Assignment 9

Adrian Bracher (Matr. Nr. 01637180)

19.05.2021

Contents

1	Pre	Preparing to analyze survey data 2							
	1.1	Measuring expert agreement	2						
	1.2	Inter-rater reliability	2						
	1.3	Content validity	2						
	1.4	Visualizing response frequencies	3						
	1.5	Reverse-coding items	4						
	1.6	Missing values	4						
	1.7	Exploring item correlations	5						
	1.8	Preparing the brand reputation survey	5						
2	Exploratory factor analysis & survey development 5								
	2.1	From correlations to factors	5						
	2.2	Building your first EFA	7						
	2.3	EFA: How many factors?	8						
	2.4	Refining the brand reputation survey	9						
	2.5	Comparing EFA model fits	9						
	2.6	EFA model iteration	10						
	2.7	Measuring coefficient (Cronbach's) alpha	12						
	2.8	Coefficient alpha by dimension	13						
	2.9	Split-half reliability	13						
	2.10	Measuring loyalty	15						
3	Con	firmatory factor analysis & construct validation	16						
	3.1	Factor loadings in EFA & CFA	16						
	3.2	Building a CFA in lavaan	16						
	3.3	A not-so-good CFA	18						
	3.4	Adjusting for non-normality	19						
	3.5		19						
	3.6	Comparing CFA models using ANOVA	19						
	3.7		20						
	3.8	Construct validity & model fit	20						
	3.9	Construct validity & reliability	20						
	3.10	Deeper into AVE & CR	20						
	3.11	CFA of the brand reputation survey	21						
4	Crit		21						
	4.1	Preparing a scaled data frame	21						
	4.2	Plotting and analyzing a concurrent validity model	22						
	4.3	Concurrent validity & Likert-style items	22						
	4.4	Statistical significance & r-square	22						
	4.5		23						

4.6	Exploring factor scores	23
4.7	Factor scores & regression	23
4.8	Test-retest reliability	24
4.9	CFA, EFA & replication	24

1 Preparing to analyze survey data

Note: Sadly Datacamp fails to provide a lot of necessary data and other prerequisites, therefore I cannot execute many of the code chunks.

```
library(irr)
library(psych)
library(psychometric)
library(dplyr)
library(likert)
library(car)
library(Hmisc)
library(tidyr)
library(corrplot)
library(lavaan)
```

1.1 Measuring expert agreement

In this exercise we learn how to use cor() to compute the correlation in a data frame and then also call agree() to get the agreement in percent between raters.

```
# Print beginning of sme data frame
print(head(sme))

# Correlation matrix of expert ratings
cor(sme)

# Percentage agreement of experts
agree(sme)
```

1.2 Inter-rater reliability

In the code below we learn how to compute Cohen's Kappa.

```
# Load psych package
library(psych)

# Check inter-rater reliability
cohen.kappa(sme)
```

1.3 Content validity

Here we measure content validity using Lawshe's Content Validity Ratio with CVratio().

```
# See the results
cvr_by_item
```

Visualizing response frequencies

```
In this exercise we derive summary counts and create a visualization.
brand rep = read.csv("brandrep-cleansurvey-extraitem.csv")
# Convert items to factor
b_rep_likert <- brand_rep %>%
               mutate_if(is.integer, as.factor)
# Response frequencies - base R
summary(b_rep_likert)
## well_made consistent poor_workman_r higher_price lot_more go_up
                                                                    stands_out
                        1:424
## 1:363
             1:379
                                       1:175
                                                    1: 83
                                                            1:103
                                                                    1:239
## 2:149
             2:131
                        2: 95
                                       2:145
                                                    2: 97
                                                            2:102
                                                                    2:170
                        3: 25
                                       3:103
## 3: 27
             3: 26
                                                   3: 87
                                                            3:110
                                                                    3: 78
## 4: 8
             4: 11
                      4: 4
                                      4: 67
                                                   4: 91
                                                            4: 99
                                                                    4: 38
             5: 12
                        5: 11
                                      5: 69
                                                                    5: 34
## 5: 12
                                                   5:201
                                                            5:145
## unique one_of_a_kind
## 1:256
           1:348
## 2:164
           2:109
## 3: 67
           3: 50
## 4: 39
           4: 13
## 5: 33
          5: 39
# Plot response frequencies
```


1.5 Reverse-coding items

In the code below we "reverse-code" items.

1.6 Missing values

Missing values sometimes hint at underlying problems. In this exercise we try to analyze the missing values to see more.

```
# Total number of rows
nrow(missing_lots)
```

```
# Total number of complete cases
nrow(na.omit(missing_lots))

# Number of incomplete cases by variable
colSums(is.na(missing_lots))

# Hierarchical plot -- what values are missing together?
plot(naclus(missing_lots))
```

1.7 Exploring item correlations

Here we visualize item correlations with corrplot.

```
# View significance of item correlations
corr.test(brand_qual_9)

# Visualize item correlations -- corrplot
corrplot(cor(brand_qual_9), method = "circle")
```

1.8 Preparing the brand reputation survey

In this exercise we revisit recode and then use select with a "-" to drop a certain column. We then visualize the correlations in the modified data frame.

2 Exploratory factor analysis & survey development

2.1 From correlations to factors

We repeat what we've learned in the previous chapter. Note that corr.test creates a correlation matrix (table). Then, we make a parallel analysis.

```
b_loyal_10 = read.csv("brandloyalty.csv")
# Print correlation matrix
corr.test(b_loyal_10)

## Call:corr.test(x = b_loyal_10)

## Correlation matrix
## BL1 BL2 BL3 BL4 BL5 BL6 BL7 BL8 BL9 BL10
## BL1 1.00 0.44 0.50 0.35 0.38 0.40 0.15 0.22 0.22 0.16
## BL2 0.44 1.00 0.52 0.36 0.42 0.37 0.19 0.29 0.27 0.20
```

```
## BL3 0.50 0.52 1.00 0.38 0.49 0.45 0.28 0.27 0.30 0.20
        0.35 0.36 0.38 1.00 0.50 0.47 0.29 0.34 0.30 0.14
## BL4
        0.38 0.42 0.49 0.50 1.00 0.63 0.39 0.37 0.39 0.25
## BL5
## BL6
        0.40 0.37 0.45 0.47 0.63 1.00 0.36 0.40 0.39 0.28
        0.15 0.19 0.28 0.29 0.39 0.36 1.00 0.50 0.64 0.48
## BL8 0.22 0.29 0.27 0.34 0.37 0.40 0.50 1.00 0.65 0.46
## BL9 0.22 0.27 0.30 0.30 0.39 0.39 0.64 0.65 1.00 0.60
## BL10 0.16 0.20 0.20 0.14 0.25 0.28 0.48 0.46 0.60 1.00
## Sample Size
## [1] 639
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
        BL1 BL2 BL3 BL4 BL5 BL6 BL7 BL8 BL9 BL10
##
## BL1
                  0
                       0
                           0
                                   0
          0
              0
                               0
                                   0
                                                 0
## BL2
          0
              0
                  0
                       0
                           0
                               0
                                        0
## BL3
          0
              0
                  0
                       0
                           0
                               0
                                   0
                                        0
                                            0
                                                 0
## BL4
          0
              0
                  0
                       0
                           0
                               0
                                   0
                                            0
                                                 0
## BL5
          0
              0
                  0
                       0
                           0
                               0
                                   0
                                        0
                                            0
                  0
                           0
                                   0
## BL6
## BL7
              0
                  0
                       0
                           0
                               0
                                   0
                                            0
                                                 0
          0
                       0
                                   0
                                                 0
## BL8
          0
              0
                  0
                           0
                               0
                                        0
                                            0
## BL9
          0
              0
                  0
                       0
                           0
                               0
                                   0
                                        0
                                            0
                                                 0
## BL10
##
```

To see confidence intervals of the correlations, print with the short=FALSE option
Visualize b_loyal_10 correlation matrix
corrplot(cor(b_loyal_10))

Parallel analysis suggests that the number of factors = 3 and the number of components = 2

2.2 Building your first EFA

In this exercise we build an EFA using the psych package. We also plot a scree plot of the model.

```
brand_rep_9 = read.csv("brandrep-cleansurvey-extraitem.csv")
# Scree plot
scree(brand_rep_9)
```

Scree plot


```
# Conduct three-factor EFA
brand_rep_9_EFA <- fa(brand_rep_9, nfactors = 3)</pre>
```

Loading required namespace: GPArotation

```
# Print output of EFA
names(brand_rep_9_EFA)
```

```
##
    [1] "residual"
                          "dof"
                                            "chi"
                                                             "nh"
    [5] "rms"
                                            "crms"
##
                          "EPVAL"
                                                             "EBIC"
##
    [9] "ESABIC"
                          "fit"
                                            "fit.off"
                                                             "sd"
## [13]
        "factors"
                          "complexity"
                                            "n.obs"
                                                             "objective"
                          "STATISTIC"
                                            "PVAL"
                                                             "Call"
  [17] "criteria"
                                                             "TLI"
  [21]
        "null.model"
                          "null.dof"
                                            "null.chisq"
                          "BIC"
                                            "SABIC"
##
   [25]
        "RMSEA"
                                                             "r.scores"
##
   [29]
        "R2"
                          "valid"
                                            "score.cor"
                                                             "weights"
   [33]
        "rotation"
                          "communality"
                                            "communalities"
                                                             "uniquenesses"
        "values"
                                                             "model"
   [37]
                          "e.values"
                                            "loadings"
   Γ417
        "fm"
                          "rot.mat"
                                            "Phi"
                                                             "Structure"
                                            "R2.scores"
##
  [45] "method"
                          "scores"
## [49] "np.obs"
                          "fn"
                                            "Vaccounted"
```

2.3 EFA: How many factors?

Here we look into different number of factors and then print the loadings for a two/four factor EFA.

```
brand_rep_9_EFA_3 = brand_rep_9_EFA
# Summarize results of three-factor EFA
```

```
summary(brand_rep_9_EFA_3)

# Build and print loadings for a two-factor EFA
brand_rep_9_EFA_2 = fa(brand_rep_9, nfactors = 2)
brand_rep_9_EFA_2$loadings

# Build and print loadings for a four-factor EFA
brand_rep_9_EFA_4 = fa(brand_rep_9, nfactors = 4)
brand_rep_9_EFA_4$loadings
```

2.4 Refining the brand reputation survey

```
We extract further information like eigenvalues and factor score correlations.
# Three factor EFA - brand_rep_9
brand_rep_9_EFA_3 <- fa(brand_rep_9, nfactors = 3)</pre>
# Eigenvalues
brand_rep_9_EFA_3$e.values
## [1] 4.35629549 1.75381015 0.98701607 0.67377072 0.39901205 0.35865598 0.23915591
## [8] 0.14238807 0.08989556
# Factor score correlations
brand_rep_9_EFA_3$score.cor
##
             [,1]
                        [,2]
                                  [,3]
## [1,] 1.0000000 0.3687866 0.4733475
## [2,] 0.3687866 1.0000000 0.4977679
## [3,] 0.4733475 0.4977679 1.0000000
# Factor loadings
brand_rep_9_EFA_3$loadings
##
## Loadings:
##
                  MR2
                          MR1
                                 MR3
## well_made
                   0.896
## consistent
                   0.947
## poor_workman_r 0.739
## higher_price
                   0.127 0.632 0.149
## lot_more
                           0.850
                           0.896
## go_up
## stands_out
                                  1.008
## unique
                                  0.896
## one_of_a_kind
                   0.309 0.295 0.115
##
##
                    MR2
                          MR1
## SS loadings
                  2.361 2.012 1.858
## Proportion Var 0.262 0.224 0.206
## Cumulative Var 0.262 0.486 0.692
```

2.5 Comparing EFA model fits

In this exercise we repeat the previously learned usage of fa, select and their variables.

```
# Create brand_rep_8 data frame
brand_rep_8 <- select(brand_rep_9, -one_of_a_kind)</pre>
# Create three-factor EFA
brand_rep_8_EFA_3 <- fa(brand_rep_8, nfactors=3)</pre>
# Factor loadings
brand_rep_8_EFA_3$loadings
##
## Loadings:
##
                  MR2
                          MR3
                                 MR1
## well_made
                   0.887
## consistent
                   0.958
## poor_workman_r 0.735
                   0.120 0.596 0.170
## higher_price
## lot_more
                           0.845
## go_up
                           0.918
## stands_out
                                  0.990
                                  0.916
## unique
##
##
                     MR2
                           MR3
                                 MR1
## SS loadings
                  2.261 1.915 1.850
## Proportion Var 0.283 0.239 0.231
## Cumulative Var 0.283 0.522 0.753
# Factor correlations -- 9 versus 8 item model
brand_rep_9_EFA_3$score.cor
##
             [,1]
                        [,2]
                                  [,3]
## [1,] 1.0000000 0.3687866 0.4733475
## [2,] 0.3687866 1.0000000 0.4977679
## [3,] 0.4733475 0.4977679 1.0000000
brand_rep_8_EFA_3$score.cor
##
             [,1]
                        [,2]
                                  [,3]
## [1,] 1.0000000 0.2826536 0.4247302
## [2,] 0.2826536 1.0000000 0.4977679
## [3,] 0.4247302 0.4977679 1.0000000
      EFA model iteration
2.6
Again, in this exercise we use previously learned functions to compute loadings and a scree plot.
# Three factor EFA loadings
brand_rep_8_EFA_3$loadings
##
## Loadings:
##
                  MR2
                          MR3
                                 MR1
## well_made
                   0.887
## consistent
                   0.958
## poor_workman_r 0.735
## higher_price
                   0.120
                           0.596 0.170
## lot_more
                           0.845
```

```
## go_up
                          0.918
## stands_out
                                 0.990
                                 0.916
## unique
##
                    MR2
                          MR3
## SS loadings
                  2.261 1.915 1.850
## Proportion Var 0.283 0.239 0.231
## Cumulative Var 0.283 0.522 0.753
# Two factor EFA & loadings
brand_rep_8_EFA_2 <- fa(brand_rep_8, nfactors = 2)</pre>
brand_rep_8_EFA_2$loadings
##
## Loadings:
                  MR1
                         MR2
##
## well_made
                          0.878
## consistent
                          0.937
## poor_workman_r
                          0.725
## higher_price
                   0.724
## lot_more
                   0.782 -0.124
## go_up
                   0.859
## stands out
                  0.595 0.293
## unique
                   0.546 0.315
##
##
                          MR2
                    MR1
                  2.529 2.392
## SS loadings
## Proportion Var 0.316 0.299
## Cumulative Var 0.316 0.615
# Four factor EFA & loadings
brand_rep_8_EFA_4 <- fa(brand_rep_8, nfactors = 4)</pre>
brand_rep_8_EFA_4$loadings
##
## Loadings:
##
                  MR2
                         MR3
                                MR1
                                        MR4
## well made
                   0.831
## consistent
                   1.011
                                        -0.126
## poor_workman_r 0.699
                                        0.253
## higher_price
                   0.129 0.601 0.168
## lot_more
                          0.850
## go_up
                          0.913
## stands_out
                                 0.992
## unique
                                 0.915
##
##
                          MR3
                                MR1
                    MR2
                                       MR4
## SS loadings
                  2.220 1.920 1.854 0.097
## Proportion Var 0.278 0.240 0.232 0.012
## Cumulative Var 0.278 0.518 0.749 0.761
# Scree plot of brand_rep_8
scree(brand_rep_8)
```

Scree plot

Measuring coefficient (Cronbach's) alpha

Here we use the function alpha() to calculate Cronbach's coefficient.

```
brand_rep_9 = read.csv("brandrep-cleansurvey-extraitem.csv")
# Standardized coefficient alpha
psych::alpha(brand_rep_9)$total$std.alpha
## [1] 0.8648896
# 3-factor EFA
brand_rep_9_EFA_3 <- fa(brand_rep_9, nfactors = 3)</pre>
brand_rep_9_EFA_3$loadings
##
## Loadings:
##
                          MR1
                                 MR3
                  MR2
## well_made
                    0.896
                    0.947
## consistent
                   0.739
## poor_workman_r
                    0.127
## higher_price
                           0.632
                                  0.149
## lot_more
                           0.850
## go_up
                           0.896
## stands_out
                                  1.008
                                  0.896
## unique
                    0.309
                           0.295
##
   one_of_a_kind
                                  0.115
```

```
## MR2 MR1 MR3

## SS loadings 2.361 2.012 1.858

## Proportion Var 0.262 0.224 0.206

## Cumulative Var 0.262 0.486 0.692

# Standardized coefficient alpha - refined scale

psych::alpha(brand_rep_8)$total$std.alpha

## [1] 0.8557356
```

2.8 Coefficient alpha by dimension

We use the previously learned functions to check the standardized alpha for each of the three dimensions "Product Quality", "Willingness to Pay" and "Product Differentiation".

```
# Get names of survey items
names(brand_rep_8)
## [1] "well_made"
                         "consistent"
                                           "poor_workman_r" "higher_price"
## [5] "lot more"
                         "go_up"
                                           "stands out"
                                                             "unique"
# Create new data frames for each of three dimensions
p_quality <- brand_rep_8[1:3]</pre>
p_willingness <- brand_rep_8[4:6]</pre>
p_difference <- brand_rep_8[7:8]</pre>
# Check the standardized alpha for each dimension
psych::alpha(p_quality)$total$std.alpha
## [1] 0.8918025
psych::alpha(p_willingness)$total$std.alpha
## [1] 0.8517566
psych::alpha(p_difference)$total$std.alpha
## [1] 0.951472
psych::alpha(brand_rep_8)$total$std.alpha
## [1] 0.8557356
```

2.9 Split-half reliability

In this exercise we use the function splitHalf() to compute the split-half reliability of brand_rep_8.

```
# Get split-half reliability
splitHalf(brand_rep_8)
```

```
## Split half reliabilities
## Call: splitHalf(r = brand_rep_8)
##
## Maximum split half reliability (lambda 4) = 0.93
## Guttman lambda 6 = 0.92
## Average split half reliability = 0.86
## Guttman lambda 3 (alpha) = 0.86
## Guttman lambda 2 = 0.87
## Minimum split half reliability (beta) = 0.66
## Average interitem r = 0.43 with median = 0.4
```

```
# Get averages of even and odd row scores
even_items <- colMeans(brand_rep_8[,c(FALSE,TRUE)])</pre>
odd items <- colMeans(brand rep 8[,c(TRUE,FALSE)])
# Correlate scores from even and odd items
cor(even_items, odd_items)
## [1] 0.7441724
# Get Cronbach's alpha
psych::alpha(brand_rep_8)
## Reliability analysis
## Call: psych::alpha(x = brand_rep_8)
##
##
    raw_alpha std.alpha G6(smc) average_r S/N
                                                  ase mean
                                                             sd median_r
##
        0.85
                   0.86
                           0.92
                                     0.43 5.9 0.0096 2.2 0.81
##
  lower alpha upper
                          95% confidence boundaries
## 0.83 0.85 0.87
##
## Reliability if an item is dropped:
                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## well_made
                       0.83
                                 0.83
                                         0.89
                                                   0.42 5.0
                                                              0.0102 0.042 0.39
                                         0.89
                                                   0.42 5.1
                                                              0.0100 0.039
## consistent
                       0.84
                                 0.84
                                                                           0.41
## poor_workman_r
                       0.85
                                 0.85
                                         0.92
                                                   0.45 5.7
                                                              0.0098 0.041 0.41
## higher_price
                                                   0.42 5.0
                                                              0.0120 0.052 0.39
                       0.82
                                 0.83
                                         0.91
## lot_more
                       0.84
                                         0.91
                                                   0.45 5.7
                                                              0.0105 0.041 0.41
                                 0.85
                                                   0.43 5.3
## go_up
                       0.82
                                 0.84
                                         0.90
                                                              0.0115 0.044 0.39
                                         0.88
                                                   0.41 4.8
                                                              0.0116 0.045 0.34
## stands_out
                       0.81
                                 0.83
## unique
                       0.82
                                 0.83
                                         0.88
                                                   0.41 4.9
                                                              0.0113 0.046 0.38
##
##
   Item statistics
##
                   n raw.r std.r r.cor r.drop mean
## well_made
                  559 0.64 0.73 0.72
                                          0.56 1.5 0.83
                  559 0.62 0.71 0.70
## consistent
                                          0.52 1.5 0.85
## poor_workman_r 559 0.52 0.62 0.56
                                          0.43 1.4 0.77
## higher_price
                  559 0.78 0.73 0.68
                                          0.68 2.5 1.36
## lot_more
                  559 0.71 0.62 0.57
                                          0.56 3.4 1.48
                  559 0.76 0.69 0.65
## go_up
                                          0.64 3.1 1.45
                  559 0.78 0.77 0.78
## stands_out
                                          0.69 2.0 1.18
## unique
                  559 0.76 0.76 0.76
                                          0.66 2.0 1.18
##
## Non missing response frequency for each item
##
                          2
                               3
                                    4
                                         5 miss
                     1
## well_made
                  0.65 0.27 0.05 0.01 0.02
## consistent
                  0.68 0.23 0.05 0.02 0.02
## poor workman r 0.76 0.17 0.04 0.01 0.02
                                              0
## higher price
                 0.31 0.26 0.18 0.12 0.12
## lot_more
                  0.15 0.17 0.16 0.16 0.36
                                              0
## go_up
                  0.18 0.18 0.20 0.18 0.26
                                              0
                 0.43 0.30 0.14 0.07 0.06
## stands_out
                                              0
```

0.46 0.29 0.12 0.07 0.06

unique

2.10 Measuring loyalty

In this exercise we learn by repetition to compute EFAs.

```
# 3 factor EFA
b_loyal_10_EFA_3 <- fa(b_loyal_10, nfactors = 3)</pre>
# Factor loadings, eigenvalues and factor score correlations
b_loyal_10_EFA_3$loadings
##
## Loadings:
##
       MR2
               MR1
                      MR3
## BL1
                       0.643
## BL2
                       0.682
## BL3
                       0.700
## BL4
                0.545 0.124
## BL5
                0.772
## BL6
                0.712
         0.643 0.207 -0.114
## BL7
        0.619 0.165
## BL8
## BL9
         0.903
## BL10 0.718 -0.134
##
##
                    MR2
                          MR1
                                MR3
## SS loadings
                  2.134 1.495 1.406
## Proportion Var 0.213 0.149 0.141
## Cumulative Var 0.213 0.363 0.503
b_loyal_10_EFA_3$e.values
## [1] 4.3564537 1.6031839 0.8242739 0.5982539 0.5649528 0.5155507 0.4767388
## [8] 0.4136564 0.3594158 0.2875202
b_loyal_10_EFA_3$score.cor
##
             [,1]
                       [,2]
                                  [,3]
## [1,] 1.0000000 0.4795981 0.3440793
## [2,] 0.4795981 1.0000000 0.5924107
## [3,] 0.3440793 0.5924107 1.0000000
# 2 factor EFA
b_loyal_10_EFA_2 <- fa(b_loyal_10, nfactors = 2)</pre>
# Factor loadings, eigenvalues and factor score correlations
b_loyal_10_EFA_2$loadings
##
## Loadings:
##
               MR2
       MR1
        0.673 -0.111
## BL1
## BL2
        0.654
        0.746
## BL3
## BL4
         0.581
## BL5
         0.661 0.129
## BL6
         0.616 0.161
## BL7
                0.701
```

```
## BL8
         0.116 0.657
## BL9
                0.901
## BL10
                0.688
##
                    MR1
                          MR2
## SS loadings
                  2.610 2.270
## Proportion Var 0.261 0.227
## Cumulative Var 0.261 0.488
b_loyal_10_EFA_2$e.values
   [1] 4.3564537 1.6031839 0.8242739 0.5982539 0.5649528 0.5155507 0.4767388
   [8] 0.4136564 0.3594158 0.2875202
b_loyal_10_EFA_2$score.cor
             [,1]
                       [,2]
## [1,] 1.0000000 0.4623472
## [2,] 0.4623472 1.0000000
```

3 Confirmatory factor analysis & construct validation

3.1 Factor loadings in EFA & CFA

We learn how we can print CFA loadings with inspect() and also plot CFA diagrams via semPaths().

```
# Factor loadings -- EFA
brand_rep_EFA$loadings

# Factor loadings -- CFA
inspect(brand_rep_CFA, what = "std")$lambda

# Plot diagram -- EFA
fa.diagram(brand_rep_EFA)

# Plot diagram -- CFA
semPaths(brand_rep_CFA)
```

3.2 Building a CFA in lavaan

Here we use the package lavaan to build a CFA and summarise the results. CFA allows the researcher to test the hypothesis that a relationship between manifest and latent variables exist. Unlike EFA, we define the relationships between variables and we have a specific theory to test.

```
b_loyal_cfa <- cfa(model = b_loyal_cfa_model, data = b_loyal_10)</pre>
# Check the summary statistics -- include fit measures and standardized estimates
summary(b_loyal_cfa, fit.measures = TRUE,
       standardized = TRUE)
## lavaan 0.6-8 ended normally after 33 iterations
##
##
     Estimator
                                                         ML
                                                    NLMINB
##
     Optimization method
     Number of model parameters
##
                                                         23
##
##
     Number of observations
                                                        639
##
## Model Test User Model:
##
                                                     63.953
##
     Test statistic
     Degrees of freedom
##
                                                         32
##
     P-value (Chi-square)
                                                      0.001
##
## Model Test Baseline Model:
##
     Test statistic
                                                   2485.786
##
##
     Degrees of freedom
                                                         45
##
     P-value
                                                      0.000
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                      0.987
##
     Tucker-Lewis Index (TLI)
                                                      0.982
##
## Loglikelihood and Information Criteria:
##
     Loglikelihood user model (HO)
##
                                                  -7214.586
##
     Loglikelihood unrestricted model (H1)
                                                 -7182.610
##
     Akaike (AIC)
##
                                                 14475.173
##
     Bayesian (BIC)
                                                  14577.751
##
     Sample-size adjusted Bayesian (BIC)
                                                 14504.727
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                      0.040
     90 Percent confidence interval - lower
##
                                                      0.025
##
     90 Percent confidence interval - upper
                                                      0.054
##
     P-value RMSEA <= 0.05
                                                      0.885
##
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                      0.030
##
## Parameter Estimates:
##
##
                                                   Standard
     Standard errors
```

## ##	Information Information saturated (h1) model			Expected Structured			
##	Information	Baturatea (III)	model	50	Ideualea		
##	Latent Variabl	es:					
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	ID =~						
##	ID1	1.000				0.450	0.646
##	ID2	1.186	0.090	13.235	0.000	0.534	0.675
##	ID3	1.445	0.102	14.209	0.000	0.651	0.778
##	PV =~						
##	PV1	1.000				0.555	0.626
##	PV2	1.311	0.087	15.012	0.000	0.728	0.800
##	PV3	1.340	0.091	14.765	0.000	0.744	0.772
##	BT =~						
##	BT1	1.000				0.723	0.717
##	BT2	1.106	0.065	17.064	0.000	0.799	0.729
##	BT3	1.174	0.060	19.529	0.000	0.848	0.888
##	BT4	0.886	0.057	15.507	0.000	0.641	0.660
##	a .						
##	Covariances:	.	Q. 1 B	,	D(>)	0.1.7	Q. 1 77
##	TD	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	ID ~~ PV	0.192	0.020	O E11	0.000	0.768	0 769
## ##	BT	0.192	0.020	9.511 7.423	0.000	0.766	0.768 0.436
##	PV ~~	0.142	0.019	1.423	0.000	0.430	0.430
##	BT	0.234	0.026	8.966	0.000	0.583	0.583
##	D1	0.201	0.020	0.000	0.000	0.000	0.000
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.ID1	0.282	0.019	14.506	0.000	0.282	0.582
##	.ID2	0.341	0.024	13.918	0.000	0.341	0.545
##	.ID3	0.277	0.026	10.637	0.000	0.277	0.395
##	.PV1	0.479	0.031	15.569	0.000	0.479	0.608
##	.PV2	0.299	0.026	11.301	0.000	0.299	0.361
##	.PV3	0.374	0.030	12.369	0.000	0.374	0.403
##	.BT1	0.492	0.033	14.907	0.000	0.492	0.485
##	.BT2	0.563	0.038	14.670	0.000	0.563	0.468
##	.BT3	0.192	0.024	8.013	0.000	0.192	0.211
##	.BT4	0.530	0.034	15.777	0.000	0.530	0.564
##	ID	0.203	0.025	8.166	0.000	1.000	1.000
##	PV	0.308	0.038	8.097	0.000	1.000	1.000
##	BT	0.522	0.053	9.879	0.000	1.000	1.000

3.3 A not-so-good CFA

In the code below we create two_dimensions ODD and EVEN according to specification and then fit a cfa model to them.

```
# Summary measures
summary(c_sat_bad_CFA, fit.measures = TRUE, standardized = TRUE)
```

3.4 Adjusting for non-normality

Multivariate normal distribution is an assumption under CFA. In this exercise we learn how to check that.

3.5 Comparing models using absolute fit measures

In this exercise we compare models using lavaan and determine which model fits better.

```
# Fit the models to the data
c_sat_cfa_a <- cfa(model = c_sat_model_a, data = c_sat)
c_sat_cfa_b <- cfa(model = c_sat_model_b, data = c_sat)

# Print the model definitions
cat(c_sat_model_a)
cat(c_sat_model_b)

# Calculate the desired model fit statistics
fitMeasures(c_sat_cfa_a, fit.measures = c("cfi", "tli"))
fitMeasures(c_sat_cfa_b, fit.measures = c("cfi", "tli"))</pre>
```

3.6 Comparing CFA models using ANOVA

In this exercise we use analysis of variance (ANOVA) to compare nested models.

3.7 Group CFA

In the code below we learn how to add groups to a cfa model.

```
# Fit the model to the data
c_sat_cfa <- cfa(model = c_sat_model, data = c_sat_group, group = "COUNTRY")

# Summarize results -- include fit measures and standardized estimates
summary(c_sat_cfa, fit.measures = TRUE, standardized = TRUE)

# Get average estimate for both groups
standardized_solution <- standardizedSolution(c_sat_cfa)
standardized_solution %>%
    filter(op == "=~") %>%
    group_by(group) %>%
    summarize(mean(est.std))
```

3.8 Construct validity & model fit

In the code below we use different reliability measures.

```
# Fit three-factor CFA
c_sat_cfa_3 <- cfa(model = c_sat_cfa_model_3, data = c_sat)

# Inspect key fit measures - three-factor CFA
fitMeasures(c_sat_cfa_3, fit.measures = c("cfi","tli","rmsea"))

# Fit two-factor CFA
c_sat_cfa_2 <- cfa(model = c_sat_cfa_model_2, data = c_sat)

# Inspect key fit measures - two-factor CFA
fitMeasures(c_sat_cfa_2, fit.measures = c("cfi","tli","rmsea"))

# Compare measures of construct validity for three- versus two-factor models
reliability(c_sat_cfa_3)
reliability(c_sat_cfa_2)</pre>
```

3.9 Construct validity & reliability

In this exercise, we find out how we can measure validity and realiability.

```
# Print CFA model
cat(brand_rep_CFA_model)

# semTools reliability measures
reliability(brand_rep_CFA)

# psych coefficient alpha measure
alpha(brand_rep_9)$total$std.alpha
```

3.10 Deeper into AVE & CR

In this exercise we compare dplyr methods to semTools methods and compute reliability scores.

```
# Store F1 estimates as object loadings
loadings <- standardizedSolution(c_sat_cfa) %>%
```

```
filter(op == "=~", lhs == "F1") %>% select(est.std)

# Composite reliability -- the squared sum of all loadings divided by that same figure plus the sum of
com_rel <- sum(loadings) ^ 2 / ((sum(loadings)^ 2) + sum(1 - loadings ^ 2))
com_rel

# Average variance extracted -- sum of all factor squares divided by the number of items
avg_var <- sum(loadings ^ 2) / nrow(loadings)
avg_var

# Compare versus semTools
reliability(c_sat_cfa)</pre>
```

3.11 CFA of the brand reputation survey

In this exercise we build a lavaan model and then print the summary and also construct validity with the reliability() function.

4 Criterion validity & replication

4.1 Preparing a scaled data frame

In this exercise we learn how to use scale() for scaling and then describe() to print descriptive statistics.

```
# Check if brand_rep and brand_rep_spend have the same number of rows
same_rows <- nrow(brand_rep) == nrow(brand_rep_spend)
same_rows

# Append spend column to brand_rep
brand_rep <- cbind(brand_rep, brand_rep_spend)

# Scale the data
b_rep_scale <- scale(brand_rep)

# Compare descriptive statistics of raw and scaled data frames using psych
describe(brand_rep)
describe(b_rep_scale)</pre>
```

4.2 Plotting and analyzing a concurrent validity model

We create a standardized model and establish concurrent validity. Then we print the standardized covariances with standardizedSolution() and plot the result with semPaths().

4.3 Concurrent validity & Likert-style items

In this exercise we learn by repetition.

```
# Bind & scale the variables
c_sat_rec_scale <- cbind(c_sat, c_sat_recommend) %>% scale()

# Define the model - Rec_f covaries with F1, F2, F3
c_sat_rec_model <- 'F1 =~ CS1 + CS2 + CS3 + CS4
F2 =~ CS5 + CS6 + CS7
F3 =~ CS8 + CS9 + CS10
Rec_f =~ Rec_1
Rec_f ~~ F1 + F2 + F3'

# Fit the model to the data
c_sat_rec_sem <- sem(model = c_sat_rec_model, data = c_sat_rec)

# Look up standardized covariances
standardizedSolution(c_sat_rec_sem) %>% filter(rhs == "Rec_f")
```

4.4 Statistical significance & r-square

In this exercise we practice fitting models, summarizing results and plotting.

```
# Plot the model -- rotate from left to right
semPaths(b_q_pv, rotation = 2, whatLabels = "est.std", edge.label.cex = .8)
```

4.5 Prediction & causation

In the following we exercise the use of standardizedSolution(), inspect() and semPaths().

```
# Plot the new model
semPaths(brand_rep_sem, rotation = 2)

# Get the coefficient information
standardizedSolution(brand_rep_sem) %>% filter(op == "~")

# Get the r-squared
r_squared <- inspect(brand_rep_sem, 'r2')["F2"]
r_squared</pre>
```

4.6 Exploring factor scores

Factor scores represent individual respondents' standing on a latent factor. We learn how we can combine predict() with as.data.frame() to compute such a factor score.

```
# Compute factor scores in lavaan -- store as data frame
brand_rep_scores <- as.data.frame(predict(brand_rep_cfa))

# Descriptive statistics of our factor scores
describe(brand_rep_scores)

# Plot histograms for each variable
multi.hist(brand_rep_scores)
# Are they normally distributed? Check using map()
map(brand_rep_scores, shapiro.test)</pre>
```

4.7 Factor scores & regression

We learn how to combine lm with summary and round as well as inspect to compare results.

```
# Linear regression of standardized spending and factor scores
bq_fs_reg <- lm(spend ~ F1 + F2 + F3, data = bq_fs_spend)

# Summarize results, round estimates
rounded_summary <- round(summary(bq_fs_reg)$coef, 3)
rounded_summary

# Summarize the results of CFA model
summary(brand_qual_pv)

# Compare the r-squared of each
inspect_rsq <- inspect(brand_qual_pv, "r2")["spend"]
inspect_rsq
summary(bq_fs_reg)$r.squared</pre>
```

4.8 Test-retest reliability

describeBy() returns descriptive statistics like describe(), but grouped. testRetest() is used to measure the test-retest reliability of the survey.

4.9 CFA, EFA & replication

In this exercise we practice previously acquired knowledge.

```
# Split data into odd and even halves
brand_rep_efa_data <- brand_rep[c(TRUE,FALSE),]
brand_rep_cfa_data <- brand_rep[c(FALSE,TRUE),]

# Get factor loadings of brand_rep_efa_data EFA
efa <- fa(brand_rep_efa_data, nfactors = 3)
efa$loadings

# Confirm the data that the model was fit to
inspect(brand_rep_cfa, what = "call")

# Check fit measures
fitmeasures(brand_rep_cfa)[c("cfi","tli","rmsea")]</pre>
```