CONTROL ARABACA

FIG.

TSA_I R¹ = (CH₂)₃NH⁴CO(CH₂)₃ ⁴CONH-carret protein; R² = R³ = H
TSA_I R² = (CH₂)₃NH⁴CO(CH₃)₃ ⁴CONH-carret protein; R¹ = R³ = H
TSA_I R³ = (CH₂)₃NH⁴CO(CH₂)₃ ⁴CONH-carret protein; R² = R¹ = H
Free TSA_I R¹ = R³ = R³ = H

FIG. 2

<u>ত</u> %

LI X = OH, R = CH, O ()

TSA 1 X = NH-carrer protein. R = H

LA X = NH(CH₂),CH, R = H

Scheme 2

0

5/30

<u>E</u>

LAMBDA LIGHT CHAIN ALIGNMENT

1:TMPGETVTLTGRSSTGTTTSNYANMYQERDBILFSGL1GINNNRPPGVP 1:	61: ARFSGSI IGDKAVLTITGAQTEDEATYFCALWYSNHWYFGGGTKLTVLG 61: T. A. 66: T. G. N. F. 66: T. G.
94(lam9) vari	9A(lam9) vari
19G(lam5) vari	19G(lam5) vari
15A10L Vari	15A10 Vari
G7(lam4) vari	G7(lam4) vari

FIG. / KAPPA LIGHI CHAIN ALIGNMENT

1: DIVMIQUE LSNPV15GESVS IS CRSSRSLLYRDGKTYLNWFLQRPGRSPQLLTYLMS RS 11: M. A 11: M. K. E. Q. H. A 11: EL SP.TIS. I QPA K. Q. S. F. Q. KR. V. KLD
1: DIVMTQDEL SNPV ISC 1: M. 1: M. 1: El. SP. TLS. I
389 K vari 6A12 k vari 12H(L2) k vari 2A k vari E2(L7) k vari

61:SGVSDRFSGSGSGTDFTLEISRVKAEDVGVYC-QHFVDYPFTFGSGTKLEIKR 61:

GBS40727.OSEBG1

FIG. 8

HEAVY CHAIN ALIGNMENT

DVQLQESGPGLVKPSQSLSLTCTVTGNSJTSDYAMTWIRQFPGNKLEMMGYIR-HIYGTR	61: YNPSLISRISTRDISKNQFELQLDSVIAEDIATYCVRYHYYGSAYWGQGTLV1VSA 61: K. K. K. K. N. I. J. YGN TL. GIP 61: QKFKG, ATL. V. K. S. IA MH. N. L. S. S. V. A. GGGL F. R. 61: QKFKG, ATL. V. K. S. IA MH. N. L. S. S. V. A. GGGL F. R. 61: QKFKG, ATL. V. K. S. SIA MH. N. L. S. S. V. A. GGGL F. R. 61: QKFKG, ATL. L. E. S. SIA MH. N. L. S. S. V. A. GGGL F. R. 61: QKFKG, ATL. L. E. S. IAYM. S. L. S. S. V. S. GG. F. F. 61: QWFKG, ATL. V. R. SSIAYM. S. L. S. S. S. S. S. GG. F. F. 61: QWFKG, ATL. V. R. SSIAYM. S. L. S. S. S. S. S. GG. F. F.
389 vari	389 vari
16A12 heavy	6A12 heavy
16A13 hari	12H H vari
2AH-3 vari	92H-3 vari
19h6-3 vari	91H-3 vari
15A10 vari	15A10 vari
EZCH8) vari	15A10 vari
G7(H8) Vari	67(H8) vari

FIG. 9

			10			20				0			40			50			60
G	CTGT	TGT	TAC	TCA	AGGA	GTC	TGC	TCT	AAC	TAC	ATO	ACC	TGC	TGA	AAC	AGT	CAC	CACT	TCACT
Α	٧	٧	Т	Q	E	S	Α	L	Т	Т	S	Р	G	Ε	T	٧	Т	L	Т

70 80 90 100 110 120 TGCCGCCTCAAGGAGCTAATTACAAGTGATAACTATGCCAACTGGGTCCAAGAAAAA C R S S T G T I T S D N Y A N W V O E K

199 200 210 220 230 240 GCCAGATTCTCAGGCTCCCTGACTGGAGGAAAGGCTGTCCTCACCATCACAGGGGCACAG A R F S G S L T G D K A V L T I T G A Q

310 320 330 340 350 360 GGAGGAACCAAACTGACTGTCCTAGGCCAGCCCAAGTCTTCGCCATCAGTCACCCTGTTT V L G

FIG. 10

70 80 90 100 1100 1200 TATTCATTCATGCATGACAGAACCATGGAGAGACCCTTGAC Y S F T D Y N M Y W V K Q N H G E S L E

130 140 150 160 170 180
TGGATTGCATATATTGATCCTTCCAATGGTGATACTTTCTACAACCAGAAATTCCAGGGC
W I A Y I D P S N G D T F Y N Q F Q

190 200 210 220 230 240 AAGGCCACAGTGACTCTTCAACAGCCTG K A T V T L D K S S S T A F M H L N S L

310 320 330 GGGCAAGGGACTCTGGTCACTGTCTCTGCA G Q G T L V T V S A

	10	20	30	40		50			66
GTCGCA	TGCTCCCG	GNCGNCATGG	NCGCGGGATTO	GGAATTCCAC	GAG	300	GGGG	GAG	GA (
				T	R	Ρ	G	F	т

- 70 80 90 100 110 120
 AGTCACACTCACTTGCTGTTCAAGTGCTGGGACTATTACAACTAGTAACTATGCCAACTG
 V T L T C R S S A G T I T T S N Y A N W
- 130 140 150 160 170 180
 GGTCCAAGAAAACCAGATCATTTATTCAGTGGTCTAATAGGGTGTAACAACAACCGACC
 V Q E K P D H L F S G L I G V N N N R P
- 199 200 210 220 230 240 CCAGGATTCCTGAGCAGCAGCTGCCCTGACCAT P G V P A R F S G S L I G D T A A L T I
- 250 260 270 280 290 300 CACAGGGGCACAGGACTGAGGATGAGGATAATATTCTTGTGCTCTATGGTACAGCAACCA T G A Q T E D E A I Y F C A L W Y S N H
- 310 320 330 340 350 360 CTGGGTGTTCGGTGGAGGGAACCGAACTGACTGTCCTAGGCCAGCCCAAGTCTTCGNCATC W V F G G G T K L T V L G

- 10 20 30 40 50 60

 GAATTCGGCACGAGCAGGAACTACAGGTGTCCACTCTGAGATCCACCTGCAGCAGTCTGG
 E I H L Q Q S G
- 70 80 90 100 110 120 ACCTGAGGTGGAGCCTGGGGGCTTCAGTGAAGTTATCCTGCAAGGCTTCTGGTTACTC P E L V K P G A S V K L S C K A S G Y S
- 130 140 150 160 170 180
 ATTCACTGACTACAACATGTACTGGGTGAAACAGAGCCATGGAAGAGCCTTGAGTGGAT
 F T D Y N M Y W V K Q S H G K S L E W I
- 190 200 210 220 230 240 15GGATATATTGATCCTCACAATGGTGGTGTTTTTCTACAACCAGAAGTTCAAGGGCAGGG G Y I D P H N G G I F Y N Q K F K G R A
- 250 260 270 280 290 300
 CACATTGACTGTTGACAGCTCCCACACAGCCTTCATGCATCGACAGCCCTGACAG
 T L T V D K S S N T A F M H L N S L T S
- 370 380 390 400 410 420
 GGGACTCTGGTCACTCTCTCCAGCCAAAACGACACCCCCATCTGTCTATCCACTGGC
 G T L V T V S A

- 10 20 30 40 50 60 GTCGCATGCTCCCGGNCGCCATGGNCGCGGGATTCGGAATTCCACGTGGCCGGGGGAGAC
- 70 80 90 100 110 120
 AGTCACACTCACTTGCGCCTCAAGTACTGGGACTATTACAACTAGTAACTATGCCAACTG
 V T L T C R S S T G T I T T S N Y A N W
- 130 140 150 160 170 180 GGTCCAAGAAAAACCGAACC V Q E K P D H L F S G L I G I N N R P
- 190 200 210 220 230 240 TCCAGGTGTTCCTGCCAGGATTCTCAGGCTTCCTCACCTAT P G V P A R F S G S L I G D K A V L T I
- 250 260 270 280 290 300 CACAGGGGCACAGGACTGAGGATGAGGATATATTTCTGTGCTCTATGGTTACAGCAACCA T G A Q T E D E A I Y F C A L W Y S N H
- 310 320 330 340 350 360 CTGGGTGTGTGGGGGGGGGGAGCGAACCGAACTGACTGTCCTAGGCCAGCCCAAGTCTTCGNCATC W V F G G G T K L T V L G

70		80			96				90			10			120
GGTCCAGCTGCT	CGAGTC'	TG	GACC	TGA	AGC1	GG.	TGA/	AGC	TG	GGGC	TTC	AGT	GAA	GT	TATO
	S	G	Р	Ε	L	V	K	Р	G	Α	5	V	K	- 1	5

- 130 140 150 160 170 180 CTGCAAGGCTTCTGGTTACCCATTCACTGACTACACACATGTACTGGGTGAAGGCAGAGCCA C K A S G Y P F T D Y N M Y W V K Q S H
- 190 200 210 220 230 240
 GGAAAGAGCCTTGAGTGGATTGGATATTTGATCCTCCAATGGTGGATATTTTTTACA
 G K S L E W I G Y I D P S N G G I F Y N
- 250 260 270 280 290 300 CCAGAAGTTCAAGGCCCACATTGACTGTTGACAAGTCCTCCAACACACCTCTAC Q K F K G R A T L T V D K S S N T A F M
- 310 320 330 340 350 360 GCATCTCAACACCCTGACATCTGAGGACTCTGCAGTCTATTACTGTGCAAGAGGGGGGG H L N S L T S E D S A V Y Y C A R G G G G
- 370 380 390 400 410 420 CTGTTTGCTTACTGGGGCCAAGGGACTCTGGTCACTGTTCTGAAGCCAAAACGAAACC

	70	80	90		100			11				ze
AGGCGGCC	GCACTAC	STGATTGGGAA	TTCCAC	GAGG	GCGGG	GGA	GAC	AGT	CAC	ACT	CAC	TΤ
			Т	R	A G	£	T	ν	T	1	Т	-

- 130 140 150 160 170 180
 GTCGCTCAAGTAGGGGCTCAATACAACTATGGCAAGCTGGGTCCAGGAAAGC
 R 5 S S G T I T A N N Y G S W V Q E K P
- 190 200 210 220 230 240
 CAGATCATTTATTCACTGGTCTAAAGGTGTTAGGCAACAACCGAGGTCCAGGTGTTCCTG
 D H L F T G L I G V S N N R G P G V P A
- 310 320 330 340 350 360 CTGAGGATGAGGCAATTTATTTCTGTGCTCTATGGAACACAACCATTTCGTGTCGGTG E D E A I Y F C A L W N S N H F V F G G
- 370 380 390 400 410 420 GAGGAACCAAACTGACTGTCCTAGGGCAGACCAAGTCTTTTGGCATCAAGCACCCTGTTT

CCATTGGG	10 CCCGACGTCG	20 3 CATGCTCCCGG	0 40 CCGCCATGGCC	GCGGGATTAGG	TCCAACTTC Q L L
ICGAGICII	GGGGCIGAAC	IGGIGAAGCCI	0 100 GGGGCTTCAGT G A S V	GGAGTTGTCCT	GCAGGACTT
CTGGCTAC	ACCTTCACCA	CCTACTATATT	0 160 TACTGGGTAAA Y W V K	ACAGAGGCCTG	GACAAGGCC
TTGAGTGG	ATTGGGGGGA	TGAATCCTGGC.	Ø 220 AATGGTGTTACT N G V T	TTACTTCAATG	AAAATTCA
AGAACAGG	GCCACACTGA	TGTGGACAGA	0 Z80 TCCTCCAGCATI SSSI	TGCCTACATGC	AACTCAGCA
GCCTGACAT	TCTGAGGACT	TGCGGTCTAT	0 340 TACTGTACACGO Y C T R	GTGGGTAACC	360 TCTTTGCTT F A Y
ACTGGGGC	CGAGGGACTCT		0 400 TCTGCAGCCAAA S A		

FIG. 17

70 80 90 100 110 120
ATCTCCTGCAGGTCTCAGTAGGGATGCTCAATTGGATTGG
I S C R S S R S L L Y R D G K T Y L N W

130 140 150 160 170 180
TITCTGCAGAGACCAGGACGATCTCTCTACACTCCTTCTATTGATGTCCACCCGTTCA
F L Q R P G R S P Q L L I Y L M S T R S

199 200 210 220 230 240 CAGGAGTCTCAGGACGGTTTAGTGGGCAGTGGGTCAGGAACAGATTTCACCCTGGAAATC S G V S D R F S G S G T D F T L E I

250 260 270 280 290 300
AGTAGAGTGAAGGCTGAGGATGTGGGGTGTGTATTACTGTCAACACTTTGAGACTATCACCAT
S R V K A E D V G V Y Y C O H F V D Y P

310 320 330

TTCACGTTCGGCTCGGGGACAAAGTTGGAGATAAAACGG
F T F G S G T K L E I K R

FIG. 18

			10			20	3		3	0			40			50)		6	60
GA	TGT	GCA	IGC.	TTC	NGGA	GTO	GGG	AC	CTGG	CC.	TGG1	GAA	ACC	TTC	TCA	GTO	TC	GT	CCCT	·C
D	٧	0	L	0	Ε	S	G	Ρ	G	L	٧	K	Р	S	0	S	i	S	L	

130 140 150 160 170 180 TTTCCAGGGAACAACTGGAGTGGGTGGGTGGACTAGGTAC F P G N K L E W M G Y I R H I Y G T R Y

190 200 210 220 230 240 AACCCTTCTCTCATAAGTCGAATCTCTATCACTCGAGGACCAGTCCAAGAACCAGTTCTTC N P S L I S R I S I T R D T S K N Q F F

Z50 Z60 Z70 Z80 Z90 300 CTGCAGGTTGGATTCTGTAGACTACTGAGGACACAGCCACATATTATTGTGTAAAGATATCAL Q L D S V T A E D T A T Y Y C V R Y H

ACACCC T P

FIG. 19

10 20 30 40 50 60 GATATIGGTGATGACGAGAGATGAACTCTCCAATCCTGTCACTTCTGGAGAATATCAGTTTCCD M V M T Q D E L S N P V T S G E S V S

130 140 150 160 170 180 TTTTCTGCAGGGACGACGACCTCCTCAACTCCTGATCTATTTGATGTCCACCCGTGCA F L O R P G R S P O L L I Y L M S T R A

310 320 330 340 350 360 TICACCOTTCGGCTCGGGCACAAATTGGAGATAAAACGGGCTGATGCTGCACCAACTGTA F T F G S G T K L E I K R

TCCATCTT

FIG. 20

70 80 90 100 110 120 ACCTGCACTGCACTGCAATTCAATCACCAGTTTGCCTGGACCTGGATCGGGCAG T C T V T G N S I T S D Y A W T W I R O

130 140 150 160 170 180
TTTCCAGGAAACAGGGGGGGGGGGGGGGGGGGCACATTATGGCACCTAGGTAC
F P G N K L E W M G Y I R H I Y G T R Y

190 200 210 220 230 240
AACCCTTCTCTCATAAGTCGAATCTCTATCACTCGAGACACGTCCAAGAACCAGTTCTTC
N P S L I S R I S I T R D T S K N Q F F

250 260 270 280 290 300 CTGCAGCTGGATTCTGTGACTGCTGAGGACACCAGCACATATTATTGTGTAAGATATCATC Q L Q L D S V T A E D T A T Y Y C V R Y H

310 320 330 340 350 360
TACTACGGTTACTGGGGCCAAGGGACTCTGGTCACTGCTCTCTGAGCCAAAACG
Y Y G S A Y W G O O T L V T V S A A K T

ACACCC T P

FIG. 21

70 80 90 100 110 120 ATCTCCTGCAGGGTCTAGGTAAGAGTCTCCTATATGGGGGAGAGACATACTTGAATTGG I S C R S S K S L L Y E D G K T Y L N W

130 140 150 160 170 180
TITCTGCAGAGACCAGGACAATCTCCTCACCTCCGATCTATTTGATGTCCACCCCGCAF
F L Q R P G Q S P H L L I Y L M S T R A

190 200 210 220 230 240 TCAGGAGTCTCAGACCGGTTTAGTGGCAGTGGGTCAGGAACAGATTTCACCCTGGAAATC S G V S D R F S G S G S G T D F T L E I

310 320 340 350 360 TTCACCGTTCGGCTCGGGCACAAGTTGGAAATAAGACGGGTTGATGCCGCACCAACTGTAFT F G S G T K L E I R R

TCCATCTT

370 380

22/30

FIG. 22 20

CATTGG	10 GCCCACGTC	20 GAATGNTCCCC	30 GGNCGNCATGGI	40 NCGNGGGATTO	50 60 SANAGGGGGNCGGA E
	GAAGCCTTC	TCAGTCTCTG1	TCCCTCACCTG(CACTGTCACTO	110 120 GCTACTCAATCAC G Y S I T
	TTATGCCTG	GAACTGGATCC	CGGCAGTTTCC	AGGAAACAGAG	170 180 TGGAGTGGATGGG E W M G
	AAGGTACAG	IGGTATCACTA	AGGTACAACCC	ATCTCTCAAAA	230 Z40 GTCGAATCTCTAT R I S I
	AGACACATCO	AAGAACAAGT	TTCTTCCTGCA	STTAAATTCTC	290 300 TGACTACTGAGGA T T E D
	CACTTATTAC	TGTGTAAGAA	ATTCATTACTA	CGGCTACGGCA	350 360 ACTGGGGGCAAGG W G Q G

390

400

410

	10	20	30	40	50		66
NCCTIG	GGCCGAN	GGCGCATGCTCC	CGGCCGCCA	TGGCCGCGGGA	TTAGAGCG	ATAT	GGT
					D	М	V

- 70 80 90 100 110 120 GATGACGCAGGAGATCAACTCTCCCAATCCCTGTCACTTCTCGAGAAATCAGTTTCCAATCTCTCCAATCCATCTCCTGGAGAAATCAGTTTCCAATCTCCAATCCATCTCCAATCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCCAATCA
- 130 140 150 160 170 180 CAGGTCTAGTAGGAGTCTCCTATATAGGCATGGGAAGACATACTTGAATTGGTTTCTGCA
- 190 200 210 220 230 240
 GAGACCAGGACGATCTCCAACTCTGATCTATTTGATGTCCACCCGTGCATCAGGACT
 R P G R S P Q L L I Y L M S T R A S G V
- 250 260 270 280 290 300
 CTCAGACCGGTTTAGTGGCAGTGGGCTCAGGAACAGTTTCACCCTGGAAATCAGTAGAGT
 S D R F S G S G S T D F T L E I S R V
- 310 320 340 350 360
 GAAGGCTGAGGATGTGGTATTACTGTCAACACTTTGTAGACTATCCATTCACGTT
 K A E D V G V Y Y C Q H F V D Y P F T F
- 370 380 390 400 410 420 CGGCTCGGGGACAAGGTTGGGAGATAAAACGGGTTGATGCTGNANCAACTGTATCCATCTT G S G T K L E I K R

- 70 80 90 100 110 120 CTAGTGATTGCTCTAGAGCGACCTGGACTGGAATGCAAACC D V Q L Q E S G P G L V K P
- 130 140 150 160 170 180
 TTCTCAGTCTCTGTCCCTCACCTGCACTGTCACTGGTAATTCAATCACCAGTGATTATCC
 S Q S L S L T C T V T G N S I T S D Y A
- 190 200 210 220 230 240 CTGGACCTGGATCCGGAAGTTTCCAGGAAACAACTGGAGTGGTTGGGGCTACATAAGGCA W T W I R K F P G N K L E W L G Y I R H
- 250 260 270 280 290 300
 CATTTATGGCACTAGGTACCACCTTCTCTCATGGAATCTCTATCAGTCGAGACAC
 I Y G T R Y N P S L I S R I S I T R D T
- 310 320 330 340 350 360 GTCCAAGAACACCAGTTCTTCCTGCAGTTGGATTCTGTGACTGCTGAGGACACAGCCACAGC S K N Q F F L Q L D S V T A E D T A T Y
- 370 380 390 400 410 420
 THATTGTGTAAGATATCATTACTGCGGTCGGCTTACTGGGGGCAAGGGACTCTGGTCAC
 Y C V R Y H Y Y C S A Y W G Q G T L V T
- 430 440 450 460 470 480
 TGTCTCTGCAGGCAAAACGANACCCCATCTGTCTATCCACTGGCCCCGGAACGCCGCCAG
 V S A

- 10 20 30 40 50 60
 TTNAAGGCCCNGACGCCGCATAGCTCNCGGCCGCCATGGCCGNGGGATTCCAGTTCCGAG
- 70 80 90 100 110 120 CTCGTGATGACACCAGCTCTCATC L V M T Q S P L T L S V T I G Q P A S I
- 130 140 150 160 170 180 TCTTGCAAGTCAAGTCAGAGCCTCTTATATAGTGATGGAAAAACCTATTTGAATTGGTTG S C K S S Q S L L Y S D G K T Y L N W F
- 190 200 210 220 230 240 TICCAGAGAGGCCAGTCTCCAAACCGCCTAATCTATTCTGGTCTCTAAACCGGACTCF Q R P G Q S P K R L I Y L V S K L D S
- 250 260 270 280 290 300 GGAGTCCCTGACAGGTTCACTGGCAGTGGATCAGGAAAAGATTTACACTGAAAAATCAGG V P D R F T C S G S G S C K D F T L K I S
- 370 380 390 400 410 420 ACGTTCGGTGGTGGACCAACTTGGTTCAT T F G A G T K L E L K R

- 10 20 30 40 50 60 TTGGGCCCGGACGTCGCATGCTCCCGCCCCATGGNCGNGGGATTAGGTCCAACTTCTC V Q L L

- 190 200 210 220 230 240 GAGTGGATCGGAACGATTGAATCTTTTCTGTAACTTGATGCTAACAAAACTTCAAAG
- 250 260 270 280 290 300
 GGCAGGGCCACATGACTCTCGACGAATCCTCCAACACACGCCTACAGTCAGCTCAGCAGC
 G R A T L T L D E S S N T A Y M Q L S
- 310 320 340 350 360 360 CTGACATCTGAGGACTCTGCCGTCTATTACTGTTCAGAAGGGGCTTTTGACTACTGGGGG L T S E D S A V Y Y C S R R G F D Y W G
- 370 380 390 400 410 420 CAAGGCACCACTCTACAGTCTCCTCAGGCAAAACGACACCCCATCTTGTCTNTCCACT Q G T T L T V S S

NdeI	H1
MEVQLQESGPELVKPSQSLSLTCT	VTGNSITSDYAWTWIRQFP
H2	
GNKLEWMGYIRHIYGTRYNPSLIS	
нз	SphI ⊬linker
VTAEDTATYYCVRYHYYGSAYWGC	GTLVTVSAGMQSGGGGSG
NcoI	L1
GGGSGGAMDIVMTQDELSNPVTSG	ESVSISCRSSRSLLYRDGK
L2	
TYLNWFLQRPGRPPQLLIYLMSTR	SSGVSDRFSGSGSGTDFTL
L3	
EISRVKAEDVGVYYCQHFVDYPFT	FGSGTKLEIKRADGAPTVS
Flag 6 x His	
TEPPS! DYKDDDDK! EHHHHHH	

