TD 1: ESPACES VECTORIELS NORMÉS

Exercice 1. Maximum de deux normes

Montrer que le maximum entre deux normes sur un espace vectoriel E est encore une norme sur E.

Exercice 2. Comparaison de normes et polynômes

Soit $a = (a_k)_{k \ge 0} \in \mathbf{R}^{\mathbf{N}}$. On pose pour $P = \sum p_k X^k \in \mathbf{C}[X]$:

$$N_a(P) := \sum_{k=0}^{\infty} a_k |p_k|.$$

- 1. Montrer que N_a est bien définie et donner une CNS sur a pour que N_a définisse une norme sur $\mathbb{C}[X]$.
- 2. Soient a et b deux suites réelles vérifiant la condition trouvée à la question 1, donner une CNS sur a et b pour avoir équivalence entre N_a et N_b .

Exercice 3. Comparaison de normes mixtes

On se place sur l'espace $E = \mathcal{C}^0([0,1], \mathbf{R})$. Pour $a \in [0,1]$ et $f \in E$, on pose :

$$N_a(f) = \int_0^a |f(t)| \, dt + \sup_{x \in [a,1]} |f(x)|.$$

- 1. Montrer que pour tout $a \in [0,1]$, N_a est bien définie et qu'il s'agit d'une norme sur E.
- 2. Comparer N_a et N_b pour $0 \le a \le b \le 1$.

Exercice 4. Non équivalence des normes en dimension infinie

Soit Q un polynôme de $\mathbf{R}[X]$. Construire une norme sur $\mathbf{R}[X]$ telle que la suite $(X^n)_{n\geq 0}$ converge vers Q au sens de cette norme.

Indication : On pourra songer à prendre une base algébrique de $\mathbf{R}[X]$ différente de $(X^n)_{n\geq 0}$ impliquant Q.

Remarque : Cela montre que le choix de la norme est crucial et qu'on doit donc le préciser dès qu'on parle de convergence, complétude...

Exercice 5. Non équivalence des normes en dimension finie

Considérons le **Q**-espace vectoriel $E = \mathbf{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbf{Q}\}$ muni de

$$N_0(a+b\sqrt{2})=|a+b\sqrt{2}|\quad \text{et}\quad N_\infty(a+b\sqrt{2})=\max(|a|,|b|).$$

Montrer que N_0 et N_{∞} sont des normes non équivalentes sur E et commenter.

Exercice 6. Propriétés élémentaires sur les espaces complets

On se place sur un evn E. Montrer que :

- 1. La complétude est stable par union finie, intersection quelconque, et produit cartésien fini (et même dénombrable).
- 2. Un ensemble compact est complet.
- 3. Une partie complète est fermée.
- 4. Si E est complet, les sous-ensembles complets sont les sous-ensembles fermés.

Exercice 7. Complétude et séries

Soit E un espace vectoriel normé. Montrer que E est complet si et seulement si toute série absolument convergente d'éléments de E est convergente.

Exercice 8. Fonctions bornées et complétude

On note $\mathcal{B}(E, \mathbf{R})$ l'ensemble des fonctions bornées sur E à valeurs réelles, où E est un ensemble quelconque. On le munit de la norme uniforme définie par :

$$\forall f \in \mathcal{B}(E, \mathbf{R}), \quad ||f||_{\infty} = \sup_{x \in E} |f(x)|.$$

Montrer qu'il s'agit d'un espace complet.

Exercice 9. Fonctions qui tendent vers 0 à l'infini

On note:

$$\mathcal{C}_0^0(\mathbf{R}, \mathbf{R}) = \left\{ f \in \mathcal{C}^0(\mathbf{R}, \mathbf{R}), f \underset{\pm \infty}{\to} 0 \right\},$$

qu'on munit de la norme uniforme $\|\cdot\|_{\infty}$. Montrer que cet espace est complet.

Exercice 10. Complétude de l'espace des suites convergentes

Montrer que l'ensemble des suites convergentes de ${f R^N}$ muni de la norme uniforme définie par :

$$\forall u \in \mathbf{R}^{\mathbf{N}}, \|u\|_{\infty} = \sup_{n \in \mathbf{N}} |u_n|,$$

est complet.

Exercice 11. Fonctions continues sur [0,1] et norme intégrale

On note $E = C^0([0, 1], \mathbf{R})$.

1. Montrer que l'application :

$$f \in E \mapsto ||f||_1 = \int_0^1 |f(t)| \, dt,$$

définit une norme sur E.

2. $(E, \|\cdot\|_1)$ est-il complet?

Exercice 12. Polynômes: normes et complétude

Soit
$$P = \sum_{k=0}^{n} a_k X^k \in \mathbf{C}[X]$$
. On pose :

$$||P||_1 = \sum_{k=0}^n |a_k|, \quad ||P||_2 = \left(\sum_{k=0}^n |a_k|^2\right)^{1/2}, \quad ||P||_\infty = \sup_{k=0,\dots,n} |a_k|.$$

- 1. Montrer que l'on définit ainsi trois normes.
- 2. Sont-elles équivalentes?
- 3. C[X] est-il complet pour l'une d'entre elles?

Remarque : L'utilisation du lemme de Baire (cf 2ème partie du cours) permet de montrer que $\overline{\mathbf{C}[X]}$ n'est complet pour aucune norme. Plus précisément c'est vrai pour n'importe quel \mathbf{C} -espace vectoriel admettant une base algébrique dénombrable.

Exercice 13. Fonctions hölderiennes

Soit $\alpha \in (0,1]$. On note Lip_{\alpha} l'espace des fonctions \alpha-hölderiennes sur [0,1] à valeurs réelles.

- 1. Que dire d'une fonction α -hölderienne avec $\alpha > 1$?
- 2. Montrer que l'application N_{α} définie par :

$$N_{\alpha}(f) = ||f||_{\infty} + \sup_{0 \le x < y \le 1} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}},$$

est une norme sur Lip_{α} .

- 3. Montrer que $\operatorname{Lip}_{\alpha}$ muni de N_{α} est un espace de Banach.
- 4. Les normes N_{α} et $\|\cdot\|_{\infty}$ sont-elles équivalentes?

Exercice 14. Espaces de suites

- 1. Soit $1 \le p < q \le +\infty$. Montrer que $l^p(\mathbf{N}, \mathbf{R}) \subset l^q(\mathbf{N}, \mathbf{R})$ et que l'injection est continue. Cette inclusion peut-elle être une égalité?
- 2. Montrer que pour tout $p \in [1, +\infty]$, l'espace $(l^p(\mathbf{N}, \mathbf{R}), \|\cdot\|_p)$ est complet.
- 3. On note:

$$c_0(\mathbf{N}) = \{ u = (u_n)_{n \ge 0} \in \mathbf{R}^{\mathbf{N}}, u_n \to 0 \},$$

qu'on munit de la norme uniforme $\|\cdot\|_{\infty}$. Montrer qu'il s'agit d'un espace complet.

4. Quelle est l'adhérence de $l^p(\mathbf{N}, \mathbf{R})$ dans $l^{\infty}(\mathbf{N}, \mathbf{R})$?

Exercice 15. Équation intégrale linéaire de Volterra

Soient I = [a, b] et $K \in \mathcal{C}^0(I \times I, \mathbf{R})$. On note $E = \mathcal{C}^0(I, \mathbf{R})$. Montrer que pour toute $\phi \in E$, il existe une unique $f \in E$ solution de :

$$f(x) = \phi(x) + \int_{a}^{x} K(x, y) f(y) dy, \quad \forall x \in I.$$

Exercice 16. Théorème du point fixe avec une itérée contractante

Soit E un espace de Banach et soit $f: E \to E$ une application telle qu'il existe $N \ge 1$ tel que f^N (l'itérée N-ème de f) soit contractante.

- 1. Montrer que f admet un unique point fixe $a \in E$.
- 2. Montrer que pour tout $x_0 \in E$, la suite des itérées par f partant de x_0 définie par : $x_{n+1} = f(x_n)$ pour tout $n \in \mathbb{N}$, converge vers a.

Remarque : La fonction f n'est même plus supposée continue ici. Le cadre général est celui des espaces métriques complets, tout comme le théorème classique du point fixe (cf 2ème partie du cours).

L'exercice suivant donne une application du résultat précédent et généralise l'exercice 15

Exercice 17. Équation intégrale non-linéaire de Volterra

Soient T>0 et $K\in\mathcal{C}^0([0,T]\times[0,T]\times\mathbf{R},\mathbf{R})$. On suppose qu'il existe L>0 telle que :

$$\forall x, t \in [0, T], \ \forall u, u' \in \mathbf{R}, \ |K(x, t, u) - K(x, t, u')| \le L|u - u'|.$$

Montrer que pour toute $\phi \in \mathcal{C}^0([0,T],\mathbf{R})$, il existe une unique $f \in \mathcal{C}^0([0,T],\mathbf{R})$ solution de :

$$f(x) = \phi(x) + \int_0^x K(x, t, f(t)) dt, \quad \forall x \in [0, T].$$