

Algorithms and Data Structures 2 CS 1501

Spring 2023

Sherif Khattab

ksm73@pitt.edu

Announcements

- Upcoming Deadlines
 - Homework 5: this Friday @ 11:59 pm
 - Lab 3: Tuesday 2/14 @ 11:59 pm
 - Assignment 1: Friday 2/17 @ 11:59 pm

Previous lecture

- Digital Searching Problem
 - What if we use the fact that data items are represented as bits in computer memory?
- Digital Search Tree (DST)

This Lecture

- Digital Search Tree (DST)
- Radix Search Trie (RST)
- De La Briandais (DLB) Trie

Digital Search Trees (DSTs)

Instead of looking at less than/greater than, lets go left or right based on the bits of the key

DST example: Insert and Search

Insert:

- 4 0100
- 3 0011
- 2 0010
- 6 0110
- 5 0101

Search:

- 3 0011
- 7 0111

Inserting into a DST

- adding a key k and a corresponding value
 - if root is null, add k as the root and return
 - current ← root
 - Repeat
 - if k is equal to the current.key, replace value and return
 - if current bit of k is 0,
 - if left child is null, add k as left child
 - else continue to left child (recursive call or current ← current.left)
 - if current bit of k is 1,
 - if left child is null, add k as right child
 - else continue to right child (recursive or current ← current.right)
- When does the algorithm stop?
 - no more bits or
 - hitting a null

Runtime Analysis of Digital Search Trees

- b: the bit length of the target or inserted key
- n: number of nodes in the tree
- Worst-case Runtime?
 - O min(b, height of the tree)
- What is the average height of the tree?
 - Assume that having 0 or 1 is equally likely at each bit
 - \bigcirc log(n)
 - \bigcirc In general b >= $\lceil \log n \rceil$

What property does a DST hold?

- In a DST, each node shares a <u>common</u>
 <u>prefix of length depth(node)</u> with all nodes in its subtree
 - O e.g., 6 shares the prefix "01" with 5
- In-order traversal doesn't produce a sorted order of the items
 - Insertion algorithm can be modified to make a DST a BST at the same time

DST example: Delete

- Delete 3
- Can replace it with any leaf in its subtree
- Let's replace it with 2
- OK because 2 shares "0" as a prefix
 with 3, so it also shares "0" as a prefix
 with 6 and 5

DST example: Delete

- Delete 3
- Can replace it with any leaf in its subtree
- Let's replace it with 2
- OK because 2 shares "0" as a prefix with 3, so it also shares
 "0" as a prefix with 6 and 5

DST example: Variable length keys

- Insert
- 1 01
- Must be in place of 6
- Replace 6 by 1 and re-insert 6

DST example: Variable length keys

- Insert
- 1 01
- Must be in place of 6
- Replace 6 by 1 and re-insert
- 6 0110

Analysis of Digital Search Trees

- We end up doing many **equality** comparisons against the full key
- This is better than less than/greater than comparison in BST
- Can we improve on this?

Radix search tries (RSTs)

- Trie as in retrieve, pronounced the same as "try"
- Instead of storing keys inside nodes in the tree, we store them implicitly as paths down the tree
 - Interior nodes of the tree only serve to direct us according to the bitstring of the key
 - O Values can then be stored at the end of key's bitstring path (i.e., at leaves)
 - O RST uses less space than BST and DST

Adding to Radix Search Trie (RST)

- Input: key and corresponding value
- if root is null, set root ← new node
- current node ← root
- for each bit in the key
 - if bit == 0,
 - if current.left is null, set current.left = new node
 - move to left child
 - set current ← current.left
 - if bit == 1,
 - if current.right is null, set current.right = new node
 current ← current.right
- current.value = value

Insert:

4 0100

3 0011

2 0010

6 0110

Searching in Radix Search Trie (RST)

- Input: key
- current node ← root
- for each bit in the key
 - if current node is null, return key not found
 - if bit == 0,
 - current ← current.left
 - if bit == 1,
 - current ← current.right
- if current node is null or the value inside is null
 - return key not found
- else return current.value

Search:

Search:

3 0011

Search:

3 0011

Search:

3 0011

Search:

3 0011

Search:

3 0011

Search:

Search:

Search:

Search:

Search:

RST Runtime analysis

- for add:
 - Theta(b): b is the bit length of the key
 - However, this time we don't have full key comparisons
- for search:
 - search hit
 - Theta(b)
 - search miss
 - maybe less than Theta(b)

RST Limitations

- Would this structure work as well for other key data types?
- Characters?
 - Characters are the same as 8-bit ints (assuming simple ascii)
- Strings?
- May have huge bit lengths
- How to store Strings?

Larger branching factor tries

- In our binary-based Radix search trie, we considered one bit at a time
- What if we applied the same method to characters instead of bits in a string?
 - What would this new structure look like?
 - O How many children per node?
 - up to R (the alphabet size)
 - Also called R-way radix search tries

Adding to R-way Radix RST

- if root is null, set root ← new node
- current node ← root
- for each character c in the key
 - Find the cth child of current
 - if child is null, create a new node and attach as the cth child
 - move to child
 - current ← child
- insert value into current node

Another trie example

she

Another trie example

she

Another trie example

she

she

sea

Analysis

- Runtime of add and search hit?
- O(w) where w is the character length of the string
 - So, what do we gain over RSTs?
 - \blacksquare w < b
 - e.g., assuming fixed-size encoding $w = \frac{b}{\lceil \log R \rceil}$
 - tree height is reduced

Search Miss

- Search Miss time for R-way RST
 - \bigcirc Require an average of $log_R(n)$ nodes to be examined
 - Proof in Proposition H of Section 5.2 of the text
- Average tree height with 2²⁰ keys in an RST?
 - $O \log_2 n = \log_2 2^{20} = 20$
- With 2²⁰ keys in a large branching factor trie, assuming 8-bits at a time?
 - $O \log_{R} n = \log_{256} 2^{20} = \log_{256} (2^8)^{2.5} = \log_{256} 256^{2.5} = 2.5$

Implementation Concerns

```
See TrieSt.javaO Implements an R-way trie
```

Basic node object:

Where R is the branching factor

```
private class Node {
    private Object val;
    private Node[] next;
    private Node(){
        next = new Node[R];
    }
}
```

- Non-null val means we have traversed to a valid key
- Again, note that keys are not directly stored in the trie at all

R-way trie example

Summary of running time

	insert	Search h:t	Search
binog BT	0(1)	$\Theta(b)$	A (log n) aserg
multi-Way RST	(w)	$\theta(\omega)$	Hiss (log n) average A (log n)

R-way RST's nodes may waste space!

- Considering 8-bit ASCII, each node contains 28 references!
- This is especially problematic as in many cases, a lot of this space is wasted
 - O Common paths or prefixes for example, e.g., if all keys begin with "key", thats 255*3 wasted references!
 - At the lower levels of the trie, most keys have probably been separated out and reference lists will be sparse

Solution: De La Briandais tries (DLBs)

Main idea: replace the array inside the node of the R-way trie with a linked-list

De La Briandais (DLB) Trie

- tree-like structure used for searching when keys are sequences of characters
- each nodelet
 - stores one character,
 - points to a sibling (linked list of siblings), and
 - points to a child

Adding to DLB Trie

- if root is null, set root ← new node
- current node ← root
- for each character c in the key
 - Search for c in the linked list headed at current using sibling links
 - if not found, create a new node and attach as a sibling to the linked list
 - move to child of the found node
 - either recursively or by current ← child
- if at last character of key, insert value into current node and return

DLB Example

DLB analysis

- How does DLB performance differ from R-way tries?
- Which should you use?

De La Briandais (DLB) Trie

- worst-case running time is O(wR)
 - w: number of characters in the key
 - R: alphabet size
- worst-case can be avoided by using DLB only when the sibling lists are short

DLB vs. R-way RST: Space comparison example

- Q: How does DLB save space over R-way RST?
 Assume the following set of keys:
 - ksm1 ... ksm9
- How big does an 256-way RST take vs. a DLB trie?

R-way RST

```
private class Node {
    private Object val;
    private Node[] next;

    private Node(){
        next = new Node[R];
    }
}
```

Each node takes 4*(R+1) = 4*257 = 1028 bytes, assuming 4 bytes per reference variable

R-way RST

R-way RST

We will end up with 4 + 9 = 13 nodes

Total space is 13*1028 = 13,364 bytes

DLB Trie

```
private class DLBNode<T> {
    private Character character;
    private Object val;
    private Node sibling;
    private Node child;
}
```

Each node takes 4*4 = 16 bytes, assuming 4 bytes per reference variable

DLB Trie

CS 1501 – Algorithms & Data Structures 2 – Sherif Khattab

DLB Trie

- We will end up with 12 nodes
- Total space is 12*16 = 192 bytes
- Compare to 13,364 bytes with an R-way RST

Runtime Comparison for Search Trees/Tries

	Search h:t	Search voiss (avery)	insert
BST	$\Theta(n)$	(logn)	$\Theta(\nu)$
RB-BST	Allogn)	Allos .	O(logn)
DST	A(b)	Allogn)	D(b)
RST	$\theta(b)$	A (logn)	$\mathcal{G}(\mathbf{b})$
R-way RST	(ACW)	0((0gn)	$\theta(\nu)$
DIB	(J(WL)	O(ligh.P)	H(W.R)

Final notes on Search Tree/Tries

- We did not present an exhaustive look at search trees/tries, just the sampling that we're going to focus on
- Many variations on these techniques exist and perform quite well in different circumstances
 - Ternary search Tries
 - R-way tries without 1-way branching
- See the table at the end of Section 5.2 of the text