EC 710, HOMEWORK 1

1. Consider a discounted Markov Decision Process (MDP) with finite state space \mathcal{S} , finite action space \mathcal{A} , transition probabilities $P(s'\mid s,a)$, reward function r(s,a), and discount factor $\gamma\in(0,1)$. Let π be any policy with corresponding value function V^{π} . Define a new policy π' that, for every state s, satisfies the following policy improvement condition:

$$r\big(s,\pi'(s)\big) + \gamma \sum_{s' \in \mathcal{S}} P\big(s' \mid s,\pi'(s)\big) V^{\pi}(s') \geq r\big(s,\pi(s)\big) + \gamma \sum_{s' \in \mathcal{S}} P\big(s' \mid s,\pi(s)\big) V^{\pi}(s').$$

Prove that for all $s \in \mathcal{S}$, the value functions satisfy

$$V^{\pi'}(s) \ge V^{\pi}(s).$$

2. Consider inexact policy iteration where at step k you compute a vector \tilde{V}^{π_k} which satisfies

$$||V^{\pi_k} - \tilde{V}^{\pi_k}||_{\infty} \le \epsilon_k.$$

Prove that if $\sum_k \epsilon_k < \infty$, then V^{π_k} converges to V^* , the true optimal value vector. You may need to look up the notion of a Cauchy Sequence.

- 3. In class, we considered fixing the time k and letting the time horizon N go to infinity for the noiseless system $x_{k+1} = Ax + Bu_k$. We showed that the optimal policy approaches $u_k = -Lx_k$. Show that this implies that the policy $u_k = -Lx_k$ is optimal for the infinite-horizon problem.
- **4.** Go the lecture slides, and under the slide "Noiseless Case" in the LQR lectures, you will see a claim that K_k converges. Prove that it converges exponentially, i.e., $||K_k K||_2 \le C\rho^{N-k}$ for some $\rho \in (0,1)$.