Numerikus módszerek 1 jegyzet

Toffalini Leonardo

2024. március 24.

Tartalomjegyzék

1.	Bev	ezetés	1
2.	Nur	nerikus modellezés	3
	2.1.	Numerikus modellezés lépései	3
	2.2.	Hibaforrások	4
	2.3.	Hibafogalmak	4
	2.4.		5
	2.5.	Korrekt kitűzésű feladatok	5
3.	Nor	mált terek	7
	3.1.	Normált tér	7
	3.2.	Fontos fogalmak normált terekben	8
	3.3.	Mátrixnormák	9
			10
4.	Line	eáris algebrai egyenletrendszerek megoldása	13
			13
	4.2.	Főelem kiválasztás (pivoting)	16
	4.3.	• • • • • • • • • • • • • • • • • • • •	17
	4.4.	Richardson-iteráció	18
	4.5.		18
	4.6.		18
	4.7.		19
	4.8.		20
			21
5.	Gra	diesn alapú módszerek	23
	5.1.	Gradiens módszer	25
	5.2.	Konjugált gradiens-módszer	25
6.	Álta	alános algebrai egyenletek megoldása	27
		Gyökök stabilitása	27
			28
Tre	odalc	miogyzók	21

Bevezetés

Az alábbi egy jegyzet Havasi Ágnesnek a 2023/2024-es tavaszi félévében tartott Numerikus Módszerek 1 előadásáról. A jegyzet nem teljeskörű dokumentációja az előadáson elhangzottaknak és nem vállal felelősséget az esetleges hibákért.

2 Bevezetés

Numerikus modellezés

Ebben a fejezetben tárgyalni fogjuk az alapvető lépéseit és fogalmait a numerikus modellezésnek és a numerikus módszereknek.

2.1. Numerikus modellezés lépései

1. Valódi probléma

Halpopuláció időbeli fejlődése.

2. Tudományos modell

Vannak zsákmanyhalak és ragadozó halak. A zsákmányhalak és a ragadozóhalak populációját befolyásolni, többek között:

- természetes szaporulat
- ragadozók esznek zsákmány halakat
- természetes pusztulás

3. Matematikai modell

- \bullet jelölje x(t) a zsákmányhalak t időbeli össztömegét
- $\bullet\,$ jelölje y(t)a ragadozóhalak tidőbeli össztömegét

Ezekkel a jelölésekkel felírhatjuk a változók közti összefüggést egy differenciálegyenlettel:

$$x' = ax - bxy$$
$$y' = -cy + dxy$$
$$x(0) = x_0$$
$$y(0) = y_0$$

4. Numerikus modell

Közelítő módszert alkalmazunk az előző, úgy nevezett Lotka Volterra egyenletre.

5. Számítógépes modell

Lekódoljuk és futtatjuk a numerikus modellnek a programját.

4 Numerikus modellezés

2.2. Hibaforrások

1. Modellhiba

A tudományos és a matematikai modellben éltünk egyszerűsítésekkel, melyek nem pontosan ábrázolták a valóságot.

2. Képlethiba

A matematikai és a numerikus modellben egy egyszerűbb kifejezéssel helyettesítettünk egy bonyolultabb kifejezést. Tipikusan egy Taylor-sorral helyettesítettünk egy nehezen leírható függvényt.

Például:

$$\exp(2) = \sum_{k=0}^{\infty} \frac{2^k}{k!} \approx \sum_{k=0}^{N} \frac{2^k}{k!}$$

A képlethibának az egyik fajtája a diszkretizációs hiba, melynek tipikus esetei:

- folytonos függvényt helyettesítünk rácspont függvénnyel
- deriváltat helyettesítünk differenciálhányadossal
- integrált helyettesítünk egy véges összeggel
- végtelent helyettesítünk egy tetszőlegesen nagy termlszetes számmal

3. A bemenő adatok hibája

Gyakran nem pontosan kapjuk meg az adatokat és így számolnunk kell ezzel a hibaforrással. Ez gyakran mérési hibáből következik.

4. Számábrázolási hiba

A valóéletben nem szimbólikusan számolunk valós számokkal, hanem egy számítógépre hagyjuk a számításokat. A számítógépünk viszont csak egy véges részhalmazát képes ábrázolni a valósszámoknak, így ha egy valós számot adunk meg egy számítógépnek, akkor az a hozzá legközelebb álló ábrázolható számot fogja helyette használni.

2.3. Hibafogalmak

Szeretnénk számszerűen megfogalmazni, hogy mennyire pontosan számoltunk és, hogy mennyire tér el a számított érték a valódi értéktől. A továbbiakban jelölje $a \in \mathbb{R}$ a pontos értéket és $\tilde{a} \in \mathbb{R}$ a számított értéket.

Definíció 2.3.1 Az \tilde{a} abszolút hibájának a $\Delta a := a - \tilde{a}$ számot értjük.

Definíció 2.3.2 $A \Delta_a \in \mathbb{R}_0^+$ számot az \tilde{a} egy abszolút hibakorlátjának nevezzuk, ha $|\Delta a| \leq \Delta_a$

Jelölésben $a = \tilde{a} \pm \Delta_a$

Definíció 2.3.3 \tilde{a} relatív hibájának nevezzük a következőt: $\delta a = \frac{\Delta a}{|\tilde{a}|}$

Definíció 2.3.4 \tilde{a} relatív hibakorlátjának nevezzük a következőt: $\delta_a \in \mathbb{R}_0^+$ szám melyre $|\delta a| \leq \delta_a$

2.4. Az alapműveletek hibája

A következőkben keressük, hogy mennyire hibázunk, amikor számábrázolási hibából következően nem a pontos értékekkel végezzük el az alapműveleteket.

Tegyük fel, hogy $x,y\in\mathbb{R}$ helyett a hibás $\tilde{x},\tilde{y}\in\mathbb{R}$ számokkal végezzuk el az alapműveleteket.

1. Összedaás

$$|(x+y) - (\tilde{x} + \tilde{y})| = |x - \tilde{x} + y - \tilde{y}|$$

$$\leq |x - \tilde{x}| + |y - \tilde{y}|$$

$$\leq \Delta_x + \Delta_y$$

2. Kivonás

$$\begin{aligned} |(x-y) - (\tilde{x} - \tilde{y})| &= |x - \tilde{x} + \tilde{y} - y| \\ &\leq |x - \tilde{x}| + |\tilde{y} - y| = |x - \tilde{x}| + |y - \tilde{y}| \\ &\leq \Delta_x + \Delta_y \end{aligned}$$

3. Szorzás

$$|xy - \tilde{x}\tilde{y}| = |xy + x\tilde{y} - x\tilde{y} - \tilde{x}\tilde{y}|$$

$$= |x(y - \tilde{y}) + \tilde{y}(x - \tilde{x})|$$

$$\approx |\tilde{x}(y - \tilde{y}) + \tilde{y}(x - \tilde{x})|$$

$$\leq |\tilde{x}|\Delta_y + |\tilde{y}|\Delta_x := \Delta_{xy}$$

4. Hányados

$$|\frac{x}{y} - \frac{\tilde{x}}{\tilde{y}}| \le \frac{\Delta_{xy}}{\tilde{y}^2}$$

2.5. Korrekt kitűzésű feladatok

Mielőtt nekiállnánk egy feladatot megoldani érdemes elgondolkoznunk azon, hogy egyáltalán van-e értelme megoldani, vagy korrekten van-e kitűzve a feladat.

Ha kapunk egy feladatot, akkor a következők korrekt elvárások:

- Létezzen megoldás (egzisztencia)
- Csak egy megoldás létezzen (unicitás)
- A feladat pontos megoldása folytonosan függjön a bemenő adatoktól. Például az Ax = b nem ilyen, mert ha egy kicsit megváltoztatjuk az A együttható mátrix elemét, akkor a megoldás nagy mértékben változhat.

Normált terek

Eddig csak valós számokra alkalmaztuk az abszolútérték függvényt, amikor hibafogalmakról beszéltünk. Megeshet, hogy a keresett érték nem egy valós szám, hanem például egy mátrix vagy egy függvény vagy egy tetszőleges operátor. Ilyenkor nem tudjuk alkalmazni a szokásos abszolút érték függvényt, mert nem tudjuk, hogy mit jelent egy mátrix abszolútértéke.

Ennek érdekében bezetünk egy olyan teret, melynek elemeire lehet a kiterjesztett abszolútérték függvényt használni.

3.1. Normált tér

Ahhoz, hogy kiterjesszük az abszolútérték függvényt tekintsük a tulajdonságait, hogy mit kéne örökölnie egy tágabb hossz fogalomnak:

- 1. $|x| \ge 0 \quad \forall x \in \mathbb{R} \text{ es } |x| = 0 \iff x = 0$
- 2. $|\lambda x| = |\lambda| \cdot |x|$ (abszolút homogenitás)
- 3. $|x+y| \le |x| + |y| \quad \forall x, y \in \mathbb{R}$ (háromszög egyenlőtlenség)

Definíció 3.1.1 Legyen X tetszőleges vektortér, és $\|\cdot\|: X \to \mathbb{R}$ egy függvény a következő tulajdonságokkal:

- 1. $||x|| \ge 0 \quad \forall x \in X \text{ es } ||x|| = 0 \iff x = 0_X \text{ (X nullvektora)}$
- 2. $\|\lambda x\| = |\lambda| \cdot \|x\| \quad \forall x \in X, \forall \lambda \in \mathbb{R}$
- 3. $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in X$

Ekkor ezen $\|\cdot\|$ függvényt normának nevezzük és a normált tér (N.T.) a következő rendezett pár: $(X,\|\cdot\|)$.

Definíció 3.1.2 Ha $(X, \|\cdot\|)$ Normált tér, akkor $x, y \in X$ elemek távolságán az $\|x - y\|$ számot értjuk.

Megjegyzés 1 Ezt a ||x-y|| távolságot szokás a norma által indukált metrikának nevezni.

Példa 1 Példák normákra és normált terekre:

- 1. $X = \mathbb{R} \ és \| \cdot \| = |\cdot|$
- 2. $X = \mathbb{R}^n$ a következő normákkal:

(i)
$$||x||_1 := \sum |x_j|$$

(ii)
$$||x||_2 := \sqrt{\sum |x_j|^2}$$

$$(iii) \|x\|_{\infty} := \max\{|x_j|\}$$

(iv)
$$||x||_p := (\sum |x_j|^p)^{1/p}$$

 $Ha \ p \to \infty \ akkor \ ||x||_p \to ||x||_{\infty} \quad \forall x \in X$

3. X = C[a, b], azaz az [a, b] intervallumon értelmezett folytonos függvények, a következő normákkal:

(i)
$$||f||_{\infty} := \max_{x \in [a,b]} |f(x)|$$

(ii)
$$||f||_{\int} := \int_a^b |f(x)| dx$$

3.2. Fontos fogalmak normált terekben

Most hogy már kiterjesztettük a hossz fogalmát normált terekre, így képesek vagyunk az előző fejezetekben bezetett fogalmakat analóg módon megfogalmazni a tér normájával.

1. Hibafogalmak

Legyen $(X, \|\cdot\|)$ egy tetszőleges Normált tér és $a, \tilde{a} \in X$. Ekkor

- \tilde{a} abszolút hibája: $a \tilde{a} \in X$
- \tilde{a} abszolút hibakorlátja: $\Delta_a \in \mathbb{R}$ szám, melyre $\|a-\tilde{a}\| \leq \Delta_a$
- \tilde{a} relatív hibája: $\frac{a-\tilde{a}}{\|\tilde{a}\|} \in X$
- \tilde{a} relatív hibakorlátja: $\frac{\|a-\tilde{a}\|}{\|\tilde{a}\|} \leq \delta_a \in \mathbb{R}$

2. Konvergencia

Definíció 3.2.1 Azt mondjuk, hogy az $(x_n) \subset X$ sorozat konvergens, ha $\exists x \in X$, melyre $||x_n - x|| \to 0$ ha $n \to \infty$.

3.3 Mátrixnormák

3.3. Mátrixnormák

Tudjuk, hogy az $\mathbb{R}^{n \times n}$ -beli mátrixok a rajta értelmezett + (összeadás) és λ -val való szorzás műveletekkel vektorteret alkotnak.

Kérdés 1 Hogyan definiálható ezen a vektortéren norma?

Definíció 3.3.1 Legyen $\|\cdot\|_{\mathbb{R}^{\aleph}}$ egy \mathbb{R}^n -beli vektornorma. Ekkor az $A \in \mathbb{R}^{n \times n}$ mátrix ezen vektornorma által indukált mátrixnormáján a következő számot értjük:

$$||A|| := \sup_{x \in \mathbb{R}^n} \frac{||Ax||_{\mathbb{R}^n}}{||x||_{\mathbb{R}^n}}$$

Magyarázó jelentések a definícióhoz:

- $||Ax||_{\mathbb{R}^n}$ az Ax vektor "hossza"
- $\frac{\|Ax\|_{\mathbb{R}^n}}{\|x\|_{\mathbb{R}^n}}$ hányszorosára nyújtotta az A mátrix az x vektort
- $\sup_{x\in\mathbb{R}^n} \sup_{x\neq 0} \frac{\|Ax\|_{\mathbb{R}^n}}{\|x\|_{\mathbb{R}^n}}$ lehetséges legnagyobb megnyújtásnak az értéke

Példa 2 Tekintsük pár mátrixnak pár mátrixnormáját.

1.

$$||I|| = \sup_{x \in \mathbb{R}^n, x \neq 0} \frac{||Ix||_{\mathbb{R}^n}}{||x||_{\mathbb{R}^n}} = \sup_{x \in \mathbb{R}^n, x \neq 0} \frac{||x||}{||x||} = \sup 1 = 1$$

Tehát bármelyik \mathbb{R}^n -beli norma által indukált mátrixnormában az identitás mátrix normája 1, azaz ||I|| = 1.

2. A sup-norma kiszámítása a tanult vektornormák esetén: Ha $\|\cdot\|_{\mathbb{R}^n} = \|\cdot\|_1$, akkor:

$$||A|| = ||A||_1 = \max_{j \in \{1, \dots, n\}} \sum_{i=1}^{n} |a_{ij}|$$

max oszlopösszeg!

Például:

$$\begin{bmatrix} -2 & 1 \\ 0 & 3 \end{bmatrix} \implies ||A||_1 = \max\{|-2| + |0|, |1| + |3|\} = 3$$

3. Ha $\|\cdot\|=\|\cdot\|_2,$ akkor:

$$||A|| = ||A||_2 = \sqrt{\lambda_{\max}(A^T A)}$$

ahol λ_{max} a legnagyobb sajátértéket jelöli. Ezt a normát szokás spektrálnormának nevezni, mert a sajátértékek halmazát spektrál-nak nevezik.

4. Ha $\|\cdot\| = \|\cdot\|_{\infty}$, akkor:

$$||A|| = ||A||_{\infty} = \max_{i \in \{1, \dots, n\}} \sum_{j=1}^{n} |a_{ij}|$$

max sorosszeg! Például:

$$\begin{bmatrix} -2 & 1 \\ 0 & 3 \end{bmatrix} \implies ||A||_{\infty} = \max\{|-2| + |1|, |0| + |3|\} = 3$$

Állítás 3.3.1 Az indukált mátrix normákra igazak a következők:

- 1. $||Ax|| \le ||A|| \cdot ||x|| \quad \forall A \in \mathbb{R}^{n \times n}, \ \forall x \in \mathbb{R}^n$.
- 2. ||I|| = 1 (láttuk).
- 3. $||A \cdot B|| \le ||A|| \cdot ||B|| \quad \forall A, B \in \mathbb{R}^{n \times n}$ (szub multiplikativitás).

Megjegyzés 2 Vannak egyéb, nem indukált, mátrix normák. például:

- 1. $||A||' = \max_{i,j} |a_{ij}|$ (maximális elem)
- 2. $||A||'' = \sum_{i,j=1}^{n} |a_{ij}|$ (elemösszeg)
- 3. $||A||_F = \sqrt{\sum_{i,j=n}^n a_{ij}^2}$ (Frobenius norma)

Ezekre a nem indukált mátrix normákra nem feltétlenül teljesülnek a 3.3.1-beli tulajdon-ságok.

3.4. Kondíciószám

Az előbb meggondoltuk, hogy egy lineáris egyenletrendszernek, Ax = b-nek, az A együtthatómátrixának egy elemét kicsit pertulbálva a megoldás drasztikusan változhat. Célunk, hogy megfogalmazzuk, hogy mennyire változhat a megoldás kis perturbációra.

A továbbiakban a következő egyenletrendszerrel fogunk foglalkozni.

$$Ax = b (3.1)$$

Ahol $A \in \mathbb{R}^{n \times n}$, det $A \neq 0$, $b \in \mathbb{R}^n$

Tegyük fel, hogy b helyett a pertulbált \tilde{b} van a jobb oldalon:

$$A\tilde{x} = \tilde{b}$$

3.4 Kondíciószám

Jelölje:

$$\Delta x = x - \tilde{x} \implies \tilde{x} = x - \Delta x$$
$$\Delta b = b - \tilde{b} \implies \tilde{b} = b - \Delta b$$

Ekkor:

$$A\tilde{x} = \tilde{b}$$

$$A(x - \Delta x) = b - \Delta b$$

$$Ax - A\Delta x = b - \Delta b$$

$$A\Delta x = \Delta b$$

$$\Delta x = A^{-1} \Delta b$$

Nézzük $\|\Delta x\|$ -át valamelyik \mathbb{R}^n -beli normában:

$$\|\Delta x\| = \|A^{-1}\Delta b\| \le \|A^{-1}\| \cdot \|\Delta b\|$$

Most alkalmazzük a 3.1-es egyenletrendszerre a normát.

$$b = Ax$$

$$\begin{split} \|b\| &= \|Ax\| \leq \|A\| \cdot \|x\| \\ &\frac{1}{\|x\|} \leq \|A\| \cdot \frac{1}{\|b\|} \\ &\Longrightarrow \frac{\|\Delta x\|}{\|x\|} \leq \|A^{-1}\| \cdot \|A\| \cdot \frac{\|\Delta b\|}{\|b\|} \end{split}$$

Tehét azt kaptuk, hogy minél nagyobb $||A^{-1}|| \cdot ||A||$ annál pontatlanabb a becslés.

Definíció 3.4.1 $Az \|A^{-1}\| \cdot \|A\|$ számat az A mátrix kondíció számának nevezzük és $\operatorname{cond}(A)$ -val jelöljük.

Definíció 3.4.2 Azt mondjuk, hogy a 3.1-es egyenletrendszer rosszul kondícionált, ha $\operatorname{cond}(A) \gg 1$.

Példa 3 Nezzük meg a már említett példának a kondíció számát.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1.01 \end{bmatrix}$$

Alkalmazzuk az $\|\cdot\|_1$ által indukált mátrix normát.

$$||A||_1 = \max\{1+1, 1+1.01\} = 2.01$$

$$A^{-1} = \begin{bmatrix} 101 & -100 \\ -100 & 100 \end{bmatrix} \implies ||A^{-1}||_1 = \max\{101+100, 100+100\} = 201$$

$$\operatorname{cond}(A) = 201 \cdot 2.01 = 404.01 \gg 1$$

Tehát valóban rosszul kondicionált volt az egyenlet rendszer.

12 Normált terek

Lineáris algebrai egyenletrendszerek megoldása

Lineáris algebrai egyenletrendszerek megoldásaira két féle megoldási módszert fogunk tanulni. Direkt megoldókat és iterációs módszereket. Az előzőhöz tartozik például a Cramerszabály vagy a Gauss-eliminácó. Az iterációs módszereknek viszont a lényege az, hogy egy vektorsorozatot generálnak, melyek tartanak a pontos megoldáshoz.

4.1. Gauss-elimináció

Megoldandó egyenletrendszer: Ax = b, $A \in \mathbb{R}^{m \times m}$, $\det A \neq 0$, $b \in \mathbb{R}^m$ Lineáris algebrából tudjuk, hogy ezek a feltételek mellet egyértelműen létezik megoláds, tehát korrekt kitűzésű a feladat és van értelme nekiállni megoldani.

A lineáris egyenletrendszer teljes anyakönyvezet nevén a következő:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1$$
 (1)

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mm}x_m = b_m$$
 (m)

I. alakban: Átalakítjuk az egyenletrendszert normált felső háromszög mátrixúvá. Tehát a főátlóban legyenek egyesek és a főátló alatt csupa nulla.

1. lépés: Tegyük fel, hogy $a_{11} \neq 0$ ekkor

$$x_1 + \frac{a_{12}}{a_{11}}x_2 + \frac{a_{13}}{a_{11}}x_3 + \frac{a_{1m}}{a_{11}}x_m = \frac{b_1}{a_{11}} = y_1$$
 (1)

2. lépés: 4.1 segitsegevel a másodiktól az m-edik egyenletekből elimináljuk x_1 -et, kivonva belőlük a 4.1-nek az a_{i1} -szereset.

$$x_{1} + \frac{a_{12}}{a_{11}}x_{2} + \frac{a_{13}}{a_{11}}x_{3} + \frac{a_{1m}}{a_{11}}x_{m} = \frac{b_{1}}{a_{11}} = y_{1}$$

$$a_{22}^{(1)}x_{2} + \dots = y_{2}$$

$$\vdots$$

$$a_{m2}^{(1)}x_{2} + \dots + a_{mm}^{(1)}x_{m} = b_{m}$$

3. lépés: Nem írom tovább mert mindenki tud Gauss-eliminalni...

Kérdés 2 Mikor hajtható végre a Gauss-elimináció?

I. szakaszban $Ax = b \implies Ux = y$

Kérdés 3 Mi a kapcsolat y és b között?

$$b_1 = a_{11}y_1$$

$$b_2 = a_{21}y_1 + a_{22}^{(1)}y_2$$

$$\vdots$$

$$b_m = l_{j1}y_1 + l_{j2}y_2 + \dots + l_{mm}y_m$$

Ahol
$$l_{jj} = a_{jj}^{(j-1)}$$

Kompaktabb mátrix formába átírva:

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22}^{(1)} & \dots & 0 \\ & & \dots & a_{mm}^{(m-1)} \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \le \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Ha a Gauss-elimináció elvégezhető akkor a fenti mátrix invertálható, azaz a főátlóban nincs 0, tehát $\exists L^{-1}$, ahol L a fenti alsó háromszög mátrix.

Tehát
$$Ly = b \implies y = L^{-1}b \implies Ux = L^{-1}b \implies LUx = b$$

Ebből adódik egy új módszer (LU felbontás):

- 1. Felírjuk az A-t A = LU alakban, ahol L invertálható alsó háromszög mátrix és U olyan felső háromszög mátrix melynek a főátlójában csak egyesek vannak.
- 2. Megoldjuk az Ly = b egyenletrendszert, ebből kapunk egy értéket y-ra.
- 3. Megoldjuk az Ux = y egyenletrendszert, amiből megkapjuk x-et.

4.1 Gauss-elimináció

Belátható, hogy az LU felbontás első és második lépse ekvivalens a Gauss-elimináció első szakaszaval es harmadik lépés ekvivalens a Gauss-elimináció második szakaszával. Tehát ez a módszer a Gauss-elimináció módosított algoritmusa.

Ahhoz, hogy megválaszoljuk, hogy mikor végezhető el a Gauss-elimináció elég megválaszolnunk, hogy mikor létezik LU felbontás.

A következőképpen jelöljük a balfelső sarokdeterminánsokat (főminorokat):

$$\Delta_1 := a_{11}, \quad , \Delta_2 := \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \dots, \Delta_m := \det A$$

Állítás 4.1.1 Ha $\Delta_j \neq 0$, $\forall j \in \{1, ..., m\}$, akkor létezik LU felbontása A-nak, és az egyértelmű.

Bizonyítás: Csak az $A \in \mathbb{R}^{2 \times 2}$ esetre mutatjuk meg, magasabb dimenzióra teljes indukcióval lehet belátni az állítást.

Először bizonyítsuk a létezést.

$$A = L \cdot U = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \cdot \begin{bmatrix} 1 & u_{12} \\ 0 & 1 \end{bmatrix}$$

felbontás létezik \iff létezik $l_{11}, l_{21}, l_{22}, u_{12}$ ismeretlenekre nézve megoldása a következő egyenlet rendszernek.

$$l_{11} = a_{11}$$

$$l_{11}u_{12} = a_{12}$$

$$l_{21} = a_{21}$$

$$l_{21}u_{12} + l_{22} = a_{22}$$

és a következő L mátrixnak létezzen inverze

$$L = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix}$$

azaz $l_{11} \neq 0, l_{22} \neq 0.$

Ha $a_{11} \neq 0$, akkor látható, hogy ennek az egyenletrendszernek egyértelműen létezik megoldása és az a következő:

$$l_{11} = a_{11}, \quad u_{12} = \frac{a_{12}}{a_{11}}, \quad l_{21} = a_{21}, \quad l_{22} = a_{22} - a_{21} \frac{a_{12}}{a_{11}}$$

Továbbá, $l_{11} \neq 0$, mert $a_{11} \neq 0$ és $l_{22} \neq 0$, mert $l_{22} = \frac{\det A}{a_{11}} \implies \exists L^{-1}$

Most lássuk be, hogy egyértelműen létezik.

Tegyük fel, hogy $A = L_1U_1 = L_2U_2$

$$L_2^{-1}L_1U_1 = U_2$$
$$L_2^{-1}L_1 = U_2U_1^{-1}$$

Mivel az alsóháromszög mátrixok és a felső háromszög mátrixok is egy-egy csoportot alkotnak, ezért a fenti csak akkor igaz, ha $L_2^{-1}L_1$ és $U_2U_1^{-1}$ is diagonális. Továbbá $U_{1,2}$ nek a főátlójában egyesek vannak, tehát $U_2U_1^{-1}$ -nek is a főátlójában egyesek vannak. Tehát mindkét oldalon az egység mátrix van.

$$\implies L_2^{-1}L_1 = I = U_2U_1^{-1} \implies L_1 = L_2, \quad U_1 = U_2$$

Megmutatható, hogy ha $\Delta_j \neq 0$ valamely j-re, akkor \exists LU-felbontása A-nak. 2×2 esetben jól látszik:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 0 & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$\begin{bmatrix} 0 & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \cdot \begin{bmatrix} 1 & u_{12} \\ 0 & 1 \end{bmatrix} \implies l_{11} = 0 \implies \text{ekkor } L \text{ nem invert\'alhat\'o}$$

Következmény 1 A Gauss-elimináció pontosan akkor hajtható végre, ha A összes bal felső sarokdeterminánsa nem 0.

Megjegyzés 3 Pár észrevétel a Gauss-elimináció és az LU felbontással kapcsolatban:

- 1. $A \Delta_i \neq 0$, $\forall j = 1, ..., m$ teljesül, ha A szimmetrikus pozitív definit mátrix (szpd).
- 2. $A \Delta_j \neq 0$, $\forall j = 1, \ldots, m$ teljesül, ha A szigorúan dominans főátlójú, tehát $\forall i = 1, \ldots, n$ -re $2|a_{ii}| > \sum_{j=1}^{m} |a_{ij}|$.
- 3. Ha det $A \neq 0$, akkor mindig $\exists P \in \mathbb{R}^{n \times m}$ permutáló mátrix, hogy PA-nak $\exists LU$ felbontása.
- 4. Ha A szimmetrikus pozitiv definit mátrix, akkor létezik egy másik felbontása is: $A = G \cdot G^T$, ahol G alsó háromszög mátrix, pozitív főátlóval. (Cholesky-felbontas)

4.2. Főelem kiválasztás (pivoting)

A Gauss-elimináció során a j-edik lépésben a j-edik sort elosztjuk a_{jj} -vel. Tehát minél kisebb a_{jj} , annál pontatlanabb az osztás. Ennek orvosolására valahogyan meg kéne oldanunk, hogy egy nagyobb elemmel osszunk, de a Gauss-elimináció lényegét tartsuk meg.

Részleges főelem kiválasztás: Sorcserével a főátlóba hozzuk az a_{jj} alatti legnagyobb abszolútértékű elemet.

Teljes főelem kiválasztás: Sorcserével és oszlopcserével az $A[j:n,\ j:n]$ jobb alsó részmátrix legnagyobb abszolútértékű elemet visszük a főátlóba. Itt figyelni kell arra, hogy oszlop cserénél az x elemeit is cseréljük. Tehát ha egy P mátrixszal permutáljuk az oszlopait A-nak, akkor mikor visszaolvassuk x megoldást, akkor P^{-1} -el meg kell szorozni elötte.

4.3. Klasszikus iterációs módszerek

Definíció 4.3.1 Azt mondjuk, hogy az $x^* \in \mathbb{R}^n$ az $f : \mathbb{R}^n \to \mathbb{R}^n$ függvény fixpontja, ha $f(x^*) = x^*$

Definíció 4.3.2 az $f: \mathbb{R}^m \to \mathbb{R}^m$ függvény kontrakció az $\|\cdot\|$ \mathbb{R}^n -beli normában, ha $\exists q \in [0,1]$ melyre:

$$||f(x) - f(y)|| \le q \cdot ||x - y|| \quad \forall x, y \in D(f)$$

Tétel 4.3.1 (Banach fixpont tétel)

 $Ha\ f: \mathbb{R}^n \to \mathbb{R}^n\ az\ eg\acute{esz}\ \mathbb{R}^n$ -en értelmezett kontrakció (q-val), akkor:

- 1. f-nek egyértelműen létezik x* fixpontja.
- 2. Tetszoőleges $x^0 \in \mathbb{R}^n$ vektorból indítva $x^{n+1} = f(x^n)$ rekurzióval felépített $(x)_n$ sorozat konvergens, és $x_n \to x^*$.
- 3. $||x^n x^*|| \le \frac{q^n}{1-q} ||x^1 x^0||$

Kérdés 4 Hogyan alkalmazhatjuk ezt a tételt lineáris algebrai egyenletrendszerek megoldására?

$$Ax = b, \quad A \in \mathbb{R}^{m \times m}, \quad \det A \neq 0, \quad b \in \mathbb{R}^m$$
 (4.2)

Tegyük fel, hogy 4.2 átírható a következő alakra:

$$x = Qx + r, \quad Q \in \mathbb{R}^{m \times m}, \quad r \in \mathbb{R}^m$$
 (4.3)

Ekkor az f(x) := Qx + r ejlöléssel a fealdat megoldása az $f : \mathbb{R}^m \to \mathbb{R}^m$ függvény fixpontja. Ezt a fixpontot keressük iterációval.

Kérdés 5 Mikor lesz f kontrakció?

$$x, y \in \mathbb{R}^m$$
, $f(x) - f(y) = Qx + r - Qy - r = Q(x - y)$
 $||f(x) - f(y)||_{\mathbb{R}^m} = ||Q(x - y)||_{\mathbb{R}^m} \le ||Q|| \cdot ||x - y||_{\mathbb{R}^m}$

Tehát be kell látni, hogy $\|Q\| < 1$, akkor f kontrakció és $q = \|Q\|$. Banach fixpont tételből következik, hogy a $x^{n+1} = Qx^n + r$ rekurzióval definiált vektorsorozat konvergens (bármely \mathbb{R}^m -beli vektornomában), és $x_n \to x^*$, ahol x^* 4.2 megoldása.

Kérdés 6 Hogyan írhatjuk át 4.2-et olyan alakra amilyen 4.3?

Kérdés 7 Mikor fog teljesülni, hogy ||Q|| < 1 valamelyik indukált mátrixnorma szerint?

4.4. Richardson-iteráció

A Richardson iteráció vagy másnéven egyszerű iteráció, ahogyan a név is sugallja a legegyszerűbb módon alakítja át az Ax = b egyenletet f(x) = x alakúra. Pusztán annyi átalakítás történik, hogy nullára rendezzük az egyenletet és mindkét oldalhoz hozzáadunk x-et.

$$Ax = b$$

$$0 = b - Ax$$

$$x = x - Ax + b$$

$$x = (I - A)x + b$$

Tehát f(x) = (I - A)x függvénynek fixpontjaként kapjuk az Ax = b egyenlet megoldását a Banach-fixpont tétel alapján.

4.5. Jacobi-iteráció

A célunk még mindig, hogy egy függvénynek a fixpontjaként írjuk fel a lineáris egyenletrendszer megoldását. Ezt megtehetjük, ha a következőképpen felbontjuk az együttható mátrixot és egy kis algebrai manipulációt végzünk.

$$Ax = b$$

$$A = L + D + U$$

$$(L + D + U)x = b$$

$$Dx = -(L + U)x + b$$

$$x = D^{-1}(b - (L + U)x)$$

$$= -D^{-1}(L + U)x + D^{-1}b$$

$$Q_J = -D^{-1}(L + U), \quad r_J = D^{-1}b$$

Ekkor kapjuk, hogy a Jacobi fixpont iterációra rögzítsük $x^0 \in \mathbb{R}^m$ kezdőpontot és legyen az általános lépés:

$$x^{n+1} = -D^{-1}(L+U)x^n + D^{-1}b$$

Állítás 4.5.1

$$||Q_i||_{\infty} < 1 \iff A \ szigorúan \ domináns főátlójú$$

Következmény 2 Ha A szigorúan domináns főátlójú, akkor a Jacobi-iteráció konvergens.

4.6. Gauss-Seidel-iteráció

A célunk még mindig, hogy egy függvénynek a fixpontjaként írjuk fel a lineáris egyenletrendszer megoldását. Ezt megtehetjük, ha a következőképpen felbontjuk az együttható mátrixot és egy kis algebrai manipulációt végzünk.

19

$$Ax = b$$

$$A = L + D + U$$

$$(L + D + U)x = b$$

$$(L + D)x = -Ux + b$$

$$x = -(L + D)^{-1}Ux + (L + D)^{-1}b$$

$$Q_{GS} = -(L + D)^{-1}U, \quad r_{GS} = (L + D)^{-1}b$$

4.7. Stacionárius-iteráció

Észrevétel: A Jacobi-iteráció átírható a következő módon:

$$x^{n+1} = -D^{-1}(L+U)x^n + D^{-1}b$$

$$Dx^{n+1} = -(L+U)x^n + b$$

$$Dx^{n+1} = -(A-D)x^n + b$$

$$D(x^{n+1} - x^n) + Ax^n = b$$

A fentit a Jacobi-iteráció kanonikus alakjának szokás nevezni.

Hasonló módon át tudjuk írni a Gauss-Seidel iterációt is:

$$(D+L)(x^{n+1}-x^n) + Ax^n = b$$
 (SI)

A fentit a Gauss-Seidel-iteráció kanonikus alakjának szokás nevezni.

Definíció 4.7.1 Legyen $B \in \mathbb{R}^{m \times m}$, és $\tau > 0$ szám. Ekkor a következő iterációt stacionáriusiterációnak nevezzük.

$$B \cdot \frac{x^{n+1} - x^n}{\tau} + Ax^n = b$$

Megjegyzés 4 Az előbb említet iterációs módszerek összegezve:

- Jacobi: B = D, $\tau = 1$
- Gauss-Seidel: B = D + L, $\tau = 1$
- Még általánosabb: $B \leftrightarrow B_n$, $\tau \leftrightarrow \tau_n$

Említés szintjén még egy stacionárius iteráció a T'ulrelax'aci'os m'odszer vagy angolul Successive overrelaxation method (SOR):

$$B=D+\omega L,\quad au=\omega,\quad \text{ahol }\omega>0 \text{ adott paraméter}$$

$$(D+\omega L)\cdot \frac{x^{n+1}-x^n}{\omega}+Ax^n=b$$

Megjegyzés 5 A SOR módszert $\omega = 1$ -el írva visszakapjuk a Gauss-Seidel-iterációt.

4.8. Stacionárius iteráció konvergenciája

Emlék:

$$B\frac{x^{n+1} - x^n}{\tau} + A \cdot x^n = b \qquad (SI)$$
$$Ax = b$$

Tegyük fel, hogy A szimmetrikus pozitív definit (szpd). Tehát $A = A^T$, $x^T A x > 0$, ha $x \neq 0$. Másképpen, $\exists \delta > 0 : (Ax, x) \geq \delta \cdot ||x||^2$. Jelölje x^* a 3.1 egyenelet megoldasat, azaz $Ax^* = b$ és $e_n := x^n - x^*$ (az n-edik iterácio hibáját).

Definíció 4.8.1 Azt mondjuk hogy a stacionárius iteráció (SI) konvergens, ha $\exists \lim x_n$ és $x_n \to x^*$, azaz $\lim_{n\to\infty} e_n = 0$.

Állítás 4.8.1 Tegyük föl, hogy A szpd. Ha $\exists B^{-1}$, es $\tau > 0$ parameéer olyan, hogy $B - 0.5\tau A$ szpd, akkor a stacionárius iterácio konvergens.

Bizonyítás:

$$x^n=e_n+x^*, \quad x^{n+1}=e_{n+1}+x^* \leadsto \text{ (SI)-be beirva}$$

$$B\frac{e_{n+1}+x^*-e_n-x^*}{\tau}+Ae_n+Ax^*=b$$

$$B\frac{e_{n+1}-e_n}{\tau}+Ae_n=0 \qquad \text{(3) hibaegyenlet}$$

Fejezzük ki e_{n+1} -el

$$Be_{n+1} = (B - \tau A)e_n$$

$$e_{n+1} = (I - \tau B^{-1}A)e_n$$

$$Ae_{n+1} = (A - \tau AB^{-1}A)e_n$$

$$\implies (Ae_{n+1}, e_{n+1}) = (Ae_n - \tau AB^{-1}Ae_n, e_n - \tau B^{-1}Ae_n)$$

$$= (Ae_n, e_n) - \tau (AB^{-1}Ae_n, e_n) - \tau (Ae_n, B^{-1}Ae_n) + \tau^2 (AB^{-1}Ae_n, B^{-1}Ae_n)$$

Tudjuk, hogy

$$(AB^{-1}Ae_n, e_n) = (B^{-1}Ae_n, A^Te_n) = (B^{-1}Ae_n, Ae_n) = (Ae_n, B^{-1}Ae_n)$$

Tehát

$$(Ae_{n+1}, e_{n+1}) = (Ae_n, e_n) - 2\tau(AB^{-1}Ae_n, e_n) + \tau^2(AB^{-1}Ae_n, B^{-1}Ae_n)$$

Jelölje $J_n = (Ae_n, e_n)$. Ezzel

$$J_{n+1} = J_n - 2\tau(Ae_n, B^{-1}Ae_n) + \tau^2(AB^{-1}Ae_n, B^{-1}Ae_n)$$

Ezzel $By_n = Ae_n$

$$= J_n - 2\tau(By_n, y_n) + \tau^2(Ay_n, y_n) = J_n - 2\tau\left((By_n, y_n) - \frac{\tau}{2}(Ay_n, y_n)\right)$$

Mert feltétel szerint $\tau > 0$ és $(B - 0.5\tau A)$ szpd, tehát pozitív szor pozitív tagot vonunk ki, tehát egy pozitív számot vonunk ki. Ezért a jobb oldal kisebb mint J_n . Így a (J_n) sorozat monoton csökkenő, és $J_n \geq 0$, (mert $J_n = (Ae_n, e_n)$), tehát ez a sorozat alulról korlátos. Tehát (J_n) konvergens, jelöles $J^* := \lim_{n \to \infty} J_n$ 4.4-ban vegyuünk limeszt \sim

$$J^* = J^* - 2\tau \lim_{n \to \infty} ((B - 0.5\tau A)y_n, y_n)$$
$$\implies \lim_{n \to \infty} ((B - 0.5\tau A)y_n, y_n) = 0$$

Mivel $B - 0.5\tau A$ szpd, ezért $\exists \delta > 0 : ((B - 0.5\tau A)y_n, y_n) \geq \delta \cdot ||y_n||^2$. Rendőrelv:

$$((B - 0.5\tau A)y_n, y_n) \ge \delta \cdot ||y_n||^2 \ge 0$$

$$\lim_{n \to \infty} ((B - 0.5\tau A)y_n, y_n) \ge \lim_{n \to \infty} \delta \cdot ||y_n||^2 \ge 0$$

$$\implies 0 \ge \lim_{n \to \infty} \delta \cdot ||y_n||^2 \ge 0 \implies \lim_{n \to \infty} \delta \cdot ||y_n||^2 = 0$$

Mivel $y_n = B^{-1}Ae_n \leadsto e_n = A^{-1}By_n$, ezért

$$0 \le ||e_n|| = ||A^{-1}By_n|| \le ||A^{-1}B|| \cdot ||y_n|| \to 0 \implies ||e_n|| \to 0 \implies e_n \to 0$$

Ezzel beláttuk, hogy konvergens, mert a hiba 0-hoz tart.

4.9. SOR-módszer konvergenciája

Kérdés 8 Hogyan válasszuk meg ω paramétert, hogy konvergáljon?

Észrevétel: ω választása erősen függ A-tól.

Állítás 4.9.1 Tetszőleges $A \in \mathbb{R}^{n \times m}$ eséten a SOR-módszer konvergenciájához szükséges, hogy $\omega \in (0,2)$.

Állítás 4.9.2 Ha A szpd, akkor $\omega \in (0,2)$ elégséges is a konvergenciához.

Következmény 3 Ha A szimmetrikus pozitív definit (szpd), akkor a Gauss-Seidel iterácio konvergens, mert a Gauss-Seidel iteráció pont a SOR-modszer $\omega = 1$ -el.

Gradiesn alapú módszerek

Tekintsük megint a következő egyenletet.

$$Ax = b$$
 (1)

Tegyük fel, hogy A szimmetrikus pozitív definit (szpd).

Definíció 5.0.1 Definiáljuk a következő $\phi : \mathbb{R}^m \to \mathbb{R}$ függvényt:

$$\phi(x) := \frac{1}{2}(x, Ax) - (x, b)$$

ez differenciálható \mathbb{R}^m -en.

Célunk, hogy a $\phi(x)$ függvényt minimalizáljuk, tehát néézük meg, hogy hol lesz 0 a gradiense.

$$\phi'(x) = \nabla \phi(x) = Ax - b$$
 (számolassál ellenőrizhető)

Ekkor pont az r := b - Ax maradékvektor -1 szeresét kapjuk.

Hol 0 a gradiens?

$$\phi'(x) = Ax - b = 0 \rightsquigarrow x = A^{-1}b$$

ez éppen a 3.1 megoldása, tehát a $\phi(x)$ függvényt minimalizálni ekvivalens azzal, hogy megoldjuk a 3.1 egyenletet.

$$\phi''(x) = A$$

Mivel feltettük, hogy A szpd, ezért $\phi''(x)$ pozitív definit, tehát ahol a gradiens nulla ott lokális minimum hely van.

 $\implies x^*$ az egyetlen lokális minimum hely / globális minimum helye ϕ -nek.

Kérdés 9 Hogy néz ki a φ függvény?

Példa 4 Tekintsünk egy két dimenziós példát, ahol már a következő egyenletrendszernél tartunk:

$$2x_1 = 4$$

$$8x_2 = 8$$

Megoldás:

Ránézésre látszik, hogy a megoldás $x_1^*=2,\ x_2^*=1$

Írjuk ki A és b teljes alakját.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 8 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$

Helyettesítsük be A-t és b a $\phi(x)$ függvénybe.

$$\phi(x) = \frac{1}{2}(x, Ax) - (x, b)$$

$$\phi(x) = \frac{1}{2} \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} 2x_1 \\ 8x_2 \end{bmatrix} \right) - \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} 4 \\ 8 \end{bmatrix} \right)$$

$$= \frac{1}{2}x_1 2x_1 + \frac{1}{2}x_2 8x_2 - 4x_1 - 8x_2 = (x_1 - 2)^2 + 4(x_2 - 1)^2 - 8$$

Vizsgáljuk a szintvonalait ennek a függvénynek.

Ac = 0-hoz tartozó szintvonal:

$$(x_1 - 2)^2 + 4(x_2 - 1)^2 - 8 = 0$$

$$\frac{(x_1-2)^2}{8} + \frac{(x_2-1)^2}{2} = 1$$

Tehát azt kaptuk, hogy ez egy (2,1) középpontú ellipszis $\sqrt{8},\sqrt{2}$ hosszú főtengelyekkel. Azaz valóban (2,1) a megoldás.

Tehát a függvény szintvonalai koncentrikus hiperellipszoidok!

Először gondoljuk meg, hogy egy $x\in\mathbb{R}^m$ pontot és egy $p\neq 0$ vektort rögzítve p irány mentén hol veszi fel a ϕ a legkisebb értéket?

Jelölés: $q(\alpha) := \phi(x + \alpha p)$

Kérdés 10 Mely α -ra lesz $g(\alpha)$ függvény értéke minimális?

Állítás 5.0.1 $A g(\alpha) = \phi(x + \alpha p)$ függvény egyértélmű minimumát az

$$\alpha = \frac{(p,r)}{(p,Ap)}$$

megvalásztás esetén veszi föl!

Bizonyítás: Faragó I. Numerikus módszerek jegyzet 83. oldalán található.[1]

Kérdés 11 Hogyan válasszuk meg p_1, p_2, \ldots keresési irányokat?

5.1 Gradiens módszer 25

5.1. Gradiens módszer

Tudjuk: A $\nabla \phi$ -vel ellentétes irányban a legmeredekebb a lejtés.

 x_i pontban p_{i+1} -el jelölve a keresési irányt:

$$p_{i+1} := -\nabla \phi(x_i)$$

$$\nabla \phi(x) = Ax - b = -r$$

$$\implies p_{i+1} := -\nabla \phi(x_i) = b - Ax_i = r_i$$

ami éppen az x_i pontbeli maradékvektor.

$$x_i \sim x_{i+1} = x_i + \alpha \cdot p_{i+1} = x_i + \frac{(p_{i+1}, r_i)}{(p_{i+1}, Ap_{i+1})} \cdot p_{i+1} = x_i + \frac{(r_i, r_i)}{(r_i, Ar_i)} \cdot r_i$$

Kérdés 12 Mi lesz x_{i+1} -ben a maradékvektor?

$$r_{i+1} = b - Ax_{i+1} = b - A \cdot \left(x_i + \frac{(r_i, r_i)}{(r_i, Ar_i)} \cdot r_i\right)$$

Vegyük észre: $r_i \perp r_{i+1}$, mert addig megyunk p_i irányban ameddig nem érintjuk a következő szintvonalat, amire a következő gradiens merőleges.

Ez előző vizuálisan magyarázza az egymást követő irányok merőlegességét, de bizonyítsuk be formálisabban. Írjuk fel a skaláris szorzatát az egymást koveto iranyoknak!

$$(r_{i}, r_{i+1}) \stackrel{?}{=} 0$$

$$(r_{i}, r_{i+1}) = \left(r_{i}, b - A\left(x_{i} + \frac{(r_{i}, r_{i})}{(r_{i}, Ar_{i})} \cdot r_{i}\right)\right)$$

$$= (r_{i}, r_{i}) - (r_{i}, A\frac{(r_{i}, r_{i})}{(r_{i}, Ar_{i})} \cdot r_{i})$$

$$= (r_{i}, r_{i}) - \frac{(r_{i}, r_{i})}{(r_{i}, Ar_{i})} (r_{i}, Ar_{i})$$

$$= (r_{i}, r_{i}) - (r_{i}, r_{i}) = 0$$

Megjegyzés 6 $Ha \operatorname{cond}_2(A) \operatorname{nagy}$, akkor lassú a konvergencia.

5.2. Konjugált gradiens-módszer

Az előbb láttuk be, hogy a gradiens módszernél a p_1 kerésési irány $(r_0) \perp r_1$. Azaz:

$$0 = (p_1, r_1) = (p_1, b - Ax_1) = (p_1, Ax^* - Ax_1) = (p_1, A(x^* - x_1))$$

Definíció 5.2.1 Legyen $A \in \mathbb{R}^{m \times m}$ szimmetrikus pozitív definit (szpd). Azt mondjuk, hogy x es $y \in \mathbb{R}^m$ vektorok A-konjugáltak/ortogonálisak, ha (x, Ay) = 0.

Tehát olyan kerésési irányt lenne érdemes választani, amely p_1 -re A-ortogonális! Keressük p_2 -t a következő alakban:

$$p_{2} = r_{1} - \beta_{1} \cdot p_{1}$$
$$(p_{1}, A(r_{1} - \beta_{1} \cdot p_{1})) = 0$$
$$\beta_{1} = ?$$

$$(p_1, Ar_1) - \beta_1(p_1, Ap_1) = 0$$

$$\implies \beta_1 = \frac{(p_1, Ar_1)}{(p_1, Ap_1)}$$

Ezen β_1 -et választva, a $p_2 = r_1 - \beta_1 \cdot p_1$ irányba lépve az x^* minimum helybe lépunk! Tehát m=2 esetén 2 lépésben meg tudjuk határozni a lineáris egyenletrendszer megoldását.

Megjegyzés 7 $A \in \mathbb{R}^{m \times m}$ esetén is általánosítható az eljárás. Ekkor legfeljebb m lépésben megkapjuk a megoldást.

Általános algebrai egyenletek megoldása

Ebben a fejezetben egyismeretlenes valós egyenletekkel foglalkozunk. Egy ilyen egyenlet mindig felírható a következő alakban:

$$f(x) = 0 (6.1)$$

ahol $f: \mathbb{R} \to \mathbb{R}$ függvény.

Ezzel 6.1-nek a megoldása ugyanaz mint f zérushelye. Ezt keressük a továbbiakban!

6.1. Gyökök stabilitása

Kérdés 13 Mennyire érzékeny a megoldás f kis megvaltoztatasara?

Tegyük fel, hogy 6.1 helyett az

$$\tilde{f}(x) = 0 \tag{6.2}$$

Egyenletet oldjuk meg, és tegyük fel, hogy 6.1-nek és 6.2-nek is $\exists !$ megoldása, melyek x^* illetve \tilde{x}^* rendre.

A következő legyen a mérőszámunk az eltérésre:

$$|x^* - \tilde{x}^*| \le ?$$

Ha f és \tilde{f} csak kicsit tér el egymástól, akkor legfeljebb mennyire tér el x^* és \tilde{x}^* ? Mérje $\max_{[a,b]} |f - \tilde{f}|$ az f és \tilde{f} eltérését.

Tegyük fel, hogy $f \in C[a,b] \cap D(a,b)$

Ism'etl'es: (Lagrange-középérték tétél) Tegyük fel, hogy $f\in C[a,b]\cap D(a,b).$ Ekkor $\exists c\in (a,b)$ úgy, hogy

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Továbbá tegyük fel, hogy x^* és $\tilde{x}^* \in [a,b]$, és $\max_{[a,b]} |f - \tilde{f}| < \varepsilon$. Alkalmazzuk a Lagrange-középérték tételt az $[x^*, \tilde{x}^*]$ intervallumon (feltéve, hogy $x^* < \tilde{x}^*$):

$$\exists c \in (x^*, \tilde{x}^*): f(\tilde{x}^*) - f(x^*) = f'(c)(\tilde{x}^* - x^*)$$

Tegyük fel, hogy $f'(x) \neq 0 \quad \forall x \in (x^*, \tilde{x}^*).$

$$\iff |\tilde{x}^* - x^*| = \left| \frac{f(\tilde{x}^*)}{f'(c)} \right| = \frac{|f(\tilde{x}^*) - \tilde{f}(\tilde{x}^*)|}{|f'(c)|} < \frac{\varepsilon}{\min_{[a,b]} |f'|}$$

Definíció 6.1.1 $Az\ M:=\frac{1}{\min\limits_{[a,b]}f'|}\ sz\'{a}mot\ a\ 6.1$ egyenlet kondicionáltsági sz $\'{a}m\'{a}nak$ nevezz $\ddot{z}\ddot{u}k$.

Tehát ha $\max_{[a,b]} |f - \tilde{f}| < \varepsilon,$ akkor $|\tilde{x}^* - x^*| < M \cdot \varepsilon.$

6.2. Konvergencia sebesség

Tegyük fel, hogy $\lim_{k\to\infty} x_k = x^*$, és legyen $e_k := x_k - x^*$. $(\lim_{k\to\infty} e_k = 0 \text{ vagy} \lim_{k\to\infty} |e_k| = 0)$

Definíció 6.2.1 Azt mondjuk, hogy az (x_k) sorozat konvergencia rendje $p \ge 1$, ha

$$\lim_{k \to \infty} \frac{\log|e_k|}{\log|e_{k-1}|} = p$$

- Ha p=1, akkor lineáris vagy elsőrendű konvergenciáról beszélunk.
- Ha p = 2, akkor másodrendű vagy kvadratikus konvergenciáról beszélünk.

Példa 5 Elsőrendű és másodrendű konvergens sorozatok hibatagjainak lecsengésére példák.

Elsőrendű:

	$ e_k $	$\frac{\log e_k }{\log e_{k-1} }$
k=1	10^{-3}	N/A
k=2	10^{-4}	1.33
k=3	10^{-5}	1.25

29

Másodrendű:

	$ e_k $	$\frac{\log e_k }{\log e_{k-1} }$
k=1	10^{-3}	N/A
k=2	10^{-6}	2
k=3	10^{-12}	2
H		

Állítás 6.2.1 Tegyük fel, hogy $|e_k| = c_k \cdot |e_{k-1}|$, $k = 1, 2, \ldots$ ahol $0 < \underline{c} \le c_k \le \overline{c} < 1$. Valamilyen \underline{c} és \overline{c} konstansokra.

Ekkor $x_k \to x^*$ monoton módon és elsőrendben.

 $Bizony\acute{t}\acute{a}s:\ Monotonan,\ {\rm mivel}\ 0< c_k<1\implies |e_k|<|e_{k-1}|\ \forall k=1,2,\ldots\implies (|e_k|)$ sorozat monoton csökkenő.

Konvergál, mivel $|e_k| = c_k \cdot |e_{k_1}| \le \overline{c} \cdot |e_{k-1}| \le \overline{c} \cdot \overline{c} \cdot |e_{k-2}| \le \cdots \le \overline{c}^k \cdot |e_0|$. Mivel $\overline{c} < 1$ ezért tényleg $\lim_{k \to \infty} |e_k| = 0$.

A feltételben lévő egyenletnek mindkét oldalán logaritmust véve:

$$\log|e_k| = \log c_k + \log|e_{k-1}|$$

$$\implies \frac{\log|e_k|}{\log|e_{k-1}|} = \frac{\log c_k}{\log|e_{k-1}|} + 1$$

Lltszik, hogy $\log |e_{k-1}| \to -\infty$. Mostmár elegendő lenne belátni, hogy $\log c_k$ korlátos.

$$\log \underline{c} < \log c_k \le 0$$

Tehát $\frac{\log c_k}{\log |e_{k-1}|} \to 0 \implies$ a jobb oldal $\to 1 \implies p=1$ a konvergencia rendje, azaz elsőrendű a konvergencia.

Állítás 6.2.2 Tegyük fel, hogy $|e_k| = c_k \cdot |e_{k-1}|^p$ k = 1, 2, ... ahol p > 1 és $0 < \underline{c} \le c_k \le \overline{c} < +\infty$. Valamilyen \underline{c} és \overline{c} konstansokra. Továbbá $\overline{c}^{1/p-1} \cdot |e_0| < 1$. Ekkor (x_k) konvergens és a konvergencia rendje p.

Megjegyzés 8 Az utóbbi feltétel azt jeletnti, hogy a konvergencia csak akkor következik, ha x_0 elég közel van x^* -hoz. Ugyanakkor $\overline{c} < +\infty$, és nem kell teljesülnie, hogy $\overline{c} < 1$.

Irodalomjegyzék

 $[1]\,$ Faragó István, H.R.: Numerikus módszerek. Typotex (2016)