Exam 1 – Part 2 – 10/2/2024

Instructions

- This part is worth 30 points total. The exam (all three parts) is worth 100 points total.
- You have 50 minutes to complete Parts 1 and 2 of the exam.
- For Parts 1 and 2 of the exam, you may <u>not</u> use any outside assistance. These parts of the exam are closed book, closed notes, and closed internet.
- No collaboration allowed. All work must be your own.
- You must turn in Part 1 before beginning Part 2.
- Do not discuss the contents of this exam with any midshipmen until it is returned to you.

Background

In this part of the exam, you'll use a dataset on carbon dioxide and greenhouse gas emissions, based on data from Our World in Data.

The dataset contains the following variables/columns for a subset of countries around the world, from 2000 to 2016:

Column	Description			
year	Year of observation			
region	Region of the world			
country	Country			
co2	Annual production-based CO2 emissions (million tonnes)			
ghg	Annual greenhouse gas emissions (million tonnes of CO2 equivalents)			
population	Total population of country			
gdp	Total real GDP, inflation-adjusted			

The DataFrame is saved to the variable df. This is the result of df.head():

		year	region	country	co2	ghg	population	gdp
	0	2000	Americas	Argentina	141.717	366.34	36871000.0	5.570000e+11
	1	2001	Americas	Argentina	133.311	383.27	37276000.0	5.250000e+11
	2	2002	Americas	Argentina	124.382	386.17	37682000.0	4.530000e+11
	3	2003	Americas	Argentina	134.621	408.49	38088000.0	4.870000e+11
	4	2004	Americas	Argentina	157.034	436.71	38492000.0	5.320000e+11

Problem 1. The chart below shows the annual total green house gas emissions for each region.

Which of the following code snippets produced this chart?

```
A. alt.Chart(df).mark_line(colorby='region').encode(
        alt.X('year:0'),
        alt.Y('sum(ghg):Q')
B. alt.Chart(df).mark_line().encode(
        alt.X('year:0'),
        alt.Y('sum(ghg):Q'),
        alt.Color('region:N')
   )
C. alt.Chart(df).mark_line().encode(
        alt.X('year:0'),
        alt.Y('sum(ghg):Q')
   ).properties(
        color='various'
D. \  \, \text{alt.Chart(df).mark\_line().encode()}
        alt.X('year:0'),
        alt.Y('sum(ghg):Q'),
        alt.Color(groupby='region:N')
```


This is the code that was used to make the chart. Note that there are letters (#A, #B, etc.) added to mark possible positions for additional code.

```
alt.Chart(df).transform_filter(
    'datum.year==2000',
    #A
).mark_point(
    #B
).encode(
    alt.X('gdp:Q'),
    alt.Y('co2:Q'),
    #C
).properties(
    width = 600,
    #D
)
```

Suppose you want to change the size of the points according to the population. Where would you add the appropriate code to make this change?

- A. #A
- В. #В
- C. #C
- D. #D
- E. None of these.

Problem 3. Consider the chart and code in Problem 2. Suppose you want to change the	Your answer:
size of all of the points uniformly. Where would you add the appropriate code to make this	
change?	
A. #A	
В. #В	
C. #C	
D. #D	
E. None of these.	
Problem 4. Consider the chart and code in Problem 2. Suppose you want to add an overall	Your answer:
title to the chart. Where would you add the appropriate code to make this change?	
A. #A	
B. #B	
C. #C	
D. #D	
E. None of these.	
Problem 5. Consider the chart and code in Problem 2. Suppose you want to change the scale	Your answer:
of the x-axis to spread out the points that are clustered together. You can do this by adding	
the code .scale(type='sqrt'). Where should this code be added?	
A. #A	
B. #B	
C. #C	
D. #D	

E. None of these.

Problem 6. The following chart shows the production-based CO2 emissions of countries in the South Asia region (the yellow line) as compared to the total emissions of all countries in the dataset (blue bars).

Consider the code:

```
all_co2 = alt.Chart(df).mark_bar().encode(
    alt.X('year:0'),
    alt.Y('sum(co2):Q')
)

southasia_co2 = alt.Chart(df).transform_filter(
    'datum.region=="South Asia"'
).mark_line(color='yellow').encode(
    alt.X('year:0'),
    alt.Y('sum(co2)')
```

Combined with the code above, which of the following options produced the provided chart?

```
A. all_co2 & southasia_co2
B. southasia_co2 | all_co2
C. all_co2 + southasia_co2
```

D. all_co2 - southasia_co2

Annual greenhouse gas emissions per capita (million tonnes CO2/person)

The chart was produced by the following code, except some of the code was replaced by METHOD_ONE, METHOD_TWO, and SORT_CODE:

```
alt.Chart(df).transform_filter(
    'datum.year == 2010'
).METHOD_ONE(
    groupby=['region'],
    region_ghg='sum(ghg):Q',
    region_pop='sum(population):Q',
).METHOD_TWO(
    region_ghg_per_capita = 'datum.region_ghg / datum.region_pop'
).mark_bar().encode(
    alt.X('region_ghg_per_capita:Q')
        .title('Annual greenhouse gas emissions per capita (million tonnes CO2/person)'),
    alt.Y('region:N')
        .title('Region of the world')
        .sort(SORT_CODE),
)
```

What code was replaced by METHOD_ONE?

- A. transform_calculate
- B. transform_aggregate
- C. transform_filter
- D. transform_group

Problem 8. Consider the chart and code in Problem 7. What code was replaced by METHOD_TWO?

- A. transform_calculate
- $B.\ \mathsf{transform_aggregate}$
- C. transform_filter
- D. transform_group

Problem 9. Consider the chart and code in Problem 7. What code was replaced by SORT_CODE?

Your answer:

- A. {'field': 'x', 'order': 'descending'}
 B. {'encoding': 'x', 'order': 'descending'}
- C. {'field': 'x', 'order': 'ascending'}
- D. {'encoding': 'x', 'order': 'ascending'}

Problem 10. The chart below shows the CO2 emissions over time for each country in the dataset.

(cont.)

Which of the following code snippets produces this chart?

```
A. base = alt.Chart(df).mark_line().encode(
        alt.X('year:0'),
        alt.Y('co2:Q')
   ).properties(
        width=100,
        height=100
   base.facet(
        facet=alt.Facet('country:N'),
        columns=6
    )
B.\ \text{base} = \text{alt.Chart(df).mark\_line().encode(}
        alt.X('year:0'),
        alt.Y('co2:Q')
    ).properties(
        width=100,
        height=100
    )
   base.grid(
        row=alt.Row('country:N'),
        rows=6
C. base = alt.Chart(df).mark_line().encode(
        alt.X('year:0'),
        alt.Y('co2:Q')
   ).properties(
        width=100,
        height=100
   base.matrix(
        column=alt.Column('country:N'),
        row=alt.Row('co2:Q')
    )
D. \  \, \mathsf{base} \, = \, \mathsf{alt.Chart(df).mark\_line().encode(} \, \,
        alt.X('year:0'),
        alt.Y('co2:Q')
   ).properties(
        width=100,
        height=100
   base.repeated(
        facet=alt.Facet('country:N'),
        shape=(8,6)
    )
```