

Aritmética binária Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

- Como pode ser feita a representação numérica?
 - Bases numéricas
 - 2 (binário)
 - 10 (decimal)
 - 16 (hexadecimal)

$$N\'{u}mero = \sum_{i=0}^{n-1} B_i \times N^i$$

$$33_{10} = 1 \times 2^5 + 1 \times 2^0 = 100001_2$$
$$= 3 \times 10^1 + 3 \times 10^0 = 33_{10}$$
$$= 2 \times 16^1 + 1 \times 16^0 = 21_{16}$$

Como o sinal dos números binários é implementado?

Como o sinal dos números binários é implementado?

- Método de sinal e magnitude (8 bits)
 - Primeiro bit indica o sinal e demais bits a magnitude

- Método de sinal e magnitude (8 bits)
 - ▶ Primeiro bit indica o sinal e demais bits a magnitude

Duas representações para o valor Ø

- Método de complemento a 1 (8 bits)
 - O valor de sinal oposto é o complemento bit a bit

- Método de complemento a 1 (8 bits)
 - O valor de sinal oposto é o complemento bit a bit

Duas representações para o valor Ø

- Método de complemento a 2 (8 bits)
 - O valor de sinal oposto é o complemento bit a bit + 1

- Método de complemento a 2 (8 bits)
 - O valor de sinal oposto é o complemento bit a bit + 1

27 = 128 VALORES NEGATIVOS E POSITIVOS

- Método de complemento a 2 (8 bits)
 - O valor de sinal oposto é o complemento bit a bit + 1

Com uma (apacidade de n bits, os valores estão entre -2^{n-1} e $+2^{n-1}-1$

- ► Operação de extensão de sinal (sign_extension)
 - \blacktriangleright $A[8] = 10000000_2 = -128_{10}$
 - $B[32] = 1111 \cdots 111110000000_2 = -128_{10}$

$$A = B$$

- Adição binária (8 bits)

 - $A = 200_{10} = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^3 = 11001000_2$ $B = 25_{10} = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 = 00011001_2$
 - $R = A + B = 11001000_2 + 00011001_2 = 11100001_2 (225_{10})$

A_{i}	\mathcal{B}_{l}	R_{i}	(1
Ø	Ø	Ø	Ø
Ø	1	1	Ø
1	Ø	1	Ø
1	1	Ø	1

+	1	1	Ø	Ø	1	Ø	Ø	Ø
,							Ø	
	1	1	1	Ø	Ø	Ø	Ø	1

- Adição binária (8 bits)
 - $A = 200_{10} = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^3 = 11001000_2$
 - $B = 25_{10} = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 = 00011001_2$
 - $R = A + B = 11001000_2 + 00011001_2 = 11100001_2 (225_{10})$

A_{i}	\mathcal{B}_{l}	R_{i}	(1
Ø	Ø	Ø	Ø
Ø	1	1	Ø
1	Ø	1	Ø
1	1	Ø	1

A ADIÇÃO DE NÚMEROS COM N BITS PODE GERAR UM RESULTADO COM ATÉ N + 1 BITS

► Adição (add)

31	25	24 20	19 15	14 12	11 7	6	Ø
	0000000	RS2	RS1	ØØØ	RD	Ø11ØØ11	

```
add rd, rs1, rs2:
rd = rs1 + rs2
```

Adição imediata (add immediate)

```
31 20 19 15 14 12 11 7 6 0

| MM[11:0] | RS1 | 000 | RD | 0010011
```

```
addi rd, rs1, imm:
    rd = rs1 + sign_extension(imm)
nop:
    addi x0, x0, 0
li rd, imm:
    addi rd, x0, imm
li rd, imm32:
    lui rd, get_31_12(imm32)
    addi rd, rd, get_11_0(imm32)
. . .
```

Adição imediata (add immediate)

```
31 20 19 15 14 12 11 7 6 0

| MM[11:0] RS1 000 RD 0010011
```

```
addi rd, rs1, imm:
    rd = rs1 + sign_extension(imm)

...

mv rd, rs1:
    addi rd, rs1, 0

la rd, imm32:
    auipc rd, get_31_12(imm32)
    addi rd, rd, get_11_0(imm32)
```

- Subtração binária (8 bits)

 - $A = 200_{10} = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^3 = 11001000_2$ $B = 25_{10} = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 = 00011001_2$
 - Arr $R = A B = 11001000_2 + 11100111_2 = 10101111_2 (175_{10})$

A_{i}	\mathcal{B}_{i}	R_{i}	Cı
Ø	Ø	Ø	Ø
Ø	1	1	Ø
1	Ø	1	Ø
1	1	Ø	1

+	1	1	Ø	Ø	1	Ø	Ø	Ø
•		1						
	1	Ø	1	Ø	1	1	1	1

- Subtração binária (8 bits)
 - $A = 200_{10} = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^3 = 11001000_2$
 - $B = 25_{10} = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 = 00011001_2$
 - Arr $R = A B = 11001000_2 + 11100111_2 = 10101111_2 (175_{10})$

A_{i}	\mathcal{B}_{l}	R_{i}	(1
Ø	Ø	Ø	Ø
Ø	1	1	Ø
1	Ø	1	Ø
1	1	Ø	1

A SUBTRAÇÃO DE NÚMEROS COM N BITS PODE GERAR UM RESULTADO COM ATÉ N + 1 BITS

► Subtração (sub)

```
31 25 24 20 19 15 14 12 11 7 4 0

01000000 RS2 RS1 000 RD 0110011
```

```
sub rd, rs1, rs2:
    rd = rs1 - rs2

neg rd, rs2:
    sub rd, x0, rs2
```

Multiplicação binária (8 bits)

$$A = 11_{10} = 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 = 00001011_2$$

$$B = 13_{10} = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 = 00001101_2$$

$$Arr$$
 $R = A \times B = 143_{10} = 10001111_2$

A_{i}	\mathcal{B}_{i}	R_{i}
Ø	Ø	Ø
Ø	1	Ø
1	Ø	Ø
1	1	1

			χ	1	Ø	1	1
			^	1	1	Ø	1
				1	Ø	1	1
	+		Ø	Ø	Ø	Ø	
	,	1	Ø	1	1		
	1	Ø	1	1			
1	Ø	Ø	Ø	1	1	1	1

Multiplicação binária (8 bits)

$$A = 11_{10} = 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 = 00001011_2$$

$$B = 13_{10} = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 = 00001101_2$$

$$ightharpoonup R = A \times B = 143_{10} = 10001111_2$$

							v	1	Ø	1	1
A_{l}	\mathcal{B}_{l}	$R_{\rm i}$					Х	_1	1	Ø	1
Ø	Ø	Ø						1	Ø	1	1
Ø	1	Ø			+		Ø	Ø	Ø	Ø	
1	Ø	Ø			·	1	Ø	1	1		
1	1	1			_1	Ø	1	1			
			,	1	Ø	Ø	Ø	1	1	1	1

A MULTIPLICAÇÃO DE NÚMEROS COM N BITS NECESSITA

DE ATÉ 2N BITS PARA ARMAZENAR O RESULTADO

► Multiplicação (*mul*)

31	25	24 20	19 15	14 12	11 7	(Ø
	0000001	RS2	RS1	000	RD	0110011

```
mul rd, rs1, rs2:
rd = get_31_0(rs1 * rs2)
```

 Multiplicação (sinal-sinal) retornando os 32 bits mais significativos (mulh)

```
31 25 24 20 19 15 14 12 11 7 6 0

00000001 R52 R51 001 RD 0110011
```

```
mulh rd, rs1, rs2:
rd = get_63_32(rs1 * rs2)
```

 Multiplicação (sinal-sem sinal) retornando os 32 bits mais significativos (mulhsu)

```
31 25 24 20 19 15 14 12 11 7 6 0

00000001 R52 R51 010 R0 0110011
```

```
mulhsu rd, rs1, rs2:
rd = get_63_32(rs1 * rs2)
```

 Multiplicação (sem sinal-sem sinal) retornando os 32 bits mais significativos (mulhu)

```
31 25 24 20 19 15 14 12 11 7 6 0

00000001 R52 R51 011 RD 0110011
```

```
mulhu rd, rs1, rs2:
rd = get_63_32(rs1 * rs2)
```

- Divisão binária (8 bits)
 - $A = 134_{10} = 1 \times 2^7 + 1 \times 2^2 + 1 \times 2^1 = 10000110_2$
 - $B = 10_{10} = 1 \times 2^3 + 1 \times 2^1 = 00001010_2$
 - $P Q = A \div B = 13_{10} = 00001101_2$
 - Arr $R = A \mod B = 4_{10} = 00000100_2$

- Divisão binária (8 bits)
 - $A = 134_{10} = 1 \times 2^7 + 1 \times 2^2 + 1 \times 2^1 = 10000110_2$
 - $B = 10_{10} = 1 \times 2^3 + 1 \times 2^1 = 00001010_2$
 - $P Q = A \div B = 13_{10} = 00001101_2$
 - Arr $R = A \mod B = 4_{10} = 00000100_2$

À DIVISÃO DE NÚMEROS COM N BITS NECESSITA DE ATÉ N BITS PARA O QUOCIENTE E O RESTO

▶ Divisão com sinal (*div*)

```
31 25 24 20 19 15 14 12 11 7 6 0

00000001 R52 R51 100 RD 0110011
```

```
div rd, rs1, rs2:
rd = rs1 / rs2
```

▶ Divisão sem sinal (*divu*)

31	25	24 20	19 15	14 12	11 7	4	Ø
	0000001	RS2	RS1	1Ø1	RD	0110011	

```
divu rd, rs1, rs2:
rd = rs1 / rs2
```

► Resto da divisão com sinal (rem)

31	25	24 20	19 15	14 12	11 7	í Ø
	0000001	RS2	RS1	110	RD	0110011

```
rem rd, rs1, rs2:
rd = rs1 % rs2
```

► Resto da divisão sem sinal (*remu*)

31	25	24 20	19 15	14 12	11 7	í Ø
	0000001	rs2	RS1	111	RD	0110011

```
remu rd, rs1, rs2:
rd = rs1 % rs2
```

 Deslocamento para direita aritmético (shift right arithmetic)

```
31 25 24 20 19 15 14 12 11 7 6 0

01000000 R52 R51 101 R0 0110011
```

```
sra rd, rs1, rs2:
    rd = rs1 >> get_4_0(rs2)
```

 Deslocamento para direita aritmético imediato (shift right arithmetic immediate)

```
31 20 19 15 14 12 11 7 6 0

0100000 IMM[4:0] RS1 101 RD 0010011
```

```
srai rd, rs1, imm:
    rd = rs1 >> imm
```

Números reais

- Aritmética de ponto fixo (notação Q)
 - Definição da parte inteira e fracionária (32 bits)

$$Q4.27 = 9, 25_{10}$$

$$= 9_{10} + 0, 25_{10}$$

$$= 1001_2 + 0, 01_2$$

SINAL	INTEIRA	Fracionaria				
Ø	1001	010000000000000000000000000000000000000				

Números reais

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10}=9_{10}+0,25_{10}$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10}=9_{10}+0,25_{10}$$

$$9,25_{10}=\left(2^{3}+\underline{1}\right) +0,25_{10}$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10}=9_{10}+0,25_{10}$$

$$9,25_{10} = \left(2^3 + 2^0\right) + 0,25_{10}$$

- Aritmética de ponto fixo (notação Q)
 - ► Entendendo a codificação binária fracionária

$$9,25_{10}=9_{10}+0,25_{10}$$

$$9,25_{10} = 1001_2 + 0,25_{10}$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10}=9_{10}+0,25_{10}$$

$$9,25_{10}=1001_2+\left(2^{-2}+\underline{0}\right)$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10}=9_{10}+0,25_{10}$$

$$9,25_{10} = 1001_2 + 0,01_2$$

- Aritmética de ponto fixo (notação Q)
 - Representatividade um número Q2.2

5	3	2	1	Ø	
Ø	1	1	1	1	—→ + 3,75
Ø	1	1	1	Ø	—→ + 3,5Ø
Ø	1	1	Ø	1	—→ + 3,25
Ø	1	1	Ø	Ø	—→ + 3,ØØ
:	:	:	:	:	:
1	Ø	Ø	1	1	-4,ØØ
1	Ø	Ø	1	Ø	 → -4,25
1	Ø	Ø	Ø	1	—→ -4 , 5Ø

- Aritmética de ponto fixo (notação Q)
 - ✓ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples

- Aritmética de ponto fixo (notação Q)
 - São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples
 - ✓ Maior precisão da parte fracionária com mesma quantidade de bits

Ponto FIXO (QØ.31)		
S	Fracionària	
Ponto flutuante (32 bits)		
5	EXPOENTE	Fracionària

- Aritmética de ponto fixo (notação Q)
 - ✓ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples
 - Maior precisão da parte fracionária com mesma quantidade de bits

X Representatividade limitada

- Aritmética de ponto fixo (notação Q)
 - ✓ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples
 - Maior precisão da parte fracionária com mesma quantidade de bits

Ponto FIXO (00.31)		
S	Fracionària	
		Ponto Flutuante (32 BITS)
S	EXPOENTE	Fracionària

- X Representatividade limitada X Problemas com arredondamento e *overflow*

- Aritmética de ponto fixo (notação Q)
 - ✓ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples
 - √ Maior precisão da parte fracionária com mesma quantidade de bits

	Ponto Fixo (QØ.31)		
S	Fracionària		
		Ponto flutuante (32 bits)	
5	Expoente	Fracionària	

- X Representatividade limitada
- X Problemas com arredondamento e *overflow*

Aplicação principal: sistemas de baixo custo sem unidade de ponto flutuante (FPU)

- Aritmética de ponto flutuante (IEEE 754)
 - Capacidades de representação

QUADRUPLA (128 BITS)

S	EXPOENTE (15 BITS)	Fracionaria (112 bits)
---	-----------------------	---------------------------

- Aritmética de ponto flutuante (IEEE 754)
 - ► Representação com 32 bits (float)

float =
$$(-1)^{Sinal} \left(1 + \sum_{i=0}^{22} B_{22-i} 2^{-i} \right) \times 2^{(Expoente-127)}$$

SINAL	EXPOENTE	Fracionaria
Ø	10000010	0010100000000000000000

- Aritmética de ponto flutuante
 - √ Maior representatividade de valores

- Aritmética de ponto flutuante
 - ✓ Maior representatividade de valores
 - √ Mecanismos de arredondamento e de precisão

- Aritmética de ponto flutuante
 - ✓ Maior representatividade de valores
 - ✓ Mecanismos de arredondamento e de precisão
 - X Hardware dedicado que aumenta o custo e o consumo de potência do sistema

- Aritmética de ponto flutuante
 - Maior representatividade de valores
 - ✓ Mecanismos de arredondamento e de precisão
 - X Hardware dedicado que aumenta o custo e o consumo de potência do sistema
 - X As operações são mais complexas e demoradas

- Aritmética de ponto flutuante
 - Maior representatividade de valores
 - ✓ Mecanismos de arredondamento e de precisão
 - X Hardware dedicado que aumenta o custo e o consumo de potência do sistema
 - X As operações são mais complexas e demoradas

Aplicação principal: redução do tempo de projeto em sistemas com unidade de ponto flutuante (FPU)

Exercício

▶ Considerando os métodos de complemento a 2, de ponto fixo Q2.5 e de ponto flutuante F8 descritas abaixo, converta os números reais A=2, 71 e B=3, 14 para estas representações numéricas

$$F8 = (-1)^{S} \left(1 + \sum_{i=0}^{4} B_{4-i} 2^{-i}\right) \times 2^{Expoente}$$

$$\theta_{2.5} \begin{array}{|c|c|c|c|c|}\hline S & I_{1}I_{\emptyset} & F_{4}F_{3}F_{2}F_{1}F_{\emptyset} \\ \hline S_{INAL} & E_{APOENTE} & F_{RACIONARIA} \\ \hline F8 & S & E_{1}E_{\emptyset} & F_{4}F_{3}F_{2}F_{1}F_{\emptyset} \\ \hline \end{array}$$

- ► Realize a operação *A* − *B* para cada representação e compare erro dos resultados obtidos
- Para entender na prática como as operações de ponto flutuante podem ser implementadas, estude as extensões F e D da arquitetura RISC-V

Exercício

- Implemente um simulador do Poxim-V, utilizando as linguagens de programação suportadas e obtendo os argumentos de entrada e de saída pela linha de comando
 - 1. Realize o carregamento da programação na memória
 - 2. Execute cada instrução passo a passo
 - 3. Gere o fluxo de execução da aplicação

