

Umdruck 06 zur Übung der Vorlesung "Technische Akustik und Lärmbekämpfung" im WS 14/15

Sie werden mit der akustischen Planung eines Klassenzimmers mit rechteckigem Grundriss betraut. Sie sollen zunächst die Hörsamkeit des Klassenzimmers nach **DIN 18041:2004-05 "Hörsamkeit in kleinen bis mittelgroßen Räumen"** betrachten. Diese soll die sprachliche Kommunikation und musikalische Darbietung in den vorgesehenen Räumen angemessen sicherstellen.

Die Randbedingungen sind wie folgt:

- Raumgruppe A, da Unterrichtsraum
- Raumvolumen: $V = 8.5m \cdot 7m \cdot 3m = 178.5m^3$
- Für 30 Kinder und einer Lehrkraft vorgesehen
- Keine elektroakustische Beschallungsanlage vorgesehen
- Ausstattung:

Art	Fläche
Tür, Holz, lackiert	$S_T = 2m^2$
Fensterfläche	$S_F = 12.25m^2$
Wände und Decke: Glattputz	$S_W = 138.25m^2$
Boden: PVC-Fußbodenbelag	$S_B = 59.5m^2$

Bewertete Schallabsorptionsgrade

- Schallabsorptionsgrade α_i : Absorptionsgrade gemessen in Terzbändern nach ISO 354.
- Praktischer Schallabsorptionsgrad α_{pi} : Arithmetisches Mittel dreier Schallabsorptionsgrade der Terzen im Oktavband.
- Bewerteter Schallabsorptionsgrad α_W : Frequenzunabhängige Einzahlangabe. Entsprechend der verschobenen Bezugskurve nach DIN 11654 Wert an 500 Hz.

Bezugskurve zur Bestimmung des bewerteten Schallabsorptionsgrades:

- 1. Bezugskurve in Schritten von 0,05 in Richtung zu den gemessenen Werten verschieben,
- 2. Bis Summe der ungünstigen Abweichungen kleiner oder gleich 0,10
- Ungünstige Abweichung bei einer bestimmten Frequenz: Messwert niedriger als Bezugswert (Bezugskurve nimmt Wert zu hoch an)
- Bewerteter Schallabsorptionsgrad Wert der verschobenen Bezugskurve bei 500 Hz

Frequenz [Hz]	Wert	
250	0.80	
500	1.00	
1000	1.00	
2000	1.00	
4000	0.90	

Bestimmung eines bewerteten Schallabsorptionsgrades:

Frequenz [Hz]	Messwert [-]	Bezugswert [-]	Abweichung [-]
250			
500			
1000			
2000			
4000			

Summe ungünstiger Abweichungen: < 0.10

Offene Fensterfläche vorher

Material	$\alpha_W[-]$	A [m²]	S[m²]	$\alpha_W \cdot S [m^2]$
Glattputz				
Tür, Holz, lackiert				
Fenster				
PVC-				
Fußbodenbelag				
Klappstuhl aus				
Holz, unbesetzt				
Schüler in				
Unterrichtsräumen				
an Holztischen:				
3m² pro Person				
6 m² Person,				
stehend				

Unbesetzt: $\alpha_W \cdot S = m^2$, $T_{N,unb} = sec$ Besetzt: $\alpha_W \cdot S = m^2$, $T_{N,bes} = sec$

Offene Fensterfläche <u>nachher</u>

Material	$\alpha_W[-]$	A [m²]	S[m²]	$\alpha_W \cdot S [m^2]$
Glattputz				
Tür, Holz, lackiert				
Fenster				
Teppich, 7mm –				
10mm Florhöhe				
Gelochte				
Metallplatte mit				
poröser Schicht				
Einfacher				
Polsterstuhl mit				
Textilbezug				
Schüler in				
Unterrichtsräumen				
an Holztischen:				
3m² pro Person				
6 m² Person,				
stehend				

Unbesetzt: $\alpha_W \cdot S = m^2$, $T_{N,unb} = sec$ Besetzt: $\alpha_W \cdot S = m^2$, $T_{N,bes} = sec$

Nach Oktavbändern

Frequenz [Hz]	125	250	500	1000	2000	4000
T_N , besetzt,						
vorher [sec]						
T_N , besetzt,						
T_N , besetzt, nachher [sec]						
T_N/T_{Ist}						
T_N/T_{soll}						