Unofficial answers to M337/S 1995 page 1 of 1

Based on tutorials of dr. Paul Reed and the OUSA revision weekend 1998, and my own Typed by I.R. van de Stadt BSc. (Hons)

Part I

Question 1

(a) (i)
$$w = \frac{(i+1)}{(i-1)(i+1)} = -\frac{1}{2}(i+1) \Rightarrow \text{Arg } w = -\frac{3p}{4}$$

(a) (ii)
$$w = -\frac{1}{2}(i+1) = \frac{1}{\sqrt{2}}e^{-i3\mathbf{p}/4} \Rightarrow \left(2^{-1/8}e^{-i3\mathbf{p}/4}\right)^{1/4} = 2^{-1/8}e^{-i3\mathbf{p}/16} = 2^{-1/8}\left(\cos\frac{3\mathbf{p}}{16} + i\sin\frac{3\mathbf{p}}{16}\right)$$

(b)
$$i = e^{i\mathbf{p}/2} \Rightarrow i^{-i} = \left(e^{i\mathbf{p}/2}\right)^{-i} = e^{\mathbf{p}/2}$$
 (Principal argument)

Question 2

- (b) $A \cup \{1\}$ is not a region. $A \cap B$ is not a region.
- (c) B-A is compact. \overline{A} is not compact.

Question 3

(a) The domain of the function f is (. F is continuous by the Composition Rule, since the functions Imz and z^2 are basic continuous functions.

(b)
$$\mathbf{a} = 0, \mathbf{b} = 1 + i \Rightarrow \mathbf{g}(t) = (1 + i)t, \quad t \in [0, 1] \Rightarrow \mathbf{g}'(t)(1 + i), \text{ Im } z^2 \to \text{Im}(1 + i)^2 t^2 = 2t^2$$

So, $\int_{\Gamma} f(z) dz = \int_0^1 2t^2 (1 + i) dt = (1 + i) \left[\frac{2}{3} t^2 \right]_0^1 = \frac{2}{3} (1 + i)$

Question 4

(a) Taylor series is
$$f(0) + zf'(0) + \frac{z^2}{2!}f''(0) + \frac{z^3}{3!}f'''(0) + \frac{z^4}{4!}f''''(0) + \cdots$$

Since
$$f(z) = e^z \cos z$$
, we have $f(0) = 1$

$$f'(z) = e^z \cos z - e^z \sin z \Rightarrow$$
 $f'(0) = 1$

$$f''(z) = e^z \cos z - e^z \sin z - e^z \sin z - e^z \cos z = -2e^z \sin z \Rightarrow f''(0) = 0$$

$$f'''(z) = -2e^{z} \sin z - 2e^{z} \cos z \qquad f''(0) = -2$$

$$f''''(z) = -2(e^z \sin z + e^z \cos z + e^z \cos z - e^z \sin z) = -4e^z \cos z \Rightarrow f''''(0) = -4$$

So up to z^4 we have

$$f(z) = 1 + z - \frac{2}{3!}z^3 - \frac{4}{4!}z^4 + \cdots$$

Since f(z) is analytic for all discs $0 \le z \le r$, the Taylor series represents f(z) for all discs $0 \le z \le r$ (i.e. all of ()

(i)
$$\int_{|z|=1} \frac{f(z)}{z^2} dz = \int_{|z|=1} \frac{1}{z^2} \left(1 + z - \frac{2}{3!} z^3 - \frac{4}{4!} z^4 + \cdots \right) dz = \int_{|z|=1} \left(\frac{1}{z^2} \left(\frac{1}{z} \right) + \frac{2}{3!} z - \frac{4}{4!} z^2 + \cdots \right) dz$$

(only this term is important since from it we find the residue at z = 0)

So,

$$\int_{|z|=1} \frac{f(z)}{z^2} dz = 2\mathbf{p}i \operatorname{Res}(f,0) = 2\mathbf{p}i \cdot 1 = 2\mathbf{p}i$$

Based on tutorials of dr. Paul Reed and the OUSA revision weekend 1998, and my own Typed by I.R. van de Stadt BSc. (Hons)

(ii) Note that
$$g(z) = \frac{d}{dz} f(z)$$
. Since $f(z)$ is represented by its Taylor series in all discs we have

$$g(z) = \frac{d}{dz} \left(1 + z - \frac{2}{3!} z^3 - \frac{4}{4!} z^4 + \dots \right) = 1 - z^2 - \frac{4}{3!} z^3 + \dots$$

(by the Differentiation Rule). The result is the first 3 terms of the Taylor series for g(z).

Question 5

(a)
$$f(z) = \frac{e^{3iz}}{z^2 + 4} = \frac{e^{3iz}}{(z - 2i)(z + 2i)}$$
 Note this has **simple** poles at $\pm 2i$

To find Residue use **Cover up** rule (Theorem 1.1 unit C1)

$$\lim_{z \to 2i} (z - 2i) \frac{e^{3iz}}{(z - 2i)(z + 2i)} = \frac{e^{-6}}{4i} = \frac{-ie^{-6}}{4}$$

$$\lim_{z \to -2i} (z+2i) \frac{e^{3iz}}{(z-2i)(z+2i)} = \frac{e^6}{-4i} = \frac{ie^6}{4}$$

[Note the cover up rule only works for simple poles. For multiple poles which have a term like $(z-a)^n$, n=2,3,4,... in the denominator then other methods need to be used]

(b)

$$\int_{-\infty}^{\infty} \frac{\cos 3t}{t^2 + 4} dt = \operatorname{Re} \left(\int_{-\infty}^{\infty} \frac{e^{3ti}}{t^2 + 4} dt \right)$$

Theorem 3.4 (C1) satisfied.

Since there are no simple poles on the real axis, we have

$$\int_{-\infty}^{\infty} \frac{e^{3ti}}{t^2 + 4} dt = 2\mathbf{p}i \{ \text{sum of residues in upper half plane} \}$$

So we have (using the result of part (a)

$$\int_{-\infty}^{\infty} \frac{\cos 3t}{t^2 + 4} dt = \text{Re } 2\mathbf{p}i \left(\frac{-ie^{-6}}{4} \right) = \frac{1}{2}\mathbf{p}e^{-6}$$

Question 6

We have $|e^z| = |e^{x+iy}| = e^x$. Since |z| = 1 we have $|e^z| \ge e^{-1}$ (a)

[Here you are expected to know that e < 3]

So we have
$$\left|e^{z}\right| \ge e^{-1} > \frac{1}{3}$$

Rouchés Theorem (page 19 Unit C1) (b)

We have
$$|f - e^z| = \left| -\frac{1}{3}z^4 \right| = \frac{1}{3}$$

So we have
$$\left| f - e^z \right| = \frac{1}{3} \le \left| e^z \right|$$
, for $z \in \left| z \right| = 1$

So f has the same number of zeros inside |z| = 1 as e^z . However e^z has no zeros and hence f has no zeros inside |z| = 1. This is Rouchés Theorem.

(c)
$$\int_{\Gamma} \frac{1}{f(z)} dz = 0$$

This is because f(z) is analytic an non-zero inside Γ . So 1/f(z) is analytic and so the integral is zero by Cauchy's Theorem.

Unofficial answers to M337/S 1995 page 3 of 3

Based on tutorials of dr. Paul Reed and the OUSA revision weekend 1998, and my own Typed by I.R. van de Stadt BSc. (Hons)

Question 7

- (a) $\overline{q}(z) = \frac{2}{z}$ is analytic on $(-\{0\})$ so q represents a model fluid flow (See HB. 1.14 p.38)
- (b) A primitive of $\overline{q}(z) = \frac{2}{z}$ is $\Omega(z) = 2 \operatorname{Log} z$, $z \in (-\{x \in \mathbb{R} : x \le 0\})$ is a complex potential function for the flow. Streamlines satisfy the equation $\operatorname{Im} \Omega(z) = \operatorname{Im} 2 \operatorname{Log} z = \operatorname{Im} \left(2 \operatorname{log}_e |z| + i 2 \operatorname{Arg} z\right) = 2 \operatorname{Arg} z = k$

(c) $\mathcal{F} = \operatorname{Im} \int_C \overline{q}(z) dz = \operatorname{Im}(2\mathbf{p}i \times 2) = 4\mathbf{p}$ by Cauchy's Integral Formula, since the function f(z) = 2 is analytic on (. (is a simply-connected region and the unit circle isis a simple-closed contour in (and 0 is a point inside the unit circle.

Question 8

- (a) See HB 2.1 p. 41. $z_{n+1} = 2z_n 2z_n^2$, with a = -2, b = 2, $c = 0 \Rightarrow d = -2 \times 0 + \frac{1}{2} \times 2 \frac{1}{4} \times 2^2 = 0$ So the sequence is conjugate of the iteration sequence $w_{n+1} = w^2$. Then the conjugating function is $h(z) = -2z + 1 \Rightarrow w_0 = -2z_0 + 1 = -2 \times -1 + 1 = 3$ As required.
- (b) (i) $P_{-1 \ i}(0) = -1 i; P_{-1-}(0) = (-1 i)^2 1 i = -1 + i; P_{1-i}(0) = (-1 + i)^2 1 i = -1 3i \Rightarrow \begin{vmatrix} 3 \\ -1 i \end{vmatrix} (0) \begin{vmatrix} \sqrt{10} > \\ & \end{cases}$, so $c \notin M$ (See HB 4.5 p. 42).
- (b) (ii) *i* is in the large cardioid. Hence we check HB 4.9 (a) p. 43:

$$\begin{pmatrix} 8 \left| \frac{-i}{4} \right| & -\frac{3}{2} \end{pmatrix} + 8 \quad (i) = \left(\frac{1}{2} - \frac{1}{2} \right)^2 = 1 < 3$$
So by HB 4.3 p 43 $c \in M$.

Part II

Question 9

(a) (i)
$$\sin(+iy) = \sin x \cos + \cos x \sin iy = \sin \cosh y + i \cos \sinh z \Rightarrow$$

$$\left|\sin(x+iy)\right|^2 = \sin^2 x \cosh^2 y + \cos^2 x \sinh^2 z = \sin^2 x \left(1 + \sinh^2 y\right) + \left(1 - \sin^2 x\right) \sinh^2 y$$

$$= \sin^2 x + \sin^2 x \sinh^2 y + \sinh^2 y - \sin^2 x \sinh^2 y = \sin^2 x + \sinh^2 y$$
as required.
$$\cos(x+iy) = \cos x \cos iy + \sin x \sin iy = \cos x \cosh y + i \sin x \sinh z \Rightarrow$$

$$\left|\cos(x+iy)\right|^2 = \cos^2 x \cosh^2 y + \sin^2 x \sinh^2 z = \cos^2 x \cosh^2 y + \left(1 - \cos^2 x\right) \left(\cosh^2 x - 1\right)$$

$$= \cos^2 x \cosh^2 y + \cosh^2 x - 1 - \cos^2 x \cosh^2 y + \cos^2 x = \cosh^2 x - 1 + \cos^2 x$$

$$= \sinh^2 x + \cos^2 x$$

$$|\tan z|^2 = \frac{|\sin z|^2}{|\cos z|^2} = \frac{\sinh^2 x + \sin^2 x}{\sinh^2 x + \cos^2 x} \le 1 \Rightarrow \sinh^2 x + \sin^2 x \le \sinh^2 x + \cos^2 x \Rightarrow$$

(a) (ii)
$$|\tan z|^2 = \frac{|\sin z|^2}{|\cos z|^2} = \frac{\sinh^2 x + \sin^2 x}{\sinh^2 x + \cos^2 x} \le 1 \Rightarrow \sinh^2 x + \sin^2 x \le \sinh^2 x + \cos^2 x \Rightarrow \sin^2 x \le \cos^2 x \Rightarrow -\frac{1}{4} \mathbf{p} \le x \le \frac{1}{4} \mathbf{p}$$

(b)
$$f$$
 is defined on $(u(x,y) = x^2 + by^2; v(x,y) = 2axy$. Now, $\frac{\partial u}{\partial x} = 2x; \quad \frac{\partial v}{\partial y} = 2ax; \quad \frac{\partial v}{\partial x} = 2ax; \quad \frac{\partial u}{\partial y} = 2by$

all exist on (, are all continuous on (, since they are all multiples (Multiple Rule) of the basic continuous function x. The Cauchy-Riemann equations are statisfied on all $z \in ($ when $2x = 2ax \Rightarrow a = 1; \quad 2ax = -2by \Rightarrow b = -1$

Then f is differentiable on all of (when a = 1 and b = -1, and, because its domain (is a region f is analytic on (. (See HB 2.3 p.19 and HB 1.3 p.18)

Unofficial answers to M337/S 1995 page 5 of 5 Based on tutorials of dr. Paul Reed and the OUSA revision weekend 1998, and my own Typed by I.R. van de Stadt BSc. (Hons)

Question 10

(a)
$$f(x) = \frac{\sin z}{z(z-3i)(z+3i)}$$
 has a removable singularity at $z=0$ and simple poles at $z=3i$ and $z=-3i$. So

by the Cover-Up Rule

Res
$$(f,0) = \frac{\sin 0}{(-3i)(3i)} = 0$$
; Res $(f,3i) = \frac{\sin 3i}{3i \times 6i} = -\frac{1}{18}i \sinh 3i$

$$\operatorname{Res}(f, -3i) = \frac{\sin(-3i)}{-3i(-6i)} = \frac{-\sin 3i}{3i \times 6i} = \frac{1}{18}i \sinh 3$$

(b) (i) f is analytic on the simply-connected region (except for 3 singularities. Γ is a simple-closed contour in (, not passing through any of the singularities. So, since only 0 is inside Γ and the other singularities are outside Γ

$$\int_{\Gamma} f(z)dz = 2\mathbf{p}i\operatorname{Res}(f,0) = 0 \text{ (see part (a))}$$

by Cauchy's Residue Theorem

- (b) (ii) f is analytic on the simply-connected region (except for 3 singularities. Γ is a simple-closed contour in (possing through any of the singularities. So, all three singularies are inside Γ $\int_{\Gamma} f(z)dz = 2\mathbf{p}i(\operatorname{Res}(f,0) + \operatorname{Res}(f,3i) + \operatorname{Res}(f,-3i)) = 2\mathbf{p}i\left(0 \frac{1}{18}i\sinh 3 + \frac{1}{18}i\sinh 3\right) = 0 \text{ (see part (a))}$ by Cauchy's Residue Theorem
- (c) f is analytic on the simply-connected region (except for 3 singularities. Let $\Gamma = |z 3i| = 1$. Then Γ is a simple-closed contour in (except for 3 singularities and only 3 is inside Γ and the other singularities are outside Γ . Hence, by Cauchy's Residue Theorem

$$\int_{\Gamma} f(z)dz = 2\mathbf{p}i\operatorname{Res}(f,3i) = 2\mathbf{p}i\left(-\frac{1}{18}i\sinh 3\right) = \frac{\mathbf{p}\sinh 3}{9} \text{ (see part (a))}$$
as required

(d)
$$\frac{1}{zf(z)} = \frac{z^2 + 9}{\sin z}$$
 in analytic on $\{z : |z| < p\}$, except for a simple pole at 0

$$\operatorname{Res}\left(\frac{1}{zf(z)},0\right) = \frac{0^2 + 9}{\cos 0} = 9,$$

by the g/h Rule, since $z^2 + 9$ and $\frac{d \sin z}{dz} = \cos z$ are analytic at 0 and $\cos 0 = 1 \neq 0$

Unofficial answers to M337/S 1995 page 6 of 6 Based on tutorials of dr. Paul Reed and the OUSA revision weekend 1998, and my own Typed by I.R. van de Stadt BSc. (Hons)

Question 11

(a) (i)
$$\left| \exp(e^{-z}) \right| = \exp\left(\operatorname{Re}\left(e^{-z}\right) \right) = \exp\left(e^{-x} \left(\cos y\right) \right)$$
 as required.

(a) (ii) The interval $R = \{z : -1 < x < 1, -p < y < p\}$ is a bounded region. The function $f(z) = \exp(e^{-z})$ is analytic on R and continuous and non-zero on \overline{R} , then by the Maximum Principle (HB. p. 31) there is a maximum is on ∂R

On
$$\{z: x = -1, -p \le y \le p\}$$
, $\max \left| \exp(e^1(\cos y)) \right| = \exp(e^1(\cos 0)) = e^e$

On
$$\{z: x = 1, -\mathbf{p} \le y \le \mathbf{p}\}$$
, $\max \left| \exp \left(e^{-1} (\cos y) \right) \right| = \exp \left(e^{-1} (\cos 0) \right) = e^{-e}$

On
$$\{z: -1 \le x \le 1, y = -\mathbf{p}\}$$
, $\max \left[\exp \left(e^{1} (\cos(-\mathbf{p})) \right) \right] = \exp \left(-e^{-1} \right) = e^{-e^{-1}}$

On
$$\{z: -1 \le x \le 1, y = \mathbf{p}\}$$
, $\max \left[\exp \left(e^{1} (\cos(\mathbf{p})) \right) \right] = \exp \left(-e^{-1} \right) = e^{-e^{-1}}$

So
$$\max \left\{ \exp(e^{-z}) : -1 \le \operatorname{Re} z \le 1, -\mathbf{p} \le \operatorname{Im} z \le \mathbf{p} \right\}$$
 is e^e which is attained at $z = -1$

(b) Let
$$h(z) = \frac{r}{r-z}$$
, $z \in (-\{r\})$

Now f and g are Basic Taylor Series (HB 3.5 p. 25)

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{z}{r}\right)^n = \left(1 - \frac{z}{r}\right)^{-1}, \quad |z| < r \Rightarrow f(z) = \frac{r}{(r-z)} = h(z), \quad |z| < r$$

$$g(z) = -\sum_{n=1}^{\infty} \left(\frac{r}{z}\right)^n = -\sum_{n=0}^{\infty} \left(\frac{r}{z}\right)^n + 1 = -\left(1 - \frac{r}{z}\right)^{-1} + 1, \quad |z| > r \Rightarrow$$

$$g(z) = -\frac{z}{(z-r)} + 1 = \frac{z}{(r-z)} + 1 = \frac{z+r-z}{(r-z)} = \frac{r}{(r-z)} = h(z), \quad |z| > r$$

f, g and h are analytic on their domains.

The region |z| < r, the domain of f overlaps with the region $z \in (-\{r\})$, the domain of h. Also the region |z| > r, the domain of g overlaps with $z \in (-\{r\})$. Hence f and h are direct continuations of each other (or f is a direct continuation of h by Taylor series (HB 2.1 p.33) and so are h and g likewise. The regions |z| < r and |z| > r do not overlap, and so f and g are indirect continuations of each other. (HB 1.1 p. 33 and HB 2.3 p.33)

Unofficial answers to M337/S 1995 page 7 of 7

Based on tutorials of dr. Paul Reed and the OUSA revision weekend 1998, and my own Typed by I.R. van de Stadt BSc. (Hons)

Question 12

(a) (i) The inverse mappings are to the standard triple of points 0,1,∞ (HB 2.11 p.36)

$$\mathbf{a} = -i \to 0$$

$$b = 1 \rightarrow 1$$

$$g = i \rightarrow \infty$$

So \hat{f}^{-1} corresponds to

$$\hat{f}^{-1}(z) = \frac{(z+i)(1-i)}{(z-i)(1+i)} = \frac{(z+i)(1-i)^2}{(z-i)(1+i)(1-i)} = \frac{-i(z+i)}{(z-i)} = \frac{-iz+1}{z-i}$$

and so the extended Möbius transformation \hat{f} that maps 0 to -i, 1 to 1 and ∞ to i is

$$\hat{f}(z) = \frac{-iz - 1}{-z - i} = \frac{iz + 1}{z + i}$$

(a) (ii) The extended imaginary axis is the set $\{z : \operatorname{Re} z = 0\} \cup \{\infty\}$

We use the three point trick. The imaginary axis passes through the points -i, 0 and i. Now

$$\hat{f}(-i) = \frac{-i^2 + 1}{-i + i} = \frac{2}{0} = \infty$$
, $\hat{f}(0) = \frac{i \cdot 0 + 1}{0 + i} = \frac{1}{i} = -i$ and $\hat{f}(i) = \frac{i^2 + 1}{i + i} = \frac{0}{2i} = 0$

So the image of the imaginary axis is the generalized circle that passes throught the extended points ∞ , -i, and 0. Thus the image is the imaginary axis, as required.

Maybe the following is a safer proof.

The Apollonian form of the imaginary axis is $\{z:|z+1|=|z-1|\}\cup\{\infty\}$

Now from part (a) (i) we know already that

$$z = \hat{f}^{-1}(w) = \frac{-iw + 1}{w - i}$$

Since $w \in \hat{f}(\operatorname{Im} axis) \Leftrightarrow \hat{f}^{-1}(w) \in \operatorname{Im} axis$. So, $w = \infty, w = i$ or

$$\left|\frac{-iw+1}{w-i}+1\right| = \left|\frac{-iw+1}{w-i}-1\right| \Longleftrightarrow \left|\frac{-iw+1+w-i}{w-i}\right| = \left|\frac{-iw+1-w+i}{w-i}\right| \Longleftrightarrow \left|\frac{-iw+1+w-i}{w-i}\right| = \left|\frac{-iw+1-w+i}{w-i}\right| \Leftrightarrow \left|\frac{-iw+1-w+i}{w-i}\right| = \left|\frac{-iw+1-w+i}{w-i}\right| \Leftrightarrow \left|\frac{-iw+1-w+i}{w-i}\right| = \left|\frac{-iw+1-w+i}{w-i}\right| \Leftrightarrow \left|\frac{-iw+1-w+i}{w-i}\right| = \left|\frac{-iw+1-w+i}{w-i}\right| \Leftrightarrow \left|\frac{-iw+1-w+i}{w-i}\right| = \left|\frac{-iw+i}{w-i}\right| = \left|\frac{$$

$$|(1-i)w+1-i| = |-(1+i)w+1+i| = |1-i||w+1| = |1+i||-w+1| \iff |w+1| = |w-1|$$

Therefore the image is $\{w: |w+1| = |w-1|\} \cup \{\infty\}$, which is the imaginary axis as required.

(b) (i) HB 1.10 p. 12 and HB 5.3 p. 14.

Let
$$h(z) = \sqrt{z} = z^{1/2} = \exp\left(\frac{1}{2}\operatorname{Log} z\right) = \exp\left(\frac{1}{2}\left(\log|z| + i\operatorname{Arg} z\right)\right) = \left(\sqrt{|z|}\right)e^{i\operatorname{Arg} z/2}$$

So, if $\left(\sqrt{|z_1|}\right)e^{i\operatorname{Arg} z_1/2} \neq \left(\sqrt{|z_2|}\right)e^{i\operatorname{Arg} z_2/2} \Leftrightarrow |z_1|e^{i\operatorname{Arg} z_1} \neq |z_2|e^{i\operatorname{Arg} z_2} \Leftrightarrow z_1 = z_2$

Hence h(z) is a one-one function. h(z) is analytic on $\{z : \operatorname{Re} z > 0\}$, with $h'(z) = \frac{1}{2\sqrt{z}} \neq 0$ for all z in $\{z : \operatorname{Re} z > 0\}$. By HB 2.6 p. 36 the Möbius transformation f is one-one on $\{z : \operatorname{Re} z > 0\}$ since $i \cdot i - 1 \cdot 1 = -2 \neq 0$ and by HB 2.2 f is conformal. Now $g(z) = h(f(z)) = \sqrt{f(z)}$, so by HB 4.5 p. 37 g is a one-one conformal mapping.

De domain is at the left of the points -i, 0 and i, which \hat{f} maps to 0, -i, and ∞ with the image at the left. This shows that \hat{f} maps $\{z: \operatorname{Re} z > 0\}$ to $\{z: \operatorname{Re} z > 0\}$. Using the three point trick to show where $\hat{h}(z)$ maps the imaginary axis onto. The imaginary axis passes through the points -i, 0 and i with the domain at the left, which $\hat{h}(z)$ maps to $\frac{1}{\sqrt{2}}(1-i)$, 0, $\frac{1}{\sqrt{2}}(1-i)$, with the image at the left, which shows that $\hat{h}(z)$ maps $\{z: \operatorname{Re} z > 0\}$ to $\{z: -\frac{1}{4}\mathbf{p} < \operatorname{Arg} z < -\frac{1}{4}\mathbf{p}\}$

(b) (ii) f and h are one-one and conformal on these regions. $h^{-1}(z) = z^2$ Hence since $(h \circ f)^{-1} = f^{-1} \circ h^{-1}$,

$$g^{-1}(z) = \frac{-iz^2 + 1}{z^2 - i} = \frac{z^2 + i}{iz^2 + 1}$$