

Contents lists available at ScienceDirect

Fuel

Reduction-oxidation kinetics of three different iron oxide phases for CO₂ activation to CO

Min Hye Jeong ^a, Dong Hyun Lee ^a, Gui Young Han ^a, Chae-Ho Shin ^b, Myoung Kyun Shin ^c, Chang Kuk Ko ^c, Jong Wook Bae a,*

- ^a School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 440-746, Republic of Korea
- ^b Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
- c Ironmaking Research Group, Technical Research Laboratories, POSCO, Pohang-si, Gyeongsangbuk-do 37859, Republic of Korea

HIGHLIGHTS

- Kinetic model of three different iron phases were investigated for CO2 activation to CO.
- Three-dimensional diffusion Jander equation was well fitted with experimental data.
- Iron ores having a phase of FeOOH showed a superior activity and stability.
- Large surface area with a stable Fe₃O₄ phase was formed on the porous FeOOH surfaces

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Article history: Received 17 January 2017 Received in revised form 21 March 2017 Accepted 18 April 2017 Available online 24 April 2017

Keywords: Kinetics Redox reaction Iron ores CO2 activation Chemical looping process

ABSTRACT

The reduction-oxidation characteristics and proper kinetic models of three different iron ores having respective main phases of FeOOH, Fe₃O₄, and Fe₂O₃ were investigated using an isothermal method. A proposed kinetic model was well satisfied to explain the experimental data for CO₂ activation to CO with a high accuracy. The kinetic data of the different phases of iron ores for its reduction by H2 and for the oxidation by CO2 were relatively well described by a simple three-dimensional diffusion model of Jander equation. Activation energies of three different iron ores with the phase of FeOOH, Fe₂O₃, and Fe₃O₄ for the oxidation by CO2 were found to be 42, 25, and 12 kJ/mol, respectively. Iron ore having a FeOOH phase exhibited a higher redox property by showing a large amount of CO generation through CO₂ activation with an activation energy of 42 kJ/mol and a rate constant of 0.0065 min⁻¹. The superior activities on the FeOOH were mainly attributed to a large surface area with medium grain size of FeOOH crystallites by forming a thermodynamically stable Fe₃O₄ phase on the outer surfaces even under the reductionoxidation reaction cycle.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Global warming and climate change have been issued to be solved with great attention due to steady increases of greenhouse gases (GHG) emissions, where CO₂ takes a larger portion of GHG

^{*} Corresponding author. E-mail address: finejw@skku.edu (I.W. Bae).