#### 2D Visualization of the CNV Training Dataset



# Predicting the Pathogenicity of Copy Number Variations

BCB330Y1 - 2018 Summer Project

Yoonsik Park, Researcher Bank Engchuan, Supervisor Brett Trost, Supervisor

#### Copy Number Variations

- Copy Number Variations (CNV) are defined as structural genomic variants, either duplications or deletions of sequences larger than 50 base pairs (bp)
- Associated with neurodevelopmental diseases such as autism and schizophrenia as well as other diseases.
- Some commonly occurring and/or large CNVs that have been described in research

#### Research Purpose

- The purpose of this project is to use state-of-the-art machine learning models to help clinicians and researchers quickly and confidently screen out nonpathogenic CNVs
- Furthermore, this project aims to understand the diversity of CNVs and CNV features, and understand how they play a role in pathogenicity using both visualization techniques and feature-importances from the trained models

## Two Data Sources for CNVs in Population

- DECIPHER for pathogenic and non-pathogenic CNVs
  - Database of genomic variants that are clinically relevant or associated with rare diseases



- DGV for non-pathogenic CNVs
  - Database from The Hospital for Sick Children, consisting of mainly controls



#### Initial Dataset

- Sequence "loss" or "gain" converted to a binary variable:
  - $\cdot$  -1 for loss
  - · +1 for gain

- Pathogenicity description converted to a binary variable:
  - · -1 for {benign, likely benign}
  - +1 for {pathogenic, likely pathogenic}

| chr  | start  | end     | size   | gain_loss | pathogenicity |
|------|--------|---------|--------|-----------|---------------|
| chr1 | 49911  | 222421  | 172510 | -1        | -1            |
| chr1 | 542945 | 673049  | 130104 | -1        | 1             |
| chr1 | 837847 | 1477469 | 639622 | 1         | -1            |
| chr1 | 862453 | 1069517 | 207064 | 1         | 1             |

#### Extracted Feature 1: Gene Annotations

- · Annotations from NCBI RefSeq file: hg19\_ncbi\_refseq.txt
- Converted NCBI accession numbers to Entrez IDs
- Determined if the CNV start and end intervals intersected the gene's txStart/ txEnd intervals
- In the case of multiple annotations for the same gene —> used the widest possible interval

#### Extracted Feature 1: Gene Annotations cont.

. . .

| chr  | start  |
|------|--------|
| chr1 | 837847 |
| chr1 | 536263 |
| chr1 | 862453 |
| chr1 | 668630 |

| genes_overlapping                                                                                                                                                                                                                                    | number_of<br>_genes |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 83858;126789;81669;29101;339453;9636;12679<br>2;219293;84808;64856;26155;6339;55052;2541<br>73;80772;375790;388581;54587;54973;84069;1<br>48398;401934;54998;116983;339451;643965;51<br>150;7293;118424;8784;55210;54991;1855;8375<br>6;441869;57801 | 36                  |
| 81399                                                                                                                                                                                                                                                | 1                   |
| 375790;84808;84069;148398;54991;401934;261<br>55;339451;9636;57801                                                                                                                                                                                   | 10                  |
|                                                                                                                                                                                                                                                      | 0                   |

#### Baseline Correlations

| Feature         | Pearson Correlation w/ Pathogenicity |  |  |  |
|-----------------|--------------------------------------|--|--|--|
| size            | 0.649                                |  |  |  |
| number_of_genes | 0.588                                |  |  |  |
| gain_loss       | 0.058                                |  |  |  |

#### Extracted Feature 2: Mouse Phenotype Ontology (MPO)

- After converting human gene numbers to the mouse homologue, the MPO database describes the variety of mice phenotypes are associated with each gene
- · Each phenotype is a column, with the count of every gene associated with it
- Finally, created a column for the total number of phenotypes associated

| chr | genes_in_proximity     |
|-----|------------------------|
| 16  | 11273;27040;79874;728  |
| 2   | 23040                  |
| 10  | 196792;253738;1755;84; |

| adipose<br>tissue<br>phenotype | behavior/<br>neurological<br>phenotype | cardiovascular<br>system<br>phenotype | cellular<br>phenotype |  |
|--------------------------------|----------------------------------------|---------------------------------------|-----------------------|--|
| 0                              | 1                                      | 1                                     | 2                     |  |
| 0                              | 0                                      | 0                                     | 0                     |  |
| 5                              | 11                                     | 12                                    | 14                    |  |

| taste/<br>olfaction<br>phenotype | vision/eye<br>phenotype |
|----------------------------------|-------------------------|
| 0                                | 0                       |
| 0                                | 0                       |
| 0                                | 6                       |

#### Extracted Feature 3: Online Mendelian Inheritance in Man (OMIM)

- The OMIM database simply describes if a gene is associated with a disease or not
- Feature is based on the number of CNV associated genes that appear in the OMIM Database

| chr | start     |
|-----|-----------|
| 10  | 123150811 |
| 10  | 102969339 |
| 22  | 23717624  |
| 19  | 30379880  |
| 13  | 93422696  |

| genes_in_proximity           | omim_num_diseases |
|------------------------------|-------------------|
| 196792;253738;1755;8433;3998 | 11                |
| 27343;8945;6468;10660;25911  | 0                 |
| 266747;4320;4282;3543;7621;5 | 4                 |
| 57616;8725;9745;22847;100507 | 0                 |
| 10082;2262                   | 1                 |

#### Extracted Feature 4: pLI / Intolerance from ExAC

- Exome Aggregation Consortium (ExAC) has computed the probability, ranging from 0.0 to 1.0, that a gene is intolerant to a loss of function gene mutation
- Each CNV associated gene is added to bins according to its pLI value: {0.0-0.1}, {0.1-0.2}, {0.2-0.3}, {0.3-0.4}, {0.4-0.5}, {0.5-0.6}, {0.6-0.7}, {0.7-0.8}, {0.8-0.9}, {0.9-1.0}

| chr | genes_in_proximity        |
|-----|---------------------------|
| 16  | 11273;27040;79874;7284;9; |
| 2   | 23040                     |
| 21  | 149998;54033;64092;6782   |
| 10  | 196792;253738;1755;8433;  |

| pli_0.0_<br>to_0.1 | pli_0.1_<br>to_0.2 | pli_0.2_<br>to_0.3 | pli_0.3_<br>to_0.4 | pli_0.4_<br>to_0.5 | pli_0.5_<br>to_0.6 | pli_0.6_<br>to_0.7 | pli_0.7_<br>to_0.8 |   | pli_0.9_<br>to_1.0 |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---|--------------------|
| 4                  | 0                  | 0                  | 0                  | 0                  | 0                  | 1                  | 0                  | 1 | 3                  |
| 0                  | 0                  | 0                  | 0                  | 0                  | 0                  | 0                  | 0                  | 0 | 1                  |
| 4                  | 0                  | 0                  | 0                  | 0                  | 0                  | 0                  | 0                  | 0 | 0                  |
| 47                 | 4                  | 0                  | 5                  | 2                  | 4                  | 3                  | 3                  | 1 | 4                  |

#### Extracted Feature 5: Repetitive Elements

- This feature was inspired by Hehir-Kwa, J. Y. et al., as they found the number and density of repetitive elements helped predict neurodevelopment pathogenicity
- Repetitive elements describe DNA patterns that repeat many times in the genome
- Two examples of repetitive elements, LINEs (Long Interspersed Nuclear Elements) and SINEs (Short Interspersed Nuclear Elements) account for at least 30% of human genomic DNA
- The number of repetitive elements intersecting the CNV start and stop locations were counted and categorized by type

## Extracted Feature 5: Repetitive Elements cont.

| Gap | Homo<br>polymer | LINE | LTR  | Low<br>complexity | RNA | SINE | Satellite | Segmental | Simple<br>repeat | Trans<br>posable<br>element |
|-----|-----------------|------|------|-------------------|-----|------|-----------|-----------|------------------|-----------------------------|
| 0   | 1               | 84   | 51   | 17                | 2   | 353  | 0         | 0         | 29               | 29                          |
| 0   | 2               | 113  | 37   | 58                | 0   | 129  | 0         | 2         | 49               | 34                          |
| 0   | 2               | 172  | 87   | 80                | 0   | 155  | 0         | 0         | 57               | 49                          |
| 4   | 84              | 5067 | 2362 | 989               | 24  | 5628 | 1         | 23        | 1608             | 1745                        |

#### Extracted Feature 6: Densities

The gene density was calculated as

$$gene\_density = \frac{\text{# of genes}}{\text{size of CNV (kb)}}$$

The density for each repetitive element:

Data Exploration

#### Dimensionality Reduction

- t-SNE constructs a probability distribution for each data point and its neighbours in both high dimensional and 2D space, then minimizes the divergence of the two distributions
- Important structures and geometries emerge in the resulting t-SNE visualization

t-SNE of 21 Features (perplexity: 43, learning rate: 10)



## Cluster of Interest



## Coloured by: size



### Coloured by: pathogenicity

t-SNE was never given the pathogenicity value!



- non-pathogenic
- pathogenic

Models and Design

#### Machine Learning Methods Used

#### Logistic Regression

- Fast and great baseline
- Coefficients provide insight into important features



# Gradient-Boosted Trees (XGBoost)

- Also fast, but many parameters to tune
- Provides a ranking of feature importances



#### Fully Connected Neural Networks

- Slow, and many parameters to tune
- Black box, opaque model



#### Model Training and Testing Methodology

- 5-fold cross validation was used to assess the performance metrics of each model during the training phase. For each run:
  - Set aside 20% of the data as validation data
  - Use remaining 80% of the data for model training
  - Use validation data to assess the model's performance
  - Repeat with a new set of validation data
- After the training phase is complete, the models are tested on ClinVar, an independent testing set





#### Feature Selection Explained

- Currently there are 66 features based on the CNV
- If we can reduce the number of features, maybe this will make the models more generalizable and understandable
- Using the feature importance values generated by the XGBoost models, choose the top 10 overall features, and the top 4 from each "feature category" if possible

## List of Features after Selection (ordered by importance)

- · size
- repeat\_LTR\_density
- repeat\_Simple\_repeat\_density
- repeat\_SINE\_density
- repeat\_Transposable\_element\_density
- repeat\_Low\_complexity\_density
- repeat\_LINE\_density
- repeat\_Segmental\_duplication\_density
- repeat\_LINE
- gene\_density
- mpo\_num\_phenotypes

- gain\_loss
- pli\_0.9\_to\_1.0
- omim\_num\_diseases
- number\_of\_genes\_in\_proximity
- mpo\_num\_phenotypes\_using\_thresh
- pli\_0.0\_to\_0.1
- mpo\_behavior/neurological\_phenotype
- mpo\_growth/size/body\_region phenotype
- pli\_0.8\_to\_0.9
- pli 0.3 to 0.4

## Results

## Precision at 90%, 97%, and 99% Recall





## Average Precision

#### **Average Precision By Model Type**



#### ClinVar Test Results

- All models were tested on an independent CNV database from ClinVar
- The database contains 15,000 CNVs that are known to be definitively benign or pathogenic

#### ClinVar Precision Test using "90% Recall" models

Neural Network All Features: 72.8% Precision, 95.8% Recall

XGBoost All Features: 69.7% Precision, 95.5% Recall

XGBoost Select Features: 65.2% Precision, 95.6% Recall

Neural Network Select Features: 63.2% Precision, 96.2% Recall

## Pathogenicity Prediction Summary

- The XGBoost models performed best during the training phase, achieving up to ~59% Precision at a 97% Recall rate
- However, the Neural Network "all features" model performed best on ClinVar, achieving 73% Precision at a 96% Recall rate
- On ClinVar, "All Features" tested much better than "Select Features" (up to 73% vs 65% precision), indicating that information useful to generalization was lost during feature selection

#### Important Features

- Size of the CNV was the most important feature, although not all large CNVs are pathogenic
- Repetitive element densities were the next most important features
  - A variety of benign CNVs have high repetitive element densities, except ...
  - Many pathogenic CNVs have a high SINE density!
- Gene density was an important feature
- The number of MPO phenotypes associated per CNV was also important