16/17 浙江工业大学高等数学 AII 考试试卷

学院	: : _		厾	E级:_		姓名	:	<u>\</u>	学号:	
任课教师(请务必填上):										
	题	号	_	=	三	四	五	六	总 分	
	得	分								
填空选择题(本题满分 30 分,每小题 3 分) 、动点 $M(x,y,z)$ 到 xOy 平面的距离与到点 $(1,-1,2)$ 的距离相等,则动点 $M(x,y,z)$										
		方程是		(2	` -	°	→ 1 →	. Ind	chara a a a	
2、设向量 $\vec{a} = (1,1,1)$, $\vec{b} = (n,2,m)$, $\vec{c} = 2\vec{a} - 3\vec{b}$, $\vec{a} \perp \vec{c}$,则 n,m 应满足条件。 3、已知 $z = \sqrt{xy} + \frac{x}{y}$,则 $\frac{\partial z}{\partial y} =$ 。										
4、曲面 $e^z - z + xy = 3$ 在点 (2,1,0) 处的切平面方程是。										
5、交换积分次序 $\int_0^2 dx \int_{\frac{x}{2}}^{3-x} f(x,y) dy =$										
5、设 L 为 $x = a\cos t$, $y = a\sin t$,则 $\int_L (x^2 + y^2)ds = $ 。										
7、将函数 $f(x) = \frac{1}{x}$ 展开成 $(x-3)$ 的幂级数,则该幂级数收敛区间是。										
B 、若 $z = f(x, y)$ 在点 (x_0, y_0) 处可微,则下列结论错误的是。										
A、 $f(x,y)$ 在点 (x_0,y_0) 处连续; B、 $f_x(x_0,y_0),f_y(x_0,y_0)$ 存在; C、 $f_x(x,y),f_y(x,y)$ 在点 (x_0,y_0) 处连续;										
D、曲面 $z = f(x, y)$ 在点 $(x_0, y_0, f(x_0, y_0))$ 处有切平面。										
									J等式正确的	是。
A. $\iint_{\Omega} (x^2 + y^2 + z^2) dv = \iiint_{\Omega} R^2 dv = \frac{4\pi}{3} R^5;$										
B. $\iint_{\Sigma} (x^2 + y^2 + z^2) dx dy = \iint_{\Sigma} R^2 dx dy = \pi R^4$;										
C,	$\iint_{\Sigma} (x$	$x^2 + y$	y^2+z^2) d	$S = \iint_{\Sigma} R$	$R^2dS=4$	πR^4 ;	D, .	$\iiint_{\Omega} (x^2 +$	$-y^2+z^2)dv$	=0.
10、下	列级	数中	绝对收敛	效的级数	是	o				
A,	$\sum_{n=1}^{\infty} \left(-\frac{1}{n} \right)^{n}$	$-1)^{n}$	$\frac{n}{n+1}$;	$B \cdot \sum_{n=1}^{\infty}$	$(-1)^n $	\overline{n} ; C.	$\sum_{n=1}^{\infty} \left(-1\right]$	$\left(1\right)^n\frac{1}{\sqrt{n}}$;	$D \cdot \sum_{n=1}^{\infty} \left(-\frac{1}{n}\right)^{n}$	-1) ⁿ $\frac{1}{n^2}$ \circ

- 二、试解下列各题(本题满分24分,每小题6分):
- 1、已知 $z = x^y$, $(x > 0, x \neq 1)$, 求: dz
- 2、设 $z = f(xy, e^{xy})$, 其中 f(u, v) 一阶偏导数连续, 求: $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$
- $\begin{cases} x = \cos t \\ y = \sin t \$ 是等距螺线(即曲线上任一点的切线与 z 轴夹角是常数)。 $z = t \end{cases}$

4、求一过点 $M(2,1,\frac{1}{3})$ 的平面,使该平面在第一卦限与三个坐标面围成的体积最小。

三、试解下列各题(本题满分24分,每小题6分):

1、设
$$D$$
: $x^2 + y^2 \le 1$, $.$ 求 $\iint_D (x^3y + x^2 + y^2) dx dy$

2、求
$$\iint_{\Omega} z \sqrt{x^2 + y^2} dx dy dz$$
, Ω : 由曲面 $z = \sqrt{x^2 + y^2}$ 与平面 $z = 2$ 所围成。

3、求
$$\int_L (x^2 - y) dx - (x + \sin^2 y) dy$$
,其中 L 沿 $y = \sqrt{2x - x^2}$ 从点 $(0,0)$ 到 $(1,1)$ 。

4、求
$$\iint_{\Sigma} (z^2 + x) dy dz$$
, 期中 Σ 是曲面 $z = x^2 + y^2$ 在 $0 \le z \le 1$ 之间部分的下侧。

四、(8分) 求过点(2,1,3) 且与直线 $\frac{x+1}{3} = \frac{y-1}{2} = \frac{z}{-1}$ 垂直相交的直线方程。

五、 (9分) 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$ 的收敛域(含端点)及和函数。

六、(5分)讨论偏导数存在与方向导数存在之间的关系(证明或举例)。