

Random-Number Generation

Rationale

- Simulators need generators of random variables with specific distributions
- In this way we can generate
 - Synthetic traces for the input processes of the simulator (e.g., arrival process, service times, ...)
 - Aggregate behavior for part of the system that are not simulated in details (e.g., the channel error probability, propagation delay through sections of the network, ...)

Rationale

- Generators should
 - Generate sequences of numbers whose statistical properties approximate with enough accuracy the theoretical ones
 - Make the experiments repeatable
 - Generate a very large number of different and uncorrelated instances
 - Be efficient
 - Be portable on different computers and programming languages

Rationale

- The actual procedure is:
 - We generate a sequence X of integer "random" numbers
 - 2. Using X, we generate a sequence Z of instances of a random variable uniform in (0,1)
 - 3. Using Z, we generate instances of the chosen random variable

Pseudo-random numbers

- Generators for pseudo-random sequences
 - The generation algorithm is deterministic
 - Knowing the algorithm parameters, we can regenerate the same sequence, so it is possible to repeat an experiment
 - The generated sequences mimic the random ones, since they have the same statistical properties of a sequence of instances of a uniform r.v.

Linear congruential generators

- They are the most commonly used
- Proposed by Lehmer in the 50s
- Based on the module operator
- They generate a sequence of integer numbers X={X_i} in the range [0,m -1] through the iterative relation

$$X_{i+1} = (aX_i + c) \bmod m$$

Linear congruential generators

$$X_{i+1} = (aX_i + c) \bmod m$$

- X_0 : is called *seed*
- a: multiplier
- c: increment
 - c = 0 in *multiplicative congruential* generators
 - $c \neq 0$ in *mixed congruential* generators
- m: module

Sequences in [0,1]

Given a generator of sequences X of integer numbers in [0,m-1], a sequence Z of values in [0,1) or in [0,1] is generated from

$$Z_i = X_i / m$$
 or $Z_i = X_i / (m-1)$

 Depending on the normalization used, the extremes, 0 and 1, can either be included or not

Linear congruential generators

Sequences are not random

The algorithm is deterministic; however, the generated sequences *look* random, like a sequence of instances uniformly and independently distributed

 The sequence cannot assume all the values in (0,1)

Values different from *i/m* are not possible, but for *m* large enough the sequence is very dense

Linear congruential generators

- The choice of the generator parameters (X_0, a, c, m) strongly influences the properties of the generated sequence
- Different generators have different stochastic characteristics making their behavior more or less similar to the one of uniform variables
 - A generator with module m should generate integers uniformly distributed in [0,m-1]

Sequence period

- The length of the generated sequence is called period
- A generator with module m has maximum period equal to
 - m if $c \neq 0$
 - m-1 if c = 0 (the value 0 is not possible)
- Not all the generators can achieve a maximum period

Linear congruential generators: Example 1

- a=7, c=0, m=11, X₀=1
- Generated sequence:

- The sequence contains all the possible integer numbers in [1,10]: it has the maximum period, equal to m-1
- As soon as the seed value is generated again, the sequence repeats

Linear congruential generators: Example 2

- a=5, c=0, m=11, X₀=1
- Generated sequence:

- The length of the sequence is 5, less than m-1=10
- Some numbers never appear

Linear congruential generators: Example 3

- a=5, c=0, m=11, **X**o=6
- Generated sequence:

 Starting from a seed not contained in the previous sequence, we obtain numbers not generated in the previous sequence

Characteristics of the generated sequences

 Given m, in previous examples we could expect the average value of the sequence being

$$\frac{1}{m-1} \sum_{i=1}^{m-1} X_i \longrightarrow \frac{m(m-1)}{2(m-1)} = \frac{m}{2} = 5.5$$

- Example 1: mean = 5.5 (maximum period)
- Example 2: mean = 4.4
- Example 3: mean = 6.6

Criteria for the parameters selection

Case
$$m = 2^{b}, c \neq 0$$

- the maximum period is m if
 - c and m are reciprocal prime (their only common factor is 1)
 - a = 1 + 4k, with k integer

Case
$$m = 2^{b}$$
, $c = 0$

- the maximum period is $m/4 = 2^{b-2}$ if
 - X_0 is odd
 - a = 3 + 8k or a = 5 + 8k, with k integer

Criteria for the parameters selection

Case m prime and c = 0

- the maximum period is m-1 if
 - the smallest integer k such that a^k-1 is divisible by m is k=m-1

Characteristics of the generated sequences

- In previous examples, since m is prime and c=0, the maximum period is
 - Example 1: m-1=10, because for a =7 the smallest k such that a^k -1 is divisible by m=11 is k=10, equal to m-1
 - Examples 2 e 3: period is not the maximum because for a=5 the smallest k such that a^k -1 is divisible by m=11 is k=5, smaller than m-1

Computational issues

- Linear congruential generators may suffer from the following issues
 - The used programming language must perform the operations with integer math (no rounding)
 - The product aX_i may overflow, since its representation might exceed the internal used integer representation of a and X_i alone

Other congruential generators

- A few techniques permit to increase the period of the sequence
- General congruential generator are in the form

$$X_i = g(X_{i-1}, X_{i-2}, \cdots) \mod m$$

where g() is a generic function

Other congruential generators

Example 1: quadratic generator

$$X_i = (a_2 X_{i-1}^2 + a_1 X_{i-1} + c) \mod m$$

with $a_1=a_2=1$, c=0, $m=2^b$ it has good proprieties

Example 2: Fibonacci generator

$$X_i = (X_{i-1} + X_{i-2}) \operatorname{mod} m$$

period larger than *m* but bad stochastic characteristics

"Good" generators

- C Language
 - a = 7^5 = 16,807 -- c = 0 m = 2^{31} - 1 = 2,147,483,647 (prime)
- JAVA java.util.Random
 - $a=25,214,903,917 -- c=11 -- m=2^{48}$
 - 32-bit values are returned after math operations on the series
- Visual Basic
 - a=1,140,671,485 -- c=12,820,163 -- m=2²⁴

Good generators

- Python uses the Mersenne Twister as the core generator
 - It is based on a series of bitwise (very easy to compute) XOR, AND, and shifting operations that are mathematically equivalent to operations on a twist matrix
 - It produces sequences with a period of 2^19937-1 –
 extremely long period

Good generators

- The Mersenne Twister is one of the most extensively tested random number generators in existence
- It has better properties, and is nearly as efficient to compute

Tests of RNGs

- Each number in the sequence Z_i should be an instance of a r.v. with uniform distribution in (0,1)
- The sequence should have two properties:
 - Uniformity
 - Indipendence
- There are several tests used to verify these properties
- After several tests, some RNGs are considered better than others or weaknesses are identified

Wrap-up

- Simulations need instances of random variables
- To derive them we need a random number generator with
 - Good properties
 - Long sequences
 - Efficient to generate instances