离散数学(2) 第九次作业讲解

2024 秋季学期

- 1. 考虑右图。
- (a) 对于每个结点v,求R(v);

基础图的直径。

知识点:可达、距离、直径、无向图和有向图的连通性

- 设图 $G = \langle V, E, \Psi \rangle$, $v_1, v_2 \in V$ 。
 - ightharpoonup 在G中从 v_1 可达 v_2 : 存在从 v_1 至 v_2 的路径
 - \triangleright 在G 中从 ν_1 不可达 ν_2 : 不存在从 ν_1 至 ν_2 的路径
 - ightharpoonup $R(v_1)$ 表示从 v_1 可达的全体结点的集合
 - > 从 v_1 至 v_2 的距离 $d(v_1, v_2)$: 从 v_1 至 v_2 的路径中长度最短者的长度,若从 v_1 不可 达 v_2 ,则 $d(v_1, v_2) = \infty$
 - ightharpoonup G的直径 $\max_{v,v'\in V} d(v,v')$

- 1. 考虑右图。
- (a) 对于每个结点v,求R(v);
- (b) 找出所有强分支、单向分支、弱分支;
- (c) 求出该图的基础图中 v_1 到 v_8 的所有简单路径和基本路径,并求出从 v_1 到 v_8 的距离和基础图的直径。

知识点:可达、距离、直径、无向图和有向图的连通性

- \blacksquare 设G是无向图,
 - \triangleright G是连通的: G中任意两个结点都互相可达
 - \triangleright G是不连通的: G中存在两个结点不可达
- 设G'是图G的具有某性质P的子图,并且对于G的具有该性质的任意子图G'',只要G'⊆G''就有G'=G'',则称G'相对于该性质是G的极大子图
- 无向图G 的(连通)分支:G的极大的连通子图

- 1. 考虑右图。
- (a) 对于每个结点v,求R(v);
- (b) 找出所有强分支、单向分支、弱分支;
- (c) 求出该图的基础图中 v_1 到 v_8 的所有简单路径和基本路径,并求出从 v_1 到 v_8 的距离和基础图的直径。

知识点:可达、距离、直径、无向图和有向图的连通性

- 设G是有向图,
 - \triangleright G是强连通: G中任意两个结点都互相可达;
 - \triangleright G是单向连通:对于G的任意两结点,必有一个结点可达另一结点
 - \triangleright G是弱边通: G 的基础图是连通的
- 有向图G 的极大强连通子图(极大单向连通子图、极大弱连通子图)称为G的强分支(单向分支、弱分支)

- 1. 考虑右图。
- (a) 对于每个结点v,求R(v);
- (b) 找出所有强分支、单向分支、弱分支;

(c) 求出该图的基础图中 v_1 到 v_8 的所有简单路径和基本路径,并求出从 v_1 到 v_8 的距离和基础图的直径。

解: (a)
$$R(v_1) = \{v_1, v_2, v_3, v_4, v_5, v_6\} = R(v_2) = R(v_3) = R(v_4)$$

$$R(v_5) = \{v_5, v_6\},$$

$$R(v_6) = \{ v_6 \},$$

$$R(v_7) = \{ v_6, v_7 \},$$

$$R(v_8) = \{ v_6, v_7, v_8 \},$$

$$R(v_9) = \{v_9\},$$

$$R(v_{10}) = \{v_{10}\}_{\circ}$$

- 1. 考虑右图。
- (a) 对于每个结点v,求R(v);
- (b) 找出所有强分支、单向分支、弱分支;

- v_1 v_2 v_5 v_6 v_9 v_4 v_3 v_7 v_8 v_{10}
- (c) 求出该图的基础图中 v_1 到 v_8 的所有简单路径和基本路径,并求出从 v_1 到 v_8 的距离和基础图的直径。

解: (b) 强分支:

 $G[\{v_1, v_2, v_3, v_4\}], G[\{v_5\}], G[\{v_6\}], G[\{v_7\}], G[\{v_8\}], G[\{v_9\}], G[\{v_{10}\}]_{\circ}$

单向分支: $G[\{v_1, v_2, v_3, v_4, v_5, v_6\}], G[\{v_6, v_7, v_8\}], G[\{v_9\}], G[\{v_{10}\}]$ 。

弱分支: $G[\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}], G[\{v_9\}], G[\{v_{10}\}]$

- 1. 考虑右图。
- (a) 对于每个结点v,求R(v);
- (b) 找出所有强分支、单向分支、弱分支;
- (c) 求出该图的基础图中v₁到v₈的所有简单路径和基本路径,并求出从v₁到v₈的距离和 基础图的直径。

(c) 右图为该图的基础图,其中v₁到v₈的所有基本路径为

$$v_1 e_1 v_2 e_2 v_5 e_7 v_6 e_8 v_7 e_9 v_8$$

$$v_1 e_1 v_2 e_5 v_3 e_6 v_5 e_7 v_6 e_8 v_7 e_9 v_8$$

$$v_1e_3v_4e_4v_3e_5v_2e_5v_3e_2v_5e_7v_6e_8v_7e_9v_8$$

$$v_1 e_3 v_4 e_4 v_3 e_6 v_5 e_7 v_6 e_8 v_7 e_9 v_8$$
.

以上基本路径均为简单路径,且图中没有其他简单路径。

基础图中v₁到v8距离为5,基础图的直径为∞。

2. 证明有向图的每个结点和每条边恰好处于一个弱分支中。

知识点: 有向图的基础图、弱连通、弱分支

■ 无向图 $G' = \langle V, E, \Psi' \rangle$ 是有向图 $G = \langle V, E, \Psi \rangle$ 的基础图,其中, Ψ' : $E \rightarrow \{\{v_1, v_2\} | v_1 \in V \land v_2 \in V\}$,

使得,对任意 $e \in E$ 和 $v_1, v_2 \in V$,

若
$$\Psi(e) = \langle v_1, v_2 \rangle$$
, 则 $\Psi'(e) = \{v_1, v_2\}$

- 有向图 G 是弱连通的: G的基础图是连通的
 - ▶ 有向图 G 的极大弱连通子图称为 G 的弱分支
 - > 弱连通有向图恰有一个弱分支
 - > 非弱连通有向图有一个以上弱分支

2. 证明有向图的每个结点和每条边恰好处于一个弱分支中。

证明: 令G为一个有向图,G'是G的基础图。

显然,由弱分支的定义知,每个结点和每条边都处于一个弱分支中。

下面用反证法证明每个结点和每条边仅处于一个弱分支中。

(a) 假设 G 中一个结点 ν 处于两个不同的弱分支 G_1 与 G_2 中。

考虑 G_1 与 G_2 的基础图 G_1' 与 G_2' ,则 G_1' 与 G_2' 是基础图 G' 的分支,且v 是 G_1' 与 G_2' 的公共结点,得 $G_1' \cup G_2'$ 是连通的,矛盾。

因此假设不成立,即G中每个结点仅处于一个弱分支中。

(b)假设 G 中一条边 e 处于两个不同的弱分支 G_1 与 G_2 中,同样可证e也处于 G_1 与 G_2 的基础图 G_1 与 G_2 中,得 G_1 \cup G_2 是连通的,矛盾。

因此假设不成立,即G中每条边仅处于一个弱分支中。

3. 设G是弱连通有向图,证明: 如果对于G的任意结点 v,皆有 $d_G^+(v) = 1$,则G恰有一条有向回路。

解:证明: (a) 首先证明有向回路的存在性。

因为G是弱连通有向图,不妨设G的一条最长的基本路径为

$$P: v_0 e_1 v_1 e_2 \dots v_{m-1} e_m v_m.$$

由于G的任一结点v,有 $d_G^+(v)=1$,因此,对于 v_m ,G中必有边e,满足

$$\Psi(e) = \langle v_m, v \rangle_{\circ}$$

由于P是最长的基本路径,因此,必存在 $i \in \{0, 1, 2, ..., m\}$,使得 $v = v_i$,

否则将得到一条更长的基本路径 $v_0e_1v_1e_2...v_{m-1}e_mv_mev$,矛盾。

故 G 中存在有向回路: $v_i e_{i+1} v_{i+1} \dots e_m v_m e v_i$ 。

(或者直接由定理3.7可证)

定理3.7 如果有向图 G 有子图 G',使得对于 G'的任意结点 v,皆有 $d_{G'}^+(v) > 0$,则 G 有有向回路。

3. 设G是弱连通有向图,证明: 如果对于G的任意结点 v,皆有 $d_G^+(v) = 1$,则G恰有一条有向回路。

证明(续): (b)下面用反证法证明有向回路的唯一性。

假设G有两条不同的有向回路 C_1 与 C_2 ,其中 C_1 为m阶有向回路且 C_2 为k阶有向回路。由定理3.6得, C_1 与 C_2 分别存在一条闭路径,记为:

 $v_0e_1v_1e_2...v_{m-1}e_mv_0$ 与 $u_0e_1'u_{1e_2'}...u_{k-1}e_k'u_0$ 由于G是弱连通有向图,因此 G 的基础图 G'是连通的,则必存在两点 v_i 与 u_j ,使得 v_i 在基础图 G'中可达 u_j 。考虑以下两种情况:

》 若 $v_i = u_j$ (即 v_i 与 u_j 为同一个结点),由于 C_1 与 C_2 是 G 的两条不同的有向回路,则一定存在 $k \geq 0$,使得 $v_{i+k} = u_{j+k}$ (即 v_{i+k} 与 u_{j+k} 为同一个结点),但以该点为起点的边在 C_1 与 C_2 上有不同的终点,得 v_{i+k} 在 G 中的出度至少为2,与 G 中所有点出度均为1矛盾。

3. 设G是弱连通有向图,证明: 如果对于G的任意结点 v,皆有 $d_G^+(v) = 1$,则G恰有一条有向回路。

证明(续): (b)下面用反证法证明有向回路的唯一性。 考虑以下两种情况:

不妨设该半路径上不包括有向回路 C_1 或 C_2 上的其他点,否则将归纳为上一种情况。

- 2) 若 u_j 在该半路径上关联的边在 G 中以 u_j 为起点,则 u_i 的出度至少为2,矛盾;
- 3) 否则,半路径上必存在一点v, 使得v在半路径上关联两条边e与e',

满足v在G中是e与e'的起点,则v的出度至少为2,同样矛盾。

综上,假设不成立,得G中恰有一条有向回路。

4. 证明非连通简单无向图的补图必连通。

证明:设G是一个非连通简单无向图,其补图为 \overline{G} 。只需证明对G中任意两个结点u与v,u在 \overline{G} 中可达v。考虑以下两种情况:

- (1) 若u与v在 G 中不可达,则u与v在 G 中不邻接,得u与v在 \overline{G} 中一定邻接,从而可达。
- (2) $\frac{1}{2}$ $\frac{1}{2}$

则在 \overline{G} 中,u与w邻接且v与w邻接,得u可达v。

综上,得证。