

Course Name: Digital Hardware Design

Course Code: 17B1NEC741

Finite State Machine-2

Dr. Arti Noor
Dean, Academic Affairs
Electronics and Communication Engineering,
Jaypee Institute of Information Technology, Noida

Example 3

OF INFORMATION PECHNOLOGY

- Use the characteristic table or characteristic equation of the JK FF, i.e., Q(t+1)=JQ'+K'Q to find the next state.
- Derive the state transition table.
- In this case there is no output.

$$J_A=B$$
, $K_A=X'B$
 $J_B=X'$, $K_B=X\oplus A$

Example 3

Not part of state table

Current state		Input	FF Inputs				Next state		
A(t)	B(t)	x(t)	J_A	K_A	J_B	K_B	A(t+1)	B(t+1)	
0	0	0	0	0	1	0	0	1	
0	0	1	0	0	0	1	0	0	
0	1	0	1	1	1	0	1	1	
0	1	1	1	0	0	1	1	0	
1	0	0	0	0	1	1	1	1	
1	0	1	0	0	0	0	1	0	
1	1	0	1	1	1	1	0	0	
1	1	1	1	0	0	0	1	1	

Present State	Next State	Inputs		
Q	Q(t+1)	J	K	
0	0	0	X	
0	1	1	X	
1	0	Х	1	
1	1	Х	0	

$$A(t+1)=J_A A' + K'_A A$$

 $B(t+1)=J_B B' + K'_B B$

Example 3

Present State		Input	Next State		
A	В	X	A	В	
0	0	0	0	1	
0	0	1	0	0	
0	1	0	1	1	
0	1	1	1	0	
1	0	0	1	1	
1	0	1	1	0	
1	1	0	0	0	
1	1	1	1	1	

State diagram

Difference between Mealy and Moore

Example: State Machine '10' Sequence Detector

0/0 1/0 1/0 S0 S1 S1 reset

Mealy Machine

State Machine Sequence Detector

Sequence detector is of two types:

1. Overlapping

2. Non-Overlapping

Overlapping: In this type, the last bit of one sequence becomes the first bit of the next.

Non-Overlapping: In this type, the last bit of one sequence does not become the first bit of the next sequence.

Example: 101 Mealy sequence detector

For non-overlapping case

Input:0110101011001

Output:0000100010000

For overlapping case

Input:0110101011001

Output:0000101010000

FSM Design (Moore)

Problem Statement:

Design a FSM that detects a sequence of three or more consecutive ones on an input bit stream.

The FSM should output a 1 when the sequence is detected, and a 0 otherwise.

Input: 011101011011101...

Non-Overlapping Case

Output: 0001000000100

•••

FSM Design (Moore)

Input: 011101011011101...

Output: 0001000000100

...

FSM Design (Moore)

Present State		Input	Ne: Sta	Output		
Q _A	Q _B	x	$Q_{A^{+}}$	Q_{B^+}	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

Present State		Input	Ne Sta		Flip-Flop Input		
Q_A	Q_{B}	x	$\mathbf{Q}_{\mathbf{A}^+}$	Q_{B^+}	D _A	D _B	
0	0	0	0	0	0	0	
0	0	1	0	1	0	1	
0	1	0	0	0	0	0	
0	1	1	1	0	1	0	
1	0	0	0	0	0	0	
1	0	1	1	1	1	1	
1	1	0	0	0	0	0	
1	1	1	1	1	1	1	

FSM Design (Moore) Synthesis using D Flip Flop

$$D_A = Ax + Bx$$
 $D_B = Ax + B'x$
y=AB

$$A=Q_A$$
, $B=Q_B$

FSM Design (Moore) Synthesis using JK Flip Flop

Present State	Next State	Inp	uts
Q	Q(t+1)	J	K
0	0	0	Х
0	1	1	Х
1	0	X	1
1	1	X	0

Present State		Input	Next State		Flip-Flop Inputs			
Q _A	Q _B	X	Q_{A^+}	Q_{B^+}	J _A	K _A	JΒ	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	O	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

FSM Design (Moore) Synthesis using JK Flip Flop

AN-DHD-FSM2-JIIT $K_B = (A \oplus x)'$

FSM Design (Moore) Synthesis using JK Flip Flop

$$J_A = Bx'$$
 $K_A = Bx$

$$J_B = x$$
 $K_B = (A XOR x)'$

Design a Finite State Machine (FSM) that meets the following specifications:

- 1. The circuit has one input, w, and one output, z.
- 2. All changes in the circuit occur on the positive edge of the clock.
- 3. The output z is equal to 1 if the pattern 101 is detected on the input w. Otherwise, the value of z is equal to 0. Overlapping sequences **should** be detected.

```
Input (w): 000101011011...
```

Output (z): 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 ...

FSM Design Example 3 (Moore)

Input (w): 000101011011...

Output (z): 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 ...

FSM Design Example 4 (Moore)

Design a Finite State Machine (FSM) that meets the following specifications:

- 1. The circuit has one input, w, and one output, z.
- 2. All changes in the circuit occur on the positive edge of the clock.
- 3. The output z is equal to 1 if the pattern 110 or the pattern 010 is detected on the input w. Otherwise, the value of z is equal to 0. Overlapping sequences **should** be detected.

Input (w): 0100110111011...

Output (z): 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 ...

FSM Design Example 4 (Moore)

Input (w): 0100110111011...

Output (z): 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 ...

