	Sistemi Operativi - PRIMO COM	MPITINO - 9 aprile 2018 – Ver. A
Cognome e nome:	Matricola:	Posto:

Università degli Studi di Padova - Corso di Laurea in Informatica

Regole dell'esame

Il presente esame scritto deve essere svolto in forma individuale in un tempo massimo di 45 min dalla sua presentazione. Non è consentita la consultazione di libri o appunti in forma cartacea o elettronica, né l'uso di palmari e telefoni cellulari. Il candidato riporti generalità e matricola negli spazi indicati in alto e inserisca le proprie risposte interamente su questi fogli.

Quesito 1:

Lo studente riporti le 4 condizioni necessarie e sufficienti affinché possa verificarsi lo stallo (deadlock) di un sistema. Se il nome di una condizione è riportato in modo corretto, la spiegazione è superflua. Una eventuale spiegazione aggiuntiva deve essere concisa.

Ouesito 2:

Illustrare con un diagramma come quello visto a lezione gli stati in cui può trovarsi un processo e le transizioni tra essi. Presentare solo il diagramma, completando quello sotto con i nomi degli stati (nei 3 ovali vuoti) e delle transizioni (6 frecce); non sono necessarie ulteriori spiegazioni.

E Medie

	Sistemi Operativi - PRIMO COM	IPITINO - 9 aprile 2018 – Ver. A
Cognome e nome:	Matricola:	Posto:

Un sistema utilizza l'Algoritmo del Banchiere per assegnare o meno le risorse ai processi che le richiedono.

Nel sistema vi sono 4 processi attivi (A, B, C, D) e 5 risorse (R1, R2, R3, R4, R5) da ripartire.

In un dato momento, il vettore delle risorse disponibili è [0 1 3 1 3] mentre l'allocazione di risorse e i bisogni massimi dei processi sono riportati nella tabella seguente:

Processo	Allocate	Massimo
A	10211	11214
B	20111	2 3 4 2 1
C	1 1 0 1 0	2 1 4 1 0
D	2.1.1.1.0	21321

A questo punto, il processo B chiede una ulteriore risorsa di tipo R4. Si discuta se la risorsa sarà assegnata o meno dal sistema.

Quesito 5:

Lo studente realizzi una soluzione al problema dei "filosofi a cena" utilizzando i <u>semafori</u>. Tale soluzione deve essere la più semplice possibile e non comportare rischi di *deadlock* (stallo) o *starvation*.

(Per coloro che avessero studiato solo sul libro di testo: P, corrisponde a down, V corrisponde a up)

Lo studente si ricordi di riportare l'indicazione di tipo e valore iniziale di ciascuna variabile.

Cognome e nome:	Matricola:	Posto:	

Soluzione

Soluzione al Quesito 1

- Accesso esclusivo a risorsa condivisa
- Accumulo di risorse
- Inibizione di prerilascio
- Condizione di attesa circolare

Soluzione al Quesito 2

Soluzione al Quesito 3

[3.A]

Proc. E

Proc. A	Α	a	a	a	a	a	a	a	Α	A	a	a	Α
Proc. B	ı	В	В	В	В	В	В	В					
Proc. C	-	-	С	c	С	С	c	С	c	c	С	С	c

CPU	Α	В	В	В	В	В	В	В	Α	Α	D	D	Α	D	С	С	Е	Ε				
	-	a	a	a	a	a	a	a	d	d	a	a	d	c	e	e						
Coda			С	С	С	c	d	d	С	С	С	С	c	e								
Coda							С	С	e	e	e	e	e									
								e														

C C

D

processo	t. risposta	t. attesa	turn-around
A	0	9	13
В	0	0	7
С	12	12	14
D	4	5	8
Е	9	9	11
medie	5	7	10.6

Cognome e nome: Matricola:												Posto:													
[3.B]																									
Proc. A	Α	Α	Α	Α																					
Proc. B	-	b	b	b	b	b	b	b	b	b	b	В	В	В	В	В	В	В							
Proc. C	-	-	С	С	С	С																			
Proc. D	-	-	-	-	-	-	D	D	D																
Proc. E	-	-	-	-	-	-	-	e	e	Е	Е														
CPU	A	Α	Α	Α	С	С	D	D	D	Е	Е	В	В	В	В	В	В	В							
		b	c	c	b	b	b	e	e	Ъ	b														
Coda			b	b				b	b																
Coda																									

processo	t. risposta	t. attesa	turn-around
A	0	0	4
В	10	10	17
С	2	2	4
D	0	0	3
Е	2	2	4
medie	2.8	2.8	6.4

Soluzione al Quesito 4

Il sistema verificherà se l'assegnazione della risorsa porterebbe ad uno stato sicuro o meno. L'assegnazione viene simulata e le matrici Allocate e Necessità diventano quelle riportata sotto:

Processo	Allocate	Massimo	<u>Necessità</u>
A	10211	1 1 2 1 4	01003
B	2 0 1 <u>2</u> 1	2 3 4 2 1	03300
C	$1 \ 1 \ 0 \ \overline{1} \ 0$	2 1 4 1 0	10400
D	2 1 1 1 0	2 1 3 2 1	00211

Mentre il vettore delle risorse disponibili diventa [0 1 3 0 3]

Il processo A può essere eseguito fino alla fine. Quando ha finito, il vettore delle risorse disponibili è [1 1 5 1 4].

Il processo C può dunque essere eseguito. Dopo il suo completamento, il vettore delle risorse disponibili diventa [2 2 5 2 4].

Il processo D può quindi essere eseguito e, successivamente, il vettore delle risorse disponibili diventa [4 3 6 3 4]

A questo punto anche il processo B può essere eseguito e di conseguenza lo stato è sicuro.

Il sistema procederà quindi ad assegnare la risorsa richiesta.

Soluzione al Quesito 5

Varie soluzioni possibili, ad esempio quella del filosofo mancino:

```
int semaforo f[i] = 1;
Filosofo(i) {
    while(1) {
        <pensa>
        if(i == X) {
            P(f [(i+1)%N]);
            P(f [i]);
        } else {
            P(f [i]);
            P(f [(i+1)%N]);
        }
        <mangia>
        V(f [i]);
        V(f [(i+1)%N]);
    }
}
```