Steps to run the Project:

- 1). Run project on PyCharm (Recommended) Version: [Python 3.7] also, Anaconda Navigator (JupyterLab) Version: 1.9.7
- 2). Install and import the libraries if not available
 - Import Pandas
 - Import Numpy
 - Import Math
 - From sklearn.metrics Import roc curve
 - From scipy.spatial.distance Import cityblock, euclidean
 - From array Import array
 - Import OS
 - Import Random
- 3). In PyCharm: list of file names to run
 - DataInsights.py
 - Keystroke detector.py
 - → HybridManhattan.py
 - → Ecludian.py
 - UserCategorization.py: Categorization of users on the basis of sessions of each user.
 - All_UserCategorization.py: Categorization of users on the basis of FAR, FRR and TPR.
 - Genetic keystroke.py
 - Multi_Genetic_Keystroke.py
 - DSL-StrongPasswordData.csv
- 4). In Anaconda: Same file names with ". ipynb" extension.

Output Explanation:

1). Data Insights

	н	UD	Speed
subject			
s002	51.723137	70.347487	122.070625
s003	69.387313	35.091025	104.478338
s004	55.187300	54.898013	110.085313
s005	56.738262	94.073013	150.811275
s007	50.321750	39.405925	89.727675
s008	51.402200	42.223900	93.626100
s010	40.697963	48.447363	89.145325
s011	61.200475	28.231587	89.432063
s012	74.073700	37.631450	111.705150
s013	43.038075	41.619150	84.657225

Figure 1: Speed of user on basis of H + UD key values

			H	l.period	DD.period.t UD.period.			.period.t	H.t	 H.I		
		std	max	min	std	max	min	std	max	min	std	 min
subject session	nIndex											
s002	1	0.015222	0.1491	0.0776	0.083726	0.5953	0.1356	0.084322	0.4831	0.0160	0.008455	 0.0742
	2	0.010691	0.1446	0.0855	0.053958	0.4628	0.1132	0.048742	0.3182	0.0221	0.006856	 0.0715
	3	0.014723	0.1541	0.0647	0.115809	0.6441	0.0910	0.117866	0.5520	-0.0054	0.009220	 0.0731
	4	0.014055	0.1320	0.0581	0.032943	0.1974	0.0664	0.029967	0.0976	-0.0260	0.013488	 0.0734
	5	0.014662	0.1124	0.0404	0.045892	0.3504	0.0540	0.050563	0.3100	-0.0223	0.010371	 0.0557
	6	0.012353	0.1151	0.0599	0.027403	0.1987	0.0237	0.027506	0.1121	-0.0484	0.011209	 0.0544
	7	0.017811	0.1272	0.0103	0.048433	0.3000	0.0765	0.046956	0.1854	-0.0125	0.010054	 0.0660
	8	0.018490	0.2093	0.1198	0.062544	0.4312	0.1271	0.062975	0.2947	-0.0278	0.019885	 0.0486

8 rows × 93 columns

Figure 2: Max, Min, Std deviation of each key

			H.period	DD.period.t	UD.period.t	H.t	DD.t.i	UD.t.i	H.i	DD.i.e	UD.i.e	
subject	sessionIndex											
s002	1	H.period	1.000000	0.051602	-0.129288	0.194025	0.115564	0.060787	0.391363	0.125238	-0.051200	
		DD.period.t	0.051602	1.000000	0.983615	0.338982	0.205346	0.110215	0.340952	0.373001	0.271115	
		UD.period.t	-0.129288	0.983615	1.000000	0.301559	0.183032	0.098462	0.267891	0.347755	0.278441	
		H.t	0.194025	0.338982	0.301559	1.000000	0.566566	0.279451	0.477841	0.539826	0.400386	
			DD.t.i	0.115564	0.205346	0.183032	0.566566	1.000000	0.949515	0.252945	0.516074	0.487494
		UD.t.i	0.060787	0.110215	0.098462	0.279451	0.949515	1.000000	0.112811	0.395816	0.415601	
		H.i	0.391363	0.340952	0.267891	0.477841	0.252945	0.112811	1.000000	0.565618	0.163023	
		DD.i.e	0.125238	0.373001	0.347755	0.539826	0.516074	0.395816	0.565618	1.000000	0.905844	
		UD.i.e	-0.051200	0.271115	0.278441	0.400386	0.487494	0.415601	0.163023	0.905844	1.000000	
		H.e	0.473234	0.066463	-0.019438	0.237240	0.136352	0.068558	0.380412	0.269786	0.127361	

Figure 3: Correlation among the columns in the dataset

Mean is 0.16361792726122706 Standard deviation 0.0988594318138292

Figure 4: Overall mean and std deviation

2). Keystroke Detector Analysis

```
print ("Average EER for Hybrid Manhattan detector:")
print(ManhattanDetector(subjects).evaluate())

Average EER for Manhattan detector:
0.18184090301626743
```

Figure 5: Hybrid Manhattan Equal Error rate.

print ("Average EER for Ecludian detector:")
print(EuclideanDetector(subjects).evaluate())
Average EER for Ecludian detector:
0.17146797258674207

Figure 6: Euclidean Equal Error rate

3). User Categorization

	FRR	FAR	TPR	Subject				
0	0.223343	0.457157	0.776657	s002				
1	0.179076	0.436304	0.820924	s003				
2	0.188143	0.466948	0.811857	s004				
3	0.240957	0.193191	0.759043	s005				
4	0.111643	0.298810	0.888357	s007				
5	0.138878	0.371707	0.861122	s008				
6	0.141737	0.082895	0.858263	s010				
7	0.097894	0.270745	0.902106	s011				
8	0.113041	0.191633	0.886959	s012				
9	0.189426	0.237131	0.810574	s013				
Go	ats 3							
Wolf and Lamb (13, 18)								
Sheep 43								

Figure 7: User Category Detection based on overall FAR, FRR and TPR values.

	Subject	Wolf	Sheep	Goat	Lamb
0	s002	39	74	2	70
1	s003	71	156	2	128
2	s004	95	260	2	188
3	3 s005		366	2	208
4	s007	124	469	2	230
5	s008	142	557	2	272
6	s010	88	675	2	340
7	s011	104	769	2	368
8	s012	110	859	2	378
9	s013	93	954	2	430

Figure 8: User Category Detection based on each session of a user FAR, FRR and TPR values.

4). Biometric Adversary Framework

```
Generations : 0
Generations : 0
                                                                           Parents
[0.981
           1.6388502]
Crossover
                                                                           Crossover
[0.981 0.981]
Mutation
[1.7262716 0.981
Generations : 1
                                                                           Mutation
Parents
          1.6388502]
[0.253
Crossover
[0.253
Mutation
[0.8849559 1.6388502]
                                                                           Generations : 1
Generations : 2
                                                                           Parents
Parents
[0.8991
          1.6388502]
Crossover
[1.6388502 0.8991 ]
Mutation
[2.2181518 0.8991 ]
Generations : 3
                                                                           Mutation
Parents
[0.4512
          1.6388502]
Crossover
[0.4512 0.4512]
Mutation
[1.2043397 0.4512 ]
Best Mutations: [1.7262716 1.6388502 2.2181518 1.2043397]
Best solution from mutations: [2.2181518]
Best solution from fitness: [2.31433824]
                                                                           Best solution from fitness : [2.26313263]
```

Figure 9: Genetic algorithm based on single chromosome length.

```
[[0.88151085 0.04104252]
 [0.6650206 0.1460789]]
[[0.88151085 0.1460789 ]
 [0.66502059 0.04104252]
 [0.65718281 1.98760213]
 [0.66502059 0.04104252]]
[[0.88151085 0.1460789 ]
 [0.66502059 0.04104252]
 [1.04197404 2.01638189]
 [0.67827151 0.47410945]]
[[0.88151085 0.04104252]
 [0.6650206 0.1460789]]
Crossover
[[0.88151085 0.1460789 ]
 [0.66502059 0.04104252]
 [1.04197404 2.01638189]
 [0.67827151 0.47410945]]
[[1.29887644 0.6296622 ]
 [1.47752179 0.21580125]
 [1.60062625 2.89250589]
 [0.67827151 0.47410945]]
Best Mutations: [[1.04197404 2.01638189]
 [1.60062625 2.89250589]]
Best solution from mutations: [2.89250589]
```

Figure 10: Genetic algorithm based on multi chromosome length.