Introduction to graph theory

Sylwia Cichacz

Akademia Górniczo-Hutnicza w Krakowie

September 1, 2021, Kraków

Definition:

A graph G = (V, E) consists of two finite sets V and E. The elements of V are called the vertices and the elements of E the edges of G.

Definition:

A graph G = (V, E) consists of two finite sets V and E. The elements of V are called the vertices and the elements of E the edges of G.

Each edge is a two-element subset of V. For notation convenience, instead of representing the edge $\{x,y\}$ we will denote it by xy.

Definition:

A graph G = (V, E) consists of two finite sets V and E. The elements of V are called the vertices and the elements of E the edges of G.

|V| – order of graph (|G|),

Definition:

A graph G = (V, E) consists of two finite sets V and E. The elements of V are called the vertices and the elements of E the edges of G.

```
|V| – order of graph (|G|), |E| – size of graph (|G|).
```

Definition:

A graph G = (V, E) consists of two finite sets V and E. The elements of V are called the vertices and the elements of E the edges of G.

|V| – order of graph (|G|), |E| – size of graph (||G||).

• A directed graph or a digraph – by replacing the set E with a set of ordered pairs of vertices $((x, y) \neq (y, x))$

- A directed graph or a digraph by replacing the set E with a set of ordered pairs of vertices $((x, y) \neq (y, x))$
- A mixed graph if E contains both directed an undirected edges.

- A directed graph or a digraph by replacing the set E with a set of ordered pairs of vertices $((x, y) \neq (y, x))$
- A mixed graph if E contains both directed an undirected edges.
- A multigraph if *E* is a multiset.

- A directed graph or a digraph by replacing the set E with a set of ordered pairs of vertices $((x, y) \neq (y, x))$
- A mixed graph if E contains both directed an undirected edges.
- A multigraph if *E* is a multiset.
- A pseudograph if E has edges that connect a vertex to itself (a loop).

- A directed graph or a digraph by replacing the set E with a set of ordered pairs of vertices $((x, y) \neq (y, x))$
- A mixed graph if E contains both directed an undirected edges.
- A multigraph if E is a multiset.
- A pseudograph if E has edges that connect a vertex to itself (a loop).
- A simple graph a finite graph without loops or multiple edges.

Definition:

Let G = (V, E) be a graph

Definition:

Let G = (V, E) be a graph $v, w \in V(G)$ – adjacent $\iff \exists e = vw \in E(G)$, in this case we also say that x is a neighbor of y.

Definition:

Let G = (V, E) be a graph $v, w \in V(G)$ – adjacent $\iff \exists e = vw \in E(G)$, in this case we also say that x is a neighbor of y. $v, w \in V(G)$ – incident with $e = vw \in E(G)$. We also say that u and v are the endpoints of e.

Definition:

Let G = (V, E) be a graph $v, w \in V(G)$ - adjacent $\iff \exists e = vw \in E(G)$, in this case we also say that x is a neighbor of y.

 $v, w \in V(G)$ – incident with $e = vw \in E(G)$. We also say that u and v are the endpoints of e.

 $e_1, e_2 \in E(G)$ – incident $\Leftrightarrow e_1 \cap e_2 \neq \emptyset$

Definition:

Let G = (V, E) be a graph $v, w \in V(G)$ - adjacent $\iff \exists e = vw \in E(G)$, in this case we also say that x is a neighbor of y. $v, w \in V(G)$ - incident with $e = vw \in E(G)$. We also say that u

and v are the endpoints of e.

 $e_1, e_2 \in E(G)$ - incident $\Leftrightarrow e_1 \cap e_2 \neq \emptyset$ $(\exists v \in V(G) : v \in e_1 \text{ and } e_2 \in V(G) : v \in e_2 \text{ and } e_2 \in V(G) : v \in$ $v \in e_2$).

Definition:

Let G = (V, E) be a graph

Definition:

Let G = (V, E) be a graph The neighborhood of a vertex $v \in V(G)$, denoted by N(v) is a set of all vertices adjacent to v, i.e:

Definition:

Let G = (V, E) be a graph The neighborhood of a vertex $v \in V(G)$, denoted by N(v) is a set of all vertices adjacent to v, i.e:

$$N(v) = \{ w \in V(G) : vw \in E(G) \}.$$

Definition:

Let G = (V, E) be a graph

The neighborhood of a vertex $v \in V(G)$, denoted by N(v) is a set of all vertices adjacent to v, i.e:

$$N_G(v) = N(v) = \{ w \in V(G) : vw \in E(G) \}.$$

Definition:

Let G = (V, E) be a graph

Definition:

Let G = (V, E) be a graph The degree of a vertex $v \in V(G)$ (deg(v), $d_G(v)$) is the number of edges incident with v.

Definition:

Let G = (V, E) be a graph

The degree of a vertex $v \in V(G)$ (deg(v), $d_G(v)$) is the number of edges incident with v. Alternatively (in a simple graph) deg(v) = |N(v)|.

Definition:

Let G = (V, E) be a graph The degree of a vertex $v \in V(G)$ (deg(v), $d_G(v)$) is the number of edges incident with v. Alternatively (in a simple graph) deg(v) = |N(v)|. If d(v) = 0, then v – isolated vertex.

Definition:

```
Let G = (V, E) be a graph
```

The degree of a vertex $v \in V(G)$ (deg(v), $d_G(v)$) is the number of edges incident with v. Alternatively (in a simple graph) deg(v) = |N(v)|.

If d(v) = 0, then v - isolated vertex.

The maximum degree of a graph G:

Definition:

Let G = (V, E) be a graph

The degree of a vertex $v \in V(G)$ (deg(v), $d_G(v)$) is the number of edges incident with v. Alternatively (in a simple graph) deg(v) = |N(v)|.

If d(v) = 0, then v - isolated vertex.

The maximum degree of a graph G:

$$\Delta(G) = \max\{d(v) : v \in V\},\$$

Definition:

Let G = (V, E) be a graph

The degree of a vertex $v \in V(G)$ (deg(v), $d_G(v)$) is the number of edges incident with v. Alternatively (in a simple graph) deg(v) = |N(v)|.

If d(v) = 0, then v - isolated vertex.

The maximum degree of a graph G:

$$\Delta(G) = \max\{d(v) : v \in V\},\$$

The minimum degree of a graph G:

Definition:

Let G = (V, E) be a graph

The degree of a vertex $v \in V(G)$ (deg(v), $d_G(v)$) is the number of edges incident with v. Alternatively (in a simple graph) deg(v) = |N(v)|.

If d(v) = 0, then v - isolated vertex.

The maximum degree of a graph G:

$$\Delta(G) = \max\{d(v) : v \in V\},\$$

The minimum degree of a graph G:

$$\delta(G) = \min\{d(v) : v \in V\},\$$

Definition:

Let G = (V, E) be a graph

The degree of a vertex $v \in V(G)$ (deg(v), $d_G(v)$) is the number of edges incident with v. Alternatively (in a simple graph) deg(v) = |N(v)|.

If d(v) = 0, then v - isolated vertex.

The maximum degree of a graph G:

$$\Delta(G) = \max\{d(v) : v \in V\},\$$

The minimum degree of a graph G:

$$\delta(G) = \min\{d(v) : v \in V\},\$$

$$G - r$$
-regular, if $\forall v \in V(G) \ d(v) = r$.

3-regular graph

3-regular graph

Petersen graph

Theorem: handshake lemma

The degree sum formula states that for a given graph G = (V, E)

$$\sum_{v \in V(G)} \deg(v) = 2|E(G)|.$$

Theorem: handshake lemma

The degree sum formula states that for a given graph G = (V, E)

$$\sum_{v \in V(G)} \deg(v) = 2|E(G)|.$$

From Newsweek.

Corollary:

In any graph the number of vertices having the odd degree is even.

Corollary:

In any graph the number of vertices having the odd degree is even.

Proof:

Corollary:

In any graph the number of vertices having the odd degree is even.

Proof: Let G = (V, E)

Corollary:

In any graph the number of vertices having the odd degree is even.

Proof: Let
$$G = (V, E)$$

 $V = V_1 \cup V_2$, where

Corollary:

In any graph the number of vertices having the odd degree is even.

Proof: Let G = (V, E)

 $V = V_1 \cup V_2$, where

 V_1 – the set of vertices of odd degree

Corollary:

In any graph the number of vertices having the odd degree is even.

Proof: Let G = (V, E)

 $V = V_1 \cup V_2$, where

 V_1 – the set of vertices of odd degree

 V_2 – the set of vertices of even degree

Corollary:

In any graph the number of vertices having the odd degree is even.

Proof: Let G = (V, E)

 $V = V_1 \cup V_2$, where

 V_1 – the set of vertices of odd degree

 V_2 – the set of vertices of even degree

Thus

Corollary:

In any graph the number of vertices having the odd degree is even.

Proof: Let
$$G = (V, E)$$

 $V = V_1 \cup V_2$, where
 V_1 – the set of vertices of odd degree
 V_2 – the set of vertices of even degree
Thus
 $2|E(G)| = \sum_{v \in V_1} \deg(v) + \sum_{u \in V_2} \deg(u)$

Corollary:

In any graph the number of vertices having the odd degree is even.

Proof: Let
$$G = (V, E)$$

 $V = V_1 \cup V_2$, where
 V_1 – the set of vertices of odd degree
 V_2 – the set of vertices of even degree
Thus
 $2|E(G)| = \sum_{v \in V_1} \deg(v) + \sum_{u \in V_2} \deg(u) \Rightarrow \sum_{v \in V_1} \deg(v) = 2|E(G)| - \sum_{u \in V_2} \deg(u)$.

Definition:

A degree sequence of a simple graph G is the set of degrees of all vertices in V written in non-increasing order.

Definition:

A degree sequence of a simple graph G is the set of degrees of all vertices in V written in non-increasing order.

It is clear that each simple graph has exactly one degree sequence, but that the converse need not hold.

Definition:

A degree sequence of a simple graph G is the set of degrees of all vertices in V written in non-increasing order.

Definition:

A graphic sequence is a sequence of numbers which can be the degree sequence of some graph.

Definition:

A degree sequence of a simple graph G is the set of degrees of all vertices in V written in non-increasing order.

Definition:

A graphic sequence is a sequence of numbers which can be the degree sequence of some graph.

Example:

Is (4,1,1) graphic?

Definition:

A degree sequence of a simple graph G is the set of degrees of all vertices in V written in non-increasing order.

Definition:

A graphic sequence is a sequence of numbers which can be the degree sequence of some graph.

Example:

Is (4,3,2,2,1) graphic?

Theorem: Erdős, Gallai, 1960

A sequence $\{d_1, \ldots, d_n\}$ is graphic iff the sum of the elemnts is even and the sequence obeys the property

$$\sum_{i=1}^{r} d_i \le r(r-1) + \sum_{i=r+1}^{n} \min\{r, d_i\}$$

for each integer $r \le n - 1$.

Theorem: Erdős, Gallai, 1960

A sequence $\{d_1, \ldots, d_n\}$ is graphic iff the sum of the elemnts is even and the sequence obeys the property

$$\sum_{i=1}^{r} d_i \le r(r-1) + \sum_{i=r+1}^{n} \min\{r, d_i\}$$

for each integer $r \le n - 1$.

Theorem: Erdős, Gallai, 1960

A sequence $\{d_1, \ldots, d_n\}$ is graphic iff the sum of the elemnts is even and the sequence obeys the property

$$\sum_{i=1}^{r} d_i \le r(r-1) + \sum_{i=r+1}^{n} \min\{r, d_i\}$$

for each integer $r \le n - 1$.

Theorem: Havel (1955) and Hakimi (1962)

A degree sequence with $n \ge 3$ and $d_1 \ge 1$ is graphical iff the sequence $\{d_{2-1}, d_{3-1}, \dots, d_{d_1+1}-1, d_{d_1+2}, \dots, d_p\}$ is graphical.

Theorem: Havel (1955) and Hakimi (1962)

A degree sequence with $n \ge 3$ and $d_1 \ge 1$ is graphical iff the sequence $\{d_{2-1}, d_{3-1}, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_p\}$ is graphical.

Theorem: Havel (1955) and Hakimi (1962)

A degree sequence with $n \ge 3$ and $d_1 \ge 1$ is graphical iff the sequence $\{d_{2-1}, d_{3-1}, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_p\}$ is graphical.

In addition, they showed that if a degree sequence is graphic, then there exists a graph G such that the node of highest degree is adjacent to the $\Delta(G)$ next highest degree vertices of G.

Theorem: Havel (1955) and Hakimi (1962)

A degree sequence with $n \ge 3$ and $d_1 \ge 1$ is graphical iff the sequence $\{d_{2-1}, d_{3-1}, \ldots, d_{d_1+1}-1, d_{d_1+2}, \ldots, d_p\}$ is graphical.

In addition, they showed that if a degree sequence is graphic, then there exists a graph G such that the node of highest degree is adjacent to the $\Delta(G)$ next highest degree vertices of G.

Example:

Check if the sequence (4, 3, 2, 2, 1) is graphical.

Theorem: Havel (1955) and Hakimi (1962)

A degree sequence with $n \ge 3$ and $d_1 \ge 1$ is graphical iff the sequence $\{d_{2-1}, d_{3-1}, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_p\}$ is graphical.

Example:

(4,3,2,2,1)

2

Definition:

A walk consists of an alternating sequence of vertices and edges consecutive elements of which are incident $(v_0, e_1, v_1, e_2, v_2, \ldots, v_{k-1}, e_k, v_k)$, that begins and ends with a vertex.

Definition:

A walk consists of an alternating sequence of vertices and edges consecutive elements of which are incident

 $(v_0, e_1, v_1, e_2, v_2, \dots, v_{k-1}, e_k, v_k)$, that begins and ends with a vertex. A **<u>trail</u>** is a walk without repeated edges.

Definition:

A walk consists of an alternating sequence of vertices and edges consecutive elements of which are incident

 $(v_0, e_1, v_1, e_2, v_2, \dots, v_{k-1}, e_k, v_k)$, that begins and ends with a vertex. A <u>trail</u> is a walk without repeated edges. A <u>path</u> is a walk without repeated vertices.

Definition:

A walk consists of an alternating sequence of vertices and edges consecutive elements of which are incident

 $(v_0, e_1, v_1, e_2, v_2, \dots, v_{k-1}, e_k, v_k)$, that begins and ends with a vertex. A <u>trail</u> is a walk without repeated edges. A <u>path</u> is a walk without repeated vertices.

If a walk (resp. trail, path) begins at x and ends at y then it is an x - -y walk (resp. x - y trail, resp. x - y path).

Definition:

A walk consists of an alternating sequence of vertices and edges consecutive elements of which are incident

 $(v_0, e_1, v_1, e_2, v_2, \dots, v_{k-1}, e_k, v_k)$, that begins and ends with a vertex. A <u>trail</u> is a walk without repeated edges. A <u>path</u> is a walk without repeated vertices.

If a walk (resp. trail, path) begins at x and ends at y then it is an x - -y walk (resp. x - y trail, resp. x - y path). The length of a walk – the number of edges in the walk.

Definition:

A walk consists of an alternating sequence of vertices and edges consecutive elements of which are incident

 $(v_0, e_1, v_1, e_2, v_2, \dots, v_{k-1}, e_k, v_k)$, that begins and ends with a vertex. A <u>trail</u> is a walk without repeated edges. A <u>path</u> is a walk without repeated vertices.

If a walk (resp. trail, path) begins at x and ends at y then it is an x - -y walk (resp. x - y trail, resp. x - y path). The length of a walk – the number of edges in the walk.

 P_n – a path of length n.

Definition:

A walk is closed, if $v_0 = v_k$, open for $v_0 \neq v_k$.

Definition:

A walk is closed, if $v_0 = v_k$, open for $v_0 \neq v_k$.

By C_n we denote a cycle with n edges (n vertices).

Definition:

A graph G is bipartite if the vertices of G can be partitioned into two subsets V_1 and V_2 in such a way that no two vertices in the same subset are adjacent. It is denoted by $G = (V_1, V_2; E)$.

Definition:

A graph G is bipartite if the vertices of G can be partitioned into two subsets V_1 and V_2 in such a way that no two vertices in the same subset are adjacent. It is denoted by $G = (V_1, V_2; E)$.

Definition:

A graph G is bipartite if the vertices of G can be partitioned into two subsets V_1 and V_2 in such a way that no two vertices in the same subset are adjacent. It is denoted by $G = (V_1, V_2; E)$.

Definition:

A complete bipartite graph $G=(V_1,V_2;E)$ is a bipartite graph such that for any two vertices $v_1\in V_2$ and $v_2\in V_2$, $v_1v_2\in E$. The complete bipartite graph with partitions of size $|V_1|=m$ and $|V_2|=n$ is denoted by $K_{m,n}$.

Definition:

A graph G is bipartite if the vertices of G can be partitioned into two subsets V_1 and V_2 in such a way that no two vertices in the same subset are adjacent. It is denoted by $G = (V_1, V_2; E)$.

Definition:

A complete bipartite graph $G=(V_1,V_2;E)$ is a bipartite graph such that for any two vertices $v_1 \in V_2$ and $v_2 \in V_2$, $v_1v_2 \in E$. The complete bipartite graph with partitions of size $|V_1|=m$ and $|V_2|=n$ is denoted by $K_{m,n}$.

 $K_{1,n}$ is a star.

Definition:

A graph G is bipartite if the vertices of G can be partitioned into two subsets V_1 and V_2 in such a way that no two vertices in the same subset are adjacent. It is denoted by $G = (V_1, V_2; E)$.

Definition:

A complete bipartite graph $G=(V_1,V_2;E)$ is a bipartite graph such that for any two vertices $v_1 \in V_2$ and $v_2 \in V_2$, $v_1v_2 \in E$. The complete bipartite graph with partitions of size $|V_1|=m$ and $|V_2|=n$ is denoted by $K_{m,n}$.

Theorem:

A graph G is bipartite iff G has no cycle of odd size.

• The complete graph is a graph of order n that is an (n-1)-regular graph. It is denoted by K_n .

1 The complete graph is a graph of order n that is an (n-1)-regular graph. It is denoted by K_n .

2 The empty graph $E_n = (V, \emptyset)$. E_n is 0-regular graph.

- **1** The complete graph is a graph of order n that is an (n-1)-regular graph. It is denoted by K_n .
- 2 The empty graph $E_n = (V, \emptyset)$. E_n is 0-regular graph.

③ The complement of a graph G is the graph \overline{G} with vertex set $V(\overline{G}) = V(G)$ and edge set $E(\overline{G}) = \{xy : x, y \in V(G), xy \notin E(G)\}.$

- **1** The complete graph is a graph of order n that is an (n-1)-regular graph. It is denoted by K_n .
- 2 The empty graph $E_n = (V, \emptyset)$. E_n is 0-regular graph.

③ The complement of a graph G is the graph \overline{G} with vertex set $V(\overline{G}) = V(G)$ and edge set $E(\overline{G}) = \{xy : x, y \in V(G), xy \notin E(G)\}.$ $\overline{K}_n = E_n$

- The complete graph is a graph of order n that is an (n-1)-regular graph. It is denoted by K_n .
- 2 The empty graph $E_n = (V, \emptyset)$. E_n is 0-regular graph.
- 3 The complement of a graph G is the graph \bar{G} with vertex set $V(\bar{G}) = V(G)$ and edge set $E(\bar{G}) = \{xy : x, y \in V(G), xy \notin E(G)\}.$ $\bar{K}_n = E_n$

More examples of graphs:

- The complete graph is a graph of order n that is an (n-1)-regular graph. It is denoted by K_n .
- **2** The empty graph $E_n = (V, \emptyset)$. E_n is 0-regular graph.
- **③** The complement of a graph G is the graph \overline{G} with vertex set $V(\overline{G}) = V(G)$ and edge set $E(\overline{G}) = \{xy : x, y \in V(G), xy \notin E(G)\}.$ $\overline{K}_{D} = E_{D}$

Note: $\bar{\bar{G}} = G$.

Definition:

The adjacency matrix of a graph G with the vertex set $V = \{v_1, v_2, \dots, v_n\}$ is a binary square $n \times n$ matrix $A(G) = (a_{ij})_{n \times n}$ such that

$$a_{i,j} = \begin{cases} 1 & v_i v_j \in E(G) \\ 0 & v_i v_j \notin E(G). \end{cases}$$

Definition:

The adjacency matrix of a graph G with the vertex set $V = \{v_1, v_2, \dots, v_n\}$ is a binary square $n \times n$ matrix $A(G) = (a_{ij})_{n \times n}$ such that

$$a_{i,j} = \begin{cases} 1 & v_i v_j \in E(G) \\ 0 & v_i v_j \notin E(G). \end{cases}$$

Definition:

The adjacency matrix of a graph G with the vertex set $V = \{v_1, v_2, \dots, v_n\}$ is a binary square $n \times n$ matrix $A(G) = (a_{ij})_{n \times n}$ such that

$$a_{i,j} = \begin{cases} 1 & v_i v_j \in E(G) \\ 0 & v_i v_j \notin E(G). \end{cases}$$

Observation:

Definition:

The adjacency matrix of a graph G with the vertex set $V = \{v_1, v_2, \dots, v_n\}$ is a binary square $n \times n$ matrix $A(G) = (a_{ij})_{n \times n}$ such that

$$a_{i,j} = \begin{cases} 1 & v_i v_j \in E(G) \\ 0 & v_i v_j \notin E(G). \end{cases}$$

Observation:

- For a simple graph the adjacency matrix is symmetric.

Definition:

The adjacency matrix of a graph G with the vertex set $V = \{v_1, v_2, \dots, v_n\}$ is a binary square $n \times n$ matrix $A(G) = (a_{ij})_{n \times n}$ such that

$$a_{i,j} = \begin{cases} 1 & v_i v_j \in E(G) \\ 0 & v_i v_j \notin E(G). \end{cases}$$

Observation:

- For a simple graph the adjacency matrix is symmetric.

$$-\sum_{i=1}^m a_{i,j} = \deg(v_i).$$

Definition:

For a simple graph G = (V, E) the incidence matrix a $n \times m$ matrix $B(G) = (b_{ij})_{n \times m}$, where n and m are the numbers of vertices and edges respectively (|V| = n and |E| = m), such that

$$b_{i,j} = \begin{cases} 1 & v_i \in e_j \\ 0 & v_i \notin e_j. \end{cases}$$

Definition:

For a simple graph G = (V, E) the incidence matrix a $n \times m$ matrix $B(G) = (b_{ij})_{n \times m}$, where n and m are the numbers of vertices and edges respectively (|V| = n and |E| = m), such that

$$b_{i,j} = \begin{cases} 1 & v_i \in e_j \\ 0 & v_i \notin e_j. \end{cases}$$

Definition:

For a simple graph G = (V, E) the incidence matrix a $n \times m$ matrix $B(G) = (b_{ij})_{n \times m}$, where n and m are the numbers of vertices and edges respectively (|V| = n and |E| = m), such that

$$b_{i,j} = \begin{cases} 1 & v_i \in e_j \\ 0 & v_i \notin e_j. \end{cases}$$

Observation:

Definition:

For a simple graph G = (V, E) the incidence matrix a $n \times m$ matrix $B(G) = (b_{ij})_{n \times m}$, where n and m are the numbers of vertices and edges respectively (|V| = n and |E| = m), such that

$$b_{i,j} = \begin{cases} 1 & v_i \in e_j \\ 0 & v_i \notin e_j. \end{cases}$$

Observation:

- In every column of the matrix B(G) there are exactly two 1.

Definition:

For a simple graph G = (V, E) the incidence matrix a $n \times m$ matrix $B(G) = (b_{ij})_{n \times m}$, where n and m are the numbers of vertices and edges respectively (|V| = n and |E| = m), such that

$$b_{i,j} = \begin{cases} 1 & v_i \in e_j \\ 0 & v_i \notin e_j. \end{cases}$$

Observation:

- In every column of the matrix B(G) there are exactly two 1.

$$-\sum_{i=1}^m b_{i,j} = \deg(v_i).$$

Definition:

A graph G' = (V', E') is a subgraph of another graph G = (V, E) iff $V' \subset V$ and $E' \subset E$.

Definition:

A graph G' = (V', E') is a subgraph of another graph G = (V, E) iff $V' \subset V$ and $E' \subset E$.

Definition:

A graph G' = (V', E') is a subgraph of another graph G = (V, E) iff $V' \subset V$ and $E' \subset E$.

Is G' = (V', E') such that $V' = \{a, b, c\}$ and $E' = \{e_5\}$ a subgraph of G?

No

Definition:

A graph G' = (V', E') is a subgraph of another graph G = (V, E) iff $V' \subset V$ and $E' \subset E$.

Is G' = (V', E') such that $V' = \{a, b, c\}$ and $E' = \{e_1\}$ a subgraph of G?

Yes

Definition:

Let G = (V, E) be any graph, and let $S \subset V$ be any subset of vertices of G. Then the induced subgraph G[S] is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S.

Definition:

Let G = (V, E) be any graph, and let $S \subset V$ be any subset of vertices of G. Then the induced subgraph G[S] is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S.

Definition:

Let G = (V, E) be any graph, and let $S \subset V$ be any subset of vertices of G. Then the induced subgraph G[S] is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S.

Is G' = (V', E') such that $V' = \{a, b, c\}$ and $E' = \{e_1\}$ an induced subgraph G (i.e. G' = G[V'])?

Definition:

Let G = (V, E) be any graph, and let $S \subset V$ be any subset of vertices of G. Then the induced subgraph G[S] is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S.

Is G' = (V', E') such that $V' = \{a, b, c\}$ and $E' = \{e_1, e_2, e_3\}$ an induced subgraph G (i.e. G' = G[V'])?

Definition:

A graph is connected if any two vertices are joint by a path. If a graph not connected then is disconnected.

Definition:

A graph is connected if any two vertices are joint by a path. If a graph not connected then is disconnected.

Definition:

A graph is connected if any two vertices are joint by a path. If a graph not connected then is disconnected.

Is G connected?

YES

Definition:

A graph is connected if any two vertices are joint by a path. If a graph not connected then is disconnected.

Is G connected?

Definition:

Definition:

Definition:

Is G[V'] such that $V' = \{a, b, c\}$ a connected component?

Definition:

For a disconnected graph G every maximal (with respect to inclusion) connected subgraph is called a connected component of G.

Is G' = (V', E') such that $V' = \{a, b, c, d\}$ and $E' = \{e_1, e_2, e_3\}$ a connected component?

Definition:

Is G[V'] such that $V' = \{a, b, c, d\}$ a connected component?

Definition:

The distance between two vertices x and y, denoted by dist(x, y) is the length of a shortest path joining them.

Definition:

The distance between two vertices x and y, denoted by dist(x, y) is the length of a shortest path joining them.

Definition:

The distance between two vertices x and y, denoted by dist(x, y) is the length of a shortest path joining them.

dist(b, d) = 3?

Definition:

The distance between two vertices x and y, denoted by dist(x, y) is the length of a shortest path joining them.

dist(b, f) = ?

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there is a bijection $f: V_1 \rightarrow V_2$ that preservers the adjacency

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there is a bijection $f: V_1 \to V_2$ that preservers the adjacency

$$uv \in E_1 \iff f(u)f(v) \in E_2.$$

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there is a bijection $f: V_1 \to V_2$ that preservers the adjacency

$$uv \in E_1 \iff f(u)f(v) \in E_2.$$

 $G_1 \cong G_2$.

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there is a bijection $f: V_1 \rightarrow V_2$ that preservers the adjacency

$$uv \in E_1 \iff f(u)f(v) \in E_2.$$

$$G_1 \cong G_2$$
.

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there is a bijection $f: V_1 \to V_2$ that preservers the adjacency

$$uv \in E_1 \iff f(u)f(v) \in E_2.$$

$$G_1 \cong G_2$$
.

$$f(u) = a$$

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there is a bijection $f: V_1 \to V_2$ that preservers the adjacency

$$uv \in E_1 \iff f(u)f(v) \in E_2.$$

$$G_1 \cong G_2$$
.

$$f(u) = a, f(v) = b,$$

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there is a bijection $f: V_1 \rightarrow V_2$ that preservers the adjacency

$$uv \in E_1 \iff f(u)f(v) \in E_2.$$

$$G_1 \cong G_2$$
.

$$f(u) = a, f(v) = b, f(w) = d,$$

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there is a bijection $f: V_1 \to V_2$ that preservers the adjacency

$$uv \in E_1 \iff f(u)f(v) \in E_2.$$

$$G_1 \cong G_2$$
.

$$f(u) = a, f(v) = b, f(w) = d, f(t) = c.$$

