

Machine Learning with Graphs (MLG)

RecSys: Factorization Machine

Incorporating Features into Matrix Factorization

Cheng-Te Li (李政德)

Institute of Data Science
National Cheng Kung University

TANDILA 1931

chengte@mail.ncku.edu.tw

References

- P. Jain and I. S. Dhillon. "Provable Non-linear Inductive
 Matrix Completion" NIPS 2013
- S. Rendle. "Factorization Machines"

 IEEE ICDM 2010

 1050 cites
- S. Rendle. "Factorization Machines with libFM"
 ACM TIST 2012
 851 cites
- FM Math: https://www.jefkine.com/recsys/2017/03/27/factorization-machines/
- FM Use Example https://yahooresearch.tumblr.com/post/133013312756/birds-apps-and-users-scalable-factorization

Towards Realistic Settings of RecSys

- Context-aware RecSys
- Click-through Prediction
- Student Performance Prediction
- Link Prediction in Social Networks

Context-aware RecSys

Main Targets	Features
User ID (one-hot)	Time
Item ID (one-hot)	Mood
	User profiles
	Item meta data

Examples: Netflix prize, Movielens, KDDCup 2011

Click-Through Prediction

Main Targets	Features
User ID (one-hot)	Query tokens
Query ID (one-hot)	User profiles
Ad/URL ID (one-hot)	Ad/URL meta data
	Time

Examples: KDDCup 2012 Track 2 (FM placed 3rd/171)

Student Performance Prediction

Main Targets	Features			
Student ID (one-hot)	Question hierarchy			
Question ID (one-hot)	Sequence of questions			
	Skills required			
	Question difficulty			

Examples: KDDCup 2010, Grockit Challenge2 (FM placed 1st/241)

https://www.kaggle.com/c/WhatDoYouKnow

Link Prediction in Social Networks

Main Targets	Features
User A ID (one-hot)	User profiles
User B ID (one-hot)	User clicks
	User posts
	User messages

Examples: KDDCup 2012 Track 1 (FM placed 2nd/658)

Matrix Factorization with Features

- Given: rating matrix $A \in \mathbb{R}^{m \times n}$, user feature matrix $X \in \mathbb{R}^{m \times d_1}$, item feature matrix $Y \in \mathbb{R}^{n \times d_2}$
- Goal: predict unknown ratings
 - Real values (regression)
 - Binary (classification)
 - Scores (ranking)

8

Applications

- ✓ User-item Recommendation
- ✓ Ad-word Recommendation
- √ Tag recommendation
- ✓ Disease-gene linkage prediction
- ✓ Document retrieval

Inductive Matrix Completion (IMC)

- A popular approach to incorporate features to MF
- Given: row matrix $X \in \mathbb{R}^{m \times d_1}$, column matrix $Y \in \mathbb{R}^{n \times d_2}$, observation set Ω sampled from A
- The IMC objective:

$$\min_{\substack{W \in \mathbb{R}^{d_1 \times k} \\ H \in \mathbb{R}^{d_2 \times k}}} \sum_{(i,j) \in \Omega} \left(\mathbf{x}_i^\mathsf{T} W H^\mathsf{T} \mathbf{y}_j - A_{ij} \right)^2 + \frac{\lambda}{2} \|W\|_F^2 + \frac{\lambda}{2} \|H\|_F^2$$

 $W\mathbf{x}_i \& H^T\mathbf{y}_j$: k-dimensional embeddings of user i and item j, respectively Inner product in the k-dimensional embedding space \Longrightarrow prediction value

Factorization Machine (FM)

 Observation: Recommendation systems can be transformed to classification or regression

$$(i,j,A_{ij}) \Rightarrow (\mathbf{x}^{(i,j)},A_{ij})$$

 $\mathbf{x}^{(i,j)}$: the feature vector extracted for user i and item j

$$\mathbf{x}^{(i,j)} = \left[\mathbf{e}_i \; \mathbf{e}_j \; \mathbf{x}_i^{\mathrm{T}} \; \mathbf{x}_j^{\mathrm{T}} \right]$$

 $e_i \& e_j$ are **one-hot encodings** of user i & item j

 $\mathbf{x}_i \& \mathbf{x}_i$ are **feature vectors** of user i & item j

• Now we have a classification or regression problem with training data $\{(\mathbf{x}^{(i,j)},A_{ij})\}_{(i,j)\in\Omega}$

Example Training Data for FM

Linear Model

- What model should we use for classification/regression?
- Option 1: Linear Regression

d: dimension of vector \mathbf{x}

$$\hat{y}(\mathbf{x}) = w_0 + \mathbf{w}^{\mathrm{T}} \mathbf{x} = w_0 + \sum_{i=1}^{a} w_i x_i$$

Example

$$\hat{y}(\mathbf{x}) = w_0 + s_{\text{ESPN}} + s_{\text{NIKE}}$$

Drawback 1: Cannot learn cross-feature effects like:

"Nike has super high CTR on ESPN"

Drawback 2: usually too simple and tend to underfitting

Polynomial Regression (Poly2)

Option 2: Degree-2 Polynomial

d: dimension of vector \mathbf{x}

$$\hat{y}(\mathbf{x}) = w_0 + \mathbf{w}^T \mathbf{x} + \mathbf{x}^T M \mathbf{x} = w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=i+1}^d w_{ij} x_i x_j$$

$$M = \left[w_{ij}\right]$$

$$\hat{y}(\mathbf{x}) = w_0 + s_{\text{ESPN}} + s_{\text{NIKE}} + s_{\text{ESPN,NIKE}}$$

■ Drawback: weak generalization ability i.e., cannot estimate parameter w_{ij} where (i, j) never co-occurs in feature vectors (not work well for sparse data)

Poly2: Illustration

First-order: Linear Regression Second-order:

Pair-wise interactions

between **non-zero** features

$$\hat{y}(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=i+1}^d w_{ij} x_i x_j$$

Input x:

- $M = \left[w_{ij} \right]_{d \times d}$ brings too many parameters (d^2)
- \mathbf{x} is sparse \rightarrow matrix M is more sparse
- Some pairs rarely occur in user-item interactions: w_{ij} hard to train

Poly2 vs. FM

15

FM: Illustration

Interaction Matrix W

feature *i*

Factorized Interactions of Features

i	j
UI: 數據所學生	UI: 資工所學生
UI: 數據所學生	II: MacBook Pro
UI: 數據所學生	UF: 上Google時間
UI: 數據所學生	IF: 具備GPU顯卡
IF: 續航力高	IF: 具備GPU顯卡

i	j
II: MacBook Pro	II: iPad Pro
II: MacBook Pro	IF: 品牌Apple
UF: 上FB時間	UF: 上PTT時間
UF: 有Github帳號	IF: 品牌Apple
UF: 近視>500度	IF: 熱門手遊

Interaction Matrix W

 $\hat{y}(\mathbf{x}) = w_0 + \mathbf{w}^{\mathrm{T}}\mathbf{x} + \mathbf{x}^{\mathrm{T}}\mathbf{V}^{\mathrm{T}}\mathbf{V}\mathbf{x} = w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=i+1}^d \mathbf{v}_i^{\mathrm{T}}\mathbf{v}_j x_i x_j$

2023/4/11 Prof. Cheng-Te Li @ NCKU

Interaction Matrix W

 $\mathbf{v}_{\text{Alice}}^{\text{T}} \mathbf{v}_{\text{WIKI}} x_{\text{Alice}} x_{\text{WIKI}}$ $= w_{\text{AliceWIKI}} \times 1 \times 0.4$

$$\hat{y}(\mathbf{x}) = w_0 + \mathbf{w}^{\mathrm{T}}\mathbf{x} + \mathbf{x}^{\mathrm{T}}\mathbf{V}^{\mathrm{T}}\mathbf{V}\mathbf{x} = w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=i+1}^d \mathbf{v}_i^{\mathrm{T}}\mathbf{v}_j x_i x_j$$

Factorization Machine (FM)

Option 3: FM

First-order:

Second-order:

Linear Regression Feature Interactions

$$\hat{y}(\mathbf{x}) = w_0 + \mathbf{w}^{\mathrm{T}}\mathbf{x} + \mathbf{x}^{\mathrm{T}}V^{\mathrm{T}}V\mathbf{x} = w_0 + \sum_{i=1}^{a} w_i x_i + \sum_{i=1}^{a} \sum_{j=i+1}^{a} \mathbf{v}_i^{\mathrm{T}}\mathbf{v}_j x_i x_j$$

 \mathbf{v}_i is the *i*-th column of V

 $V \in \mathbb{R}^{d \times k}$

$$\hat{y}(\mathbf{x}) = w_0 + s_{\text{ESPN}} + s_{\text{NIKE}} + \mathbf{v}_{\text{ESPN}}^{\text{T}} \mathbf{v}_{\text{Nike}}$$

$$\hat{y}(\mathbf{x}) = w_0 + s_{\text{EPSN}} + s_{\text{Nike}} + s_{\text{Make}} + \mathbf{v}_{\text{ESPN}}^{\text{T}} \mathbf{v}_{\text{Nike}} + \mathbf{v}_{\text{ESPN}}^{\text{T}} \mathbf{v}_{\text{Make}} + \mathbf{v}_{\text{Nike}}^{\text{T}} \mathbf{v}_{\text{Male}}$$

Better Generalization of FM

 Strong generalization comes from learning latent feature vectors by their interactions

≥ 3	< 3	Channel	Brand	$\hat{y}(\mathbf{x})$
950	50	ESPN	Nike	VESPN · VNike + · · ·
2	0	ESPN	Gucci	$oldsymbol{v}_{ESPN}\cdotoldsymbol{v}_{Gucci}+\cdots$
0	0	Vogue	Nike	V _{Vogue} ⋅ V _{Nike} + ⋅ ⋅ ⋅
950	50	Vogue	Gucci	V √ogue · V Gucci + · · ·

v_{Vogue} is learned from 1000 data pointsv_{Nike} learned from 1000 data points

Feature interaction of Vogue and Nike never appears in data, but their latent vectors can be still trained if each is interacted by other features

→ lead to better generalization (than poly2) and deal with data sparsity

22

Training FM

• FM objective:

$$+\lambda \|\mathbf{w}\|_F^2$$

$$\min_{\mathbf{W}} \sum_{(i,j) \in \Omega} loss\left(\mathbf{w}_0 + \mathbf{W}^{\mathrm{T}}\mathbf{x}^{(i,j)} + \mathbf{x}^{(i,j)}^{\mathrm{T}}V^{\mathrm{T}}V\mathbf{x}^{(i,j)}, \underline{A_{ij}}\right) + \lambda \|V\|_F^2$$
predicted rating ground-truth rating

 \blacksquare Ω : observed user-item entries

$$\mathbf{x}^{(i,j)} = \left[\mathbf{e}_i \; \mathbf{e}_j \; \mathbf{x}_i^{\mathrm{T}} \; \mathbf{x}_i^{\mathrm{T}} \right]$$

 $\mathbf{x}^{(i,j)} = \left[\mathbf{e}_i \; \mathbf{e}_j \; \mathbf{x}_i^{\mathrm{T}} \; \mathbf{x}_i^{\mathrm{T}} \right] \quad \mathbf{e}_i \; \& \; \mathbf{e}_j \text{ are one-hot encodings of user } i \; \& \text{ item } j$

 $\mathbf{x}_i \& \mathbf{x}_i$ are **feature vectors** of user i & item j

- Loss
 - Squared error

$$l(y_1, y_2) = (y_1 - y_2)^2$$
 // ratings (real values)

Logistic error

$$l(y_1, y_2) = \ln(1 + \exp(-y_1y_2))$$
 // implicit feedback (binary)

2023/4/11 Prof. Cheng-Te Li @ NCKU 23

FM: Discussion

- FM works with real values
- FM includes feature interactions like poly2 regression
- Model parameters for interactions are factorized
- # of model parameters is only $d \times k$
 - Instead of d^2 for poly2 regression, where $d \gg k$
- FM can be generalized to different "factorization" tasks
 - Matrix Factorization as FM
 - Multi-Labeling (Tag Recommendation) as FM
 - Temporal FM

MF as FM

Categorical Data

$$\hat{y}(\mathbf{x}) = w_0 + s_u + s_i + \mathbf{v}_u^{\mathsf{T}} \mathbf{v}_i$$

User	Movie	Rating
Alice	Titanic	5
Alice	Notting Hill	3
Alice	Star Wars	1
Bob	Star Wars	4
Bob	Star Trek	5
Charlie	Titanic	1
Charlie	Star Wars	5

FM is identical to MF with biases

	Feature vector x											
X ⁽¹⁾	1	0	0		1	0	0	0		$\ $	5	y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		$\ $	3	y ⁽²⁾
X ⁽³⁾	1	0	0		0	0	1	0		$\ $	1	y ⁽³⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		$\ $	4	y ⁽⁴⁾
X ⁽⁵⁾	0	1	0		0	0	0	1		$\ $	5	y ⁽⁵⁾
X ⁽⁶⁾	0	0	1		1	0	0	0		$\ $	1	y ⁽⁶⁾
X ⁽⁷⁾	0	0	1		0	0	1	0		$\ $	5	y ⁽⁷⁾
	Α	B Us	C ser		TI	HN	$\ $					

Applying regression models to this data leads to:

Linear Regression:

$$\hat{y}(\mathbf{x}) = w_0 + s_u + s_i$$

Polynomial Regression:

$$\hat{y}(\mathbf{x}) = w_0 + s_u + s_i + s_{u,i}$$

Matrix Factorization (with biases): $\hat{y}(\mathbf{x}) = w_0 + b_u + b_i + \mathbf{p}_u^T \mathbf{q}_i$

$$\hat{y}(\mathbf{x}) = w_0 + b_u + b_i + \mathbf{p}_u^{\mathrm{T}} \mathbf{q}$$

Personalized Tag Recommendation

Task: Recommend a user a (personalized) list of tags for a specific item

Tag Recommendation as FM

Three categorical variables encoded with real valued predictor

	Feature vector x													
X ⁽¹⁾	1	0	0		1	0	0	0		1	0	0	0	
X ⁽²⁾	1	0	0		0	1	0	0		0	1	0	0	
X ⁽³⁾	1	0	0		0	0	1	0		0	0	0	1	
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	1	0	
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	1	0	
X ⁽⁶⁾	0	0	1		1	0	0	0		1	0	0	0	
X ⁽⁷⁾	0	0	1		0	0	1	0		0	0	0	1	
	A	B Us	C ser		S1	S2	S3 Song	S4		T1	T2	T3 Tag	T4	

FM is a tensor factorization model with lower-level interactions (pairwise interaction)

$$\hat{y}(\mathbf{x}) = w_0 + s_u + s_i + s_t + \mathbf{v}_u^{\mathsf{T}} \mathbf{v}_i + \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_t + \mathbf{v}_u^{\mathsf{T}} \mathbf{v}_t$$

2023/4/11

FM with Time

Two categorical variables and time discretized in bins (b(t))

Feature vector x													
X ⁽¹⁾	1	0	0		1	0	0	0		1	0	0	
X ⁽²⁾	1	0	0		0	1	0	0		0	1	0	
X ⁽³⁾	1	0	0		0	0	1	0		0	1	0	
X ⁽⁴⁾	0	1	0		0	0	1	0		1	0	0	
X ⁽⁵⁾	0	1	0		0	0	0	1		0	1	0	
X ⁽⁶⁾	0	0	1		1	0	0	0		1	0	0	
X ⁽⁷⁾	0	0	1		0	0	1	0		0	0	1	
	A B C User				TI		SW Movie			T1 T2 T3 Time			

A three-order FM includes the time-aware tensor factorization model

$$\hat{y}(\mathbf{x}) = w_0 + s_u + s_i + s_{b(t)} + \mathbf{v}_u^{\mathsf{T}} \mathbf{v}_i + \mathbf{v}_u^{\mathsf{T}} \mathbf{v}_{b(t)} + \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_{b(t)} + \sum_{f=1}^{k} \mathbf{v}_{u,f}^{(3)} \mathbf{v}_{i,f}^{(3)} \mathbf{v}_{b(t),f}^{(3)}$$
Time Tensor Factorization Model

FM Short Summary

- Integrating real-valued features with categorical (one-hot) features into model encoding
- FM = linear regression + polynomial regression + matrix factorization (factorized interaction parameters)
 - Incorporating feature interactions
 - Deal with data sparsity in user-item matrix
 - Better generalization (learning latent vector of each feature)
- FM is a generalization of a variety of RecSys w/ features

Packages/Code of FM

- pywFM: Python wrapper for Steffen Rendle's libFM https://github.com/jfloff/pywFM
- pyFM: https://github.com/coreylynch/pyFM
- fastFM: https://github.com/ibayer/fastFM
- FM with PyTorch: https://github.com/rixwew/pytorch-fm
- FM with Tensorflow: https://github.com/geffy/tffm
- FM implemented in PyTorch <u>https://www.kaggle.com/gennadylaptev/factorization-machine-implemented-in-pytorch</u>
- More on PyTorch FM
 - https://github.com/mzaradzki/factorization-machine-for-prediction
 - https://github.com/jmhessel/fmpytorch