Bayesian methods for Model Selection and related problems

Gonzalo García-Donato

Universidad de Castilla-La Mancha (Spain) and VaBar

ScoVa16-Valencia

VaBar and model selection

- Model Selection, MS, has been a main line of research of our group during the last 15 years.
- Our work is greatly influenced by two prominent Bayesians: Susie Bayarri and Jim Berger.
- Our paradigm is objective Bayesian.
- Regarding the relation MS-VaBar, this talk presents the problem, reviews what we
 have done (past), briefly introduce current lines of research (present).
- The objective is call your attention to this fascinating problem and, why not, capturing your interest to collaborate in the next years.... simBIOSSis and let us write the future!

google: garcia-donato ScoVa16-Valencia

- 1 Introducing the problem
- 2 Our view and what we have done
- 3 What we are doing now

- 1 Introducing the problem
- 3 What we are doing now

Model selection

• Model Selection (or model choice), a definition: statistical problem where several statistical models

$$M_1(\mathbf{y} \mid \boldsymbol{\theta}_1), M_2(\mathbf{y} \mid \boldsymbol{\theta}_2), \ldots, M_k(\mathbf{y} \mid \boldsymbol{\theta}_k),$$

are considered as plausible explanations for an experiment with output y.

Keyword is model uncertainty

since it is unknown which is the true model and that uncertainty is explicitly considered.

- ullet The set of competing models is called the model space and usually is denoted as $\mathcal{M}.$
- Possible specific MS goals:
 - To choose a single model (which is the true model?),
 - To explicitly incorporate model uncertainty to provide more realistic inferences/predictions (this is called *Model Averaging*), a problem sometimes presented as mixture modeling.
- Two particular (and very popular) MS problems
 - Hypothesis testing, and

• Variable selection

Hypothesis testing

ullet In testing, the competing models have a common statistical form, say $M(y \mid \theta)$, but differ on where θ is located

$$M_i(\mathbf{y} \mid \boldsymbol{\theta}_i) = \{ M(\mathbf{y} \mid \boldsymbol{\theta} = \boldsymbol{\theta}_i), \ \boldsymbol{\theta}_i \in \Theta_i \}, \ i = 1, \dots, k,$$

normally denoted as

$$H_i: \boldsymbol{\theta} \in \Theta_i, \ i=1,\ldots,k.$$

• Particularly popular/important/difficult is the testing problem with some of Θ_i consisting on a single point in the corresponding Euclidean space (e.g. $\theta=0$). This testing problem is normally called *point* or *precise*.

Variable selection

Variable selection

• Model selection problems where the different models, M_i differ about which variables of a given set x_1, x_2, \ldots, x_p explains a response variable y.

Variable selection is a multiple testing problem with 2^p (precise) hypotheses of the type

$$H_i: \beta_{j_1} = \cdots = \beta_{j_k} = 0.$$

- Introducing the problem
- Our view and what we have done
 - The Bayesian answer :) and related aspects :
 - Our contributions to the MS problem: the present
- 3 What we are doing now

- Our view and what we have done
 - The Bayesian answer :) and related aspects :(

google: garcia-donato

Posterior model probabilities

• The formal Bayesian answer to the MS problem is based on the posterior probabilities of the competing models:

$$Pr(M_j \mid \mathbf{y})$$

- \bullet Such (discrete) posterior distribution encapsulates the responses to every question in Model Selection. Two examples:
 - If you want to select a single model use the most probable a posteriori and report its posterior probability as a measure of uncertainty.
 - Model averaging? Use $Pr(M_i \mid y)$ as weights.

Posterior model probabilities and Bayes factors

Assuming one of the models in ${\mathcal M}$ is the true model

$$Pr(M_j \mid \mathbf{y}) = \frac{m_j(\mathbf{y})Pr(M_j)}{\sum_i m_i(\mathbf{y})Pr(M_i)} = \frac{B_{j0}Pr(M_j)}{\sum_i B_{i0}Pr(M_i)},$$

where

Ingredient	Name	Type of problem
$m_i(\mathbf{y}) = \int M_i(\mathbf{y} \mid \boldsymbol{\theta}_i) \pi_i(\boldsymbol{\theta}_i) d\boldsymbol{\theta}_i$	prior marginal	Computational
B_{i0}	Bayes factor of M_i to M_0	None
$Pr(M_i)$	prior prob. of M_i	Multiplicity
C	Normalizing constant	Computational
$\pi_i(oldsymbol{ heta}_i)$	prior for M_i	All sort of problems

$\pi_i(\boldsymbol{\theta}_i)$: the main conceptual challenge

MS prior distributions are, perhaps, the most problematic aspect of any Bayesian approach. In MS the difficulties grow:

- Results are very sensitive to the prior distribution (changing the prior you can
 essentially obtain whatever you want).
- ullet Such sensitiveness does not disappear asymptotically with n.
- Neither improper nor vague priors can be used.
- Frequentist properties are not very useful to differentiate among priors (and are potentially misleading)

- 1 Introducing the problem
- Our view and what we have done
 - The Bayesian answer :) and related aspects :(
 - Our contributions to the MS problem: the present
- 3 What we are doing now

Contributions (I): About $\pi_i(\theta_i)$

Our contributions about π_i have roots on Jeffreys who first proposed using proper priors centered at the 'null' and with flat tails (Cauchy). Zellner and Siow (1980) extended this idea to regression problems.

- Bayarri and Garcia-Donato (2007), used such priors to test general hypotheses in linear models (regression or ANOVA).
- Bayarri and Garcia-Donato (2008), propose a general mathematical rule that extend Jeffreys' priors to any other testing problem. These are named as Divergence Based priors.
- Bayarri, Berger, Forte and Garcia-Donato (2012), introduce a deep methodological change. They propose and formalize the idea of specifying (and characterizing) priors based on sensible criteria like invariance, predictive matching and consistency.
- The method is illustrated proposing a new prior for variable selection in linear models with optimal properties that they call *Robust prior*.

Contributions (II): Computational aspects

The number of competing models in variable selection, 2^p , becomes easily very, very large. Posterior probabilities cannot be exactly computed and heuristic methods are called for.

Garcia-Donato and Martinez-Beneito (2013), show that very simple Gibbs algorithms
plus frequency of visits to estimate probabilities, largely outperforms modern
searching methods with estimations based on re-normalization.

Contributions (III): Software

The high specificity of the MS problem jointly with the particularities of its priors makes almost useless standard Bayesian software (of the type WinBUGS, etc)

- Forte and Garcia-Donato (2012) have developed BayesVarSel, an R-package that solves testing and variable selection problems in linear models.

 Main characteristics:
 - Priors: "Robust", "g-Zellner", "Zellner-Siow", "Liang".
 - Priors for M_i : "Constant", "ScottBerger".
 - Methods: exact (sequential or parallel) and the empirical Gibbs here cited.
 - Results: HPM, inclusion probabilities (univariate, joint, conditionals), image plots, etc.
 - And with a simple and familiar (lm-type) interface:
 >Bvs(formula="IMC" .", data=obesity, n.keep=1000)

Contributions (IV): Applications

Does it have real applications?

- Determining the number of jointpoints in epidemiological temporal series (Martinez-Beneito and others in 2012).
- Studying which factors explain the Gross Domestic Product in the US (Forte and others in 2015).

- Introducing the problem
- 2 Our view and what we have done
- What we are doing now
 - Large p small n problem
 - Other projects in progress

- 1 Introducing the problem
- Our view and what we have done
- What we are doing nowLarge p small n problem
 - Other projects in progress

google: garcia-donato

High dimensional setting

- With M. Martinez-Beneito and in collaboration with Jim Berger (Duke University) we are working on the variable selection problem with n << p.
- Key idea is noting that models can be classified as singular (more parameters than n) or regular (number of parameters $\leq n$). Hence $\mathcal{M} = \mathcal{M}^{\mathcal{S}} \cup \mathcal{M}^{\mathcal{R}}$.

Result

the Bayes factor of any $M_{\gamma} \in \mathcal{M}^S$ to the null is $B_{\gamma 0} = 1$ (for the rest $B_{\gamma 0}$ is the conventional one, say robust).

M^S (dark side)

20 / 28

Who wins?

The scene now is that the dark side, \mathcal{M}^S , is a vast deserted (only ones) region while the light side, \mathcal{M}^R , is a minuscule region lighted by the data.

• eg. if p=8408 and n=41, the proportion of regular models over the total number of models is of the order 10^{-2000} .

The relevance a posteriori of singular models is

$$P^{S} = Pr(M^{T} \in \mathcal{M}^{S} \mid \mathbf{y}) = \frac{p - n + 1}{p - n + 1 + nC^{R}},$$

where C^R is the normalizing constant conditionally on \mathcal{M}^R .

google: garcia-donato ScoVa16-Valencia

The methodology in practice

No need to 'explore' the whole model space, it suffices with

- ullet exploring $\mathcal{M}^{\mathcal{R}}$ (still moderate to large: MCMC in Garcia-Donato and Martinez-Beneito, 2013),
- estimating C^R (George and McCulloch, 1997) and hence P^S ,
- any relevant feature of the posterior distribution can be easily computed.

google: garcia-donato ScoVa16-Valencia

An illustrative example

Simulated experiment in Hans et al (2007), with n=41 patients and p=8408 genes from a tumor specimen. The 'true' data generating model is

$$y_i = 1.3x_{i1} + .3x_{i2} - 1.2x_{i3} - .5x_{i4} + N(0, 0.5).$$

We obtain:

n	P^S	q_1	q_2	q_3	q_4	\bar{q}_{-T}	q_{-T}^U	HPM
41	0.004	0.843	0.154	0.766	0.002	0.002	0.038	$\{x_1, x_3\}$
30	0.320	0.300	0.171	0.173	0.160	0.159	0.251	$\{x_1, x_3\}$
20	0.830	0.417	0.416	0.415	0.415	0.414	0.419	$\{x_{4026}, x_{7748}\}$
10	0.995	0.497	0.497	0.497	0.497	0.497	0.497	{Null,Full}

Keys: q_i is the inclusion probability for x_i (i=1,2,3,4) and \bar{q}_{-T} , q_{-T}^U are respectively the mean and maximum of the inclusion probabilities for the spurious variables. HPM is the estimated most probable a posteriori model.

google: garcia-donato ScoVa16-Valencia

- Introducing the problem
- 2 Our view and what we have done
- What we are doing now
 - Large p small n problem
 - Other projects in progress

google: garcia-donato

BayesVarSel vs. others

- There are other R packages, that perform similar calculations as ours does.
- The closest are BayesFactor, BMS and mombf.
- With A. Forte and in collaboration with Mark Steel (Warwick) we are working on comparing these packages with emphasis on compatibility and efficiency.

Package	BayesFactor	BayesVarSel	BMS
	newPriorOdds(BFobject)=	prior.models=	mprior=
$\theta = 1/2$	rep(1,2 [^] p)	"constant"	"fixed" or "uniform"
$ heta \sim Unif(0,1)$	-	"ScottBerger"	"random"

Variable selection in ANCOVA

- Analysis of Covariance (ANCOVA) models are linear models with continuous (also known as covariates) and categorical (factors) explanatory variables.
- A factor F with J levels enters the design matrix through x_1, \ldots, x_{J-1} dummy variables. This implies several problems for the variable selection strategy.
 - Prior probabilities?
 - How to interpret inclusion probabilities? Which level is causing the factor be significant?
 - How to summarize results?
- This is a line of research in collaboration with R Paulo (U of Lisbon)

google: garcia-donato

Students

- With A Forte and A Moro (master thesis work): The theory of the criteria paper, (Bayarri et al, 2012), although presented generically, was illustrated in normal Linear models. How does it apply in GLM's?
- With A Forte and E Moreno (thesis in progress): the problem with missing data in variable selection and summarizing the posterior distribution.
- With A Forte and R Gavidia (thesis in progress): Variable selection in genomics.

ScoVa16-Valencia google: garcia-donato

VaBar and model selection

Thanks!