Overview of Microcomputer Structure and Operation

Course Teacher:

Md. Fahmidur Rahman Sakib

Lecturer, Department of Computer Science & Engineering Metropolitan University

Course ID: CSE 237

Course Title: Microprocessor and Interfacing

Lecture References:

Book:

Microprocessors and Interfacing: Programming and Hardware,
 Author: Douglas V. Hall

Block Diagram of a Simple Microcomputer

Components of Microcomputer:

- CPU (Microprocessor)
- Memory (RAM, ROM etc)
- □ I/O
- System Buses:
 - Address bus
 - Data bus
 - Control bus

CPU - Central Processing Unit

- ☐ **FETCH**: Take in binary-coded instructions from memory
- DECODE : Analyze or make sense of the instructions
- **EXECUTE**: Carry out the instructions
- Controls overall operation of the computer
- Important components: Registers, ALU, Control Unit

Pentium D dual core processors

Memory

This is where all the binary coded instructions and data are stored. Example: ROM, RAM etc.

RAM (Random Access Memory):

- Can be read and written to anytime by the CPU.
- It is volatile memory. That means contents of RAM are erased when the power to the computer is turned off.

ROM (Read Only Memory):

- Can only be read by the CPU.
- It is pre-loaded with data and software that never changes like computer's initial start-up instructions.
- It is non volatile memory. That means contents of ROM are NOT erased when the power to the computer is turned off.

I/O Unit

- Input/output (I/O) units serve as a medium of communication between the user and the computer.
- Inputs are the signals or data received by the system, and outputs are the signals or data sent from it.
- Devices that provide input or output to the computer are called *peripherals*.
- For example:

keyboard, mouse (input)
display, printer (output)
hard disk (both input & output)

System Bus

- System bus is made up of three types of bus :
 - Address Bus
 - Data Bus
 - □ Control Bus

- WRITE operation: When data is written onto memory location or an I/O port by the processor
- READ operation: When data is read from a selected memory location or an I/O port by the processor

Address Bus

- Carries memory address of the instructions which are to be executed
- Information transfer takes place from the MP to the memory or I/O elements. That is why address bus is Unidirectional.
- On these lines the CPU sends out the address of the memory location or I/O port that is to be written to or read from
- The number of locations that the CPU can address is determined by the number of address lines

For example: microprocessor with 32 bit address bus can address 2³² memory locations

Data Bus

- It is a bidirectional bus
- Data can flow in both directions, that is, to or from the microprocessor.
- The size of the data bus varies from one microprocessor to another.
- Usually matches the word length of the microprocessor
- Usually a multiple of 8
- We talk of 4-bit, 8-bit, 16-bit, 32-bit and 64-bit processors which refers to the normal word length of the microprocessor

Control Bus

- It carries timing and control signals generated by the CPU that are used to synchronize operation of the individual microcomputer elements.
- It can carry many different signals. For e.g.
 - I/O Read
 - □ I/O Write
 - Interrupt
 - Memory read
 - Memory write

Fetching & Execution Cycles

The Fetch & Execute Cycle of the CPU is composed of three basic operations:

- □ Fetch
- Decode
- Execute

Fetch:

- The instruction required from memory is stored or copied in the instruction register.
- Increments the program counter so that it points to the next instruction.

Fetching & Execution Cycles

Execute cycle

- The actual actions which occur during the execute cycle of an instruction.
- Depend on both the instruction itself and the addressing mode specified to be used to access the data that may be required.

The CPU's Special Purpose Registers

- Program Counter : Holds address of next instruction
- **Instruction Register** : Holds the instruction currently being executed or decoded
- Memory Address Register: Holds memory address from where data will be fetched
- **Memory Data Register**: Holds the data being transferred to the memory or from the memory by the CPU

	Control Unit	
control	1	Program Counter
control	bus	Current Instruction Register
8	Arithmetic Logic Unit	Memory Address Register
		Memory Data Register

Step I

Instruction Pointer (IP) or a program counter is register, that holds the address of the next instruction to be fetched.

□ Step 2

Memory location	contents
0001	0FFF
0002	0FA0
0003	010D
0004	00C1
0005	0010

Step 3

□ Step 4

Memory location	contents
0001	0FFF
0002	0FA0
0003	010D
0004	00C1
0005	0010

□ Step 7

Memory location	contents
0001	0FFF
0002	0FA0
0003	010D
0004	00C1
0005	0010

Food for thought

- What do you understand by a 32 bit Data Bus?
- BIOS is a special program that orchestrates loading the computer's operating system. Should it be stored in ROM or RAM?

Thank You!!