Algorithms for Convex Optimization Assignment 3 Part I

- 1. Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper closed and convex. Suppose that f^* is proper and σ -strongly convex $(\infty > \sigma > 0)$. Show that
 - (a) f is $\frac{1}{\sigma}$ -smooth.
 - (b) there exists a convex function g such that

$$f = g \square \left(\frac{1}{2\sigma} \left\| \cdot \right\|^2 \right).$$

2. Define the inverse mapping of set-valued mapping $F: \mathbb{R}^n \to \mathbb{R}^m$ by $F^{-1}: \mathbb{R}^m \to \mathbb{R}^n$ with the values

$$F^{-1}(x) := \{ y \in \mathbb{R}^n \mid x \in F(y) \} \text{ for any } x \in \mathbb{R}^m.$$

Moreover the sum of F and $G: \mathbb{R}^n \to \mathbb{R}^m$ is denoted as the set-valued mapping $F + G: \mathbb{R}^n \to \mathbb{R}^m$ with the values

$$(F+G)(x) := \{ y \in \mathbb{R}^m \mid \exists y_1 \in F(x), y_2 \in G(x) \text{ s.t. } y = y_1 + y_2 \}.$$

Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper closed and convex. Show that

(a)

$$\operatorname{prox}_f = (I + \partial f)^{-1},$$

where I is the identity operator on \mathbb{R}^n .

(b) For any $\mu > 0$,

$$\nabla M_f^{\mu} = \frac{1}{\mu} \left(I - \left(I + \mu \partial f \right)^{-1} \right).$$

- 3. Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper closed and convex. Applying T2(a) and the firm nonexpansivity of the prox operator to show the monotonicity of ∂f , which was defined in Assignment 2, T9.
- 4. Let $f: \mathbb{R}^n \to \mathbb{R}$ be

$$f(x) = \frac{1}{2}x^T A x + b^T x + c,$$

where $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Show that

(a) If A is symmetric and positive semidefinite, then

$$prox_f(x) = (A+I)^{-1}(x-b).$$

(b) If A is symmetric (not necessarily positive semidefinite), then find the values of $\lambda \in \mathbb{R}_+$ when $\operatorname{prox}_{\lambda f}(x)$ is a singleton for any $x \in \mathbb{R}^n$, and give the expression of $\operatorname{prox}_{\lambda f}$ in this case.

5. Let $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper and σ -strongly convex. Let

$$f(x) = g(x) - \frac{c}{2} ||x||^2 + \langle e, x \rangle,$$

where $c < \sigma$. Then give the expression of prox_f.

- 6. Let $f:\mathbb{R}^n\to\overline{\mathbb{R}}$ be proper, closed (not necessarily convex). If f is bounded below, show that
 - (a) $-\infty < M_f^{\mu} < \infty$ for any $\mu > 0$.
 - (b) $M_f^{\mu} \leq f$ for any $\mu > 0$.
- 7. Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper, closed (not necessarily convex). Show the following properties are equivalent:
 - (a) there exists $\mu > 0$ such that $M_f^{\mu}(x) > -\infty$ for some $x \in \mathbb{R}^n$.
 - (b) there exists a polynomial function $q:\mathbb{R}^n\to\mathbb{R}$ with degree two or less such that $f\geq q$.
 - (c) there exists $\mu > 0$ such that $f + \frac{1}{2\mu} \|\cdot\|^2$ is bounded from below.
 - (d)

$$\lim_{\|x\| \to \infty} \frac{f(x)}{\|x\|^2} > -\infty.$$

8. Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper, closed and convex. Recalling the first prox theorem, we define $\varphi: \mathbb{R}_{++} \times \mathbb{R}^n \to \mathbb{R}^n$ by

$$\varphi(\mu, x) := \operatorname{prox}_{\mu f}(x).$$

Check the continuity of φ .

9. Consider the model

$$\min_{x \in \mathbb{R}^n} f(x) + g(x)$$

where f, g satisfy the standing assumption. If g = 0, the model reduces to the unconstrained smooth minimization problem

$$\min_{x \in \mathbb{R}^n} f(x),$$

while the proximal gradient method reduces to classical gradient method. Please consider the convergence analysis for the gradient method under both constant and backtracking stepsize rules.

- 10. Let $C \subset \mathbb{R}^n$ be closed convex. For any $x \in \mathbb{R}^n$ consider the normal cone $N_C(x)$ and the projection $P_C(x)$. Given $\bar{x} \in C$, we have
 - (a) discuss the relation of $N_C(\bar{x}) + \bar{x}$ and $\{x \in \mathbb{R}^n | P_C(x) = \bar{x}\}.$
 - (b) Define the proximal normal cone $N_C^{\text{prox}}(\bar{x})$ by

$$N_C^{\text{prox}}(\bar{x}) := \left\{ v \in \mathbb{R}^n \middle| \text{dist} \left(\bar{x} + \alpha v, C \right) = \alpha \, \|v\| \, \text{ for some } \alpha > 0 \right\},\,$$

discuss the relation of $N_C(\bar{x})$ and $N_C^{\text{prox}}(\bar{x})$.