Assignment 5 - Classification Model Experimentation

and Deployment Instructions

Dataset: Drug Classification

Link: https://shorturl.asia/xem81

Problems:

This dataset contains information about drug classification based on patient general information and its diagnosis. Machine learning model is needed in order to predict the outcome of the drugs type that might be suitable for the patient.

Dataset Description:

There are 6 variables in this data set: 4 categorical variables and 2 continuous variables.

The following is the structure of the data set.

Variable Name	Description
Age	Patient Age
Sex	Gender of patient (male or female)
ВР	Levels of blood pressure (high, normal, or low)
Cholesterol	Levels of cholesterol (high or normal)
Na_to_K	Sodium to potassium ratio in blood
Drug	Type of drug

The machine learning models used in this assignment are:

- 1. K Neighbours (KNN)
- 2. Logistic Regression
- 3. Support Vector Machine (SVM)

K Neighbours (KNN)

	precision	recall	f1-score	support
0	0.8333	1.0000	0.9091	15
1	1.0000	0.8333	0.9091	6
2	1.0000	1.0000	1.0000	3
3	1.0000	0.8000	0.8889	5
4	1.0000	0.9091	0.9524	11
accuracy			0.9250	40
macro avg	0.9667	0.9085	0.9319	40
weighted avg	0.9375	0.9250	0.9253	40

K Neighbours accuracy is: 92.50%

Logistic Regression

	precision	recall	f1-score	support
0	1.0000	0.9333	0.9655	15
1	0.8571	1.0000	0.9231	6
2	1.0000	1.0000	1.0000	3
3	1.0000	1.0000	1.0000	5
4	1.0000	1.0000	1.0000	11
accuracy			0.9750	40
macro avg	0.9714	0.9867	0.9777	40
weighted avg	0.9786	0.9750	0.9755	40

Logistic Regression accuracy is: 97.50%

Support Vector Machine (SVM)

	precision	recall	f1-score	support
0	1.0000	1.0000	1.0000	15
1	1.0000	1.0000	1.0000	6
2	1.0000	1.0000	1.0000	3
3	1.0000	1.0000	1.0000	5
4	1.0000	1.0000	1.0000	11
accuracy			1.0000	40
macro avg	1.0000	1.0000	1.0000	40
weighted avg	1.0000	1.0000	1.0000	40

Support Vector Machines accuracy is: 100.00%

Confusion Matrix: SVM - 12 - 10 - 8 - 6 - 2 - 0 ó i Predicted

Model Selection

From the results, The Support Vector Machine (SVM) model was able to predict the drug class with 100% accuracy. We used SVM model to create a Streamlit application.

Hyperparameter Tuning (using SVM Model)

Grid Search ¶

```
[62]: import numpy as np
       import matplotlib.pyplot as plt
       import seaborn as sns
      from sklearn.model_selection import train_test_split , GridSearchCV
      from sklearn.preprocessing import StandardScaler
      from sklearn.svm import SVC
      from sklearn.metrics import accuracy score
      from sklearn.pipeline import Pipeline
      # Create a pipeline with StandardScaler and SVM classifier
      pipeline = Pipeline([
          ('scaler', StandardScaler()),
          ('svm', SVC())
      ])
       # Define the hyperparameter grid to search
       param grid = {
          'svm_C': [0.1, 1, 10],
          'svm_kernel': ['linear', 'rbf'],
          'svm__gamma': [0.001, 0.01, 0.1, 1]
      # Create a GridSearchCV object to perform hyperparameter tuning
      grid_search = GridSearchCV(pipeline, param_grid, cv=5, n_jobs=-1)
       # Fit the grid search to the data
      grid_search.fit(X_train, y_train)
      # Get the best parameters and the best estimator
      best_params = grid_search.best_params_
      best_estimator = grid_search.best_estimator_
      print("Best Hyperparameters:", best_params)
      # Evaluate the model on the test data
      accuracy = best_estimator.score(X_test, y_test)
      print("Test Accuracy:", accuracy)
```

Best Hyperparameters: {'svm__C': 10, 'svm__gamma': 0.001, 'svm__kernel': 'linear'}
Test Accuracy: 1.0

Github: https://github.com/wongsakorn-s/Predict DrugType

Streamlit: https://predictdrugtype-negekzpbz7rba7hggphcrf.streamlit.app

Drug Type Prediction

Prediction Result:

drugX