CHƯƠNG 1: HÀM NHIỀU BIẾN

BÀI 1: ĐỊNH NGHĨA

Bài tập: Tìm và biểu diễn hình học miền xác định của hàm sau:

1.
$$z = \sqrt{9 - x^2 - y^2} - \sqrt{x^2 + y^2 - 1}$$

2.
$$z = \sqrt{-x^2 + y} + \sqrt{-x - 2y + 3}$$

3.
$$z = \arcsin \frac{x}{2} + \sqrt{xy}$$

4.
$$y = \arcsin(y - x) + \ln(1 - x^2 - y^2)$$

BTVN: Tìm và biểu diễn hình học miền xác định của hàm sau:

1.
$$z = \sqrt{(x^2 + y^2 - 4)(9 - x^2 - y^2)}$$

2.
$$z = \arcsin \frac{y}{x}$$

3.
$$z = \arccos \frac{y}{x-1}$$

4.
$$z = \ln(x - 2y^2) + \sqrt{4 - x^2 - y^2}$$

BÀI 2: ĐẠO HÀM

Bài tập:

1. Tính các đạo hàm cấp 1 của các hàm sau:

a.
$$z = (x^2 + y^2)e^{5x}$$

b.
$$z = xye^{x+y}$$

c.
$$z = \sqrt{3y+1} \ln(2x+1)$$

d.
$$z = \ln \cos(2x - 3y)$$

2. Tính các đạo hàm cấp 2 của các hàm sau:

a.
$$z = (x^2 + 2x - 5)\sin(y + 1)$$

b.
$$z = (x^2 + 1) \ln(5 - 3y)$$

c.
$$z = e^x \ln(2y + 1)$$

d.
$$z = x^2 y^3 + x \sqrt{y}$$

3. Tính vi phân cấp 1 của:

$$\mathbf{a.} \ z = e^x(\sin y + \cos 2x)$$

b.
$$z = \ln(12 - 3x^2 + 2y^2)$$

c.
$$z = e^x(\sin 3x + \cos 3y)$$

BÀI 3: CỰC TRỊ CỦA HÀM SỐ HAI BIẾN

Tìm cực trị của các hàm số sau:

1.
$$z = x^2 + y^3 + 12xy + 2019$$

2.
$$z = x^5 + y^5 - 5xy + 3$$

3.
$$z = x^3 + y^3 - 3x - 27y + 1$$

4.
$$z = (x-1)^2 + 2y^2$$

5.
$$z = x^3 - v^3 - 3xv$$

BTVN

Tìm cực trị của các hàm số sau:

6.
$$z = x^3 + y^3 - 6xy + 2019$$

7.
$$z = 2y^2 - x^2 + 6xy - 4x - 10y + 2019$$

8.
$$z = e^x(x^2 + 2x - y^2 + 4y - 1)$$

BÀI 4: MIN, MAX CỦA HÀM HAI BIẾN

Tìm Min, Max của các hàm số sau:

1.
$$z = y^2 - x^2 - 2y$$
 trong $D = \{x^2 + y^2 \le 1\}$

2.
$$z = x^2 + y^2 - 2y$$
 trong $D = \{x = 0; y = 0; x + y = 1\}$

3.
$$z = x^3 + y^3 - 3x - 6y + 5 \operatorname{trong} D = \{0 \le x \le 2; 0 \le y \le 1\}$$

BTVN

Tìm Min, Max của các hàm số sau:

4.
$$z = x^2 + 3x + y^2 + 4$$
 trong miền $D = \{(x, y) \in \square^2 : x^2 + y^2 \le 1\}$

5.
$$z = x^3 - 3x^2 + 3x - 3y^2 - 8y + 1$$
 trong miền $D = \{(x, y) \in \Box^2 : 0 \le x \le 1, 0 \le y \le 2\}$

6.
$$z = x^2 + y^2 - xy + x + y$$
 trong miền $D = \{(x, y) \in \square^2 : x \le 0, y \le 0, x + y + 3 \ge 0\}$

BÀI 4: ÔN TẬP CHƯƠNG 1

Nội dung ôn tập

- 1. Tìm và biểu diễn tập xác định của hàm số.
- 2. Tính đạo hàm cấp 1, cấp 2.
- 3. Tính vi phân cấp 1. $dz = z'_x dx + z'_y dy$
- 4. Tìm cực trị của hàm số.
- 5. Tìm Min, Max của hàm số.

Bài tập:

Tìm và biểu diễn tập xác định của hàm số.

1.
$$z = 2\sqrt{x^2 + y^2 - 2x} + 3\sqrt{3 - x^2 - y^2 + 2x}$$

2.
$$z = \ln(2x + y) + \sqrt{16 - x^2 - y^2}$$

3.
$$z = \arcsin(y - x) + \ln(1 - x^2 - y^2)$$

4.
$$z = \arccos(x + y) - \sqrt{2x - y^2}$$

Tính đạo hàm cấp 1:

5.
$$z = e^{x+y} \sqrt{x^2 + y^2}$$

6.
$$z = \arctan \frac{x+y}{1-xy}$$

Tính vi phân toàn phần cấp 1:

7.
$$z = \ln(x + \sqrt{x^2 + y^2})$$

8.
$$z = \arcsin \frac{x}{\sqrt{x^2 + y^2}}$$

Tính đạo hàm cấp 2:

9.
$$z = \sin(2x + 3) e^{1-3y}$$

10.
$$z = \ln(4x - 7) \cdot \cos(5 + y)$$

Tìm cực trị hàm số

11.
$$z = x^2 + y^2 + xy - 6x - 9y$$

12.
$$z = 2y^2 - x^2 + 6xy - 4x - 10y + 2020$$

Tìm Min, Max của hàm số

13.
$$z = x^2 + y^2 - 2y$$
 trong $D = \{x = 0, y = 0, x + y = 1\}$

14.
$$z = x^2 + 2xy - 4x + 8y \text{ v\'oi } D = \{0 \le x \le 1; 0 \le y \le 2\}$$

CHƯƠNG 2: TÍCH PHÂN BỘI BÀI 1: TÍCH PHÂN KÉP

Tính tích phân trong miền hình chữ nhật:

1.
$$I = \iint_D (x^2 + y^2 - xy) dx dy$$
 với $D = \{0 \le x \le 1; 0 \le y \le 2\}$

2.
$$I = \iint_D (6y^2 - 2x) dxdy$$
 với $D = \{0 \le x \le 1; 0 \le y \le 2\}$

3.
$$I = \iint_D \cos x \cdot \sin y \, dx dy$$
 với $D = \left\{ 0 \le x \le \frac{\pi}{4}; 0 \le y \le \frac{\pi}{4} \right\}$

Tính tích phân trong miền:

4.
$$I = \iint_D (x - y) dx dy$$
 với $D = \{y = 2 - x, x = 0, y = 0\}$

5.
$$I = \iint_D (6y - 2x) dx dy$$
 với $D = \{y^2 = x; x = 4\}$

6.
$$I = \iint_D xy^2 dxdy$$
 với D là tam giác OAB với $O(0;0)$, $A(1,-1)$, $B(2,0)$.

7.
$$I = \iint_D (5y^3 - 4x) dx dy$$
 với $D = \{y = x^2, x = 1, y = 0\}$

Tính diện tích hình phẳng:

8.
$$D = \{x = -y^2; y = x + 2\}$$

9.
$$D = \{y = x; y = \frac{x}{3}; y = 2\}$$

10.
$$D = \{y = x^2; x + y = 2\}$$

11.
$$D = \{x = y^2; x - 2y - 3 = 0\}$$

Đổi thứ tự tích phân:

12.
$$I = \int_{1}^{3} dx \int_{0}^{2x} f(x, y) dy.$$

13.
$$I = \int_{0}^{1} dx \int_{3x}^{4-x^{2}} f(x, y) dy.$$

14.
$$I = \int_{0}^{2} dx \int_{x^{2}}^{6-x} f(x, y) dy.$$

15.
$$I = \int_{-\sqrt{2}}^{\sqrt{2}} dx \int_{0}^{\sqrt{2-x^2}} f(x, y) dy.$$

16.
$$I = \int_{-3}^{3} dx \int_{x^{2}-9}^{\sqrt{9-x^{2}}} f(x, y) dy.$$

Tính tích phân trong miền hình bình hành:

17.
$$I = \iint_D (x+y) dx dy \text{ v\'oi}$$
$$D = \{y = x+2; y = x-1; y = -2x+1; y = -2x+4\}$$

Tích tích phân trong miền hình tròn:

18. Tính
$$I = \iint_D (x^2 + y^2 + 1) dx dy$$
, với miền $D = \{(x, y) : x^2 + y^2 \le 9; y \ge 0\}$.

19. Tính
$$I = \iint_D (3x+1)dxdy$$
, với miền $D = \{(x,y): x^2 + y^2 - 4y \le 0\}$.

20. Tính
$$I = \iint_D 3x dx dy$$
, với miền D giới hạn bởi: $D = \{x^2 + y^2 - 2x \le 0\}$

21. Tính
$$I = \iint_D (1 - \sqrt{x^2 + y^2}) dx dy$$
, với miền D giới hạn bởi:

$$D = \left\{ (x, y) \in R^2 : x^2 + y^2 - 4y \le 0 \right\}$$

22. Tính
$$I = \iint_D (x+3)dxdy$$
 với miền D giới hạn bởi: $D = \{x^2 + y^2 \le 2x; y \ge 0\}$.

$$21, I = \int_{0}^{\pi} d\varphi \int_{0}^{4\sin\varphi} (1-r)rdr$$

$$= \int_{0}^{\pi} \left(\frac{r^{2}}{2} - \frac{r^{3}}{3}\right) |_{0}^{4\sin\varphi} d\varphi$$

$$= \int_{0}^{\pi} (8\sin^{2}\varphi - \frac{64\sin^{3}\varphi}{3})d\varphi$$

$$= \int_{0}^{\pi} \left[4(1-\cos 2\varphi) - \frac{64}{3} \cdot \frac{3\sin\varphi - \sin 3\varphi}{4}\right] d\varphi$$

$$= \left[4\varphi - 2\sin 2\varphi - \frac{16}{3} \cdot \left(-3\cos\varphi + \frac{\cos 3\varphi}{3}\right)\right] |_{0}^{\pi}$$

$$= 4\pi - \frac{16}{3} \cdot \left(6 - \frac{2}{3}\right) = 4\pi - \frac{256}{9}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}; \quad \sin^3 x = \frac{3 \sin x - \sin 3x}{4}$$

Luyện tập

23. Tính
$$\iint_D (4y^2 - 2x) dx dy$$
 với $D = \{1 \le x \le 2; 0 \le y \le 3\}$

24. Tính
$$\iint_D xy \cos y \, dx dy$$
 với $D = \{-1 \le x \le 1; 0 \le y \le \pi\}$

25. Đổi thứ tự tích phân:
$$\int_0^2 dx \int_0^{4-x^2} f(x,y) dy$$

26. Đổi thứ tự tích phân:
$$\int_0^3 dx \int_{\sqrt{\frac{x}{3}}}^1 f(x,y) dy$$

27. Tính diện tích hình phẳng:
$$D = \{x = y^2; x = 2y - y^2\}$$

28. Tính diện tích hình phẳng:
$$D = \{x = y^2 - 1; x = 2y^2 - 2\}$$

29. Tính
$$I = \iint_D (9y^2 - 3x) dx dy$$
 với $D = \left\{ x = 1; x = \frac{y^2}{4} \right\}$

30. Tính
$$I = \iint_D (3x^2y - 2x) dx dy$$
 với $D = \{y = 2x^2; y = 2\sqrt{x}\}$

31. Tính
$$I = \iint_D (x - y) dx dy$$
 với $D = \{y = 2x; y = 2x - 2; y = 0; y = 4\}$

1. Tính
$$I = \iint_D (8y - 2x) dx dy$$
 với $D = \{x = 4; x = y^2\}$

2. Tính
$$I = \iint_D (5y^3 - 4x) dx dy$$
 với $D = \{0 \le x \le 1, 0 \le y \le 2\}$

3. Tính
$$I = \iint_D y dx dy$$
 với D là miền tam giác OAB với $O(0;0), A(1;-1), B(2;0)$

4. Tính diện tích miền
$$D = \{2\sqrt{x} \le y \le 3\sqrt{x}; x \le 4\}$$

5. Tính diện tích miền D =
$$\{x = -y^2, y = x + 2.\}$$

6. Tính diện tích miền D =
$$\{x = y - y^2, y = -x.\}$$

7. Đổi thứ tự tích phân:
$$\int_{0}^{4} dy \int_{\sqrt{y}}^{2} f(x, y) dx$$

8. Đổi thứ tự tích phân:
$$\int_{0}^{1} dx \int_{\sqrt{4x}}^{2} f(x, y) dy$$

9. Tính:
$$I = \iint_D x dx dy$$
 với

$$D = \{x - 2y - 1 = 0; x - 2y - 4 = 0; x + y = 0, x + y = 3\}$$

10. Tính
$$I = \iint_D (x+1)dxdy$$
, với miền D giới hạn bởi: $D = \{x^2 + y^2 - 4x \le 0\}$.

11. Tính
$$I = \iint_D (1 - \sqrt{x^2 + y^2}) dx dy$$
, với miền D giới hạn bởi:

$$D = \{(x, y) \in R^2 : x^2 + y^2 - 10y \le 0\}.$$

12. Tính $I = \iint_D (1+3y) dx dy$, với miền D giới hạn bởi:

$$D = \{(x, y) \in R^2 : x^2 + y^2 - 2x \le 0; x \ge 0\}.$$

BÀI 2: TÍCH PHÂN BỘI

1. Tính
$$I=\iiint_V z dx dy dz$$
 với $V=\left\{x\geq 0; 0\leq z\leq \sqrt{1-x^2-y^2}\right\}$

2. Tính
$$I = \iiint_V z dx dy dz$$
 với $V = \{x^2 + y^2 + z^2 \le 4; x \ge 0; y \ge 0\}$

3. Tính tích phân
$$I = \iiint_V (2z+1) dx dy dz$$
, trong đó $V = \begin{cases} (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - 2y \le 0 \\ 0 \le z \le 2 \end{cases}$.

4. Tính tích phân
$$I = \iiint_V 2dxdydz$$
, trong đó $V = \begin{cases} (x, y, z) \in R^3 : x^2 + y^2 \le 2 \\ 0 \le z \le 4 - x^2 - y^2 \end{cases}$.

$$D = \{x \ge 0; x^2 + y^2 = 1\}$$

Tính thể tích miền giới hạn bởi:

- 5. Các mặt $z = x^2 + y^2$, $z^2 = x^2 + y^2$.
- 6. Các mặt $z = x^2 + y^2$, z = x + y.
- 7. Các mặt $x^2 + y^2 + z^2 = 2z$, $x^2 + y^2 = z^2$.
- 8. Các mặt x + y + z = 4, x = 3, y = 1, x = 0, y = 0, z = 0

BTVN

Tính các tích phân sau:

- 1. Tính tích phân $I = \iiint_V dx dy dz$, trong đó $V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z \le 4\}$.
- 2. Tính tích phân $I = \iiint_V dx dy dz$, trong đó $V = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le 9 x^2 y^2\}$.
- 3. Tính tích phân $I = \iiint_V dx dy dz$, trong đó $V = \begin{cases} (x, y, z) \in R^3 : x^2 + y^2 \le 4 \\ 0 \le z \le 8 x y \end{cases}$.

Tính thể tích vật thể giới hạn bởi

- 4. Các mặt $2z = x^2 + y^2$, z = 4
- 5. Các mặt $x^2 + y^2 + z^2 = 27$, $x^2 + y^2 = 6z$.

ÔN TẬP CHƯƠNG 2

Các dạng bài:

- Tính TP kép trên miền D hình chữ nhật, hình thang và hình tròn.
- Đổi thứ tự TP.
- Tính diện tích miền D.
- Tính TP bội.
- Tính thể tích vật thế V.
- 1. Đổi thứ tự tích phân: $I = \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(x, y) dy$
- 2. Đổi thứ tự tích phân: $I = \int_0^2 dx \int_0^{\sqrt{4-x^2}} f(x,y) dy$
- 3. Tính diện tích $D = \{x = -y^2; y = x + 2\}$
- 4. Tính diện tích $D = \{x = y y^2; y = -x\}$
- 5. Tính $I = \iint_D (7x^3 2xy) dx dy$ với $D = \left\{ x = 1; x = \frac{y^2}{9} \right\}$
- 6. Tính $I = \iint_D (x + y) dx dy$ với $D = \{y = 2x, y = 0, x = 2, x = 3\}$
- 7. Tính $I = \iint_D (x-1) dx dy$ với $D = \{x^2 + y^2 \le 4, x \ge 0\}$
- 8. Tính $I = \iint_D x^2 dx dy$ với $D = \{x^2 + y^2 \le 2x, y \ge 0\}$
- 9. Tính tích phân $I = \iiint_V (3z^2 + 1) dx dy dz$, trong đó $V = \begin{cases} (x, y, z) \in R^3 : x^2 + y^2 2x \le 0 \\ 0 \le z \le 1 \end{cases}$.
- 10. Tính $I = \iiint_V xz dx dy dz$ với $V = \{x^2 + y^2 + z^2 \le 9, z \ge 0\}$.

1. Tính
$$I = \iint_D (3x^2y - 2x) dx dy$$
 với $D = \{y = 2x^2, y = 2\sqrt{x}\}.$

2. Tính
$$I = \iint_D (x^2 + y^2) dx dy$$
 với $D = \{x^2 + y^2 \le 9, x \ge 0\}$.

3. Tính
$$I=\iiint_D z.\sqrt{x^2+y^2}dxdydz$$
 với $V=\{x^2+y^2+z^2\leq 1,y\geq 0\}$

CHƯƠNG 3

BÀI 1. TÍCH PHÂN ĐƯỜNG LOẠI 1

1. Tính
$$I = \int_{AB} x ds$$
, với AB : $y = \frac{x^2}{2}$ với $A(0,0)$, $B(2,2)$.

2. Tính
$$I = \int_{AB} xy ds \text{ với } AB: x^2 + y^2 = 2x.$$

3. Tính
$$I = \int_{AB} (x^2 + y^2) ds$$
 với $AB: x^2 + y^2 = 4, y \ge 0$.

BTVN

4. Tính
$$I = \int_{AB} y dx$$
 với $AB: x = y^2 + 1$ với $A(1,0), B(2,1)$.

5. Tính
$$I = \int_{AB} xy dx$$
 với $AB: \frac{x^2}{9} + \frac{y^2}{16} = 1$ và $x \ge 0$.

BÀI 2: TÍCH PHÂN ĐƯỜNG LOẠI 2

Tính các TP sau:

1.
$$I = \int_{AB} (2x + y) dx + (y - x) dy$$
, với $AB \begin{cases} x = 3 - t^3 \\ y = t + 4 \end{cases}$ với $A(2; 5)$ và $B(3; 4)$.

HD: Thay
$$A(2; 5)$$
 vào hệ ta có $\begin{cases} 2 = 3 - t^3 \\ 5 = t + 4 \end{cases} \rightarrow t_A = 1.$

Tương tự, tìm t_B thì cận t là từ t_A đến t_B .

2.
$$I = \int_{AB} (xy - 1) dx + x^2 y dy$$
, với $AB: 4x + y^2 = 4$ nối $A(1,0)$ đến $B(0,2)$.

3.
$$I = \int_{AB} xy dx + (y - x) dy$$
, với $AB: y = x^3$ với $A(0,0), B(2,8)$.

4.
$$I = \int_{AB} y dx - (y + x^2) dy$$
, với AB : $y = 2x - x^2$ nằm trên trục Ox.

5.
$$I = \int_{AB} (x+y) dx + (x-y) dy$$
, với $AB: \frac{x^2}{16} + \frac{y^2}{9} = 1$ nằm phía dưới Ox.

6.
$$I = \int_{L^+} (xy + \cos x) dx + (xy - y) dy$$
, với L là tam giác OAB với $O(0,0), A(1,0), B(0,1)$.

- 7. $I = \oint_{L^+} (y^2 + \sqrt{x}) dx + (x^2 y^2) dy$, với L là hơn ABCD với A(0,0), B(0,2), C(-2,2), D(-2,0).
- 8. $I = \oint_{L^{-}} (xy + \sqrt{x}) dx + (xy y^{2}) dy$, với *L* là hình tròn $x^{2} + y^{2} = 4$.
- 9. $I = \oint_{L^+} (x+y) dx (x-y) dy$, với L là hình tròn $x^2 + y^2 = 2y$.
- 10. $I = \oint_{L^+} (x+y)^2 dy + 2(x^2+y^2) dx$, với L là tam giác ABC trong đó A(1,1), B(3,1), C(1,3). (Chú ý thứ tự dx,dy)
- 11. $I = \oint_{L^{-}} (xy + x y) dy + (xy + x + y) dx, \text{ v\'oi } L: \frac{x^{2}}{9} + \frac{y^{2}}{16} = 1.$

Định lý 4 mệnh đề tương đương

- 12. Tính $I = \int_{AB} \frac{ydx xdy}{x^2}$ với AB là đường cong bất kỳ nối A(2,1), B(1,2).
 - 13. Tính $I = \int_{AB} \frac{xdy ydx}{(x-y)^2}$ với AB là đường cong bất kỳ nối A(0,-1), B(1,0).

Chứng minh các biểu thức sau là VPTP của hàm u(x, y) nào đó. Tìm u.

14.
$$(2x - 3xy^2 + 2y)dx + (2x - 3x^2y + 2y)dy$$

15.
$$(3x^2 - 2xy + y^2)dx - (x^2 - 2xy + 3y^2)dy$$

- 1. $I = \int_{AB} (x+3y)dx + (x-y)dy$, với $AB: \begin{cases} x = 2-t \\ y = t^2 + 2 \end{cases}$ nối A(0,6) đến B(2,2).
- 2. $I = \int_{AB} (xy-1)dx + x^2ydy$, với AB: $y = x^2$ nối A(-1,1) đến B(1,1).

3.
$$I = \int_{AB} \frac{-2xydx + (x^2 - y^2)dy}{x^2 + y^2}$$
, với $AB: x^2 + y^2 = 1$, $x \ge 0$.

4. $I = \oint_{L^+} (x^2 - y^2) dy + (x + y)^2 dx$, với L là tam giác ABC trong đó A(1,1,), B(2,1), C(1,2).

5.
$$I = \oint_{I^{-}} xy^2 dy - x^2 y dx$$
, với $L: x^2 + y^2 = 9$.

6.
$$I = \oint_{L^+} (x+y)dx - (x-y)dy$$
, với $L: \frac{x^2}{4} + \frac{y^2}{9} = 1$.

7. Tính
$$I = \int_{L} (3x^2 - 2xy + y^2) dx - (x^2 - 2xy + 3y^2) dy$$

trong đó L là đường cong bất kỳ nối từ điểm O(0,0) đến điểm A(2,2).

Chứng minh các biểu thức sau là VPTP của hàm u(x,y) nào đó. Tìm u.

8.
$$x(2-9xy^2)dx + y(4y^2 - 6x^3)dy$$

9.
$$\frac{1}{x^2}(1-x^2y)dx + (y-x)dy$$

BTVN

1. Tính
$$I = \int_{AB} (2x+3y)dx + (y+x)dy$$
,

trong đó AB là cung $\begin{cases} x=2-t \\ y=t^3+4 \end{cases}$ nối từ điểm A(2;4) đến điểm B(0;12).

2. Tính
$$I = \int_{I} xe^{\sqrt{x^2+y^2}} ds$$
,

trong đó L là phần đường tròn $x^2 + y^2 = 4$ nằm trong góc phần tư thứ hai.

3. Tính
$$I = \int_{L} (x^4 + 4xy^3) dx + (6x^2y^2 - 5y^4) dy$$
,

trong đó L là đường cong bất kỳ nối từ điểm A(-2,-1) đến điểm B(3,0).

BÀI 3. TÍCH PHÂN MẶT LOẠI 1

- 1. Tính $I = \iint_S (x + y + z) ds$ với S là mặt phẳng z = 5 giới hạn bởi các mặt trụ $y^2 = 4x, x = 1$.
- 2. Tính $I=\iint_S z^2\,ds$ với S là mặt $z=\sqrt{x^2+y^2}$ giới hạn bởi các mặt trụ x+y=4, x=1, y=1.
- 3. Tính $I=\iint_S \ x \, ds$ với S là mặt phẳng z=4 giới hạn bởi các mặt trụ y=1, x=1, y=x+1.
- 4. Tính tích phân mặt loại 1 sau:

$$\iint_{\Omega} xy^2 ds$$

với Ω là mặt $z=\sqrt{x^2+y^2}$ giới hạn bởi mặt phẳng $z=1, x\geq 0, y\geq 0.$

Công thức: Diện tích mặt cong $S = \iint_S ds$ (hàm lấy TP=1)

- 5. Tính diện tích mặt Ω với Ω là mặt phẳng z=2 giới hạn bởi các mặt trụ $v^2=4x, x+v=3, v<0.$
- 6. Tính diện tích mặt Ω trong đó Ω là phần mặt nón $x^2+y^2=z^2$ bị cắt bởi mặt phẳng z=1.

BTVN

7. Tính tích phân mặt loại 1 sau:

$$\iint_{\Omega} (x^2 + y^2) ds,$$

với Ω là mặt $z = \sqrt{x^2 + y^2}$ giới hạn bởi các mặt phẳng z = 4.

8. Tính tích phân mặt loại 1 sau:

$$\iint_{\Omega} (x^2 + y^2 + z^2) ds,$$

với Ω là mặt toàn phần của hình trụ $x^2 + y^2 = 4$, $0 \le z \le 4$.

9. Tính diện tích mặt cong Ω với Ω là phần mặt nón $z=\sqrt{x^2+y^2}$ bị cắt bởi mặt trụ $x^2+y^2=2x$.

ÔN TẬP CHƯƠNG 3

$$I = \int_{OABO} (xy + \cos x) dx + (xy - y) dy$$
1. Tính

trong đó OABO là biên của tam giác lần lượt nối các điểm: O(0;0), A(1;0), B(0;1).

2. Tính
$$I = \int_{AB} (x+3y)dx + (x-y)dy$$
,

trong đó AB là cung $\begin{cases} x = 2 - t \\ y = t^2 + 2 \end{cases}$ nối từ điểm A(0;6) đến điểm B(2;2).

3. Tính
$$I = \int_{L} \frac{x+y}{x^2+y^2} ds$$

trong đó L là phần đường tròn $x^2 + y^2 = 4$ nằm trong góc phần tư thứ hai.

4. Tính
$$I = \int_{L} (xy-1)dx + x^2ydy$$

trong đó L là đường thẳng có phương trình 2x+y=2 nối từ điểm A(1,0) đến điểm B(0,2).

5. Tính
$$I = \int_{L} \frac{1}{y^2} (xy^2 + y) dx - \frac{x}{y^2} dy$$
,

trong đó L là đường cong bất kỳ nối từ điểm O(0,2) đến điểm A(1,1).

- 6. Tính tích phân $\int_L (x\sqrt{x^2+y^2}+y)dx+(y\sqrt{x^2+y^2}+x)dy$, trong đó L là đường bất kì nối hai điểm A(0,-2),B(2,0).
- 7. Tính tích phân $\iint_{L^*} \frac{dx + dy}{x + y}$, trong đó L là chu tuyến của hình vuông ABDC với A(1;0), B(0;1), C(-1;0), D(0;-1), tích phân lấy theo chiều dương.
- 8. Chứng minh biểu thức $\left(\frac{y}{x}-2x\right)dx+\left(1+\ln x\right)dy$ là vi phân toàn phần của một hàm số u(x,y) nào đó. Tìm hàm u đó.
- 9. Chứng minh biểu thức $(y^3 + \cos x)dx + (3y^2x + \cos y)dy$ là vi phân toàn phần của một hàm số u(x, y) nào đó. Tìm hàm u đó.
- 10. Tính tích phân mặt loại 1 sau

$$\iint_{\Omega} \frac{1}{(1+x+y)^2} ds,$$

trong đó Ω là mặt biên của tứ diện $x+y+z \leq 1; x \geq 0, y \geq 0, z \geq 0.$

11. Tính diện tích mặt Ω trong đó Ω là mặt toàn phần của hình trụ

$$x^2 + y^2 = 4$$
, $z = 4$.

CHƯƠNG 4. PHƯƠNG TRÌNH VI PHÂN

BÀI 2. PTVP CẤP 1

PHƯƠNG TRÌNH PHÂN LY

$$1. ydx + 2xdy = 0$$

2.
$$(xy^2 + x)dx + (y - x^2y)dy = 0$$

3.
$$x(1+y^2)^2 dx + y(1+x^2)^2 dy = 0$$

4.
$$(1 + e^{2x})y^2dy = e^x dx$$
, $y(0) = 0$

PHƯƠNG TRÌNH ĐẮNG CẤP

5.
$$y' = \frac{y^2}{x^2} - 2$$

6.
$$(y-x)dx + (y+x)dy = 0$$

PHƯƠNG TRÌNH TUYẾN TÍNH

7.
$$y' + 2xy = xe^{-x^2}$$

8.
$$xy' - \frac{y}{x+1} = x$$

9.
$$(1 + x^2)y' - 2xy = (1 + x^2)^2$$

10.
$$(1 + x^2)y' + xy = 1 + x^2$$

11.
$$xdx = \left(\frac{x^2}{y} - xy^3\right) dy$$
 (Gợi ý: Chia cho dy)

BTVN

$$1. \sin x \, dy - y dx = 0$$

2.
$$y' \cdot \cos 2y - \sin x = 0$$

3.
$$xyy' + x^2 - 2y^2 = 0$$

4.
$$(x^2 - y^2)y' = 2xy$$

5.
$$y' + 2xy = 2x^3$$

6.
$$y' + \frac{y}{y+1} = -1$$

PHƯƠNG TRÌNH TUYẾN TÍNH CẤP 2

1.
$$y'' - 4y = 0$$

2.
$$y'' + 6y' + 13y = 0$$

3.
$$y'' - 4y' + 4y = 0$$

4.
$$y'' + 4y' + 29y = 0$$

5.
$$y'' - 2y' + 2y = 2x$$

6.
$$y'' - 6y' + 9y = 2x^2 - x + 3$$

7.
$$2y'' + y' - y = 2xe^x$$

8.
$$y'' - 4y' + 4y = 3e^{2x}$$

1.
$$y'' - 2y' = x^2 + 2x - 1$$

2.
$$y'' - 4y' + 4y = 2x$$

3.
$$y'' - 7y' + 6y = 8e^{2x}$$