

## Teste Prático de Melhoria (Parte 2)

Física Computacional — 2014/2015

23 de junho de 2015

Duração: 2 horas

Note que os símbolos a negrito representam vetores.

Deve ser criada uma pasta no *desktop* contendo os ficheiros .m e eventuais figuras.

1. Considere a equação diferencial para as oscilações de um pêndulo

$$\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + \sin\theta = 0.$$

- a) Considere as condições iniciais  $\theta(0) = 0.2$  e  $\theta'(0) = 0$  e integre a equação até t = 50 usando a rotina ode45. Faça o gráfico de  $\theta(t)$ .
- b) Determine a frequência da oscilação obtida na alínea anterior.
- c) A frequência de oscilação é dependente da amplitude. Ao considerar  $\theta'(0) = 0$  estamos a escolher a amplitude de oscilação pela escolha de  $\theta(0)$ . Escreva um shooting que procura a amplitude de oscilação, ou seja  $\theta(0)$ , para a qual a frequência é igual a 1.
- d) Repita a alínea b) mas usando transformadas de Fourier. Deve correr a ode45 usando um vetor de t pré-definido. Faça a transformada de Forier de  $\theta(t)$  e calcule  $\omega > 0$  para o qual o valor absoluto dessa transformada de Fourier é máximo. Escolha um espaçamento em t adequado.
- e) Varie  $\theta(0)$  entre 0.2 e 1 com um espaçamento de 0.1 e encontre a frequência de oscilação pelo método das transformadas de Fourier. Faça um gráfico da frequência em função de  $\theta(0)$ . Escolha  $t_f$  e dt de forma a ter um  $\omega_{\rm max}$  maior ou igual a 2 e uma resolução de 0.002.