

Representation Learning Algorithms

Presenters: Mansi Tomer, Nirbhay Sharma

Emails: mansitomer@iisc.ac.in, nirbhays@iisc.ac.in

Problem definition & prior work

- ➤ Learning rich and generalizable feature representations is crucial for many vision tasks, especially in scarce label scenario
- ➤ We try to investigate and compare diverse self-supervised representation learning algorithms to identify which approach yield most effective features
- Prior Work Includes the following
 - SimCLR (ICML 2020) Contrastive Loss Based
 - ➤ Barlow Twins (ICML 2021) Loss Based
 - > BYOL (NIPS 2020) Network Based (Momentum Encoder)
 - > SimSiam (CVPR 2021) Network Based (Predictor)
 - Triplet Margin Loss (CVPR 2021) Loss Based
 - > SupCon (NIPS 2020) Loss Based

Work done

➤ We implement SimCLR, SupCon, BYOL, SimSiam, Triplet, Barlow_Twins **from Scratch in Pytorch**, TSNE plot is shown below (For Resnet18)

Work done

➤ We implement SimCLR, SupCon, BYOL, SimSiam, Triplet, Barlow_Twins **from Scratch in Pytorch**, TSNE plot is shown below (For Resnet50)

Work done

Sample Code snippet of our Scratch Implementation

```
def loss_function(loss_type = 'supcon', **kwargs):
def train network(**kwargs):
                                                                 print(f"loss function: {loss_type}")
                                                                 loss mlp = nn.CrossEntropyLoss()
    train algo = kwargs['train algo']
                                                                 if loss_type == "simclr":
    kwargs.pop("train algo")
                                                                     return SimCLR(**kwargs), loss mlp
    if train algo == "supcon" or train algo == "simclr
                                                                 elif loss type == 'supcon':
         kwargs["train algo"] = train algo
                                                                     return SupConLoss(**kwargs), loss mlp
        train supcon(**kwargs)
                                                                 elif loss type == "triplet":
                                                                     return TripletMarginLoss(**kwargs), loss mlp
    elif train algo == "triplet":
                                                                 elif loss_type == "simsiam":
         train triplet(**kwargs)
                                                                     return SimSiamLoss(), loss mlp
    elif train algo == "simsiam":
                                                                 elif loss type == 'byol':
        train simsiam(**kwargs)
                                                                     return BYOLLoss(), loss mlp
    elif train algo == 'byol':
                                                                 elif loss type == "barlow twins":
                                                                     return BarlowTwinLoss(**kwargs), loss_mlp
         train_byol(**kwargs)
                                                                 elif loss type == "dare":
    elif train algo == "barlow twins":
                                                                     return DAReLoss(**kwargs), loss mlp
        train barlow twins(**kwargs)
                                                                 elif loss_type == "dial":
    elif train algo == "dare":
                                                                     return DiALLoss(**kwargs), loss mlp
         train DARe(**kwargs)
                                                                 else:
                                                                     print("{loss type} Loss is Not Supported")
                                                                     return None
```


Key results and summary

> Results of all methods Top-1 accuracy on CIFAR10/100 datasets

> Our Implementation from scratch is available at:

https://github.com/nirbhay-design/RepresentationLearningAlgorithms

Algorithm	CIFAR10 (R50)	CIFAR100 (R50)	CIFAR10 (R18)	CIFAR100 (R18)
SimCLR	87.5 (91.8)	57.7 (68.3)	85.9 (91.8)	55.0 (66.83)
SupCon	94.0 (96.0)	74.7 (76.5)	93.5	70.4
Triplet	83.4	76.3	86.0	64.5
Barlow Twins	81.2 (90.8)	47.7	80.3 (84.7)	45.8
BYOL	83.0 (91.3)	47.0 (78.4)	84.8 (83.2)	54.8
SimSiam	76.5	34.5	88.6 (91.9)	62.3
DARe (Ours)	89.4	62.3	87.3	61.6

Contributions and novelty

- > We design a novel loss function inspired from VAE
- ➤ The loss composed of Contrastive Loss + Jenson Shannon divergence term

Contributions and novelty

> Equations are described as follows

$$\mathcal{L}_{DARe} = \mathcal{L}_{con}(z_1, z_2) + \lambda \mathcal{L}_{JSD}(\mathcal{N}(\mu_1, \sigma_1^2 I), \mathcal{N}(\mu_2, \sigma_2^2 I))$$

$$\mathcal{L}_{con}(z_1, z_2) = -\sum_{i=1}^{n} \log(\frac{e^{sim(z_{1i}, z_{2i})/\tau}}{\sum_{j \neq i} e^{sim(z_{1i}, z_{2j})/\tau}})$$

$$\mathcal{L}_{KL}(\mathcal{N}(\mu_1, \sigma_1^2 I), \mathcal{N}(\mu_2, \sigma_2^2 I)) = \frac{1}{2} \left(\sum_{i} \left(\frac{\sigma_{1i}^2}{\sigma_{2i}^2} + \log(\frac{\sigma_{2i}^2}{\sigma_{1i}^2}) + \frac{(\mu_{2i} - \mu_{1i})^2}{\sigma_{2i}^2} \right) \right)$$

DARe C10 ResNet50

