Homework: Function operations and quadratics review

1a. Write down the value of

(i) $\log_3 27$; [1 mark]

(ii) $\log_8 \frac{1}{8}$; [1 mark]

(iii) $\log_{16}4$.

 ${f 1d.}$ Hence, solve ${
m log}_3 27 + {
m log}_8 rac{1}{8} - {
m log}_{16} 4 = {
m log}_4 x$ [3 marks]

2a. The following diagram shows the graph of a function y=f(x) , for $-6\leqslant x\leqslant -2$.

The points (-6, 6) and (-2, 6) lie on the graph of f. There is a minimum point at (-4, 0).

Write down the range of f.

[2 marks]

2b. Let g(x) = f(x-5).

On the grid above, sketch the graph of g.

[2 marks]

2c. Write down the domain of g.

[2 marks]

 $_{ extsf{3a. Let}} f(x) = 8x + 3 ext{ and } g(x) = 4x ext{, for } x \in \mathbb{R}.$

Write down g(2). [1 mark]

3b. Find $(f \circ g)(x)$.

 $3c. \operatorname{Find} f^{-1}(x)$. [2 marks]

 $\mathbf{4a.} \operatorname{Let} f(x) = x^2 + 2x + 1$ and g(x) = x - 5, for $x \in \mathbb{R}$.

Find f(8). [2 marks]

4b. Find $(g \circ f)(x)$.

4c. Solve $(g \circ f)(x) = 0$.

5a. Let $f(x)=(x-5)^3$, for $x\in\mathbb{R}$.

Find $f^{-1}(x)$.

5b. Let g be a function so that $(f \circ g)(x) = 8x^6$. Find g(x) .

6a. The following diagram shows part of the graph of a quadratic function f.

The vertex is at (1, -9), and the graph crosses the y-axis at the point (0, c).

The function can be written in the form $f(x)=(x-h)^2+k$.

Write down the value of h and of k. [2 marks]

6b. Let $g(x) = -(x-3)^2 + 1$. The graph of g is obtained by a reflection of the graph of f in the x-axis,

followed by a translation of $\begin{pmatrix} p \\ q \end{pmatrix}$.

Find the value of p and of q. [5 marks]