

CSCI 544 Applied Natural Language Processing

Mohammad Rostami USC Computer Science Department

Logistical Notes

- HW:
- Submit HW1 on Blackboard.
- Project Group Formation Deadline: 09/12
- ~3/4 of the class have formed their group.
- Contact groups with 3 or more members on Excel
- Do NOT form more than 51 groups
- Meet weekly, helpful for both HW and project
- Paper Selection Deadline: 09/19
- Description upload on Blackboard
- Check and then enter your paper: <u>https://docs.google.com/spreadsheets/d/1_vafG77ijmETCnuVZvKpT35k--5op5wn71GZXgAY7O0</u>
- Project Proposal Deadline: 10/03
- Pick your paper with an outlook for the project
- Check YouTube and Arxiv for projects of previous years
- It is OK you pick something in line with an ongoing project but not past projects

Model Evaluation Process

- We use a training dataset for model selection
- A good parametric model along with a suitable training algorithm guarantees training a model that works well on the training data
- We need to validate that trained models generalize well on unseen data instances
- We need a second testing dataset which is fully independent of the training dataset
- We randomly split the annotated dataset into testing and training splits (sometimes, a validation set is generated as well)

Evaluation Metrics

- Accuracy: proportion of correctly classified items
- Accuracy can be dominated by true negatives (items correctly classified as not in a class).
- Sensitive with respect to imbalance
- Precision: True Positives

 True Positives+False Positive
- Recall: True Positives

 True Positives+False negative
- Precision and recall are not useful metrics when used in isolation?
- We want our model to have good performance with respect to both metrics
- Implemented in sklearn

Evaluation Metrics

Why having one measure is helpful?

•
$$F1 = \frac{2 \text{ Precision Recall}}{\text{Precision} + \text{Recall}}$$

- F1 is biased towards the lower of precision and recall:
- harmonic mean < geometric mean < arithmetic mean
- F1=0 when Precision=0 or Recall=0
- Generalized F score:

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}.$$

Structured Prediction

- Unstructured Prediction
- Output consists of a single prediction: classification, regression
- We may want to predict several outputs
- Examples: image segmentation, sequence tagging
- We have Strong correlations between output components
- Exponential output space: decoding is challening

$$y^* = \operatorname{argmax}_{y \in \mathcal{Y}} p(y \mid x)$$

Sequence Labeling

A structure prediction task

$$Y = < y_i, y_2, \ldots, y_n > \\ \downarrow \\ X = < x_i, x_2, \ldots, x_n > \\ \text{USC} \qquad \text{in} \qquad \text{California}$$

 Goal: assign each token of X, a value from the discrete label-space Y

Part-of-Speech Tagging

Named Entity Recognition

Why Sequence Labeling?

 Helpful to perform downstream information extraction tasks

Part-of-Speech Tagging

- A structured prediction task for NL sequences
- Grammatical word Classes are the label-space
- Reveal useful information about the syntactic role of a word (and its neighbors)

Closed vs Open classes

Part-of-Speech Tagging

- Challenges
- The same word can have different syntactic functions: duck
- Ambiguity

Time	flies	like	an	arrow	
NN	VBZ	IN	DT	NN	(Penn Treebank tags)
NN	NNS	VBP	DT	NN	
VB	NNS	IN	DT	NN	

- Long distance dependencies

How many tags?

Penn Tree Bank Tagset

• 45 tags

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
	conjunction						present	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	"	left quote	or "
LS	list item marker	1, 2, One	TO	"to"	to	**	right quote	or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	<i>IBM</i>	VBG	verb gerund	eating		sent-end punc	.!?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	: ;

Named Entity Tagging

- The goal is finding spans of text that constitute proper names and tag the type of the entities
 - Common entity tags: PER (person), LOC (location), ORG (organization), or GPE (geo-political entity).

Type	Tag	Sample Categories	Example sentences
People	PER	people, characters	Turing is a giant of computer science.
Organization	ORG	companies, sports teams	The IPCC warned about the cyclone.
Location	LOC	regions, mountains, seas	Mt. Sanitas is in Sunshine Canyon.
Geo-Political Entity	GPE	countries, states	Palo Alto is raising the fees for parking.

- Helpful for question answering, linking text to information, etc.
- More challenging than POS tagging
 - What is an entity and what is not?
 - The boundary for an entity
 - Ambiguity: JFK

A Simple Baseline for POS Tagging

- Many words might be easy to disambiguate
- Most Frequent Class: Assign each token (word) to the class it occurred most in the training data. (e.g. student/NN)
 - Entirely discarding contextual information
- How accurate do you think this baseline would be at tagging words?
 - 92.34% on WSJ corpus
- Is this a good performance:
 - The average English sentence has 14 words
- It is an unsolved task:
 - SOTA: 97%
 - Highly depends on the domain

Sequence Labeling for POS

- The function (or POS) of a word depends on its context
 - The/DT back/ADJ door/NN
 - On/IN my/PRP\$ back/NN
 - Win/VB the/DT voters/NNS back/RP
- Certain POS combinations are extremely unlikely

```
- <JJ, DT> ("good the")
- <DT, IN> ("the in")
```

- Better to make predictions on entire sentences instead of individual words
 - Sequence labeling modeling: hidden Markov models
 - 96% on POS Tagging

Markov Chain

- A model for probabilities of sequences of random variables (states), each of which can take on values from some set and transition from one to another
- Model Parameters: transition probabilities (A) and initial probability distribution (π)

The future state only depends on the current state

$$P(q_i = a|q_1...q_{i-1}) = P(q_i = a|q_{i-1})$$

Markov Sequence

• Consider a sequence of random variable with length m: X_1, X_2, \ldots, X_m

- Each variable can take a value from a discrete set with the size K
- Each variable depends on the previous variables

We want to model the joint probability

$$P(X_1 = x_1, X_2 = x_2, \dots, X_m = x_m)$$

Markov Assumption

Limited conditional dependence

$$P(X_{1} = x_{1}, X_{2} = x_{2}, \dots, X_{m} = x_{m})$$

$$= P(X_{1} = x_{1}) \prod_{j=2}^{m} P(X_{j} = x_{j} | X_{1} = x_{1}, \dots, X_{j-1} = x_{j-1})$$

$$= P(X_{1} = x_{1}) \prod_{j=2}^{m} P(X_{j} = x_{j} | X_{j-1} = x_{j-1})$$

$$X_{1} \longrightarrow X_{2} \longrightarrow X_{3} \longrightarrow X_{4} \longrightarrow X_$$

A generative model

Markov Model for Sequence Labeling

We need a pair of sequences

$$S=S_i,S_2,\ldots,S_n \qquad \qquad \text{NNP} \qquad \text{VBZ} \qquad \text{IN} \qquad \qquad \text{NNP} \qquad \\ X=X_i,X_2,\ldots,X_n \qquad \qquad \text{USC} \qquad \text{is} \qquad \text{in} \qquad \text{California}$$

 Hidden Markov models: allow us to jointly reason over both X and S

Hidden Markov Model

Given the two sequences of random variables

 X_1, X_2, \ldots, X_m and S_1, S_2, \ldots, S_m , where **X** corresponds to "observations" and **S** corresponds to the underlying "states" that generate the observations, model the joint probability:

HMM Assumptions

Markov Assumption on S

$$P(S_j = s_j | S_{j-1} = s_{j-1}, ..., S_1 = s_1) = P(S_j = s_j | S_{j-1} = s_{j-1})$$
Transition Probabilities

Conditional independence of X and S

 $P(\mathsf{USC}\;\mathsf{is}\;\mathsf{in}\;\mathsf{CA}\,|\,\mathsf{NNP}\;\mathsf{VBZ}\;\mathsf{IN}\;\mathsf{NNP}) = P(\mathsf{USC}\,|\,\mathsf{NNP})P(\mathsf{is}\,|\,\mathsf{VBZ})P(\mathsf{in}\,|\,\mathsf{IN})P(\mathsf{CA}\,|\,\mathsf{NNP})$

HMM Assumptions

Joint Distribution of Sequence Pairs in HMMs

$$P(X_1 = x_j, ..., X_m = x_m, S_1 = s_1, ..., S_m = s_m)$$

$$= P(X_1 = x_j, ..., X_m = x_m | S_1 = s_1, ..., S_m = s_m)$$

Output Independence

$$\times P(S_1 = s_1, ..., S_m = s_m)$$

Markov Assumption

$$= \prod_{j=1}^{m} P(X_j = x_j | S_j = s_j)$$

How to model $P(X_j = x_j | S_j = s_j)$ and $P(S_j = s_j | S_{j-1} = s_{j-1})$?

$$\times P(S_1 = s_1) \prod_{j=1}^{m} P(S_j = s_j | S_{j-1} = s_{j-1})$$

Homogenous HMM

We include an additional assumption

$$P(S_j = s_j | S_{j-1} = s_{j-1}) = t(s_j | s_{j-1})$$

$$P(X_j = x_j | S_j = s_j) = e(x_j | s_j)$$

 the transition and emission probabilities do not depend on the position in the Markov chain (do not depend on the index) j

$$p(x_1 \dots x_m, s_1 \dots s_m) = t(s_1) \prod_{j=2}^m t(s_j | s_{j-1}) \prod_{j=1}^m e(x_j | s_j)$$

- Initial state parameters t(s) for $s \in \{1, 2, \dots, k\}$
- Transition parameters t(s'|s) for $s, s' \in \{1, 2, ..., k\}$
- Emission parameters e(x|s) for $s \in \{1, 2, ..., k\}$ and $x \in \{1, 2, ..., o\}$

HMM Example

Sequence probability

Dummy start state

 S_t

o_t				
	the	cat		
DT	0.9	0.1		
NN	0.5	0.5		

What is the joint probability P(the cat, DT NN)?

A)
$$(0.8*0.8)*(0.9*0.5)$$

B)
$$(0.2*0.8)*(0.9*0.5)$$

C)
$$(0.3*0.7)*(0.5*0.5)$$

HMM Learning

• We collect a fully observed dataset $\{X_i, S_i\}_{i=1}^N$

Training set:

```
1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/ join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ di Nov./NNP 29/CD ./.
```

2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsev N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/
3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/N,/, was/VBD named/VBN a/DT nonexecutive/JJ director/

this/DT British/JJ industrial/JJ conglomerate/NN ./.

. . .

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD peopl of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD help Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sendin them/PRP to/TO San/NNP Francisco/NNP instead/RB ./

Maximum Likelihood Estimate:

$$\max_{t(\cdot|\cdot),e(\cdot|\cdot)} \prod_{i=1}^{N} P(X_i, S_i)$$

$$t(s'|s) = \frac{\text{count}(s \to s')}{\text{count}(s)}$$

$$e(x \mid s) = \frac{\text{count}(s \to x)}{\text{count}(s)}$$

HMM Learning Example

- 1. the/DT cat/NN sat/VBD on/IN the/DT mat/NN
- 2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP
- 3. the/DT old/NN man/VB the/DT boats/NNS

$$t(\mathbf{NN} | \mathbf{DT}) = \frac{3}{4}$$
$$e(\mathbf{cat} | \mathbf{NN}) = \frac{1}{3}$$

Maximum Likehood Estimate:

$$\max_{t(\cdot|\cdot),e(\cdot|\cdot)} \prod_{i=1}^{N} P(X_i, S_i)$$

$$t(s'|s) = \frac{\text{count}(s \to s')}{\text{count}(s)}$$

$$e(x \mid s) = \frac{\text{count}(s \to x)}{\text{count}(s)}$$

Challenge of Unknown Words

Unknown words: Zero probabilities!

Pseudo words: 1993 -> 4digitword, Jago -> initCAP

Word class	Example	Intuition		
twoDigitNum	90	Two digit year		
fourDigitNum	1990	Four digit year		
containsDigitAndAlpha	A8956-67	Product code		
containsDigitAndDash	09-96	Date		
containsDigitAndSlash	11/9/89	Date		
containsDigitAndComma	23,000.00	Monetary amount		
containsDigitAndPeriod	1.00	Monetary amount, percentage		
othernum	456789	Other number		
allCaps	BBN	Organization		
capPeriod	M.	Person name initial		
firstWord	first word of sentence	no useful capitalization informa-		
		tion		
initCap	Sally	Capitalized word		
lowercase	can	Uncapitalized word		
other	,	Punctuation marks, all other		
		words		

The mapping to pseudo words used by Bikel et. al (1999).

Decoding with HMM

• Given an input sequence x_1, \ldots, x_m compute:

$$S^* = \arg \max_{s_1, \dots, s_m} p(x_1, \dots, x_m, s_1, \dots, s_m) = t(s_1) \prod_{j=2}^m t(s_j | s_{j-1}) \prod_{j=1}^m e(x_j | s_j)$$

How can we maximize this over all state sequences?

Bruteforce search: 45¹⁴