

Université de Lille Faculté d'Ingénierie et Management de la Santé (ILIS) Master Data Science pour la Santé

A Big Data Framework for Sentiment Analysis in Healthcare: the case of Covid-19

Par Ulrich TCHUENKAM
Sous la direction de Wajdi DHIFLI

Data de soutenance : 20 Octobre 2020

ANNÉE UNIVERSITAIRE 2019/2020

OUTLINE

- MOTIVATION AND CONTEXT
- METHODS AND MATERIAL
 - Layers of the framework
 - Data management in the framework
- CASE STUDY ON COVID-19
- RESULTS
- DISCUSSION
- CONCLUSION

MOTIVATION AND CONTEXT

Huge amount of data on healthcare subjects

Feelings and thoughts classification models

Scalable, distributed and parallelizable technologies

Topics generation models

MOTIVATION AND CONTEXT

Huge amount of data on healthcare subjects

Big data

Feelings and thoughts classification models

Sentiment analyzers

Scalable, distributed and parallelizable technologies

Topics generation models

Topic modelers

Big data technologies

OBJECTIVE

Layers architecture

METHODS AND MATERIAL

Visualization Layer

Dashboard, data statistics

Big data processing and Analytics Layer

Batch processing, sentiment analysis, topic modeling

Data Storage Layer

Relational databases, JSON documents

Data Collection Layer

Textual data (Social media, news articles, RSS)

METHODS AND MATERIAL

Data management in the framework

Data acquisition

 Using Twitter's API extract tweets about covid-19.

+

 A public dataset containing tweets about corona.

Data storage

- PostgreSQL
- Elasticsearch

Data description

Size: 633549 tweets

Language : English

Period : April 1st to April 14th

• *Topic* : CORONA

Variables:

Text	Location	Date
------	----------	------

Data wrangling

- Removal of non-alphabetical characters
- Removal of duplicates
- Removal of emoticons
- Removal of punctuation marks

Data processing

- Tokenization
- Removal of stopwords
- Converting tokens to lowercase characters
- Creation of bigrams
- Stemming
- Lemmatization
- Creating corpus and dictionary.

Sentiment analysis

Topic Modeling

- Documents are about several topics at the same time.
- Topics are associated with different words.
- Topics in the documents are expressed through the words used.

Topic Modeling

$$ext{TF(t)} = rac{f_{t,d}}{T_d}$$
 , $ext{IDF(t)} = log(rac{N}{D_t})$

Package: Gensim

$$\text{TF-IDF(t)} = TF(t) * IDF(t)$$

Notations:

- TF = Term Frequency
- IDF = Inverse Document Frequency
- f_{td} = Frequency of term t in document d,
- T_d = Number of terms in document d,
- N = Total number of documents,
- D_t = Number of documents with term t

Evaluation metric : Topic coherence

Coherence
$$=\sum_{i < j} \operatorname{score}\left(w_i, w_j
ight)$$

$$ext{score}_{ ext{UMass}}(w_i, w_j) = \log rac{D(w_i, w_j) + 1}{D(w_i)}$$
 for $ext{w}_{ ext{ iny 1}}.... ext{w}_{ ext{ iny k}}$ k top words

Notations

- D(w_i): count of documents containing the word w_i
- D(w_i,w_j): count of documents containing both words w_i and w_j
- D: The total number of documents in the corpus.

Data Summary tab

Package: Dash

Drag and Drop or Select dataset file

Preprocessing april_1_14_2020.csv completed and now using it

Total Number of Tweets: 633549

Size of dataframe: 324.22MB

Topic modeling tab (Model 1)

Rename Topic 0	Rename Topic 1	Rename Topic 2	Rename Topic 3
Rename Topic 4	Rename Topic 5	Rename Topic 6	Rename Topic 7
Rename Topic 8	Rename Topic 9		

Perplexity = -626.21

Coherence score = 0.71

ILIS

Topic modeling tab (Model 2)

Sentiment analysis tab

DISCUSSION

- The API of Twitter provides a great way to retrieve tweets but has some limitations.
- Twitterscraper and GetOldTweets3 give access to older tweets but they only get a random number of them.

POTENTIAL FUTURE WORKS

- Leveraging Spark Streaming API.
- Add a user mapping feature to the framework.
- Add support for other corpus and languages.
- Use ontologies and knowledge graphs to enhance sentiment analysis and topic modeling performances.

CONCLUSION

- The work leverages big data tools and provides an abstracted data collection layer which can be adapted to several data sources (twitter, Facebook posts, news articles, RSS fluxes, scraping modules).
- The proposed framework is scalable, big data ready, and has been applied on real-world covid-19 data.
- And I have been able to use the technologies taught in class (Dash, Spark, Elasticsearch, PostgreSQL, machine learning, etc.) to develop a prototype of the framework.

Thank you for your attention!

REFERENCES

Twitterscraper: https://pypi.org/project/twitterscraper/0.2.7/

GetOldTweets3: https://pypi.org/project/GetOldTweets3/

Spacy : https://pypi.org/project/spacy/

Spark : https://spark.apache.org/