Due: 18 September 2008

1

Problem 1.1. Read chapter 3 of Bird.

Problem 1.2. Do exercises 3.2.1 1 and 3.2.4 (for finite natural numbers) using the principle of mathematical induction given on page 63. Hint for 3.2.4: Choose arbitrary $m, n \in Nat$ and do induction on p.

2 Induction Examples from Class

In class we gave the following definitions.

date Nat = Zero | Succ Nat deriving (Eq,Ord,Show)

We can prove properties of our addition function, verifying that it really behaves like the addition we know an love, by using mathematical induction.

Lemma 2.1. $\forall m : Nat. \ Zero + m = m$

Proof: By induction on m. The property P is given as:

$$P(m) \stackrel{\text{def}}{=} Zero + m = m$$

Case [P(Zero)] We must show Zero + Zero = Zero, which holds by the definition of + so the base case holds.

 $\mathbf{Case}[P(Succ\ k)]$ Assume P(k) and show $P(Succ\ k)$.

$$P(k): Zero + k = k$$

 $P(Succ k): Zero + (Succ k) = (Succ k)$

Starting on the left side of the equality $P(Succ \ k)$:

$$Zero + (Succ \ k) \stackrel{\langle\langle \text{def. of } (+)\rangle\rangle}{=} Succ \ (Zero + k) \stackrel{\langle\langle P(k)\rangle\rangle}{=} Succ \ k$$

¹*i.e.* prove $\forall m : Nat. Succ Zero \times m = m$

Lemma 2.2. $\forall n : Nat. \ \forall k : Nat. \ Succ \ k + n = k + Succ \ n$ **Proof:** By induction on n. Then

$$P(n) \stackrel{\text{def}}{=} \forall k : Nat. \ Succ \ k + n = k + Succ \ n$$

Case[P(Zero)] We must show $\forall k : Nat. Succ \ k + Zero = k + Succ \ Zero$. Choose arbitrary k and show $Succ \ k + Zero = k + Succ \ Zero$. But, consider the following sequences of equalities:

$$Succ \ k + Zero \overset{\langle\langle \text{def. of } (+)\rangle\rangle}{=} Succ \ k$$
$$k + Succ \ Zero \overset{\langle\langle \text{def. of } (+)\rangle\rangle}{=} Succ \ (k + Zero) \overset{\langle\langle \text{def. of } (+)\rangle\rangle}{=} Succ \ k$$

so the base case holds.

 $\mathbf{Case}[P(Succ\ m)]$ Assume P(m) and show $P(Succ\ m)$.

$$P(m): \forall k : Nat. \ Succ \ k + m = k + Succ \ m$$

 $P(Succ \ m): \forall k : Nat. \ Succ \ k + Succ \ m = k + Succ \ (Succ \ m)$

Notice that in the second equation, substituting $Succ\ m$ for n in the term $Succ\ n$ on the right side gives $Succ\ (Succ\ m)$, this could would be an easy place to make an error. To prove $p(Succ\ m)$ holds, choose arbitrary $k\in Nat$ and show $Succ\ k+Succ\ m=k+Succ\ (Succ\ m)$ Consider the following sequences of equalities:

$$Succ \ k + Succ \ m \overset{\langle\langle \text{def. of } (+)\rangle\rangle}{=} Succ \ (Succ \ k + m) \overset{\langle\langle P(m)\rangle\rangle}{=} Succ \ (k + Succ \ m)$$

$$k + Succ \ (Succ \ m) \overset{\langle\langle \text{def. of } (+)\rangle\rangle}{=} Succ \ (k + Succ \ m)$$

Now, we prove the commutativity of addition:

Theorem 2.1. $\forall n : Nat. \ \forall m : Nat. \ m+n=n+m$ **Proof:** By induction on m. Then

$$P(n) \stackrel{\text{def}}{=} \forall m : Nat. \ m+n=n+m$$

Case[P(Zero)] We must show $\forall m : Nat. \ m + Zero = Zero + m$. Choose arbitrary m and notice that by definition of (+) m + Zero = m and by Lemma 2.1 Zero + m = m. Thus, the base case holds.

 $\mathbf{Case}[P(Succ\ m)]$ Assume P(m) and show $P(Succ\ m)$.

$$\begin{split} P(k): & \forall m: Nat. \ m+k=k+m \\ P(Succ \ k): & \forall m: Nat. \ m+Succ \ k=Succ \ k+m \end{split}$$

To show $P(Succ \ k)$ choose arbitrary m and show $m + Succ \ k = Succ \ k + m$.

$$\begin{array}{l} m + Succ \; k \\ \stackrel{\langle\langle \mathrm{def. \; of \; (+)}\rangle\rangle}{=} \; Succ \; (m+k) \\ \stackrel{\langle\langle P(k)\rangle\rangle}{=} \; Succ \; (k+m) \\ \stackrel{\langle\langle \mathrm{def. \; of \; (+)}[backwards]\rangle\rangle}{=} \; k + Succ \; m \\ \stackrel{\langle\langle\langle Lemma \; 2.1)\rangle\rangle}{=} \; Succ \; k + m \end{array}$$

Note: In the second to last step, we use the equality $k + Succ \ m \stackrel{\langle\langle \text{def. of } (+)\rangle\rangle}{=} Succ \ (k+m)$ in the right to left direction. This can be seen as a step in which we fold up the definition of (+).