제 6장 Counting Methods and the Pigeonhole Principle

- 6.1 Basic Principles
- 6.2 Permutations and Combinations
- 6.3 Generalized Permutations and Combinations
- 6.4 Algorithms for Generating Permutations and Combinations
- 6.5 Introduction to Discrete Probability
- 6.6 Discrete Probability Theory
- 6.7 Binomial Coefficients and Combinatorial Identities
- 6.8 The Pigeonhole Principle

- 하나의 메인 코스와 하나의 음료로 이루어진 가능한 모든 식사 방법?
 - HT, HM, HC, HR, CT, CM, CC, CR,FT, FM, FC, FR
 - 세 종류의 주요리와 네 종류의 음료가 있으므로 12 = 3 · 4.
- 하나의 식전 음식, 하나의 메인 코스, 하나의 음 료로 이루어진 가능한 모든 식사 방법의 수는?
 - $24 = 2 \cdot 3 \cdot 4$

APPETIZERS			
<i>Nachos</i> 2.15			
Salad			
MAIN COURSES			
Humburger3.25			
Cheeseburger			
Fish Filet			
DEVEDACES			
BEVERAGES			
<i>Toa</i>			
<i>Milk</i>			
<i>Cola</i>			
Root Beer			

□ 곱셈의 원리 어떤 액티비티가 연속된 t단계로 구성되고, 단계 1이 n_1 가지 방법으로 이루어질 수 있으며, 단계 2는 n_2 가지 방법으로 이루어질 수 있고, ..., 단계 t가 n_t 가지 방법으로 이루어질 수 있을 때, 서로 다른 액티비티의 가능한 모든 경우의 수는

예제 6.1.3 (a) 문자 ABCDE를 중복 없이 사용하여 4개의 문자로 된 문자열을 생성할 때 몇 가지의 문자열을 생성할 수 있는가? 위에서 (b) (a)에서 생성한 문자열 중 B로 시작하는 문자열은 몇 가지 인가? (c) (a)에서 생성한 문자열 중 B로 시작하는 않는 문자열은 몇 가지 인가?

□ 풀이

□ (a) 4개의 문자로 이루어진 문자열은 다음과 같은 네 단계로 구성할 수 있다. 첫 문자를 선택하고. 두 번째 문자를 선택하고,세번째 문자를 선택하고,네 번째 문자를 선택하고,네 번째 문자를 선택한다.

$$5 \cdot 4 \cdot 3 \cdot 2 = 120$$

□ (b) 첫 문자 B를 선택하는 방법은 하나뿐이다. 두 번째 문자를 선택할 수 있는 방법은 4 가지, 세 번째 문자는 3 가지, 네 번째 문자는 2가지 이다

$$1 \cdot 4 \cdot 3 \cdot 2 = 24$$

c (c) (a)-(b)

$$120 - 24 = 96$$

- □ 예제 6.1.4 디지털화된 그림에서 한 점의 색을 8 비트로 나타내려고 한다. 한점은 몇 가지 색을 가질 수 있는가?
- □ 풀이 8 비트로 한 점을 나타내는 것은 연속적인 8 단계로 구성할 수 있다.

첫 번째 비트를 선택하고, ..., 여덟 번째 비트를 선택한다. 하나의 비트를 선택하는 방법이 2가지이므로, 곱셈 원리에 의해 8 비트를 결정하는 방법은

$$2 \cdot 2 = 2^8 = 256$$
.

- \square 예제 6.1.5 곱셈 원리를 이용하여 n개의 원소를 가진 집합 $\{x_1, ..., x_n\}$ 의 부 분집합이 2^n 개임을 증명하라
- \square 풀이 부분집합은 n개의 연속적인 단계를 통해 구성할 수 있다.

 x_1 을 부분집합에 포함할 것인지를 결정하고,

 x_2 를 포함할 것인지를 결정하고, ...,

 x_n 을 포함할 것인지를 결정한다.

각단계는 2가지 방법이 가능하다. 따라서 가능한 부분집합의 수는

$$\underbrace{2 \cdot 2 \cdots 2}_{n} = 2^{n}$$

- \square 예제 6.1.7 n개의 원소를 가진 집합에는 몇 개의 반사 관계가 존재하는가?
- □ 풀이 n개의 원소를 가진 집합 X에 대하여 반사 관계를 나타내는 $n \times n$ 행렬의 수를 계산한다.

모든 $x \in X$ 에 대하여 (x,x)는 이 관계에 있으므로, 행렬의 주대각선은 모두 1 이다. 나머지 항은 0 또는 1이 가능하다.

 $n \times n$ 행렬은 n^2 개의 항이 존재하고, 대각선 위치에는 n개의 항을 포함한다. 따라서 $n^2 - n$ 개의 대각선이 아닌 위치에 있는 항이 존재한다. 각 항에 값을 할당하는 방법이 2가지 씩 있으므로, 곱셈 원리에 의하여

$$\underbrace{2 \cdot 2 \cdot 2 \cdots 2}_{n^2 - n} = 2^{n^2 - n}$$

만큼 n개 원소 집합에 대한 반사 관계를 나타내는 행렬이 존재하고, 2^{n^2-n} 개의 반사 관계가 존재한다.

- □ 예제 6.1.9 8 비트 이진수 중 101 이나 111 로 시작하는 것은 몇 개인가?
- 물이 101 로 시작하는 8 비트 이진수는 다섯 단계로 만들 수 있다.
 4번째 비트를 선택하고, 5번째 비트를 선택하고, ..., 8번째 비트를 선택한다.
 각 단계에서 비트를 2가지 방법으로 선택할 수 있으므로, 곱셈 원리에 의해 2 · 2 · 2 · 2 · 2 · 2 = 2⁵ = 32

가지 방법이 존재한다.

같은 방법으로 111로 시작하는 8 비트 이진수가 32가지이다 101 또는 111 로 시작하는 8 비트 이진수는 32+32=64가지이다.

if $i \neq j, X_i \cap X_j = \emptyset$

□ 덧셈의 원리 $X_1, ..., X_t$ 가 집합이고, i 번째 집합 X_i 가 n_i 개의 원소를 가지고 있다고 하자. 만약 $\{X_1, ..., X_t\}$ 가 서로소라고 하면, X_1 또는 X_2 또는 ... 또는 X_t 에서 원소를 선택하는 경우의 수는 다음과 같다.

$$n_1 + n_2 + \cdots + n_t$$
 $(X_1 \cup X_2 \cup \cdots \cup X_t)$ 원소의 개수는 $n_1 + n_2 + \cdots + n_t)$ 이다.)

- □ 연속적인 단계로 구성할 수 있는 경우의 수는 곱셈 원리를 사용한다.
- 객체들이 서로소인 집합들로 나누어 있을 때의 경우의 수는 덧셈 원리를 사용한다.

- □ 예제 6.1.10 5 종류의 컴퓨터 서적, 3 종류의 수학 서적, 2 종류의 예술 서적에서 서로 다른 주제의 책 2권을 선택할 수 있는 방법은 몇 가지인가?
- □ 풀이 곱셈 원리를 사용하여
 - □ 컴퓨터 서적 한 권과 수학 서적 한 권을 선택하는 방법은 5 · 3=15 가지
 - □ 컴퓨터 서적 한 권, 예술 서적 한 권을 선택하는 방법은 5·2=10 가지
 - □ 수학 서적 한 권과 예술 서적 한 권을 선택하는 방법은 3·2=6 가지.
 - □ 이들 선택의 집합은 서로소이므로 덧셈 원리를 사용하여
 15 + 10 + 6 = 31가지 방법으로 컴퓨터 서적, 수학 서적, 예술 서적 가운데 주제가 다른 2권의 책을 선택할 수 있다

□ 예제 6.1.11 Alice, Ben, Connie, Dolph, Egbert, Francisco 6명으로 구성된 위원회에서 의장과 간사, 총무를 선출하려고 한다. (a) 몇 가지 방법으로 선출할 수 있는가? (b) Alice 나 Ben이 반드시 의장이 되어야 한다면 몇 가지 방법이 있는가? (c) Egbert가 반드시 직책을 하나를 맡아야 한다면 몇 가지 방법이 있는가? (d) Dolph와 Francisco 둘 다 직책을 맡게 되는 방법은 몇 가지인가?

□ 풀이

- □ (a) 곱셈 원리를 사용한다. 6·5·4=120
- □ (b) Alice가 의장이 되면, 5·4=20가지 방법으로 다른 직책을 맡을 사람을 선택할 수 있다. Ben이 의장인 경우도 20가지로 총 5·4+5·4=40
- □ (c) 1) Egbert가 의장, 간사, 총무 중에 하나를 맡는다면 각각 5·4=20가지, 총 3·20=60
- □ (d) Dolph에게 직책을 할당하고, Francisco에게 직책을 할당하고, 남은 직 책을 맡을 사람을 결정한다. 3·2·4=24

□ 정리 6.1.13 두 집합에 대한 포함-배제의 원리

$$X$$
와 Y 가 유한집합이면 $|X \cup Y| = |X| + |Y| - |X \cap Y|$

덧셈 원리에 의하여

$$|X| = |X - Y| + |X \cap Y| \qquad (1)$$

비슷하게,

$$|Y| = |Y - X| + |X \cap Y| \qquad (2)$$

$$X \cup Y = (X - Y) \cup (X \cap Y) \cup (Y - X) \cup [I]$$

$$X - Y, X \cap Y, Y - X$$
이 서로소이므로 덧셈 원리에 의하여

$$|X \cup Y| = |X - Y| + |X \cap Y| + |Y - X|$$
 3

식 ①, ②,③에서,

$$|X| + |Y| = |X - Y| + |X \cap Y| + |Y - X| + |X \cap Y|$$
 (① + ②)
= $|X \cup Y| + |X \cap Y|$ (③을 대입)

양변에서 $|X \cap Y|$ 을 빼면 원하는 결과를 얻는다

6.2 Permutations and Combinations

- □ 정의 6.2.1 n개의 서로 다른 원소 $x_1, ..., x_n$ 의 **순열(permutation)**은 n개의 원소 $x_1, ..., x_n$ 의 순서를 정하는 것이다.
- 예제 6.2.2 3개의 원소는 6가지 순열을 가진다. 원소를 A, B, C라고 하면 6개의 순열은

ABC, ACB, BAC, BCA, CAB, CBA.

- □ 정리 6.2.3 n개 원소의 순열의 수는 n! 이다.
- □ 증명 곱셈 원리를 사용한다.

n개 원소의 순열은 n개의 연속적인 단계로 구성할 수 있다. 첫 번째 원소를 선택하고, 두 번째 원소를 선택하고, ..., n 번째 원소를 선택한다.

첫 번째 원소를 n가지 방법으로 선택할 수 있다. 첫 번째 원소가 선택되고나면, 두 번째 원소는 n-1가지 방법으로 선택할 수 있다. 두 번째 원소가선택되고 난 뒤에는, 세 번째 원소를 n-2가지 방법으로 선택할 수 있다. 곱셈 원리에 의해 순열의 수는

$$n(n-1)(n-2)\cdots 2\cdot 1=n!$$

6.2 Permutations and Combinations(r-순열)

- □ 정의 6.2.8 n개의 서로 다른 원소 $x_1, ..., x_n$ 에 대해 r-순열은 $\{x_1, ..., x_n\}$ 에서 r개의 원소를 가진 부분집합의 순서를 정하는 것이다. n개의 서로 다른 원소를 가진 집합에 대한 r-순열의 수는 P(n,r)로 나타낸다.
- □ 예제 6.2.11 $X = \{a, b, c\}$ 의 2-순열의 수는 $P(3, 2) = 3 \cdot 2 = 6$ 6개의 2-순열은

ab, ac, ba, bc, ca, cb

6.2 Permutations and Combinations(r-조합)

- \Box 정의 6.2.14 n개의 서로 다른 원소를 가진 집합 $X = \{x_1, ..., x_n\}$ 에서
 - **\square** X의 r-조합(r-combination) 은 X에서 순서에 상관없이 r개의 원소를 선택하는 것이다. (즉, r개의 원소를 가진 X의 부분집합).
 - $lacksymbol{\square}$ n개의 서로 다른 원소에 대한 r-조합의 수는 C(n,r) 또는 ${n\choose r}$ 로 표현
- □ 정리 6.2.16

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n(n-1)\cdots(n-r+1)}{r!}$$
$$= \frac{n!}{(n-r)! \, r!} \qquad r \le n.$$

□ 증명 n개의 원소를 가진 집합 X의 r-순열은 연속된 두 단계로 구성할 수 있다. 즉, X의 r- 조합을 구하고 나서 그것의 순서를 결정한다. 곱셈 원리에 따라 r-순열의 수는 r-조합의 수와 r개 원소의 순서를 정하는 방법의 수를 곱한 것임을 알 수 있다.

$$P(n,r) = C(n,r)r!$$

- 사전의 순서를 일반화한,사전식 순서는 알파벳 뿐만 아니라 기호의 집합에 순서를 정의한 것이다.
- - (a) p < q 이고 모든 i = 1, ..., p 에 대해 $s_i = t_i$
 - (b) $s_i \neq t_i$ 인 i가 존재하고, 그런 i 중 가장 작은 i 에 대해 $s_i < t_i$
- \Box 예, 다음 각 경우는 $\alpha < \beta$
 - $\alpha = 132, \beta = 1324 \leftarrow \{1, 2, 3, 4\}$ 의 문자열
 - $\alpha = 13246$, $\beta = 1342는 \{1,2,3,4,5,6\}$ 의 문자열
 - $\alpha = 1324, \beta = 1342 \leftarrow \{1, 2, 3, 4\}$ 의 문자열
 - $\alpha = 13542, \beta = 21354 \leftarrow \{1,2,3,4,5\}$ 의 문자열

- r-조합 $\{x_1, ..., x_r\}$ 은 문자열 $s_1 \cdots s_r$ 로 표현된다. 여기서 $s_1 < s_2 < \cdots < s_r$ 이고 $\{x_1, ..., x_r\} = \{s_1, ..., s_r\}$ 이다. 예, 3-조합 $\{6, 2, 4\}$ 은 246으로 표현
- [1,2,...,n]의 모든 r-조합을 사전식으로 나열한다면, [1,2,...,n]의 모든 r-조합을 사전식으로 나열한다면, [1,2,...,n] [1,2,...,n]의 모든 r-조합을 사전식으로 나열한다면,
- □ 예제 6.4.6 $X = \{1, 2, 3, 4, 5, 6, 7\}$ 의 5-조합은 다음처럼 나열된다 12345, 12346, 12347, 12356, ..., 13467, 13567,..., 34567.
- 예제 6.4.7 문자열 13467의 5-조합의 다음 문자열은:
 5-조합을 나타내는 어떤 문자열도 134로 시작하면서 13467 보다 클 수 없다. 따라서 13467 다음에 올 문자열은 135로 시작해야 한다. 13567은 135로 시작하는 5-조합 가운데 가장 작은 수이므로, 답은 13567 이다.

- □ 예제 $6.4.8 X = \{1, 2, 3, 4, 5, 6, 7\}$ 의 4-조합을 나열할 때, 2367 다음에 오는 문자열은 무엇인가?
- □ 풀이 X의 4-조합인 문자열 가운데 23으로 시작하는 어떤 문자열도 2367 보다 크지않다. 따라서 2367 다음에 오는 문자열은 24로 시작해야 한다. 2456이 24로 시작하는 X의 4-조합 가운데 가장 작은 수이므로, 답은 2456이다.
- $S_1, ..., S_r$ 의 r-조합을 나타내는 문자열 $\alpha = s_1 \cdots s_r$ 에 대해 그 다음의 문자열 $\beta = t_1 \cdots t_r$ 을 구하기 위해서는 최대값에 도달하지 않은 가장 오른쪽 원소 s_m 을 찾는다. (s_r 은 최대값 n을 가지고, s_{r-1} 은 최대값 n-1을 가진다.) 그러면

$$t_i = s_i \text{ for } i = 1, ..., m-1$$

 $t_m 은 s_m + 1 이다. 문자열 <math> \beta$ 의 나머지는 $t_{m+1} \cdots t_r = (s_m + 2)(s_m + 3) \cdots$

- □ Algorithm 6.4.9 조합 생성 알고리즘이 알고리즘은 $\{1, 2, ..., n\}$ 의 모든 r- 조합을 사전식 오름차순(increasing lexicographic order)으로 나열한다.
- \square Input: r, n
- □ Output: 사전식 오름차순으로 정렬된 {1, 2, ..., n} 의 모든 r-조합
- 예 6.4.10 23467 다음에 오는 $\{1, 2, 3, 4, 5, 6, 7\}$ 의 5-조합 생성 과정 $s_1 = 2, s_2 = 3, s_3 = 4, s_4 = 6, s_5 = 7$

알고리즘의 13번 행에서 s_3 가 최대값에 도달하지 않은 가장 오른쪽 원소라는 것을 알게 된다.

14번 행에서는 $s_3 = 5$, 16과 17 번 행에서 $s_4 = 6$, $s_5 = 7$ 이된다.

$$s_1 = 2, s_2 = 3, s_3 = 5, s_4 = 6, s_5 = 7$$

23467 다음에 오는 5-조합 23567을 생성한 것이다..


```
\{1, 2, 3, 4, 5, 6, 7\},\
                                                         23467
  combination(r, n) {
     for i = 1 to r
 23456789
        s_i = i
     println(s_1,...,s_r) // 첫 번째 r-조합을 출력 한다
     for i = 2 to C(n,r) {
        m = r
       max \ val = n
       while (s_m == max\_val) { // 최대값에 도달하지 않은 가장 오른쪽 원소를 찾는다
10
          m = m - 1
          max\_val = max\_val - 1
11
12
          가장 오른쪽 원소의 값을 하나 증가시킨다
13
       s_m = s_m + 1
// 나머지 원소들은 s_m 다음이다
14
15
16
        for j = m + 1 to r
          s_j = s_{j-1} + 1
17
        println(s_1,...,s_r) // i 번째 조합을 출력한다
18
19
20 }
```


6.5 Introduction to Discrete Probability

- □ 실험 (experiment)은 결과를 도출하는 과정이다.
 사건 (event)은 실험의 결과 또는 결과들의 조합이다.
 표본 공간 (sample space)은 가능한 모든 결과들로 이루어진 사건을 말한다.
- □ 실험의 예
 - □ 육면의 주사위를 굴린다.
 - □ 1000개의 u-p에서 5개를 무작위로 선택한다
 - □ 성 로코 병원에서 한 명의 신생아를 선택한다.
- □ 사건의 예
 - □ 육면의 주사위를 굴려서 4를 얻었다.
 - □ 1000개의 u-p에서 5개를 무작위로 선택해 검사해보니 결함이 전혀 없다
 - □ 성 로코 병원에서 여자 신생아를 선택하였다.
- □ 표본 공간의 예
 - □ 숫자 1,2,3,4,5,6: 주사위를 굴려 나올 수 있는 모든 수
 - □ 1000개의 u-p에서 선택할 수 있는 5개를 가능한 모든 조합
 - □ 성 로코 병원의 모든 신생아

6.5 Introduction to Discrete Probability

□ 정의 6.5.2 S가 유한한 표본 공간이고 모든 결과들이 동등하게(equally likely) 일어난다고 하자. S로부터 사건 E의 확률 P(E)는

$$P(E) = \frac{|E|}{|S|}$$

예제 6.5.3 2개의 공정한 주사위를 굴린다. 주사위 숫자의 합이 10 일 확률
 은 얼마인가?

첫 번째 주사위에서 6개 숫자 중 하나가 나올 것이고 두 번째 주사위에서도 6개 숫자 중 하나가 나올 것이다. 곱셈 원리에 의해 6·6=36가지의 합이 존재한다. 즉 표본 공간의 크기가 36 이다.

- 그 중에서 합이 10 이 되는 경우는 (4, 6), (5, 5), (6,4)로 '합해서 10을 얻을 수 있는' 사건의 크기는 3 이다. 따라서 확률은 3/36=1/12 이다.
- □ 표본 공간은 전체 집합으로 볼 수 있고, 사건은 부분집합으로 볼 수 있다. 표본 공간은 $S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), ..., (6,6)\}$ '합해서 10을 얻을 수 있는' 사건은 $E = \{(4,6), (5,5), (6,4)\}$

- □ 앞절에서 모든 결과는 동등하게 일어난다고 가정하였다. 즉 n개의 가능한 결과가 있다면 각 결과가 나올 확률은 1/n 이다.
- □ 일반적으로 결과는 동등하게 일어나지 않는다.
- □ 정의 6.6.1 확률 함수 P는 표본 공간 S에서 각 결과 x에 대해 다음을 만족하는 수 P(x)를 할당한다.

모든
$$x \in S$$
에 대해 $0 \le P(x) \le 1$

이고

$$\sum_{x \in S} P(x) = 1$$

 첫 번째 조건은 결과의 확률이 음수가 아니며 최대가 1 임을 나타낸다.
 두 번째 조건은 모든 확률의 합은 1 임을 나타내고, 실험이 실행되면 어떤 결과가 발생한다.

예제 6.6.2 어떤 주사위를 던질 때, 2에서 6까지는 같은 확률로 나오고,
 1은 다른 수 보다 3 배의 확률로 나오도록 만들어졌다고 가정하자.
 확률 함수는?

□ 풀이

$$P(2) = P(3) = P(4) = P(5) = P(6), P(1) = 3P(2).$$

□ 1 = P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 3P(2) + P(2) + P(2) + P(2) + P(2) + P(2) = 8P(2) 이므로P(2) = 1/8. 따라서

$$P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{8}$$

이고

$$P(1) = 3P(2) = \frac{3}{8}$$

6.6 Discrete Probability Theory(사건 E의 확률)

- □ 사건 (event)은 실험의 결과들의 집합
- \Box 사건 E의 확률은 E에 있는 결과의 확률들의 합으로 정의된다.
- □ 정의 6.6.3 E는 사건이다. E의 확률 P(E)는

$$P(E) = \sum_{x \in E} P(x)$$

□ 예제 6.6.4 예제 6.6.2 의 가정이 주어졌다면, 홀수일 확률은? 홀수인 사건은 $E = \{1,3,5\}$ 이다.

$$P(E) = P(1) + P(3) + P(5) = \frac{3}{8} + \frac{1}{8} + \frac{1}{8} = \frac{5}{8}$$

□ 공정한(with equally likely probabilities) 주사위는 홀수일 확률은 1/2 이다.

6.6 Discrete Probability Theory(사건 E의 보수의 확률)

 \Box 정리 6.6.5 E는 사건이라 하자. \overline{E} 의 사건,즉 E의 보수는 다음을 만족한다. $P(E) + P(\overline{E}) = 1$

 \Box 증명 $E = \{x_1, ..., x_k\}$ 이고 $\overline{E} = \{x_{k+1}, ..., x_n\}$ 이라 하자. 그러면

$$P(E) = \sum_{i=1}^{k} P(x_i)$$
 and $P(\overline{E}) = \sum_{i=k+1}^{n} P(x_i)$.

두 식을 합하면

$$P(E) + P(\overline{E}) = \sum_{i=1}^{k} P(x_i) + \sum_{i=k+1}^{n} P(x_i)$$
$$= \sum_{i=1}^{n} P(x_i) = 1.$$

□ 마지막 등식은 정의 6.6.1 (모든 결과의 확률의 합은 1이다)에서 나온다.

- 예제 6.6.7 n명 중에서 적어도 두사람의 생일이 같을 확률을 구하라. 모든 날
 짜는 나올 확률이 같다고 하고 2월 29일 생일은 무시한다.
- \Box 풀이 E를 '적어도 두사람은 생일이 같다'라는 사건이라 하자. 그러면 \overline{E} 는 '두사람은 생일이 같지 않다'라는 사건이다.
- □ 모든 날짜는 나올 확률이 같고 2월 29일 생일을 무시하므로 표본 공간의 크기는 365^n .

n명 중에서 '두사람의 생일이 같지 않다'라는 사건의 크기는 $365 \cdot 364 \cdots (365 - n + 1)$

적어도 두 사람의 생일이 같은 확률은

$$1 - \frac{365 \cdot 364 \cdots (365 - n + 1)}{365^n}$$

n=22일 때 확률은 0.475695이고, n=23일 때는 0.507297이다.

- 예제 6.6.10 2개의 공정한 주사위를 굴린다. 두 주사위의 수가 같거나 합이
 6일 확률은 얼마인가?
- □ 풀이 E_1 은 '두 주사위의 수가 같은' 사건을 나타내고 E_2 는 '합이 6 인' 사건을 나타낸다. 두 주사위의 수가 같은 경우는 6가지 [(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)]이므로

$$P(E_1) = 6/36$$

합이 6 인 경우는 5 가지 [(1,5),(2,4),(3,3),(4,2),(5,1)] 이므로 $P(E_2) = 5/36$

 $E_1 \cap E_2$ 은 "두 주사위의 수가 같고 합이 6인" 사건이다. (3,3)만 가능하므로 $P(E_1 \cap E_2) = 1/36$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$
$$= 6/36 + 5/36 - 1/36 = 5/18.$$

6.6 Discrete Probability Theory(상호 배타적인 사건의 확률)

- \square 사건 E_1 과 E_2 는 $E_1 \cap E_2 = \emptyset$ 일 때 **상호 배타적**(mutually exclusive)이다.
- \square 따름정리 6.6.11 E_1 과 E_2 가 상호 배타적인 사건이면 $P(E_1 \cup E_2) = P(E_1) + P(E_2)$.
- 예제 6.6.12 2개의 공정한 주사위를 굴린다. 두 주사위의 수가 같거나 합이 5일 확률은?
- $= \frac{\textbf{풀} \cap E_1}{\in F_1}$ 는 '두 주사위의 수가 같은' 사건을 나타내고 E_2 는 '합이 5 인' 사건을 나타낸다. E_1 과 E_2 는 상호 배타적이다. 두 주사위의 수가 같고 합이 5인 경우는 없다.

두 주사위의 수가 같은 경우는 6가지 이므로

$$P(E_1) = 6/36$$

합이 5 인 경우는 4 가지 [(1,4),(2,3),(3,2),(4,1)] 이므로 $P(E_2)=4/36$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) = 6/36 + 4/36 = 5/18$$

6.6 Discrete Probability Theory(조건부 확률)

- □ 2개의 공정한 주사위를 굴린다고 가정하자. 표본 공간은 모두 36가지의 가능한 결과로 구성되고, 각 결과에는 1/36이란 값이 할당된다. 합이 10인 확률은 3/36 = 1/12이다.
- 2개의 공정한 주사위를 굴리고, 적어도 하나의 주사위에 5가 나온다고 가정하자. 음영 처리한 11개의 결과가 동일한 비율로 나오기 때문에 적어도 5가 하나 나오고 합이 10인 확률은 1/11이다. 어떤 사건이 일어날 것임이 주어진 확률을 조건부 확률(conditional probability)이라고 한다.

1,1	1,2	1,3	1,4	1,5	1,6
2,1	2,2	2,3	2,4	2,5	2,6
3,1	3,2	3,3	3,4	3,5	2,6
4.1	4,2	4,3	4,4	4,5	4,6
5,1	5,2	5,3	5,4	5,5	5,6
6,1	6,2	6,3	6,4	6,5	6,6

6.6 Discrete Probability Theory(조건부 확률 정의)

□ 정의 6.6.13~E와 F는 사건이고, P(F) > 0이라고 가정하자. F 조건하에 E의 조건부 확률은

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)} .$$

- 예제 6.6.14 공정한 2개의 주사위를 굴리는 때, 적어도 하나의 주사위가 5가
 나온 조건에서 합이 10일 확률을 계산
- 물이 E는 '합이 10 인' 사건이고
 F는 '적어도 하나의 주사위가 5 가 나오는' 사건이다.
 E ∩ F는 '합이 10이고 적어도 하나의 주사위가 5가 나오는' 사건이다.
 E ∩ F가 되는 경우는 하나이므로 P(E ∩ F) = 1/36
 F에 해당되는 결과가 11가지이므로 P(F) = 11/36.
 그러므로,

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{1}{36}}{\frac{11}{36}} = \frac{1}{11}$$

□ 사건 E의 확률이 $P(E) = P(E \mid F)$ 가 되어 사건 F에 종속적이지 않을 때, E와 F는 독립사건(independent event)이라고 한다. E와 F가 독립사건이면

$$P(E) = P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$
 or $P(E \cap F) = P(E)P(F)$

 \Box 정의 6.6.16 사건 E와 F는 다음을 만족하면 **독립적**이다.

$$P(E \cap F) = P(E)P(F)$$

- 예제 6.6.18 Joe와 Alicia는 이산 수학 기말 시험을 치렀다.
 Joe가 통과할 확률은 0.70이고 Alicia가 통과할 확률은 0.95이다.
 사건 J 'Joe가 통과한다'와 사건 A 'Alicia가 통과한다' 가 독립적이라고 가정하면, Joe 또는 Alicia, 또는 둘 다 통과할 확률은 얼마인가?
- □ 풀이 $P(J \cup A) = P(J) + P(A) P(J \cap A)$ 사건 J와 A는 독립 적이므로 $P(J \cap A) = P(J)P(A) = 0.70 \cdot 0.95 = 0.665.$ 그러므로 $P(J \cup A) = 0.70 + 0.95 - 0.665 = 0.985.$

6.6 Discrete Probability Theory(패턴 인식과 베이스 정리)

- □ 패턴 인식(pattern recognition)은 아이템들의 특징에 기반을 두고 아이템들을 여러 개의 클래스로 분류한다.
- □ 예를 들어 포도주는 도수와 산지 같은 특징에 따라 프리미엄, 테이블 와인, 스윌(swill, 값싼 술)로 분류된다. 이와 같은 분류방법의 하나로 확률 이론을 사용한다. 특징 집합 F가 주어지면, 각 클래스에 대해 $P(C_i \mid F)$ 를 계산하고, 와인을 가장 그럴듯한 클래스로 분류한다. 선택된 클래스 C는 $P(C \mid F)$ 가 가장 큰 값을 가지는 클래스이다.
- 예제 6.6.19 R은 프리미엄 클래스라 하고, T는 테이블 와인 클래스라 하고, S는 스윌 클래스라 하자. 특정한 포도주가 특징 집합 F를 가지고
 P(R | F) = 0.2, P(T | F) = 0.5, P(S | F) = 0.3
 이라고 가정하자.

테이블와인 클래스의 확률이 가장 크기 때문에 이 포도주는 테이블 와인으로 분류될 것이다.

□ 정리 6.6.20 Bayes' 정리 가능한 클래스가 C_1 ,..., C_n 이라고 가정하자. 또한 클래스의 각 쌍은 상호 배타적이고, 분류될 각 아이템들은 클래스 중의 하나로 분류된다고 가정한다.

특징 집합 F에 대해

$$P(C_j|F) = \frac{P(F|C_j)P(C_j)}{\sum_{i=1}^n P(F|C_i)P(C_i)}$$

□ 증명 정의 6.6.13에 의해

$$P(C_j|F) = \frac{P(C_j \cap F)}{P(F)}, \qquad P(F|C_j) = \frac{P(F \cap C_j)}{P(C_i)}$$

둘을 조합하면,

$$P(C_j|F) = \frac{P(C_j \cap F)}{P(F)} = \frac{P(F|C_j)P(C_j)}{P(F)}$$

□ Bayes' 정리를 마무리하기 위해서 다음을 증명하여야 한다.

$$P(F) = \sum_{i=1}^{n} P(F|C_i)P(C_i)$$

분류될 각 아이템들은 클래스 중의 하나에 속하기 때문에

$$F = (F \cap C_1) \cup (F \cap C_2) \cup \cdots \cup (F \cap C_n)$$

$$P(F) = P(F \cap C_1) + P(F \cap C_2) + \cdots + P(F \cap C_n).$$

□ 다시 정의 6.6.13에 의해,

$$P(F \cap C_i) = P(F|C_i)P(C_i)$$

□ 그러므로,

$$P(F) = \sum_{i=1}^{n} P(F|C_i)P(C_i)$$

이고, 증명은 마무리된다.

□ 예제 6.6.21 통신 판매회사에서 상담원 데일, 러스티, 리가 전화를 건다.(아 웃바운드) 다음 표는 각 상담원이 전화를 건 퍼센트와 각 상담원에 대해 전 화를 거절하고 끊은 사람들의 퍼센트를 나타낸다.

		상담원		
	데일	러스티	리	
전화 건 퍼센트	40	25	35	
거절 퍼센트	20	55	30	

- D는 사건 '데일이 전화를 건다', R은 사건 '러스티가 전화를 건다', L은 사건 '리가 전화를 건다', H는 사건 '전화를 거절한다' 라고 하자.
- P(D), P(R), P(L), P(H|D), P(H|R), P(H|L), P(D|H), P(H)를 구하라.

		상담원		
	데일	러스티	리	
전화 건 퍼센트	40	25	35	
거절 퍼센트	20	55	30	

- $\equiv \bigcirc | P(D) = 0.4, P(R) = 0.25, P(L) = 0.35.$
- P(H|D) = 0.2, P(H|R) = 0.55, P(H|L) = 0.3.
- \square P(D|H)를 계산하기 위해 베이스 정리를 사용:

$$P(D|H) = \frac{P(H|D)P(D)}{P(H|D)P(D) + P(H|R)P(R) + P(H|L)P(L)}$$

$$= \frac{(0.2)(0.4)}{(0.2)(0.4) + (0.55)(0.25) + (0.3)(0.35)} = 0.248.$$

- P(R|H) = 0.426, P(L|H) = 0.326
- P(H) = P(H|D)P(D) + P(H|R)P(R) + P(H|L)P(L)= (0.2)(0.4) + (0.55)(0.25) + (0.3)(0.35) = 0.3225.

예제 6.6.22 한 병원에서 환자의 15%가 HIV 바이러스를 보유하고 있다.
 또한 HIV 바이러스를 보유한 사람의 95%가 ELISA 검사에서 양성이다.
 HIV 바이러스를 보유하지 않은 사람들 중에서는 2%가 ELISA 검사에서 양성 반응을 보인다.

환자가 ELISA 검사에서 양성일 때 HIV 바이러스를 보유하고 있을 확률을 구하라.

□ 풀이 클래스는 'HIV 바이러스 보유' (H로 표기)와 'HIV 바이러스 비보유' (\overline{H} 로 표기)이다.

특징은 '양성 반응'이고 Pos로 표기한다.

$$P(H) = 0.15, P(\overline{H}) = 0.85, P(Pos|H) = 0.95, P(Pos|\overline{H}) = 0.02.$$

□ 베이스 정리를 이용하여 확률을 구한다:

$$P(H|Pos) = \frac{P(Pos|H)P(H)}{P(Pos|H)P(H) + P(Pos|\overline{H})P(\overline{H})} = 0.893.$$

□ (a + b)³ = (a + b)(a + b)(a + b)의 전개에서,
 첫 번째 인수 (a + b)에서 a나 b를 선택하고,
 두 번째 인수 (a + b)에서 a나 b를 선택하고,
 세 번째 인수 (a + b)에서 a나 b를 선택한 다음
 선택한 것을 모두 곱한다. 그리고 얻어진 각 곱을 모두 더한다.

첫 번째 인수에서 선택	두 번째 인수에서 선택	세 번째 인수에서 선택	선택한 것의 곱
а	а	а	$aaa = a^3$
a	a	b	$aab = a^2b$
а	b	a	$aba = a^2b$
а	b	b	$abb = ab^2$
b	a	a	$baa = a^2b$
b	a	b	$bab = ab^2$
b	b	a	$bba = ab^2$
b	b	b	$bbb = b^3$

 \Box 이항정리는 $(a + b)^n$ 의 전개에서 나타나는 계수들에 대한 공식을 제공

$$(a + b)^n = \underbrace{(a+b)(a+b)\cdots(a+b)}_{n 7 \parallel 9 \parallel 9 \parallel 2} \tag{7.1}$$

- □ 식 (7.1)에서 $a^{n-k}b^k$ 형태의 항은 k개의 인수에서 b를 선택하고 n-k개의 인수에서 a를 선택함으로써 얻어진다. 이는 C(n,k)가지 방법으로 선택할수 있는데, 그것은 C(n,k)가 n개의 항목에서 k개를 선택하는 방법의 수이기 때문이다. 따라서 $a^{n-k}b^k$ 형태의 항은 C(n,k)번 나타난다.
- □ 정리 6.7.1 이항 정리(Binomial Theorem) a와 b가 실수이고 n이 양의 정수일 때, 다음이 성립한다.

$$(a+b)^n = \sum_{k=0}^n C(n,k)a^{n-k}b^k$$
.

□ C(n,r)은 이항식 a + b의 어떤 제곱을 전개했을 때 계수로 나타나므로 이항 계수(binomial coefficient)라고 한다.

- □ 예제 6.7.4 $(a + b)^9$ 을 전개했을 때 a^5b^4 의 계수는?
- □ 예제 6.7.5 $(x + y + z)^9$ 을 전개했을 때 $x^2y^3z^4$ 의 계수는?
- □ 풀이 $(x + y + z)^9 = (x + y + z)(x + y + z) \cdots (x + y + z)$ (9개 항), 이므로 9개 항 가운데 2개 항에서 x를 선택하고, 9개 항 가운데 3개 항에서 y를 선택하고, 9개 항 가운데 4개 항에서 z를 선택하여 서로 곱하면 $x^2y^3z^4$ 을 얻을 수 있다.

x를 선택하기 위한 2개의 항은 C(9,2)가지 방법으로 구할 수 있고, 이러한 선택이 이루어진 다음에 y는 C(7,3)가지 방법으로 선택할 수 있다. 마지막으로 z를 선택할 4개 항이 남는다. 따라서 $(x + y + z)^9$ 전개에서 $x^2y^3z^4$ 의 계수는

$$C(9,2)C(7,3) = \frac{9!}{2! \ 7!} \frac{7!}{3! \ 4!} = \frac{9!}{2! \ 3! \ 4!} = 1260$$

- □ 이항 계수를 삼각형 형태로 나타낼 수 있다. 경계는 1로 이고, 1 내부의 모든 값은 자신의 위에 있는 두 값의 합이다. 1 1
- 카운팅 과정에 유도되는 항등식을 조합 항등식이라하고, 카운팅 방법을 위주로 사용하는증명방법을 조합적 증명이라 한다.

- □ 정리 6.7.6 C(n+1,k) = C(n,k-1) + C(n,k) for $1 \le k \le n$.
- □ 증명 X가 n개의 원소를 가진 집합이라 하자. $a \notin X$ 를 선택한다. 그러면 C(n+1,k)는 $Y=X\cup\{a\}$ 의 k개 원소를 가진 부분집합의 개수가 된다. 이제 Y의 k개 원소를 가진 부분집합은 서로소인 두 개의 클래스로 나눈다.
 - 1. Y의 부분집합 중 α 를 포함하지 않는 것
 - 2. Y의 부분집합 중 a를 포함한 것
- □ 클래스의 1에 있는 부분집합은 X의 k개 원소를 가진 부분집합으로 모두 C(n,k)개가 있다. 클래스의 2에 있는 부분집합은 X의 k-1개 원소를 가진 부분집합에 a를 추가하면 얻을 수 있고, 모두 C(n,k-1)개가 있다. 따라서 C(n+1,k) = C(n,k-1) + C(n,k).

- □ 비둘기집 원리 (첫 번째 형태)
 - k개의 비둘기집에 n마리의 비둘기가 날아들고 k < n이라고 하면, 2마리 이상의 비둘기가 들어 있는 비둘기집이 반드시 존재한다.
- □ 예제 6.8.1 10명의 사람이 있다. 그들의 이름은 앨리스(Alice), 버나드 (Bernard), 찰스(Charles)이고, 성은 리(Lee), 맥더프(McDuff), 응(Ng)이다. 이들 가운데 최소한 두사람은 이름과 성이 같다는 것을 보이라.
- □ 풀이 10명에게 가능한 성명은 9가지 뿐이다. 사람을 비둘기, 성명을 비둘기 집으로 생각하고, 각 사람에게 성명을 할당하는 것을 비둘기에게 집을 주는 것으로 생각할 수 있다 비둘기집 원리에 의해, 어떤 성명(비둘기집)은 최소한 두 사람(비둘기)에게 할당되어야 한다.

$$k = 4$$
$$n = 6$$

- □ 비둘기집 원리(두 번째 형태) f가 유한 집합 X에서 유한 집합 Y로의 함수이고, |X| > |Y|라고 할 때, $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$, $x_1 \neq x_2$.
- 예 6.8.3 20개의 프로세서가 서로 연결되어 있을 때, 최소한 2개의 프로세서
 는 직접 연결 되어 있는 프로세서의 수가 같다는 것을 보이라.
- □ 풀이 프로세서를 각각 1, 2, ..., 20으로 나타낸다. a_i 는 프로세서 i 에 직접 연결 되어 있는 프로세서의 수라고 하자. 어떤 $i \neq j$ 에 대해 $a_i = a_j$ 인 i와 j가 있다는 것을 보이면 된다. 함수 a의 정의역은 $X = \{1, 2, ..., 20\}$, 치역 $Y \leftarrow \{0, 1, ..., 19\}$ 의 부분집합. 어떤 i, j에 대해, $a_i = 0$ 이면서 $a_j = 19$ 일 수는 없다. (프로세서 i는 다른 프로세서와 직접 연결되어 있지 않은데도 프로세서 <math>j는 모든 프로세서와 연결되어(프로세서 i를 포함) 있는 것을 의미한다.) 따라서 $Y \leftarrow \{0, 1, ..., 18\}$ 또는 $\{1, 2, ..., 19\}$ 의 부분집합이다. 둘 다, |Y| < 20 = |X|. 두 번째 형태 의 비둘기집 원리에 의해 $i \neq j$ 이면서 $a_i = a_i$ 인 i와j가 존재한다.

- 예제 6.8.4 1번부터 300번까지 번호가 매겨져 있는 과목에서 151개의 서로 다른 컴사 과목을 선택한다고 하면, 최소한 두 과목은 연속적인 번호를 가 진다는 것을 보이라.
- □ 풀이 선택된 과목의 번호가 다음과 같다고 하자.

$$c_1, c_2, ..., c_{151}$$
 (8.1)
식 (8.1)의 숫자들과 아래의 숫자들
$$c_1 + 1, c_2 + 1, ..., c_{151} + 1$$
 (8.2) 식 (8.1)은 1~300
식 (8.2)는 2~301

을 모두 모으면 302개의 숫자가 되고, 그 범위는 1부터 301까지가 된다. 두 번째 형태의 비둘기집 원리에 의해, 최소 2개의 숫자는 서로 일치한다. 식 (8.1)의 숫자들은 서로 다르다. 그래서 식 (8.2)의 숫자들도 서로 다르다. 따라서 식 (8.1)의 숫자 하나와 식 (8.2)의 숫자 하나가 서로 같아야 한다.

$$c_i = c_j + 1$$

 c_i 와 c_j 는 연속적인 숫자가 된다.

 \square 비둘기집 원리 (세번 째 형태) f가 유한 집합 X에서 유한 집합 Y로의 함수, |X| = n, |Y| = m이고, k = [n/m]이라고 하자.

그러면 다음을 만족하는 적어도 k개의 서로 다른 $a_1, ..., a_k \in X$ 가 존재한다.

$$f(a_1) = f(a_2) = \cdots = f(a_k)$$

□ 증명 모순법을 사용한다.

 $Y = \{y_1, ..., y_m\}$ 라 하고, 결론이 거짓이라고 가정하자. 그러면 $f(x) = y_1$ 이 되는 $x \in X$ 는 많아야 k-1개이고, $f(x) = y_2$ 가 되는 $x \in X$ 도 많아야 k - 1개이고, ...,

 $f(x) = y_m$ 이 되는 $x \in X$ 도 많아야 k-1개이다.

따라서 f의 정의역의 원소는 많아야 m(k-1)개이다. 하지만

$$m(k-1) < m\frac{n}{m} = n$$

 $k-1 \ge n/m$ 이면 k-1 = [n/m]이 되어 모순

- 예제 6.8.6 두 사진의 평균 밝기가 특정한 값 이하로 차이가 날 때 두 사진을 비슷하다고 하자. 6장의 사진이 있을 때, 그 중에는 서로 비슷한 것이 반드 시 3장 있거나 비슷하지 않은 것이 반드시 3장 있다는 것을 보이라.
- □ 풀이 각 사진을 $P_1, P_2, ..., P_6$ 로 나타내자. P_1 과 다른 사진 5장의 쌍 $(P_1, P_2), (P_1, P_3), (P_1, P_4), (P_1, P_5), (P_1, P_6)$

는 '비슷하다' 또는 '비슷하지 않다'라는 값을 가진다.

세 번째 형태의 비둘기집 원리에 의해, 같은 값을 가지는 쌍은 [5/2] = 3 쌍이다. 즉 5쌍 가운데 적어도 3쌍

$$(P_1, P_i), (P_1, P_j), (P_1, P_k)$$

는 '비슷하다' 또는 '비슷하지 않다'라는 값을 가진다.

각 쌍이 '비슷하다' 라는 값을 가진다고 가정하자. 이때 다음과 같은 쌍들

$$(P_i, P_j), (P_i, P_k), (P_j, P_k)$$
(8.5)

가운데 하나의 쌍이라도 '비슷하다' 라는 값을 가진다면, 비슷한 이 두 사진과 P_1 은 서로 비슷할 것이고, 따라서 비슷한 3장의 사진을 찾은 것이 된다. 만일 식 (8.5)의 쌍 모두가 '비슷하지 않다' 라는 값을 가지는 경우에는 서로 비슷하지 않은 3장의 사진을 찾았다.