一、前期准备工作

1.导入数据

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
                                 (单位: 千克)
Cement:
                           水泥
                                 (单位: 千克)
Blast Furnace Slag:
                           矿渣
                                 (单位: 千克)
Fly Ash:
                           煤灰
                                 (单位: 千克)
Water:
Superplasticizer:
                           塑化剂(单位: 千克)
                          粗颗粒(单位: 千克)
Coarse Aggregate:
                           细颗料(单位: 千克)
Fine Aggregate:
                           天数
                                 (已经使用的天数)
Concrete compressive strength: 1立方米混凝土抗压强度
dataframe = pd.read_excel('../data/Concrete_Data.xls')
dataframe. head (5)
```

Out[1]:

	Cement	Blast Furnace Slag	l Flv	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Comp
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.986
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.887
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.269
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.052
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.296

2.整理数据

In [2]:

```
# """

# 将所有数据中水泥的质量调整为100千克

# """

# dataframe["Blast Furnace Slag"]=dataframe["Blast Furnace Slag"]/dataframe["Cement"]*100

# dataframe["Fly Ash"]=dataframe["Fly Ash"]/dataframe["Cement"]*100

# dataframe["Water"]=dataframe["Water"]/dataframe["Cement"]*100

# dataframe["Superplasticizer"]=dataframe["Superplasticizer"]/dataframe["Cement"]*100

# dataframe["Coarse Aggregate"]=dataframe["Coarse Aggregate"]/dataframe["Cement"]*100

# dataframe["Fine Aggregate"]=dataframe["Fine Aggregate"]/dataframe["Cement"]*100

# dataframe["Cement"]=dataframe["Cement"]. map(lambda x: x/x*100)

# dataframe. head()
```

3.探究水泥质量与各个成分含量之间的关系

In [4]:

```
import numpy as np
#设置中文显示
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']
fig = plt. figure (figsize = (13, 17))
#调整子图间距
plt.subplots_adjust(wspace =0.1, hspace =0.4)
ax1 = fig. add subplot (421)
ax2 = fig. add subplot (422)
ax3 = fig. add subplot (423)
ax4 = fig. add_subplot (424)
ax5 = fig. add subplot (425)
ax6 = fig.add_subplot(426)
ax7 = fig. add subplot (427)
ax8 = fig. add subplot (428)
ax1. scatter(dataframe['Blast Furnace Slag'], dataframe['Concrete compressive strength'], alpha=
0.3)
ax1. set title('1立方米混凝土抗压强度与矿渣含量之间的关系')
ax2. scatter(dataframe['Fly Ash'], dataframe['Concrete compressive strength'], alpha=0.3)
ax2. set title('1立方米混凝土抗压强度与碳灰含量之间的关系')
ax3. scatter(dataframe['Water'], dataframe['Concrete compressive strength'], alpha=0.3)
ax3. set_title('1立方米混凝土抗压强度与水分含量之间的关系')
ax4. scatter(dataframe['Superplasticizer'], dataframe['Concrete compressive strength'], alpha=0.3
)
ax4. set title('1立方米混凝土抗压强度与塑化剂含量之间的关系')
ax5. scatter(dataframe["Coarse Aggregate"], dataframe['Concrete compressive strength'], alpha=0.3
ax5. set_title('1立方米混凝土抗压强度与粗颗粒含量之间的关系')
ax6. scatter(dataframe["Fine Aggregate"], dataframe['Concrete compressive strength'], alpha=0.3)
ax6. set title('1立方米混凝土抗压强度与细颗粒含量之间的关系')
ax7. scatter(dataframe["Age"], dataframe['Concrete compressive strength'], alpha=0.3)
ax7. set title('1立方米混凝土抗压强度与时间之间的关系')
ax8. scatter(dataframe["Cement"], dataframe['Concrete compressive strength'], alpha=0.3)
ax8. set title('1立方米混凝土抗压强度与水泥质量之间的关系')
```

Out[4]:

Text (0.5, 1.0, '1立方米混凝土抗压强度与水泥质量之间的关系')

二、多元线性回归

1.训练模型

In [5]:

```
#Cement Blast Furnace Slag
                               Fly Ash Water
                                               Superplasticizer
                                                                        Coarse Aggregate
Fine Aggregate Age
                       Concrete compressive strength
from sklearn.linear_model import LinearRegression
#初始化模型
mul_LR_model = LinearRegression()
#拟合模型
mul LR model.fit(dataframe[['Cement', 'Blast Furnace Slag', 'Fly Ash', 'Water', 'Superplasticizer',
'Coarse Aggregate', 'Fine Aggregate', 'Age']], dataframe['Concrete compressive strength'])
dataframe['预测值'] = mul_LR_model.predict(dataframe[['Cement','Blast Furnace Slag','Fly Ash','W
ater', 'Superplasticizer', 'Coarse Aggregate', 'Fine Aggregate', 'Age']])
#显示
dataframe. head (5)
```

Out[5]:

	Cement	Blast Furnace Slag	l Flv	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Comp
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.986
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.887
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.269
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.052
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.296
4									

2.计算得分

In [6]:

mul_score = mul_LR_model.score(dataframe[['Cement', 'Blast Furnace Slag', 'Fly Ash', 'Water', 'Super
plasticizer', 'Coarse Aggregate', 'Fine Aggregate', 'Age']], dataframe['Concrete compressive streng
th'])
mul_score

Out[6]:

0.6154647342687214

3.可视化预测结果

In [7]:

```
fig = plt.figure(figsize = (16,8))
ax1 = fig. add_subplot(2, 2, 1)
ax2 = fig. add_subplot(2, 2, 2)
ax3 = fig. add_subplot(2, 2, 3)
ax4 = fig. add subplot(2, 2, 4)
ax1. scatter(dataframe['Cement'], dataframe['Concrete compressive strength'], c='blue', alpha=0.3
axl.scatter(dataframe['Cement'], dataframe['预测值'], c='red', alpha=0.3)
axl.set_title('水泥')
ax2. scatter(dataframe["Blast Furnace Slag"], dataframe['Concrete compressive strength'], c='blu
e', alpha=0.3)
ax2. scatter(dataframe["Blast Furnace Slag"], dataframe['预测值'], c='red', alpha=0.3)
ax2. set_title('矿渣')
ax3. scatter(dataframe['Fly Ash'], dataframe['Concrete compressive strength'], c='blue', alpha=0.
ax3. scatter(dataframe['Fly Ash'], dataframe['预测值'], c='red', alpha=0.3)
ax3. set_title('煤炭')
ax4. scatter(dataframe['Water'], dataframe['Concrete compressive strength'], c='blue', alpha=0.3)
ax4. scatter(dataframe['Water'], dataframe['预测值'], c='red', alpha=0.3)
ax4. set_title('水')
plt.show()
```


In []: