Estimating the ImpressionRank of Web Pages

FAN Kai fankai@net.pku.edu.cn

Computer Networks and Distritued Systems Laboratory
Peking University

May 15, 2009

ImpressionRank

- A measure of **exposure** of a web page/site in a search engine
- Number of times users viewed the page while browsing search results
- Page p has an impression on a query(keyword) q :
 - the search engine return p as a result for q
 - the user looked at the result(click is not necessary)
 - the top n ranking results

Motivation

- Popularity rating of pages and sites
 - assume visibility is corelated with traffic
 - Nielson, comScore and Alexa
- Site analytics
 - impressions vs. clicks
- Market research
 - different sites
 - different queries
 - different search engines
- Search engine evaluation
 - impressions of spams, hate sites, porn and virus infected pages

Contribution

- First external algorithm for popular keyword extraction
 - the search engine
 - the query suggestion service
 - the web
- Moderst Resource
 - search engine requests(hundreds)
 - suggestion service requests(tens of thousands)
 - fetch web pages(hundreds)

Challenges

- find queries for which the search engine would return a certain page
- find how many impressions these queries generate
- limits on the rate of requests posed by search engine

ImpressionRank Calculation

- Notions
 - impression(p,w) impression contribution of keyword w to page p
 - incident(p,w) whether the search engine return p for w
 - freq(w) number of w in the query log
 - ullet N(p) neighbors of page p , or all keywords incident to p
- Formula
 - $impression(p, w) = incident(p, w) \cdot freq(w)$
 - $irank(p) = \sum_{w} impression(p, w) = \sum_{w \in neighbor(p)} freq(w)$
 - $irank(website) = \sum_{p \in website} irank(p)$

Popular Keyword Extraction

- Power law distribution of query frequencies
 - 73% impressions of www.cnn.com come from "cnn", "election results", "news"
 - assume power law holds for a specific document
- Varient of classical keyword extraction problem
 - find impressions on top queries
- Algorithm
 - use the frequencies of the top k keywords to infer the exponent of power law
 - sum up the total frequency to estimate the ImpressionRank

Remaining Problems

Keyword Frequency Estimation

Input A keyword w

Output The frequency of w in search engine log

Popular Keyword Extraction

Input A document **p** and an integer **k**Output The **k** keywords on which **p** has the most impressions

Suggestion Services

- ullet Given a string ullet , suggesting service returns the most popular queries which starts with ullet .
- VLDB 2008, Mining Search Engine Query Logs via Suggestion Sampling

Frequency vs. Volume

- Notions
 - freq(q) frequency of a query **q**number of instances **q** in the query log
 - vol(s) volume of a string s
 number of distinct queries in the log of whom s
 is a prefix
- Correlation between freq(q) and vol(pre(q))
 - both have power law distributions
 - "order-corelated"
 - measure freq(q) using vol(pre(q))
- How to find pre(q)?

Naive Volume Calculator

- Assume suggestion service return M results at most each time.
- If we send a string **s** to suggestion service and the service return k(< M) results, we could infer vol(s) = k.
- If suggestion service return $k (\geq M)$ results, recursively computes the volumes of the children of **s** and sum them up.

Real Volume Estimator

Naive estimator

$$VolEst_{naive}(s) = \left\{ egin{array}{ll} |results(s)|, & ext{if } |results(s)| < M \ a, & ext{if } k \geq M \end{array}
ight.$$

 Sample-based estimator given T'is a random sample of T

$$VolEst_{sample}(s) = \left\{ egin{array}{ll} vol(s,T') \cdot rac{|T|}{|T'|}, & ext{if } |vol(s,T') \geq b \\ 0, & ext{otherwise} \end{array}
ight.$$

Score-based estimator

Theorem

$$VolEst(s) = VolEst_{naive}(s) + VolEst_{sample}(s) + VolEst_{score}(s)$$

Overview

- Impossible to test all keywords.
- Apply best-first search
 - track down the most promising candidates
 - evaluate them
 - report the top keywords found
- Cache everything.
- Set requests budget.

Notions

- candidate heap : frontier of the search space
- keyword heap : highest frequent keywords incident to document
- seed text : all related text to a web page
- term pool : all terms from seed text
- candidate keywords: all ordered finite-length sequences of terms from term pool

search space: a TRIE whose alphabet is all the terms

Main Flow

- crawl seed text, add all terms to term pool
- score all terms and insert them to candidate heap
- Ioop while budget not reached
 - pop w from candidate heap and send to suggestion service
 - $S = \mathbf{w} \cup result(w)$
 - **3** for all $u \in S$, if u is **incident** to page **p**
 - estimate freq(u) and add to keyword heap
 - expand seed text with u and all pages incident to u
 - 3 regenerate all terms, recore, and refresh candidate heap
- expand w

Test Incidence

- Send keyword w to search engine and check whether page p is one of the top k results.
- Send query "inurl:url(p) w" to the search engine, if no results returned, then neither w nor any of its descendants are incident to p.

Whether To Expand A Candidate

- diversity: if w or any suggestions for w already in keyword heap, no need to expand
- if none of the descendants of **w** has positive frequency, prune
- ullet if none of the descendants of ullet is incident to ullet , prune
- if estimated frequency of the top descendant can not make top k in keyword heap, prune
- otherwise, expand w

Candidate Scoring

- efficiency is important
- $score(w) = score_{freq}(w)^a + score_{tf}(w)^b + score_{idf}(w)^c$
- estimate frequency score for w and all its descendants
 - under budget
 - estimate frequency for keywords r which has most descendants
 - if vol(r) is 0 or 1, then all its descendants has no frequency
 - if r is choosed, then its ancestors is also choosed
 - · for keyword u which is not selected
 - if r=pre(u) is selected, estimate its score by vol(pre(u))
 - if r=pre(u) is not selected, find its lower-most ancestor r which has been selected, F is the sum of the frequencies of r's descendants not in suggestions, $score_{freq}(u) = \frac{F}{vol(r)-N}$

Query Popularity

Figure 2: Cumulative number of distinct queries by popularity in the AOL data set (log-log scale). The graph indicates an almost power law with exponent $\alpha = 2.55$.

α, β, γ	${f Google}^{{ m recall}_F,}$	$egin{array}{c} \operatorname{recall}_F, \ \mathbf{Yahoo!} \end{array}$	${f Google}$	$egin{array}{c} \operatorname{recall}_U, \ \mathbf{Yahoo!} \end{array}$
0.2, 1, 0.6	0.93 ± 0.08	0.84 ± 0.14	0.62 ± 0.06	0.37 ± 0.05
0, 1, 0.6	0.91 ± 0.09	0.80 ± 0.16	0.52 ± 0.06	0.27 ± 0.04
0.2, 0, 0.6	0.02 ± 0.01	0.07 ± 0.08	0.24 ± 0.05	0.17 ± 0.04
0.2, 1, 0	0.92 ± 0.08	0.82 ± 0.14	0.50 ± 0.06	0.17 ± 0.04

Table 1: Estimated recall values (together with measured standard deviations) for the popular keyword extraction algorithm.

Figure 2: Recall as a function of keyword frequency.

Figure 3: Keyword extraction progress.

(ロ) (団) (ほ) (ほ) ほ り(♡

ImpressionRank Estimates For News Sites

Figure 4: ImpressionRank estimates for news sites.

ImpressionRank Estimates For Travel Sites

Figure 4: ImpressionRank estimates for news sites.

Pupular Keywords

Google	Yahoo!	
www	.cnn.com	
cnn, election results, news,	weather, cnn, news of the world,	
obama, video, polls, health	obama, cnn news, presidential election	
www.ny	vtimes.com	
new york times, fashion,	new york times, ny times, crossword,	
obama girl, crossword puzzles	the new york times, new times	
www.washi	ngtonpost.com	
obama tax plan, washington post,	washington post, comics,	
washington, post, the post	newspaper, iraq news	
en.wikipedia.or	rg/wiki/PageRank	
page rank, ranking, google ranking,	pagerank, google algorithm,	
google page rank, pagerank	google rank, page rank	
www.ex	spedia.com	
expedia, travel, travel agents,	expedia, hotels, cheap hotels,	
ski holidays, cruises, cruise deals	travel, vacation packages	
www.c	orbitz.com	
orbitz, car rental, cheap hotels,	hotels, cheap tickets, cheap flights,	
flights, airline tickets,	orbitz, travel, flights	
www.tra	velocity.com	
travelocity, travel, flights,	hotels, cheap flights, travelocity,	
flight tickets, travelocity flights,	travel, flights, airline tickets	
www.cs.cornell.	edu/home/kleinber	
scientific american articles,	kleinberg, small world phenomenon,	
kleinberg, kleinberg tardos,	jon kleinberg, world phenomenon,	
small world phenomenon	robin ec08 parts	
www.microso	ft.com/BillGates	
bill gates, bill gates home,	gates, william gates,	
william gates, william gates iii	william gates iii,	
bill gates speeches,	pictures of bill gates house	
	ord.edu/~sergey	
sergey brin, favorite books,	sergey brin, brin sergey,	
brin sergey, stanford sergey brin,	stanford home page, cs stanford,	
data mining search engines	brin page, page brin	

Think Boldly!

Thanks