Positivity of line bundles in derived categories

Daigo Ito (University of California, Berkeley) joint work with Noah Olander (UC Berkeley)

Motivation

Using the theory of Matsui spectra, the reconstruction theorem of Bondal-Orlov was recently generalized to the following setting.

Definition 1 A line bundle \mathcal{L} is said to be \otimes -ample if $\langle \mathcal{L}^{\otimes n} \mid n \in \mathbb{Z} \rangle = \operatorname{Perf} X$.

On a quasi-projective variety, any (anti-)ample line bundle is \otimes -ample.

Theorem 2 (Ito-Matsui, Ito) Let X be a Gorenstein proper variety with \otimes -ample canonical bundle ω_X . Then, the following assertions hold:

- X can be reconstructed from the triangulated category structure of Perf X;
- If we have $\operatorname{Perf} X \simeq \operatorname{Perf} Y$ with a variety Y, then $X \cong Y$.

Here, note we do not require any projectivity, which is more natural from a dg-categorical perspective. Now, a natural question is whether or not this is actually a generalization.

Question 3 Are there \otimes -ample line bundles that are neither ample nor anti-ample?

Main Theorem (Ito-Olander) Let X be a proper variety and \mathcal{L} a line bundle. TFAE:

- 1. \mathcal{L} is \otimes -ample.
- 2. $\mathcal{L}|_Z$ is big or anti-big for every closed integral subscheme $Z \subset X$.

The theorem provides a variety of examples and well-behaved theory of \otimes -ample line bundles.

Big line bundles and affine complements

A key technical ingredient is the following characterization of big line bundles, which is interesting in its own right in relation to divisors with affine complements.

Proposition 4 Let X be an integral qcqs scheme and \mathcal{L} a line bundle. TFAE:

- 1. There exists an integer n > 0 and a global section $s \in \Gamma(X, \mathcal{L}^{\otimes n})$ such that the open $X_s := \{s \neq 0\} = X \setminus V(s)$ is non-empty and quasi-affine.
- 2. There exists an integer n > 0 and a global section $s \in \Gamma(X, \mathcal{L}^{\otimes n})$ such that the open X_s is non-empty and affine.
- 3. There exists an integer n > 0 and a global section $s \in \Gamma(X, \mathcal{L}^{\otimes n})$ such that the open X_s is non-empty and there exists an integral domain R and a morphism

$$X_s \to \operatorname{Spec}(R)$$

whose generic fiber $(X_s)_K$ is quasi-affine where $K = \operatorname{Frac}(R)$.

- If X is a proper variety, then they are further equivalent to:
- 4. \mathcal{L} is big, i.e., there exist constants $m_0, C > 0$ such that $\dim_k \Gamma(X, \mathcal{L}^{\otimes m_0 m}) > C \cdot m^{\dim X}$ for any $m \gg 0$.

Definition 5 Let X be an integral qcqs scheme. A line bundle \mathcal{L} is **big** if the equivalent conditions 1-3 hold.

Our main theorem indeed holds in the generality of noetherian schemes with this notion of big line bundles. A proof of the main theorem goes as follows: $(1 \Rightarrow 2)$ It is easy to see \otimes -amplitude is preserved under quasi-affine pullbacks, so it suffices to show a \otimes -ample line bundle on an integral closed subscheme is big or anti-big. Indeed, \otimes -amplitude provides a desired section. $(2 \Rightarrow 1)$ We can show if there exists $n \neq 0$ and a global section $s \in \Gamma(X, \mathcal{L}^{\otimes n})$ such that X_s is quasi-affine and $\mathcal{L}|_{V(s^r)}$ is \otimes -ample for each $r \geq 0$, then \mathcal{L} is \otimes -ample. Now we can conclude by noetherian induction.

Consequences of the main theorem

Interestingly we have not found a direct proof to the following fundamental facts.

Lemma 6 Let \mathcal{L} be a line bundle on a noetherian scheme X. Let $0 \neq n \in \mathbb{Z}$. Let $f: Y \to X$ be a finite surjective morphism of schemes.

- $\mathcal{L}. \mathcal{L} \ is \otimes \text{-ample} \ if \ and \ only \ if \ \mathcal{L}^{\otimes n} \ is \otimes \text{-ample}.$
- 2. \mathcal{L} is \otimes -ample if and only if the restriction of \mathcal{L} to the irreducible components of X (with the reduced subscheme structure) are \otimes -ample.
- 3. \mathcal{L} is \otimes -ample if and only if $f^*\mathcal{L}$ is \otimes -ample.

In practice, the following seems to be a useful way to check if a line bundle is \otimes -ample.

Lemma 7 Let X be a noetherian scheme and \mathcal{L} a line bundle on X. Let $n_1, \ldots, n_k \in \mathbb{Z}$ be integers and $s_i \in \Gamma(X, \mathcal{L}^{\otimes n_i})$ global sections. Assume:

- 1. X_{s_i} have \otimes -ample structure sheaf (for example if each X_{s_i} is quasi-affine).
- 2. The restriction of \mathcal{L} to the reduced closed subscheme $V(s_1, \ldots, s_k)_{red} \subset X$ cut out by s_1, \ldots, s_k is \otimes -ample.
- Then \mathcal{L} is \otimes -ample.

\otimes -ample cone in $N^1(X)$

Our main theorem allows numerical studies of \otimes -ample line bundles.

Definition 8 Let X be a proper variety. We say an \mathbb{R} -Cartier divisor on X is \otimes ample if its restriction to any closed subvariety is linearly equivalent to a big or anti-big \mathbb{R} -Cartier divisor. Let

$$\otimes$$
-Amp $(X) \subset N^1(X) = \text{Div}(X)_{\mathbb{R}} / \equiv_{\text{num}}$

denote the cone of \otimes -ample \mathbb{R} -Cartier divisors up to numerical equivalence.

Lemma 9 Let X be a proper variety.

- A Cartier divisor is \otimes -ample if and only if its numerical class lies in \otimes -Amp(X).
- $\bullet \otimes \operatorname{-Amp}(X) \cap \operatorname{Nef}(X) = \operatorname{Amp}(X)$. In particular, $\otimes \operatorname{-Amp}(X) \cap \partial \operatorname{Nef}(X) = \emptyset$.

Note \otimes -Amp(X) is indeed computable. Let $\pi: X = \mathbb{P}_X(\mathcal{E}) \to C$ be a ruled surface over a projective curve C. Suppose \mathcal{E} is unstable with a destabilizing quotient $\mathcal{E} \to \mathcal{Q}$, which corresponds to a section $C_0 \subset X$. Then, we get a complete description of cones in $N^1(X)$.

Here, \otimes -Amp₊ $(X) = \otimes$ -Amp $(X) \cap Big(X)$.

Examples of \otimes -ample line bundles

The following completely answer Question 3 for smooth projective surfaces.

Lemma 10 A line bundle \mathcal{L} on a proper surface is \otimes -ample if and only if $\deg \mathcal{L}|_C \neq 0$ for every integral closed curve $C \subset X$ with $C^2 < 0$. Moreover,

$$\otimes$$
-Amp₊ $(X) = Big(X) \setminus \bigcup \{C^{\perp} : C \subset X \text{ an integral curve with } C^2 < 0\}.$

Lemma 11 A smooth projective surface X has a \otimes -ample but neither ample nor antiample line bundle if and only if there is an integral curve $C \subset X$ with $C^2 < 0$.

Other types of examples include but not limited to the following.

- Let X be a quasi-projective variety and let $\pi: X \to Y$ be the blow-up at finitely many points with corresponding exceptional divisors E_i . Then for any ample line bundle \mathcal{L} and for any $l_i > 0$, $\pi^* \mathcal{L} \otimes \bigotimes \mathcal{O}_X(l_i E_i)$ is is neither ample nor anti-ample, but \otimes -ample.
- Let $X = \text{Bl}_{(0,0)} \mathbb{A}^2_k \setminus \{p\}$ where p is a k-point of an exceptional divisor. Then the structure sheaf \mathcal{O}_X is \otimes -ample but not ample. In particular, being quasi-projective and having a \otimes -ample structure sheaf do not imply being quasi-affine.
- The affine space with doubled origin has the \otimes -ample structure sheaf. In particular, having a \otimes -ample line bundle does not imply neither separated nor having a resolution property.
- If X is a union of two copies of \mathbf{P}^1 glued along a node and \mathcal{L} is obtained by gluing $\mathcal{O}(1)$ on one copy with $\mathcal{O}(-1)$ on the other, then \mathcal{L} is \otimes -ample.
- Hironaka's example of a non-projective proper variety has a \otimes -ample line bundle.

Examples of ⊗-ample canonical bundles

Some of the previous examples provide varieties with \otimes -ample (but neither ample nor antiample) canonical bundle, to which we can apply Theorem 2.

- For a smooth projective surface X, ω_X is \otimes -ample if and only if ω_X is big or anti-big and X contains no (-2)-curve. For example, a smooth projective toric surface with no (-2)-curve, a projective bundle of an unstable rank 2 vector bundle over an elliptic curve, and the blow-up of \mathbb{P}^2 at r points on a line with $r \neq 3$ have \otimes -ample canonical bundles.
- If X is a quasi-projective variety with ample canonical bundle (e.g. a quasi-affine variety), then its blow-up at finitely many closed points has a \otimes -ample canonical bundle.
- Take the Fermat hypersurface $X = \{x_0^d + \cdots + x_4^d = 0\} \subset \mathbb{P}_k^4$ with odd d > 5. Then, there is a line $l \subset X$ with normal bundle $\mathcal{O}_l(1) \oplus \mathcal{O}_l(2-d)$. Then the blow-up of X along the line l has a \otimes -ample canonical bundle.
- A proper toric variety has a \otimes -ample canonical bundle if and only if the restriction of the canonical line bundle to the torus boundary divisor is \otimes -ample.

References

- D. Ito and H. Matsui, A new proof of the Bondal-Orlov reconstruction theorem using Matsui spectra (to appear in Bull. Lond. Math. Soc.)
- D. Ito, Polarizations on a triangulated category (available at arXiv:2502.15621)
- D. Ito and N. Olander, On ⊗-ample line bundles (coming soon)