MDP

S: {states}

A: {Actions}

T: transition function $T(S_t, a, S_{t+}) = Pr(S_{t+1}|S_t, a)$ PDF over states at time t+1

R: reward function

Simple case: R(s) fixed for a given state complex case: R(s,a,s')

At each time step t, agent is in some state, s_t and must take an action, a_t . Each action causes a transition to a new state, s_{t+1} .

DBN:

* technically a DDN, since R & A acent R.V's

Compact: represent each State w only 2 time Slices

Optimal policy π^* , gives max expected reward. For $t \to \infty$: $\sum_{t=0}^{\infty} \gamma^t R(s_t)$

"Value" of being in S w t Stages to go, V(s)

Find w Op: for all s' what action gets us to best-next state?

Start ω $V^0(s) = R(s)$ in practice, until V^t stops changing much

Then, ω t-stages to go \longrightarrow Optimal $V^t(s) = \max_{x} \left[R(s) + \gamma \sum_{s'} P_r(s'|s,a) V^{t-1}(s') \right] \qquad V^*(s)$ $\pi^t(s) = \arg\max_{x} V^t(s)$ $\pi^*(s)$