

19ECS 773: Deep Learning

Topic: Feed Forward Neural Networks Unit I April 16 2021, 2.00-3.00PM

Dr. Sireesha Rodda

Professor,

Dept of CSE,

GITAM Institute of Technology

GITAM Deemed to be University

Outline

- What are Neural Networks?
- Biological Neural Networks
- ANN The basics
- Feed forward net
- Training
- Example Voice recognition
- Applications Feed forward nets

- Models of the brain and nervous system
- Highly parallel
 - Process information much more like the brain than a serial computer
- Learning
- Very simple principles
- Very complex behaviours
- Applications
 - As powerful problem solvers
 - As biological models

ANNs – The basics

 ANNs incorporate the two fundamental components of biological neural nets:

- 1. Neurons (nodes)
- 2. Synapses (weights)

Neurone vs. Node

Structure of a node:

Squashing function limits node output:

• Synapse vs. weight

Feed-forward nets

- Information flow is unidirectional
 - Data is presented to *Input layer*
 - Passed on to *Hidden Layer*
 - Passed on to Output layer
- Information is distributed
- Information processing is parallel

Internal representation (interpretation) of data

Feeding data through the net:

Input Hidden Output

$$(1 \times 0.25) + (0.5 \times (-1.5)) = 0.25 + (-0.75) = -0.5$$

Squashing:
$$\frac{1}{1+e^{0.5}} = 0.3775$$

- Examples
 - Pixel intensity (for pictures)
 - Molecule concentrations (for artificial nose)
 - Share prices (for stock market prediction)
- Data usually requires preprocessing
 - Analogous to senses in biology
- How to represent more abstract data, e.g. a name?
 - Choose a pattern, e.g.
 - 0-0-1 for "Chris"
 - 0-1-0 for "Becky"

- Weight settings determine the behaviour of a network
 - → How can we find the right weights?

Training the Network - Learning

- Backpropagation
 - Requires training set (input / output pairs)
 - Starts with small random weights
 - Error is used to adjust weights (supervised learning)
 - → Gradient descent on error landscape

Advantages

- It works!
- Relatively fast

Downsides

- Requires a training set
- Can be slow
- Probably not biologically realistic

Alternatives to Backpropagation

- Hebbian learning
 - · Not successful in feed-forward nets
- Reinforcement learning
 - Only limited success
- Artificial evolution
 - More general, but can be even slower than backprop

Example: Voice Recognition

 Task: Learn to discriminate between two different voices saying "Hello"

- Data
 - Sources
 - Steve Simpson

- (1))
- David Raubenheimer

- Format
 - Frequency distribution (60 bins)
 - Analogy: cochlea

- Repeat process (sweep) for all training pairs
 - Present data
 - Calculate error
 - Backpropagate error
 - Adjust weights
- Repeat process multiple times

Applications of Feed-forward nets

- Pattern recognition
 - Character recognition
 - Face Recognition
- Sonar mine/rock recognition (Gorman & Sejnowksi, 1988)
- Navigation of a car (Pomerleau, 1989)
- Stock-market prediction
- Pronunciation (NETtalk) (Sejnowksi & Rosenberg, 1987)

Thank You!