#### А. Автоматы

- 1. Можно ли построить read-only машину Тьюринга, которая останавливается только на лентах вида  $1^n01^n$ ? (1 балл)
- 2. Построить минимальный НКА, распознающий слова над  $\{a,b\}$  такие, что в них нет двух одинаковых подряд идущих букв. Минимальность обосновать (1 балл)
- 3. Построить минимальный НКА, распознающий слова над  $\{a,b\}$  такие, что в них есть как минимум две одинаковые подряд идущие буквы. Минимальность обосновать (1 балл)
- 4. Построить минимальный НКА, распознающий язык слов над  $\{a,b,c\}$  таких, что если в них встречается подслово aa, тогда после буквы не может встретиться последовательность abc. Например, слова abcabc и aacbac должны распознаваться этим автоматом, а слово cabcaa нет. Минимальность обосновать (2 балла)
- 5. Существует ли язык  $\mathscr{L}$  слов над  $\{0,1\}$ , который распознаётся ДКА, имеющим состояние-ловушку, и такое натуральное число n (возможно, зависящее от  $\mathscr{L}$ ), что в языке-дополнении  $\mathscr{L}$  нет ни одного слова, количество нулей в котором кратно n? (2 балла)
- 6. Является ли регулярным подмножество языка неправильных скобочных последовательностей над  $\{(,)\}$ , такое что его элементы нельзя изоморфно отобразить в правильные скобочные последовательности? (2 балла)
- 7. Является ли регулярным язык  $\{w \mid w \in \{a,b\}^+ \& w_{baa} = w_{aab} \& w_{bbab} = w_{bbaa}\}$ ? (2 балла)
- 8. Построить регулярное выражение, автомат Глушкова для которого детерминирован, а при формальном построении его дополнения (со сменой финальности состояний) получается 4 состояния-ловушки (2 балла).
- 9. Построить регулярное выражение, слияние по бисимуляции в котором состояний в автомате Глушкова порождает минимальный ДКА, причём сам автомат Глушкова не является минимальным (2 балла).

- 10. Может ли при удалении  $\varepsilon$ -правил в автомате Томпсона число состояний уменьшиться более, чем линейно? Привести пример или обосновать, почему это невозможно (3 балла).
- 11. Замкнуто ли множество регулярных языков относительно суффиксной фильтрации? А именно, если  $L_1, L_2$  регулярные языки, что можно сказать про язык  $\{w \mid \exists v(wv \in L_1 \& v \in L_2)\}$ ? (3 балла)
- 12. Замкнуто ли множество регулярных языков относительно swap-функции? А именно, если L регулярный, будет ли регулярным язык  $\{xy \mid yx \in L\}$ ? (3 балла)
- 13. Построить регулярку с бесконечным языком, для которой существует несколько разных минимальных НКА, ни один из которых не является ДКА. (3 балла)
- 14. Отношение  $v \le w$  это отношение подпоследовательности на строках. Язык L называется замкнутым вниз, если  $\forall w, v (w \in \mathbf{L} \ \& \ v \le w \Rightarrow v \in L)$ . Показать, что все замкнутые вниз языки регулярны (4 балла).
- 15. Проверить следующее утверждение. Для всякого регулярного языка L можно подобрать такое натуральное число k, что  $\forall v(|v| > k \& v^n \in L \Rightarrow \exists m, v_1, w(v^n = v_1^m w \& |w| < k \& |v_1| < k))$  (5 баллов)

### В. Автоматы-2

- 1. Построить регулярное выражение, распознающее курсивные, полужирные и курсивно-полужирные блоки Markdown (1 балл).
- 2. Проверить, является ли регулярным языком язык  $\{a^{3n}a^{4m}b^{2k}b^{3s} \mid n < m \ \& \ k < s\}$  (1 балл).
- 3. Проверить, является ли регулярным языком язык  $\{a^{3n}b^{2k}a^{4m}b^{3s} \mid n < m \lor k < s\}$  (1 балл).
- 4. Проверить, является ли регулярным языком язык  $\{w \mid w \neq w_1 aabw_2 \& w \neq w_1 bbaw_2 \& |w|_a = |w|_b\}$  (1 балл).
- 5. Можно ли уменьшить звёздную высоту регулярного выражения  $(a(ba)^*)^*$ ? (1 балл)
- 6. Пусть звёздная высота выражения u равна k, а выражения w меньше k. Может ли случиться, что минимальная звёздная высота выражения  $(u^*w)^*$  равна k+2? (1 балл)
- 7. Синхронизируется ли следующий автомат? (1 балл)



8. Синхронизируется ли следующий автомат? (1 балл)



- 9. Можно ли уменьшить звёздную высоту регулярного выражения  $(a(ba)^*|b)^*$ ? (2 балла)
- 10. Можно ли уменьшить звёздную высоту регулярного выражения  $(aa^*bb^*)^*$ ? (2 балла)
- 11. Существует ли такое регулярное выражение, что число производных Брзозовски у него бесконечно, если не применять к ним правило идемпотентности (и применять правила ассоциативности и коммутативности)? (2 балла)
- 12. Если у двух ДКА было по n ловушек, то сколько минимум ловушек может получиться в их пересечении? (недостижимые ловушки отсекаются) (2 балла)
- 13. Если у двух ДКА было по n ловушек, то сколько максимум ловушек может получиться в их пересечении? (недостижимые ловушки отсекаются) (2 балла)
- 14. Существуют ли бесконечные регулярные языки, автомат Антимирова для которых совпадает с автоматом Глушкова, причём и тот, и другой не детерминированы? (З балла)
- 15. Для каких слов  $\xi_1$ ,  $\xi_2$  язык  $\{|w|_{\xi_1}=|w|_{\xi_2}\mid w\in\{a,b\}^*\}$  регулярен? (4 балла)

#### С. Автоматы-3

- 1. Построить синтаксический моноид для регулярного языка слов, которые либо содержат подряд две идущие одинаковые буквы, либо содержат подслово abc (1 балл).
- 2. Построить синтаксический моноид, распознающий язык слов над  $\{a,b,c\}$  таких, что в них либо встречается хотя бы две буквы c, либо встречается хотя бы две одинаковые буквы подряд (1 балл).
- 3. Построить таблицу классов эквивалентности по Майхиллу–Нероуду для регулярного выражения  $(c|\varepsilon)(ac|cb|ab)^*(ba|c)(a|b|c)$  (1 балл).
- 4. Построить таблицу классов эквивалентности по Майхиллу–Нероуду для регулярного выражения, распознающего правильно записанные регулярки без скобок, вложенных более чем дважды, и пустых слов под альтернативами или итерациями, над алфавитом  $\{a,b\}$  (1 балл).
- 5. Построить регулярку, которая описывает тот же язык, что и следующая префиксная грамматика:

$$aa \to aba$$
  $ab \to aab$   $aa \to \varepsilon$ 

Начальное слово:  $\{ab\}$  (1 балл).

- 6. Построить префиксную грамматику, распознающую тот язык слов, начинающихся и заканчивающихся одной и той же буквой. Алфавит  $\{a,b,c\}$  (1 балл).
- 7. Определить длину накачки регулярного языка, не содержащего подслов ab, bc, ca и cc. Алфавит  $\{a, b, c\}$  (1 балл).
- 8. Определить длину накачки языка регулярных выражений без скобок, вложенных более чем дважды, и пустых слов под альтернативами или итерациями, над алфавитом  $\{a,b\}$  (2 балла).
- 9. Построить регулярку, которая описывает тот же язык, что и следующая префиксная грамматика:

$$ab \rightarrow bab$$
  $bb \rightarrow aab$   $ba \rightarrow ab$   $a \rightarrow b$ 

Начальные слова:  $\{aa, bbb\}$  (2 балла).

- 10. Построить префиксную грамматику, описывающую тот же язык, что и регулярка  $((ba|bb)^*aa)^*(ba|aab)^*$ . Обосновать минимальность длины самого длинного правила в этой ПГ (3 балла).
- 11. У конечных языков, обладающих префикс-свойством, таблица классов эквивалентности по Майхиллу–Нероуду очень похожа на единичную матрицу (если удалить класс эквивалентности ловушки). Верно ли, что если язык бесконечен и не обладает префикс-свойством, то это свойство таблицы уже не будет выполняться? (3 балла)
- 12. В определении префиксной грамматики множество начальных слов должно быть конечным. Изменится ли выразительная сила префиксных грамматик, если разрешить множеству начальных слов быть регулярным? (4 балла)

## C. CFG

1. Построить все возможные деревья разбора слова  $\{AvBv\{CvA\}\}$  в следующей грамматике (1 балл).

$$\begin{split} [S] &::= \{ [Expr] \} \\ [Expr] &::= [Expr]v[Expr] \mid \{ [Expr] \} \mid [Var] \\ [Var] &::= [A-z] + \end{split}$$

2. Построить GNF методом Блюма–Коха для следующей грамматики (1 балл)

$$S \rightarrow BS \mid Aaa \qquad A \rightarrow AcA \mid Bd \qquad B \rightarrow SB \mid a$$

3. Построить GNF методом устранения левой рекурсии для следующей грамматики. Выбор частичного порядка осуществить так, чтобы правил получилось как можно меньше (1 балл)

$$S \rightarrow B \mid SS \mid Ab$$
  $A \rightarrow SaA \mid Bb$   $B \rightarrow BBa \mid d$ 

- 4. Исследовать язык  $\{a^{\sqrt{n}}b^{n+3}\}$  на контекстную свободу (1 балл).
- 5. Исследовать язык  $\{a^ib^ja^kb^m \mid i-j=m-k\}$  на контекстную свободу (2 балла).
- 6. Проверить следующую формулировку леммы о накачке: если L контекстно-свободен, то существует такое натуральное число p, что для любого слова w и любого достаточно длинного суффикса w' этого слова (т.е. w=vw', |w'|>f(p)) можно найти разбиение  $w'=z_1y_1x_1, v=x_2y_2z_2$  такое, что  $|y_1|+|y+2|>0$  &  $|y_1|+|y_2|\leq p$ , что  $x_2y_2^iz_2z_1y_1^ix_1\in L$  для всех i (2 балла).
- 7. Исследовать на КС-свойство язык  $\{w_1aw_2\mid w_i\in\{a,b\}^*\ \&\ w_1\neq w_2\ \&\ |w_1|_a=|w_2|_a\}$  (2 балла).
- 8. Построить регулярную аппроксимацию языка грамматики (2 балла):

$$S \rightarrow SaSb \mid aSAa \mid aba$$
  $A \rightarrow SA \mid bb$ 

- 9. Исследовать на КС-свойство язык слов из дополнения к языку правильных скобочных последовательностей над (, ), с инфиксами, являющимися правильными скобочными последовательностями длины не меньше 6 (2 балла).
- 10. Проанализировать язык на КС-свойство  $\{a^ib^j \mid i>j \ \& \ i<2\cdot j\}$  (2 балла).
- 11. Исследовать на КС-свойство язык  $\{a^mb^n\mid m\geq \sqrt{n}\}$  (2 балла).
- 12. Исследовать на КС-свойство язык  $\{a^mb^na^k \mid m \leq \log_2 k \ \& \ m \leq \log_2 b\}$  (3 балла).
- 13. Исследовать на КС-свойство язык  $\{a^nb^m \mid gcd(n,m)=1\}$  (3 балла).
- 14. Проверить на регулярность. Построить регулярную аппроксимацию языка грамматики в форме регулярного выражения (3 балла):

$$S \to aSSb \mid SaAa \mid aa$$
  $A \to AS \mid bb$ 

- 15. Исследовать на КС-свойство язык слов над  $\{a,b\}$  таких, что их циклической перестановкой (любой, не обязательно только сдвигом) можно получить палиндром (4 балла).
- 16. Исследовать на КС-свойство язык  $\{u \mid u \in \{a,b\}^* \& \forall w(u \neq www)\}$  (5 баллов).

## D. CFG-2

- 1. Построить грамматику-пересечение языка грамматики  $S \to SaSb \mid a$  с регулярным языком  $a^*b^*a^*b^*$  (1 балл).
- 2. Скажем, что формула находится в assoc-ДНФ, если она состоит из дизъюнкций конъюнкций элементарных высказываний и не содержит скобок. Верно ли, что язык формул, не являющихся assoc-ДНФ, регулярен? Привести описание этого языка. (1 балл)
- 3. Построить коммутативный образ языка (1 балл).

 $S o AbBc \mid bc$   $A o bAcA \mid b$   $B o bBcB \mid c$ 

- 4. Исследовать на КС-свойство язык списков натуральных чисел, рассортированных по неубыванию. Считаем, что список заключён в квадратные скобки, и элементы списка разделяются только запятой (1 балл).
- 5. Построить коммутативный образ грамматики (2 балла):

$$S \rightarrow SaSb \mid aA$$
  $A \rightarrow AA \mid AaBaA \mid Ba$   $B \rightarrow \varepsilon \mid bAbS$ 

- 6. Верно ли, что если  $\mathscr{L}$  недетерминированный КС-язык, то язык префиксов слов из L тоже недетерминированный? (2 балла)
- 7. Разрешим в PDA переходы, не задействующие стек. А именно, пусть переходы описываются четвёрками  $\langle q_i, \varepsilon | a, (\varepsilon | A)/\Phi, q_j \rangle$ . Будут ли такие DPDA с допуском по пустому стеку эквивалентны стандартным DPDA с допуском по пустому стеку? (2 балла)
- 8. Построить грамматику-пересечение языка грамматики  $S \to SaSbS \mid Sb \mid \varepsilon$  с регулярным языком  $((aba)^*bb)^*$  (2 балла).
- 9. Всякий КС-язык является гомоморфным образом пересечения языка правильных скобочных последовательностей с регулярным языком. Построить соответствующие регулярный язык и гомоморфизм для языка  $\{a^nb^m \mid n \neq m\}$  (2 балла).
- 10. Построить КС-грамматику для языка следующего PDA (2 балла):



11. Проверить, задаёт ли данная грамматика LL(1)-язык (3 балла):

$$S \to cScS \mid ab \mid \varepsilon$$

- 12. Является ли контекстно-свободным язык всех логических формул со связками  $\neg$ ,  $\Rightarrow$  над переменными A, B таких, что они являются отрицаниями какой-либо формулы, состоящей только из  $\Rightarrow$ ? (3 балла)
- 13. Построить КС-грамматику для языка следующего PDA (3 балла):



14. Назовём состояние q в PDA семантической ловушкой, если из него есть пути в конечные состояния, но при работе PDA в действительности по этим путям никогда нельзя пройти. Например, в PDA ниже семантической ловушкой является Q:



Существует ли алгоритм выявления семантических ловушек в PDA? (3 балла)

- 15. Существует ли такое описание языка, использующее только кванторы, логические операции, переменные типа буква, слово и натуральное число, операцию возведения слова в степень (*n*-кратную конкатенацию), а также предикат равенства, что над однобуквенным алфавитом это описание задаёт регулярный язык, над двухбувенным контекстно-свободный, над трёхбуквенным язык, не являющийся контекстно-свободным? (4 балла)
- 16. Является ли контекстно-свободным языком язык L контекстно-свободных LR(0)-грамматик над нетерминалами  $S, A_1, \ldots, A_n$  и терминалами a, b? В алфавите L, кроме заданных заранее  $S, A_1, \ldots, A_n, a, b$ , также есть символы  $\to$  и ; (для отделения правил друг от друга) (5 баллов)

## E. CFG-3

1. Индус построил LR(0)-автомат для языка  $a^*$  по следующей грамматике:

$$S \to aS \mid \varepsilon$$

добавив в неё самое изначальное правило  $S' \to S$ \$. Автомат получился с конфликтом, как и положено автомату для языка, не являющегося LR(0)-языком. Помогите индусу подогнать грамматику так, чтобы LR(0)-автомат для неё не содержал конфликтов, и объясните, что случилось. (1 балл)

- 2. Если  $\mathscr{L}-$  это LL(1)-язык, будет ли  $\mathscr{L}^R$  (язык реверсированных слов) LR(0)-языком? (1 балл)
- 3. Замкнуты ли недетерминированные КС-языки относительно конкатенации с регулярными языками? Т.е. если  $\mathscr{L}$  недетерминированный КС-язык,  $\mathscr{R}$  регулярный язык, то всегда ли верно, что  $\mathscr{L}\mathscr{R}$  и  $\mathscr{R}\mathscr{L}$  недетерминированные? (1 балл)
- 4. Если  $\mathscr{L}$  это LR(0)-язык, будет ли  $\mathscr{L}^R$  LL-языком? (1 балл)
- 5. Построить  $\mu$ -гедехр, описывающее язык  $\{w \mid |w|_a > |w|_b \& w \in \{a,b,c\}^*\}$  (1 балл)
- 6. Построить  $\mu$ -гедехр, описывающее язык  $\{wa^iw^Rb^j \mid (i>j) \lor |w|>2\}$  (1 балл)
- 7. Проверить, задаёт ли данная грамматика LR(0)-язык (2 балла):

$$S \to aAc \mid bSb$$
  $A \to aS \mid bAb \mid a$ 

- 8. Проанализировать контекстно-свободный язык на детерминированность:  $\{wa^iw^Rb^j\mid (i>j)\vee |w|>2\}\ (2$  балла)
- 9. Проанализировать контекстно-свободный язык на детерминированность и построить PDA:  $\{vwvw^R \mid |v|=2 \& v, w \in \{a,b\}^*\}$  (3 балла).
- 10. Проанализировать контекстно-свободный язык на детерминированность и построить PDA  $\{w_1vw_2\mid w_i\in\{a,b\}^*\ \&\ v\in\{a,c\}^*\ \&\ |w_1|=|w_2|\}$  (3 балла).

- 11. Определить степень недетерминизма языка  $\{a^n w b^m v \mid w \in \{b, c\}^* \& v = c v_1 \& v_1 \in \{a, b, c\}^* \& (|w|_c \neq 0 \Rightarrow m = n) \& (|w|_b \neq 0 \Rightarrow |v|_a = |v|_b)\}$  (3 балла).
- 12. Проверить на регулярность, и построить регулярную аппроксимацию сверху для языка КС-грамматики (3 балла)

$$S \rightarrow SaBB \mid b$$
  $B \rightarrow Bb \mid SS$ 

- 13. Сильно регулярные грамматики такие КС-грамматики, что нетерминалы в них можно разбить на классы так, что нетерминалы из одного класса достижимы друг для друга (т.е. из  $A_i$  выводима сентенциальная форма, содержащая  $B_i$ , и наоборот), в правой части правила для нетерминала  $A_i$  могут стоять только нетерминалы из классов не меньше i, и притом если  $A_i \to \xi_1 B_i \xi_2$  (то есть  $A_i$  и  $B_i$  принадлежат одному классу и  $A_i$  ссылается на  $B_i$  в правой части), то  $\xi_2 = \varepsilon$ . Доказать, что сильно регулярные грамматики описывают регулярные языки, и что если выбросить любое из двух условий выше, то регулярность уже гарантировать будет нельзя (4 балла).
- 14. Неуловимый Джо знает способ, как построить регулярную аппроксимацию КС-языка через взаимно рекурсивные нетерминалы, причём такую, что она сохраняет сильно регулярные языки. Проверьте, обладает ли этим свойством аппроксимация Перейры—Райта (через LR(0)-автоматы) (5 баллов).
- 15. Депрессивный Вишенка пытается построить критерий регулярности языка, описываемого линейной КС-грамматикой. Он выдвинул гипотезу, что если язык состоит только из правил  $S \to T_1ST_2$  и  $S \to T_3$ , где  $T_1$ ,  $T_2$ ,  $T_3$  не ссылаются на S, все описываются праволинейными правилами, и при этом  $\mathcal{L}(T_1T_1) \not\subseteq \mathcal{L}(T_1)$  и  $\exists w \in \mathcal{L}(T_3)(\forall u \in \mathcal{L}(T_2) \cup \mathcal{L}(T_1) \forall z_1, z_2(u \neq z_1wz_2))$ . Помогите Депрессивному Вишенке проверить его гипотезу (5 баллов).

### F. K3-языки

- 1. Привести пример двух языков, объединение которых является детерминированным КС-языком, а пересечение не является КС-языком. (1 балл)
- 2. Привести пример MFA, который не является НКА и читает с ленты ничем не ограниченные фрагменты памяти, однако распознаёт регулярный язык (1 балл).
- 3. Сколько классов эквивалентности по Майхиллу-Нероуду и каких определяет следующий язык? (1 балл)

$${a^i b^j c^k \mid i + j = k \& i < j}$$

- 4. Является ли язык  $\{ww^R\}$  VPL? (1 балл)
- 5. Является ли язык  $\{(a^nb^*c^{n+m} \mid b^nc^{n+k})\}$  VPL? (2 балла)
- 6. Привести пример конъюнктивной грамматики, не являющейся контекстносвободной, но описывающей регулярный язык, причём, если выбросить из неё конъюнкцию, язык перестанет быть регулярным (2 балла).
- 7. Привести конъюнктивную грамматику для языка  $\{(a^{n_i}b)^ka^m \mid m < \max n_i\}$  (2 балла).
- 8. Определить, какие языки описываются автоматами Треллиса над начальными словами в унарном алфавите (2 балла).
- 9. Студент Бессонный опроверг DMFA-свойство для языка  $\{a^nb^mc^ka^r \mid n=r \& m=k\}$  следующим образом. Он пересёк этот язык с  $a^*$  и применил лемму о перескоке к слову  $a^{p+n}$ . Объясните, почему этот метод решения скопрометировал Бессонного, и предложите решение, которое не приводит к компромату. (3 балла)
- 10. Красный Панда на прошлой Бигфарме пытался проанализировать язык  $\{a^mb^ma^n \mid n \neq m\}$ . Он сначала построил для его распознавания PDA с двумя стеками, а затем автомат, у которого вместо стека очередь, и сказал, что оба эти построения обосновывают КС-свойство. Объясните, почему существование таких автоматов не

обосновывает даже то, что язык конъюнктивен (и предъявите построение конъюнктивной грамматики). (3 балла)

- 11. Является ли DMFL язык  $\{a^{n^3}\}$ ? (4 балла)
- 12. Нерефальщик очень любит синтаксические моноиды. В связи с этим у него возникло предположение, что языки, описываемые автоматами Треллиса, в которых все символы могут встретиться на входной ленте, являются регулярными, поскольку описываются правилами переписывания с левыми и правыми частями в одном и том же алфавите. Помогите Нерефальщику проверить его предположение (5 баллов).

# G. вычислимость и завершаемость

- 1. Решить проблему соответствия Поста:  $\langle a, ba \rangle$ ,  $\langle aa, ba \rangle$ ,  $\langle b, ba \rangle$  (1 балл).
- 2. Решить проблему соответствия Поста:  $\langle a, ba \rangle$ ,  $\langle b, bab \rangle$ ,  $\langle a, \varepsilon \rangle$  (1 балл).
- 3. Дать верхнюю оценку уровню неразрешимости задачи проверки языка на регулярность. Обосновать, почему в данной оценке кванторы нельзя заменить ограниченными (2 балла).
- 4. Дать верхнюю оценку уровню неразрешимости задачи проверки префикс-свойства языка. Обосновать, почему в данной оценке кванторы нельзя заменить ограниченными (2 балла).
- 5. Проанализировать, какой класс языков распознаётся PDA, на рёбрах которых стоят произвольные  $\mu$ -regexp (2 балла).
- 6. Исследовать на завершаемость следующую TRS (2 балла)

7. Исследовать на завершаемость следующую TRS (2 балла)

variables = 
$$[X, Y, Z]$$

- 1.  $w(i, X) \to X$
- 2.  $w(w(x,X),Y),Z) \rightarrow w(w(X,Z),w(Y,Z))$
- 8. Исследовать на завершаемость следующую TRS (3 балла)

variables = 
$$[x, y]$$
  
 $f(f(a, x), y) \rightarrow f(f(x, f(a, y)), a)$ 

- 9. Дать верхнюю оценку уровню неразрешимости множества LL-языков. Обосновать, почему в данной оценке кванторы нельзя заменить ограниченными (3 балла).
- 10. Исследовать на завершаемость следующую SRS (3 балла)

$$al 
ightarrow la$$
  $al 
ightarrow ar$   $bl 
ightarrow bar$   $rb 
ightarrow lb$ 

- 11. Привести общий метод решения проблемы соответствия Поста, для множества пар «домино» которых  $\mathcal M$  выполняется следующее условие: они составлены из всех возможных пар слов из некоторого конечного множества  $\{w_1,\ldots,w_n\}$  (4 балла).
- 12. Исследовать на завершаемость следующую SRS (5 баллов)

$$fg \to gff \qquad fh \to hg$$