# Lecture on Fuzzy Set Theory (Operations and Properties)(Unit-3-Lecture 3)



Presented By Ashish Tiwari Assistant Professor

Department of CSE United College of Engg. and Research, Pravagrai India

#### Outline of Presentation



- Objective of Fuzzy Set theory.
- Introduction.
- Fuzzy set Theory.
- Fuzzy Sets and Membership Functions.
- Fuzzy Set Operations.
- Fuzzy Set properties.
- References.

# Objective of Fuzzy Set theory



- 1. To introduce fuzzy sets and how they are used.
  - 2. To define some types of uncertainty and study what methods are used to with each of the types.
  - 3. To define fuzzy numbers, fuzzy logic and how they are used.
  - 4. To study methods of how fuzzy sets can be constructed.
  - 5. To see how fuzzy set theory is used and applied in cluster analysis.

#### Introduction



- Fuzzy Set Theory was formalised by Professor Lotfi Zadeh at the University of California in 1965 to generalise classical set theory.
- Since 1992 fuzzy set theory, the theory of neural nets and the area of evolutionary programming have become known under the name of 'computational intelligence' or 'soft computing'.
- Fuzzy set theory formally speaking is one of these theories, which was initially intended to be an extension of dual logic and/or classical set theory.

### Fuzzy Set Theory



- The concept of a fuzzy set, on which fuzzy logic (FL) has been built, has been proven to play an important role in
  - (1) modeling and representing imprecise and uncertain linguistic human concepts;
  - (2) mimicking human thinking; and
  - (3) researchers and practitioners developing tools to model behaviors in forms that are easy to understand and implement in computer systems.

### Fuzzy Set Theory



- An object has a numeric "degree of membership" Normally, between 0 and 1 (inclusive)
  - 1. 0 membership means the object is not in the set
  - 2. 1 membership means the object is fully inside the set
  - 3. In between means the object is partially in the set

# Fuzzy Sets and Membership Functions



If U is a collection of objects denoted generically by x, then a fuzzy set A in U is defined as a set of ordered pairs:

$$A = \left\{ (x, \mu_A(x)) \middle| x \in U \right\}$$

membership function

U: universe of discourse.

$$\mu_A:U\to[0,1]$$

# Fuzzy Sets and Membership Functions



Characteristic function X, indicating the belongingness of x to the set A

$$X(x) = \begin{bmatrix} 1 & x \in A \\ 0 & x \notin A \end{bmatrix}$$

or called membership

Hence.

$$\begin{array}{c} \mathsf{A} \cup \mathsf{B} \to \mathsf{X}_{\mathsf{A} \cup \mathsf{B}}(\mathsf{x}) \\ = \mathsf{X}_{\mathsf{A}}(\mathsf{x}) \cup \mathsf{X}_{\mathsf{B}}(\mathsf{x}) \\ = \mathsf{max}(\mathsf{X}_{\mathsf{A}}(\mathsf{x}), \mathsf{X}_{\mathsf{B}}(\mathsf{x})) \end{array}$$

Note: Some books use + for ∪, but still it is not ordinary addition!

### Fuzzy Set Operations



#### FUZZY SET OPERATIONS

The fuzzy set operations of union, intersection and complementation are defined in terms of membership functions as follows:

Union:

$$\mu_{A \cup B}(x) = \max(\mu_A(x), \, \mu_B(x))$$

Intersection:

$$\mu_{A\cap B}(x) = min(\mu_A(x),\, \mu_B(x))$$

Complement:

$$\mu_{\text{not A}}(\mathbf{x}) = 1 - \mu_{\mathbf{A}}(\mathbf{x})$$

The other fuzzy set theory constructs that are essential are:

Fuzzy Set Inclusion:

$$A \subset B$$
 if and only if  $\forall x$  (for all x)  $\mu_{\Delta}(x) \leq \chi_{R}(x)$ 

Fuzzy Set Equality:

A= B if and only if 
$$\forall x \text{ (for all } x) \mu_A(x) = \mu_B(x)$$
.

9/19

# Fuzzy Set Operation



$$\begin{split} \mu_{A \cup B}(x) &= \mu_A(x) \cup \mu_B(x) \\ &= max(\mu_A(x), \, \mu_B(x)) \\ \mu_{A \cap B}(x) &= \mu_A(x) \cap \mu_B(x) \\ &= min(\mu_A(x), \, \mu_B(x)) \\ \mu_{A'}(x) &= 1 - \mu_A(x) \\ De \, \text{Morgan's Law also holds:} \\ & (A \cap B)' &= A' \cup B' \\ & (A \cup B)' &= A' \cap B' \\ \\ \text{But, in general} \\ & A \cup A' &\neq X \\ & A \cap A' &\neq \emptyset \end{split}$$

# **Fuzzy Set Operation**





### Fuzzy Set union



Fuzzy union ( $\cup$ ): the union of two fuzzy sets is the maximum (MAX) of each element from two sets.

#### E.g.

- $A = \{1.0, 0.20, 0.75\}$
- $B = \{0.2, 0.45, 0.50\}$
- $\bullet$  A  $\cup$  B = {MAX(1.0, 0.2), MAX(0.20, 0.45), MAX(0.75, 0.50) = {1.0, 0.45, 0.75}

#### Fuzzy Set intersection



- ◆ Fuzzy intersection (△): the intersection of two fuzzy sets is just the MIN of each element from the two sets.
- E.g.
  - $\blacksquare$  A  $\cap$  B = {MIN(1.0, 0.2), MIN(0.20, 0.45), MIN(0.75, 0.50) = {0.2, 0.20, 0.50}

# Fuzzy Set Operation



# **Examples of Fuzzy Set Operations**

 $A = \{1/a, 0.3/b, 0.2/c 0.8/d, 0/e\}$ 

 $B = \{0.6/a, 0.9/b, 0.1/c, 0.3/d, 0.2/e\}$ 

Complement:

 $A' = \{0/a, 0.7/b, 0.8/c 0.2/d, 1/e\}$ 

Union:

 $A \cup B = \{1/a, 0.9/b, 0.2/c, 0.8/d, 0.2/e\}$ 

Intersection:

 $A \cap B = \{0.6/a, 0.3/b, 0.1/c, 0.3/d, 0/e\}$ 

### Fuzzy Set properties



#### Properties of Fuzzy Sets

$$A \cup B = B \cup A$$
  
 $A \cap B = B \cap A$ 

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup A = A$$
  $A \cap A = A$ 

$$A \cup X = X$$
  $A \cap X = A$   
 $A \cup \emptyset = A$   $A \cap \emptyset = \emptyset$ 

If 
$$A \subset B \subset C$$
, then  $A \subset C$ 

$$A'' = A$$

### Fuzzy Set properties



# **Operations**

- Properties of Standard Fuzzy Operators
- 1) Involution :  $(F^c)^c = F$
- 2) Commutative :  $F \cup G = G \cup F$

3) Associativity:  $F \cup (G \cup H) = (F \cup G) \cup H$ 

$$F \cap (G \cap H) = (F \cap G) \cap H$$

4) Distributivity:  $F \cup (G \cap H) = (F \cup G) \cap (F \cup H)$ 

$$F \cap (G \cup H) = (F \cap G) \cup (F \cap H)$$

5) Idempotency: F∪F=F

$$F \cap F = F$$

### Fuzzy Set properties



# **Operations**

$$F \cap \phi = \phi$$
,  $F \cup U = U$ 

8) Identity:

$$F \cup \phi = F \qquad F \cap U = F$$

9) DeMorgan's Law:

$$(F \cap G)^c = F^c \cup G^c$$
  $(F \cup G)^c = F^c \cap G^c$ 

10) Equivalence :

$$(F^c \cup G) \cap (F \cup G^c) = (F^c \cap G^c) \cup (F \cap G)$$

11) Symmetrical difference:

$$(F^{c} \cap G) \cup (F \cap G^{c}) = (F^{c} \cup G^{c}) \cap (F \cup G)$$

#### Refrences





Gottwald S. Set theory for fuzzy sets of higher level. Fuzzy Set Syst 1979, 2:125-151.



Hirota K. Concepts of probabilistic sets. Fuzzy Set Syst 1981, 5:31–46.



Zimmermann H-J. Fuzzy Set Theory and Applications, 4th Rev. ed. Boston: Kluwer Academic Publishers: 2001.



Dombi J. A general class of fuzzy operators, the De Morgan Class of fuzzy operators and fuzzy measures induced by fuzzy operators. Fuzzy Set Syst 1982, 8:149-163.



Zadeh L.A.(1978) Fuzzy Sets as the Basis for a Theory of Possibility. Fuzzy Sets and Systems

# Queries



#### Thanking You