1

NCERT Discrete 11.9.1 Q7

EE23BTECH11061 - SWATHI DEEPIKA*

Question: If a,b,c are in A.P.;b,c,d are in G.P and $\frac{1}{c}$, $\frac{1}{d}$, $\frac{1}{e}$ are in A.P. prove that a,c,e are in G.P. **Solution:**

Symbol	Remarks
$x_1(n)$	A.P Sequence
$x_2(n)$	G.P Sequence
$x_3(n)$	A.P Sequence
y(n)	Sequence of a, c, e
$x_1(0)$	а
$x_1(1)$	b
$x_1(2)$	С
$x_2(0)$	b
$x_2(1)$	С
$x_2(2)$	d
$x_3(0)$	$\frac{1}{c}$
$x_3(1)$	$\frac{1}{d}$
$x_3(2)$	$\frac{1}{e}$
y(0)	а
y(1)	c
y(2)	e

TABLE I Parameters

$$x_2(2) = \frac{x_2(1)^2}{x_2(0)} \tag{5}$$

$$x_3(1) - x_3(0) = x_3(2) - x_3(1)$$
 (6)

$$2x_3(1) = x_3(0) + x_3(2) \tag{7}$$

From (5),

$$2\frac{x_2(0)}{x_2(1)^2} = x_3(0) + x_3(2) \tag{8}$$

From (2),

$$\frac{x_1(0) + x_1(2)}{x_1(2)^2} = x_3(0) + x_3(2) \tag{9}$$

$$\frac{x_1(0)}{x_1(2)^2} + \frac{1}{x_1(2)} = x_3(0) + x_3(2) \tag{10}$$

$$\frac{x_1(0)}{x_3(2)} = x_2(2)^2 \tag{11}$$

$$y(0) \cdot y(2) = y(1)^2$$
 (12)

So, y(0),y(1),y(2) are in G.P

For $x_1(n)$,

$$x_1(n) = (x_1(0) + n(x_1(1) - x_1(0)))u(n)$$
 (13)

Using Z-transform,

$$X_1(z) = \frac{x_1(0)}{1 - z^{-1}} + \frac{(x_1(1) - x_1(0))z^{-1}}{(1 - z^{-1})^2}, \quad |z| > 1$$
(14)

For $x_2(n)$,

$$x_2(n) = x_2(0) \left(\frac{x_2(1)}{x_2(0)}\right)^n u(n)$$
 (15)

$$x_1(1) - x_1(0) = x_1(2) - x_1(1)$$

$$2x_1(1) = x_1(0) + x_1(2)$$

$$x_1(1) = \frac{x_1(0) + x_1(2)}{2}$$

(3) For
$$x_3(n)$$
,

$$x_3(n) = (x_3(0) + n(x_3(0) - x_3(1))) u(n)$$
 (17)

$$x_2(1)^2 = x_2(0) \times x_2(2)$$

(4) Using Z-transform,

$$X_3(z) = \frac{x_3(0)}{1 - z^{-1}} + (x_3(1) - x_3(0)) \frac{z^{-1}}{(1 - z^{-1})^2}, \quad |z| > 1$$
(18)

For y(n),

$$y(n) = y(0) \left(\frac{y(1)}{y(0)}\right)^n u(n)$$
 (19)

Using Z-transform,

$$Y(z) = \frac{y(1)}{1 - \frac{y(1)}{y(0)}z^{-1}}, \quad |z| > \left|\frac{y(1)}{y(0)}\right|$$
 (20)