Álgebra de Boole

Temas 1 y 2

Universidade de La Laguna

Contenido

- > Antecedentes
- > Postulados y teoremas fundamentales
- > Operaciones lógicas. Funciones booleanas
- > Síntesis algebraica de funciones
- > Síntesis de funciones con lógica NAND y NOR

Antecedentes

> George Boole

- Filósofo y matemático inglés (s. XIX)
- An investigation of the laws of thought,
 1854:
 - > Teoría matemática de manejo de variables con sólo 2 valores posibles: V-F, 0-1
- Supuso un marco de manipulación simbólica, de tipo algebraico, del razonamiento lógico, es decir, un modelo matemático para la lógica proposicional

F

Universida

Antecedentes

> Claude E. Shannon

- Ingeniero electrónico del MIT
- A symbolic analysis of relay and switching circuits, 1938:
 - "El álgebra de Boole constituye una formalización algebraica apropiada para el estudio de los circuitos electrónicos de conmutación con sólo 2 estados posibles" (como relevadores electromecánicos)
- El álgebra de Boole ha sido, y es, desde entonces la herramienta matemática en el análisis y diseño de sistemas digitales, independiente del campo de aplicación y de la tecnología aplicada

Definición del álgebra de Boole

- > El álgebra de Boole es un conjunto cerrado en que se definen las operaciones $A=\{X,+,+\}$ con $X=\{0,1\}$
 - → Operación monaria (una sola variable),
 - -+, · → Operación binaria (entre 2 objetos del conjunto)
- > Reglas:
 - 1. $\forall x \in X \iff x = 0 \lor x = 1$
 - 2. Operación complemento o negación (NOT)

•
$$\overline{0} = 1$$

•
$$\bar{1} = 0$$

Anexo: puerta NOT con transistores

Anexo: puerta NOT con transistores

IN	OUT
0	1
1	0

F

Universidad

Definición del álgebra de Boole

- > Reglas:
 - 3. Operación producto booleano o producto lógico (AND)

$$a \cdot b = z$$
 $0 \cdot 0 = 0$
 $0 \cdot 1 = 0$
 $1 \cdot 0 = 0$
 $1 \cdot 1 = 1$
 $z = a \cdot b$
 $z = a \cdot b$
 $z = a \cdot b$

Extensible a cualquier número de entradas:

 $z=a\cdot b\cdot c$

a	b	С	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

F

Universidadde La Laguna

Definición del álgebra de Boole

- > Reglas:
 - 4. Operación producto booleano o producto lógico (OR)

$$a + b = z$$
 $0 + 0 = 0$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 1$

Extensible a cualquier número de entradas:

$$z=a+b+c$$

_a	b	С	Z
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Universidadde La Laguna

Definición del álgebra de Boole

- > Reglas:
 - 5. El producto lógico es precedente respecto a la suma lógica

$$\Rightarrow f = ab + c = (ab) + c$$

$$f = ab + c \neq a(b + c)$$

Laguna

Definición del álgebra de Boole

> Postulados:

Postulado

(P1)
$$x = 0 \Leftrightarrow x \neq 1$$

(P2)
$$Six = 0 \Rightarrow \overline{x} = 1$$

$$(P3) \qquad 0 \cdot 0 = 0$$

$$(P4) 1 \cdot 1 = 1$$

(P5)
$$1 \cdot 0 = 0 \cdot 1 = 0$$

Postulado dual

$$(\mathsf{P1D}) \qquad x = 1 \Leftrightarrow x \neq 0$$

(P2D)
$$Six = 1 \Rightarrow \overline{x} = 0$$

(P3D)
$$1+1=1$$

$$(P4D) \qquad 0+0=0$$

(P5D)
$$0+1=1+0=1$$

(Principio de dualidad)

F

Universidad de la laguna

Teoremas del álgebra de Boole

(T1) Propiedad conmutativa

$$x + y = y + x$$

$$x \cdot y = y \cdot x$$

(T2) Elemento identidad

$$0 + x = x$$

$$1 \cdot x = x$$

(T3) Propiedad distributiva

$$x(y+z) = x \cdot y + x \cdot z$$

$$x + (y \cdot z) = (x + y)(x + z)$$

(T4) Elemento complementario

$$x + \overline{x} = 1$$

$$x \cdot \overline{x} = 0$$

(T5) Propiedad de idempotencia

$$x + x = x$$

$$x \cdot x = x$$

(T6) Elemento nulo

$$x + 1 = 1$$

$$x \cdot 0 = 0$$

(T7) Ley de convolución

$$\overline{x} = x$$

(T8) Ley de absorción

$$x + xy = x$$

$$x(x+y)=x$$

(T9) Propiedad asociativa

$$x(yz) = (xy)z$$

$$x + (y + z) = (x + y) + z$$

(T10) Teorema del consenso

$$xy + \overline{x}z = xy + \overline{x}z + yz$$

$$(x+y)(\overline{x}+z) = (x+y)(\overline{x}+z)(y+z)$$

$$xy + \bar{x}z + yz = xy + \bar{x}z$$

$$xy + \bar{x}z + yz = xy + \bar{x}z + 1 \cdot yz$$

$$= xy + \bar{x}z + (x + \bar{x})yz$$

$$= xy + \bar{x}z + xyz + \bar{x}yz$$

$$= xy + xyz + \bar{x}z + \bar{x}yz$$

$$= xy + xyz + xz + xyz$$

(T11) Teorema de Morgan

Segunda ley

$$\overline{x+y} = \overline{x} \cdot \overline{y}$$
 $\overline{xy} = \overline{x} + \overline{y}$

$$\overline{xy} = \overline{x} + \overline{y}$$

Todo producto puede expresarse como suma negada y viceversa

Para 3 variables:

$$\overline{x+y+z} = \overline{x} \cdot \overline{y} \cdot \overline{z} \qquad \overline{xyz} = \overline{x} + \overline{y} + \overline{z}$$

$$\overline{xyz} = \overline{x} + \overline{y} + \overline{z}$$

Para n variables:

$$(X_1 + X_2 + X_3 + \cdots + X_n)' = X_1'X_2'X_3' \cdots X_n'$$

$$(X_1X_2X_3 \cdots X_n)' = X_1' + X_2' + X_3' + \cdots + X_n'$$

$$\overline{f}(x_i,+,\cdot) = f(\overline{x_i},\cdot,+)$$

(T11) Teorema de Morgan

Primera ley

$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

El complemento de la suma es igual al producto de los complementos.

X	Υ	X+Y	(X+Y)'	X'	Y'	X'Y'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

(T11) Teorema de Morgan

Segunda ley

El complemento del producto es igual a la suma de los complementos.

X	Υ	XY	(XY)'	X'	Y'	X' + Y'
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Ejemplo:

> Expresa el complemento $\overline{f(w,x,y,x)}$ de la siguiente función en forma simplificada

$$f(w, x, y, z) = wx \overline{(\bar{y}z + y\bar{z})}$$

$$\overline{f(w, x, y, z)} = \overline{wx} \overline{(\bar{y}z + y\bar{z})}$$

$$= \overline{wx} + \overline{(\bar{y}z + y\bar{z})}$$

$$= \overline{wx} + \bar{yz} + y\bar{z}$$

$$= \overline{w} + \bar{x} + \bar{y}z + y\bar{z}$$

(T12) Teorema de Shannon

Para toda función f que relacione variables booleanas:

$$f(x_1, x_2, ..., x_i, ..., x_{n-1}, x_n) = x_i \cdot f(x_1, x_2, ..., 1, ..., x_{n-1}, x_n) + \overline{x_i} \cdot f(x_1, x_2, ..., 0, ..., x_{n-1}, x_n)$$

$$f(x_1, x_2, ..., x_i, ..., x_{n-1}, x_n) = (x_i + f(x_1, x_2, ..., 0, ..., x_{n-1}, x_n)) \cdot (\overline{x_i} + f(x_1, x_2, ..., 1, ..., x_{n-1}, x_n))$$

Ejemplo:

$$f(x, y, z) = xy + xz + yz$$

$$f(x, y, z) = xf(1, y, z) + xf(0, y, z) = x(y + yz) + x(z + yz)$$

F

Universida de La Lagur

Principio de Dualidad

- Si una igualdad o teorema es verdadero, su dual también lo es.
- > Es dual aquel en el que se cambian productos por sumas y vicerversa y 1's por 0's y viceversa

$$f_1 = f_2 \Leftrightarrow f_1^D = f_2^D$$

Ojo: $f \neq f^D$

π

F

Universidad de La Laguna

Puertas NAND y NOR

	а	b	AND	NAND	OR	NOR	_	
	0	0	0	1	0	1		
	0	1	0	1	1	0		
	1	0	0	1	1	0		
	1	1	1	0	1	0		
X - Y -				<u>о</u> — Z			X —	
X -	5) -	->	<u>о</u> — Z	=		$\times 3$	

Extensible a cualquier número de entradas:

a b c	AND	NAND	OR	NOR
0 0 0	0	1	0	1
0 0 1	0	1	1	0
0 1 0	0	1	1	0
0 1 1	0	1	1	0
1 0 0	0	1	1	0
1 0 1	0	1	1	0
1 1 0	0	1	1	0
1 1 1	1	0	1	0

Anexo: puerta NAND con transistores

a	b	NAND
0	0	1
0	1	1
1	0	1
1	1	0

F

Universidad

Puerta XOR

$$X \oplus Y = XY' + X'Y$$

$$X \oplus 0 = X$$

$$X \oplus 1 = X'$$

$$X \oplus X = 0$$

$$X \oplus X' = 1$$

Υ	Z
0	0
1	1
0	1
1	0
	1

Si X=1 **OR** Y=1, pero no ambos, entonces C=1

Ley Conmutativa:

$$X \oplus Y = Y \oplus X$$

Ley Asociativa:

$$(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z) = X \oplus Y \oplus Z$$

Ley Distributiva:

$$X(Y \oplus Z) = XY \oplus XZ$$

F

Universidadde la laguna

Puerta XOR

Ley del Complemento:

$$(X \oplus Y)' = X \oplus Y' = X' \oplus Y$$

X	Y	X'	Y'	X⊕Y	(X⊕Y)'	X⊕Y'	X'⊕Y
0	0	1	1	0	1	1	1
0	1	1	0	1	0	0	0
1	0	0	1	1	0	0	0
1	1	0	0	0	1	1	1

Prueba algebraica:

$$(X \oplus Y)' = (XY' + X'Y)'$$

= $(XY')'(X'Y)'$
= $(X' + Y)(X + Y')$
= $X'X + X'Y' + XY + YY'$
= $0 + X'Y' + XY + 0$
= $X'Y' + XY = X' \oplus Y$
= $XY + X'Y' = X \oplus Y'$

Resumen puertas básicas

a b	AND	NAND	OR	NOR	XOR	XNOR
0 0	0	1	0	1	0	1
0 1	0	1	1	0	1	0
1 0	0	1	1	0	1	0
1 1	1	0	1	0	0	1

