

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 31/34, 31/38, 31/41, 31/415, 31/42, 31/425, 31/44, 31/47, C07D 215/20, 231/40, 261/14, 257/06, 263/48, 271/113, 277/28, 285/135, 307/66, 333/36, 401/10, 401/12		A1	(11) International Publication Number: WO 99/32106 (43) International Publication Date: 1 July 1999 (01.07.99)		
(21) International Application Number: PCT/US98/26078		(72) Inventors: DUMAS, Jacques; 821 Beechwood Road, Orange, CT 06477 (US). KHIRE, Uday; 101 Tanglewood Drive, Hamden, CT 06518 (US). LOWINGER, Timothy, Bruno; 5-7, #1203 Chitose-cho, Nishinomiya, Hyogo 662-0046 (JP). PAULSEN, Holger; Pahlkestrasse 5, D-42115 Wuppertal (DE). RIEDL, Bernd; 13 Cedrus Court, Branford, CT 06405 (US). SCOTT, William, J.; 210 Saddle Hill Drive, Guilford, CT 06437 (US). SMITH, Roger, A.; 65 Winterhill Road, Madison, CT 06443 (US). WOOD, Jill, E.; 72 Pickwick Road, Hamden, CT 06517 (US). HATTOUM-MOKDAD, Holia; 43 Joseph Lane, Hamden, CT 06514 (US). JOHNSON, Jeffrey; 213 Leetes Island Road, Branford, CT 06405 (US). LEE, Wendy; 282 Evergreen Avenue, Hamden, CT 06518 (US). REDMAN, Aniko; 66 E. Street, Derby, CT 06418 (US).			
(22) International Filing Date: 22 December 1998 (22.12.98)		(74) Agents: TRAVERSO, Richard, J. et al.; Millen, White, Zelano & Branigan, P.C., Arlington Courthouse Plaza 1, Suite 1400, 2200 Clarendon Boulevard, Arlington, VA 22201 (US).			
(30) Priority Data: 08/996,343 22 December 1997 (22.12.97) US		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).			
(71) Applicant: BAYER CORPORATION [US/US]; 100 Bayer Road, Pittsburgh, PA 15205 (US).		Published <i>With international search report.</i>			
(54) Title: INHIBITION OF RAF KINASE USING SUBSTITUTED HETEROCYCLIC UREAS					
(57) Abstract					
Methods of treating tumors mediated by raf kinase, with substituted urea compounds, and such compounds per se.					

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

5

INHIBITION OF RAF KINASE USING SUBSTITUTED HETEROCYCLIC UREAS

Field of the Invention

This invention relates to the use of a group of aryl ureas in treating raf mediated diseases, and pharmaceutical compositions for use in such therapy.

Background of the Invention

The p21^{ras} oncogene is a major contributor to the development and progression of human solid cancers and is mutated in 30% of all human cancers (Bolton et al. *Ann. Rep. Med. Chem.* 1994, 29, 165-74; Bos. *Cancer Res.* 1989, 49, 4682-9). In its normal, unmutated form, the ras protein is a key element of the signal transduction cascade directed by growth factor receptors in almost all tissues (Avruch et al. *Trends Biochem. Sci.* 1994, 19, 279-83). Biochemically, ras is a guanine nucleotide binding protein, and cycling between a GTP-bound activated and a GDP-bound resting form is strictly controlled by ras' endogenous GTPase activity and other regulatory proteins. In the ras mutants in cancer cells, the endogenous GTPase activity is alleviated and, therefore, the protein delivers constitutive growth signals to downstream effectors such as the enzyme raf kinase. This leads to the cancerous growth of the cells which carry these mutants (Magnuson et al. *Semin. Cancer Biol.* 1994, 5, 247-53). It has been shown that inhibiting the effect of active ras by inhibiting the raf kinase signaling pathway by administration of deactivating antibodies to raf kinase or by co-expression of dominant negative raf kinase or dominant negative MEK, the substrate of raf kinase, leads to the reversion of transformed cells to the normal growth phenotype (see: Daum et al. *Trends Biochem. Sci.* 1994, 19, 474-80; Fridman et al. *J. Biol. Chem.* 1994, 269, 30105-8. Kolch et al. (*Nature* 1991, 349, 426-28) have further indicated that inhibition of raf expression by antisense RNA blocks cell proliferation in membrane-associated oncogenes. Similarly, inhibition of raf kinase (by antisense ligodeoxynucleotides) has been correlated in vitro and in vivo with inhibition of the growth of a variety of human tumor types (Monia et al., *Nat. Med.* 1996, 2, 668-75).

Summary of the Invention

The present invention provides compounds which are inhibitors of the enzyme raf kinase. Since the enzyme is a downstream effector of p21^{ras}, the instant inhibitors are useful in pharmaceutical compositions for human or veterinary use where inhibition of the raf kinase pathway is indicated, e.g., in the treatment of tumors and/or cancerous cell growth mediated by raf kinase. In particular, the compounds are useful in the treatment of human or animal, e.g., murine cancer, since the progression of these cancers is dependent upon the ras protein signal transduction cascade and therefore susceptible to treatment by interruption of the cascade, i.e., by inhibiting raf kinase. Accordingly, the compounds of the invention are useful in treating solid cancers, such as, for example, carcinomas (e.g., of the lungs, pancreas, thyroid, bladder or colon, myeloid disorders (e.g., myeloid leukemia) or adenomas (e.g., villous colon adenoma).

15

The present invention therefore provides compounds generally described as aryl ureas, including both aryl and heteroaryl analogues, which inhibit the raf pathway. The invention also provides a method for treating a raf mediated disease state in humans or mammals. Thus, the invention is directed to compounds and methods for the treatment of cancerous cell growth mediated by raf kinase comprising administering a compound of formula I:

wherein B is generally an unsubstituted or substituted, up to tricyclic, aryl or heteroaryl moiety with up to 30 carbon atoms with at least one 5 or 6 member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur. A is a heteroaryl moiety discussed in more detail below.

30 The aryl and heteroaryl moiety of B may contain separate cyclic structures and can include a combination of aryl, heteroaryl and cycloalkyl structures. The substituents for these aryl and heteroaryl moieties can vary widely and include halogen, hydrogen, hydrosulfide, cyano, nitro, amines and various carbon-based moieties, including those which contain one or more of sulfur, nitrogen, oxygen and/or halogen and are discussed more particularly below.

Suitable aryl and heteroaryl moieties for B of formula I include, but are not limited to aromatic ring structures containing 4-30 carbon atoms and 1-3 rings, at least one of which is a 5-6 member aromatic ring. One or more of these rings may have 1-4 carbon atoms replaced by oxygen, nitrogen and/or sulfur atoms.

Examples of suitable aromatic ring structures include phenyl, pyridinyl, naphthyl, pyrimidinyl, benzothiazolyl, quinoline, isoquinoline, phthalimidinyl and combinations thereof, such as, diphenyl ether (phenyloxyphenyl), diphenyl thioether (phenylthiophenyl), diphenylamine (phenylaminophenyl), phenylpyridinyl ether (pyridinyloxyphenyl), pyridinylmethylphenyl, phenylpyridinyl thioether (pyridinylthiophenyl), phenylbenzothiazolyl ether (benzothiazolyloxyphenyl), phenylbenzothiazolyl thioether (benzothiazolylthiophenyl), phenylpyrimidinyl ether, phenylquinoline thioether, phenylnaphthyl ether, pyridinylnaphthyl ether, pyridinylnaphthyl thioether, and phthalimidylmethylphenyl.

Examples of suitable heteroaryl groups include, but are not limited to, 5-12 carbon-atom aromatic rings or ring systems containing 1-3 rings, at least one of which is aromatic, in which one or more, e.g., 1-4 carbon atoms in one or more of the rings can be replaced by oxygen, nitrogen or sulfur atoms. Each ring typically has 3-7 atoms. For example, B can be 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, 1-, 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or additionally

4

optionally substituted phenyl, 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl, etc. For example, B can be 4-methyl-phenyl, 5-methyl-2-thienyl, 4-methyl-2-thienyl, 1-methyl-3-pyrryl, 1-methyl-3-pyrazolyl, 5-methyl-2-thiazolyl or 5-methyl-1,2,4-thiadiazol-2-yl.

5

Suitable alkyl groups and alkyl portions of groups, e.g., alkoxy, etc., throughout include methyl, ethyl, propyl, butyl, etc., including all straight-chain and branched isomers such as isopropyl, isobutyl, *sec*-butyl, *tert*-butyl, etc.

10 Suitable aryl groups include, for example, phenyl and 1- and 2-naphthyl.

Suitable cycloalkyl groups include cyclopropyl, cyclobutyl, cyclohexyl, etc. The term "cycloalkyl", as used herein, refers to cyclic structures with or without alkyl substituents such that, for example, "C₄ cycloalkyl" includes methyl substituted cyclopropyl groups as well as cyclobutyl groups. The term "cycloalkyl" also includes saturated heterocyclic groups.

15 Suitable halogens include F, Cl, Br, and/or I, from one to persubstitution (i.e., all H atoms on the group are replaced by halogen atom), being possible, mixed substitution of halogen atom types also being possible on a given moiety.

20 As indicated above, these ring systems can be unsubstituted or substituted by substituents such as halogen up to per-halo substitution. Other suitable substituents for the moieties of B include alkyl, alkoxy, carboxy, cycloalkyl, aryl, heteroaryl, cyano, hydroxy and amine. These other substituents, generally referred to as X and X' herein, include -CN, -CO₂R^s, -C(O)NR^sR^s, -C(O)R^s, -NO₂, -OR^s, -SR^s, -NR^sR^s, -NR^sC(O)OR^s, -NR^sC(O)R^s, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₂-C₁₀ alkenyl, substituted C₁-C₁₀ alkoxy, substituted C₃-C₁₀ cycloalkyl, substituted C₄-C₂₃ alkheteroaryl and -Y-Ar.

25 Where a substituent, X or X', is a substituted group, it is preferably substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R^s, -C(O)R^s, -C(O)NR^sR^s, -OR^s, -SR^s, -NR^sR^s, -NO₂, -NR^sC(O)R^s, -NR^sC(O)OR^s and halogen up to per-halo substitution.

5

The moieties R^s and R^{s'} are preferably independently selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₂-C₁₀ alkenyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ heteroaryl.

5

The bridging group Y is preferably -O-, -S-, -N(R^s)-, -(CH₂)_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R^s)-, -O(CH₂)_m-, -CHX^a, -CX^a₂-, -S-(CH₂)_m- and -N(R^s)(CH₂)_m- where m = 1-3, and X^a is halogen.

10

The moiety Ar is preferably a 5-10 member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1}, wherein n1 is 0 to 3.

15

Each Z substituent is preferably independently selected from the group consisting of -CN, -CO₂R^s, -C(O)NR^sR^s, -C(O)-NR^s, -NO₂, -OR^s, -SR^s, -NR^sR^s, -NR^sC(O)OR^s, =O, -NR^sC(O)R^s, -SO₂R^s, -SO₂NR^sR^s, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, 20 substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl. If Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R^s, -C(O)NR^sR^s, -OR^s, -SR^s, -NO₂, -NR^sR^s, =O, -NR^sC(O)R^s, -NR^sC(O)OR^s, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₃-C₁₃ heteroaryl, C₆-25 C₁₄ aryl, C₇-C₂₄ alkaryl.

The aryl and heteroaryl moieties of B of Formula I are preferably selected from the group consisting of

30

5 which are unsubstituted or substituted by halogen, up to per-halosubstitution. X is as defined above and n = 0-3.

The aryl and heteroaryl moieties of B are more preferably of the formula:

10 wherein Y is selected from the group consisting of -O-, -S-, -CH₂-, -SCH₂-, -CH₂S-, -CH(OH)-, -C(O)-, -CX^a₂, -CX^aH-, -CH₂O- and -OCH₂- and X^a is halogen.

15 Q is a six member aromatic structure containing 0-2 nitrogen, substituted or unsubstituted by halogen, up to per-halosubstitution and Q¹ is a mono- or bicyclic aromatic structure of 3 to 10 carbon atoms and 0-4 members of the group consisting of N, O and S, unsubstituted or unsubstituted by halogen up to per-halosubstitution. X, Z, n and n1 are as defined above and s = 0 or 1.

20 In preferred embodiments, Q is phenyl or pyridinyl, substituted or unsubstituted by halogen, up to per-halosubstitution and Q¹ is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinoline, isoquinoline, imidazole and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo substitution, or Y-Q¹ is phthalimidinyl substituted or unsubstituted by halogen up to per-halo substitution. Z and X are preferably independently selected from the group consisting

of $-R^6$, $-OR^6$, $-SR^6$, and $-NHR^7$, wherein R^6 is hydrogen, C_1-C_{10} -alkyl or C_3-C_{10} -cycloalkyl and R^7 is preferably selected from the group consisting of hydrogen, C_3-C_{10} -alkyl, C_3-C_6 -cycloalkyl and C_6-C_{10} -aryl, wherein R^6 and R^7 can be substituted by halogen or up to per-halosubstitution.

5

The heteroaryl moiety A of formula I is preferably selected from the group consisting of:

10 The substituent R^1 is preferably selected from the group consisting of halogen, C_3-C_{10} alkyl, C_3-C_{10} cycloalkyl, C_1-C_{13} heteroaryl, C_6-C_{13} aryl, C_1-C_{24} alkaryl, up to per-halosubstituted C_1-C_{10} alkyl and up to per-halosubstituted C_3-C_{10} cycloalkyl, up to per-halosubstituted C_1-C_{13} heteroaryl, up to per-halosubstituted C_6-C_{13} aryl and up to per-halosubstituted C_1-C_{24} alkaryl.

15

The substituent R^2 is preferably selected from the group consisting of H, $-C(O)R^4$, $-CO_2R^4$, $-C(O)NR^3R^3$, C_1-C_{10} alkyl, C_3-C_{10} cycloalkyl, C_7-C_{24} alkaryl, C_4-C_{23} alkheteroaryl, substituted C_1-C_{10} alkyl, substituted C_3-C_{10} cycloalkyl, substituted C_7-C_{24} alkaryl and substituted C_4-C_{23} alkheteroaryl. Where R^2 is a substituted group, it is preferably substituted by one or more substituents independently selected from the group consisting of $-CN$, $-CO_2R^4$, $-C(O)NR^3R^3$, $-NO_2$, $-OR^4$, $-SR^4$, and halogen up to per-halosubstitution.

R³ and R⁴ are preferably independently selected from the group consisting of H, -OR⁴, -SR⁴, -NR⁴R⁴, -C(O)R⁴, -CO₂R⁴, -C(O)NR⁴R⁴, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to per-halosubstituted 5 C₁-C₁₀ alkyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ heteroaryl.

R⁴ and R⁴ are preferably independently selected from the group consisting of H, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl; C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ heteroaryl.

15 R^a is preferably C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₁-C₁₀ alkyl and up to per-halosubstituted C₃-C₁₀ cycloalkyl.

R^b is preferably hydrogen or halogen.

20 R^c is hydrogen, halogen, C₁-C₁₀ alkyl, up to per-halosubstituted C₁-C₁₀ alkyl or combines with R¹ and the ring carbon atoms to which R¹ and R^c are bound to form a 5- or 6-membered cycloalkyl, aryl or hetaryl ring with 0-2 members selected from O, N and S;

25 The invention also relates to compounds of general formula I described above and includes pyrazoles, isoxazoles, thiophenes, furans and thiadiazoles. These more particularly include pyrazolyl ureas of the formula

wherein R², R¹ and B are as defined above;

and both 5,3- and 3,5- isoxazolyl ureas of the formulae
⁹
 and both 5,3- and 3,5- isoxazolyl ureas of the formulae

and

5

wherein R¹ and B are also as defined above.

Component B for these compounds is a 1-3 ring aromatic ring structure selected from
 10 the group consisting of:

which is substituted or unsubstituted by halogen, up to per-halosubstitution. Here R⁵ and R¹ are as defined above, n = 0-2 and each X¹ substituent is independently selected from the group of X or from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵,
 15 -C(O)NR⁵R⁵, -OR⁵, -NO₂, -NR⁵R⁵, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkoxy,

10
 $C_3\text{-}C_{10}$ cycloalkyl, $C_6\text{-}C_{14}$ aryl and $C_7\text{-}C_{24}$ alkaryl.

The substituent X is selected from the group consisting of $-SR^5$, $-NR^5C(O)OR^5$, $NR^5C(O)R^5$, $C_1\text{-}C_{13}$ heteroaryl, $C_4\text{-}C_{23}$ alkoheteroaryl, substituted $C_1\text{-}C_{10}$ alkyl, substituted $C_{2\text{-}10}$ -alkenyl, substituted $C_{1\text{-}10}$ -alkoxy, substituted $C_3\text{-}C_{10}$ cycloalkyl, substituted $C_6\text{-}C_{14}$ aryl, substituted $C_7\text{-}C_{24}$ alkaryl, substituted $C_3\text{-}C_{13}$ heteroaryl, substituted $C_4\text{-}C_{23}$ alkoheteroaryl, and $-Y\text{-}Ar$, where Y and Ar are as defined above. If X is a substituted group, as indicated previously above, it is substituted by one or more substituents independently selected from the group consisting of $-CN$, $-CO_2R^5$, $-C(O)R^5$, $-C(O)NR^5R^5$, $-OR^5$, $-SR^5$, $-NR^5R^5$, NO_2 , $-NR^5C(O)R^5$, $-NR^5C(O)OR^5$ and halogen up to per-halosubstitution, where R^5 and R^5' are as defined above.

The components of B are subject to the following provisos, where R^1 is t-butyl and R^2 is methyl for the pyrazolyl ureas, B is not

15 Where R^1 is t-butyl for the 5,3-isoxazolyl ureas, B is not

wherein R^6 is $-NHC(O)\text{-}O\text{-}t\text{-butyl}$, $-O\text{-}n\text{-pentyl}$, $-O\text{-}n\text{-butyl}$, $-O\text{-}propyl$, $-C(O)NH\text{-}(CH_3)_2$, $-OCH_2CH(CH_3)_2$, or $-O\text{-}CH_2\text{-}phenyl$. Where R^1 is t-butyl for the 3,5-isoxazole ureas, B is not

and where R^1 is $-CH_2\text{-}t\text{-butyl}$ for the 3,5-isoxazolyl ureas, B is not

20

Preferred pyrazolyl ureas, 3,5-isoxazolyl ureas and 5,3-isoxazolyl ureas are those wherein B is of the formula

wherein Q, Q¹, X, Z, Y, n, s and n1 are as defined above.

Preferred pyrazole ureas more particularly include those wherein Q is phenyl or pyridinyl, Q¹ is pyridinyl, phenyl or benzothiazolyl, Y is -O-, -S-, -CH₂S-, -SCH₂-,

5 -CH₂O-, -OCH₂- or -CH₂-, and Z is H, -SCH₃, or -NH-C(O)-C_pH_{2p-1}, wherein p is 1-4, n = 0, s = 1 and n1 = 0-1. Specific examples of preferred pyrazolyl ureas are:

N-(3-tert-Butyl-5-pyrazolyl)-N'-(4-phenyloxyphenyl)urea;

N-(3-tert-Butyl-5-pyrazolyl)-N'-(3-(3-methylaminocarbonylphenyl)-oxyphenyl)urea;

10 *N-(3-tert-Butyl-5-pyrazolyl)-N'-(3-(4-pyridinyl)thiophenyl)urea;*

N-(3-tert-Butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl)thiophenyl)urea;

N-(3-tert-Butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl)oxyphenyl)urea;

N-(3-tert-Butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl)methylphenyl)urea;

N-(1-Methyl-3-tert-butyl-5-pyrazolyl)-N'-(4-phenyloxyphenyl)urea;

15 *N-(1-Methyl-3-tert-butyl-5-pyrazolyl)-N'-(3-(4-pyridinyl)thiophenyl)urea;*

N-(1-Methyl-3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl)thiomethyl)-phenyl)urea;

N-(1-Methyl-3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl)thiophenyl)urea;

20 *N-(1-Methyl-3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl)oxyphenyl)urea;*

N-(1-Methyl-3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl)methoxyphenyl)-urea;

N-(1-Methyl-3-tert-butyl-5-pyrazolyl)-N'-(3-(2-benzothiazolyl)oxyphenyl)-urea;

25 *N-(3-tert-butyl-5-pyrazolyl)-N'-(3-(4-pyridyl)thiophenyl) urea;*

N-(3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridyl)thiophenyl) urea;

N-(3-tert-butyl-5-pyrazolyl)-N'-(3-(4-pyridyl)oxyphenyl) urea;

N-(3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridyl)oxyphenyl) urea;

N-(1-methyl-3-tert-butyl-5-pyrazolyl)-N'-(3-(4-pyridyl)thiophenyl) urea;

30 *N-(1-methyl-3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridyl)thiophenyl) urea;*

N-(1-methyl-3-tert-butyl-5-pyrazolyl)-N'-(3-(4-pyridyl)oxyphenyl) urea; and

N-(1-methyl-3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridyl)oxyphenyl) urea.

Preferred 3,5-isoxazolyl ureas more particularly include those wherein Q is phenyl or

35 pyridinyl, Q¹ is phenyl, benzothiazolyl or pyridinyl, Y is -O-, -S- or -CH₂-, Z is -CH₃,

12

Cl, -OCH₃, or -C(O)-CH₃, n = 0, s = 1, and n1 = 0-1. Specific examples of preferred 3,5-isoxazolyl ureas are :

- N*-(3-Isopropyl-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)thiophenyl)urea;
- N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-(4-methoxyphenyl)oxyphenyl)urea;
- 5 *N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(5-(2-(4-acetylphenyl)oxy)pyridinyl)urea;
- N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(3-(4-pyridinyl)thiophenyl)urea;
- N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)methylphenyl)urea;
- N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)thiophenyl)urea;
- 10 *N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)oxyphenyl)urea;
- N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-(4-methyl-3-pyridinyl)oxyphenyl)urea;
- N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(3-(2-benzothiazolyl)oxyphenyl)urea;
- 15 *N*-(3-(1,1-Dimethylpropyl)-5-isoxazolyl)-*N'*-(4-(4-methylphenyl)oxyphenyl)urea;
- N*-(3-(1,1-Dimethylpropyl)-5-isoxazolyl)-*N'*-(3-(4-pyridinyl)thiophenyl)urea;
- N*-(3-(1,1-Dimethylpropyl)-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)oxyphenyl)urea;
- 20 *N*-(3-(1,1-Dimethylpropyl)-5-isoxazolyl)-*N'*-(5-(2-(4-methoxyphenyl)oxy)pyridinyl)urea;
- N*-(3-(1-Methyl-1-ethylpropyl)-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)oxyphenyl)urea;
- 25 *N*-(3-(1-Methyl-1-ethylpropyl)-5-isoxazolyl)-*N'*-(3-(4-pyridinyl)thiophenyl)urea;
- N*-(3-isopropyl-5-isoxazolyl)-*N'*-(3-(4-(2-methylcarbamoyl)pyridyl)oxyphenyl) urea;
- 30 *N*-(3-isopropyl-5-isoxazolyl)-*N'*-(4-(4-(2-methylcarbamoyl)pyridyl)oxyphenyl) urea;
- N*-(3-*tert*-butyl-5-isoxazolyl)-*N'*-(3-(4-(2-methylcarbamoyl)pyridyl)oxyphenyl) urea;
- N*-(3-*tert*-butyl-5-isoxazolyl)-*N'*-(4-(4-(2-methylcarbamoyl)pyridyl)oxyphenyl) urea;
- 35 *N*-(3-*tert*-butyl-5-isoxazolyl)-*N'*-(3-(4-(2-methylcarbamoyl)pyridyl)thiophenyl) urea;
- N*-(3-(1,1-dimethylprop-1-yl)-5-isoxazolyl)-*N'*-(3-(4-(2-methylcarbamoyl)pyridyl)oxyphenyl) urea;
- N*-(3-(1,1-dimethylprop-1-yl)-5-isoxazolyl)-*N'*-(4-(4-(2-methylcarbamoyl)pyridyl)oxyphenyl) urea; and

¹³
N-(3-tert-butyl-5-isoxazolyl)-N'-(3-chloro-4-(4-(2-methylcarbamoyl)pyridyl)-thiophenyl) urea.

Preferred 5,3-isoxazolyl ureas more particularly include those wherein Q is is phenyl or pyridinyl, Q¹ is phenyl, benzothiazolyl or pyridinyl, Y is -O-, -S- or -CH₂-, X is CH₃, and Z is -C(O)NH-, C_pH_{2p+1}, wherein p = 1-4, -C(O)CH₃, -CH₃, -OH, -OC₂H₅, -CN, phenyl, or -OCH₃, n = 0 or 1, s = 0 or 1, and n1 = 0 or 1. Specific examples of preferred 5,3-isoxazolyl ureas are:

- 5 *N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-(4-hydroxyphenyl)oxyphenyl)urea;*
- 10 *N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-(3-hydroxyphenyl)oxyphenyl)urea;*
- N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-(4-acetylphenyl)oxyphenyl)urea;*
- N-(5-tert-Butyl-3-isoxazolyl)-N'-(3-benzoylphenyl)urea;*
- N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-phenyloxyphenyl)urea;*
- 15 *N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-(3-methylaminocarbonylphenyl)-thiophenyl)urea;*
- N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-(4-(1,2-methylenedioxy)phenyl)-oxyphenyl)urea;*
- N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-(3-pyridinyl)oxyphenyl)urea;*
- 20 *N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-(4-pyridinyl)oxyphenyl)urea;*
- N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-(4-pyridyl)thiophenyl)urea;*
- N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-(4-pyridinyl)methylphenyl)urea;*
- N-(5-tert-Butyl-3-isoxazolyl)-N'-(3-(4-pyridinyl)oxyphenyl)urea;*
- 25 *N-(5-tert-Butyl-3-isoxazolyl)-N'-(3-(4-pyridinyl)thiophenyl)urea;*
- N-(5-tert-Butyl-3-isoxazolyl)-N'-(3-(3-methyl-4-pyridinyl)oxyphenyl)urea;*
- N-(5-tert-Butyl-3-isoxazolyl)-N'-(3-(3-methyl-4-pyridinyl)thiophenyl)urea;*
- 30 *N-(5-tert-Butyl-3-isoxazolyl)-N'-(3-(4-methyl-3-pyridinyl)oxyphenyl)urea;*
- N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-(3-methyl-4-pyridinyl)oxyphenyl)urea;*
- N-(5-tert-Butyl-3-isoxazolyl)-N'-(3-(2-benzothiazolyl)oxyphenyl)urea;*
- 35 *N-(5-tert-butyl-3-isoxazolyl)-N'-(3-chloro-4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;*
- N-(5-tert-butyl-3-isoxazolyl)-N'-(4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;*
- N-(5-tert-butyl-3-isoxazolyl)-N'-(3-(4-(2-methylcarbamoyl)pyridyl)-thiophenyl) urea;*
- N-(5-tert-butyl-3-isoxazolyl)-N'-(2-methyl-4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;*

14

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-(2-carbamoyl)pyridyl)oxyphenyl) urea;
N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(3-(4-(2-carbamoyl)pyridyl)oxyphenyl) urea;
N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(3-(4-(2-methylcarbamoyl)pyridyl)-
oxyphenyl) urea;

5 *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-(2-methylcarbamoyl)pyridyl)-
thiophenyl) urea;

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(3-chloro-4-(4-(2-methylcarbamoyl)pyridyl)-
oxyphenyl) urea; and

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(3-methylcarbamoyl)phenyl)oxyphenyl)
10 urea.

Additionally included are thienyl ureas of the formulae

wherein R¹, R² and B are as defined above. Preferred B components for the thienyl
15 ureas of this invention have aromatic ring structures selected from the group
consisting of:

These aromatic ring structures can be substituted or unsubstituted by halogen, up to per-halo substitution. The X^1 substituents are independently selected from the group consisting of X or from the group consisting of, -CN, -OR^s, -NR^sR^s, C₁-C₁₀ alkyl.

5 The X substituents are independently selected from the group consisting of -CO₂R^s, -C(O)NR^sR^s, -C(O)R^s, -NO₂, -SR^s, -NR^sC(O)OR^s, -NR^sC(O)R^s, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, C₄-C₂₃ alkheteroaryl, and substituted C₁-C₁₀ alkyl, substituted C₂-C₁₀-alkenyl, substituted C₁-C₁₀-alkoxy, substituted C₃-C₁₀ cycloalkyl, substituted C₆-C₁₄ aryl, substituted C₇-C₂₄ alkaryl, substituted C₃-C₁₃ heteroaryl, substituted C₄-C₂₃ alkheteroaryl, and -Y-Ar. Where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R^s, -C(O)R^s, -C(O)NR^sR^s, -OR^s, -SR^s, -NR^sR^s, -NO₂, -NR^sC(O)R^s, -NR^sC(O)OR^s and halogen up to per-halo substitution. The moieties R^s, R^s, Y and Ar are as defined above and n = 0-2.

10

15

The components for B are subject to the proviso that where R¹ is t-butyl and R^b is H for the 3-thienyl ureas, B is not of the formula

Preferred thienyl ureas include those wherein B is of the formula

20 and Q, Q¹, Y, X, Z, n, s and n1 are as defined above. The preferred thienyl ureas more particularly include those wherein Q is phenyl, Q¹ is phenyl or pyridinyl, Y is -O- or -S-, Z is -Cl, -CH₃, -OH or -OCH₃, n = 0, s = 0 or 1, and n1 = 0-2. Specific examples of preferred thienyl ureas are:

25 N-(3-Isopropyl-5-isoxazolyl)-N'-(4-(4-pyridinyl)thiophenyl)urea;
 N-(3-*tert*-Butyl-5-isoxazolyl)-N'-(4-(4-methoxyphenyl)oxyphenyl)urea;
 N-(3-*tert*-Butyl-5-isoxazolyl)-N'-(5-(2-(4-acetylphenyl)oxy)pyridinyl)urea;
 N-(3-*tert*-Butyl-5-isoxazolyl)-N'-(3-(4-pyridinyl)thiophenyl)urea;
 N-(3-*tert*-Butyl-5-isoxazolyl)-N'-(4-(4-pyridinyl)methylphenyl)urea;

16

N-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)thiophenyl)urea;
N-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)oxyphenyl)urea;
N-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-(4-methyl-3-pyridinyl)oxyphenyl)urea;
N-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(3-(2-benzothiazolyl)oxyphenyl)urea;
5 *N*-(3-(1,1-Dimethylpropyl)-5-isoxazolyl)-*N'*-(4-(4-methylphenyl)-
oxyphenyl)urea;
N-(3-(1,1-Dimethylpropyl)-5-isoxazolyl)-*N'*-(3-(4-pyridinyl)thiophenyl)urea;
N-(3-(1,1-Dimethylpropyl)-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)oxyphenyl)urea;
10 *N*-(3-(1,1-Dimethylpropyl)-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)thiophenyl)urea;
N-(3-(1,1-Dimethylpropyl-5-isoxazolyl)-*N'*-(5-(2-(4-methoxyphenyl)-
oxy)pyridinyl)urea;
N-(3-(1-Methyl-1-ethylpropyl)-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)-
oxyphenyl)urea; and
15 *N*-(3-(1-Methyl-1-ethylpropyl)-5-isoxazolyl)-*N'*-(3-(4-pyridinyl)thio-
phenyl)urea.

Preferred thiophenes include:

N-(5-*tert*-butyl-3-thienyl)-*N'*-(4-(4-methoxyphenyl)oxyphenyl) urea;
N-(5-*tert*-butyl-3-thienyl)-*N'*-(4-(4-hydroxyphenyl)oxyphenyl) urea;
20 *N*-(5-*tert*-butyl-3-thienyl)-*N'*-(4-(3-methylphenyl)oxyphenyl) urea; and
N-(5-*tert*-butyl-3-thienyl)-*N'*-(4-(4-pyridyl)thiophenyl) urea; and

Also included are the thiadiazolyl and furyl ureas of the formulae:

25 wherein R^a, R^b, R¹ and B are as defined above. The thiadiazolyl and furyl ureas have preferred aromatic ring structures for B identical to those for the pyrazolyl, thienyl and isoxazolyl ureas shown above. Such ring structures can be unsubstituted or substituted by halogen, up to per-halo-substitution, and each X¹ substituent is independently selected from the group consisting of X or from the group consisting of -CN, -NO₂, -OR⁵ and C₁-C₁₀ alkyl. The X substituents are selected from the group consisting of -SR⁵, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -NR⁵R⁵, -NR⁵C(O)OR⁵,
30

17

-NR⁵C(O)R^{5'}, substituted C₂₋₁₀-alkenyl, substituted C₁₋₁₀-alkoxy, -C₃-C₁₀ cycloalkyl, -C₆-C₁₄ aryl, -C₇-C₂₄, alkaryl, C₃-C₁₃ heteroaryl, C₄-C₂₃ alkheteroaryl, and substituted C₁-C₁₀ alkyl, substituted C₂-C₁₀ cycloalkyl, substituted aryl, substituted alkaryl, substituted heteroaryl, substituted C₄-C₂₃ alkheteroaryl and -Y-Ar. Each of R⁵, R^{5'} and Ar are as defined above, n = 0-2, and the substituents on X where X is a substituted group are as defined for the pyrazolyl, isoxazolyl and thienyl ureas.

This invention also includes pharmaceutical compositions that include compounds described above and a physiologically acceptable carrier.

10

Preferred furyl ureas and thiadiazole ureas include those wherein B is of the formula

and Q, Q¹, X, Y, Z, n, s, and n1 are as defined above. The preferred thiadaizolyl ureas more particularly include those wherein Q is phenyl, Q¹ is phenyl or pyridinyl, Y is -O- or -S-, n = 0, s = 1 and n1 = 0. Specific examples of preferred thiadiazolyl ureas are:

15 N-(5-*tert*-Butyl-2-(1-thia-3,4-diazolyl))-N'-(3-(4-pyridinyl)thiophenyl)urea;
 N-(5-*tert*-Butyl-2-(1-thia-3,4-diazolyl))-N'-(4-(4-pyridinyl)oxyphenyl)urea;
 N-(5-*tert*-butyl-2-(1-thia-3,4-diazolyl))-N'-(3-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl)urea;
 N-(5-*tert*-butyl-2-(1-thia-3,4-diazolyl))-N'-(4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl)urea;
 N-(5-*tert*-butyl-2-(1-thia-3,4-diazolyl))-N'-(3-chloro-4-(4-(2-methylcarbamoyl)pyridyl)oxyphenyl)urea;
 N-(5-*tert*-butyl-2-(1-thia-3,4-diazolyl))-N'-(2-chloro-4-(4-(2-methylcarbamoyl)pyridyl)oxyphenyl)urea;
 N-(5-*tert*-butyl-2-(1-thia-3,4-diazolyl))-N'-(3-(4-pyridyl)thiophenyl)urea;
 N-(5-*tert*-butyl-2-(1-thia-3,4-diazolyl))-N'-(2-methyl-4-(4-(2-methylcarbamoyl)pyridyl)oxyphenyl)urea; and
 N-(5-(1,1-dimethylprop-1-yl)-2-(1-thia-3,4-diazolyl))-N'-(4-(3-carbamoylphenyl)oxyphenyl)urea.

25

30

The preferred furyl ureas more particularly include those wherein Q is phenyl, Q¹ is phenyl or pyridinyl, Y is -O- or -S-, Z is -Cl or -OCH₃, s = 0 or 1, n = 0 and n1 = 0-2.

The present invention is also directed to pharmaceutically acceptable salts of formula I. Suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of inorganic and organic acids, such as hydrochloric acid, 5 hydrobromic acid, sulphuric acid, phosphoric acid, methanesulphonic acid, sulphonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, and mandelic acid. In addition, pharmaceutically acceptable salts include acid salts of inorganic bases, such as salts containing alkaline cations (e.g., Li⁺, 10 Na⁺ or K⁺), alkaline earth cations (e.g., Mg⁺², Ca⁺² or Ba⁻²), the ammonium cation, as well as acid salts of organic bases, including aliphatic and aromatic substituted ammonium, and quaternary ammonium cations such as those arising from protonation or peralkylation of triethylamine, N,N-diethylamine, N,N-dicyclohexylamine, pyridine, N,N-dimethylaminopyridine (DMAP), 1,4-diazabicyclo[2.2.2]octane 15 (DABCO), 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).

A number of the compounds of Formula I possess asymmetric carbons and can therefore exist in racemic and optically active forms. Methods of separation of enantiomeric and diastereomeric mixtures are well known to one skilled in the art. 20 The present invention encompasses any isolated racemic or optically active form of compounds described in Formula I which possess Raf kinase inhibitory activity.

General Preparative Methods

25 The compounds of Formula I may be prepared by use of known chemical reactions and procedures, some of which are commercially available. Nevertheless, the following general preparative methods are presented to aid one of skill in the art in synthesizing the inhibitors, with more detailed examples being presented in the experimental section describing the working examples.

30

Heterocyclic amines may be synthesized utilizing known methodology (Katritzky, et al. *Comprehensive Heterocyclic Chemistry*; Permagon Press: Oxford, UK (1984). March. *Advanced Organic Chemistry*, 3rd Ed.; John Wiley: New York (1985)). For

example. 3-substituted-5-aminoisoxazoles (**3**) are available by the reaction of hydroxylamine with an α -cyanoketone (**2**), as shown in Scheme I. Cyanoketone **2**, in turn, is available from the reaction of acetamide ion with an appropriate acyl derivative, such as an ester, an acid halide, or an acid anhydride. Reaction of an -cyanoketone with hydrazine ($R^2=H$) or a monosubstituted hydrazine affords the 3-substituted- or 1,3-disubstituted-5-aminopyrazole (**5**). Pyrazoles unsubstituted at *N*-1 ($R^2=H$) may be acylated at *N*-1, for example using di-*tert*-butyl dicarbonate, to give pyrazole **7**. Similarly, reaction of nitrile **8** with an -thioacetate ester gives the 5-substituted-3-amino-2-thiophenecarboxylate (**9**, Ishizaki et al. JP 6025221). Decarboxylation of ester **9** may be achieved by protection of the amine, for example as the *tert*-butoxy (BOC) carbamate (**10**), followed by saponification and treatment with acid. When BOC protection is used, decarboxylation may be accompanied by deprotection giving the substituted 3-thiopheneammonium salt **11**. Alternatively, ammonium salt **11** may be directly generated through saponification of ester **9** followed by treatment with acid.

Scheme I. Selected General Methods for Heterocyclic Amine Synthesis

Substituted anilines may be generated using standard methods (March. *Advanced Organic Chemistry*, 3rd Ed.; John Wiley: New York (1985); Larock. *Comprehensive Organic Transformations*; VCH Publishers: New York (1989)). As shown in Scheme II, aryl amines are commonly synthesized by reduction of nitroaryls using a metal catalyst, such as Ni, Pd, or Pt, and H₂ or a hydride transfer agent, such as formate, cyclohexadiene, or a borohydride (Rylander. *Hydrogenation Methods*; Academic Press: London, UK (1985)). Nitroaryls may also be directly reduced using a strong hydride source, such as LiAlH₄ (Seydel-Penne. *Reductions by the Alumino- and Borohydrides in Organic Synthesis*; VCH Publishers: New York (1991)), or using a

21

zero valent metal, such as Fe, Sn or Ca, often in acidic media. Many methods exist for the synthesis of nitroaryls (March. *Advanced Organic Chemistry*, 3rd Ed.; John Wiley: New York (1985). Larock. *Comprehensive Organic Transformations*; VCH Publishers: New York (1989)).

Scheme II Reduction of Nitroaryls to Aryl Amines

Nitroaryls are commonly formed by electrophilic aromatic nitration using HNO₃, or an alternative NO₂⁺ source. Nitroaryls may be further elaborated prior to reduction. Thus, nitroaryls substituted with

potential leaving groups (eg. F, Cl, Br, etc.) may undergo substitution reactions on treatment with nucleophiles, such as thiolate (exemplified in Scheme III) or phenoxide. Nitroaryls may also undergo Ullman-type coupling reactions (Scheme III).

Scheme III Selected Nucleophilic Aromatic Substitution using Nitroaryls

As shown in Scheme IV, urea formation may involve reaction of a heteroaryl isocyanate (17) with an aryl amine (16). The heteroaryl isocyanate may be

22

synthesized from a heteroaryl amine by treatment with phosgene or a phosgene equivalent, such as trichloromethyl chloroformate (diphosgene), bis(trichloromethyl) carbonate (triphosgene), or *N,N'*-carbonyldiimidazole (CDI). The isocyanate may also be derived from a heterocyclic carboxylic acid derivative, such as an ester, an acid halide or an anhydride by a Curtius-type rearrangement. Thus, reaction of acid derivative 21 with an azide source, followed by rearrangement affords the isocyanate. The corresponding carboxylic acid (22) may also be subjected to Curtius-type rearrangements using diphenylphosphoryl azide (DPPA) or a similar reagent. A urea may also be generated from the reaction of an aryl isocyanate (20) with a heterocyclic amine.

10

Scheme IV Selected Methods of Urea Formation (Het = heterocycle)

1-Amino-2-heterocyclic carboxylic esters (exemplified with thiophene 9, Scheme V) may be converted into an isatoic-like anhydride (25) through saponification, followed by treatment with phosgene or a phosgene equivalent. Reaction of anhydride 25 with an aryl amine can generate acid 26 which may spontaneously decarboxylate, or may be isolated. If isolated, decarboxylation of acid 26 may be induced upon heating.

Scheme V Urea Formation via Isatoic-like Anhydrides

Finally, ureas may be further manipulated using methods familiar to those skilled in the art.

5

The invention also includes pharmaceutical compositions including a compound of Formula I or a pharmaceutically acceptable salt thereof, and a physiologically acceptable carrier.

10 The compounds may be administered orally, topically, parenterally, by inhalation or spray or sublingually, rectally or vaginally in dosage unit formulations. The term 'administration by injection' includes intravenous, intramuscular, subcutaneous and parenteral injections, as well as use of infusion techniques. Dermal administration may include topical application or transdermal administration. One or more 15 compounds may be present in association with one or more non-toxic pharmaceutically acceptable carriers and if desired other active ingredients.

20 Compositions intended for oral use may be prepared according to any suitable method known to the art for the manufacture of pharmaceutical compositions. Such compositions may contain one or more agents selected from the group consisting of diluents, sweetening agents, flavoring agents, coloring agents and preserving agents in

order to provide palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; and binding agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. These compounds may also be prepared in solid, rapidly released form.

Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.

Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropyl methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally occurring phosphatide, for example, lecithin, or condensation products or an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethylene oxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl *p*-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example, sweetening, flavoring and coloring agents, 5 may also be present.

The compounds may also be in the form of non-aqueous liquid formulations, e.g., oily 10 suspensions which may be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or peanut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral 15 preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

Pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, 20 or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with 25 ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.

Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a 30 demulcent, a preservative and flavoring and coloring agents.

The compounds may also be administered in the form of suppositories for rectal or vaginal administration of the drug. These compositions can be prepared by mixing

26

the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal or vaginal temperature and will therefore melt in the rectum or vagina to release the drug. Such materials include cocoa butter and polyethylene glycols.

5

Compounds of the invention may also be administrated transdermally using methods known to those skilled in the art (see, for example: Chien; "Transdermal Controlled Systemic Medications"; Marcel Dekker, Inc.; 1987. Lipp et al. WO94/04157 3Mar94). For example, a solution or suspension of a compound of Formula I in a suitable volatile solvent optionally containing penetration enhancing agents can be combined with additional additives known to those skilled in the art, such as matrix materials and bacteriocides. After sterilization, the resulting mixture can be formulated following known procedures into dosage forms. In addition, on treatment with emulsifying agents and water, a solution or suspension of a compound of Formula I may be formulated into a lotion or salve.

Suitable solvents for processing transdermal delivery systems are known to those skilled in the art, and include lower alcohols such as ethanol or isopropyl alcohol, lower ketones such as acetone, lower carboxylic acid esters such as ethyl acetate, polar ethers such as tetrahydrofuran, lower hydrocarbons such as hexane, cyclohexane or benzene, or halogenated hydrocarbons such as dichloromethane, chloroform, trichlorotrifluoroethane, or trichlorofluoroethane. Suitable solvents may also include mixtures of one or more materials selected from lower alcohols, lower ketones, lower carboxylic acid esters, polar ethers, lower hydrocarbons, halogenated hydrocarbons.

25

Suitable penetration enhancing materials for transdermal delivery system are known to those skilled in the art, and include, for example, monohydroxy or polyhydroxy alcohols such as ethanol, propylene glycol or benzyl alcohol, saturated or unsaturated C₈-C₁₈ fatty alcohols such as lauryl alcohol or cetyl alcohol, saturated or unsaturated C₈-C₁₈ fatty acids such as stearic acid, saturated or unsaturated fatty esters with up to 24 carbons such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl isobutyl tertbutyl or monoglycerin esters of acetic acid, capronic acid, lauric acid, myristinic acid, stearic acid, or palmitic acid, or diesters of saturated or unsaturated dicarboxylic

acids with a total of up to 24 carbons such as diisopropyl adipate, diisobutyl adipate, diisopropyl sebacate, diisopropyl maleate, or diisopropyl fumarate. Additional penetration enhancing materials include phosphatidyl derivatives such as lecithin or cephalin, terpenes, amides, ketones, ureas and their derivatives, and ethers such as dimethyl isosorbid and diethyleneglycol monoethyl ether. Suitable penetration enhancing formulations may also include mixtures of one or more materials selected from monohydroxy or polyhydroxy alcohols, saturated or unsaturated C₈–C₁₈ fatty alcohols, saturated or unsaturated C₈–C₁₈ fatty acids, saturated or unsaturated fatty esters with up to 24 carbons, diesters of saturated or unsaturated discarboxylic acids with a total of up to 24 carbons, phosphatidyl derivatives, terpenes, amides, ketones, ureas and their derivatives, and ethers.

Suitable binding materials for transdermal delivery systems are known to those skilled in the art and include polyacrylates, silicones, polyurethanes, block polymers, styrenebutadiene copolymers, and natural and synthetic rubbers. Cellulose ethers, derivatized polyethylenes, and silicates may also be used as matrix components. Additional additives, such as viscous resins or oils may be added to increase the viscosity of the matrix.

For all regimens of use disclosed herein for compounds of Formula I, the daily oral dosage regimen will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily dosage for administration by injection, including intravenous, intramuscular, subcutaneous and parenteral injections, and use of infusion techniques will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily rectal dosage regime will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily vaginal dosage regimen will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily topical dosage regime will preferably be from 0.1 to 200 mg administered between one to four times daily. The transdermal concentration will preferably be that required to maintain a daily dose of from 0.01 to 200 mg/Kg. The daily inhalation dosage regime will preferably be from 0.01 to 10 mg/Kg of total body weight.

It will be appreciated by those skilled in the art that the particular method of administration will depend on a variety of factors, all of which are considered routinely when administering therapeutics.

5 It will also be understood, however, that the specific dose level for any given patient will depend upon a variety of factors, including, the activity of the specific compound employed, the age of the patient, the body weight of the patient, the general health of the patient, the gender of the patient, the diet of the patient, time of administration, route of administration, rate of excretion, drug combinations, and the severity of the
10 condition undergoing therapy.

It will be further appreciated by one skilled in the art that the optimal course of treatment, ie., the mode of treatment and the daily number of doses of a compound of Formula I or a pharmaceutically acceptable salt thereof given for a defined number of
15 days, can be ascertained by those skilled in the art using conventional treatment tests.

It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration,
20 route of administration, and rate of excretion, drug combination and the severity of the condition undergoing therapy.

The entire disclosure of all applications, patents and publications cited above and below are hereby incorporated by reference, including provisional application
25 Attorney Docket BAYER 8 V1, filed on December 22, 1997, as Serial No. 08/996,343, converted on December 22, 1998.

The compounds are producible from known compounds (or from starting materials which, in turn, are producible from known compounds), e.g., through the general
30 preparative methods shown below. The activity of a given compound to inhibit raf kinase can be routinely assayed, e.g., according to procedures disclosed below. The following examples are for illustrative purposes only and are not intended, nor should they be construed to limit the invention in any way.

EXAMPLES

All reactions were performed in flame-dried or oven-dried glassware under a positive pressure of dry argon or dry nitrogen, and were stirred magnetically unless otherwise indicated. Sensitive liquids and solutions were transferred via syringe or cannula, and introduced into reaction vessels through rubber septa. Unless otherwise stated, the term 'concentration under reduced pressure' refers to use of a Buchi rotary evaporator at approximately 15 mmHg.

10 All temperatures are reported uncorrected in degrees Celsius (°C). Unless otherwise indicated, all parts and percentages are by weight.

Commercial grade reagents and solvents were used without further purification. Thin-layer chromatography (TLC) was performed on Whatman® pre-coated glass-backed silica gel 60A F-254 250 µm plates. Visualization of plates was effected by one or more of the following techniques: (a) ultraviolet illumination, (b) exposure to iodine vapor, (c) immersion of the plate in a 10% solution of phosphomolybdic acid in ethanol followed by heating, (d) immersion of the plate in a cerium sulfate solution followed by heating, and/or (e) immersion of the plate in an acidic ethanol solution of 2,4-dinitrophenylhydrazine followed by heating. Column chromatography (flash chromatography) was performed using 230-400 mesh EM Science® silica gel.

Melting points (mp) were determined using a Thomas-Hoover melting point apparatus or a Mettler FP66 automated melting point apparatus and are uncorrected. Fourier transform infrared spectra were obtained using a Mattson 4020 Galaxy Series spectrophotometer. Proton (¹H) nuclear magnetic resonance (NMR) spectra were measured with a General Electric GN-Omega 300 (300 MHz) spectrometer with either Me₄Si (δ 0.00) or residual protonated solvent (CHCl₃, δ 7.26; MeOH δ 3.30; DMSO δ 2.49) as standard. Carbon (¹³C) NMR spectra were measured with a General Electric GN-Omega 300 (75 MHz) spectrometer with solvent (CDCl₃, δ 77.0; MeOD-d₃, δ 49.0; DMSO-d₆, δ 39.5) as standard. Low resolution mass spectra (MS) and high resolution mass spectra (HRMS) were either obtained as electron impact (EI) mass

30

spectra or as fast atom bombardment (FAB) mass spectra. Electron impact mass spectra (EI-MS) were obtained with a Hewlett Packard 5989A mass spectrometer equipped with a Vacumetrics Desorption Chemical Ionization Probe for sample introduction. The ion source was maintained at 250 °C. Electron impact ionization
5 was performed with electron energy of 70 eV and a trap current of 300 μA. Liquid-cesium secondary ion mass spectra (FAB-MS), an updated version of fast atom bombardment were obtained using a Kratos Concept 1-H spectrometer. Chemical ionization mass spectra (CI-MS) were obtained using a Hewlett Packard MS-Engine (5989A) with methane as the reagent gas (1×10^{-4} torr to 2.5×10^{-4} torr). The direct
10 insertion desorption chemical ionization (DCI) probe (Vaccumetrics, Inc.) was ramped from 0-1.5 amps in 10 sec and held at 10 amps until all traces of the sample disappeared (~1-2 min). Spectra were scanned from 50-800 amu at 2 sec per scan.
HPLC - electrospray mass spectra (HPLC ES-MS) were obtained using a Hewlett-Packard 1100 HPLC equipped with a quaternary pump, a variable wavelength
15 detector, a C-18 column, and a Finnigan LCQ ion trap mass spectrometer with electrospray ionization. Spectra were scanned from 120-800 amu using a variable ion time according to the number of ions in the source. Gas chromatography - ion selective mass spectra (GC-MS) were obtained with a Hewlett Packard 5890 gas chromatograph equipped with an HP-1 methyl silicone column (0.33 mM coating; 25
20 m x 0.2 mm) and a Hewlett Packard 5971 Mass Selective Detector (ionization energy 70 eV).

Elemental analyses were conducted by Robertson Microlit Labs, Madison NJ. All
ureas displayed NMR spectra, LRMS and either elemental analysis or HRMS
25 consistant with assigned structures.

List of Abbreviations and Acronyms:

AcOH	acetic acid
anh	anhydrous
30 BOC	<i>tert</i> -butoxycarbonyl
conc	concentrated
dec	decomposition
DMPU	1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone

31

	DMF	<i>N,N</i> -dimethylformamide
	DMSO	dimethylsulfoxide
	DPPA	diphenylphosphoryl azide
	EtOAc	ethyl acetate
5	EtOH	ethanol (100%)
	Et ₂ O	diethyl ether
	Et ₃ N	triethylamine
	<i>m</i> -CPBA	3-chloroperoxybenzoic acid
	MeOH	methanol
10	pet. ether	petroleum ether (boiling range 30-60 °C)
	THF	tetrahydrofuran
	TFA	trifluoroacetic acid
	Tf	trifluoromethanesulfonyl

15 A. General Methods for Synthesis of Heterocyclic Amines

A2. General Synthesis of 5-Amino-3-alkyloxazoles

Step 1. **3-Oxo-4-methylpentanenitrile:** A slurry of sodium hydride (60% in mineral oil; 10.3 g, 258 mmol) in benzene (52 mL) was warmed to 80 °C for 15 min., then a solution of acetonitrile (13.5 mL, 258 mmol) in benzene (52 mL) was added dropwise via addition funnel followed by a solution of ethyl isobutyrate (15 g, 129 mmol) in benzene (52 mL). The reaction mixture was heated overnight, then cooled with an ice water bath and quenched by addition of 2-propanol (50 mL) followed by water (50 mL) via addition funnel. The organic layer was separated and set aside. EtOAc (100 mL) was added to the aqueous layer and the resulting mixture was acidified to approximately pH 1 (conc. HCl) with stirring. The resulting aqueous layer was extracted with EtOAc (2 x 100 mL). The organic layers were combined with the original organic layer, dried ($MgSO_4$), and concentrated *in vacuo* to give the a-cyanoketone as a yellow oil which was used in the next step without further purification.

Step 2. 5-Amino-3-isopropylisoxazole: Hydroxylamine hydrochloride (10.3 g, 148 mmol) was slowly added to an ice cold solution of NaOH (25.9 g, 645 mmol) in water (73 mL) and the resulting solution was poured into a solution of crude 3-oxo-4-methylpentanenitrile while stirring. The resulting yellow solution was heated at 50 °C for 2.5 hours to produce a less dense yellow oil. The warm reaction mixture was immediately extracted with CHCl₃ (3 x 100 mL) without cooling. The combined organic layers were dried (MgSO₄), and concentrated *in vacuo*. The resulting oily yellow solid was filtered through a pad of silica (10% acetone/90% CH₂Cl₂) to afford the desired isoxazole as a yellow solid (11.3 g, 70%): mp 63-65 °C; TLC R_f (5% acetone/95% CH₂Cl₂) 0.19; ¹H-NMR (DMSO-d₆) δ 1.12 (d, J=7.0 Hz, 6H), 2.72 (sept, J=7.0 Hz, 1H), 4.80 (s, 2H), 6.44 (s, 1H); FAB-MS m/z (rel abundance) 127 ((M+H)⁺; 67%).

15

A3. General Method for the Preparation of 5-Amino-1-alkyl-3-alkylpyrazoles

5-Amino-3-tert-butyl-1-(2-cyanoethyl)pyrazole: A solution of 4,4-dimethyl-3-oxopentanenitrile (5.6 g, 44.3 mmol) and 2-cyanoethyl hydrazine (4.61 g, 48.9 mmol) in EtOH (100 mL) was heated at the reflux temperature overnight after which TLC analysis showed incomplete reaction. The mixture was concentrated under reduced pressure and the residue was filtered through a pad of silica (gradient from 40% EtOAc/60% hexane to 70% EtOAc/30% hexane) and the resulting material was triturated (Et₂O/hexane) to afford the desired product (2.5 g, 30%): TLC (30% EtOAc/70% hexane) R_f 0.31; ¹H-NMR (DMSO-d₆) δ 1.13 (s, 9H), 2.82 (t, J=6.9 Hz, 2H), 4.04 (t, J=6.9 Hz, 2H), 5.12 (br s, 2H), 5.13 (s, 1H).

A 4. Synthesis of 3-Amino-5-alkylthiophenes

A4a. Synthesis of 3-Amino-5-alkylthiophenes by Thermal Decarboxylation of Thiophenecarboxylic Acids

5

10

Step 1. *7-tert-Butyl-2H-thieno[3,2-d]oxazine-2,4(1H)-dione:* A mixture of methyl 3-amino-5-*tert*-butylthiophenecarboxylate (7.5 g, 35.2 mmol) and KOH (5.92 g) in MeOH (24 mL) and water (24 mL) was stirred at 90 °C for 6 h. The reaction mixture was concentrated under reduced pressure and the residue was dissolved in water (600 mL). Phosgene (20% in toluene, 70 mL) was added dropwise over a 2 h period. The resulting mixture was stirred at room temperature overnight and the resulting precipitate was triturated (acetone) to afford the desired anhydride (5.78 g, 73%): ¹H-NMR (CDCl₃) δ 1.38 (s, 9H), 2.48 (s, 1H), 6.75 (s, 1H); FAB-MS *m/z* (rel abundance) 226 ((M+H)⁺, 100%).

15

20

Step 2. *N-(5-tert-Butyl-2-carboxy-3-thienyl)-N'-(4-(4-pyridinylmethyl)phenyl)urea:* A solution of 7-*tert*-butyl-2H-thieno[3,2-d]oxazine-2,4(1H)-dione (0.176 g, 0.78 mmol) and 4-(4-pyridinylmethyl)aniline (0.144 g, 0.78 mmol) in THF (5 mL) was heated at the reflux temp. for 25 h. After cooling to room temp., the resulting solid was triturated with Et₂O to afford the desired urea (0.25 g, 78%): mp 187-189 °C; TLC (50% EtOAc/50% pet. ether) R_f 0.04; ¹H-NMR (DMSO-d₆) δ 1.34 (s, 9H), 3.90 (s, 2H), 7.15 (d, J=7 Hz, 2H), 7.20 (d, J=3 Hz, 2H), 7.40 (d, J=7 Hz, 2H), 7.80 (s 1H), 8.45 (d, J=3 Hz, 2H) 9.55 (s, 1H), 9.85 (s, 1H), 12.50 (br s, 1H); FAB-MS *m/z* (rel abundance) 410 ((M+H)⁺; 20%).

Step 3. *N*-(5-*tert*-Butyl-3-thienyl)-*N'*-(4-(4-pyridinylmethyl)phenyl)urea: A vial containing *N*-(5-*tert*-butyl-2-carboxy-3-thienyl)-*N'*-(4-(4-pyridinylmethyl)phenyl)urea (0.068 g, 0.15 mmol) was heated to 199 °C in an oil bath. After gas evolution ceased, the material was cooled and purified by preparative HPLC (C-18 column; gradient from 20% CH₃CN/79.9% H₂O/0.1% TFA to 99.9% H₂O/0.1% TFA) to give the desired product (0.024 g, 43%): TLC (50% EtOAc/50% pet. ether) R_f 0.18; ¹H-NMR (DMSO-d₆) δ 1.33 (s, 9H), 4.12 (s, 2H), 6.77 (s, 1H), 6.95 (s, 1H), 7.17 (d, J=9 Hz, 2H), 7.48 (d, J=9 Hz, 2H), 7.69 (d, J=7 Hz, 1H), 8.58 (s, 1H), 8.68 (d, J=7 Hz, 2H), 8.75 (s, 1H); EI-MS m/z 365 (M⁺).

10

A4b. Synthesis 3-Amino-5-alkylthiophenes from 3-Amino-5-alkyl-2-thiophene-carboxylate esters

5-*tert*-Butyl-3-thiopheneammonium Chloride: To a solution of methyl 3-amino-5-*tert*-butyl-2-thiophene-carboxylate (5.07 g, 23.8 mmol, 1.0 equiv) in EtOH (150 mL) was added NaOH (2.0 g, 50 mmol, 2.1 equiv). The resulting solution was heated at the reflux temp. for 2.25 h. A conc. HCl solution (approximately 10 mL) was added dropwise with stirring and the evolution of gas was observed. Stirring was continued for 1 h, then the solution was concentrated under reduced pressure. The white residue was suspended in EtOAc (150 mL) and a saturated NaHCO₃ solution (150 mL) was added to dissolve. The organic layer was washed with water (150 mL) and a saturated NaCl solution (150 mL), dried (Na₂SO₄), and concentrated under reduced pressure to give the desired ammonium salt as a yellow oil (3.69 g, 100%). This material was used directly in urea formation without further purification.

15

20

25

35

A4c. Synthesis 3-Amino-5-alkylthiophenes from N-BOC 3-Amino-5-alkyl-2-thiophenecarboxylate esters

Step 1. Methyl 3-(*tert*-Butoxycarbonylamino)-5-*tert*-butyl-2-thiophenecarboxylate: To a solution of methyl 3-amino-5-*tert*-butyl-2-thiophenecarboxylate (150 g, 0.70 mol) in pyridine (2.8 L) at 5 °C was added di-*tert*-butyl dicarbonate (171.08 g, 0.78 mol, 1.1 equiv) and *N,N*-dimethylaminopyridine (86 g, 0.70 mol, 1.00 equiv) and the resulting mixture was stirred at room temp for 7 d. The resulting dark solution was concentrated under reduced pressure (approximately 0.4 mmHg) at approximately 10 20 °C. The resulting red solids were dissolved in CH₂Cl₂ (3 L) and sequentially washed with a 1 M H₃PO₄ solution (2 x 750 mL), a saturated NaHCO₃ solution (800 mL) and a saturated NaCl solution (2 x 800 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The resulting orange solids were dissolved in abs. EtOH (2 L) by warming to 49 °C, then treated with water (500 mL) to afford the desired 15 product as an off-white solid (163 g, 74%): ¹H-NMR (CDCl₃) δ 1.38 (s, 9H), 1.51 (s, 9H), 3.84 (s, 3H), 7.68 (s, 1H), 9.35 (br s, 1H); FAB-MS *m/z* (rel abundance) 314 ((M+H)⁺, 45%).

Step 2. 3-(*tert*-Butoxycarbonylamino)-5-*tert*-butyl-2-thiophenecarboxylic Acid: 20 To a solution of methyl 3-(*tert*-butoxycarbonylamino)-5-*tert*-butyl-2-thiophenecarboxylate (90.0 g, 0.287 mol) in THF (630 mL) and MeOH (630 mL) was added a solution of NaOH (42.5 g, 1.06 mL) in water (630 mL). The resulting mixture was heated at 60 °C for 2 h, concentrated to approximately 700 mL under reduced pressure, and cooled to 0 °C. The pH was adjusted to approximately 7 with a

36

1.0 N HCl solution (approximately 1 L) while maintaining the internal temperature at approximately 0 °C. The resulting mixture was treated with EtOAc (4 L). The pH was adjusted to approximately 2 with a 1.0 N HCl solution (500 mL). The organic phase was washed with a saturated NaCl solution (4 x 1.5 L), dried (Na_2SO_4), and concentrated to approximately 200 mL under reduced pressure. The residue was treated with hexane (1 L) to form a light pink (41.6 g). Resubmission of the mother liquor to the concentration-precipitation protocol afforded additional product (38.4 g, 93% total yield): $^1\text{H-NMR}$ (CDCl_3) δ 1.94 (s, 9H), 1.54 (s, 9H), 7.73 (s, 1H), 9.19 (br s, 1H); FAB-MS m/z (rel abundance) 300 (($\text{M}+\text{H})^+$, 50%).

10

15

Step 3. 5-*tert*-Butyl-3-thiopheneammonium Chloride: A solution of 3-(*tert*-butoxycarbonylamino)-5-*tert*-butyl-2-thiophenecarboxylic acid (3.0 g, 0.010 mol) in dioxane (20 mL) was treated with an HCl solution (4.0 M in dioxane, 12.5 mL, 0.050 mol, 5.0 equiv), and the resulting mixture was heated at 80 °C for 2 h. The resulting cloudy solution was allowed to cool to room temp forming some precipitate. The slurry was diluted with EtOAc (50 mL) and cooled to -20 °C. The resulting solids were collected and dried overnight under reduced pressure to give the desired salt as an off-white solid (1.72 g, 90%): $^1\text{H-NMR}$ (DMSO-d_6) δ 1.31 (s, 9H), 6.84 (d, $J=1.48$ Hz, 1H), 7.31 (d, $J=1.47$ Hz, 1H), 10.27 (br s, 3H).

A5. General Method for the Synthesis of BOC-Protected Pyrazoles

5-Amino-3-*tert*-butyl-*N'*-(*tert*-butoxycarbonyl)pyrazole: To a solution of 5-amino-3-*tert*-butylpyrazole (3.93 g, 28.2 mmol) in CH₂Cl₂ (140 mL) was added di-*tert*-butyl dicarbonate (6.22 g, 28.5 mmol) in one portion. The resulting solution was stirred at room temp. for 13 h, then diluted with EtOAc (500 mL). The organic layer was washed with water (2 x 300 mL), dried (MgSO₄) and concentrated under reduced pressure. The solid residue was triturated (100 mL hexane) to give the desired carbamate (6.26 g, 92%): mp 63-64 °C; TLC R_f (5% acetone/95% CH₂Cl₂); ¹H-NMR (DMSO-d₆) δ 1.15 (s, 9H), 1.54 (s, 9H), 5.22 (s, 1H), 6.11 (s, 2H); FAB-MS m/z ((M+H)⁺).

A6. General Method for the Synthesis of 2-Aminothiadiazoles

15

2-Amino-5-(1-(1-ethyl)propyl)thiadiazine: To concentrated sulfuric acid (9.1 mL) was slowly added 2-ethylbutyric acid (10.0 g, 86 mmol, 1.2 equiv). To this mixture was slowly added thiosemicarbazide (6.56 g, 72 mmol, 1 equiv). The reaction mixture was heated at 85 °C for 7 h, then cooled to room temperature, and treated with a concentrated NH₄OH solution until basic. The resulting solids were filtered to afford 2-amino-5-(1-(1-ethyl)propyl)thiadiazine product was isolated via vacuum filtration as a beige solid (6.3 g, 51%): mp 155-158 °C; TLC (5% MeOH/ 95% CHCl₃) R_f 0.14; ¹H-NMR (DMSO-d₆) δ 0.80 (t, J=7.35 Hz, 6H), 1.42-1.60 (m, 2H),

38

1.59-1.71 (m, 2H), 2.65-2.74 (m, 1H), 7.00 (br s, 2H); HPLC ES-MS *m/z* 172 ((M+H)⁺).

A7. General Method for the Synthesis of 2-Amino oxadiazoles

5

Step 1. Isobutyric Hydrazide: A solution of methyl isobutyrate (10.0 g) and hydrazine (2.76 g) in MeOH (500 mL) was heated at the reflux temperature over night then stirred at 60 °C for 2 weeks. The resulting mixture was cooled to room temperature and concentrated under reduced pressure to afford isobutyric hydrazide as a yellow oil (1.0 g, 10%), which was used inb the next step without further purification.

10

15

Step 2. 2-Amino-5-isopropyl oxadiazole: To a mixture of isobutyric hydrazide (0.093 g), KHCO₃ (0.102 g), and water (1 mL) in dioxane (1 mL) at room temperature was added cyanogen bromide (0.10 g). The resulting mixture was heated at the refulk temperature for 5 h, and stirred at room temperature for 2 d, then treated with CH₂Cl₂ (5 mL). The organic layer was washed with water (2 x 10 mL), dried (MgSO₄) and concentrated under reduced pressure to afford 2-amino-5-isopropyl oxadiazole as a white solid: HPLC ES-MS *m/z* 128 ((M+H)⁺).

20

A8. General Method for the Synthesis of 2-Aminooxazoles

25

Step 1. 3,3-Dimethyl-1-hydroxy-2-butanone: A neat sample of 1-bromo-3,3-dimethyl-2-butanone (33.3 g) at 0 °C was treated with a 1N NaOH solution, then was stirred for 1 h. The resulting mixture was extracted with EtOAc (5 x 100 mL). The combined organics were dried (Na₂SO₄) and concentrated under reduced pressure to

give 3,3-dimethyl-1-hydroxy-2-butanone (19 g, 100%), which was used in the next step without further purification.

Step 2. 2-Amino-4-isopropyl-1,3-oxazole: To a solution of 3,3-dimethyl-1-hydroxy-2-butanone (4.0 g) and cyanamide (50% w/w, 2.86 g) in THF (10 mL) was added a 1N NaOAc solution (8 mL), followed by tetra-n-butylammonium hydroxide (0.4 M, 3.6 mL), then a 1N NaOH solution (1.45 mL). The resulting mixture was stirred at room temperature for 2 d. The resulting organic layer was separated, washed with water (3 x 25 mL), and the aqueous layer was extracted with Et₂O (3 x 25 mL). The combined organic layers were treated with a 1N NaOH solution until basic, then extracted with CH₂Cl₂ (3 x 25 mL). The combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure to afford 2-Amino-4-isopropyl-1,3-oxazole (1.94 g, 41%): HPLC ES-MS *m/z* 141 ((M+H)⁺).

15 A9. Method for the Synthesis of Substituted-5-aminotetrazoles

To a solution of 5-aminotetrazole (5 g), NaOH (2.04 g) and water (25 mL) in EtOH (115 mL) at the reflux temperature was added 2-bromopropane (5.9g). The resulting mixture was heated at the reflux temperature for 6 d, then cooled to room temperature, and concentrated under reduced pressure. The resulting aqueous mixture was washed with CH₂Cl₂ (3 x 25 mL), then concentrated under reduced pressure with the aid of a lyophilizer to afford a mixture of 1- and 2-isopropyl-5-aminotetrazole (50%), which was used without further purification: HPLC ES-MS *m/z* 128 ((M+H)⁺).

B. General Methods for Synthesis of Substituted Anilines

B1. General Method for Substituted Aniline Formation via Hydrogenation of a Nitroarene

5

4-(4-Pyridinylmethyl)aniline: To a solution of 4-(4-nitrobenzyl)pyridine (7.0 g, 32.68 mmol) in EtOH (200 mL) was added 10% Pd/C (0.7 g) and the resulting slurry was shaken under a H₂ atmosphere (50 psi) using a Parr shaker. After 1 h, TLC and ¹H-NMR of an aliquot indicated complete reaction. The mixture was filtered through a short pad of Celite®. The filtrate was concentrated *in vacuo* to afford a white solid (5.4 g, 90%): ¹H-NMR (DMSO-d₆) δ 3.74 (s, 2H), 4.91 (br s, 2H), 6.48 (d, J=8.46 Hz, 2H), 6.86 (d, J=8.09 Hz, 2H), 7.16 (d, J=5.88 Hz, 2H), 8.40 (d, J=5.88 Hz, 2H); EI-MS m/z 184 (M⁺). This material was used in urea formation reactions without further purification.

15

B2. General Method for Substituted Aniline Formation via Dissolving Metal Reduction of a Nitroarene

4-(2-Pyridinylthio)aniline: To a solution of 4-(2-pyridinylthio)-1-nitrobenzene (Menai ST 3355A; 0.220 g, 0.95 mmol) and H₂O (0.5 mL) in AcOH (5 mL) was added iron powder (0.317 g, 5.68 mmol) and the resulting slurry stirred for 16 h at room temp. The reaction mixture was diluted with EtOAc (75 mL) and H₂O (50 mL), basified to pH 10 by adding solid K₂CO₃ in portions (*Caution:* foaming). The organic layer was washed with a saturated NaCl solution, dried (MgSO₄), concentrated *in vacuo*. The residual solid was purified by MPLC (30% EtOAc/70% hexane) to give the desired product as a thick oil (0.135 g, 70%): TLC (30% EtOAc/70% hexanes) R_f 0.20.

B3a. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

Step 1. 1-Methoxy-4-(4-nitrophenoxy)benzene: To a suspension of NaH (95%, 5 1.50 g, 59 mmol) in DMF (100 mL) at room temp. was added dropwise a solution of 4-methoxyphenol (7.39 g, 59 mmol) in DMF (50 mL). The reaction was stirred 1 h, then a solution of 1-fluoro-4-nitrobenzene (7.0 g, 49 mmol) in DMF (50 mL) was added dropwise to form a dark green solution. The reaction was heated at 95 °C overnight, then cooled to room temp., quenched with H₂O, and concentrated *in vacuo*.
10 The residue was partitioned between EtOAc (200 mL) and H₂O (200 mL). The organic layer was sequentially washed with H₂O (2 x 200 mL), a saturated NaHCO₃ solution (200 mL), and a saturated NaCl solution (200 mL), dried (Na₂SO₄), and concentrated *in vacuo*. The residue was triturated (Et₂O/hexane) to afford 1-methoxy-4-(4-nitrophenoxy)benzene (12.2 g, 100%): ¹H-NMR (CDCl₃) δ 3.83 (s, 3H), 6.93-7.04 (m, 6H), 8.18 (d, J=9.2 Hz, 2H); EI-MS *m/z* 245 (M⁺).
15

Step 2. 4-(4-Methoxyphenoxy)aniline: To a solution of 1-methoxy-4-(4-nitrophenoxy)benzene (12.0 g, 49 mmol) in EtOAc (250 mL) was added 5% Pt/C (1.5 g) and the resulting slurry was shaken under a H₂ atmosphere (50 psi) for 18 h. The reaction mixture was filtered through a pad of Celite® with the aid of EtOAc and concentrated *in vacuo* to give an oil which slowly solidified (10.6 g, 100%): ¹H-NMR (CDCl₃) δ 3.54 (br s, 2H), 3.78 (s, 3H), 6.65 (d, J=8.8 Hz, 2H), 6.79-6.92 (m, 6H); EI-MS *m/z* 215 (M⁺).
25

B3b. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

Step 1. 3-(Trifluoromethyl)-4-(4-pyridinylthio)nitrobenzene: A solution of 4-mercaptopypyridine (2.8 g, 24 mmoles), 2-fluoro-5-nitrobenzotrifluoride (5 g, 23.5 mmoles), and potassium carbonate (6.1 g, 44.3 mmoles) in anhydrous DMF (80 mL) was stirred at room temperature and under argon overnight. TLC showed complete reaction. The mixture was diluted with Et₂O (100 mL) and water (100 mL) and the aqueous layer was back-extracted with Et₂O (2 x 100 mL). The organic layers were washed with a saturated NaCl solution (100 mL), dried (MgSO₄), and concentrated under reduced pressure. The solid residue was triturated with Et₂O to afford the desired product as a tan solid (3.8 g, 54%): TLC (30% EtOAc/70% hexane) R_f 0.06; ¹H-NMR (DMSO-d₆) δ 7.33 (dd, J=1.2, 4.2 Hz, 2H), 7.78 (d, J=8.7 Hz, 1H), 8.46 (dd, J=2.4, 8.7 Hz, 1H), 8.54-8.56 (m, 3H).

Step 2. 3-(Trifluoromethyl)-4-(4-pyridinylthio)aniline: A slurry of 3-trifluoromethyl-4-(4-pyridinylthio)nitrobenzene (3.8 g, 12.7 mmol), iron powder (4.0 g, 71.6 mmol), acetic acid (100 mL), and water (1 mL) were stirred at room temp. for 4 h. The mixture was diluted with Et₂O (100 mL) and water (100 mL). The aqueous phase was adjusted to pH 4 with a 4 N NaOH solution. The combined organic layers were washed with a saturated NaCl solution (100 mL), dried (MgSO₄), and concentrated under reduced pressure. The residue was filtered through a pad of silica (gradient from 50% EtOAc/50% hexane to 60% EtOAc/40% hexane) to afford the desired product (3.3 g): TLC (50% EtOAc/50% hexane) R_f 0.10; ¹H-NMR (DMSO-d₆) δ 6.21 (s, 2H), 6.84-6.87 (m, 3H), 7.10 (d, J=2.4 Hz, 1H), 7.39 (d, J=8.4 Hz, 1H), 8.29 (d, J=6.3 Hz, 2H).

B3c. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

Step 1. 4-(2-(4-Phenyl)thiazolyl)thio-1-nitrobenzene: A solution of 2-mercaptop-4-phenylthiazole (4.0 g, 20.7 mmoles) in DMF (40 mL) was treated with 1-fluoro-4-nitrobenzene (2.3 mL, 21.7 mmoles) followed by K₂CO₃ (3.18 g, 23 mmol), and the mixture was heated at approximately 65 °C overnight. The reaction mixture was then diluted with EtOAc (100 mL), sequentially washed with water (100 mL) and a saturated NaCl solution (100 mL), dried (MgSO₄) and concentrated under reduced pressure. The solid residue was triturated with a Et₂O/hexane solution to afford the desired product (6.1 g): TLC (25% EtOAc/75% hexane) R_f 0.49; ¹H-NMR (CDCl₃) δ 7.35-7.47 (m, 3H), 7.58-7.63 (m, 3H), 7.90 (d, J=6.9 Hz, 2H), 8.19 (d, J=9.0 Hz, 2H).

Step 2. 4-(2-(4-Phenyl)thiazolyl)thioaniline: 4-(2-(4-Phenyl)thiazolyl)thio-1-nitrobenzene was reduced in a manner analogous to that used in the preparation of 3-(trifluoromethyl)-4-(4-pyridinylthio)aniline: TLC (25% EtOAc/75% hexane) R_f 0.18; ¹H-NMR (CDCl₃) δ 3.89 (br s, 2H), 6.72-6.77 (m, 2H), 7.26-7.53 (m, 6H), 7.85-7.89 (m, 2H).

B3d. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

20

Step 1. 4-(6-Methyl-3-pyridinyl)oxy-1-nitrobenzene: To a solution of 5-hydroxy-2-methylpyridine (5.0 g, 45.8 mmol) and 1-fluoro-4-nitrobenzene (6.5 g, 45.8 mmol) in anh DMF (50 mL) was added K₂CO₃ (13.0 g, 91.6 mmol) in one portion. The mixture was heated at the reflux temp. with stirring for 18 h and then allowed to cool

to room temp. The resulting mixture was poured into water (200 mL) and extracted with EtOAc (3 x 150 mL). The combined organics were sequentially washed with water (3 x 100 mL) and a saturated NaCl solution (2 x 100 mL), dried (Na_2SO_4), and concentrated *in vacuo* to afford the desired product (8.7 g, 83%). The this material
5 was carried to the next step without further purification.

Step 2. 4-(6-Methyl-3-pyridinyloxy)aniline: A solution of 4-(6-methyl-3-pyridinyloxy)-1-nitrobenzene (4.0 g, 17.3 mmol) in EtOAc (150 mL) was added to 10% Pd/C (0.500 g, 0.47 mmol) and the resulting mixture was placed under a H_2 atmosphere (balloon) and was allowed to stir for 18 h at room temp. The mixture was then filtered through a pad of Celite® and concentrated *in vacuo* to afford the desired product as a tan solid (3.2 g, 92%): EI-MS *m/z* 200 (M^+).

B3e. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

Step 1. 4-(3,4-Dimethoxyphenoxy)-1-nitrobenzene: To a solution of 3,4-dimethoxyphenol (1.0 g, 6.4 mmol) and 1-fluoro-4-nitrobenzene (700 μL , 6.4 mmol) in anh DMF (20 mL) was added K_2CO_3 (1.8 g, 12.9 mmol) in one portion. The mixture was heated at the reflux temp with stirring for 18 h and then allowed to cool to room temp. The mixture was then poured into water (100 mL) and extracted with EtOAc (3 x 100 mL). The combined organics were sequentially washed with water (3 x 50 mL) and a saturated NaCl solution (2 x 50 mL), dried (Na_2SO_4), and concentrated *in vacuo* to afford the desired product (0.8 g, 54%). The crude product was carried to the next step without further purification.
20
25

Step 2. 4-(3,4-Dimethoxyphenoxy)aniline: A solution of 4-(3,4-dimethoxyphenoxy)-1-nitrobenzene (0.8 g, 3.2 mmol) in EtOAc (50 mL) was added to 10%

Pd/C (0.100 g) and the resulting mixture was placed under a H₂ atmosphere (balloon) and was allowed to stir for 18 h at room temp. The mixture was then filtered through a pad of Celite® and concentrated *in vacuo* to afford the desired product as a white solid (0.6 g, 75%): EI-MS *m/z* 245 (M⁺).

5

B3f. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

Step 1. 3-(3-Pyridinyloxy)-1-nitrobenzene: To a solution of 3-hydroxypyridine (2.8 g, 29.0 mmol), 1-bromo-3-nitrobenzene (5.9 g, 29.0 mmol) and copper(I) bromide (5.0 g, 34.8 mmol) in anh DMF (50 mL) was added K₂CO₃ (8.0 g, 58.1 mmol) in one portion. The resulting mixture was heated at the reflux temp. with stirring for 18 h and then allowed to cool to room temp. The mixture was then poured into water (200 mL) and extracted with EtOAc (3 x 150 mL). The combined organics were sequentially washed with water (3 x 100 mL) and a saturated NaCl solution (2 x 100 mL), dried (Na₂SO₄), and concentrated *in vacuo*. The resulting oil was purified by flash chromatography (30% EtOAc/70% hexane) to afford the desired product (2.0 g, 32 %). This material was used in the next step without further purification.

Step 2. 3-(3-Pyridinyloxy)aniline: A solution of 3-(3-pyridinyloxy)-1-nitrobenzene (2.0 g, 9.2 mmol) in EtOAc (100 mL) was added to 10% Pd/C (0.200 g) and the resulting mixture was placed under a H₂ atmosphere (balloon) and was allowed to stir for 18 h at room temp. The mixture was then filtered through a pad of Celite® and concentrated *in vacuo* to afford the desired product as a red oil (1.6 g, 94%): EI-MS *m/z* 186 (M⁺).

B3g. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

46

Step 1. 3-(5-Methyl-3-pyridinyloxy)-1-nitrobenzene: To a solution of 3-hydroxy-5-methylpyridine (5.0 g, 45.8 mmol), 1-bromo-3-nitrobenzene (12.0 g, 59.6 mmol) and copper(I) iodide (10.0 g, 73.3 mmol) in anh DMF (50 mL) was added K_2CO_3 (13.0 g, 91.6 mmol) in one portion. The mixture was heated at the reflux temp. with stirring for 18 h and then allowed to cool to room temp. The mixture was then poured into water (200 mL) and extracted with EtOAc (3 x 150 mL). The combined organics were sequentially washed with water (3 x 100 mL) and a saturated NaCl solution (2 x 100 mL), dried (Na_2SO_4), and concentrated *in vacuo*. The resulting oil was purified by flash chromatography (30% EtOAc/70% hexane) to afford the desired product (1.2 g, 13%).

Step 2. 3-(5-Methyl-3-pyridinyloxy)-1-nitrobenzene: A solution of 3-(5-methyl-3-pyridinyloxy)-1-nitrobenzene (1.2 g, 5.2 mmol) in EtOAc (50 mL) was added to 10% Pd/C (0.100 g) and the resulting mixture was placed under a H_2 atmosphere (balloon) and was allowed to stir for 18 h at room temp. The mixture was then filtered through a pad of Celite® and concentrated *in vacuo* to afford the desired product as a red oil (0.9 g, 86%): CI-MS *m/z* 201 ((M+H)⁺).

2B3h. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

Step 1. 5-Nitro-2-(4-methylphenoxy)pyridine: To a solution of 2-chloro-5-nitropyridine (6.34 g, 40 mmol) in DMF (200 mL) were added of 4-methylphenol (5.4 g, 50 mmol, 1.25 equiv) and K_2CO_3 (8.28 g, 60 mmol, 1.5 equiv). The mixture was stirred overnight at room temp. The resulting mixture was treated with water (600 mL) to generate a precipitate. This mixture was stirred for 1 h, and the solids were separated and sequentially washed with a 1 N NaOH solution (25 mL), water (25 mL)

and pet ether (25 mL) to give the desired product (7.05 g, 76%): mp 80-82 °C; TLC (30% EtOAc/70% pet ether) R_f 0.79; $^1\text{H-NMR}$ (DMSO-d₆) δ 2.31 (s, 3H), 7.08 (d, $J=8.46$ Hz, 2H), 7.19 (d, $J=9.20$ Hz, 1H), 7.24 (d, $J=8.09$ Hz, 2H), 8.58 (dd, $J=2.94$, 8.82 Hz, 1H), 8.99 (d, $J=2.95$ Hz, 1H); FAB-MS m/z (rel abundance) 231 ((M+H)⁺), 100%.

Step 2. 5-Amino-2-(4-methylphenoxy)pyridine Dihydrochloride: A solution 5-nitro-2-(4-methylphenoxy)pyridine (6.94 g, 30 mmol, 1 eq) and EtOH (10 mL) in EtOAc (190 mL) was purged with argon then treated with 10% Pd/C (0.60 g). The reaction mixture was then placed under a H₂ atmosphere and was vigorously stirred for 2.5 h. The reaction mixture was filtered through a pad of Celite®. A solution of HCl in Et₂O was added to the filtrate was added dropwise. The resulting precipitate was separated and washed with EtOAc to give the desired product (7.56 g, 92%): mp 208-210 °C (dec); TLC (50% EtOAc/50% pet ether) R_f 0.42; $^1\text{H-NMR}$ (DMSO-d₆) δ 2.25 (s, 3H), 6.98 (d, $J=8.45$ Hz, 2H), 7.04 (d, $J=8.82$ Hz, 1H), 7.19 (d, $J=8.09$ Hz, 2H), 8.46 (dd, $J=2.57$, 8.46 Hz, 1H), 8.63 (d, $J=2.57$ Hz, 1H); EI-MS m/z (rel abundance) (M⁺, 100%).

B3i. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

Step 1. 4-(3-Thienylthio)-1-nitrobenzene: To a solution of 4-nitrothiophenol (80% pure; 1.2 g, 6.1 mmol), 3-bromothiophene (1.0 g, 6.1 mmol) and copper(II) oxide (0.5 g, 3.7 mmol) in anhydrous DMF (20 mL) was added KOH (0.3 g, 6.1 mmol), and the resulting mixture was heated at 130 °C with stirring for 42 h and then allowed to cool to room temp. The reaction mixture was then poured into a mixture of ice and a 6N HCl solution (200 mL) and the resulting aqueous mixture was

extracted with EtOAc (3 x 100 mL). The combined organic layers were sequentially washed with a 1M NaOH solution (2 x 100 mL) and a saturated NaCl solution (2 x 100 mL), dried (MgSO_4), and concentrated *in vacuo*. The residual oil was purified by MPLC (silica gel; gradient from 10% EtOAc/90% hexane to 5% EtOAc/95% hexane) to afford of the desired product (0.5 g, 34%). GC-MS *m/z* 237 (M⁺).

Step 2. 4-(3-Thienylthio)aniline: 4-(3-Thienylthio)-1-nitrobenzene was reduced to the aniline in a manner analogous to that described in Method B1.

B3j. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

4-(5-Pyrimidinyl)aniline: 4-Aminophenol (1.0 g, 9.2 mmol) was dissolved in DMF (20 mL) then 5-bromopyrimidine (1.46 g, 9.2 mmol) and K_2CO_3 (1.9 g, 13.7 mmol) were added. The mixture was heated to 100 °C for 18 h and at 130 °C for 48 h at which GC-MS analysis indicated some remaining starting material. The reaction mixture was cooled to room temp. and diluted with water (50 mL). The resulting solution was extracted with EtOAc (100 mL). The organic layer was washed with a saturated NaCl solution (2 x 50 mL), dried (MgSO_4), and concentrated *in vacuo*. The residual solids were purified by MPLC (50% EtOAc/50% hexanes) to give the desired amine (0.650 g, 38%).

B3k. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

Step 1. 5-Bromo-2-methoxypyridine: A mixture of 2,5-dibromopyridine (5.5 g, 23.2 mmol) and NaOMe (3.76 g, 69.6 mmol) in MeOH (60 mL) was heated at 70 °C in a sealed reaction vessel for 42 h, then allowed to cool to room temp. The reaction

mixture was treated with water (50 mL) and extracted with EtOAc (2 x 100 mL). The combined organic layers were dried (Na_2SO_4) and concentrated under reduced pressure to give a pale yellow, volatile oil (4.1g, 95% yield): TLC (10% EtOAc / 90% hexane) R_f 0.57.

5

Step 2. 5-Hydroxy-2-methoxypyridine: To a stirred solution of 5-bromo-2-methoxypyridine (8.9 g, 47.9 mmol) in THF (175 mL) at -78 °C was added an n-butyllithium solution (2.5 M in hexane; 28.7 mL, 71.8 mmol) dropwise and the resulting mixture was allowed to stir at -78 °C for 45 min. Trimethyl borate (7.06 mL, 62.2 mmol) was added via syringe and the resulting mixture was stirred for an additional 2 h. The bright orange reaction mixture was warmed to 0 °C and was treated with a mixture of a 3 N NaOH solution (25 mL, 71.77 mmol) and a hydrogen peroxide solution (30%; approx. 50 mL). The resulting yellow and slightly turbid reaction mixture was warmed to room temp. for 30 min and then heated to the reflux temp. for 1 h. The reaction mixture was then allowed to cool to room temp. The aqueous layer was neutralized with a 1N HCl solution then extracted with Et_2O (2 x 100 mL). The combined organic layers were dried (Na_2SO_4) and concentrated under reduced pressure to give a viscous yellow oil (3.5g, 60%).

Step 3. 4-(5-(2-Methoxy)pyridyl)oxy-1-nitrobenzene: To a stirred slurry of NaH (97%, 1.0 g, 42 mmol) in anh DMF (100 mL) was added a solution of 5-hydroxy-2-methoxypyridine (3.5g, 28 mmol) in DMF (100 mL). The resulting mixture was allowed to stir at room temp. for 1 h, 4-fluoronitrobenzene (3 mL, 28 mmol) was added via syringe. The reaction mixture was heated to 95 °C overnight, then treated with water (25 mL) and extracted with EtOAc (2 x 75 mL). The organic layer was dried (MgSO_4) and concentrated under reduced pressure. The residual brown oil was crystallized EtOAc/hexane) to afford yellow crystals (5.23 g, 75%).

50

Step 4. 4-(5-(2-Methoxy)pyridyl)oxyaniline: 4-(5-(2-Methoxy)pyridyl)oxy-1-nitrobenzene was reduced to the aniline in a manner analogous to that described in Method B3d, Step2.

B4a. General Method for Substituted Aniline Synthesis via Nucleophilic Aromatic Substitution using a Halopyridine

3-(4-Pyridylthio)aniline: To a solution of 3-aminothiophenol (3.8 mL, 34 mmoles) in anh DMF (90mL) was added 4-chloropyridine hydrochloride (5.4 g, 35.6 mmoles) followed by K_2CO_3 (16.7 g, 121 mmoles). The reaction mixture was stirred at room temp. for 1.5 h, then diluted with EtOAc (100 mL) and water (100mL). The aqueous layer was back-extracted with EtOAc (2 x 100 mL). The combined organic layers were washed with a saturated NaCl solution (100 mL), dried ($MgSO_4$), and concentrated under reduced pressure. The residue was filtered through a pad of silica (gradient from 50% EtOAc/50% hexane to 70% EtOAc/30% hexane) and the resulting material was triturated with a Et_2O /hexane solution to afford the desired product (4.6 g, 66%): TLC (100 % ethyl acetate) R_f 0.29; 1H -NMR ($DMSO-d_6$) δ 5.41 (s, 2H), 6.64-6.74 (m, 3H), 7.01 (d, $J=4.8$, 2H), 7.14 (t, $J=7.8$ Hz, 1H), 8.32 (d, $J=4.8$, 2H).

2B4b. General Method for Substituted Aniline Synthesis via Nucleophilic Aromatic Substitution using a Halopyridine

4-(2-Methyl-4-pyridinyl)aniline: To a solution of 4-aminophenol (3.6 g, 32.8 mmol) and 4-chloropicoline (5.0 g, 39.3 mmol) in anh DMPU (50 mL) was added potassium *tert*-butoxide (7.4 g, 65.6 mmol) in one portion. The reaction mixture was heated at 100 °C with stirring for 18 h, then was allowed to cool to room temp. The resulting mixture was poured into water (200 mL) and extracted with EtOAc (3 x 150 mL). The combined extracts were sequentially washed with water (3 x 100 mL) and a saturated NaCl solution (2 x 100 mL), dried (Na_2SO_4), and concentrated *in vacuo*.

The resulting oil was purified by flash chromatography (50 % EtOAc/50% hexane) to afford the desired product as a yellow oil (0.7 g, 9%): CI-MS *m/z* 201 ((M+H)⁺).

B4c. General Method for Substituted Aniline Synthesis via Nucleophilic Aromatic Substitution using a Halopyridine

Step 1. Methyl(4-nitrophenyl)-4-pyridylamine: To a suspension of *N*-methyl-4-nitroaniline (2.0 g, 13.2 mmol) and K₂CO₃ (7.2 g, 52.2 mmol) in DMPU (30mL) was added 4-chloropyridine hydrochloride (2.36 g, 15.77 mmol). The reaction mixture was heated at 90 °C for 20 h, then cooled to room temperature. The resulting mixture was diluted with water (100 mL) and extracted with EtOAc (100 mL). The organic layer was washed with water (100 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, gradient from 80% EtOAc /20% hexanes to 100% EtOAc) to afford methyl(4-nitrophenyl)-4-pyridylamine (0.42 g)

Step 2. Methyl(4-aminophenyl)-4-pyridylamine: Methyl(4-nitrophenyl)-4-pyridylamine was reduced in a manner analogous to that described in Method B1.

20

B5. General Method of Substituted Aniline Synthesis via Phenol Alkylation Followed by Reduction of a Nitroarene

Step 1. 4-(4-Butoxyphenyl)thio-1-nitrobenzene: To a solution of 4-(4-nitrophenyl-thio)phenol (1.50 g, 6.07 mmol) in anh DMF (75 ml) at 0 °C was added NaH (60% in mineral oil, 0.267 g, 6.67 mmol). The brown suspension was stirred at 0 °C until gas evolution stopped (15 min), then a solution of iodobutane (1.12 g, .690 ml, 6.07

mmol) in anh DMF (20 mL) was added dropwise over 15 min at 0 °C. The reaction was stirred at room temp. for 18 h at which time TLC indicated the presence of unreacted phenol, and additional iodobutane (56 mg, 0.035 mL, 0.303 mmol, 0.05 equiv) and NaH (13 mg, 0.334 mmol) were added. The reaction was stirred an additional 6 h room temp., then was quenched by the addition of water (400 mL). The resulting mixture was extracted with Et₂O (2 x 500 mL). The combined organics were washed with water (2 x 400 mL), dried (MgSO₄), and concentrated under reduced pressure to give a clear yellow oil, which was purified by silica gel chromatography (gradient from 20% EtOAc/80% hexane to 50% EtOAc/50% hexane) to give the product as a yellow solid (1.24 g, 67%): TLC (20% EtOAc/80% hexane) R_f 0.75; ¹H-NMR (DMSO-d₆) δ 0.92 (t, J= 7.5 Hz, 3H), 1.42 (app hex, J=7.5 Hz, 2H), 1.70 (m, 2H), 4.01 (t, J= 6.6 Hz, 2H), 7.08 (d, J=8.7 Hz, 2H), 7.17 (d, J=9 Hz, 2H), 7.51 (d, J= 8.7 Hz, 2H), 8.09 (d, J= 9 Hz, 2H).

Step 2. **4-(4-Butoxyphenyl)thioaniline:** 4-(4-Butoxyphenyl)thio-1-nitrobenzene was reduced to the aniline in a manner analogous to that used in the preparation of 3-(trifluoromethyl)-4-(4-pyridinylthio)aniline (Method B3b, Step 2): TLC (33% EtOAc/77% hexane) R_f 0.38.

B6. General Method for Synthesis of Substituted Anilines by the Acylation of Diaminoarenes

4-(4-*tert*-Butoxycarbamoylbenzyl)aniline: To a solution of 4,4'-methylenedianiline (3.00 g, 15.1 mmol) in anh THF (50 mL) at room temp was added a solution of di-*tert*-butyl dicarbonate (3.30 g, 15.1 mmol) in anh THF (10 mL). The reaction mixture was heated at the reflux temp. for 3 h, at which time TLC indicated the presence of unreacted methylenedianiline. Additional di-*tert*-butyl dicarbonate (0.664 g, 3.03 mmol, 0.02 equiv) was added and the reaction stirred at the reflux temp. for 16 h. The resulting mixture was diluted with Et₂O (200 mL), sequentially washed with a

53

saturated NaHCO₃ solution (100 mL), water (100 mL) and a saturated NaCl solution (50 mL), dried (MgSO₄), and concentrated under reduced pressure. The resulting white solid was purified by silica gel chromatography (gradient from 33% EtOAc/67% hexane to 50% EtOAc/50% hexane) to afford the desired product as a white solid (2.09 g, 46%): TLC (50% EtOAc/50% hexane) R_f 0.45; ¹H-NMR (DMSO-d₆) δ 1.43 (s, 9H), 3.63 (s, 2H), 4.85 (br s, 2H), 6.44 (d, J=8.4 Hz, 2H), 6.80 (d, J=8.1 Hz, 2H), 7.00 (d, J=8.4 Hz, 2H), 7.28 (d, J=8.1 Hz, 2H), 9.18 (br s, 1H); FAB-MS m/z 298 (M⁺).

1B7. General Method for the Synthesis of Aryl Amines via Electrophilic Nitration Followed by Reduction

Step 1. **3-(4-Nitrobenzyl)pyridine:** A solution of 3-benzylpyridine (4.0 g, 23.6 mmol) and 70% nitric acid (30 mL) was heated overnight at 50 °C. The resulting mixture was allowed to cool to room temp. then poured into ice water (350 mL). The aqueous mixture then made basic with a 1N NaOH solution, then extracted with Et₂O (4 x 100 mL). The combined extracts were sequentially washed with water (3 x 100 mL) and a saturated NaCl solution (2 x 100 mL), dried (Na₂SO₄), and concentrated *in vacuo*. The residual oil was purified by MPLC (silica gel; 50 % EtOAc/50% hexane) then recrystallization (EtOAc/hexane) to afford the desired product (1.0 g, 22%): GC-MS m/z 214 (M⁺).

Step 2. 3-(4-Pyridinyl)methylaniline: 3-(4-Nitrobenzyl)pyridine was reduced to the aniline in a manner analogous to that described in Method B1.

25

B8. General Method for Synthesis of Aryl Amines via Substitution with Nitrobenzyl Halides Followed by Reduction

54

Step 1. 4-(1-Imidazolylmethyl)-1-nitrobenzene: To a solution of imidazole (0.5 g, 7.3 mmol) and 4-nitrobenzyl bromide (1.6 g, 7.3 mmol) in anh acetonitrile (30 mL) was added K₂CO₃ (1.0 g, 7.3 mmol). The resulting mixture was stirred at room temp. for 18 h and then poured into water (200 mL) and the resulting aqueous solution was extracted with EtOAc (3 x 50 mL). The combined organic layers were sequentially washed with water (3 x 50 mL) and a saturated NaCl solution (2 x 50 mL), dried (MgSO₄), and concentrated *in vacuo*. The residual oil was purified by MPLC (silica gel; 25% EtOAc/75% hexane) to afford the desired product (1.0 g, 91%): EI-MS *m/z* 203 (M⁺).

Step 2. 4-(1-Imidazolylmethyl)aniline: 4-(1-Imidazolylmethyl)-1-nitrobenzene was reduced to the aniline in a manner analogous to that described in Method B2.

1B9. Formation of Substituted Hydroxymethylanilines by Oxidation of Nitrobenzyl Compounds Followed by Reduction

Step 1. 4-(1-Hydroxy-1-(4-pyridyl)methyl)-1-nitrobenzene: To a stirred solution of 3-(4-nitrobenzyl)pyridine (6.0 g, 28 mmol) in CH₂Cl₂ (90 mL) was added *m*-CPBA (5.80 g, 33.6 mmol) at 10 °C, and the mixture was stirred at room temp. overnight. The reaction mixture was successively washed with a 10% NaHSO₃ solution (50 mL), a saturated K₂CO₃ solution (50 mL) and a saturated NaCl solution (50 mL), dried (MgSO₄) and concentrated under reduced pressure. The resulting yellow solid (2.68 g) was dissolved in anh acetic anhydride (30 mL) and heated at the reflux temperature overnight. The mixture was concentrated under reduced pressure. The residue was dissolved in MeOH (25 mL) and treated with a 20% aqueous NH₃ solution (30 mL). The mixture was stirred at room temp. for 1 h, then was concentrated under reduced pressure. The residue was poured into a mixture of water (50 mL) and CH₂Cl₂ (50

55

mL). The organic layer was dried (MgSO_4), concentrated under reduced pressure, and purified by column chromatography (80% EtOAc/ 20% hexane) to afford the desired product as a white solid. (0.53 g, 8%): mp 110-118 °C; TLC (80% EtOAc/20% hexane) R_f 0.12; FAB-MS m/z 367 (($\text{M}+\text{H}$)⁺, 100%).

5

10

B10. Formation of 2-(*N*-methylcarbamoyl)pyridines via the Menisci reaction

15

20

25

Step 1. 2-(*N*-methylcarbamoyl)-4-chloropyridine. (Caution: this is a highly hazardous, potentially explosive reaction.) To a solution of 4-chloropyridine (10.0 g) in *N*-methylformamide (250 mL) under argon at ambient temp was added conc. H_2SO_4 (3.55 mL) (exotherm). To this was added H_2O_2 (17 mL, 30% wt in H₂O) followed by $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$ (0.55 g) to produce an exotherm. The reaction was stirred in the dark at ambient temp for 1h then was heated slowly over 4 h at 45 °C. When bubbling subsided, the reaction was heated at 60 °C for 16 h. The opaque brown solution was diluted with H₂O (700 mL) followed by a 10% NaOH solution (250 mL). The aqueous mixture was extracted with EtOAc (3 x 500 mL) and the organic layers were washed separately with a saturated NaCl solution (3 x 150 mL). The combined organics were dried (MgSO_4) and filtered through a pad of silica gel eluting with EtOAc. The solvent was removed in vacuo and the brown residue was purified by silica gel chromatography (gradient from 50% EtOAc / 50% hexane to 80% EtOAc / 20% hexane). The resulting yellow oil crystallized at 0 °C over 72 h to give 2-(*N*-methylcarbamoyl)-4-chloropyridine in yield (0.61 g, 5.3%): TLC (50% EtOAc/50% hexane) R_f 0.50; MS; ¹H NMR (CDCl₃): δ 8.44 (d, 1 H, J = 5.1 Hz, CHN), 8.21 (s,

56

1H, CHCCO), 7.96 (b s, 1H, NH), 7.43 (dd, 1H, J = 2.4, 5.4 Hz, ClCHCN), 3.04 (d, 3H, J = 5.1 Hz, methyl); CI-MS *m/z* 171 ((M+H)⁺).

B11. Generalmethod for the Synthesis of ω -Sulfonylphenyl Anilines

5

Step 1. 4-(4-Methylsulfonylphenoxy)-1-nitrobenzene: To a solution of 4-(4-methylthiophenoxy)-1-nitrobenzene (2 g, 7.66 mmol) in CH₂Cl₂ (75 mL) at 0 °C was slowly added *m*CPBA (57-86%, 4 g), and the reaction mixture was stirred at room temperature for 5 h. The reaction mixture was treated with a 1 N NaOH solution (25 mL). The organic layer was sequentially washed with a 1N NaOH solution (25 mL), water (25 mL) and a saturated NaCl solution (25 mL), dried (MgSO₄), and concentrated under reduced pressure to give 4-(4-methylsulfonylphenoxy)-1-nitrobenzene as a solid (2.1 g).

10

Step 2. 4-(4-Methylsulfonylphenoxy)-1-aniline: 4-(4-Methylsulfonylphenoxy)-1-nitrobenzene was reduced to the aniline in a manner analogous to that described in Method B3d, step 2.

15

B12. General Method for Synthesis of ω -Alkoxy- ω -carboxyphenyl Anilines

20

25

Step 1. 4-(3-Methoxycarbonyl-4-methoxyphenoxy)-1-nitrobenzene: To a solution of -(3-carboxy-4-hydroxyphenoxy)-1-nitrobenzene (prepared in a manner analogous to that described in Method B3a, step 1, 12 mmol) in acetone (50 mL) was added K₂CO₃ (5 g) and dimethyl sulfate (3.5 mL). The resulting mixture was heated at the reflux temperature overnight, then cooled to room temperature and filtered through a pad of Celite®. The resulting solution was concentrated under reduced pressure, absorbed onto silica gel, and purified by column chromatography (50% EtOAc / 50% hexane) to give 4-(3-methoxycarbonyl-4-methoxyphenoxy)-1-nitrobenzene as a yellow powder (3 g): mp 115-118 °C.

Step 2. 4-(3-Carboxy-4-methoxyphenoxy)-1-nitrobenzene: A mixture of 4-(3-methoxycarbonyl-4-methoxyphenoxy)-1-nitrobenzene (1.2 g), KOH (0.33 g), and water (5 mL) in MeOH (45 mL) was stirred at room temperature overnight and then heated at the reflux temperature for 4 h. The resulting mixture was cooled to room temperature and concentrated under reduced pressure. The residue was dissolved in water (50 mL), and the aqueous mixture was made acidic with a 1N HCl solution. The resulting mixture was extracted with EtOAc (50 mL). The organic layer was dried (MgSO_4) and concentrated under reduced pressure to give 4-(3-carboxy-4-methoxyphenoxy)-1-nitrobenzene (1.04 g).

C. General Methods of Urea Formation

C1a. Reaction of a Heterocyclic Amine with an Isocyanate

15 N-(5-*tert*-Butyl-3-thienyl)-N'-(4-phenoxyphenyl)urea: To a solution of 5-*tert*-butyl-3-thiophene-ammonium chloride (prepared as described in Method A4b; 7.28 g, 46.9 mmol, 1.0 equiv) in anh DMF (80 mL) was added 4-phenoxyphenyl isocyanate (8.92 g, 42.21 mmol, 0.9 equiv) in one portion. The resulting solution was stirred at 50-60 °C overnight, then diluted with EtOAc (300 mL). The resulting solution was sequentially washed with H_2O (200 mL), a 1 N HCl solution (50 mL) and a saturated NaCl solution (50 mL), dried (Na_2SO_4), and concentrated under reduced pressure. The resulting off-white solid was recrystallized (EtOAc/hexane) to give a white solid (13.7 g, 88%), which was contaminated with approximately 5% of bis(4-phenoxyphenyl)urea. A portion of this material (4.67 g) was purified by flash chromatography (9% EtOAc/27% CH_2Cl_2 /64% cyclohexane) to afford the desired product as a white solid (3.17 g).

C1b. Reaction of a Heterocyclic Amine with an Isocyanate

N-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-phenoxyphenyl)urea: To a solution of 5-amino-3-*tert*-butylisoxazole (8.93 g, 63.7 mmol, 1 eq.) in CH₂Cl₂ (60 mL) was added 4-phenyloxyphenyl isocyanate (15.47 g, 73.3 mmol, 1.15 eq.) dropwise. The mixture was heated at the reflux temp. for 2 days, eventually adding additional CH₂Cl₂ (80 mL). The resulting mixture was poured into water (500 mL) and extracted with Et₂O (3 x 200 mL). The organic layer was dried (MgSO₄) then concentrated under reduced pressure. The residue was recrystallized (EtOAc) to give the desired product (15.7 g, 70%): mp 182-184 °C; TLC (5% acetone/95% acetone) R_f 0.27; ¹H-NMR (DMSO-d₆) δ 1.23 (s, 9H), 6.02 (s, 1H), 6.97 (dd, J=0.2, 8.8 Hz, 2H), 6.93 (d, J=8.8 Hz, 2H), 7.08 (t, J=7.4 Hz, 1H), 7.34 (m, 2H), 7.45 (dd, J=2.2, 6.6 Hz, 2H), 8.80 (s, 1H), 10.04 (s, 1H); FAB-MS m/z (rel abundance) 352 ((M+H)⁺, 70%).

C1c. Reaction of a Heterocyclic Amine with an Isocyanate

15 *N*-(3-*tert*-Butyl-5-pyrazolyl)-*N'*-(4-(4-methylphenyl)oxyphenyl)urea: A solution of 5-amino-3-*tert*-butylpyrazole (0.139 g, 1.0 mmol, 1.0 equiv) and 4-(4-methylphenoxy)phenyl isocyanate (0.225 g, 1.0 mmol 1.0 equiv) in toluene (10 mL) was heated at the reflux temp. overnight. The resulting mixture was cooled to room temp and quenched with MeOH (a few mL). After stirring for 30 min, the mixture was concentrated under reduced pressure. The residue was purified by prep. HPLC (silica, 50% EtOAc/50% hexane) to give the desired product (0.121 g, 33%): mp 204 °C; TLC (5% acetone/95% CH₂Cl₂) R_f 0.92; ¹H-NMR (DMSO-d₆) δ 1.22 (s, 9H), 2.24 (s, 3H), 5.92 (s, 1H), 6.83 (d, J=8.4 Hz, 2H), 6.90 (d, J=8.8 Hz, 2H), 7.13 (d, J=8.4 Hz, 2H), 7.40 (d, J=8.8 Hz, 2H), 8.85 (s, 1H), 9.20 (br s, 1H), 11.94 (br s, 1H); EI-MS m/z 364 (M⁺).

C1d. Reaction of a Heterocyclic Amine with an Isocyanate

N-(5-*tert*-Butyl-3-thienyl)-*N'*-(2,3-dichlorophenyl)urea: Pyridine (0.163 mL, 2.02 mmol) was added to a slurry of 5-*tert*-butylthiopheneammonium chloride (Method A4c; 0.30 g, 1.56 mmol) and 2,3-dichlorophenyl isocyanate (0.32 mL, 2.02 mmol) in CH₂Cl₂ (10 mL) to clarify the mixture and the resulting solution was stirred at room temp. overnight. The reaction mixture was then concentrated under reduced pressure and the residue was separated between EtOAc (15 mL) and water (15 mL). The organic layer was sequentially washed with a saturated NaHCO₃ solution (15 mL), a 1N HCl solution (15 mL) and a saturated NaCl solution (15 mL), dried (Na₂SO₄), and concentrated under reduced pressure. A portion of the residue was by preparative HPLC (C-18 column; 60% acetonitrile/40% water/0.05% TFA) to give the desired urea (0.180 g, 34%): mp 169-170 °C; TLC (20% EtOAc/80% hexane) R_f 0.57; ¹H-NMR (DMSO-d₆) δ 1.31 (s, 9H), 6.79 (s, 1H), 7.03 (s, 1H), 7.24-7.33 (m, 2H), 8.16 (dd, J=1.84, 7.72 Hz, 1H), 8.35 (s, 1H), 9.60 (s, 1H); ¹³C-NMR (DMSO-d₆) δ 31.9 (3C), 34.0, 103.4, 116.1, 119.3, 120.0, 123.4, 128.1, 131.6, 135.6, 138.1, 151.7, 155.2; FAB-MS m/z (rel abundance) 343 ((M+H)⁺, 83%), 345 ((M+H+2)⁺, 56%), 347 ((M+H+4)⁺, 12%).

C1e. Reaction of a Heterocyclic Amine with an Isocyanate

N-(3-*tert*-Butyl-5-pyrazolyl)-*N'*-(3,4-dichlorophenyl)urea: A solution of 5-amino-3-*tert*-butyl-*N'*-(*tert*-butoxycarbonyl)pyrazole (Method A5; 0.150 g, 0.63 mmol) and 3,4-dichlorophenyl isocyanate (0.118 g, 0.63 mmol) were in toluene (3.1 mL) was stirred at 55 °C for 2 d. The toluene was removed *in vacuo* and the solid was

60

redisolved in a mixture of CH_2Cl_2 (3 mL) and TFA (1.5 mL). After 30 min. the solvent was removed *in vacuo* and the residue was taken up in EtOAc (10 mL). The resulting mixture was sequentially washed with a saturated NaHCO_3 solution (10 mL) and a NaCl solution (5 mL), dried (Na_2SO_4), and concentrated *in vacuo*. The residue was purified by flash chromatography (gradient from 40% EtOAc/ 60% hexane to 55%EtOAc/ 5% hexane) to give the desired product (0.102 g, 48%): mp 182-184 °C; TLC (40% EtOAc/60% hexane) R_f 0.05, FAB-MS m/z 327 (($\text{M}+\text{H})^+$).

**C2a. Reaction of a Heterocyclic Amine with Phosgene to Form an Isocyanate, then
10 Reaction with Substituted Aniline**

Step 1. 3-*tert*-Butyl-5-isoxazolyl Isocyanate: To a solution of phosgene (20% in toluene, 1.13 mL, 2.18 mmol) in CH_2Cl_2 (20 mL) at 0 °C was added anh. pyridine (0.176 mL, 2.18 mmol), followed by 5-amino-3-*tert*-butylisoxazole (0.305 g, 2.18 mmol). The resulting solution was allowed to warm to room temp. over 1 h, and then was concentrated under reduced pressure. The solid residue dried *in vacuo* for 0.5 h.

Step 2. N-(3-*tert*-Butyl-5-isoxazolyl)-N'-(4-(4-pyridinylthio)phenyl)urea: The crude 3-*tert*-butyl-5-isoxazolyl isocyanate was suspended in anh toluene (10 mL) and 4-(4-pyridinylthio)aniline (0.200 g, 0.989 mmol) was rapidly added. The suspension was stirred at 80 °C for 2 h then cooled to room temp. and diluted with an EtOAc/ CH_2Cl_2 solution (4:1, 125 mL). The organic layer was washed with water (100 mL) and a saturated NaCl solution (50 mL), dried (MgSO_4), and concentrated under reduced pressure. The resulting yellow oil was purified by column chromatography (silica gel, gradient from 2% MeOH/98% CH_2Cl_2 to 4% MeOH/6% CH_2Cl_2) to afford a foam, which was triturated ($\text{Et}_2\text{O}/\text{hexane}$) in combination with sonication to give the product as a white powder (0.18 g, 49%): TLC (5% MeOH/95% CH_2Cl_2) R_f 0.21; $^1\text{H-NMR}$ (DMSO-d₆) δ 1.23 (s, 9H), 6.06 (s, 1H), 6.95

61

(d, $J=5$ Hz, 2H), 7.51 (d, $J=8$ Hz, 2H), 7.62 (d, $J=8$ Hz, 2H), 8.32 (d, $J=5$ Hz, 2H), 9.13 (s, 1H), 10.19 (s, 1H); FAB-MS m/z 369 ((M+H) $^+$).

**C2b. Reaction of a Heterocyclic Amine with Phosgene to Form an Isocyanate Followed
5 by Reaction with Substituted Aniline**

Step 1. 5-*tert*-Butyl-3-isoxazolyl Isocyanate: To a solution of phosgene (148 mL, 1.93 M in toluene, 285 mmol) in anhydrous CH_2Cl_2 (1 L) was added 3-amino-5-*tert*-butylisoxazole (10.0 g, 71 mmol) followed by pyridine (46 mL, 569 mmol). The mixture was allowed to warm to room temp and stirred overnight (ca. 16 h), then mixture was concentrated *in vacuo*. The residue was dissolved in anh. THF (350 mL) and stirred for 10 min. The orange precipitate (pyridinium hydrochloride) was removed and the isocyanate-containing filtrate (approximately 0.2 M in THF) was used as a stock solution: GC-MS (aliquot obtained prior to concentration) m/z 166 (M $^+$).

Step 2. N-(5-*tert*-Butyl-3-isoxazolyl)-N'-(4-(4-pyridinylthio)phenyl)urea: To a solution of 5-*tert*-butyl-3-isoxazolyl isocyanate (247 mL, 0.2 M in THF, 49.4 mmol) was added 4-(4-pyridinylthio)aniline (5 g, 24.72 mmol), followed by THF (50 mL) then pyridine (4.0 mL, 49 mmol) to neutralize any residual acid. The mixture was stirred overnight (ca. 18 h) at room temp. Then diluted with EtOAc (300 mL). The organic layer was washed successively with a saturated NaCl solution (100 mL), a saturated NaHCO₃ solution (100 mL), and a saturated NaCl solution (100 mL), dried (MgSO₄), and concentrated *in vacuo*. The resulting material was purified by MPLC (2 x 300 g silica gel, 30 % EtOAc/70% hexane) to afford the desired product as a white solid (8.24 g, 90 %): mp 178-179 °C; ¹H-NMR (DMSO-d₆) δ 1.28 (s, 9H), 6.51

62

(s, 1H), 6.96 (d, $J=6.25$ Hz, 2H), 7.52 (d, $J=8.82$ Hz, 2H), 7.62 (d, $J=8.83$ Hz, 2H), 8.33 (d, $J=6.25$ Hz, 2H), 9.10 (s, 1H), 9.61 (s, 1H); EI-MS m/z 368 (M^+).

**C2c. Reaction of a Heterocyclic Amine with Phosgene to Form an Isocyanate Followed
5 by Reaction with Substituted Aniline**

N-(3-*tert*-Butyl-5-pyrazolyl)-N'-(4-(4-pyridinyloxy)phenyl)urea: To a solution of phosgene (1.9M in toluene, 6.8 mL) in anhydrous CH_2Cl_2 (13 mL) at 0 °C was slowly added pyridine (0.105 mL) was added slowly over a 5 min, then 4-(4-pyridinyloxy)aniline (0.250 g, 1.3 mmol) was added in one aliquot causing a transient yellow color to appear. The solution was stirred at 0 °C for 1 h, then was allowed to warm to room temp. over 1 h. The resulting solution was concentrated *in vacuo* then the white solid was suspended in toluene (7 mL). To this slurry, 5-amino-3-*tert*-butyl-
10 *N'*-(*tert*-butoxycarbonyl)pyrazole (0.160 g, 0.67 mmol) was added in one aliquot and the reaction mixture was heated at 70 °C for 12 h forming a white precipitate. The solids were dissolved in a 1N HCl solution and allowed to stir at room temp. for 1 h to form a new precipitate. The white solid was washed (50% Et₂O/50% pet. ether) to afford the desired urea (0.139 g, 59%); mp >228 °C dec; TLC (10% MeOH/ 90% CHCl_3) R, 0.239; ¹H-NMR (DMSO-d₆) δ 1.24 (s, 9H), 5.97 (s, 1H), 6.88 (d, $J=6.25$ Hz, 2H), 7.10 (d, $J=8.82$ Hz, 2H), 7.53 (d, $J=9.2$ Hz, 2H), 8.43 (d, $J=6.25$ Hz, 2H), 8.92 (br s, 1H), 9.25 (br s, 1H), 12.00 (br s, 1H); EI-MS m/z rel abundance 351 (M^+ , 24%).

25

C3a. Reaction of a Heterocyclic Amine with *N,N*'-Carbonyldiimidazole Followed by Reaction with a Substituted Aniline

63

N-(3-*tert*-Butyl-1-methyl-5-pyrazolyl)-*N'*-(4-(4-pyridinyloxy)phenyl)urea: To a solution of 5-amino-3-*tert*-butyl-1-methylpyrazole (189 g, 1.24 mol) in anh. CH₂Cl₂ (2.3 L) was added *N,N'*-carbonyldiimidazole (214 g, 1.32 mol) in one portion. The mixture was allowed to stir at ambient temperature for 5 h before adding 4-(4-pyridinyloxy)aniline. The reaction mixture was heated to 36 °C for 16 h. The resulting mixture was cooled to room temp, diluted with EtOAc (2 L) and washed with H₂O (8 L) and a saturated NaCl solution (4 L). The organic layer was dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by crystallization (44.4% EtOAc/44.4% Et₂O/11.2% hexane, 2.5 L) to afford the desired urea as a white solid (230 g, 51%): mp 149-152 °C; ¹H-NMR (DMSO-d₆) δ 1.18 (s, 9H), 3.57 (s, 3H), 6.02 (s, 1H), 6.85 (d, J=6.0 Hz, 2H), 7.08 (d, J=9.0 Hz, 2H), 7.52 (d, J=9.0 Hz, 2H), 8.40 (d, J=6.0 Hz, 2H), 8.46 (s, 1H), 8.97 (s, 1H); FAB-LSIMS *m/z* 366 ((M+H)⁺).

C3b. Reaction of a Heterocyclic Amine with *N,N'*-Carbonyldiimidazole Followed by Reaction with a Substituted Aniline

20

N-(3-*tert*-Butyl-5-pyrazolyl)-*N'*-(3-(4-pyridinylthio)phenyl)urea: To a solution of 5-amino-3-*tert*-butyl-1-*N'*-(*tert*-butoxycarbonyl)pyrazole (0.282 g, 1.18 mmol) in CH₂Cl₂ (1.2 mL) was added *N,N'*-carbonyldiimidazole (0.200 g, 1.24 mmol) and the mixture was allowed to stir at room temp. for 1 day. 3-(4-Pyridinylthio)aniline (0.239 g, 1.18 mmol) was added to the reaction solution in one aliquot and the resulting mixture was allowed to stir at room temp. for 1 day. Then resulting solution was treated with a 10% citric acid solution (2 mL) and was allowed to stir for 4 h. The

organic layer was extracted with EtOAc (3 x 15 mL), dried (MgSO_4), and concentrated *in vacuo*. The residue was diluted with CH_2Cl_2 (5 mL) and trifluoroacetic acid (2 mL) and the resulting solution was allowed to stir for 4 h. The trifluoroacetic reaction mixture was made basic with a saturated NaHCO_3 solution, then extracted with CH_2Cl_2 (3 x 15 mL). The combined organic layers were dried (MgSO_4) and concentrated *in vacuo*. The residue was purified by flash chromatography (5% MeOH/95% CH_2Cl_2). The resulting brown solid was triturated with sonication (50% Et₂O/50% pet. ether) to give the desired urea (0.122 g, 28%): mp >224 °C dec; TLC (5% MeOH/ 95% CHCl_3) R_f 0.067; ¹H-NMR (DMSO-d₆) δ 1.23 (s, 9H), 5.98 (s, 1H), 7.04 (dm, $J=13.24$ Hz, 2H), 7.15-7.19 (m, 1H), 7.40-7.47 (m, 2H), 7.80-7.82 (m, 1H), 8.36 (dm, $J=15.44$ Hz, 2H), 8.96 (br s, 1H), 9.32 (br s, 1H), 11.97 (br s, 1H); FAB-MS m/z (rel abundance) 368 (M⁺, 100%).

**C4a. Reaction of Substituted Aniline with *N,N'*-Carbonyldiimidazole Followed by
Reaction with a Heterocyclic Amine**

N-(3-*tert*-Butyl-1-methyl-5-pyrazolyl)-*N'*-(4-(4-pyridinylmethyl)phenyl)urea: To a solution of 4-(4-pyridinylmethyl)aniline (0.200 g, 1.08 mmol) in CH_2Cl_2 (10 mL) was added *N,N'*-carbonyldiimidazole (0.200 g, 1.23 mmol). The resulting mixture was stirred at room tempe for 1 h after which TLC analysis indicated no starting aniline. The reaction mixture was then treated with 5-amino-3-*tert*-butyl-1-methylpyrazole (0.165 g, 1.08 mmol) and stirred at 40-45 °C overnight. The reaction mixture was cooled to room temp and purified by column chromatography (gradient from 20% acetone/80% CH_2Cl_2 to 60% acetone/40% CH_2Cl_2) and the resulting solids were crystallized (Et₂O) to afford the desired urea (0.227 g, 58%): TLC (4% MeOH/96% CH_2Cl_2) R_f 0.15; ¹H-NMR (DMSO-d₆) δ 1.19 (s, 9H), 3.57 (s, 3H), 3.89 (s, 2H), 6.02 (s, 1H), 7.14 (d, $J=8.4$ Hz, 2H), 7.21 (d, $J=6$ Hz, 2H), 7.37 (d, $J=8.4$ Hz, 2H), 8.45-8.42 (m, 3H), 8.81 (s, 1H); FAB-MS m/z 364 (M+H)⁺.

C4b. Reaction of Substituted Aniline with *N,N'*-Carbonyldiimidazole Followed by Reaction with a Heterocyclic Amine

***N*-(3-*tert*-Butyl-5-pyrazolyl)-*N'*-(3-(2-benzothiazolyloxy)phenyl)urea:** A solution of 3-(2-benzothiazolyloxy)aniline (0.24 g, 1.0 mmol, 1.0 equiv) and *N,N'*-carbonyldiimidazole (0.162 g, 1.0 mmol, 1.0 equiv) in toluene (10 mL) was stirred at room temp for 1 h. 5-Amino-3-*tert*-butylpyrazole (0.139 g, 1.0 mmol) was added and the resulting mixture was heated at the reflux temp. overnight. The resulting mixture was poured into water and extracted with CH₂Cl₂ (3 x 50 mL). The combined organic layers were concentrated under reduced pressure and dissolved in a minimal amount of CH₂Cl₂. Petroleum ether was added and resulting white precipitate was resubmitted to the crystallization protocol to afford the desired product (0.015 g, 4%): mp 110-111 °C; TLC (5% acetone/95% CH₂Cl₂) R_f 0.05; ¹H-NMR (DMSO-d₆) δ 1.24 (s, 9H), 5.97 (s, 1H), 7.00-7.04 (m, 1H), 7.21-7.44 (m, 4H), 7.68 (d, J=5.5 Hz, 1H), 7.92 (d, J=7.7 Hz, 1H), 7.70 (s, 1H), 8.95 (s, 1H), 9.34 (br s, 1H), 11.98 (br s, 1H); EI-MS m/z 408 (M⁺).

C4c. Reaction of a Heterocyclic Amine with Phosgene to Form an Isocyanate Followed by Reaction with Substituted Aniline

***N*-(5-*tert*-Butyl-3-thienyl)-*N'*-(4-(4-pyridinyloxy)phenyl)urea:** To an ice cold solution phosgene (1.93M in toluene; 0.92 mL, 1.77 mmol) in CH₂Cl₂ (5 mL) was added a solution of 4-(4-pyridinyloxy)aniline (0.30 g, 1.61 mmol) and pyridine (0.255 g, 3.22 mmol) in CH₂Cl₂ (5 mL). The resulting mixture was allowed to warm to room temp. and was stirred for 1 h, then was concentrated under reduced pressure. The

66

residue was dissolved in CH_2Cl_2 (5 mL), then treated with 5-*tert*-butylthiopheneammonium chloride (Method A4c; 0.206 g, 1.07 mmol), followed by pyridine (0.5 mL). The resulting mixture was stirred at room temp for 1 h, then treated with 2-(dimethylamino)ethylamine (1 mL), followed by stirring at room temp
 5 an additional 30 min. The reaction mixture was then diluted with EtOAc (50 mL), sequentially washed with a saturated NaHCO_3 solution (50 mL) and a saturated NaCl solution (50 mL), dried (Na_2SO_4), and concentrated under reduced pressure. The residue was purified by column chromatography (gradient from 30% EtOAc/70% hexane to 100% EtOAc) to give the desired product (0.38 g, 97%): TLC (50%
 10 EtOAc/50% hexane) R_f 0.13; $^1\text{H-NMR}$ (CDCl_3) δ 1.26 (s, 9H), 6.65 (d, $J=1.48$ Hz, 1H), 6.76 (dd, $J=1.47, 4.24$ Hz, 2H), 6.86 (d, $J=1.47$ Hz, 1H), 6.91 (d, $J=8.82$ Hz, 2H), 7.31 (d, $J=8.83$ Hz, 2H), 8.39 (br s, 2H), 8.41 (d, $J=1.47$ Hz, 2H); $^{13}\text{C-NMR}$ (CDCl_3) δ 32.1 (3C), 34.4, 106.2, 112.0 (2C), 116.6, 121.3 (2C), 121.5 (2C), 134.9, 136.1, 149.0, 151.0 (2C), 154.0, 156.9, 165.2; FAB-MS m/z (rel abundance) 368
 15 ((M+H) $^+$, 100%).

C5. General Method for the Reaction of a Substituted Aniline with Triphosgene Followed by Reaction with a Second Substituted Amine

20 **N-(3-*tert*-Butyl-4-methyl-5-isoxazolyl)-N'-(2-fluorenyl)urea:** To a solution of triphosgene (55 mg, 0.185 mmol, 0.37eq) in 1,2-dichloroethane (1.0mL) was added a solution of 5-amino-4-methyl-3-*tert*-butylisoxazole (77.1 mg, 0.50 mmol, 1.0 eq) and diisopropylethylamine (0.104 mL, 0.60 mmol, 1.2 eq) in 1,2-dichloroethane (1.0 mL). The reaction mixture was stirred at 70 °C for 2 h, cooled to room temp., and treated with a solution of 2-aminofluorene (30.6 mg, 0.50 mmol, 1.0 eq) and diisopropylethylamine (0.087 mL, 1.0 eq) in 1,2-dichloroethane (1.0 mL). The reaction mixture was stirred at 40 °C for 3 h and then at RT for 17 h to produce a precipitate. The solids were washed with Et_2O and hexanes to give the desired urea as a beige solid (25 mg, 14%): mp 179-181 °C; $^1\text{H-NMR}$ (DMSO-d_6) δ 1.28 (s, 9H), 2.47.

67

(s, 3H), 3.86 (s, 2H), 7.22 (t, $J=7.3$ Hz, 1H), 7.34 (m, 2H), 7.51 (d, $J=7.3$ Hz, 1H), 7.76 (m, 3H), 8.89 (s, 1H). 9.03 (s, 1H); HPLC ES-MS m/z 362 ((M+H)⁺).

5 **C6. General Method for Urea Formation by Curtius Rearrangement and
Carbamate Trapping**

10 **Step 1. 5-Methyl-2-(azidocarbonyl)thiophene:** To a solution of 5-Methyl-2-thiophenecarboxylic acid (1.06 g, 7.5 mmol) and Et₃N (1.25 mL, 9.0 mmol) in acetone (50 mL) at -10 °C was slowly added ethyl chloroformate (1.07 mL, 11.2 mmol) to keep the internal temperature below 5 °C. A solution of sodium azide (0.83 g, 12.7 mmol) in water (6 mL) was added and the reaction mixture was stirred for 2 h at 0 °C. The resulting mixture was diluted with CH₂Cl₂ (10 mL) and washed with a saturated NaCl solution (10 mL). The aqueous layer was back-extracted with CH₂Cl₂ (10 mL), and the combined organic layers were dried (MgSO₄) and concentrated *in vacuo*. The residue was purified by column chromatography (10% EtOAc/ 90% hexanes) to give the azidoester (0.94 g, 75%). Azidoester (100 mg, 0.6 mmol) in anhydrous toluene (10 mL) was heated to reflux for 1 h then cooled to rt. This solution was used as a stock solution for subsequent reactions.

25 **Step 2. 5-Methyl-2-thiophene Isocyanate:** 5-Methyl-2-(azidocarbonyl)thiophene (0.100 g, 0.598 mmol) in anh toluene (10 mL) was heated at the reflux temp. for 1 h then cooled to room temp. This solution was used as a stock solution for subsequent reactions.

Step 3. *N*-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(5-methyl-2-thienyl)urea: To a solution of 5-methyl-2-thiophene isocyanate (0.598 mm l) in toluene (10 mL) at room temp.

68

was added 3-amino-5-*tert*-butylisoxazole (0.092 g, 0.658 mmol) and the resulting mixture was stirred overnight. The reaction mixture was diluted with EtOAc (50 mL) and sequentially washed with a 1 N HCl solution (2 x 25 mL) and a saturated NaCl solution (25 mL), dried (MgSO_4), and concentrated under reduced pressure. The residue was purified by MPLC (20% EtOAc/80% hexane) to give the desired urea (0.156 g, 93%): mp 200-201 °C; TLC (20% EtOAc/80% hexane) R_f 0.20; EI-MS m/z 368 (M^+).

5 10 **C7. General Methods for Urea Formation by Curtius Rearrangement and Isocyanate Trapping**

Step 1. **3-Chloro-4,4-dimethylpent-2-enal:** POCl₃ (67.2 mL, 0.72 mol) was added to cooled (0 °C) DMF (60.6 mL, 0.78 mol) at rate to keep the internal temperature below 20 °C. The viscous slurry was heated until solids melted (approximately 40 °C), then pinacolone (37.5 mL, 0.30 mol) was added in one portion. The reaction mixture was then to 55 °C for 2h and to 75 °C for an additional 2 h. The resulting mixture was allowed to cool to room temp., then was treated with THF (200 mL) and water (200 mL), stirred vigorously for 3 h, and extracted with EtOAc (500 mL). The organic layer was washed with a saturated NaCl solution (200 mL), dried (Na_2SO_4) and concentrated under reduced pressure. The residue was filtered through a pad of silica (CH_2Cl_2) to give the desired aldehyde as an orange oil (15.5 g, 35%): TLC (5% EtOAc/95% hexane) R_f 0.54; ¹H NMR (CDCl_3) δ 1.26 (s, 9H), 6.15 (d, $J=7.0$ Hz, 1H), 10.05 (d, $J=6.6$ Hz, 1H).

25 **Step 2. Methyl 5-*tert*-butyl-2-thiophenecarboxylate:** To a solution of 3-chloro-4,4-dimethylpent-2-enal (1.93 g, 13.2 mmol) in anh. DMF (60 mL) was added a solution of Na₂S (1.23 g, 15.8 mmol) in water (10 mL). The resulting mixture was stirred at room temp. for 15 min to generate a white precipitate, then the slurry was

69

treated with methyl bromoacetate (2.42 g, 15.8 mmol) to slowly dissolve the solids. The reaction mixture was stirred at room temp. for 1.5 h, then treated with a 1 N HCl solution (200 mL) and stirred for 1 h. The resulting solution was extracted with EtOAc (300 mL). The organic phase was sequentially washed with a 1 N HCl solution (200 mL), water (2 x 200 mL) and a saturated NaCl solution (200 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified using column chromatography (5% EtOAc/95% hexane) to afford the desired product (0.95 g, 36%): TLC (20% EtOAc/80% hexane) R_f 0.79; ¹H NMR (CDCl₃) δ 1.39 (s, 9H), 3.85 (s, 3H), 6.84 (d, J=3.7 Hz, 1H), 7.62 (d, J=4.1 Hz, 1H); GC-MS m/z (rel abundance) 198 (M⁺, 25%).

Step 3. 5-tert-Butyl-2-thiophenecarboxylic acid: Methyl 5-*tert*-butyl-2-thiophenecarboxylate (0.10 g, 0.51 mmol) was added to a KOH solution (0.33 M in 90% MeOH/10% water, 2.4 mL, 0.80 mmol) and the resulting mixture was heated at the reflux temperature for 3 h. EtOAc (5 mL) was added to the reaction mixture, then the pH was adjusted to approximately 3 using a 1 N HCl solution. The resulting organic phase was washed with water (5 mL), dried (Na₂SO₄), and concentrated under reduced pressure (0.4 mmHg) to give the desired carboxylic acid as a yellow solid (0.067 g, 73%): TLC (20% EtOAc/79.5% hexane/0.5% AcOH) R_f 0.29; ¹H NMR (CDCl₃) δ 1.41 (s, 9H), 6.89 (d, J=3.7 Hz, 1H), 7.73 (d, J=3.7 Hz, 1H), 12.30 (br s, 1H); ¹³C NMR (CDCl₃) δ 32.1 (3C), 35.2, 122.9, 129.2, 135.1, 167.5, 168.2.

Step 4. N-(5-*tert*-Butyl-2-thienyl)-N'-(2,3-dichlorophenyl)urea: A mixture of 5-*tert*-butyl-2-thiophenecarboxylic acid (0.066 g, 0.036 mmol), DPPA (0.109 g, 0.39 mmol) and Et₃N (0.040 g, 0.39 mmol) in toluene (4 mL) was heated to 80 °C for 2 h, 2,3-dichloroaniline (0.116 g, 0.72 mmol) was added, and the reaction mixture was heated to 80°C for an additional 2 h. The resulting mixture was allowed to cool to

70

room temp. and treated with EtOAc (50 mL). The organic layer was washed with a 1 N HCl solution (3 x 50 mL), a saturated NaHCO₃ solution (50 mL), and a saturated NaCl solution (50 mL), dried (Na₂SO₄), and concentrated under reduced pressure. The residue was purified by column chromatography (5% EtOAc/95% hexane) to afford the desired urea as a purple solid (0.030 g, 24%): TLC (10% EtOAc/90% hexane) R_f 0.28; ¹H NMR (CDCl₃) δ 1.34 (s, 9H), 6.59 (br s, 2H), 7.10-7.13 (m, 2H), 7.66 (br s, 1H), 8.13 (dd, J=2.9, 7.8 Hz, 1H); ¹³C NMR (CDCl₃) δ 32.2 (3C), 34.6, 117.4, 119.0⁷, 119.1⁵, 119.2, 121.5, 124.4, 127.6, 132.6, 135.2, 136.6, 153.4; HPLC ES-MS m/z (rel abundance) 343 ((M+H)⁺, 100%), 345 ((M+H+2)⁻, 67%), 347 ((M+H+4)⁺, 14%).

C8. Combinatorial Method for the Synthesis of Diphenyl Ureas Using Triphosgene

One of the anilines to be coupled was dissolved in dichloroethane (0.10 M). This solution was added to a 8 mL vial (0.5 mL) containing dichloroethane (1 mL). To this was added a triphosgene solution (0.12 M in dichloroethane, 0.2 mL, 0.4 equiv.), followed by diisopropylethylamine (0.35 M in dichloroethane, 0.2 mL, 1.2 equiv.). The vial was capped and heat at 80 °C for 5 h, then allowed to cool to room temp for approximately 10 h. The second aniline was added (0.10 M in dichloroethane, 0.5 mL, 1.0 equiv.), followed by diisopropylethylamine (0.35 M in dichloroethane, 0.2 mL, 1.2 equiv.). The resulting mixture was heated at 80 °C for 4 h, cooled to room temperature and treated with MeOH (0.5 mL). The resulting mixture was concentrated under reduced pressure and the products were purified by reverse phase HPLC.

25

D. Misc. Methods of Urea Synthesis

D1. Electrophilic Halogenation

N-(2-Br mo-5-*tert*-butyl-3-thienyl)-*N'*-(4-methylphenyl)urea: To a slurry of *N*-(5-*tert*-butyl-3-thienyl)-*N'*-(4-methylphenyl)urea (0.50 g, 1.7 mmol) in CHCl₃ (20 mL) at

room temp was slowly added a solution of Br₂ (0.09 mL, 1.7 mmol) in CHCl₃ (10 mL) via addition funnel causing the reaction mixture to become homogeneous. Stirring was continued 20 min after which TLC analysis indicated complete reaction. The reaction was concentrated under reduced pressure, and the residue triturated (2 x Et₂O/hexane) to give the brominated product as a tan powder (0.43 g, 76%): mp 161-163 °C; TLC (20% EtOAc/ 80% hexane) R_f 0.71; ¹H NMR (DMSO-d₆) δ 1.29 (s, 9H), 2.22 (s, 3H), 7.07 (d, J=8.46 Hz, 2H), 7.31 (d, J=8.46 Hz, 2H), 7.38 (s, 1H), 8.19 (s, 1H), 9.02 (s, 1H); ¹³C NMR (DMSO-d₆) δ 20.3, 31.6 (3C), 34.7, 89.6, 117.5, 118.1 (2C), 129.2 (2C), 130.8, 136.0, 136.9, 151.8, 155.2; FAB-MS m/z (rel abundance) 367 ((M+H)⁺, 98%), 369 (M+2+H)⁺, 100%).

D2. Synthesis of ω -Alkoxy Ureas

Step 1. *N*-(5-*tert*-Butyl-3-thienyl)-*N'*-(4-(4-hydroxyphenyl)oxyphenyl)urea: A solution of *N*-(5-*tert*-butyl-3-thienyl)-*N'*-(4-(4-methoxyphenyl)oxyphenyl)urea (1.2 g, 3 mmol) in CH₂Cl₂ (50 mL) was cooled to -78 °C and treated with BBr₃ (1.0 M in CH₂Cl₂, 4.5 mL, 4.5 mmol, 1.5 equiv) dropwise via syringe. The resulting bright yellow mixture was warmed slowly to room temp and stirred overnight. The resulting mixture was concentrated under reduced pressure. The residue was dissolved in EtOAc (50 mL), then washed with a saturated NaHCO₃ solution (50 mL) and a saturated NaCl solution (50 mL), dried (Na₂SO₄), and concentrated under reduced pressure. The residue was purified via flash chromatography (gradient from 10% EtOAc/90% hexane to 25% EtOAc/75% hexane) to give the desired phenol as a tan foam (1.1 g, 92%): TLC (20% EtOAc/80% hexane) R_f 0.23; ¹H NMR (DMSO-d₆) δ 1.30 (s, 9H), 6.72-6.84 (m, 7H), 6.97 (d, J=1.47 Hz, 1H), 7.37 (dm, J=9.19 Hz, 2H), 8.49 (s, 1H), 8.69 (s, 1H), 9.25 (s, 1H); FAB-MS m/z (rel abundance) 383 ((M+H)⁺, 33%).

Step 2. *N*-(5-*tert*-Butyl-3-thienyl)-*N'*-(4-(4-ethoxyphenyl)oxyphenyl)urea: To a mixture of *N*-(5-*tert*-butyl-3-thienyl)-*N'*-(4-(4-hydroxyphenyl)oxyphenyl)urea (0.20 g, 0.5 mmol) and Cs₂CO₃ (0.18 g, 0.55 mmol, 1.1 equiv) in reagent grade acetone (10 mL) was added ethyl iodide (0.08 mL, 1.0 mmol, 2 equiv) via syringe, and the resulting slurry was heated at the reflux temp. for 17 h. The reaction was cooled, filtered, and the solids were washed with EtOAc. The combined organics were concentrated under reduced pressure, and the residue was purified via preparative HPLC (60% CH₃CN/40% H₂O/0.05% TFA) to give the desired urea as a colorless powder (0.16 g, 73%): mp 155-156 °C; TLC (20% EtOAc/ 80% hexane) R_f 0.40; ¹H-NMR (DMSO-d₆) δ 1.30 (s, 9H), 1.30 (t, J=6.99 Hz, 3H), 3.97 (q, J=6.99 Hz, 2H), 6.80 (d, J=1.47 Hz, 1H), 6.86 (dm, J=8.82 Hz, 2H), 6.90 (s, 4H), 6.98 (d, J=1.47, 1H), 7.40 (dm, J=8.83 Hz, 2H), 8.54 (s, 1H), 8.73 (s, 1H); ¹³C-NMR (DMSO-d₆) δ 14.7, 32.0 (3C), 33.9, 63.3, 102.5, 115.5 (2C), 116.3, 118.4 (2C), 119.7 (2C), 119.8 (2C), 135.0, 136.3, 150.4, 152.1, 152.4, 154.4, 154.7; FAB-MS m/z (rel abundance) 411 ((M+H)⁺, 15%).

D3. Synthesis of ω -Carbamoyl Ureas

20 *N*-(3-*tert*-Butyl-1-methyl-5-pyrazolyl)-*N'*-(4-(4-acetaminophenyl)methylphenyl)urea: To a solution of *N*-(3-*tert*-butyl-1-methyl-5-pyrazolyl)-*N'*-(4-(4-aminophenyl)methylphenyl)urea (0.300 g, 0.795 mmol) in CH₂Cl₂ (15 mL) at 0 °C was added acetyl chloride (0.057 mL, 0.795 mmol), followed by anhydrous Et₃N (0.111 mL, 0.795 mmol). The solution was allowed to warm to room temp over 4 h, then was diluted with EtOAc (200 mL). The organic layer was sequentially washed with a 1M HCl solution (125 mL) then water (100 mL), dried (MgSO₄), and concentrated under reduced pressure. The resulting residue was

73

purified by filtration through a pad of silica (EtOAc) to give the desired product as a white solid (0.160 g, 48%): TLC (EtOAc) R_f 0.33; $^1\text{H-NMR}$ (DMSO-d₆) δ 1.17 (s, 9H), 1.98 (s, 3H), 3.55 (s, 3H), 3.78 (s, 2H), 6.00 (s, 1H), 7.07 (d, $J=8.5$ Hz, 2H), 7.09 (d, $J=8.5$ Hz, 2H), 7.32 (d, $J=8.5$ Hz, 2H), 7.44 (d, $J=8.5$ Hz, 2H), 8.38 (s, 1H), 8.75 (s, 1H), 9.82 (s, 1H); FAB-MS m/z 420 ((M+H)⁺).

D4. General Method for the Conversion of Ester-Containing Ureas into Alcohol-Containing Ureas

10 **N-(N'-(2-Hydroxyethyl)-3-tert-butyl-5-pyrazolyl)-N'-(2,3-dichlorophenyl)urea:** A solution of *N*-(*N'*-(2-(2,3-dichlorophenylamino)carbonyloxyethyl)-3-*tert*-butyl-5-pyrazolyl)-*N'*-(2,3-dichlorophenyl)urea (prepared as described in Method A3; 0.4 g, 0.72 mmoles) and NaOH (0.8 mL, 5N in water, 4.0 mmoles) in EtOH (7 mL) was heated at ~65 °C for 3 h at which time TLC indicated complete reaction. The reaction mixture was diluted with EtOAc (25 mL) and acidified with a 2N HCl solution (3 mL). The resulting organic phase was washed with a saturated NaCl solution (25 mL), dried (MgSO_4) and concentrated under reduced pressure. The residue was crystallized (Et₂O) to afford the desired product as a white solid (0.17 g, 64 %): TLC (60% EtOAc/40% hexane) R_f 0.16; $^1\text{H-NMR}$ (DMSO-d₆) δ 1.23 (s, 9H), 3.70 (t, $J=5.7$ Hz, 2H), 4.10 (t, $J=5.7$ Hz, 2H), 6.23 (s, 1H), 7.29-7.32 (m, 2H), 8.06-8.09 (m, 1H), 9.00 (br s, 1H), 9.70 (br s, 1H); FAB-MS m/z (rel abundance) 371 ((M+H)⁺, 100%).

D5a. General Method for the Conversion of Ester-Containing Ureas into Amide-Containing Ureas

25

Step 1. *N-(N'-(Carboxymethyl)-3-tert-butyl-5-pyrazolyl)-N'-(2,3-dichlorophenyl)urea:* A solution of *N-(N'-(ethoxycarbonylmethyl)-3-tert-butyl-5-pyrazolyl)-N'-(2,3-dichlorophenyl)urea* (prepared as described in Method A3, 0.46 g, 1.11 mmoles) and NaOH (1.2 mL, 5N in water, 6.0 mmoles) in EtOH (7 mL) was stirred at room temp. for 2 h at which time TLC indicated complete reaction. The reaction mixture was diluted with EtOAc (25 mL) and acidified with a 2N HCl solution (4 mL). The resulting organic phase was washed with a saturated NaCl solution (25 mL), dried (MgSO_4) and concentrated under reduced pressure. The residue was crystallized ($\text{Et}_2\text{O}/\text{hexane}$) to afford the desired product as a white solid (0.38 g, 89%): TLC (10% MeOH/90% CH_2Cl_2) R_f 0.04; $^1\text{H-NMR}$ (DMSO-d_6) δ 1.21 (s, 9H), 4.81 (s, 2H), 6.19 (s, 1H), 7.28-7.35 (m, 2H), 8.09-8.12 (m, 1H), 8.76 (br s, 1H), 9.52 (br s, 1H); FAB-MS m/z (rel abundance) 385 (($\text{M}+\text{H}$) $^+$, 100%).

Step 2. *N-(N'-(Methylcarbamoyl)methyl)-3-tert-butyl-5-pyrazolyl)-N'-(2,3-dichlorophenyl)urea:* A solution of *N-(N'-(carboxymethyl)-3-tert-butyl-5-pyrazolyl)-N'-(2,3-dichlorophenyl)urea* (100 mg, 0.26 mmole) and *N,N'*-carbonyldiimidazole (45 mg, 0.28 mmole) in CH_2Cl_2 (10 mL) was stirred at room temp. 4 h at which time TLC indicated formation of the corresponding anhydride (TLC (50% acetone/50% CH_2Cl_2) R_f 0.81). Dry methylamine hydrochloride (28 mg, 0.41 mmole) was then added followed by diisopropylethylamine (0.07 mL, 0.40 mmole). The reaction mixture was stirred at room temp. overnight, then diluted with CH_2Cl_2 , washed with water (30 mL), a saturated NaCl solution (30 mL), dried (MgSO_4) and concentrated under reduced pressure. The residue was purified by column chromatography (gradient from 10% acetone/90% CH_2Cl_2 to 40% acetone/60% CH_2Cl_2) and the residue was crystallized ($\text{Et}_2\text{O}/\text{hexane}$) to afford the desired product (47 mg, 46%): TLC (60% acetone/40% CH_2Cl_2) R_f 0.59; $^1\text{H-NMR}$ (DMSO-d_6) δ 1.20 (s, 9H), 2.63 (d, $J=4.5$ Hz, 3H), 4.59 (s, 2H), 6.15 (s, 1H), 7.28-

75

7.34 (m, 2H), 8.02-8.12 (m, 2H), 8.79 (br s, 1H), 9.20 (br s, 1H); FAB-MS *m/z* (rel abundance) 398 ((M+H)⁺, 30%).

**D5b. General Method for the Conversion of Ester-Containing Ureas into
5 Amide-Containing Ureas**

Step 1. *N*-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-carboxyphenyl)oxyphenyl)urea:

To a solution of *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-ethoxyoxycarbonylphenyl)oxyphenyl)urea (0.524 g, 1.24 mmol) in a mixture of EtOH (4 mL) and THF (4 mL) was added a 1M NaOH solution (2 mL) and the resulting solution was allowed to stir overnight at room temp. The resulting mixture was diluted with water (20 mL) and treated with a 3M HCl solution (20 mL) to form a white precipitate. The solids were washed with water (50 mL) and hexane (50 mL), and then dried (approximately 0.4 mmHg) to afford the desired product (0.368 g, 75 %). This material was carried to the next step without further purification.

Step 2. *N*-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-(*N*-methylcarbamoyl)-phenyl)oxyphenyl)urea:

A solution of *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-carboxyphenyl)oxyphenyl)urea (0.100 g, 0.25 mmol), methylamine (2.0 M in THF; 0.140 mL, 0.278 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (76 mg, 0.39 mmol), and *N*-methylmorpholine (0.030 mL, 0.27 mmol) in a mixture of THF (3 mL) and DMF (3 mL) was allowed to stir overnight at room temp. then was poured into a 1M citric acid solution (20 mL) and extracted with EtOAc (3 x 15 mL). The combined extracts were sequentially washed with water (3 x 10 mL) and a saturated NaCl solution (2 x 10 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The resulting crude oil was purified by flash chromatography

(60 % EtOAc/40% hexane) to afford the desired product as a white solid (42 mg, 40%): EI-MS *m/z* 409 ((M+H)⁺).

D6. General Method for the Conversion of ω -Amine-Containing Ureas into Amide-Containing Ureas

5

10

15

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-aminophenyl)oxyphenyl)urea: To a solution of *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-*tert*-butoxycarbonylaminophenyl)oxyphenyl)-urea (prepared in a manner analogous to Methods B6 then C2b; 0.050 g, 0.11 mmol) in anh 1,4-dioxane (3 mL) was added a conc HCl solution (1 mL) in one portion and the mixture was allowed to stir overnight at room temp. The mixture was then poured into water (10 mL) and EtOAc(10 mL) and made basic using a 1M NaOH solution (5 mL). The aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were sequentially washed with water (3 x 100 mL) and a saturated NaCl solution (2 x 100 mL), dried (Na_2SO_4), and concentrated *in vacuo* to afford the desired product as a white solid (26 mg, 66%). EI-MS *m/z* 367 ((M+ H)⁺).

D7. General Method for the Oxidation of Pyridine-Containing Ureas

20

25

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(N-oxo-4-pyridinyl)methylphenyl)urea: To a solution of *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-pyridinyl)methylphenyl)urea (0.100 g, 0.29 mmol) in CHCl₃ (10 mL) was added *m*-CPBA (70% pure, 0.155 g, 0.63 mmol) and the resulting solution was stirred at room temp for 16 h. The reaction mixture was then treated with a saturated K₂CO₃ solution (10 mL). After 5 min, the solution was diluted with CHCl₃ (50 mL). The organic layer was washed successively with a saturated aqueous NaHSO₃ solution (25 mL), a saturated NaHCO₃ solution (25 mL) and a saturated NaCl solution (25 mL), dried (MgSO_4), and concentrated *in*

vacuo. The residual solid was purified by MPLC (15% MeOH/85% EtOAc) to give the *N*-oxide (0.082 g, 79%).

D8. General Method for the Acylation of a Hydroxy-Containing Urea

5

10

15

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-acetoxyphenoxy)phenyl)urea: To a solution of *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-hydroxyphenoxy)phenyl)urea (0.100 g, 0.272 mmol), *N,N*-dimethylaminopyridine (0.003 g, 0.027 mmol) and Et₃N (0.075 mL, 0.544 mmol) in anh THF (5 mL) was added acetic anhydride (0.028 mL, 0.299 mmol), and the resulting mixture was stirred at room temp. for 5 h. The resulting mixture was concentrated under reduced pressure and the residue was dissolved in EtOAc (10 mL). The resulting solution was sequentially washed with a 5% citric acid solution (10 mL), a saturated NaHCO₃ solution (10 mL) and a saturated NaCl solution (10 mL), dried (Na₂SO₄), and concentrated under reduced pressure to give an oil which slowly solidified to a glass (0.104 g, 93%) on standing under reduced pressure (approximately 0.4 mmHg): TLC (40% EtOAc/60% hexane) R_f 0.55; FAB-MS *m/z* 410 ((M+H)⁺).

D9. Synthesis of ω -Alkoxypyridines

20

25

Step 1. *N*-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(2(1*H*)-pyridinon-5-yl)oxyphenyl)urea: A solution of *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(5-(2-methoxy)pyridyl)oxyaniline (prepared in a manner analogous to that described in Methods B3k and C3b; 1.2 g, 3.14 mmol) and trimethylsilyl iodide (0.89 mL, 6.28 mmol) in CH₂Cl₂ (30 mL) was allowed to stir overnight at room temp., then was to 40 °C for 2 h. The resulting mixture was concentrated under reduced pressure and the residue was purified by column chromatography (gradient from 80% EtOAc/20% hexanes to 15%

MeOH/85% EtOAc) to give the desired product (0.87 g, 75%): mp 175-180 °C; TLC (80% EtOAc/20% hexane) R_f 0.05; FAB-MS m/z 369 ((M+H)⁺, 100%).

Step 2. *N*-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(5-(2-Ethoxy)pyridyl)oxyphenyl)urea:

5 A slurry of *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(2(1*H*)-pyridinon-5-yl)oxyphenyl)urea (0.1 g, 0.27 mmol) and Ag₂CO₃ (0.05 g, 0.18 mmol) in benzene (3 mL) was stirred at room temp. for 10 min. Iodoethane (0.023 mL, 0.285 mmol) was added and the resulting mixture was heated at the reflux temp. in dark overnight. The reaction mixture was allowed to cool to room temp., and was filtered through a plug of Celite® then concentrated under reduced pressure. The residue was purified by column chromatography (gradient from 25% EtOAc/75% hexane to 40% EtOAc/60% hexane) to afford the desired product (0.041 g, 38%): mp 146 °C; TLC (40% EtOAc/60% hexane) R_f 0.49; FAB-MS m/z 397 ((M+H)⁺, 100%).

10

15 **D10. Reduction of an Aldehyde- or Ketone-Containing Urea to a Hydroxide-Containing Urea**

***N*-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-(1-hydroxyethyl)phenyl)oxyphenyl)urea:**

To a solution of *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-(1-acetylphenyl)oxyphenyl)urea (prepared in a manner analogous to that described in Methods B1 and C2b; 0.060 g, 0.15 mmol) in MeOH (10 mL) was added NaBH₄ (0.008 g, 0.21 mmol) in one portion. The mixture was allowed to stir for 2 h at room temp., then was concentrated *in vacuo*. Water (20 mL) and a 3M HCl solution (2 mL) were added and the resulting mixture was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with water (3 x 10 mL) and a saturated NaCl solution (2 x 10 mL), dried (MgSO₄), and concentrated *in vacuo*. The resulting white solid was purified by trituration (Et₂O/hexane) to afford the desired product (0.021 g,

20

25

32 %): mp 80-85 °C; ^1H NMR (DMSO-d₆) δ 1.26 (s, 9H), 2.50 (s, 3H), 4.67 (m, 1H), 5.10 (br s, 1H), 6.45 (s, 1H), 6.90 (m, 4H), 7.29 (d, $J=9.0$ Hz, 2H), 7.42 (d, $J=9.0$ Hz, 2H), 8.76 (s, 1H), 9.44 (s, 1H); HPLC ES-MS m/z 396 ((M+H)⁺).

D11. Synthesis of Nitrogen-Substituted Ureas by Curtius Rearrangement of Carboxy-Substituted Ureas

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(3-(benzyloxycarbonylamino)phenyl)-

oxyphenyl)urea: To a solution of the *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(3-

10 carboxyphenyl)oxyphenyl)urea (prepared in a manner analogous to that described in Methods B3a, Step 2 and C2b; 1.0 g, 2.5 mmol) in anh toluene (20 mL) was added Et₃N (0.395 mL, 2.8 mmol) and DPPA (0.610 mL, 2.8 mmol). The mixture was heated at 80 °C with stirring for 1.5 h then allowed to cool to room temp. Benzyl alcohol (0.370 mL, 3.5 mmol) was added and the mixture was heated at 80 °C with stirring for 3 h then allowed to cool to room temp. The resulting mixture was poured into a 10% HCl solution (50 mL) and the resulting solution extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with water (3 x 50 mL) and a saturated NaCl (2 x 50 mL), dried (Na₂SO₄), and concentrated *in vacuo*. The crude oil was purified by column chromatography (30% EtOAc/70% hexane) to afford the desired product as a white solid (0.7 g, 60 %): mp 73-75 °C; ^1H NMR (DMSO-d₆) δ 1.26 (s, 9H), 5.10 (s, 2H), 6.46 (s, 1H), 6.55 (d, $J=7.0$ Hz, 1H), 6.94 (d, $J=7.0$ Hz, 2H), 7.70 (m, 7H), 8.78 (s, 1H), 9.46 (s, 1H), 9.81 (s, 1H); HPLC ES-MS m/z 501 ((M+H)⁺).

The following compounds have been synthesized according to the General Methods listed above:

Table 1. 5-Substituted-3-isoxazolyl Ureas

Entry	R ¹	R ²	mp (°C)	TLC R _f	Solvent System	Mass Spec. [Source]	Synth. Method
1	t-Bu		148-149			352 (M+H)+ [FAB]	C1c
2	t-Bu		176-177	0.16	5% MeOH/ 95% CH ₂ Cl ₂	386 (M+H)+ [FAB]	C2b
3	t-Bu			0.50	30% EtOAc/ 70% hexane	400 (M+H)+ [HPLC ES-MS]	C2b
4	t-Bu		156-157	0.50	30% EtOAc/ 70% hexane	366 (M+H)+ [HPLC ES-MS]	C2b
5	t-Bu			0.80	40% EtOAc/ 60% hexane	492 (M+H)+ [HPLC ES-MS]	C2b
6	t-Bu		190-191	0.15	30% EtOAc/ 70% hexane	350 (M+) [EI]	C2b
7	t-Bu			0.55	20% EtOAc/ 80% hexane	352 (M+H)+ [FAB]	C2b
8	t-Bu			0.25	20% EtOAc/ 80% hexane	367 (M+) [EI]	C2b
9	t-Bu			0.15	20% EtOAc/ 80% hexane	363 (M+) [EI]	C2b
10	t-Bu			0.30	20% EtOAc/ 80% hexane	381 (M+) [EI]	C2b

11	<i>t</i> -Bu			0.25	30% EtOAc/ 70% hexane [HPLC ES-MS]	425 (M+H)+ [HPLC ES-MS]	B3b, C2b
12	<i>t</i> -Bu		175-177	0.25	30% EtOAc/ 70% hexane [HPLC ES-MS]	409 (M+H)+ [HPLC ES-MS]	B3a, Step 1, B3b Step 2, C2b
13	<i>t</i> -Bu			0.35	30% EtOAc/ 70% hexane [HPLC ES-MS]	402 (M+H)+ [HPLC ES-MS]	B3b, C2b
14	<i>t</i> -Bu			0.20	30% EtOAc/ 70% hexane [HPLC ES-MS]	403 (M+H)+ [HPLC ES-MS]	B3b, C2b
15	<i>t</i> -Bu			0.25	30% EtOAc/ 70% hexane [HPLC ES-MS]	419 (M+H)+ [HPLC ES-MS]	B3b, C2b
16	<i>t</i> -Bu			0.20	30% EtOAc/ 70% hexane [HPLC ES-MS]	419 (M+H)+ [HPLC ES-MS]	B3b, C2b
17	<i>t</i> -Bu			0.40	30% EtOAc/ 70% hexane [HPLC ES-MS]	352 (M+H)+ [HPLC ES-MS]	C2b
18	<i>t</i> -Bu			0.40	30% EtOAc/ 70% hexane [HPLC ES-MS]	365 (M+) [EI]	C2b
19	<i>t</i> -Bu			0.15	30% EtOAc/ 70% hexane [HPLC ES-MS]	367 (M+) [EI]	B3a, C2b, D2 Step 1
20	<i>t</i> -Bu		200-201	0.20	20% EtOAc/ 80% hexane [FAB]	280 (M+H)+ [FAB]	C6
21	<i>t</i> -Bu		178-179			368 (M+) [EI]	B4a, C2b
22	<i>t</i> -Bu		164-165	0.25	30% EtOAc/ 70% hexane [FAB]	351 (M+H)+ [FAB]	B1, C2b
23	<i>t</i> -Bu		170-172	0.15	30% EtOAc/ 70% hexane [FAB]	351 (M+H)+ [FAB]	B7, B1, C2b
24	<i>t</i> -Bu		179-182	0.20	30% EtOAc/ 70% hexane [FAB]	387 (M+H)+ [FAB]	C2b

25	<i>t</i> -Bu			0.55	40% EtOAc/ 60% hexane	410 (M+H) ⁺ [FAB]	B3b, C2b, D2 Step 1, D8
26	<i>t</i> -Bu		176-182	0.55	25% EtOAc/ 75% hexane	366 (M+H) ⁺ [FAB]	B3a, C2b
27	<i>t</i> -Bu			0.40	25% EtOAc/ 75% hexane	366 (M+H) ⁺ [FAB]	B3a, C2b
28	<i>t</i> -Bu		150-158	0.45	25% EtOAc/ 75% hexane	380 (M+H) ⁺ [FAB]	B3a, C2b
29	<i>t</i> -Bu			0.30	25% EtOAc/ 75% hexane	368 (M+H) ⁺ [FAB]	C2b
30	<i>t</i> -Bu		118-122	0.50	25% EtOAc/ 75% hexane	420 (M+H) ⁺ [FAB]	B3a Step 1, B3b Step 2, C2b
31	<i>t</i> -Bu		195-197	0.30	25% EtOAc/ 75% hexane	397 (M ⁺) [FAB]	C2b
32	<i>t</i> -Bu			0.80	25% EtOAc/ 75% hexane	366 (M+H) ⁺ [FAB]	B3a, C2b
33	<i>t</i> -Bu		155-156	0.55	30% EtOAc/ 70% hexane	382 (M+H) ⁺ [FAB]	B3a, C2b
34	<i>t</i> -Bu		137-141	0.62	25% EtOAc/ 75% hexane	410 (M+H) ⁺ [FAB]	B3a, C2b, D2
35	<i>t</i> -Bu		164-166	0.60	25% EtOAc/ 75% hexane	410 (M+H) ⁺ [FAB]	B3a, C2b, D2
36	<i>t</i> -Bu		78-80	0.15	25% EtOAc/ 75% hexane	368 (M+H) ⁺ [FAB]	C2b
37	<i>t</i> -Bu		167-169			374 (M+H) ⁺ [FAB]	B3i, B1, C2b
38	<i>t</i> -Bu		200 dec	0.30	5% MeOH/ 0.5% AcOH/ 94.5% CH ₂ Cl ₂	396 (M+H) ⁺ [FAB]	B3a Step 2, C2b

39	<i>t</i> -Bu		234 dec	0.30	5% MeOH 0.5% AcOH/ 94.5% CH2Cl2	396 (M+H)+ [FAB]	B3a Step 2. C2b
40	<i>t</i> -Bu		203-206	0.35	10% MeOH 0.5% AcOH/ 89.5% EtOAc	340 (M+H)+ [FAB]	B8. B2b. C2b
41	<i>t</i> -Bu		177-180			419 (M+H)+ [FAB]	B8. B2b, C2b
42	<i>t</i> -Bu		158-159	0.25	30% EtOAc/ 70% hexane	369 (M+H)+ [FAB]	B4a. C2b
43	<i>t</i> -Bu		180-181	0.15	30% EtOAc/ 70% hexane	437 (M+H)+ [FAB]	B4a, C2b
44	<i>t</i> -Bu		140-142	0.25	20% EtOAc/ 80% hexane	396 (M+H)+ [FAB]	B3a, C2b, D2
45	<i>t</i> -Bu		68-71	0.30	50% EtOAc/ 50% hexane	370 (M+H)+ [FAB]	B4a, C2b
46	<i>t</i> -Bu		183-186	0.30	30% EtOAc/ 70% hexane	403 (M+H)+ [CI]	C2b
47	<i>t</i> -Bu		98-101	0.25	10% EtOAc/ 90% hexane	454 (M+H)+ [FAB]	C2b
48	<i>t</i> -Bu		163-166	0.25	20% EtOAc/ 80% hexane	394 (M+H)+ [FAB]	B1, C2b
49	<i>t</i> -Bu		144-147	0.25	20% EtOAc/ 80% hexane	399 (M+H)+ [FAB]	C2b
50	<i>t</i> -Bu		155-157	0.25	40% EtOAc/ 60% hexane	383 (M+H)+ [FAB]	C2b
51	<i>t</i> -Bu		162-164	0.35	25% EtOAc/ 75% hexane	386 (M+H)+ [FAB]	C2b

52	<i>t</i> -Bu		149-150	0.15	15% EtOAc/ 85% hexane	382 (M-H)+ [FAB]	C2b
53	<i>t</i> -Bu		77-80	0.30	30% EtOAc/ 70% hexane	408 (M+) [EI]	B3e, C2b
54	<i>t</i> -Bu		162-164	0.17	40% EtOAc/ 60% hexane	354 (M+H)+ [FAB]	B3j, C2b
55	<i>t</i> -Bu		73-76	0.20	30% EtOAc/ 70% hexane	368 (M+) [EI]	B2, C2b
56	<i>t</i> -Bu		73-75	0.15	25% EtOAc/ 75% hexane	428 (M+H)+ [FAB]	B2, C2b
57	<i>t</i> -Bu		143-145	0.25	30% EtOAc/ 70% hexane	398 (M+H)+ [FAB]	B3e, C2b
58	<i>t</i> -Bu		148-151	0.25	30% EtOAc/ 70% hexane	428 (M+H)+ [FAB]	B3e, C2b
59	<i>t</i> -Bu			0.30	100% EtOAc	353 (M+H)+ [FAB]	B4b, C3b
60	<i>t</i> -Bu		126-129	0.25	30% EtOAc/ 70% hexane	412 (M+H)+ [FAB]	B3e, C2b
61	<i>t</i> -Bu		201-204	0.25	10% EtOAc/ 90% hexane	396 (M+H)+ [FAB]	B3a, C2b, D2
62	<i>t</i> -Bu		163-164	0.30	40% EtOAc/ 60% hexane	369 (M+H)+ [FAB]	B4a, C2b
63	<i>t</i> -Bu		162-163	0.20	25% EtOAc/ 75% hexane	363 (M+) [EI]	C2b
64	<i>t</i> -Bu		127-129	0.22	40% EtOAc/ 60% hexane	353 (M+H)+ [FAB]	B3e Step 1, B2, C2b
65	<i>t</i> -Bu		85-87	0.20	50% EtOAc/ 50% hexane	402 (M+) [EI]	B3e Step 1, B2, C2b

66	<i>t</i> -Bu		108-110	0.25	10% EtOAc/ 90% hexane	381 (M+) [EI]	B3e, C2b
67	<i>t</i> -Bu		186-189	0.25	30% EtOAc/ 70% hexane	367 (M+H)+ [FAB]	B6, C2b, D6
68	<i>t</i> -Bu		221-224	0.25	60% EtOAc/ 40% hexane	409 (M+H)+ [FAB]	B3e, C2b, D5b
69	<i>t</i> -Bu		114-117	0.25	60% EtOAc/ 40% hexane	409 (M+H)+ [FAB]	B3e, C2b, D5b
70	<i>t</i> -Bu		201-203	0.25	60% EtOAc/ 40% hexane	423 (M+H)+ [FAB]	B3e, C2b, D5b
71	<i>t</i> -Bu		148-151	0.25	20% EtOAc/ 80% hexane	370 (M+H)+ [FAB]	B3e, C2b
72	<i>t</i> -Bu		188-201	0.25	20% EtOAc/ 80% hexane	382 (M+H)+ [FAB]	B3e, C2b
73	<i>t</i> -Bu		134-136	0.25	20% EtOAc/ 80% hexane	367 (M+H)+ [FAB]	B3e, C2b
74	<i>t</i> -Bu		176-178	0.25	50% EtOAc/ 50% hexane	403 (M+H)+ [FAB]	B3e, C2b
75	<i>t</i> -Bu		132-134	0.52	40% EtOAc/ 60% hexane	383 (M+H)+ [FAB]	B3k, C3b
76	<i>t</i> -Bu		160-162	0.79	75% EtOAc/ 25% hexane	381 (M+H)+ [FAB]	C3a
77	<i>t</i> -Bu		140-143	0.25	50% EtOAc/ 50% CH2Cl2	352 (M+) [EI]	B4b, C3b
78	<i>t</i> -Bu		147-150	0.25	50% EtOAc/ 50% CH2Cl2	352 (M+) [EI]	B3f, C3b
79	<i>t</i> -Bu		166-170	0.44	50% EtOAc/ 50% hexane	396 (M+H)+ [FAB]	C3b

80	<i>t</i> -Bu		190-193	0.25	50% EtOAc/ 50% CH ₂ Cl ₂	367 (M+H) ⁺ [FAB]	B3g, C3b
81	<i>t</i> -Bu		136-140	0.25	50% EtOAc/ 50% CH ₂ Cl ₂	367 (M+H) ⁺ [FAB]	B4b, C3b
82	<i>t</i> -Bu		65-67	0.25	50% EtOAc/ 50% CH ₂ Cl ₂	367 (M+H) ⁺ [FAB]	B4b, C3b
83	<i>t</i> -Bu		68-72	0.25	50% EtOAc/ 50% CH ₂ Cl ₂	383 (M+H) ⁺ [FAB]	B4a, C3b
84	<i>t</i> -Bu		146	0.49	40% EtOAc/ 60% hexane	397 (M+H) ⁺ [FAB]	B3k C3b, D9
85	<i>t</i> -Bu		164-165	0.25	50% EtOAc/ 50% CH ₂ Cl ₂	382 (M ⁺) [EI]	B4a, C3b
86	<i>t</i> -Bu		175-177	0.25	20% EtOAc/ 80% hexane	485 (M+H) ⁺ [FAB]	B3e, C3b, D5b
87	<i>t</i> -Bu		137-141	0.30	50% EtOAc/ 50% hexane	366 (M ⁺) [EI]	C3a, D2 step 1
88	<i>t</i> -Bu		120-122	0.25	20% EtOAc/ 80% hexane	471 (M+H) ⁺ [HPLC ES-MS]	B3e, C3b, D5b
89	<i>t</i> -Bu		168-170	0.25	50% EtOAc/ 50% hexane	423 (M+H) ⁺ [HPLC ES-MS]	B3e, C3b, D5b
90	<i>t</i> -Bu		80-85	0.25	50% EtOAc/ 50% hexane	396 (M+H) ⁺ [HPLC ES-MS]	B1, C2b, D10
91	<i>t</i> -Bu		73-75	0.25	30% EtOAc/ 70% hexane	501 (M+H) ⁺ [HPLC ES-MS]	B3e, C3b, D11
92	<i>t</i> -Bu			0.50	5% acetone/ 95% CH ₂ Cl ₂	366 (M+H) ⁺ [FAB]	B1a
93	<i>t</i> -Bu		199-200	0.59	5% acetone/ 95% CH ₂ Cl ₂	419 (M ⁺) [FAB]	B1a

94	<i>t</i> -Bu			0.59	5% acetone 95% CH ₂ Cl ₂	419 (M ⁺) [FAB]	B1a
95	<i>t</i> -Bu		78-82	0.25	10% EtOAc/ 90% CH ₂ Cl ₂	379 (M ⁺) [EI]	B3e, C3b
96	<i>t</i> -Bu		214-217	0.75	60% EtOAc/ 40% hexane	463 (M ⁺ H) ⁺ [FAB]	C2b, D3
97	<i>t</i> -Bu		235	0.35	25% EtOAc/ 75% hexane	402 (M ⁺ H) ⁺ v	B3b, C2b
98	<i>t</i> -Bu		153-155	0.25	30% EtOAc/ 70% hexane	424 (M ⁺ H) ⁺ [FAB]	B3e, C2b
99	<i>t</i> -Bu		100	0.62	40% EtOAc/ 60% hexane	411 (M ⁺ H) ⁺ [FAB]	B3a, B1, C3b
100	<i>t</i> -Bu		110-115	0.15	100% EtOAc	367 (M ⁺ H) ⁺ [FAB]	

Table 1. 5-Substituted-3-isoxazolyl Ureas - continued

5

Entry	R ¹	R ²	mp (°C)	TLC R _f	Solvent System	Mass Spec. [Source]	Synth. Method
101	<i>t</i> -Bu			0.50	100% EtOAc	410 (M ⁺ H) ⁺ [FAB]	B10, B4b, C2b
102	<i>t</i> -Bu		153-155			395 (M ⁺ H) ⁺ [FAB]	C3b
103	<i>t</i> -Bu			0.52	100% EtOAc	396 (M ⁺ H) ⁺ [HPLC ES-MS]	B10, B4b, C2b
104	<i>t</i> -Bu			0.75	100% EtOAc	396 (M ⁺ H) ⁺ [HPLC ES-MS]	B10, B4b, C2b

105	<i>t</i> -Bu		107-110	0.85	100% EtOAc	410 (M+H)+ [FAB]	B10, B4b, C2b
106	<i>t</i> -Bu		132-135				B3d step 2, C3a
107	<i>t</i> -Bu			0.58	100% EtOAc		C3a, D5b
108	<i>t</i> -Bu			0.58	100% EtOAc		C3a, D5b
109	<i>t</i> -Bu		137-140	0.62	100% EtOAc	439 (M+H)+ [HPLC ES-MS]	B3a step 1, B12, D5b step 2, C3a
110	<i>t</i> -Bu		163-166	0.73	100% EtOAc	425 (M+H)+ [HPLC ES-MS]	B3a step 1, B12, D5b step 2, C3a
111	<i>t</i> -Bu		180-181				B3b step 1, B11, B3d step 2, C2a
112	<i>t</i> -Bu		135-139				B3b, C2a
113	<i>t</i> -Bu		212-215				B3d step 2a, C2a
114	<i>t</i> -Bu		98-100				B3d step 2, C2a
115	<i>t</i> -Bu		135-138				B10, B4b, C2a
116	<i>t</i> -Bu		219-221	0.78	80% EtOAc/hexane	437 (M+H)+ [HPLC ES-MS]	C3a, D5b step 2
117	<i>t</i> -Bu		160-164				B3a step 1, B3d step 2, C3a
118	<i>t</i> -Bu		124	0.39	5% MeOH/45% EtOAc/50% hexane		C1c, D5b

119	<i>t</i> -Bu		73-75	0.41	100% EtOAc	479 (M+H) ⁺ [HPLC ES-MS]	B3a, C4a, D5b
120	<i>t</i> -Bu			0.32	100% EtOAc	436 (M+H) ⁺ [HPLC ES-MS] step 1, step 2	C1b, D5b
121	<i>t</i> -Bu			0.23	10% MeOH/ 90% CH2Cl2	506 (M+H) ⁺ [HPLC ES-MS]	B3a, C4a, D5b
122	<i>t</i> -Bu			0.18	10% MeOH/ 90% CH2Cl2	506 (M+H) ⁺ [HPLC ES-MS]	B3a, C4a, D5b
123	<i>t</i> -Bu		229-231	0.37	40% EtOAc/ 60% hexane	435 (M+H) ⁺ [HPLC ES-MS] step 1, step 2, C3a	D5b
124	<i>t</i> -Bu			0.21	5% MeOH/ 95% CH2Cl2	508 (M+H) ⁺ [HPLC ES-MS]	B3a, C4a, D5b
125	<i>t</i> -Bu		167-170	0.34	5% MeOH/ 45% EtOAc/ 50% hexane	424 (M+H) ⁺ [HPLC ES-MS]	C3b, D5b
126	<i>t</i> -Bu		124	0.26	5% MeOH/ 45% EtOAc/ 50% hexane		C3b, D5b
127	<i>t</i> -Bu		125-128	0.28	5% MeOH/ 45% EtOAc/ 50% hexane		C3b, D5b
128	<i>t</i> -Bu			0.37	50% EtOAc/ 50% pet ether	426 (M+H) ⁺ [HPLC ES-MS]	C3b
129	<i>t</i> -Bu			0.10	50% EtOAc/ 50% pet ether	424 (M+H) ⁺ [HPLC ES-MS]	C3b

130	<i>t</i> -Bu			0.18	70% EtOAc: 30% hexane	472 (M+H)+ [HPLC ES-MS]	D5b step2
131	<i>t</i> -Bu			0.32		582 (M+H)+ [HPLC ES-MS]	C3b
132	<i>t</i> -Bu			0.57		558 (M+H)+ [HPLC ES-MS]	C3b
133	<i>t</i> -Bu			0.21		598 (M+H)+ [HPLC ES-MS]	C3b
134	<i>t</i> -Bu			0.86		489 (M+H)+ [HPLC ES-MS]	C3b
135	<i>t</i> -Bu			0.64		514 (M+H)+ [HPLC ES-MS]	C3b
136	<i>t</i> -Bu			0.29		453 (M+H)+ [HPLC ES-MS]	C3b
137	<i>t</i> -Bu			0.70		502 (M+H)+ [HPLC ES-MS]	C3b
138	<i>t</i> -Bu			0.50		556 (M+H)+ [HPLC ES-MS]	C3b

139	<i>t</i> -Bu			0.27		541 (M+H)+ [HPLC ES-MS]	C3b
140	<i>t</i> -Bu		211-212	0.27	50% EtOAc/ 50% pet ether	426 (M+H)+ [HPLC ES-MS]	C3b
141	<i>t</i> -Bu		195-198				B8, C2a
142	<i>t</i> -Bu		170-171				C3a
143	<i>t</i> -Bu		141-144	0.63	5% acetone/ 95% CH2Cl2	382 (M+H)+ [FAB]	B3b step 1,2, C1d
144	<i>t</i> -Bu			0.57	5% acetone/ 95% CH2Cl2	386 (M+H)+ [FAB]	B3b step 1,2, C1d
145	<i>t</i> -Bu		145-148	0.44	5% acetone/ 95% CH2Cl2	370 (M+H)+ [FAB]	B3b step 1,2, C1d
146	<i>t</i> -Bu		197-202	0.50	5% acetone/ 95% CH2Cl2	404 (M+H)+ [FAB]	B3b step 1,2, C1d
147	<i>t</i> -Bu			0.60	5% acetone/ 95% CH2Cl2	404 (M+H)+ [FAB]	B3b step 1,2, C1d
148	<i>t</i> -Bu		126-129	0.17	30% MeOH/ 70% EtOAc	366 (M+H)+ [FAB]	B4c, C4a
149	<i>t</i> -Bu					383 (M+H)+ [HPLC ES-MS]	C3b
150	<i>t</i> -Bu		156-159	0.48	40% EtOAc/ hexane	395 (M+H)+ [HPLC ES-MS]	C3a, D2 step1, step 2
151	<i>t</i> -Bu		157-159	0.51		409 (M+H)+ [HPLC ES-MS]	C3a, D9 step 1, step2
152	<i>t</i> -Bu		130-132	0.60		437 (M+H)+ [HPLC ES-MS]	C3a, D9 step 1, step2

153	<i>t</i> -Bu		146-150	0.54	40% EtOAc/hexane	409 (M-H)+ [HPLC ES-MS]	C3a, D2 step1, step 2
154	<i>t</i> -Bu		145-148	0.57	40% EtOAc/hexane	423 (M+H)+ [HPLC ES-MS]	C3a, D2 step1, step 2
155	<i>t</i> -Bu		175-178	0.51	40% EtOAc/hexane	457 (M+H)+ [HPLC ES-MS]	C3a, D2 step1, step 2
156	<i>t</i> -Bu		149-152	0.48	40% EtOAc/hexane	407 (M+H)+ [HPLC ES-MS]	C3a, D1 step 1, step 2
157	<i>t</i> -Bu		146-147	0.36	40% EtOAc/hexane	409 (M+H)+ [HPLC ES-MS]	C3a
158	<i>t</i> -Bu		156-158	0.43	40% EtOAc/hexane	395 (M+H)+ [FAB]	C3a
159	<i>t</i> -Bu		164-168	0.52	5% acetone/95% CH2Cl2	396 (M+H)+ [HPLC ES-MS]	B3b step 1,2, C1d
160	<i>t</i> -Bu			0.36	5% acetone/95% CH2Cl2	380 (M+H)+ [FAB]	B3b step 1,2, C1d
161	<i>t</i> -Bu		169-171			368 (M+H)+ [FAB]	C3b
162	<i>t</i> -Bu		168	0.11	50% EtOAc/50% pet ether		C3b
163	<i>t</i> -Bu		146				C3b
164	<i>t</i> -Bu			0.45	100% EtOAc	369 (M+H)+ [FAB]	C2b
165	<i>t</i> -Bu			0.20	100% EtOAc	367 (M+H)+ [FAB]	B9, C2b
166	<i>t</i> -Bu		187-188	0.46	30% EtOAc/hexane	421 (M+H)+ [FAB]	C3b
167	<i>t</i> -Bu		133	0.36		409 (M+H)+ [FAB]	C3a, D9 step 1, step2

168	<i>t</i> -Bu			0.39	40% EtOAc/ 60% hexane	411 (M+H)+ [FAB]	C3a. step1, step2	D9 I.
169	<i>t</i> -Bu			0.32	5% acetone/ 95% CH ₂ Cl ₂	397 (M+H)+ [HPLC ES-MS]	B3k, C8	
170	<i>t</i> -Bu			0.21	5% acetone/ 95% CH ₂ Cl ₂	383 (M+H)+ [HPLC ES-MS]	B3k, C8	
171	<i>t</i> -Bu			0.60	100% EtOAc	365 (M+H)+ [FAB]	C2b	
172	<i>t</i> -Bu			0.16	30% EtOAc/ 70% hexane	369 (M+H)+ [HPLC ES-MS]	C8	
173	<i>t</i> -Bu		125-129	0.09	5% MeOH/ 45% EtOAc/ 50% hexane		C3b	
174	<i>t</i> -Bu		147-149				B3b, C2a	
175	<i>t</i> -Bu			0.30	100% EtOAc	380 (M+H)+ [HPLC ES-MS]	C3a, D5b step2	
176	<i>t</i> -Bu			0.50	25% EtOAc/ 75% hexane	353 (M+H)+ [CI]	MS 4b, C8	B

Table 2.3-Substituted-5-isoxazolyl Ureas

5

Entry	R ¹	R ²	mp (°C)	TLC R _r	Solvent System	Mass Spec. [Source]	Synth. Method
177	Me		169-170	0.25	5% acetone/ 95% CH ₂ Cl ₂	324 (M+H)+ [FAB]	C1b
178	i-Pr		153-156	0.54	50% EtOAc/ 50% pet ether	338 (M+H)+ [FAB]	C1b

179	i-Pr		166-170	0.54	50% EtOAc/ 50% pet ether	352 (M+H) ⁺ [FAB]	C1b
180	i-Pr		112-117	0.29	5% MeOH/ 95% CH ₂ Cl ₂	355 (M+H) ⁺ [FAB]	A2, B4a, C3a
181	i-Pr			0.08	50% EtOAc/ 50% hexane	395 (M+H) ⁺ [HPLC ES-MS]	C8
182	i-Pr		169-170	0.20	50% EtOAc/ 50% pet ether	396 (M+H) ⁺ [HPLC ES-MS]	C3b
183	i-Pr			0.10	50% EtOAc/ 50% hexane	353 (M+H) ⁺ [HPLC ES-MS]	C8
184	i-Pr			0.09	50% EtOAc/ 50% hexane	389 (M+H) ⁺ [HPLC ES-MS]	C8
185	i-Pr			0.23	30% EtOAc/ 70% hexane	352 (M+H) ⁺ [HPLC ES-MS]	C8
186	i-Pr		194-195	0.29	50% EtOAc/ 50% pet ether	396 (M+H) ⁺ [HPLC ES-MS]	C3b
187				0.03	50% EtOAc/ 50% hexane	401 (M+H) ⁺ [FAB]	C8
188						351 (M+H) ⁺ [HPLC ES-MS]	C8
189			175-178	0.43	50% EtOAc/ 50% pet ether	364 (M+H) ⁺ [FAB]	C1b
190	t-Bu			0.21	5% MeOH/ 95% CH ₂ Cl ₂	369 (M+H) ⁺ [FAB]	B4a, C2a
191	t-Bu			0.52	50% EtOAc/ 50% hexane	426 (M+H) ⁺ [FAB]	B5, C4a
192	t-Bu		182-184			352 (M+H) ⁺ [FAB]	C1b

193	<i>t</i> -Bu		165 dec	0.34	60% EtOAc 40% pet ether	366 (M+H)+ [FAB]	C1b
194	<i>t</i> -Bu		210 dec	0.05	5% acetone/ 95% CH ₂ Cl ₂	353 (M+H)+ [FAB]	C3a
195	<i>t</i> -Bu		174- 175	0.25	5% acetone/ 95% CH ₂ Cl ₂	382 (M+H)+ [FAB]	C3a
196	<i>t</i> -Bu		90-92	0.16	5% acetone/ 95% CH ₂ Cl ₂	409 (M+H)+ [FAB]	C2a
197	<i>t</i> -Bu		221 dec	0.14	5% acetone/ 95% CH ₂ Cl ₂	409 (M+H)+ [FAB]	C2a
198	<i>t</i> -Bu		196- 198	0.17	5% MeOH/ 95% CH ₂ Cl ₂	368 (M+H)+ [FAB]	A2, B3h, C3a
199	<i>t</i> -Bu		204- 206	0.27	50% EtOAc/ 50% pet ether	383 (M+H)+ [FAB]	A2, B3a, C3a
200	<i>t</i> -Bu		179- 180			351 (M+H)+ [FAB]	A2, C3a
201	<i>t</i> -Bu			0.33	50% EtOAc/ 50% pet ether	414 (M+) [EI]	A2, B4a, C3a
202	<i>t</i> -Bu		188- 189	0.49	50% EtOAc/ 50% pet ether	399 (M+H)+ [HPLC ES-MS]	A2, B4a, C3a
203	<i>t</i> -Bu		179- 180	0.14	5% MeOH/ 95% CH ₂ Cl ₂	395 (M+H)+ [FAB]	A2, B4a, C3a
204	<i>t</i> -Bu		197- 199	0.08	10% acetone/ 90% CH ₂ Cl ₂	353 (M+H)+ [FAB]	A2, B3h, C3a
205	<i>t</i> -Bu		136- 139	0.33	50% EtOAc/ 50% pet ether	421 (M+H)+ [FAB]	A2, B3h, C3a
206	<i>t</i> -Bu		213 dec	0.05	5% acetone/ 95% CH ₂ Cl ₂	369 (M+H)+ [FAB]	C3a

207	<i>t</i> -Bu			0.60	5% MeOH/ 95% CH ₂ Cl ₂	274 (M+H) ⁺ [FAB]	C2a
208	<i>t</i> -Bu		118- 121	0.19	5% MeOH/ 95% CH ₂ Cl ₂	387 (M+H) ⁺ [FAB]	A2, B4a, C3a
209	<i>t</i> -Bu		217- 219	0.18	5% MeOH/ 95% CHCl ₃		A2, C3b
210	<i>t</i> -Bu			0.48	50% EtOAc/ 50% hexane	394 (M+H) ⁺ [HPLC ES-MS]	C8
211	<i>t</i> -Bu			0.17	30% EtOAc/ 70% hexane	364 (M+H) ⁺ [HPLC ES-MS]	C8
212	<i>t</i> -Bu			0.79	70% EtOAc/ 30% hexane	421 (M+H) ⁺ [HPLC ES-MS]	B3a step 1, B3d step 2, C3a
213	<i>t</i> -Bu			0.50	50% EtOAc/ 50% hexane	407 (M+H) ⁺ [HPLC ES-MS]	B3a step 1, B3d step 2, C3a
214	<i>t</i> -Bu		182- 185	0.25	5% MeOH/ 45% EtOAc/ 50% hexane	424 (M+H) ⁺ [HPLC ES-MS]	C3b, D5b
215	<i>t</i> -Bu		198- 200	0.20	5% MeOH/ 45% EtOAc/ 50% hexane	444 (M+H) ⁺ [HPLC ES-MS]	C3b, D5b
216	<i>t</i> -Bu			0.24	50% EtOAc/ 50% pet ether	426 (M+H) ⁺ [HPLC ES-MS]	C3b
217	<i>t</i> -Bu		215- 217			426 (M+H) ⁺ [HPLC ES-MS]	C3b
218	<i>t</i> -Bu		188- 200	0.22	50% EtOAc/ 50% pet ether	410 (M+H) ⁺ [HPLC ES-MS]	C3b

219	<i>t</i> -Bu		214-215	0.35	5% acetone/ 95% CH ₂ Cl ₂		A2, C2b
220	<i>t</i> -Bu		180				C3b
221	<i>t</i> -Bu		160-162	0.58	50% EtOAc/ 50% pet ether	336 (M+) [Cl]	C3b
222	<i>t</i> -Bu			0.18	50% EtOAc/ 50% pet ether		C3b
223	<i>t</i> -Bu		163-165	0.21	5% MeOH/ 95% CH ₂ Cl ₂	453 (M+H)+ [HPLC ES-MS]	C3b
224	<i>t</i> -Bu		208-212	0.17	5% MeOH/ 95% CH ₂ Cl ₂	353 (M+H)+ [FAB]	C3b
225	<i>t</i> -Bu		109-112	0.17	5% MeOH/ 95% CH ₂ Cl ₂	369 (M+H)+ [FAB]	C3b
226	<i>t</i> -Bu		155-156	0.57	10% MeOH/ CH ₂ Cl ₂	453 (M+H)+ [FAB]	C3b
227	<i>t</i> -Bu		231-234	0.54	10% MeOH/ CH ₂ Cl ₂	534 (M+H)+ [FAB]	C3b
228	<i>t</i> -Bu		179-180	0.24	5% MeOH/ 95% CHCl ₃		A2, C3b
229	<i>t</i> -Bu			0.30	5% MeOH/ 95% CHCl ₃	370 (M+H)+ [FAB]	A2, C3b
230	<i>t</i> -Bu		178-180	0.20	5% MeOH/ 95% CHCl ₃		A2, C3b
231	<i>t</i> -Bu		186-187	0.20	5% MeOH/ 95% CHCl ₃		A2, C3b
232	<i>t</i> -Bu		149-152	0.28	5% MeOH/ 95% CHCl ₃		A2, C3b
233	<i>t</i> -Bu		210-213	0.06	10% MeOH/ CH ₂ Cl ₂	421 (M+H)+ [FAB]	C3b

234	<i>t</i> -Bu		132-133	0.43	5% MeOH/ 95% CHCl ₃		A2, C3b
235	<i>t</i> -Bu		71-73	0.27	5% MeOH/ 95% CHCl ₃		A2, C3b
236	<i>t</i> -Bu		176-177	0.44	10% MeOH/ CH ₂ Cl ₂	437 (M+H) ⁺ [FAB]	C3b
237	<i>t</i> -Bu			0.09	50% EtOAc/ 50% hexane	351 (M+H) ⁺ [HPLC ES-MS]	C8
238	<i>t</i> -Bu			0.16	50% EtOAc/ 50% hexane	403 (M+H) ⁺ [HPLC ES-MS]	C8
239	<i>t</i> -Bu			0.15	50% EtOAc/ 50% hexane	381 (M+H) ⁺ [HPLC ES-MS]	C8
240	<i>t</i> -Bu		215-216	0.19	100% EtOAc	370 (M+H) ⁺ [HPLC ES-MS]	C3b
241	<i>t</i> -Bu			0.42	5% MeOH/ 95% CH ₂ Cl ₂		
242	<i>t</i> -Bu			0.74	100% EtOAc	366 (M+H) ⁺ [HPLC ES-MS]	B4b, C8
243	<i>t</i> -Bu			0.12	30% EtOAc/ 70% hexane	421 (M+H) ⁺ [HPLC ES-MS]	C8
245	<i>t</i> -Bu			0.68	100% EtOAc	368 (M+H) ⁺ [HPLC ES-MS]	B4b, C8
246	<i>t</i> -Bu		142-144	0.13	5% MeOH/ 45% EtOAc/ 50% hexane		A2, C3b
247	<i>t</i> -Bu		205-207	0.31	50% EtOAc/ 50% pet ether	410 (M+H) ⁺ [HPLC ES-MS]	C3b
248			154-155	0.50	50% EtOAc/ 50% pet ether	365 (M ⁺) [EI]	C1b

249			160-162	0.37	5% acetone/ 95% CH2Cl2	380 (M+H)+ [FAB]	C1b
250			196-199	0.58	5% acetone/ 95% CH2Cl2	342 (M+H)+ [FAB]	C1b
251			137-138	0.25	5% acetone/ 95% CH2Cl2	396 (M+H)+ [FAB]	A2, B3a, C3a
252				0.18	5% MeOH/ CHCl3	364 (M+) [EI]	A2, C3a
253			215-221 dec			383 (M+H)+ [FAB]	A2, B4a, C3a
254			187-188	0.42	10% MeOH/ CHCl3	383 (M+H)+ [FAB]	A2, B4a, C3a
255			90-92	0.19	30% EtOAc/ 70% pet ether	366 (M+) [EI]	A2, C3a
257			199-200	0.33	70% EtOAc/ 30% pet ether	423 (M+H)+ [FAB]	A2, B3e, C3a
258			117-119	0.14	5% MeOH/ 95% CHCl3		A2, C3b
259				0.37	75% EtOAc/ 25% hexane	409 (M+H)+ [HPLC ES-MS]	C8
260			194-195	0.25	50% EtOAc/ 50% pet ether	424 (M+H)+ [HPLC ES-MS]	C3b
261			216-217	0.20	50% EtOAc/ 50% pet ether	424 (M+H)+ [HPLC ES-MS]	C3b
262			62-65	0.18	5% MeOH/ 95% CHCl3		A2, C3b
263			86-89	0.16	5% MeOH/ 95% CHCl3	-	A2, C3b

264			145-146	0.32	5% MeOH/ 95% CHCl3		A2, C3b
265				0.23	5% MeOH/ 95% CHCl3	381 (M+H)+ [FAB]	A2, C3b
266				0.20	5% acetone/ 95% CH2Cl2	396 (M+H)+ [FAB]	A2, C3b
267				0.38	50 % EtOAc/ 50% hexane	366 (M+H)+ [HPLC ES-MS]	C8
268				0.14	50 % EtOAc/ 50% hexane	367 (M+H)+ [HPLC ES-MS]	C8
269				0.21	50 % EtOAc/ 50% hexane	383 (M+H)+ [HPLC ES-MS]	C8
270				0.10	50 % EtOAc/ 50% hexane	365 (M+H)+ [HPLC ES-MS]	C8
271				0.14	50 % EtOAc/ 50% hexane	365 (M+H)+ [HPLC ES-MS]	C8
272				0.35	50% EtOAc/ 50% hexane	382 (M+H)+ [HPLC ES-MS]	C8
273				0.48	50% EtOAc/ 50% hexane	382 (M+H)+ [HPLC ES-MS]	C8
274				0.20	100% EtOAc	367 (M+H)+ [HPLC ES-MS]	B4b, C8
275				0.56	100% EtOAc	435 (M+H)+ [HPLC ES-MS]	B4b, C8
276				0.57	75% EtOAc/ 25% hexane	383 (M+H)+ [HPLC ES-MS]	C8
277				0.40	100% EtOAc		B3f, C8

278			63-65			410 (M+H)+ [FAB]	A2, C3a			
279										Table 3. N'-Substituted-3-tert-butyl-5-pyrazolyl Ureas

5

Ex.	R ¹	R ²	mp (°C)	TLC R _f	Solvent System	Mass Spec. [Source]	Synth. Method
289	H			0.07	50% EtOAc/ 50% hexane	393 (M+H)+ [HPLC ES-MS]	C8
290	H		181-183			381 (M+H)+ [FAB]	C2b

			102				
291	H			0.30	50% EtOAc/ 50% hexane	365 (M+H)+ [HPLC ES-MS]	C8
292	H					366 (M+H)+ [FAB]	C8
293	H			0.53	50% EtOAc/ 50% hexane	398 (M+H)+ [HPLC ES-MS]	C8
294	H					369 (M+H)+ [HPLC ES-MS]	C8
295	H			0.27	50% EtOAc/ 50% hexane	351 (M+H)+ [FAB]	C1c
296	H			0.59	50% EtOAc/ 50% hexane	327 (M+H)+ [FAB]	C1c
297	H			0.30	60% acetone/ 40% CH2Cl2	350 (M+H)+ [FAB]	C4a
298	H			0.07	5% MeOH/ 95% CHCl3	368 (M+H)+ [FAB]	B4a, C4a
299	H			0.18	5% MeOH/ 95% CHCl3	367 (M+) [EI]	B4a, C4a
300	H			160-161		408 (M+H)+ [FAB]	A5, B6, C3b isolated at TFA salt
301	H			228-232 dec	0.24	10% MeOH/ CHCl3	351 (M+) [EI]
302	H			204	0.06	5% acetone/ 95% CH2Cl2	364 (M+) [EI]
303	H			110-111	0.05	5% acetone/ 95% CH2Cl2	408 (M+H+)
304	Me				0.10	20% acetone/ 80% CH2Cl2	380 (M+H)+ [FAB]
							C4a

305	Me		99-101	0.19	100% EtOAc	452 (M+H)+ [HPLC ES-MS]	B3a step 1, B12, D5b step 2, C3a
306	Me			0.48	30% acetone/ 70% CH2Cl2	378 (M+H)+ [FAB]	B1, C3a
307	Me		135-137	0.03	30% EtOAc/ 70% hexane	408 (M+H)+ [HPLC ES-MS]	C3a
308	Me			0.35	70% acetone/ 30% CH2Cl2	382 (M+H)+ [FAB]	B4a, C4a
309	Me			0.46	70% acetone/ 30% CH2Cl2	382 (M+H)+ [FAB]	B4a, C4a
310	Me			0.32	70% acetone/ 30% CH2Cl2	450 (M+H)+ [FAB]	B3b, C4a
311	Me			0.09	50% EtOAc/ 50% hexane	381 (M+H)+ [FAB]	C4a
312	Me			0.61	100% EtOAc	397 (M+H)+ [FAB]	B3c, C4a
313	Me			0.25	50% EtOAc/ 50% hexane	453 (M+H)+ [FAB]	B5, C4a
314	Me			0.65	100% EtOAc	462 (M+H)+ [FAB]	B6, C4a
315	Me			0.67	100% EtOAc	478 (M+H)+ [FAB]	B6, C4a
316	Me			0.50	100% EtOAc	378 (M+H)+ [FAB]	C4a
317	Me			0.33	100% EtOAc	420 (M+H)+ [FAB]	C4a, D3
318	Me			0.60	10% water/ 90% CH3CN	478 (M+H)+ [FAB]	C4a, D3

319	Me			0.55	100% EtOAc	434 (M+H)+ [FAB]	C4a, D3
320	Me			0.52	100% EtOAc	380 (M+H)+ [FAB]	C4a
321	Me			0.25	60% acetone/ 40% CH2Cl2	366 (M+H)+ [FAB]	C4a
322	Me			0.52	100% EtOAc	452 (M+H)+ [FAB]	C4a, D3
323	Me			0.34	60% acetone/ 40% CH2Cl2	396 (M+H)+ [FAB]	C4a
324	Me			0.36	60% acetone/ 40% CH2Cl2	396 (M+H)+ [FAB]	C4a
325	Me		147-149			365 (M+H)+ [FAB]	C1c
326	Me		161-162	0.15	4% MeOH/ 96% CH2Cl2	364 (M+H)+ [FAB]	C2b
327	Me		228 dec			379 (M+H)+ [FAB]	C2b
328	Me			0.30	5% MeOH/ 95% CH2Cl2	422 (M+H)+ [FAB]	C2b
329	Me			0.46	100% EtOAc	464 (M+H)+ [FAB]	B3c, C4a
330	Me			0.52	100% EtOAc	506 (M+H)+ [FAB]	B3c, C4a
331	Me			0.75	100% EtOAc	421 (M+H)+ [FAB]	B3c, C4a
332	Me			0.50	100% EtOAc	465 (M+H)+ [FAB]	B3c, C4a
333	Me			0.50	100% EtOAc	349 (M+H)+ [FAB]	C4a

334	Me			0.60	100% EtOAc	4 ⁻¹ (M-H) ⁺ [FAB]	B2, C4a
335	Me			0.52	100% EtOAc	466 (M+H) ⁺ [FAB]	C4a, D3
336	Me			0.42	100% EtOAc	439 (M+H) ⁺ [FAB]	B5, C4a
337	-CH ₂ -CF ₃					433 (M+H) ⁺ [FAB]	C3a
338	-(CH ₂) ₂ CN			0.37	50% EtOAc/50% hexane	404 (M+H) ⁺ [HPLC ES-MS]	A3, C1b
339			159-161			508 (M+H) ⁺ [FAB]	A5, B6, C2b

Table 4. 5-Substituted-2-thiadiazolyl Ureas

Entry	R ¹	R ²	mp (°C)	TLC R _f	Solvent System	Mass Spec [Source]	Synth. Method
340	t-Bu			0.37	5% MeOH/ 95% CH ₂ Cl ₂	399 (M+H) ⁺ [FAB]	B3a, C3a
341	t-Bu			0.26	5% MeOH/ 95% CH ₂ Cl ₂	370 (M+H) ⁺ [FAB]	C3a
342	t-Bu					386 (M+H) ⁺ [FAB]	B4a, C3a
343	t-Bu			0.30	5% acetone/ 95% CH ₂ Cl ₂	383 (M+H) ⁺ [FAB]	C1b
344	t-Bu			0.60	10% MeOH/ CH ₂ Cl ₂	412 (M+H) ⁺ [FAB]	C3b
345	t-Bu		245- 250	0.23	100% EtOAc	456 (M+H) ⁺ [HPLC ES-MS]	B3a step 1, B12, D5b step 2, C3a
346	t-Bu			0.10	50% EtOAc/ 50% pet ether		C3b
347	t-Bu			0.13	50% EtOAc/ 50% pet ether	441 (M+H) ⁺ [HPLC ES-MS]	C3b
348	t-Bu			0.14	5% MeOH/ 45% EtOAc/ 50% hexane	441 (M+H) ⁺ [HPLC ES-MS]	C3b, D5b
349	t-Bu			0.23	5% MeOH/ 45% EtOAc/ 50% hexane	461 (M+H) ⁺ [HPLC ES-MS]	C3b, D5b
350	t-Bu			0.09	5% MeOH/ 45% EtOAc/ 50% hexane	461 (M+H) ⁺ [HPLC ES-MS]	C3b, D5b

107							
351	<i>t</i> -Bu			0.13	5% MeOH/ 45% EtOAc/ 50% hexane	441 (M+H) [HPLC ES-MS]	C3b, D5b
352	<i>t</i> -Bu		159- 160	0.10	50% EtOAc/ 50% pet ether	427 (M+H) [HPLC ES-MS]	C3b
353	<i>t</i> -Bu			0.47	10% MeOH/ CH2Cl2	438 (M+H) [FAB]	C3b
354	<i>t</i> -Bu			0.31	10% MeOH/ CH2Cl2	371 (M+H) [FAB]	C3b
355	<i>t</i> -Bu			0.51	10% MeOH/ CH2Cl2	400 (M+H) [FAB]	C3b
356	<i>t</i> -Bu			0.43	10% MeOH/ CH2Cl2	385 (M+H) [FAB]	C3b
357	<i>t</i> -Bu			0.70	10% MeOH/ CH2Cl2	416 (M+H) [FAB]	C3b
358	<i>t</i> -Bu			0.11	50% EtOAc/ 50% hexane	438 (M+H) [HPLC ES-MS]	C8
359	<i>t</i> -Bu			0.06	5% MeOH/ 95% CH2Cl2	432 (M+H) [FAB]	C3b
360	<i>t</i> -Bu			0.20	50% EtOAc/ 50% hexane	385 (M+H) [HPLC ES-MS]	C8
361	<i>t</i> -Bu		107- 110	0.05	30% EtOAc/ 70% hexane	412 (M+H) [HPLC ES-MS]	C3a
362	<i>t</i> -Bu			0.16	100% EtOAc	370 (M+H) [HPLC ES-MS]	C8
363	Me Et			0.12	100% EtOAc		C4a, D5b
364	Me Et		183- 185				B3d step 2, C3a
365	Me Et			0.19	6% MeOH/ 94% CHCl3	413 (M+H) [FAB]	A6, C3b

108

366			248-249	0.34	6% MeOH/ 94% CHCl3		A6, C3b
367				0.20		400 (M+H)+ [FAB]	A6, C3b
368			182-183	0.33	5% MeOH/ 95% CHCl3		A6, C3b
369			180-181	0.19	5% MeOH/ 95% CHCl3		A6, C3b
370			168-169	0.24	5% MeOH/ 95% CHCl3		A6, C3b
371			168-171	0.17	6% MeOH/ 94% CHCl3		A6, C3b
372			156-158	0.19	6% MeOH/ 94% CHCl3		A6, C3b

Table 5. 5-Substituted-3-thienyl Ureas

Entry	R ¹	R ²	mp (°C)	TLC R _r	Solvent System	Mass Spec.	Synth. Method
373	t-Bu		144-145	0.68	5% acetone/ 95% CH ₂ Cl ₂		A4b, C1a
374	t-Bu			0.52	30% Et ₂ O/ 70% pet ether	381 (M+H) ⁺ [HPLC ES-MS]	
375	t-Bu			0.26	30% Et ₂ O/ 70% pet ether	397 (M+H) ⁺ [HPLC ES-MS]	need recipie
376	t-Bu			0.28	50% Et ₂ O/ 50% pet ether	368 (M+H) ⁺ [HPLC ES-MS]	need recipie
377	t-Bu		57			381 (M+H) ⁺ [FAB]	A4a
378	t-Bu			0.15	50% EtOAc/ 50% pet ether	365 (M ⁺) [EI]	A4a
379	t-Bu			0.44	50% EtOAc/ 50% pet ether	383 (M+H) ⁺ [FAB]	A4a
380	t-Bu					384 (M+H) ⁺ [FAB]	A4a
381	t-Bu		176-177	0.45	20% EtOAc/ 80% hexane	425 (M+H) ⁺ [FAB]	D2

5 Table 5. Additional Ureas

Entry	R ²	mp (°C)	TLC R _r	Solvent System	Mass Spec. [Source]	Synth. Method
382		161-163	0.71	20% EtOAc/ 80% hexane	367 (M+H) ⁺ , 369 (M+3) ⁺ [FAB]	D1

		110					
383			145-147	0.57	5% MeOH/ 95% CHCl ₃		A2, C3b
384			132-135	0.33	5% acetone/ 95% CH ₂ Cl ₂	339 (M+H) ⁺ [HPLC ES- MS]	A9, C1d
385				0.60	50% EtOAc/ 50% hexane	462 (M+H) ⁺ [HPLC ES- MS]	C8
386				0.28	5% acetone/ 95% CH ₂ Cl ₂	339 (M+H) ⁺ [FAB]	A7, C1d
387						340 (M+H) ⁺ [FAB]	B3b step 1,2, C1d
388			174-5			424 (M+H) ⁺ [HPLC ES- MS]	B4b, C8
389			198-200				C3b, D5b
390			169-170	0.23	100% EtOAc		B4b, C8
391			167-171	0.12	100% EtOAc		B4b, C8
392				0.08	50% EtOAc/ 50% hexane	400 (M+H) ⁺ [HPLC ES- MS]	C8

393			0.55	90% EtOAc/ 10% hexane	443 (M+H)+ [FAB]	B10, B4b, C2b
394		230 dec			377 (M+H)+ [HPLC ES-MS]	C5
395			0.48	50% EtOAc/ 50% hexane	383 (M+H)+ [FAB]	C8
396					417 (M+H)+ [HPLC ES-MS]	C8
397		155-157	0.44	5% acetone/ 95% CH2Cl2	380 (M+H)+ [FAB]	C1b

5

BIOLOGICAL EXAMPLESIn Vitro raf Kinase Assay:

In an in vitro kinase assay, raf is incubated with MEK in 20 mM Tris-HCl, pH 8.2 containing 2 mM 2-mercaptoethanol and 100 mM NaCl. This protein solution (20 μ L) is mixed with water (5 μ L) or with compounds diluted with distilled water from 10 mM stock solutions of compounds dissolved in DMSO. The kinase reaction is initiated by adding 25 μ L [γ - 33 P]ATP (1000-3000 dpm/pmol) in 80 mM Tris-HCl, pH 7.5, 120 mM NaCl, 1.6 mM DTT, 16 mM MgCl₂. The reaction mixtures are incubated at 32 °C, usually for 22 min. Incorporation of 33 P into protein is assayed by harvesting the reaction onto phosphocellulose mats, washing away free counts with a 1% phosphoric acid solution and quantitating phosphorylation by liquid scintillation counting. For high throughput screening, 10 μ M ATP and 0.4 μ M MEK are used. In some experiments, the kinase reaction is stopped by adding an equal amount of Laemmli sample buffer. Samples are boiled 3 min and the proteins resolved by

112

electrophoresis on 7.5% Laemmli gels. Gels are fixed, dried and exposed to an imaging plate (Fuji). Phosphorylation is analyzed using a Fujix Bio-Imaging Analyzer System.

All compounds exemplified displayed IC₅₀s of between 1 nM and 10 µM.

5

Cellular Assay:

For in vitro growth assay, human tumor cell lines, including but not limited to HCT116 and DLD-1, containing mutated K-ras genes are used in standard proliferation assays for anchorage dependent growth on plastic or anchorage independent growth in soft agar. Human tumor cell lines were obtained from ATCC (Rockville MD) and maintained in RPMI with 10% heat inactivated fetal bovine serum and 200 mM glutamine. Cell culture media and additives are obtained from Gibco/BRL (Gaithersburg, MD) except for fetal bovine serum (JRH Biosciences, Lenexa, KS). In a standard proliferation assay for anchorage dependent growth, 3 X 10³ cells are seeded into 96-well tissue culture plates and allowed to attach overnight at 37 °C in a 5% CO₂ incubator. Compounds are titrated in media in dilution series and added to 96 well cell cultures. Cells are allowed to grow 5 days typically with a feeding of fresh compound containing media on day three. Proliferation is monitored by measuring metabolic activity with standard XTT colorimetric assay (Boehringer Mannheim) measured by standard ELISA plate reader at OD 490/560, or by measuring ³H-thymidine incorporation into DNA following an 8 h culture with 1 µCi ³H-thymidine, harvesting the cells onto glass fiber mats using a cell harvester and measuring ³H-thymidine incorporation by liquid scintillant counting.

For anchorage independent cell growth, cells are plated at 1 x 10³ to 3 x 10³ in 0.4% Seaplaque agarose in RPMI complete media, overlaying a bottom layer containing only 0.64% agar in RPMI complete media in 24-well tissue culture plates. Complete media plus dilution series of compounds are added to wells and incubated at 37 °C in a 5% CO₂ incubator for 10-14 days with repeated feedings of fresh media containing compound at 3-4 day intervals. Colony formation is monitored and total cell mass, average colony size and number of colonies are quantitated using image capture technology and image analysis software (Image Pro Plus, media Cybernetics).

These assays establish that the compounds of Formula I are active to inhibit raf kinase activity and to inhibit oncogenic cell growth.

5 **In Vivo Assay:**

An in vivo assay of the inhibitory effect of the compounds on tumors (e.g., solid cancers) mediated by raf kinase can be performed as follows:

10 CDI nu/nu mice (6-8 weeks old) are injected subcutaneously into the flank at 1×10^6 cells with human colon adenocarcinoma cell line. The mice are dosed i.p., i.v. or p.o. at 10, 30, 100, or 300 mg/Kg beginning on approximately day 10, when tumor size is between 50-100 mg. Animals are dosed for 14 consecutive days once a day; tumor size was monitored with calipers twice a week.

15 The inhibitory effect of the compounds on raf kinase and therefore on tumors (e.g., solid cancers) mediated by raf kinase can further be demonstrated in vivo according to the technique of Monia et al. (*Nat. Med.* 1996, 2, 668-75).

20 The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.

25 From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

10 **WHAT IS CLAIMED IS:**

1. A method for the treatment of cancerous cell growth mediated by raf kinase comprising administering a compound of formula I

15 wherein B is a substituted or unsubstituted, up to tricyclic, aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 5- or 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and X_n, wherein n is 0-3 and each X is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R⁵, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, C₄-C₂₃ alk heteroaryl, substituted C₁-C₁₀ alkyl, substituted C₂-C₁₀ alkenyl, substituted C₁-C₁₀ alkoxy, substituted C₃-C₁₀ cycloalkyl, substituted C₄-C₂₃ alk heteroaryl and -Y-Ar;

20 wherein if X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵R⁵, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and halogen up to per-halo substitution;

25 wherein R⁵ and R⁵ are independently selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alk heteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₂-C₁₀

115

alkenyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ heteroaryl,

wherein Y is -O-, -S-, -N(R^j)-, -(CH₂)_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR^jC(O)NR^s-, -NR^sC(O)-, -C(O)NR^s-, -(CH₂)_mS-, -(CH₂)_mN(R^j)-, -O(CH₂)_m-, -CHX^a, -CX^a₂-, -S-(CH₂)_m- and -N(R^j)(CH₂)_m-,

5 m = 1-3, and X^a is halogen; and

Ar is a 5-10 member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, =O, -CO₂R^s, -C(O)NR^sR^s, -C(O)- NR^s, -NO₂, -OR^s, -SR^s, -NR^sR^s, -NR^sC(O)OR^s, -C(O)R^s, -NR^sC(O)R^s, -SO₂R^s, SO₂NR^sR^s, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R^s, -C(O)NR^sR^s, =O, -OR^s, -SR^s, -NO₂, -NR^sR^s, -NR^sC(O)R^s, -NR^sC(O)OR^s, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₃-C₁₃ heteroaryl, C₆-C₁₄ aryl, C₄-C₂₄ alkheteroaryl and C₇-C₂₄ alkaryl, and

10
15
20

A is a heteroaryl moiety selected from the group consisting of

wherein

15

R^1 is selected from the group consisting of halogen, $C_3\text{-}C_{10}$ alkyl, $C_3\text{-}C_{10}$ cycloalkyl, $C_1\text{-}C_{13}$ heteroaryl, $C_6\text{-}C_{14}$ aryl, $C_7\text{-}C_{24}$ alkaryl, up to per-halosubstituted $C_1\text{-}C_{10}$ alkyl, up to per-halosubstituted $C_3\text{-}C_{10}$ cycloalkyl, up to per-halosubstituted $C_1\text{-}C_{13}$ heteroaryl, up to per-halosubstituted $C_6\text{-}C_{14}$ aryl, and up to per-halosubstituted $C_7\text{-}C_{24}$ alkaryl;

20

R^2 is selected from the group consisting of H, $-C(O)R^4$, $-CO_2R^4$, $-C(O)NR^3R^3$, $C_1\text{-}C_{10}$ alkyl, $C_3\text{-}C_{10}$ cycloalkyl, $C_7\text{-}C_{24}$ alkaryl, $C_4\text{-}C_{23}$ alkheteroaryl, substituted $C_1\text{-}C_{10}$ alkyl, substituted $C_3\text{-}C_{10}$ cycloalkyl, substituted $C_7\text{-}C_{24}$ alkaryl and substituted $C_4\text{-}C_{23}$ alkheteroaryl,

25

where R^2 is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of $-CN$, $-CO_2R^4$, $-C(O)-NR^3R^3$, $-NO_2$, $-OR^4$, $-SR^4$, and halogen up to per-halosubstitution,

30

wherein R^3 and R^3 are independently selected from the group consisting of H, $-OR^4$, $-SR^4$, $-NR^4R^4$, $-C(O)R^4$, $-CO_2R^4$, $-C(O)NR^4R^4$, $C_1\text{-}C_{10}$ alkyl, $C_3\text{-}C_{10}$ cycloalkyl, $C_6\text{-}C_{14}$ aryl, $C_3\text{-}C_{13}$ heteroaryl, $C_7\text{-}C_{24}$ alkaryl, $C_4\text{-}C_{23}$ alkheteroaryl, up to per-halosubstituted $C_1\text{-}C_{10}$ alkyl, up to per-halosubstituted $C_3\text{-}C_{10}$ cycloalkyl, up to per-

117

halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{11} heteroaryl; and wherein R^4 and $R^{4'}$ are independently selected from the group consisting of H, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl; C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} heteroaryl,

5 R^a is C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl and up to per-halosubstituted C_3 - C_{10} cycloalkyl; and

R^b is hydrogen or halogen,

10 R^c is hydrogen, halogen, C_1 - C_{10} alkyl, up to per-halosubstituted C_1 - C_{10} alkyl or combines with R^1 and the ring carbon atoms to which R^1 and R^c are bound to form a 5- or 6-membered cycloalkyl, aryl or hetaryl ring with 0-2 members selected from O, N and S;

subject to the proviso that where A is

15 B is not

wherein $n = 2-4$,

or

118

2. A method as in claim 1, wherein B is up to a tricyclic aromatic ring structure selected from the group consisting of

5

which is substituted or unsubstituted by halogen, up to per-halosubstitution, and wherein

n = 0-3 and

each X is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R⁵, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, C₄-C₂₃ alk heteroaryl, and substituted C₁-C₁₀ alkyl, substituted C₂-C₁₀ alkenyl, substituted C₁-C₁₀ alkoxy, substituted C₃-C₁₀ cycloalkyl, substituted C₄-C₂₃ alk heteroaryl and -Y-Ar;

10 15 wherein if X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵R⁵, NO₂, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and halogen up to per-halosubstitution;

wherein R⁵ and R⁵ are independently selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alk heteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₂-C₁₀

119

alkenyl, up to per-halo substituted C₃-C₁₀ cycloalkyl, up to per-halo substituted C₆-C₁₄ aryl and up to per-halo substituted C₃-C₁₃ heteroaryl,

wherein Y is -O-, -S-, -N(R⁵)-, -(CH₂)_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁵C(O)NR⁵-, -NR⁵C(O)-, -C(O)NR⁵-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -O(CH₂)_m-, 5 -CHX^a, -CX^a₂-, -S-(CH₂)_m- and -N(R⁵)(CH₂)_m-,
m = 1-3, and X^a is halogen; and

Ar is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halo substitution and optionally substituted by Z_{n1}, wherein n1 is 0 to 10 3 and each Z is independently selected from the group consisting of -CN, =O, -CO₂R⁵, -C(O)NR⁵R⁵, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R⁵, -NR⁵C(O)OR⁵, -C(O)R⁵, -NR⁵C(O)R⁵, -SO₂R⁵, -SO₂R⁵R⁵, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alk heteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alk heteroaryl; wherein if Z is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NO₂, -NR⁵R⁵, =O, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₃-C₁₃ heteroaryl, C₆-C₁₄ aryl, C₄-C₂₄ alk heteroaryl and C₇-C₂₄ alkaryl.

20

3. A method of claim 1, wherein B is

wherein

Y is selected from the group consisting of -O-, -S-, -CH₂-, -SCH₂-, -CH₂S-, -CH(OH)-, -C(O)-, -CX^a₂, -CX^aH-, -CH₂O- and -OCH₂-, 25

X^a is halogen,

Q is a six member aromatic structure containing 0-2 nitrogen, substituted or unsubstituted by halogen, up to per-halo substitution;

120

Q^1 is a mono- or bicyclic aromatic structure of 3 to 10 carbon atoms and 0-4 members of the group consisting of N, O and S, unsubstituted or unsubstituted by halogen up to per-halosubstitution,

X, Z, n and n_1 are as defined in claim 1, and s = 0 or 1.

5

4. A method as in claim 3, wherein

Q is phenyl or pyridinyl, substituted or unsubstituted by halogen, up to per-halosubstitution,

10 Q^1 is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinoline, isoquinoline, imidazole and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo substitution, or Y-Q 1 is phthalimidinyl substituted or unsubstituted by halogen up to per-halo substitution, and

15 Z and X are independently selected from the group consisting of -R 6 , -OR 6 and -NHR 7 , wherein R 6 is hydrogen, C₁-C₁₀-alkyl or C₃-C₁₀-cycloalkyl and R 7 is selected from the group consisting of hydrogen, C₃-C₁₀-alkyl, C₃-C₆-cycloalkyl and C₆-C₁₀-aryl, wherein R 6 and R 7 can be substituted by halogen or up to per-halosubstitution.

20 5. A method as in claim 1, comprising administering a compound of the formula

wherein R 1 and R 2 and B are as defined in claim 1.

6. A method as in claim 5, wherein B is of the formula

25 wherein Q is phenyl or pyridinyl, Q 1 is pyridinyl, phenyl or benzothiazolyl, Y is -O-,

121

$-S-$, $-CH_2S-$, $-SCH_2-$, $-CH_2O-$, $-OCH_2-$ or $-CH_2-$, and Z is $-SCH_3$, or $-NH-C(O)-C_pH_{2p-1}$, wherein p is 1-4, $n = 0$, $s = 1$ and $n1 = 0-1$.

5 7. A method as in claim 1 comprising administering a compound selected from the group consisting of

- $N-(3\text{-}tert\text{-}Butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(4\text{-}phenyloxophenyl)urea;$
- $N-(3\text{-}tert\text{-}Butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(3\text{-}(3\text{-}methylaminocarbonylphenyl)oxyphenyl)urea;$
- 10 $N-(3\text{-}tert\text{-}Butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(3\text{-}(4\text{-}pyridinyl)thiophenyl)urea;$
- $N-(3\text{-}tert\text{-}Butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(4\text{-}(4\text{-}pyridinyl)thiophenyl)urea;$
- $N-(3\text{-}tert\text{-}Butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(4\text{-}(4\text{-}pyridinyl)oxyphenyl)urea;$
- $N-(3\text{-}tert\text{-}Butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(4\text{-}(4\text{-}pyridinyl)methylphenyl)urea;$
- 15 $N-(1\text{-}Methyl\text{-}3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(4\text{-}phenyloxophenyl)urea;$
- $N-(1\text{-}Methyl\text{-}3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(3\text{-}(4\text{-}pyridinyl)thiophenyl)urea;$
- $N-(1\text{-}Methyl\text{-}3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}((4\text{-}(4\text{-}pyridinyl)thiomethyl)phenyl)urea;$
- 20 $N-(1\text{-}Methyl\text{-}3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(4\text{-}(4\text{-}pyridinyl)thiophenyl)urea;$
- $N-(1\text{-}Methyl\text{-}3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(4\text{-}(4\text{-}pyridinyl)oxyphenyl)urea;$
- $N-(1\text{-}Methyl\text{-}3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}((4\text{-}(4\text{-}pyridinyl)methoxy)phenyl)urea;$
- $N-(1\text{-}Methyl\text{-}3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(3\text{-}(2\text{-}benzothiazolyl)oxyphenyl)urea;$
- 25 $N-(3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(3\text{-}(4\text{-}pyridyl)thiophenyl)urea;$
- $N-(3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(4\text{-}(4\text{-}pyridyl)thiophenyl)urea;$
- $N-(3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(3\text{-}(4\text{-}pyridyl)oxyphenyl)urea;$
- $N-(3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(4\text{-}(4\text{-}pyridyl)oxyphenyl)urea;$
- 30 $N-(1\text{-}methyl\text{-}3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(3\text{-}(4\text{-}pyridyl)thiophenyl)urea;$
- $N-(1\text{-}methyl\text{-}3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(4\text{-}(4\text{-}pyridyl)thiophenyl)urea;$
- $N-(1\text{-}methyl\text{-}3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(3\text{-}(4\text{-}pyridyl)oxyphenyl)urea;$
- $N-(1\text{-}methyl\text{-}3\text{-}tert\text{-}butyl\text{-}5\text{-}pyrazolyl)\text{-}N'\text{-}(4\text{-}(4\text{-}pyridyl)oxyphenyl)urea;$

and pharmaceutically acceptable salts thereof.

35 8. A method as in claim 5, wherein R^1 is t-butyl.

122

9. A method as in claim 1 comprising administering a compound of the formula

wherein R^1 and B are as defined in claim 1.

5 10. A method as in claim 9, wherein B is of the formula

Q is phenyl or pyridinyl, Q^1 is pyridinyl, phenyl or benzothiazolyl, Y is $-\text{O}-$, $-\text{S}-$, $-\text{C}(\text{O})-$ or $-\text{CH}_2-$, X is $-\text{CH}_3$ and Z is $-\text{NH}-\text{C}(\text{O})-\text{C}_p\text{H}_{2p+1}$, wherein p is 1-4, $-\text{CH}_3$, $-\text{OH}$, $-\text{OCH}_3$, $-\text{C}_2\text{H}_5$, $-\text{CN}$ or $-\text{C}(\text{O})\text{CH}_3$, $n = 0$ or 1, $s = 0$ or 1 and $n1 = 0$ or 1.

10 11. A method as in claim 1 comprising administering a compound selected from the group consisting of:

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-hydroxyphenyl)oxyphenyl)urea;
N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(3-hydroxyphenyl)oxyphenyl)urea;
N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-acetylphenyl)oxyphenyl)urea;
15 *N*-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(3-benzoylphenyl)urea;
N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-phenyloxyphenyl)urea;
N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(3-methylaminocarbonylphenyl)-thiophenyl)urea;
20 *N*-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-(1,2-methylenedioxy)phenyl)oxyphenyl)urea;
N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(3-pyridinyl)oxyphenyl)urea;
N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-pyridinyl)oxyphenyl)urea;
N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-pyridyl)thiophenyl)urea;
25 *N*-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-pyridinyl)methylphenyl)urea;
N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(3-(4-pyridinyl)oxyphenyl)urea;
N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(3-(4-pyridinyl)thiophenyl)urea;
N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(3-(3-methyl-4-pyridinyl)oxyphenyl)urea;
30 *N*-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(3-(3-methyl-4-pyridinyl)thiophenyl)urea;

123

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(3-methyl-4-pyridinyl)thiophenyl)urea;
N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(3-(4-methyl-3-pyridinyl)oxyphenyl)urea;
N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(3-methyl-4-pyridinyl)oxyphenyl)urea;
N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(3-(2-benzothiazolyl)oxyphenyl)urea;
5 *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(3-chloro-4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;
10 *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(3-(4-(2-methylcarbamoyl)pyridyl)-thiophenyl) urea;

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(2-methyl-4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;
15 *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-(2-carbamoyl)pyridyl)oxyphenyl) urea;

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(3-(4-(2-carbamoyl)pyridyl)oxyphenyl) urea;
15 *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(3-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-(2-methylcarbamoyl)pyridyl)-thiophenyl) urea;
20 *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(3-chloro-4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(3-methylcarbamoyl)phenyl)oxygenphenyl) urea; and pharmaceutically acceptable salts thereof.

12. A method as in claim 10, wherein R¹ is t-butyl.

25

13. A method as in claim 1 comprising administering a compound of the formula

wherein R¹ and B are as defined in claim 1.

30

14. A method as in claim 13, wherein B is of the formula

Q is phenyl or pyridinyl, *Q'* is phenyl, benzothiazolyl or pyridinyl, *Ys* -O-, -S- or -CH₂-, *Z* is -CH₃, -Cl, -OC₂H₅ or -OCH₃, *n* = 0, *s* = 1, and *n1* = 0 or 1.

15. A method as in claim 1 comprising administering a compound selected from the group consisting of

- 5 *N*-(3-Isopropyl-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)thiophenyl)urea;
- N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-(4-methoxyphenyl)oxyphenyl)urea;
- N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(5-(2-(4-acetylphenyl)oxy)pyridinyl)urea;
- N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(3-(4-pyridinyl)thiophenyl)urea;
- N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)methylphenyl)urea;
- 10 *N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)thiophenyl)urea;
- N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)oxyphenyl)urea;
- N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(4-(4-methyl-3-pyridinyl)oxygenyl)urea;
- N*-(3-*tert*-Butyl-5-isoxazolyl)-*N'*-(3-(2-benzothiazolyl)oxyphenyl)urea;
- N*-(3-(1,1-Dimethylpropyl)-5-isoxazolyl)-*N'*-(4-(4-
- 15 methylphenyl)oxyphenyl)urea;
- N*-(3-(1,1-Dimethylpropyl)-5-isoxazolyl)-*N'*-(3-(4-pyridinyl)thiophenyl)urea;
- N*-(3-(1,1-Dimethylpropyl)-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)oxygenyl)urea;
- N*-(3-(1,1-Dimethylpropyl)-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)thiophenyl)urea;
- N*-(3-(1,1-Dimethylpropyl)-5-isoxazolyl)-*N'*-(5-(2-(4-
- 20 methoxyphenyl)oxy)pyridinyl)urea;
- N*-(3-(1-Methyl-1-ethylpropyl)-5-isoxazolyl)-*N'*-(4-(4-pyridinyl)oxyphenyl)urea;
- N*-(3-(1-Methyl-1-ethylpropyl)-5-isoxazolyl)-*N'*-(3-(4-pyridinyl)thiophenyl)urea;
- 25 *N*-(3-isopropyl-5-isoxazolyl)-*N'*-(3-(4-(2-methylcarbamoyl)pyridinyl)-oxygenyl)urea;
- N*-(3-isopropyl-5-isoxazolyl)-*N'*-(4-(4-(2-methylcarbamoyl)pyridinyl)-oxygenyl)urea;
- N*-(3-*tert*-butyl-5-isoxazolyl)-*N'*-(3-(4-(2-methylcarbamoyl)pyridinyl)-oxygenyl)urea;
- 30 *N*-(3-*tert*-butyl-5-isoxazolyl)-*N'*-(4-(4-(2-methylcarbamoyl)pyridinyl)-oxygenyl)urea;
- N*-(3-*tert*-butyl-5-isoxazolyl)-*N'*-(3-(4-(2-methylcarbamoyl)pyridinyl)-thiophenyl)urea;
- 35 *N*-(3-(1,1-dimethylprop-1-yl)-5-isoxazolyl)-*N'*-(3-(4-(2-methylcarbamoyl)pyridinyl)-oxygenyl)urea;

N-(3-(1,1-dimethylprop-1-yl)-5-isoxazolyl)-*N'*-(4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea

5 *N*-(3-*tert*-butyl-5-isoxazolyl)-*N'*-(3-chloro-4-(4-(2-methylcarbamoyl)pyridyl)-thiophenyl) urea
and pharmaceutically acceptable salts thereof.

16. A method as in claim 13, wherein R¹ is t-butyl.

10 17. A method as in claim 1 comprising administering a compound of the formula

wherein R¹, R^b and B are as defined in claim 1.

18. A method as in claim 17, wherein B is of the formula

$$\begin{array}{c} X_n \\ | \\ -Q-(Y-Q')_s-Z_{n1} \end{array}$$

15 wherein Q is phenyl, Q' is phenyl or pyridinyl, Y is -O- or -S-, Z is -Cl, -CH₃, -OH or OCH₃, n = 0, s = 0 or 1 and n1 = 0-2.

19. A method as in claim 1 comprising administering a compound selected from the group consisting of:

20 *N*-(5-*tert*-Butyl-3-thienyl)-*N'*-(4-(3-methylphenyl)oxyphenyl)urea;
N-(5-*tert*-Butyl-3-thienyl)-*N'*-(4-(4-hydroxyphenyl)oxyphenyl)urea;
N-(5-*tert*-Butyl-3-thienyl)-*N'*-(4-(4-methoxyphenyl)oxyphenyl)urea;
N-(5-*tert*-Butyl-3-thienyl)-*N'*-(4-(4-pyridinyl)thiophenyl)urea;
and pharmaceutically acceptable salts thereof.

25 20. A method as in claim 17, wherein R¹ is t-butyl.

126

21. A method as in claim 1 comprising administering a compound of the formula

wherein R^a and B are as defined in claim 1.

5 22. A method as in claim 21, wherein B is of the formula

10 23. A method as in claim 2 comprising administering a compound selected from the group consisting of:

N-(5-tert-Butyl-2-(1-thia-3,4-diazolyl))-N'-(3-(4-pyridinyl)thiophenyl)urea;
N-(5-tert-Butyl-2-(1-thia-3,4-diazolyl))-N'-(4-(4-pyridinyl)oxyphenyl)urea;
 and pharmaceutically acceptable salts thereof.

15 24. A method as in claim 21, wherein R^a is CF_3 - or t-butyl.

25. A method as in claim 1 comprising administering a compound of one of the formulae

or

127

wherein R¹ and B are as defined in claim 1.

26. A method as in claim 25, wherein B is up to per-halosubstituted phenyl, up to perhalosubstituted pyridinyl, or of the formula

5 wherein Q is phenyl, Q¹ is phenyl or pyridinyl, and Y is -O- or -S-, Z is -Cl, -CH₃, -OH or -OCH₃, n = 0, s = 0 or 1 and n1 = 0-2.

27. A method as in claim 25, wherein R¹ is t-butyl.

10 28. A method as in claim 1, comprising administering a compound of the formulae

wherein R¹ and R^b and B are as defined in claim 1.

29. A method as in claim 28, wherein B is of the formula

15

wherein Q is phenyl, Q¹ is phenyl or pyridinyl, and Y is -O- or -S-, Z is -Cl or -OCH₃, n = 0, s = 0 or 1 and n1 = 0-2.

30. A method as in claim 28, wherein R¹ is t-butyl.

20

31. A compound of the formula

5 wherein R² is selected from the group consisting of H, -C(O)R⁴, -CO₂R⁴, -C(O)NR³R³, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl, where if R² is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN,

10 -CO₂R⁴, -C(O)-NR³R³, -NO₂, -OR⁴, -SR⁴, and halogen up to per-halosubstitution, wherein R³ and R³ are independently selected from the group consisting of H, -OR⁴, -SR⁴, -NR⁴R⁴, -C(O)R⁴, -CO₂R⁴, -C(O)NR⁴R⁴, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ heteroaryl; and

15 wherein R⁴ and R⁴ are independently selected from the group consisting of H, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl; C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ heteroaryl,

20 wherein R¹ is selected from the group consisting of halogen, C₃-C₁₀ alkyl, C₁-C₁₃ heteroaryl, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₁-C₁₀ alkyl and up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₁-C₁₃-heteroaryl, up to per-halosubstituted C₆-C₁₄-aryl, and up to per-halosubstituted C₇-C₂₄-alkaryl;

25 R^c is hydrogen, halogen, C₁-C₁₀-alkyl, up to per-halosubstituted C₁-C₁₀-alkyl or combines with R¹ and the ring carbon atoms to which R¹ and R^c are bound to form a 5 or 6 member cycloalkyl, aryl or heteroaryl ring with 0-2 members selected from O, N, and S,

30 B is up to a tricyclic aromatic ring structure selected from the group consisting of:

which is substituted or unsubstituted by halogen, up to per-halosubstitution, and wherein n = 0-2; each X¹ is independently selected from the group of X or from the
 5 group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -NO₂, -NR⁵R⁵, C₁-C₁₀ alkyl, C₂₋₁₀-alkenyl, C₁₋₁₀-alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl and C₇-C₂₄ alkaryl, and X is selected from the group consisting of -SR⁵, -NR⁵C(O)OR⁵, NR⁵C(O)R⁵, C₃-C₁₃ heteroaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₂₋₁₀-alkenyl, substituted C₁₋₁₀-alkoxy, substituted C₃-C₁₀ cycloalkyl, substituted C₆-C₁₄ aryl,
 10 substituted C₇-C₂₄ alkaryl, substituted C₃-C₁₃ heteroaryl, substituted C₄-C₂₃ alkheteroaryl, and -Y-Ar,
 15

wherein if X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵R⁵, NO₂, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and halogen up to per-halosubstitution;

wherein R⁵ and R⁵ are independently selected from H, C₁-C₁₀ alkyl, C₂₋₁₀-alkenyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl; up to per-halosubstituted C₂₋₁₀-alkenyl; up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ heteroaryl,
 20

wherein Y is -O-, -S-, -N(R⁵)-, -(CH₂)_m-C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁵C(O)NR⁵R⁵-, -NR⁵C(O)-, -C(O)NR⁵-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -O(CH₂)_m-,
 -CHX^a, -CX^a₂-, -S-(CH₂)_m- and -N(R⁵)(CH₂)_m-,

m = 1-3, and X^a is halogen; and

25 Ar is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by

130

halogen up to per-halo and optionally substituted by Z_{n1} , wherein $n1$ is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, =O, -C(O)NR⁵R⁵, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, -SO₂R⁵, -SO₂R⁵R⁵, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein if Z is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R⁵, =O, -OR⁵, -SR⁵, -NO₂, -NR⁵R⁵, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₄-C₂₄ alkheteroaryl, and C₇-C₂₄ alkaryl, subject to the proviso that where R¹ is t-butyl and R² is methyl, B is not

15

32. A compound of claim 31, wherein B is

wherein

Y is selected from the group consisting of -O-, -S-, -CH₂-, -SCH₂-, -CH₂S-, -CH(OH)-, -C(O)-, -CX^a₂, -CX^aH-, -CH₂O-, and -OCH₂-,

X^a is halogen,

Q is a six member aromatic structure containing 0-2 nitrogen, substituted or unsubstituted by halogen, up to per-halosubstitution;

Q¹ is a mono- or bicyclic aromatic structure of 3 to 10 carbon atoms and 0-4 members of the group consisting of N, O and S, unsubstituted or unsubstituted by halogen up to per-halosubstitution,

X, Z, n and n1 are as defined in claim 31 and s = 0 or 1.

33. A compound of claim 32, wherein

131

Q is phenyl or pyridinyl, substituted or unsubstituted by halogen, up to per-halo substitution,

5 Q¹ is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinoline, isoquinoline, imidazole and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo, or -Y-Q¹ is phthalimidinyl substituted or 10 unsubstituted by halogen up to per-halo substitution, and

Z and X are independently selected from the group consisting of -R⁶, -OR⁶ and -NHR⁷, wherein R⁶ is hydrogen, C₁-C₁₀-alkyl or C₃-C₁₀-cycloalkyl and R⁷ is selected from the group consisting of hydrogen, C₃-C₁₀-alkyl, C₃-C₆-cycloalkyl and 15 C₆-C₁₀-aryl, wherein R⁶ and R⁷ can be substituted by halogen or up to per-halo substitution.

34. A compound of claim 32, wherein Q is phenyl or pyridinyl; Q¹ is pyridinyl, phenyl or benzothiazolyl, Y is -O-, -S-, -CH₂S-, -SCH₂-, -CH₂O-, -OCH₂- or -CH₂-, and Z is -SCH₃, or -NH-C(O)-C_pH_{2p+1}, wherein p is 1-4, n = 0, s = 1 and n1 = 0-1.

35. A compound of claim 31 of the formula

wherein R² and B are as defined in claim 31.

20

36. A compound as in claim 31 selected from the group consisting of:

N-(3-*tert*-Butyl-5-pyrazolyl)-N'-(4-phenyloxyphenyl)urea;

25 N-(3-*tert*-Butyl-5-pyrazolyl)-N'-(3-(3-methylaminocarbonylphenyl)oxyphenyl)urea;

N-(3-*tert*-Butyl-5-pyrazolyl)-N'-(3-(4-pyridinyl)thiophenyl)urea;

N-(3-*tert*-Butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl)thiophenyl)urea;

N-(3-*tert*-Butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl)oxyphenyl)urea;

N-(3-*tert*-Butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl)methylphenyl)urea;

N-(1-Methyl-3-*tert*-butyl-5-pyrazolyl)-N'-(4-phenyloxyphenyl)urea;

30 N-(1-Methyl-3-*tert*-butyl-5-pyrazolyl)-N'-(3-(4-pyridinyl)thiophenyl)urea;

132

5 *N*-(1-Methyl-3-*tert*-butyl-5-pyrazolyl)-*N'*-(4-(4-pyridinyl)thiomethyl)phenyl)urea;
N-(1-Methyl-3-*tert*-butyl-5-pyrazolyl)-*N'*-(4-(4-pyridinyl)thiophenyl)urea;
N-(1-Methyl-3-*tert*-butyl-5-pyrazolyl)-*N'*-(4-(4-pyridinyl)oxyphenyl)urea;
N-(1-Methyl-3-*tert*-butyl-5-pyrazolyl)-*N'*-(4-(4-pyridinyl)methoxyphenyl)urea;
N-(1-Methyl-3-*tert*-butyl-5-pyrazolyl)-*N'*-(3-(2-benzothiazolyl)oxyphenyl)urea;
 10 *N*-(3-*tert*-butyl-5-pyrazolyl)-*N'*-(3-(4-pyridyl)thiophenyl) urea;
N-(3-*tert*-butyl-5-pyrazolyl)-*N'*-(4-(4-pyridyl)thiophenyl) urea;
N-(3-*tert*-butyl-5-pyrazolyl)-*N'*-(3-(4-pyridyl)oxyphenyl) urea;
N-(3-*tert*-butyl-5-pyrazolyl)-*N'*-(4-(4-pyridyl)oxyphenyl) urea;
N-(1-methyl-3-*tert*-butyl-5-pyrazolyl)-*N'*-(3-(4-pyridyl)thiophenyl) urea;
N-(1-methyl-3-*tert*-butyl-5-pyrazolyl)-*N'*-(4-(4-pyridyl)thiophenyl) urea;
 15 *N*-(1-methyl-3-*tert*-butyl-5-pyrazolyl)-*N'*-(3-(4-pyridyl)oxyphenyl) urea;
N-(1-methyl-3-*tert*-butyl-5-pyrazolyl)-*N'*-(4-(4-pyridyl)oxyphenyl) urea;

and pharmaceutically acceptable salts thereof.

20 37. A compound of the formula

wherein R¹ is selected from the group consisting of halogen, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl,

25 C₁₋₁₃-heteroaryl, C₆₋₁₄-aryl, C₇₋₂₄-alkaryl, up to per-halosubstituted C₁-C₁₀ alkyl and per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₁₋₁₃-heteroaryl, up to per-halosubstituted C₆₋₁₄-aryl, and up to per-halosubstituted C₇₋₂₄-alkaryl;

B is up to a tricyclic aromatic ring structure selected from the group consisting of

which is substituted or unsubstituted by halogen, up to per-halosubstitution, and wherein n = 0-2;

each X¹ is independently selected from the group of X or from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -NO₂, -NR⁵R⁵, C₁-C₁₀ alkyl, C₂₋₁₀-alkenyl, C₁₋₁₀-alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl and C₇-C₂₄ alkaryl, and X is selected from the group consisting of -SR⁵, -NR⁵C(O)OR⁵, NR⁵C(O)R⁵, C₃-C₁₃ heteroaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₂₋₁₀-alkenyl, substituted C₁₋₁₀-alkoxy, substituted C₃-C₁₀ cycloalkyl, substituted C₆-C₁₄ aryl, substituted C₇-C₂₄ alkaryl, substituted C₃-C₁₃ heteroaryl, substituted C₄-C₂₃ alkheteroaryl, and -Y-Ar, and

wherein if X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵R⁵, NO₂, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and halogen up to per-halosubstitution;

wherein R⁵ and R^{5'} are independently selected from H, C₁-C₁₀ alkyl, C₂₋₁₀-alkenyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₂₋₁₀-alkenyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ heteroaryl,

134

wherein Y is -O-, -S-, -N(R⁵)-, -(CH₂)_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁵C(O)NR⁵-, -NR⁵C(O)-, -C(O)NR⁵-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -O(CH₂)_m-, -CHX^a, -CX^a₂-, -S-(CH₂)_m- and -N(R⁵)(CH₂)_m-,

m = 1-3, and X^a is halogen; and

5 Ar is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, =O, -C(O)NR⁵R⁵, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, -SO₂R⁵, -SO₂R⁵R⁵, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein if Z is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R⁵, =O, -OR⁵, -SR⁵, -NO₂, -NR⁵R⁵, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₃-C₁₃ heteroaryl, C₆-C₁₄ aryl, C₄-C₂₃ alkheteroaryl, and C₇-C₂₄ alkaryl,

15 subject to the proviso that where R¹ is t-butyl,
B is not

20

wherein R⁶ is -NHC(O)-O-t-butyl, -O-n-pentyl, -O-n-butyl, -O-n-propyl, -C(O)NH-(CH₂)₂, -OCH₂CH(CH₃)₂, or

25 38. A compound of claim 37, wherein B is

wherein

SUBSTITUTE SHEET (RULE 26)

135

Y is selected from the group consisting of -O-, -S-, -CH₂-, -SCH₂-, -CH₂S-, -CH(OH)-, -C(O)-, -CX^a, -CX'H-, -CH₂O- and -OCH₂-,

X^a is halogen,

5 Q is a six member aromatic structure containing 0-2 nitrogen; substituted or unsubstituted by halogen, up to per-halosubstitution;

Q¹ is a mono- or bicyclic aromatic structure of 3 to 10 carbon atoms and 0-4 members of the group consisting of N, O and S, unsubstituted or unsubstituted by halogen up to per-halosubstitution,

X, Z, n and n1 are as defined in claim 37 and s = 0 or 1.

10

39. A compound of claim 38, wherein

Q is phenyl or pyridinyl, substituted or unsubstituted by halogen, up to per-halosubstitution,

15 Q¹ is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinoline, isoquinoline, imidazole and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo, or -Y-Q¹ is phthalimidinyl substituted or unsubstituted by halogen up to per-halosubstitution, and

20 Z and X are independently selected from the group consisting of -R⁶, -OR⁶ and -NHR⁷, wherein R⁶ is hydrogen, C₁-C₁₀-alkyl or C₃-C₁₀-cycloalkyl and R⁷ is selected from the group consisting of hydrogen, C₃-C₁₀-alkyl, C₃-C₆-cycloalkyl and C₆-C₁₀-aryl, wherein R⁶ and R⁷ can be substituted by halogen or up to per-halosubstitution.

25 **40. A compound of claim 38, wherein Q is phenyl or pyridinyl, Q¹ is pyridinyl, phenyl or benzothiazolyl, Y is -O-, -S-, -C(O)- or -CH₂-, and Z is-NH-C(O)-C_pH_{2p+1}, wherein p is 1-4, -CH₃, -OH, -OCH₃, -OC₂H₅, -CN or -C(O)CH₃, n = 0 or 1, s = 0 or 1 and n1 = 0 or 1.**

30 **41. A compound as in claim 22 selected from the group consisting of:**
N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-(4-hydroxyphenyl)oxyphenyl)urea;
N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-(3-hydroxyphenyl)oxyphenyl)urea;
N-(5-tert-Butyl-3-isoxazolyl)-N'-(4-(4-acetylphenyl)oxyphenyl)urea;
N-(5-tert-Butyl-3-isoxazolyl)-N'-(3-benzoylphenyl)urea;

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*¹³⁶-(4-phenyloxyphenyl)urea;

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(3-methylaminocarbonylphenyl)-thiophenyl)urea;

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-(1,2-methylenedioxy)phenyl)-oxyphenyl)urea;

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(3-pyridinyl)oxyphenyl)urea;

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-pyridinyl)oxyphenyl)urea;

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-pyridyl)thiophenyl)urea;

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(4-pyridinyl)methylphenyl)urea;

10 *N*-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(3-(4-pyridinyl)oxyphenyl)urea;

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(3-(4-pyridinyl)thiophenyl)urea;

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(3-(3-methyl-4-pyridinyl)oxyphenyl)urea;

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(3-(3-methyl-4-pyridinyl)thiophenyl)urea;

15 *N*-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(4-(3-methyl-4-pyridinyl)thiophenyl)urea;

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(3-(4-methyl-3-pyridinyl)oxyphenyl)urea;

N-(5-*tert*-Butyl-3-isoxazolyl)-*N'*-(3-(2-benzothiazolyl)oxyphenyl)urea;

20 *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(3-chloro-4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(3-(4-(2-methylcarbamoyl)pyridyl)-thiophenyl) urea;

25 *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(2-methyl-4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-(2-carbamoyl)pyridyl)oxyphenyl) urea;

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(3-(4-(2-carbamoyl)pyridyl)oxyphenyl) urea;

30 *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(3-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(4-(2-methylcarbamoyl)pyridyl)-thiophenyl) urea;

N-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(3-chloro-4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;

35 *N*-(5-*tert*-butyl-3-isoxazolyl)-*N'*-(4-(3-methylcarbamoyl)phenyl)oxyphenyl) urea;

and pharmaceutically acceptable salts thereof.

137

42. A compound of claim 37 of the formula

wherein B is as defined in claim 37.

5

43. A compound of the formula

wherein R¹ is selected from the group consisting of halogen, C₁-C₁₀ alkyl, C₁₋₁₃-heteroaryl, C₆₋₁₄-aryl, C₇₋₂₄-alkaryl, C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₁-C₁₀ alkyl, per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₁₋₁₃-heteroaryl, up to per-halosubstituted C₆₋₁₄-aryl, and up to per-halosubstituted C₇₋₂₄-alkaryl; and

10

B is an aromatic ring structure selected from the group consisting of

which is substituted or unsubstituted by halogen, up to per-halosubstitution, and wherein n = 0-2;

5 each X¹ is independently selected from the group of X or from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -NO₂, -NR⁵R⁵, C₁-C₁₀ alkyl, C₂₋₁₀-alkenyl, C₁₋₁₀-alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl and C₇-C₂₄ alkaryl, and

10 X is selected from the group consisting of -SR⁵, -NR⁵C(O)OR⁵, NR⁵C(O)R⁵, C₃-C₁₃ heteroaryl, C₄-C₂₃ alkoheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₂₋₁₀-alkenyl, substituted C₁₋₁₀-alkoxy, substituted C₃-C₁₀ cycloalkyl, substituted C₆-C₁₄ aryl, substituted C₇-C₂₄ alkaryl, substituted C₃-C₁₃ heteroaryl, substituted C₄-C₂₃ alkoheteroaryl, and -Y-Ar, and wherein if X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵R⁵, NO₂, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and halogen up to per-halosubstitution;

15 wherein R⁵ and R⁵ are independently selected from H, C₁-C₁₀ alkyl, C₂₋₁₀-alkenyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkoheteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₂₋₁₀-alkenyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ heteroaryl,

20 wherein Y is -O-, -S-, -N(R⁵)-, -(CH₂)_m-, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁵C(O)NR⁵R⁵-, -NR⁵C(O)-, -C(O)NR⁵-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -O(CH₂)_m-, -CHX^a, -CX^a₂-, -S-(CH₂)_m- and -N(R⁵)(CH₂)_m-,

m = 1-3, and X^a is halogen; and

Ar is a 5- or 6-member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, =O, -C(O)NR⁵R⁵, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, -SO₂R⁵, -SO₂R⁵R⁵, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkoheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₂₋₁₀-alkenyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkoheteroaryl; wherein if Z is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R⁵, =O,

139
 -OR^5 , -SR^5 , -NO_2 , $\text{-NR}^5\text{R}^5'$, $\text{-NR}^5\text{C(O)R}^5$ and $\text{-NR}^5\text{C(O)OR}^5$, $\text{C}_1\text{-C}_{10}$ alkyl, $\text{C}_1\text{-C}_{10}$ alkoxy, $\text{C}_3\text{-C}_{10}$ cycloalkyl, $\text{C}_3\text{-C}_{13}$ heteroaryl, $\text{C}_6\text{-C}_{14}$ aryl, $\text{C}_4\text{-C}_{24}$ alkheteroaryl and $\text{C}_7\text{-C}_{24}$ alkaryl,

and where R^1 is t-butyl, B is not

5

and where R^1 is $-\text{CH}_2\text{-t-butyl}$,

B is not

44. A compound of claim 43, wherein B is

10 wherein

Y is selected from the group consisting of $-\text{O}-$, $-\text{S}-$, $-\text{CH}_2-$, $-\text{SCH}_2-$, $-\text{CH}_2\text{S}-$, $-\text{CH(OH)}-$, $-\text{C(O)}-$, $-\text{CX}'_2$, $-\text{CX}'\text{H}-$, $-\text{CH}_2\text{O}-$ and $-\text{OCH}_2-$,

X' is halogen,

15 Q is a six member aromatic structure containing 0-4 nitrogen, substituted or unsubstituted by halogen, up to per-halosubstitution;

Q¹ is a mono- or bicyclic aromatic structure of 3 to 10 carbon atoms and 0-2 members of the group consisting of N, O and S, unsubstituted or unsubstituted by halogen up to per-halosubstitution,

X, Z, n and n1 are as defined in claim 43 and s = 0 or 1.

20

45. A compound of claim 44, wherein

Q is phenyl or pyridinyl, substituted or unsubstituted by halogen, up to per-halosubstitution,

140

Q^1 is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinoline, isoquinoline, imidazole and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo, or $-Y-Q^1$ is phthalimidinyl substituted or unsubstituted by halogen up to per-halosubstitution, and

5 Z and X are independently selected from the group consisting of $-R^6$, $-OR^6$ and $-NHR^7$, wherein R^6 is hydrogen, C_1-C_{10} -alkyl or C_3-C_{10} -cycloalkyl and R^7 is selected from the group consisting of hydrogen, C_1-C_{10} -alkyl, C_3-C_6 -cycloalkyl and C_6-C_{10} -aryl, wherein R^6 and R^7 can be substituted by halogen or up to per-halosubstitution.

10

46. A compound of claim 43 of the formula

wherein B is as defined in claim 43.

15 47. A compound of claim 44, wherein Q is phenyl or pyridinyl, Q^1 is phenyl, benzothiazolyl or pyridinyl, Y is $-O-$, $-S-$ or $-CH_2-$, Z is $-CH_3$, $-Cl-$, OC_2H_5 or $-OCH_3$, n = 0, s = 1, and n1 = 0 or 1.

20 48. A compound as in claim 43 selected from the group consisting of:

N -(3-Isopropyl-5-isoxazolyl)- N' -(4-(4-pyridinyl)thiophenyl)urea;

25 N -(3-*tert*-Butyl-5-isoxazolyl)- N' -(4-(4-methoxyphenyl)oxyphenyl)urea;

N -(3-*tert*-Butyl-5-isoxazolyl)- N' -(5-(2-(4-acetylphenyl)oxy)pyridinyl)urea;

N -(3-*tert*-Butyl-5-isoxazolyl)- N' -(3-(4-pyridinyl)thiophenyl)urea;

N -(3-*tert*-Butyl-5-isoxazolyl)- N' -(4-(4-pyridinyl)methylphenyl)urea;

N -(3-*tert*-Butyl-5-isoxazolyl)- N' -(4-(4-pyridinyl)thiophenyl)urea;

30 N -(3-*tert*-Butyl-5-isoxazolyl)- N' -(4-(4-pyridinyl)oxyphenyl)urea;

N -(3-*tert*-Butyl-5-isoxazolyl)- N' -(4-(4-methyl-3-pyridinyl)oxyphenyl)urea;

N -(3-*tert*-Butyl-5-isoxazolyl)- N' -(3-(2-benzothiazolyl)oxyphenyl)urea;

N -(3-(1,1-Dimethylpropyl)-5-isoxazolyl)- N' -(4-(4-methylphenyl)oxyphenyl)urea;

N -(3-(1,1-Dimethylpropyl)-5-isoxazolyl)- N' -(3-(4-pyridinyl)thiophenyl)urea;

141

N -(3-(1,1-Dimethylpropyl)-5-isoxazolyl)- N' -(4-(4-pyridinyl)oxyphenyl)urea;
 N -(3-(1,1-Dimethylpropyl)-5-isoxazolyl)- N' -(4-(4-pyridinyl)thiophenyl)urea;
 N -(3-(1,1-Dimethylpropyl)-5-isoxazolyl)- N' -(5-(2-(4-methoxyphenyl)oxy)pyridinyl)urea;
5 N -(3-(1-Methyl-1-ethylpropyl)-5-isoxazolyl)- N' -(4-(4-pyridinyl)oxyphenyl)urea;
 N -(3-(1-Methyl-1-ethylpropyl)-5-isoxazolyl)- N' -(3-(4-pyridinyl)thiophenyl)urea;
10 N -(3-isopropyl-5-isoxazolyl)- N' -(3-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;
 N -(3-isopropyl-5-isoxazolyl)- N' -(4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;
 N -(3-*tert*-butyl-5-isoxazolyl)- N' -(3-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;
15 N -(3-*tert*-butyl-5-isoxazolyl)- N' -(4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;
 N -(3-*tert*-butyl-5-isoxazolyl)- N' -(3-(4-(2-methylcarbamoyl)pyridyl)-thiophenyl) urea;
 N -(3-(1,1-dimethylprop-1-yl)-5-isoxazolyl)- N' -(3-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;
20 N -(3-(1,1-dimethylprop-1-yl)-5-isoxazolyl)- N' -(4-(4-(2-methylcarbamoyl)pyridyl)oxyphenyl) urea;
 N -(3-*tert*-butyl-5-isoxazolyl)- N' -(3-chloro-4-(4-(2-methylcarbamoyl)pyridyl)-thiophenyl) urea;
25 and pharmaceutically acceptable salts thereof.

49. A compound of the formula

wherein R^1 is selected from the group consisting of halogen, C_3 - C_{10} alkyl, C_{1-13} -heteroaryl, C_{6-14} -aryl, C_{7-24} -alkaryl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl and up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_{1-13} -
30

142

heteroaryl, up to per-halosubstituted C₆₋₁₄-aryl, and up to per-halosubstituted C₇₋₂₄-alkaryl;

R^b is hydrogen or halogen and

B is an aromatic ring structure selected from the group consisting of

5

or

which is substituted or unsubstituted by halogen, up to per-halosubstitution, and

wherein n = 0-2; each X' is independently selected from the group consisting of X or from the group consisting of, -CN, -OR⁵, -NR⁵R⁵, C₁-C₁₀ alkyl; and

10 X is selected from the group consisting of -CO₂R⁵, -C(O)NR⁵R⁵, -C(O)R⁵, -NO₂, -SR⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, C₁-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, C₄-C₂₃ alkheteroaryl, and substituted C₁-C₁₀ alkyl, substituted C₂₋₁₀-alkenyl, substituted C₁₋₁₀-alkoxy, substituted C₃-C₁₀ cycloalkyl, substituted C₆-C₁₄ aryl, substituted C₇-C₂₄ alkaryl, substituted C₃-C₁₃ heteroaryl, substituted C₄-C₂₃ alkheteroaryl, and -Y-Ar,

15 wherein if X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵R⁵, -NO₂, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and
halogen up to per-halo substitution;

143

wherein Rⁱ and R^j are independently selected from H, C₁-C₁₀ alkyl, C₂₋₁₀-alkenyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₂₋₁₀-alkenyl; up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ heteroaryl,

wherein Y is -O-, -S-, -N(R⁵)-, -(CH₂)_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁵C(O)NR⁵-, -NR⁵C(O)-, -C(O)NR⁵-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -O(CH₂)_m-, -CHX^a, -CX^a₂-, -S-(CH₂)_m- and -N(R⁵)(CH₂)_m-, m = 1-3, and X^a is halogen; and

Ar is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, =O, -C(O)NR⁵R⁵, -C(O)-NR⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, -SO₂R⁵, -SO₂R⁵R⁵, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R⁵, =O, -OR⁵, -SR⁵, -NO₂, -NR⁵R⁵, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₃-C₁₃ heteroaryl, C₆-C₁₄ aryl, C₄-C₂₄ alkheteroaryl, and C₇-C₂₄ alkaryl,

subject to the proviso that where R¹ is t-butyl and R^b is H, B is not of the formula

25

50. A compound of claim 49, wherein B is

144

wherein

Y is selected from the group consisting of -O-, -S-, -CH₂-, -SCH₂-, -CH₂S-, -CH(OH)-, -C(O)-, -CX^a, -CX^aH-, -CH₂O- and -OCH₂-,

X^a is halogen,

5 Q is a six member aromatic structure containing 0-2 nitrogen, substituted or unsubstituted by halogen, up to per-halo substitution;

Q¹ is a mono- or bicyclic aromatic structure of 3 to 10 carbon atoms and 0-4 members of the group consisting of N, O and S, unsubstituted or unsubstituted by halogen up to per-halo substitution,

10 X, Z, n and n1 are as defined in claim 49 and s is 0 or 1.

51. A compound of claim 50, wherein

Q is phenyl or pyridinyl, substituted or unsubstituted by halogen, up to per-halo substitution,

15 Q¹ is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinoline, isoquinoline, imidazole and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo, or -Y- Q¹ is phthalimidinyl substituted or unsubstituted by halogen up to per-halo substitution, and

20 Z and X are independently selected from the group consisting of -R⁶, -OR⁶ and -NHR⁷, wherein R⁶ is hydrogen, C₁-C₁₀-alkyl or C₃-C₁₀-cycloalkyl and R⁷ is selected from the group consisting of hydrogen, C₃-C₁₀-alkyl, C₃-C₆-cycloalkyl and C₆-C₁₀-aryl, wherein R⁶ and R⁷ can be substituted by halogen or up to per-halo substitution.

25 **52. A compound of the formula**

wherein B is as defined in claim 49.

53. A compound of claim 50, wherein Q is phenyl, Q' is phenyl or pyridinyl, and Y is -O- or -S-, Z is -Cl, -CH₂, -OH or -OCH₃, n = 0, s = 0 or 1 and n1 = 0-2.

5

54. A compound as in claim 49 selected from the group consisting of:

N-(5-*tert*-Butyl-3-thienyl)-*N'*-(4-(3-methylphenyl)oxyphenyl)urea;

N-(5-*tert*-Butyl-3-thienyl)-*N'*-(4-(4-hydroxyphenyl)oxyphenyl)urea;

N-(5-*tert*-Butyl-3-thienyl)-*N'*-(4-(4-methoxyphenyl)oxyphenyl)urea;

10 *N*-(5-*tert*-Butyl-3-thienyl)-*N'*-(4-(4-pyridinyl)thiophenyl)urea;
and pharmaceutically acceptable salts thereof.

55. A compound of the formula

15 wherein R^a is C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₁-C₁₀ alkyl and per-halosubstituted C₃-C₁₀ cycloalkyl;

and B is an aromatic ring structure selected from the group consisting of

which is substituted or unsubstituted by halogen, up to per-halosubstitution, and wherein n = 0-2,

5 each X¹ is independently selected from the group consisting of X or from the group consisting of -CN, -NO₂, -OR⁵ and C₁-C₁₀ alkyl, and

X is selected from the group consisting of -SR⁵, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -NR⁵R⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, -C₃-C₁₀ cycloalkyl, -C₆-C₁₄ aryl, -C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, C₄-C₂₃ alkheteroaryl, and substituted C₁-C₁₀ alkyl, 10 substituted C₂-C₁₀ alkenyl, substituted C₁-C₁₀ alkoxy, substituted C₃-C₁₀ cycloalkyl, substituted aryl, substituted alkaryl, substituted heteroaryl, substituted C₄-C₂₃ alkheteroaryl and -Y-Ar;

wherein if X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵R⁵, -NO₂, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and halogen up to per-halosubstitution;

15 wherein R⁵ and R⁵ are independently selected from H, C₁-C₁₀ alkyl, C₂-C₁₀-alkenyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₂-C₁₀-alkenyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-hal substituted C₃-C₁₃ heteroaryl,

wherein Y is -O-, -S-, -N(R⁵)-, -(CH₂)_m, -C(O)-, -CH(OH)-, -(CH₂)_nO-, -NR⁵C(O)NR⁵R⁵-, -NR⁵C(O)-, -C(O)NR⁵-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -O(CH₂)_m-, -CHX^a, -CX^a-, -S-(CH₂)_m- and -N(R⁵)(CH₂)_n-, m = 1-3, and X^a is halogen; and

Ar is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, =O, -C(O)NR⁵R⁵, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, -SO₂R⁵, -SO₂R⁵R⁵, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alk heteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alk heteroaryl; wherein if Z is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R⁵, =O, -OR⁵, -SR⁵, -NO₂, -NR⁵R⁵, -NR⁵C(O)R⁵ and -NR⁵C(O)OR⁵, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₃-C₁₃ heteroaryl, C₆-C₁₄ aryl, C₄-C₂₄ alk heteroaryl, and C₇-C₂₄ alkaryl.

56. A compound as in claim 55, wherein B is

20

wherein

Y is selected from the group consisting of -O-, -S-, -CH₂-, -SCH₂-, -CH₂S-, -CH(OH)-, -C(O)-, -CX^a, -CX^aH-, -CH₂O-, -OCH₂-,

X^a is halogen,

Q is a six member aromatic structure containing 0-2 nitrogen, substituted or unsubstituted by halogen, up to per-halosubstitution;

Q¹ is a mono- or bicyclic aromatic structure of 3 to 10 carbon atoms and 0-4 members of the group consisting of N, O and S, unsubstituted or unsubstituted by halogen up to per-halosubstitution,

148

X, Z, n and n1 are as defined in claim 55, and s is 0 or 1.

57. A compound as in claim 56, wherein

5 Q is phenyl or pyridinyl, substituted or unsubstituted by halogen, up to per-halosubstitution,

Q¹ is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinoline, isoquinoline, imidazole and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo, or -Y-Q¹ is phthalimidinyl substituted or unsubstituted by halogen up to per-halosubstitution, and

10 Z and X are independently selected from the group consisting of -R⁶, -OR⁶ and -NHR⁷, wherein R⁶ is hydrogen, C₁-C₁₀-alkyl or C₃-C₁₀-cycloalkyl and R⁷ is selected from the group consisting of hydrogen, C₃-C₁₀-alkyl, C₃-C₆-cycloalkyl and C₆-C₁₀-aryl, wherein R⁶ and R⁷ can be substituted by halogen or up to per-halosubstitution.

15

58. A compound as in claim 55, wherein B is of the formula

wherein Q is phenyl, Q¹ is phenyl or pyridinyl, Y is -O- or -S-, s = 1, n = 0 and n1 = 0.

20

59. A compound as in claim 55, of the formula

wherein B is as defined in claim 55.

60. A compound as in claim 55 selected from the group consisting of:

25 N-(5-*tert*-Butyl-2-(1-thia-3,4-diazolyl))-N'-(3-(4-pyridinyl)thiophenyl)urea;

N-(5-*tert*-Butyl-2-(1-thia-3,4-diazolyl))-N'-(4-(4-pyridinyl)oxyphenyl)urea;

149

N-(5-*tert*-butyl-2-(1-thia-3,4-diazolyl))-*N'*-(3-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;

N-(5-*tert*-butyl-2-(1-thia-3,4-diazolyl))-*N'*-(4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;

5 *N*-(5-*tert*-butyl-2-(1-thia-3,4-diazolyl))-*N'*-(3-chloro-4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;

N-(5-*tert*-butyl-2-(1-thia-3,4-diazolyl))-*N'*-(2-chloro-4-(4-(2-methylcarbamoyl)pyridyl)-oxyphenyl) urea;

10 *N*-(5-*tert*-butyl-2-(1-thia-3,4-diazolyl))-*N'*-(3-(4-pyridyl)thiophenyl) urea;

N-(5-*tert*-butyl-2-(1-thia-3,4-diazolyl))-*N'*-(2-methyl-4-(4-(2-methylcarbamoyl)pyridyl)oxyphenyl) urea;

15 *N*-(5-(1,1-dimethylprop-1-yl)-2-(1-thia-3,4-diazolyl))-*N'*-(4-(3-carbamoylphenyl)oxyphenyl) urea;

and pharmaceutically acceptable salts thereof.

61. A compound of one of the formulae

20 R^1 is selected from the group consisting of halogen, C₃-C₁₀ alkyl, C₁₋₁₃-heteroaryl, C₆₋₁₄-aryl, C₇₋₂₄-alkaryl, C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₁₋₁₃-heteroaryl, up to per-halosubstituted C₆₋₁₄-aryl, and up to per-halosubstituted C₇₋₂₄-alkaryl;

B is an aromatic ring structure selected from the group consisting of

150

which is substituted or unsubstituted by halogen, up to per-halosubstitution, and wherein n = 0-2;

each X¹ is independently selected from the group consisting of X or from the group consisting of -CN, -OR⁵, -NR⁵R⁵, C₁-C₁₀ alkyl; and

X is selected from the group consisting of -CO₂R⁵, -C(O)NR⁵R⁵, -C(O)R⁵, =O, -NO₂, -SR⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, C₄-C₂₃ alkheteroaryl, and substituted C₁-C₁₀ alkyl, substituted C₂-C₁₀-alkenyl, substituted C₁-C₁₀-alkoxy, substituted C₃-C₁₀ cycloalkyl, substituted C₆-C₁₄ aryl, substituted C₇-C₂₄ alkaryl, substituted C₃-C₁₃ heteroaryl, substituted C₄-C₂₃ alkheteroaryl, and -Y-Ar,

wherein if X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵R⁵, -NO₂, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and halogen up to per-halo substitution;

wherein R⁵ and R⁵' are independently selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₂-C₁₀-alkenyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ heteroaryl,

wherein Y is -O-, -S-, -N(R⁵)-, -(CH₂)_m-, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁵C(O)NR⁵R⁵-, -NR⁵C(O)-, -C(O)NR⁵-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -O(CH₂)_m-, -CHX^a, -CX^a₂-, -S-(CH₂)_m- and -N(R⁵)(CH₂)_m-,

m = 1-3, and X^a is halogen; and

151

Ar is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1} , wherein $n1$ is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁵, =O, -C(O)R⁵, -C(O)NR⁵R⁵, -C(O)-NR⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, -SO₂R⁵, -SO₂R⁵R⁵, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R⁵, =O, -OR⁵, -SR⁵, -NO₂, -NR⁵R⁵, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₃-C₁₃ heteroaryl, C₆-C₁₄ aryl, C₄-C₂₄ alkheteroaryl, and C₇-C₂₄ alkaryl.

15 62. A compound of one of the formulae

wherein B is as defined in claim 61.

63. A compound of claim 61, wherein B is

20 wherein

Y is selected from the group consisting of -O-, -S-, -CH₂-, -SCH₂-, -CH₂S-, -CH(OH)-, -C(O)-, -CX², -CX²H-, -CH₂O- and -OCH₂-,

X² is halogen,

Q is a six member aromatic structure containing 0-2 nitrogen, substituted or unsubstituted by halogen, up to per-halosubstitution;

152

Q^1 is a mono- or bicyclic aromatic structure of 3 to 10 carbon atoms and 0-4 members of the group consisting of N, O and S, unsubstituted or unsubstituted by halogen up to per-halosubstitution,

X, Z, n and n_1 are as defined in claim 61 and s is 0 or 1.

5

64. A compound of claim 63, wherein

Q is phenyl or pyridinyl, substituted or unsubstituted by halogen, up to per-halosubstitution,

10 Q^1 is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinoline, isoquinoline, imidazole and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo, or -Y- Q^1 is phthalimidinyl substituted or unsubstituted by halogen up to per-halosubstitution, and

15 Z and X are independently selected from the group consisting of $-R^6$, $-OR^6$ and $-NHR^7$, wherein R^6 is hydrogen, C_1-C_{10} -alkyl or C_3-C_{10} -cycloalkyl and R^7 is selected from the group consisting of hydrogen, C_3-C_{10} -alkyl, C_3-C_6 -cycloalkyl and C_6-C_{10} -aryl, wherein R^6 and R^7 can be substituted by halogen or up to per-halosubstitution.

20 **65.** A compound of claim 61, wherein B is up to per-halosubstituted phenyl, up to perhalosubstituted pyridinyl, or of the formula

wherein Q is phenyl, Q^1 is phenyl or pyridinyl, and Y is $-O-$ or $-S-$, Z is $-Cl$, $-CH_3$, $-OH$ or OCH_3 , n = 0, s = 0 or 1 and n_1 = 0-2.

66. A compound of the formula

wherein R¹ is selected from the group consisting of halogen, C₁-C₁₀ alkyl, C₁-C₁₀ cycloalkyl, C₁-C₁₃-heteroaryl, C₆-C₁₄-aryl, C₇-C₂₄-alkaryl, up to per-halosubstituted C₁-C₁₀ alkyl and up to per-halosubstituted C₃-C₁₀ cycloalkyl up to per-halosubstituted C₁-C₁₃-heteroaryl, up to per-halosubstituted C₆-C₁₄-aryl, up to per-halosubstituted C₇-C₂₄-alkaryl; R^b is hydrogen or halogen and

5 wherein B is up to a tricyclic aromatic ring structure selected from the group consisting of

10 which is substituted or unsubstituted by halogen, up to per-halosubstitution, and wherein

n = 0-3 and

each X is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R⁵, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, C₁-C₁₀ alkyl, C₂-C₁₀-alkenyl, C₁-C₁₀-alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, C₄-C₂₁ alkoheteroaryl, and substituted C₁-C₁₀ alkyl, substituted C₂-C₁₀-alkenyl, substituted C₁-C₁₀-alkoxy, substituted C₃-C₁₀ cycloalkyl, substituted C₄-C₂₁ alkoheteroaryl and -Y-Ar;

15 wherein if X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵R⁵, -NO₂, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and halogen up to per-halosubstitution;

wherein R^s and R^t are independently selected from H, C₁-C₁₀ alkyl, C₂₋₁₀-alkenyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₂₋₁₀-alkenyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ heteroaryl,

5 wherein Y is -O-, -S-, -N(R^s)-, -(CH₂)_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR^sC(O)NR^t-, -NR^sC(O)-, -C(O)NR^s-, -(CH₂)_mS-, -(CH₂)_mN(R^s)-, -O(CH₂)_m-, -CHX^a, -CX^a-, -S-(CH₂)_m- and -N(R^s)(CH₂)_m-,
m = 1-3, and X^a is halogen; and

10 Ar is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R^s, -C(O)R^s, =O, -C(O)NR^sR^t, -C(O)R^s, -NO₂, -OR^s, -SR^s, -NR^sR^t, -NR^sC(O)OR^s, -NR^sC(O)R^s, -SO₂R^s, -SO₂R^sR^t, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein if Z is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R^s, -C(O)NR^sR^t, =O, -OR^s, -SR^s, -NO₂, -NR^sR^t, -NR^sC(O)R^s, -NR^sC(O)OR^s, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxyl, C₃-C₁₀ cycloalkyl, C₃-C₁₃ heteroaryl, C₆-C₁₄ aryl, C₄-C₂₄ alkheteroaryl, and C₇-C₂₄ alkaryl.

15

20

67. A compound of claim 66, wherein B is

25

wherein

Y is selected from the group consisting of -O-, -S-, -CH₂-, -SCH₂-, -CH₂S-, -CH(OH)-, -C(O)-, -CX^a-, -CX^aH-, -CH₂O- and -OCH₂-,

X^a is halogen,

Q is a six member aromatic structure containing 0-2 nitrogen; substituted or unsubstituted by halogen, up to per-halosubstitution;

5 Q¹ is a mono- or bicyclic aromatic structure of 3 to 10 carbon atoms and 0-4 members of the group consisting of N, O and S, unsubstituted or unsubstituted by halogen up to per-halosubstitution,

X, Z, n and n1 are as defined in claim 66 and s is 0 or 1.

68. A compound of claim 67, wherein

10 Q is phenyl or pyridinyl, substituted or unsubstituted by halogen, up to per-halosubstitution,

Q¹ is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinoline, isoquinoline, imidazole and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo, or -Y-Q¹ is phthalimidinyl substituted or unsubstituted by halogen up to per-halosubstitution, and

15 Z and X are independently selected from the group consisting of -R⁶, -OR⁶ and -NHR⁷, wherein R⁶ is hydrogen, C₁-C₁₀-alkyl or C₃-C₁₀-cycloalkyl and R⁷ is selected from the group consisting of hydrogen, C₃-C₁₀-alkyl, C₃-C₆-cycloalkyl and C₆-C₁₀-aryl, wherein R⁶ and R⁷ can be substituted by halogen or up to per-halosubstitution.

20

156

69. A compound of the formula

wherein B is as defined in claim 66.

5

70. A compound as in claim 66, wherein B is of the formula

Q is phenyl, Q¹ is phenyl or pyridinyl, and Y is -O- or -S-, Z is -Cl or -OCH₃, n = 0, s = 0 and n1 = 0-2.

10

71. A pharmaceutical composition comprising a compound according to claim 31 and a physiologically acceptable carrier.

15

72. A pharmaceutical composition comprising a compound according to claim 37 and a physiologically acceptable carrier.

73. A pharmaceutical composition comprising a compound according to claim 43 and a physiologically acceptable carrier.

20

74. A pharmaceutical composition comprising a compound according to claim 49 and a physiologically acceptable carrier.

75. A pharmaceutical composition comprising a compound according to claim 55 and a physiologically acceptable carrier.

25

157

76. A pharmaceutical composition comprising a compound according to claim 61 and a physiologically acceptable carrier.

77. A pharmaceutical composition comprising a compound according to claim 5 66 and a physiologically acceptable carrier.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/26078

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : Please See Extra Sheet.

US CL : Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : Please See Extra Sheet.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAS ONLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Chem. abstr., Vol.116, No. 21, 25 May 1992 (Columbus. OH, USA), pages 741-742, column 2, the abstract No. 214456r, KUJUNDZIC, N. 'Synthesis of 8-methyl-1,2,3,4-tetrahydropyrido[3,4-d]pyrimidine-2,4-diones.' Croat. Chem. Acta. 1991, 64(4), 599-606 (Eng).	1-4
A	US 3,754,887 A (BRANTLEY) 28 August 1973 , see entire document, especially column 1.	31-36
A	WHITE et al. Heterocyclic Ureas: Inhibitors of Acyl-CoA:Cholesterol O-Acyltransferase as Hypocholesterolemic Agents. J. Med. Chem. 25 October 1996, Vol. 39, No. 22, pages 4382-4395, especially pages 4387-4389.	1-4, 37-48, 55-60

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
B earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Z"	document member of the same patent family
O document referring to an oral disclosure, use, exhibition or other events		
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

11 MARCH 1999

Date of mailing of the international search report

02 APR 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer
LAURA E. STOCKTON

Telephone No. (703) 308-1235

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/26078

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4,183,854 A (CROSSLEY) 15 January 1980, see entire document, especially column 1.	1-4
X	WO 96/25157 A1 (SMITHKLINE BEECHAM CORPORATION) 22 August 1996, see entire document, especially pages 16-17.	49-54, 61-65, 74, 76
X	WO 97/40028 A1 (VERTEX PHARMACEUTICALS INCORPORATED) 30 October 1997, see entire document, especially pages 11, 12, 16, 22 and 24, compound 85.	66-70, 77

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/26078

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

A. CLASSIFICATION OF SUBJECT MATTER:
IPC (6):

A61K 31/34, 31/38, 31/41, 31/415, 31/42, 31/425, 31/44, 31/47; C07D 215/20, 231/40, 261/14, 257/06, 263/48, 271/113, 277/28, 285/135, 307/66, 333/36, 401/10, 401/12

A. CLASSIFICATION OF SUBJECT MATTER:
US CL :

514/314, 340, 341, 342, 363, 364, 367, 371, 377, 380, 381, 407, 447, 472; 546/153, 268.7, 271.4, 272.1, 275.4, 280.4; 548/140, 143, 165, 196, 233, 245, 246, 251, 371.7; 549/69, 480

B. FIELDS SEARCHED

Minimum documentation searched

Classification System: U.S.

514/314, 340, 341, 342, 363, 364, 367, 371, 377, 380, 381, 407, 447, 472; 546/153, 268.7, 271.4, 272.1, 275.4, 280.4; 548/140, 143, 165, 196, 233, 245, 246, 251, 371.7; 549/69, 480

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

Group I, claim(s) 1-8, 31-36 and 71, drawn to compounds of formula I wherein A is a pyrazole ring, compositions and methods of use.

Group II, claim(s) 1-4, 9-16, 37-48, 72 and 73, drawn to compounds of formula I wherein A is an isoxazole ring, compositions and methods of use.

Group III, claim(s) 1-4, 17-20, 25-27, 49-54, 61-65, 74 and 76, drawn to compounds of formula I wherein A is a thiophene ring, compositions and methods of use.

Group IV, claim(s) 1-4, 21-24, 55-60 and 75, drawn to compounds of formula I wherein A is a 1,3,4-thiadiazole ring, compositions and methods of use.

Group V, claim(s) 1-4, 28-30, 66-70 and 77, drawn to compounds of formula I wherein A is a furan ring, compositions and methods of use.

Group VI, claim(s) 1-4, drawn to method of using compounds of formula I wherein A is a 1,3,4-oxadiazole ring.

Group VII, claim(s) 1-4, drawn to method of using compounds of formula I wherein A is an oxazole ring.

Group VIII, claim(s) 1-4, drawn to method of using compounds of formula I wherein A is a tetrazole ring.

Group IX, claim(s) 1-4, drawn to method of using compounds of formula I wherein A is a thiazole ring.

The inventions listed as Groups I-IX do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: there is a lack of unity among the above identified groups because there is no significant structural element, other than a urea core, shared by all of the alternatives. Each of the groups set forth above represents a separate discrete heterocyclic ring system which one skilled in the art which beside sharing no significant structural element, cannot be said to belong to a recognized class of chemical compounds in the pharmaceutical art. The claims are therefore considered to lack unity of invention.