An Online Tool For Operational Probabilistic Drought Forecasting System: A Statistical-Dynamical Framework

Mahkameh Zarekarizi¹ (mahkam2@pdx.edu), Hamid Moradkhani¹ (hamidm@pdx.edu), Hongxiang Yan² (hongxiang.yan@pnnl.gov)

¹Remote Sensing and Water Resources Lab, Portland State University, Portland, OR

²Pacific Northwest National Laboratory, Richland, WA

Introduction

- This study proposes a hybrid framework for probabilistic drought monitoring and forecasting systems (Yan et al., 2017a,b)
- Droughts have significant impacts on water supply, water quality, agriculture, domestic water supply, crop losses, crop stress, wildlife, etc.
- The 2012 summertime flash drought event across the Central U.S. resulted in a major curtailment of crop yields, and caused about \$12 billion economic loss.
- The uncertainty of initial condition is found to have a key role in drought monitoring and seasonal drought forecasting skills.
- Data assimilation (DA) is used to characterize the uncertainty in initial condition and drought monitoring. And later it is coupled with a Statistical multi-variate approach (Copulas) to generate probabilistic seasonal drought forecast.

Drought Monitoring

DA: High-Performance Computing

Data Assimilation

Operational Drought Forecasting: Fall 2017 Seasonal Probabilistic Forecast Oct-Dec 2017 Oct-Dec 2017 100'W 90'W 90'W

Validation: Summer 2012

Discussion and Conclusion

- A novel dynamical-statistical approach for probabilistic drought forecasting is presented.
- Initial condition uncertainty is explicitly characterized by ensemble data assimilation.
- A multivariate approach using copula functions is coupled with the ensemble data assimilation.
- Results from both synthetic and real case studies suggest that the proposed drought forecasting system significantly improves the seasonal drought forecasting skills and can facilitate the drought preparation and declaration.

Reference

- Yan, H., Moradkhani, H., & Zarekarizi, M. (2017). A probabilistic drought forecasting framework: A combined dynamical and statistical approach. Journal of Hydrology, 548, 291–304. http://doi.org/10.1016/j.jhydrol. 2017.03.004
- Yan, H., Moradkhani, H., Zarekarizi. M. (2017). Toward Improving Drought Monitoring using the Remotely Sensed Soil Moisture Assimilation: A Parallel Particle Filtering Framework. Under Review

Acknowledgment

The authors appreciate the financial support provided by NSF grant CCF-1539605 and NOAA grant NA140AR4310234 to conduct this research.