LITERATURE SURVEY

Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

Domain: Artificial Intelligence

Team ID: PNT2022TMID40426

Batch No: B2-2M4E

Team Members: Vanmathi. D [513419104052]

Midhulamani. S [513419104027]

Narmadha.S [513419104031]

Yamini. D [513419104054]

S.No	1
TITLE	Detection of Heart Arrhythmia on Electrocardiogram using
	Artificial Neural Network
PROPOSED	This is how to detect heart arrhythmia on electrocardiogram
WORK	by using artificial neural network. The ECG signals of
	individuals who were healthy,as well as those who suffered
	from arrhythmias were divided into 10-minute segmentsof
	equal length.onthe training and testing session,measured
	from 5men aged 26-45 and 13 women aged 20-50.The
	arrhythmia database was randomly selected from over 4000
	records measured. The result for this project shown that high
	classification accuracy rates were obtained by applying
	ANN-basedclassifier model and also genetic algorithm
	method can detect features that improveclassification
	accuracy.
TOOLS USED/	a. ANN Models
ALGORITHM	b. Physio net ECG database
	c. Decision tree algorithm
	d. Support vector machines and Dimension reduction
	techniques
TECHNOLOGY	ARTIFICIAL INTELLIGENCE
ADVANTAGE	This research makes use of a variety of diagnosis
	terminologies.
	The result has been high classification accuracy when
	attempting to diagnose arrhythmia based on ECG
	indications.
DISADVANTAGE	Eventhough the accuracyis not 100%,because
	the lengths of the signals are different in the datasetsused.

S.No	2
TITLE	Arrhythmia Classification Techniques Using Deep Neural Network
PROPOSED	The primary goal of this research is to review the
WORK	development of arrhythmias classification
	techniques over time, i.e., January 2010 to January 2020,
	using the machine and deep learning approach. The primary
	objectives of this research study are, To examine the
	arrhythmia classification techniques as practically
	implementable, To overview the existing research studies
	based on arrhythmia classification benefits and future
	research direction,Identify the latest research trends and
	publication interests based on arrhythmia classification.
TOOLS USED/	a. Recurrent neural network (RNN)
ALGORITHM	b. Long short-term memory (LSTM)
	c. Autoencoder
	d. Convolutional neural network (CNN)
	e. Deep neural network (DNN)
	f. Deep belief network (DBN)
TECHNOLOGY	ARTIFICIAL INTELLIGENCE
ADVANTAGE	When performed on databases with vast volumes of high-
	quality data, deep learning models perform well. As a result,
	a study on newly created big ECG datasets might lead to
	more effective models.
DISADVANTAGE	The most ECG databases are not specific to their
	clinical context. The description of the patient population in
	which these ECGs were obtained is lacking. This is important
	in interpreting the methodology and clinical utility in context.
	The algorithms are trained based on specific environments,
	and the generalized methodologies are Ignored

S.No	3
TITLE	Identification of arrhythmia by using a decision tree and
	gated network fusion model
PROPOSED	In this project,aGate Recurrent Unit(GRU)and decision tree
WORK	fusion model referred to as(T-GRU) was designed to explore
	the problem of arrhythmia recognition. The ECG time domain
	part is used as 80% as the training set,10% as the validation
	set, and 10% as the test set. The frequency domain section
	is divided into 10 equal portions of the sample data set.
	The results showed that the low frequency band features
	dominated the model prediction. The fusion model had an
	accuracy of 98.31% sensitivity of 96.85%,specificity of
	98.81% and precision of 96.73%.
TOOLS USED/	a. MIT-BIH arrhythmia database
ALGORITHM	b. Decision tree algorithm
	c. GRU model T-GRU Fusion model
TECHNOLOGY	ARTIFICIAL INTELLIGENCE
ADVANTAGE	The GRU model parameters and weight control to improve
	the decision tree model output weights.the fusion model
	gives highest accuracy of 98.31%.Its hight reliability and
	clinical significance.
DISADVANTAGE	Although the deep learning has paved the way for more
	accurate diagnosis and treatment, further improvements are
	still necessary regarding performance,interpretability,And
	trustworthiness

S.No	4
TITLE	Arrhythmia Classification Algorithm Based on a
	Two-Dimensional Image and Modified EfficientNet
PROPOSED	A preprocessing method is proposed to convert the original
WORK	1D ECG signal into a 2D image, which reflects the
	spatiotemporal features of the signal. AFF is introduced to
	replace the addition operation in the MBConv structure of the
	EfficientNet network. The proposed method effectively
	distinguishes eight types of heartbeats in the MIT-BIH
	arrhythmia database, with a classification accuracy of
	99.54%.
TOOLS USED/	a. Welch method and discrete Fourier transform
ALGORITHM	b. Wavelet scattering transform
	c. ECG morphological parameters and visual pattern
	characteristics
	d. Building a deep CNN model
	e. 1D to 2D + AFF-EfficientNet
TECHNOLOGY	ARTIFICIAL INTELLIGENCE
ADVANTAGE	Given the influence of available laboratory equipment, we
	converted 1D ECG signals into 2D image signals and used
	spatiotemporal characteristics to perform classification
	experiments on eight ECG signal types in the MIT-BIH
	arrhythmia database, achieving relatively high accuracy of
	99.54% based on the improved EfficientNet-B0 network.
DISADVANTAGE	The main limitation of the proposed arrhythmia classification
	algorithm is the low positive prediction accuracy for
	identifying APC beats.

S.No	5
TITLE	Classification of Arrhythmia in Heartbeat Detection Using Deep Learning
PROPOSED	Automatic exposure to ECG-based arrhythmia is very
WORK	convenient since it eliminates physicians' need to personally
	interpret the signs and allows people to track their cardiac symptoms using handheld devices
TOOLS USED/ ALGORITHM	a. MIT-BIH Arrhythmia Dataset (N, S, V, F, and Q)
	b. NumPy
	c. Seaborn for python backend deep learning library to
	implement deep learning techniques. Google
	colaboratory.
TECHNOLOGY	ARTIFICIAL INTELLIGENCE
ADVANTAGE	When performed on databases with vast volumes of high- quality data, deep learning models perform well. As a result, a study on newly created big ECG datasets might lead to
	more effective models.
DISADVANTAGE	The challenges in designing and adjusting CNN models, the
	high computational cost of neural networks. They require a
	large dataset for successful training.

S.No	6
TITLE	Classification of Arrhythmia by Using Deep Learning with 2-D
	ECG Spectral Image Representation
PROPOSED	The method consists of five steps, i.e., signal pre-processing,
WORK	generation of 2-D images (spectrograms), augmentation of
	data, extraction of features from the data (using the CNN
	model), and its classification based on the extracted
	features. The details of these steps are presented in the
	following subsections.
TOOLS USED/	a. Convolutional neural networks (CNNs)
ALGORITHM	b. artificial neural networks (ANNs)
	c. Deep Neural Network(DNNs)
TECHNOLOGY	ARTIFICIAL INTELLIGENCE
ADVANTAGE	The proposed model was based on a 2-D representation of
	the ECG data to efficiently apply 2-D CNN models and benefit
	from the flexibility of data augmentation in such methods.
DISADVANTAGE	Proposed model can be trained on other classes of
	arrhythmia, although we did not perform this analysis so that
	we can compare our work with published results that use a
	2-D representation of ECG data.