

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC2233 - Programación Avanzada 1^{er} semestre 2015

Actividad 20

Manejo de bytes

Audios solapados

Un amigo suyo se comprometió a resolver un gran desafío que le propusieron, separar un extraño audio, con extensión .wav, que al parecer contiene dos audios en su interior. Su amigo investigó y el archivo lo puede modificar leyendo los datos como bytes.

El problema es que su amigo no tiene idea de bytes y como él sabe que usted cursa *Programación Avanzada*, le pide encarecidamente que resuelva este gran desafío.

Misión

El archivo de input, musica.wav es una mezcla de dos canciones. Usted deberá leer este archivo, y deberá generar otros dos, cancion1.wav y cancion2.wav, cada uno con un audio separado.

Estructura del input

El archivo musica.wav tiene los audios mezclados de la siguiente forma: A partir del byte 44 (contando desde el 0), un byte corresponde al primer audio, y otro byte corresponde al segundo. Si 'x' corresponde a los bytes de uno de los audios e 'y' a los del otro audio, los bytes están ordenados de la siguiente manera:

 $x y x y x y x y \dots$

Estructura archivo .wav

 $^{\circ}$

Consideraciones al escribir el output

Considere lo siguiente:

- El tamaño de cada archivo cambia respecto al original: Cada archivo de output tiene la mitad de datos de audio que el original. Considere esto al escribir los encabezados de los archivos de output. Tips: Ocupe la representación en 4 bytes de esos enteros.
- Los demás datos del encabezado puede reutilizarlos *tal cual* se encuentran en el input, pero no olvide agregarlos.

To - Do

- (3.0 pts) Obtenga los bytes de los dos audios dentro del archivo .wav que se le entregó.
- (1.0 pts) Obtenga el tamaño correcto del archivo.
- (2.0 pts) Genere correctamente los dos archivos de audio que resultan de separar los datos.

Bonus

Se adjunta también el archivo audio.wav. Pero la frecuencia de muestreo es distinta por cada archivo de output. Es por esto que los bytes del 25 al 28, y del 29 al 32 son diferentes dependiendo del archivo. Los valores son ¹:

- Para el primer archivo, escriba 11025 en ambos grupos de bytes.
- Para el segundo archivo, escriba 22050 en ambos grupos de bytes.
- (1.0 pts) Correr el algoritmo anterior con este audio y obtener output correcto.

Más tips

- int.from_bytes(bytes, byteorder='little'): Esta función entrega el entero correspondiente a los bytes entregados.
- numero.to_bytes(tamaño, byteorder='little'): Esta función transforma un número en bytes, con la cantidad de bytes indicada.

¹La frecuencia de muestreo corresponde al número de muestras adquiridas por unidad de tiempo desde una señal continua durante el proceso de conversión análogo-digital. El producto es una señal discreta. Esta puede ser correctamente reconstruída por un reproductor de audio digital al conocer el valor de la frecuencia de muestreo.