Математический анализ 2

Contents

1	Hec	преде.	ленный интеграл	5	
	1.1	Понят	ие первообразной и неопределеного интеграла	5	
	1.2	Свойства неопределенного интеграла			
	1.3				
	1.4	Основ	ные примеры интегрирования	8	
		1.4.1	Непосредственное интегрирование	8	
		1.4.2	Замена переменной	8	
		1.4.3	Интегрирование по частям	10	
	1.5	Интег	рирование рациональных функций	10	
		1.5.1	Основные сведения о рациональных функциях	10	
		1.5.2	Интегрирование простейших дробей	14	
		1.5.3	Общая схема интегрирования рациональных дробей	15	
	1.6	Интег	рирование тригонометрических функций	16	
		1.6.1	Универсальная тригонометрическая замена	16	
		1.6.2	Другие виды подстановок	16	
		1.6.3	Использования формул тригонометрии	17	
	1.7	Интег	рирование некоторых иррациональных и транцедентных функций	18	
		1.7.1	Дробно-линейная подстановка для интегралов	18	
		1.7.2	Квадратичные иррациональности	19	
		1.7.3	Инегрирование дифферециального бинома	21	
		1.7.4	Интегралы вида $\int R(e^x) dx$, $\int R(\sqrt{e^x + e}) dx$	22	
	1.8	Интег	ралы, не выражающиеся в элементарных функциях	22	
2	Опр	пределенный интеграл			
	2.1	Опред	еление определенного интеграла(Римана)	23	
	2.2	Суммі	ы Дарбу и их свойства	24	
	2.3	Необхо	одимое и достаточное условие интегрируемости функции $f(x)$ на		
		[a, b]		26	
	2.4	Некот	орые классы интегрируемых функций	27	
		2.4.1	Интегрируемость непрерывных функций	27	
		2.4.2	Интегрирование монотонных ограниченных функций	27	
		2.4.3	Критерий Лебега интегрируемости функции $f(x)$ на отрезке $[a, b]$	28	
		2.4.4	Общие свойства интегрируемых функций	29	
	2.5	Свойс	тва определенного интеграла	30	
	2.6		рал с переменным верхним пределом. Формула Ньютона-Лейбница	35	
		2.6.1	Обобщенная первообразная. Формула Ньютона-Лейбница	36	
	2.7	Замен	а перменной в определенном интеграле	37	
	2.8		рирование по частям в определенном интеграле	39	

4 Contents

2.9	Некоторые геометрические и физические приложения определенного				
	интегј	рала			
	2.9.1	Общие подходы			
	2.9.2	Вычисление площадей фигур			
	2.9.3	Вычисление длин дуг кривых			
	2.9.4	Вычисление объемов тел			

Неопределенный интеграл

1.1 Понятие первообразной и неопределеного интеграла

Функция F(x) называется **первообразной** функции f(x) на множестве $X \subset \mathbb{R}$, или $\forall x \in X \ F'(x) = f(x)$.

Theorem 1.1.1. Если F(x) - некоторая первообразная для f(x) на множестве X, то любая другая первообразная имеет вид: F(x) + c, где c = const - произвольная.

Proof. Пусть F(x) - первообразная функции f(x), т.е. F'(x) = f(x); Тогда: $(F(x) + c)' = F'(x) + 0 = f(x) \Rightarrow F(x) + c$ - первообразная для f(x)(c = const).

Пусть $F_1(x)$ - тоже первообразная для f(x), т.е. $F_1'(x) = f(x)$.

Рассмотрим разность: $F_1(x) - F(x)$;

$$(F_1(x) - F(x))' = F_1'(x) - F'(x) = f(x) - f(x) = 0 \Rightarrow F_1(x) - F(x) = c = \text{const}, \text{ r.e. } : F_1(x) = F(x) + c$$

Таким образом множество всех первообразных функции f(x) имеет вид F(x) + c. Множество всех первообразных функции f(x) называется **неопределенным интегралом** этой функции и обозначается $\int f(x)dx$.

f(x) - подинтегральная функция, f(x)dx - подинтегральное выражение, x - переменная инегрирования, \int - неопределенный интеграл.

Example:

$$f(x) = sign(x) = \begin{bmatrix} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{bmatrix}, x \in (-1; 1).$$

Предположим, что существует такая первообразная $\exists F(x) : \forall x \in (-1, 1) : F'(x) = sign(x)$, т.е.

$$F'(x) = \begin{bmatrix} 1, & x \in (0; 1) \\ 0, & x = 0 \\ -1, & x < \in (-1; 0) \end{bmatrix} \Rightarrow \begin{cases} F'(x) = 0 \\ F'_{-}(x) = -1 \\ F'_{+}(x) = 1 \end{cases}$$

F'(0) - не существует \Rightarrow противоречие \Rightarrow F(x) не существует.

Remark. Достаточным условием существования первообразной у функции на данном множестве является ее непрерывность на этом множестве.

1.2 Свойства неопределенного интеграла

Пусть $\int f(x) \, dx = F(x) + c \, (F'(x) = f(x)).$

1. Производная от неопределенного интеграла равна подинтегральной функции, дифференциал неопределенного интеграла равен подинтегральному выражению.

$$(\int f(x) \ \mathbf{d}x)_x' = f(x); \quad \mathbf{d}(\int f(x) \ \mathbf{d}x) = f(x) \ \mathbf{d}x.$$

Proof.
$$(\int f(x) \, \mathbf{d}x)'_x = (F(x) + c)'_x = F'(x) + c' = f(x);$$

$$\mathbf{d}(\int f(x) \, \mathbf{d}x) = (\int f(x) \, \mathbf{d}x)'_x \, \mathbf{d}x = f(x) \, \mathbf{d}x.$$

2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной.

$$\int \mathbf{d}(F(x)) = F(x) + c.$$

Proof.
$$\int \mathbf{d}(F(x)) = \int F'(x) \, \mathbf{d}x = \int f(x) \, \mathbf{d}x = F(x) + c$$

3. Постоянный множитель можно выносить за знак интеграла.

$$\int af(x) \, \mathbf{d}x = a \int f(x) \, \mathbf{d}x, \ a = \text{const.}$$

Proof.
$$\int af(x) \, \mathbf{d}x = \int aF'(x) \, \mathbf{d}x = \int (aFx)' \, \mathbf{d}x = \int \, \mathbf{d}(aF(x)) = (aF(x) + +c_1) = a(F(x) + \frac{c_1}{a}) = \left| c = \frac{c_1}{a} \right| = a(f(x) + c) = a \int f(x) \, \mathbf{d}x$$

4. Интеграл суммы двух функций равен сумме интегралов этих функций.

$$\int (f(x) + g(x))dx = \int f(X)dx + \int g(x)dx.$$

Proof. Пусть
$$\int g(x) \, dx = G(x) + c$$
; тогда $\int (f(x) + g(x)) \, dx = \int (F'(x) + + G'(x)) \, dx = \int (F(x) + G(x))' \, dx = \int \, d(F(x) + G(x)) = F(x) + G(x) + c = \left| c = c_1 + c_2 \right| = (F(x) + c_1) + (G(x)c_2) = \int f(x) \, dx + \int g(x) \, dx$

Remark.

- свойство 4 справедливо для любого конечного числа слогаемых
- свойство 3-4 называются свойством линейности неопределенного интеграла
- свойство 1-2 отражают связь операций дифференцирования и интегрирования

1.3 Таблица основных неопределенных интегралов

1.
$$\int x^{\alpha} \, \mathbf{d}x = \frac{x^{\alpha+1}}{\alpha+1} + c; \ \alpha \in \mathbb{R} \setminus \{-1\}$$

$$\int \frac{\mathrm{d}x}{x} = \ln|x| + c$$

$$\int a^x \, \mathbf{d}x = \frac{a^x}{\ln a} + c, \ a > 0$$

$$\int e^x \, \mathbf{d}x = e^x + c$$

$$\int \sin x \, \mathbf{d}x = -\cos x + c$$

$$\int \cos x \ \mathbf{d}x = \sin x + c$$

$$\int \frac{\mathbf{d}x}{\cos^2 x} = \tan x + c$$

$$\int \frac{\mathbf{d}x}{\sin^2 x} = -\cot x + c$$

9.
$$\int \operatorname{sh} x \, \, \mathbf{d}x = \operatorname{ch} x + c$$

10.
$$\int \operatorname{ch} x \, \, \mathbf{d}x = \operatorname{sh} x + c$$

$$\int \frac{\mathrm{d}x}{\mathrm{ch}^2 x} = \mathrm{th} \, x + c$$

$$\int \frac{\mathbf{d}x}{\sinh^2 x} = -\coth x + c$$

13.
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + c$$

$$\int \frac{dx}{\sqrt{a-x^2}} = \arcsin \frac{x}{a} + c$$

14.
$$\int \frac{dx}{1+x^2} = \arctan x + c$$

$$\int \frac{dx}{a^2+x^2} = \frac{1}{a} \arctan \frac{x}{a} + c$$

Дополнительные формулы:

15.
$$\int \frac{\mathbf{d}x}{x^2 - a^2} = \frac{1}{2a} \ln |\frac{x - a}{x + a}| + c - \text{высокий логарифм}$$
16.
$$\int \frac{\mathbf{d}x}{\sqrt{x^2 + A}} = \ln |x + \sqrt{x^2 + A}| + c - \text{длинный логарифм}$$
17.
$$\int \sqrt{x^2 + A} \ \mathbf{d}x = \frac{x}{2} \sqrt{x^2 + A} + \frac{A}{2} \ln |x + \sqrt{x^2 + A}| + c$$
18.
$$\int \sqrt{a^2 - x^2} \ \mathbf{d}x = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + c$$

В этих формулах вместо x может быть записана произвольная дифференцируемая функция от x.

1.4 Основные примеры интегрирования

1.4.1 Непосредственное интегрирование

Непосредственное интегрирование заключается в использовании тождественных преобразований подинтегральной функции, свойства линейности интеграла и таблицы интегралов.

Example:

1.
$$\int (\frac{\sqrt{x+1}}{\sqrt[3]{x}})^2 \, \mathbf{d}x = \int \frac{x+2x^{\frac{1}{2}}+1}{\sqrt[3]{x^2}} \, \mathbf{d}x = \int (x^{\frac{1}{3}} + 2x^{\frac{-1}{6}} + x^{\frac{-2}{3}}) \, \mathbf{d}x =$$
$$= \frac{3}{4}x^{\frac{4}{3}} + 2 \cdot \frac{x^{\frac{5}{6}}}{5} \cdot 6 + x^{\frac{1}{3}} \cdot 3 + c$$

2.
$$\int \frac{dx}{\sin^2 x \cos^2 x} = |\cos^2 x + \sin^2 x = 1| = \int \frac{\cos^2 x + \sin^2 x}{\sin^2 x \cos^2 x} dx = \int \frac{1}{\sin^2 x} dx + \int \frac{1}{\cos^2 x} dx = \tan x - \cot x + c$$

1.4.2 Замена переменной

Theorem 1.4.1. Пусть на $\forall x \in (a; b) \int f(x) dx = F(x) + c$, (на всем интервале (a; b) известна первообразная функции): $F'(x) = f(x)x = \varphi(t)$ - функция дифференцируемая; причем $\varphi(t): t \in (\alpha; \beta)$ и $\varphi: (\alpha; \beta) \to (a; b)$. Тогда справедлива формула:

$$\int f(\varphi(t)) \cdot \varphi_t'(t)dt = F(\varphi(t)) + c$$

$$\begin{array}{lll} \textit{Proof.} & (f(\varphi(t)))_t' = F_\varphi'(\varphi(t)) \cdot \varphi_t'(t) = |\varphi(t) = x| = F_x'(x)\varphi_t'(t) = |F_x'(x) = f(x)| = f(x) \cdot \varphi(t) = |x = \varphi(t)| = f(\varphi(t)) \cdot \varphi_t'(t) \Rightarrow F(\varphi(t)) \text{ первообразная для} \\ & f(\varphi(t)) \cdot \varphi_t'(t) \Rightarrow \int f(\varphi(t)) \cdot \varphi_t'(t) dt = F(\varphi(t)) + c \end{array} \qquad \square$$

Remark.

$$\varphi'_t(t) \ \mathbf{d}t = \ \mathbf{d}(\varphi(t)) \Rightarrow \int f(\varphi(t)) \cdot \ \mathbf{d}\varphi = F(\varphi) + c$$

1. Внесения выражения под знак дифференциала

$$\int f(x) \ \mathbf{d}x = \int g(\varphi(x)) \cdot \varphi_x'(x) \ \mathbf{d}x = \int g(\varphi) \ \mathbf{d}\varphi = |G(x) - \text{известно}G'(x) = g(x)| =$$

$$= G(\varphi) + c = G(\varphi(x)) + c.$$

Часто используются преобразование дифференциала $\mathbf{d}x = \mathbf{d}(x++a) = \frac{1}{k} \mathbf{d}(kx) =$ $\begin{array}{l}
\frac{1}{k} \mathbf{d}(kx+b) \\
x^{n-1} \mathbf{d}x = \frac{1}{n} \mathbf{d}(x^n)
\end{array}$

Преобразования дифференциалов

$$\sin x \, dx = -d(\cos x)$$

$$\cos x \, dx = d(\sin x)$$

$$\frac{dx}{\cos^2 x} = d(\tan x)$$

$$\frac{dx}{x} = d(\ln x)$$

$$\frac{dx}{1+x^2} = d(\arctan x)$$

$$\frac{dx}{\sqrt{1-x^2}} = d(\arcsin x)$$

Example:
$$\int \sin^3 x \, dx = \int \sin x \sin^2 x \, dx \int (1 - \cos^2 x) \cdot (-d(\cos x)) = \int (\cos^2 - 1) \, d(\cos x) =$$
$$= \frac{\cos^3 x}{3} - \cos x + c.$$

2. Вынесения выражения из-под знак дифференциала

$$\int f(x) \, \mathbf{d}x = |x = \varphi(t) \Rightarrow \, \mathbf{d}x = \varphi'(t) \, \mathbf{d}t| = \int f(\varphi(t)) \cdot \varphi'(t) \, \mathbf{d}t = |g(t)| = G'(t)| = G(t) + c = |x = \varphi(t)| t = \varphi^{-1}(x)| = G(\varphi^{-1}(x)) + c$$

$$\int \sqrt{a^2 - x^2} \, dx = |x = a \sin t \, dx = a \cos t \, dt| = \int \sqrt{a^2 - a^2 \sin^2 t} a \cos t \, dt =$$

$$= a^2 \int \sqrt{1 - \sin^2 t} \cdot \cos t \, dt = a^2 \int \cos^2 t \, dt = \frac{a^2}{2} \int (1 + \cos^2 t) \, dt = \frac{a^2}{2} (t + \sin t \cos t) + c = |\cos t| = \sqrt{1 - \sin t} \, \frac{x}{a}$$

$$t = \arcsin \frac{x}{a}| = \frac{a^2}{2} (\arcsin \frac{x}{a} + \sqrt{1 - \frac{x^2}{a^2}} \cdot \frac{x}{a}) = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + c$$

1.4.3 Интегрирование по частям

Пусть u = u(x), v = v(x) - две диффренцируемые функции. по свойству дифференциала:

 $\mathbf{d}(uv)=u~\mathbf{d}v+v~\mathbf{d}u\Rightarrow\int~\mathbf{d}(uv)=\int u~\mathbf{d}v+\int v~\mathbf{d}u$ - формула интегрирования по

В исходном интеграле $\int f(x) \, dx$ подинтегральное выражение представляется в виде двух сомножителей. Как правило, это можно сделать неоднозначно.

После того как u и dv выбраны, находим du, v, ...

$$\int f(x) dx = |f(x)| = u, dx = dv| \Rightarrow du = u' dx = ... \Rightarrow v = \int dv$$

в результате применения формулы полученный интеграл оказывается более простым, чем исходный.

При необходимости формула интегрирования по частям применяется несколько раз.

I.
$$\int P_n(x) \begin{cases} \sin(kx+b) \\ \cos(kx+b) \\ a^{kx} \\ e^{kx} \\ \sinh x, \cosh(kx) \end{cases} dx$$
 $U = Pn(x); dv = \{ \dots \}$

II.
$$\int P_n(x) \left\{ \begin{array}{l} \arcsin x \\ \arccos x \\ \arctan x \\ \ln x \end{array} \right\} dx$$
 $U = \{ \dots \}; dv = Pn(x) dx$

III. $\int e^{kx} \left\{ \begin{array}{l} \sin(ax+b) \\ \cos(ax+b) \end{array} \right\} dx$ $U = e^{kx}; dv = \{ \dots \} dx$

III.
$$\int e^{kx} \left\{ \begin{array}{l} \sin(ax+b) \\ \cos(ax+b) \end{array} \right\} dx \qquad U = e^{kx}; \quad dv = \left\{ \dots \right\} dx$$

$$\int_{I} e^{x} \sin 2x \, dx = \int_{III} u = e^{x} \Rightarrow du = e^{x} \, dx; \sin 2x \, dx = dv; v = \int_{III} \sin 2x \, dx = \int_{III} u = e^{x} \Rightarrow du = e^{x} \, dx; \sin 2x \, dx = \int_{III} u = e^{x} \Rightarrow du = e^{x} \, dx = \int_{III} u = e^{x}; du = e^{x}; d$$

Интегрирование рациональных функций 1.5

1.5.1Основные сведения о рациональных функциях

1. Многочлен(целая рациональная функция) **Многочленом** $P_n(x)$ называется функция вида $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_{n-1} x^{n-1} + \cdots$ $a_1x^1 + a_0$; где $n \in \mathbb{N}, \ a_i \in \mathbb{R}, \ i = \overline{0,n}$

Корнем многочлена называется значение x_0 (вообще говоря, комплексное) аргумента x, при котором многочлен обращается в ноль.

$$x_0$$
 - корень $P_n(x)$ или $P_n(x_0)=0$

Theorem 1.5.1.

Если x_0 – корень многочлена $P_n(x)$, то многочлен делится нацело на $(x-x_0)$,

$$m.e.\ P_n(x)\ npedcmasnemcs\ в виде:\ P_n(x) = (x-x_0)\cdot Q_{n-1}(x),$$
 $ext{de }Q-$ многочлен степенип -1

Theorem 1.5.2.

Bсякий многочлен степени n > 0 имеет по крайней мере один корень,

действительный или комплексный

Consequence.

- (1) Многочлен n-ой степени можно представить в виде: $P_n(x) = a_n(x-x_1)(x-x_2)\dots(x-x_n)$, где x_1,\dots,x_n корни $P_n(x)$, a_n старший коэффициент
- (2) Если среди корней многочлена имеются одинаковые, то объединим соответствующие или множители. Получим:

$$P_n(x) = a_n(x-x_1)^{k_1}(x-x_2)^{k_2}\dots(x-x_n)^{k_m}$$
, где $k_1+k_2+\dots+k_m=n$. для $x_i: (x-x_i)^k_i$; k_i - кратность корня x_i .

Такое представление называется разложением многочлена на линейные множители.

Theorem 1.5.3.

Известно, что если многочлен имеет комплексный корень

 $x_0 = a_i + ib(a, b \in \mathbb{R}; x_0 \in \mathbb{C}),$ то комплексное спряженое число

 $\bar{x} = a - ib$ - тоже корень $P_n(x)$. Таким образом, в разложении многочлена комплексно спряженные числа входят парами, перемножим:

$$(x - (a + ib))(x - (a - ib)) = x^2 - x(a + ib) - x(a - ib) + (a + ib)(a - ib) = x^2 - ax - ibx - ax + ibx + a^2 + b^2 = x^2 - 2ax + a^2 + b^2.$$

Полученый трехчлен имеет действительный коэффициент, причем дискретный $D=B^2-4A\cdot C=4a^2-4(a^2+b^2)=-4b^2<0$

Получаем, что пару множителей, соответсвующую двум комплексных сопряженным корням можно заменить квадратный трехчлен с действительным коэффициентом $u\ D<0$.

Окончательно получим разложение на множители в виде:

$$P_n(x) = (x - x_1)^{k_1} (x - x_2)^{k_2} (x - x_5)^{k_5} (x^2 + p_1 x + q_1)^{l_1} \dots (x^2 p_m x + q_m)^{l_m}, \ \epsilon \partial e$$

 $x_1, \dots, x_5 \in \mathbb{R}$ - корни многочлена $Pn(x); p_i, q_i \in \mathbb{R}, i = \overline{1, m};$
 $D_i = p_i^2 - 4q_i < 0.$ $k_1 + \dots + k_5 + 2(l_1 + \dots + l_m) = n$

Многочлен называется тождественно равным нулю

$$Pn(x) \equiv 0$$
, если $\forall x \in \mathbb{R} \ Pn(x) = 0$

Theorem 1.5.4.

Многочлен тожественно равен нулю тогда и только тогда, когда

все его коэффициенты равны нулю
$$a_i = 0, i = \overline{0,n}$$

Consequence.

Два многочлена тождественно равны, если их степени одинаковы и имеют одинаковые коэффициенты при одинаковых степенях x

Proof.
$$P_n(x) \equiv Q_n(X)$$

 $P_n(x) - Q_n(x) \equiv 0$
 $(a_n + b_n)x^n + (a_{n-1} + b_{n-1})x^{n-1} + \dots + (a_0 + b_0) = 0$

Example:

$$P_3(x) = 3x^2 - 2x + 4$$

$$Q_4(x) = a_4x^4 + a_3x^3 - a_2x^2 + a_1x + a_0$$

$$P_3(x) \equiv Q_4(x) \Rightarrow \begin{cases} a_4 = 0 \\ a_3 = 3 \\ a_2 = 0 \\ a_1 = -2 \\ a_1 = 4 \end{cases}$$

2. Дробная рациональная функция

Дробной рациональной функцией называется отношение двух многочленов. $\frac{P_n(x)}{Q_m(x)} >$ многочлены $\{$ дробная рациональная функция, рациональная дробь. Если $n \geq m$, то рациональная дробь **неправильная**, если n < m - **правильная**.

Theorem 1.5.5.

Неправильная рациональная дробь может быть представлена в виде

суммы многочлена и правильной рациональной дроби.

$$rac{P_n(x)}{Q_m(x)} = rac{U_{n-m}(x)}{U_{n-m}(x)} + rac{R_k(x)}{Q_m(x)}, \ k < m, \ R_n(x)$$
 - многочлен.

Элементарные (простейшие) рациональные дроби:

I.
$$\frac{A}{x-a} \qquad A, \ a \in \mathbb{R}$$

II.
$$\frac{A}{(x-a)^k} \qquad k \in \mathbb{N}, \ k > 1, \ A, \ a \in \mathbb{R}$$

III.
$$\frac{Mx + N}{x^2 + nx + q} \qquad M, \ n, \ p, \ q \in \mathbb{R}, \ D = p^2 - 4q < 0$$

IV.
$$\frac{Mx + N}{(x^2 + px + q)^k} \qquad M, \ n, \ p, \ q \in \mathbb{R}, \ D = p^2 - 4q < 0, \ k \in \mathbb{N}, \ k > 1$$

Theorem 1.5.6.

 Πycm ь $rac{P_n(x)}{Q_m(x)}$ - правильная рациональная дробь(n < m), и знаменатель дроби $Q_m(x)$ разложен на множители:

$$Q_m(x) = \underbrace{(x - x_1)^{k_1} \dots (x - x_5)^{k_5}}_{\text{действительные корни}} \underbrace{(x^2 + p_1 x + q_1)^{l_1} \dots (x^2 + p_m x + q_m)^{l_m}}_{D < 0}$$

Тогда заданная дробь раскладывается в сумму простых дробей следующего вида:

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_1}{x - x_1} + \frac{A_2}{(x - x_1)^2} + \dots + \frac{A_{k_1}}{(x - x_1)^{k_1}} + \dots + \frac{F_1}{x - x_5} + \frac{F_2}{(x - x_5)^2} + \dots + \frac{F_{k_5}}{(x - x_5)^{k_5}} + \frac{M_1 x + N_1}{(x^2 + p_1 x + q_1)} + \dots + \frac{M_{l_1} + N_l}{(x^2 + p_l x + q_l)^l} + \dots$$

При этом:

$$(x - x_i)^{k_i} \leftrightarrow \frac{A_1}{x - x_i} + \frac{A_2}{(x - x_i)^2} + \dots + \frac{A_{k_i}}{(x - x_i)^K};$$

$$(x^2 + p_j x + q_j)^{l_j} \leftrightarrow \frac{M_1 x + N_1}{(x^2 + p_j x + q_j)} + \frac{M_2 x + N_2}{(x^2 + p_j x + q_j)} + \dots + \frac{M_{l_j} x + N_{l_j}}{(x^2 + p_j x + q_j)}$$

В разложении появляются так называемые неопределенные коэффициенты, которые подлежат дальнейшиму определению.

Example:
$$\frac{3x-2}{(x-1)^3(x+2)(x^2+1)(x^2+2x+3)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3} + \frac{B}{x+2} + \frac{Cx+D}{x^2+1} + \frac{Ex+F}{x^2+2x+3} + \frac{Mx+N}{(x^2+2x+3)^2}$$

Для того, чтобы найти неопределенные коэффициенты в полученном выражении, умножают обе части тождества на знаменатель левой части. Таким образом, получают 2 тождественно равных многочлена. Раскрывая скобки справа, после сего приравнивают коэффициенты при одинаковых степенях. Получают систему линейных уравнений для определения неизвестных коэффициентов.

Example:

$$\frac{x^4 + 2x^3 + 5x^2 - 1}{x(x^2 + 1)^2} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1} + \frac{Dx + E}{(x^2 + 1)^2} \left| x(x^2 + 1)^2 \right|$$

$$x^4 + 2x^3 + 5x^2 - 1 = a(x^2 + 1)^2 + (Bx + C)x(x^2 + 1) + (Dx + E)x =$$

$$= A(x^4 + 2x^2 + 1) + (Bx + C)(x^3 + x) + Dx^2 + Ex =$$

$$= Ax^4 + 2Ax^2 + A + Bx^4 + Cx^3 + Bx^2 + Cx + Dx^2 + Ex =$$

$$= (A + B)x^4 + Cx^3) + (2A + B + D)x^2 + (E + C)x + A.$$

$$\begin{cases} x^4: & A+B=1 \\ x^3: & C=2 \\ x^2: & 2A+B+D=5 \\ x^1: & C+E=0 \\ x^0: & A=-1 \end{cases} \qquad \begin{array}{l} A=1 \\ B=2 \\ C=2 \\ D=5 \\ E=-2 \\ \hline \frac{x^4+2x^3+5x^2-1}{x(x^2+1)^2} = -\frac{1}{x} + \frac{2x+2}{x^2+1} + \frac{5x-2}{(x^2+1)^2} \end{array}$$

В некоторых случаях для нахождения неопределенных коэффициентов можно воспользоваться так называемым методом частных значений аргумента. Он состоит в том, что аргументу x придаются конкретные числовые значения столько раз, сколько содержится неизвестных коэффициентов в разложении. При этом удобно выбирать x равным значению действительного корня знаменателя.

$$\frac{3x-4}{x(x-2)(x+1)} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{x+1}$$

$$A = \frac{3x-4}{(x-2)(x+1)} \Big|_{x=0} = \frac{-4}{-2 \cdot 1} = 2$$

$$B = \frac{3x-4}{x(x+1)} \Big|_{x=2} = \frac{6-4}{2 \cdot 3} = \frac{1}{3}$$

$$C = \frac{3x-4}{x(x-2)} \Big|_{x=-1} = \frac{-3-4}{-1 \cdot (-3)} = -\frac{7}{3}$$

Example:
$$\frac{x^2+1}{x(x-1)^2} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$$

$$A = \frac{x^2+1}{(x-1)^2} \Big|_{x=0} = 1$$

$$C = \frac{x^2+1}{x} \Big|_{x=1} = 2$$
при $x=2$:
$$B = \frac{5}{2} - \frac{1}{2} - 2 = 0$$

$$A = \frac{x^2 + 1}{(x - 1)^2} \Big|_{x = 0} = 1$$

$$C = x^2 + 1 \Big|_{x = 0} = 2$$

$$C = \frac{x^2 + 1}{x} \Big|_{x=1} = 2$$

при
$$x = 2$$
:
 $B = \frac{5}{2} - \frac{1}{2} - 2 = 0$

1.5.2 Интегрирование простейших дробей

I.
$$\int \frac{A}{x-a} dx = A \int \frac{d(x-a)}{x-a} = A \ln|x-a| + c$$

II.
$$\int \frac{A}{(x-a)^k} dx = A \int (x-a)^{-k} d(x-a) = A \frac{(x-a)^{-k+1}}{-k+1} + c$$

$$\begin{split} &\text{III. } \int \frac{Mx+N}{x^2+px+q} \ \mathbf{d}x = \int \frac{Mx+N}{x^2+2x\cdot\frac{p}{2}+\frac{p^2}{4}-\frac{p^2}{4}+q} \ \mathbf{d}x = M \int \frac{x+\frac{p}{2}-\frac{p}{2}}{(x+\frac{p}{2})^2+q-\frac{p^2}{4}} \ \mathbf{d}\left(x+\frac{p}{2}\right) + \\ &+ N \int \frac{\mathbf{d}(x+\frac{p}{2})}{(x+\frac{p}{2})^2+q-\frac{p^2}{4}} = M \int \frac{(x+\frac{p}{2}-\frac{p}{2}) \ \mathbf{d}(x+\frac{p}{2})}{(x+\frac{p}{2})^2+q-\frac{p^2}{4}} + \left(N-\frac{Mp}{2}\right) \int \frac{\mathbf{d}(x+\frac{p}{2})}{(x+\frac{p}{2})^2+q-\frac{p^2}{4}} = \left| \begin{array}{c} \left(x+\frac{p}{2}\right) = t \\ q-\frac{p^2}{4} = a^2 \end{array} \right| = \\ M \int \frac{t \ \mathbf{d}t}{t^2+a^2} + \left(N-\frac{Mp}{2}\right) \int \frac{\mathbf{d}t}{t^2+a^2} = \frac{M}{2} \left(\int \frac{\mathbf{d}(t^2+a^2)}{(t^2+a^2)^k}\right) + \left(N-\frac{Mp}{2}\right) \cdot I_k = \frac{M}{2} \frac{(t^2+a^2)^{-k+1}}{-k+1} + \\ + \left(N-\frac{Mp}{2}\right) \cdot I_k \end{split}$$

Найдем
$$I_k = \int \frac{\mathrm{d}t}{(t^2 + a^2)^k} = \begin{vmatrix} U = \frac{1}{(t^2 + a^2)^k} \Rightarrow \mathbf{d}U = -k(t^2 + a^2)^{-k-1} \\ \mathbf{d}V = \mathbf{d}t; \ V = t; \ 2t \ \mathbf{d}t = -2k\frac{t \ \mathbf{d}t}{(t^2 + a^2)^{k+1}} \end{vmatrix} = \frac{t}{(t^2 + a^2)^k} + \int t \cdot 2k\frac{t \ \mathbf{d}t}{(t^2 + a^2)^k} = \frac{t}{(t^2 + a^2)^k} + 2k\int \frac{(t^2 + a^2 - a^2) \ \mathbf{d}t}{(t^2 + a^2)^{k+1}} = \frac{t}{(t^2 + a^2)^k} + 2k\int \left(\frac{1}{(t^2 + a^2)^{k+1}} - \frac{a^2}{(t^2 + a^2)^{k+1}}\right) \ \mathbf{d}t = \frac{t}{t^2 + a^2} + 2k\left(I_k - a^2I_{k+1}\right) = \frac{t}{t^2 + a^2} + 2kI_k - 2ka^2I_{k+1} \Rightarrow 2ka^2I_{k+1} = \frac{t}{(t^2 + a^2)^k} + I_k(2k-1);$$

Пусть
$$k+1=n\Rightarrow k=n-1$$
 Получим: $I_n=\frac{1}{a^2(2n-2)}\cdot\frac{t}{(t^2+a^2)^{n-1}}+\frac{2n-3}{2n-2}\cdot\frac{1}{a^2}\cdot I_{n-1};\ n>2$

1.5.3 Общая схема интегрирования рациональных дробей

- 1. Если дробь неправильная, то разделить числитель на знаменатель и выделить целую часть (т. е. представить дробь в форме многочлена и правильной рациональной дроби).
- 2. Знаменатель правильной рациональной дроби раскладываем на множители и записываем разложение правильной дроби в сумму простейших дробей.
- 3. Находим неопределенные коэффициенты этого разложения.
- 4. Интегрируем полученный многочлен и сумму полученных дробей.

Remark. Интеграл от рациональной функции всегда выражается через элементарные функции.

$$\int \frac{x^5 + 2x^3 + 4x + 4}{x^4 + 2x^3 + 2x^2} \, dx =$$

$$(\frac{x^5}{-x^5 - 2x^4 - 2x^3} + 4x + 4) : (x^4 + 2x^3 + 2x^2) = x - 2 + \frac{4x^3 + 4x^2 + 4x + 4}{x^4 + 2x^3 + 2x^2}$$

$$\frac{-2x^4}{-2x^4}$$

$$\frac{2x^4 + 4x^3 + 4x^2}{4x^3 + 4x^2 + 4x + 4} = \int \left((x - 2) + \frac{4x^3 + 4x^2 + 4x + 4}{x^4 + 2x^3 + 2x^2} \right) \, dx =$$

$$\frac{4x^3 + 4x^2 + 4x + 4}{x^4 + 2x^3 + 2x^2} = \frac{4x^3 + 4x^2 + 4x + 4}{x^2(x^2 + 2x + 2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 2x + 2}$$

$$B = \frac{4x^3 + 4x^2 + 4x + 4}{x^2 + 2x^2 + 2x} \Big|_{x=0} = 2$$

$$\text{IIDM } x = 1 : (1.1)$$

$$\frac{16}{5} = A + 2 + \frac{C + D}{2} \Big| \cdot 5; \qquad 16 = 5A + 10 + C + D; \qquad 5a + C + D = 6$$

при
$$x = -1$$
: $0 = -A + 2 + D - C$; $A + C - D = 2$; $A + C - D = 2$ при $x = -2$: $\frac{-32 + 16 - 8 + 4}{16 - 16 + 8} = -\frac{A}{2} + \frac{2}{4} + \frac{D - 2C}{2} | \cdot 2$; $-5 = -A + 1 + D - 2C$; \Rightarrow $\Rightarrow A = 0$; $B = 2$; $C = 4$; $D = 2$
$$\int \left(x - 2 + \frac{2}{x^2} + \frac{4x + 2}{x^2 + 2x + 2}\right) \, \mathbf{d}x = \frac{2}{x^2} - 2x + 2 \int \frac{2x + 2 - 1}{(x^2 + 2x + 2)} \, \mathbf{d}x = \frac{2}{x^2} - 2x - \frac{2}{x} + 2 \left(\int \frac{\mathbf{d}(x^2 + 2x + 2)}{\ln(x^2 + 2x + 2)} - \int \frac{\mathbf{d}(x + 1)}{(x + 2)^2 + 1}\right) = \frac{2}{x^2} - 2x - \frac{2}{x} + 2 \ln(x^2 + 2x + 2) - 2 \arctan(x + 1)$$

1.6 Интегрирование тригонометрических функций

1.6.1 Универсальная тригонометрическая замена

Пусть $R(\sin x; \cos x)$ - рациональная функция от $\sin x, \cos x$.

Замена: $t = \tan \frac{x}{2}$

Тогда:

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = 2\tan\frac{x}{2}\cos\frac{x^2}{2} = \frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}} = \frac{2t}{1+t^2}$$
$$\cos x = 2\cos^2\frac{x}{2} - 1 = \frac{2}{1+\tan^2\frac{x}{2}} - 1 = \frac{2}{1+t^2} - 1 = \frac{1-t^2}{1+t^2}$$

 $x = 2 \arctan t;$ $\mathbf{d}x = \frac{2}{1+t^2} \mathbf{d}t$

Получаем:

$$\int R(\sin x, \cos x) \, \, \mathbf{d}x = \int R\left(\frac{2}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \cdot \frac{2}{1+t^2} \, \, \mathbf{d}t = \int R_1(t) \, \, \mathbf{d}t$$

Remark. Этот способ позволяет найти первообразную, но полученная функция f(t) может оказаться слишком громаздкой.

1.6.2 Другие виды подстановок

- 1. Если подинтегральная функция является нечетной относительно $\sin x$, т. е. $R(-\sin x,\cos x) = -R(\sin x,\cos x)$, то используется замена $t=\cos x$. Фактически это означает внесения $\cos x$ под знак дифференциала.
- 2. Если подинтегральная функция является нечетной относительно $\cos x$, т. е. $R(\sin x, -\cos x) = -R(\sin x, \cos x)$, то используется замена $t = \sin x$. Фактически это означает внесения $\sin x$ под знак дифференциала.

3. Если подинтегральная функция является одновременно четной относительно $\sin x, \cos x$ то выполняется замена $t = \tan x$ (внесение $\frac{1}{\cos^2 x}$ под знак дифференциала).

Remark.

Для
$$\int R(\tan x) \, dx$$
 замена $\tan x = t \Rightarrow x = \arctan t; \, dx = \frac{dt}{1+t^2};$ и $\int R(\tan x) \, dx = \int R(t) \cdot \frac{dt}{1+t^2} = \int R_1(t) \, dt$

1.6.3Использования формул тригонометрии

1.
$$\int \cos^2 x \, dx, \int \sin^2 x \, dx \Rightarrow \cos^2 x = \frac{1 + \cos 2x}{2}, \sin^2 x = \frac{1 - \cos 2x}{2}$$
2.
$$\int \cos \alpha x \cos \beta x \, dx \Rightarrow \cos \alpha x \sin \beta x = \frac{1}{2} (\cos(\alpha - \beta)x + \cos(\alpha + \beta)x)$$

$$\int \sin \alpha x \sin \beta x \, dx \Rightarrow \sin \alpha x \sin \beta x = \frac{1}{2} (\cos(\alpha - \beta)x - \cos(\alpha + \beta)x)$$

$$\int \sin \alpha x \cos \beta x \, dx \Rightarrow \sin \alpha x \cos \beta x = \frac{1}{2} (\sin(\alpha - \beta)x + \sin(\alpha + \beta)x)$$

$$\int \frac{dx}{3+\sin x + \cos x} = \begin{vmatrix} t = \tan\frac{x}{2} \\ \sin x = \frac{2t}{1+t^2} \\ \cos x = \frac{1-t^2}{1+t^2} \end{vmatrix} = \int \frac{2 dt}{(1+t^2)(3+\frac{2t}{1+t^2}+\frac{1-t^2}{1+t^2})} = 2 \int \frac{dt}{3+3t^2+2t+1-t^2} = 2 \int \frac{dt}{3+3t^2+2t+1-t^2} = 2 \int \frac{dt}{2t^2+2t+4} = 2 \int \frac{dt}{t^2+t+2} = \int \frac{dt}{(t+\frac{1}{2})^2+\frac{7}{4}} = \int \frac{d(t+\frac{1}{2})}{(t+\frac{1}{2})^2+(\frac{\sqrt{7}}{2})^2} = \frac{2}{\sqrt{7}} \arctan(2\frac{t+\frac{1}{2}}{\sqrt{7}}) + c = 2 \int \frac{dt}{\sqrt{7}} \arctan(2\frac{\tan x + \frac{1}{2}}{\sqrt{7}}) + c$$

Example:
$$\int \frac{dx}{1+\sin^2 x} = \frac{1}{\frac{1}{\cos^2 x} + \tan^2 x} \cdot \frac{dx}{\cos^2 x} = \left| \cos^2 x = \frac{1}{1+\tan^2 x} \right| = \int \frac{1}{1+2\tan^2 x} \, \mathbf{d}(\tan x) = \left| \tan x = t \right| = \int \frac{dt}{1+2t^2} = \frac{1}{\sqrt{2}} \int \frac{\mathbf{d}(\sqrt{2}t)}{1+(\sqrt{2}t)^2} = \frac{1}{\sqrt{2}} \arctan(\sqrt{2}t) + c = \frac{1}{\sqrt{2}} \arctan(\sqrt{2}\tan x) + c$$

Example:
$$\int \cos^2 x \sin^4 x \, dx = \int \frac{1+\cos 2x}{2} \left(\frac{1-\cos 2x}{2}\right)^2 \, dx = \frac{1}{8} \int (1-\cos^2 2x)(1-\cos 2x) \, dx = \frac{1}{8} \int (1-\cos 2x - \cos^2 x + \cos^3 2x) \, dx = \frac{1}{8} (x - \frac{\sin 2x}{2} - \int \cos^2 2x \, dx + \int \cos^3 2x \, dx) = \frac{1}{8} x - \frac{\sin 2x}{16} - \frac{x}{16} - \frac{\sin 4x}{64} - \frac{1}{16} \int (1-\sin^2 x) \, d(\sin 2x) = \frac{x}{16} - \frac{\sin 2x}{16} - \frac{\sin 4x}{16} + \frac{\sin 2x}{16} - \frac{1}{16} \frac{\sin^3 2x}{3} + c = \frac{x}{16} - \frac{\sin 4x}{16} - \frac{1}{16} \frac{\sin^3 2x}{3} + c$$

$$\int \sin^4 x \cos^5 x \, dx = |\sin x = t| = \int \sin^4 x \cos^4 x \underbrace{\cos x}_{\mathbf{d}(\sin x)} = \int \sin^4 x (\cos^2 x)^2 \, \mathbf{d}(\sin x) =$$

$$= \int \sin^4 x (1 - \sin^2 x)^2 \, \mathbf{d}(\sin x) = \int t^4 (1 - 2t^2 - t^4) \, \mathbf{d}t = \int (t^4 - 2t^6 + t^8) \, \mathbf{d}t =$$

$$= \int t^5 - \frac{2t^7}{7} + \frac{t^9}{9} + c = \frac{\sin^5 x}{5} - \frac{2\sin^7 x}{7} + \frac{\sin^9 x}{9} + c$$

1.7Интегрирование некоторых иррациональных и транцеден функций

Дробно-линейная подстановка для интегралов

$$\int R(x; \left(\frac{ax+b}{cx+d}\right)^{\frac{m_1}{n_1}}, \left(\frac{ax+b}{cx+d}\right)^{\frac{m_2}{n_2}}, \dots, \left(\frac{ax+b}{cx+d}\right)^{\frac{m_k}{n_k}} \mathbf{d}x,
a, b, c, d \in \mathbb{R}; m_1, n_1, \dots, m_k, n_k \in \mathbb{N}$$

Remark.

1.
$$\left(\frac{ax+b}{cx+d}\right)^{\frac{m}{n}} = \sqrt[n]{\left(\frac{ax+b}{cx+d}\right)^m}$$

2. Частичными случаи таких дробей являются

$$ax + b(c = 0, d = 1),$$
 $x = (c = 0, d = 1, b = 0, a = 1)$

Замена:

Замена:
$$\frac{ax+b}{cx+d} = t^l, \text{ где } l = \operatorname{lcm}(n_2, n_2, \dots, n_k) \Rightarrow \left(\frac{ax+b}{cx+d}\right)^{\frac{m_i}{n_i}} = t^{\frac{m_i}{n_i}l} = t^{p_i}, \ p_i \in \mathbb{Z}$$

$$ax+b=t^lcx+dt^l; \ x=(t^lc-a)=b-d\cdot t^l \Rightarrow x=\frac{b-dt^l}{ct^l-a}$$

$$\mathbf{d}x=\left(\frac{b-dt^l}{ct^l-a}\right)_t' \ \mathbf{d}t=\frac{-dl\cdot t^{l-1}(ct^l-a)-(b-dt^l)\cdot c\cdot l\cdot t^{l-1}}{(ct^l-a)^2}=\frac{-lt^{l-1}(cdt^l-ad+bc-cdt^l}{(ct^l-a)^2}=\frac{-lt^{l-1}(bc-ad)}{(ct^l-a)^2}$$
 Таким образом, подинтегральная функция будет являтся рациональной функцией

ot t.

$$\int \frac{1}{(x-1)^2 \sqrt[3]{\frac{x+1}{x-1}}} \, \mathbf{d}x = \begin{vmatrix} \frac{x+1}{x-1} = t^3 \Rightarrow & \mathbf{d}x = \left(\frac{t^3+1}{t^3-1}\right) \, \mathbf{d}t \\ x+1 = xt^3 - t^3 \\ x = \frac{t^3+1}{t^3-1} & = \frac{-6t^2 \, \mathbf{d}t}{(t^3-1)^2} \end{vmatrix} =$$

$$= \int \frac{1}{\left(\frac{t^3+1}{t^3-1}-1\right)^2} \cdot t \cdot \frac{-6t^2}{(t^3-1)^2} = -6 \int \frac{1 \cdot t^3}{\frac{22}{(t^3-1)}} \cdot (t^3-1)^2 = -\frac{6}{4} \cdot \frac{t^4}{4} = -\frac{3}{8} \cdot \left(\frac{x+1}{x-1}\right)^{\frac{4}{3}} + c$$

1.7.2 Квадратичные иррациональности

- 1. Частные случаи
 - (а) Интегралы вида $\int R(x, \sqrt{x^2 \pm a^2}) \, \mathbf{d}x$, $\int R(x, \sqrt{a^2 x^2}) \, \mathbf{d}x$ R() знак рациональной функции. Для преобразования таких интегралов к интегралам рациональной функции испльзуется замена.
 - для $R(x, \sqrt{a^2 x^2})$: $x = a \sin t$ - для $R(x, \sqrt{x^2 + a^2})$: $x = at \tan t$; $(1 + \tan^2 t = \frac{1}{\cos^2 t})$
 - для $R(x, \sqrt{x^2 a^2})$: $x = \frac{a}{\sin t}$
 - (b) Интегралы вида $\int \frac{dx}{\sqrt{ax^2+bx+c}}$; $\int \sqrt{ax^2+bx+c} \ dx$; $\int \frac{(mx+n) \ dx}{\sqrt{ax^2+bx+c}}$ можно свести к табличному или к пункту (a) выделением полного квадрата. $ax^2+bx+c=a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)=a\left(x^2+2\cdot x\cdot \frac{b}{2a}+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}+\frac{c}{a}\right)=\\ =a\left(x^2+\frac{b}{a}\right)^2+c-\frac{b^2}{4a}$; замена: $\left(x+\frac{b}{2a}\right)=t$
 - (c) Интегралы вида $\int \frac{P_n(x) \, \mathrm{d}x}{\sqrt{ax^2+bx+c}}, P_n(x)$ многочлен n-ой степени, можно вычислить поп формуле: $\int \frac{P_n(x) \, \mathrm{d}x}{\sqrt{ax^2+bx+c}} = Q_{n-1}(x) \cdot \sqrt{ax^2+bx+c} + \lambda \int \frac{\mathrm{d}x}{\sqrt{ax^2+bx+c}}, \text{ где } Q_{n-1}(x)$ многочлен с непоределенными коэффициентами. λ неопределенный коэффициент. Неопределенный коэффициенты находим, дифференцируя обе части этой формулы и умножая полученный результат на знаменатель. $\frac{P_n(x)}{\sqrt{ax^2+bx+c}} = Q'_{n-1}(x) \cdot \sqrt{ax^2+bx+c} + Q_{n-1}(x) frac2ax + b\sqrt{ax^2+bx+c} + \lambda \cdot \frac{1}{\sqrt{ax^2+bx+c}} =$ умножаем на $\sqrt{ax^2+bx+c}$, из полученного находим неопределенные коэффициенты.

$$\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \begin{vmatrix} x = \frac{a}{\sin t} \\ \mathrm{d}x = -\frac{a\cos t}{\sin t} & \mathrm{d}t \end{vmatrix} = \int \frac{-a\cos t}{\sqrt{\frac{a^2}{\sin^2 t} - a^2} \cdot \sin t} = -\int \frac{\cot t}{\sqrt{\frac{1 - \sin^2 t}{\sin^2 t}} \cdot \sin^2 t} = \\
= -\int \frac{\mathrm{d}t}{\sin t} \cdot \frac{\sin t}{\sin t} = \int \frac{\mathrm{d}(\cos t)}{1 - \sin^2 t} = \frac{1}{2} \ln \left| \frac{1 - \cos t}{1 + \cos t} \right| + c = \\
= \begin{vmatrix} \sin t = \frac{a}{x}; \\ t = \arcsin \frac{a}{x} \end{vmatrix} \cdot \cos t = \sqrt{1 - \sin^2 t} \\ \sqrt{1 - \frac{a^2}{x^2}} = \sqrt{\frac{x^2 - a^2}{x^2}} \end{vmatrix} = \frac{1}{2} \ln \left| \frac{1 - \sqrt{x^2 - a^2}}{1 + \sqrt{x^2 - a^2}} \right| + c = \\
= \frac{1}{2} \ln \left| \frac{x - \sqrt{x^2 - a^2}}{x + \sqrt{x^2 - a^2}} \right| + c$$

$$\int \frac{x+4}{\sqrt{6-2x-x^2}} \, \mathbf{d}x = \begin{vmatrix} 6 - 2x - x^2 = -((x^2 + 2x + 1) - 7) = -(x+1)^2 + 7 = \\ = 7 - (x+1)^2 = (\sqrt{7})^2 - (x+1)^2 \end{vmatrix} = \\ = |x+1=t| = \int \frac{t+3}{\sqrt{(\sqrt{7})^2 + (t^2)}} \, \mathbf{d}t = \int \frac{t \, \mathbf{d}t}{\sqrt{7-t^2}} + 3 \int \frac{\mathbf{d}t}{\sqrt{7-t^2}} = -\frac{1}{2} \int \frac{\mathbf{d}(7-t^2)}{\sqrt{7-t^2}} + \\ + 3 \arcsin \frac{t}{\sqrt{7}} = -\sqrt{7-t^2} + 3 \arcsin \frac{t}{\sqrt{7}} + c = -\sqrt{6-2x-x^2} + \\ + 3 \arcsin \frac{x+1}{\sqrt{7}} + c \end{vmatrix}$$

Example:

Example:

$$\int \frac{x^2 dx}{\sqrt{1-2x-x^2}} = (Ax+B)\sqrt{1-2x-x^2} + \lambda \int \frac{dx}{\sqrt{1-2x-x^2}} \Big|' = \frac{x^2}{\sqrt{1-2x-x^2}} =$$

$$= A\sqrt{1-2x-x^2} + (Ax+B) \cdot \frac{-2-2}{2\sqrt{1-2x-x^2}} + \frac{\lambda}{\sqrt{1-2x-x^2}} \Big| \cdot \sqrt{1-2x-x^2}$$

$$x^2 = A - 2Ax - Ax^2 - Ax^2 - Ax - Bx - B + \lambda$$

$$\begin{cases}
-2A = 1 \\
-3A + B = 0 \\
A - B + \lambda = 0
\end{cases}$$

$$\begin{cases}
A = -\frac{1}{2} \\
B = \frac{3}{2}\lambda = 2
\end{cases}$$

$$\left(-\frac{1}{2}x + \frac{3}{2}\right)\sqrt{1-2x-x^2} + 2\int \frac{dx}{\sqrt{2-(x+1)^2}} = F(x) + 2\arcsin\frac{x+1}{\sqrt{2}} + c$$

2. Интегралы общего вида $\int R(x, \sqrt{ax^2 + bx + c}) \, \mathbf{d}x$

Способ 1 Выделим под знаком радикала полный квадрат и выполняем замену: x + $\frac{b}{2a} = t$; интеграл сводится к к одному из интегралов $\int R(t,\sqrt{t^2\pm a^2}) \ \mathbf{d}t, \int R(t,\sqrt{a^2-t^2}) \ \mathbf{d}t$, которые находятся при помощи тригонометричес. подстановки.

Способ 2 Использование подстановки Эйлера

- если
$$a > 0$$
, то $\sqrt{ax^2 + bx + c} = \pm \sqrt{ax} + t$: $(t \pm \sqrt{ax})$

- если
$$c>0$$
, то $\sqrt{ax^2+bx+c}=tx\pm\sqrt{c}$

- если
$$D > 0$$
, то $\sqrt{ax^2 + bx + c} = (x - \alpha) \cdot t$, где α - корень $ax^2 + bx + c|_{x=\alpha} = 0$.

Remark. По крайней мере одно из условий будет выполнено всегда; т.к. ситуация

$$\begin{cases} a<0\\ c<0 &\Rightarrow ax^2+bx+c<0 \text{ запрещена по ОДЗ.} \\ D<0 \end{cases}$$

Example:

Инегрирование дифферециального бинома 1.7.3

Интеграл $\int x^m (a+bx^n)^p dx$, $m, n, p \in \mathbb{Q}$; $a, b \in \mathbb{R}$ этот интеграл сводится к к интегралу от рациональной функции и первообразная выражается в элементарных функциях только в следующих случаях:

- 1. $p \in \mathbb{Z}$
- $2. \frac{m+1}{n} \in \mathbb{Z}$
- 3. $\left(\frac{m+1}{p} + p\right) \in \mathbb{Z}$

При этом для сведения заданого интеграла к интегралу от рациональной функции используются подстановки:

1.
$$p \in \mathbb{Z}$$
 Замена: $x = t^k$, где $k = \text{lcm}(m, n)$

2.
$$\frac{m+1}{n} \in \mathbb{Z}$$
 Замена: $a+bx^n=t^s$, где s - знам. p

3.
$$\left(\frac{m+1}{n}+p\right)\in\mathbb{Z}$$
 Замена: $a+bx^n=t^sx^n$, где s - знам. p

В остальных случиях первообразная в элементарных функциях не выражается. Этот результат носит название теоремы Чебышева.

Example:

$$\int \frac{\sqrt[3]{\sqrt[4]{x+1}}}{\sqrt{x}} \, \mathbf{d}x = \int x^{-\frac{1}{2}} (1+x^{\frac{1}{4}})^{\frac{1}{4}} \, \mathbf{d}x = \begin{vmatrix} m = -\frac{1}{2} \\ n = \frac{1}{4} \\ p = \frac{1}{3} \end{vmatrix} \Longrightarrow$$

- 1. $p \notin \mathbb{Z}$
- 2. $\frac{m+1}{n}=\frac{1\cdot 4}{2\cdot 1}=2\in\mathbb{Z}$ второй случай. Замена: $1+x^{\frac{1}{4}}=t^3,\;x=(t^3-1)^4;\;\;\mathbf{d}x=4(t^3-1)^3\cdot 3t^2\;\mathbf{d}t$

1.7.4 Интегралы вида $\int R(e^x) dx$, $\int R(\sqrt{e^x + e}) dx$

- 1. Замена: $e^x = t \Rightarrow x = \ln t$, $\mathbf{d}x = \frac{\mathbf{d}t}{t}$ $\int R(e^x) \, \mathbf{d}x = \int R(t) \frac{\mathbf{d}t}{t} = \int R_1(t) \, \mathbf{d}t$
- 2. Замена: $\sqrt{e^x + e} = t \Rightarrow e^x = t^2 a$, $x = \ln(t^2 a)$, $\mathbf{d}x = \frac{2t \ \mathbf{d}t}{t^2 a}$ $\int R(\sqrt{e^x + e}) \ \mathbf{d}x = \int R(t) \cdot \frac{2t \ \mathbf{d}t}{t^2 a} = \int R_1(t) \ \mathbf{d}t$

1.8 Интегралы, не выражающиеся в элементарных функциях

В интегральном исчислении строго доказывается, что первообразные от некоторых элементарных функций хотя и существуют, но не могут быть выражены элементарной функцией (т.е. как конечное число арифметических операций и композиций над основными элементарными функциями(даже если известно, что первообразная существует)). К таким интегралам относятся:

$$\int e^{-x^2} \, \mathbf{d}x \, \text{ интеграл Пуассона}(\text{теория вероятностей})$$

$$\int \frac{\mathbf{d}x}{\ln x} \, \mathbf{d}x, \int \frac{\mathbf{d}x}{x} \, \mathbf{d}x, \int \frac{e^x}{x} \, \mathbf{d}x \, \text{ интегральный синус, косинус, показательная функция}$$

$$\int \sqrt{1-k^2 \sin^2 x} \, \mathbf{d}x, \int \frac{\mathbf{d}x}{\sqrt{1-k^2 \sin^2 x}}, |k| < 1 \, \text{ элиптические интегралы}$$

$$\int \cos(x^2) \, \mathbf{d}x, \int \sin(x^2) \, \mathbf{d}x \, \text{ интегралы Фринеля}(\text{физика, оптика})$$

$$\int x^\alpha \sin x \, \mathbf{d}x, \int x^\alpha \cos x \, \mathbf{d}x, \, \alpha \neq 0, 1, 2 \dots \quad \text{ и другие}$$

Такие функции называются специальными. Для них существуют специальные таблицы для определения значений функции.

Определенный интеграл

2.1 Определение определенного интеграла(Римана)

Пусть функция: f(x); $f(x):[a,b]\to\mathbb{R}$ (a< b) произвольными точками разобьем отрезок [a,b] на n частичных отрезков: $[x_0,x_1],[x_1,x_2],\ldots,[x_{n-1},$ Разбиение будем обозначать T,T - разбиение $[a,b];x_0,x_1,\ldots,x_n$ - точки разбиения

Величина $\Delta x_n = x_k - x_{k-1}, \ k = \overline{1,n}$ называется **длинной** k-го частичного отрезка $[x_{k-1}, x_k]$.

Диаметр разбиение $T:d(T)=\max_{1\leq k\leq n}\Delta x_k$ - длина наибольшего частичного отрезка T.

Remark.
$$d(T) \to 0 \Rightarrow n \to \infty$$

Разбиение T' называется **дроблением** разбиения $T(T' \succ T)$, если его точками разбиения являются все точки разбиения T и, по крайней мере, одна дополнительная. Пусть есть некоторое разбиение T отрезка [a, b]. На каждом частичном отрезке выберем произвольную точку $\xi_k : \forall k \ \xi_k \in [x_{k-1}, x_k], \ k = \overline{1, n}$. Эти точки назовем **отмеченными**. Пара (T, ξ) означает разбиение T с отмеченными точками.

Интегральной суммой для функции f(x) на отрезке [a,b] для выбранного разбиения T с отмеченными точка (T,ξ) называется

$$\sum_{k=1}^{n} f(\xi_k) \cdot \Delta x_k = \sigma(f \mid T, \xi)$$

Число I(f) называется **пределом** интегральных сумм $\sigma(f \mid T, \xi)$ при $\alpha(T) \to 0$ если для любого $\varepsilon > 0$ можно указать такое положительное δ , зависящее от ε что для любых разбиений, для которых $\alpha(T) < \delta(\varepsilon)$ значение интегральных сумм независимо от выбранных точек удовлетворяют неравенству : $|\sigma(f \mid T, \xi) - I(f)| < \varepsilon$

$$\lim_{\alpha(T)\to 0} \sigma(f|t,\xi) = I(f) \Leftrightarrow \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 \forall (T,\xi)\alpha(T) < \delta(\varepsilon) \Rightarrow \sigma(f|T,\xi) - I(f) < \varepsilon$$

Если такое число I(F) существует (т.е существует и является конечным указанный предел интегральных сумм), то это число и называют определенным интегралом функции f(x) на отрезке [a, b].

$$\int_{a}^{b} f(x) \, \mathbf{d}x \equiv I(f) = \lim_{\alpha(T) \to 0} \sigma(f \mid t, \, \xi) = \lim_{\alpha(T) \to 0} \sum_{k=1}^{n} f(\xi_k); \Delta x_k(n \to \infty)$$

При этом функция f(x) интегрируема по Риману на отрезке $[a,\ b]$:

Theorem 2.1.1 (необходимое условие интегрируемости функции на отрезке).

Eсли функция f(x) интегрируема на отрезке [a, b], то f(x) - ограничена на [a, b].

$$Ecnuf(x) \in R([a, b]), \ mo \ f(x)$$
 - ограничена на отрезке $[a, b]$

Proof. Пусть $f(x) \in R([a, b]) \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta(\varepsilon) > 0 > \forall (T, \xi) \, \alpha(T) < \delta(\varepsilon) \Rightarrow |\sigma(f|T, \xi) - I(f)| < \varepsilon \Rightarrow I(f) - \varepsilon < \sigma(f|T, \xi) < I(f) + \varepsilon$

т.е. $\sigma(f \mid T, \xi)$ - ограничена. далее от противного:

Предположим, что функция f(x) не ограничена на [a, b], т.е. $\exists x_0 \in [a, b]$ $\forall M > 0 \ \exists \Theta(x_0) \ \forall x \in \Theta(x_0) \ |f(x)| > M$. при любом разбиение T отр

 $\forall M>0$ $\exists \Theta(x_0) \ \forall x\in \Theta(x_0)\ |f(x)|>M$. при любом разбиение T отрезка [a,b] точка x_0 попадает в некоторый частичный отрезок $[x_{k-1},\ x_k]$. В этот же отрезок попадает либо вся окрестность точки $x_0\ \Theta(x_0)$, в которой функция не ограничена, либо часть этой окрестности. Тогда выбирая на этом отрезке точку $\xi_k\in \Theta(x_0)$ из такой окрестности получим: $f(\xi_k)$ может быть как угодно велико(по модулю) следовательно, $f(\xi_k)$ - неограничено $\Rightarrow f(\xi_k)\cdot \Delta x_k$ - неограничено, т.е. $\sigma(f\mid T,\xi)$ - неограничена - противоречие, следовательно, f(x) - ограничена на [a,b].

Это условие необходимое, но не является достаточным.

Remark. Если предел I(f) не существует или являются бесконечным, то $f(x) \notin R([a, b])$

Example:

$$D(x) = \begin{cases} 1, & \text{если } x \in \mathbb{Q} \\ 0, & \text{если } x \notin \mathbb{Q} \end{cases}$$

1. если
$$\xi_k = q_k \in \mathbb{Q}, k = \overline{1,n}$$
, то $\sigma(D \mid T, q) = \sum_{k=1}^n \Delta x_k = b - a$

2. если
$$\xi_k = r_k \not\in \mathbb{Q}, \ r_k \in \mathbb{V}, \ k = \overline{1, \ n}, \ \text{то} \ \sigma(D \mid T, \ r) = 0$$

I(D) - не существует. $D(x) \not\in R([a,\ b])\ \forall [a,\ b]$

2.2 Суммы Дарбу и их свойства

Пусть функция f(x) - ограничена на [a, b], T - выбранное разбиения отрезка [a, b].. На каждом частичном отрезке разбиения функция имеет точную верхнюю и нижнюю грань. Обозначим m_k и M_k :

$$m_k = \inf_{x \in [x_{k-1}, x_k]} f(x)$$
 $m_k = \sup_{x \in [x_{k-1}, x_k]} f(x)$

Нижней и **верхней** сумами Дарбу Функции f(x) на отрезке [a, b] при данном разбиении T называются:

$$\sigma_*(f \mid T) = \sum_{k=1}^n m_k \Delta x_k \qquad \sigma^*(f \mid T) = \sum_{k=1}^n M_k \cdot \Delta x_k$$
$$\forall (T, \xi) \ \sigma_*(f \mid T) \le \sigma^*(f \mid T)$$

Theorem 2.2.1 (Свойство суммы Дарбу).

- 1. Если $T' \succ T(T' \partial poбление разбиения T)$, то $\sigma_*(f \mid T') > \sigma_*(f \mid T)$.
- 2. Ecau $T' \succ T$, mo $\sigma^*(f \mid T') < \sigma^*(f \mid T)$
- 3. $\forall T_1, T_2 \qquad \sigma_*(f \mid T_1) < \sigma^*(f \mid T_2)$

Proof.

1. Посколько разбиение T' можно получить из разбиения T, последовательно добавляя к нему по одной новой точке, то утверждение достаточно доказать для случая, когда T' содержит только одну дополнительную точку по сравнению с T. Тогда:

$$\sigma_*(f \mid T) = \sum_{k=1}^n m_k \cdot \Delta x_k$$

Пусть дополнит точка разбиение $x': x' \in [x_{k-1}, x_k]$.

Пусть дополнит точка разбиение
$$x': x' \in [x_{k-1}, x_k]$$
.

Тогда $\sigma_*(f \mid T) = \sum_{\substack{k=1 \ k \neq r}}^n m_k \cdot \Delta x_k + m_r \cdot \Delta x_r, \ \sigma_*(f \mid T') = \sum_{k=1}^n m_k \cdot \Delta x_k + \cdots$

$$+ \inf_{x \in [x_{k-1}, x_k]} f(x) \cdot (x' - x_{k-1}) + \inf_{x \in [x_{k-1}, x_k]} f(x)(x_r - x')) = \inf_{x \in [x_{r-1}, x']} f(x) \ge \inf_{x \in [x_{r-1}, x_r]} f(x) = m_r$$

$$= \inf_{x \in [x', x_r]} f(x) \ge \inf_{x \in [x_{r-1}, x_r]} f(x) = m_r$$

$$= \sum_{\substack{k=1 \ k \neq 2}}^n m_k \cdot \Delta x_k + m_r \cdot \Delta x_r = \sigma_*(f \mid T)$$

- 2. аналогично 1
- 3. Возьмем $T = T_1 \cup T_2$; Тогда $T \succ T_1$, $T \succ T_2 \cdot \sigma_*(f \mid T) < \sigma_*(f \mid T) < \sigma^* < \sigma(f \mid T_2)$

Consequence. Таким образом, множество всех нижних сумм Дарбу для различных разбиений заданого отрезка является ограниченными сверху(любой верхней суммой Дарбу). Поэтому это множество имеет точную верхнюю грань:

$$\exists \sup_{T} \sigma_*$$

Это значение называется **нижним интегралом** $I_*(f)$. Аналогично, множество всех верхних сумм Дарбу для различных разбиений отрезка является ограниченным снизу любой нижней суммой Дарби. ПОэтому множество имеет точную нижнюю грань:

$$\exists \inf_{T} \sigma^*$$

Это значение называется **верхним интегралом** $I^*(f)$. Обозначим:

$$\sup_{T} \sigma_*(f \mid T) \equiv I_*(f) \equiv \int_a^b f(x) \, \mathbf{d}x (\text{нижний интеграл})$$

$$\inf_{T} \sigma^{*}(f \mid T) \equiv I^{*}(f) \equiv \int_{a}^{b} f(x) \, \mathbf{d}x (\text{верхний интеграл})$$

Тогда:

$$\forall T: \ \sigma_*(f \mid T) \le I_*(f) \le I^*(f) \le \sigma^*(f \mid T)$$

Колибанием сумм Дарбу для данного разбиения называется величина:

$$\Omega(f \mid T) = \sigma^*(f \mid T) - \sigma_*(f \mid T)$$

Тогда:

$$\Omega(f \mid T) \ge 0;$$
 $0 \le I^*(f) - I_*(f) \le \Omega(f \mid T)$

2.3 Необходимое и достаточное условие интегрируемости функции f(x) на $[a,\ b]$

Theorem 2.3.1 (Критерий интегрируемости функции на отрезке). Для того, чтобы функция f(x), заданая на отрезке [a, b], была интегрируема по Риману, необходимо и достаточно, чтобы предел колебания суммы Дарбу равнялся нулю, когда диаметр разбиения стремился κ нулю:

$$f(x): [a, b] \to R, f(x) \in R([a, b]) \Leftrightarrow \lim_{\alpha(T) \to o} \Omega(f \mid T) = 0$$

 $\textit{Remark. } \lim \Omega(f \mid T) = 0 \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ \forall T \ \alpha(T) < \delta(\varepsilon) \Rightarrow \Omega(f \mid T) < \varepsilon$

Proof.

Необходимое:

Пусть $f(X) \in R([a, b]) \Rightarrow \exists I(f) = \mathrm{const}:$ $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ \forall (T, \xi) \ \alpha(T) < \delta(\varepsilon) \Rightarrow |\sigma(f \mid T, \xi) - I(f)| < \frac{\varepsilon}{4}$ Из модуля: $I(f) - \frac{\varepsilon}{4} < \sigma(f \mid T, \xi) < I(f)$ Так как: $\sigma_*(f \mid T) \leq \sigma(f \mid T, \xi)) \leq \sigma^*(f \mid T) \ \forall T$

$$\begin{array}{ccc} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Достаточное

Пусть
$$\lim_{\alpha(t)\to 0} \Omega(f\mid t) = 0 \Rightarrow \lim_{\alpha(t)\to 0} \sigma_*(f\mid T) = \lim_{\alpha(t)\to 0} \sigma^*(f\mid t) = \text{const}$$
Так как: $\sigma_*(f\mid T) \leq \sigma(f\mid T,\,\xi) \leq \sigma^*(f\mid T) \ \forall T \Rightarrow \exists \lim_{\alpha(T)\to 0} \sigma(f\mid T,\,\xi) = \text{const} = I(f)$, т.е. $f(x) \in R([a,\,b])$

2.4Некоторые классы интегрируемых функций

2.4.1Интегрируемость непрерывных функций

Theorem 2.4.1. Если функция f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке.

$$f(x) \in C([a, b]) \Rightarrow f(x) \in R([a, b])$$

 $Proof.\ f(x)\in C([a,\ b])\underset{\text{т. Кантора}}{\Longrightarrow}f(x)$ - равномерно непрерывна на $[a,\ b].$ т.е. $\forall \varepsilon>$ $0 \ \exists \delta = \delta(\varepsilon) \ \forall x_1, \ x_2 \in [a, \ b] \ |x_1 - x_2| < \delta(\varepsilon) \ |f(x_1) - f(x_2)| < \varepsilon \cdot \frac{1}{b-a}$ Зафиксируем некоторое ε и найдем по нему $\delta(\varepsilon)$.

Выберем разбиение T отрезка [a, b], так чтобы $\alpha(T) < \delta(\varepsilon)$.

Выберем разоиение
$$T$$
 отрезка $[a, b]$, так чтобы $\alpha(T) < \delta(\varepsilon)$.

Тогда: $\Omega(f \mid T) = \sum_{k=1}^{n} M_k \cdot \Delta x_k - \sum_{k=1}^{n} m_k \cdot \Delta x_k =$

$$\begin{vmatrix} m_k = \inf_{x \in [x_{k-1}, x_k]} f(x) & m_k = \min_{x \in [x_{k-1}, x_k]} f(x) \\ f(x) \in C([a, b]) \Rightarrow & \\ M_k = \sup_{x \in [x_{k-1}, x_k]} f(x) & M_k = \max_{x \in [x_{k-1}, x_k]} f(x) \end{vmatrix} =$$

$$= \sum_{k=1}^{n} (M_k - m_k) \cdot \Delta x_k = \begin{vmatrix} \Delta x_k < \delta(\varepsilon) - \text{выбрано} \\ \text{равномерно непрерывна} \\ M_k - m_k < \varepsilon \frac{1}{b-a} \end{vmatrix} < \sum_{k=1}^{n} \frac{\varepsilon}{b-a} \cdot \Delta x_k =$$

$$= \frac{\varepsilon}{b-a} \sum_{k=1}^{n} \Delta x_k = \frac{\varepsilon}{b-a} \cdot (b-a) = \varepsilon.$$

$$\alpha(T) < \delta(\varepsilon) \Rightarrow \Omega(f \mid T) < \varepsilon \Rightarrow \lim_{\alpha(T) \to 0} \Omega(f \mid T) = 0 \Rightarrow f \in R([a, b])$$

2.4.2Интегрирование монотонных ограниченных функций

Пусть функция f(x) такая, что:

$$f(x):[a,\,b]\to R,\,f(x)$$
 - монотонна

Remark. Т. к. функция f(x) монотонна на отрезке [a,b], то все ее значения заключены между f(a) и f(b), таким образом, функция ограничена на отрезке.

Theorem 2.4.2. Если функция f(x) монотонна на отрезке [a, b], то f(x) интегрируема на отрезке [a, b]

$$f(x)$$
 - монотонна $\Rightarrow f(x) \in R([a,\ b])$

Ргооf. для
$$f \uparrow : f \uparrow \Rightarrow f(b) - f(a) > 0$$
 Зафиксируем $\varepsilon > 0$ и возьмем $T : \alpha(T) < \frac{\varepsilon}{f(b) - f(a)} = \delta(\varepsilon)$ Тогда: $\Omega(f \mid T) = \sum_{k=1}^{n} (M_k - m_k) \cdot \Delta x_k < \sum_{k=1}^{n} (M_k - m_k) \cdot \frac{\varepsilon}{f(b) - f(a)} =$
$$= \frac{\varepsilon}{f(b) - f(a)} \sum_{k=1}^{n} (M_k - m_k) = \begin{vmatrix} M_k = f(x_k) \\ f \uparrow \\ m_k = f(x_{k-1}) \end{vmatrix} = \frac{\varepsilon}{f(b) - f(a)} (M_1 - m_1 + M_2 - m_k) + \frac{\varepsilon}{f(b) - f(a)} (M_1 - m_1) = \frac{\varepsilon}{f(b) - f(a)} (M_1 - m_1) = \frac{\varepsilon}{f(b) - f(a)} (f(b) - f(a)) = \varepsilon \text{ T.e. } \forall \varepsilon \exists \delta(\varepsilon) = \frac{\varepsilon}{f(b) - f(a)} : \forall T \alpha(T) < \delta(\varepsilon) \Rightarrow \Omega(f \mid T) < \varepsilon \Rightarrow \lim_{\alpha(T) \to 0} \Omega(f \mid T) = 0 \Rightarrow f(x) \in R([a, b])$$

2.4.3 Критерий Лебега интегрируемости функции f(x) на отрезке $[a,\ b]$

Числовое множество множество $A; A \subset \mathbb{R}$ называется **несущетвенным по Лебегу**(или L - несущественным, или множеством меры Лебега ноль), если существует не более чем счетное покрытие этого множества системой интегралов, сумма длин которых может быть как угодно мала.

Remark.

- 1. Множество называется счетным, если оно эквивалентно множеству натуральных чисел \mathbb{N}
- 2. $\forall \varepsilon > 0$ $S_{\varepsilon} = \{(a_k, b_k), k \in \mathbb{N}\}$ счестная система интервалов. Сумма длин $= \sum_{k=1}^{\infty} (b_k a_k) = \lim_{n \to \infty} \sum_{k=1}^{n} (b_k a_k) < \varepsilon \ \forall \varepsilon > 0, A = \subset \bigcup_{k=1}^{\infty} (a_k, b_k)$

Example:

$$A=\{x_1,\ x_2,\dots,\ x_n\},\ x_i\in\mathbb{R}$$
 $S_{\varepsilon}=\left\{\left(x_1-\frac{\varepsilon}{4N};\ x_1+\frac{\varepsilon}{4N}\right),\dots,\ \left(x_n-\frac{\varepsilon}{4N};\ x_n+\frac{\varepsilon}{4N}\right)\right\}$ - покрытие A интервалами, конечное. Сумма длин $=\sum\limits_{k=1}^N\frac{\varepsilon}{2N}=N\cdot\frac{\varepsilon}{2N}=\frac{\varepsilon}{2}<\varepsilon\ \forall \varepsilon>0$

Example:

$$A=\mathbb{Q}$$
 Известно, что \mathbb{Q} - счетное $\Rightarrow \mathbb{Q}=\{r_1,\,r_2,\,r_3,\ldots,\,r_n,\ldots\}$. Ввозьмем $k\in\mathbb{N},\,\forall>$, построим $S_{\varepsilon}=\left\{\left(r_1-\frac{\varepsilon}{2^{k+1}};\,r_1+\frac{\varepsilon}{2^{k+1}}\right),\ldots,\,\left(r_n-\frac{\varepsilon}{2^{k+1}};\,r_n+\frac{\varepsilon}{2^{k+1}}\right)\right\}$ Сумма длин $=\lim_{n\to\infty}\sum_{i=1}^n2\cdot\frac{\varepsilon}{2^{k+1}}=\lim_{n\to\infty}\sum_{i=1}^n\frac{\varepsilon}{2^{k-1}2^i}=\frac{\varepsilon}{2^{k-1}}\lim_{n\to\infty}\sum_{i=1}^1\frac{1}{2^i}=$ $=\frac{\varepsilon}{2^{k-1}}\lim_{n\to\infty}\left(\frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^2\right)}{\frac{1}{2}}\right)=\frac{\varepsilon}{2^{k-1}}<\varepsilon,\,\,\mathbb{Q}-L$ - несущественное.

Свойства L-несущественных множеств:

- 1. Если A, B L-несущественные, то $A \cup B L$ -несущественное.
- 2. Если $\{A_n, n \in \mathbb{N}\}$, где $A_n L$ -несущественное, то $\bigcup_{n=1}^{\infty} A_n L$ -несущественное.
- 3. Если A L-несущественное и $B \subset A$, то B L-несущественное.

Theorem 2.4.3 (Критерий Лебега интегрируемости функции на отрезке). Пусть f(x) задана на отрезке [a,b], обозначим $\Delta f[a,b]$ - множество точек разрыва функции f(x) на [a,b]. для того что бы функция f(x) была интегрируема на отрезке [a,b], необходимо и достаточно, чтобы f(x) была ограничена на [a,b] и множество точек разрыва было L-несущественное.

Пусть $f(x): [a, b] \to R$, обозначим $\Delta f[a, b]$ - множество точек разрыва функции f(x) на [a, b]. $f(X) \in R([a, b]) \Leftrightarrow (f$ - ограничена на $[a, b]) \wedge (\Delta f[a, b] - L$ -несущественное.

Example:

Если $f(x) \in C([a,b]) \Rightarrow f$ ограничена на [a,b] и $\Delta f[a,b] = \emptyset$ - L-несущественное $\Rightarrow f(x) \in R([a,b])$

Example:

Пусть f(x) ограничена на [a, b] и имеет на [a, b] конечное количество точек разрыва $\Rightarrow \Delta f[a, b]$ - L-несущественное $= \left| \begin{array}{c} \text{пример 1} \\ A = \{x_1, \dots, \, x_n\} \end{array} \right| \Rightarrow$ $\Rightarrow f(x) \in R([a, b])$

Example:

Пусть f(x) - монотонна и ограничена на $[a, b] \Rightarrow \Delta f[a, b]$ - L-несущественное $\Rightarrow f(x) \in R([a, b])$

Example:

Пусть $D(x)=\left\{ egin{array}{ll} 0, & \mbox{если } x
ot\in\mathbb{R} \\ 1, & \mbox{если } x\in\mathbb{R} \end{array} \right.$ разрывна $\forall x\in\mathbb{R}\Rightarrow\Delta f[a,\ b]=[a,\ b]$ - не L-несущественная $\Rightarrow D(x)$ - не интегрируема на $[a,\ b]\ \forall a,\ b\in\mathbb{R}$

2.4.4 Общие свойства интегрируемых функций

Theorem 2.4.4 (Свойства интегрируемых функций).

- 1. Если функция f(x) интегрируема на отрезке [a, b], то и модуль функции интегрируем на этом отрезке $f(x) \in R([a, b])$
- 2. Если функции f(x) и g(x) интегрируемы на отрезке [a, b], то их линейная комбинация интегрируема на отрезке [a, b].

$$f(x) \in R([a, b]) \qquad 1) (\alpha f(x) + \beta g(x)) \in R([a, b]), \ \alpha, \ \beta = const$$

$$\Rightarrow 2) f(x) \cdot g(x) \in R([a, b])$$

$$g(x) \in R([a, b]) \qquad 3) \frac{f(x)}{g(x)} \in R([a, b]), \ \forall x \in [a, b] \ g(x) \neq 0$$

3. Пусть f(x) интегрируема на отрезке [a,b]; f(x) - тоображение [a,b] в некоторое множество Y, и функция g(y) - непрерывна на Y, то сложная функция $(g \circ f)(x) = g(f(x))$ интегрируема на отрезке [a,b].

Proof.

- 1. $f \in R([a, b]) \Rightarrow \Delta_f[a, b]$ L-несущественное. $\Delta_{|f|}[a, b] \subset \Delta_f[a, b] \Rightarrow \Delta_{|f|}[a, b]$ L-несущественное, $\Rightarrow |f(x)| \in R([a, b])$
- 2. $f \in R([a, b]) \Rightarrow \Delta_f[a, b]$ L-несущественное, $g \in R([a, b]) \Rightarrow \Delta_g[a, b]$ L-несущественное $\Rightarrow \Delta_f[a, b] \cup \Delta_g[a, b]$ L-несущественное
 - 1. $\Delta_{\alpha f + \beta g}[a, b] \subset (\Delta_f[a, b] \cup \Delta_g[a, b]) \Rightarrow \Delta_{\alpha f + \beta g}[a, b]$ L-несущественное $\Rightarrow \alpha f(x) + \beta g(x) \in R([a, b])$

- 2. $\Delta_{fg}[a, b] \subset (\Delta_f[a, b] \cup \Delta_g[a, b]) \Rightarrow \Delta_{fg}[a, b]$ L-несущественное $\Rightarrow f(x) \cdot g(x) \in R([a, b])$
- 3. $\Delta_{\frac{f}{g}}[a, b] \subset (\Delta_f[a, b] \cup \Delta_g[a, b] \Rightarrow \Delta_{\frac{f}{g}}[a, b]$ L-несущественное $\Rightarrow \frac{f(x)}{g(x)} \in r([a, b])$
- 3. $f(x) \in R([a, b]) \Rightarrow \Delta_f[a, b]$ L-несущественное, $g(x) \in C(Y)$ $\Rightarrow \Delta_g[Y] = \emptyset \Rightarrow \Delta_{g(f)}[a, b] \subset \Delta_f[a, b] \Rightarrow \Delta_g(f)[a, b]$ L-несущественное $\Rightarrow g(f(x)) \in R([a, b])$

2.5 Свойства определенного интеграла

1. Значение определенного интеграла не зависит от того, какой буквой обозначена переменная интегрирования

$$\int_a^b f(x) \ \mathbf{d}x = \int_a^b f(t) \ \mathbf{d}t = \int_a^b f(y) \ \mathbf{d}y$$
и т.д.

Proof.Вытекает из того, что значения интегральных суммы, а следовательно и предел интегральных сумм не зависит от того, какой буквой обозначен аргумент функции f

2. (def)

$$\int_{a}^{b} f(x) \, \mathbf{d}x = 0 \qquad \text{(для сулчая } a = b)$$

3. (def) (для случая a > b)

$$\int_{a}^{b} f(x) \ dx = -\int_{a}^{b} f(x) \ dx$$

$$\frac{\chi'_{k}}{\chi_{k-1}} \frac{\chi'_{k}}{\chi_{k}} \qquad \Delta x'_{k} = x_{k-1} - x_{k} = -\Delta x_{k}$$

4. **Линейность**: если α , $\beta \in R$,

$$f(x) \in R([a, b]); g(x) \in R([a, b]), \text{ To:}$$

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) \mathbf{d}x = \alpha \int_{a}^{b} f(x) \mathbf{d}x + \beta \int_{a}^{b} g(x) \mathbf{d}x$$

Proof.
$$\forall (T, \xi) : \sum_{k=1}^{n} (\alpha f(\xi_k) + \beta g(\xi_k)) \cdot \Delta x_k = \alpha \sum_{k=1}^{n} f(\xi_k) \Delta x_k + \beta \sum_{k=1}^{n} g(\xi_k) \Delta x_k,$$

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) \, \mathbf{d}x = \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} (\alpha f(\xi_k) + \beta g(\xi_k)) \cdot \Delta x_k = \alpha \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} f(\xi_k) \Delta x_k + \beta \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} g(\xi_k) \Delta x_k = \alpha \int_{a}^{b} f(x) \, \mathbf{d}x + \beta \int_{a}^{b} g(x) \, \mathbf{d}x$$

5. Аддетивность: $\forall a, b, c \in R$

$$\int_{a}^{b} f(x) \, \mathbf{d}x = \int_{a}^{c} f(x) \, \mathbf{d}x + \int_{c}^{b} f(x) \, \mathbf{d}x$$

При условии, что функция интегрируема на наибольшем из полученных отрезков.

Proof.

а) пусть a < c < b

 $\int_{a}^{b} f(x) \, dx$ - существует(по условию), причем независимо от способа разбиения этого отрезка. Выберем разбиение так, чтобы точка c принадлежала к числу точек разбиения $T: c \in T; \ c = x_m;$

Тогда:

$$\int_{a}^{b} f(x) \, \mathbf{d}x = \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} f(\xi_k) \cdot \Delta x_k = \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \left(\sum_{k=1}^{m} f(\xi_k) \cdot \Delta x_k + \sum_{k=m+1}^{n} f(\xi_k) \cdot \Delta x_k \right) =$$

$$= \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{m} f(\xi_k) \cdot \Delta x_k + \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=m+1}^{n} f(\xi_k) \cdot \Delta x_k \iff$$

Пределы справа - интегральные суммы для функции f по отрезкам [a,c] и [c,b] соответственно. Т. к. предел слева существует по условию, то и пределы справа существуют для любого разбиения с отмеченными точка (T,ξ)

$$\bigoplus_{a} \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx = \int_{a}^{b} f(x) \, dx$$

b) пусть, например, a < b < c

Тогда:

$$\int_{a}^{c} f(x) \, \mathbf{d}x = \int_{a}^{b} f(x) \, \mathbf{d}x + \int_{b}^{c} f(x) \, \mathbf{d}x;$$

$$\int_{a}^{b} f(x) \, \mathbf{d}x = \int_{a}^{c} f(x) \, \mathbf{d}x - \int_{b}^{c} f(x) \, \mathbf{d}x = \int_{a}^{c} f(x) \, \mathbf{d}x + \int_{c}^{b} f(x) \, \mathbf{d}x$$

6. Сохранение знака подинтегральной функции:

Если $\forall x \in [a, b]$ функция f(x) сохраняет знак, то и знак интеграла совпадает

со знаком f(x) (a < b).

$$\operatorname{sign}\left(\int_{a}^{b} f(x) \, \mathbf{d}x\right) = \operatorname{sign}\left(f(x)\right)$$

т.е.:

$$f(x) \ge 0 \ \forall x \in [a, b] \& a < b \Rightarrow \int_a^b f(x) \ \mathbf{d}x \ge 0$$

Proof.

$$\int_{a}^{b} f(x) \, \mathbf{d}x = \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} f(\xi_k) \cdot \Delta x_k \ge \begin{vmatrix} \forall k : \Delta x_k = x_k - x_{k-1} > 0 \\ \forall x \in [a, b] \, f(x) > 0 \Rightarrow \\ \Rightarrow \forall k \, f(\xi_k) \ge 0 \end{vmatrix}$$

7. Монотонность интеграла:

$$\forall x \in [a, b], f(x) \leq g(x) \Rightarrow \int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx (a < b)$$

Proof.
$$\forall x \in [a, b] \ f(x) \le g(x) \Rightarrow g(x) - f(x) \ge 0 \Rightarrow$$

$$\Rightarrow \int_{a}^{b} (g(x) + f(x)) \ \mathbf{d}x \ge 0 \Rightarrow \int_{a}^{b} g(x) \ \mathbf{d}x - \int_{a}^{b} f(x) \ \mathbf{d}x \ge 0; \ \int_{a}^{b} g(x) \ \mathbf{d}x \ge \int_{a}^{b} f(x) \ \mathbf{d}x$$

8.

$$\left| \int_{a}^{b} f(x) \, \mathbf{d}x \right| \le \int_{a}^{b} |f(x)| \, \mathbf{d}x \qquad (a < b), \ f(x) \in R([a, b])$$

Proof.
$$\left| \int_{a}^{b} f(x) \, \mathbf{d}x \right| = \left| \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} f(\xi_{k}) \cdot \Delta x_{k} \right| =$$

$$= \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \left| \sum_{k=1}^{n} f(\xi_{k}) \cdot \Delta x_{k} \right| \leq \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} |f(\xi_{k})| \cdot |\Delta x_{k}| =$$

$$= \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} |f(\xi_{k})| \cdot \Delta x_{k} = \left| f \in R([a, b]) \Rightarrow |f| \in R([a, b]) \right| = \int_{a}^{b} |f(x)| \, \mathbf{d}x$$

Remark. Если a > b;

$$\left| \int_{a}^{b} f(x) \, \mathbf{d}x \right| \le \left| \int_{a}^{b} |f(x)| \, \mathbf{d}x \right|$$

9. Если f(x) - ограничена на [a, b], т.е.:

$$\exists M > 0: |f(x)| < M \ \forall x \in [a, b] \Rightarrow \left| \int_a^b f(x) \ \mathbf{d}x \right| < M \ (b - a)$$

Proof.
$$\left| \int_{a}^{b} f(x) \, dx \right| \leq \int_{a}^{b} |f(x)| \, dx < \int_{a}^{b} M \, dx = M \int_{a}^{b} dx = M \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} 1 \cdot \Delta x_{k} = M(b-a)$$

10. Пусть $m = \inf_{x \in [a, b]} f(x), \ M = \sup_{x \in [a, b]} f(x)$. Тогда:

$$m(b-a) \le \int_{a}^{b} f(x) \, \mathbf{d}x \le M(b-a)$$

Proof.
$$\forall x \in [a, b] \ m \le f(x) \le M \Rightarrow \int_a^b m \ \mathbf{d}x \le \int_a^b f(x) \ \mathbf{d}x \le \int_a^b M \ \mathbf{d}x$$

$$m \int_a^b \mathbf{d}x \le \int_a^b f(x) \ \mathbf{d}x \le M \int_a^b \mathbf{d}x, \ m(b-a) \le \int_a^b f(x) \ \mathbf{d}x \le M(b-a)$$

Если f(x) непрерывна на [a, b], то:

$$m = \inf_{x \in [a, b]} f(x) = \min_{x \in [a, b]} f(x)$$
 $M = \sup_{x \in [a, b]} f(x) = \max_{x \in [a, b]} f(x)$

11. Пусть $m = \inf_{x \in [a, b]} f(x), \ M = \sup_{x \in [a, b]} f(x)$. Тогда:

$$\exists \mu \in [m, M] \ (m \le \mu \le M) : \int_{a}^{b} f(x) \ \mathbf{d}x = \mu(b - a)$$

Proof. (10)
$$\Rightarrow m \leq \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \leq M; \ \mu = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \Rightarrow$$

$$\Rightarrow \int_{a}^{b} f(x) \, dx = \mu(b-a)$$

Если a>b, то те же рассуждения повторяются для интеграла $\int\limits_a^b f(x) \ {\bf d} x = \mu(b-a).$ Меняя пределы интегрирования и умножая обе части на -1, получаем ту же формулу.

12. Теорема о среднем

Theorem 2.5.1. Пусть $f(x) \in R([a, b])$ и $f(x) \in C([a, b])$. Тогда существует такая точка ξ на отрезке [a, b] что $\int_{a}^{b} f(x) \ dx = f(\xi)(b-a)$.

$$\exists \xi \in [a, b] : \int_{a}^{b} f(x) \ \mathbf{d}x = f(\xi)(b - a)$$

$$\begin{array}{l} \textit{Proof. } f(x) \in C([a,\,b]) \Rightarrow m = \inf_{x \in [a,\,b]} f(x) = \min_{x \in [a,\,b]} f(x), \text{ причем} \\ \exists x',\, x'' \in [a,\,b]:\, f(x') = m,\, f(x'') = M. \\ (10) \Rightarrow m(b-a) \leq \int\limits_a^b f(x) \,\, \mathbf{d}x \leq M(b-a) & |: (b-a) \\ m \leq \frac{1}{b-a} \int\limits_a^b f(x) \,\, \mathbf{d}x \leq M. \end{array}$$

Непрерывная функция принимает все промежуточные на отрезке $[a, b] \Rightarrow \exists \xi \in [a, b]: f(\xi) - \frac{1}{b-a} \int_a^b f(x) \, dx.$

$$\left(\frac{1}{b-a} \int_{a}^{b} f(x) \, \mathbf{d}x \in [m, M]\right) \Rightarrow \int_{a}^{b} f(x) \, \mathbf{d}x = f(\xi)(b-a)$$

Remark.

Если a < b, то замечание аналогично предыдущему. Величина $\frac{1}{b-a} \int_a^b f(x) \, dx$ - среднее значение f(x) на [a, b].

13. **Если** изменить значение интегрируемой функции в конечном количестве точек, то ее интегрируемость не нарушится, а ее значение не изменятся.

Remark. Новые значения функции должны быть конечными

Remark. Если менять значения функции в счетном числе точек, надо следить, чтобы не появились точки разрыва второго рода

Proof. Пусть $f(x) \in R([a, b]); f_1(x)$ - новая функция, изменены значения в точках $A = \{x_1, x_2, \dots, x_n, \dots\}$:

точках $A = \{x_1, x_2, \dots, x_n, \dots\}$: Пусть $\int_a^b f(x) \, dx = I$; при этом $\Delta[a, b] - L$ -несущественное,

Тогда $\overset{\circ}{\Delta}_{f_1}[a,\ b]\subset (\Delta_f[a,\ b]\cup A)-L$ -несущественное $\Rightarrow f_1(x)\in R([a,\ b]).$

Пусть $\int_a^b f_1(x) \ \mathbf{d}x = I_1$. Установим, что этот интеграл существует независимо от выбранного разбиения, поэтому возьмем точки $\xi_k \not\in A \Rightarrow I_1 = I$

2.6 Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница

Пусть $f(x) \in R([a, b])$. Тогда $\forall x \in [a, b]: f(x) \in R[a, x](x$ - фиксированая точка). Рассмотрим функцию $\Phi(x) = \int\limits_a^x f(t) \ \mathbf{d}t$

Theorem 2.6.1 (непрерывность интеграла как функции верхнего предела). Пусть функция f(x) интегрируема на отрезке [a, b]. Тогда функция $\Phi(x) = \int_a^x f(t) dt$ непрерывна на отрезке [a, b]

$$f(x) \in R([a, b]) \Rightarrow \Phi(x) = \int_{a}^{x} f(t) dt \in C([a, b])$$

Proof. Пусть $x_0 \in [a, b]$ и Δx такое, чтобы $(x_0 + \Delta x) \in [a, b]$. Тогда: $\lim_{\Delta x \to 0} \Phi(x_0, \Delta x) =$

$$\lim_{\Delta x \to 0} (\Phi(x_0 + \Delta x) - \Phi(x_0)) = \lim_{\Delta x \to 0} \left(\int_a^{x_0 + \Delta x} f(t) \, dt - \int_a^{x_0} f(t) \, dt \right) \underset{\text{аддетивность}}{==}$$

$$= \lim_{\Delta x \to 0} \left(\int_{x_0 + \Delta x}^{x_0} f(t) \, dt + \int_{x_0}^{x_0 + \Delta x} f(t) \, dt - \int_a^{x_0} f(t) \, dt \right) = \lim_{\Delta x \to 0} \int_{x_0}^{x_0 + \Delta x} f(t) \, dt =$$

$$= \lim_{\Delta x \to 0} \mu(x_0, \Delta x) \cdot \Delta x = \begin{vmatrix} m = \inf f(t) & m \le \mu(x_0, \Delta x) \le M \\ t \in [x_0, x_0 + \Delta x] & \mu(x_0, \Delta x) - \text{ограничена} \\ M = \sup f(t) & \Delta \to 0 \end{vmatrix} = 0$$

$$\Rightarrow \Phi(x) \text{ непрерывна в точке } x_0 \, \forall x_0 \in [a, b] \Rightarrow \Phi(x) \in C([a, b])$$

Theorem 2.6.2 (дифференцируемость интеграла как функции верхнего предела). Пусть $f(x) \in r([a, b])$ и f(x) - непрерывна в некоторой точке x_0 этого отрезка. Тогда: $\Phi(x) = \int\limits_a^x f(t) \ dt$ - дифференцируема в точке x_0 , причем $\Phi'(x) = \left(\frac{d}{dx} \int\limits_a^x f(t) \ dt\right)\bigg|_{x=x_0}$ - интегральная функция точки $x_0 = f(x_0)$.

$$\Phi'(x_0) = \left(\frac{d}{dx} \int_a^x f(t) dt \right) \bigg|_{x=x_0} = f(x_0)$$

Proof. $\Delta\Phi(x_0, \Delta x) = \Phi(x_0 + \Delta x) - \Phi(x_0) = \int_a^{x_0 + \Delta x} f(t) \, dt - \int_a^{x_0} f(t) \, dt = \int_a^{x_0 + \Delta x} f(t) \, dt = \int_a^{x_0 + \Delta x}$

т.е.
$$\lim_{\Delta x \to 0} \mu(x_0, \Delta x) = f(x_0)$$
. Таким образом $\lim_{\Delta x \to 0} \frac{\Delta \Phi(x_0, \Delta x)}{\Delta x} = f(x_0) \Rightarrow \exists \Phi'(x_0)$ и $\Phi'(x_0) = f(x_0)$

Consequence.

- 1. Если $f(x) \in R([a, b])$ и $f(x) \in C([a, b])$; то $\exists \Phi'(x) = \frac{d}{dx} \left(\int_a^x f(t) \ \mathbf{d}t \right)$ и $\Phi'(x) = f(x)$
- 2. Если $f(x) \in C([a, b]), \frac{d}{dx} \int_{x}^{b} f(t) dt = -f(x)$ Если $\alpha(x), \beta(x)$ - непрерывна на [a, b], то $\frac{d}{dx} \int_{a}^{\beta(x)} f(t) dt = f(\beta(x)) \cdot \beta'(x).$ $\frac{d}{dx} \int_{\alpha(x)}^{\beta(x)} f(t) dt = f(\beta(x)) \cdot \beta'(x) - f(\alpha(x)) \cdot \alpha'(x)$

2.6.1 Обобщенная первообразная. Формула Ньютона-Лейбница

Известно, что если $f(x) \in c([a, b])$, то f(x) имеет первообразную.

При этом одна из первообразных - $\Phi(x) = \int_{-x}^{x} f(t) \ dt$

Пусть f(x) - кусочно-непрерывная на $[a, b]^a$

Известно, что $f(x) \in R([a, b])$, причем $\Phi(x) = \int_a^x f(t) \, \mathbf{d}t$ непрерывна на [a, b] и $\Phi'(x) = f(x) \, \forall x \in [a, b]$, кроме, возможно, числа точек (там, где подинтегральная функция разрывна).

Функция F(x) называется обобщенной первообразной для f(x) на [a,b], кроме, возможно, конечного числа точек, если F'(x) = f(x)

Remark. Для непрерывной функций понятие обобщенное первообразной совпадает с понятием обычной первообразной.

Example:
$$f(x) = sign \ x = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}, \text{ для } x \in [-1, 2].$$

$$(|x|)' = \left| |x| = \begin{cases} x, & x \geq 0 \\ -x, & x < 0 \end{cases} \right| = \begin{bmatrix} 1, & x > 0 \\ -1, & x < 0 \\ \text{не} & \exists \text{ при } x = 0 \end{cases}$$

$$(|x|)' = sign \ x \forall x \in [-1, 2] \backslash \{0\} \Rightarrow |x| \text{ - обобщеная первообразная для } sign \ x$$

Theorem 2.6.3 (формула Ньютона-Лейбница). Пусть F(x) - обобщенная первообразная для f(x) на отрезке [a, b]. Тогда справедлива формула:

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a) = F(x) \Big|_{a}^{b}$$

Proof. Пусть F(x) - первообразная для f(x). Знаем: $\Phi(x) = \int_{a}^{b} f(t) \, dt$ - тоже первообразная для $f(x) \Rightarrow \forall x \in [a, b]: \Phi(x) = F(x) + c, c = \text{const}(*)$ При $x = a : (*) \Rightarrow \Phi(a) = F(a) + c$, но $\Phi(a) = \int_{a}^{a} f(t) \, dt = 0 \Rightarrow c = -F(a)$. При x = b: $(*) \Rightarrow \Phi(b) = F(b) + c$, но $\Phi(b) = \int_{a}^{b} f(t) \, dt = \int_{a}^{b} f(x) \, dx$, $c = -F(a) \Rightarrow$ $\int_{a}^{b} f(x) \, \mathbf{d}x = F(b) - F(a)$

Формула Ньютона-Лейбница устанавливает связь между понятиями определенного и неопределенного интеграла, и позволяет находить значения определенного интеграла как разность первообразных, избегая громоздких операций суммирования бесконечно малых величин и предельного перехода. Интеграли от кусочно-непрерывной функции можно находить либо используя обобщенную первообразною, либо пользуясь свойством аддитивности, либо свойством 13 определенного интеграла.

$$\int_{-1}^{2} sign \ x \ \mathbf{d}x = |(|x|)' = sign \ x \ \forall x \neq 0| = |x||_{-1}^{2} = 2 - 1 = 1$$

Example:
$$f(x) = \begin{cases} e^x, & 0 < x < 1 \\ 2, & 1 < x < 2 \end{cases}$$

$$\int_0^2 f(x) \, \mathbf{d}x = | \text{ аддитивность } | = \int_0^1 f(x) \, \mathbf{d}x + \int_1^2 f(x) \, \mathbf{d}x = \int_0^1 e^x \, \mathbf{d}x + \int_1^2 2 \, \mathbf{d}x = e^x \Big|_0^1 + 2x \Big|_1^2 = e + 1$$

2.7 Замена перменной в определенном интеграле

Theorem 2.7.1 (замена пременной). Π усть:

функция
$$f(x) \in c([a, b]);$$

функция $\varphi(t) : [\alpha, \beta] \to [a, b],$

причем

$$\varphi(\alpha) = a, \ \varphi(\beta) = b \ u \ \varphi(t) \in c([\alpha, \ \beta]), \ \varphi'(t) \in C([\alpha, \ \beta])$$

Тогда:

$$f(\varphi(t)) \cdot \varphi'(t) \in R([\alpha, \beta]) \ u \int_a^b f(x) \ dx = \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) \ dt$$

$$\begin{array}{l} \textit{Proof. } f(x) \in C([a,\,b]), \ \varphi(t) \in C([\alpha,\,\beta]), \ \varphi'(t) \in C([\alpha,\,\beta]) \Rightarrow \\ \Rightarrow f(\varphi(t)) \cdot \varphi'(t) \in C([\alpha,\,\beta]) \Rightarrow f(\varphi(t)) \cdot \varphi'(t) \in R([\alpha,\,\beta]) \\ f(x) \in C([a,\,b]) \Rightarrow f(x) \in R([a,\,b]) \Rightarrow \int\limits_a^b f(x) \ \mathbf{d}x = F(a) - F(b), \\ F'(x) = f(x) \Rightarrow F(\varphi(t)) - \text{первообразная для } f(\varphi(t)) \cdot \varphi'(t), \text{ т.е.} \\ \int\limits_\alpha^\beta f(\varphi(t)) \cdot \varphi'(t) \ \mathbf{d}t = F(\varphi(t)) \Big|_\alpha^\beta = F(\varphi(\beta)) - F(\varphi(\alpha)) = \left| \begin{array}{c} \varphi(\beta) = b \\ \varphi(\alpha) = a \end{array} \right| = \\ = F(b) - F(a) \\ (*) = (**) \end{array}$$

При замене переменной в определенном интеграле нет необходимости после интегрирования возвращатся к старой пременной. Вместо этого при выполнение замены следует найти пределы α и β для замены t. Нахождение пределов: $x = \varphi(t)$: $x = a \Rightarrow \varphi(t) = a = x = b \Rightarrow \varphi(t) = b = [\alpha, \beta] \Rightarrow x \in [a \ b]$ Если выполняется замена переменной в виде $t = \psi(x)$, то пределы определяются непосредственно $\alpha = \psi(a)$, $\beta = \psi(b)$. При этом необходимо, чтобы обратная функция $\psi^{-1}(t) = x$ была непрерывна и дифференцируема на $[\alpha, beta]$.

Example:
$$\int_{-a}^{a} \sqrt{a^{2} - x^{2}} \, \mathbf{d}x = \begin{vmatrix} x = a \sin t; & -a \le a \sin t \le a; & \varphi(t) = a \sin t - \text{ непрерывна} \\ -a \le x \le a; & -1 \le \sin t \le; & \varphi'(t) = a \cos t - \text{ непрерывна} \end{vmatrix} \Rightarrow \\
\Rightarrow \begin{vmatrix} x = -a: & a \sin t = -a; & \sin t = -1 \Rightarrow & t = -\frac{\pi}{2}; \\ x = a: & a \sin t = a; & \sin t = 1 \Rightarrow & t = \frac{\pi}{2}; \end{vmatrix} - \frac{a}{2} \rightarrow \frac{\pi}{2}$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{a^{2} - a^{2} \sin^{2} t} a \cos t \, \mathbf{d}t = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} a^{2} |\cos t| \cdot \cos t \, \mathbf{d}t = \int_{\cos 0}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} a^{2} \cdot \frac{1 + \cos 2t}{2} \, \mathbf{d}t = \\
\frac{a^{2}}{2} \left(\left(\frac{\pi}{2} + \frac{1}{2} \sin \pi \right) - \left(-\frac{\pi}{2} + \frac{1}{2} \sin(-\pi) \right) \right) = \frac{\pi a^{2}}{2}$$

Example:

Можно ли использовать замену $x=\sin t$ в $\int\limits_0^3 x\sqrt[4]{(1-x^2)^2}\ {\bf d}x$ Нельзя: $x\in[0,\,3],\,\sin t\in[-1,\,1]\Rightarrow$ интервал x не покрывается $\sin t$

Example:

Покажем, что
$$\int_{-a}^{a} f(x) \, dx = \begin{bmatrix} 0, & \text{если } f(x) = -f(x) \text{ (нечетная)} \\ 2 \int_{0}^{a} f(x) \, dx, & \text{если } f(-x) = f(x) \text{ (четная)} \end{bmatrix}$$

$$\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} \underbrace{f(x) \, dx}_{I_{1}} + \int_{0}^{a} \underbrace{f(x) \, dx}_{I_{2}} = \begin{vmatrix} I_{1} & : & x = -t & dx = -dt \\ x = -a, & t = a, & x = 0, & t = 0 \end{vmatrix} =$$

$$\int_{a}^{0} f(-t) \cdot (-dt) + \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(-x) \, dx + \int_{0}^{a} f(x) \, dx$$
(a) если $f(x) = -f(x) : -\int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx = 0$

(b) если
$$f(-x) = f(x)$$
: $\int_{0}^{a} f(x) dx + \int_{0}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$

Example:

Если
$$T$$
 - период $f(x)$, то $\forall a, b: \int\limits_a^{a+T} f(x) \ \mathbf{d}x = \int\limits_b^{b+T} f(x) \ \mathbf{d}x$

Example:

$$\int_{-1}^{1} |x| \, dx = \left| |x| \text{ четная } \right| = 2 \int_{0}^{1} |x| \, dx \int_{0}^{1} x \, dx = 2 \frac{x^{2}}{2} = x^{2}$$

Example:

$$\int_{-5}^{5} (x^7 + \sqrt[3]{x} + 5\sin^7 x) \, \, \mathbf{d}x = 0$$

2.8 Интегрирование по частям в определенном интеграле

$$(uv)'=u'v+v'u(u=u(x),\ v=v(x))\Rightarrow uv$$
 - первообразная для $f(x)=u'v+uv'\Rightarrow\int\limits_a^b(u'v+v'u)\ \mathbf{d}x=uv\Big|_a^b$ $\int\limits_a^bv\underbrace{u'}_{\mathbf{d}u}+\int\limits_a^by\underbrace{v'}_{\mathbf{d}v}\Big|_a^b$ $\int\limits_a^bu\ \mathbf{d}v=uv\Big|_a^b-\int\limits_a^bv\ \mathbf{d}u$

Example:

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx = \int_0^{\frac{\pi}{2}} \sin^{n-1} x \, dx = -\int_0^{\frac{\pi}{2}} \sin^{n-1} x \, d(\cos x) =$$

$$= \begin{vmatrix} u = \sin^{n-1} x \\ du = (n-1)\sin^{n-2} x \cos x \, dx \\ dv = d(\cos x), \ v = \cos x \end{vmatrix} = -\left(\cos x \cdot \sin^{n-1} x\right)_0^{\frac{\pi}{2}} -$$

$$-\int_0^{\frac{\pi}{2}} (n-1) \cdot \sin^{n-2} x \cdot \cos^2 x \, dx \right) = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x (1 - \sin^2 x) \, dx =$$

$$= (n-1)(I_{n-1} - I_n)$$

$$I_n = (n-1)I_{n-2} - (n-1)I_n, \ I_n(1+n-1) = (n-1)I_{n-2},$$

$$I_n = \frac{(n-1)}{n}I_{n-2}, \ I_{n-2} = \frac{n-3}{n-2}I_n$$

$$\text{прии этом: } I_1 = \int_0^{\frac{\pi}{2}} \sin x \, dx = -\cos x \Big|_0^{\frac{\pi}{2}} = 1, \ I_0 \int_0^{\frac{\pi}{2}} dx = -\frac{\pi}{2}$$

Тогда: при
$$n=2k$$
: $I_n=\frac{2k-1}{2k}\cdot\frac{2k-3}{2k-2}\cdot\ldots\cdot\frac{1}{2}I_0,$ $(2k-1)(2k-3)\ldots 1=(2k-1)!!$ $I_2k=\frac{(2k-1)!!}{(2k)!!}\cdot\frac{\pi}{2}$ $(2k)(2k-1)\ldots 2=(2k)!!$ при $n=2k-1$: $I_{2k-1}=\frac{2k-2}{2k-1}\cdot\frac{2k-4}{2k-3}\cdot\ldots\cdot\frac{2}{3}\cdot I_1,$ $I_{2k-1}=\frac{(2k-1)!!}{(2k-1)!!}$

2.9 Некоторые геометрические и физические приложения определенного интеграла

2.9.1 Общие подходы

1. Метод интегральных сумм

Пусть известно, что F определяется на некотором отрезке и линейно зависит от этого отрезка $F = f(b-a)(f=\mathrm{const})$. Кроме того, известно, что величина F является аддитивной

$$[a, b]: a = x_0 < x_1 < x_2 < \dots < x_n = b \Rightarrow F = \sum_{k=1}^n F_k$$
 $F_k = f_k \Delta x_k$, где $\Delta x_k = x_k - x_{k-1}$, $f_k = \text{const Ha} [a, b]$

Если теперь F_k не есть постоянная, $f = f(x), x \in [a, b].f(x)$ - кусочно-непрерывная на [a, b]. Тогда частичные отрезки можно выбрать настолько малыми, что:

$$orall x\in [x_{k-1},\ x_k]\ f(x)pprox {
m const}$$
 Тогда $F_kpprox f_k\Delta x_k,\ k=\overline{1,n}$ и $Fpprox \sum_{k=1}^n f_k\Delta x_k$ $F=\lim_{n\to\infty}\sum_{k=1}^n f_k\Delta x_k=\int\limits_a^b f(x)\ {f d} x$

2. Метод дифференциала

Рассматривается величина F(x) на [a, b], причем F(a) = 0(по смыслу задачи), F(b) = F(енкоторая величина) $\forall x \in [a, b] : F(x)$. для $x + \Delta x : F(x + \Delta x)$. Приращение $F : \Delta F = F(x + \Delta x) - F(x)$. Знаем: $\Delta F \approx \mathbf{d}F$. При опеределенни вида дифференциала F допускаются некоторые упрощения. При этом дифференциал записывается в виде:

$$\mathbf{d}F=f(x)\cdot \ \mathbf{d}x (\text{по смыслу задачи}). \int\limits_a^b \ \mathbf{d}F=\int\limits_a^b f(x) \ \mathbf{d}x$$
 Учитывая, что:
$$\int\limits_a^b \ \mathbf{d}F=F(b)-F(a)=F. \text{ т.e. } F=\int\limits_a^b f(x) \ \mathbf{d}x$$

2.9.2 Вычисление площадей фигур

- 1. Кривые, заданные уравнениями в декартовых координатах
 - (a) Рассмотрим на плоскости xOy криволинейную трапецию, основание которой есть отрезок [a, b] оси Ox, боковые стороны ограничены прямыми x = a, x = b, а верхнее основание ограничено линией y = f(x). Для получения формулы применяем метод интегральных сумм.
 - і. Разбиваем [a, b] на частичные отрезки произвольными точками.
 - ii. Площадь криволинейной трапеции равна сумме площадей элементарных трапеций.
 - ііі. Площадь элементарной трапеции можно заменить площадью прямоугольника $S_k = \Delta x_k \cdot f_k \Rightarrow S = \lim_{n \to \infty} \sum_{k=1}^n f_k \Delta x_k = \int\limits_a^b f(x) \ \mathbf{d}x$

(c)
$$S = \int_{a}^{b} (y_2(x) - y_1(x)) \, dx$$

(d) Криволинейная трапеция.

$$y = c, y = d, x = 0, y = y(x), x = x(y), S = \int_{c}^{d} x(y) dy$$

2. Кривые заданы параметрическими уравнениями

(a)
$$L: \left\{ \begin{array}{ll} x = x(t) \\ y = y(t) \end{array} \right. \quad \alpha \le t \le \beta$$

Знаем:
$$S = \int_a^b y(x) \, dx$$

 $\begin{vmatrix} y = y(t) : & dx = x'(t) \, dt \\ x = x(t) : & x = a, \, x(t) = a \to t = \alpha \\ x = b, \, x(t) = b \to t = \beta \end{vmatrix}$

$$S = \int_{\alpha}^{\beta} y(t) : x'(t) \, \mathbf{d}t$$

(b)
$$S = \int_{c}^{d} x(y) \, dy$$

$$\begin{vmatrix} y = y(t) & y = c : & y(t) = c \to t = \alpha \\ x = x(t) & y = d : & y(t) = d \to t = \beta & \mathbf{d}y = y'(t) \mathbf{d}t \end{vmatrix}$$

$$S = \int_{\alpha}^{\beta} x(t) \cdot y'(t) \, \, \mathbf{d}t$$

Example:

1. S_{Φ} - ограничена : $y_1 = x^2 - 2x, \ y_2 = Ox, \ x = 3$

$$S = S_1 + S_2$$

$$S = -\int_0^2 (x^2 - 2x) \, dx + \int_2^3 (x^2 - 2x) \, dx = \dots = \frac{8}{3}$$

2.
$$S_{9\pi}$$
, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

параметрическое уравнение эллипса

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$$
 Симметрия $\Rightarrow S_{\ni,\pi} = 4S_1$. $0 \le t \le 2\pi$

$$\begin{cases} x = a \cos t; & S_1 = \int_{\alpha}^{\beta} y(t) \cdot x'(t) \, \mathbf{d}t = \begin{vmatrix} x = 0 \\ a \cos t = 0; t = \frac{\pi}{2} \\ x = a \end{vmatrix} \end{cases}$$

$$\begin{cases} x = a \cos t; & S_1 = \int_{\alpha}^{\beta} y(t) \cdot x'(t) \, \mathbf{d}t = \begin{vmatrix} x = 0 \\ a \cos t = 0; t = \frac{\pi}{2} \\ x = a \\ a \cos t = a; t = a \end{vmatrix}$$

$$= ab \int_{0}^{\frac{\pi}{2}} \sin^2 t \, \mathbf{d}t = \frac{ab}{2} \int_{0}^{\frac{\pi}{2}} (1 - \cos^2 t) \, \mathbf{d}t = \frac{ab}{2} \left(t - \frac{\sin 2t}{2} \right) \Big|_{0}^{\frac{\pi}{2}} = \frac{ab}{2} \left(\frac{\pi}{2} - 0 \right) =$$

3. Кривые, заданные в полярных координатах Площадь криволинейного сектора. Метод дифференциала: Пусть $S = S(\varphi)$ - площадь криволинейного сектора, причем $S(\alpha) = 0$, $S(\beta) = S$ - некоторая площадь. Возьмем $\varphi \in (\alpha, \beta)$: $\Delta S = S(\varphi + \Delta \varphi) - S(\varphi)$. $\Delta S \approx dS$. В качестве dS возьмем площадь не криволинейного, а кругового сектора $(S_{\text{сектора}} = \frac{R^2 \alpha}{2}) \Rightarrow \mathbf{d}S = \frac{1}{2} \rho^2(\varphi) \mathbf{d}\varphi$. Интегрируем, получаем:

$$S_{\text{сектора}} = \frac{1}{2} \int_{\alpha}^{\beta} \rho^2(\varphi) \ \mathbf{d}\varphi$$

Example:

Найти s_{ϕ} : $r = a \cos 3\varphi \ (a > 0)$ $r > 0 \Rightarrow \cos 3\varphi > 0, \ -\frac{\pi}{2} + 2\pi_n \le 3\varphi \le \frac{\pi}{2} + 2\pi_n, \ -\frac{\pi}{6} + \frac{2\pi_n}{3} \le \varphi \le \frac{\pi}{6} + \frac{2\pi_n}{3}$

(a)
$$n = 0$$
: $-\frac{\pi}{6} \le \varphi \frac{\pi}{6} \Rightarrow -\frac{\pi}{2} \le 3\varphi \le \frac{\pi}{2}$,

(a)
$$n = 0$$
:
$$-\frac{\pi}{6} \le \varphi \frac{\pi}{6} \Rightarrow -\frac{\pi}{2} \le 3\varphi \le \frac{\pi}{2},$$
(b) $n = 1$:
$$\frac{\pi}{2} \le \varphi \le \frac{5\pi}{6} \Rightarrow \frac{3\pi}{2} \le 3\varphi \le \frac{5\pi}{2},$$

(c)
$$n = 2$$
:
$$\frac{7\pi}{6} \le \varphi \le \frac{3\pi}{2} \Rightarrow \frac{7\pi}{2} \le 3\phi \le \frac{9\pi}{2}$$

1)
$$3\varphi = -\frac{\pi}{2} \Rightarrow \varphi = -\frac{\pi}{6} \Rightarrow \cos 3\varphi = 0 \Rightarrow r = 0$$

 $3\varphi = 0 \Rightarrow \varphi = 0 \Rightarrow \cos 3\varphi = 1 \Rightarrow r = a$
 $3\varphi = \frac{\pi}{2} \Rightarrow \varphi = \frac{\pi}{6} \Rightarrow \cos 3\varphi = 0 \Rightarrow r = 0$

2), 3) - рассуждения аналогичны

$$S = 6S_1, \ S_1 = \frac{1}{2} \int_0^{\frac{\pi}{6}} r^2(\varphi) \ \mathbf{d}\varphi = \frac{a^2}{2} \int_0^{\frac{\pi}{6}} \cos^2 3\varphi \ \mathbf{d}\varphi = \frac{a^2}{4} \int_0^{\frac{\pi}{6}} (1 - \cos 6\varphi) \ \mathbf{d}\varphi =$$
$$= \frac{a^2}{4} (\varphi + \frac{1}{6} \sin 6\varphi) \Big|_0^{\frac{\pi}{6}} = \frac{a^2}{4} \cdot \frac{\pi}{6} \Rightarrow S_{\phi} = \frac{6a^2\pi}{4 \cdot 6} = \frac{a^2\pi}{4}$$

2.9.3 Вычисление длин дуг кривых

1. Кривая заданная явно: y = y(x)

Под длинной кривой AB понимаю предел, к которому стремится длинна ломаной, вписанной в эту кривую, когда длина максимального звена стремится к нулю. $AB: y = y(x), x \in [a, b]$ Пусть L - длина AB. Введем функцию f(x): l(x) - длина AM. $(M(x, y(x)), a \le x \le b)$, при этом: $l(a)=0,\ l(b)=L$ - искомая. Δl - дуга $MN,\ \mathbf{d}l(x)\frac{\mathrm{def}}{\mathbf{d}f}l'(x)\ \mathbf{d}x,\ l'(x)\stackrel{\mathrm{def}}{=}\lim_{\Delta x\to 0}\frac{\Delta l}{\Delta x}=$

$$= \lim_{\Delta x \to 0} -\frac{\sqrt{(\Delta x)^2 + (\Delta y)^2}}{\Delta x} = \lim_{\Delta x \to 0} \sqrt{1 + \left(\frac{\Delta x}{\Delta y}\right)^2} = \sqrt{1 + (y'(x))^2}, \ \mathbf{d}l = \sqrt{1 + (y'(x))^2} \ \mathbf{d}x$$

$$L = \int_{-\Delta x}^{b} \mathbf{d}l, \ \text{r.e.} \ L = \int_{-\Delta x}^{b} \sqrt{1 + (y'(x))^2} \ \mathbf{d}x$$

Remark.

Величина ${\bf d}l$ называется дифференциалом длины дуги. ${\bf d}l=\sqrt{({\bf d}x)^2+({\bf d}y)^2},\ {\bf d}y=y'(x){\bf d}x$

$$dl = \sqrt{(dx)^2 + (dy)^2}, dy = y'(x) dx$$

2. Дина дуги кривой, заданной параметрически.

$$L = \begin{cases} x = x(t), \\ y = y(t) \end{cases} \quad \alpha \le t \le \beta$$

$$L = \int \mathbf{d}l = \begin{vmatrix} \mathbf{d}x = x'(T) \mathbf{d}t, & \mathbf{d}l = \sqrt{1 + (y'(x)^2} \mathbf{d}x = \sqrt{1 + \left(\frac{y'_t}{x'_t} \cdot x'_t \mathbf{d}t\right)} = \begin{vmatrix} \mathbf{d}t = y'(t) \mathbf{d}t, & \mathbf{d}t = \sqrt{(x'_t)^2 + (y'_t)^2} \mathbf{d}t \end{vmatrix}$$

Remark. Т.к. величина $dl>0, \sqrt{\ldots}>0 \Rightarrow dt>0$. Это означает, что по tпри вычислении длин кривой пределы всегда расставляються от меньшего к большему

$$\bigoplus L = \int_{a}^{b} \sqrt{(x'_t)^2 + (y'_t)^2} \, \mathbf{d}t$$

Example:

Найти длину окружности: $x^2+y^2=R^2$. Параметрическое уравнение окружности: $\begin{cases} x=R\cos t, & t\in[0,\,2\pi]\\ y=R\sin t, & t\in[0,\,2\pi] \end{cases}$ $x_t'=-R\sin t,\; (x_t')^2+(y_t')^2=(-R\sin t)^2+(R\cos t)^2=R^2,\; y_t'=R\cos t$

$$l_I = \int_{0}^{\frac{\pi}{2}} \sqrt{(x'_t)^2 + (y'_t)^2} \, dt = R \int_{0}^{\frac{\pi}{2}} \, dt = \frac{R\pi}{2} \Rightarrow l = 4l_I = 2\pi R$$

3. Кривая, заданная уравнением в полярных координатах

$$\begin{split} r &= r(\varphi), \ \alpha \leq \varphi \leq \beta \\ \mathbf{d}l &= \sqrt{(\mathbf{d}x)^2 + (\mathbf{d}y)^2} \\ x'_{\varphi} &= r'(\varphi)\cos\varphi + r(\varphi) \cdot (-\sin\varphi) \\ (x'_{\varphi})^2 &= (r'(\varphi))^2\cos^2\varphi - 2r(\varphi) \cdot r(\varphi)\cos\varphi\sin\varphi - r^2(\varphi)\sin^2\varphi, \\ y'_{\varphi} &= r'(\varphi)\sin\varphi + r(\varphi)\cos\varphi \\ (y'_{\varphi})^2 &= (r'(\varphi))^2\sin^2\varphi + 2r(\varphi) \cdot r'(\varphi) \cdot \cos\varphi\sin\varphi + r^2(\varphi)\cos^2\varphi, \\ (x'_{\varphi})^2 &= (r'(\varphi))^2\sin^2\varphi + 2r(\varphi) \cdot r'(\varphi) \cdot \cos\varphi\sin\varphi + r^2(\varphi)\cos^2\varphi, \\ (x'_{\varphi})^2 &+ (y'_{\varphi})^2 &= (r'(\varphi))^2 + r^2(\varphi). \end{split}$$

$$l = \int_{\alpha}^{\beta} \sqrt{(x'_{\varphi})^2 + (y'_{\varphi})^2 \, \mathbf{d}\varphi} = \int_{\alpha}^{\beta} \sqrt{(r'(\varphi))^2 + r^2(\varphi)} \, \mathbf{d}\varphi$$

Example:

Найти длину кривой $r = a(1 + \cos \varphi)$

$$\varphi = 0 \Rightarrow \cos \varphi = 1 \Rightarrow r = 2a$$

$$\varphi = \frac{\pi}{2} \Rightarrow \cos \varphi = 0 \rightarrow r = a$$

$$\varphi = \pi \Rightarrow \cos \varphi = -1 \Rightarrow r = 0$$

$$\frac{1}{2}l = \int_{0}^{\pi} \sqrt{(r')^2 + r^2} \, \mathbf{d}\varphi,
(r'_{\varphi}) = a(-\sin\varphi), \ (r')^2 = a^2\sin^2\varphi, \ r^2 = a^2(1 + 2\cos\varphi + \cos^2\varphi)
\frac{1}{2}l = \int_{0}^{\pi} \sqrt{a^2(\sin^2\varphi + 1 + 2\cos\varphi + \cos^2\varphi)} \, \mathbf{d}\varphi = a \int_{0}^{\pi} \sqrt{2(1 + \cos\varphi)} \, \mathbf{d}\varphi = a \int_{0}^{\pi} \sqrt{4\cos^2\frac{\varphi}{2}} \, \mathbf{d}\varphi = 2a \int_{0}^{\pi} \left|\cos\frac{\varphi}{2}\right| \, \mathbf{d}\varphi = \left|\frac{\varphi \in [0, \pi]}{\cos\frac{\varphi}{2} > 0}\right| = 2a \int_{0}^{\pi} \cos\frac{\varphi}{2} \, \mathbf{d}\varphi = 2a \sin\frac{\varphi}{2} \cdot 2\left|\frac{\pi}{2}\right| = 4a(\sin\frac{\pi}{2} - \sin 0) = 4a, \ l = 2 \cdot 4a = 8a$$

2.9.4 Вычисление объемов тел

1. Объем тела по известным поперечным сечением (нарезаная колбаса??)

 $\forall z \in [a, b]$ известна площадьS(z)сечение этого тела плоскостью, перпендикулярной оси Oz. Пусть V(z) - объем тела, ограниченный s(z) и a (от нижней части до S(z)). $\mathbf{d}V = |h = \mathbf{d}z| =$ $= S(z) \ \mathbf{d}z \Rightarrow V = \int_{z}^{b} S(z) \ \mathbf{d}z$

Example:

Ехаmple:
Найти объем тела:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

При фиксированном z $(-c \le z \le c)$:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, \ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{z^2}{c^2}, \ \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{c^2 - z^2}{c^2}$$
$$\frac{x^2}{a^2 \cdot \frac{c^2 - z^2}{c^2}} + \frac{y^2}{b^2 \cdot \frac{c^2 - z^2}{c^2}} = 1, \ \frac{x^2}{\left(\frac{a}{c} \cdot \sqrt{c^2 - z^2}\right)^2} + \frac{y^2}{\left(\frac{b}{c} \cdot \sqrt{c^2 - z^2}\right)^2} = 1$$
- уравнение эллипса с полуосями:

- уравнение эллипса с полуосями:
$$a_1 = \frac{a}{c} \cdot \sqrt{c^2 - z^2}, \ b_1 = \frac{b}{c} \cdot \sqrt{c^2 - z^2}.$$
 Известно: $S(z)$ - площадь эллипса = $\pi a_1 b_1 = \pi \frac{ab}{c} (c^2 - z^2).$

$$V = \int_{-c}^{c} \pi \frac{ab}{c} (c^2 - z^2) \, dz = \frac{\pi ab}{c^2} \left(c^2 z - \frac{z^3}{3} \right) \Big|_{-c}^{c} = \frac{\pi ab}{c^2} \left(c^3 + c^3 - \frac{c^3}{3} - \frac{c^3}{3} \right) = \frac{4}{3} \pi abc$$

2. Объем тела вращения

(а) Вращение воукруг оси Ox

$$AB: y=y(x), a \leq x \leq b$$
 $S(x)=\pi y^2(x) \, (S$ кргуа)

$$V = \pi \int_{a}^{b} y^{2}(x) \, \, \mathbf{d}x$$

