BCS405A

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025 Discrete Mathematical Structures

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Malal	M	L	C
	,	Module – 1	6	L1	CO1
Q.1	a.	Define Tautology, show that $[(p \lor q) \land \{(p \to r) \land (q \to r)\}] \to r$			
	b.	Prove the following using the laws of logic:	7	L2	CO1
		$\neg \left[\{ (p \lor q) \land r \} \to \neg q \right] \Leftrightarrow \neg \left[\neg \left[(p \lor q) \land r \right] \lor \neg q \right] \Leftrightarrow q \land r.$	ė		21 . 1 & 1
	c.	Give i) a direct proof ii) an Indirect proof for the following statement "If	7	L2	CO1
	.	n is an odd integer then $n + 9$ is an even integer".			
		OR		1 7 4	001
Q.2	a.	Define i) an open statement ii) quantifiers.	6	L2	CO1
	b.	Test the validity of the following arguments.	7	L2	CO1
		i) ii)	-		
		$p \wedge q$ P			
		$ \frac{p \to (q \to r)}{\therefore r} \qquad \qquad P \to \sim q \\ \sim q \to \sim r $			
		$\frac{\sim q}{\sim}$			
-	c.	For the following statements the universe comprises all non - zero integers.	7	L2	COI
		Determine the truth value of each statement.			
		i) $\exists x, \exists y [xy = 1]$ ii) $\exists x, \forall y [xy = 1]$ iii) $\exists x, \exists y [xy = 1]$ iv) $\exists x, \exists y [(2x + y = 5) \land (x - 3y = -8)]$			
	- 27	v) $\exists x, \exists y [(3x - y = 17) \land (2x + 4y = 3)].$			
		Module – 2		,	*1
2.3	a.	Define the well ordering principle. By Mathematical induction, prove that	6	L2	CO
	1	$1+2+3+\ldots+n=\frac{1}{2}n(n+1), n \in z^+.$			
	200	$\frac{1+2+3+\ldots +1}{2} = \frac{1}{2} \ln(1+1), \ln \epsilon z$			
					* _{2.}
		$1 \left[\left(1 - \left(\frac{1}{6} \right)^n \right) \right]$	7	L	CO
	b.	Prove that $F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$. For F_0 , F_1 , F_2 , are the	e		
		$\sqrt{5}$ $\left(\begin{array}{c}2\end{array}\right)$ $\left(\begin{array}{c}2\end{array}\right)$, '
		Fibonacci numbers.			
		1 Toothacci numbers.			
	c.	Find the number of permutations of the letters of the work	d ,	7 L	3 CO
		'MASSASAUGA'. In how many of these all four A's are together? How			
		many of them begin with S's?			
		The state of the s			
		OR			

				L2	COZV	202
0.4	0	Prove that $4n < n^2 - 7$ for all positive integers $n \ge 6$.	6		(202
Q.4	a.		7	L3	CO3	
	b.	Find the co-efficients of $x^9 y^3$ in the expansion of $(2x + 3y)^{12}$.				1
	"		7	L2	CO ₃	
	c.	Let $a_0=1$, $a_1=2$, $a_3=3$ and $a_n=a_{n-1}+a_{n-3}$ for $n\geq 3$, prove that $a_n\leq 3^n$ for				
		all +ve integers n.				4
, .	1 .	Module 3			CO2	-
	91	the if 30 dictionaries in a library	6	L2	CO3	
Q.5	a.	State Pigeon hole principle. Prove that if 30 dictionaries must have contains a total of 61,327 pages then atleast one of dictionaries must have				
	, i	atleast 2045 pages.				
	. 3		7	L2	CO3	1
	b.	Define power set. For any sets A, B, $C \le U$, prove that	'		000	
	р.	$A \times (B \cup C) = (A \times B) \cup (A \times C).$				
			7	L3	CO3	7
	c.	Let f and g be functions from R to R defined by $f(x) = ax + b$ and	'	LS		
	, 7	Let f and g be inherious from x to x and y be y				
- 41		OR	6	L2	CO ₃	
Q.6	a.	Let $f: R \to R$ be defined by				
23		$f(x) = \begin{cases} 3x - 5, & \text{if } x > 0 \\ 1 - 3x, & \text{if } x \le 0 \end{cases}$ Find $f^1(-5, 5)$ and $f^1(-6, 5)$.				
		$1-3x$, if $x \le 0$				
			-	12	CO3	
	b.	Let N be the set of Natural numbers. Let a relation R be defined by	7	L2	Cos	'
		$R = \{(a, b) / a \in N, b \in N, a - b \text{ is divisible by 5}\}$. Prove that R is an	1			
		equivalence relation.				
				1_		
	c.	For A = { a, b, c, d, e}, the Hasse diagram for the poset(A, R) is as shown	ı 7	L.	3 CO	3
		below:				
		i) Determine the relation matrix for R				
		ii) Construct the diagraph for R.				
	-					
		b c				
	1		-			
	1					
		Module – 4				
0.5	Τ_	Determine the number of integers between 1 and 250 that are divisible by	3	6 I	.3 CC)4
Q.7	a.	and not divisible by 5 and 7.				
		and not division by 5 and 7.				
	L	Solve the recurrence relation $F_{n+2} = F_{n+1} + F_n$, where $n \ge 0$ and $F_0 =$	0	7 1	L2 CO	04
	b.	27% 7	,			
		$F_1 = 1$.				
		Define Derangement, Find the number of derangement of 1, 2, 3, and 4.		7	L3 C	04
	c.	Define Defangement, I and the number of defangement of 1, 2, 5, and 1.				
		1.79				

					1. · · · · · · · · · · · · · · · · · · ·
Q.8	a.	Find the Rook polynomial for the chess board contain 4 squares as shown	6	L3	CO4
		in the Fig.Q8(a).	1.		
7.		1 2			
	1	3 4			5 30
		Fig.Q8(a)			
	b.	Solve the recurrence relation $a_n = 5a_{n-1} + 6a_{n-2}$, $n \ge 2$, $a_0 = 1$, $a_1 = 3$.	7	L2	CO4
		Solve the recurrence relation $a_n = 3a_{n-1} + 3a_{n-2}$, $n \ge 2$, $a_0 = 1$, $a_1 = 3$.			
	c.	Find the distinct numbers which are multiples of at least one of 15, 40 and	17	L3	CO4
		35 not exceeding 1000.			
		Module – 5			
Q.9	a.	Define group and subgroup with example each.	6	L1	CO5
	b.	State and prove Lagrange's theorem.	7	L2	CO5
	٠,				
	c.	Define Klein 4 group. Verify A = {e, a, b, c} is a Klein 4 group.	7	L2	CO5
		Bolinio Izioni i gittipi i tari			
		OR			
Q.10	1 0	The state of the group is a subgroup of the	6	L2	CO5
Q.10) a.				
		group,		100	
	-	Prove that the cube roots of unity form a group under the multiplication.	7	L2	CO5
	b.	Prove that the cube roots of unity form a group under the analysis			
-			7	L	CO5
	c.	Let $G = S_4$, the symmetric group of order 4, for $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$, find	f		
	٠.	Let $G = S_4$, the symmetric group of order 4, for $G = G = G = G = G = G = G = G = G = G $			
		the subgroup $H = \langle a \rangle$, determine the number of left cosets of H in G.			
		the subgroup II – \ a >, determine the number of fest cosets of II in G.			
	- 1				
