제5차 신·재생에너지 기술개발 및 이용·보급 기본계획

2020. 12

산업통상자원부

목 차

I. 기본계획 개요 ···································
Ⅱ. 제4차 기본계획 평가 및 정책 추진여건 3
1. 제4차 기본계획 평가
2. 정책 추진여건7
Ⅲ. 제5차 기본계획의 목표 및 추진전략 9
1. 목표9
2. 비전 및 추진전략11
Ⅳ. 세부 추진과제12
1.【보급혁신】질서 있고 지속 가능한 확산체계 마련 ᆢ12
2.【시장혁신】시장 효율성 제고 및 다양화 촉진 17
3.【수요혁신】재생에너지의 다양한 수요기반 창출 21
4.【산업혁신】R&D 혁신역량 제고 및 생태계 활성화 ·· 24
5.【인프라혁신】계통 보강 및 운영관리 체계 정비 31
∨. 탄소중립 시대의 신재생에너지 정책과제 37
참고1. 분야별·원별 보급목표 ······49
참고2. 원별 기술개발 목표51
참고3. 통합 기술개발 로드맵52

│. 기본계획 개요

□ 법적 근거

○「신에너지 및 재생에너지 개발·이용·보급 촉진법」제5조

□ 계획기간 및 주기

- **10년 이상을 계획기간**으로 **5년**마다 수립·시행, 금번 제5차 기본 계획의 대상기간은 '20~'34년
 - * (1차) '01년~'03년, (2차) '03년~'12년, (3차) '09년~'30년, (4차) '14년~'30년
- * 법률 개정을 통해 '14년 이후 기본계획 수립주기 5년 명문화

□ 목적 및 의의

○ 에너지부문 최상위 계획인 '에너지기본계획'과 연계하여 신·재생 에너지 기술개발 및 이용·보급 촉진을 위한 목표·과제 제시

□ 수립절차

- 관계 중앙행정기관의 장과 협의 후 '신·재생에너지 정책심의회 (長: 산업부 에너지자워실장)'를 통해 심의
 - * 심의회 구성 : 기재부·과기부·농림부·산업부·환경부·국토부·해수부 국장급 및 민간 전문위원

□ 계획의 범위

- 1. 신・재생에너지원별 기술개발 및 이용・보급 목표
- 2. 총 전력생산량 중 신・재생에너지 발전량 목표
- 3. 온실가스 배출 감소 목표
- 4. 신ㆍ재생에너지 기술수준의 평가와 보급전망 및 기대효과
- 5. 신ㆍ재생에너지 기술개발 및 이용ㆍ보급에 관한 지원 방안
- 6. 신ㆍ재생에너지 분야 전문인력 양성 계획
- 7. 직전 기본계획에 대한 평가

□ 추진경과

연구용역

- · (목적) 보급목표 수립, 기술수준 평가 등 연구
- · (수행) 에너지경제연구원(주관), 에너지기술연구원(참여)
- · (기간) '18.7~'20.3(21개월)

 \parallel

민간 워킹그룹 구성·운영

- · (목적) 민간전문가 중심 기본계획 권고안 마련
- · (구성) 4개 분과 53명 참여
- * ① 총괄, ② 보급, ③ 산업·일자리, ④ 참여 분과
- * 주요 참여기관 : 산업부, 유관기관(에공단, 한전, 거래소), 학계(서울대, 고대, 홍대), 연구계(전기연, 에경연, 에기연), 업계(주요 기업 및 관련 협회), 시민사회단체 등
- · (기간) '19.11~'20.3 (총 19회)

 \Downarrow

의견수렴

- · (개요) 기본계획(안)에 대한 관계 중앙행정기관 협의 및 대외 의견수렴 실시
- · (주요내용) ① '34년까지의 신재생에너지 보급 목표, ② 보급 및 기술개발을 위한 정부 지원방안, ③ 산업 육성 및 인력양성 계획 등
- · · (기간) '20.8~'20.12 (총 24회)
- * 간담회 : 관련 업계, RPS 의무자대상 등 총 23회
- * 공청회('20.12.28, 온라인)

U

정부안 발표 및 심의·확정

- · (확정절차) 신재생에너지 정책심의회 심의·의결
 - * 신재생에너지법 제5조
- · (대외공개) 정책심의회 심의·의결 직후 발표

Ⅱ. 제4차 기본계획 평가 및 정책 추진여건

1. 제4차 기본계획('14~'30) 평가

1 주요내용

□ 목표

- '30년까지 **1차 에너지의 14.3%, 발전량 중 21.6%**를 신재생에너지로 공급
 - * '14년 신재생에너지는 1차 에너지의 4.1%, 발전량의 4.9%
 - * '14~'30년간 신재생에너지 증가율은 1차 에너지 기준 10.3%p, 전력기준 16.7%p
- 보급목표 달성시, '14~'30년간 온실가스(CO₃) 누적 9.9억톤 감축 전망
 - * 同 기간 폐기물 제외시 6.4억톤 감축 전망

□ 기본방향

○ 국민의 삶의 질을 높이는 **'참여형 에너지체제'로 전환**하고, 신재생 에너지 확산을 **에너지신산업 육성 기회**로 적극 활용

□ 6대 정책과제

과 제	주요내용
국민참여	▶ 재생E 신규설비 48.7GW 보급 위해 자가용, 소규모, 농가 등 확대
확대	▶ 한국형 FIT 통한 소규모 사업자 수익 안정성 제고·절차 간소화 등
시장 친화적	▶ RPS 의무비율 상향 및 원별 특성 감안 REC 가중치 조정
제도 운영	▶ 양방향 REC 거래시스템 도입 및 현물시장 개설주기 확대 등
해외시장	▶ 해외진출 협의체 통한 대(공)기업-중소중견기업 동반진출 지원
진출 확대	▶ 진출 대상국의 산업 성숙도 감안 맞춤형 전략수립 등
새로운	▶ 수송용 연료 신재생에너지 연료혼합 의무화 제도 시행
시장 창출	▶ 민간, 공공기관 중심의 대규모 프로젝트 추진 지원 등
신재생 R&D	▶ 미래시장 선도 위한 태양광·풍력 전략적 R&D 및 실증 지원
역량 강화	▶ 지역 중심 재생에너지 생태계 역량 강화 위한 클러스터 조성 등
제도적	▶ '18년까지 신재생 국제표준 44종을 KS에 도입, 산업표준 국제화
지원기반 확충	▶ 국공유재산 임대기준 등 규제 개선, 폐기물 처리기반 마련 등

2 명 가

□ 목표 대비 실적

○ 제4차 기본계획 수립(14.9) 이후, **1차 에너지 및 발전량** 모두 신재생 에너지 비중 **목표치 초과 달성**(19년 기준)

<참고> 1차 에너지 기준 신재생에너지 비중 목표 및 실적

구분	'19년 목표	'19년 실적	차이
신재생에너지	6.0% (18,405)	6.2% (18,796)	0.2%p
재생에너지	5.4% (16,547)	6.0% (18,089)	0.6%p
신에너지	0.6% (1,857)	0.2% (707)	-0.4%p

^{* ():} 생산량으로 단위 천toe

<참고> 발전량 기준 신재생에너지 비중 목표 및 실적

구분	'19년 목표	'19년 실적	차이
신재생에너지	9.4% (57,067)	9.8% (57,342)	0.4%p
재생에너지	8.5% (51,649)	9.2% (54,026)	0.7%p
 신에너지	0.9% (5,418)	0.6% (3,318)	△0.3%p

^{*():} 발전량으로 단위 GWh, 목표에 비재생폐기물이 포함됨에 따라 실적도 비재생폐기물 포함

보급목표 초과 달성에 따라, 現 추세를 유지할 경우 온실가스 감축 목표 또한 달성 가능 전망

□ 정책과제별 평가

○ 신규 제도(한국형 FIT·RFS 등) 도입, 규제 개선 등으로 재생에너지 저변이 크게 확대, 반면, 산업경쟁력 제고 위한 지속적 노력 필요

과 제	성과 / 한계
	(+) 한국형 FIT 신설(18.6)로 소규모 사업자 재생에너지 참여 원활화 (-) 주민・지자체 주도 사업추진 위한 인센티브 보완 필요
	(+) 양방향 REC시스템 도입('17.3) 및 현물시장 주기 확대(2주→1주) (-) 해상풍력 등 신규 신재생에너지원 확대에 장기간 소요

과 제	성과 / 한계
해외시장	(+) 해외 신재생에너지 시장 정보 제공 확대
진출 확대	(-) 본격적인 해외 신재생에너지 프로젝트 개발은 초기 단계
새로운	(+) RFS 제도 시행('15.7)으로 수송부문 재생에너지 확대 기반 마련
시장 창출	(-) 전력 外 타 분야 신재생에너지 확대는 제한적
신재생 R&D	(+) 차세대 태양전지 세계최고 효율 달성('19.9, 한국화학研)
역량 강화	(-) 규모의 경제를 앞세운 중국의 공세 심화로 구조조정 압력 증대
제도적 지원	(+) 국유재산 임대기간 연장('20.3) 등 규제 개선 추진
기반 확충	(-) 정보제공/홍보 등 확대 노력에도 사회적 논란 지속

□ 종합평가

- 4차 계획은 역대 **가장 도전적인 목표 제시**, 아울러, 재생에너지 3020 계획('17.12)과의 연계로 **태양광·풍력 등 청정e 중심의 에너지 확산 기반** 마련
 - * '30년 신재생e 비중 목표(1차 에너지/발전량 기준) : (3차 계획) 11%/7.7% → (4차 계획) 14.3%/21.6%
 - * 기존 4차 계획에 3020 이행계획을 반영하여 목표치 등 수정('18.5)
 - 3020 계획 수립 이후, 설비목표 초과 달성·발전비중 상승 등 단기간내 재생에너지 확산이 본격화되는 성과
 - * 3020 계획상 재생e 설비 목표/실적(GW): ('18) 1.7/3.4 ('19) 2.4/4.4 ('20) 2.5/4.6(잠정)
 - * 재생e 발전비중(%, 폐기물 포함/제외) : ('17) 7.6/3.5 → ('18) 8.3/4.2 → ('19) 9.2/5
- 다만, 주요국 대비 아직 **재생에너지 비중은 여전히 낮고**, 계획 내용중 재생에너지 확대에 따른 **계통 안정성 등에 대한 고려가 부족**
 - * OECD 36개국 중 1차 에너지 기준 재생에너지 비중 최하위(36위, 2.4%), 발전량 비중 35위(5%) ('19년 기준, IEA)
- 친환경 에너지이자, 에너지 저장수단으로서 재생에너지를 보완할 수 있는 **수소에 대한 정책방향 제시 미흡**

참고

역대 신재생에너지 기본계획 주요 내용

구	분	1차(01.2)	2차(03.12)	3차(08.12)	4차(14.9)
계 [:]	획명	대체에너지 기술개발, 보급 기본계획	제2차 신재생에너지 기술개발 및 이용보급 기본계획	제3차 신재생에너지 기술개발 및 이용보급 기본계획	제4차 신재생에너지 기술개발 및 이용보급 기본계획
	획 간	'01~'03년(3년)	'03~'12년(10년)	'09~'30(22년)	'14~30(17년)
	1차E 비중	'03년까지 2%	'11년까지 5%	'30년까지 11%	'30년까지 14.3%
_	전력 비중	해당없음 ('02.9 근거규정 신설)	'11년까지 7%	'30년까지 7.7%	'30년까지 21.6%
목 표	온실 가스 감축	해당 ('06.9 근거	없음 규정 신설)	'30년까지 누적 11억 tCO ₂	'30년까지 누적 9.9억 tCO ₂
	달성 여부	달성 '03년 1차E 비중 2.1%	<u>미달성</u> '11년 1차E 비중 2.7% '11년 전력비중 3.5%	<u>미달성</u> '13년 1차E 비중 3.5% '13년 전력비중 4.0% '13년 ◯ 누적 91백만톤↓	<u>달성</u> '19년 1차E 비중 6.2% '19년 전력비중 9.8% '19년 CO ₂ 누적 2.0억톤↓
		oFIT 도입	o지역에너지 사업추진	o그린홈 100만호 추진	o한국형 FIT 도입
주 요	보급	ㅇ공공기관, 학교 등 설치의무화 추진	o'12년까지 태양광 10만호, 연료전지 1만호 추진 o소규모발전사업 지원	o민간건물 안증제 도입 oRPS 도입 발표 o폐자원 및 바이오 매스 재생에너지화 강화	ㅇ발전소 온배수 등 신규에너지원 발굴 ㅇ태양광 대여사업 신규추진
정 책		ㅇ3대 중점분야	ㅇ3대 중점분야	o 3단례로드맵제시(~'30)	o 보급확대 적정기술
	R & D	(태양광·풍력·연료 전지) 집중지원	(태양광·풍력·연료 전지) 집중지원 ㅇ 기 타 에 너 지 원	o에너지절약:IT 연계 기술개발 전략	중점개발 o실증R&D 강화
			R&D 실시	o산업화 중점기술개발	
	획	o 최초 계획이며, FIT 등 신규제도 제안	o 중기계획으로 신규 보급 및 인프라 구축 프로그램 제아	ㅇ상위 계획과 연계 세부 시나리오 제시	o 민관파트너십 기반 시장 생태계 조성
의미 프로그램 제안		=포→검세단	ㅇ시장기능 강화 방안 제시	ㅇ에너지전환 비전 반영	

^{*} 국제기준에 맞게 신재생에너지 법령개정으로 <u>'19.10월 이후</u> 재생에너지 범위에서 비재생폐기물 제외, 제1차~제4차 기존계획 통계에는 포함

2. 정책 추진여건

1 대외여건

- □ 주요국은 탄소중립 등 **기후변화 대응과 경기부양을 동시에 달성**할 수 있는 핵심수단으로 **재생에너지**를 적극 육성중
 - * EU 그린딜('19.12)은 화석연료 감축·재생에너지 확대 등 포함, 美 민주당은 태양광 ·풍력 등 친환경 에너지에 2조달러 투자계획
- **정책지원·경제성 향상** 등에 힘입어 재생에너지는 제5차 기본계획 기간(~'34년) 전후로 **세계 각국의 主전원**으로 본격 부상할 전망
 - * '18년 대비 '50년 태양광 발전비용은 최대 60% (\$96/MWh → \$38/MWh), 풍력은 최대 27% (\$55/MWh → \$40/MWh) 감소 예상 (IRENA, '20)

(참고/ 현세계 전달 물단비중 현공(단위 : //) (IEA, 2020)					
구분	2019년	2030년	2040년		
재생에너지	26.6	38.2	46.9		
(수력 제외)	(10.6)	(22.7)	(32.1)		
석탄	36.6	28.3	22.4		
원자력	10.4	9.4	8.6		

<참고> 전세계 원별 발전비중 전망(단위 : %) (IEA, 2020)

- 재생에너지 확대에 따른 **변동성 대응**을 위해 주요국은 유연성 자원 확보, 출력예측, 실시간·보조서비스 시장 강화 등을 적극 추진
 - * 美(캘리포니아)는 전기판매사업자 등에 ESS 의무화 도입('10), 독일·덴마크 등은 실시간 시장(양수・가스터빈 등 정산주기 단축)・보조 서비스시장(수요관리, ESS 등) 활용
- □ 한편, **수소**는 재생에너지 **저장수단**이자, **수송연료・열・원료** 등 다방면에 활용 가능한 친환경 에너지원으로 주목
- 아직 초기단계인 수소경제 선점을 위해 각국은 **수소생산・공급・** 저장・활용 등 생태계 조성 경쟁에 돌입
 - * 미국('20.11) : 생산·저장·운송·활용 全분야 R&D로 7,500억불 시장 창출 EU('20.7) : '50년까지 500GW 수전해 설비목표(독일은 '40년까지 10GW 목표) 호주('19.11) : 풍부한 재생에너지를 활용, 아시아시장 3대 수소 공급국가로 도약 일본('19.3) : 국내 수전해 시스템 개발 및 해외 공급망 구축계획 제시

2 대내여건

- □ 우리도 재생에너지 확대 **장기목표를 제시**하고 정책노력을 집중
 - * 재생e 발전비중 목표 : (3020 이행계획) '30년 20% → (3차 에기본) '40년 30~35%
 - * 그린뉴딜 전략('20.7)에서 3020 계획上 태양광·풍력 중기(~'25) 설비목표 상향 (29.9GW → 42.7GW)
- 정부지원 강화와 공공·민간의 적극적 투자로 향후 빠른 성장이 예상되나, 지속 가능한 재생에너지 확산을 위한 해결과제도 상존
 - * 태양광에 비해 상대적으로 더딘 풍력보급 확산, 수용성·안전성·환경성 제고, REC 시장의 변동성 확대에 따른 발전사업자의 수익성 저하, 계통 안정성 보강 등
- 재생에너지 확대에 따른 예상과제에 대한 체계적 준비와 설비
 보급-산업생태계 육성間 선순환 구조 구축이 긴요
- * '19년 韓 태양광·풍력 비중은 1단계 수준(2.7%) → '34년에는 3단계(약 19%) 도달 예상 <참고> 재생에너지 단계별 전력계통 도전과제('17, IEA)

구분	1단계	2단계	3단계	4단계	5ㆍ6단계
태양광· 풍력 비중	3% 이내	3~15%	15~25%	25~50%	50% 이상
도전과제	전체 계통에 영향 없음	재생e 급전계획 반영 출력예측 도입검토	출력예측 시스템 구축 유연성 자원 확대	계통관성 확보 회복능력 강화	난방 · 수송 전기화 전력변환 · 저장

- □ 수소분야는 '수소경제 활성화 로드맵('19.1)' 수립을 통해 2040년 **수소경제 선도국가 도약 목표**를 제시
- 이후 수소법 제정('20.2, 세계 최초), 수소경제委 출범('20.7) 등 추진체계를 정비하고, 수소활용 3대 분야(차량, 충전소, 연료전지) 세계1위 달성('19년)
 - * '19년 연간 수소차 보급량(대) : (韓) 4,194 (美) 2,089 (日) 644 (獨) 140
 - * 충전소('18→'19) : (韓) 14→34, (日) 102→112, (獨) 66→81, (美) 74→70 (*연구용 폐기)
 - * 연료전지 설치량('19.말, MW) : 韓 408, 美 382, 日 245
- 향후 수소 **全주기 원천기술 개발**과 더불어, **그린·액화수소 육성 및 연료전지 지원체계 개편** 등을 통한 경쟁력 확보 필요
- ☞ 최근 **그린뉴딜 전략(**'20.7') 및 **2050 탄소중립 선언(**'20.10)으로 향후 친환경 **신재생에너지의 역할과 중요성**은 더욱 증대될 전망

Ⅲ. 제5차 기본계획의 목표 및 추진전략

1. 목표

1 신재생에너지 보급 목표 (최종 에너지)

- □ '34년 최종 에너지중 신재생에너지 비중 13.7%(재생 12.4%, 신 1.3%)
- 이는 상위 계획인 제3차 에너지기본계획('19.6) 목표 시나리오(최종 에너지)와 제**9차 전력수급기본계획**(발전, '20.12)과의 **정합성** 확보
 - * 3차 에너지기본계획 목표 시나리오에서 폐기물을 제외하는 등 수정된 정책환경 반영
- 발전·건물·산업·수송부문별로 최종 에너지 기준 신재생에너지 보급목표를 제시하여 정책목표-수단간 연계 등에 활용
 - * 발전 : RPS / 건물 산업 : 열 의무화, 인센티브 / 수송 : RFS

< '34년 최종 에너지 기준 부문별 신재생에너지 보급 목표 >

(단위 : 백만toe)

			(= 11 1 1 = 1= 1)
구분	2019	2034	증가량
발전	2.5(49%)	12.6(53%)	10.1
건물	0.9(17%)	3.5(15%)	2.6
산업	1.0(20%)	6.2(26%)	5.2
수송	0.7(14%)	1.3(5%)	0.6
합계	5.0(100%)	23.5 (100%)	18.5

- ※ 제5차 신재생에너지 기본계획의 보급목표는 **국제추세 및 비교의 용이성**을 감안, 기존 1차 에너지 기준에서 **최종 에너지 기준으로 변경**
- 국제추세 : OECD 37개국중 EU 회원국 등 26개국(70%)이 최종 에너지 기준 사용 (1차 에너지 기준 사용국가 : 중・일 등)
- ② 비교의 용이성 : 1차 에너지는 주요국 목표와의 국제비교가 곤란

2 신재생에너지 발전량 비중 목표

- □ '34년 발전량중 신재생에너지 비중 25.8%(재생 22.2%, 신 3.6%)
- 同 목표는 제3차 에너지기본계획 및 그린뉴딜('20.7), **제9차 전력수급** 계획에 따른 신재생에너지 설비 전망 등 적용
 - * 제9차 전력수급기본계획에 따른 '34년 신재생에너지 설비용량(사업용+자가용) 82.2GW(바이오 혼소 포함시 84.4GW) 반영
- ※ 재생에너지 3020 목표범위 내에서 그린뉴딜(~'25)을 통한 보급속도 가속화로 '**25년 태양광·풍력 중간목표를 상향 조정** (당초 29.9GW → 변경 42.7GW, +12.8GW)
- ⇒ 향후 전력수급기본계획 변경 등을 전제로 그린뉴딜 추세를 연장할 경우, '34년 신재생 에너지 설비용량은 106GW, 발전비중은 31%(재생 27.4%, 신 3.6%)로 상승 전망

< '34년 발전량 기준 신재생에너지 비중 목표 >

구분	′19년 실적	′34년 목표	증가량
신재생에너지	5.6% (19.3GW)	25.8% (84.4GW)	20.2%p (65.1GW)
재생에너지	5.0% (18.5GW)	22.2% (80.8GW)	17.2%p (62.3GW)
신에너지	0.6% (0.8GW)	3.6% (3.6GW)	3.0%p (2.8GW)

^{*():} 누적 설비용량, 폐기물 제외, 2019년 신재생에너지보급통계(한국에너지공단)

3 온실가스 배출감소 목표

- □ '34년 기준, 재생에너지 보급을 통한 온실가스 감축량 목표는
 69백만 tCO₂ → '17년 감축량 14.6백만tCO₂ 대비 4.7배
 - * '17년 대비 발전부문 34.7백만 tCO2, 최종 에너지 19.7백만 tCO2 추가 감축
- 감축량은 부문별 재생에너지 보급목표에 대체대상 에너지원의 배출계수를 적용하여 산정
 - * 전력은 9차 전력수급계획의 온실가스 배출계수를 준용

2. 비전 및 추진전략

비전

지속 가능한 신재생에너지 확산 기반 구축으로 저탄소 경제·사회로의 이행 가속화

추진전략

신재생에너지 보급·시장·수요·산업·인프라 5대 혁신을 통해 2034년 주력 에너지원으로 도약

① 【보급혁신】질서 있고 지속 가능한 확산체계 마련

- ▶ 참여주체·입지 다변화 및 보급 확대를 뒷받침하는 규제 개선
- ▶ 민간·공공투자 활성화와 더불어 안전을 우선하는 신재생 확대

② 【시장혁신】 시장 효율성 제고 및 다양화 촉진

- ▶ RPS 시장의 효율성 제고 및 신에너지 분리 등 고도화 추진
- ▶ 非전력, 분산에너지로의 저변 확대 병행

③ [수요혁신] 재생에너지의 다양한 수요기반 창출

- ▶ RE100을 중심으로 재생에너지 사용기반 강화
- ▶ 자가용 설비, 수요·공급이전 등 신규수요 확보전략 병행

④ 【산업혁신】R&D 혁신역량 제고 및 생태계 활성화

- ▶ 사업화 연계 R&D로 신재생에너지 新시장 창출에 기여
- ▶ 기업 경쟁력-고용 확대-세계시장 진출의 선순환 구조 마련

⑤ 【인프라혁신】계통 보강 및 운영관리 체계 정비

- ▶ 선제적 계통투자 등을 통한 적기 계통접속 지원
- ▶ 계통혼잡 대응 및 변동성 완화를 위한 계통운영 체계 개선

□ Ⅵ. 세부 추진과제

1. (보급혁신) 질서 있고 지속 가능한 확산체계 마련

- **◈ 참여주체·입지 다변화 및 보급 확대를 뒷받침하는 규제 개선**
- 민간·공공투자 활성화와 더불어 안전을 우선하는 신재생 확대

1 참여주체 및 입지의 다변화 추진

① 주민참여 활성화 및 주민과의 이익공유 제도화

- 태양광·풍력 등 재생에너지 발전사업에 지역주민 참여시 투자금을 장기저리 융자로 지원하고, 합리적인 이익공유 기준 마련
 - * 국민주주 프로젝트('20년 신규) 확대 및 이익공유 가이드라인 마련 추진('21년)
- **수소발전 의무화제도**("21년 입법추진) 도입시, 대규모 연료전지 등을 대상으로 **경매 참여조건에 주민·지역상생 관련 사항** 부여 검토

② 지역 주도의 재생에너지 확산체계 구축

- 지자체가 수용성·환경성 있는 **집적화단지 사업(40MW**↑) 추진시 **인센티브** 지원, 중장기적으로는 인허가 일괄처리 가능 계획입지로 전환
 - * 집적화단지 입지요건: 적합한 자원보유, 전원개발 가능, 주민수용성, 부지 기반시설 확보 등
 - * 인센티브 : ① 지자체 REC 추가부여, ② 계통연계 지원, ③ 금융지원 우선실시 등
- 지자체에「지역에너지센터(가칭)」설립 등 지역 맞춤형 에너지전환을 위한 **지자체 역할 강화**(에너지분권) 방안 강구
 - * '21~'22년 지역주도의 시범사업 운영성과를 보아가며, 정식 사업화 등 추진

- **신재생에너지 중심의 지역에너지계획 수립·이행실적**이 우수한 지자체를 대상으로 정부 **인센티브 집중 지원** 검토
 - * 인센티브(예시) : R&D 및 보급지원 사업 선정시 가점 부여 등

③ 대규모 프로젝트 활성화 위한 공공부문 역할 재정립

- 망중립성 확보·중소사업자 보호 등 **공정한 역할정립을 전제**로 **공동** 접속설비 등이 필요한 대규모 프로젝트에 한해 전력공기업 등 참여 검토
 - * 일정 규모 이상의 대규모 해상풍력 등

④ 舊에너지산업지역을 신재생에너지 중심지로 전환

- 수명이 만료된 화력·원전 등의 舊에너지산업지역을 신재생에너지 중심의 **융복합단지 및 집적화단지**로 지정하여 **공정한 전환** 지원
 - * 석탄폐광 총 394개소, 석탄발전 가동 총 61개소, 원전 가동 총 24기
 - * 단지전환시 규제샌드박스 특례 등을 활용하여 용도변경 등 인허가기간 대폭 단축 추진

5 건물·산단·유휴 국유지 등 입지 맞춤형 보급 지원

- (건물) 제로에너지건축물이 에너지자립률 기준을 초과 달성시 설치 보조금 지원 등을 통해 추가적인 신재생에너지 확대 유도
 - * 에너지자립률 20% 달성시 제로에너지건축물 인증 부여중
- **(산업단지)** 산업단지내 지붕, 주차장 등 유휴부지에 태양광 설치시 비용을 **융자 지원(최대 90%)**하여 그린 스마트산단 조성에 기여
- (국유지) 신재생에너지에 적합한 유휴 국유지 정보제공 플랫폼을 구축(에너지공단, '21년)하여 사업자의 접근성 강화
 - * 산업부 장관은 중앙관서의 장에게 신재생에너지 사업에 활용 가능한 국유재산 정보요청 가능('20.10월 신재생법 시행령 개정)

2 보급 확대를 위한 인허가·규제 개선

□ 풍력 인허가 통합기구(One-Stop Shop) 도입

- 「입지 발굴 → 발전지구 지정 → 사업자 선정 → 인허가」등 풍력 全과정을 지원하는 원스탑샵 도입을 통해 신속성·효율성 제고
 - * 덴마크는 DEA(에너지청)에서 발전지구 발굴, 인허가, 발전단지 경매·운영 허가까지 일괄 수행
 - * 풍력 원스탑샵 설치를 위한 '(가칭)풍력발전 보급촉진 특별법' 제정추진 ('21년)

[2] 부지 임대기간 및 인허가 의제 확대, 이격거리 등 규제 합리화

- 신재생에너지설비 **수명 장기화 추세(20년→30년 이상)**를 고려하여 염해농지 등 **일시사용허가 기간을 확대**(現 20년→예: 30년) 검토
 - * 국·공유지는 임대가능 기간을 30년으로 확대 ('20.3월, 신재생에너지법 개정)
- **인허가 의제처리** 가능한 **태양광 범위를 확대**(예: 40MW 이하)하고, 추후 의제처리 적용 **에너지원 확대**도 검토(전기사업법 개정 필요)
 - * 3MW 이하 태양광은 전기사업 허가시 개발행위허가 등 21개 인허가 의제 가능('20.10월)
- 지자체별로 상이한 **이격거리 규제의 합리화 · 표준화** 방안 강구
 - * 신재생에너지법에 특례규정 마련 또는 표준조례안 제정 등 검토

③ 자가 생산량에 인센티브 부여를 통해 설비 최적운영 유도

- 10kW 이하 소규모 자가용 태양광에도 자가소비후 계통에 공급하는 전력에 현금정산을 허용하여 지속적인 설비유지·보수 등 촉진
 - * (現) 10kW~1MW 이하 계통공급량 현금정산 可 ightarrow (改) 10kW 이하도 허용(전기사업법 개정 필요)

3 신재생에너지 분야 민간·공공투자 활성화 지원

□ 수요자 유형별 맞춤형 융자제도 운영

○ 사업자 유형(농·축산·어민), 입지(산단, 공장 지붕, 도시내 유휴부지), 투자 방식(육자, 주주참여)별 맞춤형 융자지원

< 융자예산 현황(단위 : 억원) >

구분	'20년 예산(추경포함)	′21년 예산	증가액(비율)
농촌태양광	2,785	3,205	420(15.1% ↑)
산단태양광	1,000	1,500	500(50.0% ↑)
주민참여형	365	370	5(1.4% †)
도심태양광	-	200	신규

[2] 다양한 금융조달 경로 제공으로 신재생 투자 활성화

- (보증확대) 탄소가치평가 등 기술력중심 평가로 재생에너지 우수 기술을 보유한 기업 및 발전사업자에 금융보증(가칭: 녹색보증) 제공
 - * 에너지공단, 기술보증기금, 시중은행 공동운용('21년 정부예산 500억원 출연)

< 녹색보증 프로그램 운영절차 >

 보증 추천 (에공단)
 →
 보증 심사 (기보)
 →
 대출 실행(은행)

 산업·보급 기여도 등을 고려하여 보증 추천
 탄소가치평가 후 최종 보증대상 선정
 보증서를 바탕으로 기업에 대출 실행

- (생태계 펀드) 신재생에너지 **발전프로젝트, 제조·벤처기업** 등 지원을 위한 신재생 생태계펀드 조성으로 민간의 투자를 유도
 - * 사업비 융자, 지분출자, 운영자금 등 기업수요에 따라 다양한 분야에 지원
- (유동화증권) REC의 미래 현금흐름을 담보로 자산유동화증권을 발행하는 금융상품 설계 추진
 - * 美) Solar City社는 설비·수익담보 자산유동화 증권 발행(13년간 수익률 4.8%)

4 국민이 안심하는 신재생에너지 확산

III 신재생에너지 설비의 안전성·환경성 강화

- (태양광) 태풍·집중호우 등 기후변화의 설비영향 최소화를 위한 시공기준 등 개선 및 폐모듈 발생에 대비한 선제적 처리역량 확충
 - * 산지태양광 안전관리 강화방안('20.10월) 후속조치도 차질 없이 이행
- (풍력) 블레이드 안전성 제고를 위한 인증기준 강화, 안전점검 매뉴얼 마련 등 추진
 - * 내부 이물질 유무 확인 및 접착부 상태점검을 위한 비파괴검사 적용 등
- (수소) 연료전지, 수전해 설비, 수소 추출기 등 저압 수소용품·사용 시설 안전관리 강화를 위해 상세 안전기준 마련('22년)
- * 수소용품 및 시설의 배치·구조, 성능·재료, 시험항목 등 규정

② 노후설비 교체 및 안전관리형 기술개발

- 보급사업 등으로 설치한 소용량(자가용) 노후 설비의 **고효율 패널 등** 으로 교체를 지원하고, ICT 기반 안전관리 비즈니스 모델 발굴
 - * '04년 태양광주택 10만호 프로젝트를 시작으로 현재까지 자가용 설비 135만개소 (196MW) 설치, '24~'34년간 연평균 노후설비 8,300개소 발생 예상
- 기술개발 및 실증과정에서 중점적인 안전관리가 필요한 과제는 '안전관리형 과제'로 지정하여 별도 관리
 - * 예시) 발전설비·ESS 등의 화재징후 감지 분석, 발전소 안전진단·예측기법 등

③ 재생에너지 설비 통합 안전관리 체계 구축

- 재생에너지 인허가 통합시스템과 연계하여 안전관리를 강화하고,
 안전관련 유관기관 협의체 운영·전담조직 확충 등 검토
 - * 인허가 통합시스템 : 지자체 인허가 상황 등 파악 가능(現 전북·경북→'21년 전국 확대)
 - * 에너지공단(재생e 안전총괄), 전기안전공사(태양광, 풍력 등 전력), 가스안전공사(수소연료전지) 등
- **정부 보급설비**에 대한 시행기관의 **사후관리 계획수립 의무**('20.10월 도입) **이행실태 모니터링 강화**로 제도 조기 안착

2. [시장혁신] 시장 효율성 제고 및 다양화 촉진

- ◈ RPS 시장의 효율성 제고 및 신에너지 분리 등 고도화 추진
- ◈ 非전력・분산에너지 등 신재생에너지 저변 확대 병행

1 신재생에너지 공급의무화(RPS) 시장개편

① 사업 수익성 제고를 위해 장기계약 중심으로 RPS 시장 전환

- 현물시장 비중을 축소하고, **경쟁입찰**을 통한 **장기계약 중심**으로 RPS 시장을 개편하여 사업자의 **안정적 수익창출** 여건 조성
- 경쟁여건이 형성된 태양광부터 경쟁입찰 계약시장을 확대하고,
 現 입찰제도도 시장 참여자 특성 등을 고려하여 개편 추진
 - 탄소인증제 도입 시점을 기준으로 기존/신규 사업자 분리입찰 추진 검토
 - ❷ 현재 중·소규모(3MW 미만) 중심에서 대규모(20MW 이상) 신규시장 신설('21년)

< 태양광 REC 거래시장 개편방향 >

공급의무사 자체건설 (33.1%)		
계약시장	에공단 선정입찰 (7.2%) 의무사 자체입찰 (4.3%) 수의계약 (27.1%) 한국형 FIT (1.1%)	ightharpoons
현물시장 (27.2%)		

- * '19년 RPS 의무이행 실적 기준
- 향후 풍력 등 他 에너지원도 경쟁입찰 적용 및 에너지원별 분리 시장 구축 검토

② RPS 의무비율 상향 및 공급의무자 확대 검토

- 신재생에너지 보급목표 달성에 필요한 수준으로 RPS 의무비율(現 상한 10%) 상향 필요('34년 40% 수준)
 - * '34년 신재생에너지 발전비중 목표 25.8%에 필요한 RPS 비율은 38%
- RPS 공급의무 부여기준 조정을 통한 공급의무자 대상 확대 등 검토
 - * 시행령상 발전용량 기준 하향시(500 → 300MW) 공급의무자 확대('21, 23개社 → 30개社)

③ REC 가중치 체계 개편

- 에너지원별 경제성과 함께 친환경성, 안전성, 수용성, 계통영향
 등을 고려하여 REC 가중치 개편(매 3년 주기, '21년 예정)
 - 에너지원간 **발전원가 격차 확대**에 대응, REC 가중치의 **기준전원 재설정**(*18년 개편시 기준전원 : 100kW~3MW 태양광, 육상풍력)
 - ② 새로운 재생에너지 설비(BIPV 등)의 기술개발·투자 유인 가능하도록 가중치 신설
 - ❸ 해상품력, 국내 폐자원 활용 바이오매스 등 정책수요 증가 분야 고려

4 수소 연료전지 분리를 통한 RPS 시장 고도화

- 수소 연료전지는 별도의 제도(가칭 "수소발전전력 포트폴리오 제도"; HPS)로 분리하여 재생에너지 중심의 RPS 시장 운영
 - * HPS(Hydrogen Energy Portfolio Standards) : 기본방향 마련 위한 연구용역('20~) 후 입법추진('21)
- 연료전지의 급격한 증가로 인한 재생에너지 수요 축소 및 수익성 악화를 방지하고, 연료전지는 맞춤형 지원제도 도입

< HPS 제도 도입시 검토사항 >

- o (전력구매 사업자) 전기판매사업자 or 현행 RPS 공급의무자
- ㅇ (구매방식) 경매를 통해 최저가 제시 연료전지 발전사업자順 구매
- o (구매조건) 분산전원/친환경성을 극대화하는 전력구매 원칙 반영, 계통안정화 위해 부하추종 등에 대한 인센티브 부여 등 검토

5 RPS 의무 확대에 따른 제반 여건 마련

- 재생에너지 확대에 따른 비용 증가에 대해 전기소비자의 **수용성**을 제고하기 위해 전기요금중 **RPS 이행비용을 분리하여 고지**
- 신기술 활용 REC 거래시스템을 구축하여 계약·대금지급 업무 효율화, REC 지원센터 운영도 검토
 - * 발전 6사 및 거래소·에공단 참여, 블록체인 기반 REC 거래서비스 확산사업(21년) 추진
 - * RPS 의무비율 및 경쟁입찰 확대로 공급의무자(발전 6사)의 REC 계약건수 급증 : ('18) 3,990건 → ('19) 11,750건 → ('20.1~11월) 31,826건

2 열·연료혼합 등 非전력 신재생에너지원 확산기반 마련

□ 신재생 열에너지 활용 및 공급 확대

- 非전력 에너지인 '신재생열' 활용 확대로 에너지의 효율적 이용 및 전환손실 최소화, 전력·열간 균형 있는 신재생에너지 보급 추진
 - * 최종에너지 소비기준 전력과 열 비율은 4.3 : 5.7 수준이나, 신재생에너지 생산은 7.3 : 2.7 수준으로 신재생의 '전력·열'간 보급 불균형 발생('19년p 기준)
- 신재생 열에너지 보급 활성화를 위한 제도 도입방안(대상 범위, 인센티브 또는 의무화 등) 마련('21년~')
 - * 독일('09년, RHO), 영국('11년, RHI)은 건물소유주 대상으로 열 보급제도 시행중
 - * 신재생 열에너지 활성화 방안 마련을 위한 연구용역 시행중('20.11~)

< 대상자별 의무부여 방식 예시 >

- ① (공급자 대상) 열 공급 사업자(지역냉난방, 산업단지 등 집단에너지사업자)에게 열 공급량의 일정비율을 신재생 열에너지로 공급하도록 의무 부여
 - * 프랑스는 '30년 지역난방의 50%를 신재생으로 공급 목표 수립(에너지전환법)
- ② **(수요자 대상)** 건축물 에너지 사용자에게 에너지 사용량의 일정비율을 신재생 에너지로 공급토록 의무를 부여하고, 이행수단별(전력/열) 비율도 설정

② 신재생 연료혼합 의무화제도(RFS; Renewable Fuel Standard) 단계적 확산

- **바이오디젤** 혼합비율(現 3%)을 **'30년 5% 내외까지 단계적으로 상향** 하고, 예치·유예 등 의무이행의 **유연성 부여**를 위한 제도개선 병행
- 바이오에탄올 혼합연료의 보급 가능성(경제성·안전성·친환경성)을 확인하기 위한 단계적 **바이오에탄을 시범사업** 추진 검토
- 장기적으로 수송부문 재생에너지 연료 **지속가능성 지침^{*} 설정**, RFS 적용대상 **원료 다각화**(재생에너지 전력, 그린수소 등)도 모색
 - * 바이오에너지가 온실가스 감축, 생물다양성 보호, 자원순환 등에 기여하는 한편, 식량 경합성이나 토지용도 변경 등이 없는 방향으로 이용되도록 가이드라인 설정

3 분산형 재생에너지 확산을 위한 거래기반 활성화

□ 분산형 전원 활성화 기반 강화

- 공동 개발사업(크라우드 편당 등) 확대 및 **가상상계 도입** 등 수요지 인근 분산형 전원 투자활성화 기반 조성
 - * 가상상계 관련 규정마련(소규모 전력거래 고시, 신재생설비보급 고시) 및 시범사업 추진(22~)
- ▶ 가상요금상계제도(Virtual Net Metering) : 소비자의 전기소비량을 인근에 위치한 재생에너지 발전설비 발전량과 상계, 지역내 재생에너지 설비 이용 가능

② 재생에너지 사업 관련 중개거래 활성화

- **재생에너지 전기공급사업자**(전기신사업자) **도입**(전기사업법 개정)을 통해 **재생에너지 발전사업자**와 **전기소비자**간 **중개거래 활성화**
- 재생에너지 사업자와 전기소비자간 연계 활성화를 위한 **직접거래** 매칭 플랫폼('ReCloud' 시스템과 연계) 구축
 - * 재생에너지 클라우드 플랫폼(recloud.energy.or.kr) : 발전소 운영현황, 사업절차, 컨설팅 등 재생에너지 사업관련 정보공개 시스템(에너지공단)
 - * L社, S社 등은 국내 RE100 이행을 위해 PPA를 검토하는 과정에서 재생에너지 발전사업자 섭외의 어려움 강조

3. (수요혁신) 재생에너지의 다양한 수요기반 창출

- ◈ RE100을 중심으로 재생에너지 사용기반 강화
- ◈ 자가용 설비, 수요·공급이전 등 신규수요 확보전략 병행

1 기업·공공기관의 RE100 참여 본격 확산

* 사용 전력의 100%를 재생에너지로 조달하는 자발적 성격의 캠페인

□ 이행수단을 활용한 RE100 본격 시행

- 기업·공공기관 등이 **'21년부터 재생에너지 전력을 구매**할 수 있도록 다양한 이행수단을 가동하고 사용실적 인정 지원
 - * 녹색 프리미엄, 제3자 PPA, 인증서(REC) 구매, 지분투자, 자가발전
 - 관계부처와 협력하여 공공기관의 선도적 RE100 참여 유도
- RE100이 효율적으로 시행될 수 있도록 재생에너지 발전사업자와 전기소비자간 **직접 PPA 허용 검토**
 - * 직접 PPA: 재생에너지 사업자와 전기소비자간 직접구매계약 체결(전기사업법 개정 필요)

2 RE100 참여 유도를 위한 인센티브 및 보완장치 마련

- 제3자 PPA, REC 구매 등 **추가성이 인정되는 이행수단**에 대해서는 온실가스 감축실적으로 인정하여 기업의 RE100 참여부담을 완화
- * 에너지원, 이행수단, 감축방법 등 구체적인 인정방안 마련 예정('21.1월)
- RE100 참여기업에 대해 녹색보증 지원, 대출금리 인하 등 녹색 금융을 활성화하여 재생에너지 투자·구매 확산
- 이 외에도 RE100 라벨링 부여, 기업의 사회적 책임(CSR) 활동 지원, 공공조달 우대 검토 등 다양한 지원방안 마련
- * 녹색 프리미엄 납부기업의 중소 협력사, 저소득층, 경로워 등에 태양광 설비 설치 지원

2 지역 수요거점·자가용 확산 등 신재생에너지 수요저변 확대

① 산업단지·일반 국민을 대상으로 RE100 참여 확대

- 기존 산업단지는 자가용 태양광 확대 등 그린산단으로 전환하고, 신규 산업단지는 재생에너지 100% 사용 산단으로 조성 추진
- * 국토부·새만금청은 새만금 산업단지를 RE100 산단으로 조성 추진중
- 지자체(마을단위) RE100 시범사업을 추진하고, 녹색 프리미엄 판매 대상을 주택용 전기소비자로 확대하여 일반국민의 동참 유도
- 전기사용자가 **지역내 생산 신재생에너지를 우선적으로 소비**할 수 있도록 **인세티브** 등 제도개선 추진
 - * 지역내 전기소비자와 신재생 사업자간 망이용료 특례, 발전설비 건설비용 우선융자 등 검토

② 자가용 신재생에너지 확산

- へ 자가용 신재생 설비 활성화를 위해 산업단지 등 수요집중 지역의 자가사용 전력량(판매는 不可)에 한해 인센티브(예: REC 발급) 부여 검토・추진
 - * 현재는 자가용 설비의 자가소비후 계통에 공급하는 전력에 한해 REC 발급
 - * 산업단지를 대상으로 우선 시행후, 보급속도를 평가하여 추가 확대
 - < 자가용 설비 대상 REC 발급시 기대효과 >

구분	(현행) REC 미발급	(개선) REC 발급
활용도	전력소비 피크 저감에 일부 활용	잠재량 활용 및 자가소비 극대화
사용자 편익	산업용 전기요금 수준의 부담 절감	REC 만큼의 추가 편익 발생
계통 편익	전력망 보강 비용 일부 절감	전력망 보강 비용 절감효과 大

- 공공기관 신재생 설치 의무비율 상향(現 30%→30년 40%), 제로에너지 건축물 의무화 조기 추진 등으로 건물분야 자가용 설비 활성화
 - * 5백m² 이상 공공건물의 제로에너지건축물 의무화를 당초 '25년에서 '23년으로 조기 달성

3 재생에너지 활용도 향상을 위한 융복합 수요 창출

① 재생에너지 공급 집중 시간대로 전력수요 이전

- 이 재생e 집중으로 전력수요를 초과하는 재생e 공급가능량을 활용하기 위해 他시간대의 전력수요를 재생e 집중 시간대로 이전 유인
- **플러스 DR**(Demand Response), **Day Light 요금제** 등 다양한 전력 수요 이전 프로그램 개발 검토
- * 출력제어가 증가하는 제주에 우선적으로 플러스 DR 제도 도입 추진
- * Day Light 요금제 : 태양광이 집중되는 낮시간에 요금이 낮고, 피크시간에 높은 요금제

② 수요를 초과하는 재생에너지 공급가능량을 다른 시간대로 이전

- 전력수요 이전과 병행하여, 재생e 공급가능량을 저장한 후 전력 수요가 높은 다른 시간대에 활용할 수 있도록 이전
 - 재생e 공급가능량을 효율적으로 저장·활용하기 위해 저장기술별 적정 **저장믹스(Storage Mix) 계획**을 수립하고 평가를 정례화
 - * 주요내용: ① 연도별 수요초과 공급가능량 전망, ② 불가피한 최소 출력제어량, ③ 출력제어량 외에 저장필요량, ④ 양수·ESS·P2G·V2G 등 저장기술별 적정 믹스
 - → 출력제어가 증가하는 **제주를 대상**으로 **우선 수립('21년, 잠정)**하고, 차기 계획에서 육지 저장믹스 필요성 재검토

③ 재생에너지의 他에너지 활용(섹터 커플링) 촉진

- - * 해외도 'Sector Coupling'(EU), 'Energy System Integration'(美) 등에 대한 연구 활발
 - 연도별 수요초과 공급가능량 전망을 토대로 제주 등 필요지역에 **P2X 기술개발·실증**을 우선 시행하여 중장기 섹터 커플링 확대에 대비
 - * P2X(Power to X) : 탄소중립 재생e를 활용하여 他에너지원으로 전환하는 기술 (예) 그린수소 생산(P2G) → 수소차 충전 / 열(Heat) 생산(P2H) → 열수요 지역 난방공급 등

4. [산업혁신] R&D 혁신역량 제고 및 생태계 활성화

- ◆ 사업화 연계 R&D로 신재생에너지 新시장 창출에 기여
- ◈ 기업 경쟁력-고용 확대-세계시장 진출의 선순환 구조 마련

1 신재생 원별 유망분야 R&D 지원 강화

① (태양광) 경쟁력의 핵심인 기술력·경제성 강화 및 新서비스 개발

- 탠덤전지 등 **초고효율 태양전지** 및 관련 **소재·부품·장비** R&D 집중 지원을 통한 차세대 시장 선점 및 산업생태계 자립도 제고
 - * 셀 효율 개선목표 : ('19) 23% → ('30) 35%
- 기업·연구기관 등이 **공동**으로 기술개발 및 양산성을 검증하는 연구센터 구축을 통해 국내 태양광 R&D 역량 강화
 - * (개요) 100MW급 파일럿라인, 성능평가 시스템 구축, (기간) '20~'22, (예산) 253억원
 - * ①양산능력 검증, ②차세대 전지 공동개발, ③성능·효율 측정 및 공인인증 등 지원
- 건물 일체형(BIPV), 수상·해상 태양광 등 **입지 다변화**를 위한 **신시장 기술개발**

② (풍력) 초대형 풍력 터빈 및 부품패키지 국산화 기술 개발

- 초대형 블레이드(길이 100m, 8MW급), 카본 복합재 부품, 증속기, 발전기, 전력변환기 및 제어시스템 등 핵심부품 국산화
 - * 터빈 : ('19) 5.5 \rightarrow ('30) 12~20MW / O&M 비용(연) : '30년까지 30% 절감
- **부유식** 풍력 **터빈용량 확대 및 부유체 기술개발·실증** 등 추진
 - * ('30년 목표) 부유식 풍력 용량 : ('19) 0.75MW → ('30) 5~8MW / 실해역 실증

[3] (수소) 全주기 핵심기술 개발·상용화 및 그린수소 조기 대체

- 제주도 풍력, 새만금 태양광 등을 활용한 그린수소 실증사업 추진을 통해 '30년 100MW급 그린수소 양산 체제 구축
- **고효율·고은 수전해** 기술개발 및 **중대형 추출수소** 기술 상용화를 통해 **'30년 수소가격 4,000원,kg** 달성(現 8,000원-부가세 제외, 정책가격)
- 수소 5대 분야(수전해·모빌리티·연료전지·충전소·액화 등) 소·부·장 R&D 집중 지원을 통해 핵심기술 확보 촉진
 - * 수소 5대분야 R&D 지원규모(억원) : ('22년) 200 → ('25년) 1,000 → ('30년) 2,000

④ (재생열) R&D·제도개선을 통한 수열 시장창출 및 재생열 범위 확대

- 수열 히트펌프·운영시스템 성능개선 R&D, KS 인증기준 개정, 공공기관 시범사업 등으로 **수열에너지 시장창출** 추진
 - * 한강홍수통제소('21년), 영동대로 복합환승센터('22년) 등 시범사업 추진예정
- 향후 수열 성과, 국제추세 등을 감안해 **기타 열원(공기열, 하수열 등)**의 **재생에너지 인정기준 검토**
 - * EU, 일본 등은 히트펌프를 활용한 열원(지중열, 수열, 공기열 등)을 재생에너지로 인정하고 있으나, IEA 및 IRENA 등은 미인정

⑤ (사업화) R&D 개발제품의 성공적 사업화 유도를 위한 지원 강화

- R&D 결과물이 수요기업의 구매로 이어지는 '수요연계형 R&D' 확대
- 수요기업 요구(제품사양, 성능조건 등)를 반영할 수 있도록 기획·평가 등 R&D 숙과정에 수요기업이 적극 참여하고 최종 결과물 구매
- 우수한 R&D 결과물을 **공기업의 '시범사업'**으로 연계하여 **현장** 실중 및 트랙레코드 확보 지원
 - * R&D 성과물에 대해 공기업이 자체적으로 1년여간 실제 사이트(그리드)에서 운영 하여 성능 및 적용 가능성 등을 검증

-< (예시) 건물일체형 태양광 R&D-보급 연계 방안 >-

- ◈ 건자재에 태양광 기술이 융·복합된 건물일체형 태양광(BIPV) R&D 결과물의 보급연계 지원
 - * 연계 프로세스 : ①기술개발·실증 → ②제도정비 → ③공공부문 우선 적용

【'10~'19】BIPV R&D 23개 과제, 717억원 지원

o R&D 성과물 중 **외장재, 지붕, 창호** BIPV 제품 중심으로 지원

【'20~'22】실증연구 추진

- o BIPV 성능시험 등을 위한 실증 인프라 지원
- o 공공기관 시범보급 사업(field-test) 추진

【'21~'22】제도 정비 및 공공부문 우선 적용 추진

- o 현재 BIPV KS표준 및 신재생에너지 보급사업 시공기준에서 BIPV 설치 안전성(화재 등) 및 발전성능 검증 기준 고도화
- * ('21~'22.上) BIPV모듈·시스템의 KS표준 및 시공기준 제·개정(에너지공단)-
- o 공공기관 건물 신축 시, 일정비율 이상 BIPV 설치하면 에너지원별 보정계수를 상향하여 부여(BIPV 및 태양광 보정계수는 각각 5.48 및 1.56)
- * ('22.下) 공공기관 설치의무화 관련 '신재생에너지 설비의 지원 등에 관한 규정(산업부)/ 지침(에너지공단) 개정

【'22~】 민간 보급 활성화

- o (신축건물) 제로에너지건물인증 및 에너지절약설계기준 등 신축 건물에 적용되는 건축허가 관련 제도에서 BIPV 설치 인센티브 지원(국토부 협의 필요)
- * 제로에너지건물인증 및 에너지절약설계기준上 BIPV 설치 시 신재생에너지 생산량에 대한 추가 가중치 부여 등 인센티브를 지원하여 BIPV 경제성 확보
- (노후건물) 단열재, 창호 등을 교체하는 건물 리모델링 과정에서 BIPV 설치를 확대할 수 있도록 보조금 지원 추진
- * '보급지원사업'(산업부)과 '그린 리모델링'(국토부) 사업에서 BIPV 설치 보조금 지원 항목 신설

2 고효율·친환경 중심 시장 전환 및 혁신기업 육성

① 최저효율제, 탄소인증제 고도화로 고효율·친환경제품 시장 확대

- (최저효율제) 기술수준 및 시장동향을 반영한 로드맵 수립을 통해 최저효율기준을 단계적으로 상향하고, 탑 러너(Top Runner) 도입 검토
 - * 중국은 탑 러너(최고 에너지 효율 제품군) 제도로 18% 이상 고효율 모듈 우대중('17년~)
- (탄소인증제) 태양광 모듈('20.7 시행)에서 풍력・연료전지 등으로 인증대상을 확대하고, RPS 경쟁입찰시 가점 부여 등 추가 검토
 - * (예시) '친환경 풍력 블레이드 지원지침' 통한 저탄소·재사용 가능 블레이드 우대 등

② 신재생에너지 서비스 중심의 에너지 혁신기업 육성

- (태양광) O&M 신시장 창출을 위해 발전효율 지표 개발, 'O&M 플랫폼' 개발, 'O&M 표준매뉴얼' 제정 등 추진
 - * 대규모 태양광 발전단지에 지능형인버터 기반 디지털 O&M 플랫폼 개발·실증('20~'23, 60억원)
 - * 태양광 O&M 표준매뉴얼 : 태양광 설비 O&M시 필수 고려사항, 유지·보수에 필요한 필수 작업, 데이터 관리방법 등 포함
- (풍력) 공공주도 대형사업의 단지 설계, 사업타당성 검토, 운영 관리에 혁신기업의 참여를 유도하고, O&M 관련 신기술 개발 지원
 - * 드론활용 상태 진단, AI/ICT 기반 풍력터빈 고장예측진단(빅데이터 수집.분석 등), 실시간 해상풍력단지 통합정보 및 O&M 이력관리 시스템 개발 등 풍력분야 연구개발 확대
- (수소) R&D, 인력지원단, 혁신조달 등을 패키지로 지원하여 기술력과 혁신역량을 가진 수소 전문기업 육성('40년까지 1,000개)
 - * 수소전문기업 육성 목표 : ('25)100개 → ('27)200개 → ('30)500개 → ('40)1,000개
 - * (수소 인력지원단) 현장 애로기술 해소를 신속 지원하며, 대학·출연(연) 인력 구성
 - * (혁신조달) 혁신제품/시제품으로 지정될 경우, 조달청/수요기관 구매시 수의계약 可
- → 매출액 1,000억원 이상 에너지 혁신기업 대폭 확대(現 9개→34년 100개)

3 차세대 핵심인력 양성 및 신규 일자리 창출

① 신재생에너지 분야 해외 우수 연구기관과의 교류협력 강화

- 글로벌 선도 연구기관에 석·박사급 파견 및 위탁교육 프로그램 운영 등을 통해 선진기술 체득 및 차세대 연구인력 확보
 - * 예시) 美 NREL(재생에너지), 獨 Fraunhofer(재생에너지, ESS), 덴마크 DTU(풍력) 등
- 해외기관과 **공동연구**를 지원하고, 컨소시엄內 국내·외 기관간 인적 교류 활성화를 통해 국내 연구진의 연구역량 강화

[2] 신재생 인력수요를 반영한 현장 전문인력 양성 및 일자리 창출

○ **전환부문 인력 재교육**(화력·원자력 → 재생에너지 및 수소 현장 설비확인) 등으로 신규 현장인력 양성(고용부 재직자교육 등 연계)

내용	추진방법	
재취업자 대상 교육과정 신설	- 폴리텍 대학교 內 중·장년 재취업 교과 과정에 수소, 연료전지 부문 신설추진	
수요맞춤형 교육프로그램 신설	- 에너지 분야 퇴직자 및 현직자, 취업준비생, 업종전환을 시도하는 기업 등 수요에 따른 맞춤형 교육프로그램 운영 - 수소충전소 등 정비인력 양성 프로그램 개발	

- 신재생 관련 **공공기관의 고유 업무**중 **민간 수행에 적합한 업무를 발굴·개방**하여 민간의 신재생에너지 일자리 창출 유도
 - * (예) 태양광 RPS 설비확인(에공단), 저압 설비 정기검사(전기안전공사) 등

③ 신재생에너지 국가기술자격 활성화

- 태양광 중심에서 **풍력, 연료전지** 등 他 신재생 분야로 **기술자격 확대**
 - * 최근 태양광 발전기사 취득 현황(명): (17) 1,309 → (18) 1,943 → (19) 1,361
 - * 수소분야 민간 자격증 및 기사·기능사 자격제도 신설 추진
- 기술자격 활성화 위해 채용, 보급사업 가점 부여 등 인센티브 검토
 - * 전력·에너지 공공기관 신규인력 채용시 신재생기사 자격가점 부여, 보급사업 참여기업 선정시 신재생 전문기술인력 보유 가점 부여 등

4 국내 신재생에너지 산업의 글로벌화 촉진

[1] 핵심 국가·권역별 차별화된 수요 맞춤형 진출전략 추진

○ 진출대상 지역·국가의 특성, 정책 추진동향 등을 종합 고려하여 맞춤형 진출전략 추진

< 주요 지역별 진출 전략 >

시장 구분	주요 진출대상	시장특성 및 주요 진출전략
선진 성숙시장	E U 미국	 (특성) 그린딜(EU), '50년 탄소중립 달성(美) 등으로 재생에너지 투자 확대 (진출전략) 그린뉴딜 G2G 협력사업 및 공동R&D를 추진하고, IPP(민자발전) 등 PPP(민관협력) 프로젝트를 활용한 수주 확대와 국내제품 동반진출 도모
신흥 성장시장	동남아 중앙아 남 미	 (특성) 초기 단계로 높은 발전원가가 제약요인이나, 경제성장에 따른 전력수요 증가, 풍부한 자원 기반 신재생 전환 정책 등으로 시장성장 가능성 高 (진출전략) 그린에너지 ODA와 연계한 개도국 시장 진출 적극 지원 및 다자개발은행(WB·ADB·IDB 등) 활용
분산전원 유망시장	인 니 필리핀 일 본 호 주	○ (인니·필리핀) ESS와 연계된 소규모 도서지역의 독립 계통형 시장 형성 ☞ (진출전략) 신재생 설비(태양광·풍력+ESS 등)와 계통 설비를 패키지로 지원하는 마이크로그리드 사업 추진 ○ (일본·호주) 전력시장 소매개방 완료로 개인간 거래 (P2P) 등 VPP 활성화 ☞ (진출전략) 전력특성화 시장에 대한 해외진출 교육 및 시장정보 제공을 통해 ESS・VPP・EMS 등 국내 유망 기술 및 업체 진출 도모
에너지 다각화시장	U A E 사우디 요르단	 (특성) 현재 시장규모는 미미하나, 에너지전환에 대한 관심이 증가하면서 발전단가가 낮은 태양광을 중심으로 시장 高성장 전망 (진출전략) 중동 국가의 풍부한 자금력을 활용하여 태양광 연계 담수화 설비 진출 및 태양광 수전해·재생에너지 연계 담수화 R&D 협력 추진

② 유망시장 정보 제공 및 해외진출 역량 강화 지원

○ 유관기관(KOTRA, 신재생협회, 해외건설협회 등) 협업으로 수출·수주 유망시장 정보를 제공하는 '대외경제정보 통합플랫폼' 구축('21.하)

- 실적 부족으로 해외진출이 어려운 **중소기업·신사업 모델**에 대해 실중사업을 지원하고, 중소기업 대상 해외진출 교육 프로그램 신설
 - * '21년 신재생 해외진출지원사업內 해외상용화 지원사업(실증사업) 신규 시행
- VR전시회, 온라인 상담회 등 비대면 마케팅 지원 강화 및 신재생분야 국내 표준의 해외 확산과 우리 기업의 해외인증 획득 지원 확대

③ 유망 신재생 프로젝트 금융지원 확대로 해외진출 활로 개척

- 국산기자재 사용 및 중소·중견기업 동반진출 해외 프로젝트에 투자 가능한 신재생 정책편드 조성 검토
- 신재생 해외 프로젝트에 대한 **정책금융기관**(수은, 무보 등)의 대출 한도·금리, 보험료율 등 우대 추진
- 해외사업 공동보증제도 관련, 기업 신용도 평가기준 완화, 담당자 면책 제도적 보장 등 중소·중견기업 활용도 제고 방안 모색

④ ODA, 양자·다자 협력채널 등을 활용한 프로젝트 수주 가능성 제고

- 개도국 유망 그린에너지 프로젝트를 **ODA 사업**(KOICA·EDCF·KIAT 등) 으로 추진하되, 법·제도 컨설팅 병행으로 수주에 유리한 여건 조성
- 에너지 ODA 사업 지속 확대 및 ODA 후속사업 연계시, 사전 타당성 조사 지원 우대(가점 부여 등)도 추진
 - * '20년 에너지 ODA 사업(KIAT) 예산(201억원)중 그린에너지 분야 151억원
- 신남방·신북방, 중남미, 중동 등 그린에너지 유망 국가들과 **정부간** 협력채널을 강화하고, R&D·실증 등 협력사업 추진
 - * 기존 정부간 협력채널 내 '그린분과' 설치, 협력 포럼·라운드테이블 개최 등
- **다자개발은행**(WB·ADB·IDB 등)의 투자계획과 연계한 **시범 프로젝트 공동추진**으로 MDB 후속 프로젝트의 **우리기업 수주 가능성 제고**

5. (인프라혁신) 계통 보강 및 운영관리 체계 정비

- ◈ 선제적 계통투자 등을 통한 적기 계통접속 지원
- ◈ 계통혼잡 대응 및 변동성 완화를 위한 계통운영 체계 개선

1 송배전망 접속제도 개선 등을 통한 계통 수용성 증대

□ 유연한 송배전망 접속으로 접속 가능용량 확대

- **계통혼잡 완화**를 위해 기존 고정(Firm) 접속방식에서 선로별 접속용량 차등, 최대출력 제한, 先접속·後제어 등 **유연한(Non-Firm) 접속방식** 도입
- * Firm Acess : 선로의 부하율에 대한 고려 없이 설비용량 기준으로 접속 허용
- ↔ Non-Firm Acess : 태양광·부하 변동, 출력제어 등을 고려하여 탄력적 접속 허용

【접속용량 차등화】배전선로의 부하특성 등을 종합 검토하여 선로별 여건을 고려한 최대수용능력(Hosting Capacity)을 적용

- * Hosting Capacity : 전기품질이나 계통신뢰도에 문제 없는 범위에서 추가적인 설비 보강 없이 수용할 수 있는 신재생에너지 용량
- * 접속가능용량 : (現) 모든 배전선로 12MW → (改) A선로 12MW, B선로 14MW 등

【최대출력 제한】재생에너지 사업자 선택에 따라 일정수준 이하로 발전출력을 제한하는 조건으로 우선 접속

- 접속용량이 포화된 선로에 연계된 기존 사업자의 최대출력을 제한 하는 경우 발전량 감소는 **보상방안** 검토
- * 발전량 감소로 인한 기회비용 손실과 전력망 설비 회피에 따른 편익을 고려

【先접속·後제어】 재생에너지를 우선 접속 후, 계통혼잡이 발생하는 경우 출력제어를 통해 **망 제약을 회피**하는 방식으로 접속용량 극대화

- 先접속·後제어 전환에 필요한 **감시·출력제어 체계** 조기 구축
- * 경제적이고 수용성 있는 출력제어를 위한 제어기준·보상방안 마련

【 신재생에너지 출력제어 정책방향 】

□ 기본방향

- 재생에너지 정책이행을 위해 출력제어는 일정 수준 이내 최소화 노력
- ❷ 일정 수준을 초과하는 출력제어 대상은 저장믹스・섹터커플링으로 활용
- ❸ 소규모 재생에너지를 중앙급전 자원으로 유도, 출력제어시 기회비용 보상 검토
- ▲ 출력제어 유형에 따른 보상방법 차별화로 경제적 신호 제공

□ 출력제어 방법론

구 분	중앙급전 자원	비중앙급전 자원
주 체	계통운영자(SO)	배전운영자(DSO)
대 상	중앙급전 자원으로 등록한 재생e	중앙급전 자원으로 등록하지 않은 재생e
사 유	全계통의 수급균형・안정성 확보	배전선로 혼잡 해소
시행 절차	전력시장에 참여하여 입찰 ↓ 계통상황에 따라 계통운영자가 출력제어량 통보 ↓ 사업자의 출력제어 이행 또는 송배전사업자가 원격 제어	배전망 상황에 따라 필요상황 발생 ↓ 배전운영자가 출력제어량 통보 ↓ 사업자의 출력제어 이행 또는 배전운영자가 원격 제어
근 거	신뢰도 고시	
	전력시장운영규칙	송배전설비이용규정

□ 출력제어 보상 검토과제

구 분	과제내용	기대효과
망 제약	일정 수준을 초과하는 출력제어에 대한 보상 여부(無보상 범위 등)	신규 송배전망의 과잉투자 방지
신뢰도	시스템 안정성 제고를 위한 無보상 출력제어 범위(명확한 시행기준 등)	전력계통 운영의 예비력 비용 감소
수급유지	전력수급 균형 유지를 위한 출력 제어에 대한 보상 범위	과잉 발전시 사업자의 자발적 출력 제어 및 제어명령 수행 유인
법적근거	전기사업법 · 신재생법 개정 등	보상원칙 및 재원확보 근거 마련

< 출력제어 보상 관련 해외사례 >

- 독일, 이탈리아, 포르투갈, 벨기에 등은 <u>일정규모 이상(50시간 이상 등)의 출력</u> 제어시 사업자의 총 기회비용을 보상
- o 덴마크, 아일랜드, 스페인 등은 <u>**출력제어시**</u> 사업자에 <u>총 기회비용의 일정 부분</u>을 보상

[2] 기존 송배전설비 활용 극대화를 통한 계통 수용성 보강

○ 신재생에너지 자가소비 촉진, 자가설비 전환을 통해 기존 송배전망의 활용도를 극대화하고 **망 투자 효율화**

【자가소비 촉진】사업용 중심의 재생e 보급·확대로 증가하고 있는 전력망 부담을 완화하기 위해 계통포화 지역에 자가설비 설치 지원

- 계통포화 지역에 자가용 설비 설치시 정부의 **설치 보조금** 우선 지원 또는 **지원금 상향** 검토
- * 현재는 계통여건은 고려치 않고 계통未연계 도서지역에 한해 보조금 20% 추가지급

【자가설비 전환】일정 규모 이상 수용가 대상으로 부하특성에 맞는 신재생 전원·용량을 권고하고 자가용 설비를 신재생으로 전환 지원

- * 공장·사업장 및 집단주택단지 등에 대해 신·재생에너지의 종류를 지정하여 이용 하도록 권고하거나 설비를 설치하도록 권고 가능(신재생에너지법 제12조제3항)
- 탄소중립 정책 강화에 대비, 설비 수명기간 등을 고려하여 탄소 의존 자가용 설비에 대해 **RPS 의무 부여방안을 중장기 검토**
- 주민수용성·환경성이 우수한 신재생에너지 입지 및 지역별 신재생 사업계획 등을 고려한 **인프라 투자로 적기 계통접속 지원**

【입지발굴】지자체 주도로 신재생에너지에 적합한 입지요건을 갖춘 집적화단지 개발시 송배전망 조기 구축 등 인센티브 지원

* 집적화단지 계획단계부터 한전과 송배전망 구축에 대한 사전협의 지원

【지역계획】신재생 사업계획과 시장잠재량 등을 활용하여 지역별 신재생 계획물량을 예측하고 이를 바탕으로 선제적 전력망 보강

* 지역별 재생에너지 물량을 파악하기 위해 신재생 사업계획 조사 추진

2 안정적 계통 운영을 위한 신재생에너지 운영관리 체계 구축

① 재생에너지 변동성 대응을 위한 계통 복원력(Resilience) 강화

- 재생e 변동성 확대에 따라 계통 복원력이 약화되지 않도록 재생e의 예측・제어 능력을 강화하고, 유역성・관성 자워 확보
 - * 계통 복원력 : 전력 계통내에 돌발적인 고장 발생시 안정상태를 회복하는 능력
 - * IEA : 변동성 재생에너지 비중 15% 이상(Phase 3~6)에서 출력예측시스템, 유연성 자원 확대, 계통관성 유지의 중요성 강조

【자가출력 조정】신재생e 자체적으로 가상발전소(VPP)를 구성해 발전량을 사전입찰하고, 출력조정 가능토록 하여 변동성에 대응

- * VPP(Virtual Power Plant): 다양한 소규모 분산자원을 통합해 한 발전기처럼 운영
- * 대상(案): 단일규모 20MW 초과 또는 중개사업자가 모집한 20MW 초과 자원
- 중앙급전 가능한 신재생e에 대해서는 발전량 입찰시 용량요금 지급, 급전지시로 출력제어시 제어량에 대해 기회비용 보상 추진
- * 중앙급전 가능 신재생e : 신재생e의 발전출력을 미리 예측하여 입찰한 후, 계통 운영자의 급전지시에 따라 출력을 조정할 수 있는 자원

【유연성】 재생e 변동성으로 인한 돌발적인 계통악화 상황에도 빠르게 대응할 수 있는 ESS, 양수·가스터빈 등 유연성 자원 확보

- 실시간·보조서비스 시장을 통해 유연성 자원이 주파수조정·예비력 제공 등 전력계통 신뢰도 유지에 기여하는 경우 적정가치 보상
- * (실시간시장) 전력시장의 가격결정을 1시간 단위에서 5~15분 단위로 단축하여 실제 수급여건을 반영하여 전력가치를 산정
- * (보조서비스시장) ESS·DR 등 신규 유연성 자원이 석탄·LNG 등 기존 자원과 경쟁을 통해 보상받는 체계

【계통관성】예측·제어 능력, 유연성 자원 확보에도 불구하고, 불시 고장시에 대비 안정적 계통운영에 필요한 관성자원 확보 강화

* 계통운영자가 일정수준 이상의 관성자원을 확보하도록 계통신뢰도 기준 강화

【 변동성 재생에너지 확대 단계별 과제 】

- □ IEA는 전통적인 전력계통에 **변동성 재생에너지(VRE)**를 수용하는 과정 에서 **단계별 도전과제에 대해 정책 제언**(17년)
 - * VRE : Variable Renewable Energy
- o 재생에너지의 성공적인 전력계통 연계를 위해서는 향후 VRE 비중에 따라 도전과제 해소를 위한 전략 및 계획 수립 필요
 - < 변동성 재생에너지 비중에 따른 전력계통 특징 및 도전과제('17, IEA) >

구분	VRE 비중	전력계통 특징	도전과제
1단계	3% 이내	➤ VRE가 전체 계통에 미치는 영향 없음 • VRE의 계통영향이 거의 없는 상황 • 접속점 근처 국지적 계통에 일부 영향	• Grid Code에 추가사항 고려 • 국지적 계통영향 검토
2단계	3~15%	➤ VRE에 의한 영향 인지 • 계통운영자가 VRE 용량으로 인한 영향을 인식 • VRE 수용을 위해 계통운영 패턴의 변화	• 혼잡관리 & Grid Code 개선 • 출력예측 시스템 도입 검토 • VRE를 고려한 급전계획
3단계	15~25%	 유연성에 대한 우선 고려 ·높은 불확실성과 변동성으로 유연성 자원 중요 ·순부하 변동성 확대 및 빈번한 역조류 발생 	•출력예측 시스템 •유연성 자원의 확대 •송전-배전 운영자간 협조
4단계	25~50%	 ▶ 전력계통 안정도의 중요성 증대 ◆ VRE가 수요의 100%를 담당하는 시간 발생 ◆ VRE가 계통 안정도에 영향을 미치는 상황 ◆ 넓은 범위의 계통 보강, 복원력 강화요구 	•계통관성 확보가 최우선 과제 •VRE의 계통신뢰도 기여
5단계	_	➤ VRE 발전이 구조적으로 남아도는 상태 • 수요초과 공급 및 대규모 출력제어(Curtailment) 발생	・최종소비 부문의 전기화 ・장주기 공급 과잉・부족
6단계	6단계 -	 ▶ VRE 공급과 수요간 계절적 불균형 ・계절에 따라 수급부족 현상 발생 ・저장장치&수요반응 가능량을 초과한 공급부족 발생 	• 전력의 변환/저장 기술 (Gas & Hydrogen) •계절수요 저장수단

② 안정적 계통운영을 위한 신재생에너지 관제 인프라 통합

○ 계통운영자가 날씨·수요·고장 등 변화에 신속하게 대응할 수 있도록 **전력 유관기관의 신재생e 관제 인프라를 통합·연계**

【통합관제시스템】신재생e 발전량 실시간감시·자동예측·원격제어 등이 가능하도록 한전·전력거래소·에너지공단間 통합관제시스템 구축

* 전국계통 신재생에너지 통합관제(예측) 시스템 구축('21년 운영 예정) : (1단계, '20.03~12) 예측 알고리즘, 시각화 및 시스템 개발 (2단계, '21.1~'21.6) 시운전 및 시스템 최적화

【스마트인버터】관제시스템과 연계하여 신재생e 상태·제어신호를 양방향으로 전달하고 출력제어할 수 있는 스마트인버터 의무화

- * (기존) 단순 전력변환(DC→AC) → (스마트化) 출력·전압제어·고장지원 등 수행
- * 스마트인버터 표준화·도입 및 전력계통 관련 제도정비 등 추진(~'24.11)

【 신·재생에너지 출력제어·예측시스템 운영방안 】

- 풍속, 일사량 등 기상정보 → 발전단지별 발전량 예측
- ② 발전소별 정보를 토대로 전국·지역별 발전량 예측 및 분석
- ❸ 재생에너지 출력에 대한 실시간 계측 및 분석
- 4 전력계통 안정을 위해 EMS와 연계하여 재생에너지 출력 제어
 - < 신재생에너지 통합관제시스템 개요도 >

∨. 탄소중립 시대의 신재생에너지 정책과제

- ◆ 2050년 탄소중립 실현을 위해서는 기존 신재생에너지 보급방식・ 기술·계통 등의 한계를 뛰어넘는 과감한 혁신이 반드시 필요
- ☞ 분야별 장기 도전과제와 대응방향을 제시하여 향후 에너지 탄소중립 전략수립에 활용

도전과제

대응방향

- 1. 획기적 잠재량 확충 및 보급·개발방식 혁신
- ▶ 수용성 갖춘 **입지** 및 **유망 에너지원** 발굴
- ▶ 공공·커뮤니티 주도 개발방식 확산
- 2. 기술한계 돌파 및 에너지 안보 강화
- ▶ 신재생 **공급·전달·거래기술 초격차** 확보
- ▶ 핵심소재 재활용·재제조 및 공급망 안정화
- 3. 전력계통 대전화
- ▶ 전력 공급·수요·저장 자원의 유연성 강화
- ▶ DSO(배전망운영자) 강화 및 AC-DC 하이브리드 계통 투자
- 4. 그린수소 확대 및
 에너지 시스템 통합
- ▶ 그린수소 의무화로 **발전·수송·산업** 등 **활용**촉진
- ▶ 재생e 변환 및 시장제도間 연계 강화 (에너지통합형 의무화제도, 공급-수요자원 통합 관리 등)

(과제1) 획기적 잠재량 확충 및 보급·개발방식 혁신

1 배경 및 필요성

□ 탄소중립 달성을 위해서는 **신속하면서도 규모를 갖춘 재생에너지** 확대가 필수적 → **잠재량 확충**. 보급·개발방식 혁신 등 필요

구분	문제점/도전과제	
잠재량 확충	現 규제·기술수준(태양광 효율 17.5%)에서 재생에너지 우선공급가능 잠재량 (수용성 확보에 문제없는 잠재량)은 129GW 수준 (에기연, '20.12)	
	태양광·풍력뿐만 아니라 바이오, 해양, 온도차 냉난방 등 잠재성· 성장성을 갖춘 재생에너지원 개발 필요	
보급·개발 방식 혁신	계획적·대규모 재생에너지 확대를 위해서는 민간 중심 소규모·분산형 보급방식 外 공공부문 역할보완 필요	
	개별 토지·건물 등 중심에서 향후 지역 커뮤니티, 농어촌 등 공간개념 대 폭 확장 필요	

2 대응방향

① 수용성을 갖춘 재생에너지 입지잠재량 확충

- **설비효율 향상**, 現 **잠재량 未포함 입지(건물벽면, 농지 등) 활용** 등을 통해 잠재량 대폭 확충 추진
 - * 태양광 모듈효율 향상(17.5%→40%) 및 풍력터빈 대용량화(3MW→20MW)시 **태양광· 풍력 우선공급가능 잠재량 2.3배 증가** 추정('20.12, 에기연)
 - * 건물 남향벽면 활용시, 건물태양광 우선공급가능 잠재량 30% 증가 추정('20.12, 에기연)

② 유망 재생에너지원 발굴

- 해양(조류/조력, 파력 등), 바이오 연료, 심층수 활용 온도차 냉난방 등 개발로 잠재량 확대 및 재생에너지 생태계 다양화
 - * 기술적 잠재량(GW, 규제·경제성 미고려) : 조류/조력 120, 파력 18, 바이오 10, 온도차 냉난방 9

③ 공공주도 대규모 재생에너지 개발 활성화

- 입지잠재량을 고려한 **지자체별 재생에너지 설치의무** 부여, 국가 및 지자체의 **신규 산업단지 조성시 재생에너지 설비 의무화** 등 검토
 - * 신재생 설비 설치를 도시·군 관리계획이나 산단개발계획 등에 반영해 제도화
- 국·공유재산 및 공공기관 소유 유휴부지를 **잠재량·지가** 등에 따라 **등급화**해 재생에너지 설치에 활용하는 **공공재산 개방형 개발** 추진

④ 넷제로 커뮤니티 프로젝트 확산

- 개별 건물 단위를 넘어, **마을-지자체** 등에 재생에너지를 활용하는 커뮤니티 프로젝트 개발
 - * 미국은 유틸리티 중심, 독일은 지역주도, 영국은 사업자 주도 커뮤니티 프로젝트 시행
 - * 커뮤니티 프로젝트 유형: ①가정에 재생에너지 설비 직접설치, ②발전소 공유 등을 통한 중·저소득층의 참여기회 부여

- **고령화 등 인구구조 변화**를 감안, **농어촌 등 지역 현실에 적합**한 재생에너지 프로그램을 마련하고, 관련 제도개선·기술개발 병행
 - * 생산품 유형·토지소유 형태별로 최적화된 영농형 태양광 기술 및 사업모델 개발 등

<참고> 농어촌 맞춤형 프로젝트 예시

구분	농어촌 폐교활용 태양광	농지은행형 태양광	어업공존형 해상풍력
제도개선	폐교지역 태양광	영농형 태양광	어촌계 등 지분참여시
	설치시 금융지원 우대	설치관련 규제 개선	가중치 우대
기술개발	노후건물용 경량형	작물 식생안전 관련	해상풍력 하부구조물
	모듈 개발 등	기술개발	활용 어장형성 기술

[과제2] 기술한계 돌파 및 에너지 안보 강화

1 배경 및 필요성

□ 탄소중립을 위해서는 現 시점에서 예측한 **기술의 한계를 뛰어넘는 기술혁신**과 더불어, **변화된 에너지 안보 환경에 대응** 필요

구분	문제점/도전과제	
기술한계	現 실리콘 태양전지 한계효율(26%) 극복 위한 다중접합 기술 양산비용 저감 필요,	
기물인계	대용량 풍력터빈, 수소⇔수소화합물 전환 기반기술 등 취약	
에너지	과거에는 석유·가스 등 안정적 연료공급이 중요 → 탄소중립 시대에는	
안보	태양광·연료전지 등의 기술·소재확보가 에너지 안보의 핵심으로 부상	

2 대응방향

한계를 돌파하는 신재생에너지 공급기술 혁신

- **태양전지 초고효율화**(40% 이상) 및 건물 외장재, 차량, 선박, 해상 등 **유휴공간 활용 태양광 기술** 확보
- **초대형 풍력터빈**(20MW 이상) 개발 및 **풍력단지 운영관리 고도화** 등으로 풍력의 기저 전력화 도모
- **수소 저장·추출 및 수전해시 전력소비 효율 대폭 향상** 등을 통해 안정적인 수소공급 시스템 구축

	중점 투자분야	R&D 목표(예시)
	· 초고효율 전지 · 건물형 태양광	・다중접합소자 효율: (현재) 25% → ('50) 40% 이상 ・BIPV 이용률 : (현재) 12% → ('50) 20% 이상
	·초대형/부유식 해상풍력 ·풍력단지 운영·관리기술	 ・ 터빈용량: (현재) 8MW개발중 → ('50) 20MW 이상 ・ 운영관리: (현재) 태풍시 자동정지 → ('50) 계통, 기상상황 등 따른 완전자율운전
H ₂	・액회수소, LOHC 등 수소회합물 공급 ・수전해 시스템(알칼라인/PEM)	· 수소저장 및 추출(액화, LOHC 등) 효율 : (현재) 13.6kWh/kg-H₂ → ('50) 5kWh/kg-H₂ · 수전해 시스템 효율: (현재) 60kWh/kg-H₂ → ('50) : 40kWh/kg-H₂

[2] 신재생 변동성 대응을 위한 차세대 전력계통 기술개발

- 생산 전력의 전환효율은 높이고 소모전력은 낮추는 차세대 AC/DC 하이브리드 송·배전 시스템 기술 확보 및 DC 적용분야 다양화
- ESS 수명 연장 및 용량 확대, P2X 등 에너지저장 기술 고도화

중점 투자분야		R&D 목표(예시)
	·차세대 직류 송배전 시스템 ·DC 전원용 전기기기	 HVDC Multi-terminal 직류 송전시스템 : (현재) 200MW → ('50) 3GW급 MVDC 직류배전 운영시스템('50) : AC/DC 배전망 혼용 운전
	· 송변전 통합관제 · 에너지저장(ESS, 양수, P2G)	・재생에너지 발전량 예측 오차 : (현재) 10% → ('50) 1% 미만 ・ESS 수명: (현재) 3천 cycle → ('50) 5만 cycle

③ ICT를 활용한 신재생에너지 거래기술 고도화

○ 재생에너지와 **P2P**(Peer to Peer), **빅데이터 등 ICT 기술을 접목**하여 분산형 에너지 확산을 뒷받침하고 새로운 비즈니스를 활성화

	중점 투자분야	R&D 목표(예시)
ENSOTY DATA	• P2P, VPP, V2X 등 데이터 활용 신산업	・실시간 Auto DR (현재 응답시간 10분 이상) ・전력/가스/열 통합 빅데이터 활용 에너지 서비스
	•에너지 블록체인	· 신재생에너지 거래/전기차 충전/배출권거래 등에 블록체인 적용

④ 신재생에너지 핵심소재 기술 확보 등을 통한 에너지 안보 강화

○ 태양광·연료전지 등 신재생 핵심소재 재활용·재제조 기술 확보 및 소재·부품공급 안정화를 통해 새로운 에너지 안보 확보

중점 투자분야		R&D 목표(예시)	
	태양광 GVC 안정성 확보금속실리콘 재이용·재제조	· 폴리실리콘, 웨이퍼 등 기초소재부품 공급처 다변화 · 재활용 태양광 실리콘 소재생산: (현재) 1,800톤/년 → ('50) 5만톤/년	
	· 연료전지 관련 희토류 재이용·재제조	• 연료전지 촉매소재 원재료 회수율 : (현재) 70% → ('50) 95% 이상	

[과제3] 재생e의 주력 전원化를 위한 전력계통 대전환

1 배경 및 필요성

□ 탄소중립을 위한 재생에너지의 주력 전원化는 **변동성 중대, 관성 저하** 등 전력계통에 극복해야 하는 새로운 도전과제 제기

【 탄소중립 시대 예상되는 미래 전력계통의 특성】

전력계통내 설비 변화		전력계통 영향
• 전원비중 : 재생에너지 전력계통의 주력 전원化		변동성·불확실성 증가
• 발전설비 : 인버터 기반 증가, 회전체 기반 감소	\Rightarrow	+ 관성 저하
・소비측면 : AC 기반 조명・모터・전열기 감소(DC제어 증가)		→ 강건성·복원력 약화

2 대응방향

전력망 규정(Grid Code) 고도화를 통한 공급자원의 유연성 강화

○ 주파수 제어 등 전력계통 신뢰도 상시 유지에 필수적인 유연성 자원을 체계적으로 확보·운영할 수 있도록 관련기준 강화

【관성자원】전력수급계획 수립시 전원 구성에 따른 적정 관성수준을 검토하여, 설비계획 단계부터 관성제공 자원 확보 의무화

- * 관성자원 : 가스터빈, 동기조상기, 초고속 ESS, 스마트인버터 등
- 전통적인 동기발전기가 공급하던 관성을 **가상관성** 등으로 대체· 제공하도록 **사업자에 관성제공 기능을 갖춘 설비확보 의무화**
- * 전력망형성(Grid-forming) 인버터 기반의 ESS·동기조상기 등을 통해 주파수·전압 합성 가능
- 실시간 계통운영시 적정 관성이 확보될 수 있도록 非**동기 발전량** 비중(SNSP)을 모니터링하고 상한 기준 마련
- * SNSP(System Non Synchronous Penetration) : 계통內 총발전량 중 非동기 발전량의 비중으로서 관성확보 수준을 평가하는 지표로 활용(예 : 아일랜드 65%)

【주파수 제어】일정 규모 이상의 재생e 설비는 전통적인 발전원과 유사한 수준으로 계통 주파수에 따라 출력제어 가능하도록 의무화

- 유틸리티급 재생에너지에 대해 **주파수 추종(GF), 자동 발전제어** (AGC) 기능이 가능한 설비를 갖추도록 설비기준 강화
- * GF(Governor Free) : 계통주파수에 따라 발전출력을 자체적으로 조정
- * AGC(Automatic Generation Control) : 중앙에서 제어 신호를 통해 발전기 출력 제어

< Utility Scale 태양광 발전설비 출력제어 운영 사례(美) >

② 전력수급균형 고도화를 위한 전력수요 및 저장자원의 유연성 강화

○ 재생e 변동성 확대에 효과적인 대응을 위해 공급자원 유연성과 함께 **수용가 및 저장자원에도 수급균형 기여의무** 부여

【수용가】대형 건물 등 일정 규모 이상 수용가가 계통 여건에 따라 능동적으로 반응할 수 있는 자원을 확보하여 유연성 서비스 제공

- 자가태양광·스마트가전·전기차·축열조 등 수용가측 자원을 활용 하여 배전운영자 지시에 따라 반응 및 자동조정(Automated DR)
- * 동일 수준의 계통 유연성 확보시 가스복합 등 전통전원 대비 대형 건물 등 수용가 측면에서 확보하는 것이 비용-효율적(英, Active Building Centre 연구 결과)

【저장자원】계절수요 대응(봄·가을철 수요초과 공급가능 재생e를 여름· 겨울철 냉난방에 활용)을 위한 長주기 저장수단 확보

* 短주기 : 반응속도가 빠른 BESS・플라이휠・슈퍼캐패시터 등 → 변동성・혼잡 대응 長주기 : 수소가스, 액상 연료저장 등 기술개발 중 → 계절수요 대응

- 저장자원도 충방전 전력을 중앙에서 제어하도록 주파수 조정·경제 급전(ED) 등 실시간 수급균형 참여 의무를 부여하여 공급자원과 협조
- * ED(Economic Dispatch) : 계통운영 비용 최소화를 위한 경제적 발전출력 배분
- → 계통운영자가 발전·수요·저장자원을 유기적으로 통합 감시· 운영할 수 있도록 **고도화된 에너지관리시스템**(EMS) 구축 필요

【 재생에너지 長주기 저장수단 기술동향 】

□ 재생에너지 보급초기에서는 短주기 수급균형 등이 주요 이슈이나, 고도화 단계에서는 월간~연간의 長주기 수급균형이 이슈로 부상 예상(IEA)

< Timescale에 따른 예상 이슈(출처 : IEA) >

		Short-term	Changes in the	Generation dispatch	Scheduled	Seasonal and
Issues addressed	system stability	frequency control	supply/demand; system regulation	and operation scheduling	maintenance; longer periods of surplus/deficit	interannual varable generation and demond
Example issue	Withstanding large disturbances such as losing a large power plant	Random fluctuations in power demand	Increasing demond following sunrise or rising net load at sunset	Decide how many thermal plants should remain connected to the system	Hydropower availability during wet and dry season	
Relevant to ntegration phase	Phase 4	Phase	2 and 3	Phase 3 and 4	Phase 4 and 5	Phase 5 and 6

- □ 저장기간 특성에 적합한 저장기술을 세계 각국에서 지속 개발중
- o 특히, 탄소중립 시대에 중요성이 증가할 것으로 예상되는 長주기의 저비용·고효율 저장기술 개발을 위해 다양한 시도 진행중

< 각국의 새로운 저장수단 기술투자 사례 >

저장수단	원 리	국 가
LAES : Liquid Air Energy Storage	저장 : 재생e로 공기 압축 → 액화 저장 발전 : 기화 팽창력으로 터빈 회전 → 전력 생산	영국
위치 에너지를 이용한 저장	저장 : 재생e로 물체(블록 등) 이동 발전 : 블록을 낙하시켜 전력 생산	스위스, 독일, 미국 등
히트펌프를 이용한 저장	저장 : 재생e로 히트펌프로 온도차 발생 발전 : 온도차를 이용하여 전력 생산	미국

③ 배전망운영자(DSO)의 안정적 계통운영 책무·역량 강화

- 배전망에 주로 접속되는 재생e 확대에 따라 송전망 운영 중심의 기존 계통운영자로는 안정 운영에 한계 → 배전망운영자(DSO) 필요
 - * 배전망운영자(DSO, Distribution System Operator): 배전망에 연계된 재생에너지 발전소 등에 대한 제어와 급전, 시장운영 등을 담당하는 운영자
 - 지역단위 DSO가 변동성·불확실성에 대응토록 책무와 역량을 강화하는 한편, 계통유영자와 유기적 협조체계 구축

< (사례) 美 LBNL의 DSO 진화단계 전망 >

DSO 1.0	DSO 2.0	DSO 3.0
배전계통內 제어설비를	배전계통內 분산에너지를	DSO가 관할지역內 시장을
활용하여 제한적, 지역적	통합 관제하여 광역적인	통해 변동성·불확실성을
계통 유연성 확보 및 운용	계통 유연성 제공 지원	분권화하여 관리

[4] AC-DC 하이브리드형 전력망으로 전환 투자

○ AC 기간망(백본)과 DC 배전망을 융합한 **하이브리드형 전력망**으로 전환하는 한편, **배전망 중심 계통투자** 촉진 및 연계범위 확대

【DC 적용】재생e 배전 접속, 해상풍력단지 접속설비 등 DC 적용이 유리한 송·배전망에 부분적으로 적용 검토

- * DC 장점 : 재생e 접속용량 증대, 에너지변환 손실 저감, 해저·지중화 가능 등
- * 재생e 증가시 AC/DC 하이브리드 구성이 비용-효율적(中 칭화대, 美 NREL 공동연구)

【배전망 투자】사회적 수용성이 낮은 대규모 송전망 투자는 최소화, 배전망 중심의 선제적 투자를 통해 견고한 분산에너지 인프라 구축

* 사례 : 덴마크, '80년대 송전망 중심 발전량 연계에서 '15년경 절반 이상의 발전량 (태양광, CHP 등)이 배전망에 연계 → 50여개의 DSO가 운영중

【계통연계】에너지 수급리스크가 불가피한 계통섬의 한계를 극복하기 위해 **동북아 수퍼그리드** 지속 추진 및 확대 검토

* 예시 : 고비사막 태양광/풍력(중→한→일), 시베리아 수력(러→북→한) 연계

(과제4) 그린수소 확대 및 에너지시스템 통합

1 배경 및 필요성

- □ 그린수소는 재생에너지를 대규모로 장기 저장하고, 탄소저감이 어려운 열·산업분야 등 섹터 커플링의 핵심자워으로 활용 가능
- 수소경제 **全분야에 그린수소 의무화** 검토 등을 통해 시장창출을 가속화하고, **그린수소 공급**을 위한 대내외 노력도 강화 필요
- □ 에너지**공급 섹터간 시장제도를 통합**하는 한편, 궁극적으로는 공급 -수요 시장을 아우르는 **에너지시스템 통합 필요**

2 대응방향

① 그린수소 정의 명확화 및 그린수소 인증제 도입 추진

- 그린수소 의무화를 위한 첫 단계로 **수소법**에 그린수소를 명확히 정의하고, 이를 기반으로 그린수소 인증제 도입 추진
 - * 예시) ●재생에너지 설비와 직접 연계된 설비에서 생산한 수소, ❷전력망 연계 설비에서 생산된 수소(전력망내 재생에너지가 차지하는 비중으로 限), ❸전력 예비율이일정 수준이 넘는 특정 시간대에 재생에너지 시설 인근에서 생산한 수소 등

② 그린수소 활용 의무화를 통한 시장창출

- 발전부문: HPS 도입시 그린수소 초창기 활용기반 확보 병행
- HPS 사업자에 그린수소 사용의무 부여, 단가절감 등에 따라 의무 비율 점진적 확대 → 그린수소 수요확보 및 민간투자 유도
 - * RPS 체제下 설치되고 있는 연료전지는 추출수소 중심, 미래 그린수소 활용 부담도 無
- **연료전지**에도 자가용 시장 성숙시 **그린수소 의무비율 부과** 검토
- * 공공기관 연료전지 설치 권고 → 대규모 소비처(대형건물·호텔 등)에 자가용 연료 전지 활용의무 부과 → 자가용 연료전지에 그린수소 의무화 順
- * 자가용 연료전지는 분산전원이자 건물 냉난방 공급으로 전기화 수요 억제 가능

- **② 수송부문** : 수송용 수소에 그린수소 혼합 의무화 제도 도입
- RFS와 유사한 방식으로 수송용 수소에 그린수소 혼합의무제 도입 검토
- 추출수소-그린수소間 경제성 근접시 수소충전소內 **그린수소 전용 충전기 설치, 공공기관 수소차량에 그린수소 충전 의무화** 등 추진
- **그린수소 전용차량 도입*** 지원, **수소차 확산 신규 제도**** 등도 검토
 - * 영업용 화물차 유류비 지원카드, 친환경차량 번호판 제도 등 유사제도 검토
 - ** 내연기관 차량 진입 금지지역 설정 등
- ❸ 산업부문 : 공정별 그린수소 사용 의무화, 전환 인센티브 검토
- 철강·정유·암모니아(원료), 시멘트·알루미늄·유리(연료) 등 산업분야 그린수소 활용을 위해 관련 R&D 등 지원
- 이후 공정별 그린수소 사용 의무화, 탄소→수소 전환 인센티브 검토
- 4 기타 : 추출수소 생산기업 등의 그린수소 생산·활용 확산
- **추출수소 생산기업** 등에 **그린수소 생산의무 부여**를 통한 경쟁촉진 및 **그린수소 부과금 도입** 검토 등으로 그린수소 투자재원 확보 추진
 - * 단, CCUS를 통한 탄소배출 저감시(블루수소) 환경부하를 감안해 의무 면제
 - * 정유·가스사 대상 그린수소 투자 및 판매의무 부과, 주유소·가스충전소 등에 그린 수소 충전소 구축 의무화를 통한 메가스테이션 확산 등도 검토

③ 그린수소 공급능력 확보를 위한 대내외 노력 강화

- **대규모 수전해 기술개발**로 그린수소 대량공급 기반 확보
 - * '40년 수소가격 3,000원/kg 달성, '40년 수소 5대분야 R&D 지원 3,000억원
- o 그린수소 해외사업단을 통한 **해외 그린수소 대량 도입**도 본격 추진
- * 독일, 유럽, 일본 등 주요 수소경제 선도국들도 가격 등 감안 해외 수소도입 모색중 ('50년 그린수소 가격전망: 韓 \$1.6/kg 이상 vs 호주 \$0.8/kg 미만, BNEF)
- * 타당성 조사(1단계, 1년) → 생산·공급 실증(2단계, 4~5년) → 민간투자 유도(3단계, 3~4년)

④ 탄소중립을 위한 그린수소 중심의 공급섹터 커플링 활성화

○ 발전부문外 全부문의 탄소중립을 위해서는 **P2X 기술**을 활용한 그린수소 중심의 에너지원간 섹터 커플링 활성화 필요

【P2G: Power to Gas】수송·산업공정 부문 등에 재생에너지로 생산한 그린수소 활용 의무화, 공급망 구축 등 추진

* 기존 가스 공급망을 그린수소 공급망으로 활용 등 검토

【P2H: Power to Heat】 재생에너지 활용 열공급 히트펌프 설치 의무화, 인센티브 지원 등을 통해 재생e 열사용 확대기반 마련

* 열수요 밀집지역에 수요초과 재생e 활용 보일러 설치 의무화, 가중치 부여 등 검토

【P2L: Power to Liquid】재생에너지 전력으로 장거리 수송·장기간 저장 등에 적합한 高 에너지밀도 탄소중립 연료생산 추진

- * P2L : 재생e 전력+**그린수소**+탄소중립 $CO_2 \rightarrow \text{메탄올 } \cdot$ 가솔린 \cdot 경유 등 생산
- 에너지원간 섹터 커플링 활성화를 위해 열·연료·전력 등 에너지 유형별 공급 의무화제도 통합 필요
 - 제도간 거래 가능토록 에너지공급량을 **전기환산톤**으로 환산, 상호 인정하여 시장왜곡을 예방하고, **섹터간 합리적 경쟁** 유도
 - * 통합제도 예시 : RPS(전력)+RFS(연료)+RHO(열) → 에너지통합 공급의무화

5 탄소중립 에너지 공급 및 수요자원간 통합 에너지시스템 도입

- 탄소감축 잠재량이 풍부한 에너지효율 등 수요측 자원이 공급섹터와 경쟁을 통해 활성화되도록 **공급-수요자원간 에너지시스템 통합 필요**
 - 효율향상·피크감축·수요이전 등 **수요자원**과 재생e·그린수소 중심의 **공급자원**의 **균형 있는 활용**을 통해 넷제로 달성 추진
 - * 기술별 '50년 탄소감축 잠재량 : ① 재생에너지(44%) > ② 에너지효율(32%) > ③ 재생에너지 전기화(14%) > ④ 기타(10%) 順 (IEA・IRENA 공동연구, '17)

참고1

분야별 · 원별 보급목표

가 전력

- □ 전력부문 신재생에너지 비중은 '20년 7.4%, '30년 20.3%, **'34년 25.8%** 달성 목표
- '20년~'34년 연평균 증가율은 10%로 同 기간 연평균 0.6% 증가에 그친 전력수요를 상회

【 발전량 기준 신재생 비중 목표(단위 : %) 】

	구 분	2020	2022	2030	2034
4	신재생 비중	7.4	10.1	20.3	25.8
	재생에너지	6.5	8.7	17.3	22.2
	신에너지	0.9	1.4	3.0	3.6

주1) 9차 전력수급기본계획의 발전량 대비 비중 / 주2) 폐기물 제외

- □ 원별로는 **태양광·풍력 중심**으로 보급 확대
 - * 원별 발전량 비중(%, '18 → '34) : 태양광(32.1 → 39.3), 풍력(8.6 → 35.1)
 - * 주요 원별 설비용량(GW, '18 → '34) : 태양광(8.1 → 49.8), 풍력(1.3 → 24.9) 등
 - * 주요국 태양광 설비용량 전망(GW, '18 → '34) : 미국(64.2 → 319.8), 중국(179.8 → 894.1), 일본(56.1 → 144.7) (BNEF, 2020, 사업용 및 자가용 포함)

【 발전량 기준 원별 비중 목표(단위 : %) 】

구 분	2022	2030	2034
태양광	47.4	38.9	39.3
육상풍력	7.2	8.1	7.6
해상풍력	3.0	23.8	27.5
바이오	21.9	10.8	8.9
수 력	5.9	3.0	2.4
해 양	0.8	0.4	0.3
연료전지	9.9	13.1	12.5
IGCC	3.9	1.9	1.4
합계	100	100	100

주1) 사업용 및 자가용 포함 / 주2) 폐기물 제외

나 건물·산업

- □ 건물부문 신재생에너지(자가발전+열)는 '34년까지 3,456천 TOE 보급 (건물부문 신재생 비중 8.3%) 목표
 - * 건물부분 공급 목표(십만TOE) : ('20) 15 → ('22) 20 → ('30) 30 → ('34) 35
- (추진방안) 제로에너지건축물(ZEB) 의무화 제도를 활용, 신축 건축물 에서 사용하는 에너지의 일정 비율을 신재생에너지로 공급 의무화
- (의무대상) 단계별 연면적 기준 이상 신축 건축물의 에너지사용량 중 20% 이상을 신재생에너지로 공급
 - * 연평균 신축 건축물은 약 150,000동, 이 중 1만m² 이상은 약 900동으로 추정
- 제2차 녹색건축물기본계획 및 제로에너지건축물의무화로드맵 연계

□ 산업부문 신재생에너지(자가발전+열)는 '34년까지 6,202천 TOE 보급 (산업부문 신재생 비중 6.5%) 목표

다 수송

- □ 수송부문 신재생에너지는 '34년까지 1,293천 TOE 보급 목표
 - * 공급 목표(십만TOE, 수소 포함) : ('20) 5.7 → ('22) 6.6 → ('30) 11.0 → ('34) 12.9
- '34년까지 경유·휘발유 등을 바이오연료로 대체, 수송부문 에너지 수요의 3.7% 공급 목표
 - * 3차 에너지기본계획 목표안 준용(수소 포함)

참고2

원별 기술개발 목표

분야	기술개발 목표
태양광	- 글로벌 경쟁 돌파 고효율 태양광 개발 - 수상, 해상, 영농형 등 입지 다변화용 태양광 모듈 개발 - 초경량, 고감도 태양전지 개발 - Post-결정질 미래 원천기술 확보
풍력	- 풍력발전 핵심부품 경쟁력 강화 - 초대형 해상풍력기술 개발 및 실증 - 부유식 해상풍력시스템 개발 및 실증 - 환경친화적 단지 개발 및 운영
수소·연료전지	- 수소차 충전소용 저가 수소 생산기술 상용화 및 그린수소 대량 생산기술 확보 - 대규모 육상수소 운송기술 - 고효율·저가 연료전지 발전시스템 기술 확보
바이오	- 비식용원료 기반 바이오연료 생산기술 국산화 - 물성 개선(Drop-in) 바이오연료 핵심기술 확보 - 항공, 선박용 바이오연료 양산기술 개발 및 실증 - 非바이오매스 기반 바이오연료 생산 원천기술 확보
태양열	- 고효율·고신뢰성 전일사 태양열 집열 및 고밀도 축열 핵심기술 확보 - 태양열 기반 건물 및 산업용 냉·온열 공급시스템 기술 개발 - 수출형 대규모 태양열 발전시스템 상용화 및 600℃ 이상 흡수, 저장기술 개발
해양	- 해양에너지 상용화기술 개발 - ESS 연계 해양에너지 핵심기술 개발 - 복합해양에너지 단지화 기술 개발
지열	- 지열에너지 경제성 확보를 위한 지열자원 탐사 및 평가기술 개발 - 천부/심부지열 저비용 천공기술 개발 - Low-GWP 냉매이용 고온용 히트펌프 유닛 개발 - 하이브리드 지열 히트펌프 시스템 및 저온구동 지열발전 시스템기술 개발
수력	- 수차 성능 향상 설계기술 개발(압력맥동, 캐비테이션, 유사마모 등) - Fish-friendly 프란시스 및 카플란 수차 설계 및 개발 - 수력 성능 검증을 위한 모델시험 및 현장 효율시험 기술 개발
수열	- 하천수 냉·난방 및 재생열 하이브리드 시스템 기술 개발 - 수열 적용을 통한 막여과 수처리공정 개선 복합기술 개발 - 에너지 다소비 시설 적용 심층 저온수 활용기술 개발

참고3

통합 기술개발 로드맵

