AdvancedTechqniue-How to handle preprocessed Input and Output during Deployment

Advanced Technique- Case-1- PrePro X and Y

Training Phase

Deployment Phase

Deployment Phase

Advanced Technique- Case-2 - Prepro X only

Advanced Technique- Case-2 - Prepro X

Advanced Technique- Case-2—Prepro X

Deployment Phase

3	144372.41	118671.85	383199.62	0	1
0	165349.20	136897.80	471784.10	0	1
47	0.00	135426.92	0.00	0	0
44	22177.74	154806.14	28334.72	0	0

```
In [11]: from sklearn.preprocessing import StandardScaler
    sc=StandardScaler()
    X_train=sc.fit_transform(X_train)
```

X_test=sc.transform(X_test)

```
In [12]: X_train
```

```
Out[12]: array([[ 1.17644103, 0.84515251, 0.94354978, 2.
                                                                  , -0.76870611],
                [ 0.96420324, 1.27283565, 0.42738817, 2.
                                                                  , -0.76870611],
                [-1.47369826, 0.0153175, -1.52350329, -0.5
                                                                  , 1.30088727],
                                                                  , 1.30088727],
                [-1.48308929, -2.79556363, -1.53809178, -0.5
                [-0.14952431, 1.13637282, -0.71716495, -0.5
                                                                     1.30088727],
                [ 0.85312042, -0.04431628, 0.46771725, -0.5
                                                                  , 1.30088727],
                [-0.22353674, -0.3151007, -0.83981652, 2.
                                                                  , -0.76870611],
                [-0.19454707, 0.21199679, -1.18497259, -0.5
                                                                  , -0.76870611],
                [ 0.10478723, -0.08388412, 0.48740807, -0.5
                                                                  , -0.76870611],
                [-1.0096458 , -1.07019473, -0.4040623 , -0.5
                                                                  , -0.76870611],
                 0.06872897. -0.38396487. 0.75036616. -0.5
                                                                    -0.768706111
```

```
44
               22177 74
                           154806.14
                                          28334.72
In [12]: from sklearn.preprocessing import StandardScaler
         sc=StandardScaler()
         X train=sc.fit transform(X train)
         X_test=sc.transform(X_test)
In [13]: scy=StandardScaler()
         y_train=scv.fit transform(y_train)
         y_test=scy.transform(y_test)
In [14]: X train
Out[14]: array([[ 1.17644103, 0.84515251, 0.94354978, 2.
                                                                    , -0.76870611],
                 0.96420324, 1.27283565, 0.42738817, 2.
                                                                    , -0.76870611],
                 [-1.47369826, 0.0153175, -1.52350329, -0.5
                                                                       1.30088727],
                 [-1.48308929, -2.79556363, -1.53809178, -0.5
                                                                       1.30088727],
                 F 0 140E2421
                               1 12627202
                                             0 71716405
                                                                       1 200007277
```



```
In [21]: import pickle
         filename="finalized_model_svr.sav"
In [22]: pickle.dump(regressor,open(filename,'wb'))
In [23]: preinput=sc.transform([[1300,12000,4000,0,1]])
In [25]: preinput
Out[25]: array([[-1.46755405, -4.33835385, -1.50744257, -0.5
                                                                 , 1.30088727]])
In [26]: loaded_model=pickle.load(open("finalized_model_svr.sav",'rb'))
         result=loaded_model.predict(preinput)
                                                               CC7 7 >
In [27]: result
Out[27]: array([-1.03109284])
In [32]: preoutput=scy.inverse_transform([result])
In [33]: preoutput
Out[33]: array([[65875.16964031]])
```

Methods

fit(X[, y, sample_weight])	Compute the mean and std to be used for later scaling.		
fit_transform(X[, y])	Fit to data, then transform it.		
<pre>get_feature_names_out([input_features])</pre>	Get output feature names for transformation.		
<pre>get_metadata_routing()</pre>	Get metadata routing of this object.		
get params([deep])	Get parameters for this estimator.		
inverse_transform(X[, copy])	Scale back the data to the original representation.		
partial_fit(X[, y, sample_weight])	Online computation of mean and std on X for later scaling.		
set_fit_request(*[, sample_weight])	Request metadata passed to the fit method. Request metadata passed to the inverse_transform method.		
set_inverse_transform_request(*[, copy])			
set_output(*[, transform])	Set output container.		
set_params(**params)	Set the parameters of this estimator.		
set_partial_fit_request(*[, sample_weight])	Request metadata passed to the partial_fit method.		
set_transform_request(*[, copy])	Request metadata passed to the transform method.		
transform(X[, copy])	Perform standardization by centering and scaling.		
4			

```
In [1]: import pandas as pd
        dataset=pd.read csv("50 Startups.csv")
        dataset=pd.get dummies(dataset,drop first=True)
        independent=dataset[['R&D Spend', 'Administration', 'Marketing Spend', 'State_Florida', 'State_New York']]
        dependent=dataset[["Profit"]]
        from sklearn.model selection import train test split
        X train, X test, y train, y test=train test split(independent, dependent, test size=0.30, random state=0)
In [2]: from sklearn.preprocessing import StandardScaler
        sc=StandardScaler()
        X_train=sc.fit_transform(X_train)
        X test=sc.transform(X test)
In [3]: scy=StandardScaler()
        y train=scy.fit transform(y train)
        y test=scy.transform(y test)
In [4]: preinput=sc.transform([[1300,12000,4000,0,1]])
In [5]: preinput
Out[5]: array([[-1-46755405, -4.33835385, -1.50744257, -0.5
                                                                   , 1.30088727]])
In [7]: import pickle
        loaded model=pickle.load(open("finalized model svr.sav", 'rb'))
        result=loaded model.predict(preinput)
        C.\Anaconda3\anve\aiml\lih\eita_nackagae\eklaann\linaan modal\laaet angla nv.30. DannacationWanning. `nn float` is a
```