ИНСТРУКЦИЯ

по применению дезинфицирующего средства (кожного антисептика) «Триосепт-ОЛ»

(ООО «НПО СпецСинтез», Россия)

Инструкция разработана в ИЛЦ ФГУ «РНИИТО им. Р.Р.Вредена Росмедтехнологий». Авторы: к.х.н. Ложкина О.В., к.б.н. Воробьева Е.И. (ООО «НПО СпецСинтез»), к.ф.н. Афиногенова А.Г., д.м.н., профессор Афиногенов Г.Е. (ИЛЦ ФГУ «РНИИТО им. Р.Р.Вредена Росмедтехнологий»)

1. ОБЩИЕ СВЕДЕНИЯ

- 1.1. Средство «Триосепт-ОЛ» представляет собой готовый к применению раствор в виде прозрачной бесцветной жидкости с характерным запахом изопропанола и н-пропанола. Содержит в своем составе в качестве действующих веществ (ДВ) алкилдиметилбензиламмония хлорид (ЧАС) 0,075%, дидецилдиметиламмония хлорид (ЧАС) 0,025%, изопропанол 40%, н-пропанол 35%, а также увлажняющие и смягчающие добавки; рН средства 7,0.
- 1.2. Средство «Триосепт-ОЛ» выпускается в полиэтиленовых флаконах с распылителем вместимостью 0.1, 0.5 и 1 л и в канистрах вместимостью 5 и 30 л. Срок годности средства при условии его хранения в невскрытой упаковке производителя составляет 5 лет со дня изготовления.
- 1.3. Средство оказывает бактерицидное (в том числе в отношении возбудителей внутрибольничных инфекций) туберкулоцидное, вирулицидное (включая вирусы гриппа, парентеральных гепатитов, полиомиелита, ВИЧ) и фунгицидное (в отношении грибов родов Кандида) действие. Средство сохраняет свои физико-химические и биологические свойства при низких температурах.
- 1.4. По параметрам острой токсичности средство относится к 4 классу мало опасных веществ по ГОСТ 12.1.007-76 при нанесении на кожу, введении в желудок и ингаляционном воздействии. Местно-раздражающие, кожнорезорбтивные и сенсибилизирующие свойства в рекомендованных режимах применения у средства не выявлены.

ПДК р.з. для ЧАС - 1,0 мг/м 3 (аэрозоль, 2 класс опасности). ПДК пропанолов в воздухе рабочей зоны 10 мг/м^3 , 3 класс опасности (пары).

- 1.5. Средство предназначено:
- для обработки рук хирургов, операционных медицинских сестер, акушерок и других лиц, участвующих в проведении операций и приеме родов.
 - для обработки локтевых сгибов доноров;
- для обработки кожи операционного и инъекционного полей пациентов лечебно-профилактических учреждений (ЛПУ);
- средство может быть использовано для обеззараживания резиновых перчаток, надетых на руки персонала, на предприятиях, выпускающих стерильную продукцию, где требуется соблюдение асептических условий, а также в случае попадания на перчатки инфекционного материала в микробиологических лабораториях при бактериальных инфекциях.
 - для гигиенической обработки рук медицинского персонала ЛПУ, рук

медицинских работников детских дошкольных и школьных учреждений, учреждений соцобеспечения (дома престарелых, инвалидов и др.);

- для гигиенической обработки рук работников парфюмерно-косметических и фармацевтических предприятий, объектов коммунальных служб (в том числе косметических салонов и др.);
- для гигиенической обработки рук работников пищевых предприятий, предприятий общественного питания и предприятий продовольственной торговли;
- для гигиенической обработки рук работников птицеводческих, животноводческих, свиноводческих и звероводческих хозяйств;
- для гигиенической обработки рук населением и инъекционного поля пациентов в быту.

2. ПРИМЕНЕНИЕ СРЕДСТВА «Триосепт-ОЛ»

- 2.1. Гигиеническая обработка рук: на кисти рук наносят 3 мл средства и втирают в кожу в течение 20 секунд.
- 2.2. Обработка рук хирургов и других лиц, участвующих в проведении операций и приеме родов: перед применением средства кисти рук и предплечий предварительно тщательно моют теплой проточной водой и мылом в течение двух минут, после чего их высушивают стерильной марлевой салфеткой. Затем на кисти рук наносят средство дважды по 5 мл и втирают его в кожу рук и предплечий (поддерживая руки во влажном состоянии).

Общее время обработки составляет 3 минуты.

Стерильные перчатки надевают на руки после полного высыхания средства.

- 2.3 **Обработка операционного поля и локтевых сгибов доноров:** кожу двукратно протирают раздельными стерильными марлевыми тампонами, обильно смоченными средством. Время выдержки после окончания обработки 2 мин. Накануне операции больной принимает душ (ванну), меняет белье.
 - 2.4. Обработка инъекционного поля:
- кожу протирают стерильным ватным тампоном, обильно смоченным средством. Время выдержки после окончания обработки 20 секунд;
- обработку проводят способом орошения кожи в месте инъекции до полного увлажнения с последующей выдержкой после орошения 20 сек.
- 2.5. Обработка резиновых перчаток, надетых на руки персонала: поверхность резиновых перчаток, надетых на руки персонала, обрабатывают путем тщательного протирания стерильным марлевым или ватным тампоном, обильно смоченным средством (норма расхода средства не менее 3 мл на тампон). Время обработки не менее 1 минута (до полного высыхания поверхности перчаток).

3. МЕРЫ ПРЕДОСТОРОЖНОСТИ

- 3.1.Средство «Триосепт-ОЛ» используется только для наружного применения, не наносить на раны и слизистые оболочки.
- 3.2. При случайном попадании средства в глаза их следует обильно промыть проточной водой и закапать 30% раствор сульфацида натрия (альбуцида).

3.3. При случайном попадании средства в желудок - промыть желудок большим количеством воды и принять адсорбенты: активированный уголь, жженую магнезию (1-2 столовые ложки на стакан воды), обеспечить покой и тепло пострадавшему.

4. УСЛОВИЯ ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

- 4.1. Средство легко воспламеняется. Хранить и использовать средство вдали от открытого пламени и включенных нагревательных приборов.
- 4.2. Хранить средство при температуре окружающей среды до плюс 30°C отдельно от лекарственных препаратов и пищевых продуктов, в местах, недоступных детям, вдали от нагревательных приборов, открытого огня и прямых солнечных лучей.
- 4.3. Средство можно транспортировать любым видом транспорта в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта и гарантирующими сохранность средства и тары.
- 4.4. При транспортировании средства в зимнее время возможно его замерзание. Потребительские свойства средства после размораживания и перемешивания встряхиванием сохраняются.

5. ФИЗИКО-ХИМИЧЕСКИЕ И АНАЛИТИЧЕСКИЕ МЕТОДЫ КОНТРОЛЯ КАЧЕСТВА СРЕДСТВА «Триосепт-ОЛ»

Дезинфицирующее средство «Триосепт-ОЛ» контролируется по следующим показателям качества: внешний вид, цвет, запах, показатель концентрации водородных ионов (рН) и массовая доля изопропанола и н-пропанолоа (суммарно), а также четвертичных аммониевых соединений (суммарно).

Контролируемые показатели и нормы по каждому из них представлены в таблице 1.

Таблица 1. Показатели качества и нормы для средства «Триосепт-ОЛ»

№№ п/п	Наименование показателей	Нормы	Методы испытаний
1	Внешний вид	Прозрачная жидкость	По п.5.1
2	Цвет	От бесцветного до светло желтого	По п.7.1
3	Запах	Специфический слабый	По п.5.2
4	Показатель концентрации водородных ионов	7,0 <u>+</u> 0,5	По п.5.3
5	Массовая доля ЧАС, %	0.1 ± 0.05	По п.5.4
	Массовая доля спиртов	$75,0 \pm 5,0$	По п.5.5

5.1. Определение внешнего вида и цвета

Внешний вид и цвет средства определяют визуально сравнением с контрольным образцом при температуре $(22\pm2)^{\circ}$ С в пробирках из бесцветного стекла типа Π -2-20-14/23 XC по Γ OCT 20292-74 в проходящем или отраженном свете.

Испытание проводят в однотипных пробирках одного размера.

5.2. Определение запаха

Запах определяют органолептически при температуре (22 ± 2) °C.

5.3. Определение концентрации водородных ионов

Концентрацию водородных ионов (pH) средства определяют потенциометрическим методом по ГОСТ 22567.5-93.

5.4. Определение содержания четвертичных аммониевых соединений (суммарно).

5.4.1. Оборудование, реактивы и растворы:

весы лабораторные общего назначения 2 класса точности с наибольшим пределом взвешивания 200 г по ГОСТ 24104-88;

бюретка 1-1-2-25-0,1 по ГОСТ 29251-91;

колба коническая КН-1-50- по ГОСТ 25336-82 со шлифованной пробкой;

пипетки 4(5)-1-1, 2-1-5 по ГОСТ 20292-74;

цилиндры 1-25, 1-50, 1-100 по ГОСТ 1770-74;

колбы мерные 2-100-2 по ГОСТ 1770-74;

натрия лаурилсульфат (додецилсульфат) по ТУ 6-09-64-75;

цетилпиридиния хлорид 1-водный с содержанием основного вещества не менее 99% производства фирмы "Мерк" (Германия) или реактив аналогичной квалификации;

индикатор эозин-метиленовый синий (по Май-Грюнвальду), марки ч., по ТУ МЗ 34-51;

хлороформ по ГОСТ 20015-88;

натрий сернокислый, марки х.ч. или ч.д.а., по ГОСТ 4166-76;

натрий углекислый марки х.ч. или ч.д.а., по ГОСТ 83-79;

калий хлористый, марки х.ч. или ч.д.а., по ГОСТ 4234-77;

вода дистиллированная по ГОСТ 6709-72.

5.4.2. Подготовка к анализу.

- 5.4.2.1. Приготовление 0,005 н. водного раствора лаурилсульфата натрия.
- 0,150 г лаурилсульфата натрия растворяют в дистиллированной воде в мерной колбе вместимостью $100~{\rm cm}^3$ с доведением объема дистиллированной водой до метки.
- 5.4.2.2. Приготовление сухой индикаторной смеси.

Индикатор эозин-метиленовый синий смешивают с калием хлористым в соотношении 1:100 и тщательно растирают в фарфоровой ступке. Хранят сухую индикаторную смесь в бюксе с притертой крышкой в течение года.

5.4.2.3. Приготовление 0,005 н. водного раствора цетилпиридиния хлорида.

Растворяют 0,179 г цетилпиридиния хлорида в дистиллированной воде в мерной

колбе вместимостью $100 \text{ cm}^3 \text{ c}$ доведением объема дистиллированной водой до метки.

5.4.2.4. Приготовление карбонатно-сульфатного буферного раствора.

Карбонатно-сульфатный буферный раствор с рН 11 готовят растворением 100 г натрия сернокислого и 10 г натрия углекислого в дистиллированной воде в мерной колбе вместимостью 1 дм³ с доведением объема дистиллированной водой до метки.

5.4.2.5. Определение поправочного коэффициента раствора лаурилсульфата натрия.

Поправочный коэффициент приготовленного раствора лаурилсульфата натрия определяют двухфазным титрованием раствора цетилпиридиния хлорида 0,005 н. раствором лаурилсульфата натрия.

В мерную колбу вместимостью 50 см³ к 10 см³ раствора цетилпиридиния хлорида прибавляют 10 см³ хлороформа, вносят 30-50 мг сухой индикаторной смеси и приливают 5 см³ буферного раствора. Закрывают колбу пробкой и встряхивают раствор. Титруют раствор цетилпиридиния хлорида раствором лаурилсульфата натрия. После добавления очередной порции титранта раствор в колбе встряхивают. В конце титрования розовая окраска хлороформного слоя переходит в синюю.

Рассчитывают значение поправочного коэффициента К раствора лаурилсульфата натрия по формуле:

$$K = V_{IIII} / V_{IIC}$$

где $V_{\text{ип}}$ – объем 0,005 н. раствора цетилпиридиния хлорида, см³;

 $V_{\text{дс}}$ — объем раствора 0,005 н. лаурилсульфата натрия, пошедшего на титрование, см 3 .

5.4.3. Проведение анализа.

Навеску анализируемого средства «Триосепт-ОЛ» массой от 0,5 до 1,5 г, взятую с точностью до 0,0002 г, количественно переносят в мерную колбу вместимостью 100 см³ и объем доводят дистиллированной водой до метки.

В коническую колбу либо в цилиндр с притертой пробкой вместимостью 50 см³ вносят 5 см³ полученного раствора средства «Триосепт-ОЛ», 10 см³ хлороформа, вносят 30-50 мг сухой индикаторной смеси и приливают 5 см³ буферного раствора. Закрывают колбу пробкой и встряхивают раствор. Полученную двухфазную систему титруют раствором лаурилсульфата натрия. После добавления очередной порции титранта раствор в колбе встряхивают. В конце титрования розовая окраска хлороформного слоя переходит в синюю.

5.4.4. Обработка результатов.

Массовую долю четвертичных аммониевых соединений (X) в процентах вычисляют по формуле:

$$X_{K} = \frac{0.0 \quad 0 \cdot V_{1} \cdot K \cdot \$_{1}^{\prime}}{\sigma \cdot m \cdot V_{2}} \cdot \frac{10}{m \cdot V_{2}}$$

где 0,001805 — масса четвертичных аммониевых соединений, соответствующая 1 см³ раствора лаурилсульфата натрия с концентрацией точно С ($C_{12}H_{25}SO_4Na$) = 0,005 моль/дм³ (0,005 н.), г;

V – объем раствора лаурилсульфата натрия с концентрацией C ($C_{12}H_{25}SO_4Na$) =

 $0,005 \text{ моль/дм}^3 (0,005 \text{ н.}), \text{ см}^3;$

K — поправочный коэффициент раствора лаурилсульфата натрия с концентрацией $C(C_{12}H_{25}SO_4Na) = 0,005$ моль/дм³ (0,005 н.);

т – масса анализируемой пробы средства, г;

 V_1 – объем, в котором растворена навеска средства «Триосепт-ОЛ», равный 100 см 3 ;

 V_2 – объем аликвоты анализируемого раствора, отобранной для титрования (5 см 3).

За результат анализа принимают среднее арифметическое значение двух параллельных определений, абсолютное расхождение между которыми не должно превышать допускаемое расхождение, равное 0,5%.

Допускаемая относительная суммарная погрешность результата анализа $\pm 5,0\%$ при доверительной вероятности 0,95. Результат анализа округляется до первого десятичного знака после запятой.

5.5. Определение содержания 1-пропанола и 2-пропанола (суммарно).

- 5.5.1. Оборудование, реактивы.
- хроматограф лабораторный газовый с пламенно-ионизационным детектором типа "Цвет-106";
 - газ-носитель азот по ГОСТ 2993-74;
 - воздух из баллона по ГОСТ 17433-80 или компрессора;
 - водород из баллона по ГОСТ 3022-80 или из генератора водорода БПГ;
- весы лабораторные общего назначения, 2-го класса точности с пределом взвешивания 200 г по ГОСТ 24104-01;
 - колбы мерные 2-25-2, ГОСТ 1770-74;
- колонка хроматографическая стеклянная длиной 2,5 м и внутренним диаметром 2 мм;
- насадка колонки хроматон N-супер с 5% SE-30, с зернением 0,2-0,25 мм, (импорт);
- линейка измерительная металлическая с ценой деления 1 мм по ГОСТ 17435-73;
 - микрошприц на $10 \cdot 10^{-3} \text{ см}^3$ типа МШ-10;
 - пипетки 6-1-10, 6-1-5, ГОСТ 20292-82;
 - 1-пропанол хч для хроматографии, аналитический стандарт;
 - 2-пропанол хч для хроматографии, аналитический стандарт;
 - вода дистиллированная по ГОСТ 6709-72.
 - 5.5.2. Подготовка к выполнению измерений.

Заполнение колонки сорбентом производят общепринятым методом. Вывод хроматографа на рабочий режим проводят в соответствии с Инструкцией по монтажу и эксплуатации хроматографа.

5.5.3. Условия хроматографирования.

Скорость газа-носителя $40\pm10 \text{ cm}^3/\text{мин};$

скорость водорода $40\pm10 \text{ cm}^3/\text{мин}$; скорость воздуха $400\pm100 \text{ cm}^3/\text{мин}$;

температура термостата колонки $55\pm5^{\circ}$ С; температура детектора 150° С; температура испарителя 160° С; объем вводимой пробы 1 мкл;

скорость движения диаграммной ленты 0,6 см/мин.

Коэффициент усиления подбирают таким образом, чтобы высота хроматографических пиков составляла 50-80% шкалы диаграммной ленты.

5.5.4. Приготовление градуировочных растворов.

В мерной колбе объемом 25 см³ с точностью до 0,0002 г взвешивают навески аналитического стандарта 1-пропанола – 8,75 г и 2-пропанола – 10,00 г и доводят до метки дистиллированной водой. Отмечают величины навесок и рассчитывают содержание спиртов в весовых процентах.

5.5.5. Выполнение анализа

Образец средства «Триосепт-ОЛ» и градуировочный раствор хроматографируют не менее 3 раз каждый и рассчитывают площади хроматографических пиков.

5.5.6. Обработка результатов

Массовую долю спиртов (Y) в процентах вычисляют по формуле:

$$Y = \frac{C_{rp} \cdot S_x}{S_{rp}}$$

где C_{rp} - концентрация суммы спиртов в градуировочном растворе, %;

 $S_{\rm x}$ - сумма площадей пиков 1-пропанола и 2-пропанола на хроматограммах испытуемого средства;

 S_{rp} - сумма площадей пиков 1-пропанола и 2-пропанола на хроматограммах градуировочного раствора.

Допускаемая относительная суммарная погрешность результата анализа $\pm 5,0\%$ при доверительной вероятности 0,95. Результат анализа округляется до первого десятичного знака после запятой.