8.21 1)
$$(x)' = \left(\cos(\arccos(x))\right)'$$

 $1 = \cos'(\arccos(x)) \left(\arccos(x)\right)' = -\sin(\arccos(x)) \left(\arccos(x)\right)'$
 $-\frac{1}{\sin(\arccos(x))} = \left(\arccos(x)\right)'$

- 2) La relation fondamentale $\cos^2(\alpha) + \sin^2(\alpha) = 1$ donne $\sin^2(\alpha) = 1 \cos^2(\alpha)$, puis $\sin(\alpha) = \pm \sqrt{1 \cos^2(\alpha)}$.

 Mais, si $\alpha \in [0; \pi]$, alors $\sin(\alpha) \geqslant 0$.

 D'où $\sin(\alpha) = \sqrt{1 \cos^2(\alpha)}$.
- 3) Par définition, $\arccos(x) \in [0; \pi]$ pour tout $x \in [-1; 1]$. Donc $\left(\arccos(x)\right)' = -\frac{1}{\sin\left(\arccos(x)\right)} = -\frac{1}{\sqrt{1-\cos^2\left(\arccos(x)\right)}} = -\frac{1}{\sqrt{1-x^2}}$