

第十二章 高级数据结构

张铭 主讲

采用教材: 张铭, 王腾蛟, 赵海燕 编写 高等教育出版社, 2008.6 ("十二五"国家级规划教材)

http://jpk.pku.edu.cn/course/sjjg/
https://www.icourse163.org/course/PKU-1002534001

高级数据结构

第十二章 高级数据结构

- · 12.1 多维数组
 - 多维数组的一般性质
 - 特殊的二维矩阵
 - 稀疏矩阵的实现与操作
- ・ 12.2 广义表
- · 12.3 存储管理
- 12.4 Trie 树
- · 12.5 AVL树的概念与插入操作
- · 12.6 AVL树的删除操作与性能分析
- 12.7 伸展树

基本概念

- ·数组 (Array) 是数量和元素类型固定的有序序列
- 静态数组必须在定义它的时候指定其大小和类型
- 动态数组可以在程序运行才分配元素个数与类型

基本概念 (续)

- 多维数组(Multi-array)是一般数组的扩充
- 数组的数组就组成了多维数组,可以表示为:

ELEM
$$A[c_1..d_1][c_2..d_2]...[c_n..d_n]$$

• c, 和 d, 是各维下标的下界和上界。所以其元素个数为:

$$\prod_{i=1}^{n} \left(d_i - c_i + 1\right)$$

数组的空间结构

二维数组

第一维: c1=0, d1=2 第二维: c2=0, d2=4

三维数组

第一维: c1=0, d1=2 第二维: c2=0, d2=3 第三维: c3=0, d3=1

数组的存储

- 内存是一维的, 所以数组的存储也只能是一维的
 - 以行为主序(也称为"行优先")
 - 以列为主序(也称为"列优先")

行优先存储

```
a_{111} a_{112} a_{113} \dots a_{11n}
                                                           a_{11*}
 a_{121} \ a_{122} \ a_{123} \ \dots \ a_{12n}
                                                           a_{12*}
 a_{1m1}a_{1m2} \ a_{1m3} \ \dots \ a_{1mn}
                                                          a_{1m*}
 a_{211} a_{212} a_{213} ... a_{21n}
                                                           a_{21*}
 a_{221} a_{222} a_{223} ... a_{22n}
                                                           a_{22*}
a_{2m1} \ a_{2m2} \ a_{2m3} \ \dots \ a_{2mn}
                                                          a_{2m*}
a_{k11} \ a_{k12} \ a_{k13} \ \dots \ a_{k1n}
a_{k21} \ a_{k22} \ a_{k23} \ \dots \ a_{k2n}
a_{km1} a_{km2} a_{km3} ... a_{kmn}
```

a[1..k,1..m,1..n]

典型编程语言:

Pascal、C/C++、JAVA

列优先存储

a[1..k, 1..m, 1..n]

典型编程语言:

Matlab FORTRAN

 $a_{12n} \ a_{22n} \ a_{32n} \ \dots \ a_{k2n}$

行优先与列优先对性能的影响

- 计算机缓存系统
 - 读某个内存地址, 会将该地址附近数据一次性读入, 存放于缓存(L1-L3)中

定位多维数组元素

- 多维数组ELEM A[d₁][d₂]...[d_n],
 每个元素大小为d
- 采用行优先存储

$$loc(A[j_{1}, j_{2}, ..., j_{n}])$$

$$= loc(A[0, 0, ..., 0])$$

$$+ d \cdot [j_{1} \cdot d_{2} \cdot ... \cdot d_{n}$$

$$+ j_{2} \cdot d_{3} \cdot ... \cdot d_{n}$$

$$+ ...$$

$$+ j_{n-1} \cdot d_{n} + j_{n}]$$

$$= loc(A[0, 0, ..., 0])$$

$$+ d \cdot [\sum_{i=1}^{n-1} j_{i} \prod_{k=i+1}^{n} d_{k} + j_{n}]$$

• 元素大小d=1, 定位元素a₁₁₂

$$\begin{array}{c} \begin{array}{c} \mathbf{a}_{000} \ \mathbf{a}_{001} \ \mathbf{a}_{002} \ \dots \ \mathbf{a}_{00_{d_3}} \\ \mathbf{a}_{1**} \\ +1 * d_3 \\ \mathbf{a}_{11*} \end{array} \qquad \begin{array}{c} \mathbf{a}_{010} \ \mathbf{a}_{011} \ \mathbf{a}_{012} \ \dots \ \mathbf{a}_{01_{d_3}} \\ \mathbf{a}_{0d_2}^0 \mathbf{a}_{0d_2}^1 \ \mathbf{a}_{0d_2}^2 \ \dots \ \mathbf{a}_{0d_2d_3} \\ \mathbf{a}_{100} \ \mathbf{a}_{101} \ \mathbf{a}_{102} \ \dots \ \mathbf{a}_{10_{d_3}} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{11_{d_3}} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{100} \ \mathbf{a}_{101} \ \mathbf{a}_{102} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{111} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{111} \ \mathbf{a}_{111} \ \mathbf{a}_{112} \ \dots \ \mathbf{a}_{1d_2d_3} \\ \mathbf{a}_{110} \ \mathbf{a}_{111} \ \mathbf{a}_{1111} \ \mathbf{a}_{1111} \ \mathbf{a}_{1111} \ \mathbf{a}_{1111} \ \mathbf{a}_{1111} \\ \mathbf{a}_{1111} \ \mathbf{a}_{1111} \ \mathbf{a$$

用数组表示特殊矩阵

- •三角矩阵: 上三角、下三角
- 对称矩阵
- •对角矩阵
- •稀疏矩阵

下三角矩阵图例

- —维数组 list[0.. (n²+n) /2-1]
 - 矩阵元素 $a_{i,j}$ 与线性表相应元素的对应位置为 list[$(i^2+i)/2 + j$] (i>=j)

```
      0
      0

      0
      0

      7
      5
      0

      0
      0
      1
      0

      9
      0
      0
      1
      8

      0
      6
      2
      2
      0
      7
```


对称矩阵

- 元素满足性质 $a_{i,j} = a_{j,i}$, 0 <= (i, j) < n 例如,右图的无向图相邻矩阵
- 存储其下三角的值, 对称关系映射
- 存储于—维数组 sa[0..n (n+1) /2-1]
 - sa[k] 和矩阵元 a_{i,j} 之间存在着——对应的关系:

$$k = \begin{cases} j(j+1)/2 + i, & \text{if } i < j \\ i(i+1)/2 + j, & \text{if } i \ge j \end{cases}$$

对角矩阵

- 对角矩阵是指: 所有非零元素都集中在主对角线及以它为中心的其他对角线上
- 下面是一个三对角矩阵: 如果 |i-j| > 1, 那么数组元素 a[i][j] = 0

稀疏矩阵

• 稀疏矩阵中的非零元素非常少,而且分布也不规律

$$\mathbf{A}_{6\times7} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{5} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{11} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

稀疏矩阵

- 稀疏因子
 - 在 m×n 的矩阵中, 有 t 个非零元素, 则稀疏因子为:

$$\delta = \frac{t}{m \times n}$$

- 当这个值小于0.05时,可以认为是稀疏矩阵
- 三元组(i, j, a_{ii}):输入/输出常用
 - i 是该元素的行号
 - j 是该元素的列号
 - a_{ij} 是该元素的值

稀疏矩阵的作用

• 简化计算: 跳过矩阵中大量的零元素

• 例: 稀疏矩阵乘法

A[c1..d1][c3..d3], B[c3..d3][c2..d2], C[c1..d1][c2..d2]

$$C = A \times B \quad (C_{ij} = \sum_{k=c3}^{d3} A_{ik} \cdot B_{kj})$$

经典矩阵乘法时间代价

- p=d1-c1+1, m=d3-c3+1, n=d2-c2+1;
- A 为 p×m 的矩阵, B 为 m×n 的矩阵, 乘得的结果 C为 p×n 的矩阵
- · 经典矩阵乘法所需要的时间代价为 O (p×m×n)

```
for (i=c1; i<=d1; i++)
    for (j=c2; j<=d2; j++){
        sum = 0;
        for (k=c3; k<=d3; k++)
            sum = sum + A[i,k]*B[k,j];
        C[i, j] = sum;
}</pre>
```


稀疏矩阵的十字链表表示法

- 稀疏矩阵的表示: 需要便于计算
 - 特别是处理遍历操作
- 十字链表有两组链表组成
 - 行和列的指针序列
 - 每个结点都包含两个指针: 同一行的后继, 同一列的后继

稀疏矩阵乘法

- 遍历所有(A矩阵行链表, B矩阵列链表)链表对
- 对每个(第 i 行链表,第 i 列链表)链表对
 - 第 i 行链表元素为 (i, k1, v1)
 - 第 j 列链表元素为 (k2, j, v2)
 - **比对行**链表元素 (i, k1, v1) 与列链表元素 (k2, j, v2)
 - 若k1 == k2,则将v1*v2加到输出矩阵的第 i 行 j 列对应元素

稀疏矩阵乘法

稀疏矩阵乘法时间代价

- A为 p×m 的矩阵, B 为 m×n 的矩阵, 乘得的结果 C为 p×n 的矩阵
 - 若矩阵 A 中行向量的非零元素个数最多为 ta
 - 矩阵 B 中列向量的非零元素个数最多为 th
- 总执行时间降低为 O((t_a+t_b) ×p×n)
- 经典矩阵乘法所需要的时间代价为 O (p×m×n)

稀疏矩阵的应用

- 机器学习中的稀疏矩阵
 - 自然语言处理: 文本文档表示
 - 如果在语言模型中有100,000个单词,那么特征向量长度为100,000
 - 但是对于一个简短的电子邮件来说,几乎所有的特征都是0
 - 推荐系统: 用户与物品表示

	物品1	物品2	物品3	物品4	物品5	物品6	物品7	物品8	物品9	物品10
用户1	3					5			2	
用户2			3		5			2		
用户3		1		2			5			
用户4			3					3		5
用户5	5				2					

- 图像处理:背景像素 (black pixel)

思考

• 多元多项式如何使用矩阵表示? 如何使用稀疏矩阵进行存储?

一元多项式
$$P_n(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n$$

$$=\sum_{i=0}^n a_ix^i$$

•如何用十字链表结构求解数独 (sudoku) 问题?

稀疏矩阵的应用

一元多项式
$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
$$= \sum_{i=0}^n a_i x^i$$

2.4 线性表实现方法的比较

思考: 多元多项式的表达

•
$$P(x, y)=x^5y^3+2x^4y^3+3x^4y^2+x^4y^4+6x^3y^4+2y$$

	XO	X1	X2	Х3	X4	X5
YO	0	0	0	0	0	0
Y1	2	0	0	0	0	0
Y2	0	0	0	0	3	0
Y3	0	0	0	0	2	1
Y4	0	0	0	6	1	0

把P(x , y)重新写作:

2.4 线性表实现方法的比较

思考: 多元多项式的表达

• $P(x, y, z)=x^{10}y^3z^2+2x^8y^3z^2+3x^8y^2z^2+x^4y^4z+6x^3y^4z+2yz$

把P(x,y,z)重新写作:

 $P(x, y, z) = ((x^{10} + 2x^8)y^3 + 3x^8y^2)z^2 + ((x^4 + 6x^3)y^4 + 2y)z$

多维数组、广义表

数独游戏

- Sudoku就是我们平常提到的数独。数独分为2阶、3阶、 以及高阶数独。
- 最简单的是2阶,我们平常接触的是3阶,再次更高的有4阶、5阶甚至更高。

5						3		
	9		5			4		
		4				7		
	5	1		3	7	2	8	9
3		2		8		6		4
		8		5	2	1	თ	7
	3	5				9		
6		9				8	2	3
	8			2	3			6

			14	13		6	W 18	1			9		5		8
			7			11	5		10	16		1			
			1			8	7		3				6		12
3 1	11	10	9		14					6				2	3
			2	1		3		5					4		15
5 12	12					2	11			1	8		16		
		16	15				4		12			10		14	9
			10	15	12				2	13					11
4					6	12				7	2	16			
16	3		12			5		8				2	15		
		15		9	4			16						1	13
2		6					16		15		1	8			
	7		9 (9		16			10		8	2) 2	5	10	12	3
10		4				1		9	13			6			
			8		15	4		7	5			14			
15		1		10			8		6		16	7			

Dancing Links

高级数据结构

第十二章 高级数据结构

- 12.1 多维数组
- ・ 12.2 广义表
 - 广义表的逻辑概念
 - · 广义表的实现与操作
- · 12.3 存储管理
- 12.4 Trie 树
- · 12.5 AVL树的概念与插入操作
- · 12.6 AVL树的删除操作与性能分析
- ・ 12.7 伸展树

基本概念

- 回顾线性表
 - 由 n (n≥0) 个数据元素组成的有限有序序列
 - 线性表的每个元素都具有相同的数据类型
- 如果一个线性表中还包括一个或者多个子表,那就称之为广义表 (Generalized Lists,也称Multi-list)一般记作:

$$L = (x_0, x_1, ..., x_i, ..., x_{n-1})$$

广义表的定义

 $L = (x_0, x_1, ..., x_i, ..., x_{n-1})$

- L是广义表的 名称
- n为 长度
- 每个x_i (0≤ i ≤ n-1) 是 L 的 成员
 - 可以是单个元素,即原子 (atom)
 - 也可以是一个广义表,即子表 (sublist)
- 广义表的深度:表中元素都化解为原子后的最大括号层数

广义表的基本操作

$$L = (x_0, x_1, ..., x_i, ..., x_{n-1})$$

- 表头 head = x_0
- 表尾 tail = $(x_1, ..., x_{n-1})$
 - 规模更小的表
- 有利于存储和实现

广义表的各种类型

- 纯表 (pure list)
 - 任何一个成员(原子、子表) 在广义表中只出现一次
 - 从根结点到任何叶结点只有一条路径

$$(x1, (y1, (a1, a2), y3), x3, (z1, z2))$$

广义表的各种类型 (续)

• 可重入表

- 其元素 (包括原子和子表) 可能会在表中多次出现
- 如果没有回路,则图示对 应于一个 DAG
- 对子表和原子标号

(((a, b)), ((a, b), c, (d)), ((d), e, (f, g)), (f, g))

((L1: (a,b)), (L1, c, L2: (d)), (L2, e, L3: (f,g)), L3)

广义表的各种类型 (续)

- 循环表(递归表):可重入表的特例
 - 包含回路
 - 循环表的深度为无穷大

(L1: (L2: (L1, a)), (L2, L3: (b)), (L3, c), L4: (d,L4))

循环表

广义表与图

- 图□可重入表□纯表 (树) □线性表
 - 广义表是树形结构、图结构的推广
- 递归表是有回路的再入表
- 线性表是树形高度为 2 的纯表

12.2 广义表和存储管理

广义表应用

- 函数调用关系
- 功能块可以是原子

12.2 广义表和存储管理

广义表应用

• 虚拟内存

高级数据结构

12.2 广义表

广义表应用: LISP 语言

• LISP 语言

```
(define fib (n)
"Simple recursive Fibonacci number function"
 (if (< n 2)
    n
    (+ (fib (- n 1)) (fib (- n 2)))))</pre>
```

- 保罗·格雷厄姆,康奈尔大学本科,哈佛博士
 - 1995年创办 Viaweb, 采用 Lisp 框架, 帮助用户网上开店
 - 2005年,创建了风险投资公司 Y Combinator
- MIT SICP 采用LISP语言的变种Scheme 语言
 - UC Berkeley 的 CS61A 改用 Python

https://www2.eecs.berkeley.edu/Courses/CS61A/

黑客与画家

硅谷创业之父Paul Graham文集

HACKERS & PAINTERS BIG IDEAS FROM THE COMPUTER AG

[美] PAUL GRAHAM 著

例:广义表ADT

L: (L1: (data, D2), L2: (L1, D1))

Head(L): 返回L的data或sublist字段

Tail(L): 返回L的next字段

广义表 ADT 结点定义

12.2 广义表和存储管理

广义表存储的存储

• 如果有一个原子被多个广义表同时引用了怎么办

12.2 广义表和存储管理

广义表的删除(不带表头)

- 不带头结点的广义表链
 - 在删除结点的时候会出现问题
 - 删除结点 data 就必须进行链调整

广义表的基本操作

- •基本操作:插入、删除、遍历
- •实现要点
 - 每个子表引入虚表头结点
 - 可极大的简化操作

广义表的存储(带虚表头结点)

- 增加头指针, 简化删除、插入操作
- 增加头指针, 简化删除、插入操作
 - tag == -1表示虚表结点,标志位——图的因素
 - 重入表, 尤其是循环表

对带表头结点的广义表遍历操作

(L1: (L2: (a,L1)), Lx: (L2, L3: (b)), Ly: (L3,c), L4: (d, L4)) •finish L4 Ly L2 L1

思考

- •广义表与树、图各有什么区别与联系?
- 总结如何实现广义表遍历的算法?
 - 类似图遍历
 - 记录访问过的各个子表

高级数据结构

第十二章 高级数据结构

- 12.1 多维数组
- ・ 12.2 广义表
- ・ 12.3 存储管理
 - · 可利用空间表与定长内存空间管理
 - · 变长空闲块分配与回收策略
 - 失败处理机制
- 12.4 Trie 树
- · 12.5 AVL树的概念与插入操作
- · 12.6 AVL树的删除操作与性能分析
- 12.7 伸展树

高级数据结构

12.3 存储管理

分配与回收

- 内存管理最基本的问题
 - 分配存储空间
 - 回收被 "释放" 的存储空间
- 碎片问题
 - 减少可用内存空间
- 无用单元收集
 - 无用单元: 可以回收而没有回收的空间
 - 内存泄漏 (memory leak)
 - 程序员忘记 delete 已经不再使用的指针

可利用空间表

- 把存储器看成一组定长块组成的数组
 - 一些块是已分配的
 - 链接空闲块,形成可利用空间表 (freelist)
- 存储分配和回收
 - new p 从可利用空间分配
 - delete p 把 p 指向的数据块返回可利用空间表

高级数据结构

12.3 存储管理

(1) 初始状态的可利用空间表

(2) 系统运行一段时间后 的可利用空间表

结点等长的可利用空间表

程序自定义内存管理

- 许多场景下,应用程序倾向于独立进行内存管理
 - 而非向系统提出申请
- 效率优势:每次new/delete或者malloc/free都会导致系统调用
- 思想
 - 维护自己的可利用空间表(free list),并进行管理
 - 只有在有必要的时候, 才调用系统new/delete

程序自定义内存管理:数据+可利用空间表信息

```
template <class Elem> class LinkNode{
private:
                                   // 可利用空间表头指针
   static LinkNode *avail;
public:
                                   // 结点值
   Elem value;
                                   // 指向下一结点的指针
   LinkNode * next;
   LinkNode (const Elem & val, LinkNode * p);
   LinkNode (LinkNode * p = NULL); // 构造函数
   void * operator new (size_t); // 重载new运算符
   void operator delete (void * p); // 重载delete运算符
};
```


重载new运算符

```
// 重载new运算符实现
template <class Elem>
void * LinkNode<Elem>::operator new (size t) {
   if (avail == NULL) // 可利用空间表为空
      return::new LinkNode; // 利用系统的new分配空间
   LinkNode<Elem> * temp = avail;
                            // 从可利用空间表中分配
   avail = avail->next;
   return temp;
```


重载delete运算符

```
// 重载delete运算符实现
template <class Elem>
void LinkNode<Elem>::operator delete (void * p) {
    ((LinkNode<Elem> *) p) ->next = avail;
    avail = (LinkNode<Elem> *) p;
}
```


可利用空间表: 单链表栈

- new 即栈的删除操作
- delete 即栈的插入操作
- 直接引用系统的 new 和 delete 操作符, 需要强制用 "::new p" 和 "::delete p"
 - 例如,程序运行完毕时,把 avail 所占用的空间都交还给系统(真正释放空间)

变长内存区域分配

实际程序不仅仅需要申请定长数据结构

- 分配
 - 找到其长度大于等于申请长度的结点
 - 从中截取合适的长度
- •回收
 - 考虑刚刚被删除的结点空间能否与邻接合并
 - 以便能满足后来的较大长度结点的分配请求

空闲块的数据结构

(a) 空闲块的结构

(b) 已分配块的结构

碎片问题

外部碎片和内部碎片

- 内部碎片: 实际分配字节数多于请求字节数
 - 例:最小分配单位为1024字节,程序申请1000字节,导致24字节的内部碎片
- 外部碎片: 小空闲块
 - 需要在分配与回收时进行管理,减少外部碎片

空闲块分配策略

- 首先适配 (first fit)
- •最佳适配 (best fit)
- 最差适配 (worst fit)

空闲块分配策略

• 首先适配:返回free list里第一个满足申请字节数的块

 1200
 1000
 3000

 600
 500
 100
 900
 100
 2200
 800

• 问题: 三个块 1200, 1000, 3000

请求序列: 600, 500, 900, 2200

空闲块分配策略

• 最佳适配:返回free list里满足申请字节数的最小块

1200 1000 3000

500 2200 00 400 900 2100

请求序列: 600, 500, 900, 2200

空闲块分配策略

• 最差适配:返回free list里满足申请字节数的最大块

1200 1000 3000

2200 600 500 900 1000

请求序列: 600, 500, 900, 2200

回收: 考虑合并相邻块

把块 M 释放回可利用空间表

失败处理策略和无用单元回收

- 如果遇到因内存不足而无法满足一个存储请求,存储管理器可以有两种行为
 - 1. 什么都不做,直接返回一个系统错误信息
 - 2. 使用失败处理策略(failure policy)来满足请求

失败处理策略:存储压缩 (compact)

• 在可利用空间不够分配或在进行无用单元的收集时进行"存储压缩"

无用单元收集

- 无用单元收集:最彻底的失败处理策略
 - 普查内存, 标记把那些不属于任何链的结点
 - 将它们收集到可利用空间表中
 - 回收过程通常还可与存储压缩一起进行

高级数据结构

思考

- 比较首先适配、最佳适配和最差适配的特点
 - 哪种适配方案更容易产生外部碎片?
 - 哪种方案总体最优?

- 怎样有效地组织空闲块, 使得分配时查找到合适块的效率更高?
 - 所有空闲块都组织在一个线性表中
 - 不同规模的空闲块组织在不同的链表中
 - 以空闲块的大小为 key 组织在平衡的 BST 中

第十二章 高级数据结构

- 12.1 多维数组
- ・ 12.2 广义表
- · 12.3 存储管理
- 12.4 Trie 树
 - · Trie树的概念与性质
 - · 后缀树与后缀数组
- · 12.5 AVL树的概念与插入操作
- · 12.6 AVL树的删除操作与性能分析
- ・ 12.7 伸展树

12.4 二叉搜索树局限性

- 理想状况:插入、删除、查找时间代价为 O(logn)
- 输入 9, 4, 2, 6, 7, 15, 12, 21
- 输入 2, 4, 6, 7, 9, 12, 15, 21

• 二叉搜索树结构取决于插入删除顺序

Trie 结构

- 目标:与输入顺序无关的搜索树
- 思想: 关键码对象空间分解
- 主要应用
 - 信息检索 (information retrieval), trie"这个词来源于 "retrieval"
 - 自然语言大规模的英文词典
- 常见类型
 - 字符树——26叉Trie
 - 二叉Trie树
 - •编码只有0和1
 - 用每个字母(或数值)的二进制编码来代表

英文字符树——26叉Trie

存单词and、ant、bad、bee

"an"子树代表相同前 缀an-具有的关键 码集合{and, ant}

- 除根以外,每个结点表示一个字符
- 每个"根-叶"路径表示一个集合中的字符串
- 一棵子树代表具有相同前缀的关键码的集合

不等长的字符树,加"*"标记

保证前缀也能被正确存储

例:存储单词 an, and, ant, bad, bee

压缩靠近叶结点的单路径

存储单词 an, and, ant, bad, bee

二叉 Trie 结构

元素为 2、5、9、17、41、45、63

高级数据结构

12.4 Trie 树

二叉 Trie 结构

编码: 2: 000010 5: 000101 9: 001001

17: 010001 41: 101001 45: 101101 63: 111111

Patricia结构

- 该压缩技术又被称作Patricia Trie
 - Trie的变种
- 论文: "Practical Algorithm To Retrieve Information Coded In Alphanumeric"
- Patricia Trie:
 - 若一个结点是其父结点唯一儿子,则与父结点合并

Trie的性质

• 一组key形成唯一的Trie结构

• 该结构与key的插入/删除序列无关

查找命中时的时间复杂度

- 插入与查找操作的复杂度
 - 取决于插入/查找的 key 的长度+1
 - 路径压缩使得实际长度更小
 - 复杂度与 Trie 中 key的个数无关

- Trie在查找命中时有极高的效率
 - 从根结点开始较短路径

查找失败时的时间复杂度

- 查找失败时的平均复杂度
 - 假设 n 个随机 key 组成 trie
 - Key 的字符表包含 r 个字符
- 查找失败时的平均访问结点数是 log_rn
 - 1 百万个 key, 平均只需要访问 3-4 个结点
- 英文字符串长度5, 265 = 11881376个可能 key
 - BST 至少要进行 log₂26⁵=23.5 次比较

空间复杂度

- Trie中结点数至多nw
 - n: key的总个数
 - w: 平均key长度
- · 每个结点需要维护一个O(r)的表指向所有子结点, r为字符基数
- 空间开销相比于其他数据结构较大
 - 当 key 的数量较多、key较长、r 基数较大时尤为明显
- 但在承受的起空间开销时,Trie的查询速度高于其他搜索树

Trie树的应用

• Linux中的Trie: 又称Radix树

```
• 重要用途:基于内存地址查找对应的内存页
```


后缀树 (Suffix Trees)

ababc 后缀子串: ababc, babc, abc, bc, c 后缀树保存了一个字符串所有后缀

后缀构成的字典树 (未压缩)

后缀树(压缩后)

后缀数组

sa[5] = 7

sa[6]=2

sa[7]=8

sa[8]=3

Ъ

构造: 倍增算法O(nlogn), DC3 O(n)

a.

Ъ

• Rank **你排第几?**

a.

a.

a.

a

• sa **第几是谁?**

可重叠最长重复子串

• 给定一个字符串,求最长重复子串的长度,这两个子串可以重叠

• 答案: height 最大值

任意两个后缀的最长公共前缀都是height 数组里某一段的最小值,所以答案一定不大于height的最大值。

height数组的最大值本身就 代表了一个重复子串的方案, 所以答案一定不小于height 的最大值。

两个字符串的最长公共子串

- 给定两个字符串A 和B, 求最长公共子串。
- 将A和B连接起来,中间添上分隔符\$,并求sa及height

Height的最大值?

最长公共前缀数组

_	
5	ALAM\$
1	ALAYALAM\$
7	AM\$
3	AYALAM\$
6	LAM\$
2	LAYALAM\$
0	MALAYALAM\$
8	M\$
4	YALAM\$
9	\$

MALAYALAM\$
012345678 9

从后缀数组构造后缀树

- 给定字符串A,将A的所有后缀进行排序
- 后缀数组 sa [i]: 第i大的后缀在A中的起始位置

5	ALAM\$
1	ALAYALAM\$
7	AM\$
3	AYALAM\$
6	LAM\$
2	LAYALAM\$
0	MALAYALAM\$
8	M\$
4	YALAM\$
9	\$

第十二章

高级数据结构

12.4 Trie 树

5	ALAM\$
1	ALAYALAM\$
7	AM\$
3	AYALAM\$
6	LAM\$
2	LAYALAM\$
0	MALAYALAM\$
8	M\$
4	YALAM\$
9	\$

后缀数组 sa

最长公共前缀 lcp

5	1	7	3	6	2	0	8	4	9
3	1	1	0	2	0	1	0	0	-

GST共同前缀

单词粒度的后缀树

•"I know you know \$ "

后缀数组的应用

- 许多字符串问题通过后缀数组或最长公共前缀数组快速计算
 - 最长重复子串(允许重叠): 找 lcp 数组中的最大值
- •海量字符串查找
 - 垃圾邮件检查: n 个关键字, m 个文本, 求每一个关键字是否在某个文本中出现(文本的字串)
 - 解决方案: 对文本建立后缀数组, 然后对每个关键字进行二分查找

思考

•中文是否适合组织字符树? 是否适合 二叉 Trie 结构?

• 查阅后缀树、后缀数组的文献,思考其应用场景

高级数据结构

第十二章 高级数据结构

- 12.1 多维数组
- ・ 12.2 广义表
- · 12.3 存储管理
- 12.4 Trie 树
- 12.5 AVL树的概念与插入操作
 - · AVL树的概念
 - · AVL树的旋转操作
 - · AVL的插入操作
- · 12.6 AVL树的删除操作与性能分析
- ・ 12.7 伸展树

12.5.1 平衡的二叉搜索树 (AVL)

- BST受输入顺序影响
 - 最好O (log n)
 - 最坏O (n)

- 发明人: Adelson-Velskii 和 Landis
 - AVL 树,平衡的二叉搜索树
 - 始终保持O (log n) 量级
 - AVL树是最常见的一种平衡二叉树,还有其他类型的平衡二叉树变种(如:重量平衡的二叉树)

高级数据结构

12.5 AVL树的基本概念与插入操作

AVL树: 定义

- 在普通二叉搜索树基础上,加入平衡规则
 - AVL树中的每个结点,其左子树与右子树 高度差至多为1
- •保证了N个结点的AVL树,高度为O(logN)

AVL 树的性质

- •可以为空
- •如果 T 是一棵 AVL 树
 - 那么它的左右子树 T_L 、 T_R 也是 AVL 树
 - 并且 | h_L-h_R|≤1
 - h_I、h_R 是它的左右子树的高度

平衡因子

• 刻画二叉树中每个结点左右子树的平衡程度

• 对于结点x, 其平衡因子定义为

$$bf(\mathbf{x}) = height(x_{rchild}) - height(x_{lchild})$$

• 在一棵AVL树中, 结点平衡因子取值为 0, 1, -1

AVL树的基本操作

- 查询操作: 与一般二叉搜索树的查询完全一致
- 插入 & 删除:
 - 首先调用二叉搜索树的插入与删除操作
 - 然而...
 - 普通的二叉搜索树插入&删除可能破坏AVL树的平衡性质
 - 需要额外的操作保持AVL树的平衡

保持平衡的操作之一: 单旋转

- 单旋转
 - 结点与它的父结点交换位置, 保持 BST 特性

保持平衡的操作之二: 双旋转

- 双旋转:
 - 结点与它的祖父结点交换位置,原祖父结点与原父 亲结点分别为该结点的孩子(需保持BST特性)

高级数据结构

12.5 AVL树的基本概念与插入操作

保持平衡的操作小结

• 单旋和双旋: 保持 BST 的中序性质

AVL 树结点的插入

- 步骤1: 插入与 BST 一样
 - 新结点作叶结点
 - 只有该叶结点到根结点的路径上的结点, 平衡性可能被破坏(树的高度增加了至多1)
- 步骤2: 对该路径上的每一个结点x
 - 检查x两个子树高度是否增加, 重新计算平衡因子
 - 当AVL性质被破坏,进行旋转操作,保持x的左右子树平衡
 - 不断遍历每个结点,直到
 - 到达根结点,或者
 - 路径上的某个结点\高度不变

恢复平衡的例子

插入17后导致不平衡

重新调整为平衡结构

AVL 树结点的插入

- 插入新结点后, 新结点的某个祖先a: 平衡因子可能改变, 也可能不变
 - 若a平衡因子改变,则有3种可能性

情况1:结点原先是平衡的,即 bf(a)=0,插入后变成左重或者右重

解决方法:修改结点平衡因子,继续检查a的祖先结点

情况2:结点a原先不平衡,插入

后变得平衡了

解决方法: 树高不变, 无需调整

(对a结点及其祖先无影响)

情况3:结点a原先不平衡,插入后加重了不平衡 解决方法:对以a为根的子树进行旋转操作,使改 子树恢复平衡,然后继续检查a的祖先?

AVL 树结点的插入

- 只有情况3需要对当前子树(以a为根)进行旋转
- 又分为4种子情况
 - 子情况1 (LL): 插入前bf(a)=-1, 新插入结点在a的左孩子的左子树中
 - 子情况2(LR):插入前bf(a)=-1,新插入结点在a的左孩子的右子树中
 - 子情况3 (RL): 插入前bf(a)=1, 新插入结点在a的右孩子的左子树中
 - 子情况4 (RR): 插入前bf(a)=1,新插入结点在a的右孩子的右子树中

- 只可能存在这4种子情况
 - 思考:为什么?

利用旋转恢复平衡

- 不同的情形采用不同的旋转方法
- 单旋转
 - 适用于LL与RR情形
- 双旋转
 - 适用于LR与RL情形

LL与RR恢复平衡: 单旋转

- 结点b: 结点a更高的子结点
 - 若bf(a) = -2,则b为a的左儿子
 - 若bf(a) = 2,则b为a的右儿子
- 旋转方法: 单旋转交换a与b的位置

LL单旋转例子

LR与RL恢复平衡: 双旋转

- RL 或者 LR 需要进行双旋转
 - 这两种情况是对称的
- 我们只讨论 RL 的情况
 - LR 类似地对称操作

高级数据结构

12.5 AVL树的基本概念与插入操作

双旋转步骤

- 双旋转第1步: 找到结点c, 使得
 - c是b的一个子结点
 - c的BST顺序在a与b之间
 - 新插入结点一定在c为根的子树中
- 针对结点a, b, c进行双旋转
 - 本质上: 先旋转b与c, 然后旋转c与a

高级数据结构

RL型双旋转第一步

RL型双旋转第二步

旋转运算的实质

- •以 RL 型图示为例,总共有7个部分
 - 三个结点: a、b、c
 - 四棵子树 T_0 、 T_1 、 T_2 、 T_3
 - 加重 b 为根的子树,但是其结构其实没有变化
 - T_1 、c、 T_2 可以整体地看作 b 的左子树
- •目的: 重新组成一个新的 AVL 结构
 - 平衡: 以c作为新的根
 - 保留了中序遍历下有序的性质
 - T_0 a T_1 c T_2 b T_3

旋转之后

插入前: a的高度为h+2 h-1

插入新结点,旋转之前: a的高度为h+3

旋转之后: 新根c的高度为h+2

旋转之后

• 遗留问题

情况3:结点a原先不平衡,插入后加重了不平衡

解决方法: 对以a为根的子树进行旋转操作,使改子树恢复平衡,然后继续检查a的祖先?

• 答案: 旋转后子树高度与插入前一样, 不需要进一步检查a的祖先

插入单词: cup, cop, copy, hit, hi, his 和 hia 后得到的 AVL 树

插入 copy 后不平衡 LR 双旋转

插入单词: cup, cop, copy, hit, hi, his 和 hia 后得到的 AVL 树

插入单词: cup, cop, copy, hit, hi, his 和 hia 后得到的 AVL 树

RL双旋转

插入单词: cup, cop, copy, hit, hi, his 和 hia 后得到的 AVL 树

插入单词: cup, cop, copy, hit, hi, his 和 hia 后得到的 AVL 树

RR单旋转

插入单词: cup, cop, copy, hit, hi, his 和 hia 后得到的 AVL 树

插入单词: cup, cop, copy, hit, hi, his 和 hia 后得到的 AVL 树

LL单旋转

思考

- 是否可以修改 AVL 树平衡因子的定义,例如允许高度差为 2?
- 将关键码 1, 2, 3, ..., 2^k-1 依次插入到一棵初始为空的 AVL 树中,试证明结果是一棵高度为k的完全满二叉树。

第十二章 高级数据结构

- 12.1 多维数组
- ・ 12.2 广义表
- · 12.3 存储管理
- 12.4 Trie 树
- · 12.5 AVL树的概念与插入操作
- · 12.6 AVL树的删除操作与性能分析
- 12.7 伸展树

AVL 树结点的删除

- 删除是插入的逆操作
- AVL 树的删除结点的步骤与 BST 一样,但需要保证平衡性
 - AVL 树平衡因子 |bf| ≤ 1:
 - $bf(\mathbf{x}) = height(x_{rchild}) height(x_{lchild})$

高级数据结构

12.6 AVL树的删除操作与性能分析

AVL树的结点删除

- 步骤1: 像普通二叉搜索树一样删除结点
 - 注意: 二叉搜索树有多种结点删除方法, 我们采用值替换方法
 - 值替换方法: 结点删除后, 二叉树中结点高度要么不变, 要么降低1
- 步骤2: 检查从实际删除结点(例子中原先的H结点)到根结点路径
 - 检查结点子树高度是否降低,重新计算平衡因子
 - 若某个结点x的平衡性被破坏,通过旋转操作恢复平衡
 - 不断遍历每个结点,直到
 - 到达根结点,或者
 - 路径上的某个结点 / 高度不变
 - 根据平衡性的变化,有以三种情况

目标:删除G 值替换:H值替换G,实际删除结点H

AVL树的结点删除:情况1

- 删除前: 结点a 平衡因子为 bf(a)=0
 - 删除后: 其左或右子树被缩短,则平衡因子该为1或者-1
- 操作策略:
 - 修改结点a的平衡因子
 - 删除操作虽然引起高度变化,但变化不会影响到更高层的结点,调整可以结束

AVL 树结点的删除:情况2

- •删除前:结点 a 平衡因子不为 0,
 - 删除后: 较高的子树被缩短, 结点a的平衡因子修改为 0
- 操作策略:
 - 修改结点a的平衡因子
 - 需要继续向上修改(该子树高度降低,可能影响某个祖先的平衡性)

AVL 树结点的删除:情况3

• 删除前: 结点 a 平衡因子不为 0

• 删除后: 它的较矮的子树被缩短, a变的更加不平衡, 破坏AVL性质

• 操作策略

• 通过旋转使以a为根的子树恢复平衡

• 如果旋转后高度不变,则终止

AVL树的删除:情况3的三种子情况

- a较矮的子树被缩短,看 a 较高子树根 b的情况
 - 子情况 3.1: b 的平衡因子为 0
 - 子情况 3.2: b 的平衡因子与 a 的平衡因子相同
 - 子情况 3.3: b 和 a 的平衡因子相反

子情况3.1: a bf(b) == 0 b

AVL 树结点的删除: 子情况 3.1

- a 较矮的子树被缩短, a 较高子树根 b的 bf(b) == 0
- · 旋转方法: b与a进行单旋转
- 旋转后: 该子树高度不变, 不需继续检查祖先结点

AVL 树结点的删除: 子情况3.2

- a 较矮的子树被缩短, a 较高子树根 b的 bf(b) == bf(a)
- · 旋转方法: 结点b与a单旋转
- 旋转后:
 - 结点 a、b 平衡因子都变为0

AVL 树结点的删除: 子情况 3.3

- a 较矮的子树被缩短, a 较高子树根 b的 bf(b) == -bf(a)
- 旋转方法:
 - 找到结点c, c为b的儿子结点, 且c的BST顺序在a与b之间
 - 双旋转, 先c与b 旋转, 再c与a 旋转
- 旋转后
 - c为新的根结点,平衡因子为 0
 - 子树高度降1, 需继续检查祖先

删除后的连续调整

- 连续调整
 - 调整可能导致祖先结点发生新的不平衡
 - 这样的调整操作要一直进行下去,可能传递到根结点为止
- 从被删除的结点向上查找到其祖父结点
 - 然后开始单旋转或者双旋转操作
 - 旋转次数为 O (log n)
- 思考: 对比插入操作
 - 插入操作: 旋转后高度不变, 不需继续检查祖先
 - 删除操作: 旋转后可能降低高度 (子情况3.2与3.3) , 需要继续调整

AVL 树删除的例子

(a) 删除结点 m,则需要使用其中序前驱 l 代替 (情况1)

(c) 需要以 1 为根进行 LL 单旋转(情况 3.2)

AVL 树删除的例子

(d) LL 单旋转完毕,回溯调整父结点 i,需要以 i 为根的 LR 双旋转 (情况3.3)

(c) 需要以 1 为根进行 LL 单旋转(情况 3.2)

AVL 树删除的例子

(d) LL 单旋转完毕,回溯调整父结点 i,需要以 i 为根的 LR 双旋转 (情况3.3)

(e) 调整完毕, AVL 树重新平衡

AVL树的复杂度

- 查询、插入、删除操作的复杂度,均取决于最坏情况下AVL树的深度
- AVL树的最坏深度是什么?
- 分析方法: 考虑最接近于不平衡的 AVL 树
 - 使得每个结点的平衡因子都是-1
 - 递归构造方法:构造一系列<mark>临界</mark> AVL 树 T₁, T₂, T₃, ...

12.6 AVL树的删除操作与性能分析

或者说, T_i 是具有同样的结点数目的所有AVL 树中最接近不平衡状态的, 删除一个结点都会不平衡

深度的证明 (推理)

- 让t(h)表示深度为h的最不平衡AVL树中的结点个数
- 可看出有下列关系成立:

$$t(1) = 2$$

 $t(2) = 4$
 $t(i) = t(i-1) + t(i-2) + 1$

• 对于 i>2 此关系很类似于定义 Fibonacci 数的关系:

$$F(0) = 0$$
 $F(1) = 1$
 $F(i) = F(i-1) + F(i-2)$

深度的证明 (推理续)

• 对于 i>l 仅检查序列的前几项就可有

$$t(i) = F(i+3) - 1$$

• Fibonacci 数满足渐近公式

$$F(i) = \frac{1}{\sqrt{5}} \phi^{i}, \dot{\mathbf{x}} = \frac{1 + \sqrt{5}}{2}$$

• 由此可得近似公式

$$t(i) \approx \frac{1}{\sqrt{5}} \phi^{i+3} - 1$$

深度的证明 (结果)

• 解出深度 i 与结点个数 t (i) 的关系

$$\phi^{i+3} \approx \sqrt{5}(t(i) + 1)$$

$$i + 3 \approx \log_{\phi} \sqrt{5} + \log_{\phi} (t(i) + 1)$$

- 由换底公式 $\log_{\varphi} X = \log_2 X / \log_2 \varphi$ 和 $\log_2 \varphi \approx 0.694$,求出近似上限
 - t (i) = n $i < \frac{3}{2}\log_2(n+1) - 1$
 - 所以 n 个结点的 AVL 树的深度一定是 O ($\log n$)

AVL 树的深度

- 具有 n 个结点的 AVL 树深度一定是 O ($\log n$)
- AVL树查询、插入、删除最坏复杂度O (log n)

12.6 AVL树的删除操作与性能分析

思考

- 对比红黑树、AVL 树的平衡策略,哪个更好?
 - 最差情况下的树高
 - 统计意义下的操作效率
 - 代码的易写、易维护

第十二章 高级数据结构

- 12.1 多维数组
- ・ 12.2 广义表
- · 12.3 存储管理
- 12.4 Trie 树
- · 12.5 AVL树的概念与插入操作
- · 12.6 AVL树的删除操作与性能分析
- 12.7 伸展树

伸展树概念

- 1985年由Daniel Sleator与Robert Tarjan共同发明
- 广泛应用
 - Windows NT系统内核中记录进行信息
 - 输入法提示词: 最近输入的词汇

Daniel Sleator

Robert Tarjan (1986年图灵奖得主)

12.7 伸展树

伸展树概念

- 一种自组织数据结构
 - 数据随访问而调整位置
- 伸展树是改进 BST 性能的一组规则
 - 保证访问的总代价不高, 达到令人满意的性能
 - 不能保证最终树高平衡

伸展树核心思想

- "较为随意"的再平衡: 不需要考虑高度信息
 - 与红黑树、AVL树的最大区别

• 旋转操作:无论查询、插入、删除,总是把访问结点旋转至根

- 局部性假设
 - 一个结点被访问后,很有可能未来被再次访问
 - 把访问后的结点旋转至根部,让它在未来被容易找到
 - 树根附近: 大量被频繁访问的结点
- 单个操作最坏复杂度O(n)
- 一系列操作的均摊复杂度O(log n)

伸展树的操作

- 基本操作: 查询、插入、删除
- 查询X或者插入X: 把X旋转至根结点
- 删除X: 把被删结点的父结点旋转至根结点
 - 可以是X的父,也可以是只替换X之后真正被删结点的父
- 展开(Splaying)操作:通过一系列旋转操作将某个结点X旋转 到根结点
 - 每次旋转都让X在树中的位置变得更高

伸展树中的旋转

- 单旋转:每次将目标结点上升1层
 - 与AVL一样,交换结点与其父结点的位置
 - 在伸展树中的使用: 仅当一个结点的父结点为根时使用

- 双旋转: 每次将目标结点上升2层
 - 之字型旋转:与AVL树中一样
 - 一字型旋转: 伸展树中引入

单旋转 (single rotation)

- •x 是根结点y的直接子结点时
 - 把结点 x 与它的父结点y交换位置
 - ·保持 BST 特性

A、B、C 代表子树, 有大小顺序

双旋转

- 双旋转 (double rotation) 涉及
 - 结点 x
 - 结点 x 的父结点 (称为 y)
 - 结点 x 的祖父结点(称为 z)
- 把结点 x 在树结构中向上移两层
- 一字形旋转(zigzig, zagzag rotation)
 - 也称为同构调整 (homogeneous configuration)
- 之字形旋转 (zigzag, zagzig rotation)
 - 也称为异构调整 (heterogeneous configuration)

12.7 伸展树

12.7 伸展树

之字形旋转图示

结点 x 是 y 的右子结点 结点 y 是 z 的左子结点

之字形旋转图示

- •每次展开(splaying)操作包含
 - 一系列双旋转
 - 直到结点 x 到达根结点或者根结点的子结点
 - 如果结点x到达根结点的子结点
 - 进行一次单旋转使结点 x 成为根结点
- 这个过程趋向于使树结构重新平衡
 - 使访问最频繁的结点靠近树结构的根层
 - 从而减少访问代价

Splay 树的实现

```
struct TreeNode
   int key;
   ELEM value;
   TreeNode *father, * left, *right;
};
Splay(TreeNode *x, TreeNode *f); // 把 x 旋转到祖先 f 下面
                              //把×旋转为根
Splay(x, NULL);
                               // 查询 k
Find(int k);
                               // 插入值 >
Insert(int k);
                              //删除×结点
Delete(TreeNode *x);
                              //删除×子树
DeleteTree(TreeNode *x);
```



```
void Splay (TreeNode *x, TreeNode *f) {
    while (x->parent != f) {
         TreeNode *y = x-> parent, *z = y-> parent;
        if (y->parent != f) { // y 不是 f 的子结点
             if (z-> lchild == y) {
                   if (y-> lchild == x)
                                             //一字型双右旋
                   { Zig(y); Zig(x); }
                                            //x左旋上来,接着右旋
                else { Zag(x); Zig(x); }
            } else {
                  if (y-> lchild == x)
                                             // x右旋上来,接着左旋
                  { Zig(x); Zag(x); }
                                            //一字型双左旋
                  else { Zag(y); Zag(x); }
         } else {
                                             // 右单
             if (y->lchild == x) Zig(x);
                                             // 左单旋
             else Zag(x); } }
    if (x->parent == NULL) Root = x;
```


Splay 的删除

・方法一:

- 值替代
- 再从被删的父调整

要删除 30 先用左最大20替代

Splay 的删除

- 方法一:
 - 值替代 (30->20)
 - 再从被删的父调整

被删的父15,开始调整

Splay 的删除

15被调到根

Splay 删除二

- 先旋转到根
- 删除根
- 左最大调到根
- 合并

删除大于 u 小于 v 的所有结点

- 把 u 结点旋转到根
- 把 v 旋转为 u 的右儿子
- •删除 > 结点的左子树

```
void DeleteUV(TreeNode* rt, TreeNode* u, TreeNode* v)
{
    Splay(u, NULL);
    Splay(v, u);
    DeleteTree(v->lchild);
    v->lchild = NULL;
}
```


12.7 伸展树

双旋的意义

- 假设结点x, x的父亲y, y的父亲z
- 比较AVL与伸展树的之字形双旋: 一样
 - AVL树中, RL与LR情形采用与伸展树同样的之字形双选
 - 旋转顺序: 先交换x与y, 再交换x与z
- 比较AVL与伸展树的一字型双旋: 不一样
 - AVL树中LL与RR顺序: 先交换x与y, 再交换x与z
 - 伸展树中一字型旋转: 先交换y与z, 再交换x与y

• 思考:

- 如果伸展树中不使用一字型旋转, 改用与AVL一样的旋转顺序, 是否可行?
- 如果放弃双旋,统一使用单旋,是否可行?

伸展树的效率

- n 个结点的伸展树
- ·进行一组 m 次操作(插入、删除、查找操作),当 m>>n 时,总代价是 O(m logn)
 - 伸展树不能保证每一个单个操作是有效率的
 - ·即每次访问操作的平均代价为 O(log n)

12.7 伸展树

半伸展树

半伸展分析

- 半伸展树的时间复杂度在渐近意义上和伸展树 是一样的。
- 但是半伸展树的执行效率和查询序列密切相关
 - 当序列比较规则的时候,半伸展树可能表现得更好
 - 但是当序列变得不规则的时候,它的调整结构速度不 如伸展树快
- 同时, 半伸展树的编程复杂度变高了, 为了支持删除、合并等操作, 需要相对复杂的处理

思考

- •请调研 Splay 树的各种应用
- •红黑树、AVL 树和 Splay 树的比较
 - •它们与访问频率的关系?
 - 树形结构与输入数据的顺序关系?
 - 统计意义上哪种数据结构的性能更好?
 - 哪种数据结构最容易编写?

最佳 BST

- 包含关键码 key_{i+1}, key_{i+2}, ..., key_j为内 部结点(0≤i≤j≤n)
- 结点的权为(q_i, p_{i+1}, q_{i+1}, ..., p_j, q_j),
- 根为r(i, j)
- 开销为C(i, j), 即
- 总权为W(i, j) = p_{i+1} +...+ p_j + q_i + q_{i+1} +...+ q_j

$$ASL(n) = \frac{1}{W} \left[\sum_{i=1}^{n} p_i (1_i + 1) + \sum_{i=0}^{n} q_i l_i' \right]$$

第十二章

高级数据结构

j	0	1	2	3	4
0	0	1	2	2	2
1		0	2	2	3
2			0	3	3
3				0	4
4					0

j	0	1	2	3	4			
0	5	10	18	21	28			
1		4	12	18	22			
2			3	9	3			
3				3	6			
4					1			
W(i ,j)								

 $\mathbf{r}(\mathbf{i},\mathbf{j})$

第 1 F 一 步

花费10总权10

最佳二叉搜索树的动态规划

- 最佳子结构、重复子结构
 - 任何子树都是最佳二叉搜索树
- 动态规划过程
 - 第一步: 构造包含1个结点的最佳二叉搜索树
 - 找t(0, 1), t(1, 2), ..., t(n-1, n)
 - 第二步构造包含2个结点的最佳二叉搜索树
 - 找t(0, 2), t(1, 3), ..., t(n-2, n)
 - 再构造包含3,4,...个结点的最佳二叉搜索树
 - 最后构造t(0, n)

K-D树示例

A(50,55) B(30,55) C(70,30) D(20,80)

E(90,10) F(80,70) G(60,60)

PR树的图示与划分

对象空间为128×128,点A、B、 C、D、E、F和G

而是空间平分为4份· NW NE SW SE NW,SE (包含多个数据点)进一步分裂

R树的图示

左边图的矩形和右边的编号对应;右边是构建好的一棵R树

数据结构与算法

谢谢倾听

国家精品课"数据结构与算法"

http://jpk.pku.edu.cn/course/sjjg/ https://www.icourse163.org/course/PKU-1002534001

cepsi, / www.icourserosiorg, course, rito 100255 100

张铭,王腾蛟,赵海燕 高等教育出版社,2008. 6。"十二五"国家级规划教材