(\alpha)) \rightarrow res: \alpha
\mathbf{Pre} \equiv \{ \det?(c, d) \}
\mathbf{Post} \equiv \{ \operatorname{alias}(res =_{\operatorname{obs}} \operatorname{obtener}(c, d)) \}
Complejidad: O(log(\#claves(d)))
Descripción: Devuelve el significado correspondiente a la clave en el diccionario
Aliasing: res es modificable si y sólo si d es modificable
MÍNIMO(\operatorname{in/out} d : \operatorname{dicc}_{avl}(\alpha)) \to res : \alpha
\mathbf{Pre} \equiv \{ \# \operatorname{claves}(d) > 0 \}
\mathbf{Post} \equiv \{ \operatorname{alias}(res =_{\operatorname{obs}} \operatorname{obtener}(\operatorname{claveMinima}(d), d)) \}
Complejidad: O(log(\#claves(d)))
Descripción: Devuelve el significado correspondiente a la clave de mínimo valor en el diccionario
Aliasing: res es modificable si y sólo si d es modificable
```

4.1.2. Operaciones auxiliares del TAD

```
 \begin{array}{lll} \operatorname{claveM} & \operatorname{filim}(\operatorname{ant} \longrightarrow \operatorname{nat} & \{\#\operatorname{claves}(\operatorname{d}) > 0\} \\ & \times \alpha) \ d \\ & \operatorname{darClaveM} & \operatorname{filim}(\operatorname{ant} \longrightarrow \operatorname{nat} & \{(\#\operatorname{claves}(\operatorname{d}) > 0) \land (\operatorname{c} \subseteq \operatorname{claves}(d))\} \\ & \times \alpha) \\ & d & \times \\ & \operatorname{conj}(\operatorname{nat}) \\ & c \\ & \operatorname{claveM} & \operatorname{finima}(d) & \equiv \operatorname{darClaveM} & \operatorname{finima}(d,\operatorname{claves}(d)) \end{array}
```

```
 \begin{array}{ll} \operatorname{darClaveM\'{n}ima}(d,\,c) & \equiv & \operatorname{if} \,\, \emptyset?(\sin \operatorname{Uno}(c)) \,\, \operatorname{then} \\ & \operatorname{dameUno}(c) \\ & \operatorname{else} \\ & \operatorname{min}(\operatorname{dameUno}(c),\,\operatorname{darClaveM\'{n}ima}(d,\,\sin \operatorname{Uno}(c))) \\ & \operatorname{fi} \end{array}
```

4.2. Representación

4.2.1. Representación de $dicc_{avl}(\alpha)$

```
{
m dicc}_{avl}(lpha) se representa con estr {
m donde} estr es puntero(nodoAvl) {
m donde} nodoAvl es tupla(data: lpha, balance: int, nodos: arreglo[2] de puntero(nodoAvl))
```

5. Módulo Trie(α)

5.1. Interfaz

```
se explica con: DICCIONARIO(STRING, \alpha). géneros: dicc_{Trie}(\alpha).
CREARDICC() \rightarrow res : dicc_{Trie}(\alpha)
\mathbf{Pre} \equiv \{ \mathrm{true} \}
\mathbf{Post} \equiv \{res =_{obs} vacío\}
Complejidad: O(1)
Descripción: Crea un diccionario vacío.
DEFINIDO?(in c: string, in d: dicc_{Trie}(\alpha))) \rightarrow res: bool
\mathbf{Pre} \equiv \{ \mathrm{true} \}
\mathbf{Post} \equiv \{res =_{obs} \operatorname{def?}(c, d)\}\
Complejidad: O(L)
Descripción: Devuelve true si la clave está definida en el diccionario y false en caso contrario.
DEFINIR(in c: string, in s: \alpha, in/out d: dicc_{Trie}(\alpha))
\mathbf{Pre} \equiv \{d =_{\text{obs}} d_0\}
\mathbf{Post} \equiv \{d =_{\text{obs}} \operatorname{definir}(c, s, d_0)\}\
Complejidad: O(L)
Descripción: Define la clave c con el significado s
Aliasing: Almacena una copia de s.
OBTENER(in c: string, in d: dicc_{Trie}(\alpha)) \rightarrow res: \alpha
\mathbf{Pre} \equiv \{ \operatorname{def}?(c, d) \}
\mathbf{Post} \equiv \{ \operatorname{alias}(res =_{\operatorname{obs}} \operatorname{obtener}(c, d)) \}
Complejidad: O(L)
Descripción: Devuelve el significado correspondiente a la clave c.
Aliasing: Devuelve el significado almacenado en el diccionario, por lo que res es modificable si y sólo si d lo es.
```