Sztuczna Inteligencja

Soma Dutta

Wydział Matematyki i Informatyki, UWM w Olsztynie soma.dutta@matman.uwm.edu.pl

Wykład - 6: Zbiory przybliżone i Zbiory rozmyte Semestr letni 2022

Podsumowanie ostatniego wykładu

- Redukty i reguły generowane przy użyciu reduktów
- Skracanie reguł w taki sposób, aby zawierały minimalna liczbę deskryptorów
- Klasyfikacja nowego przypadku za pomocą reguł

Plany

- Klasyfikacja zbioru przykładów testowych nie jest tak prosta czasami trzeba wykonać operację aproksymacji
- Nauczymy się przybliżonych operacji bazujących na zbiorze przybliżonym
- Istnieje inne podejście do przybliżania zbioru obiektów, które nie mają jednoznacznego opisu. Jest to znane jako teoria zbiorów rozmytych.

Przykład - 1: pierwsza metoda

	a	Ь	с	d	dec
o ₁	0	2	1	0	0
o ₂	1	2	2	1	0
<i>0</i> 3	2	0	2	1	1
04	0	2	1	1	2
и	0	0	2	1	?

Reguly:

$$b = 2 \land c = 1 \land d = 0 \Rightarrow dec = 0$$

$$b = 2 \land c = 2 \land d = 1 \Rightarrow dec = 0$$

$$b = 0 \land c = 2 \land d = 1 \Rightarrow dec = 1$$

$$b = 2 \land c = 1 \land d = 1 \Rightarrow dec = 2$$

Po skróceniu:

$$b = 2 \land d = 0 \Rightarrow dec = 0$$
 lub $c = 1 \land d = 0 \Rightarrow dec = 0$
 $b = 2 \land c = 2 \Rightarrow dec = 0$
 $b = 0 \Rightarrow dec = 1$
 $c = 1 \land d = 1 \Rightarrow dec = 2$

ightharpoonup Zatem u jest klasyfikowany z dec = 1 z maksymalnym wsparciem 1.

Przykład-2

ightharpoonup Zakładamy, że $a_1=$ gorączka, $a_2=$ kontakt z pacjentem, $a_3=$ kaszel, d= Zainfekowany

	a_1	a ₂	a ₃	d
01	wysoka	bliski	średni	tak
02	wysoka	bliski	średni	tak
03	wysoka	bliski	średni	tak
04	więcej niż średnia	daleki	silny	nie pewne
05	więcej niż średnia	daleki	silny	nie
06	więcej niż średnia	daleki	lekki	nie
07	wysoka	bliski	średni	tak
08	więcej niż średnia	daleki	lekki	nie
<i>0</i> 9	więcej niż średnia	daleki	lekki	tak

- $\{ \{o_1, o_2, o_3, o_7\}, \{o_4, o_5\}, \{o_6, o_8, o_9\} \}$
- ▶ $\{o_4, o_5\}$, $\{o_6, o_8, o_9\}$ mają sprzeczności, ponieważ mają elementy, które mają ten sam opis, ale różne decyzje

Klasy równoważności w odniesieniu do atrybutów warunkowych

- $\qquad \qquad \{\{o_1,o_2,o_3,o_7\},\{o_4,o_5\},\{o_6,o_8,o_9\}\}$
- ▶ Jak znaleźć reguły opisujące $\{o_4, o_5\}$ and $\{o_6, o_8, o_9\}$?

Klasy decyzyjne

Klasy decyzyjne:

Nie pewne: $X_2 = \{o_4\}$

Nie: $X_3 = \{o_5, o_6, o_8\}$

▶ Jak opisać klasy decyzyjne X₁, X₂, X₃?

Jak możemy opisać klasy decyzyjne

	a ₁	a ₂	a ₃	d
0 1	wysoka	bliski	średni	tak
0 ₂	wysoka	bliski	średni	tak
<i>0</i> 3	wysoka	bliski	średni	tak
04	więcej niż średnia	daleki	silny	nie pewne
<i>0</i> 5	więcej niż średnia	daleki	silny	nie
<i>o</i> 6	więcej niż średnia	daleki	lekki	nie
07	wysoka	bliski	średni	tak
<i>0</i> 8	więcej niż średnia	daleki	lekki	nie
⊘ g	więcej niż średnia	daleki	lekki	tak

- ► Klasa decyzyjna $X_1 = \{o_1, o_2, o_3, o_7, o_9\}$
- Lower approximation (dolna aproksymacja): $\underline{X_1}_A = \bigcup\{[u]_A: [u]_A \subseteq X_1\} = \{o_1, o_2, o_3, o_7\}$ Na podstawie informacji o elementach zawartej w wartościach atrybutów z A możemy stwierdzić, że elementy z pewnością należą do klasy decyzyjnej
- ▶ Upper approximation (górna aproksymacja): $\overline{X_1}_A = \bigcup\{[u]_A: [u]_A \cap X_1 \neq \phi\} = \{o_1, o_2, o_3, o_7, o_6, o_8, o_9\}$ Na podstawie informacji o elementach zawartej w wartościach atrybutów z A możemy stwierdzić, że elementy być może należą do klasy decyzyjnej

Opis klasy decyzyjnej

- Zauważmy, że za pomocą A nie możemy zdefioniować jednoznacznie X₁, ponieważ istnieją pewne wystąpienia w X₁, które mają różne właściwości.
- Popis X_1 jest podzielony na trzy części: Pewne przypadki $(\underline{X_1}_A)$, Możliwe przypadki $(\overline{X_1}_A)$ i Graniczne przypadki $(\overline{X_1}_A \setminus \underline{X_1}_A)$.
- Możemy opisać klasę decyzji X₁, czyli 'Zainfekowany = Tak', w następujący sposób.
 - Pewne przypadki : gorączka = wysoka ∧ kontakt z pacjentem = bliski ∧ kaszel = sliny ⇒ zainfekowany = tak.
 - Możliwe przypadki: gorączka = więcej niż średnia ∧ kontakt z pacjentem = daleki ∧ kaszel = lekki ⇒ zainfekowany = tak.

Radzenie sobie ze sprzecznymi danymi

- ► Generalized decision function (ugólniona funkcja decyzyjna) : $\partial_B(u) = \{dec(u') : u' \in [u]_B\}.$
- ▶ Na przykład, $\partial_A(o_4) = \{ nie pewne, nie \}$
- Rough membership function (funkcja przybliżonego należenia): $\overrightarrow{\mu}_B(u) = \langle \mu_B^1(u), \mu_B^2(u), \dots \mu_B^n(u) \rangle$ gdzie $\mu_B^i(u) = \frac{|[u]_B \cap X_i|}{|[u]_B|}$ dla każdej wartości decyzji i.
- ▶ Na przykład, $[o_6]_A = \{o_6, o_8, o_9\}$. Więc $\overrightarrow{\mu}_A(o_6) = \langle \frac{1}{3}, 0, \frac{2}{3} \rangle$.
- ▶ Zakładając $B = \{a_1, a_2\}$, mamy tylko dwie klasy równoważności: $\{\{o_1, o_2, o_3, o_7\}, \{o_4, o_5, o_6, o_8, o_9\}\}$. Więc, $[o_6]_B = \{o_4, o_5, o_6, o_8, o_9\}$ i $\overrightarrow{\mu}_B(o_6) = \langle \frac{1}{5}, \frac{1}{5}, \frac{3}{5} \rangle$.
- Niech C = {a₂, a₃}. Należy notować, że C to redukt w poprzednim znaczeniu.
- ightharpoonup Zauważmy, że $[u]_A = [u]_C$ dla każdego elementu $u \in \{o_1, \ldots, o_9\}$.
- ▶ Tak więc $\partial_A(u) = \partial_C(u)$ oraz $\overrightarrow{\mu}_A(u) = \overrightarrow{\mu}_C(u)$ dla każdego elementu $u \in \{o_1, \dots, o_9\}$.

Niesprzeczna tabela decyzyjna

	a ₁	a ₂	a ₃	d	∂_A	$\overrightarrow{\mu}_A$
<i>0</i> 1	wysoka	bliski	średni	tak	{tak}	$\langle 1, 0, 0 \rangle$
02	wysoka	bliski	średni	tak	{tak}	$\langle 1, 0, 0 \rangle$
03	wysoka	bliski	średni	tak	{tak}	$\langle 1, 0, 0 \rangle$
04	więcej niż średnia	daleki	silny	nie pewne	{ nie pewne, nie}	$\langle 0, \frac{1}{2}, \frac{1}{2} \rangle$
05	więcej niż średnia	daleki	silny	nie	{ nie pewne, nie}	$\langle 0, \frac{1}{2}, \frac{1}{2} \rangle$
<i>o</i> ₆	więcej niż średnia	daleki	lekki	nie	{tak, nie}	$\langle \frac{1}{3}, 0, \frac{2}{3} \rangle$
07	wysoka	bliski	średni	tak	{tak}	$\langle 1, 0, 0 \rangle$
08	więcej niż średnia	daleki	lekki	nie	{tak, nie}	$\langle \frac{1}{3}, 0, \frac{2}{3} \rangle$
o _g	więcej niż średnia	daleki	lekki	tak	{tak, nie}	$\langle \frac{1}{3}, 0, \frac{2}{3} \rangle$

- (gorączka = więcej niż średnia) \land (kontakt z pacjentem = daleki) \land (kaszel = silny) \Rightarrow Zainfekowany| $\partial_A = \{$ nie pewne, nie $\}$
- (gorączka = więcej niż średnia) \land (kontakt z pacjentem = daleki) \land (kaszel = silny) \Rightarrow $Zainfekowany | \mu_A \langle 0, \frac{1}{2}, \frac{1}{2} \rangle$

Przybliżenie przy użyciu metody zbiorów rozmytych

- To podejście różni się nieco od wcześniejszego. Podejście to uogólnia definicję zbioru w następujący sposób.
- ▶ Zbiór wszystkich parzystych liczb naturalnych: $E = \{2,4,6,8,\ldots\} \subseteq \mathbb{N}$
- Funkcja charakterystyczna: $Ch_E : \mathbb{N} \mapsto \{0,1\}$ jest taka, że $Ch_E(x) = 1$ jeśli $x \in E$, inaczej $Ch_E(x) = 0$.
- Jak zapisujemy zbiór wszystkich liczb rzeczywistych bliskich 2? To nie jest jednoznaczny opis i może mieć różne interpretacje.
- Możemy ten zbiór opisać za pomocą funkcji $\mu_2:\mathbb{R}\mapsto [0,1]$ takiej że $\mu_2(x)=1$, jeśli $0\leq |2-x|\leq 1$ = .9, jeśli $1<|2-x|\leq 2$:
- ➤ Zamiast dwóch wartości logicznych (prawda i fałsz), dopuszcza się istnienie nieskonczenie wielu wartości (odpowiadających liczbom rzeczywistym od 0 do 1)

- Tak więc dla każdego $x \in \mathbb{R}$, $\mu_2(x)$ reprezentuje stopień przynależności x do pojęcia (bliskich 2) reprezentowanego przez μ_2 .
- ▶ Równiez można to zapisać następująco $(x, \mu_2(x))$ dla każdego $x \in \mathbb{R}$.
- ▶ Zbiór rozmyty: Zbiór rozmyty z dziedziną X jest reprezenotwany przez funkcję $f: X \mapsto [0,1]$. Funkcję f nazywamy zbiorem rozmytym na dziedzinie X.

Pojęcia "cieplo" czy "gorąco" są określone w sposób nieostry: trudno jednoznacznie określić ich granice, ich zakresy mogą się częściowo pokrywać.

Reguly w rozmytych zbiorach

- We wcześniejszym podejściu zaczęliśmy od tabeli zawierającej przypadki i ich opisy pod względem wartości niektórych atrybutów
- ▶ gorączka = wysoka ∧ kontakt z pacjentem = bliski ∧ kaszel = sliny ⇒ zainfekowany = tak.
- W aktualnie rozważanym podejściu każde zdanie ma pewną wartość, które mogą być inne niż prawda lub fałsz, można je nazwać stopniem prawdy.
- Na przykład, reprezentujmy pojęcie wysoka jak o $\mu_{wysoka}: [35,42] \mapsto [0,1]$ gdzie [35,42] jest dziedzinę dla temperatury gorączki. Może ta funkcja być taka, że

$$\mu_{wysoka}(x) = 1 \text{ jeśli } x \ge 40$$
= .9 jeśli $38 \le x < 40$
= .7 jeśli $37 \le x < 38$
= .5 jeśli $36 \le x < 37$
= .1 jeśli $35 \le x < 36$

▶ Gorączka może więc być traktowana jako zmienna, który może mieć wartości z [35,42]. Jeśli gorączka ma wartość 38, stopień prawdziwości zdania 'gorączka = wysoka' jest $\mu_{wysoka}(38) = .9$

Obliczanie wartości prawdy w zdaniach prostych i złożonych

- 'gorączka = wysoka' jest przykładem prostego zdania.
- Zauważyliśmy, że każde proste zdanie jest reprezentowane przez zbiór rozmyty, czyli funkcja z odpowiedniej domeny do przedziału [0, 1]. Wartość prawdziwości zdania zależy od funkcji odpowiadającej temu rozmytemu zbiorowi.
- Np. zbiór rozmyty 'wysoka' jest reprezentowany przez funkcję μ_{wysoka} z domeny temperatury do [0, 1]. Tutaj 'wysoka' dotyczy atrybutu 'gorączka', więc jako domenę mamy przedział temperatur.
- Podobnie 'silny' jest stosowany do atrybutu 'kaszel', więc możemy przyjąć domenę reprezentującą różną intensywność kaszlu, a pojęcie 'silny' można przedstawić jako zbiór rozmyty, czyli funkcja μ_{silny} , która zwraca wartości w [0, 1].
- Przypuszczamy
 - gorączka = wysoka ma stopień prawdziwości .9,
 - kaszel = sliny ma stopień prawdziwości .7
- ▶ Jak obliczyć wartość prawdy zdania złożonego: (gorączka = wysoka) ∧ (kaszel = sliny)

Spójniki logiczne: klasyczny scenariusz z dwiema wartościami

Spójniki logiczne: \land (oraz), \lor (lub), \Rightarrow (jeśli . . . to), \neg (nie)

Niech p i q będą dwoma zdaniami.

- ▶ \neg : $\{0,1\} \mapsto \{0,1\}$, i dla pozostałych spójników mamy $\{0,1\} \times \{0,1\} \mapsto \{0,1\}$.
- Spójniki logiczne w kontekście zbiorów rozmytych są generalizowane z kontekstu dwuwartościowego

Logika rozmyta: Koniunkcja

- Niech α , β będą zbiorami rozmytymi na dziedzinie X. Tzn., $\mu_{\alpha}: X \mapsto [0,1]$ i $\mu_{\beta}: X \mapsto [0,1]$
- Koniunkcję α i β definiujemy jako zbiór rozmyty $\alpha \wedge \beta$ o funkcji przynależności $\mu_{\alpha \wedge \beta}: X \mapsto [0,1]$ określony wzorem $\mu_{\alpha \wedge \beta}(x) = T(\mu_{\alpha}(x), \mu_{\beta}(x)) \quad \forall x \in X$
- ► Funkcja $T: [0,1] \times [0,1] \mapsto [0,1]$ jest T-normą.

Własności T-normy

Warunki brzegowe: T(0,x) = 0 oraz T(1,x) = x.

- Monotoniczność: Jeśli x ≤ y, T(x,z) ≤ T(y,z).
- Symetria: T(x, y) = T(y, x)

Przykładowe T-normy

T-norma Zadeha: $T(x, y) = min(x, y) \quad \forall x, y \in [0, 1]$

- T-norma Mengara: $T(x,y) = x.y \quad \forall x,y \in [0,1]$
- ► T-norma Łukasiewicza: $T(x,y) = max(0, x + y 1) \quad \forall x, y \in [0, 1]$

Przykład

Przymujemy $X = \{x_1, x_2, x_3, x_4\}$

- ▶ Dla α równego $\{(x_1, 0.4), (x_2, 0), (x_3, 0.5), (x_4, 1)\}$ oraz β równego $\{(x_1, 0.6), (x_2, 0.5), (x_3, 0), (x_4, 1)\}$ otrzymujemy następujące wyniki dla różnych koniunkcji :
- Zadeh: $\alpha \wedge \beta$ równa się zbiorowi rozmytemu $\{(x_1, 0.4), (x_2, 0), (x_3, 0), (x_4, 1)\}$
- Mengar: $\alpha \wedge \beta$ równa się zbiorowi rozmytemu $\{(x_1, 0.24), (x_2, 0), (x_3, 0), (x_4, 1)\}$
- Lukasiewicz: $\alpha \wedge \beta$ równa się zbiorowi rozmytemu $\{(x_1,0),(x_2,0),(x_3,0),(x_4,1)\}$

Altarnetywa jako Ko-norma

- Warunki brzegowe: C(0, x) = x oraz C(1, x) = 1.
- Monotoniczność: Jeśli x ≤ y, C(x,z) ≤ C(y,z).
- Symetria: C(x, y) = C(y, x)
- ► Łączność: C(x, C(y, z)) = C(C(x, y), z)

Przykładowe Ko-normy

Ko-norma Zadeha: $C(x, y) = max(x, y) \quad \forall x, y \in [0, 1]$

- ► K-norma Mengara: C(x,y) = x + y xy $\forall x,y \in [0,1]$
- ► T-norma Łukasiewicza: $C(x,y) = min(x + y, 1) \quad \forall x, y \in [0, 1]$

Negacja: zbiór rozmyty

- Negację zbioru α definiujemy jako zbiór $\neg \alpha$ o funkcji przynależności $\mu_{\neg \alpha}: X \mapsto [0,1]$ określonej wzorem $\mu_{\neg \alpha}(x) = 1 \mu_{\alpha}(x)$.
- ▶ Dla α równego $\{(x_1,0.4),(x_2,0),(x_3,0.5),(x_4,1)\}$, $\neg \alpha$ równa się: $\{(x_1,0.6),(x_2,1),(x_3,0.5),(x_4,0)\}$

Dualność: T-norm i ko-norm

- Na przykład: (min, max, 1 x)
- ► (*T*-Łukasiewicz, *C*-Łukasiewicz, 1-*x*)

Implikacja dla zbiorów rozmytych

- Jak w kontekscie klasycznym, możemy zdefinować: α ⇒ β = ¬α ∨ β.
- ightharpoonup Zadeh: $\mu_{\alpha \Rightarrow \beta}(x) = max(1 \mu_{\alpha}(x), \mu_{\beta}(x))$
- Łukasiewicz: $\mu_{\alpha \Rightarrow \beta}(x) = min(1, 1 \mu_{\alpha}(x) + \mu_{\beta}(x))$

Dziękuję za uwagę