Standard linear two-stage problems and dual of the second-stage

A standard linear two-stage problem has the following form:

$$\min_{x \in \mathbf{R}^n} c^{\top} x + \mathbf{E}(Q(x, \xi))$$

$$s.t. \ Ax = b$$

$$x \succeq 0$$

where $Q(x,\xi)$ is the optimal value of the second-stage problem:

$$\min_{y \in \mathbf{R}^m} \ q^\top y$$

$$s.t. \ Wy = h - Tx$$

$$y \succeq 0$$

 $\xi := (q, h, T, W)$ represents the data of the second-stage problem. Expectation is taken w.r.t. the distribution of ξ .

The dual of the second-stage linear programming is shown below:

$$\max_{\pi} \ \pi^{\top}(h - Tx)$$
s.t. $W^{\top}\pi \leq q$

State and prove the properties of $Q(\cdot,\xi)$

Properties are listed below. Please refer *Lectures on Stochastic Programming* for proofs.

- 1. For any given ξ , the function $Q(\cdot, \xi)$ is convex. Moreover, if the set $\{\pi : W^{\top}\pi \leq \}$ is nonempty and second stage problem is feasible, then the function $Q(\cdot, \xi)$ is polyhedral.
- 2. Suppose that for given $x = x_0$ and $\xi \in \Xi$, the value $Q(x_0, \xi)$ is finite. Then $Q(\cdot, \xi)$ is subdifferentiable at x_0 and

$$\partial Q(x_0, \xi) = -T^{\top} \mathcal{D}(x_0, \xi)$$

where $\mathcal{D}(x,\xi) := \arg \max_{\pi \in \Pi(q)} \pi^{\top}(h - Tx)$ is the set of optimal solutions of the dual problem.

Definitions and conditions under which the two-stage problem has fixed recourse, complete recourse, relatively complete recourse, simple recourse

see textbook.