Problem Sheet 6

Math40002, Analysis 1

- 1. Define $f:[a,b]\to\mathbb{R}$ by $f(x)=\begin{cases} 1, & x\in\mathbb{Q}\\ -1, & x\not\in\mathbb{Q}.\end{cases}$ Prove that f is not integrable, but that f^2 is.
- 2. Fix an integer $r \geq 0$ and define $f: [1, b] \to \mathbb{R}$ by $f(x) = x^r$.
 - (a) Let $P_n = (1, b^{1/n}, b^{2/n}, \dots, b^{(n-1)/n}, b)$ be a partition of [1, b]. Compute the lower Darboux sum $L(f, P_n)$, and show that $U(f, P_n) = b^{r/n}L(f, P_n)$.
 - (b) Prove that f is integrable, and compute $\int_1^b x^r dx$.
- 3. Prove that any monotone increasing function $f:[a,b] \to \mathbb{R}$ is integrable, by considering its Darboux sums for partitions where every subinterval $[x_i, x_{i+1}]$ has the same length.
- 4. Define the *mesh* of a partition $P = (x_0, \ldots, x_k)$ to be the maximal length of any subinterval:

$$\operatorname{mesh}(P) = \max_{0 \le i \le k-1} \Delta x_i = \max_{0 \le i \le k-1} (x_{i+1} - x_i).$$

Show that if $f:[a,b] \to \mathbb{R}$ is continuous and (P_n) is any sequence of partitions of [a,b] such that $\operatorname{mesh}(P_n) \to 0$ as $n \to \infty$, then

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P_n) = \lim_{n \to \infty} U(f, P_n).$$

The proof should follow the argument we used in lecture to show that continuous functions are integrable.

5. (a) Prove for any $\theta \in \mathbb{R}$ and $n \in \mathbb{N}$ that if $\sin(\frac{\theta}{2}) \neq 0$, then

$$\sin(\theta) + \sin(2\theta) + \dots + \sin(n\theta) = \frac{\sin(n\theta/2)\sin((n+1)\theta/2)}{\sin(\theta/2)}$$

using the formula $\sin(\alpha)\sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta)).$

(b) Suppose for some t > 0 that $\sin(x)$ is monotone increasing on the interval [0, t], and consider the partition $P_n = (0, \frac{t}{n}, \frac{2t}{n}, \dots, \frac{(n-1)t}{n}, t)$ of [0, t]. Compute $U(\sin(x), P_n)$, and show that

$$\lim_{n \to \infty} U(\sin(x), P_n) = 2\sin^2(\frac{t}{2}).$$

Remark: This limit is equal to $1-\cos(t)$ by the double-angle formula $\cos(2\theta)=1-2\sin^2(\theta)$, so problem 4 tells us that $\int_0^t \sin(x) \, dx = \sin^2(\frac{t}{2}) = 1-\cos(t)$.

1

6. Let $f, g : [a, b] \to \mathbb{R}$ be bounded functions such that f(x) and the product f(x)g(x) are both integrable, and $f(x) \ge 0$ for all $x \in [a, b]$. If $c \le g(x) \le d$ for all $x \in [a, b]$, prove that

$$c \int_a^b f(x) \, dx \le \int_a^b f(x) g(x) \, dx \le d \int_a^b f(x) \, dx.$$

7. (*) Define $f:[0,1] \to \mathbb{R}$ by $f(x) = \begin{cases} 0, & x \notin \mathbb{Q} \\ 1/|q|, & x = \frac{p}{q} \in \mathbb{Q}. \end{cases}$

(We proved in problem sheet 1 that f is discontinuous at all rational numbers.)

- (a) Compute the lower Darboux integral $\int_0^1 f(x) dx$.
- (b) Consider the partition $P_n = (0, \frac{1}{n^3}, \frac{2}{n^3}, \dots, \frac{n^3-1}{n^3}, 1)$ of [0, 1]. Show for n large that there are at most n^2 subintervals $\left[\frac{i}{n^3}, \frac{i+1}{n^3}\right]$ on which $M_i = \sup_{\frac{i}{n^3} \le t \le \frac{i+1}{n^3}} f(t)$ is at least $\frac{1}{n}$.
- (c) Prove that $U(f, P_n) \leq \frac{2}{n}$ for n large. (Hint: break the sum into terms where $M_i \geq \frac{1}{n}$ and terms where $M_i < \frac{1}{n}$.)
- (d) Conclude that f is integrable, and compute $\int_0^1 f(x) dx$.