Série 11

Exercice 1. Dans un repère orthonormé direct, on donne $\vec{u} \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$. Déterminer les composantes des vecteurs suivants :

a.
$$\vec{u} \times \vec{v}$$
.

c.
$$(3\vec{u} + 47\vec{v}) \times (4\vec{u} + 59\vec{v})$$
.

b.
$$\vec{v} \times \vec{u}$$
.

d.
$$(36\vec{u} + 72\vec{v}) \times (48\vec{u} + 96\vec{v})$$

Exercice 2. Dans l'espace muni d'un repère orthonormé, on donne A(7, -4, 5), B(1, 2, 4) et C(3, 5, 10). A l'aide du produit vectoriel :

- a. calculer la distance de C à la droite (AB).
- b. déterminer une équation cartésienne du plan (ABC).

Exercice 3. Dans un repère orthonormé, on donne A(1, -2, 1) et :

$$\pi: x - 2y + z - 3 = 0$$
 et $\rho: x + y - z + 2 = 0$.

A l'aide du produit vectoriel, déterminer une équation du plan σ contenant A et perpendiculaire à $\pi \cap \rho$.

Exercice 4.

La figure ci-contre représente un tétraèdre régulier. Pour chacune des familles suivantes, dire s'il est orientée directement ou indirectement dans l'espace :

a.
$$\overrightarrow{BA}$$
, \overrightarrow{BC} , \overrightarrow{BD} . b. \overrightarrow{AD} , \overrightarrow{DB} , \overrightarrow{DC} . c. \overrightarrow{BC} , \overrightarrow{AD} , \overrightarrow{CD} .

b.
$$\overrightarrow{AD}$$
, \overrightarrow{DB} , \overrightarrow{DC}

c.
$$\overrightarrow{BC}$$
, \overrightarrow{AD} , \overrightarrow{CD} .

Exercice 5. Dans l'espace, on donne un plan π et deux droites gauches d et g.

- a. Existe-t-il une droite p contenue dans π , orthogonale à d et intersectant g? On discutera selon la position relative des données.
- b. Application numérique. Dans un repère orthonormé direct :

$$\pi:\, 2x+y+z-11=0\,,\quad d:\, x+1=-(y+2)=\frac{z+3}{2}\,,\quad g:\, \frac{x+2}{2}=\frac{y-14}{-3}=z+5\,.$$

Déterminer des équations paramétriques de p.

Exercice 6. Dans un repère orthonormé direct, on donne A(1,1,4), B(0,3,2) et C(3,0,2).

- a. Montrer que ABC est rectangle et isocèle en A.
- b. On peut donc compléter ABC en un cube comme dans la figure ci-contre. Calculer les coordonnées des sommets de ce cube.

Exercice 7. Dans l'espace muni d'un repère orthonormé direct, on donne $d: \frac{x-7}{2} = y-3, z=4$, A(3,2,1), et B(1,2,3). Déterminer les coordonnées du point ${\cal C}$ sachant que :

- ABC est isocèle en C et a pour aire 6.
- (AC) est orthogonale à d.
- \bullet l'ordonnée de C est positive.

Éléments de réponse :

Ex. 1: a.
$$\binom{5}{17}$$
, b. $\binom{-5}{-1}$, c. $\binom{-55}{-11}$, d. $\binom{0}{0}$. **Ex. 2**: a. 7, b. $39x + 34y - 30z + 13 = 0$.

Ex. 2: a. 7. b.
$$39x + 34y - 30z + 13 = 0$$
.

Ex. 3 :
$$\sigma : x + 2y + 3z = 0$$
.

Ex. 4: a. et c. indirecte, b. directe.
Ex. 5: b.
$$p: \begin{cases} x=4-t \\ y=5+t \\ z=-2+t \end{cases}$$
, $t \in \mathbb{R}$

Ex. 6: b.
$$A'(3,3,5)$$
, $B'(2,5,3)$, $C'(5,2,3)$, $D(2,2,0)$ et $D'(4,4,1)$.

Ex. 7 : a.
$$C(1,6,1)$$
.