2014 Taiwan TST 1J P3

KIM YONG JOON

26 August 2025

Problem (Taiwan TST 2014/1J/3). In $\triangle ABC$ with incenter I, the incircle is tangent to \overline{CA} , \overline{AB} at E, F. The reflections of E, F across I are G, H. Let Q be the intersection of \overline{GH} and \overline{BC} , and let M be the midpoint of \overline{BC} . Prove that \overline{IQ} and \overline{IM} are perpendicular.

¶ Main Idea Show the perpendicuarlity using the polar fact, and prove another parallel claim using common incenter configurations.

¶ Solution By symmetry, let Q' be the reflection of Q over I. It follows that Q' passes through the tangent to D'.

Claim —
$$AD'$$
 is the polar of Q' wrt (I)

Proof. By La-Hire's theore, A lies on the polar of Q', as $Q' \in EF$, and EF is in fact the polar of A. Moreover, $Q' \in D'D'$, so AD' is indeed the polar of Q'

Note that it suffices to prove that $AD' \parallel IM$, as $AD' \perp Q'I$ by the polar condition.

Claim —
$$AD' \parallel IM$$

Proof. The intersection of AD' and BC, X, is in fact the A-extouch point, so M is the midpoint of DX. This implies that $AD' \parallel IM$ by midline.